SAS®

Initiation et manipulation de données Importation de données par l'étape DATA

Nicolas Poulin

Données

- Les données sont stockées dans une table SAS.
- Une table SAS peut être créée :
 - en rentrant manuellement les données via une étape DATA
 - en important des données brutes depuis un autre format (xslx, txt,...) via une étape DATA ou une procédure IMPORT

Importation d'un fichier Excel via l'étape DATA

Remarque

• importer un fichier Excel via une étape DATA nécessite le module SAS/ACCESS to PC files.

- SAS est capable de considérer un fichier Excel comme étant une table SAS.
- Pour cela, il faut créer une référence bibliographique au fichier Excel grâce à l'instruction LIBNAME.

Assignation d'une référence bibliographique

LIBNAME libref XLSX "chemin";

où:

- libref : nom donné à la bibliothèque :
- "chemin" du fichier **physique** sur l'ordinateur ou le réseau.

Remarque

- Le "chemin" doit se terminer par le nom complet du fichier (avec son extension .xlsx).
- Chaque feuille du fichier Excel sera considérée comme une table SAS.

Manipulation d'un fichier Excel

Une fois l'instruction LIBNAME utilisée, chaque feuillet du fichier Excel étant vu comme une table SAS, l'étape DATA s'utilise de façon classique.

```
DATA libref.filename2:
      SET libref.filename1:
RUN:
```

Remarque

- les instructions WHERE, KEEP, LABEL, FORMAT peuvent être utilisées.
- dans le fichier Excel, une nouvelle feuille nommée comme filename2 sera créée.

Dissociation d'un Libref

- Lorsqu'une référence bibliographique est assignée à un fichier Excel, ce dernier ne peut plus être ouvert dans Excel.
- Il faut donc désactiver ce lien pour avoir de nouveau accès au fichier via Excel

LIBNAME libref CLEAR;

Fichier avec délimiteur

Il s'agit de fichiers de données dont la séparation entre les données est marquée par un délimiteur défini.

- Fichiers .txt : tabulation
- Fichiers .csv :
 - ► anglo-saxon : virgule
 - européen : point-virgule

Fichier avec délimiteur

```
DATA libref.filename2;
INFILE "chemin";
INPUT spécifications;
...
RUN;
```

Remarque

- Les instructions KEEP, LABEL, FORMAT peuvent être utilisées.
- Le "chemin" doit se terminer par le nom complet du fichier (avec son extension).
- L'instruction WHERE ne peut pas être utilisée.

Fichier avec délimiteur

- Un espace vide est le délimiteur par défaut.
- L'option DLM= doit être ajoutée à l'instruction INFILE pour spécifier tout autre délimiteur.
- SAS ne peut pas extraire les noms des variables de la première ligne d'un tel fichier. Si la première ligne contient les noms des variables il faut utiliser l'option FIRSTOBS=2 de l'instruction INFILE

```
DATA libref.filename2;

INFILE "chemin" DLM="délimiteur" FIRSTOBS=2;

INPUT spécifications;

...
```

RUN;

Données standard et non standard

- Les données standard sont les données que SAS peut reconnaître comme étant numérique.
- Les données numériques non standard seront vues comme des données de type texte.
- Exemples de données standard : 27 -27 27,09 2,7E7 ···
- Exemples de données non standard : 27.09 (27) \$27 27/09/2016 27SEPTEMBER2016 ···

Remarque

27,09 est une donnée standard pour la localisation French_France mais pas pour la localisation English_UnitedStates

Spécifications données standard

• Il s'agit des spécifications pour l'instruction INPUT.

INPUT liste des variables et nature;

- Les variables doivent être déclarées dans l'ordre du tableau de données.
- Il faut mettre \$ après le nom de chaque variable de type caractère.
- La longueur par défaut des variables, quel que soit leur type, est de 8 octets.

Exemple : fichier avec délimiteur

```
DATA work.maisshort1;
INFILE "/folders/myfolders/UEdata/maishort.csv"
DLM=";" FIRSTOBS=2;
INPUT Individu Hauteur Masse Couleur $ Parcelle $;
RUN;
```

Remarque

SAS ne réussit pas, par défaut, à importer, via une étape DATA un fichier avec des données manquantes (cellules vides). Pour cela, il faut ajouter l'option DSD à l'instruction INFILE.

Exemple : fichier avec délimiteur

```
DATA work.maisshort1:
      INFILE "/folders/myfolders/UEdata/maishortNA.csv"
             DLM=":" FIRSTOBS=2:
      INPUT Individu Hauteur Masse Couleur $ Parcelle $:
RUN:
DATA work.maisshort1:
      INFILE "/folders/myfolders/UEdata/maishortNA.csv"
             DLM=";" FIRSTOBS=2 DSD;
      INPUT Individu Hauteur Masse Couleur $ Parcelle $:
RUN:
```

Vecteur de données de programme

- Lors d'une étape DATA, SAS va copier successivement les lignes du fichier source dans le vecteur de données de programme (PDV).
- Une fois rempli, le PDV sera copié dans une ligne de la table SAS.
- De manière générale, le PDV est utilisé pour stocker l'observation en cours de traitement (par exemple lors de l'exécution d'une PROC). Ce traitement ligne par ligne explique généralement la nécessité de trier les tables SAS.

Phase de compilation

Pendant la phase de compilation, SAS :

- vérifie la syntaxe du code,
- crée un tampon d'entrée pour stocker les données brutes en cours de traitement,
- crée le PDV,
- crée le bloc descripteur de la table.

Remarque

La phase d'exécution est le moment où SAS remplit à chaque itération le PDV qu'il va copier dans la table SAS de sortie.

```
DATA work.maisshort1;
INFILE "/folders/myfolders/UEdata/maishort.csv"
DLM=";" FIRSTOBS=2;
INPUT Individu Hauteur Masse Couleur $ Parcelle $;
RUN;
```

```
DATA work.maisshort1;

INFILE "/folders/myfolders/UEdata/maishort.csv"

DLM=";" FIRSTOBS=2;

INPUT Individu Hauteur Masse Couleur $ Parcelle $;
```

RUN;

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

```
DATA work.maisshort1;
```

INPUT Individu Hauteur Masse Couleur \$ Parcelle \$;

RUN;

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

PDV

Individu N 8


```
DATA work.maisshort1;
```

INPUT Individu Hauteur Masse Couleur \$ Parcelle \$;

RUN;

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Individu	Hauteur
N 8	N 8


```
DATA work.maisshort1;
```

INPUT Individu Hauteur Masse Couleur \$ Parcelle \$;

RUN:

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Individu	Hauteur	Masse
N 8	N 8	N 8


```
DATA work.maisshort1;
```

INPUT Individu Hauteur Masse Couleur \$ Parcelle \$;

RUN:

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

	Hauteur		
N 8	N 8	N 8	\$ 8

```
DATA work.maisshort1;
```

INPUT Individu Hauteur MasseCouleur \$ Parcelle \$;

RUN:

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Individu	Hauteur	Masse	Couleur	Parcelle
N 8	N 8	N 8	\$8	\$8

```
DATA work.maisshort1;
```

INPUT Individu Hauteur MasseCouleur \$ Parcelle \$;

RUN;

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Bloc descripteur

Individu	Hauteur	Masse	Couleur	Parcelle
N 8	N 8	N 8	\$8	\$8

```
DATA work.maisshort1;
```

INPUT Individu Hauteur MasseCouleur \$ Parcelle \$;

RUN;

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Initialisation du PDV

	Individu	Hauteur	Masse	Couleur	Parcelle
	N 8	N 8	N 8	\$8	\$8
ĺ	•	•	•		

DATA work.maisshort1;

INPUT Individu Hauteur MasseCouleur \$ Parcelle \$;

RUN;

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	;	1	9	9	;	1	4	3	1	;	R	0	u	g

	Individu	Hauteur	Masse	Couleur	Parcelle
	N 8	N 8	N 8	\$8	\$8
ĺ	•	•	•		


```
DATA work.maisshort1;
```

INPUT Individu Hauteur MasseCouleur \$ Parcelle \$;

RUN:

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2	;	1	9	9	;	1	4	3	1	;	R	0	u	g

Individu	Hauteur	Masse	Couleur	Parcelle
N 8	N 8	N 8	\$8	\$8
2	199	1431	Rouge	Nord

Table SAS après la première itération

```
DATA work.maisshort1;
INFILE "/folders/myfolders/UEdata/maishort.csv"
DLM=";" FIRSTOBS=2;
INPUT Individu Hauteur MasseCouleur $ Parcelle $;
RUN;
```

work.maisshort1

Individu	Hauteur	Masse	Couleur	Parcelle
2	199	1431	Rouge	Nord


```
DATA work.maisshort1;
```

INPUT Individu Hauteur MasseCouleur \$ Parcelle \$;

RUN;

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Réinitialisation du PDV

Individu	Hauteur	Masse	Couleur	Parcelle
N 8	N 8	N 8	\$8	\$8
	•	•		

```
DATA work.maisshort1;
```

INPUT Individu Hauteur MasseCouleur \$ Parcelle \$;

RUN;

Tampon d'entrée

- 1				l				l						14	
	3	;	2	0	5	;	1	4	6	8	;	J	а	u	n

Individu	Hauteur	Masse	Couleur	Parcelle
N 8	N 8	N 8	\$8	\$8
•	•	•		


```
DATA work.maisshort1;
```

INPUT Individu Hauteur MasseCouleur \$ Parcelle \$;

RUN;

Tampon d'entrée

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	;	2	0	5	;	1	4	6	8	;	J	а	u	n

Individu	Hauteur	Masse	Couleur	Parcelle
N 8	N 8	N 8	\$8	\$8
3	205	1468	Jaune	Nord

Table SAS après la deuxième itération

```
DATA work.maisshort1;

INFILE "/folders/myfolders/UEdata/maishort.csv"

DLM=";" FIRSTOBS=2;

INPUT Individu Hauteur MasseCouleur $ Parcelle $;

RUN;
```

work maisshort 1

Individu	Hauteur	Masse	Couleur	Parcelle
2	199	1431	Rouge	Nord
3	205	1468	Jaune	Nord

Et ainsi de suite jusqu'à la fin du fichier.

Instruction LENGTH

- Par défaut, toutes les variables créées sont de longueur 8.
- L'instruction LENGTH permet de définir la longueur des variables textes.
- Cette instruction doit se trouver avant l'instruction INPUT.

Instruction LENGTH

- SAS prendra l'ordre de déclaration des variables sur l'ensemble de l'étape DATA.
- Les premières colonnes seront donc les variables déclarées dans l'instruction LENGTH.
- Ensuite viendront les variables déclarées dans l'instruction INPUT en omettant celles déjà déclarées dans l'instruction LENGTH.

Bloc descripteur

Parcelle	Couleur	Individu	Hauteur	Masse
\$ 11	\$ 5	N 8	N 8	N 8

Spécifications données non standard

- Il faut rajouter des déclarations pour l'instruction INPUT.
- Il faut déclarer des informats pour signifier à SAS quel format est utilisé dans le fichier d'entrée pour chaque donnée non standard.

Les informats SAS se présentent sous la forme :

$$<$$
 \$ > informat $<$ w > . $<$ d >

\$	présent uniquement pour les variables	
	de type caractère	
informat	informat SAS	
W	spécifie le nombre de colonnes	
	à lire dans les données d'entrée	
	délimiteur obligatoire	
d	nombre de décimales	
	pour les informats numériques	

Remarque

La notation $<\cdot>$ signifie qu'il s'agit d'un argument facultatif.

Informat	Effet	
\$w.	données de type caractère standard	
w.d	données de type numérique standard	
COMMAw.d	lit des données numériques non standard et enlève	
	tous les caractères non conformes	
DOLLARXw.d	d lit des données numériques non standard et enlèv	
	tous les caractères non conformes	
EUROw.d	lit des données numériques non standard et enlève	
	tous les caractères non conformes	

Informat	Valeur de données	Valeur de données
	brutes	SAS
COMMA7.0	\$12,345	12345
DOLLAR7.0		
COMMAX7.0	\$12,345	12345
DOLLARX7.0		
EUROX7.0	€ 12,345	12345

$$<$$
\$ $> informat < w > . < d >$

Informat	Valeur de données	Valeur de données
	brutes	SAS
COMMA6.2	\$12345	123,45
DOLLAR6.2		
COMMAX10.2	\$12345.567	12345,567
DOLLARX10.2		

Remarque

Si la valeur de données contient une décimale, la valeur de d est ignorée.

Informats de date SAS

Informat	Valeur de données	Valeur de données
	brutes	SAS
MMDDYY6.	123160	365
DDMMYY6.	311260	365
MMDDYY8.	12/31/60	365
DDMMYY8.	31/12/60	365
MMDDYY10.	12/31/1960	365
DDMMYY10.	31/12/1960	365
DATE7.	31DEC60	365
DATE9.	31DEC1960	365

Modificateur:

- Le modificateur : permet d'ignorer la longueur w et de laisser la priorité au délimiteur du fichier source.
- Cela permet aussi d'avoir un informat plus souple.

:DDMMYY10. sera capable de lire :

- 03/07/2008
- 3/07/2008
- 03/7/2008
- 3/7/2008
- 03/07/08
- 3/7/08

Informat: exemple

```
DATA work.sales;

LENGTH First_Name $ 12 Last_Name $ 18 Gender $ 1

Job_Title $25 Country $ 2;

INFILE "/folders/myfolders/UEdata/sales.csv"

DLM=",";

INPUT Employee_ID First_Name $ Last_Name $

Gender $ Salary Job_Title $ Country $

Birth_Date :date9. Hire_Date :MMDDYY10.;

RUN;
```

Informat: exemple

```
DATA work.sales:
      LENGTH First Name $ 12 Last Name $ 18 Gender $ 1
               Job_Title $25 Country $ 2;
      INFILE "/folders/myfolders/UEdata/sales.csv"
               DLM=".":
      INPUT Employee_ID First_Name $ Last_Name $
               Gender $ Salary Job_Title $ Country $
               Birth Date :date9. Hire Date :MMDDYY10.:
      FORMAT Salary dollar12. Birth_Date DDMMYY10.
               Hire_Date MONYY7.:
RUN:
```