Доклад

Асимметричные криптосистемы: обзор, виды, применение

Беличева Д. М.

Российский университет дружбы народов, Москва, Россия

Докладчик

- Беличева Дарья Михайловна
- студентка
- Российский университет дружбы народов
- · 1032216453@pfur.ru
- https://dmbelicheva.github.io/ru/

Введение

Цель работы

Целью данного доклада является представление основного принципа работы асимметричных криптосистем, их видов и применения в современных информационных системах.

Задачи

- Дать определение асимметрическим криптосистемам;
- Рассмотреть историю развития асимметричных криптосистем и их вклад в криптографию;
- Описать основные принципы работы асимметричных криптосистем;
- Представить основные виды асимметричных криптосистем;
- Проанализировать преимущества и недостатки асимметричной криптографии в сравнении с симметричными методами;
- Рассмотреть примеры применения асимметричных криптосистем в различных областях.

Теоретическое введение

Рис. 1: Ассиметричное шифрование

Основы асимметричных

криптосистем

Основы асимметричных криптосистем

- Открытый ключ используется для шифрования данных. Он может быть свободно передан по открытому каналу.
- Закрытый ключ используется для расшифровки зашифрованной информации. Он остается известным только владельцу.

Сравнение симметрических и асимметричных криптосистем

Характеристика	Симметричное шифрование	Асимметричное шифрование
Принцип работы	Один и тот же ключ	Используются два разных ключа:
	используется для шифрования	открытый для шифрования,
	и расшифровки	закрытый для расшифровки
Скорость	Быстрое шифрование и	Медленное шифрование и
	расшифровка	расшифровка
Вычислительные	Низкие вычислительные	Высокие вычислительные
затраты	затраты	затраты
Передача ключа	Требует безопасного обмена	Не требует передачи секретного
	секретным ключом	ключа, только открытого
Безопасность	Зависит от секретности ключа,	Безопаснее, закрытый ключ
	уязвимо при утечке	остается в секрете
Примеры	AES, DES, 3DES, Blowfish	RSA, Диффи-Хеллман, DSA,
алгоритмов		Эллиптическая криптография

Сравнение симметрических и асимметричных криптосистем

Характеристика	Симметричное шифрование	Асимметричное шифрование
Область	Шифрование больших объемов	Шифрование ключей, цифровые
применения	данных	подписи, аутентификация
Преимущества	Высокая скорость, низкая	Высокая безопасность,
	сложность	отсутствие необходимости
		передачи секретного ключа
Недостатки	Необходимость безопасного	Медленная работа с большими
	обмена ключом	объемами данных
Типичные	Шифрование файлов, баз	HTTPS, цифровые подписи,
применения	данных	обмен ключами, блокчейн

Виды асимметричных криптосистем

- 1. RSA (Ривест-Шамир-Адлеман)
- 2. Алгоритм Диффи-Хеллмана
- 3. Эллиптическая криптография (ЕСС)
- 4. DSA (Алгоритм цифровой подписи)

RSA (Ривест-Шамир-Адлеман)

Зашифруем и расшифруем сообщение "САВ" по алгоритму RSA.

- Выберем p=3 and q=11.
- · Определим n= 3*11=33.
- Найдем (p-1)*(q-1)=20. Следовательно, d будет равно, например, 3: (d=3).
- Выберем число е по следующей формуле: (e*3) mod 20=1. Значит е будет равно, например, 7: (e=7). -Представим шифруемое сообщение как последовательность чисел в диапозоне от 0 до 32. Буква A =1, B=2, C=3.

RSA (Ривест-Шамир-Адлеман)

Теперь зашифруем сообщение, используя открытый ключ {7,33}

$$C2 = (1^7) \mod 33 = 1 \mod 33 = 1;$$

RSA (Ривест-Шамир-Адлеман)

Теперь расшифруем данные, используя закрытый ключ {3,33}.

$$M1=(9^3) \mod 33 = 729 \mod 33 = 3(C);$$

$$M2=(1^3) \mod 33 = 1 \mod 33 = 1(A);$$

Рис. 2: Алгоритм Диффи – Хеллмана, где К – итоговый общий секретный ключ

Применение асимметричных криптосистем

- 1. HTTPS и SSL/TLS
- 2. Электронная почта (PGP, S/MIME)
- 3. Цифровые подписи
- 4. Блокчейн и криптовалюты
- 5. Мобильные платежные системы

Заключение

Асимметричные криптосистемы играют важную роль в защите информации в современном мире. Они обеспечивают высокую безопасность при передаче данных, позволяют проверять подлинность документов и сообщений, а также используются в критически важных приложениях, таких как защита веб-сайтов, электронная почта и блокчейн.

Список литературы

- 1. Адигеев М.Г. Введение в криптографию. Часть 1 // Ростов-на-Дону: Издательство РГУ. 2002.
- 2. Асимметричное шифрование [Электронный ресурс]. 2024. URL: https://encyclopedia.kaspersky.ru/glossary/asymmetric-encryption/.
- 3. RSA: Алгоритм асимметричного шифрования [Электронный ресурс]. 2024. URL: https://e-nigma.ru/stat/rsa/.