Summary: Improper integrals

Consider f, g > 0. We say that g grows faster than f as x tends towards ∞ , and write this as

$$0 < f(x) << g(x),$$

if $f, g \longrightarrow \infty$ and $\frac{f(x)}{g(x)} \longrightarrow 0$ as $x \to \infty$.

Examples

For p > 0,

$$\ln x < < x^p < < e^x < < e^{x^2}$$
.

Note that $e^{x^2} = e^{(x^2)}$, not $(e^x)^2 = e^{2x}$.

Rate of Decay (as $x \to \infty$)

Consider f, g > 0. We say that f decays faster than g as x tends towards ∞ , and write this as

$$q(x) >> f(x) > 0$$
,

if $f, g \longrightarrow 0$ and $\frac{f(x)}{g(x)} \longrightarrow 0$ as $x \to \infty$.

Examples

For p > 0,

$$\frac{1}{\ln x} >> \frac{1}{x^p} >> e^{-x} >> e^{-x^2}.$$

Improper integrals definition

An **improper integral** is defined by $\int_a^\infty f(x) dx = \lim_{N \to \infty} \int_a^N f(x) dx$. This improper integral **converges** if the limit exists and is finite.

This improper integral **converges** if the limit exists and is finite. This improper integral **diverges** if the limit does not exist (this includes when the limit is $\pm \infty$).

Conclusion of example: powers of x

$$\int_{a}^{\infty} \frac{dx}{x^{p}} \qquad \begin{cases} \text{diverges} & \text{if } p \leq 1\\ \text{converges to } \frac{a^{-p+1}}{p-1} & \text{if } p > 1 \end{cases}$$

Notation

We say that
$$f(x) \sim g(x)$$
 as $x \to \infty$ if $\frac{f(x)}{g(x)} \xrightarrow[x \to \infty]{} 1$.

In words, we say that f(x) and g(x) are **similar** as $x \to \infty$. (The idea is that f(x) and g(x) have the same asymptotic behavior as x tends to infinity.)

Limit comparison

The idea behind limit comparison is that if the asymptotic behavior is the same, then the improper integrals have the same behavior.

If
$$f(x) \sim g(x)$$
 as $x \to \infty$, then the two integrals $\int_a^\infty f(x) dx$ and $\int_a^\infty g(x) dx$ (for large a) either **both** converge or both diverge.

This also works in the case where one function decays faster than the other as x tends towards infinity.

Suppose that g(x) decays faster than f(x) as $x \to \infty$. That is f(x) >> g(x) as $x \to \infty$.

• If
$$\int_a^\infty f(x) dx$$
 converges, then $\int_a^\infty g(x) dx$ converges.

• If
$$\int_a^\infty g(x) dx$$
 diverges, then $\int_a^\infty f(x) dx$ diverges.

Comparison

Suppose
$$f(x) \ge g(x) > 0$$
 for $x \ge a$.

If $\int_a^\infty f(x) \, dx$ converges, then $\int_a^\infty g(x) \, dx$ converges also.

If $\int_a^\infty g(x) \, dx$ diverges, then $\int_a^\infty f(x) \, dx$ diverges also.

Definition of singularity

A singularity of a function f(x) is a point x = s such that the function f(x) does not exist at x = s.

There are three main ways that the function can fail to exist at a point:

- $\lim_{x\to s^+}|f(x)|$ and/or $\lim_{x\to s^-}|f(x)|$ tends to ∞ . This is the case of most interest in this section.
- $\lim_{x\to s^{\pm}} f(x)$ does not exist. In this case the function f may oscillate, or have a jump discontinuity.
- $\lim_{x\to s^{\pm}} f(x)$ exists and is finite. In this case, the function f has a removable discontinuity.

Definition of improper integrals of the 2nd type

An improper integral of the 2nd type is an integral $\int_a^b f(x) dx$ such that the function f(x) has a singularity at x = s for some s with $a \le s \le b$.

For example, if f(x) has a singularity at x = b, then

For example, if
$$f(x)$$
 has a singular function $\int_a^b f(x) dx = \lim_{C \to b^-} \int_a^C f(x) dx$. We say

- the integral **converges** if the limit exists and is finite.
- the integral diverges if the limit does not exist (which includes the case that the limit is $\pm \infty$.)

Overview of improper integrals

$$\begin{array}{ll} \text{The improper integral } \int_a^\infty \frac{dx}{x^p} & \begin{cases} \text{diverges} & \text{if } p \leq 1 \\ \text{converges to } \frac{a^{1-p}}{p-1} & \text{if } p > 1 \end{cases}. \\ \text{The improper integral } \int_0^a \frac{dx}{x^p} & \begin{cases} \text{diverges} & \text{if } p \leq 1 \\ \text{converges to } \frac{a^{1-p}}{1-p} & \text{if } p < 1 \end{cases} \end{array}$$

Comparison tests for improper integrals of 2nd type

Suppose that f(x) and g(x) both have a singularity at x = s.

Suppose
$$f(x) > g(x) \ge 0$$
 for all $a \le x \le b$ except at $x = s$.

If
$$\int_{a}^{b} f(x) dx$$
 converges, then $\int_{a}^{b} g(x) dx$ converges also.

If
$$\int_a^b g(x) dx$$
 diverges, then $\int_a^b f(x) dx$ diverges also.

Figure 1: From left to right, we see the areas for $0 \le x \le 1$ and $1 \le x < \infty$ under the graphs of $\frac{1}{x}$, $\frac{1}{x^2}$, and $\frac{1}{\sqrt{x}}$. The areas shaded in pink are infinite. The areas shaded in green are finite.

More notation

Suppose that f(x) and g(x) have a singularity at x = s. ($f, g \longrightarrow \pm \infty$ as $x \to s^+$ and/or as $x \to s^-$.)

We say that f(x) is **similar** to g(x), and write $f(x) \sim g(x)$ as $x \to s^+$ or $x \to s^-$ if

$$\frac{f(x)}{g(x)} \longrightarrow 1 \quad \text{as} \quad x \longrightarrow s^{\pm}.$$
 (1)

We say that f(x) grows faster than g(x) as x tends towards s, and write

$$f(x) >> g(x) \text{ as } x \to s^{\pm}, \text{ if } \begin{cases} f(x) \longrightarrow \infty \\ g(x) \longrightarrow \infty \\ \frac{g(x)}{f(x)} \longrightarrow 0 \end{cases} \text{ as } x \longrightarrow s^{\pm}.$$

Limit comparison tests for improper integrals of 2nd type

Suppose that f(x) and g(x) both have a singularity at x = s. Suppose $f(x), g(x) \ge 0$ for all $a \le x \le b$ except at x = s.

- 1. If $f(x) \sim g(x)$ as $x \to s^{\pm}$, then the two integrals $\int_a^b f(x) \, dx$ and $\int_a^b g(x) \, dx$ either **both converge** or **both diverge**.
- 2. Suppose that f(x) grows faster than g(x) as x tends towards s^{\pm} . In other words, f(x) >> g(x) as $x \to s^{\pm}$.
 - If $\int_a^b f(x) dx$ converges, then $\int_a^b g(x) dx$ converges.

• If
$$\int_a^b g(x) dx$$
 diverges, then $\int_a^b f(x) dx$ diverges.

Note that this notation is exactly the same notation that we had before. The only difference is that instead of having $x\to\infty$, we have $x\to s^+$ or $x\to s^-$, where s is a finite number that is a singularity of the function of interest.