«Сетевые технологии»

1. Модель OSI как средство описания технологий передачи данных. Адресация и описание данных.

Уровень	Описание	PDU (Protocol Data Unit)	Адресация	Протоколы
Прикладной Application	Обеспечивает взаимодействие пользователей с сетевыми сервисами через интерфейсы	Сообщение (текст, файлы или другие типы данных)		HTTP, FTP, SMTP, DNS, DHCP, Telnet, SSH, SNMP, POP3, IMAP
Представления Presentation	Преобразует данные в унифицированный формат для передачи между различными операционными системами и устройствами, понятный приложениям	Представление	Нет адресации	SSL/TLS, MIME, ASCII, EBCDIC, JPEG, MPEG
Сеансовый Session	Управляет соединениями (сессиями) между двумя устройствами (приложениями)	Сессия		SIP, RPC, NetBIOS
Транспортный Transport	Отвечает за передачу данных в сегментах (между приложениями), контролируя их целостность и корректность	Сегмент или датаграмма	портовые номера для идентификации приложений на устройствах	TCP, UDP, SCTP
Сетевой Network	Управляет маршрутизацией данных, обеспечивая их доставку между различными сетями. Погическая адресация	Пакет	IP-адрес	IP (IPv4, IPv6), ICMP, IGMP, OSPF, EIGRP, BGP
Канальный Data Link	Проверяет целостность данных и отвечает за передачу данных между устройствами по локальной сети	Кадры	МАС-адрес	Ethernet, Wi-Fi (IEEE 802.11), PPP, HDLC, ARP, RARP
Физический Physical	Отвечает за физическую передачу данных через проводники или радиоволны	Биты	Нет адресации	Ethernet, Wi-Fi, Bluetooth, PPP, HDLC

PDU — это ключевая концепция в сетевой коммуникации, которая позволяет структурировать данные для их эффективной передачи и обработки на разных уровнях модели OSI. Каждый уровень добавляет свою служебную информацию, чтобы обеспечить корректную передачу данных от источника к получателю.

2. Второй уровень модели OSI. Функционал и задачи.

Канальный уровень

[DATA LINK L2]

Этот уровень обеспечивает надёжную передачу данных, контролирует доступ к физической среде передачи данных и исправляет ошибки, которые могут возникнуть на физическом уровне.

Отвечает за передачу данных между устройствами в пределах одной сети (локальной сети, LAN).

Функции	Реализация	Описание	
Фрагментация и	Фрагментация	Данные, полученные с сетевого уровня, разбиваются на более мелкие блоки, называемые кадрами (frames)	
сборка данных	Сборка	На принимающей стороне кадры собираются обратно в исходные данные	
Адресация	МАС-адреса	Канальный уровень использует МАС-адреса для идентификации устройств в пределах локальной сети	
Контроль доступа к среде	Методы доступа Определяет, как устройства получают доступ к общей среде передачи данных		
Обнаружение и	Контрольная сумма CRC (Cyclic Redundancy Check)	В заголовке фрейма содержится контрольная сумма, которая позволяет обнаружить ошибки в передаче данных	
исправление ошибок	Исправление ошибок	В некоторых протоколах канального уровня (например, в протоколе HDLC) возможно исправление ошибок без повторной передачи данных	
Управление потоком	I KOHTOOTIS TOTOKA		
Организация фреймов (кадров)	Структура фрейма (кадра)	Кадр состоит из заголовка (header), данных (payload) и хвоста (trailer). Заголовок содержит информацию о MAC- адресах источника и назначения, тип протокола вышестоящего уровня (например, IP), а хвост содержит контрол сумму	

3. Структура кадра Ethernet

Ethernet

Kagp Ethernet — это единица передачи данных на канальном уровне модели OSI. Он используется для передачи данных между устройствами в локальной сети (LAN). Структура кадра Ethernet может варьироваться в зависимости от стандарта, но основные элементы остаются неизменными.

Включает в себя информацию о МАС-адресах источника и назначения, тип протокола вышестоящего уровня, данные и контрольную сумму для обнаружения ошибок.

Элемент		Длина (в байтах)	Назначение
Преамбула	Preamble	7	Используется для синхронизации времени приема-передачи между передатчиком и приёмником. Оборудование парсит кадр, достаёт MAC-адреса и служебную информацию.
Начало кадра	Start Frame Delimiter, SFD	1	Обозначает начало кадра
МАС-адрес назначения	Destination MAC Address	6	Указывает MAC-адрес устройства-получателя. Может быть уникальным адресом (unicast), групповым адресом (multicast) или широковещательным адресом (broadcast)
МАС-адрес источника	Source MAC Address	6	Указывает МАС-адрес устройства-отправителя
Тип/Длина	EtherType/ Length	2	Указывает тип протокола вышестоящего уровня (например, IPv4, IPv6, ARP) или длину кадра. Если значение меньше 1500, то это длина кадра; если больше или равно 1536, то это тип протокола
Данные	Payload	46-1500	Содержит данные, передаваемые вышестоящим уровнем (например, пакет IP)
Заполнитель	Padding	0-46	Добавляется, если размер данных меньше минимального значения (46 байт), чтобы обеспечить минимальную длину кадра
Контрольная сумма	Frame Check Sequence, FCS	4	Содержит контрольную сумму (CRC), используемую для обнаружения ошибок в кадре. Принимающее устройство вычисляет CRC для принятого кадра и сравнивает его с FCS, чтобы определить, были ли ошибки при передаче

4. Третий уровень модели OSI. Функционал и задачи

Сетевой уровень

[NETWORK L3]

Этот уровень обеспечивает передачу пакетов через сеть, независимо от того, какие физические и канальные технологии используются.

Отвечает за маршрутизацию данных между различными сетями и управление передачей данных по пути от источника к назначению.

Функции	Реализация	Описание
Фрагментация и	Фрагментация	Если пакет данных слишком большой для передачи через определённый сегмент сети, сетевой уровень может разделить его на более мелкие фрагменты (пакеты)
сборка данных	Сборка	На принимающей стороне пакеты собираются обратно в исходные данные
Логическая	ІР-адреса	Сетевой уровень использует IP-адреса (Internet Protocol Address) для идентификации устройств в сети
адресация	Подсети	IP-адреса могут быть разделены на подсети, что позволяет более эффективно управлять сетевыми ресурсами
Маршрутизация	Определение пути	Определяет оптимальный путь для передачи данных от источника к получателю через сеть. Это может включать в себя прохождение через несколько маршрутизаторов
Маршрутизация	Таблицы маршрутизации	Маршрутизаторы используют таблицы маршрутизации, чтобы определить, куда передавать пакеты данных
Обнаружение и	Контроль ошибок	Сетевой уровень может использовать различные механизмы для обнаружения ошибок в передаче данных, хотя исправление ошибок обычно выполняется на более низких уровнях
исправление ошибок	Исправление ошибок	В некоторых протоколах канального уровня (например, в протоколе HDLC) возможно исправление ошибок без повторной передачи данных
Управление потоком	Контроль потока	Отвечает за то, чтобы передающее устройство не перегружало принимающее устройство данными, которые оно не успевает обработать.
Логическое разделение сетей	Виртуальные сети (VLAN)	Сетевой уровень может поддерживать виртуальные локальные сети, которые логически разделяют физическую сеть на несколько сегментов

5. Структура пакета ІР

IPv4-пакет

Пакет IP (Internet Protocol Packet) — это единица передачи данных на сетевом уровне модели OSI. Он используется для передачи данных между устройствами в сети, независимо от того, находятся ли они в одной локальной сети или в разных сетях.

Структура пакета ІР включает в себя заголовок и полезную нагрузку.

Элемент		Длина (в битах)	Назначение
Версия	Version	4	Указывает версию IP-протокола (например, IPv4 или IPv6). Для IPv4 это значение равно 4
Длина заголовка	Internet Header Length, IHL	4	Указывает длину заголовка в 32-битных словах. Минимальное значение — 5 (20 байт), максимальное — 15 (60 байт). Если заголовок содержит опции, его длина может увеличиваться, что позволяет включать дополнительные параметры.
Тип обслуживания	Type of Service, TOS	8	Используется для указания требований к качеству обслуживания (QoS). Включает в себя приоритет, задержку, пропускную способность и надёжность. Например, пакеты с высоким приоритетом могут быть обработаны быстрее, чем пакеты с низким приоритетом. Это особенно важно для приложений, требующих низкой задержки, таких как VoIP или видеоконференции.
Общая длина	Total Length	16	Указывает общую длину пакета, включая заголовок и данные, в байтах. Максимальный размер пакета— 65535 байт. Если пакет превышает максимальную длину, он может быть фрагментирован на несколько частей, каждая из которых будет передана отдельно.
Идентификатор	Identificat ion	16	Используется для идентификации фрагментов пакета. Помогает принимающей стороне собрать фрагментированный пакет. Это поле также помогает отслеживать пакеты и выявлять возможные проблемы с доставкой.
Флаги	Flags	3	Управляет фрагментацией пакета. Первый бит не используется, второй бит (DF — Don't Fragment) указывает, разрешена ли фрагментация, третий бит (MF — More Fragments) указывает, есть ли еще фрагменты пакета. Флаги играют важную роль в управлении фрагментацией пакетов. Если фрагментация запрещена, пакет будет отброшен, если его размер превышает максимальный размер фрейма сети.

Смещение фрагмента	Fragment Offset	13	Указывает позицию фрагмента в исходном пакете. Используется для правильного сборки фрагментированного пакета
Время жизни	Time to Live, TTL	8	Указывает максимальное количество хопов (hops), которые может пройти пакет до того, как будет уничтожен. Используется для предотвращения зацикливания пакетов. Когда TTL достигает 0, пакет удаляется
Протокол	Protocol	8	Указывает протокол вышестоящего уровня (например, TCP, UDP, ICMP). Например, значение 6 указывает на TCP, а значение 17 — на UDP
Контрольная сумма заголовка	Header Checksum	16	Используется для обнаружения ошибок в заголовке пакета. Принимающее устройство вычисляет контрольную сумму и сравнивает её с этим значением. Если контрольная сумма не совпадает, пакет считается повреждённым и удаляется
IP-адрес источника	Source IP Address	32	Указывает IP-адрес устройства-отправителя
IP-адрес назначения	Destination IP Address	32	Указывает IP-адрес устройства-получателя
Параметры	Options	До 40 байт	Необязательный . Используется для различных параметров, таких как запись маршрута, временные метки и т.д. Например, опции могут использоваться для указания предпочтительных маршрутов или записи времени прохождения пакета через различные узлы сети.
Заполнитель	Padding	До 4 байт	Добавляется для выравнивания заголовка до 32-битного слова
Данные	Payload	До 65535 байт	Содержит данные, передаваемые вышестоящим уровнем (например, сегмент TCP или датаграмма UDP)

6. МАС-адрес. Структура, назначение

МАС-адрес

MAC-адрес (Media Access Control Address) — уникальный физический адрес сетевого устройства, используемый на канальном уровне модели OSI для идентификации устройства в локальной сети.

Структура МАС-адреса

Компонент	Описание	Пример
OUI (Organizationally Unique Identifier)	Первые 24 бита. Назначаются производителю сетевого устройства IEEE.	00:1A:2B
Уникальный идентификатор устройства	Последние 24 бита. Присваиваются производителем для уникальной идентификации устройства.	4C:5D:6E
Итоговый МАС-адрес	Состоит из OUI и уникального идентификатора. Общая длина — 48 бит.	00:1A:2B:4C:5D:6E

Типы МАС-адресов

Тип адреса	Описание	Пример
Уникальный (Unicast)	Указывает на конкретное устройство в сети. Используется для одноадресной передачи данных.	00:1A:2B:4C:5D:6E
Широковещательный (Broadcast)	Отправляет данные всем устройствам в сети. Представляет собой адрес из всех единиц	FF:FF:FF:FF:FF
Групповой (Multicast)	Используется для передачи данных группе устройств.	01:00:5E:00:00:FB

МАС-адрес

Назначение МАС-адреса

Функция	Описание
Идентификация устройства	Уникально идентифицирует устройство в локальной сети (LAN).
Адресация на канальном уровне	Используется для передачи данных между устройствами в пределах одной сети.
Маршрутизация кадров	Определяет источник и получателя данных в Ethernet-кадрах.
Работа протоколов	Необходим для работы сетевых протоколов, таких как Ethernet, Wi-Fi.

Преимущества и недостатки МАС-адресов

Преимущества	Недостатки	
Гарантированная уникальность адреса	Ограниченная длина (48 бит) может привести к повторениям в будущем.	
Работают на низком уровне модели OSI	МАС-адреса не маршрутизируются за пределами локальной сети.	
Удобство в локальной адресации	Сложность ручного управления в крупных сетях.	

7. IPv4 адрес. Структура, назначение

IPv4-адрес

IPv4-адрес — это 32-битный <mark>числовой идентификатор устройства в сети</mark>, используемый на сетевом уровне модели OSI для взаимодействия между устройствами.

Назначение IPv4-адреса

Функция	Описание	
Идентификация устройства	Уникально определяет устройство в сети (локальной или глобальной).	
Маршрутизация пакетов	Указывает источник и пункт назначения данных в сети.	
Обеспечение логической адресации	Отделяет физическую топологию сети от логической.	
Подключение к Интернету	Является основой для взаимодействия устройств в глобальной сети Интернет.	

Структура IPv4-адреса

Компонент	Описание	Пример
Сеть (Network)	Часть адреса, определяющая принадлежность устройства к конкретной сети.	192.168.0.0
Устройство (Host)	Часть адреса, уникально идентифицирующая устройство в пределах сети.	.1 (в адресе 192.168.0.1)
Длина	IPv4-адрес состоит из 32 бит (4 октета по 8 бит).	11000000.10101000.00000000.00000001
Пример полного адреса	IPv4 записывается в виде десятичного представления, разделённого точками.	192.168.0.1

IPv4-адрес

Классы IPv4-адресов

Класс	Диапазон сети	Количество сетей	Количество хостов в сети	Назначение
А	0.0.0.0 - 127.255.255.255	128	~16 миллионов	Для крупных сетей.
В	128.0.0.0 - 191.255.255.255	16 384	~65 тысяч	Для средних сетей.
С	192.0.0.0 - 223.255.255.255	2 миллиона	~254	Для небольших сетей.
D	224.0.0.0 - 239.255.255.255	-	-	Для мультимастинговых адресов.
E	240.0.0.0 - 255.255.255.255	-	-	Резервные (исследования).

Типы IPv4-адресов

Тип адреса		Описание	Пример
Публичный	Public	Адреса, используемые для взаимодействия устройств в Интернете.	8.8.8.8
Частный	Private	Адреса для локальных сетей, не маршрутизируются в Интернет.	192.168.0.1
Автоматический	APIPA	Назначаются автоматически при отсутствии DHCP-сервера.	169.254.0.1
Широковещательный	Broadcast	Используются для передачи данных всем устройствам в сети.	192.168.1.255
Мультимастинг	Multicast	Применяются для передачи данных группе устройств.	224.0.0.1
Резервный	Loopback	Для тестирования сетевого стека на локальном устройстве.	127.0.0.1

IPv4-адрес

Преимущества и недостатки IPv4

Преимущества	Недостатки	
Простота настройки и поддержки	Ограниченное количество адресов	
Широкая совместимость	Отсутствие встроенной безопасности	
Эффективная маршрутизация в малых сетях	Устаревание (переход на IPv6)	

8. Маска подсети. Структура, назначение

Маска подсети

Маска подсети — это 32-битное число, используемое <mark>для разделения IP-адреса на части: сеть и хост</mark>. Она определяет, какая часть IP-адреса относится к сети, а какая — к устройствам в этой сети.

Назначение маски подсети

Функция	Описание	
Определение границ сети	Указывает, какая часть IP-адреса относится к сети, а какая — к хостам.	
Маршрутизация пакетов	Позволяет устройствам и маршрутизаторам правильно передавать пакеты внутри и между сетями.	
Оптимизация адресного пространства Помогает разделить сеть на более мелкие подсети для рационального использования адресов.		
Поддержка безопасности	Разделяет сеть на сегменты, снижая риск несанкционированного доступа.	

Структура маски подсети

Компонент	Описание	Пример	
Часть для сети	Биты, установленные в "1", определяют сеть.	255.255.255.0 (24 бита для сети)	
Часть для хостов Биты, установленные в "0", указывают диапазон возможных адресов хостов.		.0 (8 бит для хостов)	
Полная длина	Маска состоит из 32 бит, как и IP-адрес.	11111111 .1111111 .11111111 .00000000	

9. Способ задания ІР-адреса. DHCP - назначение и принцип работы

Способ задания IP-адреса. DHCP

IP-адрес может быть назначен устройству вручную (статически) или автоматически с помощью протокола DHCP (Dynamic Host Configuration Protocol).

Способы задания ІР-адреса

Способ	Описание	Пример использования
Статический	IP-адрес задается вручную администратором. Не меняется без прямого вмешательства.	Важные серверы, сетевые устройства (например, маршрутизаторы).
Динамический	IP-адрес выделяется автоматически сервером DHCP на ограниченное время (аренда).	Рабочие станции, ноутбуки, смартфоны в локальной сети.
АРІРА (автоконфигурация)	Устройство назначает себе адрес автоматически из диапазона 169.254.х.х, если DHCP недоступен.	Автоматическая настройка в случае сбоя DHCP.

Назначение DHCP

Функция DHCP	Описание	
Автоматическое распределение IP Назначает уникальный IP-адрес каждому устройству в сети.		
Снижение ошибок настройки	Исключает человеческие ошибки при ручной настройке.	
Упрощение управления сетью	Позволяет централизованно управлять параметрами сети, такими как маска подсети, шлюз, DNS.	
Временное использование ІР-адресов	Выделяет IP-адреса на ограниченное время, возвращая их в пул после окончания аренды.	

DHCP

Принцип работы DHCP

	Этап работы	Описание	Результат
1	Обнаружение (Discovery)	Клиент отправляет широковещательный запрос в сеть для поиска DHCP-сервера На этом этапе сервер проверяет, в сети ли устройство. Технически этот процесс выглядит как отправка отдельного запроса на универсальный адрес 255.255.255.	Сообщение DHCPDISCOVER
2	Предложение (Offer)		
3	Запрос (Request)	Клиент принимает предложение и запрашивает подтверждение Запрос включает в себя МАС-адрес клиента и IP, который отправил сервер на предыдущем этапе.	Сообщение DHCPREQUEST
4	Подтверждение (Acknowledge)	Сервер подтверждает запрос, и клиент получает параметры конфигурации Сервер отправляет по МАС-адресу клиента сообщения с данными параметров, с помощью которых устройство будет авторизовано в сети.	Сообщение DHCPACK

10. Шлюз и маршрут по умолчанию. Назначение, способы задания

Шлюз и маршрут по умолчанию

Шлюз — это устройство (или программное обеспечение), которое <mark>служит связующим звеном между двумя сетями</mark>, обеспечивая передачу данных между ними. В большинстве случаев шлюз работает на сетевом уровне модели OSI.

Функция шлюза	Описание	
Перенаправление трафика	ение трафика Шлюз перенаправляет пакеты данных между сетями, в том числе между локальной сетью и внешними сетями (например, Интернетом)	
Сетевой переход	аботает как точка соединения между сетями с разными адресациями (например, между IPv4 и IPv6).	
Маршрутизация Определяет на основе маршрутов, какой путь должен пройти пакет, чтобы добраться до назначения.		
Обеспечение безопасности	Может фильтровать трафик и выполнять функции межсетевого экрана (например, проверка пакетов и блокировка нежелательного трафика).	

Маршрут по умолчанию

Маршрут по умолчанию — это маршрут, который используется устройством, если для адреса назначения не найден более конкретный маршрут в таблице маршрутизации.

Функция маршрута по умолчанию	Описание	
Указание "последней инстанции" Когда не найден подходящий маршрут для пакета, он отправляется по маршруту по умолчанию.		
Подключение к внешним сетям	Обычно маршрутизатор использует маршрут по умолчанию для отправки пакетов в Интернет.	
Упрощение настройки сети	Использование маршрута по умолчанию позволяет упростить конфигурацию, особенно в малых и средних сетях.	

Шлюз и маршрут по умолчанию

Назначение маршрута по умолчанию

Назначение	Описание
Интернет-подключение Используется для маршрутизации пакетов, которые не принадлежат локальной сети (например, для достинитернет).	
Отправка трафика в другие сети Указывает путь для пакетов, адреса назначения которых не находятся в текущей сети или подсети.	
Оптимизация маршрутизации	Упрощает таблицы маршрутизации, заменяя множественные записи на одну запись маршрута по умолчанию.

Способы задания шлюза и маршрута по умолчанию

Элемент	Описание	Пример
Шлюз по умолчанию (default gateway)	Указывается в конфигурации устройства (например, компьютера или маршрутизатора), чтобы направлять трафик в другие сети	На маршрутизаторе: ip route 0.0.0.0 0.0.0.0 192.168.1.1
Маршрут по умолчанию	Добавляется в таблицу маршрутизации и используется, если более конкретный маршрут отсутствует	На сервере: route add default gw 192.168.0.1

11. Коммутатор. Служебные таблицы и их назначение

Коммутатор

Коммутатор (Switch) — это сетевое устройство, предназначенное для соединения устройств в одной локальной сети (LAN) и передачи данных между ними на канальном уровне модели OSI.

Коммутатор принимает решения о передаче пакетов на основе информации о МАС-адресах, которые он сохраняет в своих служебных таблицах.

Основные служебные таблицы коммутатора

Тип таблицы	Описание	Назначение
Таблица МАС-адресов (MAC Table)		
Таблица ARP (ARP Table)	Таблица, которая хранит отображение между IP-адресами и MAC- адресами в сети. Хотя коммутатор сам по себе не использует ARP, она может быть полезна для функций с маршрутизацией.	Позволяет устройствам, работающим на сетевом уровне, разрешать IP-адреса в МАС-адреса, что важно для межсетевых коммуникаций.
Таблица VLAN (VLAN Table)	Таблица, содержащая информацию о VLAN (виртуальных локальных сетях) и их соответствующих портах.	Используется для разделения трафика между различными VLAN, если на коммутаторе настроена поддержка VLAN.
Таблица маршрутизации (Routing Table)	Используется в коммутаторах, которые поддерживают маршрутизацию между различными подсетями (Layer 3 switch).	Определяет на основе маршрутов, какой порт должен быть использован для отправки пакетов в другие подсети или сети.

Коммутатор. Служебные таблицы

Таблица MAC-адресов, также известная как <mark>таблица адресации или таблица коммутации</mark>, является основным элементом, который помогает коммутатору принимать решение о том, на какой порт отправить кадр.

Принцип работы таблицы МАС-адресов:

- 1. Когда коммутатор получает кадр, он проверяет МАС-адрес назначения в таблице.
- 2. Если адрес найден, кадр отправляется на соответствующий порт. Если адрес не найден, кадр отправляется на все порты (широковещательная рассылка), кроме порта, с которого он пришёл.
- 3. Запись о MAC-адресе добавляется в таблицу, если источник ещё не зарегистрирован

Поле	Описание	
МАС-адрес	Уникальный физический адрес устройства (например, сетевой карты).	
Порт	Номер порта коммутатора, на который подключено устройство с данным МАС-адресом.	
Время последнего обновления	Время, прошедшее с последнего обновления записи о MAC- адресе.	

Коммутаторы поддерживают создание виртуальных локальных сетей (VLAN), что позволяет разделять одну физическую сеть на несколько логических. Каждому VLAN соответствует определённый набор портов.

Принцип работы таблицы VLAN:

- 1. Каждый порт коммутатора может быть привязан к конкретному VLAN.
- 2. Когда устройство отправляет кадр, коммутатор проверяет, к какому VLAN он принадлежит, и перенаправляет его только в рамках этого VLAN.

Поле	Описание	
VLAN IDУникальный идентификатор VLAN (например, 10, VLAN 20)		
Порты	Список портов, которые принадлежат конкретному VLAN	
Тип VLAN	Указывает тип VLAN (например, данные или голосовой)	

Коммутатор. Служебные таблицы

В современных коммутаторах с поддержкой маршрутизации (Layer 3 switch) может быть также таблица маршрутизации, которая используется для передачи пакетов между различными подсетями.

Принцип работы таблицы маршрутизации:

- 1. Когда коммутатор получает IP-пакет, он ищет соответствующий маршрут в таблице маршрутизации.
- 2. Пакет перенаправляется на соответствующий интерфейс в зависимости от маршрута.

Поле	Описание	
Сетевой адрес Адрес сети назначения, с которой необходимо связа		
Маска подсети	Маска подсети для указания диапазона адресов в сети	
Шлюз	IP-адрес маршрутизатора, через который нужно направить пакет	
Интерфейс	Локальный интерфейс коммутатора, через который должен быть направлен пакет	

ARP-таблица (Address Resolution Protocol) — это таблица, которая хранит информацию о соответствии IP-адресов и МАС-адресов в локальной сети. Она необходима для того, чтобы устройство могло определить МАС-адрес, соответствующий известному IP-адресу, прежде чем отправить кадр в сеть.

Принцип работы ARP-таблицы:

- 1. Когда устройство хочет отправить данные на другое устройство в той же локальной сети, оно сначала проверяет свою ARP-таблицу. Если запись отсутствует, устройство отправляет широковещательный ARP-запрос.
- 2. Если запись отсутствует, устройство отправляет широковещательный ARP-запрос. Целевое устройство отвечает с своим MAC-адресом, и запросившее устройство добавляет запись в свою ARP-таблицу.
- 3. Если устройство снова отправляет данные на тот же IP-адрес, оно может использовать существующую запись в ARP-таблице, если она еще не устарела

Поле	Описание
IP-адрес	IP-адрес устройства, с которым нужно установить соединение
МАС-адрес	МАС-адрес устройства, соответствующий данному IP-адресу
Тип записи	Указывает, является ли запись статической (вручную заданной) или динамической (полученной через ARP)
Время жизни (TTL)	Время, в течение которого запись остается актуальной, после чего она удаляется

Маршрутизатор. Таблица маршрутизации

Маршрутизатор

Маршрутизатор — это сетевое устройство, которое <mark>используется для соединения различных сетей</mark>, например, локальной сети с глобальной (Интернетом), и для передачи пакетов данных между ними. Он работает на сетевом уровне модели OSI и использует информацию из таблицы маршрутизации для определения наилучшего пути для каждого пакета.

Таблица маршрутизации— это <mark>структура данных, хранящая информацию о путях, которые маршрутизатор использует для доставки пакетов в различные сети.</mark> Она включает записи (маршруты) с адресами назначения, масками подсетей, шлюзами, и интерфейсами маршрутизатора.

Типы маршрутов в таблице маршрутизации

Тип маршрута	Описание	
Статический маршрут (Static Route)	Маршрут, добавленный вручную администратором, обычно используется для фиксированных соединений, например, для VPN или маршрута по умолчанию.	
Динамический маршрут (Dynamic Route)	Маршрут, добавленный автоматически с помощью протоколов динамической маршрутизации (например, OSPF, RIP, BGP). Маршрут может изменяться в зависимости от состояния сети.	
Маршрут по умолчанию (Default Route)		
Маршрут внутренней сети (Local Route)	Маршрут, который используется для направлений, относящихся непосредственно к самому маршрутизатору, например, для маршрутов, определяющих локальные адреса.	

Маршрутизатор

Основные поля таблицы маршрутизации

Поле таблицы	Описание	
Сетевой адрес (Destination Network)	Адрес назначения, для которого определяется маршрут. Это может быть IP-адрес сети или диапазон.	
Маска подсети (Subnet Mask)	Маска подсети, которая используется для определения, какие адреса сети принадлежат текущему маршруту.	
Шлюз (Gateway)	IP-адрес следующего устройства (обычно это маршрутизатор), через которое пакеты должны быть направлены, чтобы попасть в целевую сеть.	
Интерфейс (Interface)	Локальный интерфейс маршрутизатора, через который пакет будет передан. Это может быть физический интерфейс (например, Ethernet) или виртуальный (например, VPN).	
Метрика (Metric)		
Тип маршрута (Route Type) Указывает, как был добавлен маршрут в таблицу: вручную (статический маршрут) или автоматически (динамический маршрут)		

Пример таблицы маршрутизации

Сетевой адрес	Маска	Адрес шлюза	Интерфейс	Метрика
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
0.0.0.0	0.0.0.0	198.21.17.7	198.21.17.5	1
56.0.0.0	255.0.0.0	213.34.12.4	213.34.12.3	15
116.0.0.0	255.0.0.0	213.34.12.4	213.34.12.3	13
129.13.0.0	255.255.0.0	198.21.17.6	198.21.17.5	2
198.21.17.0	255.255.255.0	198.21.17.5	198.21.17.5	1
198.21.17.5	255.255.255.255	127.0.0.1	127.0.0.1	1

Маршрутизатор. Принцип работы

Принцип работы маршрутизатора и таблицы маршрутизации

Этап работы		Описание	
1	Получение пакета	Когда маршрутизатор получает пакет, он сначала проверяет его IP-адрес назначения	
2	Поиск в таблице маршрутизации	Маршрутизатор ищет подходящий маршрут в таблице маршрутизации для указанного адреса назначения	
3 Передача пакета Если маршрут найден, пакет передается на соответствующ для дальнейшей маршрутизации		Если маршрут найден, пакет передается на соответствующий интерфейс маршрутизатора с указанием шлюза для дальнейшей маршрутизации	
4	Маршрут по умолчанию	Если для адреса назначения не найден конкретный маршрут, используется маршрут по умолчанию, если он настроен	

13. Классическая трехуровневая архитектура корпоративных сетей. Компоненты и назначение

Трехуровневая архитектура сетей

Классическая трехуровневая архитектура корпоративных сетей — это модель построения сети, которая делит её на три уровня: ядро, агрегация/дистрибуция и доступ.

Этот подход упрощает управление сетью, повышает её производительность, надёжность и масштабируемость.

Уровень	Назначение	Характеристики	Примеры
	Высокоскоростная передача данных между различными сегментами сети	Высокая производительность и пропускная способность	• Передача данных между
Ядро (Core Layer)	Центральный магистральный слой, обеспечивающий соединение всех частей сети	Отказоустойчивость за счёт резервирования	дата-центром и офисами. Объединение филиалов через магистраль.
	Минимизация задержек при передаче данных	Минимальная обработка данных (только пересылка пакетов)	магистраль.
Агрегация/	Связующее звено между уровнем доступа и ядром	Поддержка функций маршрутизации и коммутации	• Фильтрация трафика.
Дистрибуция (Distribution	Обеспечение управления трафиком и применение политик безопасности	Применение политик контроля доступа (ACL), QoS (качество обслуживания)	 Обеспечение подключения VLAN к ядру. Разграничение зон сети по
Layer)	Агрегация данных с уровня доступа	Увеличение надёжности с использованием протоколов отказоустойчивости (например, резервирование шлюзов)	функциям (например, офисные и серверные)
Доступ (Access Layer)	Реализация базовых функций безопасности и управления доступом	Поддержка VLAN для сегментации сети	Подключение рабочих станций.
	Подключение конечных устройств (ПК, ноутбуков, принтеров, IP-телефонов и т.д.) к сети	Возможность подключения по проводным (Ethernet) и беспроводным (Wi-Fi) интерфейсам. Часто включает технологии РоЕ (Power over Ethernet) для питания устройств	 Управление доступом пользователей к сетевым ресурсам. Организация точек доступа Wi-Fi

Трехуровневая архитектура сетей

Преимущество	Описание	
Масштабируемость	Уровень ядра поддерживает высокоскоростное объединение распределенных сетей, что позволяет легко добавлять новые сегменты	
Простота управления	Чёткое разделение уровней делает управление и диагностику более простыми	
Гибкость	Легко реализовать политику безопасности и приоритизацию трафика на уровне распределения	
Отказоустойчивость	Возможность построения резервных маршрутов (например, через протоколы STP или HSRP)	
Оптимизация производительности	Быстрая передача трафика через ядро и оптимальное использование ресурсов	

14. Двухуровневая архитектура корпоративных сетей. Компоненты и назначение

Двухуровневая архитектура сетей

Двухуровневая архитектура корпоративных сетей — это упрощённый подход к построению сетевой инфраструктуры, в котором выделяются только два уровня: агрегация (дистрибуция) и доступ. Она часто применяется в небольших и средних сетях, где нет необходимости в отдельном уровне ядра.

Уровень	Назначение	Характеристики	Примеры	
	Часто объединяет функции уровня ядра в классической архитектуре		• Организация межсетевой	
Агрегация/ Дистрибуция	Централизованное управление трафиком	Маршрутизация между сегментами сети (например, VLAN)	маршрутизации между VLAN ● Балансировка трафика и	
(Distribution Layer)	Выполнение функций маршрутизации и фильтрации	Применение политик контроля доступа (ACL), QoS (качество обслуживания)	повышение отказоустойчивости Применение политик безопасности и фильтрации	
	Агрегация данных с уровня доступа	Увеличение надёжности с использованием протоколов отказоустойчивости (например, резервирование шлюзов)		
	Реализация базовых функций безопасности и управления доступом	Поддержка VLAN для сегментации сети	Подключение рабочих станций	
Доступ (Access Layer)	Подключение конечных устройств (ПК, ноутбуков, принтеров, IP-телефонов и	Управление портами для подключения пользователей. Часто включает технологии PoE (Power over Ethernet)	 Управление доступом пользователей к сетевым ресурсам 	
	т.д.) к сети	для питания устройств	● Организация точек доступа Wi-Fi	

Двухуровневая архитектура сетей

Основные принципы	Описание	Преимущества	Недостатки	Применение
Объединение функций ядра и агрегации	Уменьшается количество уровней, что упрощает настройку и администрирование	Простота Экономичность Универсальность	Ограничение пропускной способности Нет выделенного магистрального уровня	 Небольшие офисы: Один или два коммутатора выполняют функции агрегации и доступа Отделения компаний: Двухуровневая сеть подключается к магистральной сети организации Учебные заведения: Простая инфраструктура для
Упрощение управления	Меньшее кол-во устройств и уровней делает сеть проще в обслуживании		Меньшая отказоустойчивость Из-за меньшего количества резервных путей увеличивается риск сбоев	
Экономия	Меньшее кол-во оборудования снижает затраты		Ограниченная масштабируемость При увеличении количества устройств или пользователей производительность может снижаться	
Масштабируемость	Подходит для небольших сетей и может быть расширена при росте компании. Не требуется высокая пропускная способность			обеспечения подключения студентов и преподавателей

Двухуровневая архитектура сетей

15. Инкапсуляция 802.1q. Типы интерфейсов, их назначение

802.1q

802.1Q — это стандарт для инкапсуляции данных в сетях с использованием VLAN.

Он <mark>позволяет разделять одну физическую сеть на несколько логически изолированных сетей</mark>, обеспечивая передачу трафика различных VLAN через один физический канал. В каждый Ethernet-кадр добавляется тег VLAN, который содержит идентификатор VLAN (VLAN ID).

Тип интерфейса	Назначение	Характеристики	
Access	Подключение конечных устройств (компьютеров, принтеров, IP-телефонов)	 Кадры, передаваемые через Access-интерфейс, не имеют тегов При получении кадра с тегом интерфейс его отбрасывает 	
	Работа только с одной VLAN, без тегов в кадрах		
Trunk	Передача трафика нескольких VLAN между коммутаторами, маршрутизаторами или серверами	Все кадры передаются с тегами, кроме VLAN по умолчанию (native VLAN)	
Trunk	Тегирование 802.1Q для идентификации VLAN	● Поддерживает несколько VLAN	
Native VLAN	VLAN по умолчанию для кадров, передаваемых без тегов по Trunk-интерфейсу	 любой трафик, отправленный без тега, будет автоматически 	
NACIVE VLAN	Использование для совместимости с устройствами, которые не поддерживают тегирование	ассоциирован с Native VLAN	

16. ARP-шторм в современных сетях. Методы борьбы

ARP-шторм

ARP-шторм — это ситуация, при которой <mark>сеть подвергается перегрузке из-за большого количества ARP-запросов</mark>. Он может быть вызван неправильной настройкой сетевого оборудования, программными ошибками или злоумышленными действиями (например, атаками).

Причины		
Замкнутые петли в сети При отсутствии защитных механизмов, широковещательные запросы могут бесконечно циркулировать, создавая петли		
Избыточная генерация ARP-запросов	Устройства, работающие некорректно, могут генерировать слишком много запросов	
ARP-атаки	Злоумышленник может намеренно инициировать массовые ARP- запросы для создания шторма	
Большие широковещате льные домены	(В больших сетях широкий охват одного широковещательного домена усиливает эффект лавинообразного распространения ARP-запросов	

Последствия	
Перегрузка сети	Увеличивается объем трафика, связанный с обработкой широковещательных запросов
Снижение производительнос ти оборудования	Коммутаторы и маршрутизаторы начинают терять пакеты, что снижает производительность
Остановка сети	Высокий уровень трафика приводит к блокировке обмена данными

Методы борьбы		
Протоколы предотвращения петель в сети STP (Spanning Tree Protocol)	Динамически отключается избыточные пути сохраняя только один активный путь в каждом сегменте	
Storm Control	Ограничивает уровень широковещательного, многоадресного и одноадресного трафика на порту коммутатора	
Разделение сети на VLAN	Сегментация сети на VLAN уменьшает влияние широковещательных запросов, поскольку они остаются внутри соответствующего VLAN	
Dynamic ARP Inspection	DAI проверяет достоверность ARP-пакетов, используя базу данных DHCP Snooping, и отбрасывает недостоверные пакеты	
Контроль широковещательного трафика на уровне маршрутизаторов и коммутаторов	Уменьшение размера широковещательного трафика, Оптимизация АRP-таблиц путём увеличения времени жизни записей, Использование современных протоколов	

17. Протокол STP. Назначение и принцип работы

STP

STP (Spanning Tree Protocol) — это сетевой протокол канального уровня модели OSI, разработанный <mark>для предотвращения возникновения петель</mark> в топологии Ethernet. Петли могут приводить к широковещательным штормам, перегрузке сети и некорректной работе устройств.

BPDU (Bridge Protocol Data Unit) — специальные пакеты, используемые STP для обмена информацией между коммутаторами.

STP использует два типа BPDU.

Configuration BPDU - передаёт информацию о состоянии сети и стоимости путей.

Topology Change Notification (TCN) BPDU - сообщает об изменениях в топологии (например, при подключении нового устройства).

Основные задачи	Проблемы	Преимущества STP	Недостатки STP
Предотвращение появления циклов передачи пакетов в сетях с избыточными связями	Лавинообразное увеличение трафика: Циклы приводят к дублированию широковещательных пакетов, что вызывает перегрузку сети.	Защита от петель, даже в сложных топологиях.	Медленная сходимость в классической версии STP.
Обеспечение доступности альтернативных путей для повышения отказоустойчивости сети	Неопределённость МАС-адресов: Коммутаторы начинают обновлять свои таблицы МАС-адресов из-за конфликтующих данных.	Повышение отказоустойчивости сети за счёт резервных путей.	Ограниченная масштабируемость в крупных сетях.
Оптимизация трафика за счёт выбора единственного активного пути между любыми двумя узлами	Проблемы с доставкой пакетов: Пакеты могут зацикливаться, так и не достигнув пункта назначения.	Возможность автоматического восстановления после сбоя.	Возможность ложных срабатываний при некорректной настройке.

STP

Основные этапы работы

	Этап работы	Описание
1	Выбор корневого коммутатора (Root Bridge)	STP начинает с выбора корневого коммутатора. Корневой коммутатор определяется по Bridge ID, который состоит из приоритета (по умолчанию 32768) и MAC-адреса
2	Выбор Root Port на всех остальных коммутаторах	Root Port — это порт на коммутаторе, который обеспечивает минимальную стоимость пути до корневого коммутатора. Стоимость пути определяется в зависимости от скорости интерфейсов (чем выше скорость, тем ниже стоимость).
3	Выбор Designated Port для каждого сегмента	Designated Port — это порт, который отвечает за пересылку трафика в сегменте. Выбирается порт с наименьшей стоимостью пути до корневого коммутатора.
4	Блокировка избыточных портов	Все порты, не являющиеся Root или Designated, переводятся в состояние Blocking. Это предотвращает прохождение трафика через заблокированные порты, исключая петли.

Состояние портов

Состояние портов	Описание	
Blocking	Порт не участвует в передаче данных, только получает BPDU (Bridge Protocol Data Units). Это состояние предотвращает петли.	
Listening	Порт проверяет BPDU и участвует в выборе Root и Designated Ports.	
Learning	Порт начинает изучать МАС-адреса из поступающего трафика, но ещё не передаёт данные.	
Forwarding	Порт передаёт и принимает данные.	
Disabled	Порт отключён вручную или из-за неисправности.	

18. Статическая маршрутизация. Принцип работы

Статическая маршрутизация

Статическая маршрутизация — это метод управления маршрутизацией данных в сети, при котором маршруты прописываются вручную администратором.

Она предполагает создание фиксированных путей для передачи пакетов от источника к получателю. Не зависит от протоколов динамической маршрутизации. Требует ручной настройки и контроля.

Преимущества	Недостатки	Описание
Простота реализации	Трудоёмкость настройки	Легко настроить в малых и статичных сетях.При добавлении или изменении сетей необходимо вручную обновлять маршруты
Отсутствие нагрузки на процессор маршрутизатора	Неавтоматизированность	Нет необходимости вычислять маршруты или обмениваться маршрутной информацией. Маршруты не меняются при сбое соединения. Требуется вмешательство администратора
Безопасность	Плохая масштабируемость	Администратор точно контролирует пути передачи данных, минимизируя возможность нежелательных маршрутов.В крупных сетях ручное управление становится неэффективным.

Принцип работы статической маршрутизации

Для каждого маршрута в сети администратор вручную прописывает:

- 1. Адрес назначения (Destination Address): куда направляется трафик.
- 2. Маску подсети (Subnet Mask): для определения сети назначения.
- 3. Шлюз (Next Hop): IP-адрес или интерфейс, через который следует отправлять данные.

При отправке пакета маршрутизатор:

- 1. Сравнивает ІР-адрес назначения с таблицей маршрутов.
- 2. Выбирает маршрут с наилучшим соответствием (по длине префикса или приоритету).
- 3. Направляет пакет на указанный интерфейс или следующий маршрутизатор.

19. Динамическая маршрутизация. Принцип работы на примере OSPF

Динамическая маршрутизация

Динамическая маршрутизация— это метод настройки маршрутизаторов, при котором <mark>пути передачи данных (маршруты) определяются автоматически</mark> с помощью протоколов маршрутизации. Маршрутизаторы обмениваются информацией о топологии сети, обновляя таблицы маршрутов в режиме реального времени.

Преимущества	Недостатки	Описание
Масштабируемость	Сложность	Подходит для больших и сложных сетей. Более сложная настройка и управление по сравнению со статической маршрутизацией.
Автоматическое управление	Риск сбоев	Упрощает управление сетью и снижает нагрузку на администраторов. Возможность сбоев в работе протоколов маршрутизации, что может привести к потере маршрутов.
Производительность	Нагрузка на сеть	Оптимизация маршрутов и балансировка нагрузки. Обмен маршрутной информацией может создавать дополнительную нагрузку на сеть.
Отказоустойчивость		Автоматическое обнаружение отказов и поиск альтернативных путей.

OSPF - это один из наиболее распространённых протоколов динамической маршрутизации, разработанный как стандарт для использования в IP-сетях.

Характеристика OSPF	Описание
Протокол внутридоменной маршрутизации	Используется для маршрутизации внутри автономной системы (AS)
Алгоритм SPF (Shortest Path First)	Основан на алгоритме Дейкстры, который рассчитывает кратчайший путь
Метрическая основа	OSPF использует стоимость (cost) как основную метрику, основанную на пропускной способности интерфейса (чем выше скорость интерфейса, тем ниже его стоимость)
Поддержка разделения сети на области (areas)	Позволяет разбить сеть на области для уменьшения нагрузки на маршрутизаторы

Основные типы пакетов OSPF

Тип пакета	Описание
Hello	Обнаружение соседей и поддержание связи
Database Description (DBD)	Обмен информацией о содержимом баз данных
Link State Request (LSR)	Запрос недостающих данных у соседей
Link State Update (LSU)	Передача обновлений о состоянии связей
Link State Acknowledgment (LSAck)	Подтверждение получения обновлений

Принцип работы OSPF

Этап работы		Описание
1	Выбор DR и BDR (Designated Router/ Backup Designated Router)	В каждой сети OSPF выбирает — основной маршрутизатор для обмена маршрутной информацией. Также выбирается резервный маршрутизатор.
2	Обмен маршрутной информацией	После включения маршрутизаторы отправляют Hello-пакеты, чтобы обнаружить соседей. Формируется список соседей. После этого начинается обмен базами данных о топологии сети (LSDB — Link State Database)
3	Расчёт кратчайших путей	Используется алгоритм SPF для построения дерева кратчайших путей. Таблица маршрутов обновляется на основе этого дерева
4	Обновление маршрутов	Если происходит изменение в сети (например, выход интерфейса из строя), маршрутизатор отправляет обновления (LSA — Link State Advertisement Все маршрутизаторы пересчитывают маршруты

20. Протоколы семейства GHRP. Принцип работы на примере VRRP

VRRP (GHRP)

Протоколы семейства GHRP (Gateway Redundancy Protocols) используются <mark>для обеспечения отказоустойчивости на уровне шлюзов в локальных сетях</mark>. Эти протоколы позволяют организовать резервирование маршрутизаторов или коммутаторов, выступающих в роли шлюза по умолчанию для устройств в сети.

Основные протоколы семейства GHRP:

- HSRP (Hot Standby Router Protocol) проприетарный протокол Cisco.
- VRRP (Virtual Router Redundancy Protocol) открытый стандарт.
- GLBP (Gateway Load Balancing Protocol) проприетарный протокол Cisco с балансировкой нагрузки.

VRRP

VRRP — это стандартный протокол (описан в RFC 5798), используемый для обеспечения высокой доступности шлюза по умолчанию в сетях IPv(4/6).

Преимущества	Недостатки	Описание
Высокая отказоустойчивость	Нет балансировки нагрузки	Если основной маршрутизатор выходит из строя, резервный маршрутизатор автоматически принимает роль Master, обеспечивая бесперебойную работу сети. VRRP не поддерживает распределение нагрузки между маршрутизаторами. Только один маршрутизатор в группе всегда будет являться активным
Минимальная задержка при переключении		Благодаря быстрому выбору нового Master маршрутизатора сеть продолжает работать с минимальными задержками.
Простота настройки	Ограниченная настройка	VRRP является стандартом, поддерживаемым многими производителями оборудования, и имеет простую конфигурацию. VRRP предоставляет ограниченные возможности для настройки в сравнении с другими протоколами, такими как HSRP или GLBP

VRRP

	Этап работы	Описание	Результат
1	Создание виртуального маршрутизатора	Определяется виртуальный IP-адрес (используется как шлюз по умолчанию для клиентов)	Устройства в сети используют виртуальный IP как адрес шлюза
		Генерируется виртуальный МАС-адрес	
2	Выбор Master	Устройства обмениваются VRRP-пакетами	Назначается основной маршрутизатор (Master) для управления трафиком
	маршрутизатора	Выбирается маршрутизатор с наивысшим приоритетом	управления трафиком
		При равенстве приоритетов выбирается с наивысшим IP	
3	Работа Master маршрутизатора	Master отправляет VRRP-пакеты по мультикасту 224.0.0.18 для уведомления резервных	Клиенты получают стабильный доступ к сети через Master
		Обрабатывает весь трафик для виртуального IP-адреса	
4	Мониторинг состояния Master	Backup маршрутизаторы слушают VRRP-пакеты	Сеть остается работоспособной даже при сбое Master
		Если пакеты не приходят в течение времени Dead Interval (по умолчанию 3 сек), Backup переходит в Master	
5	Переключение при отказе	Backup маршрутизатор с наивысшим приоритетом занимает роль Master	Автоматическое восстановление работы шлюза без вмешательства администратора
		Начинает отправлять VRRP-пакеты и обрабатывать трафик	
6	Возвращение Master (если настроено)	Если прежний Master восстанавливается, он снова становится Master (если его приоритет выше текущего)	Восстановление изначальной структуры сети

21. NAT. Типы адресов. Назначение и принцип работы

NAT

NAT (преобразование сетевых адресов)— это <mark>технология, позволяющая изменять IP-адреса в заголовках пакетов</mark> при их прохождении через маршрутизатор. Основное назначение NAT— экономия глобальных IPv4-адресов и обеспечение взаимодействия между локальными сетями и Интернетом.

Тип Адреса	Описание	Пример
Внутренний (Private)	Используется в локальной сети. Не маршрутизируется в Интернете.	192.168.0.1 10.0.0.1
Внешний (Public)	Адрес, видимый в Интернете. Обычно предоставляется провайдером.	203.0.113.1
Локальный внутренний (Inside Local)	Адрес устройства в локальной сети до преобразования NAT.	192.168.0.2
Глобальный внутренний (Inside Global)	Внешний адрес локального устройства после преобразования NAT.	203.0.113.2
Локальный внешний (Outside Local)	Локальный адрес удалённого устройства, используемый в локальной сети.	203.0.113.3
Глобальный внешний (Outside Global)	Реальный публичный адрес удалённого устройства.	198.51.100.1

Преимущества	Недостатки
Экономия IPv4-адресов	Усложняет трассировку пакетов (например, для отладки)
Повышение безопасности (скрытие внутренней топологии сети)	Проблемы с протоколами, зависящими от IP-адресов (например, IPsec)
Упрощение подключения локальных сетей к Интернету через один публичный адрес	Увеличение времени обработки пакетов из-за преобразований

Типы NAT

Тип NAT	Описание	Пример использования
Static NAT	Устанавливает постоянное соответствие между внутренним и внешним IP-адресом.	Доступ к внутреннему серверу (например, веб-серверу) из Интернета.
Dynamic NAT	Внутренние адреса преобразуются в один из пула внешних адресов.	Временное соединение устройств с Интернетом, если у провайдера ограничен пул IP.
PAT (NAT Overload)	Использует один внешний IP-адрес для нескольких внутренних устройств. Порт добавляется для идентификации трафика.	Интернет-доступ для всех устройств в локальной сети через один публичный адрес.

Принцип работы NAT

	Этап работы	Описание
1	Инициация соединения	Устройство в локальной сети отправляет пакет на удаленный хост в Интернет.
2	Преобразование адреса	Маршрутизатор заменяет исходный (локальный) IP-адрес на внешний (публичный).
3	Создание записи в таблице NAT	В таблице NAT создается запись для сопоставления локального адреса и порта с публичным адресом и портом
4	Отправка пакета	Преобразованный пакет пересылается на удаленный хост
5	Возврат пакета	Удаленный хост отвечает на внешний IP-адрес маршрутизатора
6	Обратное преобразование	Маршрутизатор заменяет внешний адрес на локальный, используя запись в таблице NAT

22. Агрегирование интерфейсов: Принцип работы и пример LACP

Агрегирование интерфейсов

Агрегирование интерфейсов (Link Aggregation) — это технология, <mark>объединяющая несколько физических каналов в один логический</mark> для повышения пропускной способности и обеспечения отказоустойчивости.

Основные характеристики агрегации интерфейсов

Характеристика	Описание
Повышение пропускной способности	Объединение нескольких физических каналов в один логический увеличивает общий доступный трафик
Отказоустойчивость	В случае выхода из строя одного из физических каналов соединение продолжает работать через другие
Балансировка нагрузки	Трафик распределяется между каналами в зависимости от настроек (МАС-адрес, IP, порт)
Простота управления	Объединённые каналы управляются как один интерфейс

LACP

LACP (Link Aggregation Control Protocol) — это протокол, определённый в стандарте IEEE 802.3ad, который используется для автоматической конфигурации и управления агрегацией интерфейсов Ethernet. LACP позволяет динамически объединять несколько физических интерфейсов в один логический канал (агрегированный канал), обеспечивая балансировку нагрузки и отказоустойчивость.

Преимущества	Недостатки
Автоматическая настройка и отказоустойчивость	Увеличивает сложность сети
Поддержка стандарта IEEE (межвендорная совместимость)	Возможны неравномерные нагрузки
Максимально использует доступные ресурсы	Требует дополнительной настройки и оборудования

Принцип работы LACP

Этап работы		Описание
1	Определение физических интерфейсов	Выбираются физические интерфейсы, которые будут участвовать в объединении
2	Обмен LACP-пакетами	Устройства обмениваются пакетами LACP для согласования настроек (активные и пассивные интерфейсы)
3	Формирование агрегата	Успешно согласованные интерфейсы объединяются в один логический канал
4	Балансировка нагрузки	Трафик распределяется между интерфейсами на основе настроек (например, хэширование по МАС-адресам)
5	Возврат пакета	Если один из каналов выходит из строя, трафик перенаправляется на оставшиеся рабочие интерфейсы