PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
C12N 9/12, G01N 23/00
A1
(11) International Publication Number: WO 00/36096
(43) International Publication Date: 22 June 2000 (22,06,00)

(21) International Application Number: PCT/US99/29096 (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(30) Priority Data: 60/112,354 16 December 1998

(22) International Filing Date:

60/163,373

16 December 1998 (16.12.98) US 3 November 1999 (03.11.99) US

8 December 1999 (08.12.99)

(71) Applicant (for all designated States except US): VERTEX PHARMACEUTICALS INCORPORATED [US/US]; Legal Dept., 130 Waverly Street, Cambridge, MA 02139-4242 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BELLON, Steven [US/US]; 14 Greenlawn Avenue, Wellesley, MA 02481 (US). BEMIS, Guy [US/US]; 256 Appleton Street, Arlington, MA 02476 (US). WILSON, Keith [US/US]; 6 Longwood Drive, Hopkinton, MA 01748 (US). FITZGIBBON, Matthew [US/US]; 163 Exchange Street, Millis, MA 02138 (US).
- (74) Agents: MARKS, Andrew et al.; Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, MA 02139-4242 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CRYSTALLIZED P38 COMPLEXES

(57) Abstract

This invention provides certain crystallized, protein kinase-ligand complexes, in particular P38-ligand complexes, and their structure coordinates. The structure coordinates are based on the structure of a phosphorylated P38 γ complex which has now been solved and which reveals new structural information useful for understanding the activated states of other, related kinase proteins as described herein. The key structural features of the proteins, particularly the shape of the substrate binding site, are useful in methods for designing or identifying selective inhibitors of the protein kinases, particularly P38 γ and in solving the structures of other proteins with similar features. The structure coordinates may be encoded in a data storage medium for use with a computer for graphical three-dimensional representation of the structure and for computer-aided molecular design of new inhibitors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AL		FI	Fin land	LT	Lithuania	SK	Slovakia
AM	Armenia	FR	France	LU	Luxembourg	SN	Senegal
AT	Austria	GA	Gabon	LV	Latvia	SZ	Swaziland
AU	Australia	GB	United Kingdom	MC	Мопасо	TD	Chad
AZ	Azerbaijan	GE	Georgia	MD	Republic of Moldova	TG	Togo
BA	Bosnia and Herzegovina	GH	Ghana.	MG	Madagascar	TJ	Tajikistan
BB	Barbados		Guinea	MK	The former Yugoslav	TM	Turkmenistan
BE	Belgium	GN		IVIIC	Republic of Macedonia	TR	Turkey
BF	Burkina Faso	GR	Greece	ML	Mali	TT	Trinidad and Tobago
BG	Bulgaria	HU	Hungary	MN	Mongolia	UA	Ukraine
BJ	Benin	IE	Ireland	MR	Mauritania	UG	Uganda
BR	Brazil	IL	Israel			US	United States of America
BY	Belarus	IS	Iceland	MW	Malawi	UZ	Uzbekistan
CA	Canada	TI	Tialy	MX	Mexico	VN	Viet Nam
CF	Central African Republic	JP	Japan	NE	Niger		
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia Zimbabwe
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbaowe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ		LC	Saint Lucia	RU	Russian Federation		
DE		LI	Liechtenstein	SD	Sudan		
DK	•	LK	Sri Lanka	SE	Sweden		.=
EE	Estonia	LR	Liberia	SG	Singapore		

CRYSTALLIZED P38 COMPLEXES

TECHNICAL FIELD OF INVENTION

This application claims priority from U.S. Provisional Applications Serial No. 60/112,354 filed December 16, 1998, U.S. Provisional Application Serial No. 60/163,373 filed November 3, 1999

This invention relates to certain crystallized kinase protein-ligand complexes, particularly complexes of crystallized P38 protein, and more particularly complexes of P387 protein. This invention also relates to crystallizable compositions from which the protein-ligand complexes may be obtained. This invention also relates to computational methods of using structure coordinates of the protein complex to screen for and design compounds that interact with the protein, particularly P38 protein or homologues thereof.

15

5

10

BACKGROUND OF THE INVENTION

Mammalian cells respond to extracellular stimuli by activating signaling cascades that are mediated by

20 members of the mitogen-activated protein (MAP) kinase family. Mammalian mitogen-activated protein (MAP) kinases are proline-directed serine/threonine kinases that facilitate signal translocation in cells [Davis, Mol. Reprod. Dev. 42, 459-467 (1995); Cobb et al., J.

25 Biol. Chem. 270, 14843-14846 (1995); Marshall, Cell 80, 179-185 (1995)]. MAP kinases include the extracellular-signal regulated kinases (ERKs), the c-Jun NH2-terminal kinases (JNKs) and the P38 kinases, which have similar sequences and three-dimensional structures [Taylor & -

- 2 -

Radzio-Andzlem (1994); Structure 2, 345-355; Kultz J Mol Evol 46, 571-588 (1998)].

Activation of the MAPK P38α has been observed in cells stimulated by stresses, such as treatment by lipopolysaccharides (LPS), UV, anisomycin, or osmotic shock, and by cytokines, such as interleukin-1 (IL-1) and tissue necrosis factor (TNF). Inhibition of P38α kinase leads to a blockade on the production of both IL-1 and TNF. IL-1 and TNF stimulate the production of other proinflammatory cytokines such as IL-6 and IL-8 and have been implicated in acute and chronic inflammatory diseases and in post-menopausal osteoporosis [Kimble et al., Endocrinol., 136, 3054-61 (1995)].

10

Based upon this finding it is believed that P38lpha, 15 along with other MAPKs, has a role in mediating cellular response to inflammatory stimuli, such as leukocyte accumulation, macrophage/monocyte activation, tissue resorption, fever, acute phase responses and neutrophilia. In addition, the MAPKs, such as $P38\alpha$, have been implicated in cancer, thrombin-induced platelet 20 aggregation, immunodeficiency disorders, autoimmune diseases, cell death, allergies, osteoporosis and neurodegenerative disorders. Inhibitors of $P38\alpha$ also appear to be involved in pain management through inhibition of prostaglandin endoperoxide synthase-2 25 induction. Other diseases associated with Il-1, IL-6, IL-8 or TNF overproduction are set forth in WO 96/21654. $P38\gamma$ MAP kinase (also known as ERK6 and stress activated protein kinase-3 or SAPK3) is a newly discovered member of the MAP kinase family. However, unlike the other P38 30 family members which are expressed in many tissues, P38 γ is expressed at highest levels in skeletal muscle [Li et al., Biochem Biophys Res Commun 228, 334-340 (1996);

- 3 -

Enslen et al., *J Biol Chem* 273, 1741-1748 (1998);
Raingeaud et al., *J. Biol. Chem.* 270, 7420-7426 (1995)].
Thus P387 may have a unique function related to muscle morphogenesis, and it may be a potential target for treating degenerative diseases occurring in muscle tissue.

Compounds that selectively inhibit P38 γ and not P38 α would be highly desirable. It would be useful to have new treatments for muscle degenerative diseases using compounds that do not suppress the inflammatory response or other functions of P38 α . However, the design of inhibitors that are selective for any particular MAP kinase, such as P38 γ , is challenging due to the structural similarity of the MAP kinases. Therefore, it would be advantageous to have a detailed understanding of the structures of the various MAP kinases in order to exploit any subtle differences that may exist among them.

10

15

20

25

30

A general approach to designing inhibitors that are selective for an enzyme target is to determine how a putative inhibitor interacts with the three dimensional structure of the enzyme. For this reason it is useful to obtain the enzyme protein in crystal form and perform Xray diffraction techniques to determine its three dimensional structure coordinates. If the enzyme is crystallized as a complex with a ligand, one can determine both the shape of the enzyme binding pocket when bound to the ligand, as well as the amino acid residues that are capable of close contact with the By knowing the shape and amino acid residues in the binding pocket, one may design new ligands that will interact favorably with the enzyme. With such structural information, available computational methods may be used to predict how strong the ligand binding interaction will

- 4 -

be. Such methods thus enable the design of inhibitors that bind strongly, as well as selectively to the target enzyme.

Crystal structures are known for some of the MAP kinases; for example, unphosphorylated JNK3, unphosphorylated P38α, and ERK2 in both phosphorylated and unphosphorylated forms. Phosphorylated ERK2 is reported to exist as a dimer in both solution and as a crystal. The unphosphorylated forms of JNK3, ERK2 and P38α, on the other hand, are reported to be monomeric. [Tong et al., Nat Struct Biol 4, 311-316 (1997); Wilson and Su, Chem Biol 4, 423-431 (1997); Xie et al., Structure 6, 983-991 (1998); Zhang et al., Nature 367, 704-711 (1994); Canagarajah et al., Cell 90, 859-869 (1997); Wilson and Su, J Biol Chem 271, 27696-27700 (1996)]

The crystal structure reported for P38¢ is based on unphosphorylated protein. However, it is the phosphorylated or activated form of the enzyme that is able to phosphorylate its substrate enzyme. In order to disrupt the phosphorylation of the substrate, and produce the desired clinical effect, a small molecule inhibitor would likely act by blocking a phosphorylated form of P38. Thus, the most suitable target for drug design is the active or phosphorylated form. While the structure of the unphosphorylated enzyme is often used for drug design purposes, there is an inherent uncertainty as to whether the phosphorylated and unphosphorylated forms would bind a designed inhibitor with equal affinity.

20

25

A class of pyridinylimidazole compounds are known to inhibit P38 α MAP kinase [Lee et al., Nature 372, 739-746 (1994)]. These inhibitors have been shown to bind in the

- 5 -

ATP binding site of P38α [Young et al., J Biol Chem 272, 12116-12121 (1997); Tong et al., Nat Struct Biol 4, 311-316 (1997); Wilson et al., Chem Biol 4, 423-431 (1997)]. However, the pyridinylimidazoles reportedly do not inhibit the activity of ERK2, JNK3, or P38γ. This observed selectivity is interesting because the amino acid sequence in the ATP binding site of the various kinases are known to be highly conserved [Fox et al., Protein Science 7, 2249-2255 (1998); Xie et al., supra; Wilson and Su, supra; Enslen et al., J Biol Chem 273, 1741-1748 (1998)].

As there is a need for compounds that selectively inhibit a particular MAP kinase, it would be desirable to have improved methods that facilitate the design of such compounds. For this purpose, knowledge of the three dimensional structure coordinates of an activated P38 protein would be useful. Such information would aid in identifying and designing potential inhibitors of particular P38 proteins which, in turn, are expected to have therapeutic utility.

SUMMARY OF THE INVENTION

-6-

shape of the substrate binding site, are useful in methods for designing or identifying selective inhibitors of the protein kinases, particularly P38, and in solving the structures of other proteins with similar features.

The invention also provides a computer which which is programmed with the structure coordinates of the activated P38 binding site. Such a computer, appropriately programmed and attached to the necessary viewing device, is capable of displaying a three-dimensional graphical representation of a molecule or molecular complex comprising such binding sites or similarly shaped homologous binding pockets.

10

15

20

25

The invention also provides a method for determining at least a portion of the three-dimensional structure of other molecules or molecular complexes which contain at least some features that are structurally similar to P38 γ , particularly P38 α , P38 β , P38 δ and other P38 isoforms. This is achieved by using at least some of the structural coordinates obtained for a phosphorylated P38 complex.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 lists the atomic structure coordinates for phosphorylated P38 γ in complex with MgAMP-PNP as derived by X-ray diffraction from a crystal of that complex. The following abbreviations are used in Figure 1:

"Atom type" refers to the element whose coordinates are measured. The first letter in the column defines the element.

"X, Y, Z" crystallographically define the atomic 30 position of the element measured.

"B" is a thermal factor that measures movement of the

-7-

atom around its atomic center.

"Occ" is an occupancy factor that refers to the fraction of the molecules in which each atom occupies the position specified by the coordinates. A value of "1" indicates that each atom has the same conformation, i.e., the same position, in all molecules of the crystal.

Fig 1a is an overview of the phosphorylated P38 γ .

Fig 2 is a superimposition of unphosphorylated P38 γ and phosphorylated P38 γ .

10 Fig 3 is a detailed stereo view of the activation loop.

Fig 4 is a stereo view of the AMP-PNP bound in the active site.

Fig 5 is a comparison of the active sites of activated P38 γ with P38 α (a) and cAPK or cyclic AMP dependent protein kinase(b).

Fig 6 is a comparison of activated phosphorylation loops from P38 γ (dark orange), ERK2 (dark blue), and cAPK (red).

20 Figure 7 shows a diagram of a system used to carry out the instructions encoded by the storage medium of Figures 8 and 9.

Figure 8 shows a cross section of a magnetic storage medium.

25 Figure 9 shows a cross section of a opticallyreadable data storage medium.

DETAILED DESCRIPTION OF THE INVENTION

This invention provides certain crystallized, protein kinase-ligand complexes, in particular P38-ligand complexes, and their structure coordinates. The

-8-

structure coordinates are based on the structure of a phosphorylated P38 γ complex that has now been solved and which reveals new structural information regarding the activated states of other, related kinase proteins as described herein. The key structural features of the protein, particularly the shape of the substrate binding site, are useful in methods for designing inhibitors of the P38 and in solving the structures of other proteins with similar features.

10 In describing protein structure and function, reference is made to amino acids comprising the protein. The amino acids may also be referred to by their conventional abbreviations, as shown in the table below.

A =	Ala =	Alanine	T =	Thr =	Threonine
V =	Val =	Valine	C =	Cys =	Cysteine
r =	Leu =	Leucine	Y =	Tyr =	Tyrosine
I =	Ile =	Isoleucine	N =	Asn =	Asparagine
P =	Pro =	Proline	Q =	Gln =	Glutamine
F =	Phe =	Phenylalanine	D =	Asp =	Aspartic Acid
W =	Trp =	Tryptophan	E =	Glu =	Glutamic Acid
M =	Met =	Methionine	K =	Lys =	Lysine
G =	Gly =	Glycine	R =	Arg =	Arginine
S =	Ser =	Serine	н =	His =	Histidine

15

20

This invention also provides a crystallizable composition from which the crystallized protein is obtained. The crystallizable composition preferably comprises a phosphorylated P38 protein complexed with a substrate or ligand. The ligand may be any ligand capable of binding to the P38 protein, and is preferably

- 9 -

a ligand that binds to the ATP binding site of the protein. Examples of such ligands are small molecule inhibitors of the particular P38 as well as nonhydrolyzable ATP analogs and suicide substrates. Nonhydrolyzable ATP analogs useful in the crystallizable compositions of this invention include AMP-PCH2P, AMP-PSP and AMP-PNP where the oxygen linking the second and third phosphates of the ATP analogs is replaced by CH_2 , S and NH, respectively. An example of a suicidal substrate is 5'-(p-fluorosulfonyl benzoyl)adenosine (FSBA). 10 Preferably, the crystallizable compositions of this invention comprise AMP-PNP as the substrate. preferred that the composition further comprise divalent cations, especially magnesium or magnanese cations, which may be introduced in any suitable manner. For example, the cations may be introduced by incubating the desired ligand with a suitable metal salt such as $MgCl_2$ prior to incubation with the phosphorylated P38 protein.

It has been found that the crystallization of the phosphorylated P38 protein is sensitive to buffer conditions. Thus, in a preferred embodiment, the crystallizable compositions of this invention further comprise a suitable glycol such as ethylene glycol, polyethylene glycol (PEG), PEG-monomethyl ether or mixtures thereof, preferably PEG 4000, as an aqueous solution containing between about 10 to 35% of the glycol by volume of solution, a salt, such as sodium acetate at about 50 to 200 mM, a reducing agent, such as dithiothreitol (DTT) at between about 1 to 10 mM, a detergent such as C12E9 at about 0.01 to 0.05%, and a buffer that maintains pH at between about 8.0 and 9.0. An example of a suitable buffer is 100 mM Tris at pH 8.5. By applying standard crystallization protocols to the

20

25

30

- 10 -

above described crystallizable compositions, crystals of the phosphorylated P38 protein complex may be obtained. Thus, one aspect of this invention relates to a method of preparing phosphorylated P38-containing crystals. The method comprises the steps of

(a) obtaining a crystallizable composition comprising a phosphorylated P38 protein, divalent cations, and a ligand capable of binding to the protein, and

(b) subjecting the composition of step (a) to conditionswhich promote crystallization.

15

20

25

Figure 1 shows the structure coordinates of a phosphorylated P38γ protein complexed with MgAMP-PNP. The manner of obtaining these structure coordinates, interpretation of the coordinates and their utility in understanding the protein structure, as described herein, will be understood by those of skill in the art and by reference to standard texts such as Crystal Structure Analysis, Jenny Pickworth Glusker and Kenneth N. Trueblood, 2nd Ed. Oxford University Press, 1985, New York; and Principles of Protein Structure, G.E. Schulz and R.H. Schirmer, Springer-Verlag, 1985, New York.

Those of skill in the art understand that a set of structure coordinates for an enzyme or an enzyme-complex or a portion thereof, is a relative set of points that define a shape in three dimensions. Thus, it is possible that an entirely different set of coordinates could define a similar or identical shape. Moreover, slight variations in the individual coordinates will have little effect on overall shape. In terms of binding pockets, these variations would not be expected to significantly alter the nature of ligands that could associate with

- 11 -

those pockets.

10

15

20

25

30

These variations in coordinates may be generated because of mathematical manipulations of the P387/MgAMP-PNP structure coordinates. For example, the structure coordinates set forth in Figure 1 could be manipulated by crystallographic permutations of the structure coordinates, fractionalization of the structure coordinates, integer additions or subtractions to sets of the structure coordinates, inversion of the structure coordinates or any combination of the above.

Alternatively, modifications in the crystal structure due to mutations, additions, substitutions, and/or deletions of amino acids, or other changes in any of the components that make up the crystal could also account for variations in structure coordinates. If such variations are within an acceptable standard error as compared to the original coordinates, the resulting three-dimensional shape is considered to be the same. Thus, for example, a ligand that bound to the active site binding pocket of P38γ would also be expected to bind to another binding pocket whose structure coordinates defined a shape that fell within the acceptable error.

The term "binding pocket" refers to a region of the protein that, as a result of its shape, favorably associates with a ligand or substrate. The term "P387-like binding pocket" refers to a portion of a molecule or molecular complex whose shape is sufficiently similar to the P387 binding pockets as to bind common ligands. This commonality of shape may be quantitatively defined by a root mean square deviation (rmsd) from the structure coordinates of the backbone atoms of the amino acids that make up the binding pockets in P387 (as set forth in Figure 1). The method of performing this rmsd

- 12 -

calculation is described below.

The "active site binding pockets" or "active site" of P387 refers to the area on the P387 enzyme surface where the substrate binds. In resolving the crystal structure of phosphorylated P38 γ in complex with MgAMP-PNP, applicants have determined that P387 amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Prol10, Phelll, Metll2, Glyll3, Thrl14, Aspll5, Lysl18, Aspl53, Lys155, Gly157, Asn158, Ala160, Leu170, Asp171, Gly173, and Leu174 are within 5Å of and therefore close enough to 10 interact with MgAMP-PNP. These amino acids are hereinafter referred to as the "SET 5A amino acids." Thus, a binding pocket defined by the structural coordinates of those amino acids, as set forth in Figure 1; or a binding pocket whose root mean square deviation 15 from the structure coordinates of the backbone atoms of those amino acids of not more than about 1.15 angstroms (Å) is considered a P38 γ -like binding pocket of this invention.

Applicants have also determined that in addition to 20 the P38y amino acids set forth above, Pro32, Cys42, Ser43, Val53, Ile55, Lys57, Leu58, Thr59, Arg70, Glu74, Gly88, Leu107, Val108, Leu116, Gly117, Pro156, Leu159, Val161, Lys168, Phe172, Ala175, and Thr188 are within 8A of bound MgAMP-PNP and therefore are also close enough to 25 interact with that substrate. These amino acids, in addition to the SET 5A amino acids, are hereinafter referred to as the "SET 8A amino acids." Thus, in a preferred embodiment, a binding pocket defined by the structural coordinates of the amino acids within 8Å of 30 bound MgAMP-PNP, as set forth in Figure 1; or a binding pocket whose root mean square deviation from the structure coordinates of the backbone atoms of those

- 13 -

amino acids of not more than about 1.15\AA is considered a preferred P38 γ -like binding pocket of this invention.

It will be readily apparent to those of skill in the art that the numbering of amino acids in other isoforms of P38 may be different than that set forth for P38γ. Corresponding amino acids in other isoforms of P38 are easily identified by visual inspection of the amino acid sequences or by using commercially available homology software programs, as further described below.

Various computational analyses may be used to determine whether a protein or the binding pocket portion thereof is sufficiently similar to the P38γ binding pockets described above. Such analyses may be carried out in well known software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations Inc., San Diego, CA) version 4.1, and as described in the accompanying User's Guide.

For the purpose of this invention, a rigid fitting method was conveniently used to compare protein structures. Any molecule or molecular complex or binding pocket thereof having a root mean square deviation of conserved residue backbone atoms (N, C α , C, O) of less than about 1.15Å when superimposed on the relevant backbone atoms described by structure coordinates listed in Figure 1 are considered identical. More preferably, the root mean square deviation is less than about 1.0Å.

20

25

30

The P38 X-ray coordinate data, when used in conjunction with a computer programmed with software to translate those coordinates into the 3-dimensional structure of p38 γ may be used for a variety of purposes, especially for purposes relating to drug discovery. Such software for generating three-dimensional graphical

- 14 -

representations are known and commercially available. The ready use of the coordinate data requires that it be stored in a computer-readable format. Thus, in accordance with the present invention, data capable of being displayed as the three dimensional structure of P387 and portions thereof and their structurally similar homologues is stored in a machine-readable storage medium, which is capable of displaying a graphical three-dimensional representation of the structure.

10

20

25

30

Therefore, another embodiment of this invention provides a machine-readable data storage medium, comprising a data storage material encoded with machine readable data which, when used by a machine programmed with instructions for using said data, displays a graphical three-dimensional representation of a molecule or molecular complex comprising a binding pocket defined by structure coordinates of the P387 SET 5A amino acids, or preferably the P387 SET 8A amino acids, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than about 1.15Å.

Even more preferred is a machine-readable data storage medium that is capable of displaying a graphical three-dimensional representation of a molecule or molecular complex that is defined by the structure coordinates of all of the amino acids in Figure 1 or a homologue of said molecule or molecular complex, wherein said homologue has a root mean square deviation from the backbone atoms of all of the amino acids in Figure 1 of not more than about 1.15Å.

According to an alternate embodiment, the machinereadable data storage medium comprises a data storage

- 15 -

material encoded with a first set of machine readable data which comprises the Fourier transform of the structure coordinates set forth in Figure 1, and which, when using a machine programmed with instructions for using said data, can be combined with a second set of machine readable data comprising the X-ray diffraction pattern of another molecule or molecular complex to determine at least a portion of the structure coordinates corresponding to the second set of machine readable data.

For example, the Fourier transform of the structure coordinates set forth in Figure 1 may be used to determine at least a portion of the structure coordinates of other P38s, such as P38 β , and P38 δ and isoforms of P38 β , P38 δ or P38 γ . The structure coordinates in Figure 1 and the Fourier transform of the coordinates are especially useful for determining the coordinates of other P38s in phosphorylated form.

10

15

20

25

According to an alternate embodiment, this invention provides a computer for producing a three-dimensional representation of a molecule or molecular complex, wherein said molecule or molecular complex comprises a binding pocket defined by the P387 SET 5A amino acids, or preferably the P387 SET 8A amino acids, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.15Å, wherein said computer comprises:

(a) a machine readable data storage medium
 30 comprising a data storage material encoded with machine-readable data, wherein said machine readable data comprises the structure coordinates of P38γ or portions thereof;

- 16 -

(b) a working memory for storing instructions for processing said machine-readable data;

- (c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium, for processing said machine-readable data into said three-dimensional representation; and
- (d) an output hardware coupled to said central processing unit, for receiving said three Dimensional representation.
- embodiments. System 10 includes a computer 11 comprising a central processing unit ("CPU") 20, a working memory 22 which may be, e.g., RAM (random-access memory) or "core" memory, mass storage memory 24 (such as one or more disk drives or CD-ROM drives), one or more cathode-ray tube ("CRT") display terminals 26, one or more keyboards 28, one or more input lines 30, and one or more output lines 40, all of which are interconnected by a conventional bidirectional system bus 50.
- Input hardware 36, coupled to computer 11 by input lines 30, may be implemented in a variety of ways.

 Machine-readable data of this invention may be inputted via the use of a modem or modems 32 connected by a telephone line or dedicated data line 34. Alternatively or additionally, the input hardware 36 may comprise CD-ROM drives or disk drives 24. In conjunction with display terminal 26, keyboard 28 may also be used as an input device.

Output hardware 46, coupled to computer 11 by output 10 lines 40, may similarly be implemented by conventional devices. By way of example, output hardware 46 may include CRT display terminal 26 for displaying a

- 17 -

graphical representation of a binding pocket of this invention using a program such as QUANTA as described herein. Output hardware might also include a printer 42, so that hard copy output may be produced, or a disk drive 24, to store system output for later use.

In operation, CPU 20 coordinates the use of the various input and output devices 36, 46 coordinates data accesses from mass storage 24 and accesses to and from working memory 22, and determines the sequence of data processing steps. A number of programs may be used to process the machine-readable data of this invention. Such programs are discussed in reference to the computational methods of drug discovery as described herein. Specific references to components of the hardware system 10 are included as appropriate throughout the following description of the data storage medium.

10

20

25

Figure 8 shows a cross section of a magnetic data storage medium 100 which can be encoded with a machinereadable data that can be carried out by a system such as system 10 of Figure 7. Medium 100 can be a conventional floppy diskette or hard disk, having a suitable substrate 101, which may be conventional, and a suitable coating 102, which may be conventional, on one or both sides, containing magnetic domains (not visible) whose polarity or orientation can be altered magnetically. Medium 100 may also have an opening (not shown) for receiving the spindle of a disk drive or other data storage device 24. The magnetic domains of coating 102 of medium 100 are polarized or oriented so as to encode in manner which may be conventional, machine readable data such as that described herein, for execution by a system such as system 10 of Figure 7.

- 18 -

Figure 9 shows a cross section of an opticallyreadable data storage medium 110 which also can be
encoded with such a machine-readable data, or set of
instructions, which can be carried out by a system such
as system 10 of Figure 7. Medium 110 can be a
conventional compact disk read only memory (CD-ROM) or a
rewritable medium such as a magneto-optical disk which is
optically readable and magneto-optically writable.
Medium 100 preferably has a suitable substrate 111, which
may be conventional, and a suitable coating 112, which
may be conventional, usually of one side of substrate
111.

10

15

In the case of CD-ROM, as is well known, coating 112 is reflective and is impressed with a plurality of pits 113 to encode the machine-readable data. The arrangement of pits is read by reflecting laser light off the surface of coating 112. A protective coating 114, which preferably is substantially transparent, is provided on top of coating 112.

In the case of a magneto-optical disk, as is well known, coating 112 has no pits 113, but has a plurality of magnetic domains whose polarity or orientation can be changed magnetically when heated above a certain temperature, as by a laser (not shown). The orientation of the domains can be read by measuring the polarization of laser light reflected from coating 112. The arrangement of the domains encodes the data as described above.

As mentioned above, the P38 γ X-ray coordinate data is useful for screening and identifying drugs that inhibit P38, especially phosphorylated P38. For example, the structure encoded by the data may be computationally evaluated for its ability to associate with putative

- 19 -

substrates or ligands. Such compounds that associate with p38 γ may inhibit p38 γ , and are potential drug candidates. Additionally or alternatively, the structure encoded by the data may be displayed in a graphical three-dimensional representation on a computer screen. This allows visual inspection of the structure, as well as visual inspection of the structure's association with the compounds.

Thus, according to another embodiment, this invention relates to a method for evaluating the potential of a compound to associate with a molecule or molecular complex comprising a binding pocket defined by the structure coordinates of the P38γ SET 5A amino acids, or preferably the P38γ SET 8A amino acids, or a homologue of said molecule or molecular complex, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than about 1.15Å.

This method comprises the steps of:

- a) creating a computer model of the binding pocket using structure coordinates wherein the root mean square deviation between said structure coordinates and the structure coordinates of the P38γ amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Prol10,
- 25 Phelll, Metll2, Glyll3, Thrll4, Aspll5, Lysl18, Aspl53, Lysl55, Glyl57, Asnl58, Alal60, Leul70, Aspl71, Glyl73, and Leul74 according to Figure 1 is not more than about 1.15 Å;
- b) employing computational means to perform a30 fitting operation between the chemical entity and said computer model of the binding pocket; and
 - c) analyzing the results of said fitting operation

- 20 -

to quantify the association between the chemical entity and the binding pocket model.

The term "chemical entity", as used herein, refers to chemical compounds or ligands, complexes of at least two chemical compounds, and fragments of such compounds or complexes.

Even more preferably, the method evaluates the potential of a chemical entity to associate with a molecule or molecular complex defined by the structure coordinates of all of the P38γ amino acids, as set forth in Figure 1, or a homologue of said molecule or molecular complex having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.15Å.

10

25

30

- Alternatively, the structural coordinates of the P38γ binding pocket can be utilized in a method for identifying a potential agonist or antagonist of a molecule comprising a P38γ-like binding pocket. This method comprises the steps of:
- (a) using atomic coordinates of the P38 γ SET 5A amino acids \pm a root mean square deviation from the backbone atoms of said amino acids of not more than about 1.15Å, to generate a three-dimensional structure of molecule comprising a P38 γ -like binding pocket;
 - (b) employing said three-dimensional structure to design or select said potential agonist or antagonist;
 - (c) synthesizing said agonist or antagonist; and
 - (d) contacting said agonist or antagonist with said molecule to determine the ability of said potential agonist or antagonist to interact with said molecule.

More preferred is the use of the atomic coordinates of the P38 γ SET 8A amino acids, \pm a root mean square

- 21 -

deviation from the backbone atoms of said amino acids of not more than 1.15\AA , to generate a three-dimensional structure of molecule comprising a p38 γ -like binding pocket. Most preferred is when the atomic coordinates of all the amino acids of P38 γ according to Figure 1 \pm a root mean square deviation from the backbone atoms of said amino acids of not more than 1.15\AA , are used to generate a three-dimensional structure of molecule comprising a P38 γ -like binding pocket.

For the first time, the present invention permits the use of molecular design techniques to identify, select or design potential inhibitors of p38, based on the structure of a phosphorylated p38 γ -like binding pocket. Such a predictive model is valuable in light of the high costs associated with the preparation and testing of the many diverse compounds that may possibly bind to the p38 protein.

10

- 22 -

According to this invention, a potential p38 inhibitor may now be evaluated for its ability to bind a P38γ-like binding pocket prior to its actual synthesis and testing. If a proposed compound is predicted to have insufficient interaction or association with the binding pocket, preparation and testing of the compound is obviated. However, if the computer modeling indicates a strong interaction, the compound may then be obtained and tested for its ability to bind. Testing to confirm binding may be performed using assays such as described in Example 6.

10

A potential inhibitor of a P38γ-like binding pocket may be computationally evaluated by means of a series of steps in which chemical entities or fragments are screened and selected for their ability to associate with the P38γ-like binding pockets.

One skilled in the art may use one of several methods to screen chemical entities or fragments for their ability to associate with a P38 γ -like binding pocket. This process may begin by visual inspection of, for 20 example, a P38 γ -like binding pocket on the computer screen based on the P38 γ structure coordinates in Figure 1 or other coordinates which define a similar shape generated from the machine-readable storage medium. Selected fragments or chemical entities may then be 25 positioned in a variety of orientations, or docked, within that binding pocket as defined above. Docking may be accomplished using software such as Quanta and Sybyl, followed by energy minimization and molecular dynamics with standard molecular mechanics force fields, such as 30 CHARMM and AMBER.

Specialized computer programs may also assist in the process of selecting fragments or chemical entities.

- 23 -

These include:

1. GRID (P. J. Goodford, "A Computational Procedure for Determining Energetically Favorable Binding Sites on Biologically Important Macromolecules", J. Med. Chem., 28, pp. 849-857 (1985)). GRID is available from Oxford University, Oxford, UK.

- MCSS (A. Miranker et al., "Functionality Maps of
 Binding Sites: A Multiple Copy Simultaneous Search
 Method." Proteins: Structure, Function and Genetics,
 11, pp. 29-34 (1991)). MCSS is available from Molecular
 Simulations, San Diego, CA.
- 15 3. AUTODOCK (D. S. Goodsell et al., "Automated Docking of Substrates to Proteins by Simulated Annealing", Proteins: Structure, Function, and Genetics, 8, pp. 195-202 (1990)). AUTODOCK is available from Scripps Research Institute, La Jolla, CA.
- 4. DOCK (I. D. Kuntz et al., "A Geometric Approach to Macromolecule-Ligand Interactions", J. Mol. Biol., 161, pp. 269-288 (1982)). DOCK is available from University of California, San Francisco, CA.
- Once suitable chemical entities or fragments have been selected, they can be designed or assembled into a single compound or complex. Assembly may be preceded by visual inspection of the relationship of the fragments to each other on the three-dimensional image displayed on a
- of P38γ. This would be followed by manual model building using software such as Quanta or Sybyl [Tripos Associates, St. Louis, MO].

- 24 -

Useful programs to aid one of skill in the art in connecting the individual chemical entities or fragments include:

- 5 1. CAVEAT (P. A. Bartlett et al, "CAVEAT: A Program to Facilitate the Structure-Derived Design of Biologically Active Molecules", in Molecular Recognition in Chemical and Biological Problems", Special Pub., Royal Chem. Soc., 78, pp. 182-196 (1989); G. Lauri and P. A. Bartlett,
- "CAVEAT: a Program to Facilitate the Design of Organic Molecules", J. Comput. Aided Mol. Des., 8, pp. 51-66 (1994)). CAVEAT is available from the University of California, Berkeley, CA.
- 2. 3D Database systems such as ISIS (MDL Information Systems, San Leandro, CA). This area is reviewed in Y. C. Martin, "3D Database Searching in Drug Design", J. Med. Chem., 35, pp. 2145-2154 (1992).
- 3. HOOK (M. B. Eisen et al, "HOOK: A Program for Finding Novel Molecular Architectures that Satisfy the Chemical and Steric Requirements of a Macromolecule Binding Site", Proteins: Struct., Funct., Genet., 19, pp. 199-221 (1994). HOOK is available from Molecular Simulations,

San Diego, CA.

25

Instead of proceeding to build an inhibitor of a P38 γ -like binding pocket in a step-wise fashion one fragment or chemical entity at a time as described above,

inhibitory or other P38γ binding compounds may be designed as a whole or "de novo" using either an empty binding site or optionally including some portion(s) of a known inhibitor(s). There are many de novo ligand design

- 25 -

methods including:

- LUDI (H.-J. Bohm, "The Computer Program LUDI: A New Method for the De Novo Design of Enzyme Inhibitors", J.
 Comp. Aid. Molec. Design, 6, pp. 61-78 (1992)). LUDI is available from Molecular Simulations Incorporated, San Diego, CA.
- LEGEND (Y. Nishibata et al., Tetrahedron, 47, p. 8985
 (1991)). LEGEND is available from Molecular Simulations Incorporated, San Diego, CA.
 - LeapFrog (available from Tripos Associates, St. Louis, MO).
- 4. SPROUT (V. Gillet et al, "SPROUT: A Program for Structure Generation)", J. Comput. Aided Mol. Design, 7, pp. 127-153 (1993)). SPROUT is available from the University of Leeds, UK.
- Other molecular modeling techniques may also be employed in accordance with this invention [see, e.g., Cohen et al., "Molecular Modeling Software and Methods for Medicinal Chemistry, J. Med. Chem., 33, pp. 883-894 (1990); see also, M. A. Navia and M. A. Murcko, "The Use
- of Structural Information in Drug Design", Current Opinions in Structural Biology, 2, pp. 202-210 (1992); L. M. Balbes et al., "A Perspective of Modern Methods in Computer-Aided Drug Design", in Reviews in Computational Chemistry, Vol. 5, K. B. Lipkowitz and D. B. Boyd, Eds.,
- 30 VCH, New York, pp. 337-380 (1994); see also, W. C. Guida, "Software For Structure-Based Drug Design", Curr. Opin. Struct. Biology,, 4, pp. 777-781 (1994)].

Once a compound has been designed or selected by the

- 26 -

above methods, the efficiency with which that entity may bind to a P38 γ binding pocket may be tested and optimized by computational evaluation. For example, an effective $P38\gamma$ binding pocket inhibitor must preferably demonstrate 5 a relatively small difference in energy between its bound and free states (i.e., a small deformation energy of binding). Thus, the most efficient P38 γ binding pocket inhibitors should preferably be designed with a deformation energy of binding of not greater than about 10 kcal/mole, more preferably, not greater than 7 10 kcal/mole. P38 γ binding pocket inhibitors may interact with the binding pocket in more than one of multiple conformations that are similar in overall binding energy. In those cases, the deformation energy of binding is taken to be the difference between the energy of the free 15 entity and the average energy of the conformations observed when the inhibitor binds to the protein.

An entity designed or selected as binding to a P38 γ binding pocket may be further computationally optimized so that in its bound state it would preferably lack repulsive electrostatic interaction with the target enzyme and with the surrounding water molecules. Such non-complementary electrostatic interactions include repulsive charge-charge, dipole-dipole and charge-dipole interactions.

20

25

30

Specific computer software is available in the art to evaluate compound deformation energy and electrostatic interactions. Examples of programs designed for such uses include: Gaussian 94, revision C (M. J. Frisch, Gaussian, Inc., Pittsburgh, PA ©1995); AMBER, version 4.1 (P. A. Kollman, University of California at San Francisco, ©1995); QUANTA/CHARMM (Molecular Simulations, Inc., San Diego, CA ©1995); Insight II/Discover

- 27 -

(Molecular Simulations, Inc., San Diego, CA ©1995);
DelPhi (Molecular Simulations, Inc., San Diego, CA
©1995); and AMSOL (Quantum Chemistry Program Exchange,
Indiana University). These programs may be implemented,
for instance, using a Silicon Graphics workstation such
as an Indigo² with "IMPACT" graphics. Other hardware
systems and software packages will be known to those
skilled in the art.

Another approach enabled by this invention, is the computational screening of small molecule databases for chemical entities or compounds that can bind in whole, or in part, to a P387 binding pocket. In this screening, the quality of fit of such entities to the binding site may be judged either by shape complementarity or by estimated interaction energy [E. C. Meng et al., J. Comp. Chem., 13, 505-524 (1992)].

According to another embodiment, the invention provides compounds which associate with a P38 γ -like binding pocket produced or identified by the method set forth above.

20

25

30

The structure coordinates set forth in Figure 1 can also be used to aid in obtaining structural information about another crystallized molecule or molecular complex. This may be achieved by any of a number of well-known techniques, including molecular replacement.

Therefore, in another embodiment this invention provides a method of utilizing molecular replacement to obtain structural information about a molecule or molecular complex whose structure is unknown comprising the steps of:

 a) crystallizing said molecule or molecular complex of unknown structure;

- 28 -

 b) generating an X-ray diffraction pattern from said crystallized molecule or molecular complex; and

c) applying at least a portion of the structure coordinates set forth in Figure 1 to the X-ray diffraction pattern to generate a three-dimensional electron density map of the molecule or molecular complex whose structure is unknown.

By using molecular replacement, all or part of the structure coordinates of the P387/MgAMP-PNP complex as provided by this invention (and set forth in Figure 1) can be used to determine the structure of another crystallized molecule or molecular complex more quickly and efficiently than attempting an ab initio structure determination.

15 Molecular replacement provides an accurate estimation of the phases for an unknown structure. Phases are a factor in equations used to solve crystal structures that can not be determined directly. Obtaining accurate values for the phases, by methods other than molecular replacement, is a time-consuming process that involves iterative cycles of approximations and refinements and greatly hinders the solution of crystal structures. However, when the crystal structure of a protein containing at least a homologous portion has been solved, the phases from the known structure provide a satisfactory estimate of the phases for the unknown structure.

Thus, this method involves generating a preliminary model of a molecule or molecular complex whose structure coordinates are unknown, by orienting and positioning the relevant portion of the P38 γ /MgAMP-PNP complex according to Figure 1 within the unit cell of the crystal of the

- 29 -

unknown molecule or molecular complex so as best to account for the observed X-ray diffraction pattern of the crystal of the molecule or molecular complex whose structure is unknown. Phases can then be calculated from this model and combined with the observed X-ray diffraction pattern amplitudes to generate an electron density map of the structure whose coordinates are unknown. This, in turn, can be subjected to any wellknown model building and structure refinement techniques to provide a final, accurate structure of the unknown crystallized molecule or molecular complex [E. Lattman, "Use of the Rotation and Translation Functions", in Meth. Enzymol., 115, pp. 55-77 (1985); M. G. Rossmann, ed., "The Molecular Replacement Method", Int. Sci. Rev. Ser., No. 13, Gordon & Breach, New York (1972)]. 15

The structure of any portion of any crystallized molecule or molecular complex that is sufficiently homologous to any portion of the P38 γ /MgAMP-PNP complex can be resolved by this method.

In a preferred embodiment, the method of molecular replacement is utilized to obtain structural information about another P38, such as P38 α , P38 β , P38 δ , or isoforms of P38 β , P38 δ or P38 γ . The structure coordinates of P38 γ as provided by this invention are particularly useful in solving the structure of other isoforms of P38 γ or P38 γ complexes.

Furthermore, the structure coordinates of P38 γ as provided by this invention are useful in solving the structure of P38 γ proteins that have amino acid substitutions, additions and/or deletions (referred to collectively as "P38 γ mutants", as compared to naturally occurring P38 γ isoforms). These P38 γ mutants may optionally be crystallized in co-complex with a chemical

30

- 30 -

entity, such as a non-hydrolyzable ATP analogue or a suicide substrate. The crystal structures of a series of such complexes may then be solved by molecular replacement and compared with that of wild-type p38γ.
5 Potential sites for modification within the various binding sites of the enzyme may thus be identified. This information provides an additional tool for determining the most efficient binding interactions such as, for example, increased hydrophobic interactions, between P38γ and a chemical entity or compound.

All of the complexes referred to above may be studied using well-known X-ray diffraction techniques and may be refined versus 1.5-3A resolution X-ray data to an R value of about 0.22 or less using computer software, such as X-PLOR [Yale University, ©1992, distributed by Molecular Simulations, Inc.; see, e.g., Blundell & Johnson, supra; Meth. Enzymol., vol. 114 & 115, H. W. Wyckoff et al., eds., Academic Press (1985)]. This information may thus be used to optimize known P38γ inhibitors, and more importantly, to design new P38γ inhibitors.

The structure coordinates described above may also be used to derive the dihedral angles, ϕ and ψ , that define the conformation of the amino acids in the protein backbone. As will be understood by those skilled in the art, the ϕ_n angle refers to the rotation around the bond between the alpha carbon and the nitrogen, and the ψ_n angle refers to the rotation around the bond between the carbonyl carbon and the alpha carbon. The subscript "n" identifies the amino acid whose conformation is being described [for a general reference, see Blundell and Johnson, Protein Crystallography, Academic Press, London, 1976].

25

Surprisingly, it has now been found that for the

- 31 -

crystalline P38 γ -ligand complex, the conformation of Gly113 is very different from the conformations reported for corresponding amino acids in other protein kinases. In order to compare the conformations of P38 γ and other protein kinases at a particular amino acid site, such as Gly113, along the polypeptide backbone well-known procedures may be used for doing sequence alignments of Such sequence alignments allow for the the amino acids. equivalent or corresponding sites to be compared. One such method for doing a sequence alignment is the 10 "bestfit" program available from Genetics Computer Group which uses the local homology algorithm described by Smith and Waterman in Advances in Applied Mathematics 2; 482 (1981).

15 A suitable amino acid sequence alignment will require that the proteins being aligned share a minimum percentage of identical amino acids. Generally, a first protein being aligned with a second protein should share in excess of about 35% identical amino acids with the second protein. Hanks et al., Science, 241, 42 (1988); Hanks and Quinn, Methods in Enzymology, 200, 38 (1991).

Equivalents of the Glyll3 residue of p38 γ may also be identified by its functional position. Glyll3 is the amino acid residue that immediately follows sequentially the amino acid residue that donates, or is capable of donating, a hydrogen bond to the N1 nitrogen of the adenosine ring of ATP or an ATP analog, if such ATP or ATP analog were to be in the binding pocket comprising the Glyll3 residue. The ability of the amino acid to donate such a hydrogen bond occurs as the result of the spatial position of the amino acid in the binding pocket of the protein. As used herein, the term "corresponding amino acid" or "equivalent amino acid" refers to a

25

30

- 32 -

particular amino acid in a protein kinase that corresponds to another, particular amino acid in a different protein kinase as determined by sequence alignment and/or its functional position.

Table 1 shows the sequence alignments for selected 5 protein kinases where corresponding amino acids are shown in the same column. The amino acid numbering is based on the assignments given in the Swiss-Prot database which is an international protein sequence database distributed by the European Bioinformatics Institute (EBI) in Geneva, 10 Switzerland. The database can be found at www.ebi.ac.uk/swissprot. Erk6_HUMAN is the database protein name for P38 γ . The ten amino acids immediately preceding G113 of P38 γ are given starting with T103. Thus, for example, Gly113 of P38 γ corresponds or is 15 equivalent to the following: Gly110 of P38lpha (MP38_HUMAN), Glul07 of mouse ERK2, and Asp150 of human JNK3. The last column of Table 1 shows the Swiss-Prot database accession

number.

- 33 -

Table 1. Sequence Alignments for Selected Proteins

Protein	Corresponding Amino Acid Sequences Using Swiss-Prot Amino Acid Numbering									Access Number		
ERK6_HUMAN	T103	ם	F	Y	L	V	М	P	F	M112	G113	P53778
MP38_HUMAN	N100	D	ν	Y	L	v	Т	Н	L	M109	G110	Q16539
ERK2_HUMAN	К99	D	v	Y	I	V	Q	D	L	M108	E109	P28482
ERK2_MOUSE	к97	D	V	Y	I	V	Q	D	L	м106	E107	P27703
JNK3_HUMAN	Q140	D	V	Y	L	٧	М	E	L	M149	D150	P53779
KAPA_MOUSE	S114	И	L	Y	М	V	М	E	Y	V123	A124	P05132
INSR_HUMAN	Q1097	D.	т	L	٧	V	М	E	L	M1106	A1107	P06213
LCK_HUMAN	E309	P	Ι	Y	I	I	Т	E	Y	м318	E319	P06239
ZA70_HUMAN	E408	A	L	М	L	V	M	Е	М	A417	G418	P43403
PKD1_DICDI	T107	К	I	Н	F	I	М	Е	Y	A116	G117	P34100
KPC1_YEAST	N898	R	I	Y	F	A	М	E	F	1907	G908	P24583
CLK1_HUMAN	G235	Н	I	С	I	V	F	Ε	L	L244	G245	P49759
CLK2_HUMAN	G237	н	М	С	I	S	F	E	L	L246	G247	P49760
DOA_DROME	G243	н	М	С	I	٧	F	E	М	L252	G253	P49762
DSK1_SCHPO	A160	Н	V	С	М	V	F	E	v	L169	G170	P36616
MKK1_YEAST	\$293	S	I	Y	I	Α	М	Е	Y	м302	G303	P32490
MKK2_YEAST	S286	S	I	Y	I	Α	М	Е	Y	M295	G296	P32491
NIMA_EMENI	Q83	D	L	Y	L	Y	М	E	Y	C92	G93	P11837
KMOS_HUMAN	\$133	L	G	Т	I	I	М	Е	F	G142	G143	P00540
KC1A_HUMAN	D84	Y	N	V	L	V	М	D	L	L93	G94	P48729
KC1B_BOVIN	D84	Y	N	V	L	V	М	D	L	Г93	G94	P35507
KC1D_HUMAN	D76	Y	N	V	М	V	М	E	L	L85	G86	P48730
CK11_YEAST	L136	н	N	I	L	٧	I	D	L	L145	G146	P23291
CK12_YEAST	L143	Н	N	I	L	V	I	D	L	L152	G153	P23292
HR25_YEAST	E76	Y	N	A	М	V	I	D	L	L85	G86	P29295
KNS1_YEAST	N387	Н	I	С	L	v	Т	D	L	Y396	G397	P32350
KYK1_DICDI	D1360	Н	Н	С	I	V	Т	E	W	M1369	G1370	P18160
CKI1_SCHPO	L79	Н	N	V	L	V	I	D	I	L88	G8 9	P40233
CDK2_HUMAN	N74	К	L	Y	L	V	F	E	F	L83	H8 4	P24941
KPBG_HUMAN	Т97	F	F	F	L	V	F	D	I	M106	K107	Q16816

Protein	Corresponding Amino Acid Sequences Using Swiss-Prot Amino Acid Numbering										Access Number	
KCC1_HUMAN	G89	н	L	Y	Ъ	I	М	Q	L	V98	S99	Q14012

As noted above, the conformation of Gly113 is very different from the conformations reported for corresponding amino acids in other protein kinases. For Gly113 of the P38γ-AMPPNP complex, Ψ₁₁₂ was found to be about 24 degrees and Φ₁₁₃ was found to be about 96 degrees. Table 2 shows the dihedral angles for Met112 and Gly113 of P38γ-AMPPNP complex and how these angles compare to those of the corresponding amino acids in other MAP kinases whose crystal structures have been reported. The protein names for the known proteins are provided as their Protein Data BankTM (pdb) accession numbers. The Protein Data Bank is an international repository for three dimensional structures and can be located at www.rcsb.org/pdb/.

PCT/US99/29096

WO 00/36096

- 35 -

Table 2.	Dihedral Angl	Les	(in	degrees)	for	Met112	2 and
Glv113 and	Equivalents	in	P38	and Oth	er P	rotein	Kinases

	Met 112		Gly 113		
Protein	ф	Ψ	ф	Ψ	
Р38γ-АМРРИР	-106.2	23.8	96.24	-90.6	
P38α-ligand ^a	-80.8	-26.5	95.7	-22.5	
1ERK ^b	-119.1	131.7	-51.6	-55.6	
2ERK C	-99.5	130.3	-42.7	-49.9	
1p38 ^d	-92.7	128.4	-82.1	-103.2	
1ATP ^e	-96.6	89.1	-56.1	-30.1	
1JNK ^f	-105.3	170.6	-92.2	-22.8	
1IR3 ^g	-112.7	87.9	-44.2	-38.4	
1IRK ^h	-85.6	109.9	-40.7	-38.4	
3LCK ⁱ	-121.7	105.9	-53.3	-38.2	

a in-house structure of complex with a designed inhibitor;

- b unphosphorylated ERK, reported in Nature, 367, 704, (1994);
 - c phosphorylated ERK, Cell, 90, 859 (1997);
 - d unphosphorylated p387, Proc. Nat. Acad. Science, 94, 2327 (1997);
- e cyclic AMP dependent protein kinase or cAPK, Acta Crys. 10 Sec. D, 49, 362 (1993);
 - f unphosphorylated JNK3, Structure, 6, 983 (1998);
 - $^{\rm g}$ insulin receptor tyrosine kinase, Embo J., 16, 5572 (1997);
- h insulin receptor tyrosine kinase, Nature, 372, 786, 15 (1994);
 - i lymphocyte-specific kinase, Nature, 368, 764, (1994)

It is well-recognized that there will be some variability in the conformations of corresponding amino 20 acids in similar or identical proteins when the protein crystallization and structure determination are repeated. This variability in the ϕ and ψ dihedral angles may be .

- 36 -

approximated by reference to Ramachandran plots comparing the conformations obtained for two or more identical or similar proteins [Blundell and Johnson, Protein Crystallography, Academic Press, London, 1976]. It may be expected that the dihedral angles of equivalent amino acid residues in identical or similar proteins will vary as much as about 45° or more.

It should be noted that the amino acid numbering defined in the Protein Data BankTM may be offset from the numbering given in the Swiss-Prot database. This offset, when it occurs, will be readily understood by those skilled in the art. Thus, the sequences of those proteins that are listed in both databases may be easily compared despite offsets in amino acid numbering that may occur. Examples of such offsets occur for INSR_HUMAN where Al107 according to Swiss-Prot numbering is the same as Al080 in the PDB database and for LCK_HUMAN where E319 according to Swiss-Prot numbering is the same as E320 by PDB numbering.

The ψ_{112} and ϕ_{113} dihedral angles of the P38 γ -AMPPNP complex shown in Table 2 indicate that the conformation of Gly113 in this complex is "flipped" or rotated considerably relative to corresponding amino acids in other MAP kinases. Therefore, the structure coordinates of P38 γ set forth in Figure 1 represent, inter alia, what is believed to be a conformation at Met 112 and Gly113 that had not been observed for other crystalline protein kinases, especially other MAP kinases.

Accordingly, another embodiment of this invention

relates to a crystalline protein kinase-ligand complex,
said kinase comprising amino acid residues that
correspond by functional and/or sequence alignment to the
Met112 and Gly113 residues of P38γ or that correspond by

- 37 -

functional and/or sequence alignment to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, wherein the $\boldsymbol{\psi}$ angle of the residue corresponding to Metl12 is in the range of about -60° to 60° and the ϕ angle of the residue corresponding to Gly113 is in the range of about 30° to 150°. Preferably, the ψ angle of the crystalline protein kinase-ligand complex is in the range of about -45° to 45° and most preferably in the range of about -30° to 30°. Preferably, the ϕ angle is in the range of about 45° to 135°, and most preferably is in the range of about 60° to 120°. Examples of kinases that may provide such a crystalline protein kinase when complexed with a ligand are described by Hanks et al., Science, 241, 42 (1988) and Hanks and Quinn, Methods in Enzymology, 200, 38 (1991). Other 15 examples of such kinases may be found at www.sdsc.edu/Kinases/pkr/pk_catalytic/pk_hanks_seq_align_ long.html, where the kinases are listed with their corresponding sequence alignments.

20 Another embodiment of this invention relates to a crystalline protein kinase-ligand complex, said kinase selected from the proteins listed in Table 1, wherein the ψ angle of the residue corresponding to Met112 is in the range of about -60° to 60° and the ϕ angle of the residue corresponding to Gly113 is in the range of about 30° to 150°. Preferably, the ψ angle of the crystalline protein kinase-ligand complex is in the range of about -45° to 45° and most preferably in the range of about 50°. Preferably, the ϕ angle is in the range of about 45° to 135°, and most preferably is in the range of about 60° to 120°.

Structural information regarding the conformation of the Met112 and Gly113 residues of the crystalline P38 γ_{-}

- 38 -

complex may be encoded in a machine-readable data storage medium as described above for encoding the other structural coordinates of the protein. Accordingly, another embodiment of this invention relates to a computer for producing a three-dimensional representation of an ATP binding site of a protein kinase-ligand complex, or portion thereof, wherein said computer comprises:

- a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable 10 data, wherein said machine-readable data comprises the structure coordinates of a kinase, or portion thereof, said kinase or portion thereof comprising amino acid residues that correspond by functional and/or sequence alignment to the Met112 and Gly113 residues of P38 γ or 15 that correspond by functional and/or sequence alignment to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, wherein the $\boldsymbol{\psi}$ angle of the residue corresponding to Met112 is in the range of 20 about -60° to 60° and the ϕ angle of the residue corresponding to Gly113 is in the range of about 30° to 150°;
 - b) a working memory for storing instructions for processing said machine-readable data;
- c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium, for processing said machine readable data into said three-dimensional representation; and
- d) an output hardware coupled to said central30 processing unit, for receiving said three-dimensional representation. Preferably, the machine-readable data comprises the structure coordinates of a kinase, or portion thereof, said kinase comprising amino acid

- 39 -

residues corresponding to the Met112 and Gly113 amino acids of P38 γ or corresponding to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, wherein the ψ angle is in the range of about -45° to 45° and most preferably in the range of about -30° to 30°, and the φ angle is in the range of about 45° to 135°, and most preferably in the range of about 60° to 120°. In a more preferred embodiment of this computer, the machine readable data comprises the structure coordinates of a crystalline protein kinase-ligand complex, or portion thereof, where said kinase is selected from a protein listed in Table 1.

10

For designing new compounds that associate with a protein kinase binding pocket, it is useful to employ information that includes the conformations of the Met112 15 and Gly113 residues, or their equivalents, along with other structural information regarding amino acids in the binding pocket. For example, to evaluate the ability of a chemical entity to bind to a protein kinase, the conformations of Met112 and Gly113, or equivalents, may 20 be used along with structure coordinates of the backbone atoms of amino acids in the protein kinase binding pocket. These structure coordinates and the structure coordinates of the p387 amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Pro110, Phe111, Met112, 25 Gly113, Thr114, Asp115, Lys118, Asp153, Lys155, Gly157, Asn158, Ala160, Leu170, Asp171, Gly173, and Leu174 according to Figure 1 should not differ by more than about 3.0 angstroms in root mean square deviation, preferably the root mean square deviation is within about 30 2.7 angstroms, and most preferably within about 2.5 angstroms. For example, the root mean square deviation between the structure coordinates of the p38 γ amino acids

- 40 -

and those of a p38 γ complex (see Table 2) was found by applicants to be 2.41 angstroms. Resolution error may account for variation in the root mean square deviation of a few tenths of an angstrom.

Accordingly, another embodiment of this invention provides a method for evaluating the ability of a chemical entity to associate with a protein kinase binding pocket, said method comprising the steps of:

5

20

- a) creating a computer model of the binding pocketusing structure coordinates wherein:
 - (i) the root mean square deviation between said structure coordinates and the structure coordinates of the P38γ amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Pro110, Phe111, Met112, Gly113, Thr114, Asp115, Lys118, Asp153, Lys155, Gly157, Asn158, Ala160, Leu170, Asp171, Gly173, and Leu174 according to Figure 1 is within about 3.0 angstroms,
 - (ii) said binding pocket model depicts amino acid residues that correspond by functional and/or sequence alignment to the Met112 and Gly113 residues of P38 γ or that correspond by functional and/or sequence alignment to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, and
- (iii) said binding pocket model depicts the ψ angle of the residue corresponding to Met112 to be in the range of about -60° to 60° and the ϕ angle of the residue corresponding to Gly113 to be in the range of about 30° to 150°:
- b) employing computational means to perform a30 fitting operation between the chemical entity and the binding pocket model; and
 - c) analyzing the results of said fitting operation to quantify the association between the chemical entity-

- 41 -

and the binding pocket model.

10

20

A useful root mean square deviation between the structure coordinates of a particular binding pocket and the structure coordinates of the binding pocket of another protein kinase may be readily determined by one skilled in the art. For example, when the protein kinase is selected from a protein listed in Table 1, the root mean square deviation is preferably within about 2.7 angstroms, and is more preferably within about 2.5 angstroms.

This invention also provides a method for identifying a potential agonist or antagonist of a molecule comprising a P38 γ -like binding pocket, comprising the steps of:

- 15 a) creating a computer model of the binding pocket using structure coordinates wherein:
 - (i) the root mean square deviation between said structure coordinates and the structure coordinates of the P38γ amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Prol10, Phelll, Met112, Glyll3, Thrll4, Aspl15, Lys118, Aspl53, Lys155, Glyl57, Asnl58, Ala160, Leu170, Aspl71, Glyl73, and Leu174 according to Figure 1 is within about 3.0 angstroms,
- (ii) said binding pocket model depicts amino acid residues that correspond by functional and/or sequence alignment to the Met112 and Gly113 residues of P387 or that correspond by functional and/or sequence alignment to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, and
- 30 (iii) said binding pocket model depicts the ψ angle of the residue corresponding to Met112 to be in the range of about -60° to 60° and the φ angle of the residue

- 42 -

corresponding to Gly113 to be in the range of about 30° to 150°;

- b) employing said model of the binding pocket to design or select said potential agonist or antagonist;
 - c) synthesizing said agonist or antagonist; and

5

15

d) contacting said agonist or antagonist with said molecule to determine the ability of said potential agonist or antagonist to interact with said molecule.

A preferred embodiment of this method uses the structure coordinates of the Met112 and Gly113 amino acids of p38 γ or the Met112 and Gly113 equivalent residues of a protein listed in Table 1.

In order that this invention be more fully understood, the following examples are set forth. These examples are for the purpose of illustration only and are not to be construed as limiting the scope of the invention in any way.

Example 1

Expression and Purification of P38γ Protein

P38 with a His6 tag was overexpressed in E.Coli, and then purified by using metal affinity resin followed by MonoQ resin. The purified material was phosphorylated with constituitively active MKK6, and purified again with

25 MonoQ resin (Fox, T. et al., manuscript in preparation). Size-exclusion chromatography was performed to determine the apparent molecular weights of unphosphorylated and phosphorylated P38γ as follows. A Superdex 75 HR 10/30 column (Pharmacia, Uppsala) was equilibrated in 12.5 mM

30 HEPES, pH 7.3, containing 6.25 % (v/v) glycerol and 100 mM KCl. Bovine serum albumin (67 kDa), ovalbumin (43 kDa), chymotrypsinogen (25 kDa), ribonuclease A (13.7 -

- 43 -

kDa) were used to calibrate the column prior to $P38\gamma$ analyses. A flow rate of 0.25 ml/min was used for chromatographic runs and samples were loaded in a volume of 100-200 _l at 0.7 - 4 mg/ml.

5

Example 2

Crystallization of P387

Crystals of phosphorylated P387 complexed with AMP-PNP were grown by vapor diffusion. Clusters of rods appeared after 3 to 7 days when protein (0.5 mM P387 with 5 mM AMP-PNP and 0.02% C12E9) was mixed with an equal volume of reservoir (100 mM NaOAc, 100 mM Tris 8.5, 27% PEG 4000, 10 mM MgCl2, and 5 mM DTT) and allowed to stand at room temperature. Single crystals with 100 mM maximum thickness were separated from their parent cluster, cryoprotected by adding ethylene glycol to a final concentration of 15% over 15 min in three equal steps, and flash cooled to -170°C in a stream of gaseous nitrogen.

20

Example 3

X-Ray Data Collection and Structure Determination

The diffraction pattern displayed symmetry consistent with space group P212121, with unit cell dimensions

25 a=63.50Å, b=66.82Å, and c=206.02Å. Diffraction extended to 4.0Å in the a*, b* direction and 3.0Å in the c* direction. Data collection at NSLS X25 allowed a significant improvement in the observed diffraction limit: data were collected to 3.0Å in the a*,b* direction and at least 2.4Å in the c* direction. Data were integrated to 2.4Å [Otwinowski, Z. in CCP4 Study Weekend (eds. Sawyer, L., Isaacs, N. & Bailey, S.) 56-62 (SERC)

- 44 -

Daresbury Laboratory, England) (1993); Minor, W. XDISPLAYF Program, Purdue University, (1993)]. The overall R-merge for the data was 6.7%, with I/sig(I)=2.0 at 2.4Å resolution. The X-ray data comprised 31732 unique reflections derived from 118429 intensity measurements. The data were 90% complete overall and 76.5% complete in the 2.49-2.40Å resolution shell. Data incompleteness, particularly in the highest resolution shell, reflects the anisotropic nature of the diffraction.

The volume of the asymmetric unit indicated the presence of two P38 γ molecules. The self-rotation function calculated with POLARRFN [Acta Crys D50, 760-763 (1994)] revealed a noncrystallographic peak with intensity half of the origin at Kappa =180°, omega=90°, and Phi=44°.

15

Coordinates for the structure of phosphorylated ERK2 were not initially available from the protein data bank and could not be used for molecular replacement. Several different models for $P38\gamma$ were constructed based on the 20 X-ray coordinates of P38γ or unphosphorylated ERK2 with either all side chains truncated to alanine, or with only the nonconserved side chains truncated to alanine or glycine [Zhang et al., Nature 367, 704-711 (1994); Wilson and Su, J Biol Chem 271, 27696-27700 (1996)]. 25 rotation function solutions were obtained using these models with either the X-plor or AMORE molecular replacement packages. The anisotropy of the data, as well as the presence of two molecules in the asymmetric unit, could be reasons for the lack of a successful molecular 30 replacement solution. Variability in the orientation between the large and small kinase domains may have been an additional complicating factor.

- 45 -

To position correctly an initial P38γ model, experimental phases at low resolution were obtained from two derivatives. Crystals were soaked with 0.2 mM ethylmercurychloride (EMP) for 5 days, and with 2 mMDiffraction data were collected on the EuCl₃ overnight. in house RaxisIIc, and integrated to 5.0Å [see Owinowski and Minor, supra]. Difference Patterson maps were interpreted by using SHELXS-97 [Acta Crys A46, 467-473 (1990)]. .The EMP derivative yielded four sites and the Europium derivative yielded two sites. These heavy atom 10 positions were refined by using ML-PHARE [Acta Crys D50, 760-763 (1994)] which yielded an overall figure of merit of 0.53 to 5 $\mbox{\normalfont\AA}$. The resulting electron density maps showed clear solvent and protein regions. Six heavy atom sites were identified within a continuous envelope of 15 protein density and grouped into two sets of three sites. These two sets were related to one another by a two-fold axis, which was consistent with the self-rotation function. Each set of three sites was assumed to correspond to a monomer of P38 γ , and the two-fold 20 operation was used to improve the experimental electron density by noncrystallographic symmetry (NCS) averaging. Solvent flattening combined with two-fold averaging using Dm (final correlation coefficient of averaging of 0.851) produced an electron density map at 5.0Å that allowed 25 placement of the P38 γ model. The N-terminal domain had to be rotated by several degrees with respect to the Cterminal domain in order to fit both domains into the experimental density. At this stage the model was refined against the high resolution synchrotron data. 30 Rigid body refinement and torsional dynamics refinement yielded an initial R_{free} of 42%.

The quality of the model was improved by cycles of .

- 46 -

model building, positional refinement, and thermal factor refinement, interspersed with torsional dynamics runs using data from 50.0 to 2.4Å. All stages of model refinement were carried out using the new program CNS [Acta Crys D54, 905-921 (1988)] with bulk solvent correction and anisotropic scaling. NCS restraints were applied throughout the refinement. The current $P38\gamma$ model contains two monomers, each with 329 protein residues, one bound AMP-PNP molecule, and two Mg21 ions. A total of 186 water molecules were included in the 10 entire asymmetric unit. The current R_{work} is 23.2% (R_{free} = 28.3%) versus all data with $|F| > 2_(F)$ between 50-2.4Å resolution (27841 reflections). PROCHECK was used to analyze the model stereochemistry [Acta Crys D50, 760-763 (1994)]. All of the residues were in the most favored 15 and additional allowed regions of the Ramachandran plot. One residue per monomer (Val187) from the phosphorylation loop was in the disallowed region. The P38 γ model has deviations from ideal bond lengths and angles of 0.010Å and 1.63° respectively. No electron density was observed 20 for amino acids 1-7, 34-39, 316-321, 330-334, and 354end, therefore these residues were not included in the model. The eight residue histidine tag and 21 residues at the C-terminus are also disordered. Subsequent to the structure refinement, the phosphorylated ERK2 coordinates 25 were released, and the final refined P38 γ structure was compared with that structure.

Example 4

Overall Structure

The P38 γ structure was solved with a combination of low resolution MIR and molecular replacement using a

30

- 47 -

model of the unphosphorylated form of P38 α [Wilson and Su, *J Biol Chem* 271, 27696-27700 (1996)]. The current structure includes two P38 γ molecules per asymmetric unit, each with 329 amino acids, a bound AMP-PNP, and two Mg²+ ions. A total of 186 water molecules were modeled in the asymmetric unit. The current Rfree and Rwork are 28.3% and 23.2%, respectively. The refined model has deviations from ideal bond lengths and angles of 0.01Å and 1.6°. The two P38 γ molecules in the asymmetric unit superimpose with an overall r.m.s.d. of 0.013Å using all C α atoms, and thus represent two independent but highly similar structures of activated P38 γ .

10

Comparison of Kinase Structures

Electron density for the main chain atoms of P38 γ is 15 visible from residue 8 to 353, with breaks at residues 34-39, 316-321 and 330-334 (Fig. 1). The glycine rich loop, which contains the consensus Gly-X-Gly-X-X-Gly sequence (residues 34-39 in P38 γ) is mobile, and residues 34-39 could not be modeled. The homologous region of 20 $P38\alpha$ is also flexible, and has average B-values equal to 61Å. In contrast, the AMP-PNP ligand is well ordered, as are all nearby secondary structural elements. Strong electron density for the residues at the N- and Cterminal ends of the glycine rich loop is also observed. 25 The C-terminal 40 residues of both P38 γ molecules in the asymmetric unit are not as well ordered as the rest of the structure. Helix αL16 can be modeled, but contains several disordered side chains. The region just before helix αL16 is poorly ordered and does not form the 3/10 30 helix L16 observed in the structure of phosphorylated ERK2. Helix α L16 and 3/10 helix L16 are involved in

- 48 -

dimer formation in the structure of phosphorylated ERK2 [Canagarajah et al., Cell 90, 859-869 (1997)].

Activated P387 contains a small amino terminal domain comprised mainly of β -strands, and a large carboxyl terminal domain that consists mostly of lpha-helices (Fig. 1). This fold is common among kinases [Taylor & Radzio-Andzlem (1994); Structure 2, 345-355; Kultz J Mol Evol 46, 571-588 (1998)]. A deep cleft at the interface between the domains forms the binding site for ATP and Mg^{2+} . The two domains are connected by a hinge, located 10 at a point adjacent to the adenine base and near residue 113 (Fig. 1). Whereas the sequence, fold, and topology of P38 γ is similar to P38 α (Figs. 1, 2), the domains of activated P38 γ are closed relative to P38 α Independent 15 superimpositions of the domains of P38 γ onto the P38 α structure yield r.m.s. deviations of 1.2Å for the N- $\,$ terminal domain (P38 γ C α carbons from residues 10-16, 19-33, and 40-113), and 0.62 $\mbox{\normalfont\AA}$ for the C-terminal domain (P387 C_{α} carbons from residues 125 to 160, 206 to 238 and 20 282 to 297). Greater differences between P38 γ and P38 α are observed when the whole proteins are compared. Superimposition of the C-terminal domain of P38 γ onto the corresponding lobe of P38 α revealed a rotation of the Nterminal domain of P38 γ by 20 $^{\circ}$ relative to the 25 orientation seen in P38 α (Fig. 2). Other differences between the structure of phosphorylated P38 γ and P38 α

Inter-domain rotation, or domain closure, is common in MAP kinase structures, and is observed to different extents. The structures of unphosphorylated and phosphorylated ERK2 show a 5° difference in domain

occur in the conformation of $\alpha 1 \text{L} 14$, $\alpha 2 \text{L} 14$, $\alpha 1 \text{L} 12$, the

phosphorylation loop, and α L16.

- 49 -

closure. The structure of unphosphorylated JNK3 reveals that a 10° domain rotation would be needed to superimpose both domains with the structure of phosphorylated P38 γ or phosphorylated ERK2. P38 α MAP kinase is more open in its unphosphorylated state than ERK2 or JNK3. Despite a large difference in the conformations of the unphosphorylated proteins, the domains of the activated forms of P38 γ and ERK2 can be superimposed with a rotation of only 3°. Comparison to solved kinase structures indicates that the relative positions of the domains in activated P38 γ is most similar to activated ERK2 MAP kinase.

10

The structures of phosphorylated $P38\gamma$ and phosphorylated ERK2 are similar, with a few significant differences. One conformational difference is a movement 15 of the α 1L14, α 2L14 helical region. With the large domains superimposed, the difference in lpha 1 L 14, lpha 2 L 14orientation between the two structures is about 6Å, when measured at the most extreme portion of the helices. Another difference between the two structures is that the 20 $P38\gamma$ activation loop is six residues shorter than the activation loop in ERK2. Excluding these two regions allows one to superimpose P38 γ C α carbons 19-33, 40-58, 61-94, 97-113, 117-177, 182-243, and 269-315 with the corresponding ERK2-P2 atoms to yield an r.m.s.d. of 1.1Å. 25 This reflects the high similarity between the two structures. A comparison of the activation loops, using P38 γ C α carbons 173-177 and 182-188 yields an r.m.s.d. of 0.3Å.

30 The structure of the phosphorylation loop differs between phosphorylated P38 γ and unphosphorylated P38 α (Fig. 2). The phosphorylation loop contains the TGY sequence present in all P38 MAP kinases. Phosphorylation

- 50 -

of Thr183 and Tyr185 results in a movement of the activation loop, and produces changes in the P38 γ structure.

Phospho-Thr183 sits at the interface between the two domains. The Thr183 phosphate group interacts with Arg70, Arg73 and Lys69 from the N-terminal domain, and Arg152 and Arg176 from the C-terminal domain (Figs. 1 and 3). The two domains are connected by a hinge, located at a point adjacent to the adenine base and near residue 113. The hinge-point and residue pThr183 are located at 10 opposite ends of the interface between the two domains. The network of interactions between pThr183 and these basic residues pulls the domains together. As a result, the relative orientations of the amino acids, including the catalytic residues, located between the hinge and 15 pThr183 are changed. A similar set of interactions between the phospho-threonine and nearby basic residues was reported for the structure of phosphorylated ERK2 [Canagarajah et al., Cell 90, 859-869 (1997)].

Phosphorylated P38γ is in a conformation consistent with activity. The active site of phosphorylated P38γ is shown in detail in Fig. 4, and compared with the active sites of P38α and cAPK in Figs, 5a and 5b. The interactions between the non-hydrolyzable nucleotide analog AMP-PNP and P38γ (Fig. 4) are very similar to those made between bound nucleotide and cAPK [Zheng et al., Acta Cryst. D49, 362-365 (1993); Bossemeyer et al., EMBO Journal 12, 849-859 (1993); Narayana et al., Structure 5, 921-935 (1997)].

The N1 and N6 nitrogen atoms of AMP-PNP form hydrogen bonds to the backbone amide nitrogen atom of Met112 and the backbone carbonyl oxygen atom of Pro110, respectively.

Interactions between the glycine rich loop and the nucleotide

- 51 -

are not observed in the P38 γ structure.

The relative positions of catalytic residues Lys53, Glu74 and Asp153 provide information about the state of activation of the kinase [Kumar et al., J. Biol. Chem. 270, 29043-29046 (1995); Robinson et al., Curr Opin Cell Biol 9, 180-186 (1997)]. Comparison of P38 γ with cAPK after superimposing the nucleotides from the two structures (Fig. 5b), reveals that the active site residues in the two structures are in almost the same conformation. The cAPK structure also contains a bound 10 peptide inhibitor, and the complex is believed to represent a bioactive conformation of cAPK [Zheng et al, supra; Bossemyer et al., supra; Narayana et al., supra]. The nucleotides in both structures adopt almost the same conformations, and the relative positions of the 15 catalytic residues Lys-56, Glu-74 and Asp-153 are There are also two bound metal ions in each conserved. complex. After superimposition, metal I in cAPK is separated from the corresponding metal in P38 α by 0.5Å, and metal II from P38 γ is 1.4Å removed from metal II in 20 cAPK. Because the conformation and relative orientation of the catalytic residues and cofactors in the active sites of the two kinases are almost the same, the structure of phosphorylated P38 γ described here is likely to represent an active conformation. 25 Comparing the phosphorylated P38 γ to the known, unphosphorylated P38lpha one finds that the active site

Comparing the phosphorylated P38 γ to the known, unphosphorylated P38 α one finds that the active site residues of P38 α are significantly displaced relative to their orientation in P38 γ . This presumably reflects the inactive state of unphosphorylated P38 α (Fig. 5a). Two types of structural differences are observed between unactivated P38 α and activated P38 γ . A rigid body motion occurs between the two domains, and secondary structure

- 52 -

elements and residues move as a result of phosphorylation and AMP-PNP binding. $\bar{}$

Using the newly-determined structure of P38 γ , the structure of unphosphorylated P38 α could be altered to properly position its catalytic residues in an active conformation. Without the P38 γ structural information, it was not known whether domain movement alone would be enough to properly position the catalytic residues in an active conformation or whether activation would also require other changes [Johnson et al., Curr. Opin. Struct. Biol. 6, 762-769 (1996); Yamaguchi et al., Nature 384, 484-489 (1996); Johnson et al., Cell 85, 149-158 (1996); Russo et al., Nature Struc Biol 3, 696-700 (1996)].

To address this question, the structure of 15 unphosphorylated $P38\alpha$ was altered to resemble phosphorylated P387. Only a rigid-body movement, centered on the hinge residue 113, was used to change the relative orientation of the two domains in P38lpha. resulting model maintains the detailed secondary 20 structure features present in non-phosphorylated P38lpha, but has the same domain closure as P38 γ . The positions of catalytic residues in the active site of this modified $P38\gamma$ model match well to those observed in the structure of activated P38 γ . The rigid body movement shifts P38 α 25 residue Lys-53 2.9Å closer to its counterpart in P38 γ (from 4.4Å to 1.5Å separation). Glu-71 (P38 α) moves 2.8Å nearer to its equivalent residue in P38 γ (from 3.2Å to 0.4Å separation). Thus, the structures of P38lpha and P387 suggest that a simple domain rotation accounts for 30 most of the rearrangement of catalytic residues necessary for activation of P38y.

Other movements may contribute to activation of P387.

- 53 -

For example, phosphorylation of Tyr185 leads to a rearrangement of surrounding secondary structure elements that may effect substrate binding. Arg192 interacts with the pTyr185 phosphate group in the P38γ structure, and is shifted more than 5Å relative to its position in the apo-P38α structure. Such coordination of Arg 192 and its effect on substrate binding have been discussed with regard to ERK2 and JKN3 [Zhang, Nature 367, 704-711 (1994); Xie and Su, supra; Canagarajah, supra]. In the P38γ structure, pTyr185 interacts directly with Arg189 and Arg192 (Fig. 3). Comparison of the P38γ pTyr185 conformation, as well as the backbone conformation with the corresponding residue of phosphorylated ERK2, shows that the two residues are in nearly the same conformation.

10

15

20

25

30

Activated P38 is Monomeric

The two P38 γ proteins in the crystallized complex show no evidence of dimeric interaction, as evidenced by the examination of the activation loops of the two proteins. This is unlike the activated, phosphorylated ERK2, which is believed to reveal a dimer interface that is not observed in the non-phosphorylated form [Zhang et al., supra; Canagarajah et al., supra; Khokhlatchev et al., supra]. The dimer interface in phosphorylated ERK2 reportedly buries a total of $1470 \mbox{Å}^2$ of surface area, and is formed in part by an ion pair between His176 from one molecule and Glu343 from the other molecule. In addition, Leu333, Leu336, and Leu344 are reported to further stabilize the dimer interface.

The entire surface of each P38 γ molecule in the asymmetric unit was examined in search of any dimer interface. The crystal of P38 γ belongs to space group

- 54 -

P2₁2₁2₁, which contains only two-fold screw axes, but no crystallographic two-fold axes. The only two-fold axis in the crystal is the non-crystallographic axis which relates the two molecules within the asymmetric unit. This dimeric interaction involves Pro282, Asn286, Lys290, Leu283, Pro309, and Glu312. This non-crystallographic dimer interface buries only 680Å² of surface area, less than half of the 1470Å² buried in the phosphorylated ERK2 dimer interface.

To characterize further the oligomeric state of 10 activated P38 γ in solution, size-exclusion chromatography was performed to determine the apparent molecular weights of unphosphorylated and phosphorylated P387. To facilitate comparison with the phosphorylated ERK2 15 results [Khokhlatchev et al., supra], the same column resin, buffer, and loading conditions were used. chromatographic profiles of unphosphorylated and phosphorylated P38 γ showed that both proteins eluted with a similar retention time, corresponding to a molecular weight of 44.5 kDa as determined from the protein 20 calibration curve. The absence of dimer formation of phosphorylated P38 γ in solution is consistent with the absence of dimer formation in the crystal structure of It is also consistent with the absence of dimer formation in ERK2 mutants where His176 is deleted 25 [Khokhlatchev et al., supra].

Conformations of Activation Loops of Kinases

30

The number of residues in the activation loops of different kinases varies, ranging from 8 amino acids in calmodulin dependent DAP-kinase to 37 residues in LIMK2 [Deiss et al., Genes Dev. 9, 15-30 (1995); Okano et al., J. Biol. Chem. 270, 31321-31330 (1995)]. The P387

- 55 -

activation loop consists of residues Gly173-Thr188. The phosphorylation loop of ERK2 is six residues longer in sequence and spans amino acids Gly167-Thr188. The loop region of cAPK is the same length as P38γ, and spans amino acids Gly186-Thr201. Fig. 6 highlights the loop regions from P387, ERK2-P2, and cAPK. Except for a longer loop size for ERK2, the structures of the loop regions of activated P38 γ and activated ERK2 are nearly identical. The distance between the phosphate moieties from Thr183 in P38 γ and ERK2 is only 0.4Å, and separation between the Tyr185 phosphate from P387 and ERK2 is 1.6Å. The phosphorylation loop of cAPK does not superimpose as well with the two MAP kinase phosphorylation loops, although the Thr phosphate is only 2.0Å away from the $P38\gamma$ Thr183 phosphate. The phosphorylation loop regions from P387, ERK2 and cAPK have different lengths, but in their phosphorylated states adopt almost the same conformations.

10

15

Figures 1a-6 further depict the structure of the phosphorylated P38 γ /MgAMP-PNP complex. Thus, Fig 1a 20 depicts an overview of the phosphorylated P38 γ structure. The large and small domains are pulled together by interactions mediated by phospho-Thr183. Ribbon diagrams of the activated P38 γ structure with the amino-terminal small domain are colored light orange and the carboxy-25 terminal large domain colored blue. The interface between the two domains (residue 113) can be thought of as a hinge point through which domain movement occurs. Four Arg residues and one Lys residue are explicitly shown coordinated to the phosphate of pThr183. Arg70, 30 Arg73 and Lys69 anchor the small domain to pThr183, and Arg152 and Arg176 anchor the large domain to pThr183. PThr183 pulls the domains together. All figures were .

- 56 -

made with RIBBONS [Carson et al., J. Mol. Graphics 4, 121-122 (1986)].

Fig 2 is a superimposition of the structures of unphosphorylated P38α and phosphorylated P38γ. P38α is shown in light blue and dark blue (activation loop), and P38γ is shown in light orange and dark orange (activation loop). The Cα atoms from residues 125 to 160, 206 to 238 and 282 to 297 were used to superimpose the two proteins with an r.m.s.d. of 0.62Å. Also shown is the AMP-PNP and two Mg²+ ions from the P38γ structure. All atoms of the phosphorylated Thr183 and Tyr185 from the P38γ structure are shown. Major changes upon phosphorylation are a significant domain closure and a rearrangement of the activation loop.

Fig 3 is a detailed stereo view of activation loop.

All atom stereo view of the P38γ activation loop

(residues 174 to 189). Residues that coordinate pThr183

and pTyr185 are also shown. Hydrogen bonds are indicated with dashed grey lines. The phosphate atoms are shown in pink.

Fig 4 is a stereo view of AMP-PNP. All major interactions with protein sidechains are indicated with dashed grey lines. The bound Mg²⁺ ions are indicated by black spheres. The phosphate atoms are shown in pink. Met109 can be seen behind the adenine base, blocking the hydrophobic pocket. Water molecules have been removed for clarity.

25

30

Figures 5a and 5b are a comparison of the active site of activated P38 γ with P38 α and cAPK. P38 γ is shown in orange, P38 α in blue, and cAPK in red. In all three structures a salt bridge is observed between Lys56 and Glu74 (P38 γ numbering). a) Comparison of the active

- 57 -

sites of P38 γ with P38 α by superimposition of their carboxyl terminal large domains. Catalytic residues are misaligned. The distance between Asp153 and Lys53 is 12.6Å in the P38 α structure compared with 8.5Å in the phosphorylated P38 γ structure. b) Comparison of the active sites of P38 γ with cAPK (Protein Data Base code: 1ATP, ref. 22) by superimposition of all atoms of their bound AMP-PNP molecules. All catalytic residues align to within a fraction of an Å. The distance between Asp153 and Lys53 is 8.5Å in the activated P38 γ structure. This distance is very close to the distance of 7.8Å observed in activated cAPK, suggesting that the structure reported here is of the activated kinase. Asp171 is excluded from these figures for clarity because it is obscured by AMP-PNP and Mg²⁺ ions.

10

15

Fig 6 is a comparison of activated phosphorylation loops from P387 (dark orange), ERK2 (dark blue), and cAPK (red). Superimposition of these three structures was with the C_{α} atoms of residues 125 to 160, 206 to 238 and 282 to 297 of P38 γ . In order to ensure an unbiased 20 comparison of the lip regions, these residues were omitted from the calculation. All three lip regions have different lengths, but have surprisingly similar conformation. Comparison of P387 and ERK2 superimposes the two phorphorylated amino acids almost exactly, 25 despite a six amino acid difference in length. The phosphorylated Thr197 of cAPK also superimposes well with the two MAP kinase structures. This comparison suggests that the phosphorylated lip structures observed in P38 γ and ERK2 may be representative of all MAP kinases. 30

- 58 -

Example 5

The Use of P38 γ /MgAMP-PNP Coordinates for Inhibitor Design

5

10

15

20

25

30

The coordinates of Figure 1 are used to design compounds, including inhibitory compounds, that associate with P38 γ or homologues of P38 γ . This process may be aided by using a computer comprising a machine-readable data storage medium encoded with a set of machine-executable instructions, wherein the recorded instructions are capable of displaying a three-dimensional representation of the P38 γ /MGAMP-PNP complex or a portion thereof. The graphical representation is used according to the methods described herein to design compounds. Such compounds associate with the P38 γ at the active site.

Example 6

P387 Activity Inhibition Assay

To determine the IC50 of compound binding to P387, the kinase activity of P38Y was monitored by coupled enzyme assay. In this assay, for every molecule of ADP generated by the P38Y kinase activity one molecule of NADH is converted to NAD which can be conveniently monitored as an absorbance decrease at 340 nm. The following are the final concentrations of various reagents used in the assay: 100 mM HEPES buffer, pH 7.6, 10 mM MgCl₂, 30 µM ATP, 2 mM phosphoenolpyruvate, 2 µM pyruvate kinase, 2 µM lactate dehydrogenase, 200 µM NADH, 200 µM EGF receptor peptide KRELVEPLTPSGEAPNQALLR, and 10 nM activated P387. First, all of the above reagents with

- 59 -

the exception of ATP were mixed and 175 μ l aliquots were placed per well of 96-well plate. A 5 μ l DMSO solution of the compound was added to each well, mixed, and allowed to stand at 30°C for 10 minutes. Typically about 10 different concentrations of the compound were tested. The reactions were initiated with the addition of 20 μ l of ATP solution. Absorbance change at 340 nm were monitored as a function of time. IC50 is obtained by fitting the rates vs. compound concentration data to a simple competitive inhibition model.

While we have described a number of embodiments of this invention, it is apparent that our basic constructions may be altered to provide other embodiments which utilize the products, processes and methods of this invention. Therefore, it will be appreciated that the scope of this invention is to be defined by the appended claims, rather than by the specific embodiments which have been presented by way of example.

15

10

WO 00/36096

- 60 -

We claim:

A crystalline composition comprising a phosphorylated P38 protein-ligand complex.

- The crystalline composition of claim 1 wherein 2. the complex is capable of being resolved at 2.4A resolution, the complex comprising:
- a purified enzyme selected from phosphorylated P38 α , phosphorylated P38 β , phosphorylated P38 δ , phosphorylated P38 γ , or a phosphorylated isoform of any of the foregoing;
 - a ligand; and b)
 - magnesium ions. C)
- The crystalline composition according to claim 3. 2, wherein said enzyme is P38γ.
- 4. A crystalline protein kinase-ligand complex, said kinase comprising a binding pocket defined by the structure coordinates of the P38 γ amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Prol10, Phelll, Metll2, Glyll3, Thrl14, Aspll5, Lysl18, Aspl53, Lys155, Gly157, Asn158, Ala160, Leu170, Asp171, Gly173, and Leu174 according to Figure 1, or a homologue of said kinase, wherein said homologue comprises a binding pocket that has a root mean square deviation from the backbone atoms of said amino acids of not more than 1.15Å.
 - 5. A crystalline protein kinase-ligand complex, said

- 61 -

kinase selected from the proteins listed in Table 1, wherein the ψ angle of the residue corresponding to Met112 of p38 γ is in the range of about -60° to 60° and the φ angle of the residue corresponding to Gly113 of p38 γ is in the range of about 30° to 150°.

- 6. A crystalline protein kinase-ligand complex, said kinase comprising amino acid residues that correspond by functional and/or sequence alignment to the Met112 and Gly113 residues of P38 γ or that correspond by functional and/or sequence alignment to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, wherein the ψ angle of the residue corresponding to Met112 is in the range of about -60° to 60° and the ϕ angle of the residue corresponding to Gly113 is in the range of about 30° to 150°.
- 7. A method for evaluating the ability of a chemical entity to associate with a molecule or molecular complex comprising a binding pocket, said method comprising the steps of:
- a) creating a computer model of the binding pocket using structure coordinates wherein the root mean square deviation between said structure coordinates and the structure coordinates of the P38γ amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Pro110, Phel11, Met112, Glyl13, Thrl14, Aspl15, Lys118, Aspl53, Lys155, Gly157, Asnl58, Ala160, Leu170, Aspl71, Gly173, and Leu174 according to Figure 1 is not more than about 1.15 Å;
- b) employing computational means to perform a fitting operation between the chemical entity and said

- 62 -

computer model of the binding pocket; and

- c) analyzing the results of said fitting operation to quantify the association between the chemical entity and the binding pocket model.
- 8. The method according to claim 7, wherein said binding pocket is further defined by the structure coordinates of P38γ amino acids Pro32, Cys42, Ser43, Val53, Ile55, Lys57, Leu58, Thr59, Arg70, Glu74, Gly88, Leu107, Val108, Leu116, Gly117, Pro156, Leu159, Val161, Lys168, Phe172, Ala175, and Thr188 according to Figure 1.
- 9. The method according to claim 8 wherein said molecule or molecular complex is defined by the set of structure coordinates for all P38 γ amino acids according to Figure 1.
- 10. A method of utilizing molecular replacement to obtain structural information about a molecule or a molecular complex of unknown structure, comprising the steps of:
 - a. crystallizing said molecule or molecular complex;
- b. generating an X-ray diffraction pattern from said crystallized molecule or molecular complex;
- c. applying at least a portion of the structure coordinates set forth in Figure 1 to the X-ray diffraction pattern to generate a three-dimensional electron density map of at least a portion of the molecule or molecular complex whose structure is unknown.
- 11. A computer for producing a three-dimensional representation of a molecule or molecular complex,

PCT/US99/29096

- 63 -

wherein said computer comprises:

WO 00/36096

- a) a machine-readable data storage medium comprising a data storage material encoded with machine-readable data, wherein said machine-readable data comprises the structure coordinates of P38γ amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Prol10, Phel11, Met112, Gly113, Thr114, Asp115, Lys118, Asp153, Lys155, Gly157, Asn158, Ala160, Leu170, Asp171, Gly173, and Leu174 according to Figure 1, or structural coordinates having a root mean square deviation from the backbone atoms of said amino acids of not more than 1.15Å;
- b) a working memory for storing instructions for processing said machine-readable data;
- c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium, for processing said machine readable data into said three-dimensional representation; and
- d) an output hardware coupled to said centralprocessing unit, for receiving said three-dimensional representation.
- 12. A method for identifying a potential agonist or antagonist of a molecule comprising a P38 γ -like binding pocket, comprising the steps of:
- a. using the atomic coordinates of Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Prol10, Phel11, Met112, Gly113, Thr114, Aspl15, Lys118, Aspl53, Lys155, Gly157, Asn158, Ala160, Leu170, Aspl71, Gly173, and Leu174 according to Figure 1 \pm a root mean square deviation from the backbone atoms of said amino acids of not more than 1.15Å, to generate a three-dimensional structure of molecule comprising the P38 γ -like binding pocket;

- 64 -

 b. employing said three-dimensional structure to design or select said potential agonist or antagonist;

- c. synthesizing said agonist or antagonist; and
- d. contacting said agonist or antagonist with said molecule to determine the ability of said potential agonist or antagonist to interact with said molecule.
- 13. The method according to claim 12, wherein the atomic coordinates of Pro32, Val33, Ala40, Val41, Cys42, Ser43, Val53, Ala54, Ile55, Lys56, Lys57, Leu58, Thr59, Arg70, Glu74, Ile87, Gly88, Leu107, Val108, Met109, Pro110, Phel11, Met112, Gly113, Thr114, Aspl15, Leu116, Gly117, Lys118, Aspl53, Lys155, Pro156, Gly157, Asn158, Leu159, Ala160, Val161, Lys168, Leu170, Aspl71, Phel72, Gly173, Leu174, Ala175, and Thr188 according to Figure 1 ± a root mean square deviation from the backbone atoms of said amino acids of not more than 1.15Å, are used to generate said three-dimensional structure of the molecule comprising a P38γ-like binding pocket.
 - 14. The method according to claim 13, wherein the atomic coordinates of all the amino acids of P38 γ according to Figure 1 \pm a root mean square deviation from the backbone atoms of said amino acids of not more than 1.15Å, are used to generate a three-dimensional structure of molecule comprising a P38 γ -like binding pocket.
 - 15. A computer for producing a three-dimensional representation of a protein kinase or a protein kinase-ligand complex, or portion thereof, wherein said computer comprises:
 - a) a machine-readable data storage medium comprising

a data storage material encoded with machine-readable data, wherein said machine-readable data comprises the structure coordinates of said kinase, or portion thereof, said kinase or portion thereof comprising amino acid residues that correspond by functional and/or sequence alignment to the Met112 and Gly113 residues of P38 γ or that correspond by functional and/or sequence alignment to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, wherein the ψ angle of the residue corresponding to Met112 is in the range of about -60° to 60° and the ϕ angle of the residue corresponding to Gly113 is in the range of about 30° to 150°;

- b) a working memory for storing instructions for processing said machine-readable data;
- c) a central-processing unit coupled to said working memory and to said machine-readable data storage medium, for processing said machine readable data into said three-dimensional representation; and
- d) an output hardware coupled to said centralprocessing unit, for receiving said three-dimensional representation.
- 16. A method for evaluating the ability of a chemical entity to associate with a protein kinase binding pocket, said method comprising the steps of:
- a) creating a computer model of the binding pocket using structure coordinates wherein:
- (i) the root mean square deviation between said structure coordinates and the structure coordinates of the P38γ amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Prol10, Phel11, Met112, Gly113, Thr114, Asp115, Lys118, Asp153, Lys155, Gly157, Asn158, Ala160, -

- 66 -

Leu170, Asp171, Gly173, and Leu174 according to Figure 1 is within about 3.0 angstroms,

- (ii) said binding pocket model depicts amino acid residues that correspond by functional and/or sequence alignment to the Met112 and Gly113 residues of P38γ or that correspond by functional and/or sequence alignment to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, and
- (iii) said binding pocket model depicts the ψ angle of the residue corresponding to Met112 to be in the range of about -60° to 60° and the φ angle of the residue corresponding to Gly113 to be in the range of about 30° to 150°;
- b) employing computational means to perform a fitting operation between the chemical entity and the binding pocket model; and
- c) analyzing the results of said fitting operation to quantify the association between the chemical entity and the binding pocket model.
- 17. A method for identifying a potential agonist or antagonist of a molecule comprising a P38 γ -like binding pocket, comprising the steps of:
- a) creating a computer model of the binding pocket using structure coordinates wherein:
- (i) the root mean square deviation between said structure coordinates and the structure coordinates of the P38γ amino acids Val33, Ala40, Val41, Ala54, Lys56, Ile87, Met109, Prol10, Phel11, Met112, Gly113, Thr114, Aspl15, Lys118, Aspl53, Lys155, Gly157, Asnl58, Ala160, Leu170, Aspl71, Gly173, and Leu174 according to Figure 1 is within about 3.0 angstroms,

- 67 -

- (ii) said binding pocket model depicts amino acid residues that correspond by functional and/or sequence alignment to the Met112 and Gly113 residues of P38γ or that correspond by functional and/or sequence alignment to the Met112 and Gly113 equivalent residues of one or more proteins listed in Table 1, and
- (iii) said binding pocket model depicts the ψ angle of the residue corresponding to Met112 to be in the range of about -60° to 60° and the φ angle of the residue corresponding to Gly113 to be in the range of about 30° to 150°;
- b) employing said model of the binding pocket to design or select said potential agonist or antagonist;
 - c) synthesizing said agonist or antagonist; and
- d) contacting said agonist or antagonist with said molecule to determine the ability of said potential agonist or antagonist to interact with said molecule.

Figure 1

Atom								
Atom Atom Type	Residue		#	×	Y	Z	occ	В
1 N	ARG	Α	8	50.744	68.953	-19.867	1	82.26
2 CA	ARG	Α	8	51.733	70.011	-19.529	1	82.91
3 C	ARG	Α	8	52.844	69.485	-18.592	1	83.38
4 0	ARG	Α	8	52.777	68.355	-18.091	1	83.08
5 CB	ARG	Α	8	51.013	71.214	-18.918	1	80.87
6 N	SER	Α	9	53.885	70.296	-18.408	1	83.59
7 CA	SER	Α	9	55.028	69.954	-17.564	1	82.36
8 C	SER	Α	9	55.82	71.228	-17.264	1	80.92
· · · 9 O	SER	Α	9	55.748	72.203	-18.014	1	79.73
10 CB	SER	A	9	55.931	68.93	-18.27	1	85.39
11 OG	SER	A	9	56.938	68.428	-17.399	1	87.48
12 N	GLY	A	10	56.597	71.198	-16.181	1	80.75
13 CA ·	GLY	A	10	57.381	72.357	-15.774	1 1	77.56 75.22
14 C	GLY	A	10 10	56.625 55.874	73.137 72.55	-14.711 -13.928	1	75.22 74.7
15 O	GLY PHE	A A	11	56.834	72.33 74.45	-14.659	i	72.75
16 N 17 CA	PHE	Â	11	56.147	75.305	-13.687	1	68.57
18 C	PHE	Â	11	55.637	76.563	-14.371	1	69.71
19 0	PHE	A	11	55.787	76.723	-15.583	1	70.87
20 CB	PHE	A	11	57.072	75.702	-12.532	1	63.69
21 CG	PHE	A	11	57.413	74.576	-11.61	1	60.38
22 CD1	PHE	A	11	58.404	73.649	-11.952	1	62.55
23 CD2	PHE	A	11	56.744	74.425	-10.402	1	60.69
24 CE1	PHE	Α	11	58.724	72.575	-11.097	1	62.34
25 CE2	PHE	Α	11	57.054	73.352	-9.535	1	63.35
26 CZ	PHE	Α	11	58.047	72.427	-9.886	1	60.96
27 N	TYR	Α	12	54.981	77.421	-13.597	1	70.53
28 CA	TYR	Α	12	54.466	78.687	-14.098	1	73.77
29 C	TYR	Α	12	54.029	79.569	-12.935	1	75.91
30 O	TYR	A	12	53.839	79.088	-11.817	1	76.32 74.03
31 CB	TYR	A	12	53.378	78.485	-15.165 -14.693	.1 1	74.03 77.25
32 CG	TYR	A	12	51.952	78.365	-14.693	1	76.91
33 CD1	TYR	A	12 12	51.387 51.13	77.116 79.494	-14.611	1	78.07
34 CD2 35 CE1	TYR TYR	A A	12	50.036	76.99	-14.094	1	78
36 CE2	TYR	Â	12	49.778	79.38	-14.279	1	79.84
37 CZ	TYR	Â	12	49.237	78.123	-14.027	1	79.01
38 OH	TYR	Â	12	47.896	77.997	-13.743		80.18
39 N	ARG	A	13	53.909	80.867	-13.187		78.58
40 CA	ARG	A	13	53.571	81.807	-12.124	1	81.99
41 C	ARG	Α	13	52.314	82.607	-12.411	1	82.41
42 O	ARG	Α	13	52.003	82.886	-13.565		82.24
43 CB	ARG	Α	13	54.769	82.74	-11.896		85.09
44 CG	ARG	Α	13		81.98	-11.974		91.35
45 CD	ARG	Α	13		82.803	-11.776		95.98
46 NE	ARG	Α	13		83.991	-11.068		99.39
47 CZ	ARG	Α	13		84.52	-9.871	1	100
48 NH1	ARG	Α	13		84.023	-8.831	1	100 99.54
49 NH2	ARG	A	13		85.628	-9.741	1	83.93
50 N	GLN	A	14		82.986	-11.354 -11.509		85.5
51 CA	GLN	A	14		83.763 84.671	-10.332		86.86
52 C	GLN	A	14		84.671	-10.332 -9.191		85.56
53 O	GLN	A	14 14		82.834	-11.751		86.15
54 CB 55 CG	GLN GLN	A A	14		83.565	-12.165		86.97
56 CD	GLN	A	14		82.636	-12.364		87.55
70 00	OLIV	~	1-7	13.104	J2.000	,		·

Figure 1

A 4								
Atom Atom Type	Residue		#	X	Υ	Z	осс	~ B
Atom Type 57 OE1	GLN	Α	14	45.605	82.969	-11.987	1	86.77
58 NE2	GLN	Â	14	46.979	81.473	-12.966	1	87.48
59 N	GLU	Â	15	49.405	85.785	-10.651	1	90.02
60 CA	GLU	Â	15	48.971	86.764	-9.667	1	94
61 C	GLU	A	15	47.613	86.293	-9.182	1	96.77
62 O	GLU	A	15	46.654	86.27	-9.958	1	98.74
63 CB	GLU	A	15	48.793	88.135	-10.328	1	95.34
64 CG	GLU	Α	15	48.068	88.087	-11.686	1	99.57
65 CD	GLU	Α	15	47.489	89.436	-12.131	1	100
66 OE1	GLU	Α	15	48.282	90.349	-12.468	1	100
67 OE2	GLU	Α	15	46.24	89.564	-12.173	1	100
68 N	VAL	Α	16	47.523	85.869	-7.927	1	98.29
69 CA .	VAL	Α	16	46.234	85.43	-7.414	1	99.04
70 C	VAL	Α	16	45.526	86.621	-6.758	1	100
71 O	VAL	Α	16	44.777	87.347	-7.429	1	100
72 CB	VAL	A	16	46.382	84.225	-6.476	1	99.49
73 CG1	VAL	Α	16	45.022	83.812	-5.929	1	100
74 CG2	VAL	A	16	46.965	83.07	-7.261	1 1	98.21 98.92
75 N	THR	Α	17	45.718 45.114	86.811 87.969	-5.457 -4.809	1	99.7
76 CA	THR	A	17 17	46.237	88.998	-4.8	1	100
77 C 78 O	THR THR	A A	17	46.526	89.626	-5.83	1	100
76 C 79 CB	THR	Â	17	44.62	87.671	-3.38	1	99.48
80 OG1	THR	A	17	45.267	86.493	-2.879	1	100
81 CG2	THR	A	17	43.094	87.496	-3.367	1	97.76
82 N	LYS	A	18	46.915	89.11	-3.663	1	100
83 CA	LYS	A	18	48.037	90.027	-3.534	1	99.44
84 C	LYS	Α	18	49.334	89.23	-3.691	1	98.74
85 O	LYS	Α	18	50.377	89.783	-4.052	1	99.4
86 CB	LYS	Α	18	47.997	90.713	-2.167	1	99.64
87 N	THR	Α	19	49.233	87.915	-3.478	1	96.3
88 CA	THR	Α	19	50.377	87.008	-3.544	1	92.86
89 C	THR	Α	19	50.692	86.417	-4. 9 09	1	89.53
90 O	THR	Α	19	49.833	86.358	-5.787	1	90.35
91 CB	THR	A	19	50.198	85.821	-2.584	1 1	93.8 96.25
92 OG1	THR	A	19	49.092	86.07 85.599	-1.707 -1.762	1	94.19
93 CG2	THR	A	19 20	51.469 51.931	85.9 4 7	-5.052	1	84.1
94 N 95 CA	ALA ALA	A A	20	52.392	85.322	-6.279	1	80.21
95 CA 96 C	ALA	Â	20	52.686	83.861	-6.032	1	79.19
97 O	ALA	Ä	20	53.447	83.499	-5.123	1	79.32
98 CB	ALA	Ä	20	53.616	85.993	-6.789	1	80.49
99 N	TRP	A	21	52.093	83.029	-6.877	1	77.5
100 CA	TRP	A	21	52.244	81.579	-6.794	1	77.45
101 C	TRP	Α	21	53.081	81.073	-7.941	1	
102 O	TRP	Α	21	53.083	81.667	-9.006	1	74.48
103 CB	TRP	Α	21	50.883	80.906	-6.905	1	81.76
104 CG	TRP	Α	21	49.905	81.312	-5.877	1	85.09
105 CD1	TRP	Α	21	49.461	82.578	-5.612	1	86.86
106 CD2	TRP	Α	21	49.174	80.443	-5.022	1	86.32
107 NE1	TRP	Α	21	48.481	82.545	-4.652 4.372		87.59
108 CE2	TRP	Α	21	48.287	81.242	-4.272		87.85
109 CE3	TRP	Α	21	49.173	79.058	-4.823		87.24
110 CZ2	TRP	A	21	47.409	80.703	-3.339		88.69 89.26
111 CZ3	TRP	A	21	48.297	78.522 70.244	-3.894 3.163		88.37
112 CH2	TRP	Α	21	47.426	79.344	-3.163	'	50.57

. ..

Figure 1

Atom	Residue		# X	Y	z 00	CC	В
Atom Type	GLU	Α	22 53.772	79.962	-7. 72 7	1	72.87
113 N 114 CA	GLU	Ä	22 54.589	79.366	-8.779	1	73.61
115 C	GLU	A	22 54.254	77.885	-8.781	1	70.43
116 O	GLU	A	22 55.052	77.054	-8.375	1	72.21
117 CB	GLU	A	22 56.095	79.588	-8.526	1	78.55
118 CG	GLU	A	22 57.01	79.326	-9.751	1	84.66
119 CD	GLU	A	22 58.516	79.511	-9 .469	1	88.22
120 OE1	GLU	Α	22 58.873	80.143	-8.446	1	89.24
121 OE2	GLU	Α	22 59.344	79.015	-10.275	1	88.75
122 N	VAL	Α	23 53.051	77.565	-9.225	1	66.88
123 CA	VAL	Α	23 52.581	76.187	-9.26	1	65.06
124 C	VAL	Α	23 53.091	75.411	-10.474	1	64.88
125 O	VAL	Α	23 53.841	75.948	-11.284	1	66.97
126 CB	VAL	Α	23 51.063	76.168	-9.269	1 1	63.14 61.87
127 CG1	VAL	Α	23 50.547	76.87	-8.039	1	58.02
128 CG2	VAL	A	23 50.548	76.846	-10.516 -10.581	1	61.64
129 N	ARG	A	24 52.716	74.139	-10.381	1	60.93
130 CA	ARG	A	24 53.142	73.344 73.684	-12.899	1	60.82
131 C	ARG	A	24 52.273 24 51.128	73.004	-12.72	1	62.47
132 O	ARG	A	24 53.045	71.859	-11.436	1	59.28
133 CB	ARG	A A	24 54.046	71.385	-10.446	1	57.53
134 CG	ARG ARG	Â	24 53.987	69.896	-10.339	1	57.5
135 CD 136 NE	ARG	Â	24 54.976	69.412	-9.399	1	58.33
136 NE 137 CZ	ARG	A	24 54.993	68.182	-8.913	1	60.97
138 NH1	ARG	A	24 54.076	67.305	-9.296	1	64.3
139 NH2	ARG	A	24 55.929	67.827	-8.048	1	61.56
140 N	ALA	Α	25 52.821	73.512	-14.102	1	61.32
141 CA	ALA	Α	25 52.12	73.819	-15.353	1	59.78
142 C	ALA	Α	25 50.829	73.041	-15.486	1	56.96
143 O	ALA	Α	25 49.84	73.542	-16.029	1 1	57.32 61.78
144 CB	ALA	Α	25 53.021	73.533	-16.544	1	53.53
145 N	VAL	A	26 50.861	71.816	-14.974 -14.995	1	49.24
146 CA	VAL	A	26 49.732	70.909 71.425	-14.201	1	49.96
147 C	VAL	A	26 48.516 26 47.389	71.353	-14.687	1	46.32
148 O	VAL	A	26 50.194	69.545	-14.528	1	47.82
149 CB	VAL	A A	26 49.905	69.307	-13.062	1	47.12
150 CG1	VAL VAL	Â	26 49.614	68.51	-15.411	1	54.88
151 CG2 152 N	TYR	Â	27 48.755	71.961	-12.999	1	50.2
152 N 153 CA	TYR	Ä	27 47.696	72.532	-12.165	1	50.72
154 C	TYR	A	27 47.25	73.803	-12.861	1	51.88
155 O	TYR	A	27 48.005	74.765	-12.965	1	53.42
156 CB	TYR	Α	27 48.217	72.83	-10.76	1	44.91
157 CG	TYR	Α	27 48.564		-10.048	1	40.92
158 CD1	TYR	Α	27 47.638		-9.97	1	38.22
159 CD2	TYR	Α	27 49.825		-9.518	1	40.3 35.92
160 CE1	TYR	Α	27 47.961		-9.39	1	45.49
161 CE2	TYR	Α	27 50.167		-8.926	1	42.37
162 CZ	TYR	Α	27 49.22		-8. 8 69	1	41.12
163 OH	TYR	Α	27 49.538		-8.288 13.338	1	53.27
164 N	ARG	A	28 46.017		-13.338 -14.09	1	57.84
165 CA	ARG	A	28 45.503		-14.0 9 -13.474	1	57.15
166 C	ARG	A	28 44.336		-12.459	1	58.08
167 O	ARG	A	28 43.803 28 45.18		-15.501	1	63.22
168 CB	ARG	Α	20 - 10.10	, , , , , , , ,			

Figure 1

		•							
	Atom								
Atom	Туре	Residue		#	Х	Υ	Ζ	occ	
169	CG	ARG	Α	28	46.386	73.708	-16.155	1	
170	CD	ARG	Α	28	46.207	73.457	-17.644	1	
171	NE	ARG	Α	28	45.79	74.672	-18.345	1	
172	CZ	ARG	Α	28	45.119	74.693	-19.497	1	
173	NH1	ARG	Α	28	44.788	73.559	-20.106	1	

Atom								
Atom Type	Residue	•	#	X	Υ	Z	occ	В
169 CG	ARG	Α	28	46.386	73.708	-16.155	1	70.45
170 CD	ARG	Α	28	46.207	73.457	-17.644	1	78.5
171 NE	ARG	Ä	28	45.79	74.672	-18.345	1	85.36
172 CZ	ARG	A	28	45.119	74.693	-19.497	1	
								87.56
173 NH1	ARG	Α	28	44.788	73.559	-20.106	1	86.24
174 NH2	ARG	Α	28	44.742	75.854	-20.02	1	88.04
175 N	ASP	Α	29	43.986	76.802	-14.093	1	60.24
176 CA	ASP	Α	29	42.898	77.688	-13.666	1	60.05
177 C	ASP	Α	29	42.793	77.908	-12.155	1	60.52
178 O	ASP	Â	29	41.836	77.484	-11.526	1	63.24
179 CB	ASP	Α	29	41.554	77.224	-14.241	1	61.34
180 CG	ASP	Α	29	40.421	78.231	-13.985	1	66.29
181 OD1	ASP	Α	29	40.714	79.436	-13.803	1	70.52
182 OD2	ASP	Α	29	39.237	77.821	-13.955	1	64.84
183 N	LEU	Α	30	43.771	78.596	-11. 5 79	1	60.46
184 CA	LEU	A	30	43.779	78.865	-10.147	1	59.31
185 C	LEU	A	30	42.689	79.847	-9.722	i	61.11
186 O	LEU	A	30	42.378	80.795	-10.438	1	62.1
187 CB	LEU	Α	30	45.15	79.393	-9.712	1	55.77
188 CG	LEU	Α	30	46.34	78.442	-9.76	1	54.22
189 CD1	LEU	Α	30	47.586	79.188	-9.334	1	57.44
190 CD2	LEU	Α	30	46.114	77.282	-8.824	1	55.22
191 N	GLN	Α	31	42.115	79.598	-8.547	1	64.21
192 CA	GLN	Â	31	41.069	80.434	-7.962	1	63.96
			31		80.405	-6.449	i	65.04
193 C	GLN	Α		41.232				
194 O	GLN	Α	31	41.301	79.341	-5.86	1	62.91
195 CB	GLN	Α	31	39.692	79.885	-8.315	1	64.63
196 CG	GLN	Α	31	39.317	79.972	-9.782	1	66.81
197 CD	GLN	Α	31	38 .999	81.384	-10.212	1	69.14
198 OE1	GLN	Α	31	39.546	81.886	-11.198	1	67.83
199 NE2	GLN	A	31	38.11	82.04	-9.469	1	68.7
200 N	PRO	Â	32	41.287	81.58	-5.804	1	67.25
	PRO		32	41.441	81.695	-4.348	i	67.88
201 CA		A						
202 C	PRO	A	32	40.188	81.22	-3.605	1	65.58
203 O	PRO	Α	32	39.088	81.238	-4.153	1	65
204 CB	PRO	Α	32	41.631	83.196	-4.154	1	68.41
205 CG	PRO	Α	32	40.687	83.747	-5.184	1	69.28
206 CD	PRO	Α	32	41.052	82.907	-6.4	1	68.01
207 N	VAL	A	33	40.373	80.795	-2.361	1	63.5
208 CA	VAL	Â	33	39.281	80.321	-1.518	1	62.28
			33	39.604	80.58	-0.051	1	66.64
209 C	VAL	A						69.45
210 O	VAL	A	33	38.638	80.628	0.755	1	
211 CB	VAL	Α	33	39.008	78.8	-1.689	1	59.14
212 CG1	VAL	Α	33	38.129	78.554	-2.889	1	59.56
213 CG2	VAL	Α	33	40.317	78.021	-1.809	1 ·	55.83
214 OXT	VAL	Α	33	40.815	80.719	0.274	1	67.62
215 N	ALA	A	40	47.147	81.043	2.447	1	59.48
216 CA			40	46.242	81.104	1.261	1	58.1
	ALA	A						
217 C	ALA	A	40	46.223	79.775	0.482	1	57.51
218 O	ALA	Α	40	47.24	79.084	0.319	1	56.32
219 CB	ALA	Α	40	46.606	82.272	0.352	1	56.64
220 N	VAL	Α	41	45.024	79.427	0.03	1	54.69
221 CA	VAL	Α	41	44.766	78.197	-0.682	1	50.72
222 C	VAL	A	41	44.027	78.556	-1.944	1	50.04
223 O	VAL	Ä	41	43.247	79.512	-1.973	1	50.25
			41			0.178	1	51.04
224 CB	VAL	Α	41	43.863	77.271	0.170	•	51.07

Atom								
_Atom Type	Residue		#	Х	Y	Z	occ	В
225 CG1	VAL	Α	41	43.434	76.049	-0.596	1	50.63
226 CG2	VAL	Α	41	44.587	76.859	1.448	1	48.39
227 N	CYS	Α	42	44.289	77.785	-2.989	1	49.24
228 CA	CYS	Α	42	43.65	77.99	-4.273	1	51.1
229 C	CYS	Α	42	43.018	76.715	-4.796	1	50.56
230 O	CYS	Α	42	43.478	75.605	-4.514	1	52.01
231 CB	CYS	Α	42	44.664	78.482	-5.306	1	53.52
232 SG	CYS	Α	42	44.777	80.249	-5.429	1	57.08
233 N	SER	A	43	41.966	76.888	-5.579	1	48.19
234 CA	SER	A	43	41.291	75.764	-6.181	1	49.79
235 C	SER	A	43	41.768	75.733	-7.623	1	51.48
236 O	SER	A	43	41.6	76.697	-8.358	1	55.24
237 CB	SER	A	43	39.762	75.917	-6.095	1	46.11
238 OG	SER	A	43	39.244	76.94 74.658	-6.923 -8.004	1 1	43.24 51.27
239 N	ALA	A	44	42.439	74.536 74.528	-9.359	1	50.45
240 CA 241 C	ALA ALA	A A	44 44	42.933 42.276	73.32	-10.02	1	53.54
241 C 242 O	ALA	Â	44	41.342	72.744	-9.472	1	56.92
242 O 243 CB	ALA	Â	44	44.423	74.352	-9.327	i	52.24
243 CB 244 N	VAL	A	45	42.736	72.967	-11.216	1	52.87
245 CA	VAL	A	45	42.234	71.804	-11.928	1	49.85
246 C	VAL	A	45	43.444	71.032	-12.379	1	50.26
247 O	VAL	Α	45	44.381	71.626	-12.887	1	53.24
248 CB	VAL	Α	45	41.499	72.188	-13.18	1	50.42
249 CG1	VAL	Α	45	41.056	70.918	-13.929	1	48.88
250 CG2	VAL	Α	45	40.335	73.095	-12.847	1	47.94
251 N	ASP	Α	46	43.472	69.723	-12.159	1	52.8
252 CA	ASP	Α	46	44.627	68.967	-12.624	1	52.12
253 C	ASP	Α	46	44.399	68.883	-14.125	1	54.38
254 O	ASP	Α	46	43.435	68.27	-14.577	1	55.61
255 CB	ASP	Α	46	44.695	67.575	-12.002	1	49.52
256 CG	ASP	A	46	46.008	66.869	-12.304	1	51.61 55.2
257 OD1	ASP	A	46	46.696	67.264	-13.269	1	48.33
258 OD2	ASP	A	46	46.368	65.917	-11.584 -14.884	1 1	54.36
259 N	GLY	A	47 47	45.246 45.104	69.571 69.592	-16.325	1	52.61
260 CA	GLY GLY	A	47	45.091	68.208	-16.919	1	52.87
261 C 262 O	GLY	A A	47	44.491	67.989	-17.967	i	55.54
262 O 263 N	ARG	Â	48	45.746	67.28	-16.237	i 1	51.72
264 CA	ARG	A	48	45.826	65.902	-16.684	1	54.21
265 C	ARG	Ä	48	44.537	65.08	-16.561	1	55.33
266 O	ARG	Â	48	44.334	64.136	-17.331	1	59.88
267 CB	ARG	A	48		65.172	-15.915	1	54.16
268 CG	ARG	A	48	48.313	65.67	-16.187	1	53.52
269 CD	ARG	Α	48	49.274	65.108	-15.175	1.	49.08
270 NE	ARG	Α	48	49.024	65.689	-13.867	1	50.85
271 CZ	ARG	Α	48	49.732	65.422	-12.778	1	51.07
272 NH1	ARG	Α	48	50.739	64.56	-12.841	1	53.13
273 NH2	ARG	Α	48	49.444	66.035	-11.637	1	50.48
274 N	THR	Α	49	43.672	65.41	-15.605	1	52.12
275 CA	THR	A	49	42.468	64.615	-15.422	1	51.49
276 C	THR	A	49	41.136	65.324	-15.484	1	52.42
277 O	THR	A	49	40.143	64.715	-15.876	1	54.52
278 CB	THR	A	49	42.53	63.809	-14.123	1	53.04 53.46
279 OG1	THR	A	49	42.626	64.693	-12.999	1 1	52.46 51.05
280 CG2	THR	Α	49	43.725	62.874	-14.135	ı	51.95

Figure 1

Atom								
Atom Type	Residue		#	X	Y	Z	occ	В
281 N	GLY	Α	50	41.1	66.585	-15.07	1	52.62
282 CA	GLY	Α	50	39.862	67.352	-15.112	1	52.55
283 C	GLY	Α	50	39.207	67.479	-13.756	1	52.32
284 O	GLY	Α	50	38.128	68.069	-13.621	1	53.3
285 N	ALA	Α	51	39.883	66.926	-12.752	1	50.64
286 CA	ALA	Α	51	39.431	66.92	-11.365	1	50.52
287 C	ALA	Α	51	39.877	68.166	-10.59	1	52.14
288 O	ALA	Α	51	41.081	68.467	-10.566	1	53.63
289 CB	ALA	Α	51	39.966	65.684	-10.681	1	45.09
290 N	LYS	Α	52	38.926	68.864	-9.945	1	48.65
291 CA	LYS	A	52	39.249	70.056	-9.163	1 1	45.14 46.17
292 C	LYS	A	52	40.142	69.618	-8.017	1	45.35
293 O	LYS	A	52	39.985	68.532	-7.439 -8.634	1	43.45
294 CB	LYS	A	52	38.006 37.131	70.786 71.423	-9.709	1	50.2
295 CG	LYS	A	52 52	37.131	71.423	-9.172	1	53.93
296 CD	LYS LYS	A A	52	36.067	73.417	-8.544	1	58.33
297 CE 298 NZ	LYS	Â	52	34.789	74.037	-8.052	1	60.69
299 N	VAL	Ä	53	41.088	70.486	-7.698	1	45.92
300 CA	VAL	A	53	42.068	70.228	-6.669	1	44.29
301 C	VAL	A	53	42.237	71.479	-5.803	1	44.97
302 O	VAL	A	53	41.795	72.571	-6.185	1	47.43
303 CB	VAL	Α	53	43.384	69.828	-7.372	1	44.62
304 CG1	VAL	Α	53	44.586	70.526	-6.774	1	49.16
305 CG2	VAL	Α	53	43.54	68.34	-7.335		42.42
306 N	ALA	Α	54	42.78	71.3	-4.603		42.17
307 CA	ALA	Α	54	43.039	72.414	-3.703		40.52
308 C	ALA	A	54	44.548	72.526	-3.542		43.59 40.54
309 O	ALA	A	54	45.222	71.529	-3.252 -2.369		38.36
310 CB	ALA	A	54	42.392	72.182 73.727	-2.309		46.03
311 N	ILE	A	55 55	45.076	73.727 73.991	-3.671	1	45.31
312 CA	ILE	A	55 55	46.511 46.762	75.0 1 9	-2.596		46.51
313 C	ILE ILE	A A	55 55	46.271	76,145	-2.681	i	47.39
314 O 315 CB	ILE	Â	55 55	47.101	74.522	-4.981		45.99
316 CG1	ILE	Â	55	46.829	73.537	-6.122		40.24
317 CG2	ILE	Ä	55	48.607	74.712	-4.835		46.63
318 CD1	ILE	A	55		74.043	-7.442	1	41.71
319 N	LYS	Α	56		74.618	-1.594		48.16
320 CA	LYS	Α	56	47.882	75.462	-0.454		49.54
321 C	LYS	Α	56		75.862	-0.501		52.71
322 O	LYS	Α	56		75.006	-0.512		50.43
323 CB	LYS	Α		47.645	74.703	0.858		50.38
324 CG	LYS	Α	56		75.5	2.112		46.35 46.29
325 CD	LYS	Α	56		74.715	3.332 4.542		46.25
326 CE	LYS	A	56		75.613	5.754		41.31
327 NZ	LYS	A	56		74.905 77.166	-0.487		58.23
328 N	LYS	A A	57 57		77.706	-0.508		61.77
329 CA	LYS	Ä	57 57		78.06	0.92		62.18
330 C 331 O	LYS LYS	Ä	57 57		78.863	1.562		62.18
331 C 332 CB	LYS	Ä	57 57		78.95	-1.404		61.46
333 CG	LYS	Â	57		79.76	-1.353		63.67
334 CD	LYS	Â	57		81.017	-2.244		66.85
335 CE	LYS	A	57		82.015	-2.034		67.4
336 NZ	LYS	A	57		81.4	-2.232	2 1	64.73
*								

Figure 1

Atom								
Atom Type	Residue		#	X	Y	- Z	occ	В
337 N	LEU	Α	58	52.355	77.386	1.444	1	66.78
338 CA	LEU	Α	58	52.839	77.672	2.789	1	69.76
339 C	LEU	Α	58	53.453	79.067	2.742	1	73.97
340 O	LEU	Α	58	54.463	79.302	2.064	1	72.46
341 CB	LEU	Α	58	53.897	76.659	3.232	1	66.96
342 CG	LEU	A	58	53.463	75.428	4.023	1	67.54
343 CD1	LEU	A	58	52.732	75.852	5.276	1	67.95
344 CD2	LEU	A	58 59	52.596 52.782	74.518 79.996	3.184 3. 4 12	1 1	66.08 79.16
345 N	TYR TYR	A A	59 59	52.762	81.389	3.495	1	84.09
346 CA 347 C	TYR	Â	59	54.514	81.684	4.236	1	83.49
348 O	TYR	Â	59	54.537	81.738	5.476	i	83.18
349 CB ·	TYR	Ä	59	52.095	82.18	4.22	1	89.86
350 CG	TYR	Α	59	52.387	83.653	4.452	1	96.71
351 CD1	TYR	Α	59	52.845	84.477	3.41	1	98.52
352 CD2	TYR	Α	59	52.201	84.228	5.723	1	97.81
353 CE1	TYR	Α	59	53.112	85.84	3.629	1	100
354 CE2	TYR	Α	59	52.463	85.585	5.953	1	100
355 CZ	TYR	Α	59	52.92	86.384	4.903	1	100
356 OH	TYR	Α	59	53.201	87.715	5.13	1	99.54
357 N	ARG	A	60	55.588	81.894	3.467	1	80.81 79.04
358 CA	ARG	A	60	56.942 57.262	82.136	3.989 5.189	1 1	79.04
359 C 3 60 O	ARG ARG	A A	60 60	57.262 57.52	81.241 81.726	6.282	1	77.23 77.48
361 CB	ARG	Â	60	57.146	83.614	4.354	1	78.7
362 N	PRO	Â	61	57.263	79.915	4.984	1	75.75
363 CA	PRO	Ä	61	57.535	78.92	6.024	1	75.16
364 C	PRO	Α	61	58.874	79.027	6.739	1	76.74
365 O	PRO	Α	61	59.016	78.553	7.866	1	74.75
366 CB	PRO	Α	61	57.406	77.602	5.267	1	75.2
367 CG	PRO	Α	61	57.838	77.965	3.887	1	73.62
368 CD	PRO	A	61	57.131	79.264	3.67	1	74.21
369 N	PHE	A	62	59.854	79.652 79.781	6.095 6.699		79.59 82.49
370 CA	PHE	A	62 62	61.178 61.542	81.222	7.058		84.85
371 C 372 O	PHE PHE	A A	62	62.671	81.685	6.861	1	84.23
372 C 373 CB	PHE	Â	62	62.217	79.112	5.8		80.91
374 CG	PHE	Ä	62	61.86	77.702	5.451	1	78.9
375 CD1	PHE	A	62	61.675	76.756	6.454	1	79.17
376 CD2	PHE	Α	62	61.611	77.338	4.138	1	78.6
377 CE1	PHE	Α	62	61.239	75.469	6.152		79.7
378 CE2	PHE	Α	62	61.176	76.057	3.826		79.46
379 CZ	PHE	Α	62		75.119	4.837		79.38
380 N	GLN	A	63	60.55	81.909	7.618 8.059		87.09 88.09
381 CA	GLN	A	63	60.67	83.288	9.551		89.23
382 C	GLN	A	63 63	61.031 61.468	83.287 84.303	10.09		89.69
383 O 384 CB	GLN GLN	A A	63	59.342	84.008	7.844		86.79
385 CG	GLN	Â	63	59.392	85.501	8.076		90.37
386 CD	GLN	Â	63	58.008	86.123	8.229		91.87
387 OE1	GLN	Ä	63	57.047	85.458	8.628		90.69
388 NE2	GLN	A	63	57.906	87.414	7.924		92.09
389 N	SER	Α	64	60.851	82.142	10.209		88.73
390 CA	SER	Α	64		82.007	11.634		89
391 C	SER	Α	64		80.541	12.01		87.92
392 O	SER	Α	64	61.401	79.679	11.145	1	88.84

Atom								
Atom Type	Residue		#	X	- Y	Z	occ	В
393 CB	SER	Α	64	60.047	82.617	12.495	1	89.8
394 OG	SER	A	64	58.882	81.807		1	90.99
395 N	GLU	Α.	65	61.434	80.265	13.304	1	86.8
396 CA	GLU	Α	65	61.586	78.897	13.774	1	86.76
397 C	GLU	Α	65	60.199	78.343	14.075	1	85.63
398 O	GLU	Α	65	59.949	77.138	13.952	1	82.75
399 CB	GLU	Α	65	62.447	78.859		1	88.85
400 CG	GLU	Α	65	62.723	77.449		1	90.47
401 CD	GLU	Α	65	63.541	77.428		1	91.83
402 OE1	GLU	Α	65	64.692	77.918		1	91.06
403 OE2	GLU	Α	65	63.027	76.917		1	91.98
404 N	LEU	Α	66	59.312	79.24		1	85.03
405 CA	LEU	A	66	57.937	78.884		1	82.7
406 C	LEU	Α	66	57.237	78.532		1	80.07
407 O	LEU	A	66	56.487	77.566		1	81.57
408 CB	LEU	A	66	57.208	80.052		1	82.72
409 CG	LEU	A	66	55.744	79.853		1 1	81.69 80.22
410 CD1	LEU	A	66	55.678	78.924		1	80.13
411 CD2	LEU	A	66 67	55.079 57.498	81.191 79. 30 3		1	77.41
412 N	PHE PHE	A	67	56.875	79.035		1	76.85
413 CA	PHE	A A	67	57.401	77.74		1	75.25
414 C 415 O	PHE	Â	67	56.617	76.893		1	75.35
416 CB	PHE	Â	67	57.065	80.217		1	77.22
417 CG	PHE	Â	67	56.089	81.34			78.26
418 CD1	PHE	A	67	55.474	81.52		1	79.82
419 CD2	PHE	A	67	55.79	82.229		1	80.64
420 CE1	PHE	A	67	54.577	82.568			80.89
421 CE2	PHE	Α	67	54.892	83.285	9.622	1	81.11
422 CZ	PHE	Α	67	54.287	83.452	2 10.861	1	81.63
423 N	ALA	Α	68	58.722	77.577			71.6
424 CA	ALA	Α	68	59.365	76.39			68.46
425 C	ALA	Α	68	58.858	75.138			66.83
426 O	ALA	Α	68	58.439	74.183			67.36
427 CB	ALA	Ą	68	60.863	76.493			68.03
428 N	LYS	Α	69	58.868	75.16			63.84 66.01
429 CA	LYS	A	69	58.412	74.026			65.55
430 C	LYS	A	69	57	73.59			66.35
431 O	LYS	A	69	56.727	72.41	-		68.13
432 CB	LYS	A	69 69	58.468 58.167	74.35 73.16			69.3
433 CG	LYS LYS	A A	69	58.343				71.56
434 CD 435 CE	LYS	Â	69	57.347	74.57			73.6
436 NZ	LYS	Â	69	57.501	74.8			72.45
437 N	ARG	Â	70					65.13
438 CA	ARG	A	70					65.16
439 C	ARG	A	70					64.97
440 O	ARG	A	70				1	63.41
441 CB	ARG	Α	70		75.52	4 12.064		67.13
442 CG	ARG	A	70			4 13.527		67.32
443 CD	ARG	Α	70					70.96
444 NE	ARG	Α	70			1 15.174		78.02
445 CZ	ARG	Α	70	52.083	78.43			79.23
446 NH1	ARG	Α	70					78.6
447 NH2	ARG	Α	70					78.22
448 N	ALA	Α	71	55.39	74.28	9 9.576	3 1	62.89

Atom								
Atom Type	Residue		#	X	Υ	Z	occ	В
449 CA	ALA	Α	 71	55.413	73.83	8.2	1	58.75
450 C	ALA	Α	71	55.821	72.365	8.139	1	58.63
451 O	ALA	Α	71	55.147	71.549	7.517	1	62.12
452 CB	ALA	Α	71	56.355	74.67	7.397	1	54.6
453 N	TYR	Α		. 56.917	72.029	8.803	1	59.16
454 CA	TYR	Α	72	57.399	70.653	8.822	1	57.38
455 C	TYR	A	72	56.383	69.735	9.494	1	57.72
456 O	TYR	Ą	72	56.133	68.633	9.011	1	60.07
457 CB	TYR	A	72	58.763	70.571	9.518	1	55.15
458 CG	TYR	A	72	59.223	69.169	9.889	1 1	56.2 56.75
459 CD1	TYR TYR	A A	72 72	58.836 60.072	68.581 68.452	11.094 9.059	1	56.75 56.1
460 CD2 461 CE1	TYR	Â	72	59.284	67.32	11.455	1	59.23
462 CE2	TYR	Â	72	60.529	67.191	9.413	1	55.79
463 CZ	TYR	Â	72	60.134	66.631	10.605	i	58.73
464 OH	TYR	A	72	60.591	65.38	10.953	1	62.36
465 N	ARG	A	73	55.798	70.177	10.605	1	57.84
466 CA	ARG	Α	73	54.805	69.36	11.302	1	58.98
467 C	ARG	Α	73	53.582	69.089	10.428	1	59.45
468 O	ARG	Α	73	53.042	67.985	10.45	1	60.42
469 CB	ARG	Α	73	54.343	70.02	12.595	1	59.06
470 CG	ARG	Α	73	55.309	69.986	13.742	1	58.15
471 CD	ARG	Α	73	54.492	70.074	14.992	1	59.34
472 NE	ARG	A	73	55.261	70.369	16.191	1	62.16
473 CZ	ARG	A	73	55.198	71.528	16.839	1 1	63.83 61.55
474 NH1	ARG	A	73 73	54.451 55.915	72.523 71.708	16.359 17.943	1	65.35
475 NH2 476 N	ARG GLU	A A	74	53.147	70.11	9.683	1	58.14
477 CA	GLU	Â	74	51.994	70.007	8.781	1	55.64
478 C	GLU	Ä	74	52.268	69.037	7.636	1	54.71
479 O	GLU	A	74	51.427	68.195	7.309	1	54.12
480 CB	GLU	Α	74	51.629	71.375	8.21	1	52.31
481 CG	GLU	Α	74	50.352	71.364	7.403	1	52.21
482 CD	GLU	Α	74	49.819	72.753	7.096	1	56.83
483 OE1	GLU	Α	74	50.516	73.765	7.39	1	55
484 OE2	GLU	A	74	48.689	72.823	6.556	1	54.47
485 N	LEU	A	75	53.429	69.179	7.005	1	52.6
486 CA	LEU	A	75 76	53.796	68.283 66.843	5.928 6.457	1 1	51.01 54.72
487 C	LEU LEU	A	75 75	53.833 53.061	65.985	6.008	1	54.29
488 O 489 CB	LEU	A A	75 75	55.157	68.663	5.384	i	46.85
490 CG	LEU	Â	75	55.634	67.823	4.199	1	46.71
491 CD1	LEU	Ä	75		67.788	3.113	1	44.45
492 CD2	LEU	A	75	56.929	68.405	3.671	1	45.07
493 N	ARG	Α	76		66.622	7.463	1	54.57
494 CA	ARG	Α	76	54.868	65.321	8.09	1	58.08
495 C	ARG	Α	76	53.606	64.583	8.527	1	59.56
496 O	ARG	Α	76		63.384	8.279	1	62.82
497 CB	ARG	Α	76		65.449	9.278	1	62.65
498 CG	ARG	A	76		65.37	8.912	1	69.78
499 CD	ARG	A	76		63.926	8.83	1	74.86 76.79
500 NE	ARG	A	76		63.301	10.145 10.334	1 1	76.79 77.88
501 CZ	ARG	A	76 76		62.046 61.273	9.297	1	81.32
502 NH1 503 NH2	ARG ARG	A A	76 76		61.561	11.562	1	79.04
503 NH2 504 N	LEU	Ä	77		65.271	9.229		57.83
JOT 11		,,					-	

10 / 107 Figure 1

	Atom								
Atom	Type	Residue		#	Х	Υ	Z	occ	В
	5 CA	LEU	Α	77	51.478	64.648	9.689	1	53.05
506	S C	LEU	Α	77	50.576	64.294	8.503	1	53.62
	7 0	LEU	Α	77	49.931	63.242	8.489	1	53.17
	3 CB	LEU	A	77	50.726	65.579	10.635	1	48.14
	G CG	LEU	A	77	51.398	65.899	11.956	1	46.47
	CD1	LEU	A	77	50.762	.67.127	12.558	1	45.51
	CD2	LEU LEU	A A	77 78	51.287 50.52	64.739 65.18	12.889 7.515	1	44.58 54
	2 N 3 CA	LEU	A	78	49.677	64.958	6.342	1	54.05
	4 C	LEU	Â	78	50.209	63.795	5.538	1	54.59
	50	LEU	Ä	78	49.441	62.996	5.029	1	57.31
	CB	LEU	Α	78	49.572	66.226	5.484	1	51.25
	7 CG	LEU	Α	78	48.559	67.272	5.972	1	51.72
	B CD1	LEU	Α	78	48.601	68.498	5.08	1	49.51
	9 CD2	LEU	Α	78	47.159	66.673	5.99	1	50.28
	NC	LYS	Α	79	51.529	63.686	5.453	1	55
	1 CA	LYS	Α	79	52.144	62.59	4.731	1	54.39
	2 C	LYS	A	79	51.903	61.267	5.457	1	57.12
	3 0	LYS	A	79 70	51.818	60.221	4.822	1	59.25
	4 CB	LYS	A	79 70	53.638	62.833 63.834	4.559 3.47	1 1	53.25 57.31
	5 CG	LYS LYS	A A	79 79	53.982 55.487	64.061	3.378	1	61.85
	6 CD 7 CE	LYS	Â	79 79	56.26	62.734	3.196	1	64.8
	B NZ	LYS	Â	79	57.754	62.904	3.194	i	61.46
	9 N	HIS	Â	80	51.745	61.317	6.777	1	57.54
	0 CA	HIS	A	80	51.515	60.117	7.567	1	58.53
	1 C	HIS	Α	80	50.06	59.65	7.692	1	57
	2 0	HIS	Α	80	49.762	58.487	7.459	1	58.22
53	3 CB	HIS	Α	80	52.13	60.287	8.963	1	63.78
	4 CG	HIS	Α	80	51.692	59.252	9.96	1	72.54
	5 ND1	HIS	Α	80	52.39	58.086	10.188	1	75.69
	6 CD2	HIS	A	80	50.625	59.219	10.8	1	76.59
	7 CE1	HIS	A	80	51.773	57.379	11.121	. 1	78.51 76.52
	8 NE2	HIS	A	80	50.699 49.164	58.044 60.544	11.509 8.088	1	55.91
	9 N	MET	A A	81 81	47.765	60.188	8.307	1	52.11
	0 CA 1 C	MET MET	A	81	47.783	59.652	7.069	1	51.18
	20	MET	Â	81	47.472	60.005	5.959	1	52.82
	3 CB	MET	A	81	46.98	61.394	8.839	1	54.12
	4 CG	MET	Α	81	47.498	62.012	10.144	1	52.22
	5 SD	MET	Α	81	46.569	63.514	10.586	1	47.79
54	6 CE	MET	Α	81	46.89	64.523	9.116	1	44.95
54	7 N	ARG	Α	82	46.101	58.767	7.266	1	47.75
	8 CA	ARG	Α	82	45.31	58.191	6.17	1	48.03
	9 C	ARG	Α	82	43.913	57.82	6.687	1.	
	0 0	ARG	A	82	43.724	56.759	7.281	1	48.95
	1 CB	ARG	A	82	46.003	56.968 58.709	5.561	1	46.76
	2 N	HIS	A	83 83	42.943 41.569	58.708 58.501	6.463 6.909	1 1	45.54 42.87
	3 CA	HIS	A	83	40.533	59.198	6.027	1	44.5
	4 C 5 O	HIS HIS	A A	83	40.533	60.334	5.628	1	50.18
	6 CB	HIS	Ä	83	41.407	58.992	8.347		44.03
	7 CG	HIS	A	83	40.116	58.584	8.976	1	41.92
	8 ND1	HIS	Ä	83	38.927	59.234	8.723	1	45.82
	9 CD2	HIS	A	83	39.809	57.533	9.766	1	37.46
	0 CE1	HIS	Α	83	37.94	58.592	9.321	1	40.61

11 / 107 Figure 1

A. I								
Atom Type	Residue		#	Х	Y	Z O	CC	В
Atom Type 561 NE2	HIS	Α	83	38.448	57.556	9.96	1	40.41
562 N	GLU	A	84	39.405	58.538	5.817	1	47.02
563 CA	GLU	Α	84	38.315	59.045	4.995	1	50.31
564 C	GLU	A	84	37.833	60.441	5.429	1	48.46
565 O	GLU	Α	84	37.189	61.159	4.658	1	51.03
566 CB	GLU	Α	84	37.147	58.026	5.038	1	55.9
567 CG	GLU	Α	84	36.066	58.171	3.928	1	70.58
568 CD	GLU	Α	84	36.529	57.735	2.501	1	79.83
569 OE1	GLU	Α	84	36.563	56.51	2.209	1	81.21
570 OE2	GLU	Α	84	36.821	58.623	1.654	1 1	81.75 46.02
571 N	ASN	Ą	85	38.164	60.829	6.651 7.192	1	46.02
572 CA	ASN	A	85	37.729	62.1 63.06	7.1 3 2 7.541	1	44.93
573 C	ASN	A	85 85	38.863 38.697	63.956	8.353	i	39.85
574 O	ASN	A A	85	36.87	61.846	8.424	1	46.88
575 CB	ASN ASN	Â	85	35.616	61.07	8.105	1	47.63
576 CG 577 OD1	ASN	Â	85	35.427	59.943	8.573	1	46.51
577 OD 1 578 ND2	ASN	Ä	85	34.741	61.671	7.307	1	48.35
579 N	VAL	Ä	86	40.029	62.837	6.958	1	44.98
580 CA	VAL	Α	86	41.17	63.697	7.201	1	44.9
581 C	VAL	Α	86	41.751	63.969	5.836	1	46.35
582 O	VAL	Α	86		63.029	5.075	1	48.49
583 CB	VAL	Α	86		63.007	8.085	1	47.54
584 CG1	VAL	Α	86		63.942	8.327	1	41.99 43.09
585 CG2	VAL	A	86		62.561	9.419 5.516	1	44.44
586 N	ILE	A	87	_	65.251 65.651	4.217	1	39.92
587 CA	ILE	A	87 87		64.943	3.869	1	36.81
588 C	ILE	A	87 87		64.666	4.735	1	36.32
589 O	ILE ILE	A A	87		67.182	4.118	1	37.31
590 CB 591 CG1	ILE	Â	87		67.591	2.654	1	36.65
591 CG1	ILE	Ä	87		67.624	4.791	1	35.5
593 CD1	ILE	A	87		67.258	1.966	1	36.11
594 N	GLY	Α	88	43.925	64.676	2.588	1	35.21
595 CA	GLY	Α	88		63.989	2.171	1	36.07
596 C	GLY	Α	88		64.681	1.073	1	39.81 42.56
597 O	GLY	Α	88		65.515	0.33 0.988	1	41.01
598 N	LEU	Α	89		64.328	-0.012	1	40.55
599 CA	LEU	A	89		64.879 64.106	-1.315	1	41.14
600 C	LEU	A	89 89		62.882	-1.309	1	41.18
601 O	LEU LEU	A A	89		64.853	0.51	1	38.81
602 CB	LEU	Â		50.039	66.136	1.124	1	36.07
603 CG 604 CD1	LEU	Â	8		67.226	1.216	1	35.5
605 CD2	LEU	Â	8		65.821	2.46	1	
606 N	LEU	A	9		64.834	-2.422	1	42.87
607 CA	LEU	Α	9	0 47.86	64.242	-3.749	1	44
608 C	LEU	Α	9		64.527	-4.364	1	49.61
609 O	LEU	Α	9		63.765	-5.192	1	51.69 40.97
610 CB	LEU	Α	9		64.899	-4.628	1	43.8
611 CG	LEU	A	9		64.575	-4.414 -5.395	1	39.75
612 CD1	LEU	A		0 44.508 0 45.081	65.359 63.095	-3.393 -4.597	1	44.12
613 CD2	LEU	A		-	65.633	-3.935	1	53.92
614 N	ASP	A		1 49.82 1 51.116	66.07	-4.452	1	54.97
615 CA	ASP	A A		1 51.116	67.179	-3.528	1	57.31
616 C	ASP	^	3	, 01.0	575	=		

Figu	ıre	1

Atom								
Atom Type	Residue		#	X	Y	Z	occ	В
617 0	ASP	Α	91	50.82	67.773	-2.785	1	60.61
618 CB	ASP	Α	91	50.912	66.604	-5.891	1	53.32
619 CG	ASP	Α	91	52.201	67.054	-6.588	1	51.11
620 OD1	ASP	Α	91	53.292	66.508	-6.328	1	52.23
621 OD2	ASP	Ą	91	52,102	67.95	-7.453	1	49.12
622 N	VAL	A	92	52.908	67.37	-3.511	1	58.83
623 CA	VAL	A	92	53.553 54.767	68.42 68.768	-2.741 -3.588	1 1	61.14 61.33
624 C 625 O	VAL VAL	A A	92 92	54.767 55.463	67.878	-4.097	1	60.24
626 CB	VAL	Â	92	53.983	67:948	-1.33	1	63.19
627 CG1	VAL	Â	92	54.781	66.698	-1.423	1	64.54
628 CG2	VAL	A	92	54.816	69.013	-0.644	1	62.43
629 N	PHE	A	93	55.005	70.057	-3.771	1	60.48
630 CA	PHE	A	93	56.116	70.469	-4.593	1	60.78
631 C	PHE	Α	93	56.71	71.795	-4.206	1	62.75
632 O	PHE	Α	93	56.156	72.522	-3.399	1	65.72
633 CB	PHE	Α	93	55.654	70.55	-6.044	1	60.61
634 CG	PHE	Α	93	54.602	71.611	-6.299	1	57.76
635 CD1	PHE	Α	93	54.968	72.922	-6.602	1	54.62
636 CD2	PHE	A	93	53.252	71.291	-6.275	1	53.86
637 CE1	PHE	A	93	54.005	73.891	-6.88	1 1	51.44 50.12
638 CE2	PHE	A	93	52.279	72.262 73.56	-6. 55 3 -6. 85 5	1	49.84
639 CZ	PHE THR	A A	93 94	52.661 57.835	73.30 72.11	-4.832	1	65.79
640 N 641 CA	THR	Â	94	58.532	73.372	-4.636	i	66.86
642 C	THR	Â	94	59.221	73.728	-5.949	1	69.15
643 O	THR	Â	94	59.919	72.898	-6.541	1	68.3
644 CB	THR	A	94	59.567	73.314	-3.498	1	68.11
645 OG1	THR	Α	94	60.271	74.561	-3.442	1	66.88
646 CG2	THR	Α	94	60.561	72.172	-3.703	1	69.02
647 N	PRO	Α	95	58.969	74.944	-6.46	1	70.44
648 CA	PRO	A	95	59.543	75.445	-7.709	1	72.34
649 C	PRO	A	95	60.983	75.916	-7.519	1 1	76.59 76.44
650 O	PRO	A	95	61.492	76.743	-8.278 -8.052	1	70.61
651 CB	PRO	A	95 95	58.613 58.295	76.595 77.156	-6.716	1	69.15
652 CG 653 CD	PRO PRO	A A	95	58.022	75.923	-5.895	i	70.42
654 N	ASP	Â	96	61.607	75.411	-6.46	1	81.15
655 CA	ASP	A	96	62.985	75.731	-6.124	1	85.89
656 C	ASP	A	96	63.795	74.46	-6.371	1	89.23
657 O	ASP	Α	96	63.591	73.427	-5.719	1	89.09
658 CB	ASP	Α	96	63.088	76.171	-4.657	1	87.26
659 CG	ASP	Α	96		77.351	-4.321	1	88.52
660 OD1	ASP	Α	96	61.895	78.193	-5.211	1	88.78
661 OD2	ASP	Α	96	61.714	77.434	-3.157	1	87.39
662 N	GLU	A	97	64.702	74.548	-7.336	1	92.57 94.8
663 CA	GLU	A	97	65.538	73.426	-7.742 -6.762	1 1	95.78
664 C	GLU	A	97 97	66.617 67.025	72.953 71.791	-6.813	1	96.37
665 O	GLU	A	97	66.151	73.735	-9.11	1	96.5
666 CB 667 CG	GLU GLU	A A	97 97	65.097	73.733	-10.206	1	99.27
668 CD	GLU	Â	97	65.631	74.572	-11.474	1	100
669 OE1	GLU	Â	97	66.764	74.241	-11.898	1	100
670 OE2	GLU	Â	97	64.904	75.418	-12.049	1	98.59
671 N	THR	Ä	98	67.065	73.833	-5.866	1	96.37~
672. CA	THR	Α	98	68.109	73.474	-4.897	1	97.94

Atom								
Atom Type	Residue		#	- X	Y	Z	occ	В
673 C	THR	Α	98	67.76	73.865	-3.464	1	98.61
674 O	THR	Α	98	67.021	74.825	-3.24	1	100
675 CB	THR	Α	98	69.457	74.157	-5.242	1	99.32
676 OG1	THR	A	98	69.295	75.584	-5.22	1	100
677 CG2	THR	A	98	69.954	73.722	-6.628	1	100
678 N	LEU	A	99 99	68.33	73.147 73.435	-2.497 -1.077	1 1	98.76 98.58
679 CA 680 C	LEU	A A	99	68.096 68.555	73.435 74.843	-0.699	1	98.17
681 O	LEU	Â	99	67.985	75.475	0.196	i 1	97.49
682 CB	LEU	A	99	68.82	72.412	-0.193	1	98.45
683 CG	LEU	Α	99	68.935	72.699	1.314	1	98.85
684 CD1	LEU	Α	99	67.591	73.085	1.918	1	97.72
685 CD2	LEU	Α	99	69.513	71.48	2.027	1	99.45
686 N	ASP	Α	100	69.589	75.32	-1.388	1	98.74
687 CA	ASP	A	100	70.148	76.645	-1.147	1	98.98
688 C	ASP	A	100	69.092 68.933	77.761	-1.248 -0.306	1 1	98.38
689 O 690 CB	ASP ASP	A A	100 100	71.322	78.546 76.902	-2.099	1	98.44 98.45
691 N	ASP	Â	101	68.357	77.824	-2.361	1	96.77
692 CA	ASP	A	101	67.326	78.857	-2.511	1	96.16
693 C	ASP	A	101	65.875	78.393	-2.274	1	93.79
694 O	ASP	Α	101	64.919	79.116	-2.59	1	93.07
695 CB	ASP	Α	101	67.472	79.644	-3.834	1	97.52
696 CG	ASP	A	101	67.524	78.752	-5.066	1	98.89
697 OD1	ASP	A	101	68.63	78.305	-5.442	1	98.35
698 OD2	ASP	A	101	66.463	78.532	-5.685	1	100 90.1
699 N 700 CA	PHE PHE	A A	102 102	65.732 64.436	77.214 76.619	-1.665 -1.327	1 1	90.1 85.47
700 CA 701 C	PHE	Â	102	63.737	77.494	-0.301	1	83.16
702 O	PHE	A	102	63.994	77.37	0.891	1	84.51
703 CB	PHE	A	102	64.664	75.22	-0.744	1	85.53
704 CG	PHE	Α	102	63.471	74.632	-0.028	· 1	85.34
705 CD1	PHE	Α	102	62.226	74.559	-0.644	1	86.01
706 CD2	PHE	A	102	63.617	74.089	1.247	1	85.55
707 CE1	PHE	A	102	61.149	73.951	-0.003	1	85.1
708 CE2 709 CZ	PHE PHE	A A	102 102	62.548 61.313	73.479 73.407	1.895 1.269	1 1	85.8 85.19
709 CZ 710 N	THR	Â	103	62.858	78.38	-0.756	1	79.68
711 CA	THR	Â	103	62.163	79.263	0.167	i	77.22
712 C	THR	Â	103	60.772	78.795	0.565	i	75.88
713 O	THR	Α	103	60.351	79.009	1.702	1	75.73
714 CB	THR	Α	103	62.075	80.7	-0.368	1	77.75
715 OG1	THR	Α	103		80.724	-1.555	1	79.96
716 CG2	THR	Ą	103	63.464	81.237	-0.677	1	78.64
717 N	ASP	A	104	60.061	78.144	-0.352	1	74.5
718 CA 719 C	ASP	A	104	58.707	77.673	-0.05 -0.751	1 1	72.91 68.34
719 C 720 O	ASP ASP	A A	104 104	58.263 58.992	76.397 75.83	-1.559	1	67.75
720 C 721 CB	ASP	Â	104	57.679	78.788	-0.302	i	77.02
722 CG	ASP	A	104	57.929	79.544	-1.6	1	80.09
723 OD1	ASP	Â	104	58.292	78.915	-2.62	1	81.9
724 OD2	ASP	A	104	57.766	80.781	-1.593	1	82.01
725 N	PHE	Α	105	57.064	75.94	-0.402	1	64.51
726 CA	PHE	Α	105	56.501	74.744	-0.998	1	59.22
727 C	PHE	A	105	54.993	74.747	-0.952	1	57.83 ~
728 O	PHE	Α	105	54.387	75.38	-0.086	1	56.36

45.08

1

-4.214

73.028

Atom Z OCC В Υ Х # Type Residue Atom 60.04 73.483 -0.339105 57.048 Α 729 CB PHE 59.53 1.092 1 73.298 Α 105 56.637 730 CG PHE 58.67 1 74.071 2.101 57.204 105 Α PHE 731 CD1 60.43 1.435 1 55.726 72.302 105 Α 732 CD2 PHE 3.43 1 58.7 73.853 105 56.876 Α PHE 733 CE1 2.76 61.55 72.073 55.387 105 Α 734 CE2 PHE 62.44 72.853 3.765 105 55.966 Α 735 CZ PHE 56.78 1 -1.886106 54.403 74.009 Α **TYR** 736. N 55.81 -2.025 1 106 52.958 73.908 **TYR** Α 737 CA 55.14 -1.712 1 72.516 52.402 Α 106 **TYR** 738 C -2.01 1 57.87 71.5 Α 106 53.028 TYR 739 O. 54.84 -3.444 74.303 1 52.552 106 Α 740 CB **TYR** -3.856 56.08 1 52.95 75.707 106 TYR Α 741 CG -3.961 1 57.27 54.294 76.081 106 Α **TYR** 742 CD1 56.2 -4.184 1 76.648 51.981 106 **TYR** Α 743 CD2 57.12 -4.385 1 77.357 106 54.657 Α 744 CE1 TYR 59.97 -4.609 1 77.921 52.326 106 Α 745 CE2 TYR 61.4 -4.7081 106 53.663 78.273 746 CZ TYR Α 63.17 -5.138 1 79.544 106 53.98 Α 747 OH **TYR** 53.1 1 -1.10972.487 51.218 Α 107 748 N LEU 1 48.73 -0.753 50.549 71.244 Α 107 LEU 749 CA 47.83 -1.653107 49.338 71.108 Α 750 C LEU 48.03 72.075 -1.8721 48.596 107 Α LEU 751 O 46.75 1 0.715 50.085 71.261 107 Α 752 CB LEU 40.76 1.888 1 71.22 51.063 107 Α LEU 753 CG 37.5 3.143 71.058 107 50.24 LEU Α 754 CD1 37.48 70.064 1 1.76 52.044 107 Α 755 CD2 LEU 46.88 -2.1781 69.905 49.138 Α 108 VAL 756 N 45.15 -3.057 1 108 48.009 69.649 VAL Α 757 CA 47.06 -2.4681 108 47.071 68.598 Α VAL 758 C 48.67 -2.158 1 67.481 108 47.483 759 O VAL Α 42.12 -4.447 1 69.195 108 48.464 Α 760 CB VAL 43.19 -5.40247.31 69.231 108 Α VAL 761 CG1 44.55 -4.9631 108 49.539 70.093 Α 762 CG2 VAL 1 47.49 -2.26868.998 45.818 109 Α 763 N MET 45.79 -1.735 1 68.114 44.795 109 Α MET 764 CA 44.25 -2.66568.19 43.597 109 MET Α 765 C 46.15 -3.4591 69.123 109 43.472 Α 766 O MET 48.67 1 -0.33968.553 109 44.351 Α 767 CB MET 1 49.92 0.676 45.454 68.705 Α 109 MET 768 CG 58.39 0.986 1 70.455 109 45.744 MET 769 SD 44.53 1 70.98 1.494 44.059 109 Α 770 CE MET 1 41.04 -2.61442.726 67.174 110 Α PRO 771 N 40.26 -3.456 1 67,148 110 41.539 Α PRO 772 CA 43.35 1 -3.07768.287 40.596 PRO Α 110 773 C 46.92 -1.912 1 110 40.508 68.664 774 O **PRO** Α 37.25 -3.117 1 65.794 40.932 110 Α 775 CB PRO 32.12 -1.777 1 65.508 110 41.426 **PRO** Α 776 CG 36.38 -1.831 1 110 42.829 65.932 **PRO** Α 777 CD 44.9 -4.05 68.88 39.925 111 PHE 778 N 47.51 1 -3.708 69.951 39.007 111 PHE Α 779 CA 49.49 -2.9821 69.313 37.834 111 Α 780 C PHE 52.02 -3.4741 37.23 68.37 111 Α PHE 781 O 45.19 -4.956 38.526 70.664 111 PHE Α 782 CB 46.14 -4.682 1 71.819

37.633

38.153

111

111

Α

Α

PHE

PHE

783 CG

784 CD1

15 / 107 Figure 1

A + a ma								
Atom Type	Residue		#	X	Y	Z	occ	В
785 CD2	PHE	Α	111	36.272	71.722	-4.946	1	47.21
786 CE1	PHE	Α	111	37.326	74.138	-4.016	1	46.51
787 CE2	PHE	Α	111	35.429	72.827	-4.75	1	53.09
788 CZ	PHE	Α	111	35.964	74.042	-4.284	1	51.54
789 N	MET	Α	112	37.524	69.824	-1.801	1	50.56
790 CA	MET	Α	112	36.439	69.288	-1.015	1	48.58
791 C	MET	Α	112	35.167	70.111	-0.943	1	48.3
.792 O	MET	Α	112	34.406	69.952	0	1	53.66
793 CB	MET	Α	112	36.924	68.992	0.393	1	50.44
794 CG	MET	Α	112	37.582	67.658	0.536	1 1	55.21 63.36
795 SD	MET	A	112	36.429	66.367	0.188 1.329	1	62.09
796 CE .	MET	A	112	35.082	66.752 70.971	-1.917	1	46.06
797 N	GLY	A	113	34.913 33.68	71.743	-1.886	i	49.08
798 CA	GLY	A A	113 113	33.795	73.136	-1.299	1	52.52
799 C	GLY GLY	Â	113	33.97	74.113	-2.051	1	55.04
800 O 801 N	THR	Â	114	33.579	73.236	0.015	1	49.83
802 CA	THR	Â	114	33.679	74.495	0.772	1	51.27
803 C	THR	À	114	33.915	74.078	2.207	1	49.63
804 O	THR	Α	114	33.834	72.9	2.521	1	50.55
805 CB	THR	Α	114	32.378	75.376	0.761	1	50.33
806 OG1	THR	Α	114	31.265	74.617	1.241	1	53.18
807 CG2	THR	Α	114	32.076	75.919	-0.621	1	55.28
808 N	ASP	Α	115	34.206	75.041	3.071	1	47.27
809 CA	ASP	A	115	34.428	74.745	4.473	1	46.43 46.29
810 C	ASP	A	115	33.136	74.976	5.237 4.834	1 1	47.91
811 O	ASP	A	115	32.325	75.801 75.612	5.034	1	51.48
812 CB	ASP	A	115 115	35.549 35.25	77.094	4.937	1	50.44
813 CG	ASP	A A	115	34.349	77.574	5.644	1	48.52
814 OD1 815 OD2	ASP ASP	Ā	115	35.929	77.778	4.155	1	52.81
816 N	LEU	Â	116	32.964	74.271	6.353	1	46.55
817 CA	LEU	Â	116	31.754	74.37	7.166	1	47.95
818 C	LEU	Α	116	31.354	75.806	7.512	1	49.33
819 0	LEU	Α	116	30.171	76.121	7.607	1	46.66
820 CB	LEU	Α	116		73.554	8.45	1	46.71
821 CG	LEU	Α	116	30.608	73.242	9.198	1	46.23
822 CD1	LEU	Α	116		72.401	8.323		44.27 47.75
823 CD2	LEU	Α	116		72.522	10.5		51.04
824 N	GLY	A	117		76.661 78.05	7.704 8.033		51.04
825 CA	GLY	A	117 117		78.745	6.993		51.94
826 C	GLY	A	117		79.353	7.323		52.26
827 O	GLY LYS	A A	118		78.648	5.734		55.84
828 N 829 CA	LYS	Â	118		79.265	4.622		57.26
830 C	LYS	Â	118		78.575	4.437		57.6
831 O	LYS	A	118		79.219	4.214		60.23
832 CB	LYS	Α	118		79.157	3.321		57.89
833 CG	LYS	Α	118	33.095	79.911	3.322		65.65
834 CD	LYS	Α	118		79.925	1.929		72.34
835 CE	LYS	Α	118		80.336	1.959		76.97
836 NZ	LYS	Α	118		81.689	2.559		78.9 56.2
837 N	LEU	A	119		77.257	4.529		56.49
838 CA	LEU	A	119		76.499 76.067	4.366 5.329		55.55
839 C	LEU	A	119		76.967	4.953		58.41
840 O	LEU	Α	119	26.181	77.051	→ .500	'	50. → 1

Atom								
Atom Type	Residue		#	X	Y	Z C	occ	В
841 CB	LEU	Α	119	28.705	75.009	4.558	1	56.15
842 CG	LEU	Α	119	27.554	74.018	4.424	1	55.81
843 CD1	LEU	Α	119	26.804	74.27	3.137	1	58.27
844 CD2	LEU	Α	119	28.089	72.601	4.46	1	54.15
845 N	MET	Α	120	27.713	77.333	6.547	1	57.14
846 CA	MET	Α	120	26.763	77.776	7.569	1	59.71
847 C	MET	Α	120	26.266	79.201	7.427	1	62.43
848 O	MET	Α	120	25.229	79.563	7.982	1	62.45
849 CB	MET	Α	120	27.372	77.63	8.962	1	59.46
850 CG	MET	Ą	120	27.575	76.207	9.433	1	54.09 53.4
851 SD	MET	A	120	27.971	76.282	11.148	1 1	50.57
852 CE	MET	A	120	29.672	75.842	11.164 6.753	1	66.75
853 N	LYS	A	121	27.064	80.016 81.413	6.522	1	71.15
854 CA	LYS	A	121	26.759 25.654	81.551	5.483	1	74.01
855 C	LYS	A	121 121	24.809	82.439	5. 5 76	i	74.24
856 O	LYS	A A	121	28.029	82.116	6.049	1	71.3
857 CB	LYS LYS	Â	121	27.95	83.619	5.966	1	75.75
858 CG 859 CD	LYS	Â	121	29.326	84.168	5.646	1	79.68
860 CE	LYS	Â	121	29.387	85.683	5.715	1	80.99
861 NZ	LYS	Â	121	30.794	86.136	5.51	1	82.29
862 N	HIS	A	122	25.659	80.643	4.513	1	77.93
863 CA	HIS	A	122	24.681	80.634	3.43	1	82.53
864 C	HIS	Α	122	23.38	79.928	3.793	1	83.37
865 O	HIS	Α	122	22.296	80.405	3.453	1	84.28
866 CB	HIS	Α	122	25.272	79.976	2.173	1	88.04
867 CG	HIS	Α	122	26.441	80.713	1.58	1	96.17
868 ND1	HIS	A	122	26.95	81.881	2.115	1 1	97.93 98.4
869 CD2	HIS	Ą	122	27.21	80.435	0.497 1.392	1	97.07
870 CE1	HIS	A	122		82.287 81.428	0.405	1	99.19
871 NE2	HIS	A	122 123		78.81	4,51	i	83.41
872 N	GLU	A	123		78.043	4.884	i	83.3
873 CA	GLU GLU	A A	123		77.469	6.309	1	82.55
874 C 875 O	GLU	Â	123		77.374	6.992	1	81.73
876 CB	GLU	Ä	123		76.919	3.872	1	83.31
877 CG	GLU	A	123		76.054	3.689	1	84.61
878 CD	GLU	A	123		75.037	2.576	1	87.3
879 OE1	GLU	A	123		75.39	1.405	1	84.97
880 OE2	GLU	Α	123		73.881	2.879	1	88.03
881 N	LYS	Α	124		77.163	6.77	1	81.94
882 CA	LYS	Α	124		76.569	8.089	1	80.88 76.97
883 C	LYS	Α	124		75.086	7.817	1	76.35
884 O	LYS	A	124		74.613	6.821	1 1	84.45
885 CB	LYS	A	124		76.931	8.679	1	87.45
886 CG	LYS	A	124		76.759 77.588	10.205 10.902	1	90.82
887 CD	LYS	A	124		77.566 77.712	12.404	1	92.72
888 CE	LYS	A	124 124		78.733	12.762	1	92.32
889 NZ	LYS	A	125		74.352	8.717	1	72.26
890 N	LEU	A	125		72,938	8.512	1	67.61
891 CA	LEU LEU	A A	125		71.977	8.622	1	67.65
892 C 893 O	LEU	Â	125		71.575	7.607		67.88
894 CB	LEU	Â	125		72.478	9.302		64.04
895 CG	LEU	Â	128		73.08	8.725	1	60.3
896 CD1	LEU	A	12		72.691	9.583	1	57.58

Atom								
Atom Type	Residue		#	X	Υ	Z	occ	В
897 CD2	LEU	Α	125	24.441	72.617	7.287	1	55.29
898 N	GLY	Α	126	20.172	71.588	9.825	1	67.54
899 CA	GLY	Α	126	19.072	70.652	9.933	1	69.82
900 C	GLY	Α	126	19.518	69.367	10.595	1	71.75
9 0 1 O	GLY	Α	126	20.573	68.822	10.27	1	70.63
902 N	GLU	Α	127	18.667	68.862	11.484	1	73.97
903 CA	GLU	Α	127	18.936	67.661	12.265	1	75.92
904 C	GLU	Α	127	19.748	66.546	11.631	1	72.94
905 O	GLU	Α	127	20.819	66.213	12.125	1	72.42
906 CB	GLU	Α	127	17.639	67.112	12.865	1	80.91
907 CG	GLU	A	127	17.025	68.048	13.897	1	87.05
908 CD	GLU	A	127	16.044	67.355	14.827	1	89.95
909 OE1 '	GLU	A	127	16.337	66.229	15.288	1	90.58
910 OE2	GLU	A	127	14.986	67.955	15.116	1	92.8
911 N	ASP	A	128	19.257	65.975	10.542	1	72.81
912 CA	ASP ASP	A	128	19.973	64.879	9.899 9.448	1 1	73.38 72.23
913 C		A	128	21.368	65.292	9.446	1	72.23 73.38
914 O 915 CB	ASP ASP	A A	.128 128	22.338 19.164	64.566 64.303	8.723	1	76.74
916 CG	ASP	Ä	128	18.08	63.295	9.165	1	77.99
917 OD1	ASP	Â	128	17.682	63.292	10.357	i	75.87
918 OD2	ASP	Â	128	17.624	62.504	8.298	1	77.29
919 N	ARG	Â	129	21.461	66.471	8.827	i 1	71.28
920 CA	ARG	Ä	129	22.728	67.029	8.325	1	68.06
921 C	ARG	A	129	23.748	67.271	9.439	1	63.77
922 O	ARG	A	129	24.887	66.799	9.374	1	60.78
923 CB	ARG	A	129	22.475	68.353	7.584	1	72.15
924 CG	ARG	Α	129	22.456	68.246	6.058	1	78.33
925 CD	ARG	Α	129	22.037	69.537	5.322	1	87.4
926 NE	ARG	Α	129	23.139	70.236	4.751	1	95.58
927 CZ	ARG	Α	129	23.622	70.544	3.547	1	99.37
928 NH1	ARG	Α	129	23.141	70.253	2.339	1	100
929 NH2	ARG	Α	129	24.763	71.201	3.646	1	99.39
930 N	ILE	Α	130	23.33	68.025	10.45	1	59.15
931 CA	ILE	Α	130	24.18	68.344	11.583	1	55.33
932 C	ILE	A	130	24.747	67.091	12.218	1	56.26
933 O	ILE	A	130	25.909	67.081	12.606	1	58.43
934 CB	ILE	A	130	23.41	69.145	12.622	1	53.82 55.35
935 CG1	ILE	A	130 130	22.945	70.462	12.001 13.843	1 1	54.6
936 CG2 937 CD1	ILE ILE	A A	130	24.265 21.997	69.397 71.288	12.858	1	55.35
937 CDT 938 N	GLN	Â	131	23.938	66.032	12.033	1	57.96
939 CA	GLN	Â		24.362	64.752	12.877	i	57.75
940 C	GLN	Â	131	25.443	64.097	12.042	i	56.11
941 O	GLN	Â	131	26.488	63.708	12.556	i	57.65
942 CB	GLN	Â	131	23.193	63.769	12.988	i	58.05
943 CG	GLN	Â	131	23.615	62.429	13.583	i	60.25
944 CD	GLN	A	131	22.59	61.316	13.389	1	63.87
945 OE1	GLN	A	131	22.302	60.555	14.315	1	63.78
946 NE2	GLN	A	131	22.062	61.195	12.172	1	68.48
947 N	PHE	A	132	25.165	63.96	10.751	1	55.06
948 CA	PHE	A	132	26.098	63.339	9.822	1	50.74
949 C	PHE	Α	132	27.425	64.062	9.837	1	49.52
950 O	PHE	A	132	28.479	63.439	9.941	1	52.09
951 CB	PHE	Α	132	25.522	63.36	8.412	1	51.78-
952.CG	PHE	Α	132	26.273	62.501	7.44	1	52.91

18 / 107 Figure 1

Atom Atom Type	Residue		#	X	Y	z o	CC	В
953 CD1	PHE	Α	132	26.813	61.281	7.846	1	55.98
954 CD2	PHE	A	132	26.43	62.897	6.114	1	50.3
955 CE1	PHE	Α	132	27.502	60.463	6.947	1	55.67
956 CE2	PHE	Α	132	27.111	62.096	5.206	1	52.66
957 CZ	PHE	Α	132	27.651	60.874	5.621	1	55.48
958 N	LEU	Α	133	27.371	65.389	9.789	1	44.97
959 CA	LEU	Α	133	28.59	66.181	9.785	1	39.06
960 C	LEU	Α	133	29.426	65.962	11.02	1	38.59
961 O	LEU	A	133	30.605	65.639	10.902	1	34
962 CB	LEU	A	133	28.282	67.668	9.587	1	36.47
963 CG	LEU	A	133	27.721 27.493	68.033 69.52	8.21 8.108	1	33.49 37.55
964 CD1	LEU	A A	133 133	27.493 28.669	67.569	7.13	1	29.96
965 CD2	LEU VAL	Ä	134	28.799	66.072	12.2	1	40.9
966 N 967 CA	VAL	Â	134	29.497	65.891	13.482	1	39.65
968 C	VAL	A	134	30.038	64.473	13.681	1	44.86
969 O	VAL	A	134	31.095	64.291	14.284	1	47.17
970 CB	VAL	Α	134	28.619	66.268	14.668	1	34.96
971 CG1	VAL	Α	134	29.425	66.21	15.96	1	28.7
972 CG2	VAL	Α	134	28.046	67.654	14.464	1	35.8
973 N	TYR	Α	135	29.309	63.48	13.177	1	44.23
974 CA	TYR	A	135	29.735	62.102	13.264	1	47.58
975 C	TYR	A	135	31.095	62.005	12.583	1 1	49.53 50.28
976 O	TYR	A	135	32.04	61.432	13.13 12.535	1	50.26 52.5
977 CB	TYR	A A	135 135	28.729 29.086	61.2 59.735	12.572	1	53.91
978 CG 979 CD1	TYR TYR	Ä	135	29.414	59.107	13.774	1	56.68
980 CD2	TYR	Â	135	29.116	58.979	11.408	1	58.07
981 CE1	TYR	Â	135	29.766	57.755	13.815	1	57.41
982 CE2	TYR	A	135	29.47	57.62	11.436	1	60.91
983 CZ	TYR	Α	135	29.793	57.02	12.645	1	58.95
984 OH	TYR	Α	135	30.15	55.692	12.677	1	64.25
985 N	GLN	Α	136	31.185	62.609	11.398	1	47.85
986 CA	GLN	Α	136	32.4	62.618	10.608	1	45.5 46.31
987 C	GLN	A	136	33.541	63.388	11.264	1	50.07
988 O	GLN	A	136	34.702	62.979 63.17	11.164 9.221	1	49.4
989 CB	GLN GLN	A A	136 136	32.109 30.982	62.473	8.514	1	47.41
990 CG 991 CD	GLN	Â	136	30.897	62.878	7.07	1	50.36
991 CD 992 OE1	GLN	Â	136	31.781	62.556	6.285	1	55.22
993 NE2	GLN	A	136	29.829	63.584	6.702	1	48.7
994 N	MET	Α	137	33.236	64.504	11.919	1	43.82
995 CA	MET	Α	137	34.29	65.255	12.608	1	44.92
996 C	MET	Α	137	34.949	64.309	13.596	1	45.12
997 O	MET	Α	137	36.173	64.21	13.673	1	46.05
998 CB	MET	A	137	33.704	66.41	13.419	1	38.65 43.6
999 CG	MET	A	137	33.589	67.694	12.681 13.498	1 1	50.1
1000 SD	MET	A	137	32.38 31.132	68.73	12.246	1	41.53
1001 CE	MET	A A	137 138		68.848 63.597	14.326	1	44.55
1002 N 1003 CA	LEU LEU	A	138		62.674	15.356	i	43.19
1003 CA 1004 C	LEU	Â	138		61.402	14.919	1	44.47
1004 C	LEU	Â	138		60.962	15.603	1	39.7
1006 CB	LEU	Â	138		62.377	16.243	1	41.24
1007 CG	LEU	A	138		63.617	17.05	1	38.94~
1008-CD1	LEU	Α	138		63.383	17.805	1	38.16

Atom								
Atom Type	Residue		#	X	Y	Z	occ	В
1009 CD2	LEU	Α	138	34.04	63.949	18.014	1	36.58
1010 N	LYS	Α	139	34.902	60.815	13.787	1	44.25
1011 CA	LYS	Α	139	35.642	59.645	13.332	1	46.56
1012 C	LYS	Α	139	37.025	60.141	12.938	1	44.45
1013 O	LYS	Α	139	38.039	59.494	13.226	1	46.5
1014 CB	LYS	Α	139	34.962	58.954	12.139	1	47.78
1015 CG	LYS	Α	139	33.628	58.301	12.473	1⋅	52.83
1016 CD	LYS	Α	139	33.344	57.067	11.63	1	56.92
1017 CE	LYS	Α	139	33.274	57.39	10.137	1	67.21
1018 NZ	LYS	Α	139	33.193	56.167	9.254	1	69.28
1019 N	GLY	A		37.054	61.305	12.295	1	41.44
1020 CA	GLY	A	140	38.313	61.885	11.885	1	37.3
1021 C	GLY	Α	140	39.137	62.143	13.119	1	38.11
1022 O	GLY	A	140	40.314	61.776	13.177	1 1	39.32
1023 N	LEU	A	141	38.488	62.682	14.149	1	38.56
1024 CA	LEU	A	141	39.176	62.964 61.716	15.401 16.083	1	42.52 46.46
1025 C	LEU LEU	A	141 141	39.698 40.857	61.715 61.678	16.482	1	50.8
1026 O 1027 CB	LEU	A A	141	38.284	63.71	16.369	1	38.9
1027 CB	LEU	Â	141	38.71	65.138	16.657	1	37.62
1029 CD1	LEU	Â	141	38.106	65.52	17.99	i	34.75
1030 CD2	LEU	A	141	40.219	65.27	16.691	1	32.26
1031 N	ARG	Ä	142	38.849	60.69	16.191	1	48.56
1032 CA	ARG	A	142	39.233	59.44	16.817	1	50.78
1033 C	ARG	Α	142	40.478	58.898	16.154	1	52.86
1034 O	ARG	Α	142	41.332	58.336	16.824	1	56.57
1035 CB	ARG	Α	142	38.119	58.395	16.734	1	55.32
1036 CG	ARG	Α	142	38.279	57.285	17.763	1	57.07
1037 CD	ARG	Α	142	37.897	55.939	17.207	1	63.65
1038 NE	ARG	Α	142	36.586	55.94	16.561	1	66.88
1039 CZ	ARG	A	142	36.189	55.007	15.697	1	72.69
1040 NH1	ARG	A	142	37.001	54	15.383	1	76.63
1041 NH2	ARG	A	142	34.996	55.086	15.121	1	71.99 52.65
1042 N	TYR	A	143	40.572	59.054 59.508	14.839 14.121	1 1	52.95
1043 CA 1044 C	TYR TYR	A A	143 143	41.742 42.951	58.598 59.447	14.516	1	54.05
1044 C	TYR	Â	143	43.945	58.928	14.997	1	55.5
1045 CB	TYR	Â	143	41.528	58.698	12.616	ì	56.17
1047 CG	TYR	A	143	42.776	58.374	11.819	1	54.26
1048 CD1	TYR	A	143	43.197	57.057	11.66	1	52.3
1049 CD2	TYR	A	143	43.571	59.39	11.288	1	52.16
1050 CE1	TYR	A	143	44.381	56.757	11.002	1	52.59
1051 CE2	TYR	Α	143	44.758	59.101	10.631	1	53.06
1052 CZ	TYR	Α	143	45.161	57.781	10.493	1	52.48
1053 OH	TYR	Α	143	46.351	57.485	9.862	1	52.78
1054 N	ILE	Α	144	42.859	60.755	14.32	1	52.84
1055 CA	ILE	Α	144	43.962	61.655	14.641	1	50.01
1056 C	ILE	Α	144	44.504	61.418	16.043	1	53.24
1057 O	ILE	Α	144	45.724	61.403	16.254	1	56.72
1058 CB	ILE	A	144	43.513	63.118	14.495	1	44.87
1059 CG1	ILE	A	144	43.101	63.375	13.06	1	37.49
1060 CG2	ILE	A	144	44.63	64.074	14.858	1	44.29
1061 CD1	ILE	A	144	42.184	64.534	12.93 16.989	1	38.97 53.4
1062 N	HIS	A	145	43.596	61.187		1 1	53.4 52.46-
1063 CA	HIS	A	145	43.96	60.948 59.571	18.388 18.668	1	52.46
1064 C	HIS	Α	145	44.546	39.37 I	10.000	,	V2.21

_	_		
=i	gu	re	1

Atom								
Atom Type	Residue		#	X	Y	Z	occ	В
1065 O	HIS	Α	145	45.54	59.449	19.375	1	52.67
1066 CB	HIS	Α	145	42.76	61.191	19.294	1	50.19
1067 CG	HIS	Α	145	42.404	62.635	19.439	1	50.08
1068 ND1	HIS	Α	145	41.191	63.058	19.937	1	48.29
1069 CD2	HIS	A	145	43.116	63.757	19.178	1	48.9
1070 CE1	HIS	A	145	41.173	64.378	19.979	1	47.85
1071 NE2	HIS	A	145	42.328	64.827	19.524	1	46.55
1072 N	ALA	A	146	43.907	58.53 57.464	18.143 18.329	1	55.63
1073 CA	ALA ALA	A A	146 146	44.383 45.801	57.161 57.099	17.777	1 1	55.06 54.86
1074 C 1075 O	ALA	Â	146	46.623	56.304	18.234	1	57.57
1075 CB	ALA	Â	146	43.478	56.174	17.603	1	51.16
1077 N	ALA	Ä	147	46.077	57.968	16.808	i	51.91
1078 CA	ALA	A	147	47.385	58.047	16.189	1	50.99
1079 C	ALA	A	147	48.319	58.889	17.046	1	52.19
1080 O	ALA	Α	147	49.448	59.167	16.646	1	55.85
1081 CB	ALA	Α	147	47.269	58.628	14.801	1	45.44
1082 N	GLY	Α	148	47.839	59.299	18.218	1	53.06
1083 CA	GLY	Α	148	48.635	60.11	19.134	1	53.77
1084 C	GLY	Α	148	48.864	61.564	18.744	1	53.6
1085 O	GLY	Α	148	49.719	62.24	19.334	1	52.84
1086 N	ILE	A	149	48.109	62.038	17.748	1	53.9
1087 CA	ILE	A	149	48.204	63.419	17.247	1	51.44
1088 C	ILE	A	149	47.161	64.32	17.913	1	49.55
1089 O	ILE	A	149	46.113	63.845 63.456	18.372	1 1	46.83 50.09
1090 CB 1091 CG1	ILE ILE	A A	149 149	47.966 49.077	62.7	15.702 14.977	1	51.56
1091 CG1	ILE	A	149	49.077 47.895	64.887	15.185	1	50.53
1093 CD1	ILE	Ä	149	48.795	62.448	13.509	i	50.48
1094 N	ILE	Ä	150	47.48	65.61	18.005	1	48.52
1095 CA	ILE	A	150	46.561	66.602	18.565	1	46.97
1096 C	ILE	Α	150	46.448	67.684	17.489	1	48.58
1097 O	ILE	Α	150	47.469	68.126	16.927	1	50.54
1098 CB	ILE	Α	150	47.058	67.16	19.906	1	45.4
1099 CG1	ILE	Α	150	46.063	68.172	20.441	1	42
1100 CG2	ILE	A	150	48.435	67.777	19.764	1	46.23
1101 CD1	ILE	A	150	46.248	68.454	21.885	1	38.12
1102 N	HIS	A	151	45.208	68.07	17.173	1	45.3
1103 CA	HIS	A	151 151	44.963	69.027	16.109 16.468	1 1	41.66 41.51
1104 C 1105 O	HIS HIS	A A	151	45.164 45.734	70.498 71.256	15.686	1	38.81
1105 CB	HIS	Â	151	43.569	68.8	15.51	1	41.5
1107 CG	HIS	Â.	151	43.283	69.667	14.322	1	38.77
1108 ND1	HIS	A	151	43.002	71.018	14.434	1	34.51
1109 CD2	HIS	A	151	43.332	69.4	12.996	1	37.51
1110 CE1	HIS	Α	151	42.906	71.541	13.226	1	36.48
1111 NE2	HIS	Α	151	43.1	70.583	12.335	1	34.1
1112 N	ARG	Α	152	44.589	70.907	17.593	1	42.49
1113 CA	ARG	Α	152	44.696	72.282	18.094	1	44.3
1114 C	ARG	Α	152	44.091	73.432	17.286	1	42.7
1115 O	ARG	A	152	44.51	74.574	17.45	1	45.98
1116 CB	ARG	Α	152	46.152	72.616	18.434	1	42.63
1117 CG	ARG	A	152	46.692	71.773	19.563	1	44.71
1118 CD	ARG	A	152	48.061	71.339	19.209	1	46 48 -
1119 NE	ARG	A	152	49.055 50.107	71.932	20.082	1 1	48 44.87
1120 CZ	ARG	Α	152	50.197	72.456	19.653	ı	77.01

21 / 107 Figure 1

Atom								
Atom Type	Residue		#	X	Υ	Z	occ	В ~
1121 NH1	ARG	Α	152	50.47	72.482	18.368	1	39.28
1122 NH2	ARG	Α	152	51.115	72.84	20.522	1	47.52
1123 N	ASP	Α	153	43.145	73.152	16.401	1	37.86
1124 CA	ASP	A	153	42.537	74.229	15.657	1	33.03
1125 C	ASP	A	153	41.237	73.882	14.934	1	34.11
1126 O	ASP	A	153	40.935	74.422	13.858	1	30.96
1127 CB	ASP	A	153	43.536	74.834	14.681	1	35.33
1128 CG	ASP	A	153	43.171	76.265	14.312	1	38.12
1129 OD1	ASP	A	153	42.713	76.977	15.228 13.136	1 1	37.65 33.42
1130 OD2	ASP	A	153 154	43.304 40.456	76.666 72.989	15.130	1	31.67
1131 N	LEU LEU	A A	154	39.215	72.565	14.884	1	34.72
1132 CA	LEU	Â	154	38.261	73.801	14.986	1	33.66
1133 C 1134 O	LEU	Â	154	37.984	74.316	16.07	i	36.09
1135 CB	LEU	Â	154	38.629	71.363	15.537	1	32.99
1136 CG	LEU	Â	154	39.621	70.225	15.391	1	37.07
1137 CD1	LEU	Ä	154	39.04	68.954	15.949	1	38.07
1138 CD2	LEU	A	154	39.952	70.048	13.923	1	37.8
1139 N	LYS	A	155	37.817	74.275	13.84	1	33.76
1140 CA	LYS	Α	155	36.886	75.388	13.785	1	33.65
1141 C	LYS	Α	155	36.179	75.165	12.483	1	33.44
1142 O	LYS	Α	155	36.662	74.419	11.638	1	38.45
1143 CB	LYS	Α	155	37.633	76.721	13.812	1	34.17
1144 CG	LYS	Α	155	38.57	76.962	12.662	1	36.29
1145 CD	LYS	Α	155	39.46	78.147	12.994	1	40.9
1146 CE	LYS	Α	155	40.19	78.649	11.761	1	44.08
1147 NZ	LYS	Α	155	40.597	80.069	11.942	1	48.37
1148 N	PRO	A	156	35.031	75.798	12.285	1	34.12
1149 CA	PRO	A	156	34.295	75.603	11.035	1 1	36.23 38.17
1150 C	PRO	A	156	35.141	75.803	9.781 8.801	1	44.37
1151 O	PRO	A	156 156	35.019 33.173	75.056 76.632	11.146	1	38.31
1152 CB	PRO PRO	A A	156	32.977	76.791	12.656	1	32.77
1153 CG 1154 CD	PRO	Â	156	34.387	76.82	13.132	1	36.22
1155 N	GLY	Â	157	36.032	76.782	9.825	. 1	36.42
1156 CA	GLY	A	157	36.869	77.05	8.672	1	36.45
1157 C	GLY	Ä	157	37.888	75.984	8.31	1	37.09
1158 O	GLY	A	157	38.461	76.025	7.222	1	39.63
1159 N	ASN	A	158	38.189	75.092	9.243	1	35.94
1160 CA	ASN	Α	158	39.134	74.022	8.98		38
1161 C	ASN	Α	158	38.407	72.69	8.827	1	40.26
1162 O	ASN	Α	158	38.937	71.653	9.224		40.86
1163 CB	ASN	Α	158	40.154	73.878	10.098	1	40.07
1164 CG	ASN	Ą	158	41.023	75.098	10.258		43.16
1165 OD1	ASN	Α	158	41.442	75.723	9.272		37.2
1166 ND2	ASN	A	158	41.318	75.441	11.515		34.89
1167 N	LEU	A	159	37.18	72.725	8.317		37.04 38.44
1168 CA	LEU	A	159	36.431	71.504	8.087 6.719		39.1
1169 C	LEU	A	159	35.781	71.608	6.52		41.71
1170 O	LEU	A	159	34.894 35.36	72.428 71.292	9.152		37.87
1171 CB	LEU	A	159 159	35.789	71.292 71.147	10.614		38.17
1172 CG	LEU LEU	A A	159		71.153	11.472		31.96
1173 CD1 1174 CD2	LEU	A	159	36.626	69.872	10.825		33.65
1174 CD2 1175 N	ALA	Â	160	36.217	70.766	5.784		38.19-
1176 CA	ALA	Â	160	35.68	70.784	4.428		41.44

Atom								
Atom Type	Residue		#	Х	Υ		OCC	В
1177 C	ALA	Α	160	34.483	69.84	4.243	1	43.35
1178 O	ALA	Α	160	34.45	68.741	4.794	1	44.14
1179 CB	ALA	Α	160	36.768	70.479	3.426	1	39.51
1180 N	VAL	Α	161	33.514	70.279	3.445	1	42.13
1181 CA	VAL	Α	161	32,301	69.534	3.22	1	43.71
1182 C	VAL	Α	161	31.932	69.638	1.759	1	46.04
1183 O	VAL	Α	161	31.724	70.74	1.273	1	50.8
1,184 CB	VAL	Α	161	31.125	70.168	4.04	1	45.02
1185 CG1	VAL	Α	161	29.842	69.37	3.846	1 1	45.25
1186 CG2	VAL	Α	161	31.473	70.275	5.51	1	40.03 47.62
1187 N	ASN	A	162	31.809	68.512	1.061 -0.349	1	49.32
1188 CA	ASN	A	162	31.429	68.556	-0.5 4 8	1	51.11
1189 C	ASN	Α	162	29.905	68.461 68.428	0.343	1	48.96
1190 O	ASN	A	162	29.111 32.185	67.492	-1.14	1	50.43
1191 CB	ASN	A	162 162	31.84	66.079	-0.711	1	52.01
1192 CG 1193 OD1	ASN ASN	A A	162	30.747	65.82	-0.199	1	51.44
1194 ND2	ASN	Â	162	32.779	65.15	-0.92	1	48.74
1194 ND2 1195 N	GLU	Â	163	29.512	68.433	-1.87	1	55.5
1196 CA	GLU	A	163	28.1	68.35	-2.278	1	61.45
1197 C	GLU	Ä	163	27.335	67.162	-1.671	1	60.68
1198 O	GLU	A	163	26.124	67.239	-1.46	1	58.41
1199 CB	GLU	A	163	27.988	68.234	-3.803	1	68.07
1200 CG	GLU	Α	163	28.672	69.316	-4.629	. 1	73.73
1201 CD	GLU	Α	163	28.449	69.101	-6.127	1	77.17
1202 OE1	GLU	Α	163	28.698	67.969	-6.62	1	79.46
1203 OE2	GLU	Α	163	28.014	70.059	-6.802	1	76.47
1204 N	ASP	Α	164	28.037	66.05	-1.47	1	60.54
1205 CA	ASP	Α	164	27.45	64.848	-0.894	1 1	61.87 60.86
1206 C	ASP	Α	164	27.58	64.809	0.628 1.243	1	61.26
1207 O	ASP	A	164	27.508	63.751	-1.52	1	65.4
1208 CB	ASP	Α	164	28.088	63.607 63.419	-2.985	1	70.38
1209 CG	ASP	A	164 164	27.698 26.792	64.138	-3.475	i	75.26
1210 OD1	ASP	A	164	28.289	62.537	-3.65	1	72.93
1211 OD2	ASP	A A	165	27.725	65.987	1.224	1	61.1
1212 N 1213 CA	CYS CYS	Ä	165		66.163	2.667	1	59.91
1213 CA 1214 C	CYS	Â	165	28.969	65.351	3.355	1	56.36
1214 C 1215 O	CYS	Ä	165		65.03	4.541	1	55.67
1216 CB	CYS	A	165		66.006	3.378	1	62.25
1217 SG	CYS	Ä	165		67.549	3.459	1	69.45
1218 N	GLU	A	166		65.049	2.611	1	53.49
1219 CA	GLU	Α	166	31:156	64.314	3.156	1	51.71
1220 C	GLU	Α	166	32.117	65.345	3.744	1	50.11
1221 O	GLU	Α	166		66.456	3.22	•	49.13
1222 CB	GLU	Α	166		63.479	2.065	1	56.51
1223 CG	GLU	Α	166		62.576	1.368	1	61.45
1224 CD	GLU	Α	166		61.668	0.323	1	65.93
1225 OE1	GLU	Α	166		62.19	-0.637	1	64.13 68.55
1226 OE2	GLU	A	166		60.429	0.453	1	45.15
1227 N	LEU	Α	167		64.998	4.864	1	40.51
1228 CA	LEU	A	167		65.93 65.410	5.53 5.676	1	40.51
1229 C	LEU	A	167		65.419	5.676 5.774	1	40.97
1230 O	LEU	A	167		64.219 66.3	6.905	1	39.98
1231 CB	LEU	A	167 167		67.137	7.921	1	38.58
1232 CG	LEU	Α	107	33.838	07.107	7.021	•	

Atom								
Atom Type	Residue		#	X	Y	z o	CC	В
1233 CD1	LEU	Α		2.926	67.97	8.808	1	27.71
1234 CD2	LEU	A		4.751	66.237	8.771	1	34.34
1235 N	LYS	Α		5.973	66.355	5.642	1	40.86
1236 CA	LYS	Α		7.392	66.079	5.814	1	42.41
1237 C	LYS	Α		8.004	67.211	6.659	1	43.49
1237 O	LYS	A		7.774	68.406	6.403	1	46.01
1239 CB	LYS	Α		8.098	65.929	4.46	1	42.92
1240 CG	LYS	Α		7.872	64.56	3.787	1	44.62
1241 CD	LYS	Α		8.198	64.587	2.296	1	52.06
1242 CE	LYS	Α		8.285	63.188	1.673	1	57.6
1243 NZ	LYS	Α		9.581	62.471	1.984	1	61.25
1244 N	ILE	Α	169 3	8.672	66.826	7.741	1	39.75
1245 CA	ILE	Α	169 3	9.303	67.784	8.636	1	41.55
1246 C	ILE	Α		0.495	68.401	7.937	1	42.13
1247 O	ILE	Α	169 4	1.334	67.691	7.391	1	43.01
1248 CB	ILE	Α	169 3	9.748	67.105	9.942	1	42.17
1249 CG1	ILE	Α		8.511	66.618	10.701	1	34.99
1250 CG2	ILE	Α	169	40.62	68.051	10.78	1	40.6
1251 CD1	ILE	Α	169 3	8.838	65.903	11.945	1	36.55
1252 N	LEU	Α	170 4	0.547	69.729	7.938	1	42.65
1253 CA	LEU	Α	170 4	1.627	70.449	7.274	1	40.48
1254 C	LEU	Α	170 4	2.579	71.106	8.242	1	41.06
1255 O	LEU	Α	170	42.46	70.963	9.453	1	44.82
1256 CB	LEU	Α		11.044	71. 54 9	6.392	1	36.56
1257 CG	LEU	Α	170 4	10.081	71.17	5.282	1	33.24
1258 CD1	LEU	Α	170	39.44	72.425	4.712	1	27.21
1259 CD2	LEU	Α		10.827	70.367	4.212	1	35.84
1260 N	ASP	Α		13.548	71.808	7.666	1	43.17
1261 CA	ASP	Α		14.527	72.593	8.393	1	40.3 42.45
1262 C	ASP	Α		45.268	71.961	9.536	1	43.81
1263 O	ASP	Α		44.912	72.174	10.691	1	42.72
1264 CB	ASP	Α		43.844	73.848	8.921 9.097	1	44.84
1265 CG	ASP	Α		44.799	75.005	9.037	1	47.06
1266 OD1	ASP	A		46.025	74.775	9.106	1	39.79
1267 OD2	ASP	Α		44.312	76.146 71,218	9.246	i	46.22
1268 N	PHE	A		46.327	70.653	10.337	1	43.13
1269 CA	PHE	A		47.108	71.569	10.653	1	44.84
1270 C	PHE	A		48.268	71.164	11.295	1	50.63
1271 O	PHE	A		49.223 47.57	69.249	10.004	1	40.11
1272 CB	PHE	A	172 172	46.511	68.227	10.222	1	42.51
1273 CG	PHE	A		45.443	68.113	9.334	1	37.18
1274 CD1	PHE	A A	—	46.538	67.42	11.351	1	43.32
1275 CD2	PHE			44.424	67.219	9.574	1	39.35
1276 CE1	PHE	A A		45.509	66.507	11.602	1	42.4
1277 CE2	PHE		172	44.449	66.412	10.708	1	40.02
1278 CZ	PHE	A A		48.127	72.835	10.269	1	45.22
1279 N	GLY GLY	Â	173	49.171	73.821	10.489	1	46.84
1280 CA	GLY	Â	173	49.545	74.088	11.934	1	47.38
1281 C	GLY	Â	173	50.623	74.616	12.205	1	49.51
1282 O 1283 N	LEU	Â	174	48.646	73.763	12.856	1	45.52
1283 N 1284 CA	LEU	Â	174	48.916	73.957	14.271	1	44.63
1285 C	LEU	Â	174	48.941	72.605	14.969	1	44.93
1285 C 1286 O	LEU	Â	174	49.053	72.541	16.182	1	47.2
1285 C 1287 CB	LEU	Â	174	47.856	74.841	14.908	1	44.61
1287 CB 1288 CG	LEU	A	174	48.229	75.406	16.275	1	49.88
1200 00		• •						

27	•		٠	v
Figu	ıre	1		

Atom								
Atom Type	Residue		#	Х	Υ	z	occ	В
1289 CD1	LEU	Α	174	49.408	76.35	16.138	1	50.28
1290 CD2	LEU	Α	174	47.046	76.133	16.893	1	54.32
1291 N	ALA	Α	175	48.845	71.517	14.208	1	45.79
1292 CA	ALA	Α	175	48.854	70.176	14.807	1	44.94
1293 C	ALA	Α	175	50.243	69.692	15.171	1	44.54
1294 O	ALA	Α	175	51.235	70.27	14.75	1	41.86
1295 CB	ALA	Α	175	48.187	69.187	13.888	1	46.67
1296 N	ARG	Α	176	50.296	68.641	15.985	1	49.19
1297 CA	ARG	Α	176	51.561	68.042	16.44	1	51.9
1298 C	ARG	A	176	51.247	66.701	17.116	. 1	55.98
1299 O	ARG	A	176	50.073	66.283	17.216	1	51.59
1300 CB	ARG	A	176	52.271	68.948	17.464	1	51.52
1301 CG 1302 CD	ARG ARG	A A	176 176	51.857 52.19	68.668 69.783	18.925 19.899	1	55.87 64.42
1302 CD	ARG	Â	176	53.611	69.945	20.212	1 1	61.12 62.43
1303 NE 1304 CZ	ARG	Â	176	54.355	69.049	20.846	1	61.3
1305 NH1	ARG	A	176	53.838	67.888	21.224	1	64.17
1306 NH2	ARG	A	176	55.584	69.365	21.216	i i	58.26
1307 N	GLN	Ä	177	52.308	66.044	17.587	1	60.36
1308 CA	GLN	Ä	177	52.184	64.772	18.293	1	63.98
1309 C	GLN	A	177	51.927	65.126	19.758	1	63.42
1310 O	GLN	Α	177	52.665	65.916	20.353	1	60.44
1311 CB	GLN	Α	177	53.48	63.968	18.168	1	67.7
1312 CG	GLN	Α	177	53.409	62.558	18.744	1	74.25
1313 CD	GLN	Α	177	54.789	61.941	18.914	1	79.21
1314 OE1	GLN	Α	177	55.633	62.471	19.64	1	82.48
1315 NE2	GLN	Α	177	55.028	60.825	18.239	1	79.83
1316 N	ALA	A	178	50.862	64.57	20.323	1	64.02
1317 CA	ALA	Α	178	50.519	64.844	21.716	1	65.23
1318 C	ALA	A	178	51.662	64.478	22.66	1	66.35
1319 O 1320 CB	ALA ALA	A	178 178	52.307	63.438	22.512 22.111	1 1	69.08 60.29
1321 N	ASP	A A	179	49.238 51.94	64.103 65.372	23.596	1	67.31
1322 CA	ASP	Â	179	52.993	65.158	24.576	1	68.71
1323 C	ASP	Â	179	52.537	65.78	25.894	1	68.87
1324 O	ASP	A	179	51.394	66.21	26.01	1	70.97
1325 CB	ASP	A	179	54.304	65.777	24.083	1	71.26
1326 CG	ASP	Α	179	55.52	65.295	24.869	1	73.83
1327 OD1	ASP	Α	179	55.531	64.124	25.314	1	74.47
1328 OD2	ASP	Α	179	56.471	66.089	25.034	1	73.49
1329 N	SER	Α	180	53.411	65.817	26.891	1	69.23
1330 CA	SER	Α	180	53.046	66.368	28 .19	1	68.77
1331 C	SER	Α	180		67.885	28.307	1	67.64
1332 O	SER	Α	180	52.133	68 .46	28.891	1	66.44
1333 CB	SER	A	180	53.922	65.76	29.281	1	70.3
1334 OG	SER	A	180	53.473	64.456	29.611	1	71.23
1335 N	GLU	A	181	54.052	68.534	27.748	1	68.69
1336 CA	GLU	A	181	54.143	69.984	27.823	1	71.37
1337 C 1338 O	GLU	A	181	54.198	70.612	26.431	1 1	71,61 74,1
1339 CB	GLU GLU	A	181	55.273	70.689	25.82	1	75.55
1340 CG	GLU	A A	181 181	55.388 55.149	70.373 71.368	28.61 29.736	1	83.03
1341 CD	GLU	A	181	56.454	71.85	30.376	1	87.43
1342 OE1	GLU	Â	181	57. 1 51	71.028	31.014	1	90.21
1343 OE2	GLU	Â	181	56.787	73.05	30.235	1	87.65
1344 N	MET	A	182	53.042	71.05	25.929	i	68.51
· - · · · · ·		•		, · -				

	A 4								
_	Atom Type	Residue		#	X	Υ		CC	В
	1345 CA	MET	Α	182	52.94	71.662	24.599	1	64.13
	1346 C	MET	A	182	52.932	73.194	24.612	1	61.59
	1347 O	MET	Α	182	52.872	73.807	25.675	1	64.31
	1348 CB	MET	Α	182	51.709	71.109	23.875	1	59.85
	1349 CG	MET	Α	182	51.801	69.609	23.696	1	56.94
	1350 SD	MET	Α	182	50.316	68.824	23.14	1	53.18
	1351 CE	MET	Α	182	49.474	68.578	24.651	1	54.19
	1352 N	TPO	Α	183	53.021	73.803	23.431	1	59.32
	1353 CA	TPO	Α	183	53.028	75.263	23.3	1	58
	1354 CB	TPO	Α	183	53.464	75.683	21.864	1	57.99
	1355 CG2	TPO	Α	183	52.956	77.088	21.485	1 1	58.26 56.3
	1356 OG1	TPO	Α	183	52.97	74.713	20.996	1	55.49
	1357 P	TPO	Α	183	53.924	73.74	20.272 20.99	1	45.8
	1358 O1P	TPO	A	183	53.848	72.446	20.324	1	54.53
	1359 O2P	TPO	A	183	55.271	74.333 73.561	18.894	1	49.97
	1360 O3P	TPO	A	183	53.385	75.873	23.781	1	57
	1361 C	TPO	A	183	51.691 50.611	75.331	23.535	1	56.36
	1362 O	TPO	A	183	50.611 51.804	76.966	24.533	1	55.74
	1363 N	GLY	A	184 184	50.66	77.612	25.145	1	51.9
	1364 CA	GLY	A	184	49.537	78.229	24.343	1	53.51
	1365 C	GLY	A A	184	48.381	77.829	24.499	1	54.51
	1366 O	GLY PTR	Â	185	49.836	79.254	23.553	1	49.84
	1367 N	PTR	Â	185		79.908	22.779	1	49.06
	1368 CA 1369 C	PTR	Â	185		79.089	21.547	1	48.67
	1370 O	PTR	Ä	185		79.231	20.469	1	48.26
	1371 CB	PTR	A	185		81.311	22.385	1	51.6
	1371 CG	PTR	A	185		82.259	22.464	1	50.44
	1373 CD1	PTR	Α	185	47.895	83.132	21.354	1	53.05
	1374 CD2	PTR	Α	185	47.219	82.274	23.574	1	49.54
	1375 CE1	PTR	Α	185		84.037	21.331	1	50.75
	1376 CE2	PTR	Α	185		83.18	23.553	1	49.06 52.04
	1377 CZ	PTR	Α	185		84.047	22.439	1	54.28
	1378 OH	PTR	Α	185		84.97	22.508	1	57.49
	1379 P	PTR	Α	185		85.166	21.396	1	59.75
	1380 O1P	PTR	Α	185		84.404	20.185 21.029	1	55.95
	1381 O2P	PTR	Α	185		86.616	21.969	1	52.04
	1382 O3P	PTR	A	185		84.882	21.719	1	43.44
	1383 N	VAL	A	186		78.224 77.368	20.63	1	43.98
	1384 CA	VAL	A	186		77.374	20.506	1	43.27
	1385 C	VAL	A	186 186		77.71	21.459	1	43.93
	1386 O	VAL	A		3 44.709 3 47.453	75.918	20.82	1	45.53
	1387 CB	VAL	A	186		75.906	20.878	1	41.3
	1388 CG1	VAL	A A	186		75.297	22.085	1	41.14
	1389 CG2	VAL VAL	Â	18		76.987	19.339	1	42.53
	1390 N	VAL	Â	18		76.965	19.044	1	39.94
	1391 CA 1392 C	VAL	Â	18		78.366	18.846	1	40.34
		VAL	Ä	18		79.282	19.544	1	42.95
	1393 O 1394 CB	VAL	Â	18		76.336	20.154	1	
	1395 CG1	VAL	Ä	18		76.138	19.63	1	
	1396 CG2	VAL	A	18		75.015	20.638	1	
	1397 N	THR	Ä	18		78.537	17.894	1	
	1398 CA	THR	A	18		79.843	17.653	1	
	1399 C	THR	Α	18			18.835	1	
	1400 0	THR	Α	18	18 39.72	79.274	19.256	1	42.64

Ato	m							_
Atom Typ			#	X	Υ		occ	B
1401 CB	THR	Α	188	40.589	79.88	16.351	1	43.57
1402 OG1	THR	Α	188	41.488	79.684	15.247	1	44.23
1403 CG2	THR	Α	188	39.871	81.233	16.185	1	39.7
1404 N	ARG	Α	189	40.589	81.364	19.356	1	47.22
1405 CA	ARG	Α	189	39.832	81.805	20.541	1	46.27
1406 C	ARG	Α	189	38.411	81.281	20.796	1	43.48
1407 O	ARG	Α	189	38.168	80.638	21.809	1	43.66
1408 CB	ARG	Α	189	39.832	83.337	20.661	1	44.74
1409 CG	ARG	Α	189	39.276	83.826	22.001	1	44.51
1410 CD	ARG	Α	189	39.046	85.319	22.042	1 1	50.52 52.32
1411 NE	ARG	Α	189	40.285	86.078	21.856	1	48.94
1412 CZ	. ARG	Α	189	40.414	87.123	21.041	1	46. 94 46.67
1413 NH1	ARG	Α	189	39.377	87.551	20.338	1	40.07
1414 NH2	ARG	Α	189	41.593	87.711	20.897	1	42.94
1415 N	TRP	Α	190	37.472	81.54	19.899	1	47.7
1416 CA	TRP	Α	190	36.1	81.095	20.16 20.28	1	46.92
1417 C	TRP	Α	190	35.934	79.58	20.771	1	45.1
1418 O	TRP	Α	190	34.914	79.111	19.133	1	51.97
1419 CB	TRP	A	190	35.109	81.689 83.211	19.133	1	60.34
1420 CG	TRP	A	190	35.14		20.042	1	61.7
1421 CD1	1 TRP	Ą	190	35.588	84.059	17.962	1	65.03
1422 CD2		Α	190	34.766	84.045 85.36	19.613	1	64.05
1423 NE		A	190	35.526 35.024	85.384	18.341	i	67.03
1424 CE	2 TRP	A	190		83.791	16.684	1	69.62
1425 CE		A	190	34.243 34.777	86.469	17.49	1	68.94
1426 CZ		A	190 190		84.875	15.832	1	71.43
1427 CZ		A	190		86.199	16.244	1	71.73
1428 CH		A	191		78.818	19.9	1	45.76
1429 N	TYR	A	191		77.358	19.95	1	44.82
1430 CA		A A	191		76.795	20.928	1	45.92
1431 C	TYR	Â	191		75.582	21.129	1	47.32
1432 0	TYR	Â	191		76.77	18.551	1	45.18
1433 CB		Â	191		77.347	17.549	1	44.44
1434 CG		Â	191		76.844	17.441	1	45.23
1435 CD 1436 CD		Â	191		78.484	16.807	1	46.36
1436 CE	1 TYR	Â	191		77.471	16.632	1	46.26
1437 CE		Â	191		79.113	15. 9 99	1	44.56
1439 CZ		A	191		78.606	15.925	1	44.09
1440 OF		A	191	33.284	79.254	15.17	1	50.17
1441 N	ARG	A	192	2 38.553	77.709	21.597	1	47.41
1442 CA	_	Α	192	2 39.555	77.373	22.588	1	45.02
1443 C	ARG	Α	192		76.95	23.916	1	47.93
1444 O	ARG	Α	192	2 38.024	77.608	24.442		51.1
1445 CE		Α	193	2 40.475	78.57	22.786		
1446 C		Α	193	2 41.584	78.332	23.742		40.62
1447 CI		Α	19:		79.03	23.235		43.71 48.59
1448 N		Α	19		80.46	23.469		49.04
1449 C		Α	19		81.378	22.579		45.98
1450 NI	H1 ARG	Α	19		81.023	21.374		56.7
1451 N		Α	19		82.654	22.93		
1452 N	ALA	Α	19		75.818	24.436		
1453 C	A ALA	Α	19		75.295	25.688	-	
1454 C	ALA	Α	19		76.082	26.807 26.71		
1455 O		Α	19		76.484	25.817 25.817	-	
1456 C	B ALA	Α	19	39.229	73.835	20.017	'	.2.50

Atom \mathbf{Y}^{-} Z OCC B Х Type # Residue Atom 43.42 38.792 76.243 27.924 1 194 PRO Α 1457 N 42.8 29.071 76.989 1 194 39.31 PRO 1458 CA 29.592 1 44.92 76.564 40.691 PRO Α 194 1459 C 29.911 45.24 77.421 1 41.541 194 1460 O PRO Α 30.12 1 39.72 76.794 38.217 PRO Α 194 1461 CB 29.702 42.17 75.517 1 37.561 **PRO** Α 194 1462 CG 38.63 37.483 75.65 28.237 1 194 PRO Α 1463 CD 43.82 29.64 1 195 40.943 75.259 Α **GLU** 1464 N 30.171 1 40.22 74.81 42.215 Α 195 1465 CA GLU 38.03 29.371 1 75.237 43.414 195 Α 1466 C **GLU** 34.35 29.874 1 44.526 75.174 Α 195 **GLU** 1467 O 30.443 1 42.63 73.305 42.231 GLU Α 195 1468 CB 44.64 29.238 1 195 42.296 72.44 GLU Α 1469 CG 49.9 1 28.571 72.224 195 40.954 GLU Α 1470 CD 50.67 29.096 1 72.67 39.9 GLU Α 195 1471 OE1 1 50.63 27.498 40.968 71.587 195 1472 OE2 **GLU** Α 40.58 28.142 1 75.708 196 43.21 Α VAL 1473 N 27.357 1 44.46 196 44.36 76.166 VAL Α 1474 CA 48.11 28.104 1 77.345 44.997 VAL Α 196 1475 C 27.997 1 50.59 77.606 196 46.2 VAL 1476 O 25.944 42.44 1 43.965 76.621 196 VAL Α 1477 CB 40.12 77.098 1 25.184 45.201 196 Α VAL 1478 CG1 41.61 25,198 1 75.48 43.298 VAL Α 196 1479 CG2 48.55 1 78.018 28.908 44,176 ILE Α 197 1480 N 46.36 29.68 1 197 44.633 79.15 ILE Α 1481 CA 31.169 1 45 78.862 197 44.757 ILE Α 1482 C 44.15 1 79.186 31.778 45.778 197 ILE Α 1483 O 47.63 29.402 1 80.354 197 43.753 ILE Α 1484 CB 44.16 27.941 80.746 43.949 197 ILE Α 1485 CG1 49.36 81.523 30.327 197 44.118 Α ILE 1486 CG2 52.88 27.533 1 81.88 197 43.114 ILE 1487 CD1 43.62 78.241 31,757 1 43.742 198 1488 N LEU Α 46.21 77.903 33.176 198 43.807 Α LEU 1489 CA 49.78 33.436 1 76.915 44.936 LEU Α 198 1490 C 53.09 1 34.482 45.58 76.949 198 Α 1491 O LEU 43.96 33.665 1 77.304 42.491 198 Α LEU 1492 CB 48.66 78.234 33.487 41.284 198 Α LEU 1493 CG 37.35 34.234 1 40.06 77.679 198 LEU Α 1494 CD1 43.46 1 33.977 198 41.664 79.652 Α 1495 CD2 LEU 52.51 32.462 1 76.044 45.178 Α 199 1496 N ASN 52.27 75.042 32.566 1 199 46.217 Α ASN 1497 CA 52.19 31.508 1 47.276 75.249 ASN Α 199 1498 C 55.24 1 74.329 30.782 47.615 199 Α 1499 O ASN 54.1 32.428 1 45.614 73.642 199 ASN Α 1500 CB 72.559 32.856 55 199 46.574 Α 1501 CG ASN 47.2 72.839 33.178 47.741 199 Α ASN 1502 OD1 55.42 32.879 1 71,315 199 46.092 Α ASN 1503 ND2 53.79 31.459 1 76.454 Α 200 47.823 TRP 1504 N 55.23 30.496 76.824 200 48.861 Α TRP 1505 CA 56.22 30.219 1 75.687 200 49.845 Α TRP 1506 C 57.24 31.153 1 75.081 50.379 TRP Α 200 1507 O 31.019 51.9 1 49.623 78.037 200 Α 1508 CB TRP 52.56 30.051 1 200 50.569 78.629 TRP Α 1509 CG 53.16 30.125 1 78.625 51.938 TRP Α 200 1510 CD1 51.63 28.885 1 79.384 TRP 200 50.228 Α 1511 CD2 52.41 1 29.07 79,347 200 52.472 TRP 1512 NE1

Atom								
Atom Type	Residue		#	~ X	Υ	Z C	CC	В
1513 CE2	TRP	Α	200	51.444	79.822	28.298	1	51.06
1514 CE3	TRP	Α	200	49.018	79.74	28.28	1	48.62
1515 CZ2	TRP	Α	200	51.474	80.597	27.138	1	50.38
1516 CZ3	TRP	Α	200	49.051	80.512	27.127	1	48.8
1517 CH2	TRP	Α	200	50,274	80.934	26.567	1	47.32
1518 N	MET	Α	201	49.994	75.362	28.932	1	56.44
1519 CA	MET	Α	201	50.899	74.322	28.421	1	53.74
1520 C	MET	Α	201	50.652	72.856	28.789	1	53.26
1521 O	MET	Α	201	51.457	71.998	28.416	1	53.36
1522 CB	MET	Α	201	52.353	74.674	28.741	1	51.39
1523 CG	MET	Α	201	52.822	75.945	28.1	1	52.93
1524 SD	MET	Α	201	54.585	76.266	28.35	1	57.67
1525 CE	MET	A	201	54.759	77.836	27.394	1	54.12
1526 N	ARG	A	202	49.549	72.545	29.468	1	48.76 49.12
1527 CA	ARG	A	202	49.305	71.159	29.848	1 1	50.94
1528 C	ARG	A	202	47.927	70.604 69.76	29.522 30.252	1	52.21
1529 O	ARG	A	202	47.401	70.952	31.33	1	51.67
1530 CB	ARG	A	202	49.613	70.932	31.726	1	53.45
1531 CG	ARG	A A	202 202	51.028 51.303	71.081	33.186	1	54.45
1532 CD	ARG ARG	Ä	202	52.706	71.309	33.524	1	59.92
1533 NE 1534 CZ	ARG	Ā	202	53.184	72.441	34.034	1	60.71
1534 CZ 1535 NH1	ARG	Â	202	52.361	73.459	34.275	1	63.06
1536 NH2	ARG	Â	202	54.485	72.559	34.288	1	55.04
1530 N 12	TYR	A	203	47.34	71.091	28.433	1	51.16
1537 N 1538 CA	TYR	A	203	46.035	70.622	27.967	1	50.51
1539 C	TYR	A	203	46.277	69.312	27.212	1	51.12
1540 O	TYR	A	203	47.418	68.937	26.951	1	49.65
1541 CB	TYR	A	203	45.43	71.641	27.01	1	44.92
1542 CG	TYR	Α	203	46.398	72.03	25.929	1	41.85
1543 CD1	TYR	Α	203	47.29	73.073	26.126	1	44.76
1544 CD2	TYR	Α	203	46.445	71.348	24.717	1	42.63
1545 CE1	TYR	Α	203	48.216	73.435	25.144	1	46.08
1546 CE2	TYR	Α	203	47.365	71.704	23.732	1	43.91
1547 CZ	TYR	A	203	48.245	72.755	23.962	1	43.02 48.44
1548 OH	TYR	A	203	49.143	73.143	23.013	1 1	51.91
1549 N	THR	A	204	45.206	68.631	26.837 26.112	1	53.02
1550 CA	THR	A	204	45.353	67.381 67.339	24.848	1	53.44
1551 C	THR	A	204 204	44.521 43.982	68.348	24.403	1	54.4
1552 O	THR	A A	204	44.992	66.157	26.978	1	52.28
1553 CB 1554 OG1	THR THR	Ä	204	43.626	66.228	27.379	1	50.51
1554 OG1 1555 CG2	THR	Â	204	45.861	66.085	28.194	1	53.26
1556 N	GLN	Ä	205		66.147	24.272	1	51.77
1557 CA	GLN	A	205		65.952	23.059	1	47.48
1558 C	GLN	Ä	205		66.284	23.296	1	47.68
1559 O	GLN	A	205		66.363	22.356	1	51.93
1560 CB	GLN	Α	205		64.514	22.612	1	48.68
1561 CG	GLN	Α	205		63.988	22.561	1	55.89
1562 CD	GLN	Α	205		62.55	22.116	1	53.57
1563 OE1	GLN	Α	205		61.692	22.704	1	58.78
1564 NE2	GLN	Α	205		62.285	21.054	1	50.87
1565 N	THR	Α	206		66.431	24.552	1	48.65
1566 CA	THR	Α	206		66.768	24.813	1	46.66
1567 C	THR	Α	206		68.191	24.363	1	43.42-
1568 ·O	THR	Α	206	38.904	68.518	24.225	1	44.4

Atom	Residue		#	X	Y	z oc	C E	
Atom Type		Α		0.041	66.601	26.288		47.5
1569 CB	THR	Â		1.097	67.087	27.128		6.28
1570 OG1	THR			9.718	65.163	26.588		6.28
1571 CG2	THR	A		1.099	69.026	24.133		5.84
1572 N	VAL	A		10.833	70.378	23.695	1 3	5.15
1573 CA	VAL	A		40.033 40.127	70.341	22.361	1 3	8.57
1574 C	VAL	A		39.278	71.196	22.089	1 4	0.83
1575 O	VAL	A			71.257	23.578	1 3	2.83
1576 CB	VAL	Α		42.085	71.118	24.788	1 3	6.23
1577 CG1	VAL	Α		42.909	70.97	22.327	1	25.7
1578 CG2	VAL	Α	207	42.86	69.325	21.553		9.59
1579 N	ASP	Α	208	40.44	69.159	20.237		38.84
1580 CA .	ASP	Α	208	39.82	68.767	20.424		38.51
1581 C	ASP	Α	_	38.353		19.546	•	12.24
1582 0	ASP	Α		37.529	68.978	19.413		41.46
1583 CB	ASP	Α		40.553	68.078	19.019		47.15
1584 CG	ASP	Α	208	41.987	68.475	18.87		52.58
1585 OD1	ASP	Α	208	42.281	69.691		-	46.19
1586 OD2	ASP	Α	208	42.825	67.568	18.821	-	39.36
1587 N	ILE	Α	209	38.027	68.159	21.558 21.816		43.32
1588 CA	ILE	Α	209	36.639	67.793			43.82
1589 C	ILE	Α	209	35.886	69.057	22.188		46.67
1590 O	ILE	Α	209	34.718	69.21	21.846		44.35
1591 CB	ILE	Α	209	36.502	66.733	22.934	1	44.48
1592 CG1	ILE	Α	209	37.085	65.408	22.455 23.292	i	44.55
1593 CG2	ILE	Α	209	35.041	66.512	23.292 21.245	1	48.72
1594 CD1	ILE	Α	209	36.376	64.872	22.867	1	44.58
1595 N	TRP	Α	210	36.567	69.974	23.238	1	44.7
1596 CA	TRP	Α	210	35.952	71.235	21.938	1	46.84
1597 C	TRP	Α	210	35.56	71.921	21.707	1	48.19
1598 O	TRP	Α	210	34.385	72.195 72.114	24.034	1	46.84
1599 CB	TRP	Α	210	36.92		24.467	1	47.76
1600 CG	TRP	Α	210	36.274	73.413 74.577	23.75	1	50.28
1601 CD1	TRP	Α	210	36.216	73.641	25.658	1	45.56
1602 CD2	TRP	Α	210	35.514	75.504	24.413	1	50.26
1603 NE1	TRP	Α	210		74.956	25.587	1	48.25
1604 CE2	TRP	Α	210		72.859	26.776	1	45.53
1605 CE3	TRP	Α	210		72.535 75.507	26.59	1	46.57
1606 CZ2	TRP	Α	210		73.405	27.775	1	45.12
1607 CZ3	TRP	Α	210		74.718	27.672	1	48.42
1608 CH2	TRP	Α	210		72.137	21.065	1	46.81
1609 N	SER	A	211		72.765	19.769	1	43.53
1610 CA	SER	A	211		72.107	19.041	1	44
1611 C	SER	A	211		72.796	18.551	1	46.51
1612 O	SER	A	211		72.707	18.92	1,	43.53
1613 CB	SER	A	211 211			19.535	1	40.65
1614 OG	SER	A	21			19.002	1	39.83
1615 N	VAL	A	21			18.344	1	34.15
1616 CA	VAL	A	21			18.997	1	31.62
1617 C	VAL	A	21				1	29.16
1618 O	VAL	A	21			18.336		28.26
1619 CB	VAL	A	21	_				26.78
1620 CG1		A	21				1	31.42
1621 CG2	2 VAL	A	21					33.4
1622 N	GLY	A A	21			20.973		35,22
1623 CA	GLY GLY	A	21			3 20.56	; 1	37.95
1624 C	GLI	^						

Atom						_		_
Atom Type	Residue		#	X	Υ		CC	В
1625 O	GLY	Α	213 2	29.744	72.615	20.289	1	35.24
1626 N	CYS	A	214 3	31.834	73.392	20.538	1	37.44
1627 CA	CYS	A		31.508	74.749	20.147	1	41.88
	CYS	Â		31.043	74.72	18.702	1	40.71
1628 C	CYS	A		30.112	75.433	18.307	1	39.35
1629 O		Â		32.745	75.643	20.252	1	41.96
1630 CB	CYS			33.384	75.795	21.892	1	39.81
1631 SG	CYS	A	215	31.7	73.886	17.913	1	37.31
1632 N	ILE	A		31.339	73.782	16.507	1	38.73
1633 CA	ILE	A		29.956	73.153	16.373	1	38.02
1634 C	ILE	A		29.930	73.682	15.688	1	42.97
1635 O	ILE	A	215		72.992	15.684	1	32.03
1636 CB	ILE	A		32.409	73.656	15.818	1	33.57
1637 CG1	ILE	A		33.782		14.236	1	31.47
1638 CG2	ILE	Α		32.071	73.014	15.198	1	24.34
1639 CD1	ILE	Α		34.962	72.869	17.044	1	42.7
1640 N	MET	Α		29.722	72.035	16.965	i	45.15
1641 CA	MET	Α		28.414	71.385		1	44.3
1642 C	MET	Α	216	27.326	72.326	17.486	1	45
1643 O	MET	Α	216	26.244	72.404	16.935	1	42.87
1644 CB	MET	Α	216	28.397	70.087	17.769	1	46.65
1645 CG	MET	Α	216	27.181	69.246	17.493		48.35
1646 SD	MET	Α	216	26.807	68.048	18.765	1	
1647 CE	MET	Α	216	25.21	67.551	18.193	1	52.21 46.2
1648 N	ALA	Α	217	27.641	73.06	18.539	1	
1649 CA	ALA	Α	217	26.706	73.989	19.14	1	44.76 48.08
1650 C	ALA	Α	217	26.377	75.105	18.157	1	49.39
1651 O	ALA	Α	217	25.232	75.528	18.056	1	
1652 CB	ALA	Α	217	27.311	74.562	20.395	1	46.54
1653 N	GLU	Α	218	27.387	75.553	17.41	1	49.97
1654 CA	GLU	Α	218	27.221	76.619	16.433	1	47.93
1655 C	GLU	Α	218	26.371	76.173	15.268	1	49.11 52
1656 O	GLU	Α	218	25.577	76.952	14.743	1	46.1
1657 CB	GLU	Α	218	28.574	77.097	15.924	1	47.97
1658 CG	GLU	Α	218	28.487	78.409	15.194	1	47.47
1659 CD	GLU	Α	218	29.831	78.956	14.768	1	44.18
1660 OE1	GLU	Α	218	30.825	78.726	15.481	1 1	48.14
1661 OE2	GLU	Α	218	29.882	79.637	13.721		48.28
1662 N	MET	Α	219	26.554	74.935	14.833	1	50.18
1663 CA	MET	Α	219	25.76	74.427	13.727	1	55.31
1664 C	MET	Α	219	24.273	74.473	14.092	1	60.29
1665 O	MET	Α	219	23.442	74.875	13.278	1	46.12
1666 CB	MET	Α	219	26.156	72.996	13.397	1	40.12
1667 CG	MET	Α	219	27.522	72.854	12.822	1	
1668 SD	MET	Α	219	28.039	71.143	12.889	1	39.2
1669 CE	MET	Α	219	27.603	70.545	11.311	1	
1670 N	ILE	Α	220	23.95	74.109	15.333		57.04
1671 CA	ILE	Α	220	22.564	74.082	15.806		57.34
1672 C	ILE	Α	220	21.914	75.458	16.006		58.12
1673 O	ILE	Α	220	20.817	75.71	15.512		56.89
1674 CB	ILE	Α	220	22.454	73.302	17.128		55.22
1675 CG1		A	220		71.93	16.982		
1676 CG2		Ä	220		73.13	17.501		
1677 CD1		Ä	220		71.173	18.267		
1678 N	THR	Ä	221		76.317	16.778		
1679 CA	THR	Â	221		77.651	17.067		
1680 C	THR	Â	221		78.605	15.904	1 1	58.94
1000 C	1103	• `						

Atom					v	z occ	: В	
Atom Type	Residue		#	X	Υ	_		.25
	THR	Α		1.296				.73
1681 O	THR	A	221 2	22.782	, 0.20			.32
1682 CB		Â		24,127	78.607	,,		
1683 OG1	THR			22.777	77.357			.26
1684 CG2	THR	A		23.407	78.618	15.31		.14
1685 N	GLY	Α		23.687	79.505	14.198	1 56	3.36
1686 CA	GLY	Α			80.643		1 .55	5.05
1687 C	GLY	Α		24.582	81.36	13.845	1 55	5.58
1688 O	GLY	Α		25.162	01.30	15.962		1.94
1689 N	LYS	Α		24.713	80.785	16.556		3.18
1690 CA	LYS	Α		25.526	81.831		•	7.53
1090 CA	LYS	Α	223	26.764	81.202	17.174		9.83
1691 C	LYS	Α	223	26.759	80.029	17.531	-	4.06
1692 O	LYS	À	223	24.709	82.569	17.648		8.39
1693 CB		Â	224	27.833	81.979	17.277	·	
1694 N	THR	Â	224	29.065	81.505	17.894		7.22
1695 CA	THR		224	28.724	81.331	19.373		9.77
1696 C	THR	A	224	28.139	82.233	19.984	•	2.77
1697 O	THR	A		30.161	82.544	17.736		5.38
1698 CB	THR	A	224	30.399	82.741	16.341		55.02
1699 OG1	THR	Α	224		82.108	18.435	1 5	51.61
1700 CG2	THR	Α	224	31.436	80.181	19.943		59.25
1701 N	LEU	Α	225	29.09		21.332	1 :	55.72
1702 CA	LEU	Α	225	28.768	79.863	22.359		52.47
1703 C	LEU	Α	225	29.428	80.748	23.198		53.73
1703 O 1704 O	LEU	Α	225	28.741	81.315	21.638		54.46
1704 CB	LEU	Α	225	29.03	78.38	23.038		55.79
1705 CB	LEU	Α	225	28.621	77.909	23.030		55.88
1706 CG 1707 CD1	LEU	A	225	27.169	78.259	23.299	1	52.89
1707 CD1	LEU	Α	225	28.844	76.42		i	49.89
1708 CD2	PHE	A	226		80.861	22.31	1	52.29
1709 N	PHE	A	226	31.455	81.695	23.273		55.03
1710 CA		Â	226		82.726	22.52	1	58.57
1711 C	PHE	Â	226		82.5	22.252	1	
1712 0	PHE	Â	226		80.847	24.2	1	49.67
1713 CB	PHE	Ä	226		79.684	24.9	1	50.17
1714 CG	PHE		226		79.896	25.674	1	46.15
1715 CD1	PHE	A	226		78.376	24.755	1	45.89
1716 CD2	PHE	A	226	·	78.834	26.279	1	47.66
1717 CE1	PHE	Ą		·	77.306	25.361	1	46.03
1718 CE2	PHE	A	229	·	77.531	26.122	1	46.99
1719 CZ	PHE	Α	22			22.163	1	56.37
1720 N	LYS	Α	22		84.894	21.429	1	58.68
1721 CA	LYS	Α	22			22.4	1	60.44
1722 C	LYS	Α	22		_	22.818	1	66.55
1723 O	LYS	Α	22			20.472	1	57.97
1724 CB	LYS	Α	22			22.785	1	56.04
1725 N	GLY	Α	22				1	57.52
1726 CA	GLY	Α	22	<u>28</u> 34.948			1	58.39
	GLY	Α	22	28 35.807			1	60.34
1727 C	GLY	Α	22	28 36.307	7 87.299		1	60.8
1728 0	SER	A		29 36.03	1 88.677		1	62.63
1729 N		A		29 36.84	1 89.753	23.109		61.84
1730 CA	SER	Â		29 38.34		23.137	1	60.42
1731 C	SER			29 39.06		22.205		
1732 O	SER	A	_	29 36.51	8 91.112			65.47
1733 CE			_	29 36.90		2 25.121		68.06
1734 00	SER			30 38.82		g 24.22 3	1	61.24
1735 N	ASP		_				; 1	62.31
1736 CA	4 ASP	Α	. 2	230 40.24				

Atom								
Atom Type	Residue		#	X	Υ	Z	occ	В
1737 C	ASP	Α	230	40.345	87.171	25.004	1	61.21
1738 O	ASP	Α	230	39.328	86.63	25.459	1	58.76
1739 CB	ASP	Α	230	41.051	89.616	25.118	1	65.38
1740 CG	ASP	Α	230	40.501	89.898	26.522	1	72.67
1741 OD1	ASP	Α	230	39.61	90.774	26.644	1	74.17
1742 OD2	ASP	A	230	40.969	89.266	27.507	1	74.27
1743 N	HIS	A	231	41.556	86.614	25.07	1	59.36
1744 CA	HIS	A	231	41.722	85.284	25.642	1	57.51
1745 C	HIS HIS	A	231 231	41.203 40.656	85.131 84.084	27.056 27.408	1 1	58.59 57.97
1746 O 1747 CB	HIS	A A	231	43.158	84.802	25.535	1	56.81
1747 CB	HIS	Ā	231	44.141	85.592	26.341	i 1	58.17
1749 ND1	HIS	Â	231	44.74	86.738	25.862	1	58.28
1750 CD2	HIS	Ä	231	44.715	85.34	27.539	1	56.46
1751 CE1	HIS	Α	231	45.649	87.148	26.725	1	60.01
1752 NE2	HIS	Α	231	45.655	86.318	27.754	1	58.55
1753 N	LEU	Α	232	41.352	86.178	27.863	1	59.32
1754 CA	LEU	Α	232	40.868	86.131	29.233	1	56.31
1755 C	LEU	A	232	39.36	86.303	29.226	1	54.89
1756 O	LEU	A	232	38.647	85.625	29.959	1	53.63
1757 CB	LEU	A	232	41.507	87.239	30.063	1	57.78
1758 CG	LEU	A	232	43.006 43.424	87.152	30.33 31.192	1 1	58.25 57.87
1759 CD1 1760 CD2	LEU LEU	A A	232 232	43.424	88.343 85.839	31.029	1	57.82
1760 CD2	ASP	Â	233	38.873	87.203	28.381	1	52.94
1762 CA	ASP	Ä	233	37.438	87.447	28.317	i	52.88
1763 C	ASP	A	233	36.691	86.212	27.817		51.75
1764 O	ASP	Α	233	35.496	86.041	28.086	1	50.37
1765 CB	ASP	Α	233	37.137	88.65	27.428	1	50.13
1766 CG	ASP	Α	233	35.659	89.001	27.41	1	53.12
1767 OD1	ASP	A	233	35.084	89.224	28.499	1	50.34
1768 OD2	ASP	A	233	35.064	89.05	26.308	1	54.43
1769 N	GLN	A	234	37.406	85.364	27.08 26.541	1 1	50.61 49.41
1770 CA 1771 C	GLN GLN	A A	234 234	36.846 36.494	84.131 83.222	27.717		49.27
1771 C	GLN	Â	234	35.467	82.524	27.707		50.65
1773 CB	GLN	A	234	37.863	83.453	25.624		49.04
1774 CG	GLN	Α	234	37.375	82.151	25.006	1	47.78
1775 CD	GLN	Α	234	36.36	82.361	23.905		47.73
1776 OE1	GLN	Α	234	36.505	83.262	23.083		47.97
1777 NE2	GLN	Α	234	35.334	81.515	23.869		45.6
1778 N	LEU	A	235	37.33	83.261	28.749	1	45.01
1779 CA	LEU	A	235	37.07	82.47	29.927		46.44 51.21
1780 C	LEU LEU	A	235 235	35.735 34.843	82.904 82.074	30.48 30.645	1 1	53.59
1781 O 1782 CB	LEU	A A	235	38.168	82.654	30.964	1	44.69
1782 CG	LEU	Ä	235	39.524	82.06	30.559		47.12
1784 CD1	LEU	A	235	40.508	82.181	31.694		44.48
1785 CD2	LEU	A	235	39.365	80.586	30.187		44.56
1786 N	LYS	A	236	35.55	84.219	30.641	1	55.97
1787 CA	LYS	Α	236	34.286	84.755	31.169		55.78
1788 C	LYS	Α	236	33.093	84.311	30.339		53.9
1789 O	LYS	A	236	32.08	83.872	30.892		54.18
1790 CB	LYS	A	236	34.305	86.293	31.304		58.61
1791 CG	LYS	A	236	32.938	86.905	31.713		62.72 - 68.09
1792 CD	LYS	Α	236	33.029	88.206	32.529	1	00.09

addivite transfert in the contraction to many commentation or a contract of

53	/	1	U
Fig	gui	е	1

Atom			#	X	Y	z oc	C	В
Atom Type	Residue	٨	# 236	33.62	89.388	31.748	1 7	70.68
1793 CE	LYS	A		3.684	90.65	32.563	1 6	38.15
1794 NZ	LYS	Α .		3.209	84.405	29.019	1 8	50.88
1795 N	GLU	A			83.99	28.186	1 !	54.56
1796 CA	GLU	A	237	32.1	82.531	28.433	1 :	56.25
1797 C	GLU	A		31.757	82.191	28.598	1 :	57.45
1798 O	GLU	A		30.587	84.243	26.7	1	56.02
1799 CB	GLU	A		32.373 32.014	85.656	26.21	1	56.39
1800 CG	GLU	A		30.623	86.1	26.643	1	55.6
1801 CD	GLU	A		29.628	85.45	26.253	1	56.67
1802 OE1	GLU	A		30.531	87.102	27.387	1	56.02
1803 OE2	GLU	A		32.781	81.681	28.531	1	57.26
1804 N .	ILE	A		32.562	80.256	28.762	1	53.01
1805 CA	ILE	A		31.946	80.045	30.121	1	52.69
1806 C	ILE	A		30.942	79.351	30.265	1	54.46
1807 O	ILE	A		33.877	79.482	28.711	1	51.46
1808 CB	ILE	A		34.454	79.532	27.292	1	45.54
1809 CG1	ILE	A	238	33.664	78.052	29.221	1	45
1810 CG2	ILE	A A	238	35.9	79.119	27.202	1	40.99
1811 CD1	ILE	Ä	239	32.551	80.68	31.111	1	51.8
1812 N	MET	Ā	239	32.101	80.565	32.484	1	53.98
1813 CA	MET MET	Â	239	30.633	80.944	32.639	1	54.25
1814 C	MET	Â	239	29.916	80.323	33.41	1	53.75
1815 O	MET	Â	239	32.951	81.457	33.39	1	58.39
1816 CB	MET	Ä	239	34.465	81.251	33.285	1	59.22
1817 CG 1818 SD	MET	A	239	35.103	79.889	34.221	1	53.8 56.98
1819 CE	MET	A	239	36.7	79.701	33.468	1 1	53.74
1820 N	LYS	A	240	30.178	81.953	31.902	1	53.83
1821 CA	LYS	Α	240	28.789	82.378	32.015	1	56.3
1822 C	LYS	Α	240	27.85	81.21	31.7 32.15	1	58.97
1823 O	LYS	Α	240	26.7	81.176	31.106	1	47.67
1824 CB	LYS	Α	240	28.512	83.594	31.100	1	59.49
1825 N	VAL	Α	241	28.383	80.206	30.622	1	59.78
1826 CA	VAL	Α	241	27.612	79.025	31.451	1	59.47
1827 C	VAL	Α	241	27.917	77.786 77.11	31.917	1	57.29
1828 O	VAL	Α	241	27.003	78.679	29.162	1	60.56
1829 CB	VAL	Α	241	27.853	77.44	28.772	1	62.14
1830 CG1	VAL	Ą	241	27.066 27.469	79.851	28.302	1	63.26
1831 CG2	VAL	A	241 242		77.498	31.633	1	60.72
1832 N	THR	A	242 242		76.313	32.385	1	61.22
1833 CA	THR	A	242 242		76.57	33.867	1	61.59
1834 C	THR	A	242		75.683	34.618	1	63.32
1835 O	THR	A	242		75.798	31.892	1	60.58
1836 CB	THR	A	242		76.682	32.35	1	55.53
1837 OG1		A A	242		75.718	30.365	1	60.52
1838 CG2	THR	Â	243			34.294	1	
1839 N	GLY	Â	243			35,691	1	
1840 CA	GLY GLY	Â	243		78.278		1	
1841 C		Â	24			35.011	1	
1842 O	GLY THR	Â	24	_		37.061	. 1	
1843 N	THR	Â	24					
1844 CA	THR	Â	24		77.917			
1845 C 1846 O	THR	Â	24	4 32.622	77.309			
1846 O 1847 CB	THR	Ä	24		80.373			
1848 OG		A	24			39.177	•	1 63.24
1046 00	, , , , , , ,	• •						

COMPANY OF STREET STREET, STRE

Atom	D iduo		#	X	Y	z oc		3
Atom Type	Residue	Α		32.941	81.52	37.138		1.77
1849 CG2	THR	Â		34.752	77.628	38.354		6.25
1850 N	PRO	Â		35.312	76.582	39.218		8.52
1851 CA	PRO			35.248	77.051	40.677		0.05
1852 C	PRO	A		34.965	78.224	40.948		1.64
1853 O	PRO	A		36.782	76.521	38.775		5.48
1854 CB	PRO	A		36.797	77.145	37.444		5.27
1855 CG	PRO	A		35.815	78.257	37.563		35.64
1856 CD	PRO	A		35.473	76.136	41.633		70.03
1857 N	PRO	A		35.441	76.521	43.046		89.69
1858 CA	PRO	A		36.547	77.541	43.347		39.33
1859 C	PRO	A A		37.622	77.508	42.741		64.19
1860 O	PRO		246	35.669	75.191	43.769	1 '	71.23
1861 CB	PRO	A	246	36.38	74.335	42.744	1	71.1
1862 CG	PRO	A A	246	35.623	74.679	41.496		71.65
1863 CD	PRO	A	247	36.258	78.451	44.275		70.91
1864 N	ALA		247	37.192	79.503	44.646	•	71.76
1865 CA	ALA	A	247	38.542	79	45.155		72.39
1866 C	ALA	A A	247	39.572	79.646	44.922	•	71.39
1867 O	ALA	Ä	247	36.55	80.434	45.659	1	74.06
1868 CB	ALA	Ä	248	38.54	77.85	45.833	1	72.68
1869 N	GLU	A	248	39.783	77.273	46.363	1	72.35
1870 CA	GLU	Ä	248	40.704	76.777	45.25	1	69.53
1871 C	GLU	Â	248	41.926	76.767	45.401	1	68.72
1872 O	GLU	Â	248	39.482	76.149	47.366	1	75.32
1873 CB	GLU	Â	248	38.774	74.912	46.792	1	78.97
1874 CG	GLU	Â	248	39.72	73.968	46.064	1	77.64
1875 CD	GLU	Ä	248	40.911	73.895	46.45	1	78.83
1876 OE1	GLU	Â	248	39,267	73.309	45.101	1	76.1
1877 OE2	PHE	Â	249	40.103	76.372	44.133	1	66.74
1878 N	PHE	Â	249	40.853	75.898	42.976	1	64.3 61.39
1879 CA	PHE	A	249	41.598	77.042	42.316	1	
1880 C	PHE	A	249	42.794	76.949	42.054	1	60.61 65.74
1881 O 1882 CB	PHE	A	249	39.916	75.243	41.941	1 1	65.12
1883 CG	PHE	A	249	40.554	75.039	40.585	1	64.44
1884 CD1	PHE	À	249		74.199	40.436	1	65.16
1885 CD2	PHE	Α	249		75.731	39.474	1	65.96
1886 CE1	PHE	Α	249		74.056	39.204	1	65.98
1887 CE2	PHE	Α	249		75.594	38.235	1	65.67
1888 CZ	PHE	Α	249		74.758	38.098	1	58.42
1889 N	VAL	Α	250		78.116	42.035	1	58.47
1890 CA	VAL	Α	250		79.271	41.381 42.234	1	59.92
1891 C	VAL	Α	250		79.945	41.724	1	59.56
1892 O	VAL	Α	250		80.641	40.857	1	58.77
1893 CB	VAL	Α	25		80.239	41.527	1	55.42
1894 CG1		Α	25	0 39.005	79.926	41.014	i	57.44
1895 CG2		Α	25			43.528	1	63.44
1896 N	GLN	Α	25			44.477	i	66.17
1897 CA	GLN	Α	25					65.76
1898 C	GLN	Α	25					64.04
1899 O	GLN	Α	25					72.98
1900 CB	GLN	Α	25					82.34
1901 CG	GLN	Α	25					
1902 CD	GLN	Α	25		81.677			
1903 OE		Α	25					
1904 NE		Α	25	51 42.074	\$ 81.889	, 40.00	-	

Atom						- 00	C	В
Atom Type	Residue		#	X	Υ	Z ~ 0C	1 6	5.24
1905 N	ARG	Α	252	44.87	78.352	43.91		31.76
1906 CA	ARG	Α	252	46.084	77.583	43.641		31.70 31.07
1907 C	ARG	Α		46.553	77.567	42.191		30.87
1908 O	ARG	Α		47.524	76.877	41.868		30.12
1909 CB	ARG	Α		45.878	76.139	44.113		56.26
1910 CG	ARG	Α		45.375	76.036	45.527		57.65
1911 CD	ARG	Α		45.228	74.603	45.943		58.68
1912 NE	ARG	Α		44.008	73.977	45.447		64.29
1913 CZ	ARG	Α		43.978	72.812	44.807 44.566		64.56
1914 NH1	ARG	Α		45.115	72.148	44.484	1	63.9
1915 NH2	ARG	Α		42.807	72.262	41.313		58.85
1916 N	LEU	Α	253	45.856	78.283	39.907		58.13
1917 CA	LEU	Α	253	46.252	78.328	39.756		57.02
1918 C	LEU	Α	253	47.706	78.736	40.357	1	54.31
1919 O	LEU	Α	253	48.157	79.699 79.286	39.113	1	55.76
1920 CB	LEU	Α	253	45.365	79.260 78.643	38.775	1	56
1921 CG	LEU	Α	253	44.028	78.649	38.066	1	55.5
1922 CD1	LEU	A	253	43.136	79.0 4 5 77.395	37.943	1	50.77
1923 CD2	LEU	A	253	44.272 48.424	77.955	38.963	1	58.4
1924 N	GLN	A	254	49.83	78.175	38.69	1	60.84
1925 CA	GLN	A	254	50.021	79.454	37.877	1	63.09
1926 C	GLN	A	254 254	50.902	80.264	38.168	1	62.24
1927 O	GLN	A	254	50.369	76.983	37.901	1	64.22
1928 CB	GLN	A	254	51.66	76.409	38.424	1	68.16
1929 CG	GLN	A	254	52.749	77.44	38.513	1	72.41
1930 CD	GLN	A	254	53.249	77.737	39.603	1	76.25
1931 OE1	GLN	A A	254	53.118	78.014	37.368	1	72.87
1932 NE2	GLN	Â	255	49.205	79.614	36.838	1	65.92
1933 N	SER SER	Â	255	49.284	80.793	35.987	1	69.87
1934 CA	SER	Â	255	48.805	82.037	36.742	1	71.99 71.07
1935 C 1936 O	SER	A	255	47.654	82.094	37.2	1 1	68.37
1937 CB	SER	Α	255		80.6	34.715 33.732	1	69.97
1938 OG	SER	Α	255		81.571		1	73
1939 N	ASP	Α	256		83.011	36.899 37.59	1	73.33
1940 CA	ASP	Α	256		84.255	36.838	1	72.86
1941 C	ASP	Α	256		84.982	37,409	1	71.63
1942 O	ASP	Α	256		85.294 85.157	37.714	1	74.14
1943 CB	ASP	Α	256		84.69	38.803	1	75.83
1944 CG	ASP	A	256		83.585	39.366	1	72.12
1945 OD1	ASP	Ą	256	_	85.444	39.1	1	75.25
1946 OD2	ASP	A	256	•	85.18	35.539	1	71.33
1947 N	GLU	A	25 [°] 25 [°]	·	85.857	34.693	1	70.82
1948 CA	GLU	A	25 25		85.235	34.825	1	69
1949 C	GLU	A	25 25			35.057	1	70.87
1950 O	GLU	A	25 25			33.237	1	73.48
1951 CB	GLU	A A	25 25			32.312	1	79.68
1952 CG	GLU	Â	25			30.838	1	83.87
1953 CD	GLU	Â	25			30.329	1	
1954 OE1		Â	25			30.185	1	
1955 OE2	ALA	Â	25		83.912			
1956 N	ALA	Ā		58 44.773	83.22			
1957 CA	ALA	Ā		58 44.162	2 83.323			
1958 C	ALA	Â		58 42.939	83.437			
1959 O 1960 CB	ALA	Ä		58 44.947	7 81.778	34.472		01.01
1900 CD	,,,,,	• •						

1963 C LYS A 259 43.967 84.69 38.983 1 61. 1964 O LYS A 259 42.892 84.768 39.568 1 61. 1965 CB LYS A 259 45.742 83.053 39.607 1 61.	2.1 36 36 01 43 81 .87 .85
1961 N LYS A 259 45.016 83.273 37.261 1 62.1 1962 CA LYS A 259 44.575 83.336 38.658 1 62.1 1963 C LYS A 259 43.967 84.69 38.983 1 61.1 1964 O LYS A 259 42.892 84.768 39.568 1 61.1 1965 CB LYS A 259 45.742 83.053 39.607 1 61.1 1965 CB LYS A 259 45.742 83.053 39.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61.1 1965 CB LYS A 259 45.742 83.053 1 61	2.1 36 36 01 43 81 .87 .85
1962 CA LYS A 259 44.575 83.336 38.658 1 62 1963 C LYS A 259 43.967 84.69 38.983 1 61. 1964 O LYS A 259 42.892 84.768 39.568 1 61. 1965 CB LYS A 259 45.742 83.053 39.607 1 61.	36 36 01 43 81 87 85
1964 O LYS A 259 42.892 84.768 39.568 1 61. 1965 CB LYS A 259 45.742 83.053 39.607 1 61.	36 01 43 81 87 85
1965 CB LYS A 259 45.742 83.053 39.607 1 61.	01 43 81 87 85
1905 CB L13 A 200 40.040 44.074 4 50	43 81 87 85 56
	81 87 85 56
1900 CG 210 // 200 CG 44 070 4 64	.87 .85 .56
1907 CD 210 // 200 10101	.85 .56
(900 CL 210	.56
1909 142 210 / 2000 05 750 29 624 4 64	
1970 14	Xn
19/1 CA AON	
1972 C AOI 1 000 07 005 20 745 1 63	
1973 0 7011	
1974 CB AGN A 200 10 10 10 10 10 10 10 10 10 10 10 10 1	.36
1973 CG 7014 /1 255 15:555	.25
	.95
	.38
1979 CA TYR A 261 41.549 87.056 36.098 1 59.	.21
1980 C TYR A 261 40.364 86.345 36.74 1 6	0.2
1981 O TYR A 261 39.337 86.96 37.003 1 62	.83
1982 CB TYR A 261 41.712 86.583 34.652 1 55	.63
1983 CG TYR A 261 40.477 86.86 33.839 1 54	.34
1984 CD1 11K A 201 40.107 00.10	.78
1985 CD2 11R A 201 55.541	.88
1900 CE1 1110 A 251 00.000 4 50	.32
1907 CEZ	.07 .96
1960 CZ 1110 A 251 55151	i.83
1969 OH 111 A 251 05105 26 000 4 64	.91
1990 N WILL A 200 07 644 4	67
1991 CA IVIET A 200 00 00 1 70).53
1992 C WILL A 202 00.100 4 60	.52
1995 O WILL A 2012 00 07 00 707 07 601 1 65	5.79
	1.11
	9.48
1997 CF MET A 262 37.512 80.925 36.813 1 60).57
1998 N 1YS A 263 39.952 85.472 39.671 1 73	3.96
1999 CA LYS A 263 39.754 86.027 41.014 1 75	5.91
2000 C LYS A 263 38.761 87.179 40.918 1 78	3.18
2001 O LYS A 263 37.725 87.174 41.582 1 /8	3.79
2002 CB Lt3 A 200 -11.501	3.69 9.65
2003 CG LTS A 203 41.411	
2004 CD L13 A 200 11 504 1 90	0.55 2.92
2005 CE LYS A 205 42.000	3.41
2000 NZ LTG A 200 44.000	9.73
2007 N GLI	2.86
2000 CA GET A 201 00 071 1 91	3.39
2009 C GET / 201 05 000 20 45 1 8	3.61
2010 0 GET 7 20 000 07 074 29 57 1 8	4.09
	5.51
	5.92
2013 C LEU A 265 34.862 86.627 40.104 1	86.1
2015 CR LEU A 265 35.865 86.153 37.127 1 8	6.17
2016 CG LEU A 265 34.918 85.819 35.986 1 8	4.25

Atom	Residue		#	X	Y	z oc		В
Atom Type	LEU	Α		5.147	86.837	34.89		85.31
2017 CD1	LEU	Â		5.195	84.415	35.476		85.83
2018 CD2	PRO	Â		3.237	87.34	38.706	1	86.24
2019 N	PRO	Â	266	32.13	87.055	39.627	1	85.3
2020 CA	PRO	Â	266	32.04	85.55	39.858	1	84.88
2021 C	PRO	Ä	266	32.84	84.786	39.324	1	87.31
2022 O	PRO	Â		30.913	87.534	38.846	1	85.43
2023 CB	PRO	Â		31.455	88.678	38.043	1	87.16
2024 CG	PRO	Â		32.765	88.126	37.549	1	87.36
2025 CD	GLU	Â		31.067	85.117	40.644	1	83.69
2026 N	GLU	Ä		30.911	83.693	40.901	1	82.37
2027 CA	GLU	Â		29.679	83.245	40.13	1	79.96
2028 C	GLU	Â		28.548	83.476	40.557	1	80.72
2029 O	GLU	Â		30.773	83.437	42.408	1	85.51
2030 CB	GLU	A		30.846	81.966	42.816	1	89.58
2031 CG	GLU	Â		31.638	81.744	44.108	1	92.32
2032 CD 2033 OE1	GLU	Ä		32.873	81.566	44.028	1	90.72
2033 OE1 2034 OE2	GLU	Â		31.028	81.738	45.202	1	95.1
2034 OE2 2035 N	LEU	A		29.912	82.646	38.965	1	77.43
2035 N 2036 CA	LEU	A	268	28.836	82.182	38.086	1	74.63
2037 C	LEU	A	268	28.381	80.744	38.319	1	73.3
2037 C 2038 O	LEU	A	268	29.169	79.886	38.709	1	74.73
2038 C 2039 CB	LEU	A	268	29.257	82.37	36.633	1	73.36
2039 CB 2040 CG	LEU	A	268	29.478	83.844	36.289	1	75.38
2040 CC 2041 CD1	LEU	Α	268	30.569	84.017	35.246	1	75.55 76.3
2042 CD2	LEU	Α	268	28.162	84.464	35.838	1	70.3 72.05
2043 N	GLU	Α	269	27.096	80.494	38.086	1 1	68.74
2044 CA	GLU	Α	269	26.518	79.163	38.258	1	68.69
2045 C	GLU	Α	269	26.299	78.507	36.899	1	68.02
2046 O	GLU	Α	269	26.07	79.195	35.894 39.022	1	69.8
2047 CB	GLU	Α	269	25.197	79.253	36.877	i	67.81
2048 N	LYS	Α	270	26.365	77.177 76.399	35.651	1	66.51
2049 CA	LYS	Α	270	26.187	76.399 76.474	35.145	1	64.72
2050 C	LYS	Α	270	24.744	76.242	35.901	1	63.39
2051 O	LYS	A	270	23.809	74.939	35.906	1	65.95
2052 CB	LYS	A	270	26.579 27.495	74.318	34.859	1	65.03
2053 CG	LYS	A	270	26.752	73.866	33.611	1	67.47
2054 CD	LYS	A	270 270	25.843	72.662	33.871	1	65.62
2055 CE	LYS	A	270	25.301	72.077	32.593	1	63.93
2056 NZ	LYS	A	270	24.578	76.816	33.869	1	64.97
2057 N	LYS	A	271	23.26	76.915	33.253	1	66.39
2058 CA	LYS	A	271	22.95	75.599	32.56	1	67.32
2059 C	LYS	A	271	23.857	74.886	32.149	1	66.32
2060 O	LYS	A A	271	23.218	78.07	32.236	1	64.29
2061 CB	LYS ASP	Â	272		75.258	32.479	1	68.76
2062 N		Â	272		74.034	31.817	1	69.07
2063 CA	ASP ASP	Â	272		74.304	30.34	1	69.46
2064 C	ASP	Â	272		75.377	29.85	1	
2065 O	ASP	A	272		73.789	32.075	1	
2066 CB	ASP	Â	272		72.392	31.667	1	
2067 CG 2068 OD1	ASP	Â	272		72.114	30.454	1	
2068 OD1 2069 OD2		Ä	272		71.564	32.575	1	
2069 OD2 2070 N	PHE	Ä	273		73.352	29.628	1	
2070 N 2071 CA	PHE	A	273		7 3.5 55	28.206		
2077 CA 2072 C	PHE	A	273		73.694	27.354	1	04.40
2012 0	–							

_	_	•	_	_	
i	ig	ur	e '	1	

Atom								
Atom Type	Residue		#	Х	Υ	Z	occ	В
2073 O	PHE	Α	273	21.047	74.484	26.418	1	61.6
2074 CB	PHE	Α	273	23.25	72.476	27.651	1	64.25
2075 CG	PHE	Α	273	24.709	72.749	27.9	1	62.46
2076 CD1	PHE	Α	273	25.107	73.61	28.917	1	60.94
2077 CD2	PHE	Α	273	25.685	72.128	27.137	1	61.49
2078 CE1	PHE	Α	273	26.451	73.841	29.174	1	61.06
2079 CE2	PHE	Α	273	27.036	72.354	27.388	1	61.15
2080 CZ	PHE	Α	273	27.418	73.209	28.408	1	61.2
2081 N	ALA	Α	274	20.022	72.964	27.715	1	68.22
2082 CA	ALA	Α	274	18.75	73.008	26.985	1	70.31
2083 C	ALA	Α	274	18.172	74.422	26.963	1	71.26
2084 O .	ALA	Α	274	17.389	74.76	26.076	1	70.9
2085 CB	ALA	Α	274	17.743	72.036	27.613	1	70.17
2086 N	SER	A	275	18.58	75.233	27.942	1	72.7
2087 CA	SER	A	275	18.137	76.62	28.082	1	75.09
2088 C	SER	A	275	18.812	77.541	27.068	1	76.67
2089 O	SER	A	275	18.351	78.658	26.835	1	77.53
2090 CB	SER	A	275	18.414	77.119	29.507	1 1	71.52
2091 N	ILE	A	276	19.91	77.065	26.482 25.501	1	78.33 79.35
2092 CA	ILE	A	276	20.68	77.826	24.082	1	81.21
2093 C	ILE	A	276	20.347	77.388 78.219	23.201	1	82.83
2094 O	ILE ILE	A A	276 276	20.114 22.197	77.612	25.695	1	78.11
2095 CB 2096 CG1	ILE	Ā	276	22.574	77.792	27.161	i	76.81
2097 CG2	ILE	Â	276	22.989	78.578	24.816	i	77.7
2098 CD1	ILE	Â	276	24.002	77.443	27.441	1	78.58
2099 N	LEU	Â	277	20.374	76.078	23.861	1	82.38
2100 CA	LEU	A	277	20.097	75.498	22.551	1	84.58
2101 C	LEU	A	277	18.588	75.43	22.323	1	88.19
2102 O	LEU	A	277	17.954	74.398	22.58	1	88.83
2103 CB	LEU	A	277	20.715	74.104	22.471	1	82.44
2104 CG	LEU	Α	277	22.094	73.954	23.123	1	78.99
2105 CD1	LEU	Α	277	22.548	72.525	23.032	1	77.89
2106 CD2	LEU	Α	277	23.094	74.877	22.479	1	78.9
2107 N	THR	Α	278	18.037	76.533	21.809	1	91.86
2108 CA	THR	Α	278	16.602	76.687	21.542	1	95.6
2109 C	THR	Α	278	15.878	75.502	20.89	1	96.73
2110 O	THR	Ą	278	15.055	74.85	21.54	1	96.5
2111 CB	THR	A	278	16.305	77.987	20.731	1	96.74
2112 OG1	THR	A	278	17.175	78.065	19.592	1 1	97.74 96.8
2113 CG2	THR	A	278	16.488	79.226	21.604 19.618	1	97.17
2114 N	ASN	A	279	16.173 15.521	75.233	18.895	1	97.22
2115 CA	ASN	A	279		74.139 72.842	18.716	1	95.08
2116 C	ASN	A A	279 279	16.34 16.081	72.042	17.806	1	94.98
2117 O	ASN	Â	279		74.643	17.547	1	98.87
2118 CB 2119 CG	ASN ASN	Â	279		75.289	16.622		98.85
2120 OD1	ASN	Â	279		75.51	15.433	1	97.86
2121 ND2	ASN	Â	279		75.6	17.167		98.78
2121 ND2	ALA	A	280		72.621	19.617		91.73
2123 CA	ALA	Â	280		71.431	19.582		88.32
2123 CA 2124 C	ALA	Â	280		70.196	20.111	1	85.96
2125 O	ALA	Ä	280		70.315	20.816	1	87.39
2126 CB	ALA	Ä	280		71.676	20.378		86.22
2127 N	SER	À	281	17.929	69.011	19.783		83.44
2128 CA	SER	Α	281	17.314	67.768	20.251	1	81.03

1

1. The Third Charles and the State of the St

2130 O 2131 CB 2132 OG 2133 N 2134 CA 2135 C 2136 O 2137 CB 2138 CG 2139 CD 2140 N 2141 CA 2142 C 2143 O 2144 CB 2145 CG 2146 CD1 2147 CD2 2148 N 2149 CA 2150 C 2151 O 2152 CB 2153 N 2154 CA 2155 C 2156 O 2157 CB 2158 CG1 2159 CG2 2160 N 2161 CA 2162 C 2163 O 2164 CB 2165 CG 2166 OD	SER OOOOOOUUUUUUUUUUUAAAAAAVVVVAAAAAAAAAAAA	28	31 18.87 31 17.61 81 17.61 82 17.12 82 17.12 82 17.50 82 18.8 82 19.7 82 15.8 82 21.6 82 20.3 283 20.3 283 20.3 283 20.3 283 20.3 283 20.3 283 20.3 284 21.6 284 22.6 284 22.6 284 22.6 285 285 22.6 285 285 22.6 286 286 286 286 286 286 286 286 286 286	9 67.9 1 66.0 5 65.0 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	962 22. 616 19 858 19 558 22 136 23 .447 23 .847 24 5.18 .639 22 .8632 8632 8632 .8632 8632 .8632 8632	23.283 21.629 21.133 22.286 22.431 20.064 23.118 24.278 25.239 25.796 24.952 26.245 24.03 25.384 26.285 25.803 26.571 26.458 27.474 28.674 27.002	65.2 62.3 62.3 67.1 67.1 67.1 66.1 63.1 60.1 55.1 1 55.1 1 55.1 1 5 5.1 1 1 1 1 1	3 4 3 6 6 7 5 9 4 8 5 8 4 1 7 5 9 9 4 8 5 8 4 1 7 5 9 9 4 8 5 8 4 1 7 5 7 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
2159 CG2 2160 N	VAL ASN ASN	A A	286 2 286 2	2.504 3.262	66.487 65.634 65.505	26.285 25.803	1 5	54.13 52.66
2162 C 2163 O 2164 CB	ASN ASN	A A	286 2 286 2	25.612 22.612	64.26 63.41	26.458 27. 4 74	1	55.87 56.36
2165 CG 2166 OD 2167 ND	1 ASN 2 ASN	A A	286		62.557 65.17	27.002 24.529	•	
2168 N 2169 CA 2170 C	LEU LEU	A A	287 287 287	26.254 27.072 28.222	65.045 66.322 66.274	23.99 24.2 24.641	, 1 1	51.93 51.31 49.83
2171 O 2172 CE 2173 CG	LEU LEU LEU	A A	287 287 287 287	26.211 27.583 28.442	64.727 64.605 63.532	22.504 21.842 22.51	1.	50.21 47.77 51
2174 CI 2175 CI 2176 N	D1 LEU	A A A	287 288	27.382 26.464	64.329 67.459 68.749	20.366 23.882 24.037	1 1 1	52.28 51.31
2177 C 2178 C	A LEU	A A A	288 288 288	27.119 27.546 28.676	68.951 69.352	25.478 25.754 23.568	1 1 1	52.12 50.35 48.57
2179 C 2180 C 2181 C	B LEU	A A	288 288 288	26.186 26.175 25.19	69.871 70.031 71.084	22.05 21.626	1	43.02 45.13 45. <u>5</u> 7
2182 (2183 (2184)	DD2 LEU	Α	288 289	27.569	70.4 68.613			56.07

2186 C 2187 O 2188 CB 2189 CG 2190 CD 2191 OE1 2192 OE2 2193 N 2194 CA 2195 C 2196 O 2197 CB 2198 CG 2199 CD 2200 CE 2201 NZ 2202 N 2203 CA 2204 C 2205 O 2206 CB 2207 CG 2208 SD 2209 CE 2210 N 2211 CA 2212 C 2213 O 2214 CB 2215 CG 2216 CD1 2217 CD2 2218 N 2219 CA 2220 C 2221 O 2222 CB 2221 O 2222 CB 2223 CG1 2224 CG2 2225 N 2226 CA 2227 C 2228 CG2 2231 CD1 2232 CD2 2233 N 2234 CA	LEU ASP ASP	44444444444444444444444444444444444444	# X 289 26.884 289 28.117 289 28.948 289 25.644 289 25.4 289 24.156 289 24.257 290 28.254 290 29.382 290 30.664 290 31.747 290 29.072 290 28.246 290 27.831 290 26.061 291 30.548 291 31.729 291 32.207 291 33.397 291 31.475 291 31.475 291 31.272 291 33.397 291 31.272 291 33.397 291 31.272 291 33.397 291 31.475 291 31.272 291 33.397 291 31.272 291 33.397 291 31.475 291 31.475 291 31.475 291 31.272 291 33.397 291 31.272 291 33.397 291 31.272 291 33.397 291 31.272 291 33.397 291 31.272 291 33.397 291 31.475 291 31.475 291 31.475 291 31.475 291 31.595 292 31.651 292 31.808 292 31.651 292 31.808 292 31.595 293 32.185 293 32.185 293 32.185 293 32.185 293 32.518 293 32.518 293 32.518 293 33.755 293 34.662 293 32.518 293 32.518 293 33.755 293 34.693 294 35.302 294 35.302 294 35.302 294 35.302 294 35.302 295 36.89 295 36.89	68.72 67.876 68.295 68.239 68.936 69.828 69.36 70.996 66.711 65.814 66.299 65.972 64.396 63.563 62.249 61.264 61.794 67.033 67.551 68.879 69.155 67.733 66.472 66.605 67.185 69.701 71.003 71.099 72.157 72.073 72.248 73.233 72.736 69.982 70.746 70.668 68.562 68.539 68.562 68.539 68.562 68.539 68.563 71.502 72.332 71.535 71.966 73.263 74.456 75.375 75.181 70.37 69.426	29.504 30.367 27.565 27.813 27.153 27.628 27.331 28.289 27.636 28.642 29.375 26.046 25.361 25.947 23.86 23.107 21.305 20.858 26.429 26.977 28.483 29.065 24.449 24.724 29.115 30.551 30.8 30.009 31.078 32.409 31.248 31.888 32.236 32.404 33.368 33.587 32.387 34.848 33.215 33.697 32.533	57 56 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2230 CG 2231 CD1 2232 CD2 2233 N 2234 CA 2235 C 2236 O	LEU LEU ASP ASP ASP ASP	A A A A A A	294 35.30 294 34.99 295 35.89	75.375 9 75.181 2 70.37 1 69.426 19 68.562 17 67.605	32.387 34.848 33.215 33.697 32.533 32.145 34.785	1 1 1 1 1	63.07 63.78 65.51 66.04 66.19 70.58
2237 CB 2238 CG 2239 OD 2240 OD	1 ASP	A A A	295 37.21 295 38.4 295 36.72	19 67.586 16 67.725	35.466 35.307	1 1 1	75.84 76.64 75.05

Atom	Daniduo		#	X	Y	z oc	C	В
Atom Type	Residue	٨		8.539	68.895	31.998	1	64.2
2241 N	ALA	A		9.122	68.169	30.881	1 6	34.21
2242 CA	ALA	A		9.072	66.653	31.017	1 6	6.32
2243 C	ALA	A		38.827	65.952	30.035	1 6	8.03
2244 O	ALA	Α				30.666		6.83
2245 CB	ALA	Α		10.551	68.617	32.229		37.54
2246 N	GLU	Α		39.282	66.146			69.08
2247 CA	GLU	Α	297	39.28	64.701	32.465		69.12
2248 C	GLU	Α		37.939	63.982	32.271		68.24
2249 O	GLU	Α	297	37.899	62.89	31.7		
2249 CB	GLU	Α	297	39.837	64.39	33.857		73.29
2251 CG	GLU	A	297	41.315	64.755	34.046	1	77.9
2251 CG	GLU	A		42.278	63.895	33.215		76.74
2252 CD	GLU	Â		42.214	62.645	33.321		76.29
2253 OE1	GLU	Â		43.116	64.476	32.484		68.77
2254 OE2		Â		36.856	64.569	32.782	1	70.3
2255 N	GLN	Ā	298	35.509	63.988	32.664	1	70.51
2256 CA	GLN		298	34.925	64.235	31.279	1	67.98
2257 C	GLN	A	298	33.889	63.681	30.916	1	67.58
2258 O	GLN	A		34.557	64.59	33.712	1	77.11
2259 CB	GLN	A	298		64.386	35.18	1	84.98
2260 CG	GLN	A	298	34.963	62.916	35.57	1	89.04
2261 CD	GLN	Α	298	35.069	62.5	36.231	1	88.81
2262 OE1	GLN	Α	298	36.034	62.119	35.158	1	89.92
2263 NE2	GLN	Α	298	34.078	65.087	30.515	1	65.78
2264 N	ARG	Α	299	35.601		29.173	1	61.73
2265 CA	ARG	Α	299	35.175	65.441	28.264	i	61
2266 C	ARG	Α	299	35.263	64.218	28.204	1	62.34
2267 O	ARG	Α	299	36.294	63.532	28.65	i	58.4
2268 CB	ARG	Α	299	36.032	66.602	27.505	1	54.82
2269 CG	ARG	Α	299	35.414	67.371	27.702	1	51.47
2270 CD	ARG	Α	299	35.606	68.862		1	49.45
2271 NE	ARG	Α	299	36.961	69.289	27.398	1	45.18
2272 CZ	ARG	Α	299	37.593	70.286	28.008	1	41.01
2273 NH1	ARG	Α	299	37.021	70.984	28.968	1	41.47
2274 NH2	ARG	Α	299	38.811	70.586	27.647		57.9
2275 N	VAL	A	300	34.163	63.936	27.58	1	58.42
2276 CA	VAL	Α	300	34.072	62.799	26.674	1	58. 9 2
2277 C	VAL	Α	300	35.218	62.777	25.649	1	59.7
2277 C 2278 O	VAL	A	300	35.803	63.812	25.336	1	
2278 CB	VAL	Ä	300		62.816	25.939	1	57.66 55.44
	VAL	Ä	300		63.453	24.56	1	55.44
2280 CG1	VAL	Ä	300		61.428	25.872	1	55.5
2281 CG2	THR	Â	301		61.584	25.193	1	59.9
2282 N		Â	301		61.461	24.193	1	58.31
2283 CA	THR		301		61.227	22.858	1	60.17
2284 C	THR	A	301		60.924	22.817	1 -	
2285 O	THR	A	301		60.256	24.448	1	57.9
2286 CB	THR	A	301		59.036	24.363	1	56.38
2287 OG1		A			60.361	25.802	1	50.97
2288 CG2		A	301	• • • • • • • • • • • • • • • • • • • •	61.355	21.773	1	59.12
2289 N	ALA	A	302		61.149	20.44	1	55.83
2290 CA	ALA	A	302			20.348	1	56.24
2291 C	ALA	Α	303				1	58.36
2292 O	ALA	Α	30					55.91
2293 CB	ALA	Α	30				1	
2294 N	GLY	Α	30					
2295 CA	GLY	Α	30					
2296 C	GLY	Α	30	3 34.413	57.338	21.0	'	55.51
2200 0								

Atom								
Atom Type	Residue		#	X	Υ		occ	В
2297 O	GLY	Α	303	33.407	56.881	21.03	1	60.46
2298 N	GLU	Α	304	34.397	57.837	22.84	1	61.02
2299 CA	GLU	Α	304	33.193	57.86	23.667	1	60.96
2300 C	GLU	Α	304	32.113	58.67	22.965	1	60.89
2301 O	GLU	Α	304	30.95	58.245	22.903	1	61.63
2302 CB	GLU	Α	304	33.487	58.484	25.041	1	65.27
2303 CG	GLU	Α	304	34.485	57.735	25.924	1	69.45
2304 CD	GLU	Α	304	34.757	58.462	27.247	1	75.82
2305 OE1	GLU	Α	304	33.801	59.023	27.833	1 1	78.78 77.52
2306 OE2	GLU	A	304	35.924	58.471	27.71	1	58.26
2307 N	ALA	A	305	32.513	59.826	22.425 21.709	1	54.78
2308 CA	ALA	A	305	31.609	60.724 59.965	20.64	1	53.25
2309 C	ALA	A	305	30.825	60.047	20.594	1	51.95
2310 O	ALA	A	305	29.61	61.863	21.083	1	51.09
2311 CB	ALA	A	305 306	32.395 31.533	59.2	19.814	i	53.54
2312 N	LEU	A	306	30.931	58.41	18.746	1	52.85
2313 CA	LEU	A A	306	29.978	57.358	19.285	1	57.51
2314 C	LEU LEU	Ä	306	28.951	57.058	18.671	1	55.46
2315 O	LEU	Â	306	32.022	57.711	17.953	1	50.42
2316 CB 2317 CG	LEU	Â	306	32.92	58.585	17.089	1	49.59
2317 CG 2318 CD1	LEU	Ä	306	34.102	57.793	16.604	1	43.28
2319 CD2	LEU	Ä	306	32.114	59.131	15.916	1	49.83
2320 N	ALA	A	307	30.339	56.788	20.433	1	62.58
2321 CA	ALA	Α	307	29.533	55.755	21.091	1	63.64
2322 C	ALA	Α	307	28.195	56.262	21.655	1	63.94
2323 O	ALA	Α	307	27.332	55.457	22.02	1	66.89
2324 CB	ALA	Α	307		55.09	22.202	1	61.54
2325 N	HIS	Α	308		57.586	21.699	1	59.49
2326 CA	HIS	Α	308		58.207	22.238	1	55.38 56.49
2327 C	HIS	Α	308		57.913	21.459	1.	55.81
2328 O	HIS	A	308		57.769 50.700	20.244 22.355	1	48.83
2329 CB	HIS	A	308		59.708 60.414	23.208	1	45.66
2330 CG	HIS	A	308		60.892	22.713	1	43.32
2331 ND1	HIS	A	308		60.768	24.514	1	42.3
2332 CD2	HIS	A	308 308		61.513	23.676	1	39.82
2333 CE1	HIS	A A	308		61.455	24.778		40.32
2334 NE2	HIS	A	309		57.823	22.169		60.56
2335 N	PRO PRO	Â	309		57.544	21.542		61.17
2336 CA 2337 C	PRO	Â	309		58.535	20.471	1	61.9
2337 C 2338 O	PRO	Â	309		58.306	19.78	1	64.35
2339 CB	PRO	Ä	309		57.592	22.728	1	61.18
2340 CG	PRO	A	309		57.081	23.847	1	63.08
2341 CD	PRO	A	309		57.833	23.639		
2342 N	TYR	Α	310	23.376	59.654	20.367		60.89
2343 CA	TYR	Α	310	23.052	60.676	19.369		60.03
2344 C	TYR	Α	310	23.376	60.143	17.976		59.78
2345 O	TYR	Α	310		60.362	17.016		55.61
2346 CB	TYR	Α	310		61.959	19.634		60.71
2347 CG	TYR	Α	310		63.068	18.614		57.56 58.7
2348 CD1	TYR	Α	310		63.613	18.399		54.92
2349 CD2	TYR	Α	310		63.575	17.872		57.82
2350 CE1	TYR	A	31		64.642	17.471		57.02 55.04
2351 CE2	TYR	A	31		64.601	16.935 16.745		
2352 CZ	TYR	Α	31	0 23.268	65.133	10.74	, '	55.50

Control of the Contro

Atom Type 2353 OH 2354 N 2355 CA 2356 C 2357 O 2358 CB 2359 CG 2360 CD1 2361 CD2 2362 CE1 2363 CE2 2364 CZ 2365 N 2366 CA 2367 C 2368 O 2369 CB 2370 CG 2371 CD 2372 OE1 2373 OE2 2374 N 2375 CA 2376 C 2376 C 2377 O 2378 CB 2379 OG 2379 OG 2380 N	RESIDENT TO PERSON TO PERS	AAAAAAAAAAAAAAAAAAAAAAAAAA	# X 310 23.049 311 24.48 311 24.976 311 25.114 311 26.508 311 27.094 311 27.95 311 27.338 311 28.5 311 28.6 311 28.6 311 28.6 312 22.697 312 22.697 312 22.472 312 22.915 312 21.367 312 20.645 312 19.245 312 18.962 313 21.807 313 21.498 313 22.549 313 20.431 313 20.929 314 23.901 314 25.102	66.16 59.407 58.831 57.404 56.616 58.854 60.23	16.884 16.007 17.95 16.194	62 666 666 72 751 621 621 621 621 621 621 621 621 621 62	.18 .46 .25 .27 .5.44 .2.42 .5.59 1.21 9.64 8.52 8.27 .7.76 .7.48 .7.5.56 .33.58 .39.04 .91.58 .94.32 .91.87 .76.34 .74.37 .73.93 .71.9 .72.62 .73.98 .75.64 .78.57
2383 O 2384 CB 2385 CG 2386 CD1 2387 CD2 2388 N 2389 CA 2390 C 2391 O 2392 CB 2393 OXT 2394 N 2395 CA 2396 C 2397 O 2398 CB 2399 N 2400 CA 2401 C 2402 O 2403 CB 2404 CG 2405 CG 2406 N 2407 CA 2408 C	GLN GLN GLN GLN VAL VAL VAL VAL VAL VAL 1 VAL 2 VAL GLN	44444444444444444444444444444444444444	314 27.044 314 25.672 314 24.779 314 25.527 314 24.348 315 26.12 315 27.088 315 27.419 315 26.651 315 28.491 322 44.391 322 44.391 322 44.391 323 45.078 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 323 45.981 324 49.72 324 50.08	50.091 51.01 50.893 48.854 51.914 52.874 52.934 52.739 754.326 154.343 154.951 953.298 753.418	15.255 13.36 13.559	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Atom					7 000	^ I	3
Atom Type	Residue		# X	Y	Z OC 13.477		86.2
2409 O	GLN	Α	324 49.899	55.816			7.87
2410 CB	GLN	Α	324 50.463	53.192	12.227		81.3
2411 N	LYS	Α	325 50.621	54.777	15.344		
2412 CA	LYS	Α	325 51.015	56.009	15.998		9.16
2413 C	LYS	Α	325 52.109	56.733	15.228		7.26
2414 O	LYS	Α	325 53.028	56.112	14.713		77.74
2415 CB	LYS	Α	325 51.475	55.729	17.426		30.69
2416 CG	LYS	Α	325 50.351	55.287	18.366		34.68
2417 CD	LYS	Α	325 50.725	55.552	19.819		38.94
2418 CE	LYS	Α	325 51.212	56.998	19.995		91.51
2419 NZ	LYS	Α	325 51.477	57.37	21.416		91.97
2420 N	TYR	Α	326 51.968	58.047	15.108	•	76.32
2421 CA	TYR	Α	326 52.948	58.874	14.418		76.35
2422 C	TYR	Α	326 54.211	58.921	15.29		80.86
2423 O	TYR	Α	326 54.115	58.889	16.519	1	82
2423 CB	TYR	Α	326 52.352	60.272	14.195		68.98
2424 CB 2425 CG	TYR	A	326 53.311	61.304	13.668		63.42
2425 CG 2426 CD1	TYR	A	326 53.667	61.346	12.329		65.98
2428 CD1 2427 CD2	TYR	A	326 53.874	62.24	14.52		64.75
2427 CD2 2428 CE1	TYR	A	326 54.573	62.307	11.851		67.91
2428 CE1 2429 CE2	TYR	A	326 54.778	63.198	14.064		66.04
2429 CE2 2430 CZ	TYR	A	326 55.126	63.23	12.733	1	67.09
	TYR	Ä	326 56.029	64.183	12.307	1	66.12
2431 OH 2432 N	ASP	A	327 55.386	58.966	14.66	1	85.46
2432 N 2433 CA	ASP	A	327 56.665	58.996	15.385	1	88.92
	ASP	Â	327 57.555	60.122	14.835	1	89.81
2434 C	ASP	A	327 57.327	60.579	13.717	1	89.6
2435 O	ASP	Ä	327 57.356	57.64	15.207	1	92.6
2436 CB	ASP	A	327 58.449	57.395	16.228	1	96.72
2437 CG 2438 OD1	ASP	Ä	327 58.152	57.452	17.449	1	97.04
2439 OD2	ASP	A	327 59.597	57.128	15.802	1	96.71
2439 OD2 2440 N	ASP	Ä	328 58.567	60.561	15.589	1	91.43
2440 N 2441 CA	ASP	A	328 59.437	61.641	15.098	1	95.64
2441 CA 2442 C	ASP	Α	328 60.7	62.002	15.914	1	96.78
2442 C 2443 O	ASP	A	328 60.964	61.456	16.994	1	94.25
2443 C 2444 CB	ASP	A	328 58.594	62.915	14.876	1	98.53
2444 CB 2445 CG	ASP	A	328 59.321	63.985	14.058	1	99.84
2446 OD1	ASP	A	328 59.618	63.737	12.868	1	99.15
2447 OD2	ASP	Α	328 59.596	65.074	14.614	1	100
2448 N	SER	A	329 61.483	62.912	15.329	1	97.59
2449 CA	SER	Α	329 62.716	63.461	15.888	1	98.55 98.82
2450 C	SER	Α	329 62.967	64.84	15.233	1	
2450 O 2451 O	SER -	A	329 63.589	64.92	14.149	1	97.91 98.4
2452 CB	SER	Α	329 63.911	62.5	15.681	1	• • • •
2453 OG	SER	Α	329 64.182	62.229	14.313	1	95.53 99.25
2454 OXT	SER	Α	329 62.472	65.842	15.793	1	99.23 96.21
2455 N	ARG	Α	335 66.574	73.051	17.072	1	
2456 CA	ARG	A	335 67.107		15.674	1	97.17 97.18
2450 CA	ARG	Α	335 67.192		15.088	. 1	
2458 O	ARG	A	335 66.399	75.327	15.442	1	96.48
2459 CB	ARG	A	335 66.235	72.14	14.791	1	95.49
2460 N	THR	A	336 68.168		14.209	1	98.59
2461 CA	THR	A	336 68.366		13.564	1	99.84
2461 CA 2462 C	THR	Ä	336 67.368	76.221	12.418	1	99.87
2462 C 2463 O	THR	A	336 66.68	75.293	11.987	1	99:03
2464 CB	THR	Ā	336 69.833		13.014	1	100
2404 00	,,,,,						

^	tom								
	Гуре	Residue		#	X	Υ	Z	OCC	B.
2465 00		THR	Α	336	70.094	75.2	11.975	1	98.96
2466 CC		THR	A	336	70.854	75.962	14.128	1	100
2460 CC	J Z	LEU	Ä	337	67.282	77.466	11.94	1	100
2467 N 2468 CA		LEU	Â	337	66.375	77.812	10.841	1	99.62
2469 C	`	LEU	Â	337	66.735	76.959	9.63	1	100
2409 C 2470 O		LEU	Â	337	65.857	76.453	8.926	1	100
2470 C	2	LEU	A	337	66.479	79.303	10.497	1	97.19
2471 OL 2472 N	•	ASP	Ä	338	68.036	76.768	9.427	1	100
247,2 N 2473 C/	٨	ASP	Ä	338	68.538	75.964	8.321	1	99.97
2473 C/ 2474 C	`	ASP	A	338	68.368	74.459	8.529	1	100
2475 Q		ASP	Ä	338	68.46	73.689	7.569	1	100
2476 CI	n	ASP	Ä	338	69.997	76.304	8.033	1	99.46
2477 C		ASP	A	338	70.143	77.587	7.243	1	100
2477 C		ASP	Ä	338	69.313	78.511	7.425	1	99.14
2479 O		ASP	A	338	71.088	77.659	6.427	1	100
2479 O	UL	GLU	A	339	68.156	74.04	9.779	1	100
2481 C	Α	GLU	Α	339	67.939	72.623	10.086	1	99.87
2482 C		GLU	Α	339	66.495	72.269	9.739	1	99.1
2483 O		GLU	Α	339	66.23	71.212	9.162	1	100
2484 C		GLU	Α	339	68.235	72.311	11.559	1	99.85
2485 C		GLU	Α	339	69.713	72.036	11.844	1	100
2486 C		GLU	Α	339	70.015	71.802	13.32	1	100
2487 O		GLU	Α	339	69.468	70.835	13.901	1	100
2488 C		GLU	Α	339	70.814	72.579	13.894	1	99.8
2489 N		TRP	Α	340	65.571	73.17	10.074	1	97.23
2490 C		TRP	Α	340	64.155	72.979	9.765	1	94.09
2491 C		TRP	Α	340	63.972	72.993	8.252	1	93.74 92.91
2492 C)	TRP	Α	340	63.292	72.131	7.696	1 1	92.91
2493 C	B	TRP	Α	340	63.308	74.092	10.383		90.6 87.46
2494 C	G	TRP	Α	340	63.087	73.947	11.846 12.83		86.61
2495 C		TRP	Α	340	63.553	74.769	12.63		84.86
2496 C		TRP	Α	340	62.339	72.917 74.313	14.058		85.54
2497 N		TRP	A	340	63.143	74.313	13.885		84.66
2498 0		TRP	A	340		71.798	12.056		83.2
2499 (TRP	A	340 340		71.750	14.829		84.88
2500 0		TRP	A	340		70.984	12.996		83.43
2501 (TRP	A A	340		71.27	14.365		83.1
2502 (TRP	Ä	341		73.97	7.605		92.33
2503 N		LYS	Â	341		74.15	6.156		90.6
2504 (LYS LYS	Â	341		72.888	5.442		89.72
2505 (2506 (LYS	Â	341		72.415	4.482	1	88.1
2507 (LYS	Â	341		75.37	5.793		90.99
2507		LYS	Ä	341		75.864	4.365	, 1	91.86
2509		LYS	Â	341		77.205	4.263		93.95
2510		LYS	A	341		77.697	2.831	1	95.81
2511		LYS	Α	341	66.808	79.05	2.76		96.07
2512		ARG	Α	342		72.321	5.957		89.21
2513		ARG	Α	342	66.758	71.108	5.39		88.95
2514		ARG	A	342		69.868	5.67		87.46
2515		ARG	Α	342		69.071	4.772		87.88
2516		ARG	A	342		70.91	5.93		
2517		VAL	Α	343	65.503	69.701	6.93		
2518		VAL	Α	343		68.566	7.33		
2519		VAL	Α	343		68.568			
2520		VAL	Α	343	62.898	67.511	6.09	5 1	83.25

Atom								
Atom Type	Residue		#	X	Υ -	Z	occ	В
2521 CB	VAL	Α	343	64.364	68.634	8.824	1	78.29
2522 N	THR	Α	344	62.854	69.766	6.251	1	80.67
2523 CA	THR	Α	344	61.627	69.949	5.478	1	77.41
2524 C	THR	Α	344	61.846	69.587	4.018	1	77.01
2525 O	THR	Α	344	61.12	68.759	3.467	1	75.78
2526 CB	THR	Α	344	61.124	71.416	5.569	1	77.39
2527 OG1	THR	Α	344	60.759	71.713	6.923	1	77.62
2528 CG2	THR	Α	344	59.921	71.641	4.677	1	75.64
2529 N	TYR	Α	345	62.852	70.211	3.403	1	77.47
2530 CA	TYR	Α	345	63.193	69.974	1.996	1	76.55
2531 C	TYR	A	345	63.248	68.477	1.699	1	74.62
2532 O	TYR	A	345	62.768	68.028	0.664	1	74.1
2533 CB	TYR	A	345	64.538	70.626	1.665	1	76.48
2534 CG	TYR	A	345	64.883	70.636	0.195	1	79.82
2535 CD1	TYR	A	345	64.058	71.276	-0.727	1	81.53
2536 CD2	TYR	A	345	66.039	70.007 71.29	-0.278 -2.094	1 1	81.39 83.78
2537 CE1	TYR	A	345	64.369	71.29 70.014	-1.642	1	82.74
2538 CE2	TYR TYR	A A	345 345	66.363 65.521	70.658	-2.545	1	84.59
2539 CZ 2540 OH	TYR	Â	345	65.81	70.654	-3.897	1	86.28
2541 N	LYS	Â	346	63.81	67.715	2.636	i	75.04
2542 CA	LYS	A	346	63.928	66.265	2.513	1	74.66
2543 C	LYS	Ä	346	62.549	65.592	2.472	1	74.18
2544 O	LYS	A	346	62.288	64.749	1.614	1	75.1
2545 CB	LYS	Α	346	64.767	65.71	3.66	1	72.9
2546 N	GLU	Α	347	61.659	65.99	3.378	1	74.17
2547 CA	GLU	Α	347	60.308	65.433	3.424	1	72.66
2548 C	GLU	Α	347	59.482	65.854	2.209	1	72.93
2549 O	GLU	Α	347	58.482	65.223	1.896	1	74.79
2550 CB	GLU	Α	347	59.591	65.826	4.72	1	70.51
2551 CG	GLU	Α	347	60.099	65.119	5.985	1	72.71
2552 CD	GLU	Α	347	59.707	63.633	6.07	1	76.33
2553 OE1	GLU	A	347	58.563	63.277	5.706	1	75.42
2554 OE2	GLU	A	347	60.536	62.818	6.535	1	75.05 72.95
2555 N	VAL	A	348	59.898	66.916	1.525	1 1	72.95 73.7
2556 CA	VAL	A	348	59.183	67.384	0.338	1	74.8
2557 C	VAL	A	348	59.567 58.71	66.529	-0.875 -1.642	1	74.45
2558 O 2559 CB	VAL VAL	A A	348 348	59.493	66.081 68.883	0.02	1	71.95
2560 CG1	VAL	A	348	58.76	69.319	-1.23	1	68.63
2561 CG2	VAL	Â	348	59.088	69.769	1.183	i	70.64
2562 N	LEU	Â	349	60.864	66.286	-1.025	1	75.31
2563 CA	LEU	Â	349	61.366	65.506	-2.142	1	73.24
2564 C	LEU	Â	349	61.069	64.018	-2.026	1	71.64
2565 O	LEU	Ä	349	61.005	63.323	-3.037	1	72.52
2566 CB	LEU	A	349	62.866	65.734	-2.305	1	74.06
2567 CG	LEU	A	349	63.296	67.181	-2.558	1	74.01
2568 CD1	LEU	Α	349	64.79	67.214	-2.831	1	74.92
2569 CD2	LEU	Α	349	62.532	67.775	-3.733	1	73.53
2570 N	SER	Α	350	60.882	63.535	-0.801	1	69.25
2571 CA	SER	Α	350	60.594	62.116	-0.573	1	69.89
2572 C	SER	Α	350	59.115	61.741	-0.741	1	70.37
2573 O	SER	Α	350	58.715	60.607	-0.471	1	68.27
2574 CB	SER	Α	350	61.096	61.671	0.815	1	70.53
2575 OG	SER	A	350	60.405	62.298	1.889	1	68.02 -
2576 Ņ	PHE	Α	351	58.314	62.679	-1.232	1	69.89

Atom	Dosiduo		#	X	Υ	z o	CC	В
Atom Type	Residue PHE	Α	# 351	56.898	62.419	-1.396	1	69.52
2577 CA 2578 C	PHE	Â	351	56.532	61.61	-2.624	1	70.22
2579 O	PHE	Â	351	56.872	61.976	-3.748	1	69.53
2580 CB	PHE	Ä	351	56.113	63.721	-1.417	1	67.98
2581 CG	PHE	A	351	54.63	63.52	-1.457	1	65.98
2582 CD1	PHE	A	351	53.958	63.017	-0.349	1	68.72
2583 CD2	PHE	Α	351	53.907	63.808	-2.598	1	63.74
2584 CE1	PHE	Α	351	52.592	62.805	-0.384	1	65.61
2585 CE2	PHE	Α	351	52.544	63.6	-2.64	1	64.05
2586 CZ	PHE	Α	351	51.887	63.097	-1.533	1	64.85
2587 N	LYS	Α	352	55.793	60.531	-2.395	1	70.08
2588 CA	LYS	Α	352	55.334	59.674	-3.476	1	71.74
2589 C	LYS	Α	352	53.814	59.789	-3.503	1	72.63
2590 O	LYS	Α	352	53.152	59.52	-2.501	1	73.05
2591 CB	LYS	Α	352	55.761	58.234	-3.227	1	71.17
2592 N	PRO	A	353	53.244	60.221	-4.641	1 1	73.37 76.13
2593 CA	PRO	A	353	51.804	60.405	-4.87 -4.526	1	78.13 78.04
2594 C	PRO	A	353	50.886 51.403	59.222 58.154	-4.526 -4.134	1	79.75
2595 O	PRO	A	353	51.403	60.745	-6.355	1	76.14
2596 CB	PRO	A	353 353	53.007	61.522	-6.56	1	75.41
2597 CG	PRO PRO	A A	353	54.014	60.675	-5.813	1	74.92
2598 CD 2599 OXT	PRO	Â	353	49.646	59.384	-4.641	1	78.78
2600 PRO	A	353	000	40.040				
2600 PRO 2601 N	ARG	В	1008	15.392	29.317	71.275	1	83.05
2602 CA	ARG	В	1008	14.307	28.341	70.997	1	83.28
2603 C	ARG	В	1008	14.782	27.225	70.048	1	84.92
2604 O	ARG	В	1008	15.892	27.289	69.491	1	85.42
2605 CB	ARG	В	1008		29.068	70.431	1	79.92
2606 N	SER	В	1009		26.183	69.917	1	84.43
2607 CA	SER	B	1009	14.251	25.03	69.064	1	82.74
2608 C	SER	В	1009		24.248	68.825	1 1	81.88 82.17
2609 O	SER	В	1009		24.341	69.621 69.728	1	85.86
2610 CB	SER	В	1009		24.126 23.124	68.834	1	89.93
2611 OG	SER	В	1009		23.124	67.746	1	79.73
2612 N	GLY	B B	1010 1010		22.687	67.393	1	75.86
2613 CA	GLY GLY	В	1010		23.446	66.363	1	74.57
2614 C 2615 O	GLY	В	1010		24.194	65.55	1	74.45
2616 N	PHE	В	1011		23.255	66.377	1	71.17
2617 CA	PHE	В	1011		23.944	65.445	1	67.53
2618 C	PHE	В	1011		24.464	66.178	1	68.57
2619 O	PHE	В	1011	7.383	24.316	67.392	1	70.69
2620 CB	PHE	В	1011		23.023	64.31	1	61.94
2621 CG	PHE	В	1011	9.338	22.666	63.343	1	59.04
2622 CD1	PHE	В	1011	10.255	21.653	63.641	1	60.36
2623 CD2	PHE	В	1011		23.335	62.132	1	59.42
2624 CE1	PHE	В	1011		21.306	62.743	1	60.46
2625 CE2	PHE	В	1011		23.003	61.213	1	62.65 61.24
2626 CZ	PHE	В	1011		21.981	61.522	1	69.65
2627 N	TYR	В	1012		25.12	65.44 65.998	1	73.68
2628 CA	TYR	В	1012		25.653 26.096	64.871	1	76.63
2629 C	TYR	В	1012		26.096	63.735	1	77.42
2630 O	TYR	В	1012		26.759	67.037	1	74.22-
2631 CB	TYR	B B	1012		28.185	66.54	1	76.73
2632.CG	TYR	D	1012	_ 5.171	20.100			

Atom Type Residue # X	Atom								
2633 CDJ TYR B 1012 6.984 28.732 65.202 1 76.4 2634 CD2 TYR B 1012 4.629 29.017 66.511 1 77.35 2635 CE1 TYR B 1012 4.721 30.075 65.86 1 78.03 2635 CE1 TYR B 1012 7.112 30.075 65.86 1 78.03 2635 CE2 TYR B 1012 5.988 30.887 65.848 1 79.91 2633 N R TYR B 1012 5.988 30.887 65.848 1 79.91 2639 N ARG B 1013 3.16 26.244 65.18 1 79.26 2640 CA ARG B 1013 2.177 26.589 64.159 1 81.64 2641 C ARG B 1013 1.181 28.173 65.643 1 82.46 2641 C ARG B 1013 1.181 28.173 65.643 1 82.46 2643 CB ARG B 1013 1.181 28.173 65.643 1 82.46 2643 CB ARG B 1013 1.181 28.173 65.643 1 82.46 2644 CG ARG B 1013 1.889 24.056 64.054 1 89.93 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2649 NH2 ARG B 1013 0.806 23.013 64.153 1 95.11 2649 NH2 ARG B 1013 0.806 23.013 64.153 1 95.11 2649 NH2 ARG B 1013 0.628 22.871 62.023 1 98.87 22.626 62.863 1 97.65 2647 CZ ARG B 1013 0.628 22.871 62.023 1 98.87 22.626 CG 28.65 1 97.65 2648 NH1 ARG B 1013 0.628 22.871 62.023 1 98.87 22.626 CG 28.65 1 97.65 2648 NH1 ARG B 1013 0.628 22.207 60.898 1 97.49 2850 N GLN B 1014 0.917 28.553 63.433 1 84.44 2851 CA GLN B 1014 0.941 28.553 63.433 1 84.44 2851 CA GLN B 1014 0.942 23.657 62.174 1 100 2649 NH2 ARG B 1013 1.045 22.207 60.898 1 97.49 2655 C GLN B 1014 0.942 23.657 64.231 1 85.42 2656 CD GLN B 1014 0.942 23.657 64.231 1 86.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2656 CD GLN B 1014 0.942 23.657 64.231 1 85.47 2656 CD GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2655 CG GLN B 1014 0.942 23.657 64.231 1 85.47 2656 CD GLU B 1015 -3.683 33.439 64.38 64.03 1 89.79 2656 CD GLU B 1015 -3.683 33.439 64.38 64.03 1 89.79 2656 CD GLU B 1015 -3.683 33.439 64.38 64.03 1 89.97 2656 CD GLU B 1015 -3.683 33.43		Residue		#	Х	Y	z (occ	В
2634 CD2 TYR B 1012 4.629 29.017 66.511 1 77.35 2635 CE1 TYR B 1012 7.112 30.075 65.86 1 78.03 2636 CE2 TYR B 1012 4.742 30.358 66.167 1 80.11 2637 CZ TYR B 1012 5.988 30.887 65.5848 1 79.91 2638 OH TYR B 1012 6.108 32.231 65.556 1 79.31 2639 N ARG B 1013 3.16 26.244 65.18 1 79.26 2640 CA ARG B 1013 3.16 26.244 65.18 1 79.26 2640 CA ARG B 1013 2.177 26.589 64.159 1 81.64 2641 C ARG B 1013 1.42 7.85 64.478 1 82.41 2642 O ARG B 1013 1.41 28.173 65.643 1 82.46 2643 CB ARG B 1013 1.217 25.422 63.978 1 83.6 2644 CG ARG B 1013 1.217 25.422 63.978 1 83.6 2644 CG ARG B 1013 1.217 25.422 63.978 1 83.6 2644 CG ARG B 1013 0.367 22.026 62.863 1 97.65 2647 CZ ARG B 1013 0.367 22.026 62.863 1 97.65 2647 CZ ARG B 1013 0.367 22.026 62.863 1 97.65 2647 CZ ARG B 1013 0.45 22.207 60.898 1 97.65 2647 CZ ARG B 1013 0.45 22.207 60.898 1 97.65 2647 CZ ARG B 1013 0.45 22.207 60.898 1 97.65 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2655 C GLN B 1014 0.971 28.553 63.433 1 84.44 2655 C GLN B 1014 0.971 28.553 63.433 1 84.44 2655 C GLN B 1014 0.744 30.103 62.47 1 97.23 2655 N GLN B 1014 0.744 30.103 62.47 1 97.23 2655 N GLN B 1014 0.744 30.103 62.47 1 97.23 2655 N GLN B 1014 0.744 30.103 62.47 1 97.23 2655 N GLN B 1014 0.744 30.103 62.47 1 97.23 2655 N GLN B 1014 0.744 30.103 62.47 1 97.23 2655 N GLN B 1014 0.744 30.103 62.47 1 97.23 2655 N GLN B 1014 0.744 30.103 62.47 1 97.23 2655 N GLN B 1014 0.482 32.265 64.231 1 85.77 2655 CG GLN B 1014 1.093 34.568 64.013 1 86.89 26.59 N GLU B 1015 -5.872 32.265 64.231 1 85.77 26.56 N C GLN B 1014 1.093 34.568 64.013 1 85.77 26.56 N C GLN B 1014 1.093 34.568 64.013 1 86.577 26.56 N C GLN B 1014 1.093 34.568 64.013 1 86.577 26.56 N C GLN B 1014 1.093 34.568 64.013 1 86.577 26.56 N C GLN B 1015 -5.674 30.985 65.56 1 99.77 1 90.63 1 100 2666 CD GLN B 1015 -5.674 30.985 65.56 1 199.77 1 96.22 2660 CD GLU B 1015 -5.672 32.746 64.473 1 100 2666 CD GLU B 1015 -5.474 34.451 5.965 1 199.77 1 96.22 2660 CD GLU B 1015 -5.474 34.451 5.965 1 199.97 2660 CD GLU B 1015 -5.474 34.451 5.965 1 199.97 2662 CD GLU	* *		В			28.732	66.202	1	
2635 CE1 TYR B 1012 7.112 30.075 65.86 1 78.03 2636 CE2 TYR B 1012 4.742 30.358 66.167 1 80.11 2637 CZ TYR B 1012 4.742 30.358 66.167 1 80.11 2637 CZ TYR B 1012 5.988 30.887 65.848 1 79.91 2638 OH TYR B 1012 5.988 30.887 65.848 1 79.91 2639 N ARG B 1013 3.16 26.244 65.18 1 79.26 2639 N ARG B 1013 3.16 26.244 65.18 1 79.26 2641 C ARG B 1013 2.177 26.589 64.159 1 81.64 2641 C ARG B 1013 1.181 28.173 65.643 1 82.46 2643 CB ARG B 1013 1.181 28.173 65.643 1 82.46 2643 CB ARG B 1013 1.181 26.173 65.643 1 82.46 2643 CB ARG B 1013 1.889 24.058 64.054 1 89.93 2645 CD ARG B 1013 1.889 24.058 64.054 1 89.93 2645 CD ARG B 1013 0.806 22.013 64.153 1 95.11 2649 NH2 ARG B 1013 0.806 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 0.628 22.871 62.023 1 98.87 2648 NH2 ARG B 1013 0.628 22.871 62.023 1 97.65 2647 CZ ARG B 1013 0.628 22.871 62.023 1 97.65 2647 CZ ARG B 1013 0.628 22.871 62.023 1 97.65 2647 CZ ARG B 1013 0.628 22.871 62.023 1 97.65 2647 CZ ARG B 1013 0.628 22.871 62.023 1 98.87 2650 N GLN B 1014 0.217 29.791 63.811 1 86.4 2655 C GLN B 1014 0.217 29.791 63.811 86.4 2655 C GLN B 1014 0.744 30.103 62.47 1 87.23 2655 CG GLN B 1014 0.743 30.103 62.47 1 87.23 2655 CG GLN B 1014 0.482 32.255 64.231 1 85.57 2655 N GLN B 1014 1.175 30.982 63.798 1 85.57 2655 N GLU B 1014 1.175 30.982 63.798 1 85.57 2655 N GLU B 1014 1.175 30.982 63.798 1 85.72 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.72 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.74 2655 N GLU B 1015 -2.388 32.564 61.377 1 96.29 1 96.2				1012	4.629	29.017	66.511	1	
2637 CZ TYR B 1012 5.988 30.887 65.848 1 79.91 2633 OH TYR B 1012 5.988 30.887 65.556 1 79.31 2639 N ARG B 1013 3.16 26.244 65.18 1 79.26 2640 CA ARG B 1013 2.177 26.599 64.159 1 81.64 2641 C ARG B 1013 1.4 27.85 64.478 1 82.41 2642 O ARG B 1013 1.41 22.8173 66.543 1 82.44 2642 O ARG B 1013 1.217 25.422 63.978 1 83.6 2644 CG ARG B 1013 1.217 25.422 63.978 1 83.6 2644 CG ARG B 1013 1.217 25.422 63.978 1 83.6 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2646 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2646 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2648 NH1 ARG B 1013 0.628 22.871 62.023 1 98.87 2647 CZ ARG B 1013 0.602 22.207 60.898 1 97.65 2647 CZ ARG B 1013 0.405 22.207 60.898 1 97.49 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2551 CA GLN B 1014 0.971 28.553 63.433 1 84.44 2551 CA GLN B 1014 0.774 30.103 62.47 1 87.23 2652 C GLN B 1014 0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 0.744 30.103 62.47 1 87.23 2655 CG GLN B 1014 0.482 32.256 64.231 1 85.72 2656 CD GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 0.482 32.256 64.231 1 85.42 2656 CD GLN B 1014 1.193 33.459 64.031 1 84.55 2658 NE2 GLN B 1014 1.093 34.558 64.013 1 84.55 2658 NE2 GLN B 1014 1.093 34.558 64.013 1 84.55 2658 NE2 GLN B 1014 1.093 34.558 64.013 1 84.55 2658 NE2 GLN B 1014 1.093 34.558 64.013 1 84.55 2658 NE2 GLN B 1015 -1.826 30.779 62.831 1 90.63 2660 CD GLU B 1015 -2.388 33.516 64.936 1 88.89 2659 N GLU B 1015 -2.388 33.516 64.936 1 88.89 2659 N GLU B 1015 -2.388 33.516 64.936 1 88.89 1 99.74 2666 CD GLU B 1015 -2.388 33.516 64.936 1 99.57 2662 CD GLU B 1015 -2.388 33.516 64.936 1 99.57 2662 CD GLU B 1015 -2.388 33.516 60.107 1 97.85 2666 CD GLU B 1015 -2.398 33.516 61.377 1 96.22 2666 CD GLU B 1015 -2.398 33.516 61.377 1 96.22 2666 CD GLU B 1015 -3.677 33.506 64.845 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2666 CD LU B 1015 -3.687 31.966 64.845 1 100 2668 N VAL B 1016 -0.013 35.12 58.006 1 100 2668 N VAL B 1016 -0.0418 33		TYR	В	1012	7.112				
2638 OH TYR B 1012 6:108 32.231 65.556 1 79.31 2639 N ARG B 1013 3.16 26.244 65.18 1 79.26 2640 CA ARG B 1013 2.177 26.559 64.159 1 81.64 2641 C ARG B 1013 1.4 27.85 64.478 1 82.41 2642 O ARG B 1013 1.41 27.85 64.478 1 82.41 2642 O ARG B 1013 1.217 25.422 63.978 1 83.6 2644 CG ARG B 1013 1.819 24.058 64.054 1 82.46 2643 CB ARG B 1013 1.889 24.058 64.054 1 89.93 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2646 NE ARG B 1013 0.806 23.013 64.153 1 95.11 2646 NE ARG B 1013 0.806 23.013 64.153 1 95.11 2646 NE ARG B 1013 0.806 23.013 64.153 1 97.65 2647 CZ ARG B 1013 0.367 22.626 62.863 1 97.65 2647 CZ ARG B 1013 0.367 22.626 62.863 1 97.65 2647 CZ ARG B 1013 0.405 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -0.455 22.207 60.898 1 97.49 2550 N GLN B 1014 0.217 29.791 63.611 1 84.44 2652 C GLN B 1014 0.217 29.791 63.611 1 86.4 2652 C GLN B 1014 0.217 29.791 63.611 1 86.4 2652 C GLN B 1014 0.247 29.791 63.611 1 86.4 2652 C GLN B 1014 0.482 32.265 64.231 1 85.77 2855 CG GLN B 1014 0.482 32.265 64.231 1 85.77 2855 CG GLN B 1014 0.482 32.265 64.231 1 85.77 2855 CG GLN B 1014 0.482 32.265 64.231 1 85.77 2855 CG GLN B 1014 0.482 32.265 64.231 1 85.77 2655 NE2 GLN B 1014 1.473 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2656 OE GLN B 1015 -2.848 31.213 61.89 1 94.09 2666 CD GLU B 1015 -2.848 31.213 61.89 1 94.09 2666 CD GLU B 1015 -2.848 31.213 61.89 1 94.09 2666 CD GLU B 1015 -2.528 33.3919 59.565 1 99.78 2666 CD GLU B 1015 -2.266 CD GLU B 1015 -2.578 33.591 59.565 1 99.78 2666 CD GLU B 1015 -2.266 33.893 55.66 1 100 2667 OE2 GLU B 1015 -2.266 33.893 55.66 1 100 2667 C HR B 1017 -3.267 33.994 5	2636 CE2	TYR	В	1012					
2639 N ARG B 1013 3.16 26.244 65.18 1 79.26 2640 CA ARG B 1013 1.4 27.85 64.159 1 81.64 2641 C ARG B 1013 1.4 27.85 64.478 1 82.41 2642 O ARG B 1013 1.181 28.173 65.694 1 82.46 2642 O ARG B 1013 1.181 28.173 65.643 1 82.46 2643 CB ARG B 1013 1.217 25.422 63.978 1 83.6 2644 CG ARG B 1013 1.889 24.058 64.054 1 89.93 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2646 NE ARG B 1013 0.806 23.013 64.153 1 95.11 2646 NE ARG B 1013 0.806 23.013 64.153 1 95.11 2646 NE ARG B 1013 0.806 23.013 64.153 1 95.11 2648 NH2 ARG B 1013 0.462 22.871 62.023 1 98.87 2647 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2647 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2649 NH2 ARG B 1013 -0.45 22.207 60.898 1 97.49 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.971 28.553 63.433 1 84.44 2652 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.753 29.714 61.321 1 85.7 2654 CB GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2656 CD GLN B 1014 1.093 34.568 64.013 1 85.42 2656 CD GLN B 1014 1.093 34.568 64.013 1 84.55 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.388 32.564 61.377 1 90.63 2660 CA GLU B 1015 -2.388 32.564 61.377 1 90.63 2660 CA GLU B 1015 -3.372 32.746 64.473 1 90.62 2666 CD GLU B 1015 -4.057 32.143 63.968 1 99.7 2666 CD GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.873 33.69 59.565 1 99.97 2670 C VAL B 1016 -0.767 33.161 59.33 1 98.23 2675 N HR B 1017 -3.047 34.651 59.95 1 99.97 2670 C VAL B 1016 -0.767 33.161 59.33 1 98.23 2675 N HR B 1017 -3.979 35.538 55.664 1 100 2677 C THR B 1017 -3.862 33.99 55.566 1 100 2677 C THR B 1017 -3.862 33.99 55.566 1 100 2677 C THR B 1017 -3.862 33.99 55.566 1 100 2677 C THR B 1017 -3.862 33.99 55.566 1 100 2677 C THR B 1017 -3.879 35.538 55.604 1 199.57	2637 CZ	TYR	В	1012					
2640 CA ARG B 1013 2.177 26.589 64.159 1 81.64 2641 C ARG B 1013 1.4 27.85 64.478 1 82.41 2642 O ARG B 1013 1.41 27.85 64.478 1 82.46 2642 O ARG B 1013 1.217 25.422 63.978 1 83.6 2844 CG ARG B 1013 1.217 25.422 63.978 1 83.6 2844 CG ARG B 1013 0.806 23.013 64.153 1 95.11 28.46 NE ARG B 1013 0.806 23.013 64.153 1 95.11 28.46 NE ARG B 1013 0.806 23.013 64.153 1 95.11 28.46 NE ARG B 1013 0.806 23.013 64.153 1 95.11 28.46 NE ARG B 1013 0.806 23.013 64.153 1 95.11 28.46 NE ARG B 1013 0.628 22.871 62.023 1 98.87 26.47 CZ ARG B 1013 -1.694 23.657 62.174 1 100 28.49 NH2 ARG B 1013 -0.628 22.871 62.023 1 98.87 25.49 NH2 ARG B 1013 -0.45 22.207 60.898 1 97.49 25.50 N GLN B 1014 0.971 28.553 63.433 1 84.44 26.55 C GLN B 1014 0.217 29.791 63.611 1 86.4 26.55 CG GLN B 1014 0.217 29.791 63.611 1 86.4 26.55 CG GLN B 1014 0.482 32.265 64.231 1 85.77 28.55 CG GLN B 1014 0.482 32.265 64.231 1 85.77 28.55 CG GLN B 1014 0.482 32.265 64.231 1 85.77 28.55 N GLN B 1014 0.482 32.265 64.231 1 85.77 28.55 N GLN B 1014 1.093 34.568 64.013 1 84.55 26.58 NE2 GLN B 1014 1.093 34.568 64.013 1 87.14 26.57 OE1 GLN B 1014 2.616 33.188 64.936 1 88.89 26.59 N GLU B 1015 -2.388 32.564 61.377 1 96.22 26.62 O GLU B 1015 -2.388 31.213 61.89 1 99.63 26.60 CA GLU B 1015 -2.388 31.213 61.89 1 99.63 26.60 CA GLU B 1015 -2.388 31.513 62.412 1 97.87 26.65 CD GLU B 1015 -5.372 32.746 64.473 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 26.67 OE2 GLU B 1015 -5.474 34.001 55.56 0 1 100		TYR	В						
2841 C ARG B 1013 1.4 27.85 64.478 1 82.41 2642 O ARG B 1013 1.181 28.173 65.643 1 82.46 2843 CB ARG B 1013 1.181 28.173 65.643 1 82.46 2843 CB ARG B 1013 1.181 28.173 65.643 1 82.46 2845 CD ARG B 1013 1.889 24.058 64.054 1 89.93 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.51 2846 NE ARG B 1013 0.806 23.013 64.153 1 97.65 2647 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -0.45 22.207 60.896 1 97.65 2648 NH1 ARG B 1013 -0.45 22.207 60.896 1 97.65 2649 NH2 ARG B 1013 -0.45 22.207 60.896 1 97.40 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 -0.744 30.103 62.47 1 87.23 2553 O GLN B 1014 -0.744 30.103 62.47 1 87.23 2553 O GLN B 1014 -0.7535 29.714 61.321 1 85.7 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.54 2658 NE2 GLN B 1014 1.093 34.568 64.013 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 94.09 2661 C GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.848 31.213 61.89 1 94.09 2667 OE2 GLU B 1015 -3.286 30.779 62.831 1 95.57 2665 CD GLU B 1015 -3.286 30.779 62.831 1 90.63 2666 OE1 GLU B 1015 -5.372 32.746 64.473 1 100 2668 N VAL B 1016 -2.019 32.636 64.247 1 97.87 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2668 N VAL B 1016 -0.418 33.757 58.571 1 100 2667 OE2 GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1015 -5.847 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.847 34.001 64.518 1 100 2667 OE VAL B 1016 -0.418 33.757 58.571 1 100 2667 OE VAL B 1016 -0.488 33.919 59.565 1 99.97 2670 C VAL B 1016 -0.488 33.919 59.565 1 99.97 2670 C VAL B 1016 -0.488 33.919 59.565 1 99.97 2670 C VAL B 1016 -0.488 33.919 59.565 1 99.97 2677 C THR B 1017 -3.967 33.645 55.081 1 100 2668 N VAL B 1016 -0.488 33.99 55.564 1 100 2677 C THR B 1017 -3.967 33.645 55.081 1 100 2677 C THR B 1017 -3.967 33.645 55.081 1 100 2677 C THR B 1017 -3.967 33.645 55.081	2639 N								
2642 O ARG B 1013 1.181 28.173 65.643 1 82.46 2643 CB ARG B 1013 1.217 25.422 63.978 1 83.6 2844 CG ARG B 1013 1.217 25.422 63.978 1 83.6 2844 CG ARG B 1013 0.806 23.013 64.153 1 95.11 2846 NE ARG B 1013 0.806 23.013 64.153 1 95.11 2846 NE ARG B 1013 0.806 23.013 64.153 1 95.11 2846 NE ARG B 1013 0.367 22.626 62.863 1 97.65 2647 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -0.628 22.871 62.023 1 98.87 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.971 28.553 63.433 1 84.44 2655 CG GLN B 1014 0.217 29.791 63.611 1 86.4 2552 C GLN B 1014 0.217 29.791 63.611 1 85.42 2655 CG GLN B 1014 0.482 32.265 64.231 1 85.77 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.43 33.439 64.38 1 87.14 22657 OLEI GLN B 1014 1.43 33.439 64.38 1 87.14 22657 OLEI GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OLEI GLN B 1014 2.616 33.188 64.936 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 84.55 2650 CD GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -2.318 33.531 62.142 1 97.87 2666 CD GLU B 1015 -4.164 31.399 52.619 1 95.54 2666 CD GLU B 1015 -5.474 34.001 64.518 1 100 2666 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1016 -3.478 33.511 59.33 1 99.27 2670 C VAL B 1016 -0.418 33.757 56.571 1 100 2666 OE1 GLU B 1017 -5.262 33.954 57.11 1 100 2667 OE2 GLU B 1016 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1016 -5.468 33.919 59.565 1 99.97 2670 C VAL B 1016 -0.488 33.919 59.565 1 99.97 2670 C VAL B 1016 -0.488 33.919 59.565 1 99.97 2670 C VAL B 1016 -0.488 33.919 59.565 1 99.97 2670 C VAL B 1016 -0.488 33.919 59.565 1 99.97 2670 C VAL B 1016 -0.488 33.919 59.565 1 99.97 2677 C THR B 1017 -3.802 37.059 55.586 1 99.97 2677 C THR B 1017 -									
2643 CB ARG B 1013 1.217 25.422 63.978 1 83.6 2644 CG ARG B 1013 1.889 24.058 64.054 1 99.93 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2846 NE ARG B 1013 0.367 22.626 62.863 1 97.65 2647 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -0.45 22.207 60.898 1 97.49 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 -0.744 30.103 62.47 1 87.23 2853 O GLN B 1014 -0.744 30.103 62.47 1 87.23 2853 O GLN B 1014 -0.535 29.714 81.321 1 85.7 2855 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2855 CG GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.58 2659 N GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 C GLU B 1015 -2.388 33.531 62.142 1 97.87 2665 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2666 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2666 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -3.372 32.746 64.473 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2660 CA VAL B 1016 -2.019 32.636 60.107 1 97.87 2670 C VAL B 1016 -0.418 33.757 56.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 56.571 1 100 2676 CA THR B 1017 -3.262 33.954 57.11 1 100 2677 C THR B 1017 -3.262 33.954 57.11 1 100 2678 C THR B 1017 -3.262 33.954 57.11 1 100 2679 CB THR B 1017 -3.802 37.059 55.586 1 99.97 2670 C VAL B 1016 -0.418 33.757 55.661 1 99.97 2670 C THR B 1017 -3.802 37.059 55.586 1 99.97 2670 C VAL B 1016 -0.418 33.757 56.671 1 100 2678 C THR B 1017 -3.802 37.059 55.586 1 199.37 2676 C THR B 1017 -3.802 37.059 55.586 1 199.37 2680 CG1 THR B 1017 -3.802 37.059 55.586 1 100 2679 CB THR B 1017 -3.802 37.059 55.586 1 100 2680 CB LYS B 1018 -5.574 30.839 56.041 1 99.40 2680 CB LYS B 1018 -5.674 3									
2844 CG ARG B 1013 1.889 24.058 64.054 1 89.93 2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2846 NE ARG B 1013 0.806 23.013 64.153 1 95.11 2846 NE ARG B 1013 -0.628 22.871 62.023 1 98.87 2647 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2647 NH2 ARG B 1013 -1.694 23.657 62.174 1 100 2649 NH2 ARG B 1013 -0.45 22.207 60.898 1 97.49 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.217 29.791 63.811 86.4 2552 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.535 29.714 61.321 1 85.7 2655 CG GLN B 1014 -0.535 29.714 61.321 1 85.77 2655 CG GLN B 1014 -0.535 29.714 61.321 1 85.77 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 C GLU B 1015 -2.388 33.531 62.142 1 97.87 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2668 N VAL B 1016 -2.019 32.836 60.107 1 97.88 2666 CD GLU B 1015 -6.287 31.996 64.4473 1 100 2668 N VAL B 1016 -2.798 34.646 58.96 1 100 2667 CE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.798 34.646 58.96 1 100 2667 CE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.798 34.646 58.96 1 100 2677 CC VAL B 1016 -3.478 35.414 59.659 1 100 2677 CC THR B 1017 -3.2673 CG THR B 1017 -3.2673 CG THR B 1017 -3.2673 CG THR B 1017 -3.802 33.954 57.11 100 2668 CD LYS B 1018 -5.628 33.994 55.568 1 100 2677 CC THR B 1017 -3.802 33.994 55.566 1 100 2668 CD LYS B 1018 -5.6474 30.803 55.644 1 199.53 2668 CD LYS B 1018 -5.6474 30.803 55.644 1 199.53 2668 CD LYS B 1018 -5.6473 30.832 55.766 1 190.6474.									
2645 CD ARG B 1013 0.806 23.013 64.153 1 95.11 2646 NE ARG B 1013 0.367 22.626 62.863 1 97.65 2847 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -1.694 23.657 62.174 1 100 2649 NH2 ARG B 1013 -0.45 22.207 60.898 1 97.49 2550 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.217 29.791 63.611 1 86.4 2652 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.635 29.714 61.321 85.7 2655 CG GLN B 1014 0.482 32.265 64.231 1 85.7 2655 CG GLN B 1014 0.482 32.265 64.231 1 85.77 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.388 32.564 61.377 1 96.22 2666 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1016 -2.798 34.646 58.96 1 100 2667 OE2 GLU B 1016 -2.798 34.646 58.96 1 100 2667 OE2 GLU B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2678 C THR B 1017 -3.262 34.876 55.081 1 100 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -3.802 33.939 56.041 1 99.40 2688 C LYS B 1018 -5.574 30.839 56.041 1 99.40 2688 C LYS B 1018 -5.574 30.839 55.766 1 99.474 1 40.									
2646 NE ARG B 1013 0.367 22.626 62.863 1 97.65 2647 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -1.694 23.657 62.174 1 100 2649 NH2 ARG B 1013 -0.45 22.207 60.898 1 97.49 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.217 29.791 63.611 86.4 2652 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.744 30.103 62.47 1 87.23 2655 CG GLN B 1014 -0.535 29.714 61.321 1 85.7 2655 CG GLN B 1014 -0.535 29.714 61.321 1 85.7 2655 CG GLN B 1014 -0.482 32.265 64.231 1 85.77 2655 CG GLN B 1014 1.475 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.057 32.143 63.968 1 99.7 2666 CD GLU B 1015 -6.287 31.966 64.473 1 100 2666 CD GLU B 1015 -6.287 31.966 64.845 1 100 2667 OE2 GLU B 1015 -5.372 32.746 64.473 1 100 2666 CD GLU B 1015 -6.287 31.966 64.845 1 100 2667 OE2 GLU B 1016 -2.019 32.636 60.107 1 97.87 2667 CC VAL B 1016 -2.019 32.636 60.107 1 97.87 2667 CC VAL B 1016 -2.019 32.636 60.107 1 97.87 2667 CC VAL B 1016 -0.418 33.757 58.571 1 100 2667 CC VAL B 1016 -0.418 33.757 58.571 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.75									
2647 CZ ARG B 1013 -0.628 22.871 62.023 1 98.87 2648 NH1 ARG B 1013 -1.694 23.657 62.174 1 100 2649 NH2 ARG B 1013 -1.694 23.657 62.174 1 100 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.7535 29.714 61.321 1 85.7 2654 CB GLN B 1014 -0.535 29.714 61.321 1 85.7 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.473 32.265 64.231 1 85.42 2656 CD GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.388 32.564 61.377 1 96.22 2666 CG GLU B 1015 -2.388 32.564 61.377 1 96.22 2666 CG GLU B 1015 -2.388 32.564 61.377 1 96.22 2666 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2666 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2666 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2666 CG GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1016 -2.798 34.666 58.96 1 100 2667 OE2 GLU B 1016 -2.798 34.666 58.96 1 100 2667 OE2 GLU B 1016 -2.798 34.666 58.96 1 100 2677 C VAL B 1016 -2.798 34.666 57.068 1 99.97 2670 C VAL B 1016 -0.418 33.757 58.571 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.473 34.451 57.669 1 99.57 2670 C VAL B 1016 -0.473 35.583 55.624 1 99.86 2690 CG1 THR B 1017 -5.262 33.954 57.011 100 2673 CG1 VAL B 1016 -0.474 34.451 57.669 1 99.57 2678 C THR B 1017 -5.865 33.953 55.664 1 99.86 2680 CG1 VAL B 1016 -0.474 34									
2648 NH1 ARG B 1013 -1.694 23.657 62.174 1 100 2649 NH2 ARG B 1013 -0.45 22.207 60.896 1 97.49 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.217 29.791 63.611 1 86.4 2652 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.735 29.714 61.321 1 85.7 2654 CB GLN B 1014 -0.535 29.714 61.321 1 85.7 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.43 33.499 64.38 1 87.14 2656 CD GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 C GLU B 1015 -2.388 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.386 33.531 62.142 1 97.87 2665 CD GLU B 1015 -4.184 31.399 62.619 1 95.54 2666 CG GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2670 C VAL B 1016 -3.478 35.414 59.659 1 100 2671 C VAL B 1016 -0.418 33.757 58.671 1 100 2672 CB VAL B 1016 -0.418 33.757 58.671 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.671 1 100 2674 CG2 THR B 1017 -3.047 34.451 57.669 1 99.7 2675 C THR B 1017 -3.047 34.451 57.669 1 99.53 2680 CA THR B 1017 -3.047 34.451 57.669 1 99.7 2676 C VAL B 1016 -0.418 33.757 58.671 1 100 2677 C THR B 1017 -3.047 34.451 57.669 1 99.7 2678 C THR B 1017 -3.047 34.451 57.669 1 99.7 2679 C THR B 1017 -3.047 34.451 57.669 1 99.7 2679 C THR B 1017 -3.047 34.451 57.669 1 99.53 2680 CA THR B 1017 -3.802 37.059 55.586 1 99.97 2679 CB THR B 1017 -3.802 37.059 55.586 1 99.97 2679 CB THR B 1017 -3.802 37.059 55.586 1 99.97 2679 CB THR B 1017 -3.802 37.059 55.586 1 99.97 2679 CB THR B 1017 -3.802 37.059 55.586 1 99.97 2679 CB THR B 1017 -3.802 37.059 55.586 1 99.97 2683 CA LYS B 1018 -5.42 33.249 55.564 1 100 2686 CB LYS B 1018 -5.182 32.84 54.551 1 100 2687 N THR B 1017 -3.802 37.059 55.586 1 99.97									
2649 NH2 ARG B 1013 -0.45 22.207 60.898 1 97.49 2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.217 29.791 63.611 1 86.4 2652 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.535 29.714 61.321 1 85.7 2654 CB GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 0.482 32.265 64.231 1 85.42 2656 CD GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.318 33.531 62.142 1 97.67 2665 CD GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2667 OE2 GLU B 1016 -3.478 35.414 59.659 1 100 2671 O VAL B 1016 -0.418 33.757 58.571 1 100 2672 CB VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 -0.013 35.15 55.866 1 100 2676 CA THR B 1017 -3.047 34.451 57.669 1 99.97 2670 C THR B 1017 -3.047 34.451 57.669 1 99.97 2670 C THR B 1017 -3.047 34.451 57.669 1 99.97 2670 C THR B 1017 -3.047 34.451 57.669 1 99.97 2670 C THR B 1017 -3.047 34.451 57.669 1 99.97 2670 C THR B 1017 -3.047 34.451 57.669 1 99.97 2670 C THR B 1017 -3.047 34.451 57.669 1 99.97 2670 C THR B 1017 -3.626 33.693 58.664 1 100 2674 CG2 THR B 1017 -3.626 33.693 58.664 1 100 2675 CB THR B 1017 -3.626 33.954 57.11 1 100 2678 C THR B 1017 -3.626 33.954 57.11 1 100 2678 C THR B 1017 -3.626 33.954 57.11 1 100 2678 C THR B 1017 -3.626 33.995 55.586 1 99.97 2686 CB THR B 1017 -3.626 33.993 55.586 1 99.97								1	100
2650 N GLN B 1014 0.971 28.553 63.433 1 84.44 2651 CA GLN B 1014 0.217 29.791 63.611 1 86.4 2652 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.535 29.714 61.321 1 85.77 2654 CB GLN B 1014 -0.535 29.714 61.321 1 85.77 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.558 64.031 1 84.55 2658 NE2 GLN B 1014 1.093 34.558 64.013 1 84.55 2658 NE2 GLN B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -2.318 33.531 62.142 1 97.87 2665 CD GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2670 C2 VAL B 1016 -2.798 34.646 58.96 1 100 2677 C VAL B 1016 -3.478 35.414 59.659 1 100 2677 C VAL B 1016 -0.013 35.12 58.006 1 100 2677 C VAL B 1016 -0.013 35.12 58.006 1 100 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.955 55.566 1 99.57 2681 C VAL B 1016 -0.013 35.12 58.006 1 100 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.262 33.954 57.11 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 99.57 2686 C LYS B 1018 -5.474 30.839 56.641 1 99.86 2680 CG1 THR B 1017 -3.802 37.059 55.586 1 99.37 2686 C LYS B 1018 -5.427 33.932 56.441 59.981 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 99.97 2676 C THR B 1017 -3.802 37.059 55.586 1 99.97 2676 C THR B 1017 -3.802 37.059 55.586 1 99.97 2686 CB LYS B 1018 -5.427 33.932 56.441 59.986 1 99.37 2686 CB LYS B 1018 -5.427 33.932 56.441 1 99.86 2680 CG1 THR B 1017 -3.802 37.059 55.586 1 99.37 2686 CB LYS B 1018 -5.674 30.839 56.441							60.898	1	97.49
2651 CA GLN B 1014 0.217 29.791 63.611 1 86.4 2652 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.535 29.714 61.321 1 85.7 2654 CB GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 0.482 32.265 64.231 1 85.42 2656 CD GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.872 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1016 -2.798 34.646 58.96 1 100 2667 O CVAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -2.798 34.646 58.96 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1017 -3.909 35.538 55.624 1 99.86 2680 CG1 THR B 1017 -3.909 35.53							63.433	1	84.44
2652 C GLN B 1014 -0.744 30.103 62.47 1 87.23 2653 O GLN B 1014 -0.535 29.714 61.321 1 85.7 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.475 30.982 63.798 1 85.77 2655 CG GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.184 31.399 62.619 1 95.54 2665 CD GLU B 1015 -6.287 31.966 64.473 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 34.646 58.96 1 100 2671 O VAL B 1016 -2.798 34.646 58.96 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.013 35.12 58.006 1 100 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2679 CB THR B 1017 -5.262 33.954 57.11 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.87 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2686 CB LYS B 1018 -5.674 30.839 56.041 1 99.37 2684 C LYS B 1018 -5.6361 32.141 55.915 1 99.37 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.37 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.37 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.44 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.44 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.44 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.44 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.44 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.44 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.44 2686 CB LYS B 1018 -5.574 30.839 56.041 1 99.44 2686 CB LYS B 1018						29.791	63 .611	1	
2653 O GLN B 1014 -0.535 29.714 61.321 1 85.77 2655 CG GLN B 1014 1.175 30.982 63.798 1 85.77 2655 CG GLN B 1014 0.482 32.265 64.231 1 85.42 2656 CD GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -2.798 34.646 58.96 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.613 35.12 58.006 1 100 2679 CB VAL B 1016 -0.613 35.12 58.006 1 100 2679 CB VAL B 1016 -0.618 33.994 57.068 1 99.53 2676 CA THR B 1017 -5.262 33.954 57.068 1 99.53 2679 CB THR B 1017 -5.262 33.954 57.068 1 99.53 2680 CG1 THR B 1017 -3.802 37.055 55.66 1 99.674 2682 N LYS B 1018 -5.574 30.839 55.081 1 99.97 2686 CA LYS B 1018 -5.574 30.839 55.081 1 99.97 2686 CA LYS B 1018 -5.574 30.839 55.081 1 99.37 2684 C LYS B 1018 -5.574 30.839 55.081 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.081 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.081 1 99.37 2684 C LYS B 1018 -5.574 30.839 55.041 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.576 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.576 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.576 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.576 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.576 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.044 1 99.37 2688 CB LYS B 1018 -5.574 30.839 55.044 1 99.37 2688 CB LYS B 1018				1014		30.103			
2655 CG GLN B 1014 0.482 32.265 64.231 1 85.42 2656 CD GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.568 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -4.184 31.399 62.619 1 95.54 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.418 53.512 58.006 1 100 2674 CG2 VAL B 1016 -0.418 53.757 58.571 1 100 2678 CA THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -3.047 34.451 57.669 1 99.53 2675 N THR B 1017 -5.262 33.954 57.11 1 100 2678 CB THR B 1017 -3.802 37.055 55.586 1 99.86 2680 CG1 THR B 1017 -3.802 37.055 55.586 1 99.87 2680 CG1 THR B 1017 -3.802 37.055 55.586 1 99.87 2680 CG1 THR B 1017 -3.802 37.055 55.586 1 99.87 2680 CG1 THR B 1017 -3.802 37.055 55.586 1 99.87 2680 CG1 THR B 1017 -3.802 37.055 55.586 1 99.37 2684 C LYS B 1018 -5.574 30.839 55.044 1 99.86 2685 C LYS B 1018 -5.574 30.839 55.044 1 99.86 2686 CB LYS B 1018 -5.574 30.839 55.044 1 99.37 2686 CB LYS B 1018 -5.574 30.839 55.044 1 99.44 2687 N THR		GLN	В	1014					
2656 CD GLN B 1014 1.43 33.439 64.38 1 87.14 2657 OE1 GLN B 1014 1.093 34.558 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 -0.013 35.12 58.006 1 100 2676 CA THR B 1017 -3.047 34.451 57.669 1 99.57 2676 CA THR B 1017 -5.856 33.954 57.11 1 100 2678 C THR B 1017 -3.047 34.451 57.669 1 99.57 2676 CA THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 CG1 THR B 1017 -3.979 35.538 55.624 1 99.86 2680 CG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2686 CB LYS B 1018 -5.574 30.932 55.766 1 99.37 2686 CB LYS B 1018 -5.574 30.932 55.766 1 99.44 66.667 N THR B 1017 -3.802 37.059 55.586 1 97.41 2686 CB LYS B 1018 -6.361 32.141 55.915 1 99.37 2686 CB LYS B 1018 -6.361 32.141 55.915 1 99.37 2686 CB LYS B 1018 -6.574 30.932 55.766 1 94.44 64.44	2654 CB	GLN							
2657 OE1 GLN B 1014 1.093 34.558 64.013 1 84.55 2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.388 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.372 32.746 64.473 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -5.262 33.954 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.068 1 99.53 2679 CB THR B 1017 -5.2863 34.876 55.081 1 100 2679 CB THR B 1017 -5.2863 34.876 55.081 1 100 2679 CB THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -3.047 34.451 57.668 1 99.53 2677 C THR B 1017 -3.047 34.451 57.668 1 99.53 2679 CB THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2686 CB LYS B 1018 -5.718 32.184 54.581 1 100 2687 N THR B 1018 -5.718 32.184 54.581 1 100 2687 N THR B 1018 -5.718 32.184 54.581 1 100 2687 N THR B 1018 -5.718 32.184 54.581 1 100 2687 N THR B 1018 -5.718 32.184 54.581 1 100 2687 N THR B 1018 -5.718 32.184 54.581 1 100 2687 N THR B 1018 -5.718 32.184 54.581 1 100 2687 N THR B 1018 -6.718 32.184 54.581 1 100 2687 N THR B 1018 -7.718 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 9.444 6886 CB LYS B 1018 -7.718 32.184 54.581 1 100 2687 N THR	2655 CG								
2658 NE2 GLN B 1014 2.616 33.188 64.936 1 88.89 2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.474 34.001 64.518 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2670 C VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.426 33.954 57.115 1 100 2676 CA THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -5.262 33.954 57.11 1 100 2679 CB THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.802 37.059 55.586 1 99.86 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2686 CB LYS B 1018 -7.118 32.184 54.581 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 99.14 46.666 CB LYS B 1018 -7.118 32.184 54.581 1 99.14 46.666 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR									
2659 N GLU B 1015 -1.826 30.779 62.831 1 90.63 2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.372 32.746 64.845 1 100 2666 OE1 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 -0.418 33.757 58.571 1 100 2676 CA THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -3.047 34.451 57.669 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 CB THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 CG1 THR B 1017 -3.979 35.538 55.624 1 99.86 2680 CG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2686 CB LYS B 1018 -5.183 32.184 54.581 1 99.14 2686 CB LYS B 1018 -5.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 99.14 4.666 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 99.14 4.666 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 99.14 4.666 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 99.14 4.666 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.744 54.466 55.756 1 1 99.14 4.666 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.744 5667 N THR B 1019 -4.277 30.932 55.766 1 96.744 5667 N THR B 1019 -4.277 30.932 55.766 1 96.744 5667 N THR B 1019 -4.277 30.932 55.766 1 96.744 56									
2660 CA GLU B 1015 -2.848 31.213 61.89 1 94.09 2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -6.287 31.966 64.845 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.013 35.12 58.006 1 100 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -5.262 33.954 57.11 1 100 2679 CB THR B 1017 -5.262 33.954 57.11 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.744									
2661 C GLU B 1015 -2.388 32.564 61.377 1 96.22 2662 O GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -6.287 31.966 64.845 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.013 35.12 58.006 1 100 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -2.826 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.3687 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2685 O LYS B 1018 -5.574 30.932 55.766 1 99.17 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1018 -5.574 30.932 55.766 1 96.744									
2662 O GLU B 1015 -2.318 33.531 62.142 1 97.87 2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -6.287 31.966 64.845 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -1.588 33.919 59.565 1 99.97 2670 C VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -0.418 33.757 58.571 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.863 33.693 58.166 1 100 2679 CB THR B 1017 -5.865 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.574 30.839 56.041 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -5.574 30.839 56.041 1 99.14 2686 CB LYS B 1018 -5.574 30.932 55.766 1 99.14									
2663 CB GLU B 1015 -4.184 31.399 62.619 1 95.54 2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -6.287 31.966 64.845 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.013 35.12 58.006 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -5.262 33.954 57.11 1 100 2678 C THR B 1017 -5.865 33.693 58.166 1 100 2679 CB THR B 1017 -5.865 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.574 30.932 55.766 1 99.37 2684 C LYS B 1018 -5.574 30.932 55.766 1 99.14 2686 CB LYS B 1018 -5.574 30.932 55.766 1 99.14									
2664 CG GLU B 1015 -4.057 32.143 63.968 1 99.7 2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -5.272 31.966 64.845 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2674 CG2 VAL B 1016 -0.013 35.12 58.006 1 100 2675 C VAL B 1016 -0.0767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.262 33.954 57.11 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.42 33.249 55.992 1 100 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1018 -5.574 30.839 56.041 1 99.14								1	
2665 CD GLU B 1015 -5.372 32.746 64.473 1 100 2666 OE1 GLU B 1015 -6.287 31.966 64.845 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -1.588 33.919 59.565 1 99.97 2670 C VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2685 O LYS B 1018 -5.574 30.839 56.041 1 98.26 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.							63.968	1	
2666 OE1 GLU B 1015 -6.287 31.966 64.845 1 100 2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -1.588 33.919 59.565 1 99.97 2670 C VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -3.862 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 99.46						32.746			
2667 OE2 GLU B 1015 -5.474 34.001 64.518 1 100 2668 N VAL B 1016 -2.019 32.636 60.107 1 97.88 2669 CA VAL B 1016 -1.588 33.919 59.565 1 99.97 2670 C VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -5.574 30.839 56.041 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2674 C				1015	-6.287				
2669 CA VAL B 1016 -1.588 33.919 59.565 1 99.97 2670 C VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -5.574 30.839 56.041 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.	2667 OE2								
2670 C VAL B 1016 -2.798 34.646 58.96 1 100 2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.	2668 N								
2671 O VAL B 1016 -3.478 35.414 59.659 1 100 2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.									
2672 CB VAL B 1016 -0.418 33.757 58.571 1 100 2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.									
2673 CG1 VAL B 1016 -0.013 35.12 58.006 1 100 2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.							-		
2674 CG2 VAL B 1016 0.767 33.161 59.3 1 98.23 2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.									
2675 N THR B 1017 -3.047 34.451 57.669 1 99.17 2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.									
2676 CA THR B 1017 -4.221 35.064 57.068 1 99.53 2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.									
2677 C THR B 1017 -5.262 33.954 57.11 1 100 2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B							57.068	1	99.53
2678 O THR B 1017 -5.856 33.693 58.166 1 100 2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B								1	
2679 CB THR B 1017 -3.979 35.538 55.624 1 99.86 2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74							58.166		
2680 OG1 THR B 1017 -2.826 34.876 55.081 1 100 2681 CG2 THR B 1017 -3.802 37.059 55.586 1 97.41 2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.				1017		35.538			
2682 N LYS B 1018 -5.42 33.249 55.992 1 100 2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74			В	1017					
2683 CA LYS B 1018 -6.361 32.141 55.915 1 99.37 2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74	2681 CG2	THR	В						
2684 C LYS B 1018 -5.574 30.839 56.041 1 98.26 2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.									
2685 O LYS B 1018 -6.108 29.802 56.441 1 99.14 2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74									
2686 CB LYS B 1018 -7.118 32.184 54.581 1 100 2687 N THR B 1019 -4.277 30.932 55.766 1 96.74.									
2687 N THR B 1019 -4.277 30.932 55.766 1 96.74									
2007 N 11111 D 1010 D 10									
2000, CA 1010 D 1019 -3.307 29.771 33.5									
	2088,CA	ILL	D	1019	-5.567	23.771	55.5	•	

Atom					V	z oc	·C	В
Atom Type	Residue	_	#	X	Y 20.459	Z OC 57.137		91.56
2689 C	THR	В		2.738	29.458 30.323	58.016		92.58
2690 O	THR	В		2.628	-	54.784		95.45
2691 CB	THR	В		2.238	29.922	53.911	1	99.16
2692 OG1	THR	В		2.502	31.034	53.969	1	94.6
2693 CG2	THR	В		2.074	28.641 28.213	57.252	1	87.6
2694 N	ALA	В		2.271	27.743	58.453	1	84.33
2695 CA	ALA	В	1020	-1.59 -0.139	27.743	58.153	1	81.1
2696 C	ALA	В		0.171	26.651	57.24	1	78.36
2697 O	ALA	В	1020	-2.267	26.522	59.007	1	83.52
2698 CB	ALA	В	1020 · 1021	0.735	28.034	58.954	1	79.36
2699 N	TRP	В	1021	2.174	27.871	58.813	1	77.91
2700 CA	TRP	B B	1021	2.716	27.026	59.942	1	74.81
2701 C	TRP	В	1021	2.159	27.02	61.029	1	73.4
2702 O	TRP TRP	В	1021	2.857	29.231	58.888	1	81.21
2703 CB	TRP	В	1021	2.419	30.198	57.877	1	83.81
2704 CG	TRP	В	1021	1.155	30.652	57.673	1	85.5
2705 CD1 2706 CD2	TRP	В	1021	3.259	30.917	56.977	1	86.46
2707 NE1	TRP	В	1021	1.154	31.63	56.709	1	87.55
2707 NE1	TRP	В	1021	2.436	31.809	56.263	1	88.07
2700 GE2 2709 GE3	TRP	В	1021	4.634	30.9	56.712	1	87.08
2710 CZ2	TRP	В	1021	2.94	32.679	55.298	1	88.43
2711 CZ3	TRP	В	1021	5.136	31.765	55.754	1	88.61
2712 CH2	TRP	В	1021	4.288	32.643	55.058	1	89.09
2713 N	GLU	В	1022	3.812	26.325	59.682	1	72.48 73.8
2714 CA	GLU	В	1022	4.451	25.509	60.704	1 1	73.6 71.25
2715 C	GLU	В	1022	5.936	25.824	60.635 60.196	1	71.25
2716 O	GLU	В	1022	6.738	25.001	60.474	1	79.31
2717 CB	GLU	В	1022	4.206	24.007	61.701	1	84.5
2718 CG	GLU	В	1022	4.517	23.095 21.588	61.443	1	85.91
2719 CD	GLU	В	1022	4.301 3.614	21.221	60.456	1	85.61
2720 OE1	GLU	В	1022	4.828	20.772	62.235	1	85.16
2721 OE2	GLU	В	1022 1023	6.29	27.034	61.052	1	67.98
2722 N	VAL	В В	1023	7.676	27.489	61.027	1	65.19
2723 CA	VAL	В	1023	8.494	26.977	62.217	1	65.74
2724 C	VAL VAL	В	1023	7.983	26.244	63.065	1	66.88
2725 O	VAL	В	1023	7.712	29	61.026	1	62.43
2726 CB	VAL	В	1023	6.959	29.513	59.825	1	61.52
2727 CG1 2728 CG2	VAL	В	1023	7.098	29.527	62.307	1	58.2
2729 N	ARG	В	1024	9.777	27.323	62.261	1	64.48
2730 CA	ARG	В	1024	10.619	26.898	63.375	1	61.55
2731 C	ARG	В	1024	10.345	27.797	64.562	1	61.75
2731 O	ARG	В	1024	9.95	28.958	64.392	1	61.74
2733 CB	ARG	В	1024	12.091	26.978	63.02	1	60.44
2734 CG	ARG	В	1024	12.504	25.966	62.016	1	57.18
2735 CD	ARG	В	1024	13.98	26.016	61.83	1	58.85 60.61
2736 NE	ARG	В	1024	14.41	25.011	60.87	1	60.61 61.41
2737 CZ	ARG	В	1024	15.62	24.972	60.329	1 1	66.93
2738 NH1	ARG	В	1024	16.526	25.883	60.674	1	56.73
2739 NH2	ARG	В	1024	15.924	24.028	59.449 65.759	1	60.76
2740 N	ALA	В	1025	10.567	27.252	67.012	1	57.56
2741 CA	ALA	В	1025	10.329	27.965	67.012	1	54.88
2742 C	ALA	В	1025	11.127	29.244 30.252	67.628	1	56.15
2743 0	ALA	В	1025	10.67	27.071	68.192	1	59.62
27.44 CB	ALA	В	1025	10.661	21.011	55.154	•	

50 / 107 · Figure 1

Atom								
Atom Type	Residue		#	Х	Y	Z	occ	В
2745 N	VAL	В	1026	12.311	29.197	66.499	1	52.15
2746 CA	VAL	В	1026	13.228	30.317	66.4 8	1	50.17
2747 C	VAL	В	1026	12.692	31.528	65.713	1	49.17
2748 O	VAL	В	1026	12.807	32.658	66.179	1	46.54
2749 CB	VAL	В	1026	14.575	29.85	65.964	1	49.05
2750 CG1	VAL	В	1026	14.742	30.139	64.484	1	48.71
2751 CG2	VAL	В	1026	15.649	30.434	66.796	1	53.91
2752 N	TYR	В	1027	12.079	31.279	64.555	1	49.98
2753 CA	TYR	В	1027	11.488	32.344	63.734 64.48	1	51.49 52.19
2754 C	TYR	В	1027	10.266	32.797 32.035	64.62	1	53.66
2755 O 2756 CB	TYR TYR	B B	1027 1027	9.315 11.121	31.845	62.326	i 1	43.78
2750 CB 2757 CG	TYR	В	1027	12.35	31.484	61.54	1	40.04
2757 CG . 2758 CD1	TYR	В	1027	13.39	32.403	61.398	1	33.52
2759 CD2	TYR	В	1027	12.523	30.195	61.026	1	40.23
2760 CE1	TYR	В	1027	14.576	32.047	60.782	1	37.28
2761 CE2	TYR	В	1027	13.71	29.823	60.392	1	41.78
2762 CZ	TYR	В	1027	14.738	30.754	60.276	1	42.27
2763 OH	TYR	В	1027	15.928	30.4	59.666	1	40.36
2764 N	ARG	В	1028	10.301	34.036	64.954	1	53.3
2765 CA	ARG	В	1028	9.219	34.571	65.746	1	56.32
2766 C	ARG	В	1028	8.473	35.767	65.169	1	58.02
2767 O	ARG	В	1028	8.881	36.338	64.164	1	58.88
2768 CB	ARG	В	1028	9.779	34.902	67.128	1	63.3
2769 CG	ARG	В	1028	10.518	33.704	67.758	1 1	69.98 78.35
2770 CD	ARG	В	1028	10.844	33.91 34.345	69.234 69.984	1	84.1
2771 NE	ARG	В	1028 1028	9.665 9.703	35.023	71.13	1	86.57
2772 CZ 2773 NH1	ARG ARG	B B	1028	10.865	35.347	71.685	1	86.22
2774 NH2	ARG	В	1028	8.574	35.411	71.704	1	84.89
2774 NH2 2775 N	ASP	В	1029	7.366	36.12	65.821	1	61.08
2776 CA	ASP	В	1029	6.467	37.216	65.434	1	60.46
2777 C	ASP	В	1029	6.184	37.324	63.937	1	61.99
2778 O	ASP	В	1029	6.596	38.29	63.29	1	64.59
2779 CB	ASP	В	1029	6.963	38.56	65.975	1	61.19
2780 CG	ASP	В	1029	5.962	39.7	65.736	1	64.61
2781 OD1	ASP	В	1029	4.752	39.427	65.602	1	66.52
2782 OD2	ASP	В	1029	6.38	40.877	65.68	1	63.58
2783 N	LEU	В	1030	5.452	36.346	63.4	1 1	62.42 59.79
2784 CA	LEU	В	1030	5.102	36.317 37.408	61.979 61.58	1	61.03
2785 C	LEU	B B	1030 1030	4.113 3.206	37.406 37.74	62.326	1	62.72
2786 O	LEU LEU	В	1030	4.546	34.951	61.588	i	53.81
2787 CB 2788 CG	LEU	В	1030	5.494	33.753	61.569	1	54.22
2789 CD1	LEU	В	1030	4.73	32.506	61.178	1	55.1
2790 CD2	LEU	В	1030	6.597	33.966	60.577	1	55.29
2791 N	GLN	В	1031	4.315	37.967	60.393	1	64.68
2792 CA	GLN	В	1031	3.466	39.025	59.844	1	66.39
2793 C	GLN	В	1031	3.441	38.849	58.326	1	68.35
2794 O	GLN	В	1031	4.491	38.772	57.682	1	67.74
2795 CB	GLN	В	1031	4.044	40.405	60.16	1	67.52
2796 CG	GLN	В	1031	4.037	40.788	61.622	1	69.37
2797 CD	GLN	В	1031	2.655	41.127	62.108		70.2
2798 OE1	GLN	В	1031	2.198	40.598	63.122		69.64
2799 NE2	GLN	В	1031	1.975	42.022	61.388		69.2 68.45
2800 N	PRO	В	1032	2.239	38.816	57.733	ŀ	00.40

Atom								
Atom Type	Residue		#	X	Y	Z	occ	В
2801 CA	PRO	В	1032	2.06	38.652	56.289	1	68.35
2802 C	PRO	В	1032	2.523	39.887	55.52	1	66.87
2803 O	PRO	В	1032	2.544	40.992	56.066	1	67.31
2804 CB	PRO	В	1032	0.549	38.485	56.171	1	69.44
2805 CG	PRO	В	1032	0.061	39.446	57.216	1	67.89
2806 CD	PRO	В	1032	0.947	39.083	58.387	1	69.43
2807 N	VAL	В	1033	2.887	39.688	54.257	1	64.21
2808 CA	VAL	В	1033	3.333	40.775	53.39	1	63.04
2809 C	VAL	В	1033	3.004	40.457	51.934	1	67.16
2810 O	VAL	В	1033	2.912	41.424	51.129	1	68.52
2811 CB	VAL	В	1033	4.853	41.025	53.497	1	60.21
2812 CG1	VAL	В	1033	5.16	41.909	54.675	1	61.04
2813 CG2	VAL	В	1033	5.615	39.705	53.595	1	57.1
2814 OXT	VAL	В	1033	2.842	39.243	51.623	1	69.07
2815 N	ALA	В	1040	2.347	32.902	49.519	1	58.98
2816 CA	ALA	В	1040	2.347	33.811	50.696	1	58.02
2817 C	ALA	В	1040	3.704	33.817	51.416	1	56.39
2818 O	ALA	В	1040	4.386	32.793	51.559	1	56.11
2819 CB	ALA	В	1040	1.208	33.469	51.658	1	56.78
2820 N	VAL	В	1041	4.089	35.015	51.826	1	53.11
2821 CA	VAL	В	1041	5.348	35.262	52,488	1	51.25
2822 C	VAL	В	1041	5.056	36.015	53.769	1	51.9
2823 O	VAL	В	1041	4.111	36.83	53.833	1	51.33
2824 CB	VAL	В	1041	6.248	36.146	51.588	1	49.54
2825 CG1	VAL	В	1041	7.51	36,559	52.307	1	49.63
2826 CG2	VAL	В	1041	6.587	35.412	50.315	1	47.38
2827 N	CYS	В	1042	5.873	35.742	54.782	1	49.82
2828 CA	CYS	В	1042	5.736	36.399	56.066	1	51.12
2829 C	CYS	В	1042	7.04	37.024	56.515	1	50.9
2830 O	CYS	В	1042	8.134	36.541	56.187	1	51.95
2831 CB	CYS	В	1042	5.278	35.402	57.135	1	54.35
2832 SG	CYS	В	1042	3.513	35.225	57.304	1	55.44
2833 N	SER	В	1043	6.913	38.093	57.285	1	49.19
2834 CA	SER	В	1043	8.067	38.754	57.83 7	1	49.38
2835 C	SER	В	1043	8.149	38.277	59.287	1	52.16
2836 O	SER	В	1043	7.215	38.462	60.059	1	54.98
2837 CB	SER	В	1043	7.907	40.281	57.76	1	47.15
2838 OG	SER	В	1043	6.884	40.777	58.609	1	38.5
2839 N	ALA	В	1044	9.232	37.597	59.632	1	52.48
2840 CA	ALA	В	1044	9.426	37.112	60.988	1	51.72
2841 C	ALA	В	1044	10.672	37.762	61.587	1	52.53
2842 O	ALA	В	1044	11.23	38.689	61.008	1	55.34
2843 CB	ALA	В	1044	9.585	35. 6 23	60.963	1	52.76
2844 N	VAL	В	1045	11.077	37.299	62.766	1	50.78
2845 CA	VAL	В	1045	12.276	37.798	63.426	1	50.51
2846 C	VAL	В	1045	13.061	36.58	63.847	1	52.51
2847 O	VAL	В	1045	12.48	35.646	64.383	1	55.24
2848 CB	VAL	В	1045	11.956	38.552	64.702	1	49.88
2849 CG1	VAL	В	1045	13.252	38.976	65.38	1	46.66
2850 CG2	VAL	В	1045	11.045	39.741	64.404	1	48.94
2851 N	ASP	В	1046	14.358	36.534	63.56	1	52.69
2852 CA	ASP	В	1046	15.116	35.376	64.003	1	52.1
2853 C	ASP	В	1046	15.274	35.628	65.494	1	55.1
2854 O	ASP	В	1046	15.903	36.604	65.911	1	54.02
2855 CB	ASP	В	1046	16.473	35.29	63.327	1	50.62
2856 CG	ASP	В	1046	17.168	33.976	63.6	1	53.2

Atom								
Atom Type	Residue		#	Х	Υ	z 00	00	В
	ASP	В		16.811	33.305	64.59	1	55.53
2857 OD1		В		18.075	33.602	62.825	1	55.04
2858 OD2	ASP		1047	14.62	34.79	66.291	1	55.42
2859 N	GLY	В		14.667	34.953	67.733	1	53.43
2860 CA	GLY	В		16.078	34.95	68.258	1	54.89
2861 C	GLY	В			35.559	69.286	1	59.29
2862 O	GLY	В		16.361	34.266	67.543	i	52.22
2863 N	ARG	В	1048	16.96		67.926	1	54.57
2864 CA	ARG	В		18.352	34.175	67. 3 23	1	55.48
2865 C	ARG	В		19.189	35.457		1	57.76
2866 O	ARG	В		20.173	35.646	68.488	1	55.1
2867 CB	ARG	В	1048	19.017	33.07	67.117 67.426	1	52.83
2868 CG	ARG	В	1048	18.525	31.692	67.436		
2869 CD ·	ARG	В	1048	19.044	30.726	66.411	1 1	50.53 52.56
2870 NE	ARG	В	1048	18.397	30.965	65.126		
2871 CZ	ARG	В	1048	18.608	30.244	64.03	1	51.67
2872 NH1	ARG	В	1048	19.461	29.227	64.049	1	53.11
2873 NH2	ARG	В	1048	17.954	30.532	62.919	1	52.77
2874 N	THR	В	1049	18.829	36.321	66.818	1	55.31
2875 CA	THR	В	1049	19.617	37.526	66.583	1	52.48
2876 C	THR	В	1049	18.921	38.858	66.674	1	53.13
2877 O	THR	В	1049	19.552	39.845	67.057	1	58.57
2878 CB	THR	В	1049	20.362	37.459	65.253	1	53.85
2879 OG1	THR	В	1049	19.424	37.397	64.171	1	54.93
2880 CG2	THR	В	1049	21.297	36.24	65.228	1	52.75
2881 N	GLY	В	1050	17.643	38.906	66.311	1	54 52.50
2882 CA	GLY	В	1050	16.889	40.154	66.385	1	52.59 53.82
2883 C	GLY	В	1050	16.698	40.799	65.023	1	51.92
2884 O	GLY	В	1050	16.094	41.88	64.901	1	50.7
2885 N	ALA	В	1051	17.2	40.103	64.004 62.623	1	52.2
2886 CA	ALA	В	1051	17.148	40.552		1	53.58
2887 C	ALA	B	1051	15.856	40.123	61.918	1	53.97
2888 O	ALA	В	1051	15.524	38.931	61.937 61.876	1	49.63
2889 CB	ALA	В	1051	18.354	39.981	61.297	1	50.05
2890 N	LYS	В	1052	15.143	41.077	60.553	1	45.76
2891 CA	LYS	В	1052	13.917	40.765	59.39	1	45.14
2892 C	LYS	В	1052	14.285	39.87	58.757	i	44.51
2893 O	LYS	В	1052	15.336	40.031 42.012	60.035	1	44.02
2894 CB	LYS	В	1052	13.199		61.127	1	51.41
2895 CG	LYS	В	1052	12.616	42.884 44.183	60.604	1	56.7
2896 CD	LYS	В	1052	11.984	43.968	60.069	1	60.61
2897 CE	LYS	В	1052	10.575	45.254	59.614	1	61.15
2898 NZ	LYS	В	1052	9.957	38.913	59.13	1	45.74
2899 N	VAL	В	1053	13.406	37.921	58.095	1	
2900 CA	VAL	В	1053	13.607	37.752	57.285	i	42.33
2901 C	VAL	В	1053		38.192	57.707	1	43.53
2902 O	VAL	В	1053			58.784	1	42.05
2903 CB	VAL	В	1053		36.607	58.222	1	44.58
2904 CG1	VAL	В	1053		35.404	58.677	1	43.33
2905 CG2	VAL	В	1053		36.439	56.078	ì	40.46
2906 N	ALA	В	1054		37.217 36.955	55.24	1	41.2
2907 CA	ALA	В	1054			55.09	1	
2908 C	ALA	В	1054		35.444	54.746	1	
2909 O	ALA	В	1054		34.738	53.892	1	
2910 CB	ALA	В	1054		37.591	55.396	1	
2911 N	ILE	В	1055		34.945	55.299	1	
2912 CA	ILE	В	1055	9.659	33.509	00,200	•	. 3.23

Atom								
Atom Type	Residue		#	X	Υ		CC	В
2913 C	ILE	В	1055	8.573	33.256	54.27	1	44.36
2914 O	ILE	В	1055	7.459	33.754	54.396	1	42.33
2915 CB	ILE	В	1055	9.195	32.914	56.649	1	47.38
2916 CG1	ILE	В	1055	10.234	33.175	57.737	1	39.2
2917 CG2	ILE	В	1055	9.017	31.386	56.522	1	47.65
2918 CD1	ILE	В	1055	9.787	32.681	59.055	1	41.28
2919 N	LYS	В	1056	8.922	32.471	53.259	1	45.93
2920 CA	LYS	В	1056	8.02	32.127	52.172	1	48.46
2921 C	LYS	В	1056	7.622	30.673	52.244	1	53.81
2922 O	LYS	В	1056	8.477	29.784	52.21	1	51.61
2923 CB	LYS	В	1056	8.721	32.349	50.829	1	52.2
2924 CG	LYS	В	1056	7.869	32.05	49.604	1	49.14
2925 CD	LYS	В	1056	8.612	32.385	48.334	1	47.25
2926 CE	LYS	В	1056	7.648	32.471	47.177	1	45.82
2927 NZ	LYS	В	1056	8.316	32.917	45.925	1	41.67
2928 N	LYS	В	1057	6.317	30.438	52.302	1	58.57
2929 CA	LYS	В	1057	5.77	29.086	52.349	1	62.42
2930 C	LYS	В	1057	5.339	28.686	50.935	1	64.09
2931 O	LYS	В	1057	4.495	29.354	50.32	1	62.73
2932 CB	LYS	В	1057	4.568	29.052	53.306	1	63.07
2933 CG	LYS	В	1057	3.743	27.763	53.313	1	63.63
2934 CD	LYS	В	1057	2.538	27.893	54.269	1	65.76
2935 CE	LYS	В	1057	1.512	26.763	54.102	1	65.42
2936 NZ	LYS	В	1057	2.111	25.406	54.277	1	65.13
2937 N	LEU	В	1058	5.981	27.655	50.393	1	67.19
2938 CA	LEU	В	1058	5.628	27.157	49.069	1	70.29
2939 C	LEU	В	1058	4.233	26.562	49.182	1	74.52
2940 O	LEU	В	1058	4.022	25.558	49.878	1	72.44
2941 CB	LEU	В	1058	6.607	26.077	48.588	1	68.22
2942 CG	LEU	В	1058	7.813	26.489	47.735	1	67.54
2943 CD1	LEU	В	1058	7.346	27.223	46.488	1	68.66
2944 CD2	LEU	В	1058	8.758	27.362	48.536	1	66.95
2945 N	TYR	В	1059	3.282	27.24	48.546	1	79.9
2946 CA	TYR	В	1059	1.879	26.844	48.534	1	84.03
2947 C	TYR	В	1059	1.556	25.525	47.821	1	83.03
2948 O	TYR	В	1059	1.497	25.483	46.584	1	83.61 89.51
2949 CB	TYR	В	1059	1.069	27.947	47.833	1	95.91
2950 CG	TYR	В	1059	-0.415	27.667	47.676	1	97.58
2951 CD1	TYR	В	1059	-1.194	27.226	48.758	1 1	97.29
2952 CD2	TYR	В	1059	-1.045	27.85	46.437	1	100
2953 CE1	TYR	В	1059	-2.562	26.976	48.605	1	100
2954 CE2	TYR	В	1059	-2.411	27.603	46.274	1	100
2955 CZ	TYR	В	1059	-3.162	27.165	47.358	1	100
2956 OH	TYR	В	1059	-4.504	26.902	47.189	1	81.09
2957 N	ARG	В	1060	1.363	24.463	48.608	1	79.82
2958 CA	ARG	В	1060	1.069	23.112	48.101	1	76.79
2959 C	ARG	В	1060	1.907	22.76	46.865 45.8	1	75.28
2960 O	ARG	В	1060	1.367	22.474		1	80.83
2961 CB	ARG	В	1060	-0.426	22.934	47.805 47.01	1	75.64
2962 N	PRO	В	1061	3.241	22.75	45.932	1	75.15
2963 CA	PRO	В	1061	4.187	22.449	45.932	1	76.53
2964 C	PRO	В	1061	4.029	21.104	45.240	1	75.82
2965 O	PRO	В	1061	4.451	20.938	46.627	1	73.66
2966 CB	PRO	В	1061	5.54	22.567	48.021	1	73.69
2967 CG	PRO	В	1061	5.236	22.159	48.294	1	73.79
2968 CD	PRO	В	1061	3.951	22.885	70.404	•	, 3 3

Atom								
Atom Type	Residue		#	. X	Υ	Z	occ	-B
2969 N	PHE	В	1062	3.423	20.144	45.932	1	78.61
2970 CA	PHE	В	1062	3.249	18.823	45.337	1	83.23
2971 C	PHE	В	1062	1.789	18.471	45.038	1	84.85
2972 O	PHE	В	1062	1.325	17.346	45.253	1	83.78
2973 CB	PHE	В	1062	3.957	17.773	46.197	1	81.92
2974 CG	PHE	В	1062	5.388	18.114	46.472	1	78.99
2975 CD1	PHE	В	1062	6.289	18.268	45.426	1	78.21
2976 CD2	PHE	В	1062	5.813	18.38	47.764	1	79.56
2977 CE1	PHE	В	1062	7.589	18.691	45.666	1	79.26
2978 CE2	PHE	В	1062	7.113	18.803	48.015	i	79.59
2979 CZ	PHE	В	1062	8.002	18.962	46.965	1	79.58
2980 N	GLN	В	1063	1.091	19.468	44.503	1	86.52
2981 CA	GLN	В	1063	-0.303	19.356	44.126	1	87.56
2982 C	GLN	В	1063	-0.371	18.984	42.636	1	89.04
2983 O	GLN	В	1063	-1.414	18.556	42.145	1	91.08
2984 CB	GLN	В	1063	-0.997	20.697	44.371	1	87.04
2985 CG	GLN	В	1063	-2.5	20.66	44.201	1	91.31
2986 CD	GLN	В	1063	-3.11	22.043	44.065	1	92.41
2987 OE1	GLN	В	1063	-2.447	22.991	43.63	1	90.05
2988 NE2	GLN	В	1063	-4.39	22.164	44.426	1	93.3
2989 N	SER	В	1064	0.741	19.148	41.921	1	87.83
2990 CA	SER	В	1064	0.801	18.821	40.496	1	88.42
2991 C	SER	В	1064	2.241	18.622	40.054	1	88.42
2992 O	SER	В	1064	3.142	18.548	40.88	1	90.12
2993 CB	SER	В	1064	0.174	19.936	39.658	1	88.4
2994 OG	SER	В	1064	1.002	21.083	39.633	1	89.39
2995 N	GLU	В	1065	2.453	18.518	38.747	1	87.68
2996 CA	GLU	В	1065	3.798	18.351	38.216	1	87.25
2997 C	GLU	В	1065	4.353	19.729	37.875	1	85.74
2998 O	GLU	В	1065	5.564	19.964	37.937	1	84.48
2999 CB	GLU	В	1065	3.775	17.475	36.963	1	90.5
3000 CG	GLU	В	1065	5.164	17.181	36.392	1	91.77
3001 CD	GLU	В	1065	5.121	16.354	35.12	1	92.8
3002 OE1	GLU	В	1065	4.616	15.204	35.171	1	92.42
3003 OE2	GLU	В	1065	5.598	16.86	34.075	1	91.25
3004 N	LEU	В	1066	3.45	20.622	37.477	1	84.13
3005 CA	LEU	В	1066	3.814	21.987	37.131	1	82.1
3006 C	LEU	В	1066	4.241	22.689	38.412	1	81.17
3007 O	LEU	В	1066	5.235	23.415	38.421	1	82.66
3008 CB	LEU	В	1066	2.626	22.731	36.498	1	82.35
3009 CG	LEU	В	1066	2.818	24.195	36.051	1	81.61
3010 CD1	LEU	В	1066	3.698	24.249	34.803	1	80.78
3011 CD2	LEU	В	1066	1.469	24.868	35.779	1	79.54
3012 N	PHE	В	1067	3.51	22.451	39.499	1	77.92
3013 CA	PHE	В	1067	3.844	23.08	40.773	1.	76.72
3014 C	PHE	В	1067	5.154	22.548	41.339	1	74.37
3015 O	PHE	В	1067	6.024	23.323	41.754	1	74.07
3016 CB	PHE	В	1067	2.705	22.913	41.783	1	77.35
3017 CG	PHE	В	1067	1.578	23.901	41.604	1	79.09
3018 CD1	PHE	В	1067	1.35	24.512	40.373	1	80.39
3019 CD2	PHE	В	1067	0.741	24.218	42.672	1	81.18
3020 CE1	PHE	В	1067	0.302	25.419	40.206	1	81.06
3021 CE2	PHE	В	1067	-0.314	25.127	42.519	1	82.12
3022 CZ	PHE	В	1067	-0.532	25.728	41.282	1	81.41
3023 N	ALA	В	1068	5.305	21.227	41.306	1	71.57
3024 CA	ALA	В	1068	6.506	20.57	41.803	1	68.96

Atom								
Atom Type	Residue		#	X	Y		occ	В
3025 C	ALA	В	1068	7.731	21.057	41.054	1	67.07
3026 O	ALA	В	1068	8.705	21.48	41.663	1	68.86
3027 CB	ALA	В	1068	6.377	19.076	41.668	1	68.15
3028 N	LYS	В	1069	7.658	21.03	39.73	1	66.12
3029 CA	LYS	В	1069	8.761	21.473	38.888	1	65.77
3030 C	LYS	В	1069	9.215	22.887	39.261	1	64.66
3031 O	LYS	В	1069	10.411	23.152	39.394	1	63.82
3032 CB	LYS	В	1069	8.359	21.416	37.406	1	67.34 68.81
3033 CG	LYS	В	1069	9.509 9.098	21.705	36.432 34.972	1 1	71.88
3034 CD	LYS	B B	1069 1069	9.096 8.014	21.528 22.526	34.544	1	73.43
3035 CE 3036 NZ	LYS LYS	В	1069	7.635	22.362	33.102	1	72.84
3036 NZ 3037 N	ARG	В	1070	8.258	23.783	39.464	1	64.21
3038 CA	ARG	В	1070	8.581	25.156	39.81	1	64.05
3039 C	ARG	В	1070	9.233	25.236	41.181	1	63.96
3040 O	ARG	В	1070	10.281	25.857	41.341	1	63.7
3041 CB	ARG	В	1070	7.329	26.028	39.714	1	65.64
3042 CG	ARG	В	1070	6.844	26.144	38.278	1	66.55
3043 CD	ARG	В	1070	5.532	26.898	38.111	1	72.46
3044 NE	ARG	В	1070	5.225	27.036	36.683	1	76.33
3045 CZ	ARG	В	1070	4.28	27.824	36.172	1	78.89
3046 NH1	ARG	В	1070	3.511	28.564	36.969	1	77.33
3047 NH2	ARG	В	1070	4.104	27.867	34.851	1	78.07 63.83
3048 N	ALA	В	1071	8.657	24.532 24.516	42.149 43.508	1 1	59.39
3049 CA	ALA	В	1071 1071	9.189 10.658	24.095	43.502	1	58.85
3050 C	ALA ALA	B B	1071	11.503	24.776	44.068	1	59.6
3051 O 3052 CB	ALA	В	1071	8.38	23.579	44.354	1	55.82
3052 CB	TYR	В	1072	10.957	22.981	42.842	1	58.2
3054 CA	TYR	В	1072	12.321	22.484	42.756	1	57.56
· 3055 C	TYR	В	1072	13.212	23.48	42.029	1	57.39
3056 O	TYR	В	1072	14.332	23.724	42.45	1	60.24
3057 CB	TYR	В	1072	12.353	21.115	42.065	1	57.31
3058 CG	TYR	В	1072	13.731	20.64	41.637	1	56.65
3059 CD1	TYR	В	1072	14.277	21.035	40.418	1	57.61 56.47
3060 CD2	TYR	В	1072	14.467	19.76	42.431 39.997	1 1	60.3
3061 CE1	TYR	В	1072 1072	15.516 15.703	20.56 19.278	42.021	1	55.38
3062 CE2	TYR TYR	В В	1072	16.221	19.681	40.805	1	59.49
3063 CZ 3064 OH	TYR	В	1072	17.438	19.198	40.377	1	62.12
3065 N	ARG	В	1073	12.726	24.052	40.935	1	58
3066 CA	ARG	В	1073	13.517	25.037	40.201	1	58.76
3067 C	ARG	В	1073	13.847	26.265	41.057	1	59.42
3068 O	ARG	В	1073	14.961	26.792	40.979	1	62.91
3069 CB	ARG	В	1073	12.792	25.508	38.943	1	59.19
3070 CG	ARG	В	1073	12.761	24.532	37.796	1	60.52
3071 CD	ARG	В	1073	12.644	25.34	36.533	1	61.56
3072 NE	ARG	В	1073	12.287	24.561	35.354	1 1	62.56 61.61
3073 CZ	ARG	В	1073	11.099	24.621	34.768	1	60.18
3074 NH1	ARG	В	1073	10.129	25.37 23.898	35.292 33.686	1	62.46
3075 NH2	ARG	B B	1073 1074	10.871 12.869	23.898 26.724	41.845	1	56.17
3076 N	GLU GLU	В	1074	13.026	27.886	42.719	1	53.17
3077 CA	GLU	В	1074	14.043	27.609	43.828	1	53.57
3078 C 3079 O	GLU	В	1074	14.913	28.436	44.111	1	53.35
3080 CB	GLU	В	1074	11.681	28.282	43.328	1	49.09
,								

Atom								
Atom Type	Residue		#	X	Υ	z o	CC	В
3081 CG	GLU	В	1074	11.742	29.562	44.131	1	49.98
3082 CD	GLU	В	1074	10.37	30.109	44.511	1	54.96
3083 OE1	GLU	В	1074	9.342	29.41	44.261	1	53.01
3084 OE2	GLU	В	1074	10.331	31.243	45.06	1	46.02
3085 N	LEU	В		13.917	26.456	44.475	1	52.53
3086 CA	LEU	В	1075	14.855	26.089	45.515	1	51.1
3087 C	LEU	В	1075	16.262	26.035	44.912	1	53.67
3088 O	LEU	В	1075	17.131	26.81	45.302	1	53.33
3089 CB	LEU	В	1075	14.492	24.73	46.087	1	48.59
3090 CG	LEU	В	1075	15.38	24.258	47.233	1	45.59
3091 CD1	LEU	В	1075	15.456	25.324	48.312	1	40.35
3092 CD2	LEU	В	1075	14.829	22.968	47.779	1	45.47
3093 N	ARG	В	1076	16.437	25.17	43.913	1	54.76
3094 CA	ARG	В	1076	17.708	24.96	43.222	1	58
3095 C	ARG	В	1076	18.428	26.212	42.73	1	60.08 62.77
3096 O	ARG	В	1076	19.646	26.339	42.908	1 1	63.86
3097 CB	ARG	В	1076	17.518	23.999	42.047	1	68.45
3098 CG	ARG	В	1076	17.595	22.527 22.022	42.417 42.442	1	72.55
3099 CD	ARG	В	1076	19.031	21.845	41.105	1	75.26
3100 NE	ARG	В	1076	19.593 20.833	21.643	40.858	1	76.36
3101 CZ	ARG	B B	1076 1076	21.655	21.129	41.85	1	80.23
3102 NH1	ARG	В	1076	21.255	21.304	39.614	1	78.63
3103 NH2	ARG LEU	В	1077	17.705	27.108	42.063	1	57.06
3104 N 3105 CA	LEU	В	1077	18.317	28.337	41.567	1	53.84
3105 CA 3106 C	LEU	В	1077	18.745	29.242	42.718	1	52.29
3107 O	LEU	В	1077	19.81	29.856	42.67	1	51.17
3108 CB	LEU	В	1077	17.348	29.092	40.662	1	49.81
3109 CG	LEU	В	1077	16.963	28.408	39.366	1	45.19
3110 CD1	LEU	В	1077	15.734	29.034	38.832	1	43.84
3111 CD2	LEU	В	1077	18.086	28.497	38.375	1	45.19
3112 N	LEU	В	1078	17.901	29.33	43.743	1 1	53.72 53.65
3113 CA	LEU	В	1078	18.19	30.165	44.911	1	53.49
3114 C	LEU	В	1078	19.388	29.623	45.674 46.152	1	54.41
3115 O	LEU	В	1078	20.222	30.386 30.275	45.819	1	49.27
3116 CB	LEU	В	1078	16.965	31.298	45.381	1	50.2
3117 CG	LEU	В	1078	15.914 14.734	31.297	46.33	1	47.11
3118 CD1	LEU	8 B	1078 1078	16.539	32.685	45.327	1	51.38
3119 CD2	LEU	В	1079	19.484	28.304	45.762	1	52.88
3120 N	LYS LYS	В	1079	20.611	27.68	46.431	1	55.99
3121 CA 3122 C	LYS	В	1079	21.906	27.898	45.641	1	57.03
3122 C 3123 O	LYS	В	1079	22.976	27.976	46.222	1	59.51
3124 CB	LYS	В	1079	20.366	26.186	46.631	1	53.8
3125 CG	LYS	В	1079		25.867	47.763	1	55.99
3126 CD	LYS	В	1079	19.179	24.358	47.883	1	61.83
3127 CE	LYS	В	1079	20.496	23.568	47.994	1	64.12
3128 NZ	LYS	В	1079		22.094	48.021	1	59.65 57.95
3129 N	HIS	В	1080		28.042	44.327	1	
3130 CA	HIS	В	1080		28.248	43.487	1	59.32 57.63
3131 C	HIS	В	1080		29.704	43.322 43.494	1	56.73
3132 O	HIS	В	1080		30.006	43.494	1	66
3133 CB	HIS	В	1080		27.614 28.049	41.056	1	73.25
3134 CG	HIS	В	1080		27.344	40.777	1	76.19
3135 ND1	HIS	B B	1080 1080		27.3 44 29.108	40.206	1	75.77
3136 CD2	HIS	D	1000		23.100			

Atom								
_ Atom Type	Residue		#	X	Y		occ	В
3137 CE1	HIS	В	1080	25.535	27.947	39.803	1	78.22
3138 NE2	HIS	В	1080	24.855	29.02	39.437	1	77.24
3139 N	MET	В	1081	22.527	30.599	42.961	1	56.25
3140 CA	MET	В	1081	22.889	31.998	42.719	1	54.99
3141 C	MET	В	1081	23.491	32.695	43.932	1	52.29
3142 O	MET	В	1081	23.175	32.346	45.053	1	54.04
3143 CB	MET	В	1081	21.665	32.797	42.229	1	57.51
3144 CG	MET	В	1081	20.986	32.286	40.948	1 1	54.18
3145 SD	MET	В	1081	19.476	33.24	40.589 42.11	1	51.93 45.64
3146 CE	MET	В	1081	18.557	32.93	43.69	1	50.01
3147 N	ARG	В	1082	24.383	33.652 34.445	44.756	1	50.78
3148 CA	ARG	В	1082	25.007	35.835	44.211	1	49.52
3149 C	ARG	В	1082	25.377	35.995	43.554	i	50.33
3150 O	ARG	B B	1082 1082	26.421 26.251	33.733	45.318	1	50.93
3151 CB	ARG HIS	В	1082	24.51	36.82	44.473	1	46.01
3152 N	HIS	В	1083	24.709	38.19	43.998	1	44.84
3153 CA 3154 C	HIS	В	1083	24.763	39.236	44.89	i	46.37
3154 C 3155 O	HIS	В	1083	22.943	39.071	45.349	ì	49.77
3156 CB	HIS	В	1083	24.162	38.346	42.579	1	46.72
3157 CG	HIS	В	1083	24.558	39.632	41.935	1	46.28
3158 ND1	HIS	B	1083	23.946	40.833	42.228	1	43.36
3159 CD2	HIS	В	1083	25.563	39.92	41.072	1	43.95
3160 CE1	HIS	В	1083	24.558	41.805	41.578	1	42.91
3161 NE2	HIS	В	1083	25.543	41.28	40.872	1	45.89
3162 N	GLU	В	1084	24.751	40.363	45.047	1	49.97
3163 CA	GLU	В	1084	24.298	41.473	45.894	1	50.68
3164 C	GLU	В	1084	22.89	41.971	45.522	1	50.28
3165 O	GLU	В	1084	22.216	42.638	46.317	1	51.66
3166 CB	GLU	В	1084	25.327	42.627	45.797	1	55.77
3167 CG	GLU	В	1084	25.246	43.712	46.896	1 1	71.29 80.4
3168 CD	GLU	В	1084	25.737	43.254 43.217	48.305 48.538	1	81.58
3169 OE1	GLU	В	1084	26.976		49.191	1	82.45
3170 OE2	GLU	B B	1084 1085	24.884 22.436	42.969 41.624	44.32	i	48.85
3171 N	ASN ASN	В	1085	21.137	42.069	43.832	i	46.27
3172 CA	ASN	В	1085	20.153	40.942	43.543	i	44.89
3173 C 3174 O	ASN	В	1085	19.226	41.106	42.783	1	44.96
3175 CB	ASN	В	1085	21.336	42.918	42.586	1	45.28
3176 CG	ASN	В	1085	22.155	44.166	42.858	1	47.36
3177 OD1	ASN	В	1085	23.26	44.341	42.328	1	44.25
3178 ND2	ASN	В	1085	21.617	45.041	43.692	1	49.42
3179 N	VAL	В	1086	20.391	39.777	44.115	1	45.32
3180 CA	VAL	В	1086	19.506	38.647	43.923	1	43.24
3181 C	VAL	В	1086	19.281	38.086	45.318	1	46.01
3182 O	VAL	В	1086	20.244	37.819	46.058	1	49.62
3183 CB	VAL	В	1086	20.142	37.578	43.03	1	43.45
3184 CG1	VAL	В	1086	19.178	36.392	42.831	1	38.77
3185 CG2	VAL	В	1086	20.535	38.19	41.693	1	43.89
3186 N	ILE	В	1087	18.016	37.944	45.696	1	43.02
3187 CA	ILE	В	1087	17.679	37.43	47.011	1	40.27
3188 C	ILE	В	1087	18.387	36.117	47.334	1	40.11
3189 O	ILE	В	1087	18.63	35.272	46.455		37.82
3190 CB	ILE	В	1087	16.174	37.256	47.178		40.31
3191 CG1	íLE	В	1087	15.841	37.285	48.66		38.04. 36.21
3192 _, CG2	ILE	В	1087	15.695	35.979	46.499	•	JU.Z 1

Atom			#	X	Υ	z oc	CC	В
Atom Type	Residue	_		16.224	38.594	49.322	1	37.07
3193 CD1	ILE	В		18.699	35.936	48.609	1	39
3194 N	GLY	В		19.407	34.736	49.001	1	39.21
3195 CA	GLY	В		18.76	33.982	50.121	1	40.6
3196 C	GLY	В	1088	16.76 17.953	34.518	50.887	1	41.48
3197 O	GLY	В		19.119	32.712	50.204	1	41.27
3198 N	LEU	В			31.85	51.239	1	42.74
3199 CA	LEU	В		18.591 19.419	31.941	52.509	1	42.21
3200 C	LEU	В		20.651	31.985	52.452	1	40.32
3201 O	LEU	В		20.631 18.573	30.4	50.737	1	41.24
3202 CB	LEU	В		17.256	29.862	50.183	1	37.8
3203 CG	LEU	В		16.179	30.941	50.135	1	31.91
3204 CD1	LEU	В	1089	17.508	29.277	48.82	1	36.34
3205 CD2	LEU	В	1089	18.73	32.045	53.64	1	41.39
3206 N	LEU	В	1090	19.383	32.057	54.941	1	45.74
3207 CA	LEU	В	1090 1090	19.363	30.688	55.582	1	51.8
3208 C	LEU	В	1090	19.122	30.175	56.362	1	54.91
3209 O	LEU	В	1090	18.782	33.114	55.85	1	41.25
3210 CB	LEU	В	1090	19.111	34.582	55.603	1	43.4
3211 CG	LEU	В	1090	18.361	35.428	56.599	1	40.33
3212 CD1	LEU	В	1090	20.607	34.836	55.742	1	44.24
3213 CD2	LEU	В	1090	17.988	30.097	55.216	1	54.86
3214 N	ASP	В	1091	17.56	28.818	55.755	1	56.17
3215 CA	ASP	В	1091	16.404	28.346	54.886	1	58.98
3216 C	ASP	B B	1091	15.781	29.139	54.174	1	58.18
3217 O	ASP	В	1091	17.084	29.038	57.212	1	55.2
3218 CB	ASP	В	1091	16.659	27.744	57.944	1	50.83
3219 CG	ASP	В	1091	17.182	26.645	57.654	1	48.39
3220 OD1	ASP	В	1091	15.817	27.859	58.867	1	48.11
3221 OD2	ASP VAL	В	1092	16.198	27.035	54.889	1	60.54
3222 N	VAL	В	1092	15.117	26.391	54.171	1	61.64
3223 CA	VAL	В	1092	14.803	25.186	55.043	1	61.8
3224 C	VAL	В	1092	15.709	24.484	55.506	1	60.49
3225 O	VAL	В	1092	15.523	25.948	52.746	1	63.63
3226 CB 3227 CG1	VAL	В	1092	16.766	25.13	52.789	1	64.29
3227 CG1	VAL	В	1092	14.412	25.119	52.11	1	64.21
3228 CG2 3229 N	PHE	В	1093	13.522	24.959	55.291	1	62.04
3230 CA	PHE	В	1093	13.134	23.852	56.141	1	62.29
3231 C	PHE	В	1093	11.785	23.268	55.813	1	63.71
3232 O	PHE	В	1093	11.03	23.817	55.021	1	66.24
3233 CB	PHE	В	1093	13.116	24.324	57.593	1	59.66
3234 CG	PHE	В	1093		25.382	57.882	1	55.63 53.36
3235 CD1	PHE	В	1093	10.784	25.026	58.25	1	54.21
3236 CD2	PHE	В	1093		26.734	57.824	1	52.77
3237 CE1	PHE	В	1093		26.011	58.562	1	50.11
3238 CE2	PHE	В	1093		27.726	58.135	1	49.43
3239 CZ	PHE	В	1093		27.363	58.505	1	66.12
3240 N	THR	В	1094		22.161	56.477	1	67.21
3241 CA	THR	В	1094		21.475	56.339	1	69
3242 C	THR	В	1094		20.799	57.671	1	
3243 O	THR	В	1094		20.079	58.229	1	
3244 CB	THR	В	1094		20.421	55.204	1	
3245 OG1		В	1094		19.723	55.214 55.36	1	
3246 CG2		В	1094		19.422	55.36 58.229		
3247 N	PRO	В	1095					
3248 CA	PRO	В	109	5 8.275	20.519	59.497	•	. 2.01

Atom								
Atom Type	Residue		#	X	~Y	Z	occ	В
3249 C	PRO	В	1095	7.784	19.079	59.333	1	77.44
3250 O	PRO	В	1095	6.995	18.58	60.139	1	79.83
3251 CB	PRO	В	1095	7.151	21.463	59.882	1	70.67
3252 CG	PRO	В	1095	6.537	21.771	58.577	1	70.21
3253 CD	PRO	В	1095	7.732	22.032	57.703	1	70.12
3254 N	ASP	В	1096	8.23	18.442	58.257	1	80.58
3255 CA	ASP	В	1096	7.876	17.064	57.952	1	84.96
3256 C	ASP	В	1096	9.146	16.236	58.15	1	88.49
3257 O	ASP	В	1096	10.153	16.423	57.453	1	88.53
3258 CB	ASP	В	1096	7.359	16.953	56.513	1	86.44
3259 CG	ASP	В	1096	6.175	17.893	56.228	1	88.55
3260 OD1	ASP	В	1096	5.37	18.178	57.146	1	88.77
3261 OD2 ·	ASP	В	1096	6.048	18.35	55.07	1	88.75
3262 N	GLU	В	1097	9.089	15.332	59.124	1	92.02
3263 CA	GLU	В	1097	10.221	14.488	59.489	1	93.95
3264 C	GLU	В	1097	10.638	13.402	58.502	1	94.65
3265 O	GLU	В	1097	11.8	12.988	58.5	1	94.52
3266 CB	GLU	В	1097	9.973	13.892	60.874	1	95.63
3267 CG	GLU	В	1097	9.85	14.959	61.969	1	98.55
3268 CD	GLU	В	1097	9.248	14.44	63.272	1	99.67
3269 OE1	GLU	В	1097	9.588	13.307	63.69	1	100
3270 OE2	GLU	В	1097	8.437	15.177	63.88	1	97.51
3271 N	THR	В	1098	9.708	12.957	57.656	1	95.51
3272 CA	THR	В	1098	10	11.904	56.675	1	97.78
3273 C	THR	В	1098	9.549	12.247	55.253	1	97.73
3274 O	THR	В	1098	8.594	12.995	55.066	1	98.25
3275 CB	THR	В	1098	9.321	10.565	57.065	1	99.16
3276 OG1	THR	В	1098	7.899	10.742	57.109	1	99.02
3277 CG2	THR	В	1098	9.817	10.069	58.425 54.257	1 1	99.67 98.25
3278 N	LEU	В	1099	10.214	11.659	52.85	1	98.51
3279 CA	LEU	В	1099	9.871	11.887	52.546	1	98.29
3280 C	LEU	В	1099	8.448	11.445 12.022	51.689	1	98.53
3281 O	LEU	B B	1099 1099	7.782 10.845	11.144	51.927	1	98.49
3282 CB	LEU	В	1099	10.843	11.023	50.436	1	98.62
3283 CG	LEU	В	1099	10.466	12.371	49.846	1	97.83
3284 CD1 3285 CD2	LEU	В	1099	11.664	10.422	49.67	i	99.42
3286 N	ASP	В	1100	7.994	10.418	53.259	1	99.35
3287 CA	ASP	В	1100	6.656	9.874	53.084	1	99.24
3288 C	ASP	В	1100	5.561	10.946	53.226	1	98.81
3289 O	ASP	В	1100	4.741	11.109	52.315	1	99.71
3290 CB	ASP	В	1100	6.426	8.71	54.058	1	98.7
3291 N	ASP	В	1101	5.555	11.692	54.334	1	97.21
3292 CA	ASP	В	1101	4.537	12.732	54.522	1	95.45
3293 C	ASP	В	1101	4.998	14.166	54.253	1	92.22
3294 O	ASP	В	1101	4.298	15.12	54.579	1	92.05
3295 CB	ASP	В	1101	3.813	12.604	55.882	1	98.04
3296 CG	ASP	В	1101	4.762	12.55	57.072	1	99.4
3297 OD1	ASP	В	1101	5.215	11.44	57.434	1	97.84
3298 OD2	ASP	В	1101	5.014	13.616	57.677	1	100
3299 N	PHE	В	1102	6.15	14.293	53.596	1	89.67
3300 CA	PHE	В	1102	6.745	15.583	53.22		85.73
3301 C	PHE	В	1102	5.831	16.283	52.232		83.04
3302 O	PHE	В	1102	5.894	16.009	51.039		84.56
3303 CB	PHE	В	1102	8.114	15.331	52.566		86.09
3304 CG	PHE	В	1102	8.684	16.513	51.821	1	84.91
•								

Atom								
Atom Type	Residue		#	X	Y		occ	В
3305 CD1	PHE	В	1102	8.796	17.761	52.424	1	85.67
3306 CD2	PHE	В	1102	9.162	16.353	50.526	1	84.73
3307 CE1	PHE	В	1102	9.385	18.829	51.748	1	85.4
3308 CE2	PHE	В	1102	9.752	17.413	49.843	1	85.63
3309 CZ	PHE	В	1102	9.865	18.653	50.455	1	85.2
3310 N	THR	В	1103	4.975	17.174	52.72	1	78.84
3311 CA	THR	В	1103	4.061	17.874	51.831	1	77.63
3312 C	THR	В	1103	4.524	19.267	51.405	1	76.47
3313 O	THR	В	1103	4.256	19.693	50.278	1	76.17
3314 CB	THR	В	1103	2.658	17. 9 79	52.426	1	78.02
3315 OG1	THR	В	1103	2.697	18.793	53.603	1	81.65
3316 CG2	THR	В	1103	2.127	16.597	52.776	1	79.08
3317 N	ASP	В	1104	5.228	19.972	52.285	1	75.04
3318 CA	ASP	В	1104	5.695	21.317	51.952	1	73.27
3319 C	ASP	В	1104	7.006	21.753	52.587	1	68.42
3320 O	ASP	В	1104	7.606	21.019	53.364	1	67.69
3321 CB	ASP	В	1104	4.607	22.361	52.246	1	76.28
3322 CG	ASP	В	1104	3.916	22.14	53.571	1	78.1
3323 OD1	ASP	В	1104	4.583	21.778	54.563	1	81.19
3324 OD2	ASP	В	1104	2.689	22.334	53.612	1	80.9
3325 N	PHE	В	1105	7.456	22.947	52.212	1	63.56
3326 CA	PHE	В	1105	8.685	23.499	52.742	1	60.34
3327 C	PHE	В	1105	8.701	25.006	52.698	1	58.3
3328 O	PHE	В	1105	8.029	25.619	51.873	1	58.86 50.78
3329 CB	PHE	В	1105	9.908	22.931	52.024	1	59.78
3330 CG	PHE	В	1105	10.025	23.334	50.592	1	58.24
3331 CD1	PHE	В	1105	9.211	22.762	49.629	1 1	57.99 60.55
3332 CD2	PHE	В	1105	11.003	24.242	50.195	1	60.21
3333 CE1	PHE	В	1105	9.371	23.082	48.282 48.86	1	60.36
3334 CE2	PHE	В	1105	11.176	24.572	47.897	1	62.76
3335 CZ	PHE	В	1105	10.36	23.988 25.592	53.594	1	56.86
3336 N	TYR	В	1106	9.49		53.713		54.84
3337 CA	TYR	В	1106	9.617	27.041 27.583	53.327	1	54.24
3338 C	TYR	В	1106 1106	10.991 12.019	26.948	53.568		56.01
3339 O	TYR	В	1106	9.293	27.468	55.135		52.86
3340 CB	TYR	B B	1106	7.904	27.082	55.615		55.79
3341 CG	TYR	В	1106	7.517	25.738	55.739	-	56.11
3342 CD1	TYR TYR	В	1106	6.989	28.061	55.977		54.96
3343 CD2	TYR	В	1106	6.255	25.392	56.216		55.56
3344 CE1 3345 CE2	TYR	В	1106	5.73	27.729	56.451		59.19
3345 CZ 3346 CZ	TYR	В	1106	5.363	26.398	56.571		60.07
3347 OH	TYR	В	1106	4.1	26.101	57.053		63.38
3348 N	LEU	В	1107	10.992	28.757	52.698	1	52.76
3349 CA	LEU	В	1107	12.227	29.418	52.273		47.82
3350 C	LEU	В	1107	12.437	30.64	53.15		44.87
3351 O	LEU	В	1107	11.497	31.41	53.398	1	45.31
3352 CB	LEU	В	1107	12.139	29.867	50.814	1	42.99
3353 CG	LEU	В	1107	12.135	28.875	49.658		40.78
3354 CD1	LEU	В	1107	12.253	29.679	48.375	5 1	37.09
3355 CD2	LEU	В	1107	13.288	27.887	49.757		37.49
3356 N	VAL	В	1108	13.666	30.819	53.619		43.23
3357 CA	VAL	В	1108	13.977	31.951	54.488		44.7
3358 C	VAL	В	1108	15	32.877	53.856		45
3359 O	VAL	В	1108	16.108	32.455	53.493		48.26
3360 CB	VAL	В	1108	14.491	31.492	55.88	3 1	42.36
F - ·								

Atom								
Atom Type			#	Х	Y	z	CC	В
3361 CG1	VAL	В	1108	14.5	32.645	56.832	1	41.98
3362 CG2	VAL	В	1108	13.591	30.414	56.455	1	44.81
3363 N	MET	В	1109	14.593	34.128	53.667	1	44.32
3364 CA	MET	В	1109	15.462	35.143	53.088	1	44.35
3365 C	MET	В	1109	15.452	36.339	54.011	1	43.05
3366 O	MET	В	1109	14.554	36.492	54.837	1	46.87
3367 CB	MET	В	1109	14.958	35.596	51.717	1	45.3
3368 CG	MET	В	1109	14.765	34.5	50.703	1	50.96
3369 SD	MET	В	1109	13.017	34.213	50.488	1	64.31
3370 CE	MET	В	1109	12.485	35.892	49.997	1	45.61
3371 N	PRO	В	1110	16.466	37.202	53.906	1	40.77
3372 CA	PRO	В	1110	16.552	38.395	54.741	1	37.5
3373 C	PRO	В	1110	15.422	39.349	54.405	1	39.62
3374 O	PRO	В	1110	15.012	39.445	53.26	1	42.95
3375 CB	PRO	В	1110	17.886	38.976	54.331	1	36.57
3376 CG	PRO	В	1110	18.092	38.474	52.981	1	32.86
3377 CD	PRO	В	1110	17.658	37.08	53.061	1	37.59
3378 N	PHE	В	1111	14.862	40.019	55.394	1	43.29
3379 CA	PHE	В	1111	13.776	40.943	55.088	1	46.86
3380 C	PHE	В	1111	14.384	42.117	54.337	1	49.91
3381 O	PHE	В	1111	15.36	42.713	54.791	1	52.95
3382 CB	PHE	В	1111	13.104	41.412	56.352	1	44.83
3383 CG	PHE	В	1111	11.964	42.337	56.118	1	46.7
3384 CD1	PHE	В	1111	10.736	41.841	55.727	1	47.93
3385 CD2	PHE	В	1111	12.091	43.702	56.371	1	50.78
3386 CE1	PHE	В	1111	9.627	42.685	55.594	1	46.11
3387 CE2	PHE	В	1111	10.989	44.555	56.242	1	53.95
3388 CZ	PHE	В	1111	9.754	44.036	55.853	1	51.1
3389 N	MET	В	1112	13.825	42.423	53.177	1	49.74
3390 CA	MET	В	1112	14.344	43.496	52.362	1	49.77
3391 C	MET	В	1112	13.54	44.777	52.312	1	49.4
3392 O	MET	В	1112	13.663	45.514	51.353	1	54.65
3393 CB	MET	В	1112	14.572	42.996	50.948	1	51.73
3394 CG	MET	В	1112	15.907	42.356	50.734	1	57.71
3395 SD	MET	В	1112	17.232	43.558	50.992	1	59.73
3396 CE	MET	В	1112	16.8	44.823	49.883	1	59.1
3397 N	GLY	В	1113	12.732	45.057	53.324	1	47.34
3398 CA	GLY	В	1113	11.977	46.293	53.316	1	47.17
3399 C	GLY	В	1113	10.563	46.198	52.79	1 1	50.34 56.84
3400 O	GLY	В	1113	9.623	46.08	53.583 51.483	1	47.67
3401 N	THR	В	1114	10.399	46.403	_	1	48.71
3402 CA	THR	В	1114	9.106	46.319	50.788 49.338	1	48.49
3403 C	THR	В	1114	9.448	46.065		1	52.16
3404 O	THR	В	1114	10.618	46.121	48.968 50.83	1	50.25
3405 CB	THR	В	1114	8.248	47.621	50.285	1	52.88
3406 OG1	THR	В	1114	8.99	48.715		1	53.9
3407 CG2	THR	В	1114	7.793	47.951	52.235 48.519	1	46.96
3408 N	ASP	В	1115	8.445	45.775 45.540	47.108	1	46.31
3409 CA	ASP	В	1115	8.681	45.519 46.811	46.352	1	45.48
3410 C	ASP	В	1115	8.426	46.811	46.796	1	44.32
3411 O	ASP	В	1115		47.63 44.395	46.603	1	48.02
3412 CB	ASP	В	1115		44.395 44.719	46.757	1	51
3413 CG	ASP	В	1115		45.623	46.051	1	49.24
3414 OD1	ASP	В	1115		44.078	47.602	i	54.92
3415 OD2	ASP	В	1115		46.961	45.193	i	44.79
3416 N	LEU	В	1116	a.003	 0.501	.5.,50		•

Atom								
Atom Type	Residue		#	X	Υ	z c	CC	В
3417 CA	LEU	В	1116	8.947	48.17	44.386	1	47.63
3418 C	LEU	В	1116	7.509	48.584	44.107	1	50.96
3419 O	LEU	В	1116	7.202	49.78	44.044	1	48.13
3420 CB	LEU	В	1116	9.705	48.007	43.066	1	48.87
3421 CG	LEU	В	1116	10.009	49.289	42.28	1	47.8
3422 CD1	LEU	В	1116	10.892	50.213	43.113	1	46.89
3423 CD2	LEU	В	1116	10.671	48.956	40.952	1	43.9
3424 N	GLY	В	1117	6.638	47.588	43.943	1	51.88
3425 CA	GLY	В	1117	5.238	47.857	43.676	1	51.75
3426 C	GLY	В	1117	4.587	48.722	44.734	1	52.41
3427 O	GLY	В	1117	3.961	49.724	44.403 45.997	1	51.13 55.29
3428 N	LYS	В	1118	4.732 4.166	48.321 49.051	45.997	1	55.85
3429 CA · 3430 C	LYS LYS	B B	1118 1118	4.881	50.372	47.126	1	56.27
3431 O	LYS	В	1118	4.265	51.391	47.521	i	56.48
3432 CB	LYS	В	1118	4.318	48.256	48.434	1	59.36
3433 CG	LYS	B	1118	3.565	46.924	48.476	1	65.6
3434 CD	LYS	В	1118	3.613	46.283	49.873	1	72.16
3435 CE	LYS	В	1118	3.192	44.789	49.872	1	77.1
3436 NZ	LYS	В	1118	1.815	44.51	49.352	1	78.56
3437 N	LEU	В	1119	6.195	50.351	47.114	1	57.8
3438 CA	LEU	В	1119	6.986	51.562	47.242	1	58.21
3439 C	LEU	В	1119	6.492	52.65	46.297	1	58.79
3440 O	LEU	В	1119	6.452	53.811	46.667	1	61.19
3441 CB	LEU	В	1119	8.465	51.252	46.982	1 1	57.62 57.94
3442 CG	LEU	В	1119	9.475	52.395 53.145	47.071 48.369	1	61.13
3443 CD1 3444 CD2	LEU LEU	B B	1119 1119	9. 2 94 10. 88 9	53.1 4 5 51.844	46.977	1	57.55
3444 CD2 3445 N	MET	В	1120	6.07	52.258	45.1	1	59.1
3446 CA	MET	В	1120	5.588	53.199	44.086	1	62.27
3447 C	MET	В	1120	4.165	53.716	44.29	1	65.88
3448 O	MET	В	1120	3.782	54.753	43.749	1	64.99
3449 CB	MET	В	1120	5.661	52.564	42.697	1	59.98
3450 CG	MET	В	1120	7.043	52.365	42.158	1	54.51
3451 SD	MET	В	1120	6.871	51.966	40.439	1	55.01
3452 CE	MET	В	1120	7.327	50.238	40.4	1	48.49
3453 N	LYS	В	1121	3.364	52.929	44.995	1	70.84
3454 CA	LYS	В	1121	1.981	53.263	45.286	1 1	72.19 75.33
3455 C	LYS	В	1121	1.924 1.054	54.382 55.244	46.327 46.266	1	75.8
3456 O	LYS	B B	1121 1121	1.054	52.01	45.815	1	70.77
3457 CB 3458 CG	LYS LYS	В	1121	-0.195	52,104	45.963	1	74.66
3459 CD	LYS	В	1121		50.731	46.312	1	80.54
3460 CE	LYS	В	1121	-2.258	50.681	46.314	1	81.02
3461 NZ	LYS	В	1121	-2.715	49.283	46.558	1	82.34
3462 N	HIS	В	1122	2.877	54.371	47.259	1	79.37
3463 CA	HIS	В	1122	2.941	55.355	48.339	1	84.05
3464 C	HIS	В	1122	3.634	56.648	47.932	1	83.81
3465 O	HIS	В	1122	3.183	57.738	48.287	1	83.68
3466 CB	HIS	В	1122	3.655	54.762	49.577	1	89.84
3467 CG	HIS	В	1122	2.937	53.6	50.214	1	97.14
3468 ND1	HIS	В	1122	1.748	53.09	49.73	1	98.38 98.8
3469 CD2	HIS	В	1122	3.253	52.846 52.074	51.297	1	98.8 99.03
3470 CE1	HIS	В	1122	1.363	52.074	50.484 51.443	1	100_
3471 NE2	HIS	В	1122	2.26 4.705	51.904 56.53	47.153	1	83.96
3472,N	GLU	В	1123	4.700	JU.JJ	-77.100	•	55.55

63 / 107 Figure 1

Atom								
Atom Type	Residue		#	X	Y	z o	CC	В
3473 CA	GLU	В	1123	5.467	57.705	46.743	1	83.63
3474 C	GLU	В	1123	5.969	57.726	45.295	1	82.16
3475 O	GLU	В	1123	6.013	56.695	44.619	1	80.04
3476 CB	GLU	В	1123	6.647	57.901	47.71	1	84.93
3477 CG	GLU	В	1123	7.53	56.669	47.86	1	85.12
3478 CD	GLU	В	1123	8.589	56.83	48.925	1	86.79
3479 OE1	GLU	В	1123	8.277	56.587	50.115	1	86.76
3480 OE2	GLU	В	1123	9.732	57.189	48.566	1	86.46
3481 N	LYS	В	1124	6.28	58.933	44.814	1	82.56
3482 CA	LYS	В	1124	6.821	59.132	43.465	1	81.06
3483 C	LYS	В	1124	8.317	59.052	43.668	1	77.78
3484 O	LYS	В	1124	8.841	59.618	44.636	1	78.5
3485 CB	LYS	В	1124	6.458	60.504	42.892	1	84.26
3486 CG	LYS	В	1124	6.548	60.575	41.366	1	86.98
3487 CD	LYS	В	1124	5.693	59.475	40.717	1	91.96
3488 CE	LYS	В	1124	5.502	59.697	39.216	1	94.56
3489 NZ	LYS	В	1124	4.471	60.739	38.898	1	96.11
3490 N	LEU	В	1125	9.003	58.395	42.741	1	71.62
3491 CA	LEU	В	1125	10.426	58.19	42.889	1	67.92
3492 C	LEU	В	1125	11.399	59.349	42.723	1	68.88
3493 O	LEU	В	1125	11.86	59.913	43.716	1	71.34
3494 CB	LEU	В	1125	10.845	56.958	42.1	1	64.73
3495 CG	LEU	В	1125	10.259	55.671	42.703	1	59.06
3496 CD1	LEU	В	1125	10.574	54.504	41.839	1	54.98
3497 CD2	LEU	В	1125	10.797	55.439	44.109	1	54.83
3498 N	GLY	В	1126	11.736	59.716	41.501	1	67.61
3499 CA	GLY	В	1126	12.683	60.804	41.356	1	70.66
3500 C	GLY	В	1126	13.93	60.337	40.63	1	73.02
3501 O	GLY	В	1126	14.472	59.271	40.922	1	72.39
3502 N	GLU	В	1127	14.401	61.173	39.711	1	74.64
3503 CA	GLU	В	1127	15.554	60.88	38.874	1	76.17
3504 C	GLU	В	1127	16.695	60.069	39.461	1	74.33
3505 O	GLU	В	1127	17.004	58.999	38.945	1	72.9
3506 CB	GLU	В	1127	16.087	62.162	38.234	1	81.52
3507 CG	GLU	В	1127	15.108	62.779	37.241	1 1	86.13 89.36
3508 CD	GLU	В	1127	15.767	63.745	36.27		89.13
3509 OE1	GLU	В	1127	16.875	63.441	35.766	1 1	92.24
3510 OE2	GLU	В	1127	15.158	64.804	35.998 40.519	1	73.57
3511 N	ASP	В	1128	17.328	60.567 59.84	41.116	1	73.67
3512 CA	ASP	В	1128	18.445 18.035	58.45	41.601	1	72.87
3513 C	ASP	B B	1128 1128	18.734	57.467	41.336	1	73.04
3514 O	ASP	В	1128	19.077	60.646	42.258	1	75.81
3515 CB	ASP ASP		1128	20.069	61.706	41.765	1	77.88
3516 CG		B B	1128	20.009	62.093	40.572	1	76.08
3517 OD1	ASP ASP	В	1128	20.902	62.154	42.586	1	78.33
3518 OD2	ARG	В	1129	16.881	58.373	42.269	1	71.72
3519 N 3520 CA	ARG	В	1129	16.342	57.116	42.809	1	69.85
3521 C	ARG	В	1129	16.04	56.084	41.718	1	65.08
3521 C	ARG	В	1129	16.503	54.943	41.771	1	60.98
3522 CB	ARG	В	1129	15.058	57.391	43.596	1	74.44
3523 CB 3524 CG	ARG	В	1129	15.165	57.417	45.108	1	79.34
3525 CD	ARG	В	1129	13.729	57.482	45.602	1	86.88
3526 NE	ARG	В	1129	13.599	57.222	46.985	1	95.02
3527 CZ	ARG	В	1129	13.062	56.309	47.786	1	98.4
3528 NH1	ARG	В	1129	12.4	55.196	47.479	1	98.08
0020 14111	,							

Atom occ В Ζ # Х Υ Residue Atom Type 49.054 100 13.275 1 56.613 В 1129 3529 NH2 ARG 40.744 61.08 56.501 1 15.239 1130 3530 N ILE В 39.632 56.02 55.648 1 14.856 ILE В 1130 3531 CA 55.059 38.945 1 55.95 1130 16.072 В 3532 C ILE 57.22 1130 16.047 53.896 38.555 1 В ILE 3533 O 38.618 53.66 1130 14.014 56.434 1 ILE В 3534 CB 39.3 54.96 56.926 1 12.74 ILE В 1130 3535 CG1 37.408 53.66 13.699 55.578 1 1130 В 3536 CG2 ILE 55.23 57.876 38.479 1 11.897 В 1130 ILE 3537 CD1 38.821 1 57.03 17.137 55.856 1131 В 3538 N GLN 38.182 1 57.03 1131 18.384 55.423 В 3539 CA GLN 38.994 1 56.82 54.345 3540°C **GLN** В 1131 19.067 19.425 38.48 1 57.84 53.283 1131 3541 O **GLN** В 59.35 38.027 1131 19.371 56.58 1 В 3542 CB GLN 37.365 1 63.44 20.68 56.139 В 1131 3543 CG GLN 57.156 37.493 1 64.89 1131 21.801 GLN В 3544 CD 36.53 64.54 22.522 57.429 GLN В 1131 3545 OE1 68.97 1 57.694 38.694 21,976 GLN В 1131 3546 NE2 55.63 40.269 1 19.268 54.64 1132 3547 N PHE В 41.168 1 52.85 53.7 1132 19.913 PHE В 3548 CA 49.79 52.372 41.178 1 19.169 1132 PHE В 3549 C 51.14 51.307 41.038 1 1132 19.774 B PHE 3550 O 53.09 42.587 1 54.278 В 1132 19.95 PHE 3551 CB 43.521 53.2 53.528 20.853 1132 3552 CG PHE В 54.16 22.053 52.968 43.06 1 1132 PHE В 3553 CD1 50.23 1 20.514 53.384 44.854 1132 PHE 3554 CD2 В 53.87 43.918 1 52.273 В 1132 22.9 PHE 3555 CE1 55.54 45.723 52.691 21.354 3556 CE2 В 1132 PHE 45.251 54.71 52.132 22.553 1132 PHE В 3557 CZ 44.05 17.851 52.445 41.305 В 1133 3558 N LEU 41.13 51.238 41.358 LEU В 1133 17.052 3559 CA 42.01 40.118 1 17.215 50.404 LEU В 1133 3560 C 42.85 40.218 1 1133 17.571 49.24 В 3561 O LEU 41.62 1 35.84 51.553 1133 15.578 LEU В 3562 CB 32.28 52.134 43.011 1 15.285 1133 LEU В 3563 CG 35.05 13.802 52.374 43.2 1 1133 LEU В 3564 CD1 44.074 1 32.13 51.202 1133 15.803 3565 CD2 LEU В 43.76 38.95 1 1134 17.079 51.032 В 3566 N VAL 41.86 37.671 1 50.314 1134 17.178 VAL В 3567 CA 45.23 49.742 37.409 1 18.558 1134 VAL В 3568 C 49,26 36,792 18.697 48.68 1 1134 VAL В 3569 O 36.34 36.484 1 В 1134 16.751 51.193 VAL 3570 CB 31.6 50.378 35.205 16.726 1134 3571 CG1 VAL В 37.61 36.738 1 15.381 51.776 3572 CG2 В 1134 VAL 47.4 1135 50.453 37.877 1 19.576 В **TYR** 3573 N 48.59 37.718 1 20.954 50.017 В 1135 3574 CA TYR 49.03 38.404 48.657 **TYR** В 1135 21.077 3575 C 47.74 37.834 1 21.611 47.705 В 1135 3576 O **TYR** 52.16 51.026 38.388 1 21.895 1135 3577 CB TYR В 57.47 38.29 1 1135 23.359 50.648 **TYR** В 3578 CG 50.297 58.3 37.058 1135 23.928 **TYR** В 3579 CD1 58.11 50.619 39.424 TYR 1135 24.171 В 3580 CD2 58.53 36.959 1 25.266 49.93 1135 3581 CE1 **TYR** В 1 60.23 39.334 50.246 1135 25.513 В 3582 CE2 TYR 61.07 38.097 1 26.053 49.905 В 1135 3583 CZ **TYR** 66.1 1 37,994 1135 27.382 49.535 TYR В 3584 OH

Atom								
Atom Type	Residue		#	Х	Υ	Z	occ	В
3585 N	GLN	`B	1136	20.525	48.583	39.615	1	48.47
3586 CA	GLN	В	1136	20.533	47.374	40.419	1	47.8
3587 C	GLN	В	1136	19.713	46.227	39.804	1	48.71
3588 O	GLN	В	1136	20.118	45.062	39.878	1	49.82
3589 CB	GLN	В	1136	20.044	47.691	41.816	1	50.54
3590 CG	GLN	В	1136	20.795	48.813	42.479	1	48.71
3591 CD	GLN	В	1136	20.47	48.908	43.943	1	51.78
3592 OE1	GLN	В	1136	20.809	48.009	44.724	1	53.24
3593 NE2	GLN	В	1136	19.804	49.99	44.334	1	48.84
3594 N	MET	В	1137	18.562	46.536	39.215 38.564	1 1	44.32 46.03
3595 CA	MET MET	B B	1137 1137	17.775 18.674	45.493 44.815	37.53	1	49.34
3596 C	MET	В	1137	18.766	43.58	37.457	1	50.26
3597 O . 3598 CB	MET	В	1137	16.598	46.098	37.805	1	40.63
3599 CG	MET	В	1137	15.353	46.242	38.588	i	42.48
3600 SD	MET	В	1137	14.318	47.431	37.791	1	47.34
3601 CE	MET	В	1137	14.255	48.7	39.048	1	42.91
3602 N	LEU	В	1138	19.366	45.661	36.766	1	48.43
3603 CA	LEU	В	1138	20.234	45.229	35.695	1	45.62
3604 C	LEU	В	1138	21.501	44.467	36.066	1	45.99
3605 O	LEU	В	1138	21.898	43.554	35.339	1	44.39
3606 CB	LEU	В	1138	20.506	46.415	34.78	1	43.96
3607 CG	LEU	В	1138	19.232	46.802	34.017	1	41.59
3608 CD1	LEU	В	1138	19.445	48.074	33.245	1	42.5
3609 CD2	LEU	В	1138	18.843	45.669	33.069	1	38.1
3610 N	LYS	В	1139	22.14	44.816	37.179	1	46.62
3611 CA	LYS	В	1139	23.337	44.071	37.576	1	46.94
3612 C	LYS	В	1139	22.842	42.694	38.006 37.688	1 1	45.46 47.02
3613 O	LYS LYS	B B	1139 1139	23.434 24.088	41.667 44.755	38.728	1	48.43
3614 CB 3615 CG	LYS	В	1139	24.737	46.083	38.351	1	54.08
3616 CD	LYS	В	1139	26.007	46.372	39.143	1	58.36
3617 CE	LYS	В	1139	25.758	46.451	40.654	1	66.2
3618 NZ	LYS	В	1139	27.03	46.525	41.469	1	67.31
3619 N	GLY	В	1140	21.703	42.688	38.682	1	42.91
3620 CA	GLY	В	1140	21.136	41.445	39.131	1	38.97
3621 C	GLY	В	1140	20.835	40.616	37.923	1	41.74
3622 O	GLY	В	1140	21.195	39.435	37.861	1	42.79
3623 N	LEU	В	1141	20.247	41.265	36.92	1	43.16
3624 CA	LEU	В	1141	19.887	40.577	35.692	1	44.48
3625 C	LEU	В	1141	21.094	40.037	34.951	1	47.53
3626 O	LEU	В	1141	21.101	38.867	34.557	1 1	49.29
3627 CB	LEU	B B	1141 1141	19.096 17.649	41.483 41.057	34.781 34.565	1	40.49 40.66
3628 CG 3629 CD1	LEU LEU	В	1141	17.049	41.641	33.228	1	42.75
3630 CD2	LEU	В	1141	17.518	39.547	34.53	1	35.6
3631 N	ARG	В	1142	22.12	40.877	34.799	1	49.33
3632 CA	ARG	В	1142	23.34	40.474	34.107	1	52.44
3633 C	ARG	В	1142	23.904	39.219	34.753	1	54.8
3634 O	ARG	В	1142	24.424	38.343	34.051	1	55.56
3635 CB	ARG	В	1142	24.398	41.574	34.125	1	53.1
3636 CG	ARG	В	1142	25.461	41.382	33.054	1	55.22
3637 CD	ARG	В	1142	26.847	41.755	33.538	1	61.94
3638 NE	ARG	В	1142	26.895	43.071	34.173	1	68.45
3639 CZ	ARG	В	1142	27.861	43.467	34.998	1	71.59
3640 NH1	ARG	В	1142	28.863	42.648	35.282	1	76.4

Atom								
Atom Type	Residue		#	X	Y	Z (CC	В
3641 NH2	ARG	В	1142	27.806	44.661	35.577	1	73.39
3642 N	TYR	В	1143	23.795	39.139	36.083	1	54.15
3643 CA	TYR	В	1143	24.267	37.976	36.802	1	54.04
3644 C	TYR	В	1143	23.401	36.768	36.452	1	55
3645 O	TYR	В	1143	23.902	35.763	35.948	1	56.08
3646 CB	TYR	В	1143	24.24	38.206	38.312	1	55.69
3647 CG	TYR	В	1143	24.59	36.957	39.109	1	54.84
3648 CD1	TYR	В	1143	25.91	36.512	39.197	1	54.34
3649 CD2	TYR	В	1143	23.595	36.177	39.697	1	52.78
3650 CE1	TYR	В	1143	26.231	35.319	39.839	1	51.48
3651 CE2	TYR	В	1143	23.9	34.986	40.334	1	53.29
3652 CZ	TYR	В	1143	25.224	34.56	40.402	1 1	53.23 52.52
3653 OH	TYR	В	1143	25.54	33.374	41.029 36.704	1	53.33
3654 N	ILE	В	1144	22.1	36.875 35.778	36.426	1	50.27
3655 CA	ILE	В	1144 1144	21.177 21.347	35.776	35.011	1	53.25
3656 C	ILE ILE	B B	1144	21.354	34.014	34.806	1	56.43
3657 O 3658 CB	ILE	В	1144	19.732	36.242	36.637	1	46.32
3659 CG1	ILE	В	1144	19.554	36.678	38.083	1	40.16
3660 CG2	ILE	В	1144	18.745	35.118	36.34	1	44.48
3661 CD1	ILE	В	1144	18.392	37.594	38.271	1	41.57
3662 N	HIS	B	1145	21.538	36.123	34.049	1	53.89
3663 CA	HIS	В	1145	21.71	35.745	32.651	1	53.63
3664 C	HIS	В	1145	23.061	35.143	32.313	1	55.06
3665 O	HIS	В	1145	23.132	34.137	31.603	1	55.93
3666 CB	HIS	В	1145	21.446	36.945	31.755	1	53.17
3667 CG	HIS	В	1145	20.003	37.313	31.673	1	51.03
3668 ND1	HIS	В	1145	19.575	38.535	31.207	1	49.45
3669 CD2	HIS	В	1145	18.89	36.609	31.979	1	49.05
3670 CE1	HIS	В	1145	18.255	38.567	31.227	1	51.87 51.75
3671 NE2	HIS	В	1145	17.815	37.409	31.69	1 1	51.75 56.94
3672 N	ALA	В	1146	24.133	35.785	32.773 32.539	1	57.72
3673 CA	ALA	В	1146	25.491	35.271	33.098	1	55.26
3674 C	ALA	В	1146	25.566	33.856 33.015	32.617	1	57.5
3675 O	ALA	В	1146 1146	26.329 26.537	36.16	33.226	i	56.09
3676 CB	ALA ALA	B B	1147	24.743	33.606	34.11	i	52.41
3677 N 3678 CA	ALA	В	1147	24.676	32.31	34.742	1	52.4
3679 C	ALA	В	1147	23.785	31.378	33.932	1	53.33
3680 O	ALA	В	1147	23.518	30.25	34.356	1	56.66
3681 CB	ALA	В	1147	24.156	32.451	36.156	1	47
3682 N	GLY	В	1148	23.331	31.853	32.771	1	53.31
3683 CA	GLY	В	1148	22.464	31.058	31.904	1	53.81
3684 C	GLY	В	1148	21.023	30.837	32.372	1	51.69
3685 O	GLY	В	1148	20.321	29.973	31.842	1	50.84
3686 N	ILE	В	1149	20.602	31.6	33.38	1	50.99
3687 CA	ILE	В	1149	19.249	31.531	33.941	1	49.74
3688 C	ILE	В	1149	18.325	32.594	33.301	1	48.79
3689 O	ILE	В	1149	18.779	33.633	32.802	1	44.6 48.77
3690 CB	ILE	В	1149		31.772	35.488	1	48.77 50.52
3691 CG1	ILE	В	1149		30.663	36.184	1 1	47.26
3692 CG2	ILE	В	1149		31.843	36.069 37.632		50.13
3693 CD1	ILE	В	1149		30.955	37.632		47.03
3694 N	ILE	В	1150 1150		32.291 33.208	33.26 32.764		45.69
3695 CA	ILE	B B	1150		33.208	33.896		47.53
3696 C	ILE	D	1130	10.001	55.555	33.000	•	

Atom					.,	7 0	СС	В
Atom Type	Residue		#	X	Υ	Z O 34.478	1	47.87
3697 O	ILE	В	1150	14.569	32.326	31.45	1	45.45
3698 CB	ILE	В	1150	15.402	32.702	30.957	1	42.45
3699 CG1	ILE	В	1150	14.366	33.696	31.624	1	46.3
3700 CG2	ILE	В	1150	14.792	31.315	29.527	1	43.98
3701 CD1	ILE	В	1150	14.018	33.491		1	44.2
3702 N	HIS	В	1151	14.635	34.575	34.223	1	37.69
3703 CA	HIS	В	1151	13.73	34.841	35.321	1	41.01
3704 C	HIS	В	1151	12.252	34.662	35.031 35.861	1	40.05
3705 O	HIS	В	1151	11.512	34.109	35.882	1	37.84
3706 CB	HIS	В	1151	13.994	36.241 36.547	37.104	1	30.23
3707 CG	HIS	В	1151	13.195	36.824	37.052	1	30.05
3708 ND1	HIS	В	1151	11.845 13.523	36.513	38.416	1	31.02
3709 CD2	HIS	В	1151	11.376	36.933	38.285	1	32.07
3710 CE1	HIS	В	1151	12.375	36.749	39.132	1	26.47
3711 NE2	HIS	В	1151	11.807	35.217	33.906	1	41.8
3712 N	ARG	В	1152 1152	10.407	35.129	33.465	1	42.27
3713 CA	ARG	B B	1152	9.3	35.758	34.32	1	41.18
3714 C	ARG	В	1152	8.134	35.367	34.192	1	43.19
3715 O	ARG ARG	В	1152	10.043	33.68	33.16	1	39.46
3716 CB 3717 CG	ARG	В	1152	10.84	33.125	32.027	1	41.9
3717 CG 3718 CD	ARG	В	1152	11.24	31.746	32.375	1	42.14
3718 CD 3719 NE	ARG	В	1152	10.593	30.76	31.527	1	47.05
3719 NE 3720 CZ	ARG	В	1152	10.056	29.636	31.976	1	43.86
3720 02 3721 NH1	ARG	В	1152	10.068	29.377	33.265	1	41.3
3722 NH2	ARG	В	1152	9.627	28.716	31.125	1	46.12
3723 N	ASP	В	1153	9.64	36.691	35.203	1	34.87
3724 CA	ASP	В	1153	8.597	37.328	35.988	1	33.15
3725 C	ASP	В	1153	8.991	38.637	36.669	1	34.98
3726 O	ASP	В	1153	8.511	38.949	37.755	1 1	32.43 31.59
3727 CB	ASP	В	1153	8.034	36.368	37.019 37.428	1	38.53
3728 CG	ASP	В	1153	6.608	36.738	36.54	1	40.91
3729 OD1	ASP	В	1153	5.83	37.15 36.64	38.623	i	36.3
3730 OD2	ASP	В	1153	6.25	39.411	36.039	1	31.7
3731 N	LEU	В	1154 1154	9.864 10.268	40.657	36.643	1	33.64
3732 CA	LEU	В	1154		41.626	36.595	1	31.96
3733 C	LEU	B B	1154		41.89	35.554	1	32.06
3734 O	LEU LEU	В	1154		41.228	35.924	1	33.58
3735 CB 3736 CG	LEU	В	1154		40.214	36.031	1	36.54
3737 CD1	LEU	В	1154		40.778	35.404	1	39.3
3738 CD2	LEU	В	1154		39.873	37.506	1	33.9
3739 N	LYS	В	1155		42.074	37.757	1	31.22
3740 CA	LYS	В	1155		43.005	37.854	1	33.96
3741 C	LYS	В	1155		43.708	39.137	1	35.23
3742 O	LYS	В	1155		43.209	39.931	1	36.46
3743 CB	LYS	В	1155		42.285	37.907	1	35.04
3744 CG	LYS	В	1155		41.375	39.086	1	36.77
3745 CD	LYS	В	1155		40.474	38.802	1	40.8 43.85
3746 CE	LYS	В	1155		39.777	40.057	1	46.98
3747 NZ	LYS	В	1155		39.391	39.94	1 1	36.93
3748 N	PRO	В	1156		44.88	39.361 40.592	1	37.08
3749 CA	PRO	В	1156		45.632	41.865	1	39.23
3750 C	PRO	В	1156		44.792	42.805	1	43.87
3751 O	PRO	В	1156		44.92 46.734	40.523	1	41.2
3752 CB	PRO	В	1156	0.47	70.104	. 5.525		

A4===								
Atom Type	Residue		#	X	Υ	Z _ O	CC	В
3753 CG	PRO	В	1156	6.275	46.932	39.024	1	37.21
3754 CD	PRO	В	1156	6.21	45.512	38.555	1	36.35
3755 N	GLY	В	1157	6.376	43.914	41.878	1	38.41
3756 CA	GLY	В	1157	6.141	43.076	43.037	1	37.48
3757 C	GLY	В	1157	7.209	42.039	43.348	1	36.76
3758 O	GLY	В	1157	7.212	41.466	44.433	1	39.68
3759 N	ASN	В	1158	8.069	41.744	42.391	1	33.82
3760 CA	ASN	В	1158	9.139	40.788	42.613	1	37.83
3761 C	ASN	В	1158	10.473	41.493	42.694	1	38.7
3762 O	ASN	В	1158	11.476	40.95	42.248	1	38.46
3763 CB	ASN	В	1158	9.222	39.743	41.505	1	38.35 40.45
3764 CG	ASN	В	1158	7.994	38.896	41.417	1	35.16
3765 OD1 ·	ASN	В	1158	7.414	38.505	42.436 40.19	1	38.65
3766 ND2	ASN	В	1158	7.573	38.606	43.196	1	38.47
3767 N	LEU	В	1159	10.473	42.725 43.473	43.150	1	39.51
3768 CA	LEU	В	1159	11.714 11.681	44.133	44.723	1	40.21
3769 C	LEU	В	1159 1159	10.867	45.03	44.946	1	43.09
3770 O	LEU	B B	1159	11.869	44.542	42.28	1	37.49
3771 CB	LEU LEU	В	1159	11.956	44.088	40.824	1	38.03
3772 CG 3773 CD1	LEU	В	1159	11.944	45.331	39.963	1	29.48
3773 CD1	LEU	В	1159	13.208	43.208	40.554	1	36.35
3774 CD2 3775 N	ALA	В	1160	12.559	43.692	45.628	1	38.14
3776 CA	ALA	В	1160	12.608	44.242	46.983	1	41.34
3777 C	ALA	В	1160	13.56	45.428	47.111	1	41.67
3778 O	ALA	В	1160	14.634	45.45	46.521	1	45.76
3779 CB	ALA	В	1160	12.954	43.161	47.974	1	39.03
3780 N	VAL	В	1161	13.167	46.397	47.916	1	41.49
3781 CA	VAL	В	1161	13.954	47.606	48.1	1	45.96 46.67
3782 C	VAL	В	1161	13.927	47.998	49.568	1 1	47.58
3783 O	VAL	В	1161	12.847	48.223	50.116 47.309	1	46.19
3784 CB	VAL	В	1161	13.309	48.779 50.031	47.469	1	49.32
3785 CG1	VAL	В	1161	14.121 13.165	48.427	45.85	1	44.43
3786 CG2	VAL	В	1161 1162	15.092	48.109	50.205	1	47.85
3787 N	ASN	B B	1162	15.092	48.506	51.615	1	50.5
3788 CA 3789 C	ASN ASN	8	1162	15.252	50.021	51.847	1	53.04
3789 C 3790 O	ASN	В	1162	15.29	50.8	50.893	1	51.83
3791 CB	ASN	В	1162	16.217	47.751	52.369	1	50.67
3791 CB	ASN	В	1162	17.599	48.075	51.87	1	54
3793 OD1	ASN	В	1162	17.852	49.168	51.346	1	49.99
3794 ND2	ASN	В	1162	18.519	47.113	52.023	1	54.01
3795 N	GLU	В	1163	15.332	50.423	53.116	1	56.87
3796 CA	GLU	В	1163	15.444	51.834	53.512	1	61.04
3797 C	GLU	В	1163	16.598	52.572	52.847	1	61.38
3798 O	GLU	В	1163		53.781	52.623	1	62.21
3799 CB	GLU	В	1163		51.968	55.024	1	66.73
3800 CG	GLU	В	1163		51.295	55.909	1	74.14 78.04
3801 CD	GLU	В	1163		51.531	57.391	1 1	80.69
3802 OE1	GLU	В	1163		51.294	57.844 58.097	1	79.71
3803 OE2	GLU	В	1163		51.973	52.604	1	60.92
3804 N	ASP	В	1164		51.859 52.439	51.97	1	62.75
3805 CA	ASP	В	1164		52.439 52.303	50.44	1	62.79
3806 C	ASP	В	1164		52.303 52.346	49.77	i	64.03
3807 O	ASP	В	1164 1164		51.799	52.541	1	64.9
3808 CB	ASP	В	1104	20.170	51.755			

Atom							
Atom Type	Residue		# X	Y	z c	CC	В
3809 CG	ASP	В	1164 20.40	9 52.198	53.99	1	70.14
3810 OD1	ASP	В	1164 19.71	18 53.106	54.513	1	72.87
3811 OD2	ASP	В	1164 21.31		54.612	1	73.36
3812 N	CYS	В	1165 17.63		49.903	1	61.53
3813 CA	CYS	В	1165 17		48.47	1	60.6
3814 C	CYS	В	1165 18.17		47.763	1	55.92
3815 O	CYS	В	1165 18.4		46.57	1	55.05
3816 CB	CYS	В	1165 17.54		47.739 47.695	1 1	64.16 75.2
3817 SG	CYS	В	1165 15.99		47.695 48.497	1	52.23
3818 N	GLU GLU	В	1166 18.49 1166 19.19	_	47.918	1	51.52
3819 CA	GLU	B B	1166 18.1		47.377	1	49.56
3820 C 3821 O	GLU	В	1166 17.0		47.951	1	52.89
3822 CB	GLU	В	1166 20.0		48.971	1	56.91
3823 CG	GLU	В	1166 21.0		49.621	1	61.48
3824 CD	GLU	В	1166 21.9		50.62	1	65.34
3825 OE1	GLU	В	1166 21.4	93 47.855	51.615	1	68.02
3826 OE2	GLU	В	1166 23.2		50.425	1	63.05
3827 N	LEU	В	1167 18.		46.242	1	43.77
3828 CA	LEU	В	1167 17.4		45.642	1	38.48
3829 C	LEU	В	1167 17.9		45.491	1 1	40.25 40.47
3830 O	LEU	В	1167 19.1		45.306 44.276	1	39.35
3831 CB	LEU	В	1167 17.0 1167 16.1		43.309	1	38.05
3832 CG	LEU LEU	B B	1167 15.2		42.471	1	32.6
3833 CD1 3834 CD2	LEU	В	1167 16.9		42.409	1	38.83
3835 N	LYS	В	1168 16.9		45.575	1	39.06
3836 CA	LYS	В	1168 17.2		45.383	1	42.57
3837 C	LYS	В	1168 16.0		44.592	1	40.77
3838 O	LYS	В	1168 14.8	87 42.08	44.899	1	41.04
3839 CB	LYS	В	1168 17.4		46.724	1	45.45
3840 CG	LYS	В	1168 18.8	41.937	47.345	1	47.6
3841 CD	LYS	В	1168 18.8		48.845	1	51.98 57.36
3842 CE	LYS	В	1168 20.3		49.405 49.063	1	60.39
3843 NZ	LYS	В	1168 20.9	995 40.257 .37 41.193	43.494	1	38.08
3844 N	ILE	В В	1169 16 1169 15.3		42.659	1	39.04
3845 CA	ILE ILE	В	1169 14.7		43.4	1	41.65
3846 C 3847 O	ILE	В	1169 15.5		43,925	1	42.84
3848 CB	ILE	В	1169 15.9		41.344	1	39.72
3849 CG1	ILE	В	1169 16.4		40.547	1	34.39
3850 CG2	ILE	В		.01 39.204	40.567	1	39.03
3851 CD1	ILE	В	1169 17.0		39.258	1	34.86
3852 N	LEU	В	1170 13.4		43.482	1	38.67
3853 CA	LEU	В		.75 38.278	44.165	1	39.63
3854 C	LEU	В	1170 12.0		43.234	1	39.3 41.56
3855 O	LEU	В	1170 12.		42.02 45.087	1	36.72
3856 CB	LEU	В	1170 11.6		46.176	1	36.16
3857 CG	LEU	В		138 39.823 912 40.462	46.8	1	30.53
3858 CD1	LEU LEU	B B		998 39.088	47.217	1	36.94
3859 CD2 3860 N	ASP	В		368 36.357	43.851	1	44.43
3861 CA	ASP	В		535 35.378	43.162	1	41.68
3862 C	ASP	В		.11 34.617	42.001	1	41.67
3863 O	ASP	В	•	858 34.961	40.852	1	43.91
3864 CB	ASP	В		255 36.071	42.69	1	42.47
•							

Atom occ # Х Υ Ζ В Type Residue Atom 45.71 42.578 1171 8.075 35.127 1 ASP В 3865 CG 45.02 33.891 42.466 1 1171 8.295 3866 OD1 ASP В 42.62 36.4 1 3867 OD2 ASP В 1171 6.923 35.631 42.274 43.92 11.857 33.56 1 1172 3868 N PHE В 12.361 32.758 41.174 1 42.77 В 1172 PHE 3869 CA 31.6 40.909 1 43.77 PHE В 1172 11.424 3870 C 40.264 50.44 PHE В 1172 11.796 30.635 1 3871 O 41.445 1 39.54 32.292 3872 CB В 1172 13.77 PHE 41.165 41.01 33.339 1172 14.785 1 PHE В 3873 CG 42.037 39.05 14.953 34.404 1 1172 3874 CD1 PHE В 1172 33.301 39.994 42.1 15.538 3875 CD2 В PHE 41.745 40.54 3876 CE1 PHE В 1172 15.86 35.426 1 39.692 39.85 1 34.315 3877 CE2 -PHE В 1172 16.448 35.377 40.571 1 40.67 16.606 1172 3878 CZ PHE В 31.756 41.341 1 44.58 В 1173 10.174 3879 N GLY 47.24 41.17 9.154 30.73 1 В 1173 3880 CA **GLY** 30.344 39.744 1 48.98 В 1173 8.817 3881 C **GLY** 39.509 50.09 29.268 3882 O **GLY** В 1173 8.271 1 38.796 1 47.5 1174 9.113 31.23 3883 N LEU В 44.45 1174 30.958 37.396 1 LEU В 8.86 3884 CA 44.98 36.64 1 30.92 3885 C LEU В 1174 10.175 49.18 30.786 35,425 1 1174 10.18 LEU В 3886 O 46.57 1174 7.959 32.025 36.795 1 LEU В 3887 CB 49.49 35.449 1 1174 7.335 31.658 3888 CG LEU В 52.43 1174 30.477 35.635 1 6.384 LEU В 3889 CD1 34.878 1 54.72 6.585 32.852 1174 3890 CD2 LEU В 43.44 37.348 1 1175 11.295 31.019 ALA В 3891 N 42.54 36.694 1 30.992 1175 12.597 3892 CA ALA В 36.298 43.79 13.053 29.576 1 3893 C ALA В 1175 36.74 1 38.37 12.481 28.576 1175 ALA В 3894 O 40.52 37.571 В 1175 13.614 31.648 1 ALA 3895 CB 47.34 35.432 1 В 1176 14.066 29.511 3896 N **ARG** 14.631 28.248 34.956 1 50.47 3897 CA **ARG** В 1176 53.83 28.524 34.223 1 1176 15.938 ARG В 3898 C 34.108 52.97 1 16.373 29.68 ARG 1176 3899 O В 54.56 27.551 33.992 1 ARG 1176 13.667 3900 CB В 27.945 57.15 1 32.523 3901 CG ARG В 1176 13.876 59.93 31.618 1 1176 12.712 27.603 В 3902 CD ARG 63.13 1 12.533 26.177 31.324 В 1176 ARG 3903 NE 30.662 1 61.48 25.413 3904 CZ ARG В 1176 13.4 25.912 30.236 1 63.98 14.547 1176 ARG В 3905 NH1 58.38 1176 13.06 24,185 30.3 1 3906 NH2 ARG В 57.87 1 33.745 16.567 27.451 GLN В 1177 3907 N 62.7 32.985 1 1177 17.808 27.555 **GLN** В 3908 CA 27.809 31.532 1 63.38 1177 17.404 GLN В 3909 C 62.96 30.969 1 16.599 27.068 1177 3910 O GLN В 67.17 33.08 1 В 1177 18.593 26.249 GLN 3911 CB 32.45 1 74.7 3912 CG 1177 19.975 26.305 GLN В 32.26 80.17 24.92 1 1177 20.57 3913 CD **GLN** В 83.06 1177 19.995 24.077 31.559 1 **GLN** 3914 OE1 В 80.44 32.889 1 1177 21.716 24.67 GLN В 3915 NE2 1 63,49 30.934 1178 17.94 28.866 ALA В 3916 N 64.11 29.562 1 17.599 29.202 3917 CA ALA В 1178 65.94 28.622 1 1178 28.05 17.903 3918 C ALA В 69.41 28.742 1 1178 18.943 27.397 3919 O ALA В 1 59.96 18.339 30.459 29.127 В 1178 3920 CB ALA

Atam								
Atom Atom Type	Residue		#	X	Υ	Z	occ	В
3921 N	ASP	В	1179	16.964	27.773	27.724	1	68.01
3922 CA	ASP	В	1179	17.115	26.712	26.736	1	69.02
3923 C	ASP	В	1179	16.449	27.178	25.445	1	69.54
3924 O	ASP	В	1179	16.035	28.333	25.341	1	69.63
3925 CB	ASP	В	1179	16.483	25.418	27.246	1	69.96
3926 CG	ASP	В	1179	16.933	24.192	26.46	1	74.7
3927 OD1	ASP	В	1179	18.092	24.163	25.974	1	75.27
3928 OD2	ASP	В	1179	16.118	23.252	26.33	1	75.59
3929 N	SER	В	1180	16.357	26.298	24.456	1 1	70.8 69.23
3930 CA	SER	В	1180	15.753	26.656 26.679	23.175 23.136	1	68.81
3931 C	SER	В	1180 1180	14.234 13.647	27.604	22.579	1	69.52
3932 O	SER	B B	1180	16.294	25.759	22.064	1	69.96
3933 CB · 3934 OG	SER SER	В	1180	17.59	26.187	21.685	1	71.51
3934 OG 3935 N	GLU	В	1181	13.599	25.675	23.73	1	69.72
3936 CA	GLU	В	1181	12.144	25.597	23.726	1	71.3
3937 C	GLU	В	1181	11.594	25.559	25.15	1	70.66
3938 O	GLU	В	1181	11.546	24.498	25.777	1	73.66
3939 CB	GLU	В	1181	11.698	24.353	22.958	1	74.63
3940 CG	GLU	В	1181	10.653	24.601	21.881	1	80.88
3941 CD	GLU	В	1181	10.135	23.304	21.266	1	87.34
3942 OE1	GLU	В	1181	10.923	22.595	20.598	1	90.4
3943 OE2	GLU	В	1181	8.938	22.987	21.46	1	88.92
3944 N	MET	В	1182	11.172	26.719	25.65	1	67.19
3945 CA	MET	В	1182	10.629	26.837	27.005 27.064	1 1	64.01 60.76
3946 C	MET	В	1182	9.095	26.854 26.902	26.039	1	63.29
3947 O	MET	B B	1182 1182	8.434 11.226	28.075	27.689	i	60.43
3948 CB 3949 CG	MET MET	В	1182	12.73	27.982	27.816	1	57.06
3949 CG 3950 SD	MET	В	1182	13.528	29.48	28.35	1	56.31
3950 GD 3951 CE	MET	В	1182	13.742	30.289	26.803	1	57.39
3952 N	TPO	В	1183	8.541	26.8	28.27	1	57.45
3953 CA	TPO	В	1183	7.098	26.799	28.461	1	57.48
3954 CB	TPO	В	1183	6.738	26.374	29.934	1	57.7
3955 CG2	TPO	В	1183	5.351	26.891	30.377	1	58.92
3956 OG1	TPO	В	1183	7.748	26.891	30.753	1	54.66
3957 P	TPO	В	1183	8.733	25.956	31,446	1	55.58
3958 O1P	TPO	В	1183	10.016	25,979	30.672	1 1	44.08 54.5
3959 O2P	TPO	В	1183	8.095	24.586 26.512	31.429 32.775	1	47.5
3960 O3P	TPO	В	1183 1183	8.998 6.492	28.142	27.99	1	57.58
3961 C	TPO TPO	B B	1183	7.073	29.217	28.188	1	56.01
3962 O 3963 N	GLY	В	1184	5.358	28.037	27.295	1	55.43
3964 CA	GLY	В	1184	4.683	29.179	26.707	1	52.19
3965 C	GLY	В	1184	4.124	30.308	27.537	1	54.15
3966 O	GLY	В	1184	4.546	31.465	27.368	1	55.41
3967 N	PTR	В	1185	3.135	30.016	28.38		52.22
3968 CA	PTR	В	1185	2.522	31.071	29.187		51.44
3969 C	PTR	В	1185	3.404	31.475	30.376		50.95
3970 O	PTR	В	1185	3.3	30.894	31.46		51.63
3971 CB	PTR	В	1185	1.129	30.637	29.648		50.17
3972 CG	PTR	В	1185		31.812	29.599		49.77
3973 CD1	PTR	В	1185		32.039	30.723 28.503		51.36 50.95
3974 CD2	PTR	В	1185		32.682	30.776		48.41
3975 CE1	PTR	В	1185		33.122 33.778	28.565		50.34
397.6 CE2	PTR	В	1185	-0.754	33.110	20.000	•	JJ.01

Atom								
Atom Type	Residue		#	X	Y	Z	occ	В
3977 CZ	PTR	В	1185	-1.578	33.986	29.696	1	49.75
3978 OH	PTR	В	1185	-2.507	34.994	29.665	1	52.59
3979 P	PTR	В	1185	-2.638	36.081	30.757	1	55.23
3980 O1P	PTR	В	1185	-1.812	35.798	31.921	1	60.66
3981 O2P	PTR	В	1185	-4.028	36.033	31.2	1	55.96
3982 O3P	PTR	В	1185	-2.363	37.376	30.187	1	55.33
3983 N	VAL	В	1186	4.27	32.468	30.162	1	47.01
3984 CA	VAL	В	1186	5.18	32.936	31.2	1	43.17
3985 C	VAL	В	1186	5.185	34.455	31.307	1	41.43
3986 O	VAL	В	1186	4.803	35.126	30.375	1	44.65
3987 CB	VAL	В	1186	6.612	32.412	30.933	1	45.49 46.53
3988 CG1	VAL	В	1186	6.614	30.873	30.884 29.63	1 1	40.53
3989 CG2	VAL	В	1186	7.156 5.645	32.969 34.99	32.437	1	43.35
3990 N	VAL	В	1187	5.645	36.448	32.719	1	41.61
3991 CA	VAL	B B	1187 1187	5.694 4.305	37.012	32.991	1	41.24
3992 C	VAL VAL	В	1187	3.343	36.61	32.357	1	44.73
3993 O 3994 CB	VAL	В	1187	6.28	37.298	31.573	1	36.39
3995 CG1	VAL	В	1187	6.545	38.697	32.074	1	37.09
3996 CG2	VAL	В	1187	7.552	36.705	31.04	1	41.27
3997 N	THR	В	1188	4.193	37.932	33.942	1	44.12
3998 CA	THR	В	1188	2.9	38.547	34.239	1	42.9
3999 C	THR	В	1188	2.558	39.438	33.068	1	42.74
4000 O	THR	В	1188	3.414	40.187	32.586	1	42.98
4001 CB	THR	В	1188	2.941	39.365	35.521	1	44.42
4002 OG1	THR	В	1188	3.198	38.49	36.639	1	44.96
4003 CG2	THR	В	1188	1.611	40.092	35.724	1	41.85
4004 N	ARG	В	1189	1.317	39.33	32.596	1	46.74
4005 CA	ARG	В	1189	0.83	40.083	31.423	1	48.63
4006 C	ARG	В	1189	1.354	41.508	31.138	1	45.25
4007 O	ARG	В	1189	1.954	41.739	30.1	1	46.29 48.77
4008 CB	ARG	В	1189	-0.708	40.08	31.367 30.054	1 1	50.27
4009 CG	ARG	B B	1189 1189	-1.259 -2.764	40.65 40.895	30.08	1	48.77
4010 CD	ARG ARG	В	1189	-2.76 4 -3.498	39.663	30.322	1	47.77
4011 NE 4012 CZ	ARG	В	1189	-4.501	39.549	31.181	1	48.48
4012 CZ 4013 NH1	ARG	В	1189	-4 .904	40.603	31.887	1	50.17
4014 NH2	ARG	В	1189	-5.089	38.377	31.35	1	45.66
4015 N	TRP	В	1190	1.145	42.453	32.039	1	41.32
4016 CA	TRP	В	1190	1.596	43.809	31.762	1	48.65
4017 C	TRP	В	1190	3.102	43.966	31.58		46.42
4018 O	TRP	В	1190	3.558	44.979	31.072	1	46.22
4019 CB	TRP	В	1190	1.053	44.813	32.808	1	53.47
4020 CG	TRP	В	1190	-0.461	44.8	32.938	1	60.03
4021 CD1	TRP	В	1190	-1.354	44.345	32.01	1	63.94
4022 CD2	TRP	В	1190	-1.244	45.197	34.076		64.5
4023 NE1	TRP	В	1190	-2.636	44.422	32.499		66.54 67.44
4024 CE2	TRP	В	1190	-2.596	44.943	33.764	1 1	69.36
4025 CE3	TRP	В	1190	-0.931	45.734	35.331 34.663		68.28
4026 CZ2	TRP	В	1190	-3.637	45.207	36.226		68.93
4027 CZ3	TRP	В	1190	-1.968	45.995 45.73	35.883		70
4028 CH2	TRP	B B	1190 1191	-3. 30 3 3.865	45.73 42.94	31.922		44.91
4029 N	TYR	В	1191	5.311	43.014	31.792		44.62
4030 CA 4031 C	TYR TYR	В	1191	5.815	42.002	30.787		46.4-
4031.C 4032.O	TYR	В	1191	7.015	41.881	30.531		49.89
4032.0	1117	ی	1101	7.015		22.23	•	-

73 / 107 Figure 1

Aton	1							
Atom Type			#	Χ	Y	Z	occ	В
4033 CB	TYR	В	1191	5.96	42.814	33.162	1	45.67
4034 CG	TYR	В	1191	5.439	43.799	34.167	1	43.36
4035 CD1	TYR	В	1191	5.962	45.089	34.24	1	44.9
4036 CD2	TYR	В	1191	4.341	43.487	34.961	1	46.89
4037 CE1	TYR	В	1191	5.386	46.048	35.063	1	46.19
4038 CE2	TYR	В	1191	3.762	44.436	35.793	1	46.56
4039 CZ	TYR	В	1191	4.286	45.712	35.83	1	46.76
4040 OH	TYR	В	1191	3.685	46.663	36.611	1	52.39
4041 N	ARG	В	1192	4.865	41.316	30.175	1	47.02
4042 CA	ARG	В	1192	5.15	40.305	29.183	1	44.82
4043 C	ARG	В	1192	5.523	40.921	27.83	1	46
4044 0	ARG	В	1192	4.841	41.812	27.326	1 1	48.59
4045 CB	ARG	В	1192	3.937	39.389	29.057	1	39.1 39.95
4046 CG	ARG	В	1192	4.123	38.28	28.102 28.632	1	43.68
4047 CD	ARG	В	1192	3.436	37.072	28.453	1	47.31
4048 NE	ARG	В	1192 1192	2 1.121	37.133 36.801	29,384	1	48.78
4049 CZ	ARG	В	1192	1.539	36.401	30.566	1	44.85
4050 NH1 4051 NH2	ARG ARG	B B	1192	-0.174	36.817	29.104	i	53.73
4051 NH2 4052 N	ALA	В	1193	6.631	40.454	27.264	1	45.8
4052 N 4053 CA	ALA	В	1193	7.098	40.932	25.983	1	42.03
4054 C	ALA	В	1193	6.251	40.291	24.897	1	44.54
4055 O	ALA	В	1193	5.815	39.139	25.025	1	46.29
4056 CB	ALA	В	1193	8.527	40.567	25.803	1	40.43
4057 N	PRO	В	1194	6.044	41.009	23.786	1	42.28
4058 CA	PRO	В	1194	5.243	40.493	22.679	1	42.12
4059 C	PRO	В	1194	5.642	39.107	22.143	1	44.43
4060 O	PRO	В	1194	4.773	38.267	21.841	1	44.4
4061 CB	PRO	В	1194	5.405	41.575	21.618	1	40.5
4062 CG	PRO	В	1194	6.706	42.209	21.963	1	41.2
4063 CD	PRO	В	1194	6.632	42.31	23.44	1	38.61 41.59
4064 N	GLU	В	1195	6.942	38.845	22.051 21.512	1 1	41.49
4065 CA	GLU	В	1195	7.349	37.564 36.356	22.333	1	41.11
4066 C	GLU	В	1195	6.949 6.965	35.247	21.817	i 1	41.88
4067 O	GLU GLU	B B	1195 1195	8.827	37.521	21.164	1	42.13
4068 CB	GLU	В	1195	9.752	37.453	22.326	1	46.22
4069 CG 4070 CD	GLU	В	1195	10.016	38.791	22.979	1	47.44
4070 CD	GLU	В	1195	9.548	39.851	22.489	1	46.07
4072 OE2	GLU	В	1195	10.715	38.756	24.004	1	44.98
4073 N	VAL	В	1196	6.546	36.554	23.588	1	43.14
4074 CA	VAL	В	1196	6.104	35.42	24.405	1	42.76
4075 C	VAL	В	1196	4.893	34.8	23.714	1	48.78
4076 O	VAL	В	1196	4.632	33.599	23.836	• 1	49.71
4077 CB	VAL	В	1196	5.696	35.85	25.82	1	41.44
4078 CG1	VAL	В	1196	5.223	34.652	26.627	1	37.67
4079 CG2	VAL	В	1196	6.876	36.52	26.508		43.73
4080 N	ILE	В	1197	4.19	35.623	22.933		51.47
4081 CA	ILE	В	1197	3.007	35.176	22.214		48.3
4082 C	ILE	В	1197	3.227	35.039	20.719		45.29
4083 O	ILE	В	1197	2.86	34.021	20.145		42.3
4084 CB	ILE	В	1197	1.809	36.087	22.54		50.42 47.59
4085 CG1	ILE	В	1197	1.466	35.909	24.015		49.15
4086 CG2	ILE	В	1197	0.593	35.742	21.672		51.83
4087 CD1	ILE	В	1197	0.372	36.762 36.030	24.447 20.1	1	44.39
4088 _. N	LEU	В	1198	3.849	36.039	20.1		

Atom								
Atom Atom Type	Residue		#-	X	Y	z oc	CC	В
	LEU	В	1198	4.104	35.978	18.665	1	47.5
4089 CA		В	1198	5.068	34.848	18.371	1	51.67
4090 C	LEU	В	1198	4.983	34.199	17.321	1	55.4
4091 O	LEU	В	1198	4.677	37.298	18.137	1	45.4
4092 CB	LEU		1198	3.763	38.513	18.347	1	47.12
4093 CG	LEU	В		4:272	39.714	17.583	1	38.91
4094 CD1	LEU	В	1198	2.348	38.162	17.924	1	44.07
4095 CD2	LEU	В	1198	5.978	34.608	19.312	1	52.22
4096 N	ASN	В	1199		33.552	19.166	1	52.73
4097 CA	ASN	В	1199	6.964		20.251	1	53.9
4098 C	ASN	В	1199	6.79	32.502 32.176	20.251	1	55.29
4099 O	ASN	В	1199	7.739	34.136	19.238	1	54.27
4100 CB	ASN	В	1199	8.37		18.776	i	53.46
4101 CG	ASN	В	1199	9.428	33.161	18.464	1	47.79
4102 OD1	ASN	В	1199	9.13	32.006		1	50.82
4103 ND2	ASN	В	1199	10.672	33.626	18.717 20.359	1	54.16
4104 N	TRP	В	1200	5.578	31.966		1	54.29
4105 CA	TRP	В	1200	5.236	30.941	21.337 21.568	1	55.78
4106 C	TRP	В	1200	6.371	29.938	20.614	1	56.65
4107 O	TRP	В	1200	6.907	29.371	20.859	1	53.09
4108 CB	TRP	В	1200	3.992	30.194	20.855	1	53.23
4109 CG	TRP	В	1200	3.419	29.254	21.833	1	55.49
4110 CD1	TRP	В	1200	3.405	27.884	23.054	1	52.08
4111 CD2	TRP	В	1200	2.728	29.605 27.362	22.877	1	54.45
4112 NE1	TRP	В	1200	2.733	28.397	23.668	1	51.15
4113 CE2	TRP	В	1200	2.308	30.825	23.673	1	51.63
4114 CE3	TRP	В	1200	2.414 1. 59 3	28.377	24.865	1	50.67
4115 CZ2	TRP	В	1200	1.706	30.809	24.856	1	48.87
4116 CZ3	TRP	В	1200	1.703	29.588	25.444	1	51.53
4117 CH2	TRP	В	1200 1201	6.77	29.804	22.835	1	55.53
4118 N	MET	В	1201	7.822	28.887	23.304	1	52.33
4119 CA	MET	B B	1201	9.266	29.122	22.873	1	52.99
4120 C	MET	В	1201	10.136	28,319	23.216	1	53.52
4121 O	MET	В	1201	7.448	27.433	23.007	1	48.18
4122 CB	MET	В	1201	6.198	26.983	23.704	1	52.88
4123 CG	MET	В	1201	5.807	25.24	23.47	1	59.31
4124 SD	MET MET	В	1201	4.293	25.095	24.49	1	52.9
4125 CE	ARG	В	1202	9.553	30.213	22.166	1	49.95
4126 N	ARG	В	1202	10.927	30.433	21.719	1	48.96
4127 CA 4128 C	ARG	В	1202	11.506	31.808	22.016	1	49.58
4128 C 4129 O	ARG	В	1202	12.319	32.329	21.254	1	50.5
4130 CB	ARG	В	1202	11.063	30.111	20.231	1	51.19
4131 CG	ARG	B	1202	10.613	28.697	19.868	1	55.45
4132 CD	ARG	B	1202		28.416	18.388	1	56.08
4133 NE	ARG	В	1202		27.016	18.069	1	58.32
4134 CZ	ARG	В	1202		26.548	17.604	1	60.02
4135 NH1	ARG	В	1202		27.376	17.399	1	59.12
4136 NH2	ARG	В	1202		25.249	17.347	1	59.14
4137 N	TYR	В	1203		32.401	23.119	1	48.73
4138 CA	TYR	В	1203	11.584	33.698	23.544	1	51.01
4139 C	TYR	В	1203		33.455	24.252	1	52.73
4140 O	TYR	В	1203		32.312	24.525	1	52.4
4141 CB	TYR	В	1203		34.336	24.534	1	50.36
4142 CG	TYR	В	1203	10.247	33.392	25.653	1	49.96
4143 CD1	TYR	В	1203	9.194	32.5	25.505	1	47.63
4144 CD2	TYR	В	1203	10.985	33.35	26.849	1	52.8
= = =								

Atom								
Atom Type	Residue		#	X	Υ	Z	occ	В
4145 CE1	TYR	В	1203	8.882	31.578	26.51	1	50.33
4146 CE2	TYR	В	1203	10.669	32.424	27.868	1	47.24
4147 CZ	TYR	В	1203	9.618	31.553	27.674	1	47.25
4148 OH	TYR	В	1203	9.27	30.656	28.638	1	55.01
4149 N	THR	В	1204	13.631	34.525	24.585	1	53.03
4150 CA	THR	В	1204	14.908	34.37	25.253	1	53.27
4151 C	THR	В	1204	15.014	35.208	26.507	1	52.16
4152 O	THR	В	1204	14.031	35.755	26.997	1	53.18
4153 CB	THR	В	1204	16.104	34.71	24.33	1	54.94
4154 OG1	THR	В	1204	16.035	36.083	23.922	1	54.05
4155 CG2	THR	В	1204	16.12	33.805	23.119	1	55.19
4156 N	GLN	В	1205	16.227	35.291	27.028	1	50.17
4157 CA	GLN	В	1205	16.487	36.052	28.22	1	48.17
4158 C	GLN	B	1205	16.165	37.505	27.982	1	46.85
4159 O	GLN	В	1205	16.147	38.288	28.918	1	48.64
4160 CB	GLN	В	1205	17.948	35.928	28.607	1	50.3
4161 CG	GLN	В	1205	18.464	34.511	28.626	1	56.04
4162 CD	GLN	В	1205	19.92	34.468	29.005	1	57.7
4163 OE1	GLN	В	1205	20.753	35.119	28.367	1	63.39
4164 NE2	GLN	В	1205	20.235	33.745	30.075	1	55.88
4165 N	THR	В	1206	15.959	37.894	26.732	1	46.01
4166 CA	THR	В	1206	15.631	39.287	26.472	1	46.63
4167 C	THR	В	1206	14.243	39.658	26.978	1	44.63
4168 O	THR	В	1206	13.938	40.852	27.125	1	44.04
4169 CB	THR	В	1206	15.734	39.655	24.998	1	47.86
4170 OG1	THR	В	1206	15.217	38.583	24.208	1	49.04
4171 CG2	THR	В	1206	17.172	39.971	24.62	1	47.78
4172 N	VAL	В	1207	13.412	38.653	27.259	1	38.86
4173 CA	VAL	В	1207	12.074	38.944	27.756		37.69
4174 C	VAL	В	1207	12.178	39.641	29.088		36.51
4175 O	VAL	В	1207	11.324	40.445	29.415		39.99
4176 CB	VAL	В	1207	11.181	37.701	27.914		36.07
4177 CG1	VAL	В	1207	11.301	36.83 5	26.716		38.1
4178 CG2	VAL	В	1207	11.517	36.941	29.17		33.88
4179 N	ASP	В	1208	13.234	39.34	29.841		36.82
4180 CA	ASP	В	1208	13.453	39.964	31.144		38.33
4181 C	ASP	В	1208	13.838	41.421	30.931		38.75
4182 O	ASP	В	1208	13.662	42.243	31.818		42.78 40.62
4183 CB	ASP	В	1208	14.567	39.243	31.933		40.62
4184 CG	ASP	В	1208	14.18	37.822	32.362		51.31
4185 OD1	ASP	В	1208	12.971	37.558	32.556 32.54		47.58
4186 OD2	ASP	В	1208	15.091	36.975			40.72
4187 N	ILE	В	1209	14.415	41.736	29.772		44.12
4188 CA	ILE	В	1209	14.795	43.118	29.488		43.61
4189 C	ILE	В	1209	13.523	43.88	29.167		44.66
4190 O	ILE	В	1209	13.395	45.046	29.52		46.12
4191 CB	ILE	В	1209	15.803	43.233	28.321		46.44
4192 CG1	ILE	В	1209	17.142	42.634	28.744 27.951		46.63
4193 CG2	ILE	В	1209	16.025	44.709	29.925		47.31
4194 CD1	ILE	В	1209	17.735	43.33			42.85
4195 N	TRP	В	1210		43.201	28.53		43.23
4196 CA	TRP	В	1210		43.82	28.216 29.538		47.23
4197 C	TRP	В	1210		44.24	29.536	_	50.13
4198 O	TRP	В	1210		45.436	29.763		44.24
4199 CB	TRP	В	1210		42.86	27.472		46.15
4200 CG	TRP	В	1210	9.059	43.522	27.09		70.15

Atom	1							
Atom Type			#	Х	Υ		occ	В
4201 CD1	TRP	В	1210	7.934	43.604	27.859	1	47.45
4202 CD2	TRP	В	1210	8.784	44.275	25.904	1	43.99
4203 NE1	TRP	В	1210	6.986	44.37	27.235	1	47.93
4204 CE2	TRP	В	1210	7.482	44.794	26.032	1	48.37
4205 CE3	TRP	В	1210	9.514	44.566	24.749	1	45.13
4206 CZ2	TRP	В	1210	6.892	45.597	25.043	1	48.76
4207 CZ3	TRP	В	1210	8.929	45.356	23.769	1	45.48
4208 CH2	TRP	В	1210	7.632	45.863	23.922	1	45.3
4209 N	SER	В	1211	10.491	43.265	30.428	1	45.87 43.19
4210 CA	SER	В	1211	9.929	43.521	31.752 32.436	1 1	43.19
4211 C	SER	В	1211	10.64	44.688	32.436	1	47.32
4212 O	SER	В	1211	9.997	45.594 42.268	32.62	1	41.32
4213 CB	SER	В	1211 1211	10.013 9.246	41.22	32.055	1	44.51
4214 OG	SER	В	1212	11.963	44.703	32.406	i	38.65
4215 N	VAL	B B	1212	12.675	45.821	33.03	1	36.73
4216 CA	VAL VAL	В	1212	12.073	47.176	32.381	1	35.46
4217 C 4218 O	VAL	В	1212	12.285	48.215	33.041	1	31.21
4218 O 4219 CB	VAL	В	1212	14.212	45.6	32.994	1	33.77
4219 CB 4220 CG1	VAL	В	1212	14.938	46.829	33.476	1	26.48
4221 CG2	VAL	В	1212	14.577	44.417	33.893	1	33.6
4221 002 4222 N	GLY	В	1213	11.983	47.15	31.09	1	33.45
4223 CA	GLY	В	1213	11.618	48.379	30.408	1	37.91
4224 C	GLY	В	1213	10.272	48.894	30.88	1	40.63
4225 O	GLY	В	1213	10.111	50.078	31.154	1	42.93
4226 N	CYS	В	1214	9.296	47.996	30.95	1	40.03
4227 CA	CYS	В	1214	7.974	48.342	31.414	1	38.79
4228 C	CYS	В	1214	8.087	48.81	32.856	1	40.72
4229 O	CYS	В	1214	7.409	49.744	33.278	1	44.91 41.67
4230 CB	CYS	В	1214	7.077	47.111	31.376	1 1	44.47
4231 SG	CYS	В	1214	6.855	46.384	29.756 33.618		39.23
4232 N	ILE	В	1215	8.948	48.155 48.518	35.019		39.92
4233 CA	ILE	В	1215 1215	9. 11 9.77	49.895	35.114		39.91
4234 C	ILE	B B	1215	9.287	50.756	35.826		44.16
4235 O	ILE ILE	В	1215	9.92	47.443	35.818		31.4
4236 CB 4237 CG1	ILE	В	1215	9.236	46.068	35.736		34.39
4237 CG1	ILE	В	1215	9.971	47.809	37.246	1	31.38
4239 CD1	ILE	В	1215	10.017	44.906	36.35	1	20.27
4240 N	MET	В	1216	10.844	50.115	34.375		40.74
4241 CA	MET	В	1216	11.52	51.411	34.428		45.73
4242 C	MET	В	1216	10.573	52.508	33.94		47.65
4243 O	MET	В	1216	10.555	53.611	34.478		47.43
4244 CB	MET	В	1216	12.776	51.415	33.556		44.71
4245 CG	MET	В	1216	13.646	52.632	33.797	_	48.1
4246 SD	MET	В	1216	14.799	53.015	32.451		49.17 51.17
4247 CE	MET	В	1216	15.345	54.577	33.017		48.37
4248 N	ALA	В	1217	9.768	52.174	32.934		48.15
4249 CA	ALA	В	1217		53.102	32.358 33.387		51.73
4250 C	ALA	В	1217	7.761	53.474	33.507		54.48
4251 O	ALA	В	1217	7.374	54.639 52.479	31.149		44.59
4252 CB	ALA	В	1217 1218		52.479 52.478	34.158		52.41
4253 N	GLU	В	1218		52.476	35.182		50.52
4254 CA	GLU	B	1218		53.53	36.327		50.04
4255 C	GLU GLU	В В	1218		54.324	36.889		
4256 O	GLU	Ь	1210	J. 101	J 1.02 1			

Atom								
Atom Type			#	Х	Υ	Z	occ	В
4257 CB	GLU	В	1218	5.835	51.329	35.717	1	49.08
4258 CG	GLU	В	1218	4.569	51.44	36.529	1	47.77
4259 CD	GLU	В	1218	4.022	50.097	36.961	1	48.84
4260 OE1	GLU	В	1218	4.236	49.088	36.262	1	42.73
4261 OE2	GLU	В	1218	3.354	50.055	38.01	1	52. 26
4262 N	MET	В	1219	8.095	53.343	36.699	1	49.38
4263 CA	MET	В	1219	8.661	54.13	37.774	1	50.62
4264 C	MET	В	1219	8.607	55.613	37.403	1	54.4
4265 O	MET	В	1219	8.24	56.455	38.228	1	56.92
4266 CB	MET	В	1219	10.11	53.72	38.032	1	45.89
4267 CG	MET	В	1219	10.271	52.373	38.645	1	42.73
4268 SD	MET	В	1219	11.979	51.838	38.549	1 1	43.34
4269 CE · 4270 N	MET ILE	8 B	1219 1220	12.61 8.925	52.259 55.916	40.04 36.147	1	38.93 55.54
4270 N 4271 CA	ILE	В	1220	8.945	57.291	35.662	1	58.01
4271 CA 4272 C	ILE	В	1220	7.569	57.291 57.967	35.515	1	60
4272 C 4273 O	ILE	В	1220	7.362	59.084	36.01	1	61.51
4274 CB	ILE	В	1220	9.661	57.378	34.308	1	57.72
4275 CG1	ILE	В	1220	11.024	56.706	34.388	1	52.49
4276 CG2	ILE	В	1220	9.842	58.844	33.915	1	59.88
4277 CD1	ILE	В	1220	11.711	56.607	33.053	1	50.93
4278 N	THR	В	1221	6.657	57.308	34.798	1	58.95
4279 CA	THR	В	1221	5.322	57.835	34.564	1	56.6
4280 C	THR	В	1221	4.424	57.702	35.765	1	58.55
4281 O	THR	В	1221	3.714	58.638	36.113	1	64.3
4282 CB	THR	В	1221	4.614	57.113	33.425	1	57.49
4283 OG1	THR	В	1221	4.306	55.778	33.838	1	56.17
4284 CG2	THR	В	1221	5.478	57.101	32.156	1	58.21
4285 N	GLY	В	1222	4.423	56.522	36.371	1	58.22
4286 CA	GLY	В	1222	3.575	56.277	37.527	1	56.24
4287 C	GLY	В	1222	2.405	55.392	37.142	1	55.43
4288 O	GLY	В	1222	1.722	54.827	38	1	54.04
4289 N	LYS	В	1223	2.21	55.25	35.836 35.287	1 1	55.15 57.33
4290 CA	LYS	B B	1223 1223	1.14 1.728	54.435 53.179	34.653	1	57.55 57.5
4291 C 4292 O	LYS LYS	В	1223	2.881	53.179	34.245	1	58.38
4293 CB	LYS	В	1223	0.364	55.241	34.224	i	55.24
4294 N	THR	В	1224	0.936	52.114	34.597	i 1	57.62
4295 CA	THR	В	1224	1.36	50.872	33.969	1	56.46
4296 C	THR	В	1224	1.478	51.199	32.486	1	58.78
4297 O	THR	В	1224	0.557	51.793	31.908	1	61.77
4298 CB	THR	В	1224	0.305	49.786	34.185	1	55.89
4299 OG1	THR	В	1224	0.174	49.546	35.593	1	57.63
4300 CG2	THR	В	1224	0.681	48.497	33.469	1	54.77
4301 N	LEU	В	1225	2.606	50.834	31.877	1	57.8
4302 CA	LEU	В	1225	2.853	51.133	30.467	1	55.6
4303 C	LEU	В	1225	1.908	50.463	29.478	1	53.47
4304 O	LEU	В	1225	1.3	51.131	28.663	1	54.96
4305 CB	LEU	В	1225	4.311	50.849	30.097	1	54.83
4306 CG	LEU	В	1225	4.717	51.246	28.676	1	56.4
4307 CD1	LEU	В	1225	4.379	52.7	28.434	1	56.41
4308 CD2	LEU	В	1225	6.196	51.004	28.464	1	55.43
4309 N	PHE	В	1226	1.79	49.148	29.538	1	52.6
4310 CA	PHE	В	1226	0.901	48.444	28.619	1	54.7 57.14
4311 C	PHE	В	1226	-0.112 0.115	47.622	29.436 29.711	1 1	57.14 <u>.</u> 58.96
4312 _, O	PHE	В	1226	0.115	46.441	20.111	'	00.00

Atom								
Atom Type	Residue		#	Х	Y	Z	occ	В
4313 CB	PHE	В	1226	1.7	47.523	27.663	1	50.21
4314 CG	PHE	В	1226	2.827	48.218	26.914	1	48.07
4315 CD1	PHE	В	1226	2.588	49.345	26.136	1	47.09
4316 CD2	PHE	В	1226	4.136	47.748	27.009	1	46.21
4317 CE1	PHE	В	1226	3.633	49.99	25.474	1	45.24
4318 CE2	PHE	В	1226	5.182	48.389	26.35	1	44.35
4319 CZ	PHE	В	1226	4.927	49.511	25.585	1	44.76
4320 N	LYS	В	1227	-1.213	48.253	29.841	1	57.52
4321 CA	LYS	В	1227	-2.229	47.564	30.627	1	59.66
4322 C	LYS	В	1227	-3.262	46.911	29.711	1	61.37
4323 O	LYS	В	1227	-4.25	47.535	29.346	1	66.75
4324 CB	LYS	В	1227	-2.907	48.544	31.599	1	59.39
4325 N	GLY	В	1228	-3.026	45.666	29.312	1	58.81
4326 CA	GLY	В	1228	-3.969	45.006	28.429	1	58.75
4327 C	GLY	В	1228	-4.983	44.165	29.168	1	59.74
4328 O	GLY	В	1228	-4.687	43.673	30.254	1	60.68
4329 N	SER	В	1229	-6.148	43.944	28.559	1	60.74
4330 CA	SER	В	1229	-7.206	43.153	29.196 29.164	1 1	62.57 61.96
4331 C	SER	В	1229	-6.961 -7.304	41.647	30.122	1	60.7
4332 O	SER	В	1229 1229	-7.30 4 -8.585	40.947 43.495	28.622	1	63.3
4333 CB	SER	B B	1229	-8.71	43.495	27.275	i	66.67
4334 OG	SER ASP	В	1230	-6.411	41.148	28.058	1	61.15
4335 N 4336 CA	ASP	В	1230	-6.088	39.724	27.93	1	62.19
4337 C	ASP	В	1230	-4.755	39.597	27.216	1	60.17
4337 C	ASP	В	1230	-4.221	40.601	26.738	1	60.7
4339 CB	ASP	В	1230	-7.196	38.919	27.22	1	66.13
4340 CG	ASP	В	1230	-7.542	39.459	25.835	1	71.54
4341 OD1	ASP	В	1230	-8.415	40.346	25.744	1	73.7
4342 OD2	ASP	В	1230	-6.968	38.977	24.834	1	74.52
4343 N	HIS	В	1231	-4.219	38.38	27.128	1	59.02
4344 CA	HIS	В	1231	-2.913	38.189	26.494	1	58.04
4345 C	HIS	В	1231	-2.807	38.689	25.069	1	57.96
4346 O	HIS	В	1231	-1.771	39.219	24.671	1	58.46
4347 CB	HIS	В	1231	-2.429	36.747	26.602	1	55.94
4348 CG	HIS	В	1231	-3.263	35.763	25.851	1	56.86
4349 ND1	HIS	В	1231	-4.4	35.196	26.383	1	56.73
4350 CD2	HIS	В	1231	-3.073	35.17	24.652	1	57.29
4351 CE1	HIS	В	1231	-4.87	34.29	25.543	1 1	58.59 59.01
4352 NE2	HIS	В	1231	-4.083	34.255	24.484 24.308	1	58.32
4353 N	LEU	В	1232	-3.885 -3.911	38.543 39.027	22.941	1	54.34
4354 CA	LEU	В	1232 1232		40.539	22.947	1	54.1
4355 C	LEU	В		-3.415	41.241	22.183	i	56.3
4356 O	LEU	B B	1232 1232	-5.064	38.405	22.182	1	55.14
4357 CB	LEU LEU	В	1232	-4.998	36.905	21.922	1	57.44
4358 CG 4359 CD1	LEU	В	1232	-6.223	36.494	21.117		57.88
4360 CD2	LEU	В	1232	-3.715	36.556	21.162	1	56.89
4361 N	ASP	В	1233	-4.927	41.047	23.826		51.61
4362 CA	ASP	В	1233	-5.149	42.486	23.896	1	52.19
4363 C	ASP	В	1233	-3.875	43.223	24.331	1	52.92
4364 O	ASP	В	1233	-3.689	44.419	24.033	1	50.75
4365 CB	ASP	В	1233	-6.303	42.803	24.849		50.34
4366 CG	ASP	В	1233	-6.653	44.28	24.864	1	52.85
4367 OD1	ASP	В	1233	-6.945	44.836	23.79		52.13
4368 OD2	ASP	В	1233	-6.629	44.892	25.949	1	56.19

Atom								
Atom - Type	Residue		#	Х	Y	z	occ	В
4369 N	GLN	В	1234	-3.007	42.498	25.04	1	50.31
4370 CA	GLN	В	1234	-1.744	43.053	25.517	1	50.45
4371 C	GLN	В	1234	-0.887	43.389	24.293	1	50.93
4372 O	GLN	В	1234	-0.176	44.407	24.261	1	51.59
4373 CB	GLN	В	1234	-1.041	42.04	26.421	1	45.74
4374 CG	GLN	В	1234	0.279	42.508	26.982	1	46.08
4375 CD	GLN	В	1234	0.134	43.546	28.077	1	46.94
4376 OE1	GLN	В	1234	-0.707	43.407	28.943	1	46.68
4377 NE2	GLN	В	1234	0.989	44.578	28.062	1	46.35
4378 N	LEU	В	1235	-0.977	42.539	23.274	1	48.65
4379 CA	LEU	В	1235	-0.237	42.782	22.055	1	48.98
4380 C	LEU	В	1235	-0.691	44.123	21.516	1	52.23
4381 O	LEU	В	1235	0.142	45.004	21.303	1	53.03
4382 CB	LEU	В	1235	-0.488	41.68	21.036	1	45.58
4383 CG	LEU	В	1235	0.095	40.327	21.433	1	44.53
4384 CD1	LEU	В	1235	-0.092	39.335	20.314	1	43.17
4385 CD2	LEU	В	1235	1.581	40.49	21.733	1	46.57
4386 N	LYS	В	1236	-2.012	44.319	21.416	1	54.96
4387 CA	LYS	В	1236	-2.557	45.585	20.909	1	54.89
4388 C	LYS	8 B	1236	-2.069	46.787 47.797	21.708	1	54.06
4389 O 4390 CB	LYS LYS	В	1236 1236	-1.66 -4.095	47.797 45.581	21.131 20.841	1 1	54.93
4390 CB 4391 CG	LYS	В	1236	-4.095 -4.71	46.952	20.449	1	57.59 62.19
4392 CD	LYS	В	1236	-6.05	46.867	19.682	1	67.51
4393 CE	LYS	В	1236	-7.204	46.304	20.517	1	71.25
4394 NZ	LYS	В	1236	-8.498	46.253	19.768	1	69.27
4395 N	GLU	В	1237	-2.096	46.688	23.03	i	52.2
4396 CA	GLU	В	1237	-1.63	47.803	23.831	i	53.59
4397 C	GLU	В	1237	-0.178	48.115	23.526	1	55.73
4398 O	GLU	B	1237	0.175	49.275	23.364	1	59.93
4399 CB	GLU	В	1237	-1.819	47.55	25.324	1	54.74
4400 CG	GLU	В	1237	-3.207	47.909	25.861	1	54.47
4401 CD	GLU	В	1237	-3.65	49.307	25.47	1	53.34
4402 OE1	GLU	В	1237	-2.963	50.291	25.822	1	53.72
4403 OE2	GLU	В	1237	-4.687	49.412	24.791	1	51.62
4404 N	ILE	В	1238	0.652	47.08	23.389	1	56.11
4405 CA	ILE	В	1238	2.068	47.279	23.091	1	52.93
4406 C	ILE	В	1238	2.224	47.88	21.71	1	54.32
4407 O	ILE	В	1238	2.93	48.883	21.522	1	57.33
4408 CB	ILE	В	1238	2.833	45.961	23.119	1	50.68
4409 CG1	ILE	В	1238	2.839	45.397	24.538	1	46.12
4410 CG2	ILE	В	1238	4.23	46.155	22.553	1	45.3
4411 CD1	ILE	В	1238	3.235	43.941	24.621	1	42.78
4412 N	MET	В	1239	1.535	47.273	20.754	1	51.63
4413 CA	MET	В	1239	1.587	47.714	19.374	1.	53.66 53.7
4414 C 4415 O	MET MET	B B	1239 1239	1.216 1.804	49.18	19.217 18.397	1 1	53.08
4416 CB	MET	В	1239	0.655	49.873	18.515	1	57.16
4417 CG	MET	В	1239	0.845	46.866 45.359	18.634	1	58.29
4418 SD	MET	В	1239	2.149	44.69	17.65	1	56.59
4419 CE	MET	В	1239	2.149	43.102	18.409	1	57.01
4420 N	LYS	В	1239	0.255	49.659	20.008	1	53.9
4421 CA	LYS	В	1240	-0.16	51.05	19.913	1	53.89
4422 C	LYS	В	1240	1.035	51.977	20.172	1	56.36
4423 O	LYS	В	1240	1.06	53.122	19.715	i	57.18
4424 CB	LYS	В	1240	-1.322	51.339	20.876	1	47.38

Atom								
Atom Type	Residue		#	X	Y	Z	occ	В
4425 N	VAL	В	1241	2.065	51.435	20.82	1	58.45
4426 CA	VAL	₿	1241	3.263	52.195	21.135	1	59.79
4427 C	VAL	В	1241	4.454	51.881	20.248	1	60.04
4428 O	VAL	В	1241	5.123	52.791	19.746	1	59.07
4429 CB	VAL	В	1241	3.671	51.966	22.578	1	60.53
4430 CG1	VAL	В	1241	4.93	52.746	22.909	1	62.42
4431 CG2	VAL	В	1241	2.547	52.379	23.483	1	63.8
4432 N	THR	В	1242	4.728	50.592	20.074	1 1	60.8 61.17
4433 CA	THR	В	1242	5.869	50.145 49.966	19.267 17.795	1	61.01
4434 C	THR	В	1242 1242	5.535 6.382	49.57	17.793	i	62.55
4435 O	THR	B B	1242	6.393	48.775	19.75	1	60.5
4436 CB	THR THR	В	1242	5.483	47.75	19.343	i	54.06
4437 OG1 [.] 4438 CG2	THR	В	1242	6.534	48.75	21.26	i	60.41
4436 CG2 4439 N	GLY	В	1243	4.3	50.242	17.425	1	60.4
4440 CA	GLY	В	1243	3.921	50.032	16.05	1	60.89
4441 C	GLY	В	1243	3.718	48.541	15.864	1	61.31
4442 O	GLY	В	1243	4.048	47.741	16.746	1	60.67
4443 N	THR	В	1244	3.149	48.172	14.725	1	60.7
4444 CA	THR	В	1244	2.893	46.78	14.406	1	62.38
4445 C	THR	В	1244	3.947	46.309	13.419	1	64.56
4446 O	THR	В	1244	4.515	47.119	12.683	1	66.73
4447 CB	THR	В	1244	1.519	46.622	13.762	1	61.2
4448 OG1	THR	В	1244	1.395	47.563	12.691	1	62.03
4449 CG2	THR	В	1244	0.421	46.862	14.778	1 1	60.25 64.25
4450 N	PRO	В	1245	4.229	44.997	13.392 12.486	1	66.03
4451 CA	PRO	В	1245	5.222 4.69	44.421 44.482	11.056		67.01
4452 C	PRO PRO	B B	1245 1245	3.521	44.798	10.839		67.35
4453 O	PRO	В	1245	5.302	42.957	12.944		64.72
4454 CB 4455 CG	PRO	В	1245	4.745	42.951	14.292		64.39
4456 CD	PRO	В	1245	3.633	43.943	14.221	1	65.95
4457 N	PRO	В	1246	5.556	44.235	10.059	1	67.67
4458 CA	PRO	В	1246	5.106	44.261	8.668	1	67.56
4459 C	PRO	В	1246	4.065	43.167	8.418		68.23
4460 O	PRO	В	1246	4.116	42.086	9.01	1	65.68
4461 CB	PRO	В	1246	6.397	44.008	7.89		69.36
4462 CG	PRO	В	1246	7.288	43.3	8.877		69.55
4463 CD	PRO	В	1246	7.015	44.068	10.129		68.44 70.38
4464 N	ALA	В	1247	3.111	43.461	7.544 7.227		71.09
4465 CA	ALA	В	1247	2.037	42.526 41.169	6.707		71.05
4466 C	ALA	В	1247	2.508 1.873	40.15	6.976		70.69
4467 O	ALA ALA	B B	1247 1247	1.066	43.164	6.25		72.54
4468 CB 4469 N	GLU	В	1248	3.619	41.155	5.974		72.45
4470 CA	GLU	В	1248	4.161	39.908	5.425		72.67
4471 C	GLU	В	1248	4.692	38.986	6.522		70.87
4472 O	GLU	В	1248	4.681	37.764	6.373	1	69.68
4473 CB	GLU	В	1248	5.247	40.197	4.373	. 1	74.65
4474 CG	GLU	В	1248	6.514	40.891	4.886		76.7
4475 CD	GLU	В	1248	7.487	39.939	5.576		77.13
4476 OE1	GLU	В	1248	7.53	38.739	5.208		78.5
4477 OE2	GLU	В	1248	8.203	40.399	6.494		74.44
4478 N	PHE	В	1249	5.153	39.589	7.619		69.03
4479 CA	PHE	В	1249	5.681	38.845	8.76		65.7
4480 C	PHE	В	1249	4.565	38.116	9.479	1	62.87

	tom	Residue		#	X	Υ ~	z o	CC	В
	ype		В	1249	4.667	36.918	9.757	1	62.94
4481 0		PHE	В	1249	6.387	39.781	9.755	1	64.18
4482 CB		PHE	В			39.151	11.101	1	62.94
4483 CG		PHE	В	1249	6.648	38.062	11.224	1	62.78
4484 CD		PHE	В	1249	7.501		12.238	1	62.7
4485 CD		PHE	В	1249	6.008	39.625	12.458	1	63.19
4486 CE	1	PHE	В	1249	7.707	37.454	13.476	1	63.66
4487 CE	2	PHE	В	1249	6.207	39.022		1	62.65
4488 CZ		PHE	В	1249	7.058	37.933	13.586	1	59.53
4489 N		VAL	В	1250	3.508	38.857	9.791	1	58.75
4490 CA		VAL	В	1250	2.377	38.294	10.501	1	58.75 58.44
4491 C		VAL	В	1250	1.651	37.229	9.687	1	58.71
4492 O		VAL	В	1250	0.964	36.378	10.242 11.07	1	58.48
4493 CE	3	VAL	В	1250	1.446	39.427		1	55.48
4494 CG	31	VAL	В	1250	1.746	40.757	10.389		54.45
4495 CC	32	VAL	В	1250	-0.031	39.053	10.968	1	60.21
4496 N		GLN	В	1251	1.894	37.231	8.382	1	63.14
4497 CA	١.	GLN	В	1251	1.297	36.273	7.466	1	61.1
4498 C		GLN	В	1251	1.841	34.889	7.751		59.02
4499 O		GLN	В	1251	1.109	33.898	7.765	1	70.12
4500 CE	3	GLN	В	1251	1.68	36.639	6.034	1 1	70.12 79.74
4501 C	3	GLN	В	1251	0.812	37.685	5.368		85.42
4502 C)	GLN	В	1251	-0.318	37.068	4.555	1	88.27
4503 OI	E1	GLN	В	1251	-0.951	36.085	4.972	1 1	86.1
4504 NI	E2	GLN	В	1251	-0.571	37.639	3.382	1	59.95
4505 N		ARG	В	1252	3.152	34.859	7.965	1	57.86
4506 C	A	ARG	В	1252	3.921	33.648	8.21	1	57.82
4507 C		ARG	В	1252	3.999	33.181	9.656	1	57.02 57.09
4508 O		ARG	В	1252	4.692	32.207	9.941 7.682	1	56.27
4509 C	В	ARG	В	1252	5.338	33.851	6.263	1	52.49
4510 C	G	ARG	В	1252	5.388	34.332	5.769	1	54.01
4511 C	D	ARG	В	1252	6.794	34.432	6.211	1	58.28
4512 N	Ε	ARG	В	1252	7.457	35.651	6.8	1	61.18
4513 C		ARG	В	1252	8.648	35.676	7.03	1	63.42
4514 N	H1	ARG	В	1252	9.301	34.539	7.097	1	59.41
4515 N	H2	ARG	В	1252	9.217	36.836	10.571	1	55.24
4516 N		LEU	В	1253	3.336	33.886	11.971	1	54.39
4517 C	A	LEU	В	1253	3.348	33.497	12.163	i	55.48
4518 C		LEU	В	1253	2.926	32.055 31.612	11.625	1	53.53
4519 C		LEU	В	1253	1.91		12.796	1	53.23
4520 C		LEU	В	1253	2.449	34.402 35.739	13.091	1	53.33
4521 C		LEU	В	1253	3.108	36.657	13.837	1	51.4
4522 C		LEU	В	1253	2.156	35.493	13.874	1	49.5
4523 C		LEU	В	1253	4.367	31.33	12.923	1	57.13
4524 N		GLN	В	1254	3.74	29.927	13.221	1	60.09
4525 C		GLN	В	1254	3.516	29.742	14.074	1	62.32
4526 C		GLN	В	1254	2.269	28.869	13.804	1	62.17
4527 C		GLN	В	1254	1.442	29.378	13.968	1	61.41
4528 0		GLN	В	1254	4.726	28.079	13.42	1	68.18
4529 (GLN	В	1254		26.998	13.381	1	70.52
4530 (GLN	В	1254		26.492	12.312	1	74.41
4531 (GLN	В	1254		26.492	14.546	1	71.4
4532 1		GLN	В	1254			15.115	1	65.61
4533 I		SER	В	1255		30.563 30.507	16.022	1	68.55
4534 (SER	В	1255			15.327	1	
4535 (SER	В	1255		30.996	14.876		_
4536	0	SER	В	1255	-0.306	32.14	14.070		

Atom								
Atom Type	Residue		_ #	Χ	Υ	Z	occ	В
4537 CB	SER	В	1255	1.268	31.356	17.275	1	69.1
4538 OG	SER	В	1255	0.355	31.03	18.313	1	68.78
4539 N	ASP	В	1256	-1.238	30.109	15.204	1	70.64
4540 CA	ASP	В	1256	-2.51	30.454	14.575	1	70.68
4541 C	ASP	В	1256	-3.187	31.581	15.353	1	70.67
4542 O	ASP	В	1256	-3.499	32.634	14.792	1	69.86
4543 CB	ASP	В	1256	-3.43	29.231	14.505	1	71.75
4544 CG	ASP	В	1256	-3.024	28.242	13.41	1	74.47
4545 OD1	ASP	В	1256	-1.945	28.417	12.805	1	74.25
4546 OD2	ASP	В	1256	-3.793	27.288	13.146	1	73.44
4547 N	GLU	В	1257	-3.333	31.379	16.66	1	70.16
4548 CA	GLU	В	1257	-3.959	32.355	17.535	1	69.38
4549 C	GLU	В	1257	-3.324	33.741	17.363	1	67.98
4550 O	GLU	В	1257	-4.021	34.736	17.168	1	66.91
4551 CB	GLU	В	1257	-3.854	31.9	18.989	1	71.08
4552 CG	GLU	В	1257	-4.666	32.752	19.943	1	79.31
4553 CD	GLU	В	1257	-4.33	32.504	21.401	1	83.72
4554 OE1	GLU	В	1257	-3.268	32.985	21.862	1	86.7
4555 OE2	GLU	В	1257	-5.133	31.841	22.088	1	86.01
4556 N	ALA	В	1258	-1.999	33.792	17.368	1	63.29
4557 CA	ALA	В	1258	-1.3	35.055	17.223	1	60.57
4558 C	ALA	В	1258	-1.461	35.663	15.844	1	61.7
4559 O	ALA	В	1258	-1.562	36.886	15.704	1	61.55
4560 CB	ALA	В	1258	0.153	34.869	17.525	1	60.8
4561 N	LYS	В	1259	-1.478	34.799	14.828	1	62.12
4562 CA	LYS	В	1259	-1.599	35.225	13.433	1	60.44
4563 C	LYS	В	1259	-2.955	35.851	13.166	1	61.2
4564 O	LYS	В	1259	-3.045	36.935	12.593	1	59.62
4565 CB	LYS	В	1259	-1.378	34.045	12.487	1	58.41
4566 CG	LYS	В	1259	-1.323	34.438	11.015	1	57.86
4567 CD	LYS	В	1259	-1.352	33.213	10.127	1	58.74
4568 CE	LYS	В	1259	-2.645	32.447	10.319	1	61.03
4569 NZ	LYS	В	1259	-2.675	31.156	9.596	• 1	63.9
4570 N	ASN	В	1260	-4.008	35.156	13.58	1	61.15
4571 CA	ASN	В	1260	-5.355	35.66	13.406	1	62.06
4572 C	ASN	В	1260	-5.492	37.005	14.129	1	61.36
4573 O	ASN	В	1260	-5.934	37.982	13.541	1	62.21
4574 CB	ASN	В	1260	-6.386	34.652	13.94	1	65.52
4575 CG	ASN	В	1260	-6.39	33.318	13.161	1	67.85
4576 OD1	ASN	В	1260	-6.67	32.257	13.728	1	69.36
4577 ND2	ASN	В	1260	-6.094	33.377	11.867	1	66.47
4578 N	TYR	В	1261	-5.049	37.075	15.38	1	61.18
4579 CA	TYR	В	1261	-5.154	38.315	16.14	1	59.38
4580 C	TYR	В	1261	-4.462	39.487	15.459	1	60.07
4581 O	TYR	В	1261	-5.082	40.513	15.223	1	62.69
4582 CB	TYR	В	1261	-4.618	38.156	17.568	1	54.17
4583 CG	TYR	В	1261	-4.846	39.396	18.386	1	50.61
4584 CD1	TYR	В	1261	-6.115	39.698	18.875	1	51.79
4585 CD2	TYR	В	1261	-3.826	40.323	18.583	1	51.69
4586 CE1	TYR	В	1261	-6.371	40.892	19.529	1	52.22
4587 CE2	TYR	В	1261	-4.062	41.536	19.235	1	53.13
4588 CZ	TYR	В	1261	-5.343	41.815	19.704	1	56.41
4589 OH	TYR	В	1261	-5.619	43.019	20.318	1	55.85
4590 N	MET	В	1262	-3.185	39.33	15.136	1	63.11
4591 CA	MET	В	1262	-2.417	40.392	14.486	1	65.26
4592 _, C	MET	В	1262	-2.973	40.799	13.108	1	68.67

Atom								
Atom Type	Residue		#	×	Y	Z	осс	В
4593 O	MET	В	1262	-2.717	41.916	12.619	1	67.05
4594 CB	MET	В	1262	-0.962	39.949	14.352	i	64.37
4595 CG	MET	B	1262	-0.211	39.85	15.655	1	59.25
4596 SD	MET	В	1262	0.018	41.481	16.394	1	67.15
4597 CE	MET	В	1262	0.971	42.304	15.118	1	58.72
4598 N	LYS	В	1263	-3.713	39.875	12.491	1	72.15
4599 CA	LYS	В	1263	-4.33	40.067	11.174	1	75.66
4600 C	LYS	В	1263	-5.469	41.074	11.312	1	76.85
4601 O	LYS	В	1263	-5.491	42.096	10.632	i	77.11
4602 CB	LYS	В	1263	-4.903	38.732	10.675	i	76.85
4603 CG	LYS	В	1263	-4.698	38.397	9.199	i	79.3
4604 CD	LYS	В	1263	-3.306	37.827	8.928	i 1	79.93
4605 CE	LYS	В	1263	-3.221	37.108	7.576	1	81.06
4606 NZ	LYS	В	1263	-3.864	35.758	7.571	i	81.5
4607 N	GLY	В	1264	-6.397	40.777	12.219	i 1	78.8
4608 CA	GLY	В	1264	-7.539	41.646	12.452	1	81.83
4609 C	GLY	В	1264	-7.163	43.001	13.018	1	81.51
4610 O	GLY	В	1264	-7.882	43.98	12.869	i	81.91
4611 N	LEU	В	1265	-6.016	43.054	13.668	1	83.44
4612 CA	LEU	В	1265	-5.525	44.284	14.264	1	84.73
4613 C	LEU	В	1265	-5.23	45.323	13.186	1	85.19
4614 O	LEU	В	1265	-4.826	44.976	12.072	1	86.18
4615 CB	LEU	В	1265	-4.234	43.984	15.024	1	85.1
4616 CG	LEU	В	1265	-3.838	44.932	16.144	1	83.99
4617 CD1	LEU	В	1265	-4.807	44.721	17.284	1	84.37
4618 CD2	LEU	В	1265	-2.419	44.648	16.594	1	84.44
4619 N	PRO	В	1266	-5.47	46.612	13.486	1	86.14
4620 CA	PRO	В	1266	-5.215	47.709	12.539	1	85.42
4621 C	PRO	В	1266	-3.721	47.775	12.234	1	84.5
4622 O	PRO	В	1266	-2.945	46.96	12.723	1	86.42
4623 CB	PRO	В	1266	-5.644	48.945	13.329	1	85.91
4624 CG	PRO	В	1266	-6.754	48.42	14.199	1	88.17
4625 CD	PRO	В	1266	-6.193	47.102	14.677	1	87.57
4626 N	GLU	В	1267	-3.312	48.741	11.428	1	83.25
4627 CA	GLU	В	1267	-1.903	48.882	11.104	1	81.19
4628 C	GLU	В	1267	-1.411	50.118	11.848	1	79.24
4629 O	GLU	В	1267	-1.658	51.249	11.434	1	79.45
4630 CB	GLU	В	1267	-1.718	49.009	9.586	1	84.26
4631 CG	GLU	В	1267	-0.27	48.931	9.107	1	89.83
4632 CD	GLU	В	1267	-0.113	48.13	7.813	1	94.51
4633 OE1	GLU	В	1267	0.07	46.895	7.904	1	94.61
4634 OE2	GLU	В	1267	-0.164	48.73	6.71	1	95.62
4635 N	LEU	В	1268	-0.752	49.887	12.981	1	76.7
4636 CA	LEU	В	1268	-0.236	50.959	13.833	1	73.83
4637 C	LEU	В	1268	1.193	51.403	13.535	1	71.42
4638 O	LEU	В	1268	2.028	50.609	13.109	1	71.74
4639 CB	LEU	В	1268	-0.368	50.543	15.297	1	72.92
4640 CG	LEU	В	1268	-1.83	50.34 5	15.713	1	75.22
4641 CD1	LEU	В	1268	-1.97	49.261	16.769	1	75.1
4642 CD2	LEU	В	1268	-2.413	51.674	16.181	1	76.24
4643 N	GLU	В	1269	1.456	52.687	13.745	1	69.3
4644 CA	GLU	В	1269	2.778	53.253	13.51	1	68.33
4645 C	GLU	В	1269	3.51	53.472	14.84	1	68.25
4646 O	GLU	В	1269	2.887	53.727	15.871	1	66.89
4647 CB	GLU	В	1269	2.664	54.573	12.73	1	67.48
4648 N	LYS	В	1270	4.836	53.387	14.803	1	66.93

Atom								
Atom Type	Residue		#	X	Υ	Z 00	CC	В
4649 CA	LYS	В	1270	5.668	53.561	15.988	1	65.75
4650 C	LYS	В	1270	5.632	55.004	16.477	1	66.16
4651 O	LYS	В	1270	5.849	55.935	15.7	1	64.99
4652 CB	LYS	В	1270	7.11	53.152	15.666	1	66.19
4653 CG	LYS	В	1270	7.773	52.241	16.695	1	66.44
4654 CD	LYS	В	1270	8.293	52.985	17.917	1	67.33
4655 CE	LYS	В	1270	9.494	53.881	17.588	1	65.09
4656 NZ	LYS	В	1270	10.128	54.429	18.833	1	60.85
4657 N	LYS	В	1271	5.361	55.18	17.769	1	67.55
4658 CA	LYS	В	1271	5.303	56.508	18.383	1	67.77
4659 C	LYS	В	1271	6.647	56.811	19.017	1	67.69
4660 O	LYS	В	1271	7.36	55.897	19.424	1	67.47
4661 CB	LYS	В	1271	4.183	56.571	19.45	1 1	65.91 69.61
4662 N	ASP	В	1272	7.005	58.091	19.063	1	69.98
4663 CA	ASP	В	1272	8.263	58.513	19.664 21.153	1	69.48
4664 C	ASP	В	1272	8.058	58.314 58.714	21.153	1	70.79
4665 O	ASP	В	1272	7.026	59.991	19.375	1	72.7
4666 CB	ASP	В	1272	8.512	60.425	19.713	1	74.97
4667 CG	ASP	В	1272 1272	9.923 10.25	60.564	20.918	1	75
4668 OD1	ASP	B B	1272	10.23	60.632	18.759	1	78.18
4669 OD2	ASP	В	1272	9.024	57.697	21.829	1	68.18
4670 N	PHE PHE	В	1273	8.889	57.453	23.261	1	65.46
4671 CA 4672 C	PHE	В	1273	8.816	58.714	24.099	1	65.24
4672 C 4673 O	PHE	В	1273	8.08	58.754	25.081	1	61.9
4674 CB	PHE	В	1273	9.983	56.513	23.774	1	64.16
4675 CG	PHE	В	1273	9.687	55.049	23.54	1	63.69
4676 CD1	PHE	В	1273	8.772	54.649	22.567	1	61.12
4677 CD2	PHE	В	1273	10.338	54.069	24.279	1	63.74
4678 CE1	PHE	В	1273	8.515	53.306	22.334	1	60.04
4679 CE2	PHE	В	1273	10.082	52.715	24.048	1	63.22
4680 CZ	PHE	В	1273	9.171	52.335	23.074	1	61.04
4681 N	ALA	В	1274	9.539	59.753	23.686	1	66.63
4682 CA	ALA	В	1274	9.542	61.025	24.408	1	69.62
4683 C	ALA	В	1274	8.14	61.632	24.491	1	70.5 69.92
4684 O	ALA	В	1274	7.856	62.443	25.377	1	69.88
4685 CB	ALA	В	1274	10.497	62.003 61.217	23.743 23.563	1	72.43
4686 N	SER	В	1275	7.275 5.884	61.673	23.487	1	73.84
4687 CA	SER	В	1275 1275	4.998	61.015	24.546	1	74.53
4688 C	SER	B B	1275	3.901	61.491	24.82	i	75.39
4689 O	SER SER	В	1275	5.319	61.388	22.096	1	71.41
4690 CB	ILE	В	1276	5.48	59.914	25.118	1	77.16
4691 N 4692 CA	ILE	В	1276	4.763	59.158	26.144	1	77.51
4693 C	ILE	В	1276	5.278	59.493	27.539	1	79
4694 O	ILE	В	1276	4.498	59.738	28.455	1	79.83
4695 CB	ILE	В	1276	4.956	57.642	25.949	1	77.77
4696 CG1	ILE	В	1276	4.703	57.255	24.496	1	76.62
4697 CG2	ILE	В	1276	4.026	56.864	26.868	1	77.73
4698 CD1	ILE	В	1276	5.015	55.809	24.212	1	79.55
4699 N	LEU	В	1277	6.597	59.452	27.7	1	80.74
4700 CA	LEU	В	1277	7.247	59.737	28.979	1	84.06
4701 C	LEU	В	1277	7.34	61.249	29.199	1	86.87
4702 O	LEU	В	1277	8.358	61.875	28.894	1	85.95
4703 CB	LEU	В	1277	8.64	59.106	28.995	1	82.05
4704 CG	LEU	В	1277	8.746	57.727	28.339	1	78.97

Atom Type Residue # X Y Z OCC B 4706 CD1	Atom							200	_
4706 CD1 LEU B 1277 10.171 57.284 29.036 1 79.91 4707 N THR B 1278 6.27 61.808 29.76 1 90.84 4708 CA THR B 1278 6.145 63.243 30.015 1 95.63 4709 C THR B 1278 7.996 63.958 30.0606 1 97.4 4710 O THR B 1278 7.996 64.773 29.925 1 97.16 4711 CB THR B 1278 4.887 63.552 30.881 1 96.55 4712 OG1 THR B 1278 4.887 63.552 30.881 1 97.54 4713 CG2 THR B 1278 6.869 63.932 30.064 1 96.74 4713 CGA ASN B 1279 7.688 63.872 31.365 1 97.54 4716 C ASN B		Residue							
4706 CD2 LEU B 1277 7.835 67.44 29.035 1 90.84 4708 CA THR B 1278 6.27 61.808 29.76 1 90.84 4708 CA THR B 1278 6.145 63.243 30.015 1 95.63 4709 C THR B 1278 7.967 63.956 30.606 1 97.4 4710 O THR B 1278 7.998 64.773 29.925 1 97.16 4711 CB THR B 1278 7.998 64.773 29.925 1 97.43 4713 CG2 THR B 1278 3.609 63.562 30.801 1 96.55 4712 OG1 THR B 1278 3.609 63.952 30.0064 1 98.74 4713 CG2 THR B 1279 7.688 63.672 31.865 1 97.5 4712 CA ASN B 1279 10.155 63.765 33.515 1 97.5 4716 C ASN B 1279 10.155 63.765 33.515 1 96.48 4716 C ASN B 1279 10.955 63.765 33.515 1 96.48 4716 C ASN B 1279 7.607 64.136 33.866 1 100 4722 N ALA B 1280 12.684 62.544 31.74 1 92.84 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4722 C ALA B 1280 11.266 61.665 34.33 1 100 4722 N ALA B 1280 11.266 61.665 34.33 1 100 4722 N ALA B 1280 11.266 61.665 34.33 1 100 4722 N ALA B 1280 12.689 62.38 31.14 1 88.89 4724 C ALA B 1280 12.689 62.38 31.14 1 88.89 4724 C ALA B 1280 12.689 62.38 31.14 1 88.89 4722 C SER B 1281 13.88 61.855 31.418 1 84.02 4725 O ALA B 1280 11.666 61.665 31.734 1 88.35 4722 C SER B 1281 15.079 61.907 29.475 1 80.245 4733 O SER B 1281 15.079 61.907 29.475 1 80.245 4733 O SER B 1281 15.079 61.907 29.475 1 80.245 4733 O SER B 1281 15.079 61.907 29.475 1 80.245 4733 O SER B 1281 15.079 61.907 29.475 1 80.245 4733 O SER B 1281 15.079 61.907 29.475 1 80.254 4733 O SER B 1281 17.021 60.996 31.488 1 80.61 4737 CB PRO B 1282 16.676 62.212 27.325 7 75.18 4735 C PRO B 1282 16.676 62.212 27.325 7 75.18 4736 C PRO B 1282 16.876 59.972 28.692 1 77.93 4734 CA PRO B 1282 16.876 59.972 28.692 1 77.92 4736 C ALA B 1280 17.021 60.996 31.388 1 77.92 4736 C PRO B 1282 16.676 62.212 27.325 7 75.18 4736 C PRO B 1282 16.676 63.895 27.325 7 75.18 4737 CB PRO B 1282 16.676 63.895 27.325 7 75.18 4736 C PRO B 1282 17.538 63.323 26.891 1 75.48 4736 C PRO B 1282 17.538 63.923 28.677 1 73.25 4736 C ALA B 1283 12.013 59.947 29.093 1 67.74 4736 C PRO B 1282 17.538 63.923 28.677 1 73.25 4736 C ALA B 1283 12.139 60.932 28.714 1 75.62 4736 C ALA B 1283 12.139 60.932 28.714		LEU	В						
4708 CA THR B 1278 6.27 81.808 30.015 1 95.63 4708 CA THR B 1278 7.367 63.958 30.016 1 97.4 4710 C THR B 1278 7.367 63.958 30.016 1 97.4 4710 C THR B 1278 7.998 64.773 29.925 1 97.16 4710 C THR B 1278 4.847 63.582 30.881 1 96.55 4712 C G1 THR B 1278 4.847 63.582 30.881 1 96.54 4712 C G1 THR B 1278 3.609 63.392 30.064 1 96.74 4714 N A\$N B 1279 7.688 63.672 31.365 1 97.5 4715 CA A\$N B 1279 7.688 63.672 31.365 1 97.5 4715 CA A\$N B 1279 10.112 63.507 32.643 1 96.74 4715 CA A\$N B 1279 10.112 63.507 32.643 1 96.14 4717 C A\$N B 1279 10.955 83.765 33.515 1 96.48 4718 CB A\$N B 1279 10.955 83.765 33.515 1 96.48 4718 CB A\$N B 1279 7.771 63.865 34.852 1 100 4720 OD1 A\$N B 1279 7.771 63.865 34.852 1 100 4720 OD1 A\$N B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 A\$N B 1279 7.423 62.685 31.734 1 88.93 4722 C A\$LA B 1280 12.689 62.38 31.14 1 86.6 4725 C A\$LA B 1280 11.666 61.685 31.734 1 88.93 4722 C A\$LA B 1280 12.689 62.38 31.14 1 86.6 4725 C A\$LA B 1280 11.666 61.685 31.734 1 88.93 4722 C A\$LA B 1280 12.556 63.374 30.435 1 87.14 4728 CB A\$LA B 1280 12.556 63.374 30.435 1 87.14 4728 CB A\$LA B 1280 12.689 62.38 31.14 1 86.6 4725 C A\$LA B 1280 12.689 62.38 31.14 1 86.04 4722 C A\$LA B 1280 12.689 62.38 31.14 1 86.04 4728 C A\$LA B 1280 12.689 62.38 31.14 1 86.04 4728 C A\$LA B 1280 12.689 62.38 31.14 1 86.04 4728 C A\$LA B 1280 12.689 62.38 31.14 1 86.04 4728 C A\$LA B 1280 12.556 63.374 30.435 1 87.14 4731 CB \$ER B 1281 15.079 62.446 30.888 1 81.36 4725 C PRO B 1282 16.576 62.446 30.888 1 81.36 4731 CB \$ER B 1281 15.079 62.446 30.888 1 81.36 4731 CB \$ER B 1281 16.291 62.135 31.808 1 80.22 4730 C \$ER B 1281 14.831 60.877 31.808 1 81.36 4731 CB \$ER B 1281 15.579 64.909 20.9475 1 80.22 4730 C \$ER B 1281 14.831 60.877 31.808 1 81.36 4731 CB \$ER B 1281 16.291 50.999 31.368 1 77.99 4733 CD \$ER B 1281 14.831 60.877 31.808 1 80.23 4731 CB \$ER B 1281 16.291 50.999 31.368 1 75.48 4736 C \$PRO B 1282 17.538 63.323 68.891 1 75.48 4736 C \$PRO B 1282 17.538 63.323 68.891 1 75.48 4736 C \$PRO B 1282 16.805 59.972 2 64.727 1 75.58 4736 C \$PRO B 1282		LEU	В			-			
4708 CA THR B 1278 6.145 63.243 30.606 1 97.4 4709 C THR B 1278 7.998 64.773 29.925 1 97.16 4710 O THR B 1278 7.998 64.773 29.925 1 97.16 4711 CB THR B 1278 3.609 63.392 30.8064 1 96.55 4712 OG1 THR B 1278 3.609 63.392 30.0064 1 97.5 4713 CG2 THR B 1279 7.688 63.672 31.865 1 97.5 4714 N ASN B 1279 7.688 63.672 31.865 1 97.5 4715 CA ASN B 1279 10.955 63.765 33.515 1 96.91 4716 C ASN B 1279 10.955 63.765 33.515 1 96.91 4716 C ASN B 1279 7.771 63.865 33.866 1 100 4718 CB ASN B 1279 7.771 63.865 34.852 1 100 4718 CB ASN B 1279 7.607 64.136 36.061 1 99.54 4718 CB ASN B 1279 7.607 64.136 36.061 1 99.54 4720 OD1 ASN B 1279 7.607 64.136 36.061 1 99.54 4721 ND2 ASN B 1279 7.423 62.665 34.33 1 100 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 11.466 61.685 31.734 1 88.64 4725 O ALA B 1280 11.466 61.685 31.734 1 88.64 4725 C ALA B 1280 11.466 61.685 31.734 1 88.64 4726 CB ALA B 1280 11.463 61.685 31.418 1 84.02 4727 N SER B 1281 13.88 61.855 31.418 184.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.079 60.946 31.368 1 80.61 4730 O SER B 1281 15.079 60.946 31.368 1 78.03 4731 CB SER B 1281 15.079 60.946 31.368 1 78.03 4733 N PRO B 1282 16.224 62.607 29.9475 1 80.26 4733 C PRO B 1282 16.578 62.212 27.325 1 75.18 4736 C PRO B 1282 16.578 62.212 27.325 1 75.18 4737 C B PRO B 1282 16.578 62.212 27.325 1 75.18 4738 C G PRO B 1282 16.578 62.212 27.325 1 75.18 4739 C PRO B 1282 16.578 62.212 27.325 1 75.8 4739 C PRO B 1282 16.594 60.834 27.247 1 73.25 4736 C PRO B 1282 16.578 63.323 26.891 1 75.48 4737 C B PRO B 1282 16.578 63.221 27.325 1 75.18 4738 C G PRO B 1282 16.578 63.323 26.891 1 75.48 4739 C PRO B 1282 16.578 63.221 27.325 1 75.18 4736 C PRO B 1282 16.578 63.221 27.325 1 75.18 4737 C B PRO B 1282 16.578 63.221 27.325 1 75.18 4736 C PRO B 1282 16.578 63.323 26.891 1 75.48 4737 C B PRO B 1282 16.594 63.859 29.052 1 76.33 4736 C PRO B 1282 16.594 63.859 29.052 1 75.38 4736 C PRO B 1282 16.944 63.859 29.052 1 75.38 4736 C PRO B 1283 12		THR	В	1278					
4710 O THR B 1278 7,996 64,773 29,925 1 97,16 4710 O THR B 1278 7,996 64,773 29,925 1 97,16 4711 CB THR B 1278 4,887 63,562 30,881 1 96,55 4712 OG1 THR B 1278 3,609 63,392 30,064 1 96,74 4713 CG2 THR B 1278 3,609 63,392 30,064 1 96,74 4714 N ASN B 1279 7,688 63,672 31,865 1 97,54 4715 CA ASN B 1279 7,688 63,672 31,865 1 97,54 4716 C ASN B 1279 10,112 63,507 32,643 1 95,91 4717 O ASN B 1279 10,112 63,507 32,643 1 95,91 4718 CB ASN B 1279 10,112 63,507 32,643 1 95,91 4719 CG ASN B 1279 7,771 63,865 33,515 1 96,48 4718 CB ASN B 1279 7,771 63,865 33,515 1 100 4719 CG ASN B 1279 7,771 63,865 34,852 1 100 4719 CG ASN B 1279 7,743 62,685 34,33 1 100 4722 N ALA B 1280 10,284 62,544 31,74 1 92,84 4723 CA ALA B 1280 11,466 61,685 31,734 1 88,93 4724 C ALA B 1280 11,666 61,685 31,734 1 88,93 4724 C ALA B 1280 11,173 60,409 30,972 1 88,393 4724 C ALA B 1280 11,173 60,409 30,972 1 88,394 4725 O ALA B 1280 11,173 60,409 30,972 1 88,354 4729 C SER B 1281 13,88 61,855 31,418 1 84,02 4729 C SER B 1281 14,831 60,874 29,082 1 80,23 4730 O SER B 1281 16,291 60,907 29,475 1 80,23 4731 CB SER B 1281 17,021 60,996 31,318,08 1 80,61 4732 CG PRO B 1282 16,578 62,212 27,325 1 75,58 4735 C PRO B 1282 16,578 62,212 27,325 1 75,58 4736 O PRO B 1282 16,578 62,212 27,325 1 75,58 4737 CB PRO B 1282 17,538 63,323 26,891 77,9 4738 CG PRO B 1282 17,538 63,323 26,891 77,92 4739 CD PRO B 1282 16,578 62,212 27,325 1 75,58 4739 CD PRO B 1282 17,538 63,323 26,891 77,54 4739 CD PRO B 1282 17,538 63,323 26,891 77,54 4739 CD PRO B 1282 17,538 63,323 26,891 77,54 4739 CD PRO B 1282 17,538 63,323 26,891 77,54 4736 CD PRO B 1282 17,538 63,323 26,891 77,54 4737 CB EU B 1283 18,133 58,211 28,577 16,58 4738 CG PRO B 1282 17,538 63,323 26,891 77,54 4739 CD PRO B 1282 16,578 62,212 27,325 1 75,58 4736 CD PRO B 1282 16,578 62,212 27,325 1 75,58 4737 CB PRO B 1282 16,578 63,593 28,767 1 5,562 4736 C ALA B 1284 15,077 55,893 28,767 1 5,525 4756 O VAL B 1285 14,800 58,893 26,294 1 63,685 4757 CB VAL B 1285 14,800 58,893 26,294 1 66,85 4758 CG2 VAL B 1285 14,800 57,		THR	В	1278					
4710 O THR B 1278 4.887 63.562 30.881 1 96.55 4712 OG1 THR B 1278 4.887 63.562 30.881 1 96.55 4712 OG1 THR B 1278 4.887 63.562 30.881 1 96.55 4712 OG1 THR B 1278 3.609 63.392 30.027 1 97.43 4713 CG2 THR B 1278 3.609 63.392 30.0264 1 96.74 4713 CG2 THR B 1279 7.688 63.672 31.865 1 97.55 4715 CA ASN B 1279 7.688 63.3672 31.865 1 97.55 4715 CA ASN B 1279 10.955 63.765 33.515 1 96.48 4717 O ASN B 1279 10.955 63.765 33.515 1 96.48 4717 O ASN B 1279 10.955 63.765 33.515 1 96.48 4717 O ASN B 1279 7.771 63.885 34.852 1 100 4718 CG ASN B 1279 7.607 64.136 36.051 1 99.54 4720 OD1 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.607 64.136 36.051 1 99.54 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.689 62.38 31.14 1 86.6 4725 O ALA B 1280 12.689 62.38 31.14 1 86.6 4725 C ALA B 1280 12.689 62.38 31.14 1 86.47 4728 CA ASR B 1279 1.173 60.409 30.972 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4729 C SER B 1281 15.079 61.907 29.475 1 80.23 4730 O SER B 1281 15.079 61.907 29.475 1 80.23 4731 CB SER B 1281 15.079 61.907 29.475 1 80.23 4731 CB SER B 1281 15.079 61.907 29.475 1 80.23 4735 C PRO B 1282 16.291 62.135 31.808 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4736 O PRO B 1282 16.578 62.212 27.325 1 75.18 4736 O PRO B 1282 17.242 60.834 27.247 7 72.63 4736 O PRO B 1282 17.548 63.323 28.891 1 75.48 4739 CB PRO B 1282 16.578 63.323 28.891 1 75.46 4739 CB PRO B 1282 16.914 63.858 29.052 1 77.94 4730 O LEU B 1283 18.263 59.052 1 75.43 4730 CB PRO B 1282 17.548 63.359 28.053 1 75.44 4740 N LEU B 1283 18.263 59.052 27.247 7 72.63 4736 CB PRO B 1282 17.548 63.323 28.891 1 75.46 4743 O LEU B 1283 18.263 57.075 28.895 1 75.48 4744 CB LEU B 1283 18.263 57.075 28.895 1 75.48 4744 CB LEU B 1283 18.264 57.07 28.084 1 65.85 4744 CB LEU B 1283 18.263 57.075 28.895 1 75.44 4745 CA ALA B 1284 16.249 57.548 30.006 1 59.58 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.74 475 CD ALA B 1284 16.249 57.548 30.006 1 59.58 4744 CB LEU B 1283 20.183		THR	В	1278					
4711 CB THR B 1278 4.887 63.562 30.861 1 97.43 4712 OG1 THR B 1278 4.887 63.562 30.064 1 96.74 4713 CG2 THR B 1278 3.609 63.392 30.064 1 97.55 4715 CA ASN B 1279 7.688 63.672 31.865 1 97.54 4716 C ASN B 1279 10.112 63.507 32.643 1 95.91 4717 O ASN B 1279 10.112 63.507 32.643 1 95.91 4717 O ASN B 1279 10.112 63.507 32.643 1 95.91 4717 O ASN B 1279 10.955 63.765 33.515 1 96.48 4718 CB ASN B 1279 7.771 63.865 34.852 1 100 4720 OD1 ASN B 1279 7.771 63.865 34.852 1 100 4720 OD1 ASN B 1279 7.771 63.865 34.852 1 100 4720 OD1 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.686 62.38 31.14 86.6 4725 O ALA B 1280 12.686 62.38 31.14 86.6 4725 C ALA B 1280 12.656 63.374 30.435 1 87.14 4728 CB ALA B 1280 11.473 60.409 30.972 1 88.35 4729 C SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.06 62.446 30.888 1 81.36 4729 C SER B 1281 15.06 62.446 30.888 1 81.36 4729 C SER B 1281 15.00 69.874 29.082 1 80.23 4731 CB SER B 1281 17.021 60.996 31.368 1 77.9 4733 CB SER B 1281 17.021 60.996 31.368 1 77.9 4733 CB SER B 1281 17.021 60.894 27.247 1 73.25 4736 O PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.578 62.212 27.325 1 75.62 4736 C PRO B 1282 16.578 62.212 27.325 1 75.48 4739 CD PRO B 1282 16.578 62.212 27.325 1 75.48 4739 CD PRO B 1282 16.578 62.212 27.325 1 75.62 4736 C PRO B 1282 16.578 63.333 28.741 1 75.62 4736 C PRO B 1282 16.578 62.212 27.325 1 75.62 4736 C PRO B 1282 16.578 62.212 27.325 1 75.62 4736 C PRO B 1282 16.578 62.212 27.325 1 75.62 4736 C PRO B 1282 16.578 62.212 27.325 1 75.62 4736 C PRO B 1282 16.578 62.212 27.325 1 75.63 4736 C PRO B 1282 16.578 62.212 27.325 1 75.63 4736 C PRO B 1282 16.578 62.212 27.325 1 75.63 4736 C PRO B 1282 16.578 63.333 28.691 1 75.62 4736 C PRO B 1282 16.578 63.333 28.691 1 75.48 4740 N LEU B 1283 18.133 58.244 57.07 28.891 1 75.62 4744 C LEU B 1283 18.233 60.635 28.091 1 75.64 67.55 4756 O VAL B 1285 14.004		THR	В	1278					
4712 OG1 THR B 1278 4.847 62.699 32.027 1 97.43 4713 CG2 THR B 1278 3.609 63.392 30.064 1 96.74 4714 N ASN B 1279 7.688 63.672 31.865 1 97.54 4715 CA ASN B 1279 10.112 63.507 32.643 1 95.91 4716 C ASN B 1279 10.955 63.765 33.515 1 96.48 4717 O ASN B 1279 10.955 63.765 33.515 1 96.48 4717 O ASN B 1279 7.771 63.865 34.852 1 100 4718 CG ASN B 1279 7.771 63.865 34.852 1 100 4719 CG ASN B 1279 7.607 64.136 36.051 1 99.54 4720 OD1 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.607 64.136 36.051 1 99.54 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 11.473 60.409 30.972 1 88.35 4727 N SER B 1281 15.06 62.446 30.886 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 14.831 60.874 29.082 1 80.28 4731 CB SER B 1281 11.5379 61.907 29.475 1 80.26 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4736 O PRO B 1282 17.242 60.834 27.247 1 73.25 4738 CG PRO B 1282 17.242 60.834 27.724 1 75.68 4738 CG PRO B 1282 16.578 62.212 27.325 1 75.48 4738 CG PRO B 1282 16.936 59.972 26.472 1 72.63 4738 CG PRO B 1282 16.805 59.972 26.472 1 72.63 4738 CG PRO B 1282 16.805 59.972 26.472 1 72.63 4738 CG PRO B 1282 16.578 62.212 27.325 1 75.48 4738 CG PRO B 1282 16.805 59.972 26.472 1 72.63 4738 CG PRO B 1282 16.805 59.972 26.472 1 72.63 4738 CG PRO B 1282 16.904 59.364 28.104 1 66.85 4744 CB LEU B 1283 18.263 50.332 28.714 1 75.62 4738 CG PRO B 1282 16.904 59.364 28.104 1 66.85 4744 CB LEU B 1283 18.264 57.07 28.094 1 66.85 4746 CD1 LEU B 1283 18.264 57.07 28.094 1 66.85 4746 CD1 LEU B 1283 18.263 50.332 28.714 1 67.35 4746 CD LEU B 1283 18.264 57.07 28.094 1 66.85 4746 CD LEU B 1283 18.264 57.07 58.895 1 75.48 4746 CD LEU B 1283 18.264 57.07 58.895 1 75.48 4756 C VAL B 1285 14.904 58.025 28.097 1 56.46 4757 CB VAL B 1285 14.904 58.025 27.236 1 66.57		THR	В	1278					
4713 CG2 THR B 1278 3.609 63.392 30.004 1 97.5 4714 N ASN B 1279 8.816 64.331 32.521 1 97.5 4716 C ASN B 1279 10.955 63.765 33.515 1 96.48 4717 C ASN B 1279 10.955 63.765 33.515 1 96.48 4718 CB ASN B 1279 10.955 63.765 33.515 1 96.48 4718 CB ASN B 1279 7.771 63.685 34.552 1 100 4719 CG ASN B 1279 7.607 64.136 36.051 1 99.54 4720 OD1 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 11.466 61.685 31.734 1 89.94 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.689 62.38 31.14 86.6 4725 C ALA B 1280 11.173 60.409 30.972 1 88.35 4727 N SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.106 62.446 30.888 1 81.36 4730 O SER B 1281 15.379 61.907 29.475 1 80.26 4730 C SER B 1281 16.291 60.964 31.368 1 78.03 4731 CB SER B 1281 16.291 60.986 31.368 1 78.03 4731 CB SER B 1281 16.291 60.986 31.368 1 78.03 4732 OG SER B 1281 16.291 60.986 31.368 1 78.03 4733 N PRO B 1282 16.274 62.607 28.692 1 77.9 4736 C PRO B 1282 16.578 62.212 27.325 1 75.48 4736 C PRO B 1282 16.578 62.212 27.325 1 75.48 4739 CD PRO B 1282 16.914 63.858 29.052 1 75.68 4740 C LEU B 1283 18.283 60.932 28.714 1 67.35 4744 CB LEU B 1283 18.293 60.392 28.714 1 66.574 4745 CG LEU B 1283 18.293 60.392 28.714 1 66.574 4746 CD LEU B 1283 18.293 60.635 28.053 1 71.62 4747 CD LEU B 1283 18.294 60.635 28.053 1 71.62 4746 CD LEU B 1283 18.294 57.07 28.084 1 66.85 4744 CB LEU B 1283 18.294 57.07 28.084 1 66.85 4745 C LEU B 1283 18.293 60.392 28.714 1 67.55 4756 C VAL B 1285 14.604 57.711 26.965 1 57.72 4756 C ALA B 1285 14.604 57.711 26.965 1 57.72 4756 C VAL B 1285 14.604 57.711 26.965 1 57.72 4756 C VAL B 1285 14.805 58.93 26.294 1 66.34 4759 CG2 VAL B 1285 14.806 59.972 27.236 1 55.19			В	1278	4.847				
4714 N ASN B 1279 7.688 63.872 31.803 1 97.54 4715 CA ASN B 1279 10.112 63.507 32.643 1 95.91 4716 C ASN B 1279 10.955 63.765 33.515 1 96.48 4718 CB ASN B 1279 10.955 63.765 33.515 1 96.48 4718 CB ASN B 1279 7.771 63.865 34.852 1 100 4719 CG ASN B 1279 7.771 63.865 34.852 1 100 4720 OD1 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.659 62.38 31.14 1 86.6 4725 C ALA B 1280 11.773 60.409 30.972 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 15.06 62.446 30.888 1 81.36 4731 CB SER B 1281 15.06 62.446 30.888 1 81.36 4732 OG SER B 1281 16.291 60.874 29.082 1 80.26 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 17.538 63.323 26.891 1 75.83 4736 O PRO B 1282 17.538 63.323 26.891 1 75.83 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.83 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.83 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.83 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.83 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.62 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.62 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 17.538 63.323 26.891 1 75.62 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.83 4736 CD PRO B 1282 17.538 63.323 26.891 1 75.83 4736 CD PRO B 1282 17.538 63.323 26.891 1 75.48 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 17.538 63.323 26.891 1 75.83 4738 CG PRO B 1282 17.538 63.323 26.891 1 75.83 4736 CD PRO B 1282 17.538 63.323 26.891 1 75.48 4737 CB PRO B 1283 18.133 59.476 29.083 1 67.7 4745 CD LEU B 1283 18.264 57.07 28.084 1 66.85 4742 C LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CD LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 51.895 59.993 28.794 1 67.55 4746 CD LEU B 12	4713 CG2	THR	В	1278					
4715 CA ASN B 1279 10.112 63.507 32.521 1 97.541 61 C ASN B 1279 10.152 63.507 33.615 1 96.48 4717 O ASN B 1279 10.955 63.765 33.515 1 96.48 4718 CB ASN B 1279 8.383 64.916 33.886 1 100 4719 CG ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 11.466 61.685 31.734 1 89.34 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 11.173 60.409 30.972 1 88.35 4724 C ASER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.06 62.446 30.888 1 81.36 4729 C SER B 1281 16.291 62.135 31.808 1 80.61 4733 N PRO B 1282 16.624 62.607 29.475 1 80.23 4731 CB SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.624 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.624 63.308 81 7 73.25 4736 O PRO B 1282 16.624 63.308 81 7 73.25 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4736 C PRO B 1282 16.578 62.212 27.325 1 75.18 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 72.63 4736 C PRO B 1282 16.505 59.972 26.472 1 75.85 4736 C PRO B 1282 16.505 59.972 26.472 1 75.62 4736 C PRO B 1282 16.505 59.972 26.472 1 75.63 4736 C PRO B 1283 18.264 57.07 28.084 1 66.85 4747 C D LEU B 1283 18.264 57.07 28.084 1 67.75 62.474 C D LEU B 1283 18.264 57.07 28.084 1 67.75 63 4746 C D LEU B 1283 12.505 59.933 26.894 1 57.72 4756 O VAL B 1285 14.904		ASN	В	1279	7.688				
4716 C ASN B 1279 10.112 33.507 32.643 1 96.48 4717 O ASN B 1279 10.955 33.765 33.515 1 96.48 4718 CB ASN B 1279 7.771 63.865 34.852 1 100 4719 CG ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.689 62.38 31.14 1 86.4725 C ALA B 1280 11.173 60.409 30.972 1 88.35 4722 N ALA B 1280 11.173 60.409 30.972 1 88.35 4722 N ALA B 1280 11.173 60.409 30.972 1 88.35 4724 C SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 16.291 62.135 31.808 1 80.61 4732 OG SER B 1281 16.291 62.135 31.808 1 80.61 4732 OG SER B 1281 16.291 62.135 31.808 1 80.61 4732 CG SER B 1281 16.291 62.135 31.808 1 80.61 4735 C PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.578 62.212 27.325 1 75.84 4735 C PRO B 1282 16.578 62.212 27.325 1 75.83 4738 CG PRO B 1282 16.578 63.323 26.891 1 75.62 4738 CG PRO B 1282 16.578 63.323 26.891 1 75.62 4738 CG PRO B 1282 16.578 63.323 26.891 1 75.63 4738 CG PRO B 1282 16.578 63.323 26.891 1 75.63 4738 CG PRO B 1282 16.578 63.323 26.891 1 75.63 4738 CG PRO B 1282 16.578 63.323 26.891 1 75.62 4738 CG PRO B 1282 17.538 63.323 26.891 1 75.63 4736 CD LEU B 1283 18.126 59.972 26.472 1 72.63 4736 CD LEU B 1283 18.135 58.211 28.547 1 67.58 4744 CB LEU B 1283 12.0183 59.476 29.061 1 66.53 4744 CB LEU B 1283 12.0183 59.476 29.063 1 67.7 4745 CG LEU B 1283 18.264 57.07 28.084 1 66.579 4746 CD1 LEU B 1283 22.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 18.264 57.07 28.084 1 66.53 4745 CG LEU B 1283 18.264 57.07 28.084 1 67.55 4745 CG LEU B 1283 22.183 59.476 29.083 1 67.7 4745 CD LEU B 1283 22.183 59.476 29.083 1 67.7 475 CD LEU B 1283 22.183 59.476 29.083 1 67.7 475 CD LEU B 1283 22.183 59.476 29.083 1 67.7 475 CD LEU B 1283 52.184 57.077 28.084 1 66.53 4755 C VAL B 1285		ASN	В				-		
4717 O ASN B 1279 10.955 63.65 33.515 1 0.00 4718 CB ASN B 1279 7.771 63.865 34.916 33.866 1 100 4720 OD1 ASN B 1279 7.771 63.865 34.852 1 100 4720 OD1 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.689 62.38 31.14 1 86.6 4725 O ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 11.173 60.409 30.972 1 88.35 4727 N SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 15.379 61.907 29.475 1 80.23 4731 CB SER B 1281 16.291 62.135 31.808 1 80.31 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.578 62.212 27.325 1 75.83 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.82 4736 C PRO B 1282 16.805 59.972 26.472 1 72.63 4737 CB PRO B 1282 16.914 63.858 29.052 1 77.93 4738 CG PRO B 1282 16.914 63.858 29.052 1 77.83 4737 CB PRO B 1282 16.914 63.858 29.052 1 77.83 4737 CB PRO B 1282 16.914 63.858 29.052 1 77.83 4738 CG PRO B 1282 16.914 63.858 29.052 1 77.83 4739 CD PRO B 1283 18.133 58.211 28.547 1 75.62 4739 CD PRO B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CD LEU B 1283 22.242 60.618 29.916 1 66.53 4745 CG ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.356 57.075 28.895 1 59.25 4751 O ALA B 1284 15.356 57.075 28.895 1 59.25 4756 O VAL B 1285 14.004 57.711 26.965 1 59.55 4756 O VAL B 1285 14.004 57.711 26.965 1 52.37		ASN	В	1279					
4718 CB ASN B 1279 7.771 63.865 34.852 1 100 4719 CG ASN B 1279 7.607 64.136 36.051 1 99.54 4720 OD1 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.689 62.38 31.14 86.6 4725 O ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 12.556 63.374 30.435 1 87.14 4728 CA SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 16.291 60.996 31.368 1 78.03 4731 CB SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4733 N PRO B 1282 16.578 62.212 27.325 1 75.18 4736 O PRO B 1282 17.242 60.834 27.247 1 73.25 4736 C PRO B 1282 17.536 63.323 26.891 1 75.48 4739 CD PRO B 1282 17.536 63.323 26.891 77.94 4736 CD PRO B 1282 17.536 63.323 26.891 77.54 4739 CD PRO B 1282 17.536 63.323 26.891 77.54 4736 CD PRO B 1282 17.536 63.323 26.891 77.54 4736 CD PRO B 1282 17.536 63.323 26.891 77.54 4737 CB PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 76.38 4744 CA LEU B 1283 18.133 58.211 28.547 1 67.58 4746 CD1 LEU B 1283 18.135 58.211 28.547 1 67.563 4746 CD1 LEU B 1283 20.183 59.476 29.083 1 66.85 4744 CB LEU B 1283 22.14 59.773 27.563 1 66.85 4750 C ALA B 1284 15.077 55.893 28.767 1 59.25 4750 C ALA B 1284 15.077 55.893 28.767 1 59.25 4750 C ALA B 1284 15.077 55.893 28.767 1 59.25 4750 C ALA B 1284 15.007 55.893 26.294 1 64.24 4758 CG VAL B 1285 14.004 57.711 66.44 4759 CG2 VAL B 1285 14.004 57.711 62.6965 1 52.37 4756 C VAL B 1285 14.004 57.711 66.24 4757 CB VAL B 1285 14.004 57.711 66.24 4758 CG1 VAL B 1285 14.004 57.711 69.55 6.66 4758 CG1 VAL B 1285 12.55 58.993 26.294 1 46.38		ASN	В	1279	10.955				
4719 CG ASN B 1279 7.771 63.865 34.852 1 100 4720 OD1 ASN B 1279 7.607 64.136 36.051 1 99.54 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.689 62.38 31.14 1 86.6 4725 O ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 11.173 60.409 30.972 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 14.831 60.874 29.082 1 80.23 4731 CB SER B 1281 17.021 60.996 31.368 1 80.61 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.291 62.135 31.808 1 80.61 4734 CA PRO B 1282 16.294 62.607 28.692 1 77.9 4735 C PRO B 1282 17.538 63.323 26.891 1 75.83 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.84 4739 CD PRO B 1282 17.538 63.323 26.891 1 75.84 4739 CD PRO B 1282 16.914 63.858 29.052 1 77.83 4734 CA LEU B 1283 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 77.83 4734 CA LEU B 1283 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 77.83 4734 CA LEU B 1283 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 77.83 4734 CA LEU B 1283 18.137 63.809 28.174 1 75.62 4736 O PRO B 1282 16.914 63.858 29.052 1 77.83 4734 CA LEU B 1283 18.137 63.809 28.774 1 66.85 4744 CB LEU B 1283 18.138 59.476 29.083 1 67.7 4745 CG LEU B 1283 20.183 59.476 29.083 1 67.7 4746 CD1 LEU B 1283 18.264 57.07 28.084 1 66.85 4745 CG LEU B 1283 18.136 59.773 27.563 1 67.35 4750 C ALA B 1284 15.077 55.889 28.767 1 59.25 4750 C ALA B 1284 15.077 55.889 28.767 1 59.25 4750 C ALA B 1284 15.077 55.889 28.767 1 59.25 4756 O VAL B 1285 14.004 57.711 26.965 1 59.58 4756 O VAL B 1285 14.004 57.711 26.965 1 52.37 4758 CGI VAL B 1285 14.004 57.711 26.965 1 52.37 4758 CGI VAL B 1285 14.004 57.711 26.965 1 53.79			В	1279					
4720 OD1 ASN B 1279 7.607 64.136 36.081 1 100 4721 ND2 ASN B 1279 7.423 62.685 34.33 1 100 4722 N ALA B 1280 10.284 62.544 31.734 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 11.173 60.409 30.972 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 14.831 60.874 29.082 1 80.23 4731 CB SER B 1281 16.291 62.135 31.808 1 80.61 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 17.242 60.834 27.247 17.263 4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 17.538 63.323 26.891 1 75.68 4739 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4736 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4736 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4736 CD PRO B 1282 18.127 63.809 28.174 1 75.63 4737 CB PRO B 1282 18.127 63.809 28.174 1 75.62 4738 CG PRO B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4744 CB LEU B 1283 18.293 60.635 28.053 1 71.62 4746 CD1 LEU B 1283 18.293 60.635 28.053 1 71.62 4747 CD2 LEU B 1283 18.293 60.635 28.053 1 71.62 4747 CD2 LEU B 1283 18.294 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.1399 60.392 28.714 1 67.55 4747 CD2 LEU B 1283 1284 15.077 58.89 51 57.72 4750 C ALA B 1284 15.077 58.89 51 57.72 4751 O ALA B 1285 14.904 58.025 28.087 1 59.25 4758 CG1 VAL B 1285 14.804 57.711 26.965 5 1.52.57 4758 CG1 VAL B 1285 14.804 57.711 26.965 5 1.52.57 4758 CG2 VAL B 1285 14.809 58.73 25.043 1 46.24 4759 CG2 VAL B 1285 12.84 59.722 27.236 1 53.19		ASN	В	1279					
4721 ND2 ASN B 1279 7.423 62.685 34.33 1.00 4722 N ALA B 1280 10.284 62.544 31.74 1 92.84 4723 CA ALA B 1280 11.466 61.685 31.734 1 88.93 4724 C ALA B 1280 12.689 62.38 31.14 1 86.6 4725 O ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 11.173 60.409 30.972 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 16.291 62.135 31.808 1 80.61 4731 CB SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.578 62.212 27.325 1 75.18 4736 O PRO B 1282 16.805 59.972 26.472 1 73.25 4738 CG PRO B 1282 16.914 63.858 29.052 1 75.48 4737 CB PRO B 1282 16.914 63.858 29.052 1 75.84 4738 CG PRO B 1282 16.914 63.858 29.052 1 75.83 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4740 C LEU B 1283 18.283 60.635 28.053 1 71.62 4744 CB LEU B 1283 18.293 60.392 28.174 1 66.85 4742 C LEU B 1283 18.293 60.392 28.714 1 66.85 4744 CB LEU B 1283 18.293 60.392 28.714 1 67.562 4746 CD1 LEU B 1283 18.293 60.392 28.714 1 67.55 4746 CD1 LEU B 1283 18.294 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 18.294 60.618 29.916 1 66.579 4748 N ALA B 1284 15.408 58.19 29.471 1 64.43 4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.408 58.18 31.106 1 61.25 4751 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4752 CB ALA B 1285 14.804 57.711 26.965 1 59.52 4753 N VAL B 1285 14.804 57.711 26.965 1 59.52 4755 C VAL B 1285 14.804 57.711 26.965 1 52.37 4756 C VAL B 1285 14.804 57.711 26.965 1 52.37 4758 CG VAL B 1285 14.804 57.711 26.965 1 52.37 4758 CG VAL B 1285 14.803 58.993 26.294 1 46.38 4758 CG2 VAL B 1285 12.84 59.722 27.236 1 53.31			В						
4722 N ALA B 1280 10.284 62.544 31.734 1 88.93 4724 C ALA B 1280 12.689 62.38 31.14 1 86.6 4725 O ALA B 1280 12.556 63.374 30.972 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 15.379 61.907 29.475 1 80.23 4731 CB SER B 1281 16.291 62.135 31.808 1 80.61 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.576 62.212 27.325 1 75.18 4736 C PRO B 1282 17.242 60.834 27.247 1 73.25 4736 C PRO B 1282 17.538 63.323 26.891 1 75.48 4737 CB PRO B 1282 16.805 59.972 26.472 1 72.63 4738 CG PRO B 1282 16.914 63.858 29.052 1 77.8 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4744 CB LEU B 1283 18.283 60.352 88.053 1 76.58 4744 CB LEU B 1283 18.283 60.392 28.714 1 66.85 4744 CG LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CG LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CG LEU B 1283 22.242 60.618 29.916 1 66.579 4746 CD1 LEU B 1283 18.264 57.07 28.084 1 66.85 4747 CD2 LEU B 1283 18.264 57.07 28.084 1 66.85 4747 CD2 LEU B 1283 18.264 57.07 28.084 1 66.85 4746 CD1 LEU B 1283 22.15 59.773 27.563 1 65.79 4755 C ALA B 1284 15.356 57.075 28.895 1 57.72 4756 O VAL B 1285 14.608 58.993 26.594 1 59.25 4756 O VAL B 1285 14.608 58.993 26.594 1 52.37 4756 C B ALA B 1284 15.008 58.893 26.594 1 50.25 4756 C VAL B 1285 14.804 57.711 26.965 1 50.75 4758 CGI VAL B 1285 14.804 57.711 26.965 1 52.37 4758 CGI VAL B 1285 14.804 57.711 26.965 1 52.37 4758 CGI VAL B 1285 14.804 57.711 26.965 1 52.37 4758 CGI VAL B 1285 14.804 57.711 26.965 1 52.37 4758 CGI VAL B 1285 14.804 57.711 26.965 1 52.67 4758 CGI VAL B 1285 14.803 58.803 25.043 1 46.24 4759 CG2 VAL B 1285 14.804 57.721 27.263 1 53.319		ASN	В	1279					
4723 CA ALA B 1280 11.466 61.685 31.734 1 86.6 4724 C ALA B 1280 12.689 62.38 31.14 1 86.6 4725 O ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 11.173 60.409 30.972 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 16.237 61.907 29.475 1 80.26 4731 CB SER B 1281 17.021 60.996 31.368 1 78.03 4731 CB SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.578 62.212 27.325 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.578 62.212 27.325 1 75.18 4736 O PRO B 1282 16.578 63.323 26.891 1 75.48 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4743 O LEU B 1283 18.264 57.07 28.094 1 66.85 4744 C LEU B 1283 18.264 57.07 28.094 1 66.85 4744 C LEU B 1283 18.264 57.07 28.094 1 66.85 4744 C LEU B 1283 18.264 57.07 28.094 1 66.85 4744 C LEU B 1283 22.1339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.1339 60.392 28.714 1 64.38 4748 N ALA B 1284 15.356 57.07 28.084 1 66.53 4746 CD1 LEU B 1283 22.1339 60.392 28.714 1 64.38 4748 C ALA B 1284 15.356 57.07 28.084 1 66.53 4746 CD1 LEU B 1283 22.145 59.773 27.563 1 65.79 4748 N ALA B 1284 15.356 57.075 28.095 1 57.72 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.404 57.71 26.965 1 52.37 4755 C VAL B 1285 14.904 58.025 28.087 1 56.46 4756 C VAL B 1285 14.904 58.025 27.236 1 52.67 4758 CG VAL B 1285 14.004 57.711 26.965 1 52.37 4758 CG VAL B 1285 12.60 55.869 25.459 1 52.67 4758 CG VAL B 1285 12.60 55.869 25.459 1 52.67 4758 CG VAL B 1285 12.60 55.869 25.459 1 52.67 4758 CG VAL B 1285 12.60 55.869 25.459 1 52.67		ALA	В						
4724 C ALA B 1280 12.689 62.38 31.14 50.4725 O ALA B 1280 12.556 63.374 30.435 1 87.14 4726 CB ALA B 1280 11.173 60.409 30.972 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.106 62.446 30.888 1 80.23 4731 CB SER B 1281 16.291 60.874 29.082 1 80.23 4731 CB SER B 1281 17.021 60.996 31.368 1 78.03 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.578 62.212 27.325 1 75.18 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.48 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.392 28.714 66.85 4742 C LEU B 1283 18.203 59.476 29.083 1 67.75 4745 CG LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 474 CD2 LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4749 CA ALA B 1284 15.077 55.893 28.767 1 59.25 4755 C ALA B 1284 15.077 55.893 28.767 1 59.25 4755 C ALA B 1284 15.404 57.711 26.965 1 52.37 4755 C VAL B 1285 14.904 57.711 26.965 1 52.37 4755 C VAL B 1285 14.904 57.711 26.965 1 52.37 4755 C VAL B 1285 14.904 57.704 1 60.38 59.97 2 50.43 1 46.24 4755 CG VAL B 1285 14.904 57.704 25.00 1 59.58 1 52.67 4755 CG2 VAL B 1285 12.60 57.704 55.60 1 55.60 4755 CG2 VAL B 1285 12.60 57.704 55.60 1 55.60 1 55.60 1 50.50 1 5		ALA	В	1280					
4726 CB ALA B 1280 12.556 63.374 30.493 1 88.35 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 14.831 60.874 29.082 1 80.23 4731 CB SER B 1281 16.291 62.135 31.808 1 80.61 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.578 62.212 27.325 1 75.18 4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 17.538 63.323 26.891 1 75.48 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 22.139 60.392 28.714 1 67.58 4745 CG LEU B 1283 22.139 60.392 28.714 1 67.58 4746 CD1 LEU B 1283 22.139 60.392 28.714 1 67.58 4746 CD1 LEU B 1283 22.149 59.773 27.563 1 65.79 4747 CD2 LEU B 1283 22.139 60.392 28.714 1 67.58 4746 CD1 LEU B 1283 22.149 59.773 27.563 1 65.79 4745 CG ALA B 1284 15.408 58.18 31.106 16.53 4746 CD1 LEU B 1283 22.149 59.773 27.563 1 65.79 4747 CD2 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 57.07 28.084 1 66.55 4746 CD1 LEU B 1283 22.149 59.773 27.563 1 65.79 4747 CD2 LEU B 1283 22.149 59.773 27.563 1 65.79 4747 CD2 LEU B 1283 22.149 59.773 27.563 1 65.79 4747 CD2 LEU B 1283 22.149 59.773 27.563 1 65.79 4746 CD1 LEU B 1283 22.149 59.773 27.563 1 65.79 4746 CD1 LEU B 1283 22.149 59.773 27.563 1 65.79 4747 CD2 LEU B 1285 14.904 58.025 28.087 1 59.55 475 475 CD ALA B 1285 14.904 58.025 28.087 1 59.55 475 475 CD ALA B 1285 14.904 5		ALA	В						
4726 CB ALA B 1280 11.173 60.409 30.972 1 84.03 4727 N SER B 1281 13.88 61.855 31.418 1 84.02 4728 CA SER B 1281 15.106 62.446 30.888 1 81.36 4729 C SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 14.831 60.874 29.082 1 80.23 4731 CB SER B 1281 16.291 62.135 31.808 1 80.61 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.578 62.212 27.325 1 75.84 4736 O PRO B 1282 17.542 60.834 27.247 1 73.25 4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4744 CB LEU B 1283 18.264 57.07 28.084 1 67.58 4744 CB LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD LEU B 1283 22.34 59.773 27.563 1 65.79 4748 N ALA B 1284 15.077 55.893 28.767 1 59.25 4751 O ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1285 14.004 58.025 28.087 1 59.25 4758 C VAL B 1285 14.004 58.025 28.087 1 59.25 4758 C VAL B 1285 14.004 58.025 28.087 1 59.26 4758 C VAL B 1285 14.004 58.025 28.087 1 59.25 4758 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.243 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.243 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.243 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.243 1 55.780 1 55.609 1 55.790 1 55.700 1 55.700 1 55.700 1 55.700 1 55.700 1 55.700 1 55.700 1 55.700		ALA	B						
4727 N SER B 1281 15.106 62.446 30.888 1 81.36 4728 CA SER B 1281 15.379 61.907 29.475 1 80.26 4730 O SER B 1281 14.831 60.874 29.082 1 80.23 4731 CB SER B 1281 16.291 62.135 31.808 1 80.61 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 17.242 60.834 27.247 1 73.25 4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4739 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4742 C LEU B 1283 18.283 60.635 28.053 1 71.62 4743 O LEU B 1283 18.283 60.635 28.053 1 71.62 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 22.14 59.773 27.563 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.242 60.618 29.916 1 66.53 4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4756 C ALA B 1285 14.904 58.025 28.097 1 56.46 4757 CB ALA B 1285 14.904 58.025 28.097 1 56.46 4757 CB ALA B 1285 14.904 58.025 28.097 1 56.46 4757 CB ALA B		ALA	В						
4728 CA SER B 1281 15.379 61.907 29.475 1 80.26 4729 C SER B 1281 14.831 60.874 29.082 1 80.23 4731 CB SER B 1281 16.291 62.135 31.808 1 80.61 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.805 59.972 26.472 1 72.63 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4737 CB PRO B 1282 16.805 59.972 26.472 1 72.63 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4743 O LEU B 1283 18.133 58.211 28.547 1 67.58 4743 O LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.408 58.18 31.106 1 61.25 4750 C ALA B 1284 15.408 58.18 31.106 1 61.25 4755 C VAL B 1285 14.904 57.711 26.965 1 52.37 4756 CO VAL B 1285 14.904 57.721 27.563 1 52.67 4758 CG1 VAL B 1285 14.904 57.722 27.236 1 46.38 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.694 59.722 27.236 1 45.38 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.694 59.722 27.236 1 45.38 4759 CG2 VAL B 1285 12.694 59.722 27.236 1 45.38 4759 CG2 VAL B 1285 12.694 59.722 27.236 1 45.38 4759 CG2 VAL B 1285 12.694 59.722 27.236 1 45.38 4759 CG2 VAL B 1285 12.694 59.722 27.236 1 45.38 4759 CG2 VAL B 1285 12.694	4727 N	SER	В						
4729 C SER B 1281 15.379 61.907 29.473 1 80.23 4730 O SER B 1281 14.831 60.874 29.082 1 80.23 4731 CB SER B 1281 16.291 62.135 31.808 1 78.03 4732 OG SER B 1281 17.021 60.996 31.368 1 77.03 4733 N PRO B 1282 16.224 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.805 59.972 26.472 1 73.25 4736 O PRO B 1282 17.242 60.834 27.247 1 72.63 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.48 4737 CB PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4742 C LEU B 1283 18.113 58.211 28.547 1 67.58 4743 O LEU B 1283 18.13 58.211 28.547 1 67.58 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 20.183 59.476 29.083 1 67.7 4746 CD1 LEU B 1283 22.18 17.99 58.519 29.471 1 64.43 4749 CA ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.408 58.025 28.087 1 56.46 4753 N VAL B 1285 14.004 57.711 26.965 1 52.67 4756 C VAL B 1285 14.004 58.673 26.294 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.24 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 45.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.24 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.604 59.722 27.236 1 46.38 4759 CG2 VAL B 1285	4728 CA	SER	В						
4730 O SER B 1281 14.831 30.01 31.808 1 80.61 4731 CB SER B 1281 17.021 60.996 31.368 1 78.03 4732 OG SER B 1281 17.021 60.996 31.368 1 78.03 4733 N PRO B 1282 16.24 62.607 28.692 1 77.9 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 16.805 59.972 26.472 1 72.63 4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.62 4738 CG PRO B 1282 18.127 63.809 27.474 1 75.62 4739 CD PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4743 O LEU B 1283 18.113 58.211 28.547 1 67.58 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 66.53 4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.356 57.075 28.895 1 59.25 4751 O ALA B 1284 15.356 57.075 28.895 1 59.25 4751 O ALA B 1284 15.404 58.025 28.087 1 59.25 4751 C ALA B 1285 14.904 58.025 28.087 1 59.26 4755 C VAL B 1285 14.904 58.025 28.087 1 56.46 4758 CG1 VAL B 1285 14.904 58.025 28.087 1 56.46 4758 CG1 VAL B 1285 14.306 55.869 25.98 1 52.67 4758 CG1 VAL B 1285 14.306 55.869 25.941 1 46.38 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.284 4759 CG2 VAL B 1285 12.664 59.722 27.236 1 45.78		SER							
4731 CB SER B 1281 17.021 60.996 31.368 1 78.03 4732 OG SER B 1282 16.224 62.607 28.692 1 77.94 4733 N PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 17.242 60.834 27.247 1 73.25 4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.113 58.211 28.547 1 67.58 4743 O LEU B 1283 18.13 58.211 28.547 1 67.58 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4749 CA ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.075 55.893 28.767 1 59.25 4751 O ALA B 1284 15.075 55.893 28.767 1 59.25 4755 C VAL B 1285 14.904 58.693 26.294 1 46.38 4755 CG VAL B 1285 14.804 57.201 25.694 1 66.38 4755 CG VAL B 1285 14.804 57.211 26.965 1 52.37 4758 CG1 VAL B 1285 14.804 57.221 25.769 1 55.319		SER							
4732 OG SER B 1281 16.224 62.607 28.692 1 77.9 4733 N PRO B 1282 16.578 62.212 27.325 1 75.18 4734 CA PRO B 1282 16.578 62.212 27.325 1 75.18 4735 C PRO B 1282 17.242 60.834 27.247 1 73.25 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.113 58.211 28.547 1 67.58 4742 C LEU B 1283 18.113 58.211 28.547 1 67.58 4743 O LEU B 1283 20.183 59.476 29.083 1 67.7 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.242 60.618 29.916 1 66.53 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.356 57.075 28.895 1 57.72 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 59.26 4756 O VAL B 1285 14.044 57.711 26.965 1 52.37 4758 CG1 VAL B 1285 14.040 55.869 25.459 1 52.62 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.38 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.38 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.38	4731 CB								
4733 N PRO B 1282 16.578 62.212 27.325 1 75.18 4734 CA PRO B 1282 17.242 60.834 27.247 1 73.25 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4742 C LEU B 1283 18.264 57.07 28.084 1 66.85 4743 O LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4755 C VAL B 1285 14.904 58.025 28.087 1 52.67 4756 C VAL B 1285 14.904 58.025 28.087 1 52.67 4756 C VAL B 1285 14.044 57.711 26.965 1 52.37 4756 C VAL B 1285 14.044 57.711 26.965 1 52.67 4757 CB VAL B 1285 14.040 55.869 25.459 1 52.62 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.38 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.38 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.38 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 45.78 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 45.78 45.78 45.79 CG2 VAL B 1285 12.690 57.222 27.236 1 45.78 45.78 45.79 CG2 VAL B 1285 12.690 57.222 27.236 1 45.78 45.79 CG2 VAL B 1285 12.690 57.222 27.236 1 45.78 45.79 CG2 VAL B 1285 12.690 57.224 25.569 1 53.19 45	4732 OG								
4734 CA PRO B 1282 17.242 60.834 27.247 1 73.25 4736 O PRO B 1282 16.805 59.972 26.472 1 72.63 4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4742 C LEU B 1283 18.283 19.02 59.364 28.104 1 68.65 4742 C LEU B 1283 18.264 57.07 28.084 1 66.85 4743 O LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 59.25 4755 C VAL B 1285 14.904 57.711 26.965 1 52.37 4755 CB VAL B 1285 14.004 57.711 26.965 1 52.37 4758 CG1 VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 14.306 55.869 25.459 1 52.67 4758 CG1 VAL B 1285 14.306 55.869 25.459 1 52.67 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 5	4733 N								
4735 C PRO B 1282 16.805 59.972 26.472 1 72.63 4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.48 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.283 60.635 28.053 1 71.62 4742 C LEU B 1283 18.113 58.211 28.547 1 67.58 4743 O LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.904 57.711 26.965 1 52.37 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4757 CB VAL B 1285 14.823 56.858 25.98 1 52.62 4758 CG1 VAL B 1285 14.823 56.858 25.98 1 52.62 4758 CG1 VAL B 1285 13.535 58.993 26.294 1 46.38 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45	4734 CA								
4736 O PRO B 1282 17.538 63.323 26.891 1 75.48 4737 CB PRO B 1282 17.538 63.323 26.891 1 75.62 4738 CG PRO B 1282 18.127 63.809 28.174 1 75.62 4739 CD PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 19.02 59.364 28.104 1 68.65 4742 C LEU B 1283 18.113 58.211 28.547 1 67.58 4743 O LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4744 CB LEU B 1283 21.339 60.392 28.714 1 67.35 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.242 60.618 29.916 1 66.53 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.077 55.893 28.767 1 59.25 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4755 C VAL B 1285 14.823 56.858 25.98 1 52.62 4756 O VAL B 1285 14.823 56.858 25.98 1 52.62 4757 CB VAL B 1285 14.806 55.869 25.459 1 52.67 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.69 59.722 27.236 1 45.78 4759 CG2 VAL	4735 C								
4737 CB PRO B 1282 18.127 63.809 28.174 1 75.62 4738 CG PRO B 1282 16.914 63.858 29.052 1 78.3 4740 N LEU B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.113 58.211 28.547 1 67.58 4742 C LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4755 C VAL B 1285 14.004 57.711 26.965 1 52.37 4756 C VAL B 1285 14.004 57.711 26.965 1 52.37 4756 CB VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 14.306 55.869 25.459 1 52.67 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.60 57.22 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.22 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.22 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.22 27.236 1 45.78 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.22 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL B 1285 12.60 57.20 27.236 1 45.38 4759 CG2 VAL									
4738 CG PRO B 1282 16.914 63.858 29.052 1 78.3 4749 CD PRO B 1283 18.283 60.635 28.053 1 71.62 4741 CA LEU B 1283 18.113 58.211 28.547 1 67.58 4743 O LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4754 CA VAL B 1285 14.904 58.025 28.087 1 56.46 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4756 CO VAL B 1285 14.044 57.711 26.965 1 52.37 4756 CB VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 14.306 55.869 25.459 1 52.67 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 46.34 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.319	4737 CB								
4739 CD	4738 CG								
4740 N LEU B 1283 19.02 59.364 28.104 1 68.65 4741 CA LEU B 1283 19.02 59.364 28.104 1 67.58 4742 C LEU B 1283 18.113 58.211 28.547 1 67.58 4743 O LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4754 CA VAL B 1285 14.044 57.711 26.965 1 52.37 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4756 O VAL B 1285 14.823 56.858 25.98 1 52.62 4756 C VAL B 1285 14.306 55.869 25.459 1 52.67 4758 CG1 VAL B 1285 13.535 58.993 26.294 1 46.38 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78									
4741 CA LEU B 1283 18.113 58.211 28.547 1 67.58 4743 O LEU B 1283 18.264 57.07 28.084 1 66.85 4744 CB LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.242 60.618 29.916 1 66.53 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4756 O VAL B 1285 14.306 55.869 25.459 1 52.62 4756 CG VAL B 1285 14.306 55.869 25.459 1 52.62 4758 CG1 VAL B 1285 13.535 58.993 26.294 1 46.38 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									
4742 C LEU B 1283 18.264 57.07 28.084 1 66.85 4743 O LEU B 1283 20.183 59.476 29.083 1 67.7 4745 CG LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.242 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4756 O VAL B 1285 14.306 55.869 25.459 1 52.62 4756 C VAL B 1285 14.306 55.869 25.459 1 52.67 4758 CG1 VAL B 1285 13.535 58.993 26.294 1 46.38 4759 CG2 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									
4743 O LEU B 1283 20.183 59.476 29.083 1 67.7 4744 CB LEU B 1283 21.339 60.392 28.714 1 67.35 4745 CG LEU B 1283 22.242 60.618 29.916 1 66.53 4746 CD1 LEU B 1283 22.242 59.773 27.563 1 65.79 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4754 CA VAL B 1285 14.044 57.711 26.965 1 52.37 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4756 O VAL B 1285 14.823 56.858 25.98 1 52.62 4756 C VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 13.535 58.993 26.294 1 46.38 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78									
4744 CB LEU B 1283 21.339 60.392 28.714 1 67.35 4746 CD1 LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.21 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4755 C VAL B 1285 14.044 57.711 26.965 1 52.37 4756 O VAL B 1285 14.306 55.869 25.459 1 52.62 4756 C VAL B 1285 14.306 55.869 25.459 1 52.67 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 46.38 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									
4745 CG LEU B 1283 22.242 60.618 29.916 1 66.53 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4754 CA VAL B 1285 14.044 57.711 26.965 1 52.37 4755 C VAL B 1285 14.823 56.858 25.98 1 52.62 4756 O VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 13.535 58.993 26.294 1 46.38 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									
4746 CD1 LEU B 1283 22.1 59.773 27.563 1 65.79 4747 CD2 LEU B 1283 22.1 59.773 27.563 1 65.79 4748 N ALA B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.904 57.711 26.965 1 52.37 4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4756 O VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 13.535 58.993 26.294 1 46.38 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78									66.53
4747 CD2 LEO B 1284 17.199 58.519 29.471 1 64.43 4749 CA ALA B 1284 16.249 57.545 30.006 1 59.58 4750 C ALA B 1284 15.356 57.075 28.895 1 57.72 4751 O ALA B 1284 15.077 55.893 28.767 1 59.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.904 57.711 26.965 1 52.37 4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4756 O VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 13.535 58.993 26.294 1 46.38 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19	• • •								
4748 N ALA B 1284 16.249 57.545 30.006 1 59.58 4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.077 55.893 28.767 1 59.25 4751 O ALA B 1284 15.408 58.18 31.106 1 61.25 4752 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4753 N VAL B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.044 57.711 26.965 1 52.37 4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4756 O VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 13.535 58.993 26.294 1 46.38 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									64.43
4749 CA ALA B 1284 15.356 57.075 28.895 1 57.72 4750 C ALA B 1284 15.077 55.893 28.767 1 59.25 4751 O ALA B 1284 15.408 58.18 31.106 1 61.25 4752 CB ALA B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.904 57.711 26.965 1 52.37 4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4756 O VAL B 1285 14.306 55.869 25.459 1 52.67 4757 CB VAL B 1285 13.535 58.993 26.294 1 46.38 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									59.58
4750 C ALA B 1284 15.077 55.893 28.767 1 59.25 4751 O ALA B 1284 15.408 58.18 31.106 1 61.25 4752 CB ALA B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.044 57.711 26.965 1 52.37 4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4755 C VAL B 1285 14.306 55.869 25.459 1 52.67 4756 O VAL B 1285 13.535 58.993 26.294 1 46.38 4757 CB VAL B 1285 12.781 58.673 25.043 1 46.24 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									57.72
4751 CB ALA B 1284 15.408 58.18 31.106 1 61.25 4752 CB ALA B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.044 57.711 26.965 1 52.37 4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4755 C VAL B 1285 14.306 55.869 25.459 1 52.67 4756 O VAL B 1285 13.535 58.993 26.294 1 46.38 4757 CB VAL B 1285 12.781 58.673 25.043 1 46.24 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									59.25
4752 CB ALA B 1285 14.904 58.025 28.087 1 56.46 4753 N VAL B 1285 14.044 57.711 26.965 1 52.37 4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4755 C VAL B 1285 14.306 55.869 25.459 1 52.67 4756 O VAL B 1285 13.535 58.993 26.294 1 46.38 4757 CB VAL B 1285 12.781 58.673 25.043 1 46.24 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									61.25
4754 CA VAL B 1285 14.044 57.711 26.965 1 52.37 4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4755 C VAL B 1285 14.306 55.869 25.459 1 52.67 4756 O VAL B 1285 13.535 58.993 26.294 1 46.38 4757 CB VAL B 1285 12.781 58.673 25.043 1 46.24 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									56.46
4754 CA VAL B 1285 14.823 56.858 25.98 1 52.62 4755 C VAL B 1285 14.306 55.869 25.459 1 52.67 4756 O VAL B 1285 13.535 58.993 26.294 1 46.38 4757 CB VAL B 1285 12.781 58.673 25.043 1 46.24 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78									52.37
4755 C VAL B 1285 14.306 55.869 25.459 1 52.67 4756 O VAL B 1285 13.535 58.993 26.294 1 46.38 4757 CB VAL B 1285 13.535 58.993 26.294 1 46.38 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78									52.62
4756 O VAL B 1285 13.535 58.993 26.294 1 46.38 4757 CB VAL B 1285 13.535 58.993 26.294 1 46.38 4758 CG1 VAL B 1285 12.781 58.673 25.043 1 46.24 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 45.78									52.67
4757 CB VAL B 1285 12.781 58.673 25.043 1 46.24 4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									46.38
4758 CG1 VAL B 1285 12.64 59.722 27.236 1 45.78 4759 CG2 VAL B 1285 12.64 59.722 27.236 1 53.19									46.24
4/59 CG2 VAL 5 1200 1200 57 204 25 769 1 53.19									45.7.8
4/6U N ASN D 1266 10.000 07.25 -									53.19
	4/6U N	AON	D	1200		·			

Atom							
Atom Type	Residue		# X	Υ	Z 0	CC	В
4761 CA	ASN	В	1286 16.882	56.434	24.828	1	55.25
4762 C	ASN	В	1286 17.013	54.992	25.302	1	53.6
4763 O	ASN	В	1286 16.718	54.077	24.546	1	53.58
4764 CB	ASN	В	1286 18.254	57.065	24.577	1	56.34
4765 CG	ASN	В	1286 19.043	56.31	23.519	1	58.72
4766 OD1	ASN	В	1286 18.835	56.494	22.317	1	61.07
4767 ND2	ASN	В	1286 19.914	55.416	23.962	1	58.48
4768 N	LEU	В	1287 17.401	54,796	26.56	1	52.93
4769 CA	LEU	В	1287 17.541	53.449	27.108	1	52.01
4770 C	LEU	В	1287 16.252	52.656	26.966	1	52.32
4771 O	LEU	В	1287 16.261	51.509	26.529	1	55.79
4772 CB	LEU	В	1287 17.928	53.497	28.582	1	49.29
4773 CG	LEU	В	1287 18.069	52.126	29.257	1	49.59
4774 CD1	LEU	В	1287 19.102	51.235	28.562	1	48.36
4775 CD2	LEU	В	1287 18.422	52.332	30.71	1	49.9
4776 N	LEU	В	1288 15.139	53.275	27.333	1	52.77
4777 CA	LEU	В	1288 13.839	52.625	27.238	1	52.03
4778 C	LEU	В	1288 13.568	52.187	25.807	1	53.2
4779 O	LEU	В	1288 13.146	51.055	25.557	1	50.69
4780 CB	LEU	В	1288 12.749	53.575	27.739	1	50.77
4781 CG	LEU	В	1288 12.651	53.597	29.265	1	47.67
4782 CD1	LEU	В	1288 11.625	54.601	29.738	1	49.99
4783 CD2	LEU	В	1288 12.267	52.206	29.737	1	49.57
4784 N	GLU	В	1289 13.873	53.085	24.873	1	56.08
4785 CA	GLU	В	1289 13.699	52.834	23.448	1	57.88
4786 C	GLU	В	1289 14.511	51.59	23.057	1	55.48
4787 O	GLU	В	1289 14.044	50.752	22.284	1	57.31
4788 CB	GLU	В	1289 14.158	54.062	22.651	1	60.3 69.07
4789 CG	GLU	В	1289 13.409	54.308	21.35	1 1	75.71
4790 CD	GLU	В	1289 12.532	55.562	21.39	1	77.13
4791 OE1	GLU	В	1289 13.025	56.647	21.781	1	77.13 78.96
4792 OE2	GLU	В	1289 11.345	55.467	21.005 23.63	1	78.90 53.91
4793 N	LYS	В	1290 15.701	51.455 50.313	23.354	1	56.54
4794 CA	LYS	В	1290 16.572	50.313	24.043	1	55
4795 C	LYS	В	1290 16.103 1290 16.398	49.029 47.931	23.567	1	56.1
4796 O	LYS	В	1290 16.398 1290 18.012		23.774	1	59.63
4797 CB	LYS	В	1290 18.82		22.768	1	65.47
4798 CG	LYS	B B	1290 10.02		23.344	1	68.89
4799 CD	LYS	В	1290 21.126		22.284	1	70.03
4800 CE	LYS LYS	В	1290 21.120		21.593	1	76.91
4801 NZ	MET	В	1291 15.417		25.18	1	51.73
4802 N 4803 CA	MET	В	1291 14.913		25.907	1	52.36
4804 C	MET	В	1291 13.555		25.385	1	51.34
4805 O	MET	В	1291 13.272		25.372	1	47.34
4806 CB	MET	В	1291 14.802		27.416	1	50.01
4807 CG	MET	В	1291 16.095		28.097	1	50.51
4808 SD	MET	В	1291 15.987		29.879	1	54.34
4809 CE	MET	B	1291 15.499		30.376	1	48.91
4810 N	LEU	В	1292 12.729		24.928	1	52.59
4811 CA	LEU	В	1292 11.406		24.437	1	51.71
4812 C	LEU	В	1292 11.237		22.936	1	51.8
4813 O	LEU	В	1292 10.163		22.388	1	53.68
4814 CB	LEU	В	1292 10.381		24.996	1	49.81
4815 CG	LEU	B	1292 10.265		26.507	1	43.92
4816 CD1	LEU	В	1292 9.328		27.07	1	46.13

Atom								
Atom Type	Residue		#	X	Υ	Z	OCC	В
4817 CD2	LEU	В	1292	9.758	47.485	26.802	1	44.69
4818 N	VAL	В	1293	12.3	47.506	22.268	1	55.13
4819 CA	VAL	В	1293	12.246	47.27	20.833	1	55.88
4820 C	VAL	В	1293	11.467	45.981	20.636	1	57
4821 O	VAL	В	1293	11.569	45.059	21.438	1	58.7
4822 CB	VAL	В	1293	13.646	47.169	20.231	1	55.38
4823 CG1	VAL	В	1293	13.602	46.431	18.91	1	58.99
4824 CG2	VAL	В	1293	14.212	48.584	20.023	1	57.62 59.46
4825 N	LEU	В	1294 1294	10.659 9.8	45.948 44.816	19.586 19.281	1 1	58.16 57.29
4826 CA 4827 C	LEU LEU	B B	1294	10.57	43.563	18.867	1	58.55
4828 O	LEU	В	1294	10.149	42.429	19.124	1	56.4
4829 CB	LEU	В	1294	8.829	45.249	18.183	1	56.93
4830 CG	LEU	В	1294	7.611	44.35	18.02	1	61.81
4831 CD1	LEU	В	1294	6.749	44.437	19.261	1	61.22
4832 CD2	LEU	B	1294	6.837	44.756	16.796	1	62.66
4833 N	ASP	В	1295	11.704	43.808	18.22	1	63.7
4834 CA	ASP	В	1295	12.619	42.797	17.697	1	66.56
4835 C	ASP	В	1295	13.536	42.308	18.815	1	66.13
4836 O	ASP	В	1295	14.537	42.951	19.136	1	66.23
4837 CB	ASP	В	1295	13.448	43.434	16.561	1	70.74
4838 CG	ASP	В	1295	14.362	42.437	15.839	1	76.92
4839 OD1	ASP	В	1295	14.219	41.198	16.033	1	77.65
4840 OD2	ASP	В	1295	15.225	42.916	15.056	1 1	75.82 64.53
4841 N	ALA	В	1296	13.194	41.16 40.569	19.388 20.471	1	65.27
4842 CA	ALA ALA	B B	1296 1296	13.966 15.479	40.569	20.257	1	67.51
4843 C 4844 O	ALA	В	1296	16.221	40.839	21.202	1	71.04
4845 CB	ALA	В	1296	13.506	39.145	20.708	i	66.62
4846 N	GLU	В	1297	15.934	40.371	19.025	1	68.4
4847 CA	GLU	B	1297	17.368	40.359	18.721	1	69.59
4848 C	GLU	В	1297	18.103	41.69	18.87	1	68.8
4849 O	GLU	В	1297	19.209	41.72	19.398	1	67.73
4850 CB	GLU	В	1297	17.614	39.789	17.322	1	73.1
4851 CG	GLU	В	1297	17.217	38.324	17.16	1	76.58
4852 CD	GLU	В	1297	18.095	37.366	17.959	1	76.43
4853 OE1	GLU	В	1297	19.337	37.418	17.794	1	75.95
4854 OE2	GLU	В	1297	17.538	36.546	18.727	1	71.42 70.63
4855 N	GLN	В	1298	17.505	42.775	18.379 18.461	1	70.03
4856 CA	GLN GLN	B B	1298 1298	18.113 17.933	44.116 44.715	19.854	1	70.29
4857 C 4858 O	GLN	В	1298	18.52	45.757	20.182	1	70.45
4859 CB	GLN	В	1298	17.48	45.075	17.433	1	79.12
4860 CG	GLN	B ·	1298	17.606	44.655	15.964	1	85.31
4861 CD	GLN	В	1298	19.047	44.532	15.513	1	89.05
4862 OE1	GLN	В	1298	19.427	43,561	14.839	1	87.96
4863 NE2	GLN	В	1298	19.867	45.514	15.895	1	90.97
4864 N	ARG	В	1299	17.105	44.053	20.66	1	66.4
4865 CA	ARG	В	1299	16.818	44.499	22.014	1	62.11
4866 C	ARG	В	1299	18.079	44.4	22.862	1	61.11
4867 O	ARG	В	1299	18.751	43.361	22.891	1	61.27
4868 CB	ARG	В	1299	15.68	43.659	22.608	1	59.93
4869 CG	ARG	В	1299	14.971	44.296	23.803	1	55.45 52.46
4870 CD	ARG	В	1299	13.464	44.128	23.676	1	
4871 NE	ARG	В	1299	13.026	42.783	23.992 23.421	1 1	49.75 45.3
4872 CZ	ARG	В	1299	11.996	42.161	23.421		70.5

Atom								
_ Atom Type	Residue		#	X	Y	Z (CC	В
4873 NH1	ARG	В	1299	11.271	42.735	22.485	1	37.8
4874 NH2	ARG	В	1299	11.696	40.946	23.803	1	43.43
4875 N	VAL	В	1300	18.398	45.499	23.536	1	60.09
4876 CA	VAL	В	1300	19.58	45.586	24.386	1	58.37
4877 C	VAL	В	1300	19.643	44.438	25.406	1	58.5
4878 O	VAL	В	1300	18.621	43.846	25.757	1	59.18
4879 CB	VAL	В	1300	19.605	46.968	25.107	1	56.62
4880 CG1	VAL	В	1300	19.034	46.87	26.499	1	54.15
4881 CG2	VAL	В	1300	20.993	47.551	25.108	1	53.94
4882 N	THR	В	1301	20.85	44.067	25.815	1	59.53
4883 CA	THR	В	1301	21.01	43.014	26.818	1	58.64
4884 C	THR	В	1301	21.31	43.714	28.126	1	58.82
4885 O	THR	В	1301	21.614	44.91	28.139	1	57.1
4886 CB	THR	В	1301	22.189	42.052	26.521	1	57.11
4887 OG1	THR	В	1301	23.422	42.782	26.547	1	55.86
4888 CG2	THR	В	1301	22.005	41.354	25.178	1	49.79
4889 N	ALA	В	1302	21.24	42.96	29.219	1	58.97
4890 CA	ALA	В	1302	21.511	43.505	30.539	1	57.86
4891 C	ALA	В	1302	22.907	44.107	30.567	1	56.43
4892 O	ALA	В	1302	23.107	45.202	31.101	1	55.91
4893 CB	ALA	В	1302	21.373	42.424	31.581	1	58.03
4894 N	GLY	В	1303	23.859	43.391	29.966	1	57.56
4895 CA	GLY	В	1303	25.227	43.876	29.903	1	59.47
4896 C	GLY	В	1303	25.273	45.219	29.187	1	60.75
4897 O	GLY	В	1303	25.758	46.226	29.735	1	60.75
4898 N	GLU	В	1304	24.715	45.234	27.975	1	59.98
4899 CA	GLU	В	1304	24.659	46.435	27.148	1	60.78
4900 C	GLU	В	1304	23.889	47.531	27.873	1	58.84
4901 O	GLU	В	1304	24.313	48.686	27.896	1	60.91
4902 CB	GLU	В	1304	23.983	46.143	25.807	1	63.53
4903 CG	GLU	В	1304	24.674	45.123	24.904	1	67.68
4904 CD	GLU	В	1304	23.878	44.845	23.621	1	74.21
4905 OE1	GLU	В	1304	23.297	45.802	23.05	1	78.48
4906 OE2	GLU	В	1304	23.831	43.674	23.177	1	74.31
4907 N	ALA	В	1305	22.773	47.147	28.486	1	56.09
4908 CA	ALA	В	1305	21.921	48.063	29.231	1	53.83
4909 C	ALA	В	1305	22.731	48.843	30.253	1	54.47
4910 O	ALA	В	1305	22.653	50.072	30.317	1	55.75
4911 CB	ALA	В	1305	20.822	47.292	29.924	1	51.36
4912 N	LEU	В	1306	23.529	48.123	31.033	1	54.84 55.01
4913 CA	LEU	В	1306	24.37	48.724	32.065	1	55.91 59.33
4914 C	LEU	В	1306	25.407	49.67	31.476	1	
4915 O	LEU	В	1306	25.729	50.704	32.068	1	61.01 53
4916 CB	LEU	В	1306	25.084	47.621	32.833	1	47.56
4917 CG	LEU	В	1306	24.24	46.747	33.754	1 1	43.12
4918 CD1	LEU	В	1306	25.057	45.571	34.216		48.23
4919 CD2	LEU	В	1306	23.776	47.565	34.943	1 1	63.38
4920 N	ALA	В	1307	25.927	49.297	30.307	1	64.24
4921 CA	ALA	В	1307	26.931	50.088	29.584 29.027	1	63.84
4922 C	ALA	В	1307	26.412	51.429	28.623	1	66.62
4923 O	ALA	В	1307	27.211	52.28	28.454	1	59.56
4924 CB	ALA	В	1307		49.257	29.048	1	59.56
4925 N	HIS	В	1308		51.624 52.835	28.529	1	56.83
4926 CA	HIS	В	1308		52.835 54.127	29.284	1	58.09
4927 C	HIS	В	1308		54.127 54.121	30.493	1	61.2
4928 O	HIS	В	1308	25.02	54.121	00.400	•	J

. ..

Atom								
Atom Atom Type	Residue		# X		Y	z (OCC	В
4929 CB	HIS	В			52.629	28.496	1	51.82
4930 CG	HIS	В			53.628	27.662	1	46.18
4931 ND1	HIS	В	1308 21.	771	54.831	28.166	1	47.87
4932 CD2	HIS	В	1308 21.	809	53.58	26.373	1	37.9
4933 CE1	HIS	В		107	55.478	27.225	1	43.09
4934 NE2	HIS	В	1308 21.	114	54.74	26.129	1	40.01
4935 N	PRO	В			55.256	28.569	1	59.7
4936 CA	PRO	В		-	56.551	29.174	1	62.3
4937 C	PRO	В		259	56.996	30.293	1	63.3
4938 O	PRO	В		533	57.997	30.974	1	64.91
4939 CB	PRO	В		121	57.506	27.983	1	63.19
4940 CG	PRO	В		583	56.652	26.85	1	62.09 61.18
4941 CD ·	PRO	В		4.82	55.377	27.102	1 1	61.16
4942 N	TYR	В		134	56.294	30.45	1	61.55
4943 CA	TYR	В		159	56.628	31.493 32.864	1	61.07
4944 C	TYR	В		755	56.314	33.826	1	57.44
4945 O	TYR	В		.593 .858	57.071 55.826	31.288	1	59.61
4946 CB	TYR	В		.801	56.056	32.356	i	59.47
4947 CG	TYR	B B		.282	57.337	32.593	1	58.59
4948 CD1 4949 CD2	TYR TYR	В		.316	54.994	33.134	1	58.93
4949 CD2 4950 CE1	TYR	В		.308	57.558	33.568	1	56.43
4950 CE1 4951 CE2	TYR	В		.335	55.205	34.121	1	58.02
4951 CZZ	TYR	В		.836	56.496	34.325	1	57.9
4953 OH	TYR	В		.855	56.74	35.261	1	55.83
4954 N	PHE	В		.487	55.207	32.907	1	63.08
4955 CA	PHE	В		.122	54.708	34.118	1	68.47
4956 C	PHE	В	1311 25	.569	55 .196	34.253	1	72.32
4957 O	PHE	В		.386	54.571	34.935	1	73.06
4958 CB	PHE	В		.077	53.169	34.112	1	64.71
4959 CG	PHE	В		1.681	52.593	33.984	1	59.83
4960 CD1	PHE	В		.689	52.918	34.9	1 1	58.99 58.65
4961 CD2	PHE	В		2.364	51.739	32.941 34.77	1	59.47
4962 CE1	PHE	В		0.408	52.4	32.809	1	57.68
4963 CE2	PHE	В		1.079	51.218 51. 5 47	33.719	1	54.46
4964 CZ	PHE	В).104 5.856	56.339	33.634	1	76.5
4965 N	GLU	В		27.19	56.949	33.632	1	78.82
4966 CA	GLU GLU	B B		7.778	57.181	35.025	1	75.94
4967 C 4968 O	GLU	В		3.882	56.731	35.313	1	75.3
4969 CB	GLU	В		7.141	58.278	32.855	1	85.41
4970 CG	GLU	В		3.489	58.984	32.646	1	89.87
4971 CD	GLU	В		3.337	60.388	32.051	1	93.07
4972 OE1	GLU	В	1312 27	7.635	61.234	32.66	1	95.02
4973 OE2	GLU	В	1312 28	3.931	60.649	30.978	1	94.03
4974 N	SER	В	1313 27	7.024	57.865	35.879		73.48
4975 CA	SER	В	1313 2	7.465	58.175	37.231	1	73.98
4976 C	SER	В		7.536	56.974	38.174		73.7
4977 O	SER	В		7.809	57.13	39.366		73.28
4978 CB	SER	В		6.566	59.255	37.847		73.88 72.13
4979 OG	SER	В		25.26	58.767	38.084		72.13
4980 N	LEU	В		7.319	55.778	37.645		73.19 75.67
4981 CA	LEU	В		7.349	54.587	38.48		78.49
4982 C	LEU	В		8.277	53.491	37.948 38.714		78. 4 3
4983 O	LEU	В		8.727 5.027	52.636	38.649		74.26
4984 CB	LEU	В	1314 2	5.927	54.029	JU.U-13	. 1	,5

Atom								
Atom Type	Residue		# X	(Υ -		CC	В
4985 CG	LEU	В	1314 24.	789	54.937	39.148	1	71.09
4986 CD1	LEU	В	1314 23.	467	54.208	39.035	1	69.07
4987 CD2	LEU	В	1314 25.	.023	55.378	40.575	1	69.89
4988 N	HIS	В	1315 28.	584	53.548	36.649	1	81.55
4989 CA	HIS	В		439	52.566	35.954	1	83.48
4990 C	HIS	В		.811	52.231	36.586	1	84.56
4991 O	HIS	В		324	53.047	37.389	1	84.58
4991 CB	HIS	В		614	52.982	34.475	1	81.89
4992 CB 4993 OXT	HIS	В		.364	51.146	36.262	1	83.36
4994 N	GLN	В		.191	37.322	36.761	1	90.82
4995 CA	GLN	В		.735	36.168	35.923	1	92.08
4996 C	GLN	В		.847	35.232	36.756	1	92.21
4996 C 4997 O	GLN	В		.034	35.123	37.983	1	91.78
4997 C 4998 CB	GLN	В		3.94	35.411	35.358	1	93.05
	VAL	В		.899	34.552	36.095	1	88.96
4999 N	VAL	В		.961	33.665	36.799	1	86.14
5000 CA	VAL	В		.865	32.199	36.37	1	84.66
5001 C	VAL	В		.009	31.846	35.192	1	81.99
5002 O	VAL	В		.518	34.243	36.817	1	83.7
5003 CB	VAL	В		.536	35.737	37.113	1	81.83
5004 CG1	VAL	В		.823	33.958	35.518	1	81.75
5005 CG2		В		.532	31.37	37.356	1	83.53
5006 N	GLN GLN	В		3.385	29.931	37.181	1	83.72
5007 CA	GLN	В		. 99 8	29.582	36.675	1	81.62
5008 C		В		7.004	29.778	37.378	1	78.62
5009 O	GLN GLN	В		9.655	29.202	38.512	1	84.79
5010 CB	LYS	В		7.944	29.042	35.462	1	80.82
5011 N		В		3.677	28.653	34.861	1	80.84
5012 CA	LYS	В		5.979	27.572	35.674	1	80.58
5013 C	LYS LYS	В		26.62	26.65	36,176	1	83.59
5014 O	LYS	В		5.882	28.177	33.419	1	79.07
5015 CB	LYS	В		7.298	29.284	32.451	1	79.16
5016 CG	LYS	В		3.965	28.902	31.021	1	78.85
5017 CD	LYS	В		5.514	28.446	30.922	1	78.35
5018 CE	LYS	В		5.086	28.186	29.521	1	82.1
5019 NZ	TYR	В		4.674	27.729	35.858	1	79.6
5020 N	TYR	В		3.875	26.758	36.595	1	80.04
5021 CA		В		3.767	25.487	35.733	1	83.83
5022 C	TYR TYR	В		3.733	25.566	34.51	1	84.12
5023 O 5024 CB	TYR	В		2.503	27.365	36.888	1	74.1
	TYR	В		1.487	26.414	37.458	1	69.26
5025 CG 5026 CD1	TYR	В		1.497	26.071	38.803	1	69.12
5026 CD1 5027 CD2	TYR	В		0.505	25.859	36.648	1	69.77
	TYR	В		0.547	25.193	39.328	1.	69.52
5028 CE1 5029 CE2	TYR	В		9.555	24,983	37.158	1	70.51
	TYR	В		9.579	24.653	38.495	1	69.18
5030 CZ	TYR	В		8.632	23.778	38.979	1	71.04
5031 OH	ASP	В		3.743	24.32	36.37	1	88.48
5032 N	ASP	В		3.666	23.045	35.652	1	93.54
5033 CA	ASP	В		2.555	22.174	36.255	1	95.72
5034 C	ASP	В		2.144	22.427	37.384	1	99.03
5035 O	ASP	В		25.02	22.339	35.782	1	96.66
5036 CB		В		25.02	21.237	34.763	1	100
5037 CG	ASP	В		25.101	21.532	33.541	1	99.85
5038 OD1	ASP	В		25.476	20.085	35.194	1	100
5039 OD2	ASP	В		22.078	21.151	35.538	1	97.29
5040 N	ASP	0	,020 2	010	21,101			

Atom						7	000	D
Atom Type	Residue		#	X	Υ	Z	occ	B
5041 CA	ASP	В		21.011	20.297	36.091	1	99.52
5042 C	ASP	В		20.601	19.033	35.302	1	100
5043 O	ASP	В		21.098	18.754	34.202	1	100
5044 CB	ASP	В		19.756	21.159	36.369	1	100
5045 CG	ASP	В		18.714	20.449	37.238	1	100
5046 OD1	ASP	В		19.012	20.156	38.417	1	98.29
5047 OD2	ASP	В	1328	17.596	20.184	36.732	1	100
5048 N	SER	В	1329	19.709	18.263	35.934	1	100
5049 CA	SER	В	1329	19.116	17.033	35.405	1	99.65
5050 C	SER	В	1329	17.759	16.801	36.127	1	99.45
5051 O	SER	В	1329	17.721	16.19	37.218	1	98.29
5052 CB	SER	В	1329	20.074	15.831	35.571	1	97.33
5053 OG ·	SER	В	1329	20.4	15.573	36.927	1	93.65
5054 OXT	SER	В	1329	16.732	17.304	35.617	1	98.81
5055 N	ARG	В	1335	9.439	13.254	34.69	1	95.6
5056 CA	ARG	В	1335	9.514	12.74	36.088	1	96.62
5057 C	ARG	В	1335	8.129	12.68	36.737	1	97.23
5058 O	ARG	В	1335	7.254	13.488	36.417	1	96.98
5059 CB	ARG	В	1335	10.457	13.618	36.918	1	96.54
5060 N	THR	В	1336	7.936	11.716	37.641	1	98.37
5061 CA	THR	В	1336	6.656	11.537	38.35		99.77
5062 C	THR	В	1336	6.471	12.546	39.496		99.59
5063 O	THR	В	1336	7.422	13.227	39.882	1	100
5064 CB	THR	В	1336	6.501	10.079	38.92		100
5065 OG1	THR	В	1336	7.503	9.824	39.912		98.6
5066 CG2	THR	В	1336	6.634	9.038	37.808		100
5067 N	LEU	В	1337	5.249	12.652	40.024		98.78
5068 CA	LEU	В	1337	4.969	13.572	41.129		99.13
5069 C	LEU	В	1337	5.873	13.21	42.305		100
5070 O	LEU	В	1337	6.419	14.088	42.98		100
5071 CB	LEU	В	1337	3.496	13.495	41.544		97.48
5072 N	ASP	В	1338	6.063	11.908	42.508		100
5073 CA	ASP	В	1338	6.913	11.406	43.581		100
5074 C	ASP	В	1338	8.407	11.557	43.303		100
5075 O	ASP	В	1338	9.218	11.46	44.228		100
5076 CB	ASP	В	1338	6.574	9.951	43.899		100
5077 CG	ASP	В	1338	5.329	9.821	44.747		100
5078 OD1	ASP	В	1338	4.407	10.659	44.592		100
5079 OD2	ASP	В	1338	5.284	8.886	45.578		100
5080 N	GLU	В	1339	8.772	11.755	42.035		99.94
5081 CA	GLU	В	1339	10.175	11.954	41.666		99.4
5082 C	GLU	В	1339	10.56	13.395	41.989		98.48
5083 O	GLU	В	1339	11.644	13.653	42.516		99.33
5084 CB	GLU	В	1339	10.416	11.645	40.182		99.75
5085 CG	GLU	В	1339	10.657	10.158	39.893		100
5086 CD	GLU	В	1339	10.823	9.844	38.409		100
5087 OE1	GLU	В	1339	11.768	10.374	37.78		99.61
5088 OE2	GLU	В	1339	10.014	9.054	37.87		100
5089 N	TRP	В	1340	9.651	14.324	41.69		96.8
5090 CA	TRP	В	1340	9.871	15.739	41.97		94.77
5091 C	TRP	В	1340		15.935	43.48		94.28
5092 O	TRP	В	1340		16.611	44.00		94.83
5093 CB	TRP	В	1340		16.594	41.39		91.56
5094 CG	TRP	В	1340		16.805	39.92		87.42
5095 CD1	TRP	В	1340		16.335	38.98		86.35
5096 CD2	TRP	В	1340		17.541	39.21	4 1	85.91
COOP CD2		_						

Atom								
Atom Type	Residue		#	Х	Y	Z (၁ငင	В
5097 NE1	TRP	В	1340	8.364	16.728	37.73	1	85.95
5098 CE2	TRP	В	1340	9.509	17.47	37.844	1	84.93
5099 CE3	TRP	В	1340	10.972	18.251	39.607	1	85.21
5100 CZ2	TRP	В	1340	10.291	18.083	36.856	1	83.82
5101 CZ3	TRP	В	1340	11.751	18.86	38.622	1	84.21
5102 CH2	TRP	В	1340	11.404	18.77	37.263	1	82.56
5103 N	LYS	В	1341	8.979	15.316	44.179	1	93.1
5104 CA	LYS	В	1341	8.87	15.378	45.633	1	91.46
5105 C	LYS	В	1341	10.155	14.868	46.29	1	90.23
5106 O	LYS	В	1341	10.673	15.49	47.22	1	89.13
5107 CB	LYS	В	1341	7.666	14.536	46.063	1	91.94
5108 CG	LYS	В	1341	7.238	14.636	47.513	1	92.72
5109 CD	LYS	В	1341	5.889	13.929	47.68	1	95.18
5110 CE	LYS	В	1341	5.456	13.808	49.135	1 1	96.47 95.26
5111 NZ	LYS	В	1341	4.096	13.201	49.263 45.76	1	90.08
5112 N	ARG	В	1342	10.687 11.915	13.767 13.156	46.272	1	89.34
5113 CA	ARG	В	1342 1342	13.148	13.138	45.925	1	87.69
5114 C	ARG ARG	B B	1342	13.146	14.255	46.795	1	88.78
5115 O 5116 CB	ARG	В	1342	12.072	11.721	45.738	1	89.2
5110 CB 5117 N	VAL	В	1343	13.266	14.38	44.656	i	84.09
5117 N 5118 CA	VAL	В	1343	14.393	15.189	44.203	i	82.03
5119 C	VAL	В	1343	14.44	16.494	45.012	1	82.27
5120 O	VAL	В	1343	15.516	16.973	45.378	1	82.21
5121 CB	VAL	В	1343	14.264	15.485	42.71	1	79.36
5122 N	THR	В	1344	13.259	17.03	45.325	1	80.68
5123 CA	THR	В	1344	13.123	18.265	46.093	1	78.06
5124 C	THR	В	1344	13.556	18.059	47.538	1	77.6
5125 O	THR	В	1344	14.425	18.784	48.038	1	76.34
5126 CB	THR	В	1344	11.663	18.788	46.06	1	75.74
5127 OG1	THR	В	1344	11.321	19.15	44.72	1	74.27
5128 CG2	THR	В	1344	11.495	20	46.954	1	74.75
5129 N	TYR	В	1345	12.952	17.064	48.191	1	77 76.12
5130 CA	TYR	В	1345	13.249	16.731	49.587	1 1	74.12 74.18
5131 C	TYR	В	1345	14.75	16.655	49.815 50.826	1	74.10
5132 O	TYR	B B	1345 1345	15.251 12.598	17.135 15:396	49.96	1	78.36
5133 CB 5134 CG	TYR TYR	В	1345	12.556	15:350	51.434	1	80.34
5134 CG 5135 CD1	TYR	В	1345	12.062	15.902	52.379	1	81.68
5135 CD1 5136 CD2	TYR	В	1345	13.29	13.905	51.888	1	80.51
5137 CE1	TYR	В	1345	12.111	15.602	53.744	1	83.58
5138 CE2	TYR	В	1345	13.345	13.596	53.25	1	80.89
5139 CZ	TYR	B	1345		14.449	54.171	1	83.44
5140 OH	TYR	В	1345	12.828	14.173	55.523	1	86.8
5141 N	LYS	В	1346	15.459	16.079	48.848	1	73.97
5142 CA	LYS	В	1346	16.911	15.946	48.91	1	74.77
5143 C	LYS	В	1346	17.6	17.321	48.909	1	75.13
5144 O	LYS	В	1346	18.493	17.577	49.721	1	75.76
5145 CB	LYS	В	1346		15.078	47.744	1	72.36
5146 N	GLU	В	1347	17.159	18.213	48.021	1	75.84
5147 CA	GLU	В	1347	17.735	19.554	47.933	1	74.51
5148 C	GLU	В	1347		20.398	49.158	1	73.98
5149 O	GLU	В	1347		21.397	49.434	1	74.18
5150 CB	GLU	В	1347		20.262	46.647	1	72.61
5151 CG	GLU	В	1347		19.744	45.353	1	73.15 ~
5152 ÇD	GLU	В	1347	19.427	20.115	45.208	t	76.28

Atom	Residue		#	X	Υ	z c	CC	В
Atom Type 5153 OE1	GLU	В	1347	19.819	21.264	45.541	1	74.83
	GLU	В	1347	20.205	19.257	44.728	1	76.09
5154 OE2		В	1348	16.355	19.993	49.892	1	73.02
5155 N	VAL		1348	15.95	20.723	51.091	1	73.71
5156 CA	VAL	В	1348	16.856	20.339	52.261	1	75.29
5157 C	VAL	B B	1348	17.356	21.203	52.991	i	75.92
5158 O	VAL	В	1348	14.472	20.438	51.483	1	72.39
5159 CB	VAL VAL	В	1348	14.107	21.195	52.742	1	70.67
5160 CG1	VAL	В	1348	13.529	20.85	50.368	1	72.79
5161 CG2	LEU	В	1349	17.089	19.039	52.413	1	75.21
5162 N 5163 CA	LEU	В	1349	17.923	18.534	53.499	1	73.36
5164 C	LEU	В	1349	19.406	18.823	53.318	1	71.93
5165 O	LEU	В	1349	20.148	18.903	54.301	1	72.07
5166 CB	LEU	В	1349	17.7	17.032	53.682	1	73.5
5167 CG	LEU	В	1349	16.258	16.621	54.005	1	76.3
5168 CD1	LEU	В	1349	16.22	15.128	54.292	1	75.07
5169 CD2	LEU	В	1349	15.709	17.419	55.203	1	74.88
5170 N	SER	В	1350	19.835	18.987	52.069	1	69.7
5171 CA	SER	В	1350	21.241	19.257	51.775	1	69.38
5172 C	SER	В	1350	21.628	20.733	51.914	1	69.94
5173 O	SER	В	1350	22.752	21.125	51.583	1	68.66
5174 CB	SER	В	1350	21.617	18.731	50.374	1	69.35
5175 OG	SER	В	1350	20.938	19.402	49.322	1	68.19
5176 N	PHE	В	1351	20.718	21.543	52.444	1	68.17
5177 CA	PHE	В	1351	21.006	22.955	52.584	1	69.97
5178 C	PHE	В	1351	21.881	23.323	53.769	1	71.08
5179 O	PHE	В	1351	21.565	22.995	54.909	1	72.12
5180 CB	PHE	В	1351	19.719	23.758	52.664	1	69.27
5181 CG	PHE	В	1351	19.941	25.246	52.675	1	67.44 68.6
5182 CD1	PHE	В	1351	20.399	25.902	51.535	1 1	65.72
5183 CD2	PHE	В	1351	19.72	25.984	53.826 51.552	1	67.31
5184 CE1	PHE	В	1351	20.634	27.269 27.347	53.85	1	64.46
5185 CE2	PHE	В	1351	19.951 20.409	27.989	52.713	1	65
5186 CZ	PHE	В	1351 1352	22.956	24.05	53.489	1	70.89
5187 N	LYS	B B	1352	23.865	24.51	54.528	1	71.5
5188 CA	LYS LYS	В	1352	23.766	26.034	54.543	1	71.96
5189 C 5190 O	LYS	В	1352	23.996	26.683	53.53	1	72.27
5190 C 5191 CB	LYS	В	1352	25.288	24.066	54.219	1	71.53
5191 CB 5192 N	PRO	В	1353	23.386	26.617	55.686	1	73.32
5193 CA	PRO	В	1353	23.228	28.063	55.909	1	76.72
5193 CA 5194 C	PRO	В	1353	24.407	28.968	55.496	1	78.51
5195 O	PRO	B	1353	25,456	28.441	55.057	1	79.15
5196 CB	PRO	В	1353	22.962	28.14	57.413	1	76.75
5197 CG	PRO	В	1353		26.884	57.666	1	76.61
5198 CD	PRO	В	1353		25.859	56.883	1	75.53
5199 OXT	PRO	В	1353		30.21	55.615	1	78.87
5200	PRO	В	1353					
5201 MG		MG		401	41.849	77.432	8.11	1
5202 MG		MG		402	47.016	76.86	9.61	1
5203 MG		MG		1401	5.69	38.173	43.7	1
5204 MG		MG		1402	6.189	32.966	42.1	1
5205 PG	ANP		400		79.054	8.861	1	66.71
5206 Q1G	ANP		400		80.603	8.797	1	65.28
5207 O2G	ANP		400		78.446	9.688	1	64.26
52Q8 O3G	ANP		400	45.415	78.794	9.622	1	61.75

Atom							
Atom Type	Residue	#	Х	Y	Z	occ	В
5209 PB	ANP	400	45.207	78.285	6.471	1	53.03
5210 O1B	ANP	400	45.357	79.52	5.523	1	54.98
5211 O2B	ANP	400	46.444	77.845	7.274	1	44.5
5212 N3B	ANP	400	44.026	78.547	7.417	1	55.71
5213 PA	ANP	400	43.636	76.122	5.359	1	45.13
5214 O1A	ANP	400	44.218	74.72	4.957	1	43.29
5215 O2A	ANP	400	42.982	76.037	6.707	1	39.7
5216 O3A	ANP	400	44.879	77.226	5.333	1	46.4
5217 O5*	ANP	400	42.52	76.556	4.302	1	44.29
5218 C5*	ANP	400	41.83	77.858	4.367	1	40.83
5219 C4*	ANP	400	40.642	77.72	3.427	1	40.7
5220 O4*	ANP	400	41.036	76.944	2.298	1	42.85
5221 C3*	ANP	400	39.56	76.822	4.049	1	44.36
5222 O3*	ANP	400	38.609	77.63	4.745	1	50.96
5223 C2*	ANP	400	38.862	76.098	2.89	1	40.35
5224 O2*	ANP	400	37.997	76.921 75.051	2.171 1.995	1 1	43.36 37.7
5225 C1*	ANP ANP	400 400	40.071 40.475	75.951 74.651	1.773	1	38.51
5226 N9	ANP	400	41.646	74.092	2.267	1	41.44
5227 C8 5228 N7	ANP	400	41.838	72.823	1.829	1	36.45
5229 C5	ANP	400	40.747	72.594	1.026	1	38.52
5230 C6	ANP	400	40.343	71.534	0.249	1	38.14
5231 N6	ANP	400	41.13	70.37	0.215	1	36.43
5232 N1	ANP	400	39.205	71.689	-0.435	1	34.26
5233 C2	ANP	400	38.426	72.775	-0.424	1	33.3
5234 N3	ANP	400	38.699	73.876	0.283	1	34.84
5235 C4	ANP	400	39.852	73.774	0.992	1	38.04
5236 PG	ANP	1400	4.1	35.932	42.968	1	63.65
5237 O1G	ANP	1400	2.553	36.103	43.102	1	65.57
5238 O2G	ANP	1400	4.654	37.138	42.145	1	64.12
5239 O3G	ANP	1400	4.313	34.574	42.221	1	61.2
5240 PB	ANP	1400	4.902	34.747	45.367	1	56.74
5241 O1B	ANP	1400	3.744	34.632	46.371	1	55.92 48.81
5242 O2B	ANP	1400	5.312	33.508	44.575 44.396	1	57.4
5243 N3B	ANP	1400	4.635	35.94 36.343	46.365	1	46.37
5244 PA	ANP	1400 1400	7.146 8.575	35.772	46.69	1	41.77
5245 O1A 5246 O2A	ANP ANP	1400	7.182	36.981	45.004	1	44.73
5247 O3A	ANP	1400	6.043	35.092	46.457	i	48.88
5247 OSA 5248 O5*	ANP	1400	6.76	37.46	47.388	i	45.77
5249 C5*	ANP	1400	5.479	38.164	47.395	1	40.76
5250 C4*	ANP	1400	5.665	39.356	48.337	1	40.9
5251 O4*	ANP	1400	6.474	38.947	49.45	1	41.82
5252 C3*	ANP	1400	6.555	40.431	47.668	1	41.24
5253 O3*	ANP	1400	5.736	41.351	47.02	1	46.65
5254 C2*	ANP	1400	7.326	41.125	48.784	1	40.23
5255 O2*	ANP	1400	6.547	42.006	49.545	1	40.94
5256 C1*	ANP	1400	7.516	39.913	49.694	1	40.13
5257 N9	ANP	1400	8.832	39.467	49.865	1	37.04
5258 C8	ANP	1400	9.337	38.312	49.355	1	37.62
5259 N7	ANP	1400	10.61	38.124	49.741	1	37.12
5260 C5	ANP	1400	10.899	39.2	50.517	1	37.85
5261 C6	ANP	1400	12	39.606	51.214	1	38.14
5262 N6	ANP	1400	13.153	38.775	51.202	1	37.1
5263 N1	ANP	1400	11.9	40.764	51.885	1	33.25
5264 C2	ANP	1400	10.832	41.541	51.928	1	37.47

Atom							
Atom Type	Residue	#	Χ ~	Υ	Z	occ	В
5265 N3	ANP	1400	9.684	41.246	51.287	1	37.53
5266 C4	ANP	1400	9.738	40.091	50.598	1	38.23
5267 O	нон	2001	10.772	33.949	38.425	1	20.93
5268 O	НОН	2002	11.149	35.798	47.426	1	53.18
5269 O	НОН	2003	4.345	32.079	15.738	1	42.11
5270 O	HOH	2004	0.607	32.578	20.617	1	57.85
5271 O	HOH	2005	8.734	39.595	29.215	1	50.93
5272 O	HOH	2006	46.414	71.498	5.513	1	42.98
5273 O	HOH	2007	30.063	54.37	17.201	1	28.45
5274 O	HOH	2008	39.779	73.86	22.407	1	30.88
5275 O	HOH	2009	10.057	27.917	37.313	1	56.75
5276 O	НОН	2010	48.313	76.556	26.783	1	56.09
5277 O	НОН	2012	12.176	33.756	46.036	1	. 33.09
5278 O	НОН	2013	52.858	64.574	-9.851	1	35.64
5279 O	HOH	2014	5.85	31.615	25.114	1	44.11
5280 O	НОН	2015	35.374	78.198	23.486	1	65.59
5281 O	HOH	2016	6.755	30.619	44.678	1 1	38.97 36.83
5282 O	HOH	2017	47.846	63.253 81.437	-11.777 14.674	1	48.14
5283 O	HOH HOH	2018 2020	31.706 51.835	72.941	13.996	1	36.01
5284 O 5285 O	HOH	2020	9.15	31.445	69.292	1	39.65
5286 O	НОН	2021	47.091	66.467	-8.015	1	43.66
5287 O	НОН	2023	29.609	71.817	-0.007	1	38.11
5288 O	нон	2024	18.734	27.61	60.73	1	44.58
5289 O	НОН	2025	6.819	36.938	69.156	1	50.09
5290 O	НОН	2026	2.441	47.624	10.242	1	57.1
5291 O	НОН	2027	3.003	42.903	46.921	1	53.16
5292 O	HOH	2028	54.131	76.111	18.046	1	47.63
5293 O	НОН	2029	23.493	21.71	48.962	1	60.57
5294 O	HOH	2030	60.032	80.82	3.634	1	84.88
5295 O	НОН	2031	27.727	81.623	12.559	1	38.04
5296 O	НОН	2032	1.909	52.215	39.067	1	44.72
5297 O	НОН	2033	-2.186	21.394	40.979	1	89.31 41.5
5298 O	HOH	2034	20.499	33.652	45.278 41.447	1 1	100
5299 O	HOH	2035	34.06	80.711 48.517	40.091	1	41.86
5300 O	HOH	2036	2.839 3.517	31.703	45.521	1	64.44
5301 O	HOH HOH	2037 2038	9.385	64.924	27.742	1	81.27
5302 O 5303 O	HOH	2039	40.448	79.937	8.562	1	59.32
5303 O 5304 O	HOH	2040	24.866	85.129	6.506	i	52.79
5305 O	HOH	2041	42.662	69.456	27.547	1	33.54
5306 O	НОН	2042	45.974	72.478	13.009	1	45.87
5307 O	НОН		10.504	38.973	33.547	1	40.02
5308 O	НОН	2044	9.579	41.828	67.318	1	59.9
5309 O	HOH	2045	17.341	33.54	19.641	1	45.32
5310 O	HOH	2046	3.405	47.845	31.275	1	36.21
5311 O	HOH	2047	17.011	33.897	71.868	1	33.52
5312 O	HOH	2048	6.482	40.003	35.841	1	57.08
5313 O	HOH	2049	1.137	33.078	34.05	1	33.82
5314 O	HOH	2050	26.744	31.01	39.861	1	55.08
5315 O	НОН	2051	0.17	38.998	26.667	1	38.22
5316 O	НОН	2052	32.319	78.969	20.662	1	35.9
5317 O	HOH	2053	8.371	43.433	51.842	1	48.92
5318 O	HOH	2054	3.561	26.075	27.401	1	48.98 46.24
5319 O	HOH	2055	47.329	81.696	30.891 9.28	1 1	46.2 <u>4</u> 84.73
5320 O	НОН	2056	10.866	35.347	9.20	•	07.73

	Atom							
Atom	Type	Residue	# ~	X	Y	Z	occ	В
5321 C)	HOH	2057	16.156	77.623	24.389	1	68.54
5322 C		HOH	2058	55.244	60.234	8.553	1	42.78
5323 C		HOH	2059	39.091	58.612	21.163	1	48.48
5324 C		HOH	2060	8.065	40.362	61.751	1	43.34
5325 C		НОН	2061	5.215	43.203	58.214	1	38.27
5326 C		НОН	2062	4.37	44.153	28.361	1	57.63
5327 C		НОН	2063	48.26	61.512	-6.32	1	42.92
5328 0		HOH	2064	55.392	69.84	-13.305	1	44.52
5329 (HOH	2065	6.363	15.594	60.437	1	54.58
5330 (HOH	2066 2067	40.18	75.691 70.313	-10.457	1 1	41.92
5331 C		HOH	2068	39.635 21.112	79.313 51.594	26.163 19.282	1	34.64 54.97
5332 (HOH HOH	2069	2.935	39.989	25.661	1	47.84
5333 (HOH	2070	-0.739	41.793	34.308	1	51.1
5334 C 5335 C		HOH	2070	-1.97	28.873	17.982	1	76.51
5336 C		HOH	2072	37.519	83.18	17.527	1	66.32
5337 (HOH	2073	22.213	35.923	45.566	i	43.82
5338 (HOH	2074	54.866	66.859	-13.461	1	36.44
5339 C		HOH	2075	18.985	68.519	7.218	i	53.24
5340 (НОН	2076	33	49.476	38.019		66.05
5341 (НОН	2077	1.385	19.187	61.122	1	40.14
5342 (НОН	2078	28.317	49.852	34.842	1	61.51
5343 (НОН	2079	58.966	69.737	-6.012	1	48
5344 (НОН	2080	20.219	33.371	71.707	1	62.38
5345		HOH	2081	54.919	74.501	-19.389	1	57.57
5346		нон	2082	6.715	29.888	73.444	1	46.38
5347 ()	нон	2083	34.395	81.934	13.78	1	52.33
5348 ()	HOH	2084	4.674	31.598	71.807	1	58.4
5349 ()	HOH	2085	53.164	70.664	-14.524		63.38
5350 ()	нон	2086	45.625	80.173	17.79		55.61
5351 (HOH	2087	12.941	37.096	23.879		63.59
5352 (нон	2088	38.14	82.799	2.37		48.54
5353 (нон	2089	48.766	66.048	26.928		52.02
5354 (HOH	2090	52.39	79.487	6.131	1	76.26
5355 (HOH	2091	0.174	21.376	54.024		60.77
5356 (HOH	2092	50.341	82.455	0.703		74.32 53.52
5357 (HOH	2093	64.689	80.903	3.248 7.571	1	71.2
5358 (HOH	2094 2095	-1.36 23.367	44.694 50.964	52.62		67.99
5359 (5360 (HOH HOH	2095	-6.492	34.887	17.192		56.94
5361 (HOH	2097	3.543	36.942	38.901	1	63.66
5362 (HOH	2098	-6.969	32.565	62.065		84.57
5363 (НОН	2099	27.25	53.447	25.318		41.81
5364 (НОН	2100	8.338	49.512	14.509		38.78
5365 (НОН	2101	26.169	41.831	37.281	1	46.37
5366		нон	2102	12.608	35.089	21.09		42.82
5367		нон	2103	13.632	23.185	63.6		42.07
5368		нон	2104	54.824	68.31	25.143		74.51
5369 (нон	2105	19.642	22.43	33.592		54.13
5370 (HOH	2106	45.757	62.224	5.571	1	50.62
5371		нон	2107	19.587	35.893	72.506		46.36
5372 (нон	2108	3.087	45.759	45 .5	1	60.82
5373 (HOH	2109	15.907	57.243	21.733		54.68
5374 (HOH	2110	48.651	56.028	10.536		95.92
5375 ()	нон	2111	44.053	79.03	12.315		58.92-
5376,0)	HOH	2112	29.827	77.335	39.215	1	63.64

Atom							
Atom Type	Residue	#	X	Y		CC	В
5377 O	HOH	2113	15.946	37.221	20.809	1	89.1
5378 O	HOH	2114	10.008	22.941	31.02	1	48.95
5379 O	нон	2115	24.846	86.734	4.358	1	51.7
5380 O	HOH	2116	4.595	49.482	33.513	1	67.71
5381 O	нон	2117	0.793	45.008	38.422	1	50.43
5382 O	нон	2118	6.692	33.791	39.701	1	50.68
5383 O	нон	2119	9.649	48.935	19.05	1	68.49
5384 O	нон	2120	40.249	75.205	51.582	1	51.92
5385 O	нон	2121		60.888	21.709	1	53.75
5386 O	нон	2122		57.224	24.107	1	46.15
5387 O	нон	2123		42.838	36.454	1	44.17
5388 O	НОН	2124		76.285	16.447	1	79.22
5389 O	НОН	2125		77.875	18.437	1	66.18
5390 O	нон	2126		60.547	17.434	1 .	57.4
5391 O	НОН	2127		54.75	50.23	1	76.19
5392 O	HOH	2128		55.492	50.224	1	37.59
5393 O	нон	2129		30.752	70.714	1	40.8
5394 O	НОН	2130		33.914	60.155	1	34.83
5395 O	НОН	2131		75.66	19.427	1	46.31
5396 O	НОН	2132		40.391	29.318	1	59.96
5397 O	НОН	2133		81.758	25.48	1	48.17
5398 O	НОН	2134		49.017	42.215	1	43.78
5399 O	НОН	2135		23.271	37.302	1	64.3
5400 O	НОН	2136		72.121	· 18.068	1	62.51
5401 O	НОН	2137		54.002	31.916	1	51.43
5402 O	НОН	2138		25.87	33.79	1	74.01
5403 O	НОН	2139	0.338	30.422	52.543	1	60.63
5404 O	НОН	2140	0.144	40.98	46.433	1	55.17
5405 O	НОН	2141		78.537	20.473	1	53
5406 O	НОН	2142	2 45.784	57.815	-8.304	1	59.05
5407 O	HOH	2143	3 27.448	43.857	38.986	1	80.17
5408 O	HOH	214	4 24.726	83.636	2.342	1	49.9
5409 O	HOH	214	5 11.951	55.373	53.119	1	48.01
5410 O	HOH	2140	6 14.632	47.119	60.154	1	59.79
5411 O	HOH	214	7 -1.117	38.112	34.017	1	36.44
5412 O	нон	214		59.34	35.09	1	62.65
5413 O	HOH	214		29.839	18.139	1	52.06
5414 O	HOH	215		26.758	66.33	1	55.54
5415 O	HOH	215		35.494	34.477	1	54.33
5416 O	HOH	215		76.038	7.667	1	45.14
5417 O	HOH	215		76.292	11.913	1	48.89
5418 O	HOH	215		78.088	14.103	1	87.09 53.71
5419 O	HOH	215		33.227	20.254	1	
5420 O	HOH	215		47.579	23.192	1	71.61 71.91
5421 O	HOH	215		36.446	19.347	1	52.36
5422 O	HOH	215		27.212	15.775	1	52.03
5423 O	HOH	215		59.487	20.576	1	58.83
5424 O	HOH	216		23.02	17.901	1	49.25
5425 O	HOH	216		33.83	69.706	1	
5426 O	нон	216		66.188	29.151	1	40.81
5427 O	нон	216		66.769	14.259	1	60.77
5428 O	HOH	216		47.587	37.345	1	71.1
5429 O	HOH	216		41.431	39.072	1	56.88 58.84
5430 O	HOH	216		73.53	35.555	1	
5431 O	нон	216		44.887	51.419	1	70.03
5432 O	HOH	216	88 28.691	82.952	26.989	1	43.85
•							

Figure 1

	Atom											
Atom	Type	Residue	#		X	Y		Z		occ	1	В
5433	0	HOH	216	39	44.743	80.2	266	-14.1	044	1	7	8.59
5434	0	HOH	217	70	3.922	45.8	369	19.	001	1	9	6.76
5435	0	HOH	217	71	57.137	69.1	168	23	3.44	1	6	1.66
5436	0	HOH	217	72	28.574	78.1	161	18.	537	1		100
5437	0	HOH	217	73	55.573	65.8	377	-11.	131	1	5	8.89
5438	0	HOH	217	74	7	18	.47	63.	559	1	5	2.76
5439	0	HOH	217	75	-0.497	29	.47	10.	663	1		65.7
5440	0	HOH	217	76	39.55	62.0)54	21.	834	1	6	9.36
5441	0	HOH	217	77	48.756	83.	508	29	9.35	1	6	2.82
5442	0	HOH	217	78	7.812	62.	749	20.	621	1	6	7.61
5443	0	HOH	217	79	9.736	47.	516	63.	408	1	4	6.59
5444	O	HOH	218	30	36.458	90	.23	30.	756	1	7	5.67
5445	O .	HOH	218	31	32.054	74.	8 79	38.	041	1	4	9.33
5446	0	нон	218	32	25.001	46.	519	52.	531	1	6	4.94
5447	0	нон	218	33	32.47	79.9	959	12.	122	1	5	6.23
5448	0	НОН	218	34	-7.077	43.4	484	33.	181	1		6.09
5449	0	HOH	218	35	2.143	38.6	505	42.	272	1	5	3.31
5450	0	нон	218	86	6.04	44.	393	50).82	1		2.01
5451	0	HOH	218	3 7	20.678	35.0	691	62.	368	1	5	5.76
5452	0	нон	218	88	6.896	24.	913	15.	884	1	6	1.33

Figure la

Figure 2

Figure 3

Figure 4

Figure 5A

. "••

Figure 5B

FIGURE 6

FIGURE 7

INTERNATIONAL SEARCH REPORT mai Application No PCT/US 99/29096 A CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N9/12 G01N ĜOĨN23/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1-6 MERTENS S ET AL: "SAP KINASE-3, A NEW X MEMBER OF THE FAMILY OF MAMMALIAN STRESS-ACTIVATED PROTEIN KINASES" FEBS LETTERS, NL, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, vol. 383, 1 January 1996 (1996-01-01), pages 273-276, XP002053847 ISSN: 0014-5793 the whole document 1-6 LI Z. ET AL.: "The primary structure of X p38-gamma: a new member of 38 group of MAP kinases" BIOCHEM. BIOPHYS. RES. COM., vol. 228, 1996, pages 334-340, XP002041225 7-17 the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: "I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A." document defining the general state of the art which is not considered to be of particular relevance invention *E* sariler document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filling date but later than the priority date claimed *&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 25/05/2000 15 May 2000

2

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Authorized officer

Panzica, G

INTERNATIONAL SEARCH REPORT

inter anal Application No PCT/US 99/29096

·- ·-		PC1/US 99/29096
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BÖHM H -J: "THE COMPUTER PROGRAM LUDI: A NEW METHOD FOR THE DE NOVO DESIGN OF ENZYME INHIBITORS" JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN,XX,ESCOM SCIENCE PUBLISHERS BV, vol. 11, no. 2, August 1991 (1991-08), pages 61-78, XP002914895 ISSN: 0920-654X cited in the application the whole document	7–17
A	GHOSE A K ET AL: "DETERMINATION OF PHARMACOPHORIC GEOMETRY FOR COLLAGENASE INHIBITORSDETERMINATION OF PHARMACOPHORIC GEOMETRY FOR COLLAGENASE INHIBITORSUSING A NOVEL COMPUTATIONAL METHOD AND ITS VERIFICATION USING WOLECULAR DYNAMICS, NMR, AND X-RAY CRYSTAL" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, US, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, vol. 117, no. 16, 1 January 1995 (1995-01-01), pages 4671-4682-467, XP002051616 ISSN: 0002-7863 the whole document	7-17
X	GOEDERT M ET AL.: "Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases" FEBS LETTERS, vol. 409, 1997, pages 57-62, XP000906954 AMSTERDAM NL the whole document	1-6
X	KUMAR S. ET AL.: "Novel homologous of CSBP/p38 MAP kinase: activation, substrate specificity adn sensitivity to inhibition by pyrydinyl imidazoles" BIOCHEM. BIOPHYS. RES. COM., vol. 235, 1997, pages 533-538, XP002041227 the whole document	1-6
X	KEESLER G. ET AL.: "Purification and activation of recombinant p38 isoforms alpha, beta, gamma and delta" PROTEIN EXPRESSION AND PURIFICATION, vol. 14, November 1998 (1998-11), pages 221-228, XP000909191 the whole document	1-6
	,	

INTERNATIONAL SEARCH REPORT

Inter: .nal Application No PCT/US 99/29096

(Continua	tion) DOCUMENTS CONSIDERED TO BE RELEVANT	
stegory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
, P	BELLON S. ET AL.: "The structure of phosphorylated P38gamma is monomeric and reveals a conserved activation-loop conformation" STRUCTURE, vol. 7, 15 September 1999 (1999-09-15), pages 1057-1065, XP000909285 the whole document	1-17
	N. Carlotte and the car	
	·]
		_
	,	_