On critical p-Laplacian systems *

Zhenyu Guo^a, Kanishka Perera^b, Wenming Zou^c

a,c Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
 bDepartment of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

Abstract

We consider the critical *p*-Laplacian system

$$\begin{cases} -\Delta_{p}u - \frac{\lambda a}{p}|u|^{a-2}u|v|^{b} = \mu_{1}|u|^{p^{*}-2}u + \frac{\alpha\gamma}{p^{*}}|u|^{\alpha-2}u|v|^{\beta}, & x \in \Omega, \\ -\Delta_{p}v - \frac{\lambda b}{p}|u|^{a}|v|^{b-2}v = \mu_{2}|v|^{p^{*}-2}v + \frac{\beta\gamma}{p^{*}}|u|^{\alpha}|v|^{\beta-2}v, & x \in \Omega, \\ u, v \text{ in } D_{0}^{1,p}(\Omega), \end{cases}$$
(0.1)

where $\Delta_p:=\operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator defined on $D^{1,p}(\mathbb{R}^N):=\{u\in L^{p^*}(\mathbb{R}^N): |\nabla u|\in L^p(\mathbb{R}^N)\}$, endowed with norm $\|u\|_{D^{1,p}}:=(\int_{\mathbb{R}^N}|\nabla u|^p\mathrm{d}x)^{\frac{1}{p}},\ N\geq 3,\ 1< p< N,\ \lambda,\mu_1,\mu_2\geq 0,\ \gamma\neq 0,\ a,b,\alpha,\beta>1$ satisfy $a+b=p,\alpha+\beta=p^*:=\frac{Np}{N-p}$, the critical Sobolev exponent, Ω is \mathbb{R}^N or a bounded domain in $\mathbb{R}^N,\ D_0^{1,p}(\Omega)$ is the closure of $C_0^\infty(\Omega)$ in $D^{1,p}(\mathbb{R}^N)$. Under suitable assumptions, we establish the existence and nonexistence of a positive least energy solution of (0.1). We also consider the existence and multiplicity of nontrivial nonnegative solutions.

Key words: Nehari manifold, p-Laplacian systems, least energy solutions, critical exponent.

^{*}Supported by NSFC(11371212, 11271386). Tel. +86-10-62796889. E-mails: a guozy@163.com, b kperera@fit.edu, c wzou@math.tsinghua.edu.cn

1 Introduction

Equations and systems involving the *p*-Laplacian operator have been extensively studied in the recent years (see, e.g., [2, 3, 5, 7, 8, 9, 10, 13, 16, 17, 19, 20, 22, 23, 24] and their references). In the present paper, we study the critical *p*-Laplacian system

$$\begin{cases}
-\Delta_{p}u - \frac{\lambda a}{p}|u|^{a-2}u|v|^{b} = \mu_{1}|u|^{p^{*}-2}u + \frac{\alpha\gamma}{p^{*}}|u|^{\alpha-2}u|v|^{\beta}, & x \in \Omega, \\
-\Delta_{p}v - \frac{\lambda b}{p}|u|^{a}|v|^{b-2}v = \mu_{2}|v|^{p^{*}-2}v + \frac{\beta\gamma}{p^{*}}|u|^{\alpha}|v|^{\beta-2}v, & x \in \Omega, \\
u, v \text{ in } D_{0}^{1,p}(\Omega),
\end{cases}$$
(1.1)

where $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the p-Laplacian operator defined on $D^{1,p}(\mathbb{R}^N) := \{u \in L^{p^*}(\mathbb{R}^N) : |\nabla u| \in L^p(\mathbb{R}^N)\}$, endowed with norm $\|u\|_{D^{1,p}} := \left(\int_{\mathbb{R}^N} |\nabla u|^p \mathrm{d}x\right)^{\frac{1}{p}}$, $N \geq 3, 1 1$ satisfy $a + b = p, \alpha + \beta = p^* := \frac{Np}{N-p}$, the critical Sobolev exponent, Ω is \mathbb{R}^N or a bounded domain in \mathbb{R}^N , and $D_0^{1,p}(\Omega)$ is the closure of $C_0^\infty(\Omega)$ in $D^{1,p}(\mathbb{R}^N)$. Note that we allow the powers in the coupling terms to be unequal. We consider the two cases

$$(\mathbf{H_1}) \ \Omega = \mathbb{R}^N, \lambda = 0, \mu_1, \mu_2 > 0;$$

 $(\mathbf{H_2})$ Ω is a bounded domain in \mathbb{R}^N , $\lambda > 0$, $\mu_1, \mu_2 = 0$, $\gamma = 1$.

Let

$$S := \inf_{u \in D_0^{1,p}(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^p dx}{\left(\int_{\Omega} |u|^{p^*} dx\right)^{\frac{p}{p^*}}}$$
(1.2)

be the sharp constant of imbedding for $D_0^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ (see, e.g., [1]). Then S is independent of Ω and is attained only when $\Omega = \mathbb{R}^N$. In this case a minimizer $u \in D^{1,p}(\mathbb{R}^N)$ satisfies the critical p-Laplacian equation

$$-\Delta_p u = |u|^{p^* - 2} u, \quad x \in \mathbb{R}^N.$$
(1.3)

Damascelli et al. [14] recently showed that all solutions of (1.3) are radial and radially decreasing about some point in \mathbb{R}^N when 1 . Sciunzi [21] extended this result to the case <math>2 . By exploiting the classification results in [4, 18], we see that, for <math>1 , all positive solutions of (1.3) are of the form

$$U_{\varepsilon,y}(x) := \left[N \left(\frac{N-p}{p-1} \right)^{p-1} \right]^{\frac{N-p}{p^2}} \left(\frac{\varepsilon^{\frac{1}{p-1}}}{\varepsilon^{\frac{p}{p-1}} + |x-y|^{\frac{p}{p-1}}} \right)^{\frac{N-p}{p}}, \quad \varepsilon > 0, \ y \in \mathbb{R}^N,$$

$$\tag{1.4}$$

and

$$\int_{\mathbb{R}^N} |\nabla U_{\varepsilon,y}|^p dx = \int_{\mathbb{R}^N} |U_{\varepsilon,y}|^{p^*} dx = S^{\frac{N}{p}}.$$
 (1.5)

In the case (H_1) , the energy functional associated with the system (1.1) is given by

$$I(u,v) = \frac{1}{p} \int_{\mathbb{R}^N} \left(|\nabla u|^p + |\nabla v|^p \right) - \frac{1}{p^*} \int_{\mathbb{R}^N} \left(\mu_1 |u|^{p^*} + \mu_2 |v|^{p^*} + \gamma |u|^{\alpha} |v|^{\beta} \right),$$

$$(u,v) \in D, \quad (1.6)$$

where $D:=D^{1,p}(\mathbb{R}^N)\times D^{1,p}(\mathbb{R}^N)$, endowed with norm $\|(u,v)\|_D^p=\|u\|_{D^{1,p}}^p+\|v\|_{D^{1,p}}^p$. In this case, (1.1) with $\alpha=\beta$ and p=2 has been studied by Chen and Zou [11, 12]. Define

$$\mathcal{N} = \left\{ (u, v) \in D : u \neq 0, v \neq 0, \int_{\mathbb{R}^N} |\nabla u|^p = \int_{\mathbb{R}^N} \left(\mu_1 |u|^{p^*} + \frac{\alpha \gamma}{p^*} |u|^{\alpha} |v|^{\beta} \right), \right.$$
$$\int_{\mathbb{R}^N} |\nabla v|^p = \int_{\mathbb{R}^N} \left(\mu_2 |v|^{p^*} + \frac{\beta \gamma}{p^*} |u|^{\alpha} |v|^{\beta} \right) \right\}.$$

It is easy to see that $\mathcal{N} \neq \emptyset$ and that any nontrivial solution of (1.1) is in \mathcal{N} . By a nontrivial solution we mean a solution (u,v) such that $u \neq 0$ and $v \neq 0$. A solution is called a least energy solution if its energy is minimal among energies of all nontrivial solutions. A solution (u,v) is positive if u>0 and v>0, and semitrivial if it is of the form (u,0) with $u \neq 0$, or (0,v) with $v \neq 0$. Set $A:=\inf_{(u,v)\in\mathcal{N}}I(u,v)$, and note that

$$A = \inf_{(u,v)\in\mathcal{N}} \frac{1}{N} \int_{\mathbb{R}^N} \left(|\nabla u|^p + |\nabla v|^p \right)$$
$$= \inf_{(u,v)\in\mathcal{N}} \frac{1}{N} \int_{\mathbb{R}^N} \left(\mu_1 |u|^{p^*} + \mu_2 |v|^{p^*} + \gamma |u|^{\alpha} |v|^{\beta} \right).$$

Consider the nonlinear system of equations

$$\begin{cases} \mu_1 k^{\frac{p^*-p}{p}} + \frac{\alpha \gamma}{p^*} k^{\frac{\alpha-p}{p}} l^{\frac{\beta}{p}} = 1, \\ \mu_2 l^{\frac{p^*-p}{p}} + \frac{\beta \gamma}{p^*} k^{\frac{\alpha}{p}} l^{\frac{\beta-p}{p}} = 1, \\ k > 0, \ l > 0. \end{cases}$$
(1.7)

Our main results in this case are the following.

Theorem 1.1. If (H_1) holds and $\gamma < 0$, then $A = \frac{1}{N} \left(\mu_1^{-\frac{N-p}{p}} + \mu_2^{-\frac{N-p}{p}} \right) S^{\frac{N}{p}}$ and A is not attained.

Theorem 1.2. *If* (H_1) *and*

$$(C_1)$$
 $\frac{N}{2} p$, and

$$0 < \gamma \le \frac{3p^2}{(3-p)^2} \min\left\{ \frac{\mu_1}{\alpha} \left(\frac{\alpha-p}{\beta-p} \right)^{\frac{\beta-p}{p}}, \frac{\mu_2}{\beta} \left(\frac{\beta-p}{\alpha-p} \right)^{\frac{\alpha-p}{p}} \right\}$$
 (1.8)

or

$$(C_2)$$
 $\frac{2N}{N+2} , and$

$$\gamma \ge \frac{Np^2}{(N-p)^2} \max \left\{ \frac{\mu_1}{\alpha} \left(\frac{p-\beta}{p-\alpha} \right)^{\frac{p-\beta}{p}}, \frac{\mu_2}{\beta} \left(\frac{p-\alpha}{p-\beta} \right)^{\frac{p-\alpha}{p}} \right\} \tag{1.9}$$

hold, then $A=\frac{1}{N}(k_0+l_0)S^{\frac{N}{p}}$ and A is attained by $(\sqrt[p]{k_0}U_{\varepsilon,y},\sqrt[p]{l_0}U_{\varepsilon,y})$, where (k_0,l_0) satisfies (1.7) and

$$k_0 = \min\{k : (k, l) \text{ satisfies } (1.7)\}.$$
 (1.10)

Theorem 1.3. Assume that $\frac{2N}{N+2} , <math>\alpha, \beta < p$, and (H_1) holds. If $\gamma > 0$, then A is attained by some (U, V), where U and V are positive, radially symmetric, and decreasing.

Theorem 1.4. (Multiplicity) Assume that $\frac{2N}{N+2} , <math>\alpha, \beta < p$, and (H_1) holds. There exists

$$\gamma_1 \in \left(0, \frac{Np^2}{(N-p)^2} \max\left\{\frac{\mu_1}{\alpha} \left(\frac{2-\beta}{2-\alpha}\right)^{\frac{2-\beta}{2}}, \frac{\mu_2}{\beta} \left(\frac{2-\alpha}{2-\beta}\right)^{\frac{2-\alpha}{2}}\right\}\right]$$

such that for any $\gamma \in (0, \gamma_1)$, there exists a solution $(k(\gamma), l(\gamma))$ of (1.7) satisfying

$$I(\sqrt[p]{k(\gamma)}U_{\varepsilon,y}, \sqrt[p]{l(\gamma)}U_{\varepsilon,y}) > A$$

and $(\sqrt[p]{k(\gamma)}U_{\varepsilon,y}, \sqrt[p]{l(\gamma)}U_{\varepsilon,y})$ is a (second) positive solution of (1.1).

For the case (H_2) , we have the following theorem.

Theorem 1.5. If (H_2) holds, $p \leq \sqrt{N}$, and

$$0 < \lambda < \frac{p}{(a^a b^b)^{\frac{1}{p}}} \lambda_1(\Omega),$$

where $\lambda_1(\Omega) > 0$ is the first Dirichlet eigenvalue of $-\Delta_p$ in Ω , then the system (1.1) has a nontrivial nonnegative solution.

2 Proof of Theorem 1.1

Lemma 2.1. Assume that (H_1) holds and $-\infty < \gamma < 0$. If A is attained by a couple $(u, v) \in \mathcal{N}$, then (u, v) is a critical point of I, i.e., (u, v) is a solution of (1.1).

Proof. Define

$$\mathcal{N}_{1} := \left\{ (u, v) \in D : u \not\equiv 0, v \not\equiv 0, \\
G_{1}(u, v) := \int_{\mathbb{R}^{N}} |\nabla u|^{p} - \int_{\mathbb{R}^{N}} \left(\mu_{1} |u|^{p^{*}} + \frac{\alpha \gamma}{p^{*}} |u|^{\alpha} |v|^{\beta} \right) = 0 \right\}, \\
\mathcal{N}_{2} := \left\{ (u, v) \in D : u \not\equiv 0, v \not\equiv 0, \\
G_{2}(u, v) := \int_{\mathbb{R}^{N}} |\nabla v|^{p} - \int_{\mathbb{R}^{N}} \left(\mu_{2} |v|^{p^{*}} + \frac{\beta \gamma}{p^{*}} |u|^{\alpha} |v|^{\beta} \right) = 0 \right\}.$$

Obviously, $\mathcal{N} = \mathcal{N}_1 \cap \mathcal{N}_2$. Suppose that $(u, v) \in \mathcal{N}$ is a minimizer for I restricted to \mathcal{N} . It follows from the standard minimization theory that there exist two Lagrange multipliers $L_1, L_2 \in \mathbb{R}$ such that

$$I'(u,v) + L_1G'_1(u,v) + L_2G'_2(u,v) = 0.$$

Noticing that

$$\begin{split} I'(u,v)(u,0) &= G_1(u,v) = 0, \\ I'(u,v)(0,v) &= G_2(u,v) = 0, \\ G'_1(u,v)(u,0) &= -(p^*-p) \int_{\mathbb{R}^N} \mu_1 |u|^{p^*} + (p-\alpha) \int_{\mathbb{R}^N} \frac{\alpha \gamma}{p^*} |u|^{\alpha} |v|^{\beta}, \\ G'_1(u,v)(0,v) &= -\beta \int_{\mathbb{R}^N} \frac{\alpha \gamma}{p^*} |u|^{\alpha} |v|^{\beta} > 0, \\ G'_2(u,v)(u,0) &= -\alpha \int_{\mathbb{R}^N} \frac{\beta \gamma}{p^*} |u|^{\alpha} |v|^{\beta} > 0, \\ G'_2(u,v)(0,v) &= -(p^*-p) \int_{\mathbb{R}^N} \mu_2 |v|^{p^*} + (p-\beta) \int_{\mathbb{R}^N} \frac{\beta \gamma}{p^*} |u|^{\alpha} |v|^{\beta}, \end{split}$$

we get that

$$\begin{cases} G_1'(u,v)(u,0)L_1 + G_2'(u,v)(u,0)L_2 = 0, \\ G_1'(u,v)(0,v)L_1 + G_2'(u,v)(0,v)L_2 = 0, \end{cases}$$

and

$$G_1'(u,v)(u,0) + G_1'(u,v)(0,v) = -(p^* - p) \int_{\mathbb{R}^N} |\nabla u|^p \le 0,$$

$$G_2'(u,v)(u,0) + G_2'(u,v)(0,v) = -(p^* - p) \int_{\mathbb{R}^N} |\nabla v|^p \le 0.$$

We claim that $\int_{\mathbb{R}^N} |\nabla u|^p > 0$. Indeed, if $\int_{\mathbb{R}^N} |\nabla u|^p = 0$, then by (1.2), we have $\int_{\mathbb{R}^N} |u|^{p^*} \leq S^{-\frac{p^*}{p}} \Big(\int_{\mathbb{R}^N} |\nabla u|^p \Big)^{\frac{p^*}{p}} = 0$. Thus, a desired contradiction comes out, $u \equiv 0$ almost everywhere in \mathbb{R}^N . Similarly, $\int_{\mathbb{R}^N} |\nabla v|^p > 0$. Hence,

$$\begin{aligned} \left| G_1'(u,v)(u,0) \right| &= -G_1'(u,v)(u,0) > G_1'(u,v)(0,v), \\ \left| G_2'(u,v)(0,v) \right| &= -G_2'(u,v)(0,v) > G_2'(u,v)(u,0). \end{aligned}$$

Define the matrix

$$M := \begin{pmatrix} G'_1(u,v)(u,0) & G'_2(u,v)(u,0) \\ G'_1(u,v)(0,v) & G'_2(u,v)(0,v) \end{pmatrix},$$

then,

$$\det(M) = |G'_1(u, v)(u, 0)| \cdot |G'_2(u, v)(0, v)| -G'_1(u, v)(0, v) \cdot G'_2(u, v)(u, 0) > 0,$$

which means that $L_1=L_2=0$. This completes the proof.

Proof of Theorem 1.1. It is standard to see that A>0. By (1.4), we know that $\omega_{\mu_i}:=\mu_i^{\frac{p-N}{p^2}}U_{1,0}$ satisfies $-\Delta_p u=\mu_i|u|^{p^*-2}u$ in \mathbb{R}^N , where i=1,2. Set $e_1=(1,0,\cdots,0)\in\mathbb{R}^N$ and

$$(u_R(x), v_R(x)) = (\omega_{\mu_1}(x), \omega_{\mu_2}(x + Re_1)),$$

where R is a positive number. Then, $v_R \rightharpoonup 0$ weakly in $D^{1,2}(\mathbb{R}^N)$ and $v_R \rightharpoonup 0$ weakly in $L^{p^*}(\mathbb{R}^N)$ as $R \to +\infty$. Hence,

$$\begin{split} \lim_{R \to +\infty} \int_{\mathbb{R}^N} u_R^{\alpha} v_R^{\beta} \mathrm{d}x &= \lim_{R \to +\infty} \int_{\mathbb{R}^N} u_R^{\alpha} v_R^{\frac{\alpha}{p^*-1}} v_R^{\frac{\alpha}{p^*-1}} \mathrm{d}x \\ &\leq \lim_{R \to +\infty} \left(\int_{\mathbb{R}^N} u_R^{p^*-1} v_R \mathrm{d}x \right)^{\frac{\alpha}{p^*-1}} \left(\int_{\mathbb{R}^N} v_R^{p^*} \mathrm{d}x \right)^{\frac{\beta-1}{p^*-1}} \\ &= 0. \end{split}$$

Therefore, for R>0 sufficiently large, the system

$$\begin{cases} \int_{\mathbb{R}^N} |\nabla u_R|^p \mathrm{d}x = \int_{\mathbb{R}^N} \mu_1 u_R^{p^*} \mathrm{d}x \\ = t_R^{\frac{p^*-p}{p}} \int_{\mathbb{R}^N} \mu_1 u_R^{p^*} \mathrm{d}x + t_R^{\frac{\alpha-p}{p}} s_R^{\frac{\beta}{p}} \int_{\mathbb{R}^N} \frac{\alpha \gamma}{p^*} u_R^{\alpha} v_R^{\beta} \mathrm{d}x, \\ \int_{\mathbb{R}^N} |\nabla v_R|^p \mathrm{d}x = \int_{\mathbb{R}^N} \mu_2 v_R^{p^*} \mathrm{d}x \\ = s_R^{\frac{p^*-p}{p}} \int_{\mathbb{R}^N} \mu_2 v_R^{p^*} \mathrm{d}x + t_R^{\frac{\alpha}{p}} s_R^{\frac{\beta-p}{p}} \int_{\mathbb{R}^N} \frac{\beta \gamma}{p^*} u_R^{\alpha} v_R^{\beta} \mathrm{d}x \end{cases}$$

has a solution (t_R, s_R) with

$$\lim_{R \to +\infty} (|t_R - 1| + |s_R - 1|) = 0.$$

Furthermore, $(\sqrt[p]{t_R}u_R, \sqrt[p]{s_R}v_R) \in \mathcal{N}$. Then, by (1.5), we obtain that

$$\begin{split} A &= \inf_{(u,v) \in \mathcal{N}} I(u,v) \leq I\left(\sqrt[p]{t_R} u_R, \sqrt[p]{s_R} v_R\right) \\ &= \frac{1}{N} \Big(t_R \int_{\mathbb{R}^N} |\nabla u_R|^p \mathrm{d}x + s_R \int_{\mathbb{R}^N} |\nabla v_R|^p \mathrm{d}x \Big) \\ &= \frac{1}{N} \Big(t_R \mu_1^{-\frac{N-p}{p}} + s_R \mu_2^{-\frac{N-p}{p}} \Big) S^{\frac{N}{p}}, \end{split}$$

 $\begin{array}{l} \text{which implies that } A \leq \frac{1}{N} \big(\mu_1^{-\frac{N-p}{p}} + \mu_2^{-\frac{N-p}{p}} \big) S^{\frac{N}{p}}. \end{array}$ For any $(u,v) \in \mathcal{N}$,

$$\int_{\mathbb{R}^N} |\nabla u|^p \mathrm{d}x \leq \mu_1 \int_{\mathbb{R}^N} |u|^{p^*} \mathrm{d}x \leq \mu_1 S^{-\frac{p^*}{p}} \Big(\int_{\mathbb{R}^N} |\nabla u|^p \mathrm{d}x \Big)^{\frac{p^*}{p}}.$$

Therefore, $\int_{\mathbb{R}^N} |\nabla u|^p \mathrm{d}x \geq \mu_1^{-\frac{N-p}{p}} S^{\frac{N}{p}}$. Similarly, $\int_{\mathbb{R}^N} |\nabla v|^p \mathrm{d}x \geq \mu_2^{-\frac{N-p}{p}} S^{\frac{N}{p}}$. Then, $A \geq \frac{1}{N} \left(\mu_1^{-\frac{N-p}{p}} + \mu_2^{-\frac{N-p}{p}} \right) S^{\frac{N}{p}}$. Hence,

$$A = \frac{1}{N} \left(\mu_1^{-\frac{N-p}{p}} + \mu_2^{-\frac{N-p}{p}} \right) S^{\frac{N}{p}}. \tag{2.1}$$

Suppose by contradiction that A is attained by some $(u,v) \in \mathcal{N}$. Then $(|u|,|v|) \in \mathcal{N}$ and I(|u|,|v|) = A. By Lemma 2.1, we see that (|u|,|v|) is a nontrivial solution of (1.1). By strong maximum principle, we may assume that u>0, v>0, and so $\int_{\mathbb{R}^N} u^{\alpha} v^{\beta} \mathrm{d}x > 0$. Then,

$$\int_{\mathbb{R}^N} |\nabla u|^p \mathrm{d}x < \mu_1 \int_{\mathbb{R}^N} |u|^{p^*} \mathrm{d}x \leq \mu_1 S^{-\frac{p^*}{p}} \Big(\int_{\mathbb{R}^N} |\nabla u|^p \mathrm{d}x \Big)^{\frac{p^*}{p}},$$

which yields that $\int_{\mathbb{R}^N} |\nabla u|^p \mathrm{d}x > \mu_1^{-\frac{N-p}{p}} S^{\frac{N}{p}}$. Similarly, $\int_{\mathbb{R}^N} |\nabla v|^p \mathrm{d}x > \mu_2^{-\frac{N-p}{p}} S^{\frac{N}{p}}$. Therefore,

$$A=I(u,v)=\frac{1}{N}\int_{\mathbb{R}^N}\big(|\nabla u|^p+|\nabla v|^p\big)\mathrm{d}x>\frac{1}{N}\big(\mu_1^{-\frac{N-p}{p}}+\mu_2^{-\frac{N-p}{p}}\big)S^{\frac{N}{p}},$$

which contradicts to (2.1). This completes the proof.

3 Proof of Theorem 1.2

Proposition 3.1. Assume that $c, d \in \mathbb{R}$ satisfy

$$\begin{cases} \mu_{1}c^{\frac{p^{*}-p}{p}} + \frac{\alpha\gamma}{p^{*}}c^{\frac{\alpha-p}{p}}d^{\frac{\beta}{p}} \geq 1, \\ \mu_{2}d^{\frac{p^{*}-p}{p}} + \frac{\beta\gamma}{p^{*}}c^{\frac{\alpha}{p}}d^{\frac{\beta-p}{p}} \geq 1, \\ c > 0, \ d > 0. \end{cases}$$
(3.1)

If $\frac{N}{2} p$ and (1.8) holds, then $c + d \ge k + l$, where $k, l \in \mathbb{R}$ satisfy (1.7).

Proof. Let $y=c+d, x=\frac{c}{d}, y_0=k+l$, and $x_0=\frac{k}{l}$. By (3.1) and (1.7), we have that

$$y^{\frac{p^*-p}{p}} \ge \frac{(x+1)^{\frac{p^*-p}{p}}}{\mu_1 x^{\frac{p^*-p}{p}} + \frac{\alpha \gamma}{p^*} x^{\frac{\alpha-p}{p}}} := f_1(x), \qquad y_0^{\frac{p^*-p}{p}} = f_1(x_0),$$

$$y^{\frac{p^*-p}{p}} \ge \frac{(x+1)^{\frac{p^*-p}{p}}}{\mu_2 + \frac{\beta\gamma}{n^*}x^{\frac{\alpha}{p}}} := f_2(x),$$
 $y_0^{\frac{p^*-p}{p}} = f_2(x_0).$

Thus,

$$f_1'(x) = \frac{\alpha \gamma (x+1)^{\frac{p^*-2p}{p}} x^{\frac{\alpha-2p}{p}}}{pp^* (\mu_1 x^{\frac{p^*-p}{p}} + \frac{\alpha \gamma}{p^*} x^{\frac{\alpha-p}{p}})^2} \Big[- \frac{p^* (p^*-p)\mu_1}{\alpha \gamma} x^{\frac{\beta}{p}} + \beta x - (\alpha - p) \Big],$$

$$f_2'(x) = \frac{\beta \gamma (x+1)^{\frac{p^*-2p}{p}}}{pp^*(\mu_2 + \frac{\beta \gamma}{p^*} x^{\frac{\alpha}{p}})^2} \Big[(\beta - p) x^{\frac{\alpha}{p}} - \alpha x^{\frac{\alpha - p}{p}} + \frac{p^*(p^* - p)\mu_2}{\beta \gamma} \Big].$$

Let
$$x_1=\left(\frac{p\alpha\gamma}{p^*(p^*-p)\mu_1}\right)^{\frac{p}{\beta-p}}, x_2=\frac{\alpha-p}{\beta-p}$$
 and
$$g_1(x)=-\frac{p^*(p^*-p)\mu_1}{\alpha\gamma}x^{\frac{\beta}{p}}+\beta x-(\alpha-p),$$

$$g_2(x)=(\beta-p)x^{\frac{\alpha}{p}}-\alpha x^{\frac{\alpha-p}{p}}+\frac{p^*(p^*-p)\mu_2}{\beta\gamma}.$$

It follows from (1.8) that

$$\max_{x \in (0, +\infty)} g_1(x) = g_1(x_1) = (\beta - p) \left(\frac{p\alpha\gamma}{p^*(p^* - p)\mu_1} \right)^{\frac{p}{\beta - p}} - (\alpha - p) \le 0,$$

$$\min_{x \in (0, +\infty)} g_2(x) = g_2(x_2) = -p \left(\frac{\alpha - p}{\beta - p} \right)^{\frac{\alpha - p}{p}} + \frac{p^*(p^* - p)\mu_2}{\beta\gamma} \ge 0.$$

That is, $f_1(x)$ is strictly decreasing in $(0, +\infty)$ and $f_2(x)$ is strictly increasing in $(0, +\infty)$. Hence,

$$y^{\frac{p^*-p}{p}} \ge \max\{f_1(x), f_2(x)\} \ge \min_{x \in (0, +\infty)} \left(\max\{f_1(x), f_2(x)\} \right)$$
$$= \min_{\{f_1 = f_2\}} \left(\max\{f_1(x), f_2(x)\} \right) = y_0^{\frac{p^*-p}{p}},$$

where $\{f_1 = f_2\} := \{x \in (0, +\infty) : f_1(x) = f_2(x)\}$. This completes the proof.

Remark 3.1. From the proof of Proposition 3.1, it is easy to see that the system (1.7), under the assumption of Proposition 3.1, has only one real solution $(k, l) = (k_0, l_0)$, where (k_0, l_0) is defined as in (1.10).

Define functions:

$$F_{1}(k,l) := \mu_{1}k^{\frac{p^{*}-p}{p}} + \frac{\alpha\gamma}{p^{*}}k^{\frac{\alpha-p}{p}}l^{\frac{\beta}{p}} - 1, \quad k > 0, l \geq 0;$$

$$F_{2}(k,l) := \mu_{2}l^{\frac{p^{*}-p}{p}} + \frac{\beta\gamma}{p^{*}}k^{\frac{\alpha}{p}}l^{\frac{\beta-p}{p}} - 1, \quad k \geq 0, l > 0;$$

$$l(k) := \left(\frac{p^{*}}{\alpha\gamma}\right)^{\frac{p}{\beta}}k^{\frac{p-\alpha}{\beta}}\left(1 - \mu_{1}k^{\frac{p^{*}-p}{p}}\right)^{\frac{p}{\beta}}, \quad 0 < k \leq \mu_{1}^{-\frac{p}{p^{*}-p}};$$

$$k(l) := \left(\frac{p^{*}}{\beta\gamma}\right)^{\frac{p}{\alpha}}l^{\frac{p-\beta}{\alpha}}\left(1 - \mu_{2}l^{\frac{p^{*}-p}{p}}\right)^{\frac{p}{\alpha}}, \quad 0 < l \leq \mu_{2}^{-\frac{p}{p^{*}-p}}.$$

$$(3.2)$$

Then, $F_1(k, l(k)) \equiv 0$ and $F_2(k(l), l) \equiv 0$.

Lemma 3.1. Assume that $\frac{2N}{N+2} 0$. Then

$$F_1(k,l) = 0, \quad F_2(k,l) = 0, \quad k,l > 0$$
 (3.3)

has a solution (k_0, l_0) such that

$$F_2(k, l(k)) < 0, \ \forall k \in (0, k_0),$$
 (3.4)

that is, (k_0, l_0) satisfies (1.10). Similarly, (3.3) has a solution (k_1, l_1) such that

$$F_1(k(l), l) < 0, \ \forall l \in (0, l_1),$$
 (3.5)

that is,

$$(k_1, l_1)$$
 satisfies (1.7) and $l_1 = \min\{l : (k, l) \text{ is a solution of (1.7)}\}.$ (3.6)

Proof. We only prove the existence of (k_0, l_0) . It follows from $F_1(k, l) = 0, \ k, l > 0$ that

$$l = l(k), \ \forall k \in (0, \mu_1^{-\frac{p}{p^* - p}}).$$

Substituting this into $F_2(k, l) = 0$, we have

$$\mu_{2} \left(\frac{p^{*}}{\alpha \gamma}\right)^{\frac{\alpha}{\beta}} \left(1 - \mu_{1} k^{\frac{p^{*} - p}{p}}\right)^{\frac{\alpha}{\beta}} + \frac{\beta \gamma}{p^{*}} k^{\frac{(p^{*} - p)\alpha}{p\beta}} - \left(\frac{p^{*}}{\alpha \gamma}\right)^{\frac{p - \beta}{\beta}} k^{-\frac{(p^{*} - p)(p - \alpha)}{p\beta}} \left(1 - \mu_{1} k^{\frac{p^{*} - p}{p}}\right)^{\frac{p - \beta}{\beta}} = 0.$$

$$(3.7)$$

Setting

$$f(k) := \mu_2 \left(\frac{p^*}{\alpha \gamma}\right)^{\frac{\alpha}{\beta}} \left(1 - \mu_1 k^{\frac{p^* - p}{p}}\right)^{\frac{\alpha}{\beta}} + \frac{\beta \gamma}{p^*} k^{\frac{(p^* - p)\alpha}{p\beta}} - \left(\frac{p^*}{\alpha \gamma}\right)^{\frac{p - \beta}{\beta}} k^{-\frac{(p^* - p)(p - \alpha)}{p\beta}} \left(1 - \mu_1 k^{\frac{p^* - p}{p}}\right)^{\frac{p - \beta}{\beta}},$$

$$(3.8)$$

then the existence of a solution of (3.7) in $(0, \mu_1^{-\frac{p}{p^*-p}})$ is equivalent to f(k) = 0 possessing a solution in $(0, \mu_1^{-\frac{p}{p^*-p}})$. Since $\alpha, \beta < p$, we get that

$$\lim_{k \to 0^+} f(k) = -\infty, \qquad f\left(\mu_1^{-\frac{p}{p^* - p}}\right) = \frac{\beta \gamma}{p^*} \mu_1^{-\frac{\alpha}{\beta}} > 0,$$

which implies that there exists $k_0 \in \left(0, \mu_1^{-\frac{p}{p^*-p}}\right)$ such that $f(k_0) = 0$ and f(k) < 0 for $k \in (0, k_0)$. Let $l_0 = l(k_0)$. Then (k_0, l_0) is a solution of (3.3) and (3.4) holds. \square

Remark 3.2. From $\frac{2N}{N+2} and <math>\alpha, \beta < p$, we get that $2 < p^* < 2p$. It can be seen from $\frac{N}{2} and <math>\alpha, \beta > p$ that $2 < 2p < p^*$.

Lemma 3.2. Assume that $\frac{2N}{N+2} , <math>\alpha, \beta < p$, and (1.9) holds. Let (k_0, l_0) be the same as in Lemma 3.1. Then,

$$(k_0 + l_0)^{\frac{p^* - p}{p}} \max\{\mu_1, \mu_2\} < 1 \tag{3.9}$$

and

$$F_2(k, l(k)) < 0, \ \forall k \in (0, k_0); \ F_1(k(k), l) < 0, \ \forall l \in (0, l_0).$$
 (3.10)

Proof. Recalling (3.2), we obtain that

$$l'(k) = \left(\frac{p^*}{\alpha\gamma}\right)^{\frac{p}{\beta}} \frac{p}{\beta} \left(k^{\frac{p-\alpha}{p}} - \mu_1 k^{\frac{\beta}{p}}\right)^{\frac{p-\beta}{\beta}} \left(\frac{p-\alpha}{p} k^{-\frac{\alpha}{p}} - \frac{\mu_1 \beta}{p} k^{\frac{\beta-p}{p}}\right)$$
$$= \left(\frac{p^* \mu_1}{\alpha\gamma}\right)^{\frac{p}{\beta}} k^{\frac{p-p^*}{\beta}} \left(\mu_1^{-1} - k^{\frac{p^*-p}{p}}\right)^{\frac{p-\beta}{\beta}} \left(\frac{p-\alpha}{\mu_1 \beta} - k^{\frac{p^*-p}{p}}\right),$$

 $l'\big((\frac{p-\alpha}{\mu_1\beta})^{\frac{p}{p^*-p}}\big) = l'\big(\mu_1^{-\frac{p}{p^*-p}}\big) = 0, \ l'(k) > 0 \ \text{for} \ k \in \big(0, (\frac{p-\alpha}{\mu_1\beta})^{\frac{p}{p^*-p}}\big), \ \text{and} \ l'(k) < 0 \ \text{for} \ k \in \big((\frac{p-\alpha}{\mu_1\beta})^{\frac{p}{p^*-p}}, \mu_1^{-\frac{p}{p^*-p}}\big). \ \text{From}$

$$l''(\bar{k}) = \frac{p - \beta}{\beta} \left(\frac{p^* \mu_1}{\alpha \gamma} \right)^{\frac{p}{\beta}} \bar{k}^{\frac{p - 2\beta - \alpha}{\beta}} \left(\mu_1^{-1} - \bar{k}^{\frac{p^* - p}{p}} \right)^{\frac{p - 2\beta}{\beta}} \cdot \left[\left(\frac{p - \alpha}{\mu_1 \beta} - \bar{k}^{\frac{p^* - p}{p}} \right)^2 - \left(\mu_1^{-1} - \bar{k}^{\frac{p^* - p}{p}} \right) \left(\frac{\alpha(p - \alpha)}{\mu_1 \beta(p - \beta)} - \bar{k}^{\frac{p^* - p}{p}} \right) \right] = 0$$

and $\bar{k} \in \left(\left(\frac{p-\alpha}{\mu_1\beta}\right)^{\frac{p}{p^*-p}}, \mu_1^{-\frac{p}{p^*-p}}\right)$, we have $\bar{k} = \left(\frac{p(p-\alpha)}{(2p-p^*)\mu_1\beta}\right)^{\frac{p}{p^*-p}}$. Then, by (1.9), we get that

$$\min_{k \in \left(0, \mu_1^{-\frac{p}{p^* - p}}\right]} l'(k) = \min_{k \in \left(\frac{p - \alpha}{\mu_1 \beta}\right)^{\frac{p}{p^* - p}}, \mu_1^{-\frac{p}{p^* - p}}\right]} l'(k) = l'(\bar{k})$$

$$= -\left(\frac{p^*(p^* - p)\mu_1}{p\alpha\gamma}\right)^{\frac{p}{\beta}} \left(\frac{p - \beta}{p - \alpha}\right)^{\frac{p - \beta}{\beta}}$$

$$\geq -1.$$

Therefore, l'(k) > -1 for $k \in \left(0, \mu_1^{-\frac{p}{p^*-p}}\right]$ with $k \neq \left(\frac{p(p-\alpha)}{(2p-p^*)\mu_1\beta}\right)^{\frac{p}{p^*-p}}$, which implies that l(k)+k is strictly increasing on $\left[0, \mu_1^{-\frac{p}{p^*-p}}\right]$. Noticing that $k_0 < \mu_1^{-\frac{p}{p^*-p}}$, we have

$$\mu_1^{-\frac{p}{p^*-p}} = l(\mu_1^{-\frac{p}{p^*-p}}) + \mu_1^{-\frac{p}{p^*-p}} > l(k_0) + k_0 = l_0 + k_0,$$

that is, $\mu_1(k_0+l_0)^{\frac{p^*-p}{p}}<1$. Similarly, $\mu_2(k_0+l_0)^{\frac{p^*-p}{p}}<1$. To prove (3.10), by Lemma 3.1, it suffices to show that $(k_0,l_0)=(k_1,l_1)$. It follows from (3.4) and (3.5) that $k_1\geq k_0$ and $l_0\geq l_1$. Suppose by contradiction that $k_1>k_0$. Then $l(k_1)+k_1>l(k_0)+k_0$. Hence, $l_1+k(l_1)=l(k_1)+k_1>l(k_0)+k_0=l_0+k(l_0)$. Following the arguments in the beginning of the proof, we have l+k(l) is strictly increasing for $l\in \left[0,\mu_2^{-\frac{p}{p^*-p}}\right]$. Therefore, $l_1>l_0$, which contradicts to $l_0\geq l_1$. Then, $k_1=k_0$, and similarly, $l_0=l_1$. This completes the proof.

Remark 3.3. For any $\gamma > 0$, the condition (1.9) always holds for the dimension N large enough.

Proposition 3.2. Assume that $\frac{2N}{N+2} , and (1.9) holds. Then$

$$\begin{cases} k+l \le k_0 + l_0, \\ F_1(k,l) \ge 0, & F_2(k,l) \ge 0, \\ k,l \ge 0, & (k,l) \ne (0,0) \end{cases}$$
(3.11)

has an unique solution $(k, l) = (k_0, l_0)$.

Proof. Obviously, (k_0, l_0) satisfies (3.11). Suppose that (\tilde{k}, \tilde{l}) is any solution of (3.11), and without loss of generality, assume that $\tilde{k} > 0$. We claim that $\tilde{l} > 0$. In fact, if $\tilde{l} = 0$, then $\tilde{k} \le k_0 + l_0$ and $F_1(\tilde{k}, 0) = \mu_1 \tilde{k}^{\frac{p^* - p}{p}} - 1 \ge 0$. Thus,

$$1 \le \mu_1 \tilde{k}^{\frac{p^* - p}{p}} \le \mu_1 (k_0 + l_0)^{\frac{p^* - p}{p}},$$

a contradiction with Lemma 3.2.

Suppose by contradiction that $\tilde{k} < k_0$. It can be seen that k(l) is strictly increasing on $\left(0, \left(\frac{p-\beta}{\mu_2\alpha}\right)^{\frac{p}{p^*-p}}\right]$ and strictly decreasing on $\left[\left(\frac{2-\beta}{\mu_2\alpha}\right)^{\frac{p}{p^*-p}}, \mu_2^{-\frac{p}{p^*-p}}\right]$, and $k(0) = k\left(\mu_2^{-\frac{p}{p^*-p}}\right) = 0$. Since $0 < \tilde{k} < k_0 = k(l_0)$, there exist $0 < l_1 < l_2 < \mu_2^{-\frac{p}{p^*-p}}$ such that $k(l_1) = k(l_2) = \tilde{k}$ and

$$F_2(\tilde{k}, l) < 0 \iff \tilde{k} < k(l) \iff l_1 < l < l_2.$$
 (3.12)

It follows from $F_1(\tilde{k},\tilde{l}) \geq 0$ and $F_2(\tilde{k},\tilde{l}) \geq 0$ that $\tilde{l} \geq l(\tilde{k})$ and $\tilde{l} \leq l_1$ or $\tilde{l} \geq l_2$. By (3.10), we see $F_2(\tilde{k},l(\tilde{k})) < 0$. By (3.12), we get that $l_1 < l(\tilde{k}) < l_2$. Therefore, $\tilde{l} \geq l_2$.

On the other hand, set $l_3 := k_0 + l_0 - \tilde{k}$. Then, $l_3 > l_0$ and moreover,

$$k(l_3) + k_0 + l_0 - \tilde{k} = k(l_3) + l_3 > k(l_0) + l_0 = k_0 + l_0,$$

that is, $k(l_3) > \tilde{k}$. By (3.12), we have $l_1 < l_3 < l_2$. Since $\tilde{k} + \tilde{l} \le k_0 + l_0$, we obtain that $\tilde{l} \le k_0 + l_0 - \tilde{k} = l_3 < l_2$. This contradicts to $\tilde{l} \ge l_2$, which completes the proof.

Proof of Theorem 1.2. Recalling (1.4) and (1.7), we see that $(\sqrt[p]{k_0}U_{\varepsilon,y}, \sqrt[p]{l_0}U_{\varepsilon,y}) \in \mathcal{N}$ is a nontrivial solution of (1.1), and

$$A \le I(\sqrt[p]{k_0}U_{\varepsilon,y}, \sqrt[p]{l_0}U_{\varepsilon,y}) = \frac{1}{N}(k_0 + l_0)S^{\frac{N}{p}}.$$
(3.13)

Let $\{(u_n,v_n)\}\subset \mathcal{N}$ be a minimizing sequence for A, i.e., $I(u_n,v_n)\to A$, as $n\to\infty$. Define $c_n=(\int_{\mathbb{R}^N}|u_n|^{p^*}\mathrm{d}x)^{\frac{p}{p^*}}$ and $d_n=(\int_{\mathbb{R}^N}|v_n|^{p^*}\mathrm{d}x)^{\frac{p}{p^*}}$. Then,

$$Sc_{n} \leq \int_{\mathbb{R}^{N}} |\nabla u_{n}|^{p} dx = \int_{\mathbb{R}^{N}} \left(\mu_{1} |u_{n}|^{p^{*}} + \frac{\alpha \gamma}{p^{*}} |u_{n}|^{\alpha} |v_{n}|^{\beta} \right) dx$$

$$\leq \mu_{1} c_{n}^{\frac{p^{*}}{p}} + \frac{\alpha \gamma}{p^{*}} c_{n}^{\frac{\beta}{p}} d_{n}^{\frac{\beta}{p}},$$

$$Sd_{n} \leq \int_{\mathbb{R}^{N}} |\nabla v_{n}|^{p} dx = \int_{\mathbb{R}^{N}} \left(\mu_{2} |v_{n}|^{p^{*}} + \frac{\beta \gamma}{p^{*}} |u_{n}|^{\alpha} |v_{n}|^{\beta} \right) dx$$

$$\leq \mu_{2} d_{n}^{\frac{p^{*}}{p}} + \frac{\beta \gamma}{p^{*}} c_{n}^{\frac{\beta}{p}} d_{n}^{\frac{\beta}{p}}.$$

$$(3.14)$$

Dividing both sides of the inequalities by Sc_n and Sd_n , respectively, and denoting $\tilde{c}_n = \frac{c_n}{S\frac{p_n}{p^*-p}}, \tilde{d}_n = \frac{d_n}{S\frac{p_n}{p^*-p}}$, we deduce that

$$\begin{cases} \mu_1 \tilde{c}_n^{\frac{p^*-p}{p}} + \frac{\alpha \gamma}{p^*} \tilde{c}_n^{\frac{\alpha-p}{p}} \tilde{d}_n^{\frac{\beta}{p}} \geq 1, \\ \mu_2 \tilde{d}_n^{\frac{p^*-p}{p}} + \frac{\beta \gamma}{p^*} \tilde{c}_n^{\frac{\alpha}{p}} \tilde{d}_n^{\frac{\beta-p}{p}} \geq 1, \end{cases}$$

that is, $F_1(\tilde{c}_n,\tilde{d}_n)\geq 0$ and $F_2(\tilde{c}_n,\tilde{d}_n)\geq 0$. Then, for $\frac{N}{2}< p< N,\ \alpha,\beta> p$, Proposition 3.1 and Remark 3.1 ensure that $\tilde{c}_n+\tilde{d}_n\geq k+l=k_0+l_0$; for $\frac{2N}{N+2}< p<\frac{N}{2},\alpha,\beta< p$, Proposition 3.2 guarantees that $\tilde{c}_n+\tilde{d}_n\geq k_0+l_0$. Therefore,

$$c_n + d_n \ge (k_0 + l_0)S^{\frac{p}{p^* - p}} = (k_0 + l_0)S^{\frac{N - p}{p}}.$$
 (3.15)

Noticing that $I(u_n, v_n) = \frac{1}{N} \int_{\mathbb{R}^N} (|\nabla u_n|^p + |\nabla v_n|^p)$, by (3.13) and (3.14), we have

$$S(c_n + d_n) \le NI(u_n, v_n) = NA + o(1) \le (k_0 + l_0)S^{\frac{N}{p}} + o(1).$$

Combining this with (3.15), we get that $c_n + d_n \to (k_0 + l_0) S^{\frac{N-p}{p}}$ as $n \to \infty$. Thus,

$$A = \lim_{n \to \infty} I(u_n, v_n) \ge \lim_{n \to \infty} \frac{1}{N} S(c_n + d_n) = \frac{1}{N} (k_0 + l_0) S^{\frac{N}{p}}.$$

Hence,

$$A = \frac{1}{N} (k_0 + l_0) S^{\frac{N}{p}} = I(\sqrt[p]{k_0} U_{\varepsilon,y}, \sqrt[p]{l_0} U_{\varepsilon,y}).$$
 (3.16)

4 Proof of Theorems 1.3 and 1.4

For (H_1) holding and $\gamma > 0$, define

$$A' := \inf_{(u,v) \in \mathcal{N}'} I(u,v), \tag{4.1}$$

where

$$\mathcal{N}' := \left\{ (u, v) \in D \setminus \{ (0, 0) \} : \int_{\mathbb{R}^N} \left(|\nabla u|^p + |\nabla v|^p \right) \right.$$

$$= \int_{\mathbb{R}^N} \left(\mu_1 |u|^{p^*} + \mu_2 |v|^{p^*} + \gamma |u|^{\alpha} |v|^{\beta} \right) \right\}.$$
(4.2)

It follows from $\mathcal{N} \subset \mathcal{N}'$ that $A' \leq A$. By Sobolev inequality, we see that A' > 0. Consider

$$\begin{cases}
-\Delta_{p}u = \mu_{1}|u|^{p^{*}-2}u + \frac{\alpha\gamma}{p^{*}}|u|^{\alpha-2}u|v|^{\beta}, & x \in B(0,R), \\
-\Delta_{p}v = \mu_{2}|v|^{p^{*}-2}v + \frac{\beta\gamma}{p^{*}}|u|^{\alpha}|v|^{\beta-2}v, & x \in B(0,R), \\
u, v \in H_{0}^{1}(B(0,R)),
\end{cases} (4.3)$$

where $B(0,R) := \{x \in \mathbb{R}^N : |x| < R\}$. Define

$$\mathcal{N}'(R) := \left\{ (u, v) \in H(0, R) \setminus \{(0, 0)\} : \int_{B(0, R)} \left(|\nabla u|^p + |\nabla v|^p \right) \right.$$

$$= \int_{B(0, R)} \left(\mu_1 |u|^{p^*} + \mu_2 |v|^{p^*} + \gamma |u|^{\alpha} |v|^{\beta} \right) \right\}$$
(4.4)

and

$$A'(R) := \inf_{(u,v) \in \mathcal{N}'(R)} I(u,v), \tag{4.5}$$

where $H(0,R) := H_0^1(B(0,R)) \times H_0^1(B(0,R))$. For $\varepsilon \in [0, \min\{\alpha, \beta\} - 1)$, consider

$$\begin{cases}
-\Delta_{p}u = \mu_{1}|u|^{p^{*}-2-2\varepsilon}u + \frac{(\alpha-\varepsilon)\gamma}{p^{*}-2\varepsilon}|u|^{\alpha-2-\varepsilon}u|v|^{\beta-\varepsilon}, & x \in B(0,1), \\
-\Delta_{p}v = \mu_{2}|v|^{p^{*}-2-2\varepsilon}v + \frac{(\beta-\varepsilon)\gamma}{p^{*}-2\varepsilon}|u|^{\alpha-\varepsilon}|v|^{\beta-2-\varepsilon}v, & x \in B(0,1), \\
u, v \in H_{0}^{1}(B(0,1)).
\end{cases} (4.6)$$

Define

$$I_{\varepsilon}(u,v) := \frac{1}{p} \int_{B(0,1)} \left(|\nabla u|^{p} + |\nabla v|^{p} \right) \\ - \frac{1}{p^{*} - 2\varepsilon} \int_{B(0,1)} \left(\mu_{1} |u|^{p^{*} - 2\varepsilon} + \mu_{2} |v|^{p^{*} - 2\varepsilon} + \gamma |u|^{\alpha - \varepsilon} |v|^{\beta - \varepsilon} \right),$$

$$\mathcal{N}'_{\varepsilon} := \left\{ (u,v) \in H(0,1) \setminus \{(0,0)\} : G_{\varepsilon}(u,v) := \int_{B(0,1)} \left(|\nabla u|^{p} + |\nabla v|^{p} \right) - \int_{B(0,1)} \left(\mu_{1} |u|^{p^{*} - 2\varepsilon} + \mu_{2} |v|^{p^{*} - 2\varepsilon} + \gamma |u|^{\alpha - \varepsilon} |v|^{\beta - \varepsilon} \right) = 0 \right\},$$

$$(4.7)$$

and

$$A_{\varepsilon} := \inf_{(u,v) \in \mathcal{N}'_{-}} I_{\varepsilon}(u,v). \tag{4.8}$$

Lemma 4.1. Assume that $\frac{2N}{N+2} . For <math>\varepsilon \in (0, \min\{\alpha, \beta\} - 1)$, there holds

$$A_{\varepsilon} < \min \Big\{ \inf_{(u,0) \in \mathcal{N}_{\varepsilon}'} I_{\varepsilon}(u,0), \inf_{(0,v) \in \mathcal{N}_{\varepsilon}'} I_{\varepsilon}(0,v) \Big\}.$$

Proof. From $\min\{\alpha,\beta\} \leq \frac{p^*}{2}$, it is easy to see that $2 < p^* - 2\varepsilon < p^*$. Then, we may assume that u_i is a least energy solution of

$$-\Delta_p u = \mu_i |u|^{p^* - 2 - 2\varepsilon} u, \ u \in H_0^1(B(0, 1)), \ i = 1, 2.$$

Therefore,

$$I_{\varepsilon}(u_1,0) = a_1 := \inf_{(u,0) \in \mathcal{N}_{\varepsilon}^{\varepsilon}} I_{\varepsilon}(u,0), \quad I_{\varepsilon}(0,u_2) = a_2 := \inf_{(0,v) \in \mathcal{N}_{\varepsilon}^{\varepsilon}} I_{\varepsilon}(0,v).$$

It is claimed that, for any $s \in \mathbb{R}$, there exists an unique t(s) > 0 such that $(\sqrt[p]{t(s)}u_1, \sqrt[p]{t(s)}su_2) \in \mathcal{N}'_{\varepsilon}$. In fact,

$$t(s)^{\frac{p^* - p - 2\varepsilon}{p}} = \frac{\int_{B(0,1)} \left(|\nabla u_1|^p + |s|^p |\nabla u_2|^p \right)}{\int_{B(0,1)} \left(\mu_1 |u_1|^{p^* - 2\varepsilon} + \mu_2 |su_2|^{p^* - 2\varepsilon} + \gamma |u_1|^{\alpha - \varepsilon} |su_2|^{\beta - \varepsilon} \right)}$$

$$= \frac{qa_1 + qa_2 |s|^p}{qa_1 + qa_2 |s|^{p^* - 2\varepsilon} + |s|^{\beta - \varepsilon} \int_{B(0,1)} \gamma |u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon}},$$

where $q:=\frac{p(p^*-2\varepsilon)}{p^*-p-2\varepsilon}=\frac{p(Np-2\varepsilon+2\varepsilon p)}{p^2-2\varepsilon N+2\varepsilon p}\to N$ as $\varepsilon\to 0$. Noticing that t(0)=1, we have

$$\lim_{s \to 0} \frac{t'(s)}{|s|^{\beta - \varepsilon - 2} s} = -\frac{(\beta - \varepsilon) \int_{B(0,1)} \gamma |u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon}}{(p^* - 2\varepsilon) a_1},$$

that is,

$$t'(s) = -\frac{(\beta - \varepsilon) \int_{B(0,1)} \gamma |u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon}}{(p^* - 2\varepsilon)a_1} |s|^{\beta - \varepsilon - 2} s (1 + o(1)), \quad \text{as } s \to 0.$$

Then,

$$t(s) = 1 - \frac{\int_{B(0,1)} \gamma |u_1|^{\alpha-\varepsilon} |u_2|^{\beta-\varepsilon}}{(p^* - 2\varepsilon)a_1} |s|^{\beta-\varepsilon} (1 + o(1)), \quad \text{as } s \to 0,$$

and so,

$$t(s)^{\frac{p^*-2\varepsilon}{p}} = 1 - \frac{\int_{B(0,1)} \gamma |u_1|^{\alpha-\varepsilon} |u_2|^{\beta-\varepsilon}}{pa_1} |s|^{\beta-\varepsilon} \left(1 + o(1)\right), \quad \text{as } s \to 0.$$

Since $\frac{1}{p} - \frac{1}{q} = \frac{1}{p^* - 2\varepsilon}$, we have

$$\begin{split} A_{\varepsilon} \leq & I_{\varepsilon} \left(\sqrt[p]{t(s)} u_1, \sqrt[p]{t(s)} s u_2 \right) \\ = & \left(\frac{1}{p} - \frac{1}{p^* - 2\varepsilon}\right) \left(q a_1 + q a_2 |s|^{p^* - 2\varepsilon} + |s|^{\beta - \varepsilon} \int_{B(0,1)} \gamma |u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon} \right) t^{\frac{p^* - 2\varepsilon}{p}} \\ = & a_1 - \left(\frac{1}{p} - \frac{1}{q}\right) |s|^{\beta - \varepsilon} \int_{B(0,1)} \gamma |u_1|^{\alpha - \varepsilon} |u_2|^{\beta - \varepsilon} + o(|s|^{\beta - \varepsilon}) \\ < & a_1 = \inf_{(u,0) \in \mathcal{N}_{\varepsilon}'} I_{\varepsilon}(u,0) \quad \text{as } |s| \text{ small enough.} \end{split}$$

Similarly, $A_{\varepsilon} < \inf_{(0,v) \in \mathcal{N}_{\varepsilon}'} I_{\varepsilon}(0,v)$. This completes the proof.

Noticing the definition of ω_{μ_i} in the proof of Theorem 1.1, similarly as Lemma 4.1, we obtain that

$$A' < \min \left\{ \inf_{(u,0) \in \mathcal{N}'} I(u,0), \inf_{(0,v) \in \mathcal{N}'} I(0,v) \right\}$$

$$= \min \left\{ I(\omega_{\mu_1}, 0), I(0, \omega_{\mu_2}) \right\}$$

$$= \min \left\{ \frac{1}{N} \mu_1^{-\frac{N-p}{p}} S^{\frac{N}{p}}, \frac{1}{N} \mu_2^{-\frac{N-p}{p}} S^{\frac{N}{p}} \right\}.$$
(4.9)

Proposition 4.1. For any $\varepsilon \in (0, \min\{\alpha, \beta\} - 1)$, system (4.6) has a classical positive least energy solution $(u_{\varepsilon}, v_{\varepsilon})$, and $u_{\varepsilon}, v_{\varepsilon}$ are radially symmetric decreasing.

Proof. It is standard to see that $A_{\varepsilon} > 0$. For $(u,v) \in \mathcal{N}'_{\varepsilon}$ with $u \geq 0, v \geq 0$, we denote by (u^*,v^*) as its Schwartz symmetrization. By the properties of Schwartz symmetrization and $\gamma > 0$, we get that

$$\int_{B(0,1)} \left(|\nabla u^*|^p + |\nabla v^*|^p \right) \le \int_{B(0,1)} \left(\mu_1 |u^*|^{p^* - 2\varepsilon} + \mu_2 |v^*|^{p^* - 2\varepsilon} + \gamma |u^*|^{\alpha - \varepsilon} |v^*|^{\beta - \varepsilon} \right).$$

Obviously, there exists $t^* \in (0,1]$ such that $(\sqrt[p]{t^*}u^*, \sqrt[p]{t^*}v^*) \in \mathcal{N}'_{\varepsilon}$. Therefore,

$$I_{\varepsilon}(\sqrt[p]{t^*}u^*, \sqrt[p]{t^*}v^*) = \left(\frac{1}{p} - \frac{1}{p^* - 2\varepsilon}\right)t^* \int_{B(0,1)} \left(|\nabla u^*|^p + |\nabla v^*|^p\right)$$

$$\leq \frac{p^* - 2\varepsilon - p}{p(p^* - 2\varepsilon)} \int_{B(0,1)} \left(|\nabla u|^p + |\nabla v|^p\right)$$

$$= I_{\varepsilon}(u, v). \tag{4.10}$$

Then, we may choose a minimizing sequence $(u_n,v_n)\in\mathcal{N}_{\varepsilon}'$ of A_{ε} such that $(u_n,v_n)=(u_n^*,v_n^*)$ and $I_{\varepsilon}(u_n,v_n)\to A_{\varepsilon}$ as $n\to\infty$. By (4.10), we see that u_n,v_n are uniformly bounded in $H_0^1\big(B(0,1)\big)$. Passing to a subsequence, we may assume that $u_n \rightharpoonup u_{\varepsilon},v_n\rightharpoonup v_{\varepsilon}$ weakly in $H_0^1\big(B(0,1)\big)$. Since $H_0^1\big(B(0,1)\big)\hookrightarrow L^{p^*-2\varepsilon}\big(B(0,1)\big)$, we deduce that

$$\int_{B(0,1)} \left(\mu_1 |u_{\varepsilon}|^{p^* - 2\varepsilon} + \mu_2 |v_{\varepsilon}|^{p^* - 2\varepsilon} + \gamma |u_{\varepsilon}|^{\alpha - \varepsilon} |v_{\varepsilon}|^{\beta - \varepsilon} \right)$$

$$= \lim_{n \to \infty} \int_{B(0,1)} \left(\mu_1 |u_n|^{p^* - 2\varepsilon} + \mu_2 |v_n|^{p^* - 2\varepsilon} + \gamma |u_n|^{\alpha - \varepsilon} |v_n|^{\beta - \varepsilon} \right)$$

$$= \frac{p(p^* - 2\varepsilon)}{p^* - 2\varepsilon - p} \lim_{n \to \infty} I_{\varepsilon}(u_n, v_n)$$

$$= \frac{p(p^* - 2\varepsilon)}{p^* - 2\varepsilon - p} A_{\varepsilon} > 0,$$

which implies that $(u_{\varepsilon}, v_{\varepsilon}) \neq (0, 0)$. Moreover, $u_{\varepsilon} \geq 0$, $v_{\varepsilon} \geq 0$ are radially symmetric. Noticing that $\int_{B(0,1)} \left(|\nabla u_{\varepsilon}|^p + |\nabla v_{\varepsilon}|^p \right) \leq \lim_{n \to \infty} \int_{B(0,1)} \left(|\nabla u_n|^p + |\nabla v_n|^p \right)$, we get that

$$\int_{B(0,1)} \left(|\nabla u_{\varepsilon}|^p + |\nabla v_{\varepsilon}|^p \right) \leq \int_{B(0,1)} \left(\mu_1 |u_{\varepsilon}|^{p^* - 2\varepsilon} + \mu_2 |v_{\varepsilon}|^{p^* - 2\varepsilon} + \gamma |u_{\varepsilon}|^{\alpha - \varepsilon} |v_{\varepsilon}|^{\beta - \varepsilon} \right).$$

Then, there exists $t_{\varepsilon} \in (0,1]$ such that $(\sqrt[p]{t_{\varepsilon}}u_{\varepsilon}, \sqrt[p]{t_{\varepsilon}}v_{\varepsilon}) \in \mathcal{N}'_{\varepsilon}$, and therefore,

$$\begin{split} A_{\varepsilon} &\leq I_{\varepsilon} \Big(\sqrt[p]{t_{\varepsilon}} u_{\varepsilon}, \sqrt[p]{t_{\varepsilon}} v_{\varepsilon} \Big) \\ &= \Big(\frac{1}{p} - \frac{1}{p^* - 2\varepsilon} \Big) t_{\varepsilon} \int_{B(0,1)} \Big(|\nabla u_{\varepsilon}|^p + |\nabla v_{\varepsilon}|^p \Big) \\ &\leq \lim_{n \to \infty} \frac{p^* - 2\varepsilon - p}{p(p^* - 2\varepsilon)} \int_{B(0,1)} \Big(|\nabla u_n|^p + |\nabla v_n|^p \Big) \\ &= \lim_{n \to \infty} I_{\varepsilon} (u_n, v_n) = A_{\varepsilon}, \end{split}$$

which yields that $t_\varepsilon=1$, $(u_\varepsilon,v_\varepsilon)\in\mathcal{N}_\varepsilon'$, $I(u_\varepsilon,v_\varepsilon)=A_\varepsilon$, and

$$\int_{B(0,1)} \left(|\nabla u_{\varepsilon}|^p + |\nabla v_{\varepsilon}|^p \right) = \lim_{n \to \infty} \int_{B(0,1)} \left(|\nabla u_n|^p + |\nabla v_n|^p \right).$$

That is, $u_n \to u_{\varepsilon}, v_n \to v_{\varepsilon}$ strongly in $H_0^1(B(0,1))$. It follows from the standard minimization theory that there exists a Lagrange multiplier $L \in \mathbb{R}$ satisfying

$$I'_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon}) + LG'_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon}) = 0.$$

Since $I'_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon})(u_{\varepsilon}, v_{\varepsilon}) = G_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon}) = 0$ and

$$G'_{\varepsilon}(u_{\varepsilon}, v_{\varepsilon})(u_{\varepsilon}, v_{\varepsilon})$$

$$= -\left(p^* - 2\varepsilon - p\right) \int_{B(0,1)} \left(\mu_1 |u_{\varepsilon}|^{p^* - 2\varepsilon} + \mu_2 |v_{\varepsilon}|^{p^* - 2\varepsilon} + \gamma |u_{\varepsilon}|^{\alpha - \varepsilon} |v_{\varepsilon}|^{\beta - \varepsilon}\right) < 0,$$

we get that L=0 and so $I'_{\varepsilon}(u_{\varepsilon},v_{\varepsilon})=0$. By $A_{\varepsilon}=I(u_{\varepsilon},v_{\varepsilon})$ and Lemma 4.1, we have $u_{\varepsilon}\not\equiv 0$ and $v_{\varepsilon}\not\equiv 0$. Since $u_{\varepsilon},v_{\varepsilon}\geq 0$ are radially symmetric decreasing, by the regularity theory and the maximum principle, we obtain that $(u_{\varepsilon},v_{\varepsilon})$ is a classical positive least energy solution of (4.6). This completes the proof.

Proof of Theorem 1.3. We claim that

$$A'(R) \equiv A' \text{ for all } R > 0. \tag{4.11}$$

Indeed, assume $R_1 < R_2$. Since $\mathcal{N}'(R_1) \subset \mathcal{N}'(R_2)$, we get that $A'(R_2) \leq A'(R_1)$. On the other hand, for every $(u, v) \in \mathcal{N}'(R_2)$, define

$$(u_1(x), v_1(x)) := \left(\left(\frac{R_2}{R_1} \right)^{\frac{N-p}{p}} u \left(\frac{R_2}{R_1} x \right), \left(\frac{R_2}{R_1} \right)^{\frac{N-p}{p}} v \left(\frac{R_2}{R_1} x \right) \right),$$

then it is easy to see that $(u_1, v_1) \in \mathcal{N}'(R_1)$. Thus, we have

$$A'(R_1) \le I(u_1, v_1) = I(u, v), \ \forall (u, v) \in \mathcal{N}'(R_2),$$

which means that $A'(R_1) \leq A'(R_2)$. Hence, $A'(R_1) = A'(R_2)$. Obviously, $A' \leq A'(R)$. Let $(u_n, v_n) \in \mathcal{N}'$ be a minimizing sequence of A'. We may assume that $u_n, v_n \in H_0^1(B(0, R_n))$ for some $R_n > 0$. Therefore, $(u_n, v_n) \in \mathcal{N}'(R_n)$ and

$$A' = \lim_{n \to \infty} I(u_n, v_n) \ge \lim_{n \to \infty} A'(R_n) = A'(R),$$

which completes the proof of the claim.

Recalling (4.4) and (4.7), for every $(u,v) \in \mathcal{N}'(1)$, there exists $t_{\varepsilon} > 0$ with $t_{\varepsilon} \to 1$ as $\varepsilon \to 0$ such that $\left(\sqrt[p]{t_{\varepsilon}}u, \sqrt[p]{t_{\varepsilon}}v\right) \in \mathcal{N}'_{\varepsilon}$. Then,

$$\limsup_{\varepsilon \to 0} A_{\varepsilon} \leq \limsup_{\varepsilon \to 0} I_{\varepsilon} \left(\sqrt[p]{t_{\varepsilon}} u, \sqrt[p]{t_{\varepsilon}} v \right) = I(u, v), \ \forall (u, v) \in \mathcal{N}'(1).$$

It follows from (4.11) that

$$\limsup_{\varepsilon \to 0} A_{\varepsilon} \le A'(1) = A'. \tag{4.12}$$

According to Proposition 4.1, we may let $(u_{\varepsilon}, v_{\varepsilon})$ be a positive least energy solution of (4.6), which is radially symmetric decreasing. By (4.7) and Sobolev inequality, we have

$$A_{\varepsilon} = \frac{p^* - 2\varepsilon - 2}{2(p^* - 2\varepsilon)} \int_{B(0,1)} \left(|\nabla u_{\varepsilon}|^p + |\nabla v_{\varepsilon}|^p \right) \ge C > 0, \ \forall \varepsilon \in \left(0, \frac{\min\{\alpha, \beta\} - 1}{2} \right], \tag{4.13}$$

where C is independent of ε . Then, it follows from (4.12) that $u_{\varepsilon}, v_{\varepsilon}$ are uniformly bounded in $H^1_0(B(0,1))$. We may assume that $u_{\varepsilon} \rightharpoonup u_0, v_{\varepsilon} \rightharpoonup v_0$, up to a subsequence, weakly in $H^1_0(B(0,1))$. Hence, (u_0,v_0) is a solution of

$$\begin{cases}
-\Delta_{p}u = \mu_{1}|u|^{p^{*}-2}u + \frac{\alpha\gamma}{p^{*}}|u|^{\alpha-2}u|v|^{\beta}, & x \in B(0,1), \\
-\Delta_{p}v = \mu_{2}|v|^{p^{*}-2}v + \frac{\beta\gamma}{p^{*}}|u|^{\alpha}|v|^{\beta-2}v, & x \in B(0,1), \\
u, v \in H_{0}^{1}(B(0,1)).
\end{cases} (4.14)$$

Suppose by contradiction that $||u_{\varepsilon}||_{\infty} + ||v_{\varepsilon}||_{\infty}$ is uniformly bounded. Then, by the Dominated Convergent Theorem, we get that

$$\lim_{\varepsilon \to 0} \int_{B(0,1)} u_{\varepsilon}^{p^* - 2\varepsilon} = \int_{B(0,1)} u_0^{p^*}, \quad \lim_{\varepsilon \to 0} \int_{B(0,1)} v_{\varepsilon}^{p^* - 2\varepsilon} = \int_{B(0,1)} v_0^{p^*},$$

$$\lim_{\varepsilon \to 0} \int_{B(0,1)} u_{\varepsilon}^{\alpha - \varepsilon} v_{\varepsilon}^{\beta - \varepsilon} = \int_{B(0,1)} u_0^{\alpha} v_0^{\beta}.$$

Combining these with $I_{\varepsilon}'(u_{\varepsilon},v_{\varepsilon})=I'(u_0,v_0)$, similarly as the proof of Proposition 4.1, we see that $u_{\varepsilon}\to u_0,v_{\varepsilon}\to v_0$ strongly in $H_0^1\big(B(0,1)\big)$. It follows from (4.13) that $(u_0,v_0)\neq (0,0)$, and moreover, $u_0\geq 0,v_0\geq 0$. Without loss of generality, we may assume that $u_0\neq 0$. By the strong maximum principle, we obtain that $u_0>0$ in B(0,1). By Pohozaev identity, we have a contradiction

$$0 < \int_{\partial B(0,1)} (|\nabla u_0|^p + |\nabla v_0|^p)(x \cdot \nu) d\sigma = 0,$$

where ν is the outward unit normal vector on $\partial B(0,1)$. Hence, $\|u_{\varepsilon}\|_{\infty} + \|v_{\varepsilon}\|_{\infty} \to \infty$, as $\varepsilon \to 0$. Let $K_{\varepsilon} := \max\{u_{\varepsilon}(0), v_{\varepsilon}(0)\}$. Since $u_{\varepsilon}(0) = \max_{B(0,1)} u_{\varepsilon}(x)$ and $v_{\varepsilon}(0) = \max_{B(0,1)} v_{\varepsilon}(x)$, we see that $K_{\varepsilon} \to +\infty$, as $\varepsilon \to 0$. Setting

$$U_{\varepsilon}(x) := K_{\varepsilon}^{-1} u_{\varepsilon}(K_{\varepsilon}^{-a_{\varepsilon}} x), \quad V_{\varepsilon}(x) := K_{\varepsilon}^{-1} v_{\varepsilon}(K_{\varepsilon}^{-a_{\varepsilon}} x), \quad a_{\varepsilon} := \frac{p^* - p - p\varepsilon}{p}.$$

we have

$$\max\{U_{\varepsilon}(0), V_{\varepsilon}(0)\} = \max\left\{\max_{x \in B(0, K_{\varepsilon}^{a_{\varepsilon}})} U_{\varepsilon}(x), \max_{x \in B(0, K_{\varepsilon}^{a_{\varepsilon}})} V_{\varepsilon}(x)\right\} = 1 \quad (4.15)$$

and $(U_{\varepsilon}, V_{\varepsilon})$ is a solution of

$$\begin{cases} -\Delta_p U_{\varepsilon} = \mu_1 U_{\varepsilon}^{p^* - 2\varepsilon - 1} + \frac{(\alpha - \varepsilon)\gamma}{p^* - 2\varepsilon} U_{\varepsilon}^{\alpha - 1 - \varepsilon} V_{\varepsilon}^{\beta - \varepsilon}, & x \in B(0, K_{\varepsilon}^{a_{\varepsilon}}), \\ -\Delta_p V_{\varepsilon} = \mu_2 V_{\varepsilon}^{p^* - 2\varepsilon - 1} + \frac{(\beta - \varepsilon)\gamma}{p^* - 2\varepsilon} U_{\varepsilon}^{\alpha - \varepsilon} V_{\varepsilon}^{\beta - 1 - \varepsilon}, & x \in B(0, K_{\varepsilon}^{a_{\varepsilon}}). \end{cases}$$

Since

$$\begin{split} \int_{\mathbb{R}^N} |\nabla U_\varepsilon(x)|^p \mathrm{d}x &= K_\varepsilon^{a_\varepsilon(N-p)-p} \int_{\mathbb{R}^N} |\nabla u_\varepsilon(y)|^p \mathrm{d}y \\ &= K_\varepsilon^{-(N-p)\varepsilon} \int_{\mathbb{R}^N} |\nabla u_\varepsilon(x)|^p \mathrm{d}x \leq \int_{\mathbb{R}^N} |\nabla u_\varepsilon(x)|^p \mathrm{d}x, \end{split}$$

we see that $\{(U_\varepsilon,V_\varepsilon)\}_{n\geq 1}$ is bounded in D. By elliptic estimates, we get that, up to a subsequence, $(U_\varepsilon,V_\varepsilon)\to (U,V)\in D$ uniformly in every compact subset of \mathbb{R}^N as $\varepsilon\to 0$, and (U,V) is a solution of (1.1), that is, I'(U,V)=0. Moreover, $U\geq 0, V\geq 0$ are radially symmetric decreasing. By (4.15), we have $(U,V)\neq (0,0)$ and so $(U,V)\in \mathcal{N}'$. Thus,

$$A' \leq I(U, V) = \left(\frac{1}{p} - \frac{1}{p^*}\right) \int_{\mathbb{R}^N} \left(|\nabla U|^p + |\nabla V|^p\right) dx$$

$$\leq \liminf_{\varepsilon \to 0} \left(\frac{1}{p} - \frac{1}{p^*}\right) \int_{B(0, K_{\varepsilon}^{a_{\varepsilon}})} \left(|\nabla U_{\varepsilon}|^p + |\nabla V_{\varepsilon}|^p\right) dx$$

$$= \liminf_{\varepsilon \to 0} \left(\frac{1}{p} - \frac{1}{p^* - 2\varepsilon}\right) \int_{B(0, K_{\varepsilon}^{a_{\varepsilon}})} \left(|\nabla U_{\varepsilon}|^p + |\nabla V_{\varepsilon}|^p\right) dx$$

$$\leq \liminf_{\varepsilon \to 0} \left(\frac{1}{p} - \frac{1}{p^* - 2\varepsilon}\right) \int_{B(0, 1)} \left(|\nabla u_{\varepsilon}|^p + |\nabla v_{\varepsilon}|^p\right) dx$$

$$= \liminf_{\varepsilon \to 0} A_{\varepsilon}.$$

It follows from (4.12) that $A' \leq I(U,V) \leq \liminf_{\varepsilon \to 0} A_\varepsilon \leq A'$, which means that I(U,V) = A'. By (4.9), we get that $U \not\equiv 0$ and $V \not\equiv 0$. The strong maximum principle guarantees that U > 0 and V > 0. Since $(U,V) \in \mathcal{N}$, we have $I(U,V) \geq A \geq A'$. Therefore,

$$I(U,V) = A = A',$$
 (4.16)

that is, (U, V) is a positive least energy solution of (1.1) with (H_1) holding, which is radially symmetric decreasing. This completes the proof.

Remark 4.1. If (H_1) and (C_2) hold, then it can be seen from Theorems 1.2 and 1.3 that $(\sqrt[p]{k_0}U_{\varepsilon,y}, \sqrt[p]{l_0}U_{\varepsilon,y})$ is a positive least energy solution of (1.1), where (k_0, l_0) is defined by (1.10) and $U_{\varepsilon,y}$ is defined by (1.4).

Proof of Theorem 1.4. To prove the existence of $(k(\gamma), l(\gamma))$ for $\gamma > 0$ small, recalling (3.2), we denote $F_i(k,l)$ by $F_i(k,l,\gamma)$, i=1,2 in this proof. Let $k(0) = \mu_1^{-\frac{p}{p^*-p}}$ and $l(0) = \mu_2^{-\frac{p}{p^*-p}}$. Then $F_1(k(0), l(0), 0) = F_2(k(0), l(0), 0) = 0$. Obviously, we have

$$\partial_k F_1(k(0), l(0), 0) = \frac{p^* - p}{p} \mu_1 k^{\frac{p^* - 2p}{p}} > 0,$$

$$\partial_l F_1(k(0), l(0), 0) = \partial_k F_2(k(0), l(0), 0) = 0,$$

$$\partial_l F_2(k(0), l(0), 0) = \frac{p^* - p}{p} \mu_2 l^{\frac{p^* - 2p}{p}} > 0,$$

which implies that

$$\det \begin{pmatrix} \partial_k F_1(k(0), l(0), 0) & \partial_l F_1(k(0), l(0), 0) \\ \partial_k F_2(k(0), l(0), 0) & \partial_l F_2(k(0), l(0), 0) \end{pmatrix} > 0.$$

By the implicit function theorem, we see that $k(\gamma), l(\gamma)$ are well defined and of class C^1 in $(-\gamma_2, \gamma_2)$ for some $\gamma_2 > 0$, and $F_1\big(k(\gamma), l(\gamma), \gamma\big) = F_2\big(k(\gamma), l(\gamma), \gamma\big) = 0$. Then, $\big(\sqrt[p]{k(\gamma)}U_{\varepsilon,y}, \sqrt[p]{l(\gamma)}U_{\varepsilon,y}\big)$ is a positive solution of (1.1). Noticing that

$$\lim_{\gamma \to 0} (k(\gamma) + l(\gamma)) = k(0) + l(0) = \mu_1^{-\frac{N-p}{p}} + \mu_2^{-\frac{N-p}{p}},$$

there exists $\gamma_1 \in (0, \gamma_2]$ such that

$$k(\gamma) + l(\gamma) > \min\left\{\mu_1^{-\frac{N-p}{p}}, \ \mu_2^{-\frac{N-p}{p}}\right\}, \ \forall \gamma \in (0, \gamma_1).$$

It follows from (4.9) and (4.16) that

$$I(\sqrt[p]{k(\gamma)}U_{\varepsilon,y},\sqrt[p]{l(\gamma)}U_{\varepsilon,y}) = \frac{1}{N}(k(\gamma) + l(\gamma))S^{\frac{N}{p}}$$

$$> \min\left\{\frac{1}{N}\mu_1^{-\frac{N-p}{p}}S^{\frac{N}{p}}, \frac{1}{N}\mu_2^{-\frac{N-p}{p}}S^{\frac{N}{p}}\right\}$$

$$> A' = A = I(U,V),$$

that is, when (H_1) is satisfied, $(\sqrt[p]{k(\gamma)}U_{\varepsilon,y}, \sqrt[p]{l(\gamma)}U_{\varepsilon,y})$ is a different positive solution of (1.1) with respect to (U,V). This completes the proof.

5 Proof of Theorem 1.5

In this section, we consider the case (H_2) .

Proposition 5.1. Let q, r > 1 satisfy $q + r \le p^*$ and set

$$S_{q,r}(\Omega) = \inf_{\substack{u,v \in W_0^{1,p}(\Omega)\\ u,v \neq 0}} \frac{\int_{\Omega} \left(|\nabla u|^p + |\nabla v|^p \right) dx}{\left(\int_{\Omega} |u|^q |v|^r dx \right)^{\frac{p}{q+r}}},$$

$$S_{q+r}(\Omega) = \inf_{\substack{u \in W_0^{1,p} \\ u \neq 0}} \frac{\int_{\Omega} |\nabla u|^p \, dx}{\left(\int_{\Omega} |u|^{q+r} \, dx\right)^{\frac{p}{q+r}}}.$$

Then

$$S_{q,r}(\Omega) = \frac{q+r}{(q^q r^r)^{\frac{1}{q+r}}} S_{q+r}(\Omega).$$
 (5.1)

Moreover, if u_0 is a minimizer for $S_{q+r}(\Omega)$, then $(q^{\frac{1}{p}}u_0, r^{\frac{1}{p}}u_0)$ is a minimizer for $S_{q,r}(\Omega)$.

Proof. For $u \neq 0$ in $W_0^{1,p}(\Omega)$ and t > 0, taking $v = t^{-\frac{1}{p}}u$ in the first quotient gives

$$S_{q,r}(\Omega) \le \left[t^{\frac{r}{q+r}} + t^{-\frac{q}{q+r}} \right] \frac{\int_{\Omega} |\nabla u|^p \, dx}{\left(\int_{\Omega} |u|^{q+r} \, dx \right)^{\frac{p}{q+r}}},$$

and minimizing the right-hand side over u and t shows that $S_{q,r}(\Omega)$ is less than or equal to the right-hand side of (5.1). For $u,v\neq 0$ in $W_0^{1,p}(\Omega)$, let $w=t^{\frac{1}{p}}v$, where

$$t^{\frac{q+r}{p}} = \frac{\int_{\Omega} |u|^{q+r} dx}{\int_{\Omega} |v|^{q+r} dx}.$$

Then $\int_{\Omega}|u|^{q+r}\,dx=\int_{\Omega}|w|^{q+r}\,dx$ and hence

$$\int_{\Omega} |u|^q |w|^r dx \le \int_{\Omega} |u|^{q+r} dx = \int_{\Omega} |w|^{q+r} dx$$

by the Hölder inequality, so

$$\begin{split} &\frac{\int_{\Omega} \left(|\nabla u|^p + |\nabla v|^p \right) dx}{\left(\int_{\Omega} |u|^q |v|^r dx \right)^{\frac{p}{q+r}}} \\ &= \frac{\int_{\Omega} \left(t^{\frac{r}{q+r}} |\nabla u|^p + t^{-\frac{q}{q+r}} |\nabla w|^p \right) dx}{\left(\int_{\Omega} |u|^q |w|^r dx \right)^{\frac{p}{q+r}}} \\ &\geq t^{\frac{r}{q+r}} \frac{\int_{\Omega} |\nabla u|^p dx}{\left(\int_{\Omega} |u|^{q+r} dx \right)^{\frac{p}{q+r}}} + t^{-\frac{q}{q+r}} \frac{\int_{\Omega} |\nabla w|^p dx}{\left(\int_{\Omega} |w|^{q+r} dx \right)^{\frac{p}{q+r}}} \\ &\geq \left[t^{\frac{r}{q+r}} + t^{-\frac{q}{q+r}} \right] S_{q+r}(\Omega). \end{split}$$

The last expression is greater than or equal to the right-hand side of (5.1), so minimizing over (u, v) gives the reverse inequality.

By Proposition 5.1,

$$S_{a,b}(\Omega) = \frac{p}{(a^a b^b)^{\frac{1}{p}}} \lambda_1(\Omega), \qquad S_{\alpha,\beta} = \frac{p^*}{(\alpha^\alpha \beta^\beta)^{\frac{1}{p^*}}} S,$$
 (5.2)

where $\lambda_1(\Omega) > 0$ is the first Dirichlet eigenvalue of $-\Delta_p$ in Ω . When (H_2) is satisfied, we will obtain a nontrivial nonnegative solution of system (1.1) for $\lambda < S_{a,b}(\Omega)$. Consider the C^1 -functional

$$\Phi(w) = \frac{1}{p} \int_{\Omega} \left[|\nabla u|^p + |\nabla v|^p - \lambda (u^+)^a (v^+)^b \right] dx - \frac{1}{p^*} \int_{\Omega} (u^+)^\alpha (v^+)^\beta dx, \quad w \in W,$$

where $W=D_0^{1,p}(\Omega)\times D_0^{1,p}(\Omega)$ with the norm given by $\|w\|^p=|\nabla u|_p^p+|\nabla v|_p^p$ for $w=(u,v), |\cdot|_p$ denotes the norm in $L^p(\Omega)$, and $u^\pm(x)=\max\{\pm u(x),0\}$ are the positive and negative parts of u, respectively. If w is a critical point of Φ ,

$$0 = \Phi'(w) (u^-, v^-) = \int_{\Omega} (|\nabla u^-|^p + |\nabla v^-|^p) dx$$

and hence $(u^-,v^-)=0$, so $w=(u^+,v^+)$ is a nonnegative weak solution of (1.1) with (H_2) holding.

Proposition 5.2. If $0 \neq c < \frac{S_{\alpha,\beta}^{\frac{N}{N}}}{N}$ and $\lambda < S_{a,b}(\Omega)$, then every $(PS)_c$ sequence of Φ has a subsequence that converges weakly to a nontrivial critical point of Φ .

Proof. Let $\{w_i\}$ be a $(PS)_c$ sequence. Then

$$\Phi(w_j) = \frac{1}{p} \int_{\Omega} \left[|\nabla u_j|^p + |\nabla v_j|^p - \lambda (u_j^+)^a (v_j^+)^b \right] dx - \frac{1}{p^*} \int_{\Omega} (u_j^+)^\alpha (v_j^+)^\beta dx$$

$$= c + o(1)$$

and

$$\Phi'(w_j) w_j = \int_{\Omega} \left[|\nabla u_j|^p + |\nabla v_j|^p - \lambda (u_j^+)^a (v_j^+)^b \right] dx - \int_{\Omega} (u_j^+)^\alpha (v_j^+)^\beta dx$$

$$= o(\|w_j\|),$$
(5.3)

so

$$\frac{1}{N} \int_{\Omega} \left[|\nabla u_j|^p + |\nabla v_j|^p - \lambda (u_j^+)^a (v_j^+)^b \right] dx = c + o(\|w_j\| + 1). \tag{5.4}$$

Since the integral on the left is greater than or equal to $(1-\frac{\lambda}{S_{a,b}(\Omega)})\|w_j\|^p$, $\lambda < S_{a,b}(\Omega)$, and p>1, it follows that $\{w_j\}$ is bounded in W. So a renamed subsequence converges to some w weakly in W, strongly in $L^s(\Omega) \times L^t(\Omega)$ for all $1 \leq s,t < p^*$, and a.e. in Ω . Then $w_j \to w$ strongly in $W_0^{1,q}(\Omega) \times W_0^{1,r}(\Omega)$ for all $1 \leq q,r < p$ by Boccardo and Murat [6, Theorem 2.1], and hence $\nabla w_j \to \nabla w$ a.e. in Ω for a further subsequence. It then follows that w is a critical point of Φ .

Suppose w = 0. Since $\{w_j\}$ is bounded in W and converges to zero in $L^p(\Omega) \times L^p(\Omega)$, (5.3) and the Hölder inequality gives

$$o(1) = \int_{\Omega} (|\nabla u_j|^p + |\nabla v_j|^p) \, dx - \int_{\Omega} (u_j^+)^{\alpha} \, (v_j^+)^{\beta} \, dx \ge ||w_j||^p \left(1 - \frac{||w_j||^{p^* - p}}{S_{\alpha\beta}^{\frac{p^*}{p}}}\right).$$

If $||w_i|| \to 0$, then $\Phi(w_i) \to 0$, contradicting $c \neq 0$, so this implies

$$||w_j||^p \ge S_{\alpha,\beta}^{\frac{N}{p}} + o(1)$$

for a renamed subsequence. Then (5.4) gives

$$c = \frac{\|w_j\|^p}{N} + o(1) \ge \frac{S_{\alpha,\beta}^{\frac{N}{p}}}{N} + o(1),$$

contradicting $c < \frac{S_{\alpha,\beta}^{\frac{N}{p}}}{N}$.

Recalling (1.4) and (1.5), let $\eta:[0,\infty)\to[0,1]$ be a smooth cut-off function such that $\eta(s)=1$ for $s\leq\frac{1}{4}$ and $\eta(s)=0$ for $s\geq\frac{1}{2}$, and set

$$u_{\varepsilon,\rho}(x) = \eta\left(\frac{|x|}{\rho}\right) U_{\varepsilon,0}(x)$$

for $\rho > 0$. We have the following estimates for $u_{\varepsilon,\rho}$ (see [15, Lemma 3.1]):

$$\int_{\mathbb{R}^N} |\nabla u_{\varepsilon,\rho}|^p \, dx \le S^{\frac{N}{p}} + C\left(\frac{\varepsilon}{\rho}\right)^{\frac{N-p}{p-1}},\tag{5.5}$$

$$\int_{\mathbb{R}^{N}} u_{\varepsilon,\rho}^{p} dx \ge \begin{cases} \frac{1}{C} \varepsilon^{p} \log\left(\frac{\rho}{\varepsilon}\right) - C \varepsilon^{p}, & N = p^{2}, \\ \frac{1}{C} \varepsilon^{p} - C \rho^{p} \left(\frac{\varepsilon}{\rho}\right)^{\frac{N-p}{p-1}}, & N > p^{2}, \end{cases}$$
(5.6)

$$\int_{\mathbb{R}^N} u_{\varepsilon,\rho}^{p^*} dx \ge S^{\frac{N}{p}} - C\left(\frac{\varepsilon}{\rho}\right)^{\frac{N}{p-1}},\tag{5.7}$$

where C=C(N,p). We will make use of these estimates in the proof of our last theorem.

Proof of Theorem 1.5. In view of (5.2),

$$\Phi(w) \ge \frac{1}{p} \left(1 - \frac{\lambda}{S_{a,b}(\Omega)} \right) ||w||^p - \frac{1}{p^* S_{\alpha,\beta}^{\frac{p^*}{p}}} ||w||^{p^*},$$

so the origin is a strict local minimizer of Φ . We may assume without loss of generality that $0 \in \Omega$. Fix $\rho > 0$ so small that $\Omega \supset B_{\rho}(0) \supset \operatorname{supp} u_{\varepsilon,\rho}$, and let $w_{\varepsilon} = (\alpha^{\frac{1}{p}} u_{\varepsilon,\rho}, \beta^{\frac{1}{p}} u_{\varepsilon,\rho}) \in W$. Noting that

$$\Phi(Rw_{\varepsilon}) = \frac{R^{p}}{p} \left(p^{*} |\nabla u_{\varepsilon,\rho}|_{p}^{p} - \lambda \alpha^{\frac{a}{p}} \beta^{\frac{b}{p}} |u_{\varepsilon,\rho}|_{p}^{p} \right) - \frac{R^{p^{*}}}{p^{*}} \alpha^{\frac{\alpha}{p}} \beta^{\frac{\beta}{p}} |u_{\varepsilon,\rho}|_{p^{*}}^{p^{*}}$$

$$\to -\infty$$

as $R \to +\infty$, fix $R_0 > 0$ so large that $\Phi(R_0 w_{\varepsilon}) < 0$. Then let

$$\Gamma = \{ \gamma \in C([0,1], W) : \gamma(0) = 0, \, \gamma(1) = R_0 w_{\varepsilon} \}$$

and set

$$c := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \Phi(\gamma(t)) > 0.$$

By the mountain pass theorem, Φ has a $(PS)_c$ sequence $\{w_j\}$. Since $t \mapsto tR_0w_{\varepsilon}$ is a path in Γ ,

$$c \leq \max_{t \in [0,1]} \Phi(tR_0 w_{\varepsilon}) = \frac{1}{N} \left(\frac{p^* |\nabla u_{\varepsilon,\rho}|_p^p - \lambda (\alpha^a \beta^b)^{\frac{1}{p}} |u_{\varepsilon,\rho}|_p^p}{(\alpha^\alpha \beta^\beta)^{\frac{1}{p^*}} |u_{\varepsilon,\rho}|_p^p} \right)^{\frac{N}{p}} =: \frac{1}{N} S_{\varepsilon}^{\frac{N}{p}}. \quad (5.8)$$

By (5.5)–(5.7),

$$S_{\varepsilon} \leq \frac{p^* S^p + \frac{\lambda(\alpha^a \beta^b)^{\frac{1}{p}}}{C} \varepsilon^p \log \varepsilon + O(\varepsilon^p)}{(\alpha^\alpha \beta^\beta)^{\frac{1}{p^*}} \left(S^p + O(\varepsilon^{\frac{p^2}{p-1}})\right)^{\frac{p-1}{p}}}$$

$$= S_{\alpha,\beta} - \left(\frac{\lambda \alpha^{\frac{a}{p} - \frac{\alpha}{p^*}} \beta^{\frac{b}{p} - \frac{\beta}{p^*}}}{CS^{p-1}} |\log \varepsilon| + O(1)\right) \varepsilon^p$$

if $N = p^2$ and

$$S_{\varepsilon} \leq \frac{p^* S^{\frac{N}{p}} - \frac{\lambda(\alpha^a \beta^b)^{\frac{1}{p}}}{C} \varepsilon^p + O(\varepsilon^{\frac{N-p}{p-1}})}{(\alpha^\alpha \beta^\beta)^{\frac{1}{p^*}} \left(S^{\frac{N}{p}} + O(\varepsilon^{\frac{N}{p-1}})\right)^{\frac{N-p}{N}}}$$

$$= S_{\alpha,\beta} - \left(\frac{\lambda \alpha^{\frac{\alpha}{p} - \frac{\alpha}{p^*}} \beta^{\frac{b}{p} - \frac{\beta}{p^*}}}{CS^{\frac{N-p}{p}}} + O(\varepsilon^{\frac{N-p^2}{p-1}})\right) \varepsilon^p$$

if $N>p^2$, so $S_\varepsilon < S_{\alpha,\beta}$ if $\varepsilon>0$ is sufficiently small. So $c<\frac{S_{\alpha,\beta}^{\frac{N}{p}}}{N}$ by (5.8), and hence a subsequence of $\{w_j\}$ converges weakly to a nontrivial critical point of Φ by Proposition 5.2, which then is a nontrivial nonnegative solution of (1.1) with (H_2) holding.

References

- [1] R. A. Adams and J. J. F. Fournier. *Sobolev spaces*, volume 140 of *Pure and Applied Mathematics* (*Amsterdam*). Elsevier/Academic Press, Amsterdam, second edition, 2003.
- [2] S. N. Armstrong and B. Sirakov. Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Comm. Partial Differential Equations, 36(11):2011–2047, 2011.
- [3] C. Azizieh and P. Clément. A priori estimates and continuation methods for positive solutions of p-Laplace equations. J. Differential Equations, 179(1):213–245, 2002.
- [4] M.-F. Bidaut-Véron. Local and global behavior of solutions of quasilinear equations of Emden-Fowler type. Arch. Rational Mech. Anal., 107(4):293–324, 1989.
- [5] L. Boccardo and D. Guedes de Figueiredo. Some remarks on a system of quasilinear elliptic equations. NoDEA Nonlinear Differential Equations Appl., 9(3):309–323, 2002.
- [6] Lucio Boccardo and François Murat. Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. *Nonlinear Anal.*, 19(6):581–597, 1992.
- [7] Y. Bozhkov and E. Mitidieri. Existence of multiple solutions for quasilinear systems via fibering method. J. Differential Equations, 190(1):239–267, 2003.
- [8] J. Byeon, L. Jeanjean, and M. Mariş. Symmetry and monotonicity of least energy solutions. *Calc. Var. Partial Differential Equations*, 36(4):481–492, 2009.
- [9] J. Carmona, S. Cingolani, P. J. Martínez-Aparicio, and G. Vannella. Regularity and Morse index of the solutions to critical quasilinear elliptic systems. *Comm. Partial Differential Equations*, 38(10):1675– 1711, 2013.

- [10] C. Chen. On positive weak solutions for a class of quasilinear elliptic systems. *Nonlinear Anal.*, 62(4):751–756, 2005.
- [11] Z. Chen and W. Zou. Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent. Arch. Ration. Mech. Anal., 205(2):515–551, 2012.
- [12] Z. Chen and W. Zou. Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case. Calc. Var. Partial Differential Equations, 52(1-2):423–467, 2015.
- [13] P. Clément, J. Fleckinger, E. Mitidieri, and F. de Thélin. Existence of positive solutions for a nonvariational quasilinear elliptic system. J. Differential Equations, 166(2):455–477, 2000.
- [14] L. Damascelli, S. Merchán, L. Montoro, and B. Sciunzi. Radial symmetry and applications for a problem involving the $-\Delta_p(\cdot)$ operator and critical nonlinearity in \mathbb{R}^N . Adv. Math., 265:313–335, 2014.
- [15] Marco Degiovanni and Sergio Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. J. Funct. Anal., 256(11):3643–3659, 2009.
- [16] L. Ding and S.-W. Xiao. Multiple positive solutions for a critical quasilinear elliptic system. *Nonlinear Anal.*, 72(5):2592–2607, 2010.
- [17] H. Dong and D. Kim. Global regularity of weak solutions to quasilinear elliptic and parabolic equations with controlled growth. *Comm. Partial Differential Equations*, 36(10):1750–1777, 2011.
- [18] M. Guedda and L. Véron. Local and global properties of solutions of quasilinear elliptic equations. J. Differential Equations, 76(1):159–189, 1988.
- [19] T.-S. Hsu. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlinearities. *Nonlinear Anal.*, 71(7-8):2688–2698, 2009.
- [20] L. Leadi and H. Ramos Quoirin. Principal eigenvalue for quasilinear cooperative elliptic systems. Differential Integral Equations, 24(11-12):1107–1124, 2011.
- [21] B. Sciunzi. Classification of positive $\mathcal{D}^{1,p}(\mathbb{R}^N)$ -solutions to the critical p-Laplace equation in \mathbb{R}^N . *Preprint* (see http://arxiv.org/), 2015.
- [22] K. Perera, P. Pucci, and C. Varga. An existence result for a class of quasilinear elliptic eigenvalue problems in unbounded domains. NoDEA Nonlinear Differential Equations Appl., 21(3):441–451, 2014.
- [23] K. Perera and I. Sim. p-Laplace equations with singular weights. Nonlinear Anal., 99:167-176, 2014.
- [24] Z. Yang. Existence of entire explosive positive radial solutions for a class of quasilinear elliptic systems. J. Math. Anal. Appl., 288(2):768–783, 2003.