COMP-170: Homework #6

Ben Tanen - March 12, 2017

Problem 2

Let ACCEPTMORE = $\{\langle M_1, M_2 \rangle \mid |L(M_1)| \text{ and } |L(M_2)| \text{ are finite and } |L(M_1)| < |L(M_2)| \}$. Prove that ACCEPTMORE is unrecognizable.

* * *

To show that ACCEPTMORE is unrecognizable, we can prove $\overline{A_{TM}} \leq_m$ ACCEPTMORE. In order to do this, we will construct a function $f: \Sigma^*_{\overline{A_{TM}}} \to \Sigma^*_{\text{ACCEPTMORE}}$ such that $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in \text{ACCEPTMORE}$. Once we show that $\overline{A_{TM}} \leq_m \text{ACCEPTMORE}$, because $\overline{A_{TM}}$ is unrecognizable, we will have shown that ACCEPTMORE is also unrecognizable.

First, for ease, we will denote L = ACCEPTMORE. Next, we will claim $\overline{A_{TM}} \leq_m L$. To prove this claim, we will first show how $\overline{A_{TM}}$ and L relate to each other (using the "Tony Square").

	$\overline{A_{TM}}$	L
IN	M doesn't accept w	$ L(M_1) $ and $ L(M_2) $ are finite and $ L(M_1) < L(M_2) $
OUT	M accepts w	$ L(M_1) $ and $ L(M_2) $ are not finite or $ L(M_1) \ge L(M_2) $

Now that we've built our "Tony Square", we can define our function. Let $f: \Sigma_{\overline{A_{TM}}}^* \to \Sigma_L^*$ be defined as follows:

f on input $\langle M, w \rangle$ outputs $\langle M_1, M_2 \rangle$, where M_1 and M_2 are defined by:

M_1 on input x:

Run M on wIf M accepts w, ACCEPTIf M rejects w, LOOP

M_2 on input x:

If x = 1, ACCEPT

Else, LOOP

Given our definition of f, we claim that f is computable. Because M_1 and M_2 are valid Turing machines and f is a finite function (made up of finite steps), we can see that f is indeed computable.

Now, we can go through two cases to show that f correctly satisfies $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in L$. Consider the following two cases:

- 1. Suppose $\langle M, w \rangle \in \overline{A_{TM}}$ such that M doesn't accept w. Because M doesn't accept w, we can see that M_1 will loop on every input so $L(M_1) = \emptyset$. We can also see that M_2 always only accepts 1 so $L(M_2) = \{1\}$. Thus, $|L(M_1)| = 0 < |L(M_2)| = 1$, so we can see $\langle M_1, M_2 \rangle \in L$ when $\langle M, w \rangle \in \overline{A_{TM}}$.
- 2. Suppose $\langle M, w \rangle \not\in \overline{A_{TM}}$ such that M accepts w. Because M accepts w, we can see that M_1 will accept every input so $|L(M_1)|$ is not finite. Additionally, since $L(M_2) = \{1\}$ again, we can see that $|L(M_1)| \not< |L(M_2)|$. Thus, we can see $\langle M_1, M_2 \rangle \not\in L$ when $\langle M, w \rangle \not\in \overline{A_{TM}}$.

Given these two cases, we can thus see that f does indeed satisfy the claim $x \in \overline{A_{TM}} \Leftrightarrow f(x) \in L$. Therefore, we can see that $\overline{A_{TM}} \leq_m L$. Because we know $\overline{A_{TM}}$ is unrecognizable, we can see that L = ACCEPTMORE is also unrecognizable. \boxtimes