한국어 기사 판별용 모델

모델	기반	특징	장점	단점
KoBERT	SKT, BERT	한국어 전용 학습	국내 뉴스 기사, 챗봇에 강함	RoBERTa보다 성능 살짝 낮음
KoELECTRA	Kakao Brain	빠르고 정확함	경량화 + 성능 균형	토크나이저 세팅이 조금 복잡
KLUE-BERT	KLUE 벤치마크	다양한 한국어 NLP 태스크 학습	고성능, 한국어 문맥에 강함	모델 사이즈 큼
KoBigBird / KoLongformer	긴 문서 특화	뉴스 기사 전체 입력 가능	긴문장 입력 가능	무거움, GPU 필요
KcBERT / KcELECTRA	위키 + 뉴스 + 일상말투	온라인 뉴스, 댓글에 강함	한국어 뉴스 다양성 대응	비속어 포함 가능성

모델+토크나이저

목적	모델	토크나이저
일반 기사 문맥 분류	KoBERT / KLUE-BERT	BertTokenizer
빠른 실시간 판별	KoELECTRA	ElectraTokenizer
뉴스 전체 기사 분석	KoBigBird	BigBirdTokenizer
뉴스 + 커뮤니티형 기사	KcELECTRA	ElectraTokenizer

한국어 데이터셋

이름	특징	
Al Hub 뉴스 데이터	정치/경제/사회 카테고리 뉴스 다수	
KLUE	한국어 언어 이해 벤치마크 (문장 분류 포함)	
CROWN dataset (news+community)	뉴스+커뮤니티 대응 가짜뉴스	

실현 가능성 VS 프로젝트 목표

	실현 가 능 성 있는 모델	목표에 부합하는 모델
모델	KoBERT / KoELECTRA	KLUE-RoBERTa / KoDeBERTa
문맥 이해력	중하(기본적인 문맥 처리)	중상~상(뉘앙스·관계 추론까지 가능)
난이도	쉬움 (BERT 기반, 코드 많음)	중상 ~ 어려움 (구조 복잡, 학습 느림)
학습 속도	빠름 (Colab/Streamlit OK)	느림 (GPU 필요, 서버 부하 ↑)
메모리 사용량	낮음 (8~12GB GPU 가능)	높음 (최소 12~16GB GPU 추천)
데이터 전처리	비교적 간단 (뉴스 본문 토큰화)	토큰화는 유사하지만 fine-tuning 정교함 필요
성능 기대치	★★★☆☆ (F1: 80~85%)	★★★☆ ~ ★★★★ (F1: 87~92%)
리소스/예제	많음 (GitHub/HuggingFace)	적당히 있음 (논문 수준, 발표도 가능)
강점	실용성 강조, 서비스화 용이	기술적 차별성 강조, 문맥 기반 분석 어필
현실성	시간과 달성 가능에 맞춤	목표에 부합, 도전적 & 고급

생각해둔 모델

1. KoELECTRA (조금 어려움)

한 줄 정리: 빠르고 효율적인 모델을 사용하여 실시간 추론에 강점을 둔 모델로, 문맥 기반 판단을 잘 처리할 수 있음

토크나이저: ElectraTokenizer

장점:

- -효율성이 뛰어나서 BERT보다 빠르게 학습하고 추론할 수 있음. 실시간 뉴스 판별에 적합
- -ELECTRA의 Generator-Discriminator 구조가 문맥을 파악하고 더 정확한 판단을 내릴 수 있게 도와줌
- -Hugging Face에서 모델을 손쉽게 로드하고 학습시킬 수 있음
- -RoBERTa보다 성능은 다소 떨어질 수 있지만, 속도와 효율성을 고려할 때 매우 실용적 단점:
- -RoBERTa보다는 문맥 이해 능력이 조금 떨어질 수 있음 (특히 복잡한 논리 관계나 긴 문장에서 성능이 조금 낮을 수 있음)
- -RoBERTa보다는 적지만 여전히 GPU 8~12GB 이상 필요

2. KLUE-RoBERTa (어려움)

토크나이저: AutoTokenizer

한 줄 정리: 문맥 이해 능력이 뛰어나고, 정확한 가짜뉴스 판별에 유리함(문맥과 논리적 관계 분석에 탁월함)

장점:

- -BERT보다 개선된 마스킹 방식으로 문맥 파악 능력이 뛰어남. 뉴스 기사나 긴 문장에서 더 나은 결과를 도출
- -최신 한국어 모델 중 하나로, 발표 시 기술적 차별화 가능

단점:

- -BERT보다 큰 모델이라 학습에 시간이 오래 걸릴 수 있음(GPU 리소스 필요)
- -12GB 이상의 GPU 메모리가 필요할 수 있음. 추론 시에도 메모리 소비 많음
- -실시간 추론은 느릴 수 있음

3. KoBERT(쉬움)

토크나이저: BertTokenizer

한 줄 정리: 간단한 구현과 빠른 테스트가 중요하다면 적합한 모델. 학습 속도가 빠르고 기본적인 문 맥 이해가 가능

장점:

- -비교적 빠른 학습과 적은 메모리 사용. Colab에서도 실행 가능
- -기본적인 문맥을 파악할 수 있으며, 한국어 뉴스 텍스트에서는 좋은 성능을 보임
- -BERT 기반이므로 구현하기 쉬움. 실습 코드나 예제 자료가 풍부해서 학습에 용이
- -적당한 성능을 보여주며, 학습과 테스트가 비교적 빨라 빠른 프로토타이핑이 가능 단점:
- -RoBERTa나 KoELECTRA에 비해 문맥 이해 능력은 다소 떨어짐. 긴 문장에서의 흐름 파악이 약할 수 있음