Глава 1. Элементы теории формальных языков и грамматик

1.7. Канонические формы КС-грамматик

Разнообразие форматов продукций КС-грамматик усложняет их теоретические исследования и доказательства ряда важных теорем теории формальных языков и грамматик. Поэтому естественно стремление исследователей ограничить форматы продукций без изменения порождаемых языков и ухудшения выразительных свойств грамматик.

Рассмотрим две канонические формы КС-грамматик: нормальная форма Хомского и нормальная форма Грейбах.

1.7.1. Нормальная форма Хомского

КС-грамматика $G = (V_T, V_N, P, S)$ называется грамматикой в *нормальной форме Хомского*, если множество продукций содержит продукции только следующего вида:

 $A \rightarrow BC$, где $A, B, C \in V_N$;

 $A \rightarrow a$, где $A \in V_N$, $a \in V_T$;

 $S \to \varepsilon$, если $\varepsilon \in L(G)$, причем S не должен встречаться в правых частях других продукций.

Для ε -свободных КС-грамматик существует альтернативное определение грамматики в нормальной форме Хомского, которое отличается тем, что в нем отсутствует ε -продукция $S \to \varepsilon$ и в продукции вида $A \to BC$ нетерминалы B и C могут быть начальными символами грамматики.

Любая КС-грамматика может быть преобразована в эквивалентную КС-грамматику в нормальной форме Хомского. Преобразование представлено алгоритмом 1.7.

Алгоритм 1.7. Преобразование КС-грамматики к нормальной форме Хомского

Вход: КС-грамматика $G = (V_T, V_N, P, S)$

Выход: КС-грамматика $G' = (V_T, V'_N, P', S')$ в нормальной форме Хомского

Шаг 1. Удалить ε -продукции. Если в грамматике нет ε -продукций, а начальный символ S входит в правые части продукций, то пополнить грамматику новым начальным символом S' и включить в нее продукцию $S' \to S$.

Шаг 2. Удалить цепные продукции.

Шаг 3. Удалить бесполезные символы, поскольку они могут появиться при выполнении шагов 1 и 2.

Шаг 4. Для продукций вида $A \to \alpha$, $|\alpha| > 1$, правые части которых включают в себя подстроки терминалов, каждому терминалу a из правой части поставить в соответствие новый нетерминал A_a и новую продукцию $A_a \to a$. В результате правая часть такой продукции будет состоять только из нетерминалов.

Шаг 5. Для продукций вида $A \to B_1 B_2 \dots B_m$, m > 2, поставить в соответствие совокупность продукций вида

$$A \to B_1B'_1, B'_1 \to B_2B'_2, ..., B'_{m-1} \to B_{m-1}B_m,$$

где $B'_1, B'_2, ..., B'_{m-1}$ — новые нетерминалы, не содержащиеся более ни в одной продукции. Отметим, что $B_1B_2...B_m$ после выполнения шага 4 могут быть только нетерминалами.

Рассмотрим в качестве примера грамматику со следующими продукциями:

$$S \rightarrow ASB \mid \varepsilon$$

$$A \rightarrow aA \mid \varepsilon$$

$$B \rightarrow bB \mid b$$

Шаг 1. Удаление ε-продукций

$$S' \to \varepsilon \mid S$$

$$S \rightarrow ASB | SB | AB | B$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bB \mid b$$

Шаг 2. Удаление цепных продукций

$$S' \rightarrow \varepsilon |ASB|SB|AB|bB|b$$

$$S \rightarrow ASB | SB | AB | bB | b$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bB \mid b$$

Шаг 3. Бесполезных символов нет.

Шаг 4. Замена терминалов на нетерминалы в продукциях вида $A \to \alpha$, $|\alpha| > 1$

$$S' \to \varepsilon |ASB|SB|AB|A_bB|b$$

$$S \rightarrow ASB | SB | AB | A_bB | b$$

$$A \rightarrow A_a A \mid a$$

$$B \to A_b B \mid b$$

$$A_a \rightarrow a$$

$$A_b \rightarrow b$$

Шаг 5. Замена продукций вида $A \to B_1B_2...B_m$, m > 2 на совокупность продукций. Имеем две такие продукции: $S' \to ASB$ и $S \to ASB$. Добавим новый нетерминал D для обозначения подстроки SB и продукцию $D \to SB$. В результате получим

$$S' \to \varepsilon |AD| SB |AB| A_b B |b|$$

$$S \rightarrow AD |SB|AB|A_bB|b$$

$$A \rightarrow A_a A \mid a$$

$$B \rightarrow A_b B \mid b$$

$$A_a \rightarrow a$$

$$A_b \rightarrow b$$

$$D \rightarrow SB$$

1.7.2. Нормальная форма Грейбах

КС-грамматика $G = (V_T, V_N, P, S)$ называется грамматикой в *нормальной форме* Грейбах (Sheila Greibach), если множество продукций содержит продукции только следующего вида:

 $A \rightarrow a\beta$, где $A \in V_N$, $a \in V_T$, $\beta \in V_N^*$;

 $S \to \varepsilon$, если $\varepsilon \in L(G)$, причем S не должен встречаться в правых частях других продукций.

В ряде источников иногда на строку β накладывают ограничение $|\beta| \le 2$, т. е. β представляет собой строку из не более чем двух нетерминалов. Это продукции вида $A \to a$, $A \to aB$, $A \to aBC$, где A, B, $C \in V_N$, $a \in V_T$. Данный вариант мы рассматривать не будем из-за достаточно сложного формального алгоритма преобразования к такой форме.

Существует альтернативное определение нормальной формы Грейбах, в котором $\beta \in (V_T \cup V_N)^*$, т. е. β – произвольная строка терминалов и нетерминалов (включая и строку длины 0). Данное определение ослабляет ограничение на строку β , поэтому ряд авторов называют его *ослабленной нормальной формой Грейбах*.

Следует обратить внимание на то, что КС-грамматика в нормальной форме Грейбах не имеет левой рекурсии.

Любая КС-грамматика может быть преобразована в эквивалентную КС-грамматику в нормальной форме Грейбах. Преобразование представлено алгоритмом 1.8.

Алгоритм 1.8. Преобразование КС-грамматики к нормальной форме Грейбах

Вход: КС-грамматика $G = (V_T, V_N, P, S)$

Выход: КС-грамматика $G' = (V_T, V'_N, P', S')$ в нормальной форме Грейбах

Шаг 1. Удалить ε-продукции.

Шаг 2. Устранить левую рекурсию. В результате все продукции (кроме $S \to \varepsilon$, если она есть) будут иметь вид $A_i \to a\beta$ или $A_i \to A_j\beta$, i < j, где $A_i, A_j \in V_N$, $a \in V_T$, $\beta \in (V_T \cup V_N)^*$.

Шаг 3. Определить частичный линейный порядок на множестве V_N в соответствии со следующим правилом: если существует продукция вида $A \to B\alpha$, где $A, B \in V_N$, $\alpha \in (V_T \cup V_N)^*$, то A < B. Пусть $V_N = \{A_1, A_2, ..., A_m\}$. Тогда все A_m -продукции имеют вид $A_m \to \alpha_1, \alpha_2, ..., \alpha_k$, причем каждая строка $\alpha_1, \alpha_2, ..., \alpha_k$ начинается с терминала.

Шаг 4. i := m - 1.

Шаг 5. Если i > 0, для продукций вида $A_i \to A_j \beta$, j > i выполнить замену вхождений нетерминала A_j в соответствии с продукциями $A_j \to \alpha_1, \alpha_2, \ldots, \alpha_k$ (каждая строка $\alpha_1, \alpha_2, \ldots, \alpha_k$ начинается с терминала), получив продукции $A_i \to \alpha_1 \beta |\alpha_2 \beta| \ldots |\alpha_k \beta$. В противном случае (если i = 0) перейти к шагу 7.

Шаг 6. і := i - 1 и вернуться к шагу 5.

Шаг 7. Построена эквивалентная КС-грамматика в ослабленной нормальной форме Грейбах. Осталось выполнить требование $\beta \in V_N^*$. В каждой продукции вида $A \to a\beta$, в которой строка β включает в себя подстроки терминалов, каждому терминалу b из строки β поставить в соответствие новый нетерминал A_b и новую продукцию $A_b \to b$.

Рассмотрим данное преобразование на примере. Воспользуемся грамматикой, не содержащей левую рекурсию (шаги 1 и 2 алгоритма выполнены):

$$E \to T | TE'$$

$$E' \to + T | + TE'$$

$$T \to F | FT'$$

$$T' \to \times F | \times FT'$$

$$F \to (E) | i$$

Шаг 3. Упорядочим нетерминалы. В соответствии с продукциями $E \to T \mid TE'$, имеем E < T. Из продукций $T \to F \mid FT'$ следует, что T < F. Больше продукций вида $A \to B\alpha$ нет. Для нетерминалов E' и T' порядок не определен, поэтому считаем, что они находятся в отношении < с остальными нетерминалами. В результате получаем порядок E < T < F < E' < T'. Отметим, что правая часть каждой продукции с нетерминалами T', E' и F в левой части начинается с терминала.

Шаги 4, 5, 6. Для продукций $T \to F | FT'$ выполним замену вхождений нетерминала F

$$T \to (E) \, \big| \, i \, \big| \, (E) T' \, \big| \, i T'$$
 Для продукций $E \to T \, \big| \, TE' -$ замену вхождений нетерминала T : $E \to (E) \, \big| \, i \, \big| \, (E) T' \, \big| \, i T' \, \big| \, (E) E' \, \big| \, i E' \, \big| \, (E) T' E' \, \big| \, i T' E'$

В результате получим эквивалентную грамматику в ослабленной нормальной форме Грейбах

$$E \to (E) |i| (E)T' |iT'| (E)E' |iE'| (E)T'E' |iT'E'$$
 $E' \to + T | + TE'$
 $T \to (E) |i| (E)T' |iT'$
 $T' \to \times F | \times FT'$
 $F \to (E) |i|$
Шаг 7. В продукциях
 $E \to (E) |(E)T'| (E)E' |(E)T'E'$
 $T \to (E) |(E)T'| (E)E' |(E)T'E'$

терминалу) сопоставим нетерминал B и добавим соответствующую новую продукцию:

$$E \rightarrow (EB | i | (EBT' | iT' | (EBE' | iE' | (EBT'E' | iT'E' \\ E' \rightarrow + T | + TE' \\ T \rightarrow (EB | i | (EBT' | iT' \\ T' \rightarrow \times F | \times FT' \\ F \rightarrow (EB | i \\ B \rightarrow)$$