Digital Signal Processing

Vu Nhat Huy

Faculty of Electrical and Electronics Engineering Department of Telecommunications Engineering Ho Chi Minh City University of Technology Contact: https://doi.org/10.2007/nut.edu.vn

Ngay 29 thang 8 nam 2025

Contents

1 Sampling and Reconstruction			
	1.1	Introduction	
	1.2	Analog to digital conversion	
		Sampling	
	1.4	Aliasing of Sinusoids	
		Spectrum Replication	
	1.6	Sampling Theorem	
	1.7	Ideal analog reconstruction	
		Ideal antialiasing prefilter	
	1.9	Practical antialiasing prefilter	

1 Sampling and Reconstruction

1.1 Introduction

A typical signal processing system includes 3 stages:

The analog signal is sampled and each sample is quantized to a finite number of bits (A/D converter). The digitalized samples are processed by a digital signal processor.

- The digital processor can be programmed to perform signal processing operations such as filtering, spectrum estimation.
- Digital signal processor can be a general purpose computer, DSP chip or other digital hardware.

The resulting output samples are converted back into analog by an *analog reconstructor* (D/A converter).

1.2 Analog to digital conversion

Analog to digital (A/D) conversion is a three-step process.

Figure 1: x(n) is discrete time signal but continus in amplitude

1.3 Sampling

Sampling is to convert a continuous time signal into a discrete time signal. The analog signal is periodically measured at every T seconds.

^{*} Transform from blue to green is quantizer.

$$x(n) \equiv x(nT) = x(t = nT), \ n = \dots -2, -1, 0, 1, 2, 3\dots$$

- T: sampling interval or sampling period (second);
- Fs=1/T: sampling rate or frequency (samples/second or Hz)

1.4 Aliasing of Sinusoids

In general, the sampling of a continuous-time sinusoidal signal $x(t) = A\cos(2\pi F_0 t + \theta)$ at a sampling rate $F_s = 1/T$ results in a discrete-time signal x(n).

The sinusoids $x_k(t) = A\cos(2\pi F_k t + \theta)$ is sampled at F_s , resulting in a discrete time signal $x_k(n)$. If $F_k = F_0 + kF_s$, $k = 0, \pm 1, \pm 2, \ldots$, then $x(n) = x_k(n)$.

1.5 Spectrum Replication

Observation: The spectrum of discrete-time signal is a sum of the original spectrum of analog signal and its periodic replication at the interval F_s .

Fig: Spectrum replication caused by sampling

Fig: Aliasing caused by overlapping spectral replicas

1.6 Sampling Theorem

For accurate representation of a signal x(t) by its time samples x(nT), two conditions must be met:

- 1) The signal x(t) must be band-limited, i.e., its frequency spectrum must be limited to $F_{\rm max}$.
- 2) The sampling rate F_s must be chosen at least twice the maximum frequency F_{max} . $F_s \geq 2F_{\text{max}}$
 - $-F_s = 2F_{\text{max}}$ is called Nyquist rate.
 - $-F_s/2$ is called Nyquist frequency.
 - $[-F_s/2, F_s/2]$ is Nyquist interval.

Figure 2: Typical band-limited spectrum

1.7 Ideal analog reconstruction

Figure 3: Ideal reconstructor as a lowpass filter

An ideal reconstructor acts as a lowpass filter with cutoff frequency equal to the Nyquist frequency $F_s/2$. An ideal reconstructor (lowpass filter) $H(F) = \begin{cases} T \in [-F_s/2, F_s/2] \\ 0 & otherwise \end{cases}$. Then $\widehat{X}_a(F) = \widehat{X}(F)H(F) = X(F)$.

Figure 4: Example Demonstration

1.8 Ideal antialiasing prefilter

The signals in practice may not band-limited, thus they must be filtered by a lowpass filter

Figure 5: Ideal antialiasing prefilter

1.9 Practical antialiasing prefilter

- A lowpass filter: Passband $[-F_{pass}, F_{pass}]$ is the frequency range of interest for the application $(F_{max} = F_{pass})$.
- The stopband frequency F_{stop} and the minimum stopband attenuation Astop dB must be chosen appropriately to minimize the aliasing effects.
- The Nyquist frequency $F_s/2$ is in the middle of transition region.

$$F_s = F_{pass} + F_{stop}$$

• The attenuation of the filter in decibels is defined as (where f_0 is a convenient reference frequency, typically taken to be at DC for a lowpass filter):

$$A(F) = -2\log_{10} \left| \frac{H(F)}{H(F_0)} \right| \quad (dB)$$

- $\alpha_{10} = A(10F) A(F)$ (dB/decade): the increase in attenuation when F is changed by a factor of ten.
- $\alpha_2 = A(2F) A(F)$ (dB/octave): the increase in attenuation when F is changed by a factor of two.

