Adrian Copta | FAF-223 | Varian 6

1. Present the Context Free Grammar in Chomsky Normal Form

$$G = (VN,VT, P, S), VN = \{S,A,B\}, VT = \{a,b\}$$

$$P = \{1. S \rightarrow a B\}$$

2.
$$S \rightarrow b a A$$

5.
$$A \rightarrow b A a B$$

6.
$$B \rightarrow A$$

$$7. B \rightarrow B S$$

8. B
$$\rightarrow \epsilon$$
 }.

- 1) Removing ε productions:
 - a) $N\varepsilon = \emptyset$
 - b) For the production $B \to \varepsilon$, $N\varepsilon = \emptyset \cup \{B\}$, $N\varepsilon = \{B\}$.

Removing this production there are obtained:

$$P' = \{ S \rightarrow a B \mid b a A \mid a \}$$

$$B \rightarrow A \mid B S \}.$$

2) Removing of the unit productions:

The unit production from P' is $B \rightarrow A$.

After elimination of this production there are obtained:

$$P'' = \{ S \rightarrow a B \mid b a A \mid a \}$$

$$A \rightarrow a \mid a S \mid b A a B \mid b A a$$

3) Eliminating nonproductive symbols.

Step I.
$$Pr = \{\}$$
.

Step II.
$$Pr = Pr \{S, A, B\} = \{S, A, B\}.$$

Thus, there are no nonproductive symbols.

4) Eliminating the inaccessible symbols.

Step I.
$$Ac = \{S\}$$
.

Step II.
$$Ac = Ac \cup \{A, B, a, b\} = \{S, A, B, a, b\}.$$

Step III.
$$Ac = \{S, A, B, a, b\}.$$

Step IV.
$$I=(VN \cup VT) \setminus Ac=(\{S, A, B\} \cup \{a, b\}) \setminus \{S, A, B, a, b\} = \emptyset$$
.

Thus, all the symbols are accessible.

5) Converting productions to CNF.

$$P''' = \{ S \rightarrow X_1 B \mid X_3 A \mid a \}$$

$$A \rightarrow a \mid X_1 S \mid X_4 X_5 \mid X_4 X_1$$

$$B \rightarrow a \mid X_1 S \mid X_4 X_5 \mid X_4 X_1 \mid B S$$

$$X_1 \rightarrow a$$

$$X_2 \rightarrow b$$

$$X_3 \rightarrow X_2 X_1$$

$$X_4 \rightarrow X_2 A$$

$$X_5 \rightarrow X_1 B$$
}.

$$VT = \{a, b\},\$$

$$VN = \{S, A, B, X_1, X_2, X_3, X_4, X_5\}.$$

2. Converting the given grammar to the Greibach Normal Form

$$G=(VN, VT, P, S_1), VN=\{S, A, B, C\}, VT=\{a, b\},$$

$$P=\{ 1. S \rightarrow B C$$

2.
$$C \rightarrow B B$$

3.
$$C \rightarrow a$$

$$4. A \rightarrow b$$

5.
$$B \rightarrow C A$$
 }.

1) Conversing into the Chomsky Normal Form.

The gramma is already in CNF

2) Renaming all non-terminal symbols in A1, A2,..., An.

$$A1 = S$$
:

$$A2 = A;$$

$$A3 = B$$

$$A4 = C$$

$$P'=\{A1 \rightarrow A3 A4$$

$$A2 \rightarrow b$$

$$A3 \rightarrow A4 A2$$

$$A4 \rightarrow A3 A3 \mid a$$
 }.

3) Verifying all indexes.

$$1 < 3$$
, $3 < 4$, but at the production A4 \rightarrow A3 A3, $4 > 3$

After substitution we obtain:

$$P''=\{A1 \rightarrow A3 A4\}$$

$$A2 \rightarrow b$$

$$A3 \rightarrow A4 A2$$

$$A4 \rightarrow A4 A2 A3 \mid a$$
 }.

4) Eliminating left recursions.

$$A4 \rightarrow A4 A2 A3$$
 is a left recursion

eliminating we get: A4
$$\rightarrow$$
 a Z; Z \rightarrow A2 A3 Z | A2 A3

After substitution we obtain:

$$P''=\{A1 \rightarrow A3 A4$$

$$A2 \rightarrow b$$

$$A3 \rightarrow A4 A2$$

$$A4 \rightarrow a Z$$

$$Z \rightarrow A2 A3 Z \mid A2 A3$$
.

5) Converting to GNF.

$$P''=\{A1 \rightarrow a Z A2 A4\}$$

$$A2 \rightarrow b$$

$$A3 \rightarrow a Z A2$$

$$A4 \rightarrow aZ$$

$$Z \rightarrow b A3 Z \mid b A3$$
 }.

Substituting we get:

$$P'''=\{S \rightarrow aZBC$$

$$A \rightarrow b$$

$$B \rightarrow a Z A$$

$$C \rightarrow a Z$$

$$Z \rightarrow b B Z \mid b B$$
,

$$VN = \{S, A, B, C, Z\}, VT = \{a, b\},\$$

- 3. For the given grammar $G=(VN, VT, P, S_1)$, $VN = \{S, A, B, D\}$, $VT = \{a,b,c,d,f,e\}$, $P=\{1. S \rightarrow A \ a \ b \ H \ 2. \ H \rightarrow R \ c \ 3. \ R \rightarrow f \ 4. \ R \rightarrow R \ d \ f \ 5. \ A \rightarrow e \ 6. \ A \rightarrow A \ d \ e \ \}$, build the matrix of simple precedence, analyze the *edeabfdfc* string and construct the derivation tree.
 - a) Building the sets FIRST and LAST

	FIRST	LAST
S	A, e	Н, с
Н	R, f	С
R	f, R	f
A	e, A	е

- b) Building the matrix of precedence relations
- 1. x1 = x2

$$S \rightarrow A a b H: A=a, a=b, b=H$$

$$H \rightarrow R c: R=c$$

$$R \rightarrow R d f: R=d, d=f$$

$$A \rightarrow A d e$$
: $A=d$, $d=e$

2. x1<x2

$$S \rightarrow A a b H: b < FIRST(H) = \{R, f\}$$

$$S < FIRST(S) = \{A, e\}$$

3. x1>x2

$$S \rightarrow A a b H: LAST(A) > a; \{e\} > a$$

$$H \rightarrow R c: LAST(R) > c; \{f\} > c$$

$$R \rightarrow R d f$$
: LAST(R) > d; $\{f\}$ > d

$$A \rightarrow A d e$$
: LAST(A) > d; {e} > d

LAST(S)
$$>$$
 \$; {H, c} $>$ \$

	S	Н	R	A	a	b	С	d	е	f	\$
S											
Н											>
R							=	II			
A					II			II			
a											
b		=	<							<	
С											>
d									=	=	
e					^			^			
f							>	^			
\$				<					<		

c) Analysis of string <edeabfdfc> \$<e>d<e>a=b<f>d=f>c>\$ \$<A=d<e>a=b<R=d=f>c>\$ \$<A=a=b>R=c>\$ \$<A=a=b=H>\$ \$<S>\$

d) Building the derivation tree

4. Construct pushdown automata for the following language:

 $L = \{a^nb^na^k \mid n \in N, \ k = n-1\}$ Present the analysis of the word. Answer:

Fig (1). PDA for the given language

We formally express the PDA as a 6-tuple (Q, Σ , Γ , δ , q0, F), where

- $Q = \{q0, q1, q2, q3, q4, q5\}$
- $\Sigma = \{a, b\}$
- $\Gamma = \{a, Z\}$
- $q0 = \{q0\}$
- $Z0 = \{Z\}$
- transition function $\delta: Q \times \Sigma \lambda \times \Gamma \lambda \to P(Q \times \Gamma \lambda)$ is defined by the table:

δ	а	b	λ
→q0	-	-	q1λ Z
q1	q1λ aa	q2 a λ	-
q2	q3 a λ	q2 a λ	-
q3	q3 a λ	-	q4 a λ
q4	-	-	q5 Z λ
*q5	-	-	-

Analysis of the word:

Let's consider the word: aaabbbaa

[q0, aaabbbaa, λ]F[q1, aaabbbaa, Z] F[q1, aabbbaa, aaZ] F[q1, abbbaa, aaaaZ] F[q1, bbbaa, aaaaaZ] F[q2, bbaa, aaaaZ] F[q2, baa, aaaaZ] F[q2, aa, aaaZ] F[q3, a, aaZ] F[q3, λ , aZ] F[q4, λ , Z] F[q5, λ , λ].

Verifying the PDA:

Using JFLAP software we computed our PDA in the program (fig 1) and ran some strings which respect the rules of the language and which do not.

Table Text Size		
Input	Result	
aaabbbaa	Accept	
aabba	Accept	
ab	Accept	
aaaaaaaabbbbbbbbbaaaaaaa	Accept	
aabbaaa	Reject	
aabbaa	Reject	
aba	Reject	

Fig (2). Testing PDA using JFLAP