Питання

1. Нехай \mathbf{x} — розв'язок задачі Коші

$$\begin{cases} \dot{\mathbf{x}} = -\nabla \mathbf{f}(\mathbf{x}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

де $x_0 \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$ — L-гладка функція. Що ви знаєте про поведінку x(t) при $t \to +\infty$? Відповідь обгрунтуйте.

2. Нехай \mathbf{x} — розв'язок задачі Коші

$$\begin{cases} \dot{\mathbf{x}} = -\nabla \mathbf{f}(\mathbf{x}), \\ \mathbf{x}(0) = \mathbf{x}_0, \end{cases}$$

де $x_0 \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$ — L-гладка опукла функція. Що ви знаєте про поведінку x(t) при $t \to +\infty$? Відповідь обгрунтуйте.

3. Нехай x — розв'язок задачі Коші

$$\begin{cases} \dot{x} = -\nabla f(x), \\ x(0) = x_0, \end{cases}$$

де $x_0 \in \mathbb{R}^n$, $f: \mathbb{R}^n \to \mathbb{R}$ — L-гладка μ -сильно опукла функція. Що ви знаєте про поведінку x(t) при $t \to +\infty$? Відповідь обгрунтуйте.

4. (Важка кулька) Нехай х — розв'язок задачі Коші

$$\begin{cases} \ddot{x} + \alpha \dot{x} = -\nabla f(x), \\ x(0) = x_0, \ \dot{x}(0) = 0, \end{cases}$$

де $a>0,\ x_0\in\mathbb{R}^n,\ f:\mathbb{R}^n\to\mathbb{R}$ — L-гладка опукла функція. Що ви знаєте про поведінку x(t) при $t\to+\infty$? Відповідь обгрунтуйте.

5. (Важка кулька) Нехай \mathbf{x} — розв'язок задачі Коші

$$\begin{cases} \ddot{\mathbf{x}} + 2\sqrt{\mu}\dot{\mathbf{x}} = -\nabla f(\mathbf{x}), \\ \mathbf{x}(0) = \mathbf{x}_0, \ \dot{\mathbf{x}}(0) = 0, \end{cases}$$

де $\mu > 0$, $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$ — L-гладка μ -сильно опукла функція. Що ви знаєте про поведінку x(t) при $t \to +\infty$? Відповідь обгрунтуйте.

- 6. Субградієнтний метод. Оцінки для опуклих функцій.
- 7. Субградієнтний метод. Оцінки для сильно опуклих функцій.
- 8. Субградієнтний метод. Крок Б.Т. Поляка.
- 9. Децентралізований субградієнтний метод.
- 10. АДОМ. Доведіть O(1/k)-оцінку.
- 11. Градієнтний спуск для L-гладкої опуклої функції (доведіть O(1/k)-оцінку).
- 12. Нижня оцінка для методів першого порядку на класі L-гладких опуклих функцій.

- 13. Градієнтний спуск для L-гладкої μ -сильно опуклої функції. Варіант з $\lambda = \frac{1}{L}$.
- 14. Градієнтний спуск для L-гладкої μ -сильно опуклої функції. Варіант з $\lambda = \frac{1}{\mu + L}$.
- Нижня оцінка для методів першого порядку на класі L-гладких µ-сильно опуклих функцій.
- 16. Прискорений градієнтний метод Ю.Є. Нестерова (доведіть $O(1/k^2)$ -оцінку).
- 17. Метод умовного градієнта (доведіть O(1/k)-оцінку).
- 18. Нижня оцінка для методу умовного градієнта на класі L-гладких опуклих функцій, заданих на опуклих компактах.
- 19. Метод проекції градієнта.
- 20. Доведіть, що для гладкої задачі опуклого програмування $f \to \min_{\mathbb{C}}$ має місце:

$$f(x) = \min_{C} f \Leftrightarrow x \in C \land (\nabla f(x), y - x) \ge 0 \ \forall y \in C.$$

21. Доведіть, що для гладкої задачі опуклого програмування $f \to \min_{\mathbb{C}}$ має місце:

$$f(x) = \min_{C} f \Leftrightarrow x = P_{C}(x - \lambda \nabla f(x)), \lambda > 0.$$

22. Для L-гладкої функції f доведіть нерівність

$$f(y) \le f(x) + (\nabla f(x), y - x) + \frac{L}{2} ||y - x||^2.$$

23. Для L-гладкої функції f доведіть нерівність

$$f(y) \le f(x) - \frac{1}{2I} \|\nabla f(x)\|^2$$

де
$$y = x - \frac{1}{L}\nabla f(x)$$
.

24. Для гладкої опуклої функції f доведіть нерівність

$$f(y) \ge f(x) + (\nabla f(x), y - x).$$

25. Для гладкої опуклої функції f доведіть нерівність

$$(\nabla f(x) - \nabla f(y), x - y) \ge 0.$$

26. Для гладкої µ-сильно опуклої функції f доведіть нерівність

$$f(y) \ge f(x) + (\nabla f(x), y - x) + \frac{\mu}{2} ||x - y||^2.$$

27. Для гладкої µ-сильно опуклої функції f доведіть нерівність

$$(\nabla f(x) - \nabla f(y), x - y) \ge \mu \|x - y\|^2$$
.

28. Для L-гладкої опуклої функції f доведіть нерівність

$$f(y) \ge f(x) + (\nabla f(x), y - x) + \frac{1}{2I} \|\nabla f(x) - \nabla f(y)\|^2.$$

29. Для L-гладкої опуклої функції f доведіть нерівність

$$(\nabla f(x) - \nabla f(y), x - y) \ge \frac{1}{I} \left\| \nabla f(x) - \nabla f(y) \right\|^2.$$

30. Для L-гладкої µ-сильно опуклої функції f доведіть нерівність

$$(\nabla f(x) - \nabla f(y), x - y) \ge \frac{\mu}{\mu + L} \|x - y\|^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|^2.$$

- 31. Субдиференціал, субградієнт.
- 32. Субдиференціал функції $f(x) = \sum_{i=1}^{n} |x_i|$.
- 33. Субдиференціал функції $f(x) = \max_{1 \le k \le m} \{(a_k, x) b_k\}.$
- 34. Субдиференціал функції $f(x) = \max_{1 \le k \le m} f_k(x)$.
- 35. Субдиференціал функції

$$f(x) = ||Ax - b||_1$$

де $A \in L(\mathbb{R}^n, \mathbb{R}^m), b \in \mathbb{R}^m, \|\cdot\|_1 - \ell_1$ -норма в \mathbb{R}^m .

36. Субдиференціал функції

$$f(x) = ||Ax - b||_{\infty},$$

де $A\in L(\mathbb{R}^n,\mathbb{R}^m),\,b\in\mathbb{R}^m,\,\|\cdot\|_\infty-\ell_\infty$ -норма в $\mathbb{R}^m.$

- 37. Нехай (a_n) , (b_n) послідовності невід'ємних чисел, що задовольняють рекурентну нерівність: $a_{n+1} \leq a_n b_n$. Покажіть, що (a_n) збіжна та $\lim_{n \to \infty} b_n = 0$.
- 38. Нехай (a_n) , (b_n) послідовності невід'ємних чисел такі, що $a_{n+1} \leq a_n + b_n$, $\sum_{n=1}^{\infty} b_n < +\infty$. Покажіть, що існує границя $\lim_{n\to\infty} a_n \in \mathbb{R}$.
- 39. Нехай (a_n) послідовність додатніх чисел, що задовольняють рекурентну нерівність: $a_{n+1} \leq a_n \delta a_n^2$, де $\delta > 0$. Покажіть, що $a_n = O\left(\frac{1}{n}\right)$.
- 40. Нехай X та Y метричні простори. Доведіть, що напівнеперервне зверху відображення $f: X \to 2^Y$ із замкненими значеннями є замкненим.
- 41. Нехай X та Y метричні простори. Доведіть, що коли простір Y компактний, то замкнене відображення $f: X \to 2^Y$ напівнеперервне зверху.
- 42. Теорема Какутані про нерухому точку.
- 43. Рівновага Неша.
- 44. Нехай функція $\phi: X \times Y \to \mathbb{R}$ неперервна, Y компакт. Покажіть, що відображення $f: X \to 2^Y$, задане співвідношенням

$$f(x) = \left\{ \bar{y} \in Y : \, \varphi(x, \bar{y}) = \inf_{y \in Y} \varphi(x, y) \right\},\,$$

замкнене (X, Y — метричні простори).