§4.3 数学符号 37

1. 数学模式中输入的空格全部被忽略。数学符号的间隙默认完全由符号的性质(关系符号、运算符等)决定。需要人为引入空隙时,使用 \quad 和 \qquad 等命令。详见 4.6 节。

- 2. 不允许有空行(分段)。每个公式(每组多行公式)自成一个段落。
- 3. 所有的字母被当作数学公式中的变量处理,字母间距与文本模式不一致,也无法生成单词之间的空格。如果想在数学公式中输入正体的文本,简单情况下可用 4.7.1 小节中提供的 \mathrm 命令。amsmath 提供了更加方便的 \text 命令²。

\$x^{2} \geq 0 \qquad
\text{for \textbf{all} }
x\in\mathbb{R}\$

 $x^2 \ge 0$ for all $x \in \mathbb{R}$

4.3 数学符号

本节我们将接触到形形色色的数学符号,它们是 IFT_EX 卓越的数学公式排版能力的基础。 IFT_EX 默认提供了常用的数学符号,amssymb 宏包提供了一些次常用的符号。大多数常用的数学符号都能在本章末尾的 4.9 节列出的表格里查到。

4.3.1 一般符号

希腊字母符号的名称就是其英文名称,如 α (\alpha)、 β (\beta) 等等。大写的希腊字母为首字母大写的命令,如 Γ (\Gamma)、 Δ (\Delta) 等等。无穷大符号为 ∞ (\infty)。详情请参考本章末尾的表 4.5 和 4.14 等。

省略号有 ... (\dots) 和 ... (\cdots) 两种形式。它们有各自合适的用途:

\$a_1, a_2, \dots, a_n\$ \\ \$a_1 + a_2 + \cdots + a_n\$
$$a_1 + a_2 + \cdots + a_n$$

\ldots 和 \dots 是完全等效的,它们既能用在公式中,也用来在文本里作为省略号(详见 2.3.5 小节)。除此之外,在矩阵中会用到竖排的:(\vdots) 和斜排的 · (\ddots)。

4.3.2 指数、上下标和导数

在 I
ightharpoonup T EX 中用 $^{\circ}$ 和 $_{-}$ 标明上下标。注意上下标的内容(子公式)一般需要**用花括号包裹**,否则上下标只对后面的一个符号起作用。

```
$p^3_{ij} \qquad

m_\mathrm{Knuth}\qquad
\sum_{k=1}^3 k $\\[5pt]

$a^x+y \neq a^{x+y}\qquad
e^{x^2} \neq {e^x}^2$
```

$$p_{ij}^3 m_{\text{Knuth}} \sum_{k=1}^3 k$$
 $a^x + y \neq a^{x+y} e^{x^2} \neq e^{x^2}$

导数符号,(') 是一类特殊的上标,可以适当连用表示多阶导数,也可以在其后连用上标:

\$f(x) = x^2 \quad f'(x) = 2x \quad f''^{2}(x) = 4\$
$$f(x) = x^2 \quad f'(x) = 2x \quad f''^2(x) = 4$$

 2 \text 命令仅适合在公式中穿插少量文字。如果你的情况正好相反,需要在许多文字中穿插使用公式,则应该像正常的行内公式那样,而不是滥用 \text 命令。

4.3.3 分式和根式

分式使用 \frac{分子}{分母} 来书写。分式的大小在行间公式中是正常大小,而在行内被极度压缩。amsmath 提供了方便的命令 \dfrac 和 \tfrac, 令用户能够在行内使用正常大小的行间公式,或是反过来。

```
In display style:
  \[
3/8 \qquad \frac{3}{8}
  \qquad \tfrac{3}{8}
  \]
```

In display style: $3/8 \qquad \frac{3}{8} \qquad \frac{3}{8}$

In text style:
\$1\frac{1}{2}\$~hours \qquad
\$1\dfrac{1}{2}\$~hours

In text style: $1\frac{1}{2}$ hours $1\frac{1}{2}$ hours

一般的根式使用 \sqrt{...}; 表示 n 次方根时写成 \sqrt[n]{...}。

```
$\sqrt{x} \Leftrightarrow x^{1/2}
\quad \sqrt[3]{2}
\quad \sqrt{x^{2} + \sqrt{y}}$
```

$$\sqrt{x} \Leftrightarrow x^{1/2} \quad \sqrt[3]{2} \quad \sqrt{x^2 + \sqrt{y}}$$

特殊的分式形式,如二项式结构,由 amsmath 宏包的 \binom 命令生成:

```
Pascal' s rule is
\[
\binom{n}{k} =\binom{n-1}{k}
+ \binom{n-1}{k-1}
\]
```

Pascal's rule is $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$

4.3.4 关系符

IFTEX 常见的关系符号除了可以直接输入的 =, >, <, 其它符号用命令输入,常用的有不等号 \neq (\ne)、大于等于号 \geq (\ge) 和小于等于号 \leq (\le)3、约等号 \approx (\approx)、等价 \equiv (\equiv)、正比 \propto (\propto)、相似 \sim (\sim) 等等。更多符号命令可参考表 4.6 以及表 4.16。

IFT_EX 还提供了自定义二元关系符的命令 \stackrel, 用于将一个符号叠加在原有的二元关系符之上:

```
\[
f_n(x) \stackrel{*}{\approx} 1
\]
```

$$f_n(x) \stackrel{*}{\approx} 1$$

4.3.5 算符

IFT_EX 中的算符大多数是二元算符,除了直接用键盘可以输入的 +、-、*、/,其它符号用命令输入,常用的有乘号 \times (\times)、除号 \div (\div)、点乘 \cdot (\cdot)、加减号 \pm (\pm) / \mp (\mp) 等等。更多符号命令可参考表 4.7 以及表 4.17。

 ∇ (\nabla) 和 ∂ (\partial) 也是常用的算符,虽然它们不属于二元算符。

IPT_EX 将数学函数的名称作为一个算符排版,字体为直立字体。其中有一部分符号在上下位置可以书写一些内容作为条件,类似于后文所叙述的巨算符。

 $^{^3}$ 倾斜的关系符号 \leq (\leqslant) 和 \geq (\geqslant) 由 amssymb 提供, 见表 4.16。

§4.3 数学符号 39

不带上下限的算符				
\sin	\arcsin	\sinh	\exp	\dim
\cos	\arccos	\cosh	\log	\ker
\tan	\arctan	\tanh	\lg	\hom
\cot	\arg	\coth	\ln	\deg
\sec	\csc			
带上下限的算符				
\lim	\limsup	\liminf	\sup	\inf
\min	\max	\det	\Pr	\gcd

表 4.1: IATEX 作为算符的函数名称一览。

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

对于求模表达式, IPT_EX 提供了 \pmod 和 \bmod 命令,前者相当于一个二元运算符,后者作为同余表达式的后缀:

$$a \bmod b$$
$$x \equiv a \pmod b$$

如果表 4.1 中的算符不够用的话, amsmath 允许用户用 \DeclareMathOperator 定义自己的算符, 其中带星号的命令定义带上下限的算符:

\DeclareMathOperator{\argh}{argh}
\DeclareMathOperator*{\nut}{Nut}

$$\[\ 3 = \int_{x=1}^{x=1} 4x \]$$

$$\operatorname{argh} 3 = \operatorname{Nut}_{x=1} 4x$$

4.3.6 巨算符

积分号 \int (\\int)、求和号 \sum (\\sum) 等符号称为**巨算符**。巨算符在行内公式和行间公式的大小和形状有区别。

In text:
\$\sum_{i=1}^n \quad
\int_0^{\frac{\pi}{2}} \quad
\oint_0^{\frac{\pi}{2}} \quad
\prod_\epsilon \$ \\
In display:
\[\sum_{i=1}^n \quad
\int_0^{\frac{\pi}{2}} \quad
\oint_0^{\frac{\pi}{2}} \quad
\prod_\epsilon \]

In text:
$$\sum_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \oint_{0}^{\frac{\pi}{2}} \prod_{\epsilon}$$
In display:
$$\sum_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \oint_{0}^{\frac{\pi}{2}} \prod_{\epsilon}$$

巨算符的上下标用作其上下限。行间公式中,积分号默认将上下限放在右上角和右下角,求和号默认在上下方;行内公式一律默认在右上角和右下角。可以在巨算符后使用\limits 手动令上下限显示在上下方,\nolimits 则相反。

```
In text:
$\sum\limits_{i=1}^n \quad
\int\limits_0^{\frac{\pi}{2}} \quad
\prod\limits_\epsilon $ \\
In display:
\[\sum\nolimits_{i=1}^n \quad
\int\limits_0^{\frac{\pi}{2}} \quad
\prod\nolimits_\epsilon \]
```

In text:
$$\sum_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{\epsilon}$$
In display:
$$\sum_{i=1}^{n} \int_{0}^{\frac{\pi}{2}} \prod_{\epsilon}$$

amsmath 宏包还提供了\substack,能够在下限位置书写多行表达式; subarray 环境更进一步,令多行表达式可选择居中(c)或左对齐(l):

```
\[
\sum_{\substack{0\le i\le n \\
    j\in \mathbb{R}}\}

P(i,j) = Q(n)
\]
\[
\sum_{\begin{subarray}{1}\}
    0\le i\le n \\
    j\in \mathbb{R}\}
\end{subarray}\}

P(i,j) = Q(n)
\]
```

$$\sum_{\substack{0 \le i \le n \\ j \in \mathbb{R}}} P(i,j) = Q(n)$$

$$\sum_{\substack{0 \le i \le n \\ j \in \mathbb{R}}} P(i,j) = Q(n)$$

4.3.7 数学重音和上下括号

数学符号可以像文字一样加重音,比如对时间求导的符号 \dot{r} (\dot{r})、 \ddot{r} (\dot{r})、表示向量的箭头 \dot{r} (\vec{r})、表示欧式空间单位向量的 ê (\hat{\mathbf{e}}) 等,详见表 4.9。使用时要注意重音符号的作用区域,一般应当对某个符号而不是"符号加下标"使用重音:

```
$\bar{x_0} \quad \bar{x}_0$\\[5pt]
$\vec{x_0} \quad \vec{x}_0$\\[5pt]
$\hat{\mathbf{e}_x} \quad
\hat{\mathbf{e}}_x$
```

$$egin{array}{cccc} ar{x_0} & ar{x_0} & & & & & & & & & & \\ ar{x_0} & ar{x_0} & & ar{x_0} & & & & & & & & & \\ ar{\mathbf{e}_x} & \hat{\mathbf{e}}_x & \hat{\mathbf{e}}_x & & & & & & & & & & & & \end{array}$$

IATEX 也能为多个字符加重音,包括直接画线的 \overline 和 \underline 命令 (可叠加使用)、宽重音符号 \widehat、表示向量的箭头 \overrightarrow 等。后两者详见表 4.9 和 4.11 等。

```
$0.\overline{3} =
\underline{\underline{1/3}}$ \\[5pt]
$\hat{XY} \qquad \widehat{XY}$\\[5pt]
$\vec{AB} \qquad
\overrightarrow{AB}$
```

```
0.\overline{3} = \underline{\frac{1/3}{XY}}
\widehat{XY} \qquad \widehat{XY}
\widehat{AB} \qquad \widehat{AB}
```

\overbrace 和 \underbrace 命令用来生成上/下括号,各自可带一个上/下标公式。

§4.4 多行公式 41

\$\underbrace{\overbrace{a+b+c}^6}
\cdot \overbrace{d+e+f}^7}
_\text{meaning of life} = 42\$

$$\underbrace{a+b+c\cdot d+e+f}_{\text{meaning of life}} = 42$$

4.3.8 箭头

除了作为上下标之外,箭头还用于表示过程。amsmath 的 \xleftarrow 和 \xrightarrow 命令可以为箭头增加上下标:

\[a\xleftarrow{x+y+z} b \]
\[c\xrightarrow[x<y]{a*b*c}d \]</pre>

$$a \stackrel{x+y+z}{\longleftrightarrow} b$$

$$c \stackrel{a*b*c}{\longleftrightarrow} d$$

4.3.9 括号和定界符

Let EX 提供了多种括号和定界符表示公式块的边界。除小括号()、中括号[] 之外,其余都是 Let EX 命令,包括大括号 \{ \}。表 4.12 和 4.13 给出了更多的括号/定界符命令。

$$a,b,c \neq \{a,b,c\}$$

使用 \left 和 \right 命令可令括号(定界符)的大小可变,在行间公式中常用。IFTEX 会自动根据括号内的公式大小决定定界符大小。\left 和 \right 必须成对使用。需要使用单个定界符时,另一个定界符写成 \left.或 \right.。

$$1 + \left(\frac{1}{1 - x^2}\right)^3 \qquad \left. \frac{\partial f}{\partial t} \right|_{t=0}$$

有时我们不满意于 L^AT_EX 为我们自动调节的定界符大小。这时我们还可以用 \big、\bigg 等命令生成固定大小的定界符。更常用的形式是类似 \left 的 \big1、\bigg1 等,以及类似 \right 的 \bigr、\biggr 等(\bigl 和 \bigr 不必成对出现)。

\$\Bigl((x+1)(x-1)\Bigr)^{2}\$\\
\$\bigl(\Bigl(\biggl(\Biggl(\quad \bigr\} \Biggr\} \biggr\} \quad \big\| \Big\| \bigg\| \Bigg\| \quad \big\| \Big\| \Big\| \Big\| \big\Downarrow \Big\Downarrow \Big\Downarrow\$

$$\frac{\left((x+1)(x-1)\right)^2}{\left(\left(\left(\begin{array}{c} \\ \end{array}\right)\right\}\right)} \quad \left\|\left\|\left\|\right\|\right\| \quad \left\|\left\|\right\|\right\|$$

4.4 多行公式

4.4.1 长公式折行

通常来讲应当避免写出需要折行的长公式。如果一定要折行的话,优先在等号之前折行,其次在加号、减号之前,再次在乘号、除号之前。其它位置应当避免折行。