

École des Ponts

ParisTech École des Ponts ParisTech

2015-2016

Rapport de stage long (fractionné)

Joao Guilherme CALDAS STEINSTRAESSER Élève en double diplôme - Ingénierie Mathématique et Informatique (IMI)

Modèle d'adaptation de maillage à des surfaces et variables physiques appliqué à des problèmes de la mécanique des fluides

Stage réalisé au sein de l'équipe CARDAMOM - Inria Bordeaux Sud-Ouest 200 Avenue de la Vieille Tour, 33405 Talence, France Juillet - Décembre 2015

 ${\tt Maître}$ de stage : Mme Cécile DOBRZYNSKI

Méthode de décomposition de domaine appliquée à la résolution de modèles non linéaires et/ou dispersifs pour la propagation des ondes

Stage réalisé à MERIC / Inria Chile

Avenida Apoquindo 2827, piso 12 - Las Condes - Santiago, Chile

Mars - Août 2016

Maître de stage: M. Antoine ROUSSEAU

Fiche de synthèse 1

- Type de stage : stage long fractionné
- Année : 2015-2016
- Auteur : CALDAS STEINSTRAESSER, Joao Guilherme
- Formation 2ème année : IMI
- Titre du rapport : Modèle d'adaptation de maillage à des surfaces et variables physiques appliqué à des problèmes de la mécanique des fluides
- Organisme d'accueil : Équipe Cardamom Inria Bordeaux Sud-Ouest
- Pays d'accueil : France
- Responsable de stage : Cécile DOBRZYNSKI
- Mots-clés : adaptation de maillage, méthode d'éléments finis

Fiche de synthèse 2

- Type de stage : stage long fractionné
- Année : 2015-2016
- Auteur : CALDAS STEINSTRAESSER, Joao Guilherme
- Formation 2ème année : IMI
- Titre du rapport : Méthode de décomposition de domaine appliquée à la résolution de modèles non linéaires et/ou dispersifs pour la propagation des ondes
- Organisme d'accueil : Marine Energy Research & Innovation Center (ME-RIC) / Inria Chile
- Pays d'accueil : Chili
- Responsable de stage : Antoine ROUSSEAU
- Mots-clés : méthode de décomposition de domaine, conditions aux limites transparentes, équation de KdV, équations de Serre

Table des matières

]	Introduction	17		
I Inria Bordeaux Modèle d'adaptation de maillage à des surfaces et va- riables physiques appliqué à des problèmes de la mécanique des fluides				
1	Présentation de l'organisme d'accueil	21		
	1.1 Inria	21		
	1.1.1 Inria Bordeaux Sud-Ouest	22		
	1.2 L'équipe de travail	22		
2				
		22		
3	20 21104010	23		
	3.1 Description du problème	23		
	5.2 Discretisation en elements finis	25		
	The state of the content of the same seasons and the same seasons are same seas	26		
	3.4 Résolution du système linéaire	27		
4	PP-rotation a la fouction pevel per	28		
	4.1 Construction de la fonction à adapter (avec ω donné par l'expression			
	(1))	29		
	4.1.1 Choix des paramètres	30		
	des talles desired	32		
		33		
	4.3 Relaxation et qualité du maillage 4.4 Adaptation 3D	34		
		35		
5	Application à l'adaptation physique	38		
	5.1 Calcul des tailles désirées	39		
	5.2 Couplage entre adaptation Level Set et adaptation physique	40		
	5.3 Résultats	41		
6	Adaptation à un cas non stationnaire	46		
7	Conclusion	48		

	N	I MERIC / Inria Chile Méthode de décomposition de domaine appliquée à la ésolution de modèles non linéaires et/ou dispersifs pour à propagation des ondes	51
\bigcirc	1	Présentation des organismes d'accueil 1.1 Inria Chile	53 53 53 55
	2	Introduction	55
	4	3.2.1 Premier pas du splitting - advection 3.2.2 Deuxième pas du splitting - dispersion 3.3 Analyse d'échelle 3.4 Le)critère pour choisir une solution initiale appropriée 3.4.1 Choix de la longueur d'onde 3.4.2 Choix de l'amplitude de l'onde 3.4.3 Résumé 3.5 Tests numériques Les équations de Serre 4.1 Le modèle 4.1.1 Les équations de Serre dans les variables (h, hu) 4.2 Discrétisation 4.2.1 Première système d'équations (pas d'advection) 4.2.2 Deuxième système d'équations (pas de dispersion) 4.3 Tests numériques	58 58 58 59 60 61 63 63 64 64 66 66 66 67 68 69 70 70
		5.1 Introduction et quelques exemples de motivation	73 73 77 77 80 81

6	Cor	nditions aux limites transparentes approximées pour l'équation	
	de e	dispersion	82
	6.1	Approximation des TBCs utilisant des polynômes constants	83
		6.1.1 Tests de validation de l'approximation	84
	6.2	Approximation des TBCs utilisant un polynôme linéaire	86
		6.2.1 Tests de validation de l'approximation	87
	6.3	Conclusion partiale	88
7	App	olication des TBCs approximées à une méthode de décompositio	on
	de d	domaine	89
	7.1	Les méthodes de Schwarz	89
	7.2	ASM avec des TBCs approximées pour l'équation de dispersion	90
	7.3	Discrétisation du problème et erreur dans la solution convergée .	92
		7.3.1 Vérification numérique de l'erreur due aux TBCs approximées	95
		7.3.2 Corrections pour les TBCs approximées	96
	7.4	Optimisation des IBCs (vitesse de convergence)	96
		7.4.1 Tests variant l'instant initial et la position de l'interface	
		7.4.2 Tests variant Δt and Δx .	
	7.5	Conclusion partiale	.03
8	Con	clusion 1	03
\mathbf{B}^{i}	ilan	personnel 16	07

Remerciements

Je voulais d'abord remercier à Inria et à MERIC pour me permettre de réaliser ces deux stages et pour me donner la certitude que je veux poursuivre une carrière dans la recherche scientifique.

Dans l'équipe de Bordeaux, je voulais remercier Cécile Dobrzynski et Mario Ricchiuto pour m'accueillir au sein de leur équipe et de m'orienter au long de tout le stage, en m'aidant a surmonter mes difficultés et à gagner de la confiance en mon travail. Merci aussi à Léo Nouveau pour avoir la patience et pour dédier un peu du temps de travail dans sa thèse pour m'expliquer d'aspects mathématiques et numériques fondamentaux pour mon projet.

Au Chili, je tiens à remercier Antoine Rousseau pour les enseignements, l'enthousiasme, le travail au quotidien, les conversations au métro de Santiago, l'amitié. À José Galaz pour son aide indispensable à mon travail et pour être un exemple à admirer, ayant une telle expérience même étant si jeune, et à Rodrigo Cienfuegos pour tout le support. À Meric pour l'enthousiasme avec mon travail, et à toute l'équipe de Meric et d'Inria Chile pour les sourires de tous les jours. Un mot spécial à Claude Puech pur avoir permis la concrétisation de mon aller à Santiago. Finalement, un merci beaucoup au Chili pour être un pays si beau et si réceptif.

Résumé

Ce rapport est divisé en deux parties, correspondant aux deux stages réalisés en année de césure.

Le sujet du premier stage, réalisé à Inria Bordeaux, consiste dans l'étude et l'implémentation de méthodes d'adaptation de maillage, envisageant leur application à la résolution de problèmes de la mécanique des fluides.

Le modèle d'adaptation considéré est basé exclusivement sur le mouvement des points du maillage, sans l'ajout ou suppression de noeuds ni la modification de sa connectivité (les relations de voisinage). L'objectif de cette adaptation est de concentrer les noeuds sur des régions du domaine où un raffinement plus grand est nécessaire (par exemple, dans les voisinages d'un objet ou dans les régions où la vitesse du fluide présente des forts gradients), en permettant des calculs plus précis avec le même coût computationnel.

On commence par la présentation des aspects théoriques du modèle et ensuite on l'implémente, en utilisant une méthode d'éléments finis. Une bibliothèque en C a été développé au long du stage afin de permettre l'incorporation du modèle à des codes pour la mécanique des fluides, en deux et trois dimensions. On présente plusieurs tests réalisés pour la validation du modèle et de la bibliothèque, bien comme pour valider le couplage entre l'adaptation à des surfaces et l'adaptation à des variables physiques.

Le deuxième stage, réalise au Chili (MERIC/Inria Chile), a eu comme principal objectif l'étude et l'implémentation de méthodes de décomposition de domaine (DDMs), appliquées à des modèles de propagation des ondes.

y d

On présente d'abord l'étude de deux de ces modèles, l'équation de KdV et les équations de Serre, qui prennent en compte des phénomènes non linéaires et dispersives. Pour les deux modèles, on propose et valide une résolution numérique avec une méthode de *splitting*, en séparant les termes d'advection et les termes de dispersion.

Ensuite, on présente le contenu concernant les méthodes de décomposition de domaine, appliquées à une équation dispersive (l'équation de KdV linéarisée sans le terme d'advection). On fait initialement une étude des conditions aux limites transparentes pour cette équation, et on propose et valide des approximations simples pour ces conditions, qui sont ensuite utilisées comme conditions à l'interface entre les subdomaines lors de l'implémentation d'une DDM. Un procès d'optimisation est réalisé permettant l'obtention de la méthode avec la convergence la plus rapide vers la solution du problème calculée dans le monodomaine.

Mots-clé : adaptation de maillage, méthode d'éléments finis, méthode de décomposition de domaine, conditions aux limites transparentes, équation de KdV, équations de Serre

Abstract

This report is divided in two parts, corresponding to the two half-year internships realized in 2015-2016.

The content of the first stage, made in Inria Bordeaux, consists in the study and implementation of mesh adaptation methods, looking for its application to the resolution of fluid mechanics problems.

The mesh adaptation method considered here is based exclusively in the mouvement of mesh points, without adding or suppressing any nodes neither modifying their connectivity (their neighbourhood relationships). The objective of such adaptation is to concentrate the nodes in the regions where a higher refinement is necessary (for example, around an object or in the regions where the fluid's velocity has strong gradients), allowing more precise computations with the same computational cost.

We start by presenting the theoretical aspects of the model and then we implement it, using a finite element method. A C library was developed during the internship, in order to allow the incorporation of the model to fluid mechanics codes, in two and three dimensions. We present many tests performed to validate the model and the library, and also to validate the coupling between the adaptation to surfaces and the adaptation to physical variables.

The second internship, which took place in Chile, (MERIC/Inria Chile), had as main objective the study and implementation of domain decomposition methods (DDMs), applied to wave propagation models.

We firstly present the study of two among these models, the KdV equation and the Serre equations, which consider nonlinear and dispersive phenomena. For both models, we propose and validate a numerical resolution with a splitting method, separating the advection terms from the dispersion terms.

Then, we present the content concerning the domain decomposition methods, applied to a dispersive equation (the linearized KdV equation without the advection term). We present initially a study of the transparent boundary conditions for this equation, and we propose and validate simple approximations for these conditions, which are used as interface conditions in the implementation of a DDM. An optimization process is performed in order to obtain the method with the fastest convergence toward the solution of the monodomain problem.

Keywords: mesh adaptation, finite elements method, domain decomposition method, transparent boundary conditions, KdV equation, Serre equations

Introduction

craisia

Ce rapport de stage est divisé en deux parties, correspondant aux deux stages qui ont composé mon année de césure. Malgré les différentes thématiques abordées dans chacun d'eux, et le fait d'avoir être réalisés dans des différentes pays, ils ont plusieurs points en commun.

La caractéristique commune la plus remarquable est que les deux stages se sont déroulés dans des domaines de la recherche en mathématiques appliquées. Plusieurs motivations m'ont guidé vers cette direction : des expériences précédentes (ayant déjà travaillé dans des projets d'initiation à la recherche scientifique au Brésil), l'étude poursuite à l'ENPC (les cours du département d'Ingénierie Mathématique et Informatique, le contact avec des professeurs chercheurs, des visites à des centres de recherche) et la carrière en recherche que j'envisage dans mon futur professionnel.

X PUP

Ces raisons m'ont conduit naturellement à un stage à Inria, dans son centre de recherche à Bordeaux. Le bon déroulement de ce premier stage m'a motivé à continuer à travailler dans le contexte de l'Inria, et je suis allé à Santiago, au Chili, pour travailler à MERIC, un centre de recherche en énergie marine qui travaille en partenariat avec la Fundación Inria Chile.

Aussi en conséquence des mes expériences au Brésil et à l'ENPC, et des mes motivations futures, les sujets des deux stages sont liés à la résolution numérique de problèmes de la mécanique des fluides. Par ailleurs, dans les deux stages j'ai travaillé sur des aspects mathématiques et numériques, même que dans des différentes proportions.

YOB W

Néanmoins, malgré ces points communs, les sujets des deux stages ne sont pas directement liés. Ainsi, afin de rendre plus claire et organisée la contenus des deux travaux, ils sont présentés dans ce rapport dans des parties séparées.

Première partie
Inria Bordeaux
Modèle d'adaptation de maillage
à des surfaces et variables
physiques appliqué à des
problèmes de la mécanique des
fluides

1 Présentation de l'organisme d'accueil

1.1 Inria

L'Institut National de Recherche en Informatique et en Automatique (INRIA) est un établissement public de recherche dans les sciences du numérique. Créé en 1967, il compte aujourd'hui huit centres dans le territoire français.

FIGURE 1 – Logo de l'Inria

Depuis la création de l'Inria, ses activités sont organisées autour du modèle d'équipe-projet, avec environ vingt personnes chacune, comprenant un bleader scientifique", des chercheurs, enseignants chercheurs, doctorants, ingénieurs et stagiaires. Chaque équipe a des objectifs de recherche bien définis, et son travail se déroule au long de quatre ans, avec des possibles prolongations en dépendant de l'évaluation faite par l'Inria et des experts internationaux extérieurs. Actuellement, il y a 178 équipes-projet dans l'institut, divisées dans cinq domaines :

- Mathématiques appliquées, calcul et simulation;
- Algorithmique, programmation, logiciels et architectures;
- Réseaux, systèmes et services, calcul distribué;
- Perception, cognition, interaction;
- Santé, biologie et planètes numériques.

On peut ainsi voir que la recherche développée à l'Inria couvre les plus variés domaines des mathématiques appliqués et de l'informatique, y compris plusieurs thèmes multidisciplinaires. On justifie ainsi son slogan : "Inventeurs du monde numérique". Ces activités se déroulent sous plusieurs partenariats avec l'industrie, les entreprises et le monde académique, sous la forme de brevets et logiciels, création de start-ups et accueil de doctorants et enseignants, ce qui attribue à l'institut une grande importance en contexte français et international.

Parmi les partenariats dans l'industrie, Inria a notamment des relations avec Google, Microsoft, EDF, Astom et Total. Dans le cadre académique, il y a plus de trente partenariats avec les plus importantes universités, grandes écoles et écoles d'ingénieurs de la France, et aussi avec d'autres organismes publics de recherche, comme le Centre National de la Recherche Scientifique (CNRS) et le Commissariat à l'Énergie Atomique (CEA). De plus, la présence d'Inria à l'étranger est à chaque fois plus forte, ayant des collaborations, laboratoires et centres de recherche dans des plusieurs pays, comme le Chili et le États-Unis.

1.1.1 Inria Bordeaux Sud-Ouest

Plus précisément, mon premier stage a eu lieu au Centre de Recherche Inria Bordeaux Sud-Ouest, situé à Talence, ville voisine à Bordeaux. Accueillant 21 équipes-projet distribués parmi les cinq domaines de recherche définis par Inria, ce centre a un fort partenariat avec l'Université de Bordeaux, notamment l'Institut de Mathématiques de Bordeaux (IMB), situé également à Talence.

1.2 L'équipe de travail

Ce premier stage s'est déroulé sous l'orientation de Cécile DOBRZYNSKI, maître de conférences de l'Institut de Mathématiques de Bordeaux (Université de Bordeaux I) et chercheuse à l'équipe CARDAMOM, et de Mario Ricchiuto leader de l'équipe. Par ailleurs, j'ai aussi travaillé avec Léo NOUVEAU qui fait sa thèse à l'équipe, sur la résolution des équations de Navier Stokes avec des méthodes de pénalisation et l'utilisation de l'adaptation de maillage.

2 Introduction

L'objectif de l'adaptation de maillages développée dans ce stage est de modifier la position de ses noeuds par rapport à une fonction donnée, ou à une solution d'un problème physique, de façon qu'on puisse avoir un raffinement variable au long du domaine et qui représente bien la présence de fortes gradients, surfaces, etc., sans modifier le nombre de points ni la connectivité du maillage.

Dans ce rapport, on présent dans un premier moment l'application de l'algorithme à l'adaptation à des fonctions Level Set, à fin d'obtenir une bonne représentation d'un objet. Cette fonction, définie pour tout point du maillage, est la distance signée entre le point et l'objet, où la signe indique s'il est à son intérieur ou extérieur [13]. Ainsi, la ligne de niveau 0 de la fonction Level Set représente la surface de l'objet, et on utilise ce fait pour orienter l'adaptation du maillage.

Ensuite, on résout des problèmes de la mécanique des fluides sur les maillages adaptés et, avec les résultats obtenus, on fait des nouvelles adaptations, mais cette fois-ci en utilisant au même temps la fonction Level Set et la solution physique du problème. Avec cette procédure, on est capable d'obtenir des maillages encore plus appropriés au calcul envisagé.

Tous les tests ont été faits en utilisant une bibliothèque en C, appelé FMG^1 , dont le développement a constitué l'objectif "concret" du stage. En attendant

2017

^{1.} https://raweb.inria.fr/rapportsactivite/RA2015/cardamom/uid90.html

aux objectifs de l'équipe CARDAMOM, cette bibliothèque permettra l'incorporation du modèle d'adaptation de maillage implémenté à des codes de résolution de problèmes de la mécanique des fluides.

Le rapport est organisé de la façon suivante : dans la section 3, on présente d'abord, de façon plus générale, le modèle utilisé pour l'adaptation de maillages, selon la formulation développée par [2], et des détails concernant son implémentation. L'application du modèle à l'adaptation à des fonctions Level Set est décrite dans la section 4, avec quelques exemples de tests réalisés et une indication des paramètres qui ont produit les meilleurs résultats. Le couplage avec l'adaptation physique et les résultats obtenus sont présentés dans la section 5. Enfin, dans la section 6, on utilise le modèle pour adapter le maillage à des objets en mouvement. Par ailleurs, on remarque que la plupart du contenu de ce rapport se réfère à des cas 2D; pourtant, nous présentons aussi quelques résultats pour des exemples 3D.

Les exemples présentés dans ce rapport ne sont qu'une petite partie de l'ensemble des tests réalisées au cours de ce stage. Ces tests ont eu une grande importance pour valider, corriger et développer le modèle, tester la bibliothèque et les plusieurs parties du code, et trouver les paramètres et stratégies d'adaptation qui nous permettent d'obtenir les meilleurs résultats en tenant compte des objectifs décrits ci-dessus.

Le modèle

3.1 Description du problème

On fait la distinction entre deux domaines :

- Domaine physique ou réel (x = (x, y)): domaine déformable, noté Ω ;
- Domaine computationnel ou de référence $(\xi = (\xi, \eta))$: domaine fixé, noté Ω_{ξ}

On cherche une fonction

$$oldsymbol{x} = oldsymbol{x}(oldsymbol{\xi})$$

Dans le modèle utilisé, on considère que la position \boldsymbol{x} des noeuds du maillage est régie par l'équation

$$abla_{ar{arepsilon}\eta}\cdot(\omega
abla_{ar{arepsilon}\eta}oldsymbol{x})=0$$

où $\nabla_{\xi\eta}$ est le gradient par rapport aux coordonnées de référence et ω est une fonction de \boldsymbol{x} qui contient l'information qui déterminera le mouvement des noeuds. Dans le travail développé au cours du stage, on a implémenté deux modèles différents pour le calcul de cette fonction :

1. Dans un première moment, on a implémenté le modèle utilisé dans [2] : en supposant qu'on fait l'adaptation par rapport à une fonction u, ω est donné par l'expression

$$\omega(\boldsymbol{x}) = \sqrt{1 + \alpha||\nabla_{\xi\eta} u(\boldsymbol{x})|| + \beta||H(u)(\boldsymbol{x})||}$$

 $\nabla_{\xi\eta}u(x)$ et H(u) sont respectivement le gradient et le hessien de u par rapport aux variables spatiales de référence, et α et β sont des paramètres choisis par l'utilisateur. Pour que ce choix soit moins dépendant du problème, on considère les gradients et les hessiens normalisés.

2. On a ensuite utilisé un modèle où on fournit directement à chaque noeud i la taille de maille h_{des} qu'on désire, selon la formulation présentée par [3] :

$$\omega(\boldsymbol{x}) = \frac{1}{h_{des}(\boldsymbol{x})} \tag{1}$$

La façon dont on calcule les tailles désirées dépende du type d'adaptation qu'on fait (adaptation à une fonction Level Set ou à une solution physique), comme on précisera dans les sections suivantes de ce rapport.

Pour que le problème soit bien posé, il faut définir des conditions aux bords appropriées :

$$\begin{cases} \nabla_{\xi\eta} \cdot (\omega \nabla_{\xi\eta} \boldsymbol{x}) = 0 & dans & \Omega_{\boldsymbol{\xi}} \\ \boldsymbol{x} = \boldsymbol{g} & sur & \partial \Omega_{\boldsymbol{\xi}}^{D} \\ \nabla_{\xi\eta} \boldsymbol{x} \cdot \boldsymbol{n} = 0 & sur & \partial \Omega_{\boldsymbol{\xi}}^{N} \end{cases}$$
(2)

Ainsi, les conditions aux limites utilisées sont de deux types, de Dirichlet et de Neumann, définies sur des parties disjointes du bord, $(\partial \Omega^D_{\boldsymbol{\xi}}$ et $\partial \Omega^N_{\boldsymbol{\xi}}$, respectivement). Pour les conditions de Dirichlet, on impose $\boldsymbol{g}=\boldsymbol{\xi}$, indiquant que les points de $\partial \Omega^D_{\boldsymbol{\xi}}$ ne doivent pas bouger (ce qu'on impose, par exemple, dans les coins d'un domaine rectangulaire). En revanche, les conditions de Neumann (imposées par exemple dans les côtés du domaine rectangulaire), indiquent que les points de $\partial \Omega^N_{\boldsymbol{\xi}}$ doivent glisser sur le bord, i.e., bouger parallèlement à lui (de façon que, dans notre exemple, le domaine reste toujours rectangulaire).

La formulation faible du problème, avec une fonction test $v \in H^1_0(\Omega_{\xi})$, s'écrit comme γ it ?

$$0 = \int_{\Omega_{\xi}} v \nabla_{\xi \eta} \cdot (\omega \nabla_{\xi \eta} \boldsymbol{x}) d\boldsymbol{\xi} = -\int_{\Omega_{\xi}} \omega \nabla_{\xi \eta} v \cdot \nabla_{\xi \eta} \boldsymbol{x} d\boldsymbol{\xi} + \int_{\partial \Omega_{\xi}} v \omega \nabla_{\xi \eta} \boldsymbol{x} \cdot \boldsymbol{n} ds \quad (3)$$

3.3 Quelques éléments pour le calcul de K

Le calcul des éléments de K est fait de la manière usuelle, par assemblage des contributions des éléments pour les coefficients k_{ij} . On précise dans la liste suivante quelques détails de l'implémentation de ce calcul:

- Le gradient de φ_i sur l'élément T est donnée par $(\nabla_{\xi\eta}\varphi_i)^T = \frac{n_i^T}{d\cdot |T|}$, où |T|est l'aire de $T,\ d=2$ est le nombre de dimensions spatiales et \vec{n}_i^T est le vecteur entrant à T, dans le côté opposé à i et de norme égale à la longueur de ce côté [10].
- La fonction ω est considérée constante dans chaque élément T et égale à la moyenne ω^T de sa valeur sur les noeuds de T.

On a, ainsi:

$$k_{ij} = \int_{\Omega_{\boldsymbol{\xi}}^{h}} \omega \nabla_{\boldsymbol{\xi}\eta} \varphi_{i} \cdot \nabla_{\boldsymbol{\xi}\eta} \varphi_{j} d\boldsymbol{\xi} = \sum_{T \ni i} \int_{T} \omega \nabla_{\boldsymbol{\xi}\eta} \varphi_{i} \cdot \nabla_{\boldsymbol{\xi}\eta} \varphi_{j} d\boldsymbol{\xi} =$$

$$= \sum_{T \ni i} |T| \omega^{T} \frac{\boldsymbol{n}_{i}^{T} \cdot \boldsymbol{n}_{j}^{T}}{4|T|^{2}} = \sum_{T \ni i} \omega^{T} \frac{\boldsymbol{n}_{i}^{T} \cdot \boldsymbol{n}_{j}^{T}}{4|T|}$$

$$(7)$$

Remarque 1 : comme montre le développement du modèle fait ci-dessus, le calcul de l'intégrale qui donne les éléments de la matrice K est fait toujours « sur le maillage de référence, ce qui implique que, dans (7), on utilise toujours les vecteurs normaux et les aires du maillage initial. Néanmoins, la fonction ω est actualisée à chaque itération dans le maillage physique, afin de bien exprimer l'évolution du maillage au cours des itérations, indiquant si, dans ses la ? nouvelles positions, les nœuds sont dans des régions de raffinement ou pas.

Remarque 2 : Pour le calcul des éléments de K, on a profité du fait que, dans la méthode d'éléments finis P1, on a $k_{ij}=0$ si les noeuds i et j n'appartient pas au même élément. Ainsi, la matrice est creuse, ce que nous a motivé à le stocker 🗶 avec une structure adaptée (au lieu d'allouer une matrice de taille $N \times N$), afin de réduire la consommation d'espace mémoire, comme décrit ci-dessous :

- On identifie, d'abord, le nombre maximal de voisins d'un noeud du maillage, N_{neig} , sous la convention qu'un noeud est toujours voisin de lui-même;
- On alloue deux vecteurs :
 - Un vecteur d'entiers, A, de taille $(N_{neig} + 1) \cdot (N + 1)$;
 - Un vecteur de doubles, \tilde{K} , de taille $\tilde{N}_{neig} \cdot (N+1)$;
- Le vecteur A contient les index des voisins de chaque noeud. Par convention,

 - $A_{(N_{neig}+1).i} = N_{neig}^{i}$ contient le nombre de voisins de i; $A_{(N_{neig}+1).i+1}$ jusqu'à $A_{(N_{neig}+1).i+N_{neig}^{i}}$ contiennent les index des voisins de i (pour commodité, on garde toujours $A_{(N_{neig}+1).i+N^i_{neig}}=i,$ mais cela

Les conditions aux bords définies en (2) annulent le dernier terme en (3), et on arrive ainsi à

$$\int_{\Omega_{m{\xi}}} \omega
abla_{m{\xi} m{\eta}} v \cdot
abla_{m{\xi} m{\eta}} m{x} dm{\xi} = 0$$

3.2 Discrétisation en éléments finis

X

On utilise une discrétisation en élément finis P1, avec une base de fonctions linéaires par morceaux $\{\varphi_i\}$ telles que $\varphi_i(\boldsymbol{x}_i) = 1$ et $\varphi_i(\boldsymbol{x}_j) = 0$, $i \neq j$, pour tous les N noeuds du maillage. Ainsi, \boldsymbol{x} et la fonction test $v \in H^1_0(\Omega)$ se discrétisent sous la forme

$$egin{align} m{x}_h = \sum_{j=1}^N m{x}_j arphi_j &= \sum_{j=1}^N \left(egin{array}{c} x_j \ y_j \end{array}
ight) arphi_j \ v_h &= \sum_{i=1}^N v_i arphi_i \ \end{align}$$

où x_i , y_i et v_i sont les valeurs des coordonnées spatiales et de la fonction test sur le noeud i.

En utilisant (4) dans (3), on arrive à

$$\sum_{j=1}^{N} \left[\left(\int_{\Omega_{m{\xi}}^{h}} \omega
abla_{m{\xi} \eta} arphi_{i} \cdot
abla_{m{\xi} \eta} arphi_{j} dm{\xi}
ight) m{x}_{j}
ight] = 0 \;\; orall i \in \{1,...,N\}$$

On voit ainsi que la discrétisation en éléments finis se ramène à la résolution de deux systèmes linéaires indépendants et de la même forme, un pour les coefficients $\{x_j\}$ et l'autre pour $\{y_j\}$:

$$\begin{cases}
Kx = 0 \\
Ky = 0
\end{cases}$$
(5)

où les éléments de la matrice K ont la forme

$$k_{ij} = \int_{\Omega_{\boldsymbol{\xi}}^{h}} \omega \nabla_{\xi \eta} \varphi_{i} \cdot \nabla_{\xi \eta} \varphi_{j} d\boldsymbol{\xi}$$
 (6)

On propose une méthode itérative pour la résolution de ces systèmes linéaires, comme est décrit dans la sous-section 3.4.

n'est pas nécessaire)

— Le vecteur $ilde{K}$ contient les éléments de la matrice :

— Si $A_{(N_{neig}+1),i+z} = j$, alors $\tilde{K}_{N_{neig},i+z-1} = K_{ij}$

Le stockage ici proposé n'est pas optimal, car, dans des maillages non structurés, les noeuds n'ont pas tous le même nombre de voisins. Par ailleurs, les $N_{neig}+1$ premier éléments de A et les N_{neig} premiers éléments de K ne sont pas utilisés, pour être en concordance avec les conventions d'index utilisés dans la bibliothèque MMG (la bibliothèque contenant le structure de maillage utilisée dans FMG). Néanmoins, par rapport au stockage de la matrice complète, on vérifie des très grandes avantages :

- Par exemple, dans un test avec environ 28000 noeuds et 165 mille élements
- non nulles dans la matrice K, on passe d'un stockage de 783 million de doubles (soit 0.02% d'utilisation) à un stockage de 308 mille doubles (soit 54% d'utilisation) et 336 mille entiers, avec un considérable gainen temps d'exécution.
- On observe aussi des gains en temps d'exécution du programme. Dans la formulation originale, sans garder les index des voisins de chaque noeud, il faut appeler une fonction qui retourne la liste de voisins. Cet appel est fait une fois par itération pour chaque noeud, lors de la résolution du système linéaire.

3.4 Résolution du système linéaire

Le système linéaire (5) est résolu de façon itérative, avec la méthode de Jacobi. Dans les tests, on utilise en général un nombre petit d'itérations (dix ou vingt), ce qui donne des bons résultats pour un temps de calcul raisonnable. La solution est calculée en terme des déplacements $\boldsymbol{\delta} = \boldsymbol{x} - \boldsymbol{\xi}$. Ainsi, on réécrit le système linéaire (5) sous la forme

$$Kx = K(x - \delta + \delta) = 0 \longrightarrow K\delta = -K\xi$$

Ainsi, $\forall i \in \{1, ..., N\}$:

مل

$$k_{ii}\delta_i^{[n+1]} = -\sum_{j=1, j
eq i}^N k_{ij}\delta_j^{[n]} - \sum_{j=1}^N k_{ij}\xi_j = -\sum_{j=1}^N k_{ij}(\xi_j + \delta_j^{[n]}) + k_{ii}\delta_i^{[n]}$$

Donc, finalement,

$$\delta_i^{[n+1]} = \delta_i^{[n]} - rac{1}{k_{ii}} \sum_{j=1}^N k_{ij}(x_j^{[n]})$$

Remarque : avant d'actualiser la position des points, il faut vérifier si le déplacement calculé ne conduit pas à un croisement des noeuds. Pour faire cette vérification, on calcule les aires signées des éléments (i.e., en considérant l'ordre des noeuds). Si nécessaire (i.e., si un des éléments a une aire négative), on relaxe le déplacement global :

$$oldsymbol{x}^{[n+1]} = oldsymbol{x}^{[n]} + heta \left(oldsymbol{\xi} + oldsymbol{\delta}^{[n+1]} - oldsymbol{x}^{[n]}
ight)$$

avec $\theta \in [0, 1]$. La relaxation est ainsi appliquée sur la différence entre deux positions successives, non pas sur le déplacement par rapport à la position initiale, car dans ce cas-ci on peut avoir de "retours en arrière" des points du maillage.

Tes?

4 Application à la fonction Level Set

Le modèle décrit dans la section précédente a été utilisé initialement pour adapter le maillage par rapport à une fonction Level Set (LS). Cette fonction définit une distance signée entre chaque point du maillage et la surface qu'on représente : si le point \boldsymbol{x} est à l'extérieur de la surface, $LS(\boldsymbol{x}) > 0$; s'il est à l'intérieur, $LS(\boldsymbol{x}) < 0$; et si le st sur l'interface, $LS(\boldsymbol{x}) = 0$. On cherche alors à bouger les points pour avoir une meilleure représentation de la ligne de niveau 0 de la fonction Level Set, *i.e.*, de la surface de l'objet [13]. Pour illustrer notre objectif, on présente dans la figure 2 un exemple d'adaptation à une fonction Level Set :

- (a) Fonction Level Set représentée sur le maillage initial
- (b) Maillage adapté à la fonction Level Set

FIGURE 2 – Exemple d'adaptation à la fonction Level Set

4.1 Construction de la fonction à adapter (avec ω donné par l'expression (1))

Le calcul de ω à partir de l'expression (1) est fait en utilisant le gradient et le hessien de la fonction à adapter. Pourtant, dans le cas de la fonction Level Set, l'adaptation n'est pas faite en considérant u=LS, parce qu'on n'a pas de forts gradients, en tenant compte de la lisseté de cette fonction. Ainsi, ω ne serait pas capable d'exprimer le raffinement désiré dans chaque partie du maillage. De cette façon, à partir de la fonction Level Set, on a construit une nouvelle fonction qui ait un très fort gradient sur les bords de l'objet.

Idéalement, on construirait une fonction avec un saut, valant 1 à l'extérieur et —1 à l'intérieur de l'objet, ce que fournit des très bons raffinements sur la ligne de niveau 0 de la fonction Level Set. Néanmoins, dans la résolution numérique de problèmes de la mécanique des fluides, il est intéressant d'avoir aussi un bon raffinement du maillage sur une couche autour de la surface (la couche limite de l'écoulement), où l'interaction fluide-objet n'est pas négligeable. En effet, pour avoir un calcul précis, un maillage approprié sur la couche limite est requis par la plupart des schémas numériques et logiciels pour les problèmes de fluides [21].

Dans un premier moment, on a défini une fonction avec une variation linéaire entre les deux étages (figure 4). Néanmoins, les tests réalisés ont fourni des résultats de mauvaise qualité : étant le gradient constant à l'intérieur de la pente, les points dans cette région (y compris les points les proches du bord de l'objet) n'ont pas la tendance de bouger, au contraire des points proches des bordes de la pente dû à la discontinuité du gradient de u. Par conséquent, l'adaptation produit une maillage avec deux petites couches raffinées, qui ne représentaient pas la surface de l'objet »

 $\int (\text{figure 3}).$

L

oblenia?

1) contrairement and... (2) Cela est...

FIGURE 3 - Adaptation à une fonction Level Set modifié avec une variation linéaire

On a ainsi cherché une fonction dont le gradient est plus variable et continue afin de réduire cet effet. On a obtenu des bons résultats en utilisant

$$u(x) = \frac{1}{1.1.107} atan\left(\frac{2LS(x)}{\delta}\right)$$
 (8)

étant 2δ la taille de la couche, choisie par l'utilisateur. Cette fonction est représentée dans la figure 4.

FIGURE 4 - Comparaison des options pour la lissage de la fonction à adapter

On peut jouer aussi avec le paramètre multiplicateur de $LS(x)/\delta$ à l'intérieur de la fonction tangent. Avec 1, par exemple, on obtient un résultat plus proche de la pente linéaire; avec 5 ou 10, la fonction devient plus discontinue et la couche de raffinement est plus petite. On reste ainsi avec l'option donnée par (8).

4.1.1 Choix des paramètres

Afin de chercher les paramètres qui génèrent le meilleur maillage, plusieurs tests on été réalisés :

- Cas test (objet cible):
 - Cercle;
 - Triangle;
 - Profil d'une aile (NACA)
- Type de maillage
 - Structuré;
 - Non structuré

Les meilleurs maillages obtenus on été utilisés pour résoudre un problème d'écoulement autour de l'objet, afin de vérifier l'influence sur les résultats. Les conclusions des tests sont les suivants :

pref

Pour le calcul de ω , il faut plutôt utiliser/le gradient de u. Le hessien peut être aussi utilisé, mais il a la tendance de créer deux couches raffinées dans les bords de la région de variation de la fonction u (figure 5);

Le raffinement d'une certaine région du maillage cause un étirement dans la direction normale à surface des éléments voisins à cette région. Ce résultat n'est pas désirable car on veut plutôt une anisotropie dans la direction de l'écoulement du fluide (figure 6) : l'erreur d'interpolation est plus petit si on a des triangles anisotropes dont le côté le plus long est dans la direction des petites dérivées de deuxième ordre de la solution [23]. Ainsi, il est important de avoir une valeur de δ assez grande.

Néanmoins, δ ne peut être trop grand, car la fonction arctangente s'approche de la pente linéaire, et on n'obtient pas un bon raffinement à l'intérieur de la couche

(b) $\alpha = 0, \beta = 1000$

FIGURE 5 – Influence des paramètres α et β sur l'adaptation du maillage ($\delta=0.02$)

Figure 6 – Détail d'un maillage obtenu avec $\delta = 0.005$

En tenant compte de ces conclusions, on recommande l'utilisation des paramètres suivants (on rappelle qu'on utilise toujours les normes du gradient et du hessien normalisés entre 0 et 1) :

$$\alpha = 1000, \quad \beta = 0, \quad \delta = 0.01, 0.02$$

On peut aussi faire des adaptations successives, en faisant varier les paramètres, afin d'obtenir d'autres résultats. Par exemple, on peut faire une première adaptation avec $\delta = 0.02$ pour obtenir une bonne couche raffinée, et après une deuxième avec $\delta = 0.01$ pour obtenir un raffinement plus précis autour de la surface.

La figure 7 présente quelques exemples d'adaptation à une fonction Level Set, avec les paramètres présentés ci-dessus, sur un maillage non structuré avec environ 28000 noeuds :

(a) $\delta = 0.01$

(b) $\delta = 0.02$

FIGURE 7 - Exemples d'adaptation à une fonction Level Set

4.2 Calcul des tailles désirées

Le calcul des tailles désirées est basée sur la définition d'une métrique pour chaque point du maillage. Elle s'agit d'une matrice 2 × 2 (dans le cas bidimensionnel) définie positive symétrique, construite de façon à contrôler l'erreur de la représentation de la solution sur le maillage modifié [22].

La description détaillée de la définition, calcul et interprétation géométrique

La description détaillée de la définition, calcul et interprétation géométrique de la métrique seront faités dans la section 5, pour l'adaptation à une solution physique. Dans le cas de l'adaptation Level Set, on a implémenté un calcul simple des tailles désirées, en se basant sur la méthode utilisée par [13], qui permet de contrôler la distance de Hausdorff entre la surface de l'objet et sa représentation. En faisant attention toujours à l'importance, pour une bonne adaptation, de créer une fonction ω qui soit au même temps assez lisse et qui présente des variations qui permettent le mouvement des noeuds, on définit, avec le paramètre δ , des couches pour l'imposition des tailles :

and.

$$h_{des}(oldsymbol{x_i}) = egin{cases} h_{min} & si & |LS(oldsymbol{x_i})| \leq rac{\delta}{2} \ 2h_{min} & si & rac{\delta}{2} \leq |LS(oldsymbol{x_i})| \leq \delta \ h_{max} & sinon \end{cases}$$

et on lisse les tailles sur le maillage avec le logiciel MMG, en imposant une gradation de 10%.

4.2.1 Résultats

La figure 8 illustre l'adaptation Level Set basée sur l'imposition de tailles désirées à chaque noeud.

(c) Maillage adapté (20 itérations)

FIGURE 8 - Adaptation à une fonction Level Set à partir de l'imposition des tailles désirées

En réalisant des tests comme ceux présentés dans la figure 8, on a bien validé la procédure d'adaptation utilisant les tailles désirées pour définir la fonction ω.

Ainsi, à partir de cette validation, on n'a utilisé que ce nouveaux modèle dans notre procédure, parce qu'il est plus simple et beaucoup plus accessible à l'utilisateur final de la bibliothèque, qui n'est pas forcement habitué aus détails concernant α' l'adaptation de maillage. Pour cet utilisateur, c'est plus nature définir des tailles

 h_{min} et h_{max} (qui ont une interprétation physique évidente et indépendante du problème considéré) que définir des coefficients α et β (que en plus dépendent du α problème).

4.3 Relaxation et qualité du maillage

Pendant la résolution du système linéaire, on fait, si nécessaire, une relaxation des déplacements calculés afin d'éviter le croisement des noeuds et la conséquente occurrence d'aires négatives. Néanmoins, en dépendant du maillage de départ (par 2 voc exemple, un maillage déjà raffiné), la relaxation est trop contraignante et impose l'arrêt de l'algorithme lors des premières itérations, ce qui peut être provoqué par un petit nombre d'éléments.

On a ainsi implémenté, dans les premières itérations, un prétraitement d'optimisation, selon le schéma suivant :

- Si le numéro de l'itération actuelle n'est pas supérieur à iter_{optim} :
 - 1. Identifier tous les éléments qui demanderont de la relaxation;
 - 2. Classifier ces éléments selon un critère de qualité (mesure de l'anisotropie);
 - 3. Optimiser les n_{optim} éléments les plus critiques de cette liste \sim
- L'optimisation réalisée consiste en itérativement, approcher chaque noeud i de l'élément concerné du barycentre des noeuds voisins de i. L'optimisation est arrêtée dès qu'aucun des trois noeuds de l'élément bouge au dessus d'un seuil, ou qu'au moins un des noeuds n'arrive pas à réduire l'anisotropie au-dessous d'un de certaine pourcentage, par rapport au début de l'itération.

La figure 9 montre le résultat de son application sur un élément :

(a) Avant l'optimisation

(b) Après l'optimisation

FIGURE 9 - Résultat de l'optimisation d'un élément

Pour que le prétraitement ne soit pas très coûteux, on a choisi $n_{optim} = 10$ e $iter_{optim} = 2$. Les tests réalisés montrent des très bons résultats quand l'adaptation s'arrête au début de l'exécution, dû à la présence d'éléments très anisotropes au début, et avec l'optimisation on arrive à tourner toutes les itérations. Néanmoins, si appliqué sur un maillage de bonne qualité et qui ne demande pas une forte relaxation, les gains sont en général petits (ou même on perdaun peu de la qualité du résultat final).

Ravier Construction

4 Adaptation 3D

Après le développement et validation du modèle bidimensionnel décrit jusqu'ici, avec l'obtention de bons résultats d'adaptation des maillages, on l'a étendu au cas tridimensionnel. Du point de vue théorique, cette extension est assez simple, étant le modèle toujours décrit par le problème (2). Le développement de sa formulation faible reste aussi la même, et on se ramène ainsi à la résolution des systèmes linéaires

$$\begin{cases} Kx = 0 \\ Ky = 0 \\ Kz = 0 \end{cases}$$

Comme ces systèmes sont indépendants et ont la même forme, l'extension du cas 2D au 3D a été également simple du point de vue de l'implémentation. En effet, parmi les calculs décrits en détail dans les sous-sections 3.3 et 3.4, l'unique modification concerne le calcul des vecteurs normaux $((\nabla_{\xi\eta}\varphi_i)^T = \frac{n_i^T}{d!|T|}$, avec d=3). Ainsi, les éléments de la matrice K sont donnés par

$$egin{aligned} k_{ij} &= \int_{\Omega_{oldsymbol{\xi}}^h} \omega
abla_{\xi\eta} arphi_i \cdot
abla_{\xi\eta} arphi_j doldsymbol{\xi} = \sum_{T \ni i} \int_T \omega
abla_{\xi\eta} arphi_i \cdot
abla_{\xi\eta} arphi_j doldsymbol{\xi} = \\ &= \sum_{T \ni i} |T| \omega^T rac{oldsymbol{n}_i^T \cdot oldsymbol{n}_j^T}{(3!|T|)^2} = \sum_{T \ni i} \omega^T rac{oldsymbol{n}_i^T \cdot oldsymbol{n}_j^T}{36|T|} \end{aligned}$$

On présente dans les figures 11 à 13 quelques résultats de l'adaptation Level Set tridimensionnelle, à partir de l'imposition des tailles désirées. Les fonctions Level Set utilisées sont celles de la figure 10. Malgré les résultats analogues au cas 2D et cohérents avec les objectifs ici proposés, l'adaptation 3D a des limitations plus fortes concernant le nombre de points du maillage, qui peut devenir très grande pour qu'on ait un maillage suffisamment fine pour la bonne représentation de la fonction Level Set, et la relaxation de l'adaptation, puisque le dégrée de liberté additionnel peut conduire plus rapidement au croisement des noeuds.

Les domaines de départ sont plus raffinées dans les régions où se trouve l'objet, afin de minimiser l'influence des bords sur l'adaptation. Le logiciel MMG a été utilisé pour les générer, en imposant une taille minimale hmin=0.05 et une gradation de hgrad=1.1 de la variation de la tailles. Les adaptations ont été faites avec δ entre 0.05 et 0.07.

FIGURE 10 - Fonctions Level Set utilisées

FIGURE 11 - Adaptation du maillage à la sphère (environ 34000 noeuds)

Figure 12 – Adaptation du maillage au tore (environ 25000 noeuds)

Figure 13 - Adaptation du maillage à une boîte avec un trou (environ 34000 noeuds)

Application à l'adaptation physique 5

De la même façon que l'adaptation Level Set, l'adaptation physique (i.e., à une variable physique calculée sur le maillage, comme le champs de vitesse de ω^{C} l'écoulement) peut être faite avec les deux formulations de ω . Pour la première, basée sur la variation de la fonction, on n'a pas de remarques supplémentaires à faire : au contraire de la fonction Level Set, qui est toujours lisse, les variables physiques dans les problèmes de mécanique de fluides qui nous intéressent présentent en général des discontinuités, ayant ainsi des fortes gradients et hessiens qui permettent une bonne adaptation. Alors, il ne faut pas construire une autre fonction à adapter.

> Ainsi, on détaille seulement le deuxième calcul de ω ? emploi?
> Ainsi détoille t-on ci-dessois le ...?

5.1 Calcul des tailles désirées

de?

Le calcul des tailles présenté dans la suite s'inspire dans [12] et [14], et s'est basée sur la notion de métrique : pour chaque nouel i du maillage, on définit une matrice \mathcal{M}_i 2×2 (dans le cas bidimensionnel) qui minimise un estimateur de l'erreur d'interpolation de la solution sur le maillage.

Étant $\Pi_h u$ l'interpolation de u sur le maillage, cet estimateur est donné, pour chaque élément K du maillage, par

$$||u - \Pi_h u||_{\infty, K} \le c_d \max_{x \in K} \max_{\vec{e} \in E_K} \langle \vec{e}, |H_u(x)|\vec{e}\rangle$$
(9)

où $c_d = 2/9$ est obtenu avec un développement de Taylor de (9) dans son point de maximum, et E_K est l'ensemble des arêtes de K. On veut imposer une limite ε à cette erreur

$$||u - \Pi_h u||_{\infty,K} = \varepsilon$$

En définissant la métrique

$$\mathcal{M} = \frac{c_d}{\varepsilon} H_u(\boldsymbol{x}) \tag{10}$$

la longueur des arêtes selon cette métrique est alors

 $l_{\mathcal{M}_i} = \langle \vec{e}, |\mathcal{M}_i | \vec{e} \rangle = 1$

par que?

c'est à dire, la métrique qui assure l'erreur d'interpolation désirée est celle telle que le maillage soit unitaire [12, 14].

Étant la métrique une matrice positive définie symétrique, elle est toujours diagonalisable es ses valeurs propres $\tilde{\lambda}_i^j$, j=1,2, sont toujours réelles. En effet, la métrique peut être représentée par une ellipse (ou un ellipsoïde, en 3D), dont les vecteurs propres donnent la direction des axes et les valeurs propres sa taille, selon la relation $h_j = \frac{1}{\sqrt{\tilde{\lambda}_i^j}}$ [22]. Ainsi, les caractéristiques géométriques des éléments (taille, forme et orientation) sont contenues dans la métrique, et comme on a plus d'un valeur propre, on en définit ainsi des éléments anisotropes.

Dinsi

Néanmoins, on considère ici un cas isotrope, en ne prenant que la plus grande valeur propre de la métrique, ce qui donne la plus petite taille de chaque élément. Enfin, en établissant des seuils minimal et maximal pour la taille désirée (h_{min} et h_{max}), et en tenant compte de l'équation (10), les tailles désirées sont calculées à partir de

$$h_i = \frac{1}{\sqrt{\min\left(\max\left(\frac{c_d}{\varepsilon}\lambda_i, h_{max}^{-2}\right), h_{min}^{-2}\right)}}$$

où $\lambda_i = \max_{j=1,2} |\lambda_i^j|$ est la plus grande valeur propre du hessien $H_u(x_i)$, en valeur absolue.

Également au cas de l'adaptation Level Set, les tailles définies sur le maillage sont lissées avec une gradation de 10%.

La figure 14 présente un exemple de métrique calculée à partir d'une variable physique

(a) Composant horizontale de la vitesse

(b) Tailles calculées à partir de la métrique associée

FIGURE 14 – Écoulement autour d'un triangle - calcul des tailles désirées à partir d'une variable physique

Aussi comme dans le cas de l'adaptation à des fonctions Level Set, on a plutôt utilisé dans l'adaptation physique le calcul des tailles désirées pour déterminer le mouvement des points du maillage. Les raisons sont les mêmes que celles présentées précédemment : du point de vue de l'utilisateur final, cette procédure, qui demande la définition des seuils pour la taille désirée, a un sens physique intuitif, étant ainsi plus accessible.

5.2 Couplage entre adaptation Level Set et adaptation physique

L'objectif principal de l'ensemble du travail réalisée dans ce projet est l'application du modèle et de la bibliothèque développés à la résolution de problèmes de la mécanique de fluides, afin d'améliorer la précision des résultats. Ainsi, un bon maillage serait adapté au même temps à la surface de l'objet dans le domaine et au profil de la variable physique calculée (la vitesse, par exemple), et par conséquent les deux types de adaptation présentées ci-dessus doivent être considérées.

Pour coupler les deux adaptations, on intersecte ses respectives métriques : en notant h_i^{LS} et h_i^{phys} la taille calculée pour le noeud i à partir des métriques, respectivement, de la fonction Level Set et de la variable physique (avant le lissage), on choisit le taille

: < el.

$$h_i = \min(h_i^{LS}, h_i^{phys})$$

Ensuite, on applique le même lissage avec une gradation de 10%. Pour le couplage des deux adaptations, on propose la procédure itérative suivante :

- 1. Calcul de la métrique associée à la fonction Level Set;
- 2. Adaptation du maillage à cette métrique;
- 3. Résolution du problème physique sur le maillage adapté;
- 4. Calcul de la métrique associée à la variable physique et intersection avec la métrique de la fonction Level Set :
- Adaptation du maillage à cette métrique, en partant du dernier maillage obtenu, mais toujours avec le même maillage de référence (le maillage de départ, non adapté);
- 6. Retour au pas 3.

5.3 Résultats

acc

La procédure décrite ci-dessus a été utilisé dans la résolution d'un flot supersonique 2D autour d'un triangle, avec une méthode de distribution de résidus appliquée aux équations de Navier Stokes pénalisées. Ce cas test est présenté et résolu dans [22], dont les paramètres de l'écoulement sont les mêmes utilisés ici.

Etant le modèle pénalisé? le triangle n'est pas discrétisée dans le domaine, ce qui signifie qu'il y a des mailles à son intérieur. En effet, le terme de pénalisation est appliqué exactement aux pecuds à l'intérieur de l'objet, identifiés par la signe de la fonction Level Set. Ainsi la première adaptation de notre procédure (adaptation à la ligne de niveau 0 de la fonction Level Set) est de grande importance pour la représentation de la surface et la résolution précise des équations dans ses voisinages.

La solution physique utilisée pour les adaptations suivantes est la composante horizontale de la vitesse.

Les tests ont été réalisées avec l'objectif de vérifier l'évolution de la qualité du résultat dans chaque itération de la procédure. Cette vérification a été faite de façon qualitative et quantitative. Pour la première, on a regardé par exemple la régularité du profil de la vitesse et de ses lignes de niveau et la résolution autour des coins du triangle. Pour la deuxième, on a adopté le même critère utilisé par [22], en calculant l'angle entre le choc et l'axe y=0, en utilisant un point du choc proche à cet axe, et identifiée par la proximité des lignes de niveau de la vitesse. La résolution analytique du problème fournit un angle $\beta=53.33^\circ$, qu'on a utilisé pour la comparaison.

en. Sans?

pel.

VOC

Le résultat présenté dans les figures 15 à 18 a été fait sur un domaine circulaire, de rayon vingt fois plus grand que la taille du triangle, afin de représenter un domaine infini, qui minimise l'influence des bords. Afin d'éviter un nombre trop grand de points, mais encore avec un bon raffinement dans les régions les plus proches des bords pour bien capturer le choc, les tailles des éléments ont été définies en fonction de la distance au centre du domaine, augmentant linéairement entre 0.002 et 1. Le résultat est un maillage avec 12664 noeuds et 25200 éléments.

FIGURE 15 - Séquence de maillages adaptés obtenus

 ${\bf Figure}~16-{\bf Composante~horizontale~de~la~vitesse}$

 ${\bf Figure}~17-{\bf Lignes}~{\bf de}~{\bf niveau}~{\bf de}~{\bf la}~{\bf composante}~{\bf horizontale}~{\bf de}~{\bf la}~{\bf vitesse}$

Figure 18 – Détail - Composante horizontale de la vitesse

L'angle β a évolué selon les valeurs présentées dans le tableau 1

Résolution	β
1	55.68°
2	53.92°
3	53.01°

TABLE 1 – Angle entre le choc et l'axe y=0

Ces résultats montrent que la procédure proposée permet en effet d'améliorer la devient mieux pur.

Ide vijeux en mieux?

Ja vijesse? résolution du problème physique : à chaque itération, le champ de vitesse calculée devient mieux définie avec des lignes de niveau plus régulières, et l'angle entre

45

le choc et l'axe y=0 s'approche de la valeur analytique. Néanmoins, quelques difficultés sont encore présentes dans la tests réalisées, notamment la génération de maillages permettant un calcul stable (considérant les fortes discontinuités qui caractérisent ce cas test) et le fait que, comme montre la figure 18, le choc n'est pas attaché au triangle, au contraire du résultat théorique, ce qui s'explique par les limitations du raffinement du maillage.

Adaptation à un cas non stationnaire

Les résultats présentés dans les sections précédentes se référent à des cas sta-tionnaires, avec les surfaces fixes, mais une situation qu'on veut considérer aussi plus forcuel est celle où les objets bougent. Dans ce cas, il faut à chaque pas de temps actualiser la fonction Level Set et adapter le maillage autour de la nouvelle position de la surface. La procédure adoptée est la suivante :

- 1. Pour tout noeud du maillage, calculer la fonction Level Set par rapport à la position actuelle de l'objet, et la fonction u à adapter (equation (8));
- 2. Adapter le maillage à la fonction u:
- 3. Faire bouger la surface de l'objet (indépendamment de la position des noeuds)

L'objectif de cette procédure est de faire chaque adaptation à partir du dernier maillage adapté, au lieu de partir du maillage non adapté à chaque pas du mouvement. Ainsi, on peut éviter de garder en mémoire toute la structure du maillage de référence et du maillage adapté. Il faut pourtant garder au moins les aires et les vecteurs normaux du maillage, parce que, en raison du modèle adopté, toutes les adaptations doivent utiliser le même maillage de référence.

Les figures 19 et 20 présentent deux exemples de cette procédure, le premier pour l'advection d'un cercle et le deuxième pour l'oscillation de l'aile Naca. Les mouvements (on) été discrétisées en 20 pas de temps, et chaque itération a été réalisée avec 20 ou 30 itérations, respectivement.

On peut observer qu'on obtient à chaque pas de temps une bonne adaptation à la position actuelle de la fonction Level Set, mais que les positions précédentes ne sont pas complètement "désadaptées", même que son trace soit faible. En effet, les tests montrent que le passage d'une adaptation à la prochaine se fait de deux manières (en dépendant de la position des points adaptés pour la position précédente) : soit par le mouvement des points d'une région adaptée à l'autre (ce qui est possible quand le point est relativement proche de la nouvelle position de l'objet), soit par le "dérafinement" d'une région (ce qui est le cas des points en amont du mouvement de l'objet). On a observé que le deuxième cas est plus lente que le premier, et ainsi on aurait besoin d'un plus grand nombre

(3) en Janch an

مل

d'itérations. Néanmoins, pour justifier l'application de cette procédure, il faut trouver un équilibre entre le temps d'exécution et la qualité des résultats.

FIGURE 19 - Advection d'un cercle

(c) Pas n. 20

FIGURE 20 - Naca oscillant

7 Conclusion

X

Le travail réalisation, au cours de ce premier stage, a consisté dans l'étude et implémentation d'un modèle d'adaptation de maillage, basée exclusivement sur le mouvement des noeuds (i.e., sans modification du nombre de points et de la connectivité du maillage). L'objectif "concret" de ce travail a été le développement d'une bibliothèque en C, appelée FMG, envisageant l'incorporation de ces modèles à des codes de résolution de problèmes de la mécanique de fluides.

Étant réalisé dans deux lignes concomitantes et complémentaires, correspondant à l'étude de la bibliographie sur le sujet et à l'implémentation numérique, à la fin du stage ce travail se trouvait dans un état très avancé. En partant des modèles les plus classiques pour la détermination du mouvement des points du maillage, plusieurs tests ont été réalisées et des modifications ont été proposées et validées, en résultant dans une bibliothèque qui réalise l'adaptation 2D de forme robuste, relativement rapide et plus accessible à l'utilisateur final, qui n'est pas forcement habitué aux détails des modèles d'adaptation. Notamment, la bibliothèque permet de définir les zones de raffinement du maillage à partir des tailles désirées pour chaque élément, ce qui a un sens physique très intuitive acc.

Un autre important résultat dans ce stage a été le couplage de l'adaptation à des surfaces dans le domaine (i.e., à des fonctions Level Set) et de l'adaptation physique (par exemple, à la vitesse calculée lors de la résolution des équations de Navier-Stokes). Cet couplage a été validé ayec un processus itérative, consistant des successives adaptations et résolutions du problème de la mécanique des fluides, ce qui a permis l'obtention de solutions à chaque fois plus précises.

Finalement, on peut mentionner d'autres éléments de travail qui, même étant encore à finaliser, ont été démarrés et constituent la suite naturelle de ce qui a été déjà réalisé. Par exemple, l'adaptation 3D, qui a été testée et validée dans des cas simples, mais pour laquelle des questions comme le coût de calcul et le croisement

5

Faire 1 phrass

acc

des points de maillages doivent être étudiés avec plus de détails ; et l'adaptation à des cas non-stationnaires.

Deuxième partie

MERIC / Inria Chile Méthode de décomposition de domaine appliquée à la résolution de modèles non linéaires et/ou dispersifs pour la propagation des ondes J-16-

1 Présentation des organismes d'accueil

Le bon déroulement du premier stage de mon année de césure m'a guidé dans la recherche du deuxième stage. En cherchant surtout à continuer à travailler dans les domaines de recherche en mathématiques appliquées, et aussi sous la bonne ambiance de travail à Inria, je suis allé au Chili pour faire le stage dans une à MERIC (Marine Energy Research & Innovation Center), qui travaille en association avec la Fundación Inria Chile. Ces deux organismes sont présentés dans cette section.

1.1 Inria Chile

L'Inria Chile est un des résultats des efforts de l'Inria dans les dernières années pour installer des laboratoires internationaux et de former et renforcer des partenariats et collaborations scientifiques avec des universités et entreprises à l'étranger. Considérée une région stratégique par Inria, l'Amérique compte avec trois "Laboratoires internationaux", deux aux États-Unis et un au Chili.

FIGURE 21 - Logo de l'Inria Chile

Inria Chile a été crée en 2012 avec le support de CORFO (Corporación de Fomento de Producción), une agence de l'état chilien responsable pour la promotion de l'investissement, l'innovation et l'entreprenariat. Étant un centre de transfert technologique dans les technologies de l'information et de l'information au Chili, ce support se présente sous le "programme d'attraction de centres d'excellence internationale pour la compétitivité" de CORFO.

1.2 MERIC (Marine Energy Research & Innovation Center)

Inria Chile partage ses bureaux à Santiago avec MERIC, un centre de excellence qui a pour objectif la recherche, le développement technologique et l'innovation liés à l'énergie marine, afin de créer une référence chilienne et internationale dans ce sujet. Crée par l'entreprise française de défense navale DCNS, MERIC est financé par CORFO et le Ministère d'Énergie chilien et déroule ses activités en collaboration avec Inria Chile, des universités chiliennes (Pontificia Universidad Católica

domaire.

3

53

de Chile et Universidad Austral de Chile), des entreprises d'énergie (Enel Green Power Chile et Chilectra) et des instituts de promotion de l'innovation (Fundación Chile).

FIGURE 22 - Logo de MERIC

L'énergie marine a une très grande importance dans le contexte chilien et aussi dans le contexte mondial. Pour le Chili, avec (son) côte de plus de 6000 km de longueur, le mouvement des marées et des ondes constituent un énorme potentiel énergétique, étant ainsi une question stratégique pour le pays. Par ailleurs, le Chili est inséré dans un contexte spécial concernant les phénomènes naturels extrêmes : l'intense activité sismique de la région fait que les tremblements de terre et les tsunamis soient une réalité dans l'histoire et le quotidien du pays, en demandant des études spécifiques pour que la production d'énergie marine puisse être mise en pratique sans risque et de façon durable.

D'un point de vue plus global, l'énergie marine, étant une forme d'énergie renouvelable, est une des protagonistes dans la construction du développement durable. Néanmoins, elle est encore une très jeune thématique d'étude, exigeant plusieurs efforts et recherches pour le développement et/réduction des coûts des technologies associées, pour permettre son implémentation effective et le remplacement des formes d'énergie traditionnelles et limitées. En plus, il est essentiel de tenir en compte du fait que la promotion de ces formes d'énergie doit toujours considérer toutes les conséquences environnementales et sociales de son production, en cherchant à minimiser les impacts sur les habitats, ses formes de vie et les populations humaines.

C'est dans ce contexte que s'insère le travail développé par MERIC, qui a ainsi un caractère très multidisciplinaire, en englobant les plus variés sujets liés à la production d'énergie marine, groupés dans deux lignes principales de recherche: "Développement de lieux (y) connaissance de l'environnement chilien" et "Développement de technologies au Chili".

La première ligne envisage à étudier les potentiels lieux de production d'énergie marine au Chili. Dans cel étude, il est compris des aspects physiques, chimiques, biologiques et sociaux, sous des projets concernant, par exemple, la caractérisation des sites en potentiel pour l'implémentation d'énergie marine, la corrosion marine, la déposition de matériel biologique (biofouling), les mammifères marines,

(4) Cette étal compresad ?

X

K

l'évaluation des impacts sociaux et environnementaux et la modélisation mathématique pour la production d'énergie marine.

La deuxième ligne de recherche, à son tour, étudie l'installation, manutention et utilisation de technologies pour la production d'énergie marine, avec des projets qui comprennent le développement de technologies, son adaptation à l'environnement chilien (notamment dans ce qui concerne les risques naturels), le développement d'un centre de tests pour la validation de la recherche en énergie marine, l'étude de l'état d'art de la législation chilienne concernant le sujet, et le couplage entre une usine de dessalement et un convertisseur d'énergie des vagues.

Mon travail réalisé dans ce stage s'insère dans la première ligne de recherche, dans le projet "Modélisation avancée pour l'énergie marine". Ainsi, ma mission ne correspondait qu'à une petite fraction de tous les aspects liés à la production d'énergie marine et étudiés par MERIC.

1.3 L'équipe de travail

Dans ce deuxième stage, j'ai été encadré par Antoine ROUSSEAU, chercheur à Inria Montpellier et Inria Chile et leader de la ligne de recherche "Modélisation avancée pour l'enérgie marine" de MERIC. Par ailleurs, deux membres du département d'ingénierie hydraulique de la Pontifícia Universidade Católica (PUC) de Chile ont intégré l'équipe et ont eu une très importante participation dans le travail développé : le professeur associé Rodrigo CIENFUEGOS et l'étudiant de master José GALAZ.

1 2 Introduction

La ligne d'investigation de MERIC dans laquelle j'ai travaillé, "Modélisation avancée pour l'énergie marine", a comme principaux objectifs le "couplage de x modèles de petites résolutions spectrales a des grandes résolutions dans le domaine du espace-temps" et "la modélisation de grande résolution spatiale et temporale ? proche de la côte" ².

Les sujets étudiés dans ce stage constituent une introduction à la recherche envisageant ces objectifs et peuvent être divisés en deux branches principales : la première consiste dans l'étude, implémentation numérique et simulation de modèles de propagation des ondes d'eau; la deuxième, plus directement liée à la ligne de recherche de MERIC, envisage l'étude, développement et application numérique de méthodes de décomposition de domaine (DDMs) pour la résolution de tels modèles.

^{2.} http://www.meric.cl/que-hacemos/

Concernant le premier point, on a étudié plusieurs modèles qui prennent en compte les effets non linéaires et dispersives dans la propagation des ondes. Cet étude s'est focalisé notamment sur l'équation de KdV et l'équation de Serre. En considérant les objectifs de la recherche développé par l'équipe, l'étude de différentes modèles mathématiques a une grande importance : premièrement, chacun d'eux est dérivés à partir d'hypothèses différents, et, ainsi, ses domaines de validité physique sont différents. Des critères comme les caractéristiques de l'onde (amplitude et longueur), la profondeur de l'eau et le fond océanique guident le choix d'un ou autre modèle. Dans le contexte de la production de l'énergie marine, par exemple, la distance à la côte est un facteur très important, et le choix du bon modèle est essentiel pour que les variables d'intérêt, comme la vitesse et l'amplitude des ondes, peuvent, être calculées de manière fiable.

Par ailleurs, en raison des différentes complexités de chaque modèle, les approches nécessaires pour son étude dans le contexte des méthodes de décomposition de domaine sont aussi différents. Dans ce stage, cet étude concernant l'équation de KdV a été bien avancé (entraînent même l'élaboration d'un papier scientifique qu'on a envoyé pour son publication; ce papier est aussi disponible sur la plateforme HAL [8]). Dans les dernières semaines du stage on a débuté l'étude de la résolution des équations de Serre en utilisant des DDMs, mais encore sans des résultats pour présenter dans ce rapport.

Les DDMs consistent éndiviser un domaine computationnel en plusieurs subdomaines et résoudre le problème en chacun d'eux. Pour que la solution du problème décomposé soit la même que la solution du problème calculé dans le monodomaine, il est essentiel qu'on définisse des conditions appropriées sur l'interface entre les subdomaines.

Ainsi, dans la deuxième ligne de notre travail, on a d'abord fait un étude des conditions aux limites transparentes (TBCs) pour l'équation de KdV, en tenant compte que ces types de conditions aux bords jouent un rôle essentiel dans les méthodes de décomposition de domaine. Afin d'introduire ce sujet, on a suivi au début une approche plus simple, en optimisant des conditions aux bords classiques que fournissaient les conditions les plus proches des TBCs pour l'équation de KdV.

Après, on s'est concentré dans l'étude des TBCs exactes pour l'équation de KdV linéarisée, en se basant sur les études développées par [26] et [6]. Étant non locaux en temps, ces TBCs exactes ne peuvent pas être implémentées en pratique; alors notre but était de les proposer des approximation simples, qu'on a ensuite appliqué à une méthode de décomposition de domaine.

À ce moment, il est nécessaire de clarifier et délimiter nos objectifs et les différences par rapport aux objectifs de [26] et [6]. Pour cela, on fait une brève description des sources d'erreur et incertitudes liées aux simulations numériques de modèles physiques.

phoposea

56

prep

De façon générale, ces erreurs peuvent être classifiées en des erreurs de modélisation conceptuelle et des erreurs numériques [24]. Dans le premier groupe, il y a les assomptions de modélisation conceptuelle (pour le phénomène physique et les conditions aux bords) et les incertitudes dans la géométrie, les données initiales, les données aux bords et les paramètres qui jouent un rôle dans le modèle [24, 4].

Dans ce qui concerne les erreurs numériques, on peut citer celles liées à la finitude do domaine computationnel, les erreurs temporales et les erreurs spatiales dues à la discrétisation des équations [17, 24] et d'autres possibles sources d'erreur liées à la méthode numérique, comme dans des processus itératifs (comme est le cas de la DDM implémentée ici).

L'erreur totale de simulation numérique est une somme des contributions de chacune de ces sources. Ainsi, la connaissance et quantification d'eux sont essentielles pour améliorer la description numérique du procès physique et, dans ce contexte, l'étude séparée de chaque contribution a une grande importance.

Parmi les erreurs mentionnées ci-dessus, [26] et [6] cherchaient à minimiser celle liée à la finitude du domaine computationnel. En fait, en tronquant le domaine avec l'introduction de bords artificielles, il faut utiliser des conditions aux bords additionnelles, qui doivent être choisies proprement afin d'assurer la stabilité et la précision du problème aux valeurs initiales et aux bords tronqué [26]. Même en utilisant des approches différentes, les deux auteurs envisageaient à construire des conditions aux limites absorbantes (ABCs), qui simulent l'absorption d'une onde sortant du domaine computationnel, ou des TBCs, qui assurent que la solution approximée dans le domaine computationnel coïncide avec la solution de tout le domaine.

Ainsi, notre travail ne doit pas utiliser la même solution de référence que celle utilisée par [26] et [6]: pour valider leurs approches, ils comparent les solutions approximées avec la solution exacte dans tout le domaine. En revanche, notre solution de référence sera la solution approximée calculée dans le monodomaine computationnel. En suivant le principe d'étudier séparément chaque type d'erreur numérique, on ne cherche pas à minimiser l'erreur due à l'introduction de bordes externes au domaine computationnel, mais seulement l'erreur due de l'introduction d'une interface entre les subdomaines.

Le rapport concernant ce deuxième stage est organisé de la façon suivante : dans les deux premières sections, on présente les modèles de propagation des ondes étudiés. l'équation de KdV (section 3) et les équations de Serre 4, et les détails de son implémentation numérique et la validation de cette implémentation. Ensuite, on passe à l'étude des conditions aux limites transparentes : Dans la section 5, on présente les aspect théoriques concernant les TBCs et on fait une étude introductoire avec l'équation de KdV; et dans la section 6, on propose des approximations

Consta.

7

pour les TBCs exactes de l'équation de KdV linéarisée. Finalement, dans la section 7, on présente la théorie sur les méthodes de décomposition de domaine et on propose et implémente une pour résoudre l'équation de KdV linéarisée.

3 L'équation de KdV

3.1 Le modèle

Le premier modèle de propagation des ondes étudié et implémenté dans ce projet est l'équation de Korteweg-de Bries (KdV), qui prend en compte les effets non linéaires et dispersives et qui est une bonne approximation pour des ondes de petite amplitude et grande longueur. [5]

Plusieurs formes de cette équation peuvent être trouvées dans la littérature, variant notamment dans les coefficients d'échelle pour chacun des processus physiques présents dans l'équation (non linéarité et dispersion). On considère la formulation présentée par [5], écrite en termes de variables sans dimensions mais non échallonées :

$$u_t + u_x + (u^2)_x + u_{xxx} = 0 (11)$$

3.2 Discrétisation

Le problème qu'on veut résoudre, avec une condition initiale Φ et des conditions aux bords appropriées, est

$$\begin{cases} u_t+u_x+(u^2)_x+u_{xxx}=0 \ , & x\in[x_{min},x_{max}], \ t\in[0,t_{max}] \\ u(x,0)=\Phi(x) \\ + \text{ conditions aux limites} \end{cases}$$

Dans un premier moment, pour valider l'implémentation du modèle, sans influence des bords, on considère des conditions aux bords périodiques, ou des conditions de Dirichlet et/ou de Neumann homogènes mais suffisamment éloignées de l'onde (c'est-à-dire, du support de la solution).

La résolution numérique du problème est faite avec un schéma de *splitting*, en séparant les termes d'advection et de dispersion. Alors, en définissant les opérateurs

$$T_a(u)=u_t+u_x+(u^2)_x, \qquad T_d(u)=u_t+u_{xxx}$$

on résout, dans chaque pas de temps $[t_n, t_{n+1}]$:

$$\begin{split} \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t} + \frac{\frac{1}{8}u_{i-3}^{n+1}-u_{i-2}^{n+1}+\frac{13}{8}u_{i-1}^{n+1}-\frac{13}{8}u_{i+1}^{n+1}+u_{i+2}^{n+1}-\frac{1}{8}u_{i+3}^{n+1}}{\Delta x^{3}} = 0, \qquad i = 3,...,N = 3 \\ \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t} + \frac{-u_{i}^{n+1}+3u_{i+1}^{n+1}-3u_{i+1}^{n+1}+u_{i+3}^{n+1}}{\Delta x^{3}} = 0, \qquad i = 0,1,2 \\ \frac{u_{i}^{n+1}-u_{i}^{n}}{\Delta t} + \frac{u_{i}^{n+1}-3u_{i-1}^{n+1}+3u_{i-2}^{n+1}-u_{i-3}^{n+1}}{\Delta x^{3}} = 0, \qquad i = N-2,N-1,N \end{split}$$

Cette discrétisation ramène à la résolution d'un système linéaire, pour lequel on fait les modifications appropriées pour prendre en compte les conditions aux bords.

3.3 Analyse d'échelle

En envisageant la correcte simulation des phénomènes physiques, qui jouent un rôle dans l'équation de KdV, la solution initiale doit satisfaire les hypothèses faites lors de la dérivation du modèle. Ayant cet objectif en tête, on fait dans les paragraphes suivants une analyse d'échelle suivant les arguments présentés par [5]. Cette analyse nous permettra d'étudier la validité physique du modèle et de dériver un critère pour sélectionner les conditions initiales pour quelques exemples de simulations numériques.

On veut écrire l'équation de KdV dans la forme suivante (sans dimension et xéchallonée), selon la description de [5] :

$$U_T + U_X + \frac{\varepsilon}{2}(U^2)_X + \varepsilon \alpha^2 U_{XXX} = 0$$

$$(14)$$

et la lier aux paramètres du modèle d'ondes de surface dans forme dimensionnelle [18]

$$u_{t^*}^* + c_0 u_{x^*}^* + \frac{3}{4} \frac{c_0}{h_0} (u^{*2})_{x^*} + \frac{1}{6} c_0 h_0^2 u_{x^* x^* x^*}^* = 0$$
 (15)

où ·* indique les variables physiques, h_0 la profondeur de l'eau non perturbée dans le cas d'un fond plat, et $c_0 = \sqrt{gh_0}$ la vitesse d'onde longue.

D'après [5], la non linéarité est caractérisée par un paramètre $\varepsilon \ll 1$ tel que les caractéristiques sont écrites dans la forme

$$\frac{1}{c_0}\frac{dx^*}{dt^*} = 1 + bu^*$$

et $bu^* = \varepsilon U$, avec u d'ordre 1.

La caractérisation de la dispersion, à son tour, vient de la dérivation de l'équation de KdV. D'après [5], si la propagation de l'onde suit une loi de la forme

$$u_{t*}^* + u^* u_{x*}^* + (\mathcal{L}u^*)_{x*} = 0$$

avec \mathcal{L} tel que

$$\widehat{\mathcal{L}u^*} = rac{c(k)}{c_0} \widehat{u^*}(k,t)$$

où $\hat{}$ dénote la transformée de Fourier et c(k) la célérité de phase, alors, pour κ suffisamment petit, la vitesse d'onde

$$c(\kappa) = c_0 + c_0 \sum_{n=1}^{\infty} A_n \varepsilon^n \kappa^{2n}$$
 (16)

peut être approximée par $c(\kappa) = c_0(1 - \kappa^2)$, ce qui motive les remplacements $X = \sqrt{\varepsilon}x^*$, $T = c_0\sqrt{\varepsilon}t^*$, et $u^* = \frac{\varepsilon}{\hbar}U$ pour obtenir l'équation équivalente

$$U_T + \varepsilon U U_x + (\mathcal{L}_{\varepsilon} U)_X = 0 \tag{17}$$

avec $\mathcal{L}_{\varepsilon}$ tel que

$$\widehat{\mathcal{L}_{\varepsilon}U} = \frac{c(\varepsilon^{1/2}K)}{c_0}\widehat{U}(K,T) \tag{18}$$

où $K = \sqrt{\varepsilon}k$. Après le remplacement de l'expansion (16) dans (18), on obtient

$$\mathcal{L}_{\varepsilon}U = U + \sum_{n=1}^{\infty} (-1)^n A_n \varepsilon^n \partial_X^{2n} U \tag{19}$$

et si les termes pour $n\geq 2$ sont négligeables (ce qui est le cas pour $\varepsilon\ll 1$) et si on suppose que toutes les dérivées de U sont de la même ordre de magnitude, alors on obtient

$$\mathcal{L}_{arepsilon}U=U+A_{n}arepsilonrac{\partial^{2}U}{\partial x^{2}}=U-lpha^{2}arepsilonrac{\partial^{2}U}{\partial x^{2}}$$

avec $\alpha^2 = -A_n$. En remplaçant dans l'équation échelonnée (17), on obtient

$$U_T + U_X + \frac{\varepsilon}{2}(U^2)_X + \varepsilon \alpha^2 U_{XXX} = 0$$

L'application du même échelonnement $X=\sqrt{\varepsilon}x^*,\,T=c_0\sqrt{\varepsilon}t^*_{\parallel}$ et $u^*=\frac{\varepsilon}{b}U$ à l'équation physique (15) fournit

$$U_T+U_X+rac{3arepsilon}{4h_0b}(U^2)_X+rac{h_0^2arepsilon}{6}U_{XXX}=0$$

d'où, en comparant avec (14), on conclue que

$$b = \frac{3}{2h_0}, \qquad \alpha^2 = \frac{h_0^2}{6} \tag{20}$$

3.4 Le critère pour choisir une solution initiale appropriée

En se basant sur l'analyse d'échelle faite ci-dessus, on va proposer un critère pour choisir des conditions initiales (i.e., la longueur et l'amplitude de l'onde initiale) pour lesquelles l'équation de KdV est physiquement valide.

3.4.1 Choix de la longueur d'onde

Une condition suffisante pour que les termes d'ordre supérieur à 1 dans l'expansion en série de potences de $\mathcal{L}_{\varepsilon}$ (équation 19) soient négligeables es que ces termes soient aussi négligeables pour c(k) (dans l'équation 16), étant donné que toutes les dérivées de U aient ordre de magnitude 1 (une assomption faite par [5]).

D'après [5], l'expression suivante est applicable à des ondes de surface

$$c(\kappa) = c_0 \left(rac{tanh(\kappa h_0)}{\kappa h_0}
ight) = c_0 \left(1 - rac{1}{6} (\kappa h_0)^2 + rac{19}{360} (\kappa h_0)^2 + ...
ight)$$

d'où on voit qu'il faut choisir $\kappa h_0 \ll 1$ pour que les dérivées d'ordre n > 1 soient négligeables.

En <u>dé</u>notant la longueur d'onde par λ , et en choisissant une constante B telle que $\kappa h_0 = B \ll 1$, on a que

$$h_0 = rac{B\lambda}{2\pi}$$

et, de la relation $\alpha^2 = \frac{h_0^2}{6}$, on obtient $\alpha^2 = \frac{B^2 \lambda^2}{6(2\pi)^2}$.

3.4.2 Choix de l'amplitude de l'onde

Du changement de variables $bu^* = \varepsilon U$, avec U d'ordre de magnitude 1, et en considérant $b = \frac{3}{2h_0}$ (expression 20), la variable physique est écrite comme $u^* = \frac{2}{3}h_0\varepsilon U$, $(\varepsilon > 0)$. Alors

$$A=rac{2}{3}arepsilon h_0$$

est l'amplitude de l'onde. La détermination de l'amplitude est faite en considérant $\varepsilon \ll 1$.

3.4.3 Résumé

Alors, le critère proposé ici pour construire la condition initiale pour l'équation de KdV est

- 1. Adopter une profondeur h_0 (e.g. à partir des données disponibles);
- 2. Choisir une amplitude d'onde $A=\frac{2}{3}h_0\varepsilon$, alors la restriction $\varepsilon\ll 1$ ramène $\hat{a} \frac{A}{h_0} = \frac{2}{3} \varepsilon \ll 1.$
- 3. Choisir une longueur d'onde λ telle que $\kappa h_0 = \frac{2\pi}{\lambda} h_0 = B \ll 1$, ce qui ramène à $\frac{h_0}{\lambda} = \frac{B}{2\pi} \ll 1$
- 4. L'effet de dispersion sur la non linéarité peut être mesurée par le quotient des respectifs coefficients, $\frac{\varepsilon\alpha^2}{\varepsilon}=\alpha^2$.

D'un autre point de vue, on peut définir une onde d'amplitude A et longueur λ et déterminer l'intervalle de profondeurs dans lequel cette condition initiale est valide, pour une précision (ε, B) donnée :

$$h_0^{valid} = \left[\frac{3A}{2\varepsilon}, \frac{B\lambda}{2\pi} \right]$$
 (21)

ce qui est consistant avec le fait de que le modèle de KdV est valide pour des ondes de petite amplitude et grande longueur [5].

3.5 Tests numériques

On présente ci-dessous deux examples pour tester la résolution numérique proposée pour l'équation de KdV. On n'a pas trouvé, dans la littérature, la solution analytique pour l'équation sous la forme (11), mais il y a des résultats qui permettent d'analyser le comportement de l'équation. Nos exemples sont inspirés dans ceux présentés dans [25]: les solutions initiales sont des gaussiennes (la solution est non périodique, mais suffisamment lointaine des bords afin d'éviter son influence) avec des différentes amplitudes et longueurs (la longueur d'onde est adoptée comme étant l'écart standard). L'idée est de verifier l'influence de ces « caractéristiques sur les effets non linéaires et dispersives, et aussi de vérifier le rangé de profondeur d'eau dans lequel la propagation de chaque solution peut être modélisée par l'équation de KdV (selon l'expression 21). Les deux tests ont été faits en considérant B = 0.1 et $\varepsilon = 0.001$.

Les solutions initiales utilisées sont

- 1. Onde courte (figure 23a)
 - $-\lambda = 1$

 - $\begin{array}{l} \ A = 10^{-5} \\ \ h_0^{valid} = [0.15, 0.16] \end{array}$

$$\begin{cases} T_a(v) = 0 &, t \in [t_n, t_{n+1}], v^n = u^n \\ T_d(w) = 0 &, t \in [t_n, t_{n+1}], w^n = v^{n+1} \\ u^{n+1} = w^{n+1} \end{cases}$$

Les schémas numériques utilisés dans chacun de ces pas son décrites ci-dessous e

3.2.1 Premier pas du splitting - advection

Le premier pas du schéma de splitting pur l'équation de KdV est une loi de conservation hyperbolique, qui peut être écrite en termes d'une fonction de flot f:

$$v_t + f(v)_x = 0, f(v) = v + v^2$$
 (12)

Cette équation est résolue avec une méthode de volumes finis, où les cellules $[x_{i-1/2}, x_{i+1/2}]$ sont centrées dans les points discrets x_i et avec des valeurs moyens de u égales à la solution dans ces points. La dérivée spatiale dans (12) est discretisée avec une méthode de Runge-Kutta d'ordre 4:

$$k_1 = -f(v_i^n)_x, \qquad k_2 = -f\left(v_i^n + k_1rac{\Delta t}{2}
ight)_x \ k_3 = -f\left(v_i^n + k_2rac{\Delta t}{2}
ight)_x, \qquad k_4 = -f(v_i^n + k_3\Delta t)_x \ v_i^{n+1} = v_i^n + rac{\Delta t}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

et la dérivée spatiale est approximée en termes du flot dans les interfaces de las cellules :

$$f(v_i^n)_x = \frac{f\left(v_{i+1/2}^n\right) - f\left(v_{i-1/2}^n\right)}{A_x}$$

Alors, il faut calculer las valeurs de u dans chaque interface. Cela est fait en résolvant le problème de Riemann suivant :

$$\begin{cases} v_t + f(v)_x = 0 \\ v(x, 0) = v^-, x < 0 \\ v(x, 0) = v^+, x > 0 \end{cases}$$

où l'interface se trouve dans x = 0 et v^- et v^+ sont les solutions dans les cellules voisines.

La fonction de flot f (es) uniformément convexe (car il existe une constante $\theta > 0$ telle que $2 \equiv f'' \geq \theta$); alors, le problème de Riemann a une unique solution faible admissible [25]:

If $v^- > v^+$ (choc):

$$v(x,t) = egin{cases} v^- \;, & f(v^-) > f(v^+) \ v^+ \;, & f(v^-) < f(v^+) \end{cases}$$

— If $v^+ > v^-$ (onde de raréfaction):

$$v(x,t) = egin{cases} v^- \;,\;\; f'(v^-) > 0 \ (f')^{-1} \; (v) \;,\;\; f'(v^-) < 0 < f'(v^+) \ v^+ \;,\;\; f'(v^+) < 0 \end{cases}$$

3.2.2 Deuxième pas du splitting - dispersion

Deux schémas sont proposés pour la résolution du deuxième pas de l'équation de KdV :

$$w_t + w_{xxx} = 0$$
 (13) en dépendant des conditions aux bords (périodiques ou non).

Le cas périodique Les dérivées spatiales et la linéarité de l'équation (13) nous motivent à mettre en ouvre une méthode spectrale de Fourier, ce qui est possible avec des conditions aux bords périodiques. En fait, la méthode est assez simple :

Soit $\hat{w}(k, t_n)$ les coefficients de Fourier de $w(x, t_n)$. La transformée de Fourier de l'équation (13) fournit

$$\hat{w}_t(k,t) - i k^3 \hat{w}(k,t) = 0$$

C'est une EDO dans t, dont la solution est

$$\hat{w}(k,t)=e^{ik^3(t-t_n)}\hat{w}(k,t_n)$$

Finalement, la transformée inverse de Fourier utilisant les coefficients $\hat{w}(k, t_{n+1})$ donne $w(x, t_{n+1})$.

Le cas non périodique Dans ce cas, on discrétise l'équation (13) avec un schéma de différences finies implicite de quatrième ordre pour la troisième dérivée spatiale, sauf dans les points les plus proches des bords, pour lesquels un schéma décentré d'ordre 1 est utilisé :

2. Onde longue (figure 23b)

- $-\lambda = 250000$
- -A = 0.1
- $-- h_0^{valid} = [150, 3979]$

La figure 23 présente les solutions dans quelques instants de simulation :

(b) Onde gaussienne longue

(a) Onde gaussienne courte

1 VOL

FIGURE 23 - Simulations avec l'équation de KdV

Conclusions partiales:

Les resultats obtenus sont cohérents avec les observations et exemples faits par [25], qui affirme que les effets dispersives sont plus fortes dans des ondes plus courtes; pour des ondes plus longues, les effts non linéaires sont plus évidents.

Le range de validité de l'équation de KdV est très petit dans le cas de l'onde courte, et beaucoup plus grand dans le cas de l'onde large, ce qui est cohérent avec la validité du modèle de KdV pour les ondes de petite amplitude et grande longueur. Cela peut être observé dans la définition de h_0^{valid} (équation (21)) : en réduisant A et augmentant λ , la taille du range de validité augmente.

Néanmoins, on n'a pas validé une des conclusions qu'on a faites lors de la dérivation du critère proposé. On a affirmé que l'importance relative des effets dispersives et non linéaires peut être mesurée par $\alpha^2 = \frac{h_0^2}{6}$, mais, dans les exemples testés, si on adopte h_0 comme étant la médiane de h_0^{valid} l'onde courte (qui est très dispersive) a un α^2 plus petit que l'onde large.

4 Les équations de Serre

4.1 Le modèle

Les équations de Serre constituent un modèle qui décrit la propagation des ondes fortement non linéaires dans des eaux peu profondes. En considérant un fond plat, ces équations s'écrivent sous la forme suivante, pour les variables (h,u):

$$\begin{cases} h_t + (hu)_x = 0 \\ u_t + uu_x + gh_x - \frac{1}{3h} \left(h^3 \left(u_{xt} + uu_{xx} - (u_x)^2 \right) \right)_x = 0 \end{cases}$$
 (22)

où u = u(x, t), h = h(x, t) et g sont, respectivement, la vitesse horizontal moyennée au long de la profondeur, la profondeur de l'eau et l'accélération de la gravité. Cette formulation s'est basée sur [9].

4.1.1 Les équations de Serre dans les variables (h, hu)

Afin de mettre en œuvre une méthode de *splitting* pour la résolution numérique des équations de Serre (ainsi comme de est fait dans [7] pour les équations de Green- \times Naghdi, qui sont la version en 2D des équations de Serre), on va réécrire le système (22) dans les variables (h, hu), afin d'avoir une formulation analogue à celle utilisé ℓ ℓ dans ce papier.

On va utiliser les identités

$$(hu^2)_x = (huu)_x = (hu)_x u + huu_x$$

et, de la première équation de (22),

$$hu_t = (hu)_t - h_t u = (hu)_t + (hu)_x u$$

En multipliant la deuxième équation de (22) par h, on obtient

$$(hu)_t + (hu^2)_x + ghh_x - \frac{1}{3} (h^3 (u_{xt} + (uu_x)_x - 2(u_x)^2))_x = 0$$
 (23)

On remarque que

$$egin{aligned} u_{xt} &= \left(rac{1}{h}(hu)
ight)_{xt} = \left(-rac{h_t}{h^2}(hu) + rac{1}{h}(hu)_t
ight)_x = \left(-rac{h_tu}{h} + rac{1}{h}(hu)_t
ight)_x = \ \left(rac{1}{h}((hu)_xu)
ight)_x + \left(rac{1}{h}(hu)_t
ight)_x = 0 \end{aligned}$$

et

$$(uu_x)_x=\left(rac{1}{h}(huu_x)
ight)_x=\left(rac{1}{h}((hu^2)_x-(hu)_xu)
ight)_x=\left(rac{1}{h}(hu^2)_x
ight)_x-\left(rac{1}{h}(hu)_xu
ight)_x$$

alors, dans (23), on obtient

$$(hu)_t + (hu^2)_x + ghh_x - rac{1}{3} \left[h^3 \left(\left(rac{1}{h} (hu)_t
ight)_x + \left(rac{1}{h} (hu^2)_x
ight)_x - 2(u_x)^2
ight)
ight]_x = 0$$

✓ Cette dernier équation peut être écrite sous la forme

$$egin{split} \left(I+h\mathcal{T}rac{1}{h}
ight)(hu)_t+\left(I+h\mathcal{T}rac{1}{h}
ight)(hu^2)_x+ghh_x+h\mathcal{Q}_1(u)+\ &\left(I+h\mathcal{T}rac{1}{h}
ight)(ghh_x)-\left(I+h\mathcal{T}rac{1}{h}
ight)(ghh_x)=0 \end{split}$$

où le terme $(I + h\mathcal{T}_{h}^{1})(ghh_{x})$ a été ajouté et soustrait pour avoir une formulation équivalente à de [7]. Les opérateurs \mathcal{T} et \mathcal{Q} , aussi définis par [7], sont donnés par

$$egin{split} \mathcal{T}(w) &= -rac{1}{3h}(h^3w_x)_x = -rac{h^2}{3}w_{xx} - hh_xw_x \ \mathcal{Q}(w) &= rac{2}{3h}(h^3(w_x)^2)_x = rac{4h^2}{3}(w_xw_{xx}) + 2hh_x(w_x)^2 \end{split}$$

Ainsi, le système qu'on résout est

$$\begin{cases}
h_t + (hu)_x = 0 \\
\left(I + hT\frac{1}{h}\right)(hu)_t + \left(I + hT\frac{1}{h}\right)(hu^2)_x + ghh_x + hQ_1(u) + \\
\left(I + hT\frac{1}{h}\right)(ghh_x) - \left(I + hT\frac{1}{h}\right)(ghh_x) = 0
\end{cases}$$
(24)

4.2 Discrétisation

Comme on a fait au préalable pour la résolution numérique de l'équation de KdV, on met en oeuvre une méthode de *splitting* pour résoudre numériquement les équations de Serre dans les variables (h, hu): le système d'équations (24) est décomposé en deux parties, la première contenant les termes d'advection, et la deuxième, les dérivées d'ordre supérieur.

Alors, la résolution numérique demande la résolution, dans chaque pas de temps $[t_n, t_{n+1}]$, du problème suivant :

$$\begin{cases} \tilde{h}_t + \left(\tilde{h}\tilde{u}\right)_x = 0\\ (\tilde{h}\tilde{u})_t + (\tilde{h}\tilde{u}^2)_x + g\tilde{h}\tilde{h}_x = 0 \end{cases}$$
 (25)

X

$$\begin{cases}
\overline{h}_{t} = 0 \\
(\overline{h}\overline{u})_{t} - g\overline{h}\overline{h}_{x} + (I + h\mathcal{T}_{\overline{h}}^{1})^{-1} \left[g\overline{h}\overline{h}_{x} + \overline{h}\mathcal{Q}_{1}(\overline{u})\right] = 0 \\
\left\{(h, u)(x, t_{n+1}) = (\overline{h}, \overline{u})(x, t_{n+1})\right\}
\end{cases}$$
(26)

En dénotant les systèmes (25) et (26) par les opérateurs $T_a^{\Delta t}$ et $T_d^{\Delta t}$, respectivement, où le superindice indique que l'opérateur est appliqué sur un pas de temps Δt , le problème peut s'écrire comme Δt

$$(h,u)(x,t_{n+1}) = T_d^{\Delta t} \left(T_a^{\Delta t} \left((h,u)(x,t_n) \right) \right)$$

Quelques variations de ce schéma de *splitting* ont été également implémentés. Par exemple, en inversant l'ordre des opérateurs; ou encore la méthode connue comme "Strang splitting", où trois problèmes sont résolus dans chaque pas de temps :

$$(h,u)(x,t_{n+1})=T_a^{rac{\Delta t}{2}}\left(T_d^{\Delta t}\left(T_a^{rac{\Delta t}{2}}(h,u)(x,t_n)
ight)
ight)$$

Dans la suite, le tilde et la barre supérieur seront supprimées pour clarifier la notation.

4.2.1 Premiére système d'équations (pas d'advection)

La première partie des équations de Serre correspond aux *Non linear Shallow Water equations* (NSWE), et peut être écrite comme une loi de conservation sous la forme

$$\boldsymbol{U}_t + \boldsymbol{F}(\boldsymbol{U})_x = 0$$

οù

Ø

$$oldsymbol{U} = \left(egin{array}{c} h \ hu \end{array}
ight) oldsymbol{F}(oldsymbol{U}) = \left(egin{array}{c} hu \ hu^2 + rac{1}{2}gh^2 \end{array}
ight)$$

Alors, on peut résoudre le premièré pas du splitting en utilisant un schéma de volumes finiés. La méthode implémentée utilise le solveur de Riemann approximée vfRoe-ncv(ŷ) une interpolation MUSCL d'ordre quatre sur chaque interface, ce qui

68

réduit l'erreur de troncature et assure la non-négativité de la hauteur de l'eau. Par ailleurs, on applique la méthode de reconstruction hydrostatique de deuxième ordre pour les termes source qui comprennent la topographie afin de préserver des états stationnaires de repos dans le cas où il y a de variabilité de la bathymétrie. X

Dans ce rapport, on se limite à cette brève description de la méthode de volumes finis utilisée, en considérant que, dans la division de tâches au sein de l'équipe, elle a été étudiée, codée et testée par José GALAZ.

4.2.2 Deuxième système d'équations (pas de dispersion)

Dans le deuxième système (26) des équations de Serre splittées, la profondeur d'eau h est constante en temps, et par conséquent seulement la vitesse u doit être mise à jour. La résolution numérique proposée consiste en résoudre, à chaque pas de temps, le système linéaire

X

$$\left(I+h\mathcal{T}rac{1}{h}
ight)^{-1}\left[hh_x+h\mathcal{Q}_1(u)
ight]=z \implies \left(I+h\mathcal{T}rac{1}{h}
ight)z=hh_x+h\mathcal{Q}_1(u) \quad (27)$$

où le côté à gauche de (27) s'écrit

$$egin{split} \left(I+h\mathcal{T}rac{1}{h}
ight)z &= z-rac{h^3}{3}\left(rac{1}{h}z
ight)_{xx}-h^2h_x\left(rac{1}{h}z
ight)_x &= \ &= \left(1+rac{1}{3}(h_x)^2+rac{1}{3}hh_{xx}
ight)z-\left(rac{1}{3}hh_x
ight)z_x-\left(rac{1}{3}h^2
ight)z_{xx} \end{split}$$

En utilisant des différences finies d'ordre quatre pour discrétiser les dérivées spatiales de z, on résout, pour chaque i = 1, ..., N - 1 dans le pas de temps t_n :

$$\left(1 + \frac{1}{3}((h_x)_i^n)^2 + \frac{1}{3}h_i^n(h_{xx})_i^n + \frac{1}{\Delta x^2}\frac{5}{6}(h_i^n)^2\right)z_i^n + \\ \frac{1}{3}\left(-\frac{2}{3}\frac{h_i^n(h_x)_i^n}{\Delta x} - \frac{4}{3}\frac{(h_i^n)^2}{\Delta x^2}\right)z_{i+1}^n + \frac{1}{3}\left(\frac{2}{3}\frac{h_i^n(h_x)_i^n}{\Delta x} - \frac{4}{3}\frac{(h_i^n)^2}{\Delta x^2}\right)z_{i-1}^n + \\ \frac{1}{36}\left(\frac{h_i^n(h_x)_i^n}{\Delta x} + \frac{4}{3}\frac{(h_i^n)^2}{\Delta x^2}\right)z_{i+2}^n + \frac{1}{36}\left(-\frac{h_i^n(h_x)_i^n}{\Delta x} + \frac{4}{3}\frac{(h_i^n)^2}{\Delta x^2}\right)z_{i-2}^n = \\ h_i^n(h_x)_i^n + h_i^n(Q_1(u))_i^n$$

Finalement, pour chaque i=1,...N-1 (las) solution est mise à jour en temps selon l'expression

$$(hu)_i^{n+1} = (hu)_i^n + \Delta t \left(gh_i^n(h_x)_i^n - z_i^n
ight)$$

4.3 Tests numériques

4.3.1 Description de la solution initiale

enchainement pas

Afin de valider l'implémentation des équations de Serre, on les a résolues en utilisant son solution analytique comme solution initiale. D'après [9], les équations de Serre admettent la famille de solutions périodiques suivante :

$$h(x,t)=a_0+a_1dn^2(\kappa(x-ct),k), \qquad u(x,t)=c\left(1-rac{h_0}{h(x,t)}
ight)$$

$$\kappa = \frac{\sqrt{3a_1}}{2\sqrt{a_0(a_0 + a_1)(a_0 + (1 - k^2)a_1)}}, \qquad c = \frac{\sqrt{ga_0(a_0 + a_1)(a_0 + (1 - k^2)a_1)}}{h_0}$$

avec $k \in (0,1)$, $a_0 > 0$, $a_1 > 0$ et $dn(\cdot, k)$ une fonction elliptique de Jacobi de module k.

La relation entre la longueur d'onde λ et $k \in (0,1)$ est

$$\lambda = rac{2K(k)}{\kappa}$$

et la profondeur moyenne de l'eau, h_0 , est calculée à partir de

$$h_0=rac{1}{\lambda}\int_0^\lambda h(x,t)dx=a_0+a_1rac{E(k)}{K(k)}$$

où K(k) et E(k) sont des intégrales elliptiques complètes de premier et deuxième types.

La limite pour $k \to 0^+$ est le niveau constant de l'eau $a_0 + a_1$ en équilibre. Si $k \to 1^-$, (h, u) converge vers la solution de Rayleigh (onde solitaire). On a testé aussi ce dernier cas, dans lequel la solution est décrite par [9]

$$h(x,t) = a_0 + a_1 sech^2(\kappa(x-ct),k), \qquad u(x,t) = c\left(1 - rac{a_0}{h(x,t)}
ight) \ \kappa = rac{\sqrt{3a_1}}{2\sqrt{a_0(a_0+a_1)}}, \qquad c = \sqrt{ga_0(a_0+a_1)}$$

Les expressions pour la longueur d'onde λ et la profondeur moyenne de l'eau h_0 sont les mêmes que pour le cas général de la solution cnoïdale.

4.3.2 Résultats

Afin d'observer et comparer les effets nonlinéaires et dispersives dans le modèle, on a résolu les équations de Serre et les équations nonlinéaires de Shallow Water (NSWE). Ce dernier système d'équations est en fait le premier pas du schéma de splitting proposé. Les figures 24 et 25 montrent l'évolution de (h,u) pour la solution cnoïdale, et les figures 26 et 27 la montrent dans le cas de la solution solitaire.

FIGURE 24 – Évolution de h pour la solution cnoïdale des équations de Serre. Comparaison entre la solution analytique (en rouge) et les solutions données par les modèles de Serre (en bleu) et les NSWE (en vert).

FIGURE 25 – Évolution de u pour la solution cnoïdale des équations de Serre. Comparaison entre la solution analytique (en rouge) et les solutions données par les modèles de Serre (en bleu) et les NSWE (en vert).

FIGURE 26 – Évolution de h pour la solution solitaire des équations de Serre. Comparaison entre la solution analytique (en rouge) et les solutions données par les modèles de Serre (en bleu) et les NSWE (en vert).

FIGURE 27 – Évolution de u pour la solution solitaire des équations de Serre. Comparaison entre la solution analytique (en rouge) et les solutions données par les modèles de Serre (en bleu) et les NSWE (en vert).

On peut observer très clairement les effets du pas de dispersion sur la solution donnée par les NSWE. Le premier pas des équations de Serre splittées cause la formation de chocs. Par ailleurs, comme le schéma de volumes finis implémenté n'utilise pas des limiteurs, les discontinuités ne sont pas bien traitées, ce qui provoque les grandes déformations de la solution dans des instants plus avancées, comme montrent les dernières images dans les figures 24 et 25. En revanche, dans la résolution des équations de Serre, le pas de dispersion fait une "correction" de la formation du choc, et la forme de la solution analytique est préservée.

Ainsi, ces exemples numériques valident notre implémentation des équations de Serre. On remarque également que, attasi comme la forme, l'amplitude de la solution est bien préservée, avec une petite réduction. En fait, cet résultat a été obtenu seulement avec le schéma de volumes finiés d'ordre 4. Au début, on a implémenté des schémas d'ordre 1 et 2, avec lesquels la réduction de l'amplitude était beaucoup plus importante (malgré la préservation de la forme), comme montre, à titre

X

d'exemple, la figure 28:

FIGURE 28 – Évolution de h pour la solution cnoïdale des équations de Serre. Comparaison entre la solution analytique (en rouge) et les solutions données par les modèles de Serre (en bleu) et les NSWE (en vert), avec une méthode de volumes finies d'ordre 2.

5 Première étude des conditions aux limites transparentes

5.1 Introduction et quelques exemples de motivation

Portain of Direct

Le contenu présenté dans cette section est une introduction aux objectifs principaux envisagés dans ce stage, concernant l'étude des conditions aux limites transparentes (en anglais, transparent boundary conditions - TBCs) afin de les appliquer à des méthodes de décomposition de domaine (en anglais, domain decomposition methods - DDMs). Cet étude a été développé sur l'équation de KdV, parce que c'était, parmi les modèles étudiés et implémentés jusqu'au moment où on a commencé cette partie du projet, celui pour lequel on a obtenu la meilleure et plus fiable implémentation numérique. En plus, la linéarisation de l'équation de KdV est plus évidente que pour les équations de Serre - en fait, l'étude des TBCs pour des équations linéaires est beaucoup plus développée que pour les non linéaires.

Les TBCs sons construites de façon que la solution calculée dans le domaine computationnel fini Ω coïncide avec la solution du problème dans tout l'espace, restreinte à Ω . En général, ces conditions aux bords son non locales en temps, alors elles doivent être approximées pour permettre une implémentation numérique efficiente [1].

Pour le problème

$$\left\{ egin{aligned} \mathcal{A}(u) &= f & \mathrm{dans} & \Omega \ u &= 0 & \mathrm{sur} & \partial \Omega \end{aligned}
ight.$$

où \mathcal{A} est un opérateur différentiel partiel, les TBCs exactes dans $\Gamma \subset \partial \Omega$ (par example, dans une DDM, Γ est l'interface entre deux subdomaines) sont données par [16]

$$B(u) = \frac{\partial}{\partial n}u + D2N(u) = 0 \tag{28}$$

X

où ∂n est le vecteur normal sortant à Ω sur Γ , et l'opérateur D2N (Dirichlet to Neumann) est défini par

$$D2N: lpha(x) \mapsto rac{\partial}{\partial n^c} vigg|_{\Gamma}$$

avec α défini sur Γ et ∂n^c étant le vecteur normal sortant au complémentaire de Ω , dénoté Ω^c v est solution du problème suivant, résolu dans Ω^c

$$egin{cases} \mathcal{A}(v) = f & ext{fans} & \Omega^c \ v = 0 & ext{sur} & \partial \Omega^c ackslash \Gamma \ v = lpha & ext{sur} & \Gamma \end{cases}$$

Ainsi, on peut interpréter interpréter l'opérateur D2N comme une imposition de continuité de la dérivée de la solution dans la direction normale à l'interface. Par ailleurs, comme son nomindique, cet opérateur construit une dérivée (une condition de Neumann) à partir de la solution dans Ω^c (une condition de Dirichlet).

Présentons d'abord un example simple, dont la solution y la TBC analytiques sont connues. On va considérer le problème 1D suivant :

$$egin{cases} -u''(x) = 1 & in & \Omega = [0,2] \ u(0) = 0 \ u(2) = 0 \end{cases}$$

dont la solution est

$$u(x) = -\frac{x^2}{2} + x$$

et, en considérant la partition de Ω en $\Omega_1=[0,1]$ et $\Omega_2=[1,2]$, on va considérer le problème

$$egin{cases} -u_1''(x) = 1 & in & \Omega_1 \ u_1(0) = 0 \ \mathcal{B}(u_1) = 0 & at & \Gamma = \{1\} \end{cases}$$

où la TBC $\mathcal{B}(u)$ est telle que $u|_{\Omega_1} = u_1$.

La fonction v, pour la détermination de l'opérateur D2N, est solution de

$$egin{cases} -v''(x)=1 & in \ \Omega_2 \ v(2)=0 \ v(1)=lpha & at \ \Gamma=\{1\} \end{cases}$$

alors

$$v(x) = -rac{x^2}{2} + \left(rac{3}{2} - lpha
ight) + 2lpha - 1$$

et

$$\left. \frac{\partial}{\partial x} v \right|_{x=1} = \frac{1}{2} - \alpha$$

Finalement, la TBC, dans la forme (28), s'écrit

$$B(u_1) = rac{\partial}{\partial x} u_1 + D2N(u_1) = rac{\partial}{\partial x} u_1 + rac{1}{2} - u_1$$

Le problème a été résolu avez une méthode de différences finies, avez des approximations centrées de seconde ordre pour la dérivée spatiale, dans deux grilles différentes. La figure 29 montre que la TBC construite fournit effectivement une solution convergente à la solution de référence restreinte à Ω .

@ ou waren d'une - et ?

FIGURE 29 - Solutions pour l'équation de Laplace avec TBC

Sill on a towere.

En retournant aux modèles de propagation des ondes, on rappelle que, dans les premières simulations avec la méthode de *splitting* adoptée pour la résolution de l'équation de KdV, on n'a pas appliqué rigoureusement les conditions aux bords. En fait, notre objectif principal était la validation de la méthode; alors, en imposant des conditions périodiques ou des conditions de Dirichlet ou Neumann homogènes, on a analysé l'évolution de la solution seulement avant son arrivée aux bords.

Avant de commencer l'étude des TBCs pour l'équation de KdV, on va présenter deux examples de motivation à ce travail. Le premier exemple montre très clairement l'influence de conditions aux bords inappropriées sur la solution. On a résolu deux fois le même problème, avec la même solution initiale, conditions aux bords et discrétisations spatiales et temporales : 7

La seule différence entre les deux problèmes est la taille de ses domaines : ils ont été choisis de façon que l'onde arrive aux bords (dans le temps de simulation) dans le première problème, mais pas dans le deuxième. La figure 30 montre comme la différence entre les deux solutions augmente avec le temps, en partant du bord et se propageant pour tout le domaine :

apecu

FIGURE 30 – Premier exemple de motivation : comparaison entre les solutions dans un petit domaine (en bleu) et un large domaine (en vert)

Alors, on cherche des conditions aux bords qui puissent bien simuler les TBCs, c'est-à-dire, de façon que la solution calculé dans Ω soit le même que la solution de tout le domaine restreinte à Ω. Par conséquent, on veut des bords qui n'ont pas d'influence sur la solution, permettant qu'elle puisse simplement "sortir" du domaine.

L'exemple suivant montre une deuxième motivation pour ce travail. On veut résoudre le problème

$$(P_1) egin{cases} u_t + u_x + (u^2)_x + u_{xxx} = 0 \;, \;\; x \in \Omega_1 = [0,L], \;\; t \in [0,t_{max}] \ u(x,0) = \Phi(x) \ u(0,t) = 0 \ u_x(0,t) = 0 \ u(L,t) = g(t) \end{cases}$$

On cherche une fonction g(t) pour simuler le TBC. Pour atteindre cet objectif, on va d'abord résoudre le problème

$$(P_2) egin{cases} u_t + u_x + (u^2)_x + u_{xxx} = 0 \;, \;\; x \in \Omega_2 = [0, 2L], \;\; t \in [0, t_{max}] \ u(x,0) = \Phi(x) \ u(0,t) = 0 \ u_x(0,t) = 0 \ u(2L,t) = 0 \end{cases}$$

(i.e., la même équation résolue dans un domaine plus grand) et on impose $g(t) = u_2(L,t)$ pour tout t, où u_2 est la solution de (P_2) . Afin d'obtenir des résultats plus précis, les deux calculs sont réalisés avec les mêmes pas de temps et taille du maillage.

Supposons qu'il y a une unique solution u_1 pour (P_1) . On peut facilement voir que $u_2|_{\Omega_1}$ est également solution de (P_1) . Alors, $u_1 = u_2|_{\Omega_1}$. Ce fait justifie pourquoi notre procédure marche correctement comme une TBC, en fournissant la solution "exacte", comme montre la figure 31 (détail sur la région proche du bord droit).

FIGURE 31 – Deuxième exemple de motivation : solution avec une condition de Dirichlet "exacte" sur le bord à droite

5.2 Optimisation de conditions aux limites de Robin pour simuler des TBCs

La procédure présentée dans le dernier example ne peut pas être appliquée en pratique. En fait, calculer la solution dans un domaine plus grand et l'utiliser comme solution exacte pour construire les conditions aux bords n'est qu'une "triche". Alors, on veut plutôt déterminer des approximations pour les TBCs sans avoir une solution de référence. Dans cette étude introductoire, ces conditions approximées sont des conditions de Robin, en utilisant la valeur de la solution et de ses dérivées au bord.

5.2.1 Conditions aux limites de Robin jusqu'à la dérivée première

Dans une approche initiale, l'équation de KdV a été résolue dans le domaine [-L, L] avec les conditions aux bords suivants (imposées dans la résolution du deuxième pas de la méthode de *splitting*):

$$egin{cases} u(-L)=0 \ u_x(-L)=0 \ lpha u(L)+eta u_x(L)=0, & lpha,eta>0 \end{cases}$$

La troisième condition aux bords consiste en des conditions de Robin, avec des paramètres α et β (ou, de façon équivalente, le paramètre β/α) qui on a optimisés afin de simuler une TBC sur le bord à droite. Dans un premier moment, on a considéré des conditions de Robin contenant jusqu'à la première dérivée de la solution.

Afin de trouver les coefficients optimaux, on a testé plusieurs paires $(1, \beta/\alpha)$ (y compris les limites $\beta/\alpha \to 0$ et $\beta/\alpha \to \infty$, correspondant respectivement aux conditions de Dirichlet et de Neumann) et computé l'erreur par rapport à la solution de référence u_{ref} , calculée dans le domaine [-2L, 2L]. On a défini deux erreurs pour chaque pas de temps t_n :

$$e_1^n = \sqrt{\sum_{i=0}^N \left(u_i^n - (u_{ref})_i^n
ight)^2} \qquad e_2^n = u_N^n - (u_{ref})_N^n$$

 e_2^n est calculé pour montrer que la plus grande partie de l'erreur e_1^n de tout le domaine est due aux bords.

Les figures 32 à 35 montrent la solution dans quelques instants et l'évolution de e_1 et e_2 pour certains valeurs de β/α . La figure 36 compare e_2 pour plusieurs autres valeurs, y compris le cas de pure Dirichlet (avec $\alpha=1,\beta=0$, alors $log(\beta/\alpha)=-\infty$) et pure Neumann (avec $\alpha=0,\beta=1$, alors $log(\beta/\alpha)=\infty$).

FIGURE 32 – Solution de référence et solution approximée pour $\beta/\alpha = 1$

Figure 33 – Solution de référence et solution approximée pour $\beta/\alpha=10$

FIGURE 34 – Solution de référence et solution approximée pour $\beta/\alpha=100$

Figure 35 = Erreurs entre la solution approximée et la solution de référence \bullet

FIGURE 36 – Erreur $||e_1| = \sum_{n=0}^{n_{max}} (e_1^n)^2$ entre la solution approximée et la solution de référence pour plusieurs valeurs de β/α , avec des conditions aux limits de Robin jusqu'à la dérivée première

X

Les résultats présentés dans les figures 32 jusqu'à 36 montrent que des conditions aux bords avec un caractère de Neumann plus fort produisent de meilleures approximations pour la TBC, en comparaison à des conditions plus proches du pure Dirichlet. En fait, imposer la solution nulle aux bord est une condition trop forte, et la condition de Neumann peut capturer de façon plus satisfaisant la lisseté de la solution. Les résultats pour le pure Neumann et pour le Neumann avec un petit mais pas nul terme de Dirichlet sont très proches, comme présenté dans le tableau 2 pour un étude plus raffiné autour des meilleures valeurs de β/α .

Table 2 – Erreur $||e_1|| = \sum_{n=0}^{n_{max}} (e_1^n)^2$ pour quelques valeurs de β/α autour des meilleurs résultats

5.2.2 Conditions aux limites de Robin jusqu'à la dérivée seconde

On a répété les tests décrits ci-dessus, mais en remplaçant les conditions au bord droit par $\alpha u(L) + \beta u_x(L) + \gamma u_{xx}(L) = 0$, $\alpha, \beta, \gamma > 0$.

Les valeurs de α et β sont fixes et égaux à celui qui a donné l'erreur minimal dans les simulations précédentes $((\alpha, \beta) = (1, 1000))$. On montre directement le graphe contenant les erreurs pour des plusieurs valeurs de γ/β (figure 37). De façon similaire aux conclusions faites ci-dessus, on a observé une meilleure approximation de la TBC pour des valeurs plus fortes de γ/β (étant l'erreur presque constant à partir d'un certain seuil, comme montre le tableau 3). En fait, même l'erreur le x plus grande dans la figure 37 ($||e_1||(\gamma/\beta = 0.01) = 8.78 \times 10^{-6}$) est plus petit que le meilleur cas présenté dans le tableau 2.

FIGURE 37 – Erreur $||e_1| = \sum_{n=0}^{n_{max}} (e_1^n)^2$ entre la solution approximée et la solution de réference pour plusieurs valeurs de γ/β , avec des conditions aux limits de Robin jusqu'à la dérivée seconde

$log(\gamma/eta)$	Error $(\times 10^{-6})$
2.0	1.157665
2.5	1.157382
3.0	1.157280
3.5	1.157247
4.0	1.157236
4.5	1.157233
∞	1.157231

Table 3 – Error $||e_1| = \sum_{n=0}^{n_{max}} (e_1^n)^2$ for some values of $\gamma/beta$ around the best ones

5.2.3 Conclusion partiale \times

Pour résumer cette étude initiale des conditions transparentes, on a cherché à les approximer par des conditions aux bords de Robin, écrites en fonction de coefficients ajustables afin d'attribuer différentes importances à chacun des termes (correspondant à la solution et à ses dérivées). L'idée était de tester plusieurs

combinaisons de ces coefficients afin de les optimiser (au sens de minimiser l'erreur entre la solution calculée dans [-L, L] et la solution de référence, calculée dans [-2L, 2L]). Comme on a décrit ci-dessus, les conditions de Robin qui prennent en compte la continuité de la solution testée (i.e., avec des coefficients plus grands pour les termes des dérivées) ont produit des meilleurs résultats. Alors, la TBC basée sur la première dérivée a été plus efficiente que celle basée seulement sur la solution ; et la TBC basée sur la deuxième dérivée a été encore meilleure. Finalement, on a observé que l'amélioration de la solution est négligeable au-dessus une certaine relation entre les coefficients.

6 Conditions aux limites transparentes approximées pour l'équation de dispersion

Dans [6], des conditions aux limites transparents exactes sont dérivées pour l'équation de KdV linéarisée (ou équation de Airy) :

$$u_t + U_1 u_x + U_2 u_{xxx} = h(t, x), \quad t \in \mathbb{R}^+, \quad x \in \mathbb{R}$$
 (29)

où $U_1 \in \mathbb{R}$, $U_2 \in \mathbb{R}^+_*$ et h est un terme de source.

Pour le problème homogène à valeur initiale

$$\begin{cases} u_t + U_1 u_x + U_2 u_{xxx} = 0, & t \in \mathbb{R}^+, \quad x \in [a, b] \\ u(0, x) = u_0(x), & x \in [a, b] \\ + \text{boundary conditions} \end{cases}$$

les TBCs sont données [6, équations 2.17,2.18] par

$$egin{aligned} u(t,a) - U_2 \mathcal{L}^{-1} \left(rac{\lambda_1(s)^2}{s}
ight) * u_x(t,a) - U_2 \mathcal{L}^{-1} \left(rac{\lambda_1(s)}{s}
ight) * u_{xx}(t,a) = 0 \ & u(t,b) - \mathcal{L}^{-1} \left(rac{1}{\lambda_1(s)^2}
ight) * u_{xx}(t,b) = 0 \ & u_x(t,b) - \mathcal{L}^{-1} \left(rac{1}{\lambda_1(s)}
ight) * u_{xx}(t,b) = 0 \end{aligned}$$

où \mathcal{L}^{-1} dénote la transformée inverse de Laplace, $s \in \mathbb{C}$, Re(s) > 0 est la fréquence de Laplace et λ_1 est, parmi les trois racines du polynôme caractéristique cubique obtenu en résolvant (29) dans l'espace de Laplace, la seule avez partie réelle négative. [26]

On a concentré nos efforts dans le cas $U_1=0, U_2=1$, qui fournit l'équation de KdV linéarisée avec seulement la partie dispersive (qu'on appelle équation de dispersion)

$$u_t + u_{xxx} = 0 (31)$$

Dans ce cas, aussi d'après [26], la seule racine avec partie réelle négative est

$$\lambda(s) = \lambda_1(s) = -\sqrt[3]{s} \tag{32}$$

Cependant, le calcul des TBCs (30) n'est pas simple en raison des transformées inverses de Laplace, qui donnent à ces conditions un caractère nonlocal en temps. Ainsi, on propose ici des approximations pour la racine (32) qui évitent les intégrations en temps, en générant des TBC considérablement plus simples.

Évidemment, comme on va vérifier dans les résultats présentés dans cette section, les TBCs approximées ne sont pas si précises comme les TBCs proposées par [6] (qui les dérive pour la version discrète de l'équation de KdV linéarisée). Néanmoins, en rappelant la discussion initiée dans l'introduction, nos objectifs sont très différents de ceux de [6] : tandis qu'ils cherchent à minimiser l'erreur de la solution calculée (comparée avec la solution analytique) due aux conditions aux bords, on cherche ici à utiliser les TBCs approximées comme conditions aux limites à l'interface (IBCs) dans le contexte d'une méthode de décomposition de domaine (DDM). Ainsi, notre objectif s'appuie sur la convergence de la solution fournie par la DDM à la solution du même problème résolu dans le monodomaine, indépendamment des erreurs sur les bords extérieurs.

La linéarité et les propriétés de convolution et des dérivées de la transformée de Laplace [11] nous motivent à approximer les opérandes des transformées inverses dans (30) par des polynômes dans s. Dans les paragraphes suivants, on implémente et test des approximations avec des polynômes constants et des polynômes linéaires.

6.1 Approximation des TBCs utilisant des polynômes constants

On utilise le polynôme constant $P_0(s) = c$ pour approximer λ^2/s . Par ailleurs, en raison de l'expression (32), on peut approximer les autres opérandes des transformées inverses de Laplace dans (30) uniquement en fonction de c:

$$\frac{\lambda^2}{s} = c, \qquad \frac{\lambda}{s} = -c^2, \qquad \frac{1}{\lambda(s)^2} = c^2, \qquad \frac{1}{\lambda(s)} = -c$$
 (33)

En remplaçant (33) dans (30) et en considérant des approximations différentes pour les bords à gauche et à droite (respectivement avec les coefficients c_L et c_R), on obtient les TBC approximées :

or deed (.

83

$$\Theta_1^{c_L}(u,x) = u(t,x) - c_L u_x(t,x) + c_L^2 u_{xx}(t,x) = 0
\Theta_2^{c_R}(u,x) = u(t,x) - c_R^2 u_{xx}(t,x) = 0
\Theta_3^{c_R}(u,x) = u_x(t,x) + c_R u_{xx}(t,x) = 0$$
(34)

En considérant un domaine discret avec une taille de maille Δx et des points $x_0,...,x_N$, et en utilisant des approximations par différences finies, les TBCs approximées (34) sont discrétisées comme Soit.

$$egin{aligned} u_0 - c_L rac{u_1 - u_0}{\Delta x} + c_L^2 rac{u_0 - 2u_1 + u_2}{\Delta x^2} &= 0 \ u_N - c_R^2 rac{u_N - 2u_{N-1} + u_{N-2}}{\Delta x^2} &= 0 \ rac{u_N - u_{N-1}}{\Delta x} + c_R^2 rac{u_N - 2u_{N-1} + u_{N-2}}{\Delta x^2} &= 0 \end{aligned}$$

6.1.1 Tests de validation de l'approximation Q_{QQQ}

Afin de valider nos approximations, observer son comportement général quand on fait varier les coefficients c_L et c_R , et comparer nos résultats avec ceux obtenus par [26] et [6], on a résolu le même test numérique considéré dans ces papiers :

$$\begin{cases} u_t + u_{xxx} = 0, & x \in \mathbb{R} \\ u(0, x) = e^{-x^2}, & x \in \mathbb{R} \\ u \to 0, & |x| \to \infty \end{cases}$$
 (35a)
(35b)

La solution fondamentale de (35a) et la solution exacte du problème (35a) = (35c) sont donnés, respectivement, par

$$E(t,x) = rac{1}{\sqrt[3]{3t}} Ai \left(rac{x}{\sqrt[3]{3t}}
ight), \qquad u_{exact}(t,x) = E(t,x) * e^{-x^2}$$

où Ai est la fonction d'Airy.

En suivant [26] et [6], le problème a été résolu dans le domaine spatiale [-6, -6], pour $0 \le t \le T_{max}$, avec $T_{max} = 4$. La taille de maille est $\Delta x = 12/500 = 0.024$ et, aussi comme fait [6], le pas de temps est $\Delta t = 4/2560 = 0.0015625$.

Pour une évaluation quantitative des résultats, on a calculé les mêmes erreurs définies par [6] : pour chaque instant $t_n = n\Delta t$, on définit l'erreur l^2 — relative

$$e^n = \frac{\left\|u_{exact}^n - u_{computed}^n\right\|_2}{\left\|u_{exact}^n\right\|_2}$$

et, dans tout l'intervalle de temps, l'erreur maximale e^n et la norme l^2 de e^n , données respectivement par

$$e_{Tm} = \max_{0 < n < T_{max}} (e^n), \qquad e_{L2} = \sqrt{\Delta t \sum_{n=1}^{T_{max}} (e^n)^2}$$

Afin de vérifier l'influence de c_L et c_R sur les solutions calculées (et, possiblement, identifier des intervalles de valeurs qui donnent les meilleures approximations pour les TBCs), on a fait des tests avec tous les paires possibles $(c_L, c_R) \in +\infty$? $\{-10,-1,-0.1,0,0.1,1,10\}^2$. Les résultats ont été classifiées selon leurs erreurs e_{L2} (un critère basé sur l'erreur e_{Tm} fournit un résultat similaire). La figure 38 montre, pour quelques instants, une comparaison entre la solution exacte et les solutions avec la plus grande et la plus petite erreur. Pour nommer la pire solution, on n'a pas considéré les solutions qui n'ont pas convergé (selon le critère arbitraire $e_{L2} > 10$).

FIGURE 38 – Meilleur et pire solutions comparées à la solution analytique, dans le cas de l'approximation par un polynôme constant

Le tableau 4 présente les dix tests avec les erreurs e_{L2} les plus petites :

c_L	c_R	e_{L2}
1.0	1.0	0.0947
1.0	10.0	0.0973
1.0	0.1	0.0984
1.0	0.0	0.0992
1.0	-10.0	0.0994
1.0	-0.1	0.1000
1.0	-1.	0.1016
10.0	1.0	0.3470
10.0	0.1	0.3474
10.0	0.0	0.3475

TABLE 4 – Meilleurs résultats (les erreurs e_{L2} les plus petites) pour l'approximation par un polynôme constant

On remarque que les résultats sont beaucoup plus sensitives au coefficient pour le bord à gauche : pour un c_L fixé, l'erreur est très similaire pour tout c_R . Celle est une conséquence du fait que la solution de ce problème est pratiquement constante \times et égale à zéro aux voisinages de x=6, mais présente des fortes variations dans la région proche de x=-6. Le meilleur résultat, comme montre la figure 38, est capable d'imposer ce condition dans le bord à droite, tandis que la pire solution n'en peut pas. Dans le cas du bord à gauche, malgré une erreur plus évidente par rapport à l'autre bord, les meilleures solutions suivent approximativement bien le comportement de la solution exacte.

6.2 Approximation des TBCs utilisant un polynôme linéaire

De façon similaire à ce qu'on a fait ci-dessus, on approxime λ^2/s par $P_1(s)=ds+c$. Puis, en établissant des relations comme (33), les convolutions dans (30) s'écrivent :

$$\mathcal{L}^{-1}\left(rac{\lambda^{2}}{s}
ight) = u_{x}(s,x) = \mathcal{L}^{-1}\left(rac{\lambda^{2}}{s}\hat{u}_{x}(s,x)
ight) = \mathcal{L}^{-1}\left[(ds+c)\hat{u}_{x}(t,s)
ight] = \ d\mathcal{L}^{-1}\left[\hat{u}_{xt}(t,s)
ight] + c\mathcal{L}^{-1}\left[\hat{u}_{x}(t,s)
ight] = \ du_{xt}(x,t) + du_{x}(0,x)\delta(t) + cu_{x}(x,t) \ \mathcal{L}^{-1}\left(rac{\lambda}{s}
ight) * u_{xx}(s,x) = \mathcal{L}^{-1}\left(rac{\lambda}{s}\hat{u}_{xx}(s,x)
ight) = \mathcal{L}^{-1}\left[-(ds+c)^{2}\hat{u}_{xx}(t,s)
ight] = \ -d^{2}u_{xxtt}(x,t) - d^{2}\delta_{t}(t)u_{x}x(0,x) - d^{2}\delta_{t}(t)u_{xxt}(0,x) + \ -2dcu_{xxt}(x,t) - 2dcu_{xx}(0,x)\delta(t) - c^{2}u_{xx}(x,t) \ \mathcal{L}^{-1}\left(rac{1}{\lambda^{2}}
ight) * u_{xx}(s,x) = \mathcal{L}^{-1}\left(rac{1}{\lambda^{2}}\hat{u}_{xx}(s,x)
ight) = \mathcal{L}^{-1}\left[(ds+c)^{2}\hat{u}_{xx}(t,s)
ight] = \ d^{2}u_{xxtt}(x,t) + d^{2}\delta_{t}(t)u_{x}x(0,x) + d^{2}\delta_{t}(t)u_{xxt}(0,x) + \ 2dcu_{xxt}(x,t) + 2dcu_{x}x(0,x)\delta(t) + c^{2}u_{xx}(x,t) \ \mathcal{L}^{-1}\left(rac{1}{\lambda}
ight) u_{xx}(s,x) = \mathcal{L}^{-1}\left(rac{1}{\lambda}\hat{u}_{xx}(s,x)
ight) = \mathcal{L}^{-1}\left[-(ds+c)\hat{u}_{xx}(t,s)
ight] = \ -du_{xxt}(x,t) - du_{xx}(0,x)\delta(t) - cu_{xx}(x,t) \ \end{pmatrix}$$

En utilisant des différences finies pour les dérivées en temps, et en considérant que la solution initiale est nulle sur les bords (ce qui est le cas de l'exemple testé ici), on obtient les TBC approximées discrètes :

$$\begin{split} u_0^{n+1} - \left(\frac{d_L}{\Delta t} + c_L\right) \left(\frac{u_1^{n+1} - u_0^{n+1}}{\Delta x}\right) + \left(\frac{d_L^2}{\Delta t^2} + \frac{2d_L c_L}{\Delta t} + c_L^2\right) \left(\frac{u_0^{n+1} - 2u_1^{n+1} + u_2^{n+1}}{\Delta x^2}\right) = \\ - \frac{d_L}{\Delta t} \left(\frac{u_1^n - u_0^n}{\Delta x}\right) + \left(2\frac{d_L^2}{\Delta t^2} + \frac{2d_L c_L}{\Delta t}\right) \left(\frac{u_0^n - 2u_1^n + u_2^n}{\Delta x^2}\right) - \frac{d_L^2}{\Delta t^2} \left(\frac{u_0^{n-1} - 2u_1^{n-1} + u_2^{n-1}}{\Delta x^2}\right) \\ - u_N^{n+1} - \left(\frac{d_R^2}{\Delta t^2} + \frac{2d_R c_R}{\Delta t} + c_R^2\right) \left(\frac{u_N^{n+1} - 2u_{N-1}^{n+1} + u_{N-2}^{n+1}}{\Delta x^2}\right) = \\ - \left(2\frac{d_R^2}{\Delta t^2} + \frac{2d_R c_R}{\Delta t}\right) \left(\frac{u_N^n - 2u_{N-1}^n + u_{N-2}^n}{\Delta x^2}\right) + \frac{d_R^2}{\Delta t^2} \left(\frac{u_N^{n-1} - 2u_{N-1}^{n-1} + u_{N-2}^{n-1}}{\Delta x^2}\right) \\ - \frac{u_N^{n+1} - u_{N-1}^{n+1}}{\Delta x} + \left(\frac{d_R}{\Delta t} + c_R\right) \left(\frac{u_N^{n+1} - 2u_{N-1}^{n+1} + u_{N-2}^{n+1}}{\Delta x^2}\right) = \frac{d_R}{\Delta t} \left(\frac{u_N^n - 2u_{N-1}^n + u_{N-2}^n}{\Delta x^2}\right) \end{split}$$

6.2.1 Tests de validation de l'approximation

On a répété les tests faités pour l'approximation avec P_0 , en faisant varier les coefficients c_L et c_R parmi les valeurs dans $\{-10, -1, -0.1, 0, 0.1, 1, 10\}$. Afin d'éviter

un calcul trop longite, et aussi en utilisant la remarque fait ci-dessus concernant la faible influence des coefficients du bord à droite sur les résultats, tous les tests ont été faits avec $c_R = c_L$ et $d_R = d_L$.

Les dix meilleurs résultats sont présentés dans le tableau 5. On observe que le meilleur résultat est celui avec $d_L = d_R = 0$ et $c_L = c_R = 1.0$, ce qui correspond au meilleur résultat parmi les approximations utilisant des polynômes constants.

$c_L = c_R$	e_{L2}		
1.0	0.1075		
1.0	0.1405		
1.0	0.1920		
0.1	0.2279		
0.1	0.3771		
1.0	0.2716		
0.0	0.2480		
1.0	0.3004		
0.0	0.2721		
0.1	0.3674		
	1.0 1.0 1.0 0.1 0.1 1.0 0.0 1.0		

Table 5 – Meilleurs résultas (les erreurs e_{L2} les plus petites) dans le cas de l'approximation avec le polynôme linéaire

3 Conclusion partiale
Il faut être claire que notre approximation ne fournit pas des meilleures TBCs que celles proposées par [6] (et cela n'est pas l' objectif du travail développé ici, comme il a été discuté dans la introduction de ce rapport). En fait, [6] dérive des TBCs pour deux schémas discrets, et le pire résultat parmi eux, en utilisant les mêmes Δt et Δx utilisés ici, présente une erreur $e_{L2} \approx 0.005$ pour t = 4, tandis que notre mieux résultat fournit $e_{L2} \approx 0.1$ pour le même instant. Néanmoins, en considérant qu'on souhaite appliquer les TBCs à une méthode de décomposition de domaine, on veut plutôt minimiser l'erreur due aux conditions limites à l'interface, mais pas l'erreur liée aux conditions aux limites extérieures.

Coux. a?

Cependant, en considérant les résultats présentés jusqu'ici, on peut dire que les conditions aux limites proposées simulent relativement bien des TBCs, avec une implémentation assez simple, en comparaison avec celles proposées par [6] (qui demandent par exemple le calcul de Z-transformées, dans le rôle de versions discrètes des transformées de Laplace). Par ailleurs, on remarque que l'approximation qu'on a fait avec le polynôme linéaire, malgré l'augmentation de la complexité du schéma (où il faut garder la solution deux pas précédentes en plus), ne fournit pas de meilleures résultats par rapport au cas du polynôme constant.

Ainsi, dans la suite de notre travail, on a utilisé (toujou) s l'approximation avec P_0 . On note les TBCs correspondantes avec les opérateurs $heta_i^c,\ i=1,2,3,$ définis dans (34).

$$egin{aligned} \Theta_1^{c_L}(u,x) &= u(t,x) - c_L u_x(t,x) + c_L^2 u_{xx}(t,x) \ \Theta_2^{c_R}(u,x) &= u(t,x) - c_R^2 u_{xx}(t,x) \ \Theta_3^{c_R}(u,x) &= u_x(t,x) + c_R u_{xx}(t,x) \end{aligned}$$

Application des TBCs approximées à une méthode de décomposition de domaine

L'approximation des conditions aux limites transparentes (TBCs) utilisant un polynôme constant a été appliquée dans une méthode de décomposition de domaine (Domain Decomposition Method - DDM). Dans cette section, on décrit d'abord la DDM implémentée, et ensuite on décrit l'incorporation des TBCs et les tests réalisés.

7.1 Les méthodes de Schwarz

La description suivante s'appuie sur [16]. Les méthodes de décomposition de domaine, comme indique son nom, permettent de décomposer un domaine Ω en plusieurs subdomaines Ω_i (superposés ou non) et de résoudre le problème dans chacun d'eux. Ainsi, il faut trouver des fonctions qui satisfassent la PDE dans chacun des subdomaines et que soient égaux dans les interfaces.

La première DDM développée a été la méthode de Schwarz [16, 15], qui consiste en une méthode itérative : dans le cas d'un problème d'évolution, la solution $u_i^{n,\infty}$ dans chaque pas de temps t_n et chaque subdomaine Ω_i , est calculée comme étant la convergence de la solution obtenue dans chaque itération, $u_i^{n,k}, \ k \geq 0$. On peut nommer deux types de méthodes de Schwarz, en dépendant de la manière avec laquelle as conditions aux interfaces sont construites pour calculer $u_i^{v,k}$.

Dans la méthode de Schwarz additive (Additive Schwarz Method - ASM), les conditions aux interfaces sont toujours calculées en utilisant la solution $u_j^{n,k-1},\ j \neq$ i de la dernière itération. Ainsi, dans l'interface entre les domaines Ω_i et $\Omega_j,$ les conditions à l'interface pour le problème dans Ω_i s'écrit comme

$$\mathcal{B}_i(u_i^{n,k+1}) = \mathcal{B}_i(u_j^{n,k})$$

où \mathcal{B}_i est l'opérateur de la TBC dans Ω_i .

En revanche, la méthode de Schwarz multiplicative (Multiplicative Schwarz Method - MSM) utilise toujours l'information la plus récente pour le calcul des

d. suine sur

X

conditions aux interfaces. Ainsi, dans le cas d'une DDM avec deux subdomains, les TBCs s'écriraient (par exemple) sous la forme

$$\mathcal{B}_1(u_1^{n,k+1}) = \mathcal{B}_1(u_2^{n,k}) \qquad \mathcal{B}_2(u_2^{n,k+1}) = \mathcal{B}_2(u_1^{n,k+1})$$

pour la résolution du problème dans Ω_1 et Ω_2 , respectivement. En fait, la MSM a été la forme originale proposée par Schwarz (avec une condition du type Dirichlet, $\mathcal{B}_i(u) = u$ [16, 20]. L'ASM est une modification proposée par [19], et qui présente comme principale avantage (notamment quand le nombre de subdomaines augmente) le fait d'être un algorithme naturellement parallèle (et qui peut ainsi être implémenté en utilisant la computation parallèle) [19].

Dans ce stage, on n'a travaillé qu'avec l'ASM. Par ailleurs, on a toujours considéré une DDM décomposant $\Omega \subset \mathcal{R}$ dans deux subdomaines Ω_1 et Ω_2 , non superposants (sauf par un point en commun). La description faite dans ce rapport considère toujours ces hypothèses, mais elle serait équivalente dans le cas de DDMs plus générales.

Lors de l'implémentation d'une méthode de Schwarz, il faut définir des opérateurs \mathcal{B}_i appropriés, de façon que : de louve à la constitut de la c

Par ailleurs, on veut une convergence rapide de la méthode.

Selon [16], l'ASM optimale est celle qui utilise les TBCs exactes (28) comme conditions aux interfaces : dans ce cas, la méthode converge dans deux itérations, et aucune autre ASM ne peut converger plus rapidement. Néanmoins, comme discuté avant dans ce rapport, la dérivation analytique et l'implémentation numérique des TBCs exactes sont, en général, impraticables, en raison de son caractère non local en temps. Ainsi, on propose ici l'implémentation des nos TBCs approximées (34) dans la DDM.

ASM avec des TBCs approximées pour l'équation de dispersion

La résolution de l'équation de dispersion avec la méthode de Schwarz additive, en utilisant les approximations des TBCs construites à partir d'un polynôme constant, s'écrit comme

$$\begin{cases} (u_1^{n,k+1})_t + (u_1^{n,k+1})_{xxx} = 0, & x \in \Omega_1, \quad t \ge 0 \\ u_1^{n,0} = u_1^{n-1,\infty}, & x \in \Omega_1 \\ \Upsilon_1^{c_L}(u_1^{n+1,k+1}, -L) = 0, \\ \Theta_2^{c_R}(u_1^{n+1,k+1}, 0) = \Theta_2^{c_R}(u_2^{n+1,k}, 0), \\ \Theta_3^{c_R}(u_1^{n+1,k+1}, 0) = \Theta_3^{c_R}(u_2^{n+1,k}, 0) \end{cases}$$

$$(36)$$

$$\begin{cases} (u_{2}^{n,k+1})_{t} + (u_{2}^{n,k+1})_{xxx} = 0, & x \in \Omega_{2}, & t \ge 0 \\ u_{2}^{n,0} = u_{2}^{n-1,\infty}, & x \in \Omega_{2} \\ \Theta_{1}^{c_{L}}(u_{2}^{n+1,k+1},0) = \Theta_{1}^{c_{L}}(u_{1}^{n+1,k},0) \\ \Upsilon_{2}^{c_{R}}(u_{2}^{n+1,k+1},L) = 0 \\ \Upsilon_{3}^{c_{R}}(u_{2}^{n+1,k+1},L) = 0 \end{cases}$$

$$(37)$$

où Υ_i , i=1,2,3, sont les conditions aux limites sur les bords extérieurs (i.e., définies sur $\partial\Omega_i\backslash\Gamma$, où $\Gamma=\Omega_1\cap\Omega_2$). Ces conditions externes sont indépendantes des conditions à l'interface. On a considéré ici $\Upsilon_1=\Theta_1^{1.0}$, $\Upsilon_2=\Theta_2^{0.0}$ and $\Upsilon_3=\Theta_3^{0.0}$, ce qui donne

$$egin{aligned} \Upsilon_1(u,x) &= u - u_x + u_{xx} \ \Upsilon_2(u,x) &= 0 \ \Upsilon_3(u,x) &= 0 \end{aligned}$$

Ce choix a été fait en se basant sur son implémentation simple et sur les bons résultats fournis par les coefficients $c_L = 1.0$ et $c_R = 0.0$ lors de l'approximation de la solution analytique dans Ω (comme montre le tableau 4). Néanmoins, cela n'a pas une vraie importance dans l'étude qu'on propose ici, parce qu'on compare les résultats de la DDM avec une solution numérique de référence calculée dans le monodomaine. La seule exigence pour que cette étude soit cohérente est que les conditions aux limites externes pour le calcul de u^{ref} soient les mêmes Υ_i , i = 1, 2, 3, utilisées dans la DDM.

Ainsi, la solution de référence utilisée dans cette étude est la solution $\widehat{\operatorname{du}}$ $\widehat{\operatorname{uv}}$ problème

$$\begin{cases} u_{t} + u_{xxx} = 0, & x \in \Omega, \quad t \in [t_{0}, t_{0} + \Delta t] \\ u(t_{0}, x) = u^{exact}(t_{0}, x), & x \in \Omega \\ \Upsilon_{1}(u, -L) = 0, \quad t \in [t_{0}, t_{0} + \Delta t] \\ \Upsilon_{2}(u, L) = 0, \quad t \in [t_{0}, t_{0} + \Delta t] \\ \Upsilon_{3}(u, L) = 0, \quad t \in [t_{0}, t_{0} + \Delta t] \end{cases}$$
(39)

be ale

Remarques sur la notation Toujours en considérant les objectifs de ce travail, on remarque qu'on compare les solutions calculées seulement dans un pas de temps. Cela est nécessaire pour que l'erreur due à la DDM soit étudiée séparément (sans influence, para exemple, de l'erreur accumulée au long des pas de temps, due à la discrétisation temporale).?

1

note ?

Par conséquent, on peut alléger la notation. À parti d'ici jusqu'à la fin de ce rapport, on dénote par u_j^i la solution de la DDM, où i indique le subdomaine Ω_i (ou, dans le cas de la solution de référence, i=ref, et dans la convergence de la méthode, i=*) et j indique la position spatiale discrète. Dans les cas où le processus itérative doit être considéré, on ajoute le superindice k pour indique k l'itération

En ce qui concerne la discrétisation spatiale, le monodomain Ω est divisé en 2N+1 points distribués de façon homogène, numérotés de 0 jusqu'à 2N. Dans les descriptions suivantes, on considère toujours que les deux subdomaines Ω_1 et Ω_2 ont le même nombre de points, respectivement $x_0, ..., x_N$ et $x_N, ..., x_{2N}$. Le point à l'interface, x_N , est commun aux deux subdomains, ayant des solutions différentes dans chacun d'eux : u_N^1 et u_N^2 . Évidemment, on espère que, à convergence, $u_N^1 = u_N^2 = u_N^*$.

7.3 Discrétisation du problème et erreur dans la solution convergée

Lors de l'application des TBCs approximées dans une ASM, on doit assurer que la solution convergée u^* satisfait la même équation discrète que la solution u^{ref} du problème dans le monodomaine. Dans les paragraphes suivants, on montre que cette propriété n'est pas vérifiée par la méthode (36) - (37) proposée ici, et, en se basant sur cette démonstration, on propose des corrections pour ce problème.

Pour les points intérieurs de chacun des domaines, on utilise une discrétisation spatiale de second ordre pour l'équation (31) :

$$\frac{u_j^i - \alpha_j^i}{\Delta t} + \frac{-\frac{1}{2}u_{j-2}^i + u_{j-1}^i - u_{j+1}^i + \frac{1}{2}u_{j+2}^i}{\Delta x^3} = 0$$
 (40)

ce qui est valable pour j=2,...,N-2 dans le cas i=1; pour j=N+2,...,2N-2 dans le cas i=2; et pour j=2,...,2N-2 dans le cas i=ref. Dans (40), α^i_j est une donnée (par exemple, la solution convergée du pas de temps précédent).

Pour les points proches aux bords, on utilise une discrétisation décentrée ou les TBCs appropriées. En fait, en considérant qu'une TBC est écrite pour le bord à gauche et deux pour le bord à droite, on doit imposer une discrétisation décentrée seulement pour le deuxième point le plus proche du bord à gauche. Par exemple, pour le point x_1 :

$$\frac{u_1^2 - \alpha_1^2}{\Delta t} + \frac{-\frac{5}{2}u_1^2 + 9u_2^2 - 12u_3^2 + 7\frac{1}{2}u_4^2 - \frac{3}{2}u_5^2}{\Delta x^3} = 0$$

et de façon similaire pour les autres points proches des bords (e.g. le point N+2 dans Ω_2).

Pour résoudre le problème dans Ω_1 , deux IBCs sont imposées (correspondant respectivement à Θ_2 et Θ_3) dans les équations discrètes des points x_{N-1} et x_N :

$$\Theta_{2}^{c_{R}}(u_{N}^{1}) = \Theta_{2}^{c_{R}}(u_{N}^{2}) \Longrightarrow
\Longrightarrow u_{N}^{1} - c_{R}^{2} \frac{u_{N}^{1} - 2u_{N-1}^{1} + u_{N-2}^{1}}{\Delta x^{2}} = u_{N}^{2} - c_{R}^{2} \frac{u_{N}^{2} - 2u_{N+1}^{2} + u_{N+2}^{2}}{\Delta x^{2}}$$
(41)

$$\Theta_{3}^{c_{R}}(u_{N}^{1}) = \Theta_{3}^{c_{R}}(u_{N}^{2}) \Longrightarrow
\frac{u_{N}^{1} - u_{N-1}^{1}}{\Delta x} + c_{R} \frac{u_{N}^{1} - 2u_{N-1}^{1} + u_{N-2}^{1}}{\Delta x^{2}} = \frac{u_{N+1}^{2} - u_{N}^{2}}{\Delta x} + c_{R} \frac{u_{N}^{2} - 2u_{N+1}^{2} + u_{N+2}^{2}}{\Delta x^{2}}$$
(42)

En revanche, pour résoudre le problème dans Ω_2 , seulement une condition à l'interface est utilisée (correspondant à Θ_1), étant imposée pour le point x_N :

$$\Theta_{1}^{c_{L}}(u_{N}^{2}) = \Theta_{1}^{c_{L}}(u_{N}^{1}) \Longrightarrow
\Rightarrow u_{N}^{2} - c_{L} \frac{u_{N+1}^{2} - u_{N}^{2}}{\Delta x} + c_{L}^{2} \frac{u_{N}^{2} - 2u_{N+1}^{2} + u_{N+2}^{2}}{\Delta x^{2}} =
u_{N}^{1} - c_{L} \frac{u_{N}^{1} - u_{N-1}^{1}}{\Delta x} + c_{L}^{2} \frac{u_{N}^{1} - 2u_{N-1}^{1} + u_{N-2}^{1}}{\Delta x^{2}} \tag{43}$$

À convergence, les expressions (41) jusqu'à (43) donnent respectivement

$$egin{aligned} u_N^* - c_R^2 rac{u_N^* - 2u_{N-1}^* + u_{N-2}^*}{\Delta x^2} &= u_N^* - c_R^2 rac{u_N^* - 2u_{N+1}^* + u_{N+2}^*}{\Delta x^2} \implies \ \implies 2c_R^2 rac{-rac{1}{2}u_{N-2}^* + u_{N-1}^* - u_{N+1}^* + rac{1}{2}u_{N+2}^*}{\Delta x^2} &= 0 \end{aligned}$$

$$\begin{aligned} \frac{u_{N}^{*} - u_{N-1}^{*}}{\Delta x} + c_{R} \frac{u_{N}^{*} - 2u_{N-1}^{*} + u_{N-2}^{*}}{\Delta x^{2}} &= \\ \frac{u_{N+1}^{*} - u_{N}^{*}}{\Delta x} + c_{R} \frac{u_{N}^{*} - 2u_{N+1}^{*} + u_{N+2}^{*}}{\Delta x^{2}} &\Longrightarrow \\ &\Longrightarrow -\frac{u_{N-1}^{*} - 2u_{N}^{*} + u_{N+1}^{*}}{\Delta x} - 2c_{R} \frac{-\frac{1}{2}u_{N-2}^{*} + u_{N-1}^{*} - u_{N+1}^{*} + \frac{1}{2}u_{N+2}^{*}}{\Delta x^{2}} &= 0 \end{aligned}$$

$$egin{align*} u_N^* - c_L rac{u_{N+1}^* - u_N^*}{\Delta x} + c_L^2 rac{u_N^* - 2u_{N+1}^* + u_{N+2}^*}{\Delta x^2} = \ u_N^* - c_L rac{u_N^* - u_{N-1}^*}{\Delta x} + c_L^2 rac{u_N^* - 2u_{N-1}^* + u_{N-2}^*}{\Delta x^2} \implies \ - c_L rac{u_{N-1}^* - 2u_N^* + u_{N+1}^*}{\Delta x} + 2c_L^2 rac{-rac{1}{2}u_{N-2}^* + u_{N-1}^* - u_{N+1}^* + rac{1}{2}u_{N+2}^*}{\Delta x^2} = 0 \end{split}$$

Alors, on peut observer que la solution convergée de la DDM ne satisfait pas la même équation discrète que la solution de référence dans les points $x_{N-1}, x_N \in \Omega_1$, et dans $x_N \in \Omega_2$. Dans tous les autres points les équations satisfaites sont identiques, à l'exception du point $x_{N-1} \in \Omega_2$, comme détaillé dans la remarque suivante :

Remarque: modification de la solution de référence: Même si la DDM fournissait une solution compatible avec celle du problème dans le monodomain (ce qu'on assure avec des corrections proposées dans la suite de ce rapport), la solution de la DDM ne convergerait exactement vers u^{ref} , pour une raison qui ne dépendent pas de l'expression des IBCs, mais si du fait qu'on écrit deux IBCs pour le bord à gauche et une pour le droit. Comme on utilise une discrétisation centrée (expression 40) pour la troisième dérivative dans l'espace (ce qui demande un stencil de deux points de chaque côté du point au milieu), il faut écrire une discrétisation décentrée pour le point x_{N+1} lors de la résolution du problème dans Ω_2 (et cette discrétisation n'est pas remplacée par une IBC). Ainsi, ce point ne satisfait pas la même équation discrète que dans le problème de référence. Afin d'éviter cette incompatibilité et de nous permettre de bien étudier le comportement de la DDM, on va modifier la discrétisation du point x_{N+1} dans le problème du monodomain, en utilisant la même discrétisation décentrée de second ordre:

$$\frac{u_{N+1}^2 - \alpha_{N+1}^2}{\Delta t} + \frac{-\frac{5}{2}u_{N+1}^2 + 9u_{N+2}^2 - 12u_{N+3}^2 + 7\frac{1}{2}u_{N+4}^2 - \frac{3}{2}u_{N+1}^2}{\Delta x^3} = 0$$

Étant faite cette remarque, la figure 39 résume les discrétisations imposées pour chaque point dans les problèmes du monodomain et de la DDM, selon la description faite ci-dessus :

$$\Omega \xrightarrow{j=0} \frac{1}{*} \xrightarrow{2} \xrightarrow{N-2} \xrightarrow{N-1} \xrightarrow{N} \xrightarrow{N+1} \xrightarrow{N+2} \xrightarrow{2N-2} \xrightarrow{2N} \\ \Omega_1 \xrightarrow{*} \\ \Omega_2 \\ \bullet \text{DF 2ème ordre centrée} \\ \star \text{TBC} \\ \bullet \text{DBC}$$

 $\begin{tabular}{l} FIGURE 39-Schéma indiquant la discrétisation spatiale imposée pour chaque point du monodomaine et des subdomaines de la DDM \\ \end{tabular}$

7.3.1 Vérification numérique de l'erreur due aux TBCs approximées

Le problème (36) - (37) a été résolu jusqu'à convergence avec cinq discrétisations spatiales uniformes différentes, au long d'un pas de temps (dans l'intervale $[0, \Delta t]$). Dans chaque cas, la solution de référence u^{ref} était la solution du problème du monodomain (39), résolu avec la même taille de maille. Deux erreurs ont été calculées :

$$e^{N,st}=|u_N^{ref}-u_N^st|$$

$$e^{\Omega,*} = ||u_N^{ref} - u_N^*||_2 = \sqrt{\Delta x \left[\sum_{j=0}^N (u_j^{ref} - u_j^{1,\infty})^2 + \sum_{j=N}^{2N} (u_j^{ref} - u_j^{2,\infty})^2 \right]}$$
(44)

correspondant respectivement à l'erreur sur l'interface et à l'erreur dans tout le domain

X

wd

On s'intéresse au comportement de ces erreurs en fonction de la taille de maille. Comme montré la figure 40, on vérifie que la DDM proposée par nous, utilisant les TBCs approximées (34), produit une erreur d'ordre $\mathcal{O}(\Delta x)$

FIGURE 40 – Vérification numérique de l'ordre de convergence de l'erreur due à la DDM

Corrections pour les TBCs approximées

On propose des modifications pour les TBCs utilisées dans l'ASM afin d'annuler ces erreurs :

$$\Theta_{1}^{c_{L}}(u_{2}^{n+1,k+1}) + \theta_{1} = \Theta_{1}^{c_{L}}(u_{1}^{n+1,k}) + \theta_{1}'
\Theta_{2}^{c_{R}}(u_{1}^{n+1,k+1}) + \theta_{2} = \Theta_{2}^{c_{R}}(u_{2}^{n+1,k}) + \theta_{2}'
\Theta_{3}^{c_{R}}(u_{1}^{n+1,k+1}) + \theta_{3} = \Theta_{3}^{c_{R}}(u_{2}^{n+1,k}) + \theta_{3}'$$
(45)

avec θ_i, θ'_i donnés par

$$egin{aligned} heta_1 &= \Delta x c_L rac{u_{N+1}^2 - 2 u_N^2 + u_{N-1}^1}{\Delta x^2} + c_L^2 rac{\Delta x}{\Delta t} \left(u_N^2 - lpha_N^2
ight) \ heta_1' &= -c_L^2 rac{\Delta x}{\Delta t} \left(u_N^1 - lpha_N^1
ight) \ heta_2 &= rac{\Delta x}{\Delta t} c_R^2 (u_N^1 - lpha_N^1) \ heta_2' &= -rac{\Delta x}{\Delta t} c_R^2 (u_N^2 - lpha_N^2) \end{aligned}$$

$$heta_3 = 2rac{\Delta x}{\Delta t} \left[-\Delta x (u_{N-1}^1 - lpha_{N-1}^1) - c_R (u_N^1 - lpha_N^1)
ight] + \Delta x rac{u_{N-3}^1 - 2u_{N-2}^1 + u_{N-1}^1}{\Delta x^2} \ heta_3' = 0$$

On peut facilement vérifier que, à convergence, les TBCs corrigées (45) ramènent à l'expression (40) écrite pour les points $x_N \in \Omega_2, x_N \in \Omega_1$ et $x_{N-1} \in \Omega_1$, respectivement.

Optimisation des IBCs (vitesse de convergence) 7.4

gram

Après la proposition et validation de la DDM avec des IBCs corrigées, notre nouveau objectif maintenant était d'optimiser ces IBCs, dans le sens de minimiser alle de minimiser al le nombre de itérations de l'ASM pour arriver à la convergence. Ainsi, on a fait un très large ensemble de tests, afin de trouver les coefficients c_L et c_R qui fournissent la convergence la plus rapide. Dans un premier moment, on a fait cette étude avec temps un pas de temps et un pas de espace fixés, afin d'analyser exclusivement l'influence du coefficient; en suite, on a introduit ces deux paramètres dans l'étude.

Comme on connaît une solution de référence, le critère de convergence utilisé est

O à chaque fois? / on a , à chaque fois, --- $e^{\Omega,k} \leq \varepsilon$

avec $\varepsilon = 10^{-9}$ et l'erreur $e^{\Omega,k}$, pour chaque itération k, définie comme dans (44).

Afin de simplifier les tests et d'éviter des coûts de calcul trop élevés, on a considéré toujours $c_L = c_R = c$ dans le procès d'optimisation. Le range des coefficients testés est [-10.0, 20.0] (choisi après des tests initiaux pour identifier un intervalle approprié), avec un pas égal à 0.1 entre eux (ou encore plus petit, jusqu'à 0.005, dans les régions les plus proches des coefficients optimaux, afin de raffiner la recherche). Le nombre maximal d'itérations est 100.

Rang?

Comme une dernière remarque, on rappelle que tous les tests ont été réalisées \times au long d'un seul pas de temps.

7.4.1 Tests variant l'instant initial et la position de l'interface

On a utilisé un pas de temps $\Delta t = 20/2560 = 0.0078125$ et une taille de maille $\Delta x = 12/500 = 0.024$ fixés. Par ailleurs, on a mis en place deux ensembles de tests, nous permettant d'étudier la vitesse de convergence avec des différentes conditions initiales et différents tailles des subdomaines :

- 1. Tests variant l'instant initial t_0 , avec l'interface fixée sur le centre du monodomaine $\Omega = [-6, 6]$;
- 2. Tests variant la position de l'interface ($x_{interface} = -L + \alpha 2L$, où L = 6 et $0 < \alpha < 1$), pour un instant initial $t_0 = 0.78125$ fixé.

Dans tous les cas, la solution de référence u^{ref} est la solution du problème dans le monodomaine (39), calculée dans $[t_0, t_0 + \Delta t]$.

Les résultats obtenus sont résumés dans les figures 41 et 42, avec le nombre d'itérations pour arriver à la convergence en fonction du coefficient c. Par souci de clarité, les résultats pour les coefficients négatifs et positifs sont présentés dans des graphes séparés. Ils montrent des comportements très similaires pour toutes les courbes, avec deux minima for c < 0 et deux autres for c > 0, avec approximativement la même valeur dans tous les cas (environ -1.35, -0.10, 0.20 et 4.50). Les minima les plus proches de zéro sont associés à des courbes très discontinues, tandis que les autres deux minima sont associés à des courbes plus lisses (voir les détails dans les figures 40c-40f et 41c-41f). Finalement, on remarque que, pour quelques courbes, le minimum est associée aux coefficients les plus proches de zéro, et pour les autres courbes, il est associée aux autres coefficients. Néanmoins, dans tous ces cas, les nombres optimales d'itérations sont similaires (entre cinq et sept).

97

(c) Détail autour d'un des coefficients optimaux négatifs

(e) Détail autour d'un des coefficients optimaux positifs

(b) Vue générale des coefficients positifs

(d) Détail autour de l'autre coefficient optimal négatif

(f) Détail autour de l'autre coefficient optimal positif

FIGURE 41 – Nombre d'itérations jusqu'à convergence en fonction du coefficient des TBCs, pour une interface fixée et des différentes valeurs de t_0

(a) Vue générale des coefficients négatifs

(b) Vue générale des coefficients positifs

(c) Détail autour d'un des coefficients optimaux négatifs

(e) Détail autour d'un des coefficients optimaux po-

(d) Détail autour de l'autre coefficient optimal négatif

(f) Détail autour de l'autre coefficient optimal positif

FIGURE 42 – Nombre d'itérations jusqu'à convergence en fonction du coefficient des TBCs, pour t_0 fixé et des différentes positions de l'interface

La figure 43 montre l'évolution de l'erreur, en fonction des itérations, pour les cinq coefficients c qui ont fournit les convergences les plus rapides, pour un temps initial et une position de l'interface fixés. Pour des autres valeurs de t_0 et α , le graphe est similaire, en ce qui concerne le nombre d'itérations et le fait que la convergence est plus régulière pour les coefficients les plus proches de zéro, en comparaison aux autres coefficients optimaux.

7.4.2 Tests variant Δt and Δx

Après vérifier que la méthode se comporte de façon similaire pour toute condition initiale (i.e., pour tout t_0) et toute position de l'interface, on a fixé ces paramètres ($t_0 = 0$ and $\alpha = 0.5$) et on a fait des nouveaux tests avec des différentes valeurs de Δt (avec $\Delta x = 12/250$ fixé) et des différentes valeurs de Δx (avec $\Delta t = 0.02$ fixé).

Le nombre d'itérations en fonction des coefficients, pour quelques tests, est montré dans les figures 44 et 45. La figure 46 présente le coefficient optimal pour chaque Δt ou Δx . En considérant la remarque qu'on a fait concernant les résultats similaires (i.e., le nombre d'itérations jusqu'à convergence) pour les quatre coef-

Après avoir Vérifié

présenté?

FIGURE 43 - Évolution de l'erreur, en fonction des itérations, pour les tests les plus rapides

(2) on a sevlement ten compte, --- des minimas ---

éloignés?

x ficients optimaux, on a tenu en compte, pour la construction des courbes de la

igure 46, seulement les minima les plus lointains de zéro : ceci a été fait parce que,

 \times comme montre les figures 44 et 45, ces minima ont une forte dépendance de Δt et Δx , et on cherchait à étudier cette relation.

FIGURE 44 – Nombre d'itérations jusqu'à convergence en fonction du coefficient pour 2N=250 fixé et des différentes valeurs de Δt

FIGURE 45 – Nombre d'itérations jusqu'à convergence en fonction du coefficient des TBCspour $\Delta t = 0.02$ et des différentes valeurs de Δx

FIGURE 46 - Coefficients optimaux en fonction du pas de temps et de la taille de maille

La figure 46 suggère que le coefficient optimal dépende de $(\Delta t)^{\nu}$ et $(\Delta x)^{\eta}$, avec $0 \le \nu \le 1$ et $\eta < 0$. En fait, en faisant quelques régressions avec Δt ou Δx fixé, on peut conclure que $\nu = 2/3$ et $\eta = -1$ fournissent des courbes de régression très bien adaptées (avec des coefficients de détermination R^2 plus grandes que 0.99), pour les cas des coefficients positifs et négatifs (même que chacun de ces cas corresponde à des courbes différents). Ainsi, on va chercher à modéliser une fonction de la forme

$$c_{opt}(\Delta t, \Delta x) = \kappa + \alpha(\Delta t)^{\frac{2}{3}} + \beta \frac{1}{\Delta x} + \gamma \frac{(\Delta t)^{\frac{2}{3}}}{\Delta x}$$
 (46)

Une régression utilisant les coins du rectangle $[0.001, 0.1] \times [12/100, 12/1000]$ et quinze points à l'intérieur fournit les surfaces

$$c_{opt}^{+}(\Delta t, \Delta x) = 0.0775 - 0.3353(\Delta t)^{\frac{2}{3}} - 0.0012 \frac{1}{\Delta x} + 2.7407 \frac{(\Delta t)^{\frac{2}{3}}}{\Delta x}$$
 (47)

$$c_{opt}^{-}(\Delta t, \Delta x) = -0.0583 - 1.5024(\Delta t)^{\frac{2}{3}} - 0.0006 \frac{1}{\Delta x} - 0.7287 \frac{(\Delta t)^{\frac{2}{3}}}{\Delta x}$$
(48)

respectivement pour les coefficients optimaux positifs et négatifs. Les coefficients de détermination de chaque régression son $R^{2,+} = 0.9999894$ et $R^{2,-} = 0.9998993$, ce qui indique une bonne représentation.

Afin de valider les expressions (47) and (48), elles ont été utilisées pour calculer le coefficient optimal pour plusieurs points $(\Delta t, \Delta x)$, avec $\Delta t \in [0.0005, 0.3]$ et $\Delta x \in [12/5000, 12/50]$, et ces coefficients ont été utilisées dans la résolution du problème avec la DDM. Comme montre la figure 47, pour la plupart des points dans le domaine considéré, le coefficient optimal calculé fournit une convergence rapide vers la solution du monodomaine, avec moins de 20 itérations (ou encore moins que 12 itérations), sur une large région du domaine).

X

(a) Coefficients négatifs

(b) Coefficients positifs

FIGURE 47 – Lignes de contour du nombre d'itérations jusqu'à convergence, en utilisant les coefficients optimaux $c_{opt}^+(\Delta t, \Delta x)$ obtenus à partir des régressions.

Les nombres d'itérations montrés dans la figure 47 ne sont pas les plus petits qu'on est capable de trouver (cf. les figures 41 jusqu'à 45), parce que les expressions (47) et (48) sont des régressions construites à partir de coefficients optimaux obtenus parmi un ensemble discret de valeurs possibles. Néanmoins, elles donnent des très bonnes approximations pour le c optimal pour chaque $(\Delta t, \Delta x)$, et ainsi on peut chercher dans une petite région autour du c_{opt} calculé pour obtenir une convergence encore plus rapide.

7.5 Conclusion partiale

Les résultats présentés dans cette section montrent que la méthode de décomposition de domaine proposée ici, consistant en une méthode de Schwarz additive avec nos TBCs approximées, est capable de fournir une convergence rapide vers la solution du problème résolu dans le monodomaine. Alors, on a atteint notre objectif de résoudre l'équation de dispersion dans un domaine fini divisé en deux subdomaines.

Par ailleurs, les résultats des tests d'optimisation sont très satisfaisantés en ce qui concerne une application plus générale de notre méthode. Premièrement, pour des discrétisations spatiales et temporales fixées, on a trouvé des coefficients optimaux indépendants de la solution initiale et de la taille des subdomaines (i.e., indépendamment de l'instant initial et de la position de l'interface). Deuxièmement, on a obtenu des très bonnes courbes et surfaces de régression pour les coefficients optimaux en fonction de Δt et Δx , ce qui nous permet d'appliquer le modèle. Premièrement, avec une convergence rapide, dans des autres cadres numériques que ceux testés dans cette étude.

8 Conclusion

Le travail développé au long du deuxième stage de mon année de césure a eu deux thématiques principales : l'étude et implémentation numérique de modèles non linéaires de propagation des ondes ; et le développement d'une méthode de décomposition de domaine permettant de résoudre un de ces modèles.

Dans la première ligne, on a travaillé sur l'équation de KdV et les équations de Serre. Les études de ces deux modèles ont eu plusieurs points é commun : notamment, dans les deux cas on a proposé la résolution par des méthodes de splitting, en séparant les termes d'advection et ceux de dispersion, et on a implémenté pour chaque pas du splitting les mêmes types de schéma numérique (volumes finis pour le pas d'advection et différences finis pour le pas de dispersion, dans le cas de problèmes non périodiques). Néanmoins, les différentes complexités de ces modèles ont posé des difficultés distinctes pour l'étude de chacun d'eux.

On a d'abord implémenté l'équation de KdV, qui a une forme relativement simple : étant constitué d'une seule équation, ce modèle a comme solution un scalaire et, par ailleurs, les équations résultants du *splitting* peuvent être discrétisées de façon aussi simple. Ainsi, le travail sur ce modèle a avancé très rapidement, et sa simplicité nous a permis aussi de l'étudier de façon plus détaillée, avec par exemple une analyse d'échelle. On n'a pas trouvé d'expression de son solution analytique, mais le modèle a été bien validé avec des exemples trouvés dans la littérature. Ainsi, l'équation de KdV a été une enrichissante introduction à l'étude

30.

des modèles non linéaires et dispersives.

Ensuite, on s'est lancé au modèle de Serre, qui est beaucoup plus complexe. Il s'agit d'un système de deux équations, avec des solutions constituées par la hauteur de l'eau et la vitesse. Les pas du splitting demandent des discrétisations moins évidentes que celles pour l'équation de KdV, même dans le cas du pas de dispersion, qui ramène à une seule équation (car la hauteur d'eau est constante en temps). Par ailleurs, on a dû travailler notamment sur l'ordre des schémas. Plusieurs semaines d'étude, tests, débougage et discussions avec des chercheurs et chile et en France se sont déroules avant qui nous sommes arrivés à la conclusion que des schémas d'ordre 4 sont nécessaires (pour l'advection et la dispersion), ce qui nous a finalement permis de valider notre implémentation numérique avec la solution analytique.

Parallèlement, on a étudié et implémenté une méthode de décomposition de domaine, ce qui est plus directement lié à la ligne de recherche de MERIC et dont le travail développé à eu par résultat la production d'un papier scientifique, qu'on a envoyé par publication qu'on espère que soit accepté.

Ce travail a été développé sur l'équation de KdV (plus précisément sur sa forme linéarisée, sans le terme d'advection), qui a une forme plus simple et pour laquelle il y a dans la littérature des études concernant les conditions aux limites transparentes. Ces conditions ont joué un rôle très important dans notre travail. On les a proposé des approximations et on les a utilisées comme des conditions à l'interface (IBCs) entre les subdomaines, lors de l'implémentation de la DDM.

On n'avait pas l'objectif de proposer det TBCs meilleures que celles formulées dans les papiers dont on s'est basé. En fait, nos TBCs approximées sont moins précises, mais on a vérifié qu'elles fournissent des résultats raisonnables et, notamment, qui elles ont une forme et une implémentation très simples (étant écrite en fonction de seulement un coefficient) et fournissent des convergences rapides de la méthode de Schwarz.

Par ailleurs, on a proposé aussi des petites corrections à ces IBCs approximées, afin d'assurer que la solution fournie par la DDM converge exactement vers notre solution de référence (la solution du même problème calculée dans le monodomaine). Finalement, on a vérifié que la vitesse de convergence dépende du pas de temps, de la taille de la maille et du coefficient pour la construction des IBCs; ainsi, à partir d'un processus d'optimisation, on a trouvé et validé des expressions de régression qui permettent de calculer le coefficient optimal (*i.e.*, celui qui fournit la convergence la plus rapide) en fonction de Δt et Δx .

À la fin du stage, on a démarré l'étude des DDMs pour les équations de Serre. Plus précisément, en envisageant des applications pratiques, on s'intéresse plutôt au couplage entre ce modèle et les équations de *shallow water* non linéaires (NSWE), ce qui sera un des futurs thèmes de travail de l'équipe. Une autre suite na-

PaiR

المسوو

ogram.

turelle du travail réalisé dans ce stage serait l'étude des DDMs pour des problèmes en deux dimensions.

En rappelant les objectifs plus généraux de MERIC, les sujets étudiés dans ce stage ont, évidemment, un caractère très introductoire dans ce qui concerne les applications à l'étude de l'énergie marine. Néanmoins, en partant de modèles plus simples et en développant et validant des méthodes de décomposition de domaine pour eux, on permet d'orienter les prochaines pas dans la ligne de recherche de MERIC liée à la modélisation mathématique, qui peut ainsi considérer des modèles à chaque fois plus complexes et à des situations plus proches des applications réelles.

Faire 2 phrass 2 V 1 2

ud - Registre informal

À Bordeaux, j'ai travaillé à fond avec des modèles d'adaptation de maillage, qui étaient complètement nouveaux pour moi. En implémentant ces modèles avec des méthodes d'éléments finis, j'ai pu me familiariser à ce type de méthode, y compris ses aspects théoriques (la dérivation de la méthode à partir de la formulation variationnelle du problème) et pratiques (comme le calcul des éléments de la matrice du système linéaire, le stockage de la matrice creuse, le traitement des entités géométriques en deux et trois dimensions, etc.). Finalement, la création d'une bibliothèque m'a donné une forte expérience concernant le développement logiciel, la structure et spécificités de la langage C, les aspects liés à la compilation des programmes et le travail en utilisant Git pour gérer les versions et travailler en équipe.

A Santiago; même en travaillant avec des sujets avec lesquels j'étais déjà plus familiarisé, j'ai eu aussi un premier contact avec des nouveaux concepts, comme les modèles de propagation des ondes qu'on a considéré, les conditions aux bords transparentés et les méthodes de décomposition de domaine. Par rapport au stage à Bordeaux, où mes tâches étaient plutôt numériques, je considère qu'à Santiago j'ai travaillé de façon'plus équilibrée entre les côtés mathématique et numérique, ce qui aura certainement une grande importance dans la suite de ma formation académique.

Dans tous les cas, le contact et les discussions avec les orientateurs, les étudiants qui intégraient mes équipes de travail et d'autres chercheurs ont été essentielles pour consolider les connaissances acquises dans les stages.

Toujours concernant les compétences acquises, je fais une remarque spéciale sur la production de textes scientifiques. Au long des deux stages, j'ai constamment rédigé des rapports pour enregistrer et organiser les achèvements, tests et conclusions réalisés. Notamment, dans le deuxième stage j'ai écrit mon premier papier scientifique, qu'on a envoyé pour sa publication, et j'ai connu les plusiours nou present papier scientifique, qu'on a envoyé pour sa publication, et j'ai connu les plusiours nou present papier scientifique, qu'on a envoyé pour sa publication, et j'ai connu les plusiours nou present papier scientifique, qu'on a envoyé pour sa publication, et j'ai connu les plusiours nou present papier scientifique, qu'on a envoyé pour sa publication, et j'ai connu les plusiours nou present papier scientifique, qu'on a envoyé pour sa publication, et j'ai connu les plusiours nou present papier scientifique, qu'on a envoyé pour sa publication papier scientifique, qu'on a envoyé pour sa publication papier scientifique papier scientifique papier scientifique papier scientification par les plus par les plu difficultés impliquées dans cette tâche : l'organisation, sélection et présentation de l'information, en pensant que texte sera lu par d'autres personnes, possiblement de la de pas familiarisés avec le sujet; les constantes révisions; et le propre fait, aussi en citant Antoine Rousseau, "qu'un papier n'est jamais fini".

D'un point de vue moins technique, mais également important, le déroulement des stages en différentes villes et pays a complété l'expérience de l'année de césure. Je remarque notamment l'exercice au niveau linguistique : dans les deux stages, j'ai eu l'occasion de développer mon français et mon anglais, et aussi l'espagnol au Chili. Par ailleurs, dans le deuxième stage, j'ai pu aussi connaître un autre mode de vie et une autre culture.

Finalement, en tenant compte des discussions et des feedbacks faits au long et à la fin des stages par mes orientateurs et les autres membres des équipes, je crois que j'ai apporté de importantes contributions à ses activités de recherche, ce qui

Bilan personnel

antieieuer

J'avais choisi ces deux stages en espérant avoir des missions et expériences correspondantes à mes perspectives professionnelles : j'envisage une carrière dans la recherche en mathématiques appliquées, plus spécifiquement sur des méthodes numériques pour des équations différentielles, avec des applications à des problèmes de la mécanique des fluides (des thématiques que m'intéressent beaucoup et avec pour lesquelles j'avais déjà une expérience précédente). Maintenant, après la conclusion de l'année de césure, je peux affirmer que ces deux stages ont confirmé et renforcé ces perspectives et ma passion pour la recherche scientifique, en me donnant encore plus envie de poursuivre cette carrière.

J'ai eu l'occasion de connaître plus profondément les plus variés aspects du monde de la recherche. D'abord, le fait de qu'il y a toujours quelque chose de 5-bi nouveau à faire, à corriger ou à découvrir. Quand on se pose un objectif, pour y arriver il faut beaucoup étudier, écrire, programmer, tester et déboguer. Et quand on y arrive, on s'aperçoit qu'on peut toujours passer à des nouveaux cas, à des modèles plus complexes et comparer avec ce qui a été déjà fait par de autres scientifiques. (Par) ces mêmes raisons, j'ai pu vérifier que le travail dans la recherche se caractérise pour avoir, en citant Antoine Rousseau, un rythme de production complètement inconstant : parfois j'ai avancé très rapidement, mais j'ai aussi passé des semaines pour résoudre des petits problèmes. Dans tous les cas, c'était toujours des motivations pour poursuivre le travail.

Un autre très important aspect que j'ai connu dans les deux stages est la multidisciplinarité qui peut se développer dans la recherche scientifique. À Bordeaux, des chercheurs et des étudiants de plusieurs domaines composaient l'équipe CAR-DAMOM, et, à Santiago, j'étais fortement impressionné quand J'ai connu toutes les 'lignes, de recherche dans MERIC pour l'étude de la production d'énergie marine, 🝙 dent la plupart je ne connaissais pas auparavant. Ainsi, je me suis rendu compte que mon travail, dans les deux stages et aussi dans le futur, n'est qu'une petite partie de ce qui peut être étudié dans la recherche.

Un dernier point à remarquer sur ce contact avec la recherche scientifique, et qui constitue une des principales raisons qui ont confirmé mon intéresse dans ce domaine, est la très bonne ambiance de travail. Mes orientateurs et mes collègues d'écouter et à m'aider et enseigner quand j'avais besoins. J'ai eu toujours l'occasion de proposer mes idées et de guider mon travail selon mes préférences.

Dans ce qui concerne les expériences et connaissances techniques acquises dans les stages, j'ai beaucoup appris et j'ai renforcé des compétences et connaissances sur des aspects mathématiques et numériques, en complémentant ce que j'avais appris à l'Ecole des Ponts.

us fivant

est très motivateur et certainement me stimulera à continuer à travailler dans ce domaine. À Bordeaux, on a beaucoup avancé sur la bibliothèque d'adaptation de maillage, qui peut être déjà utilisée dans des codes de mécaniques dé fluides, étant ainsi utiles aux chercheurs et thésards de l'équipe; et au Chili, on est arrivé à des très bons résultats pour la décomposition de domaine appliquée à un des modèles de propagation d'onde, ce qui peut guider les prochainés pas de MERIC dans la ligne de la modélisation mathématique pour l'énergie marine.

Références

- [1] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and C. Schädle. A review of Transparent Boundary Conditions or linear and nonlinear Schrödinger equations. Communications in Computational Physics, 4(4):729–796, October 2008.
- [2] L. Arpaia and M. Ricchiuto. Mesh adaptation by continuous deformation. Basics: accuracy, efficiency, well balancedness. Technical report, INRIA Bordeaux Sud-Ouest, 2015. RR-8666, ihal-01102124.
- [3] H. Askes, L. J. Sluys, and B. B. C. Jong. Remeshing techniques for R-adaptives and combined H/R-adaptive analysis with application to 2D/3D crack propagation. European Congress on Computational Methods in Applied Sciences and Engineering, 2000.
- [4] E. Balagurusamy. Numerical methods. Tata McGraw-Hill, New Delhi, 2008.
- [5] T. B. Benjamin, J. L. Bona, and J. J. Mahony. Model equations for long waves in nonlinear dispersive systems. *Philosophical Transactions of the Royal So*ciety of London. Series A, Mathematical and Physical Sciences, 272(1220):47– 78, 1972.
- [6] C. Besse, M. Ehrhardt, and I. Lacroix-Violet. Discrete Artificial Boundary Conditions for the Korteweg-de Vries Equation. working paper or preprint, Jan. 2015.
- [7] P. Bonneton, F. Chazel, D. Lannes, F. Marche, and M. Tissier. A Splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model. J. Comput. Phys., 230:1479-1498, 2011.
- [8] J. G. Caldas Steinstraesser, R. Cienfuegos, J. D. Galaz Mora, and A. Rousseau. Optimized Schwarz method for the linearized KdV equation. working paper or preprint, Aug. 2016.
- [9] J. D. Carter and R. Cienfuegos. The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations. European Journal of Mechanics B/Fluids, 2011.
- [10] L. Chen. Programmim of finite elements in matlab. Notes du cours Math 226: Computational PDEs (University of California Irvine). http://www.math.uci.edu/chenlong/226/Ch3FEMCode.pdf.
- [11] P. Cheung. Lecture 6 Frequence-domain analysis: Laplace Transform. [Imperial College of London Signals and Linear Systems.
- [12] C. Dobrsynski. Adaptation de maillage anisotrope 3D et application à l'aérothermique des bâtiments. PhD thesis, Université Pierre et Marie Curie - Paris VI, 2005.

- [13] V. Ducrot and P. Frey. Anisotropic level set adaptation for accurate interface capturing. In R. Garimella, editor, *Proceedings of the 17th International Meshing Roundtable*, pages 159–176. Springer Berlin Heidelberg, 2008.
- [14] P. J. Frey and F. Alauzet. Anisotropic metrics for mesh adaptation. Computational Fluid and Solid Mechanics, 2003.
- [15] M. J. Gander. Schwarz methods over the course of time. ETNA. Electronic Transactions on Numerical Analysis [electronic only], 31:228-255, 2008.
- [16] C. Japhet and F. Nataf. The best interface conditions for Domain Decomposition methods: Absorbing Boundary Conditions. http://www.ann.jussieu.fr/nataf/chapitre.pdf.
- [17] G. Karniadakis. Toward a numerical error bar in CFD. ASM Journal of Fluids Engineer, 117(1):7–9, 1995.
- [18] Z. Khorsand and H. Kalisch. On the shoaling of solitary waves in the kdv equation. Coastal Engineering Proceedings, 1(34):44, 2014.
- [19] P.-L. Lions. On the Schwarz alternating method.I. In R.Glowinski, G.Golub, G.Meurant, and J.Périaux, editors, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, pages 1-42, 1988.
- [20] P.-L. Lions. On the Schwarz alternating method III: a variant for nonover-lapping sub-domains. In T. Chan, R. Glowinski, J. Périaux, and O. Widlund, editors, Proceedings of the Third International Conference on Domain Decomposition Methods, page 202–223, 1990.
- [21] A. Loseille and R. Löhner. Robust boundary layer mesh generation. In X. Jiao and J.-C. Weill, editors, Proceedings of the 21st International Meshing Round-table, pages 493–511. Springer Berlin Heidelberg, 2013.
- [22] L. Nouveau, H. Beaugendre, C. Dobrzynski, R. Abgrall, and M. Ricchiuto. An explicit residual distribution scheme combined to mesh adaptation for solving the unsteady penalized Navier Stokes equations with a splitting approach. Juin 2015.
- [23] S. Rippa. Long and thin triangles can be good for linear interpolation. SIAM Journal on Numerical Analysis, 29(1):pp. 257–270, 1992.
- [24] P. J. Roache. Quantification of uncertainty in Computational Fluid Dynamics. Annual Review of Fluid Mechanics, 29:123–160, 1997.
- of [25] University Partial differential of Stanford. equations 3 : Conservation laws. applied mathematics lecture ://web.stanford.edu/class/math220a/handouts/conservation.pdf, http 2002.

[26] C. Zheng, X. Wen, and H. Han. Numerical solution to a linearized kdv equation on unbounded domain. *Numerical Methods for Partial Differential Equations*, 24(2):383–399, 2008.

