GLASS-BR

Software for the design and risk assessment of glass facades subjected to blast loading

M. Campidelli¹

1 Design Methodology "D1"

- Input data
- Three second duration (ASTM 2009b)
- Non-factored load (ASTM 2009a; Beason et al. 1998)
- Load resistance (ASTM 2009a)
- Probability of glass breakage (ASTM 2009a)

1.1 Input Data

General Geometry		
Long side (a)	1600.00	mm
Short side (b)	1200.00	mm
Glazing type	Insulating glass unit (IG)	
Nominal thickness: lite-1	8.00	mm
Glass type (PVB laminate): lite-1	HS (heat strengthened)	
Nominal thickness: lite-2	8.00	mm
Glass type (PVB laminate): lite-2	HS (heat strengthened)	
Boundary Conditions	4 sides supported	
Response Type	Flexural	

Mechanical Properties		
Elastic modulus (E)	7.17E+07 kPa	l
Surface flaw parameter (m)	7.00E+00	
Surface flaw parameter (k)	2.86E-53 N-71	n ¹²

¹Post–doctoral Fellow, Centre for Effective Design of Structures, Department of Civil Engineering, McMaster University, 1280 main Street West, Hamilton, ON L8S 4L7, Canada. E-mail: campide@mcmaster.ca

Target Probability of Breakage		
P_b -tolerable	8.00	/1000

Charge Weight & Standoff				
W (kg)	40.00			
Explosive	TNT			
TNT eq. factor	1.00			
SD_x (m)	20.00			
SD_y (m)	0.00			
SD _z (m)	0.00			

1.2 Three-Second Duration equivalent design pressure (TSD or q)

- Convert given explosive mass in equivalent mass of TNT: $W_{\scriptscriptstyle TNT} = W_{\scriptscriptstyle ex} \times TNT_{\scriptscriptstyle eq}$
- Calculate slanted standoff distance: $SD = \sqrt{SD_x^2 + SD_y^2 + SD_z^2}$
- Enter chart below to determine TSD

1.3 Non-Factored Load (NFL)

Use applicable design chart from ASTM E1300-09, depending on <u>nominal</u> thickness and boundary conditions.

1.4 Glass Type Factor (GTF)

Use Tables 1 or 2 from ASTM E-1300-09, depending on glazing type (single lite or IG unit)

TABLE 1 Glass Type Factors (GTF) for a Single Lite of Monolithic or Laminated Glass (LG)

	GTF			
Glass Type	Short Duration Load (3 s)	Long Duration Load (30 days)		
AN	1.0	0.43		
HS	2.0	1.3		
FT	4.0	3.0		

TABLE 2 Glass Type Factors (GTF) for Double Glazed Insulating Glass (IG), Short Duration Load

Lite No. 1	Lite No. 2 Monolithic Glass or Laminated Glass Type							
Monolithic Glass or Laminated Glass Type	А	AN HS				FT		
	GTF1	GTF2	GTF1	GTF2	GTF1	GTF2		
AN	0.9	0.9	1.0	1.9	1.0	3.8		
HS	1.9	1.0	1.8	1.8	1.9	3.8		
FT	3.8	1.0	3.8	1.9	3.6	3.6		

1.5 True (minimum) thickness (h)

ASTM E1300-09 Table 4				
Nominal	Minimum			
thickness	thickness			
(mm)	(mm)			
2.50	2.16			
2.70	2.59			
3.00	2.92			
4.00	3.78			
5.00	4.57			
6.00	5.56			
8.00	7.42			
10.00	9.02			
12.00	11.91			
16.00	15.09			
19.00	18.26			
22.00	21.44			

1.6 Load Sharing Factors for IG unit (LSF)

Lite No. 1:
$$LSF_1 = \frac{h_1^3 + h_2^3}{h_1^3}$$
 (1)

Lite No. 2:
$$LSF_2 = \frac{h_1^3 + h_2^3}{h_2^3}$$
 (2)

For single lite glazing, LSF = 1.0.

1.7 Load resistance (LR)

$$LR = NFL \times GTF \times LSF \tag{3}$$

In case of IG unit:

$$LR_{1} = NFL_{1} \times GTF_{1} \times LSF_{1}$$

$$LR_{2} = NFL_{2} \times GTF_{2} \times LSF_{2}$$

$$LR = min\{LR_{1}, LR_{2}\}$$
(4)

1.8 Design requirement

$$LR \ge q$$
 (5)

2 PROBABILITY OF GLASS BREAKAGE

- Non-dimensional load (ASTM 2009a; Beason et al. 1998)
- Aspect ratio
- Stress distribution factor (ASTM 2009a)
- Probability of failure (ASTM 2009a)

2.1 Aspect ratio (a/b)

$$a/b = \frac{a}{b} \tag{6}$$

2.2 Non-dimensional load (\hat{q})

Lite-1:
$$\hat{q}_{1} = \frac{q(ab)^{2}}{Eh_{1}^{4}} \frac{1}{GTF_{1}} \frac{1}{LSF_{1}}$$
 (7)

Lite-2:
$$\hat{q}_2 = \frac{q(ab)^2}{Eh_2^4} \frac{1}{GTF_2} \frac{1}{LSF_2}$$
 (8)

Units:

- [a] = [b] = [h] = m or mm
- [q] = [E] = Pa or kPa

2.2.1 Stress Distribution Factor (SDF or J)

Use Fig. X3.1 from ASTM E1300-09 to determine J from \hat{q} .

$$J_1 = J(\hat{q}_1) \tag{9}$$

$$J_2 = J(\hat{q}_2) \tag{10}$$

2.3 Probability of failure

$$P_b = \max\{P_{b1}, P_{b2}\} \tag{11}$$

$$P_{b1} = 1 - \exp\left[-B_1\right] = \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n!} B_1^n = B_1 - \frac{B_1^2}{2} + \frac{B_1^3}{6} - \frac{B_1^4}{24} + \dots \approx B_1 \text{ (if } B_1 < 0.05)$$
 (12)

$$P_{b2} = 1 - \exp[-B_2] \approx B_2 \tag{13}$$

$$B_{1} = \frac{k}{\left(ab\right)^{m-1}} \left(Eh_{1}^{2}\right)^{m} \exp\left[J_{1}\left(m, \hat{q}_{1}, \frac{a}{b}\right)\right] LDF$$
(14)

$$B_2 = \frac{k}{\left(ab\right)^{m-1}} \left(Eh_2^2\right)^m \exp\left[J_2\left(m, \hat{q}_2, \frac{a}{b}\right)\right] \text{LDF}$$
 (15)

$$LDF = \left(\frac{t_d}{60}\right)^{\frac{m}{16}} \tag{16}$$

LDF = Load Duration Factor

Units:

- [a] = [b] = [h] = m (meters)
- $[k] = N^{-7}m^{12}$
- $[E] = Pa = N/m^2$
- $[t_d]$ = s (3 seconds)

2.4 Design requirement

$$P_b \le P_{b-tol} = 0.008 \tag{17}$$

3 Design Methodology "D2"

This methodology is applicable for any selected value of the tolerable probability of glass breakage, whereas methodology "D1" is based on design charts that assume P_{b-tol} = 8/1000:

- Select tolerable probability of breakage (usually ≤ 8/1000)
- Calculate SDF associated with tolerable probability of failure
- Calculate non-factored load (ASTM 2009a; Beason et al. 1998)
- Calculate load resistance (ASTM 2009a)

3.1 Tolerable probability of breakage (P_{b-tol})

Select any value between 0 and 1. Usually, $P_{b-tol} = 8/1000$

3.2 Stress Distribution Factor associated with P_{b-tol}

From Eqs. (12), (14), and (16):

Lite-1:
$$J_{tol-1} = J(P_{b-tol}, h_1) = \ln \left[\ln \left(\frac{1}{1 - P_{b-tol}} \right) \frac{(ab)^{m-1}}{k (Eh_1^2)^m} \left(\frac{60}{t_d} \right)^{\frac{m}{16}} \right]$$
 (18)

Lite-2:
$$J_{tol-2} = J(P_{b-tol}, h_2) = \ln \left[\ln \left(\frac{1}{1 - P_{b-tol}} \right) \frac{(ab)^{m-1}}{k (Eh_2^2)^m} \left(\frac{60}{t_d} \right)^{\frac{m}{16}} \right]$$
(19)

3.3 Non-factored load

Given J_{tol} above and a/b, use Fig. X3.1 from ASTM E-1300 to interpolate the value of the non-dimensional load (\hat{q}). Then, invert Eqs. (7) and (8) to find the NFL:

$$NFL_{1} = \frac{q_{1}}{GTF_{1}LSF_{1}} = \hat{q}_{1} \frac{Eh_{1}^{4}}{(ab)^{2}}$$
 (20)

$$NFL_{2} = \frac{q_{2}}{GTF_{2}LSF_{2}} = \hat{q}_{2} \frac{Eh_{2}^{4}}{(ab)^{2}}$$
 (21)

3.4 Load Resistance

$$LR_1 = q_1 = (NFL_1)(GTF_1)(LSF_1)$$
 (22)

$$LR_2 = q_2 = (NFL_2)(GTF_2)(LSF_2)$$
(23)

$$LR = \min\{LR_1, LR_2\} \tag{24}$$

3.5 Design requirement

$$LR \ge q$$
 (25)

4 Design Charts

Design charts generated by GLASS-BR 0.39 for a single lite of annealed glass, 4-side supported, and a target probability of breakage P_b = 8/1000. The software assumes a range of values for side a and finds the matching b-value that result in the target P_b .

Design charts generated by GLASS-BR 0.40 for a single lite of annealed glass, 4-side supported, and a target probability of breakage P_b = 8/1000. The software assumes a range of values for side b and finds the matching α -value that result in the target P_b .

5 BENCHMARK TESTS

5.1 Test T1

General Geometry		
Long side (a)	1600.00	mm
Short side (b)	1200.00	mm
Glazing type	Insulating glass unit (IG)	
Nominal thickness: lite-1	8.00	mm
Glass type (PVB laminate): lite-1	HS (heat strengthened)	
Nominal thickness: lite-2	8.00	mm
Glass type (PVB laminate): lite-2	HS (heat strengthened)	
Boundary Conditions	4 sides supported	
Response Type	Flexural	

Mechanical Properties		
Elastic modulus (E)	7.17E+07	kPa
Surface flaw parameter (m)	7.00E+00	
Surface flaw parameter (k)	2.86E-53	N-7m12

Target Probability of Breakage		
P_b -tolerable	8.00	/1000

Charge Weight & Standoff	
W (kg)	40.00
Explosive	TNT
TNT eq. factor	1.00
SD _x (m)	20.00
SD _y (m)	0.00
SD_z (m)	0.00

Three-Second Duration equivalent design pressure:

- Convert given explosive mass in equivalent mass of TNT: $W_{TNT} = 40 \times 1 = 40 \text{ kg}$
- Calculate slanted standoff distance: $SD = \sqrt{20^2 + 0^2 + 0^2} = 20 \,\text{m}$
- q = 4.75 kPa

Non-Factored Loads:

 $NFL_1 = 3.5 \text{ kPa}$

 $NFL_2 = 3.5 \text{ kPa}$

Glass Type Factors:

$$GTF_1 = 1.8$$

$$GTF_2 = 1.8$$

True thicknesses:

$$h_1 = 7.42 \text{ mm}$$

$$h_2 = 7.42 \text{ mm}$$

Load Sharing Factors:

$$LSF_1 = \frac{7.42^3 + 7.42^3}{7.42^3} = 2.0$$

$$LSF_2 = \frac{7.42^3 + 7.42^3}{7.42^3} = 2.0$$

Load resistance:

$$LR_1 = 3.5 \times 1.8 \times 2.0 = 12.6 \text{ kPa}$$

$$LR_2 = 3.5 \times 1.8 \times 2.0 = 12.6 \text{ kPa}$$

$$LR = min\{LR_1, LR_2\} = 12.6 kPa$$

Design requirement:

$$LR \geq q :: 12.6 \geq 4.75 \text{ kPa} :: YES!$$

Probability of Glass Breakage

Aspect ratio:
$$a/b = 1600/1200 = 1.333$$

Non-dimensional loads:

$$\hat{q}_1 = \frac{q(ab)^2}{Eh_1^4} \frac{1}{\text{GTF}_1} \frac{1}{\text{LSF}_1} = \frac{4.75 \times (1600 \times 1200)^2}{7.17 \times 10^7 \times 7.42^4} \times \frac{1}{1.8} \times \frac{1}{2.0} = 22.38$$

$$\hat{q}_2 = \frac{q(ab)^2}{Eh_2^4} \frac{1}{\text{GTF}_2} \frac{1}{\text{LSF}_2} = \frac{4.75 \times (1600 \times 1200)^2}{7.17 \times 10^7 \times 7.42^4} \times \frac{1}{1.8} \times \frac{1}{2.0} = 22.38$$

Stress Distribution Factors:

$$J_1 = 10.5$$

$$J_2 = 10.5$$

Probabilities of failure:

LDF =
$$\left(\frac{t_d}{60}\right)^{\frac{m}{16}} = \left(\frac{3}{60}\right)^{\frac{7}{16}} = 0.2696$$

$$B_1 = rac{k}{\left(ab
ight)^{m-1}} \left(Eh_1^2
ight)^m \exp \left[J_1\left(m,\hat{q}_1,rac{a}{b}
ight)
ight] ext{LDF}$$

$$B_1 = \frac{2.86 \times 10^{-53}}{\left(1.6 \times 1.2\right)^6} \left(7.17 \times 10^{10} \times 0.00742^2\right)^7 \exp\left(10.5\right) \times 0.2696 = 8.349 \times 10^{-5}$$

$$B_2 = rac{k}{\left(ab
ight)^{m-1}} \left(Eh_2^2
ight)^m \expigg[J_2igg(m,\hat{q}_2,rac{a}{b}igg)igg] ext{LDF}$$

$$B_2 = \frac{2.86 \times 10^{-53}}{\left(1.6 \times 1.2\right)^6} \left(7.17 \times 10^{10} \times 0.00742^2\right)^7 \exp\left(10.5\right) \times 0.2696 = 8.349 \times 10^{-5}$$

$$P_{b1} = 1 - \exp[-B_1] = 1 - \exp(-8.349 \times 10^{-5}) = 8.349 \times 10^{-5}$$

$$P_{b2} = 1 - \exp[-B_2] = 1 - \exp(-8.349 \times 10^{-5}) = 8.349 \times 10^{-5}$$

$$P_b = \max\{P_{b1}, P_{b2}\} = \max\{8.349 \times 10^{-5}, 8.349 \times 10^{-5}\} = 8.349 \times 10^{-5} = 0.08 / 1000$$

Design requirement:

$$P_h \le P_{h-tol} = 0.008 :: 8.349 \times 10^{-5} \le 8 \times 10^{-3} \text{ YES!}$$

DESIGN METHODOLOGY "D2"

Stress Distribution Factors associated with P_{b-tol} :

$$J_{tol-1} = J(P_{b-tol}, h_1) = \ln \left[\ln \left(\frac{1}{1 - P_{b-tol}} \right) \frac{(ab)^{m-1}}{k (Eh_1^2)^m} \left(\frac{60}{t_d} \right)^{\frac{m}{16}} \right]$$

$$J_{tol-1} = J(P_{b-tol}, h_1) = \ln \left[\ln \left(\frac{1}{1 - 0.008} \right) \frac{\left(1.6 \times 1.2 \right)^6}{2.86 \times 10^{-53} \times \left(7.17 \times 10^{10} \times 0.00742^2 \right)^7} \left(\frac{60}{3} \right)^{\frac{7}{16}} \right]$$

$$J_{tol-1} = 15.07$$

$$\begin{split} J_{tol-2} &= J\left(P_{b-tol}, h_2\right) = \ln\left[\ln\left(\frac{1}{1-P_{b-tol}}\right) \frac{\left(ab\right)^{m-1}}{k\left(Eh_2^2\right)^m} \left(\frac{60}{t_d}\right)^{\frac{m}{16}}\right] \\ J_{tol-2} &= J\left(P_{b-tol}, h_2\right) = \ln\left[\ln\left(\frac{1}{1-0.008}\right) \frac{\left(1.6\times1.2\right)^6}{2.86\times10^{-53}\times\left(7.17\times10^{10}\times0.00742^2\right)^7} \left(\frac{60}{3}\right)^{\frac{7}{16}}\right] \\ J_{tol-2} &= 15.07 \end{split}$$

Non-factored load:

$$a/b = 1600/1200 = 1.333$$

Fig. X3.1
$$\rightarrow \hat{q}_1(J_{tol-1}) = 52$$

Fig. X3.1
$$\rightarrow \hat{q}_2(J_{tol-2}) = 52$$

$$NFL_{1} = \frac{q_{1}}{GTF_{1}LSF_{1}} = \hat{q}_{1} \frac{Eh_{1}^{4}}{\left(ab\right)^{2}} = 52 \times \frac{7.17 \times 10^{7} \times .00742^{4}}{\left(1.6 \times 1.2\right)^{2}} = 3.067 \text{ kPa}$$

$$NFL_{2} = \frac{q_{2}}{GTF_{2}LSF_{2}} = \hat{q}_{2} \frac{Eh_{2}^{4}}{\left(ab\right)^{2}} = 52 \times \frac{7.17 \times 10^{7} \times .00742^{4}}{\left(1.6 \times 1.2\right)^{2}} = 3.067 \text{ kPa}$$

Load Resistance:

$$LR_1 = q_1 = (NFL_1)(GTF_1)(LSF_1) = 3.067 \times 1.8 \times 2.0 = 11.04$$

$$LR_2 = q_2 = (NFL_2)(GTF_2)(LSF_2) = 3.067 \times 1.8 \times 2.0 = 11.04$$

$$LR = min\{LR_1, LR_2\} = min\{11.04, 11.04\} = 11.04 \text{ kPa}$$

Design requirement:

 $LR \ge q :: 11.04 \ge 4.75 \text{ kPa YES!}$

Summary:

Output T1 (ASTM E1300)-09)		D1	D2
3-second duration equivalent pressure	4.73	kPa	4.75	-
Non-factored load (NFL1)	3.09	KPa	3.50	3.07
Glass type factor (GT1)	1.81		1.80	-
Load share factor (LS1)	2.00		2.00	-
Load resistance (LR1)	11.17	KPa	12.60	11.04
Non-factored load (NFL2)	3.09	KPa	3.50	3.07
Glass type factor (GT2)	1.81		1.80	-
Load share factor (LS2)	2.00		2.00	-
Load resistance (LR2)	11.17	KPa	12.60	11.04
Load resistance LR=min(LR1,LR2)	11.17	KPa	12.60	11.04
CAPACITY > DEMAND?	YES		YES	YES
Aspect ratio (a/b)	1.33		1.33	-
Load duration factor [(td/60)^(m/16)]	0.27		0.27	-
True thickness (h1)	7.42	mm	7.42	-
Nondimensional pressure (q1*)	22.23		22.38	-
Stress distribution factor (J1)	10.29		10.50	-
Probability of breakage (Pb1)	0.07	/1000	0.08	-
True thickness (h2)	7.42	mm	7.42	-
Nondimensional pressure (q2*)	22.23		22.38	-
Stress distribution factor (J2)	10.29		10.50	-
Probability of breakage (Pb2)	0.07	/1000	0.08	_
Probability of breakage Pb=max(Pb1,Pb2)	0.07	/1000	0.08	-
Pb < Pb-tolerable?	YES		YES	-

5.2 Test T2

General Geometry		
Long side (a)	1600.00	mm
Short side (b)	1200.00	mm
Glazing type	Monolithic-laminated (LG)	
Nominal thickness: lite-1	8.00	mm
Glass type (PVB laminate): lite-1	AN (annealed)	
Nominal thickness: lite-2	0.00	mm
Glass type (PVB laminate): lite-2	None	
Boundary Conditions	4 sides supported	
Response Type	Flexural	

Mechanical Properties						
Elastic modulus (E)		7.17E+07	kPa			
Surface flaw parameter (m)		7.00E+00				
Surface flaw parameter (k)		2.86E-53	$N^{-7}m^{12}$			

Target Probability of Breakage		
P_b -tolerable	8.00	/1000

Charge Weight & Standoff	
W (kg)	30.00
Explosive	TNT
TNT eq. factor	1.00
SD_x (m)	15.00
SD_y (m)	5.00
SD _z (m)	3.00

Three-Second Duration equivalent design pressure:

- Convert given explosive mass in equivalent mass of TNT: $W_{\text{TNT}} = 30 \times 1 = 40 \, \text{kg}$
- Calculate slanted standoff distance: $SD = \sqrt{15^2 + 5^2 + 3^2} = 16.09 \text{ m}$
- q = 4.75 kPa

Non-Factored Loads:

 $NFL_1 = 3.5 \text{ kPa}$

 $NFL_2 = 0.0 \text{ kPa}$

Glass Type Factors:

$$GTF_1 = 1.0$$

$$GTF_2 = 0.0$$

True thicknesses:

$$h_1 = 7.42 \text{ mm}$$

$$h_2 = 0.00 \text{ mm}$$

Load Sharing Factors:

$$LSF_1 = \frac{7.42^3 + 0.00^3}{7.42^3} = 1.0$$

$$LSF_{2} = 0.0$$

Load resistance:

$$LR_1 = 3.5 \times 1.0 \times 1.0 = 3.5 \text{ kPa}$$

$$LR_2 = 0.0 \text{ kPa}$$

$$LR = LR_1 = 3.5 \text{ kPa}$$

Design requirement:

$$LR \ge q :: 3.50 \ge 4.75 \text{ kPa} :: NO!$$

Probability of Glass Breakage

Aspect ratio:
$$a/b = 1600/1200 = 1.333$$

Non-dimensional loads:

$$\hat{q}_1 = \frac{q(ab)^2}{Eh_1^4} \frac{1}{\text{GTF}_1} \frac{1}{\text{LSF}_1} = \frac{4.75 \times (1600 \times 1200)^2}{7.17 \times 10^7 \times 7.42^4} \times \frac{1}{1.0} \times \frac{1}{1.0} = 80.57$$

$$\hat{q}_2 = 0.0$$

Stress Distribution Factors:

$$J_1 = 17.0$$

$$J_2 = 0.0$$

Probabilities of failure:

LDF =
$$\left(\frac{t_d}{60}\right)^{\frac{m}{16}} = \left(\frac{3}{60}\right)^{\frac{7}{16}} = 0.2696$$

$$B_1 = rac{k}{\left(ab
ight)^{m-1}} \left(Eh_1^2
ight)^m \exp \left[J_1\left(m, \hat{q}_1, rac{a}{b}
ight)
ight] ext{LDF}$$

$$B_1 = \frac{2.86 \times 10^{-53}}{\left(1.6 \times 1.2\right)^6} \left(7.17 \times 10^{10} \times 0.00742^2\right)^7 \exp\left(17.0\right) \times 0.2696 = 5.554 \times 10^{-2}$$

$$B_2 = \frac{k}{\left(ab\right)^{m-1}} \left(Eh_2^2\right)^m \exp\left[J_2\left(m, \hat{q}_2, \frac{a}{b}\right)\right] \text{LDF}$$

$$B_2 = 0.0$$

$$P_{b1} = 1 - \exp[-B_1] = 1 - \exp(-5.554 \times 10^{-2}) = 5.403 \times 10^{-2}$$

$$P_{b2} = 0.0$$

$$P_b = P_{b1} = 5.403 \times 10^{-2} = 54.03 / 1000$$

Design requirement:

$$P_b \le P_{b-tol} = 0.008 :: 5.403 \times 10^{-2} \le 8 \times 10^{-3} \text{ NO!}$$

DESIGN METHODOLOGY "D2"

Stress Distribution Factors associated with *P*_{b-tol}:

$$J_{tol-1} = J(P_{b-tol}, h_1) = \ln \left[\ln \left(\frac{1}{1 - P_{b-tol}} \right) \frac{(ab)^{m-1}}{k (Eh_1^2)^m} \left(\frac{60}{t_d} \right)^{\frac{m}{16}} \right]$$

$$J_{tol-1} = J(P_{b-tol}, h_1) = \ln \left[\ln \left(\frac{1}{1 - 0.008} \right) \frac{\left(1.6 \times 1.2 \right)^6}{2.86 \times 10^{-53} \times \left(7.17 \times 10^{10} \times 0.00742^2 \right)^7} \left(\frac{60}{3} \right)^{\frac{7}{16}} \right]$$

$$J_{tol-1} = 15.07$$

$$J_{tol-2} = J(P_{b-tol}, h_2) = \ln \left[\ln \left(\frac{1}{1 - P_{b-tol}} \right) \frac{(ab)^{m-1}}{k (Eh_2^2)^m} \left(\frac{60}{t_d} \right)^{\frac{m}{16}} \right]$$

$$J_{tol-2} = J(P_{b-tol}, h_2) = 0.0$$

Non-factored load:

$$a/b = 1600/1200 = 1.333$$

Fig. X3.1
$$\rightarrow \hat{q}_1(J_{tol-1}) = 52$$

Fig. X3.1
$$\rightarrow \hat{q}_2(J_{tol-2}) = 0.0$$

$$NFL_{1} = \frac{q_{1}}{GTF_{1}LSF_{1}} = \hat{q}_{1} \frac{Eh_{1}^{4}}{\left(ab\right)^{2}} = 52 \times \frac{7.17 \times 10^{7} \times .00742^{4}}{\left(1.6 \times 1.2\right)^{2}} = 3.067 \text{ kPa}$$

$$NFL_2 = 0.0 \text{ kPa}$$

Load Resistance:

$$LR_1 = q_1 = (NFL_1)(GTF_1)(LSF_1) = 3.067 \times 1.0 \times 1.0 = 3.067$$

$$LR_2 = 0.0$$

$$LR = LR_1 = 3.067 \text{ kPa}$$

Design requirement:

$$LR \ge q :: 3.07 \ge 4.75 \text{ kPa YES!}$$

Summary:

Output T2 (ASTM E1300	D1	D2		
3-second duration equivalent pressure	4.72	kPa	4.75	-
Non-factored load (NFL1)	3.09	KPa	3.50	3.07
Glass type factor (GT1)	1.00		1.00	-
Load share factor (LS1)	1.00		1.00	-
Load resistance (LR1)	3.09	KPa	3.50	3.07
Non-factored load (NFL2)	0.00	KPa	0.00	0.00
Glass type factor (GT2)	0.00		0.00	-
Load share factor (LS2)	0.00		0.00	-
Load resistance (LR2)	0.00	KPa	0.00	0.00
Load resistance LR=min(LR1,LR2)	3.09	KPa	3.50	3.07
CAPACITY > DEMAND?	NO		NO	NO
Aspect ratio (a/b)	1.33		1.33	-
Load duration factor [(td/60)^(m/16)]	0.27		0.27	-
True thickness (h1)	7.42	mm	7.42	-
Nondimensional pressure (q1*)	80.02		80.57	-
Stress distribution factor (J1)	17.10		17.00	-
Probability of breakage (Pb1)	59.62	/1000	54.03	-
True thickness (h2)	0.00	mm	0.00	-
Nondimensional pressure (q2*)	0.00		0.00	-
Stress distribution factor (J2)	0.00		0.00	-
Probability of breakage (Pb2)	0.00	/1000	0.00	-
Probability of breakage Pb=max(Pb1,Pb2)	59.62	/1000	54.03	-
Pb < Pb-tolerable?	NO		NO	-

5.3 Test T3 (based on ASTM E1300-09 - Cl. X3.3.1)

General Geometry		
Long side (a)	1500.00	mm
Short side (b)	1200.00	mm
Glazing type	Monolithic-laminated (LG)	
Nominal thickness: lite-1	6.00	mm
Glass type (PVB laminate): lite-1	AN (annealed)	
Nominal thickness: lite-2	0.00	mm
Glass type (PVB laminate): lite-2	None	
Boundary Conditions	4 sides supported	
Response Type	Flexural	

Mechanical Properties						
Elastic modulus (E)		7.17E+07	kPa			
Surface flaw parameter (m)		7.00E+00				
Surface flaw parameter (k)		2.86E-53	$N^{-7}m^{12}$			

Target Probability of Breakage		
P_b -tolerable	8.00	/1000

Charge Weight & Standoff	
W (kg)	42.00
Explosive	TNT
TNT eq. factor	1.00
SD_x (m)	41.00
SD_y (m)	0.00
SD _z (m)	3.00

Three-Second Duration equivalent design pressure:

- Convert given explosive mass in equivalent mass of TNT: $W_{\text{TNT}} = 42 \times 1 = 42 \,\text{kg}$
- Calculate slanted standoff distance: $SD = \sqrt{41^2 + 0^2 + 3^2} = 41.11 \,\text{m}$
- q = 2.20 kPa

Non-Factored Loads:

 $NFL_1 = 2.50 \text{ kPa}$

 $NFL_2 = 0.0 \text{ kPa}$

Glass Type Factors:

$$GTF_1 = 1.0$$

$$GTF_2 = 0.0$$

True thicknesses:

$$h_1 = 5.56 \text{ mm}$$

$$h_2 = 0.00 \text{ mm}$$

Load Sharing Factors:

$$LSF_1 = \frac{5.56^3 + 0.00^3}{5.56^3} = 1.0$$

$$LSF_{2} = 0.0$$

Load resistance:

$$LR_1 = 2.50 \times 1.0 \times 1.0 = 2.50 \text{ kPa}$$

$$LR_2 = 0.0 \text{ kPa}$$

$$LR = LR_1 = 2.50 \, kPa$$

Design requirement:

$$LR \ge q :: 2.50 \ge 2.20 \text{ kPa} :: YES!$$

Probability of Glass Breakage:

Aspect ratio:
$$a/b = 1500/1200 = 1.25$$

Non-dimensional loads:

$$\hat{q}_1 = \frac{q(ab)^2}{Eh_1^4} \frac{1}{\text{GTF}_1} \frac{1}{\text{LSF}_1} = \frac{2.20 \times (1500 \times 1200)^2}{7.17 \times 10^7 \times 5.56^4} \times \frac{1}{1.0} \times \frac{1}{1.0} = 104.0$$

$$\hat{q}_2 = 0.0$$

Stress Distribution Factors:

$$J_1 = 18.2$$

$$J_2 = 0.0$$

Probabilities of failure:

LDF =
$$\left(\frac{t_d}{60}\right)^{\frac{m}{16}} = \left(\frac{3}{60}\right)^{\frac{7}{16}} = 0.2696$$

$$B_1 = rac{k}{\left(ab
ight)^{m-1}} \left(Eh_1^2
ight)^m \exp \left[J_1\left(m,\hat{q}_1,rac{a}{b}
ight)
ight] ext{LDF}$$

$$B_1 = \frac{2.86 \times 10^{-53}}{\left(1.5 \times 1.2\right)^6} \left(7.17 \times 10^{10} \times 0.00556^2\right)^7 \exp(18.2) \times 0.2696 = 4.779 \times 10^{-3}$$

$$B_2 = \frac{k}{\left(ab\right)^{m-1}} \left(Eh_2^2\right)^m \exp\left[J_2\left(m, \hat{q}_2, \frac{a}{b}\right)\right] \text{LDF}$$

$$B_2 = 0.0$$

$$P_{b1} = 1 - \exp[-B_1] = 1 - \exp(-4.779 \times 10^{-3}) = 4.767 \times 10^{-3}$$

$$P_{b2} = 0.0$$

$$P_b = P_{b1} = 4.767 \times 10^{-3} = 4.767 / 1000$$

LDF =
$$1.0 \rightarrow B_1 = 1.772\% \rightarrow P_b = 1.757\%$$

Design requirement:

$$P_b \le P_{b-tol} = 0.008 :: 4.767 \times 10^{-3} \le 8 \times 10^{-3} \text{ YES!}$$

DESIGN METHODOLOGY "D2"

Stress Distribution Factors associated with P_{b-tol} :

$$J_{tol-1} = J(P_{b-tol}, h_1) = \ln \left[\ln \left(\frac{1}{1 - P_{b-tol}} \right) \frac{(ab)^{m-1}}{k (Eh_1^2)^m} \left(\frac{60}{t_d} \right)^{\frac{m}{16}} \right]$$

$$J_{tol-1} = J(P_{b-tol}, h_1) = \ln \left[\ln \left(\frac{1}{1 - 0.008} \right) \frac{\left(1.5 \times 1.2 \right)^6}{2.86 \times 10^{-53} \times \left(7.17 \times 10^{10} \times 0.00556^2 \right)^7} \left(\frac{60}{3} \right)^{\frac{7}{16}} \right]$$

$$J_{tol-1} = 18.72$$

$$J_{tol-2} = J(P_{b-tol}, h_2) = \ln \left[\ln \left(\frac{1}{1 - P_{b-tol}} \right) \frac{(ab)^{m-1}}{k (Eh_2^2)^m} \left(\frac{60}{t_d} \right)^{\frac{m}{16}} \right]$$

$$J_{tol-2}=J\left(P_{b-tol},h_{2}\right)=0.0$$

Non-factored load:

$$a/b = 1500/1200 = 1.25$$

Fig. X3.1
$$\rightarrow \hat{q}_1(J_{tol-1}) = 116.3$$

Fig. X3.1
$$\rightarrow \hat{q}_2(J_{tol-2}) = 0.0$$

$$NFL_{1} = \frac{q_{1}}{GTF_{1}LSF_{1}} = \hat{q}_{1}\frac{Eh_{1}^{4}}{\left(ab\right)^{2}} = 116.3 \times \frac{7.17 \times 10^{7} \times 0.00556^{4}}{\left(1.5 \times 1.2\right)^{2}} = 2.531 \text{ kPa}$$

$$NFL_2 = 0.0 \text{ kPa}$$

Load Resistance:

$$LR_1 = q_1 = (NFL_1)(GTF_1)(LSF_1) = 2.531 \times 1.0 \times 1.0 = 2.531 \text{ kPa}$$

$$LR_2 = 0.0 \text{ kPa}$$

$$LR = LR_1 = 2.531 \text{ kPa}$$

Design requirement:

 $LR \ge q :: 2.53 \ge 2.20 \text{ kPa YES!}$

Summary:

Output T3 (ASTM E1300)-09)		D1	D2
3-second duration equivalent pressure	2.20	kPa	2.20	-
Non-factored load (NFL1)	2.46	KPa	2.50	2.53
Glass type factor (GT1)	1.00		1.00	-
Load share factor (LS1)	1.00		1.00	-
Load resistance (LR1)	2.46	KPa	2.50	2.53
Non-factored load (NFL2)	0.00	KPa	0.00	0.00
Glass type factor (GT2)	0.00		0.00	-
Load share factor (LS2)	0.00		0.00	-
Load resistance (LR2)	0.00	KPa	0.00	0.00
Load resistance LR=min(LR1,LR2)	2.46	KPa	2.50	2.53
CAPACITY > DEMAND?	YES		YES	YES
Aspect ratio (a/b)	1.25		1.25	-
Load duration factor [(td/60)^(m/16)]	0.27		0.27	-
True thickness (h1)	5.56	mm	5.56	-
Nondimensional pressure (q1*)	104.17		104.00	-
Stress distribution factor (J1)	18.22		18.20	-
Probability of breakage (Pb1)	4.85	/1000	4.77	-
True thickness (h2)	0.00	mm	0.00	-
Nondimensional pressure (q2*)	0.00		0.00	-
Stress distribution factor (J2)	0.00		0.00	-
Probability of breakage (Pb2)	0.00	/1000	0.00	-
Probability of breakage Pb=max(Pb1,Pb2)	4.85	/1000	4.77	-
Pb < Pb-tolerable?	YES		YES	-

6 NOTATION

aLong side (mm) bShort side (mm) = EGlass Young's modulus (kPa) GTF = Glass Type Factor h = True (minimum) glass thickness (mm) **IGU** Insulating Glass Unit J = Stress Distribution Factor (SDF) J_{tol} = Stress Distribution Factor associated with P_{b-tol} k First flaw parameter (N-7m12) = LDF Load Duration Factor = **LSF** Load Sharing Factor LR = Load Resistance (kPa) m Second flaw parameter NFL Non-Factored Load = P_b Probability of breakage P_{b-tol} Tolerable probability of breakage (e.g. 0.008) SDF Stress Distribution Factor (also J) $TNT_{eq} =$ TNT equivalency factor TSD = Three Second Duration equivalent pressure (also q) Three Second Duration equivalent pressure (also SDF, kPa) q= ĝ Non-dimensional pressure =

SD = Slanted standoff distance (m)

 SD_x = Standoff distance – x projection (m)

 SD_y = Standoff distance – y projection (m)

 SD_z = Standoff distance – z projection (m)

 W_{ex} = Explosive charge mass (kg)

 W_{TNT} = TNT charge mass (kg)

7 REFERENCES

- ASTM, 2009a. Standard Practice for Determining Load Resistance of Glass in Buildings. ASTM Standard E1300-09a, West Conshohocken, PA: American Society for Testing and Materials (ASTM). Available at: http://compass.astm.org/EDIT/html_historical.cgi?E1300+09a.
- ASTM, 2009b. Standard Practice for Specifying an Equivalent 3-Second Duration Design Loading for Blast Resistant Glazing Fabricated with Laminated Glass. ASTM Standard F2248, West Conshohocken, PA: American Society for Testing and Materials (ASTM). Available at: http://compass.astm.org/Standards/HISTORICAL/F2248-09.htm.
- Beason, W.L., Kohutek, T.L. & Bracci, J.M., 1998. Basis for ASTM E 1300 Annealed Glass Thickness Selection Charts. *Journal of Structural Engineering*, 124(2), pp.215–221. Available at: http://ascelibrary.org/doi/10.1061/%28ASCE%290733-9445%281998%29124%3A2%28215%29.