Word2Vec 이론2

- 1. CBOW
- 2. Skip Gram

1. CBOW -Continuous Bag-of-Word Model

C = "Hey, this is sample corpus using only one context word."

we have defined a context window of 1

Input	Output		Hey	This	is	sample	corpus	using	only	one	context	word
Hey	this	Datapoint 1	1	0	0	0	0	0	0	0	0	0
this	hey	Datapoint 2	0	1	0	0	0	0	0	0	0	0
is	this	Datapoint 3	0	0	1	0	0	0	0	0	0	0
is	sample	Datapoint 4	0	0	1	0	0	0	0	0	0	0
sample	is	Datapoint 5	0	0	0	1	0	0	0	0	0	0
sample	corpus	Datapoint 6	0	0	0	1	0	0	0	0	0	0
corpus	sample	Datapoint 7	0	0	0	0	1	0	0	0	0	0
corpus	using	Datapoint 8	0	0	0	0	1	0	0	0	0	0
using	corpus	Datapoint 9	0	0	0	0	0	1	0	0	0	0
using	only	Datapoint 10	0	0	0	0	0	1	0	0	0	0
only	using	Datapoint 11	0	0	0	0	0	0	1	0	0	0
only	one	Datapoint 12	0	0	0	0	0	0	1	0	0	0
one	only	Datapoint 13	0	0	0	0	0	0	0	1	0	0
one	context	Datapoint 14	0	0	0	0	0	0	0	1	0	0
context	one	Datapoint 15	0	0	0	0	0	0	0	0	1	0
context	word	Datapoint 16	0	0	0	0	0	0	0	0	1	0
word	context	Datapoint 17	0	0	0	0	0	0	0	0	0	1

The input is a one-hot encoded vector, only one out of V(10) units will be 1, and all other units are 0.

The weights between the input layer and the output layer can be represented by a V X N (10X4) matrix **W**.

h(Hidden Activation) is essentially copying the k-th row of W to h. vwl is **the vector representation** of the **input word** vl

There are two sets of weights. one is between the input and the hidden layer and second between hidden and output layer.

From the hidden layer to the output layer, there is a different weight matrix **W**' which is an N X V (4X10) matrix.

$$u_j = \mathbf{v}_{w_j}^{\prime T} \mathbf{h},$$

where **v'wj** is **the j-th column** of the matrix W'.

We call v'wj as the output vector.

Since we have defined a context window of 1 on both the sides, there will be "two" one hot encoded target variables and "two" corresponding outputs

The blue matrix is obtained by the matrix multiplication of hidden activation and the hidden output weights.

There will be two rows calculated for two target(context) words.

$$\mathbf{h} = \mathbf{W}_{(k,\cdot)}^T := \mathbf{v}_{w_I}^T,$$

$$p(w_{c,j} = w_{O,c}|w_I) = y_{c,j} = \frac{\exp(u_{c,j})}{\sum_{j'=1}^{V} \exp(u_{j'})}$$

$$\mathbf{h} = \mathbf{W}_{(k,\cdot)}^T := \mathbf{v}_{w_I}^T,$$

This error vector is propagated back to update the weights.

Reference

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

word2vec Parameter Learning Explained_Xin Rong_ronxin@umich.edu