Ciprian M. Crainiceanu

content

Outline

The score

Exact tes

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

Lecture 18

Ciprian M. Crainiceanu

Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

November 19, 2013

Table of contents

Table of contents

Th. ...

Exact test

Comparing two binomia proportions

Bayesian and likelihood analysis of tw proportions

- 1 Table of contents
- 2 Outline
- 3 The score statistic
- 4 Exact tests
- 5 Comparing two binomial proportions
- 6 Bayesian and likelihood analysis of two proportions

Outline
The score

Exact tesi

Comparing two binomia proportions

Bayesian and likelihood analysis of tw proportions

- 1 Tests for a binomial proportion
- Score test versus Wald
- 3 Exact binomial test
- 4 Tests for differences in binomial proportions
- 5 Intervals for differences in binomial proportions

exact tes

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

Motivation

- Consider a randomized trial where 40 subjects were randomized (20 each) to two drugs with the same active ingredient but different expedients
- Consider counting the number of subjects with side effects for each drug

	Side		
	Effects	None	total
Drug A	11	9	20
Drug B	5	15	20
Total	16	14	40

xact tes

Comparing two binomia proportions

Bayesian and likelihood analysis of tw proportions

Hypothesis tests for binomial proportions

- Consider testing $H_0: p = p_0$ for a binomial proportion
- The score test statistic $\hat{p} \neq p_0$ $\sqrt{p_0(1-p_0)/n}$ Score > Wald

follows a Z distribution for large n

This test performs better than the Wald test

Bayesian and likelihood analysis of tv proportions

Inverting the two intervals

• Inverting the Wald test yields the Wald interval

$$\hat{p} \pm Z_{1-\alpha/2} \sqrt{\hat{p}(1-\hat{p})/n}$$

Inverting the Score test yields the Score interval

$$\hat{p}\left(\frac{n}{n+Z_{1-\alpha/2}^2}\right) + \frac{1}{2}\left(\frac{Z_{1-\alpha/2}^2}{n+Z_{1-\alpha/2}^2}\right)$$

$$\pm Z_{1-\alpha/2} \sqrt{\frac{1}{n+Z_{1-\alpha/2}^2} \left[\hat{p} (1-\hat{p}) \left(\frac{n}{n+Z_{1-\alpha/2}^2} \right) + \frac{1}{4} \left(\frac{Z_{1-\alpha/2}^2}{n+Z_{1-\alpha/2}^2} \right) \right]}$$

• Plugging in $Z_{\alpha/2}=2$ yields the Agresti/Coull interval

Bayesian and likelihood analysis of two proportions • In our previous example consider testing whether or not Drug A's percentage of subjects with side effects is greater than 10%

• $H_0: p_A = .1 \text{ verus } H_A: p_A > .1$

• $\hat{p} = 11/20 \in .55$

• Test Statistic

$$\frac{.55 - .1}{\sqrt{.1 \times .9/20}} = 6.7$$

• Reject, pvalue = $P(Z > 6.7) \approx 0$

Exact tests

新列行者 Po 电码 P-value xact binomial tests 更些财祖的3 CI

- Consider calculating an exact P-value
- What's the probability, under the null hypothesis, of getting evidence as extreme or more extreme than we obtained?

$$P(X_A \ge 11) = \sum_{x=11}^{20} {20 \choose x} .1^x \times .9^{20-x} \approx 0$$

* default | hower tail = TRVE | (X \in x) | p(X \in x)
* pbinom(10, 20, .1, lower tail = FALSE)

• binom.test(11, 20, .1, alternative > "greater") 以: P>0,1 如果 P = 0.0 拒絕以務養的 X
fail to seject 的;

Exact tests

Comparing two binomial proportions

Bayesian and likelihood analysis of tw proportions

Notes on exact binomial tests

- This test, unlike the asymptotic ones, guarantees the Type I error rate is less than desired level; sometimes it is much less
- Inverting the exact binomial test yields an exact binomial interval for the true proprotion
- This interval (the Clopper/Pearson interval) has coverage greater than 95%, though can be very conservative
- For two sided tests, calculate the two one sided P-values and double the smaller

Ciprian M.

Table of contents

Outline

The sco

Exact tests

Comparing two binomia proportions

Bayesian and likelihood analysis of tw proportions

Wald versus Agrest/Coull¹

Bayesian and likelihood analysis of two proportions

Comparing two binomials

- Consider now testing whether the proportion of side effects is the same in the two groups
- Let $X \sim \operatorname{Binomial}(n_1, p_1)$ and $\hat{p}_1 = X/n_1$
- Let $Y \sim \operatorname{Binomial}(n_2, p_2)$ and $\hat{p}_2 = Y/n_2$
- We also use the following notation:

$$n_{11} = X$$
 $n_{12} = n_1 - X$ $n_1 = n_{1+}$ $n_{21} = Y$ $n_{22} = n_2 - Y$ $n_{2} = n_{2+}$ n_{2+} n_{1+} n_{2+} n_{2+} n_{2+} n_{2+}

Side effect

Comparing two binomial proportions

*Comparing two proportions

- Consider testing H_0 : $p_1 = p_2$
- Versus $H_1: p_1 \neq p_2, H_2: p_1 > p_2, H_3: p_1 < p_2$
- The score test statstic for this null hypothesis is

$$TS = rac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(rac{1}{n_1} + rac{1}{n_2})}}$$
 p. Value

where $\hat{p} = \frac{X+Y}{n_1+n_2}$ is the estimate of the common proportion under the null hypothesis

• This statistic is normally distributed for large n_1 and n_2 .

Table of contents

The scor

Exact test

Comparing two binomial proportions

Bayesian and likelihood analysis of tw proportions

- This interval does not have a closed form inverse for creating a confidence interval (though the numerical interval obtained performs well)
- An alternate interval inverts the Wald test

$$TS = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}}$$

The resulting confidence interval is

$$\hat{p}_{1} - \hat{p}_{2} \pm Z_{1-\alpha/2} \sqrt{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}}}$$

The scor

Exact test

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

- As in the one sample case, the Wald iterval and test performs poorly relative to the score interval and test
- For testing, always use the score test
- For intervals, inverting the score test is hard and not offered in standard software
- A simple fix is the Agresti Caffo interval which is obtained by calculating $\tilde{p}_1 = \frac{x+1}{n_1+2}$, $\tilde{p}_1 = n_1 + 2$, $\tilde{p}_2 = \frac{y+1}{n_2+2}$ and $\tilde{n}_2 = (n_2 + 2)$
- Using these, simply construct the Wald interval
- This interval does not approximate the score interval, but does perform better than the Wald interval

Bayesian and likelihood analysis of tv proportions

- Test whether or not the proportion of side effects is the same for the two drugs
- same for the two drugs • $\hat{p}_A = 155$, $\hat{p}_B = 5/20 = .25$, $\hat{p} = 16/40 = .4$
- Test statistic

$$\frac{.55 - .25}{\sqrt{.4 \times .6 \times \left(1/20 + 1/20\right)}} = 1.61$$

- Fail to reject H₀ at .05 level (compare with 1.96)
- P-value $P(|Z| \ge 1.61) = .11$

Ciprian M. Crainiceanu

Table of

Outline

The score

Exact tes

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Wald versus Agrest/Caffo²

Figure 7. Coverage probabilities for 95% nominal Wald confidence interval as a function of p1 and p2, when n1 = n2 = 10.

Figure 8. Coverage probabilities for 95% nominal adjusted confidence interval (adding t=4 pseudo observations) as a function of p1 and p2, when n1=n2=10.

Ciprian M.

Table of contents

Outline

The score

xact test

Comparing two binomial proportions

Bayesian and likelihood analysis of two proportions

Wald versus Agrest/Caffo³

Figure 6. Coverage probabilities for nominal 95% Wald and adjusted confidence intervals (adding t = 4 pseudo observations) as a function of pt when pt - p2 = 0 or .2 and when pt/p2 = 2 or 4, for nt = n2 = 10.

xact tes

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

Bayesian and likelihood inference for two binomial proportions

- Likelihood analysis requires the use of profile likelihoods, or some other technique and so we omit their discussion
- Consider putting independent Beta (α_1, β_1) and Beta (α_2, β_2) priors on p_1 and p_2 respectively
- Then the posterior is

$$\pi(p_1, p_2) \propto p_1^{\mathsf{x}+\alpha_1-1} (1-p_1)^{n_1+\beta_1-1} \times p_2^{\mathsf{y}+\alpha_2-1} (1-p_2)^{n_2+\beta_2-1}$$

- Hence under this (potentially naive) prior, the posterior for p₁ and p₂ are independent betas
- The easiest way to explore this posterior is via Monte Carlo simulation

Outlin

statistic

Exact test

two binomia proportions

Bayesian and likelihood analysis of two proportions

```
x <- 11; n1 <- 20; alpha1 <- 1; beta1 <- 1
y <- 5; n2 <- 20; alpha2 <- 1; beta2 <- 1
p1 <- rbeta(1000, x + alpha1, n<sub>1</sub> - x + beta1)
p2 <- rbeta(1000, y + alpha2, n<sub>2</sub> - y + beta2)
rd <- p2 - p1
plot(density(rd))
quantile(rd, c(.025, .975))
mean(rd)
median(rd)</pre>
```

Outline

The sco

xact test

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

- The function twoBinomPost on the course web site automates a lot of this
- The output is

Post mn rd (mcse) = -0.278 (0.004) Post mn rr (mcse) = 0.512 (0.007) Post mn or (mcse) = 0.352 (0.008)

Post med rd = -0.283Post med rr = 0.485Post med or = 0.288

Post mod rd = -0.287Post mod rr = 0.433Post mor or = 0.241

Equi-tail rd = -0.531 - 0.008Equi-tail rr = 0.195 0.98Equi-tail or = 0.074 0.966

Ciprian M.

contents

Outline

The score

xact test

Comparing two binomia proportions

Bayesian and likelihood analysis of two proportions

