Credit Card Application Evaluator

Team 7: Muhammad Asad Shoaib, Jinghong Peng Carnegie Mellon University

Value

Provide a tool that use machine learning to accurately predict the outcomes of credit card applications.

Results

Our models (RF) can predict credit card rejection with up to 91% precision.

Key Findings - feature importances

age: 0.103

Days_Employed: 0.0976

inc: 0.0803

famsize: 0.0784

Car: 0.0294

inctp_working: 0.0512

Introduction

Problem Statement

We use this definition for machine learning

 $P(T, E+ \Delta E) > P(T,E),$

Where,

P => Precision and AUC possibly area under the receiver operating characteristic curve (AUC-ROC)

T => predict the creditworthiness of credit card applicants

E => the amount of data and the variety of scenarios the predictive model is exposed to during training.

Motivation

- Credit scoring is becoming increasingly vital in financial decisions.
- Forbes reported an average credit card debt of \$5,474 per borrower in Q3 2022, totaling \$38 billion.
- The intersection of technology and finance, notably in credit evaluation, is rapidly evolving.
- The project aims to utilize machine learning to assess 'good' or 'bad' credit risks, offering insights into improving traditional financial models.
- There are important ethical and regulatory aspects to consider, especially regarding transparency in using machine learning in finance.

Dataset

- Project dataset consists of application_record.csv and credit_record.csv, mergeable via the client number (ID).
 - a. application_record.csv includes personal/financial info (gender, car ownership, income, etc.): 17 columns and ~440,000 rows
 - b. credit_record.csv tracks monthly credit history, overdue days, and payments: 3 columns and ~1,000,000 rows
- Comprehensive for assessing financial behavior and creditworthiness and suitable for creating a credit scoring predictive model.
- Found during research on credit scoring and finance machine learning on Kaggle.

Data Preparation

Checks

Deduplication	None in the dataset
Sparse Column Identification	None in the dataset

Outlier Handling - Application.csv

- 6M in income not an outlier
- 350,000 (~900 years) is just a placeholder value for DAYS_EMPLOYED and hence is not an outlier either.

Outlier Handling - credit.csv

Outlier Handling - credit.csv

- 0: 1-29 days past due
- 1: 30-59 days past due
- 2: 60-89 days overdue
- 3: 90-119 days overdue
- 4: 120-149 days overdue
- 5: Overdue or bad debts, write-offs for more than 150 days
- C: paid off that month
- X: No loan for the month

Missing Values - Application.csv

ID	0	
CODE_GENDER	0	
FLAG_OWN_CAR	0	
FLAG_OWN_REALTY	0	
CNT_CHILDREN	0	
AMT_INCOME_TOTAL	0	
NAME_INCOME_TYPE	0	
NAME_EDUCATION_TYP	E 0	
NAME_FAMILY_STATUS	0	
NAME_HOUSING_TYPE	0	
DAYS_BIRTH	0	
DAYS_EMPLOYED	0	
FLAG_MOBIL	0	
FLAG_WORK_PHONE	0	
FLAG_PHONE	0	
FLAG_EMAIL	0	
OCCUPATION_TYPE	134203	
CNT_FAM_MEMBERS	0	

- Occupation_type is missing for a lot of people
- now out of these, 75329 were unemployed so there occupation_type will not be available anyways. We replace them with N/A.
- For the rest, we will deal after we have merged the two datasets

Creating Outcome Variable and merging the datasets

- Dataset includes a monthly status variable with values 0-5, C, or X.
- Goal: Group data to determine credit application approval or rejection.
- Data dictionary definitions:
 - 0: 1-29 days past due
 - 1: 30-59 days past due
 - 2: 60-89 days overdue
 - 3: 90-119 days overdue
 - 4: 120-149 days overdue
 - 5: Over 150 days overdue or bad debts, write-offs
 - C: Paid off that month
 - X: No loan for the month
- Assess payment status: (Variable title: Status_category)
 - Overdue (1-5): Reject application
 - Paid on time or slightly overdue (C or 0): Accept application
 - No loans taken (X for all months): Discard as not applicable

After merging both - Remove not relevant data

ID	0	
CODE_GENDER	0	
FLAG_OWN_CAR	0	
FLAG_OWN_REALTY	0	
CNT_CHILDREN	0	
AMT_INCOME_TOTAL	0	
NAME_INCOME_TYPE	0	
NAME_EDUCATION_TYF	PE 0	
NAME_FAMILY_STATU	0	
NAME_HOUSING_TYPE	0	
DAYS_BIRTH	0	
DAYS_EMPLOYED	0	
FLAG_MOBIL	0	
FLAG_WORK_PHONE	0	
FLAG_PHONE	0	
FLAG_EMAIL	0	
OCCUPATION_TYPE	134203	
CNT_FAM_MEMBERS	0	
Status_Category_y	402100	

The status_y_category is the variable that we constructed in the credit_record.csv

When we merge with application.csv, we have **402100 mismatches** - i.e., rows for which we don't have the final outcome variable.

Hence, that is not relevant for predicting approval/rejection and hence, we drop the mismatched rows.

We have **33000** rows remaining.

Imputing the missing values with MICE

ID CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALTY CNT_CHILDREN AMT_INCOME_TOTAL NAME_INCOME_TYPE NAME_EDUCATION_TYPE NAME_FAMILY_STATUS NAME_HOUSING_TYPE DAYS_BIRTH DAYS_EMPLOYED FLAG_MOBIL FLAG_WORK_PHONE FLAG_PHONE FLAG_EMAIL OCCUPATION_TYPE CNT_FAM_MEMBERS Status_Category_y	0 0 0 0 0 0 0 0 0 0 0 0
Status_Category_y dtype: int64	0

The remaining ~11000 missing values of occupation type were imputed using MICE

Transform Categorical Variables

Perform One-hot encoding on these variables:

- inctp
- edutp
- famtp
- houtp
- o occyp

Balance the datasets

- There are some imbalances in the outcome variable
 - o 0: 28819
 - o 1:4291
- We use SMOTE to balance the dataset
 - o 0: 23015
 - o 1: 23015

ML PIPELINE

Architecture

Gaussian Naive Bayes Classifier

Precision: 62%

Accuracy: 0.5896154681729306			306
		precision	recall
No defau	lt	0.5716	0.7106
Defau	lt	0.6191	0.4690
accura	су		
macro a	vg	0.5954	0.5898
weighted a	vg	0.5954	0.5896

Multinomial Naive Bayes Classifier

Accuracy: 0.6263306539213557

precision recall

Precision: 60%

No default 0.6534 0.5357 Default 0.6076 0.7167

accuracy

macro avg 0.6305 0.6262 weighted avg 0.6305 0.6263

Multi-layer perceptron

Precision: 71%

Optimal Hyper-parameters through GridSearch:

activation function: relu max iterations: 100

Decision Tree

Precision: 85%

Optimal Hyper-parameters through GridSearch:

loss_criterion: gini max_depth: 10

Accuracy:	0.83	13491201390	3975
	1	precision	recall
No defau	lt	0.7803	0.8718
Defau	lt	0.8553	0.7553
accura	су		
macro a	vg	0.8178	0.8136
weighted a	vg	0.8179	0.8135

Random Forest

Precision: 91%

Optimal Hyper-parameters through GridSearch:

min_sample_leaves: 3

max_depth: 100 n_estimators: 100

Accuracy:	0.90	7777536389	3114
	E	precision	recall
No defau	ılt	0.9144	0.8995
Defau	ılt	0.9014	0.9161
accura	су		
macro a	ıvg	0.9079	0.9078
weighted a	ıvg	0.9079	0.9078

Key Findings - feature importances

age: 0.103

Days_Employed: 0.0976

inc: 0.0803

famsize: 0.0784

Car: 0.0294

inctp_working: 0.0512

Recommendations and Way Forward

- Age and employment critical to approving credit card apps
- Have tailored strategies for different age groups and employment categories
- Consider personalized credit offerings based on family dynamics

THANK YOU!

