Wahrscheinlichkeitstheorie und Statistik - Zusammenfassung

Julian Shen

3. Februar 2022

1 Grundbegriffe

Definition: Ergebnisse und Ereignisse

- Grundraum ist eine nicht leere Menge $\Omega \neq \emptyset$ und enthält alle möglichen Ergebnisse eines Zufallsexperiments
- Ereignisse sind Teilmengen $A \subseteq \Omega$, denen eine Wahrscheinlichkeit zugeordnet werden kann. Falls ein ω Ergebnis ist, dann heißt $\{\omega\}$ Elementarereignis

Ereignisse können durch Mengenoperationen logisch verknüpft werden:

- $A \cup B$: Ereignis A oder B tritt ein ("inklusives oder")
- $A \cap B$: Ereignis A und B treffen ein
- $A \setminus B$: Ereignis A tritt ein, aber Ereignis B trifft nicht ein
- B^C: Ereignis B trifft nicht ein
- $A \subseteq B$: Wenn A eintritt, dann tritt auch B ein

Jedem Ereignis kann durch die **relative Häufigkeit** eine Wahrscheinlichkeit zugeordnet werden. Für n Wiederholungen und Ergebnisse $\omega_1, \ldots, \omega_n \in \Omega$ gilt:

$$\mathbb{P}_n(A) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{\omega_i \in A\}}$$

Definition: Diskretes Wahrscheinlichkeitsmaß und Wahrscheinlichkeitsraum

Eine Abbildung $\mathbb{P}: \mathscr{P}(\Omega) \to [0,1]$ heißt diskretes Wahrscheinlichkeitsmaß, falls

- $\mathbb{P}(\Omega) = 1$
- $\forall A_n \subseteq \Omega, n \in \mathbb{N}$, disjunkt: $\mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{i=1}^n \mathbb{P}(A_n)$ (σ -Additivität)
- es existiert eine abzählbare Menge $\Omega_0 \subseteq \Omega$ mit $\mathbb{P}(\Omega_0) = 1$

Dann heißt (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum.

Rechenregeln für diskrete Wahrscheinlichkeitsräume

- $\mathbb{P}(\emptyset) = 0$
- $\mathbb{P}(A^{\mathsf{C}}) = 1 \mathbb{P}(A)$
- $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Definition: Bernoulliverteilung

Wahrscheinlichkeitsverteilung heißt Bernoulliverteilung Ber_p mit Erfolgswahrscheinlichkeit p, wenn:

• Grundraum $\Omega = \{0, 1\}$

• $\mathbb{P}(1) = p$ für ein $p \in [0, 1]$

Es gilt
$$\mathbb{P}(\{0\}) = 1 - \mathbb{P}(\{1\}) = 1 - p$$

Definition: Gleichverteilung

Das Wahrscheinlichkeitsmaß (Ω, \mathbb{P}) heißt Gleichverteilung oder **Laplace-Verteilung** U_A auf Ω , falls

• $\Omega \neq \emptyset$ endlich

• $\mathbb{P}(A) = \frac{|A|}{|\Omega|}$, für $A \subseteq \Omega$

Urnenmodelle/Fächermodelle

Urnenmodell mit	mit	ohne	
<i>n</i> Kugeln und	Zurücklegen	Zurücklegen	
k Ziehungen			
mit	n ^k	n!	unterscheidbare
Reihenfolge	"	$\overline{(n-k)!}$	Murmeln
ohne	$\binom{n+k-1}{k}$	(n)	ununterscheidbare
Reihenfolge	(k)	$\binom{n}{k}$	Murmeln
	mit	ohne	Verteilung von
	Mehrfachbelegung	Mehrfachbelegung	k Murmeln auf
			<i>n</i> Fächer

Urnenmodelle ermöglichen es, die Wahrscheinlichkeiten zu bestimmen, falls von einer Gleichverteilung ausgegangen werden kann!

Definition: Zähldichte

Sei (Ω, \mathbb{P}) ein diskreter Wahrscheinlichkeitsraum. Dann wird die Funktion

$$f: \Omega \to [0,1], f(\omega) = \mathbb{P}(\{\omega\})$$

Wahrscheinlichkeitsfunktion oder Zähldichte von \mathbb{P} genannt.

Diese besitzt folgende Eigenschaften:

- $\Omega_T \coloneqq \{\omega \in \Omega \mid f(\omega) > 0\}$ ist abzählbar und heißt **Träger** von $\mathbb P$ bzw. von f
- $\sum_{\omega \in \Omega} f(\omega) = 1$

Die Zähldichte ist eindeutig!

Definition: Binomialverteilung

Das Wahrscheinlichkeitsmaß $\mathbb{P} = Bin_{(n,p)}$ auf $\{0,\ldots,n\}$ mit der Zähldichte

$$f(k) = \binom{n}{k} p^k \cdot (1-p)^{n-k} \qquad \forall k \in \{0, \dots, n\}$$

heißt **Binomialverteilung** mit Parametern $n \in \mathbb{N}$ und $p \in [0, 1]$.

Definition: Geometrische Verteilung

Das Wahrscheinlichkeitsmaß $\mathbb{P} = Geo_p$ auf \mathbb{N}_0 mit der Zähldichte

$$f(k) = (1-p)^k \cdot p \qquad \forall k \in \mathbb{N}_0$$

heißt geometrische Verteilung mit Parameter $p \in (0, 1]$.

2 Bedingte Wahrscheinlichkeit und Unabhängigkeit

Definition: Bedingte Wahrscheinlichkeit

Für (Ω, \mathbb{P}) diskreter Wahrscheinlichkeitsraum und $A, B \in \Omega$ mit $\mathbb{P}(B) > 0$ heißt

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

die bedingte Wahrscheinlichkeit von A gegeben B.

Multiplikationsformel

Seien $A_1, \ldots, A_n \subseteq \Omega$ Ereignisse mit $\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) > 0$, dann gilt

$$\mathbb{P}(A_1 \cap \ldots \cap A_{n-1}) = \mathbb{P}(A_1) \cdot \mathbb{P}(A_2 \mid A_1) \cdot \mathbb{P}(A_3 \mid A_1 \cap A_2) \cdots \mathbb{P}(A_n \mid A_1 \cap \ldots \cap A_{n-1})$$

Im Fall von n=2 gilt: $\mathbb{P}(A \cap B) = \mathbb{P}(B) \cdot \mathbb{P}(A \mid B)$

Satz von der totalen Wahrscheinlichkeit und Satz von Bayes

Sei (Ω, \mathbb{P}) ein diskreter Wahrscheinlichkeitsraum, I eine abzählbare Indexmenge, $B_i \subseteq \Omega$, $i \in I$, disjunkt mit $\mathbb{P}(B_i) > 0$ und $\bigcup_{i \in I} B_i = \Omega$ und $A \subseteq \Omega$ beliebig.

• Es gilt der Satz von der totalen Wahrscheinlichkeit:

$$\mathbb{P}(A) = \sum_{i \in I} \mathbb{P}(A \mid B_i) \cdot \mathbb{P}(B_i)$$

• Falls $\mathbb{P}(A) > 0$ und $k \in I$, dann gilt der **Satz von Bayes**:

$$\mathbb{P}(B_k \mid A) = \frac{\mathbb{P}(A \mid B_k) \cdot \mathbb{P}(B_k)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A \mid B_k) \cdot \mathbb{P}(B_k)}{\sum_{i \in I} \mathbb{P}(A \mid B_i) \cdot \mathbb{P}(B_i)}$$

Definition: Stochastische Unabhängigkeit

Sei (Ω, \mathbb{P}) ein diskreter Wahrscheinlichkeitsraum. Zwei Ereignisse $A, B \subseteq \Omega$ heißen **sto-chastisch unabhängig**, falls

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

Ereignisse $A_1, \ldots, A_n \subseteq \Omega$ heißen **stochastisch unabhängig**, wenn für jede Indexmenge $I \subseteq \{1, \ldots, n\}, I \neq \emptyset$, gilt

$$\mathbb{P}(\bigcap_{i\in I} A_i) = \prod_{i\in I} \mathbb{P}(A_i)$$

Achtung: Mehr als zwei Ereignisse A_1, \ldots, A_n sind im Allgemeinen <u>nicht</u> stochastisch unabhängig, wenn nur $\mathbb{P}(\bigcap_{i=1}^n A_i) = \prod_{i=1}^n \mathbb{P}(A_i)$ gilt! Gleiches gilt, wenn jeweils nur zwei der Ereignisse stochastisch unabhängig sind.

3 Zufallsvariablen und ihre Verteilungen

Definition: S-wertige Zufallsvariable

Ist (Ω, \mathbb{P}) ein diskreter Wahrscheinlichkeitsraum und $S \neq \emptyset$ eine beliebige Menge, so wird die Abbildung $X : \Omega \to S$ **S-wertige Zufallsvariable** genannt.

Definition: Verteilung

Ist $X: \Omega \to S$ eine Zufallsvariable auf einem diskreten Wahrscheinlichkeitsraum (Ω, \mathbb{P}) , dann wird durch

$$\mathbb{P}^X(B) := \mathbb{P}(X^{-1}(B)) \qquad \forall B \subseteq S$$

ein Wahrscheinlichkeitsmaß \mathbb{P}^X auf S definiert, welches Verteilung von X genannt wird. (S, \mathbb{P}^X) ist ein diskreter Wahrscheinlichkeitsraum. Notation für Urbilder:

- $\{X \in B\} := \{\omega \in \Omega \mid X(\omega) \in B\} = X^{-1}(B)$
- $\{X = x\} := \{\omega \in \Omega \mid X(\omega) = x\} = X^{-1}(\{x\})$
- $\{X > x\} := \{\omega \in \Omega \mid X(\omega) > x\} = X^{-1}((x, \infty))$

Zudem schreibt man $\mathbb{P}(X \in B) := \mathbb{P}(\{X \in B\})$

Definition: Stochastische Unabhängigkeit von Zufallsvariablen

Sei (Ω, \mathbb{P}) ein diskreter Wahrscheinlichkeitsraum und $S_i, i \in \{1, ..., n\}$ nichtleere Zufallsvariablen. Zufallsvariablen $X_i : \Omega \to S_i, i \in \{1, ..., n\}$ heißen **stochastisch unabhängig**, wenn für beliebige $B_i \subseteq S_i$ die Ereignisse $\{X_1 \in B_1\}, ..., \{X_n \in B_n\}$ stochastisch unabhängig sind.

Auch der Vektor $(X_1, \ldots, X_n): \Omega \to S_1 \times \cdots \times S_n$ ist eine Zufallsvariable mit Verteilung $\mathbb{P}^{(X_1, \ldots, X_n)}$ auf $S_1 \times \cdots \times S_n$.

Bemerkung zur Schreibweise: $(X_1 \in B_1, X_2 \in B_2) = (X_1 \in B_1) \cap (X_2 \in B_2)$

Satz für stochastisch unabhängige Zufallsvariablen

Es sind äquivalent:

- X_1, \ldots, X_n sind stochastisch unabhängig
- $\forall B_i \subseteq S_1 : \mathbb{P}(X_i \in B_i \ \forall 1 \le i \le n) = \prod_{i=1}^n \mathbb{P}(X_i \in B_i)$
- Bezeichne mit f_{X_i} die Zähldichte von \mathbb{P}^{X_1} auf S_i . Dann hat die Zähldichte $f_{(X_1,\dots,X_n)}$ von $\mathbb{P}^{(X_1,\dots,X_n)}$ die Form: $f_{(X_1,\dots,X_n)}(t_1,\dots,t_n)=\prod_{i=1}^n f_{X_i}(t_i)$ $\forall t_i\in S_i$

Definition: Hypergeometrischen Verteilung

Das Wahrscheinlichkeitsmaß $\mathbb{P} = Hyp_{(N,M,n)}$ auf \mathbb{N}_0 gegeben durch die Zähldichte

$$\mathbb{P}^{X}(\{m\}) = \mathbb{P}(X = m) = \frac{\binom{M}{m} \cdot \binom{N-M}{n-m}}{\binom{N}{n}} \mathbb{1}_{S}(m) \qquad \forall m \in \mathbb{N}_{0}$$

heißt hypergeometrische Verteilung.

Zusammenhang hypergeometrische Verteilung und Binomialverteilung

- Die hypergeometrische Verteilung $Hyp_{(N,M,n)}$ beschreibt die Anzahl der markierten Gegenstände bei n-maligem **Ziehen ohne Zurücklegen** aus N Gegenständen, von denen M markiert sind
- Die Binomialverteilung $Bin_{(n,M/N)}$ beschreibt die Anzahl der markierten Gegenstände bei n-maligem Ziehen mit Zurücklegen aus N Gegenständen, von denen M markiert sind

Falls $n \ll N$, dann ist Ziehen mit oder ohne Zurücklegen fast identisch und daher $Hyp_{(N,M,n)}(\{m\}) \approx Bin_{(n,\frac{M}{N})}(\{m\}) \qquad \forall 0 \leq m \leq n$

Poisson'scher Grenzwertsatz

Für eine große Anzahl an Experimenten n und eine kleine Erfolgswahrscheinlichkeit p kann $Bin_{(n,p)}$ durch eine strukturell einfachere Verteilung approximiert werden:

$$\lim_{n \to \infty} Bin_{(n,p)}(\{k\}) = \lim_{n \to \infty} \binom{n}{k} p_n^k (1 - p_n)^{n-k} = e^{-\lambda} \cdot \frac{\lambda^k}{k!} =: Poiss_{\lambda}(\{k\}) \qquad k \in \mathbb{N}_0$$

Das Wahrscheinlichkeitsmaß $Poiss_{\lambda}$ heißt Poissonverteilung mit Parameter λ .

Definition: Faltung

Sind X, Y \mathbb{R} -wertige Zufallsvariablen auf einem diskreten Wahrscheinlichkeitsraum mit Zähldichten f_X von \mathbb{P}^X und f_Y von \mathbb{P}^Y , dann heißt

$$(f_X * f_Y)(z) = \sum_{x \in \mathbb{R}: f_X(x) > 0} f_X(x) \cdot f_Y(z - x) \qquad \forall z \in \mathbb{R}$$

die **Faltung** von f_X und f_Y . Hierbei ist $f_X * f_Y$ wieder eine Zähldichte mit Träger $\Omega_T := \{z \in \mathbb{R} \mid \exists x, y \in \mathbb{R} : z = x + y, f_X(x) > 0, f_Y(y) > 0\}$ und die zugehörige diskrete Verteilung $\mathbb{P}^X * \mathbb{P}^Y$ heißt **Faltung** von \mathbb{P}^X und \mathbb{P}^Y .

Satz für die Faltung

Sind X,Y <u>unabhängige</u> \mathbb{R} -wertige Zufallsvariablen auf einem diskreten Wahrscheinlichkeitsraum, so gilt

$$\mathbb{P}^X * \mathbb{P}^Y = \mathbb{P}^{X+Y}$$

4 Wahrscheinlichkeitsmaße auf R

Kontinuierliche Ergebnisse lassen sich nicht mehr durch eine abzählbare Anzahl an Versuchsausgängen beschreiben. Wahrscheinlichkeiten kann man dann nur noch "gutartigen Mengen" zuordnen, u.a.:

- Intervalle sind gutartig
- Komplemente gutartiger Mengen sind gutartig
- Abzählbare Vereinigungen gutartiger Mengen sind gutartig

Bezeichne nun mit $\mathscr{A} \subseteq \mathscr{P}(\Omega)$ das System aller "gutartigen" Mengen.

Definition: σ -Algebra

Sei $\Omega \neq \emptyset$ ein beliebiger Grundraum. Eine Menge $\mathscr{A} \subseteq \mathscr{P}(\Omega)$ heißt σ -Algebra auf Ω , falls:

- $\emptyset, \Omega \in \mathscr{A}$
- $A \in \mathscr{A} \implies A^{\mathsf{C}} \in \mathscr{A}$
- $A_n \in \mathscr{A} \ \forall n \in \mathbb{N} \implies \bigcup_{n \in \mathbb{N}} A_n \in \mathscr{A}$

 (Ω, \mathscr{A}) heißt dann **messbarer Raum**. Die Mengen $A \in \mathscr{A}$ heißen **Ereignisse**.

Definition: Borel- σ -Algebra

Die Borel- σ -Algebra \mathcal{B} auf \mathbb{R} beschreibt die kleinste σ -Algebra, welche alle Intervalle (a, b] für beliebige $a, b \in \mathbb{R}$ enthält.

Definition: Wahrscheinlichkeitsmaß und Wahrscheinlichkeitsraum

Sei (Ω, \mathscr{A}) ein Messraum mit Grundraum $\Omega \neq \emptyset$ und σ -Algebra \mathscr{A} . Eine Abbildung $\mathbb{P} : \mathscr{A} \to [0, 1]$ heißt Wahrscheinlichkeitsmaß auf (Ω, \mathscr{A}) , falls

- $\mathbb{P}(\Omega) = 1$
- $A_n \in \mathcal{A}, n \in \mathbb{N}$, disjunkt $\implies \mathbb{P}(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mathbb{P}(A_n)$ (σ -Additivität)

 $(\Omega, \mathscr{A}, \mathbb{P})$ heißt dann Wahrscheinlichkeitsraum.

Sätze und Definitionen für allgemeine Wahrscheinlichkeitsräume

Folgende Sätze und Definitionen übertragen sich sinngemäß, wobei als Ereignisse jeweils nur Mengen aus $\mathscr A$ betrachtet werden:

- Rechenregeln für diskrete Wahrscheinlichkeitsmaße
- Bedingte Wahrscheinlichkeiten
- Satz von der Totalen Wahrscheinlichkeit und von Bayes
- Stochastische Unabhängigkeit von Ereignissen

<u>Unterschied</u>: Während diskrete Wahrscheinlichkeitsmaße \mathbb{P} vollständig durch die Zähldichte $f(\omega) := \mathbb{P}(\{\omega\}), \omega \in \Omega$ bestimmt sind, ist dies für allgemeine Wahrscheinlichkeitsmaße falsch!

Definition: Verteilungsfunktion

Ist \mathbb{P} ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, so gilt für die durch

$$F: \mathbb{R} \to [0,1], F(x) := \mathbb{P}((-\infty, x])$$

definierte **Verteilungsfunktion** von \mathbb{P} :

- F ist monoton steigend
- F ist rechtsseitig stetig
- $F(\infty) := \lim_{x \to \infty} F(x) = 1, \ F(-\infty) := \lim_{x \to -\infty} F(x) = 0$

Ist umgekehrt $F: \mathbb{R} \to [0,1]$ eine Funktion, die obige Punkte erfüllt, so existiert genau ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, das F als Verteilungsfunktion besitzt. Für ein diskretes Wahrscheinlichkeitsmaß \mathbb{P} ist die Verteilungsfunktion eine Treppenfunktion.

Definition: Dichten

Sei \mathbb{P} ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$. Existiert eine integrierbare Funktion $f: \mathbb{R} \to [0, \infty)$, sodass

$$F(x) = \mathbb{P}((-\infty, x]) = \int_{-\infty}^{x} f(t)dt \qquad \forall x \in \mathbb{R}$$

so heißt f Dichte von $\mathbb P$ bzw. von der zugehörigen Verteilungsfunktion F. Für $A\in \mathscr B_{\mathbb R}$ gilt dann

$$\mathbb{P}(A) = \int_{\mathbb{R}} f(x) \cdot \mathbb{1}_{A}(x) dx =: \int_{A} f(x) dx$$

Umgekehrt ist jede integrierbare Funktion $f: \mathbb{R} \to [0, \infty)$ mit $\int_{-\infty}^{\infty} f(t)dt = 1$ Dichte eines Wahrscheinlichkeitsmaßes auf $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, das durch obiges F eindeutig festgelegt ist. Falls eine Dichte existiert, ist F stetig.

Achtung: Dichten dürfen nicht mit Zähldichten verwechselt werden!

Definition: Gleichverteilung

Für $-\infty < a < b < \infty$ heißt das Wahrscheinlichkeitsmaß auf $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ zur Dichte $f := \frac{1}{b-a} \mathbbm{1}_{(a,b]}$ Gleichverteilung $U_{(a,b]}$ auf (a,b] und für $a \le c < d \le b$ gilt: $U_{(a,b]}((c,d]) = \frac{d-c}{b-a}$.

Definition: Exponential verteilung

Die Exponentialverteilung Exp_{λ} mit Parameter $\lambda > 0$ ist gegeben durch die Dichte

$$f_{\lambda}(x) := \frac{1}{\lambda} e^{-x/\lambda} \cdot \mathbb{1}_{[0,\infty)}(x), \qquad x \in \mathbb{R}$$

Die Verteilungsfunktion ist gegeben durch $F_{\lambda}(x) = 1 - e^{-x/\lambda}$, $\forall x \geq 0$ und $F_{\lambda}(x) = 0$ für alle x < 0.

Exponentialverteilungen beschreiben Lebensdauern von Dingen, die nicht altern, d.h. die Wahrscheinlichkeit noch y Jahre zu überleben, gegeben dass bereits x Jahre überlebt wurden, hängt nicht von x ab.

Definition: Normalverteilung

Die Normalverteilung $N_{(\mu,\sigma^2)}$ mit Parametern $\mu \in \mathbb{R}, \sigma > 0$ ist gegeben durch die Dichte

$$f(x) := \frac{1}{\sqrt{2\pi\sigma^2}} \cdot exp(-\frac{(x-\mu)^2}{2\sigma^2}), \qquad x \in \mathbb{R}$$

Die Verteilung $N_{(0,1)}$ wird **Standardnormalverteilung** genannt. Die Verteilungsfunktion von $N_{(0,1)}$ bezeichnet man mit

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt$$

Aufgrund der Symmetrie der Standardnormalverteilung zur y-Achse, gilt $\Phi(-x) = 1 - \Phi(x)$ für alle $x \in \mathbb{R}$. Insbesondere ist $\Phi(0) = \frac{1}{2}$.

Für die Verteilungsfunktion der Normalverteilung $N_{(\mu,\sigma^2)}$ gilt

$$F(x) = \Phi(\frac{x-\mu}{\sigma})$$

Um Wahrscheinlichkeiten für eine beliebige Normalverteilung zu berechnen, genügt also die Verteilungsfunktion Φ der Standardnormalverteilung:

X	$\Phi(x)$	X	$\Phi(x)$	X	$\Phi(x)$	X	Ф(х)	X	$\Phi(x)$
0.00	0.5000	0.76	0.7764	1.52	0.9357	1.84	0.9671	2.28	0.9887
0.02	0.5080	0.78	0.7823	1.54	0.9382	1.86	0.9686	2.30	0.9893
0.04	0.5160	0.80	0.7881	1.56	0.9406	1.88	0.9699	2.32	0.9898
0.06	0.5239	0.82	0.7939	1.58	0.9429	1.90	0.9713	2.34	0.9904
0.08	0.5319	0.84	0.7995	1.60	0.9452	1.92	0.9726	2.36	0.9909
0.10	0.5398	0.86	0.8051	1.62	0.9474	1.94	0.9738	2.38	0.9913
0.12	0.5478	0.88	0.8106	1.64	0.9495	1.96	0.9750	2.40	0.9918
0.14	0.5557	0.90	0.8159	1.66	0.9515	1.98	0.9761	2.42	0.9922
0.16	0.5636	0.92	0.8212	1.68	0.9535	2.00	0.9772	2.44	0.9927
0.18	0.5714	0.94	0.8264	1.70	0.9554	2.02	0.9783	2.46	0.9931
0.20	0.5793	0.96	0.8315	1.72	0.9573	2.04	0.9793	2.48	0.9934
0.22	0.5871	0.98	0.8365	1.74	0.9591	2.06	0.9803	2.50	0.9938
0.24	0.5948	1.00	0.8413	1.76	0.9608	2.08	0.9812	2.52	0.9941
0.26	0.6026	1.02	0.8461	1.78	0.9625	2.10	0.9821	2.54	0.9945
0.28	0.6103	1.04	0.8508	1.80	0.9641	2.12	0.9830	2.56	0.9948
0.30	0.6179	1.06	0.8554	1.82	0.9656	2.14	0.9838	2.58	0.9951

Lineare Transformation der Normalverteilung

Sei X eine Zufallsvariable mit $X \sim N_{(\mu,\sigma^2)}$, dann gilt für beliebige $m \in \mathbb{R}, s > 0$:

$$Y := m + sX \sim N_{(m+s\mu,s^2\sigma^2)}$$

Aus
$$X \sim N_{(\mu,\sigma^2)}$$
 folgt $\frac{X-\mu}{\sigma} \sim N_{(0,1)}$.

Definition: Zufallsvariable, Messbarkeit und Verteilung

Eine Zufallsvariable X ist nur noch definiert, wenn das Urbild von X eine "gutartige" Menge ist.

Seien (Ω, \mathscr{A}) , (S, \mathscr{C}) messbare Räume und $X : \Omega \to S$ eine Abbildung. X heißt S-wertige **Zufallsvariable**, falls $X^{-1}(C) \in \mathscr{A}$ für alle $C \in \mathscr{C}$ ist.

Man schreibt $X:(\Omega,\mathscr{A})\to (S,\mathscr{C})$ und sagt, dass X (\mathscr{A},\mathscr{C})-messbar ist. Die sogenannte **Verteilung** von X unter \mathbb{P} wird durch das Wahrscheinlichkeitsmaß

$$\mathbb{P}^X(C) \coloneqq \mathbb{P}(X^{-1}(C)) = \mathbb{P}(X \in C), \qquad C \in \mathscr{C}$$

auf (S, \mathcal{C}) definiert.

Definition: Verteilungsfunktion und Dichte von Zufallsvariablen

Sei $X:(\Omega,\mathscr{A})\to(S,\mathscr{C})$ eine \mathbb{R} -wertige Zufallsvariable auf dem Wahrscheinlichkeitsraum $(\Omega,\mathscr{A},\mathbb{P})$.

 \bullet Die Verteilungsfunktion der Verteilung \mathbb{P}^X von X

$$F_X: \mathbb{R} \to [0,1], \ x \mapsto \mathbb{P}^X((-\infty,x]) = \mathbb{P}(X \le x)$$

wird auch **Verteilungsfunktion** von X genannt.

• X heißt stetige Zufallsvariable, falls F_X eine Dichte f_X besitzt:

$$\mathbb{P}(X \le x) = \int_{-\infty}^{x} f_X(t)dt \qquad \forall x \in \mathbb{R}$$

 f_X heißt dann auch **Dichte** von X.

$k\sigma$ -Regeln für die Normalverteilung

Für $X \sim N_{(\mu,\sigma^2)}$ und alle t > 0 gilt

$$\mathbb{P}(|X - \mu| \le \sigma t) = 2 \cdot \Phi(t) - 1$$

und insbesondere

$$\mathbb{P}(|X - \mu| \le k\sigma) = \begin{cases} 0,6827, & k = 1\\ 0,9545, & k = 2\\ 0,9973, & k = 3 \end{cases}$$

Definition: Borel- σ -Algebren auf \mathbb{R}^n

Borel- σ -Algebren, Verteilungsfunktion und Dichten kann man analog auch für $\Omega = \mathbb{R}^n$ definieren. Die **Borel-\sigma-Algebra** $\mathscr{B}_{\mathbb{R}^n}$ auf \mathbb{R}^n wird definiert als die kleinste σ -Algebra, die alle Rechteckmengen $\underset{i=1}{\overset{n}{\times}} (a_i, b_i]$ mit $-\infty < a_i < b_i < \infty$ für alle $i \in \{1, \ldots, n\}$ enthält.

Definition: Multivariate Verteilungsfunktion

Ist \mathbb{P} ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}^n, \mathscr{B}_{\mathbb{R}^n})$, so wird die zugehörige **multivariate** Verteilungsfunktion F definiert durch

$$F(x_1,\ldots,x_n) := \mathbb{P}(\underset{i=1}{\overset{n}{\times}}(-\infty,x_i]), \qquad (x_1,\ldots,x_n) \in \mathbb{R}^n$$

Definition: Dichten auf \mathbb{R}^n

Sei \mathbb{P} ein Wahrscheinlichkeitsmaß auf $(\mathbb{R}^n, \mathscr{B}_{\mathbb{R}^n})$ mit multivariater Verteilungsfunktion F. Existiert eine Abbildung $f: \mathbb{R}^n \to [0, \infty)$, sodass für alle $(x_1, \ldots, x_n) \in \mathbb{R}^n$

$$F(x_1,\ldots,x_n) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_n} f(t_1,\ldots,t_n) dt_n \ldots dt_2 dt_1$$

gilt, so heißt f **Dichte** von \mathbb{P} bzw. von F.

Es gilt dann $\forall B \in \mathscr{B}_{\mathbb{R}^n}$:

$$\mathbb{P}(B) = \int_{B} f(t)dt = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \mathbb{1}_{B}(t_{1}, \dots, t_{n}) \cdot f(t_{1}, \dots, t_{n})dt_{n} \dots dt_{1}$$

Insbesondere gilt für jede Dichte $f: \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(t_1, \dots, t_n) dt_n \dots dt_1 = 1$ und für $B = (a_1, b_1] \times \cdots \times (a_n, b_n], a_i < b_i: \mathbb{P}(B) = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f(t_1, \dots, t_n) dt_n \dots dt_1.$

Definition: Zufallsvektoren

Ist (Ω, \mathscr{A}) ein messbarer Raum und $X_i : \Omega \to \mathbb{R}, 1 \le i \le n$, so gilt $\forall 1 \le i \le n$:

$$X = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n (\mathscr{A}, \mathscr{B}_{\mathbb{R}^n})$$
-messbar $\iff X_i : \Omega \to \mathbb{R} (\mathscr{A}, \mathscr{B}_{\mathbb{R}^n})$ -messbar

In dem Fall wird X auch n-dimensionaler **Zufallsvektor** genannt. Die multivariate Verteilungsfunktion von \mathbb{P}^X

$$F_X(x_1,\ldots,x_n) := \mathbb{P}(X_1 \le x_1, X_2 \le x_2,\ldots,X_n \le x_n)$$

heißt **gemeinsame Verteilungsfunktion** von X_1, \ldots, X_n . Besitzt F_X eine Dichte f_X , dann heißt X **stetig verteilt** und f_X heißt **gemeinsame Dichte** von X_1, \ldots, X_n . Es gilt dann $\mathbb{P}^X(B) = \mathbb{P}(X \in B) = \int_B f_X(t)dt$, $B \in \mathscr{B}_{\mathbb{R}^n}$.

Definition: Randverteilungen

Ist $X = (X_1, ..., X_n)$ ein Zufallsvektor auf $(\Omega, \mathscr{A}, \mathbb{P})$, so heißen die Verteilungen \mathbb{P}^{X_i} Randverteilungen/Marginalverteilungen. Die Verteilungsfunktion F_i von \mathbb{P}^{X_i} bzw. X_i berechnet sich wie folgt:

$$F_i(x) = \mathbb{P}(X_1 < \infty, \dots, X_{i-1} < \infty, X_i \le x, X_{i+1} < \infty, \dots, X_n < \infty)$$

= $F(\infty, \dots, \infty, x, \infty, \dots, \infty),$

wobei x an der i-ten Stelle steht.

Satz über die Dichte einer Komponente eines Zufallsvektors

Besitzt die Zufallsvariable $X = (X_1, \dots, X_n)$ eine gemeinsame Dichte $f : \mathbb{R}^n \to [0, \infty)$, so hat X_i die Dichte $f_i : \mathbb{R} \to [0, \infty)$ mit

$$f_i(x) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(t_1, \dots, t_{i-1}, x, t_{i+1}, \dots, t_n) dt_n \cdots dt_{i+1} dt_{i-1} \cdots dt_1$$

für alle $x \in \mathbb{R}$.

Definition: Unabhängigkeit von Zufallsvariablen

Zufallsvariablen $X_1, \ldots, X_n : (\Omega, \mathscr{A}) \to (\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ heißen **stochastisch unabhängig**, wenn die Ereignisse $\{X_1 \in B_1\}, \ldots, \{X_n \in B_n\}$ für alle $B_1, \ldots, B_n \in \mathscr{B}_{\mathbb{R}}$ stochastisch unabhängig sind.

Satz für stochastisch unabhängige Zufallsvariablen

Für Zufallsvariablen $X_i:(\Omega,\mathscr{A})\to(\mathbb{R},\mathscr{B}_{\mathbb{R}})$ mit Verteilungsfunktionen F_{X_i} sind äquivalent:

- X_1, \ldots, X_n sind stochastisch unabhängig
- $\mathbb{P}(X_1 \in B_1, \dots, X_n \in B_n) = \prod_{i=1}^n \mathbb{P}(X_i \in B_i) \quad \forall B_1, \dots, B_n \in \mathscr{B}_{\mathbb{R}}$

•
$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \prod_{i=1}^n \mathbb{P}(X_i \le x_i) = \prod_{i=1}^n F_{X_i}(x_i) \quad \forall x_1, \dots, x_n \in \mathbb{R}$$

Zufallsvariablen sind also genau dann unabhängig, wenn die Verteilungsfunktion ihrer gemeinsamen Verteilung das Produkt ihrer Verteilungsfunktionen ist.

Dichten unabhängiger Zufallsvariablen

Seien $X_i: \Omega \to \mathbb{R}$ für $i \in \{1, ..., n\}$ Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathscr{A}, \mathbb{P})$. Falls alle Randverteilungen \mathbb{P}^{X_i} jeweils eine Dichte f_i besitzen, dann sind äquivalent:

- X_1, \ldots, X_n sind stochastisch unabhängig:
- $\mathbb{P}^{(X_1,\ldots,X_n)}$ besitzt eine Dichte f gegeben durch $f(x_1,\ldots,x_n) := \prod_{i=1}^n f_i(x_i)$

Blockungslemma

Seien $X_{11}, X_{12}, \ldots, X_{1n_1}, X_{21}, \ldots, X_{2n_2}, \ldots, X_{k1}, \ldots, X_{kn_k}$ stochastisch unabhängige Zufallsvariablen und $g_1 : \mathbb{R}^{n_1} \to \mathbb{R}, g_2 : \mathbb{R}^{n_2} \to \mathbb{R}, \ldots, g_k : \mathbb{R}^{n_k} \to \mathbb{R}$ Funktionen. Dann sind auch die Zufallsvariablen

$$Y_1 := g_1(X_{11}, \dots, X_{1n_1}), Y_2 := g_2(X_{21}, \dots, X_{2n_2}), \dots, Y_k := g_k(X_{k1}, \dots, X_{kn_k})$$

stochastisch unabhängig. Funktionen von disjunkten Blöcken unabhängiger Zufallsvariablen sind also wieder unabhängig.

Definition: Faltung für Verteilungen mit Dichten

- Sind $X, Y : (\Omega, \mathscr{A}) \to (\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ unabhängige Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathscr{A}, \mathbb{P})$ so wird die Verteilung \mathbb{P}^{X+Y} die **Faltung** von \mathbb{P}^X und \mathbb{P}^Y genannt. Schreibe dafür: $\mathbb{P}^X * \mathbb{P}^Y$
- Besitzt X eine Dichte f_X und Y eine Dichte f_Y , so ist

$$f_X * f_Y(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx, \qquad z \in \mathbb{R}$$

eine Dichte von $\mathbb{P}^X * \mathbb{P}^Y$, d.h. $f_{X+Y} = f_X * f_Y$

Definition: Gamma-Verteilung

Die Zufallsvariable X hat eine **Gamma-Verteilung** mit Parametern $\alpha>0$ und $\beta>0$, falls X die Dichte

$$f(t) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} t^{\alpha - 1} e^{-\beta t} \mathbb{1}_{(0, \infty)}(t), \qquad t \in \mathbb{R}$$

mit Gamma-Funktion $\Gamma(t) := \int_0^\infty x^{t-1} e^{-x} dx, \ t > 0$ besitzt.

Additionsgesetze

X ~	<i>Y</i> ∼	$X + Y \sim$
$\operatorname{Bin}_{m,p}$	$\operatorname{Bin}_{n,p}$	$\operatorname{Bin}_{m+n,p}$
Poiss_{λ}	Poiss_{μ}	$\mathrm{Poiss}_{\lambda+\mu}$
N_{μ,σ^2}	$N_{ u, au^2}$	$N_{\mu+\nu,\sigma^2+\tau^2}$
$\Gamma_{\mu,eta}$	$\Gamma_{ u,eta}$	$\Gamma_{\mu+ u,eta}$
$\operatorname{Exp}_{\lambda}$	$\operatorname{Exp}_{\lambda}$	$\Gamma_{2,\lambda}$

Beachte: In jedem Fall sind X und Y als stochastisch unabhängig vorausgesetzt.

Verteilungsfunktion von Maximum und Minimum

Seien X_1, \ldots, X_n stochastisch unabhängige Zufallsvariablen mit den Verteilungsfunktionen F_{X_1}, \ldots, F_{X_n} . Dann gilt:

• $U := max(X_1, \dots, X_n)$ besitzt die Verteilungsfunktion

$$F_U(t) = \prod_{j=1}^n F_{X_j}(t), \qquad t \in \mathbb{R}$$

• $V := min(X_1, \dots, X_n)$ besitzt die Verteilungsfunktion

$$F_V(t) = 1 - \prod_{j=1}^n (1 - F_{X_j}(t)), \qquad t \in \mathbb{R}$$

5 Erwartungswerte und Momente von Zufallsvariablen

Definition: Erwartungswert auf einem diskreten Wahrscheinlichkeitsraum

Der **Erwartungswert** einer \mathbb{R} -wertigen Zufallsvariable $X : \Omega \to \mathbb{R}$ auf einem <u>diskreten</u> Wahrscheinlichkeitsraum (Ω, \mathbb{P}) ist definiert als:

$$\mathbb{E}_{\mathbb{P}}[X] \coloneqq \mathbb{E}[X] \coloneqq \sum_{x \in X(\Omega)} x \cdot \mathbb{P}(X = x) = \sum_{x \in X(\Omega)} x \cdot \mathbb{P}^X(\{x\})$$

falls $\sum_{x \in X(\Omega)} |x| \cdot \mathbb{P}(X = x) < \infty$. $\mathbb{E}_{\mathbb{P}}[X]$ heißt auch **Mittelwert** von \mathbb{P}^X .

Definition: Erwartungswert für stetige Zufallsvariablen

Der Erwartungswert einer stetigen Zufallsvariable X mit Dichte f_X wird definiert als:

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$$

falls $\int_{-\infty}^{\infty} |x| \cdot f_X(x) dx < \infty$. $\mathbb{E}[X]$ heißt auch **Mittelwert** von \mathbb{P}^X .

Transformationssatz

Sei $(\Omega, \mathscr{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum, $X : \Omega \to S$ eine diskrete/stetige Zufallsvariable mit (Zähl-)Dichte f_X und $g : S \to \mathbb{R}$ eine Funktion. Die Zufallsvariable $g(X) = g \circ X$ beisitzt genau dann einen endlichen Erwartungswert bzgl. \mathbb{P} , wenn g einen endlichen Erwartungswert bzgl. \mathbb{P}^X besitzt. In diesem Fall gilt:

$$\mathbb{E}_{\mathbb{P}}[g(X)] = \mathbb{E}_{\mathbb{P}^X}[g] = \begin{cases} \sum_{x \in S} g(x) \cdot f_X(x) & \text{falls } X \text{ diskret} \\ \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx & \text{falls } X \text{ stetig} \end{cases}$$

Der Transformationssatz gilt auch für Zufallsvariablen X, Y mit gemeinsamer Zähldichte $f_{X,Y}$, d.h.

$$\mathbb{E}[g(X,Y)] = \begin{cases} \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} g(x,y) \cdot f_{X,Y}(x,y) & \text{falls } X,Y \text{ diskret} \\ \int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} g(x,y) \cdot f_{X,Y}(x,y) dy) dx & \text{falls } X \text{ stetig} \end{cases}$$

Rechenregeln für Erwartungswerte

Seien X,Y diskrete/stetige Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega,\mathscr{A},\mathbb{P})$, die Erwartungswerte besitzen. Dann gilt:

- $\mathbb{E}[aX + Y] = a \cdot \mathbb{E}[X] + \mathbb{E}[Y]$ für alle $a \in \mathbb{R}$ (Linearität)
- Gilt $X \leq Y$, dann folgt $\mathbb{E}[X] \leq \mathbb{E}[Y]$ (Monotonie)
- Wenn f_X symmetrisch zu x = a ist, dann gilt $\mathbb{E}[X] = a$

Siebformel von Sylvester-Poincar \acute{e}

Seien $A_1, \ldots, A_n \in \mathscr{A}$ Ereignisse im einem diskreten Wahrscheinlichkeitsraum $(\Omega, \mathscr{A}, \mathbb{P})$. Dann gilt:

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{I \subseteq \{1,\dots,n\}, I \neq \emptyset} (-1)^{|I|+1} \cdot \mathbb{P}(\bigcap_{i \in I} A_i)$$

Darstellungsformel für nicht-negative Zufallsvariablen

Ist X eine \mathbb{N}_0 -wertige oder \mathbb{R}_+ -wertige Zufallsvariable, so gilt

$$\mathbb{E}[X] = \begin{cases} \sum_{n=1}^{\infty} \mathbb{P}(X \ge n) & \text{falls } X \text{ diskret} \\ \int_{0}^{\infty} \mathbb{P}(X \ge x) & \text{falls } X \text{ stetig} \end{cases}$$

Multiplikationsformel für Erwartungswerte

Sind X und Y stochastisch unabhängige reellwertige Zufallsvariablen mit Erwartungswerten $\mathbb{E}[X]$ und $\mathbb{E}[Y]$, so gilt

$$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

Die Umkehrung gilt im Allgemeinen nicht!

Definition: Variation, Standardabweichung und Momente

• Existieren $\mathbb{E}[X]$ und $\mathbb{E}[X^2]$ so ist die **Varianz** von X durch

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] = \begin{cases} \sum_{x \in X(\Omega)} (x - \mathbb{E}[X])^2 f_X(x) & \text{falls } X \text{ diskret} \\ \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^2 f_X(x) dx & \text{falls } X \text{ stetig} \end{cases}$$

definiert. $\sqrt{Var(X)}$ heißt **Standardabweichung** von X.

• Für $k \in \mathbb{N}$ heißt $\mathbb{E}[X^k]$ das **k-te Moment von** X. Dabei ist $X^k : \Omega \to \mathbb{R}$ definiert durch $X^k(\omega) = (X(\omega))^k$

Eigenschaften der Varianz

- $Var(a \cdot X + b) = a^2 \cdot Var(X)$ für alle $a, b \in \mathbb{R}$. Die Varianz ist nicht linear!
- $Var(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$, also $\mathbb{E}[X]^2 \leq \mathbb{E}[X^2]$, da $0 \leq Var(X)$
- $\mathbb{E}[(X-a)^2] = Var(X) + (\mathbb{E}[X] a)^2$ für alle $a \in \mathbb{R}$
- Die Minimalstelle der Funktion $a \mapsto \mathbb{E}[(X a)^2]$ ist $a = \mathbb{E}[X]$

Wichtige Beispiele

- Wenn $X \sim Ber_p$ mit $p \in [0,1]$, dann gilt $\mathbb{E}[X] = p$ und Var(X) = p(1-p)
- Wenn $X \sim Poiss_{\lambda}$, dann gilt $\mathbb{E}[X^2] = \lambda^2 + \lambda$ und $Var(X) = \lambda$
- Wenn $X \sim U([a,b])$ gleichverteilt, dann gilt $\mathbb{E}[X^2] = \frac{b^2 + ab + a^2}{3}$ und $Var(X) = \frac{(b-a)^2}{12}$
- Wenn $Y \sim N_{(0,1)}$, dann gilt $\mathbb{E}[Y] = 0$ und Var(Y) = 1 sowie wegen $X := \sigma Y + \mu \sim N_{(0,1)}$ folgt $Var(X) = \sigma^2$

Markov- und Chebyshev-Ungleichung

- Markov-Ungleichung: $\mathbb{P}(|X| \geq c) \leq \frac{\mathbb{E}[|X|]}{c}$ $\forall c > 0$
- Chebyshev-Ungleichung: $\mathbb{P}(|X \mathbb{E}[X]| \ge c) \le \frac{Var(X)}{c^2}$ $\forall c > 0$

Definition: Kovarianz und Korrelation

Seien X und Y Zufallsvariablen.

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X]) \cdot (Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

heißt die **Kovarianz** von X und Y.

$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) \cdot Var(Y)}}$$

heißt Korrelation von X und Y, falls Var(X) > 0 und Var(Y) > 0. X und Y heißen unkorreliert, falls Cov(X,Y) = 0.

Die Kovarianz ist bilinear, d.h. $Cov(aX + b, cY + d) = ac \cdot Cov(X, Y)$.

Zusätzlich gilt Cov(X, X) = Var(X).

Ist Z eine weitere Zufallsvariable, so gilt Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z). Jede unabhängige Zufallsvariable ist unkorreliert, umgekehrt aber nicht!

Varianz von Summen von Zufallsvariablen

Für Zufallsvariablen $X_1 \cdot X_n$ gilt:

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) + 2 \sum_{1 \le i < j \le n} Cov(X_i, X_j)$$

Sind die Variablen unabhängig (oder schwächer: unkorreliert), so gilt insbesondere:

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$

Definition: Median einer Zufallsvariable

Neben dem Erwartungswert gibt es eitere Parameter, die "mittlere Werte" einer Zufallsvariable beschreiben. Eine Zahl m(X) heißt **Median** von X bzw. \mathbb{P}^X , falls gilt:

$$\mathbb{P}(X \le m(X)) \ge \frac{1}{2} \text{ und } \mathbb{P}(X \ge m(X)) \ge \frac{1}{2}$$

Mediane sind im Allgemeinen nicht eindeutig. Der Median ist ein **Lageparameter**, d.h. es gilt: m ist Median von $X \iff am + b$ ist Median von aX + b.

Definition: Quantil

Ein Quantil ist eine Verallgemeinerung des Medians. Für X mit Verteilungsfunktion F_X und 0 heißt

$$t_p := t_p(X) := F_X^{-1}(p) := \inf\{x \in \mathbb{R} : F_X(x) \ge p\}$$

p-Quantil von F_X bzw. X. $t_{1/2}$ heißt Median, $t_{1/4}$ unteres Quartil und $t_{3/4}$ oberes Quartil.

6 Grenzwertsätze

Oft betrachtet man Summen von n Zufallsvariablen von der Art $\sum_{i=1}^{n} X_i$ für $n \to \infty$, die in der Regel nicht exakt berechenbar ist. Ziel: Finde eine gute Approximation dafür.

Schwaches Gesetz der großen Zahlen

Seien X_i unkorrelierte Zufallsvariablen mit Erwartungswert $\mathbb{E}[X_i]$ und es existiere M, sodass $Var(X_i) \leq M < \infty$ für alle $i \in \mathbb{N}$. Dann gilt für alle $\varepsilon > 0$:

$$\mathbb{P}(\frac{1}{n} \mid \sum_{i=1}^{n} (X_i - \mathbb{E}[X_i])| \ge \varepsilon) \le \frac{M}{n\varepsilon^2} \to 0 \quad \text{für } n \to \infty$$

Definition: Stochastische Konvergenz

Seien Y, Y_n R-wertige Zufallsvariablen. Y_n konvergiert stochastisch gegen Y, falls

$$\forall \varepsilon > 0 : \qquad \mathbb{P}(|Y_n - Y| \ge \varepsilon) \to 0 \quad (n \to \infty)$$

Wir schreiben dafür $Y_n \xrightarrow{\mathbb{P}} Y$.

Asymptotische Verteilung

Für identische, unabhängige Zufallsvariablen $(X_i)_{i\geq 1}$ mit $\mathbb{E}[X_i] = \mu$ und $\sigma^2 := Var(X_i)$ liefert das Gesetz der großen Zahlen den Grenzwert für die Partialsummen:

$$\frac{1}{n}\sum_{i=1}^{n} X_i \xrightarrow{\mathbb{P}} \mu \quad (n \to \infty).$$

Wie verhält sich die Verteilung von $\sum_{i=1}^{n} X_i$ für $n \to \infty$? Es gilt:

$$\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] = n\mu \text{ und } Var\left(\sum_{i=1}^{n} X_{i}\right) = n\sigma^{2}$$

Wir standardisieren nun mit $S_n := \frac{1}{\sqrt{n\sigma^2}} \sum_{i=1}^n (X_i - \mu)$, sodass $\mathbb{E}[S_n] = 0$ und $Var(S_n) = 1$ für alle $n \in \mathbb{N}$. Das führt zum zentralen Grenzwertsatz.

Zentraler Grenzwertsatz

Seien X_i identisch und unabhängig verteilte Zufallsvariablen, d.h. $\mathbb{P}^{X_i} = \mathbb{P}X_1$ mit $\mathbb{E}[X_i] = \mu$ und $\sigma^2 \coloneqq Var(X_i)$. Dann gilt für alle $x \in \mathbb{R}$:

$$\mathbb{P}(\frac{1}{\sqrt{n\sigma^2}} \sum_{i=1}^n (X_i - \mu) \le x) \xrightarrow{n \to \infty} \Phi(x),$$

wobei Φ die Standardnormalverteilung ist.

Zentraler Grenzwertsatz von Moivre-Laplace

Ist Y_n eine $Bin_{(n,p)}$ -verteilte Zufallsvariable mit $p \in (0,1)$ so gilt:

$$\mathbb{P}(a < \frac{Y_n - np}{\sqrt{np \cdot (a - p)}} \le b) \xrightarrow{n \to \infty} \Phi(b) - \Phi(a),$$

7 Statistik

Unterteilung der Statistik

- Beschreibende (deskriptive) Statistik: Aussagen werden auf den betrachteten Daten getroffen
- Beurteilende (schließende, induktive) Statistik: Aus vorliegenden Daten werden Rückschlüsse auf allgemeine Gültigkeit getroffen.

7.1 Deskriptive Statistik

Definition: Stichprobe

Sei \mathcal{X} die Menge aller Beobachtungen in einem Zufallsexperiment. Bezeichne mit $x_i \in \mathcal{X}$ das *i*-te Ergebnis, dann heißt $x := (x_1, \dots, x_n)$ Stichprobe vom Umfang $n \in \mathbb{N}$. \mathcal{X} heißt Stichprobenraum.

Absolute und relative Häufigkeit

Für $a \in \mathcal{X}$ und eine Stichprobe x ist die **absolute** bzw. **relative Häufigkeit** von a in x definiert durch

$$H_x(a) := \sum_{i=1}^n \mathbb{1}_{\{x_i = a\}}$$
 bzw. $h_x(a) := \frac{H_x(a)}{n}$

Definition: Merkmal

Die bei einem stochastischen Vorgang beobachtbaren Größen heißen **Merkmale**. Werte, die von Merkmalen angenommen werden können, heißen **Merkmalsausprägungen**.

Definition: Empirische Verteilungsfunktion

Die Funktion

$$F_n : \mathbb{R} \to [0, 1], \qquad t \mapsto F_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{x_i \le t\}}$$

heißt **empirische Verteilungsfunktion** von $x = (x_1, ..., x_n)$. Für ein diskretes Merkmal gilt $F_n(t) = \sum_{a \le t} h_x(a)$.

Definition: Histogramm

Das **Histogramm** ist definiert durch

$$\hat{f}_n^{hist} := \sum_{k=1}^K d_k \mathbb{1}_{(a_k, a_{k+1}]}(y),$$
 wobei

- $d_k := \frac{n_k}{a_{k+1} a_k}$ (Gewichtung nach Größe der Klasse)
- $n_k := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{a_k < x_i \le a_{k+1}\}}$ (Relative Häufigkeit der Klasse)

Kenngrößen

- $\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i$ (Stichproben-Mittel)
- $s_x^2 := \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2 = \frac{1}{n-1} (\sum_{i=1}^n x_i^2 n \cdot \bar{x}^2)$ (Stichproben-Varianz)
- $s_x \coloneqq \sqrt{s_x^2}$ (Stichprobenstandardabweichung)
- $v_x \coloneqq \frac{s_x}{\bar{x}}$ (Stichprobenvariationskoeffizient)
- Sei $x_{()} \coloneqq (x_{(1)}, \dots, x_{(n)})$ eine aufsteigend sortierte Stichprobe.

$$\tilde{x} \coloneqq \begin{cases} x_{(\frac{n+1}{2})} & \text{falls n ungerade} \\ \frac{1}{2} \cdot \left(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)} \right) & \text{falls n gerade} \end{cases}$$

heißt Stichprobenmedian.

• Für $p \in (0,1)$ und $k \coloneqq \lfloor n \cdot p \rfloor$ heißt

$$\tilde{x}_p := \begin{cases} x_{(k+1)} & \text{falls } n \cdot p \notin \mathbb{N} \\ \frac{1}{2} \cdot (x_{(k)} + x_{(k+1)}) & \text{sonst} \end{cases}$$

das Stichproben-p-Quantil.

- Quartilsabstand: $\tilde{x}_{0,75} \tilde{x}_{0,25}$, Stichprobenspannweite: $x_{(n)} x_{(1)}$, Mittlere absolute Abweichung: $\frac{1}{n} \sum_{i=1}^{n} |x_i \bar{x}|$
- Für $\alpha \in [0, 0.5)$ und $k := \lfloor n \cdot \alpha \rfloor$ ist $\bar{x}_{\alpha} := \frac{1}{n-2 \cdot k} \cdot (x_{(k+1)} + \ldots + x_{(n-k)})$ das α -getrimmte Stichprobenmittel.

Beschreibung zweidimensionaler Daten

Ein (parametrisches) Regressionsmodell versucht die Beobachtungen mit einer Regressionsfunktion f_{β} für ein geeignetes $\beta \in \mathbb{R}^p$ möglichst gut zu beschreiben, d.h. $y_i \approx f_{\beta}(x_i)$ für alle $i = 1, \ldots, n$.

Einfache lineare Regression

Die Regressionsgerade $y = a^* + b^*x$ ist bestimmt durch a^*, b^* als Lösung von $\min_{a,b \in \mathbb{R}} \sum_{i=1}^{n} (y_i - a - bx_i)^2$ (Kleinste-Quadrate-Methode). Lösung ist gegeben durch

$$b^* = \frac{\sum_{j=1}^{n} (x_j - \bar{x})(y_i - \bar{y})}{\sum_{j=1}^{n} (x_j - \bar{x})^2} \quad \text{und} \quad a^* = \bar{y} - b^* \bar{x}$$

Der (empirische) (Pearson-) Korrelationskoeffizient von $(x_1, y_1), \dots, (x_n, y_n)$ ist gegeben durch

$$r_{xy} = \frac{\frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})(y_j - \bar{y})}{s_x s_y} = \frac{\frac{1}{n-1} (\sum_{j=1}^{n} x_j \cdot y_j - n \cdot \bar{x}\bar{y})}{s_x s_y}$$

wobei s_k die Stichprobenstandardabweichung von k ist. Damit gilt $b^* = r_{xy} \frac{s_y}{s_x}$.

Eigenschaften von r_{xy}

- Es gilt $-1 \le r_{xy} \le 1$
- ullet Je nachdem ob r_{xy} positiv oder negativ ist, liegt ein ansteigender oder fallender linearer Trend vor
- Bei linearen Datentransformationen der Form $\tilde{x}=a\cdot x_j+b,\ \tilde{y}=c\cdot y_j+d$ ändert sich r_{xy} nicht, d.h. $r_{\tilde{x}\tilde{y}}=r_{xy}$

7.2 Induktive Statistik

Definition: Statistisches Experiment

Ein messbarer Raum $(\mathcal{X}, \mathscr{F})$ versehen mit einer Familie $(\mathbb{P}_{\vartheta})_{\vartheta \in \Theta}$ von Wahrscheinlichkeitsmaßen mit einer beliebigen **Parametermenge** $\Theta \neq \emptyset$ heißt **statistisches Experiment** oder **statistisches Modell**. Zufallsvariablen auf $(\mathcal{X}, \mathscr{F}, (\mathbb{P}_{\vartheta})_{\vartheta \in \Theta})$ heißen **Beobachtung** oder **Statistik**.

Definition: Unabhängige Stichprobe

Die Stichprobe $x = (x_1, x_2, ..., x_n)$ heißt als Realisierung eines Zufallsvektors $X = (X_1, X_2, ..., X_n) \in \mathcal{X}$ unabhängige Stichprobe, wenn alle X_i identisch und unabhängig verteilt sind. Hat diese Stichprobe eine Randverteilungsdichte $X_1 \sim f_{\vartheta}$, so ist der Stichprobenvektor verteilt mit $f_{\vartheta}^n(x_1, ..., x_n) = \prod_{i=1}^n f_i(x_i)$

Bemerkung: Kenngrößen wie \mathbb{E}_{ϑ} oder Var_{ϑ} von \mathbb{P}_{ϑ} hängen von ϑ ab.

Mit einer gegebenen Stichprobe sollen Aussagen über die zugrunde liegende Verteilung \mathbb{P}_{ϑ} gemacht werden. Parameterschätzung, Hypothesentests und Konfidenzbereiche sind grundlegende Kategorien zur Untersuchung.

Definition: Schätzer

Sei $(\mathcal{X}, \mathscr{F}, (\mathbb{P}_{\vartheta})_{\vartheta \in \Theta})$ ein statistisches Modell, $\rho : \Theta \to \mathbb{R}^d$ ein d-dimensionaler Parameter. Ein **Schätzer** ist eine Abbildung $\hat{\rho} : \mathcal{X} \to \mathbb{R}^d$. Gilt $\mathbb{E}_{\vartheta}[\hat{\rho}] = \rho(\vartheta)$, so heißt $\hat{\rho}$ unverzerrt oder erwartungstreu.

Definition: Verlust und Risiko

Eine Funktion $l: \Theta \times \mathbb{R}^d \to \mathbb{R}_+$ heißt **Verlustfunktion**, falls $l(\vartheta, \cdot)$ für alle $\vartheta \in \Theta$ messbar ist. Der erwartete Verlust $R(\vartheta, \hat{\rho}) := \mathbb{E}_{\vartheta}[l(\vartheta, \hat{\rho})]$ eines Schätzers $\hat{\rho}$ heißt **Risiko**. Besonders wichtig ist der **quadratische Verlust**: $l(\vartheta, r) = |r - \rho(\vartheta)|^2$.

Bias-Varianz-Zerlegung

Sei $(\mathcal{X}, \mathscr{F}, (\mathbb{P}_{\vartheta})_{\vartheta \in \Theta})$ ein statistisches Modell und $\hat{\rho} : \mathcal{X} \to \mathbb{R}^d$ ein Schätzer des Parameters $\rho(\vartheta)$ mit $\mathbb{E}_{\vartheta}[|\hat{\rho}|^2] < \infty$. Dann gilt für den quadratischen Verlust:

$$\mathbb{E}_{\vartheta}[|\hat{\rho} - \rho(\vartheta)|^2] = Var_{\vartheta}(\hat{\rho}) + |\mathbb{E}_{\vartheta}[\hat{\rho}] - \rho(\vartheta)|^2$$

Der hintere Summand ist der Bias.

Definitionen für asymptotische Eigenschaften von Schätzern

Seien $X_1, \ldots, X_n \sim \mathbb{P}_{\vartheta}$ eine i.i.d Stichprobe. Dann heißt eine Folge von Schätzern $\hat{\rho} = \hat{\rho}(X_1, \ldots, X_n)$ für den abgeleiteten Parameter $\rho(\vartheta) \in \mathbb{R}$

- asymptotisch konsistent, falls $\hat{\rho}_n \xrightarrow{\mathbb{P}_{\vartheta}} \rho(\vartheta)$ für $n \to \infty$
- asymptotisch erwartungstreu, falls $\mathbb{E}_{\vartheta}[\hat{\rho}_n] \to \rho(\vartheta)$ für $n \to \infty$

• asymptotisch normalverteilt, falls $\mathbb{E}_{\vartheta}[|\hat{\rho}_n|^2] < \infty$ und $\mathbb{P}_{\vartheta}(\frac{\hat{\rho}_n - \mathbb{E}_{\vartheta}[\hat{\rho}_n]}{\sqrt{Var_{\vartheta}(\hat{\rho}_n)}} \leq t) \rightarrow \Phi(t)$ für $n \to \infty$ und alle $t \in \mathbb{R}$

Wir wollen im Folgenden Schätzer konstruieren.

Empirische Maßzahlen

Schätze Maßzahlen durch deren empirisches Analogon einer unabh. Stichprobe:

$\rho(\vartheta)$	Schätzwert	
$\mathbb{E}_{artheta}[X_1]$	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	
$\mathbb{E}_{artheta}[X_1^k]$	$\frac{1}{n}\sum_{j=1}^{n}x_{j}^{k}$	
$Var_{artheta}(X_1)$	$s_x^2 = \frac{1}{n-1} \sum_{j=1}^n (x_j - \overline{x})^2$	
Median $t_{1/2}(X_1)$	empirischer Median \widetilde{x}	
Quantil $t_p(X_1)$	empirisches Quantil \widetilde{x}_p	
$\mathbb{P}_\vartheta(X_1\in B)$	empirische Verteilung $\mathbb{P}_n(B)$	

Für diese Schätzmethode braucht man kein parametrisches Modell.

Erwartungstreue von empirischen Maßzahlen

Folgende Schätzer sind für eine unabhängige Stichprobe erwartungstreu:

- $\overline{X}_n := \frac{1}{n} \sum_{j=1}^n X_j$ erwartungstreu für $\mathbb{E}_{\vartheta}[X_1]$
- $\mathbb{P}_n(B):=\frac{1}{n}\sum_{j=1}^n\{X_j\in B\}$ erwartungstreu für $\mathbb{P}(X_1\in B)$ für jede Borelmenge $B\in\mathscr{B}_{\mathbb{R}}$
- $s_n^2(X_1,\ldots,X_n) := \frac{1}{n-1} \sum_{j=1}^n (X_j \overline{X}_n)^2$ erwartungstreu für $Var_{\vartheta}(X_1)$

Mit dem zentralen Grenzwertsatz folgt die Konsistenz der obigen Werte.

Momentenmethode

- Seien X_1, \ldots, X_n i.i.d. verteilte Zufallsvariablen
- Gegeben Verteilung versuche die Parameter zu schätzen

- Bestimme die ersten k Momente $m_k(\vartheta) := \mathbb{E}_{\vartheta}[X_1^k]$
- Schätze $m_k(\vartheta)$ durch das k-te Stichprobenmoment $\hat{m}_k(x) = \frac{1}{n} \sum_{j=1}^n x_j^k$
- Momentenschätzer ergibt sich durch Auflösen der Gleichungen $m_k(\vartheta) = \hat{m}_k(x)$

Definition: Maximum-Likelihood-Schätzer

- Für eine feste Stichprobe $x = (x_1, \dots, x_n)$ heißt $\Theta \ni \vartheta \mapsto L_x(\vartheta) := \prod_{j=1}^n f_{\vartheta}(x_j)$ die Likelihood-Funktion zu x.
- Der Wert $\hat{\vartheta} \in \Theta$ an dem $L_x(\cdot)$ einen Maximalwert annimmt heißt **Maximum-Likelihood-Schätzwert** von ϑ zu x. Der Schätzer $\hat{\vartheta} : \mathcal{X} \to \Theta$ heißt **Maximum-Likelihood-Schätzer**.

Berechnung:

- Maximieren der Likelihood-Funktion ist äquivalent zur Maximierung der Loglikelihood-Funktion: $l_x(\vartheta) \coloneqq \sum_{i=1}^n \log f_{\vartheta}(x_i)$
- Finde Maximum durch die Ableitung.