UCLA STATS-414-W25 2025-03-13

Generative AI for Digital Marketing Data

TEAM G:

STEPHANIE LU, ASHWIN RAMASESHAN, HOCHAN SON, JUYI YANG

Agenda

01 Introduction

04 Implications

02 Model Overviews

05 Next Steps

03 Results

Introduction

- Synthetic data is artificially generated data that mimics real-world datasets while preserving key statistical properties
- This generative AI method helps
 - Address data imbalance (e.g. 98% vs. 2%)
 - Enhances model generalization and privacy
- Our dataset represents user engagement (CTR, demographics, device info)
- Generative AI (CTGAN, VAE, LLMs) helps
 - Simulate realistic user behavior
 - Improve predictive modeling for better ad targeting & campaign optimization

Model Overviews

Method	Best For		
TabDDPM	Production-quality synthetic data with high fidelity		
CTGAN	Quick implementation with good quality results		
TVAE	When generation speed is critical		
LLMs	When you need creative variations or have text-heavy features		

TabDDPM

- A generative model specifically designed for **tabular data**, utilizing diffusion processes to iteratively transform noise into realistic synthetic data.
- Dataset: Trained on 10% of the real dataset to create synthetic samples.

TabDDPM

Why TabDDPM?

- Excels in modeling complex feature interactions and distributions in mixed-type (continuous and categorical) data.
- Demonstrates **superior performance in data privacy**, preserving detailed feature-level statistical properties.

Strengths & Considerations

- Provides **high-quality synthetic data**, capturing intricate dependencies effectively.
- Computationally intensive due to iterative denoising processes.
- Requires careful tuning to **prevent overfitting and ensure stability** during training.

TVAE

TVAE (Tabular Variational Autoencoder)

- A generative model designed for tabular data, using deep learning to encode and decode structured information.
- Dataset: Trained on 10% of the real dataset to generate synthetic samples.

Performance & Results

- Loss decreased over training epochs, indicating effective learning.
- Maintains probability distribution similarity with real data (JS Divergence = 0.223).

TVAE

Why TVAE?

- More effective for complex tabular data that has both continuous and categorical variables.
- Can capture intricate feature dependencies, making it useful for high-dimensional datasets.
- Stronger performance in data privacy while preserving data utility compared to simpler generative models.

Strengths & Considerations

- Captures feature relationships well, making it suitable for structured datasets.
- More computationally expensive than other methods like CTGAN.
- Potential risk of overfitting if not properly regularized.

CTGAN

- Conditional Tabular Generative Adversarial Network
- A generative model designed to create realistic synthetic data
- Part of the Generative Adversarial Network (GAN) family, where two
 networks (the generator and the discriminator) are trained simultaneously

How CTGAN Works:

- Generator creates synthetic data.
- Discriminator distinguishes between real and synthetic data.
- o Goal: for the generator to fool the discriminator by generating realistic data.

Why CTGAN?

- Ideal for generating high-dimensional and mixed-type data (categorical + numerical).
- More stable than traditional GANs, making it effective for generating tabular data.

CTGAN

CTGAN

Weaknesses:

- Handling of high-cardinality categorical data
- Class imbalance may still persist in generated data
- Mode collapse risks result in a lack of diversity
- Overfitting can lead to poor generalization
- Training dynamics are tricky and require tuning
- High computational cost

LLMs (Large Language Models)

Base model	GPT2	Deepseek-coder (1.3b)
Developer	OpenAl (USA, 2019)	High-Flyer (China, 2023)
Quantization	Floating point 32 Bits	4 and 8 Bits
Memory requirement	> 10 GB VRAM	> 14 GB VRAM
Parameters	137 Million	1.3 Billions
Context Window	1024 tokens	16,384 tokens

GPT2: https://huggingface.co/openai-community/gpt2
Deepseek-coder-1.3b: https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base

Local LLMs Training Environments

- Mac Mini
- Apple Silicon M2 Pro
- CPU: 10 Core
- GPU: 16 Core
- RAM: 16 GB (unified)

Tabular LLM Training (GPT-2)

Tabular LLM Inference (GPT-2)

LLM Caveats

- Resource: Memory limits (16GB Unified Memory | CPU: 10 Core | GPU: 16 Core)
- Quantization of choices: F32, BF16, 8 bits, and 4 bits
- GPU Hardware: NVIDIA vs Apple Silicon
- **Python Library**: : CUDA vs MPS (Pytorch) or MLX
- Training vs Inference performance: 4+ hours | > 10 token/sec (1 row/1.5 min)
- Parameter: Higher is better quality, but require more resources
- Older models: (GPT-2: since 2019 vs Deepseek-coder: since 2023)

Fidelity - TVAE vs. CTGAN

Kolmogorov-Smirnov (KS) Test

- KS test compares the cumulative distributions of real and synthetic data to measure similarity.
- KS Statistic (TVAE) = 0.758, KS Statistic (CTGAN) = 0.204
- Lower KS = More fidelity (closer to real data distribution).
- CTGAN wins as it better matches the real data distribution.

Fidelity - TVAE vs. CTGAN

Jensen-Shannon (JS) Divergence

- JS divergence quantifies how different two probability distributions are, with lower values indicating better alignment.
- TVAE JS = 82.45%, CTGAN JS = 4.92%
- Lower JS = Better overlap with real data.
- **CTGAN wins** as TVAE's divergence is too extreme.

Utility - TVAE vs. CTGAN

Mean Absolute Error & Summary

- MAE calculates the average absolute difference between real and synthetic values, assessing numeric precision.
- TVAE MAE = .265, CTGAN MAE = .195
- Lower MAE = Closer to real data values
- CTGAN excels at capturing data distribution (KS Test)
- CTGAN also has better Fidelity
- CTGAN is better for distribution matching, while TVAE is better for probability and numeric accuracy.

Model Performance Evaluation (Fidelity)

• Comparison between Baseline vs Models

Metric	Baseline	TVAE	CTGAN	LLM-GPT2	Best
Overall Fidelity (Higher is better)	100%	25.66%	94.51%	79.19%	CTGAN
KS Test (Lower is better)	0%	97.03%	6.05%	11.65%	CTGAN
JS Divergence (Lower is better)	0%	82.45%	4.92%	29.96%	CTGAN

• Comparison between Models

	TVAE vs CTGAN	TVAE vs LLM	CTGAN VS LLM	Similarity
KS Test (Lower is better)	75.8%	97.69%	6.95%	CTGAN VS LLM
JS Divergence (Lower is better)	22.3%	82.18%	5.63%	CTGAN VS LLM

Model Performance Evaluation (Utility)

Metrics	Baseline	TVAE	CTGAN	LLM-GPT2	BEST
MAE (Lower is better)	0.267	0.265	0.195	0.209	CTGAN
Accuracy (Higher is better)	0.733	0.735	0.805	0.791	CTGAN
Precision (Higher is better)	0.596	0.723	0.898	0.884	CTGAN
Recall (Higher is better)	0.225	0.749	0.662	0.694	TVAE
F1-Score (Higher is better)	0.327	0.736	0.762	0.777	LLM

^{**}we have used XGBoost model to fit and test this scores.

Limitations

Method	Weaknesses
CTGAN	 Mode collapse due to adversarial training instability Struggles with high-cardinality categorical variables Class imbalance issues (minority class generation) Difficult to generate complex, highly dependent features (e.g., sequential behaviors in digital marketing)
TVAE	 Can be computationally expensive during training May struggle with extremely high-dimensional datasets or datasets with very sparse categorical variables
LLMs	 Not suited for tabular data due to numerical LLM data generation high computational cost Requires significant pretraining and fine-tuning for tabular data generation Can be resource-intensive and overkill for simple tabular datasets
TabDDPM	 Computationally expensive and time-consuming due to iterative training process Requires good hyperparameter tuning to generate realistic data

Implications

- Privacy

 – Synthetic data allows for sharing and analysis without exposing sensitive user information, reducing privacy risks.
- Enhanced Model Training Helps overcome data scarcity by augmenting real datasets, improving machine learning model performance.
- Bias Considerations Synthetic data can mitigate biases in real-world datasets but also risks amplifying existing biases if not carefully generated.
- Real-World Applications Used in healthcare, finance, and marketing to create realistic datasets for research, testing, and predictive modeling without regulatory concerns.

Next Steps

- Refine generative models via hyperparameter optimization (e.g., Bayesian optimization) for enhanced synthetic data quality
- Explore advanced generative methods (e.g. other diffusion models)
- Conduct statistical analyses to measure and reduce bias, ensuring synthetic data fairly represents the real dataset's distributions
- Test the effectiveness of hybrid training sets (real + synthetic data) to address class imbalance
- Evaluate synthetic data's impact on downstream tasks such as CTR prediction
- Measure the Differential Privacy

Thank You! Questions?