ત્રિકોણમિતીય વિધેયોનાં વિશિષ્ટ મૂલ્યો અને આલેખો

5.1 પ્રાસ્તાવિક

આગળના પ્રકરણમાં આપણે ત્રિકોણમિતીય વિધેયો, તેમના પ્રદેશો, શૂન્યો, વિસ્તાર તથા આવર્તમાન વિશે ખ્યાલ મેળવ્યો. હવે આપણે ચલની વિશિષ્ટ કિંમતો માટે ત્રિકોણમિતીય વિધેયોનાં મૂલ્યો મેળવીશું અને ત્રિકોણમિતીય વિધેયોના આલેખો જોઈશું.

5.2 અક્ષો પરનાં ત્રિ-બિંદુ આગળ ત્રિ-વિધેયનાં મૂલ્યો

આપણે જાણીએ છીએ કે પ્રત્યેક $\theta \in \mathbb{R}$ ને અનુરૂપ અનન્ય ત્રિ-બિંદુ $P(\theta)$ આપણને એકમ વર્તુળ પર મળે. એકમ વર્તુળ X-અક્ષને A(1,0) અને A'(-1,0)માં છેદે છે અને Y-અક્ષને B(0,1) અને B'(0,-1)માં છેદે છે. આપણે એ જાણીએ છીએ કે ત્રિ-બિંદુ $P(\theta)$ નો x-યામ $\cos\theta$ છે અને y-યામ એ $\sin\theta$ છે.

વાસ્તવિક સંખ્યા 0 ને સંગત ત્રિ-બિંદુ P(0) = A(1, 0) છે, માટે cos0 = 1 અને sin0 = 0.

વાસ્તવિક સંખ્યા
$$\frac{\pi}{2}$$
ને સંગત ત્રિ-બિંદુ $P\left(\frac{\pi}{2}\right) = B(0, 1)$ છે,

માટે
$$cos\frac{\pi}{2} = 0$$
, $sin\frac{\pi}{2} = 1$.

તે જ રીતે
$$P(\pi) = A'(-1, 0)$$
 છે,

માટે
$$cos\pi = -1$$
, $sin\pi = 0$.

તે જ રીતે
$$P\left(\frac{3\pi}{2}\right) = B'(0, -1)$$
 છે,

માટે
$$cos \frac{3\pi}{2} = 0$$
, $sin \frac{3\pi}{2} = -1$.

આપણે જાણીએ છીએ કે $P(2\pi)$ એ A(1,0) છે,

માટે $\cos 2\pi = 1$, $\sin 2\pi = 0$. ઉપર મેળવેલ વિશિષ્ટ મૂલ્યોને કોષ્ટક સ્વરૂપે લખતાં :

θ	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
cos	1	0	— 1	0	1
sin	0	1	0	—1	0
tan	0	$\frac{\pi}{2}$ પ્રદેશમાં નથી.	0	$\frac{3\pi}{2}$ પ્રદેશમાં નથી.	0
cot	0 પ્રદેશમાં નથી.	0	π પ્રદેશમાં નથી.	0	2π પ્રદેશમાં નથી.
sec	1	$\frac{\pi}{2}$ પ્રદેશમાં નથી.	-1	$\frac{3\pi}{2}$ પ્રદેશમાં નથી.	1
cosec	0 પ્રદેશમાં નથી.	1	π પ્રદેશમાં નથી.	-1	2π પ્રદેશમાં નથી.

5.3 $P(\frac{\pi}{4})$ ના યામ :

ધારો કે એકમ વર્તુળ પરના ત્રિકોણમિતીય બિંદુ $P\left(\frac{\pi}{4}\right)$ ના યામ (x, y) છે. હવે લઘુ \widehat{AB} ની લંબાઈ $\frac{\pi}{2}$ છે. જો P એ લઘુ \widehat{AB} નું મધ્યબિંદુ હોય, તો $\widehat{AP}\cong\widehat{PB}$, $I(\widehat{AP})=\frac{\pi}{4}$.

એક જ વર્તુળમાં એકરૂપ ચાપને અનુરૂપ જીવાઓ પણ એકરૂપ હોય છે.

$$\therefore$$
 AP = PB

$$\therefore AP^2 = PB^2$$

હવે A(1, 0), P(x, y) અને B(0, 1) છે.

$$\therefore (x-1)^2 + (y-0)^2 = (x-0)^2 + (y-1)^2$$

$$\therefore$$
 $x^2 - 2x + 1 + y^2 = x^2 + y^2 - 2y + 1$

$$\therefore$$
 $-2x = -2y$

$$\therefore x = y$$

પરંતુ P(x, y) એકમ વર્તુળ પર છે.

$$\therefore x^2 + y^2 = 1$$

∴ (i) પરથી,
$$x^2 + x^2 = 1$$

$$\therefore 2x^2 = 1$$

$$x^2 = \frac{1}{2}$$

$$\therefore \quad x = \pm \frac{1}{\sqrt{2}}$$

હવે, $P\left(\frac{\pi}{4}\right)$ પ્રથમ ચરણમાં હોવાથી, $x>0,\ y>0.$

$$\therefore \quad x = \frac{1}{\sqrt{2}}$$

$$\therefore (i) \text{ usel } x = y = \frac{1}{\sqrt{2}}$$

પરંતુ cos અને sin વિધેયની વ્યાખ્યા પ્રમાણે,

$$P\left(\frac{\pi}{4}\right)$$
ના યામ $(x, y) = \left(\cos\frac{\pi}{4}, \sin\frac{\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ છે.

આથી,
$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
, $\sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$.

$$tan\frac{\pi}{4} = 1$$
, $cot\frac{\pi}{4} = 1$, $sec\frac{\pi}{4} = \sqrt{2}$, $cosec\frac{\pi}{4} = \sqrt{2}$.

(i)

5.4 $P(\frac{\pi}{3})$ ના યામ :

ધારો કે $P(\frac{\pi}{3})$ ના યામ (x, y) છે.

લઘુ \widehat{AP} ની લંબાઈ $\frac{\pi}{3}$ છે.

$$\therefore m\angle AOP = \frac{\pi}{3} = 60^{\circ}$$

હવે. ΔOAPમાં OA = OP

$$\therefore m \angle OPA = m \angle OAP$$

વળી,
$$m\angle AOP = 60^{\circ}$$

$$\therefore$$
 $m\angle OPA + m\angle OAP = 120^{\circ}$

(ત્રિજ્યા)

(i)

∴ ΔOAP સમભુજ છે.

$$\therefore$$
 AP = 1

$$\therefore AP^2 = 1$$

હવે, P(x, v) અને A(1, 0) છે.

$$(x-1)^2 + (y-0)^2 = 1$$

$$\therefore x^2 - 2x + 1 + y^2 = 1$$

પરંતુ
$$x^2 + y^2 = 1$$

$$\therefore$$
 2x = 1

$$\therefore x = \frac{1}{2}$$

વળી,
$$x^2 + y^2 = 1$$

$$\therefore \quad \frac{1}{4} + y^2 = 1$$

$$\therefore y^2 = \frac{3}{4}$$

$$\therefore y = \frac{\sqrt{3}}{2}$$

$(P(\frac{\pi}{3})$ પ્રથમ ચરણમાં છે. y > 0)

$$\therefore$$
 $P\left(\frac{\pi}{3}\right)$ ના યામ $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ છે.

$$cos\frac{\pi}{3} = \frac{1}{2}, sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}. \text{ All, } tan\frac{\pi}{3} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3}.$$

$$sec\frac{\pi}{3} = 2, cosec\frac{\pi}{3} = \frac{2}{\sqrt{3}}, cot\frac{\pi}{3} = \frac{1}{\sqrt{3}}.$$

(એકમ વર્તુળની ત્રિજ્યાઓ)

5.5 $P(\frac{\pi}{6})$ ના યામ :

ધારો કે $P\left(\frac{\pi}{6}\right)$ ના યામ (x, y) છે.

લઘુ \widehat{AP} ની લંબાઈ $\frac{\pi}{6}$ છે.

$$l(\widehat{AP}) = \frac{\pi}{6}$$
. $m\angle AOP = \frac{\pi}{6} = 30^{\circ}$

વળી, બિંદુ P એ ∠AOBના અંદરના ભાગમાં છે.

$$m \angle POB = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

હવે, \triangle OPBમાં OB = OP (ત્રિજ્યા)

આથી, $\angle OBP \cong \angle OPB$ અને

$$m\angle OBP + m\angle OPB + m\angle POB = 180^{\circ}$$

$$m\angle OBP + m\angle OPB = 120^{\circ}$$

 $(m\angle POB = 60^{\circ})$

(OB = OP)

વળી,
$$\angle OBP \cong \angle OPB$$

m∠OBP = m∠OPB = 60° અને ΔPOBના ખુણા એકરૂપ છે.

∴ ΔPOB સમભુજ છે.

$$\therefore$$
 OP = OB = PB = 1

$$\therefore PB^2 = 1$$

$$(x-0)^2 + (y-1)^2 = 1$$

(P(x, y) અને B(0, 1))

$$\therefore x^2 + y^2 - 2y + 1 = 1$$

પરંતુ, $x^2 + y^2 = 1$ કારણ કે P(x, y) એ એકમ વર્તુળ પર છે.

$$\therefore$$
 2 $y = 1$

$$\therefore y = \frac{1}{2}$$

$$q x^2 + y^2 = 1$$

$$\therefore x^2 + \frac{1}{4} = 1.$$

તેથી
$$x = \frac{\sqrt{3}}{2}$$

 $(P(\frac{\pi}{6})$ પ્રથમ ચરણમાં છે, તેથી x > 0)

cos અને sin વિધેયની વ્યાખ્યા પ્રમાણે,

$$(x, y) = \left(\cos\frac{\pi}{6}, \sin\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

$$\therefore \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \sin \frac{\pi}{6} = \frac{1}{2}. \text{ All } \tan \frac{\pi}{6} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}.$$

$$sec\frac{\pi}{6} = \frac{2}{\sqrt{3}}, cosec\frac{\pi}{6} = 2, cot\frac{\pi}{6} = \sqrt{3}.$$

ઉદાહરણ 1 :
$$3\cos^2\frac{\pi}{4} - \sec\frac{\pi}{3} + 5\tan^2\frac{\pi}{3}$$
નું મૂલ્ય મેળવો.

ઉકેલ : આપણે જાણીએ છીએ કે,
$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$
, $\sec \frac{\pi}{3} = 2$, $\tan \frac{\pi}{3} = \sqrt{3}$

$$3\cos^2\frac{\pi}{4} - \sec\frac{\pi}{3} + 5\tan^2\frac{\pi}{3} = 3\left(\frac{1}{\sqrt{2}}\right)^2 - 2 + 5(\sqrt{3})^2$$
$$= 3 \times \frac{1}{2} - 2 + 5 \times 3$$
$$= \frac{3}{2} - 2 + 15 = \frac{29}{2}$$

ઉદાહરણ 2 :
$$4 \tan^2 \frac{\pi}{6} - 5 \csc^2 \frac{\pi}{4} - \frac{1}{3} \sin \frac{\pi}{6}$$
 ની કિંમત મેળવો.

ઉકેલ: આપણે જાણીએ છીએ કે,
$$tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$$
, $cosec\frac{\pi}{4} = \sqrt{2}$, $sin\frac{\pi}{6} = \frac{1}{2}$.

$$4 \tan^2 \frac{\pi}{6} - 5 \csc^2 \frac{\pi}{4} - \frac{1}{3} \sin \frac{\pi}{6} = 4 \times \left(\frac{1}{\sqrt{3}}\right)^2 - 5(\sqrt{2})^2 - \frac{1}{3}\left(\frac{1}{2}\right)$$
$$= \frac{4}{3} - 10 - \frac{1}{6}$$
$$= \frac{8 - 60 - 1}{6} = -\frac{53}{6}$$

ઉદાહરણ 3 : સાબિત કરો કે,
$$\frac{4}{3} \cot^2 \frac{\pi}{6} + 3 \sin^2 \frac{\pi}{3} - 2 \csc^2 \frac{\pi}{3} - \frac{3}{4} \tan^2 \frac{\pi}{6} = 3\frac{1}{3}$$
.

ઉકેલ: આપશે જાણીએ છીએ કે,
$$\cot\frac{\pi}{6}=\sqrt{3}$$
, $\sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}$, $\csc\frac{\pi}{3}=\frac{2}{\sqrt{3}}$, $\tan\frac{\pi}{6}=\frac{1}{\sqrt{3}}$

$$31.41. = \frac{4}{3} \cot^2 \frac{\pi}{6} + 3 \sin^2 \frac{\pi}{3} - 2 \csc^2 \frac{\pi}{3} - \frac{3}{4} \tan^2 \frac{\pi}{6}$$

$$= \frac{4}{3}(\sqrt{3})^2 + 3\left(\frac{\sqrt{3}}{2}\right)^2 - 2\left(\frac{2}{\sqrt{3}}\right)^2 - \frac{3}{4}\left(\frac{1}{\sqrt{3}}\right)^2$$

$$= \frac{4}{3} \times 3 + 3 \times \frac{3}{4} - 2 \times \frac{4}{3} - \frac{3}{4} \times \frac{1}{3}$$

$$= 4 + \frac{9}{4} - \frac{8}{3} - \frac{1}{4}$$

$$= \frac{48 + 27 - 32 - 3}{12}$$

$$=\frac{40}{12}=\frac{10}{3}=3\frac{1}{3}=$$
 %.બા.

ઉદાહરણ 4 : સાબિત કરો કે,
$$\frac{\tan\frac{\pi}{4} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{4} \tan\frac{\pi}{6}} = 2 - \sqrt{3}$$

ઉકેલ : આપણે જાણીએ છીએ કે,
$$tan\frac{\pi}{4} = 1$$
, $tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$.

SI.GL.
$$= \frac{\tan \frac{\pi}{4} - \tan \frac{\pi}{6}}{1 + \tan \frac{\pi}{4} \tan \frac{\pi}{6}}$$

$$= \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}}$$

$$= \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$

$$= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$$

$$= \frac{3 - 2\sqrt{3} + 1}{3 - 1}$$

$$= \frac{2(2 - \sqrt{3})}{2} = 2 - \sqrt{3} = \%.61.$$

સ્વાધ્યાય 5.1

- 1. $\sec\frac{\pi}{6} \tan\frac{\pi}{3} + \sin\frac{\pi}{4} \csc\frac{\pi}{4} + \cos\frac{\pi}{6} \cot\frac{\pi}{3}$ નું મૂલ્ય મેળવો.
- 2. $\cot^2 \frac{\pi}{6} + \csc \frac{\pi}{6} + 3 \tan^2 \frac{\pi}{6}$ નું મૂલ્ય મેળવો.
- 3. $2\sin^2\frac{\pi}{4} + 2\cos^2\frac{\pi}{4} + \sec^2\frac{\pi}{3}$ નું મૂલ્ય મેળવો.
- 4. સાબિત કરો કે, $\left(3\cos\frac{\pi}{3} \sec\frac{\pi}{3} 4\sin\frac{\pi}{6} \tan\frac{\pi}{4}\right)\cos 2\pi = 1$.
- 5. $\left(\sin\frac{\pi}{6} + \cos\frac{\pi}{6}\right)\left(\sin^2\frac{\pi}{6} \sin\frac{\pi}{6}\cos\frac{\pi}{6} + \cos^2\frac{\pi}{6}\right)$ ની કિંમત મેળવો.
- 6. $\frac{5 \sin^2 \frac{\pi}{6} + \cos^2 \frac{\pi}{4} 4 \tan \frac{\pi}{6}}{2 \sin \frac{\pi}{6} \cos \frac{\pi}{6} + \tan \frac{\pi}{4}}$ ની કિંમત મેળવો.
- 7. સાબિત કરો કે, $\cos \frac{\pi}{3} \cos \frac{\pi}{4} + \sin \frac{\pi}{3} \sin \frac{\pi}{4} = \frac{\sqrt{3}+1}{2\sqrt{2}}$.

*

5.6 ત્રિકોણમિતીય વિધેયના આલેખો

y = sinxનો આલેખ.

x ની કેટલીક કિંમતો માટે sinxની કિંમતનું કોષ્ટક નીચે પ્રમાણે છે :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	<u>5π</u> 6	π	<u>7π</u> 6	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	<u>5π</u> 3	$\frac{11\pi}{6}$	2π
sin x	0	1/2	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	1/2	0	$\frac{-1}{2}$	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	$\frac{-1}{2}$	0
	0	0.5	0.87	1	0.87	0.5	0	-0.5	-0.87	-1	-0.87	-0.5	0

sin આવર્તી વિધેય છે. તેનું આવર્તમાન 2π છે. તેથી, y = sinx વિધેયના આલેખનું આલેખન પ્રથમ $[0, 2\pi]$ અંતરાલમાં કરવું જોઈએ. (આકૃતિ 5.5) એકવાર આલેખનું આલેખન આ અંતરાલમાં થયા બાદ સરળતાથી 2π લંબાઈના અંતરાલમાં એ જ આલેખનું પુનરાવર્તન થશે. (આકૃતિ 5.6)

આલેખ પરથી નીચેની વિગતો સ્પષ્ટપણે જોઈ શકાય છે :

- (1) y = sinx નો આલેખ X-અક્ષને એકથી વધુ બિંદુઓમાં છેદે છે, જેવાં કે $0, \pm \pi, \pm 2\pi, \pm 3\pi,...$ આ બધાં બિંદુઓએ તેની કિંમત શૂન્ય થાય.
- (2) y = sinx નો આલેખ X-અક્ષને $0, \pm \pi, \pm 2\pi, \pm 3\pi,...$ બિંદુઓમાં છેદે છે. તેથી તેનાં શૂન્યોનો ગણ $\{k\pi \mid k \in Z\}$ છે.
- (3) y = sinx ની મહત્તમ અને ન્યૂનતમ કિંમત અનુક્રમે 1 અને -1 છે અને sinx એ -1 તથા 1 વચ્ચેની તમામ કિંમત ધારણ કરે છે.
- (4) $\left(0,\frac{\pi}{2}\right)$ એટલે કે પ્રથમ ચરણમાં આલેખ ઉપરની તરફ જાય છે. કારણ કે તે વધતું વિધેય છે. તે જ પ્રમાણે બીજા અને ત્રીજા ચરણમાં ઘટતું અને ચોથા ચરણમાં વધતું વિધેય છે.
- (5) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$,... જેવા મર્યાદિત પ્રદેશમાં sin વિધેય એક-એક છે.
- (6) y = sinx નો આલેખ 2π ના અંતરાલમાં પુનરાવર્તિત થાય છે. કારણ કે, sin વિધેયનું આવર્તમાન 2π છે.

જો y=f(x) એ T આવર્તમાનવાળું આવર્તીય વિધેય હોય અને તેનો કંપવિસ્તાર k હોય, તો તેનો આલેખ T લંબાઈના અંતરાલમાં દોરવો પર્યાપ્ત છે. કારણ કે એકવાર તેને T લંબાઈના અંતરાલમાં દોર્યા બાદ તે T લંબાઈના અંતરાલમાં એ જ આલેખનું પુનરાવર્તન થશે. તેનો કંપવિસ્તાર એ y=f(x) નું મહત્તમ નિરપેક્ષ મૂલ્ય છે.

114 ગણિત

જો કોઈ વિધેય y=f(x) નું આવર્તમાન 2π હોય અને કંપવિસ્તાર m હોય, તો વિધેય $y=c\cdot f(ax+b), a>0$ નું આવર્તમાન $\frac{2\pi}{a}$ થશે અને તેનો કંપવિસ્તાર $|c|\cdot m$ થશે. હવે આ ચર્ચાનો ઉપયોગ કરી આપણે $c\sin ax$, $c\cos ax$ અને $c\tan ax$ ના આલેખો દોરી શકીશું.

$g(x) = c \sin ax$ નો આલેખ (a > 0)

પ્રથમ આપણે $y=\sin x$ ના આલેખનું આલેખન કરીશું અને આલેખ જ્યાં X-અક્ષને છેદે તે બિંદુઓનું આલેખન કરીશું. ત્યાર બાદ આ બધાં બિંદુઓ P(x) હોય, તો x ને a વડે ભાગીશું. $y=c\sin ax$ નો આલેખ

X-અક્ષને $0, \frac{\pi}{a}, \frac{2\pi}{a}, ...$ જેવાં બિંદુઓમાં છેદશે. તેથી તેનું આવર્તમાન $\frac{2\pi}{a}$ થશે. Y-અક્ષ પરનાં બિંદુઓ -1 તથા 1 ના સ્થાને $-\mid c\mid$ તથા $\mid c\mid$ લેવાય. આલેખ પરના ઉચ્ચતમ અને સૌથી નીચેના બિંદુના x-યામ $\left[0, \frac{2\pi}{a}\right]$ માં $\frac{\pi}{2a}$ તથા $\frac{3\pi}{2a}$ થાય. વિધેયનો વિસ્તાર $\left[-\mid c\mid,\mid c\mid\right]$ છે.

આપણે $y=c\sin ax$ ના આલેખની મહત્તમ અને ન્યૂનતમ કિંમતો અનુક્રમે |c| અને -|c| એ Y-અક્ષ પર દર્શાવી છે. $y=\sin x$ નો આલેખ -|c| તથા |c| વચ્ચે આવશે.

ઉદાહરણ 5: y = 3sin 2xનો આલેખ દોરો.

ઉકેલ : $y = 3 \sin 2x$ ને $y = c \sin ax$ સાથે સરખાવતાં,

a = 2 અને c = 3. તેથી તેનું આવર્તમાન $\frac{2\pi}{2} = \pi$ થશે અને વિસ્તાર = [-3, 3].

આ વિધેયનો આલેખ y = sinx ના આલેખ જેવો જ છે. y = sinx નો આલેખ X-અક્ષને જે બિંદુઓએ છેદે છે તેને અનુરૂપ સંખ્યાઓ π , 2π , 3π ,... વગેરેના બદલે $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$,... વગેરે મળે છે અને વિસ્તાર [-3, 3] છે તે લક્ષમાં લેતાં આલેખ y = -3 તથા y = 3 વચ્ચે આવેલો છે.

ઉદાહરણ 6 : $y = 2\sin\frac{x}{2}$ નો આલેખ દોરો.

ઉકેલ : અહીં $a = \frac{1}{2}$ અને c = 2∴ આવર્તમાન 4π અને

વિસ્તાર [-2, 2] છે.

આલેખના X-અક્ષ સાથેનાં છેદબિંદુ 2π , 4π ,... વગેરે છે. $(\pi$, 2π ,... વગેરેના બદલે)

$f(x) = cosxનો આલેખ (0 \le x \le 2\pi)$

xની કેટલીક કિંમતો માટે $\cos x$ ની કિંમતનું કોષ્ટક નીચે પ્રમાણે છે :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	<u>5π</u>	π	<u>7π</u>	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$	2π
cos x	1	$\frac{\sqrt{3}}{2}$	1/2	0	<u>-1</u>	$\frac{-\sqrt{3}}{2}$	-1	$\frac{-\sqrt{3}}{2}$	<u>-1</u>	0	1/2	$\frac{\sqrt{3}}{2}$	1
	1	0.87	0.5	0	-0.5	-0.87	-1	−0.87	-0.5	0	0.5	0.87	1

cosx વિધય પણ આવર્તી વિધય છે અને તેનું મુખ્ય આવર્તમાન 2π છે. તેથી y = cos xનો આલેખ 2π અંતરાલમાં દોર્યા બાદ તેનું 2π લંબાઈના અંતરાલમાં પુનરાવર્તન થાય છે. (આકૃતિ 5.11)

આલેખ પરથી નીચેની વિગતો સ્પષ્ટપણે જોઈ શકાય છે:

- (1) $y = \cos x$ નો આલેખ X-અક્ષને એકથી વધુ બિંદુઓમાં છેદે છે, જેમકે $\pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$, $\pm \frac{5\pi}{2}$,... આ બધાં જ બિંદુ આગળ તેની કિંમત શૂન્ય થાય છે.
- (2) $y = \cos x$ નો આલેખ X-અક્ષને $\pm \frac{\pi}{2}$, $\pm \frac{3\pi}{2}$, $\pm \frac{5\pi}{2}$,... બિંદુઓમાં છેદે છે. તેનાં શૂન્યોનો ગણ $\left\{(2k+1)\frac{\pi}{2} \mid k \in Z\right\}$ છે.
- (3) $y = \cos x$ ની મહત્તમ અને ન્યૂનતમ કિંમત 1 અને -1 છે. અને તેની વચ્ચેની તમામ કિંમત ધારણ કરે છે.
- (4) $\left(0,\frac{\pi}{2}\right)$ એટલે પ્રથમ ચરણમાં જેમ-જેમ x વધે તેમ-તેમ આલેખ નીચે તરફ ઊતરે છે. એટલે પ્રથમ ચરણમાં \cos ઘટતું વિધેય છે. આલેખ પરથી જોઈ શકાય છે કે $\left(\frac{\pi}{2},\pi\right)$ એટલે બીજા ચરણમાં પણ આલેખ નીચે તરફ ઊતરે છે. એટલે બીજા ચરણમાં પણ \cos ઘટતું વિધેય છે તથા $\left(\pi,\frac{3\pi}{2}\right)$ અને $\left(\frac{3\pi}{2},2\pi\right)$ એટલે ત્રીજા અને ચોથા ચરણમાં આલેખ ઉપર તરફ જાય છે એટલે \cos વધતું વિધેય છે.
- (5) $[0, \pi], [\pi, 2\pi],...$ જેવા મર્યાદિત પ્રદેશમાં \cos એક-એક વિધેય છે.
- (6) $y = \cos x$ નો આલેખ 2π નાં લંબાઈના અંતરાલમાં પુનરાવર્તિત થાય છે, કારણ કે \cos વિધેયનું મુખ્ય આવર્તમાન 2π છે.

$y = c \cos ax$ નો આલેખ (a > 0)

આપણે $y = \cos x$ ના આલેખનું આલેખન પ્રથમ કરીશું અને આલેખ જ્યાં X-અક્ષને છેદે છે તે તમામ બિંદુઓને સંગત સંખ્યાઓને a વડે ભાગીશું. તેનું આવર્તમાન $\frac{2\pi}{a}$ થશે. વિધેયનો વિસ્તાર [-|c|,|c|] છે. $y = c\cos ax$ ની મહત્તમ અને ન્યૂનતમ કિંમતો અનુક્રમે |c| અને -|c|, Y-અક્ષ પર મળશે.

આકૃતિ 5.12

ઉદાહરણ $7: y = 2 \cos 3x$ નો આલેખ દોરો.

ઉકેલ : $y = 2 \cos 3x$ ને $y = c \cos ax$ સાથે સરખાવતાં, a = 3, c = 2

તેથી તેનું મુખ્ય આવર્તમાન $\frac{2\pi}{3}$ અને વિસ્તાર [-2, 2] છે.

ઉદાહરણ 8 : $y = 3 \cos \frac{x}{3}$ નો આલેખ દોરો.

ઉકેલ :
$$a = \frac{1}{3}$$
, $c = 3$
આવર્તમાન = 6π ,
વિસ્તાર = $[-3, 3]$.

y = tan xનો આલેખ, $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

x ની કેટલીક કિંમતો માટે tan x ની કિંમતનું કોષ્ટક નીચે પ્રમાણે છે :

x	$\frac{-\pi}{3}$	$\frac{-\pi}{4}$	$\frac{-\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
tan x	-√3	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	√ 3
	-1.74	-1	-0.57	0	0.57	1	1.74

tan વિધેય પણ આવર્તી વિધેય છે અને તેનું મુખ્ય આવર્તમાન π છે. તેથી, આપણે પ્રથમ y = tan xનો આલેખ π લંબાઈના અંતરાલમાં દોરીશું અને ત્યાર બાદ તે આકૃતિ 5.16માં દર્શાવ્યા મુજબ π લંબાઈના અંતરાલમાં પુનરાવર્તિત થશે.

આલેખ પરથી નીચેની વિગતો સ્પષ્ટપણે જોઈ શકાય છે:

- (1) y = tan xનો આલેખ X-અક્ષને એક કરતાં વધુ બિંદુઓ જેવા કે, $\pm \pi$, $\pm 2\pi$, $\pm 3\pi$,...માં છેદે છે.
- (2) y = tan xનો આલેખ X-અક્ષને $\pm \pi$, $\pm 2\pi$, $\pm 3\pi$,... માં છેદે છે. તે પરથી કહી શકાય કે વિધેયનાં શૂન્યોનો ગણ $\{k\pi \mid k \in Z\}$ છે.
- (3) tan વિધેયનો વિસ્તાર R છે.
- (4) કોઈ પણ ચરણમાં જેમ xની કિંમત વધે તેમ આલેખ ઉપરની તરફ જાય છે. તેથી y = tan x વિધેય દરેક ચરણમાં વધતું વિધેય છે.
- (5) આલેખ π લંબાઈના અંતરાલમાં પુનરાવર્તિત છે. \emph{tan} વિધેયનું મુખ્ય આવર્તમાન π છે.
- (6) tan વિધેયનો આલેખ $(\frac{-\pi}{2}, \frac{\pi}{2})$, $(\frac{\pi}{2}, \frac{3\pi}{2})$,...જેવા મર્યાદિત પ્રદેશમાં એક-એક છે.

$y = c \tan ax$ નો આલેખ (a > 0)

પ્રથમ આપણે y = tan x ના આલેખનું આલેખન કરીશું અને આલેખ જયાં X-અક્ષને છેદે છે તે તમામ બિંદુઓને સંગત સંખ્યાઓને a વડે ભાગીશું. તેનું મુખ્ય આવર્તમાન $\frac{\pi}{a}$ છે. વિધેય y = tan xનો વિસ્તાર R છે, તેથી y = c tan ax નો વિસ્તાર પણ R થશે.

ઉદાહરણ 9 : $y = 3 \tan 2x, x \in \left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$ નો આલેખ દોરો.

 \therefore મુખ્ય આવર્તમાન $\frac{\pi}{2}$ અને વિસ્તાર R છે.

 \therefore મુખ્ય આવર્તમાન 2π અને વિસ્તાર R છે.

स्वाध्याय 5.2

1.
$$y = 2 \sin \frac{x}{2}$$
નો આલેખ રચો. $0 \le x \le 6\pi$

2.
$$y = 2 \sin 3x$$
નો આલેખ રચો. $0 \le x \le \frac{2\pi}{3}$

3.
$$y = 3 \cos \frac{x}{2}$$
નો આલેખ રચો. $0 \le x \le 4\pi$

4.
$$y = \sin 2x$$
નો આલેખ રચો. $0 \le x \le \pi$

5.
$$y = tan\frac{x}{3}$$
નો આલેખ રચો. $x \in \left(\frac{-3\pi}{2}, \frac{3\pi}{2}\right)$

6.
$$y = 2 \tan x$$
નો આલેખ રચો. $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

5.7 વ્યાપક માપના ખૂશા અને તેનાં ત્રિ-વિધેયો

આપણે ખૂણાના માપથી પરિચિત છીએ. દરેક ખૂણાને સંગત ખૂણાનું માપ હોય છે અને તે માપ 0થી 180 અંશ કે 0 થી π રેડિયન વચ્ચેની વાસ્તવિક સંખ્યા છે. પણ આપણે ત્રિકોણમિતીય વિધેયોને $(0,\pi)$ અંતરાલ પર સીમિત નથી રાખ્યા. આપણે ત્રિ-વિધેયોને R પર વ્યાખ્યાયિત કર્યા છે.

એટલે હવે આપશે ખૂશાની પૂર્વધારશા મુજબ કોઈ પશ ખૂશાનું માપ 0 થી 180 વચ્ચેની વાસ્તવિક સંખ્યા છે તેને વિસ્તારીને ખૂશાનું માપ એ કોઈ પશ વાસ્તવિક સંખ્યા થઈ શકે એવી રીતે ખૂશાના વ્યાપક માપ અંગે માહિતી મેળવવી જોઈએ. કિરશના પરિભ્રમશની સંકલ્પનાનો ઉપયોગ કરી આપશે આ કાર્ય સિદ્ધ કરીશું. અહીં આપશે ઘડિયાળના કાંટાથી વિરુદ્ધ દિશામાં પરિભ્રમશને ધન દિશાનું પરિભ્રમશ ધારીશું.

 \overrightarrow{OX} પર કોઈ બિંદુ \overrightarrow{Q} લો. \overrightarrow{OQ} ને આપણે ચલ કિરણ તરીકે લઈશું. \overrightarrow{OQ} તેની પ્રારંભિક સ્થિતિ \overrightarrow{OA} થી \overrightarrow{OX} ને સાપેક્ષ પરિભ્રમણ કરશે. શરૂઆતમાં $\overrightarrow{OQ} = \overrightarrow{OA}$. \overrightarrow{OQ} તેની પ્રારંભિક સ્થિતિ \overrightarrow{OA} થી પરિભ્રમણ કરી \overrightarrow{OP} ની સ્થિતિ પ્રાપ્ત કરે છે. આમ, \overrightarrow{OQ} ના પરિભ્રમણથી $\angle AOP$ બનશે. જો \overrightarrow{OQ} પરિભ્રમણ ના કરે તો $\overrightarrow{OQ} = \overrightarrow{OA}$. તો $\overrightarrow{OQ} \cup \overrightarrow{OQ}$ એ 0° વ્યાપક માપવાળો ખૂણો દર્શાવશે. જો પરિભ્રમણ ન હોય તો \overrightarrow{OQ} તથા \overrightarrow{OA} સંપાતી છે. હવે જો \overrightarrow{OQ} ઘડિયાળના કાંટાથી ઊલટી દિશામાં

Aથી પરિભ્રમણ શરૂ કરી A આગળથી ફરી પસાર થયા વિના \overrightarrow{OA} 'ની સ્થિતિ ધારણ કરે તો $\overrightarrow{OA} \cup \overrightarrow{OA}$ ' એ 180° વ્યાપક માપવાળો ખૂણો બનાવશે.

જો $0 < \theta < 180$ તો \overrightarrow{OQ} ઘડિયાળના કાંટાની વિરુદ્ધ દિશામાં પરિભ્રમણ કરી A આગળથી પસાર થયા વિના X-અક્ષના ઉપરના અર્ધતલમાં \overrightarrow{OP} ની સ્થિતિ ધારણ કરે તો $\angle AOP$ એ \overrightarrow{OQ} ના પરિભ્રમણથી બનતો θ વ્યાપક માપવાળો ખૂણો છે.

જો $180 < \theta < 360$ હોય તો $-180 < \theta -360 < 0$.

$$0 < 360 - \theta < 180$$

જો \overrightarrow{OQ} એ X-અક્ષની નીચેના અર્ધતલમાં ઘડિયાળના કાંટાની દિશામાં પરિભ્રમણ કરે અને A આગળથી પસાર થયા વિના \overrightarrow{OP} ની સ્થિતિ ધારણ કરે તો $m\angle AOP = 360 - \theta$ થાય તેવો માપ θ વાળો વ્યાપક ખૂણો મળે. આમ, $\theta = 210$ હોય, તો $360 - \theta = 360 - 210 = 150$. આમ, $\theta = 210$ વ્યાપક માપવાળો ખૂણો આકૃતિ 5.21માં દર્શાવેલ છે.

જો $\theta \notin [0, 360)$ અને $\theta > 0$ હોય, તો $\theta = 360n + \alpha$ લખી શકાય, જ્યાં $n = \left[\frac{\theta}{360}\right]$, $n \in \mathbb{N}$ અને $0 \le \alpha < 360$. α વ્યાપક અંશમાપવાળો ખૂશો મળે. \overrightarrow{OQ} એ n પૂર્શ પરિભ્રમણ કરી α વ્યાપક અંશમાપવાળા ખૂશાને સંગત ઉપર દર્શાવેલ સ્થિતિ ધારણ કરશે. અહીં \overrightarrow{OQ} એ \overrightarrow{OP} ની સ્થિતિ ધારણ કરતા પહેલાં જેટલા પરિભ્રમણ કરશે તેની સંખ્યા n દર્શાવે છે. n > 0 છે અને પરિભ્રમણ ઘડિયાળના કાંટાની વિરુદ્ધ દિશામાં છે.

<mark>ઉદાહરણ 11 : θ = 760</mark> માટે જેનું વ્યાપક અંશમાપ θ હોય તેવો ખૂશો દર્શાવો.

ઉકેલ :
$$\left[\frac{\theta}{360}\right] = \left[\frac{760}{360}\right] = 2$$
 અને $760 = 360 \cdot 2 + 40$

$$\alpha = 40$$

ઘડિયાળના કાંટાથી વિરુદ્ધ દિશામાં \overrightarrow{OQ} ના બે પૂર્શ પરિભ્રમણ પછી \overrightarrow{OA} ના ઉપરના અર્ધતલમાં \overrightarrow{OP} મળે, જેથી $m\angle AOP = 40$. $\angle AOP$ એ 760 વ્યાપક અંશમાપવાળો ખૂણો બને.

હવે ધારો કે $\theta < 0$. જો $-180 < \theta < 0$, તો \overrightarrow{AA} 'ના નીચેના અર્ધતલમાં એકમ વર્તુળ પર P મળે કે જેથી $m\angle AOP = \mid \theta \mid = -\theta$ કારણ કે $0 < -\theta < 180$.

 \overrightarrow{OQ} ઘડિયાળના કાંટાની દિશામાં પરિભ્રમણ કરી A આગળ ફરી પસાર થયા વિના \overrightarrow{OP} ની સ્થિતિ ધારણ કરે તો, $\angle AOP$ ને વ્યાપક અંશમાપ θ વાળો ખૂશો કહે છે.

આમ, $\theta = -60$ તો \overrightarrow{AA} 'ની નીચેના અર્ધતલમાં એકમ વર્તુળ પર P એવું મળશે કે જેથી $m\angle AOP = 60$. આમ, \overrightarrow{OQ} ઘડિયાળના કાંટાની દિશામાં પરિભ્રમણ કરી \overrightarrow{OP} ની સ્થિતિ ધારણ કરે, તો $\angle AOP$ વ્યાપક અંશમાપ -60 વાળો ખૂણો બને.

જો
$$-360 < \theta < -180$$
, તો $0 < 360 + \theta < 180$.

P એ \overrightarrow{AA} 'ની ઉપરના અર્ધતલમાં મળે. જેથી $m\angle AOP = (360 + \theta)$. આમ, \overrightarrow{OO} ઘડિયાળના કાંટાની દિશામાં પરિભ્રમણ કરી એકમ વર્તુળ પર OPની સ્થિતિ ધારણ કરે કે જેથી $m\angle AOP = (360 + \theta)$. $\angle AOP$ વ્યાપક અંશમાપ θ વાળો ખુશો બને.

જો $\theta = -210$, તો $360 + \theta = 150$. આકૃતિ 5.24માં દર્શાવ્યા પ્રમાણે -210 વ્યાપક માપવાળો ખૂણો ZAOP મળે.

હવે ધારો કે
$$\theta < 0$$
 હોય તો

$$|\theta| = 360n + \alpha$$
, $0 \le \alpha < 360$

તેથી
$$-\theta = 360n + \alpha$$

$$(\mid \mathbf{\theta} \mid = -\mathbf{\theta})$$

$$\therefore \quad \theta = -360n - \alpha \quad (-360 < -\alpha \le 0)$$

આમ, વ્યાપક અંશમાપ θ વાળો ખૂણો એ \overrightarrow{OQ} ના ઘડિયાળના કાંટાની દિશામાં n પૂર્ણ પરિભ્રમણ પછી મળતો $-\alpha$ વ્યાપક અંશમાપવાળો ખુશો બને છે.

એટલે જો
$$\theta = -780$$
, તો $780 = 360 \times 2 + 60$

$$\therefore$$
 -780 = -360 × 2 - 60

આકૃતિ 5.24

આકૃતિ 5.25

આમ, –780 વ્યાપક અંશમાપવાળો ખૂણો એટલે ઘડિયાળના કાંટાની દિશામાં બે પૂર્ણ પરિભ્રમણ પછી જેનું વ્યાપક અંશમાપ −60 છે, તેવો ∠AOP છે.

ઉદાહરણ 12 : વ્યાપક અંશમાપ $\theta = -1110$ માટે પરિભ્રમણની સંખ્યા n અને અંશમાપ α મેળવી વ્યાપક અંશમાપવાળો ખૂશો દોરો.

ઉકેલ :
$$\left[\frac{-\theta}{360}\right] = \left[\frac{1110}{360}\right] = 3$$

$$\therefore -1110 = (-360)3 + \alpha, \quad \alpha = -30$$
$$= (-360)3 + (-30)$$

આમ, -1110 વ્યાપક અંશમાપવાળો ખુણો એટલે ઘડિયાળના કાંટાની દિશામાં ત્રણ પૂર્ણ પરિભ્રમણ કરવાના અને ત્યાર બાદ જેનું વ્યાપક અંશમાપ -30 છે તેવો ખૂણો દોરવાનો.

આકૃતિ 5.26

5.8 વ્યાપક અંશમાપવાળા ખૂણાનાં ત્રિકોણમિતીય વિધેયો

આપણે જાણીએ છીએ કે sine અને cosine વિધેયો એ Rથી R પર વ્યાખ્યાયિત છે. આમ, પ્રત્યેક $\theta \in \mathbb{R}$ માટે $\sin\theta$ અને $\cos\theta$ વ્યાખ્યાયિત છે.

જો $\angle AOP$ નું વ્યાપક અંશમાપ θ હોય, તો $sin\theta^o$ માટે $sin\frac{\pi\theta}{180}$ એવી વ્યાખ્યા લેવામાં આવે છે. અહીં, $\frac{\pi\theta}{180}\in \mathbb{R}$ અને sin વિધેય \mathbb{R} થી \mathbb{R} પર વ્યાખ્યાયિત છે, તેથી $sin\frac{\pi\theta}{180}$ વાસ્તવિક સંખ્યા છે. આમ, કોઈ પણ વ્યાપક અંશમાપ કે રેડિયન માપવાળા ખૂણાનાં ત્રિ-વિધેયો વ્યાખ્યાયિત થઈ શકે. આમ, $sin18^o=sin\frac{18\pi}{180}=sin\frac{\pi}{10}$. અહીં આપણે નોંધીશું કે $sin18^o$ ને આપણે sin18 નહિ લખીએ કારણ કે $sin18^o=sin\frac{18\pi}{180}$ અને sin18 અલગ છે. sin18 એટલે કે વાસ્તવિક સંખ્યા 18 (રેડિયન માપ 18)ને સંગત ખૂણા માટે sin વિધેયનું મૂલ્ય. આમ, sin અને cosine વિધેયના વ્યાપક અંશમાપ θ વાળા ખૂણા માટે $sin\theta^o$ અને $cos\theta^o$ લખવું જરૂરી છે.

પ્રકીર્ણ ઉદાહરણો :

ઉદાહરણ $13:\theta=-960$ માટે વ્યાપક અંશમાપ θ વાળો ખૂશો દર્શાવો.

634:
$$n = \left[\frac{-\theta}{360}\right] = \left[\frac{960}{360}\right] = 2$$

$$\therefore -960 = (-360)2 + \alpha, \quad \alpha = -240^{\circ}$$
$$= (-360)2 + (-240)$$

$$n = 2$$
, $\alpha = -240^{\circ}$, $-360 < \alpha \le 0$

આમ, ઘડિયાળના કાંટાની દિશામાં બે પૂર્ણ પરિભ્રમણ પછી ∠AOP એ વ્યાપક અંશમાપ –240 વાળો લેતાં વ્યાપક માપ –960° વાળો ખૂણો મળે છે.

ઉદાહરણ 14 : એક જ આલેખપત્ર પર એક જ સ્કેલમાપ લઈ $y=\sin x$ અને $y=2\sin\frac{x}{2}$ ના આલેખ દોરો. $x\in[0,2\pi]$

ઉકેલ : $y = \sin x$ માટે વિસ્તાર [-1, 1] અને મુખ્ય આવર્તમાન 2π છે.

$$y = 2\sin\frac{x}{2}$$
 માટે $c = 2$ અને $a = \frac{1}{2}$.

તેથી વિસ્તાર [-2, 2] અને આવર્તમાન 4π છે.

સ્વાધ્યાય 5.3

1.			ણની સંખ્યા <i>n</i> અને અં ⁵⁰ (3) 1485 ⁰	શમાપ α મેળવો :		
2.		· ·		ાાપ α મેળવી વ્યાપક અંદ	ગમાપવાળો ખણો	દોરો :
			5° (3) -1470°		Cr 11 11 12 2311	GLCL -
	(~)	(=) / / (
			સ્વાધ્યાય ક	5		
1.	એક	જ આલેખપત્ર પર એ	ક જ સ્કેલમાપ લઈ $oldsymbol{y}$	$= \sin x$ અને $y = \cos$	<i>x</i> ના આલેખ દો	રો.
2.	<i>y</i> =	3sin2xનો આલેખ સ્	યો.			
3.	-	2cos3xનો આલેખ ૨				
4.				ાપ $lpha$ મેળવી વ્યાપક અંદ	શમાપવાળો ખૂશો	દોરો :
			2000° (3) -54			
5.				ા વિકલ્પો (a), (b), (c)	ં અથવા (d)માથા	યાગ્ય
		ત્ય પસંદ કરીને □ મ				
	(1)	$tan\left(\frac{19\pi}{3}\right)$ નું મૂલ્ય =				
		(a) $\sqrt{3}$	(b) $-\sqrt{3}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\frac{-1}{\sqrt{3}}$	
	(2)	$cot\left(\frac{-15\pi}{4}\right)$ નું મૂલ્ય	=		•	
		(a) 1	(b) −1	(c) $\frac{1}{\sqrt{3}}$	(d) $\frac{-1}{\sqrt{3}}$	
	(3)	$\Re \sec \theta + \tan \theta =$	√3, 0 < θ < π હે	ાય, તો θનું મૂલ્ય		
		(a) $\frac{5\pi}{6}$	(b) $\frac{\pi}{6}$	(c) $\frac{\pi}{3}$	(d) $\frac{-\pi}{3}$	
	(4)	$\Re \tan\theta = -\frac{1}{\sqrt{5}} \approx$	તને $\mathrm{P}(\theta)$ ચોથા ચરણમ	ાં હોય, તો <i>cos</i> θનું મૂલ	ય =	
		(a) $\frac{\sqrt{5}}{\sqrt{6}}$	(b) $\frac{2}{\sqrt{6}}$	(c) $\frac{1}{2}$	(d) $\frac{1}{\sqrt{6}}$	
	(5)	$x \cdot \sin 45^{\circ} \cos^2$	$260^{\circ} = \frac{tan^2 60^{\circ} \cos co}{\sec 45^{\circ} \cot^2}$	$\frac{x^2 30^\circ}{30^\circ}$, dì $x = \dots$		
		(a) 16	(b) 1	(c) $8\sqrt{2}$	(d) $\frac{16}{3}$	
	(6)	$\cot^2\frac{\pi}{4} + \sec^2\frac{\pi}{4} -$	$-4\cos\frac{\pi}{3}$ નું મૂલ્ય = .	****		
		(a) 1	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) $\frac{3}{2}$	
	(7)	$2\sin^2\frac{\pi}{6} - \csc\frac{\pi}{6}$	$\cos^2\frac{\pi}{3}$ + $\cos^2\frac{\pi}{3}$ + $\cot^2\frac{\pi}{3}$	·		
		(a) 1	(b) 0	(c) $\frac{1}{2}$	(d) $-\frac{1}{2}$	

124 ગણિત

(8) જો $\theta = -1470$ માટે પૂર્ણ પરિભ્રમણની સંખ્યા =

(a) -3

(b) 3

(c) -4

(d) 4

(9) જો $\theta = 750$ વ્યાપક અંશમાપ θ° વાળો ખૂણો દર્શાવે તો $P(\theta)$ ચરણમાં છે.

(a) **પ્રથમ**

(b) દ્વિતીય

(c) તૃતીય

(d) ચત્ધ

(10) $cos(\frac{65\pi}{4}) =$

(a) $-\frac{1}{\sqrt{2}}$ (b) $\frac{1}{\sqrt{2}}$

(c) $\pm \frac{1}{\sqrt{2}}$

(d) $\sqrt{2}$

સારાંશ

અક્ષો પરના બિંદુ P(0) માટે ત્રિ-વિધિયોનાં મૂલ્ય

2.
$$P\left(\frac{\pi}{4}\right) = \left(\cos\frac{\pi}{4}, \sin\frac{\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

3.
$$P\left(\frac{\pi}{3}\right) = \left(\cos\frac{\pi}{3}, \sin\frac{\pi}{3}\right) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

4.
$$P\left(\frac{\pi}{6}\right) = \left(\cos\frac{\pi}{6}, \sin\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$$

y = sinx, y = cosx અને y = tanx વિધેયના આલેખ

વ્યાપક અંશમાપવાળા ખૂશાના ત્રિકોશમિતીય વિધેયો વિશેનો ખ્યાલ

