Calculation: volume of KMnOy from plot-2 = 3.8 mL

(N x V) of steel sample solution = (N x V) of KMnO₄

N of steel sample solution = $0.05 \text{ N} \times \text{Volume of } \text{KMnO}_4 \text{ from Plot-2}$ 20 mL of steel sample= $9.5 \times 10^{-3} \text{ N}$

Amount of Fe present in 1 L of sample solution = Normality of steel sample x At. wt. of Fe (55.85) Amount of Fe present in given (100 ml) sample solution = $\underbrace{\text{Normality of steel sample x 55.85 x 100}}$

= 0.053 grams in 100 mL

Result: The amount of Iron present in given steel sample is found to be = 0.053 grams.

Evaluation of Result:

Evaluation of Resu	iii.			
Sample number	Experimental	Actual Value	Percentage of	Marks awarded
	value	,	error	$ \mathbf{n} / 2$
				10/10/12
				2105