Разработка и исследование ресурсно-эффективных алгоритмов для метрической задачи коммивояжера.

Resource-Efficient Algorithms for Metric TSP: Research and Development

Береснева Екатерина Николаевна 4 курс, НИУ ВШЭ

Научный руководитель: профессор ПИ ФКН, к.т.н. Авдошин Сергей Михайлович

Содержание

- Введение
- Математическая постановка задачи коммивояжёра
- Цель и задачи работы
- Описание алгоритмов
- Тестовые данные
- Результаты

Задача коммивояжера (ЗК)

Найти гамильтонов цикл **минимальной** длины.

cxem.net

semiwiki.com

Математическая постановка евклидовой 3К

Дан полный взвешенный неориентированный граф $G=(V,V^2)$, содержащий N=|V| вершин. Пусть $I=\{1,2,...,N\}$. На множестве вершин графа зададим индексацию index $=V\to I$, $(\forall v_i\in V)\big(\forall v_i\in V\big)$ $v_i\neq v_i=>i\neq j$. Здесь $i=index(v_i)$.

Расстояние между двумя вершинами v_i и v_j рассчитывается с помощью функции $d(v_i, v_j)$. Данная функция возвращает вещественное значение и удовлетворяет следующим свойствам:

- $d(v_i, v_j) \ge 0$ (аксиома неотрицательности).
- $d(v_i, v_j) = 0$ тогда и только тогда, когда $v_i = v_j$ (аксиома тождества).
- $d(v_i, v_i) = d(v_i, v_i)$ (аксиома симметрии).
- $d(v_i, v_j) \le d(v_i, v_k) + d(v_k, v_j)$ (аксиома неравенства треугольника).

Обозначим через $S = \{ p: V \to V | (p(1) = 1 \& (\forall i \in V)(\forall j \in V)(p(i) = p(j) => i = j \} -$ множество кодов всех гамильтоновых циклов $v = (p_1, p_2, ..., p_N)$ графа G.

Математическая постановка евклидовой 3К

Вес гамильтонова цикла $s \in S$ по формуле $f(s) = d(p_1, p_N) + \sum_{i=1}^{N-1} d(p_i, p_{i+1})$

Пусть множество точек Vзадано своими целочисленными координатами в евклидовой плоскости R^2 . Тогда расстояние определяется по формуле:

$$d(v,w) = \left[\sqrt{(x(v) - x(w))^2 + (y(v) - y(w))^2} + 0.5 \right]$$

Для заданной метрики d найти s_0 : $f(s_0) = \min_{s \in S} f(s)$

$$f(\varepsilon) = \frac{|f(s) - f(s_0)|}{f(s_0)} * 100\%$$

Определение эффективности по Парето

$$\min_{m \in M} \{ f_{\varepsilon}(m), f_{C}(m) \}$$

 m^1 является оптимальным по Парето относительно m^2 , если:

- 1. $f_i(m^1) \leq f_i(m^2)$ для всех $i \in \{\varepsilon, C\}$.
- 2. $f_j(m^1) < f_j(m^2)$ для хотя бы одного $j \in \{\varepsilon, C\}$.

Цель работы

Определить группу Парето-оптимальных эвристических алгоритмов для метрической задачи коммивояжера по следующим параметрам:

- время (с)
- отклонение (%)

Задачи

- реализация существующих эвристических алгоритмов решения метрической задачи коммивояжера;
- разработка методики оценки качества алгоритмов;
- модификация эвристических алгоритмов решения метрической задачи коммивояжера для получения реализации с лучшими оценками качества;
- экспериментальная оценка качества реализованных алгоритмов.

Алгоритмы

- 1. Nearest Addition (NA)
- 2. Nearest Insertion (NI)
- 3. Cheapest Insertion (CI)
- 4. Nearest Segment Insertion (NSI)
- 5. Double Minimal Spanning Tree (DMST)
- 6. Christofides (CHR)
- 7. Nearest Neighbor (NN)
- 8. Double Ended NN (DENN)
- 9. Greedy (GRD)
- 10. Moore Curve (MC)
- 11. Sierpinski Curve (SC)
- 12. 2-Opt
- 13. Lin and Kernighan Heuristic (LKH)
- 14. Combinatorial Artificial Bee Colony (qCABC)

Алгоритмы построения маршрута

Алгоритмы улучшения маршрута

Априорные оценки точности

Algorithms	Upper-bound estimate	
Nearest Addition		
Nearest Insertion	$2-\frac{2}{N}$	
Cheapest Insertion	$z-\overline{N}$	
Nearest Segment Insertion		
Double Minimal Spanning Tree	$2-\frac{2}{N}$	
Christofides	<u>3</u>	
	2	
Nearest Neighbor, Double Ended NN	$0.5\lceil log_2 N + 1 \rceil$	
Greedy	$0.5[\log_2 N+1]$	
Moore Curve, Sierpinski Curve	log N	
2-Opt	≈ 2	
Lin and Kernighan Heuristic	≈ 2	
qCABC	?	

Асимптотическая временная сложность

Algorithms	Upper-bound estimate	
Nearest Addition		
Nearest Insertion	$O(N^2)$	
Cheapest Insertion		
Nearest Segment Insertion		
Double Minimal Spanning Tree	$O(N^2)$	
Christofides	$O(N^3)$	
Nearest Neighbor, Double Ended NN	$O(N^2)$	
Greedy	$O(N^2 log N)$	
Moore Curve, Sierpinski Curve	O(N log N)	
2-Opt	$O(N^2)$	
Lin and Kernighan Heuristic	$\approx O(N^{2,2})$	
qCABC	$O(N^3)$	

Tестовые данные VLSI Data Sets

102 набора данных N = [131; 744 710]

$$d_1(v, w) = \left[\sqrt{|x(v) - x(w)|^2 + |y(v) - y(w)|^2} + 0.5 \right]$$

```
NAME : xqf131
COMMENT : Bonn VLSI data set with 131 points
COMMENT : Uni Bonn, Research Institute for Discrete Math
COMMENT : Contributed by Andre Rohe
TYPE : TSP
DIMENSION : 131
EDGE_WEIGHT_TYPE : EUC_2D
NODE_COORD_SECTION
1 0 13
2 0 26
3 0 27
4 0 39
5 2 0
6 5 13
```


Tестовые данные National TSPs

25 наборов данных N = [29; 71 009]

$$d_1(v, w) = \left[\sqrt{|x(v) - x(w)|^2 + |y(v) - y(w)|^2} + 0.5 \right]$$

NAME : 1u980

COMMENT: 980 locations in Luxembourg

COMMENT : Derived from National Imagery and Mapping Agency data

TYPE: TSP

DIMENSION: 980

EDGE_WEIGHT_TYPE : EUC_2D

NODE_COORD_SECTION

1 49525.5556 5940.5556

2 49525.5556 5940.5556

3 49738.8889 6345.0000

4 49608.3333 6405.8333

5 49796.6667 6155.5556

6 49828.6111 5764.7222

foreach tour construction algorithm *m* foreach data set *N* in range [1...102] for i in range [1...11] $f_{\varepsilon_i}(m,N) = \frac{f_i(m,N) - f_{opt}(m,N)}{f_{opt}(m,N)} * 100\%$ $f_{t_i}(m,N)$ -? if i > 1 then $f_{\varepsilon_{min}}(m,N)$ запоминается $f_{t_{sum}}(m,N)$ вычисляется $f_{t_{avg}}(m,N) = \frac{f_{t_{sum}}(m,N)}{10}$

// Improving stage foreach tour improving algorithm m' $f_{\varepsilon}(m+m',N), f_{t}(m+m',N)$ - ?

 $E(f_{\varepsilon_{min}}(m,N)), \sigma(f_{\varepsilon_{min}}(m,N))$ for all N - ? $max(f_{\varepsilon_{min}}(m,N)), min(f_{\varepsilon_{min}}(m,N))$ for all N - ?

Название	Ε(ε)	σ(ε)	max e	min ε
LKH 5/10	0,07%	0,05%	0,23%	0,00%
CHR + 2-Opt	5,77%	0,68%	11,02%	3,47%
GRD + 2-opt	6,22%	0,70%	9,89%	4,69%
DENN + 2-opt	10,95%	4,42%	23,51%	3,82%
NN + 2-opt	11,44%	1,87%	24,77%	4,26%
CHR	12,61%	1,08%	17,79%	9,31%
CI + 2-opt	13,05%	2,29%	21,86%	6,74%
NI + 2-opt	14,60%	5,53%	29,66%	5,86%
DMST-M + 2-opt	16,08%	8,39%	40,61%	4,80%
NSIM + 2-opt	17,63%	5,82%	33,65%	8,92%
GRD	18,12%	2,91%	31,34%	10,30%
DMST + 2-opt	19,08%	9,54%	39,12%	6,91%
CI	20,31%	1,44%	27,54%	12,46%
DENN	23,28%	1,62%	32,53%	13,88%
NN	23,94%	1,64%	30,97%	12,94%
SCI	26,25%	2,70%	33,05%	17,94%
NI	27,98%	1,89%	35,29%	14,89%
DMST-M	32,41%	3,15%	41,68%	18,55%
MC + 2-opt	32,41%	22,54%	177,83%	6,21%
NSI	36,23%	4,23%	48,17%	19,15%
DMST	40,09%	2,34%	48,88%	33,16%
SNSI	43,55%	5,64%	55,61%	25,89%
SNI	52,46%	3,19%	60,94%	36,77%
MC	63,93%	25,58%	242,41%	33,07%

Ожидаемые результаты

Парето-оптимальные алгоритмы

N = 1084	N = 5087	N = 10150	N = 30440	N = 52057	N = 104814
SCI	SCI				
CI	CI	CI	CI	CI	CI
				CI + 2-opt	CI + 2-opt
NN	NN	NN	NN	NN	NN
		DENN	DENN	DENN	DENN
			DENN + 2-opt		DENN + 2-opt
		GRD			
MC	MC	MC	MC	MC	MC
CHR				-	-
LKH	LKH	LKH	LKH	-	-

Список использованных источников

- 1. Applegate D.L., Bixby, R.E., Chvatal, V., Cook, W.J. The Traveling Salesman Problem. [Статья] // University Press, Princeton. Princeton : [б.н.], 2006 г.
- 2. Buchin K Space-Filling Curves, Delaunay Tessellations of Random Point Sets, and Flow Complexes [Раздел книги] // Organizing Points Sets. 2007. T. 2.
- 3. Christofides N. Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report of the graduate school of industrial administration [Статья] // Carnegie-Melcon university Press. Pittsburgh, Pa., : [б.н.], 1976 г..
- 4. Croes G.A. A method for solving traveling salesman problems [Статья] // Operations Research. 1958 г.. 6:791-812.
- 5. Croes G.A. The traveling salesman problem [Статья] // Operations Research. 1956 г.. 4:61-75.
- 6. Filip E., Otakar, M. The Travelling Salesman Problem and its Application in Logistic Practice [Статья] // WSEAS Transactions on Business and Economics. 2011 г.. 8. 4. стр. 163-173.
- 7. Flood M. M. The traveling-salesman problem [Статья] // Operations Research. 1956 г.. стр. 61-75.
- 8. Glover F. Punnen A. The traveling salesman problem: new solvable cases and linkages with the development of approximation algorithms [Статья] // J. Oper. Res. Soc. 1997 г.. 48. стр. 502-510.
- 9. Johnson D.S., McGeoch, L.A. Experimental Analysis of Heuristics for the STSP [Статья]. 1997 г..
- 10.Lenstra J. K. Local Search in Combinatorial Optimisation [Статья] // John Wiley and Sons Ltd. London : [б.н.]. стр. 215-310.
- 11.Sebo A. Eight-Fifth Approximation for TSP Paths [Статья] // Springer Berlin Heidelberg. 2013 г. стр. 362-374.
- 12.Авдошин С.М., Белов В.В. Обобщенный метод «волны» для решения экстремальных задач на графах // ЖВМиМФ, 1979, 19, No3. с. 739-755.
- 13.Гимади Э.Х., Глебов Н.И., Сердюков А.И. Алгоритм для приближенного решения задачи коммивояжера и его вероятностный анализ // Сибирский журнал исследования операций, 1994, №2, Т.1, с. 8-17.
- 14.Жихарев С. А., Костюк Ю. Л. Локальный поиск в метрической задаче коммивояжера // Геоинформатика. Теория и практика. Вып.1 Томск: Изд-во Томск. ун-та, 1998, с.84-95

Спасибо за внимание!

kate-c@bk.ru enchirkova@edu.hse.ru

Волновая функция

1	2	3	4	5
4	5	1	2	3

