Esame di Ricerca Operativa del 05/02/19

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Effettuare due iterazioni dell'algoritmo del simplesso duale.

$$\begin{cases} \min & 17 \ y_1 + 28 \ y_2 + 16 \ y_3 + 3 \ y_4 + 3 \ y_5 + 19 \ y_6 \\ -6 \ y_1 + 7 \ y_2 + 4 \ y_3 - 2 \ y_4 - 2 \ y_5 + 2 \ y_6 = 2 \\ 10 \ y_1 + 2 \ y_2 - 3 \ y_3 - 4 \ y_4 + 2 \ y_5 - y_6 = 1 \\ y \ge 0 \end{cases}$$

	Base	x	Degenere?	y	Indice	Rapporti	Indice
					uscente		entrante
1° passo	$\{5,\!6\}$						
2° passo							

Esercizio 2. Un'azienda produce 4 tipi di TV (32, 40, 50 e 55 pollici) ed è divisa in 2 stabilimenti (A e B). L'azienda dispone di 40 operai in A e 50 in B ognuno dei quali lavora 8 ore al giorno per 5 giorni alla settimana. Le ore necessarie per produrre i TV e le richieste minime da soddisfare sono indicate nella seguente tabella:

TV	32"	40"	50"	55"
Stabilimento A	1.2	1.5	1.7	2
Stabilimento B	1.5	1.6	1.8	2.1
Richiesta	1000	700	600	400

Sapendo che i 4 tipi di TV vengono venduti rispettivamente a 400, 600, 1000, e 1500 euro, l'azienda vuole determinare quanti TV di ogni tipo produrre nei due stabilimenti in modo da massimizzare il profitto.

ariabili decisionali:							
nodello:							
COMANDI DI MATILAD							

COMANDI DI MATLAB					
C=	intcon=				
A=	b=				
Aeq=	beq=				
lb=	ub=				

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti sulla seguente rete (su ogni arco sono indicati, nell'ordine, il costo e la capacità).

	_	
	1° iterazione	2° iterazione
Archi di T	(1,2) (1,3) (1,4) (3,5) (4,6) (5,7)	
Archi di U	(2,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 9 x_1 + 14 x_2 \\ 15 x_1 + 6 x_2 \le 61 \\ 13 x_1 + 14 x_2 \le 65 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_S(P) =$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_I(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6
	π	p										
nodo visitato												
nodo 2												
nodo 3												
nodo 4												
nodo 5												
nodo 6												
$\begin{array}{c} \text{insieme} \\ Q \end{array}$		·		·		·				·		

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 6 sulla seguente rete.

cammino aumentante	δ	x	v

Esercizio 6. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	30	27	30	49
2		19	95	63
3			29	28
4				61

a) Trovare una valutazione inferiore del valore ottimo calcolando il 4-albero di costo minimo.

4-albero:	$v_I(P) =$
b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal no	do 4.

ciclo: $v_S(P) =$ c) Applicare il metodo del *Branch and Bound*, utilizzando il 4-albero di costo minimo come rilassamento di ogni

sottoproblema ed istanziando, nell'ordine, le variabili $x_{23},\,x_{24},\,x_{45}.$

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1^2 - 2x_2^2 + 8x_2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - x_2^2 + 1 \le 0, \quad x_1^2 - x_2 - 2 \le 0}.$$

Soluzioni del siste	Mass	simo	Mini	mo	Sella		
x	λ	μ	globale	locale	globale	locale	
(0, -2)							
(0, -1)							
$\left(\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$							
$\left(-\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$							
(0, 1)							
(0, 2)							

Esercizio 8. Si consideri il seguente problema:

$$\begin{cases} \min -4 \ x_1 \ x_2 - 4 \ x_2^2 + 5 \ x_1 + 10 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (0,2) , (2,2) , (-2,-3) e (2,-3). Fare un passo del metodo di Frank-Wolfe.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
$\left(-\frac{4}{3},-\frac{4}{3}\right)$					
(3, 3)					

SOLUZIONI

Esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{5, 6}	$\left(\frac{41}{2},\ 22\right)$	(0, 0, 0, 0, 2, 3)	1	$\frac{2}{7}, \frac{3}{4}$	5
2° iterazione	{1, 6}	$\left(\frac{207}{14}, \frac{74}{7}\right)$	$\left(\frac{2}{7}, 0, 0, 0, 0, \frac{13}{7}\right)$	2	$\frac{4}{11}$, $\frac{13}{41}$	6

Esercizio 2.

$$\begin{cases} \max \ 400 \left(x_{1A} + x_{1B}\right) + 600 \left(x_{2A} + x_{2B}\right) + 1000 \left(x_{3A} + x_{3B}\right) + 1500 \left(x_{4A} + x_{4B}\right) \\ 1.2 \, x_{1A} + 1.5 \, x_{2A} + 1.7 \, x_{3A} + 2 \, x_{4A} \le 1600 \\ 1.5 \, x_{1B} + 1.6 \, x_{2B} + 1.8 \, x_{3B} + 2.1 \, x_{4B} \le 2000 \\ x_{1A} + x_{1B} \ge 1000 \\ x_{2A} + x_{2B} \ge 700 \\ x_{3A} + x_{3B} \ge 600 \\ x_{4A} + x_{4B} \ge 400 \\ x_{ij} \ge 0 \\ x_{ij} \in \mathbb{Z} \end{cases}$$

Esercizio 3.

	1° iterazione	2° iterazione			
Archi di T	(1,2) $(1,3)$ $(1,4)$ $(3,5)$ $(4,6)$ $(5,7)$	(1,2) (1,3) (1,4) (3,7) (4,6) (5,7)			
Archi di U	(2,5)	(2,5)			
x	(1, 0, 5, 0, 7, 5, 0, 0, 2, 8, 0)	(1, 0, 5, 0, 7, 0, 5, 0, 2, 3, 0)			
π	(0, 4, 6, 10, 15, 15, 22)	(0, 4, 6, 10, 3, 15, 10)			
Arco entrante	(3,7)	(2,5)			
ϑ^+,ϑ^-	12, 5	7,1			
Arco uscente	(3,5)	(1,2)			

Esercizio 4.

a)

sol. ottima del rilassamento =
$$\left(0, \frac{65}{14}\right)$$
 $v_S(P) = 65$

h)

sol. ammissibile =
$$(0,4)$$
 $v_I(P) = 56$

;)

$$\begin{array}{l} r=2 \\ r=3 \end{array} \qquad \begin{array}{l} x_2 \leq 4 \\ 7\,x_1 + 8\,x_2 \leq 37 \end{array}$$

Esercizio 5. a)

	iter 1		iter	2	iter 3		iter 4		iter 5		iter 6		
	π	p	π	p	π	p	π	p	π	p	π	p	
nodo visitato	1		1 2			4		5		3		6	
nodo 2	4	1	4	1	4	1	4	1	4	1	4	1	
nodo 3	$+\infty$	-1	17	2	17	2	17	2	17	2	17	2	
nodo 4	6	1	6	1	6	1	6	1	6	1	6	1	
nodo 5	17	1	17	1	12	4	12	4	12	4	12	4	
nodo 6	$+\infty$	-1	$+\infty$	-1	21	4	17	5	17	5	17	5	
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 4	, 5	3, 4	, 5	3, 5	5, 6	3,	6	(5	()	

cammino aumentante	δ	x	v
1 - 4 - 6	6	(0, 6, 0, 0, 0, 0, 0, 6, 0)	6
1 - 5 - 6	10	(0, 6, 10, 0, 0, 0, 0, 6, 10)	16
1 - 2 - 4 - 6	5	(5, 6, 10, 0, 5, 0, 0, 11, 10)	21
1 - 2 - 3 - 4 - 6	2	(7, 6, 10, 2, 5, 2, 0, 13, 10)	23

Taglio di capacità minima: $N_s = \{1, 5\}$ $N_t = \{2, 3, 4, 6\}$

Esercizio 6. a)

4-albero: (1,3)(1,4)(2,3)(3,4)(3,5) $v_I(P)=133$

b)

ciclo: 4 - 3 - 2 - 1 - 5 $v_S(P) = 188$

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = -x_1^2 - 2x_2^2 + 8x_2$ sull'insieme

$${x \in \mathbb{R}^2 : -x_1^2 - x_2^2 + 1 \le 0, \quad x_1^2 - x_2 - 2 \le 0}.$$

Soluzioni del siste	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
(0, -2)	(0, 16)		NO	NO	NO	SI	NO
(0, -1)	(-6,0)		NO	SI	NO	NO	NO
$\left(\frac{\sqrt{15}}{2}, \frac{7}{4}\right)$	(0,1)		NO	NO	NO	NO	SI
$\left(-\frac{\sqrt{15}}{2},\frac{7}{4}\right)$	(0,1)		NO	NO	NO	NO	SI
(0, 1)	(2,0)		NO	NO	NO	NO	SI
(0, 2)	(0,0)		SI	SI	NO	NO	NO

Esercizio 8.

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto	
	problema linearizzato	problema linearizzato				
$\left(-\frac{4}{3}, -\frac{4}{3}\right)$	$10.3333x_1 + 26x_2$	(-2, -3)	$\left(-\frac{2}{3}, -\frac{5}{3}\right)$	1	(-2, -3)	