数学分析第十周作业

will

2023年3月4日

题目 1. 习题 12.5-1

解. 记 $A_k = A \cap [-k, k]^n$, 则由 ∂A_k 为零测集知: $\bigcup_{k=1}^{+\infty} \partial A_k$ 为零测集.

于是 $\partial A \subset \bigcup_{k=1}^{+\infty} \partial A_k$ 为零测集.

题目 2. 习题 12.5-2

证明. f 有界, 不妨设 $|f| \ge M$ $\int_{B_{\varepsilon}(p)} |f| \le M \cdot V(B_{\varepsilon})$ 有界. 又 f 在 $A - B_{\varepsilon}(p)$ 上可积, 则在 A 上可积, 且

$$\int_{A} f = \int_{A-B-\varepsilon(p)} f + \int_{B_{\varepsilon}(p)} f$$

而 $\left| \int_{B_{\varepsilon}(p)} f \right| \leq M \cdot V(B_{\varepsilon})$, 于是:

$$\int_{A} f = \lim_{\varepsilon \to 0^{+}} \int_{A - B_{\varepsilon}(p)} f$$

从而得到原题结论.

题目 2 的注记. 即得易见平凡, 仿照上例显然。留作习题答案略, 读者自证不难. 反之亦然同理, 推论自然成立。略去过程 Q.E.D., 由上可知证毕.