Decomposition of Graphs: Previsit and Postvisit Orders

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Graph Algorithms

Data Structures and Algorithms

Learning Objectives

- Compute the preorder and postorder numbers for a DFS.
- Understand why these numbers might be important.

Outline

① Definition

2 Properties

Need to Record Data

- Plain DFS just marks all vertices as visited.
- Need to keep track of other data to be useful.
- Augment functions to store additional information.

Previsit and Postvisit Functions

```
Explore(v)
\texttt{visited}(v) \leftarrow \texttt{true}
previsit(v)
for (v, w) \in E:
   if not visited(w):
     explore(w)
postvisit(v)
```

Clock

- Keep track of order of visits.
- Clock ticks at each pre-/post- visit.
- Records previsit and postvisit times for each v.

Computing Pre- and Post- Numbers

Initialize clock to 1.

```
previsit(v)
```

```
pre(v) \leftarrow clock

clock \leftarrow clock + 1
```

postvisit(v)

```
post(v) \leftarrow clock
clock \leftarrow clock + 1
```

Outline

1 Definition

2 Properties

Result

Previsit and Postvisit numbers tell us about the execution of DFS.

Lemma

For any vertices u, v the intervals [pre(u), post(u)] and [pre(v), post(v)] are either nested or disjoint.

Explanation

Nested

Disjoint

Explanation

Interleaved (not possible)

Proof

Assume that u visited before v. Two cases

- Find v while exploring u (u an ancestor of v)
- Find v after exploring u (u a cousin of v)

Case I

If you explore v while exploring u, cannot finish exploring u until done exploring v.

Therefore nested.

Case II

If explore v after finish exploring u, post(u) < pre(v), therefore disjoint.

Problem

Which of the following tables is not a valid set of pre- and post- orders?

Vert.	Pre	Post	Vert.	Pre	Post
А	1	8	А	1	9
В	9	10	В	8	10
С	3	4	С	2	7
D	2	7	D	3	6
Е	5	6	Е	4	5

Solution

Which of the following tables is not a valid set of pre- and post- orders?

Vert.	Pre	Post	Vert.	Pre	Post
Α	1	8	Α	1	9
В	9	10	В	8	10
С	3	4	С	2	7
D	2	7	D	3	6
Е	5	6	Е	4	5

Next Time

Directed graphs.