Ejercicios básicos

- 1 Calcular los polinomios de Taylor de orden 2 de las siguientes funciones en los puntos que se indican:
 - a) f(x,y) = sen(x + 2y), en el punto (0,0),
 - b) $g(x,y) = e^{(x-1)^2} \cos(y)$, en el punto (1,0),
 - c) $h(x,y) = \frac{x}{y^2 + 1}$, en el punto (1,1).
- 2 Calcular la matriz Hessiana de $f(x,y) = x^3y + e^x$, en el punto (1,2).
- 3 Calcular los extremos relativos de las siguientes funciones de \mathbb{R}^2 en \mathbb{R} .
 - a) $f(x,y) = x^4 + y^4 + 6x^2y^2 + 8x^3$,
 - b) $g(x,y) = x^4 + y^4 2x^2 2y^2 + 4xy$.
- 4 Calcular los extremos absolutos de la función $f(x,y) = x^3 + y^3$, sujetos a la restricción $x^2 + y^2 1 = 0$.
- 5 Demostrar que la caja rectangular de volumen dado y área superficial mínima es un cubo.
- 6 Determinar los extremos absolutos de la función $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x y^2$ sobre el conjunto $M = \{(x,y) \in \mathbb{R}^2; \ x^2 + y^2 \le 9, \ x \le 1\}$.
- 7 Determinar los extremos absolutos de la función $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + 3y^2 + x$, sobre el conjunto

$$M = \{(x, y) \in \mathbb{R}^2; \ x + y \le 1, \ x \ge 0, \ y \ge 0\}.$$

Ejercicios complementarios

- 8 Calcular la matriz Hessiana de $g(x,y) = \frac{x^2}{y}$, en el punto (3,1).
- 9 Calcular los extremos relativos de $h(x, y) = xy e^{x+2y}$.
- 10 Calcular los extremos absolutos de $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 6xy^2 + y^2$ en la frontera de

$$M = B((0,0);1) \cap \{(x,y) \in \mathbb{R}^2; \ y \ge 0\}.$$

La variación ℓ de la longitud de un alambre viene dada por $\ell(x,y,z)=x+y+2z$, donde x es la presión, y la humedad y z la temperatura. Por las condiciones de trabajo, estas variables están sujetas a las restricciones $3x^2+y^2=12$ y x+y+z=2. Determinar los extremos absolutos de la longitud ℓ .