圈論

omosan0627

June 25, 2023

とくに断らない限り、圏は locally small とする. (小圏とは違うよ)

1 圏論入門

1.1 圏論とは何か

http://alg-d.com/math/kan_extension/intro.pdf

Definition 1.1. 圏 C とは二つの集まり Ob(C), Mor(C) の組であって、以下の条件を満たすものをいう。なお元 $a \in Ob(C)$ を対象、 $f \in Mor(C)$ を射と呼ぶ。

- (1) 各 $f \in \operatorname{Mor}(C)$ に対して、ドメインと呼ばれる対象 $\operatorname{dom}(f) \in \operatorname{Ob}(C)$ とコドメインと呼ばれる対象 $\operatorname{cod}(f) \in \operatorname{Ob}(C)$ が定められている。 $\operatorname{dom}(f) = a$, $\operatorname{cod}(f) = b$ であることを $f: a \to b$ や $a \xrightarrow{f} b$ と書いて表す。 また対象 $a,b \in \operatorname{Ob}(C)$ に対して $\operatorname{Hom}_C(a,b) := \{f \in \operatorname{Mor}(C): a \xrightarrow{f} b\}$ と書く.
- (2) 2 つの射 $f,g \in \operatorname{Mor}(C)$ について $\operatorname{cod}(f) = \operatorname{dom}(g)$ であるとき、f と g の合成射 とよばれる射 $g \circ f \in \operatorname{Mor}(C)$ が定められていて、 $\operatorname{dom}(g \circ f) = \operatorname{dom}(f), \operatorname{cod}(g \circ f) = \operatorname{cod}(g)$ を満たす。
- (3) 射の合成は結合則を満たす. $(h \circ (g \circ f) = (h \circ g) \circ f)$
- (4) 各 $a\in \mathrm{Ob}(C)$ に対して、恒等射と呼ばれる射 $\mathrm{id}_a:a\to a$ が存在し、射の合成 に関する単位元となる。 すなわち $f:a\to b$ に対して、 $f\circ\mathrm{id}_a=f,\mathrm{id}_b\circ f=f$ である.

Remark 1.2. $C = (Ob(C), Mor(C), cod, dom, id, \circ)$ と書き表すことも。

- Ob(C), Mor(C) が集まり
- cod , cod が $\operatorname{Mor}(C) \to \operatorname{Ob}(C)$ の関数
- id が $\mathrm{Ob}(C) \to \mathrm{Mor}(C)$ の関数
- \circ が $\operatorname{Mor}(C) \times \operatorname{Mor}(C) \to \operatorname{Mor}(C)$ の関数

Example 1.3. Set, Grp, Top

Definition 1.4. C,D を圏とする. C から D への関手 $F:C\to D$ とは $a\in \mathrm{Ob}(C)$ に $F(a)\in \mathrm{Ob}(D)$ を, $f\in \mathrm{Mor}(C)$ に $F(f)\in \mathrm{Mor}(D)$ を対応させる関数であって, 以下を満たすものである.

(1) $f: a \to b$ のとき $F(f): F(a) \to F(b)$ である.

- (2) cod(f) = dom(g) のとき, $F(g \circ f) = F(g) \circ F(f)$ である.
- (3) $a \in C$ に対して $F(\mathrm{id}_a) = \mathrm{id}_{F(a)}$ である.

Definition 1.5. C を圏, $a,b \in C$ を対象とする.

- (1) C の射 $f:a \to b$ が同型射 \iff ある射 $g:b \to a$ が存在して, $g\circ f=\mathrm{id}_a, f\circ g=\mathrm{id}_b$ となる
- (2) a と b が同型 $(a \cong b$ で表す) \iff ある同型射 $f: a \to b$ が存在する.

Theorem 1.6. f が同型射ならば F(f) も同型射

Definition 1.7. 圏 C と圏 D が同型 $(C \cong D$ と書く) とは、ある関手 $F: C \to D, G: D \to C$ が存在して $GF = \mathrm{id}_C, FG = \mathrm{id}_D$.

Definition 1.8. C を圏とする. このとき C^{op} を以下のように定める.

- 対象 $a\in C$ に対して新しい対象 $a^{\rm op}$ を用意し, ${\rm Ob}(C^{\rm op}):=\{a^{\rm op}:a\in {\rm Ob}(C)\}$ と定める.
- 射 $f \in C$ に対して新しい射 f^{op} を用意し, $\mathrm{Mor}(C^{\mathrm{op}}) := \{f^{\mathrm{op}}: f \in \mathrm{Ob}(C)\}$ と定める.
- $\operatorname{dom}(f^{\operatorname{op}}) := \operatorname{cod}(f)^{\operatorname{op}}, \operatorname{cod}(f^{\operatorname{op}}) := \operatorname{dom}(f)^{\operatorname{op}}$ と定める. 即ち $f : a \to b$ のとき $f^{\operatorname{op}} : b^{\operatorname{op}} \to a^{\operatorname{op}}$ である.
- $f^{\mathrm{op}}: a^{\mathrm{op}} \to b^{\mathrm{op}}, g^{\mathrm{op}}: b^{\mathrm{op}} \to c^{\mathrm{op}}$ に対して射の合成 $g^{\mathrm{op}} \circ f^{\mathrm{op}}: a^{\mathrm{op}} \to c^{\mathrm{op}}$ を $g^{\mathrm{op}} \circ f^{\mathrm{op}} = (f \circ g)^{\mathrm{op}}$ と定める.
- $id_{a^{op}} := id_a^{op}$ とする.

これを圏 C^{op} の反対圏と呼ぶ.

1.2 自然変換・圏同値

http://alg-d.com/math/kan_extension/equivalence.pdf

Definition 1.9. C,D を圏, $F,G:C\to D$ を関手とする. F から G への自然変換とは, D の射の族 $\theta=\{\theta_a:Fa\to Fb\}_{a\in \mathrm{Ob}(C)}$ であって, $\forall (a\overset{f}{\to}b)\in \mathrm{Mor}(C)$. $Gf\circ\theta_a=\theta_b\circ Ff$ を満たすものをいう. (またこのとき θ_a は a について自然という言い方をする.) 絵で書けば以下のようになる.

 θ が F から G への自然変換であることを記号で $\theta:F\Rightarrow G$ と表す. また θ_a を θ の a 成分と呼ぶ.

Definition 1.10. 各 θ_a が同型射となる自然変換 θ を自然同型という。また自然同型 $F\Rightarrow G$ が存在するとき,F と G は自然同型であるといい,記号で $F\cong G$ と表す.

Example 1.11. 有限次元線形空間 V と V^{**} についての自然変換 $\theta: \mathrm{id}_c \Rightarrow F\circ F^\mathrm{op}, \theta_V(x)(\rho)\mapsto \rho(x)$. 線形代数の世界 $\mathrm{p}135$ も参照. V^* の場合と違って, 基底を出さなくても自然変換が作れるところがポイント.

Definition 1.12. 圏 C,D が圏同値 ($C \simeq D$ と書く)

 \iff 関手 $F:C \to D, G:D \to C$ と自然変換 $GF \cong \mathrm{id}_C, FG \cong \mathrm{id}_D$ が存在する.

Definition 1.13. C, D を圏, $F: C \rightarrow D$ を関手とする.

- (1) F が忠実 $\iff \forall a, b \in \mathrm{Ob}(C)$. $F : \mathrm{Hom}_C(a, b) \to \mathrm{Hom}_C(Fa, Fb)$ が単射.
- (2) F が充満 $\iff \forall a,b \in \mathrm{Ob}(C)$. $F: \mathrm{Hom}_C(a,b) \to \mathrm{Hom}_C(Fa,Fb)$ が全射.
- (3) F が conservative $\iff \forall f \in \text{Mor}(C)$. Ff が同型ならば f も同型である.
- (4) F が本質的単射 $\iff \forall a,b \in \mathrm{Ob}(C)$. $Fa \cong Fb$ ならば $a \cong b$ ($\iff Fa \bowtie Fb$ に同型射が存在するならば, $a \bowtie b$ にも同型射が存在する。)
- (5) F が本質的全射 $\iff \forall d \in \mathrm{Ob}(D)$. $\exists c \in \mathrm{Ob}(C)$. $Fc \cong d$

Proposition 1.14. 忠実充満 \Longrightarrow conservative, 忠実 \land conservative \Longrightarrow 本質的 単射

Theorem 1.15. F が圏同値を与える \iff F が忠実充満な本質的全射

 $Proof.\ F$ が圏同値を与えるという条件は, $G:D\to C$ と自然同型 $\theta:GF\Rightarrow \mathrm{id}_C,\epsilon:\Rightarrow\mathrm{id}_D$ を使って, 以下で表される.

$$\forall (c \xrightarrow{f} c') \in \operatorname{Mor}(C), (d \xrightarrow{g} d') \in \operatorname{Mor}(D).$$

$$GFc \xrightarrow{\theta_c} c \qquad FGd \xrightarrow{\epsilon_d} d$$

$$\downarrow^{GFf} \qquad \downarrow^{f} \qquad \downarrow^{FGg} \qquad \downarrow^{g}$$

$$GFc' \xrightarrow{\theta_{c'}} c' \qquad FGd \xrightarrow{\epsilon_{d'}} d'$$

 $(\Longrightarrow)\epsilon$ から本質的全射, θ から忠実充満が示せる. また主に θ_c,ϵ_d 等の射が同型なので逆向きの θ^{-1} ϵ^{-1} が存在することを使う

ので逆向きの $\theta_c^{-1}, \epsilon_d^{-1}$ が存在することを使う. (\Longleftrightarrow) 本質的全射 $Fc \to d$ から G と ϵ を作る. 最後に θ が自然同型であることを言えばいいが, $Fc \xrightarrow{Ff} Fc'$ について ϵ の自然変換の図式を利用することで示せる.

Theorem 1.16. F が同型 \iff F が忠実充満で、対象について全単射

Proof. (\Leftarrow) Theorem 1.15 と同じ。

Definition 1.17. 部分圏 $C \subseteq D$ が充満部分圏であるとは、任意の $a,b \in C$ に対して $\operatorname{Hom}_C(a,b) = \operatorname{Hom}_D(a,b)$ となることをいう.

Definition 1.18. 圏 C が骨格的 \iff $a \cong b$ ならば a = b である

Definition 1.19. 圏 C の骨格とは、骨格的な充満部分圏 $S \subseteq C$ であって条件

任意の c に対して、ある $s \in S$ が存在して $c \cong s$ となる

を満たすものをいう.

Theorem 1.20. 任意の圏は骨格を持つ. また骨格は圏同型を除いて一意である.

Proof. 骨格を持つことを示す際に選択公理が必要. 一意性は F を同型射を利用して作って Theorem 1.15 を適用.

Theorem 1.21. C, D を圏, $S \subseteq C, T \subseteq D$ を骨格とする. このとき

C と D が圏同値 \iff S と T が圏同型

 $\mathit{Proof.}\ (\Longrightarrow)\ F$ を S に制限した関手 $F|_S$ が圏同型であることを使うとできる. 本質的単射を使う.

(⇐=) 包含関手が圏同値であることを利用する.

2 圏論

2.1 随伴写像

http://alg-d.com/math/kan_extension/adjoint.pdf

Definition 2.1. C,D を圏, $F:C\to D,G:D\to C$ を関手とする. $c\in C,d\in D$ について自然な全単射 $\phi_{cd}:\operatorname{Hom}_D(Fc,d)\to\operatorname{Hom}_C(c,Gd)$ が存在するとき、3 つ組 $\langle F,G,\phi\rangle$ のことを随伴という.このとき記号では $F\dashv G:C\to D$ もしくは単に $F\dashv G$ と書く.また F を G の左随伴写像,G を F の右随伴写像という.