Álgebra Linear e Geometria Analítica

Aplicações lineares

Departamento de Matemática Universidade de Aveiro

ALGA 🖽 Aplicações Lineares

Definição de aplicação linear

Sejam ${\mathcal V}$ e ${\mathcal W}$ espaços vetoriais reais.

Uma aplicação linear (ou transformação linear) de ${\mathcal V}$ em ${\mathcal W}$ é uma função

$$\begin{array}{cccc} L: & \mathcal{V} & \to & \mathcal{W} \\ & X & \mapsto & L(X) \end{array}$$

tal que

- 1. L(X + Y) = L(X) + L(Y), $\forall X, Y \in \mathcal{V}$;
- **2.** L(cX) = cL(X), $\forall c \in \mathbb{R}$, $\forall X \in \mathcal{V}$.

Se $\mathcal{W}=\mathcal{V}$, então L diz-se um operador linear (ou endomorfismo) de $\mathcal{V}.$

Exemplos de aplicações lineares

1. A reflexão em relação ao eixo dos xx é dada pelo operador linear

$$L: \mathbb{R}^2 \to \mathbb{R}^2 (x,y) \mapsto (x,-y) .$$

2. A aplicação derivada

$$L: \mathcal{P}_n \to \mathcal{P}_{n-1}$$
$$p(x) \mapsto p'(x)$$

é uma aplicação linear.

3. A rotação em torno do eixo dos zz de ângulo θ é o operador linear

$$L: \mathbb{R}^3 \to \mathbb{R}^3 (x, y, z) \mapsto (x \cos(\theta) - y \sin(\theta), x \sin(\theta) + y \cos(\theta), z).$$

Teorema 1

Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então $L(0_{\mathcal{V}}) = 0_{\mathcal{W}}$.

Teorema 2

Se $L: \mathcal{V} \to \mathcal{W}$ é uma aplicação então

$$L(c_1X_1+\cdots+c_kX_k)=c_1L(X_1)+\cdots+c_kL(X_k),$$

para quaisquer $X_1, \ldots, X_k \in \mathcal{V}$ e $c_1, \ldots, c_k \in \mathbb{R}$.

Corolário

Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear e $\mathcal{B} = (X_1, \dots, X_n)$ uma base de \mathcal{V} . Para $X \in \mathcal{V}$, tem-se que L(X) é completamente determinado por $L(X_1), \dots, L(X_n)$.

Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear.

Sejam \mathcal{S} e \mathcal{T} bases ordenadas de \mathcal{V} e \mathcal{W} , respetivamente.

Questão: Dado $X \in \mathcal{V}$, qual a relação entre $[X]_{\mathcal{S}}$ e $[L(X)]_{\mathcal{T}}$?

Exemplo Sejam

$$\mathcal{S} = ((1,1),(1,0))$$
 e $\mathcal{T} = ((1,0,1),(1,1,0),(0,1,1))$

bases de \mathbb{R}^2 e \mathbb{R}^3 . Seja $L:\mathbb{R}^2 \to \mathbb{R}^3$ uma aplicação linear tal que

$$L(1,1) = (2,3,1)$$
 e $L(1,0) = (1,2,1)$.

Passo 1. Determinação de L(X)

$$X = (x_1, x_2) = \underset{\sim}{x_2} (1, 1) + (x_1 - \underset{\sim}{x_2}) (1, 0)$$

$$L(X) = L(x_1, x_2) = \underset{\sim}{x_2} L(1, 1) + (x_1 - \underset{\sim}{x_2}) L(1, 0)$$

Passo 2. Determinação de $[L(X)]_{\mathcal{T}}$

$$[L(X)]_{\mathcal{T}} = x_{2} [L(1,1)]_{\mathcal{T}} + (x_{1} - x_{2}) [L(1,0)]_{\mathcal{T}}$$

$$= \underbrace{\left[[L(1,1)]_{\mathcal{T}} \mid [L(1,0)]_{\mathcal{T}} \right]}_{[X]_{\mathcal{S}}} \underbrace{\left[x_{2} \atop x_{1} - x_{2} \right]}_{[X]_{\mathcal{S}}}$$

Portanto

$$[L(X)]_{\mathcal{T}} = [L]_{\mathcal{S},\mathcal{T}}[X]_{\mathcal{S}}.$$

 $[L]_{\mathcal{S},\mathcal{T}} o \mathsf{matriz}$ representativa de L relativamente às bases \mathcal{S} e \mathcal{T}

Passo 3. Determinação da matriz $[L]_{\mathcal{S},\mathcal{T}}$

$$[L(1,1)]_{\mathcal{T}} = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \text{ pois } L(1,1) = 0 (1,0,1) + 2 (1,1,0) + 1 (0,1,1)$$

$$[L(1,0)]_{\mathcal{T}} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ pois } L(1,0) = 0 (1,0,1) + 1 (1,1,0) + 1 (0,1,1)$$

$$[L]_{\mathcal{S},\mathcal{T}} = \left[\begin{array}{cc} 0 & 0 \\ 2 & 1 \\ 1 & 1 \end{array} \right]$$

Definição de matriz de uma aplicação linear

Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear, $\mathcal{S} = (X_1, \dots, X_n)$ uma base de \mathcal{V} e \mathcal{T} uma base de \mathcal{W} .

Matriz representativa de L relativamente às bases S e T:

$$[L]_{\mathcal{S},\mathcal{T}} = \left[\begin{array}{ccc} [L(X_1)]_{\mathcal{T}} \mid & \cdots & \mid [L(X_n)]_{\mathcal{T}} \end{array} \right],$$

matriz cujas colunas são os vetores das coordenadas na base \mathcal{T} das imagens dos vetores da base \mathcal{S} .

Para cada $X \in \mathcal{V}$,

$$[L(X)]_{\mathcal{T}} = [L]_{\mathcal{S},\mathcal{T}}[X]_{\mathcal{S}}.$$

Núcleo e imagem de uma aplicação linear

Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. O núcleo de L é o conjunto

$$\ker(L) = \{X \in \mathcal{V} : L(X) = 0_{\mathcal{W}}\}.$$

Nota: $\ker(L) \neq \emptyset$ já que $0_{\mathcal{V}} \in \ker(L)$.

A imagem de *L* é o conjunto

$$\operatorname{im}(L) = \{ Y \in \mathcal{W} : \exists X \in \mathcal{V} \text{ tal que } L(X) = Y \}$$

de todos os vetores Y de $\mathcal W$ que são imagem de algum vetor de $\mathcal V.$

Teorema 3: Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

- $ightharpoonup \ker(L)$ é um subespaço vetorial de \mathcal{V} ;
- $ightharpoonup \operatorname{im}(L)$ é um subespaço vetorial de \mathcal{W} .

Exemplos

1. Determinar $\ker(L)$ e $\operatorname{im}(L)$ para $L: \mathbb{R}^3 \to \mathbb{R}^2$ definida por

$$L(x, y, z) = (x + y, x + y + z).$$

2. Determinar bases para $\ker(L)$ e $\operatorname{im}(L)$ de $L: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$L(X) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 2 & 1 \\ 3 & 4 & -1 \end{bmatrix} X.$$

3. Dada A uma matriz $m \times n$ e L a aplicação linear

$$L: \mathbb{R}^n \to \mathbb{R}^m X \mapsto L(X) = AX ,$$

mostrar que $\ker(L) = \mathcal{N}(A)$ e $\operatorname{im}(L) = \mathcal{C}(A)$.

Aplicação linear injetiva e sobrejetiva

Recordar que uma função $L: \mathcal{V} \to \mathcal{W}$ é injetiva se

$$\forall X_1, X_2 \in \mathcal{V}, \quad X_1 \neq X_2 \Rightarrow L(X_1) \neq L(X_2),$$

ou equivalentemente, $\forall X_1, X_2 \in \mathcal{V}, L(X_1) = L(X_2) \Rightarrow X_1 = X_2.$

Teorema 4 Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear. Então

$$L ext{ \'e injetiva } \Leftrightarrow \ker(L) = \{0_{\mathcal{V}}\}.$$

Recordar que uma função $L: \mathcal{V} \to \mathcal{W}$ é sobrejetiva se $\operatorname{im}(L) = \mathcal{W}$.

Teorema 5 Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear com $\dim(\mathcal{V})$ finita. Então

$$L ext{ \'e sobrejetiva } \Leftrightarrow \dim(\operatorname{im}(L)) = \dim(\mathcal{W}).$$

Núcleo e espaço nulo, imagem e espaço das colunas

```
Sejam L: \mathcal{V} \to \mathcal{W} uma aplicação linear, dim \mathcal{V} = n, dim \mathcal{W} = m, \mathcal{S} uma base de \mathcal{V}, \mathcal{T} uma base de \mathcal{W} e A = [L]_{\mathcal{S},\mathcal{T}} (matriz m \times n).
```

Considerando

$$\ker(L) = \{X \in \mathcal{V} : L(X) = 0_{\mathcal{W}}\} \text{ o núcleo de } L,$$

$$\mathcal{N}(A) = \{\overline{X} \in \mathbb{R}^n : A\overline{X} = 0_{\mathbb{R}^m}\} \text{ o espaço nulo de } A,$$

$$\operatorname{im}(L) = \{Y \in \mathcal{W} : \exists X \in \mathcal{V}, \ L(X) = Y\} \text{ a imagem de } L,$$

$$\mathcal{C}(A) = \{\overline{Y} \in \mathbb{R}^m : \exists \overline{X} \in \mathbb{R}^n, \ A\overline{X} = \overline{Y}\} \text{ o espaço das colunas de } A,$$

verifica-se que

$$X \in \ker(L) \Leftrightarrow [X]_{\mathcal{S}} \in \mathcal{N}(A)$$
 e $Y \in \operatorname{im}(L) \Leftrightarrow [Y]_{\mathcal{T}} \in \mathcal{C}(A)$.

Teorema das dimensões

Teorema 6 (Teorema das dimensões) Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear com $\dim(\mathcal{W})$ finita. Então $\dim(\ker(L)) + \dim(\operatorname{im}(L)) = \dim \mathcal{V}.$

Corolário

Seja $L: \mathcal{V} \to \mathcal{W}$ uma aplicação linear com $\dim \mathcal{V} = \dim \mathcal{W}$ finita. Então $L \text{ \'e injetiva } \Leftrightarrow L \text{ \'e sobrejetiva}.$

Isomorfismo e invertibilidade

Um isomorfismo é uma aplicação linear injetiva e sobrejetiva.

```
Seja
L: \mathcal{V} \to \mathcal{W} uma aplicação linear, \dim \mathcal{V} = \dim \mathcal{W} = n, \mathcal{S} uma base de \mathcal{V}, \mathcal{T} uma base de \mathcal{W}, A = [L]_{\mathcal{S},\mathcal{T}} (matriz n \times n).
```

L é isomorfismo \Leftrightarrow A é invertível.

Se L é um isomorfismo, então L é invertível e $L^{-1}: \mathcal{W} \to \mathcal{V}$ é uma aplicação linear:

$$A^{-1} = [L^{-1}]_{\mathcal{T},\mathcal{S}}.$$