1 Section

Fields and supercharges live in the following places.

	6d	4d	3d
$A \in V_n \otimes \mathfrak{g}$	$V_6\otimes \mathfrak{g}$	$V_4\otimes \mathfrak{g}$	$V_3\otimes \mathfrak{g}$
$\lambda \in \Sigma \otimes \mathfrak{g}$	$S_+\otimes W_+\otimes \mathfrak{g}$	$(S_+\oplus S)\otimes \mathfrak{g}$	$S\otimes \mathfrak{g}$
$\psi\in\Psi$	$S\otimes U$	$(S_+ \otimes R) \oplus (S \otimes R^*)$	$S\otimes R$
$\phi\in\Phi$	$W_+\otimes U$	$R \oplus R^*$	R
$Q \in \Sigma$	$S_+\otimes W_+$	$S_+ \oplus S$	S
$Q^* \in S^*$	S_{-}	$S_+ \oplus S$	S

Here Φ is a representation of \mathfrak{g} and Ψ is a representation of $\mathfrak{so}(n) \oplus \mathfrak{g}$. To define the action, including the background field Q, we need the following structures, all \mathfrak{g} -equivariant.

- 1. A first-order differential operator $\partial : \Psi \to \Psi^*$.
- 2. An operator $\rho_{\Psi} \colon V_n \otimes \Psi^* \to \Psi$.
- 3. A gamma pairing Γ_{Ψ} : Sym² $\Psi \to V_n$.
- 4. A moment map pairing μ : Sym² $\Phi \to \mathfrak{g}$.
- 5. An additional \mathfrak{g} -equivariant map $Y \colon \Sigma \otimes \Psi \to \Phi$, or equivalently, using μ , either a map $Y_{\mu} \colon \Sigma \otimes \Psi \otimes \Phi \to \mathfrak{g}$ or $Y_{\mu}^* \colon \Sigma \otimes \Phi \to \mathfrak{g} \otimes \Psi^*$.

With this data in mind, we define the action, and the coupling to supercharges Q, as follows. I'll write η for the pairing on $V_n \otimes \mathfrak{g}$ induced from the metric and the Killing form, and κ for the Killing form alone.

$$S_{\text{gauge}} = \int \left\langle -\frac{1}{4} F_A \wedge *F_A + \frac{1}{2} (\lambda, \not{D}_A \lambda) \right\rangle - (\mathbf{d}_A c, A^*) + ([\lambda, c], \lambda^*) + \frac{1}{2} ([c, c], c^*)$$

$$S_{\text{matter}} = \int -\frac{1}{2} (\mathbf{d}\phi \wedge *\mathbf{d}\phi) + \frac{1}{2} (\psi, \not{\partial}\psi)$$

$$I_{\text{couple}} = \int g (\eta(A, \Gamma_{\Psi}(\psi, \psi)) - \frac{1}{2} \eta(A, \mathbf{d}_A \mu(\phi, \phi)) - \kappa \circ Y_{\mu}(\lambda, \psi, \phi) + (\psi^*, [c, \psi])_{U} + (\phi^*, [c, \phi])) + g^2 (\mu(\phi, \phi), \mu(\phi, \phi))$$

$$I_{\text{gauge}}^{(1)}(Q) = \int (\Gamma(Q, \lambda), A^*) + \frac{1}{2} (\rho(F_A), \lambda^*)$$

$$I_{\text{matter}}^{(1)}(Q) = \int (\phi^*, Y(Q, \psi)) + (\psi^*, \rho(\mathbf{d}\phi)Q)$$

$$I_{\text{couple}}^{(1)}(Q) = \int g(\psi^*, \kappa \circ \rho_{\Psi} \circ (1 \otimes Y_{\mu}^*)(A, Q, \phi)) + \frac{1}{2} g(\lambda^*, Q \otimes \mu(\phi, \phi))$$

$$I_{\text{gauge}}^{(2)}(Q_1, Q_2) = \int \frac{1}{4} (\Gamma(Q_1, Q_2), \Gamma(\lambda^*, \lambda^*)) - \frac{1}{2} (Q_1, \lambda^*)(Q_2, \lambda^*) - (\iota_{\Gamma(Q_1, Q_2)}A, c^*)$$

$$I_{\text{matter}}^{(2)}(Q_1, Q_2) = \int \frac{1}{4} (\Gamma(Q_1, Q_2), \Gamma(\psi^*, \psi^*)).$$

With all of this, along with an appropriate version of the " 3ψ -rule" – which should say something about the compatibility of these structures, along with the claim that the map from either $\wedge^2 S_+$, $S_+ \otimes S_-$ or $\mathrm{Sym}^2 S$ to V_n is an isomorphism – I speculate the supersymmetry calculation should work symmetrically. The 3ψ rule should just be the following.

Proposition 0.1. Suppose $Q_1, Q_2 \in \Sigma$ and $Q^* \in S$. Then

$$(Q_1, Q^*)Q_2 + (Q_2, Q^*)Q_1 = \rho(\Gamma(Q_1, Q_2))Q^*$$