Social choice

Concerned with group decision making

 Voting: how to combine preferences to derive a social outcome

Social Choice Function

- One of the variants of *preference aggregation*
 - Selects one of the possible candidates (e.g. an election)

Voting Procedures

- Examples:
 - Simple majority election (for 2 candidates only)
 - Sequential majority elections
 - Borda count
 - Alternative Vote (Instant Runoff Voting)

Desirable Properties for Voting

- Pareto Property if everybody prefers c_i over c_j , then c_i should be ranked over c_i in the social outcome
- Condorcet Winner if c_i is a condorcet winner, then c_i should always be ranked first
- Independence of Irrelevant Alternatives (IIA)
 - If c_i ranked over c_j , social outcome should depend only on relative order of c_i and c_i in voter profiles
- No dictatorships

Results

- Arrow's Theorem
 - For elections with >2 candidates, only voting
 procedure satisfying Pareto and IIA is a dictatorship
- Gibbard-Satterthwaite Theorem
 - Only non-manipulable voting method satisfying Paretor property for elections with >2 candidates is a dicatorship

Results

- But ... computational complexity helps :-)
 - Elections are prone to manipulation, but manipulation is computationally complex
 - E.g. "Single Transferable Vote" is NP-hard to manipulate

Single Transferable Vote

- Used for selecting a group of candidates C for a limited number of seats S (e.g. parliamentary elections, city counsel elections), where C > S
- If selection of single candidate, the equivalent to *Instant Runoff Voting*

Single Transferable Vote

Single Transferable Vote

- Threshold Droop quota = $floor(\frac{valid \, votes \, cast}{num \, seats + 1}) + 1$
- Surplus votes redistribution
 - $\frac{}{}$ ($\frac{votes\ for\ next\ preference\ belonging\ to\ original\ candidate}{}$) \times surplus votes for original candidate