IMPORTANT: Besides your **calculator** and the sheets you use for calculations you are only allowed to have an A4 sized "**copy sheet**" during this exam. Notes, problems and alike are not permitted. **Please submit your "copy sheet" along with your solutions.** You may get your "copy sheet" back after your solutions have been graded. **Do not forget to write down units and convert units carefully! Cell phones are not allowed and should be placed on the front desk before the exam.**

EHB222E INTRODUCTION TO ELECTRONICS (21124) Midterm Exam #1 19 March 2018 9.30-11.30 inci ÇİLESİZ, PhD, M. Yasin ADIYAMAN EEF 5205

- 1. Compare and contrast conductors vs. semi-conductors. State similarities and differences. (10 p BONUS!)
- 2. Assume you have a diode made of n- and p-typed doped silicon with the following parameters $N_D = 10^{16} \ 1/cm^3$ and $N_A = 10^{17} \ 1/cm^3$. You also know $L_n = 10 \ \mu m$, $L_p = 5 \ \mu m$, $\mu_n = 1350 \ cm^2/Vs$, $\mu_p = 480 \ cm^2/Vs$. $n_i = 1.5 \ 10^{10} \ 1/cm^3$, $q = 1.602 \ 10^{-19} \ C$, $\epsilon_r = 12$, $\epsilon_0 = 8.85 \ 10^{-12} \ F/m$, $V_T = 25 \ mV$
 - a. For the dark current (I_o) to be under 100 fA how large should the junction area A be in mm²? (10)
 - b. If you cannot find A above, assume 0,5 mm² and calculate specific conductances of n and p type doped regions. (10)
 - c. Find depletion range width and junction capaticance in unbiased state. (10 puan)
- 3. For the circuit shown on the right sketch V_{out} as a function of V_{in} for V_{in} : -10 V to +10 V assuming all three resistors are 10k and the voltage drop across conducting diodes are constant at 0,6 V. (30 points) HINT: Analyze the circuit first at V_{in} = 0V; then at +10 V and -10 V, and finally at values in between.
- 4. Study DC characteristics of the 3-stage BJT amplifier circuit with $|V_{BE}| = 0.6$ V, $h_{FE} = 100$ for all four transistors.
 - a. Design a current source that will provide 0,5 mA biasing current to the differential stage. (10 p)

b. How should R_{E4} be chosen, such that, waveform distortion at the output is symmetrical, that is, $V_0 = 0V$? If you cannot find take $I_{C3} = 1$ mA. (30p)

SOLUTIONS:

2. $D_{p/n} = V_T \cdot \mu_{p/n}$ 'thus $D_p = 12$ cm²/s and $D_n = 33.8$ cm²/s

$$\text{a.} \quad I_o = A \cdot q \cdot n_i^2 \cdot \left[\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A} \right] \quad \text{thus} \quad \text{if} \quad \text{I}_o \quad < \quad 100 \quad \text{fA} \quad \text{for} \quad \text{A} \quad < \quad 1,01 \quad \text{mm}^2.$$

Thus I choose $A = 1 \text{ mm}^2$.

$$\text{b.} \quad \boldsymbol{\sigma}_{\boldsymbol{p}} = q \cdot \left(\frac{n_i^2}{N_{\scriptscriptstyle A}} \boldsymbol{\mu}_{\scriptscriptstyle n} + N_{\scriptscriptstyle A} \boldsymbol{\mu}_{\scriptscriptstyle p} \right) \! ; \quad \boldsymbol{\sigma}_{\scriptscriptstyle n} = q \cdot \left(N_{\scriptscriptstyle D} \boldsymbol{\mu}_{\scriptscriptstyle n} + \frac{n_i^2}{N_{\scriptscriptstyle D}} \boldsymbol{\mu}_{\scriptscriptstyle p} \right)$$

Thus $\sigma_p = 7,69 \ 1/(\Omega \ cm)$ $\sigma_n = 2,16 \ 1/(\Omega \ cm)$

c.
$$V_{B} = -V_{T} \cdot \ln \left(\frac{n_{i}^{2}}{N_{A} \cdot N_{D}} \right) \text{ thus V}_{\text{B}} = 728 \text{ mV and } w = \sqrt{\frac{2 \cdot \varepsilon_{o} \cdot \varepsilon_{r} \cdot V_{B}}{q \cdot}} \left[\frac{1}{N_{A}} + \frac{1}{N_{D}} \right] \text{ thus}$$

$$\text{w}_{\text{dep}} = 3,26 \text{ } \mu\text{m and } C = \varepsilon_{o} \cdot \varepsilon_{r} \cdot \frac{A}{w} \text{ C} = 326 \text{ pF}$$

3. Assume there is no V_{in} . $V_{out} = 0V$ because of the symmetry of the circuit, and because all diodes are conducting. This is the same as $V_{in} = 0V$. Now assume $V_{in} = 10V$. We can easily see that D_1 and D_3 are reverse biased because most of the voltage drop from +10 V to – 10 V is over the resistors R_1 and R_2 . In other words, the anode of D_1 is much less than +10V whereas the cathode is at +10V (reverse bias). Also, D_4 is conducting, thus, the cathode of D_3 is at 9,4V wheras the anode of D_3 is much less than +9,4V. That means current flows (a) from +10V over R_1 , D_2 , and R_3 to ground (follow blue line), and (b) from

 V_{in} over D_4 and R_4 to -10V. Since only 0,6V drops on the conducting diodes 9,4V drops over the two resistors R_1 and R_3 . Since R_1 and R_3 have equal values, we divide the voltage drop by 2 and this is $V_{out} = 4.7V$.

Now assume V_{in} = -10V. Similar to the observations above, D_4 and D_2 are reverse biased because most of the voltage drop from +10 V to -10 V is again over the resistors R_1 and R_2 . In other words, the cathode of D_4 is much higher than -10V whereas the anode is at -10V (reverse bias again). Also, D_1 is conducting, thus, the anode of D_2 is at -9,4V wheras the cathode of D_2 is much higher than -9,4V. That means current flows (a) from the ground over R_3 , D_3 , and R_2 to -10V (follow red line), and (b) from +10V over R_1 and D_1 to V_{in} . Since only 0,6V drops on the conducting diodes 9,4V drops over the two resistors R_2 and R_3 . Since R_2 and R_3 have equal values, we divide the voltage drop by 2 and this is V_{out} = 4.7V.

Finally, we need to consider the output for $0V \ge V_{in} \ge -10V$ and $0V \le V_{in} \le +10V$. One sees easily that when all the 4 diodes are conducting, the output V_{out} follows the input V_{in} because the circuit is symmetrical. When do all the 4 diodes conduct? See the sketch below....Capito????

- 4. DC characteristics are to be studied.
 - a. See the sketch below. You should calculate the value of R, and make sure T_6 operates in active mode.

Without neglecting the base currents of the differential stage, for $V_i = 0$

$$I_{C1} = I_{C2} = \frac{h_{FE}}{h_{FE} + 1} \cdot \frac{0.5mA}{2}$$

$$I_{C1} = I_{C2} = 0.248mA$$

b. Following the red loop $-(I_{C2}-I_{B3})20k+V_{BE3}+(h_{FE}+1)I_{B3}4k=0$

$$I_{C3} = h_{FE} \frac{20k * I_{C2} - V_{BE3}}{(h_{FE} + 1)4k + 20k} = 100 \frac{20k * 0.248mA - 0.6V}{(100 + 1)4k + 20k} = \underbrace{1.028mA}_{}$$

EHB222E INTRODUCTION TO ELECTRONICS (21124) Midterm Exam #1 – 19 March 2018

Following the blue loop and recalling that waveform distortion at the output should be minimum and symmetrical, i.e., V_0 = 0 V

$$\begin{split} &(h_{FE}+1)I_{B3}R_{E4}+V_{EB4}-(I_{C3}-I_{B4})10k5=0\,,\qquad \text{with}\qquad (h_{FE}+1)I_{B4}R_{E4}=10V\\ &10V+V_{EB4}-(I_{C3}-I_{B4})10k5=10V+0,&6V-(1,028\,mA-I_{B4})10k5=0\\ &I_{C4}=h_{FE}\Bigg[1,&028mA-\frac{10,&6V}{10k5}\Bigg]=\underbrace{1,87mA}_{E4}\text{ and }R_{E4}=\underbrace{\frac{10V}{(h_{FE}+1)I_{B4}}}=\underbrace{\frac{5k27}{E4}}_{E4} \end{split}$$