Homework 2

MATH 541: Abstract Algebra 1 Spring 2023

Hongtao Zhang

Sec. 1.4: 10

Sec. 1.6: 14, 18, 24, 25(a)(b)

Sec. 1.7: 16, 17

1.4

10

1. Proof.

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_2 \\ 0 & c_1 c_2 \end{pmatrix}$$

Because $a_1, a_2 \neq 0$, so $a_1 a_2 \neq 0$, same for c_1, c_2 . Therefore, G is closed under matrix mul.

2. Proof.

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}^{-1} = \begin{pmatrix} 1/a & -b/(ac) \\ 0 & 1/c \end{pmatrix}$$

Because $a, c \neq 0$, so all entries are well defined within \mathbb{R} , which means it is closed.

- 3. Because any matrix operation defined in $GL_2(\mathbb{R})$ is defined in G, and G is clearly closed under addition and subtraction, and G is a subset of $GL_2(\mathbb{R})$ where the left lower entry is 0, and $a, c \neq 0$, so G is a subgroup of $GL_2(\mathbb{R})$.
- 4. Follow the similar steps from above, it suffices to check whether the new set G' is closed under multiplication and inverse.

Proof.

$$\begin{pmatrix} a_1 & b_1 \\ 0 & a_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & a_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + a_2 b_1 \\ 0 & a_1 a_2 \end{pmatrix}$$

The left top entry and the right bottom entry are the same, which indicates that matrix multiplication is closed in G'.

$$\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{a} & -\frac{b}{a^2} \\ 0 & \frac{1}{a} \end{pmatrix}$$

which is also inside G', therefore G' is a subgroup of G.

Therefore, G' is a subgroup of $GL_2(\mathbb{R})$.

1.6

14

Kernel is a subgroup

Proof. Denote operation on G as \star_G , mutatis mutandis for \star_H .

Consider two element $x, y \in kernel(H)$.

$$\phi(x \star_G y) = \phi(x) \star_H \phi(y) = \mathbb{1} \star_H \mathbb{1} = \mathbb{1}$$

Therefore $x \star_G y$ is also in kernel(H).

$$\phi(x \star_G x^{-1}) = \phi(x) \star_H \phi(x^{-1}) = \mathbb{1}_H \star_H \phi(x^{-1}) = \mathbb{1}_H \implies \phi(x^{-1}) = \mathbb{1}_H$$

Therefore x^{-1} is also in kernel(H).

Therefore, kernel(H) is a subgroup of G.

injective iff kernel is the identity subgroup of G

Proof. First prove that ϕ is injective if the kernel of ϕ is the identity subgroup of G.

$$kernel(H) = \mathbb{1}_G$$

Assume ϕ is not injective, i.e. there exists two element $a, b \in G$ that $\phi(a) = \phi(b)$ but $a \neq b$.

$$\phi(a \star a^{-1} \star b) = \phi(b) = \phi(a) = \phi(a) \star \phi(a^{-1} \star b) \implies \phi(a^{-1} \star b) = \mathbb{1}$$

However, we know that only $\phi(1) = 1$, but $a \neq b$, so $a^{-1} \star b \neq 1$, which is a contradiction.

Then prove If ϕ is injective, then the kernel is the identity subgroup.

We know that the identity subgroup of G always map to the identity subgroup of H, so by injectivity, it is the only subgroup lies in the kernel.

18

Proof. If G is abelian, then $\forall a, b \in G : a \star b = b \star a$.

Denote the map as ϕ

$$\phi(a \star b) = (a \star b) \star (a \star b) = a \star a \star b \star b = \phi(a) \star \phi(b)$$

If $\phi(a \star b) = \phi(a) \star \phi(b)$

$$(a \star b) \star (a \star b) = a \star a \star b \star b \implies b \star a = a \star b$$

, which means \star is commutative under G.

We can write G as

$$G = \{x, y, xy, yx, (xy)^2, (yx)^2, \dots\}$$

We can show that yx also have order n

$$(yx)^{n+1} = y(xy)^n x = yx \implies (yx)^n = 1$$

Therefore there's n-1 elements that is power of xy, n-1 elements that is power of yx, and x, y, so the over all |G| = 2n.

We have proved in the last homework that D_{2n} can be generated by s and sr, which both have order 2.

Therefore, if we construct a mapping from $G \to D_{2n}$ that maps x to s, and y to sr, it is a isomorphism.

25

1. Proof.

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{pmatrix}$$

It suffics to check the two basis.

For (1,0), after applying the matrix, it becomes $(\cos \theta, \sin \theta)$, which is true by definition.

For (0,1), after applying the matrix, it becomes $(-\sin\theta,\cos\theta)$, which is true by rotating the axis by 90 degree.

2. We know that $\theta = \frac{2\pi}{n}$ so

$$\phi(r^n) = \phi(r)^n = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}^n = \mathbb{1}$$
$$\phi(s^2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^2 = \mathbb{1}$$

$$\begin{split} \phi(rs) &= \phi(r) \star \phi(s) \\ &= \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\ &= \begin{pmatrix} -\sin(\theta) & \cos(\theta) \\ \cos(\theta) & \cdot ain(\theta) \end{pmatrix} \\ &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} \\ &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}^{-1} \\ &= \phi(sr^{-1}) \end{split}$$

1.7

16

Proof. 1.
$$(gg) \cdot a = ggag^{-2} = g \cdot (gag^{-1}) = g \cdot (g \cdot a)$$

2. $\mathbbm{1} \cdot a = \mathbbm{1} a \mathbbm{1}^{-1} = a$

17

Proof. We can find the inverse of the mapping easily that is simply $x \mapsto g^{-1}xg$, which means it is bijective.

Assume $x^n = 1$, so $(gxg^{-1})^n = gx^ng^{-1} = 1$. Also because |x| = n, so any power less than n is not identity.

We know that the mapping is a isomorphic mapping, so it is injective. Therefore, it is clear that $|A| = |gAg^{-1}|$.