Model Evaluation

Imbalanced Dataset &

- An unequal distribution of classes
 - Example: In a credit card fraud detection dataset, most of the credit card transactions are not fraud and a very few classes are fraud transactions.
- Types of Imbalance Dataset

The impacts of balanced dataset in machine learning

- An unequal distribution of classes
 - Example: In a credit card fraud detection dataset, most of the credit card transactions are not fraud and a very few classes are fraud transactions.
- Types of Imbalance Dataset

- An unequal distribution of classes
 - Example: In a credit card fraud detection dataset, most of the credit card transactions are not fraud and a very few classes are fraud transactions.
- Types of Imbalance Dataset
- Cause of Imbalance Dataset
 - Biased Sampling
 - Measurement Error
- The imbalance might be a property of the problem domain
- Approaches to handling Imbalanced Dataset
 - Act on Data (Sampling)
 - Act on Cost Function (Evaluation Meth

Sampling

Evaluation Methods

Upweighting

Downweighting

Evaluation Metrics

• Ensemble Method

Evaluation Metrics

- True Positive
- True Negative
- False Positive
- False Negative

Evaluation Metrics

Precision/Specificity: how many selected instances are relevant

Recall/Sensitivity: how many relevant instances are selected

F1 score: harmonic mean of precision and recall

Confusion Matrix: a table showing the relation of predicted and expected result

ROC Curve: true positive vs false positive curve

Model Evaluation (Holdout)

- Randomly partitioned in two independent sets
 - Training set
 - Test set
- Training set is used to train the model
- Test set is used to validate the accuracy of the model
- Estimation is Pessimistic

Model Evaluation (Random Sampling)

- Variation of Holdout method
- Holdout method is used for some n times
- Average result is considered

Model Evaluation (Cross Validation)

- k-fold
 - Randomly partitioned into k subsets
 - Training performs k times
 - Each time one subset of data is kept test data
 - Other (k-1) subsets are used as training dataset
- Leave-one-out
 - Special case of k-fold
 - Each fold contains only one data tuple
- Stratified cross validation
 - Preserves the data distribution in subsets

Model Evaluation (Bootstrap)

- Uniformly sample tuple with replacement
- On average, 63.2% data as Training data
- On average, 36.8% data as Test data
- Model accuracy is weighted

Model Evaluation (Bootstrap - steps)

- A sample from population with sample size n.
- Draw a sample from the original sample data with replacement with size n, and replicate B times, each re-sampled sample is called a Bootstrap Sample, and there will totally B Bootstrap Samples.
- Evaluate the **statistic** of θ for each Bootstrap Sample, and there will be totally B estimates of θ .
- Construct a sampling distribution with these B Bootstrap statistics and use it to make further statistical inference, such as:
 - Estimating the standard error of statistic for θ .
 - Obtaining a Confidence Interval for θ.

Model Evaluation (Ensemble Method)

- Use a set of classifiers
- Data is sampled for each classifier
- Final prediction based on majority voting
- Techniques:
 - Bagging
 - Boosting

Model Evaluation (Bagging)

- Bagging stands for Bootstrap Aggregation
- Each Training is a bootstrap sample

Model Evaluation (Boosting)

- Weights are assigned to each tuple
- A series of n classifiers are learned
- Weights are updated after each iteration
 - Increased if predicted incorrectly
 - Decreased if predicted correctly
- Adaboost
 - Weights are updated based on error rate
 - Models are weighted based on error

Thank You

And Thanks to: medium.com & towardsdatascience.com