Post-quantum cryptography I

Geovandro C. C. F. Pereira Institute for Quantum Computing University of Waterloo

Agenda

- Preliminaries
- A little history and awareness
- Hash-based signatures

What is security after all?

Computer Security

Computer security is the **protection afforded** to an information system in order to attain the applicable goals of preserving the **integrity, availability**, and **confidentiality** of the resources (includes hardware, software, information/data, and telecommunications).

- NIST Computer Security Handbook

• Confidentiality (symmetric): prevent eavesdropping

- Confidentiality (symmetric): prevent eavesdropping
 - ▶ instant messaging, local storage

- Confidentiality (symmetric): prevent eavesdropping
 - instant messaging, local storage

. . .

▶ symmetric ciphers: AES-256, ChaCha20

• Integrity (symmetric): prevent data tampering

- Integrity (symmetric): prevent data tampering
 - control messages: pacemakers, drones

- Integrity (symmetric): prevent data tampering
 - control messages: pacemakers, drones

Hash functions, MACs (tag): SHA-2, HMAC (keyed hash), Poly1305.

• Authenticity (asymmetric): check the origin

- Authenticity (asymmetric): check the origin
 - web browsing, software updates

- Authenticity (asymmetric): check the origin
 - web browsing, software updates
 - ▶ Public key crypto: RSA, (EC)DSA, ...

Quantum killer app I

Shor 1994: algorithms for quantum computation: discrete logarithms and factoring

Quantum killer app I

- Shor 1994: algorithms for quantum computation: discrete logarithms and factoring
 - \star X No more RSA and DSA (discrete log-based)

Quantum killer app I

- Shor 1994: algorithms for quantum computation: discrete logarithms and factoring
 - No more RSA and DSA (discrete log-based)
- × 2003, extension to ECDSA Proos and Zalka 2003

Quantum killer app I

- Shor 1994: algorithms for quantum computation: discrete logarithms and factoring
 - * X No more RSA and DSA (discrete log-based)
- X 2003, extension to ECDSA Proos and Zalka 2003

of qubits required

► **Factoring**: 2n + 2 logical qubits^a

^aHäner, Roetteler, and Svore 2016.

^bRoetteler et al. 2017.

Quantum killer app I

- Shor 1994: algorithms for quantum computation: discrete logarithms and factoring
 - * X No more RSA and DSA (discrete log-based)
- X 2003, extension to ECDSA Proos and Zalka 2003

of qubits required

- ► **Factoring**: 2n + 2 logical qubits^a
 - * RSA-3072: 6146 qubits

^aHäner, Roetteler, and Svore 2016.

^bRoetteler et al. 2017.

Quantum killer app I

- Shor 1994: algorithms for quantum computation: discrete logarithms and factoring
 - * X No more RSA and DSA (discrete log-based)
- X 2003, extension to ECDSA Proos and Zalka 2003

of qubits required

► **Factoring**: 2n + 2 logical qubits^a

* RSA-3072: 6146 qubits

ECDLP: $9n + 2\lceil \log n \rceil + 10 \text{ logical qubits}^b$

^aHäner, Roetteler, and Svore 2016.

^bRoetteler et al. 2017.

Quantum killer app I

- Shor 1994: algorithms for quantum computation: discrete logarithms and factoring
 - * X No more RSA and DSA (discrete log-based)
- × 2003, extension to ECDSA Proos and Zalka 2003

of qubits required

► **Factoring**: 2n + 2 logical qubits^a

RSA-3072: 6146 qubits

ECDLP: $9n + 2\lceil \log n \rceil + 10 \log$ ical qubits^b

ECC-256: 2330 qubits

^aHäner, Roetteler, and Svore 2016.

^bRoetteler et al. 2017.

Quantum killer app I

- Shor 1994: algorithms for quantum computation: discrete logarithms and factoring
 - * X No more RSA and DSA (discrete log-based)
- X 2003, extension to ECDSA Proos and Zalka 2003

of qubits required

- ▶ **Factoring**: 2n + 2 logical qubits^a
 - * RSA-3072: 6146 qubits
- **ECDLP**: $9n + 2\lceil \log n \rceil + 10 \text{ logical qubits}^b$
 - * ECC-256: 2330 qubits
- ► For 128-bit security "ECC easier target than RSA" b.

^aHäner, Roetteler, and Svore 2016.

^bRoetteler et al. 2017.

Quantum killer app II

• Grover 1996: a fast quantum mechanical algorithm for database search

Quantum killer app II

- Grover 1996: a fast quantum mechanical algorithm for database search
- Find the unique input to black box function for a given output

Quantum killer app II

- Grover 1996: a fast quantum mechanical algorithm for database search
- Find the unique input to black box function for a given output

• Quadratic speedup $O(\sqrt{N})$ compared to best classical O(N)

Quantum killer app II

- Grover 1996: a fast quantum mechanical algorithm for database search
- Find the unique input to black box function for a given output

- Quadratic speedup $O(\sqrt{N})$ compared to best classical O(N)
- Complexity is optimal Bennett et al. 1997:
 No hope for a quantum solution to solve NP-complete problems (e.g. Unique-SAT)

Quantum killer app II

- Grover 1996: a fast quantum mechanical algorithm for database search
- Find the unique input to black box function for a given output

- Quadratic speedup $O(\sqrt{N})$ compared to best classical O(N)
- Complexity is optimal Bennett et al. 1997:
 No hope for a quantum solution to solve NP-complete problems (e.g. Unique-SAT)
- Partially affects block-ciphers: Break 128-bit keys in $O(2^{64})$ steps Grassl et al. 2016: 2953 qubits required

What are the affected families of cryptosystems?

Confidentiality, Integrity (symmetric) √

Model of block ciphers

If the encryption key is chosen at random, then an attacker who does not know the key cannot distinguish between the block cipher and a truly random permutation.

$$f(X) = E_X(I)$$

What are the affected families of cryptosystems?

Confidentiality, Integrity (symmetric) √

Model of block ciphers

If the encryption key is chosen at random, then an attacker who does not know the key cannot distinguish between the block cipher and a truly random permutation.

$$f(X) = E_X(I)$$

Moreover, hash functions are modeled as one-way functions.

What are the affected families of cryptosystems?

Confidentiality, Integrity (symmetric) √

Model of block ciphers

If the encryption key is chosen at random, then an attacker who does not know the key cannot distinguish between the block cipher and a truly random permutation.

$$f(X) = E_X(I)$$

- Moreover, hash functions are modeled as one-way functions.
- Authentication (asymmetric) X

Assumptions do not hold in a quantum setting

Mainly based on the hardness of integer factoring or computing discrete logarithm.

But there is a hope

• Fortunately, some old not very interesting algorithms surprisingly resisted to Shor's new attacks.

But there is a hope

• Fortunately, some old not very interesting algorithms surprisingly resisted to Shor's new attacks.

Definition

Post-quantum cryptography consists of classical cryptographic algorithms whose security assumption does not suffer an exponential speedup by quantum attacks are automatically dubbed post-quantum algorithms.

But there is a hope

• Fortunately, some old not very interesting algorithms surprisingly resisted to Shor's new attacks.

Definition

Post-quantum cryptography consists of classical cryptographic algorithms whose security assumption does not suffer an exponential speedup by quantum attacks are automatically dubbed post-quantum algorithms.

Definition

Quantum-safe cryptography includes a broader set of cryprographic algorithms including non-classical assumptions such as laws of quantum physics, e.g. Quantum Key Distribution.

Hash-based crypto:

One-way functions exist

Hash-based crypto:

One-way functions exist

Multivariate-quadratic crypto:

Random-looking multivariate system of non-linear equations is hard

Hash-based crypto:

One-way functions exist

Multivariate-quadratic crypto:

Random-looking multivariate system of non-linear equations is hard

Code-based crypto:

Syndrome decoding for error-correcting codes is hard

Hash-based crypto:

One-way functions exist

Multivariate-quadratic crypto:

Random-looking multivariate system of non-linear equations is hard

Code-based crypto:

Syndrome decoding for error-correcting codes is hard

Lattice-based crypto:

Finding short/close vectors on a lattice is hard

Hash-based crypto:

One-way functions exist

Multivariate-quadratic crypto:

Random-looking multivariate system of non-linear equations is hard

Code-based crypto:

Syndrome decoding for error-correcting codes is hard

Lattice-based crypto:

Finding short/close vectors on a lattice is hard

Supersingular Isogeny-based crypto:

Computing isogenies between supersingular elliptic curves is hard

 In August 2015, NSA announces that it plans to replace Suite B with a new cipher suite due to concerns about quantum computing attacks on ECC (even 256-bit curves).

- In August 2015, NSA announces that it plans to replace Suite B with a new cipher suite due to concerns about quantum computing attacks on ECC (even 256-bit curves).
- 2015, Koblitz N., Menezes A. A riddle wrapped in an enigma

10 / 42

- In August 2015, NSA announces that it plans to replace Suite B with a new cipher suite due to concerns about quantum computing attacks on ECC (even 256-bit curves).
- 2015, Koblitz N., Menezes A. A riddle wrapped in an enigma
- 2016, NIST announces post-quantum standardization
 - Deadline for submission Nov 30th, 2017
 - ► Focus on digital sigs, encryption and key establishment.

- In August 2015, NSA announces that it plans to replace Suite B with a new cipher suite due to concerns about quantum computing attacks on ECC (even 256-bit curves).
- 2015, Koblitz N., Menezes A. A riddle wrapped in an enigma
- 2016, NIST announces post-quantum standardization
 - ▶ Deadline for submission Nov 30th, 2017
 - ▶ Focus on digital sigs, encryption and key establishment.
- 2018, NIST PQC Standardization Conference (submitter's talks)

Mosca's risk analysis formula

Let X be the time to have certain information protected.

Let Y be the time to deploy post-quantum.

Let Z be the Y2Q (countdown of years to quantum).

If Z < X + Y: trouble!

• Huge investments in Quantum Computing research

NATURE | NEWS

Europe plans giant billion-euro quantum technologies project

Third European Union flagship will be similar in size and ambition to graphene and human brain initiatives.

Elizabeth Gibney

21 April 2016 | Updated: 26 April 2016

• Huge investments in Quantum Computing research

NATURE | NEWS

Europe plans giant billion-euro quantum technologies project

Third European Union flagship will be similar in size and ambition to graphene and human brain initiatives.

Elizabeth Gibney

21 April 2016 | Updated: 26 April 2016

- Industry competing for quantum supremacy (no crypto purpose).
 - ▶ 2017, Google and IBM building general-purpose small prototypes of QCs. Google has no fault-tolerance design plans.

Huge investments in Quantum Computing research

NATURE | NEWS

<

Europe plans giant billion-euro quantum technologies project

Third European Union flagship will be similar in size and ambition to graphene and human brain initiatives.

Elizabeth Gibney

21 April 2016 | Updated: 26 April 2016

- Industry competing for quantum supremacy (no crypto purpose).
 - ▶ 2017, Google and IBM building general-purpose small prototypes of QCs. Google has no fault-tolerance design plans.
- More importantly, there is a steady progress in qubit fidelities.
 Experts estimate that large QCs (1k's of qubits) will be around by 2031 with 50% chance.

Y: Time to deploy new cryptography with wide interoperation

• Let's look at the history of ECC:

- Let's look at the history of ECC:
 - ▶ 1985: Elliptic curves in cryptography by Koblitz and Miller

- Let's look at the history of ECC:
 - ▶ 1985: Elliptic curves in cryptography by Koblitz and Miller
 - ▶ 1992: ECDSA signature suggested by Scott Vanstone to DSS

- Let's look at the history of ECC:
 - ▶ 1985: Elliptic curves in cryptography by Koblitz and Miller
 - ▶ 1992: ECDSA signature suggested by Scott Vanstone to DSS
 - ▶ 1996: Paul Kotcher introduces side-channel attacks.

- Let's look at the history of ECC:
 - ▶ 1985: Elliptic curves in cryptography by Koblitz and Miller
 - ▶ 1992: ECDSA signature suggested by Scott Vanstone to DSS
 - ▶ 1996: Paul Kotcher introduces side-channel attacks.
 - ★ 1997: Joye-Quisquater introduce fault attacks against ECC

- Let's look at the history of ECC:
 - ▶ 1985: Elliptic curves in cryptography by Koblitz and Miller
 - ▶ 1992: ECDSA signature suggested by Scott Vanstone to DSS
 - ▶ 1996: Paul Kotcher introduces side-channel attacks.
 - ★ 1997: Joye-Quisquater introduce fault attacks against ECC
 - ★ 1998: The ECDLP is actually easy in some (anomalous) curves

- Let's look at the history of ECC:
 - ▶ 1985: Elliptic curves in cryptography by Koblitz and Miller
 - ▶ 1992: ECDSA signature suggested by Scott Vanstone to DSS
 - ▶ 1996: Paul Kotcher introduces side-channel attacks.
 - ★ 1997: Joye-Quisquater introduce fault attacks against ECC
 - ★ 1998: The ECDLP is actually easy in some (anomalous) curves
 - ★ 2000: Biehl-Meyer-Muller devise invalid curve attacks

- Let's look at the history of ECC:
 - ▶ 1985: Elliptic curves in cryptography by Koblitz and Miller
 - ▶ 1992: ECDSA signature suggested by Scott Vanstone to DSS
 - ▶ 1996: Paul Kotcher introduces side-channel attacks.
 - ★ 1997: Joye-Quisquater introduce fault attacks against ECC
 - ★ 1998: The ECDLP is actually easy in some (anomalous) curves
 - ★ 2000: Biehl-Meyer-Muller devise invalid curve attacks
 - ▶ 2000: NIST FIPS 186-2 includes ECDSA and the 15 NIST curves

Let's look at the history of ECC (cont.):

2014 Cloudfare's post dedicated to Scott Vanstone

W.r.t. https certificates, despite ECDSA being much faster than RSA for TLS handshake/signing, > 90% of the certificates used on the web in 2014 were RSA-based.

Even as late as 2012, out of 13 million TLS certificates found in a scan of the internet, fewer than 50 use an ECDSA key pair.

• Let's look at the history of ECC (cont.):

2014 Cloudfare's post dedicated to Scott Vanstone

W.r.t. https certificates, despite ECDSA being much faster than RSA for TLS handshake/signing, > 90% of the certificates used on the web in 2014 were RSA-based.

Even as late as 2012, out of 13 million TLS certificates found in a scan of the internet, fewer than 50 use an ECDSA key pair.

Main reason

Web sites owners slow to adopt new certificates due to maintainance of compataibility with legacy browsers that do not support the new algorithms. – Sullivan, N. 2014

The good news to ECC

In Apr'17, ECDSA finally surpassed RSA with 60% of all TLS connections. Recall that ECDSA was proposed in 1992 for DSS. It took 25 years for ECDSA to become widely deployed. — Cloudfare report.

The good news to ECC

In Apr'17, ECDSA finally surpassed RSA with 60% of all TLS connections. Recall that ECDSA was proposed in 1992 for DSS. It took 25 years for ECDSA to become widely deployed. — Cloudfare report.

The bad news to ECC

"For those partners and vendors that have not yet made the transition to Suite B algorithms, we recommend not making a significant expenditure to do so at this point but instead to prepare for the upcoming quantum resistant algorithm transition." - NSA 2015 announcement

Jul'17, Pereira's suggested bound:

Conjectured bound $Y \ge 25$ If $Z < X + 25 \Rightarrow$ trouble!

Jul'17, Pereira's suggested bound:

Conjectured bound $Y \ge 25$ If $Z < X + 25 \Rightarrow$ trouble!

• It is true that the more robust TLS infrastructure and experienced community will be faster at deploying implementations.

Jul'17, Pereira's suggested bound:

Conjectured bound
$$Y \ge 25$$
 If $Z < X + 25 \Rightarrow$ trouble!

- It is true that the more robust TLS infrastructure and experienced commmunity will be faster at deploying implementations.
- On the other hand:
 - NIST standardization analysis phase will take 5 years and 2 more for the drafts – D. Moody
 - ► The field of quantum cryptanalysis has only just begun (recent attacks against NTRU and binary MQ)
 - ► Two lines of attacks imply higher chances to break post-quantum assumptions.

1976, Diffie-Hellman in "New directions in cryptography" introduce HBS:

One-way message authentication has a partial solution suggested to the authors by Leslie Lamport of Massachusetts Computer Associates. This technique employs a one-way function f mapping k-dimensional binary space into itself for k on the order of 100. If the transmitter wishes to send an N bit message he generates 2N, randomly chosen, k-dimensional binary vectors $x_1, X_1, x_2, X_2, \dots, x_N, X_N$ which he keeps secret. The receiver is given the corresponding images under f, namely $y_1, Y_1, y_2, Y_2, \dots, y_N, Y_N$. Later, when the message m = (m_1, m_2, \cdots, m_N) is to be sent, the transmitter sends x_1 or X_1 depending on whether $m_1 = 0$ or 1. He sends x_2 or X_2 depending on whether $m_2 = 0$ or 1, etc. The receiver operates with f on the first received block and sees whether it yields y_1 or Y_1 as its image and thus learns whether it was x_1 or X_1 , and whether $m_1 = 0$ or 1. In a similar manner the receiver is able to determine m_2, m_3, \dots, m_N . But the receiver is incapable of forging a change in even one bit of m.

Let $f: \{0,1\}^k \to \{0,1\}^k$ be a public one-way function

Let $f: \{0,1\}^k \to \{0,1\}^k$ be a public one-way function Signer generates n pairs of k-bit strings $(x_i, X_i)_{i=1}^n \in_R \{0,1\}^k$:

$$sk = \{(x_1, X_1), (x_2, X_2), \cdots, (x_n, X_n)\}$$

Let $f: \{0,1\}^k \to \{0,1\}^k$ be a public one-way function Signer generates n pairs of k-bit strings $(x_i, X_i)_{i=1}^n \in_R \{0,1\}^k$:

$$sk = \{(x_1, X_1), (x_2, X_2), \cdots, (x_n, X_n)\}$$

Evaluate f on them: $y_i, Y_i \leftarrow f(x_i), f(X_i)$ and publishes:

$$pk = \{(y_1, Y_1), (y_2, Y_2), \cdots, (y_n, Y_n)\}$$

Let $f: \{0,1\}^k \to \{0,1\}^k$ be a public one-way function Signer generates n pairs of k-bit strings $(x_i, X_i)_{i=1}^n \in_R \{0,1\}^k$:

$$sk = \{(x_1, X_1), (x_2, X_2), \cdots, (x_n, X_n)\}$$

Evaluate f on them: $y_i, Y_i \leftarrow f(x_i), f(X_i)$ and publishes:

$$pk = \{(y_1, Y_1), (y_2, Y_2), \cdots, (y_n, Y_n)\}$$

To sign $m \in \{0,1\}^n$ reveal

$$\sigma_i \leftarrow \overline{m_i} x_i + m_i X_i //m_i$$
 selects the *i*-th element

Let $f: \{0,1\}^k \to \{0,1\}^k$ be a public one-way function Signer generates n pairs of k-bit strings $(x_i, X_i)_{i=1}^n \in_R \{0,1\}^k$:

$$sk = \{(x_1, X_1), (x_2, X_2), \cdots, (x_n, X_n)\}$$

Evaluate f on them: $y_i, Y_i \leftarrow f(x_i), f(X_i)$ and publishes:

$$pk = \{(y_1, Y_1), (y_2, Y_2), \cdots, (y_n, Y_n)\}$$

To sign $m \in \{0,1\}^n$ reveal

$$\sigma_i \leftarrow \overline{m_i} x_i + m_i X_i //m_i$$
 selects the *i*-th element

To verify $\sigma = (\sigma_1, \ldots, \sigma_n)$ check if

$$f(\sigma_i) \stackrel{?}{=} \begin{cases} y_i \Rightarrow m_i = 0 \\ Y_i \Rightarrow m_i = 1 \end{cases}$$

1976, Lamport's digital signature idea

• A problem pointed by Diffie and Hellman:

1976, Lamport's digital signature idea

• A problem pointed by Diffie and Hellman: Imagine the message to be signed is N = 1Mbit.

1976, Lamport's digital signature idea

• A problem pointed by Diffie and Hellman:

Imagine the message to be signed is N = 1Mbit.

The size of sk, pk would be $2kN \approx 2 \cdot 100 \cdot 10^6 = 200M$ bits

1976, Lamport's digital signature idea

A problem pointed by Diffie and Hellman:
 Imagine the message to be signed is N = 1Mbit.

The size of sk, pk would be $2kN \approx 2 \cdot 100 \cdot 10^6 = 200M$ bits

• An improvement would be:

1976, Lamport's digital signature idea

• A problem pointed by Diffie and Hellman:

Imagine the message to be signed is N = 1 Mbit.

The size of sk, pk would be $2kN \approx 2 \cdot 100 \cdot 10^6 = 200M$ bits

• An improvement would be:

Define a new one-way function $g:\{0,1\}^* \to \{0,1\}^n$.

1976, Lamport's digital signature idea

• A problem pointed by Diffie and Hellman:

Imagine the message to be signed is N = 1Mbit.

The size of sk, pk would be $2kN \approx 2 \cdot 100 \cdot 10^6 = 200M$ bits

• An improvement would be:

Define a new one-way function $g: \{0,1\}^* \to \{0,1\}^n$.

Under message $m \in \{0,1\}^N$, compute $m' = g(m) \in \{0,1\}^n$

1976, Lamport's digital signature idea

• A problem pointed by Diffie and Hellman:

Imagine the message to be signed is N = 1Mbit.

The size of sk, pk would be $2kN \approx 2 \cdot 100 \cdot 10^6 = 200M$ bits

• An improvement would be:

Define a new one-way function $g: \{0,1\}^* \to \{0,1\}^n$.

Under message $m \in \{0,1\}^N$, compute $m' = g(m) \in \{0,1\}^n$

Generate ${\it sk}$ and ${\it pk}$ using $f:\{0,1\}^k \to \{0,1\}^k$ for each bit $1,\ldots,n$.

1976, Lamport's digital signature idea

• A problem pointed by Diffie and Hellman:

Imagine the message to be signed is N = 1Mbit.

The size of sk, pk would be $2kN \approx 2 \cdot 100 \cdot 10^6 = 200M$ bits

• An improvement would be:

Define a new one-way function $g: \{0,1\}^* \to \{0,1\}^n$.

Under message $m \in \{0,1\}^{N}$, compute $m' = g(m) \in \{0,1\}^{n}$

Generate \emph{sk} and \emph{pk} using $f:\{0,1\}^k \rightarrow \{0,1\}^k$ for each bit $1,\ldots,n$.

Note that g can have many inputs mapped to a same output.

1976, Lamport's digital signature idea

• A problem pointed by Diffie and Hellman:

Imagine the message to be signed is N = 1Mbit.

The size of sk, pk would be $2kN \approx 2 \cdot 100 \cdot 10^6 = 200M$ bits

• An improvement would be:

Define a new one-way function $g: \{0,1\}^* \to \{0,1\}^n$.

Under message $m \in \{0,1\}^N$, compute $m' = g(m) \in \{0,1\}^n$

Generate \emph{sk} and \emph{pk} using $f:\{0,1\}^k \rightarrow \{0,1\}^k$ for each bit $1,\ldots,n$.

Note that g can have many inputs mapped to a same output.

Therefore, g should have stronger properties than f (collision resistance).

Remark: Lamport-Diffie is a one-time signature (OTS)!

1 Assume a message $m_1=(\mathbf{0},\mathbf{1},\mathbf{1})\in\{0,1\}^3$ is signed. Thus

$$\sigma = \{ \overline{\mathbf{0}}x_1 + \mathbf{0}X_1, \overline{1}x_2 + 1X_2, \overline{1}x_3 + 1X_3 \}$$

= \{x_1, X_2, X_3\}

Remark: Lamport-Diffie is a one-time signature (OTS)!

1 Assume a message $m_1=(\mathbf{0},\mathbf{1},\mathbf{1})\in\{0,1\}^3$ is signed. Thus

$$\sigma = \{ \overline{\mathbf{0}}x_1 + \mathbf{0}X_1, \overline{1}x_2 + 1X_2, \overline{1}x_3 + 1X_3 \}$$

= \{x_1, X_2, X_3\}

② Let the signer produce a new signature of $m_2 = (1, 1, 0)$ under sk:

$$\sigma' = \{X_1, X_2, x_3\}$$

Remark: Lamport-Diffie is a one-time signature (OTS)!

1 Assume a message $m_1 = (\mathbf{0}, \underline{1}, \underline{1}) \in \{0, 1\}^3$ is signed. Thus

$$\sigma = \{ \overline{\mathbf{0}}x_1 + \mathbf{0}X_1, \overline{1}x_2 + 1X_2, \overline{1}x_3 + 1X_3 \}$$

= \{x_1, X_2, X_3\}

② Let the signer produce a new signature of $m_2 = (1, 1, 0)$ under sk:

$$\sigma' = \{X_1, X_2, x_3\}$$

Notice that $\{x_1, X_1, X_2, x_3, X_3\}$ are now public.

Remark: Lamport-Diffie is a one-time signature (OTS)!

1 Assume a message $m_1 = (\mathbf{0}, \mathbf{1}, \mathbf{1}) \in \{0, 1\}^3$ is signed. Thus

$$\sigma = \{ \overline{\mathbf{0}}x_1 + \mathbf{0}X_1, \overline{1}x_2 + 1X_2, \overline{1}x_3 + 1X_3 \}$$

= \{x_1, X_2, X_3\}

② Let the signer produce a new signature of $m_2 = (1, 1, 0)$ under sk:

$$\sigma' = \{X_1, X_2, x_3\}$$

- Notice that $\{x_1, X_1, X_2, x_3, X_3\}$ are now public.
- Then it's easy to forge a signature of $m_3 = (1,1,1)$ for example. Thus, Lamport-Diffie signature is OTS and each key pair can be only used once.

Security assumption of Lamport-Diffie (LD)

- one-way function f is hard to invert and
- 2 it is hard to find different input values that map to a same output

Put the above together, HBS rely on the existence of modern **cryptographically secure hash functions**.

- Recall that LD's sk, pk keys consist of n pairs of k-bit strings.
- Can we do better in terms of space?

- Recall that LD's sk, pk keys consist of n pairs of k-bit strings.
- Can we do better in terms of space?

Merkle 1979, an optimization of LD due to Winternitz

Idea: instead of processing $m \in \{0,1\}^n$ bit-by-bit, use w-bit chunks.

$$m = (m_1 || \cdots || m_{\lceil n/w \rceil})$$

where $m_i \in \{0,1\}^w$ can be viewed as w-bit integers.

- Recall that LD's sk, pk keys consist of n pairs of k-bit strings.
- Can we do better in terms of space?

Merkle 1979, an optimization of LD due to Winternitz

Idea: instead of processing $m \in \{0,1\}^n$ bit-by-bit, use w-bit chunks.

$$m = (m_1 || \cdots || m_{\lceil n/w \rceil})$$

where $m_i \in \{0,1\}^w$ can be viewed as w-bit integers.

KeyGen: Precompute $x_i, y_i = f^{2^w-1}(x_i)$ for $i = 1, \dots, \lceil n/w \rceil$ where $f^t(x) = f(\dots f(x) \dots)$ means t applications of f

- Recall that LD's sk, pk keys consist of n pairs of k-bit strings.
- Can we do better in terms of space?

Merkle 1979, an optimization of LD due to Winternitz

Idea: instead of processing $m \in \{0,1\}^n$ bit-by-bit, use w-bit chunks.

$$m = (m_1 || \cdots || m_{\lceil n/w \rceil})$$

where $m_i \in \{0,1\}^w$ can be viewed as w-bit integers.

- KeyGen: Precompute $x_i, y_i = f^{2^w-1}(x_i)$ for $i = 1, \dots, \lceil n/w \rceil$ where $f^t(x) = f(\dots f(x) \dots)$ means t applications of f
- Actually, it is possible to do better:

$$pk = y = g(y_1 \parallel \cdots \parallel y_{\lceil n/w \rceil})$$

- Recall that LD's sk, pk keys consist of n pairs of k-bit strings.
- Can we do better in terms of space?

Merkle 1979, an optimization of LD due to Winternitz

Idea: instead of processing $m \in \{0,1\}^n$ bit-by-bit, use w-bit chunks.

$$m = (m_1 || \cdots || m_{\lceil n/w \rceil})$$

where $m_i \in \{0,1\}^w$ can be viewed as w-bit integers.

- KeyGen: Precompute $x_i, y_i = f^{2^w-1}(x_i)$ for $i = 1, \dots, \lceil n/w \rceil$ where $f^t(x) = f(\dots f(x) \dots)$ means t applications of f
- Actually, it is possible to do better:

$$pk = y = g(y_1 \parallel \cdots \parallel y_{\lceil n/w \rceil})$$

Public key pk boils down to one hash value (instead of 2n).

(cont. \cdots)

Winternitz OTS

• Sign: compute

$$\sigma = (f^{m_1}(\mathbf{x_1}), \cdots, f^{m_{\lceil n/w \rceil}}(\mathbf{x_{\lceil n/w \rceil}}))$$

(cont. \cdots)

Winternitz OTS

Sign: compute

$$\sigma = (f^{m_1}(\mathbf{x_1}), \cdots, f^{m_{\lceil n/w \rceil}}(\mathbf{x_{\lceil n/w \rceil}}))$$

Verify: compute

$$y_i' = f^{2^w - 1 - m_i}(\sigma_i)$$
, for all i
 $y' = g(y_1' \parallel \cdots \parallel y_{\lceil n/w \rceil}')$

Check

$$y' \stackrel{?}{=} y$$

• Problem: Winternitz defined exactly as previously is insecure!

• **Problem**: Winternitz defined exactly as previously is **insecure**! Assume a message $m=(m_1,\cdots,m_i,\cdots,m_{\lceil n/w \rceil})$ with signature

$$\sigma = (f^{m_1}(x_1), \cdots, f^{m_i}(x_i), \cdots))$$

• **Problem**: Winternitz defined exactly as previously is **insecure**! Assume a message $m=(m_1,\cdots,\mathbf{m_i},\cdots,m_{\lceil n/w\rceil})$ with signature

$$\sigma = (f^{m_1}(x_1), \cdots, f^{m_i}(x_i), \cdots))$$

• Assume that for some i we have $m_i < 2^w - 1$

• **Problem**: Winternitz defined exactly as previously is **insecure**! Assume a message $m=(m_1,\cdots,\mathbf{m_i},\cdots,m_{\lceil n/w\rceil})$ with signature

$$\sigma = (f^{m_1}(x_1), \cdots, \mathbf{f}^{\mathbf{m}_i}(\mathbf{x_i}), \cdots))$$

- Assume that for some i we have $m_i < 2^w 1$
- Then, an adversary can produce a valid signature for the message

$$m'=(m_1,\cdots,m_i+1,\cdots,m_{\lceil n/w \rceil})$$

• **Problem**: Winternitz defined exactly as previously is **insecure**! Assume a message $m=(m_1,\cdots,\mathbf{m_i},\cdots,m_{\lceil n/w\rceil})$ with signature

$$\sigma = (f^{m_1}(x_1), \cdots, \mathbf{f}^{\mathbf{m}_{\mathbf{i}}}(\mathbf{x_i}), \cdots))$$

- Assume that for some i we have $m_i < 2^w 1$
- Then, an adversary can produce a valid signature for the message

$$m'=(m_1,\cdots,m_i+1,\cdots,m_{\lceil n/w \rceil})$$

given by

$$\sigma' = (f^{m_1}(x_1), \cdots, f(\mathbf{f}^{\mathbf{m}_i}(\mathbf{x}_i)), \cdots))$$

$$= (f^{m_1}(x_1), \cdots, \mathbf{f}^{\mathbf{m}_i+1}(\mathbf{x}_i), \cdots))$$

$$= \sigma(m')$$

• **Problem**: Winternitz defined exactly as previously is **insecure**! Assume a message $m=(m_1,\cdots,\mathbf{m_i},\cdots,m_{\lceil n/w\rceil})$ with signature

$$\sigma = (f^{m_1}(x_1), \cdots, \mathbf{f}^{\mathbf{m}_{\mathbf{i}}}(\mathbf{x_i}), \cdots))$$

- Assume that for some i we have $m_i < 2^w 1$
- Then, an adversary can produce a valid signature for the message

$$m'=(m_1,\cdots,m_i+1,\cdots,m_{\lceil n/w \rceil})$$

given by

$$\sigma' = (f^{m_1}(x_1), \cdots, f(\mathbf{f^{m_i}(x_i)}), \cdots))$$

$$= (f^{m_1}(x_1), \cdots, \mathbf{f^{m_i+1}(x_i)}, \cdots))$$

$$= \sigma(m')$$

Violates the notion of existential unforgeability!

• Solution: 1979, Merkle introduces a checksum.

- Solution: 1979, Merkle introduces a checksum.
- From $m = (m_1, \dots, m_{\lceil n/w \rceil})$, compute

$$CS = \sum_{i=1}^{\lceil n/w \rceil} 2^w - 1 - m_i$$

which can be stored in $t = log_2(\lceil n/w \rceil \cdot (2^w - 1))$ bits.

- Solution: 1979, Merkle introduces a checksum.
- From $m=(m_1,\cdots,m_{\lceil n/w \rceil})$, compute

$$CS = \sum_{i=1}^{\lceil n/w \rceil} 2^w - 1 - m_i$$

which can be stored in $t = log_2(\lceil n/w \rceil \cdot (2^w - 1))$ bits.

• **Idea**: represent *CS* as *w*-bit chunks as well:

$$CS = (m_{\lceil n/w \rceil+1}, \cdots, m_{\lceil n/w \rceil+\lceil t/w \rceil})$$

- Solution: 1979, Merkle introduces a checksum.
- From $m=(m_1,\cdots,m_{\lceil n/w \rceil})$, compute

$$CS = \sum_{i=1}^{\lceil n/w \rceil} 2^w - 1 - m_i$$

which can be stored in $t = log_2(\lceil n/w \rceil \cdot (2^w - 1))$ bits.

• **Idea**: represent *CS* as *w*-bit chunks as well:

$$CS = (m_{\lceil n/w \rceil+1}, \cdots, m_{\lceil n/w \rceil+\lceil t/w \rceil})$$

• Extend the message to be $m||CS = (m_1, \cdots, m_{\lceil n/w \rceil + \lceil t/w \rceil})$

(checksum: cont ...)

• Given a signature

$$\sigma = (f^{m_1}(x_1), \cdots, \mathbf{f}^{\mathbf{m}_i}(\mathbf{x_i}), \cdots))$$

(checksum: cont ...)

• Given a signature

$$\sigma = (f^{m_1}(x_1), \cdots, \mathbf{f}^{\mathbf{m}_i}(\mathbf{x_i}), \cdots))$$

• Let $i \leq \lceil n/w \rceil$. If the adversary tries to go forward on $\mathbf{f}^{\mathbf{m}_i}(\mathbf{x_i})$:

$$\sigma' = (f^{m_1}(x_1), \cdots, f(\mathbf{f^{m_i}(x_i)}), \cdots))$$

= $(f^{m_1}(x_1), \cdots, \mathbf{f^{m_i+1}(x_i)}, \cdots))$

(checksum: cont ...)

• Given a signature

$$\sigma = (f^{m_1}(x_1), \cdots, \mathbf{f}^{\mathbf{m}_i}(\mathbf{x_i}), \cdots))$$

• Let $i \leq \lceil n/w \rceil$. If the adversary tries to go forward on $\mathbf{f}^{\mathbf{m}_i}(\mathbf{x_i})$:

$$\sigma' = (f^{m_1}(x_1), \cdots, f(\mathbf{f}^{\mathbf{m}_i}(\mathbf{x}_i)), \cdots))$$

= $(f^{m_1}(x_1), \cdots, f^{\mathbf{m}_i+1}(\mathbf{x}_i), \cdots))$

• Then the new checksum is CS' = CS - 1 which implies an inversion $f^{-1}(f^{m_j}(x_j))$ for some $m_j \in CS$.

(checksum: cont ...)

• Given a signature

$$\sigma = (f^{m_1}(x_1), \cdots, \mathbf{f}^{\mathbf{m}_i}(\mathbf{x_i}), \cdots))$$

• Let $i \leq \lceil n/w \rceil$. If the adversary tries to go forward on $\mathbf{f}^{\mathbf{m}_i}(\mathbf{x_i})$:

$$\sigma' = (f^{m_1}(x_1), \cdots, f(\mathbf{f}^{\mathbf{m}_i}(\mathbf{x}_i)), \cdots))$$

= $(f^{m_1}(x_1), \cdots, f^{\mathbf{m}_i+1}(\mathbf{x}_i), \cdots))$

- Then the new checksum is CS' = CS 1 which implies an inversion $f^{-1}(f^{m_j}(x_j))$ for some $m_j \in CS$.
- If a forger targets $m_j \in CS$, an inversion is also implied on m_i . Thus, the checksum protects against such attacks.

Winternitz OTS example

• Let w = 2 and one wants to sign the (n = 4)-bit message

$$m = (1011)$$

with
$$\lceil n/w \rceil = 2$$
 and $m = (m_1 = 2, m_2 = 3)$.

Winternitz OTS example

• Let w = 2 and one wants to sign the (n = 4)-bit message

$$m = (1011)$$

with $\lceil n/w \rceil = 2$ and $m = (m_1 = 2, m_2 = 3)$.

• Compute the checksum:

$$CS = \sum_{i=1}^{2} 2^{2} - 1 - m_{i}$$
$$= 3 - 2 + 3 - 3 = 1$$

Winternitz OTS example

• Let w = 2 and one wants to sign the (n = 4)-bit message

$$m = (1011)$$

with $\lceil n/w \rceil = 2$ and $m = (m_1 = 2, m_2 = 3)$.

• Compute the checksum:

$$CS = \sum_{i=1}^{2} 2^{2} - 1 - m_{i}$$
$$= 3 - 2 + 3 - 3 = 1$$

Thus, $CS = (0001) = (m_3 = 0, m_4 = 1)$ and the actual message is m||CS = (2, 3, 1, 0)

(cont...) Winternitz OTS: example

• Key generation including CS:

$$sk = (x_1, \dots, x_4)$$

 $pk = y = g(f^3(x_1) \parallel \dots \parallel f^3(x_4))$

(cont...) Winternitz OTS: example

• Key generation including CS:

$$sk = (x_1, \dots, x_4)$$

 $pk = y = g(f^3(x_1) \parallel \dots \parallel f^3(x_4))$

• The signature of m||CS = (2,3,1,0) will be

$$\sigma = (f^{2}(\mathbf{x_{1}}), f^{3}(\mathbf{x_{2}}), f(\mathbf{x_{3}}), \mathbf{x_{4}}) = (\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4})$$

(cont...) Winternitz OTS: example

• Key generation including CS:

$$sk = (x_1, \dots, x_4)$$

 $pk = y = g(f^3(x_1) \parallel \dots \parallel f^3(x_4))$

• The signature of m||CS = (2,3,1,0) will be

$$\sigma = (f^2(\mathbf{x_1}), f^3(\mathbf{x_2}), f(\mathbf{x_3}), \mathbf{x_4}) = (\sigma_1, \sigma_2, \sigma_3, \sigma_4)$$

• Verification of σ will be

(cont...) Winternitz OTS: example

• Key generation including CS:

$$sk = (x_1, \dots, x_4)$$

 $pk = y = g(f^3(x_1) \parallel \dots \parallel f^3(x_4))$

• The signature of m||CS = (2,3,1,0) will be

$$\sigma = (f^2(\mathbf{x_1}), f^3(\mathbf{x_2}), f(\mathbf{x_3}), \mathbf{x_4}) = (\sigma_1, \sigma_2, \sigma_3, \sigma_4)$$

- ullet Verification of σ will be
 - Recompute *CS* from *m* getting m||CS = (2, 3, 1, 0)|

(cont...) Winternitz OTS: example

• Key generation including CS:

$$sk = (x_1, \dots, x_4)$$

 $pk = y = g(f^3(x_1) \parallel \dots \parallel f^3(x_4))$

• The signature of m||CS = (2,3,1,0) will be

$$\sigma = (f^2(\mathbf{x_1}), f^3(\mathbf{x_2}), f(\mathbf{x_3}), \mathbf{x_4}) = (\sigma_1, \sigma_2, \sigma_3, \sigma_4)$$

- Verification of σ will be
 - Recompute *CS* from *m* getting m||CS = (2,3,1,0)|
 - Compute and check

$$(y_1', y_2', y_3', y_4') = (f^{3-2}(\sigma_1), f^{3-3}(\sigma_2), f^{3-1}(\sigma_3), f^{3-0}(\sigma_4))$$
$$g(y_1' \parallel y_2' \parallel y_3' \parallel y_4') \stackrel{?}{=} y$$

Note on the efficiency of Winternitz OTS

• $|sk| = |\sigma| \approx (n/w)k$ (ignoring the checksum)

- $|sk| = |\sigma| \approx (n/w)k$ (ignoring the checksum)
 - ▶ Compares well with the **2nk** bits in $|sk|, |\sigma|$ for LD
 - A 2w reduction factor for sk
 - A **w** reduction factor for σ

- $|sk| = |\sigma| \approx (n/w)k$ (ignoring the checksum)
 - Compares well with the **2nk** bits in |sk|, $|\sigma|$ for LD
 - A 2w reduction factor for sk
 - A **w** reduction factor for σ
- $\bullet |pk| = n$

- $|sk| = |\sigma| \approx (n/w)k$ (ignoring the checksum)
 - ▶ Compares well with the **2nk** bits in $|sk|, |\sigma|$ for LD
 - A 2w reduction factor for sk
 - A **w** reduction factor for σ
- $\bullet |pk| = n$
- But, WOTS requires $(2^{w} 1)/w$ hash evaluations per bit
 - While LD requires 2 evaluations per bit
 - Notice that for w = 1 we get exactly Lamport-Diffie

- $|sk| = |\sigma| \approx (n/w)k$ (ignoring the checksum)
 - ▶ Compares well with the **2nk** bits in $|sk|, |\sigma|$ for LD
 - A 2w reduction factor for sk
 - A **w** reduction factor for σ
- $\bullet |pk| = n$
- But, WOTS requires $(2^{w} 1)/w$ hash evaluations per bit
 - ▶ While LD requires 2 evaluations per bit
 - Notice that for w = 1 we get exactly Lamport-Diffie
- Since hash evaluations can be very fast, it is a reasonable tradeoff

Scheme	n = k	PrivKey	PubKey	Sig
LD OTS	256	16	16	16
WOTS $(w=2)$	256	4.2	32 bytes	4.2
WOTS (w=8)	256	1.1	32 bytes	1.1
WOTS (w=16)	256	0.6	32 bytes	0.6

Table: Parameter sizes for one-time signatures in KiB

1979, Merkle turns OTS into multi-time signatures

1979, Merkle turns OTS into multi-time signatures

- ▶ OTS can be **any** one-time signature scheme.
- V_{pub} authenticates 2^h OTS key pairs.

1979, Merkle signature: Sign

1979, Merkle signature: Sign

ullet Nodes q_i are called the **authentication path** of *i*-th signature

1979, Merkle signature: Sign

- Nodes q_i are called the **authentication path** of i-th signature
- Stateful: susceptible to some attacks, e.g. 'restart attacks'

Time efficiency of the Merkle signature

Requires $O(2^h)$ hash evaluations per signature

Time efficiency of the Merkle signature

- Requires $O(2^h)$ hash evaluations per signature
- Improvement by BDS'08.
 - Store strategic (higher) nodes on a state during KeyGen.
 - * Allows for a tradeoff between size of the state *vs* # leaf computations at each signature.

1979, Merkle signature: Verify

1979, Merkle signature: Verify

• An obvious optimization is not sending $v^{(i)}$. Verifier only checks the root.

Space efficiency of the Merkle signature

- Private key size: $2^h \cdot |sk_{OTS}|$
- ▶ Public key size: size of hash *H*, e.g. 256 bits.
- Signature size: $|\sigma| = |i| + |\sigma_{OTS}| + |v(i)| + |(q_0, \dots, q_{h-1})|$

Space efficiency of the Merkle signature

- Private key size: $2^h \cdot |sk_{OTS}|$
- Public key size: size of hash H, e.g. 256 bits.
- Signature size: $|\sigma| = |i| + |\sigma_{OTS}| + |v(i)| + |(q_0, \dots, q_{h-1})|$

Merkle parameter sizes example

$$|f| = |H| = n = 256, h = 10$$

Scheme	PrivKey	PubKey	Sig
Merkle + LD	16 MiB	32 bytes	16.4 KiB
Merkle+WOTS (w=2)	4.2 MiB	32 bytes	4.5 KiB
Merkle+WOTS (w=16)	0.6 MiB	32 bytes	0.9 KiB

Table: Parameter sizes for Merkle multi-time signature (1024 signatures)

Merkle signature: XMSS'11 introduces additional properties

Merkle signature: XMSS'11 introduces additional properties

• XMSS uses the variant WOTS⁺. Collision-resistance unecessary.

Merkle signature: XMSS'11 introduces additional properties

- XMSS uses the variant WOTS⁺. Collision-resistance unecessary.
- Implication: half-size hashes can be used safely.

Merkle signature: implemention of PRNG and hash function

• Matyas-Meyer-Oseas: block-cipher-based hash function

Merkle signature: implemention of PRNG and hash function

• Matyas-Meyer-Oseas: block-cipher-based hash function

• Fast optimized (hw/sw) block-ciphers available in many platforms

Merkle signature: implemention of PRNG and hash function

Matyas-Meyer-Oseas: block-cipher-based hash function

- Fast optimized (hw/sw) block-ciphers available in many platforms
- FSPRG by Standaert et al. 2010:

Hash-based Signatures (HBS) – A holistic view

Post-quantum security

Only require hash functions (efficient/minimal security assumption)

No reliance on trapdoors

Robust security (1976) (cryptanalysis with little progress)

Larger signatures

References I

Shor, Peter W (1994).

"Algorithms for quantum computation: Discrete logarithms and factoring".

Proos, John and Christof Zalka (2003).

"Shor's discrete logarithm quantum algorithm for elliptic curves".

Häner, Thomas, Martin Roetteler, and Krysta M Svore (2016).

"Factoring using 2n+2 qubits with Toffoli based modular multiplication".

Roetteler, Martin et al. (2017).

"Quantum resource estimates for computing elliptic curve discrete logarithms".

Grover, Lov K (1996).

"A fast quantum mechanical algorithm for database search".

Bennett, Charles H et al. (1997).

"Strengths and weaknesses of quantum computing".

Grassl, Markus et al. (2016).

"Applying Grovers algorithm to AES: quantum resource estimates".

"Secrecy, authentication, and public key systems".

Standaert, FranCcois-Xavier et al. (2010).

"Leakage resilient cryptography in practice".