Section 1.2 Approximating Change with Difference Equations

Discrete Model Vs. Continuous Model

$$P(n+1) - P(n) = \Delta P$$
 (Discrete)

$$P(t + \Delta t) - P(t) = \Delta P$$
 (Continuous)

Discrete Model Vs. Continuous Model

Pumping gasoline into your vehicle

Remarks:

- One could be using one of the other, but the change must reflect the value difference from the current and previous time instance.
- Let us at the moment work with discrete models.

Working with discrete models

Various ways to model the change in the difference equation.

Given a set of data points,

$$\{P(n)\}_{n=1}^N$$

e.g. this is the number of people infected with the Swine Flu; where n is the number of days since the outbreak

Working with discrete models cont.

One can plot the difference of $P(\Delta P)$ as a function of n or P(n)

P(2)- P(1)

We assume $\Delta P = f(n)$.

Then one can solve this difference equation to get P(n) for n=1, 2, ..., N

Model ΔP as a function of P

One can also model ΔP as a function of P.

Model ΔP as a function of P

So that

$$\Delta P = r * P_n$$

$$P_{n+1} - P_n = r * P_n$$

$$P_{n+1} = (1+r)P_n$$

$$= (1+r)P_{n-1}$$

$$\vdots$$

$$= (1+r)^{n+1}P_0$$

Model ΔP as a function of P

Model ΔP as a function of P (+MATLAB)

Time in hours n	Observed yeast biomass p_n	Change in biomass $p_{n+1}-p_n$
0	9.6	8.7
1	18.3	10.7
2	29.0	18.2
3	47.2	23.9
4	71.1	48.0
5	119.1	55.5
6	174.6	82.7
7	257.3	

Figure 1.7

Growth of a yeast culture versus time in hours; data from R. Pearl, "The Growth of Population," Quart. Rev. Biol. 2(1927): 532–548

$$\Delta p_n = p_{n+1} - p_n = 0.5 p_n$$

$$p_{n+1} = 1.5p_n$$

Discrete Limited Growth Model

The previous example has P_n grow indefinitely. That is not the case for bacteria or animal species.

biomass:

$$P_{n+1} - P_n = \Delta P_n = rP_n(L - P_n)$$

$$P_{n+1} = [1 + r(L - P_n)] * P_n$$

$$P_n = P_n$$

Figure 1.8

Yeast biomass approaches a limiting population level

Yeast biomass approaches a limiting population level

	$p_n \left(665 - p_n\right)$	$p_{n+1}-p_n$
*	6291.84	8.7
100	11,834.61	10.7
90	18,444.00	18.2
80	29,160.16	23.9
1200	42,226.29	48.0
70	65,016.69	55.5
F 60	85,623.84	82.7
d 60 - 50 - 40	104,901.21	93.4
a 40 -	110,225.01	90.3
30 -	98,784.00	72.3
20 -	77,867.61	46.4
10	58,936.41	35.1
10	41,754.96	34.6
0	22,406.64	11.4
	15,507.36	10.3
	9050.29	4.8
	5968.69	3.7
	3561.84	2.2

Figure 1.9

Testing the constrained growth model

$$p_{n+1} - p_n = 0.00082(665 - p_n)p_n$$

$$p_{n+1} = p_n + 0.00082(665 - p_n)p_n$$

Homework – Section 1.2

o # 1, 2, 6, 7, 9