GIẢI TÍCH III

TS. Lê Văn Tứ

Hanoi University of Science and Technology

Chuỗi đan dấu

Định nghĩa

Một chuỗi đan dấu là chuỗi mà số hạng tự do có dạng $(-1)^n u_n$, hoặc $(-1)^{n-1} u_n$, với $u_n > 0$.

Ví du

- $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n}$.
- $\bullet \ \sum_{n=1}^{+\infty} \sin\left(\pi \frac{n^2+n+1}{n+1}\right) = \sum_{n=1}^{+\infty} (-1)^n \sin\left(\pi \frac{n^2+n+1}{n+1} n\pi\right) = \sum_{n=1}^{+\infty} (-1)^n \sin\left(\pi \frac{1}{n+1}\right).$

Định lí Leibnitz

Định lí

Cho dãy $(u_n)_{n\geq 1}$ là dãy dương, giảm về 0. Khi đó, chuỗi $\sum_{n=1}^{+\infty} (-1)^{n-1} u_n$ hội tụ.

Chứng minh: Do u_n giảm, $u_n - u_{n+1} > 0$. Khi đó, với mọi $n \ge 1$,

$$S_{2n+2} = S_{2n} + u_{2n+1} - u_{2n+2} > S_{2n}, \quad S_{2n+3} = S_{2n+1} - u_{2n+2} + u_{2n+3} < S_{2n+1}.$$

Do đo, với mọi $n \geq 1$, $S_{2n} < S_{2n} + u_{2n+1} = S_{2n+1} < u_1$. Nói cách khác, $(S_{2n})_{n \geq 1}$ là dãy tăng và bị chặn trên bởi u_1 , nên

$$\lim_{n\to+\infty} S_{2n}=\ell.$$

Hơn nữa, do $\lim_{n \to +\infty} u_n = 0$, ta có

$$\lim_{n \to +\infty} S_{2n+1} = \lim_{n \to +\infty} (S_{2n} + u_{2n+1}) = \ell.$$

Định lí Leibnitz

Chứng minh (tiếp): Ta chứng minh $\lim_{n\to+\infty} S_n = \ell$. Thật vậy, chọn $\epsilon > 0$.

- Do $\lim_{n \to +\infty} S_{2n} = \ell$, tồn tại $n_0 > 0$ sao cho với mọi $n \geq n_0, |S_{2n} \ell| < \epsilon.$
- Do $\lim_{n \to +\infty} S_{2n+1} = \ell$, tồn tại $n_1 > 0$ sao cho với mọi $n \geq n_1, |S_{2n+1} \ell| < \epsilon.$

Chọn $N = 2 \max\{n_0, n_1\} + 1$. Với $n \ge N$,

- Nếu $n=2m \Rightarrow m>n_0$, khi đó $|S_n-\ell|=|S_{2m}-\ell|<\epsilon$.
- Nếu $n=2m+1 \Rightarrow m>n_1$, khi đó $|S_n-\ell|=|S_{2m+1}-\ell|<\epsilon$.

Như vậy, với mọi $n \geq N, |S_n - \ell| < \epsilon$. Nói cách khác,

$$\lim_{n\to+\infty} S_n = \ell.$$

Xét sự hội tụ của $\sum\limits_{n=1}^{+\infty}\frac{(-1)^n}{n^{\alpha}}, \alpha \in \mathbb{R}$

- Nếu $\alpha \leq 0$ thì $\lim_{n \to +\infty} \frac{(-1)^n}{n^{\alpha}}$ không tồn tại nên chuỗi phân kì.
- Nếu $\alpha>0$ thì $\frac{1}{n^{\alpha}}>0$ là dãy dương giảm về 0 nên chuỗi hội tụ theo tiêu chuẩn Leibnitz.

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}} \text{ hội tụ } \Leftrightarrow \alpha > 0.$$

Ghi chú

Xét
$$u_n = \frac{(-1)^n}{\sqrt{n}}$$

- Khi đó $\sum_{n=1}^{+\infty} u_n$ hội tụ nhưng $\sum_{n=1}^{+\infty} u_n^2 = \sum_{n=1}^{+\infty} \frac{1}{n}$ phân kì
- Ta có với mọi $n \geq 1, -\frac{1}{\sqrt{n}} \leq u_n$. Tuy nhiên, $\sum_{n=1}^{+\infty} -\frac{1}{\sqrt{n}}$ phân kì và $\sum_{n=1}^{+\infty} u_n$ hội tụ.

Xét sự hội tụ của $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha} + (-1)^n}, \alpha > 0$

Ta có

$$u_n = \frac{(-1)^n (n^{\alpha} - (-1)^n)}{n^{2\alpha} - 1} = \frac{(-1)^n n^{\alpha}}{n^{2\alpha} - 1} - \frac{1}{n^{2\alpha} - 1}.$$

• Xét $\frac{(-1)^n n^{\alpha}}{n^{2\alpha}-1}$:

$$f(x) = \frac{x^{\alpha}}{x^{2\alpha} - 1} \Rightarrow f'(x) = -\frac{\alpha x^{3\alpha - 1} + \alpha x^{\alpha - 1}}{(n^{2\alpha} - 1)^2} < 0, \forall x > 0, \alpha > 0.$$

nên $\sum_{n=1}^{+\infty} \frac{(-1)^n n^{\alpha}}{n^{2\alpha} - 1}$ hội tụ theo Leibnitz.

• $\frac{1}{n^{2\alpha}-1}\sim \frac{1}{n^{2\alpha}}$ nên $\sum_{n=1}^{+\infty}\frac{1}{n^{2\alpha}-1}$ hội tụ $\Leftrightarrow 2\alpha>1.$

Lê Văn Tứ (BKHN)

Xét sự hội tụ của $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha} + (-1)^n}, \alpha > 0$

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha} + (-1)^n} \text{ hội tụ } \Leftrightarrow \alpha > \frac{1}{2}.$$

Ghi chú

Xét
$$u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}, \sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}.$$

Ta có $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$ nhưng $\sum_{n=1}^{+\infty} u_n$ phân kì, $\sum_{n=1}^{+\infty} v_n$ hội tụ.

Chuỗi hội tụ tuyệt đối

Dinh nghĩa

Chuỗi $\sum_{n=0}^{+\infty} u_n$ được gọi là hội tụ tuyệt đối nếu $\sum_{n=0}^{+\infty} |u_n|$ hội tụ.

Mênh đề

Chuỗi hội tụ tuyệt đối thì hội tụ.

Gợi ý chứng minh. Xét chuỗi $\sum\limits_{n=0}^{+\infty}(|u_n|+u_n)$ là một chuỗi dương. Đặt

$$S_n = |u_1| + |u_2| + \ldots + |u_n|, \quad T_n = (|u_1| + u_1) + \ldots + (|u_n| + u_n).$$

Do $\sum\limits_{n\to +\infty}^{+\infty}|u_n|$ hội tụ, tồn tại $\ell>0$ sao cho $\lim\limits_{n\to +\infty}S_n=\ell, S_n\leq \ell.$ Hơn nữa

$$0 \le T_n \le 2S_n \le 2\ell$$

 $\lim_{\substack{n\to+\infty\\ ----}} T_n \text{ hội tụ. Suy ra, } \sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} (|u_n| + u_n - |u_n|) \text{ hội tụ.}$

Xét sự hội tụ của $\sum_{n=1}^{+\infty} u_n$

$$-u_n=\frac{\cos(n)}{n^2}.$$

Do $\left|\frac{\cos n}{n^2}\right| \leq \frac{1}{n^2}$, $\sum_{n=1}^{+\infty} |u_n|$ hội tụ. Suy ra $\sum_{n=1}^{+\infty} u_n$ hội tụ tuyệt đối.

$$-u_n=(-1)^n\frac{\sin^2(n)}{n^3}.$$

Lập luận tương tự, chuỗi $\sum\limits_{n=1}^{+\infty}u_n$ hội tụ tuyệt đối nên hội tụ. Chú ý là $\frac{\sin^2(n)}{n^3}$ là chuỗi dương không giảm, nên không thể áp dụng Tiêu chuẩn Leibnitz với chuỗi đan dấu $\sum\limits_{n=1}^{+\infty}u_n$.

$$-u_n = \frac{\binom{n-1}{(-1)^n}}{\sqrt{n}}.$$

Chuỗi $\sum_{n=1}^{+\infty} u_n$ hội tụ theo Leibnitz. Tuy nhiên, $\sum_{n=1}^{+\infty} |u_n| = \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$ phân kì. Do đó,

$$\sum_{n=1}^{+\infty} |u_n| \text{ phân kì không suy ra được } \sum_{n=1}^{+\infty} u_n \text{ phân kì.}$$

Chuỗi bán hội tụ

Định nghĩa

Chuỗi $\sum\limits_{n=1}^{+\infty}u_n$ được gọi là bán hội tụ (hoặc hội tụ có điều kiện) nếu $\sum\limits_{n=1}^{+\infty}u_n$ hội tụ

và $\sum\limits_{n=1}^{+\infty}|u_n|$ phân kì.

Ví du

Chuỗi $\sum\limits_{-1}^{+\infty} \frac{(-1)^n}{n^{\alpha}}$ là bán hội tụ $\Leftrightarrow 0 < \alpha \leq 1$.

Tiêu chuấn D'Alembert mở rộng

Dinh lí

Cho chuỗi $\sum_{n=1}^{+\infty} u_n$. Giả sử

$$\lim_{n\to+\infty}\left|\frac{u_{n+1}}{u_n}\right|=\lambda.$$

Nếu $\lambda < 1$ thì $\sum\limits_{n=1}^{+\infty} u_n, \sum\limits_{n=1}^{+\infty} |u_n|$ hội tụ. Nếu $\lambda > 1$ thì $\sum\limits_{n=1}^{+\infty} u_n, \sum\limits_{n=1}^{+\infty} |u_n|$ phân kì.

Gợi ý chứng minh. Nếu $\lambda < 1$, tồn tại $\lambda < q < 1$. Khi đó, $|u_{n+1}| < q^{n-n_0}|u_{n_0}|$

nên $\sum\limits_{}^{+\infty}|u_n|$ hội tụ.

Nếu $\lambda>1$ thì $|u_{n+1}|>|u_n|$ nên $\lim_{n\to+\infty}u_n
eq 0.$

Tiêu chuẩn Cauchy mở rộng

Định lí

Cho chuỗi $\sum\limits_{n=1}^{+\infty}u_n$. Giả sử

$$\lim_{n\to+\infty}\sqrt[n]{|u_n|}=\lambda.$$

Nếu $\lambda < 1$ thì $\sum\limits_{n=1}^{+\infty} u_n, \sum\limits_{n=1}^{+\infty} |u_n|$ hội tụ. Nếu $\lambda > 1$ thì $\sum\limits_{n=1}^{+\infty} u_n, \sum\limits_{n=1}^{+\infty} |u_n|$ phân kì.

Gợi ý chứng minh. Nếu $\lambda < 1$, tồn tại $\lambda < q < 1$. Khi đó, $|u_{n+1}| < q^n$ nên

 $\sum_{n=1}^{+\infty} |u_n| \text{ hội tụ.}$

Nếu $\lambda > 1$ thì tồn tại $\lambda > q > 1$. Khi đó, $|u_n| > q^n \to +\infty$ khi $n \to +\infty$.

Sự hoán đổi thứ tự khi tính tổng chuỗi

Hoán đổi thứ tự lấy tổng $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$

Đặt

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \dots$$

Khi đó

$$\begin{array}{rcl} \frac{1}{2}S & = & \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \dots \\ & = & 0 + \frac{1}{2} + 0 - \frac{1}{4} + 0 + \frac{1}{6} + 0 - \frac{1}{8} + 0 + \frac{1}{10} - \dots \\ S + \frac{1}{2}S = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots \end{array}$$

Chuỗi $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots$ chính là $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n}$ nhưng đã bị đảo thứ tự.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Chuỗi hội tụ có điều kiện

Xét $\sigma \colon \mathbb{N} \to \mathbb{N}$ là một song ánh. Một hoán vị thứ tự của chuỗi $\sum_{n=1}^{+\infty} u_n$ là chuỗi

$$\sum_{n=1}^{+\infty} u_{\sigma(n)}.$$

Định lí

Cho chuỗi $\sum_{n=1}^{+\infty} u_n$ bán hội tụ. Với mọi số thực $\alpha \in \mathbb{R}$, tồn tại một hoán vị thứ tự

của $\sum\limits_{n=1}^{+\infty}u_n$ thoả mãn $\sum\limits_{n=1}^{+\infty}u_{\sigma(n)}=\alpha.$

Dinh lí

Cho chuỗi $\sum\limits_{n=1}^{+\infty}u_n$ hội tụ tuyệt đối và $\sum\limits_{n=1}^{+\infty}u_n=\ell$. Khi đó, mọi hoán vị thứ tự

$$\sum\limits_{n=1}^{+\infty}u_{\sigma(n)}$$
 đều hội tụ và $\sum\limits_{n=1}^{+\infty}u_{\sigma(n)}=\ell.$

Lê Văn Tứ (BKHN) Chuỗi - PTVP - BD Laplace 03/2023

14 / 15

Tích của hai chuỗi

Định nghĩa

Tích của hai chuỗi $\sum_{n=0}^{+\infty} u_n$, $\sum_{n=0}^{+\infty} v_n$ được xác định bởi

$$\left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right) = \sum_{n=0}^{+\infty} w_n \quad \text{ v\'oi } \quad w_n = \sum_{k=0}^n u_k v_{n-k}.$$

Dinh lí

Nếu $\sum_{n=0}^{+\infty} u_n$, $\sum_{n=0}^{+\infty} v_n$ hội tụ tuyệt đối, $\sum_{n=0}^{+\infty} u_n = \ell_1$, $\sum_{n=0}^{+\infty} v_n = \ell_2$ thì $\left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right)$

hội tụ tuyệt đối và

$$\left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right) = \ell_1 \ell_2.$$

- (ロ) (回) (巨) (E) (9QC