

Constrained Multi-Task Learning for Bridging Resolution

Hideo Kobayashi¹, Yufang Hou², Vincent Ng¹

Task Definition

- Bridging resolution aims to identify and resolve context-dependent but non-identical mentions
 - "the customers" requires the antecedent "<u>its</u>" (= "The Bakersfield Supermarket")
- More challenging than entity coreference resolution

Existing Approaches

- Rule-based (Hou et al. 2014, Rosiger 2018): 18 rules; rulesets for different corpora are slightly different
- Neural (Yu and Poesio, 2020): Multi-task learning (MTL) of entity coreference and bridging resolution
- Hybrid (Kobayashi and Ng, 2021) [Current state of the art]: Applies Rules and MTL in a sequential manner

Goal

• Examine the extent to which supervised bridging resolvers can be improved by proposing four extensions to Yu & Poesio's (2020) multi-task learning framework

Yu & Poesio's (2020) Multi-Task Learning Framework

- A span-based MTL model of coreference and bridging
- Learn task-specific contextualized representations for text spans
- Create pair embeddings for each mention pair by combining span embeddings
- Pass them to shared FFNN layer and dedicated task prediction layers

[The Bakersfield Supermarket] went ... [The business] closed when [its] old ... [The murder] saddened [the customers] ...

Extension 1: Adding Information Status Classification in MTL

- Goal of Information Status (IS) classification: Assign IS to each discourse mention (Prince, 1981)
 - IS describes the extent to which a noun phrase is available to the hearer
 - Old: a mention has been explicitly mentioned before
 - Mediated: a mention has been implicitly mentioned before
 - A mention is **bridging** if it has not been introduced in the discourse directly, but it is inferable
 - New: a mention has not been mentioned before
- Motivation: Exploiting the close connection btw IS, bridging, and coreference resolution by introducing IS classification as third task in MTL
 - These tasks can benefit each other by having a shared representation in the span-based model

Extension 2: Incorporating Cross-Task Consistency Constraints

- Motivation: Merely exploiting the connection between tasks via a shared representation does not guarantee cross-task consistency constraints are enforced. Example constraints include:
 - If IS task predicts a span as **bridging**, then bridging task must predict it as **a bridging anaphor**.
 - If IS task predicts a span as **old**, then coreference task must predict it as **a coreference anaphor**.
 - If coreference task predicts a span as a coreference anaphor, then bridging task must NOT predict it as a bridging anaphor. and so on.

Extension 2: Incorporating Cross-Task Consistency Constraints (cont.)

- Use **soft** rather than hard constraints since hard constraints could hurt performance
 - We define a penalty function for each consistency constraint that reduces the score of a mention pair if it violates a constraint
 - E.g., IS module predicts "the customers" as bridging but Bridging module does not
 - Bridging score will be reduced

Extension 3: Pre-Training Coreference

- Motivation: even soft constraints could still hurt performance
 - How can pre-training help address error propagation?
 - Reduce errors in the coreference module
 - Leverage the large amount of coreference data in OntoNotes

Extension 4: Incorporating Prior Knowledge (Rules)

- Motivation: annotated bridging data is small, so use rules to provide knowledge of bridging absent in data
- Incorporate prior knowledge (Rules) into the coreference and bridging modules as a feature
 - Encode whether a mention pair is predicted by a rule-based resolver
- Rules are **precision-** rather than recall-oriented
 - Add a rule loss to encourage the model to exploit rule information

[The Bakersfield Supermarket] went ... [The business] closed when [its] old ... [The murder] saddened [the customers] ...

Evaluation Setup

Corpora: ISNotes (50 WSJ news articles, 663 anaphors), BASHI (50 WSJ news articles, 459 anaphors),

ARRAU RST (413 news docs, 3777 anaphors)

- Setting: Full bridging resolution, Input: gold mentions
 - Tasks: 1) Recognition: identify bridging anaphors, 2) Resolution: resolve them to their antecedents
- Evaluation metrics: Precision, recall, and F-score for recog. and resol.

Results

- Full model achieves the state of the art on resol. and recog. on all datasets
- Outperforms best baseline by 5.2-11.3% (recog) and by 2.6-4.1% (resol.)

Ablation Results

Recog.	Resol.
50.9	26.0
-4.8	-1.7
-3.2	-2.9
-1.1	-1.1
-2.8	-2.4
-1.3	-5.8
-3.5	-3.4
-6.7	-3.3
	-4.8 -3.2 -1.1 -2.8 -1.3