

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

RAMAPURAM CAMPUS

FACULTY OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ACADEMIC YEAR (2022-2023)

CONTINUOUS LEARNING ASSESMENT-II

Sub Code/Name	Sub Code/Name 18CSE390T - Computer Vision Set				
Year/Sem/Branch	III/ V/ B.Tech-CSE-AIML A,B,C	Date	17.10.22		
Max. Marks	50	Duration	90 Mins.		

PART A (10 X 1= 10)
ANSWER ALL THE FOLLOWING OUESTIONS

	Q.No.	MCQ Questions	Marks	CO	BL	PI	
	1.	For edge detection we observe a) intensity transition b) shape transition c) color transition d) sign transition	1	2	1	1.6.1	
	2	The direction of angle to the gradient is a) Orthogonal b) Isolated c) Isomorphic d) Isotropic	1	2	1	1.6.1	
	3	Edge detection in images is commonly accomplished by performing a spatial of the image field. a) Smoothing Filter b) Integration c) Differentiation d) Min Filter	1	2	2	1.6.1	
	4	Multi-dimensional hashing maps descriptors intobased on some function applied to each descriptor vector. a) fixed size buckets b) variable sized buckets c) table d) Dbms	1	2	2	1.6.1	
	5	Isolated edge points can also be grouped into a) Pixel b) region c) Longer curves or contours, as well as straight line segments d) Contour	1	2	1	1.6.1	
	6	Techniques like Livewire or Intelligent Scissors are used in a.Model based segmentation b.Semi automatic segmentation c.Threshold segmentation d.Segmentation	1	3	1	1.6.1	

7	Example of Active Contour a.Snakes, intelligent scissors, level set b. Successive Approximation c. Hough Transform d.Scissors	1	3	1	1.6.1
8	An Approach which optimize the contour in real time as the user is drawing a) Intelligent Scissors System b) Gaussian c) Similarity d) Edge	1	3	1	1.6.1
9	In level set which define the curve a. Contrast b. Quantization c. Sampling d. Zero crossing of a characteristic function	1	3	1	1.6.1
10	Split and merge technique is a. Image Restoration Technique b. an Image Processing Technique Used To Segment An Image	1	3	1	1.6.1

Ontc

PART B (4 X 4 = 16)
ANSWER ANY FOUR OUT OF SIX QUESTIONS

c. Image Enhancement Techniqued. Image Acquisition Technique

Q. No.	Questions		со	BL	PI
11	Discuss about Bias and Gain normalization		2	1	2.5.1
12	Explain briefly about Vanishing points		2	2	2.5.2
13	Write short notes on Edge Linking	4	2	2	2.5.4
14	Discuss in detail about Snakes	4	3	2	2.5.1
15	Difference between Divisive and Agglomerative algorithms in Cluster analysis.	4	3	2	2.6.4
16	Write short note on Pose Estimation.	4	3	2	2.6.2

PART C (2 X 12 = 24) ANSWER EITHER OF OR IN EACH UNIT

	ANSWER EITHER OF OR IN EACH UNIT						
Q. No.	Questions		со	BL	PI		
	a) Explain in detail about Feature Detection techniques with relevant examples and diagrams.	12	2	3	2.6.4		
	OR						
17	b) What are Feature Descriptors? Explain the following Feature Descriptors:ii) SIFTiii)GLOH.	12	2	2	2.7.1		
18	a) List the approaches used to locate Boundary Curves in Images. Explain Intelligent Scissors and Level Set in detail.	12	3	1	2.7.1		
	OR						
	b) Illustrate the Expectation Maximization algorithm in K-means and Mixture of Gaussians	12	3	3	2.7.1		

7.6.7	Outcome Alignment Matrix
,	OUESTION

QUESTION					
NUMBER	CO1	CO2	CO3	CO4	CO5
1.		. 1			
2.		1			
3.		1			
4.		1			
5.		1			
6.			1		
7.			1		
8.			1		
9.			1		
10.			1		
11.		4			
12.		4			
13.		4			
14.			4		
15.			4		
16.			4		
17 a		12			
17 b		12			
18 a			12		
18b			12		
Total		41	41		
%		50%	50%		

Quality Matrix:

Question	BL Distribution			
No.	L1	L2	L3	
1	1			
2	1			
3		1		
4		1		
5	1			
6	.1			
7	1			
8	1			
9	1			
10	1			
11	4			
12		4		
13		4		
14		4		
15		4		
16		4		
17a			12	
17b		12		
18a	12			
18b			12	
Total	24	34	24	
%	30%	40%	30%	

Bloom's level Distribution:

Prepared by:
Scrutinised by:
Thousand to be to

Course Coordinator