Konsep Tak Terhingga dan Kaitannya dengan Realitas

Aditya Firman Ihsan

Apa itu tak terhingga?

Apa itu bilangan?

Apa itu bilangan (natural)?

Apa itu bilangan (natural)?

Sebuah tipe tanda/label/nama yang terurut

natura Ordinal Kardinal

Konsep paling general dari bilangan, bagaimana kita mengenumerasi (membilang) sesuatu terus menerus. Seperti apa? Himpunan terurut dengan baik (well-ordered)

Himpunan yang memiliki anggota 'terkecil' dari suatu urutan

Kenapa "baik"?

Dengan himpunan seperti ini kita bisa menciptakan indeks konstruksi secara *bottom-up*

Kenapa "baik"?

Misalkan A himpunan terurut baik dengan urutan <, maka A (asumsi tidak kosong) memiliki nilai terkecil a_0.

Selanjutnya himpunan yang tersisa, $A-\{a_0\}$ (bila tidak kosong) memiliki nilai terkecil a_1 dengan $a_0 < a_1$. Proses ini bisa dilanjutkan

 $a_0 < a_1 < \dots < a_\omega < a_{\omega+1} < \dots < a_{2\omega} < \dots$

hingga seluruh elemen dari A habis terpakai.

Kenapa "baik"?

Bentuk formal bilangan ordinal (dengan contoh)

Misal
$$E(a) = \{E(x) | x \in seg(a)\}$$

Kita pun definisikan bahwa bilangan ordinal α dari A adalah himpunan peta dari E, atau dengan kata lain $\alpha = ran(E)$. Sebagai contoh, misalkan $A = \{a,b,c\}$ dengan a < b < c < d, maka

$$E(a) = \emptyset,$$

 $E(b) = \{E(a)\} = \{\emptyset\},$
 $E(c) = \{E(a), E(b)\} = \{\emptyset, \{\emptyset\}\}, \text{ dan}$
 $E(d) = \{E(a), E(b), E(c)\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\},$

sehingga bilangan ordinal dari A adalah $\alpha = \{E(a), E(b), E(c)\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\{\emptyset, \{\emptyset\}, \{\emptyset\}\}\}\}\} = 4$

Well-Ordering Theorem

Untuk setiap himpunan A, terdapat suatu urutan-baik pada A.

Tak hingga bertingkat

Dalam proses normal, kita melakukan enumerasi atau *counting* cukup dengan bilangan natural

1, 2, 3, ...

Sayangnya belum tentu cukup

3 tipe ordinal

Ordinal awal (nol) Ordinal penerus (successor c^+) Ordinal batas (Jika a ordinal batas, maka untuk setiap $c \in a$, $c^+ \in a$)

Bilangan Natural

 $1,2,3,...,\omega$

 ω = ordinal tak hingga pertama

Ordinal

$$\omega,2\omega,3\omega\ldots,\omega^2,\omega^3,\ldots,\omega^\omega,\ldots,\omega^{\omega^\omega},\ldots\omega^{\omega^{\omega^{\cdots}}}=\varepsilon_0,\varepsilon_1,\ldots,\varepsilon_\omega,\ldots$$

Banyaknya anggota suatu himpunan

Hanya bisa ditentukan dari komparasi Melalui korespondensi satu-satu antara 2 himpunan

Kardinalitas bilangan natural: \aleph_0 Jika kita kumpulkan seluruh himpunan dengan kardinalitas \aleph_0 , kita akan dapatkan \aleph_1

Korespondensi satu-satu

Misal, jika diasumsikan tidak ada satupun orang yang poligami di suatu masyarakat dan setiap orang dewasa di masyarakat itu sudah menikah, maka kita bisa jamin bahwa jumlah laki-laki dan perempuan dewasa di masyarakat itu sama

Kardinalitas bilangan natural: \aleph_0 Jika kita kumpulkan seluruh himpunan dengan kardinalitas \aleph_0 , kita akan dapatkan \aleph_1

Sejauh ini cuma ada 2 himpunan tak hingga berdasarkan kardinalitas : Himpunan *countable* dan *uncountable*

Continuum Hypothesis: Ada ketakteringgaan antara yang *countable* dan *uncountable*

Uncountability contohnya: bilangan Riil Setiap interval apapun sama banyaknya dengan seluruh bilangan riil itu sendiri

Pertanyaan lebih lanjut

- 1. Seberapa riil bilangan riil? (apakah semesta ini kontinu)
 - 2. Apakah representasi tak terhingga (minimal uncountability) di semesta
 - 3. Seberapa valid Konsep ketakterhinggan

Pertanyaan lebih lanjut

Continuum Hypothesis: Ada ketakteringgaan antara yang *countable* dan *uncountable*