

Programa académico CAMPUS

MODULO JAVA Sesión 3: Operadores y estructuras de decisión

Trainer Carlos H. Rueda C.

TEMARIO

ESTRUCTURAS REPETITIVAS

Las estructuras que repiten una secuencia de instrucciones un número determinado de veces se denominan bucles y se denomina iteración al hecho de repetir la ejecución de una secuencia de acciones.

Java también proporciona la declaración de repetición **for**, que especifica los detalles de un ciclo controlado por el contador en una sola línea de código.

Diagrama de flujo:

Sintaxis

Calcular 15 veces el valor de la función ex – x y escribir los resultados.

Ejemplo

```
public static void main(String []a)
  final int VECES = 15;
  Scanner entrada = new Scanner (System.in);
  for (int i = 1; i <= VECES; i++)</pre>
    double x, f;
    System.out.print("Valor de x: ");
    x = entrada.nextDouble();
    f = Math.exp(2*x) - x;
    System.out.println("f(" + x + ") = " + f);
```


Un bucle **while** tiene una condición, una expresión lógica que controla la secuencia de repetición; su posición es delante del cuerpo del bucle y significa que while es un bucle *pretest*, de modo que cuando éste se ejecuta, se evalúa la condición antes de ejecutarse el cuerpo del bucle

Diagrama de flujo

Sintaxis

```
    while (condición_bucle)

  sentencia;-
                                    ➤ Cuerpo
2. while (condición bucle)
    sentencia-1;
    sentencia-2;
                                      Cuerpo
    sentencia-n;
```

while condición buc.

condición_bucle sentencia es una palabra reservada de Java es una expresión lógica es una sentencia simple o compuesta

Ejemplo

```
// cuenta hasta 10
int x = 0;
while (x < 10)
   System.out.println("X: " + x++);</pre>
```


Ejemplo

La sentencia **do-while** se utiliza para especificar un bucle condicional que se ejecuta al menos una vez; cuando se desea realizar una acción determinada al menos una o varias veces, se recomienda este bucle.

Diagrama de flujo

Sintaxis

- do sentencia while (expresión)
- do
 sentencia
 while (expresión)

Ejemplo

```
public static void main(String[] args) {
    Scanner scan = new Scanner(System.in);
    char digito;
    do {
        System.out.println("Introduzca un digito (0-9): ");
        digito = scan.nextLine().charAt(0);
    } while ((digito < '0') || (digito > '9'));
}
```


Ejemplo

Escribir un programa que visualice el factorial de un entero comprendido entre 2 y 20 usando un ciclo *do - while*

```
public static void main(String[] args) {
    long n, m, fact;
    Scanner entrada = new Scanner (System. in);
    do (
        System.out.println("\nFactorial de número n, entre 2 y 20: ");
        n = entrada.nextLong();
    } while ((n < 2) | | (n > 20));
    for (m = n, fact = 1; n > 1; fact *= n--);
    System.out.println(m + "! = " + fact);
```

Sentencia break

La sentencia break, ya estudiada antes, normalmente realiza dos acciones:

- La salida inmediata de un bucle.
- Saltar el resto de la sentencia switch.

el flujo de control del programa continúa en la siguiente sentencia después del bucle

Ejemplo

```
for (int i = 1; i <= 25; i++)
{
  d = leerDistancia(i)
  if (d == 0) // salida de bucle
    break;
  System.out.println ("Distancia: ", d);
}</pre>
```


Sentencia continue

La sentencia continue se utiliza en los tres tipos de bucles; cuando se ejecuta en un bucle, se saltan las sentencias restantes y se prosigue con la siguiente iteración.

Ejercicio

Dado un entero n, devuelve una sucesión de cadenas separadas por coma answer (indexada desde 1) donde:

- i == "FizzBuzz" si i es divisible por 3 y 5.
- i == "Fizz" si i es divisible por 3.
- i == "Buzz" si i es divisible por 5.
- i == i (como cadena) si ninguna de las condiciones anteriores es verdadera.

Restricciones:

• 1 <= n <= 104

Example 1:

Input: n = 3

Output: "1", "2", "Fizz"

Example 2:

Input: n = 5

Output: "1", "2", "Fizz", "4", "Buzz"

Example 3:

Input: n = 15

Output:

"1", "2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz", "Buzz", "11", "Fizz", "13", "14", "FizzBuzz"

Ejercicio

Realice el programa que responda al siguiente requerimiento.

```
Voy a contar las calificaciones aprobadas.
Teclea las calificaciones (termina con -1)
7
4
8
10
-1
Obtuviste 3 calificación(es) aprobatoria(s) y 1 calificación(es) reprobatoria(s).
Tu promedio fue: 7.25
```


Ejercicio

Un apostador asiduo tiene la costumbre de apostar si atina al número que resulta al tirar un dado. Si lo logra gana \$5.00; en caso contrario, pierde \$1.00. Comienza con \$7.00 y el juego termina cuando gana \$6.00 o pierde todo su capital.

```
¿Qué número saldrá en el dado? 5
El dado arrojó un 4. Acaba de perder $1.00
Su saldo es $6.00
¿Qué número saldrá en el dado? 5
```


Ejercicio

Juguemos a menor-mayor. Usted tiene que apostar un peso a alguna de las siguientes opciones:

Menor 7 Mayor

2-6 7 8-12

Después tira dos dados. Si le apostó a menor y la suma de los dados está en el rango de 2 a 6 gana un peso. Algo similar sucede con el caso de mayor. Si le apostó a 7 y la suma de los dados coincide con 7, entonces gana 5 pesos. Arranca con 5 pesos y termina su participación cuando tiene 10 pesos o pierde todo su capital.

Construya un programa en Java que realice este juego.

Ejercicio

En una empresa de computadoras, los salarios de los empleados se aumentarán según su contrato actual:

Contrato	Aumento %
0 a 9 000 dólares	20
9 001 a 15 000 dólares	10
15 001 a 20 000 dólares	5
más de 20 000 dólares	0

Escribir un programa que solicite el salario actual de cada empleado y que, además, calcule y visualice el nuevo salario.

Ejercicio

La constante pi (3.141592) se utiliza en matemáticas; un método sencillo de calcular su valor es:

$$Pi = 2 * \frac{2}{1} * \frac{2}{3} * \frac{4}{3} * \frac{4}{5} * \frac{6}{5} * \frac{6}{7} * \frac{8}{7} * \frac{8}{9}$$
 $\frac{2n}{2n-1} \frac{2n}{2n-1}$

Escribir un programa que efectúe este cálculo con un número de términos especificados por el usuario.

Ejercicio

Escribir un programa que encuentre los tres primeros números perfectos pares y los tres primeros números perfectos impares.

Un número perfecto es un entero positivo que es igual a la suma de todos los enteros positivos (excluido él mismo) que son sus divisores. El primer número perfecto es 6, ya que sus divisores son 1, 2, 3 y 1 + 2 + 3 = 6.

Ejercicio

Escribir un programa que encuentre los tres primeros números perfectos pares y los tres primeros números perfectos impares.

Un número perfecto es un entero positivo que es igual a la suma de todos los enteros positivos (excluido él mismo) que son sus divisores. El primer número perfecto es 6, ya que sus divisores son 1, 2, 3 y 1 + 2 + 3 = 6.

Ejercicio

Calcular todos los números de tres cifras tales que la suma de los cubos de las cifras es igual al valor del número.

Ejercicio

Escribir un programa que encuentre el primer número primo introducido por medio del teclado.

Ejercicio

Una estación climática proporciona un par de temperaturas diarias (máxima, mínima) (no es posible que alguna o ambas temperaturas sea 9 grados). La pareja fin de temperaturas es 0,0. Se pide determinar el número de días, cuyas temperaturas se han proporcionado, las medias máxima y mínima, el número de errores —temperaturas de 9°— y el porcentaje que representaban.

Programa académico CAMPUS

Ciclo 2

