1. Dots procesora reģistru saturs:

AX	=	0040h	ΒP	=	0000h	CS	=	1E5Eh
ВХ	=	3FFAh	SP	=	FFFEh	DS	=	1E5Eh
CX	=	0008h	DI	=	0002h	SS	=	1E5Eh
DX	=	0020h	SI	=	0004h	ES	=	1E5Eh

Dots arī datora atmiņas saturs (norādīta katras rindiņas sākuma fiziskā adrese reālās adresēšanas režīmā):

	U		4	3	4	5	Ю	/		8	9	Α	В	C.	D	E	P.	
004B0	бE	00	96	03	88	00	96	03	1	Α2	00	96	03	FF	03	0C	02	
004C0	BB	80	0C	02	A4	09	0C	02		бE	00	96	03	88	00	96	03	
004D0	54	00	96	03	5D	04	0C	02		00	09	00	F0	54	00	96	03	
004E0	бE	00	96	03	88	00	96	03	1	Α2	01	96	03	FF	03	0C	02	
004F0	A2	00	96	03	FF	03	0C	02		01	09	0C	02	5D	04	0C	02	

1.1. Kāda vērtība ir reģistrā BL (skaitlis ar zīmi!)?

ATBILDE (heksadecimāls skaitlis): FA

ATBILDE (decimāls skaitlis): -6

1.2. Kāda būs reģistra AX vērtība pēc zemāk minēto komandu izpildīšanas?

mov ax, 4Ch
mov es, ax
mov bx, dx
mov ax, es:[bx+8]

ATBILDE (heksadecimāls skaitlis): 01A2

ATBILDE (decimāls skaitlis): 418

Skaidrojums par jautājumu 1.2.

Izpildot pēdējo no dotajām komandām, reģistrā ax tiek iesūtīts vārds no datora atmiņas. Šā atmiņas vārda sākuma adrese komandā uzrakstīta kā es:[bx+8]. Jāizpēta, kāda vērtība komandas izpildes brīdī būs segmenta reģistrā es un kāda vērtība šajā brīdī būs reģistrā bx, kurš komandā tiek lietots nobīdes (offset) noteikšanai. Ar divām pirmajām komandām reģistrā es tiek ievietota vērtība 004Ch. Savukārt ar trešo komandu reģistrā bx tiek iesūtīta vērtība 0020h. Tagad jums jāaprēķina fiziskā adrese, lai varētu atrast dotajā atmiņas apgabalā to vārdu, kurš tiks iekopēts reģistrā ax, izpildot ceturto komandu. Kā zināms, reālās adresācijas režīmā fizisko adresi procesors aprēķina, sareizinot doto segmenta vērtību ar 16 un pieskaitot nobīdes (offset) vērtību. Šajā gadījumā fiziskā adrese ir 004Ch*10h+0020h+8=004E8h.

Vārdā ar šādu adresi atmiņā glabājas vērtība 01A2h (jāievēro, ka atmiņā jaunākie baiti tiek attēloti kreisajā pusē). Atliek pārveidot 01A2h uz decimālo sistēmu: 256+160+2=418.