

ME613 - Análise de Regressão

Parte 4

Samara F. Kiihl - IMECC - UNICAMP

Transformações

Transformações: relações não lineares

Transformações: relações não lineares

- · Linearizar uma relação linear, em casos que a suposição de normalidade dos erros com variância constante é adequada .
- · Tentar encontrar transformação em *X*.
- · Avaliar os gráficos de resíduo para decidir qual a melhor transformação.

X: número de dias de treinamento recebido.

Y: performance nas vendas.

##		Days	Performance
##	1	0.5	42.5
##	2	0.5	50.6
##	3	1.0	68.5
##	4	1.0	80.7
##	5	1.5	89.0
##	6	1.5	99.6
##	7	2.0	105.3
##	8	2.0	111.8
##	9	2.5	112.3
##	10	2.5	125.7

$$\hat{Y} = 34.945 + 35.77X$$

Gráfico de resíduos: e_i versus \hat{Y}_i .

$$X' = \sqrt{X}$$

$$\hat{Y} = -10.33 + 83.45\sqrt{X}$$

Gráfico de resíduos: e_i versus \hat{Y}_i usando X' no modelo.

Transformações: não normalidade e variância não constante

Transformações: não normalidade e variância não constante

- · Tentar encontrar transformação em *Y*.
- \cdot Pode ser combinada com uma transformação também em X.

X: Idade

Y: nível de poliamina no plasma

##		Idade	Poliamina
##	1	0	13.44
##	2	0	12.84
##	3	0	11.91
##	4	0	20.09
##	5	0	15.60
##	6	1	10.11
##	7	1	11.38
##	8	1	10.28
##	9	1	8.96
##	10	1	8.59
##	11	2	9.83
##	12	2	9.00
##	13	2	8.65
##	14	2	7.85
##	15	2	8.88
##	16	3	7.94
##	17	3	6.01
шш	10	2	Г 11

$$\hat{Y} = 13.4752 + -2.182X$$

Gráfico de resíduos: e_i versus \hat{Y}_i .

Gráfico de resíduos: e_i versus X_i .

$$Y' = \log_{10} Y$$

$$\hat{Y}' = 1.13 + -0.1X$$

Gráfico de resíduos: e_i versus $\hat{Y'}_i$ usando Y' no modelo.

Gráfico de resíduos: e_i versus X_i .

Algumas transformações em Y

- · $\log_e(Y)$: para estabilizar a variância quando esta tende a crescer à medida que Y cresce.
- \sqrt{Y} : estabilizar a variância quando esta é proporcional à média dos Y's.
- · $\frac{1}{Y}$: estabilizar a variância, minimizando o efeito de valores muito altos de Y.
- Y^2 : estabilizar a variância quando esta tende a decrescer com a média de Y's.
- · $\arcsin \sqrt{Y}$: estabilizar a variância quando os dados são proporções.
- etc...

Transformações de Box-Cox

- · Muitas vezes é difícil determinar, através de gráficos, qual a melhor transformação a ser feita.
- · O procedimento de Box-Cox identifica automaticamente uma transformação:

$$Y' = Y^{\lambda}$$

em que λ é um parâmetro a ser determinado a partir dos dados.

Modelo com dados transformados:

$$Y_i^{\lambda} = \beta_0 + \beta_1 X_i + \varepsilon_i$$

· O procedimento de Box-Cox utiliza o método de máxima verossimilhança para estimar λ .

Leitura

- Applied Linear Statistical Models: 3.8-3.11.
- · Weisberg Applied Linear Regression: Capítulo 8.
- Faraway Linear Models with R: Capítulo 9.

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."