Continuous Fused Optimal Transport

Junhyoung Chung*

Department of Statistics Seoul National University Seoul 08826, Republic of Korea junhyoung0534@gmail.com

Abstract

The abstract paragraph should be indented $\frac{1}{2}$ inch (3 picas) on both the left- and right-hand margins. Use 10 point type, with a vertical spacing (leading) of 11 points. The word **Abstract** must be centered, bold, and in point size 12. Two line spaces precede the abstract. The abstract must be limited to one paragraph.

1 Introduction

2 Fused Optimal Transport

Notations. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and (S, d_S) a compact metric space. A measurable map $X : \Omega \to S$ is called a random element with distribution $\mathbb{P}_X := \mathbb{P} \circ X^{-1}$. We also introduce a feature space $M \subset \mathbb{R}^d$ which is compact, and call any one-to-one and continuous $f : S \to M$ a feature function. For two probability measures μ, ν on S, denote by

$$\Pi(\mu, \nu) = \{ \pi \text{ on } S \times S : \text{ the marginals are } \mu \text{ and } \nu \}$$

the set of all couplings between μ and ν . Lastly, we say a measurable map $T:S\to S$ pushes forward μ to ν if $\mu(T^{-1}(A))=\nu(A)$ for all $A\in\mathcal{B}(S)$, where $\mathcal{B}(S)$ is the Borel σ -algebra of S. We denote $T_{\#}\mu=\nu$ if T pushes forward μ to ν .

Fused optimal transport plan. For $0 \le \alpha \le 1$ and a feature function f, we consider

$$\inf_{\pi \in \Pi(\mathbb{P}_{X}, \mathbb{P}_{Y})} (1 - \alpha) \mathbb{E}_{(X,Y) \sim \pi} \left[\| f(X) - f(Y) \|_{2}^{2} \right] + \alpha \mathbb{E}_{(X,Y) \sim \pi} \left[K_{h}(X,X') \left| d_{S}(X,X') - d_{S}(Y,Y') \right|^{2} \right], \tag{1}$$

where $K_h: S \times S \to [0, \infty)$ is a bounded, continuous, and symmetric kernel with a bandwidth h > 0. We write S_{α} for the set of minimizers of (1).

Proposition 1 (Existence of a minimizer). For each $0 \le \alpha \le 1$, the problem (1) admits at least one minimizer; that is, $S_{\alpha} \ne \emptyset$.

An equivalent formulation in feature space. Let $Z \coloneqq f(X)$ and $W \coloneqq f(Y)$, and consider couplings $\gamma \in \Pi(\mathbb{P}_Z, \mathbb{P}_W)$ on $M \times M$. Define $K_h^f(z, z') \coloneqq K_h(g(z), g(z'))$ with $g \coloneqq f^{-1}$ on f(S). Then, (1) is equivalent to

$$\min_{\gamma \in \Pi(\mathbb{P}_{Z}, \mathbb{P}_{W})} (1 - \alpha) \mathbb{E}_{(Z, W) \sim \gamma} [\|Z - W\|_{2}^{2}]
+ \alpha \mathbb{E}_{\substack{(Z, W) \sim \gamma \\ (Z', W') \sim \gamma}} [K_{h}^{f}(Z, Z') | d_{S}(g(Z), g(Z')) - d_{S}(g(W), g(W')) |^{2}].$$
(2)

^{*}https://junhyoung-chung.github.io/

Thus, π is feasible for (1) if and only if $\gamma=(f\times f)_\#\pi$ is feasible for (2) with the same objective value. In the sequel, we focus on analyzing (2) for mathematical simplicity.

References

Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions. *Communications on pure and applied mathematics*, 44(4):375–417, 1991.

A Appendix