GamelR: A Large-Scale Synthesized Ground-Truth Dataset for Image Restoration over Gaming Content

Lebin Zhou^{1,2}, Kun Han², Nam Ling¹, Wei Wang², Wei Jiang² ¹ Santa Clara University, Santa Clara, CA, ² Futurewei Technologies Inc., San Jose, CA

Santa Clara

Introduction

Motivation

- Current SR research relies on pseudo training data. The pseudo LR frames often contain noise and blur.
- Obtaining real LR-HR or multi-view paired data is significant challenges for research and applications.

Contributions

- Introduced a large-scale, high-quality, computer-generated ground-truth dataset tailored for 2 applications: SR and NVS.
- Evaluated multiple SOTA algorithms on the proposed dataset and enhanced them by incorporating GBuffers as additional inputs, establishing a baseline for assessing the performance.

Town06

Town07

Town08

GamelR-SR & GamelR-NVS

Evaluation of Super-Resolution

Performance without Gbuffer

	PSNR↑			SSIM↑			FID↓			LPIPS↓		
	PT	FT pseudo	FT (GT)	PT	FT pseudo	FT (GT)	PT	FT pseudo	FT (GT)	PT	FT pseudo	FT (GT)
Anime4K	30.9274	30.5923	31.2974	0.9008	0.8874	0.9057	4.7365	6.7408	4.6172	0.0866	0.1069	0.0788
Adacode	28.6791	27.9637	29.5762	0.8382	0.8146	0.8741	14.8789	17.6222	11.4608	0.0884	0.0899	0.0451
Real-ESRGAN	29.1421	29.2743	30.2517	0.8639	0.8623	0.8916	17.7232	14.7961	8.3153	0.0905	0.0706	0.0379

Performance of pretrained (PT) and finetuned (FT) super-resolution algorithm with pseudo low-resolution (LR) data or ground-truth (GT) LR data

Performance with Additional Gbuffer

Input Channels	PSNR↑	SSIM↑	FID↓	LPIPS↓
RGB pretrained models	30.1798	0.9040	10.0374	0.0535
w/ S(concat)	30.1065	0.9026	9.9637	0.0518
w/ D(concat)	30.2236	0.9038	10.2756	0.0499
w/ SD(concat)	30.1639	0.9033	9.9164	0.0524
w/ S(SFT)	30.0750	0.9025	10.2182	0.0519
w/ D(SFT)	30.1049	0.9020	9.5882	0.0492
w/SD(SFT)	30.1996	0.9052	9.8511	0.0507

Performance of using different GBuffer: segmentation map (S), depth map (D), or both (SD), by different methods: as additional input (concat), or as guidance condition (SFT).

HR

HR

Qualitative comparison of pretrained (PT) and finetuned (FT) super-resolution methods.

Adacode(FT)

Evaluation of Novel View Synthesis

Performance without Gbuffer

	PSNR↑		SSIM↑		FI	D↓	LPIPS↓		
	front 360°		front	360°	front	360°	front	360°	
Instant-NGP	30.9481	27.7004	0.9373	0.9089	30.8528	44.7195	0.1095	0.1703	
NeRFacto	26.6457	26.7710	0.8539	0.8774	36.1718	43.0672	0.1206	0.1648	
PyNeRF	36.1329	32.0542	0.9612	0.9357	20.2392	36.3312	0.0758	0.1301	

Performance of different NVS methods, using front views or 360° views training data.

360° NeRFacto

Ground Truth

Performance with Additional Gbuffer

Depth Error =

Depth-NeRFacto

	PSNR↑		SSIM↑		FID↓		LPIPS↓		Depth Error %	
	front	360°	front	360°	front	360°	front	360°	front	360°
NeRFacto	22.9597	23.3168	0.8133	0.8276	60.3013	40.8520	0.1654	0.1830	32.8053	30.5997
Depth- NeRFacto	25.3482	24.4990	0.8425	0.8306	29.3219	28.7427	0.1249	0.1736	5.4212	7.2538

Performance of NeRFacto and Depth-NeRFacto, using 10% training views.

Qualitative comparison of NeRFacto and Depth-NeRFacto. The RGB (left) and depth map (right) generated by Depth-NeRFacto better match the ground truth compared to NeRFacto.

NeRFacto

360° GT Qualitative comparison of 3 NVS methods on both Front and 360° views.

360° Instant-NGP