

SemiHand: Semi-supervised Hand Pose Estimation with Consistency

Linlin Yang^{1,2}, Shicheng Chen¹, Angela Yao¹

¹National University of Singapore, ²University of Bonn

Motivation

- Synthesizing training data is considered an easy alternative to get accurate labels. Yet there exists a significant domain gap between synthetic and real-world images.
- Formulation-wise, pose estimation is a regression problem that critically depends on spatial information.
 Moreover, there is a clear separation between biomechanical feasible versus infeasible poses.
- We propose a novel RGB-based 3D hand pose estimation framework using labelled synthetic data and unlabelled real-world data; it is the first semi-supervised framework that combines **pseudo-labelling** with **consistency training** for **3D RGB-based hand pose**.

— Algorithm

Require: Pre-trained model θ_0 based on \mathcal{L}_{sup} , threshold τ , epoch number K, labelled synthetic data X_L and unlabelled real data X_U

Ensure: Final model θ and pseudo labels $\hat{\mathbf{p}}$

- 1: Initialize the pseudo-labels $\hat{\mathbf{p}}$ for X_U based on θ_0
- 2: Initialize the corrected pseudo-labels ${\bf r}$ for X_U based on label correction
- 3: for $t = 1, \dots, K$ epochs do
- Calculate confidence of $\hat{\mathbf{p}}$ based on the plausibility and stability
- Update θ via gradient ascent based on labels/pseudolabels and two consistency losses
- 6: Update $\hat{\mathbf{p}}$ and \mathbf{r} accordingly
- 7: end for