SEQUENTIAL DESIGN OF EXPERIMENTS FOR PERSONALIZED MEDICINE

Mia Sato Tackney¹, Prof. Dave Woods¹, Dr. Kim May Lee², Dr. Ilya Shpitser³, Prof. Peter WF Smith¹

¹University of Southampton ²MRC Biostatistics Unit, University of Cambridge ³Johns Hopkins University

PERSONALIZED MEDICINE

Advances in genomics are making it possible to tailor treatment recommendations based on individual patient characteristics. In a personalized clinical trial, patients are stratified into subgroups based on their biomarker profile.

We wish to identify effective treatment-biomarker combinations.

Assume that there are n patients arriving sequentially for the trial, k binary biomarkers and a binary treatment factor. We need a way of allocating treatments to patients which is:

- 1. Sequential.
- 2. Able to estimate interaction effects corresponding to effective treatment-biomarker combinations as efficiently as possible.

We compare myopic and non-myopic approaches. **Does taking into ACCOUNT FUTURE POSSIBLE PATIENTS IMPROVE EFFICIENCY?**

OPTIMAL DESIGN OF EXPERIMENTS

We use a logistic model for the response:

$$y_i \sim \text{Bernoulli}(\pi_i)$$
, where $\text{logit}\left(\frac{\pi_i}{1-\pi_i}\right) = \boldsymbol{x}_i^T \boldsymbol{\beta}$,

where x_i is the ith row of design matrix X with includes columns corresponding to effects for all biomarkers, treatments and biomarker-treatment interactions. We aim to test $R=2^k$ hypotheses:

$$H_0: \boldsymbol{c}_r^T \boldsymbol{\beta} \geq \tau_r$$
 vs $H_1: \boldsymbol{c}_r^T \boldsymbol{\beta} < \tau_r$,

where c_r are vectors in $\{0,1\}^p$ to indicate **linear combinations of interest**, and τ_r is a threshold for the minimum interesting treatment difference, for $r \in \{1, ..., R\}$. We define weights:

$$w_r = P(\boldsymbol{c}_r^T \widehat{\boldsymbol{\beta}} < \tau_r).$$

We use a weighted *L*-optimal objective function proposed by Lee and Wason (2019) to minimize the variance of successful $c_r^T \hat{\beta}$:

$$\Psi_L(\mathbf{X}) = \left(\sum_{r=1}^R w_r \mathbf{c}_r^T (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} \mathbf{c}_r\right)^{-1},$$

where \pmb{W} is a diagonal matrix with ith entry equal to $\hat{\pi}_i(1-\hat{\pi}_i)$ where $\hat{\pi}_i=\frac{\hat{\beta}x_i}{1+\hat{\beta}x_i}$.

A MYOPIC ALGORITHM FOR SEQUENTIAL L-OPTIMAL DESIGN

- \succ Construct an initial design with n_0 patients which minimizes Ψ_L , assuming equal weights.
- \triangleright Observe initial responses y_1, \dots, y_{n_0} .
- \succ Fit the model to obtain $\hat{\beta}_0$.
- ightharpoonup Compute weights $w_{r_0} = P(\boldsymbol{c}_{\mathrm{r}}^{\mathrm{T}}\widehat{\boldsymbol{\beta}}_{\mathbf{0}} < \tau_r)$.
- For i in $n_0 + 1$ to n, given biomarker profile of patient i:
 - 1. Calculate the weighted L-optimal objective function for the design $X_{i,t}$ with i patients where patient i gets treatment t, for $t \in \{0,1\}$, using $\widehat{\boldsymbol{\beta}}_{i-1}$ to compute \boldsymbol{W}_i :
 - $\Psi_{L}(X_{i,t}) = \left(\sum_{r=1}^{R} w_{r_{i-1}} c_{r}^{T} (X_{i,t}^{T} W_{i-1} X_{i,t})^{-1} c_{r}\right)^{-1}.$
 - 2. Sample the treatment for patient i, where the probability of selecting treatment 1 is: $\frac{\Psi_L(X_{i,t=1})}{\Psi_L(X_{i,t=0}) + \Psi_L(X_{i,t=1})}$.
 - 3. Observe response y_i and refit the model to obtain $\hat{\beta}_i$.

A Non-Myopic Approach

A non-myopic approach to designing sequential experiments considers the impact of the choice of treatment for patient i on **future possible patients**. Our non-myopic algorithm generates M possible **trajectories** of biomarker values for patient i+1 up to patient n from an assumed distribution of the biomarkers. We select treatments for the future possible patients in the trajectory and choose a treatment based on the efficiency of the M designs each containing i real patients and n-i simulated patients.

CHANGE STEPS 2 AND 3 THE ALGORITHM:

- 2. For *m* in 1 to *M*:
 - a. From the assumed biomarker distribution, generate biomarkers for patients i-1 to n.
 - b. Assuming that patient i gets treatment t, for $t \in \{0, 1\}$, sequentially select the treatment which minimizes the L-optimality criterion for the future patients. Denote the resulting design matrix by $X_{i,t}^m$. Compute

$$\Psi_L(\boldsymbol{X}_{i,t}^m) = \left(\sum_{r=1}^R w_{r_i} \boldsymbol{c}_r^T (\boldsymbol{X}_{i,t}^{mT} \boldsymbol{W}_{i-1} \boldsymbol{X}_{i,t}^m)^{-1} \boldsymbol{c}_r\right)^{-1}.$$

- c. For $t \in \{0, 1\}$, compute $\overline{\Psi}_L(t_i = t) = \frac{1}{M} \sum_{m=1}^M \Psi_L(\boldsymbol{X}_{i,t}^m)$
- 3. Sample the treatment for patient i, where the probability of selecting treatment is: $\Psi_L(t_i=1)$

 $\frac{\overline{\Psi}_L(t_i=1)}{\overline{\Psi}_L(t_i=0)}$.

Note: Step (b) can be done with a coordinate exchange algorithm instead of sequentially.

RESULIS

WE FIND THAT THE MYOPIC APPROACH IS MORE EFFICIENT THAN THE NON-MYOPIC APPROACH.

EXAMPLE: Two biomarkers with distributions Bernoulli(0.5) and Bernoulli(0.7)

- New treatment better than control, especially in second biomarker group
- ▶ 100 patients
 ▶ initial sample size 15
 ▶ 100 simulations

We also found this result to be true for the linear and logistic model case, for D - and L - optimality, for time-varying and static biomarkers, and for binary and continuous treatment factors.

REFERENCES

Atkinson, A. C. (1982) Optimum biased coin designs for sequential clinical trials with prognostic factors. *Biometrika*, **69**, 61–67.

Lee, K.M. and Watson, J. (2019) Design of experiments for a confirmatory trial of precision medicine. *Journal of Statistical Planning and Inference*, **199**, 179-187.

