

Durée	Activités	Contenu du cours	Evaluation et remarques			
	Activité 01	I. Généralités sur les suites numériques				
	1) Observer, puis	Soit $n_0 \in \mathbb{N}$ et <i>I</i> une partie de \mathbb{N} tel que $I = \{n \in \mathbb{N} / n \ge n_0\}$.	Exercice O			
	compléter les listes	1. Définition d'une suite	Soit $(U_n)_{n\in\mathbb{N}^*}$ une suite numérique définie par			
	suivantes par quatre nombres convenables		$U_n = \frac{2+5n}{n}$			
	1;3;5;	note U,V	n			
	0;2;4;6	2. Vocabulaire	1) Calculer les trois premiers termes de			
	 0;1;4;9;16 Chaque liste s'appelle une suite numérique. Les nombres formant une suite sont appelés les termes de la suite 	Soit U une suite numérique définie sur I $(I \subset \mathbb{N})$.	$(U_n)_{n\in\mathbb{N}^*}$			
		• Pour tout $n \in \mathbb{N}$ le nombre $U(n)$ se note U_n .	2) Calculer $U_n + 1$, U_{n+1} et U_{2n+1}			
			3) Déterminer la valeur de <i>n</i> (rang) telle que 7			
		• La suite U se note $(U_n)_{n \in I}$ ou $(U_n)_{n \geq n_0}$.	$U_n = \frac{7}{2}$			
		• Le nombre U_n s'appelle terme générale de la suite $(U_n)_{n \ge n_0}$ et aussi				
	• Dans la liste	le terme de rang <i>n</i> .				
	0;2;4;6le nombre	• Le nombre U_{n_0} s'appelle le premier terme de la suite $(U_n)_{n\geq n_0}$ et				
	0 s'appelle le premier	aussi le terme de rang 0				
	terme de la suite ou le terme initial.	<u>Exemple</u>				
	2) On prend la liste	• Le terme général de la suite des nombres pairs est $U_n = 2n$ pour tout	Remarque			
	suivante	$n \in \mathbb{N}$ et son premier terme est $U_0 = 2 \times 0 = 0$	Il existe deux types de suites :			
	1;3;5;	• Le terme général de la suite des nombres impairs est $U_n = 2n+1$	• Suite définie explicitement en fonction de			
	Comment passe-t-on	pour tout $n \in \mathbb{N}$ et son premier terme est $U_0 = 2 \times 0 + 1 = 1$	<u>rang</u> n			
	d'un terme au suivant?	• Suite définie explicitement en fonction de rang n	Ce type permet de déterminer directement les			
		Exemple:	termes de la suite ; en remplaçant <i>n</i> par des valeurs possibles.			
		La suite (U_n) définie par $U_n = 2n + 3$ est une suite définie explicitement	• Suite définie par une relation de récurrence			
		Telle que $U_0 = 2 \times 0 + 3 = 3$; $U_7 = 2 \times 7 + 3 = 17$	Cette suite peut être définie par son premier			
		• Suite définie par une relation de récurrence	terme (ou par ses premiers termes); et par			
		<u>Exemple</u>	une relation de récurrence permettant de			
		• La suite définie par $ \begin{cases} U_0 = 1 \\ 1 \end{cases} $; $(\forall n \in \mathbb{N})$ est une suite définie par	calculer chaque terme en fonction des termes			
		• La suite définie par $\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{1}{2}U_n + 3 \end{cases}; (\forall n \in \mathbb{N}) \text{ est une suite définie par}$	précédents.			
		une relation de récurrence.				

Activité 02

Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique définie par $U_n = \frac{2+n}{1+n}$

- 1) Calculer U_1 , U_2 et U_3
- 2) Montrer que $1 \le U_n$ et $U_n \le 2$
- 3) Déduire que $(\forall n \in \mathbb{N}); 1 \le U_n \le 2$

On a U.	$=\frac{1}{-U_{-}}$	$3 = \frac{1}{-} \times 1 +$	$-3 = \frac{7}{}$:	$U_2 = \frac{1}{2}U_1 + 3$	$R = \frac{1}{2}$	7+	$-3 = \frac{7}{-1} + 3 = \frac{7}{1}$	19
	$2^{\circ \circ}$	2	2 ,	$\frac{1}{2}$ $\frac{1}{2}$	2	2	4	4

II. <u>Suite majorée – Suite minorée – Suite bornée</u>

Définitions

Soit $(U_n)_{n\in I}$ une suite numérique.

- On dit que la suite $(U_n)_{n\in I}$ est **majorée** par un nombre réel M si et seulement si $(\forall n \in I); U_n \leq M$
- On dit que la suite $(U_n)_{n\in I}$ est **minorée** par un nombre réel m si et seulement si $(\forall n \in I); U_n \geq m$.
- On dit que la suite $(U_n)_{n\in I}$ est **bornée** s'elle est majorée et minorée.

Propriété

Soit $(U_n)_{n\in I}$ une suite numérique.

 $(U_n)_{n \in I}$ est bornée $\iff \exists k \in \mathbb{R}^*_+ / |U_n| \le k$

Exemple

 $U_n = \cos(n) + \sin(n) \ (\forall n \in \mathbb{N})$

On a $(\forall n \in \mathbb{N})$; $|U_n| \le 2$ donc (U_n) est bornée.

III. Monotonie d'une suite numérique

Définition

Soit $(U_n)_{r\in I}$ une suite numérique.

On dit $(U_n)_{n\in I}$ est une suite

Croissante si et seulement si $(\forall m \in I)(\forall n \in I)$; $n \prec m \Rightarrow U_n \leq U_m$.

Décroissante si et seulement si $(\forall m \in I)(\forall n \in I); n \prec m \Rightarrow U_n \geq U_m$

Constante si et seulement si $(\forall m \in I)(\forall n \in I); n \prec m \Rightarrow U_n = U_m$

Propriété

Soit $(U_n)_{n\in I}$ une suite numérique.

On dit que $(U_n)_{n\in I}$ est une suite

Croissante si et seulement si $(\forall n \in I)$; $U_n \leq U_{n+1}$.

Exercice @

Soit $(U_n)_{n\in\mathbb{N}}$ une suite numérique définie par

$$\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{U_n}{U_n + 1}; (\forall n \in \mathbb{N}) \end{cases}$$

- 1) Calculer U_1 ; U_2 et U_3
- 2) Par le principe de récurrence montrer que $(\forall n \in \mathbb{N}); U_n = \frac{2}{2n+1}$

Exercice 3

Soit $(U_n)_n$ une suite numérique définie par :

$$\begin{cases} U_0 = \frac{2}{3} \\ U_{n+1} = \frac{3U_n + 2}{2U_n + 3}; (\forall n \in \mathbb{N}) \end{cases}$$

- 1) Calculer U_1 , U_2 et U_3
- 2) En utilisant le raisonnement par récurrence montrer que (U_n) est majorée par 1 et minorée par 0

Remarque

- Pour étudier la monotonie de $(U_n)_{n\in I}$ on étudie le signe de $U_{n+1}-U_n$ pour tout $n\in I$
- Soit $(U_n)_{n \in I}$ une suite numérique telle que $(\forall n \in I); U_n \succ 0$
- $(U_n)_{n\in I}$ est strictement croissante $\Leftrightarrow \frac{U_{n+1}}{U_n} > 1$.
- $(U_n)_{n \in I}$ est strictement décroissante $\Leftrightarrow \frac{U_{n+1}}{U_n} < 1$

Exercice @

Décroissante si et seulement si $(\forall n \in I)$; $U_n \ge U_{n+1}$.

Constante si et seulement si $(\forall n \in I)$; $U_n = U_{n+1}$.

IV. Suite arithmétique

1. Définition

Soit $(U_n)_{n\in I}$ une suite numérique.

On dit que $(U_n)_{n\in I}$ est une suite arithmétique si et seulement si $\exists r \in \mathbb{R} / U_{n+1} = U_n + r$.

Le nombre réel r s'appelle la raison de la suite $(U_n)_{n\in I}$.

Exemple

Soient (U_n) et (V_n) deux suites numériques telles que $U_n = -4n + 1$ et $V_n = n^2 + 2$

⇒ On a

Activité 03

 $U_n = 2n + 3$

tout $n \in \mathbb{N}$

Soit (U_n) une suite

1) Calculer les quatre

premiers termes de (U_n)

. Que remarquez-vous?

2) Calculer $U_{n+1} - U_n$ pour

numérique définie par

Donc (U_n) est une suite arithmétique de raison r = -4

⇒ Et On a

$$(\forall n \in \mathbb{N}); V_{n+1} - V_n = (n+1)^2 + 2 - (n^2 + 2) = n^2 + 2n + 1 + 2 - n^2 - 2 = 2n + 1$$

Donc la suite (V_n) n'est pas une suite arithmétique car la différence $V_{n+1}-V_n$ dépend de n .

2. <u>Terme générale d'une suite arithmétique en fonction de n</u> <u>Propriété</u>

Si $(U_n)_{n\in I}$ est une suite arithmétique de raison r alors $\forall (n,p) \in I^2$ on a $U_n = U_n + (n-p) \times r$.

Exemple

Soit (U_n) une suite arithmétique de raison r = 2 et son premier terme est $U_0 = -3$

On a
$$U_n = U_p + (n-p)r$$
 donc $U_n = U_0 + (n-0) \times r = -3 + 2n$

Etudier la monotonie de la suite (U_n) dans les cas suivants

$$U_{n} = \frac{2n-1}{n+4}; U_{n} = 4\left(\frac{1}{3}\right)^{n} U_{n} = \frac{n+1}{2^{n}}$$

$$\begin{cases} U_{0} = 1 \\ U_{n+1} = U_{n} + 2 \end{cases}; \begin{cases} U_{0} = 2 \\ U_{n+1} = U_{n} - 3n \end{cases}$$

Remarque

Pour montrer qu'une suite numérique $\left(U_n\right)_{n\in I}$ est arithmétique il suffit de montrer que $\big(\forall n\in I\big); U_{n+1}-U_n=r$, de telle sorte que r ne dépend pas de n.

Exercice ©

Soit (U_n) une suite arithmétique telle que :

$$U_0 = 5$$
 et $U_{25} = 15$

- 1) Déterminer r la raison de la suite
- 2) Exprimer U_n en fonction de n
- 3) Le nombre 203 est-il un terme de la suite (U_n) ? justifier

⇒ Propriété caractéristique d'une suite arithmétique

Si x, y et z (dans cet ordre) trois termes consécutifs d'une suite arithmétique alors on a x + z = 2y

Exemple

Soit $\left(U_{_{n}}\right)_{_{n}}$ une suite arithmétique telle que $\,U_{_{1}}+U_{_{2}}+U_{_{3}}=15$. Calculer $\,U_{_{2}}\,$.

3. <u>Somme de termes consécutifs d'une suite arithmétique</u> **Propriété**

Si $(U_n)_{n\in I}$ est une suite arithmétique de raison r alors $\forall (n,p) \in I^2$ on a $U_p + U_{p+1} + U_{p+2} + \dots + U_n = \frac{(n-p+1)}{2} (U_p + U_n)$.

 U_p le premier terme de la somme, U_n le dernier terme de la somme et (n-p+1) le nombre termes.

Exemple

Soit (V_n) une suite arithmétique telle que $V_n = 2n + 3$. Calculer $S = \sum_{k=0}^{9} V_k$

On a
$$S = \sum_{k=0}^{9} V_k = \frac{(9-0+1)}{2} (V_0 + V_9)$$

Et on a $V_0 = 2 \times 0 + 3 = 3$ et $V_9 = 2 \times 9 + 3 = 21$ Donc S = 5(3 + 21) = 120

V. Suite géométrique

1. Définition

Soit $(U_n)_{n\in I}$ une suite numérique.

On dit que $(U_n)_{n\in I}$ est une suite arithmétique si et seulement si $\exists q\in \mathbb{R} \ /\ U_{n+1}=qU_n$.

Le nombre réel q s'appelle raison de la suite $(U_n)_{n\in I}$.

Exemple

Soit (U_n) une suite numérique telle que $(\forall n \in \mathbb{N})$; $U_n = -7 \times 5^n$.

On a
$$U_{n+1} = -7 \times 5^{n+1} = -7 \times 5^n \times 5 = 5U_n$$
.

Donc (U_n) est une suite géométrique de raison 5.

2. <u>Terme générale d'une suite arithmétique en fonction de</u>

Exercice 6

Soit (U_n) une suite arithmétique telle que : $U_3 = 5$ et $U_{12} = 20$

- 1) Déterminer r la raison de la suite (U_n) . Puis déduire U_n en fonction de n
- 2) Calculer $S = U_3 + U_4 + \dots + U_{15}$

Remarque 01

Pour montrer qu'une suite numérique $(U_n)_{n\in I}$ est géométrique il suffit de montrer que $(\forall n\in I); \frac{U_{n+1}}{U_n}=q(U_n\neq 0)$, de telle sorte que q ne dépend pas de n.

Remarque 02

Soit $(U_n)_{n\in I}$ est une suite géométrique de raison q.

Activité 04

Soit (U_n) une suite numérique définie par $(\forall n \in \mathbb{N}); U_n = 4 \times 3^n$.

- 1) Calculer $\frac{U_1}{U_0}$, $\frac{U_2}{U_1}$ et $\frac{U_3}{U_2}$. Que remarquezvous ?
- 2) Déduire U_{n+1} en fonction de U_n pour tout $n \in \mathbb{N}$.

Propriété

Si $(U_n)_{n\in I}$ est une suite géométrique de raison q alors $\forall (n,p)\in I^2$ on a $U_n=U_p\times q^{n-p}$.

⇒ Propriété caractéristique d'une suite géométrique

Si x, y et z (dans cet ordre) trois termes consécutifs d'une suite géométrique alors on a $x \times z = y^2$.

Exemple

Soit (U_n) une suite géométrique telle que $U_1 \times U_2 \times U_3 = 27$. Calculer U_2

3. Somme de termes consécutifs d'une suite géométrique Propriété :

 $\mathrm{Si}\left(U_{n}\right)_{n\in I}$ est une suite géométrique de raison $q\ \left(q\neq1\right)$, alors La somme des termes consécutifs $S=U_{p}+U_{p+1}+U_{p+2}+.....+U_{n}$

est
$$S = U_p \times \left(\frac{1 - q^{n-p+1}}{1 - q}\right)$$
.

Exercice de synthèse

Soit $(U_n)_n$ une suite numérique définie par $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{1}{5}U_n + 2 \end{cases}; (\forall n \in \mathbb{N})$

- 1) Calculer U_1, U_2 et U_3
- 2) Soit (V_n) une suite numérique définie par $V_n = \frac{5}{2} U_n$
- a) Montrer que (V_n) est une suite géométrique, en déterminant sa raison et son premier terme.
- b) Exprimer V_n en fonction de n.
- c) Déduire U_n en fonction de n.
- d) Calculer $S = \sum_{k=0}^{9} V_k$.

- Si p = 0 alors $U_n = U_0 \times q^n$.
- Si p = 1 alors $U_n = U_1 \times q^{n-1}$.
- Si q = 1 alors la suite $(U_n)_{n \in I}$ est une suite constante.

Exercice 2

Soit (U_n) est une suite géométrique de raison q telle que $U_1 = -2$ et $U_4 = 5$.

Déterminer la raison de la suite (U_n) puis déduire le terme général en fonction de n

Exercice 8

Soit (U_n) une suite géométrique telle que $U_0 = 2$ et q = -3.

- 1) Exprimer U_n en fonction de n.
- 2) Calculer U_1, U_2, U_3 et U_9
- 3) Calculer $S = \sum_{k=1}^{9} U_k$