ALGEBRA I HOMEWORK VI

HOJIN LEE 2021-11045

Problem 1. Solve the following.

- (1) Show that every finite domain is a field.
- (2) Show that if F is a finite field then $|F| = p^n$ for some prime p > 0 and $n \in \mathbb{N}_{\geq 1}$.
- (3) Give an example of a ring A and element $x \in A$ that is left regular but not right regular.
- *Proof.* (1) Suppose D is a finite domain. Suppose $0, 1 \neq a \in D$. Consider the elements a, a^2, a^3, \ldots , and by the pigeonhole principle, we must have $a^i = a^j$ for some i < j. Then $a^i a^j = a^i (1 a^{j-i}) = 0$, where $a^i \neq 0$ (otherwise, a would be a zerodivisor) so we must have $a^{j-i} = 1$. Since we assumed $a \neq 1$, we have j i > 1, so a has a unique multiplicative inverse. \square
- Proof. (2) Suppose F is a finite field. Then $\operatorname{char} F = 0$ cannot happen by finiteness of F, and $\operatorname{char} F = p$ for some prime. To show this, suppose $\operatorname{char} F = n = p_1^{n_1} \cdots p_k^{n_k}$ for some composite n. This implies $1 \cdot n = (1 \cdot p_1)^{n_1} \cdots (1 \cdot p_k)^{n_k} = 0$, and since F is a field we must have $1 \cdot p_i = 0$ for some $1 \le i \le k$, a contradiction since $p_i < n$. Thus, suppose $\operatorname{char} F = p$ for some prime p. The subfield generated by 1 is isomorphic to \mathbb{F}_p , and we may view this as a field extension F/\mathbb{F}_p . Thus F is a \mathbb{F}_p -vector space, which is finite dimensional since F is finite. Hence it is isomorphic to a finite direct sum $\bigoplus \mathbb{F}_p$, thus of order p^n for some $n \ge 1$.
- *Proof.* (3) Such ring should be necessarily noncommutative. Consider the ring of endomorphisms of $\mathbb{R}[x]$ as an \mathbb{R} -vector space. Let $T: f \mapsto fx$. If $U: 1 \mapsto 1, x^i \mapsto 0$ for i > 0, then $U \circ T = 0$ but if $V \neq 0$ then we have $T \circ V \neq 0$. Thus T is not right regular, but is left regular.

Problem 2. $\mathbb{H} = \mathbb{R} \oplus \mathbb{R} i \oplus \mathbb{R} j \oplus \mathbb{R} k$ is a ring generated over \mathbb{R} .

- (1) Show that \mathbb{H} is a division ring.
- (2) Show that the center of \mathbb{H} is \mathbb{R} .
- *Proof.* (1) Suppose $a = r_1 + r_2i + r_3j + r_4k$ for $r_i \in \mathbb{R}$, $a \neq 0$. We show that there exists a^{-1} such that $aa^{-1} = a^{-1}a = 1$. If we let $b = r_1 r_2i r_3j r_4k$, then we have $ab = r_1^2 + r_2^2 + r_3^2 + r_4^2$, so if we let $a^{-1} = b/(r_1^2 + r_2^2 + r_3^2 + r_4^2)$ then we have $aa^{-1} = 1$. For the other way, we calculate ba. Note that this is just $(r_1 r_2i r_3j r_4k)(r_1 + r_2i + r_3j + r_4k)$, so this will be $r_1^2 + (-r_2)^2 + (-r_3)^2 + (-r_4)^2$, just the same. Thus $a^{-1}a = 1$ too. Hence \mathbb{H} is a division ring. □
- *Proof.* (2) Since ij = -ji, i and j are not in the center. Similarly, k is not in the center. Thus the center is contained in \mathbb{R} . Every element of \mathbb{R} commutes with other elements of \mathbb{H} , so the center is \mathbb{R} .

Date: April 12, 2024.

1

Problem 3.

Problem 4.

Problem 5. Let A be a commutative ring. Let I be an ideal of A.

- (1) Show that \sqrt{I} is an ideal, and that \sqrt{I} contains I.
- (2) Show that $\sqrt{I} = A$ iff I = A.

Proof. (1) Suppose $x,y\in \sqrt{I}$. Then we have $x^n,y^m\in I$ for some n,m>0. It follows that $(x+y)^{n+m}\in I$, so $x+y\in \sqrt{I}$. Obviously $0\in \sqrt{I}$ so \sqrt{I} is an additive subgroup of A. Now if we have $x\in \sqrt{I}$, say $x^n\in I$, then $(rx)^n=r^nx^n\in I$, so $rx\in \sqrt{I}$. Hence \sqrt{I} is an ideal. Obviously \sqrt{I} contains I since $i^1\in I$ for all $i\in I$.

Proof. (2)
$$\sqrt{I} = A \Rightarrow 1 \in \sqrt{I} \Rightarrow 1 \in I$$
. The converse is obvious.

Problem 6. Let A a ring. Let M an A-module, and $N, P \leq M$ are A-submodules.

(1) Construct the SES

$$0 \to M/(N \cap P) \to M/N \times M/P \to M/(N+P) \to 0.$$

(2) For N + P = M conclude we have a natural isomorphism of A-modules $M/(N \cap P) \cong M/N \times M/P$.

Proof. (1) Note that we have an exact sequence

$$0 \to N \cap P \to N \times P \to N + P \to 0$$

given by $x \mapsto (x, -x)$ and $(a, b) \mapsto a + b$. One may check exactness almost trivially. Now consider the following diagram in Mod_A

where β is termwise inclusion, and the maps $M \to M \times M$ and $M \times M \to M$ are given by extending the maps on the bottom row. The diagram commutes, and the desired SES is given by the Snake lemma.

Proof. (2) Suppose
$$N+P=M.$$
 Then in the SES above, we have $M/(N\cap P)\cong M/N\times M/P.$

Problem 7.