関数・論理型プログラミング実験 ML演習第6回

松田 一孝 TA: 武田広太郎 寺尾拓

今日の話

- ο 5/01:簡単な評価器
 - ◆ 字句解析・構文解析. 簡単な評価器
- ο 5/13: 関数型言語の評価器
 - ◆ (高階) 関数定義・呼出機構の作成
- o 5/20:型システム
 - ◆ ML風の型推論の実装
- ο 5/27:その他拡張
 - ◆ 評価規則等

今日の内容

- (単純型の)型推論アルゴリズムW
- 多相型の型推論→ let多相 (ML多相)

今日の参考資料

- Benjamin C. Pierce: Types and Programming Languages, The MIT Press, Cambridge, MA, 2002.
 - ◆ 特に, 22章 Type Reconstruction

型システム

型システム

- o 式を「型」で分類することで, つづうムが実行時に不正な動作を しないことを検査・保証する仕組み (今回は)評価結果の値の分類 *整数,真偽値,関数,etc.
- ○「式が与えられた型を持つか」の 検査を「型検査」と呼ぶ

MI言語の型システム

- o 静的 (static)
 - ◆ 型検査は実行前に行われる → 実行時オーバへッドがない
- o 健全 (sound)
 - ◆ 型検査が成功したら, そのプログラムは実行時に型エラーを 生じない
- 型推論 (type inference)型を明示する必要なし

素朴な試み

- o 例について見てみる
 - ◆ 定数・組み込み関数
 - ◆ letと変数
 - ◆ 関数適用と抽象

定数+組み込み関数の場合

- o 予め型が決っている
 - **•** 1
 - * 1はint型の定数. なのでこの式全体はint型
 - ◆ true
 - * trueはbool型の定数. なのでこの式全体はbool型
 - ◆ not
 - * notはbool -> bool型の定数. なのでこの式全体はbool -> bool型

letの場合

let x = 1 in x + 2
 ↑ 1はint型, なので変数xはint型.
 xをint型とすると, x + 2 はint型.
 よって, let全体もint型

型環境:変数から型へのマッピング

cf. 評価時の環境

変数の型推論

- o 型環境をルックアップ
 - ◆ {x=int}の下で, xの型はint
 - ◆ {x=bool} の下で, xの型はbool ◆ {x=bool} の下で, yはエラー

関数の適用

- o not true
 - ◆ trueはbool型.
 notはbool→bool型.
 なので全体はbool型.
- o is_zero 1
 - ◆ 1はint型. is_zeroは int → bool型. なので全体はbool型.

クイズ

o fun x -> x + 1の型は?

問題点:関数抽象

- fun $x \rightarrow x + 1$
 - ◆ {x=???}という型環境の下で, x+1を型推論するのがよさそう?
 - ◆ でも,この時点では???がわからない
 - ◆ どうする?

解決

- o 型変数の導入と推論の変更
 - ◆ 今回紹介する手法
 - * 式を走査し、型と型の制約を返す
 - o 型変数を適宜導入
 - o 例:fun x -> x + 1
 - o xの型は型変数α
 - 式全体の結果:型α->intと制約α=int
 - * 制約を解き、式の具体的な型を求める

型推論の流れ

- o ステップ1:制約の収集
 - ◆ 式の型とその型の満たす制約を 式の構造にそって求める
 - * 例:(fun x -> x + 1)に対し, α→int と {α=int} を得る
- οステップ2:制約の解決
 - ◆ 制約を解き,式の具体的な型を得る
 - * 例: $\{\alpha = int\}$ を解くと, $[\alpha \mapsto int]$. これを $\alpha \rightarrow int$ に適用し $int \rightarrow int$

ステップ1:制約の収集

- o 式の構造に従い定義
 - ◆ 定数
 - ◆ 変数
 - ◆ let
 - ◆ if
 - ◆ 関数抽象
 - ◆ 関数適用
 - ◆ 再帰関数

制約の収集:定数

- o 予め決まった型, 空の制約
 - **◆** 1
 - * int型, 制約{}
 - ◆ true
 - * bool型, 制約{}
 - ◆ not
 - * bool -> bool型,制約{}

制約の収集:変数

- o 型環境をルックアップ, 空の制約
 - ◆ 型環境 {x=int} 下のx
 - * 型int, 制約{}
 - ◆ 型環境 {x=bool} 下のx
 - * 型bool, 制約{}
 - ◆ 型環境 {x=bool} 下のy
 - * エラー
 - o いわゆる Error: Unbound value y

制約の収集: let式

- let $x = e_1$ in e_2
 - ◆ 現在の型環境でe1の型と制約を求める (それぞれt1とC1とする)
 - ◆ 現在の型環境にxとt1の対応を追加し, e2の型と制約を求める (それぞれt2とC2とする)
 - ◆ let式全体の型と制約は t2とC1 U C2

制約の収集:if式

- o if e1 then e2 else e3
 - → i=1,2,3について
 現在の型環境でeiの型と制約を求める (それぞれtiとCiとする)
 - ◆ if式全体の型と制約は t2と{t1=bool, t2=t3} UC1 UC2 UC3
 - 注意: t₁がboolでないからといって この時点ではエラーを生じてはダメ
 fun x → if x then ... else ...

制約の収集:関数抽象

- fun $x \rightarrow e$
 - ◆ 新たな型変数αを導入
 - ◆ 現在の型環境にxとαの対応を追加した 型環境のもとでeの型と制約を求める (それぞれtとCとする)
 - ◆ fun式全体の型と制約は、それぞれ α → t と C

制約の収集: 関数適用

- o e₁ e₂
 - ↓ i=1,2について
 現在の型環境でeiの型と制約を求める (それぞれtiとCiとする)
 - ◆ 新たな型変数αを導入する
 - ◆ 関数適用式全体の型と制約は α と {t₁=t₂→α} UC₁ UC₂
 - ◆ 注:t1がt2 → tの形か調べるのはNG * fun f -> f 1

例

fun x -> not x

o {x=α}を型環境に追加 * notの型はbool→bool, 制約{} * ×の型はα,制約{} ◆ not xの型はβ, 制約 $\{(bool \rightarrow bool) = (\alpha \rightarrow \beta)\}$ • fun $x \rightarrow not x0$ 型は $\alpha \rightarrow \beta$ 制約 $\{(bool \rightarrow bool) = (\alpha \rightarrow \beta)\}$

制約の収集:再帰関数

- let rec f $x = e_1$ in e_2
 - ◆ 新たな型変数αとβを導入
 - 申 現在の型環境にfとα→βの対応を追加した型環境をΓとする
 - ◆ Γにxとαの対応を追加した型環境の下でe1の型と制約を求める (それぞれt1とC1とする)
 - ◆ Гの下でe2の型と制約を求める (それぞれt2とC2とする)
 - 式全体の型と制約はt2 と {t₁=β} UC₁ UC₂

例

```
let rec fact n =
  if n=0 then 1 else n*fact (n-1)
in fact 3
```

factをα→βとする
 nをαとすると, 上のifの部分の型はint, 制約は

 $\{\alpha = \text{int}, \alpha \rightarrow \beta = \text{int} \rightarrow \gamma, \gamma = \text{int}\}$

o fact 3の型は δ , 制約は $\{\alpha = int, \alpha \rightarrow \beta = int \rightarrow \gamma, \gamma = int, \alpha \rightarrow \beta = int \rightarrow \delta\}$

ステップ2:制約の解決

- 前述のアルゴリズムで求まった 型と制約に対し、制約を解くことで 具体的な型を求める
 - ◆ 例
 - * fun x -> not x に対し 型 $\alpha \rightarrow \beta$ と 制約{(bool→bool)=($\alpha \rightarrow \beta$)}が収集
 - 制約を解くと
 α = β = boolとなるので
 fun x → not xの型は
 bool → bool

单一化 (Unification)

- 与えられた等式制約を満たすような 変数の置換え方(代入)を求めること
 - ◆ ここでの入出力
 - * 入力: 型に関する等式の集合
 - 型変数から型へのマッピング(代入)
 - 代入 σ に対し、σ (x)=xでない要素を並べ、 [x1+σ (x1), ···, xn+σ (xn)] と書く
 - ο 型tに出現する全ての型変数αをσ(α)で置き換えて得られる型をtσと書く

単一化の例

- unify { $\alpha = bool$ } = [$\alpha \mapsto bool$]
- unify $\{(bool->bool)=(\alpha \rightarrow \beta)\}$ = $[\alpha \mapsto bool, \beta \mapsto bool]$
- unify { bool = α→β } は失敗
 → 単一化不可
 型エラー

単一化アルゴリズム

```
\{unify \{\} = \{\}\}
unify ({s=s} \cup C) = unify C
unify (\{s \rightarrow t = s' \rightarrow t'\} \cup C)
= unify (\{s=s', t=t'\} \cup C)
unify (\{\alpha = t\} \cup C) = \text{unify} (\{t = \alpha\} \cup C)
 = unify (C[\alpha \mapsto t]) \circ [\alpha \mapsto t]
   ◆ ただしtはαを含まない
```

- ・上記以外は失敗
- o。は代入の合成(fog)x = f (g x)
 - ◆ 注意: $[\alpha \mapsto t]$ $\beta = \beta$ (if $\alpha \neq \beta$)

例

```
• unify \{(\alpha \rightarrow \beta) = (bool \rightarrow \gamma)\}
    = unify {\alpha =bool, \beta = \gamma}
    = unify \{\beta = \gamma\} \circ [\alpha \mapsto bool]
    = \lceil \beta \mapsto \gamma \rceil \circ \lceil \alpha \mapsto bool \rceil = [\alpha \mapsto bool, \beta \mapsto \gamma]
• unify \{(\alpha \rightarrow \beta) = (bool \rightarrow \alpha)\}
    = unify {\alpha =bool, \beta = \alpha}
    = unify \{\beta = bool\} \circ [\alpha \mapsto bool]
     = [\beta \mapsto bool] \circ [\alpha \mapsto bool] = [\alpha \mapsto bool, \beta \mapsto bool]
• unify \{(\alpha \rightarrow \beta) = (\beta \rightarrow bool)\}
    = unify \{\alpha = \beta, \beta = bool\}
    = unify \{\beta = bool\} \circ [\alpha \mapsto \beta]
    = [\beta \mapsto bool] \circ [\alpha \mapsto \beta] = [\alpha \mapsto bool, \beta \mapsto bool]
```

まとめ

- o ステップ1:制約の収集
 - ◆ 式の型とその型の満たす制約を 式の構造にそって求める
 - * 例:(fun x -> x + 1)に対し, α→int と {α=int} を得る
- οステップ2:制約の解決
 - ◆ 制約を解き、式の具体的な型を得る
 - * 例: $\{\alpha = \text{int}\}$ を解くと, $[\alpha \mapsto \text{int}]$. これを $\alpha \to \text{int}$ に適用し $\text{int} \to \text{int}$

let多相

ここまで推論の問題点

- o OCamlのような多相関数を表現不可
 - fun x -> xの推論結果はα → αになるのだが…
 - * このαは未決定な単相型 (camlでいう'_a)
- うまくいかない例:
 let id = fun x -> x in
 (id 0, id true)
 α=int

 α=bool

解決案

- o 型スキームの導入
 - 型スキーム ::= ∀型変数の集合.型
 - ◆ 「式eが∀x1…xn. tを持つ」:
 eは, 任意の型s1, …, snについて,
 t[x1+s1, …, xn+sn]という型を持つ
 - * 型変数を型スキームに置き換えることは 許されていないことに注意
 - o cf. impredicative polymorphism

問題点の解決

- o idが $\forall \alpha. \alpha \rightarrow \alpha$ を持つとする
 - ◆ それぞれの使用場所毎に, αを新たな型変数に置き換えてよい

let多相

- o let毎に型を型スキームに一般化する
 - let id = fun \times -> \times in ...
- o そして変数の使用毎に型スキームを型 に置き換える
 - ◆ (id 0, id true)
 - ◆ それぞれのidの出現で、 id: $\forall \alpha. \alpha \rightarrow \alpha$ を id: $\beta \rightarrow \beta$, id: $\gamma \rightarrow \gamma$ に置き換える

制約の収集(改): let

- let $x = e_1$ in e_2
 - ◆ 現在の型環境Γでe1の型と制約を求める (それぞれt1とC1とする)

 - $\Delta = \Gamma \sigma$
 - * $(\forall \alpha. \alpha \rightarrow \alpha)[\alpha \mapsto int] = \forall \alpha. \alpha \rightarrow \alpha$ に注意
 - ◆ 型環境 △ U {x= ∀P. s₁} の下で, e₂の型と制約を求める
 - * Pは「s1に出現する型変数で△に含まれないもの」
 - ◆ この結果が全体の型と制約となる

制約の収集(改):変数

- 0 X
 - ◆ 型環境にxと∀P. tの対応が含まれていたら, xの型と制約は, sと{}* ただし, sはt中のそれぞれの型変数のう
 - * ただし、sはt中のそれぞれの型変数のうち、Pに含まれるものを別の新しい型変数に置き換えたもの

let多相の制限

- o 以下は型推論できない (fun f -> (f 0, f true))
 - ◆ 持ちうる型
 - * $(\forall \alpha . \alpha \rightarrow \alpha) \rightarrow (int, bool)$
 - * $\forall \beta. (\forall \alpha. \alpha \rightarrow \beta) \rightarrow (\beta, \beta)$
 - * …
 - ◆ rank-2多相が必要
 - * ランク:∀にいたるまでに→の左の子を 高々何個たどるか?

letと関数適用・抽象

- o let x = e1 in e2 と (fun x -> e2) e1 の違い
 - e₁ ≡ fun y -> y
 e₂ ≡ (x 1, x true)
 とすると
 - * 前者はlet多相で型が付く
 - * 後者はrank-2多相が必要

第6回レボート課題 締切 6/3 13:00 (JST)

- o 前回の課題のインタプリタが扱う値に 応じて、その型を表す型tyを定義せよ
 - ◆ 整数型, 真偽値型, 関数型に加えて型 変数も含めること
 - * ty ::= Int | Bool | ty \rightarrow ty | α
 - ◆ (その後の問の)必要に応じてリスト や組の型も定義すること

- 型代入σと型tを受けとり、 型tσを返す関数ty_substを 定義せよ
 - ◆ ty_subst:
 型代入の型 -> ty -> ty
 - * 型代入の型は (型変数の型*型を表す型) listでよい
 - * 以下の関数を使う?
 - ・ ty_subst_one: 型変数の型 * ty →> ty →> ty

- o 単一化を行う関数ty_unifyを実装せよ
 - ty_unify:型制約の型 → 型代入の型
 - * 型制約の型
 - o tyとtyの組のリストでよい

- 前回の課題のインタプリタを拡張し、 多相型なしの型推論を実装せよ
 - ◆ 以下の関数を実装することになる?
 - * gather_constraints:
 型環境の型 -> expr -> ty*型制約の型
 - * infer_expr: 型環境の型 -> expr -> ty
 - * infer_cmd: 型環境の型 -> cmd -> ty*型環境の型

注意

- 再掲:資料で「新たな型変数」と書いてあるところでは、その度ごとに別の型変数を導入するように
 - ◆ 副作用を使うと便利か
 - * new_ty_var: unit -> 型変数の型
- ο スコープにも注意
 - ◆ (fun x y -> x + (fun x -> if x then 1 else 2) y) の型はint→bool→int

注意

- 実行例としては 型推論に成功する例だけでなく, しないはずの例についても出すこと ◆ (今回の範囲で)型の付かない式の例
 - * fun $\times \times \times$
 - * fun f -> (f 0 < 1) && f true

開ち

- さらに拡張し、パターンマッチを含む 式を型推論をできるようにせよパターンは値と変数とリスト が扱えればよい

制約の収集: match式

- match e with $p_1 \rightarrow e_1 \mid \cdots \mid p_n \rightarrow e_n$
 - ◆ eの型tと制約Cを求める
 - ◆ 各iについて
 - * piの型tiと制約Ci, 追加される型環境 Ti を求める (後述)
 - * 現在の型環境に下iを追加した型環境の下で, eiの型ti, と制約Ci, を求める
 - ◆ 型変数 α を導入
 - match式の型はα,制約は {t=t1=···=tn,α=t1'=···=tn'}UCU C1U···UCn U C1'U···UCn'

制約の収集: パターン 1/2

- o 型と制約と, 追加される型環境を計算
 - ◆ 定数パターン 1
 - * 型int, 制約{}, 追加される型環境{}
 - ◆ 変数パターン ×
 - * 型変数αを導入して
 - * 型 α ,制約 $\{\}$,追加される型環境 $\{x=\alpha\}$

制約の収集: パターン 2/2

- o 型と制約と, 追加される型環境を計算
 - ◆ ニルパターン []
 - * 型変数αを導入
 - *型α list, 制約{}, 追加される型環境{}
 - ◆ コンスパターン p1 :: p2
 - * piの型ti,制約Ci, 追加される型環境 [iを求める (i=1, 2)
 - * 型変数αを導入
 - * 型α list, 制約{α=t₁, α list=t₂} UC₁ UC₂, 追加される型環境Γ₁ UΓ₂

ヒント

◆ 以下の関数を使う?

```
* gather_constraints_pattern:
    pattern ->
    ty * 型制約の型 * 型環境の型
```

発展|

- o さらに拡張し、let多相を実現せよ
 - ◆ 以下の関数を実装する?
 - * generalize: 型環境の型 -> ty -> ty_scheme
 - * instantiate :
 ty_scheme -> ty
 - 副作用を使う
 - ◆ 型環境の定義を変更する必要があることに注意
 - * 変数から型スキームへのマッピング

発展2(高ランク多相)

- 以下の式が型検査を通るような型システムを実装せよ
 (fun f →) ((f 1) = 0) & f true) (fun x →) x)
 - * rank-2多相が必要
 - o rank-2多相の型推論は決定可能
 - o rank-3以上は一般には決定不能

発展3 (再帰型)

- 以下の式が型検査を通るような型システムを実装せよ
 - fun () \rightarrow (fun x \rightarrow x x) (fun x \rightarrow x x)
 - * 参考:ocamlの-rectypes