

Origin of Digital Image Processing

- -> News paper Industry -> Image 60 picture -> Were sent by Submarine Cable -> London & Newyork.
- -> Bartlane Cable 1920s reduced fromsmorethan one week-Atlantic.
 - neproduced by beliegeraph printer with special face.
 - This method was abounded 1921
 - New technique photographic repro--duction made from tapes.
 - in 6 distinct gray level. - Capability - Increased to 15 distinct levels of gray - 1929
 - Idea Modern digital Computers 19408 - Juon Von Neumann - two key concepts (i) Memory (ii) Conditional branching - Foundation of CPU

- Key advances - Computer - Powerful - Digital image processing.

* Transistors - Bell labs - 1948

* high level programming language

* IL - Texas Instruments - 1958

* 05 - early 19608

* MP- Intel-19708

* PC- 9BM-1981

* large scale ICS - late 1970s

* VLSI-19808 [ULSI-Present]

* Ic technology, Mals storage & display sims.

- First Computer - Image Processing - 19608

- First Pic. of moon - Us space can't Kangert - July 31 1964 at 9:69 Am.

- In late 60s & early 708 - Image Processing Applications.

* Medical Imaging * Remote earth thesource & Astrohomy.

- From - 60s to present - IP - broad trange of Applications.

* Constast Enhancement

* Image Enhancement 4 Restoration.

Fundamental Steps in DIP:

Structure of Human Eye: -Sclera Choroid Nervel Sheath

-> shape -> Sphere, diameter -> 20mm -> Enclosed -> Various Membranes

Coronea & Sclera +outer Cover.

+ Cornea -> Convex outerior portion. -> Et covers Iris & Pupil

+ Sclera + tough white fibrons Cover entire ey ball except corner. -> choroid -> lies below sclera. -> n/w of blood Versels + divided + Ciliary body & Iris diaphram - Iris + Contracts of Expand + Control light. Ly central opening + PUPIL - 2 to 8 mm. Front -> Visible pigonent, Back -> black pigonent

-Lens - Concentric layers of bibrous cells - Suspended by

-> 60% to 70% water, 6% fat, Protein.

-> Coloured -> Slighly yellow pigment -> Obsorbs 8%.

-> Retina -> Innermost mebrane of eye -> Object + Imaged
Ly discrete light nestplors -> Cones & RODS
Ly patter vision.

-> Cones -> 6 to 7 million -> Cocated + Central portion of netina + Fovea. + Vision + Photopic @ bright light

-> Rods -> 75 to 150 million -> distributed -> suspecces -> not involved in colour vision.

Image Bampling & Quantization: -> olp sensor -> Continous V+g -> Convert -> continous sensed data digital form. -> Irrage -> Continous -> x sy L > Amplitude. -> Digital form -> Sample -> 284 -> Amplitude. -> Digitizing (Co-ordinate Values - Digitizing Amplitude Values.

DISTANCE MEASURE:

Distance function D

Properties of D

(i)
$$D(P, q) \ge 0$$
 $P(x, y) = 0$

if $P = qy$

(ii) $D(P, qy) = D(qy, P) \times (u, y)$

(iv) $D(P, qy) = D(qy, P) \times (u, y)$
 $P(x, y) = D(x, y) \times (u, y)$

THI	1	2		4
1	2	10	2	2
H	2	12	12	4

Distance measure

i) Euclidean:
$$D_E(P, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

(1)	rid Dince	- 0 -4			1 1 0 0 1	14 412
(111)	Chers boar	d: D8	(P,9V)=	max &	1x-s1,	14-615

2	2	2	2	2	
2	1	17	4	(2)	mx 22,13
2	1	1	1	2	=0
2	2	2	12	1	J

Simplest form -> neighbourhood-size 1x1 T -> grey level tansformation [intensity (or) mapping] S→0|PImage pixel Value
72→i|PImage pixel Value 3=7(2) Point Processing Contrast Streaching mask -> Small [3×3] 2D array [Filters, Kernels, Tamplets Buindow] -> Mask processing (or) Filtering.

Linear Transformation make -> Dark portion. darker -> bright portion, 4T(T) Input gray level "r" 1. TI=SI & TR=S2 -> Linear Transformation 2. M= 12 & SI=0, Sz=L-1 -> agree Thresholding 3. Intermediate Values (r, Si) & (r2, S2) -> Various degrees of spread in gray levels 4. Generally, r, Lr2 & s, Esa -> Single Valued & monotonically inscre-@ Gray level sticing:

> Highlight specific hange of graylevels

Ec A

1	41	4 1	4	4	4		6	6	6	6	6	ř.
f(x,4)=	3	4	(5)	4	3	(LE)	2	6	7	6	2	
10 00	3	5	5	5	3		2	7	7	7	2	
	3	H	5	4	3		2	6	7	6	2	
	4	H	4	4	4		6	6	6	6	6	1
	i	IP	24	ac	je					Olf HE	5.	

Graylevels	0	,	2	3	4	5	6	7
no of pixels	0	0	0	6	14	5	0	0

highest of any Val	bee,	= 4	5		
23=8 -> 3bits	96		95		
ademy° 1 2	3	4	5	6	7

Gray level	no. of pixels	PDF= NK/sum	CDF=	SKX7	Histogra Equal. Level
0	0	0 —	>0	0	0.
t.	0	0 6	>0	0	0.
2.	0	0-6	0	0	0
3	6	6/25=0.24	0.24	1.68	2
4	14	14 = 0.56	0.8	5.6	6
5	5	5/25=0.2	1.0	7	7
6	0	0 2	1.0	7	7
7	0	0 4	>1.0	7	7.
ilp image		OLP			

EC Academy

+ Response of linear Filter

$$R = W(-1,-1)f(x-1,y-1)+W(-1,0)f(x-1,y)+ \cdots W(0,0)f(x+1,y) + \cdots W(1,0)f(x+1,y) + \cdots W(1,0)f(x+1,y)$$

$$+W(1,1)f(x+1,y+1) \longrightarrow 0$$

+ mask mxn => m=2a+1&n=2b+1

Linear Filtering of Image of Size MXN and mask size mxn

$$q(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t) \rightarrow 2$$

where
$$a = \frac{m-1}{2}$$
 $fb = \frac{m-1}{2}$

eqn(2) => Convolution mask (3) Convolution Kernel.

by simplifying

w > mask co-expicients I > the values of the image gray mxn > total no of co-expicients.

For 3×3 general mask

1	Z,	3	73	
	Z4	(25)	76	
	Z4	78	Z9	
	•	Sut	ima	ge

1	W,	W2	W3	
ĺ	Wy	W5	WG	
	WZ	wg	Wa	
	m	ask	Core	hici

mask Co-efficients

Smoothing Spatial Filters:

-> Used for Blurring & Noise reduction

An Image, Prior to Object extraction.

Noise reduction: bluoring with a linear of Non linear filters,

SMOOTHING LINEAR FILTERS:

neighborhood -> Filter mash.

-> Averaging Filters () low pars Fitters

EX:-

@ [1	1	1
1 ×	1	1	1
9,	1	1	1

6			
	1	2	1
$\frac{1}{16}$ X	2	4	2
-	1	2	1

3×3 Smoothing Filter mask

-> Replacing -> each pixel -> key avg of gray -> Application -> Noise reduction. I levels.

-> side effect -> blur edges.

+ 718@ + Standard average of Pixel Values

+mxn mark -> (1/mxn)

-> Box Filters

> Fig 6 + weighted ang

+ pixel at the center of mask + more importance

I This is to greduce blurring during Smoothing process.

-> general Implementation for Image -> MXN & mask -> mxn

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(xts,ytt)$$

$$\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)$$

x=0,1,2,-..M-1 fy=0,1,2----N-1

ORDER-STATISTICS Filters:

- -> non linear Spatial Filters
- -> nesponse -> ordering [Ranking]
 the pixels -> Image
- -> Replacing the Center pixel Value with Value determined by ranking he sult.

1. Median Filter:

- + Replaces the value of a pixel by the median of the gray level.
- -> Most popular -> excellent noise
- -> less blurring
- → Effective for Impulse noise

 Salt and pepper noise

10,15,20,20,20,20,25,100

2. Max filter:

-> Finding the brightest point.

R = max {Z_K | k=1, 2, 3...9}

3. Min filter:

-> Finding the darkest point.

R = min { ZK | K=1,2,3...9}

EX:

max. Value: 100 - brightest point.
min. Value: 10 - darkest point.

Sharpening Spatial Filters:

-> highlight the finate detail (to exance details

→ Applications → Electronic printing, Medical imaging, Industrial Prospections and automomous Guidance in Military Stons.

> Image blurring > pixel averaging.

-> Sharpening - "Spatial differentiation".

→ Image differentiation → enhances edges and noise of deemphasizes areas with Slowly Varying gray -level. Values.

Foundation:

-> First order and se cond order derivatives.

-> Derivatives -> defined interms of differences

-> definition for First derivative.

→@ must be Zero inflat segments.

6) must be nonzero at onset of a gray level step 60 ramp

@ must be non zero along hamp.

+ Simillarly, depinition for Second derivative

→@ must be Zero in plat area.

6 must be non zero at the onset gend of gray-level step or ramp.

© must be zero along ramps of Constant Slope.

The shortest distance over which change can occur is b/N adjecent pixels.

The basic depinition.

1st order derivative

$$\frac{gf}{gx} = f(x+1) - f(x)$$

and order derivative

$$\frac{8^2f}{8x^2} = f(x+1) + f(x-1) - 2f(x)$$

Use of Second order derivatives $\Delta^{2}f = \frac{8^{2}f}{8x^{2}} + \frac{8^{2}f}{8y^{2}}$ 8x2 - f(xx1) + f(xx1) - 2f(xx2)

8x2 - f(xx1) + f(xx2) - 2f(xx2)

8x2 - f(xx2) - 2f(xx2) - 2f(xx2)

8x2 - f(xx2) - 2f(xx2) - 2f(xx2)

8x2 - f(xx2) - 2f(xx2) - 2f(xx2)

8x2 - f(xx2) - 2f(xx2)

8x2 - f(xx2)

8x2 - f(xx2) - 2f(xx2)

8x2 - f(xx2)

8x2 for Enhancement - The Laplacian

+ Laplacian Filter + 1848

Definition

$$\Delta^2 f = \frac{8^2 f}{8 x^2} + \frac{8^2 f}{8 y^2}$$

In y-direction

$$\frac{S^2f}{Sy^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

Filter:

	f(3,y-0)	
fle-14)	f(x, y)	Harry
f(x-1, y)	f(x,y+1)	\$(41) (41)

0	1	0
1	-4	L
0	-1	0

-8 1

Different filters:

1	0	1	0	
		-4	1	1
1	0	1	٥	1

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
		0			

Image Enhancement in frequency domain.

- -> From Spatial domain to Frequency domain then processed
- Dack into Spatial domain.
- → Filters → Smoothening & Sharpening → themoving high & low frag → change → whole image.

Types of Filters > '

(a) Low Paus Filter (b) High Paus Filter.

L> sharpening Smoothers High Paus Filter.

L) Somnothers the image.

Sharpening.

Edeal : Butterwar to

Fourier Transform: -> helation blw spatial & frag domain. + Image Enhancement in frag domain. 10 Discrete Fourier Transform xcn) CTT X(K) Spatial demain Fry domain. N-> no of samples. : x(K) = 2 x(n) = 3 x Kn; 0 < K < N-1 X(K) ZDET X(m) x(n) = 1 2 x(K) e x Kn , 0 ≤ n ≤ N-1 Fourier Spectury |F(u=)|= [R2(w)+ [2(w)] /2 p(u) = tan [](u)] P(u) = | F(u)|2 = R2(u)+[2(u)

20 Discrete Fourier Frans form [RD D.FT] f(x,4) = F(u, v).

F(u,v) = \(\sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \sum_{x=0}^{N-1} \sum_{x=0 f(x,4)= - NN = N+ F(u,1) & (UX+Y) Ufv -> tanagara @ prop variables x gy -> sportial @ Image Variables 1F(u,v)1= [R2(u,v)+]2(u,v)]1/2 phase Angle

quy tant [] (uv)] P(u,v)=|F(u,v)|2= R2(u,v)+I2(u,v) Power spectrum

Trage Smoothening & Sharpening using Frequency domain Filters:

@ low pars Firters -> Smoothen

Do -> non negative quantity. D(u,v) -> distance from point (u,v) for,4) -> MXN D(u,v)= [u-M]2 [v-N]2

(ii) Butterworth LPF

H(u,v) = I+[D(u,v)/Do]2n. Advantage: usefulin

(111) Gaussian LPF H(u, v) = e D2(u,v)/202

nemoves low fry noise

High pars Filters

-> Sharpen

(i) I deal High Paus Filter H(u,v)= {0; D(u,v) = Do

Distadvantage blurred edges.

(ii) Butterworth HPF

defining the edgel.

(iii) Gaussian HPF H(u,u)=1=e D2(u,u)/208 nemoves high fra wise

 $g(x,y) = h(x,y) * f(x,y) + \eta(x,y) \rightarrow 0$ $g(u,v) = H(u,v) F(u,v) + N(u,v) \rightarrow 0$

Periodic Noise

→ Electrical & electromechanical interperence → Image Acquisition.

+ Spatially dependent noise.

→ Reduced > Frequency domain
Filtering.

Estimation

- In pection of Fourier spectrum.

-> Automated Analysis -> Knowledge >
general Location of from Components

If Images ms are avilable >
Study chris of sm noise >
Capture a bet of images > "Flat"

of gray devel.

-> Strip (subimage) -> 5

Zi -> gray level Values of pixels's'
P(zi) -> normalized histogram values.

-> Histogram shape -> closest PDF match.

-> It the Shape is gameian -> mean & Variance.

Kestoration in Presence of Noise only-

Spatial Filtering:

Degradation - only due to noise.

I. MEAN FILTERS:

(i) Arithmetic mean fitter:

Sxy -> set of co-ordinates in a 9 rectangular Subimage window of size mxn. Centered at point (x,y)

- Ang of corrupted image g(x,y) in the area defined by Sxy.
- -> smoothers local variation
- -> Noise is heduced dubto blurring.

(ii) Geometric mean Filter:

$$\hat{f}(x,y) = \begin{bmatrix} T & g(s,t) \end{bmatrix}^{\frac{1}{mn}} \longrightarrow (ii)$$

- -> Product of Pixels in the Subimage window or traised to power I
- -> Smoothing simillar to arithmetic mean Filter.
- -> lose les image details.

(iii) Harmonic mean Filter:

$$\hat{f}(x,y) = \frac{mn}{\sum_{s,t} \frac{1}{q(s,t)}} \longrightarrow (iii)$$

$$(s,t) \in S_{xy}$$

- -> Works well for Salt & Pepper noise
- -> also works well for Gaussian voise.

(Vi) Salt & Pepper noise [Impulse noise]:

shot & Spike woise.

- Ve impulses -> black (Pepper) point tre impulses -> whit (salt) point

Academy

