

Planejamento de Trajetória para Soldagem por Pontos com Braços Robóticos em Portas de Veículos

Regina Araújo

June 6, 2025

Contexto Industrial

Problema Real

Descrição Geral

O problema modelado é baseado em um processo real de soldagem de portas em uma fábrica de carrocerias automotivas. O objetivo principal é **minimizar o tempo de ciclo** respeitando as restrições operacionais.

Contexto Operacional

- 2 plataformas de soldagem
- Cada plataforma possui 4 braços robóticos

Características do Processo

- 110 pontos de solda por porta
- 4 tipos distintos de soldagem

Observação Importante

• Devido à confidencialidade, não foram utilizados dados reais

Contexto Industrial

Versão Simplificada do Problema

Motivação para a Simplificação

Devido à complexidade envolvida na modelagem e na obtenção de soluções aplicáveis ao problema real, optou-se por trabalhar com uma **versão simplificada** do processo.

Abordagem Adotada

- Considera-se uma célula de soldagem com número reduzido de pontos de solda;
- Essa simplificação visa facilitar a análise e o desenvolvimento de métodos de solução.

Objetivo

• Criar um modelo representativo que mantenha a essência do problema original, mas com menor complexidade computacional.

Conjuntos

• M: Conjunto de máquinas

Conjuntos

- M: Conjunto de máquinas
- P: Conjunto de pontos de solda

Conjuntos

- M: Conjunto de máquinas
- P: Conjunto de pontos de solda
- $V = M \cup P$: Conjunto de todos os vértices

Conjuntos

- M: Conjunto de máquinas
- P: Conjunto de pontos de solda
- $V = M \cup P$: Conjunto de todos os vértices

Parâmetros

• dist $_{ij}$: Distância euclidiana entre i e j, para $i,j \in V$.

Conjuntos

- M: Conjunto de máquinas
- P: Conjunto de pontos de solda
- $V = M \cup P$: Conjunto de todos os vértices

Parâmetros

- dist_{ij}: Distância euclidiana entre i e j, para $i, j \in V$.
- v: Velocidade do robô.

Conjuntos

- M: Conjunto de máquinas
- P: Conjunto de pontos de solda
- $V = M \cup P$: Conjunto de todos os vértices

Parâmetros

- dist_{ij}: Distância euclidiana entre i e j, para $i, j \in V$.
- v: Velocidade do robô.
- t_r : Tempo de resfriamento da solda.

Conjuntos

- M: Conjunto de máquinas
- P: Conjunto de pontos de solda
- $V = M \cup P$: Conjunto de todos os vértices

Parâmetros

- dist_{ii}: Distância euclidiana entre $i \in j$, para $i, j \in V$.
- v: Velocidade do robô.
- t_r: Tempo de resfriamento da solda.
- t_s: Tempo de setup (troca de tipo).

June 6, 2025 Regina Araújo

Conjuntos

- M: Conjunto de máquinas
- P: Conjunto de pontos de solda
- $V = M \cup P$: Conjunto de todos os vértices

Parâmetros

- dist $_{ij}$: Distância euclidiana entre i e j, para $i,j \in V$.
- v: Velocidade do robô.
- t_r: Tempo de resfriamento da solda.
- t_s: Tempo de setup (troca de tipo).
- t_{ij} : Tempo total de i a j:

$$t_{ij} = rac{{\sf dist}_{ij}}{v} + t_r + egin{cases} t_s & {\sf se}\ i,j \in P\ {\sf e}\ {\sf tipos}\ {\sf differentes}, \ 0 & {\sf caso}\ {\sf contrário}. \end{cases}$$

Variáveis de Decisão

• $x_{kij} \in \{0,1\}$:

 $\begin{cases} 1, & \text{se a máquina } k \text{ vai de } i \text{ a } j, \ \forall i,j \in P, k \in M, \\ 0, & \text{caso contrário.} \end{cases}$

Variáveis de Decisão

• $x_{kij} \in \{0, 1\}$:

$$\begin{cases} 1, & \text{se a máquina } k \text{ vai de } i \text{ a } j, \ \forall i, j \in P, k \in M, \\ 0, & \text{caso contrário.} \end{cases}$$

• $u_{ki} \ge 0$: Variável auxiliar para eliminar sub-rotas (MTZ), $\forall i \in P, k \in M$.

Variáveis de Decisão

• $x_{kij} \in \{0, 1\}$:

$$\begin{cases} 1, & \text{se a máquina } k \text{ vai de } i \text{ a } j, \ \forall i, j \in P, k \in M, \\ 0, & \text{caso contrário.} \end{cases}$$

- $u_{ki} \ge 0$: Variável auxiliar para eliminar sub-rotas (MTZ), $\forall i \in P, k \in M$.
- $Z \ge 0$: Tempo de ciclo total (*makespan*).

 $\min Z$

Sujeito a:

$$\sum_{k \in M} \sum_{i \in V} x_{kij} = 1 \quad \forall j \in P$$
 (1)

(3)

• (1): Cada ponto $i, j \in P$ é visitado uma única vez.

$\min Z$

Sujeito a:

$$\sum_{k \in \mathcal{M}} \sum_{i \in \mathcal{N}} x_{kij} = 1 \quad \forall j \in P$$
 (1)

$$\sum_{j \in P} x_{kkj} = 1 \quad \forall k \in M$$
 (2)

(3)

- (1): Cada ponto $i, j \in P$ é visitado uma única vez.
- (2): Cada máquina k inicia no seu vértice.

$\min Z$

Sujeito a:

$$\sum_{k \in \mathcal{M}} \sum_{i \in \mathcal{N}} x_{kij} = 1 \quad \forall j \in P$$
 (1)

$$\sum_{i \in P} x_{kkj} = 1 \quad \forall k \in M \tag{2}$$

$$\sum_{i \in P} x_{kik} = 1 \quad \forall k \in M \tag{3}$$

- (1): Cada ponto $i, j \in P$ é visitado uma única vez.
- (2): Cada máquina k inicia no seu vértice.
- (3): Cada máquina k termina no seu vértice.

$$x_{kij} = 0 \quad \forall k \in M, i \in M, j \in V$$
 (4)

• (4): Máquinas não visitam outras máquinas.

(7)

$$x_{kij} = 0 \quad \forall k \in M, i \in M, j \in V \tag{4}$$

$$\sum_{i \in V} x_{kij} = \sum_{i \in V} x_{kji} \quad \forall k \in M, j \in V$$
 (5)

(7)

- (4): Máquinas não visitam outras máquinas.
- (5): Conservação de fluxo em cada ponto j.

$$x_{kij} = 0 \quad \forall k \in M, i \in M, j \in V \tag{4}$$

$$\sum_{i \in V} x_{kij} = \sum_{i \in V} x_{kji} \quad \forall k \in M, j \in V$$
 (5)

$$u_{ki} - u_{kj} + |V| \cdot x_{kij} \le |V| - 1 \quad \forall k \in M, i, j \in P, i \ne j$$
(6)

(7)

- (4): Máquinas não visitam outras máquinas.
- (5): Conservação de fluxo em cada ponto j.
- (6): Restrição MTZ para evitar sub-rotas.

$$x_{kij} = 0 \quad \forall k \in M, i \in M, j \in V \tag{4}$$

$$\sum_{i \in V} x_{kij} = \sum_{i \in V} x_{kji} \quad \forall k \in M, j \in V$$
 (5)

$$u_{ki} - u_{kj} + |V| \cdot x_{kij} \le |V| - 1 \quad \forall k \in M, i, j \in P, i \ne j$$
(6)

$$Z \ge \sum_{i \in V} \sum_{j \in V} t_{ij} \cdot x_{kij} \quad \forall k \in M$$
 (7)

- (4): Máquinas não visitam outras máquinas.
- (5): Conservação de fluxo em cada ponto j.
- (6): Restrição MTZ para evitar sub-rotas.
- (7): Limitação do tempo de ciclo por máquina.

UFPB

Ambiente Computacional

O modelo foi implementado utilizando:

- Jupyter Notebook: Ambiente interativo para desenvolvimento e testes
- Python: Linguagem de programação principal
- Bibliotecas:
 - gurobipy: Interface Python para o solver Gurobi
 - numpy: Manipulação numérica eficiente
 - matplotlib: Visualização dos resultados
- Solver: Gurobi Optimizer versão 12.0.2 (solver comercial usando licença academica)

Fluxo de Implementação

- 1. Configuração inicial do ambiente
- 2. Geração dos dados sintéticos com NumPy (usando como base os dados reais)
- 3. Cálculo das matrizes de distância e tempo
- 4. Construção passo a passo do modelo:
 - 4.1 Definição das variáveis
 - 4.2 Adição das restrições
 - 4.3 Especificação da função objetivo
- 5. Otimização com Gurobi
- 6. Visualização com Matplotlib

Geração de Dados - Cenário

- 20 pontos aleatórios distribuídos em 4 tipos
- Velocidade do robô: 40 mm/s
- Tempo de resfriamento: 2 s
- **Setup inicial**: 10 s

June 6, 2025 Regina Araújo

Resultado da Otimização

- Tempo de resolução com Gurobi: 610 segundos
- Makespan (tempo máximo): 61.08 unidades de tempo

Rotas das máquinas e seus tempos:

- M1 (59.47): M1 \rightarrow 1 (A) \rightarrow 2 (A) \rightarrow 5 (A) \rightarrow 6 (B) \rightarrow 9 (B) \rightarrow 7 (B) \rightarrow M1
- M2 (61.08): M2 \rightarrow 10 (B) \rightarrow 8 (B) \rightarrow 14 (C) \rightarrow 11 (C) \rightarrow M2
- M3 (60.08): M3 \rightarrow 18 (D) \rightarrow 17 (D) \rightarrow 16 (D) \rightarrow 19 (D) \rightarrow 20 (D) \rightarrow M3
- M4 (59.56): M4 \rightarrow 15 (C) \rightarrow 12 (C) \rightarrow 13 (C) \rightarrow 4 (A) \rightarrow 3 (A) \rightarrow M4

June 6, 2025

Comparação entre Cenários

Cenário	Pontos	Velocidade (mm/s)	Setup (s)	Makespan	Tempo Solver (s)
1	20	40	10	61.08	610
2	20	30	10	74.51	1675
3	15	40	10	50.50	5
4	15	30	10	60.66	2
5	15	40	5	45.50	1
6*	20	40	5	timeout	timeout

- O tempo de resolução aumenta com o número de pontos e com menor velocidade.
- A redução no tempo de setup e o aumento da velocidade tendem a melhorar o makespan e o desempenho do solver.
- Em alguns casos, cenários podem apresentar falhas de resolução por limitações do solver (ex: tempo limite).

Conclusões e Próximos Passos

- O modelo de otimização proposto mostrou-se eficiente para pequenos conjuntos de pontos.
- Variações de velocidade, tempo de setup e distribuição influenciam significativamente o makespan.
- A elevação no tempo de setup pode acarretar problemas, como possíveis colisões.
- O tempo de resolução cresce com o número de pontos e a complexidade do problema.

Obrigada!

Perguntas?

Apresentado por: Regina Araújo UFPB

