Finding Shortest-Path in Weighted Graphs

Shusen Wang

Single-Source Shortest Path in Weighted Graph

• v_3 is the source.

Single-Source Shortest Path in Weighted Graph

• v_3 is the source.

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	0

Dijkstra's Algorithm

Dijkstra's Algorithm

Edsger W. Dijkstra 1930 – 2002 Won Turing Award in 1972

- Dijkstra's algorithm is for solving the single-source shortest path problem.
- Published in 1959 [1].

Reference

1. E. Dijkstra. A note on two problems in connexion with graphs. *Numerische Mathematik*. 1: 269–271, 1959.

Preparations

 v_3 is the source.

Preparations

• v_3 is the source.

Preparations

 v_3 is the source.

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	∞	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

Initial State

- v_3 is the source.
- Set v_3 's distance to 0.

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

Initial State

- v_3 is the source.
- Set v_3 's distance to 0.

ertex	dist

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

Initial State

enqueue(v_3 , 0).

	.1
vertex	dist

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

Iteration 1

 $v_3 \leftarrow \text{dequeue()}$.

Priority	Queue:
-----------------	--------

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex dist

Iteration 1

- $v_3 \leftarrow \text{dequeue}()$.
- Find adjacent vertices of v_3 : v_1 and v_6 .

vertex dist

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	\bigcirc	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

dist vertex

- d = dist[3] + 4 = 4.
- Since $d < \infty$, update the table.

vertex	dist

vertex	dist	path
v_1	∞	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	4	0
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex dist

- dist[1] = 4.
- path $[1] = v_3$.

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	
VCILCA	uist	

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	∞	0
v_7	∞	0

vertex dist

Priority Queue:

$\overline{v_1}$	4

dist

vertex

•	d =	dist[3]	+ 5 =	5 .
---	-----	---------	-------	------------

• Since $d < \infty$, update the table.

vertex	
v_1	
v_2	
v_3	
v_4	
v_5	
v_6	
v_7	

dist

 ∞

0

 ∞

 ∞

 ∞

path

 v_3

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	0
v_7	∞	0

vertex dist

- dist[6] = 5.
- path[6] = v_3 .

v_1	4
vertex	dist

	vertex	dist
--	--------	------

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

Iteration 2

v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

dist

vertex

path

vertex dist

Iteration 2

vertex	dist
V C I CCX	aist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

• $v_1 \leftarrow \text{dequeue()}$.

•	Find adjacent vertices of v_1 :
	v_2 and v_4 .

Priority Queue:

v₆ **5**

dist path vertex v_1 v_3 v_2 ∞ 0 v_3 v_4 ∞ ∞ v_5 5 v_6 v_3 v_7 ∞

• Work on v_2 .

vertex dist

	ــ : ا ــ
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	∞	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

d = dist[1] + 2 = 6.

Since $d < \infty$, update the table.

v_6	5

vertex	dist
VELLEX	uist

vertex	dist	path
v_1	4	v_3
v_2	$\bigcirc \infty$	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

Pri	ioritv	Queue:

5

vertex	dist	path
v_1	4	v_3
v_2	6	0
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

• dist[2] = 6.

vertex dist

Priority Queue:

v_6

 $path[2] = v_1$.

v_6	5
vertex	dist

vertex

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

Priority Queue:

v₆
v₂
6

• enqueue(v_2 , 6).

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

• Work on v_4 .

Priority Queue:

v_6	5
v_2	6

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist
vertex	uist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

d = dist[1] + 1 = 5.

Since $d < \infty$, update the table.

v_6	5
v_2	6

vertex	dist
vertex	aist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	∞	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

	1 Г	4 7	_
	dictl	/I. I	 L
•	U1.511		 .) .

v_6	5
v_2	6

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	0
v_5	∞	0
v_6	5	v_3
v_7	∞	0

_	1: - 4	Γ 🗚 🛚	I	
	alst	I 44		'

path[4] = v_1 .

Priority Queue:

v_6	5
v_2	6
vertev	dict

vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

• enqueue(v_4 , 5).

Priority Queue:

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

• enqueue(v_4 , 5).

Priority Queue:

v_6 5
v ₄ 5
v ₂ 6

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

Priority Queue:	Pr	ior	ity	Qu	eue:	
------------------------	----	-----	-----	----	------	--

	-111
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

- $v_6 \leftarrow \text{dequeue()}$.
- v_6 has no adjacent vertex.
- \rightarrow Ignore v_6 .

v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

dist

path

vertex

vertex dist

- $v_4 \leftarrow \text{dequeue()}$.
- Find adjacent vertices of v_4 : $v_3, v_5, v_6, \text{ and } v_7.$

dist vertex

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

- dist[3] cannot get smaller.
- Do not update the table.

Priority Queue:

v_2	6

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

• Work on v_5 .

v_2	6
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

6

• d = dist[4] + 2 = 7.

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex dist

6

- d = dist[4] + 2 = 7.
- Since $d < \infty$, update the table.

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	∞	0
v_6	5	v_3
v_7	∞	0

vertex	dist
VCILCA	uist

Priority Queue:

• dist[5] = 7.

v_2	6
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

- dist[5] = 7.
- path[5] = v_4 .

v_2	6
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

			- \	
•	enqueue	(v_5)	, 7)	•

v_2	6
v_5	7
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

dist

path

vertex

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

vertex dist

Priority Qu	eue:
--------------------	------

6

v_5	7
3	•

•	d:	=	dist	[4]	+	8	=	13.
---	----	---	------	-----	---	---	---	-----

- dist[6] cannot get smaller.
- Do not update the table.

vertex	dist
V C I CCX	aist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

vertex	dist
VCILCX	uist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

		1 .	
$\mathbf{V}\mathbf{Q}$	rtex	a	ist
VC		u	J.

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

Priority Queue:	Pri	ority	/ Qu	eue:
------------------------	-----	-------	------	------

6

v_5	7

• Since $d < \infty$, update the table.

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	∞	0

vertex dist

dist[7] = 9.

Priority Queue:

v_2	6
v_5	7

vertex	dist	
VCILCA	uist	

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	0

- dist[7] = 9.
- path[7] = v_4 .

Priority Queue:

v_2	6
v_5	7
vartav	dict

vertex of	dist
-----------	------

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

Pri	ority	Queue	

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

dist vertex

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

Priority	Queue:
-----------------	--------

v_5	7
v_7	9
vortov	dic+

_	
vertex	dist

•	$v_2 \leftarrow \text{dequeue()}.$
	Find adiacont va

•	Find adjacent vertices of v_4 :
	v_4 and v_5 .

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

Iteration 5(A)

• Work on v_4 .

iority Queu		
v_5	7	
v_7	9	

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

Iteration 5(A)

dist	path
4	v_3
6	v_1
0	0
5	v_1
7	v_4
5	v_3
9	v_4
	4 6 0 5 7 5

vertex dist

Iteration 5(A)

Priority	Queue:
-----------------	--------

v_7	9

- dist[4] cannot get smaller.
- Do not update the table.

vertex	dist
VCICCN	aist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

dist

vertex

path

vertex dist

vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

•	d	=	dist	[2]	+ 10	= 16.
---	---	---	------	-----	------	-------

- dist[5] cannot get smaller.
- → Do not update the table.

ority	Queu
v_5	7
v_7	9

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

dist

vertex

path

vertex dist

- $v_5 \leftarrow \text{dequeue()}$.
- Find adjacent vertices of v_5 : v_7 .

Priority Queue:

•	
vertex	dist
VCILCA	aist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

Iteration 6(A)

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex dist

Since d < 9, update the table.

vertex	dist
VCILCA	uist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	9	v_4

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_4

vertex dist

- dist[7] = 8.
- path[7] = v_5 .

Priority Queue:

v_7	9
vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

vertex dist
• •

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

Iteration 7

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

vertex dist

Iteration 7

- $v_7 \leftarrow \text{dequeue}()$.
- Find adjacent vertices of v_7 : v_6 .

vertex dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

• Work on v_6 .

Pri	ority	Queu	E
	vertex	dist	

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

dist

6

path

 v_3

 v_1

vertex

 v_1

 v_2

vertex dist

vertex

- d = dist[7] + 1 = 9.
- dist[6] cannot get smaller.
- Do not update the table.

	vertex
	v_1
	v_2
	v_3
	v_4
	v_5
	v_6
	v_7
dist	

dist

6

path

 v_3

 v_1

 v_1

 v_4

 v_5

End of Procedure

- The queue is empty.
- → End of procedure.

Priority Queue:

vertex	dist

vertex	dist	path
v_1	4	v_3
v_2	6	v_1
v_3	0	0
v_4	5	v_1
v_5	7	v_4
v_6	5	v_3
v_7	8	v_5

Pseudo Code

Inputs: vertices \mathcal{V} , edges \mathcal{E} , and the source vertex s.

1. Initialize an empty priority queue.

Pseudo Code

Inputs: vertices \mathcal{V} , edges \mathcal{E} , and the source vertex s.

- 1. Initialize an empty priority queue.
- 2. For each vertex $v \in \mathcal{V}$:
 - a. Set dist $[v] = \infty$.
 - b. Set path[v] = 0.

vertex	dist	path
v_1	∞	0
v_2	∞	0
•	• •	•
v_n	∞	0

Pseudo Code

Inputs: vertices \mathcal{V} , edges \mathcal{E} , and the source vertex s.

- 1. Initialize an empty priority queue.
- 2. For each vertex $v \in \mathcal{V}$:
 - a. Set dist $[v] = \infty$.
 - b. Set path[v] = 0.
- 3. Set dist[s] = 0.
- 4. enqueue(s, 0).

Pseudo Code (Cont.)

- 5. While the priority queue is not empty:
 - a. $v \leftarrow$ dequeue().
 - b. $S \leftarrow \{ u \mid e_{vu} \in \mathcal{E} \}.$

Pseudo Code (Cont.)

- 5. While the priority queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$.
 - b. $S \leftarrow \{ u \mid e_{vu} \in \mathcal{E} \}.$
 - c. For each $u \in S$:
 - i. $d_{\text{new}} = \text{dist}[v] + e_{vu}$.
 - ii. If $d_{\text{new}} < \text{dist}[u]$:
 - Set $dist[u] = d_{new}$ and path[u] = v.
 - enqueue(u, d_{new}).

Pseudo Code (Cont.)

- 5. While the priority queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$.
 - b. $S \leftarrow \{ u \mid e_{vu} \in \mathcal{E} \}.$
 - c. For each $u \in S$:
 - i. $d_{\text{new}} = \text{dist}[v] + e_{vu}$.
 - ii. If $d_{\text{new}} < \text{dist}[u]$:
 - Set $dist[u] = d_{new}$ and path[u] = v.
 - enqueue(u, d_{new}).

Outputs: dist[v] and path[v], for all $v \in \mathcal{V}$.

Time Complexity

Time Complexity

- Assume all the weights are nonnegative; otherwise, Dijkstra's algorithm does not work.
- Totally $O(|\mathcal{V}| + |\mathcal{E}|)$ enqueue and dequeue operations.
- Enqueue and dequeue operations both have $O(\log |\mathcal{V}|)$ time complexity.
- Thus, the overall time complexity is $O((|\mathcal{V}| + |\mathcal{E}|) \cdot \log |\mathcal{V}|)$.

Directed Acyclic Graph (DAG)

Definition of DAG

- DAG is a directed graph with no directed cycles.
- There is no way to start at any vertex \boldsymbol{v} and follow a path that eventually loops back to \boldsymbol{v} again.

Directed Acyclic Graph (DAG)

This is not a DAG

Directed Acyclic Graph (DAG)

- If the graph is a DAG, we can use queue instead of priority queue.
- Enqueue and dequeue for standard queue cost only O(1) time.
- The time complexity is $O(|\mathcal{V}| + |\mathcal{E}|)$. (The same as unweighted graph.)

Thank You!