Spacecraft Configurations

Space System Design, MAE 342, Princeton University **Robert Stengel**

- Angular control approaches
- Low-Earth-orbit configurations
 - Satellite buses
 - Nanosats/cubesats
 - Earth resources satellites
 - Atmospheric science and meteorology satellites
 - Navigation satellites
 - Communications satellites
 - Astronomy satellites
 - Military satellites
 - Tethered satellites
- Lunar configurations
- Deep-space configurations

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

Angular Attitude of Satellite Configurations

- Randomly oriented satellites - Angular attitude is free to vary
- Orbital Satellite Carrying Amateur Radio (OSCAR-1)
- Spinning satellites
 - Angular attitude maintained by gyroscopic moment and magnetic coil
 - Axisymmetric distribution of mass, solar cells, and instruments

Attitude-Controlled Satellite Configurations

- Dual-spin satellites
 - Angular attitude maintained by gyroscopic moment and thrusters
 - Axisymmetric distribution of mass and solar cells
 - -Instruments and antennas do not spin

- Attitude-controlled satellites
 - Angular attitude maintained by 3-axis control system
 - Non-symmetric distribution of mass, solar cells and instruments

3

Satellite Buses

Standardization of common components for a variety of missions

Evolution of Lockheed-Martin A2100 Bus

- 1990s to present
- Orbit maintenance with ion engines and hydrazine thrusters
- Bi-propellant liquid apogee motor

Satellite Buses

Bus Reliability Analysis

Percentage of Insurance Claims by Anomaly Type

Small Satellite Buses

CubeSats

- · Standardized module
 - 10-cm cube
 - · 1 liter volume
 - Maximum mass = 1.33 kg
- Multiple module designs

http://en.wikipedia.org/wiki/Cubesat

http://www.cubesatkit.com

11

CubeSats

12

CubeSats

Secondary payloads or launched directly from International Space Station

Micro-MAS 3U CubeSat

https://directory.eoportal.org/web/eoportal/satellite-missions/m/micromas-1

Near-Earth Spacecraft

15

Earth Observation Satellites

- Mission
 - -Determine properties of the earth's land and water features
- Typical instrumentation
 - -Multi-spectral imaging (e.g., *Aqua*)
 - Scanning radiometer
 - Spectroradiometer
 - · Microwave sounding
 - Infrared sounding
 - · Humidity sounding
 - Earth's radiation budget
 - Integration with meteorological satellites
 - -Commercial and research operators
 - -High-resolution optical imagery

Atmospheric Science Satellites

- Mission
 - -Determine properties of the near-earth environment
- Typical instrumentation
 - -Direct measurements of the ionosphere
 - Density, temperature, ionic concentrations, cosmic radiation
 - Magnetic and electric fields
 - -Multi-spectral transmission measurements through the lower layers
 - · Radio
 - · Light
 - -Spacecraft charging

Upper Atmospheric Research Satellite (UARS)

- · Launched in 1991
- Deactivated in 2005
- · Decayed in 2011
- · Orbit altitude: 574 x 575 km
- 5,900 kg
- Power = 1.6 KW

Two UARS Instruments

- CLAES: nitrogen, chlorine, ozone, water, and methane from IR signature
- Etalon: Fabry-Perot interferometer measures light wavelengths

 IR radiometer: temperature, water vapor, nitrogen oxides, volcanic aerosols

10

Earth/Atmosphere Observing Constellation

- Earth Observing System combines data from formation of satellites
- Successors to UARS
- Studying ozone, air quality, and climate
 - -High-resolution dynamics limb sounder
 - -Microwave limb sounder
 - -Ozone monitoring instrument
 - -Tropospheric emission spectrometer
- "A-Train" constellation also includes multi-national Cloudsat, Calipso, Metop-1, and Parasol satellites

Meteorology Satellites

- Mission
 - -Determine global and local weather
- Geostationary Operational Environmental Satellites (GOES), Defense Meteorological Satellite Program (DMSP) spacecraft operated by NOAA
- Typical instrumentation
 - -Multi-spectral imaging of the atmosphere
 - -Data relay from buoys, search & rescue beacons
 - -Solar monitoring

Evolution of TIROS

Geostationary Operational Environmental Satellite (GOES-NOP)

http://goes.gsfc.nasa.gov/text/GOES-N_Databook/databook.pdf

23

GOES Expanded View

GOES Coverage Emphasizes the Western Hemisphere

25

GOES Weather Watch System

GOES Sub-Systems

(details in future slide sets)

Navigation Satellites

- Mission
 - -Aid position and velocity determination
- Global Positioning System (GPS) Implementation
 - -24 satellites (minimum) in circular, medium earth orbit
 - -6 orbital planes, 55° inclination
 - -Atomic clocks provide precise time reference
 - -Broadcast ephemeris (i.e., orbital elements)
 - -Pseudo-random pulse code
- GLONASS, Galileo, Compass, DORIS, IRNSS, QZSS

Communication Satellites

- Mission
 - -Facilitate global communications
- Implementation
 - -Transponders with dedicated coverage areas
 - Most satellites are in geosynchronous orbit
 - -Iridium constellation of 66 satellites in low earth orbit
 - Direct connection from satellite to phone

Iridium Constellation

29

Geosynchronous Communication Satellites in Orbit, June 2006

Astronomy Satellites: Hubble

- Mission
 - -Conduct astronomical observations outside the earth's atmosphere
- Typical instrumentation
 - -Multi-spectral imaging
 - -Hubble Telescope serviced by Space Shuttle missions (590-km orbit)
 - -Telescope aberration repaired by astronauts

31

Astronomy Satellites: Hubble

32

Astronomy Satellites

Chandra X-ray observatory (Shuttle launch, 1999)

James Webb Infrared Telescope to be located at L₂ Lagrange point

STEREO, 2006 (Solar Terrestrial Relations Observatory)

Dual satellites

- Nearly identical space-based observatories one ahead of other in Earth orbit
- Stereoscopic measurements to study the Sun and the nature of its coronal mass ejections, or CMEs.

Scientific objectives

- Understand the causes and mechanisms of coronal mass ejection (CME) initiation.
- Characterize the propagation of CMEs through the heliosphere.
- Discover the mechanisms and sites of energetic particle acceleration in the low corona and the interplanetary medium.
- Improve the determination of the structure of the ambient solar wind.

Military Satellites

SBIRS

Missions

- Secure observations from space
- Early warning
- Reconnaissance
- Intelligence
- Communications
- Navigation
- Weather
- Weaponry

35

DARPA SeeMe Constellation

- Two dozen small satellites
- · Low-altitude orbits, 60-90-day mission duration
- Imaging of remote locations with <90-min delay
- · Downlink to handheld units

Orbital Express: ASTRO and NEXTSat

- · DARPA, 2007
 - -Automatic rendezvous, docking, and undocking
 - -On-orbit transfer of replaceable units
 - -6DOF robot arm
 - -Video guidance sensor
 - -Atlas 5 launch

USAF X-37B

- Reusable experimental/ operational vehicle
- · Unmanned "mini-**Space Shuttle**"
- Highly classified project
- Rocketdyne **AR2-3 motor**
 - H₂O₂/JP-8
 - Isp = 245 s

Tethered Satellites

Space Shuttle STS-75 Tethered Satellite Experiment, Feb 1996 http://www.nss.org/resources/library/shuttlevideos/shuttle75.htm

30

Gravity-Gradient-Stabilized Satellites

NRL TIPS

Transit

NASA TSS

Gravity-Gradient-Stabilized Space Elevator

- Counterweight in geo-stationary orbit
- Earth station moored at the equator

41

Lunar Spacecraft

Robotic Lunar Spacecraft

1959

43

Early Lunar Spacecraft

- Mission
 - Scientific discovery
 - Preparations for human voyages to the moon
- Robotic exploration of the moon
 - http://en.wikipedia.org/wiki/Robotic_exploration_of_the_Moon

Pre-Apollo Lunar Landers

- 1966: Lunar soft landing
 - Luna 9
 - Surveyor 1

1967: Surveyor 3Surface sampling tool

45

Russia Perseveres with Robotic Spacecraft

Lunakhod 1, 2 (1970-73)

Luna 16, 17, 20, 24 (1970-76)

Recent US Spacecraft

LCROSS

Lunar Reconnaissance Orbiter

THEMIS/ARTEMIS

GRAIL

Lunar Atmosphere and Dust **Environment Explorer** (LADEE), Sept 7, 2013

30-day transit Launched from NASA Wallops Flight Facility Minotaur V (from Peacekeeper ICBM)

Chinese, Japanese, and Indian Lunar Exploration Programs

49

Solar System Spacecraft

51

Inner-Solar-System Spacecraft

Examples

- **-MESSENGER (2004-2011)**
 - Three fly-bys of Mercury beginning in 2008
 - Orbit Mercury for 1 year, 200 x 15,193 km
 - Image entire surface of Mercury
 - Characterize surface chemistry, geology, and magnetic field
- -Venus Express (ESA, 2006)
 - · In orbit about Venus
 - · Multi-spectral surface mapping
 - Measurements of interactions between solar wind and Venusian atmosphere, magnetic field, and temperature profile

MESSENGER Fly-By Trajectories

- MESSENGER mission
 - http://www.youtube.com/watch?v=y-GALKLHY-s

Mars Orbiters and Landers

- Mission
 - -Determine physical characteristics
 - -Search for life
 - -Prepare for human exploration

53

Mars Rovers

- Mission
 - -Scientific discovery
 - -Search for life
 - Prepare for human exploration
- Sojourner
- Mars Exploration Rovers
 - http://www.youtube.com/watch?v=074DVxfrWkg
- Mars Science Laboratory
 - http://www.youtube.com/ watch?v=noy8o0IN1fE

The Outer-Solar System and Beyond

Outer-Solar-System Spacecraft:

Outer-Solar-System Spacecraft: Galileo

- Mission
 - Explore Jupiter and its moons
 - Probe Jupiter's atmosphere
 - Launch: October 1989
 (Space Shuttle, boosted by Boeing Inertial Upper Stage)
 - Two Earth fly-bys, one Venus fly-by
 - Jupiter arrival: December 1995
 - http://en.wikipedia.org/wiki/Galileo-spacecraft

- Mission terminated by 50-km/s descent into Jupiter's atmosphere: September 2003
- First asteroid fly-by (951 Gaspra)
- Discovered first moon of an asteroid, Ida's Dactyl
- Mass = 2,380 kg

Galileo's Asteroid Images

Galileo's Probe

Outer-Solar-System Spacecraft: Cassini

Mission

- -Explore Saturn, its rings, and its moons
- -Launch: October 1997 (Titan 4B/Centaur)
- -Two Earth fly-bys, one Venus fly-by
- -Saturn arrival: July 2004
- -Huygens Probe entered atmosphere of Saturn's moon Titan in January 2005
- -\$3.26B mission
- -http://en.wikipedia.org/wiki/Cassini spacecraft

61

Outer-Solar-System Spacecraft: Cassini

Cassini's Huygens Probe and Moon Images

Outer-Solar-System Spacecraft: New Horizons

- Mission duration: 2006-2015+
- Destination: Pluto and its moons
- Radioisotope thermal power generator
- Spin-stabilized in cruise, 3-axis control (hydrazine RCS) for science
- May also fly by Kuiper Belt objects, Trojan asteroids at Neptune's L₅ point
- Fastest spacecraft to date (V_{earth} = 16.21 km/s, Atlas 5)
- 546,700-kg initial mass
- Payload = 478 kg
- Jupiter fly-by adds 4 km/s to speed
- http://en.wikipedia.org/wiki/ New Horizons

Outer-Solar-System Spacecraft: Dawn

- Mission duration: 2007-2015
- Orbited both Vesta and Ceres ("proto-planets"), transit asteroid belt
- Ion thrusters provide ΔV of 13 km/s
- Mass = 1,285 kg
- http://en.wikipedia.org/wiki/ Dawn Spacecraft

Next Time: Spacecraft Dynamics

Supplemental Material

67

Lunar Spacecraft

http://en.wikipedia.org/wiki/List_of_future_lunar_missions

Genesis Spacecraft

- Genesis Solar Wind Sample Return
 - -Launch: August 2001
 - -Return: September 2004 (parachute did not open)
 - -http://en.wikipedia.org/wiki/Genesis_spacecraft

69

Stardust Spacecraft

- Stardust Wild 2 Comet Tail Sample Return
 - -Launch: February 1999-Return: January 2006

Nuclear-Powered Spacecraft

