TFE 4152 Design of Integrated Circuits

Exercise 2

Peter Pham

2023-09-26

Contents

Problem 1	3
Problem 2	8
Problem 3	9
Problem 4	10

From the problem text, we are given this information:

Table 1: NMOS Transistor Parameters in 180 nm Technology

Parameter	Unit/Equation	Value
$V_{ m eff}$	V	0.2
$V_{ m Drain}$	V	0.2
$V_{ m Source}$	V	0
W	μ m	0.5
L	μ m	0.2
T	K	293
μC_{OX}	$rac{\mu \mathrm{A}}{\mathrm{V}^2}$ V	270
V_{t0}	V	0.45
$\lambda \cdot L$	$\frac{\mu \mathrm{m}}{\mathrm{V}}$	0.08
C_{OX}	$\frac{\mu m}{V} \frac{fF}{\mu m^2}$	8.5
t_{OX}	nm	5
n	_	1.6
heta	$\frac{1}{V}$	1.7
m	_	1.6
$\frac{C_{OV}}{W} = L_{OV}C_{OX}$ $\frac{C_{db}}{W} \approx \frac{C_{sb}}{W}$	<u>fF</u> μm <u>f</u> F	0.35
$\frac{C_{db}}{W} \approx \frac{C_{sb}}{W}$	$\frac{\text{fF}}{\mu\text{m}}$	0.5

a) What can you say about the region of operation for the transistor, based on the description above?

The region of operation where $V_{DS} > V_{DS\text{-sat}}$, the drain current is in is independent of V_{DS} and is called the active region:

Figure 1: The I_D versus V_{DS} curve for an ideal MOS transistor. For $V_{DS} > V_{DS-sat}$, I_D is approximately constant.

Based on the paramters in the table and figure above we can say that the region of operation is when $V_{DS} > 0.2V$ as V_{DS-sat} is given by

$$V_{\text{DS-sat}} = V_{GS} - V_{tn} = V_{\text{eff}}$$

b) Consider a similar case as described above. except that V_{DS} is increased by 50mV. Can you estimate the resulting drain current, I_{DS} ?

From figure 1, we can se that the current I_D changes marginaly in the active region when V_DS increases, therfore the resulting drain current can be estimated to be

$$I_D = \frac{2.7 \cdot 10^{-4}}{2} \frac{5 \cdot 10^{-5}}{2 \cdot 10^{-5}} (0.2)^2 = 13.5 \mu A$$

c) Estimate the maximum value for $V_{\rm eff}$ given that you would avoid mobility degradation for this transistor.

Due to mobility degadation, increases in V_{eff} beyond $\frac{1}{2\theta}$:

- fail to provide significant increases in small-signal transconductance,
- reduce the available signal swing limited by the fixed supply voltages, and
- reduce transistor intrinsic gain A_i dramatically

Therefore the maximum value for V_{eff} given that i would avoid mobility degradation for this transistor is

$$V_{\text{eff}} < \frac{1}{2 \cdot 1.7}$$

$$V_{\text{eff}} < \frac{5}{17}V$$

d) Calculate the small signal output resistance for the transistor when it's operating in the active region, and square-law behaviour holds.

We can use this equation

$$r_o = \frac{1}{\lambda \cdot I_D}$$

to find the small signal output resistance using the current I_D found in b)

$$r_o = \frac{1}{0.4 \frac{1}{V} \cdot 13.5 \mu A} = 185.2 k\Omega$$

e) What would be the small-signal output resistance if the W/L ratio was kept, and the gate length multiplied by 3?

By keeping the W/L ratio, we know that the current I_D will stay the same,

$$\Lambda = \frac{0.08}{0.6} = \frac{2}{15} \frac{1}{V}$$

This gives us

$$r_o = \frac{1}{\frac{2}{15}\frac{1}{V} \cdot 13.5\mu A} = 555.6k\Omega$$

f) Calculate the small-signal transconductance, g_m , for the transistor under the conditions relevant for problem b), above.

The small-signal transconductance, g_m is given by

$$\frac{2I_{D}}{V_{eff}} = \mu_{n}C_{ox}\frac{W}{L}V_{eff}$$

$$g_m = \frac{2I_D}{V_{\text{eff}}} = \frac{2 \cdot 13.5 \mu A}{0.2V} = 1.35 \cdot 10^{-4}$$

g) Indicate roughly the value for g_s and draw the low-frequency small-signal schematics for the transistor in the active region, and include relevant values based on what you have been asked to find, this far. Use $r_{\rm out}$ from 1 d).

- h) Problem 1 c) relates to mobility degradation for relatively high values of V_{DS} . Can you point to any other potential problems that could emerge from high V_{DS} voltages, especially for the shortest gate-lengths?
- i) Make a sketch of the small-signal diagram from $1\ \mathrm{g}$), where you include the parasitic capacitances.
- j) Consider the layout in Figure 2.14 in CJM and an implementation in the $0.8\mu m$ process from Table 1.5in CJM for your calculations, and Let C_{js} have a value of nfF in your expression. Find an expression for the smallsignal capacitance between the source and bulk nodes.
- k) Estimate the minimum V_{GS} required for this NMOS transistor to be in the active region.
- l) Circuits may in some cases operate with a supply voltage below the absolute values of both the pmos and nmos threshold voltages. Could you explain about when this could be beneficial for analog or digital circuits, or both?