计算指标

指标	选取理由	记 号
CVSS	CVSS 是业界标准,对漏洞的"影响"和"可利用性"提供了统一量化	X1
EPSS	EPSS 基于对历年实测攻击数据、公开 PoC 频度等进行建模,更贴近"攻击者最可能利用的漏洞",EPSS 会随时间、社区兴趣波动而调整	X2
CWE-ID	不同 CWE(如缓冲区溢出 vs. 信息泄露 vs. 权限绕过)在攻击路径、检测手段、补丁难度上存在本质区别,加入类别特征能帮助模型认识"哪类漏洞更危险"	Х3
发布日期 (Age)	古早漏洞通常已有成熟 PoC,与之对应的"真实风险"可能进一步提高,或者相反因补丁普及而降低	X4
环境适配度 (ENV)	只有当漏洞特征与目标环境高度匹配时,才真正构成风险;没有 ENV,就无法区分"此漏洞对本次靶机是否致命"	X5
PoC质量得分	不仅关乎 PoC 是否存在,还要考量其成熟度、可移植性、所需权限等, 直接决定攻击者落地的成本	X6
Trend得分	通过 GitHub 上相关仓库的 Star、Fork、Issue 数量衡量社区对该漏洞利用代码的关注度与活跃度	X7

通过这七类指标的互补融合,模型既兼顾了漏洞本身的**固有严重度**(CVSS、CWE、Age),也体现了**当前可利用性**(EPSS、PoC、Trend),更加入了**场景相关性**(ENV)

参考模型: Factorization Machines (FM)

评分模型

核心风险映射 Fcore,定义为线性泛函组合: $Fcore(x)=i\in 1,2,6\sum wixi$ 其中 $x_1:CVSS$, $x_2:EPSS$, $x_6:PoC$,表示"静态-动态-代码可用性"三位一体的风险强度

指标交叉结构 Finteraction,构造语义驱动的特征图谱 Grisk = (V, E):

- 顶点集合 V=xi,边 $(x_i,x_i)\in E$ 表示存在风险协同
- 权重矩阵 $\Gamma = [\gamma ij]$ 表示协同放大系数

其形式可定义为: $Finteraction(x) = (i, j) \in E \sum \gamma ij \cdot xixj$

可解释实例:

• x1x2: 高危 CVE + 高利用率 \rightarrow 高实际攻击概率;

• x3x6: 某 CWE 类型易开发高质量 PoC;

• x6x7: 社区高关注漏洞其 PoC 质量通常也更好。

时序趋势调制项 Ftemporal,由"时间衰减项+趋势增强项"构成:

 $Ftemporal(x) = \lambda 1 \cdot e^{(-\mu x4)} + \lambda 2 \cdot x7^{\beta}$

其中:

• x4: 年龄 \rightarrow 年越久越不敏感 (除非仍被关注);

• x7: 趋势指标 \rightarrow 高 trend 放大热度漏洞的风险传播。

环境门控函数G(x5)

上下文控制器: $G(x5)=\eta\cdot x5$,其中 $\eta\in[0.5,2]$ 控制ENV的主导程度,它**调节整个评分公式的全局放大/抑制**。

Sigmoid 映射 最终评分归一化: $\sigma(z)=1/1+e^-z$

模型模块	推荐理论支撑机制	网络安全建模意义
Fcore	显式评分建模 (Rating)	漏洞本身强度主导项
Finteraction	特征交叉建模(Feature Interaction)	捕捉联合影响:协同放大、非线性组合
Ftemporal	时间推荐(Temporal Models)	趋势性、生命周期映射
G(x5)	上下文推荐(Context-Aware)	融入环境敏感性,体现靶机对该 CVE 的 "真实危险"
$\sigma(\cdot)$	函数映射 (Bounded Preference)	将危险评分映射到 [0,1],可用于排序与 阈值分类

cve_id	risk_score
CVE-2021-43798	0. 913
CVE-2023-0507	0.871
CVE-2022-31097	0.862
CVE-2023-2183	0.857
CVE-2023-0594	0.855
CVE-2022-23552	0.83
CVE-2022-39324	0.832
CVE-2022-21702	0.830
CVE-2023-1410	0.830
CVE-2022-39201	0.824
CVE-2022-36062	0.824
CVE-2022-31107	0.820
CVE-2022-39307	0.817
CVE-2022-35957	0.817
CVE-2022-21703	0.814
CVE-2022-31123	0.81
CVE-2022-39306	0.812
CVE-2022-31130	0.8
CVE-2022-39229	0.805
CVE-2022-21673	0.804
CVE-2021-43813	0.80
CVE-2021-43815	0.798
CVE-2022-21713	0. 798

cve_id	risk_score
CVE-2019-14234	0. 9077
CVE-2020-7471	0. 9047
CVE-2020-9402	0. 9001
CVE-2019-19844	0. 8933
CVE-2017-12794	0. 8657
CVE-2018-14574	0. 8473
CVE-2019-12308	0.8274
CVE-2019-6975	0. 8263
CVE-2019-14233	0.8257
CVE-2019-14235	0.8256
CVE-2019-14232	0. 8235
CVE-2019-3498	0.8163
CVE-2019-12781	0.807
CVE-2018-7537	0.8068
CVE-2018-7536	0. 8063
CVE-2021-33203	0. 8028