Math 440 – Real Analysis II Homework 10

Amandeep Gill

May 12, 2015

Problem 63 Let $a \in \mathbb{R}$ such that $0 < a < \frac{1}{2}$, and let $C_0 = [0, 1]$ be the first step in the generalized Cantor set with C_n comprised of 2^n disjoint intervals of length a^n such that $C_n \subset C_{n-1}$, and define

$$C_a = C_0 \cap C_1 \cap C_2 \cap \cdots$$

Assuming the box-counting dimension of C_a exists, find $\dim_B(C_a)$.

Solution: Let $n \in \mathbb{N}$ and $r_n = a^n$. The number of intervals of length r_n needed to cover C_a , $N_{r_n}(C_a) = 2^n$. Then

$$\dim_B(C_a) = \lim_{r_n \to 0} \frac{\log N_{r_n}(C_a)}{-\log r_n}$$

$$= \lim_{n \to \infty} \frac{\log 2^n}{-\log a^n}$$

$$= \lim_{n \to \infty} \frac{n \log 2}{n \log \frac{1}{a}}$$

$$= \frac{\log 2}{\log \frac{1}{a}}$$

Problem 64 The box-counting dimension of any finite subset of \mathbb{R} is zero.

Proof: Let $E = \{x_1, x_2, \dots, x_n\}$ be a subset of \mathbb{R} . For all $r \in \mathbb{R}$ such that r > 0, $1 \leq N_r(E) \leq n$. Hence $\frac{\log 1}{-\log r} \leq \frac{\log N_r(E)}{-\log r} \leq \frac{\log n}{-\log r}$. Since $\frac{\log 1}{-\log r} = 0$ and $\lim_{r \to 0} \frac{\log n}{-\log r} = 0$, $0 \leq \lim_{r \to 0} \frac{\log N_r(E)}{-\log r} \leq 0$. Thus $\dim_B(E) = 0$ for all finite subsets E of \mathbb{R} .

Problem 65 If $E \subset F \subset \mathbb{R}^n$ and the box-counting dimensions exist for E and F, then $\dim_B(E) \leq \dim_B(F)$.

Proof: Let E, E^c be disjoint subsets of \mathbb{R}^n such that $E \cup E^c = F \subset \mathbb{R}^n$, and let $n = N_r(E)$ with C_r the accompanying box cover of E. If $E^c \subset C_r$, then $F \subset C_r$ and $N_r(F) = N_r(E)$. Otherwise additional r-cubes must be unioned to C_r in order to cover E^c , and so $N_r(F) > N_r(E)$. Since r is arbitrary, $N_r(E) \leq N_r(F)$ and $\frac{\log N_r(E)}{-\log r} \leq \frac{\log N_r(F)}{-\log r}$ for all $r \in \mathbb{R}^+$. Therefore, because the box-counting dimensions for E and F exist by assumption, $\dim_B(E) \leq \dim_B(F)$.

Problem 66 Find an upper bound on the Hausdorff dimension of the Menger sponge.

Solution: Let M be the set defined in the construction of the Menger sponge and M_n be defined as a ball in \mathbb{R}^3 such that $|M_n| = \frac{\sqrt{3}}{3^n}$ for each $n \ge 0$. Then the number of M_n balls needed to cover M is $N = 20^n$. By Definition D.2.4, $\mathcal{H}^s_{\delta}(M) = \inf \left\{ \sum_{i \ge 1} |U_i|^s : \{U_i\}_{i \ge 1} \text{ is a } \delta\text{-cover of } M \right\}$. Therefore $\mathcal{H}^s_{\delta}(M) \leqslant \sum_{i=1}^N |M_n|^s = \sum_{i=1}^{20^n} \left(\frac{\sqrt{3}}{3^n}\right)^s = \frac{20^n}{3^{sn}} \sqrt{3}^s$ for all δ -covers of M, and thus $\mathcal{H}^s(M) = \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(M) \leqslant \lim_{n \to \infty} \frac{20^n}{3^{sn}} \sqrt{3}^s$. Thus $s = \frac{\log 20}{\log 3}$ is an upper bound on $\dim_H(M)$.

Problem 67 For each s > 0, \mathcal{H}^s is an outer measure on \mathbb{R}^n .

Proof: Let $\mathcal{H}^s: 2^{\mathbb{R}^n} \to [0, \infty]$ be defined as $\mathcal{H}^s(E) = \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(E)$. By Ex4 on page 113 this limit is well defined for all subsets E in \mathbb{R}^n , and given that \mathcal{H}^s_{δ} is an outer measure on \mathbb{R}^n by part(a) of Theorem D.2.5,

(i) $\mathcal{H}^s(\emptyset) = \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(\emptyset) = \lim_{\delta \to 0^+} 0 = 0$, since $\mathcal{H}^s_{\delta}(\emptyset) = 0$ for all δ -covers.

- (ii) Let $A \subset B \subset \mathbb{R}^n$, then for all δ -covers, $\mathcal{H}^s_{\delta}(A) \leqslant \mathcal{H}^s_{\delta}(B)$. Thus $\lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(A) \leqslant \lim_{\delta \to 0^+} \mathcal{H}^s_{\delta}(B)$ and $\mathcal{H}^s(A) \leqslant \mathcal{H}^s(B)$.
- (iii) Let $\{A_i\}_{i\geqslant 1}$ be a countable collection of subsets of \mathbb{R}^n , and let $A=\bigcup_{i\geqslant 1}A_i$. If $\sum_{i\geqslant 1}\mathcal{H}^s(A_i)=\infty$, then $\mathcal{H}^s(A)\leqslant \sum_{i\geqslant 1}\mathcal{H}^s(A_i)$ is true by definition. Assume then that $\sum_{i\geqslant 1}\mathcal{H}^s(A_i)<\infty$. for each A_i , $\mathcal{H}^s_\delta(A_i)\leqslant \mathcal{H}^s(A_i)$ as \mathcal{H}^s_δ is a monotone decreasing function on δ . Thus $\sum_{i\geqslant 1}\mathcal{H}^s_\delta(A_i)\leqslant \sum_{i\geqslant 1}\mathcal{H}^s(A_i)$, for all δ -covers. Additionally, $\mathcal{H}^s_\delta(A)\leqslant \sum_{i\geqslant 1}\mathcal{H}^s_\delta(A_i)$. Hence

$$\mathcal{H}^{s}(A) = \lim_{\delta \to +} \mathcal{H}^{s}_{\delta}(A) \leqslant \lim_{\delta \to 0^{+}} \sum_{i \ge 1} \mathcal{H}^{s}_{\delta}(A_{i}) \leqslant \lim_{\delta \to 0^{+}} \sum_{i \ge 1} \mathcal{H}^{s}(A_{i})$$

Thus \mathcal{H}^s satisfies all properties of Definition D.2.3 and is therefore an outer measure on \mathbb{R}^n .