Extracting Entity-Relationship Triples from Text

Liane Guillou

7/6/2018

Liane Guillou 7/6/2018 1 / 33

What is Natural Language Processing (NLP)?

- Area of computer science / artificial intelligence
- Focus: human-computer interaction using natural language e.g. English, German, Chinese, Russian, etc.
- Communication modes: text or speech
- Many applications:
 - Machine Translation (Google Translate)
 - Question Answering (IBM's Watson)
 - Sentiment Analysis (e.g. for marketing)
 - Speech Recognition (in Siri)
 - Speech Synthesis (Alexa)
 - etc.

Liane Guillou 7/6/2018 2 / 33

NLP at Edinburgh University

Part of Institute for Language, Cognition and Computation (ILCC):

- 39 Academic staff / senior researchers
- 30 Researchers / postdocs
- 75 PhD students

Courses:

- Masters with a specialism in NLP
- Undergraduate courses from year 2 onwards

Python widely used

Liane Guillou 7/6/2018 3 / 33

SEMANTAX Project

- 5 year research project
- 1 professor, 3 postdocs, 4 PhD students
- Focus:
 - Develop and apply a form-independent semantics
 - Encode information in a natural-language compatible way
- Areas of interest:
 - Knowledge graph construction
 - Question answering
 - Parsing
 - Multilingual / cross-lingual aspects

Liane Guillou 7/6/2018 4

Entity-Relationship Triple Extraction: Overview

- Also known as "Binary Relations"
- Two entities, with a relationship that holds between them
- Format: {entity1, relationship, entity2}

Example Triple

```
Text: Edinburgh is located in Scotland.

Triple: {Edinburgh, is located in, Scotland}
```

- Triples extracted from text express facts
- Existing English pipeline: triple extraction + graph construction
- Focus of this talk: German pipeline

Liane Guillou 7/6/2018 5 / 33

Pipeline Architecture

Liane Guillou 7/6/2018 6 / 33

Pipeline

- Designed to extract all possible entity-relationship triples
 In contrast with machine-learning methods: typically focus on a small set of patterns
- Combines external tools + linguistic rules
- Downstream applications:
 - Machine Translation evaluation: does the German translation capture the meaning of the original English text? (compare triples)
 - Cross-lingual question answering: ask a question in German about an English news article (construct knowledge graph from triples)

Liane Guillou 7/6/2018 7 / 33

Example Sentence

(1) Angela Merkel wuchs in der DDR auf Angela Merkel grew in the DDR up 'Angela Merkel grew up in the DDR'

Particle verbs

```
aufwachsen = to grow up (infinitive) wuchs auf = grew up (past tense) Also exist in English e.g. "put up"
```

Liane Guillou 7/6/2018 8 /

Liane Guillou 7/6/2018 9 / 33

Sentence Segmentation

- Split documents / paragraphs into sentences
- Why? Simpler to work at the sentence level

Paragraph/Document

Angela Dorothea Merkel ist eine deutsche Politikerin (CDU). Am 14. März 2018 wurde Merkel vom Bundestag zum vierten Mal zur Bundeskanzlerin gewählt. Angela Merkel wuchs in der DDR auf...

Sentences

- (1) Angela Dorothea Merkel ist eine deutsche Politikerin (CDU).
- (2) Am 14. März 2018 wurde Merkel vom Bundestag zum vierten Mal zur Bundeskanzlerin gewählt.
- (3) Angela Merkel wuchs in der DDR auf...
 - Using NLTK's PunktTokenizer model

Liane Guillou 7/6/2018

10 / 33

Word Tokenisation

- Split sentences into words / tokens
- Why? Punctuation is not part of a word

Sentence

Merkel wuchs in der DDR auf.

Tokens

Merkel

wuchs

in

der

DDR

auf

Using Python module: UDPipe

Liane Guillou 7/6/2018

11 / 33

Liane Guillou 7/6/2018 12 / 33

Dependency Parsing

- Sentence represented as a tree
- Tree has a root (typically the main verb)
- Relation between two words: labelled arc from head to dependent
- Provides the relationships for triples

Liane Guillou 7/6/2018

13 / 33

Universal Dependencies

- Framework for cross-linguistically consistent grammatical annotation
- Key idea: set of core dependencies, universal to all languages (e.g. nsubj)
- Some languages may require extra dependencies:
 200 extra language-specific dependencies
- Treebanks for 73 languages
- Useful for cross/multi-lingual work:
 build pipelines for other languages and use similar parser + rules to extract relations

http://universaldependencies.org/

Liane Guillou 7/6/2018 14 / 33

Unstable Parser

- Neural Network based dependency parser (in Python)
- Best system: CoNLL 2017 shared task on universal dependency parsing
- Can download any Universal Dependency treebank and train a parser
- German parser can be trained overnight
- Input: tokenised text (from UDPipe module)

Liane Guillou 7/6/2018 15 / 33

Unstable Parser

Parser Output: CoNLL Format						
POS tag						
ID	Word	Lemma	Coarse	Fine	Head	Dependency-rel.
1	Angela	Angela	PROPN	NE	3	nsubj
2	Merkel	Merkel	NOUN	NN	1	flat
3	wuchs	wachsen	VERB	VVFIN	0	root
4	in	in	ADP	APPR	6	case
5	der	der	DET	ART	6	det
6	DDR	DDR	PROPN	NE	3	obl
7	auf	auf	ADP	PTKVZ	3	compound:prt
8			PUNCT	\$.	3	punct

https://github.com/tdozat/Parser-v2

Liane Guillou 7/6/2018 16 / 33

Liane Guillou 7/6/2018 17 / 33

Named Entity Recognition

- Provides the entities for the triples
- Named Entity: a real-world object that can be denoted with a proper name
 - e.g. a person, location, organisation, product, etc.
- Named Entity Recognition: finding Named Entities in text

Stanford NER Output

[Angela Merkel] wuchs in der [DDR] auf .
PERSON LOCATION

• Using Python module: sner (wrapper for Stanford NER)

Liane Guillou 7/6/2018 18 / 33

Common Entity Extraction

- Provides the entities for the triples
- Common / General Entity: a common real-world thing
- Extracted using Parser output + Part-of-Speech Tags
 - Find spans of *nouns*

A New Example

(2) Eine Katastrophe für die Parteichefin DET NOUN ADP DET NOUN A disaster for the party leader 'A disaster for the party leader'

Common entities: Eine [Katastrophe] für die [Parteichefin]

Liane Guillou 7/6/2018 19 / 33

Liane Guillou 7/6/2018 20 / 33

Entity Linking

Map "Angela Dorothea Merkel", "Angela Merkel", "Merkel" to same entity

Input

 $\label{eq:contity} \mbox{\langle entity$} \mbox{$\Delta$ Angela Merkel} \mbox{\langle /entity$} \mbox{ wuchs in der } \mbox{\langle entity$} \mbox{$DDR$} \mbox{$\langle$ /entity$} \mbox{ auf } \mbox{$\rangle$}.$

Output

```
{
  "disambiguatedURL": "http://de.dbpedia.org/resource/Angela_Merkel",
  "offset": 13,
  "namedEntity": "Angela Merkel",
  "start": 1
}
{
  "disambiguatedURL": "http://de.dbpedia.org/resource/Deutsche_Demokratische_Republik",
  "offset": 3,
  "namedEntity": "DDR",
  "start": 28
}
```

Using AGDISTIS: http://aksw.org/Projects/AGDISTIS

Liane Guillou 7/6/2018 21 / 33

Entity Types

- We also wish to know the semantic type of each entity to encode information such as: a PERSON may visit a LOCATION to build knowledge graphs for downstream applications e.g. QA
 - Named Entity Recogniser gives us basic types: PERSON, LOCATION, ORGANISATION, MISC.
 - Entity Linker gives us CHEMICAL, LIVING_THING, etc.
- Types help to align English and German triples for cross-lingual QA
- $\bullet \ \mathsf{Map} \ \mathsf{DBPedia} \ \mathsf{URL} \to \mathsf{first} \ \mathsf{level} \ \mathsf{of} \ \mathsf{FIGER} \ \mathsf{type} \ \mathsf{system}$

FIGER Types

PERSON/politician Angela_Merkel

 $\textbf{LOCATION}/country \quad Deutsche_Demokratische_Republik$

BUILDING/airport Hellinikon_Airport

https://github.com/xiaoling/figer

Liane Guillou 7/6/2018 22 / 33

Liane Guillou 7/6/2018 23 / 33

Extracting Entity-Relation Triples

Combines: dependency parse + linked entities + rules

Basic steps: for each pair of entities

- find entities in parse tree
- 2 if verb links the entities:
 - find dependency between entity A and verb
 - 2 find dependency between entity B and verb
 - if entity A in subject position and B in object position (or vice versa):
 - find lemma of verb
 - extract: subject-(verb_lemma)-object triple

Liane Guillou 7/6/2018 24 / 33

Example Extraction

Dependency Tree

Entities

 $Angela\ Merkel,\ PERSON,\ http://de.dbpedia.org/resource/Angela_Merkel\\ DDR,\ LOCATION,\ http://de.dbpedia.org/resource/Deutsche_Demokratische_Republik$

Triple

{Angela Merkel, wachsen, DDR} :: #PERSON:#LOCATION (?)

Liane Guillou 7/6/2018 25 / 33

Particle Verbs

Reminder: aufwachsen (past tense: wuchs auf) is a particle verb

Triple {Angela Merkel, wachsen auf, DDR} ✓

Liane Guillou 7/6/2018

26 / 33

Prepositions

Preposition choice changes verb meaning

Verb Preposition Meaning
sich freuen auf to look forward to
sich freuen über to be pleased with

Dependency Tree

Triple

{Angela Merkel, wachsen auf in, DDR} ✓

Liane Guillou 7/6/2018 27 / 33

Negation

What if: Angela Merkel hadn't grown up in the DDR

Triple

NEG_{Angela Merkel, wachsen auf in, DDR} ✓

Liane Guillou 7/6/2018

28 / 33

Active-to-Passive Conversion

Passive Example

(3) Faust wurde von Goethe geschrieben Faust was by Goethe written

'Faust was written by Goethe'

Active: Goethe wrote Faust (swap subject and object)

Liane Guillou 7/6/2018 29 / 33

Active-to-Passive Conversion

Triple {Goethe, schrieben, Faust} ✓

Liane Guillou 7/6/2018

30 / 33

Some Sample Stats

- 10 news articles
- 362 sentences
- 105 entity-relationship triples
 - Many are good
 - Some are bad thresholding will help

Liane Guillou 7/6/2018 31 / 33

Summary

- Constructed triple extraction pipeline for German in line with existing English pipeline
- Next steps:
 - Refine linguistic rules for triple extraction / increase coverage
 - Optimisation: identify and resolve bottlenecks
 - Integrate with language-independent graph-generation pipeline
 - Align English and German triples / knowledge graphs (for cross-lingual work)
 - Evaluate triple extraction via downstream tasks
- Downstream applications:
 - Machine translation evaluation
 - Cross-lingual question answering

Liane Guillou 7/6/2018 32 / 33

Liane Guillou 7/6/2018 33 / 33