Optimisation

Chapitre 3 : Différentiabilité, Convexité

Joseph GERGAUD, Serge GRATTON & Daniel RUIZ

10 septembre 2024

Définition 3.1.1 – Dérivée d'une fonction de $\mathbb R$ dans $\mathbb R$

Une fonction d'une seule variable réelle à valeurs dans $\mathbb R$ est dérivable en un point x de $\mathbb R$ s'il existe un nombre réel a noté f'(x) tel que :

$$\lim_{t\to 0} \frac{f(x+t)-f(x)-at}{t} = 0.$$

Définition 3.1.2 – Dérivée au sens de Fréchet

Soient E et F deux espaces vectoriels normés. Soit f une application définie sur le domaine $D \subset E$ et à valeurs dans F. L'application f est dite **F-différentiable** (ou différentiable au sens de Frêchet, ou encore différentiable au sens fort) en un point \mathbf{x} de l'intérieur du domaine D, s'il existe un opérateur linéaire continu $f'(\mathbf{x})$ de E dans F ($f'(\mathbf{x}) \in \mathcal{L}(E,F)$), tel que

$$\forall \mathbf{h} \in E \ , \ f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + f'(\mathbf{x}) \cdot \mathbf{h} + \|\mathbf{h}\|_{E} \, \varepsilon(\mathbf{h}) \ , \ \text{avec} \ \lim_{\|\mathbf{h}\|_{E} \to 0} \|\varepsilon(\mathbf{h})\|_{F} = 0 \ .$$

$$\tag{1}$$

Si $E = \mathbb{R}^n$ et $F = \mathbb{R}^m$ les bases étant choisies dans ces espaces, on peut associer à l'application linéaire $f'(\mathbf{x})$ une matrice.

Définition 3.1.3 – Matrice jacobienne

Une base dans les espaces de départ et d'arrivée étant choisie, on appelle matrice jacobienne la matrice vérifiant

$$\forall \mathbf{h} \in \mathbb{R}^n, \quad f'(\mathbf{x}).\mathbf{h} = J_f(\mathbf{x}) \times \mathbf{h}.$$

Proposition 3.1.4

Si l'application f est F-différentiable (dérivable) au point \mathbf{x} , elle est alors continue au point \mathbf{x} .

Définition 3.1.5

Soient E et F deux espaces vectoriels normés, et $\Omega \subset E$ un ouvert de E. On dit que **l'application** $f:\Omega \subset E \to F$ est dérivable dans Ω si elle est dérivable en tout point $\mathbf x$ de Ω . On peut alors définir l'application

$$f'$$
: $\mathbf{x} \in \Omega \subset E \to f'(\mathbf{x}) \in \mathcal{L}(E, F)$,

appelée application dérivée de f. Si l'application dérivée $f':\Omega\subset E\to \mathcal{L}(E,F)$ est continue, on dit que l'application $f:\Omega\subset E\to F$ est (une fois) continûment dérivable dans Ω , et on écrit

$$f \in C^1(\Omega)$$
.

• Exemple 3.1.1.

$$\begin{array}{cccc} f: & \mathbb{R}^n & \longrightarrow & \mathbb{R}^m \\ & x & \longmapsto & Ax + b \end{array}$$

• Exemple 3.1.1.

$$f: \quad \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}^m$$

$$x \quad \longmapsto \quad Ax + b$$

• Exemple 3.1.2.

$$f: \quad \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}$$

$$\quad x \quad \longmapsto \quad \frac{1}{2} x^T A x + b^T x + c$$

• Exemple 3.1.1.

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$x \longmapsto Ax + b$$

Exemple 3.1.2.

$$f: \quad \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \frac{1}{2}x^TAx + b^Tx + c$$

Définition 3.1.6 – Gradient

On appelle gradient de la fonction f en \mathbf{x} de \mathbf{H} , espace de Hilbert, à valeur dans \mathbb{R} l'unique vecteur de \mathbf{H} , noté $\nabla f(\mathbf{x})$, tel que

$$\forall \mathbf{h} \in \mathbf{H}, \quad f'(\mathbf{x}).\mathbf{h} = <\nabla f(\mathbf{x}), \mathbf{h}>$$

• Exemple 3.1.3.

$$\begin{array}{cccc} f \colon & \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ & \beta & \longmapsto & \frac{1}{2} \|y - X\beta\|^2 \end{array}$$

La donnée d'une application

$$f:\Omega\subset E\to F=\prod_{i=1}^{r}F_{i}$$

revient à se donner p applications composantes $f_i:\Omega\subset E\to F_i,\ 1\leq i\leq p,$ de telle façon que

$$\forall \mathbf{x} \in E \; , \; \; f(\mathbf{x}) = \left(egin{array}{c} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{array}
ight) \; .$$

Proposition 3.1.7

On établit facilement que l'application f est dérivable en un point $\mathbf{a} \in \Omega$ si et seulement si chaque application composante l'est aussi, et on a alors :

$$f'(\mathbf{a}) = \begin{pmatrix} f'_1(\mathbf{a}) \\ f'_2(\mathbf{a}) \\ \vdots \\ f'_p(\mathbf{a}) \end{pmatrix} \text{ avec } f'_i(\mathbf{a}) \in \mathcal{L}(E, F_i) , \ 1 \le i \le p .$$

Considérons ensuite une application

$$f:\Omega\subset\prod_{i=1}^n E_i o F$$

où Ω est un ouvert de $\prod_{i=1}^n E_i$. Soit **a** un point de Ω de composantes (a_1, a_2, \ldots, a_n) , et soit $k \in (1, 2, \ldots, n)$ l'un des indices.

Soit $\Omega_i, i = 1, ..., n$ des ouverts des E_i tels que $\prod_{i=1}^n \Omega_i \subset \Omega$. On définit alors la k-ième application partielle

$$\begin{array}{ccc} \Omega_k \subset E_k & \longrightarrow & F \\ x_k & \longrightarrow & f(a_1, \ldots, a_{k-1}, x_k, a_{k+1}, \ldots, a_n) \end{array}.$$

Définition 3.1.8 – Dérivée partielle

On appelle dérivée partielle de f au point $\mathbf a$ par rapport à la k-ième variable la dérivée, si elle existe de l'application partielle au point $a_k \in \Omega_k \subset E_k$, on note

$$\frac{\partial f}{\partial x_k}(\mathbf{a}) \in \mathcal{L}(E_k, F)$$

cette dérivée partielle.

• Si f est une fonction de $\Omega \subset \mathbb{R}^n$, Ω ouvert à valeurs dans \mathbb{R}^m dérivable en $\mathbf{a} \in \Omega$ alors sa matrice jacobienne d'écrit

$$f'(\mathbf{a}).\mathbf{h} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \frac{\partial f_1}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{a}) \\ \frac{\partial f_2}{\partial x_1}(\mathbf{a}) & \frac{\partial f_2}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_2}{\partial x_n}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_p}{\partial x_1}(\mathbf{a}) & \frac{\partial f_p}{\partial x_2}(\mathbf{a}) & \cdots & \frac{\partial f_p}{\partial x_n}(\mathbf{a}) \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{pmatrix} .$$

• Si p=1 alors le gradient de f en ${f a}$ s'écrit

$$\nabla f(\mathbf{a}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{a}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{a}) \end{pmatrix}.$$

• Exemple 3.1.4.

$$f: \quad \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \frac{1}{2} ||x||^2.$$

• Exemple 3.1.4.

$$\begin{array}{cccc} f \colon & \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{1}{2} \|x\|^2. \end{array}$$

• Exemple 3.1.5.

$$\begin{array}{cccc} f \colon & \mathbb{R}^3 & \longrightarrow & \mathbb{R}^2 \\ & (x_1, x_2, x_3) & \longmapsto & \left(\begin{matrix} x_2 \cos x_1 - x_3 \sin x_1 \\ & x_1 x_2 x_3 \end{matrix} \right). \end{array}$$

Théorème 3.1.9 – Théorème des fonctions composées

Soient E, F, et G, trois espaces vectoriels normés. Soit $f:\Omega\subset E\to F$ une application dérivable en un point $\mathbf{x}\in\Omega$ (Ω ouvert de E), et soit $g:\widetilde{\Omega}\subset F\to G$ une application dérivable au point $\mathbf{y}=f(\mathbf{x})\in\widetilde{\Omega}$ ($\widetilde{\Omega}$ ouvert de F). On suppose $f(\Omega)\subset\widetilde{\Omega}$. Alors l'application composée

$$g \circ f : \Omega \subset E \to G$$

est dérivable au point $\textbf{x} \in \Omega$ et

$$\forall \mathbf{h} \in E$$
, $(g \circ f)'(\mathbf{x}).\mathbf{h} = g'(f(\mathbf{x})).(f'(\mathbf{x}).\mathbf{h}).$

Proposition 3.1.10 – Cas de la dimension finie

Si
$$E = \mathbb{R}^n, F = \mathbb{R}^m$$
 et $G = \mathbb{R}^p$, on a

$$J_{g \circ f}(\mathbf{x}) = J_g(\mathbf{y}) \times J_f(\mathbf{x}) = J_g(f(\mathbf{x})) \times J_f(\mathbf{x}).$$

Exemple 3.1.6.

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$\beta \longmapsto \frac{1}{2} ||y - X\beta||^2.$$

Définition 3.1.11 – Dérivée seconde

Soit $f:\Omega\subset E\to F$ une application dérivable sur l'ouvert $\Omega\subset E.$ Si l'application dérivée

$$f':\Omega\subset E o \mathcal{L}(E,F)$$

est elle même dérivable (i.e. F-différentiable) en un point $\mathbf{x}\in\Omega$, sa dérivée, notée

$$f''(\mathbf{x}) \stackrel{\text{def}}{=} (f')'(\mathbf{x}) \in \mathcal{L}(E, \mathcal{L}(E, F))$$
,

est appelée dérivée seconde de l'application f au point x, et on dit que l'application f est deux fois dérivable au point x.

Notation : Il est facile de remarquer que l'application

$$\mathbf{B} : (\mathbf{h}, \mathbf{k}) \in E \times E \to ((f''(\mathbf{x}) \cdot \mathbf{h}) \cdot \mathbf{k}) \in F,$$

est linéaire séparément en chacune des variables \mathbf{h} et \mathbf{k} , et est de ce fait **bilinéaire**. On identifie l'application dérivée seconde de f au point \mathbf{x} , $f''(\mathbf{x}) \in \mathcal{L}(E, \mathcal{L}(E, F))$, à une application de l'espace $\mathcal{L}_2(E \times E, F)$, espace des applications bilinéaires continues de $E \times E$ dans F. On écrira alors

$$\forall h, k \in E$$
, $f''(x)(h, k) = (f''(x) \cdot h) \cdot k$.

Proposition 3.1.12

Si l'application $f:\Omega\subset E\to F$ est deux fois dérivable au point $\mathbf x$ de l'ouvert $\Omega\subset E$, alors l'application dérivée seconde de f au point $\mathbf x$ est une **application** bilinéaire symétrique en ce sens que

$$\forall \mathbf{h}, \mathbf{k} \in E , f''(\mathbf{x})(\mathbf{h}, \mathbf{k}) = f''(\mathbf{x})(\mathbf{k}, \mathbf{h}).$$

Définition 3.1.13 – Application dérivée seconde

On dit que l'application $f:\Omega\subset E\to F$ est deux fois dérivable dans Ω si elle est deux fois dérivable en tout point $\mathbf x$ de Ω . On peut alors définir l'application dérivée seconde de f

$$f''$$
: $\mathbf{x} \in \Omega \subset E \to f''(\mathbf{x}) \in \mathcal{L}_2(E \times E, F)$.

Si cette dernière application est continue, l'application f est dite deux fois continûment dérivable dans Ω , et on écrit

$$f \in \mathcal{C}^2(\Omega)$$
.

Remarque 3.1.1. En ce qui concerne le calcul effectif des dérivées secondes, on utilise le résultat suivant, qui permet de se ramener à des calculs de dérivées premières : étant donné deux vecteurs quelconques $\mathbf{h}, \mathbf{k} \in E$, l'élément $f''(\mathbf{x})(\mathbf{h}, \mathbf{k}) \in F$ est égal à la dérivée au point $\mathbf{x} \in \Omega$ de l'application $\mathbf{v} \in \Omega \to f'(\mathbf{v}) \cdot \mathbf{k} \in F$, appliquée au vecteur \mathbf{h} .

Remarque 3.1.2. Cas où $f:\mathbb{R}^n\to\mathbb{R}$ Si f est une application de \mathbb{R}^n à valeurs dans \mathbb{R} alors f''(a) est une forme bilinéaire de $\mathbb{R}^n\times\mathbb{R}^n$ à valeurs dans \mathbb{R} . On peut alors lui associer une matrice (n,n) appelée matrice hessiennne

$$H_{f}(\mathbf{a}) = \nabla^{2} f(\mathbf{a}) = \begin{pmatrix} \frac{\partial^{2} \mathbf{f}}{\partial x_{1} \partial x_{1}}(\mathbf{a}) & \frac{\partial^{2} \mathbf{f}}{\partial x_{1} \partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial^{2} \mathbf{f}}{\partial x_{1} \partial x_{n}}(\mathbf{a}) \\ \frac{\partial^{2} \mathbf{f}}{\partial x_{2} \partial x_{1}}(\mathbf{a}) & \frac{\partial^{2} \mathbf{f}}{\partial x_{2} \partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial^{2} \mathbf{f}}{\partial x_{2} \partial x_{n}}(\mathbf{a}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} \mathbf{f}}{\partial x_{n} \partial x_{1}}(\mathbf{a}) & \frac{\partial^{2} \mathbf{f}}{\partial x_{n} \partial x_{2}}(\mathbf{a}) & \cdots & \frac{\partial^{2} \mathbf{f}}{\partial x_{n} \partial x_{n}}(\mathbf{a}) \end{pmatrix},$$

et on a

$$\forall \mathbf{h} \in \mathbb{R}^n, \forall \mathbf{h} \in \mathbb{R}^n, f''(a).(\mathbf{h}, \mathbf{k}) = \mathbf{h}^T \nabla^2 f(\mathbf{a}) \mathbf{k}.$$

• Exemple 3.1.7.

$$f: \quad \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \frac{1}{2} ||x||^2.$$

• Exemple 3.1.7.

$$f: \quad \mathbb{R}^n \quad \longrightarrow \quad \mathbb{R}$$

$$x \quad \longmapsto \quad \frac{1}{2} ||x||^2.$$

• Exemple 3.1.8.

$$f: \mathbb{R}^n \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{1}{2} ||r(x)||^2$$

(avec r(x) deux fois dérivable).

Théorème 3.1.14 – Formules de Taylor pour les applications une fois dérivables

Soient $f:\Omega\subset E\to F$ et $[\mathbf{a},\mathbf{a}+\mathbf{h}]$ un segment fermé contenu dans Ω ouvert.

i) Si f est dérivable en a, alors

$$f(\mathbf{a}+\mathbf{h}) = f(\mathbf{a}) + f'(\mathbf{a}) \cdot \mathbf{h} + \|\mathbf{h}\|_{E} \, \varepsilon(\mathbf{h}) \ , \ \text{avec} \ \lim_{\|\mathbf{h}\|_{E} \to 0} \|\varepsilon(\mathbf{h})\|_{F} \ = \ 0 \ .$$

ii) Formule des accroissements finis : si $f \in \mathcal{C}^0(\Omega)$ et f est dérivable en tout point du segment ouvert $]\mathbf{a},\mathbf{a}+\mathbf{h}[$, alors

$$\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})\|_F \leq \sup_{\mathbf{x}\in]\mathbf{a},\mathbf{a}+\mathbf{h}[} \|f'(\mathbf{x})\|_{\mathcal{L}(E,F)} \|\mathbf{h}\|_E \ .$$

- iii) Formule de Taylor-Maclaurin : si $f \in C^0(\Omega)$ et f est dérivable en tout point du segment ouvert]a, a + h[, et si $F = \mathbb{R}$, alors $\exists \theta \in]0, 1[\text{ tel que } f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + f'(\mathbf{a} + \theta \mathbf{h}) \cdot \mathbf{h} .$
- iv) Formule de Taylor avec reste intégral : si $f \in \mathcal{C}^1(\Omega)$ et F est complet, alors

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + \int_{0}^{1} (f'(\mathbf{a} + t\mathbf{h}) \cdot \mathbf{h}) dt .$$

Théorème 3.1.15 – Formules de Taylor pour les appli. deux fois dérivables

Soit $f: \Omega \subset E \to F$ et [a, a + h] un segment fermé contenu dans Ω (Ω ouvert de E).

i) Formule de Taylor-Young : si f est dérivable dans Ω , et si f est deux fois dérivable au point a, alors

$$f(a+h) = f(a) + f'(a) \cdot h + \frac{1}{2} f''(a)(h,h) + \|h\|_{\mathcal{E}}^2 \, \varepsilon(h) \ , \ \operatorname{avec} \ \lim_{\|h\|_{\mathcal{E}} \to 0} \|\varepsilon(h)\|_{\mathcal{F}} \ = \ 0 \ .$$

ii) Formule des accroissements finis généralisée : si $f \in \mathcal{C}^1(\Omega)$ et f est deux fois dérivable en tout point du segment ouvert]a,a+h[, alors

$$\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-f'(\mathbf{a})\cdot\mathbf{h}\|_F \leq \frac{1}{2} \sup_{\mathbf{x} \in [\mathbf{a},\mathbf{a}+\mathbf{h}[} \|f''(\mathbf{x})\|_{\mathcal{L}_2(E \times E,F)} \|\mathbf{h}\|_E^2 \ .$$

iii) Formule de Taylor-Maclaurin : si $f \in \mathcal{C}^1(\Omega)$ et f est deux fois dérivable en tout point du segment ouvert]a,a+h[, et si $F=\mathbb{R}$, alors

$$\exists \theta \in]0,1[\text{ tel que } f(\mathbf{a}+\mathbf{h})=f(\mathbf{a})+f'(\mathbf{a})\cdot\mathbf{h}+\frac{1}{2}f''(\mathbf{a}+\theta\mathbf{h})(\mathbf{h},\mathbf{h}) \ .$$

iv) Formule de Taylor avec reste intégral : si $f \in \mathcal{C}^2(\Omega)$ et F est un espace complet, alors

$$f(\mathbf{a} + \mathbf{h}) = f(\mathbf{a}) + f'(\mathbf{a}) \cdot \mathbf{h} + \int_{0}^{1} (1 - t)(f''(\mathbf{a} + t\mathbf{h})(\mathbf{h}, \mathbf{h})) dt .$$

Pour illustrer ces considérations, voici trois façons équivalentes d'écrire (par exemple) la formule de Taylor-Young pour une fonctionnelle $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ deux fois dérivable :

$$\begin{split} f(\mathbf{a} + \mathbf{h}) &= f(\mathbf{a}) + f'(\mathbf{a}) \cdot \mathbf{h} + \frac{1}{2} f''(\mathbf{a})(\mathbf{h}, \mathbf{h}) + \|\mathbf{h}\|_{2}^{2} \varepsilon(\mathbf{h}) \\ f(\mathbf{a} + \mathbf{h}) &= f(\mathbf{a}) + \langle \nabla f(\mathbf{a}), \mathbf{h} \rangle + \frac{1}{2} \langle \nabla^{2} f(\mathbf{a}) \mathbf{h}, \mathbf{h} \rangle + \langle \mathbf{h}, \mathbf{h} \rangle \varepsilon(\mathbf{h}) \\ f(\mathbf{a} + \mathbf{h}) &= f(\mathbf{a}) + (\nabla f(\mathbf{a}))^{T} \mathbf{h} + \frac{1}{2} \mathbf{h}^{T} \nabla^{2} f(\mathbf{a}) \mathbf{h} + \mathbf{h}^{T} \mathbf{h} \varepsilon(\mathbf{h}) \\ f(\mathbf{a} + \mathbf{h}) &= q_{\mathbf{a}}(\mathbf{h}) + \mathbf{h}^{T} \mathbf{h} \varepsilon(\mathbf{h}). \end{split}$$

où q_a est une forme quadrique généralisée.

On indique dans ce paragraphe quelques propriétés de base d'une classe très importante de fonctionnelles.

Définition 3.2.1 – Ensembles convexes

L'ensemble D_0 est dit **convexe** si et seulement si

$$\forall \boldsymbol{x} \in D_0, \ \forall \boldsymbol{y} \in D_0, \ \forall \alpha \in [0,1] \subset \mathbb{R} \ \mathrm{on} \ \mathrm{a} \ \alpha \boldsymbol{x} + (1-\alpha)\boldsymbol{y} \in D_0 \ .$$

autrement dit, si $\mathbf{x} \in D_0$ et $\mathbf{y} \in D_0$, alors le segment qui joint ces deux points est également contenu dans D_0 , le segment $[\mathbf{x}, \mathbf{y}]$ étant défini par

$$z \in [x, y] \iff \exists \alpha \in [0, 1] \text{ t.q. } z = \alpha x + (1 - \alpha)y$$
.

Exemple 3.2.1. Exemple d'ensemble non convexe

Remarque 3.2.2. la notion d'ensemble convexe correspond en fait à une propriété de régularité du domaine D_0 considéré

Définition 3.2.2 – Fonctionnelles convexes

Une fonctionnelle $f:D_0\subset E\to\mathbb{R}$ est **convexe** sur le domaine convexe $D_0\subset E$ (E espace vectoriel normé) si

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \ \forall \alpha \in]0,1[, \ f(\alpha \mathbf{x} + (1-\alpha)\mathbf{y}) \leq \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y}).$$

La fonctionnelle f est strictement convexe sur le domaine convexe D_0 si

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \ \mathbf{x} \neq \mathbf{y}, \ \forall \alpha \in]0,1[, \quad f(\alpha \mathbf{x} + (1-\alpha)\mathbf{y}) < \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y}) \ .$$

La fonctionnelle f est **uniformément convexe** sur le domaine convexe D_0 si il existe une constante c>0 telle que

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \ \forall \alpha \in]0, 1[,$$

$$\alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \ge c \alpha (1 - \alpha)\|\mathbf{x} - \mathbf{y}\|_{E}^{2}.$$

Remarque 3.2.3.

- i) Il est clair que la *convexité uniforme* entraîne la *convexité stricte* qui à son tour entraîne la *convexité*.
- ii) La convexité indique une certaine régularité de la fonctionnelle. En dimension finie, par exemple, la convexité peut induire des propriétés de continuité (c.f. proposition suivante).

Proposition 3.2.3

Soit $f: D_0 \subset \mathbb{R}^n \to \mathbb{R}$ une fonctionnelle convexe sur l'ouvert convexe $D_0 \subset \mathbb{R}^n$. Alors f est continue sur D_0 .

Théorème 3.2.4 – Caractérisation de la convexité à l'aide de la dérivée première

On suppose que la fonctionnelle $f:\Omega\subset E\to\mathbb{R}$ est dérivable sur un sous-ensemble convexe $D_0\subset\Omega$. On a alors :

i) f est convexe sur D_0 si et seulement si

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \quad f(\mathbf{y}) - f(\mathbf{x}) \geq f'(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) .$$

ii) f est strictement convexe sur D_0 si et seulement si

$$\forall x, y \in D_0, x \neq y, f(y) - f(x) > f'(x) \cdot (y - x).$$

iii) La fonctionnelle f est uniformément convexe sur D_0 si et seulement si il existe une constante c>0 telle que

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \quad f(\mathbf{y}) - f(\mathbf{x}) \ge f'(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) + c \|\mathbf{y} - \mathbf{x}\|_E^2.$$

L'interprétation géométrique de

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \quad f(\mathbf{y}) - f(\mathbf{x}) \geq f'(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) \;,$$

est que le graphe de la fonctionnelle convexe f est toujours au dessus de son plan tangent en un point quelconque du domaine D_0 .

Définition 3.2.5

Soit une fonctionnelle $f:\Omega\subset E\to\mathbb{R}$ dérivable sur l'ouvert Ω .

L'application dérivée $f':\Omega\subset E\to \mathcal{L}(E,\mathbb{R})$ est dite monotone sur le sous-ensemble $D_0\subset\Omega$ si et seulement si

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \quad (f'(\mathbf{y}) - f'(\mathbf{x})) \cdot (\mathbf{y} - \mathbf{x}) \geq 0.$$

L'application dérivée f' est dite **strictement monotone sur le sous-ensemble** $D_0\subset\Omega$ si et seulement si

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \ \mathbf{x} \neq \mathbf{y}, \ (f'(\mathbf{y}) - f'(\mathbf{x})) \cdot (\mathbf{y} - \mathbf{x}) > 0.$$

L'application dérivée f' est dite fortement monotone sur le sous-ensemble $D_0 \subset \Omega$ si et seulement si il existe une constante c>0 telle que

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \quad (f'(\mathbf{y}) - f'(\mathbf{x})) \cdot (\mathbf{y} - \mathbf{x}) \ge 2 c \|\mathbf{y} - \mathbf{x}\|_E^2.$$

Proposition 3.2.6 – Relations entre convexité et monotonie de la dérivée première

On suppose que $f \in C^1(\Omega)$ sur l'ouvert Ω . On a alors :

- i) La fonctionnelle f est convexe sur le sous-ensemble convexe $D_0\subset \Omega$ si et seulement si l'application dérivée f' est monotone sur D_0 .
- ii) La fonctionnelle f est strictement convexe sur le sous-ensemble convexe $D_0 \subset \Omega$ si et seulement si l'application dérivée f' est strictement monotone sur D_0 .
- iii) La fonctionnelle f est uniformément convexe sur le sous-ensemble convexe $D_0 \subset \Omega$ si et seulement si l'application dérivée f' est fortement monotone sur D_0 (la constante c>0 intervenant dans la définition de la convexité uniforme correspondant à la constante c>0 introduite dans la définition de la forte monotonie de la dérivée).

Théorème 3.2.7 – Relations entre convexité et positivité de la dérivée seconde

On suppose que la fonctionnelle $f:\Omega\subset E\to\mathbb{R}$ est deux fois dérivable dans un ouvert Ω de l'espace vectoriel normé E, et soit D_0 une partie convexe de Ω .

i) La fonctionnelle f est convexe sur le sous-ensemble convexe $D_0\subset \Omega$ si et seulement si

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \quad f''(\mathbf{x})(\mathbf{y} - \mathbf{x}, \mathbf{y} - \mathbf{x}) \geq 0.$$

ii) Si

$$\forall \textbf{x},\textbf{y} \in \textit{D}_0, \ \textbf{x} \neq \textbf{y}, \quad \textit{f}''(\textbf{x})(\textbf{y}-\textbf{x},\textbf{y}-\textbf{x}) > 0 \ ,$$

alors la fonctionnelle f est strictement convexe sur D_0 .

iii) La fonctionnelle f est uniformément convexe sur le sous-ensemble convexe $D_0 \subset \Omega$ si et seulement si il existe une constante c>0 telle que

$$\forall \mathbf{x}, \mathbf{y} \in D_0, \quad f''(\mathbf{x})(\mathbf{y} - \mathbf{x}, \mathbf{y} - \mathbf{x}) \geq 2 c \|\mathbf{y} - \mathbf{x}\|_E^2.$$

La condition (ii) ci-dessus n'est qu'une condition suffisante, la réciproque étant inexacte.

Théorème 3.2.8 – Relations entre convexité et positivité de la dérivée seconde

On suppose que la fonctionnelle $f:\Omega\subset E\to\mathbb{R}$ est deux fois dérivable dans un ouvert convexe Ω de l'espace vectoriel normé E.

- i) La fonctionnelle f est convexe sur le sous-ensemble convexe Ω si et seulement si $\forall \mathbf{x} \in \Omega, f''(\mathbf{x})$ est semi-définie positive
- ii) Si $\forall \mathbf{x} \in \Omega, f''(\mathbf{x})$ est définie positive, alors la fonctionnelle f est strictement convexe sur Ω .

Exercice 3.2.2.

• Soit $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = ax_1^2 + 2bx_1x_2 + cx_2^2$. Donner une condition nécessaire et suffisante sur $(a,b,c) \in \mathbb{R}^3$ pour que f soit convexe sur \mathbb{R}^2 .

Théorème 3.2.8 – Relations entre convexité et positivité de la dérivée seconde

On suppose que la fonctionnelle $f:\Omega\subset E\to\mathbb{R}$ est deux fois dérivable dans un ouvert convexe Ω de l'espace vectoriel normé E.

- i) La fonctionnelle f est convexe sur le sous-ensemble convexe Ω si et seulement si $\forall \mathbf{x} \in \Omega, f''(\mathbf{x})$ est semi-définie positive
- ii) Si $\forall \mathbf{x} \in \Omega, f''(\mathbf{x})$ est définie positive, alors la fonctionnelle f est strictement convexe sur Ω .

Exercice 3.2.2.

- Soit $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = ax_1^2 + 2bx_1x_2 + cx_2^2$. Donner une condition nécessaire et suffisante sur $(a, b, c) \in \mathbb{R}^3$ pour que f soit convexe sur \mathbb{R}^2 .
- L'application $g: \mathbb{R}^2 \to \mathbb{R}$, $g(x) = x_1^2 + x_1x_2 + x_2^2 + 3|x_1 + x_2 + 3|$ est-elle convexe, voire strictement convexe, sur \mathbb{R}^2 ?

Théorème 3.2.8 – Relations entre convexité et positivité de la dérivée seconde

On suppose que la fonctionnelle $f:\Omega\subset E\to\mathbb{R}$ est deux fois dérivable dans un ouvert convexe Ω de l'espace vectoriel normé E.

- i) La fonctionnelle f est convexe sur le sous-ensemble convexe Ω si et seulement si $\forall \mathbf{x} \in \Omega, f''(\mathbf{x})$ est semi-définie positive
- ii) Si $\forall \mathbf{x} \in \Omega, f''(\mathbf{x})$ est définie positive, alors la fonctionnelle f est strictement convexe sur Ω .

Exercice 3.2.2.

- Soit $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x) = ax_1^2 + 2bx_1x_2 + cx_2^2$. Donner une condition nécessaire et suffisante sur $(a, b, c) \in \mathbb{R}^3$ pour que f soit convexe sur \mathbb{R}^2 .
- L'application $g: \mathbb{R}^2 \to \mathbb{R}$, $g(x) = x_1^2 + x_1x_2 + x_2^2 + 3|x_1 + x_2 + 3|$ est-elle convexe, voire strictement convexe, sur \mathbb{R}^2 ?
- L'application $h: \mathbb{R}^n \to \mathbb{R}$, $h(x) = e^{\frac{1}{2}(x_1^2 + \dots + x_n^2)}$ est-elle convexe, voire strictement convexe, sur \mathbb{R}^n ?