Problem Set #7 Solutions

25.1 (a) The analytical solution can be derived by separation of variables

$$\int \frac{dy}{y} = \int t^2 - 1.1 \, dt$$

$$\ln y = \frac{t^3}{3} - 1.1t + C$$

Substituting the initial conditions yields C = 0. Taking the exponential gives the final result

$$y = e^{\frac{t^3}{3} - 1.1t}$$

The result can be plotted as

(b) Euler's method with h = 0.5

t	у	dyldt
0	1	-1.1
0.5	0.45	-0.3825
1	0.25875	-0.02588
1.5	0.245813	0.282684
2	0.387155	1.122749

Euler's method with h = 0.25 gives

t	у	dyldt
0	1	-1.1
0.25	0.725	-0.75219
0.5	0.536953	-0.45641
0.75	0.422851	-0.22728
1	0.36603	-0.0366
1.25	0.356879	0.165057
1.5	0.398143	0.457865
1.75	0.51261	1.005997
2	0.764109	2.215916

The results can be plotted along with the analytical solution as

(c) The midpoint method with h = 0.5

t	y	dy/dt	t_m	y_m	dy/dt-mid
0	1	-1.1	0.25	0.725	-0.75219
0.5	0.623906	-0.53032	0.75	0.491326	-0.26409
1	0.491862	-0.04919	1.25	0.479566	0.221799
1.5	0.602762	0.693176	1.75	0.776056	1.52301
2	1.364267	3.956374	2.25	2.35336	9.32519

with h = 0.25 gives

t	y	dy/dt	t_m	y_m	dy/dt-mid
0	1	-1.1	0.125	0.8625	-0.93527
0.25	0.766182	-0.79491	0.375	0.666817	-0.63973
0.5	0.60625	-0.51531	0.625	0.541836	-0.38436
0.75	0.510158	-0.27421	0.875	0.475882	-0.15912
1	0.470378	-0.04704	1.125	0.464498	0.076932
1.25	0.489611	0.226445	1.375	0.517916	0.409478
1.5	0.59198	0.680777	1.625	0.677077	1.043122
1.75	0.852761	1.673543	1.875	1.061954	2.565282
2	1.494081	4.332836	2.125	2.035686	6.953139

The results can be plotted along with the analytical solution as

(d) The 4^{th} -order RK method with h = 0.5 gives

t	у	k ₁	Уm	k ₂	Уm	k ₃	Уe	k4	φ
0	1	-1.1000	0.725	-0.7522	0.8120	-0.8424	0.5788	-0.4920	-0.7969
0.5	0.6016	-0.5113	0.4737	-0.2546	0.5379	-0.2891	0.4570	-0.0457	-0.2741
1	0.4645	-0.0465	0.4529	0.2095	0.5169	0.2391	0.5841	0.6717	0.2537
1.5	0.5914	0.6801	0.7614	1.4943	0.9649	1.8937	1.5382	4.4609	1.9861
2	1.5845	4.5949	2.7332	10.8302	4.2920	17.0071	10.0880	51.9532	18.7038

25.3 The second-order ODE is transformed into a pair of first-order ODEs as in

$$\frac{dy}{dt} = z \qquad y(0) = 2$$

$$\frac{dz}{dt} = 0.5t - y \qquad z(0) = 0$$

(a) The first few steps of Euler's method are

t	y	z	dy/dt	dz/dt
0	2	0	0	-2
0.1	2	-0.2	-0.2	-1.95
0.2	1.98	-0.395	-0.395	-1.88
0.3	1.9405	-0.583	-0.583	-1.7905
0.4	1.8822	-0.76205	-0.76205	-1.6822
0.5	1.805995	-0.93027	-0.93027	-1.556

(b) For Heun (without iterating the corrector) the first few steps are

t	у	Z	dy/dt	dz/dt	Yend	Zend	dy/dt	dz/dt	avg slope
0	2	0	0	-2	2	-0.2	-0.2	-1.95	-0.1
0.1	1.99	-0.1975	-0.1975	-1.94	1.97025	-0.3915	-0.3915	-1.87025	-0.2945
0.2	1.96055	-0.38801	-0.38801	-1.86055	1.921749	-0.57407	-0.57407	-1.77175	-0.48104
0.3	1.912446	-0.56963	-0.56963	-1.76245	1.855483	-0.74587	-0.74587	-1.65548	-0.65775
0.4	1.846671	-0.74052	-0.74052	-1.64667	1.772619	-0.90519	-0.90519	-1.52262	-0.82286
0.5	1.764385	-0.89899	-0.89899	-1.51439	1.674486	-1.05043	-1.05043	-1.37449	-0.97471

Both results are plotted below:

25.4 The second-order ODE is transformed into a pair of first-order ODEs as in

$$\frac{dy}{dx} = z y(0) = 4$$

$$\frac{dz}{dx} = -0.6z - 8y z(0) = 0$$

The results for the 4th-order RK method are tabulated and plotted below:

X	У	Z	K11	K12	y _{mld}	Zmld	K21	K22	Y mld	Zmld	K31	K32	Y end	Zend	K41	K42	ϕ_1	Ø2
0	4.0000	0.0000	0.00	-32.00	4.00	-8.00	-8.00	-27.20	2.00	-6.80	-6.80	-11.92	0.60	-5.96	-5.96	-1.22	-5.93	-18.58
0.5	1.0367	-9.2887	-9.29	-2.72	-1.29	-9.97	-9.97	16.27	-1.46	-5.22	-5.22	14.78	-1.57	-1.90	-1.90	13.74	-6.93	12.18
1	-2.4276	-3.1969	-3.20	21.34	-3.23	2.14	2.14	24.53	-1.89	2.94	2.94	13.38	-0.96	3.49	3.49	5.58	1.74	17.12
1.5	-1.5571	5.3654	5.37	9.24	-0.22	7.67	7.67	-2.88	0.36	4.65	4.65	-5.68	0.77	2.53	2.53	-7.64	5.42	-2.59
2	1.1539	4.0719	4.07	-11.67	2.17	1.15	1.15	-18.07	1.44	-0.44	-0.44	-11.27	0.93	-1.56	-1.56	-6.51	0.65	-12.81
2.5	1.4810	-2.3334	-2.33	-10.45	0.90	-4.95	-4.95	-4.21	0.24	-3.39	-3.39	0.07	-0.21	-2.30	-2.30	3.08	-3.55	-2.61
3	-0.2935	-3.6375	-3.64	4.53	-1.20	-2.50	-2.50	11.13	-0.92	-0.86	-0.86	7.87	-0.72	0.30	0.30	5.59	-1.68	8.02
3.5	-1.1319	0.3723	0.37	8.83	-1.04	2.58	2.58	6.76	-0.49	2.06	2.06	2.66	-0.10	1.70	1.70	-0.22	1.89	4.58
4	-0.1853	2.6602	2.66	-0.11	0.48	2.63	2.63	-5.42	0.47	1.31	1.31	-4.56	0.47	0.38	0.38	-3.97	1.82	-4.01
4.5	0.7241	0.6564	0.66	-6.19	0.89	-0.89	-0.89	-6.57	0.50	-0.99	-0.99	-3.42	0.23	-1.05	-1.05	-1.21	-0.69	-4.56
5	0.3782	-1.6258	-1.63	-2.05	-0.03	-2.14	-2.14	1.51	-0.16	-1.25	-1.25	2.00	-0.25	-0.63	-0.63	2.34	-1.50	1.22

25.17 The MATLAB program shown below performs the Euler Method and displays the time just before the cylindrical tank empties (y < 0).

```
%prob2517.m
dt=0.5;
t=0;
y=3;
i=1;
while(1)
    y=y+dydt(t,y)*dt;
    if y<0, break, end
    t=t+dt;
    i=i+1;
end

function dy=dydt(t,y);
dy=-0.06*sqrt(y);</pre>
```

The result is 56 minutes as shown below

```
>> prob2517
t = 56
```

25.19 The two differential equations to be solved are

$$\frac{dv}{dt} = g - \frac{c_d}{m}v^2$$

$$\frac{dx}{dt} = -v$$

(a) Here are the first few steps of Euler's method with a step size of h = 0.2.

t	X	V	dx/dt	dvldt			
0	1000	0	0	9.81			
0.2	1000	1.962	-1.962	9.800376			
0.4	999.6076	3.922075	-3.92208	9.771543			
0.6	998.8232	5.876384	-5.87638	9.72367			
0.8	997.6479	7.821118	-7.82112	9.657075			
1	996.0837	9.752533	-9.75253	9.57222			

(b) Here are the results of the first few steps of the 4^{th} -order RK method with a step size of h = 0.2.

t	X	V
0	1000	0
0.2	999.8038	1.961359
0.4	999.2157	3.918875
0.6	998.2368	5.868738
0.8	996.869	7.807195
1	995.1149	9.730582

The results for x of both methods are displayed graphically on the following plots. Because the step size is sufficiently small the results are in close agreement. Both indicate that the parachutist would hit the ground at a little after 20 s. The more accurate 4^{th} -order RK method indicates that the solution reaches the ground between t = 20.2 and 20.4 s.

27.1 The solution can be assumed to be $T = e^{\lambda x}$. This, along with the second derivative $T' = \lambda^2 e^{\lambda x}$, can be substituted into the differential equation to give

$$\lambda^2 e^{\lambda x} - 0.15 e^{\lambda x} = 0$$

which can be used to solve for

$$\lambda^2 - 0.15 = 0$$
$$\lambda = \pm \sqrt{0.15}$$

Therefore, the general solution is

$$T = Ae^{\sqrt{0.15} x} + Be^{-\sqrt{0.15} x}$$

The constants can be evaluated by substituting each of the boundary conditions to generate two equations with two unknowns,

$$240 = A + B$$

 $150 = 48.08563A + 0.020796B$

which can be solved for A = 3.016944 and B = 236.9831. The final solution is, therefore,

$$T = 3.016944e^{\sqrt{0.15} x} + 236.9831e^{-\sqrt{0.15} x}$$

which can be used to generate the values below:

X	T
0	240
1	165.329
2	115.7689
3	83.79237
4	64.54254
5	55.09572
6	54.01709
7	61.1428
8	77.55515
9	105.7469
10	150

27.2 Reexpress the second-order equation as a pair of ODEs:

$$\frac{dT}{dx} = z$$

$$\frac{dz}{dx} = 0.15T$$

The solution was then generated on the Excel spreadsheet using the Heun method (without iteration) with a step-size of 0.01. An initial condition of z = -120 was chosen for the first shot. The first few calculation results are shown below.

X	T	Z	K ₁₁	K ₁₂	Tend	Zend	K ₂₁	K22	ϕ_1	\$ 2
0	240.000	-120.000	-120.000	36.000	228.000	-116.400	-116.400	34.200	-118.200	35.100
0.1	228.180	-116.490	-116.490	34.227	216.531	-113.067	-113.067	32.480	-114.779	33.353
0.2	216.702	-113.155	-113.155	32.505	205.387	-109.904	-109.904	30.808	-111.529	31.657
0.3	205.549	-109.989	-109.989	30.832	194.550	-106.906	-106.906	29.183	-108.447	30.007
0.4	194.704	-106.988	-106.988	29.206	184.006	-104.068	-104.068	27.601	-105.528	28.403
0.5	184.152	-104.148	-104.148	27.623	173.737	-101.386	-101.386	26.061	-102.767	26.842

The resulting value at x = 10 was T(10) = -1671.817. A second shot using an initial condition of z(0) = -60 was attempted with the result at x = 10 of T(10) = 2047.766. These values can then be used to derive the correct initial condition,

$$z(0) = -120 + \frac{-60 + 120}{2047.766 - (-1671.817)}(150 - (-1671.817)) = -90.6126$$

The resulting fit, along with the two "shots" are displayed below:

The final shot along with the analytical solution (displayed as filled circles) shows close agreement:

27.3 A centered finite difference can be substituted for the second derivative to give,

$$\frac{T_{i-1} - 2T_i + T_{i+1}}{h^2} - 0.15T_i = 0$$

or for h = 1,

$$-T_{i-1} + 2.15T_i - T_{i+1} = 0$$

The first node would be

$$2.15T_1 - T_2 = 240$$

and the last node would be

$$-T_9 + 2.15T_{10} = 150$$

The tridiagonal system can be solved with the Thomas algorithm or Gauss-Seidel for (the analytical solution is also included)

X	T	Analytical
0	240	240
1	165.7573	165.3290
2	116.3782	115.7689
3	84.4558	83.7924
4	65.2018	64.5425
5	55.7281	55.0957
6	54.6136	54.0171
7	61.6911	61.1428
8	78.0223	77.5552
9	106.0569	105.7469
10	150	150

The following plot of the results (with the analytical shown as filled circles) indicates close agreement.

27.4 The second-order ODE can be expressed as the following pair of first-order ODEs,

$$\frac{dy}{dx} = z$$

$$\frac{dz}{dx} = \frac{2z + y - x}{7}$$

These can be solved for two guesses for the initial condition of z. For our cases we used -1 and -0.5. We solved the ODEs with the Heun method without iteration using a step size of 0.125. The results are

z(0)	-1	-0.5
y(20)	-11,837.64486	22,712.34615

Clearly, the solution is quite sensitive to the initial conditions. These values can then be used to derive the correct initial condition,

$$z(0) = -1 + \frac{-0.5 + 1}{22712.34615 - (-11837.64486)} (8 - (-11837.64486)) = -0.82857239$$

The resulting fit is displayed below:

X	У
0	5
2	4.151601
4	4.461229
6	5.456047
8	6.852243
10	8.471474
12	10.17813
14	11.80277
16	12.97942
18	12.69896
20	8

27.5 Centered finite differences can be substituted for the second and first derivatives to give,

$$7\frac{y_{i+1} - 2y_i + y_{i-1}}{\Delta x^2} - 2\frac{y_{i+1} - y_{i-1}}{2\Delta x} - y_i + x_i = 0$$

or substituting $\Delta x = 2$ and collecting terms yields

$$-2.25y_{i-1} + 4.5y_i - 1.25y_{i+1} = x_i$$

This equation can be written for each node and solved with methods such as the Tridiagonal solver, the Gauss-Seidel method or LU Decomposition. The following solution was computed using Excel's Minverse and Mmult functions:

y
5
4.199592
4.518531
5.507445
6.893447
8.503007
10.20262
11.82402
13.00176
12.7231
8

27.23 Boundary Value Problem

1. x-spacing

at
$$x = 0$$
, $i = 1$; and at $x = 2$, $i = n$

$$\Delta x = \frac{2 - 0}{n - 1}$$

2. Finite Difference Equation

$$\frac{d^2u}{dx^2} + 6\frac{du}{dx} - u = 2$$

Substitute finite difference approximations:

$$\frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2} + 6 \frac{u_{i+1} - u_{i-1}}{2\Delta x} - u_i = 2$$

$$[1-3(\Delta x)]u_{i-1} + [-2-\Delta x^2]u_i + [1+3(\Delta x)]u_{i+1} = 2\Delta x^2$$

Coefficients:

$$a_i = 1 - 3\Delta x$$

$$b_i = -2 - \Delta x^2 \qquad c_i = 1 + 3\Delta x \qquad d_i = 2\Delta x^2$$

$$c_i = 1 + 3\Delta x$$

$$d_i = 2\Delta x^2$$

3. End point equations

i = 2:

$$[1-3(\Delta x)]10+[-2-\Delta x^2]u_2+[1+3(\Delta x)]u_3=2\Delta x^2$$

Coefficients:

$$a_2 = 0$$

$$b_2 = -2 - \Delta x^2$$

$$c_2 = 1 + 3\Delta x$$

$$b_2 = -2 - \Delta x^2$$
 $c_2 = 1 + 3\Delta x$ $d_2 = 2\Delta x^2 - 10(1 - 3(\Delta x))$

i = n - 1:

$$[1-3(\Delta x)]u_{n-2} + [-2-\Delta x^2]u_{n-1} + [1+3(\Delta x)]1 = 2\Delta x^2$$

Coefficients:

$$a_2 = 1 - 3\Delta x$$

c(2)=1+3*dx;

d(2) = 2*dx2 - (1-3*dx)*10;

$$b_2 = -2 - \Delta x$$

$$c_2 = 0$$

$$b_2 = -2 - \Delta x^2$$
 $c_2 = 0$ $d_2 = 2\Delta x^2 - (1 - 3(\Delta x))$

```
% Boundary Value Problem
% u[xx]+6u[x]-u=2
% BC: u(x=0)=10 u(x=2)=1
% i=spatial index from 1 to n
% numbering for points is i=1 to i=21 for 20 dx spaces
% u(1)=10 and u(n)=1
n=41; xspan=2.0;
% Constants
dx=xspan/(n-1);
dx2=dx*dx;
% Sizing matrices
u=zeros(1,n); x=zeros(1,n);
a=zeros(1,n); b=zeros(1,n); c=zeros(1,n); d=zeros(1,n);
ba=zeros(1,n); ga=zeros(1,n);
% Coefficients and Boundary Conditions
x=0:dx:2;
u(1)=10; u(n)=1;
b(2) = -2 - dx2;
```

```
for i=3:n-2
  a(i)=1-3*dx;
  b(i) = -2 - dx2;
  c(i) = 1 + 3*dx;
  d(i) = 2*dx2;
a(n-1)=1-3*dx;
b(n-1) = -2 - dx2;
d(n-1)=2*dx2-(1+3*dx);
% Solution by Thomas Algorithm
ba(2) = b(2);
ga(2)=d(2)/b(2);
for i=3:n-1
  ba(i)=b(i)-a(i)*c(i-1)/ba(i-1);
  ga(i) = (d(i) - a(i) * ga(i-1)) / ba(i);
end
% back substitution
u(n-1) = ga(n-1);
for i=n-2:-1:2
  u(i) = ga(i) - c(i) *u(i+1) /ba(i);
end
% Plot
plot(x,u)
title('u[xx]+6u[x]-u=2; u(x=0)=10, u(x=2)=1')
xlabel('x-Independent Variable Range 0 to 2'); ylabel('u-Dependent Variable')
grid
```


1. Divide the radial coordinate into n finite points.

$$\Delta r = \frac{1}{n-1}$$

2. The finite difference approximations for the general point i

$$\frac{d^2T}{dr^2} = \frac{T_{i+1} - 2T_i + T_{i-1}}{\Delta r^2}$$

$$\frac{dT}{dr} = \frac{T_{i+1} - T_{i-1}}{2\Delta r}$$

$$r = \Delta r(i-1)$$

3. Substituting in the finite difference approximations for the derivatives

$$\frac{d^2T}{dr^2} + \frac{1}{r}\frac{dT}{dr} + S = 0$$

$$\frac{T_{i+1} - 2T_i + T_{i-1}}{\Delta r^2} + \frac{1}{\Delta r(i-1)} \frac{T_{i+1} - T_{i-1}}{2\Delta r} + S = 0$$

Collecting like terms results in the general finite difference equation at point i

$$-\left[1 - \frac{1}{2(i-1)}\right]T_{i-1} + 2T_i - \left[1 + \frac{1}{2(i-1)}\right]T_{i+1} = \Delta r^2 S$$

5. End point equation at i = 1

$$\frac{dT}{dr}\Big|_{r=0} = 0$$

Substituting in the FD approximation gives

$$\frac{T_2 - T_0}{2\Delta r} = 0$$

where T_0 is a fictitious point. Thus, we see that $T_0 = T_2$ for zero slope at r = 0. Writing out the general equation at point i = 1 gives:

$$- \left[1 - \frac{1}{2(i-1)} \right] T_2 + 2T_1 - \left[1 + \frac{1}{2(i-1)} \right] T_2 = \Delta r^2 S$$

Collecting terms gives

$$2T_1 - 2T_2 = \Delta r^2 S$$

6. End point equation at i = n - 1

$$T(r = 1) = 1$$

$$- \left[1 - \frac{1}{2(i-1)} \right] T_{n-2} + 2T_{n-1} = \Delta r^2 S + \left[1 + \frac{1}{2(i-1)} \right]$$

7. Solve the resulting tridiagonal system of algebraic equations using the Thomas Algorithm. Here is a plot of all the results for the 3 cases:

