Metodo del simplesso duale

- analisi duale del metodo del simplesso
- metodo del simplesso duale

Fi 4.6, 4.7

Analisi duale del metodo del simplesso

Condizioni di ottimalità primale-duale per una coppia di vettori $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{u} \in \mathbb{R}^m$:

- (i) ammissibilità primale: $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}$
- (ii) ammissibilità duale: $\mathbf{u}^T\mathbf{A} \leq \mathbf{c}^T$
- (iii) scarto complementare: $(\mathbf{c}^T \mathbf{u}^T \mathbf{A})\mathbf{x} = \mathbf{0}$

Alla generica iterazione, il metodo del simplesso calcola i vettori:

- $\bar{\mathbf{x}} = (\mathbf{B}^{-1}\mathbf{b}, \mathbf{0}) \ge \mathbf{0}$
- $\mathbf{u}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$
- $\bar{\mathbf{c}}^T = \mathbf{c}^T \mathbf{u}^T \mathbf{A}$

e si arresta quando $\bar{\mathbf{c}} \geq \mathbf{0}$

Analisi duale del metodo del simplesso

ad ogni iterazione:

- ▶ la sba corrente è ammissibile per il problema primale: (i) è soddisfatta
- $(\mathbf{c}^T \mathbf{u}^T \mathbf{A}) \mathbf{x} = (\mathbf{c}_B^T \mathbf{u}^T \mathbf{B}) \mathbf{x}_B + (\mathbf{c}_F^T \mathbf{u}^T \mathbf{F}) \mathbf{x}_F = \mathbf{0}: (iii)$ è soddisfatta
- ▶ al contrario, la condizione (ii) è soddisfatta solo quando $\bar{\mathbf{c}}^T = \mathbf{c}^T \mathbf{u}^T \mathbf{A} \geq \mathbf{0}$, cioè quando $\mathbf{Test}_{-}\mathbf{Opt} \rightarrow true$ e il metodo si arresta

quindi, durante l'intera esecuzione del metodo, il vettore ${\bf u}$ non è una soluzione ammissibile del problema duale, mentre lo diventa alla terminazione

Metodo del simplesso duale

- ▶ mantiene x e u tali da soddisfare sempre le condizioni (ii) e (iii), mentre la (i) solo alla terminazione
- x è una soluzione di base NON ammissibile durante l'intera esecuzione e il metodo si arresta quando ne certifica l'ammissibilità
- tableau iniziale del tipo:

$ x_1 $	• • •	x_j		x_m	x_{m+1}		x_h		x_n		
0		0		0	\bar{c}_{m+1}		\bar{c}_h		\bar{c}_n	\bar{c}_0	-z
1		0		0	$\bar{a}_{1,m+1}$	• • •			$\bar{a}_{1,n}$	\overline{b}_1	x_1
0		0		0							
0		1		0	$\bar{a}_{t,m+1}$		$\bar{a}_{t,h}$	• • •	$\bar{a}_{t,n}$	\bar{b}_t	x_t
0		0		_							
0	• • •	0	• • •	1	$\bar{a}_{m,m+1}$	• • •		• • •	$\bar{a}_{m,n}$	\bar{b}_m	x_m

in cui $\bar{c}_1, \ldots, \bar{c}_n \geq 0$ (ammissibilità duale)

Metodo del simplesso duale

- se $\bar{b}_1, \ldots, \bar{b}_m \geq 0$, allora il tableau è ottimo
- ▶ altrimenti (esiste un valore $\bar{b}_t < 0$):
 - se $\bar{a}_{tj} \geq 0, j=1,\ldots,n$, allora $\sum_{j=1}^n \bar{a}_{tj} x_j \geq 0$; quindi, l'equazione associata alla riga t del tableau non può essere soddisfatta: problema inammissibile
 - esiste un valore $\bar{a}_{th} < 0$: facendo PIVOT sull'elemento (t,h) il termine \bar{b}_t diventa positivo
- la scelta della variabile uscente può ricadere su una qualsiasi delle variabili in base per cui $\bar{b}_t < 0$ (ricordando la discussione sul ciclaggio)

Esempio

$$\begin{array}{ll} \min 3x_1 + 4x_2 + 5x_3 & \min 3x_1 + 4x_2 + 5x_3 \\ \text{s.t.} & \text{s.t.} & \\ 2x_1 + 2x_2 + x_3 \geq 6 & 2x_1 + 2x_2 + x_3 - x_4 = 6 \\ x_1 + 2x_2 + 3x_3 \geq 5 & x_1 + 2x_2 + 3x_3 - x_5 = 5 \\ x_1, x_2, x_3 \geq 0 & x_1, x_2, x_3, x_4, x_5 \geq 0 \end{array}$$

da cui il tableau:

3	4	5	0	0	0
			- 1	0	6
2	1	3	0	- 1	6 5

applicando il simplesso primale si eseguirebbe la FASE I

Esempio

Invece, cambiando segno alle righe si ottiene un tableau iniziale per il simplesso duale

3	4	5	0	0	0
- 2	- 2	- 1	1	0	- 6
- 2	4 - 2 - 1	- 3	0	1	- 5

scegliamo
$$x_4$$
 (riga $t=1$) come var. uscente

come scegliere la variabile entrante?

dovendo mantenere l'ammissibilità duale (cioè $\bar{c} \geq \mathbf{0}$), consideriamo esclusivamente i valori $\bar{a}_{tj} < 0$ e scegliamo la colonna h per cui:

$$h = \arg\min\{\frac{\bar{c}_j}{|\bar{a}_{tj}|} : j \in \{1, \dots, n\}, \bar{a}_{tj} < 0\}$$

Esempio (cont.)

$$\min\{\frac{\bar{c}_1}{\bar{a}_{11}} = \frac{3}{2}, \quad \frac{\bar{c}_2}{\bar{a}_{12}} = 2, \quad \frac{\bar{c}_3}{\bar{a}_{13}} = 5\}$$

PIVOT(1,1)

0	1	7/2	3/2	0	-9
1	1	1/2	-1/2	0	3
0	- 1	- 5/2	-1/2	1	-2

l'unica riga con $\bar{b}_t<0$ è t=2, cioè, x_5 è la variabile entrante. Ripetendo il ragionamento precedente si individua l'elemento di pivot (2,2):

PIVOT(2,2)

	,	/ L (L)	, -,		
0	0	1	1	1	-11
1	0	-2	-1	1	1
0	1	5/2	1/2	-1	2

 $\begin{array}{ll} \text{soluzione} \ (1,2,0,0,0) \ \text{ammissibile primale} \implies \text{ottima} \end{array}$

Se aggiungessimo un vincolo?

supponiamo adesso di aggiungere il vincolo

$$3x_1 + x_2 + x_3 \le 4$$

che NON è soddisfatto dalla soluzione ottima.

Aggiungendo la slack è possibile includerlo nel tableau:

0	0	1	1	1	0	
1	0	-2	-1	1	0	1
	1	5/2	1/2	-1	0	2
3	1	1	0	0	1	1 2 4

Di nuovo simplesso duale...

mettendo in forma canonica (con la slack in base), si ottiene:

0	0	1	1	1	0	-11
1	0	-2	-1	1	0	1
0	1	5/2	1/2	-1	0	2
0	0	1 -2 5/2 9/2	5/2	-2	1	-1

essendo $\bar{b}_3 < 0$ non abbiamo ammissibilità primale. Applicando nuovamente il simplesso duale si individua l'elemento di pivot (3,5) e il nuovo tableau (ottimo):

0	0	13/4	9/4	0	1/2	-23/2
1	0	1/4	1/4	0	1/2	1/2
0	1	1/4	-3/4	0	-1/2	5/2
0	0	-9/4	-5/4	1	-1/2	1/2 5/2 1/2

nuova sol. ottima (1/2, 5/2, 0, 0, 1/2, 0)