全国大学生数学建模竞赛编写的 LATEX 模板

摘要

cumcmthesis 是为全国大学生数学建模竞赛编写的 LATEX 模板,旨在让大家专注于论文的内容写作,而不用花费过多精力在格式的定制和调整上.本手册是相应的参考,其中提供了一些环境和命令可以让模板的使用更为方便.同时需要注意,使用者需要有一定的 LATEX 的使用经验,至少要会使用常用宏包的一些功能,比如参考文献,数学公式,图片使用,列表环境等等.例子文件参看 example.tex.

2020年建模比赛格式变化说明

今年的格式变化主要就是三个地方,如下:

- 1. 论文第一页为承诺书,内容进行了调整。
- 2. 编号页格式进行了格式调整。
- 3. 这是 19 年调整了,这里延续说明下。论文正文(**不要目录**,尽量控制在 20 页以内);正文之后是论文附录(页数不限)。

https://www.latexstudio.net 陆续推出了更优质的资源,欢迎学习。

欢迎大家到 QQ 群里沟通交流: 91940767/478023327/640633524。我们也开通了问答区交流 LATEX 技术: https://ask.latexstudio.net, 欢迎大家前来交流, 有问题就来这里, 与大神零距离。

关注我们的微信公众号:

关键字: TFX 图片 表格 公式

一、模板的基本使用

要使用LATEX来完成建模论文,首先要确保正确安装一个LATEX的发行版本。

- Mac 下可以使用 MacT_EX
- Linux 下可以使用 TFXLive;
- windows 下可以使用 TFXLive 或者 MikTFX;

具体安装可以参考 Install-LaTeX-Guide-zh-cn 或者其它靠谱的文章。另外可以安装一个易用的编辑器,例如 TeXstudio 。

使用该模板前,请阅读模板的使用说明文档。下面给出模板使用的大概样式。

```
\documentclass{cumcmthesis}
%\documentclass[withoutpreface,bwprint]{cumcmthesis} %去掉封面与编号页
\title{论文题目}
\tihao{A} % 题号
```

\baominghao{4321} % 报名号

\schoolname{你的大学}

\membera{成员A}

\memberb{成员B}

\memberc{成员C}

\supervisor{指导老师}

\yearinput{2017} % 年

\monthinput{08} % 月

\dayinput{22} % ∃

\begin{document}

\maketitle

\begin{abstract}

摘要的具体内容。

\keywords{关键词1\quad 关键词2\quad 关键词3}

\end{abstract}

\tableofcontents

\section{问题重述}

\subsection{问题的提出}

\section{模型的假设}

\section{符号说明}

\begin{center}

二、 图片 3

```
\begin{tabular}{cc}
      \hline
      \makebox[0.3\textwidth][c]{符号} & \makebox[0.4\textwidth][c]{意义}
          \\ \hline
                                & 木条宽度 (cm)
      D
                                                                 //
          \hline
   \end{tabular}
\end{center}
\section{问题分析}
\section{总结}
\begin{thebibliography}{9}%宽度9
   \bibitem{bib:one} ....
\end{thebibliography}
\begin{appendices}
   附录的内容。
\end{appendices}
\end{document}
```

根据要求,电子版论文提交时需去掉封面和编号页。可以加上 withoutpreface 选项来实现,即:

```
\documentclass[withoutpreface]{cumcmthesis}
```

这样就能实现了。打印的时候有超链接的地方不需要彩色,可以加上 bwprint 选项。 另外目录也是不需要的,将 \tableof contents 注释或删除,目录就不会出现了。 团队的信息填入指定的位置,并且确保信息的正确性,以免因此白忙一场。 编译记得使用 xelatex,而不是用 pdflatex。在命令行编译的可以按如下方式编译:

```
xelatex example
```

或者使用 latexmk 来编译, 更推荐这种方式。

```
latexmk -xelatex example
```

```
下面给出写作与排版上的一些建议。
```

建模中不可避免要插入图片。图片可以分为矢量图与位图。位图推荐使用jpg,png这两种格式,避免使用bmp这类图片,容易出现图片插入失败这样情况的发生。矢量图

一般有 pdf, eps, 推荐使用 pdf格式的图片, 尽量不要使用 eps 图片, 理由相同。

注意图片的命名,避免使用中文来命名图片,可以用英文与数字的组合来命名图片。避免使用1,2,3 这样顺序的图片命名方式。图片多了,自己都不清楚那张图是什么了,命名尽量让它有意义。下面是一个插图的示例代码。

图1 电路图

注意 figure 环境是一个浮动体环境,图片的最终位置可能会跑动。[!h] 中的 h 是 here 的意思,!表示忽略一些浮动体的严格规则。另外里面还可以加上 btp 选项,它们分别是 bottom, top, page 的意思。只要这几个参数在花括号里面,作用是不分先后顺序的。page 在这里表示浮动页。

\label{fig:circuit-diagram} 是一个标签,供交叉引用使用的。例如引用图片\cref{fig:circuit-diagram} 的实际效果是图 1。图片是自动编号的,比起手动编号,它更加高效。\cref{label} 由 cleveref 宏包提供,比普通的 \ref{label} 更加自动化。label 要确保唯一,命名方式推荐用图片的命名方式。

图片并排的需求解决方式多种多样,下面用 minipage 环境来展示一个简单的例子。 注意,以下例子用到了 subcaption 命令,需要加载 subcaption 宏包。

这相当于整体是一张大图片,大图片引用是图 2,子图引用别分是图 2a、图 2b、图 2c。如果原本两张图片的高度不同,但是希望它们缩放后等高的排在同一行,参考这个例子:

三、绘制普通三线表格

表格应具有三线表格式,因此常用 booktabs 宏包,其标准格式如表 1 所示。 其绘制表格的代码及其说明如下。

\begin{table}[!htbp]

\caption[标签名]{中文标题}

图 2 多图并排示例

图 3 多图并排示例

表1 标准三线表格

D(in)	$P_u(lbs)$	$u_u(in)$	β	$G_f(psi.in)$
5	269.8	0.000674	1.79	0.04089
10	421.0	0.001035	3.59	0.04089
20	640.2	0.001565	7.18	0.04089

```
\begin{tabular}{cc...c}
\toprule[1.5pt]
表头第1个格 & 表头第2个格 & ... & 表头第n个格 \\
\midrule[1pt]
表中数据(1,1) & 表中数据(1,2) & ... & 表中数据(1,n) \\
表中数据(2,1) & 表中数据(2,2) & ... & 表中数据(2,n) \\
............................\\
表中数据(m,1) & 表中数据(m,2) & ... & 表中数据(m,n) \\
```

四、公式6

\bottomrule[1.5pt]

\end{tabular}

\end{table}

table 环境是一个将表格嵌入文本的浮动环境。tabular 环境的必选参数由每列对应一个格式字符所组成:c表示居中,l表示左对齐,r表示右对齐,其总个数应与表的列数相同。此外,@{文本}可以出现在任意两个上述的列格式之间,其中的文本将被插入每一行的同一位置。表格的各行以\\分隔,同一行的各列则以&分隔。\toprule、\midrule和\bottomrule 三个命令是由 booktabs 宏包提供的,其中\toprule和\bottomrule分别用来绘制表格的第一条(表格最顶部)和第三条(表格最底部)水平线,\midrule用来绘制第二条(表头之下)水平线,且第一条和第三条水平线的线宽为 1.5pt ,第二条水平线的线宽为 1pt 。引用方法与图片的相同人式

数学建模必然涉及不少数学公式的使用。下面简单介绍一个可能用得上的数学环境。

首先是行内公式,例如 θ 是角度。行内公式使用\$\$包裹。

行间公式不需要编号的可以使用\[\]包裹,例如

$$E = mc^2$$

其中 E 是能量, m 是质量, c 是光速。

如果希望某个公式带编号,并且在后文中引用可以参考下面的写法:

$$E = mc^2 (1)$$

式(1)是质能方程。

多行公式有时候希望能够在特定的位置对齐,以下是其中一种处理方法。

$$P = UI (2)$$

$$=I^2R\tag{3}$$

& 是对齐的位置, & 可以有多个, 但是每行的个数要相同。 矩阵的输入也不难。

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$$

四、公式 7

分段函数这些可以用 case 环境, 但是它要放在数学环境里面。

$$f(x) = \begin{cases} 0 & x 为无理数, \\ 1 & x 为有理数. \end{cases}$$

在数学环境里面,字体用的是数学字体,一般与正文字体不同。假如要公式里面有个别文字,则需要把这部分放在 text 环境里面,即 \text{文本环境}。

公式中个别需要加粗的字母可以用 \mathbf{symbol} 。如 $\alpha a \boldsymbol{\alpha} a$ 。

以上仅简单介绍了基础的使用,对于更复杂的需求,可以阅读相关的宏包手册,如 amsmath。

希腊字母这些如果不熟悉,可以去查找符号文件 symbols-a4.pdf,也可以去 detexify 网站手写识别。另外还有数学公式识别软件 mathpix 。

下面简单介绍一下定理、证明等环境的使用。

定义1 定义环境

定义1除了告诉你怎么使用这个环境以外,没有什么其它的意义。

除了 definition 环境, 还可以使用 theorem、lemma、corollary、assumption、conjecture、axiom、principle、problem、example、proof、solution 这些环境,根据论文的实际需求合理使用。

定理1 这是一个定理。

由定理1我们知道了定理环境的使用。

引理1 这是一个引理。

由引理1我们知道了引理环境的使用。

推论1 这是一个推论。

由推论1我们知道了推论环境的使用。

假设1 这是一个假设。

由假设1我们知道了假设环境的使用。

猜想 1 这是一个猜想。

由猜想1我们知道了猜想环境的使用。

公理1 这是一个公理。

五、 其它小功能 8

由公理1我们知道了公理环境的使用。

定律1 这是一个定律。

由定律1我们知道了定律环境的使用。

问题1 这是一个问题。

由问题 1我们知道了问题环境的使用。

例1 这是一个例子。

由例1我们知道了例子环境的使用。

证明1 这是一个证明。

由证明1我们知道了证明环境的使用。

解1 这是一个解。

由解 1我们知道了解环境的使用 五、 其它小功能

5.1 脚注

5.2 光序列装写有序列表》可以生成脚注1。

无序列表是这样的:

- one
- two
- ...

有序列表是这样子的:

- 1. one
- 2. two

5.3字体加粗与斜体

如果想强调部分内容,可以使用加粗的手段来实现。加粗字体可以用\textbf{加粗}来实现。例如: **这是加粗的字体**。**This is bold fonts**。

中文字体没有斜体设计,但是英文字体有。斜体 Italics。

¹脚注可以补充说明一些东西

六、参考文献与引用

参考文献对于一篇正式的论文来说是必不可少的,在建模中重要的参考文献当然应该列出。LATEX 在这方面的功能也是十分强大的,下面进介绍一个比较简单的参考文献制作方法。有兴趣的可以学习 bibtex 或 biblatex 的使用。

LATEX的入门书籍可以看《LATEX入门》[1]。这是一个简单的引用,用 \cite{bibkey}来完成。要引用成功,当然要维护好 bibitem 了,下面是个简单的例子。

- [1] 刘海洋. LATEX 入门[J]. 电子工业出版社, 北京, 2013.
- [2] 全国大学生数学建模竞赛论文格式规范 (2020年8月25日修改).
- [1] https://www.latexstudio.net

A 模板所用的宏包 10

附录 A 模板所用的宏包

表 2 宏包罗列

模板中已经加载的宏包						
amsbsy	amsfonts	amsgen	amsmath	amsopn		
amssymb	amstext	appendix	array	atbegshi		
atveryend	auxhook	bigdelim	bigintcalc	bigstrut		
bitset	bm	booktabs	calc	caption		
caption3	CJKfntef	cprotect	ctex	ctexhook		
ctexpatch	enumitem	etexcmds	etoolbox	everysel		
expl3	fix-cm	fontenc	fontspec	fontspec-xetex		
geometry	gettitlestring	graphics	graphicx	hobsub		
hobsub-generic	hobsub-hyperref	hopatch	hxetex	hycolor		
hyperref	ifluatex	ifpdf	ifthen	ifvtex		
ifxetex	indentfirst	infwarerr	inteale	keyval		
kvdefinekeys	kvoptions	kvsetkeys	13keys2e	letltxmacro		
listings	longtable	lstmisc	ltcaption	ltxcmds		
multirow	nameref	pdfescape	pdftexcmds	refcount		
rerunfilecheck	stringenc	suffix	titletoc	tocloft		
trig	ulem	uniquecounter	url	xcolor		
xcolor-patch	xeCJK	xeCJKfntef	xeCJK-listings	xparse		
xtemplate	zhnumber					

以上宏包都已经加载过了,不要重复加载它们。 附录 B 排队算法—matlab 源程序

kk=2; [mdd,ndd] = size(dd);

while ~isempty(V)

```
[tmpd,j]=min(W(i,V)); tmpj=V(j);
for k=2:ndd
[tmp1,jj]=min(dd(1,k)+W(dd(2,k),V));
tmp2=V(jj);tt(k-1,:)=[tmp1,tmp2,jj];
end
tmp=[tmpd,tmpj,j;tt];[tmp3,tmp4]=min(tmp(:,1));
if tmp3==tmpd, ss(1:2,kk)=[i;tmp(tmp4,2)];
else,tmp5=find(ss(:,tmp4)~=0);tmp6=length(tmp5);
if dd(2,tmp4)==ss(tmp6,tmp4)
ss(1:tmp6+1,kk)=[ss(tmp5,tmp4);tmp(tmp4,2)];
else, ss(1:3,kk)=[i;dd(2,tmp4);tmp(tmp4,2)];
end;end
dd=[dd,[tmp3;tmp(tmp4,2)]];V(tmp(tmp4,3))=[];
[mdd,ndd]=size(dd);kk=kk+1;
end; S=ss; D=dd(1,:);
```

附录 C 规划解决程序-lingo 源代码

```
kk=2;
[mdd,ndd] = size(dd);
while ~isempty(V)
    [tmpd, j] = min(W(i, V)); tmpj = V(j);
for k=2:ndd
    [tmp1,jj]=min(dd(1,k)+W(dd(2,k),V));
   tmp2=V(jj);tt(k-1,:)=[tmp1,tmp2,jj];
end
   tmp=[tmpd,tmpj,j;tt];[tmp3,tmp4]=min(tmp(:,1));
if tmp3==tmpd, ss(1:2,kk)=[i;tmp(tmp4,2)];
else,tmp5=find(ss(:,tmp4)~=0);tmp6=length(tmp5);
if dd(2,tmp4)==ss(tmp6,tmp4)
   ss(1:tmp6+1,kk)=[ss(tmp5,tmp4);tmp(tmp4,2)];
else, ss(1:3,kk)=[i;dd(2,tmp4);tmp(tmp4,2)];
end;
end
   dd=[dd,[tmp3;tmp(tmp4,2)]];V(tmp(tmp4,3))=[];
    [mdd,ndd] = size(dd);
   kk=kk+1;
end;
```

S=ss; D=dd(1,:);