Ejercicios Clase 2

Michelle Wachs

- (1) Escriba todos los términos del polinomio $s_{\lambda}(x_1, x_2, x_3, 0, 0, \dots)$ para cada partición λ de 4 y 5. Es decir, solamente incluya los términos de s_{λ} que contengan x_1, x_2, x_3 . Esto es lo que se conoce como un polinomio de Schur.
- (2) Expanda $h_{3,2,1}$ y $e_{3,2,1}$ en la base de Schur.
- (3) Expanda $h_{3,2}$ en la base de suma de potencias (p-base).
- (4) Recuerde que $\omega: QSym_n \to QSym_n$ está definida en la base de funciones quasisimétricas fundamentales de Gessel según

$$\omega(F_S) = F_{[n-1]\backslash S}.$$

Use esta definición para mostrar que $\omega(s_{\lambda}) = s_{\lambda'}$.

(5) Recuerde que para $f(x) \in \mathbb{R}[X]$,

$$ps(f(x_1, x_2, \dots)) := f(1, q, q^2, \dots).$$

Demuestre que

$$ps(F_S) = \frac{q^{\sum S}}{(1-q)(1-q^2)\dots(1-q^n)}.$$

Sugerencia: Primero intente demostrar esto para $S=\emptyset$ y S=[n-1].

(6) Verifique la q-análoga de la fórmula que cuenta el número de SYT en términos de longitudes de ganchos

$$\sum_{T \in SYT_{\lambda}} q^{\text{maj}(T)} = q^{b(\lambda)} \frac{[n]_q!}{\prod_{x \in \lambda} [h_x]_q},$$

para $\lambda = (3, 2)$.

(7) Demuestre:

$$h_k h_{n-k} = \sum_{\sigma \in \mathfrak{S}_{n,k}} F_{DES(\sigma)},$$

en donde $\mathfrak{S}_{n,k}$ es el conjunto de palabras de longitud n sobre el alfabeto $\{1,2\}$ con k unos.

(8) Demuestre: Para todo $\lambda \vdash n$,

$$s_{\lambda} = \sum_{T \in SYT_{\lambda}} F_{DES(T)}.$$

1