Regression Notes

Ryan Gehring

Contents

eory	
Model Parametrization	;
Loss Function	;
Normal Equation	
Coefficient Estimates	;
plication	;
Java Implementation	
Estimation of Bear Age from Body Measurements	

Theory

Model Parametrization

A vector of response variables Y is estimated by the product of a matrix of predictive variables X and coefficient vector β with normal errors ϵ .

$$Y = X\beta + \epsilon \tag{1}$$

Loss Function

Minimize the sum of squared errors.

$$SSE = \epsilon^T \epsilon \tag{2}$$

$$SSE = (Y - X\beta)^T (Y - X\beta)$$

Normal Equation

To minimize loss, differentiate with respect to the coefficients, set to zero:

$$0 = -2X^T(Y - X\beta) \tag{3}$$

Coefficient Estimates

Multiply by $(X^TX)^{-1}$ (and absorb 2 into β) to get the least squares estimate β :

$$\beta = (X^T X)^{-1} X^T Y \tag{4}$$

Application

Java Implementation

See below for an implementation using Apache commons math. The Github Repo contains code to run the model against an arbitrary csv data file.

Listing 1: Regression using commons math

Estimation of Bear Age from Body Measurements

Above code was used to generate predictions of bear ages from a variety of body measurements. Bear Data (truncated for readability):

AGE	SEX	HEADLEN	HEADWTH	NECK	LENGTH	CHEST	WEIGHT
19	0	11	5.5	16	53	26	80
55	0	16.5	9	28	67.5	45	344
81	0	15.5	8	31	72	54	416
115	0	17	10	31.5	72	49	348
104	1	15.5	6.5	22	62	35	166
100	1	13	7	21	70	41	220
56	0	15	7.5	26.5	73.5	41	262
51	0	13.5	8	27	68.5	49	360
57	1	13.5	7	20	64	38	204
53	1	12.5	6	18	58	31	144
68	0	16	9	29	73	44	332
8	0	9	4.5	13	37	19	34
44	1	12.5	4.5	10.5	63	32	140

 R^2 was measured to be 0.64.

 SEX:
 26.148987054376104

 HEADLEN:
 3.0528248476353443

 HEADWTH:
 3.791600738790277

 NECK:
 1.366288821513322

 LENGTH:
 -0.11350398628450656

 CHEST:
 -2.9977072569525833

 WEIGHT:
 0.3122111457892039