泉轻流花暖 (yumemi)

std 长度: 6123 Bytes

首先把前缀和调对,即要求所有前缀和非负。维护一个堆,如果某个时刻 $s_i < 0$,我们就找到堆里面最小的 a_j ,且满足 s_j 是左括号,然后把他改过来;接下来把总和调对,这时需要把〔 ->),这个相当于 i 后面不能超过 $s_i/2$ 个〔 ->)。从小到大依次考虑每个 a_i ,如果能填就填,一定是最优的。

我们发现两个过程几乎是独立的:找到全局 s 的最小值 p,那么第一个过程一定全部发生在 p 之前,第二个过程一定全部发生在 p 之后(因为只要能把 s_p 修改到 $s_p \geq 0$ 显然后面的也 ≥ 0 了;最后的 s 中一定有 $s_p = 0$,所以第二个过程的修改只能在 > p 的位置进行)。

考虑修改一个 a_i ,有什么影响。首先我们考虑第一个过程,发现 s_i 是不会变的,只是修改了哪些 a_i 可能会改变。我们按照 i 去找 j 可能不太好找,考虑提前预处理出来这样走一遍会有 $s_i < 0$ 的 i,称这些点为匹配点,那么相当于每个匹配点 i 会往前匹配一个 j,求权值和最小的完美匹配。

发现此时问题就变成了人员调度,不过他是在链上做,所以 $1\log$ 也很容易,讨论一下最优匹配集合中至多一个点的变化即可。总复杂度 $O((n+q)\log n)$ 。

岁云暮矣待月归 (kofuru)

std 长度: 6367 Bytes

首先考虑 k=0 怎么做。

不难得到一个暴力做法:暴力容斥两条对角线、每行、每列,现在相当于钦定若干位置不能放棋子,假设剩下 c 个位置,方案数就是 $\binom{c}{m}$ 。总复杂度 $O(4^nn^2)$ 。然后可能只枚举行可以做到 $O(2^n)$ 左右。

我们考虑:如果没有对角线的限制,那么实际上如果选了 x 行 y 列不能放棋子,被覆盖的格子个数实际上就是 nx+ny-xy。

如果只有一条对角线选了呢?这个时候被覆盖的格子个数可以这样算:行列覆盖的格子个数 nx+ny-xy,加上对角线覆盖的格子个数 n,再减掉被行列和对角线都盖住的格子个数。第三个我们可以 DP 一下,比如如果钦定的是主对角线,那么就在 DP 的时候每次同时加入第 i 行第 i 列,记录一个 f(i,j,k,l) 表示目前决策到 (i,j),选了 j 行 k 列,目前行列和对角线都盖住的格子个数为 l 的方案数。最后答案就是

$$\sum_{j,k,l} (-1)^{j+k+1} inom{n^2-(nj+nj-jk+n-l)}{m} imes f(n,j,k,l)$$

对一个 m 算答案是 $O(n^3)$ 的,这样就得到一个 $O(n^5)$ 的做法。实际上注意到剩下的格子数不会超过 n^2 ,所以我们对 $s=0\cdots n^2$ 算出剩下 s 个格子的容斥系数和,最后 $O(n^4)$ 求出所有答案即可。

类似地,如果两条对角线都被 ban 了,我们就把第 i,n-i+1 行和 i,n-i+1 两列放到一起考虑,每次考虑这两行两列是否要选中,同样是记录一个 f(i,j,k,l) 的状态。也可以做到 $O(n^4)$ 。

再考虑 k 个特殊格子怎么办,发现只需要状压一下,多记录一个 S 表示目前选中的行、列、对角线,已经覆盖了 S 集合中的特殊格子。最后算没有被覆盖的格子个数时,要额外减掉 k-|S|。这样可以得到一个 $O(2^kn^4)$ 的做法。大概能拿到 80 分。

考虑进一步优化,我们可以先 $O(n^4)$ 对不存在特殊格子的行列 DP 一遍,然后再 $O(2^kk^4)$ 做一遍那些带有特殊格子的行列,最后 $O(n^3k^3)$ 合并两个 DP 状态。

这样总复杂度就是 $O(2^k k^4 + n^4 + n^3 k^3)$ 。可以获得满分。

慕念萦心间 (kemuru)

std 长度: 2879 Bytes

• Subtask 1 的做法

注意到可以把 AB = BA 看作关于 B 的 n^2 个元素的 n^2 条方程,高斯消元求解即可,如果最后自由元的个数是 k,那么答案就是 p^k 。(由此也可以看出答案一定是 p 的幂)

时间复杂度 $O(n^6)$, 期望得分 20。

• Subtask 2,3 的做法

如果 A 是对角矩阵,发现此时约束简化为 $\forall i,j$,有 $A_{i,i}B_{i,j}=A_{j,j}B_{i,j}$,那么如果 $A_{i,i}=A_{j,j}$ 则 $B_{i,j}$ 可以任选;否则必须有 $B_{i,j}=0$ 。由此可以简单计算自由元个数。

到此可以获得30分。

• Subtask 4: $A^n = 0$ 的解法

记 $F=\mathbb{F}_p$,将 A 视同 $V=F^n$ 上的线性映射。 $\ker(T)$ 定义为所有满足 Tv=0 的向量 v 的集合。

我们知道有如下的一系列子空间: $\ker(A) \subseteq \ker(A^2) \subseteq \cdots \subseteq \ker(A^n) = V$ 。

取 $\ker(A)$ 的一组基 $v_{1,1}, \dots, v_{1,s_1}$,接下来扩充为 $\ker(A^2)$ 的基 $v_{1,1}, \dots, v_{1,s_1}, v_{2,1}, \dots, v_{2,s_2}$,依 次类推,最后得到 K 的一组基 $v_{i,j}$,其中 $1 \leq i \leq n, 1 \leq j \leq s_i$, $s_i = \dim \ker(A^i) - \dim \ker(A^{i-1})$ 。

事实上,我们可以把基取的「更好看」一点:有 $v_{i,j} \in \ker(A^i), v_{i,j} \notin \ker(A^{i-1})$,且有 $Av_{i,j} \in \ker(A^{i-1})$ 。于是可以将 A 看作 $\ker(A^i)/\ker(A^{i-1}) \to \ker(A^{i-1})/\ker(A^{i-2})$ 的线性映射(其中 $i \geq 2, A^0 = I$),进一步,这个线性映射还是一个单射。

于是我们得到一些推论:必有 $s_{i-1} \geq s_i$,且我们可以取 $v_{i,1}, \cdots, v_{i,s_i}$ 使得 $Av_{i,j} = v_{i-1,j}$ 对 $1 \leq j \leq s_i$ 成立。

B 由它在所有 $v_{i,j}$ 上的作用唯一确定。那么 B 只需要满足对任意 i,j,有 $ABv_{i,j}=BAv_{i,j}=Bv_{i-1,j}$ 。对于 $i\geq 2$ 的情况,一旦确定 $Bv_{i,j}$ 是什么,那么 $1\leq j\leq s_i$ 的 $Bv_{i-1,j}$ 就唯一确定了,而对于 $s_i< j\leq s_{i-1}$ 的 $Bv_{i-1,j}$ 则可以任意选取;而在 i=1 的情况,这相 当于 $ABv_{1,j}=BAv_{1,j}=0$,即 $Bv_{1,j}\in\ker(A)$ 。

进而有 $Bv_{1,j} = ABv_{2,j} \in \ker(A)$,那么必须要有 $Bv_{2,j} \in \ker(A^2)$ 。综上我们发现,B 可以按照如下的步骤确定:对每个 $1 \leq i \leq n$,以及 $s_{i+1} < j \leq s_i$,我们确定一个 $Bv_{i,j} \in \ker(A^i)$ 。那么其自由度是多少呢?就是

$$\sum_{i=1}^n (s_i-s_{i+1}) imes \sum_{j\leq i} s_j = \sum_{i=1}^n s_i^2$$

于是,我们只需要求出 $s_i = \dim \ker(A^i) - \dim \ker(A^{i-1})$,答案就是 $\sum_{i=1}^n s_i^2$ 。

这里数据范围只开到 100,允许你做 n 次高斯消元暴力求解所有 $\dim \ker(A^i)$ 。

• Subtask 5 的解法

这时我们已经给出了一个 V 的直和分解 $V=\oplus_{i=1}^{e_i}\ker((A-\lambda_i I)^{e_i})$

容易证明 A,B 交换时每个 $\ker((A-\lambda I)^{e_i})$ 也必须是 B-不变子空间,因此在每个直和项内部用 subtask 4 的解法即可。具体地在这个直和项内可以把 A 视为 $A-\lambda I$,那么它就幂零了。

至此可以获得64分,所用的算法实际上只有矩阵乘法和高斯消元(误)

• 满分解法

如果仅仅追求理论上的解法,我们总可以将 \mathbb{F}_p 进行扩域(扩域自然不改变解空间维数),使得最小多项式分裂后做上三角化,就转化为 subtask 5;然而扩域的代价实在太大了。

首先我们考虑如何求解 A 的有理标准型,我们设 A 的最小多项式是 $m_A(x)=\prod p_i^{e_i}$,可以发现这样一个事实:随机选取 $v\in V$,满足 v 相对与 A 的最小多项式 $m_v(x)$ 大概率就是 $m_A(x)$,实际上这个概率至少是 $1-\frac{n}{p}$ 。这是因为首先必有 $m_v(x)\mid m_A(x)$,如果二者不相等那么必须存在 p_i 使得 $m_v(x)\mid m_A(x)/p_i$,也就是说 $v\in\ker(m_A(x)/p_i)$,那么 v 的取值至多是 $n \uparrow n-1$ 维子空间的并,于是取到这其中的概率就 $\leq \frac{n}{p}$ 。

那么我们每次随机选取一个向量 v,注意向量乘矩阵是 $O(n^2)$ 的,我们不断求 v,Av,A^2v,\cdots ,直到有一个 $A^kv\in \mathrm{span}(v,Av,\cdots,A^{k-1}v)$ 为止;此外到这里我们还可以顺便求出 A 的最小多项式。

接下来在商空间 V/F[A]v 中接着随机选取向量做下去即可。我们容易在 $O(\deg m_v(x) \times n^2)$ 的时间复杂度内完成一次分解,那么总的时间复杂度是不超过 $O(n^3)$ 的。

这个过程至多进行 n 次,那么我们就有 $(1-\frac{n}{p})^n \geq 1-\frac{n^2}{p}$ (伯努利不等式) 的概率得到 V 的一个循环分解: $V=F[A]v_1\oplus F[A]v_2\oplus\cdots\oplus F[A]v_s$,且我们还顺便求出了所有 v_i 的最小多项式。

这实际上就给出了 A 的不变因子组 $d_k(x) \mid d_{k-1}(x) \mid \cdots \mid d_1(x)$ 。 考虑如何据此求出 s_i 。

先假装扩域,使所有 $d_i(x)$ 分裂,我们还是只需要对每个特征值 λ 对应的广义特征子空间去考虑。假设 $d_i(x)$ 中 $(x-\lambda)$ 的系数为 c_i ,即 $(x-\lambda)^{c_i}\|d_i(x)$,那么可以发现限制在 $\ker((A-\lambda I)^n)$ 内时,有

$$s_i = \dim \ker(A^i) - \dim \ker(A^{i-1}) = \sum_{j=1}^k [c_j \geq i]$$

那么有 (注意必有 $c_i \geq c_{i+1}$)

$$\sum s_i^2 = \sum_i \sum_{x,y} [c_x \geq i] [c_y \geq i] = \sum_{x,y} \min(c_x,c_y) = \sum_{j=1}^k (2j-1)c_j$$

这就是 λ 对应的解空间维数。

这时候我们发现,并不需要真的求出分裂后的所有多项式,因为上面这个式子是满足可加性的,所以答案其实就是 $\sum_{j=1}^k (2j-1) \deg d_j(x)$ 。综上我们就解决了本题。