第二章作业参考答案

1. 3 级线性反馈移位寄存器在 c_3 =1 时可有 4 种线性反馈函数,设其初始状态为(a_1,a_2,a_3)=(1,0,1),求各线性反馈函数的输出序列及周期。

解: 此时线性反馈函数可表示为 $f(a_1,a_2,a_3)=a_1\oplus c_2a_2\oplus c_1a_3$

 $\underline{+}$ c_1 =0, c_2 =0时, $f(a_1,a_2,a_3)=a_1\oplus c_2a_2\oplus c_1a_3=a_1$,

输出序列为 101101...,

周期=3

 $\stackrel{\text{"}}{=} c_1 = 0$, $c_2 = 1$ 时, $f(a_1, a_2, a_3) = a_1 \oplus c_2 a_2 \oplus c_1 a_3 = a_1 \oplus a_2$,

输出序列为 10111001011100..., 周期=7

输出序列为 10100111010011..., 周期=7

有输出序列为 1010...,

周期=2

- 2. 设 n 级线性反馈移位寄存器的特征多项式为 p(x),初始状态为 $(a_1,a_2,...,a_{n-1},a_n)$ =(00...01),证明输出序列的周期等于 p(x)的阶
- 证: 设p(x)的阶为p,由定理2-3,由r|p,所以 $r \le p$

设 A(x)为序列 $\{a_i\}$ 的生成函数,并设序列 $\{a_i\}$ 的周期为 \mathbf{r} ,则显然有 $A(x)p(x) = \phi(x)$

于是 $A(x)=(a_1+a_2x+...+a_rx^{r-1})/(x^r-1)=\phi(x)/p(x)$

 $\mathbb{X}(a_1,a_2,\ldots,a_{n-1},a_n)=(00\ldots01)$

所以 $p(x)(a_nx^{n-1}+...+a_rx^{r-1})=\phi(x)(x^r-1)$ 即 $p(x)x^{n-1}(a_n+...+a_rx^{r-n})=\phi(x)(x^r-1)$

由于 x^{n-1} 不能整除 x^r-1 ,所以必有 $x^{n-1}|\phi(x)$,而 $\phi(x)$ 的次数小于 n,所以必有 $\phi(x)=x^{n-1}$

所以必有 $p(x)|(x^r-1)$, 由 p(x)的阶的定义知, 阶 $p \le r$

综上所述: p=r #

3. 设 n=4, $f(a_1,a_2,a_3,a_4)=a_1\oplus a_4\oplus 1\oplus a_2a_3$,初始状态为 $(a_1,a_2,a_3,a_4)=(1,1,0,1)$,求此非线性反馈移位寄存器的输出序列及周期。

解:由反馈函数和初始状态得状态输出表为

(a ₄	a_3	a_2	a_1)	输出	(a_4)	a_3	a_2	a_1)	输出	
1	0	1	1	1	1	1	1	1	1	
1	1	0	1	1	0	1	1	1	1	
1	1	1	0	0	1	0	1	1	1(回到初始》	状态)

所以此反馈序列输出为: 11011...周期为5

4. 设密钥流是由 m=2s 级 LFSR 产生,其前 m+2 个比特是 $(01)^{s+1}$,即 s+1 个 01。问第 m+3 个比特有无可能是 1,为什么?

解:不能是1。

可通过状态考察的方法证明以上结论。

首先 m 级 LFSR 的状态是一个 m 维的向量,则前 m 个比特构成一个状态 S_0 ,可表示为 $(01)^s$,

第m+1个比特是0,所以 S_0 的下一个状态是 $S_1=(10)^s$,

第 m+2 个比特是 1,所以 S_1 的下一个状态是 $S_2=(01)^s=S_0$,回到状态 S_0 ,

所以下一个状态应是 $S_3=S_1=(10)^s$, 也即第 m+3 个比特应该为 0。

5. 设密钥流是由 n 级 LFSR 产生,其周期为 2^n-1 ,i 是任一正整数,在密钥流中考虑以下比特对 $(S_i, S_{i+1}), (S_{i+1}, S_{i+2}), ..., (S_{i+2}{}^n_{-3}, S_{i+2}{}^n_{-2}), (S_{i+2}{}^n_{-2}, S_{i+2}{}^n_{-1}),$

问有多少形如 (S_j, S_{j+1}) =(1,1)的比特对?证明你的结论。

答: 共有 2(n-2)

证明:

证明方法一: 由于产生的密钥流周期为 2ⁿ-1,且 LFSR 的级数为 n,所以是 m 序列

以上比特对刚好是 1 个周期上,两两相邻的所有比特对,其中等于(1,1)的比特对包含在所有大于等于 2 的 1 游程中。由 m 序列的性质,所有长为 i 的 1 游程($1 \le i \le n-2$)有 $2^{n-i-1}/2$ 个,没有长为 n-1 的 1 游程,有 1 个长为 n 的 1 游程。

长为 i (i>1)的 1 游程可以产生 i-1 个(1,1)比特对,

所以共有(1,1)比特对的数目 $N=2^{n-2-2}\times(2-1)+2^{n-3-2}\times(3-1)+...+2^{n-i-2}\times(i-1)+...+2^{n-i-2}\times(n-1)$

2-1)+n-1=
$$\sum_{i=2}^{n-2} 2^{n-i-2} (i-1)$$
+n-1=2⁽ⁿ⁻²⁾

证明方法 2: 考察形如 11*...*的状态的数目, 共有 2(n-2)个

6. 已知流密码得密文串为 1010110110 和相应明文串 0100010001, 而且还已知密钥流是使用 3 级线性反馈移位寄存器产生的,试破译该密码系统。

解:由二元加法流密码的加密算法可知,将密文串和相应的明文串对应位模 2 加可得连续的密钥流比特为 1110100111

设该三级线性反馈移位寄存器的反馈函数为 $f(a_1,a_2,a_3)=c_3a_1\oplus c_2a_2\oplus c_1a_3$

取其前6比特可建立如下方程

$$(a_4a_5a_6)=(c_3,c_2,c_1)\begin{bmatrix} a_1 & a_2 & a_3 \ a_2 & a_3 & a_4 \ a_3 & a_4 & a_5 \end{bmatrix},$$

$$\mathbb{E}[(c_3,c_2,c_1)=(a_4a_5a_6)\begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \\ a_3 & a_4 & a_5 \end{bmatrix}^{-1} = (0\ 1\ 0) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{-1} = (0\ 1\ 0) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} = (1\ 0\ 1)$$

所以 $f(a_1,a_2,a_3)=a_1\oplus a_3$, 即流密码的递推关系式为 $a_{i+3}=a_{i+2}\oplus a_i$

7. 若 GF(2)上的二元加法流密码的密钥生成器是 n 级线性反馈移位寄存器,产生的密钥是 m 序列。2.5 节已知,敌手若知道一段长为 2n 的明密文对就可破译密钥流生成器。如果敌手仅知道长为 2n-2 的明密文对,问如何破译密钥流生成器。

解:破译 n-LFSR 所产生的 m 序列,需要 2n 个连续比特,现在仅有 2n-2 个连续的密钥比特(由长为 2n-2 的明密文对逐位异或得到),因此需要猜测后两个比特。这有 00,01,10,11 四种情况,对这些情况按下式逐一试破译

$$(a_{n+1}a_{n+2}..a_{2n}) = (c_nc_{n-1}..c_1) \begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_2 & a_3 & \cdots & a_{n+1} \\ \vdots & & & & \\ a_n & a_{n+1} & \cdots & a_{2n+1} \end{pmatrix} = (c_nc_{n-1}..c_1) X$$

首先验证矩阵X的可逆性,如果不可逆则可直接排除此情况

其次对于可逆的情况,求解出 $(c_nc_{n-1}...c_1)$,然后验证多项式 $p(x)=1+c_1x+...+c_nx^n$ 是否是本原多项式,如果是,则是一解。

结果可能会多余1个。

8.设 J-K 触发器中 $\{a_k\}$ 和 $\{b_k\}$ 分别为 3 级和 4 级 m 序列,且

 $\{a_k\} = 11101001110100...$

 $\{b_k\} = 001011011011000 0010110110110100...$

求输出序列 $\{c_k\}$ 及周期。

