Computer arithmetic & algorithms	$b_m b_{m-1} b_0 .b_{-1} b_{-n} = b_m \times 2^m + b_{m-1} \times 2^{m-1} + + b_0 \times 2^0 + b_{-1} \times 2^{-1} + + b_{-n} \times 2^{-n}$ converting binary to decimal					$d_m d_{m-1}d_0$: integer, $d_{-1}d_{-2}d_{-n}$: fractional				
	$d_m d_{m-1}d_0.d_{-1}d_{-2}d_{-1}$ $d_m d_{m-1}d_0 = (b_r b_{r-1}$ To find integer part,	$d_m d_{m-1}d_0.d_{-1}d_{-2}d_{-n} = (b_r b_{r-1}b_0.b_{-1}b_{-2})_2$ $d_m d_{m-1}d_0 = (b_r b_{r-1}b_0)_2 \& d_{-1}d_{-2}d_{-n} = (b_{-1}b_{-2})_2$ To find integer part, - divide $d_m d_{m-1}d_0$ by 2 (remainder = b_0) - divide quotient by 2 (remainder = b_1)repeat process until quotient is 0					converting decimal to binary integer = integer & fractional = fractional E.g. 2.4 = 10.011001100110 2/2 = 1R0. 1/2 = 0R1			
	For fractional part, - multiply. $d_{-1}d_{-2}d_{-n}$ by 2 (integer part = b_{-1}) - multiply new fractional part by 2 (integer part = b_{-2})repeat until fractional part is 0; otherwise fractional part is infinite					0.4 x 2 = 0 + 0.8 0.8 x 2 = 1 + 0.6 0.6 x 2 = 1 + 0.2 0.2 x 2 = 0 + 0.4 0.01100110 = $2^{-2} + 2^{-3} + 2^{-6} + 2^{-7} + = $ $(2^{-2} + 2^{-3})\sum_{i=0}^{\infty} 2^{-4i} = \frac{3}{8} \left(\frac{1}{1-2^{-4}}\right) = 0.4$				
Floating-poi	nt Binary num in scient $\pm (1.s_1s_2s_N)_2 \times 2^k$	ific notat	ion normalize	d form	(b _r b _r			$b_{r-1}b_0b_{-1}b_{-n})_2 \times 2^r (0.00101_2 = 1.01_2 \times 2^{-3})$ Sinary digit 0 or 1) to store info about the digits /		
Tormats	IEEE standard	Numb	er of bits		1		-), exponent k (in binary form as well) and sign (0		
	precision	sign	exponent	mantissa (N)			or +ve and 1 for -ve)			
	single	1	8	23				will use 1 bit for its sign and the other bits for its		
	double long double	1	11 15	52 64	-	binary f -Use do		on for this module		
	Smallest +ve normal	ized dou	ole precision f		n: +(1			$(0)_2 = 1 \times 2^{-1022} \approx 2.22 \times 10^{-308}$		
	+(1.0000 x 10 ⁻¹¹¹¹¹¹ Largest +ve normaliz	•		oating-point num	: +(1.	.1111 x	10+111111111111111111111111111111111111	$_{2} = (2 - 2^{-52}) \times 2^{1023} \approx 1.8 \times 10^{308}$		
	machine epsilon = di			loating point nur	n > 1	and for c	double precis			
Rounding ru								Applies to both normal and subnormal num		
	1. 53 rd bit = 0: trunca 2. 53 rd bit = 1:	ite arter	52" DIT					$ (1.**_{52}0_{53})_2 \times 2^k = (1.**_{52})_2 \times 2^k $ $ (1.**0_{52}1_{53})_2 \times 2^k = (1.**0_{52})_2 \times 2^k $		
	a. 54 th bit onwards	s all 0 & 5	52 nd bit = 0: tr	uncate after 52nd	bit			$(1.**1_{52}1_{53})_2 \times 2^k = (*.**0_{52})_2 \times 2^k$		
	b. else 1 added to							$(1.***_{52}1_{53}*1*)_2 \times 2^k = (*.***_{52})_2 \times 2^k$		
Subnormal floating poin	For num smaller that $\pm (0.s_1s_2s_{52})_2 \times 2^{-1022}$		2.2 x 10 ⁻³⁰⁸ , s	ubnormal floating	g poir	nt numbe	r is used:	So, smallest +ve double precision num = $(0.001)_2 \times 2^{-1022} = (1 \times 2^{-52}) \times 2^{-1022} = 2^{-1074}$		
61	Although num below		s machine rep	resentable, addir	ng to	1 may ha	ve no effect			
Computer	For a num x , $fl(x) = n$									
arithmetic Matrix multi	Use special symbol t $A = (a_{ij})_{m \times n} \in \mathbb{R}^{m \times n},$				m <i>m×1</i>	p		$x \oplus y = f(f(x) + f(y))$ $x \oplus y = f(f(x) - f(y))$		
plication	$/C_{11} C_{12} \cdots C_{n}$	$B = (D_{ij})_n$	$a_{11} a_{12}$	$= AB = (C_{ij})_{m \times p} \in I$ $\cdots a_{1n} \setminus b_{11}$	b_{12}	$\cdots b_1$	1 <i>n</i> \	initialise $C = (c_{ij})_{m \times p}$ to be zero matrix for $i = 1,, m$ do		
'	$\int c_{21}^{11} c_{22}^{12} \cdots c_{n}^{n}$	$ \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{pmatrix} $						for j = 1,,p do		
		: /-(: :	:)	$c_{ij} \leftarrow a_{i1}b_{1j}$ for k = 2,, n do					
	$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \forall i$			a_{mn}/b_{n1}	b_{n2}	p_{i} p_{i}	ıp/	$c_{ij} \leftarrow c_{ij} + a_{ik}b_{kj}$		
	O(mpn). Exact is $O(n$			(2n-1))				Result: $C = (c_{ij})_{m \times p}$.		
	3 main qns: Find i, k				t. c _{ij} ≠	≠ 0				
Lower	Suppose A and B are low	_	gular n x n ma	trix, C = AB also lo	wer	triangula	r	initialise $c_{ij} = 0$ for all $1 \le i < j \le n$		
triangular multi-	$c_{ij} = 0 \ \forall \ i < j, C = (c_{ij})_{n \times r}$ For $i \ge j$: — A is lower tria		:,= 0 ∀i< k					for i = 1,, n do for j = 1,,i do		
plication	– B is lower tria							$c_{ij} \leftarrow a_{ij}b_{ij}$		
	$-a_{ik}b_{kj} = 0$ if i <	k or k < j		tion only needed	for k	< ≤ i or k ≥	<u>2</u> j	for k = j+1,, i do		
	$y_j = \sum_{k=j}^{i} a_{ik} b_{kj}, \ 1 \le j \le i \le n$						$c_{ij} \leftarrow c_{ij} + a_{ik}b_{kj}$			
		um of additions: $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=j+1}^{i} 1 = \sum_{i=1}^{n} \sum_{j=1}^{i} (i-j)$					Num of multiplications: $\sum_{i=1}^{n} \sum_{j=1}^{i} (1 + \sum_{k=j+1}^{i} 1) =$			
	$= \sum_{i=1}^{n} [(i-1)++1]$ $= \sum_{i=1}^{n} i(i-1) - 1 \binom{n(n+1)}{i}$	2n+1) n	(n+1) $(n-1)$)n(n+1)			$\sum_{i=1}^{n} \sum_{j=1}^{t}$	$\sum_{j=1}^{i} 1 + \sum_{j=1}^{n} \sum_{j=1}^{i} \sum_{k=j+1}^{i} 1 = n(n+1) (n-1)n(n+1) n(n+1)(n+2)$		
	$= \sum_{i=1}^{n} \frac{i(i-1)}{2} = \frac{1}{2} \left(\frac{n(n+1)(i-1)}{6} \right)$		$\frac{2}{2}$) $-\frac{n(n+1)}{2}$	6			$\sum_{i=1}^{n} i + ni$	um of additions = $\frac{n(n+1)}{2} + \frac{(n-1)n(n+1)}{6} = \frac{n(n+1)(n+2)}{6}$ $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$		
Hanan	$\Delta_{i=1}$ 1 - (II - 1) + 1	Σ	$i=1$ $i=\frac{\sqrt{2}}{2}$	= num of terms *	(1 st t	erm + las	t term) / 2	$\sum_{i=1}^{n} l^2 = \frac{1}{6}$		
Upper Hessen-	$A = (a_{ij})_{n \times n} \text{ be tridiagona}$ $/a_{11} a_{12} 0 0$	i matrix =	_			, ,	,∀j < i - 1, 3 : > i - 1: – a;, =	≤ i ≤ n 0, ∀k < i - 1, 3 ≤ i ≤ n or k > i + 1, 1 ≤ i ≤ n-2		
berg						, .		0, ∀k > j		
multi-	$ \begin{pmatrix} a_{21} & a_{22} & a_{23} & & 0 \\ 0 & a_{32} & \ddots & & \ddots \\ 0 & 0 & \ddots & & \ddots \end{pmatrix} $	0	,			- a		$< i - 1, 3 \le i \le n \text{ or } k > \min(i+1, j), 1 \le i \le n - 2$		
plication	$\begin{pmatrix} 0 & 0 & \ddots & \ddots \\ 0 & 0 & 0 & a_{n,n} \end{pmatrix}$	$a_{n-1,n} = a_{n,n}$	$\binom{n}{n}$		$\neq 0, \forall i - 1 \le k \le \min(i+1,j), \forall i = 1,,n, \forall j = \max(1,i)$					
B be upper triangular and $c_{ij} - \sum_{k=max(1,i-1)} u_{ik} u_{kj}$, vi –			$a_{ik}b_{kj}$, $\forall i = 1,,n$, $\forall j = \max(1,i-1),,n$							
	C = AB be upper Hessen	perg mat	$rix = (c_{ij})_{n \times n}$			_	initialise $c_{ij} = 0$ for all i,j, where $1 \le j < i - 1 < n$ for $i = 1,, n$ do			
	$\begin{pmatrix} c_{11} & c_{12} & \cdots & \cdots \\ c_{21} & c_{22} & c_{23} & \cdots \end{pmatrix}$	ι_{1n}					for j = max(1,i - 1),,n do			
	$0 c_{32} \cdots \cdots$	÷					$k \leftarrow \max(1, i-1); c_{ik} \leftarrow a_{ik}b_{kj}$			
$ \begin{pmatrix} c_{21} & c_{22} & c_{23} & \cdots & \vdots \\ 0 & c_{32} & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & c_{n-1,n} \\ 0 & 0 & 0 & c_{n,n-1} & c_{n,n} \end{pmatrix} \qquad \qquad$										
	Num of add: $\sum_{i=1}^{n} \sum_{j=ma}^{n} di$	-1 ~n,n	$\sum_{i=1}^{min(i+1,j)} 1$			N		$\sum_{i=1}^{n} \sum_{j=max(1,i-1)}^{n} (1 + \sum_{k=max(2,i)}^{min(i+1,j)} 1) =$		
$\sum_{i=1}^{n} \sum_{j=max(1,i-1)}^{n} (min(i+1,j) - max(2,i) + 1) = $ $\sum_{i=1}^{n} \sum_{j=max(1,i-1)}^{n} (min(i+1,j) - max(2,i) + 1) = $ $\sum_{i=1}^{n} \sum_{j=max(1,i-1)}^{n} 1 + \text{num of add} = $										
	$\sum_{i=1}^{n} (\min(2,j) - 1) + \sum_{i=2}^{n} \sum_{i=i-1}^{n} (\min(i+1,j) - i + 1) = \sum_{i=1}^{n} (n - i)$			$\sum_{i=1}^{n} (n - max)$	(n - max(1, i - 1) + 1) + num of add =					
	$1 + 2 + 2 + + 2 - n + \sum_{i}^{n}$	$\frac{1}{2}(0+1)$	+ 2 + + 2	2) =		n((n+1) - [1 + 1	1) - [1 + 1 + 2 + 3 + + (n - 1)] + num of add =		
	$1 + 2(n-1) - n + \sum_{i=2}^{n} (1 + 1)^{n-1}$					n($n(n+1) - \left[1 + \frac{n(n-1)}{2}\right] + n^2 - n = \frac{1}{2}(3n-2)(n+1)$			
	$n - 1 + \sum_{i=2}^{n} (1 + 2n - 2)$	i) = n - 1	+ n - 1 + 2n(n	$-1) - 2(\frac{n(n+1)}{2} - 1)$	= n ² -	- n				

Bisection	Bisection mtd: Solve for eqn: $f(r) = 0$. Keep dividing interval into 2 until length of new interval/2 \leq TOL. while (b-a)/2					
Mtd	Soln: exact root r = approx root ± TOL (tolerance)	c ← (a+b)/2				
	After n bisection steps: Approximate root = midpoint of $(a_n, b_n) = (a_n + b_n)/2$	if f(c) == 0: stop				
	Error of approx soln = $ \text{exact root} - \text{approx root} \le \frac{b_n - a_n}{2} = \frac{1}{2} \left(\frac{b - a}{2^n}\right) = \left(\frac{b - a}{2^{n+1}}\right)$	else if $f(a)f(c) < 0$: $b \leftarrow c$				
	Num of fn evaluations = n + 2 (f(a), f(b), n times of f(c))	else a ← c				
		Result: appox root = (a+b)/2				
	Soln is correct within p d.p if error is less than 0.5×10^{-p} . Num of steps for bisection: $\frac{b-a}{2n+1} < 0.5 \times 10^{-p}$					
	However, due to rounding errors by computers, may terminate early and not have required digits of precision.					
Fixed-	Solve eqn: $g(x) = x$. Keep applying $g()$ to x_i until num converge. r is a fixed pt if $g(r) = r$	set initial guess x ₀				
Point	Backward error = $ g(x_i+1) - x_{i+1} = f(x_a) $	for i = 0,1,2, do (have max i in case divergent)				
Iteration	Suppose $f(x) = g(x) - x$, and x_a is approximation for r where $f(r) = 0$	$x_{i+1} \leftarrow g(x_i)$				
(FPI)	Forward error = r-x _a	if $ g(x_i+1) - x_{i+1} < TOL$:				
	Note that seq x _i may not always converge.	$x_{fp} \leftarrow g(x_{i+1})$, break				
	Note any eqn $f(x) = 0$ can be turned into a fixed-pt problem $g(x) = x$	Result: x _{fp}				
FPI con-	Convergence Thrm: Suppose g is continuously differentiable, and $g(r) = r$ and $S := g'(r) $	Fixed-Point Thrm: Let g be cts fn in [a,b] s.t. g(x)				
vergence						
rate	Let $e_i := x_i - r $ denote error at step i. If $\lim_{i \to \infty} \frac{e_{i+1}}{e_i} = S < 1$, mtd obey linear convergence	constant $0 < k < 1$ s.t. $ g'(x) \le k$, $\forall x \in [a,b]$.				
	with rate S	Then for any num x_0 in $[a,b]$, seq $x_n = g(x_{n-1})$, $n \ge 1$				
	So S = 0: fastest convergence rate. S < 1: cfm converge. S > 1: won't converge	converges to unique fixed pt r in [a,b]				
	Bisection Mtd: Guaranteed to converge linearly. However, need predefine initial	FPI: convergence rate S can be < 1/2, faster than				
	interval and convergence rate = 1/2 (might be slower than FPI)	bisection. But might be diff to formulate g from f				
Horner's	Given x, evaluate h(x). Common that h is polynomial.	P ← a _m				
Mtd	$P_m(x) = a_0 + a_1x + + a_{m-1}x^{m-1} + a_mx^m = a_0 + x(a_1 + x(a_2 + + x(a_{m-1} + xa_m)))$	for k = m-1,,0 do				
	Horner's Mtd: most optimal mtd for finding value of polynomial. O(m)	$P \leftarrow a_k + xP$				
	$p_m = a_m$. $p_{m-1} = a_{m-1} + xp_m$ $p_1 = a_1 + xp_2$. $p_0 = a_0 + xp_1$	Result: P				

	$p_m = a_m$. $p_{m-1} = a_{m-1} + xp_m$ $p_1 = a_1 + xp_2$. $p_0 = a_0 + xp_1$	Result: P					
Gaussian	$A_{n \times n} x_{n \times 1} = b_{n \times 1}$	for i = 1.	,n: r _i ← i		(labell	ing rows)	
Elimina-	Note lower triangular part not set to zero as they	for i = 1,			,	0 1	
tion	would not be used in further computation	j←i	, ,				
O(n ³)	Subtraction: n(n-1)(2n+5)/6 (without labelling rows)	_	while $j \le n$ and $a_{r_i i} = 0$: $j \leftarrow j+1$ (check which col has pivot entry)				
Leading	Multiplication: n(n-1)(2n+5)/6 (without labelling rows)			r: Singular matrix"		s have zero col)	
term: $\frac{2n^3}{3}$	Division: n(n+1)/2 (without labelling rows)	-	else if $j \neq i$: swap r_i and r_i				
3	Note zero column = non-invertible		for j = i+1,,n: $m_{ji} \leftarrow a_{r_ii}/a_{r_ii}$ (elimination: making matrix into upper triangular)				
	Could have cases where $\mathbf{a}_{\mathbf{r}_i\mathbf{i}}$ = 0. So label rows to keep		for k = i+1,,n+1: (augmented matrix include $b_{n \times 1}$ as well)				
	track of swapping rows	$a_{r_jk} \leftarrow a_{r_jk} - m_{ji}a_{r_ik}$					
	Due to computer arithmetic errors, num supposed to	$x_n \leftarrow a_{r_n,n+1}/a_{r_nn}$ (backward substitution)					
	be 0 becomes a very small num and cause loss of		for i = n-1,,1: $\{x_i \leftarrow a_{r_i,n+1}$				
	significant digits	1011-11		·1 ,n: x _i ← x _i - a _{rij} x _j			
			$x_i \leftarrow x_i/a_{r_i}$	• ,			
Partial	1st mtd to perfrom row swap to minimise errors		(labelling rov				
Pivoting	Select pivot elem s.t. its absolute value is as large as pos	sible in cel		•			
rivoting			1011 – 1,, 11		fla dələ	a .l·l←i}	
	Num of comparisons is $\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} 1 = \sum_{i=1}^{n-1} (n-i) = \frac{n}{n}$	for $j = i+1,,n$ {if $ a_{r,i} > a_{r,i} : \leftarrow j$ }					
	However, if remaining entries of pivot row also has large	tude, if $a_{r i} = 0$: Output: "Error: Singular matrix"(row swap)					
	then would cause loss of significant digits in the other ro	WS.	(elimination)	else if I ≠ i: swap r _i and r _i } (elimination), (backward substitution)			
Relative	A way to do this is to compare the relative absolute sizes	in each co			ution		
absolute	j = 1,,n,		for j = i,,		(find r	max abs val in row)	
ratio	relative absolute size of row i = a _{ij} /max(row i)	$s_{r_i} \leftarrow a_{r_ii} $					
	By choosing largest relative absolute size for each col as						
	loss of sig digits is minimised	$ \leftarrow i, \max \leftarrow a_{r_i} /s_{r_i}$ (find max relative abs ratio)					
	Divisions = $\frac{(n+2)(n-1)}{2}$, Comparisons = $\frac{n(n-1)(2n+5)}{6}$	for j = i+1,,n {ratio $\leftarrow a_{r_ii} /s_{r_i}$					
	2 , comparisons 6		101) = 111,	if ratio $\langle a_{r_{j}i} \rangle$,	, ratio	
Scaled	2nd mtd to perform row swap to minimise errors		(labelling rov		ı ← j, ıııax	← ratio;	
Partial	To save computational cost, assume max entry of row do	nes not	for i = 1,, n				
Pivoting	change too much in elimination process, and only find m			for j = 2,, n {if a	a::1 > c:· c: ←	- la:: }	
(SPP)	row once at beginning, then use this max from original r			if s _i = 0: Output: "Error: Singular matrix"}			
()	calculate relative absolute ratio: scaled partial pivoting	for i = 1,, n-1 {(find max relative abs ratio), (row swap)}					
	Comparisons = $\frac{3}{2}n(n-1)$		(elimination), (back substitution)				
LU	Solve for multiple L.S with same coefficient matrix, $Ax_1 =$	h Av k		for i = 1 n-1 do		ctorization)	
factoriza-	So can preprocess A to not repeat ops. Find $A = LU$, when			for j = i+1,, n		Ctorization)	
tion	upper triangular. LUx = b. L = strictly lower part of proce		-			ver triangular part of A	
O(n ³) +	= upper triangular of processed A	sscu A i ui	agonaran 1. o			- a _{ji} a _{ik} } #elimination	
O(2pn ²)	Forward substitution (solve Ly = b for y)	$y_1 \leftarrow b_1$	(forward sub)	$x_n \leftarrow y_n/a$			
- ()- /	Backward substitution (solve Ux = y for x)	for j = 2,, n do	(10110000)	-	L,,1 {x _i ← y _i		
	Time complexity for both substitution = $O(n^2)$	$y_i \leftarrow b_i$			or $j = i+1,, n: x_i \leftarrow x_i - U_{ij}x_j$		
	So, applying Gaussian elimination p times = O(2pn ³)	for i = 1,, j-1	$: y_j \leftarrow y_j - L_{ji}y_i$		$x_i \leftarrow x_i/U_{ii}$		
PA = LU	Matrix which require row swap to get REF cannot be LU	Find m		each row and initial	se L, U, r	(new forward sub)	
factoriza-	factorized. (or can check det of top left entry, top left 2 x for $i = 1,$			(PA = LU factorizati	on)	$y_1 \leftarrow b_{r_1}$	
tion			max relative abs	nax relative abs ratio & row swap) 7^{-1} for $j = 2,, n$ do			
$O(n^3) +$	Hence, need perform row swap at start with SPP, PAx =	\leftarrow 1, $U_{ii} \leftarrow a_{r_i,i}$					
O(pn²)	Pb, where P is a permutation matrix (n x n matrix	for j	= i+1,, n do			for i = 1,, j-1:	

	consisting all 0, except for a single 1 in every row and col)	,	$a_{\mathbf{r}_{\mathbf{i}},\mathbf{i}}/a_{\mathbf{r}_{\mathbf{i}},\mathbf{i}}$	$y_j \leftarrow y_j - L_{r_j,i} y_i$		
	Now PA = LU. Solve Ly = Pb, then solve Ux = y No need to explicitly find P, just output r (stored row	for $k = U_{ij} \leftarrow a$ $L_{r_n,n} \leftarrow 1, U_{ij} \leftarrow 1$		backward sub still same as previous		
	index) to replace P	$a_{n,n} \leftarrow a_{r_n,n}$				
A = LU & PA	<u> </u>		the section of finite if Table 01/ called the section	0		
matrix	Symmetric positive-definite matrix. n x n matrix A is symme To check if matrix is positive-definite, could expand algebra OR If A is symmetric, A is positive-definite iff all eigenvalue:	aically with x ar s > 0	nd then complete the sq to check > 0.			
	Principal submatrix of sq matrix A is a sq submatrix whose a		== ==	$\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}, \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix}$		
Cholesky	Cholesky factorization: every symmetric positive-definite			zeros into 1st col & row		
factoriza-	factored as $A = R^TR$ (R is upper triangular). Hence would s			gonal entry becomes 1		
tion	the memory compared to A = LU.		2a. Apply row, col ops to introduce	zeros into 2nd col & row		
O(n ³) +	Idea: Use row/col ops to reduce A into identity matrix to	-	2b. Apply row, col scaling so 2nd dia	= -		
O(pn²)	Forward sub: $R^Ty = b$ for y. Backward sub: $Rx = y$ for x. O(n²)	n. Apply row and col scaling so last			
	Note $\tilde{A} = K_1 - \frac{1}{a_{11}} u_1 u_1^T$ also positive definite.		$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{\underline{2}3} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & u_1^T \\ u_1 & K_1 \end{pmatrix} = \begin{pmatrix} \sqrt{a_{11}} & \sqrt{a_{11}}$	$\left(\overline{a_{11}} \frac{u_1'}{\sqrt{a_{11}}}\right)$		
	$A = R_1^T A_1 R_1 \cdot (R_1^T)^{-1} A R_1^{-1} = A_1 \cdot \text{Since } x^T (R_1^T)^{-1} A R_1^{-1} x =$	-T 1 - 1	$\begin{bmatrix} \begin{pmatrix} 1 & 2 & 2 & 2 \\ a_{13} & a_{23} & a_{33} \end{pmatrix} & \begin{pmatrix} u_1 & K_1 \end{pmatrix} & \begin{pmatrix} 1 & 1 & 1 \\ & & & & \\ & & & & \\ & & & &$	$0 \qquad \stackrel{Vall}{I}$		
	$(R_1^{-1}x)^T A (R_1^{-1}x)$ and A is symm positive definite, then ($ \begin{pmatrix} 1 & 0^T \\ 0 & K_1 - \frac{1}{a_{11}} u_1 u_1^T \end{pmatrix} \begin{pmatrix} \sqrt{a_{11}} & \frac{u_1^T}{\sqrt{a_{11}}} \\ 0 & I \end{pmatrix} = R_1^T. $	A = A + A + A + A + A + A + A + A + A +		
	A_1 also symm positive definite. Since \tilde{A} is principal submalso symm positive definite	atrix of A_1 , A	$\left(\begin{array}{ccc} 0 & K_1 - \frac{1}{a_{11}} u_1 u_1^T \end{array}\right) \left(\begin{array}{ccc} & & & \sqrt{a_{11}} \\ & & & I \end{array}\right) = K_1^T u_1^T u_1^T u_1^T u_2^T u$	$A_1 K_1$ where $u_1 = (a_{13}), K_1$		
	for k = 1,2,, n do		$=\begin{pmatrix} a_{22} & a_{23} \\ a_{23} & a_{33} \end{pmatrix}$. Then repeat finding for \tilde{A}	$=K_4-\frac{1}{2}u_4u_4^T$ and so		
	if A _{kk} < 0: Stop algo. A not positive definite			. T		
	$R_{kk} \leftarrow \sqrt{a_{kk}}$ (diag entries of R)		$\sqrt{a_{11}} \frac{a_{12}}{\sqrt{a_{11}}}$	$\frac{a_{13}}{\sqrt{a_{11}}}$		
	$v^{T} \leftarrow \frac{1}{R_{lik}} A_{k,k+1:n}; R_{k,k+1:n} \leftarrow v^{T} \text{ (rest of row k)}$		on Finally will got $DI = 1$ 0 ∞	u_{12}		
	$A_{k+1:n,k+1:n} \leftarrow A_{k+1:n,k+1:n} - vv^{T} \qquad \text{(principal submatrix)}$			$\frac{\sqrt{a_{11}}}{\sqrt{\widehat{\Box}}}$		
la sa h:				$\frac{\sqrt{a_{11}}}{\cdots}$		
Jacobi Method	Similar to fixed-point iteration. $A_{n \times n} = L + D + U$ $Ax = b \cdot (L + D + U)x = b \cdot Dx = b \cdot (L + U)x \cdot x = D^{-1}(b \cdot (L + U)x)$	x)	$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ a_{21} & 0 \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & \cdots & \cdots \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_{nn} \end{pmatrix} + \begin{pmatrix} 0 & a_{12} \\ 0 & 0 \\ \vdots & \ddots \\ 0 & \cdots \end{pmatrix}$	0		
O(n ²)	D-1 is just reciprocal of all entries in D. So $x^{(k+1)} = D^{-1}(b - Lx)$		·.			
	Then solve eqn element-wise, $x_1^{(k+1)} = \frac{1}{a_{11}} \left[b_1 - a_{12} x_2^{(k)} \right]$		$\begin{pmatrix} a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} a_{n1} & \cdots & a_{nn} \end{pmatrix}$	$a_{n,n-1} = 0/$		
		··· ··································	$\begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a & \ddots & \ddots \end{bmatrix} \begin{bmatrix} 0 & a_{12} \\ 0 & 0 \end{bmatrix}$	$\begin{array}{ccc} \cdots & a_{1n} \\ \vdots & \vdots \end{array}$		
	$x_2^{(k+1)} = \frac{1}{a_{22}} \left[b_2 - a_{21} x_1^{(k)} - a_{23} x_3^{(k)} \dots - a_{2n} x_n^{(k)} \right] \dots$		$\left[\left(\begin{array}{ccc} 0 & u_{22} & \cdot & \cdot \\ \vdots & \ddots & \cdot & 0 \end{array} \right) + \left(\begin{array}{ccc} 0 & 0 \\ \vdots & \ddots & \cdot \end{array} \right) \right]$	$a_{n-1,n}$ = L + D + U		
	$x_n^{(k+1)} = \frac{1}{a_{nn}} \left[b_n - a_{n1} x_1^{(k)} - \dots - a_{n,n-1} x_{n-1}^{(k)} \right]$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$0 a_{nn}$			
	So calculation can be parallelized					
			go when max iteration is reached			
			oximately solve L.S, i.e. $\max_{1 \le i \le n} \{ Ax^{(k+1)} - b \}$			
	$x^{(k+1)} = (b - Rx^{(k)}) \bigcirc d (\bigcirc = element-wise division)$		gonally dominant (sdd) if for each $1 \le i \le n$, $y > sum of non-diagonal entries in same row$			
			nonsingular matrix. If A not sdd, MIGHT still			
	Another mtd to check convergence is spectral radius p(B) = max magnitude of eigenvalues of B. If p(B) < 1, and c is arbitrary, then for any					
	vector x_0 , $x_{k+1} = Bx_k + c$ converges. In particular, check $p(E_k)$	D ⁻¹ (L + U)) < 1. l		25.		
Gauss- Seidel	Similar to Jacobi. Now, $x^{(k+1)} = D^{-1}(b - Lx^{(k+1)} - Ux^{(k)})$		set initial vector $\mathbf{x}^{(0)}$ for $\mathbf{k} = 0,1,2,$ do			
Method	$x_1^{(k+1)} = \frac{1}{a_{11}} \left[b_1 - a_{12} x_2^{(k)} - \dots - a_{1n} x_n^{(k)} \right]$ (no change)		for i = 1,2,n do			
O(n ²)	$x_2^{(k+1)} = \frac{1}{a_{22}} \left[b_2 - a_{21} x_1^{(k+1)} - a_{23} x_3^{(k)} \dots - a_{2n} x_n^{(k)} \right] \dots$		$x_1^{(k+1)} \leftarrow b_i$			
	$x_n^{(k+1)} = \frac{1}{a} \left[b_n - a_{n1} x_1^{(k+1)} - \dots - a_{n,n-1} x_{n-1}^{(k+1)} \right]$		for j = i+1,, n: { $x_i^{(k+1)} \leftarrow x_i^{(k+1)} - a$	$\{x_i, x_i^{(k)}\}$		
	Now cannot parallelized, as x_2,x_n dependent on $x_1,,x_n$	Y 4	for j = 1,, i-1: { $x_i^{(k+1)} \leftarrow x_i^{(k+1)} - a_i$			
	But since updated values are used, will converge faster the			$j^{\lambda}j$		
	If A is sdd, Gauss-Seidel mtd will converge		$x_i^{(k+1)} \leftarrow \frac{x_i^{(k+1)}}{a_{ii}}$			
Succes-	Gauss-Seidel iterate: $x_{GS}^{(k+1)} = D^{-1}(b - Lx^{(k+1)} - Ux^{(k)})$		set initial vector x ⁽⁰⁾			
sive Over-	Current iterate: x ^(k)		for k = 0,1,2, do			
Relaxation (SOR)	Let ω be a real num, and define $x^{(k+1)}$ as weighted average	e of $x_{GS}^{(k+1)}$	for i = 1,2,n do $x_1^{(k+1)} \leftarrow b_i$			
Method	and $x^{(k)}$. i.e. $x^{(k+1)} = (1 - \omega)x^{(k)} + \omega x_{GS}^{(k+1)}$			u(k)		
O(n ²)	ω is called relaxation parameter and ω >1 = over-relaxation	on	for j = i+1,, n: $\{x_i^{(k+1)} \leftarrow x_i^{(k+1)} - a\}$			
	GS: $\omega = 1$. SOR: $\omega > 1$		for j = 1,, i-1: { $x_i^{(k+1)} \leftarrow x_i^{(k+1)} - a_i$	$(jx_j^{(k+1)})$		
	Faster convergence than GS Need to choose ω wisely, usually 1.1 or 1.2		$x_i^{(k+1)} \leftarrow (1 - \omega) x_i^{(k)} + \omega \frac{x_i^{(k+1)}}{a_{ii}}$			
When to	Direct mtd: Gaussian elimination, A = LU or PA = LU,	Use iterative	mtd if 1. requirement of accuracy not high,	save computational cost		
use which	Cholesky factorization. O(n³) for preprocessing, O(n²)	2. good appro	oximation already known (to be used as initi	ial guess)		
mtd?	· · · · · · · · · · · · · · · · · · ·		rse (many entries = 0). Most expensive op is matrix-vector			
	Iterative mtd: Jacobi, Gauss-Seidel, SOR. O(n²)	multiplication	which would be cheaper			
Interpola-	Given data points $(x_0, f(x_0)), (x_1, f(x_1)),, (x_n, f(x_n))$. Want	Properties (of g: Simplicity (easy to evaluate) and appro	eximability (accuracy)		
tion	to find fn g to connect these pts to restore original fn f	Weierstrass	approximation theorem: Let f be a cts fn o			
	Interpolation: restoration of f		$P(x)$ s.t. $ f(x) - P(x) < \epsilon, \forall x \in [a, b]$			
	Interpolation podes: X X X		we n+1 data points, polynomial must be of degree n, with n+1 coeff			
	Interpolation nodes: x ₀ , x ₁ ,, x _n From general L.S to find co		eral eqn for polynomial, sub data points in to get n+1 eqns and solve coeff			
Basis fn	Basis fn: $\{\varphi_0(x), \varphi_1(x),, \varphi_n(x)\}$, where $\varphi_k(x_j) = \delta_{jk}$,		g must satisfy: $g(x_0) = f(x_0)$, $g(x_1) = f(x_1)$,	$g(x_n) = f(x_n)$		
	The state of the s		1 2 1. 80.00 -0.00 80.11 -0.00 m	7.00 07 0707		

	Kronecker delta, $\delta_{jk} = \begin{cases} 0, & \text{if } j \neq k \\ 1, & \text{otherwise} \end{cases}$, $j = 0, 1,, n, k = 0, 1,, n$		Using basis fn, $g(x) = f(x_0)\varphi_0(x) + f(x_1)\varphi_1(x) + + f(x_n)\varphi_n(x)$ E.g. $g(x_0) = f(x_0)(1) + f(x_1)(0) + + f(x_n)(0) = f(x_0)$
Lagrange basis poly- nomial	Let $x_0, x_1,, x_n$ be the n+1 distinct real nums. For $k = 0, 1,, n, t$ k^{th} Lagrange basis polynomial $L_k(x)$ is a polynomial of degree n w $L_k(x) = \prod_{j=0, j \neq k}^n \frac{x-x_j}{x_k-x_j} = \frac{(x-x_0)(x-x_{k-1})(x-x_{k+1})(x-x_n)}{(x_k-x_0)(x_k-x_{k-1})(x_k-x_{k+1})(x_k-x_n)}$. So $L_k(x) = \sum_{j=0, k}^n \frac{x-x_j}{x_k-x_j} = \frac{(x-x_0)(x_k-x_{k-1})(x-x_{k+1})(x_k-x_n)}{(x_k-x_0)(x_k-x_{k-1})(x_k-x_{k+1})(x_k-x_n)}$.	Then interpolating fn, $P(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + + f(x_n)L_n(x)$ which satisfies $P(x_0) = f(x_0)$, $P(x_1) = f(x_1)$,, $P(x_n) = f(x_n)$ P(x) is called the Lagrange interpolating polynomial	
	LS is guaranteed to have a soln if (deg n, num of eqns m) m=n: By constructing Lagrange interpolating polynomial m > n: Not guaranteed m < n: Infinitely many solution	Using LS: Pros – direct mtd Cons: tedious computations Lagrange: Pros – easy to analyse. Good if we need to interpolate many fns with same set of interpolating nodes Cons: not convenient to add more data points	
Unique- ness of Lagrange poly- nomial	If x_0 , x_1 ,, x_n are $n+1$ distinct nums and f is a f n whose values a given at these nums, then a unique polynomial $P_n(x)$ of degree a n exists with $f(x_k) = P_n(x_k)$, for $k = 0,1,,n$ $P_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + + f(x_n)L_n(x)$ where L_k is the k th Lag basis polynomial	Suppose there is another polynomial \tilde{P}_n having $\deg \le n$ satisfying $\tilde{P}_n(x_k) = f(x_k)$, for $k = 0,1,,n$. Then $\tilde{P}_n(x_k) - P_n(x_k) = 0$, for $k = 0,1,,n$. This means x_k , $k = 0,1,,n$ are roots of polynomial $\tilde{P}_n(x_k) - P_n(x_k)$ and has at least $n+1$ roots. But \tilde{P}_n and P_n are $\deg \le n$. By contradiction, Hence $\tilde{P}_n = P_n$	
Adding more inter- polating nodes	Let P_{n-1} be the Lagrange interpolating polynomial of $f(x)$ with n nodes $x_0, x_1,, x_{n-1}$. Suppose we get one more data point $(x_n, f(x_n, P_{n-1}(x)) = f(x_0) L_0(x) + + f(x_{n-1}) L_{n-1}(x)$ where $L_k(x) = \prod_{j=0, j \neq k}^{n-1} \frac{x - x_j}{x_k - x_j}$ Naive way: Recalculate Lagrange basis polynomial again $P_n(x) = f(x_0) L_0(x) + + f(x_n) L_n(x)$ where $L_k(x) = \prod_{j=0, j \neq k}^{n} \frac{x - x_j}{x_k - x_j}$	(a)). the Q _n n th So	t $Q_n(x) = P_n(x) - P_{n-1}(x)$. $Q_n(x)$ is the unique interpolating polynomial at interpolates $(x_0, 0)$, $(x_1, 0)$,, $(x_{n-1}, 0)$, $(x_n, f(x_n - P_{n-1}(x_n))$ $(x) = f[x_0, x_1,, x_n](x - x_0)(x - x_1)(x - x_{n-1})$ where (Proof in I13) divided diff of $f = f[x_0, x_1,, x_n] = \sum_{k=0}^n f(x_k) \prod_{j=0, j \neq k}^n \frac{1}{x_k - x_j}$ $P_n(x) = P_{n-1}(x) + Q_n(x) = P_{n-1}(x) + f[x_0, x_1,, x_n](x - x_0)(x - x_1)(x - x_{n-1})$ $= P_0(x) + f[x_0, x_1](x - x_0) + + f[x_0,, x_n](x - x_0)(x - x_1)(x - x_{n-1})$
Newton's Poly- nomial (Easier to add more nodes)	$\begin{aligned} & P_{n}(x) = \sum_{k=0}^{n} f[x_0, \dots, x_k](x - x_0) \; (x - x_1) \dots (x - x_{k-1}) = \\ & P_{0}(x) + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1}) \\ & And \; n^{th} \; divided \; diff \; of \; f = f[x_0, x_1, \dots, x_n] = \\ & \sum_{k=0}^{n} f(x_k) \; \prod_{j=0, j \neq k}^{n} \frac{1}{x_k - x_j} \; where \; f[x_0] = P_0(x) = f(x_0). \\ & Note. \; order \; of \; nodes \; don't \; matter. \; i.e. \; f[x_0, x_1, x_2] = f[x_1, x_2, x_0] \\ & (proof \; in \; t8) \end{aligned}$	Le <u>f[x</u> Co O(t x ₀ , x ₁ ,, x _n be n+1 distinct real nums. Then f[x ₀ , x ₁ ,, x _n] = $\frac{x_1 x_2, x_n - f[x_0, x_1,, x_{n-1}]}{x_n - x_0}$. (Proof in l14) Impute f[x ₀], f[x ₁]f[x _n] first, then f[x ₀ , x ₁] = $\frac{f[x_1] - f[x_0]}{x_1 - x_0}$ In an in a first in the first i
Divided Diff & Computation	for $k = 0,1,,n$ do $\{f[x_k] \leftarrow f(x_k)\}$ for $j = 1,,n$ do $\{f[x_k,,x_{k+j}] \leftarrow (f[x_{k+1},,x_{k+j}] - f[x_k,,x_{k+j-1}])/(x \}$ Result: all $f[x_j,,x_k]$ for $0 \le j \le k \le n$	•	To compute $P_n(x)$ for some x , use Horner's method. $O(n)$ $P \leftarrow f[x_0, x_1,, x_n]$ for $k = n-1,,0$ do $\{P \leftarrow f[x_0, x_1,, x_k] + (x-x_k)P\}$
Error of interpola- tion	Runge fn: $f(x) = \frac{1}{1+25x^2}$, $x \in [-1, 1]$ Runge's phenomenon: Wider oscillation at ends near interpolation interval (worse interpolation at ends). ↑ num of nodes only worsen approximation at ends of interval. Error of interpolation, $ f(x) - P_n(x) $: error is 0 on all nodes, error has peak btw every pair of adjacent nodes, peaks closer to 1st and last nodes are higher than nodes in the middle $g_n(x) = (x-x_0)(x-x_1)(x-x_n) = \prod_{k=0}^n (x-x_k) $ has similar pattern to error $ f(x) - P_n(x) $ w equally-spaced nodes $P_n^{(n+1)} = 0$ as P_n only deg $\le n$.	deriva polync depen x}, so t Proof. For x 6 For h(x	$x = x_1 < x_n < x_n $ be n+1 distinct pts on [a, b]. If $f \in C^{n+1}([a,b])$, i.e. all tives $f, f^{(1)}, \dots, f^{(n+1)}$ are cts in [a, b], and P_n is the interpolating small of f w deg $\le n$ at x_0, x_1, \dots, x_n . Then $\forall x \in \mathbb{R}$, there is a $\xi \in \mathbb{R}$ ds on $x_0, x_1, \dots, x_n, x_n$ and ξ lies btw the min and max of $\{x_0, x_1, \dots, x_n, x_n, x_n\}$ that $f(x) - P_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)(x - x_1) \dots (x - x_n) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \frac{1}{2^n} T_{n+1}(x)$ For $x \in \{x_0, x_1, \dots, x_n\}$, LHS = $f(x) - P_n(x) = f(x) - f(x) = 0$ = RHS $\xi \in \{x_0, x_1, \dots, x_n\}$. Let $h(x) = f(x) - P_n(x) - \lambda(x - x_0)(x - x_1) \dots (x - x_n)$. $\xi \in \{x_0, x_1, \dots, x_n\}$. Let $h(x) = f(x) - P_n(x) - \lambda(x - x_0)(x - x_1) \dots (x - x_n)$. $\xi \in \{x_0, x_1, \dots, x_n\}$. Let $h(x) = f(x) - P_n(x) - \lambda(x - x_0)(x - x_1) \dots (x - x_n)$. $\xi \in \{x_0, x_1, \dots, x_n\}$. Let $h(x) = f(x) - P_n(x) - \lambda(x - x_0)(x - x_1) \dots (x - x_n)$. $\xi \in \{x_0, x_1, \dots, x_n\}$. Let $h(x) = f(x) - P_n(x) - \lambda(x - x_0)(x - x_1) \dots (x - x_n)$. $\xi \in \{x_0, x_1, \dots, x_n\}$. Let $h(x) = f(x) - P_n(x) - \lambda(x - x_0)(x - x_1) \dots (x - x_n)$. $\xi \in \{x_0, x_1, \dots, x_n\}$. Let
	$\frac{d^{n+1}}{dx^{n+1}}[\lambda(x-x_0)(x-x_1)(x-x_n)] = \lambda(n+1)! \text{ since any x w deg < n+1,}$ after differentiating n+1 times would become 0	Contin	ue applying IVT until $h^{(n+1)}(\xi) = 0$. Also, $h^{(n+1)}(\xi) = f^{(n+1)}(\xi) - P_n^{(n+1)}(\xi) - \lambda(x-x_0)(x-x_1)(x-x_n)] _{x=\xi} = f^{(n+1)}(\xi) - \lambda(n+1)!$. So $\lambda = \frac{f^{(n+1)}(\xi)}{(n+1)!}$
Cheby- shev Interpola- tion	Chebyshev nodes: $x_k = \cos\left(\frac{(k+1/2)\pi}{n+1}\right)$, $k = 0,1,$, n in $[-1,1]$ Using Chebyshev nodes means max value of $g_n(x)$ is the smallest min $=\frac{1}{2^n}$. Min is achieved by $ \prod_{k=0}^n (x-x_k) = \frac{1}{2^n}T_{n+1}(x)$, where T denotes the deg n+1 Chebyshev polynomial $= \cos((n+1)\arccos x)$ (Proof in L15) So now $g_n(x) = \frac{1}{2^n}\cos((n+1)\arccos x) \leq \frac{1}{2^n}$. $g_n \to 0$ as $n \to \infty$ For $[a,b]$: $x_k = \frac{a+b}{2} + \frac{b-a}{2}\cos\left(\frac{(k+1/2)\pi}{n+1}\right)$, $k = 0,1,$, n For $[a,b]$: $ \prod_{k=0}^n (x-x_k) \leq \frac{((b-a)/2)^{n+1}}{2^n}$	Γ _{n+1} (x)	Now, all peaks have same height (error is more evenly distributed). Difference btw nodes is smaller near bounderies By using Chebyshev nodes to interpolate w divided diff, this polynomial = Chebyshev interpolating polynomial Approximation using Chebyshev nodes is worse ard center, but oscillation near ends much milder. As n increase, Chebyshev interpolating polynomial will converge to f(x)
Linear			ct of 2 n-dimensional col vectors = $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$

Linear	If use interpolation, deg of polynomial is higher and data		Dot product of 2 n-dimensional col vectors = $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$				
Least	points might contain errors.		If $u^Tv = 0$, then u and v are perpendicular/orthogonal to each other. $u \perp v$				
Square	Inconsistent sys: SLE w no solution, typically m > n		Note $x^Tx = x ^2$. Normal equations: $A^TA\bar{x} = A^Tb$				
Problem	So find \bar{x} s.t. $A\bar{x}$ is closest to b, $A\bar{x}$ lies on plane Ax		So, $(b-A\bar{x}) \perp \{Ax \mid x \in \mathbb{R}^n\}$. $(Ax)^{T}(b-A\bar{x}) = 0$. $x^{T}A^{T}(b-A\bar{x}) = 0$. Since $x \neq 0$, $A^{T}(b-A\bar{x}) = 0$.				
	b - A \bar{x} is perpendicular to plane.	0. A ^T A	$A^TA\bar{x} = A^Tb$. \bar{x} is L.S sol to $Ax = b$, which minimizes Euclidean norm $r = b - Ax$				
	Length = Euclidean norm = $ x _2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$	If $r = 0$	= 0, then \bar{x} is the sol to Ax = b.				
	If need to use $A_{m \times n}$ (full col rank = cols all LI) for multiple		A^TA is symmetric positive-definite. For all $x \ne 0$, $x^TA^TAx = (Ax)^T(Ax) = y^TY$				
	inconsistent sys, can use Cholesky factorization for $A^TA = R^TR$		$= y ^2 > 0$				
	where R is an upper triangular matrix		Forward sub: $R^Ty = A^Tb$. Backward sub: $R\bar{x} = y$				
QR	A ^T A not numerically stable as could have rounding errors.	/ a	$\overline{\langle a_{11} \ a_{12} \ \cdots \ a_{1n} \rangle \ / q_{11} \ q_{12} \ \cdots \ q_{1n} \rangle \ / r_{11} \ r_{12} \ \cdots \ r_{1n} \rangle}$				
factoriza-	So, use (reduced) QR factorization: A = QR, where Q is an	$ a_i$	$a_{21} \ a_{22} \ \cdots \ a_{2n} \setminus [q_{21} \ q_{22} \ \cdots \ q_{2n} \setminus 0 \ r_{22} \ \cdots \ r_{2n}]$				
tion	orthogonal matrix ($Q^T = Q^{-1}$), R is upper triangular. Then A^TAx		_ :				
	= A^Tb , $(QR)^T(QR)x = (QR)^Tb$, $R^TRx = R^TQ^Tb$, $Rx = Q^Tb$ if R^T is	$\setminus a_n$	$\langle a_{m1} a_{m2} \cdots a_{mn} \rangle \langle q_{m1} q_{m2} \cdots q_{mn} \rangle \setminus \langle 0 \cdots 0 r_{nn} \rangle$				
	invertible.						
	So given $\mathbf{a}_1, \mathbf{a}_2,, \mathbf{a}_n \in \mathbb{R}^m$ (m \geq n), need to find						

Gram- Schmidt orthogo- nalization	$\mathbf{q}_1, \mathbf{q}_2,, \mathbf{q}_n \in \mathbb{R}^m$ s.t. they are unit vectors (i.e. $ \mathbf{q}_i = 1$) and $\mathbf{q}_i, \mathbf{q}_j$ are orthogonal to each other when $i \neq j$ $r_{11}, r_{12}, r_{22},, r_{nn}$ $\mathbf{y}_1 = \mathbf{a}_1, \mathbf{q}_1 = \frac{\mathbf{y}_1}{r_{11}}$ $\mathbf{y}_2 = \mathbf{a}_2 - r_{12}\mathbf{q}_1, \mathbf{q}_2 = \frac{\mathbf{y}_2}{r_{22}}$ $\mathbf{y}_j = \mathbf{a}_j - r_{1j}\mathbf{q}_1 - r_{2j}\mathbf{q}_2 r_{j-1,j}\mathbf{q}_{j-1}, \mathbf{q}_j = \frac{\mathbf{y}_j}{r_{jj}}$ $r_{jj} = \mathbf{y}_j , r_{ij} = \mathbf{q}_1^T \mathbf{a}_j$ Reduced QR factorization: $m \times n = (m \times n) * (n \times n)$ $r_{11} r_{12} r_{11}$ $r_{22} r_{22}$		- y - r _{ij} q _i //r _{jj} ization: m x n = (m x m) * (m x n)			
QR steps	$ (a_1 a_2 \cdots a_n) = (q_1 q_2 \cdots q_n) \begin{pmatrix} r_{11} & r_{12} & \cdots & r_1 \\ & r_{22} & \cdots & r_2 \\ & & \ddots & \vdots \\ & & & r_n \end{pmatrix} $ Compute reduced QR factorization of A. Compute Q ^T b. So	$(a_1 a_2 \cdots$ $\text{olve Rx} = Q^T b \text{ using } b$	\ U U /			
Thrm	Suppose $f: \mathbb{R} \to \mathbb{R}$ is n+1 times differentiable on some open into $f(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + + \frac{1}{n!}f^{(n)}(a)(x-a)^n + \frac{1}{(n+1)!}f^{(n)}(a)(x-a)^n$ The n th order Taylor polynomial for f at a is $P(x) = f(a) + f'(a)(x-a)^n$	$^{+1)}(c)(x-a)^{n+1} = P(x) + a$	approximation error			
2-point forward- diff formula	The n th order Taylor polynomial for f at a is P(x) = f(a) + f'(a)(x-a) + $\frac{1}{2!}$ f''(a)(x-a) ² + + $\frac{1}{n!}$ f ⁽ⁿ⁾ (a)(x-a) ⁿ , w approximation error = $\frac{1}{(n+1)!}$ f ⁽ⁿ⁺¹⁾ (c)(x-a) ⁿ⁺¹ If f is twice continuously differentiable, then by Taylor's thrm, let x = x+h, a = x, then f(x) = f(a) + f'(a)(x-a) + $\frac{1}{2!}$ f''(a)(x-a) ² becomes f(x+h) = f(x) + hf'(x) + $\frac{1}{2}$ h ² f''(a) OR f'(x) $\approx \frac{f(x+h)-f(x)}{h}$ with error $\frac{h}{2}$ f''(c) where $c \in [x,x+h]$ Error $\frac{h}{2}$ f''(c) is O(h) (proof in l18), i.e. if h decr by $\frac{1}{2}$, error also decr by $\frac{1}{2}$. Since error is O(h), 2-points forward-diff formula is a 1st-order method If error is O(h ^k), then formula is a k-order approximation					
2nd order finite diff formula	If f is 3 times cts diff-tiable, then $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(c_1) & f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(c_2) \text{ where } x-h < c_2 < x < c_1 < x+h$ $So \ f(x+h) - f(x-h) = 2hf'(x) + \frac{1}{6}h^3f'''(c_1) + \frac{1}{6}h^3f'''(c_2), \text{ then } f'(x) = \frac{f(x+h) - f(x-h)}{2h} - \left[\frac{1}{12}h^2f'''(c_1) + \frac{1}{12}h^2f'''(c_2)\right] = \text{approx - error}$					
Genera- lized IVT	Let f be a cts fn on interval [a,b]. Let $x_1,, x_n$ Proof. Let $f(x_i) = \min$ and $f(x_j) = \max$ of n fn values be points in [a,b] and $a_1,, a_n > 0$. Then \exists c $a_1 f(x_i) + + a_n f(x_i) \le a_1 f(x_1) + + a_n f(x_n) \le a_1 f(x_j) + + a_n f(x_j)$ of $f(x_i) = \max$ of f					
3-point centered- diff formula						
Approx formula for higher derivatives	So, $f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$ w error $\frac{1}{6}h^2f'''(c)$, where x-h < c < x+h For $f''(x)$, $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^4}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(c_1)$ & $f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(c_2)$ where x-h < c < x+h $f(x+h) + f(x-h) = 2f(x) + h^2f''(x) + h^4f^{(4)}(c_1) + h^4f^{(4)}(c_2)$ 3-point centered diff formula for $f''(x) \approx \frac{f(x+h)-2f(x)+f(x-h)}{h^2}$ w error $\frac{h^2}{12}f^{(4)}(c)$ where x-h < c < x+h					
Rounding error	When 2 nums nearly equal, loss of sig digits due to computer rounding error. Suppose $\hat{f}(x+h)$, $\hat{f}(x-h)$ are floating-point version of $f(x+h)$, $f(x-h)$, i.e. $f(x+h) = \hat{f}(x+h) + \epsilon_1$, $f(x-h) = \hat{f}(x-h) + \epsilon_2$, for some machine rounding error ϵ_1 , ϵ_2 . Then error in approx for 3-point formula = $ f'(x) - \hat{f}(x) = \left \frac{f(x+h) - f(x-h)}{2h} - \frac{h^2}{6} f'''(c) - \frac{\hat{f}(x+h) - \hat{f}(x-h)}{2h} \right = \left \frac{\epsilon_1 - \epsilon_2}{2h} - \frac{h^2}{6} f'''(c) \right \le \frac{ \epsilon_1 + \epsilon_2 }{2h} + \frac{h^2}{6} f'''(c) \le \frac{\epsilon}{h} + \frac{h^2 M}{6}$, where ϵ_1 , $\epsilon_2 < \epsilon > 0$ and $ f'''(c) \le \frac{h^2 M}{6}$. Smallest error at $h = \sqrt[3]{\frac{3\epsilon}{M}}$					
Extra- polation	order n formula for approximating Q: Q = $F_n(h) + K(h)h^n$ For 3-point centered formula, $F_2(h) = \frac{f(x+h)-f(x-h)}{2h}$, $K(h) = \frac{f'''(c)}{6}$. If f''' is cts and h is not large, then values of $-\frac{f'''(c)}{6}$ should roughly be constant in a small interval containing c $Q - F_n(h/2) = K(h/2)(h/2)^n = \frac{1}{2^n}K(h/2)h^n \approx \frac{1}{2^n}K(h)h^n = \frac{1}{2^n}(Q - F_n(h))$. Then $Q \approx \frac{2^nF_n(h/2)-F_n(h)}{2^n-1}$: (Richardson) extrapolation formula for $F_n(h)$ Using Taylor expansion at point 0, $K(h) = K(0) + O(h)$. $Q = F_n(h) + K(h)h^n = F_n(h) + (K(0) + O(h))h^n = F_n(h) + Bh^n + O(h^{n+1})$, where $B = K(0)$ Then $Q = F_n(h/2) + B(h/2)^n + O(h^{n+1})$, implying $\frac{2^nF_n(h/2)-F_n(h)}{2^n-1} = \dots = Q + O(h^{n+1})$. Thus $Q = \frac{2^nF_n(h/2)-F_n(h)}{2^n-1} + O(h^{n+1}) := F_{n+1}(h) + O(h^{n+1})$ Using extrapolation, appox for Q is of higher accuracy as $F_{n+1}(h)$ is at least an order n+1 formula, compared to original $F_n(h)$					
E.g.	Using f'(x) = $\frac{f(x+h)-f(x-h)}{2h} - \frac{h^2}{6}f'''(c)$. $\frac{2^2F_2(h/2)-F_2(h)}{2^2-1} = = \frac{f(x-h)-8f(x-h/2)+8f(x+h/2)-f(x+h)}{6h} = F(h)$, a five-point centered-diff formula By observation, since F(h) = F(-h), error term can be even powers of h only. Since original order is 2, 2+1 = 3. New order \geq 3, thus must be 4					

Newton- Cotes approach	Use definite integral of the interpolating polynomial of f to approximate $\int_a^b f(x) dx$ Trapezoid Rule: Use Lagrange interpolating polynomial. Let $y_0 = f(x_0)$, $y_1 = f(x_1)$ $f(x) = \left[y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}\right] + \frac{(x - x_0)(x - x_1)}{2!} f''(c_x) := P_1(x) + E(x) \text{ for some } c_x$ depending on x $\int_{x_0}^{x_1} f(x) dx = \dots = \frac{h}{2} (y_0 + y_1) - \frac{h^3}{12} f''(c) := \text{approx} + \text{error where } h = x_1 - x_0 \text{ and } c \in [x_0, x_1]$	Proof in lect 20. Uses MVT for integrals: Let f be cts fn on interval [a,b] and let g be an integrable fn that does not change sign on [a,b]. Then \exists c \in [a,b] s.t. $\int_a^b f(x)g(x)dx = f(c)$ $\int_a^b g(x)dx$
	Simpson's Rule: Use Lagrange interpolating polynomial. $y_0 = f(x_0)$, $y_1 = f(x_1)$, $y_2 = f(x_2)$ $f(x) = \left[y_0 \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} + y_1 \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} + y_2 \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}\right] + \frac{(x-x_0)(x-x_1)(x-x_2)}{3!}f'''(c_x) := P_2(x) + E(x) \text{ for some } c_x \text{ depending on } x.$	Assume nodes evely spaced. Proof in lect 20. Deg of precision of a numerical integration mtd is the greatest int k for which all deg k or less polynomials are integrated exactly by the mtd. Deg of precision of Trapezoid rule: 1

	$\int_{x_0}^{x_2} f(x) dx = \dots = \frac{h}{3} (y_0 + 4y_1 + y_2) - \frac{h^5}{90} f^{(4)}(c) := approx + er$ - x_1 and $c \in [x_0, x_2]$	From where $h = x_1 - x_0 = x_2$	Deg of precision of Simpson Rule: 3. Proof in tut?
Composite Newton- Cotes Formulas	Trapezoid and Simpson's Rule only operating on single in Composite numerical integration: Divide interval into sev Composite Trapezoid Rule: $\int_a^b f(x) \ dx = \frac{h}{2} (y_0 + 2 \sum_{i=1}^{m-1} y_i $ where h = (b-a)/m and c \in [a,b]. Order of comp trapezoid in lect 20.	Composite Simpson's Rule: $\int_a^b f(x) dx = \frac{h}{3} (y_0 + 4\sum_{i=1}^m y_{2i-1} + 2\sum_{i=1}^{m-1} y_{2i} + y_{2m}) - \frac{(b-a)h^4}{180} f^{(4)}(c) := approx + error where h = (b-a)/(2m) and c \in [a,b]$ Order of comp Simpson's rule: 4. O(h ⁴)	
Open Newton- Cotes Mtd	Use if fn not valid on endpoints. Applicable for fn whose Midpoint Rule: $\int_{x_0}^{x_1} f(x) dx = hf(w) + \frac{h^3}{24}f''(c)$ where $h = (x_0 + h/2)$ and $c \in [x_0, x_1]$. Proof in lect 21.	Composite Midpoint Rule: $\int_a^b f(x) dx = h \sum_{i=1}^m f(w_i) + \frac{(b-a)h^2}{24} f''(c). O(h^2)$	
Romberg integration	Composite Trapezoid Rule: $\int_a^b f(x) dx = \frac{h}{2} (y_0 + 2 \sum_{i=1}^{m-1} y_i)$ Using Richardson extrapolation would give us a new rule For infinitely differentiable fn f, $\int_a^b f(x) dx = \frac{h}{2} (y_0 + 2 \sum_{i=1}^{m-1} c_6 h^6 +, \text{ where } c_i \text{ depends only on higher derivatives of } (e.g. c_2 = \frac{1}{12} (f'(a) - f'(b)))$ Let Q := $\int_a^b f(x) dx$, F ₂ (h) := $\frac{h}{2} (y_0 + 2 \sum_{i=1}^{m-1} y_i + y_m)$. Then $+ c_6 h^6 +$	Cutting h in half and combining, $F_4(h) := \frac{2^2 F_2(h/2) - F_2(h)}{2^2 - 1}$. $Q = F_4(h) + \tilde{c}_4 h^4 + \tilde{c}_6 h^6 + = F_4(h) + O(h^4)$. Proof in lect 21 Cutting h in half again and combining, $F_6(h) := \frac{2^{2(2)} F_4(h/2) - F_4(h)}{2^{2(2)} - 1}$. $Q = F_6(h) + \hat{c}_6 h^6 + = F_6(h) + O(h^6)$. Proof in lect 21 So $F_{2k}(h) := \frac{2^{2(k-1)} F_{2(k-1)}(h/2) - F_{2(k-1)}(h)}{2^{2(k-1)} - 1}$ where $R_{jk} = \frac{2^{2(k-1)} R_{j,k-1} - R_{j-1,k-1}}{2^{2(k-1)} - 1}$	
	$F_{2}(h/2) \rightarrow F_{4}(h)$ $F_{2}(h/4) \rightarrow F_{4}(h/2) \rightarrow F_{6}(h)$ $F_{2}(h/8) \rightarrow F_{4}(h/4) \rightarrow F_{6}(h/2) \rightarrow F_{8}(h)$ $\vdots \qquad \vdots \qquad \vdots$	triangle:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Not tested	Gaussian Quadrature, Legendre polynomials		