1AML Tutorial 3

1. consider using logistic regression for a two-class classification problem in two dimensions:

Here τ denotes the logistic / σg moid function $\sigma(t) = \frac{1}{1 + \exp(-t)}$, y is the target which takes on values 0 or $1 \le -(x, x_2)$ is a vector in 2b input space, and $\omega - (\omega_0, \omega_1, \omega_2)$ are the parameters of the logistic regressor.

a. Consider a weight vector up = (-1, 1,0). Sketch DB, mark regions 0 and 1.

b. WB = (5, -5, 0). Sketch DB indicate regions 0 and 1.

comment on the differences between the two.

MWB > MWB When X1-1

2. Consider the logistic regression setup in the previous questions, but with a new weight vector who = lo, -1, 1). Consider the following dataset:

Inst ance	X	χ_{Z}	Class
0	0.5	- 0.35	
l	-0.1	D-1	_
2	-1.2	1.0	+

compute the gradient of the log likelihood of the logistic regression model for this dateset.

Suppose we take a single gradient step with N=1.0; what is the new parameters setting? Do the new parameters do a better job in classifying the training duta?

Instance
$$x_1 \quad x_2 \quad \forall lw^{\dagger}x) \quad y_1 - \sigma lw^{\dagger}x)$$

$$0 \quad 0.5 \quad -0.35 \quad 0.30 \quad -0.30 \quad -0.30$$

$$1 \quad -0.1 \quad 0.1 \quad 0.55 \quad -0.55 \quad -0.55$$

$$2 \quad -1.2 \quad 1.0 \quad 0.90 \quad 0.1$$

$$0 \rightarrow \sigma \left[0 - 1 \quad 1\right] \left[0.5 \quad -0.35\right] \rightarrow \sigma \left(-0.85\right) = \frac{1}{1 + e^{0.85}} = 0.209 \% 0.30$$

$$1 \rightarrow \sigma \left[0 - 1 \quad 1\right] \left[0.1 \quad 1\right] \rightarrow \sigma \left(0.2\right) = \frac{1}{1 + e^{-0.2}} = 0.549 \% 0.55$$

$$2 \rightarrow \sigma \left[0 - 1 \quad 1\right] \left[-1.2 \quad 1\right] \rightarrow \sigma \left(0.2\right) = \frac{1}{1 + e^{-0.2}} = 0.649 \% 0.55$$

$$\frac{\partial L}{\partial W_0} = 1 \times (-0.30) + 1 \times (-0.55) + 1 \times (0.1) = -0.75$$

$$\frac{\partial L}{\partial W_0} = 0.5 \times (-0.30) + (-0.1 \times -0.55) + (-1.2 \times 0.1) = -0.215$$

$$\frac{\partial L}{\partial W_0} = -0.35 \times (-0.30) + (0.1 \times -0.55) + (1.0 \times 0.1) = 0.15$$

$$W' = W + Mg$$

$$= \begin{bmatrix} 0 \\ -1 \end{bmatrix} + 1 \begin{bmatrix} -0.75 \\ -0.215 \\ 0.15 \end{bmatrix} = \begin{bmatrix} -0.75 \\ -1.215 \\ 1.15 \end{bmatrix}$$

New instance classification

$$0 \to \sigma \left[\left[-0.75 - 1.215 \right] \right] \left[\frac{1}{0.5} \right] = \sigma \left(-1.76 \right) = 0.15$$

$$1 \to \sigma \left[\left[-0.75 - 1.215 \right] \right] \left[-0.1 \right] = \sigma \left(-0.5135 \right) = 0.37$$

$$2 \to \sigma \left[\left[-0.75 - 1.215 \right] \right] \left[-1.2 \right] = \sigma \left(1.858 \right) = 0.87$$

Instance
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{$

+ will be set right with further gradient steps %.