Problema A

Arrumar as Palayras

Nome base: arrumar Tempo limite: 1s

Neste problema, você precisará ordenar as palavras de um texto de acordo com a quantidade crescente de caracteres. Ao encontrar palavras com a mesma quantidade de caracteres, você precisará ordená-las conforme a ordem lexicográfica. Para isto, converta todos caracteres para minúsculo.

Observe que na frase poderá ter sinais de pontuação (ponto ou virgula) e, estes, precisam ser desconsiderados.

A entrada possui um texto com uma quantidade N de palavras com C caracteres, tal que (1 <= N <= 5000) e (1 <= C <= 100). No texto haverá apenas vogais, consoantes e símbolos de pontuação (ponto ou virgula). Não havera acentuação nem "ç".

A saída mostrará as palavras, em ordem crescente, pela quantidade de caracteres. As palavras com a mesma quantidade de caracteres são organizadas pela ordem lexicográfica. Os símbolos de ponto ou vírgula são desconsiderados e todos caracteres são apresentados em minúsculo.

Exemplo de Entrada	Exemplo de Saída
Each year, the ICPC regionals begin at local competitions among classmates to determine who may represent their university, in the year.	at in to may the
	the who each icpc year
	year among begin local their
	determine regionals represent
	classmates university competitions

GUFU

Problema B

Buscar pela Ordem

Nome base: buscar Tempo limite: 1s

Implemente um programa para mostrar uma sequência de números em Pré-ordem, In-ordem e Pós-

ENTRADA

A entrada terá uma quantidade Q de números inteiros N, tal que (1 <= Q <= 10^5) e (1 <= N <= 2^31).

SAÍDA

A saída mostrará os números em Pré-ordem, In-ordem e Pós-ordem, sendo cada ordem em uma linha.

Exemplo de Entrada	Exemplo de Saída
93 5 11 15 32 2 4 99 115 110	93 5 2 4 11 15 32 99 115 110 2 4 5 11 15 32 93 99 110 115 4 2 32 15 11 5 110 115 99 93

Exemplo de Entrada	Exemplo de Saída
2 4 99 115 110 93 5 11 15 32	2 4 99 93 5 11 15 32 115 110 2 4 5 11 15 32 93 99 110 115 32 15 11 5 93 110 115 99 4 2

Problema C

Coelho da Páscoa

Nome base: coelho Tempo limite: 1s

Lewis Carroll não vê a hora de chegar a Páscoa! Ele recebeu um crédito C numa chocolataria e gostaria de comprar dois ovos de páscoa. Primeiramente, ele conhece a loja e cria uma lista L com todos os ovos disponíveis. Desta lista, ele gostaria de comprar dois itens que somados, atingem o valor total do crédito recebido. Você consegue ajudá-lo a otimizar sua compra de ovos de Páscoa?

Sua solução deve mostrar dois inteiros, representando as posições dos itens na lista (em ordem crescente) cuja soma de seus precos, é exatamente o valor do crédito C.

ENTRADA

A primeira linha contém o número N ≤ 50, representando a quantidade de casos de teste. Cada caso de teste seguinte terá:

- uma linha com o valor C (5 \leq C \leq 1000), o crédito recebido na chocolataria;
- uma linha contendo o valor I (3 \leq 1 \leq 2000), a quantidade de itens na loja;
- uma linha contendo uma lista de I inteiros. Cada inteiro P (1 \leq P \leq 1000) indica o preco de um ovo de páscoa na loja.

Cada caso de teste terá exatamente uma solução.

SAÍDA

Para cada caso de teste, imprima uma linha contendo "Caso #x: " seguido dos índices dos dois itens cujos preços, somados, representam exatamente o crédito de Jaque. O menor índice deve ser impresso primeiro e "x" representa o caso de teste em questão (começando em 1).

Exemplo de Entrada	Exemplo de Saída
3 100 3 5 75 25 200 7 150 24 79 50 88 345 3 8 8 2 1 9 4 4 56 90 3	Caso #1: 2 3 Caso #2: 1 4 Caso #3: 4 5

Resolução de Problemas - Treinamento para Maratonos de Programação

Página 5 de 12

Problema D

Dicionário

Nome base: dictorario Tempo limite: 15

Tomás tem um sonho, ele deseja produzir seu próprio dicionário. Como ele possui apenas 8 anos, esta não é uma tarefa fácil para ele, uma vez que as palavras que ele conhece são limitadas. Sabendo disso, ele teve uma boa ideia. Pegar textos na Internet e selecionar, destes, as palavras distintas, arranjando-as em ordem alfabética. Porém isto consome muito tempo, e, por isto, ele precisa de sua ajudar para escrever um programa para facilitar a construção do seu dicionário.

Seu programa removerá as repetições e formatará as palavras em minúsculas. Por exemplo, palavras como "Ipameri", "ipameri" ou "IPAMERI" são consideradas a mesma, e a escrita é "ipameri".

ENTRADA

A entrada consiste de um texto, com até 5000 palavras. Cada palavra possui até 100 caracteres. Uma vez que Tomás deseja montar seu dicionário em língua inglesa, a entrada não terá acentuação nas palavras, porém, terá alguns símbolos de pontuação (ponto ou virgula).

SAÍDA

A saída deve fornecer uma lista com as palavras diferentes que aparecem no texto de entrada. Cada palavra deve ser escrita em uma linha e desconsiderar os símbolos de pontuação (ponto ou virgula). As palavras devem ser escritas em minúsculas, e ordenadas em ordem alfabética.

Exemplo de Entrada	Exemplo de Saída
About ICPC	about
	algorithmic
The International Collegiate Programming Contest is	an
an algorithmic programming contest for college	college
students.	collegiate
	contest
	for
	icpc
	international
	is
	programming
*	students
	the

Resolução de Problemas - Treinamento para Maratonas de Programação

Página 6 de 12

Problema E

Caio, o Estudioso!

Nome base: estudioso Tempo limite: 1s

Caio está estudando a ordenação por Inserção. Este é um método simples de ordenação, baseado em inserir, passo a passo, em um subvetor ja ordenado, um novo elemento. Para isso, os elementos do subvetor que sejam maiores do que está sendo inserido são deslocados para a direita.

O algoritmo estudado por Caio usa como sentinela, na posição 0 do vetor, o próprio elemento que está sendo inserido. Desta forma, ao se inserir o elemento na posição i do vetor, até i comparações são necessárias para se ajustar o vetor e encontrar a posição de inserção.

Neste problema, você deve ajudar o Caio a compreender a ordenação por Inserção, contando o total de comparações necessárias para a ordenação de uma dada string (deve incluir comparações com a sentinela).

Vários casos de teste são propostos. A primeira linha da entrada é um inteiro t (1 \leq t \leq 1000) que indica quantos serão os casos de teste. A seguir são descritos t testes. Cada teste consiste de uma linha contendo uma string de até 1000 caracteres, com letras maiúsculas.

Para cada caso de teste imprima o total de comparações para ordenar a string dada, usando o método descrito.

Exemplo de Entrada	Exemplo de Saída
3 ; TESTEDEINSERCAO GFEDCBA G	75 27 0

Apoio, Cristhian Bonitha

Problema F

O Futuro da Humanidade

Nome base: futuro Tempo limite: 1s

Com o advento da computação quântica e várias outras tecnologias, há possibilidade da humanidade prosperar e viver bem melhor e com maior longevidade. Há possibilidade até mesmo dos humanos viverem mais de 1.000 anos.

Pensando nisto, instituições de acompanhamento da população mundial estão preparando seus sistemas, para contar a quantidade de pessoas em cada idade, para poderem preparar as áreas de serviço público para atender as diferentes faixas etárias.

Ajude a preparar estes sistemas, com o desenvolvimento de um programa que informa a quantidade de pessoas no planeta por idade.

A entrada possui uma sequência de números inteiros N (0 <= N <= 3000) correspondentes a idade, em anos.

SAÍDA

A saída possui dois inteiros por linha. O primeiro representa a idade e o segundo a quantidade de pessoas com esta idade. A saída é ordenada crescente pela idade.

Exemplo de Entrada	Exemplo de Saída
21 240 21 21 953	21 3 240 1 953 1

Exemplo de Entrada	Exemplo de Saída
5 3000 100 2000 100 8 0 2500	0 1 5 1 8 1 100 2 2000 1 2500 1 3000 1

Resolução de Problemas - Treinamento para Maratonas de Programação

Problema G

Gostar de Ordenação

Nome base: gostar Tempo limite: 1s

A ordenação ajuda a arrumar várias coisas e, isto, pode ser bom para quem gosta de uma vida organizada.

Por exemplo, sabemos que, procurar coisas em locais desorganizados pode dar um grande trabalho e exigir bastante esforço de uma pessoa, ou computacional.

Para praticar a ordenação, de forma simples, neste problema será fornecida uma sequência de números inteiros e você precisará mostrá-los de forma ordenada crescente e decrescente, sendo uma sequência por linha.

ENTRADA

A entrada terá uma quantidade Q de números inteiros N, tal que (1 <= Q <= 10^5) e (1 <= N <= 2^3 1).

SAÍDA

A saída terá 2 linhas. A primeira será a sequência de números em ordem crescente e a segunda a sequência de números em ordem decrescente.

Exemplo de Entrada	Exemplo de Saída
22 43 15 3 25 23 44 44 26 29 28 32 14	3 14 15 22 23 25 26 28 29 32 43 44 44 44 44 43 32 29 28 26 25 23 22 15 14 3

DUFU

5 4 3

Problema H

A História de J

Nome base: historia Tempo limite: 1s

Há uma história, ou estória, descrita por Josephus, em que ele e seus aliados foram cercados por inimigos, em uma caverna. Então, decidiram morrer no lugar de entregar.

Eles fizeram um círculo e começaram a matar-se, pulando de três em três. Josephus ficou por último e decidiu entregar ao inimigo em vez de suicidar-se. Ele sobreviveu, talvez, por sorte ou por saber programação de computadores.

Neste problema, você precisará descobrir qual seria a posição para sobreviver, dado uma quantidade A de aliados e um valor P do pulo.

ENTRADA

A entrada possui vários casos de teste. Em cada caso de teste haverá 2 inteiros, A (1 <= A <= 20000) e P (1 <= P <= 2000). A representa a quantidade de aliados e P representa o pulo que será dado de um aliado até o próximo que será morto, dentre os aliados que estão no círculo.

SAÍDA

A saida terá um inteiro que representará a posição, dentro do círculo, que será a da pessoa que sobreviveu.

Exer	mplo de Entrada	Exemplo de Saída
(42)		1
62		5
7 3		4

Resolução de Problemas - Treinamento para Maratonas de Programação

Página 10 de 12

GUFU

Problema I

Número Invertido

Nome base: invertido Tempo limite: 1s

Um inteiro maior que 1 é chamado de número primo se seus únicos divisores positivos são 1 e ele mesmo. Porem, voce já tentou inverter a ordem dos digitos de um primo? Por exemplo, 17 seria 71, que também é primo.

Isto acontece com alguns números primos.

Um Omiro (Primo escrito de trás para frente) é um Primo que resulta em outro Primo, diferente do primeiro (não palindromo), quando a ordem dos seus digitos é invertida. Por exemplo, 19 é Primo e não é Omirp, porque 91 não é Primo. E os números 7 e 11 são Primos e não são Omirp, pois a inversão dos digitos seria o próprio número (palindromo).

Neste problema, você tem que decidir se um número N é apenas "Primo", Não-primo ou Omirp.

ENTRADA

A entrada contêm vários casos de teste com valores inteiros N, 1al que (2 <= N <= 2/31).

SAIDA

Para cada número N da entrada, a saída deve conter um dos casos abaixo:

- 1. "N nao primo.", se N não é um número primo.
- 2. "N primo.", se N é primo e N não é Omirp.
- 3. "N omirp.", se N é Omirp.

Exemplo de Entrada	Exemplo de Saída
	17 omirp 18 nao primo 19 primo 179 omirp 199 omirp 7 primo

Problema J

Jogo das Palavras

Nome base: jogo Tempo limite: 1s

Aninha recebeu uma lista de documentos da empresa ICPC. Teoricamente, ela deveria trabalhar preparando os relatórios para J. Boss. Porém, Aninha é uma secretária rebelde e, em vez de trabalhar, ela resolveu brincar com as palavras que estavam nos documentos e, assim, acabou inventando um jogo.

O joguinho que Aninha inventou foi: como concatenar as palavras de um documento e formar uma string com a sequência de termos conforme a menor ordem lexicográfica de cada termo.

Para você que gosta de algoritmos, automatizar esse joguinho é fácil, não é? Vamos ver se você consegue se dar bem no "Jogo das Palavras"!

ENTRADA

A entrada é composta por um inteiro T (1 ≤ T ≤ 100), indicando o número de casos de teste. Para cada caso, existe um inteiro M (1 \le M \le 10), que representa o número de palavras que terá no jogo, seguido de M palavras.

Os caracteres são todos minúsculos e as palavras sempre separadas por espaço. Seja S o tamanho de uma palavra, temos que $1 \le S \le 10000$.

SAÍDA

Para cada caso de teste, imprima uma linha contendo a resposta do jogo.

Exemplo de Entrada	Exemplo de Saída
2 6 (arola hoje cao fiz status studio 5 k duz q re lyraw	caofarofal izhojestatusstudio duzklytawqrc