NUEN 625

Test 1 Due Thursday March 24, 2016

Preliminaries

Consider the the cylinder, shown in Fig. 1, of radius r_0 and height z_0 with center point c and endpoint e. The radial surface of the cylinder is defined by $r=r_0$, and $0 \le z \le z_0$. Given any point on the radial surface, the inward-directed normal at that point, \overrightarrow{n} , is directed along -r, as shown in Fig. 2. All surface source distributions, $Q(\overrightarrow{\Omega})$ are defined in terms of $\mu = \overrightarrow{\Omega} \cdot \overrightarrow{n}$, and are uniform over the axial surface of the cylinder.

Figure 1: Geometry for cylinder of radius r_0 and height z_0 .

Figure 2: Inward-directed axial surface normals at four points as viewed looking down the axis of the cylinder.

1. Given an isotropic surface source distribution,

$$Q(\overrightarrow{\Omega}) = \frac{Q_0}{4\pi} \quad (p/(cm^2 - sec - steradian),$$

- (a) Calculate the scalar flux, ϕ (p/cm^2-sec), at point c.
- (b) Calculate the z-component of the current, $(\overrightarrow{J} \cdot \overrightarrow{k})$ $(p/(cm^2 sec)$, at point c.
- (c) Calculate the scalar flux, ϕ (p/cm^2-sec), at point e.
- (d) Calculate the z-component of the current, $(\overrightarrow{J} \cdot \overrightarrow{k})$ $(p/(cm^2 sec)$, at point e.
- 2. Given an anisotropic surface source distribution,

$$Q(\overrightarrow{\Omega}) = \frac{Q_0 \mu}{4\pi} \quad (p/(cm^2 - sec - steradian),$$

- (a) Calculate the scalar flux, ϕ ($p/cm^2 sec$), at point c.
- (b) Calculate the z-component of the current, $(\overrightarrow{J} \cdot \overrightarrow{k})$ $(p/(cm^2 sec)$, at point c.
- (c) Calculate the scalar flux, ϕ ($p/cm^2 sec$), at point e.
- (d) Calculate the z-component of the current, $(\overrightarrow{J} \cdot \overrightarrow{k}) (p/(cm^2 sec)$, at point e.
- 3. Consider the following equation:

$$-\frac{\partial}{\partial x}\frac{1}{3\sigma_t}\frac{\partial\phi}{\partial x} + \sigma_a\phi = 0 \quad \text{where } x \in [0, \infty) \text{ and } j^+(0) = 1.$$

Assuming constant cross sections, solve this equation using a Mark condition.

- (a) Evaluate the reflected fraction $j^-(0)/j^+(0)$.
- (b) Evaluate the reflected fraction in the limit as $\sigma_a \to 0$.
- (c) Evaluate the reflected fraction in the limit as $\sigma_t \to \sigma_a$.
- 4. Consider the following equation:

$$\frac{df}{dx} + \sigma f = 0$$
, for $x \in [x_{i-1/2}, x_{i+1/2}], f(x_{i-1/2}) = 1$.

Solve this equation using the following trial space:

$$f(x) = 1$$
, for $x = x_{i-1/2}$,
 $= f_L$, for $x \in (x_{i-1/2}, x_i)$,
 $= f_R$, for $x \in (x_i, x_{i+1/2}]$,
 $= (f_L + f_R)/2$, for $x = x_i$,

where x_i is located at the midpoint of the cell; and the following weighting space:

$$W_1(x) = 1.0$$
, for $x \in [x_{i-1/2}, x_i]$,
= 0, otherwise.

$$W_2(x) = 1.0$$
, for $x \in [x_i, x_{i+1/2}]$,
= 0, otherwise.

5. Consider the following system of equations:

$$\frac{1}{v}\frac{\partial \psi}{\partial t} + \mu \frac{\partial \psi}{\partial x} + \sigma \psi = \frac{\sigma}{4\pi}g,$$
$$\frac{1}{v}\frac{\partial g}{\partial t} = \sigma (\phi - g),$$

where v is a speed, $\psi(t, x, \mu)$ is the usual angular flux, ϕ is the usual scalar flux, g(t, x) is a positive isotropic function, and $\sigma(x)$ is a macroscopic interaction cross section.

Perform an asymptotic expansion for these equations using the following scaling:

$$v \rightarrow v/\epsilon$$
,

$$\sigma \rightarrow \sigma/\epsilon$$
,

 $\quad \text{and} \quad$

- (a) express ψ as a function of g to leading order,
- (b) derive the diffusion equation satisfied by g to leading order.