T1 Q1 MAT157: Alex R

Problem 1.

Let $D = \{x \in \mathbb{Q} : x = \frac{m}{2^n}, m \in \mathbb{Z}, n \in \mathbb{N}\}$. Show that D is dense in \mathbb{R} ; namely that every open interval (a,b) contains at least one element of D.

Lemma. $(\forall n \in \mathbb{N})[2^n > n]$

This fact will be used in the solution of the original problem.

Proof.

This will be a proof by induction.

- 1. Base: For n = 1, we have $2^1 > 1$. The lemma holds.
- 2. Assumption: Assume, for n = k, $2^k > k$.
- 3. Step: Want to prove the fact for n=k+1, namely $2^{k+1}>k+1$, using the assumption. According to the assumption and $k\in\mathbb{N}$, we have $2^k>k\geq 1$. Thus, $2^k+2^k>k+1$, or equivalently $2^{k+1}>k+1$.
- 4. Conclusion: The fact holds for n = 1. If the fact holds for n = k, then it holds for n = k + 1. According to the axiom of induction, the fact holds for all $n \in \mathbb{N}$.

Solution.

Fix an open interval (a,b). Choose $N \in \mathbb{N}$ such that $\frac{1}{N} < (b-a)$, as in the proof of \mathbb{Q} being dense in \mathbb{R} . Since $(\forall n \in \mathbb{N})[2^n > n]$, we have $\frac{1}{2^N} < \frac{1}{N} < (b-a)$.

Define $D_N = \left\{ \frac{m}{2^N} : m \in \mathbb{Z} \right\} \subset D$, for which we claim $D_N \cap (a,b) \neq \emptyset$.

For a contradiction, assume $D_N \cap (a,b) = \emptyset$. Let M be the largest integer such that $\frac{M}{2^N} \le a$. But then $\frac{M+1}{2^N} \ge b$. Thus, $(b-a) \le \frac{M+1}{2^N} - \frac{M}{2^N} = \frac{1}{2^N} < (b-a)$.

This resulted in a contradiction, so $D_N \cap (a,b) \neq \emptyset$. Thus, for every open interval (a,b), $D \cap (a,b) \neq \emptyset$. So, D is dense in \mathbb{R} .