Spacecraft Design-Build-Fly Lab

16/18-873

Fall 2024 – Spring 2025

What Are We Doing Here?

We are going to:

- Design
- Build
- Test
- Fly (!!!)

a small satellite over the next 9 months.

Course Staff

Zac Manchester Assistant Professor

Brandon Lucia Professor

Neil Khera Staff Scientist

Kyle McCleary PhD Student

Ibrahima Sow MS Student

Background: Nanosatellites

Background: Ground Station

Nanosatellites collect more imagery than they can downlink On-board computing payloads look at every image

Imager & hyperspectral sensor

Radio transceiver

Train a visual ML model to run onboard & find salient landmarks (plus local sensors, eg, IMU) Use state estimation (EKF) to zero in on attitude & location w/o GPS or radio!

Train a visual ML model to run onboard & find *salient* landmarks (plus local sensors, eg, IMU)

Use state estimation (EKF) to zero in on attitude & location w/o GPS or radio!

Train a visual ML model to run onboard & find *salient* landmarks (plus local sensors, eg, IMU)

Use state estimation (EKF) to zero in on attitude & location w/o GPS or radio!

Mission

- Demonstrate "Lost in Space" visual orbit determination using low-cost camera system + on-board computing/ML.
- State estimator uses ML results & other sensor outputs
- CONOPS & sim ultra-important for ML train/test
- LoRa radios + ground station for comms
- PDR/CDR in December
- Flight hardware ready in May
- Launch next October on SpaceX Transporter

Course Logistics

- This class will be **hands-on** and **fast-paced**.
- Students are expected to put in 12(+) hours per week.
- There will be one lecture pre week, weekly all-hands meetings, and weekly sub-team meetings.
- Use of Slack, GitHub, and project management/issue tracking tools is <u>mandatory</u> and it will help you.
- Be a good teammate and an all-around good class citizen.
 The success of the mission depends on it!

Teams: Mechanical

- Spacecraft Structure
- Deployment mechanisms
- Batteries
- Thermal
- Vibration
- Materials Selection
- Mass/Inertia Properties

Teams: Electrical/Avionics

- PCB layout and fabrication
- Torque coils
- Camera integration
- Low-level hardware-interface code
- Solar panels
- Power budgets

Teams: GNC

- Main flight software state machine
- Spacecraft simulation
- Attitude/orbit determination (interfacing with vision)
- Controller implementation
- Hardware in the loop testing

Teams: Communication + Ops

Responsibilities:

- Define coding scheme & proto
- Spec comm hardware & software
- RF link budgets
- Build ground station
- Long-range field test
- Operations planning & execution

HAMs, we need you!

Teams: Flight Software

- Embedded software
- Hardware drivers
- Integration of GNC, vision, comms code
- Extensive testing (SW/HW in the loop infrastructure)

Teams: Vision

- Spec camera hardware & integrate w/ flight software
- Build landmark ID model
- Train ML model pipeline for onboard camera data from pixels to estimated landmark locations
- Integrate with GNC team to determine full orbit/attitude

Syllabus + Grading

Next Step: Course Survey

https://forms.gle/irZcHD8FcZzqj7y27

Next Step: Logistics

- Fill out survey before you leave (now)
- · We will contact each of you tomorrow by email
- There will be interviews during class time on Wednesday
- Final course enrollment will be determined by the end of the week and will be by invitation only
- You will know if you're in or not by Friday at the latest

