Sortări

RadixSort
MergeSort
ShellSort
CountingSort
HeapSort

Proiect realizat de <u>Asăvo</u>aei Bianca Gabriela

Conținutul prezentării

- A. Pentru fiecare din cele 5 tipuri de sortări se va specifica:
 - 1.Complexitate
 - 2.Complexitate spațiu
 - 3.Stabilitate
 - 4.Daca se bazează pe comparații sau nu
- B. Comparații între timpii de rulare pe mai multe teste cu numere naturale

Sortare	RadixSort	MergeSort	ShellSort	CountingSort	HeapSort
Complexitate	O(n+k)	O(nlogn)	O(nlogn)	O(n+k)	O(nlong)
Complexitate spaţiu	O(max)	O(n)	O(1)	O(max)	O(1)
Stabilitate	Da	Da	Nu	Da	Nu
Criteriul comparație	Nu	Da	Nu	Nu	Da

	N = 10 ^ 2	N = 10 ^ 3	N = 10 ^ 4	N = 10 ^ 5
	Vmax = 10 ^ 3	Vmax = 10^4	Vmax = 10 ^ 4	Vmax = 10 ^ 5
RadixSort	0.008	0.01	0.048	1.235
	milisecunde	milisecunde	milisecunde	milisecunde
ShellSort	0.056	0.193	0.661	15.162
	milisecunde	milisecunde	milisecunde	milisecunde
MergeSort	0.262	1.368	9.394	146.459
	milisecunde	milisecunde	milisecunde	milisecunde
HeapSort	0.042 milisecunde	0.526 milisecunde	0.196 milisecunde	2.632 milisecunde
CountingSort	0.022 milisecunde	0.067 milisecunde	0.047 milisecunde	1.007 milisecunde
STL	0 milisecunde	0.01 milisecunde	0 milisecunde	0 milisecunde

	N = 10 ^ 6	N = 10 ^ 7	N = 10 ^ 8	N = 10 ^ 8
	Vmax = 10 ^ 6	Vmax = 10 ^ 5	Vmax = 10 ^ 2	Vmax = 10 ^ 8
RadixSort	3.536	45.521	493.323	350.188
	milisecunde	milisecunde	milisecunde	milisecunde
ShellSort	128.877	2138.65	22360.5	13371.7
	milisecunde	milisecunde	milisecunde	milisecunde
MergeSort	1014.16	13112.8	131450	88492.8
	milisecunde	milisecunde	milisecunde	milisecunde
HeapSort	26.881	792.143	2862.78	2750.79
	milisecunde	milisecunde	milisecunde	milisecunde
CountingSort	7.117	1.552	0.014	805.974
	milisecunde	milisecunde	milisecunde	milisecunde
STL	0 milisecunde	0 milisecunde	0 milisecunde	0 milisecunde

Observații

Radix Sort și Counting Sort sunt cei mai rapizi algoritmi de sortare dintre cele cinci. Marele dezavantaj al Counting Sort-ului este că folosește multă memorie. Avantajul Radix Sort-ului este că poate sorta numere oricât de mari, fiind mai practic decât Counting.

Merge Sort este cel mai lent algoritm de sortare dintre cele cinci. Este un algoritm care se bazează pe Divide et Impera și are space complexity de O(n), ceea ce înseamnă că ocupă mult spațiu și încetinește operațiile.

N = 10^6 Vmax = 10^6	Baza = 2	Baza = 10	Baza = 256	Baza = 65536
RadixSort	3.619	3.06	2.886	2.735
	milisecunde	milisecunde	milisecunde	milisecunde

Observăm că pe măsură ce creștem baza, scade timpul de execuție, însă diferența dintre ultimele 2 baze nu este mare.