Lineare Algebra 2 Tutorium 2, 21.4.2021

Warm-Up

Richtig oder Falsch?

- 1. Sei K ein Körper und V ein K-Vektorraum. Dann ist $V^*\cong V$. imes
- 2. Sei K ein Körper und V ein K-Vektorraum. Dann ist $V^{**}\cong V$. imes
- 3. Sei K ein Körper und V ein e ${
 m indlich}$ -dimension ${
 m ale}$ r K-Vektorraum. Dann ist $V^{**}\cong V$.
- 4. Sei K ein Körper und V ein K-Vektorraum. Ist M eine Teilmenge von V, so ist M^0 ein Unterraum von V.
- 5. Die Abbildung $V^* \times V \to K, (f,v) \mapsto f(v)$ ist eine nicht-ausgeartete Bilinearform. \checkmark
- 6. Die begleitende Matrix einer Bilinearform ist unabhängig von der Wahl einer Basis. 🗡

$$V^* = Hou_K (E, K) \cong \prod_{i \in \mathbb{N}_0} Hou_K (k, K) = \prod_{i \in \mathbb{N}_0} K$$

Finance Abbildyen von $V \rightarrow W : Hou_K (V, W)$

VR Vi =
$$g(v_i)_{i \in \mathbb{N}_0} \in TT V_i$$
 Alle to its viele $V_i = 0$

F: V - W

Zige, dos folgliers Piagroum homuntiert

$$(R^{5})^{*} \text{ hat } e_{1}^{*}, e_{2}^{*}, \dots, e_{5}^{*}$$

$$\phi_{1} = e_{1}^{*} + e_{2}^{*} + e_{3}^{*} + e_{4} + e_{5}^{*}$$

$$(R^{5})^{*} \text{ hat } e_{1}^{*}, e_{2}^{*}, \dots, e_{5}^{*}$$

$$(R^{5})^{*} \text{ hat } e_{1}^{*}, \dots, e_{5}^{*}$$

$$(R^{5})^{*$$