《 离散数学 》考试试卷 (样卷 A)

一、解答题(每小题10分,共20分)

1. 集合 $S=\{\alpha, \beta, \gamma, \delta\}$ 上的二元运算 * 如右边的运算表所示, 回答下列问题:

	(1) }	判断 *	是否是可交换的,	并说明理由:
--	------------------	------	----------	--------

- (2) 指出关于 * 的幺元、零元、幂等元。(如没有则写"不存在")
- (3) 哪些元素有逆元? 逆元是什么?

-	a	Р	γ	O
α	δ	α	β	γ
β	α	β	γ	δ
γ	β	γ	γ	γ
δ	α	δ	γ	δ

2. 对下列函数

- ① $f: R \to R_+$, $f(x) = 2^x$, $S = \{1, 2\}$;
- ② $f: I \to N$, f(x) = |x|, $S = \{0, 1\}$;
- ④ $f: R \to R$, $f(x) = x^3 2$, S = [-3, -1] ; 回答如下问题:
- (1) 判断函数是单射的、满射的还是双射的;
- (2) 如果是双射函数,写出其逆函数;
- (3) 写出给定的集合 S 的逆象。

二、计算题(每小题10分,共30分)

- 1. 用等值演算法求公式((P \lor Q) \land (P \rightarrow Q)) \leftrightarrow (Q \rightarrow P)的主合取范式与主析取范式。
- 2. 设 R_1 和 R_2 都是集合 $X=\{0,1,2,3,4\}$ 上的关系, $R_1=\{< x,y> | y=x+1 \}$, $R_2=\{< x,y> | y=x^2 \}$,求解如下问题:
- (1) 写出 R₁、R₂;
- (2) 写出 R₂的关系矩阵;
- (3) 求出 R₁• R₂ (R₁和 R₂的合成)的关系矩阵;
- (4) 求出 R_1 的传递闭包 $t(R_1)$ 的关系矩阵。
- 3. 有向图G如右图所示, 试求:
- (1) 求G的邻接矩阵A。
- (2) 求出 A^2 、 A^3 、 A^4 和 A^5 , v_1 到 v_4 长度为 1、2、3、4 v_4

和 5 的路有多少?

- (3) 求出 $A^{T}A$ 和 AA^{T} , 说明 $A^{T}A$ 和 AA^{T} 中的第(2, 2)元素和第(2, 3)元素的意义。
- (4) 求出可达矩阵 P。
- (5) 求出强分图。

三、证明题(每小题10分,共20分)

1. 用推理规则构造下面推理过程的证明。

前提: $\exists x F(x)$, $\forall x (F(x) \lor G(x) \rightarrow H(x))$

结论: ∃xH(x)

2. 在布尔代数中,证明恒等式 $(a*b)\oplus(a'*c)\oplus(b'*c)=(a*b)\oplus c$

四、综合分析题(每小题10分,共20分)

1. 设 Z 为整数集合,+是实数的加法运算, $\forall x, y \in Z$,在 Z 上定义二元运算 * :

$$x * y = x + y - 2$$
,

求解如下问题:

- (1) 证明运算是可交换和可结合的
- (2) 利用群的定义证明: <Z, *>是一个群。
- (3) <Z, *>是否为循环群? 若是, 请证明。
- 2、设集合 A={2,3,4,6,8,12,24}, R 为 A 上的整除关系
- (1) 画出偏序<A, R>的哈斯图;
- (2) 依据偏序<A, R>, 写出集合 A 中的最大元、最小元、极大元、极小元;
- (3) 依据偏序<A, R>, 写出 A 的子集 B= $\{2,3,6,12\}$ 的上界、下界、最小上界、最大下界;
- (4)已知<A, R>不是格,但若在。A中增加一个元素就可以构成格,请问应该增加哪个元素?
- (5)增加一个元素后,画出该格的哈斯图,并写出格中每个元素的补元(如果某元素没有补元,就写不存在)。

五、应用题(每小题10分,共10分)

一个售货员要去 V1, V2, V3, V4, V5, V6 六座城市推销产品,城市之间的路程如下表所示。若售货员从 V1 出发,希望没有重复地走遍所有城市,并回到 V1。请使用最近邻算法为该售货员找到一条尽可能短的推销路径(要求给出详细的算法过程),画出该推销路径,并计算其路程长度。

	V1	V2	V3	V4	V5	V6
V1	0	10	6	8	7	15
V2	10	0	5	20	15	16
V3	6	5	0	14	7	8
V4	8	20	14	0	4	12
V5	7	15	7	4	0	6
V6	15	16	8	12	6	0