# **FDA Submission**

Your Name: Cesar Gustavo Seminario Calle

Name of your Device: Identification of Pneumonia from X-Ray imaging

## Algorithm Description

1. General Information

#### **Intended Use Statement:**

For assisting the radiologist in the detection of Pneumonia using x-rays.

#### **Indications for Use:**

- Emergency workflow re-prioritization.
- This algorithm is intended for patients (women and men) between the ages of 20 to 60 years old whose X-ray has been taken in PA, AP position.
- The patients can have zero or more disease, specifically Atelectasis, Edema and Infiltration.

### **Device Limitations:**

- The algorithm will take more time at inference if it is not run in a GPU.
- Patients over 60 years old would cause the algorithm output not valid results.

### **Clinical Impact of Performance:**

- A false positive will overcharge the priority list, making the radiologist focus on cases which don't need immadiatly attention.
- A false negative will have a high impact in the prioritization of the quee, putting patient in high risk in the final positions of the priority list.

### 2. Algorithm Design and Function



### **DICOM Checking Steps:**

- The first step is to check if the patient position is **PA** or **AP**.
- The second step is to check the modality value is **DX** (Digital Radiography)
- The third step is to check that the body part examined is the **chest part**.

### **Preprocessing Steps:**

- 1. The first preprocess step start dividing the image into 255 to scale the image
- 2. The next step involves extract the mean of the image from each pixel and divide into the standard deviation

#### **CNN Architecture:**

```
Model: "sequential_1"

Layer (type) Output Shape Param #
```

| model_1 (Model)                                             | (None, | 7, 7, 512) | 14714688 |
|-------------------------------------------------------------|--------|------------|----------|
| flatten_1 (Flatten)                                         | (None, | 25088)     | 0        |
| dense_1 (Dense)                                             | (None, | 512)       | 12845568 |
| dropout_1 (Dropout)                                         | (None, | 512)       | 0        |
| dense_2 (Dense)                                             | (None, | 256)       | 131328   |
| dropout_2 (Dropout)                                         | (None, | 256)       | 0        |
| dense_3 (Dense)                                             | (None, | 1)         | 257      |
| - Total params: 27,691,841<br>- Trainable params: 15,336,96 | 51     |            | =======  |

## 3. Algorithm Training

#### **Parameters:**

• Types of augmentation used during training

- Non-trainable params: 12,354,880

The following methods were used during training:

| Method             | Setting |
|--------------------|---------|
| rescale            | 1/255.0 |
| horizontal_flip    | No      |
| vertical_flip      | No      |
| height_shift_range | 0.05    |
| width_shift_range  | 0.05    |
| rotation_range     | 3       |
| shear_range        | 0.9     |
| zoom_range         | 0.1     |

the rescale method was use to reduce the intensity of the image, there was no necessary to apply horizontal flip or vertical flip to the image due to images in a vertical position are not possible in a clinical context.

• Batch size

16

• Optimizer learning rate

0.001

Layers of pre-existing architecture that were frozen
 The first 17 layers of the pretrained model were frozen.

• Layers of pre-existing architecture that were fine-tuned



| Model: "model_1"           |        |                |         |
|----------------------------|--------|----------------|---------|
| Layer (type)               | Output | Shape          | Param # |
| input_1 (InputLayer)       | (None, | 224, 224, 3)   | 0       |
| block1_conv1 (Conv2D)      | (None, | 224, 224, 64)  | 1792    |
| block1_conv2 (Conv2D)      | (None, | 224, 224, 64)  | 36928   |
| block1_pool (MaxPooling2D) | (None, | 112, 112, 64)  | 0       |
| block2_conv1 (Conv2D)      | (None, | 112, 112, 128) | 73856   |
| block2_conv2 (Conv2D)      | (None, | 112, 112, 128) | 147584  |
| block2_pool (MaxPooling2D) | (None, | 56, 56, 128)   | 0       |
| block3_conv1 (Conv2D)      | (None, | 56, 56, 256)   | 295168  |
| block3_conv2 (Conv2D)      | (None, | 56, 56, 256)   | 590080  |
| block3_conv3 (Conv2D)      | (None, | 56, 56, 256)   | 590080  |

| block3_pool (MaxPooling2D) | (None, 28, 28, 2 | 56) 0       |
|----------------------------|------------------|-------------|
| block4_conv1 (Conv2D)      | (None, 28, 28, 5 | 12) 1180160 |
| block4_conv2 (Conv2D)      | (None, 28, 28, 5 | 12) 2359808 |
| block4_conv3 (Conv2D)      | (None, 28, 28, 5 | 12) 2359808 |
| block4_pool (MaxPooling2D) | (None, 14, 14, 5 | 12) 0       |
| block5_conv1 (Conv2D)      | (None, 14, 14, 5 | 12) 2359808 |
| block5_conv2 (Conv2D)      | (None, 14, 14, 5 | 12) 2359808 |
| block5_conv3 (Conv2D)      | (None, 14, 14, 5 | 12) 2359808 |
| block5_pool (MaxPooling2D) | (None, 7, 7, 512 | ) 0         |
|                            |                  |             |

```
- Total params: 14,714,688
- Trainable params: 14,714,688
- Non-trainable params: 0
```

### • Layers added to pre-existing architecture

```
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.3))

model.add(Dense(256, activation = 'relu'))
model.add(Dropout(0.2))

model.add(Dense(1, activation = 'sigmoid'))
```

#### • Train/Validation Loss

The training loss decrease smoothly in each epoch, although the model was tested with different values of dropout and some layers, the validation loss was unstable.



### • Precision Recall Curve

We can observe that middle point between precision and recall lays between 0.2 to 0.4 and 0.5 0.7 for recall and precision respectively.



### **Final Threshold and Explanation:**

| precision   | recall      | threshold  | f1_score    |
|-------------|-------------|------------|-------------|
| 0.307839388 | 0.587591241 | 0.4285991  | 0.40201005  |
| 0.2749658   | 0.733576642 | 0.3571264  | 0.400398406 |
| 0.32132964  | 0.423357664 | 0.49709988 | 0.362776025 |
| 0.202522255 | 0.996350365 | 0.03006885 | 0.336829118 |
| 0.407894737 | 0.113138686 | 0.78058845 | 0.17765043  |
| 0.418604651 | 0.065693431 | 0.85368896 | 0.113924051 |
| 0.425       | 0.062043796 | 0.85699904 | 0.108626198 |
|             |             |            |             |

| precision   | recall      | threshold  | f1_score    |
|-------------|-------------|------------|-------------|
| 0.5         | 0.04379562  | 0.8939034  | 0.080808081 |
| 0.448275862 | 0.047445255 | 0.88102597 | 0.079470199 |
| 0.5         | 0.040145985 | 0.89512306 | 0.06779661  |
| 0.5625      | 0.032846715 | 0.9055565  | 0.062283737 |
| 0.5         | 0.032846715 | 0.90014625 | 0.06185567  |
| 0.5         | 0.03649635  | 0.89711297 | 0.061433447 |
| 0.571428571 | 0.02919708  | 0.9105697  | 0.048780488 |
| 0.625       | 0.018248175 | 0.95297354 | 0.035587189 |
| 0.666666667 | 0.02189781  | 0.9472421  | 0.035460993 |
| 0.714285714 | 0.018248175 | 0.9551629  | 0.028571429 |
| 0.666666667 | 0.01459854  | 0.964299   | 0.021505376 |
| 0.75        | 0.010948905 | 0.97217417 | 0.014440433 |
| 0.666666667 | 0.00729927  | 0.9725735  | 0.007246377 |
| 0.5         | 0.003649635 | 0.9916397  | 0           |
| 0           | 0           | 0.9945082  | 0           |

The threshold selected is 0.4285991, it give us a precision of  $\sim$ 0.3078, a recall of  $\sim$ 0.5875 and a f1 score of  $\sim$ 0.40201.

### 4. Databases

### **Description of Training Dataset:**

The training dataset contains 1145 images randomly selected which are equally distributed accross each label (50% yes, 50 % no) for the presence of pneumonia.

Aditionally, these images contains the presence of others diseases, those are the proportions with respect to the training dataset:

| Disease       | %         |
|---------------|-----------|
| Infiltration  | 29.213974 |
| Atelectasis   | 13.886463 |
| Effusion      | 14.803493 |
| Edema         | 12.358079 |
| Consolidation | 6.419214  |
| Nodule        | 6.200873  |
|               |           |

| Disease            | %        |
|--------------------|----------|
| Mass               | 5.152838 |
| Pleural_Thickening | 3.493450 |
| Pneumothorax       | 3.624454 |
| Cardiomegaly       | 2.576419 |
| Emphysema          | 1.659389 |
| Fibrosis           | 1.091703 |
| Hernia             | 0.131004 |

**Description of Validation Dataset:** The validation dataset contains 248 images randomly selected which are distributed accross each label (20% yes, 80 % no) for the presence of pneumonia. Aditionally, these images contains the presence of others diseases, those are the proportions with respect to the validation data:

| Disease            | %         |
|--------------------|-----------|
| Infiltration       | 22.797203 |
| Effusion           | 13.566434 |
| Atelectasis        | 12.797203 |
| Consolidation      | 4.825175  |
| Edema              | 5.664336  |
| Mass               | 5.384615  |
| Nodule             | 5.454545  |
| Pleural_Thickening | 3.426573  |
| Pneumothorax       | 4.195804  |
| Cardiomegaly       | 1.748252  |
| Emphysema          | 1.678322  |
| Fibrosis           | 1.118881  |
| Hernia             | 0.069930  |

### 5. Ground Truth

The dataset was labeled using Natural Language Processing from the associated radiological reports. The advantage of this method is that we can label many images in a short period of time. A representative sample of this dataset labeled can be contrasted against an specialist if neccesary. The model output expect to be 90% accurate, about 10% of the total labels are erroneous.

### 6. FDA Validation Plan

### **Patient Population Description for FDA Validation Dataset:**

Persons distributed between the ages of 20 - 60. The images should be in the format of a Digital xray, which have taken in a PA or AP view position.

### **Ground Truth Acquisition Methodology:**

The ground truth for the dataset can be achieved using a voting system of a team of radiologist assessment with different years of experience.

### **Algorithm Performance Standard:**

|         |                 | F1 score |
|---------|-----------------|----------|
| Study 1 | Radiologist 1   | 0.383    |
|         | Radiologist 2   | 0.352    |
|         | Radiologist 3   | 0.365    |
|         | Radiologist 4   | 0.442    |
|         | Radiologist Avg | 0.387    |

The base perforance metric is the f1-score which focus in the importance of balanced the proportion of false negatives and false positives that our models outputs. From the study *Radiologist-Level Pneumonia Detection* on *Chest X-Rays with Deep Learning* we define a f1-score of 0.387 as a baseline for our algorithm.