第九周习题课 三重积分

例.1 (三重积分) 设 V 是锥面
$$z = \sqrt{x^2 + y^2}$$
 和球面 $x^2 + y^2 + z^2 = R^2$ 所围成的区域,积分
$$\iiint_V (x^2 + y^2 + z^2) dx dy dz =$$

例. 2 求
$$\iiint_{\Omega} (1+x^2+y^2)zdxdydz$$
,

例. 3 设
$$f(t)$$
 在 $[0,+\infty)$ 上连续, $F(t) = \iiint_{\Omega} (z^2 + f(x^2 + y^2)) dx dy dz$,其中
$$\Omega = \{(x,y,z) \mid 0 \le z \le h, x^2 + y^2 \le t^2\} \quad (t>0). \ \ \ \ \ \ \lim_{t\to 0^+} \frac{F(t)}{t^2}.$$

.

例.4 求三重积分:
$$I = \iiint_{\Omega} (x + y + z) dv$$
, 其中

$$\Omega = \{(x, y, z) | \sqrt{x^2 + y^2} \le z \le \sqrt{1 - x^2 - y^2} \}$$

例.5 求由曲面 $S: (x^2 + y^2)^2 + z^4 = z^2$ 所围立体 Ω 的体积。

例.6 设
$$A=(a_{ij})$$
 为 3×3 实对称正定矩阵, $\sum_{i,j=1}^3 a_{ij} x_i x_j = 1$ 表示三维空间的一个椭球面。证明该椭球面所包围立体 V 的体积为 $|V|=\frac{4\pi}{3\sqrt{\det A}}$ 。

- **例.7** 令曲面 S 在球坐标下方程为 $r=a(1+\cos\theta)$, Ω 是 S 围成的有界区域,计算 Ω 在 直角坐标系下的形心坐标。
- **例.8** 由六个平面 $3x-y-z=\pm 1$, $-x+3y-z=\pm 1$, $-x-y+3z=\pm 1$ 所围立体的体积为

例.9 设
$$V = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$
 , $h = \sqrt{a^2 + b^2 + c^2} > 0$, $f(u)$ 在区间 $[-h,h]$ 上连续,证明: $\iint_V f(ax + by + cz) dx dy dz = \pi \int_{-1}^1 (1-t^2) f(ht) dt$ 。