

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 9701/31

Paper 31 Advanced Practical Skills

October/November 2008

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	
<u> </u>	

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 11 printed pages and 1 blank page.

SP (SM) T69055/1 © UCLES 2008

[Turn over

1 FA 1 contains the monoprotic (monobasic) acid RCO₂H. You are to determine the relative molecular mass, $M_{\rm r}$, of the acid and deduce its molecular formula.

For Examiner's Use

You are provided with the following.

FA 1, the aqueous acid, containing 38.68 g dm⁻³ RCO₂H FA 2, aqueous sodium hydroxide containing 3.40 g dm⁻³ NaOH Phenolphthalein indicator.

(a) Dilution of FA 1

By using a burette measure between 38.00 cm³ and 39.00 cm³ of **FA 1** into the 250 cm³ graduated (volumetric) flask labelled FA 3.

Record your burette readings and the volume of FA 1 added to the flask in the space below.

Make up the contents of the flask to the 250 cm³ mark with distilled water. Place the stopper in the flask and mix the contents thoroughly by slowly inverting the flask a number of times.

Titration

Fill a second burette with **FA 3**, the diluted solution containing RCO₂H.

Pipette 25.0 cm³ of **FA 2** into the conical flask and add 2-3 drops of phenolphthalein indicator.

Titrate the sodium hydroxide in the flask with FA 3 until the solution just turns colourless.

Perform a rough (trial) titration and sufficient further titrations to obtain accurate results.

Record your titration results in the space below. Make certain that your recorded results show the precision of your working.

i	
ii	
iii	
iv	
v	
vi	

[6]

(b)	From your titration results obtain a volume of FA 3 to be used in your calculations. Show clearly how you obtained this volume.

For Examiner's Use

[1]

Cal	CH	lati	ons
u a	-Cu	ıaıı	OHIO

Show your working and appropriate significant figures in all of your calculations.

(c) Calculate how many moles of NaOH have been pipetted into the conical flask. $[A_r: H, 1.0; O, 16.0; Na, 23.0]$

..... mol of NaOH were pipetted into the conical flask.

Use your titre volume in **(b)** and the answer above to calculate how many moles of RCO_2H are contained in 250 cm³ of the diluted acid **FA 3**.

 $250\,\mathrm{cm^3}$ of **FA 3** contains mol of RCO₂H.

Use this answer to calculate the concentration, in $\mbox{mol}\,\mbox{dm}^{-3},$ of the undiluted acid in $\mbox{FA 1}.$

The concentration of ${\rm RCO_2H}$ in **FA 1** is ${\rm mol\,dm^{-3}}$.

Use this answer to calculate, correct to **3 significant figures**, the relative molecular mass, $M_{\rm r}$, of RCO₂H.

i	
ii	
iii	
iv	
V	

The relative molecular mass, M_r , of RCO₂H is

Use this answer to deduce the formula of the acid RCO₂H.

L - J

[Total: 12]

[Turn over

2 You are required to find the percentage by mass of water of crystallisation in FA 4, hydrated magnesium sulphate, MgSO₄.**x**H₂O.

For Examiner's Use

The water contained in the crystals can be removed by heating the crystals.

Method

- (a) Follow the instructions below to determine the mass of water driven off when heating magnesium sulphate crystals.
 - Weigh the empty hard glass boiling-tube.
 - Tip the contents of the tube labelled **FA 4** into the boiling-tube.
 - Reweigh the boiling-tube and **FA 4**.
 - Hold the boiling-tube in the holder provided and heat gently at first, then strongly for several minutes.
 - Leave the boiling-tube to cool on a heat-proof mat.
 - Carry on with other parts of the paper, e.g. question 3, while the boiling-tube
 - When cool weigh the boiling-tube and its contents.
 - Continue the heating, cooling and weighing until you are satisfied that all of the water of crystallisation has been driven from the crystals.

In an appropriate form record below

- all measurements of mass,
- the final mass of the residue and the mass of water driven off.

Results

i	
ii	
iii	
iv	
V	
vi	
vii	

[7]

_			
(,0		2+1	ons
∪a.	ıcu	au	viia

(b) Calculate the percentage by mass of water of crystallisation in the crystals.

For
Examiner's
1100

Hydrated magnesium sulphate crystals contain	. % of water by mass
	[1]

(c) Use the relative molecular mass information provided to complete the table below. $[M_{\rm r}: {\rm MgSO_4}, 120.4; {\rm H_2O}, 18.0]$

possible value of x in MgSO ₄ . x H ₂ O	% water by mass	
1	13.0	
2	23.0	
3		
4	37.4	
5	42.8	
6	47.3	
7	51.1	
8	54.5	
9		
10	59.9	

	Use your answer in (b) and the information in the table to find the experimental value of $\bf x$ in the formula MgSO ₄ . $\bf x$ H ₂ O.
	is the value of x in MgSO ₄ . x H ₂ O. [2]
(d)	A student is instructed to repeat the whole experiment to ensure reliability of results. Explain how repeating the experiment would lead to greater reliability in the experimental results.

For Examiner's Use

(e)	On a balance weighing to 1 decimal place assume the maximum error is $\pm 0.1g$. What mass would have to be weighed out on this balance to result in an error of 0.04% ?
	The mass isg. [1]
	[Total: 12]
FA (is a solid metal oxide. FA 6 and FA 7 are aqueous solutions.
You	will carry out specified tests to deduce
	 the chemical properties of FA 5 and FA 7, the identities of the anion and cation present in FA 6.
At e	ach stage of any test you are to record details of the following.
	 colour changes seen the formation of any precipitate the solubility of such precipitates in an excess of the reagent added.
	ere gases are released they should be identified by a test, described in the appropriate te in your observations.
You	should indicate clearly at what stage in a test a change occurs.
Mar	ks are not given for chemical equations.
No a	additional tests for ions present should be attempted.
(a)	Pour 1 cm depth of FA 7 into a boiling-tube, stand the tube in a test-tube rack and, using a spatula, add a very small amount of the solid FA 5 . A vigorous reaction will be observed.
	The gas evolved is one of carbon dioxide, hydrogen or oxygen.
	By considering the density of each gas compared to that of air, you are to decide which of these three gases you should test for first. Explain your answer. [A_r : C, 12.0; H, 1.0; O, 16.0] [1 mol of any gas occupies approximately $24 \mathrm{dm}^3$ at room temperature and pressure.] [$24 \mathrm{dm}^3$ of air at room temperature and pressure has a mass of approximately $25.6 \mathrm{g}$.]

3

7

Add a further 1 cm depth of **FA 7** to the boiling-tube. Test and identify the gas given off. Record in a suitable form the test or tests performed and the observation made for any test carried out.

For Examiner's Use

Deduce the identity of the gas evolved.

The gas evolved is

[4]

(b) Place 1 cm depth of 10% potassium iodide solution, KI, in a test-tube and add a **very small** amount of **FA 5**. Observe, then add a few drops of starch solution.

Record the tests used and all of your observations in an appropriate form below.

i

[2]

[5]

	0		
Conclusions about the che	mical properties of FA 5		
In test (a) FA 5 remained unchanged at the end of the reaction.			
FA 5 was acting as in this reaction.			
In test (b) FA 5 was acting as			
Where in the Periodic Table n	night you find the metallic	element contained in FA 5?	
		[2]	
To 1 cm depth of FA 6 in a boiling-tube add an equal volume of FA 7 . Mix thoroughly by gently shaking the tube. Using aqueous sodium hydroxide and aqueous ammonia you are to identify the cation present in FA 6 , and the cation present in the mixture of FA 6 and FA 7 . Record all of your observations in the table below.			
observations			
test	FA 6	mixture of FA 6 and FA 7	
To 1 cm depth of solution in a test-tube add, drop by drop, 1 cm depth of aqueous sodium hydroxide. Stir the mixture, then add			
a further 1 cm depth of aqueous sodium hydroxide.			
To 1 cm depth of solution in a test-tube add, drop by drop, 1 cm depth of aqueous ammonia.			
Stir the mixture, then add a further 1 cm depth of aqueous ammonia.			
Conclusions			
-, ,			
The cation present in FA 6 is			
The cation present in FA 6 is The cation present in the mix			
	rest (a) FA 5 remained und FA 5 was acting as	To 1 cm depth of solution in a test-tube add, drop by drop, 1 cm depth of aqueous sodium hydroxide. Stir the mixture, then add a further 1 cm depth of aqueous ammonia. Stir the mixture, then add a further 1 cm depth of aqueous ammonia. Stir the mixture, then add a further 1 cm depth of aqueous ammonia. Stir the mixture, then add a further 1 cm depth of aqueous ammonia.	

(e) Solution FA 6 was prepared using a bottle of solid whose label was partly missing. The solid is believed to contain the sulphate ion, SO_4^{2-} , but may contain the sulphite ion, SO_3^{2-} .

For Examiner's Use

By selecting appropriate reagents from those listed on page 12 of the qualitative analysis notes show that sulphate ions, SO_4^{2-} , are present.

Record your tests, observations and conclusions in an appropriate form below.

[3]

[Total: 16]

BLANK PAGE

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with		
	NaOH(aq)	NH ₃ (aq)	
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ ⁺ (aq)	ammonia produced on heating		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. insoluble in excess	green ppt. insoluble in excess	
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn ²⁺ (aq)	off-white ppt. insoluble in excess	off-white ppt. insoluble in excess	
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess	

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br ⁻ (aq)	gives pale cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow (pale)$ brown NO_2 in air)
sulphate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acids)
sulphite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint
sulphur dioxide, SO ₂	turns aqueous potassium dichromate(VI) (aq) from orange to green

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations. Syndicate (UCLES), which is itself a department of the University of Cambridge.

