Into to Al

HW1

(names id)

- 1) בוצע
- $S = \{(s, i, j) | s \in \{S, G, H, P, F\}, \forall i, j \in \{0, 1, ..., 7\}\}$ (2)

 $O = \{LEFT, RIGHT, UP, DOWN\}$

$$I = \{(S, 0, 0)\}$$

$$G = \{(G, 7, 7)\}$$

- אפשרויות S * 8 * 8 מכיוון שS הקבוצה שהגדרנו בסעיף הקודם 320 |S| כלומר לכל מצב יש 5 אפשרויות בלוח של 64 משבצות.
- 4) הפונקציה domain על אופרטור down תחזיר לנו את כל המצבים מלבד לשורה האחרונה. מכיוון שאין אפשרות לרדת למטה בלוח בשורה האחרונה <mark>ומלבד למצבים שעבורם הפעולה down מובילה</mark>

לחור.

- 5) מכיוון שהוגדר לנו שהמצב התחלתי הוא למעלה מצד שמאל אז הפונק SUCC תחזיר את המצבים שנמצאים מימין ומלמטה למצב ההתחלתי.
 - .6) מקדם הסעיוף הוא 4 כי לכל צומת יש 4 בנים מכיוון שיש רק 4 פעולות שניתן לבצע
- 7) מכיוון שיש 4 פעולות כל מצב יכול לתת לנו לכל היותר 4 מצבים חדשים ולכן מקדם הסעיוף הינו 4.

(8

על איזה מפה מדובר? 8X8 או 4X⁴ץ?

(10

שאלה 3

- 1) בוצע
- 2) אם קיים פתרון סופי לבעיה אז האלגוריתם שלם, מכיוון שאנחנו בסופו של דבר נעבור על כל המצבים goal) אם זאת האלגוריתם אינו קביל. דוגמא נגדית: באייפד
 - לא כי בSE (על עץ) אנחנו לא בודקים בclose אם היינו כבר בצומת כלשהי ולכן עלולים להיכנס (על עץ) אנחנו לא בודקים בלמעגל, לדוגמא: באייפד
- 4) 1) נלך למטה וכאשר לא יהיה אפשר לרדת יותר נלך ימינה עד שנגיע לצומת מטרה כלומר סה"כ 2N-2 יפותחו כי לא נספור שוב את צומת ההתחלה והמטרה. ובכל צומת בו נעבור יווצרו כל הצמתים מסביב לאותו צומת (אם ניתן) ולכן סה"כ יווצרו 4N-5 צמתים.
- 2) עם backtracking האלגוריתם יצור את המצתים באופן עצל ולכן סה"כ יווצרו ויפותחו אותו מספר צמתים שהוא 2N-2
 - (1 (5
 - (2
 - (3
 - (4
 - (5

4 שאלה

תהיינה שתי יוריסטיקות קבילות h1,h2:

- 1 אנכון, הדוגמא הנגדית היא היוריסטיקה האוקלידית עבור מסלול ריבועי כאשר כל צלע בעלות 1 h_1,h_2 אולכן $h_1=h_2=h_{ecl}=\sqrt{2}$ ו $h^*=2$ ו לכן ליו לכן 2 לקודקוד ההופכי לו לכן $h_1=h_2=h_{ecl}=\sqrt{2}$ ו אנחנו רוצים להגיע מקודקוד 1 לקודקוד ההופכי לו לכן $h=h_1+h_2=2$ אולכן זה סתירה הינם קבילות אבל הסכום שלהם לא קביל כי: $h=h_1+h_2=2$ אולכן זה סתירה להגדרת הקבילות.
 - נכון, כי $h_1+h_2\leq 2h^*$ ואז נחלק ב2 ונקבל $h_1\leq h^*$, ואז נחלק ב2 ונקבל (2 הסכום שלהם יהיה $h_1+h_2\leq h^*$ או ולכן $0\leq h=\frac{h_1+h_2}{2}\leq h^*$
 - וריסטיקות קבילות לפי האיור הבא: $h_{_{1}},h_{_{2}}$ את נגדיר את (1 $\ref{2}$

 $i \in \{1,2\}$ h_i כאשר

$$h(s)-h(s')=h_1(s)-h_1(s')+h_2(s)-h_2(s')=3+3>2=cost(s,s')$$
 כלומר
$$h(s)-h(s')=\frac{h_1(s)-h_1(s')}{2}+\frac{h_2(s)-h_2(s')}{2}=\frac{3}{2}+\frac{3}{2}=3>2=cost(s,s')$$
 גם לא, (2

לשאול על יוריסטיקת מנהטן (3

(4

שאלה 7

ולכן בחצי ולכן אלה הוכפל בחצי ולכן מה שעשינו הוא להכפיל את f המקורית בקבוע שהוא חצי כלומר לכל צומת הערך f שלה הוכפל בחצי ולכן מריק, אזי $f_1 < f_2$ אזי במילים אחרת, במילים אחרת, $f_1' < f_2'$ אזי מתקיים גם $f_1' < f_2'$ ולכן $f_1' < f_2'$ ולכן $f_1' < f_2'$

(4 לשאול (לא נראלי הבנתי את *ID-A)