Měření odporů

1 Úkol měření

- 1. a) Měření malých odporů Ohmovou metodou. Sestavte měřicí obvod dle obr. 1. Vhodnou metodikou měření vylučte vliv termoelektrických napětí. Z naměřených hodnot napětí a proudu vypočtěte velikost neznámého odporu $R_{\rm X}$ a stanovte rozšířenou nejistotu měření (pro $k_{\rm R}=2$).
 - b) Měření malých odporů sériovou srovnávací metodou. Zapojte měřicí obvod dle obr. 2. Změřte napětí na etalonu $R_{\rm N}$ a napětí na měřeném odporu $R_{\rm X}$. Vhodnou metodikou měření vylučte vliv termoelektrických napětí. Vypočtěte velikost neznámého odporu $R_{\rm X}$ a odvoď te vztah pro nejistotu měření.
 - c) Měření středních odporů převodníkem $R \to_U$. Sestavte převodník odpor-napětí s OZ $(U_R = 10 \text{ V}, R_{N1} = 10 \text{ k}\Omega)$ dle obr. 3. Odvoď te přenos převodníku a ověřte jeho funkci. Jako odpor R_X použijte odporovou dekádu. Zdůvodněte, do jaké hodnoty odporu může uvedený převodník měřit.

2 Schéma zapojení

Obrázek 1: Měření malého odporu Ohmovou metodou

Obrázek 2: Měření malého odporu sériovou metodou

Obrázek 3: Převodník R → U

3 Seznam použitých přístrojů

- 1. Laboratorní zdroj Agilent
- 2. Digitální voltmetr HP
- 4 Teoretický úvod
- 5 Naměřené hodnoty
- 6 Zpracování naměřených hodnot
- 7 Závěrečné vyhodnocení

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze