Singular Value Decomposition (SVD)

Definition: SVD is a factorization of a real or complex matrix. It generalizes the eigen decomposition of a square normal matrix to any (m \times n) matrix via an orthonormal basis.

Mathematical Representation: [A = U \Sigma V^T]

- (A) is the original matrix.
- (U) is an (m * m) orthogonal matrix.
- (Σ) is an (m*n) diagonal matrix with non-negative real numbers on the diagonal.
- (V) is an (n * n) orthogonal matrix.

Applications:

- **Data Compression**: Reducing the dimensionality of data while preserving important information.
- Noise Reduction: Filtering out noise from data.
- Image Processing: Enhancing and compressing images.

Conclusion

SVD is a versatile tool with numerous applications in modern data analysis. Its ability to decompose complex matrices into simpler components makes it invaluable for various computational tasks.