An Introduction to Apache Spark

Performance Tuning

Different parts of Spark Job to optimize

- Code-level design choices (e.g., RDDs versus DataFrames)
- Data at rest
- Joins
- Aggregations
- Data in flight
- Individual application properties
- Inside of the Java Virtual Machine (JVM) of an executor
- Worker nodes
- Cluster and deployment properties

Implement monitoring and job history tracking

- To figure out how to improve performance
- To know whether you're really improving job performance.

Indirect Performance Enhancements

- Design Choices
 - Scala versus Java versus Python versus R
 - Depending on the use case
- Data at Rest
 - Making sure that you're storing your data for effective reads later on is absolutely essential to successful big data projects.
- Caching
 - Will place a DataFrame, table, or RDD into temporary storage across the executors in your cluster, and make subsequent reads faster

Caching

 We can avoid having to recompute the original DataFrame (i.e., load and parse the CSV file) many times by adding a line to cache

Caching

- DF1 = spark.read.format("csv")\
- .option("inferSchema", "true")\
- .option("header", "true")\
- .load("/data/flight-data/csv/2015-summary.csv")
- DF2 = DF1.groupBy("DEST_COUNTRY_NAME").count().collect()
- DF3 = DF1.groupBy("ORIGIN_COUNTRY_NAME").count().collect()
- DF4 = DF1.groupBy("count").count().collect()
- DF1.cache()
- DF1.count()

Caching

- Now that the data is cached, the commands will be faster, as we can see by running the following code:
 - DF2 = DF1.groupBy("DEST_COUNTRY_NAME").count().collect()
 - DF3 = DF1.groupBy("ORIGIN_COUNTRY_NAME").count().collect()
 - DF4 = DF1.groupBy("count").count().collect()

What is Check-pointing?

- Saving RDD to HDFS to prevent RDD graph from growing too large
- Will persist the transformed RDD or DataFrame forever.

When should I cache or checkpoint?

- Determine if the results of a set of transformations can be reused for a very long time or not
 - If the answer is yes, use checkpointing
 - If the answer is no, use caching
- Example when checkpointing would be preferred:
 - Crunching a RDD or DataFrame of taxes for a previous year
 - They are unlikely to change once calculated so it would be much better to checkpoint and save them forever

Suffling

Narrow transformation

- Input and output stays in same partition
- No data movement is needed

Wide transformation

- Input from other partitions are required
- Data shuffling is needed before processing

Minimizing Shuffling for Increased Performance

- Shuffle is an expensive operation
- Each shuffling generates a new stage.
- Here are some tips to reduce shuffle:
 - Use the Spark UI to study the plan to look for opportunity to reduce the shuffle
 - Use the built in aggregateByKey() operator instead of writing your own aggregations.
 - Filter input earlier in the program rather than later.
 - repartition, join, cogroup, and any of the *By or *ByKey transformations can result in shuffles.

Thanks

22-10-2018