Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

07 de abril de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Pensamento

Pensamento

Frase

O preço a pagar pela tua não participação na política é seres governado por quem é inferior.

Quem?

Platão (428 a.C. - 347 a.C.) Filósofo e matemático grego.

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Avisos

Questão Avaliada 01 no Canvas

- É necessária a avaliação pelos pares!
 «Data máxima: 08 de abril (23h00)»;
- Desconto de 01 (hum) ponto da questão por cada avaliação não feita.

n canvas	Disciplinas ▼ Tarefas Notas Calendário
Teoria	♠ > Teoria > Tarefas > Questão Avaliada 01
Página inicial	
Anúncios	Questão Avaliada 01
Páginas	
Tarefas	Encontre o erro na seguinte prova de que $2=1$. Considere a equação $a=b$. Multiplique ambos os lados por a para obter $a^2=ab$. Subtraia b^2 de ambos os lados para obter $a^2-b^2=ab-b^2$. Agora fatore cada lado, obtendo $(a-b)$ $(a+b)=b$ $(a-b)$, e divida cada lado por $(a-b)$, para chegar em $a+b=b$.
Testes	
Notas	
D:	

Finalmente, faca a e b iguais a 1, o que mostra que 2 =

Testes

- Teste $1 \Rightarrow 20\%$ da pontuação total (14 de abril);
- Teste 2 ⇒ 20% da pontuação total (14 de maio);
- Teste 3 ⇒ 20% da pontuação total (28 de maio);
- Teste $4 \Rightarrow 20\%$ da pontuação total (11 de junho).

Avaliação

ullet Prova equivale \Rightarrow 20% da pontuação total (18 e 25 de junho).

Exercícios [Bônus]

• Somatório dos exercícios \Rightarrow 10% da pontuação total.

Reposições de Aula

Dia: Quarta-feira (15h30-17h10)

Datas

- 19 de março √;
- Abril: 09 e 23;
- Maio: 14, 21 e 28;
- Junho: 04, 11, 18 e 25.

Não haverá aula

- 16 de abril;
- 21 de abril;
- 30 de abril;
- **0** 05 de maio;
- 07 de maio;
- 23 de junho.

Não haverá aula

- 16 de abril;
- 21 de abril;
- 30 de abril;
- **0** 05 de maio;
- **o** 07 de maio;
- 23 de junho.

Previsão de Término das Atividades

30 de junho.

Notícias do Santa Cruz

SANTA CRUZ DÁ O TROCO NO SPORT E ABRE No quinto clássico do ano, Tricolor enfim bate o Leão, por 3 a 0, no Arruda

VANTAGEM NA SEMIFINAL

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Um autômato finito não-determinístico (AFN) é uma 5-upla $(Q, \Sigma, \delta, q_0, F)$, de forma que

- Q é um conjunto finito estados,
- Σ é um alfabeto finito,
- $oldsymbol{\delta}: Q imes \Sigma_\epsilon o \mathcal{P}(Q)$ é a função de transição,
- $ullet q_0 \in Q$ é o estado inicial, e
- ullet $F\subseteq Q$ é o conjunto de estados de aceitação.

Qual linguagem este AFN reconhece?

Sumário

- Pensamento
- 2 Avisos
- Revisão
- 4 LFA
 - Autômato Finito Não-Determinístico
 - Expressões Regulares

Computação em um AFN

Seja N um autômato finito não-determinístico e w uma cadeia sobre o alfabeto Σ . Então N aceita w se podemos escrever w como $w=y_1y_2\ldots y_m$, em que cada y_i é um membro de Σ_ϵ e existe uma sequência de estados r_0, r_1, \ldots, r_n em Q com três condições:

- $0 r_0 = q_0$
- ② $r_{i+1} \in \delta(r_i, y_{i+1})$, para i = 0, 1, ..., m-1, e
- \circ $r_m \in F$.

Qual linguagem este AFN reconhece?

Qual linguagem este AFN reconhece?

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.39

Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Corolário 1.40

Uma linguagem é regular se e somente se algum autômato finito não-determinístico a reconhece.

Expressões Regulares

Digamos que R é uma expressão regular (ER) se R for:

- \bullet a, para algum $a \in \Sigma$,
- $\mathbf{2} \epsilon$,
- **③** ∅,
- $(R_1 \cup R_2)$, em que R_1 e R_2 são expressões regulares,
- $(R_1 \circ R_2)$, em que R_1 e R_2 são expressões regulares,
- \circ (R_1^*) , em que R_1 é uma expressão regular.

Exemplos de ER

- 0*10*
- Σ*1Σ*
- Σ*001Σ*
- 1*(01⁺)*
- (ΣΣ)*
- $(0 \cup \epsilon)1^* = 01^* \cup 1^*$
- $1*\emptyset = \emptyset$
- $\bullet \ \emptyset^* = \{\epsilon\}$

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Expressões Regulares

Teorema

Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Estratégia

Utilizar para realizar a prova um autômato finito não-determinístico generalizado.

Autômato Finito Não-Determinístico Generalizado

Um autômato finito não-determinístico generalizado (AFNG) é uma 5-upla ($Q, \Sigma, \delta, q_{inicio}, q_{aceita}$), de forma que

- Q é um conjunto finito estados,
- Σ é um alfabeto finito,
- $\delta: (Q \{q_{aceita}\}) \times (Q \{q_{inicio}\}) \rightarrow R$ é a função de transição,
- $q_{inicio} \in Q$ é o estado inicial, e
- $ullet q_{aceita} \in Q$ é o estado de aceitação.

Autômatos Finitos Não-Determinístico Generalizado

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n \ge 0\}.$

Linguagens Não-Regulares

Existem linguagens que não são regulares como $A = \{0^n 1^n \mid n > 0\}.$

Lema do Bombeamento

Se A é uma linguagem regular, então existe um número p (o comprimento do bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes, s=xyz, satisfazendo as seguintes condições:

- \bullet para cada $i \geq 0, xy^i z \in A$,
- ② |y| > 0, e
- $|xy| \leq p.$

Lista de Exercícios 02

Livro

SIPSER, M. Introdução à Teoria da Computação, 2a Edição, Editora Thomson Learning, 2011. Código Bib.: [004 SIP/int].

Exercícios

- 1.4 (a, d, g);
- 1.7 (a, d, g);
- 1.15;
- 131

Revisão e Demonstrações de LFA

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

07 de abril de 2014

