

Introduction

What is
Combinational
&
Sequential
Concept...?

Level of Abstraction

Logical Interpretation

Combinational vs. Sequential

1. Concept of Execution

Logical Interpretation

Combinational vs. Sequential

2. Concept of Memory

Dr. Yash Agrawal @ DA-IICT Gandhinagar

5

Logical Interpretation

Combinational vs. Sequential

3. Concept of Input(s) Present/Requirement

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Practical Inference

Combinational vs. Sequential

1. Implement

$$S = A + B$$

Practical Inference

Combinational vs. Sequential

2. Implement

$$S = S + (A + B)_{i}$$

where i is integer and varying with time.

S = 0 at starting of time i.e. at i = 0

$$S = 0$$

for (i= 1, i < t, i = i+1)

$$S_i = S_{i-1} + (A+B)_i$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

7

Practical Inference

Practical Inference

Contd...

Combinational vs. Sequential

2. Implement

$$S = 0$$

for (i= 1, i < t, i = i+1)
 $S_i = S_{i-1} + (A + B)_i$

Can You realize it using combinational logic...?

Combinational vs. Sequential

2. Implement using Sequential Logic

$$S = 0$$

for (i= 1, i < t, i = i+1)
 $S_i = S_{i-1} + (A + B)_i$

Does this work

 $\begin{array}{c}
A_i \\
B_i
\end{array}
+
\begin{array}{c}
S_i
\end{array}$ Output

Feedback

...

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Contd...

Practical Inference

Combinational vs. Sequential

2. Implement using Sequential Logic

$$S = 0$$

for (i= 1, i < t, i = i+1)
 $S_i = S_{i-1} + (A + B)_i$

Inputs A_i + S_i Output S_{i-1} S_i Memory

Now validate the discussed points for sequential logic as in 'Logical Interpretation'.

- ✓ Concept of Execution
- ✓ Concept of Memory
- ✓ Concept of Input(s)
 Present/Requirement

Difference Between Combinational & Sequential Circuits

• Memory Requirement

Dr. Yash Agrawal @ DA-IICT Gandhinagar

- Clock/Enable Requirement
- Inputs
- Speed
- Design Complexity

Synchronous and Asynchronous Sequential Systems

Synchronous Systems

All operations are controlled by one central common clock signal.

The clock signal is used to determine/control the exact time at which any output can change its state

Dr. Yash Agrawal @ DA-IICT Gandhinagar

13

Synchronous and Asynchronous Sequential Systems

Numerical

- 1. Determine the output of 2-input single-bit AND gate for the given set of inputs for the following cases
 - (i) If the system is designed as Asynchronous.
 - (ii) If the system is designed as Synchronous.

Synchronous and Asynchronous Sequential Systems

Asynchronous Systems

Different modules are triggered by different clock/controlling signals.

In Asynchronous systems, the output of the logic circuit can change its state at any time, as soon as any input changes its state.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Synchronous and Asynchronous Sequential Systems

Numerical

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Control Signals

- Sequential circuits are dependent on the control trigger signals that are provided at its input.
- Depending on type of control signal, the output of the sequential circuit changes.
- There are four major control Trigger signals as
- 1. High Level Triggering
- 2. Low Level Triggering
- 3. Positive Edge Triggering
- 4. Negative Edge Triggering

Dr. Yash Agrawal @ DA-IICT Gandhinagar

17

Control Signals

1. High Level Triggering

2. Low Level Triggering

Dr. Yash Agrawal @ DA-IICT Gandhinagar

.

Control Signals

3. Positive Edge Triggering

4. Negative Edge Triggering

Sequential Circuit

Basic Building Blocks of Sequential Circuits Types of latches and Flip-flops • S-R

- D
- J-K
- T

Inter-conversion between different flip-flops

Dr. Yash Agrawal @ DA-IICT Gandhinagar

...

Sequential Circuits

- Register
- Counter

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Sequential Circuits

Numericals

on

Sequential Circuits