МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МГТУ им Н.Э.Баумана

Факультет ФН

Кафедра вычислительной математики и математической физики

Соколов Арсений Андреевич

Курсовая работа по дифференциальной геометрии

3 курс, группа ФН11-53Б Вариант 8

Преподаватель				
		Е.В. Осипов		
‹ ‹	>>	2019 г.		

Содержание

1	Римановы пространства		6
	1.1	Элементарное многообразие	6
	1.2	Касательное пространство	7
	1.3	Определение риманова пространства	9
2	Свой	і́ства римановых пространств	10
	2.1	Коэффициенты связанности в \mathbb{V}^n	10
	2.2	Определение аффинной связности	10
	2.3	Тензоры в элементарном многообразии	11
	2.4	Определение тензора в римановом пространстве	12
	2.5	Ковариантное дифференцирование тензоров в \mathbb{V}^n	13
	2.6	Ковариантное дифференцирование тензоров в \mathbb{L}^n	13
	2.7	Риманово пространство с аффинной связностью	14
	2.8	Тензор Римана-Кристоффеля	14
	2.9	Тензор Риччи	16
	2.10	Тензор Эйнштейна	17
3	Трак	триса и её эволюта	18
Сп	исок	использованных источников	25

рпз

список исполнителей

реферат

введение

1 Римановы пространства

В механике и особенно в релятивистской физике тензоры широко применяют в n-мерных римановых пространствах, являющихся более общими, чем евклидовы [1]. Дадим определение этих пространств, а затем покажем, как конструируются тензоры в них. Начнём с основополагающего понятия римановых пространств - элементарного многообразия.

1.1 Элементарное многообразие

Определение 1. Элементарным n-мерным многообразием называют такое множество M^n , каждой точке которого взаимнооднозначно поставлен в соответствие упорядоченный набор чисел $(X_1...X_n)$ из некоторой связной области $\mathcal{D} \in \mathbb{R}^n$, т.е, задано биективное отображение $\varphi: M^n \longrightarrow \mathcal{D} \in \mathbb{R}^n$.

Координатами точки $\mathcal{M} \in M^n$ в системе координат \mathcal{D} называют координаты $X^i \in \mathbb{R}^n$ ее образа $\varphi(\mathcal{M})$, изменяющиеся в области $\mathcal{D} \in \mathbb{R}^n$. Если для множества M^n имеется другое биективное отображение $\varphi': M^n \longrightarrow \mathcal{D} \in \mathbb{R}^n$, то координаты точки \mathcal{M} в системах координат \mathcal{D} и \mathcal{D}' , связаны соотношениями:

$$X'^{i} = X'^{i}(X^{j}), \quad i, j = 1 \dots n,$$
 (1)

которые предполагают достаточное число раз дифференцируемыми и невырожденными, т.е. $\det\left(\frac{\partial X^{\prime i}}{\partial X^{j}}\right) \neq 0, \forall X^{i} \in \mathcal{D}$. Введём обозначения для якобиевых матриц преобразования, а также для их производных:

$$Q^{i}_{j} \equiv \left(\frac{\partial X^{\prime i}}{\partial X^{j}}\right), \quad P^{i}_{j} \equiv \left(\frac{\partial X^{i}}{\partial X^{\prime j}}\right), \quad P^{i}_{jk} \equiv \frac{\partial^{2} X^{i}}{\partial X^{\prime j} \partial X^{\prime k}},$$
 (2)

и кроме того будем использовать обозначения для частных производ-

ных:

$$\frac{\partial f}{\partial X^i} \equiv f_{,i}, \quad \frac{\partial f}{\partial X'^i} \equiv f_{|i} = P^j_{i} f_{,i}. \tag{3}$$

Примером двумерного (n=2) элементарного многообразия M^2 являются поверхности в \mathbb{R}^3 , на которых определены криволинейные координаты X_1, X_2 и которые заданы тремя функциями:

$$x^{i} = x^{i}(X^{1}, X^{2}), \quad i = 1, 2, 3.$$
 (4)

1.2 Касательное пространство

Определение 2. Кривой $\mathcal L$ в многообразии M^n называют отображение $\mathcal L: [\xi_1,\xi_2] \in \mathbb R^1 \longrightarrow M^n$, которое записывают в виде функции:

$$X^{i} = X^{i}(\xi) \quad \forall \xi \in [\xi_{1}, \xi_{2}], \quad X^{i} \in M^{n}.$$

$$(5)$$

Здесь X^i - координаты точки $\mathcal{M} \in M^n, [\xi_1, \xi_2]$ - некоторый отрезок из $\mathbb{R}^1, (\xi_1 < \xi_2)$, а функции (5) предполагаем непрерывно дифференцируемыми, по крайней мере, два раза.

Зафиксировав значение параметра $\xi \in [\xi_1, \xi_2]$, получим некоторую точку $\mathcal{M} \in \mathcal{L}$, в ней можно вычислить производные от функций (5):

$$a^i = \frac{\mathrm{d}X^i}{\mathrm{d}\xi}.\tag{6}$$

Определение 3. Упорядоченный набор $(a_1 \dots a_n)$ производных (6) называют компонентами касательного вектора a^i в точке $\mathcal M$ кривой $\mathcal L$ в M^n .

Если перейти к координатам X'^i той же точки $\mathcal{M} \in \mathcal{L}$, то согласно (1)

получаем, что компоненты касательного вектора a'^i в этой системе координат будут иметь вид: $a'^i=\frac{\mathrm{d} X'^i}{\mathrm{d} \xi}$ и связаны с a^i тензорным законом:

$$a^{\prime i} = Q^i{}_i a^j. \tag{7}$$

Поскольку через фиксированную точку $\mathcal{M} \in M^n$ можно провести различные кривые \mathcal{L} , то, вообще говоря, в каждой точке \mathcal{M} имеется множество упорядоченных наборов $(a_1 \dots A_n)$. Определим операции с этими наборами.

Пусть имеется две кривые \mathcal{L}_1 и \mathcal{L}_2 , заданные в виде функций $X_1^i(\xi), X_2^i(\xi)$, проходящие через точку \mathcal{L} , тогда можно построить два набора компонент касательных векторов $a_1^i = \frac{\mathrm{d} X_1^i}{\mathrm{d} \xi}$ и $a_2^i = \frac{\mathrm{d} X_2^i}{\mathrm{d} \xi}$.

Суммой компонент двух касательных векторов назовём набор

$$a_1^i + a_2^i = \frac{\mathrm{d}X_1^i + X_2^i}{\mathrm{d}\xi},$$
 (8)

который представляет собой компоненты касательного вектора к кривой $(X_1^i + X_2^i)(\xi)$ в данной точке $\mathcal{M}.$

Аналогично определяем произведение компонент i на вещественное число λ :

$$\lambda a^i = \lambda \frac{\mathrm{d}X^i}{\mathrm{d}\xi} = \frac{\mathrm{d}\lambda X^i}{\mathrm{d}\xi}.$$
 (9)

Поскольку набор чисел $(a_1...a_n)$ является элементом пространства \mathbb{R} , то, выбрав базис e_i в этом пространстве, можно построить сам касательный вектор a в точке \mathcal{M} кривой $\mathcal{L}: a=a^ie_i=a'^ie'_i$, где $e'_i=P^j_ie_j$ - новый базис.

Определение 4. Касательным пространством в данной точке \mathcal{M} элементарного многообразия M^n называют множество касательных векторов $=a^ie_i$, построенных ко всевозможным кривым \mathcal{L} , проходящим через данную точку.

Теорема 1. Касательное пространство в любой точке $\mathcal{M} \in M^n$ является n-мерным линейным пространством, которое обозначают как $T_{\mathcal{M}}M^n$,

а векторы e, образуют базис в нем.

1.3 Определение риманова пространства

Определение 5. Элементарное n-мерное многообразие M^n называют римановым пространством \mathbb{V}^n , если в каждой точке $\mathcal{M} \in M^n$ с координатами X^i задана матрица g_{ij} n-го порядка, которая является

- 1) симметричной,
- 2) невырожденной: $\det(\tilde{g}_{ij}) \neq 0$, $\forall X^i$,
- 3) компоненты её являются непрерывно-дифференцируемыми функциями,
- 4) при переходе к другим координатам X'^l преобразуется по тензорному закону:

$$g_{ij} = Q_i^k Q_j^l g_{kl}^l. (10)$$

Двумерные поверхности в \mathbb{R}^3 , очевидно, можно рассматривать как двумерные римановы пространства \mathbb{V}^2 с метрической матрицей \tilde{g}_{IJ} .

Расстояние в римановом пространстве вводят для бесконечно близких точек \mathcal{M} и \mathcal{M}' , имеющих кординаты X^i и $X^i + dX^i$, и определяют его как

$$ds^2 = \varkappa q_{ij} dX^i dX^j, \tag{11}$$

где κ – знаковое число, которое выбирают так, чтобы форма (11) была положительной.

Риманово пространство называют собственно римановым, если метрическая матрица $g_{ij}, \forall X^i \in \mathcal{D}$ является положительно-определённой, в противном случае говорят о псевдоримановых пространствах.

2 Свойства римановых пространств

Рассмотрим некоторые свойства римановых пространств, которые понадобятся нам для введения тензора Эйнштейна, чтобы указать связь римановых пространств с общей теорией относительности.

2.1 Коэффициенты связанности в \mathbb{V}^n

Поскольку в каждой точке $\mathcal{M}(X^i) \in \mathbb{V}^n$ введена метрическая матрица $g_{ij(X^i)}$ компоненты которой, согласно п.3 определения 5, являются непрерывно дифференцируемыми функциями, то можно вычислить производные $\frac{\partial g_{ij}}{\partial X^k}$ и образовать из них следующие объекты:

$$\Gamma_{ijk} = \frac{1}{2}(g_{ik,j} + g_{jk,i} - g_{ij,k}). \tag{12}$$

Определение 6. Функции Γ_{ijk} определённые по формулам (12), называют коэффициентами связности первого рода в \mathbb{V}^n . Коэффициенты связности второго рода вводим с помощью обратной матрицы g^{ij} :

$$\Gamma_{ij}^m = g^{mp} \Gamma_{ijp}. \tag{13}$$

2.2 Определение аффинной связности

Определение 7. Элементарное n-мерное многообразие M^n называют пространством аффинной связности \mathbb{L}^n , если в каждой точке $\mathcal{M} \in M^n$ с координатами X^i задана система функций Γ^m_{ij} , которые

- 1) являются непрерывно-дифференцируемыми функциями,
- 2) при переходе к другим координатам X'^i преобразуются следующим

образом:

$$\Gamma_{ij}^{\prime m} = P_i^l P_j^q Q_r^m \Gamma_{lq}^{r} + Q_r^m P_{ij}^r.$$
 (14)

Функции Γ_{ij}^{m} , заданные в \mathbb{L}^{n} , называют коэффициентами аффинной связности (или просто аффинной связностью).

2.3 Тензоры в элементарном многообразии

Построим в каждой точке $\mathcal{M} \in M^n$ множество наборов касательных векторов:

$$(a_1b^{(1)}a_2b^{(2)}\dots a_nb^{(n)} \equiv (a_ib^{(i)}), \tag{15}$$

где $a_i \in T_{\mathcal{M}} M^n$, $b^{(i)} T_{\mathcal{M}}^* M^n$, и введём на этом множестве операции сложения и умножения на вещественное число s:

$$(a_i b^{(i)}) + (a_i c^{(i)}) = (a_i (b^{(i)} + c^{(i)})),$$
(16)

$$(a_i b^{(i)}) + (d_i b^{(i)}) = ((a_i + d_i))b^{(i)}), \tag{17}$$

$$s(a_i b^{(i)}) = ((sa_i)b^{(i)}) = (a_i(sb^{(i)})).$$
(18)

Определение 8. Тензорным касательным пространством $\mathcal{T}_n^{(pq)}(T_{\mathcal{M}}M^n)$ типа pq, где p+q=2, в точке \mathcal{M} элементарного многообразия M^n называют тензорное произведение касательного пространства $T_{\mathcal{M}}M^n$ на себя:

$$\mathcal{T}_{n}^{(pq)}\left(T_{\mathcal{M}}M^{n}\right) = T_{\mathcal{M}}M^{n} \otimes T_{\mathcal{M}}M^{n} \quad \forall \mathcal{M} \in M^{n}, \quad p+q=2, \tag{19}$$

где тензорное произведение вводится как фактор-пространство n-ой степе-

ни декартова квадрата

$$T_{\mathcal{M}}M^n \otimes T_{\mathcal{M}}M^n = [(T_{\mathcal{M}}M^n \times T_{\mathcal{M}}M^n)^n] \tag{20}$$

Базисные диады в $\mathcal{T}_n^{(pq)}(T_{\mathcal{M}}M^n)$ введём как

$$e_j \otimes e_k = [e_i(\delta_j^i e_k)], \tag{21}$$

где $[\]$ – классы эквивалентности соответствующих наборов касательных векторов. Очевидно, что если рассматриваемое многообразие M^2 является поверхностью $\Sigma \in \mathbb{R}^3$, то базисные диады совпадают с соответствующими диадами $\rho_I \otimes \rho_K$.

Определение 9. Тензором второго ранга $A(\mathcal{M})$ типа (pq) в точке $\mathcal{M}\in M^n$ называют элемент тензорного произведения касательного пространства $\mathcal{T}_n^{(pq)}(T_{\mathcal{M}}M^n), p+q=2.$

Тензор k—го ранга $^kA(\mathcal{M})$ введём как

$${}^{k}A = A_{i_{1}\dots i_{p}}{}^{j_{1}\dots j_{q}}e^{i_{1}}\otimes \dots \otimes e^{i_{p}}\otimes e_{j_{1}}\otimes \dots \otimes e_{j_{q}}, \quad p+q=k.$$
 (22)

2.4 Определение тензора в римановом пространстве

Если в многообразии M^n введена метрическая матрица g_{ij} то оно становится римановым пространством \mathbb{V} , а касательное пространство в каждой точке $\mathcal{M} \in \mathbb{V}^n$ - евклидовым (или псевдоевклидовым) $T\mathcal{M}\mathbb{V}^n$. Тогда используя соглашение о совпадении пространств $T_{\mathcal{M}}^*\mathbb{V}^n$ и $T_{\mathcal{M}}V^n$, можно говорить о тензорном касательном пространстве $\mathcal{T}_n^{(k)}(T_{\mathcal{M}}\mathbb{V}^n)$, заданном на римановом пространстве \mathbb{V}^n .

2.5 Ковариантное дифференцирование тензоров в \mathbb{V}^n

Рассмотрим в \mathbb{V}^n произвольное поле тензора k-го ранга:

$$^{k}\Omega\left(X^{i}\right) = \Omega^{i_{1}\dots i_{p}}_{j_{1}\dots j_{q}}\mathbf{e}_{i_{1}}\otimes\dots\otimes\mathbf{e}_{i_{p}}\otimes\mathbf{e}^{j_{1}}\otimes\dots\otimes\mathbf{e}^{j_{q}}, \quad p+q=k,$$
 (23)

причём его компоненты $\Omega^{i_1...i_p}_{\quad j_1...j_q}$ будем считать непрерывно дифференцируемыми функциями координат X^i точки $\mathcal{M} \in \mathbb{V}^n$

Определение 10. Ковариантной производной от компонент тензора $\Omega^{i_1...i_p}_{\ \ j_1...j_q}$ k-го ранга $^k\Omega$, определённого в \mathbb{V}^n , называют следующий объект:

$$\nabla_{i}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}} = \frac{\partial}{\partial X^{i}}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}} + \sum_{s=1}^{p} \Gamma^{i_{s}}_{mi}\Omega^{i_{1}...i_{p}=m...i_{p}}{}_{j_{1}...j_{q}} + \dots$$

$$\dots - \sum_{s=1}^{q} \Gamma^{m}_{j_{s}i}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}=m...i_{q}}, p+q=k. \quad (24)$$

2.6 Ковариантное дифференцирование тензоров в \mathbb{L}^n

Наличие связанности Γ^m_{ij} в \mathbb{L}^n означает, что в этом пространстве определена операция ковариантного дифференцирования.

Определение 11. Ковариантной производной от компонент тензора ${}^kA\in\mathcal{T}_n^{pq}(T_\mathcal{M}\mathbb{L}^n),\ k=p+q,$ (или иначе ковариантной производной относительно связности Γ^m_{ij}) называют следующий объект:

$$\nabla_{i}^{*} A^{i_{1} \dots i_{p}}_{j_{1} \dots j_{q}} + \sum_{s=1}^{p} \Gamma_{mi}^{i_{s}} A^{i_{1} \dots i_{s} = m \dots i_{p}}_{mi} - \sum_{s=1}^{q} \Gamma_{i,i}^{m} A^{i_{1} \dots i_{p}}_{j_{1} \dots j_{s} = m \dots j_{q}}.$$
 (25)

Теорема 2. Ковариантная производная от компонент тензора k—го ранга является компонентами тензора (k+1)—го ранга $\nabla \otimes^k A$ в \mathbb{L}^n , называемого

градиентом тензора:

$$\overset{*}{\nabla} \otimes {}^{k}A = A^{i_{1}\dots i_{p}}{}_{j_{1}\dots j_{q}} e^{i} \otimes e_{i_{1}} \otimes \dots \otimes e_{i_{p}} \otimes e^{j_{1}} \otimes \dots e^{j_{q}}, \qquad p+q=k. \quad (26)$$

2.7 Риманово пространство с аффинной связностью

В римановом пространстве \mathbb{V}^n у нас была определена метрика g_{ij} (ей соответствовала вполне определённая связность Γ^m_{ij}). Можно однако построить такое пространство, в котором будет одновременно определена и метрика g_{ij} , и некоторая «самостоятельная» связность Γ^m_{ij} , для которой уже не имеют места соотношения (12).

Определение 12. Элементарное n-мерное многообразие M^n называют римановым пространством аффинной связностью \mathbb{W}^n , если в каждой точке $\mathcal{M} \in M^n$ с координатами x^i заданы две системы функций g_{ij} и Γ^m_{ij} , вообще говоря, не связанные никакими соотношениями и удовлетворяющие свойствам 1-4 из определения 5 и 1,2 из определения 7 соответственно.

Поскольку в \mathbb{W}^n определена метрическая матрица g_{ij} , то можно образовать из неё символы Γ^m_{ij} по формуле (13)

$$\Gamma_{ij}^{m} = \frac{1}{2}g^{mk}(g_{ik,j} + g_{jk,i} - g_{ij,k}). \tag{27}$$

Символы Γ^m_{ij} уже не являются связностью: $\Gamma^*_{ij} \neq \Gamma^m_{ij}$.

2.8 Тензор Римана-Кристоффеля

Рассмотрим в точке $\mathcal{M} \in \mathbb{L}^n$ произвольный вектор $b = b^k e_k$ из $T_{\mathbb{L}^n}$ и вычислим его ковариантную производную относительно связности Γ^m_{ij} :

$$\overset{*}{\nabla_i}b^k = \frac{\partial b^k}{\partial X^i} + \overset{*}{\Gamma^k_{si}}b^s. \tag{28}$$

Вычислим вторую ковариантную производную:

$$\nabla_{j}^{*}\nabla_{i}^{*}b^{k} = \frac{\partial}{\partial X^{j}} + \Gamma_{mj}^{k}\nabla_{i}^{*}b^{m} - \Gamma_{ij}^{m}\nabla_{m}^{*}b^{k} = \frac{\partial^{2}b^{k}}{\partial X^{j}\partial X^{i}} + \frac{\partial\Gamma_{si}^{k}}{\partial X^{j}}b^{s} + \Gamma_{si}^{k}\frac{\partial b^{s}}{\partial X^{j}} + \Gamma_{mj}^{k}(\frac{\partial b^{m}}{\partial X^{i}} + \Gamma_{mj}^{k}b^{s}) - \Gamma_{ij}^{m}(\frac{\partial b^{k}}{\partial X^{m}} + \Gamma_{sm}^{k}b^{s}).$$

$$(29)$$

Поменяем теперь индексы i и j и образуем разность:

$$\nabla_{j}^{*} \nabla_{i}^{*} b^{k} - \nabla_{i}^{*} \nabla_{j}^{*} b^{k} = \left(\frac{\partial \Gamma_{si}^{k}}{\partial X^{j}} - \frac{\partial \Gamma_{sj}^{k}}{\partial X^{i}} + \Gamma_{mj}^{k} \Gamma_{si}^{m} - \Gamma_{mi}^{k} \Gamma_{sj}^{m}\right) b^{s} - \left(\Gamma_{ij}^{m} - \Gamma_{ji}^{m}\right) \nabla_{m}^{*} b^{k}. \tag{30}$$

Коэффициенты, стоящие в первой скобке, обозначим следующим образом:

$$R_{jis}^{*k} = \Gamma_{si,j}^{k} - \Gamma_{sj,i}^{k} + \Gamma_{si}^{m} \Gamma_{mj}^{k} + \Gamma_{sj}^{m} \Gamma_{mi}^{k}.$$
(31)

Здесь, как и ранее, $\Gamma^k_{si,j} = \partial \Gamma^k_{si} / \partial X^j$.

Теорема 3. Система коэффициентов $R_{jis}^{\ k}$, образованная по формуле (31), представляет собой компоненты тензора R четвёртого ранга из пространства $\mathcal{T}_n^{(31)}(T_{\mathcal{M}}\mathbb{L}^n)$:

$$\overset{4}{R} = R_{jis}^{\ \ k} e^j \otimes e^i \otimes e^s \otimes e_k \tag{32}$$

Определение 13. Тензор (32) называют тензором кривизны пространства \mathbb{L}^n относительно связности Γ^m_{ij} (или тензором Римана-Кристоффеля).

2.9 Тензор Риччи

В пространстве \mathbb{W}^n из тензора Римана-Кристоффеля можно образовать несколько тензоров второго ранга. Свёртка транспонированного тензора Римана-Кристоффеля 4R с метрическим тензором образует тензор второго ранга:

$$\overset{*}{\mathcal{R}} = {}^{4}R^{(2314)} \cdot \cdot E, \tag{33}$$

называемый тензором Риччи. Компоненты этого тензора имеют следующий вид:

$$\mathcal{R} = R_{ji}^* e^j \otimes R_{i_1 i_2 i_3 i_4} e^{i_2} \otimes e^{i_3} \otimes e^{i_1} \otimes e^{i_4} \cdot \cdot e^{i_4} \cdot \cdot e^k \otimes e_k =
= R_{i_1 i_2 i_3 i_4} \delta_k^{i_1} g^{i_4 k} e^{i_2} \otimes e^{i_3} = R_{kji}^{k} e^j \otimes e^i,$$
(34)

то есть

$${\stackrel{*}{R}}_{ji} = R_{kji}^{\ \ k} = R_{nji}^{\ \ k} \delta_k^n. \tag{35}$$

Подставляя в (35) выражение (31) для компонент тензора Римана-Кристоффеля, получаем:

$$\overset{*}{R}_{ji} = \frac{\partial \Gamma_{ij}^{k}}{\partial X^{k}} - \frac{\partial \Gamma_{ik}^{k}}{\partial X^{j}} + \Gamma_{ij}^{n} \Gamma_{nk}^{k} - \Gamma_{ik}^{n} \Gamma_{nj}^{k}. \tag{36}$$

Аналогичным образом можно ввести тензор Риччи относительно символов Γ_{ij}^k :

$$R_{ji} = R_{kji}^{\quad k} = R_{nji}^{\quad k} \delta_k^n, \tag{37}$$

$$R_{ji} = \Gamma^k_{ij,k} - \Gamma^k_{ik,j} + \Gamma^m_{ij} \Gamma^k_{mk} - \Gamma^m_{ik} \Gamma^k_{kj}. \tag{38}$$

2.10 Тензор Эйнштейна

Тензоры Эйнштейна $\overset{*}{G}$ и G образуются из тензоров Риччи $\overset{*}{\mathcal{R}}$ и \mathcal{R} следующим образом:

$$\overset{*}{G} = \overset{*}{\mathcal{R}} - \frac{1}{2} \overset{*}{\mathcal{R}} E, \qquad G = \mathcal{R} - \frac{1}{2} \mathcal{R} E, \tag{39}$$

где $\mathcal{R}=\stackrel{*}{R}\cdot\cdot E$ и $\mathcal{R}=R\cdot\cdot E$ – свертки тензоров Риччи с метрическим тензором.

Тензор Эйнштейна играет важную роль в общей теории относительности (см., например, [2], [3], [4]).

3 Трактриса и её эволюта

Практическую часть курсовой работы будем выполнять в среде Maple18. Определение 14. Трактриса (линия влечения) – плоская кривая, для которой длина отрезка касательной от точки касания до точки пересечения с фиксированной прямой является постоянной величиной. Её параметрическое описание имеет вид:

$$x(t) = a(\cdot \cos t + \ln \tan \frac{t}{2},) \tag{40}$$

$$y(t) = \sin t,\tag{41}$$

$$0 < t < \pi. \tag{42}$$

Рисунок 1 – График трактрисы при a = 5.

Если линия задана параметрически, то ее эволюта имеет уравнение:

$$X(t) = x(t) - y' \frac{x^2 + y'^2}{x'y'' - x''y'},$$
(43)

$$Y(t) = y(t) + x' \frac{x^2 + y^2}{x'y'' - x''y'}.$$
(44)

Подставляя уравнение трактрисы в (43) и (44) и сокращая, получим:

$$X(t) = \frac{-\cos(t)^{3}a^{2} + \ln\left(\frac{1-\cos(t)}{\sin(t)}\right)a^{2} + \cos(t)^{3} + \cos(t)a^{2} - \cos(t)}{a}, \quad (45)$$

$$Y(t) = \frac{1 + (a^{2} - 1)(\cos(t))^{4}}{\sin(t)}. \quad (46)$$

$$Y(t) = \frac{1 + (a^2 - 1)(\cos(t))^4}{\sin(t)}.$$
(46)

Избавляясь в полученной системе от t придём к уравнению эволюты, зависящей только от x:

$$evoluta(x) = a \cdot \cosh \frac{x}{a}.$$
 (47)

Рисунок 2 – График эволюты трактрисы при a=5.

Получили, что эволютой трактрисы является цепная линия.

Определение 15. Цепная линия — линия, форму которой принимает гибкая однородная нерастяжимая тяжёлая нить или цепь (отсюда название) с закреплёнными концами в однородном гравитационном поле. Является плоской кривой. Её уравнением является (47).

Вращая полученную эволюту вокруг оси OX получаем поверхность вращения, называемую катеноидом. Катеноид можно задать параметрически:

$$x_{kat}(u,v) = a \cdot \cosh \frac{v}{a} \cos u,$$

$$y_{kat}(u,v) = a \cdot \cosh \frac{v}{a} \sin u,$$
(48)

$$y_{kat}(u,v) = a \cdot \cosh\frac{v}{a}\sin u,\tag{49}$$

$$z_{kat}(u,v) = u, (50)$$

где $-\pi \le u \le \pi$ и $v \in \mathbb{R}$.

Построим полученную поверхность.

Рисунок 3 – Катеноид при a = 1.

Для вычисления Гауссовой и средней кривизн воспользуемся формулами из ([5]), позволяющими написать универсальный программный код.

Пусть K – Гауссова кривизна, а H – средняя. Введём дополнительные обозначения:

$$E = x_u \cdot x_u,\tag{51}$$

$$F = x_u \cdot x_v, \tag{52}$$

$$G = x_v \cdot x_v, \tag{53}$$

$$l = U \cdot x_{uu}, \tag{54}$$

$$m = U \cdot x_{uv},\tag{55}$$

$$n = U \cdot x_{vv},\tag{56}$$

где U – единичный вектор нормали к поверхности:

$$U = \frac{x_u \times x_v}{|x_u \times x_v|}. (57)$$

Тогда Гауссова кривизна будет рассчитываться как

$$K = \frac{lm - m^2}{EG - F^2},\tag{58}$$

а средняя кривизна:

$$H = \frac{Gl + En - 2Fm}{2(EG - F^2)}. (59)$$

Рассчитаем введённые выше величины для нашего катеноида (48)- (50):

$$E = x_u \cdot x_u =$$

$$= (1, \sinh \frac{u}{a} \cos v, \sinh \frac{u}{a} \sin v) \cdot (1, \sinh \frac{u}{a} \cos v, \sinh \frac{u}{a} \sin v) =$$

$$= 1 + \sinh \frac{u^2}{a} \cdot \cos^2 v + \sinh \frac{u^2}{a} \cdot \sin^2 v.$$
(60)

$$F = x_u \cdot x_v =$$

$$= (1, \sinh \frac{u}{a} \cos v, \sinh \frac{u}{a} \sin v) \cdot (0, -a \cosh \frac{u}{a} \sin v, a \cosh \frac{u}{a} \cos v) = (61)$$

$$= 0.$$

$$G = x_v \cdot x_v =$$

$$= (0, -a \cosh \frac{u}{a} \sin v, a \cosh \frac{u}{a} \cos v) \cdot (0, -a \cosh \frac{u}{a} \sin v, a \cosh \frac{u}{a} \cos v) =$$

$$= a^2 \cosh^2 \frac{u}{a} \sin^2 v + a^2 \cosh^2 \frac{u}{a} \cos^2 v.$$
(62)

$$U = \frac{x_u \times x_v}{|x_u \times x_v|} =$$

$$= \frac{(0, -a \cosh \frac{u}{a} \sin v, a \cosh \frac{u}{a} \cos v) \times (0, -a \cosh \frac{u}{a} \sin v, a \cosh \frac{u}{a} \cos v)}{|(0, -a \cosh \frac{u}{a} \sin v, a \cosh \frac{u}{a} \cos v) \times (0, -a \cosh \frac{u}{a} \sin v, a \cosh \frac{u}{a} \cos v)|} =$$

$$= \frac{(a \cosh \frac{u}{a} \sinh \frac{u}{a}, -a \cosh \frac{u}{a} \cos v, -a \cosh \frac{u}{a} \sin v)}{\sqrt{\cosh^4 \frac{u}{a} a^2}} =$$

$$= (\frac{\sinh \frac{u}{a}}{\cosh \frac{u}{a}}, -\frac{\cos v}{\cosh \frac{u}{a}}, -\frac{\sin v}{\cosh \frac{u}{a}}).$$
(63)

$$l = U \cdot x_{uu} =$$

$$= \left(\frac{\sinh \frac{u}{a}}{\cosh \frac{u}{a}}, -\frac{\cos v}{\cosh \frac{u}{a}}, -\frac{\sin v}{\cosh \frac{u}{a}}\right) \cdot \left(0, \frac{\cosh \frac{u}{a} \cos v}{a}, \frac{\cosh \frac{u}{a} \sin v}{a}\right) =$$

$$= -\frac{1}{a}.$$
(64)

$$m = U \cdot x_{uv} =$$

$$= \left(\frac{\sinh \frac{u}{a}}{\cosh \frac{u}{a}}, -\frac{\cos v}{\cosh \frac{u}{a}}, -\frac{\sin v}{\cosh \frac{u}{a}}\right) \cdot \left(0, -\sinh \frac{u}{a} \sin v, \sinh \frac{u}{a} \cos v\right) =$$

$$= 0.$$

$$(65)$$

$$n = U \cdot x_{vv} =$$

$$= \left(\frac{\sinh \frac{u}{a}}{\cosh \frac{u}{a}}, -\frac{\cos v}{\cosh \frac{u}{a}}, -\frac{\sin v}{\cosh \frac{u}{a}}\right) \cdot \left(0, -a \cosh \frac{u}{a} \cos v, -a \cosh \frac{u}{a} \sin v\right) = (66)$$

$$= a.$$

Теперь мы можем рассчитать Гауссову кривизну по формуле (58):

$$K = \frac{lm - m^2}{EG - F^2} = -\frac{1}{\cosh^4 \frac{u}{a} a^2}.$$
 (67)

И среднюю кривизну по формуле (59):

$$H = \frac{Gl + En - 2Fm}{2(EG - F^2)} = 0. ag{68}$$

Также из [5] известно, что скалярная кривизна равняется удвоенной гауссовой кривизне для римановых многообразий. Так что, обозначая ска-

лярную кривизну за SK имеем:

$$SK = 2K = -\frac{2}{\cosh^4 \frac{u}{a} a^2}.$$
(69)

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Димитриенко Ю.И. Тензорное исчисление: Учеб.пособие для вузов. М.: Высш, шк., 2001, 575 с.
- [2] Петров А.З. Пространства Эйнштейна. М.: Физматгиз, 1961, 464 с.
- [3] Рашевский П.К. Риманова геометрия и тензорный анализ. М.: Наука, 1967, 664 с.
- [4] Шипов Г.И. Теория физического вакуума. НТ-Центр, 1993, 362 с.
- [5] Шипов Г.И. Теория физического вакуума. НТ-Центр, 1993, 362 с.