VERIFICAÇÃO DA VALIDADE

Vamos, neste capítulo, verificar a validade e não-validade de argumentos de diversas formas. Primeiramente faremos isso utilizando tabelas-verdade, depois por meio de regras de inferências.

9.1 Verificação Mediante Tabelas-Verdade

Tabelas-verdade podem ser utilizadas para demonstrar, testar ou verificar a validade de qualquer argumento.

Dado um argumento **P1, P2, ..., Pn** |— **Q**, podemos construir uma tabela-verdade para constatar sua validade. Para isto, criamos uma coluna para cada premissa (P1, P2 etc.)

Conceitos

Para que o argumento seja válido a conclusão Q deve ser verdadeira nas linhas em que as premissas P1, P2, ..., Pn são todas verdadeiras. Outra maneira de testar a validade, é demonstrar a condicional associada, verificando se é uma tautologia ou não:

$$(P1 \land P2 \land ... \land Pn) \rightarrow Q$$

Se esta condicional é tautológica, então o argumento dado é válido. Caso contrário, é um sofisma.

9.2 Exemplos (Alencar Filho, 2003)

(1) Verificar se é válido o argumento: p \longrightarrow q, q |— p.

Resolução:

As premissas estão nas colunas 2 e 3 e a conclusão está na coluna 1. As premissas são ambas verdadeiras (V) nas linhas 1 e 3. Na linha 1 a conclusão também é verdadeira, mas na linha 3 a conclusão é falsa (F). Logo, o argumento **não é válido**, ou seja, é um **sofisma**.

Para que o argumento seja válido, a veracidade da conclusão tem que ser compatível com a verdade das premissas.

	p	q	$p \rightarrow q$
	V	V	V
ſ	V	F	F
	F	V	V
	F	F	V

(2) Verificar a validade do argumento: $p \leftrightarrow q, q \mid p$

Resolução:

As premissas estão nas colunas 2 e 3 e a conclusão está na coluna 1. As premissas são ambas verdadeiras (V) apenas na linha 1, e a conclusão também é verdadeira. Logo, o argumento **é válido.**

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

(3) Verificar a validade do argumento:

Se chove, Marcos fica resfriado Marcos não ficou resfriado

Logo, não choveu

Resolução:

Representando por ${\bf p}$ a proposição "Chove" e por ${\bf q}$ a proposição "Marcos fica resfriado", o argumento dados fica:

$$p \rightarrow q$$
, $\sim q \mid --\sim p$

e, por conseguinte, é válido, pois temos a forma do argumento válido **Modus Tollens (MT).**

Atividades

ATIVIDADE 14:

1. Estudar os demais exemplos de validade e de não-validade do capítulo 10 do livro de Edgard de Alencar Filho - Iniciação à lógica matemática. São Paulo: Nobel, 2003.

0:0:0=

-0.0.0

2. Usar tabelas-verdade para verificar que são válidos os seguintes argumentos:

Fala Professor

(a)
$$p \rightarrow q$$
, $r \rightarrow \sim q \mid __ r \rightarrow \sim p$

(b)
$$p \rightarrow \sim q$$
, $p, \sim q \rightarrow r \mid p \mid r$

(c)
$$p \lor q \rightarrow r$$
, $s \rightarrow p \land q$, $s \mid q \lor r$

(d)
$$p \lor q, q \rightarrow r, p \rightarrow s, \sim s \mid __ r \land (p \lor q)$$

(e) (1)
$$x = 0 \rightarrow x \neq y$$

(2)
$$x = z \rightarrow x = y$$

$$(3) x = z$$

$$x \neq 0$$

3. Passar para forma simbólica e testar a validade do argumento:

Se trabalho, não posso estudar

Trabalho ou passo em Física

Trabalhei

Logo, passei em Física

Não esqueça de fazer os demais exercícios que constam no capítulo 10 do livro de Edgard de Alencar Filho - Iniciação à Lógica Matemática. São Paulo: Nobel, 2003.

Fala Professor

9.3 Validade Mediante Regras de Inferência

Como já mencionado, a verificação de validade, mediante tabelas-verdade é desanimador quando se tem um grande número de premissas. Por isso, veremos agora o teste de validade de um argumento por meio de inferências.

Demonstrar que um argumento P1, P2,..., Pn |— Q **é válido** consiste em deduzir a conclusão Q a partir das premissas P1, P2,..., Pn, mediante o uso de regras de inferência (ALENCAR FILHO, 2003).

Conceitos

9.4 **Exemplos (Alencar Filho, 2003):**

(1) Verificar que é válido o argumento: $p \rightarrow q$, $p \land r \mid q$.

Resolução:

- $(1) p \rightarrow q$
- $(2) p \wedge r$

- (3) p 2 SIMP
- (4) q 1, 3 MP

Da segunda premissa, pela Regra de Simplificação (SIMP), inferimos p. De p e da primeira premissa pela Regra de Modus ponens (MP), inferimos q, que é a conclusão do argumento.

Logo, como a conclusão pode ser deduzida a partir de suas premissas, através do uso de regras de inferência, temos que o argumento é válido.

(2) Verificar que é válido o argumento: $p \rightarrow q$, $q \rightarrow r$, $s \rightarrow t$, $p \lor s$ \vdash r \lor t.

Resolução:

- $(1) p \rightarrow q$
- (2) $q \rightarrow r$
- $(3) s \rightarrow t$
- $(4) p \lor s$

- $(5) p \rightarrow r$
- 1,2 SH
- (6) r V t
- 3, 4 e 5 DC

Atividades

ATIVIDADE 15:

- 1. Estudar os demais exemplos do livro de Edgard de Alencar Filho - Iniciação à Lógica Matemática. São Paulo: Nobel, 2003.
- 2. Usar a regra de Modus-Ponens para deduzir os seguintes argumentos:
- (a) (1) $p \rightarrow q$
 - $(2) q \rightarrow r$
- (b) (1) $2 > 1 \longrightarrow 3 > 1$ $(2) 3 > 1 \longrightarrow 3 > 0$

- (3) 2 > 1
- (3) p
- _____

3 > 0

3. Usar a regra de Modus-tollens para deduzir os seguintes argumentos:

Atividades

(a) (1)
$$p \rightarrow q$$

$$(2) \sim p \longrightarrow r$$

$$(3) \sim q$$

r

(b) (1) $x \neq 0 \rightarrow y = 1$

(2)
$$x = y \rightarrow y = t$$

(3)
$$y = t \rightarrow y \neq 1$$

$$(4) x = y$$

x = 0

(b) $p \lor q$, $\sim r$, $q \rightarrow r \vdash p$

4. Usar a regra do silogismo disjuntivo para deduzir os seguintes argumentos:

(a) (1)
$$x = 0 \rightarrow x \neq y$$

$$(2) x = y \lor x = z$$

$$(3) \mathbf{x} \neq \mathbf{7}$$

$$(3) x \neq z$$

(a)
$$p \land q, p \rightarrow q, q \rightarrow s \mid r \land s$$

(b)
$$\sim p \lor \sim q$$
, $\sim \sim q$, $r \longrightarrow p \mid -- \sim r$

(c) (1)
$$x + 8 = 12 \lor x \neq 4$$

(2)
$$x = 4 \land y < x$$

(3)
$$x + 8 = 12 \land y < x \longrightarrow y + 8 < 12$$

$$y + 8 < 12$$

(d) (1)
$$x < y \lor x = y$$

(2)
$$x = y \rightarrow y \neq x$$

$$(3) x < y \land y = 5 \longrightarrow x < 5$$

$$(4) y = 5$$

$$x = 0$$

Não esqueça de fazer os demais exercícios que constam no capítulo 11 do livro de Edgard de Alencar Filho - Iniciação à Lógica Matemática. São Paulo: Nobel, 2003.

Fala Professor

9.5 Validade Mediante Regras de Inferência e **Equivalência**

Há muitos argumentos que não podemos mostrar a validade por meio das regras de inferência já estudadas. Assim, é necessário recorrer a um princípio chamado de Regra de substituição:

Conceitos

Regras de substituição – uma proposição qualquer P ou uma parte de P pode ser substituída por uma proposição equivalente e a proposição Q, que assim se obtém , é equivalente a P.

Fala Professor

As regras de equivalência foram apresentadas na seção 6.6

9.6 Exemplos (Alencar Filho, 2003)

(1) Demonstrar que é válido o argumento: $p \rightarrow q$, $r \rightarrow \sim q \mid p \rightarrow \sim r$

Demonstração:

- $(1) p \rightarrow q$
- (2) $r \rightarrow \sim q$

.----

- (3) $\sim \sim q \rightarrow \sim r$ 2 CP
- $(4) \qquad q \longrightarrow \sim r \qquad 3 DN$
- (5) $p \rightarrow \sim r$ 1, 4 SH
- (2) Demonstrar a validade do argumento:

(1)
$$x < y \land y < z \longrightarrow x < z$$

(2)
$$(y < z \rightarrow x < z) \rightarrow z = 3$$

$$z = 3$$

Demonstração:

$$(1) x < y \land y < z \longrightarrow x < z$$

(2)
$$(y < z \rightarrow x < z) \rightarrow z = 3$$

$$(4) x < y \longrightarrow (y < z \longrightarrow x < z)$$

1 – EI

(5)
$$y < z \rightarrow x < z$$

3, 4 - MP

$$(6) z = 3$$

2, 5 - MP

Fala Professor

Não esqueça de olhar os demais exemplos que constam no capítulo 12 do livro de Edgard de Alencar Filho - **Iniciação à Lógica Matemática.** São Paulo: Nobel, 2003.

9.7 Inconsistências

Proposições inconsistentes – são duas ou mais proposições que não podem ser simultaneamente verdadeiras (ALENCAR FILHO, 2003).

Por exemplo, as proposições: \sim (p $\vee \sim$ q), p $\vee \sim$ r, q \longrightarrow r são inconsistentes uma vez que não é possível encontrar valores para p, q e r capazes de tornar as três proposições simultaneamente verdadeiras.

Também é possível demonstrar que proposições são inconsistentes, deduzindo-se do seu conjunto uma contradição qualquer, por exemplo, A \wedge ~A.

- (1) Demonstrar que são inconsistentes as três proposições seguintes:
- $(1) x = 1 \longrightarrow y < x$
- $(2) y < x \longrightarrow y = 0$
- $(3) \qquad \sim (y = 0 \lor x \neq 1)$

Demonstração:

- $(1) x = 1 \longrightarrow y < x$
- $(2) y < x \longrightarrow y = 0$
- (3) $\sim (y = 0 \lor x \neq 1)$

- (4) $x = 1 \rightarrow y = 0 \ 1, 2 SH$
- (5) $y \neq 0 \land x = 1 \quad 3 DM$
- (6) x = 1 5 SIMP
- (7) y = 0 4,6 MP
- $(8) y \neq 0 5 SIMP$
- (9) $y = 0 \land y \neq 0 \quad 7.8 CONJ$

ATIVIDADE 16:

1. Estudar os demais exemplos e resolver os outros exercícios do capítulo 12 do livro de Edgard Alencar Filho - Iniciação à Lógica Matemática. São Paulo: Nobel, 2003.

Atividades

Atividades

2. Demonstrar a validade dos seguintes argumentos:

(a)
$$p \rightarrow q$$
, $\sim p \rightarrow \sim \sim r$, $\sim q \mid r$

(b)
$$p \lor q$$
, $\sim q$, $p \rightarrow r \land s \models s \land r$

(c)
$$(r \land \sim t) \longrightarrow \sim s, p \longrightarrow s, p \land q \mid \longrightarrow \sim (\sim t \land r)$$

(d)
$$p \rightarrow q, q \rightarrow r \mid -- \sim p \lor r$$

(e) (1)
$$y \neq 3$$

(2)
$$x + y = 8 \rightarrow y = 3$$

(3)
$$x + y = 8 \lor x \neq 5$$

$$\sim$$
(x = 5 \wedge y = 4)

Indicações

Para maior compreensão, ler os capítulos 10 – Validade mediante tabelas-verdade, 11 – Validade mediante regras de inferência e 12 – Validade mediante regras de inferência e equivalências do livro de Edgard de Alencar Filho - Iniciação à Lógica Matemática. São Paulo: Nobel, 2003.