Appendix

Azure ML における 自動ML の概要

Azure ML における 自動ML の概要

- ①機能
- ② 対応領域
 - 対応タスク
 - 対応データ
- ③ Azure ML における 自動ML の全体像

①機能

- Azure ML における 自動ML では主に以下の3つを自動的に実行
 - 前処理
 - モデル選択
 - ハイパーパラメータのチューニング
- 上記3つを合わせて「パイプライン」と呼ぶ

②対応領域

■ 適用タスク

- 回帰
- 分類
- 時系列予測
 - 時系列データに特化したモデルを利用可能

■ 対応データ

- 表形式データ(Tabular Data)のみに対応(2020年10月時点)
 - 画像データに対する分類と物体検出は Cognitive Services の Custom Vision で可能

③ Azure ML における 自動ML の全体像

引用元: https://docs.microsoft.com/ja-jp/azure/machine-learning/concept-automated-ml#how-automl-works

③ Azure ML における 自動ML の全体像 | 実行とイテレーション

■ 実行

- イテレーション(子の実行)という処理の集まり
- 1回の自動MLで1回の実行

■ イテレーション

- パイプラインを動かすこと
- 1つの実行の中で、数多くのイテレーションを試す

ITERAT	ON PIPELINE	DURATION	METRIC	BEST
0	MaxAbsScaler LightGBM	0:00:29	0.8090	0.8090
1	MaxAbsScaler XGBoostClassifier	0:00:32	0.8174	0.8174
2	MaxAbsScaler RandomForest	0:00:23	0.7949	0.8174

- ③ Azure ML における 自動ML の全体像 | ワークスペース・実験・実行
- ワークスペースは1つだけ存在
- ワークスペースには複数の実験を作成可能
- 1つの実験で複数の実行を実施

使用するデータセット

使用するデータセット

- タイタニックデータセット
 - タイタニック号の乗客の生存を予測するタスクに用いられる
 - titanic.csv
 - https://www.kaggle.com/c/titanic

タイタニックデータセット

データ列名	意味	変数の種類	備考
Survived	生存の是非	カテゴリ	1は生存、0は死亡を意味する
PassengerId	乗客の通し番号	カテゴリ	
Pclass	乗客の客室の等級	カテゴリ	1が最高級
Name	氏名	カテゴリ	敬称が付いている
Sex	性別	カテゴリ	
Age	年龄	量的	
SibSp	乗船した兄弟・配偶者の数	量的	
Parch	乗船した親・子の数	量的	
Ticket	チケット番号	カテゴリ	
Fare	乗船代金	量的	
Cabin	部屋番号	カテゴリ	
Embarked	乗船した港	カテゴリ	S・C・Qの3種類

ハンズオン | Azure ML における 自動ML

Azure ML における 自動ML の流れ

- ノートブックファイルの作成
- ライブラリのインポート
- ワークスペースへの接続
- データセットの読み込み
- train/test split
- 自動MLの設定
- 自動MLの実行
- 結果の確認

ノートブックファイルの作成

- 新規でノートブックファイルを作成
 - 名前:好きな名前でOK (例:automl)

ライブラリのインポート

■ ライブラリのインポート

- import pandas as pd
- from azureml.core import Workspace
- from azureml.core import Experiment
- from azureml.core import Dataset

ワークスペースへの接続とデータセットの読み込み

- ワークスペースに接続
 - ws = Workspace.from_config()
- titanicデータセットの読み込み
 - df = pd.read_csv ("titanic.csv")

train/test split

- データセットを学習用とテスト用に分割
 - from sklearn.model_selection import train_test_split
 train, test = train_test_split(df, test_size=0.2, random_state=123)

自動ML の設定

- ライブラリをインポート
 - import logging # python標準のロギングモジュール
 - from azureml.train.automl import AutoMLConfig
- 設定値を辞書型で定義(次のページにコードを記載)
 - automl_settings = {... 設定値 ...}
 - 設定値の詳細
- 自動MLの設定オブジェクトを作成
 - automl_config = AutoMLConfig(**automl_settings)
 - このオブジェクトを実験に送信する

自動ML の設定 | 設定値を辞書で定義

■ 以下の辞書を作成し、AutoMLConfig クラスに渡す

```
automl_settings = {
'task': 'classification', 分類を行う
'primary_metric': 'accuracy', accuracyが最良なモデルを探す
'training data': train, 学習データ
'label column name': 'Survived', 教師ラベルの列
'n cross validations': 5, 交差検証における分割数
'featurization': 'auto', 特徴に潜む問題(欠損値など)に対する処置を実施
'iteration timeout minutes': 2, イテレーションの最大実施時間(分)
'experiment_timeout_hours': 0.25, 実験の最大実施時間(時)
'debug_log': 'titanic.log', ログファイル名
'verbosity': logging.INFO, ロギングレベル
```


自動ML の実行

- 設定オブジェクトを実験に送信
 - ex = Experiment(ws, 'titanic-automl')
 - run = ex.submit(automl_config, show_output=True)
- submitメソッドの実行で以下のようなエラーが発生する場合がある
 - [エラー概要]
 - zipp パッケージのバージョンは 3.1.0 以下のみサポートされている インストールされているバージョンは 3.2.0 である
 - [解決策]
 - !pip install zipp==3.1.0

自動ML の実行 | 自動ML実行時の出力(抜粋)

- データガードレール(データの問題を検出するAzureの機能)
 - クラスが不均衡であることを検出している

DATA GUARDRAILS:

TYPE: Class balancing detection

STATUS: PASSED

DESCRIPTION: Your inputs were analyzed, and all classes are balanced in your training data.

Learn more about imbalanced data: https://aka.ms/AutomatedMLImbalancedData

■ 各イテレーションにおけるスコア

ITERATI	ON PIPELINE	DURATION	METRIC	BEST
0	MaxAbsScaler LightGBM	0:00:22	0.8090	0.8090
1	MaxAbsScaler XGBoostClassifier	0:00:28	0.8174	0.8174
2	MaxAbsScaler RandomForest	0:00:21	0.7879	0.8174
3	MaxAbsScaler RandomForest	0:00:23	0.6348	0.8174
4	MaxAbsScaler SGD	0:00:21	0.8047 0	.8174
5	MaxAbsScaler SGD	0:00:30	0.7921 0	.8174

結果の確認 | 最良モデルの取得

- 実験の概要および最良のモデルを取得
 - run_info, best_model = run.get_output()
 - print(run_info)
 - print(best_model)

結果の確認 | 最良モデルの評価

- 未知のデータに対して予測を実行
 - y_true = test['Survived']
 - x_test = test.drop('Survived', axis = 1)
 - y_pred = best_model.predict(x_test)
- 混同行列を表示
 - from sklearn.metrics import confusion_matrix
 - cm = confusion_matrix(y_true, y_pred)
 - print(cm)

結果の確認 | 実験の詳細の確認

- 画面左のメニューより「アセット」>「実験」をクリック
- 自動ML 実行時に作成した実験をクリック
- 実行の詳細を確認できる

結果の確認 | 実行の詳細の確認

■ 最適なモデルは Voting Ensemble であったことがわかる

■ 各イテレーションの結果は「子の実行」にある

