Introdução Objetivos Metodologia Motivation Our Results/Contribution

Método Automático de Contagem Volumétrica de Veículos baseado em Visão Computacional

Arthur Ferreira Bailão

Orientador: Prof. Hermes Aguiar Magalhães Supervisora: Prof^a. Leise Kelli de Oliveira

Universidade Federal de Minas Gerais

Projeto Final de Curso

- Introdução
- Objetivos
- Metodologia
 - Características de captura
 - Fluxo de processos
 - Avaliação dos resultados
- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Qual o objetivo?

Desenvolver um método de contagem volumétrica que auxilie na análise das condições do tráfego urbano.

- Contagem volumétrica utilizando um método não-invasivo de SIMPLES implementação.
- Utilizar imagens coletadas por uma câmera digital.
- Determinar a qualidade do método
- Identificar pontos de acerto e erro que podem ser trabalhados.

Qual o objetivo?

Desenvolver um método de contagem volumétrica que auxilie na análise das condições do tráfego urbano.

- Contagem volumétrica utilizando um método não-invasivo de SIMPLES implementação.
- Utilizar imagens coletadas por uma câmera digital.
- Determinar a qualidade do método.
- Identificar pontos de acerto e erro que podem ser trabalhados.

- Introdução
- Objetivos
- Metodologia
 - Características de captura
 - Fluxo de processos
 - Avaliação dos resultados
- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

- 1 Introdução
- Objetivos
- 3 Metodologia
 - Características de captura
 - Fluxo de processos
 - Avaliação dos resultados
- 4 Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Fluxograma global do método de contagem

Entrada de dados

- Imagens capturadas previamente.
- Os frames são obtidos individualmente.
- Abstração de um arquivo de vídeo por uma sequência de imagens.

Pré-processamento

- Conversão da imagem de entrada para grayscale.
- Filtragem linear gaussiana.

Pré-processamento

- Conversão da imagem de entrada para grayscale.
- Filtragem linear gaussiana.

Subtração de background

- Operação complexa e de alto custo computacional, mas de simples utilização.
- Modelo adaptativo de mistura de gaussianas com detecção de sombras, baseado em Zivkovic[2004] e Zivkovic & van der Heijden [2006].

Binarização

- Segmentar as regiões de interesse.
- Operação de limiarização ou thresholding.
- Operação morfológica de fechamento.
- Uniformizar a região de segmentação dos objetos.

Binarização

- Segmentar as regiões de interesse.
- Operação de limiarização ou thresholding.
- Operação morfológica de fechamento.
- Uniformizar a região de segmentação dos objetos.

Detecção de blobs

Rastreamento e contagem

Rastreamento e contagem

- 1 Introdução
- Objetivos
- Metodologia
 - Características de captura
 - Fluxo de processos
 - Avaliação dos resultados
- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Características de captura Fluxo de processos Avaliação dos resultados

A Matriz de confusão

Como calcular os índices de desempenho Precisão (P), Recall (R) e Acurácia (A)

$$P = \frac{VP}{VP + FP} \tag{1}$$

$$R = \frac{VP}{VP + FN} \tag{2}$$

$$A = \frac{VP + VN}{VP + FP + FN + VN} \tag{3}$$

Como calcular o índice Kappa (K)

É utilizado como uma medida apropriada da exatidão por representar inteiramente a matriz de confusão.

$$K = \frac{\theta_1 - \theta_2}{1 - \theta_2}$$

$$\theta_1 = \frac{VP + VN}{VP + FP + FN + VN}$$

$$\theta_2 = \frac{\alpha + \beta}{\gamma^2}$$

$$(4)$$

$$\alpha = (VP + FN) * (VP + FP), \beta = (VN + FN) * (VN + FP)$$
 e $\gamma = VP + VN + FP + FN$.

UF<u>m</u>G

Qualidade da contagem Índice Kappa (K)

Índice Kappa (K)	Qualidade
K < 0.2	Ruim
$0.2 \le K < 0.4$	Razoável
$0.4 \le K < 0.6$	Bom
$0.6 \le K < 0.8$	Muito bom
$K \geq 0.8$	Excelente

- Introdução
- Objetivos
- Metodologia
 - Características de captura
 - Fluxo de processos
 - Avaliação dos resultados
- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

Make Titles Informative. Use Uppercase Letters. Subtitles are optional.

- Use itemize a lot.
- Use very short sentences or short phrases.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item
 - Second item.
- using the general uncover command:
 - First item
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- using the pause command:
 - First item.
 - Second item.
- using overlay specifications:
 - First item.
 - Second item.
- using the general uncover command:
 - First item.
 - Second item.

- 1 Introdução
- Objetivos
- Metodologia
 - Características de captura
 - Fluxo de processos
 - Avaliação dos resultados
- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

- 1 Introdução
- Objetivos
- Metodologia
 - Características de captura
 - Fluxo de processos
 - Avaliação dos resultados
- Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

- Introdução
- Objetivos
- Metodologia
 - Características de captura
 - Fluxo de processos
 - Avaliação dos resultados
- 4 Motivation
 - The Basic Problem That We Studied
 - Previous Work
- Our Results/Contribution
 - Main Results
 - Basic Ideas for Proofs/Implementation

