Nombre: Jose Manuel Martinez del Campo Gonzalez

Curso: Teoria de la Medida Fecha: May 27, 2022

Examen: 1

Problema 1

Sea $A \subset P(X)$ una familia cerrada bajo uniones finitas y diferencias de conjuntos. Sea $(A_n)_{n=1}^{\infty}$ una sucesión en A. Prueba que existe una sucesión $(E_n)_{n=1}^{\infty}$ en A tal que:

- a) $E_n \subset A_n$, $\forall n \in \mathbb{N}$
- b) $E_n \cap E_m = \emptyset$, si $n \neq m$
- c) $\bigcup_{k=1}^{n} E_k = \bigcup_{k=1}^{n} A_k$
- **d**) $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k$

Sea $(E_n)_{n=1}^{\infty}$ una sucesión. Definimos:

$$E_1 = A_1$$

$$E_2 = A_2 \setminus A_1$$

$$E_3 = A_3 \setminus (\bigcup_{k=1}^2 A_k)$$

$$\vdots$$

$$E_n = A_n \setminus (\bigcup_{k=1}^{n-1} A_k)$$

Podemos ver que por construcción $E_n \subset A_n$ para todo $n \in \mathbb{N}$. También, como A es cerrada bajo uniones finitas, dado $n \in \mathbb{N}$, tenemos que $(A_k)_{k=1}^n \subset A$. Luego, como A es cerrada bajo diferencias de conjuntos, $A_n \setminus (\bigcup_{k=1}^{n-1} A_k) = E_n \subset A$.

Para probar b), supongamos s.p.g. que n > m, con n y m en \mathbb{N} . Entonces:

For comp
$$A_m \subset \bigcup_{k=1}^{n-1} A_k$$
 entonces $E_n \cap E_m = [A_n \setminus (\bigcup_{k=1}^{n-1} A_k)] \cap [A_m \setminus (\bigcup_{k=1}^{m-1} A_k)] \subset [A_n \setminus (\bigcup_{k=1}^{n-1} A_k)] \cap A_m$.

Para probar c), si $n \ge 1$ tenemos que $\bigcup_{k=1}^n E_k = \bigcup_{k=1}^n \left[A_k \setminus (\bigcup_{m=1}^{k-1} A_m) \right] = \bigcup_{k=1}^n A_k$ lo cual es fácil ver si se hace la operación de forma iterativa.

Por último, para probar d), como tenemos que $\forall n$ existe m > n tal que $E_m = A_m$ y que $\bigcup_{k=1}^{\infty} A_k \subset A \text{ entonces } \bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k.$

Problema 2

Prueba por inducción que si n intervalos abiertos $I_1, I_2, ..., I_n$ cubren a un intervalo compacto J entonces:

$$\ell(J) < \sum_{k=1}^{n} \ell(I_k)$$

Caso Base.

Sea n = 1 y $J \subset \mathbb{R}$ compacto. Entonces J = [a, b] con a < b.

Luego $\ell(J) = \ell([a,b]) = b - a$

Si I_1 es un intervalo abierto que cubre a J, entonces $I_1 = (a - \epsilon_1, b + \epsilon_2)$ para algún $\epsilon_1, \epsilon_2 > 0$.

Entonces $\ell(I_1) = b - a + \epsilon_1 + \epsilon_2 > b - a = \ell(J)$.

Hipótesis de Inducción.

Supongamos que $\ell(J) < \sum_{k=1}^{n-1} \ell(I_k)$. Por demostrar $\ell(J) < \sum_{k=1}^{n} \ell(I_k)$

Caso Inductivo .

Sean $(I_k)_{k=1}^n$ una sucesión de intervalos abiertos tal que $J \subset \bigcup_{k=1}^n I_k$. Sea J_1 un compacto tal que $J \subset (I_k)_{k=1}^{n-1}$ y tal que $J \setminus J_1 = J_2 \subset I_n$.

Por el caso base sabemos que $\ell(J_2) < \ell(I_n)$.

Por la hipótesis de inducción sabemos que $\ell(J_1) < \sum_{k=1}^{n-1} \ell(I_k)$. Como J_1 y J_2 son ajenos.

$$\Rightarrow \ell(J_2) + \ell(J_1) = \ell(J) < \sum_{k=1}^{n-1} \ell(I_k) + \ell(I_n) = \sum_{k=1}^{n} \ell(I_k)$$

$$\ell(J) < \sum_{k=1}^{n} \ell(I_k)$$

Problema 3

Sea $r \in \mathbb{R}$. Prueba que $m^*(rE) = |r|m^*(E)$, $\forall E \subset \mathbb{R}$.

Si $E = \emptyset$, entonces la prueba es trivial pues rE = E y $m^*(E) = 0$

Si $E \neq \emptyset$, entonces:

1. Si
$$r \ge 0$$

 $m^*(rE) = \inf\{\sum_{k=1}^{\infty} \ell(rI_k) | (rI_k)_{k=1}^{\infty} \text{ cubren a } rE\}$
 $= \inf\{\sum_{k=1}^{\infty} r\ell(I_k) | (I_k)_{k=1}^{\infty} \text{ cubren a } E\}$
 $= \inf\{r\sum_{k=1}^{\infty} \ell(I_k) | (I_k)_{k=1}^{\infty} \text{ cubren a } E\}$
 $= r\inf\{\sum_{k=1}^{\infty} \ell(I_k) | (I_k)_{k=1}^{\infty} \text{ cubren a } E\}$
 $= |r|m^*(E)$

2. Si
$$r < 0$$

Si
$$r < 0$$

 $m^*(rE) = \inf \{ \sum_{k=1}^{\infty} \ell(rI_k) | (rI_k)_{k=1}^{\infty} \text{ cubren a } rE \}$
 $= \inf \{ \sum_{k=1}^{\infty} r\ell(I_k) | (I_k)_{k=1}^{\infty} \text{ cubren a } E \}$
 $= \inf \{ r \sum_{k=1}^{\infty} \ell(I_k) | (I_k)_{k=1}^{\infty} \text{ cubren a } E \}$
 $= r\sup \{ \sum_{k=1}^{\infty} \ell(I_k) | (I_k)_{k=1}^{\infty} \text{ cubren a } E \}$
 $= -|r|\sup \{ \sum_{k=1}^{\infty} \ell(I_k) | (I_k)_{k=1}^{\infty} \text{ cubren a } E \}$
 $= |r|\inf \{ \sum_{k=1}^{\infty} \ell(I_k) | (I_k)_{k=1}^{\infty} \text{ cubren a } E \}$
 $= |r|m^*(E)$

$$\therefore m^*(rE) = |r|m^*(E)$$

Problema 4

Sea $f : \mathbb{R} \to \mathbb{R}$ una función Lipschitz con constante c > 0, es decir, para todos x, y en \mathbb{R} :

$$|f(x) - f(y)| \le c|x - y|$$
.

Prueba que $m^*(f(E)) \leq cm^*(E)$, $\forall E \subset \mathbb{R}$.

Primero, supongamos que la medida de E es infinita. Entonces, se cumple la desigualdad. Ahora, suponemos que $m^*(E) < \infty$. Como $E \subset \mathbb{R}$, $\exists (I_n)_{n=1}^{\infty}$ sucesión de intervalos abiertos y ajenos en \mathbb{R} tal que $E \subset \bigcup_{n=1}^{\infty} I_n$. También, tomamos cada $I_n = (a_n, b_n)$ de tal manera que para alguna $\epsilon > 0$ se cumple que $\sum_{n=1}^{\infty} m^*(I_n) < m^*(E) + \epsilon$.

Como $E \subseteq \bigcup_{n=1}^{\infty} I_n$ tenemos que $f(E) \subseteq f(\bigcup_{n=1}^{\infty} I_n) = \bigcup_{n=1}^{\infty} f(I_n)$. Por otro lado, tenemos que por la continuidad de f, para toda $n \exists \alpha_n y \beta_n$ en el intervalo $[a_n, b_n]$ tales que $f((a, b)) \subseteq f([a, b]) = [f(\alpha_n), f(\beta_n)]$. Entonces:

$$m^{*}(f(I_{n})) = m^{*}(f((a_{n}, b_{n})))$$

$$\leq m^{*}([f(\alpha_{n}), f(\beta_{n})])$$

$$= |f(\alpha_{n}) - f(\beta_{n})|$$

$$\leq c|\alpha_{n} - \beta_{n}|$$

$$\leq c|a_{n} - b_{n}|$$

$$= cm^{*}(I_{n})$$

$$(1)$$

Luego:

$$m^{*}(f(E)) \leq m^{*} \left(\cup_{n=1}^{\infty} f(I_{n}) \right)$$

$$\leq \sum_{n=1}^{\infty} m^{*}(f(I_{n}))$$

$$\leq c \sum_{n=1}^{\infty} m^{*}(I_{n})$$

$$< c \left(m^{*}(E) + \epsilon \right)$$

$$(2)$$

Como elegimos ϵ de manera arbitraria, entonces tenemos que $m^*(f(E)) \leq cm^*(E)$

Problema 5

Sea $E \subset \mathbb{R}$ tal que $0 < m^*(E) < \infty$ y sea $0 < \delta < 1$. Prueba que existe un intervalo abierto I tal que $m^*(E \cap I) > \delta m^*(I)$.

Sea $\epsilon > 0$ y $(I_n)_{n=1}^{\infty}$ una sucesión de intervalos abiertos y ajenos tal que $E \subset \bigcup_{n=1}^{\infty} I_n$. Entonces, $\sum_{n=1}^{\infty} \ell(I_n) = \sum_{n=1}^{\infty} m^*(I_n) < m^*(E) + \epsilon$.

$$\Rightarrow m^*(E) = m^*(E \cap [\cup_{n=1}^{\infty} I_n]) = m^*(\cup_{n=1}^{\infty} [E \cap I_n]) = \sum_{n=1}^{\infty} m^*(E \cap I_n)$$

La última igualdad se da por que los intervalos I_n los escogimos ajenos entre sí. Por lo que $[E \cap I_n] \cap [E \cap I_m] = \emptyset$ si $n \neq m$.

Ahora, supongamos que $m^*(E \cap I_n) \leq \delta m^*(I_n)$ para toda $n \in \mathbb{N}$ y procedemos por contradicción.

$$\Rightarrow m^*(E) \le \sum_{n=1}^{\infty} \delta m^*(I_n) = \delta \sum_{n=1}^{\infty} m^*(I_n) \le \delta (m^*(E) + \epsilon).$$

Como tomamos a ϵ de manera arbitraria, entonces $m^*(E) \leq \delta m^*(E)$ y como $0 < \delta < 1$

$$\Rightarrow m^*(E) < m^*(E) \perp$$

- $\therefore \exists n \text{ tal que } m^*(E \cap I_n) \leq \delta m^*(I_n)$
- $\therefore \exists I \text{ abierto tal que } m^*(E \cap I) \leq \delta m^*(I)$

Problema 6

a) Prueba que si E, F son subconjuntos de \mathbb{R} , entonces $m^*(E \cup F) \leq m^*(E) + m^*(F)$.

Primero, supongamos que $m^*(E) = \infty$ ó $m^*(F) = \infty$. Entonces, la desigualdad se cumple. Si, por otro lado, $m^*(E) = \emptyset$ ó $m^*(F) = \emptyset$, entonces la igualdad es trivial. Ahora, supongamos que $m^*(E) < \infty$ y $m^*(F) < \infty$ y que F, E son no vacíos. Sea $\epsilon > 0$ y sean $(I_n)_{n=1}^{\infty}$ y $(J_n)_{n=1}^{\infty}$ sucesiones de intervalos abiertos y ajenos en \mathbb{R} tal que:

$$E \subset \bigcup_{n=1}^{\infty} I_n \text{ y } \sum_{n=1}^{\infty} \ell(I_n) < m^*(E) + \epsilon$$

$$F \subset \bigcup_{n=1}^{\infty} J_n \text{ y } \sum_{n=1}^{\infty} \ell(J_n) < m^*(F) + \epsilon$$

Entonces, tenemos que:

$$m^*(E \cup F) \le \sum_{n=1}^{\infty} \ell(J_n) + \ell(I_n)$$

$$\le \sum_{n=1}^{\infty} \ell(J_n) + \sum_{n=1}^{\infty} \ell(I_n)$$

$$< m^*(E) + m^*(F) + 2\epsilon$$
(3)

Como elegimos a ϵ de manera arbitraria, entonces $m^*(E \cup F) \leq m^*(E) + m^*(F)$.

b) Supón que E y F son subconjuntos de \mathbb{R} compactos y ajenos. Prueba que

$$m^*(E \cup F) = m^*(E) + m^*(F)$$

Por demostrar que $m^*(E) + m^*(F) \le m^*(E \cup F)$. Supongamos que $m^*(E) = \emptyset$ ó $m^*(F) = \emptyset$, entonces la igualdad es trivial. Sean F, E son no vacíos. Sea $(Q_n)_{n=1}^{\infty}$ una sucesion de intervalos abiertos que cubre $E \cup F$. Por el inciso 5 de la tarea 2, tomamos a todo intervalo Q_n de longitud menor a δ , con $dist(E,F) > \delta > 0$. Sea $\epsilon > 0$, entonces $\sum_{n=1}^{\infty} \ell(Q_n) < m^*(E \cup F) + \epsilon$.

Sean $(I_n)_{n=1}^{\infty}$ y $(J_n)_{n=1}^{\infty}$ sucesiones de intervalos abiertos en \mathbb{R} . Definimos para todo n $I_n = Q_{i_n}$ como el n-esimo elemento de la secesion $(Q_n)_{n=1}^{\infty}$ tal que $I_n \cap E \neq \emptyset$, y como $\ell(I_n) < dist(E,F)$ entonces $I_n \cap F = \emptyset$. Analogamente, definimos para todo n $J_n = Q_{j_n}$ como el n-esimo elemento de la secesion $(Q_n)_{n=1}^{\infty}$ tal que $J_n \cap F \neq \emptyset$, y como $\ell(J_n) < dist(E,F)$ entonces $j_n \cap E = \emptyset$. Entonces tenemos que :

$$E \subset \bigcup_{n=1}^{\infty} I_n$$

$$F \subset \bigcup_{n=1}^{\infty} J_n$$

$$\left(\bigcup_{n=1}^{\infty} I_n\right) \cup \left(\bigcup_{n=1}^{\infty} J_n\right) = \bigcup_{n=1}^{\infty} Q_n\right)$$

 \Rightarrow

$$m^*(E) + m^*(F) \le \sum_{n=1}^{\infty} \ell(I_n) + \sum_{n=1}^{\infty} \ell(J_n)$$

$$= \sum_{n=1}^{\infty} \ell(Q_n)$$

$$< m^*(E \cup F) + \epsilon$$

$$(4)$$

Como elegimos a ϵ de manera arbitraria, entonces $m^*(E) + m^*(F) \leq m^*(E \cup F)$.

$$\therefore m^*(E) + m^*(F) = m^*(E \cup F)$$