1.

(i)

(a) p
$$\land$$
 (q \lor r)[|=/ \lq](p \land q) \lor (p \land r)

YES

p	q	r	p∧(qVr)	$(p\Lambda q)V(p\Lambda r)$
T	T	T	Т	T
T	T	F	Т	T
T	F	T	Т	T
F	Т	T	F	F
T	F	F	F	F
F	Т	F	F	F
F	F	T	F	F
F	F	F	F	F

Inference is valid.

(b) [
$$\models$$
/`] $p \rightarrow (q \rightarrow p)$

YES

p	q	$p \to (q \to p)$
T	T	T
T	F	T
F	T	T
F	F	T

Inference is valid.

$$(c)\, \neg p \to \neg q[\mid = /\, `]p \to q$$

NO

p	q	$\neg p \rightarrow \neg q$	$p \rightarrow q$
T	T	T	T
T	F	T	F
F	T	F	Т
F	F	T	T

Inference is invalid

$$(d) \, \neg p \to \neg q, \, \neg q \to \neg p[\mid = / \, `]p \leftrightarrow q$$

YES

p	q	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$	$p \leftrightarrow q$
T	T	T	T	T
T	F	T	F	F
F	T	F	T	F
F	F	T	T	T

Inference is valid

(e) p
$$\rightarrow$$
 q, q \rightarrow r[|= / `] \neg r \rightarrow \neg q

YES

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$\neg r \rightarrow \neg q$
T	T	T	T	T	T
T	T	F	T	F	F
T	F	T	F	T	T
F	T	T	T	T	T
T	F	F	F	T	T
F	T	F	T	F	F
F	F	T	T	T	T
F	F	F	T	T	T

Inference is valid

(a)
$$p \land (q \lor r)[|=/`](p \land q) \lor (p \land r)$$

YES

Proof:

$$CNF(p\Lambda(qVr)) \equiv p\Lambda(qVr)$$

$$\mathsf{CNF} \neg ((\mathsf{p} \land \mathsf{q}) \lor (\mathsf{p} \land r)) \equiv (\neg p \lor \neg q) \land (\neg p \lor \neg r)$$

3.
$$(\neg p \lor \neg q)$$
 (Negation of Conclusion)

4.
$$(\neg p \lor \neg r)$$
 (Negation of Conclusion)

5.
$$(\neg p \lor q)$$
 2,4 Resolution
6. $\neg p$ 3,5 Resolution
7. [] 1,6 Resolution

(b) [
$$\models$$
/`] $p \rightarrow (q \rightarrow p)$

YES

Proof:

$$\mathsf{CNF} \neg (p \to (q \to p)) \equiv \neg (\neg p \lor (\neg q \lor p)) \equiv \mathsf{p} \land \mathsf{q} \land \neg p$$

$$3.\neg p$$
 (Negation of Conclusion)

4. [] 1,3 Resolution

$$\begin{array}{c} (c) \, \neg p \to \neg q[\mid = / \, \,]p \to q \\ NO \end{array}$$

$$CNF(\neg p \rightarrow \neg q) \equiv p \lor \neg q$$
$$CNF\neg(p \rightarrow q) \equiv p \land \neg q$$

1.
$$p \lor \neg q$$
 (Hypothesis)

2. p (Negation of Conclusion) 3. ¬*q* (Negation of Conclusion)

(d)
$$\neg p \rightarrow \neg q$$
, $\neg q \rightarrow \neg p[|=/`]p \leftrightarrow q$

YES

Proof:

$$CNF(\neg p \to \neg q) \equiv p \lor \neg q$$

$$CNF(\neg q \rightarrow \neg p) \equiv q \lor \neg p$$

$$CNF\neg(p\leftrightarrow q) \equiv \neg(\neg p \lor q) \lor \neg(\neg q \lor p) \equiv (p \land \neg q) \lor (q \land \neg p) \equiv (p \lor q) \land (\neg q \lor \neg p)$$

1.
$$pV \neg q$$
 (Hypothesis)

2.
$$q \lor \neg p$$
 (Hypothesis)

3. (pVq) (Negation of Conclusion) $4. (\neg q \lor \neg p)$ (Negation of Conclusion)

5. [] 3,4 Resolution

(e)
$$p \rightarrow q$$
, $q \rightarrow r[|=/`] \neg r \rightarrow \neg q$

YES

Proof:

$$CNF(p \rightarrow q) \equiv \neg p \lor q$$

$$CNF(q \rightarrow r) \equiv \neg q \forall r$$

$$CNF \neg (\neg r \rightarrow \neg q) \equiv \neg r \wedge q$$

1.
$$\neg p \lor q$$
 (Hypothesis)

2.
$$\neg q \lor r$$
 (Hypothesis)

2.

(a).

From: As subsequent investigation revealed, the March Hare and the Doormouse were not both speaking the truth.

 $lying (marchHare) \ V \ lying (doormouse)$

marchHare:

 $\neg lying(marchHare) \leftrightarrow \neg stole(marchHare,jam)$

Mad*Hare*:

 $\neg lying(MadHare) \leftrightarrow (Stole(marchHare) \ VStole(doormouse)) \ \land$

¬Stole(Mad*Hare*)

doormouse:

 $\neg lying(doormouse) \leftrightarrow \neg lying(marchHare) \lor \neg lying(MadHare)$

(b)

lying (marchHare) V lying (doormouse)

 $= stole(marchHare,jam) \lor (lying(marchHare) \land lying(MadHare))$

= stole(marchHare,jam) \lor (stole(marchHare,jam) \land lying(MadHare))

Because lying(MadHare) means madHare stole the jam and marchHare did not stole the jam, $stole(marchHare,jam) \land lying(MadHare)$ will not occur.

AS a result, *marchHare* stole the *jam*.

- (c)
- (d)

3. easy-hard-easy pattern exists.

In experiment, if c is less than 9 or c large than 11, it takes little time to run the program. Because of clauses is generated randomly, the cpu time is different even using same c value.

As the result show, c=10.2, the cpu time is largest

4.production system

- a) A production system classifies the common characteristics shared by a class of reasoning problems, and has the following components:
- 1. Collection of states

Example: Start or initial state, Goal state

2. Collection of productions: rules or moves

Example: If it is raining outside, then an umbrella will be bring

3. Control system: decides which production to apply next

b)

1. Compute the set of possible instantiations of the rules

2 selects the best instantiation by the control system. Strategy may be the order of rule, the frequency of rule executed, the more general rule ,or priority.

3 Rule execution

Deductive, forward chaining, data driven reasoning Evidences, symptoms, facts ⇒ conclusions, hypothesis Inductive, backward chaining (BC), goal driven reasoning Conclusions, hypothesis ⇒ evidences, symptoms, facts Hybrid chaining

c) advantage

1. The structure of each sentence in a production system is unique and uniform as they use "IF-THEN" structure. This structure provides simplicity in knowledge representation. This feature of production system improves the readability of production rules. 2 Information can be treated as a collection of independent facts which may be added or deleted from the system with essentially no deletetious side effects.

Disvantage:

1As the rules of the production system are large in number and they are hardly written in hierarchical manner.2The rules in a production system should not have any type of conflict operations. When a new rule is added to a database, it should ensure that it does not have any conflicts with the existing rules.