Latest Advances in End -to-End Speech Recognition

Tara N. Sainath

November 2, 2022 tsainath@google.com

A Joint Effort Between Google Brain, Hardware and Speech Teams

What is End -to -End ASR?

A system which directly maps a sequence of input acoustic features into a sequence of graphemes or words.

A system which is trained to optimize criteria that are related to the final evaluation metric - word error rate.

Historical Development of End-to-End ASR

Connectionist Temporal Classification (CTC)

[Graves et al., 2006]

$$P(\mathbf{y}|\mathbf{x}) = \sum_{\hat{\mathbf{y}} \in \mathcal{B}(\mathbf{y}, \mathbf{x})} \prod_{t=1}^{T} P(\hat{y}_t | \mathbf{x})$$

- CTC introduces a special symbol blank (denoted by B) and maximizes the total probability of the label sequence by marginalizing over all possible alignments.
- No frame-level alignment is needed.

CTC-Based End-to-End ASR

- [Graves & Jaitly, 2014] proposed a system with character-based CTC which directly output word sequences given input speech
- LM incorporated into first-pass decoding; easy integration with WFSTs
 - [Hannun et al., 2014] [Maas et al., 2015]: Direct first-pass decoding with an LM as opposed to rescoring as in [Graves & Jaitly, 2014]
- Large-scale GPU training; data augmentation; multiple languages
 - [Hannun et al., 2014; DeepSpeech] [Amodei et al., 2015; DeepSpeech2]: Large scale GPU training; Data Augmentation; Mandarin and English
- Using longer span units: words instead of characters
 - [Soltau et al., 2017]: Word-level CTC targets, trained on 125,000 hours of speech.
 Performance close to or better than a conventional system, even without using an LM!
 - [Audhkhasi et al., 2017]: Direct Acoustics-to-Word Models on Switchboard
- And many others ...

Attention -based Encoder-Decoder Models

[Chan et al., 2015][Chorowski et al., 2015]

- Encoder (analogous to AM):
 - Transforms input speech into higher-level representation
- Attention (alignment model):
 - Identifies encoded frames that are relevant to producing current output
- Decoder (analogous to PM, LM):
 - Operates autoregressively by predicting each output token as a function of the previous predictions

Comparing Various End-to-End Approaches

[Prabhavalkar et al., 2017]

Model	Online/Offline	VoiceSearch Word Error Rate (%)
Conventional Model -	online	9.9
	offline	8.6
CTC-Grapheme (no LM)	online	53.4
Attention-based Model	offline	11.7

- Decoding CTC-grapheme models without an LM performs poorly.
- Attention-based model performs better, but still lags behind a conventional model.

2018: Further Improvements

Multi-headed Attention

[A. Vaswani, 2017][Chiu et al., 2018]

- Multi-headed attention examines different parts of the utterance for each predicted label.
- Model looks predominantly towards previous frames.

Word Pieces

[Schuster, 2012][Chiu et al., 2018]

- We want to use subword units longer than graphemes:
 - Longer units have a lower LM perplexity
 - Longer units gives improved decoder efficiency
- Word pieces is a good longer-unit choice [Schuster, 2012]
 - Has shown good results for RNN-T [Rao, ASRU 2017]
- Word piece model (WPM) details
 - Trained to maximize LM likelihood on training data
 - Position dependent, determined determinstically
 - Units back off to characters → No OOVs

Good Afternoon → _go o d _aft er noon

Minimum Word Error Rate (MWER)

[Stolcke et al., 1997][Povey, 2003][Prabhavalkar et al., 2018]

 End-to-end models are typically trained by optimizing cross entropy loss (i.e., maximizing log-likelihood of the training data)

$$\mathcal{L}_{\text{CE}} = \sum_{(\mathbf{x}, \mathbf{y}^*)} \sum_{u=1}^{L+1} -\log P(y_u^* | y_{u-1}^*, \cdots, y_0^* = \langle \text{sos} \rangle, \mathbf{x})$$

- Training criterion does not match metric of interest: Word Error Rate
- MWER optimizes the expected word error rates:

$$\mathcal{L}_{ ext{werr}}(\mathbf{x}, \mathbf{y}^*) = \mathbb{E}[\mathcal{W}(\mathbf{y}, \mathbf{y}^*)] = \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x})\mathcal{W}(\mathbf{y}, \mathbf{y}^*)$$

Number of Word Errors

Optimization improvements

[Chiu et al., 2018]

- Scheduled Sampling [S. Bengio, 2015]
 - Feed back in the prediction from the model rather than the true previous prediction
 - Helps prevent overfitting
- Label smoothing [C. Szegedy, 2016]
 - Take the logit class with maximum probability and smooth it over the remaining labels
 - Helps prevent overfitting
- Sync training [P. Goyal, 2017]
 - Gradient updates between workers are synchronized
 - Leads to faster convergence and better model quality

Comparison to Conventional Model

[Chiu et al., 2018]

Model	1st Pass Model Size	VoiceSearch Word Error Rate (%)
Conventional Server	0.1GB (AM) + 2.2 GB (PM) + 4.9 GM (LM) =	6.7
Attention-based Model	7.2 GB 0.4 GB	5.6

- 16% relative performance improvement over conventional model
- 18X smaller than conventional model in 1st pass
- Main drawback: model is not streaming

2019-2020: Online End -to-End Models for Pixel 4

Streaming Speech Recognition

Recurrent Neural Network Transducer (RNN-T)

[Graves, 2012], [Rao et al., 2017], [He et al., 2018]

- Encoder Network
 - Set of recurrent layers (like am AM)
- Prediction Network
 - recurrent LM
- Joint Network
 - combines AM and LM predictions
- Jointly optimized end-to-end
- No alignment needed.
- Streaming model.

Low Latency RNN-T (RNN-T Endpointer)

[Li et al., 2020][Sainath et al., 2020]

EOU Modeling

Jointly models End-Of-Utterance (EOU) with ASR in RNN-T for better latency.

Accurate EOU Timing

Based on time alignment of the end of last word.

Adding early and late penalties for EOU predictions.

Reducing Premature EOU

EOU terminates beam search paths during inference. Sequence training with MWER.

Model	VoiceSearch Word Error Rate (%)	EOU Latency (90 percentile)
On-Device RNN-T + VAD	7.4%	860ms
On-Device RNN-T EP	6.8%	790ms

RNN-EP gives better WER and latency tradeoff compared to RNN-T + VAD

Second-pass LAS Rescoring

[Sainath et al. 2019][Sainath et al., 2020]

- 1st-pass RNN-T for streaming applications.
- 2nd-pass full-context attention-based LAS decoder for better quality.
- Shared encoder for a compact model.

Model	VoiceSearch Word Error Rate (%)	
On-Device RNN-T EP	6.8%	
+ LAS Rescoring	6.1%	

Comparison to Conventional Model [Sainath et al., 2020]

Model	Size	VoiceSearch Word Error Rate (%)	EOU Latency (90 percentile)
	0.1GB (AM) +		
Conventional Server	2.2 GB (PM) +		
	4.9 GB (LM) +	6.6%	870ms
	80 GB (2nd-pass LM) =		
	87.2 GB		
On-device End- to-End	0.18 GB	6.1%	780ms

You can ask Assistant to do things that are local to your phone, and they'll happen near instantaneously...it is much faster and needs to rely on Google's server much less.

Gboard Demo

Summary:

- Attention-based End-to-End models (LAS) achieves state-of-the-art performance, but is not streaming.
- Recurrent Neural Network Transducer (RNN-T) provides an accurate and fast on-device speech recognition experience.
- RNN-T EP + 2nd-pass LAS surpasses server-side conventional model in both quality and latency.

Challenges:

- Dealing with long tail words.
- Further simplify the ASR system to build a single End-to-End model for multiple languages.

2021 On-Device Improvements

2021 End-to-End Goals with Pixel 6

Our goals in Pixel 6 are to develop an on-device end-to-end model that

- Surpasses quality (as measured by word error rate) of a conventional server-based model, on both general search traffic and long-tail phrases
- Is faster in terms of latency (endpointer, computational) compared to serverbased model
- Consumes lower power than Pixel 4 / 5 for both short and long form audio.

Pixel 4/5 Model

- Model Details
 - 105M param LSTM Encoder
 - o 20M param LSTM Decoder
 - 54M Transformer Rescorer + Additional LSTM Encoder
 - Model trained only on multidomain audio-text pairs

Pixel 6 Specifications

- Pixel 6 Google Tensor SoC Hardware
 - Google Tensor on-device edge TPU
 - 8 CPU cores
 - 8G (Pixel 6) or 12G (Pixel 6 Pro) DRAM
- We want an architecture where
 - o Encoder can be parallelized
 - LSTM encoder → conformer encoder
 - Decoder that can small enough fit into SRAM
 - LSTM decoder → embedding decoder
 - o **2nd-pass** is **streaming** for long-form
 - Transformer Rescorer → Multi-rate encoders
 - Does well on long-tail named entities
 - Additional Conformer Language Model

Latency Improvement: LSTM Encoder → Conformer Encoder

[Gulati et al, 2020][Zhang et al., 2020]

LSTM

- Sequential time dependency → not TPU friendly
- Deletions in Long-form due to time dependency

Conformer/Transformer

- Can compute multiple activations in parallel → more TPU friendly
- Deletion issue less of a concern

Latency Improvement: LSTM Decoder→ Embedding Decoder

[Variani et al, 2020][Botros et al., 2021]

- Motivation:
 - Bottleneck of TPU is the latency transfer of parameters between CPU and SRAM on the TPU
 - If decoder is small enough, it can fit inside local SRAM on TPU
- Replace the LSTM decoder (33M params) with a simple embedding decoder lookup table (~2M params)
- This gives ~30% computation
 speedup with no accuracy
 degradation

Quality Improvement: Multi-rate Encoders

[Tripathi et al, 2021][Yu et al., 2021][Narayanan et al., 2021]

- Segment and rescore (Pixel 5 architecture)
 - Not ideal for long-form
 - Beam search is better then rescoring
- Multi-rate encoders (Cascaded encoders)
 - 1st-pass causal encoder →decoder
 - 2nd-pass additional non-causal layers → decoder
 - Quality improvement with beam search while still being able to run in real time

Quality Improvement: Neural Language Model

[Variani et al, 2020]

 Incorporate Hybrid Autoregressive Transducer (HAT) factorization to better integrate language model

$$y^* = \arg\max_{y} \left[\log p(y|x) - \lambda_2 \log p_{ILM}(y) + \lambda_1 \log p_{LM}(y) \right]$$

- Language models:
 - Perform shallow fusion with a contextual biasing FST
 - Perform rescoring with a conformer LM trained on ~100 billion text utterances. This helps to address the long-tail proper noun issue.

ASR | WER for Short Form: en -US General Test Sets

[Sainath et al, 2021]

NGA: en-US with Conformer Cascaded Encoder + Neural LM is the best ASR we have built

Test Set / Vertical (en_us)	Server WER [Classic]	Pixel 4/5 WER [LSTM]	Pixel 6 WER [Conformer]
VS (Voice Search)	7.3	6.0	5.6
20 18_VS	7.5	6.9	6.4
VS_NO ISY	9.6	9.9	8.2
NUMERIC	5.7	5.4	5.2
VA_PLANNING	4.2	4.4	3.1
ASSISTANT_ON_ANDROID	6.8	8.0	5.9

ASR | WER for Short Form: en -US Biasing Test Sets

[Zhao et al, 2019]

- Biasing is an attempt to adapt the priors baked into the speech models to better model information gained between training and inference (aka context)
- Common uses cases include contacts, media and apps

Vertical / Use Cases	Server WER [Classic] w/ biasing (w/o biasing)	Pixel 4/5 WER [LSTM] w/ biasing (w/o biasing)	Pixel 6 WER [Conformer] w/ biasing (w/o biasing)
Contacts	9.7 (17.2)	6.1 (15.5)	3.3 (14.0)
Media	7.2 (7.8)	4.2 (9.1)	3.5 (8.7)
Open Apps	6 (6.1)	3.5	2.6 (5.0)

Biasing on conformer models further accelerated the quality improvements across verticals

ASR | Quality Wins on SxS Live Traffic

SxS: Live voice search queries are recognized by both on-device conformer and server. Then both results are sent to human raters for comparison. The on-device conformer model has cascaded encoder and neural LM rescorer.

On-device Conformer vs Server (SxS)							
Win	Loss	Neutral	p-Value	Impact			
120	36	334	<0.1%	5.7e-2			

Win/Loss ratio: 120 / 36, which means new model is much better than current server model

Video on Rare Words

X Bear County Texas

Pixel4 (RNN-T+Transformer Rescorer) Pixel6 (Conformer+Cascade Encoder+NeuralLM)

✓ Bexar County Texas

Pixel 6 Video

Summary:

- Attention-based End-to-End models (LAS) achieves state-of-the-art performance, but is not streaming.
- Recurrent Neural Network Transducer (RNN-T) provides an accurate and fast on-device speech recognition experience.
- [Pixel 4/5] RNN-T EP + 2nd-pass LAS surpasses server-side conventional model in both general search quality and latency.
- [Pixel 6] Cascaded Encoder + neural LM surpasses server-side conventional model and Pixel 4/5 in both general search and long-tail quality and latency.

Future Challenges

E2E multi-dialect ASR

[Li et al., 2018, Toshniwal et al, 2018]

Conventional Systems

Conventional Co-training.

In conventional systems, languages/dialects, are handled with **individual AMs, PMs and LMs**.

Upscaling is becoming challenging.

A single model for all.

[Li et al., 2018]

Task

• **7 English dialects:** US (America), IN (India), GB (Britain), ZA (South Africa), AU (Australia), NG (Nigeria & Ghana), KE (Kenya)

★ unbalanced dialect data

★ unbalanced target classes

E2E With Dialect as Input Features

Dialect	US	IN	GB	ZA	AU	NG	KE
Baseline	9.7	16.2	12.7	11.0	12.1	33.4	19.0
(dialect-dep.)	9.1	10.2	12.7	11.0	12.1	33.4	19.0
encoder	9.6	16.4	11.8	10.6	10.7	31.6	18.1
decoder	9.4	16.2	11.3	10.8	10.9	32.8	18.0
both	9.1	15.7	11.5	10.0	10.1	31.3	17.4

★ feeding dialect to **both encoder and decoder** gives the largest gains

Cross - lingual sharing boosts quality.

Infrastructure **simplified** with one model.

Question: Can we train one model on 44 low-resource languages?

Key Result: Comparing to E2E trained on each individual language, 1 MMASR E2E modelvins over 35 languages.

Building high quality teacher models across languages.

With a fixed 1B-param model size, lifelong learning resolves the quality regressions.

Evn	en-us	Avg. WER(%)				
Exp.		15-lang	32-lang	66-lang	85-lang	
Monolingual	4.6	9.3	11.9	-	-	
Training from scratch	5.4	10.4	13.3	11.5	12.3	
Lifelong learning	4.2	8.8	11.5	9.9	10.9	

Research Challenges

- How can we scale multi-lingual E2E for more languages?
- How can we maintain quality when the model is not fed a language-id?
- How do we handle code-switching within the utterance?
- How can we do this at an appropriate model size for on-device?

Thank You

[Audhkhasi et al., 2017] K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, D. Nahamoo "Direct Acoustics-to-Word Models for English Conversational Speech Recognition," Proc. of Interspeech, 2017.

[Bahdanau et al., 2017] D. Bahdanau, P. Brakel, K. Xu, A. Goyal, R. Lowe, J. Pineau, A. Courville, Y. Bengio, "An Actor-Critic Algorithm for Sequence Prediction," Proc. of ICLR, 2017.

[Battenberg et al., 2017] E. Battenberg, J. Chen, R. Child, A. Coates, Y. Gaur, Y. Li, H. Liu, S. Satheesh, D. Seetapun, A. Sriram, Z. Zhu, "Exploring Neural Transducers For End-to-End Speech Recognition," Proc. of ASRU, 2017.

[Botros et al, 2021] R. Botros et al, "Tied & Reduced RNN-T Decoder," in Proc. Interspeech, 2021.

[Chan et al., 2015] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, "Listen, Attend and Spell," CoRR, vol. abs/1508.01211, 2015.

[Chang et al., 2017] S-Y. Chang, B. Li, T. N. Sainath, G. Simko, C. Parada, "Endpoint Detection using Grid Long Short-Term Memory Networks for Streaming Speech Recognition," Proc. of Interspeech, 2017.

[Chang et al., 2018] S-Y. Chang, B. Li, G. Simko, T. N. Sainath, A. Tripathi, A. van den Oord, O. Vinyals, "Temporal Modeling Using Dilated Convolution and Gating for Voice-Activity-Detection," Proc. of ICASSP, 2018.

[Chiu and Raffel, 2017] C.-C. Chiu, C. Raffel, "Monotonic Chunkwise Alignments," Proc. of ICLR, 2017.

[Chiu et al., 2018] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina, N. Jaitly, B. Li, J. Chorowski, M. Bacchiani, "State-of-the-art Speech Recognition With Sequence-to-Sequence Models," Proc. of ICASSP, 2018.

[Chorowski et al., 2015] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, "Attention-Based Models for Speech Recognition," in Proc. of NIPS, 2015.

[Graves et al., 2006] A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber, "Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks," Proc. of ICML, 2006.

[Graves, 2012] A. Graves, "Sequence Transduction with Recurrent Neural Networks," Proc. of ICML Representation Learning Workshop, 2012.

[Graves et al., 2013] A. Graves, A. Mohamed, and G. Hinton, "Speech Recognition with Deep Neural Networks," in Proc. ICASSP, 2013.

[Gulati et al., 2020] Conformer: Convolution-augmented Transformer for Speech Recognition, in Proc. ICASSP, 2020.

[Gulcehre et al., 2015] C. Gulcehre, O. Firat, K. Xu, K. Cho, L. Barrault, H.-C. Lin, F. Bougares, H. Schwenk, Y. Bengio, "On Using Monolingual Corpora in Neural Machine Translation", CoRR, vol. abs/1503.03535, 2015.

[Hannun et al., 2014] A. Hannun, A. Maas, D. Jurafsky, A. Ng, "First-Pass Large Vocabulary Continuous Speech Recognition using Bi-Directional Recurrent DNNs," CoRR, vol. abs/1408.2873, 2014.

[He et al., 2017] Y. He, R. Prabhavalkar, K. Rao, W. Li, A. Bakhtin and I. McGraw, "Streaming small-footprint keyword spotting using sequence-to-sequence models," Proc. of ASRU, 2017.

[He et al., 2018] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao, D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang, D. Bhatia, Y. Shangguan, B. Li, G. Pundak, K. C. Sim, T. Bagby, S-Y. Chang, K. Rao, A. Gruenstein, "Streaming End-to-end Speech Recognition For Mobile Devices," CoRR, vol. abs/1811.06621, 2018.

[Jaitly et al., 2016] N. Jaitly, D. Sussillo, Q. V. Le, O. Vinyals, I. Sutskever, S. Bengio, "An Online Sequence-to-Sequence Model Using Partial Conditioning," Proc. of NIPS, 2016.

[Kannan et al., 2018] A.Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, R. Prabhavalkar, "An analysis of incorporating an external language model into a sequence-to-sequence model," Proc. of ICASSP, 2018.

[Kim and Rush, 2016] Y. Kim and A. M. Rush, "Sequence-level Knowledge Distillation," Proc. of EMNLP, 2016.

[Kim et al., 2017] S. Kim, T. Hori and S. Watanabe, "Joint CTC-attention based End-to-End Speech Recognition using Multi-Task Learning," Proc. of ICASSP, 2017.

[Kingsbury, 2009] B. Kingsbury, "Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling," Proc. of ICASSP, 2009.

[Li et al., 2018] B. Li, T. N. Sainath, K. C. Sim, M. Bacchiani, E. Weinstein, P. Nguyen, Z. Chen, Y. Wu, K. Rao, "Multi-Dialect Speech Recognition With A Single Sequence-To-Sequence Model," Proc. of ICASSP, 2018.

[Li et al., 2020] B. Li, S. Y. Chang, T. N. Sainath, R. Pang, Y. He, T. Strohman, Y. Wu, "Towards Fast and Accurate Streaming End-To-End ASR" Proc. of ICASSP, 2020.

[Maas et al., 2015] A. Maas, Z. Xie, D. Jurafsky, A. Ng, "Lexicon-Free Conversational Speech Recognition with Neural Networks," Proc. of NAACL-HLT, 2015.

[McGraw et al., 2016] I. McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, K. Rao, D. Rybach, O. Alsharif, H. Sak, A. Gruenstein, F. Beaufays, C. Parada, "Personalized speech recognition on mobile devices", Proc. of ICASSP, 2016

[Narayanan et al., 2021] A. Narayanan et al., "Cascaded encoders for unifying streaming and non-streaming ASR," in Proc. of ICASSP, 2021.

[Rabiner, 1989] L. R. Rabiner, "A tutorial on hidden markov models and selected applications in speech recognition," Proc. of IEEE, 1989.

[Prabhavalkar et al., 2017] R. Prabhavalkar, K. Rao, T. N. Sainath, B. Li, L. Johnson, N. Jaitly, "A Comparison of Sequence-to-Sequence Models for Speech Recognition," Proc. of Interspeech, 2017.

[Prabhavalkar et al., 2018] R. Prabhavalkar, T. N. Sainath, Y. Wu, P. Nguyen, Z. Chen, C.-C. Chiu, A. Kannan, "Minimum Word Error Rate Training for Attention-based Sequence-to-Sequence Models," Proc. of ICASSP, 2018.

[Povey, 2003] D. Povey, "Discriminative Training for Large Vocabulary Speech Recognition", Ph.D. thesis, Cambridge University Engineering Department, 2003.

[Pundak et al., 2018] G. Pundak, T. N. Sainath, R. Prabhavalkar, A. Kannan, D. Zhao, "Deep context: end-to-end contextual speech recognition," Proc. of SLT, 2018.

[Rao et al., 2017] K. Rao, H. Sak, R. Prabhavalkar, "Exploring Architectures, Data and Units For Streaming End-to-End Speech Recognition with RNN-Transducer", Proc. of ASRU, 2017.

[Ranzato et al., 2016] M. Ranzato, S. Chopra, M. Auli, and W. Zaremba, "Sequence level training with recurrent neural networks," Proc. of ICLR, 2016.

[Sainath et al., 2018] T. N. Sainath, C.-C. Chiu, R. Prabhavalkar, A. Kannan, Y. Wu, P. Nguyen, Z. Chen, "Improving the Performance of Online Neural Transducer Models," Proc. of ICASSP, 2018.

[Sainath et al., 2019] T. N. Sainath, R. Pang, D. Rybach, Y. He, R. Prabhavalkar, W. Li, M. Visontai, Q. Liang, T. Strohman, Y. Wu, I. McGraw, and C.C Chiu,, "Two-Pass End-to-End Speech Recognition," Proc. of Interspeech, 2019.

[Sainath et al, 2021] T.N. Sainath, Y. He, A. Narayanan, et al "An Efficient Streaming Non-Recurrent On-Device End-to-End Model with Improvements to Rare-Word Modeling," in Proc. Interspeech, 2021.

[Sainath et al., 2020] T. N. Sainath, Y. He, et. al., "A streaming on-device End-To-End model surpassing server-side conventional model quality and latency," Proc. of ICASSP, 2020.

[Sak et al., 2015] Hasim Sak, Andrew Senior, Kanishka Rao, Francoise Beaufays, "Fast and Accurate Recurrent Neural Network Acoustic Models for Speech Recognition," Proc. of Interspeech, 2015.

[Sak et al., 2017] H. Sak, M. Shannon, K. Rao, and F. Beaufays, "Recurrent neural aligner: An encoder-decoder neural network model for sequence to sequence mapping," in Proc. of Interspeech, 2017.

[Schuster & Nakajima, 2012] M. Schuster and K. Nakajima, "Japanese and Korean Voice Search," Proc. of ICASSP, 2012.

[Shannon, 2017] M. Shannon, "Optimizing expected word error rate via sampling for speech recognition," in Proc. of Interspeech, 2017.

[Sim et al., 2017] K. Sim, A. Narayanan, T. Bagby, T. N. Sainath, and M. Bacchiani, "Improving the Efficiency of Forward-Backward Algorithm using Batched Computation in TensorFlow," Proc. of ASRU, 2017.

[Sriram et al., 2018] A. Sriram, H. Jun, S. Satheesh, A. Coates, "Cold Fusion: Training Seq2Seq Models Together with Language Models," Proc. of ICLR, 2018.

[Stolcke et al., 1997] A. Stolcke, Y. Konig, M. Weintraub, "Explicit word error minimization in N-best list rescoring," Proc. of Eurospeech, 1997.

[Su et al., 2013] H. Su, G. Li, D. Yu, and F. Seide, "Error back propagation for sequence training of context-dependent deep networks for conversational speech transcription," Proc. of ICASSP, 2013.

[Szegedy et al., 2016] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," Proc. of CVPR, 2016.

[Toshniwal et al., 2018] S. Toshniwal, T. N. Sainath, R. J. Weiss, B. Li, P. Moreno, E. Weinstein, K. Rao, "Multilingual Speech Recognition With A Single End-To-End Model," Proc. of ICASSP, 2018.

[Tripathi et al., 2021] A. Tripathi et al., "Transformer transducer: One model unifying streaming and non-streaming speech recognition," Proc. of ICASSP, 2021.

[Variani et al., 2020] E. Variani et al, "Hybrid Autoregressive Transducer," in Proc. ICASSP, 2020.

[Vaswani et al., 2017] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention Is All You Need," Proc. of NIPS, 2017.

[Wiseman and Rush, 2016] S. Wiseman and A. M. Rush, "Sequence-to-Sequence Learning as Beam Search Optimization," Proc. of EMNLP, 2016.

[Yu et al., 2021] J. Yu et al., "Dual-mode ASR: Unify and improve streaming ASR with full-context modeling", Proc. of ICLR, 2021.

[Zhao et al., 2019] D. Zhao, T.N. Sainath, D. Rybach, P. Rondon, D. Bhatia, B. Li and R. Pang, "Shallow-Fusion End-to-End Contextual Biasing," in Proc. Interspeech, 2019.

[Zhang et al., 2020] Q. Zhang et al, "Transformer Transducer: A Streamable Speech Recognition Model with Transformer Encoders and RNN-T Loss," in Proc. ICASSP, 2020.