Računarska statistika

Snježana Lubura Strunjak

Zagreb, 15. travnja 2021.

1/17

$Gamma(k,\beta)$ distribucija - podsjetnik

Neka osnovna svojstva $Gamma(k, \beta)$ razdiobe (k=0.5, β =1):

- mean (sredina)= $\mu = \frac{k}{\beta} (= 0.5)$
- standard deviation (standardna devijacija)= $\sigma=\frac{\sqrt{k}}{\beta}(=0.707)$
- skewness (asimetrija)= $\gamma_1 = \frac{2}{\sqrt{k}} (= 2.83)$
- kurtosis (spljoštenost)= $\gamma_2 = \frac{6}{k} (= 12)$

Zadatak (Robusnost t statistike - nastavak)

 $\begin{array}{lll} & \text{Program} & \textit{CHAPTER1}_2_T_\textit{GAMMA2}.SAS, \textit{CHAPTER1}_2_T_\textit{GAMMA2}_\textit{no}_\textit{anim}.SAS, \\ & \textit{CHAPTER1}_2_T_\textit{GAMMA4}.SAS. \end{array}$

Ispitajte, pomoću Monte Carlo eksperimenta (i animacije) sampling distribuciju t statistike (za 1 populaciju) ako su podaci distribuirani po:

-Gamma distribuciji Gamma(0.5, 1)

Koristite slijedeće veličine uzoraka n=10,20,30,50,100,200.

Usporedite momente dobivene simulacijom sa teoretskim momentima t distribucije.

Diskutirajte posljedice primjene t-testa u slučaju jako zakrivljene (asimetrične) originalne distribucije.

Slika: CHAPTER1_2_T_GAMMA2.SAS

Slika: CHAPTER1_2_T_GAMMA4.SAS

Pogledajmo histograme generiranih podataka po gamma razdiobi i t-statistika u tom slučaju:

Slika: CHAPTER1_2_T_GAMMA4.SAS-histogram generiranih podataka po Gamma distribuciji

Slika: CHAPTER1_2_T_GAMMA4.SAS-histogram t statistika

Uočimo: histogram podataka ima rep na desnoj strani, a histogram t statistika rep na lijevoj. To nije slučajno.

Razvoj u red potencija momenata t statistike

Ako je γ_1 skewness originalne populacije, a $\gamma_1(t)$ t-statistike, onda vrijedi:

•
$$\mathbb{E}(t) = -\frac{\gamma_1}{2\sqrt{n}} + O(n^{-\frac{3}{2}})$$

•
$$Var(t) = 1 + n^{-\frac{1}{2}} (2 + \frac{7}{4}\gamma_1^2) + O(n^{-\frac{1}{2}})$$

•
$$\gamma_1(t) = -2\frac{\gamma_1}{\sqrt{n}} + O(n^{-\frac{3}{2}})$$

Uočimo: asimetrija t statistike je suprotnog smjera (predznaka) od asimetrije originalne populacije. Dakle, u našem primjeru, $\mathbb{E}(t)\approx-\frac{\gamma_1}{2\sqrt{n}}\approx-\frac{2.83}{2\sqrt{n}}$ i $\gamma_1(t)\approx-2\frac{\gamma_1}{\sqrt{n}}\approx-2\frac{2.83}{\sqrt{n}}$, što za različite n iznosi

n			30		100		
	-0.45						
$\gamma_1(t)$	-1.8	-1.3	-1.0	-0.8	-0.6	-0.4	•

Slika: CHAPTER1_2_T_GAMMA4.SAS

	The MEANS Procedure							
	Analysis Variable : t							
N	N Obs	Mean	Std Dev	Std Error	Skewness	Kurtosis		
10	10000	-0.661	1.998	0.020	-3.188	19.860		
20	10000	-0.380	1.421	0.014	-1.677	5.696		
30	10000	-0.290	1.282	0.013	-1.327	3.874		
50	10000	-0.208	1.157	0.012	-0.882	1.507		
100	10000	-0.125	1.063	0.011	-0.570	0.711		
200	10000	-0.078	1.026	0.010	-0.365	0.363		

Robusnost t statistike - gamma razdioba (Monte Carlo studija t- statistike)

Zadatak (Tablica proporcija generiranih t vrijednosti izvan kritičnih vrijednosti) Koristite program *CHAPTER*1_2_*T_GAMMA3.SAS*.

Prilagodite program na slijedeći način:

• Postavite broj replikacija (nrep) na 10000 za sve vrijednosti

$$n = 10, 20, 30, 50, 100, 200,$$

• Izračunajte broj replikacija za koje t vrijednost pada izvan kritične vrijednosti t distribucije za $\alpha=0.01,0.025$ i 0.05, tj. procijenite $\mathbb{P}(t\leq t_{0.01}), \mathbb{P}(t\geq -t_{0.01}), \mathbb{P}(t\leq t_{0.025}), \mathbb{P}(t\geq -t_{0.025}), \mathbb{P}(t\leq t_{0.05}), \mathbb{P}(t\geq -t_{0.05}).$ (Napomena: $-t_{\alpha}=t_{1-\alpha}$. U SAS-u $t_{\alpha}=TINV(0.01,n-1)$;)

Izvedite program. Što uočavate? Usporedite te procjene sa odgovarajućim α vrijednostima.

(Nakon što napišete sami program usporedite ga s rješenjem CHAPTER1_2_T_GAMMA3_FRACTION_CRITICAL_VALUES.SAS u folderu EXERCISES.)

Izvedite program CHAPTER1_2_T_GAMMA3_FRACTION_CRITICAL_VALUES grafikon usporedbe gustoca vjerojatnosti.SAS iz foldera EXERCISES i pogledajte slaganie teoretske t distribuciie i empiriiske dobivene pomoću gamma razdiobe.

Zadatak (Robusnost t statistike (eksploracija - gamma i uniformna distribucija)) Koristite program CHAPTER1_2_T_GAMMA4.SAS

- Izvedite program, pa pogledajte dataset TALL.
 Analizirajte distribucije sredina i t statistika (varijable MEAN I T) pojedinačno po veličinama uzoraka N. Dodajte qqplot.
 Što uočavate? Kolike su sredine i standardne devijacije od MEAN, za pojedinačne N, a kolike su očekivane vrijednosti standardnih devijacija sredina (st.grešaka sredina) na osnovu centralnog graničnog teorema?
- b) Izvedite istu analizu sa UNIFORMnom distribucijom (Uputa: u gornjem programu promijenite poziv GAMMA generatora u: X = RAND("UNIFORM"); XT = X μ
 Prilagodite naslove. Izvedite program, i koristeći dataset TALL pogledajte distribucije t statistike po veličinama uzoraka N. Što uočavate?

t test za male uzorke

Zadatak (t-test BMI (body-mass index) indeksa za 16 pacijenata)

Program CHAPTER1_2_T_1SAMPLE.SAS

Izvedite program. U datasetu *body_mass_index* nalaze se vrijednosti BMI za 16 pacijenata uključenih u studiju dijabetičara. Prije pocetka studije treba ispitati da li je BMI na tom uzorku konzistentan sa ranije nadjenom vrijednosti indeksa (BMI=31.9). Možemo li koristiti t-test?

Uputa: koristite Tasks and Utilities.

Monte Carlo testovi: simulacije podataka po hipotetskom modelu

- Za testiranje hipoteze da podaci čine slučajni uzorak iz specificiranog (hipotetskog) modela / populacije.
- Algoritam:
 - Simuliraj uzorke iz specificirane populacije
 - ② Usporedi vrijednosti test statistike za simulirane uzorke sa test statistikom sa stvarnog uzorka.
- Od posebne je vrijednosti u situacijama kada je (originalna) populacijska distribucija poznata, ali sampling distribucija test statistike nije poznata u analitičkoj formi.

Monte Carlo testovi: simulacije podataka po hipotetskom modelu

Primjer (Uniformno uzorkovanje bez nadomjeska/ponavljanja)

Program CHAPTER1_2_HYPOTHESIS.SAS

Scenarij: Proizvodna tvrtka primi pošiljku od novog dobavljača sa 1000 jedinica nekog proizvoda. Dobavljač je prethodno prihvatio ugovor po kojem 98% jedinica u svakoj pošiljci mora biti bez nesukladnosti (defekata). Slučajan uzorak od 100 jedinica je izvučen (bez nadomjeska/vraćanja) iz pošiljke. Svaka od 100 jedinica je testirana i na 4 su pronađene nesukladnosti (4%).

Da li je stopa nesukladnosti u stvari veća od 2%?

Izvedite Monte Carlo test (i nakon toga primijenite i točnu hipergeometrijsku distribuciju.)

Uniformno uzorkovanje bez nadomjeska (bez ponavljanja)

Monte Carlo uzorkovanje iz definirane (hipotetske) populacije:

- "Konstruirajte" reprezentaciju populacije (tj. generirajte 20 jedinica (nesukladnih jedinica) i 980 nula (sukladnih jedinica).
- Ponovite NREP puta:
 - Izvucite jednostavan slučajan uzorak (bez nadomjeska tj. bez ponavljanja, veličine 100) iz konstruirane populacije,
 - izračunajte test statistiku (broj nesukladnih jedinica),
 - usporedite je sa test statistikom na stvarnom uzorku.
- Izračunajte $p = \frac{N_{GRE}+1}{NREP+1}$, gdje je
 - N_{GRE} broj uzoraka na kojima je vrijednost test statistike \geq od test statistike na stvarnom uzorku, a
 - NREP je broj izvučenih uzoraka.

Primjer (Uniformno uzorkovanje bez nadomjeska/ponavljanja)

Rezultati:

Slika: CHAPTER1_2_HYPOTHESIS.SAS

Primjer (Uniformno uzorkovanje bez nadomjeska/ponavljanja)

Slika: CHAPTER1_2_HYPOTHESIS.SAS

Obs	_TYPE_	_FREQ_	N_GRE	р	p_exact
1	0	999	126	0.127	0.13095

Zadaća

6. zadaća: rok za predaju 13.05.

Zadaća se nalaze u folderu Zadaće na MERLINU.

UPUTE: Svaki zadatak iz zadaće mora biti u svom .sas programu. Sve .sas programe nazovite na način *prezime_ime_zad1.sas*, ako je npr. 1.zadatak u pitanju, itd. Sve što radite u zadaćama mora biti u obliku koda (možete koristiti sve dostupne materijale da dobijete tražene rezultate, ali sve mora biti napisano u obliku koda).