Birla Central Library PILANI (Jaipur State) Engg College Branch

Class No :- 620 Book No :- 488 F &.

Accession No :- 3 2316

WORKS OF PROFESSOR RALPH G. HUDSON

PUBLISHED BY

JOHN WILEY & SONS, Inc.

- Engineering Electricity. 3rd Edition. A concise exposition of the principles and applications of electricity and magnetism, designed for elementary or introductory college courses. 284 pages, 5 × 7½, 327 figures. Flexible cover.
- The Engineers' Manual. 2nd Edition. A consolidation of the principal formulas and tables of Mathematics, Mechanics, Hydraulics, Heat, and Electricity. 340 pages, 5 X 71, 236 figures. Flexible cover.
- A Manual of Mathematics. With the late Joseph Lipka. Revised Printing.

A consolidation of the principal formulas and tables of Mathematics.

135 pages, 5 × 7½, 391 figures. Flexible cover.

A Table of Integrals. With the late JOSEPH LIPKA.

Contains a table of derivatives, table of integrals, natural logarithms, trigonometric and hyperbolic functions. 25 pages, 5 × 71. Paper.

THE ENGINEERS' MANUAL

By

RALPH G. HUDSON, S. B.,

PROFESSOR OF ELECTRICAL ENGINEERING

In charge of the Courses in

General Science and General Engineering

at the

Massachusetts Institute of Technology

SECOND EDITION

Tenth Printing

NEW YORK

JOHN WILEY & SONS, Inc.

LONDON, CHAPMAN & HALL, LIMITED

COPYRIGHT, 1917, 1939,

BY

RALPH G. HUDSON 1917 Copyright Renewed 1944

All Rights Reserved

This book or any part thereof must not be reproduced in any form without the written permission of the publisher.

SECON EDITION
Tends Printing, March, 1947

PREFACE TO SECOND EDITION.

This work originated from the conception that the practicing engineer or engineering student would welcome a consolidation of the formulas and constants for which he is accustomed to search through several volumes and that the application of each formula might be explained more concisely than in texts devoted exclusively to the process of derivation. With this end in view those engineering formulas, mathematical operations and tables of constants which appear to be most useful are presented in systematic order and in a size of book designed to fit the pocket.

Each formula is preceded by a statement in which its application, the symbology of the involved physical quantities and definite units of measurement are indicated. It is believed that this method of presentation increases the speed of selection and understanding of a desired formula and insures greater accuracy of substitution since data units of any kind may be converted into specified units by reference to the table of conversion factors. The sequence of the formulas is based generally upon their order of derivation so that the understanding of a formula may be enlarged by inspection of the formulas which precede it. All catchwords, symbols and formulas are printed in full face type and each formula or group of formulas is numbered to facilitate reference to the text or cross reference between formulas.

For the practicing engineer the aim throughout has been to enable him to obtain results quickly and accurately even in a branch of engineering to which he can give little attention. For instructional purposes the object has been to present a summary of the important relations which may be derived from fundamental principles so that the student may give his undivided attention to the sources of engineering knowledge, the evolution of engineering formulas and their applications. It is suggested that class room exercises devoted to the derivation of the stated formulas be given to increase the student's comprehension of the origin of

his working formulas and of the mathematical operations which intervene as well as to create discrimination between those relations which are fundamental, derived and empirical. In the solution of problems original data may be given in terms of units not specified in the formulas and for conditions not definitely prescribed in the text.

Many changes and additions were made in each printing of the first edition. After several printings substantial improvements were made in all parts of the book. In this (the second) edition the entire chapter on Heat and a large part of the chapter on Electricity have been rewritten and brought up to date. The author wishes to express his obligations to Professor C. L. Svenson and Mr. A. E. Fitzgerald for their co-operation in this work.

The second edition also contains revisions and extensions of all tables of physical constants, new steam tables, recomputations of all conversion factors affected by the latest definition of the British Thermal Unit, an enlarged table of conversion factors, and many additions throughout the book.

The author wishes to express again his appreciation for the assistance rendered by Professor H. B. Luther, Professor Dean Peabody, and the late Doctor Joseph Lipka in the preparation of the first edition.

RALPH G. HUDSON.

Cambridge, Mass. January, 1939

MATHEMATICS

ALGEBRA

1 Powers and Roots

$$\mathbf{a}^{n} = \mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \dots \text{ to n factors.} \qquad \mathbf{a}^{-n} = \frac{\mathbf{I}}{\mathbf{a}^{n}}.$$

$$\mathbf{a}^{m} \cdot \mathbf{a}^{n} = \mathbf{a}^{m+n}; \quad \frac{\mathbf{a}^{m}}{\mathbf{a}^{n}} = \mathbf{a}^{m-n}. \qquad (\mathbf{a}\mathbf{b})^{n} = \mathbf{a}^{n}\mathbf{b}^{n}; \qquad \left(\frac{\mathbf{a}}{\mathbf{b}}\right)^{n} = \frac{\mathbf{a}^{n}}{\mathbf{b}^{n}}.$$

$$(\mathbf{a}^{m})^{n} = (\mathbf{a}^{n})^{m} = \mathbf{a}^{mn}. \qquad (\sqrt[n]{\mathbf{a}})^{n} = \mathbf{a}.$$

$$\mathbf{a}^{\frac{1}{n}} = \sqrt[n]{\mathbf{a}}; \qquad \mathbf{a}^{\frac{m}{n}} = \sqrt[n]{\mathbf{a}^{m}}. \qquad \sqrt[n]{\mathbf{a}}\mathbf{b} = \sqrt[n]{\mathbf{a}}\sqrt[n]{\mathbf{b}}; \qquad \sqrt[n]{\frac{\mathbf{a}}{\mathbf{b}}} = \frac{\sqrt[n]{\mathbf{a}}}{\sqrt[n]{\mathbf{b}}}.$$

$$\sqrt[n]{\sqrt[n]{\mathbf{a}}} = \sqrt[m]{\mathbf{a}}.$$

2 Operations with Zero and Infinity

 $a \cdot o = o$; $a \cdot \infty = \infty$; $o \cdot \infty$ is indeterminate, see page 37. $\frac{o}{a} = o$; $\frac{a}{o} = \infty$; $\frac{o}{o}$ " " 37. $\frac{o}{a} = \infty$; $\frac{a}{o} = o$; $\frac{o}{o}$ " " 37. $\frac{o}{a} = \infty$; $\frac{a}{o} = o$; $\frac{o}{o}$ " " 37. $a^0 = 1$; $o^a = o$; o^0 " " 37. $a^0 = \infty$; $a^\infty = \infty$, if $a^2 > 1$; $a^\infty = o$, if $a^2 < 1$; $a^\infty = 1$, if $a^2 = 1$, see also page 37. $a^{-a0} = o$; $a^{-a0} =$

3 Binomial Expansions

$$(a \pm b)^{2} = a^{2} \pm 2 ab + b^{2}.$$

$$(a \pm b)^{3} = a^{3} \pm 3 a^{2}b + 3 ab^{2} \pm b^{3}.$$

$$(a \pm b)^{4} = a^{4} \pm 4 a^{2}b + 6 a^{2}b^{2} \pm 4 ab^{3} + b^{4}.$$

$$(a \pm b)^{n} = a^{n} \pm \frac{n}{1} a^{n-1}b + \frac{n(n-1)}{1 \cdot 2} a^{n-2}b^{2} \pm \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} a^{n-3}b^{3} + \dots$$

Note. n may be positive or negative, integral or fractional. When n is a positive integer, the series has (n + 1) terms; otherwise the number of terms is infinite.

4 Polynomial Expansions

$$(a + b + c + d + \dots)^2 = a^2 + b^2 + c^2 + d^2 + \dots + 2a(b + c + d + \dots) + 2b(c + d + \dots) + 2c(d + \dots) + \dots$$

= sum of the squares of each term and twice the product of each term by the sum of the terms that follow it.

$$(a + b + c)^3 = [(a + b) + c]^3 = (a + b)^3 + 3(a + b)^2c + 3(a + b)c^2 + c^3.$$

5 Factors

$$a^{2} - b^{2} = (a + b) (a - b).$$

$$a^{2} + b^{2} = (a + b\sqrt{-1}) (a - b\sqrt{-1}).$$

$$a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2}).$$

$$a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2}).$$

$$a^{4} + b^{4} = (a^{2} + ab\sqrt{2} + b^{2}) (a^{2} - ab\sqrt{2} + b^{2}).$$

$$a^{2n} - b^{2n} = (a^{n} + b^{n}) (a^{n} - b^{n}).$$

$$a^{n} - b^{n} = (a - b) (a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + b^{n-1}).$$

$$a^{n} - b^{n} = (a + b) (a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots - b^{n-1}) \text{ if } n \text{ is even.}$$

$$a^{n} + b^{n} = (a + b) (a^{n-1} - a^{n-2}b + a^{n-3}b^{2} - \dots + b^{n-1}) \text{ if } n \text{ is odd.}$$

6 Ratio and Proportion

If
$$\mathbf{a} : \mathbf{b} = \mathbf{c} : \mathbf{d}$$
, or $\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}}$, or $\mathbf{ad} = \mathbf{bc}$, then
$$\frac{\mathbf{b}}{\mathbf{a}} = \frac{\mathbf{d}}{\mathbf{c}}; \qquad \frac{\mathbf{a}}{\mathbf{c}} = \frac{\mathbf{b}}{\mathbf{d}}.$$

$$\frac{\mathbf{a} \pm \mathbf{b}}{\mathbf{c} \pm \mathbf{d}} = \frac{\mathbf{a}}{\mathbf{c}} = \frac{\mathbf{b}}{\mathbf{d}}; \quad \frac{\mathbf{a} \pm \mathbf{c}}{\mathbf{b} \pm \mathbf{d}} = \frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}}.$$

$$\frac{\mathbf{a} + \mathbf{b}}{\mathbf{a} - \mathbf{b}} = \frac{\mathbf{c} + \mathbf{d}}{\mathbf{c} - \mathbf{d}}; \quad \frac{\mathbf{a} + \mathbf{c}}{\mathbf{a} - \mathbf{c}} = \frac{\mathbf{b} + \mathbf{d}}{\mathbf{b} - \mathbf{d}}.$$

$$\frac{\mathbf{ma}}{\mathbf{mb}} = \frac{\mathbf{nc}}{\mathbf{nd}}; \qquad \frac{\mathbf{ma}}{\mathbf{nb}} = \frac{\mathbf{mc}}{\mathbf{nd}}.$$

$$\frac{\mathbf{a}^n}{\mathbf{b}^n} = \frac{\mathbf{c}^n}{\mathbf{d}^n}; \qquad \frac{\sqrt[n]{\mathbf{a}}}{\sqrt[n]{\mathbf{b}}} = \frac{\sqrt[n]{\mathbf{c}}}{\sqrt[n]{\mathbf{d}}}; \qquad \frac{\mathbf{a}^n}{\mathbf{b}^n} = \frac{\mathbf{c}^n}{\mathbf{d}^n}.$$
If $\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}} = \frac{\mathbf{e}}{\mathbf{f}} = \dots$, then
$$\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}} = \frac{\mathbf{e}}{\mathbf{f}} = \dots$$
 = $\frac{\mathbf{a} + \mathbf{c} + \mathbf{e} + \dots}{\mathbf{b} + \mathbf{d} + \mathbf{f} + \dots} = \frac{\mathbf{pa} + \mathbf{qc} + \mathbf{re} + \dots}{\mathbf{pb} + \mathbf{qd} + \mathbf{rf} + \dots}.$
If $\frac{\mathbf{a}}{\mathbf{b}} = \frac{\mathbf{c}}{\mathbf{d}}$ and $\frac{\mathbf{e}}{\mathbf{f}} = \frac{\mathbf{g}}{\mathbf{h}}$, then $\frac{\mathbf{ae}}{\mathbf{bf}} = \frac{\mathbf{cg}}{\mathbf{dh}}$.

7 Constant Factor of Proportionality, k

If y = kx, y varies as x, or y is proportional to x.

If $y = \frac{k}{x}$, y varies inversely as x, or y is inversely proportional to x.

If y = kxz, y varies jointly as x and z.

If $y = k \frac{x}{z}$, y varies directly as x and inversely as z.

8 Logarithms

- (a) Definition. If **b** is a finite positive number, other than 1, and $\mathbf{b}^x = \mathbf{N}$, then **x** is the logarithm of **N** to the base **b**, or $\log_b \mathbf{N} = \mathbf{x}$. If $\log_b \mathbf{N} = \mathbf{x}$, then $\mathbf{b}^x = \mathbf{N}$.
 - (b) Properties of logarithms.

$$\log_b \mathbf{b} = \mathbf{i}; \ \log_b \mathbf{i} = \mathbf{o}; \ \log_b \mathbf{o} = \begin{cases} +\infty, \text{ when } \mathbf{b} \text{ lies between } \mathbf{o} \text{ and } \mathbf{i} \\ -\infty, \text{ when } \mathbf{b} \text{ lies between } \mathbf{i} \text{ and } \infty \end{cases}$$
$$\log_b \mathbf{M} \cdot \mathbf{N} = \log_b \mathbf{M} + \log_b \mathbf{N}.$$
$$\log_b \frac{\mathbf{M}}{\mathbf{N}} = \log_b \mathbf{M} - \log_b \mathbf{N}.$$

$$\log_b \mathbf{N}^p = \mathbf{p} \log_b \mathbf{N}.$$
 $\log_b \sqrt[r]{\mathbf{N}^p} = \frac{\mathbf{p}}{\mathbf{r}} \log_b \mathbf{N}.$

$$\log_b \mathbf{N} = \frac{\log_a \mathbf{N}}{\log_a \mathbf{b}}.$$

$$\log_b \mathbf{b}^N = \mathbf{N}; \ \mathbf{b}^{\log_b N} = \mathbf{N}.$$

(c) Systems of logarithms.

Common (Briggsian) - base 10.

Natural (Napierian or hyperbolic) — base 2.7183 —, (designated by e or e).

Note. The abbreviation of "common logarithm" is "log" and the abbreviation of "natural logarithm is "ln."

(d) Characteristic or integral part (c) of the common logarithm of a number (N).

If N is not less than one, c equals the number of integral figures in N, minus one.

If N is less than one, c equals 9 minus the number of zeros between the decimal point and the first significant figure, minus 10 (the -10 being written after the mantissa).

- (e) Mantissa or decimal part (m) of the common logarithm of a number N. If N has not more than three figures, find mantissa directly in table, page 250.
- If N has four figures, $m = m_1 + \frac{f}{10}(m_2 m_1)$, where m_1 is the mantissa corresponding to the first three figures of N, m_2 is the next larger mantissa in the table and f is the fourth figure of N.
- (f) Number (N) corresponding to a common logarithm which has a characteristic (c) and a mantissa (m).

If N is desired to three figures, find the mantissa nearest to m in the table, page 250, and the corresponding number is N.

If **N** is desired to four figures, find the next smaller mantissa, m_1 , and the next larger mantissa, m_2 , in the table. The first three figures of **N** correspond to m_1 and the fourth figure equals the nearest whole number to 10 $\left(\frac{m-m_1}{m_0-m_1}\right)$.

Note. If c is positive, the number of integral figures in N equals c plus one. If c is negative (for example, 9 - 10 or - 1), write numeric c minus one zeros between the decimal point and the first significant figure of N.

(g) Natural logarithm (ln) of a number (N).

Any number, N, can be written $N = N_1 \times 10^{\pm p}$, where N_1 lies between 1 and 1000. Then $\ln N = \ln N_1 \pm p \ln 10$.

If N₁ has not more than three figures, find ln N₁ directly in table, page 252.

If N_1 has four figures, N_2 is the number composed of the first three figures of N_1 , and f is the fourth figure of N_1 , then

$$\ln N_1 = \ln N_2 + \frac{f}{10} [\ln (N_2 + I) - \ln N_2].$$

(h) Number (N) corresponding to a natural logarithm, ln N.

Any logarithm, $\ln N$, can be written $\ln N = \ln N_1 \pm p \ln 10$, where $\ln N_1$ lies between $4.6052 = \ln 100$ and $6.9078 = \ln 1000$. Then $N = N_1 \times 10 \pm p$.

The first three figures of N_1 correspond to the next smaller logarithm, $\ln N_2$, in the table, and the fourth figure, f, of N1 equals the nearest whole number to $10 \left(\frac{\ln N_1 - \ln N_2}{\ln (N_2 + 1) - \ln N_2} \right).$

9 The Solution of Algebraic Equations

(a) The quadratic equation.

If
$$\mathbf{ax}^2 + \mathbf{bx} + \mathbf{c} = \mathbf{o},$$
then
$$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{ac}}}{2\mathbf{a}} = \frac{2\mathbf{c}}{-\mathbf{b} \mp \sqrt{\mathbf{b}^2 - 4\mathbf{ac}}}$$
If $\mathbf{b}^2 - 4\mathbf{ac} = \mathbf{o}$ { the roots are real and unequal, the roots are imaginary.}

The second equation serves best when the two values of \mathbf{x} are the roots are imaginary.

nearly equal.

(b) The cubic equation.

Any cubic equation, $y^3 + py^2 + qy + r = 0$ may be reduced to the form $x^3 + ax + b = 0$ by substituting for y the value $\left(x - \frac{p}{3}\right)$. Here $a = \frac{1}{3}(3q - p^2)$, $b = \sqrt{2} (2 p^3 - 9 pq + 27 r).$

Algebraic Solution of $x^3 + ax + b = 0$.

Let

$$A = \sqrt[3]{-\frac{b}{2} + \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}}, \quad B = \sqrt[8]{-\frac{b}{2} - \sqrt{\frac{b^2}{4} + \frac{a^3}{27}}},$$

then

$$x = A + B$$
, $-\frac{A+B}{2} + \frac{A-B}{2}\sqrt{-3}$, $-\frac{A+B}{2} - \frac{A-B}{2}\sqrt{-3}$

If $\frac{b^2}{4} + \frac{a^3}{27} = 0$ $\begin{cases} 1 \text{ real root, 2 conjugate imaginary roots,} \\ 3 \text{ real roots of which 2 are equal,} \\ 3 \text{ real and unequal roots.} \end{cases}$

Trigonometric Solution of $x^3 + ax + b = 0$.

In the case where $\frac{b^2}{4} + \frac{a^3}{27} < o$, the above formulas give the roots in a form impractical for numerical computation. In this case, a is negative. Compute the value of the angle ϕ from $\cos \phi = \sqrt{\frac{b^2}{4} \div \left(-\frac{a^3}{27}\right)}$ (see page 260), then $\mathbf{x} = \mp 2\sqrt{-\frac{a}{3}\cos\frac{\phi}{3}}, \mp 2\sqrt{-\frac{a}{3}\cos\left(\frac{\phi}{3} + 120^{\circ}\right)}, \mp 2\sqrt{-\frac{a}{3}\cos\left(\frac{\phi}{3} + 240^{\circ}\right)},$

where the upper or lower signs are to be used according as b is positive or negative.

5

In the case where $\frac{b^2}{4} + \frac{a^3}{27} > 0$, compute the values of the angles ψ and ϕ from cot $2\psi = \sqrt{\frac{b^2}{4} \div \frac{a^3}{27}}$, $\tan \phi = \sqrt[3]{\tan \psi}$; then the real root of the equation is

$$\mathbf{x} = \pm 2 \sqrt{\frac{a}{3}} \cot 2 \, \phi,$$

where the upper or lower sign is to be used according as b is positive or negative.

In the case where $\frac{b^2}{4} + \frac{a^3}{27} = 0$, the roots are

$$\mathbf{x} = \mp 2\sqrt{-\frac{\mathbf{a}}{3}}, \quad \pm \sqrt{-\frac{\mathbf{a}}{3}}, \quad \pm \sqrt{-\frac{\mathbf{a}}{3}},$$

where the upper or lower signs are to be used according as b is positive or negative.

(c) The biquadratic equation.

Any biquadratic equation such as

$$y^4 + py^3 + qy^2 + ry + s = 0$$

may be reduced to the form

$$x^4 + ax^2 + bx + c = 0$$

by substituting for y the value $\left(x - \frac{p}{4}\right)$.

If $x^4 + ax^2 + bx + c = 0$, form first the cubic equation

$$t^3 + \left(\frac{a}{2}\right)t^2 + \left(\frac{a^2 - 4c}{16}\right)t - \frac{b^2}{64} = 0$$

and solve as indicated in 9 (b).

If the roots of the above cubic equation are 1, m, and n, then the roots of the biquadratic equation are:

if b is positive,

$$\mathbf{x} = -\sqrt{\mathbf{i}} - \sqrt{\mathbf{m}} - \sqrt{\mathbf{n}}, \quad -\sqrt{\mathbf{i}} + \sqrt{\mathbf{m}} + \sqrt{\mathbf{n}},$$
$$\sqrt{\mathbf{i}} - \sqrt{\mathbf{m}} + \sqrt{\mathbf{n}}, \quad \sqrt{\mathbf{i}} + \sqrt{\mathbf{m}} - \sqrt{\mathbf{n}};$$

if b is negative,

$$\mathbf{x} = \sqrt{\mathbf{i}} + \sqrt{\mathbf{m}} + \sqrt{\mathbf{n}}, \qquad \sqrt{\mathbf{i}} - \sqrt{\mathbf{m}} - \sqrt{\mathbf{n}}, \\ -\sqrt{\mathbf{i}} + \sqrt{\mathbf{m}} - \sqrt{\mathbf{n}}, \qquad -\sqrt{\mathbf{i}} - \sqrt{\mathbf{m}} + \sqrt{\mathbf{n}}.$$

(d) Graphical solution of the cubic and biquadratic equations.

To find the real roots of the cubic equation

$$x^3 + ax + b = 0.$$

draw the parabola (page 22) $y^2 = 2x$, and the circle (page 21), the coördinates of whose center are $x = \frac{4-a}{4}$, $y = -\frac{b}{8}$, and which passes through the vertex of the parabola. Measure the ordinates of the points of intersection; these give the real roots of the equation.

To find the real roots of the biquadratic equation

$$x^4 + ax^2 + bx + c = 0,$$

draw the parabola $y^2 = 2 x$, and the circle the coördinates of whose center are $x = \frac{4-a}{4}$, $y = -\frac{b}{8}$ and whose radius is $\sqrt{\left(\frac{4-a}{4}\right)^2 + \left(-\frac{b}{8}\right)^2 - \frac{c}{4}}$. Measure the ordinates of the points of intersection; these give the real roots of the equation.

NOTE. The one parabola $y^2 = 2 x$ drawn on a large scale suffices for the solution of all cubic and biquadratic equations.

(e) The binomial equation.

If $x^n = a$, the n roots of this equation are:

if a is positive,

$$\mathbf{x} = \sqrt[n]{a} \left(\cos \frac{2 \, \mathbf{k} \pi}{\mathbf{n}} + \sqrt{-1} \, \sin \frac{2 \, \mathbf{k} \pi}{\mathbf{n}} \right)$$

if a is negative,

$$\mathbf{x} = \sqrt[n]{-a} \left(\cos \frac{(2 \mathbf{k} + 1)\pi}{\mathbf{n}} + \sqrt{-1} \sin \frac{(2 \mathbf{k} + 1)\pi}{\mathbf{n}} \right),$$

where k takes in succession the values $0, 1, 2, 3 \dots, n-1$.

(f) The general quadratic equation.

If
$$ax^{2n} + bx^n + c =$$

then

$$\mathbf{x}^n = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4} \, \mathbf{ac}}{2 \, \mathbf{a}},$$

and x is found as in 9 (e).

(g) The general equation of the nth degree.

$$P \equiv p_0 x^n + p_1 x^{n-1} + p_2 x^{n-2} + \ldots + p_{n-1} x + p_n = 0.$$

There are no formulas which give the roots of this general equation if n>4. If n>4, use one of the following methods. These are advantageous even when n=3 or n=4.

Method I. Roots by factors.

Find a number, r, by trial or guess such that x = r satisfies the equation, that is, such that

$$p_0r^n + p_1r^{n-1} + p_2r^{n-2} + \ldots + p_{n-1}r + p_n = 0.$$

(Integer roots must be divisors of p_n .) Then x - r is a factor of the left member of the equation. Divide out this factor, leaving an equation of degree one less than that of the original equation. Proceed in the same manner with the reduced equation.

Method II. Roots by approximation. (The "pinch" method.)

If for $\mathbf{x} = \mathbf{a}$ and $\mathbf{x} = \mathbf{b}$, the left member, P, of the equation has opposite signs, then a root of the equation lies between \mathbf{a} and \mathbf{b} . By this method the real roots may be obtained to any desired degree of accuracy. For example, let P have the signs given in the following tables:

$$\frac{\mathbf{x} \mid \ldots - 2}{\mathbf{P} \mid -} + + + -$$
; roots lie between -2 and -1 , between 1 and 2,

$$\frac{\mathbf{x} \mid 1 \dots 1.3}{\mathbf{P} \mid + + + - - -}$$
; a root lies between 1.4 and 1.5.

$$\frac{x \mid 1.46 \quad 1.465 \quad 1.47}{P \mid + \quad + \quad -}$$
; a root lies between 1.465 and 1.47

Therefore one root is x = 1.47 to the nearest second decimal.

10 Progressions

- (a) Arithmetic progression.
- \mathbf{a} , $\mathbf{a} + \mathbf{d}$, $\mathbf{a} + 2\mathbf{d}$, $\mathbf{a} + 3\mathbf{d}$, ..., where $\mathbf{d} =$ common difference.

The nth term, $t_n = a + (n - 1)d$.

The sum of n terms, $S_n = \frac{n}{2}[2a + (n-1)d] = \frac{n}{2}(a+t_n)$.

The arithmetic mean of a and b = $\frac{a+b}{2}$.

- (b) Geometric progression.
- a, ar, ar², ar³, . . . , where r = common ratio.

The nth term, $t_n = ar^{n-1}$.

The sum of **n** terms, $S_n = a \left(\frac{r^n - 1}{r - 1} \right) = \frac{rt_n - a}{r - r}$.

If $r^2 < 1$, S_n approaches a definite limit as **n** increases indefinitely, and

$$S_{\infty} = \frac{a}{1-r}$$

The geometric mean of a and $b = \sqrt{ab}$.

Interest, Annuities, Sinking Funds

11 Amount (A_n) of a sum of money or principal (P) placed at a rate of interest (r)* for n years.

At simple interest:

 $A_n = P(I + nr).$ $A_n = P(I + r)^n.$

At interest compounded annually:

At interest compounded q times a year: $A_n = P\left(1 + \frac{r}{a}\right)^{nq}$.

12 Present value (P) of an amount (An) due in n years at a rate of interest (r).*

At simple interest:

$$P = \frac{A_n}{1 + nr}$$

At interest compounded annually:

$$\mathbf{P}=\frac{\mathbf{A}_n}{(\mathbf{I}+\mathbf{r})^n}.$$

At interest compounded q times a year: $P = \frac{A_n}{\left(1 + \frac{r}{n}\right)^{nq}}$.

NOTE. The present value of an amount due in n years is the sum of money which placed at interest for n years will produce the given amount.

13 True discount (D) or the difference between the amount (A_n) due at the end of n years and its present value (P).

$$\mathbf{D}=\mathbf{A}_n-\mathbf{P}.$$

- 14 Annuity (N) that a principal (P), drawing interest at the rate r,* will give for a period of n years.
 - Expressed as a decimal.

Interest compounded annually: $N = P \frac{r(1+r)^n}{(1+r)^n-1}$.

Note. An annuity is a fixed sum paid at regular intervals.

15 Present value (P) of an annuity (N) to be paid out for n consecutive years, the interest rate being r.*

Interest compounded annually: $P = N \frac{(1+r)^n - 1}{r(1+r)^n}$.

16 Amount of a sinking fund (S) created by a fixed (end of the year) investment (N) placed annually at compound interest (r)* for a term of n years.

$$S = N \frac{(1+r)^n - 1}{r}.$$

17 Fixed investment (N) placed annually at compound interest $(r)^*$ for a term of n years to create a sinking fund (S).

$$N = S \frac{r}{(1+r)^n - 1}$$

TRIGONOMETRY

Definition of Angle

An angle is the amount of rotation (in a fixed plane) by which a straight line may be changed from one direction to any other direction. If the rotation is counter-clockwise the angle is said to be positive, if clockwise, negative.

Measure of Angle

A degree is 3 to of the plane angle about a point.

A radian is the angle subtended at the center of a circle by an arc equal in length to the radius.

18 Trigonometric Functions of an Angle

sine (sin)
$$\alpha$$
 = $\frac{y}{r}$.

cosine (cos) α = $\frac{x}{r}$.

tangent (tan) α = $\frac{y}{x}$.

cotangent (cot) α = $\frac{x}{y}$.

secant (sec) α = $\frac{r}{x}$.

cosecant (csc) α = $\frac{r}{y}$.

exsecant (exsec) α = sec α - r .

versine (vers) α = r - cos α . coversine (covers) α = r - sin α .

Note. x is positive when measured along OX, and negative, along OX'; y is positive when measured parallel to OY, and negative, parallel to OY'.

^{*} Expressed as a decimal.

19 Signs of the Functions

Quadrant	sin	cos	tan	cot	sec	csc
I II III IV	+ + -	+ - - +	+ - + -	+ - + -	+ - - +	+ + -

20 Functions of o°, 30°, 45°, 60°, 90°, 180°, 270°, 360°

	o°	30°	45°	60°	90°	180°	270°	360°
sin	0	<u>I</u> 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	I	0	-1	0
cos	I	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	<u>I</u>	o	-1	o	Ţ
tan	0	$\frac{\sqrt{3}}{3}$	I	$\sqrt{3}$	•	0	∞	0
cot	œ	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	∞	٥	œ
sec	1	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	∞	-r	∞	1
csc	8	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	1	∞	- I	8

21 Function of Angles in any Quadrant in Terms of Angles in First Quadrant

	– a	90°±a	180° ± a	270°± a	n (360)°±a
sin cos cot sec	-sin a +cos a -tan a -cot a +sec a -csc a	+cos a +sin a +cot a +tan a +csc a +sec a	∓sin a −cos a ±tan a ±cot a −sec a ∓csc a	-cos a ±sin a ∓cot a ∓tan a ±csc a -sec a	±sin a +cos a ±tan a ±cot a +sec a ±csc a

Note. In the last column, n = any integer.

22 Fundamental Relations Among the Functions

$$\sin \alpha = \frac{I}{\csc \alpha}; \qquad \cos \alpha = \frac{I}{\sec \alpha}; \qquad \tan \alpha = \frac{I}{\cot \alpha} = \frac{\sin \alpha}{\cos \alpha};$$

$$\csc \alpha = \frac{I}{\sin \alpha}; \qquad \sec \alpha = \frac{I}{\cos \alpha}; \qquad \cot \alpha = \frac{I}{\tan \alpha} = \frac{\cos \alpha}{\sin \alpha};$$

$$\sin^2 \alpha + \cos^2 \alpha = I; \sec^2 \alpha - \tan^2 \alpha = I; \csc^2 \alpha - \cot^2 \alpha = I.$$

23 Functions of Multiple Angles

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha;$$

 $\cos 2\alpha = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha = \cos^2 \alpha - \sin^2 \alpha.$
 $\sin 3\alpha = 3 \sin \alpha - 4 \sin^3 \alpha;$
 $\cos 3\alpha = 4 \cos^3 \alpha - 3 \cos \alpha.$
 $\sin 4\alpha = 4 \sin \alpha \cos \alpha - 8 \sin^3 \alpha \cos \alpha;$
 $\cos 4\alpha = 8 \cos^4 \alpha - 8 \cos^2 \alpha + 1.$
 $\sin n\alpha = 2 \sin (n - 1) \alpha \cos \alpha - \sin (n - 2) \alpha,$
 $\cos n\alpha = 2 \cos (n - 1) \dot{\alpha} \cos \alpha - \cos (n - 2) \alpha.$

24 Functions of Half Angles

$$\sin\frac{\alpha}{2} = \sqrt{\frac{1-\cos\alpha}{2}}; \cos\frac{1}{2}\alpha = \sqrt{\frac{1+\cos\alpha}{2}}.$$

$$\tan\frac{1}{2}\alpha = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha} = \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}.$$

25 Powers of Functions

$$sin^{2} \alpha = \frac{1}{2} (1 - \cos 2 \alpha); cos^{2} \alpha = \frac{1}{2} (1 + \cos 2 \alpha).$$

$$sin^{3} \alpha = \frac{1}{4} (3 \sin \alpha - \sin 3 \alpha); cos^{3} \alpha = \frac{1}{4} (\cos 3 \alpha + 3 \cos \alpha).$$

$$sin^{4} \alpha = \frac{1}{8} (\cos 4 \alpha - 4 \cos 2 \alpha + 3); cos^{4} \alpha = \frac{1}{8} (\cos 4 \alpha + 4 \cos 2 \alpha + 3)$$

$$sin^{n} \alpha = \frac{1}{(2\sqrt{-1})^{n}} \left(y - \frac{1}{y} \right)^{n}; cos^{n} \alpha = \frac{1}{(2)^{n}} \left(y + \frac{1}{y} \right)^{n}.$$

In the last two formulas, expand $\left(y \pm \frac{1}{y}\right)^n$ by 3 and then write $\left(y^k + \frac{1}{y^k}\right)$ = 2 cos kx and $\left(y^k - \frac{1}{y^k}\right) = 2\sqrt{-1} \sin kx$.

26 Functions of Sum or Difference of Two Angles

$$\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta.$$

$$\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta.$$

$$\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}.$$

27 Sums, Differences and Products of Two Functions

$$\begin{array}{ll} \sin\alpha\pm\sin\beta & = 2\sin\frac{1}{2}\left(\alpha\pm\beta\right)\cos\frac{1}{2}\left(\alpha\mp\beta\right).\\ \cos\alpha+\cos\beta & = 2\cos\frac{1}{2}\left(\alpha+\beta\right)\cos\frac{1}{2}\left(\alpha-\beta\right).\\ \cos\alpha-\cos\beta & = -2\sin\frac{1}{4}\left(\alpha+\beta\right)\sin\frac{1}{2}\left(\alpha-\beta\right). \end{array}$$

$$\tan \alpha \pm \tan \beta = \frac{\sin (\alpha \pm \beta)}{\cos \alpha \cos \beta}.$$

$$\sin^2 \alpha - \sin^2 \beta = \sin (\alpha + \beta) \sin (\alpha - \beta).$$

$$\cos^2 \alpha - \cos^2 \beta = -\sin (\alpha + \beta) \sin (\alpha - \beta).$$

$$\cos^2 \alpha - \sin^2 \beta = \cos (\alpha + \beta) \cos (\alpha - \beta).$$

$$\sin \alpha \sin \beta = \frac{1}{2} \cos (\alpha - \beta) - \frac{1}{2} \cos (\alpha + \beta).$$

$$\cos \alpha \cos \beta = \frac{1}{2} \cos (\alpha - \beta) + \frac{1}{2} \cos (\alpha + \beta).$$

$$\sin \alpha \cos \beta = \frac{1}{2} \sin (\alpha + \beta) + \frac{1}{2} \sin (\alpha - \beta).$$

28 Equivalent Expressions for sin a, cos a, and tan a

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \frac{\tan \alpha}{\sqrt{1 + \tan^2 \alpha}} = \frac{1}{\sqrt{1 + \cot^2 \alpha}} = \frac{\sqrt{\sec^2 \alpha - 1}}{\sec \alpha} = \frac{1}{\csc \alpha}$$

$$= \cos \alpha \tan \alpha = \frac{\cos \alpha}{\cot \alpha} = \frac{\tan \alpha}{\sec \alpha} = \frac{\sin 2\alpha}{2 \cos \alpha} = \sqrt{\frac{1}{2}} (1 - \cos 2\alpha)$$

$$= 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}.$$

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{1}{\sqrt{1 + \tan^2 \alpha}} = \frac{\cot \alpha}{\sqrt{1 + \cot^2 \alpha}} = \frac{1}{\sec \alpha} = \frac{\sqrt{\sec^2 \alpha - 1}}{\csc \alpha}$$

$$= \sin \alpha \cot \alpha = \frac{\sin \alpha}{\tan \alpha} = \frac{\cot \alpha}{\csc \alpha} = \frac{\sin 2\alpha}{2 \sin \alpha} = \sqrt{\frac{1}{2}} (1 + \cos 2\alpha)$$

$$= \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} = 1 - 2 \sin^2 \frac{\alpha}{2} = 2 \cos^2 \frac{\alpha}{2} - 1.$$

$$\tan \alpha = \frac{\sin \alpha}{\sqrt{1 - \sin^2 \alpha}} = \frac{\sqrt{1 - \cos^2 \alpha}}{\cos \alpha} = \frac{1}{\cot \alpha} = \sqrt{\sec^2 \alpha - 1} = \frac{1}{\sqrt{\csc^2 \alpha - 1}}$$

$$= \frac{\sin \alpha}{\cos \alpha} = \frac{\sec \alpha}{\csc \alpha} = \frac{\sin 2\alpha}{1 + \cos 2\alpha} = \frac{1 - \cos 2\alpha}{\sin 2\alpha} = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}.$$

$$= \frac{1}{1 - \cos^2 \alpha} = \frac{1}{1 -$$

29 Definitions of Inverse or Anti-functions

Sin⁻¹ a is defined as the angle whose sine is a. Sin⁻¹ a has an infinite number of values. If a is the value of \sin^{-1} a which lies between -90° and $+90^{\circ}\left(-\frac{\pi}{2}\text{ and }+\frac{\pi}{2}\text{ radians}\right)$, and if n is any integer,

$$\sin^{-1} a = (-1)^n \alpha + n \cdot 180^\circ = (-1)^n \alpha + n \pi$$
. [similarly for $\csc^{-1} a$]

Cos⁻¹ a is defined as the angle whose cosine is a. Cos⁻¹ a has an infinite number of values. If α is the value of cos⁻¹ a which lies between 0° and 180° (o and π radians), and if n is any integer,

$$\cos^{-1} a = \pm \alpha + n \cdot 360^{\circ} = \pm \alpha + 2 n \pi$$
. [similarly for $\sec^{-1} a$]

Tan⁻¹ a is defined as the angle whose tangent is a. Tan⁻¹ a has an infinite number of values. If α is the value of tan⁻¹ a which lies between 0° and 180° (o and π radians), and if n is any integer,

$$\tan^{-1} a = \alpha + n \cdot 180^{\circ} = \alpha + n \pi$$
. [similarly for $\cot^{-1} a$]

30 Some Relations Among Inverse Functions

$$\sin^{-1} a = \cos^{-1} \sqrt{1 - a^{2}} = \tan^{-1} \frac{a}{\sqrt{1 - a^{2}}} = \cot^{-1} \frac{\sqrt{1 - a^{2}}}{a}$$

$$= \sec^{-1} \frac{1}{\sqrt{1 - a^{2}}} = \csc^{-1} \frac{1}{a}.$$

$$\cos^{-1} a = \sin^{-1} \sqrt{1 - a^{2}} = \tan^{-1} \frac{\sqrt{1 - a^{2}}}{a} = \cot^{-1} \frac{a}{\sqrt{1 - a^{2}}}$$

$$= \sec^{-1} \frac{1}{a} = \csc^{-1} \frac{1}{\sqrt{1 - a^{2}}}.$$

$$\tan^{-1} a = \sin^{-1} \frac{a}{\sqrt{1 + a^{2}}} = \cos^{-1} \frac{1}{\sqrt{1 + a^{2}}} = \cot^{-1} \frac{1}{a} = \sec^{-1} \sqrt{1 + a^{2}}$$

$$= \csc^{-1} \frac{\sqrt{1 + a^{2}}}{a}.$$

$$\cot^{-1} a = \tan^{-1} \frac{1}{a}; \sec^{-1} a = \cos^{-1} \frac{1}{a}; \csc^{-1} a = \sin^{-1} \frac{1}{a}.$$

$$\text{vers}^{-1} a = \cos^{-1} (1 - a); \cot^{-1} a = \sin^{-1} (1 - a); \csc^{-1} a = \sec^{-1} (1 + a).$$

$$\sin^{-1} a + \sin^{-1} b = \sin^{-1} (a \sqrt{1 - b^{2}} \pm b \sqrt{1 - a^{2}}).$$

$$\cos^{-1} a \pm \cos^{-1} b = \cos^{-1} (ab \mp \sqrt{1 - a^{2}} \sqrt{1 - b^{2}}).$$

$$\tan^{-1} a \pm \tan^{-1} b = \tan^{-1} \frac{a \pm b}{1 \mp ab}.$$

$$\sin^{-1} a + \cos^{-1} a = 90^{\circ}; \tan^{-1} a + \cot^{-1} a = 90^{\circ}; \sec^{-1} a + \csc^{-1} a = 90^{\circ},$$
if $\sin^{-1} a$, $\tan^{-1} a$, $\csc^{-1} a$ lie between -90° and $+90^{\circ}$.
and $\cos^{-1} a$, $\cot^{-1} a$, $\sec^{-1} a$ lie between 0° and 180° .

31 Solution of Trigonometric Equations

By means of the relations expressed in 18 to 30 inclusive, reduce the given equation to an equation containing only a single function of a single angle. Solve the resulting equation by algebraic methods, 9, for the remaining function, and from this find the values of the angle, by 29 and table, page 278. Test all these values in the original equation and discard those which do not satisfy it.

Solution of Some Special Equations.

```
If \sin \alpha = \sin \beta, then \alpha = (-1)^n \beta + n \cdot 180^\circ. (n = any integer)

If \cos \alpha = \cos \beta, then \alpha = \pm \beta + 2 \cdot n \cdot 180^\circ.

If \tan \alpha = \tan \beta, then \alpha = \beta + n \cdot 180^\circ.

If \cos \alpha = \sin \beta, then \alpha = \pm \beta \mp 90^\circ + 2 \cdot n \cdot 180^\circ.

If \tan \alpha = \cot \beta, then \alpha = -\beta + 90^\circ + n \cdot 180^\circ.

If a \cos \alpha + b \sin \alpha = c, and a, b, c are any numbers, and c^2 \le a^2 + b^2

then \alpha = \tan^{-1} \frac{b}{\beta} + c95^{-1} \frac{c}{\sqrt{a^2 + b^2}}.
```

32 Properties of Plane Triangles

Notation. α , β , γ = angles; α , β , c = sides.

A = area; h_b = altitude on b; $s = \frac{1}{2}(a + b + c)$.

 \mathbf{r} = radius of inscribed circle; \mathbf{R} = radius of circumscribed circle.

$$\alpha + \beta + \gamma = 180^{\circ} = \pi$$
 radians

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}.$$

$$\frac{\mathbf{a} + \mathbf{b}}{\mathbf{a} - \mathbf{b}} = \frac{\tan \frac{1}{2} (\alpha + \beta)}{\tan \frac{1}{2} (\alpha - \beta)} \cdot *$$

$$a^2 = b^2 + c^2 - 2 bc \cos \alpha$$
, $a = b \cos \gamma + c \cos \beta$.

Fig. 32.

$$\cos\alpha = \frac{b^2 + c^2 - a^2}{2\ bc}, \quad \sin\alpha = \frac{2}{bc}\ \sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}.$$

$$\sin \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}, \cos \frac{\alpha}{2} = \sqrt{\frac{s(s-a)}{bc}},$$

$$\tan\frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \frac{r}{s-a}$$

$$h_b = c \sin \alpha^* = a \sin \gamma^* = \frac{2}{b} \sqrt{s (s-a)(s-b)(s-c)}.$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}} = (s-a) \tan \frac{a}{2}$$

$$R = \frac{a}{a \sin a} = \frac{abc}{4A}$$

$$A = \frac{1}{2} bh_b^* = \frac{1}{2} ab \sin \gamma^* = \frac{a^2 \sin \beta \sin \gamma^*}{2 \sin \alpha}^* = \sqrt{s (s-a)(s-b)(s-c)} = rs.$$

33 Solution of the Right Triangle

Given any two sides, or one side and any acute angle, a, to find the remaining parts.

$$\sin \alpha = \frac{a}{c}$$
, $\cos \alpha = \frac{b}{c}$, $\tan \alpha = \frac{a}{b}$, $\beta = 90^{\circ} - \alpha$.

$$a = \sqrt{(c+b)(c-b)} = c \sin \alpha = b \tan \alpha$$
.

$$b = \sqrt{(c + a)(c - a)} = c \cos a = \frac{a}{\tan a}$$

$$c = \frac{a}{\sin a} = \frac{b}{\cos a} = \sqrt{a^2 + b^2}.$$

$$A = \frac{1}{2} ab = \frac{a^2}{2 \tan \alpha} = \frac{b^2 \tan \alpha}{2} = \frac{c^2 \sin 2\alpha}{4}$$

Fig. 33.

* Two more formulas may be obtained by replacing a by b, b by c, c by a, a by β , β by γ , γ by α .

- 34. Solution of Oblique Triangles. (For numerical work, use tables on page 278.)
 - I. Given any two angles α and β , and any side c.

$$\gamma = 180^{\circ} - (\alpha + \beta); \ a = \frac{c \sin \alpha}{\sin \gamma}; \ b = \frac{c \sin \beta}{\sin \gamma}$$

II. Given any two sides a and c, and an angle opposite one of these, say a.

$$\sin \gamma = \frac{c \sin \alpha}{a}, \ \beta = 180^{\circ} - (\alpha + \gamma), \ b = \frac{a \sin \beta}{\sin \alpha}.$$

Note. γ may have two values, $\gamma_1 < 90^\circ$ and $\gamma_2 = 180^\circ - \gamma_1 > 90^\circ$. If $\alpha + \gamma_2 > 180^\circ$, use only γ_1 .

III. Given any two sides **b** and **c** and their included angle **a**. Use any one of the following sets of formulas:

(1)
$$\frac{1}{2}(\beta + \gamma) = 90^{\circ} - \frac{1}{2}\alpha$$
; $\tan \frac{1}{2}(\beta - \gamma) = \frac{b - c}{b + c} \tan \frac{1}{2}(\beta + \gamma)$;

$$\beta = \frac{1}{2}(\beta + \gamma) + \frac{1}{2}(\beta - \gamma); \quad \gamma = \frac{1}{2}(\beta + \gamma) - \frac{1}{2}(\beta - \gamma); \quad \alpha = \frac{b \sin \alpha}{\sin \beta}.$$

(2)
$$a = \sqrt{b^2 + c^2 - 2 bc \cos \alpha}$$
; $\sin \beta = \frac{b \sin \alpha}{a}$; $\gamma = 180^{\circ} - (\alpha + \beta)$.

(3)
$$\tan \gamma = \frac{c \sin \alpha}{b - c \cos \alpha}$$
; $\beta = 180^{\circ} - (\alpha + \gamma)$; $\alpha = \frac{c \sin \alpha}{\sin \gamma}$

Fig. 34 (III).

Fig. 34 (IV).

IV. Given the three sides a, b, and c. Use either of the following sets of formulas.

(1)
$$s = \frac{1}{2}(a + b + c)$$
, $r = \sqrt{\frac{(s - a)(s - b)(s - c)}{s}}$.
 $tan \frac{1}{2}\alpha = \frac{r}{s - a}$, $tan \frac{1}{2}\beta = \frac{r}{s - b}$, $tan \frac{1}{2}\gamma = \frac{r}{s - c}$.
(2) $cos \alpha = \frac{b^2 + c^2 - a^2}{2bc}$, $cos \beta = \frac{c^2 + a^2 - b^2}{2ca}$, $\gamma = 180^\circ - (\alpha + \beta)$.

MENSURATION: LENGTHS, AREAS, VOLUMES

Notation: a, b, c, d, s denote lengths, A denotes area, V denotes volume.

35 Right Triangle

$$A = \frac{1}{2}ab$$
. (For other formulas, see 33)

$$c = \sqrt{a^2 + b^2}$$
, $a = \sqrt{c^2 - b^2}$, $b = \sqrt{c^2 - a^2}$.

Fig. 35.

36 Oblique Triangle

 $A = \frac{1}{2}bh$. (For other formulas, see 32, 34)

Fig. 36.

37 Equilateral Triangle

$$A = \frac{1}{2} ah = \frac{1}{4} a^2 \sqrt{3}$$
.

$$\mathbf{r}_1 = \frac{\mathbf{a}}{2\sqrt{3}}$$

$$h = \frac{1}{2} a \sqrt{3}$$
.

$$\mathbf{r}_2 = \frac{\mathbf{a}}{\sqrt{3}}$$

$$A = a^2$$
; $d = a \sqrt{2}$.

Fig. 37.

$$A = a^{-}; \quad C = a \vee 2.$$

Fig. 38.

39 Rectangle

$$A = ab; \quad d = \sqrt{a^2 + b^2}.$$

FIG. 39.

40 Parallelogram (opposite sides parallel) $A = ah = ab \sin \alpha$.

$$\mathbf{d}_1 = \sqrt{\mathbf{a}^2 + \mathbf{b}^2 - 2 \operatorname{ab} \cos \alpha};$$

$$\mathbf{d}_2 = \sqrt{\mathbf{a}^2 + \mathbf{b}^2 + 2 \operatorname{ab} \cos \alpha}.$$

Fig. 40.

41 Trapezoid (one pair of opposite sides parallel)

$$A = \frac{1}{2} h (a + b).$$

Fig. 41.

42 Isosceles Trapezoid (non-parallel sides equal)

$$A = \frac{1}{2}h(a+b) = \frac{1}{2}c\sin\alpha(a+b)$$

$$= c\sin\alpha(a-c\cos\alpha) = c\sin\alpha(b+c\cos\alpha).$$

43 Trapezium (no sides parallel) $A = \frac{1}{2} (ah_1 + bh_2) = \text{sum of areas of 2 triangles.}$

Fig. 43.

44 Regular Polygon of n Sides { all sides equal } all angles equal }

$$\beta = \frac{n-2}{n} \ 180^{\circ} = \frac{n-2}{n} \pi \text{ radians.}$$

$$\alpha = \frac{360^{\circ}}{n} = \frac{2 \pi}{n}$$
 radians.

FIG. 44.

n	a	r	R		A
3	$2r\sqrt{3} = R\sqrt{3}$	$\frac{1}{6}$ a $\sqrt{3}$	$\frac{1}{3}$ a $\sqrt{3}$	$\frac{1}{4}$ a ² $\sqrt{3}$	$= 3 \mathbf{r}^2 \sqrt{3}$
	$2r = R\sqrt{2}$		$\frac{1}{2}$ a $\sqrt{2}$	$\begin{vmatrix} a^2 \\ \frac{3}{2} a^2 \sqrt{3} \end{vmatrix}$	$= \frac{3}{4} R^{2} \sqrt{3}$ $= 4 r^{2} = 2 R^{2}$ $= 2 r^{2} \sqrt{3}$
1	$\frac{2}{3}r\sqrt{3} = R$ $2r(\sqrt{2} - 1)$	$\frac{1}{2}$ a $\sqrt{3}$			$= 2 r^{2} \sqrt{3}$ $= \frac{3}{2} R^{2} \sqrt{3}$ $= 8 r^{2} (\sqrt{2} - 1)$
	$= R \sqrt{2 - \sqrt{2}}$				$=2\mathbb{R}^2\sqrt{2}$
n	$2 r \tan \frac{\alpha}{2}$ $= 2 R \sin \frac{\alpha}{2}$	$\frac{a}{2}\cot\frac{a}{2}$	a csc c c c c c c c c c c c c c c c c c	$\frac{\text{na}^2}{4}\cot\frac{\alpha}{2}$	$= nr^2 \tan \frac{\alpha}{2}$ $= \frac{nR^2}{2} \sin \alpha$
	= 2 R sin - 2				$=\frac{1}{2}\sin\alpha$

45 Circle
$$\{C = \text{circumference} \\ \{a = \text{central angle in radians} \}$$

$$C = \pi D = 2 \pi R.$$

$$c = R\alpha = \frac{1}{2}D\alpha = D\cos^{-1}\frac{d}{R} = D\tan^{-1}\frac{1}{2d}$$

$$l=2\;\sqrt{R^2-d^2}=2\;R\;sin\frac{\alpha}{2}=2\;d\;tan\frac{\alpha}{2}=2\;d\;tan\frac{c}{D}.$$

$$d = \frac{1}{2} \sqrt{4 R^2 - l^2} = \frac{1}{2} \sqrt{D^2 - l^2} = R \cos \frac{\alpha}{2} = \frac{1}{2} l \cot \frac{\alpha}{2} = \frac{1}{2} l \cot \frac{C}{D}.$$

$$h = R - d$$
.

$$a = \frac{c}{R} = \frac{2 c}{D} = 2 \cos^{-1} \frac{d}{R} = 2 \tan^{-1} \frac{1}{2 d} = 2 \sin^{-1} \frac{1}{D}$$

$$A_{\text{(circle)}} = \pi R^2 = \frac{1}{4} \pi D^2 = \frac{1}{2} RC = \frac{1}{4} DC.$$

$$A(sector) = \frac{1}{2}Rc = \frac{1}{2}R^2a = \frac{1}{8}D^2a$$
.

$$\begin{aligned} \mathbf{A}_{(\text{segment})} &= \mathbf{A}_{(\text{sector})} - \mathbf{A}_{(\text{triangle})} = \frac{1}{2} \, \mathbf{R}^2 \, (\alpha - \sin \alpha) = \frac{1}{2} \, \mathbf{R} \left(\mathbf{c} - \mathbf{R} \sin \frac{\mathbf{c}}{\mathbf{R}} \right) \\ &= \mathbf{R}^2 \sin^{-1} \frac{1}{2 \, \mathbf{R}} - \frac{1}{4} \, \mathbf{1} \, \sqrt{4 \, \mathbf{R}^2 - \mathbf{l}^2} = \mathbf{R}^2 \cos^{-1} \frac{\mathbf{d}}{\mathbf{R}} - \mathbf{d} \, \sqrt{\mathbf{R}^2 - \mathbf{d}^2} \\ &= \mathbf{R}^2 \cos^{-1} \frac{\mathbf{R} - \mathbf{h}}{\mathbf{R}} - (\mathbf{R} - \mathbf{h}) \sqrt{2 \, \mathbf{R} \mathbf{h} - \mathbf{h}^2}. \end{aligned}$$

46 Ellipse * A =
$$\pi$$
ab. Perimeter (s) =
$$\pi(a+b)\left[1+\frac{1}{4}\left(\frac{a-b}{a+b}\right)^2+\frac{1}{64}\left(\frac{a-b}{a+b}\right)^4+\frac{1}{256}\left(\frac{a-b}{a+b}\right)^6+\cdots\right].$$
 Fig. 46.
$$\approx \pi \frac{a+b}{4}\left[3\left(1+\lambda\right)+\frac{1}{1-\lambda}\right] \quad \lambda = \left[\frac{a-b}{2\left(a+b\right)}\right]^2$$

47 Parabola * A = i ld.

Length of arc (s) =
$$\frac{1}{2}\sqrt{16\,d^2+l^2}+\frac{l^2}{8\,d}\ln\left(\frac{4\,d+\sqrt{16\,d^2+l^2}}{l}\right)$$

= $l\left[1+\frac{2}{3}\left(\frac{2\,d}{l}\right)^2-\frac{2}{5}\left(\frac{2\,d}{l}\right)^4+\cdots\right].$
Height of segment (d₁) = $\frac{d}{l^2}(l^2-l_l^2).$
Width of segment (l₁) = $l\sqrt{\frac{d-d_l}{d}}$.

49 Catenary *

Length of arc (s) = $1\left[1 + \frac{3}{3}\left(\frac{2}{1}\right)^2\right]$ approximately, if **d** is small in comparison with 1.

50 Area by Approximation

Let $y_0, y_1, y_2, \ldots, y_n$ be the measured lengths of a series of equidistant parallel chords, and let h be their distance apart, then the area enclosed by any boundary is given approximately by one of the following rules.

^{*} For definition and equation, see Analytic Geometry, pp. 22-27.

$$A_{T} = h \left[\frac{1}{2} (y_{0} + y_{n}) + y_{1} + y_{2} + \dots + y_{n-1} \right]$$
(Trapezoidal Rule)

$$\mathbf{A}_{D} = \mathbf{h} [0.4 (\mathbf{y}_{0} + \mathbf{y}_{n}) + 1.1 (\mathbf{y}_{1} + \mathbf{y}_{n-1}) + \mathbf{y}_{2} + \mathbf{y}_{3} + \ldots + \mathbf{y}_{n-2}]$$

(Durand's Rule)

 $A_8 = \frac{1}{3} h [(y_0 + y_n) + 4 (y_1 + y_2 + \dots + y_{n-1}) + 2 (y_2 + y_4 + \dots + y_{n-2})]$ (Simpson's Rule, where n is even).

The larger the value of n, the greater is the accuracy of approximation. In general, for the same number of chords, A_8 gives the most accurate, A_7 , the least accurate approximation.

51 Cube

$$V = a^3$$
; $d = a\sqrt{3}$.
Total surface = $6a^2$.

Fig. 51.

52 Rectangular Parallelopiped

V = abc;
$$d = \sqrt{a^2 + b^2 + c^2}$$
.
Total surface = 2 (ab + bc + ca).

Fig. 52.

53 Prism or Cylinder

V = (area of base) × (altitude). Lateral area = (perimeter of right section) × (lateral edge).

Fig. 53.

54 Pyramid or Cone

 $V = \frac{1}{3}$ (area of base) \times (altitude). Lateral area of regular figure = $\frac{1}{2}$ (perimeter of base) \times (slant height).

Fig. 54.

55 Frustum of Pyramid or Cone

 $V = \frac{1}{3} (A_1 + A_2 + \sqrt{A_1 \times A_2}) h$, where A_1 and A_2 are areas of bases, and h is altitude.

Lateral area of regular figure = ½ (sum of perimeters of bases) × (slant height).

Fig. 55.

56 Prismatoid (bases are in parallel planes, lateral faces are triangles or trapezoids)

$$V = \frac{1}{4} (A_1 + A_2 + 4 A_m) h$$

where A_1 , A_2 are areas of bases, A_m is area of mid-section, and h is altitude.

Fig. 56.

57 Sphere

$$\begin{array}{lll} A({\rm sphere}) & = 4 \; \pi R^2 = \pi D^2. \\ A({\rm zone}) & = 2 \; \pi R h = \pi D h. \\ V({\rm sphere}) & = \frac{4}{8} \; \pi R^3 = \frac{1}{6} \; \pi D^3. \\ V({\rm spherical \ sector}) & = \frac{2}{3} \; \pi R^2 h = \frac{1}{6} \; \pi D^2 h. \\ \end{array}$$

V(spherical segment of one base)

$$= \frac{1}{6} \pi h_1 (3 r_1^2 + h_1^2) = \frac{1}{3} \pi h_1^2 (3 R - h_1).$$

V(spherical segment of two bases) = $\frac{1}{6} \pi h (3 r_1^2 + 3 r_2^2 + h^2)$.

Fig. 57.

58 Solid Angle (ψ) , at any point (P) subtended by any surface (S), is equal to the portion (A) of the surface of a sphere of unit radius which is cut out by a conical surface with vertex at P and the perimeter of S for base.

The unit solid angle (ψ) is called a steradian.

The total solid angle about a point = 4π steradians.

Fig. 58.

59 Ellipsoid

 $V = \frac{4}{8} \pi abc.$

Fig. 50.

60 Paraboloidal segment

V(segment of one base) = $\frac{1}{2} \pi r_1^2 h$. V(segment of two bases) = $\frac{1}{2} \pi d (r_1^2 + r_2^2)$.

FIG. 60.

61 Torus

$$V = 2 \pi^2 R r^2$$
.
Surface (S) = $4 \pi^2 R r$.

Fig. 61.

62 Solid (V) or Surface (S) of Revolution, generated by revolving any plane area (A) or arc (s) about an axis in its plane, and not crossing the area or arc.

$$V = 2 \pi RA$$
; $S = 2 \pi Rs$,

where R = distance of center of gravity (G) of area or arc from axis.

FIG. 62.

ANALYTIC GEOMETRY

I. Plane

63 Rectangular Coördinates.

Let two perpendicular lines, X'X (x-axis) and YY (y-axis) meet in a point O (origin). The position of any point P(x, y) is fixed by the distances x (abscissa) and y (ordinate) from Y'Y and X'X, respectively, to P.

Fig. 63, 64.

x is + to the right and - to the left of Y'Y, y is + above and - be-Note. low X'X.

64 Polar Coördinates. (Fig. 64)

Let O (origin or pole) be a point in the plane and OX (initial line) be any line through O. The position of any point $P(r, \theta)$ is fixed by the distance r (radius vector) from O to the point and the angle θ (vectorial angle) measured from OX to OP.

Note. \mathbf{r} is + measured along terminal side of θ , \mathbf{r} is - measured along terminal side of 0 produced; 0 is + measured counter-clockwise, 0 is - measured clockwise.

65 Relations connecting Rectangular and Polar Coördinates $x = r \cos \theta$, $y = r \sin \theta$.

$$r = \sqrt{x^2 + y^2}$$
, $\theta = \tan^{-1}\frac{y}{x}$, $\sin \theta = \frac{y}{\sqrt{x^2 + y^2}}$, $\cos \theta = \frac{x}{\sqrt{x^2 + y^2}}$, $\tan \theta = \frac{y}{x}$.

66 Points and Slopes. (Fig. 66)

Let P_1 (x_1 , y_1) and P_2 (x_2 , y_2) be any two points, and let α be the angle from OX to P_1P_2 , measured counter-clockwise.

$$\begin{split} P_1 P_2 &= d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}. \\ \text{Mid-point of } P_1 P_2 \text{ is } \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right). \end{split}$$

Point which divides P1P2 in the ratio m1: m2 is

$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right)$$

Slope of
$$P_1P_2 = \tan \alpha = m = \frac{y_2 - y_1}{x_2 - x_1}$$

Two lines of slopes m_1 and m_2 are perpendicular if $m_2 = -\frac{1}{m_1}$.

67 Locus and Equation

The collection of all points which satisfy a given condition is called the locus of that condition; the condition expressed by means of the variable coördinates of any point on the locus is called the equation of the locus.

The locus may be represented by equations of three kinds:

Rectangular equation involves the rectangular coördinates (x, y).

Polar equation involves the polar coördinates (r, θ) .

Parametric equations express x and y or r and θ in terms of a third independent variable called a parameter.

The following equations are given in the system in which they are most simply expressed; sometimes several forms of the equation in one or more systems are given.

$$Ax + By + C = o [-A \div B = slope]$$

 $y = mx + b$. $[m = slope, b = intercept on OY]$
 $y - y_1 = m (x - x_1)$. $[m = slope, P_1 (x_1, y_1) is$
a known point on line]

$$\mathbf{d} = \frac{\mathbf{A}\mathbf{x}_1 + \mathbf{B}\mathbf{y}_2 + \mathbf{C}}{\pm \sqrt{\mathbf{A}^2 + \mathbf{B}^2}} \cdot [\mathbf{d} = \text{distance from a}]$$

point P_2 (x_2, y_2) to the line Ax + By + C = 0

Fig. 66.

69 Circle. Locus of a point at a constant distance (radius) from a fixed point C (center). [For mensuration of circle, see 45]

(1)
$$\begin{cases} (x-h)^2 + (y-k)^2 = a^2. & C(h, k), rad. = a. \\ r^2 + b^2 - 2 \operatorname{br} \cos(\theta - \beta) = a^2. & C(b, \beta), rad. = a. \end{cases}$$

(2)
$$\begin{cases} x^2 + y^2 = 2 \text{ ax.} \\ r = 2 \text{ a cos } \theta. \end{cases}$$

C(a, o), rad. = a.C(a, o), rad. = a.

$$(3) \begin{cases} \mathbf{x}^2 + \mathbf{y}^2 = 2 \mathbf{a} \\ \mathbf{r} = 2 \mathbf{a} \sin \theta. \end{cases}$$

C (o, a), rad. = a.
C
$$\left(a, \frac{\pi}{2}\right)$$
, rad. = a.

Fig. 69.

$$(4) \begin{cases} x^2 + y^2 = a^2, \\ r = a, \\ x = a \cos \phi, y = a \sin \phi. \end{cases}$$

Locus of a point whose distance from a fixed point (focus) is in a constant ratio, e (called eccentricity), to its distance from a fixed straight line (directrix). [Fig. 70]

$$\begin{cases} \mathbf{x}^2 + \mathbf{y}^2 = \mathbf{e}^2 (\mathbf{d} + \mathbf{x})^2, & [\mathbf{d} = \text{distance from focus} \\ \mathbf{r} = \frac{\mathbf{d}\mathbf{e}}{1 - \mathbf{e}\cos\theta}, & \text{to directrix} \end{cases}$$

Fig. 70.

71 Parabola. Conic where e = 1. [For mensuration of parabola, see 47]

Fig. 71 (2).

Distance from vertex to focus = $VF = \frac{1}{2} a$. Latus rectum = LR = a.

72 Ellipse. Conic where e < 1. [For mensuration of ellipse, see 46]

$$\begin{cases} \frac{(\mathbf{x} - \mathbf{h})^2}{a^2} + \frac{(\mathbf{y} - \mathbf{k})^2}{b^2} = 1. & \text{Center (h, k), axes } || OX, OY. \\ \frac{\mathbf{x}^2}{a^2} + \frac{\mathbf{y}^2}{b^2} = 1. & \text{Center (o, o), axes along OX, OY.} \end{cases}$$

	a > b, Fig. 72 (1)	b>a, Fig. 72 (2)
Major axis	2 a	2 b
Minor axis		2 a
Distance from center to either focus	$\sqrt{a^2-b^2}$	$\sqrt{b^2-a^2}$
Latus rectum	$\frac{2 b^2}{a}$	2 a ²
Eccentricity, e	$\frac{\sqrt{a^2-b^2}}{a}$	$\frac{\sqrt{b^2-a^2}}{b}$
Sum of distances of any point from the foci, PF' + PF	2 a	2 b

73 Hyperbola. Conic where e > r.

Fig. 73 (1).

FIG. 73 (2).

Fig. 73 (3).

$$(1) \begin{cases} \frac{(\mathbf{x} - \mathbf{h})^2}{a^2} - \frac{(\mathbf{y} - \mathbf{k})^2}{b^2} = \mathbf{I}. & C (h, \mathbf{k}), \text{ transverse axis } \| \, \text{OX.} \, \, [\text{Fig. 73 (1)}] \\ \frac{x^2}{a^2} - \frac{y^2}{b^2} = \mathbf{I}. & C (o, o), \, \text{ transverse axis along OX.} \\ \\ (2) \begin{cases} \frac{(\mathbf{y} - \mathbf{k})^2}{a^2} - \frac{(\mathbf{x} - \mathbf{h})^2}{b^2} = \mathbf{I}. & C (h, \mathbf{k}), \, \text{ transverse axis } \| \, \text{OY.} \, \, \, [\text{Fig. 73 (2)}] \\ \\ \frac{y^2}{a^2} - \frac{x^2}{b^2} = \mathbf{I}. & C (o, o), \, \text{ transverse along OY.} \end{cases}$$

(2)
$$\begin{cases} \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1. & C(h, k), \text{ transverse axis } || OY. \text{ [Fig. 73 (2)]} \\ \frac{y^2}{a^2} - \frac{x^2}{a^2} = 1. & C(0, 0), \text{ transverse along OY.} \end{cases}$$

Transverse axis = 2 a; conjugate axis = 2 b. Distance from center to either focus = $\sqrt{a^2 + b^2}$.

$$\begin{array}{ll} \mbox{Latus rectum} & = \frac{2 \ b^2}{a} \cdot \\ \mbox{Eccentricity, e} & = \ \frac{\sqrt{a^2 + b^2}}{a} \cdot \end{array}$$

Difference of distances of any point from the foci = 2 a.

Asymptotes are two lines through the center to which the branches of the hyperbola approach indefinitely near; their slopes are $\pm \frac{b}{a}$ [Fig. 73 (1)] or $\pm \frac{a}{b}$ [Fig. 73 (2)].

Rectangular (equilateral) hyperbola, b = a. The asymptotes are perpendicular.

(3)
$$\begin{cases} (x - h) (y - k) = \pm \frac{a^2}{2} \cdot \text{ Center } (h, k), \text{ asymptotes } || OX, OY. \\ xy = \pm \frac{a^2}{2} \cdot \text{ Center } (o, o), \text{ asymptotes along } OX, OY. \end{cases}$$

Where the + sign gives the smooth curve in Fig. 73 (3).

Where the - sign gives the dotted curve in Fig. 73 (3).

74 Cubical [Fig. 74 (1)] and Semicubical [Fig. 74 (2)] Parabolas

75 Witch. [Fig. 75]

Fig. 74.

(1)
$$y = ax^3$$
.

(2)
$$y^2 = ax^3$$
.

FIG. 75.

$$y = \frac{8 a^3}{x^2 + 4 a^2}$$

77 Strophoid. [Fig. 77]

FIG. 76.

$$y^2 = \frac{x^3}{2 \cdot a - x}$$

Ero en

$$y^2 = x^2 \left(\frac{a - x}{a + x} \right).$$

78 Sine Wave. [Fig. 78]

Fig. 78.

$$(y = a \sin (bx + c).$$

$$y = a \cos(bx + c') = a \sin(bx + c)$$
, where $c = c' + \frac{\pi}{2}$.

 $y = m \sin bx + n \cos bx = a \sin (bx + c)$, where $a = \sqrt{m^2 + n^2}$, $c = \tan^{-1} \frac{n}{m}$.

The curve consists of a succession of waves, where

a = amplitude = maximum height of wave.

 $\frac{2\pi}{b}$ = wave length = distance from any point on wave to the corresponding point on the next wave.

 $\mathbf{x} = -\frac{\mathbf{c}}{\mathbf{b}}$ (called the **phase**) marks a point on **OX** from which the positive half of the wave starts.

79 Tangent [Fig. 79 (1)] and Cotangent [Fig. 79 (2)] Curves

80 Secant [Fig. 80 (1)] and Cosecant [Fig. 80 (2)] Curves

(1) $y = a \tan bx$.

(1) $y = a \sec bx$.

(2) $y = a \cot bx$.

(2) $y = a \csc bx$.

81 Exponential or Logarithmic Curves. [Fig. 81]

(1)
$$y = ab^x$$
 or $x = \log_b \frac{y}{a}$.

(2)
$$y = ab^{-x}$$
 or $x = -\log_b \frac{y}{a}$.

(3)
$$\mathbf{x} = \mathbf{a}\mathbf{b}^{\nu} \text{ or } \mathbf{y} = \log_b \frac{\mathbf{x}}{\mathbf{a}}$$

(4)
$$\mathbf{x} = \mathbf{ab}^{-y}$$
 or $\mathbf{y} = -\log_b \frac{\mathbf{x}}{\mathbf{a}}$.

The equations $\mathbf{y} = \mathbf{a}\mathbf{e}^{\pm nx}$ and $\mathbf{x} = \mathbf{a}\mathbf{e}^{\pm ny}$ are special cases of above.

Fig. 81.

82 Oscillatory Wave of Decreasing Amplitude.

FIG. 82.

$$y = e^{-ax} \sin bx$$
.

Note. The curve oscillates between $y = e^{-ax}$ and $y = -e^{-ax}$.

83 Catenary. Curve made by a chain or cord of uniform weight suspended freely between two points at the same level. [Fig. 83.] [For mensuration of catenary, see 49].

$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right).$$

Frg. 83.

84 Cycloid. Curve described by a point on a circle which rolls along a fixed straight line. [Fig. 84]

$$\begin{cases} \mathbf{x} = \mathbf{a} (\mathbf{\phi} - \sin \mathbf{\phi}). \\ \mathbf{y} = \mathbf{a} (\mathbf{I} - \cos \mathbf{\phi}). \end{cases}$$

Fig. 84.

85 Epicycloid. Curve described by a point on a circle which rolls along the outside of a fixed circle. [Fig. 85]

$$\begin{cases} x = (a+b)\cos\phi - b\cos\left(\frac{a+b}{b}\phi\right) \\ y = (a+b)\sin\phi - b\sin\left(\frac{a+b}{b}\phi\right) \end{cases}$$

Fig. 85.

86 Cardioid. Epicycloid with radii of fixed and rolling circles equal.

$$\mathbf{r} = \mathbf{a} \ (\mathbf{I} + \cos \theta)$$
. [Fig. 86]
 $\mathbf{r} = \mathbf{a} \ (\mathbf{I} + \sin \theta)$. [Fig. 86 rotated through $+90^{\circ}$]
 $\mathbf{r} = \mathbf{a} \ (\mathbf{I} - \cos \theta)$. [Fig. 86 rotated through $+180^{\circ}$]
 $\mathbf{r} = \mathbf{a} \ (\mathbf{I} - \sin \theta)$. [Fig. 86 rotated through -90°]

Fig. 86.

87 Hypocycloid. Curve described by a point on a circle which rolls along the inside of a fixed circle.

$$\begin{cases} \mathbf{x} = (\mathbf{a} - \mathbf{b})\cos\phi + \mathbf{b}\cos\left(\frac{\mathbf{a} - \mathbf{b}}{\mathbf{b}}\phi\right) \\ \mathbf{y} = (\mathbf{a} - \mathbf{b})\sin\phi - \mathbf{b}\sin\left(\frac{\mathbf{a} - \mathbf{b}}{\mathbf{b}}\phi\right) \end{cases}$$

Fig. 88.

88 Hypocycloid of four cusps: radius of fixed circle equals four times the radius of the rolling circle. [Fig. 88]

$$x^{2} + y^{2} = a^{2}$$
.
 $x = a \cos^{3} \phi$, $y = a \sin^{3} \phi$.

89 Involute of the Circle. Curve described by the end of a string which is kept taut while being unwound from a circle. [Fig. 89]

$$\begin{cases} x = a \cos \phi + a \phi \sin \phi. \\ y = a \sin \phi - a \phi \cos \phi. \end{cases}$$

Fig. 89.

Q0 Lemniscate. Locus of a point which moves so that the product of its distances from two fixed points (foci) is constant, or $\mathbf{PF'} \times \mathbf{PF} = \mathbf{a^2}$.

$$r^2 = 2 a^2 \cos 2 \theta$$
. [Fig. 90]

 $\mathbf{r}^2 = 2 \mathbf{a}^2 \sin 2 \theta$. [Fig. 90 turned through 45°]

Fig. 90.

91 N-leaved Rose

- (1) $\mathbf{r} = \mathbf{a} \sin n\theta$. [Fig. 91 (1)]
- (2) $r = a \cos n\theta$. [Fig. 91 (2)]

There are n leaves if n is odd, n leaves if n is even.

Figs. 91 (1), 91 (2).

92 Spirals. [Fig. 92]

Fig. 92 (1).

(1) Archimedian.

r = a0.

Fig. 92 (2).

(2) Hyperbolic.

r = a ·

Fig. 92 (3).

(3) Logarithmic.

 $r = e^{i\theta}$.

II. Solid

93 Coördinates

Let three mutually perpendicular planes, XOY, YOZ, ZOX (coördinate planes) meet in a point O (origin).

Rectangular system. The position of a point P (x, y, z) in space is fixed by its three distances x, y, and z from the three coördinate planes.

Cylindrical system. The position of any point $P(r, \theta, z)$ is fixed by z, its distance from the **XOY** plane, and by $(\mathbf{r}, \boldsymbol{\theta})$, the polar coördinates of the projection of P in the XOY plane.

Relations connecting rectangular and cylindrical coördinates are the same as those given in 65.

Fig. 93.

94 Points, Lines, and Planes

Distance (d) between two points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$,

$$\mathbf{d} = \sqrt{(\mathbf{x}_2 - \mathbf{x}_1)^2 + (\mathbf{y}_2 - \mathbf{y}_1)^2 + (\mathbf{z}_2 - \mathbf{z}_1)^2}.$$

Direction cosines of a line (cosines of the angles α , β , γ which the line or any parallel line makes with the coördinate axes) are related by

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1.$$

If $\cos \alpha : \cos \beta : \cos \gamma = a : b : c$,

then
$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

Direction cosines of the line joining $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$,

$$\cos \alpha : \cos \beta : \cos \gamma = x_2 - x_1 : y_2 - y_1 : z_2 - z_1.$$

Angle (0) between two lines, whose direction angles are α_1 , β_1 , γ_1 and α_2 , β_2 , γ_2 , $\cos \theta = \cos \alpha_1 \cos \alpha_2 + \cos \beta_1 \cos \beta_2 + \cos \gamma_1 \cos \gamma_2$

Equation of a plane is of the first degree in x, y, and z,

$$Ax + By + Cz + D = o,$$

where A, B, C are proportional to the direction cosines of a normal or perpendicular to the plane.

Angle between two planes is the angle between their normals.

Equations of a straight line are two equations of the first degree,

$$A_1x + B_1y + C_1z + D_1 = 0$$
, $A_2x + B_2y + C_2z + D_2 = 0$.

Equations of a straight line through the point P_1 (x_1 , y_1 , z_1) with direction cosines proportional to a, b, and c,

$$\frac{\mathbf{x}-\mathbf{x}_1}{\mathbf{a}}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{b}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{c}}.$$

95 Cylindrical Surfaces

The locus in space of an equation containing only two of the coördinates x, y, z is a cylindrical surface with its elements perpendicular to the plane of the two coördinates. Considered as a plane geometry equation, the equation represents the curve of intersection of the cylinder with the plane of the two coördinates.

Circular cylinders. [Fig. 95] [For mensuration see 53]

(1)
$$\begin{cases} x^2 + y^2 = a^2, \\ r = a. \end{cases}$$
 (2)
$$\begin{cases} x^2 + y^2 = 2 \text{ ax.} \\ r = 2 \text{ a cos } \theta. \end{cases}$$

Parabolic cylinder (3) $y^2 = ax$.

96 Surfaces of Revolution

Equation of the surface of revolution obtained by revolving the plane curve y = f(x) or z = f(x) about OX,

$$y^2 + z^2 = [f(x)]^2$$
.

Sphere (revolve circle $x^2 + y^2 = a^2$ about OX)

$$x^2 + y^2 + z^2 = a^2$$
. [For mensuration of sphere, see 57]

Spheroid (revolve ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \tau$ about **OX**)

$$\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1 \text{ (prolate if } a > b \text{, oblate if } b > a).$$
[For mensuration of ellipsoid, see 59]

Cone (revolve line y = mx about OX)

 $y^2 + z^2 = m^2x^2$. [For mensuration of cone, see 54]

Paraboloid (revolve parabola $y^2 = ax$ about OX)

 $y^2 + z^2 = ax$. [For mensuration of paraboloid, see 60]

97 Space Curves

A curve in space may be represented by two equations connecting the coördinates x, y, z of any point on the curve, or by three equations expressing the coördinates x, y, z in terms of a fourth variable or parameter.

Helix. Curve generated by a point moving on a cylinder so that the distance traversed parallel to the axis of the cylinder is proportional to the angle of rotation about the axis.

$$x = a \cos \theta$$
, $y = a \sin \theta$, $z = k\theta$, [Fig. 97]

where a = radius of cylinder, $2 \pi k = pitch$.

Fig. 97.

DIFFERENTIAL CALCULUS

98 Definition of Function. Notation

A variable y is said to be a function of another variable x, if, when x is given y is determined.

The symbols f(x), F(x), $\phi(x)$, etc., represent various functions of x. The symbol f(a) represents the value of f(x) when x = a.

99 Definition of Derivative. Notation

Let y = f(x). If Δx is any increment (increase or decrease) given to x, and Δy is the corresponding increment in y, then the derivative of y with respect to x is the limit of the ratio of Δy to Δx as Δx approaches zero, that is

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x).$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dx} f'(x) = f''(x). \qquad [2d \text{ derivative}]$$

$$\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2}\right) = \frac{d}{dx} f''(x) = f'''(x). \qquad [3d \text{ derivative}]$$

$$\frac{d^ny}{dx^n} = \frac{d}{dx} \left(\frac{d^{n-1}y}{dx^{n-1}}\right) = \frac{d}{dx} f^{(n-1)}(x) = f^{(n)}(x). \qquad [nth \text{ derivative}]$$

The symbols f'(a), f''(a), ..., $f^{(n)}(a)$ represent the values of f'(x), f''(x)..., $f^{(n)}(x)$, respectively, when x = a.

100 Some Relations Among Derivatives

If
$$\mathbf{x} = \mathbf{f}(\mathbf{y})$$
, then $\frac{d\mathbf{y}}{d\mathbf{x}} = \mathbf{i} \div \frac{d\mathbf{x}}{d\mathbf{y}}$
If $\mathbf{x} = \mathbf{f}(\mathbf{t})$, and $\mathbf{y} = \mathbf{F}(\mathbf{t})$, then $\frac{d\mathbf{y}}{d\mathbf{x}} = \frac{d\mathbf{y}}{d\mathbf{t}} \div \frac{d\mathbf{x}}{d\mathbf{t}}$
If $\mathbf{y} = \mathbf{f}(\mathbf{u})$, and $\mathbf{u} = \mathbf{F}(\mathbf{x})$, then $\frac{d\mathbf{y}}{d\mathbf{x}} = \frac{d\mathbf{y}}{d\mathbf{u}} \cdot \frac{d\mathbf{u}}{d\mathbf{x}}$

101 Table of Derivatives

Functions of x are represented by u and v, constants are represented by a n, and e.

$$\frac{d}{dx}(x) = 1.$$

$$\frac{d}{dx}(a) = 0.$$

$$\frac{d}{dx}(u \pm v \pm \cdots) = \frac{du}{dx} \pm \frac{dv}{dx} \pm \cdots.$$

$$\frac{d}{dx}(au) = a\frac{du}{dx}.$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

$$\frac{d}{dx}\begin{pmatrix} u \\ v \end{pmatrix} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}.$$

$$\frac{d}{dx} \sin u = \cos u \frac{du}{dx}.$$

$$\frac{d}{dx} \cos u = -\sin u \frac{du}{dx}.$$

$$\frac{d}{dx} \log_{\alpha} u = \frac{\log_{\alpha} e}{u} \frac{du}{dx}.$$

$$\frac{d}{dx} \ln u = \frac{1}{u} \frac{du}{dx}.$$

$$\frac{d}{dx} \sin u = \sec^2 u \frac{du}{dx}.$$

$$\frac{d}{dx} \cot u = -\csc^2 u \frac{du}{dx}.$$

$$\frac{d}{dx} \sec u = \sec u \tan u \frac{du}{dx}.$$

$$\frac{d}{dx} \sec u = \sec u \tan u \frac{du}{dx}.$$

$$\frac{d}{dx} \csc u = -\csc u \cot u \frac{du}{dx}.$$

$$\frac{d}{dx} \cot u = -\csc u \cot u \frac{du}{dx}.$$

$$\frac{d}{dx} \cot u = -\csc u \cot u \frac{du}{dx}.$$

$$\frac{d}{dx} \cot u = -\csc u \cot u \frac{du}{dx}.$$

$$\frac{d}{dx} \cot u = -\csc u \cot u \frac{du}{dx}.$$

$$\frac{d}{dx} \cot u = -\csc u \cot u \frac{du}{dx}.$$

$$\frac{d}{dx} \cot u = -\cot u \frac{du}{dx}.$$

$$\frac{d}{dx} \cot u = -\frac{1}{u} \frac{du}{dx}$$

$$(where \sin^{-1} u \text{ lies between } -\frac{\pi}{2} \text{ and } +\frac{\pi}{2})$$

$$\frac{d}{dx} \cot^{-1} u = -\frac{1}{1 + u^2} \frac{du}{dx}.$$

$$\frac{du}{dx} \cot^{-1} u = -\frac{1}{1 + u^2$$

102 The nth Derivative of Certain Functions

$$\frac{d^n}{dx^n} e^{ax} = a^n e^{ax}.$$

$$\frac{d^n}{dx^n} a^x = (\ln a)^n a^x.$$

$$\frac{d^n}{dx^n} \ln x = \frac{(-1)^{n-1} |n-1|}{x^n}, \quad |n-1| = 1 \cdot x \cdot 3 \dots, (n-1),$$

$$\frac{d^n}{dx^n} \sin ax = a^n \sin \left(ax + \frac{p\pi}{2}\right).$$

$$\frac{d^n}{dx^n} \cos ax = a^n \cos \left(ax + \frac{n\pi}{2}\right).$$

103 Slope of a Curve. Tangent and Normal

The slope of the curve (slope of the tangent line to the curve) whose equation is y = f(x) is

Slope = m =
$$\tan \phi = \frac{dy}{dx} = f'(x)$$
.

Slope at $x = x_1$ is $m_1 = f'(x_1)$.

Equation of tangent line at P1 (x1, y1) is

$$y - y_1 = m_1 (x - x_1).$$

Equation of normal at $P_1(x_1, y_1)$ is

$$y-y_1=-\frac{1}{m_1}(x-x_1).$$

Angle (β) of intersection of two curves whose slopes at a common point are m_1 and m_2 is $\beta = \tan^{-1} \frac{m_2 - m_1}{1 + m_1 m_2}$.

104 Derivative of Length of Arc. Radius of Curvature

If s is the length of arc measured along the curve y = f(x) from some fixed point to any point P (x, y), and ϕ is the inclination of the tangent line at P to OX, then [Fig. 103]

$$\frac{dx}{ds} = \cos \phi = \frac{\tau}{\sqrt{\tau + \left(\frac{dy}{dx}\right)^2}}; \frac{dy}{ds} = \sin \phi = \frac{\tau}{\sqrt{\tau + \left(\frac{dx}{dy}\right)^2}}; \left(\frac{dx}{ds}\right)^2 + \left(\frac{dy}{ds}\right)^2 = \tau.$$

Radius of curvature (p) at any point of the curve y = f(x) or $r = f(\theta)$.

$$\rho = \frac{ds}{d\varphi} = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{2}{3}}}{\left(\frac{d^2y}{dx^2}\right)} = \frac{\left\{1 + [f'(x)]^2\right\}^{\frac{2}{3}}}{f''(x)} = \frac{\left[r^2 + \left(\frac{dr}{d\theta}\right)^2\right]^{\frac{2}{3}}}{r^2 + 2\left(\frac{dr}{d\theta}\right)^2 - r\frac{d^2r}{d\theta^2}}.$$

$$\rho$$
 at $\mathbf{x} = \mathbf{a}$ is $\frac{\{1 + [f'(\mathbf{a})]^2\}^{\frac{3}{2}}}{f''(\mathbf{a})}$.

Curvature (k) at any point is $k = \frac{1}{\rho}$.

105 Maximum and Minimum Values of a Function

The $\{ \text{maximum} \}$ value of a function, $f(\mathbf{x})$, in an interval $\mathbf{x} = \mathbf{a}$ to $\mathbf{x} = \mathbf{b}$, is the value of the function which is $\{ \text{smaller} \}$ than the values of the function in its immediate vicinity. Thus in [Fig. 105], the value of the function at \mathbf{M}_1 and \mathbf{M}_2 is a maximum, its value at \mathbf{m}_1 and \mathbf{m}_2 is a minimum.

Test for a maximum at $x = x_i$: $f'(x_i) = 0$ or ∞ , and $f''(x_i) < 0$. Test for a minimum at $x = x_i$: $f'(x_i) = 0$ or ∞ , and $f''(x_i) > 0$. If $f''(\mathbf{x}_1) = \mathbf{0}$ or ∞ , then for a maximum, $f'''(\mathbf{x}_1) = \mathbf{0}$ or ∞ , and $\mathbf{f}^{IV}(\mathbf{x}_1) < \mathbf{0}$, for a minimum, $f'''(\mathbf{x}_1) = \mathbf{0}$ or ∞ , and $\mathbf{f}^{IV}(\mathbf{x}_1) > \mathbf{0}$,

and similarly if $f^{IV}(x_1) = 0$ or ∞ , etc.

In a practical problem which suggests that the function, f(x), has a maximum or has a minimum in an interval x = a to x = b, merely equate f'(x) to zero and solve for the required value of x. To find the largest or smallest values of a function, f(x), in an interval x = a to x = b, find also the values f(a) and f(b), for (see Fig. 105 at L and S) these may be the

largest and smallest values although they are not maximum or minimum values.

106 Points of Inflection of a Curve

Wherever f''(x) < 0, the curve is concave down. Wherever f''(x) > 0, the curve is concave up. The curve is said to have a point of inflection at $\mathbf{x} = \mathbf{x}_1$ if $f''(\mathbf{x}_1) = \mathbf{0}$ or ∞ and the curve is concave up on one side of $\mathbf{x} = \mathbf{x}_1$ and concave down on the other (see points \mathbf{I}_1 and \mathbf{I}_2 in Fig. 106).

107 Taylor's and Maclaurin's Theorems

Any f(x) may, in general, be expanded into a Taylor's Series.

$$f(x) = f(a) + f'(a) \frac{x-a}{1} + f''(a) \frac{(x-a)^2}{2!} + f'''(a) \frac{(x-a)^3}{3!} + \cdots + f^{(n-1)}(a) \frac{(x-a)^{n-1}}{(n-1)!} + R_n,$$

where **a** is any quantity whatever so chosen that none of the expressions f(a), f'(a), f''(a), . . . become infinite. If the series is to be used for the purpose of computing the approximate value of f(x) for a given value of x, a should be chosen so that (x - a) is numerically very small, and thus only a few terms of the series need be used. $R_n = f^{(n)}(x_1) \frac{(x - a)^n}{n!}$, where x_1 lies between **a** and x, is the remainder after n terms, and gives the limits between which the error lies in using n terms of the series for the value of the function. n! = 1

If a = 0, the above series becomes Maclaurin's Series.

1 · 2 · 3 · · · n.

$$f(\mathbf{x}) = f(0) + f'(0) \frac{\mathbf{x}}{1} + f''(0) \frac{\mathbf{x}^2}{2!} + f'''(0) \frac{\mathbf{x}^3}{3!} + \dots + f^{(n-1)}(0) \frac{\mathbf{x}^{n-1}}{(n-1)!} + \mathbf{R}_n.$$

This series may be used for purposes of computation when \boldsymbol{x} is numerically very small.

Some Standard Series

The following series are obtained through expansions of the functions by Taylor's or Maclaurin's theorems. The expression in brackets following each series gives the region of convergence of the series, that is, the values of \mathbf{x} for which the remainder, \mathbf{R}_n , approaches zero as \mathbf{n} increases, so that a number of terms of the series may be used for an approximation of the function. If the region of convergence is not indicated, it is to be understood that the series converges for all finite values of \mathbf{x} . ($\mathbf{n} = \mathbf{1} \cdot \mathbf{2} \cdot \mathbf{3} \cdot \cdots \mathbf{n}$.)

108 Binomial Series

$$(\mathbf{a} + \mathbf{x})^n = \mathbf{a}^n + n\mathbf{a}^{n-1}\mathbf{x} + \frac{n(n-1)}{2!}\mathbf{a}^{n-2}\mathbf{x}^2 + \frac{n(n-1)(n-2)}{3!}\mathbf{a}^{n-3}\mathbf{x}^3 + \cdots$$

$$|\mathbf{x}^2| < \mathbf{a}^2|$$

Note. The series consists of (n + 1) terms when n is a positive integer; the number of terms is infinite when n is a negative or fractional number.

$$(a - bx)^{-1} = \frac{I}{a} \left(I + \frac{bx}{a} + \frac{b^2x^2}{a^2} + \frac{b^3x^3}{a^3} + \cdots \right).$$
 [b²x² < a²]

109 Exponential Series

$$\mathbf{a}^{x} = \mathbf{I} + \mathbf{x} \ln \mathbf{a} + \frac{(\mathbf{x} \ln \mathbf{a})^{2}}{2!} + \frac{(\mathbf{x} \ln \mathbf{a})^{3}}{3!} + \cdots$$

$$\mathbf{e}^{x} = \mathbf{I} + \mathbf{x} + \frac{\mathbf{x}^{2}}{2!} + \frac{\mathbf{x}^{3}}{3!} + \cdots$$

$$\frac{1}{2} (\mathbf{e}^{x} + \mathbf{e}^{-x}) = \mathbf{I} + \frac{\mathbf{x}^{2}}{2!} + \frac{\mathbf{x}^{4}}{4!} + \cdots$$

$$\frac{1}{2} (\mathbf{e}^{x} - \mathbf{e}^{-x}) = \mathbf{x} + \frac{\mathbf{x}^{3}}{3!} + \frac{\mathbf{x}^{5}}{5!} + \cdots$$

$$\mathbf{e}^{-x^{2}} = \mathbf{I} - \mathbf{x}^{2} + \frac{\mathbf{x}^{4}}{2!} - \frac{\mathbf{x}^{6}}{3!} + \frac{\mathbf{x}^{8}}{4!} - \cdots$$

110 Logarithmic Series

$$\ln \mathbf{x} = (\mathbf{x} - 1) - \frac{1}{2} (\mathbf{x} - 1)^2 + \frac{1}{3} (\mathbf{x} - 1)^3 - \cdots \qquad [\mathbf{x} \text{ between o and } 2]$$

$$\ln \mathbf{x} = \frac{\mathbf{x} - 1}{\mathbf{x}} + \frac{1}{2} \left(\frac{\mathbf{x} - 1}{\mathbf{x}}\right)^2 + \frac{1}{3} \left(\frac{\mathbf{x} - 1}{\mathbf{x}}\right)^3 + \cdots \qquad [\mathbf{x} > \frac{1}{2}]$$

$$\ln \mathbf{x} = 2 \left[\frac{\mathbf{x} - 1}{\mathbf{x} + 1} + \frac{1}{3} \left(\frac{\mathbf{x} - 1}{\mathbf{x} + 1}\right)^3 + \frac{1}{5} \left(\frac{\mathbf{x} - 1}{\mathbf{x} + 1}\right)^5 + \cdots \right]. \quad [\mathbf{x} \text{ positive}]$$

$$\ln (\mathbf{i} + \mathbf{x}) = \mathbf{x} - \frac{\mathbf{x}^2}{2} + \frac{\mathbf{x}^3}{3} - \frac{\mathbf{x}^4}{4} + \cdots$$

$$\ln (\mathbf{a} + \mathbf{x}) = \ln \mathbf{a} + 2 \left[\frac{\mathbf{x}}{2\mathbf{a} + \mathbf{x}} + \frac{1}{3} \left(\frac{\mathbf{x}}{2\mathbf{a} + \mathbf{x}}\right)^3 + \frac{1}{5} \left(\frac{\mathbf{x}}{2\mathbf{a} + \mathbf{x}}\right)^5 + \cdots \right].$$

$$\begin{bmatrix} \mathbf{a} \text{ positive} \\ \mathbf{x} \text{ between } -\mathbf{a} \text{ and } + \infty \end{bmatrix}$$

$$\ln\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^6}{5} + \frac{x^7}{7} + \cdots\right). \quad [x^2 < 1]$$

$$\ln\left(\frac{x+1}{x-1}\right) = 2\left[\frac{1}{x} + \frac{1}{3}\left(\frac{1}{x^3}\right) + \frac{1}{5}\left(\frac{1}{x}\right)^5 + \frac{1}{7}\left(\frac{1}{x}\right)^7 + \cdots\right]. \quad [x^2 > 1]$$

$$\ln\left(\frac{x+1}{x}\right) = 2\left[\frac{1}{2x+1} + \frac{1}{3(2x+1)^3} + \frac{1}{5(2x+1)^5} + \cdots\right].$$
[x positive]

$$\ln (x + \sqrt{1 + x^2}) = x - \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \cdots \quad [x^2 < 1]$$

111 Trigonometric Series

$$\sin \mathbf{x} = \mathbf{x} - \frac{\mathbf{x}^{3}}{3!} + \frac{\mathbf{x}^{5}}{5!} - \frac{\mathbf{x}^{7}}{7!} + \cdots$$

$$\cos \mathbf{x} = \mathbf{I} - \frac{\mathbf{x}^{2}}{2!} + \frac{\mathbf{x}^{4}}{4!} - \frac{\mathbf{x}^{6}}{6!} + \cdots$$

$$\tan \mathbf{x} = \mathbf{x} + \frac{\mathbf{x}^{3}}{3} + \frac{2\mathbf{x}^{6}}{15} + \frac{\mathbf{I}^{7}\mathbf{x}^{7}}{315} + \frac{62\mathbf{x}^{9}}{2835} + \cdots$$

$$\left[\mathbf{x}^{2} < \frac{\mathbf{\pi}^{2}}{4}\right]$$

$$\sin^{-1}\mathbf{x} = \mathbf{x} + \frac{\mathbf{I}}{2}\frac{\mathbf{x}^{3}}{3} + \frac{\mathbf{I} \cdot 3}{2 \cdot 4}\frac{\mathbf{x}^{5}}{5} + \frac{\mathbf{I} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}\frac{\mathbf{x}^{7}}{7} + \cdots$$

$$\left[\mathbf{x}^{2} < \mathbf{I}\right]$$

$$\tan^{-1}\mathbf{x} = \mathbf{x} - \frac{1}{3}\mathbf{x}^{3} + \frac{1}{6}\mathbf{x}^{5} - \frac{1}{7}\mathbf{x}^{7} + \cdots$$

$$\left[\mathbf{x}^{2} \leq \mathbf{I}\right]$$

112 Logarithmic Trigonometric Series

$$\ln \sin x = \ln x - \frac{x^2}{6} - \frac{x^4}{180} - \frac{x^6}{2835} - \cdots \qquad [x^2 < \pi^2]$$

$$\ln \cos x = -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} - \frac{17 x^8}{2520} - \cdots \qquad [x^2 < \frac{\pi^2}{4}]$$

$$\ln \tan x = \ln x + \frac{x^2}{3} + \frac{7 x^4}{90} + \frac{62 x^6}{2835} + \cdots \qquad [x^2 < \frac{\pi^2}{4}]$$

113 Exponential Trigonometric Series

$$e^{\sin x} = 1 + x + \frac{x^2}{2!} - \frac{3}{4!} \frac{x^4}{1!} - \frac{8}{5!} \frac{x^5}{1!} + \frac{3}{6!} + \cdots$$

$$e^{\cos x} = e \left(1 - \frac{x^2}{2!} + \frac{4}{4!} \frac{x^4}{1!} - \frac{31}{6!} \frac{x^5}{1!} + \cdots \right).$$

$$e^{\tan x} = 1 + x + \frac{x^2}{2!} + \frac{3}{3!} \frac{x^3}{1!} + \frac{9}{4!} \frac{x^4}{1!} + \frac{37}{5!} \frac{x^5}{1!} + \cdots . \qquad \left[x^2 < \frac{\pi^2}{4} \right]$$

114 Approximations of Expressions Containing Small Terms

These may be derived from various infinite series given in 108-113. Some first approximations derived by neglecting all powers but the first of the small positive or negative quantity x = s are given below. The expression in brackets gives the next term beyond that which is used and by means of it the accuracy of the approximation may be estimated.

$$\frac{1}{1+s} = 1 - s. \qquad [+s^2]$$

$$(1+s)^n = 1 + ns. \qquad \left[+\frac{n(n-1)}{2} s^2 \right]$$

$$e^s = 1 + s. \qquad \left[+\frac{s^2}{2} \right]$$

$$\ln(1+s) = s. \qquad \left[-\frac{s^2}{2} \right]$$

$$\sin s = s. \qquad \left[-\frac{s^3}{6} \right]$$

$$\cos s = 1. \qquad \left[-\frac{s^2}{2} \right]$$

$$(1+s_1)(1+s_2) = (1+s_1+s_2) \quad [+s_1s_2]$$

The following expressions are some that may be approximated by $\mathbf{i} + \mathbf{s}$, where \mathbf{s} is a small positive or negative quantity and \mathbf{n} is any number.

$$\left(1 + \frac{s}{n}\right)^{n}.$$

$$e^{s}.$$

$$1 + \ln \sqrt{\frac{1+s}{1-s}}.$$

$$1 + \ln \sin \frac{s}{n}.$$

$$1 + \ln \ln \left(1 + \frac{s}{n}\right).$$

$$\cos \sqrt{-2s}.$$

115 Evaluation of Indeterminate Forms [see Algebra, 2]

Let f(x) and F(x) be two functions of x, and let a be a value of x.

(1) If
$$\frac{f(a)}{F(a)} = \frac{0}{0}$$
 or $\frac{\infty}{\infty}$, use $\frac{f'(a)}{F'(a)}$ for the value of this fraction.

If $\frac{f'(a)}{F'(a)} = \frac{0}{0}$ or $\frac{\infty}{\infty}$, use $\frac{f''(a)}{F''(a)}$ for the value of this fraction, etc.

- (2) If $f(a) \cdot F(a) = 0 \cdot \infty$ or if $f(a) F(a) = \infty \infty$, evaluate by changing the product or difference to the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ and use (1).
- (3) If f(a) $F(a) = 0^{\circ}$ or ∞° or 1^{∞} , then $f(a)F(a) = e^{F(a) \cdot \ln f(a)}$, [Algebra, 8] and the exponent, being of the form $0 \cdot \infty$, may be evaluated by (2).

116 Differential of a Function

If y = f(x) and $\Delta x =$ increment in x, then the differential of x equals the increment of x, or $dx = \Delta x$; and the differential of y is the derivative of y multiplied by the differential of x, thus

$$dy = \frac{dy}{dx} dx = \frac{df(x)}{dx} dx = f'(x) dx,$$
and
$$\frac{dy}{dx} = dy + dx.$$

If
$$\mathbf{x} = \mathbf{f}_1(t)$$
 and $\mathbf{y} = \mathbf{f}_2(t)$, then $d\mathbf{x} = \mathbf{f}_1'(t) dt$, $d\mathbf{y} = \mathbf{f}_2'(t) dt$.

Every derivative formula has a corresponding differential formula; thus from the table 101, we have, for example,

$$d(uv) = u dv + v du$$
; $d(\sin u) = \cos u du$; $d(\tan^{-1} u) = \frac{du}{1 + u^2}$, etc.

117 Functions of Several Variables. Partial Derivatives. Differentials

Let z be a function of two variables, z = f(x, y), then its partial derivatives are

$$\frac{\partial z}{\partial x} = \frac{dz}{dx}$$
 when y is kept constant.

$$\frac{\partial z}{\partial y} = \frac{dz}{dy}$$
 when x is kept constant.

$$\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right); \quad \frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right); \quad \frac{\partial^2 z}{\partial x} \frac{\partial}{\partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x}.$$

Similarly, if $z = f(x, y, u, \cdot \cdot \cdot)$, then, for example,

$$\frac{\partial z}{\partial x} = \frac{dz}{dx}$$
 when y, u, . . . are kept constant.

If
$$z = f(x, y, \dots)$$
 and x, y, \dots are functions of a single variable, t ,

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} + \cdots$$

If
$$z = f(x, y, \cdots)$$
, then $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy + \cdots$.

If
$$F(x, y, z, \cdots) = 0$$
, then $\frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy + \frac{\partial F}{\partial z} dz + \cdots = 0$.

If
$$f(x, y) = 0$$
, then $\frac{dy}{dx} = -\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$.

118 Maxima and Minima of Functions of Two Variables

If u = f(x, y), the values of x and y which make u a maximum or a minimum must satisfy the conditions

$$\frac{\partial u}{\partial x} = o, \ \frac{\partial u}{\partial y} = o, \ \left(\frac{\partial^2 u}{\partial x \, \partial y}\right)^2 < \left(\frac{\partial^2 u}{\partial x^2}\right) \left(\frac{\partial^2 u}{\partial y^2}\right) \bullet$$

$$A \left\{ \begin{array}{l} \text{maximum} \\ \text{minimum} \end{array} \right\} \text{ also requires both } \frac{\partial^2 u}{\partial \mathbf{z}^2} \text{ and } \frac{\partial^2 u}{\partial \mathbf{y}^2} \text{ to be } \left\{ \begin{array}{l} \text{negative} \\ \text{positive} \end{array} \right\}.$$

119 Space Curves. Surfaces (see Analytic Geometry, 95-97)

Let $x = f_1(t)$, $y = f_2(t)$, $z = f_3(t)$ be the equations of any space curve. The direction cosines of the tangent line to the curve at any point are proportional to dx, dy, and dz, or to $\frac{dx}{dt}$, $\frac{dy}{dt}$, and $\frac{dz}{dt}$.

Equations of tangent line at a point (x_i, y_i, z_i) are

$$\frac{x-x_1}{(dx)_1}=\frac{y-y_1}{(dy)_1}=\frac{z-z_1}{(dz)_1}, \text{ where } (dx)_1=\text{value of } dx \text{ at } (x_1,y_1,z_1), \text{ etc.}$$

Angle between two space curves is the angle between their tangent lines, (see Analytic Geometry, 94)

Let F(x, y, z) = 0 be the equation of a surface.

Direction cosines of the normal to the surface at any point are proportional to $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$, $\frac{\partial F}{\partial z}$.

Equations of the normal at any point (x_1, y_1, z_1) are

$$\frac{\mathbf{x} - \mathbf{x}_1}{\left(\frac{\partial \mathbf{F}}{\partial \mathbf{x}}\right)_1} = \frac{\mathbf{y} - \mathbf{y}_1}{\left(\frac{\partial \mathbf{F}}{\partial \mathbf{y}}\right)_1} = \frac{\mathbf{z} - \mathbf{z}_1}{\left(\frac{\partial \mathbf{F}}{\partial \mathbf{z}}\right)_1}.$$

Equation of the tangent plane at any point (x_1, y_1, z_1) is

$$(\mathbf{x} - \mathbf{x}_i) \left(\frac{\partial \mathbf{F}}{\partial \mathbf{x}} \right)_i + (\mathbf{y} - \mathbf{y}_i) \left(\frac{\partial \mathbf{F}}{\partial \mathbf{y}} \right)_i + (\mathbf{z} - \mathbf{z}_i) \left(\frac{\partial \mathbf{F}}{\partial \mathbf{z}} \right)_i = \mathbf{o},$$

where $\left(\frac{\partial \mathbf{F}}{\partial \mathbf{x}}\right)_1$ is the value of $\frac{\partial \mathbf{F}}{\partial \mathbf{x}}$ at the point $(\mathbf{x}_1, \mathbf{y}_1, \mathbf{z}_1)$, etc.

Angle between two surfaces is the angle between their normals.

INTEGRAL CALCULUS

120 Definition of Integral

F(x) is said to be the integral of f(x), if the derivative of F(x) is f(x), or the differential of F(x) is f(x) dx; in symbols:

$$F(x) = \int f(x) \ dx \ \text{if} \ \frac{d \ F(x)}{dx} = f(x), \ \text{or} \ d \ F(x) = f(x) \ dx.$$

In general: $\int f(x) dx = F(x) + C$, where C is an arbitrary constant.

121 Fundamental Theorems on Integrals

$$\int df(x) = f(x) + C.$$

$$d \int f(x) dx = f(x) dx.$$

$$\int [f_1(x) \pm f_2(x) \pm \cdots] dx = \int f_1(x) dx \pm \int f_2(x) dx \pm \cdots$$

$$\int a f(x) dx = s \int f(x) dx, \text{ where a is any constant.}$$

$$\int u^n du = \frac{u^{n+1}}{n + 1} + C \quad (n \neq -1); \text{ u is any function of } x.$$

$$\int \frac{du}{u} = \ln u + C; \ u \text{ is any function of } x.$$

$$\int u \, dv = uv - \int v \, du; \ u \text{ and } v \text{ are any functions of } x.$$

Table of Integrals

Note. In the following table, the constant of integration (C) is omitted but should be added to the result of every integration. The letter x represents any variable; the letter u represents any function of x; all other letters represent constants which may have any finite value unless otherwise indicated; $ln = log_e$; all angles are in radians.

Functions containing ax + b

122
$$\int (ax + b)^{n} dx = \frac{1}{a(n + 1)} (ax + b)^{n+1}. \quad (n \neq -1)$$
123
$$\int \frac{dx}{ax + b} = \frac{1}{a} \ln (ax + b).$$
124
$$\int x(ax + b)^{n} dx = \frac{1}{a^{2}(n + 2)} (ax + b)^{n+2} - \frac{b}{a^{2}(n + 1)} (ax + b)^{n+1}.$$

$$(n \neq -1, -2)$$
125
$$\int \frac{x dx}{ax + b} = \frac{x}{a} - \frac{b}{a^{2}} \ln (ax + b).$$
126
$$\int \frac{x dx}{(ax + b)^{2}} = \frac{b}{a^{2}(ax + b)} + \frac{1}{a^{2}} \ln (ax + b).$$
127
$$\int x^{2}(ax + b)^{n} dx = \frac{1}{a^{3}} \left[\frac{(ax + b)^{n+3}}{n + 3} - 2b \frac{(ax + b)^{n+2}}{n + 2} + b^{2} \frac{(ax + b)^{n+1}}{n + 1} \right]$$
128
$$\int \frac{x^{2} dx}{ax + b} = \frac{1}{a^{3}} \left[\frac{1}{2} (ax + b)^{2} - 2b(ax + b) + b^{2} \ln (ax + b) \right].$$
129
$$\int \frac{x^{2} dx}{(ax + b)^{2}} = \frac{1}{a^{3}} \left[\ln (ax + b) - 2b \ln (ax + b) - \frac{b^{2}}{ax + b} \right].$$
130
$$\int \frac{x^{2} dx}{(ax + b)^{3}} = \frac{1}{a^{3}} \left[\ln (ax + b) + \frac{2b}{ax + b} - \frac{b^{2}}{2(ax + b)^{2}} \right].$$
131
$$\int x^{m}(ax + b)^{n} dx$$

$$= \frac{1}{a(m + n + 1)} \left[x^{m}(ax + b)^{n+1} - mb \int x^{m-1}(ax + b)^{n} dx \right]$$

$$= \frac{1}{m + n + 1} \left[x^{m+1}(ax + b)^{n} + nb \int x^{m}(ax + b)^{n-1} dx \right]. \qquad \binom{m \text{ pos.}}{m + n}$$
132
$$\int \frac{dx}{x(ax + b)} = \frac{1}{b} \ln \frac{x}{ax + b}.$$
133
$$\int \frac{dx}{x^{2}(ax + b)^{2}} = \frac{1}{b(ax + b)} - \frac{1}{b^{2}} \ln \frac{ax + b}{x}.$$
134
$$\int \frac{dx}{x(ax + b)^{2}} = \frac{1}{b(ax + b)} - \frac{1}{b^{2}} \ln \frac{ax + b}{x}.$$

135
$$\int \frac{dx}{x^2(ax+b)^2} = -\frac{b+2ax}{b^2x(ax+b)} + \frac{2a}{b^2} \ln \frac{ax+b}{x}.$$

136
$$\int \frac{dx}{x\sqrt{ax+b}} = \frac{1}{\sqrt{b}} \ln \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}}.$$
 (b pos.)

137
$$\int \frac{dx}{x\sqrt{ax+b}} = \frac{2}{\sqrt{-b}} \tan^{-1} \sqrt{\frac{ax+b}{-b}}$$
 (b neg.)

138
$$\int \frac{dx}{x(ax+b)^{\frac{n}{2}}} = \frac{2}{b(n-2)(ax+b)^{\frac{n}{2}-1}} + \frac{1}{b} \int \frac{dx}{x(ax+b)^{\frac{n}{2}-1}}. \binom{n \text{ odd and }}{pos.}$$

139
$$\int \frac{\sqrt{ax+b}}{x} dx = 2 \sqrt{ax+b} + \sqrt{b} \ln \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}}.$$
 (b pos.)

140
$$\int \frac{\sqrt{ax+b}}{x} dx = 2 \sqrt{ax+b} - 2\sqrt{-b} \tan^{-1} \sqrt{\frac{ax+b}{-b}}.$$
 (b neg.)

141
$$\int \frac{(ax+b)^{\frac{n}{2}}}{x} dx = \frac{2}{n} (ax+b)^{\frac{n}{2}} + b \int \frac{(ax+b)^{\frac{n}{2}-1}}{x} dx$$
. (n odd and pos.)

142
$$\int \frac{dx}{x^2 \sqrt{ax+b}} = -\frac{\sqrt{ax+b}}{bx} - \frac{a}{2b\sqrt{b}} \ln \frac{\sqrt{ax+b} - \sqrt{b}}{\sqrt{ax+b} + \sqrt{b}}.$$
 (b pos.)

143
$$\int \frac{dx}{x^2 \sqrt{ax + b}} = -\frac{\sqrt{ax + b}}{bx} - \frac{a}{b\sqrt{-b}} \tan^{-1} \sqrt{\frac{ax + b}{-b}}$$
 (b neg.)

144
$$\int \frac{dx}{(ax+b)(px+q)} = \frac{1}{bp-aq} \ln \frac{px+q}{ax+b} \cdot (bp-aq \neq 0)$$

145
$$\int \frac{dx}{(ax+b)^2 (px+q)} = \frac{1}{bp-aq} \left[\frac{1}{ax+b} + \frac{p}{bp-aq} \ln \frac{px+q}{ax+b} \right] \cdot (bp-aq \neq 0)$$

146
$$\int \frac{dx}{(ax+b)^{n}(px+q)^{m}} = \frac{I}{(m-1)(bp-aq)} \left[\frac{I}{(ax+b)^{n-1}(px+q)^{m-1}} - a(m+n-2) \int \frac{dx}{(ax+b)^{n}(px+q)^{m-1}} \right].$$

147
$$\int \frac{x \, dx}{(ax+b)(px+q)} = \frac{1}{bp-aq} \left[\frac{b}{a} \ln(ax+b) - \frac{q}{p} \ln(px+q) \right] \cdot (bp-aq \neq 0)$$

148
$$\int \frac{x \, dx}{(ax+b)^2 (px+q)} = \frac{1}{bp - aq} \left[-\frac{b}{a(ax+b)} - \frac{q}{bp - aq} \ln \frac{px+q}{ax+b} \right] .$$
 (bp - aq \neq 0)

149
$$\int \frac{px+q}{\sqrt{ax+b}} dx = \frac{2}{3 a^2} (3 aq - 2 bp + apx) \sqrt{ax+b}$$
.

150
$$\int \frac{\sqrt{ax+b}}{px+q} dx = \frac{2\sqrt{ax+b}}{p} - \frac{2}{p} \sqrt{\frac{aq-bp}{p}} \tan^{-1} \sqrt{\frac{p(ax+b)}{aq-bp}}.$$
(p pos., aq > bp)

$$\begin{array}{c} \textbf{151} \quad \int \frac{\sqrt{ax+b}}{px+q} \, dx = \frac{2\sqrt{ax+b}}{p} + \frac{I}{p} \sqrt{\frac{bp-aq}{p}} \ln \frac{\sqrt{p(ax+b)} - \sqrt{bp-aq}}{\sqrt{p(ax+b)} + \sqrt{bp-aq}} \\ & (p \ pos., \ bp > aq) \\ \textbf{152} \quad \int \frac{dx}{(px+q)\sqrt{ax+b}} = \frac{2}{\sqrt{p}} \frac{tan^{-1}}{\sqrt{p}} \sqrt{\frac{p(ax+b)}{aq-bp}} \cdot (p \ pos., \ aq > bp) \\ \textbf{153} \quad \int \frac{dx}{(px+q)\sqrt{ax+b}} = -\frac{I}{\sqrt{p}} \frac{\ln \frac{\sqrt{p(ax+b)}}{\sqrt{pp-aq}} \cdot (p \ pos., \ aq > bp)}{\sqrt{p(ax+b)} + \sqrt{bp-aq}} \\ & (p \ pos., \ bp > aq) \\ \textbf{154} \quad \int \frac{\sqrt{px+q}}{\sqrt{ax+b}} \, dx = \frac{I}{a} \sqrt{ax+b} \sqrt{px+q} - \frac{bp-aq}{a\sqrt{ap}} \\ & \ln \left(\sqrt{p(ax+b)} + \sqrt{a(px+q)}\right). \ (a \ and \ p, \ same \ sign) \\ = \frac{I}{a} \sqrt{ax+b} \sqrt{px+q} - \frac{bp-aq}{a\sqrt{-ap}} \tan^{-1} \frac{\sqrt{-ap(ax+b)}}{a\sqrt{px+q}} \\ & (a \ and \ p \ have \ opposite \ signs) \\ = \frac{I}{a} \sqrt{ax+b} \sqrt{px+q} + \frac{bp-aq}{2 \ a\sqrt{-ap}} \\ & \sin^{-1} \frac{2 \ apx+aq+bp}{bp-aq}. \ (a \ and \ p \ have \ opposite \ signs) \end{array}$$

Functions containing $ax^2 + b$

155
$$\int \frac{dx}{ax^{2} + b} = \frac{1}{\sqrt{ab}} \tan^{-1} \left(x \sqrt{\frac{a}{b}} \right). \quad (a \text{ and } b \text{ pos.})$$
156
$$\int \frac{dx}{ax^{2} + b} = \frac{1}{2\sqrt{-ab}} \ln \frac{x\sqrt{a} - \sqrt{-b}}{x\sqrt{a} + \sqrt{-b}}. \quad (a \text{ pos., } b \text{ neg.})$$

$$= \frac{1}{2\sqrt{-ab}} \ln \frac{\sqrt{b} + x\sqrt{-a}}{\sqrt{b} - x\sqrt{-a}}. \quad (a \text{ neg., } b \text{ pos.})$$
157
$$\int \frac{dx}{(ax^{2} + b)^{n}} = \frac{1}{2(n-1)b} \frac{x}{(ax^{2} + b)^{n-1}} + \frac{2n-3}{2(n-1)b} \int \frac{dx}{(ax^{2} + b)^{n-1}} \left(\begin{array}{c} n \text{ integ.} \\ > 1 \end{array} \right)$$
158
$$\int (ax^{2} + b)^{n} x \, dx = \frac{1}{2a} \frac{(ax^{2} + b)^{n+1}}{n+1}. \quad (n \neq -1)$$
159
$$\int \frac{x \, dx}{ax^{2} + b} = \frac{1}{2a} \ln (ax^{2} + b).$$
160
$$\int \frac{dx}{x(ax^{2} + b)} = \frac{1}{2b} \ln \frac{x^{2}}{ax^{2} + b}.$$
161
$$\int \frac{x^{2} \, dx}{ax^{2} + b} = \frac{x}{a} - \frac{b}{a} \int \frac{dx}{ax^{2} + b}.$$
162
$$\int \frac{x^{2} \, dx}{(ax^{2} + b)^{n}} = -\frac{1}{2(n-1)a} \frac{x}{(ax^{2} + b)^{n-1}} + \frac{1}{2(n-1)a} \int \frac{dx}{(ax^{2} + b)^{n-1}}.$$
(n integ. > 1)
163
$$\int \frac{dx}{x^{2}(ax^{2} + b)^{n}} = \frac{1}{b} \int \frac{dx}{x^{2}(ax^{2} + b)^{n-1}} - \frac{a}{b} \int \frac{dx}{(ax^{2} + b)^{n}}.$$
 (n pos. integ.)

164
$$\int \sqrt{ax^{2} + b} \, dx = \frac{x}{2} \sqrt{ax^{2} + b} + \frac{b}{2\sqrt{a}} \ln (x\sqrt{a} + \sqrt{ax^{2} + b}). \quad (a \text{ pos.})$$
165
$$\int \sqrt{ax^{2} + b} \, dx = \frac{x}{2} \sqrt{ax^{2} + b} + \frac{b}{2\sqrt{a}} \sin^{-1} \left(x\sqrt{-\frac{a}{b}}\right). \quad (a \text{ neg.})$$
166
$$\int \frac{dx}{\sqrt{ax^{2} + b}} = \frac{1}{\sqrt{a}} \ln (x\sqrt{a} + \sqrt{ax^{2} + b}). \quad (a \text{ pos.})$$
167
$$\int \frac{dx}{\sqrt{ax^{2} + b}} = \frac{1}{\sqrt{-a}} \sin^{-1} \left(x\sqrt{-\frac{a}{b}}\right). \quad (a \text{ neg.})$$
168
$$\int \sqrt{ax^{2} + b} \, dx = \frac{1}{3a} (ax^{2} + b)^{\frac{a}{2}}.$$
169
$$\int \frac{x \, dx}{\sqrt{ax^{2} + b}} = \frac{1}{a} \sqrt{ax^{2} + b}.$$
170
$$\int \frac{\sqrt{ax^{2} + b}}{x} \, dx = \sqrt{ax^{2} + b} + \sqrt{b} \ln \frac{\sqrt{ax^{2} + b} - \sqrt{b}}{x}. \quad (b \text{ pos.})$$
171
$$\int \frac{\sqrt{ax^{2} + b}}{x} \, dx = \sqrt{ax^{2} + b} + \sqrt{b} \ln \frac{\sqrt{ax^{2} + b} - \sqrt{b}}{x}. \quad (b \text{ pos.})$$
172
$$\int \frac{dx}{x\sqrt{ax^{2} + b}} = \frac{1}{\sqrt{-b}} \ln \frac{\sqrt{ax^{2} + b} - \sqrt{b}}{x}. \quad (b \text{ pos.})$$
173
$$\int \frac{dx}{x\sqrt{ax^{2} + b}} = \frac{1}{\sqrt{-b}} \sec^{-1} \left(x\sqrt{-\frac{a}{b}}\right). \quad (b \text{ neg.})$$
174
$$\int \sqrt{ax^{2} + b} \, x^{2} \, dx = \frac{x}{4a} (ax^{2} + b)^{\frac{a}{2}} - \frac{bx}{8a} \sqrt{ax^{2} + b}$$

$$- \frac{b^{2}}{8a\sqrt{a}} \ln (x\sqrt{a} + \sqrt{ax^{2} + b}). \quad (a \text{ pos.})$$
175
$$\int \sqrt{ax^{2} + b} \, x^{2} \, dx = \frac{x}{4a} (ax^{2} + b)^{\frac{a}{2}} - \frac{bx}{8a} \sqrt{ax^{2} + b}$$

$$- \frac{b^{2}}{8a\sqrt{-a}} \sin^{-1} \left(x\sqrt{-\frac{a}{b}}\right). \quad (a \text{ neg.})$$
176
$$\int \frac{x^{2} \, dx}{\sqrt{ax^{2} + b}} = \frac{x}{2a} \sqrt{ax^{2} + b} - \frac{b}{2a} \sqrt{-a} \sin^{-1} \left(x\sqrt{-\frac{a}{b}}\right). \quad (a \text{ neg.})$$
177
$$\int \frac{x^{2} \, dx}{\sqrt{ax^{2} + b}} dx = -\frac{\sqrt{ax^{2} + b}}{x} + \sqrt{a} \ln (x\sqrt{a} + \sqrt{ax^{2} + b}). \quad (a \text{ pos.})$$
178
$$\int \frac{\sqrt{ax^{2} + b}}{x^{2}} \, dx = -\frac{\sqrt{ax^{2} + b}}{x} - \sqrt{-a} \sin^{-1} \left(x\sqrt{-\frac{a}{b}}\right). \quad (a \text{ neg.})$$
180
$$\int \frac{dx}{x^{2} \sqrt{x^{2} + b}} = -\frac{\sqrt{ax^{2} + b}}{b}.$$

181
$$\int \frac{x^n dx}{\sqrt{ax^2 + b}} = \frac{x^{n-1} \sqrt{ax^2 + b}}{na} - \frac{(n-1) b}{na} \int \frac{x^{n-2} dx}{\sqrt{ax^2 + b}}.$$
 (n pos.)

182
$$\int x^{n} \sqrt{ax^{2} + b} \, dx = \frac{x^{n-1} (ax^{2} + b)^{\frac{n}{2}}}{(n+2) a} - \frac{(n-1) b}{(n+2) a} \int x^{n-2} \sqrt{ax^{2} + b} \, dx.$$
(n pos.)

183
$$\int \frac{\sqrt{ax^2 + b} \, dx}{x^n} = -\frac{(ax^2 + b)^{\frac{3}{2}}}{b(n-1)x^{n-1}} - \frac{(n-4)a}{(n-1)b} \int \frac{\sqrt{ax^2 + b}}{x^{n-2}} dx. \quad (n > 1)$$

184
$$\int \frac{dx}{x^n \sqrt{ax^2 + b}} = -\frac{\sqrt{ax^2 + b}}{b(n-1)x^{n-1}} - \frac{(n-2)a}{(n-1)b} \int \frac{dx}{x^{n-2} \sqrt{ax^2 + b}}. \quad (n > 1)$$

185
$$\int (ax^2 + b)^{\frac{3}{2}} dx = \frac{x}{8} (2 ax^2 + 5 b) \sqrt{ax^2 + b} + \frac{3 b^2}{8 \sqrt{a}} \ln (x \sqrt{a} + \sqrt{ax^2 + b}). \quad (a \text{ pos.})$$

186
$$\int (ax^{2} + b)^{\frac{a}{2}} dx = \frac{x}{8} (2 ax^{2} + 5 b) \sqrt{ax^{2} + b}$$
$$+ \frac{3 b^{2}}{8 \sqrt{-a}} \sin^{-1} \left(x \sqrt{-\frac{a}{b}} \right)$$
 (a neg.)

187
$$\int \frac{dx}{(ax^2+b)^{\frac{3}{2}}} = \frac{x}{b\sqrt{ax^2+b}}$$

188
$$\int (ax^2 + b)^{\frac{3}{2}} x dx = \frac{1}{5a} (ax^2 + b)^{\frac{6}{3}}$$

189
$$\int \frac{x \, dx}{(ax^2 + b)^{\frac{3}{2}}} = -\frac{1}{a\sqrt{ax^2 + b}}$$

190
$$\int \frac{x^2 dx}{(ax^2 + b)^{\frac{3}{2}}} = -\frac{x}{a\sqrt{ax^2 + b}} + \frac{1}{a\sqrt{a}} \ln(x\sqrt{a} + \sqrt{ax^2 + b})$$
 (a pos.)

191
$$\int \frac{x^2 dx}{(ax^2 + b)^{\frac{3}{2}}} = -\frac{x}{a\sqrt{ax^2 + b}} + \frac{1}{a\sqrt{-a}} \sin^{-1}\left(x\sqrt{-\frac{a}{b}}\right)$$
 (a neg.)

192
$$\int \frac{\mathrm{dx}}{x (ax^n + b)} = \frac{1}{bn} \ln \frac{x^n}{ax^n + b}$$

193
$$\int \frac{dx}{x\sqrt{ax^n+b}} = \frac{1}{n\sqrt{b}} \ln \frac{\sqrt{ax^n+b}-\sqrt{b}}{\sqrt{ax^n+b}+\sqrt{b}}.$$
 (b pos.)

194
$$\int \frac{dx}{x \sqrt{ax^n + b}} = \frac{2}{n \sqrt{-b}} \sec^{-1} \sqrt{\frac{-ax^n}{b}}$$
. (b neg.)

Functions containing $ax^2 + bx + c$

195
$$\int \frac{dx}{ax^2 + bx + c} = \frac{r}{\sqrt{b^2 - 4ac}} \ln \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}}$$
 (b² > 4ac)

196
$$\int_{ax^2 + bx + c}^{ax^2 + bx + c} = \frac{2}{\sqrt{aac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{aac - b^2}}$$
 (b² < 4 ac)

197
$$\int \frac{dx}{ax^2 + bx + c} = -\frac{2}{2ax + b}$$
 (b² = 4 ac)

198
$$\int \frac{x \, dx}{ax^2 + bx + c} = \frac{1}{2 a} \ln (ax^2 + bx + c) - \frac{b}{2 a} \int \frac{dx}{ax^2 + bx + c}.$$
199
$$\int \frac{x^2 \, dx}{ax^2 + bx + c} = \frac{x}{a} - \frac{b}{2 a^2} \ln (ax^2 + bx + c) + \frac{b^2 - 2 ac}{2 a^2} \int \frac{dx}{ax^2 + bx + c}.$$
200
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{a}} \ln (2 ax + b + 2 \sqrt{a} \sqrt{ax^2 + bx + c}). \quad (a \text{ pos.})$$
201
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{-a}} \sin^{-1} \frac{-2 ax - b}{\sqrt{b^2 - 4ac}}. \quad (a \text{ neg.})$$
202
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2 ax + b}{4 a} \sqrt{ax^2 + bx + c} + \frac{4 ac - b^2}{8 a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}.$$
203
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2 a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}.$$
204
$$\int \sqrt{ax^2 + bx + c} \, x \, dx = \frac{(ax^2 + bx + c)^{\frac{a}{2}}}{3 a} - \frac{b}{2 a} \int \sqrt{ax^2 + bx + c} \, dx.$$
205
$$\int \frac{dx}{x \sqrt{ax^2 + bx + c}} = -\frac{1}{\sqrt{c}} \ln \left(\frac{\sqrt{ax^2 + bx + c} + \sqrt{c}}{x} + \frac{b}{2 \sqrt{c}} \right). \quad (c \text{ pos.})$$
206
$$\int \frac{dx}{x \sqrt{ax^2 + bx + c}} = \frac{1}{\sqrt{-c}} \sin^{-1} \frac{bx + 2 c}{x \sqrt{b^2 - 4 ac}}. \quad (c \text{ neg.})$$
207
$$\int \frac{dx}{x \sqrt{ax^2 + bx + c}} = -\frac{2 (2 ax + b)}{(b^2 - 4 ac) \sqrt{ax^2 + bx + c}}.$$

Functions containing sin ax

209
$$\int \sin u \, du = -\cos u$$
. (u is any function of x)
210 $\int \sin ax \, dx = -\frac{1}{a} \cos ax$.
211 $\int \sin^2 ax \, dx = \frac{x}{2} - \frac{\sin 2 ax}{4 a}$.
212 $\int \sin^3 ax \, dx = -\frac{1}{a} \cos ax + \frac{1}{3 a} \cos^3 ax$.
213 $\int \sin^4 ax \, dx = \frac{3}{8} x - \frac{1}{4 a} \sin 2 ax + \frac{1}{3^2 a} \sin 4 ax$.
214 $\int \sin^n ax \, dx = -\frac{\sin^{n-1} ax \cos ax}{na} + \frac{n-1}{n} \int \sin^{n-2} ax \, dx$. (n pos. integ.)
215 $\int \frac{dx}{\sin ax} = \frac{1}{a} \ln \tan \frac{ax}{2} = \frac{1}{a} \ln (\csc ax - \cot ax)$.
216 $\int \frac{dx}{\sin^2 ax} = -\frac{1}{a} \cot ax$.
217 $\int \frac{dx}{\sin^n ax} = -\frac{1}{a} \cot ax$. (n integ. > 1)
218 $\int \frac{dx}{1 + \frac{1}{2} \sin ax} = -\frac{1}{a} \tan \left(\frac{\pi}{a} - \frac{ax}{a}\right)$.

219
$$\int \frac{dx}{1-\sin ax} = \frac{1}{a} \cot \left(\frac{\pi}{4} - \frac{ax}{2}\right).$$
220
$$\int \frac{dx}{b+c\sin ax} = \frac{-2}{a\sqrt{b^2-c^2}} \tan^{-1} \left[\sqrt{\frac{b-c}{b+c}} \tan \left(\frac{\pi}{4} - \frac{ax}{2}\right)\right]. \quad (b^2 > c^2)$$
221
$$\int \frac{dx}{b+c\sin ax} = \frac{-1}{a\sqrt{c^2-b^2}} \ln \frac{c+b\sin ax + \sqrt{c^2-b^2}\cos ax}{b+c\sin ax}. \quad (c^2 > b^2)$$
222
$$\int \sin ax \sin bx \, dx = \frac{\sin (a-b) x}{2(a-b)} - \frac{\sin (a+b) x}{2(a+b)}. \quad (a^2 \neq b^2)$$

Functions containing cos ax

Functions containing cos ax

223
$$\int \cos u \, du = \sin u$$
. (u is any function of x)

224 $\int \cos ax \, dx = \frac{I}{a} \sin ax$.

$$\int \sqrt{1 - \cos x} \, dx = \sqrt{2} \int \sin \frac{x}{2} \, dx$$
.

225 $\int \cos^2 ax \, dx = \frac{x}{2} + \frac{\sin 2 ax}{4 a}$.

226 $\int \cos^3 ax \, dx = \frac{I}{a} \sin ax - \frac{1}{3 a} \sin^3 ax$.

227 $\int \cos^4 ax \, dx = \frac{3}{8} x + \frac{I}{4 a} \sin 2 ax + \frac{I}{32 a} \sin 4 ax$.

228 $\int \cos^n ax \, dx = \frac{\cos^{n-1} ax \sin ax}{na} + \frac{n-1}{n} \int \cos^{n-2} ax \, dx$. (n pos. integ.)

229 $\int \frac{dx}{\cos ax} = \frac{1}{a} \ln \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right) = \frac{1}{a} \ln (\tan ax + \sec ax)$.

230 $\int \frac{dx}{\cos^2 ax} = \frac{I}{a} \tan ax$.

231 $\int \frac{dx}{\cos^n ax} = \frac{I}{a \tan ax}$.

232 $\int \frac{dx}{1 + \cos ax} = \frac{I}{a} \tan \frac{ax}{2}$.

233 $\int \frac{dx}{1 - \cos ax} = -\frac{1}{a} \cot \frac{ax}{2}$.

234 $\int \frac{dx}{b + c \cos ax} = \frac{I}{a} \cot \frac{ax}{2}$.

235 $\int \frac{dx}{b + c \cos ax} = \frac{I}{a} \cot \frac{ax}{2}$.

236 $\int \cos ax \cos bx \, dx = \frac{\sin (a - b) x}{2 (a - b)} + \frac{\sin (a + b) x}{2 (a + b)}$. ($a^2 \neq b^2$)

Functions containing sin ax and cos ax

237
$$\int \sin ax \cos bx \, dx = -\frac{1}{2} \left[\frac{\cos (a - b) x}{a - b} + \frac{\cos (a + b) x}{a + b} \right].$$
 $(a^2 \neq b^2)$
238 $\int \sin^n ax \cos ax \, dx = \frac{1}{a(n + 1)} \sin^{n+1} ax.$ $(n \neq -1).$
239 $\int \frac{\cos ax}{\sin ax} \, dx = \frac{1}{a} \ln \sin ax.$

240
$$\int (b + c \sin ax)^{n} \cos ax \, dx = \frac{1}{ac (n + 1)} (b + c \sin ax)^{n+1}. \quad (n \neq -1)$$
241
$$\int \frac{\cos ax \, dx}{b + c \sin ax} = \frac{1}{ac} \ln (b + c \sin ax).$$
242
$$\int \cos^{n} ax \sin ax \, dx = -\frac{1}{a} \ln \cos ax.$$
243
$$\int \frac{\sin ax}{\cos ax} \, dx = -\frac{1}{a} \ln \cos ax.$$
244
$$\int (b + c \cos ax)^{n} \sin ax \, dx = -\frac{1}{ac (n + 1)} (b + c \cos ax)^{n+1}. \quad (n \neq -1)$$
245
$$\int \frac{\sin ax}{b + c \cos ax} \, dx = -\frac{1}{ac} \ln (b + c \cos ax).$$
246
$$\int \frac{dx}{b \sin ax + c \cos ax} \, dx = \frac{1}{a} \ln (b + c \cos ax).$$
247
$$\int \sin^{2} ax \cos^{2} ax \, dx = \frac{x}{a} - \frac{\sin 4ax}{32a}.$$
248
$$\int \frac{dx}{\sin ax \cos^{2} ax} = \frac{1}{a} \ln \tan ax.$$
249
$$\int \frac{dx}{\sin^{2} ax \cos^{2} ax} = \frac{1}{a} (\tan ax - \cot ax).$$
250
$$\int \frac{\sin^{2} ax}{\cos ax} \, dx = \frac{1}{a} \left[-\sin ax + \ln \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right) \right].$$
251
$$\int \frac{\cos^{3} ax}{\sin ax} \, dx = \frac{1}{a} \left[\cos ax + \ln \tan \frac{ax}{2} \right].$$
252
$$\int \sin^{m} ax \cos^{n} ax \, dx = \frac{\sin^{m-1} ax \cos^{n+1} ax}{a (m + n)} + \frac{m-1}{m+n} \int \sin^{m-2} ax \cos^{n} ax \, dx. \quad (m, n pos.)$$
253
$$\int \sin^{m} ax \cos^{n} ax \, dx = \frac{-\cos^{n+1} ax}{a (m-1)} \sin^{m-1} ax + \frac{m-n-2}{a (m-1)} \int \sin^{m} ax \cos^{n-2} ax \, dx. \quad (m, n pos.)$$
254
$$\int \frac{\cos^{n} ax}{\sin^{m} ax} \, dx = \frac{-\cos^{n+1} ax}{a (m-1) \cos^{n-1} ax} + \frac{m-n-2}{(m-1)} \int \frac{\cos^{n} ax}{\sin^{m-2} ax} \, dx. \quad (m, n pos., n \neq 1)$$
255
$$\int \frac{\sin^{n} ax}{\cos^{n} ax} \, dx = \frac{\sin^{m+1} ax}{a (n-1) \cos^{n-1} ax} + \frac{m-n+2}{n-1} \int \frac{\sin^{m} ax}{\cos^{n-2} ax} \, dx. \quad (m, n pos., n \neq 1)$$
256
$$\int \frac{\sin^{2n} ax}{\cos ax} \, dx = \int \frac{(1-\sin^{2} ax)^{n}}{\cos ax} \, dx. \quad (\text{Expand, divide, and use 224-229)}$$
257
$$\int \frac{\cos^{n} ax}{\sin ax} \, dx = \int \frac{(1-\sin^{2} ax)^{n}}{\sin ax} \, dx. \quad (\text{Expand, divide, and use 210-215})$$

258
$$\int \frac{\sin^{2n+1} ax}{\cos ax} dx = \int \frac{(1-\cos^2 ax)^n}{\cos ax} \sin ax dx.$$
(Expand, divide, and use 242-243)

259
$$\int \frac{\cos^{2n+1} ax}{\sin ax} dx = \int \frac{(1-\sin^2 ax)^n}{\sin ax} \cos ax dx.$$

(Expand, divide, and use 238-239)

Functions containing $\tan ax \left(= \frac{I}{\cot ax} \right)$ or $\cot ax \left(= \frac{I}{\tan ax} \right)$

260
$$\int \tan u \, du = -\ln \cos u$$
. (u is any function of x)

261
$$\int \tan ax \, dx = -\frac{I}{a} \ln \cos ax.$$

$$262 \int \tan^2 ax \ dx = \frac{1}{a} \tan ax - x.$$

263
$$\int \tan^n ax \, dx = \frac{1}{a(n-1)} \tan^{n-1} ax - \int \tan^{n-2} ax \, dx$$
. (n integ. > 1)

264
$$\int \cot u \, du = \ln \sin u$$
. (u is any function of x)

265
$$\int \cot ax \, dx = \int \frac{dx}{\tan ax} = \frac{1}{a} \ln \sin ax$$
.

$$266 \quad \int \cot^2 ax \, dx = \int \frac{dx}{\tan^2 ax} = -\frac{1}{a} \cot ax - x.$$

267
$$\int \cot^n ax \, dx = \int \frac{dx}{\tan^n ax} = -\frac{1}{a(n-1)} \cot^{n-1} ax - \int \cot^{n-2} ax \, dx.$$

268
$$\int \frac{dx}{b+c \tan ax} = \int \frac{\cot ax \, dx}{b \cot ax+c} = \frac{1}{b^2+c^2} \left[bx + \frac{c}{a} \ln \left(b \cos ax + c \sin ax \right) \right].$$

269
$$\int \frac{dx}{b + c \cot ax} = \int \frac{\tan ax \, dx}{b \tan ax + c} = \frac{1}{b^2 + c^2} \left[bx - \frac{c}{a} \ln (c \cos ax + b \sin ax) \right]$$

$$270 \int \frac{dx}{\sqrt{1+\tan^2 ax}} = \frac{1}{a} \sin ax.$$

271
$$\int \frac{dx}{\sqrt{b+c \tan^2 ax}} = \frac{1}{a \sqrt{b-c}} \sin^{-1} \left(\sqrt{\frac{b-c}{b}} \sin ax \right)$$
. (b pos., $b^2 > c^2$)

Functions containing $\sec ax \left(= \frac{I}{\cos ax} \right)$ or $\csc ax \left(= \frac{I}{\sin ax} \right)$

272
$$\int \sec u \, du = \ln (\sec u + \tan u) = \ln \tan \left(\frac{u}{2} + \frac{\pi}{4}\right)$$
 (u is any function of x)

273
$$\int \sec ax \, dx = \frac{1}{a} \ln \tan \left(\frac{ax}{2} + \frac{\pi}{4} \right)$$

274
$$\int \sec^2 ax \, dx = \frac{I}{a} \tan ax$$
.

275
$$\int \sec^n ax \, dx = \frac{1}{a(n-1)} \frac{\sin ax}{\cos^{n-1} ax} + \frac{n-2}{n-1} \int \sec^{n-2} ax \, dx$$
. (n integ. > 1)

276
$$\int \csc u \, du = \ln (\csc u - \cot u) = \ln \tan \frac{u}{2}$$
 (u is any function of x)

277
$$\int \csc ax \, dx = \frac{1}{a} \ln \tan \frac{ax}{2}$$

$$278 \quad \int \csc^2 ax \, dx = -\frac{I}{a} \cot ax.$$

279
$$\int \csc^n ax \, dx = -\frac{1}{a(n-1)} \frac{\cos ax}{\sin^{n-1} ax} + \frac{n-2}{n-1} \int \csc^{n-2} ax \, dx$$
. (n integ. >1)

Functions containing tan ax and sec ax or cot ax and csc ax

280
$$\int \tan u \sec u \, du = \sec u$$
. (u is any function of x)

281
$$\int \tan ax \sec ax dx = \frac{I}{a} \sec ax$$
.

282
$$\int \tan^n ax \sec^2 ax \, dx = \frac{1}{a(n+1)} \tan^{n+1} ax$$
. $(n \neq -1)$

283
$$\int \frac{\sec^2 ax \, dx}{\tan ax} = \frac{1}{a} \ln \tan ax.$$

284
$$\int \cot u \csc u \, du = -\csc u$$
. (u is any function of x)

285
$$\int \cot ax \csc ax dx = -\frac{1}{a} \csc ax$$
.

286
$$\int \cot^n ax \csc^2 ax \, dx = -\frac{1}{a(n+1)} \cot^{n+1} ax$$
. $(n \neq -1)$

$$287 \quad \int \frac{\csc^2 ax \, dx}{\cot ax} = -\frac{1}{a} \ln \cot ax.$$

Inverse Trigonometric Functions

288
$$\int \sin^{-1} ax \, dx = x \sin^{-1} ax + \frac{1}{a} \sqrt{1 - a^2 x^2}$$

289
$$\int \cos^{-1} ax \, dx = x \cos^{-1} ax - \frac{1}{a} \sqrt{1 - a^2 x^2}$$

290
$$\int \tan^{-1} ax \, dx = x \tan^{-1} ax - \frac{1}{2 \cdot a} \ln (x + a^2 x^2).$$

291
$$\int \cot^{-1} ax \, dx = x \cot^{-1} ax + \frac{1}{28} \ln (1 + a^2x^2).$$

292
$$\int \sec^{-1} ax \, dx = x \sec^{-1} ax - \frac{1}{a} \ln (ax + \sqrt{a^2x^2 - 1}).$$

293
$$\int \csc^{-1} ax \, dx = x \csc^{-1} ax + \frac{1}{a} \ln (ax + \sqrt{a^2x^2 - 1}).$$

Algebraic and Trigonometric Functions

294
$$\int x \sin ax \, dx = \frac{1}{a^2} \sin ax - \frac{1}{a} x \cos ax.$$

295
$$\int x^n \sin ax \, dx = -\frac{1}{a} x^n \cos ax + \frac{n}{a} \int x^{n-1} \cos ax \, dx$$
. (n pos.)

296
$$\int \frac{\sin ax \, dx}{x} = ax - \frac{(ax)^3}{3 \cdot 3!} + \frac{(ax)^5}{5 \cdot 5!} - \cdots$$

297
$$\int x \cos ax \, dx = \frac{1}{a^2} \cos ax + \frac{1}{a} x \sin ax.$$

298 $\int x^n \cos ax \, dx = \frac{1}{a} x^n \sin ax - \frac{n}{a} \int x^{n-1} \sin ax \, dx.$ (n pos.)
299 $\int \frac{\cos ax \, dx}{x} = \ln ax - \frac{(ax)^2}{2 \cdot 2!} + \frac{(ax)^4}{4 \cdot 4!} - \cdots$

Exponential, Algebraic, Trigonometric, Logarithmic Functions

300
$$\int b^{u} du = \frac{b^{u}}{\ln b}$$
. (u is any function of x)

301 $\int e^{u} du = e^{u}$. (u is any function of x)

302 $\int b^{ax} dx = \frac{b^{ax}}{a \ln b}$.

303 $\int e^{ax} dx = \frac{1}{a} e^{ax}$.

304 $\int \frac{dx}{b + ce^{ax}} = \frac{1}{ab} [ax - \ln (b + ce^{ax})]$.

305 $\int \frac{e^{ax} dx}{b + ce^{ax}} = \frac{1}{ac} \ln (b + ce^{ax})$.

306 $\int \frac{dx}{be^{ax} + ce^{-ax}} = \frac{1}{a\sqrt{bc}} \tan^{-1} \left(e^{ax} \sqrt{\frac{b}{c}} \right)$. (b and c pos.)

307 $\int xb^{ax} dx = \frac{xb^{ax}}{a \ln b} - \frac{b^{ax}}{a^{2} (\ln b)^{2}}$.

308 $\int xe^{ax} dx = \frac{e^{ax}}{a^{2}} (ax - 1)$.

309 $\int x^{n}b^{ax} dx = \frac{x^{n}b^{ax}}{a \ln b} - \frac{n}{a \ln b} \int x^{n-1}b^{ax} dx$. (n pos.)

310 $\int x^{n}e^{ax} dx = \frac{1}{a} x^{n}e^{ax} - \frac{n}{a} \int x^{n-1}e^{ax} dx$. (n pos.)

311 $\int \frac{e^{ax}}{x} dx = \ln x + ax + \frac{(ax)^{2}}{2 \cdot 2!} + \frac{(ax)^{3}}{3 \cdot 3!} + \cdots$.

312 $\int \frac{e^{ax}}{x} dx = \frac{1}{n-1} \left[-\frac{e^{ax}}{x^{n-1}} + a \int \frac{e^{ax}}{x^{n-1}} dx \right]$. (n integ. > 1)

313 $\int e^{ax} \ln x dx = \frac{1}{a} e^{ax} \ln x - \frac{1}{a} \int \frac{e^{ax}}{x} dx$.

314 $\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^{2} + b^{2}} (a \cos bx + b \sin bx)$.

316 $\int xe^{ax} \sin bx dx = \frac{xe^{ax}}{a^{2} + b^{2}} (a \sin bx - b \cos bx) - \frac{e^{ax}}{(a^{2} + b^{2})^{2}} [(a^{2} - b^{2}) \sin bx - 2 ab \cos bx]$.

317
$$\int xe^{ax} \cos bx \, dx = \frac{xe^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) - \frac{e^{ax}}{(a^2 + b^2)^2} [(a^2 - b^2) \cos bx + 2 ab \sin bx].$$

318
$$\int \ln ax \, dx = x \ln ax - x$$
.
319 $\int (\ln ax)^n \, dx = x (\ln ax)^n - n \int (\ln ax)^{n-1} \, dx$. (n pos.)
320 $\int x^n \ln ax \, dx = x^{n+1} \left[\frac{\ln ax}{n+1} - \frac{1}{(n+1)^2} \right]$. (n $\neq -1$)
321 $\int \frac{(\ln ax)^n}{x} \, dx = \frac{(\ln ax)^{n+1}}{n+1}$. '(n $\neq -1$)
322 $\int \frac{dx}{x \ln ax} = \ln (\ln ax)$.
323 $\int \frac{dx}{\ln ax} = \frac{1}{a} \left[\ln (\ln ax) + \ln ax + \frac{(\ln ax)^2}{2 \cdot 2!} + \frac{(\ln ax)^3}{3 \cdot 3!} + \cdots \right]$.
324 $\int \sin (\ln ax) \, dx = \frac{x}{a} [\sin (\ln ax) - \cos (\ln ax)]$.

325 $\int \cos (\ln ax) dx = \frac{x}{2} [\sin (\ln ax) + \cos (\ln ax)].$

Some Definite Integrals

326
$$\int_{0}^{a} \sqrt{a^{2} - x^{2}} \, dx = \frac{\pi a^{2}}{4}.$$
327
$$\int_{0}^{a} \sqrt{2 \, ax - x^{2}} \, dx = \frac{\pi a^{2}}{4}.$$
328
$$\int_{0}^{\infty} \frac{dx}{ax^{2} + b} = \frac{\pi}{2 \sqrt{ab}}. \quad (a \text{ and } b \text{ pos.})$$
329
$$\int_{0}^{\sqrt{b}} \frac{dx}{ax^{2} + b} = \int_{\sqrt{b}}^{\infty} \frac{dx}{ax^{2} + b} = \frac{\pi}{4 \sqrt{ab}}. \quad (a \text{ and } b \text{ pos.})$$
330
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} ax \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} ax \, dx = \frac{1 \cdot 3 \cdot 5 \cdot \dots (n-1)}{2 \cdot 4 \cdot 6 \cdot \dots n} \frac{\pi}{2 \, a}. \quad (n, \text{ pos. even integ.})$$
331
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} ax \, dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} ax \, dx = \frac{2 \cdot 4 \cdot 6 \cdot \dots (n-1)}{1 \cdot 3 \cdot 5 \cdot \dots n} \frac{1}{a}. \quad (n, \text{ pos. odd integ.})$$
332
$$\int_{0}^{\pi} \sin ax \sin bx \, dx = \int_{0}^{\pi} \cos ax \cos bx \, dx = o. \quad (a \neq b)$$
333
$$\int_{0}^{\pi} \sin^{2} ax \, dx = \int_{0}^{\pi} \cos^{2} ax \, dx = \frac{\pi}{2}.$$
334
$$\int_{0}^{\infty} e^{-ax^{2}} \, dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}.$$
335
$$\int_{0}^{\infty} x^{n} e^{-ax} \, dx = \frac{n!}{a^{n+1}}. \quad (n \text{ pos. integ.})$$

336 Definition and Approximate Value of the Definite Integral

If f(x) is continuous from x = a to x = b inclusive, and this interval is divided into n equal parts by the points $a, x_1, x_2, \ldots, x_{n-1}, b$ such that $\Delta x = (b - a) \div n$, then the definite integral of f(x) dx between the limits x = a to x = b is

$$\int_a^b f(x) dx = \lim_{n \to \infty} [f(a) \Delta x + f(x_1) \Delta x + f(x_2) \Delta x + \cdots + f(x_{n-1}) \Delta x].$$

$$= \left[\int f(x) dx\right]_a^b = \left[F(x)\right]_a^b = F(b) - F(a).$$

If $y_0, y_1, y_2, \ldots, y_{n-1}, y_n$ are the values of f(x) when $x = a, x_1, x_2, \ldots, x_{n-1}$, b respectively, and if $h = (b - a) \div n$, then approximate values of this definite integral are given by the Trapezoidal, Durand's, and Simpson's Rules on page 18.

337 Some Fundamental Theorems on Definite Integrals

$$\begin{split} &\int_a^b [f_1(x) + f_2(x) + \cdots] \ dx = \int_a^b f_1(x) \ dx + \int_a^b f_2(x) \ dx + \cdots \\ &\int_a^b k \ f(x) \ dx = k \int_a^b f(x) \ dx. \quad (k \text{ is any constant}) \\ &\int_a^b f(x) \ dx = - \int_b^a f(x) \ dx. \\ &\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx. \\ &\int_a^b f(x) \ dx = (b-a) \ f(x_i), \text{ where } x_i \text{ lies between a and b.} \\ &\int_a^\infty f(x) \ dx = \lim_{b \to \infty} \int_a^b f(x) \ dx. \end{split}$$

Some Applications of the Definite Integral

338 Plane Area

(a) Area (A) bounded by the curve y = f(x), the axis OX, and the ordinates x = a, x = b.

$$dA = y dx$$
, $A = \int_a^b f(x) dx$.

(b) Area (A) bounded by the curve $\mathbf{x} = \mathbf{f}(\mathbf{y})$, the axis OY, and the abscissas $\mathbf{y} = \mathbf{c}$, $\mathbf{y} = \mathbf{d}$.

$$dA = x dy$$
, $A = \int_{c}^{d} f(y) dy$.

(c) Area (A) bounded by the curve $x = f_1(t)$, $y = f_2(t)$, the axis OX, and t = a, t = b.

$$dA = y dx$$
, $A = \int_a^b f_1(t) f_1'(t) dt$.

(d) Area (A) bounded by the curve $\mathbf{r} = \mathbf{f}(\boldsymbol{\theta})$ and two radii $\boldsymbol{\theta} = \boldsymbol{\alpha}, \, \boldsymbol{\theta} = \boldsymbol{\beta}$.

$$dA = \frac{1}{2} r^2 d\theta$$
, $A = \frac{1}{2} \int_{\alpha}^{\beta} [f(\theta)]^2 d\theta$.

339 Length of Arc

(a) Length (s) of arc of curve f(x, y) = 0 from the point (a, c) to the point (b, d).

$$ds = \sqrt{(dx)^2 + (dy)^2}, \qquad s = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy.$$

(b) Length (s) of arc of curve $x = f_1(t)$, $y = f_2(t)$ from t = a to t = b.

$$ds = \sqrt{(dx)^2 + (dy)^2}, \quad s = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt.$$

(c) Length (s) of arc of curve $r = f(\theta)$ from $\theta = \alpha$ to $\theta = \beta$

$$ds = \sqrt{(dr)^2 + (r d\theta)^2}, \quad s = \int_{\alpha}^{\beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

(d) Length (s) of arc of space curve $x = f_1(t)$, $y = f_2(t)$, $z = f_3(t)$ from t = a to t = b.

$$ds = \sqrt{(dx)^2 + (dy)^2 + (dz)^2}, \quad s = \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} dt.$$

340 Volume of Revolution

(a) Volume (V) of revolution generated by revolving about the line y = k the area enclosed by the curve y = f(x), the ordinates x = a, x = b, and the line y = k.

$$dV = \pi R^2 dx = \pi (y - k)^2 dx,$$

$$V = \pi \int_a^b [f(x) - k]^2 dx.$$

(b) Volume (V) of revolution generated by revolving about the line x = k the

FIG. 340.

area enclosed by the curve $\mathbf{x} = \mathbf{f}(\mathbf{y})$, the abscissas $\mathbf{y} = \mathbf{c}$, $\mathbf{y} = \mathbf{d}$, and the line $\mathbf{x} = \mathbf{k}$.

$$dV = \pi R^2 dy = \pi (x - k)^2 dy, \qquad V = \pi \int_c^d [f(y) - k]^2 dy.$$

341 Area of Surface of Revolution

(a) Area (S) of surface of revolution generated by revolving the arc of the curve f(x, y) = o from the point (a, c) to the point (b, d).

About
$$y = k$$
: $dS = 2 \pi R ds$,

$$S = 2 \pi \int_a^b (y - k) \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx.$$

About
$$\mathbf{x} = \mathbf{k}$$
: $d\mathbf{S} = 2 \pi \mathbf{R} d\mathbf{s}$,
 $\mathbf{S} = 2 \pi \int_{c}^{d} (\mathbf{x} - \mathbf{k}) \sqrt{1 + \left(\frac{d\mathbf{x}}{d\mathbf{y}}\right)^{2}} d\mathbf{y}$.

(b) Area (S) of surface of revolution generated by revolving the arc of the curve $\mathbf{r} = \mathbf{f}(\theta)$ from $\theta = \alpha$ to $\theta = \beta$.

About OX:
$$dS = 2 \pi R ds$$
, $S = 2 \pi \int_{\alpha}^{\beta} r \sin \theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$.
About OY: $dS = 2 \pi R ds$, $S = 2 \pi \int_{\alpha}^{\beta} r \cos \theta \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta$.

342 Volume by Parallel Sections

Volume (V) of a solid generated by moving a plane section of area A_x perpendicular to OX from x = a to x = b.

$$dV = A_x dx, \qquad V = \int_a^b A_x dx,$$

where A_x must be expressed as a function of x.

FIG. 342.

343 Mass

Mass (m) of constant or variable density (δ).

$$dm = \delta \, dA \quad \text{or} \quad \delta \, ds \quad \text{or} \quad \delta \, dV \quad \text{or} \quad \delta \, dS, \qquad m = \int dm,$$

where dA, ds, dV, dS are the elements of area, length, volume, surface in 338-342, and δ = mass per unit element.

344 Moment

Moment (M) of a mass (m).

About OX:
$$M_x = \int y \, dm = \int r \sin \theta \, dm$$
.

About OY:
$$M_y = \int x \, dm = \int r \cos \theta \, dm$$
.

About O:
$$M_0 = \int \sqrt{x^2 + y^2} dm = \int r dm$$
.

345 Moment of Inertia

Moment of inertia (I) of a mass (m).

About OX:
$$J_x = \int y^2 dm = \int r^2 \sin^2 \theta dm$$
.

About OY:
$$J_{\nu} = \int x^2 dm = \int r^2 \cos^2 \theta dm$$
.

About O:
$$J_0 = \int (x^2 + y^2) dm = \int r^2 dm$$
.

346 Center of Gravity

Coördinates (\bar{x}, \bar{y}) of the center of gravity of a mass (m).

$$\overline{x} = \frac{\int x \ dm}{\int dm}, \qquad \overline{y} = \frac{\int y \ dm}{\int dm}.$$

Note. The center of gravity of the element of area may be taken at its mid-point. In the above equations \mathbf{x} and \mathbf{y} are the coördinates of the center of gravity of the element.

347 Work

Work (W) done in moving a particle from s = a to s = b against a force whose component in the direction of motion is F_a .

$$dW = F_a ds$$
, $W = \int_a^b F_a ds$,

where F, must be expressed as a function of s.

348 Pressure

Pressure (p) against an area vertical to the surface of the liquid and between depths a and b.

$$dp = wyx dy, p = \int_a^b wyx dy,$$

where $\mathbf{w} =$ weight of liquid per unit volume, $\mathbf{y} =$ depth beneath surface of liquid of a horizontal element of area, and $\mathbf{x} =$ length of horizontal element of area; \mathbf{x} must be expressed in terms of \mathbf{y} .

349 Center of Pressure

The depth (\bar{y}) of the center of pressure against an area vertical to the surface of the liquid and between depths a and b.

$$\overline{y} = \frac{\int_a^b y \, dp}{\int_a^b dp} \cdot \quad \text{(for dp see 348)}$$

DIFFERENTIAL EQUATIONS

350 Definitions and Notation

A differential equation is an equation involving differentials or derivatives.

The order of a differential equation is the same as that of the derivative of highest order which it contains.

The degree of a differential equation is the same as the power to which the derivative of highest order in the equation is raised, that derivative entering the equation free from radicals.

The solution of a differential equation is the relation involving only the variables (but not their derivatives) and arbitrary constants, consistent with the given differential equation.

The most general solution of a differential equation of the nth order contains n arbitrary constants. If particular values are assigned to these arbitrary constants, the solution is called a particular solution.

Notation. M and N denote functions of x and y; X denotes a function of x alone or a constant, Y denotes a function of y alone or a constant; C, C₁, C₂..., C_n denote arbitrary constants of integration, a, b, k, l, m, n, ... denote given constants.

Equations of First Order and First Degree. M dx + N dy = 0351 Variables Separable: $X_1Y_1 dx + X_2Y_2 dy = 0$.

Solution:
$$\int \frac{X_1}{X_2} dx + \int \frac{Y_2}{Y_1} dy = C.$$

352 Homogeneous Equation: $dy - f(\frac{y}{x})dx = 0$.

Solution:
$$\mathbf{x} = \mathbf{C} e^{\int \frac{dv}{f(v) - v}}$$
 and $\mathbf{v} = \frac{\mathbf{y}}{\mathbf{x}}$.

Note. Here, $\mathbf{M} \div \mathbf{N}$ can be written in a form such that \mathbf{x} and \mathbf{y} occur only in the combination $\mathbf{y} \div \mathbf{x}$; this can always be done if every term in \mathbf{M} and \mathbf{N} is of the same degree in \mathbf{x} and \mathbf{y} .

353 Linear Equation: $dy + (X_1y - X_2) dx = 0$.

Solution:
$$y = e^{-\int X_1 dx} \left(\int X_2 e^{\int X_1 dx} dx + C \right)$$
.

Note. A similar solution exists for $dx + (Y_1 x - Y_2) dy = 0$.

354 Exact Equation: M dx + N dy = 0, where $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

Solution:
$$\int M dx + \int \left[N - \frac{\partial}{\partial y} \int M dx \right] dy = C,$$

where y is constant when integrating with respect to x.

355 Non-exact Equation: M dx + N dy = 0, where $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$.

Solution: The equation may be made exact by multiplying by an integrating factor μ (x, y). The form of this factor is readily recognized in a large number of cases. Then solve by 354.

Certain Special Equations of the Second Order. $\frac{d^2y}{dx^2} = f\left(x, y, \frac{dy}{dx}\right)$

356 Equation:
$$\frac{d^2y}{dx^2} = X.$$

Solution:
$$y = x \int X dx - \int x X dx + C_1x + C_2$$

357 Equation:
$$\frac{d^2y}{dx^2} = Y.$$
Solution:
$$x = \int \frac{dy}{\sqrt{2 \int Y dy + C_1}} + C_2.$$

358 Equation:
$$\frac{d^2y}{dx^2} = f\left(\frac{dy}{dx}\right).$$

Solution:
$$\mathbf{x} = \int \frac{d\mathbf{p}}{f(\mathbf{p})} + C_1 \text{ and } \mathbf{y} = \int \frac{\mathbf{p} d\mathbf{p}}{f(\mathbf{p})} + C_2.$$

From these two equations eliminate $p = \frac{dy}{dx}$ if necessary.

359 Equation:
$$\frac{d^2y}{dx^2} = f\left(x, \frac{dy}{dx}\right)$$

Solution: Place $\frac{dy}{dx} = p$ and $\frac{d^2y}{dx^2} = \frac{dp}{dx}$, thus bringing the equation into the form $\frac{dp}{dx} = f(x, p)$. This is of the first order and may be solved for p by 35x-355. Then replace p by $\frac{dy}{dx}$ and integrate for y.

360 Equation:
$$\frac{d^2y}{dx^2} = f\left(y, \frac{dy}{dx}\right)$$

Solution: Place $\frac{dy}{dx} = p$ and $\frac{d^2y}{dx^2} = p\frac{dp}{dy}$, thus bringing the equation into the form $p\frac{dp}{dy} = f(y, p)$. This is of the first order and may be solved for p by 35i-355. Then replace p by $\frac{dy}{dx}$ and integrate for y.

Linear Equations of Physics. Second Order with Constant

Coefficients.
$$\frac{d^2x}{dt^2} + 21\frac{dx}{dt} \pm k^2x = f(t)$$

361 Equation:
$$\frac{d^2x}{dt^2} - k^2x = 0.$$
Solution:
$$x = C_1e^{kt} + C_2e^{-kt}$$

362 Equation of Simple Harmonic Motion: $\frac{d^2x}{dt^2} + k^2x = 0$.

Solution: This may be written in the following forms:

(a)
$$\mathbf{x} = C_1 e^{kt\sqrt{-1}} + C_2 e^{-kt\sqrt{-1}}$$

(b)
$$\mathbf{x} = C_1 \cos kt + C_2 \sin kt$$
.

(c)
$$x = C_1 \sin(kt + C_2)$$
.

(d)
$$x = C_1 \cos(kt + C_2)$$
.

363 Equation of Harmonic Motion with Constant Disturbing

Force:
$$\frac{d^2x}{dt^2} + k^2x = a.$$

Solution:
$$x = C_1 \cos kt + C_2 \sin kt + \frac{a}{k^2}$$

or
$$x = C_1 \sin(kt + C_2) + \frac{a}{k^2}$$

364 Equation of Forced Vibration

(a)
$$\frac{d^2x}{dt^2} + k^2x = a \cos nt + b \sin nt$$
, where $n \neq k$.

Solution: $x = C_1 \cos kt + C_2 \sin kt + \frac{1}{k^2 - n^2}$ (a cos nt + b sin nt).

(b)
$$\frac{d^2x}{dt^2} + k^2x = a\cos kt + b\sin kt.$$

Solution: $x = C_1 \cos kt + C_2 \sin kt + \frac{t}{2k} (a \sin kt - b \cos kt)$.

365 Equation of Damped Vibration: $\frac{d^2x}{dt^2} + 21\frac{dx}{dt} + k^2x = 0$.

Solution: If
$$l^2 = k^2$$
, $x = e^{-lt} (C_1 + C_2 t)$.
If $l^2 > k^2$, $x = e^{-lt} (C_1 e^{\sqrt{|p_-|k|^2}t} + C_2 e^{-\sqrt{|p_-|k|^2}t})$.
If $l^2 < k^2$, $x = e^{-lt} (C_1 \cos \sqrt{|k|^2 - l^2}t + C_2 \sin \sqrt{|k|^2 - l^2}t)$
or $x = C_1 e^{-lt} \sin (\sqrt{|k|^2 - l^2}t + C_2)$.

366 Equation of Damped Vibration with Constant Disturbing Force:

$$\frac{d^2x}{dt^2} + 21\frac{dx}{dt} + k^2x = a.$$

$$x = x_1 + \frac{a}{1+2},$$

Solution:

where \mathbf{x}_1 is the solution of equation 365.

367 General Equation: $\frac{d^2x}{dt^2} + 21 \frac{dx}{dt} + k^2x = f(t) = T.$

Solution:

$$x=x_1+I,$$

where x1 is the solution of equation 365, and I is given by

(a)
$$I^2 = k^2$$
, $I = e^{-it} \left[t \int e^{it} T dt - \int e^{it} T t dt \right]$.

(b)
$$l^2 > k^2$$
, $I = \frac{I}{\alpha - \beta} \left[e^{\alpha l} \int e^{-\alpha l} T dt - e^{\beta l} \int e^{-\beta l} T dt \right]$,

where

$$\alpha = -1 + \sqrt{l^2 - k^2}, \quad \beta = -1 - \sqrt{l^2 - k^2}.$$

(c)
$$l^2 < k^2$$
, $I = \frac{e^{\alpha t}}{\beta} \left[\sin \beta t \int e^{-\alpha t} \cos \beta t T dt - \cos \beta t \int e^{-\alpha t} \sin \beta t T dt \right]$, where $\alpha = -1$, $\beta = \sqrt{k^2 - l^2}$.

Note. I may also be found by the method indicated in 369.

Linear Equations with Constant Coefficients: nth Order 368 Equation

$$a_n \frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + a_{n-2} \frac{d^{n-2} x}{dt^{n-2}} + \cdots + a_1 \frac{dx}{dt} + a_0 x = 0.$$

Solution: Let $D = a_1, a_2, a_3, \ldots, a_n$ be the n roots of the auxiliary algebraic equation $a_n D^n + a_{n-1} D^{n-1} + a_{n-2} D^{n-2} + \cdots + a_1 D + a_0 = 0$.

(a) If all roots are real and distinct,

$$x = C_1 e^{\alpha_1 t} + C_2 e^{\alpha_2 t} + \cdots + C_n e^{\alpha_n t}.$$

(b) If 2 roots are equal: $\alpha_1 = \alpha_2$, the rest real and distinct, $\mathbf{x} = \mathbf{e}^{\alpha_1 t} (C_1 + C_2 t) + C_3 \mathbf{e}^{\alpha_2 t} + \cdots + C_n \mathbf{e}^{\alpha_n t}.$

- (c) If p roots are equal: $\mathbf{a}_1 = \mathbf{a}_2 = \cdots = \mathbf{a}_p$, the rest real and distinct, $\mathbf{x} = \mathbf{e}^{\alpha_1 t} (C_1 + C_2 t + C_3 t^2 + \cdots + C_n t^{p-1}) + \cdots + C_n \mathbf{e}^{\alpha_n t}$.
- (d) If 2 roots are conjugate imaginary: $\alpha_1 = \beta + \gamma \sqrt{-1}$, $\alpha_2 = \beta \gamma \sqrt{-1}$ $\mathbf{x} = \mathbf{e}^{\beta t} (C_1 \cos \gamma t + C_2 \sin \gamma t) + C_3 \mathbf{e}^{\alpha_3 t} + \cdots + C_n \mathbf{e}^{\alpha_n t}$.
- (e) If there is a pair of conjugate imaginary double roots:

$$\begin{aligned} \mathbf{a}_1 &= \mathbf{\beta} + \mathbf{\gamma} \sqrt{-1} = \mathbf{a}_2, & \mathbf{a}_3 &= \mathbf{\beta} - \mathbf{\gamma} \sqrt{-1} = \mathbf{a}_4, \\ \mathbf{x} &= \mathbf{e}^{\beta t} \left[(C_1 + C_2 t) \cos \mathbf{\gamma} t + (C_3 + C_4 t) \sin \mathbf{\gamma} t \right] + \cdots + C_n \mathbf{e}^{\alpha_n t} \end{aligned}$$

369 Equation

$$a_n \frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \cdots + a_1 \frac{dx}{dt} + a_0 x = f(t).$$

Solution:

$$\mathbf{x}=\mathbf{x}_1+\mathbf{I},$$

where \mathbf{x}_1 is the solution of equation 368, and where I may be found by the following method.

Let $f(t) = T_1 + T_2 + T_3 + \cdots$. Find the 1st, 2d, 3d, . . . derivatives of these terms. If $\tau_1, \tau_2, \tau_3, \ldots, \tau_n$ are the resulting expressions which have different functional form (disregarding constant coefficients), assume

$$\mathbf{I} = \mathbf{A}\boldsymbol{\tau}_1 + \mathbf{B}\boldsymbol{\tau}_2 + \mathbf{C}\boldsymbol{\tau}_3 + \cdots + \mathbf{K}\boldsymbol{\tau}_k + \cdots + \mathbf{N}\boldsymbol{\tau}_n.$$

Note. Thus, if $T = a \sin nt + bt^2e^{kt}$, all possible successive derivatives of $\sin nt$ and t^2e^{kt} give terms of the form: $\sin nt$, $\cos nt$, e^{kt} , te^{kt} , t^2e^{kt} , hence assume $I = A \sin nt + B \cos nt + Ce^{kt} + Dte^{kt} + Et^2e^{kt}$.

Substitute this value of I for x in the given equation, expand, equate coefficients of like terms in the left and right members of the equation, and solve for $A, B, C, \ldots N$.

Note. If a root, a_k , occurring m times, of the algebraic equation in D (see 368) gives rise to a term of the form τ_k in \mathbf{x}_1 , then the corresponding term in the assumed value of I is $\mathbf{K}t^m\tau_k$.

370 Simultaneous Equations

$$\begin{cases} a_n \frac{d^n x}{dt^n} + b_m \frac{d^m y}{dt^m} + \cdots + a_1 \frac{dx}{dt} + b_1 \frac{dy}{dt} + a_0 x + b_0 y = f_1(t). \\ c_k \frac{d^k x}{dt^k} + g_l \frac{d^l y}{dt^l} + \cdots + c_1 \frac{dx}{dt} + g_1 \frac{dy}{dt} + c_0 x + g_0 y = f_2(t). \end{cases}$$

Solution: Write the equations in the form:

$$\begin{cases} (a_nD^n + \cdots + a_1D + a_0) \ x + (b_mD^m + \cdots + b_1D + b_0) \ y = f_1(t), \\ (c_kD^k + \cdots + c_1D + c_0) \ x + (g_lD^l + \cdots + g_1D + g_0) \ y = f_2(t), \end{cases}$$
where
$$D = \frac{d_1}{d_2}, \ldots, D^i = \frac{d_1^i}{d_2^i}, \ldots.$$

Regarding this set of equations as a pair of simultaneous algebraic equations in x and y, eliminate y and x in turn, getting two linear differential equations of the form 369 whose solutions are

$$x = x_1 + I_1, \quad y = y_1 + I_2.$$

Substitute these values of x and y in the original equations, equate coefficients of like terms, and thus express the arbitrary constants in y_1 , say, in terms of those in x_1 .

Partial Differential Equations

371 Equation of Oscillation: $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$.

Solution: $\mathbf{y} = \sum_{i=1}^{i=\infty} C_i e^{(x+at)\alpha_i} + \sum_{i=1}^{i=\infty} C_i' e^{(x-at)\alpha_i},$

where C_i , C_i , α_i are arbitrary constants.

372 Equation of Thermodynamics: $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 v}{\partial x^2}$.

Solution: $u = \sum_{i=1}^{i=\infty} C_i e^{\alpha_i x} e^{a^2 \alpha_i^2 t},$

where C_i and α_i are arbitrary constants.

373 Equation of Laplace or Condition of Continuity of Incompressible Liquids: $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{v}^2} = \mathbf{o}$.

Solution: $u = \sum_{i=1}^{i=\infty} C_i e^{(z+y\sqrt{-1})\alpha_i} + \sum_{i=1}^{i=\infty} C_i' e^{(z-y\sqrt{-1})\alpha_i}$

where C_i , C_i , α_i are arbitrary constants.

COMPLEX QUANTITIES

374 Definition and Representation of a Complex Quantity

If z = x + jy, where $j = \sqrt{-1}$ and x and y are real, z is called a complex quantity. z is completely determined by x and y.

If P(x, y) is a point in the plane (Fig. 374) then the segment OP in magnitude and direction is said to represent the complex quantity z = x + jy.

If θ is the angle from OX to OP and r is the length of OP, then

$$z = x + iy = r(\cos \theta + i \sin \theta) = re^{i\theta}$$

where $\theta = \tan^{-1} \frac{y}{x}$, $r = +\sqrt{x^2 + y^2}$, and e is the

FIG. 374.

base of natural logarithms. x + jy and x - jy are called conjugate complex quantities.

375 Properties of Complex Quantities

Let z, z₁, z₂ represent complex quantities, then:

Sum or Difference: $z_1 \pm z_2 = (x_1 \pm x_2) + j(y_1 \pm y_2)$.

Product: $z_1 \cdot z_2 = r_1 r_2 \left[\cos \left(\theta_1 + \theta_2 \right) + j \sin \left(\theta_1 + \theta_2 \right) \right]$

$$= r_1 r_2 e^{j(\theta_1 + \theta_2)} = (x_1 x_2 - y_1 y_2) + j(x_1 y_2 + x_2 y_1).$$

Quotient: $\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + j \sin(\theta_1 - \theta_2)]$

$$=\frac{r_1}{r_2}e^{j(\theta_1-\theta_2)}=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+j\frac{x_2y_1-x_1y_2}{x_2^2+y_2^2}$$

Power: $z^n = r^n [\cos n\theta + j \sin n\theta] = r^n e^{jn\theta}$.

Root:
$$\sqrt[n]{z} = \sqrt[n]{r} \left[\cos \frac{\theta + 2 k\pi}{n} + j \sin \frac{\theta + 2 k\pi}{n} \right] = \sqrt[n]{r} e^{j\frac{\theta + 2 k\pi}{n}},$$

where k takes in succession the values 0, 1, 2, 3, ..., n-1.

Equation: If $z_1 = z_2$, then $x_1 = x_2$ and $y_1 = y_2$.

Periodicity: $\mathbf{z} = \mathbf{r} (\cos \theta + \mathbf{j} \sin \theta) = \mathbf{r} [\cos (\theta + 2 \mathbf{k}\pi) + \mathbf{j} \sin (\theta + 2 \mathbf{k}\pi)],$ or $\mathbf{z} = \mathbf{r} e^{j\theta} = \mathbf{r} e^{j(\theta + 2 \mathbf{k}\pi)}$ and $e^{j2 \mathbf{k}\pi} = \mathbf{I}$, where **k** is any integer.

Exponential-Trigonometric Relations:

$$e^{jz} = \cos z + j \sin z$$
, $e^{-jz} = \cos z - j \sin z$,
 $\cos z = \frac{1}{2} (e^{jz} + e^{-jz})$, $\sin z = \frac{1}{2j} (e^{jz} - e^{-jz})$.

VECTORS

376 Definition and Graphical Representation of a Vector

A vector (V) is a quantity which is completely specified by a magnitude and a direction. A scalar (s) is a quantity which is completely specified by a magnitude.

The vector (V) may be represented geometrically by the segment \overrightarrow{OA} , the length of OA signifying the magnitude of V and the arrow carried by OA signifying the direction of V.

The segment \overrightarrow{AO} represents the vector $-\mathbf{V}$.

FIG. 376.

377 Graphical Summation of Vectors

If V_1 , V_2 are two vectors, their graphical sum, $V = V_1 + V_2$, is formed by drawing the vector $V_1 = \overrightarrow{OA}$ from any point O, and the vector $V_2 = \overrightarrow{AB}$ from the end of V_1 , and joining O and O; then O and O are O and O and O and O are O are O are O and O are O and O are O are O and O are O are O and O are O and O are O and O are O are O are O are O are O and O are O are O and O are O are O are O are O and O are O are O and O are O are O are O are O and O are O and O are O and O are O are O are O are O and O are O and O are O

Similarly, if V_1 , V_2 , V_3 , . . . V_n are any number of vectors drawn so that the initial point of one is the end point of the preceding one, then their graphical

Vectors 63

sum, $V = V_1 + V_2 + \ldots + V_n$, is the vector joining the initial point of V_1 with the end point of V_n (Fig. 377b).

378 Components of a Vector. Analytic Representation

A vector (V) considered as lying in the xy coördinate plane is completely determined by its horizontal and vertical components x and y. If i and j represent vectors of unit magnitude along OX and OY respectively, and a and b are the magnitudes of the components x and y, then V may be represented by V = ai + bj, its magnitude by $|V| = + \sqrt{a^2 + b^2}$, and its direction by $\alpha = \tan^{-1} \frac{b}{a}$.

A vector (V) considered as lying in space is completely determined by its components \mathbf{x} , \mathbf{y} , and \mathbf{z} along three mutually perpendicular lines OX, OY, and OZ, directed as in Fig. 378. If i, j, k represent vectors of unit magnitude along OX, OY, OZ respectively, and a, b, c are the magnitudes of the components \mathbf{x} , \mathbf{y} , \mathbf{z} respectively, then V may be represented by $\mathbf{V} = \mathbf{ai} + \mathbf{bj} + \mathbf{ck}$, its magnitude by $|\mathbf{V}| = +\sqrt{\mathbf{a}^2 + \mathbf{b}^2 + \mathbf{c}^2}$, and its direction by $\cos \alpha$: $\cos \beta$: $\cos \gamma = \mathbf{a}$: b: c.

Fig. 378 (a).

Fig. 378 (b).

Properties of Vectors

$$\mathbf{V} = \mathbf{a}\mathbf{i} + \mathbf{b}\mathbf{j}$$
 or $\mathbf{V} = \mathbf{a}\mathbf{i} + \mathbf{b}\mathbf{j} + \mathbf{c}\mathbf{k}$.

379 Vector sum (V) of any number of vectors, V1, V2, V3,

$$V = V_1 + V_2 + V_3 + \cdots = (a_1 + a_2 + a_3 + \cdots) i + (b_1 + b_2 + \cdots) j + (c_1 + c_2 + c_3 + \cdots) k.$$

380 Product of a vector (V) by a scalar (s)

$$sV = (sa) i + (sb) j + (sc) k.$$

 $(s_1 + s_2) V = s_1 V + s_2 V; (V_1 + V_2) s = V_1 s + V_2 s.$

Note. sV has the same direction as V and its magnitude is s times the magnitude of V.

381 Scalar product of 2 vectors: V₁ · V₂.

 $V_1 \cdot V_2 = |V_1| |V_2| \cos \phi$, where ϕ is the angle between V_1 and V_2 .

$$\mathbf{V}_1 \cdot \mathbf{V}_2 = \mathbf{V}_2 \cdot \mathbf{V}_1; \qquad \mathbf{V}_1 \cdot \mathbf{V}_1 = |\mathbf{V}_1|^2.$$

$$(V_1 + V_2) \cdot V_3 = V_1 \cdot V_3 + V_2 \cdot V_3;$$

$$\begin{aligned} (V_1 + V_2) \cdot (V_3 + V_4) &= V_1 \cdot V_3 + V_1 \cdot V_4 + V_2 \cdot V_3 \\ &+ V_2 \cdot V_4. \end{aligned}$$

$$i \cdot i = j \cdot j = k \cdot k = i;$$
 $i \cdot j = j \cdot k = k \cdot i = 0.$

In plane: $V_1 \cdot V_2 = a_1 a_2 + b_1 b_2$; in space: $V_1 \cdot V_2 = a_1 a_2 + b_1 b_2 + c_1 c_2$.

Note. The scalar product of two vectors $V_1 \cdot V_2$ is a scalar quantity and may physically be represented by the work done by a constant force of magnitude $|V_1|$ on a unit particle moving through a distance $|V_2|$, where ϕ is the angle between the line of force and the direction of motion.

382 Vector product of 2 vectors: $V_1 \times V_2$.

 $V_1 \times V_2 = 1 |V_1| |V_2| \sin \phi$, where ϕ is the angle from V_1 to V_2 and 1 is a unit vector perpendicular to the plane of the vectors V₁ and V₂ and so directed that a right-handed screw driven in the direction of 1 would carry V₁ into V₂.

$$\begin{array}{l} V_{1} \times V_{2} = -V_{2} \times V_{1}; \quad V_{1} \times V_{1} = o. \\ (V_{1} + V_{2}) \times V_{3} = V_{1} \times V_{3} + V_{2} \times V_{3}; \\ V_{1} \times (V_{2} \times V_{3}) = V_{2} \cdot (V_{1} \cdot V_{3}) - V_{3} \cdot (V_{1} \cdot V_{2}). \\ V_{1} \cdot (V_{2} \times V_{3}) = V_{2} \cdot (V_{3} \times V_{1}) = V_{3} \cdot (V_{1} \times V_{2}); \\ (V_{1} + V_{2}) \times (V_{3} + V_{4}) = V_{1} \times V_{3} + V_{1} \times V_{4} + V_{2} \times V_{3} + V_{2} \times V_{4}, \\ i \times i = j \times j = k \times k = o; \quad i \times j = k; \quad j \times k = i; \quad k \times i = j. \end{array}$$

Fig. 382 (a).

Fig. 382 (b).

In plane: $V_1 \times V_2 = (a_1b_2 - a_2b_1) k$.

In space:
$$V_1 \times V_2 = (b_2c_3 - b_3c_2)i + (c_3a_1 - c_1a_3)j + (a_1b_2 - a_2b_1)k$$
.

Note. The vector product of two vectors is a vector quantity and may physically be represented by the moment of a force V_1 about a point O placed so that the moment arm is $y = |V_2| \sin \phi$ (see Fig. 382 b).

HYPERBOLIC FUNCTIONS

383 Definitions of Hyperbolic Functions. (See Table, p 290.)

Hyperbolic sine (sinh)
$$x = \frac{1}{2} (e^x - e^{-x});$$
 csch $x = \frac{1}{\sinh x}$

Hyperbolic cosine (cosh)
$$x = \frac{1}{2} (e^x + e^{-x});$$
 sech $x = \frac{1}{\cosh x}$

Hyperbolic tangent (tanh)
$$x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
; $\coth x = \frac{1}{\tanh x}$

where e = base of natural logarithms.

Note. The circular or ordinary trigonometric functions were defined with reference to a circle; in a similar manner, the hyperbolic functions may be defined with reference to a hyperbola. In the above definitions the hyperbolic functions are abbreviations for certain exponential functions.

384 Graphs of Hyperbolic Functions (a) $y = \sinh x$; (b) $y = \cosh x$; (c) $y = \tanh x$.

Fig. 384 (a).

Fig. 384 (b).

Fig. 384 (c).

385 Some Relations among Hyperbolic Functions

$$\begin{array}{lll} \sinh o = o, & \cosh o = 1, & \tanh o = o. \\ \sinh \infty = \infty, & \cosh \infty = \infty, & \tanh \infty = 1. \\ \sinh (-x) = -\sinh x, & \cosh (-x) = \cosh x, & \tanh (-x) = -\tanh x. \\ \cosh^2 x - \sinh^2 x = 1, & \operatorname{sech}^2 x + \tanh^2 x = 1, & \operatorname{csch}^2 x - \coth^2 x = -1. \end{array}$$

$$\sinh 2 x = 2 \sinh x \cosh x$$
, $\cosh 2 x = \cosh^2 x + \sinh^2 x$.

$$2 \sinh^2 \frac{x}{2} = \cosh x - 1,$$
 $2 \cosh^2 \frac{x}{2} = \cosh x + 1.$

 $sinh (x \pm y) = sinh x cosh y \pm cosh x sinh y.$

 $\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y.$

 $\tanh (x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y}.$

386 Hyperbolic Functions of Pure Imaginary and Complex Quantities

$$\sinh jy = j \sin y$$
; $\cosh jy = \cos y$; $\tanh jy = j \tan y$.

$$sinh(x + jy) = sinh x cos y + j cosh x sin y.$$

$$\cosh (x + jy) = \cosh x \cos y + j \sinh x \sin y$$
.

$$\sinh (x + 2 j\pi) = \sinh x;$$
 $\cosh (x + 2 j\pi) = \cosh x.$
 $\sinh (x + j\pi) = -\sinh x;$ $\cosh (x + j\pi) = -\cosh x.$
 $\sinh (x + \frac{1}{2} j\pi) = j \cosh x;$ $\cosh (x + \frac{1}{2} j\pi) = j \sinh x.$

387 Inverse or Anti-Hyperbolic Functions

If $x = \sinh y$, then y is the anti-hyperbolic sine of x or $y = \sinh^{-1} x$.

$$sinh^{-1} x = ln (x + \sqrt{x^{2} + 1});
csch^{-1} x = sinh^{-1} \frac{I}{x};$$

$$csch^{-1} x = ln (x + \sqrt{x^{2} - 1});
sech^{-1} x = cosh^{-1} \frac{I}{x};$$

$$tanh^{-1} x = \frac{I}{2} ln \frac{I + x}{I - x};
coth^{-1} x = tanh^{-1} \frac{I}{x}.$$

388 Derivatives of Hyperbolic Functions

$$\frac{d}{dx} \sinh x = \cosh x; \quad \frac{d}{dx} \cosh x = \sinh x; \qquad \frac{d}{dx} \tanh x = \operatorname{sech}^{2} x.$$

$$\frac{d}{dx} \coth x = -\operatorname{csch}^{2} x; \quad \frac{d}{dx} \operatorname{sech} x = -\operatorname{sech} x \tanh x; \quad \frac{d}{dx} \operatorname{csch} x = -\operatorname{csch} x \coth x.$$

$$\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{x^{2} + 1}}; \quad \frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^{2} - 1}}; \quad \frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^{2}}.$$

$$\frac{d}{dx} \coth^{-1} x = -\frac{1}{x^{2} - 1}; \quad \frac{d}{dx} \operatorname{sech}^{-1} x = -\frac{1}{x \sqrt{1 - x^{2}}}; \quad \frac{d}{dx} \operatorname{csch}^{-1} x = -\frac{1}{x \sqrt{x^{2} + 1}}.$$

389 Some Integrals Leading to Hyperbolic Functions

$$\int \sinh x \, dx = \cosh x; \quad \int \cosh x \, dx = \sinh x; \quad \int \tanh x \, dx = \ln \cosh x.$$

$$\int \coth x \, dx = \ln \sinh x; \quad \int \operatorname{sech} x \, dx = \sin^{-1} \left(\tanh x \right); \quad \int \operatorname{csch} x \, dx = \ln \tanh \frac{x}{2}.$$

$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \sinh^{-1} \frac{x}{a}; \quad \int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \frac{x}{a}; \quad \int \frac{dx}{a^2 - x^2} = \frac{1}{a} \tanh^{-1} \frac{x}{a}. \quad (x < a)$$

$$\int \frac{dx}{x \sqrt{a^2 + x^2}} = -\frac{1}{a} \sinh^{-1} \frac{a}{x}; \quad \int \frac{dx}{x \sqrt{a^2 - x^2}} = -\frac{1}{a} \cosh^{-1} \frac{a}{x};$$

$$\int \frac{dx}{x^2 - a^2} = -\frac{1}{a} \tanh^{-1} \frac{a}{x}. \quad (x > a)$$

$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \frac{x}{a}.$$

$$\int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \sinh^{-1} \frac{x}{a}.$$

390 Expansions of Hyperbolic Functions into Series

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^6}{5!} + \cdots$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$

$$\tanh x = x - \frac{x^3}{3} + \frac{2 \cdot x^6}{15} - \frac{17 \cdot x^7}{315} + \cdots$$

$$\begin{aligned} &\sinh^{-1} \mathbf{x} = \mathbf{x} - \frac{1}{2} \frac{\mathbf{x}^3}{3} + \frac{\mathbf{i} \cdot 3}{2 \cdot 4} \frac{\mathbf{x}^5}{5} - \frac{\mathbf{i} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{\mathbf{x}^7}{7} + \cdots \quad (\mathbf{x} < \mathbf{i}) \\ &\sinh^{-1} \mathbf{x} = \ln 2 \mathbf{x} + \frac{\mathbf{i}}{2} \frac{\mathbf{i}}{2 \mathbf{x}^2} - \frac{\mathbf{i} \cdot 3}{2 \cdot 4} \frac{\mathbf{i}}{4} \frac{\mathbf{i}}{\mathbf{x}^4} + \frac{\mathbf{i} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{\mathbf{i}}{6} \frac{\mathbf{x}^6} - \cdots \quad (\mathbf{x} > \mathbf{i}) \\ &\cosh^{-1} \mathbf{x} = \ln 2 \mathbf{x} - \frac{\mathbf{i}}{2} \frac{\mathbf{i}}{2 \mathbf{x}^2} - \frac{\mathbf{i} \cdot 3}{2 \cdot 4} \frac{\mathbf{i}}{4} \frac{\mathbf{i}}{\mathbf{x}^4} - \frac{\mathbf{i} \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{\mathbf{i}}{6} \frac{\mathbf{x}^6} - \cdots \\ &\tanh^{-1} \mathbf{x} = \mathbf{x} + \frac{\mathbf{x}^3}{3} + \frac{\mathbf{x}^5}{5} + \frac{\mathbf{x}^7}{7} + \cdots \end{aligned}$$

391 The Catenary. (For definition, see 83)

Fig. 391.

$$y = \frac{a}{2} \left(e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right) = a \cosh \frac{x}{a}$$

If the width of the span is 1 and the sag is d, then the length of the arc (s) is found by means of the equations:

$$\cosh z = \frac{2 d}{1} z + 1, \qquad s = \frac{1}{z} \sinh z,$$

where z is to be found approximately by means of the table, p. 290, from the first of these equations and this value substituted in the second.

If s and l are known, d may be found similarly by means of

$$\sinh z = \frac{s}{1} z, \qquad d = \frac{1}{2z} (\cosh z - 1).$$

MECHANICS

KINEMATICS

Rectilinear Motion

Velocity (v) of a particle which moves uniformly **s** feet in **t** seconds.

$$\mathbf{v} = \frac{\mathbf{s}}{\mathbf{t}} \text{ feet per second.}$$

NOTE. The velocity (\mathbf{v}) of a moving particle at any instant equals $\frac{d\mathbf{s}}{dt}$. The speed of a moving particle equals the magnitude of its velocity but has no direction.

Acceleration (a) of a particle whose velocity increases uniformly v feet per second in t seconds.

393
$$a = \frac{v}{t}$$
 feet per second per second.

Note. The acceleration (a) of a moving particle at any instant equals $\frac{dv}{dt}$

or $\frac{d^2s}{dt^2}$. The acceleration (g) of a falling body in vacuo at sea level and latitude 45 degrees equals 32.17 feet per second per second.

Velocity (\mathbf{v}_t) at the end of \mathbf{t} seconds acquired by a particle having an initial velocity of \mathbf{v}_0 feet per second and a uniform acceleration of \mathbf{a} feet per second per second.

394
$$v_t = v_0 + at$$
 feet per second.

NOTE. a is negative if the initial velocity and the acceleration act in opposite directions.

Space (s) traversed in t seconds by a particle having an initial velocity of v_0 feet per second and a uniform acceleration of a feet per second per second.

395
$$s = v_0 t + \frac{1}{2} a t^2 \text{ feet.}$$

Space (s) required for a particle with an initial velocity of \mathbf{v}_0 feet per second and a uniform acceleration of \mathbf{a} feet per second per second to reach a velocity of \mathbf{v}_t feet per second.

396
$$s = \frac{v_t^2 - v_0^2}{2 a}$$
 feet.

Velocity (v_t) acquired, in travelling s feet, by a particle having an initial velocity of v_0 feet per second and a uniform acceleration of a feet per second per second.

397
$$v_t = \sqrt{v_0^2 + 2 as}$$
 feet per second.

Time (t) required for a particle having an initial velocity of \mathbf{v}_0 feet per second and a uniform acceleration of \mathbf{a} feet per second per second to travel \mathbf{s} feet.

398
$$t = \frac{-v_0 + \sqrt{v_0^2 + 2 \text{ as}}}{a}$$
 seconds.

Uniform acceleration (a) required to move a particle, with an initial velocity of \mathbf{v}_0 feet per second, s feet in t seconds.

399
$$a = \frac{2 (s - v_0 t)}{t^2} \text{ feet per second per second.}$$

Circular Motion

Angular velocity (ω) of a particle moving uniformly through θ radians in t seconds.

400
$$\omega = \frac{\theta}{t}$$
 radians per second.

Note. The angular velocity (ω) of a moving particle at any instant equals $\frac{d\theta}{dt}$.

Normal acceleration (a) toward the center of its path of a particle moving uniformly with \mathbf{v} feet per second tangential velocity and \mathbf{r} feet radius of curvature of path.

401
$$a = \frac{v^2}{r}$$
 feet per second per second.

NOTE. The tangential acceleration of a particle moving with constant speed in a circular path is zero.

Angular acceleration (a) of a particle whose angular velocity increases uniformly ω radians per second in t seconds.

402
$$\alpha = \frac{\omega}{t}$$
 radians per second per second.

Note. The angular acceleration (a) of a moving particle at any instant equals $\frac{d\omega}{dt}$ or $\frac{d^2\theta}{dt^2}$.

Angular velocity (ωt) at the end of t seconds acquired by a particle having an initial angular velocity of ω_0 radians per second and a uniform angular acceleration of α radians per second per second.

403
$$\omega_t = \omega_0 + \alpha t$$
 radians per second.

Angle (θ) subtended in **t** seconds by a particle having an initial angular velocity of ω_0 radians per second and a uniform angular acceleration of **a** radians per second per second.

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2 \text{ radians.}$$

Angle (θ) subtended by a particle with an initial angular velocity of ω_0 radians per second and a uniform angular acceleration of α radians per second per second in acquiring an angular velocity of ω_t radians per second.

$$\theta = \frac{\omega_t^2 - \omega_0^2}{2 \alpha} \text{ radians.}$$

Angular velocity (ω_t) acquired in subtending θ radians by a particle having an initial angular velocity of ω_0 radians per second and a uniform angular acceleration of α radians per second per second.

406
$$\omega_t = \sqrt{\overline{\omega_0^2 + 2 \alpha \theta}}$$
 radians per second.

Time (t) required for a particle having an initial angular velocity of ω_0 radians per second and a uniform angular acceleration of α radians per second per second to subtend θ radians.

407
$$t = \frac{-\omega_0 + \sqrt{\omega_0^2 + 2 \alpha \theta}}{\alpha} \text{ seconds.}$$

Uniform angular acceleration (α) required for a particle with an initial angular velocity of ω_0 radians per second to subtend θ radians in t seconds.

408
$$\alpha = \frac{2(\theta - \omega_0 t)}{t^2}$$
 radians per second per second.

Velocity (\mathbf{v}) of a particle \mathbf{r} feet from the axis of rotation in a body making \mathbf{n} revolutions per second.

409
$$v = 2 \pi rn$$
 feet per second.

Velocity (v) of a particle r feet from the axis of rotation in a body rotating with an angular velocity of ω radians per second.

$$v = \omega r$$
 feet per second.

Angular velocity (ω) of a body making n revolutions per second.

 $\omega = 2 \pi n$ radians per second.

Path of a Projectile*

Horizontal component of velocity (v_x) of a particle having an initial velocity of v_0 feet per second in a direction making an angle of β degrees with the horizontal.

 $\mathbf{v}_{\mathbf{x}} = \mathbf{v}_0 \cos \beta$ feet per second.

FIG. 412.

Horizontal distance (x) travelled in t seconds by a particle having an initial velocity of v_0 feet per second at β degrees with the horizontal and a uniform downward acceleration of a feet per second per second.

413
$$x = v_0 t \cos \beta \text{ feet.}$$

Vertical component of velocity (v_y) at the end of t seconds of a particle having an initial velocity of v_0 feet per second at β degrees with the horizontal and a uniform downward acceleration of a feet per second per second.

414
$$v_y = v_0 \sin \beta - at$$
 feet per second.

Vertical distance (y) travelled in t seconds by a particle having an initial velocity of v_0 feet per second at β degrees with the

^{*} Friction of the air is neglected throughout.

horizontal and a uniform downward acceleration of a feet per second per second.

415
$$y = v_0 t \sin \beta - \frac{1}{2} a t^2 \text{ feet.}$$

Time (t_v) to reach the highest point of the path of a particle having an initial velocity of v_0 feet per second at β degrees with the horizontal and a uniform downward acceleration of a feet per second per second.

Vertical distance (d_v) from the horizontal to the highest point of the path of a particle having an initial velocity of v_0 feet per second at β degrees with the horizontal and a uniform downward acceleration of a feet per second per second.

$$\mathbf{d_v} = \frac{\mathbf{v_0}^2 \sin^2 \beta}{2 \ a} \ \mathrm{feet}.$$

Velocity (v) at the end of t seconds of a particle having an initial velocity of v_0 feet per second at β degrees with the horizontal and a uniform downward acceleration of a feet per second per second.

418
$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{v_0^2 - 2 v_0 at \sin \beta + a^2 t^2}$$
 feet per second.

Time (t_h) to reach the same horizontal as at start for a particle having an initial velocity of v_0 feet per second at β degrees with the horizontal and a uniform downward acceleration of a feet per second per second.

$$t_h = \frac{2 \ v_0 \sin \beta}{a} \ \text{seconds}.$$

Horizontal distance (d_h) travelled by a particle having an initial velocity of \mathbf{v}_0 feet per second at $\boldsymbol{\beta}$ degrees with the horizontal and a uniform downward acceleration of \boldsymbol{a} feet per second per second in returning to the same horizontal as at start.

420
$$d_{h} = \frac{v_{0}^{2} \sin 2 \beta}{a} \text{ feet.}$$

Time (t) to reach any point P for a particle having an initial velocity of v_0 feet per second at β degrees with the horizontal and

a uniform downward acceleration of a feet per second per second, if a line through **P** and the point of starting makes θ degrees with the horizontal.

421
$$t = \frac{2 v_0 \sin (\beta - \theta)}{a \cos \theta} \text{ seconds.}$$

Harmonic Motion

Simple harmonic motion is the motion of the projection, on the diameter of a circle, of a particle moving with constant speed

around the circumference of the circle. Amplitude is one-half the projection of the path of the particle or equal to the radius of the circle. Frequency is the number of complete oscillations per unit time

Displacement (x) from the center t seconds after starting, of the projection on the diameter, of a particle moving with a uniform angular velocity of ω

Fig. 422.

radians per second about a circle r feet in radius.

422
$$x = r \cos \omega t$$
 feet.

Velocity (v) t seconds after starting, of the projection on the diameter, of a particle moving with a uniform angular velocity of ω radians per second about a circle r feet in radius.

423
$$v = -\omega r \sin \omega t$$
 feet per second.

Acceleration (a) t seconds after starting, of the projection on

the diameter, of a particle moving with a uniform angular velocity of ω radians per second about a circle r feet in radius.

424
$$a = -\omega^2 r \cos \omega t = -\omega^2 x$$
 feet per second per second.

NOTE. If the time (t) is reckoned from a position displaced by θ radians from the horizontal (called lead if positive and lag if negative) the formulas become: $\mathbf{x} = \mathbf{r} \cos(\omega \mathbf{t} + \mathbf{\theta})$ feet, $\mathbf{v} = -\omega \mathbf{r}$ $\sin (\omega t + \theta)$ feet per second and $a = -\omega^2 r \cos \theta$ $(\omega t + \theta)$ feet per second per second.

FIG. 424.

RELATIONS OF MASS AND SPACE

Mass

Mass (m) of a body weighing w pounds.

425
$$m = \frac{w}{g}$$
 pounds (grav.).

Note. The mass (m) of a body may be measured by its weight (w), designated "pounds (abs.)" etc., or by its weight (w) divided by the acceleration due to gravity (g), designated "pounds (grav.)" etc. In this text the latter unit is used throughout.

Center of Gravity

Center of gravity of a body or system of bodies is that point through which the resultant of the weights of the component particles passes, whatever position be given the body or system.

Note. The center of mass of a body is the same as the center of gravity. The center of gravity of a line, surface or volume is obtained by considering it to be the center of gravity of a slender rod, thin plate or homogeneous body and is often called the centroid.

Moment (M) of a body of weight (w), or of mass (m), about a plane if x is the perpendicular distance from the center of gravity of the body to the plane.

$$\mathbf{M} = \mathbf{w}\mathbf{x} \quad \text{or} \quad \mathbf{M} = \mathbf{m}\mathbf{x}.$$

Statical moment (S) of an area (A), about an axis X if x is the perpendicular distance from the center of gravity of the area to the axis.

$$S = Ax.$$

NOTE. The statical moment of an area about an axis through its center of gravity is zero.

Distances (x_0, y_0, z_0) from each of three coördinate planes (X, Y, Z) to the center of gravity or mass of a system of bodies, if Σw is the sum of their weights or Σm is the sum of their masses and Σwx , Σwy , Σwz or Σmx , Σmy , Σmz are the algebraic sums of moments of the separate bodies about the X, Y and Z planes.

Sliding friction is the force, in addition to that overcoming inertia, required to maintain relative motion between two bodies.

Note. Laws of sliding friction. (1) For moderate pressures the friction is proportional to the normal pressure between the surfaces. (2) For moderate pressures the friction is independent of the extent of the surface in contact. (3) At low velocities the friction is independent of the velocity of rubbing. The friction decreases as the velocity increases. (4) Sliding friction is usually less than static friction.

Coefficient of sliding friction (f) between two bodies when N is the normal pressure between them and F is the corresponding sliding friction. [N and F in the same units]

$$f = \frac{F}{N}.$$

Angle of sliding friction (ϕ) for two surfaces with a normal pressure N and a sliding friction F between them. [N and F in the same units]

NOTE. See formula 482. The angle of sliding friction is the angle of inclination of the surface of one body, at which the motion of another body sliding upon it will be maintained. The angle of sliding friction is in general less than the angle of static friction.

Applications of Principles of Friction

Inclined plane. Let W = weight in pounds of a body sliding on the plane, $\alpha = \text{angle of inclination of plane}$, $\beta = \text{angle between force}$ and plane, $\phi = \text{angle of repose}$, $f = \text{coefficient of friction } (tan <math>\phi = f$), and F = force

applied to the body along the line of action indicated.

484 (a) Force (F) to prevent slipping. $(\alpha > \phi)$

$$F = W \, \frac{\sin \, \left(\alpha - \varphi\right)}{\cos \left(\beta + \varphi\right)} \, \, \text{pounds}.$$

(b) Force (F) to start the body up the plane. $(\alpha > \phi)$

$$F = W \frac{\sin{(\alpha + \phi)}}{\cos{(\beta - \phi)}} \text{ pounds.}$$

(c) Force (F) to start the body down the plane. ($\alpha < \phi$)

$$F = W \frac{\sin (\phi - \alpha)}{\cos (\beta + \phi)} \text{ pounds.}$$

Wedge. Let W =force in pounds opposing motion, $\alpha =$ angle of inclination of sides of wedge, $\phi =$ angle of friction, and F = force applied to •wedge.

485 (a) Force (F) to push wedge.

$$F = 2 W \tan (\alpha + \phi)$$
 pounds.

(b) Force (F) to draw wedge $(\alpha > \phi)$.

$$\mathbf{F} = \mathbf{2} \mathbf{W} \tan (\phi - \mathbf{a}) \text{ pounds.}$$

Fig. 485.

Square threaded screw. Let r = mean radius of screw, \mathbf{p} = pitch of screw, \mathbf{a} = angle of pitch $\left(\tan \alpha = \frac{p}{2\pi r}\right)$, F = force applied to screwat end of arm \mathbf{a} , \mathbf{W} = total weight in pounds to be moved and ϕ = angle of friction. [r and a in same units]

486 (a) Force (F) to lower screw.

$$F = \frac{Wr (\tan \phi - \tan \alpha)}{a} \text{ pounds (approx.)}.$$

(b) Force F to raise screw.

$$F = \frac{Wr \, (\tan \varphi + \tan \alpha)}{a} \text{ pounds (approx.)}.$$

Sharp threaded screw. Let r = meanradius of screw, α = angle of pitch, β = angle between faces of the screw, $\mathbf{F} = \text{force}$ in pounds applied to screw at end of arm **a, W** = total weight in pounds to move, and ϕ = angle of friction. [r and a in same unitsl

$$F = \frac{Wr}{a} \left(\frac{\tan \varphi \cos \alpha}{\cos \frac{\beta}{2}} - \tan \alpha \right) \underset{(\text{approx.})}{\operatorname{pounds}}.$$

$$F = \frac{Wr}{a} \left(\frac{\tan \phi \cos \alpha}{\cos \frac{\beta}{2}} + \tan \alpha \right) \text{ pounds (approx.).}$$

Fig. 487.

Pivot Friction

T = torque c	 f = coefficient of friction. W = load in pounds. T = torque of friction about the axis of the shaft. r = radius in inches. n = revolutions per second. 									
Type of Pivot	Torque T in pound-inches	Power P lost by friction in ftibs. per second								
Shafts and Journals The state of the stat	T = fWr.	$P = \frac{2 \pi n}{12} \text{ fWr.}$								
Flat Pivot	$T = \frac{2}{3} fWr.$	$P = \frac{4 \pi n}{3 \times 12} \text{ fWr.}$								
Collar-bearing	$T = \frac{2}{3} fW \frac{R^3 - r^3}{R^2 - r^2}$.	$P = rac{4 \pi n}{3 imes r_2} fw rac{R^3 - r^3}{R^2 - r^2}.$								
Conical Pivot	$T = \frac{2}{3} \text{ fW } \frac{r}{\sin \alpha}.$	$P = \frac{4 \pi n f W r}{3 \times 12 \sin \alpha}.$								
Truncated-cone Pivot	$T = \frac{2}{3} fW \frac{(R^3 - r^3)}{(R^2 - r^2) \sin \alpha}.$	$P = \frac{4 \pi n f W (R^3 - r^3)}{3 \times 12 (R^2 - r^2) \sin \alpha}.$								

Rolling Friction

Coefficient of rolling friction (c) of a wheel with a load of W pounds and with r inches radius, moved at a uniform speed by a force of F pounds applied at its center.

488
$$c = \frac{Fr}{W}$$
 inches.

 NOTE. Coefficients of rolling friction.

 Lignum vitæ roller on oak track.
 c = 0.019 inches.

 Elm roller on oak track.
 c = 0.032 inches.

 Iron on iron (and steel on steel)
 c = 0.020 inches.

Belt Friction

Ratio $\left(\frac{\mathbf{F}_1}{\mathbf{F}_2}\right)$ of the pull \mathbf{F}_1 on the driving side of a belt to the

pull \mathbf{F}_2 on the driven side of the belt, when slipping is impending, in terms of the coefficient of friction \mathbf{f} and the angle of contact \mathbf{a} , in radians. $[\epsilon = 2.718]$

 $\frac{\mathbf{F}_1}{\mathbf{F}_2} = \mathbf{\epsilon}^{\mathbf{f}\mathbf{a}}.$

Note. Mean values of f are as follows:

Leather on wood (somewhat oily)	0.47
Leather on cast iron (somewhat oily)	
Leather on cast iron (moist)	0.38
Hemp-rope on iron drum	0.25
Hemp-rope on wooden drum	
Hemp-rope on polished wood	
Hemp-rope on rough wood	0.50

Values of $\frac{\mathbf{F}_1}{\mathbf{F}_2}$ (Slipping impending)

$\frac{\alpha}{2\pi}$ f = 0	.25 f = 0.33	f = 0.40	f = 0. 50	<u>α</u> 2 π	f = 0.25	f = 0.33	f = 0.40	f = 0.50
0.1 1.1 0.2 1; 0.3 1.6 0.4 1.8 0.425 1.9 0.45 2.0 0.475 2.1 0.525 2.1 0.525 2.2	7 1.51 1.86 7 2.29 5 2.41 3 2.54 1 2.68 9 2.82 2.97	1.29 1.65 2.13 2.73 2.91 3.10 3.30 3.51 3.74 3.98	1.37 1.87 2 57 3.51 3.80 4.11 4.45 4.81 5.20 5 63	0.6 0.7 0.8 0.9 1.0 1.5 2.5 2.5 3.0 3.5	2.57 3.00 3.51 4.11 4.81 10.55 23.14 50.75 111.3 244.2	3.47 4.27 5.25 6.46 7.95 22.42 63.23 178.5 502.9	5.81 7.47 9.60 12.35 43.38 152.4 535.5	9.00 12.34 16.90 23.14

Impact *

Common velocity (\mathbf{v}') , after direct central impact, of two inelastic bodies of mass \mathbf{m}_1 and \mathbf{m}_2 and initial velocities \mathbf{v}_1 and \mathbf{v}_2 respectively.

490
$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}.$$

Final velocities $(\mathbf{v}_1' \text{ and } \mathbf{v}_2')$, after direct central impact, of two perfectly elastic bodies of mass \mathbf{m}_1 and \mathbf{m}_2 and initial velocities \mathbf{v}_1 and \mathbf{v}_2 respectively.

$$\begin{cases} \mathbf{v_1}' = \frac{\mathbf{m_1}\mathbf{v_1} - \mathbf{m_2}\mathbf{v_1} + \mathbf{2} \ \mathbf{m_2}\mathbf{v_2}}{\mathbf{m_1} + \mathbf{m_2}} \\ \mathbf{v_2}' = \frac{\mathbf{m_2}\mathbf{v_2} - \mathbf{m_1}\mathbf{v_2} + \mathbf{2} \ \mathbf{m_1}\mathbf{v_1}}{\mathbf{m_1} + \mathbf{m_2}} . \end{cases}$$

Final velocities $(v_1'$ and $v_2')$, after direct central impact, of two partially but equally inelastic bodies of mass m_1 and m_2 and initial velocities v_1 and v_2 respectively and constant e depending on the elasticity of bodies.

$$\begin{cases} v_1' = \frac{m_1 v_1 + m_2 v_2 - em_2 (v_1 - v_2)}{m_1 + m_2} \\ v_2' = \frac{m_1 v_1 + m_2 v_2 - em_1 (v_2 - v_1)}{m_1 + m_2} \end{cases}$$

Note. $\mathbf{e} = \sqrt{\frac{\mathbf{H}}{\mathbf{h}}}$ where \mathbf{H} is the height of rebound of a sphere dropped from a height \mathbf{h} on to a horizontal surface of a rigid mass. If the bodies are inelastic $\mathbf{e} = \mathbf{o}$, and if bodies are perfectly elastic $\mathbf{e} = \mathbf{I}$.

STATICS

Components of a force F (F_x and F_y) parallel to two rectangular axes X'X and Y'Y, the axis X'X making an angle α with the force F.

493 $F_x = F \cos \alpha$, $F_y = F \sin \alpha$.

Moment or torque (M) of a force of F

pounds about a given point, the perpendicular distance from the point to the direction of the force being d feet.

$$\mathbf{M} = \mathbf{Fd} \text{ pound-feet.}$$

^{*} m1 and m2, v1 and v2 in the same units.

Note. A couple is formed by two equal, opposite, parallel forces acting in the same plane but not in the same straight line. The moment (M) of a couple of two forces, each of F pounds, with a perpendicular distance of d feet between them is Fd pound-feet. The moment, about any point, of the resultant of several forces, lying in the same plane, is the algebraic sum of the moments of the separate forces about that point.

Resultant force (\mathbf{R}) of two forces, \mathbf{F}_1 and \mathbf{F}_2 , which make an angle α with each other, the angle between the resultant force \mathbf{R} and the force \mathbf{F}_1 being $\boldsymbol{\theta}$.

495
$$R = \sqrt{F_1^2 + F_2^2 + 2 F_1 F_2 \cos \alpha}.$$

496
$$\tan \theta = \frac{F_2 \sin \alpha}{F_1 + F_2 \cos \alpha}, \text{ or, } \sin \theta = \frac{F_1 \sin \alpha}{R}$$

Parallelogram of forces. The resultant force (\mathbf{R}) of two forces \mathbf{F}_1 and \mathbf{F}_2 is represented in magnitude and direction by the diagonal lying between those two sides of a parallelogram which represent \mathbf{F}_1 and \mathbf{F}_2

parallelogram which represent \mathbf{F}_1 and \mathbf{F}_2 in magnitude and direction.

Triangle of forces. The resultant force (\mathbf{R}) of two forces \mathbf{F}_1 and \mathbf{F}_2 is represented in magnitude and direction by the third side of a triangle in which the other two sides represent \mathbf{F}_1 and \mathbf{F}_2 in magnitude and direction.

Resultant force (R) of three forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 mutually at right angles to each other and not lying in the same plane, the angles between the resultant force R and the forces \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 being $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ respectively.

497
$$R = \sqrt{F_1^2 + F_2^2 + F_3^2}.$$

498
$$\cos \alpha = \frac{F_1}{R}, \cos \beta = \frac{F_2}{R}, \cos \gamma = \frac{F_3}{R}.$$

Note. If three forces not in the same plane are not mutually at right angles to each other, the resultant force may be found by formula 504.

Statics 109

Parallelopiped of forces. The resultant force (R) of three forces F_1 , F_2 and F₃, not lying in the same plane, is represented in magnitude and direction by the diagonal lying between those

three sides of a parallelopiped which represent \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 in magnitude and direction.

Resultant force (R) of several forces lying in the same plane, if ΣF_x and ΣF are the algebraic sums of the components of the forces parallel to two rectangular axes X'X and Y'Y, the angle between the resultant force and the axis X'X being a.

499
$$R = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2}.$$
500
$$\tan \alpha = \frac{\Sigma F_y}{\Sigma F_x}, \quad \sin \alpha = \frac{\Sigma F_y}{R}, \quad \cos \alpha = \frac{\Sigma F_x}{R}.$$

Perpendicular distance (d) from a given point to the resultant force (**R**) of several forces lying in the same plane, if Σ **M** is the algebraic sum of the moments, about that point, of the separate forces.

$$d = \frac{\Sigma M}{R}.$$

The resultant of several parallel forces is the algebraic sum of the forces (ΣF) . If $\Sigma F = 0$ the resultant is a couple whose moment is ΣM .

Force Polygon. The resultant force (R) of several forces $\mathbf{F_1}$, $\mathbf{F_2}$. . . $\mathbf{F_n}$, lying in the same plane, is represented in magnitude and direction by the closing side of a polygon in which the remaining sides represent the forces F_1 , F_2 . . . F_n in magnitude and direction.

NOTE. The arrows indicate the directions of the forces and for the given forces they must point in the same way around the polygon, but for the result-

ant force in the opposite direction or leading from the starting point of the first force to the end point of the last force.

Moment (M) of a force F, about a line, is the product of the

rectangular component of the force perpendicular to the line (the other component being parallel to the line) into the perpendicular distance between the line and this rectangular component, or the force **F** may be resolved into three rectangular components, one parallel and the other two perpendicular to the line, as in

FIG. 502.

Fig. 502. The moment of the force about each axis is then obtained as follows:

502
$$M_{x} = yF \cos \gamma - zF \cos \beta.$$

$$M_{y} = zF \cos \alpha - xF \cos \gamma.$$

$$M_{z} = xF \cos \beta - yF \cos \alpha.$$

Resultant force (R) of several parallel forces, not lying in the same plane, is the algebraic sum (ΣF) of the forces.

Note. If $\Sigma F = 0$, the resultant is a couple whose moments are ΣM_y . ΣM_y , etc.

Perpendicular distances (d_x) and (d_y) from each of two axes X'X and Y'Y to the resultant force (R) of several parallel forces, not lying in the same plane, if ΣM_x and ΣM_y are the algebraic sums of the moments of the separate forces about the axes X'X and Y'Y respectively.

$$d_{x} = \frac{\sum M_{x}}{R}, \qquad d_{y} = \frac{\sum M_{y}}{R}.$$

Resultant force (R) and direction (α, β, γ) of the resultant force of several forces, not lying in the same plane, if ΣF_x , ΣF_y and ΣF_z are the algebraic sums of the components parallel to three rectangular axes X'X, Y'Y and Z'Z, and α , β and γ are the

Statics 111

angles which the resultant force makes with the axes X'X, Y'Y and Z'Z respectively.

$$\begin{aligned} & 504 & R &= \sqrt{(\Sigma F_{\boldsymbol{x}})^2 + (\Sigma F_{\boldsymbol{y}})^2 + (\Sigma F_{\boldsymbol{z}})^2}. \\ & 505 & \cos\alpha &= \frac{\Sigma F_{\boldsymbol{x}}}{R}, & \cos\beta &= \frac{\Sigma F_{\boldsymbol{y}}}{R}, & \cos\gamma &= \frac{\Sigma F_{\boldsymbol{z}}}{R}. \end{aligned}$$

Resultant couple (M) and direction $(\alpha_m, \beta_m, \gamma_m)$ of the axis of the resultant couple of several forces, not acting in the same plane, if ΣM_x , ΣM_y and ΣM_z are the algebraic sums of the moments about three rectangular axes X'X, Y'Y and Z'Z and α_m , β_m and γ_m are the angles which the moment axis of the resultant couple makes with the axes X'X, Y'Y and Z'Z respectively.

$$\begin{split} & 506 \qquad \qquad M \, = \, \sqrt{(\Sigma M_x)^2 + (\Sigma M_y)^2 + (\Sigma M_z)^2}. \\ & 507 \qquad \cos \, \alpha_m = \frac{\Sigma M_x}{\Sigma M}, \quad \cos \, \beta_m = \frac{\Sigma M_y}{\Sigma M}, \quad \cos \, \gamma_m = \frac{\Sigma M_z}{\Sigma M}. \end{split}$$

NOTE. In general the resultant of several non-parallel forces, not in the same plane, is not a single force, but by the use of the above principles the system may be reduced to a single force and a couple.

Conditions of equilibrium of several forces, lying in the same plane, if ΣF_x and ΣF_y are the algebraic sums of the components parallel to two axes X'X and Y'Y and ΣM is the algebraic sum of the moments of the forces about any point.

508
$$\Sigma \mathbf{F_x} = \mathbf{o}, \qquad \Sigma \mathbf{F_y} = \mathbf{o}, \qquad \Sigma \mathbf{M} = \mathbf{o}.$$

Conditions of equilibrium of several forces, not lying in the same plane, if ΣF_x , ΣF_y and ΣF_z are the algebraic sums of the components parallel to three axes X'X, Y'Y and Z'Z which intersect at a common point but do not lie in the same plane, and ΣM_x , ΣM_y and ΣM_z are the algebraic sums of the moments of the forces about these three axes.

509
$$\Sigma \mathbf{F_x} = \mathbf{0}, \qquad \Sigma \mathbf{F_y} = \mathbf{0}, \qquad \Sigma \mathbf{F_z} = \mathbf{0}.$$
510 $\Sigma \mathbf{M_x} = \mathbf{0}, \qquad \Sigma \mathbf{M_y} = \mathbf{0}, \qquad \Sigma \mathbf{M_z} = \mathbf{0}.$

Stresses in Framed Structures *

Pratt Truss. Two live loads of 10 tons each as shown in Fig. 508a.

Fig. 508a.

(a) Reactions (use conditions of equilibrium, formula 508).

By
$$\Sigma M = o$$
, $\Sigma M_A = o = 10 \times 15 + 10 \times 30 - V_B \times 90$, $V_B = 5$ tons.
By $\Sigma F_y = o$, $2o - V_B = V_A$, $V_A = 15$ tons.
By $\Sigma F_x = o$, $H_A = o$. (note that a roller is used at B, fixing the reaction there in a vertical direction)

(b) Stresses in bars.

To find the stress in a bar consider a plane (cutting the bar in question) to divide the truss into two parts; remove one part and replace the portion of the bars which are removed by their stresses which may now be treated as outer forces. These stresses are found by applying the equations of equilibrium. It is essential that only three of the bars which are cut snall have unknown stresses.

Note. If tension is called positive and all unknown stresses are assumed to be tension stresses, a positive sign for the result indicates tension and a negative sign compression.

Bar ①. Truss cut by plane aa. Consider left portion.

Let $V_{(i)}$ = the vertical component of $S_{(i)}$, the stress in bar (i).

By
$$\Sigma F_y = 0$$
, $-V_A + 10 + V_{(1)} = 0$, $V_{(1)} = 5$, $S_{(1)} = \frac{25}{20} \times 5 = 6.25$ tons tension.

Bar ②. Truss cut by plane aa. Take moments about joint c. By $\Sigma \mathbf{M} = \mathbf{0}$, $\Sigma \mathbf{M}_c = \mathbf{0} = \mathbf{V}_A \times 3\mathbf{0} - 1\mathbf{0} \times 15 + \mathbf{S} \odot \times 2\mathbf{0}$. $\mathbf{S} \odot = \frac{-450 + 150}{20} = -15 = 15$ tons compression.

Bar (3). Truss cut by plane bb.

By $\Sigma F_y = 0$, $-V_A + 20 + S_{\odot} = 0$, $S_{\odot} = -5 = 5$ tons compression.

* Due to live loads only. Weight of structure is neglected.

Roof Truss. Two live loads of 3 tons each as shown in Fig. 508b.

(a) Reactions (use conditions of equilibrium formula 508). By $\Sigma M = 0$, $\Sigma M_A = 0 = 3 \times 13.4 + 3 \times 26.8 - V_B \times 72$,

 $V_B = 1.67$ tons.

By $\Sigma F_y = 0$, $2 \times 2.69 - V_B - V_A = 0$, $V_A = 3.71$ tons. By $\Sigma F_x = 0$, $2.70 + H_A = 0$, $H_A = -2.70$ tons, *i.e.*, acting to the left. (note that a roller is used at B, fixing the reaction in a vertical direction)

(b) Stresses in bars. (See b under Pratt Truss.)

Bar ①. Truss cut by plane aa. Consider left portion. Take moments about joint c. Let \mathbf{H} ① = horizontal component of \mathbf{S} ①.

By
$$\Sigma M = 0$$
, $\Sigma M_c = 0 = V_A \times 24 - 2.69 \times 12 + 1.35 \times 6 + H_{\odot} \times 12$.

$$H_{(1)} = -5.34$$
, $S_{(1)} = \frac{\sqrt{5}}{2} \times 5.34 = 5.96$ tons compression.

Bar ②. Truss cut by plane aa. Take moments about A.

Let $V_{\mathfrak{D}}$ = vertical component of $S_{\mathfrak{D}}$.

By
$$\Sigma M = 0$$
, $\Sigma M_A = 0 = 3 \times 13.4 + V_{\odot} \times 24$, $V_{\odot} = -1.67$ tons.

$$S_{\odot} = \sqrt{5} \times 1.67 = 3.73$$
 tons compression.

Bar 3. Truss cut by plane **bb.** Consider right portion, as fewer loads lie to the right of cutting plane.

Take moments about joint d.

By
$$\Sigma M = 0$$
, $\Sigma M_d = 0 = -V_B \times 48 + S_3 \times 12$, $S_3 = 6.68$ tons tension.

PROPERTIES OF MATERIALS

Intensity of stress is the stress per unit area, usually expressed in pounds per square inch. The simple term, Stress, is often used to indicate intensity of stress.

Ultimate stress is the greatest stress which can be produced in a body before rupture occurs.

Allowable stress or working stress is the intensity of stress which the material of a structure or a machine is designed to resist.

Factor of safety is a factor by which the ultimate stress is divided to obtain the allowable stress.

Elastic limit is the maximum intensity of stress to which a material may be subjected and return to its original shape upon the removal of the stress.

Note. For stresses below the elastic limit the deformations are directly proportional to the stresses producing them: that is, Hooke's Law holds for stresses below the elastic limit.

Yield point is the intensity of stress beyond which the change in length increases rapidly with little if any increase in stress.

Modulus of elasticity is the ratio of stress to the strain, for stresses below the elastic limit.

Note. Modulus of elasticity may also be defined as the stress which would produce a change of length of a bar equal to the original length of the bar, assuming the material to retain its elastic properties up to that point.

lbs. per cu.	1			Ultimate strength in pounds per sq. in.				Modulus of elasticity in pounds per sq. in.		
ft.	Ten- sion	Bend- ing			Ten- sion	Com- pres- sion	Tension and Compres- sion	Shear		
150	20000	35000	90000	18000	6000	20000	1 5000000	6000000		
480 	50000	60000	50000	40000	25000	25000	28000000	1 2000000		
190	60000	80000	ნბები	50000	36000	36000	30000000	13000000		
150	300		2500	1000		1000	2000000			
40	9000	8000	*17000 1700	*§ 400 1500	3000		1 500000	4000000		
48	10000	8000	*}6000 2000	*{ 600 {4000	1		1500000	4000000		
1 1 1	80 90 50 40	.80 50000 .90 50000 50 300 40 9000	.80 50000 60000 90 60000 80000 50 300	50 20000 35000 90000 80 50000 60000 50000 90 60000 80000 60000 50 300 2500 40 9000 8000 7000 48 10000 8000 *(6000	150 20000 35000 90000 18000 80 50000 60000 50000 60000 5000 60000 5000 60000 5000 60000 50000 60000 5000 600000 600000 600000 60000 600000 600000 600000 600000 600000 600000 6000	150 20000 35000 90000 18000 6000	150 20000 35000 90000 18000 6000 20000 80 50000 60000 50000 36000 36000 50000 36000 36000 36000 60000 10	\$\frac{1}{50} 20000 \\ \frac{3}{5000} \\ \frac{9}{5000} \\ \frac{1}{5000} \\ \frac{5}{5000} \\ \frac{1}{5000} \\ \frac{1}{50000} \\ \frac{1}{50000} \\ \frac{1}{500000} \\ \frac{1}{5000000} \\ \frac{1}{5000000} \\ \frac{1}{500000000000000000000000000000000000		

Properties of Common Materials

Poisson's ratio is the ratio of the relative change of diameter of a bar to its unit change of length under an axial load which does not stress it beyond the elastic limit.

Note. Poisson's ratio is usually denoted by $\frac{1}{m}$. It varies for different materials but is usually about $\frac{1}{4}$.

Intensity of stress (f) due to a force of P pounds producing tension, compression or shear on an area of A square inches, over which it is uniformly distributed.

^{*} Parallel to the grain and across the grain respectively.

$$\mathbf{f} = \frac{\mathbf{P}}{\mathbf{A}} \text{ pounds per sq. in.}$$

Modulus of elasticity (E) of a bar of A square inches cross-sectional area and 1 inches length, which undergoes a change of length of d inches under an axial load of P pounds.

$$E = \frac{Pl}{Ad} \text{ pounds per sq. in.}$$

Note. The load must be such as to produce an intensity of stress below the elastic limit. If f is the intensity of stress produced and e the ratio of change of length to total length, $E = \frac{f}{e}$ and $e = \frac{f}{E}$.

Change of length (d) of a bar of A square inches cross-sectional area, 1 inches length, and E pounds per square inch modulus of elasticity of material, due to an axial load of P pounds.

$$d = \frac{Pl}{AE} \text{ inches.}$$

Fig. 513.

NOTE. Stress-strain diagrams show the relation of the intensities of stress of a material to the corresponding strains or deformations.

RIVETED JOINTS

Shearing strength (r_s) of a rivet d inches in diameter, with an allowable stress in shear of f_s pounds per square inch.

$$r_s = \frac{\pi d^2}{4} f_s \text{ pounds.}$$

Bearing strength (r_b of a rivet d inches in diameter, with an allowable stress in bearing of f_b pounds per square inch, against a plate t inches in thickness.

$$r_b = dtf_b$$
 pounds.

Total stress (r) on each of n rivets resisting a pull or thrust of P pounds.

Total stress (r_m) on the most stressed rivet of a group of rivets resisting the action of a couple of M inch-pounds, if y is the distance in inches from the center of gravity of the group of rivets to the outermost rivet and Σy^2 is the sum of the squares of the distances from the center of gravity of the group to each of the rivets.

$$r_m = \frac{My}{\Sigma y^2} \text{ pounds.}$$

Fig. 517.

Resistance to moment (M) of a group of rivets, if the distance of the outermost rivet from the center of gravity of the group is \mathbf{y} inches and the sum of the squares of the distances from the center of gravity of the group to each of the rivets is $\Sigma \mathbf{y}^2$ and \mathbf{r} is the total allowable stress on a rivet.

518
$$M = \frac{r\Sigma y^2}{y}$$
 inch-pounds.

Resistance to tearing T) between rivets, of a plate t inches in thickness in which rivets of d inches diameter are placed with p inches pitch, if the allowable intensity

of stress of the plate in tension is f_t pounds per square inch.

$$T = t(p - d) f_t \text{ pounds.}$$

Efficiency of a riveted joint is the ratio of the least strength of the joint to the tensile strength of the solid plate.

Strength of Various Types of Riveted Joints

 f_s = allowable shearing stress in pounds per square inch.

 f_b = allowable bearing stress in pounds per square inch.

 $\mathbf{f_t} = \text{allowable tension stress in pounds per square inch.}$

d = diameter of rivet in inches.

t = thickness of plate in inches.

p = pitch of inner row of rivets in inches.

P = pitch of outer row of rivets in inches.

 t_c = thickness of cover plates in inches.

Single-riveted Lap Joint

- (1) Shearing one rivet = $\frac{\pi d^2}{4} f_s$.
- (2) Tearing plate between rivets = (p d) tf_t.
- (3) Crushing of rivet or plate = dtfb.

Double-riveted Lap Joint

- (1) Shearing two rivets = $\frac{2 \pi d^2}{4} f_s$.
- (2) Tearing between two rivets = (p d) tft.
- (3) Crushing in front of rivets = 2 dtfb.

Single-riveted Lap Joint with inside Cover-Plate

- (1) Tearing between outer row of rivets $= (P d) tf_t$.
- (2) Tearing between inner row of rivets and shearing outer row of rivets

$$= (P - 2 d) tf_t + \frac{\pi d^2}{4} f_{s.}$$

- (3) Shearing three rivets = $\frac{3 \pi d^2}{4} f_s$.
- (4) Crushing in front of three rivets = 3 tdfb.
- (5) Tearing at inner row of rivets and crushing in front of one rivet in outer row = (P 2 d) tft + tdfb.

Strength of Various Types of Riveted Joints (Continued)

Double-riveted Lap Joint with inside Cover-Plate

- (1) Tearing at outer row of rivets = (P-d) tf_t.
- (2) Shearing four rivets = $\frac{4 \pi d^2}{4}$ fs.
- (3) Tearing at inner row and shearing outer row of rivets = $(P r_2^1 d) tf_t + \frac{\pi d^2}{4} f_s$.
- (4) Crushing in front of four rivets = 4 tdfb.
- (5) Tearing at inner row of rivets and crushing in front of one rivet
 = (P 1½ d) tft + tdfb.

Double-riveted Butt-Joint

- (1) Tearing at outer row of rivets = $(P d) tf_t$.
- (2) Shearing two rivets in double shear and one in single shear = $\frac{5 \pi d^2}{4} f_s$.
- (3) Tearing at inner row of rivets and shearing one of the outer row of rivets $= (P-2\,d)\,tf_t + \frac{\pi d^2}{4}\,f_s.$
- (4) Crushing in front of three rivets = 3 tdfb.
- (5) Crushing in front of two rivets and shearing one rivet = $2 \text{ tdf}_b + \frac{\pi d^2}{4} f_s$.

Triple-riveted Butt-Joint

- (1) Tearing at outer row of rivets $= (\mathbf{P} \mathbf{d}) \mathbf{tf_t}$.
- (2) Shearing four rivets in double shear and one in single shear $=\frac{9 \pi d^2}{4} f_s$.
- (3) Tearing at middle row of rivets and shearing one rivet = (P 2 d) tft + $\frac{\pi d^2}{4}$ fs.
- (4) Crushing in front of four rivets and shearing one rivet = $4 \text{ dtfb} + \frac{\pi d^2}{4} \text{ fs.}$
- (5) Crushing in front of five rivets $= 4 dtf_b + dt_bf_b$.

Beams 119

BEAMS

Vertical shear at any section of a beam is equal to the algebraic sum of all the vertical forces on one side of the section. The shear is positive when the part of the beam to the left of the section tends to move upward under the action of the resultant of the vertical forces.

NOTE. In the study of beams, the reactions must be treated as applied loads and included in shear and moment. A section is always taken as cut by a plane normal to the axis of the beam. In all cases vertical means normal to the axis.

Bending moment at any section of a beam is equal to the algebraic sum of the moments, about the center of gravity of the section, of all the forces on one side of the section. Moment which causes compression in the upper fibers of a beam is positive.

Note. The maximum moment occurs at a section where the shear is zero. A curve of shears or of moments is a curve the ordinate to which at any section shows the value of the shear or moment at that section.

Moment and Shear Curves for a Simple Beam with a Uniformly Distributed Load.

Moment and Shear Curves for a Simple Beam with Concentrated Loads.

Fig. 520.

Neutral plane of a beam is the plane which undergoes no change in length due to the bending and along which the direct stress is zero. The fibers on one side of the neutral plane are stressed in tension and on the other side in compression and the intensities of these stresses in homogeneous beams are directly proportional to the distances of the fibers from the neutral plane.

NOTE. The neutral axis at any section in a beam subject to bending only passes through the center of gravity of that section.

Neutral axis at any section of a beam is the line formed by the intersection of the neutral plane and the section.

Elastic curve of a beam is the curve formed by the neutral plane when the beam deflects due to bending.

Equation of the elastic curve of a beam of J inches moment of inertia and a modulus of elasticity of the material of E pounds per square inch, if x and y in inches are the abscissa and ordinate respectively of a point on the neutral axis referred to rectangular coördinates through the points of support and M is the moment in inch pounds at that point

$$\mathbf{M} = \mathbf{E} \mathbf{J} \frac{\mathbf{d}^2 \mathbf{y}}{\mathbf{d} \mathbf{x}^2}$$

Note. The equation of the elastic curve is used to find the slope and deflection of a beam under loading. A single integration gives the slope, integrating twice gives the deflection; in each case, however, the proper value of the constant of integration must be determined.

BEAMS UNDER VARIOUS LOADINGS

Beam, loading and moment curve	Reactions	Bending moment	Deflection
R _L	$R_L = R_R = \frac{wl}{2}.$	$M_x = \frac{wlx}{2} - \frac{wx^2}{2}$ $M_{max} = \frac{wl^2}{8}.$	$d_{max} = \frac{5 \text{ wl}^4}{384 \text{ EJ}}.$
R_L R_R	$R_L = R_R = \frac{P}{2}.$	$M_{x} = \frac{P_{x}}{2}.$ $M_{max} = \frac{Pl}{4}.$	$d_{max} = \frac{Pl^3}{48 EJ}.$
$R_{L} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) R_{R}$	$R_{L} = \frac{Pb}{l}.$ $R_{R} = \frac{Pa}{l}.$	$M_{\mathbf{x}_1} = \frac{Pbx_1}{l}.$ $M_{\mathbf{x}_2} = \frac{Pax_2}{l}.$ $M_{max} = \frac{Pab}{l}.$	$d_{max} = \frac{Pab(2a+b)\sqrt{3}b(2a+b)}{27 E J l}$
R_L	$R_L = R_R = P.$	$M_x = Px$, $M_{max} = Pa$.	$d_{\max} = \frac{Pa}{6 EJ} \left(\frac{3}{4} l^2 - a^2 \right).$
W House per unt tength	**	$\begin{aligned} \mathbf{M_x} &= \mathbf{R_Lx} \\ &- \frac{\mathbf{w}(\mathbf{x} - \mathbf{a})^2}{2} \\ \mathbf{M_{max}} &= \\ \mathbf{R_L} \bigg[\mathbf{a} + \frac{\mathbf{R_L}}{2 \ \mathbf{w}} \bigg] . \end{aligned}$	

Beams Under Various Loadings (Continued)

W pounds total R _L	$R_{L} = \frac{1}{3} W.$ $R_{R} = \frac{2}{3} W.$	$M_{x} = \frac{Wx}{3} \left(1 - \frac{x^{2}}{l^{2}} \right).$ $M_{max} = \frac{2Wl}{9\sqrt{3}}.$	$d_{max} = \frac{o.o13044 \text{ Wl}^8}{\text{EJ}}.$
$W_{ m pounds}$ total $R_{ m pounds}$	$R_{L} = R_{R} = \frac{W}{2}$	$M_{x} = W_{x} \left(\frac{1}{2} - \frac{2 x^{2}}{3 l^{2}}\right).$ $M_{max} = \frac{Wl}{6}.$ (at center)	$d_{max} = \frac{Wl^3}{60 EJ}.$
R_{L}	$R_L = P$.	$M_x = Px.$ $M_{max} = Pl.$	$d_{max} = \frac{Pl^3}{3 E J}$.
20 pounds per unit length	$R_L = wi$.	$M_x = \frac{wx^2}{2}.$ $M_{max} = \frac{wl^2}{2}.$	$d_{ extbf{max}} = rac{ ext{wl}^4}{8 ext{ EJ}}.$
W pounds total	$R_L = W$.	$Mx = \frac{Wx^3}{3 l^2}.$ $M_{max} = \frac{Wl}{3}.$	$d_{max} = \frac{Wl^3}{15 EJ}$.
$ \begin{array}{c c} P \\ \downarrow a \\ \downarrow \\ \downarrow R_L \end{array} $	$R_L = R_R = P$.	$M_x = P_x$. $M_{max} = P_a$.	$d_{end} = \frac{Pa^{2}(2 a + 3 l)}{6 E J}.$ $d_{center} = -\frac{Pal^{2}}{8 E J}.$

Beams Under Various Loadings (Concluded)

R pounds per un't length	$R_{L} = R_{R} = \frac{w(1+2a)}{2}.$	$\begin{aligned} M & \text{ at } R_L \text{ and } \\ R_R &= \frac{wa^2}{2} \cdot \\ M_{center} &= \\ \frac{w \cdot (l^2 - 4 \cdot a^2)}{8} \cdot \end{aligned}$	
$\begin{array}{c c} & & P \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & \\ \hline & & \\ \hline &$		$M_x = \frac{5}{16} P_x.$ $M_{max} = \frac{3}{16} Pl.$	$d_{max} = \sqrt{\frac{1}{5}} \frac{Pl^3}{48 EJ}.$ at $x = l\sqrt{\frac{1}{5}}.$
10 pounds per unit length		$\begin{aligned} M_x &= \\ \frac{wx^2}{2} \left(\frac{3}{4} - \frac{x}{l} \right) \cdot \\ M_{max} &= \\ \frac{wl^2}{8} \cdot & (\text{at } R_L) \end{aligned}$	$d_{center} = \frac{wl^4}{192 EJ}$ $d_{max} = \frac{wl^4}{185 EJ}$ at $x = 0.42151$
	$R_L = R_R = \frac{P}{2}$	$\begin{split} \overline{M_x} &= \\ \frac{Pl}{2} \left(\frac{x}{l} - \frac{1}{4} \right) \cdot \\ M_{max} &= \frac{Pl}{8} \cdot \\ (\text{at supports}) \\ M_{max} &= \frac{Pl}{8} \cdot \\ (\text{at center}) \end{split}$	$d_{max} = \frac{Pl^3}{192 EJ}.$
an promote per unit langth RL RR	$R_L = R_R = \frac{wl}{2}$.	$M_{x} = \frac{wl^{2}}{2} \left(\frac{1}{6} - \frac{x}{l} + \frac{x^{2}}{l^{2}} \right).$ $M_{max} = \frac{wl^{2}}{12}.$ (at supports)	$d_{max} = \frac{w1^4}{384}.$

Three moment equation gives the ratio between the moments M_a , M_b and M_c at three consecutive points of support (a, b) and (a, b) and (a, b) and (a, b) and (a, b) are supports.

Case I. Concentrated loads. (See Fig. 521.) 521 $\mathbf{M}_{a}\mathbf{l}_{1} + 2 \mathbf{M}_{b} (\mathbf{l}_{1} + \mathbf{l}_{2}) + \mathbf{M}_{c}\mathbf{l}_{2} = \mathbf{P}_{1}\mathbf{l}_{1}^{2} (\mathbf{k}_{1}^{3} - \mathbf{k}_{1}) + \mathbf{P}_{2}\mathbf{l}_{2}^{2} (\mathbf{3} \mathbf{k}_{2}^{2} - \mathbf{k}_{2}^{3} - \mathbf{2} \mathbf{k}_{2}).$

Case II. Uniformly distributed load. (See Fig. 522.)

522
$$\mathbf{M}_{a}\mathbf{l}_{1} + 2 \mathbf{M}_{b} (\mathbf{l}_{1} + \mathbf{l}_{2}) + \mathbf{M}_{c}\mathbf{l}_{2} = -\frac{1}{4} \mathbf{w}_{1}\mathbf{l}_{1}^{3} - \frac{1}{4} \mathbf{w}_{2}\mathbf{l}_{2}^{3}.$$

Intensity of stress (f) in tension or compression on a fiber y inches distant from the center of gravity of a section of a beam with J inches⁴ moment of inertia, due to a bending moment of M pound-inches.

$$\mathbf{f} = \frac{\mathbf{M}\mathbf{y}}{\mathbf{J}} \text{ pounds per sq. in.}$$

Intensity of stress (f) on the outer fiber of a rectangular beam h inches in depth and b inches in breadth, due to a bending moment of M pound-inches.

$$f = \frac{6 M}{bh^2} \text{ pounds per sq. in.}$$

Intensity of stress (f) in a fiber y inches distant from the center of gravity of a section of a beam of A square inches area and J inches moment of inertia, due to a direct load (parallel

Beams 125

to axis of beam) of P pounds and a bending moment of M pound-inches.

$$f = \frac{P}{A} \pm \frac{My}{J} \text{ pounds per sq. in.}$$

Graphical representation of stress distribution in a beam.

FIG. 525.

Maximum moment (\mathbf{M}) which can be carried by a beam with \mathbf{J} inches moment of inertia and \mathbf{y} inches greatest distance from center of gravity to outer fiber, without exceeding an intensity of stress of \mathbf{f} pounds per square inch in the outer fiber.

$$\mathbf{M} = \frac{\mathbf{f} \mathbf{J}}{\mathbf{v}} \text{ pound-inches.}$$

Section modulus (S) of a section of a beam with J inches⁴ moment of inertia and y inches distance from center of gravity to outer fiber.

$$S = \frac{J}{v} \text{ inches}^3.$$

Intensity of stress (f) on the outer fiber of a beam of section modulus of S inches³, due to a bending moment of M pound-inches.

$$\mathbf{f} = \frac{\mathbf{M}}{\mathbf{S}} \text{ pounds per sq. in.}$$

Intensity of longitudinal shear (s) along a plane XX at the section of a beam where the total vertical shear is S pounds, if J inches⁴ is the moment of inertia of the total section about its center of gravity axis, b the width of the beam at plane XX and Q inches³ the statical moment, taken

about the center of gravity axis, of that portion of the section which lies outside of the axis XX.

$$s = \frac{SQ}{bI} \text{ pounds per sq. in.}$$

Note. The maximum intensity of shear always occurs at the center of gravity of the section of a beam.

Maximum intensity of shear (s) in a rectangular beam A square inches in area at a section where the total vertical shear is S pounds.

530
$$s = \frac{3}{2} \frac{S}{A}$$
 pounds per sq. in.

Note. The intensity of vertical shear is equal to that of the longitudinal shear acting at right angles to it. The intensity of vertical shear is obtained by the formula $s = \frac{SQ}{bI}$.

Properties of Standard I Beams*

	$\begin{array}{c c} A & t \\ \hline A & a \\ \hline \\ \hline \\ B & \end{array}$										
Depth of beam, d inches	Weight per foot, w pounds	Area of section, A inches ²	Width of flange, b inches	Thick- ness of web, t inches	Mo- ment of inertia, J inches	Section modu- lus, S inches	Radius of gy- ration, r inches	Mo- ment of		Radius of gy- ration, r inches	
24	120.0	35 13	8 048	.798	3010 8	250 9	9 26	84 9	21 1	1 56	
	115.0	33.67	7 987	.737	2940 5	245 0	9 35	82 8	20 7	1 57	
	110.0	32.18	7 925	.675	2869 1	239.1	9 44	80 6	20 3	1 58	
	105.9	30.98	7 875	.625	2811 5	234 3	9 53	78 9	20 0	1 60	
24	95 0 90.0 85 0 79.9	29 25 27 79 26 30 24 84 23 33	7 247 7 186 7 124 7 063 7 000	.747 .686 .624 563 500	2371 8 2301.5 2230 1 2159 8 2087 2	197.6 191.8 185.8 180.0 173.9	9 05 9 08 9 21 9 33 9 46	48 4 47.0 45 5 44 2 42.9	13 4 13 0 12 8 12.5 12 2	1.29 1.30 1.32 1.33 1.36	
20	100 0	29 20	7 273	.873	1648 3	164 8	7 51	52 4	14 4	1.34	
	95.0	27 74	7 200	.800	1599 7	160.0	7 59	50 5	14 0	1.35	
	90.0	26.26	7 126	.726	1550 3	155 0	7 68	48 7	13 7	1.36	
	85 0	24.80	7 053	.653	1501.7	150 2	7 78	47 0	13 3	1.38	
	81 4	23 74	7 000	600	1466 3	146 6	7 86	45 8	13 1	1.39	
20	75.0	21.90	6.391	.641	1263 5	126 3	7.60	30 I	9 4	1.17	
	70.0	20 42	6 317	.567	1214 2	121 4	7.71	28 9	9 2	1.19	
	65.4	19 08	6.250	.500	1169 5	116.9	7.83	27.9	8 9	1.21	

^{*} Manufactured by the Carnegie-Illinois Steel Company, Pittsburgh, Pa.

Beams 127

Properties of Standard I Beams* (Continued)

					•	Axis A-A			Axis B-B	1
Depth of beam, d inches	Weight per foot, w pounds	Area of section, A inches ²	Width of flange, b inches	Thick- ness of web, t inches	Mo- ment of inertia, J inches	Section modu- lus, S inches	Radius of gy- ration, r inches	Mo- ment of inertia, J inches	Section modu- lus, S inches ³	Radius of gy- ration, r inches
18	70 0 65 0 60 0 54 7	20 46 18 98 17 50 15 94	6 251 6 169 6 087 6 000	.711 629 -547 -460	917 5 877 7 837 8 795 5	97 5 93 1 88 4	6 70 6 80 6 92 7 97	24 5 23 4 22 3 21 2	7 8 7.6 7 3 7 1	1.09 1.11 1.13 1.15
15	75 0	21 85	6 278	.868	687 2	91 6	5 61	30 6	9 8	I 18
	70 0	20 38	6 180	.770	659 6	87 9	5 69	28 8	9 3	I 19
	65 0	18 91	6 082	.672	632 I	84 3	5 78	27 2	8 9	I 20
	60 8	17 68	6 000	.590	609 0	81 2	5 87	26 0	8 7	I 21
15	55 0	16 06	5 738	648	508 7	67 8	5 63	17 0	5 9	1 03
	50 0	14 59	5 640	-550	481 1	64 2	5 74	16 0	5 7	1 05
	45 0	13 12	5 542	-452	453 6	60 5	5 88	15 0	5 4	1 07
	42 9	12 49	5 500	-410	441 8	58 9	5 95	14 6	5 3	1 08
12	55 0	16 04	5 600	810	319 3	53 2	4 46	17 3	6 2	1 04
	50 0	14 57	5 477	.687	301 6	50 3	4 55	16 0	5 8	1 05
	45 0	13 10	5 355	.565	284 J	47 3	4 66	14 8	5 5	1 06
	40 8	11 84	5 250	460	268 9	44 8	4 77	13 8	5 3	1 08
12	35 0 31 8	10 20 9 26	5 078 5 000	.425	227 0 215 8	37 8 36 0	4 72 4 83	10 0 9 5	3 9 3 8	0 99
10	40 0	11 69	5 091	.741	158 0	31 6	3 68	9 4	3 7	0.90
	35 0	10 22	4 911	-594	145 8	29 2	3 78	8 5	3 4	0.91
	30 0	8 75	4 797	447	133 5	26 7	3 91	7 6	3 2	0.93
	25 4	7 38	4 6bo	310	122 1	24 4	4 97	6 9	3 0	0.97
9	35 0	10 22	4 764	.724	111 3	24 7	3 39	7 3	3 0	0 84
	30 0	8 76	4 601	.561	101 4	22 5	3 40	6 4	2 8	0 85
	25 0	7 28	4 437	.397	91 4	20 3	3 54	5 6	2 5	0 88
	21 8	6 32	4 330	290	84 9	18 9	3 67	5 2	2.4	0 90
8	25 5	7 43	4 202	.532	68 I	17 0	3 03	4 7	2 2	0 80
	23 0	6 71	4 171	.441	64 2	16 0	3 09	4 4	2 I	0 81
	20 5	5 97	4 079	.319	60 2	15 1	3 18	4 0	2 0	0 82
	18 4	5 34	4 000	270	56 9	14 2	3 26	3 8	I 9	0 84
7	20 0	5 83	3 860	450	41 9	12 0	2 68	3 1	I 6	0 74
	17 5	5 60	3 755	345	38 9	11 1	2 77	2 9	I.6	0 76
	15 3	4 43	3 660	250	36 2	10 4	2 86	2 7	I.5	0.78
6	17 25	5 02	3 565	.465	26 0	8 7	2 28	2 3	I 3	0 68
	14 75	4 29	3 413	313	23 8	7 9	2 35	2 1	I 2	0 69
	12 5	3 61	3 330	230	21 8	7 3	2 46	1 8	I 1	0 72
5	14 75	4 29	3 2 ⁹ 4	494	15 0	6 0	1 87	1 7	1 0	0 63
	12 25	3 56	3 137	347	13 5	5 4	1 95	1 4	0 91	0 63
	10 0	2 87	3 000	.210	12 I	4 8	2 05	1 2	0 82	0 65
4	10 5	3 05	2 870	400	7 1	35	1.52	1.00	0 70	0 57
	9 5	2 76	2 796	.326	6.7	33	1.56	0 91	0 65	0.58
	8 5	2 46	2 723	.253	6 3	32	1.60	0 83	0 61	0.58
	7 7	2 21	2 660	190	6 0	30	1.64	0.77	0 58	0 59
3	7 5	2 17	2 509	349	2 9	1 9	1 15	0 59	0 47	0 52
	6 5	1.88	2 411	251	2 7	1 8	1 19	0 51	0.43	0.52
	5 7	1 64	2 330	170	2 5	1 7	1 23	0 46	0 40	0.53

Manufactured by the Carnegie-Illinois Steel Company, Pittsburgh, Pa.

Properties of Standard Angles with Equal Legs*

		A B	A.	B 7			
]	1]	Ax	is A-A		Axis B-B
Thick- ness, t inches	Weight per foot, w pounds	Area of section, A inches2	Moment of inertia, J inches	Section modulus,	Radius of gyration,	Distance from back of angle to center of gravity, x inches	Minimum radius of gyration,r inches
I I I I I I I I I I I I I I I I I I I	56 9 51 0 51 0 48 1 45 0 42 0 38 9 35 8 32 7 29 6 26 4	16 73 15 87 15 00 14 12 13 23 12 34 11 44 10 53 9 61 8 68 7 75	98 0 93 5 89 0 84 3 79 6 74 7 69 7 64 6 59 4 54 1 48 6	17 5 16 7 15 8 14 9 14 0 13 1 12 2 11 2 10 3 9 3 8 4	2 42 2 43 2 44 2 44 2 45 2 46 2 47 2 48 2 49 2 50 2 51	2 41 2 39 2 37 2 34 2 32 2 30 2 28 2 25 2 23 2 21 2 19	1 55 1 56 1 56 1 56 1 56 1 57 1 57 1 57 1 58 1 58 1 58
1 1 1 5 6 7 6 4 7 6 8 8 7 7 5 7 5 8 5 6	30 6 37 4 35 3 31 0 28 7 26 5 21 9 19 6 17 2 14 9 12 6	11 62 11 00 10 37 9 73 9 09 8 44 7 78 7 11 6 43 5 75 5 06 4 36 3 66	37 2 35 5 33 7 31 9 30 1 28 2 26 2 24 2 24 2 19 9 17 7 15 1	9 0 8 6 8 1 7 6 7 2 6 7 6 7 5 7 5 1 4 0 4 1 3 5 3 0	1 79 1 80 1 80 1 81 1 82 1 83 1 84 1 85 1 86 1 87	1 89 1 86 1 84 1 82 1 80 1 78 1 75 1 73 1 71 1 68 1 60 1 64 1 61	1 16 1 16 1 16 1 16 1 17 1 17 1 17 1 17
1 17 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	30 0 28 9 27 2 25 4 23 6 21 8 20 0 18 1 16 2 14 3 10 3 8 3	9 00 8 50 7 98 7 47 6 94 6 40 5 80 5 31 4 75 4 18 3 61 3 03 2 44	19 6 18 7 17 8 16 8 15 7 14 7 13 6 12 4 11 3 10 0 8 7 7 4 6 0	5 8 5 5 5 5 2 4 9 4 5 4 2 3 9 3 5 3 2 2 8 2 4 2 0 1 6	1 48 1 48 1 49 1 50 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57	1 61 1 59 1 57 1 55 1 55 1 50 1 48 1 46 1 43 1 41 1 39 1 36 1 34	95 96 96 97 97 97 97 97 98 98 98 99 99
	ness, inches	ness, t foot, w inches pounds 1	Thickness, t per foot, w inches foot, w pounds foot, w inches foot, w pounds foot, w inches foot, w pounds foot, w inches foot	Thickness, toot, w pounds inches per foot, w pounds inches pounds inches foot, w pounds foot	Thickness, toot, wo pounds Area of section, foot, wo pounds Area of section, foot, wo pounds Area of section, foot, wo have pounds Area of section, foot, wo h	Thickness, toot, w inches pounds Area of section, foot, w pounds Area of section, foot, w inches Section of inertia, Jinches Section of inertia, Jinches Section of inertia, Jinches Sinches Sin	Thick- ness, t pounds Area of section, foot, w pounds 1

0 77 0 77 0 77 0 78 0 78 0 79 0 79 0 79 I 5 I 3 I 0 o 80 Manufactured by the Carnegie-Illinois Steel Company, Pittsburgh, Pa.

8 1

4×4

0 77

1 29

I 27 I 25 I 23 I 21

1 18

I 16

1.14

I 12

I 09

1 18

1 19

1 19

I 20 I 2I I 22

I 25

Angles 129

Properties of Standard Angles with Equal Legs* (Continued)

					Axi	s A-A		Axis B-B
Size, 1 inches	Thick- ness, t inches	Weight per foot, w pounds	Area of section, A inches?	Moment of inertia, J inches	S inches		Distance from back of angle to center of gravity, x inches	Minimum radius of gyration,r inches
3½×3½	To the second of	17 t 16 0 14 8 13 6 12 4 11 t 9 8 8 5 7 2 5 8 4 4	5 03 4 69 4 31 3 98 3 62 3 25 2 87 2 48 2 09 1 69 1 28	5.3 5.0 4.7 4.3 4.0 3.6 3.3 2.2 2.5 2.0 1.6	2 3 2 1 2 0 1 8 1 6 1 5 1 3 1 2 0 98 0 79 0 61	1 02 1 03 1 04 1 04 1 05 1 00 1 07 1 07 1 08 1 09 1 10	1 17 1 15 1 12 1 10 1 08 1 06 1 04 1 01 0 99 0 97 0 95	0 67 0 67 0 67 0 68 0 68 0 68 0 68 0 69 0 69 0 69
3×3	556 8 15 7 15 15 15 15 15 15 15 15 15 15 15 15 15	11 5 10 4 9 4 8 3 7 2 6 1 4 9 3 71 2 48	3 36 3 06 2 75 2 43 2 11 1 78 1 44 1 09 6 73	2 6 2 4 2 2 2 0 1 8 1 5 1 2 0 0h 0 0h	1 3 1 2 1 1 0 95 0 83 0 71 0 58 0 44 6 30	0 88 0 89 0 90 0 91 0 91 0 92 0 93 0 94 0 96	o 98 o 95 o 93 o 91 o 89 o 87 o 84 o 82 o 80	0 57 0 58 0 58 0 58 0 59 0 59 0 59
2½×2}	197 176 176 176 176	7 7 6 8 5 9 5 0 4 1 3 07 2 08	2 25 2 60 1 73 1 47 1 19 0 90 0 61	1 2 1 1 0 98 0 85 0 70 0 55 0 38	0 73 0 65 0 57 0 48 0 39 0 30 0 20	0 74 0 75 0 75 0 76 0 77 0 78 0 79	0 81 0 78 0 76 0 74 0 72 0 69 0 67	0 47 0 48 0.48 0 49 0 49 0 49 0 50
2×2	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 } 1 7 3 92 3 19 2 11 1 65	1 56 1 36 1 15 0 94 0 71 0 48	0 51 0 48 0 42 0 35 0 28 0 19	0 40 0 35 0 30 0 25 0 19 0 13	0 59 0 59 0 60 0 61 0 62 0 63	0 66 0 64 0 61 0 59 0 57 0 55	0 39 0 39 0 39 0 39 0 40 0 40
1]×1]	16 16 16 16	3 99 3 39 2 77 2 12 1 44	1 17 1 00 0 81 0 62 0 42	0 31 0 27 0 23 0 18 0 13	0 26 0 23 0 19 0 14 0 10	0 51 0 52 0 53 0 54 0 55	0 57 0 55 0 53 0 51 0 48	0.34 0.34 0.34 0.35 0.35
1½×1½	16 16 1 10	3 35 2 86 2 34 1 80 1 23	0 98 0 84 0 69 0 53 0 36	0 19 0 16 0 11 0 08	0 19 0 16 0 13 0 10 0 07	0 44 0 44 0 45 0 46 0 46	0 51 0 49 0 47 0 44 0 42	0 29 0 29 0 29 0 29 0 30
11×11	5 1 4 1 1 6 1 8	2 33 1 92 1 48 1 01	o 68 o 56 o 43 o 40	0 09 0 08 0 00 0 04	0 11 0 09 0 07 0 05	0 36 0 37 0 38 0 38	0 42 0 40 0 38 0 35	0 24 0 24 0 24 0 25
1×1	1 4 5 16 1	1 49 1 16 0 80	0 44 0 34 0 23	0 04 0 03 0 02	0 06 0 04 0 03	0 29 0 30 0 31	0 34 0 32 0 30	0 19 0 19

130 Mechanics

Properties of Standard Angles with Unequal Legs*

		ot,	'n,			s A-A				is B-B		Axis C-C	
Size, inches	Thickness, t inches	Weight per foot, w pounds	Area of section,	Moment of in- ertia, J inches	Section modu- lus, S inches ³	Radius of gyra- tion, r inches	Distance from back of angle to center of gravity, x _a ins.	Moment of in- ertia, J inches	Section modu- lus, S inches	Radius of gyra- tion, r inches	Distance from back of angle to center of gravity, x _b ins.	Minimum radius of gyra- tion, r inches	
8×6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49 3 46 8 44 2 41 7 39 1 36 5 33 8 31 2 28 5 25 7 23 0 20 2	14 48 13 75 13 00 12 25 11 48 10 72 9 94 9 15 8 36 7 56 6 75 5 93	88 9 84 9 80 8 76 6 72 3 67 9 63 4 58 8 51 1 49 3 41 3 39 2	16 8 15 9 15 1 14 3 13 4 12 5 11 7 10 8 9 9 8 9 8 0 7 1	2 48 2 48 2 49 2 50 2 51 2 52 2 53 2 51 2 55 2 56 2 57	2 70 2 68 2 65 2 61 2 59 2 50 2 54 2 52 2 50 2 47 2 45 3 05	42 5 40 7 38 8 36 8 31 9 32 8 30 7 28 6 26 3 24 0 21 7 19 3	9 9 8 9 8 4 7 9 7 4 6 9 5 3 4 8 4 2	1 71 1 72 1 73 1 73 1 74 1 75 1 76 1 77 1 78 1 79 1 80	1 70 1 68 1 65 1 63 1 61 1 59 1 56 1 54 1 52 1 50 1 47 1 45	1 28 1 28 1 28 1 28 1 28 1 29 1 29 1 29 1 30 1 30 1 30	
8×4	I 1178 116 16 18 178 178 178 178 178 178 178 178 178	37 4 35 3 33 1 31 0 28 7 26 5 24 2 21 9 19 6 17 2 34 0	11 00 10 37 9 73 9 09 8 44 7 78 7 11 6 43 5 75 5 00	69 6 60 1 62 4 58 7 54 9 51 0 46 9 42 8 38 5 34 1	14 1 13 3 12 5 11 7 10 9 10 0 9 2 8 4 7 5 6 6	2 52 2 53 2 53 2 54 2 55 2 56 2 56 2 58 2 59 2 6c	3 05 3 09 3 09 2 95 2 95 2 91 2 88 2 86 2 83	11 6 11 1 10 5 10 0 9 4 8 7 8 1 7 4 6 7 6 0	4 2 3 9 3 7 3 5 3 3 3 1 2 8 2 6 2 4 2 2 1 9	1 03 1 04 1 05 1 05 1 05 1 07 1 07 1 07 1 08 1 09	1 05 1 02 1 00 0 98 0 95 0 95 0 91 0 88 0 86 0 83	0 85 0 85 0 85 0 85 0 85 0 85 0 85 0 86 0 86 0 86	
7×4	THE THE WEST THE	32 1 30 2 28 2 26 2 24 2 22 1 20 0 17 9 15 8 13 6	10 00 9 41 8 86 8 28 7 69 7 09 6 49 5 88 5 25 4 63 3 99	47 7 45 4 42 9 40 4 37 8 35 1 32 4 29 6 26 7 23 7 20 6	10 8 10 3 9 7 9 0 8 4 7 8 7 1 6 5 5 8 5 1 4 4	2 18 2 10 2 20 2 21 2 22 2 23 2 21 2 24 2 25 2 26 2 27 1 85	2 60 2 58 2 55 2 53 2 51 2 49 2 40 2 44 2 42 2 39 2 37	11 2 16 7 10 2 9 6 9 1 8 5 7 8 7 2 6 5 5 1	3 9 3 7 3 5 3 2 3 0 2 8 2 6 2 4 2 1 1 9 1 6	1 06 1 07 1 07 1 08 1 09 1 09 1 10 1 11 1 11 1 12 1 13	1 10 1 08 1 05 1 03 1 01 0 99 0 96 0 94 0 92 0 89 0 87	0 85 0 86 0 86 0 86 0 86 0 86 0 87 0 88 0 88	
6×4	I 100 006 100 00 00 100 00 100 00 00 00 00 00 00	30 6 28 9 27 2 25 4 23 6 21 .8 20 0 18 1 16 .2 14 3 12 3 10 3	9 00 8 50 7 98 7 47 6 94 6 40 5 86 5 31 4 75 4 18 3 61 3 03	30 8 29 3 27 7 26 1 24 5 22 8 21 1 19 3 17 4 15 5 13 5 11 4	8 0 7 6 7 2 6.7 6 2 5 8 5 3 4 8 4 3 3 8 3 3 2 8	1 85 1 86 1 86 1 87 1 88 1 89 1 90 1 90 1 91 1 92 1 93 1 94	2 17 2 14 2 12 2 10 2 08 2 06 2 03 2 01 1 99 1 96 1 94 1 92	10 8 9 8 9 2 8 7 8 1 7 5 6 3 5 6 4 9 4 2	3 8 3 6 3 4 3 2 3 0 2 8 2 5 2 3 2 1 1 8 1 6 1 4	1 09 1 10 1 11 1 11 1 12 1 13 1 13 1 14 1 15 1 16 1 17 1 17	1 17 1 14 1 12 1 10 1 08 1 06 1 03 1 01 0 99 0 96 0 94 0 92	0 85 0 85 0 86 0 86 0 86 0 86 0 87 0 87 0 87 0 87 0 88	
6×3}	I 117 8 116 116 116 116 116 116 116 116 116 1	28.9 27.3 25.7 24.0 22.4 20.6 18.9	8 50 8 03 7 55 7 06 6 56 6 06 5 55	29 2 27 8 26 4 24 9 23 3 21 7 20 I	7 8 7 4 7 0 6 6 6 1 5.6 5.2	1 85 1 86 1 87 1 88 1 89 1 89 1 90	2 26 2 24 2 22 2 20 2 18 2 15 2 13	7 2 6 9 6 6 6 2 5 8 5 5 5 1	2 9 2 7 2 6 2 4 2 3 2 1 1 9	0.92 0 93 0 93 0 94 0 94 0 95 0 96	1 01 0 99 0 97 0 95 0 93 0 90 0.88	0 74 0 74 0 75 0 75 0 75 0 75 0 75	

Properties of Standard Angles with Unequal Legs* (Continued)

	riope	15			Axis	A-A			Axi	s B-B		Axis C-C
Size, inches	Thickness, t inches	Weight per foot, w pounds	Area of section, A inches	Moment of in- ertia, J inches	Section modu- lus, S inches ³	Radius of gyra- tion, r inches	Distance from back of angle to center of gravity, x _x ins.	Moment of in- ertia, J inches	Section modu- lus, S inches	Radius of gyra- tion, r inches	Distance from back of angle to center of gravity, xb ins.	Minimum radius of gyra- tion, r inches
6×3½	96 1-87-6-56 * * *	17 I 15 3 13 5 11 7 9 8 7 9	5 03 4 50 3 97 3 42 2 87 2 31	18 4 16 6 14 8 12 9 10 9 8 9	4.7 4.2 3.7 3.3 2.7 2.2	1 91 1 92 1 93 1 94 1 95 1 96	2 11 2 08 2 06 2 04 2 01 1 99	47 43 38 33 29 25	1 8 1 6 1 4 1 2 1 0 0 91	0 96 0 97 0 98 0 99 1 00 1 01	0 86 0 83 0 81 0 79 0 76 0 74	0 75 0 76 0.76 0.77 0.77 0.77
5×4	115 P P 15 7 P 15 P 15 P 15 P 15 P 15 P	21 I 19 5 17 8 16 2 14 5 12 8	6 19 5 72 5 23 4 75 4 25 3 75 3 23	14 6 13 6 12 4 11 6 10 5 9 3 8 1	4 4 1 3 7 3 4 3 1 2 7 2 3	I 54 I 54 I 55 I 56 I 57 I 58 I 59	1 66 1 64 1 62 1 60 1 57 1 55 1 53	8 5 7 9 7 3 6 0 5 3 4 7	2 9 2 7 2 5 2 2 2 0 1 8 1 6	1 14 1 15 1 16 1 17 1 18 1 19 1 20	I 16 1 14 1 12 I 10 I 07 I 05 I 03	0 78 0.78 0 78 0 79 0.79 0 79 0.80
5×3½	- 0 - 16 - 0 - 10 - 10 - 10 - 10 - 10 -	22 7 21 3 19 8 18 3 16 8 15 2 13 6 12 0 10 4 8 7	6 67 6 25 5 81 5 37 4 92 4 47 1 00 3 53 3 05 2 56 2 06	15 7 14 8 13 9 13 0 12 0 17 0 10 0 8 9 6 6 5 4	4 9 4 6 4 3 4 0 3 7 3 3 3 0 2 6 2 3 1 9 1 6	I . 53 I 54 I 55 I 56 I 56 I 57 I 58 I 59 I 60 I 61	1 79 1 77 1 75 1 72 1 70 1 68 1 66 1 63 1 61 1 59	6 2 5 6 5 8 4 4 0 6 3 2 7 2	2 5 2 4 2 2 2 1 1 9 1 7 1 6 1 4 1 2 1 0 0 83	0 96 0 97 0 98 0 98 0 99 1 00 1 01 1 01 1 02 1 03 1 04	1 04 1 02 1 00 0 97 0 95 0 93 0 91 0 88 0 86 0 84	0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.76
5×3	16 16 16 16 16 16 16 16 16 16 16 16 16 1	19 9 18 5 17 1 15 7 14 3 12 8 11 3 9 8 8 2 6 6	5 84 5 44 5 03 4 61 4 18 3 75 3 31 2 86 2 40 1 94	14 0 13 2 12 3 11 4 10 4 9 5 8 4 7 4 6 3 5 1	4 5 4 2 3 9 3 5 2 2 9 2 6 2 2 1 9 1 5	1 55 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1 61 1 62	1 86 1 84 1 82 1 80 1 77 1 75 1 73 1 70 1 68 1 66	3 7 3 5 3 3 3 1 2 8 2 0 2 3 2 0 1 8 1 4	1 7 1 6 1 5 1 4 1 3 1 1 1 0 0 89 0 75 0 61	0 80 0 80 0 81 0 81 0 82 0 83 0 84 0 84 0 85 0 86	0 86 0 84 0 82 0 80 0 77 0 75 0 73 0 70 0 68 0 66	0 64 0 64 0 64 0 65 0 65 0 65 0 65 0 66
4×31	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 5 17 3 16 0 14 7 13 3 11 9 10 6 9 1 7 7 6 1 4 6	5 43 5 06 4 68 4 30 3 90 3 50 3 09 2 67 2 25 1 81 1 36	7 8 7 3 6 9 6 4 5 9 5 3 4 8 4 2 3 6 2 9 2 2	2 9 2 8 2 6 2 4 2 1 1 9 1 7 1 5 1 3 1 0 0 78	I 10 1 20 1 21 I .22 1 23 1 23 1 24 I .25 I .26 I .27 I .29	1 30 1 34 1 32 1 29 1 27 1 25 1 23 1 21 1 18 1 16 1 13	5 5 2 4 9 4 5 4 2 8 3 4 4 3 6 6 2 1 6	2 3 2 1 2 0 1 8 1 7 1 5 1 3 1 2 1 0 0 81 0 62	1 01 1 02 1 03 1 03 1 04 1 05 1 06 1 07 1 07	1.11 1 09 1 07 1 04 1 02 1 00 0 98 0 96 0 93 0 91 0 89	0 72 0 72 0 72 0 72 0 72 0 72 0 72 0 73 0 73 0 73
4×3	100 - 100 P 100 7 100 5 100 P	17 1 16 0 14 8 13 6 12 4 11.1 9 8 8.5 7.2 5.8 4 4	5 03 4 69 4 34 3 98 3 62 3 25 2 87 2 48 2 09 1 69 1 28	73 69 65 60 56 50 45 40 34 28 21	2 9 2 7 2 5 2 3 2 1 1 9 1 7 1 5 1 2 1 0	I 21 I 22 I 22 I 23 I 24 I 25 I 26 I 27 I 28 I 29	1 44 1 42 1 39 1 .37 1 35 1 33 1 30 1 38 1 26 1 24 1 21	3 5 3 3 3 3 1 2 9 2.7 2 4 2 2 1 9 1 7 1 4 1 1	1 7 1 6 1 5 1 4 1 2 1 1 1 0 0 87 0 74 0 60 0 46	0 83 0 84 0 84 0 85 0 86 0 86 0 87 0 88 0 89 0 89	0 94 0 92 0 89 0 87 0 85 0 83 0 80 0 78 0 76 0 74	0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.65 0.65
3½×3	100	15 8 14 7 13 6 12 5 11 4 10 2	4 62 4 31 4 00 3.67 3.34 3 00	5 0 4 7 4 4 4 1 3 8 3 5	2 2 2 1 1 9 1 8 1 6 1 5	1 04 1 04 1 05 1 06 1 07 1 07	1 23 1.21 1 19 1.17 1.15 1 13	3 3 3 1 3 0 2 8 2 5 2 3	I 7 I 5 I 4 I 3 I.2	0 85 0 85 0 86 0 87 0 87 0 88	o 98 o 96 o 94 o 92 o 90 o 88	0 62 0.62 0.62 0.62 0 62 0 62

Properties of Standard Angles with Unequal Legs* (Continued)

		يد	ي		Axi	s A-A			Axi	sB-B		Axis C-C
Size, inches	Thickness, t inches	Weight per foot, w pounds	Area of section, A inches2	Moment of 111-ertia, J inches	Section modu- lus, S inches ³	Radius of gyra- tion, r inches	Distance from back of angle to center of gravity, x, ins.	Moment of in- ertia, J inches	Section modu- lus, S inches ³	Radius of gyra- tion, r inches	Distance from back of angle to center of gravity, x _b ins.	Minimum radius of gyra- tion, r inches
3½×3	16 3 8 3 16 1 4 4 3	9 1 7 9 6 6 5 4 4 0	2 65 2 30 1 93 1 56 1 18	3 1 2 7 2 3 1 9 1.5	1 3 1 1 0 96 0 78 0 50	1 68 1 09 1 10 1 11 1 12	1 10 1 08 1 06 1 04 1 01	2 I 1 8 1 6 I 3 I 0	0 98 0 85 0 72 0 58 0 45	o 89 o 90 o 90 o 91 o 93	0 85 0 83 0 81 0 70 6 76	0 62 0 62 0 63 0 63 0 63
3½×2½	16 12 13 13 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12 5 11 5 10 4 9 4 8 3 7 2 6 1 4 9 3 7	3 05 3 30 3 06 2 75 2 43 2 11 1 78 1 44 1 09	4 I 3 8 3 6 3 2 2 9 2 6 2 2 I 8 I 4	1 9 1 7 1 6 1 4 1 3 1 1 0 93 0 75 0 53	1 06 1 07 1 08 1 09 1 10 1 11 1 12 1 13	1 27 1 25 1 23 1 20 1 18 1 16 1 14 1 11	1 7 1 6 1 5 1 4 1 2 1 1 0 94 0 73 0 60	0 99 0 92 0 84 0 76 0 68 0 50 0 50 0 41 0 32	0 69 0 09 0 70 0 70 0 71 0 72 0 73 0 71	0 77 0 75 0 73 0 70 0 68 0 66 0 64 0 61 0 50	0 53 0 53 0 53 0 53 0 54 0 54 0 54 0 54
3×2}	76 10 10 10 10 10 10 10 10 10 10 10 10 10	9 5 8 5 7 6 6 6 5 6 4 5 3 39	2 78 2 50 2 21 1 92 1 62 1 31 1 00	2 3 2 1 1 9 1 7 1 4 1 2 0 91	1 2 1 0 0 93 0 81 0 69 0 55	0 91 0 91 0 92 0 93 0 94 0 95 0 95	1 02 1 00 0 98 0 96 0 93 0 91 0 80	1 4 1 3 1.2 1 0 0 90 0 74 0 55	0 82 0 74 0 66 0 58 0 49 0 40 0 31	0 72 0 72 0 73 0 74 0 74 0 75 0 76	0 77 0 75 0 73 0 71 0 68 0 66 0 64	0 52 0 52 0 52 0 52 0 53 0 53
3×2	77 16 15 15 15 15 15 15 15 15 15 15 15 15 15	7 7 6 8 5 9 5 0 4 1 3 07	2 25 2 00 1 73 1 47 1 19 0 90	19 17 15 13 11 084	0 89 0 73 0 65 0 54 0 41	0 92 0 93 0 94 0 95 0 95 0 97	1 05 1 06 1 04 1 02 0 99 0 97	0 67 0 61 0 54 0 47 0 39 0 31	0 47 0 42 0 37 0 32 0 25 0 20	0 55 0 55 0 56 0 57 0 57 0 58	0 58 0 56 0 54 0 52 0 49 0 47	0 43 0 43 0 43 0 43 0 43 0 44
2]×2	ACCEPTED OF THE PROPERTY OF TH	6 8 6 1 5 3 4 5 3 62 2 75 1 86 4 7	2 00 1 78 1 55 1 31 1 06 0 81 0 55 1 35	1 1 1 0 0 91 0 79 0 65 0 51 0 35 0 82	0 70 0 62 0 55 0 47 0 33 0 29 0 20 0 \$2	0 75 0 76 0 77 0 73 0 73 0 79 0 80 0 73	0 88 0 85 0 83 0 81 0 79 0 76 0 74 0 92	0 64 0 53 0 51 0 45 0 37 0 29 0 20 0 22	0 49 0 41 0 35 0 31 0 25 0 20 6 13 0 20	0 55 0 57 0 53 0 53 0 59 0 60 0 61 0 40	0 63 0 60 0 53 0 56 0 54 0 51 0 49 0 42	0 42 0 42 0 42 0 42 0 42 0 43 0 43 0 32
2}×1}	3 3 16	3 92 3.19 2 44	1 15 0 94 0 72	0 7I 0 59 0 4'i	0 44 0 36 0 23	0 70 0 79 0 80	0 90 0 88 0 85	0 19 0 10	0 17 0 14 0 11	0 41 0 41 0 42	0 40 0 38 0 35	0 32 0 32 0 33
2×11	5 15 16 2 18	3 99 3 39 2 77 2.12 1 44	1 17 1 00 0 81 0 62 0 42	0 45 0 35 0 32 0 25 0 17	0 34 0 29 0 24 0 18 0 13	0 61 0 62 0 62 0 63 0 64	0 71 0 69 0 66 0 64 0 62	0 21 0 18 0 15 0 12 0 09	0 20 0 17 0 14 0 11 0 04	0 42 0 42 0 43 0 44 0 45	0 46 0 44 0 41 0 39 0 37	0.32 0.32 0.32 0.32 0.33
1 ⁴ ×1 ¹	136	2 34 I 80 I 23	0 69 0 53 0 33	0 20 0 16 0 11	0 13	0 54 0 55 0 56	o 60 o 59 o 56	0 09 0 07 0 05	0 TO 0 08 0 05	0 35 0 30 0 37	0 35 0 33 0 31	0 27 0 27 0 27

Beams 133

Properties of Standard Channels*

	$\frac{B}{3}$											
			ك	-	-a	- j t	7-3-	•				
nel,	ot,	u,	ge,	eb,]	xis A-		Axis B-B				
Depth of channel, d inches	Weight per foot, w pounds	Area of section, A inches ²	Width of flange, b inches	Thickness of web,	Moment of in- ertia, Jinches	Section modu- lus, S inches	Radius of gyra- tion, r inches	Moment of in- ertia, J inches	Section modu- lus, S inches-	Radius of gyra- tion, r inches	Distance from back of web to center of gravity, x inches	
18	58 0 51 9 45 8 42 7	16 98 15 18 13 38 12 48	4 200 4 100 4 000 3 950	700 600 510 150	670 7 622 I 573 5 549 2	74 5 69 1 63 7 61 0	6 29 6 40 6 55 6 64	18 5 17 1 15.8 15 0	5 6 5 3 5 1 4 9	1 04 1 06 1 09 1 10	0 88 0 87 0 89 0 90	
15	55 0 50 0 45 0 40 0 33 0 33 9	16 11 14 64 13 17 11 70 10 23 9 90	3 814 3 710 3 618 3 520 3 422 3 400 4 412	814 716 613 520 422 400	429 0 401 4 373 9 346 3 318 7 312 6	57 2 53 6 49 8 46 2 42 5 41 7	6 55 6 64 5 16 5 24 5 33 5 44 5 58 5 62	12 1 11 2 10 3 9 3 8 4 8 2	4 I 3 8 3 6 3 4 3 2 3 2	0 87 0 87 0 88 0 89 0 91 0 91	0 82 0 80 0 79 0 78 0 79 0 79	
13	50 0 45 0 40 0 37 0 35 0 31 8	11 66 13 18 11 71 10 82 10 24 0 30	4 412 4 293 1 155 4 117 4 072 4 000	787 673 550 493 447 375	312 9 292 0 271 4 251 9 251 7 247 5	48 1 41 9 41 7 39 8 38 6 36 5	4 62 4 71 4 82 4 89 4 95 5 05	16 7 15 3 13 9 14 6 12 5 11 6	4 9 4 6 4 3 4 2 4 0 3 9	1 07 1 08 1 09 1 10 1 10 1 11	0 98 0 97 0 97 0 98 0 99 1 01	
12	40 0 35 0 30 0 25 0 20 7	11 73 10 26 8 79 7 32 6 03	3 415 3 202 3 175 3 047 2 040	755 632 510 387 230	196 5 178 8 161 2 143 5 128 1	32 8 29 8 26 9 23 9 21 4	4 09 4 18 4 28 4 43 4 61	6 6 5 9 5 2 4 5 3 9	2 5 2 3 2 1 1 9 1 7	0 75 0 76 0 77 0 79 0 81	0 72 0 69 0 68 0 68	
10	35 0 30 0 25 0 20 0 15 3	10 27 8 80 7 33 5 86 4 47	3 180 3 033 2 886 2 739 2 600	.820 .673 526 -379 240	115 2 103 0 90 7 78 5 66 9	23 0 20 6 18 1 15 7 13 4	3 34 3 42 3 52 3 66 3 87	46 40 34 28 23	1 9 1 7 1 5 1 3 1 2	0 67 0 67 0 68 0 70 0 72	0 69 0 65 0 62 0 64 0 64	
9	25 0 20 0 15 0 13 4	7 33 5 86 4 39 3 89	2 812 2 648 2 485 2 430	612 -448 -285 -230 	7° 5 60 6 5° 7 47 3	15 7 13 5 11 3 10 5	3 10 3 22 3 40 3 49	3 0 2 4 1 9 1 8 2 20	1 4 1 2 1 0 0 97	0 64 0 65 0 67 0 67	0 61 0 59 0 59 0 61	
8	21 25 18.75 16 25 13 75 11 50	6 23 5 49 4 76 4 02 3 36	2 619 2 527 2 435 2 343 2 260	.487 395 .303 220	47 5 43 7 39 8 35 8 32 3	11 9 10 9 9 9 9 0	2 77 2 82 2 89 2 99 3 10	2 20 2 00 1 80 1 50 1 30	1 10 1 00 0 94 0 86 0 79	0 60 0 60 0 61 0 62 0 63	0 59 0 57 0 56 0 56 0 58	
7	19 75 17 25 14 75 12 25 9 80	5 79 5 05 4 32 3 58 2 85	2 509 2 404 2 209 2 194 2 000	629 -524 -419 -314 -210	33 I 30 I 27 I 24 I 21 I	9 4 8 6 7 7 6 9 6 0	2 39 2 44 2 51 2 59 2 72	1 80 1 60 1 40 1 20 0 98	6 96 0 86 0 79 0 71 0 63	0 56 0 56 0 57 0 58 0 59	0 58 0 55 0 53 0 53 0 55	
6	15 50 13 00 10 50 8 20	4 54 3 81 3 07 2 39	2 279 2 157 2 034 1 920	559 -437 314 200	19 5 17 3 15 1 13 0	6 5 5 8 5 0 4 3	2 07 2 13 2 22 2 34	1 30 1 10 0 87 0 70	0 73 0 65 0 57 0 50	0 53 0 53 0 53 0 54	0 55 0 52 0 50 0 52	
5	11 50 9 00 6.70	3 36 2 63 1 95	2 032 1 885 1 750	.472 325 190	10 4 8 8 7 4	4 I 3 5 3 0	I 76 I 83 I 95	0 82 0 64 0 48	0 54 0 45 0 38	0 49 0 49 0 50	0 51 0.48 0 49	
4	7.25 6.25 5.40	2 12 1 82 1 56	1 720 1 647 1 580	320 247 180	4 5 4 1 3 8	2 3 2 1 1 9	I 47 I 50 I 56	0 44 0 38 0 32	0 35 0 32 0 29	0.45	0 46 0 46 0 46	
3	6.00 5.00 4 10	I 75 I 46 I 19	I 596 I 498 I 410	.356 .258 170	2 I I 8 I 6	I 4 I 2 I I	1 08 1 12 1 17	0 31 0 25 0 20	0 27 0 24 0 21	0 45 0 42 0.41 0 41	0.46 0.44 0.44	

^{*} Manufactured by the Carnegie-Illinois Steel Company, Pittsburgh, Pa.

			ound Stee	el Bars mferences	3	1/16 TO	O 15/16
Thickness		Weight i	n Pounds		Area in S	q. Inches	0
or Diameter	Square	e 📕	Round			0	_
in Inches	One Inch Long	One Foot Long	One Inch Long	One Foot Long	Square	Round	Circum- ference
16	100.	.013	100.	.010	.0039	.0031	. 1964
64 3	.002 .002	,021	.001	.016 .023	.0061 0088	.0048 .0069	. 2454
16 5 64 3 32 7 64	.002	.030 .041	.002	.023	.0120	.0094	. 2945 . 3436
1	.004	.053	004	.042	.0156	.0123	.3927
18 9 64 5 32 11 64	.006	.067	.004	.053	.0198	.0155	.4418
32	.007	.083	.005	.065	.0244	.0192	.4909
64	.008	.100	.007	.079	.0295	.0232	. 5400
3 16 13 64	.010	.120	.008	.094	.0352	.0276	. 5891
67	.012	.140	009	110 128	.0413	.0324	.6381 6870
32 15 64	.014 .016	. 163 . 187	.011 210	.147	.0479 .0549	.0376	.6872 .7363
1	.018	.212	.014	.167	.0549	.0431	. 7854
1 17 64	.020	.212	.016	.188	.0023	.0554	.8345
95	.022	. 269	.018	. 211	.0791	.0621	.8836
8 2 19 64	.025	. 300	.020	. 235	.0881	.0692	.9327
	.028	.332	.022	. 261	.0977	.0767	.818
21 64	.031	. 366	.024	. 288	.1077	.0846	1.0308
5 124 1123 64 1323 64	.033	.402	0.26	.316	.1182	.0928	1.0799
	.037	439	029	345	.1292	.1014	1.1290
3.E 2.54 4.32.2.7.4	.040	.478	031	.376	.1406	.1104	1.1781
13	.043 .047	.519 .561	.034 .037	.407 .441	.1526 .1650	.1198 .1296	I.2272 I.2763
27	.050	.605	.040	.475	.1780	.1398	1.3254
	.054	.651	.043	.511	.1914	.1503	1.3745
39	.058	.698	.046	.548	. 2053	. 1613	1.4235
7 166 264 155 321 64	.062	.747	.049	-587	.2197	.1726	1.4726
	066	.798	.052	.627	. 2,346	.1843	1.5217
1 233 64 17 32 364	.071	.850	.056	.668	. 2500	. 1963	1.5708
17	.075 .080	904 .960	.060 .063	.710 .754	. 2659 . 2822	.2088 .2217	1.6199 1.6690
35	.085	1.017	.067	·734 ·799	.2991	.2349	1.7181
24	.090	1.076	.070	.845	.3164	.2485	1.7672
16 37 84	.095	1.136	.074	.893	.3342	. 2625	1.8162
32 32 36 64	. 100	1.199	.078	.941	.3525	. 2769	1.8653
<u> </u>	.105	1.263	.083	.992	.3713_	. 2916	1.9144
5 2 4 4 1 2 3 1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.111	1.328	.087	1.043	. 3906	. 3068	1.9635
21	.116	1.395	.091	1.096	.4104	.3223	2.0126
43	.122	1.464 1.535	.096 .100	1.150	.4307 .4514	.3382 .3545	2.0617 2.1108
	.134	1.607	.105	1.262	.4727	.3545	2.1599
10004032174 6028040	.140	1.681	.110	1.320	.4944	.3883	2.1599
33	.146	1.756	.115	1.380	.5166	.4057	2.2580
	.153	1.834	.120	1 440	.5393	.4236	2.3071
3	.159	1.913	. 125	1 502	. 5625	.4418	2.3562
14	. 187	2.245	.147	1.763	.6602	.5185	2.5526
3 4 3 6 1-1-18 5-6 1-1-18 5-6	.217	2.603 2.988	.170 .196	2.044	. 7656 . 8789	.6013	2.7489
16	. 249	2.900	.190	2.347	. 0709	.6903	2.9453

^{*} One cubic foot of steel weighs 490 lbs.

		,					
1" TO	3 15/16		Sqı Weight	i are and :s*, Areas	Round Ste and Circu	eel Bars umferences	5
Thickness		Weight i	n Pounds		Area in S	Sq. Inches	
or	Squar	e 🗖	Round	i 🌘			0
in Inches	One Inch Long	One Foot Long	One Inch Long	One Foot Long	Square	Round	Circum- ference
1 1 1 2 3 1 1 4 5 1 3 2 7 1 1 2 9 1 5 5 1 1 3 4 1 7 5 7 5 1 7 1 5 1 5 1 5 1 5 1 5 1 5 1					Square 1.0000 1.1289 1.2656 1.4102 1.5625 1.7227 1.8906 2.0664 2.2500 2.4414 2.6406 2.8477 3.0625 3.2852 3.5156 3.7539 4.0000 4.2539 4.5156 4.7852 5.0625 5.3477 5.6406 5.9414 6.2500 6.5664 6.8906 7.2227 7.5625 7.9102 8.2656 8.6289 9.0000 9.3789 9.7656 10.160 10.563 10.973 11.391 11.816 12.250		Circum- ference 3.1416 3.3380 3.5343 3.7306 3.9270 4.1234 4.3197 4.5161 4.7124 4.9088 5.1051 5.3015 5.4978 5.6942 5.8905 6.8723 7.0686 7.2650 7.4613 7.6577 7.8540 8.0504 8.2467 8.4431 8.6394 8.8358 9.0321 9.2285 9.4248 9.6212 9.8175 10.014 10.210 10.407 10.603 10.799 10.996
1(2. <mark>9</mark> 년 기반(6.4년 15(4.1년 1년 1	3.60 3.72 3.85 3.98 4.12 4.25	43.15 44.68 46.23 47.82 49.42 51.05	2.82 2.92 3.03 3.13 3.23 3.34	33.89 35.09 36.31 37.55 38.81	12.691 13.141 13.598 14.063 14.535 15.016	9.9678 10.321 10.680 11.045 11.416 11.793	11.192 11.388 11.585 11.781 11.977 12.174
15 16	4.39	52.71	3.45	41.40	15.504	12.177	12.370

One cubic foot of steel weighs 490 lbs.

136 Mechanics

Nom- inal Size	Ameri- can Stand- ard Dressed Size	Area of Sec- tion A = bd	foot	Mo- ment of Inertia	Sec- tion Mod- ulus bd:	Nom- inal Size	Ameri- can Stand- ard Dressed Size	Area of Sec- tion A = bd	Wt. per Lineal foot	Mo- ment of Inertia	Sec- tion Mod ulus
In.	In.	Sq. In.	Lbs.	$I = \frac{bu^{*}}{r_{2}}$	$S = \frac{ba}{6}$	ln.	In.	Sq. In.	Lbs.	$I = \frac{bu}{12}$	$S = \frac{b}{6}$
2× 6 2× 8	158× 358 158× 558 158× 754 158× 954	5 89 9 14 12 19 15 44	1 6 2 5 3 4 4 3	6 45 24 10 57 13 116 09	3 56 8 57 15 32 24 44	10×32	912×2112	185 25 204 25 223 25	51 4 56 7 62 0	5870 05 7867 81 10274 06	602 6 731 8 874 ,
2×12 2×14 2×16	156×11½ 156×13½ 156×15½ 156×15½	18 69 23 62 25 18 28 43	5.2 6.5	205 94 333 15 504 24 725 71	35 82 49 36 65 07			242 25 261 25 280 25	67 3 72 5 77 8 36 7	13126 81 16465 24 20323 79	1197
2×20 3× 4	158×19½ 	9 51 14 76	26	1004 05 10 42 38 93		12×14 12×16 12×18	11 ¹ / ₂ ×13 ¹ / ₂ 11 ¹ / ₂ ×15); 11 ¹ / ₂ ×17 ¹ / ₂ 11 ¹ / ₂ ×19 ¹ / ₂	1,32 25 155 25 178 25 201.25 224 25	43 1 49 5 55 9 62 3	2357 85 3568 70 5136 49 7105 90	349 450 586 728
3×10 3×12	25/8× 55/8 25/8× 71/2 25/8× 91/2 25/8×111/4	19 68 24 93 30 18	5 7 7 2 8 8	92 28 187 55 332 69	24 00 39 48 57 86	12×22 12×24	11 ¹ / ₂ ×21 ¹ / ₂ 11 ¹ / ₂ ×23 ¹ / ₂ 11 ¹ / ₂ ×25 ¹ / ₂ 11 ¹ / ₂ ×27 ¹ / ₂	247 25 270 25 293 25	68 7 75 0 81 4	9524 24 12437 08 15890 42	885 1058 1246
3X14 3X16 3X18	258×1351 258×1552 258×1754 258×1952	35 43 40 68 45 94 51 19	128	538 21 814 60 1172 36 1622 00	79 73 105 11 133 98 166 36	12入30 14×14	11 12 × 27) . 11 12 × 29 1 2 13 12 × 13 12 13 12 × 15 12	316 25 339 25 182 25 209 25	87 8 94 2 50 6 58 1	24602 61 24602 61 2767 92 4189 36	
X 4 1X 6 1X 8	35 8× 35 8 35 8× 55 8 35 8× 7 12 35 8× 9 1	13 14 20 39 27 18	3 6 5 7 7 5 9 6	14 38 53 76 127 44 258 99	33 95	14×20 14×20 14×18	13½×17½ 13½×19½ 13½×21½	236 25 263 25 290 25	65 6 73 1 80 6	6029 29 8341 73 11180 67	689 855 1040
X12 X14 X16	35/8×11 1/2 35/8×131/2 35/8×151/2	34 43 41 68 48 93 56 18	11 6	459.42 743-23 1124-96	79 90 110 11 145 15	14×26 14×28 14×30	13!4×23! ₂ 13!4×25! ₂ 13! ₂ ×27! ₄ 13! ₂ ×29! ₂	317 25 344 25 371 25 398 45	88 1 95 6 103 1 110 6	14600 10 18654 04 23398 73 28881 42	1463 1701
1×18 1×20 5× 6	358×17/2 358×19/4 5/4× 5/4	63 43 70 09 30 25	17 6 19 6	1618 96 2239 88 76 25	27 73	16×18 16×20	15 ¹ 5 × 15 ¹ 2 15 ¹ 5 × 17 ¹ 2 15½ × 19 ¹ 2 15 ¹ 2 × 21 ¹ 2	240 25 271 25 302 25 333 25	66 7 75 3 83 9 92 5	4809 98 6922 19 9577 59 12837 00	791 982
i× 8 i×10 i×12	511× 711 514× 914 514×1114	41 25 52 25 63 25	11 4 14 5 17 5	193 35 392 96 697 06	51 56 82.73 121 23	16×24 16×26 16×28	151/×231/ 151/×251/ 151/×271/	364-25 395-25 426-25	101 2 100 8 114 4	16763 00 21417 50 26863 78	1426 1079 1953
X16 X18 X20	5½×13½ 5½×15½ 5½×17½ 5½×19½ 5½×21½	74 25 85 25 96 25 107 25 118 25	25 6 23 6 26 7 29 8 32.8	1127 66 1705 76 2456 36 3398 46 4555 05	348 56	18×18 18×20 18×22	15 ¹ 2×29 ¹ 2 17 ¹ 2×17 ¹ 3 17 ¹ 2×19 ¹ 2 17 ¹ 2×21 ¹ 2	457 25 306 25 341 25 370 25	85 0 94 8 104 5	7815 73 10813 33 14493 43	893 1109
8× 8 8×10 8×12	7½× 7½ 7½× 9½ 7½×11½	56 25 71 25 86 25	15 6 19 8 23 9	263 67 535 85 950 55	70 31 112 81	18×24 18×26	17 ¹ 1×23 ¹ 2 17 ¹ 1×25 ¹ 5 17 ¹ 5×27 ¹ 2 17 ¹ 5×29 ¹ 2	411 25 446 25 481 25 516 25	114 2 123 9 133 7	18926 02 24181 11 30331 62	1896. 2205.
3×16 3×18	7½×13½ 7½×15½ 7½×17½ 7½×19½	101 25 116 25 131 25 146 25	32 0 36 4 40 6	1537 73 2327 42 2249 60 4634 30		20×20 20×22	17.5 × 29.5 19.5 × 19.5 19.5 × 21.5 19.5 × 23.5	380 25 419 25 458 25	105 6 116 4	37438 79 	1235 1502
X22 X24	7½×21½ 7½×23½	161 25 176.25	44 8 48.9	6211 48 8111.17 	577 81 690 31	20×26 20×28	19½×25% 19½×27% 19¼×29%	497 25 536 25 575 25	148 9	26944 73 33798 17 41717.61	2457
X12 X14 X16	9%× 9% 9%×11% 9%×13% 9%×15% 9%×17%	90.25 109.25 128.25 147.25 166.25		678 75 1204 01 1947 78 2948 04 4242.80	288 56 380 39	24×26 24×28	23½×23½ 23½×25½ 23½×25½ 23½×27½ 23½×20½	522 25 599 25 646 25 693.25	166 4	25414 96 32471.80 40731 06 50274 98	2546 2916

Safe Load in Pounds per Square Inch of Cross-Sectional Area Square and Rectangular Timber Columns

Dry Locations

			*Rati	o of Le	ength t	o Le	ast D	ime	dsion	(1/0	1)	
Species of Lumber	American Standard Grade	10& less	1/d 12	1/d 14	1/ d 16	l/d 18	l/d 20	l/d 25	1/d 30	l/d 35	1/d 40	1/d 50
		lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.	lbs.
Ash, Commercial White	Select	1100	1076	1055	1023	978	913	658		226		164
Asii, Commercial winte	Common	880	868	857	840	818	784	647	457	336	257	104
Cedar, Western Red;	Select	700	686	674	656	629	592	438	304	224	171	110
Fir, Balsam	Common	500	553	547	5.38	52.4	505	425	.,,04	22.4		
Cedar, Northern and	Select	550	540	530	516	496	468	351	244	179	137	88
Southern White	Common	440	435	430	423	412	398	338			-37	
Chestnut; Pine, Northern White, Idaho	Select	750	733	718	695	003	617	438	304	224	171	110
White, Sugar, Calif. White, and Pondosa	Common	600	591	583	572	556	532	4.34				
Cypress, Southern;	Select	1100	1063	1030	981	909	810					
Larch, Western	Common	880	861	843	818	781	729	526	365	268	206	132
Douglas Fir (Coast Re-	**Dense \	1285	1251	1222	1176	1112	1022	702				~~~
gion); Pine, Southern Yellow; Beech; Birch,	Select 5	1175	1149	1127	1093	1045		702	487	358	274	175
Yellow and Sweet; Maple, Sugar	Common		870	861	847	826	796	675			-,-	-,0
Douglas Fir (Rky.												
Mtn. Region); Spruce, Red, White, Sitka;	Select	800	786	774	753	720	688	526				
Norway Pine; Alaska Cedar; Elm, Slippery	Common	640	632	627	617	602	582	500	365	268	206	132
and White; Sycamore; Gum, Red and Black; Tupelo		·										
Hemlock, West Coast	Select	900	885	872	852	823	783	614				
Hemlock, West Coast	Common	720	712	7 06	696	680	660	573	426	313	240	153
Hemlock, Eastern;	Select	700	689	678	664	641	611	482	225	246	188	121
Fir, Commercial White	Common	560	554	549	542	5.30	515	449	335	240	100	121
Oak, White and Red	Select	1000	982	967	943	908	860	658	457	336	257	164
Oda, which and rect	Common	800	790	783	771	753	728	625	437	330		
Redwood	Select	1000	972	947	910	856	781	526	268	365	206	132
	Commor	800	786	773	754	726	688					
Spruce, Engelmann	Select	fico	586	574	556	530	494	351	244	179	137	88
	Common	480	473	466	457	444	426	347				
Tamarack	Select	1000	976	955	923	877	817	570	396	291	223	142
Lamatack	Common	800	788	777	761	737	706	566				

SAFE LOADS in compression parallel to grain for timber columns shall not exceed in pounds per square inch the values given in the above table for the respective species, grade, and ratio of unsupported length ω least dimension, (l/d).

No column shall be used in which the unsupported length is more than 50 times the least diameter. l and d must be figured in the same unit of measurement.

138 Mechanics

RESULTANT OF SHEARING AND DIRECT STRESSES

Resultant intensity (p') of normal stress and (s') of shearing

stress on a plane inclined \mathbf{a}° to the horizontal at a point in the beam where the intensity of the horizontal and vertical shearing stresses is \mathbf{s} pounds per square inch, the intensity of the stress normal to the vertical plane is $\mathbf{p}_{\mathbf{x}}$ pounds per square

Fig. 531.

inch, and that normal to the horizontal plane is p_y pounds per square inch.

531
$$p' = \frac{p_x + p_y}{2} + \frac{p_y - p_x}{2} \cos 2\alpha + s \sin 2\alpha$$
 pounds per sq. in.

532
$$s' = \frac{p_x - p_y}{2} \sin 2\alpha + s \cos 2\alpha$$
 pounds per sq. in.

Angle (α) made with the horizontal by the plane on which the maximum intensity of normal stress occurs.

$$\tan 2 \alpha = \frac{2 S}{p_v - p_x}.$$

Maximum and minimum intensities of normal stress.

534
$$p'_{max} = \frac{p_x + p_y}{2} \pm \frac{1}{2} \sqrt{4 s^2 + (p_x - p_y)^2}$$
 pounds per sq. in.

Note. The maximum and minimum normal stresses are called principal stresses and occur on planes which are at right angles to each other and on each of which the shearing stress is zero.

Angle (a) made with the horizontal by the plane on which the maximum intensity of shear occurs.

$$\tan 2 \alpha = \frac{p_x - p_y}{2 \text{ S}}.$$

Note. The planes of the maximum and minimum shearing stresses are inclined at 45° to the planes of maximum and minimum normal stresses.

Maximum and minimum intensities of shearing stress.

536
$$s'_{max} = \pm \frac{1}{2} \sqrt{4 s^2 + (p_x - p_y)^2}$$
 pounds per sq. in.

Columns 139

COLUMNS

Euler's formula for the ultimate average intensity of stress (f) on a column 1 inches in length, with a least radius of gyration of r inches and of material of E pounds per square inch modulus of elasticity. f should not exceed the elastic limit.

537 Column with end rounded
$$f = \pi^2 E \left(\frac{r}{l}\right)^2$$
 pounds per sq. in.

538 Column with ends fixed
$$f = 4 \pi^2 E \left(\frac{r}{l}\right)^2$$
 pounds per sq. in.

Column with one end fixed
$$f = \frac{9}{4} \pi^2 E \left(\frac{r}{l}\right)^2$$
 pounds per sq. in.

Gordon Formula for allowable average intensity of stress (f) on a column 1 inches in length, with a least radius of gyration of r inches and a maximum allowable compression stress of f_c pounds per square inch on the material.

$$\mathbf{f} = \frac{\mathbf{f_c}}{\mathbf{r} + \frac{\mathbf{r}}{\mathbf{c}} \left(\frac{1}{\mathbf{r}}\right)^2} \text{ pounds per sq. in.}$$

Pin-ended columns are generally considered to have ends rounded.

Straight-line formula for the allowable average intensity of stress (f) in a column 1 inches in length, with a least radius of gyration of r inches and a maximum allowable compression stress of f_c pounds per square inch on the material.

$$\mathbf{f} = \mathbf{f_c} - \mathbf{c} \left(\frac{\mathbf{l}}{\mathbf{r}} \right) \text{ pounds per sq. in.}$$

Note. The American Railway Engineering and Maintenance of Way Association gives the following formula in its specifications. $f = 16,000 - 70 \frac{1}{r}$.

Maximum intensity of stress (f) in a column of A square inches area of cross-section, 1 inches length, J inches moment of inertia about the axis about which bending occurs and y inches dis-

tance from that axis to the most stressed fiber, due to a direct load of **P** pounds and a bending moment of **M** inch-pounds.

$$\mathbf{f} = \frac{\mathbf{P}}{\mathbf{A}} + \frac{\mathbf{M}\mathbf{y}}{\mathbf{J} - \frac{\mathbf{P}\mathbf{l}^2}{\mathbf{c}\mathbf{E}}}$$
 pounds per sq. in. approx.

Note. The constant c for the common case of pin-ended columns subject to bending due to a uniformly distributed load may be taken as 10.

Maximum intensity of stress (f) in a short column of A square

inches area of cross-section, due to a load of P pounds applied a inches distant from the X axis of symmetry and b inches distant from the Y axis of symmetry, if J_x inches 4 is the moment of inertia about the X axis, y inches the distance from the X axis to the most stressed fiber, J_y inches 4 the moment of inertia

about the Y axis and x inches the distance from Y axis to the most stressed fiber.

$$\mathbf{f} = \frac{\mathbf{P}}{\mathbf{A}} + \frac{\mathbf{Pay}}{\mathbf{J_x}} + \frac{\mathbf{Pbx}}{\mathbf{J_y}} \text{ pounds per sq. in.}$$

SHAFTS

Maximum intensity of shear (s¹ in a shaft of \mathbf{r} inches radius and of \mathbf{J}_0 inches⁴ polar moment of inertia due to a torque (twisting moment) of \mathbf{M} inch-pounds.

$$s = \frac{Mr}{J_0} \text{ pounds per sq. in.}$$

Note. For a solid round shaft $s = \frac{2 M}{\pi r^8}$.

Angle (θ) of twist in a solid circular shaft, of **r** inches radius, 1 inches in length and with E_s pounds per square inch modulus of elasticity in shear, due to a torque of **M** inch-pounds.

$$\theta = \frac{2 \text{ M1}}{\pi r^4 E_s} \text{ radians.}$$

NOTE. Es for steel is commonly taken as 12,000,000.

Shafts 141

Horse-power (P) transmitted by a shaft making n revolutions per minute under a torque of M inch-pounds.

$$P = \frac{2 \pi nM}{33,000 \times 12} \text{ horse-power.}$$

Diameter (d) of a solid circular shaft to transmit H.P. horsepower at n revolutions per minute with a fiber stress in shear of s pounds per square inch.

547
$$d = \sqrt[3]{\frac{321,000 \text{ H.P.}}{\text{ns}}}$$
 inches.

Maximum intensity (s') of shearing stress and (f') of tensile or compression stress due to combined twisting and bending in a shaft where s is the maximum intensity of shear due to the torque and f is the maximum intensity of tension or compression due to the bending.

548
$$s' = \frac{1}{2} \sqrt{4 s^2 + f^2}$$
 pounds per sq. in.

549
$$f' = \frac{I}{2}f + \frac{1}{2}\sqrt{4 s^2 + f^2}$$
 pounds per sq. in.

HYDRAULICS

HYDROSTATICS

Intensity of pressure (p) due to a head of h feet in a liquid weighing w pounds per cubic foot.

$$p = wh$$
 pounds per sq. ft.

Note. In water, the intensity of pressure corresponding to a head of h feet is 0.434 h pounds per square inch.

Pressure head (h) corresponding to a pressure of **p** pounds per square foot in a liquid weighing w pounds per cubic foot.

$$h = \frac{p}{w} \text{ feet.}$$

Note. In water, the pressure head corresponding to an intensity of pressure of p pounds per square inch is 2.3 p feet.

Total normal pressure (P) on a plane or curved surface A square feet in area immersed in a liquid weighing w pounds per cubic foot with a head of \mathbf{h}_0 feet on its center of gravity.

$$\mathbf{P} = \mathbf{w} \mathbf{A} \mathbf{h}_0 \text{ pounds.}$$

The total pressure on a plane surface may be represented by a resultant force of P pounds acting normally to the area at its center of pressure.

Distance (x_c) to the center of pressure of a plane area, measured from the surface of the liquid along the plane of the area, if S is the statical moment in feet3 about the axis formed by the intersection of the plane of the area and the surface of the liquid and I is the moment of inertia in feet4 about the same axis.

$$\mathbf{x}_{c} = \frac{\mathbf{J}}{\mathbf{S}} \text{ feet.}$$

NOTE. If x₀ is the distance in feet from the center of gravity of the area to the surface axis, K₀ the radius of gyration in feet about the center of gravity axis, A the area in square feet and J₀ the moment of inertia in feet⁴ about the center of gravity axis,

$$\label{eq:condition} \textbf{x}_{\textbf{c}} = \frac{J_0 + A\textbf{x}_0^2}{A\textbf{x}_0} \text{ feet} \quad \text{and} \quad \textbf{x}_{\textbf{c}} - \textbf{x}_0 = \frac{\textbf{K}_0^2}{\textbf{x}_0} \text{ feet.}$$

Special cases of 553. Rectangle of altitude d feet and base b feet parallel to the surface: $x_c-x_0=\frac{d^2}{12\;x_0}$ feet.

Rectangle with one base coinciding with the surface of the liquid: $\mathbf{x}_c = \frac{2}{3} \, d$ ft. Triangle of altitude d feet and base, b feet, parallel to the surface of the liquid with its vertex upward: $\mathbf{x}_c - \mathbf{x}_0 = \frac{d^2}{18 \, \mathbf{x}_0}$ feet.

Triangle of altitude d feet with its vertex at the surface: $\mathbf{x}_c = \frac{3}{4} \, \mathbf{d}$ feet. Triangle of altitude d feet with its base in the surface and its vertex down: $\mathbf{x}_c = \frac{1}{2} \, \mathbf{d}$ feet.

Circle of radius r feet: $x_c - x_0 = \frac{r^2}{4 x_0}$ feet.

Circle of radius r feet with a point in the surface: $x_c = \frac{5}{4} r$ feet.

Component of normal pressure (\mathbf{P}_c) on a plane area of A square feet with h_0 feet head on its center of gravity and a projection of A_c square feet on a plane perpendicular to the component of pressure.

 $\mathbf{P_c} = \mathbf{w} \mathbf{A_c} \mathbf{h_0} \text{ pounds.}$

Vertical component of pressure (P_{ν}) on a plane area of A square feet with h_0 feet head on its center of gravity and A_h square feet horizontal projection of area.

 $\mathbf{P}_{\mathbf{v}} = \mathbf{w} \mathbf{A}_{\mathbf{h}} \mathbf{h}_{\mathbf{0}} \text{ pounds.}$

Horizontal component of pressure (P_h) on any area of A square feet with A_v square feet vertical projection of area and h_0 feet head on the center of gravity of the projected area.

 $\mathbf{P}_h = \mathbf{w} \mathbf{A}_v \mathbf{h}_0 \text{ pounds.}$

Resultant pressure (P_{bc}) on an area bc of A_{bc} square feet with a head above its base of h_1 feet on one side and h_2 feet on the other side, or a difference of head of h feet.

$$\mathbf{557} \quad \mathbf{P_{bc}} = \mathbf{w} \mathbf{A_{bc}} \; (\mathbf{h_1} - \mathbf{h_2}) \; = \mathbf{w} \mathbf{A_{bc}} \mathbf{h} \; \text{pounds}.$$

Stress (f) in a pipe of t inches thickness and d inches internal diameter due to a pressure of p pounds per square inch.

Fig. 557.

$$\mathbf{f} = \frac{\mathbf{pd}}{2 \, \mathbf{t}} \text{ pounds per sq. in.}$$

Thickness (t) of a pipe of d inches internal diameter to withstand a pressure of p pounds per square inch with a fiber stress of f pounds per square inch.

$$t = \frac{pd}{2f} \text{ inches.}$$

Practical formula for thickness (t) recommended by the New England Water Works Association.

For cast-iron pipes
$$t = \frac{(p + p') d}{6600} + \frac{1}{4}$$
 inches.

561 For riveted steel pipes
$$t = \frac{(p + p') d}{2 f}$$
 inches.

Note. p' is an additional pressure in pounds per square inch which allows for water hammer and the following arbitrary values are recommended for various diameters d of the pipe in inches:

đ	p'	đ	\mathbf{p}'
4 to 10	120	24	85
12 to 14	110	30	8ο
16 to 18	100	36	75
20	90	42 to 60	70

Difference in water pressure $(\mathbf{p}_1 - \mathbf{p}_2)$ in two pipes as indicated by a differential gage with an oil of specific gravity \mathbf{s} , when the difference in level of the surfaces of separation of the oil and water is \mathbf{z} feet and the difference in level of the two pipes is \mathbf{h} feet.

(a) When the oil has a specific gravity less than 1. (See Fig. 562.)

562 $p_1 - p_2 = 0.434 [z(1 - s) - h]$ pounds per sq. in.

(b) When the oil has a specific gravity greater than 1. (See Fig. 563.)

563
$$p_1 - p_2 = 0.434 [z (s - 1) - h]$$
 pounds per sq. in.

HYDRODYNAMICS

Conservation of Energy. In steady flow the total energy at any section is equal to the total energy at any further section in the direction of flow, plus the loss of energy due to friction in the distance between the two sections.

Pressure Energy (\mathbf{W}_{pr}) per pound of water weighing \mathbf{w} pounds per cubic foot due to a pressure of \mathbf{p} pounds per square foot.

$$W_{pr} = \frac{p}{w} = 0.016 p \text{ foot-pounds.}$$

Potential Energy (W_p) per pound of water due to a height of z feet of the center of gravity of the section above the datum level.

$$W_p = z$$
 foot-pounds.

Kinetic Energy (W) per pound of water due to a velocity of v feet per second, the acceleration due to gravity being g feet per second per second.

$$\mathbf{W} = \frac{\mathbf{v}^2}{2 \mathbf{g}} \text{ foot-pounds.}$$

Bernouilli's Theorem. In steady flow the total head (pressure head plus potential head plus velocity head) at any section is equal to the total head at any further section in the direction of flow, plus the lost head due to friction between these two sections

567
$$\frac{\mathbf{p}_1}{\mathbf{w}} + \mathbf{z}_1 + \frac{\mathbf{v}_1^2}{2 \mathbf{g}} = \frac{\mathbf{p}_2}{\mathbf{w}} + \mathbf{z}_2 + \frac{\mathbf{v}_2^2}{2 \mathbf{g}} + \text{lost head.}$$

Note. This is also known as the conservation of energy equation.

Power (P) available at a section of A square feet area in a moving stream of water, due to a pressure of p pounds per square foot, a velocity of v feet per second and a height of z feet above the datum level.

568
$$P = wvA\left(\frac{p}{w} + z + \frac{v^2}{2g}\right)$$
 foot-pounds per sec.

Horse-power (H.P.) available at any section of a stream.

569
$$\text{H.P.} = \frac{\text{wvA}\left(\frac{p}{w} + z + \frac{v^2}{2 g}\right)}{550} \text{ horse-power.}$$

Power (P) available in a jet A square feet in area discharging with a velocity of v feet per second.

$$P = \frac{wv^3A}{2 g} \text{ foot-pounds per second.}$$

ORIFICES

Theoretical velocity of discharge (v) through an orifice due to a head of h feet over the center of gravity of the orifice.

$$v = \sqrt{2 gh} \text{ feet per second.}$$

Actual velocity of discharge (v) if the coefficient of velocity for the orifice is c_v .

$$v = c_v \sqrt{2 gh} \text{ feet per second.}$$

Quantity of discharge (Q) through an orifice A square feet in area due to a head of h feet over the center of gravity of the orifice if the coefficient of discharge is c.

Note. Orifice coefficients are given on page 302.

573
$$Q = cA \sqrt{2gh}$$
 cubic feet per second.

Coefficient of discharge (c) in terms of the coefficient of velocity c_v and the coefficient of contraction c_c .

$$\mathbf{574} \qquad \qquad \mathbf{c} = \mathbf{c}_{\mathbf{v}} \mathbf{c}_{\mathbf{c}}.$$

Quantity of discharge (Q) through a submerged orifice A square feet in area due to a head of \mathbf{h}_1 feet on one side of the orifice and \mathbf{h}_2 feet on the other side, the coefficient of discharge being \mathbf{c} .

575
$$Q = cA \sqrt{2 g (h_1 - h_2)}$$
 cubic feet per second.

Note. If
$$h = h_1 - h_2$$
, $Q = cA \sqrt{2 gh}$ cubic feet per sec.

Quantity of discharge (Q) through a large rectangular orifice b feet in width with a small head of h_1 feet above the top of the

Orifices 147

orifice and a head of h_2 feet above the bottom of the orifice, the coefficient of discharge being c.

576
$$Q = \frac{2}{3} \text{ cb } \sqrt{2 \text{ g}} (h_2^{\frac{3}{2}} - h_1^{\frac{3}{2}}) \text{ cubic feet per second.}$$

Velocity of discharge (v) and quantity of discharge (Q) through an orifice A_1 square feet in area, considering the velocity of approach in the approach channel of A_2 square feet area, due to a pressure head of h feet, if the coefficient of discharge is c and the coefficient of velocity is c_v .

577
$$v = c_v \sqrt{\frac{2 gh}{1 - \left(\frac{A_1 c}{A_2}\right)^2}} \text{ feet per second.}$$

$$Q = A_1 \sqrt{\frac{2 gh}{\left(\frac{I}{c}\right)^2 - \left(\frac{A_1}{A_2}\right)^2}} \text{ cubic feet per second.}$$

Time (t) to lower the water in a vessel of A_1 square feet constant cross-section through an orifice A_2 square feet in area, from an original head of h_1 feet over the orifice to a final head of h_2 feet.

$$t = \frac{2 A_1}{c A_2 \sqrt{2 g}} \left(\sqrt{h_1} - \sqrt{h_2} \right) \text{ seconds.}$$

Note. In general, problems involving the time required to lower the water in a reservoir of any cross-section may be solved thus: Let A = cross-sectional area of the reservoir (this may be a variable in terms of h), Q = the rate of discharge through an orifice (or weir) as given by the ordinary formula and h_1 and h_2 the initial and final heads.

$$t = \int_{h_2}^{h_1} \frac{Adh}{Q}$$
 seconds.

For a suppressed weir this would be

$$t = \int_{h_2}^{h_1} \frac{Adh}{3.33 \text{ bh}^{\frac{3}{2}}} \text{ seconds.}$$

Mean velocity of discharge (v_m) in lowering water in a vessel of constant cross-section, if the initial velocity of discharge is \mathbf{v}_1 feet per second and the final velocity is \mathbf{v}_2 feet per second.

$$v_m = \frac{v_1 + v_2}{2} \text{ feet per second.}$$

Constant head (h_m) which will produce the same mean velocity of discharge as is produced in lowering the water in a vessel of

constant cross-section from an initial head of h_1 feet over the orifice to a final head of h_2 feet.

$$h_{m} = \left(\frac{\sqrt{h_{1}} + \sqrt{h_{2}}}{2}\right)^{2} \text{ feet.}$$

WEIRS

Theoretical discharge (Q) over a rectangular weir b feet in width due to a head of H feet over the crest.

582
$$Q = \frac{2}{3} b \sqrt{2} g H^{\frac{5}{2}}$$
 cubic feet per second.

Note. If the velocity head due to the velocity of approach v feet per second in the channel back of the weir is h feet: $Q = \frac{2}{3} b \sqrt{2g} [(H + h)^{\frac{3}{2}} - h^{\frac{3}{2}}]$ cubic feet per second. The actual discharge may be obtained by multiplying the theoretical discharge by a coefficient c which varies from 0.60 to 0.63 for contracted weirs and from 0.62 to 0.65 for suppressed weirs.

Francis Formula for discharge (Q) over a rectangular weir b feet in width due to a head of H feet over the crest.

For a suppressed weir.

583
$$Q = 3.33 \text{ bH}^{\frac{8}{2}}$$
 cubic feet per second.

For a suppressed weir considering the velocity head **h** due to the velocity of approach.

584
$$Q = 3.33 b [(H + h)^{\frac{8}{2}} - h^{\frac{3}{2}}]$$
 cubic feet per second.

For a contracted weir.

585
$$Q = 3.33 (b - 0.2 H) H^{\frac{1}{2}}$$
 cubic feet per second.

For a contracted weir considering the velocity head **h** due to the velocity of approach.

586
$$Q = 3.33 (b - 0.2 H) [(H + h)^{\frac{3}{2}} - h^{\frac{3}{2}}]$$
 cubic feet per second.

Note. In case contraction occurs on only one side of the weir the term for width becomes (b - o.1 H).

Bazin Formula for discharge (Q) over a rectangular suppressed weir b feet in width due to a lead of H feet over the crest and a height p feet of the crest above the bottom of the channel.

587
$$Q = \left[0.405 + \frac{0.00984}{H}\right] \left[1 + 0.55 \left(\frac{H}{p + H}\right)^{2}\right] b \sqrt{2 g} H^{\frac{3}{2}}$$
 cubic feet per second.

Weirs 149

Fteley and Stearns' Formula for discharge (Q) over a suppressed weir b feet in width due to a head of H feet over the crest.

588 $Q = 3.31 b H^{\frac{3}{2}} + 0.007 b$ cubic feet per second.

Note. Considering the velocity head h due to the velocity of approach. $Q = 3.31 b (H + 1.5 h)^{\frac{3}{2}} + 0.007 b$ cubic feet per second.

Hamilton Smith Formula for discharge (Q) over a rectangular weir b feet in width due to a head of H feet over the crest, if the coefficient of discharge is c.

Note. A table on page 303 gives values of c for both suppressed and contracted weirs.

For a contracted or a suppressed weir (c to be properly chosen for the type of weir).

589 $Q = c \frac{2}{3} b \sqrt{2 g} H^{\frac{8}{2}}$ cubic feet per second.

Note. For a suppressed weir considering the velocity head **h** due to the velocity of approach, $Q = c_3^2 b \sqrt{2g} (H + \frac{1}{3} h)^{\frac{3}{2}}$ cubic feet per second. For a contracted weir considering the velocity head **h** due to the velocity of approach, $Q = c_3^2 b \sqrt{2g} (H + 1.4 h)^{\frac{3}{2}}$ cubic feet per second.

Discharge (Q) over a triangular weir, with the sides making an angle of α degrees with the vertical, due to a head of H feet over the crest.

Fig. 590.

590
$$Q = c_{10}^{8} \tan \alpha \sqrt{2g} H^{\frac{5}{2}}$$
 cubic feet per second.

Note. If $a = 45^{\circ}$ (90° notch), $Q = 2.53 \text{ H}^{\frac{5}{2}}$ cubic feet per second.

Discharge (Q) over a trapezoidal weir. Compute by adding the discharge over a suppressed weir b feet in width to that over

the triangular weir formed by the sloping sides. A general solution is obtained by summing up the discharges through a

series of differential orifices, giving: $\mathbf{Q} = \mathbf{c} \int_0^H \mathbf{b'} \sqrt{2 \mathbf{g}} \, \mathbf{h}^{\frac{1}{2}} \, d\mathbf{h}$ cubic feet per second. (b', the width of the differential orifice, varies with \mathbf{h} .)

Note. In the Cippoletti weir d is made equal to $\frac{\mathbf{H}}{4}$ and the formula becomes $\mathbf{Q} = \mathbf{3.37}$ bH³ cubic feet per second.

Discharge (Q) over a submerged weir b feet in width due to a head of \mathbf{H}_1 feet over the crest on the upstream side and a head of \mathbf{H}_2 feet on the downstream side.

591
$$Q = \frac{2}{3} \operatorname{cb} \sqrt{2} \operatorname{g} (H_1 - H_2)^{\frac{8}{2}} + \operatorname{cb} H_2 \sqrt{2 \operatorname{g} (H_1 - H_2)}$$
 cubic feet per second.

Time (t) to lower the surface of a prismatic reservoir of **A** square feet superficial area by means of a suppressed weir **b** feet in width, from an initial head of \mathbf{H}_1 feet over the crest to a final head of \mathbf{H}_2 feet over the crest.

$$t = \text{o.6} \, \frac{A}{b} \left(\frac{\text{I}}{\sqrt{H_{\bar{1}}}} - \frac{\text{I}}{\sqrt{H_{\bar{1}}}} \right) \text{seconds.}$$

Note. This value is based on formula 583.

VENTURI METER

Quantity of water (Q) flowing through a Venturi Meter with an area of A_1 square feet in the main pipe and an area A_2 square feet in the throat and a pressure head of h_1 feet in the main pipe and of h_2 feet in the throat, if the coefficient of the meter is c.

593
$$Q = c \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2 g (h_1 - h_2)}$$
 cubic feet per second.

FLOW THROUGH PIPES*

Solution by Bernouilli's Theorem. If the total head at any point in the pipe-system (preferably at the source) is known, the velocity of discharge at the end can be computed by applying Bernouilli's Theorem between these two points, provided the losses of head can be determined. Following are expressions for the important losses of head which may occur.

* These formulas apply to pipes flowing full under pressure, otherwise the pipe may be treated as an open channel.

Friction loss (\mathbf{h}_f) in a pipe of **d** feet internal diameter and **1** feet length with a velocity of **v** feet per second and a friction factor **f**.

$$h_f = f \frac{1}{d} \frac{v^2}{2g} f cet.$$

Note. A mean value for the friction factor for clean cast-iron pipes is 0.02. A table on page 304 gives values for various sizes of pipes and different velocities. In long pipe-lines it is accurate enough to consider that the total head H is used up in overcoming friction in the pipe. Then $H = f \frac{1}{d} \frac{v^2}{2 g}$ feet and Q = Av cubic feet per second.

Loss at entrance to a pipe (h_e) if the velocity of flow in the pipe is v feet per second.

595
$$h_e = 0.5 \frac{v^2}{2 g}$$
 feet.

Loss due to sudden expansion (h_x) where one pipe is abruptly followed by a second pipe of larger diameter, if the velocity in the smaller pipe is \mathbf{v}_1 feet per second and that in the larger pipe is \mathbf{v}_2 feet per second.

$$h_x = \frac{(v_1 - v_2)^2}{2 g} \text{ feet.}$$

Loss due to sudden contraction (h_c) where one pipe is abruptly followed by a second pipe of smaller diameter, if the velocity in the smaller pipe is \mathbf{v} feet per second and \mathbf{c}_c is a coefficient.

$$h_c = c_c \frac{v^2}{2 g} \text{ feet.}$$

Note. Values of c_c :

Loss due to bends (h_b).

598
$$h_b = c_b \frac{v^2}{2 g}$$
 feet.

NOTE. Values of c_b : (d is the diameter of the pipe in feet and r is the radius of the bend in feet).

Nozzle loss (h_n) if the velocity of discharge is v feet per second and the velocity coefficient of the nozzle is c_{v} .

$$h_n = \left(\frac{r}{c_v^2} - r\right) \frac{v^2}{2 g} \text{ feet.}$$

Quantity of discharge (Q) in a pipe A square feet in area where the velocity is v feet per second.

600
$$Q = Av$$
 cubic feet per second.

Diameter of pipe (d) required to deliver Q cubic feet of water per second under a head of h feet if the friction factor is f.

$$d = \sqrt[5]{\frac{f \, l}{2 \, gh} \left(\frac{4 \, Q}{\pi}\right)^2} \, \text{feet.}$$

Hydraulic Gradient is a line the ordinates to which show the pressure heads at the different points in the pipe system. It

may also be defined as the line to which water would rise in piezometer tubes placed at intervals along the pipe.

Solution by Chezy Formula. Quantity (Q) and velocity (v) of flow through a pipe when the hydraulic radius is r feet, and the slope of the hydraulic gradient is s and the coefficient for the Chezy Formula is s. (See page 304.)

602
$$v = c \sqrt{rs}$$
 feet per second.
603 $Q = Av$ cubic feet per second.

Note. \mathbf{r} equals the area in square feet divided by the wetted perimeter in feet and \mathbf{s} equals the head in feet divided by the length of the pipe in feet or the slope of the hydraulic gradient. Try $\mathbf{c} = 124$, compute \mathbf{v} , look up new value of \mathbf{c} , etc.

FLOW IN OPEN CHANNELS

Chezy Formula for quantity (Q) and velocity (v) of flow in an open channel A square feet in sectional area with p feet wetted perimeter, r feet hydraulic radius, h feet drop of water surface in distance 1 feet and slope s of water surface. $\left(s = \frac{h}{l}\right)$

$$r = \frac{A}{p}$$
 feet. $v = c \sqrt{rs}$ feet per second.

Q = Av cubic feet per second.

Note. c is the coefficient and is usually found either by the Kutter Formula or by the Bazin Formula.

Kutter Formula.

605

$$\mathbf{v} = \mathbf{c} \sqrt{\mathbf{r}\mathbf{s}}$$
 feet per second,

where

$$c = \frac{41.6 + \frac{1.811}{n} + \frac{0.00281}{s}}{1 + \left(41.6 + \frac{0.00281}{s}\right)\frac{n}{\sqrt{r}}}.$$

Note. Specific values of c are given in a table on page 305. n is the coefficient of roughness and has the following values:

Channel Lining	n
Smooth wooden flume.	0.009
Neat cement and glazed pipe	0.010
Unplaned timber	0.012
Ashlar and brick work	0.013
Rubble masonry	0.017
Very firm gravel	0.020
Earth free from stone and weeds	0.025
Earth with stone and weeds	0.030
Earth in bad condition	0.035

Bazin Formula.

$$\mathbf{v} = \mathbf{c} \sqrt{\mathbf{r}}\mathbf{s}$$
 feet per second,

where

$$c = \frac{87}{0.552 + \frac{m}{\sqrt{r}}}$$

NOTE. Specific values of c are given in a table on page 305. m is the coefficient of roughness and has the following values:

Channel Lining	m
Smooth cement or matched boards	0.06
Planks and bricks	0.16
Masonry	0.46
Regular earth beds	o 85
Canals in good order	1.30
Canals in bad order	1.75

DYNAMIC ACTION OF JETS

Reaction of a Jet (P) A square feet in area, the head on the orifice being h feet and the weight of the liquid w pounds per cubic foot.

607
$$P = 2$$
 Awh pounds (theoretical).

Note. P equals about 1.2 Awh pounds (actual).

Energy of a Jet (W) discharging with a velocity of v feet per second.

$$W = \frac{wv^3A}{2 g} \text{ foot-pounds.}$$

Note. If h_v is the velocity head and Q (= Av) the quantity of flow in cubic feet per second, $W = wQh_v$ toot-pounds.

Force (F) exerted on a fixed curve vane by a jet A square feet in area and v feet per second velocity.

609
$$\mathbf{F} = \frac{\mathbf{A}\mathbf{w}\mathbf{v}^2}{\mathbf{g}} \sqrt{\mathbf{2} (\mathbf{I} - \cos \mathbf{a})} \text{ pounds.}$$

Vertical component of force (F_{ν}) exerted by a jet on a fixed curved vane.

$$\mathbf{f_v} = \frac{\mathbf{A}\mathbf{w}\mathbf{v}^2}{\mathbf{g}}\sin\ \alpha\ \text{pounds}.$$

Horizontal component of force (F_h) exerted by a jet on a fixed curved vane.

$$F_h = \frac{Awv^2}{g} (\tau - \cos \alpha) \text{ pounds.}$$

Force (**F**) exerted by a jet on a flat fixed plate perpendicular to the jet.

$$\mathbf{F} = \frac{\mathbf{A}\mathbf{w}\mathbf{v}^2}{\mathbf{g}} \text{ pounds.}$$

Force (F) exerted on a moving curved vane by a jet A square feet in area with a velocity of \mathbf{v} feet per second, the vane moving in the direction of the flow of the jet with a velocity of \mathbf{v}_0 feet per second.

613
$$\mathbf{F} = \frac{\mathbf{w}\mathbf{A}(\mathbf{v} - \mathbf{v}_0)^2}{\mathbf{g}} \sqrt{2(\mathbf{1} - \cos \alpha)} \text{ pounds.}$$

Vertical component of force (F_v) exerted by a jet on a moving curved vane.

$$F_v = \frac{wA (v - v_0)^2}{g} \sin \alpha \text{ pounds.}$$

Horizontal component of force (F_h) exerted by a jet on a moving curved vane.

$$F_h = \frac{wA (v - v_0)^2}{g} (I - \cos \alpha) \text{ pounds.}$$

Note. If there is a series of vanes. $\mathbf{F}_h = \frac{\mathbf{w} \mathbf{A} \mathbf{v}}{\mathbf{g}} (\mathbf{v} - \mathbf{v}_0) (\mathbf{i} - \mathbf{cos} \alpha)$ pounds.

$$\mathbf{F}_{\mathbf{v}} = \frac{\mathbf{w} \mathbf{A} \mathbf{v}}{\mathbf{g}} \ (\mathbf{v} - \mathbf{v}_0) \sin \alpha \text{ pounds.}$$

Power (P) exerted on a (moving) vane.

$$P_h = F_h \ v_0 \ \text{foot-pounds per second.}$$

Note. Maximum efficiency for a series of vanes occurs where $\mathbf{v_0} = \frac{\mathbf{v}}{2}$ if there is no friction loss; then, $\mathbf{P} = \frac{\mathbf{w} \mathbf{A} \mathbf{v}^3}{4\mathbf{g}}$ $(\mathbf{I} - \cos \alpha)$ foot-pounds per second.

HEAT

In the following formulas, when specific units are not stated, any units may be used provided identical properties are expressed in the same units. Absolute pressure is indicated by **p**, total volume by **V**, specific volume by **v**, absolute temperature by **T**, and thermometer temperature by **t**. In all formulas containing indicated units, the temperature is measured in Fahrenheit degrees.

Measurement of Heat. Heat is the transient form of energy transmitted from one body to another when the two bodies are not at the same temperature. The ratio of the quantity of heat required to increase the temperature of a body in a specified state to that required to increase the temperature of an equal mass of water through the same temperature is called the specific heat of the body.

The unit of energy commonly used in the measurement of heat is the British thermal unit (B.t.u.) which equals 2.930×10^{-4} kilowatt-hours or substantially $_{180}$ th of the quantity of heat required to raise one pound of water from the ice-point to the steam-point at standard atmospheric pressure.

The quantity of heat (Q) added to M pounds of a substance having a constant specific heat (c) and causing the temperature to increase from t_1 to t_2 is

617
$$\mathbf{Q} = \mathbf{Mkc} (\mathbf{t}_2 - \mathbf{t}_1) \text{ units.}$$

NOTE. See page 314 for definite values of c. The constant k depends on the units of measurement, as follows:

Q	М	t ₂ - t ₁	k
gram-calories kilogram-calories British thermal units British thermal units joules joules kilowatt-hours kilowatt-hours	kilograms pounds pounds grams pounds kilograms	Cent. Cent. Cent. Fahr. Cent. Fahr. Cent. Fahr.	1 1.8 1 4.18 1054 1.16 × 10 ⁻³ 2.93 × 10 ⁻⁴

If the specific heat varies with the temperature (as it usually does) according to the relation

$$c = a + bt + ft^2$$

where a, b and f are constants which are determined by experiment, then

618
$$Q = Mk \left[a (t_2 - t_1) + \frac{b}{2} (t_2^2 - t_1^2) + \frac{f}{3} (t_2^3 - t_1^3) \right]$$
units.

The quantity of heat added to a substance can also be determined by applying the First Law of Thermodynamics which states that energy can be neither created nor destroyed. This principle may be expressed in an equation as follows:

619
$$Q = (W + \Delta E)/778 \text{ B.t.u.}$$

where Q is the heat interchange in B.t.u., W is the external work done in foot-pounds, and ΔE is the change in the internal energy in foot-pounds.

Note. Although the accepted value for the mechanical equivalent of heat is 778.26 foot-pounds, it is sufficient to use 778 foot-pounds in the solution of most engineering problems.

Influence of Heat on the Length of a Solid Body. If heat is applied to a solid body which has a length l_0 at a temperature of o degrees Centigrade, the length l_t at a temperature of t degrees Centigrade is

$$l_{t} = l_{0} (r + at)$$

Note. See page 315 for definite values of a (the Centigrade mean coefficient of linear expansion). The mean coefficient of cubical expansion equals 3 a, approximately. When the temperature is expressed in Fahrenheit degrees, 620 becomes $l_t = l_{s2} \left[r + a \frac{(t-32)}{1.8} \right]$.

Measurement of External Work. External work is the result of a force acting through a distance to overcome external resistances. For mechanical processes this work may be expressed by

$$\mathbf{621} \qquad \mathbf{W} = \mathbf{144} \int_{\mathbf{V}_1}^{\mathbf{V}_2} \mathbf{p} \, d\mathbf{V} \text{ foot-pounds}$$

where **p** is the intensity of pressure in pounds absolute per square inch and **V** is the total volume expressed in cubic feet.

If the relation which exists between pressure and volume is known, the external work can be determined, as follows:

$$\begin{array}{lll} \textbf{622} & \textbf{p} &= \text{constant} & \textbf{W} &= \textbf{144} \ \textbf{p} \ (\textbf{V}_2 - \textbf{V}_1) \ \text{foot-pounds} \\ \textbf{623} & \textbf{V} &= \text{constant} & \textbf{W} &= \textbf{o} \ \text{foot-pounds} \\ \textbf{624} & \textbf{pV} &= \text{constant} & \textbf{W} &= \textbf{144} \ \textbf{p}_1 \textbf{V}_1 \ \textbf{ln} \ \frac{\textbf{V}_2}{\textbf{V}_1} \ \text{foot-pounds} \\ \textbf{625} & \textbf{pV}^n &= \text{constant} & \textbf{W} &= \frac{\textbf{144} \ (\textbf{p}_1 \textbf{V}_1 - \textbf{p}_2 \textbf{V}_2)}{\textbf{p}_2 - \textbf{V}_1} \ \text{foot-pounds} \\ \textbf{626} & \textbf{pV}^n &= \text{constant} & \textbf{W} &= \frac{\textbf{144} \ (\textbf{p}_1 \textbf{V}_1 - \textbf{p}_2 \textbf{V}_2)}{\textbf{p}_2 - \textbf{V}_1} \ \text{foot-pounds} \\ \textbf{627} & \textbf{607} &= \textbf{607} &=$$

Measurement of the Change in the Internal Energy. Internal energy is the form of energy which is stored up within the body. For engineering purposes the internal energy of a substance may be assumed to include the internal vibration energy (due to change in temperature) and internal potential energy (due to change in volume). The internal energy is a function of the temperature and volume and is a property of the substance. Although the absolute amount of internal energy in a substance cannot be measured, the change in the internal energy is independent of the path and can be determined by means of the First Law of Thermodynamics.

Measurement of the Change in Entropy. The Second Law of Thermodynamics states that heat will not, of its own accord, flow from a cold to a relatively hotter body. It can be shown by means of this law that heat can never be completely converted into mechanical energy, not even under ideal conditions. The fractional part of the heat which is wasted is termed the unavailable energy. In order to measure this unavailable energy the term "change in entropy" (Δs) has been introduced and is now used extensively in order to simplify the solution of certain thermodynamic problems. The change in entropy for reversible processes between the absolute temperatures T_1 and T_2 may be determined by:

626
$$\Delta s = M \int \frac{dQ}{T} = M \int_{T_1}^{T_2} \frac{c dT}{T}$$
 units of entropy.

If the specific heat remains constant, then

627
$$\Delta s = Mc \int_{T_1}^{T_2} \frac{dT}{T} = Mc \ln \frac{T_2}{T_1} \text{ units of entropy.}$$

If the specific heat varies with the temperature according to the relation

$$c = a + bt + ft^2$$

then

628
$$\Delta s = M \int_{T_1}^{T_2} \frac{c \, dT}{T} = M \left[(a - 460 \, b + 211,600 \, f) \ln \frac{T_2}{T_1} + (b - 920 \, f) \, (T_2 - T_1) + \frac{f}{2} \, (T_2^2 - T_1^2) \right]$$
 units of entropy.

If the temperature remains constant, then

629
$$\Delta s = M\left(\frac{Q}{T}\right) \text{ units of entropy.}$$

If no heat is added or rejected to or from the substance and the expansion or compression is frictionless, then

$$\Delta s = o \text{ units of entropy.}$$

Steady Flow. When the same quantity of working fluid progresses continuously and uniformly in one direction, the process is termed the steady flow condition. If the conservation of energy principle is applied to such a process between two sections 1 and 2, the equation for each pound of working fluid in its simplest form for engineering applications is

631
$$E_1 + r_{44} p_1 v_1 + \frac{U_1^2}{64.4} = E_2 + r_{44} p_2 v_2 + \frac{U_2^2}{64.4} + W + 778 Q_{loss}$$
 foot-pounds.

where **E** is the internal energy in foot-pounds, 144 pv is the flow work in foot-pounds, $\frac{U^2}{64.4}$ is the kinetic energy in foot-pounds, **W** is the external work done in foot-pounds, and Q_{loss} is the heat lost to or from the surroundings in B.t.u.

Note. In the expression $\frac{U^2}{64.4}$, U is the velocity of the fluid flowing in feet per second and 64.4 is equal to 2 g (where g is the acceleration due to gravity and is assumed equal 32.2 feet per second per second).

Enthalpy. The combination E + 144 pv occurs so often that the special term "enthalpy" has been universally adopted. This property is represented by the symbol h when the combination is expressed in B.t.u.; that is, (E + 144 pv)/778.

PERFECT GASES

Characteristic Equation. The relation between pressure, volume and absolute temperature can be determined by combining the two experimental gas laws, those of Boyle and Charles, or Gay-Lussac. This relation for any two conditions I and 2 may be expressed by

632
$$\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2} = MR.$$

Values of the gas constant (R) for various gases are given, as follows: air, 53.3; carbon dioxide, 34.9; carbon monoxide, 55.1; helium, 386; hydrogen, 767; nitrogen, 55.1; oxygen, 48.3.

Fundamental Equations. The dual relation between pressure and volume, temperature and pressure, or temperature and volume for many changes met in practice may be represented by exponential equations. These equations are

633
$$pV^n = constant$$
 $Tp^{\frac{1-n}{n}} = constant$ $TV^{n-1} = constant$.

The exponent (n) may be determined from the following relations

634
$$n = \frac{\log p_1 - \log p_2}{\log V_2 - \log V_1},$$
or
$$635 \qquad n = \frac{c - c_p}{c - c_v} = \frac{c - kc_v}{c - c_v}$$

where c is the specific heat for a polytropic change $(pV^n=\text{constant})$, c_p is the specific heat at constant pressure and c_v is the specific heat at constant volume and k is $\frac{c_p}{c_v}$.

Note. Another useful relation between c_p and c_v is 778 $(c_p - c_v) = R$.

The change in the internal energy (ΔE) is independent of the path and may be determined by the following equations:

636
$$\Delta E = 778 \text{ Mc}_{v} (T_{2} - T_{1}) \text{ foot-pounds}$$
637 $= M (778 c_{p} - R) (T_{2} - T_{1}) \text{ foot-pounds}$
638 $= \frac{MR (T_{2} - T_{1})}{k - r} \text{ foot-pounds}$
639 $= \frac{144 (p_{2}V_{2} - p_{1}V_{1})}{k - r} \text{ foot-pounds.}$

The change of entropy (Δs) is also independent of the path and may be determined by the following equations:

$$\begin{array}{ll} \textbf{640} & \Delta s \,=\, M \left[c_v \, \ln \frac{T_2}{T_1} + (c_p - c_v) \, \ln \frac{V_2}{V_1} \right] \, \text{units of entropy} \\ \textbf{641} & =\, M \left[c_p \, \ln \frac{T_2}{T_1} - (c_p - c_v) \, \ln \frac{P_2}{P_1} \right] \, \text{units of entropy} \\ \textbf{642} & =\, M \left[c_v \, \ln \frac{P_2}{P_1} + c_p \, \ln \frac{V_2}{V_1} \right] \, \text{units of entropy}. \end{array}$$

The heat interchange and the external work done are dependent on the path or the character of the change which takes place between two conditions I and 2. Of the innumerable possible changes, the only ones of importance to the engineer are: constant pressure changes, during which the pressure remains constant; constant volume changes, during which the volume remains constant; isothermal changes, during which the temperature remains constant; adiabatic changes, during which no heat is received from or rejected to external bodies; polytropic changes, during which the heat supplied to or withdrawn from the gas by external bodies is directly proportional to the change in temperature.

A summary of the convenient formulas for these paths is given in Table 1 on page 162.

LIQUIDS AND VAPORS

Physical Conditions. A liquid and its vapor may exist in either of the following six conditions:

- (1) Compressed or subcooled liquid is a liquid at a temperature less than the saturation temperature corresponding to the pressure.
- (2) Saturated liquid is a liquid which under its given pressure will begin to vaporize when heat is added to it.
- (3) Saturated vapor is a vapor which under its given pressure will start changing to the liquid form when heat is removed.
- (4) Wet vapor is a physical mixture of saturated liquid and saturated vapor. In each pound of mixture, the fractional part by weight which is saturated vapor is designated by the symbol x.
- (5) Superheated vapor is a vapor the temperature of which is greater than the saturation temperature corresponding to the pressure imposed on it.

Summary of Convenient Formulas for Perfect Gases between Conditions 1 and 2 TABLE I

		The state of the s	r cases between con	on a remons	
Path	pV-Relation	Heat Interchange (B.t.u.)	External Work Done (ftlbs.)	Change of Entropy (units of entropy)	Specific Heat
Constant	$p_1V_1{}^0=p_2V_2{}^0$	$\mathbf{Mc_p} \; (\mathbf{T_z} - \mathbf{T_1})$	144 p (V ₂ - V ₁)	$ m Mc_p~ln~{T_1\over T_1}$	
Pressure	p = const.	$\frac{MR}{778} \left(\frac{k}{k-1}\right) (T_2-T_1)$	$MR (T_2 - T_1)$	$Mc_p \ln \frac{V_2}{V_1}$	ď
Constant	$p_1 V_1{}^\infty = p_2 V_2{}^\infty$	$\mathrm{Mc_{v}}\left(\mathrm{T_{2}}-\mathrm{T_{1}}\right)$		$Mc_{\rm v} \ln \frac{T_2}{T_1}$	
Volume	V = const.	$\frac{MR}{778} \left(\frac{1}{k-1}\right) \left(T_2 - T_1\right)$	0	$Mc_v \ln \frac{p_z}{p_1}$	Å
Isothermal or	$p_1V_1=p_2V_2$	$\mathbf{MT} (\mathbf{s}_2 - \mathbf{s}_1)$ 0.1851 n.V. In $\frac{\mathbf{V}_2}{\mathbf{s}_1}$	144 p_1V_1 In $\frac{V_2}{V_1}$	0	8
Isodynamic	pV = const.	$\frac{\mathbf{MRT}}{778} \ln \frac{\mathbf{V}_2}{\mathbf{V}_1}$	$MRT \ln \frac{V_2}{V_1}$	∤ ⊢	3
Reversible Adiabatic	$p_1V_1k=p_2V_2k$		$\frac{144 \; (p_1 V_1 - p_2 V_2)}{k - 1}$		
or Isentropic	$pV^k = const.$	0	$\frac{MR \left(T_1-T_2\right)}{k-1}$	0	0
Doltstood	$p_1V_1a = p_2V_2a$	M. (n - k)	$\frac{144 \; (P_1 V_1 - p_2 V_2)}{n - 1}$	(n - k). T	/n - k)
olytiopic	pVn = const.	$\operatorname{Mce}\left(\frac{n-1}{n-1}\right)\left(1_{2}-1_{1}\right)$	$\frac{MR (T_1 - T_2)}{n - r}$	$\operatorname{Mcv}\left(\frac{n-1}{n-1}\right)\operatorname{In}\overline{T_1} = \operatorname{cv}\left(\frac{n-1}{n-1}\right)$	$C_{\mathbf{v}}\left(\frac{\mathbf{n}-1}{\mathbf{n}-1}\right)$

(6) Supersaturated vapor is vapor the temperature and specific volume of which are less than those corresponding to the saturated condition for the pressure imposed on it. This condition occurs only during rapid expansion as in nozzles and is of special importance to turbine designers.

Properties of Liquids and Vapors. The various properties of the more important liquids and vapors are available in tabulated form. In general the properties given are pressure (p), temperature (t), specific volume (v), enthalpy (h), internal energy (E) and entropy (s).

Properties of Steam. The properties of saturated liquid, saturated vapor and superheated vapor are given on pages 306 to 313.

The properties of compressed liquid can be computed from table 4 in Keenan and Keyes "Thermodynamic Properties of Steam."

The properties of wet vapor can be computed from the saturated properties as follows:

643
$$v = v_f + xv_{fg}, h = h_f + xh_{fg}, s = s_f + xs_{fg}$$

 $E = u_f + xu_{fg} = h - o.1851 pv.$

Thermodynamic Processes. The heat interchange (Q), work done (W), change in the internal energy (ΔE) and change of entropy (Δs) for processes most frequently met in engineering practice are given in Table II on page 164.

FLOW OF GASES AND VAPORS THROUGH NOZZLES AND ORIFICES

Steady Flow Equation. Equation 631 for the steady flow of the working fluid when applied to nozzles and orifices, provided there is no loss or gain of heat, no friction, and no external work is done, reduces to

644
$$\mathbf{E}_1 + \mathbf{144} \, \mathbf{p}_1 \mathbf{v}_1 + \frac{\mathbf{U}_1^2}{\mathbf{64.4}} = \mathbf{E}_2 + \mathbf{144} \, \mathbf{p}_2 \mathbf{v}_2 + \frac{\mathbf{U}_2^2}{\mathbf{64.4}}$$
 foot-pounds.

Velocity. Since h may be substituted for E + 144 pv divided by 778, the change in kinetic energy is

645
$$\frac{U_2^2 - U_1^2}{64.4} = 778 (h_1 - h_2) \text{ foot-pounds.}$$

If the initial velocity U_1 is small, it may be neglected giving

646
$$\frac{U_2^2}{64.4} = 778 (h_1 - h_2) \text{ foot-pounds, or}$$

TABLE II
Summary of Convenient Formulas for Steam between States 1 and 2

Communary of Convenient Formulas for Steam Detween States 1 and 2	change Work Done Change in the Change of Entropy (units of entropy) (B.t.u.)	$-h_{1}) \qquad \text{o.1851 p } (V_{2}-V_{1}) \qquad \mathbf{M} \ (\mathbf{E}_{2}-\mathbf{E}_{1}) \qquad \mathbf{M} \ (\mathbf{s}_{2}-\mathbf{s}_{1})$	$-\mathbf{E}_1)$ o $\mathbf{M} \cdot (\mathbf{E}_2 - \mathbf{E}_1)$ $\mathbf{M} \cdot (\mathbf{s}_2 - \mathbf{s}_1)$	$\mathbf{M} \left(\mathbf{E}_1 - \mathbf{E}_2 \right) \qquad \mathbf{M} \left(\mathbf{E}_2 - \mathbf{E}_1 \right) \qquad 0$	- s_1) $M [T (s_2 - s_1) - (E_2 - E_1)]$ $M (E_2 - E_1)$ $M (s_2 - s_1)$	$\left\{ (s_2-s_1) \right = \frac{\mathbf{M} \left(T_1 + T_2 \right)}{2} \left(s_2 - s_1 \right) = 0$ o $\mathbf{M} \left(s_2 - s_1 \right)$	ΔE 0.1851 $(p_1V_1 - p_2V_2) \over n - 1$ M $(E_2 - E_1)$ M $(s_2 - s_1)$
Summary of Convenient For	Heat Interchange (B.t.u.)	$\mathbf{M} (\mathbf{h}_2 - \mathbf{h}_1)$	$\mathbf{M}\left(\mathbf{E_{2}}-\mathbf{E_{1}}\right)$	0	$\mathbf{MT}(\mathbf{s}_2 - \mathbf{s}_1) \qquad \mathbf{M}[T$	$\left. \frac{\mathbf{M} \left(\mathbf{T}_1 + \mathbf{T}_2 \right)}{2} \left(\mathbf{s}_2 - \mathbf{s}_1 \right) \right = \frac{\mathbf{M}}{2}$	W + AE
	Path	Constant Pressure p = const.	Constant Volume V = const.	Reversible Adiabatic s = const.	Sothermal $T = const.$	Isodynamic E = const.	Exponential pVn = const.

647
$$U_2 = 223.8 \sqrt{h_1 - h_2}$$
 feet per second.

Weight. The weight of working fluid flowing must be constant throughout the process. If G represents this weight in pounds per second, a the area in square feet, U the velocity in feet per second and v the specific volume in cubic feet per pound at any pressure, then

648
$$G = \frac{\mathbf{a}_1 \mathbf{U}_1}{\mathbf{v}_1} = \frac{\mathbf{a}_2 \mathbf{U}_2}{\mathbf{v}_2} \text{ pounds per second.}$$

This weight is a maximum when the absolute pressure P_t at the throat is

649
$$p_t = p_i \left(\frac{2}{n+1}\right)^{\frac{n}{n-1}}$$
 pounds per square inch.

For dry saturated steam n = 1.135, then

$$p_t = 0.58 p_1$$
 pounds per square inch.

For superheated steam n = 1.30, then

651
$$p_t = 0.55 p_1$$
 pounds per square inch.

For diatomic (two atoms per molecule) gases n = 1.40, then

$$p_t = 0.53 p_1$$
 pounds per square inch.

The pressure (p_t) that makes the weight of working fluid flowing a maximum is called Critical Pressure. When the final absolute pressure p_2 is less than the critical pressure, then the weight discharged remains constant and the term applied for such a condition is unretarded flow. When the final absolute pressure is greater than the critical pressure, then the weight discharged decreases as p_2 increases and the flow is said to be retarded.

FLOW OF GASES

Velocity. For a perfect gas c_pT may be substituted for h and k for n. Equation 647 may be modified to give

653
$$U_2 = 223.8 \sqrt{c_p(T_i - T_2)} \text{ feet per second or}$$

654
$$U_2 = \sqrt{\frac{2 \text{ gkp}_1 \text{v}_1}{\text{k} - \text{i}} \left[\text{r} - \left(\frac{\text{p}_2}{\text{p}_1}\right)^{\frac{\text{k} - 1}{\text{k}}} \right]}$$
 feet per second.

Weight. Substituting equation 654 in equation 648 gives

655
$$G = a_2 \sqrt{\frac{2 gk}{k-1} \left(\frac{p_1}{v_1}\right) \left[\left(\frac{p_2}{p_1}\right)^{\frac{2}{k}} - \left(\frac{p_2}{p_1}\right)^{\frac{k+1}{k}}\right]}$$
 pounds per second.

It is often more convenient to use the throat area a_t . The equations used must be classified depending on the type of flow, retarded or unretarded. All units in feet.

For retarded flow of diatomic gases (k = 1.40) equation 655 reduces to

656 G =
$$\frac{15.03 \text{ atp}_1}{\sqrt{RT_1}} \sqrt{\left(\frac{p_2}{p_1}\right)^{1.43} - \left(\frac{p_2}{p_1}\right)^{1.71}}$$
 pounds per second

and for air (R = 53.34)

657 G =
$$\frac{2.056 \ a_t p_1}{\sqrt{T_1}} \sqrt{\left(\frac{p_2}{p_1}\right)^{1.43} - \left(\frac{p_2}{p_1}\right)^{1.71}}$$
 pounds per second.

Fliegner's empirical formula for (inch units) retarded flow of air is

658
$$G = \frac{1.06 \text{ at}}{\sqrt{T_1}} \sqrt{p_2 (p_1 - p_2)} \text{ pounds per second.}$$

For unretarded flow of diatomic gases (k = 1.40) equation 655 reduces (inch or foot units) to

659
$$G = \frac{3.885 \text{ atp}_1}{\sqrt{RT_1}} \text{ pounds per second}^{\circ}$$

and for air (R = 53.34)

660
$$G = \frac{0.532 \, a_t p_1}{\sqrt{T_i}} \text{ pounds per second.}$$

Fliegner's empirical formula for unretarded flow of air is

661
$$G = \frac{0.53 a_t p_t}{\sqrt{T_t}}$$
 pounds per second.

FLOW OF STEAM

Velocity. For steam, since the enthalpy (h) may be determined from the steam tables, the velocity is

662
$$U_2 = 223.8 \sqrt{h_1 - h_2}$$
 feet per second.

Weight. Although it is possible to deduce equations involving the exponent **n**, the most convenient form (foot units) is

663
$$G = \frac{a_2 U_2}{v_2}$$
 pounds per second.

If the throat area at is used,

$$G = \frac{a_t U_t}{v_t} \text{ pounds per second.}$$

The throat pressure equals p_2 for retarded flow and equals the critical pressure (0.58 p_1 for wet or dry saturated vapor and 0.55 p_1 for superheated vapor) for unretarded flow.

Rankine's empirical formula for retarded flow of dry saturated steam (inch units) is

665
$$G = 0.0292 \ a_t \sqrt{p_2 (p_1 - p_2)} \ pounds per second.$$

Rankine's empirical formula for unretarded flow of dry saturated vapor (inch or foot units) is

$$G = \frac{a_t p_t}{70} \text{ pounds per second.}$$

Grashof's empirical formula for unretarded flow of dry saturated vapor (inch units) is

$$G = \frac{a_t p_1^{0.97}}{60} \text{ pounds per second.}$$

Equations 665, 666 and 667 should be divided by $\sqrt{x_1}$ for wet steam and $\mathbf{1} + \mathbf{0.00065}$ $\Delta \mathbf{t}$ for superheated steam.

Note. At is the number of Fahrenheit degrees of superheat.

STEAM CALORIMETERS

Throttling Calorimeter. Equation 631 for the steady flow of the working fluid when applied to a throttling calorimeter, provided there is no loss or gain of heat, no external work is done and the initial and final velocities are equal or negligible, reduces to

668
$$h_1 = h_2 B.t.u.$$

This calorimeter is limited in its use since the steam in the calorimeter must be superheated. For reliable results at least 10° of superheat must be available. The quality (x) can be

determined from

$$x = \frac{h_2 - h_{f_1}}{h_{fg_1}}.$$

Note. The percentage priming equals $(\mathbf{I} - \mathbf{x})$ 100.

Separating Calorimeters. This type of calorimeter is designed to separate the moisture from the steam. The drip (G_m) is collected and weighed. The saturated steam (G_s) , for the same time interval, may be condensed and weighed or discharged through an orifice. The priming $(\mathbf{1} - \mathbf{x})$ can be determined from

$$\mathbf{r} - \mathbf{x} = \frac{G_{\rm m}}{G_{\rm s} + G_{\rm m}}.$$

STEAM ENGINES

Mean Effective Pressure. The indicator card shows the pressure distribution in the cylinder of a steam engine at every point of the working and exhaust strokes. The mean effective pressure (**M.E.P.** or **P**) in pounds per square inch is

671 M.E.P. =
$$\frac{aS}{l}$$
 pounds per square inch

where a is the area of the card in square inches, 1 is the length of the card in inches and S is the scale of the indicator spring in pounds per square inch per inch of height, or

672 M.E.P. =
$$\left[p_1 \times C + p_1 (C + Cl) \ln \frac{R + Cl}{C + Cl} - p_2 (r - K) - p_2 (K + Cl) \ln \frac{K + Cl}{Cl} \right] \times D.F.$$
 pounds per square inch,

where \mathbf{p}_1 is the admission pressure in pounds absolute per square inch, \mathbf{p}_2 is the exhaust pressure in pounds absolute per square inch, \mathbf{C} is the per cent cut-off, \mathbf{R} is the per cent release, \mathbf{K} is the per cent compression and $\mathbf{C}\mathbf{l}$ is the per cent clearance. The diagram factor (D.F.) is usually between 0.85 and 0.95.

Note. The per cent events are expressed as decimal fractions.

In compound engines it is customary to neglect the clearance in the conventional card. If E represents the expansion ratio, then

The diagram factor (**D.F.**) is usually between 0.65 and 0.75. The number of expansions are

674
$$E = \frac{\text{Volume of low-pressure cylinder}}{\text{Volume of high-pressure cylinder at cut-off}}$$
675
$$= \frac{D^2}{d^2xC_h}$$

where D and d are the diameters of the low and high pressure cylinders, respectively, and C_h is the per cent cut-off in the high pressure cylinder expressed as a decimal fraction.

Indicated Horsepower. Having determined the mean effective pressure (P) from the indicator card of an engine with a stroke of L feet, a piston area exposed to the steam pressure of A square inches and a speed of N revolutions per minute, the indicated horsepower (I.H.P) is

676 I.H.P. =
$$\frac{\text{PLAN}}{33,000}$$
 horsepower.

Note. The indicated horsepower should be figured for the head end and crank end separately as the mean effective pressure and exposed piston area are not the same for both ends.

Brake Horsepower. The output of a steam engine may be determined by means of a friction brake. If **F** represents the net force in pounds acting at a distance **R** feet from the center of the shaft rotating at **N** revolutions per minute, then the brake horsepower (B.H.P.) is

677 B.H.P. =
$$\frac{2 \pi RNF}{33,000}$$
 horsepower.

Mechanical Efficiency. The ratio of the brake horsepower (B.H.P.) to the indicated horsepower (I.H.P.) is termed mechanical efficiency (ϵ_M) , hence

$$\epsilon_{M} = \frac{B.H.P}{I.H.P.}.$$

Carnot Efficiency. The Carnot cycle consists of the reception and rejection of heat energy, each at constant temperature together with frictionless adiabatic expansion and compression. The efficiency for such a cycle (ϵ_c) is

679
$$\epsilon_{c} = \frac{Q_{1} - Q_{2}}{Q_{1}} = \frac{T_{1} - T_{2}}{T_{1}}.$$

Rankine Efficiency. The Rankine cycle for a steam engine consists of the reception of heat energy at constant pressure, a frictionless adiabatic expansion to the exhaust pressure and the rejection of heat energy at constant pressure. The approximate efficiency for such a cycle $(\epsilon_{\rm R})$ is

680
$$\epsilon_{R} = \frac{Q_{1} - Q_{2}}{Q_{1}} = \frac{h_{1} - h_{2}}{h_{1} - h_{f_{2}}} = \frac{2545}{w_{R} (h_{1} - h_{f_{2}})}$$

where h_1 is the enthalpy at the initial conditions, h_2 is the enthalpy after isentropic expansion to the exhaust pressure, h_{f_2} is the enthalpy of the saturated liquid at the exhaust pressure and w_R is the ideal steam consumption in pounds per horsepower-hour.

Thermal Efficiency. The actual cycle for a steam engine takes into account the fact that heat losses occur in the actual steam engine. The efficiency for such a cycle (ϵ_T) is

681
$$\epsilon_{T} = \frac{Q_{1} - Q_{2} - Q_{losses}}{Q_{1}} = \frac{2545}{w_{A} (h_{1} - h_{f_{2}})}$$

where $\mathbf{w}_{\mathbf{A}}$ is the actual steam consumption in pounds per horse-power-hour.

Engine Efficiency or Rankine Cycle Ratio. The ratio of the ideal steam consumption per horsepower-hour $(\mathbf{w_R})$ to the actual steam consumption in pounds per horsepower-hour $(\mathbf{w_A})$ is termed engine efficiency $(\boldsymbol{\epsilon_E})$, cylinder efficiency, or Rankine cycle ratio, hence

$$\mathbf{E} = \frac{\mathbf{w}_{\mathbf{R}}}{\mathbf{w}_{\mathbf{A}}} = \frac{2545}{\mathbf{w}_{\mathbf{A}} (\mathbf{h}_{1} - \mathbf{h}_{2})} = \frac{\epsilon_{\mathbf{T}}}{\epsilon_{\mathbf{R}}}.$$

INTERNAL COMBUSTION ENGINES

Compression Ratio. The ratio of the total volume at the beginning of compression (V_1) and the volume at the end of compression or clearance volume (V_c) is a significant ratio for the various internal combustion engine cycles. This ratio is known as compression ratio (r_k) and may also be expressed in terms of the piston displacement (P.D.), hence

$$r_k = \frac{V_1}{V_c} = \frac{P.D. + V_c}{V_c}$$

Otto Efficiency. The Otto cycle consists of a frictionless adiabatic compression, constant volume burning, frictionless adiabatic expansion and rejection of heat energy at constant

volume. If I and 2 are used to designate the states at the beginning and end of compression, respectively, then the efficiency for such a cycle (ϵ_0) is

684
$$\epsilon_0 = \mathbf{I} - \frac{\mathbf{T}_1}{\mathbf{T}_2} = \mathbf{I} - \left(\frac{\mathbf{p}_1}{\mathbf{p}_2}\right)^{\frac{k-1}{k}} = \mathbf{I} - \left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right)^{k-1}$$
$$= \mathbf{I} - \left(\frac{\mathbf{V}_c}{\mathbf{P}.\mathbf{D}. + \mathbf{V}_c}\right)^{k-1} = \mathbf{I} - \left(\frac{\mathbf{I}}{\mathbf{r}_k}\right)^{k-1}$$

Note. For explanation of the exponent k see section on perfect gases.

Joule or Brayton Efficiency. The Joule cycle consists of a frictionless adiabatic compression, constant pressure burning, frictionless adiabatic expansion and rejection of heat energy at constant pressure. If I and 2 are used to designate the states at the beginning and end of compression, respectively, then the efficiency for such a cycle (ϵ_J) is

685
$$\epsilon_{J} = r - \frac{T_{1}}{T_{2}} = r - \left(\frac{p_{1}}{p_{2}}\right)^{\frac{k-1}{k}} = r - \left(\frac{V_{2}}{V_{1}}\right)^{k-1} = r - \left(\frac{r}{r_{k}}\right)^{k-1}$$

Diesel Efficiency. The Diesel cycle consists of a frictionless adiabatic compression, constant pressure burning, frictionless adiabatic expansion and the rejection of heat energy at constant volume. If ι and ι are used to designate the states at the beginning and end of compression, respectively, and ι and ι are used to designate the states at the beginning and end of expansion, respectively, then the efficiency for such a cycle (ι) is

686
$$\epsilon_{\rm D} = 1 - \frac{1}{k} \left(\frac{T_4 - T_1}{T_3 - T_2} \right) = 1 - \left(\frac{1}{r_k} \right)^{k-1} \left[\frac{r_c^k - 1}{k (r_c - 1)} \right]$$

where \mathbf{r}_c represents the ratio of the total volume at the end of burning (\mathbf{V}_3) to the volume at the start of burning (\mathbf{V}_2) . This ratio is termed cut-off ratio.

Thermal Efficiency. The actual cycle for an internal combustion engine takes into account the fact that heat losses occur in the actual engine. The efficiency for such a cycle (ϵ_T) is

687
$$\epsilon_{\rm T} = \frac{Q_1 - Q_2 - Q_{\rm losses}}{Q_1} = \frac{2545}{w_{\rm A}({\rm H_1})}$$

where \mathbf{w}_{A} is the actual fuel consumption in pounds per horse-power-hour and \mathbf{H}_{1} is the calorific heating value of the fuel per pound.

Engine Efficiency. The ratio of the ideal fuel consumption per horsepower-hour $(\mathbf{w_I})$ to the actual fuel consumption per horsepower-hour $(\mathbf{w_A})$ is termed engine efficiency $(\mathbf{\epsilon_E})$, hence

$$\epsilon_{\rm E} = \frac{\rm w_{\rm I}}{\rm w_{\rm A}} = \frac{\epsilon_{\rm T}}{\epsilon_{\rm I}}.$$

Note. The ideal efficiency (ϵ_I) can be either the Otto, Joule or Diesel cycle, depending on which one of these cycles the actual engine is operating.

Brake Horsepower. The output of an internal combustion engine may be determined by means of a friction brake. Equation **677** is applicable in this case.

The empirical equation for determining the brake horsepower (B.H.P.) for an engine with **n** cylinders of **d** inches diameter and **L** inches stroke at **N** revolutions per minute, the clearance being **m** per cent of the stroke, is

689 B.H.P. =
$$\frac{d^2 LnN}{14,000} \left(0.48 - \frac{I}{10 \text{ m}} \right)$$
 horsepower.

Diameter. If an engine cylinder is designed for maximum obtainable indicated horsepower (I.H.P.) with a mean effective pressure (M.E.P.) pounds per square inch, the number of explosions per minute at full load being y and the stroke L in feet being x times the diameter (d) in feet, then

690
$$d = \sqrt[3]{\frac{300 \text{ (I.H.P.)}}{(\text{M.E.P.)} \text{ xy}}} \text{ feet.}$$

STEAM BOILERS

Maximum Allowable Working Pressure. For a steam boiler drum with a shell of \mathbf{r} inches radius, \mathbf{t} inches thick, an ultimate tensile strength of \mathbf{f} pounds per square inch, factor of safety $\mathbf{F.S.}$ and an efficiency of the longitudinal joint $\boldsymbol{\epsilon}$ per cent the maximum allowable working pressure (\mathbf{p}) in pounds per square inch gage is

$$p = \frac{ft \epsilon}{F.S.r}$$
 pounds per square inch.

Thickness of Bumped Head. For a bumped head of bumped radius r inches, working pressure of p pounds per square inch

gage, an ultimate tensile strength of f pounds per square inch and a factor of safety F.S., the thickness (t) in inches is

$$\mathbf{t} = \frac{\mathbf{F.S.rp}}{\mathbf{Kf}} \text{ inches.}$$

Note. K = r for convex heads and K = 0.6 for concave heads. The factor of safety (F.S.) is usually taken as 5.

Boiler Horsepower. One boiler horsepower is the evaporation of 34.5 pounds of water per hour at 212° F. and atmospheric pressure. If G_a pounds of water per hour enter the boiler with an enthalpy h_{f2} and leaves as steam with an enthalpy h_1 then the boiler horsepower (P_B) is

693
$$P_B = \frac{G_a (h_1 - h_{f2})}{33,475}$$
 horsepower.

Equivalent Evaporation. The numerator of equation 693 represents the actual heat absorbed per hour. Since 970.3 B.t.u. are required to evaporate one pound of water "from and at 212° F.," the equivalent evaporation (G_e) in pounds per hour is

694
$$G_e = \frac{G_a (h_1 - h_{f2})}{970.3}$$
 pounds per hour.

Factor of Evaporation. In order to determine the equivalent evaporation per hour (G_e) it is necessary to multiply the actual evaporation per hour (G_a) by a factor. This factor is termed factor of evaporation (F) and is

$$\mathbf{F} = \frac{\mathbf{h}_1 - \mathbf{h}_{f_2}}{970.3}.$$

Boiler Efficiency. The ratio of the heat absorbed in the boiler to the heat supplied by the fuel is termed boiler efficiency ϵ_B and is

$$\epsilon_{B} = \frac{G_{a} (h_{1} - h_{f2})}{G_{f} (H)}$$

where G_f is the weight of fuel in pounds per hour and H is the calorific heating value in B.t.u. per pound of fuel.

CHIMNEYS AND DRAFT

Intensity of Draft. For a chimney H feet high whose gases have an absolute temperature of T_1 degrees and an outside

absolute temperature of T_2 degrees, the intensity of the draft (D) in inches of water is

697
$$D = 7.64 \text{ H} \left(\frac{I}{T_2} - \frac{I}{T_1} \right) \text{ inches of water.}$$

Note. This formula neglects the effect of friction. For a chimney with a friction factor f, H feet high, C feet circumference, A square feet passage area and discharging G pounds of gases per second, the draft loss (d) in inches of water is

$$d = \frac{fG^2CH}{A^3} \text{ inches of water}$$

where f = 0.0015 for steel stacks with gases at 600° F. absolute (0.0011 at 810° F. absolute) and 0.0020 for brick or brick-lined stacks with gases at 650° F. absolute (0.0015 at 810° F. absolute).

Effective Area of Chimney. The retardation of ascending gases by friction within the stack has the effect of decreasing the inside cross-sectional area, or of lining the chimney with a layer of gas with no velocity. If the thickness of this lining is assumed to be 2 inches for all chimneys, then the effective area (E) for square or round chimneys with A square feet of passage area is approximately

E =
$$A - o.6 \sqrt{A}$$
 square feet.

Boiler Horsepower. For a chimney H feet high and A square feet of passage area, the Kent's empirical formula for the boiler horsepower (P_B) is

700
$$P_B = 3.33 (A - 0.6 \sqrt{A}) \sqrt{H}$$
 horsepower.

Note. This formula is based on the assumptions that the boiler horsepower capacity varies as the effective area (E) and the available draft is sufficient to effect combustion of 5 pounds of coal per hour per rated boiler horsepower (the water heating surface divided by 10).

FUELS AND COMBUSTION

Heating Value for a Solid Fuel. In the case of a solid fuel which contains C per cent* of fixed and volatile carbon, H per cent of hydrogen, O per cent of oxygen and S per cent of sulphur, the heating value (Q) per pound of fuel-as-fired is

701
$$Q = 14,500 C + 62,000 \left[H - \frac{O}{8}\right] + 4,000 S B.t.u.$$

^{*} Percentages by weight are expressed as a decimal fraction.

Heating Value for Liquid Fuel. In the case of a liquid fuel which contains C per cent* of carbon and H per cent of hydrogen, the heating value Q per pound of fuel is

702
$$Q = 13,500 C + 60,890 H B.t.u.$$

If the Baumé reading is known, the heating value ${\bf Q}$ per pound of fuel is

703
$$Q = 18,650 + 40$$
 (Baumé reading -10) B.t.u.

Weight of Dry Flue Gases per Pound of Carbon. The flue gas analysis indicates the percentage CO_2 , CO, O_2 and N_2 by volume. The weight (G_1) of dry flue gas per pound of carbon is given by

704
$$G_{1} = \frac{\text{11 CO}_{2} + 8 O_{2} + 7 (\text{CO} + \text{N}_{2})}{3 (\text{CO}_{2} + \text{CO})} \text{ pounds}$$
or
$$= \frac{4 \text{CO}_{2} + O_{2} + 700}{3 (\text{CO}_{2} + \text{CO})} \text{ pounds}.$$

Weight of Dry Flue Gases per Pound of Coal-as-fired. The percentage by weight of carbon in the coal (C_c) and in the ash (C_a) can be determined from the coal and ash analyses. If the pounds of coal-as-fired (M_c) , the pounds of ash (M_a) and the gas analysis are known, then the weight (G_2) of dry flue gas per pound of coal-as-fired is given by

706
$$G_2 = \frac{M_c C_c - M_a C_a}{M_c} \left[\frac{4 CO_2 + O_2 + 700}{3 (CO_2 + CO)} \right]$$
 pounds.

Actual Weight of Dry Air per Pound of Coal-as-fired. If air is assumed to be 77 per cent nitrogen (N_2) by weight, the weight (G_3) of dry air per pound of coal-as-fired is given by

$$\label{eq:G3} \textbf{G}_3 = \frac{M_c C_c - M_a C_a}{M_c} \bigg[\frac{3.032 \ N_2}{CO_2 + CO} \bigg] \text{ pounds}.$$

Theoretical Weight of Dry Air per Pound of Coal-as-fired. The carbon, hydrogen and sulphur enter into combination with the oxygen of the air to produce combustion reactions. In the case of a coal-as-fired which contains C per cent by weight of fixed and volatile carbon, H per cent of hydrogen, O per cent of oxygen and S per cent of sulphur, the theoretical weight (G_4) of dry air per pound of coal-as-fired are given by

708
$$G_4 = 11.57 \text{ C} + 34.8 \left(H - \frac{O}{8}\right) + 4.35 \text{ S pounds.}$$

Percentage of Excess Air. Since G_3 gives the actual weight and G_4 the theoretical weight of air required for combustion, it follows that

709 Excess air =
$$\left(\frac{G_3 - G_4}{G_4}\right)$$
 100 per cent.

PUMPS

Capacity. The theoretical cubic feet per minute displacement (V) of a pump which makes N pumping strokes of L feet forward per minute and has a piston of A square inches effective area is

$$V = \frac{ALN}{144}$$
 cubic feet per minute.

Note. If the pump is double-acting the total displacement is the sum of the displacements on the forward and return strokes, the effective area varies for the two sides of the piston. Due to clearance, slip, imperfect valve action, etc., the actual displacement is reduced as much as 50 per cent in some cases.

Water Horsepower. For a pump which discharges G pounds of water per minute through a total head H feet, the water horsepower (W.H.P.) is

711 W.H.P. =
$$\frac{GH}{33,000}$$
 horsepower.

Note. The total head must include the suction lift, the discharge lift, friction and velocity heads.

Overall Thermal Efficiency. For steam-driven pumping units it is customary to express the ratio of the heat actually converted into work in lifting the water to the heat supplied as overall thermal efficiency $(\boldsymbol{\epsilon}_t)$, hence

712
$$\epsilon_{t} = \frac{2545}{w_{a} (h_{1} - h_{f2})}$$

where $\mathbf{w_a}$ is the actual steam consumption in pounds per water horsepower-hour.

Duty. The term "duty" is applied to steam-driven pumping units to indicate the foot-pounds of work done for every million B.t.u. supplied. For a pump which discharges G pounds of water per minute through a total head of H feet while using M

pounds of steam per minute with Q B.t.u. available per pound, the duty (D) is

713
$$D = \frac{GH}{MQ} \times 10^6$$
 foot-pounds per million B.t.u.

714 =
$$\frac{\text{W.H.P.}}{\text{MQ}} \times 33 \times 10^9 \text{ foot-pounds per million B.t.u.}$$

715 =
$$\epsilon_t \times 778 \times 10^6$$
 foot-pounds per million B.t.u.

AIR COMPRESSORS

Capacity. The capacity of an air compressor is usually measured in terms of the cubic feet of "free air" handled per minute (V_a) , which is air at atmospheric pressure (p_a) and atmospheric temperature (t_a) . If P.D. represents the piston displacement in cubic feet per minute of a compressor operating with suction pressure p_a pounds absolute per square inch, a discharge pressure p_2 pounds absolute per square inch, compression according to the law $pV^n = a$ constant, and m per cent clearance (expressed as a decimal), then

716
$$V_a = P.D. \left[1 + m - m \left(\frac{p_2}{p_a} \right)^{\frac{1}{n}} \right]$$
 cubic feet per minute.

Note. For general expressions between pressure, volume and temperature see section on perfect gases. For air compressors n = 1.20 to 1.35.

Volumetric Efficiency. The ratio of the volume of "free air" (V_a) to the piston displacement (P.D.) is termed displacement or volumetric efficiency (ϵ_v) .

For single-stage compression

717
$$\epsilon_{\mathbf{v}} = \frac{V_{\mathbf{a}}}{\mathbf{P.D.}} = \mathbf{r} + \mathbf{m} - \mathbf{m} \left(\frac{\mathbf{p}_2}{\mathbf{p_a}}\right)^{\frac{1}{\mathbf{n}}}.$$

For multi-stage air compressors

718
$$\epsilon_{v} = \frac{V_{a}}{P.D.} = 1 + m - m \left(\frac{p_{x}}{p_{a}}\right)^{\frac{1}{n}}$$

where p_x is the discharge pressure in pounds absolute per square inch leaving the first stage cylinder.

For two-stage compression

719
$$p_x = \sqrt{p_a p_2}$$
 pounds per square inch.

For three-stage compression

720 $p_x = \sqrt[3]{p_a^2 p_2}$ and $p_y = \sqrt[3]{p_a p_2^2}$ pounds per square inch where p_y is the discharge pressure in pounds absolute per square inch leaving the second stage cylinder.

Power. The power (P) required in foot-pounds per minute to compress V_a cubic feet of "free air" per minute polytropically according to the law, $pv^n = a$ constant, from atmospheric pressure p_a to a discharge pressure p_2 for single-stage compression is

721
$$P = 144 p_a V_a \frac{n}{n-1} \left[\left(\frac{p_2}{p_a} \right)^{\frac{n-1}{n}} - 1 \right]$$
 foot-pounds per minute.

For two-stage compression

722
$$P = 288 p_a V_a \frac{n}{n-1} \left[\left(\frac{p_2}{p_a} \right)^{\frac{n-1}{2n}} - 1 \right]$$
 foot-pounds per minute.

For three-stage compression

723
$$P = 432 p_a V_a \frac{n}{n-1} \left[\left(\frac{p_2}{p_a} \right)^{\frac{n-1}{3n}} - 1 \right]$$
 foot-pounds per minute.

The power (P) required in foot-pounds per minute to compress V_a cubic feet of "free air" per minute isothermally according to the law $pV^n = a$ constant from atmospheric pressure (p_a) to a discharge pressure (p_2) is

724
$$P = 144 p_a V_a \ln \frac{p_2}{p_a}$$
 foot-pounds per minute.

Efficiency of Compression. The ratio of the isothermal power to the polytropic power is termed efficiency of compression (ϵ_c). For single-stage compression

725
$$\epsilon_{c} = \frac{\ln \frac{p_{2}}{p_{a}}}{\frac{n}{n-1} \left[\left(\frac{p_{2}}{p_{a}} \right)^{\frac{n-1}{n}} - 1 \right]}.$$

For two-stage compression

726
$$\epsilon_{c} = \frac{\ln \frac{p_{2}}{p_{a}}}{\frac{2 n}{n-1} \left[\left(\frac{p_{2}}{p_{a}} \right)^{\frac{n-1}{2n}} - 1 \right]}.$$

For three-stage compression

727
$$\epsilon_{c} = \frac{\ln \frac{p_{2}}{p_{a}}}{\frac{3 n}{n-1} \left[\left(\frac{p_{2}}{p_{a}} \right)^{\frac{n-1}{3 n}} - 1 \right]}$$

COMPRESSION REFRIGERATION

Ideal Compression Refrigeration Cycle. In order to simplify the references to conditions in the ideal compression refrigeration cycle, a complete description of the cycle is given. The compressor draws the vapor (usually saturated or slightly superheated) from the evaporator at condition 1, compresses it adiabatically and without friction to condition 2 in the superheated region and then discharges the vapor to the condenser. The cooling water condenses the vapor to a saturated liquid at condition 3. The liquid is drawn off and then passes through an expansion valve to condition 4. This partially vaporized liquid now enters the evaporator where further evaporation takes place before entering the compressor.

Refrigerating Effect. The refrigerant enters the evaporator with an enthalpy of h_f , B.t.u. per pound and leaves with an enthalpy of h_1 B.t.u. per pound. If G_r pounds of refrigerant are circulated per minute and the refrigerating effect per minute is represented by R, then

728
$$R = G_r (h_1 - h_{f_2})$$
 B.t.u. per minute.

Capacity. The cubic feet per minute (V_1) handled by a compressor operating at N revolutions per minute with a piston displacement (P.D.) per revolution and drawing in G_r pounds of refrigerant per minute, each pound having a specific volume v_1 cubic feet is

729
$$V_1 = N \times P.D. = G_r v_1$$
 cubic feet per minute.

Note. This formula assumes no clearance. If the refrigerant is compressed from a suction pressure p_1 pounds absolute per square inch to a discharge pressure p_2 pounds absolute per square inch according to the law $pV^n =$ a constant and a clearance of m per cent expressed as a decimal, then

730
$$V_1 = N \times P.D. \left[r + m - m \left(\frac{p_2}{p_1} \right)^{\frac{1}{n}} \right]$$
 cubic feet per minute.

Tonnage. One ton of refrigeration is the heat equivalent to the melting of one ton (2000 pounds) of ice at 32° F. in 24 hours. Since one pound of ice melting at 32° F. will absorb approximately 144 B.t.u., then a ton of refrigeration will absorb 288,000 B.t.u. per day or 200 B.t.u. per minute, hence

731 Tonnage =
$$\frac{R}{200} = \frac{G_r (h_1 - h_{f_0})}{200}$$
 tons.

Power. The refrigerant enters the compressor with an enthalpy \mathbf{h}_1 and leaves with an enthalpy \mathbf{h}_2 B.t.u. per pound. If \mathbf{G}_r pounds of refrigerant are circulated per minute, the power (P) expressed in foot-pounds per minute for adiabatic compression is

732
$$P = 778 G_r (h_2 - h_1)$$
 foot-pounds per minute.

If V_1 cubic feet of refrigerant per minute enter the compressor with a suction pressure p_1 pounds absolute per square inch and is compressed to a discharge pressure p_2 pounds absolute per square inch according to the law $pV^n = a$ constant, then the power (P) is

733
$$\mathbf{P} = \mathbf{144} \ \mathbf{p}_1 \mathbf{V}_1 \frac{\mathbf{n}}{\mathbf{n} - \mathbf{r}} \left[\left(\frac{\mathbf{p}_2}{\mathbf{p}_1} \right)^{\frac{\mathbf{n} - 1}{\mathbf{n}}} - \mathbf{r} \right]$$
 foot-pounds per minute.

Coefficient of Performance. The ratio of the refrigerating effect **R** to the power $\left(\frac{P}{778}\right)$ is called the coefficient of performance (c. of p.). Hence, for adiabatic compression,

734 c. of p. =
$$\frac{778 \text{ R}}{P} = \frac{h_1 - h_{f_3}}{h_2 - h_1}$$

and, for polytropic compression,

735 c. of p. =
$$\frac{5.40 \text{ G}_r (h_1 - h_{f_3})}{p_1 V_1 \frac{n}{n-1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]}$$

Heat Removed in the Condenser. If G pounds of refrigerant per minute enter the condenser with an enthalpy h_2 and leave with an enthalpy h_{f_3} B.t.u. per pound, then the heat removed per minute in the condenser (Q_c) is.

736
$$Q_c = \frac{W}{778} + R = G (h_2 - h_5)$$
 B.t.u. per minute.

Weight of Cooling Water Required. If Q_c B.t.u. per minute are to be removed in the condenser and the temperatures of the cooling water entering and leaving the condenser are t_c and t_h , respectively, then the pounds of cooling water per minute (G_w) required are

737
$$G_w = \frac{Q_c}{h_{f_h} - h_{f_c}} = \frac{G (h_2 - h_{f_3})}{h_{f_h} - h_{f_c}}$$
pounds per minute.

HEAT TRANSMISSION

Fundamental Equation. The heat transmitted in engineering apparatus is affected by a combination of the heat transferred by conduction, convection and radiation. If the temperature is low and the rate of flow of the fluid over the surface is high, the radiation factor is ignored. The fundamental equation for the heat (Q) conducted in time (t), through a material having a thermal conductivity (k) and a surface area (S) which is normal to the flow of heat and of thickness (x) in the direction of the flow of heat with a temperature difference (θ) between its surfaces, is

738
$$Q = \frac{ckS\theta t}{x} \text{ units in time (t)}.$$

Note. Average values of **k** for various engineering materials expressed in gram-calories per second per square centimeter per centimeter per degree Centigrade, are given on page 317. The constant **c** depends on the units of measurement as follows:

Q	s	x	θ.	t	c	*c
gram-calories. kilogram-calories. British thermal units. joules. joules kilowatt-hours. kilowatt-hours.	sq. meters sq. feet sq. cms. sq. feet sq. meters	ems. inches ems. inches	Cent. Fahr. Cent. Fahr. Cent.	seconds seconds hours	1 36,000 2903 4.18 851 41.8 0.851	0.000344 12.4 I 0.00144 0.293 0.0144 0.000293

^{*} Values of c if k is expressed in B.t.u. per hour per square foot per inch per degree Fahrenheit.

If the heat is transmitted through a body composed of an

inside film, two materials and an outside film, equation 738, when expressed in English units, becomes

739
$$Q = \frac{\theta_{m}}{\frac{I}{a_{1}S_{mf1}} + \frac{X_{1}}{k_{1}S_{m1}} + \frac{X_{2}}{k_{2}S_{m2}} + \frac{I}{a_{2}S_{mf2}}}$$
 B.t.u. per hour

where θ_m is the mean temperature difference in degrees Fahrenheit between the two fluids while passing over the body, a_1 and a_2 are the inside and outside film coefficients in B.t.u. per hour per square foot per degree Fahrenheit, S_{mf1} and S_{mf2} are the areas of the inside and outside films in square feet, \mathbf{x}_1 and \mathbf{x}_2 are the thicknesses of the materials in feet, \mathbf{k}_1 and \mathbf{k}_2 are the conductivities of the materials in B.t.u. per hour per square foot per inch of thickness per degree Fahrenheit, and S_{m1} and S_{m2} are the mean surface areas of the materials.

Mean Temperature Difference. For building walls, roofs, partitions, etc., steam and refrigerating pipes carrying wet or saturated vapor and surrounded by atmospheric air, the neat is assumed to be transmitted from the hot fluid at a uniform temperature (t_1) to a cold fluid at a uniform temperature (t_2) . For these cases the mean temperature difference (θ_m) is

740
$$\theta_m = t_1 - t_2$$
 degrees Fahrenheit.

In heat exchangers such as boilers, superheaters, condensers, economizers, liquid and gas heaters or coolers, the temperature of either one or both fluids changes. If the hot fluid enters the apparatus at a temperature \mathbf{t}_1 and leaves at \mathbf{t}_2 and the contiguous cold fluid temperatures are \mathbf{t}_{α} and \mathbf{t}_{b} , respectively, then

741
$$\theta_{m} = \frac{(t_1 - t_a) - (t_2 - t_b)}{\ln \frac{t_1 - t_a}{t_2 - t_b}} \text{degrees Fahrenheit.}$$

Note. Equation 741 gives the logarithmic mean temperature difference and is applicable only when the overall coefficient of heat transfer (K), the weight (W) of the hot fluid and the weight (w) of the cold fluid and their specific heat (C) and (c), respectively, are approximately constant during the transfer of heat.

Mean Surface Area. The most important surfaces encountered in engineering practice are the plane or uniform cross-sectional surface, cylindrical and spherical surfaces. If S_1 and

 S_2 represent the inside and outside surface areas, respectively, then the mean surface area (S_m) for the plane surface is

742
$$S_m = \frac{S_2 + S_1}{2} = S$$
 square feet.

For the cylindrical surface the mean surface area (S_m) is

743
$$S_m = \frac{S_2 - S_1}{ln \frac{S_2}{S_1}} = \frac{2 \pi L (r_2 - r_1)}{ln \frac{r_2}{r_1}} \text{ square feet}$$

where L is the length in feet and r_1 and r_2 are the inside and outside radii in feet, respectively.

For the spherical surface the mean surface area (S_m) is

744
$$S_m = \sqrt{S_2 S_1} = 4 \pi r_1 r_2$$
 square feet.

Overall Coefficient of Heat Transfer. It is desirable in the solution of engineering problems involving the transfer of heat through typical walls, roofs, partitions, floors, pipes, heat exchangers, etc., to use a coefficient of heat transmission which will take into account the effects of conduction, convection and radiation, together with the type, thickness and position of the materials, and which may be used with the difference of the temperatures of the fluid temperatures on each side of the composite section. This quantity is termed "over-all coefficient of heat transfer" (K) and is expressed in B.t.u. per hour per square foot of surface area per degree Fahrenheit. The heat transmitted per hour (Q) becomes

745
$$Q = KS\theta_m$$
 B.t.u. per hour.

Note. Average values of K for the usual building structures are given below.

Overall Coefficients of Heat Transfer (K) for Building Structures* Expressed in B.t.u. per hour per square foot per degree Fahrenheit

Walls. Thickness in inches.		8	12	16
Brick, without interior plaster		0.50	0.36	0.28
Brick, with interior plaster		0.46	0.34	0.27
Concrete, without interior plaster		0.69	0.54	0.48
* Correction for exposure:				
•	North	East	South	West
Multiply K by	1.3	I.I	1.0	1.2

Concrete, with interior plaster			12	16
		0.62	0.49	0.44
Haydite, without interior plaster.		0.36	0.26	0.21
Haydite, with interior plaster		0.34	0.24	0.20
Hollow tile, without interior plast	er	0.40	0.30	0.25
Hollow tile, with interior plaster.		0.38	0.29	0.24
Limestone, without interior plaste	r	0.71	0.49	0.37
Limestone, with interior plaster		0.64	0.45	0.35
Wood, shingled or clapboarded, w	ith interio	r plaster		0.25
Stucco, with interior plaster				0.30
Brick veneer, with interior plaster				0.27
Partitions				
	h =1.1			0.40
4-inch hollow clay tile, plaster bot 4-inch common brick, plaster both				0.40
4-inch hollow gypsum tile, plaster				0.43
				0.27
Wood lath and plaster on one side				0.62
Wood lath and plaster on both sic Metal lath and plaster on one side				0.34
Metal lath and plaster on both sic				0.69
Plaster board and plaster on one s				0.39
Plaster board and plaster on both				0.61
2-inch corkboard and plaster on o				0.34
2-inch corkboard and plaster on b				0.12
2-men conkroard and plaster on b	O(II SIG(S C	n studding		0.003
Floors. Thickness in inches.	4	6	8	10
Concrete, no ceiling and no				
flooring				
	0.65	0.59	0.53	0.49
Concrete, plastered ceiling and	0.65	0.59	0.53	0.49
	o.65 o.59	o.59 o.54	o. 53 o. 50	0.49
Concrete, plastered ceiling and no flooring	Ţ.			
Concrete, plastered ceiling and no flooring	Ţ.			
Concrete, plastered ceiling and no flooring	0.59	0.54	0.50	0.45
Concrete, plastered ceiling and no flooring	0.59	0.54	0.50	0.45
Concrete, plastered ceiling and no flooring	0.59 0.61	o.54 o.56	0.50	0.45
Concrete, plastered ceiling and no flooring	0.59 0.61	o.54 o.56	0.50	0.45
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56 1.07	0.54 0.56 0.52 0.90	0.50 0.51 0.47	0.45 0.47 0.44 0.70
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56	0.54 0.56 0.52	0.50 0.51 0.47	0.45 0.47 0.44
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56 1.07 0.98	0.54 0.56 0.52 0.90	0.50 0.51 0.47 0.79	0.45 0.47 0.44 0.70
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56 1.07 0.98 ple or oak	0.54 0.56 0.52 0.90 0.84 flooring or	0.50 0.51 0.47 0.79 0.74 a yellow pine	0.45 0.47 0.44 0.70 0.66
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56 1.07 0.98 ple or oak	0.54 0.56 0.52 0.90 0.84 flooring or	0.50 0.51 0.47 0.79 0.74 a yellow pine	0.45 0.47 0.44 0.70
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56 1.07 0.98 ple or oak	0.54 0.56 0.52 0.90 0.84 flooring or	0.50 0.51 0.47 0.79 0.74 a yellow pine	0.45 0.47 0.44 0.70 0.66
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56 1.07 0.98 ple or oak nd plaster ing on jois	0.54 0.56 0.52 0.90 0.84 flooring or	0.50 0.51 0.47 0.79 0.74 a yellow pine	0.45 0.47 0.44 0.70 0.66
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56 1.07 0.98 ple or oak nd plaster ing on jois nd plaster	0.54 0.56 0.52 0.90 0.84 flooring or	0.50 0.51 0.47 0.79 0.74 a yellow pine	0.45 0.47 0.44 0.70 0.66
Concrete, plastered ceiling and no flooring	0.59 0.61 0.56 1.07 0.98 ple or oak nd plaster ing on jois nd plaster ing on jois	0.54 0.56 0.52 0.90 0.84 flooring or	0.50 0.51 0.47 0.79 0.74 a yellow pine	0.45 0.47 0.44 0.70 0.66 0.34

Roofs,	tar and gravel.	Thickn	ess ir	ı inches	s	2	4		6
Conc	rete, no ceiling	and no i	nsula	tion		0.82	0.		0.64
	rete, no ceiling							•	
	n			_		0.24	0.2	23	0.22
Conc	rete, metal lath	and pla	ster o	ceiling :	and				
	insulation					0.42	0.4	10	0.37
Conc	rete, metal lath	and pla	ster (ceiling :	and	•		•	٥.
ı i	nch rigid insulat	tion				0.19	0.1	8	0.18
1 incl	n wood, no ceilin	g and no	insu	lation.					0.49
1 incl	n wood, no ceilin	g and 1 i	nch r	igid ins	ulatio	n		 .	0.20
I incl	n wood, metal la	th and pl	laster	ceiling	and	no in <mark>su</mark> la	tion .		0.32
1 incl	n wood, metal la	th and p	laster	r ceiling	gand	inch ri	gid insu	lation	0.16
Meta	l, no ceiling and	l no insu	latio	n					0.95
Meta	l, no ceiling and	l 1 inch	rigid	insulat	ion .				0.25
Mcta	l, metal lath an	d plaster	r ceili	ing and	no ii	isulation	1		0.46
	l, metal lath an								0.19
Wood	l shingles, rafter	rs expose	d						0.46
Wood	l <mark>shingles,</mark> meta	l lath an	d pla	ster					0.30
	l shingles, wood		•						0.29
	l shingles, plast								0.29
-	alt shingles, raf	-							0.56
•	alt shingles, me		-						0.34
-	alt shingles, wo								0.32
Asph	alt shingles, pla	ster boar	rd an	d plast	er				0.32
Glass									
	e windows and s	lex liabto							T 70
_	le windows and s	,							1.13
	e windows and								0.45 0.281
•	w glass tile wal								0.201
	nd velocity 15 m						a curfac	20	0.60
	ll air outside and								0.48
50	outside and	· ANDIGC D							3.4 0
Doors.	Nominal thick	ness in in	ches.						
			I	11	1 1/2	11	2	21	3
Wood	l	0	0.69	0.59	0.52	0.51	0.46	0.38	0.33

AIR AND VAPOR MIXTURES

Specific or Absolute Humidity. The weight of water vapor per unit volume of space occupied, expressed in grains or pounds per cubic foot, is termed absolute humidity. In order to simplify the solution of problems involving air and vapor mixtures, it is convenient to express the weight of water per cubic foot (d_s) in terms of the weight of dry air per cubic foot (d_a) . This ratio has no specific name although the term absolute humidity

 (ϕ) is more often applied to this ratio than to the one previously given.

746
$$\phi = \frac{d_s}{d_a} = \frac{v_a}{v_s} = 0.622 \left(\frac{p_s}{B - p_s}\right) \text{ pounds}.$$

Note. In equation 746 the perfect gas laws are assumed to hold for both the water vapor and the dry air present in the moisture-laden air. The total pressure of the moisture-laden air (B) expressed in pounds absolute per square inch is assumed to be equal to the sum of the partial pressure exerted by the water vapor (p_s) and the partial pressure exerted by the dry air (p_a) , both expressed in pounds absolute per square inch.

Relative Humidity. The ratio of the actual density of the water vapor in the moisture-laden air (d_s) to the density of saturated vapor (d_{sat}) at the same temperature is termed relative humidity (\mathbf{H}) . Assuming the perfect gas laws to satisfy this low pressure vapor, then

747
$$H = \frac{d_s}{d_{sat}} = \frac{v_{sat}}{v_s} = \frac{p_s}{p_{sat}}.$$

Note. Although p_8 may be determined from Ferrell's or Carrier's equation in terms of the barometric reading, the wet-bulb and dry-bulb temperatures, it is customary to use equation 747 for determining the partial pressure (p_8) and the specific volume (v_8) of the water vapor. In engineering practice the psychrometric tables are used for determining the relative humidity (\mathbf{H}) .

Temperature,	Difference between wet and dry bulb									
dry bulb	2°	4°	6°	8°	100	12°	140	16°	180	20°
32° F. 40° F. 45° F. 55° F. 66° F. 75° F. 86° F. 75° F. 85° F. 90° F.	79 84 86 87 88 89 90 91 92 92 93 93	59 68 71 74 76 78 80 81 82 83 84 85 86 86	39 52 59 62 65 68 70 72 74 75 77 78 79	20 37 44 50 54 58 61 64 66 68 70 71 72 74	2 22 32 38 43 48 56 56 63 65 66 68	8 19 26 33 39 44 48 51 54 56 60 62	6 16 24 30 35 40 44 47 50 52 54	5 14 22 28 32 37 41 44 47 49 52	5 13 20 26 30 34 38 41 44	5 12 24 29 33 36 39

NOTE. The relative humidity should range between 35 and 45.

Dew Point. When moisture-laden air is cooled until the temperature reaches that corresponding to the saturation tempera-

ture for the partial pressure of the water vapor, condensation or precipitation begins. This temperature is called the dew point.

Determination of Weight of Moisture Precipitated. In order to precipitate moisture from V cubic feet of moisture-laden air at condition 1 it is necessary to cool the air to the dew point temperature (t_3) for the final condition 2 desired. The pounds of moisture precipitated (\mathbf{M}_p) is

748
$$\mathbf{M}_{p} = \frac{V}{v_{a_{1}}} (\phi_{1} - \phi_{2}) = \frac{V}{v_{a_{1}}} \left(\frac{v_{a_{1}}}{v_{s_{1}}} - \frac{v_{a_{2}}}{v_{s_{2}}} \right) \text{ pounds}.$$

Note. The specific volume of the dry air (va) may be determined from

749
$$v_a = \frac{53.34 (t + 460)}{144 (B - p_s)}$$
 cubic feet per pound

and the specific volume of the water vapor (v_8) may be determined from

$$v_s = \frac{v_{sat}}{H} \text{ cubic feet per pound.}$$

Determination of the Quantity of Heat Removed from the Moisture-Laden Air. In order to remove the moisture (M_p) , as given in equation 748, it is necessary to supply refrigeration. This refrigeration must cool the dry air and the water vapor in addition to precipitating the moisture, thus the total amount of heat removed (R) in B.t.u. is

751
$$R = \frac{V}{v_{a_1}} \left[0.241 (t_1 - t_3) + \frac{v_{a_1}}{v_{s_1}} (h_{s_1} - h_{s_2}) + \left(\frac{v_{a_1}}{v_{s_1}} - \frac{v_{a_2}}{v_{s_2}} \right) (h_{s_1} - h_{f_2}) \right] B.t.u.$$

Note. h_8 may be assumed to be the same as the enthalpy (h) for the saturated vapor at the same temperature.

Determination of the Heat Added. In order to precipitate the required moisture from the air at condition I, it was necessary to cool the air to the dew point temperature (t_3) for condition 2. The saturated air must now be heated in order that the temperature desired (t_2) may be obtained. This heat must be supplied to the dry air and the water vapor, thus the total amount of heat added (Q) in B.t.u. is

752
$$Q = \frac{V}{v_{a_1}} \left[\text{o.241 } (t_3 - t_2) + \frac{v_{a_2}}{v_{s_a}} (h_{s_3} - h_{s_3}) \right] \text{B.t.u.}$$

ELECTRICITY

MAGNETISM

Force (F) between two poles* of m and m' unit poles strength respectively separated by a distance of d centimeters.

$$\mathbf{753} \qquad \qquad \mathbf{F} = \frac{\mathbf{mm'}}{\mathbf{d}^2} \, \mathrm{dynes.}$$

NOTE. Unlike poles attract and like poles repel.

Magnetic intensity (H) at a point distant d centimeters from a pole* of m unit poles strength.

754
$$H = \frac{m}{d^2}$$
 oersteds.

Note. The magnetic intensity at a point is measured in magnitude and direction by the force acting on a unit N pole concentrated at the point and may be due to poles or electric current.

Force (F) acting upon a pole of m unit poles strength placed in a magnetic field of uniform magnetic intensity H oersteds.

755
$$F = mH$$
 dynes.

Magnetic flux (Φ) due to a pole of **m** unit poles strength.

756
$$\Phi = 4 \text{ mm maxwells.}$$

Note. The flux leaves a N pole and enters a S pole.

Intensity of magnetization (J) at any point in a magnet of constant section which has a pole strength per unit area of σ unit poles per square centimeter distributed uniformly over the end surfaces of the magnet.

757
$$J = \sigma$$
 unit poles per square centimeter.

* The dimensions of the surface over which each pole is distributed are assumed to be negligible compared with all other dimensions and the permeability of the surrounding medium is unity.

Magnetic flux density (B) at a point in a magnet where the magnetic intensity is H oersteds and the intensity of magnetization is J unit poles per square centimeter.

758
$$B = H + 4 \pi J \text{ gausses.}$$

Note. The addition is vectorial.

Magnetic flux density (B) produced by a magnetic intensity of \mathbf{H} oersteds in a medium where the permeability corresponding to the stated magnetic intensity is μ .

759
$$B = \mu H$$
 gausses.

Permeability (μ) of a medium in which a magnetic intensity of H oersteds produces a magnetic flux density of B gausses.

$$\mu = \frac{B}{H}.$$

Susceptibility (κ) of a medium in which a magnetic intensity of **H** oersteds produces an intensity of magnetization of **J** unit poles per square centimeter.

$$\kappa = \frac{J}{H}.$$

Permeability (μ) of a medium of susceptibility κ .

762
$$\mu = 1 + 4 \pi \kappa$$
.

Force (F) between two poles distributed over two plane surfaces A square centimeters in area, separated by an air gap in which the uniform flux density is B gausses, and surrounded by a medium of permeability μ .

$$F = \frac{B^2 A}{8 \pi \mu} \text{ dynes.}$$

Energy of magnetic field per cubic centimeter (W) in a medium where the flux density is B gausses and the constant permeability is μ or where the magnetic intensity is H oersteds and the constant permeability is μ .

784
$$W = \frac{B^2}{8\pi\mu} = \frac{\mu H^2}{8\pi} \text{ergs.}$$

ELECTROMAGNETISM

Magnetic intensity (dH) at a point distant d centimeters from a circuit element of length dl centimeters carrying a current of I amperes, θ being the angle between the circuit element and the line joining the element and the point.

765
$$dH = \frac{I \sin \theta \, dl}{10 \, d^2} \text{ oersteds.}$$

Note. The values of dH must be summed for all elements dl of a complete circuit. The summation must be made vectorially.

Magnetic intensity (H) at a point distant d centimeters on a normal from the axis of a cylindrical straight wire conducting a current of I amperes with uniform density throughout the wire.

Case I. Distance d negligible compared with length of wire and not less than radius of wire.

766
$$\mathbf{H} = \frac{\mathbf{0.2 I}}{\mathbf{d}} \text{ oersteds.}$$

Case II. Distance d not negligible compared with length of wire and not less than radius of wire.

767
$$\mathbf{H} = \frac{\mathbf{o.i} \ \mathbf{I}}{\mathbf{d}} (\sin \theta_1 + \sin \theta_2) \text{ oersteds.}$$
Fig. 767.

Case III. Distance d negligible compared with length of wire and not greater than the radius R of the wire.

768
$$H = \frac{0.2 \text{ Id}}{R^2} \text{ oersteds.}$$

Case IV. A hollow cylindrical wire of internal radius r centimeters and external radius R centimeters. Distance d not greater than R, not less than r and negligible compared with the length of the wire.

769
$$H = \frac{0.2 \text{ I } (d^2 - r^2)}{d (R^2 - r^2)} \text{ oersteds.}$$

Note. In each case the direction of the magnetic intensity at the point is normal to a plane including the point and the axis of the wire and is in a clockwise direction when viewing the wire from the end at which the current enters. The magnetic intensity at a point on the axis of the wire in each case is zero and in Case IV is zero throughout the air core.

Magnetic intensity (\mathbf{H}) at a point on a line through the center and normal to the plane of a circular turn of wire of negligible section conducting a current of I amperes, the radius of the circular turn being \mathbf{r} centimeters and the distance of the point from the wire being \mathbf{d} centimeters.

$$\mathbf{H} = \frac{0.628 \text{ Ir}^2}{d^3} \text{ oersteds.}$$

Note. The magnetic intensity at the center of the circular turn is $\frac{0.628 \text{ I}}{r}$ oersteds. At the center of curvature of an arc of length 1 centimeters and radius of curvature r centimeters the magnetic intensity is $\frac{0.1 \text{ II}}{r^2}$ oersteds. When its section is negligible the above formulas also apply to a compact coil of N turns each conducting a current of I amperes if the current is taken as NI amperes. The direction of the magnetic intensity in each case is along a line through the center of curvature and normal to the plane of the wire and away from a viewing point at which the current is seen to flow in a clockwise direction.

Magnetic intensity (H) at a point inside a long coil of constant section wound uniformly with n turns of wire per centimeter of axial length, each turn conducting a current of I amperes.

Case I. Magnetic intensity at any point in the plane of the central turn when the section of the coil is of any shape and its dimensions are negligible compared with the axial length of the coil.

Case II. Magnetic intensity at any point on the axis of a cylindrical helix wound with wire of negligible section.

772
$$H = 0.628 \text{ nI } (\cos \theta_1 + \cos \theta_2) \text{ oersteds.}$$

Note. The direction of the magnetic intensity in either case is determined as in 770.

Magnetic intensity (H) at a point distant d centimeters from the axis of and within a toroidal coil of N turns conducting a current of I amperes and wound uniformly on a surface generated by the revolution of a circle r centimeters in radius about an axis R centimeters from the center of the circle.

773
$$H = \frac{o.2 \text{ NI}}{d} \text{ oersteds.}$$

Note. The average magnetic intensity within the coil is $\frac{0.4 \, NI \, (R - \sqrt{R^2 - r^2})}{r^2}$ oersteds. Formula 773 also applies to a coil wound on a surface generated by the revolution of a rectangle, with sides a centimeters and b centimeters in length respectively, about an axis R centimeters from the center of the rectangle. The average magnetic intensity within this coil, taking b parallel and

a perpendicular to the axis, is
$$\frac{0.2 \text{ NI}}{a} \ln \frac{R + \frac{a}{2}}{R - \frac{a}{2}}$$
 oersteds. In equals \log_e .

Magnetomotive force (\mathfrak{F}) due to N turns of wire each conducting a current of I amperes in the same direction of rotation.

$$\mathfrak{F} = 1.26 \text{ NI gilberts.}$$

Reluctance (\mathfrak{A}) and Permeance (\mathfrak{P}) between the bases of a right prism or cylinder of permeability μ in which the direction of the flux density at all points is normal to the bases, the area of each base being A square centimeters and the perpendicular distance between the bases l centimeters.

775
$$\mathbf{G} = \frac{1}{\mu \mathbf{A}}$$
 gilberts per maxwell, or rels.

776
$$\mathcal{G} = \frac{\mu A}{l}$$
 maxwells per gilbert, or perms.

Note. The total reluctance of several reluctances connected in series without abrupt change of section at any point equals the sum of the several reluctances. The total permeance of several permeances connected in parallel equals the sum of the separate permeances.

Magnetic flux (Φ) established by a magnetomotive force of \mathfrak{F} gilberts in a magnetic circuit of \mathfrak{R} gilberts per maxwell, or rels reluctance.

777
$$\Phi = \frac{\Im}{\Re} \text{maxwells.}$$

Note. See 775, 776, and note to 853.

Force (F) on a portion of a conductor of effective length 1 centimeters carrying a current I amperes and placed in a magnetic field of uniform flux density B gausses.

778
$$F = o.r$$
 BlI dynes.

Note. The effective length of a portion of the conductor is the shortest distance between the ends of a projection of the portion of the conductor on a plane normal to the flux density. The respective directions of the force, flux density, and current in the effective length are represented by the directions in which the thumb, index, and middle fingers of the left hand point when held in positions respectively perpendicular to each other.

Force (F) per centimeter length between two parallel straight wires d centimeters apart and conducting currents of I_1 and I_2 amperes respectively. [distance between wires negligible compared with their lengths but the cross section of each wire may be finite]

$$\mathbf{F} = \frac{\mathbf{o.o2} \ \mathbf{I_1 I_2}}{\mathbf{d}} \, \mathbf{dynes.}$$

Note. The force is an attraction if the currents flow in the same direction and is a repulsion if the currents flow in opposite directions.

Force (F) per centimeter length between two circuits each composed of two straight wires of negligible section, located in parallel planes as shown in Fig. 780 and conducting currents of I_1 and I_2 amperes respectively. [distance between planes negligible compared with length of wires and all dimensions in centimeters]

Fig. 780.

780
$$\mathbf{F} = \text{o.o4} \ \mathbf{I}_1 \mathbf{I}_2 \mathbf{d} \left(\frac{\mathbf{I}}{(\mathbf{a} - \mathbf{b})^2 + \mathbf{d}^2} - \frac{\mathbf{I}}{(\mathbf{a} + \mathbf{b})^2 + \mathbf{d}^2} \right) \text{dynes.}$$

Note. With the current directions as shown in Fig. 780 the force is an attraction and if the current in either circuit is reversed the force is a repulsion.

Force (F) between two parallel circular coaxial turns of negligible section located as in Fig. 780 and conducting currents of I_1 and I_2 amperes respectively.

Case I. Radii a and b nearly equal and d very small compared with either a or b.

781
$$F = \frac{0.126 \text{ adI}_1 I_2}{(a-b)^2 + d^2} \text{dynes.}$$

Case II. Radius b small compared with a.

782
$$F = \frac{0.592 \ I_1 I_2 a^2 b^2 d}{(a^2 + d^2)^{\frac{5}{2}}} \, dynes.$$

Note. The direction of the force is determined as in 780.

Torque (T) acting on a circuit conducting a current of I amperes and enclosing an effective area A square centimeters, placed in a magnetic field in which the uniform flux density is B gausses.

783
$$T = o.i$$
 BAI cm.-dynes.

Note. The effective area of a closed circuit is the maximum area obtained by projecting the closed circuit on a plane parallel to the flux density. The closed circuit will turn in such a direction that the summation of the fluxes enclosed by the circuit due to itself and the external field respectively will be a maximum.

Torque (T) acting upon a small circular turn enclosing an area of A square centimeters, conducting a current of I_2 amperes and with its center coinciding with the center of a large circular turn \mathbf{r} centimeters in radius and conducting a current of I_1 amperes, the angle between the planes of the two coils being θ .

784
$$T = \frac{0.0628 \text{ AI}_1 I_2 \sin \theta}{r} \text{ cm.-dynes.}$$

Note. The direction of the torque is determined as in 783.

Self-inductance (L) of a coil of N turns of wire of negligible section through which a current of I amperes establishes a magnetic flux of Φ maxwells.

785
$$L = \frac{N\Phi ro^{-8}}{I} henrys.$$

Note. If the flux does not link all of the turns the self-inductance is given by $\frac{N_1\phi_1+N_2\phi_2,\,{\rm ctc.}}{I}\times 10^{-8}$ henrys, where ϕ_1 represents the flux linking N_1 turns, ϕ_2 the flux linking N_2 turns, etc. The self-inductance of a wire of appreciable section conducting a current of I amperes is given by $\frac{I_1\phi_1+I_2\phi_2,\,{\rm etc.}}{I^2}$

 \times 10⁻⁸ henrys, where ϕ_1 represents the flux linking the current I_1 , ϕ_2 the flux linking the current I_2 , etc., the summation of I_1 , I_2 , etc., being equal to I. If the conductors and the medium surrounding any circuit are of constant permeability, the self-inductance is independent of the current and may also be determined by 800 or 836. When the conductors or the surrounding medium are not of constant permeability the self-inductance of a circuit varies with the current and has no definite meaning since its values determined by 785, 800 or 836 do not agree. In the following cases when no mention is made of the dimensions of a conductor section it is assumed that they are negligible and when such dimensions are given it is assumed that the current density throughout the section is uniform.

Self-inductance (L) per centimeter axial length of the turns near the center of an air solenoid, A square centimeters in sectional area, wound uniformly with n turns per centimeter length. [dimensions of sectional area negligible compared with the axial length]

786
$$L = 12.6 \text{ n}^2\text{A} \times 10^{-9} \text{ henrys.}$$

Note. If the solenoid is filled completely with a medium of constant permeability μ the self-inductance per centimeter length is $12.6\,n^2\mu A \times 10^{-9}$ henrys and if filled partially throughout its length with a medium of constant permeability μ and B square centimeters in constant sectional area the self-inductance per centimeter length is $12.6\,n^2(\mu B + A - B) \times 10^{-9}$ henrys.

Self-inductance (L) of a single-layer short solenoid of N turns, I centimeters in axial length and r centimeters in radius. [I small compared with r]

787 L = 12.6 rN²
$$\left\{ \ln \frac{8 r}{1} - \frac{1}{2} + \frac{1^2}{3^2 r^2} \left(\ln \frac{8 r}{1} + \frac{1}{4} \right) \right\} \times 10^{-9} \text{ henrys.}$$

Self-inductance (L) of a multiple-layer short solenoid of N turns, 1 centimeters in axial length, R centimeters in external radius and r centimeters in internal radius. [1 small compared with R or r]

788 L = 12.6 aN²
$$\left\{ \ln \frac{8 a}{b} \left(\mathbf{1} + \frac{3 b^2}{16 a^2} \right) - \left(2 + \frac{b^2}{16 a^2} \right) \right\} \times 10^{-9} \text{ henrys.}$$
Note. $\mathbf{a} = \frac{\mathbf{R} + \mathbf{r}}{2}$ and $\mathbf{b} = 0.2235 \ (\mathbf{l} + \mathbf{R} - \mathbf{r})$. In equals $\log_{\mathbf{e}}$.

Self-inductance (L) of a toroidal coil wound uniformly with a single layer of N turns on a surface generated by the revolution of a circle r centimeters in radius about an axis R centimeters from the center of the circle.

789
$$L = 12.6 N^2 (R - \sqrt{R^2 - r^2}) \times 10^{-9} \text{ henrys.}$$

Self-inductance (L) of a toroidal coil of rectangular section, \mathbf{r} and \mathbf{R} centimeters in internal and external radius respectively, sides of section $(\mathbf{R} - \mathbf{r})$ centimeters and 1 centimeters respectively and wound uniformly with a single layer of \mathbf{N} turns.

790
$$L = 2 N^2 l \ln \frac{R}{r} \times 10^{-9} \text{ henrys.}$$

Self-inductance (L) per centimeter length of one of two parallel straight cylindrical wires each r centimeters in radius, their axes d centimeters apart and conducting the same current in opposite directions. [distance d small compared with the length of the wires]

791
$$L = \left(2 \ln \frac{d}{r} + 0.5\right) \times 10^{-9} \text{ henrys.}$$

Note. The self-inductance of each wire per mile is $0.08047 + 0.7411 \log \frac{d}{r}$ millihenrys and for two wires is twice as great. Formula 791 also gives the self-inductance per centimeter length of one of three wires, located at the vertices of an equilateral triangle (d is the distance between the axes of any two wires), provided the algebraic sum of the instantaneous currents conducted respectively by the three wires in the same direction equals zero.

Self-inductance (L) per mile length of one of three unsymmetrically spaced but completely transposed wires each \mathbf{r} inches in radius, with axial spacings of \mathbf{d}_{12} , \mathbf{d}_{23} , and \mathbf{d}_{13} inches, and with the algebraic sum of the instantaneous currents conducted respectively by the three wires in the same direction equal to zero.

792 L = 0.08047 + 0.7411 log
$$\frac{\sqrt[3]{d_{12}d_{23}d_{13}}}{r}$$
 millihenrys.

Note. A completely transposed three-wire circuit is one in which each wire occupies each position for one-third of the distance.

Self-inductance (L) per centimeter length of two straight cylindrical concentric wires of equal section conducting the same current in opposite directions; the inner radius of the outer conductor being b centimeters and the radius of the solid inner conductor being c centimeters.

793
$$L = \left(2 \ln \frac{b}{c} + \frac{1}{2} + \frac{c^2}{3b^2} - \frac{c^4}{12b^4} + \frac{c^6}{30b^6} - \ldots\right) \times 10^{-9} \text{ henrys.}$$

Self-inductance (L) of a single circular turn of wire of circular section, the mean radius of the turn being R centimeters and the radius of the section r centimeters.

794 L = 12.6 R
$$\left\{ \left(1 + \frac{r^2}{8 R^2} \right) \ln \frac{8 R}{r} + \frac{r^2}{24 R^2} - 1.75 \right\} \times 10^{-9} \, \text{henrys.}$$

Mutual-inductance (M) of two coils in which a current of I_1 amperes in one establishes a flux of Φ_2 maxwells through the N_2 turns of the other.

795
$$\mathbf{M} = \frac{\mathbf{N}_2 \mathbf{\Phi}_2}{\mathbf{I}_1} \times \mathbf{10}^{-8} \text{ henrys.}$$

Mutual-inductance (M) of two parallel circular coaxial turns each r centimeters in radius and their planes d centimeters apart. [d small compared with r]

796
$$M = 12.6 r \left\{ \ln \frac{8 r}{d} \left(1 + \frac{3 d^2}{16 r^2} \right) - \left(2 + \frac{d^2}{16 r^2} \right) \right\} \times 10^{-9} \text{ henrys.}$$

Mutual-inductance (M) of two concentric solenoids, the exterior of N_1 turns and length 1 centimeters and the interior of N_2 turns and sectional area A_2 square centimeters. [the axial length of the interior solenoid small compared with the axial length of the exterior solenoid]

797
$$M = \frac{12.6 \text{ N}_1 \text{N}_2 \text{A}_2}{1} \times 10^{-9} \text{ henrys.}$$

Self-inductance (L) of two series connections of self-inductance L_1 and L_2 henrys respectively and mutual-inductance M_{12} henrys.

798
$$L = L_1 + L_2 \pm 2 M_{12}$$
 henrys.

Note. The sign is + when the mutual fluxes are in conjunction and is - when the mutual fluxes are in opposition. The mutual-inductance (\mathbf{M}) of two series connections of self-inductance \mathbf{L}_1 and \mathbf{L}_2 henrys respectively with \mathbf{p}^* per cent coupling is given by $\mathbf{M} = \mathbf{p} \sqrt{\mathbf{L}_1 \mathbf{L}_2}$ henrys.

Self-inductance (L) of several coils of self-inductances L_1 , L_2 , L_3 , etc., wound on the same core with 100 per cent coupling in conjunction (+ sign) or opposition (- sign).

799
$$\mathbf{L} = (\sqrt{\mathbf{L}_1} \pm \sqrt{\mathbf{L}_2} \pm \sqrt{\mathbf{L}_3} \pm \text{etc.})^2 \text{ henrys.}$$

Energy of magnetic field (W) established by a circuit of constant self-inductance L henrys and conducting a current of I amperes.

800
$$W = \frac{1}{2} LI^2$$
 joules.

Energy (**W**) required to change the magnetic flux linking **N** turns of wire conducting a current of **i** amperes.

$$\mathbf{W} = \frac{\mathbf{N}}{\mathbf{10}} \int \mathbf{i} \ d\phi \ \text{ergs.}$$

Note. When ϕ is caused by i, an increase of i converts electric to magnetic energy, and a decrease of i converts magnetic to electric energy.

Hysteresis loss per cubic centimeter per second (P_h) in a medium in which a variable magnetic flux of maximum density B_m gausses changes from positive to negative to positive maximum f times per second.

802
$$P_h = \eta f B_m^{1.6} \times 10^{-7}$$
 watts per cubic centimeter.

Note. This is an empirical equation and in some cases the exponent of B_m may differ appreciably from 1.6. The hysteresis loop must be symmetrical with no re-entrant loops. The hysteresis coefficient (η) varies in different materials as follows: cast iron, 0.012; cast steel, 0.005; hipernik (50 Ni) 0.00015; low-carbon sheet steel, 0.003; permalloy (78 Ni), 0.0001; pure Norway iron, 0.002; silicon sheet steel, 0.00046 to 0.001. Formula 802 does not apply to the hysteresis loss in iron rotated in a magnetic field. In the latter case at low flux densities the loss may be twice as much as that due to an alternating flux but declines in value as the flux density increases. For soft iron the loss by either process will be about the same at 15,000 gausses and at 20,000 gausses the loss due to rotation is practically zero.

* p is expressed as a decimal fraction and represents the per cent of the flux caused by one coil which links the other.

Eddy-current loss (P_e) in thin laminations placed in a sinusoidally varying magnetic flux.

803
$$P_e = \frac{1.64 \ (tfB_m)^2}{\rho \times 10^{16}}$$
 watts per cubic centimeter.

Note. t is the thickness of the laminations in centimeters, f is the frequency of flux variation in cycles per second, B_m is the maximum flux density in gausses, and ρ is the resistivity of the laminations in ohms per centimeter cube.

ELECTROSTATICS

Charge per unit area (σ) on a body charged uniformly with q stateoulombs over a surface area of A square-centimeters.

804
$$\sigma = \frac{q}{A}$$
 stateoulombs per square centimeter.

Force (f) between two bodies* charged with q and q' statcoulombs respectively, and separated by a distance of d centimeters.

$$\mathbf{f} = \frac{\mathbf{q}\mathbf{q}'}{\mathbf{k}\mathbf{d}^2} \text{dynes.}$$

Note. Unlike charges attract and like charges repel.

Dielectric intensity (F) at a point distant d centimeters from a body* charged with q stateoulombs.

806
$$\mathbf{F} = \frac{\mathbf{q}}{\mathbf{k}\mathbf{d}^2}$$
 statuolts per centimeter or dynes per stateoulomb.

Note. The dielectric intensity at a point is measured in magnitude and direction by the force acting on a positive charge of one stateoulomb concentrated at the point and may be due to charges, changing magnetic flux or contact emf. The dielectric intensity within a conducting body is zero if it conducts no current.

Dielectric intensity (F) at a point where the magnetic flux density changes at a rate of $\frac{dB}{dt}$ gausses per second.

$$F = \frac{dB}{dt} \times \frac{10^{-10}}{3} \text{ statvolts per cm.}$$

* The dimensions of the surface over which each charge is distributed are assumed to be negligible compared with all other dimensions and the dielectric constant of the surrounding medium is k.

Note. If the point moves through a magnetic field of **B** gausses magnetic flux density at a velocity perpendicular to the flux density of **v** centimeters per second, $\mathbf{F} = \frac{\mathbf{B}\mathbf{v}}{3} \times \mathbf{10}^{-10}$ stations per cm. Dielectric intensity may also be due to contact emf; a contact emf of **E** stations produced uniformly in a distance of **d** centimeters establishes a dielectric intensity of $\frac{\mathbf{E}}{\mathbf{d}}$ stations per cm. throughout that distance.

Potential (V) between a point distant d centimeters from a body* charged with q statcoulombs and a point at an infinite distance from the charged body.

$$V = \frac{q}{kd} \text{ statvolts.}$$

Note. The potential between two points in any medium is measured by the work done in moving a positive charge of one stateoulomb from one point to the other against the force due to all existing charges and is independent of the path.

Dielectric intensity (F) at a point on a normal through the center of a circular disc uniformly charged on one side with σ stat-coulombs per square centimeter, the angle between the normal and a line from the point to the edge of the disc being θ . [the dielectric constant of the surrounding medium is k]

809
$$\mathbf{F} = \frac{2 \pi \sigma}{k} (\mathbf{I} - \cos \theta) \text{ statvolts per cm.}$$

Dielectric intensity (F) at a point opposite the centers and between two plane parallel surfaces† each charged uniformly and oppositely with σ stateoulombs per square centimeter.

810
$$\mathbf{F} = \frac{4\pi\sigma}{\mathbf{k}} \text{ statvolts per cm.}$$

Force (f) acting on a body charged with q stateoulombs placed in a field of uniform dielectric intensity F statvolts per cm.

$$\mathbf{811} \qquad \qquad \mathbf{f} = \mathbf{qF} \text{ dynes.}$$

- * The dimensions of the surface over which each charge is distributed are assumed to be negligible compared with all other dimensions and the dielectric constant of the surrounding medium is k.
- † The distance between the surfaces is assumed to be negligible compared with all other dimensions and the dielectric constant of the medium between the surfaces is **k**.

Force (f) acting between two parallel surfaces† each A square centimeters in area, and charged uniformly and oppositely with σ stateoulombs per square centimeter.

$$f = \frac{2 \pi \sigma^2 A}{k} dynes.$$

Charge (Q) per surface required to produce a force of f dynes between two parallel surfaces† each uniformly and equally charged over an area of A square centimeters.

813
$$Q = \sqrt{\frac{kAf}{2\pi}} \text{ stat coulombs.}$$

Potential (V) between two parallel surfaces† each uniformly, equally and oppositely charged over an area of A square centimeters, spaced d centimeters apart and acted upon by a force of dynes.

814
$$V = d\sqrt{\frac{8\pi f}{kA}} \text{ statvolts.}$$

Potential (V) between two parallel surfaces† charged uniformly and oppositely with σ stateoulombs per sq. cm., the dielectric constant of the medium between the surfaces being k_1 for a distance of d_1 centimeters and k_2 for a distance of d_2 centimeters.

815
$$V = 12.6 \sigma \left(\frac{d_1}{k_1} + \frac{d_2}{k_2}\right) \text{ statvolts.}$$

Dielectric flux (ψ) due to a body charged with q stateoulombs.

816
$$\psi = 4 \pi q \text{ lines.}$$

Intensity of electrisation (J) in a nonconducting plate charged uniformly and oppositely over two of its parallel surfaces with σ stateoulombs per square centimeter.

817
$$J = \sigma$$
 stateoulombs per sq. cm.

Note. The intensity of electrisation within a conducting body is zero.

† The distance between the surfaces is assumed to be negligible compared with all other dimensions and the dielectric constant of the medium between the surfaces is **k**.

Dielectric flux density (**D**) at a point in a nonconducting body where the field intensity is **F** statvolts per centimeter and the intensity of electrisation is **J** statcoulombs per square centimeter.

818
$$D = F + 4 \pi J$$
 lines per sq. cm.

NOTE. The addition is vectorial. The dielectric flux density within a conducting body is zero if it conducts no current.

Dielectric constant (k) of a medium in which a dielectric intensity of **F** statvolts per centimeter produces a dielectric flux density of **D** lines per square centimeter.

$$k = \frac{D}{F}.$$

Note. The dielectric constant of various substances is given on page 321.

Capacitance (C) of a condenser which is charged with Q coulombs when the potential between its terminals is V volts.

820
$$C = \frac{Q}{V}$$
 farads.

Capacitance (C) of a parallel plate condenser in which the positive and negative charges are each distributed uniformly over a surface area of A square centimeters, the uniform distance between the oppositely charged surfaces is d centimeters and the medium between the oppositely charged surfaces is of dielectric constant k. [d is assumed to be small compared with all other dimensions]

821
$$C = \frac{kA}{36 \pi d \times ro^5}$$
 microfarads.

Capacitance (C) of two concentric spheres; the inner r_1 centimeters in external radius, the outer r_2 centimeters in internal radius and separated by a medium of dielectric constant k.

822
$$C = \frac{r_1 r_2 k}{q (r_2 - r_1) \times 10^5}$$
 microfarads.

Capacitance (C) of two coaxial cylinders per centimeter axial length; the inner r_1 centimeters in external radius, the outer r_2 centimeters in internal radius and separated by a medium of dielectric constant k. [In equals log_e]

$$C = \frac{k}{18 \ln \frac{r_2}{r_1} \times 10^5}$$
 microfarads.

Note. The capacitance per mile is $\frac{0.03882 \text{ k}}{\log \frac{r_2}{r_*}}$ microfarads.

Capacitance (C) of two parallel cylinders per centimeter length; each cylinder r centimeters in radius, their centers separated by a distance of d centimeters and immersed in a medium of dielectric constant k. [r small compared with d and all dimensions small compared with distance to surrounding objects]

$$C = \frac{k}{36 \ln \frac{d}{r} \times 10^5}$$
 microfarads.

Note. The capacitance per mile is $\frac{1.941 \text{ k} \times 10^{-2}}{\log \frac{d}{r}}$ microfarads. The capacitance

itance per conductor (to neutral) of a balanced 3-phase transmission line with conductors located at the vertices of an equilateral triangle equals $\frac{3.882\,k\times 10^{-2}}{\log\frac{d}{r}}$ microfarads per mile.

Capacitance (C) to neutral per mile of one conductor of a balanced 3-phase transmission line with unsymmetrical spacing but completely transposed, \mathbf{d}_{12} , \mathbf{d}_{23} and \mathbf{d}_{13} being the axial spacings in inches and \mathbf{r} being the conductor radius in inches.

825

$$C = \frac{3.882 \times 10^{-2}}{log \frac{\sqrt[3]{d_{12}d_{23}d_{13}}}{r}} \text{microfarads.}$$

Note. See note following 792.

Total capacitance (C_0) of several series condensers of capacitance C_1 , C_2 and C_3 farads respectively.

826

$$C_0 = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}}$$
 farads.

Total charge (Q_0) on several series condensers charged with Q_1 , Q_2 and Q_3 coulombs respectively.

$$\mathbf{Q}_0 = \mathbf{Q}_1 = \mathbf{Q}_2 = \mathbf{Q}_3$$
 coulombs.

Potential (V_0) between the end terminals of several series condensers when the potential between the terminals of each condenser is V_1 , V_2 and V_3 volts respectively.

828 .
$$V_0 = V_1 + V_2 + V_3$$
 volts.

Total capacitance (C_0) of several parallel condensers of capacitance C_1 , C_2 and C_3 farads respectively.

829
$$C_0 = C_1 + C_2 + C_3$$
 farads.

Total charge (Q_0) on several parallel condensers charged with Q_1 , Q_2 and Q_3 coulombs respectively.

830
$$Q_0 = Q_1 + Q_2 + Q_3$$
 coulombs.

Potential (V_0) between the common terminals of several parallel condensers when the potential between the terminals of each condenser is V_1 , V_2 and V_3 volts respectively.

831
$$V_0 = V_1 = V_2 = V_3 \text{ volts.}$$

Energy of electrostatic field (W) per cubic centimeter in a medium of dielectric constant k where the dielectric flux density is D lines per square centimeter or the dielectric intensity is F statvolts per centimeter.

$$W = \frac{D^2}{8\pi k} = \frac{kF^2}{8\pi} \text{ ergs.}$$

Energy (W) stored in a condenser of C farads capacitance charged with Q coulombs, the potential between its terminals being V volts.

833
$$W = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QV$$
 joules.

DIRECT CURRENTS

Electromotive force (E) induced in a coil of N turns linked by a magnetic flux which changes at a rate of $\frac{d\phi}{dt}$ maxwells per second.

834
$$\mathbf{E} = \mathbf{N} \frac{\mathrm{d} \Phi}{\mathrm{d} t} \times \mathbf{10}^{-8} \text{ volts.}$$

Note. The direction of the emf is such that any current produced by it would establish a magnetic flux through the coil opposing the change in flux to which the emf is due.

Electromotive force (E) induced in a conductor 1 centimeters in effective length all points of which move in parallel straight lines with an effective velocity of v centimeters per second through a magnetic field of uniform flux density B gausses.

835
$$\mathbf{E} = \mathbf{Blv} \times \mathbf{10}^{-8} \text{ volts.}$$

Note. The effective length of the conductor is the shortest distance between the ends of a projection of the conductor on a plane normal to the flux density. The effective velocity of the conductor is the component velocity of its projection normal to the effective length and in a plane normal to the flux density. The respective directions of the effective velocity, the flux density and the induced emf in the effective length are represented by the directions in which the thumb, index and middle fingers of the right hand point when held in positions respectively perpendicular to each other.

Electromotive force (E) induced in a circuit of L henrys self-inductance in which the current is changing at a rate of $\frac{di}{dt}$ amperes per second.

836
$$\mathbf{E} = \mathbf{L} \frac{\mathbf{di}}{\mathbf{dt}} \text{ volts.}$$

Note. An increasing current induces an emf opposite in direction to the current and a decreasing current induces an emf in the same direction as the current.

Total electromotive force (\mathbf{E}_0) of several sources of emf, \mathbf{E}_1 , \mathbf{E}_2 , \mathbf{E}_3 , etc., connected in series, each emf being measured in volts.

837
$$E_0 = E_1 + E_2 + E_3$$
, etc., volts.

Note. The addition is algebraic.

Resistance (R_1) between the ends of a conductor l_1 in length and A_1 in uniform section made of a material a specimen of

which l_2 in length and A_2 in uniform section has a resistance of R_2 ohms.

838
$$R_1 = \frac{l_1 A_2 R_2}{l_2 A_1}$$
 ohms.

Note. The temperature and the respective units of length and area in each case must be the same. When the length l_2 and the area A_2 of the specimen are each unity the resistance \mathbf{R}_2 is called the resistivity (ρ) of the material per unit length and area specifying the units of length, area and resistance and the temperature. The resistivity of various materials is given on page 321. The resistance obtained by 838 or 839 applies rigorously only to conductors in which the current is constant.

Resistance (\mathbf{R}_1) between the ends of a conductor \mathbf{l}_1 in length and \mathbf{m}_1 in mass made of a material a specimen of which \mathbf{l}_2 in length and \mathbf{m}_2 in mass has a resistance of \mathbf{R}_2 ohms.

839
$$R_1 = \frac{l_1^2 m_2 R_2}{l_2^2 m_1} \text{ ohms.}$$

Note. Read note to 838 substituting "mass" for "area" throughout.

Conductance (G) of a conductor of R ohms resistance.

$$G = \frac{r}{R} \text{ mhos.}$$

Resistance (\mathbf{R}_2) of a conductor at \mathbf{t}_2 degrees Cent. which has a resistance of \mathbf{R}_1 ohms at \mathbf{t}_1 degrees Cent. and is made of a material which has a resistance-temperature coefficient of \mathbf{a} at \mathbf{t}_1 degrees Cent.

841
$$R_2 = R_1 [r + \alpha (t_2 - t_1)]$$
 ohms.

Note. Specific values of a for various materials are given on page 321.

Temperature (t_2) of a conductor when its resistance is R_2 ohms and which has a resistance of R_1 ohms at a temperature of t_1 degrees Cent., the resistance-temperature coefficient of the material at t_1 degrees Cent. being α .

$$\mathbf{842} \qquad \qquad \mathbf{t_2} = \frac{\mathbf{R_2} - \mathbf{R_1}}{\mathbf{aR_1}} + \mathbf{t_1} \text{ degrees Cent.}$$

Resistance (R) between the bases of the frustum of a cone, I centimeters in height with bases of \mathbf{r}_1 and \mathbf{r}_2 centimeters radius respectively, made of a material of $\boldsymbol{\rho}$ ohms per centimeter-cube resistivity. [\mathbf{r}_1 and \mathbf{r}_2 small compared with I]

$$R = \frac{\rho l}{\pi r_1 r_2} \text{ ohms.}$$

Resistance (R) between two concentric cylindrical surfaces 1 centimeters in axial length, the exterior \mathbf{r}_2 centimeters and the interior \mathbf{r}_1 centimeters in radius, the resistivity of the medium between the cylindrical surfaces being $\boldsymbol{\rho}$ ohms per centimetercube. [In equals \log_e]

844
$$R = \frac{\rho}{2 \pi l} \ln \frac{r_2}{r_1} \text{ ohms.}$$

Total resistance (R_s) of a series circuit the respective parts of which have resistances of R_1 , R_2 , R_3 , etc., each resistance being measured in ohms.

845
$$R_s = R_1 + R_2 + R_3$$
, etc., ohms.

Equivalent resistance (R_p) of a parallel circuit the respective branches of which have resistances of R_1 , R_2 , R_3 , etc., and contain no emf, each resistance being measured in ohms.

846
$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
, etc., mhos.

Note. When there are only two branches 846 reduces to $R_p = \frac{R_1 R_2}{R_1 + R_2}$ ohms and when there are n branches each of equal resistance, R_1 ohms, $R_p = \frac{R_1}{n}$ ohms.

Potential (V_{AB}) between the ends A and B of a part-circuit in which the current flowing from A to B is I_{AB} amperes, the resistance from A to B is R_{AB} ohms and the emf in the part-circuit acting from A to B is E_{AB} volts.

$$V_{AB} = + E_{AB} - I_{AB}R_{AB} \text{ volts.}$$

Note. The sign of the emf or current is positive when acting in the direction shown in Fig. 847 and is negative when acting in the opposite direction. When V_{AB} is positive it is called a potential rise from A to B and when V_{AB} is negative it is called a potential drop from A to B. If E_{AB} is zero, $V_{AB} = -I_{AB}R_{AB}$ volts and if either I_{AB} or R_{AB} is zero, $V_{AB} = +E_{AB}$ volts.

Potential (V_{AD}) between the ends A and D of a part-circuit, the potentials between the ends of its constituent parts being V_{AB}, V_{BC} and V_{CD} measured in volts.

$$V_{AD} = V_{AB} + V_{BC} + V_{CD} \text{ volts.}$$

Note. The addition is algebraic.

Current (I_{AB}) flowing from the end A to the end B in a part-circuit under the conditions indicated in Fig. 847.

$$I_{AB} = \frac{+E_{AB} - V_{AB}}{R_{AB}}$$
 amperes.

Note. The direction of the current is determined by its sign, a positive sign indicating a flow from A to B and a negative sign a flow from B to A.

When V_{AB} equals zero, $I_{AB} = \frac{+E_{AB}}{R_{AB}}$ amperes and when E_{AB} equals zero,

$$I_{AB} = \frac{-V_{AB}}{R_{AB}}$$
 amperes, these simple forms of 849 being known as Ohm's Law.

When VAB is a function of the current the value of VAB substituted in 849 must be known for the particular current IAB.

Total current (I_0) flowing toward a junction from which the currents I_1 , I_2 , I_3 , etc., flow away, all currents being measured in amperes.

850
$$I_0 = I_1 + I_2 + I_3$$
, etc., amperes.

Current (I_1) flowing in a branch of R_1 ohms resistance connected in parallel with a branch of R_2 ohms resistance conducting a current of I_2 amperes, the emf within either branch being zero.

$$\mathbf{851} \qquad \qquad \mathbf{I_1} = \frac{\mathbf{I_2}\mathbf{R_2}}{\mathbf{R_1}} \text{ amperes.}$$

Current (I_1) flowing in a branch of R_1 ohms resistance connected in parallel with a branch of R_2 ohms resistance, the sum of the currents in the two branches being I_0 and the emf within either branch being zero.

852
$$I_1 = \frac{I_0 R_2}{R_1 + R_2}$$
 amperes.

Current (I) flowing in any branch of a network (Fig. 853). The magnitudes of the current, total emf and total resistance

respectively in any branch are indicated (as in the branch ACB) by the symbols I_1 , E_1 and R_1 , and the respective directions of the current and emf are indi-A cated by arrows, any unknown direction being assumed arbitrarily. Since the potential between any two points is independent of the path (for example,

Fig. 853.

 $V_{ACB} = V_{ADB} = V_{AFB}$) we may write from 847

$$(1) +E_1-I_1R_1=-E_2-I_2R_2,$$

(2)
$$+E_1 - I_1R_1 = +E_3 + I_3R_3$$
,

and from 850

$$\mathbf{I}_3 = \mathbf{I}_1 + \mathbf{I}_2.$$

Note. The magnitude and direction of each current may be determined by solving the simultaneous equations, a positive value of the current indicating the same direction and a negative value indicating the opposite direction to that assumed in the figure. The equations written under 853 state the principles known as Kirchhoff's Laws. In a magnetic circuit containing several branches of known permeability similar equations may be written substituting magnetomotive force for electromotive force, flux for current and reluctance for resistance.

Power (**P**) delivered to or from a part-circuit conducting a current of **I** amperes and across which the potential is **V** volts.

854
$$P = VI$$
 watts.

Note. A potential rise in the direction of the current indicates power delivered from, and a potential drop in the direction of the current indicates power delivered to the part-circuit. Multiply 854 or 855 by seconds to obtain joules or by hours divided by 1000 to obtain kilowatt-hours.

Power (P) delivered to a part-circuit of R ohms resistance containing no emf and conducting a current of I amperes.

$$855 P = I^2R watts.$$

Quantity of electricity (Q) transmitted in t seconds through a circuit conducting a current of I amperes.

856
$$Q = It coulombs.$$

Quantity of electricity (Q) transmitted through a circuit of R ohms resistance when the flux linking N turns of the circuit is changed from ϕ_1 to ϕ_2 maxwells.

857
$$Q = \frac{(\phi_1 - \phi_2)N}{R \times 10^8} \text{ coulombs.}$$

Voltage (V_L) at the load end of a transmission line of R_l ohms total resistance and conducting a current of I_l amperes, the voltage at the generator end being V_G volts.

$$V_L = V_G - I_l R_l \text{ volts.}$$

Power (**P**_L) received at the load end of a transmission line under the conditions stated in 858.

$$P_L = V_G I_1 - I_1^2 R_1 \text{ watts.}$$

Energy (W_L) received at the load end of a transmission line in **h** hours under the constant conditions stated in 858.

860
$$W_L = [V_G I_I - I_I^2 R_I] \frac{h}{1000} \text{ kilowatt-hours.}$$

Efficiency (η) of a transmission line under the conditions stated in 858.

861
$$\eta = \frac{V_G I_1 - I_1^2 R_1}{V_G I_1} = \frac{V_L I_1}{V_G I_1} = \frac{V_L}{V_G}.$$

Current (I_l) conducted by a transmission line of R_l ohms total resistance when the power delivered at the load end is P_L watts and the voltage at the generator end is V_G volts.

862
$$I_{l} = \frac{V_{G} \pm \sqrt{(V_{G})^{2} - 4 R_{l}P_{L}}}{2 R_{l}} \text{ amperes.}$$

Area (A) of 1 feet of copper wire at 25°C. conducting a current of I amperes and in which the potential drop is V volts.

863
$$A = \frac{10.6 \text{ Il}}{V} \text{ circular mils.}$$

Note. For stranded wire the constant is 10.8.

Weight (G) of copper wire required to transmit energy a distance of 1 feet at a rate of P_L watts when the load end and generator end voltages are V_L and V_G volts respectively.

$$\label{eq:G_section} 6 \ = \ o.ooo128 \, \frac{P_L l^2}{(V_G - V_L) V_L} \, {\rm pounds}.$$

Sectional area (A) of copper wire required to transmit energy under the conditions stated in 864.

A =
$$\frac{21.2 \text{ lP}_L}{(V_G - V_L)V_L}$$
 circular mils.

Sectional area (A) of a copper wire for which the total annual cost of transmitting energy over a line conducting a constant current of I amperes will be a minimum.

Note. **c** is the cost of the generated energy in dollars per kilowatt-hour, **c'** is the cost of the bare copper wire in dollars per pound, **h** is the number of hours per year that the line is in use and **p** is the annual percentage rate of interest on the capital invested in copper which will pay the annual capital interest, taxes and depreciation of the copper. Equation 866 states the principle known as Kelvin's Law.

TRANSIENT CURRENTS*

Current (i) flowing in a series circuit of R ohms resistance and L henrys self-inductance t seconds after a constant emf of E volts is impressed upon the circuit.

867
$$i = \frac{E}{R} \left(1 - \epsilon^{-\frac{Rt}{L}} \right) + I \epsilon^{-\frac{Rt}{L}}$$
 amperes.

Note. I is the current in amperes flowing in the circuit at the instant before the emf is impressed. It is a positive quantity if flowing in conjunction and is a negative quantity if flowing in opposition to the emf,

* The value of & throughout is 2 718

Current (i) flowing in a series circuit of R ohms resistance and L henrys self-inductance t seconds after its source of emf is short-circuited, the current flowing in the circuit at the instant before the short-circuit being I amperes.

$$i = I\epsilon^{-\frac{Rt}{L}} \text{amperes.}$$

Current (i) flowing in a circuit of **R** ohms resistance and **C** farads series capacitance **t** seconds after a constant emf of **E** volts is impressed upon the circuit.

$$i = \left(\frac{E - V}{R}\right) \epsilon^{-\frac{t}{RC}} \text{ amperes.}$$

NOTE. V is the potential across the condenser at the instant before the emf is impressed. It is a positive quantity if acting in opposition and a negative quantity if acting in conjunction with the impressed emf.

Charge (q) on the condenser at any time t under the conditions stated in 860.

870
$$q = CE\left(I - \epsilon^{-\frac{t}{RC}}\right) + CV\epsilon^{-\frac{t}{RC}} coulombs.$$

Potential (v) across the condenser at any time t under the conditions stated in 869.

871
$$v = E\left(1 - e^{-\frac{t}{RC}}\right) + Ve^{-\frac{t}{RC}} \text{ volts.}$$

Current (i) flowing in a circuit of R ohms resistance and C farads series capacitance t seconds after its source of emf is short-circuited, the potential across the condenser at the instant before the short-circuit being V volts.

$$i = \frac{V}{R} \epsilon^{-\frac{t}{RC}} \text{ amperes.}$$

Charge (q) on the condenser at any time t under the conditions stated in 872.

$$q = CVe^{-\frac{t}{RC}} coulombs.$$

Potential (v) across the condenser at any time t under the conditions stated in 872.

874
$$\mathbf{v} = \mathbf{V} \mathbf{e}^{-\frac{\mathbf{t}}{\mathbf{RC}}} \mathbf{volts}.$$

Current (i) flowing in a circuit of R ohms resistance, L henrys self-inductance and C farads series capacitance t seconds after a constant emf of E volts is impressed upon the circuit, the potential across the condenser and the current flowing in the circuit at the instant before the emf is impressed being V volts and I amperes respectively.

Case I. $R^2C > 4 L$.

$$875 \ i = \left\{\frac{E-V-aLI}{(b-a)L}\right\} \epsilon^{-at} - \left\{\frac{E-V-bLI}{(b-a)L}\right\} \epsilon^{-bt} \ \text{amperes.}$$

Case II.
$$R^2C = 4 L$$
.

876
$$i = \left\{ I + \left(\frac{2(E-V) - RI}{2L} \right) t \right\} e^{-\frac{Rt}{2L}}$$
amperes.

Case III. $R^2C < 4 L$.

$$877 \quad i = \left\{ \left(\frac{2 \ (E - V) - RI}{2 \ \omega_1 L} \right) \text{sin } \omega_1 t + I \ \text{cos } \omega_1 t \right\} \varepsilon^{-\frac{Rt}{2L}} \text{amperes.}$$

Note.
$$a = \frac{RC - \sqrt{R^2C^2 - 4LC}}{2LC}$$
, $b = \frac{RC + \sqrt{R^2C^2 - 4LC}}{2LC}$

and $\omega_1 = \frac{\sqrt{4\ LC - R^2C^2}}{2\ LC}$. The current (I) is positive when flowing in the same direction as the impressed emf and the sign of the potential (V) is obtained as in 869.

Current (i) flowing in a circuit of R ohms resistance, L henrys self-inductance and C farads series capacitance t seconds after its source of emf is short-circuited, the potential across the condenser and the current flowing in the circuit at the instant before the short-circuit being V volts and I amperes respectively.

Note. Write 875, 876, or 877 making E zero in each case.

Current (i) flowing in a circuit of R ohms resistance, L henrys self-inductance and C farads series capacitance t seconds after a harmonic emf, $e = E_m \sin{(\omega t + \alpha)}$ volts, is impressed upon the circuit, the potential across the condenser and the current flowing in the circuit at the instant before the emf is impressed being V volts and I amperes respectively.

Case I.
$$R^2C > 4 L$$
.

878
$$i = Ge^{-\alpha t} - He^{-bt} + \frac{E_m}{Z}\sin(\omega t + \alpha - \theta)$$
 amperes.

Case II.
$$R^2C = 4 L$$
.

879
$$i = (J + Kt)e^{-\frac{Rt}{2L}} + \frac{E_m}{Z}\sin(\omega t + \alpha - \theta)$$
 amperes.

$$880 \ i = \left\{ M \sin \omega_{i} t + N \cos \omega_{i} t \right\} \varepsilon^{-\frac{Rt}{2L}} + \frac{E_{m}}{Z} \sin (\omega t + \alpha - \theta) \ \text{amperes}.$$

Note.
$$G = \frac{E_m \sin \alpha - V - aLI - \frac{E_m L}{Z} \left\{ b \sin (\alpha - \theta) + \omega \cos (\alpha - \theta) \right\}}{(b - a)L}$$

$$H = \frac{E_m \sin \alpha - V - bLI - \frac{E_m L}{Z} \left\{ a \sin (\alpha - \theta) + \omega \cos (\alpha - \theta) \right\}}{(b - a)L}$$

$$J = I - \frac{E_m}{Z} \sin (\alpha - \theta) \qquad \omega_i, \text{ a and b as in 877.}$$

$$K = \frac{r}{L} \left\{ E_m \sin \alpha - V - \frac{RI}{2} - \frac{E_m}{Z} \left(\frac{R}{2} \sin \left(\alpha - \theta \right) + L \omega \cos \left(\alpha - \theta \right) \right) \right\}$$

$$M \, = \, \frac{K}{\omega_1} \hspace{1cm} N \, = \, J \hspace{1cm} \omega \, = \, 2 \, \, \pi f \hspace{1cm} \theta \, = \, cos^{-1} \frac{R}{Z} \label{eq:mass_def}$$

$$Z = \sqrt{R^2 + \left(\omega L - \frac{I}{\omega C}\right)^2}$$

 $\mathbf{a} = \sin^{-1}\frac{\mathbf{c}}{\mathbf{E_m}}$, where \mathbf{e} equals the algebraic value of the harmonic emf at the instant that it is impressed on the circuit. The current (I) is positive if flowing in the same direction as the impressed emf and the potential (V) is positive if acting in opposition to the impressed emf, both at time (t) equals zero. If the circuit contains no condenser the series capacitance is infinite and $\mathbf{a} = \mathbf{o}$, $\mathbf{b} = \frac{\mathbf{R}}{\mathbf{L}}$ and $\mathbf{Z} = \sqrt{\mathbf{R}^2 + \mathbf{\omega}^2 \mathbf{L}^2}$.

HARMONIC ALTERNATING CURRENTS

Electromotive force (e) of a harmonic emf of maximum value E_m volts and angular velocity ω radians per second at any harmonic time t seconds.

881

$$e = E_m \sin \omega t$$
 volts.

Note. A harmonic cycle is a single sequence of harmonic values from zero to positive maximum to zero to negative maximum to zero. The harmonic frequency (f) is the sequence rate in cycles per second. The angular velocity (ω) in radians per second equals 2 π times the frequency (f). The harmonic time (t) is the time in seconds measured from the instant when the harmonic value is zero and is increasing to a positive maximum. When a harmonic emf is indicated by the expression, $e = E_m \sin(\omega t + \alpha)$, harmonic time is measured from the instant when $e = E_m \sin \alpha$.

Current (i) flowing at any harmonic emf time t seconds in a circuit of R ohms resistance, L henrys self-inductance and C farads series capacitance upon which a harmonic emf, $e = E_m \sin \omega t$, is impressed.

$$882 \ i = \frac{E_m}{\sqrt{R^2 + \left(L\omega - \frac{I}{C\omega}\right)}} \sin \left\{ \omega t - tan^{-I} \left(\frac{L\omega - \frac{I}{C\omega}}{R}\right) \right\} \text{ amperes.}$$

Note. It is assumed that the cmf has been impressed upon the circuit long enough to produce a harmonic current. The early transient current is given by 878, 879 or 880.

Maximum current (I_m) flowing in a circuit under the conditions stated in 882.

883
$$I_{m} = \frac{E_{m}}{\sqrt{R^{2} + \left(L_{\omega} - \frac{r}{C_{\omega}}\right)^{2}}} \text{ amperes.}$$

Effective or root-mean-square emf (E) of a harmonic emf, $e = E_m \sin \omega t$ volts.

$$E = \frac{E_m}{\sqrt{2}} \text{ volts.}$$

Note. The effective current (I) of a harmonic current equals $\frac{I_m}{\sqrt{2}}$ amperes.

Average emf (E_a) of a harmonic emf, $e = E_m \sin \omega t$ volts.

$$E_a = \frac{2 E_m}{\pi} \text{volts.}$$

Note. The average current (I_a) of a harmonic current equals $\frac{2 \text{ Im}}{\pi}$ amperes.

Form factor (f.f.) and amplitude factor (a.f.) respectively of a harmonic emf, $e = E_m \sin \omega t$ volts.

886 f.f.
$$= \frac{E}{E_a} = \text{I.II.}$$

a.f. $= \frac{E_m}{E} = \text{I.4I4.}$

Note. The form factor (f.f.) and amplitude factor (a.f.) respectively of a harmonic current are $\frac{I}{I_a} = 1.11$ and $\frac{I_m}{I} = 1.414$.

Reactance (X) of a circuit of L henrys self-inductance and C farads series capacitance when conducting a harmonic current of w radians per second angular velocity.

$$X = L\omega - \frac{I}{C\omega} \text{ ohms.}$$

Note. Lw is called the inductive reactance and $\frac{1}{C_{\omega}}$ the capacitive reactance of the circuit, each measured in ohms.

Impedance (Z) of a circuit of R ohms resistance and X ohms series reactance.

$$Z = \sqrt{R^2 + X^2} \text{ ohms.}$$

Phase angle (θ) of a circuit of R ohms resistance and X ohms series reactance.

$$\theta = \tan^{-1} \frac{X}{R}.$$

Note. The phase angle (θ) of a circuit in radians divided by the angular velocity (ω) of the conducted current in radians per second equals the time t in seconds by which the harmonic current lags or leads the harmonic emf. A positive value of $\frac{X}{R}$ indicates a lagging current and a negative value a leading current.

Power factor (p.f.) of a part-circuit of R ohms resistance, Z ohms impedance and phase angle θ containing no generated emf.

890 p.f.
$$=\frac{R}{Z}=\cos\theta$$
.

Total resistance (R_s) of a series circuit. See 845.

Total reactance (X_s) of a series circuit the respective parts of which have reactances of X_1 , X_2 , X_3 , etc., ohms.

891
$$X_8 = X_1 + X_2 + X_3$$
, etc., ohms.

Note. The addition is algebraic, inductive reactance being positive and capacitive reactance negative.

Total impedance (Z_s) of a series circuit of R_s ohms total resistance and X_s ohms total reactance. See 888.

Note. The total impedance of a series circuit does not equal the sum of the impedances of its respective parts unless the ratio of reactance to resistance in each part is the same and the net reactances are of the same sign.

Power (P) delivered to or from a part-circuit conducting an effective current of I amperes across which the effective potential rise in the direction of the current is V volts, the phase angle between the current and the potential rise being θ .

892
$$P = VI \cos \theta$$
 watts.

Note. Positive power indicates net power delivered from, and negative power indicates net power delivered to the part-circuit. Multiply 892 or 895 by seconds to obtain energy in joules and by hours divided by 1000 to obtain energy in kilowatt-hours.

Reactive power (Q) under the conditions stated in 892.

893
$$Q = VI \sin \theta \text{ vars.}$$

Note. Leading reactive power is considered by convention to be positive. Lagging reactive power is considered negative.

Volt-amperes (V-A) or apparent power under the conditions stated in 892.

894
$$V-A = VI \text{ volt-amperes.}$$

NOTE. No significance is ascribed to the sign of apparent power.

Power (P) delivered to a part-circuit of R ohms resistance conducting an effective current of I amperes and containing no generated emf.

895
$$P = I^2R \text{ watts.}$$

Note. The net power delivered to a reactance is zero.

Reactive power (Q) delivered to a part-circuit of X ohms reactance conducting an effective current of I amperes and containing no generated emf.

$$\mathbf{896} \qquad \qquad \mathbf{Q} = \mathbf{I}^2 \mathbf{X} \text{ vars.}$$

Note. Q is positive for a capacitive reactance and negative for an inductive reactance. The reactive power delivered to a resistance is zero.

Volt-amperes (V-A) delivered to a part-circuit of Z ohms impedance conducting an effective current of I amperes and containing no generated emf.

897
$$V-A = I^2Z$$
 volt-amperes.

Volt-amperes (V-A) corresponding to a power of P watts and a reactive power of Q vars.

898
$$V-A = \sqrt{P^2 + Q^2}$$
.

Effective vector expression (E) and (I) for an emf, $e = E_m \sin(\omega t + \alpha)$ volts, and a current, $i = I_m \sin(\omega t - \beta)$ amperes.

899
$$\begin{split} E &= \left(\frac{E_m}{\sqrt{2}}\cos\alpha + j\,\frac{E_m}{\sqrt{2}}\sin\alpha\right) = \frac{E_m}{\sqrt{2}}\underline{/\alpha} \text{ volts.} \\ I &= \left(\frac{I_m}{\sqrt{2}}\cos\beta - j\,\frac{I_m}{\sqrt{2}}\sin\beta\right) = \frac{I_m}{\sqrt{2}}\underline{/-\beta} \text{ amperes.} \end{split}$$

Note. In symbolic notation the horizontal component of a vector is without prefix and its sign is + to the right and - to the left of the Y axis; the vertical component is designated by the prefix j and its sign is + above and - below the X axis. In some mathematical operations the symbol j has the value $\sqrt{-1}$. The symbols $/\alpha$ and $/-\beta$ indicate vectors making the angles $+\alpha$ and $-\beta$, respectively, with the X axis and having magnitudes given by the quantity preceding the symbols. This is known as the polar form of the vector expression.

Vector electromotive force (EAD) in a circuit the constituent parts of which contain the vector emf's EAB, EBC and ECD volts.

900
$$E_{AD} = E_{AB} + E_{BC} + E_{CD} \text{ volts.}$$

Note. Each vector emf must be referred to the same axis of reference. The subscripts in each case indicate the direction of emf rise.

Vector current (IBA) flowing from B toward a junction A from which the vector currents IAC, IAD and IAF amperes flow away.

$$\mathbf{j}_{\mathbf{B}\mathbf{A}} = \mathbf{j}_{\mathbf{A}\mathbf{C}} + \mathbf{j}_{\mathbf{A}\mathbf{D}} + \mathbf{j}_{\mathbf{A}\mathbf{F}} \text{ amperes.}$$

Electromotive force equivalent (E) of a vector emf, $\mathbf{E} = (\mathbf{a} + \mathbf{j}\mathbf{b})$ volts.

$$\mathbf{E} = \sqrt{\mathbf{a}^2 + \mathbf{b}^2} \text{ volts.}$$

Note. In polar form $\mathbf{E} = \sqrt{a^2 + b^2} / \frac{b^2}{a}$. The current equivalent (I) of a vector current $\mathbf{I} = (\mathbf{c} + \mathbf{j}\mathbf{d})$ amperes is $\sqrt{\mathbf{c}^2 + \mathbf{d}^2}$ amperes, and in polar

of a vector current $\mathbf{I} = (\mathbf{c} + \mathbf{j}\mathbf{d})$ amperes is $\sqrt{\mathbf{c}^2 + \mathbf{d}^2}$ amperes, and in polar form $\mathbf{I} = \sqrt{\mathbf{c}^2 + \mathbf{d}^2} / \tan^{-1} \frac{\mathbf{d}}{\mathbf{c}}$.

Symbolic expression (Z) for the impedance of a circuit of R ohms resistance and X ohms reactance.

$$\mathbf{Z} = (\mathbf{R} + \mathbf{j}\mathbf{X}) \text{ ohms.}$$

Note. The resistance component has no prefix and is always +; the reactance component has the prefix **j**, a + sign indicating net inductive reactance and a - sign net capacitive reactance. In polar form, $\mathbf{Z} = \sqrt{\mathbf{R}^2 + \mathbf{X}^2}$

$$\int \tan^{-1} \frac{X}{R}$$

Symbolic impedance (Z_{AD}) between the ends A and D of a part-circuit containing several series parts of symbolic impedance Z_{AB}, Z_{BC} and Z_{CD} ohms respectively.

904
$$Z_{AD} = Z_{AB} + Z_{BC} + Z_{CD}$$
 ohms
= $(R_{AB} + R_{BC} + R_{CD}) + j(X_{AB} + X_{BC} + X_{CD})$ ohms.

Vector current (I) flowing in the direction of an emf rise, $\mathbf{E} = (\mathbf{a} + \mathbf{j}\mathbf{b})$ volts acting in a circuit of symbolic impedance $\mathbf{Z} = (\mathbf{r} + \mathbf{j}\mathbf{x})$ ohms.

905
$$I = \left(\frac{a+jb}{r+jx}\right) \text{ amperes.}$$

Note. To rationalize 905 multiply both numerator and denominator by the denominator with the sign of its j term reversed. We then have

$$I = \frac{(a+jb) \ (r-jx)}{(r+jx) \ (r-jx)} = \frac{ar-j^2bx+jbr-jax}{r^2-j^2x^2} .$$

In this operation $\mathbf{j} = \sqrt{-1}$ or $\mathbf{j}^2 = -1$. Hence

$$\mathbf{I} = \frac{(ar+bx)+\mathbf{j}(br-ax)}{r^2+x^2} = \left(\frac{ar+bx}{r^2+x^2}\right)+\mathbf{j}\left(\frac{br-ax}{r^2+x^2}\right).$$

Alternately, in polar form

$$I = \frac{\sqrt{a^2 + b^2} / \tan^{-1} \frac{b}{a}}{\sqrt{r^2 + x^2} / \tan^{-1} \frac{x}{r}} = \frac{\sqrt{a^2 + b^2}}{\sqrt{r^2 + x^2}} / \tan^{-1} \frac{b}{a} - \tan^{-1} \frac{x}{r}.$$

Vector potential rise (VAB) between the ends A and B of a part-circuit of symbolic impedance ZAB ohms conducting a current of vector value IAB amperes and containing an emf rise of vector value EAB volts.

906
$$\begin{array}{c} V_{AB} = +E_{AB} - I_{AB}Z_{AB} \text{ volts.} \\ \text{Note.} \quad \text{If } E_{AB} = a + jb, \ I_{AB} = c + jd \text{ and } Z_{AB} = r + jx, \\ V_{AB} = a + jb - (c + jd) \ (r + jx) \\ = a + jb - cr - j^2dx - jcx - jdr \\ \text{and since } j^2 = -r, \\ V_{AB} = (a - cr + dx) + j \ (b - cx - dr). \end{array}$$

Vector potential rise (VAD) between the ends A and D of a part-circuit containing several series parts across which the respective vector potential rises are VAB, VBC and VCD volts.

$$y_{AD} = y_{AB} + y_{BC} + y_{CD} \text{ volts.}$$

Power (P) delivered to or from a part-circuit conducting a vector current $\mathbf{I} = (\mathbf{c} + \mathbf{jd})$ amperes and across which the vector potential rise in the direction of the current is $\mathbf{V} = (\mathbf{a} + \mathbf{jb})$ volts.

908
$$\mathbf{P} = (\mathbf{ac} + \mathbf{bd}) \text{ watts.}$$

Note. The signs of a, b, c and d are preserved in 908. Positive power indicates power delivered from, and negative power indicates power delivered to the part-circuit. The power does not equal (a + jb) (c + jd).

Reactive power (Q) under the conditions stated in 908.

909
$$\mathbf{Q} = (\mathbf{ad} - \mathbf{bc}) \text{ vars.}$$

Note. The signs of a, b, c and d should be preserved in 909. Leading reactive power is positive; lagging reactive power is negative.

Conductance (G) and susceptance (B) of a branch of R ohms resistance, X ohms series reactance and Z ohms impedance.

910
$$G = \frac{R}{R^2 + X^2} = \frac{R}{Z^2} \text{ mhos.}$$

$$B = \frac{X}{R^2 + X^2} = \frac{X}{Z^2} \text{ mhos.}$$

Admittance (Y) of a branch of Z ohms impedance, G mhos conductance and B mhos susceptance.

911
$$Y = \frac{I}{Z} = \sqrt{G^2 + B^2}$$
 mhos.

Total conductance (G_0) of several parallel branches of G_1 , G_2 and G_3 mhos conductance respectively.

912
$$G_0 = G_1 + G_2 + G_3$$
 mhos.

Total susceptance (B_0) of several parallel branches of B_1 , B_2 and B_3 mhos susceptance respectively.

913
$$B_0 = B_1 + B_2 + B_3$$
 mhos.

Note. The addition is algebraic, inductive susceptance being positive and capacitive susceptance negative.

Total admittance (Y_0) of several parallel branches of total conductance G_0 mhos and total susceptance B_0 mhos. See 911.

Note. The total admittance of a parallel circuit does not equal the sum of the admittances of the respective branches unless the ratio of susceptance to conductance in each branch is the same and the net susceptances are of the same sign.

Phase-angle (θ) of a circuit of G mhos conductance and B mhos susceptance.

914
$$\theta = \tan^{-1} \frac{B}{C}.$$

Power factor (p.f.) of a part-circuit of G mhos conductance and Y mhos admittance, containing no generated emf.

915
$$p.f. = \frac{G}{Y}.$$

Resistance (R) and reactance (X) of a circuit of G mhos conductance, B mhos susceptance and Y mhos admittance.

916
$$R = \frac{G}{G^2 + B^2} = \frac{G}{Y^2} \text{ ohms.}$$

$$X = \frac{B}{G^2 + B^2} = \frac{B}{Y^2} \text{ ohms.}$$

Impedance (Z) of a circuit of Y mhos admittance.

917
$$Z = \frac{I}{Y} \text{ ohms.}$$

Symbolic expression (Y) for the admittance of a circuit of G mhos conductance and B mhos susceptance.

918
$$\dot{Y}=(G-jB) \ mhos.$$
 Note. In polar form,
$$\dot{Y}=\sqrt{G^2+B^2}\sqrt{\tan^{-1}\frac{B}{G}}.$$

Symbolic admittance $(\dot{\mathbf{Y}}_0)$ of a parallel circuit containing several branches of symbolic admittance $\dot{\mathbf{Y}}_1$, $\dot{\mathbf{Y}}_2$ and $\dot{\mathbf{Y}}_3$ mhos respectively.

919
$$Y_0 = Y_1 + Y_2 + Y_3$$
 mhos.

Vector current (I) flowing in the direction of an emf rise E acting in a circuit of Y mhos symbolic admittance.

920
$$I = EY$$
 amperes.

Nomenclature of 3-phase circuits. Line emf or voltage, E_l volts; phase emf or voltage, E_p volts; line current, I_l amperes; phase current, I_p amperes; phase angle between phase voltage and phase current, θ_p . In 925 and 927 E_a , E_b and E_c are any three voltage vectors which may exist in a three-phase system, such as voltages to neutral or to ground, line-to-line voltages, induced voltages, etc. Likewise I_a , I_b and I_c in 926 and 928 may be line currents, phase currents, the currents in a Δ -connected winding, etc. The subscripts 1, 2 and 0 in 925 to 928 denote, respectively, positive-, negative-, and zero-sequence components. Positive phase rotation, ABC in counter-clockwise direction.

Conditions for balanced 3-phase circuit: all phase currents, phase emf's, and phase voltages, respectively, equal and differing in phase by 120 degrees. Conditions for unbalanced 3-phase circuit: phase currents, phase emf's, or phase voltages, respectively, unequal or not differing in phase by 120 degrees.

Balanced Y-connected branches (Fig. 921).

921
$$E_1 = \sqrt{3} E_p$$
.

 $I_1 = I_p$.

 $E_{OA} + E_{OB} + E_{OC} = 0$.

 $E_{AB} + E_{BC} + E_{CA} = 0$.

 $E_{AB} = E_{OB} - E_{OA} = 0$
 $V_3 E_{OB} / 30^\circ = \sqrt{3} E_{OC} / 90^\circ$.

 $V_3 E_{OB} / 30^\circ = 0$

Fig. 921.

Balanced Δ -connected branches (Fig. 922).

922
$$E_1 = E_p$$
.
 $I_1 = \sqrt{3} I_p$.
 $E_{AB} + E_{BC} + E_{CA} = o$.
 $I_{AB} + I_{BC} + I_{CA} = o$.
 $I_{AA'} = I_{CA} - I_{AB} = o$.
 $I_{AA'} = I_{CA} / 30^\circ = \sqrt{3} I_{BC} / 90^\circ$.
 $I_{AA'} + I_{BB'} + I_{CC'} = o$.

Unbalanced Y-connected branches (Fig. 921).

923
$$\begin{array}{c} E_{AB} + E_{BC} + E_{CA} = o. \\ E_{AB} = E_{OB} - E_{OA} \\ I_{OA} + I_{OB} + I_{OC} = o. \end{array}$$

Note. If there is a current flowing out of the point o in a neutral connection, it must be added vectorially to the left-hand side of the last equation.

Unbalanced Δ -connected branches (Fig. 922).

Symmetrical components of voltage in an unbalanced 3-phase system.

925
$$\mathbf{E}_{a1} = \frac{1}{3} \left(\mathbf{E}_{a} + \mathbf{E}_{b} / \mathbf{120}^{\circ} + \mathbf{E}_{c} / \mathbf{120}^{\circ} \right) \\
\mathbf{E}_{a2} = \frac{1}{3} \left(\mathbf{E}_{a} + \mathbf{E}_{b} / \mathbf{120}^{\circ} + \mathbf{E}_{c} / \mathbf{120}^{\circ} \right) \\
\mathbf{E}_{0} = \frac{1}{3} \left(\mathbf{E}_{a} + \mathbf{E}_{b} + \mathbf{E}_{c} \right)$$

Symmetrical components of current in an unbalanced 3-phase system.

Three-phase voltages in terms of the symmetrical components of voltage.

927
$$E_{a} = E_{a1} + E_{a2} + E_{0}$$

$$E_{b} = E_{a1} / 120^{\circ} + E_{a2} / 120^{\circ} + E_{0}$$

$$E_{c} = E_{a1} / 120^{\circ} + E_{a2} / 120^{\circ} + E_{0}$$

Three-phase currents in terms of the symmetrical components of current.

Y-connected impedances which are equivalent to a given set of Δ -connected impedances so far as conditions at the terminals are concerned. See Fig. 929.

FIG. 929.

929
$$Z_{A} = \frac{Z_{CA}Z_{AB}}{Z_{AB} + Z_{BC} + Z_{CA}}$$

$$Z_{B} = \frac{Z_{AB}Z_{BC}}{Z_{AB} + Z_{BC} + Z_{CA}}$$

$$Z_{C} = \frac{Z_{BC}Z_{CA}}{Z_{AB} + Z_{BC} + Z_{CA}}$$

Note. If the impedances are balanced, the Y-connected impedances are $\frac{1}{2}$ of the Δ -connected impedances.

Δ-connected impedances which are equivalent to a given set of Y-connected impedances so far as conditions at the terminals are concerned. See Fig. 929.

930
$$Z_{AB} = \frac{Z_{A}Z_{B} + Z_{B}Z_{C} + Z_{C}Z_{A}}{Z_{C}}$$

$$Z_{BC} = \frac{Z_{A}Z_{B} + Z_{B}Z_{C} + Z_{C}Z_{A}}{Z_{A}}$$

$$Z_{CA} = \frac{Z_{A}Z_{B} + Z_{B}Z_{C} + Z_{C}Z_{A}}{Z_{B}}$$

Note. If the impedances are balanced, the Δ -connected impedances are 3 times the Y-connected impedances.

Power (P) delivered to or from a balanced 3-phase line.

931
$$P = \sqrt{3} E_i I_i \cos \theta_p \text{ watts.}$$

Power factor (p.f.) of a balanced 3-phase load.

932
$$p.f. = \cos \theta_{p}.$$

Power (P) delivered to or from an unbalanced 3-phase line.

933
$$P = E_{p_1}I_{p_1}\cos\theta_{p_1} + E_{p_2}I_{p_2}\cos\theta_{p_2} + E_{p_3}I_{p_3}\cos\theta_{p_4} \text{ watts.}$$

Note. The subscripts 1, 2 and 3 here denote the three phases.

Power factor (p.f.) of an unbalanced 3-phase load.

934 p.f. =
$$\frac{P}{E_{p_1}I_{p_1} + E_{p_2}I_{p_2} + E_{p_3}I_{p}}$$

Note. The subscripts 1, 2 and 3 here denote the three phases.

Power (P) measured by two wattmeters connected in a 3-phase line as shown in Fig. 935.

Fig. 935.

$$\mathbf{P} = \mathbf{P}_{\mathbf{A}} \pm \mathbf{P}_{\mathbf{B}} \text{ watts.}$$

Note. To determine use of + or - sign, break connection of potential coil of wattmeter A at line C and connect to line B. A wattmeter deflection on scale indicates the use of the + sign and a deflection off scale indicates the use of the - sign.

Power (P_A) and (P_B) respectively measured by two wattmeters connected in a 3-phase balanced line as shown in Fig. 935.

936
$$P_A = E_l I_l \cos (30^\circ - \theta_p) \text{ watts.}$$

$$P_B = E_l I_l \cos (30^\circ + \theta_p) \text{ watts.}$$

Phase angle (θ) of a balanced 3-phase load when two watt-meters connected as shown in Fig. 935 measure P_A and P_B watts, respectively.

$$\theta = \tan^{-1} \sqrt{3} \frac{P_A - P_B}{P_A + P_B}.$$

Note. The additions and subtractions are algebraic.

NON-HARMONIC ALTERNATING CURRENTS

Effective or root-mean-square value (E) of a periodically time-varying emf or voltage e = f(t) volts having a period of **T** seconds.

938
$$\mathbf{E} = \sqrt{\frac{\mathbf{I}}{\mathbf{T}} \int_0^{\mathbf{T}} \mathbf{e}^2 \, d\mathbf{t}} \text{ volts.}$$

Effective or root-mean-square value (I) of a periodically time-varying current i = f(t) amperes having a period of T seconds.

939
$$I = \sqrt{\frac{r}{T} \int_0^T i^2 dt} \text{ amperes.}$$

Electromotive force (e) of a non-harmonic emf or voltage at any harmonic time t seconds.

940
$$\mathbf{e} = \mathbf{E}_{\mathbf{m}_1} \sin (\omega t + \theta_1) + \mathbf{E}_{\mathbf{m}_2} \sin (3 \omega t + \theta_3) + \mathbf{E}_{\mathbf{m}_3} \sin (5 \omega t + \theta_5) + \dots \text{ volts.}$$

Note. E_{m_1} , E_{m_3} , E_{m_5} , etc., represent the maximum values of the first, third, fifth, etc., harmonics, and θ_1 , θ_2 , θ_3 , etc., their respective phase angles with a common axis of reference. The angular velocity ω is that of the fundamental or first harmonic. Alternators do not normally generate even harmonics of voltage. Some non-sinusoidal voltages, such as the outputs of rectifiers, however, may contain odd or even harmonics and average or d-c components. In such cases the terms $E_0 + E_{m_2} \sin{(2\omega t + \theta_2)} + E_{m_4} \sin{(4\omega t + \theta_4)} + \dots$ should be added to the right-hand member of 940.

Current (i) at any harmonic time t seconds flowing in a circuit of R ohms resistance, L henrys self-inductance and C farads series capacitance upon which a non-harmonic emf of the form stated in 940 is impressed.

941
$$i = I_{m_1} \sin (\omega t + \theta_1') + I_{m_3} \sin (3 \omega t + \theta_3') + I_{m_5} \sin (5 \omega t + \theta_5') + , \text{ etc., amperes.}$$

Note.

$$\begin{split} I_{m_1} &= \frac{E_{m_1}}{\sqrt{R^2 + \left(L\omega - \frac{I}{C\omega}\right)^2}}, \qquad \theta_1' = \theta_1 - \tan^{-1}\!\left(\frac{L\omega - \frac{I}{C\omega}}{R}\right), \\ I_{m_3} &= \frac{E_{m_3}}{\sqrt{R^2 + \left(3L\omega - \frac{I}{3C\omega}\right)^2}}, \qquad \theta_3' = \theta_3 - \tan^{-1}\!\left(\frac{3L\omega - \frac{I}{3C\omega}}{R}\right), \end{split}$$

$$I_{m_\delta} = \frac{E_{m_\delta}}{\sqrt{R^2 + \left(5\,L\omega - \frac{I}{5\,C\omega}\right)^2}}, \quad \theta_{\delta'} = \theta_\delta - \tan^{-1}\!\left(\frac{5\,L\omega - \frac{I}{5\,C\omega}}{R}\right).$$

Effective emf (E) of a non-harmonic emf of the form stated in 940.

$$E = \sqrt{\frac{(E_{m_1})^2 + (E_{m_2})^2 + (E_{m_6})^2}{2}} \ {\rm volts}.$$

Note. The effective value of a non-harmonic potential or current is obtained in the same manner.

Power (P) delivered to a part-circuit conducting a non-harmonic current of the form stated in 941 and upon which is impressed a non-harmonic emf of the form stated in 940.

$$\begin{split} 943 \qquad P &= \frac{E_{m_1}I_{m_1}}{2}cos\left(\theta_1 - \,\theta_1{}'\right) \, + \frac{E_{m_2}I_{m_3}}{2}cos\left(\theta_3 - \,\theta_3{}'\right) \\ &+ \frac{E_{m_2}I_{m_5}}{2}cos\left(\theta_5 - \,\theta_5{}'\right) \, +, \, \text{etc., watts.} \end{split}$$

Power factor (p.f.) of a part-circuit conducting a non-harmonic current of effective value I amperes and absorbing energy at a rate of P watts, the effective value of the non-harmonic potential between its ends being V volts.

944 p.f.
$$=\frac{P}{VI}$$

Harmonic emf and current equivalent to the non-harmonic forms stated in 940 and 941.

945
$$e = \sqrt{2} E \sin \omega t \text{ volts};$$

 $i = \sqrt{2} I \sin (t \pm \cos^{-1} p.f.) \text{ amperes.}$

Note. p.f. is the power factor of the circuit upon which the non-harmonic emf is impressed.

Resistance (R) of a part-circuit containing no source of generated emf, conducting an effective current of I amperes and absorbing energy at a rate of P watts.

946
$$R = \frac{P}{I^2} \text{ ohms.}$$

Impedance (Z) of a part-circuit containing no source of generated emf, conducting an effective current of I amperes and across which the potential is V volts.

947
$$Z = \frac{V}{I} \text{ ohms.}$$

Reactance (X) of a part-circuit of R ohms resistance and Z ohms impedance.

$$\mathbf{Y} = \sqrt{\mathbf{Z}^2 - \mathbf{R}^2} \text{ ohms.}$$

Note. The reactance of a part-circuit to a non-harmonic current does not equal $\left(L\omega-\frac{\tau}{C\omega}\right)$ ohms.

DIRECT CURRENT MACHINERY

Dynamos

Note. Unless indicated otherwise each formula applies to a generator or a motor.

Nomenclature and units of measurement. Emf generated in armature, E volts; terminal potential or voltage, V volts; armature current, I amperes; line current, I_l amperes; shunt field current, I_f amperes; series field current, I_s amperes; armature resistance between brushes, R ohms; shunt field resistance including rheostat, R_f ohms; series field resistance including shunt, R_s ohms; number of poles, p; shunt field turns per pole, N_f ; series field turns per pole, N_s ; number of armature paths between terminals, m; number of armature conductors, Z; magnetic flux per pole, Φ maxwells; armature speed, n revolutions per minute; armature torque, T pound-feet.

Electromotive force (E) generated in the armature of a dynamo.

949
$$\mathbf{E} = \frac{\mathbf{p}\Phi \mathbf{Z}\mathbf{n}}{\mathbf{6}\ \mathbf{m} \times \mathbf{ro}^9} \text{ volts.}$$

Shunt field current (I_{fd}) equivalent to the demagnetizing magnetomotive force of the armature of a dynamo per pole when the armature current is I amperes and the brushes are shifted

through an angle of θ space degrees from the neutral plane to improve commutation.

950
$$I_{fd} = \frac{ZI\theta}{360 N_f m} \text{ amperes.}$$

Shunt field current (I_{fs}) equivalent to the magnetomotive force of the series turns of a dynamo per pole.

951
$$I_{fs} = \frac{N_s}{N_f} I_s \text{ amperes.}$$

Net field current (I_{fn}) of a dynamo at any load.

952
$$I_{fn} = I_f - I_{fd} \pm I_{fs} \text{ amperes.}$$

Note. The sign before I_{fs} is + for a cumulative and - for a differential compound dynamo.

Terminal voltage (V) of a shunt dynamo when the armature current is I amperes and the generated emf is E volts.

953
$$V = E \pm IR \text{ volts.}$$

Note. The sign before IR is + for a motor and - for a generator. In a series or long-shunt compound dynamo, $V=E\pm I$ $(R+R_s)$ volts and in a short-shunt compound dynamo, $V=E\pm IR\pm I_sR_s$ volts.

Armature speed (n) of a dynamo when the generated emf is E volts.

954
$$n = \frac{6 \text{ Em} \times 10^9}{p\Phi Z} \text{ revs. per minute.}$$

Armature torque (T) of a dynamo when the armature current is I amperes.

955
$$T = \frac{0.1175 Z\Phi Ip}{m \times 10^8} \text{ pound-feet.}$$

Rotational losses (P_r) of a dynamo which, operated as a shunt motor at no load with a voltage between brushes of V volts, takes an armature current of I amperes.

956
$$P_r = VI - I^2R \text{ watts.}$$

Note. To determine the rotational losses corresponding to a definite load the dynamo, operated as a shunt motor at no load, must be run at the same speed and with the same generated emf as when running at the definite load. Copper losses (P_k) of a dynamo at any load.

Shunt field, $P_f = I_f^2 R_f = VI_f$ watts. Series field, $P_s = I_s^2 R_s$ watts.

Armature, $P_a = I^2R$ watts.

Power input (P_i) to a generator at any load.

958
$$P_{i} = EI + P_{r} \text{ watts.}$$

$$= P_{o} + P_{k} + P_{r} \text{ watts.}$$

$$= 0.1420 \text{ nT watts.}$$

$$= 1.903 \text{ nT} \times 10^{-4} \text{ horse-power.}$$

Power output (Po) of a generator at any load.

$$\mathbf{P_o} = \mathbf{VI_l} \text{ watts.}$$

Power input (P_i) to a motor at any load.

$$\mathbf{960} \qquad \qquad \mathbf{P_i} = \mathbf{VI_1} \text{ watts.}$$

Power output (Po) of a motor at any load.

961
$$P_o = EI - P_r \text{ watts.}$$

$$= P_i - P_k - P_r \text{ watts.}$$

$$= 0.1420 \text{ nT watts.}$$

$$= 1.903 \text{ nT} \times 10^{-4} \text{ horse-power.}$$

Efficiency (η) of a dynamo at any load.

962
$$\eta = \frac{P_o}{P_i} = \frac{P_o}{P_o + P_k + P_r} = \frac{P_i - P_k - P_r}{P_i}.$$

ALTERNATING CURRENT MACHINERY

Note. Sinusoidal voltages and currents are assumed throughout and their magnitudes are expressed by effective values.

Synchronous Machines

Note. Three-phase machines with Y-connected windings are assumed throughout. All machine impedances, voltages, and currents are phase values for a Y-connection. Unless indicated otherwise each formula applies to a synchronous generator, motor, or condenser.

Frequency (f) of the voltage generated in a synchronous machine having p poles, the speed of the armature or field being n revolutions per minute.

963
$$f = \frac{pn}{120}$$
 cycles per second.

Synchronous internal voltage or excitation voltage (E_i) generated in the armature of a synchronous machine.

964
$$E_i = 4.44 \text{ fN}\Phi \cos \frac{\beta}{2} \left(\frac{\sin \frac{m\alpha}{2}}{m \sin \frac{\alpha}{2}} \right) \times \text{ 10}^{-8} \text{ volts.}$$

Note. **N** is the number of armature series turns per phase or one-half the number of series conductors on the armature divided by the number of phases, Φ is the main field flux per pole in maxwells, β is the pitch deficiency or the difference in electrical degrees between the pole pitch (180°) and the coil pitch, m is the number of slots per pole per phase and α is the angle between adjacent slot centers in electrical degrees. Electrical degrees equal space degrees multiplied by $\frac{p}{2}$. This equation assumes that the arrangement of the winding before each pole is the same and hence that there are an integral number of slots per pole per phase. If ϕ_r , the resultant air-gap flux per pole corresponding to the mmf R in 967, be used instead of ϕ , the voltage given by 964 is the air-gap voltage E_a .

Field magnetomotive force (F) in a cylindrical-rotor machine.

965
$$F = \frac{4}{\pi} N_f I_f \left(\frac{\sin \frac{n_f \alpha_f}{2}}{n_f \sin \frac{\alpha_f}{2}} \right) \text{ampere-turns per pole.}$$

Note. **F** is the maximum value of the fundamental field mmf. Nf is the number of field turns per pole carrying the current If amperes per turn. nf is the number of rotor slots per pole, and af is the electrical angle between adjacent slots in a belt. 965 assumes that the field winding is a regular, distributed, full-pitch winding.

Armature magnetomotive force (A) in a cylindrical-rotor machine.

966
$$A = 0.90 \text{ KN}_a I$$
 ampere-turns per pole.

Note. K equals
$$\cos \frac{\beta}{2} \left(\frac{\sin \frac{m\alpha}{2}}{m \sin \frac{\alpha}{2}} \right)$$
 as explained in 964. N_a is the number of

armature series turns per pole. I is the armature current. A may be obtained in equivalent field amperes by dividing by N_f .

Resultant magnetomotive force (R) in a machine with a field magnetomotive force F ampere-turns per pole and an armature magnetomotive force A ampere-turns per pole.

967 $\mathbf{R} = \mathbf{F} + \mathbf{A}$ ampere-turns per pole.

Note. The addition must be made vectorially. See 970, 971, and Fig. 970.

Characteristic curves (Fig. 968) of a synchronous machine. Data are plotted as follows: OCC (open-circuit characteristic), terminal voltage at no-load versus field current; the air-gap line is drawn tangent to the lower part of OCC; SCC (short-circuit characteristic), armature current with the armature terminals

short-circuited versus field current; **ZPF** (zero-power-factor characteristic), terminal voltage versus field current with the armature supplying a constant current **I**₀ to a zero-power-factor lagging load at its terminals, **I**₀ usually being taken equal to rated armature current.

Potier triangle cde (Fig. 968). Procedure in obtaining Potier triangle: Choose a point d well up on the curved part of ZPF; draw db parallel to and equal to ao; draw be parallel to the airgap line; draw ec perpendicular to db; ada is then the Potier

to db; cde is then the Potier triangle.

Potier reactance (X_p) from Potier triangle (see Fig. 968).

 $\mathbf{X}_{\mathbf{p}} = \frac{\mathbf{ec} \text{ in volts}}{\mathbf{I}_{\mathbf{0}} \text{ in amperes}} \text{ ohms.}$

Note. I_0 is the constant armature current for which ZPF is drawn. X_p is very nearly equal to and is frequently used for the armature leakage reactance X_a .

Armature magnetomotive force (A) corresponding to the armature current $I = I_0$ from Potier triangle (see Fig. 968).

A = cd equivalent field amperes.

NOTE. To obtain A in ampere-turns per pole as in 966, substitute Cd for It in 965. A for any other value of I may be obtained by direct proportion.

General-method vector diagram for a cylindrical-rotor machine with armature current \mathbf{I} , terminal voltage \mathbf{V} , and phase angle $\boldsymbol{\theta}$ between \mathbf{I} and \mathbf{V} , Fig. 970. Figure 970 is drawn for generator operation with a lagging power-factor load. All voltage vectors are voltage rises. For motor operation, \mathbf{I} and the voltage drop vector $-\mathbf{V}$ are $\boldsymbol{\theta}$ degrees out of phase.

Air-gap voltage Ea is given by

970
$$E_a = V + I(r + jX_a),$$

in which the voltages E_a and V are rises and r is the armature resistance.

A is obtained from 969 or 966.

R is obtained in equivalent field amperes by entering OCC (Fig. 968) with **E**_a volts and reading the corresponding field current.

Field current (I_f) required in a cylindrical-rotor machine with armature current I, termi-

nal voltage V, and phase angle θ between I and V.

971
$$I_f = \text{magnitude of } (R - A) \text{ amperes.}$$

Note. R and A must be in equivalent field amperes in 971; if they are in ampere-turns per pole, use equation 965 to convert ampere-turns per pole into equivalent field amperes. See Fig. 970. R and A obtained as in 970.

Excitation voltage (Ei) under conditions in 971.

972 Enter OCC (Fig. 968) with I_f from 971 and read the corresponding voltage.

For salient-pole machines the methods of 965 to 972 will give approximately correct results. In 965, F should be taken as N₁I₁, and in 966 the factor 0.75 should be used instead of 0.9. For more accurate results the Blondel two-reaction method should be used.

Total power output (P_o) of a cylindrical-rotor synchronous machine with excitation voltage E_i volts, terminal voltage V

volts, angle δ electrical degrees between the vectors \mathbf{E}_i and \mathbf{V} , and synchronous reactance \mathbf{X}_s ohms.

973
$$P_o = \frac{3 V E_i}{X_s} \sin \delta \text{ watts.}$$

Note. Losses are neglected. X_s should be properly adjusted for saturation. The maximum power output is $\frac{3}{X_s} \frac{VE_i}{X_s}$ watts; it may not be attainable without loss of synchronism. $\frac{3}{X_s} \frac{VE_i}{X_s}$ watts gives the breakdown or pull-out power for a cylindrical-rotor motor connected directly to a power system of capacity large compared to that of the motor.

Total power output (P_o) of a salient-pole synchronous machine with excitation voltage E_d volts, terminal voltage V volts, angle δ electrical degrees between the vectors E_d and V, direct-axis synchronous reactance X_d ohms, and quadrature-axis synchronous reactance X_q ohms.

974
$$P_o = 3\left(\frac{VE_d}{X_d}\sin\delta + \frac{V^2(X_d - X_q)}{2X_dX_q}\sin2\delta\right) \text{watts}.$$

Note. Losses are neglected. The reactances should be properly adjusted for saturation. The maximum value of Po, indicated by 974 as 8 varies, may not be attainable without loss of synchronism. This maximum value gives the breakdown or pull-out power for a salient-pole motor connected directly to a power system of capacity large compared to that of the motor.

Efficiency (η) of a synchronous machine when the output is P_o watts.

975
$$\eta = \frac{P_o}{P_o + P_a + P_c + P_s + P_{fw} + P_f}$$

Note. All powers are total 3-phase powers. P_a , the armature copper loss, equals three times the armature current squared times the ohmic resistance per phase. P_c is the open-circuit core loss (hysteresis and eddy-current losses). To determine P_c , enter a curve of open-circuit core loss versus open-circuit voltage with a voltage equal to the vector sum of the terminal voltage plus the armature resistance drop, and read the corresponding value of P_c . P_s is the stray-load loss (skin effect and eddy-current losses in the armature conductors plus local core losses due to armature leakage flux) and may be found from a curve of stray-load loss versus armature current. P_{fw} is the friction and windage loss, and P_f is the field copper loss.

Synchronous Converters

Effective alternating voltage (V_{ac}) between slip-rings of a synchronous converter when the direct voltage between brushes is V_{dc} volts.

$$V_{ac} = 0.707 \ V_{dc} \ sin \frac{\pi}{n} \ volts. \label{eq:Vac}$$

Note. n, the number of slip-rings, equals two for a single-phase machine and for a polyphase machine equals the number of phases.

Alternating line current (I_{ac}) of a synchronous converter when the direct armature current is I_{dc} amperes.

977
$$I_{ac} = \frac{2.83~I_{dc}}{\eta n~(p.f.)} \, \text{amperes}. \label{eq:Iac}$$

Note. The efficiency (η) is approximately 0.95.

Armature copper loss (P_a) of a synchronous converter when the direct armature current is I_{dc} amperes.

$$978 \hspace{0.5cm} P_a = \left[\frac{8}{\left(\eta n \; (p.f.) \sin \frac{\pi}{n}\right)^2} - \frac{r.62}{\eta} + \; r \; \right] I_{dc^2} R_{dc} \; \text{watts}. \label{eq:parameters}$$

Note. R_{dc} is the resistance of the armature between the direct current brushes.

Field current (I_{fa}) equivalent to the armature magnetomotive force of a synchronous converter when the power output is P_o watts.

979
$$I_{fa} = \frac{1.5 \ K N_a P_o \ tan \ \theta}{p \eta n V_{ac} N_f} \ amperes.$$

Note. K and N_a as in 966. Nf as in 965. p is the number of poles and θ the power factor angle.

Net field current (I_{fn}) of a synchronous converter at any stated load.

980
$$I_{fn} = I_f + I_{fs} \pm I_{fa} \text{ amperes.}$$

Note. It is the actual shunt field current, Ita is determined by 979 and Its, the equivalent shunt field current for the series field equals $\frac{I_{dc}N_s}{N_f}$ where Idc is

the direct line current of a short-shunt compound machine, N_s and N_f are respectively the number of series field turns and shunt field turns per pole.

Conversion	a-c to d-c	d-c to a-c
Current phase	lag lead	lag lead
Sign before Ita	+ -	- +

Efficiency (η) of a synchronous converter when operating **a-c** to **d-c** and delivering **Po** watts.

981
$$\eta = \frac{P_o}{P_o + P_a + P_c + P_{fw} + P_f + P_s}.$$

Note. P_a is determined by 978, P_c as in 975 where the curve is entered with the terminal voltage. P_{fw} is found by test, P_f and P_s by 957. This is the efficiency of the converter alone and does not include the losses in any associated transformers.

Transformers

Electromotive force (E) induced in N turns linked by a flux, $\phi = \Phi_m \sin 2 \pi f t$ maxwells.

982
$$E = 4.44 \text{ Nf}\Phi_{m} \text{ to}^{-8} \text{ volts.}$$

Core loss (P_c) of a transformer at any load.

$$\mathbf{P_c} = \mathbf{P_h} + \mathbf{P_e} \text{ watts.}$$

Note. P_h is the hysteresis loss and P_e the eddy-current loss in the magnetic circuit of the transformer. See 802 and 803.

Ratio of transformation (T_1) from primary to secondary of a transformer wound with two coils of N_1 (primary) and N_2 (secondary) turns respectively.

$$\mathbf{T}_1 = \frac{\mathbf{N}_1}{\mathbf{N}_2}.$$

Note. T_1 equals the ratio $\left(\frac{E_1}{E_2}\right)$ of the emf's induced respectively in the primary and secondary coils and equals approximately the ratio $\left(\frac{V_1}{V_2}\right)$ of terminal voltages of the primary and secondary coils or the ratio $\left(\frac{I_2}{I_1}\right)$ of the secondary and primary currents. The ratio of transformation (T_2) from secondary to primary equals $\frac{\mathbf{I}}{T_1}$.

Magnetizing current (I_m) in a coil of N turns wound on a magnetic circuit of uniform maximum permeability (μ) , 1 centi-

meters in mean length, A square centimeters in mean section and conducting a flux, $\phi = \Phi_m \sin 2 \pi f t$ maxwells.

985
$$I_m = \frac{\text{10 } \Phi_m l}{4 \pi N \mu A \sqrt{2}} \text{ amperes (approx.)}$$

Core loss current (I_c) in a coil containing an induced emf of E volts and wound on a magnetic circuit in which the core loss is P_c watts.

986
$$I_c = \frac{P_c}{E} \text{ amperes.}$$

No load current (I_n) taken by a transformer which requires a magnetizing current of I_m amperes and a core loss current of I_c amperes.

987
$$I_n = \sqrt{I_{m^2} + I_{c^2}} \text{ amperes.}$$

Equivalent resistance (R_1) and equivalent reactance (X_1) between the primary terminals of a transformer which has a primary resistance of \mathbf{r}_1 ohms, a primary leakage reactance of \mathbf{x}_1 ohms, a secondary resistance of \mathbf{r}_2 ohms, a secondary leakage reactance of \mathbf{x}_2 ohms and primary to secondary ratio of transformation of \mathbf{T}_1 .

988
$$R_1 = r_1 + T_1^2 r_2$$
 ohms.
 $X_1 = x_1 + T_1^2 x_2$ ohms.

Note. The equivalent resistance and reactance respectively between the secondary terminals is given by $R_2=r_2+T_2{}^2r_1$ ohms and $X_2=x_2+T_2{}^2x_1$ ohms. The equivalent impedance in each case equals $\sqrt{R^2+X^2}$ ohms and $Z_1=T_1{}^2Z_2$ ohms.

Equivalent resistance (R_1) between the primary terminals of a transformer which, with short-circuited secondary, absorbs P_i watts with a primary current of I_1 amperes.

989
$$\mathbf{R}_1 = \frac{\mathbf{P}_i}{\mathbf{I}_1^2} \text{ohms.}$$

Equivalent impedance (Z_1) between the primary terminals of a transformer which, with secondary short-circuited and with

 V_1 volts between the primary terminals, takes a primary current of I_1 amperes.

$$\mathbf{2}_{1} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}} \text{ohms.}$$

Equivalent reactance (X_1) between the primary terminals of a transformer of equivalent resistance (R_1) ohms and equivalent impedance (Z_1) ohms between the primary terminals.

991
$$X_1 = \sqrt{Z_1^2 - R_1^2}$$
 ohms.

Primary voltage (V_1) of a transformer of ratio of transformation (T_1) , equivalent resistance and reactance respectively between secondary terminals (R_2) and (X_2) ohms, secondary terminal voltage (V_2) volts, secondary current (I_2) amperes and power factor of the load on the secondary $(\cos \theta_2)$.

992
$$V_1 = T_1 \sqrt{(V_2 \cos \theta_2 + I_2 R_2)^2 + (V_2 \sin \theta_2 \pm I_2 X_2)^2}$$
 volts.

Note. The sign before I_2X_2 is + for zero or lagging current phase and - for leading current phase.

Voltage regulation (v.r.) of a transformer at any load; V_1 , V_2 and T_1 as in 992.

993 v.r. =
$$\frac{V_1 - T_1 V_2}{T_1 V_2}$$
.

Efficiency (η) of a transformer at any load.

Induction Machines

Note. Three-phase Y-wound machines are assumed throughout and unless indicated otherwise each formula applies to a generator or a motor. All rotor resistances and reactances are referred to the stator. All impedances, voltages, and currents are phase values for a Y connection. All values of power P are total 3-phase powers.

Equivalent effective resistance (R₁) of an induction machine.

995
$$R_1 = \frac{P_i}{3 I_1^2} \text{ ohms.}$$

Note. P_i is the power input on blocked run and I_i is the stator blocked-run current.

Equivalent impedance (Z_1) of an induction machine.

$$\mathbf{996} \qquad \mathbf{Z}_{1} = \frac{\mathbf{V}_{1}}{\mathbf{I}_{1}} \text{ ohms.}$$

Note. V_1 is the stator terminal voltage during blocked run and I_1 is the stator blocked-run current.

Equivalent reactance (X1) of an induction machine.

997
$$X_1 = \sqrt{Z_1^2 - R_1^2}$$
 ohms.

Note. Z_1 and R_1 are determined as in 996 and 995.

Rotor resistance (r_2) of an induction machine referred to the stator.

998
$$r_2 = T_1^2 r_2' \text{ ohms.}$$

Note. \mathbf{r}_2 ' is the actual rotor resistance and \mathbf{T}_1 is the ratio of transformation from stator to rotor or the ratio of the emf's induced in the stator and rotor respectively during blocked-run.

Rotor leakage reactance (\mathbf{x}_2) of an induction machine referred to the stator.

999
$$\mathbf{x}_2 = \mathbf{T}_1^2 \mathbf{x}_2' \text{ ohms.}$$

Note. Read note to 998, substituting x_2 for r_2 and reactance for resistance.

Equivalent effective resistance (R_1) of an induction machine of \mathbf{r}_{1e} ohms effective stator resistance and \mathbf{r}_{2e} ohms effective rotor resistance referred to the stator.

1000
$$R_1 = r_{1e} + r_{2e}$$
 ohms.

Equivalent reactance (X_1) of an induction machine of x_1 ohms stator leakage reactance and x_2 ohms rotor leakage reactance referred to the stator.

1001
$$X_1 = x_1 + x_2$$
 ohms.

Synchronous speed (n_1) of an induction machine having **p** poles, the frequency of the impressed voltage being **f** cycles per second.

1002
$$n_1 = \frac{120 \text{ f}}{p}$$
 revolutions per minute.

Slip (s) of an induction machine of synchronous speed (n_1) revolutions per minute when the rotor speed is n_2 revolutions per minute.

$$s = r - \frac{n_2}{n_1}.$$

Equivalent circuit of an induction motor, Fig. 1004. r_{1e} and r_{2e} as in 1000. x_1 and x_2 as in 1001. Z_n , the exciting impedance, and its components r_n and x_n may be determined from a no-load run. The determination is similar to that for R_1 , Z_1 and X_1 in 995, 996 and 997 except that the no-load voltage and current and the no-load power input minus friction and windage losses must be used. $r_{2e}\left(\frac{1-s}{s}\right)$ is the resistance equivalent for the rotational power, which is the shaft power output plus friction and windage and a small core loss.

Induced stator emf (E_n) of an induction machine at no load.

1004
$$E_n = V_1 - I_n \sqrt{r_{1e^2} + x_1^2}$$
 volts.

Note. V_1 is the stator terminal voltage, I_n the no-load line current, r_{10} and x_1 as in 1000 and 1001.

Rotor current (I_2) referred to stator of an induction machine at slip (s).

1005
$$I_2 = \frac{E_n}{\sqrt{\left((r_{1e} + \frac{r_{?o}}{s}\right)^2 + (X_1)^2}} \text{ amperes.}$$

Note. For a wound-rotor induction motor with an effective external resistance R_e ohms per phase referred to the stator, substitute $(r_{2e}+R_e)$ for r_{20} . To find the starting rotor current of an induction motor make s equal one.

Stator current (I_1) of an induction machine at slip (s).

1006
$$I_1 = \sqrt{I_2^2 + I_n^2 + 2 I_2 I_n \sin \alpha}$$
 amperes.

Note. I_2 is determined by 1005, I_n is the no-load current and $\alpha = \sin^{-1}(p.f. \text{ at no load}) + \tan^{-1}\left(\frac{sx_2}{r_{20}}\right)$. For a wound-rotor motor, substitute $(r_{2e} + R_e)$ for r_{20} in the expression for α . The starting stator current is given by making s equal one, the starting rotor current being determined as indicated in 1005.

Power output (Po) of an induction machine at slip (s).

1007
$$P_o = 3 I_2^2 r_{2o} \left(\frac{r-s}{s}\right) - P_{fw} \text{ watts.}$$

Note. For a wound-rotor motor r_{20} should be increased as indicated in 1005. When the slip is negative P_0 is negative and gives the power input to an induction generator. P_{fw} is the friction and windage loss.

Power input (Pi) to an induction machine at slip (s).

1008
$$P_i = 3 \frac{I_2^2 r_{20}}{S} + 3 I_1^2 r_{1e} + P_n - 3 I_n^2 r_{1e}$$
 watts.

Note. P_n is the power in watts taken at no load. For a wound-rotor motor r_{20} should be increased as indicated in 1005. When the slip is negative P_i is negative and gives the power output of an induction generator.

Output torque (T) of an induction motor at slip (s).

$$T = 0.1761 \frac{PI_2^2 r_{20}}{fs} - T_{fw} \text{ pound-feet.}$$

Note. Read comment on r_{20} for a wound-rotor motor and s under starting conditions in roos. T_{fw} is the friction and windage torque. If P_{fw} is known in watts, T_{fw} equals $\frac{0.0587 \ p \ P_{fw}}{f \ (r-s)}$ pound-feet.

Slip (s) of an induction motor at any stated load.

1010
$$s = \frac{r_{2o} \left(\frac{3 E_n^2}{P_o} - 2 r_{1e} - 2 r_{2o} \right)}{\left(\frac{3 E_n^2}{P_o} - 2 r_{1e} - 2 r_{2o} \right)^2 - Z_1^2}$$
 approximately.

Note. Read comment on r20 for a wound-rotor motor in 1005.

Slip (s) of an induction generator at any stated load.

1011
$$s = \frac{r_{20} \frac{3 E_{n}^{2}}{P_{o}}}{\left(\frac{3 E_{n}^{2}}{P_{o}}\right) - Z_{1}^{2} + r_{1e}\left(\frac{3 E_{n}^{2}}{P_{o}}\right)}$$
 approximately.

Efficiency (η) of an induction machine.

$$\eta = \frac{P_o}{P_i}.$$

A-C POWER TRANSMISSION

Note. Three-phase power networks are assumed throughout. All apparatus is assumed to be Y-connected, and all impedances and admittances are for one phase or line on this basis. All currents are line currents (phase currents for a Y-connection). Unless otherwise stated, all voltages except in 1013 and 1014 are line-to-neutral voltages (phase voltages for a Y-connection). In 1013 and 1014 line-to-line voltages are used.

Per unit impedance (Z_{pu}) in terms of the impedance Z in ohms in one phase of a 3-phase system, expressed on a 3-phase base of **kva** kilovolt-amperes and a line-to-line base voltage of V_b volts.

$$Z_{pu} = \frac{Z \times kva}{V_{h^2}} \times 10^3 \text{ per unit.}$$

Note. Per cent impedance is 100 Z_{pu}. Per unit or per cent impedances of electrical machinery are customarily expressed with the rated kilovolt-amperes and voltage as base quantities. In computations on any one power network, however, the same kilovolt-ampere base and voltage bases consistent with the transformer ratios must be used throughout. For changing from one base quantity to another, per cent and per unit impedances are directly proportional to the kva base and inversely proportional to the square of the voltage base.

Per unit admittance (Y_{pu}) in terms of the admittance Y in mhos in one phase of a 3-phase system, expressed on a 3-phase base of **kva** kilovolt-amperes and a line-to-line voltage base of V_b volts.

$$Y_{pu} = \frac{YV_{b^2}}{kva} \times 10^{-3}.$$

NOTE. Per cent admittance is 100 Ypu. In computations on any one power network the same kilovolt-ampere base and voltage bases consistent with the

transformer ratios must be used. For changing from one base quantity to another, per cent and per unit admittances are inversely proportional to the kva base and directly proportional to the square of the voltage base.

Voltage (E_s) at the sending end of a transmission line of R ohms resistance per conductor and X ohms reactance per conductor conducting a current of I amperes, the voltage at the receiving end being E_r volts and the phase angle between the receiving-end voltage and the line current being θ_r .

1015
$$E_s = \sqrt{(E_r \cos \theta_r + IR)^2 + (E_r \sin \theta_r \pm IX)^2}$$
 volts.

Note. See vector diagram, Fig. 1015. When I lags or is in phase with E_r, the sign before IX is +, and when I leads E_r, the sign before IX is -. 1015 neglects capacitance. For transmission lines longer than 40 miles, the capacitance should be included. For cables longer than about 2 miles the capacitance should be included. See 1020, 1026 and 1027.

For application to single-phase lines, use 2 R and 2 X in place of R and X.

Phase-angle (θ_s) between the sending-end voltage and the line current under the conditions stated in 1015.

1016
$$\theta_{s} = \tan^{-1} \frac{E_{r} \sin \theta_{r} \pm IX}{E_{r} \cos \theta_{r} + IR}$$

Note. The power factor at the sending end is $\cos \theta_s$.

Power input (P_s) to the sending end of a transmission line with δ degrees angular displacement between sending- and receiving- end voltages, the line having an impedance Z ohms and an impedance angle $\theta = tan^{-1}\frac{X}{R}$.

1017
$$P_s = \frac{E_s^2}{Z} \cos \theta - \frac{E_s E_r}{Z} \cos (\delta + \theta) \text{ watts.}$$

Note. 8 is positive if E_8 leads E_7 . Capacitance is neglected. P_8 will be total 3-phase power if line-to-line voltages are used and power per phase if line-to-neutral voltages are used.

The maximum value is $\frac{E_{\theta}E_{r}}{Z} - \frac{E_{s}^{2}}{Z} \cos \theta$; this maximum value may not be attainable without instability in the system.

Power output (P_r) at the receiving end of a transmission line under the conditions in 1017.

1018
$$P_r = \frac{E_s E_r}{Z} \cos{(\delta - \theta)} - \frac{E_r^2}{Z} \cos{\theta} \text{ watts.}$$

Note. Read first paragraph of note to 1017, substituting P_r for P_s . The maximum value of P_r is $\frac{E_s E_r}{Z} - \frac{E_r^2}{Z} \cos \theta$; this maximum value may not be attainable without instability in the system.

Efficiency (η) of a transmission line under the conditions stated in 1015.

1019
$$\eta = \frac{E_r I \cos \theta_r}{E_r I \cos \theta_r + I^2 R} = \frac{E_r \cos \theta_r}{E_s \cos \theta_s} = \frac{P_r}{P_s}$$

Nominal π (Fig. 1020a) and nominal T (Fig. 1020b) equivalent circuits for a transmission line of length 1 miles having an impedance z ohms per mile composed of resistance r ohms per mile and reactance x ohms per mile, and an admittance y mhos per mile composed of a leakage conductance g mhos per mile and a capacitive susceptance of b mhos per mile.

1020
$$Z = zl \text{ ohms}$$

$$= (r + jx)l \text{ vector ohms}$$

$$Y = yl \text{ mhos}$$

$$= (g + jb) \text{ vector mhos.}$$

Note. The admittance Y is almost always purely capacitive, leakage usually being negligible. Nominal π and T circuits are usually used for transmission lines of lengths between about 40 and 100 miles. Below 40 miles the capacitance may be neglected; above 100 miles the equivalent π or T should be used (see 1026 and 1027). For cables the nominal π and T circuits are usually used for lengths between about 2 and 5 miles. Below 2 miles the capacitance may be neglected; above 5 miles the equivalent π or T should be used.

The long transmission line. Nomenclature: length of line, 1 miles. Resistance, inductive reactance, capacitance, and leak-

age conductance, respectively, \mathbf{r} ohms per mile, \mathbf{x} ohms per mile, \mathbf{c} farads per mile, and \mathbf{g} mhos per mile; all per conductor. Impedance, \mathbf{z} vector ohms per mile. Admittance, \mathbf{y} vector mhos per mile. In the following formulas, \mathbf{z} and \mathbf{y} are vectors equal, respectively, to $\mathbf{r} + \mathbf{j}\mathbf{x}$ and $\mathbf{g} + \mathbf{j}\boldsymbol{\omega}\mathbf{c}$. Sending-end voltage and current, respectively, $\mathbf{E}_{\mathbf{s}}$ vector volts and $\mathbf{I}_{\mathbf{s}}$ vector amperes. Receiving-end voltage and current, respectively, $\mathbf{E}_{\mathbf{r}}$ vector volts and $\mathbf{I}_{\mathbf{r}}$ vector amperes. In the following formulas, $\mathbf{E}_{\mathbf{s}}$, $\mathbf{I}_{\mathbf{s}}$, $\mathbf{E}_{\mathbf{r}}$ and $\mathbf{I}_{\mathbf{r}}$ are vector quantities with a common, arbitrary reference axis.

Propagation constant (a) of a transmission line.

1021
$$\alpha = \sqrt{zy} = \sqrt{(r + jx) (g + j\omega c)}$$
 hyps per mile.

Note. The real part of α is called the attenuation constant. The imaginary part is called the wave-length constant, phase constant, or velocity constant.

Surge impedance or characteristic impedance (\mathbf{Z}_0) of a transmission line.

$$\mathbf{Z}_0 = \sqrt{\frac{z}{y}} = \sqrt{\frac{r+jx}{g+j\omega c}} \text{ vector ohms.}$$

Hyperbolic angle (θ) of a transmission line.

1023
$$\theta = al \text{ hyps.}$$

Current (i) and voltage (e) at a point on the line distant **x** miles from the receiving end in terms of receiving-end voltage and current.

1024
$$i = I_r \cosh \alpha x + \frac{E_r}{Z_0} \sinh \alpha x$$
 vector amperes.
 $e = E_r \cosh \alpha x + I_r Z_0 \sinh \alpha x$ vector volts.

Note. To obtain Is and Es, substitute 0 for ax.

Current (i) and voltage (e) at a point on the line distant x miles from the receiving end in terms of sending-end voltage and current.

$$\begin{aligned} \textbf{1025} \quad i &= I_s \cosh \ (l-x)\alpha - \frac{E_s}{Z_0} \sinh \ (l-x)\alpha \ \mathrm{vector \ amperes.} \\ e &= E_s \cosh \ (l-x)\alpha - I_s Z_0 \sinh \ (l-x)\alpha \ \mathrm{vector \ volts.} \end{aligned}$$

Note. To obtain I_r and E_r , substitute θ for $(1 - x)\alpha$.

Equivalent π circuit for a long transmission line. See Fig. 1026.

FIG. 1026.

1026
$$Z' = zl \frac{\sinh \theta}{\theta} \text{ vector ohms.}$$

$$Y' = yl \frac{\tanh \frac{\theta}{2}}{\frac{\theta}{2}} \text{ vector mhos.}$$

Note. Equivalent π and T circuits will represent exactly the performance of smooth transmission lines at their terminals under steady-state conditions. For transmission lines of lengths below about 100 miles, the nominal π and T circuits (see 1020) may be used unless very precise results are desired.

Equivalent T circuit for a long transmission line. See Fig. 1027.

1027
$$Z'' = zl \frac{\tanh \frac{\theta}{2}}{\frac{\theta}{2}} \text{ vector ohms.}$$

$$Y'' = yl \frac{\sinh \theta}{\theta}$$

NOTE. See note to 1026.

General circuit constants (A, B, C and D) are often used to express the steady-state performance of a network consisting of any combination of constant impedances to which power is supplied at one point and received at another. See Fig. 1028 and note to 1028.

Sending-end voltage (E_s) and current (I_s) in terms of the receiving-end voltage E_r volts and current I_r amperes for the network of Fig. 1028.

110, 10.

1028

 $I_s = CE_r + DI_r$ vector amperes.

 $\mathbf{E_s} = \mathbf{AE_r} + \mathbf{BI_r}$ vector volts.

Note. All quantities are vector quantities. These are the defining equations for general circuit constants. A and B are found for a given network by obtaining from circuit equations an expression for E_s in terms of E_r and I_r ; A is then the coefficient of E_r in this expression, and B is the coefficient of I_r . C and D are found similarly from the expression for I_s in terms of E_r and I_r . Thus, for a network consisting of a series impedance Z, $E_s = E_r + ZI_r$, and $I_s = I_r$; hence for this network, $A = I_r$, $B = Z_r$, C = 0, and $D = I_r$.

Receiving-end voltage (E_r) and current (I_r) in terms of the sending-end voltage E_s volts and current I_s amperes for the network of Fig. 1028.

1029 $E_r = DE_s - BI_s$ vector volts.

 $I_r = -CE_s + AI_s$ vector amperes.

Note. All quantities are vector quantities.

			1	1
1		[Plus	an	a sub n
1	+	Positive	sin	Sine
1		Minus	cos	Cosine
1		Negative	tan	Tangent
1		Plus or minus	[i "
1	土	Positive or negative	cot	Cotangent
		Minus or plus	sec	Secant
	7	Negative or positive	csc	Cosecant
1 _×	or.	Multiplied by	vers	Versed sine
	or:	Divided by	covers	Coversed sine
		Equals, as	exsec	Exsecant
-	οı ≠	Does not equal		(Anti-sine a
1	≠		sin⁻¹a	Angle whose sine is a
1	~	Equals approximately Greater than	, ,	(Inverse sine a
1		Less than	sính	Hyperbolic sine
	>	Greater than or equal to	cosh	Hyperbolic cosine
1	⊆ <		tanh	Hyperbolic tangent
1	> ∨ ∨ IVI III	Less than or equal to Is identical to		(Anti-hyperbolic sine a
_	or =	Approaches as a limit	sinh⁻¹ a	Angle whose hyperbolic
	œ	Varies directly as	D ()	(sine is a
1		Therefore	$\mathbf{P}(\mathbf{x}, \mathbf{y})$	Rect. coord. of point P
1	: /	Square root	$P(r, \theta)$	Polar coörd. of point P
1	v-	nth root	$\begin{cases} f(x), F(x) \\ \text{or } \phi(x) \end{cases}$	Function of x
	\mathbf{a}^n	nth power of a		
1	n!	•		Increment of y
1	11 :	I · 2 · 3 · · · n ∫Common logarithm	1	Summation of
	log	Briggsian "	, w	Infinity
1		(Natural logarithm	dy	Differential of y
lin	or loge	Hyberbolic "	$\frac{\mathrm{d}y}{\mathrm{d}x}$ or $\mathbf{f}'(\mathbf{x})$	Derivative of $y = f(x)$ with
1	or roge	Napierian "	dx	respect to x
l e	or €	Base (2.718) of natural	$\frac{d^2y}{dx^2}$ or $f''(x)$	Second deriv. of $y = f(x)$
ľ	0	system of logarithms	dx^2	with respect to x
1	π	Pi (3.1416)	dny	nth deriv. of $y = f(x)$ with
		Angle	$\frac{\mathrm{d}^n y}{\mathrm{d} x^n} \text{ or } \mathbf{f}^{(n)}(\mathbf{x})$	respect to x
1	1	Perpendicular to	∂z	Partial derivative of z with
	∠ ⊥ ≡	Parallel to	$\frac{\partial}{\partial \mathbf{x}}$	respect to X
	(`)	parentheses	$\frac{\partial \mathbf{x}}{\partial^2 \mathbf{z}}$	
	Ìί	brackets	-	Second partial deriv. of z
	j 1	braces	∂x ∂y	with respect to y and x
			1	Integral of
1	a°	vinculum	J	
	a	a degrees (angle)	\int_{a}^{b}	Integral between the limits
1	a'	∫ a minutes (angle)	\int_a^b	a and b
		(a prime		Imaginary quantity
	a''	a seconds (angle) a second]]	$(\sqrt[4]{-1})$
1	a		x=a+jb	Symbolic vector notation
		(a double-prime (a third		Symbolic rector metation
1	a'''	a triple-prime		
L		(a time-mine	1	

MATHEMATICAL TABLES

PROPERTIES OF MATERIALS AND CONVERSION FACTORS

	PAGE
Common Logarithms	250
Natural Logarithms	252
Numbers (1 to 1000), Squares, Cubes, Square Roots, Cube Roots,	
Reciprocals, Circumferences, and Circular Areas	254
Square Root of a^2+b^2	274
Degrees to Radians	276
Natural Sines, Cosines and Tangents	278
Common Logarithms of Sines, Cosines and Tangents	284
Hyperbolic Sines, Cosines and Tangents	290
Values of ϵ^x and ϵ^{-x}	294
Decimal Equivalents of Fractions	297
Factorials	297
Greek Alphabet	297
Length of Arc, Length of Chord, Height of Segment and Area of Seg-	
ment Subtending an Angle (θ) in a Circle of Radius (R)	298
Weights of Materials	300
Orifice Coefficients	302
Weir Coefficients	303
Friction Factors	304
Channel Coefficients	305
Properties of Saturated Steam	306
Properties of Superheated Steam	310
Specific Heat	314
Coefficients of Linear Expansion	315
Melting and Boiling Points.	316
Thermal Conductivity	317
Heat of Combustion	318
Copper Wire Table	319
Magnetization Curves of Iron and Steel	320
Resistivity and Temperature Coefficient of Resistance of Conductors	
at 20° Cent	321
Resistivity and Dielectric Constant of Insulators at Room Temperature	321
Conversion Factors	322

0 oooo 3010 4771 6021 6990 7782 8451 9031 1 oooo 0414 0792 1139 1461 1761 2041 2304 2553 2 3010 3222 3424 3617 3802 3979 4150 4314 4472 3 4771 4914 5051 5185 5315 5441 5563 5682 5798 4 6021 6128 6232 6335 6435 6532 6628 6721 6812 5 6990 7076 7160 7243 7324 7404 7482 7559 7634 6 7782 7853 7924 7993 8062 8129 8195 8261 8325 7 8451 8513 8573 8633 8692 8751 8808 8865 8921 9 9542 9590 9638 9685 9731 9777 <th>9542 2788 4624 5911 6902 7709 8388 8976 9494 9956 0374 0755 1106 1430 1732 2014</th>	9542 2788 4624 5911 6902 7709 8388 8976 9494 9956 0374 0755 1106 1430 1732 2014
2 3010 3222 3424 3617 3802 3979 4150 4314 4472 3 4771 4914 5051 5185 5315 5441 5563 5682 5798 4 6021 6128 6232 6335 6435 6532 6628 6721 6812 5 6990 7076 7160 7243 7324 7404 7482 7559 7634 6 7782 7853 7924 7993 8662 8129 8195 8261 8325 7 8451 8513 8573 8633 8692 8751 8868 8865 8921 9 9542 9590 9638 9685 9731 9777 9823 9868 9912 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 11 0414 0453 0492 0531 0509 0607	4624 5911 6902 7709 8388 8976 9494 9956 0374 0755 1106 1430 1732 2014
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5911 6902 7709 8388 8976 9494 9056 0374 0755 1106 1430 1732 2014
4 6021 6128 6232 6335 6435 6532 6628 6721 6812 5 6990 7076 7160 7243 7324 7404 7482 7559 7634 6 7782 7853 7924 7993 8062 8129 8195 8261 8325 7 8451 8513 8573 8633 8692 8751 8808 8865 8921 8 9031 9085 9138 9191 9243 9294 9345 9395 9445 9 9542 9590 9638 9685 9731 9777 9823 9868 9912 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 11 0414 0453 0492 0531 0509 0607 0645 0682 0719 12 0792 0828 0864 0899 0934 096	6902 7709 8388 8976 9494 9956 0374 0755 1106 1430 1732 2014
5 6990 7076 7160 7243 7324 7404 7482 7559 7634 6 7782 7853 7924 7993 8062 8129 8195 8261 8325 7 8451 8513 8573 8633 8692 8751 8808 8865 8921 8 9031 9085 9138 9191 9243 9294 9345 9385 9445 9 9542 9590 9638 9685 9731 9777 9823 9868 9912 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 11 0414 0453 0492 0531 0509 0007 0645 0682 0719 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 13 1139 1173 1206 1239 1271 13	7709 8388 8976 9494 9956 0374 0755 1106 1430 1732 2014
6 7782 7853 7924 7993 8062 8129 8195 8261 8325 7 8451 8513 8573 8633 8692 8751 8808 8865 8921 8 9931 9085 9138 9191 9243 9294 9345 9385 9485 9 9542 9590 9638 9685 9731 9777 9823 9868 9912 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 11 0414 0453 0492 0531 0509 0607 0645 0682 0719 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 14 1461 1492 1523 1553 1584 1	8388 8976 9494 9956 0374 0755 1106 1430 1732 2014
7 8451 8513 8573 8633 8692 8751 8808 8865 8921 8 9931 9085 9138 9191 9243 9294 9345 9395 9445 9 9542 9590 9638 9685 9731 9777 9823 9868 9912 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 11 0414 0453 0492 0531 0509 0607 0645 0682 0719 12 0792 0828 0864 0899 0934 0969 1004 1038 -1072 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 14 1461 1492 1523 1553 1584 1614 1644 1673 1703 15 1761 1790 1818 1847 1875 <td< th=""><th>8976 9494 9956 0374 0755 1106 1430 1732 2014</th></td<>	8976 9494 9956 0374 0755 1106 1430 1732 2014
8 9031 9085 9138 9191 9243 9294 9345 9395 9445 9 9542 9590 9638 9685 9731 9777 9823 9868 9912 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 11 0414 0453 0492 0531 0569 0607 0645 0682 0719 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 14 1461 1492 1523 1553 1584 1614 1644 1673 1703 15 1761 1790 1818 1847 1875 1903 1931 1959 1987 16 2041 2068 2095 2122 2148 <th< th=""><th>9494 9956 0374 0755 1106 1430 1732 2014</th></th<>	9494 9956 0374 0755 1106 1430 1732 2014
9 9542 9590 9638 9685 9731 9777 9823 9868 9912 10 0000 0043 0086 0128 0170 0212 0253 0294 0334 11 0414 0453 0492 0531 0509 0607 0645 0682 0719 12 0792 0828 0864 0899 0934 0969 1004 1038 1072 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 14 1461 1492 1523 1553 1584 1614 1644 1673 1703 15 1761 1790 1818 1847 1875 1903 1931 1959 1987 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 17 2304 2330 2355 2380 2405 <t< th=""><th>9956 9374 9755 1106 1430 1732 2014</th></t<>	9956 9374 9755 1106 1430 1732 2014
10 0000 0043 0086 0128 0170 0212 0253 0294 0334 11 0414 0453 0492 0531 0509 0607 0645 0682 0719 12 0792 0828 0864 0899 0934 0969 1004 1038 .1072 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 14 1461 1492 1523 1553 1584 1614 1644 1673 1703 15 1761 1790 1818 1847 1875 1903 1931 1959 1987 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 17 2304 2330 2355 2380 2405 2430 2455 2480 2504 18 2553 2577 2601 2625 2648	0374 0755 1106 1430 1732 2014
11 0414 0453 0492 0531 0509 0607 0645 0682 0719 12 0792 0828 0864 0899 0934 0969 1004 1038 .1072 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 14 1461 1492 1523 1553 1584 1614 1644 1673 1703 15 1761 1790 1818 1847 1875 1903 1931 1959 1987 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 17 2304 2330 2355 2380 2495 2430 2455 2480 2553 2480 2553 2480 2553 2480 2553 22480 2553 22480 22718 2742 2967 2005 2923 2945 2967 20	0755 1106 1430 1732 2014
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 13 1139 1173 1206 1239 1271 1303 1335 1367 1399 14 1461 1492 1523 1553 1584 1614 1644 1673 1703 15 1761 1790 1818 1847 1875 1903 1931 1959 1987 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 17 2304 2330 2355 2380 2405 2430 2452 2480 2553 2577 2601 2625 2648 2672 2695 2718 2742 19 2788 2810 2833 2856 2878 2900 2923 2945 2967 20 3010 3032 3051 3075 3006 3118 3139 3160	1106 1430 1732 2014
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1732 2014
15 1761 1790 1818 1847 1875 1903 1931 1959 1987 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 17 2304 2330 2355 2380 2405 2430 2455 2480 2504 18 2553 2577 2601 2625 2648 2672 2695 2718 2742 19 2788 2810 2833 2856 2878 2900 293 2945 2967 20 3010 3032 3051 3075 3006 3118 3139 3160 3181 21 3222 3243 3263 3284 3304 3324 3345 3365 3385 22 3424 3444 3464 3483 3502 3511 3729 3747 3766 23 3617 3636 3655 3674 3692 <t< th=""><th>2014</th></t<>	2014
15 1761 1790 1818 1847 1875 1903 1931 1959 1987 16 2041 2068 2095 2122 2148 2175 2201 2227 2253 17 2304 2330 2355 2380 2405 2430 2455 2480 2504 18 2553 2577 2601 2625 2648 2672 2695 2718 2742 19 2788 2810 2833 2856 2878 2900 2933 2945 2967 20 3010 3032 3051 3075 3006 3118 3139 3160 3181 21 3222 3243 3263 3784 3304 3324 3345 3365 3385 22 3424 3444 3464 3483 3502 3522 3541 3560 3579 23 3617 3636 3655 3674 3692 <	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2279
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 20 3010 3032 3051 3075 3006 3118 3139 3160 3181 21 3222 3243 3263 3284 3304 3324 3345 3365 3385 22 3424 3444 3464 3483 3502 3522 3541 3560 3579 23 3617 3636 3655 3674 3692 3711 3729 3747 3766 24 3802 3826 3838 3856 3874 3802 3909 3927 3945 25 3979 3997 4014 4031 4048 4065 4082 4092 4166 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 27 4314 4330 4346 4362 4378 <	2529
20 3010 3032 3051 3075 3006 3118 3130 3160 3181 21 3222 3243 3263 3284 3304 3324 3345 3365 3385 22 3424 3444 3464 3483 3502 3522 3541 3560 3579 23 3617 3636 3655 3674 3692 3711 3799 3747 3766 24 3802 3828 3856 3874 3802 3909 3927 3945 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 27 4314 4330 4346 4362 4378 4393 4499 4425 4440 28 4472 4487 4502 4518 4533 4548 <	2765
21 3222 3243 3263 3784 5304 3324 3345 3365 3385 22 3424 3444 3464 3483 3502 3522 3541 3560 3579 23 3617 3636 3655 3674 3692 3711 3729 3747 3766 24 3802 3828 3856 3874 3802 3909 3927 3945 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 29 4624 4630 4654 4660 4683 4608 <	2989
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 23 3617 3636 3655 3674 3692 3711 3799 3747 3766 24 3802 3820 3838 3856 3874 3802 3909 3927 3945 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 27 4314 4330 4346 4362 4378 4393 4499 4425 4440 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 29 4624 4639 4654 4669 4683 4698 4713 4728 4742	3201
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 24 3802 3820 3838 3856 3874 3802 3909 3927 3945 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 29 4624 4630 4654 4660 4683 4608 4713 4728 4742	3404
24 3802 3820 3838 3856 3874 3802 3909 3927 3945 25 3979 3997 4014 4031 4048 4065 4082 4099 4116 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 29 4624 4630 4654 4660 4683 4608 4713 4728 4742	3598 3784
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 26 4150 4166 4183 4200 4216 4232 4249 4265 4281 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 29 4624 4630 4654 4660 4683 4608 4713 4728 4742	3962
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 27 4314 4330 4346 4362 4378 4393 4409 4425 4440 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 29 4624 4630 4654 4660 4683 4698 4713 4728 4742	4133
27 4314 4330 4346 4362 4378 4393 4499 4425 4440 28 4472 4487 4502 4518 4533 4548 4564 4579 4594 29 4624 4630 4654 4660 4683 4608 4713 4728 4742	4298
28	4456
	4609
	4757
30 4771 4786 4800 4814 4829 4843 4857 4871 4886	4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024	5038
32 5051 5065 5079 5092 5105 5119 5132 5145 5159	5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289	5302
34 5315 5328 5340 5353 5366 5378 5391 5403 5416	5428
35	5551 5670
37 5682 5694 5705 5717 5729 5740 5752 5763 5775	5786
37 3002 3034 3703 3717 3729 3740 3752 3703 3773 388 3798 5899 5821 5832 5843 5855 5866 5877 5888	5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999	6010
40 6021 6031 6042 6053 6064 6075 6085 6096 6107	6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212	6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314	6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415	6.425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513	6522
45 6532 6542 6551 6561 6571 6580 6590 6599 6609 46 6628 6637 6646 6656 6665 6675 6684 6693 6702	6618
	6712
47	6803 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972	6981
50 6990 6998 7007 7016 7024 7033 7042 7050 7059	7067
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9

N	0	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
55 56	7404	7412 7490	7419	7427 7505	7435 7513	7443 7520	7451 7528	7459	7466	7474
i .	7559	7566	7574	7582	7589	7597	7604	7536	7543	7551
57 58	7634	7542	7619	7657	7664	7672	7679	7686	7694	7627 7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
6.4	8062	8069	8075	8082	SoSo	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68 69	8325 8388	8331 8395	8338	8344	8351	8357 8420	8363	8370	8376	8382
70	8151	8457	8163	8470	8476	8482	8488	8432	8439	8445
			1	8531				8494	8561	
71 72	8513 8573	8519 8579	8525 8585	8591	\$537 \$597	8543 8603	8549 8609	8555 8615	8621	8567 8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8608	870.1	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	88.25	8831	8837	8842	8848	8854	8859
77 78	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
. 79	8976	8982	_8987	8993	8998	0004	0000	9015	9020	9025
80	9531	9036	9042	9047	9053	9058	0063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154 9206	9159	9165	9170	9175	9180	9186
83	9191	9196			9212	9217	9222	9227	9232	9238
84 85	9243 9294	9248	9253 9304	9258 9309	9263 9315	9269 9320	9274	9279 9330	9284	9340
86	9294	9299	9355	9360	9313	9320	9323	9380	9385	9340
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586
91	9590	9595	9600	9605	9600	9614	9619	9624	9628	9633
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	968 o
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773
95 96	9777 9823	9782 9827	9786 9832	9791 9836	9795 9841	9800 9845	9805 9850	9809 9854	9814 9859	9818 9863
1 1	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908
97 98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996
100	0000	0004	0009	0011	0017	0027	0026	0030	0035	0039
N	0	I	2	3	1	5	6	7	8	9

N	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
			0 6931				1.7918			2.1972
10	2.3026	2.3979	2 4849	2.5649	2.6391	2.708: 3.2189	2 7726	2.8332	2.8904	2 - 94 14
20										
30	3.4012			4965	1			1		1
40	6889			7612				1		
50 60	9120		9512			4.0073 1744				4.0775
	2185	1	1	2905	(£ .	1			1
70 80	38.0			4188			33°; 4543	3408 4659		
90	4998					1			0	
100	605		6250							
110	7005			7274						1
120	7875	7958			8.0	8283	8363			
130	8675			8903						
140	9416	9488	9558	9628			9830	9904	9972	5.0039
150	5 0100		5.039		5 0,370	5.0434	5.049	5.0562	5.0626	0689
100	9752	1	0876	0938		105	1120	1		1
170	1358		1475	1532				1	1818	
180	1930		2040			5501	2257			2417
190	2.170			26 17	2670			2832		1
200	2983			3132		3.30	1	_3327	3375	3.423
210	3471			3613				3799		
220	3936		4027	4072	1		4205	4250		4337
230	4381		ı		i	4596	1	1	1	1
240 250	4806 5215			4931 5334	4972 5373			5094 5491		
260	5007			5722		5797	5835			
270	5984		6058	6095						1
280	6348	6384		6454	5490		6560			
290	6699			680.	6836	6870		_6937	6971	
300	7038	7071	7104	7137	7170	7 '03	7236	7268	7,301	7333
310	7366		7430	746		7526	7557	75S9		7652
320	7683		7746	7717 8081	780;	7838		7900		
330	7991	8021	8051		8111	8141	8171	8201		
340	8280		8,348	8377	8.10		8464	8493	8522	
350	8579	8608	8636	8665	869,₹	8721	8749	8777	8805	8833
360	8861	8889		8944	8972		9026	9054		
370	9135	9162	9189	9216			9296	9322		
380	9402 9661	9428 9687		9480			9558	9584 9839	9610 9865	
39° 400		-	_9713	9738	976. 6 0014	9789 6 0039	9814		6.0113	9890
	9915	9940	9965		a consequence for principalities					
410 420	0403	0.0180 0426	0.0210 0450	0.0234	0259 0497	0283 0521	0307 0544	0331 0568	0355 0 591	0379 0615
430	0403	0661	0430	0707	0730	9753	0776	0799	0822	0845
440	0868	0890	0913	0936	0958	0981	1003	1026	1048	
450	1092	1115	1137	1159	1181	1203	1225	1247	1269	1291
460	1312	1334	1356	1377	1399		1442	1463	1485	1506
470	1527	1549	1570	1591	1612	1633	1654	1675	1696	1717
480	1738	1759	1779	1800	1821	1841	1862	1883	1903	1924
490	1944	1964	1985	2005	2025	20.16	2066	2086	2106	2126
500	146	2166	2186	2206	2226	2246	2265	2285	2,305	2324
N	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0

500-1009

253

N	0.0	1.0	2.0	3.0	4.0	5.0	0.0	7.0	8.0	9.0
500	6 2146	6.2166	6.2180			j 2°46	0 2265		υ. 2305	
510	234.1	2364	2383	2403	2422	24.12	2461	2480	2500	
520	2538	2558		2596	2615	2634	2653	2672	2691	2710
530	2729	2748	2766		2801	2823	2841	2860	2879	2897
540	2916	2934	2953	2971	2989	3008	3026	3044	3063	3081
550	3099	3117	3135	3151	3172	3190	3208	3226	3244	3261
560	3279	3297	3315	3333	3351	3368	3386	3404	3421	3439
570	3456	3474	3491	3509	3526	3544	3561	3578	3596	3613
580	3630	3648	3665	3682	3699	3716	3733	3750	3767	3784
590	3801	3818	3835	3852	3860	3886	3902	3919	3936	3953
600	3969	3986	400,3	4019	4036	405.1	4069	4085	4102	4118
610	4135	4151	4167	4184	4200	4216	4232	4249	4265	4281
620	4297	4313	4329	4345	4362	4378	4394	4409	4425	4441
630	4457	4473	4489	4505	4520		455.	4568	4583	4599
640	4615	4630	4646	466r	4677	4693	4708	4723	4739	4754
650	4770	4785	4800	4816	4831	4846	486 2	4877	4892	4907
660	4922	4938	4953	4968	4983		5013	5028	5043	5058
670	5073	5088	5103	5117	5132	5147	5162	5177	5191	52 0 6
680 690	5221	5236	5250	5265	5280	5294	5,309	5323	5338	5352
700	5367	5381	5396	5410	54/1	. 5430	545 <u>3</u>	5468	5482	5497
	5511	5525	5539	5551	5561	558	_5596	<u>5</u> 610	5624	5639
710	5653	5667	5681	5695	570	5723 7863	5737	5751	5765	5779
720	5793	5806	5820	5834	58.45	5862	5876	5889	5903	5917
730	5930	5944 6080	5958	5971	5985 6120	5999	6147	6026 6161	6039 6174	6053 6187
740	6201	6214	6093 6227	6107 6241	6254	6134 6267	6280	6294	6307	6320
750 760	6333	6346	6359	6373	6386	6399	6412	6.125	6438	6451
770	6464	6477	6,140	6503	6516	6529	65.12	6554	6567	6580
780	6593	6606	6619	6631	6641	6557	6670	6682	6695	6708
790	6720	6732	6746	6758	6771	6783	6796	6809	6821	6834
800	6846	6859	6871	6881	6896	6908	6921	6933	6946	6958
810	6970	6983	6995	7007	7020	7032	7011	7050	7069	7081
820	7093	7105	7117	7130	7142	7151	7166	7178	7190	7202
830	7214	7226	7238	7250	7262	7274	7286	7298	7310	7322
840	7334	7346	7358	7370	7382	7393	7405	7417	7429	7441
850	7452	7464	7476	7488	7499	7511	7523	7534	7546	7558
860	7569	7581	7593	7604	7616	7627	7639	7650	7662	7673
870	7685	7696	7708	7719	7731	7742	7754	7765	7776	7788
880	7799	7811	7822	7833	7845	7856	7867	7878	7890	7901
890	7912	7923	7935	7946	<u>7957</u>	7968	7979	7991	8002	8013
900	8024	8035	80.16	8057	8068	8079	8090	8101	8112	8123
910	8134	81.15	8156	8167	8178	8189	8200	8211	8222	8233
920	8244	8255	8265	8276	8287	8298	8309	8320	8330	8341
930	8352	8363	8373	8384	8395	8405	8416	8427	8437	8448
940	8459	8469	8480	8491	8501	8512	8522	8533	8544	8554 8659
950	8565	8575 8680	8586	8596	S607	8617	8628 8732	8638 8742	8648 8752	8763
960	8669	i	8690	8701	8711	- 1		8845	8855	8865
970	8773	8783 8886	8794 8896	8804	8814 8916	8824	8835 8937	8947	8957	8967
980 990	8876 8977	8987	8997	8906 9007	9017	9027	9037	9048	9058	9068
1000	9078	9088	9098	9108	9117	9127	9137	9147	9157	9167
1000 N	0.0	1.0	2.0		4.0	5.0	6.0	7.0	8.0	9.0
14	0.0	1.0	2.0	3.0	4.0	5.0	0.0	1.0	0.0	9.0

254 Numbers (1 to 50), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	N ²	N^3	Ä	∛N	1000 N	πN	$\frac{\pi N^2}{4}$
r	I	I	1.0000	1.0000	000,0001	3.142	0.7854
2	4	8	1.4142	1.2599	500.000	6.283	3.1416
3	9	27	1.7321	1.4422	333.333	9.425	7.0686
4	16	61	2 0000	1.5874	250.000	12.566	12.5664
5 6	25	125	2.2361	1.7100	200.000	15.708	19.6350
1	36	216	2.4495	1.8171	166.667	18.850	28.2743
7 8	49 64	343 512	2 6458	2.0000	142.857	21 991 25 133	38.4845 50.2655
9	81	729	3 0000	2.0801	111.111	28.271	63 6173
10	100	1000	3 1623	2 1544	100 000	31.416	78.5398
11	121	1331	3.3166	2.23.10	90.9091	34.558	95.0332
12	144	1728	3 46.11	2 2894	83.3333	37.699	113.097
13	169	2197	3.6056	2.3513	76 9231	40.841	132.732
14	196	2714	3 7417	2 4101	71.4286	43.982	153.938
15	225	3375	3 8730	2.4662	66.6667	47.124	176.715
16	256	4096	1.0000	2.5198	62.5000	50.265	201.062
17	289	4913	4.1231	2.5713	58.8235	53.407	226.980
18	324	5832	4.2426	2.6207	55.5556	56 549	254.469
20	361	68 <u>59</u> 8500	4.3589	2.6684	52.6316	59.690 62.832	283.529 314.159
21	441	9261	4.5826	2.7589	47.6190	$-\frac{62.032}{65.973}$	346.361
22	48.1	10648	4.6904	2.8020	45.4545	69.115	380.133
23	529	12167	4.7958	2.8439	43.4783	72.257	415.476
24	576	13824	4.8990	2.8845	41.6667	75 398	452.389
25	625	15625	5.0000	2.9240	40.0000	78.510	490.874
26	676	17576	5.0990	2.9625	38.4615	81.681	530.929
27	729	19683	5.1962	3.0000	37.0370	84 823	572.555
28	784	21952	5.2915	3.0366	35.7143	87.965	615.752
29	900	24389	5.3852	3 0723	34 .4828	91.106	706.858
30	961	· ·	5 4772	3.1072	33 3333	94.248	
32	1024	29791 32768	5.6569	3 1414 3.1748	32.2581	97.389	754.768 804.248
33	1089	35937	5 7446	3.2075	30 3030	103.673	855.299
34	1156	39304	5.8310	3 2396	29.4118	106.814	907.920
35	1225	42875	5.9161	3.2711	28.5714	109.956	962.113
36	1296	46656	6.0000	3.3019	27.7778	113.097	1017.88
37	1369	50653	6.0828	3.3322	27.0270	116.239	1075.21
38	1444	54872	6.16.14	3.3620	26.3158	119.381	1134.11
39_	1521	59319	6 2450	3.3912	25.6410	122.522	1194.59
40	1681	64000	6.3246	3.4200	25.0000	125 66	1256 64
41 42	1764	68921 74088	6.4031 6.4807	3.4482 3.4760	24.3902 23.8095	128.81 131.95	1320.25 1385.44
43	1849	79507	6 5574	3.4700	23.2558	135.09	1452.20
44	1936	85184	6.6332	3.5303	22.7273	138.23	1520.53
45	2025	91125	6.7082	3.5569	22.2222	141.37	1590.43
46	2116	97336	6.7823	3.5830	21.7391	144.51	1661.90
47	2209	103823	6.8557	3.6088	21.2766	147 65	1734.91
48	2304	110592	6.9282	3 6342	20.8333	150.80	1809.56
49	2401	117649	7.0000	3.6593	20.4082	153.94	1885.74
50	2500	1 2 5 0 0 0	7.0711	3.6840	20.0000	157.08	1963.50

Numbers (51 to 100), Squares, Cubes, Square Roots, Cube Roots, 255 Reciprocals, Circumferences and Circular Areas

N	N ²	N ³	Ä	Ä	1000 N	πN	$\frac{\pi N^2}{4}$
51	2601	132651	7.1414	3.7084	19.6078	160.22	2042.82
52	2704	140608	7.2111	3.7325	19 2308	163.36	2123 72
53	2809	148877	7.2801	3.7563	18.8679	166.50	2206.18
54	2916	157464	7.3485	3.7/98	18.5185	169.65	2290.22
55 56	3025	166375	7.4162	3.8230	18.1818	172.79	2375.83
57	3249	185193	7.5498	3.8485	17.5439	179.07	2551.76
58	3364	195112	7.6158	3.8709	17.2414	182.21	2642.08
59	3481	205379	7 6811	3.8930	16 9492	185 35	2733-97
60	3600	2 5000	7 7160	3 9149	16 6667	188 50	2827.43
61	3721	226981	7.8102	3.9365	16 3934	191.64	2922.47
63	3969	250047	7 9373	3.9579	15.8730	194.78	3019.07
64	4096	262144	8 0000	4.0000	15.6250	201 06	3216.99
65	4225	274625	8.0623	4.0207	15.3846	204.20	3318.31
66	4356	287496	8.1240	4.0412	15.1515	207 35	3421 19
67 68	4489	300763	8 1854 8.2462	4.0615	14.9254	210.49	3525.65
69	4761	328509	8 3066	4 1016	14.7059	213.63	3631.68
70	1900	34,5000	8 3666	4.1213	14.2857	210 01	3848.45
71	5041	357911	8 4261	4.1408	14.0845	223 05	3959.19
72	5184	373248	8.4853	4.1502	13 8889	226.19	4071.50
73 74	5329 5476	389017 405221	8 5410 8.602	4.1793	13.6986	229 34	4185.39
75	5625	421875	8,6603	4 1983	13 5135	232 48 235 62	4300.84 4417.86
76	5776	438976	8 7178	4.2358	13 1579	238 76	4536 46
77	5929	456533	8.7750	4 2543	12 9870	241.90	4656.63
78 79	6241	474552 493039	8.8318 8.8882	4.2727	12.8205	245 04	4778 36
80	6400	512000	8.9443	4 3089	12 5000	248 19 251 33	4901.67 5026 55
81	6561	531441	9.0000	4 3267	12 3457	254 47	5153 00
82	6724	551358	9.0551	4.3445	12 1951	257 61	5281 02
83	6889	571787	9 1104	4.3621	12.0482	260.75	5410.61
84 85	7056 7225	592704 314125	9.1652	4.3795	11.9048	263 89	5541 .77
86	7396	636055	9.2195	4.3968	11.7647	267.04 270.18	5674.50 5808.80
87	7569	658503	9 3274	4.4310	11.4943	273.32	5944.68
88	7744	681472	9.3808	4.4480	11.3636	276.46	6082.12
89	7921	704969	0 1310	4 4647	11.2360	279 60	6221.14
90	8100	729000	9 4868	4 4814	11 1111	282 74	6361.73
91 92	8281 8464	753571 778688	9·5394 9·5917	4 - 4979	10.9890 10.8696	285.88 289.03	6503.88 6647.61
93	8649	804357	9.5917	4 5307	10.7527	292.17	6792.91
94	8836	830584	9.6954	4 5468	10.6383	295.31	6939.78
95 96	9025	857375	9.7468	4.5629	10 5263	298.45	7088.22
90	9216	884736	9.7980	4.5789	10.4167	301.59	7238.23
98	9409	912673	9 8489	4 6104	10.3093	304.73 307.88	7389.81 7542.96
99	9801	970299	9.9499	4 6261	0101 01	311 02	7697.69
100	10000	1000000	10.0000	4.6416	10.0000	314.16	7853.98

256 Numbers (101 to 150), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	\mathbf{N}^2	N^3	\sqrt{N}	∛N	1000 N	πN	$\frac{\pi N^2}{4}$
101	10201	1030301	10.0499	4 6570	9.90009	317.30	8011.85
102	10404	1061508	10 0995	4.6723	9.80392	320.44	8171.28
103	10609	1092727	10.1489	4.6875	9.70874	323.58	8332.29
104	10816	1124864 1157625	10 1980 10 2470	4.7027	9 61538	326 73	8494.87
105 106	11236	1191016	10.2956	4 7177 4 7326	9.52381 9.43396	329.87 333.01	8659.01 8824.73
107	11449	1225043	10.3441	4 7475	9 34579	336.15	8992.02
108	11664	1259712	10 3923	4 7622	9.25920	339 29	9160.88
109	11881	1295029	10 4403	4 7769	9 17431	342.43	9331 . 32
110	12100	1331000	10 4881	4 7914	9.09091	345.58	9503 32
111 112	12321	1367631 1404928	10 5357	4.8059 4.8203	9 00901	348 72 351.86	9676.89 9852.03
113	12769	1442897	10.6301	4 8346	8 84956	355.00	10028.7
114	12996	1481544	10.6771	4 8488	8.77193	358.14	10207.0
115	13225	1520875	10.7238	4.8629	8 69565	361.28	10386.9
116	13456	1560896	10 7703	4.8770	8.62069	364.42	10568.3
117	13689	1601613	10 8167	4 8910	8.54701	367.57	10751.3
118	13924	1643032 1685159	10 3028	4 9049	8 47458	370 71	10935.9
120	14400	1728000	10 9545	4 9321	8 33333	376 99	11309.7
121	14641	1771561	11.0000	4 9461	8 26446	380 13	11,99.0
122	14884	1815848	11.0454	4 9597	8.19672	383 27	11689 9
123	.15129	1860867	11.0905	4.9732	8.13008	386.42	11882.3
124	15376	1906624	11.1355	4.9866 5 0000	8 06452	389.56	12076 3
125	15876	1953125	11.1803	5.0133	7.93651	392.70	12271 8
127	16129	2048383	11.2694	5 0265	7.87402	398.98	12667.7
128	16384	2097152	11.3137	5 0397	7.81250	402.12	12868.0
129	16641	2146689	11 3578	5.0528	7. 75194	405 27	13069 8
130	16900	2197000	11 4018	5 0658	7 69231	408.41	13273.2
131	17161	2248091 2299968	11.4455	5.0788	7.63350	411.55	13478.2
132	17689	2352637	11.5326	5.1045	7.57576	414.69	13684.8 13892 9
134	17956	2,106104	11.5758	5 1172	7.46269	420.97	14102.6
135	18225	2460375	11.6190	5.1299	7.40741	424 12	14313.9
136	18496	2515456	11.6619	5.1426	7-35294	427.26	14526.7
137	18769	2571353 2628072	11.7047	5.1551	7.29927	430.40	14741.1
139	19321	2685619	11.7898	5 1801	7 19424	433 · 54 436 · 68	14957.1 15174.7
140	19600	2744000	11 8322	5.1925	7 14286	439.82	15393.8
141	19881	2803221	11.8743	5.2048	7.09220	442.96	15614.5
142	20164	2863288	11.9164	5.2171	7.04255	446.11	15836 8
143	20449	2924207	11.9583	5.2293	6 99301	449.25	16060.6
144 145	20736	2985984 3048625	12.0000	5.2415 5.2536	6.94444	452.39	16286 0
146	21316	3112136	12.0410	5 2536 5 2656	6.84932	455 53 458.67	16513 0
147	21609	3176523	12 1244	5.2776	6.80272	461.81	16971.7
148	21904	3241792	12.1655	5 2896	6.75676	464.96	17203.4
149	22201	3307949	12 2066	5 3015	6 71141	468 10	17436.6
150	22500	3375000	12.2474	5.3133	6.66667	471.24	17671.5

Numbers (151 to 200), Squares, Cubes, Square Roots, Cube Roots, 257 Reciprocals, Circumferences and Circular Areas

N	\mathbf{N}^2	N ³	Ä	∛Ñ	1000 N	πN	$\frac{\pi N^2}{4}$
151	22801	3442951	12.2882	5.3251	6.62252	474.38	17907.9
152	23104	3511808	12.3288	5 3368	6.57895	477.52	18145.8
153	23409	3581577	12 3693	5 3485	6.53595	480.66	18385.4
154	23716	3652264	12 4097	5.3601	6.49351	483 81	18626 5
155 156	24025 24336	3723875 3796416	12 4499	5 3717 5 3832	6.41026	486.95 490.09	18869.2 19113.4
157	24649	3869893	12.5300	5.3947	6.36943	493.23	19359.3
158	24964	3944312	12.5698	5 406t	6 32911	496.37	19606 7
159	25281	4019679	12 6095	5 4175	6 28931	499 51	19855.7
160	25600	4096000	12 6491	5 4288	6 25000	502.65	20106 2
161	25921	4173281	12.6886	5.4401	6 21118	505.80	20358 3
162	26244	4251528	12.7279	5 4514	6 17284	508.94	20612.0
163	26569	4339747	12.7671	5 4626	6.13497	512.08	20867.2
164	26896	4410944	12.8062	5 4737	6 09756	515.22	21124.1
165 166	27225 27556	4492125 4574290	12 8452 12 8841	5 4848	6 06061	518.36 521.50	21382.5
167	27889	4657463	12 9228	5 4959 5 5069	5 98802	524.65	21904.0
168	28224	4741632	12.9615	5 5178	5 95238	524.05	21904.0
169	28561	4826809	13 0000	5 5288	5 91716	530 93	22431.8
170	28900	4913000	13 0384	5 5397	5 88235	534 07	22698.0
171	29241	5000211	13 0767	5 5505	5.84795	537.21	22965 8
172	29584	5088448	13 1149	5 5613	5 81395	540.35	23235.2
173	29929	5177717	13.1529	5 5721	5.78035	543 50	23506.2
174	30276	5268024	13.1909	5 5828	5 74713	546.64	23778.7
175 176	30625 30976	5359375 5451776	13 2288 13.2665	5 · 5934 5 · 6041	5.71429	549.78 552.92	24052.8 24328 5
177	31320	*		5 6147	5.64972	556.06	24605.7
178	31684	5545233 5639752	13 3041	5.6252	5 61798	559.20	24884.6
179	32041	5735339	13 3791	5 6357	5 58659	562.35	25164 9
180	32400	5832000	13 4164	5 6462	5 55556	565.49	25446.9
181	32761	5929741	13.4536	5 6567	5.52486	568.63	25730.4
182	33124	6028568	13 4907	5.6671	5 49451	571.77	26015.5
183	33489	6128487	13.5277	5 6774	5.46448	574.91	26302.2
184	33856	6229504	13.5647	5 6877	5 - 43478	578.05	26590.4
185 186	34225 34596	6331625 6434856	13.6015	5.6980 5.7083	5.40541	581.19 584.34	26880.3 27171.6
187	34969	6539203	13.6748	5.7185	5 34759	587.48	27171.6 27464. 6
188	35344	6644672	13.7113	5.7287	5.31915	590.62	27404.0 27759.I
189	35721	6751269	13 7477	5.7388	5 29101	593.76	28055.2
190	36100	6859000	13.7840	5.7489	5.26316	596 90	28352.9
191	36481	6967871	13.8203	5 · 7590	5.23560	600.04	28652.1
192	36864	7077888	13.8564	5.7690	5.20833	603.19	28952.9
193	37249	7189057	13 8924	5.7790	5.18135	606.33	29255.3
194	37636	7301384	13.9284	5.7890	5.15464	609.47	29559.2
195	38025 38416	7414875	13.9642	5 7989 5 8088	5.12821	612.61 615.75	29864.8 30171.9
197	38809	7529530	14 0357	5 8186	5.07614	618.89	30171.9
198	39204	7762392	14.0712	5 8285	5.05051	622.04	30480.5
199	39601	7880599	14.1067	5.8383	5.02513	625 18	31102.6
200	40000	8000000	14.1421	5.8480	5.00000	628.32	31415.9

258 Numbers (201 to 250), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	N ²	N_3	Ä	√N	1000 N	πN	$\frac{\pi N^2}{4}$
201	40401	8120601	14.1774	5.8578	4.97512	631.46	31730.9
202	40804	8242408	14.2127	5.8675	4.95050	634.60	32047.4
203	41209	8365427	14.2478	5.8771	4.92611	637.74	32365.5
204	41616	8489664	14.2829	5 8868	4.90196	640.89	32685.1
205 206	42025 42436	8615125 8741816	14 3178	5.8964 5.9059	4.87805 4.85437	644.03 647.17	33006.4 33329.2
207	42849	8869743	14.3875	5.9155	4.83092	650.31	33653.5
208	43264	8998912	14 4222	5.9250	4.80769	653.45	33979 5
209	43681	9129329	14.4568	5 9345	4.78469	656.59	34307 0
210	44100	9261000	14 4914	5 9439	4.76190	659.73	34636.1
211	44521	9393931	14.5258	5 9533	4 - 73934	662.88	34966.7
212	44944	9528128	14.5602	5.9627	4.71698 4.69484	666.02 669.16	35298.9
213	453 ⁶ 9 4579 ⁶	9663597 9800344	14.5945 14.6287	5 9721 5 9814	4.67290	672.30	35632.7 35968.1
214	45790	9938375	14.6629	5.9907	4.65116	675.44	36305.0
216	46656	10077696	14.6969	6.0000	4.62963	678.58	36643.5
217	47089	10218313	14.7309	6,0092	4.60829	681.73	36983.6
218	47524	10360232	14.7648	6.0185	4.58716	684 87	37325.3
219	47961	10503459	14 7986	6 0277	4 56621	688.01	<u> 37668 5</u>
220	48400	10648000	14.8324	6 0368	4-54545	691.15	38013 3
221	48841	10793861	14 8661	6 0459	4.52489	694.29	38359.6
222	49284	10941048	14.8997	6 0550 6 0641	4.50450	697.43 700.58	38707.6 39057.1
224	50176	11239424	14 9666	6 0732	4.46431	703.72	39408 I
225	50625	11390625	15.0000	6.0822	4.44444	700 86	39760.8
226	51076	11543176	15.0333	6.0912	4.42478	710.00	40115.0
227	51529	11697083	15.0665	6.1002	4.40529	713.14	40470.8
228	51984	11852352	15.0997	6.1091	4 38596	716.28	40828.1
229	52441	12008989	15.1327	6 1180	4 36681	719 42	41187.1
230	52900	12167000	15.1658	6 1269	4.34783	722 57	41547.6
231 232	53361 53824	12326391	15.1987	6.1358	4.32900	725.71	41909.6
233	54289	12649337	15.2643	6.1534	4.29185	731.99	42638.5
234	54756	12812904	15.2971	6.1622	4.27350	735.13	43005.3
235	55225	12977875	15.3297	6.1710	4.25532	738.27	43373.6
236	55696	13144256	15.3623	6.1797	4.23729	741.42	43743.5
237	56169	13312053	15.3948	6.1885	4.21941	744.56	44115.0
238	56644	13481272	15 4272 15.4596	6.1972	4.20168	747.70 750.84	44488.1 44862.7
240	57600	13824000	15 4919	6.2145	4.16667	753.98	45238.9
241	58081	13997521	15.5242	6.2231	4.14938	757.12	45616.7
242	58564	14172488	15.5563	6.2317	4.13223	760.27	45996.1
243	59049	14348907	15.5885	6.2403	4.11523	763 4 r	46377.0
244	59536	14526784	15.6205	6.2488	4.09836	766.55	46759.5
245	60025	14706125	15.6525	6 2573	4.08163	769.69	47143.5
246	60516	14886936	15.6844	6.2658	4.06504	772.83	47529.2
247 248	61009	15252992	15.7162	6.2743	4.04858	775.97	47916.4
249	62001	15438249	15.7797	6 2912	4.03226	779.12	48305.1 48695.5
250	62500	15625000	15.8114	6.2996	4.00000	785.40	49087.4
	1 3	, , , , ,	1 3	1 - 2 5 5 4	1	1.3.40	79001.4

Numbers (251 to 300), Squares, Cubes, Square Roots, Cube Roots, 259 Reciprocals, Circumferences and Circular Areas

N	N ²	N ³	Ä	∜Ñ	1000 N	πN	$\frac{\pi N^2}{4}$
251	63001	15813251	15.8430	6.3080	3 98406	788 54	49480 9
252	63504	16003008	15.8745	6 3164	3.96825	791.68	49875.9
253	64009	16194277	15.9060	6.3247	3.95257	794.82	50272.6
254	64516	16387064	15 9374	6.3330	3.93701	797 96	50670.7
²⁵⁵ 256	65025	16581375	15 9687 16.0000	6 3413	3.92157	801.11	51070.5
257	65536 66049	16777216 16974593	16.0312	6.3496 6.3579	3.90625	804.25 807.39	51471.9 51874.8
258	06564	17173512	16 0624	6 3661	3.87597	810.53	52279.2
259	67081	17373979	16 0935	6 3743	3 86100	813 67	52685.3
260	67600	17576000	16 1245	6.3825	3 84615	816 81	53092 9
261	68121	17779581	16 1555	6 3907	3.83142	819.96	53502.1
262	68644	17984728	16.1864	6 3988	3 81679	823 10	53912.9
263	69169	18191447	16.2173	6 4070	3.80228	826.24	54325.2
264	69696	18399744	16.2481	6.4151	3.78788	829.38	54739.1
265 266	70225 70756	18609625 18821096	16.2788 16.3095	6.423 <i>2</i> 6.431 <i>2</i>	3 - 77358	832.52 835.66	55154.6 55571.6
267	71289	19034163	16.3093	6.4393	3 74532	838.81	55990.3
268	71824	19248832	16 3707	6.4473	3 73134	841.95	56410.4
269	72361	19465109	16 4012	6 4553	3 71747	845 09	56832 2
270	72400	19683000	16 4317	6 4633	3 70370	848 23	57255 5
271	7.34.11	19902511	16.4621	6 4713	3 69004	851.37	57680.4
272	73984	20123648	16 4924	6.4792	3.67647	854.51	58106.9
273	74529	20346417	16.5227	6.4872	3.66300	857.66	58534.9
274	75076	20570824	16 5529	6.4951	3 64964	860.80	58964.6
275 276	75625 76176	20796875 21024576	16 5831 16.6132	6 5030 6.5108	3 63636 3 62319	863.94 867.08	59395·7 59828.5
277	76729	21253933	16.6433	6.5187	3.61011	870.22	60262.8
278	77284	21 484952	16.6733	6.5265	3.01011	873.36	60698 7
279	77841	21717639	16 7033	6.5343	3.58423	876.50	61136.2
280	78400	21952000	16 7332	6.5421	3 57143	879.65	61575.2
281	78961	22188041	16 7631	6.5499	3.55872	882 79	62015.8
282	79524	22425768	16 7929	6.5577	3.54610	885.93	62458.0
283	80089	22665187	16 8226	6.5654	3 - 53357	889.07	62901.8
284 285	80656	22906304	16.8523 16.8819	6.5731	3.52113	892.21 895.35	63347.1
286	81225 81796	23149125 23393656	16.9115	6.5808 6.5885	3.50877	898.50	63794.0 64242.4
287	82369	23639903	16 9411	6.5962	3.48432	901.64	64692.5
288	82944	23887872	16 9706	6 6039	3.47222	904.78	65144.1
289	83521	24137569	17 0000	6.6115	3 46021	907.92	65597.2
290	84100	24389000	17 0294	6 6191	3.44828	911.06	66052.0
291	84681	24642171	17 0587	6,6267	3.43643	914.20	66508.3
292	85264	24897088	17.0880	6.6343	3.42466	917.35	66966.2
293	85849	25153757	17.1172	6 6419. 6 6494	3.41297	920.49	67425 6 67886.7
294 295	86436 87025	25412184 25672375	17.1464 17.1756	6.6569	3.40136 3.38983	923.63 926.77	68349.3
295	87616	25934336	17.1730	6 6644	3.37838	929.91	68813.5
297	88209	26198073	17.2337	6.6719	3.36700	933.05	69279.2
298	88804	26463592	17.2627	6 6794	3 35570	936.19	69746.5
299	89401	267,30899	17 2916	6 6869	3 34448	939 - 34	70215.4
300	90000	27000000	17.3205	6 6943	3 - 33333	942.48	70685.8

260 Numbers (301 to 350), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

302 91809 27818127 17.4069 6.7166 3.30633 951.90 72106.05 304 92416 28094464 17.4356 6.7240 3.28947 955.04 72583.4 305 93025 28372625 17.4942 6.7313 3.27809 958.19 73061.7 306 93636 28652616 17.4929 6.7387 3.26797 961.33 73541.5 307 94249 28934443 17.5214 6.7460 3.5733 961.47 74023 308 94864 29218112 17.5499 6.7533 3.26757 967.61 74506.0 309 95481 29503629 17.5784 6.7666 3.23675 907.05 74900 310 961000 207910000 17.6668 6.7699 3.22581 977.04 75964.5 311 96721 30080231 17.6932 6.7824 3.20513 983.27 76944.7 313 97344 30271328 17.6935 6.7824 3.20513 983.27 76944.7 314 98596 30654297 17.6918 6.7897 3.19189 983.27 76944.7 315 99225 31255875 17.7382 6.8041 3.17460 989.60 77931.1 316 99856 31554496 17.7764 6.813 3.16456 992.74 78420.7 317 100489 31855013 17.8045 6.813 3.16456 992.74 78420.7 318 101124 32157412 17.8666 6.8250 3.14465 999.03 79422.6 320 102400 32768000 17.8885 6.8399 3.12500 1005.2 80928.2 321 103041 33076161 17.9165 6.8470 3.11527 1008.5 80928.2 322 103643 33056161 17.9165 6.8470 3.11527 1008.5 80928.2 323 104329 33698267 17.9722 6.8612 3.09598 104.7 81363 810224 3809800 18.6555 6.8824 3.09598 104.7 81363 810224 3809800 381800	N	N^2	N_3	Ä	√N	1000 N	πN	$\frac{\pi N^2}{4}$
305	302	91204	27543608	17.3781	6 7092	3.31126	948.76	71157.9 71631.5 72106.6
308	305 306	93025 93636	28372625 28652616	17.4042 17.4929	6 7313 6.7387	3.27869 3.26797	958.19 961.33	72583.4 73061.7 73541.5
311 96721 30080231 17.6352 6.7852 3.21543 977.04 75964.5 312 97344 30371328 17.6635 6.7824 3.20513 980.18 76453.8 313 97969 30664297 17.6918 6.7897 3.19189 983.32 76944.7 314 98596 30959144 17.7200 6.7969 3.18171 986.46 77437.1 315 99225 31255875 17.7482 6.8041 3.17400 989.60 77437.1 316 99856 318554496 17.7764 6.8113 3.16456 992.74 78426.7 317 100489 31855913 17.8045 6.8183 3.15459 992.74 78426.7 318 101124 32157432 17.8056 6.828 3.15457 995.88 78923.9 318 101124 32157432 17.8056 6.828 3.13480 1002.2 79922 320 102400 32768000 17.8885 6.8399 3.12500 1005.3 80424 321 103041 3.3076161 17.9165 6.8470 3.115.77 1008.5 80928.2 322 103684 3.3386248 17.9444 6.8541 3.10559 1011.6 81433.2 323 104329 3.3698267 17.9722 6.8612 3.09598 1014.7 81939.8 324 104976 34012224 18.0000 6.8683 3.08642 1017.9 82448.8 325 105625 34328125 18.0378 6.8894 3.06842 1017.9 82448.8 328 10584 35287552 18.1108 6.8964 3.04878 1030.4 8.496.3 328 105890 35937000 18.1659 6.9104 3.03040 1036.7 8.5529.9 331 109561 36264691 18.1384 6.9054 3.03951 1032.3 8.80212 332 106224 36591368 18.2290 6.9244 3.01205 1042.2 8.3691.0 333 10890 35937000 18.1659 6.9104 3.03040 1036.7 8.5529.9 334 111556 37259704 18.2757 6.9382 2.99401 1049.3 8.7615.9 333 112824 38614472 18.3848 6.9658 2.99858 1061.9 8.9727.0 334 112560 39304000 18.4391 6.9759 2.9418 1065.0 9.0258.7 340 115600 39304000 18.4391 6.9759 2.9418 1065.0 9.0258.7 341 116281 39651821 18.4662 6.9864 2.93255 1071.3 91326.9 340 115600 39304000 18.4391 6.9759 2.9418 1068.0 9.0258.7 341 116281 39651821 18.4662 6.9864 2.93255 1071.3 91326.9	308 309	94864 95481	29218112 29503629	17 5499 17 5784	6 7533 6 7606	3 24675 3.23625	967.61 970.75	74506.0 74990.6
315 99225 31255875 17.7482 6.8041 3.17460 989.60 77931.1 316 99856 31554496 17.7764 6.8113 3.16456 992.74 78426.7 317 100489 31855013 17.8045 6.8183 3.15456 992.74 78426.7 318 101124 32157432 17.8326 6.8556 3.14465 999.03 79422.6 319 101761 32461759 17.8666 6.8358 3.14465 999.03 79422.6 320 102400 32768000 17.8885 6.8399 3.12500 1005.3 80424 8.321 103041 3.076161 17.9165 6.8470 3.11527 1008.5 80928.2 321 103041 3.3076161 17.9165 6.8470 3.11527 1008.5 80928.2 322 104329 33698267 17.9722 6.8612 3.09598 1014.7 81939.8 324 104976 34012224 18.0000 6.8683 3.08642 1017.9 82448 325 105625 34328125 18.0278 6.8524 3.06749 1024.2 83469 327 106929 34965783 18.0555 6.8804 3.05810 1027.3 83981 328 107584 45287552 18.1108 6.8964 3.04878 1030.4 84496.3 329 108241 35611289 18.1384 6.9034 3.03951 1033.6 85012 330 108900 35937000 18.1659 6.9104 3.03030 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 3.02115 1039.9 86049.0 332 110222 37595375 18.3030 6.9451 2.98507 1052.4 88141.3 333 110889 36926037 18.2483 6.9333 3.00300 1036.7 85529.9 334 111556 37259704 18.2757 6.9382 2.99401 1049.3 87615.9 335 112225 37595375 18.3030 6.9451 2.98507 1052.4 88141.3 336 112896 37933056 18.3030 6.9451 2.98507 1052.4 88141.3 337 113669 38272753 18.3576 6.9589 2.96736 1058.7 89196.9 338 114244 38614472 18.3848 6.9058 2.9688 1061.9 89727.0 340 115600 39304000 18.4391 6.9795 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9684 2.93255 1071.3 91326.9 342 110424 38058219 18.4120 6.9777 2.94985 1065.0 90258.7 340 119716 41421736 18.6611 7.0203 2.89655 1038.8 393482 2.96968	311	96721 97344	30080231 30371328	17.6352 17.6635	6 7752 6.7824	3 21543 3 20513	977.04 980.18	75964.5 76453.8 76944.7
318	315 316	99225 99856	31255875 31554496	17.7482 17.7764	6.8041 6.8113	3.17460 3.16456	989.60 992.74	77931.1 78426.7
321	318 319	101124	32157432 32461759	17 8326 17 8606	6 8256 6 8328	3.14465	999.03	79422.6 79922.9
325	321 322	103041	33076161 33386248	17.9165 17.9444	6 8470 6 8541	3.11527 3.10559	1008.5	80928.2 81433.2 81939.8
328 107584 35287552 18.1108 6.8964 3.04878 1030.4 84496.3 329 108241 35611289 18.1384 6.9034 3.03951 1030.4 84496.3 330 108900 35937000 18.1659 6.9104 3.03040 1036.7 85529.9 331 109561 36264691 18.1934 6.9174 3.02115 1039.9 86049.0 332 110224 36594368 18.2209 6.9244 3.01205 1043.0 86569.7 333 110889 36926037 18.2483 6.9313 3.00300 1046.2 87092.0 334 111556 37259704 18.2757 6.9382 2.99401 1049.3 87615.9 335 112896 37933056 18.3303 6.9451 2.98507 1052.4 88141.3 337 113569 38272753 18.3576 6.9589 2.96736 1058.7 89196.9 338 114244 38614472 18.3848 6.9658 <td>325 326</td> <td>105625</td> <td>34328125 34645976</td> <td>18 0278 18.0555</td> <td>6 8753 6.8824</td> <td>3.07692 3.06749</td> <td>1021.0</td> <td>82448.0 82957.7 83469.0</td>	325 326	105625	34328125 34645976	18 0278 18.0555	6 8753 6.8824	3.07692 3.06749	1021.0	82448.0 82957.7 83469.0
331 109561 36264691 18.1934 6 9174 3.02115 1039 9 86049.0 332 110224 36594368 18.2209 6.9244 3.01205 1043.0 86569.7 333 110889 36926037 18.2483 6.9313 3.00300 1046.2 87092.0 334 111556 37259704 18.2757 6.9382 2.99401 1049.3 87615.9 335 112896 37933050 18.3303 6.9521 2.98507 1052.4 88141.3 336 112896 37933050 18.3576 6.9589 2.96736 1058.7 89196.9 337 113569 38272753 18.3576 6.9589 2.96736 1058.7 89196.9 338 114244 38614472 18.3848 6.9658 2.95858 1061.9 89727.0 339 114921 38958219 18.4120 6.9727 2.94985 1061.9 89722.0 340 115600 39304000 18.4391 6.9795 <td>328 329</td> <td>107584</td> <td>35287552 35611289</td> <td>18.1108</td> <td>6.8964 6.903<u>4</u></td> <td>3.04878</td> <td>1030.4</td> <td>84496.3 85012 3</td>	328 329	107584	35287552 35611289	18.1108	6.8964 6.903 <u>4</u>	3.04878	1030.4	84496.3 85012 3
335 112225 37595375 18.3030 6.9451 2.98507 1052.4 88141.3 336 112896 37933056 18.3303 6.9521 2.97619 1055.6 88668.3 337 113569 38272753 18.3576 6.9589 2.96736 1058.7 89196.9 338 114244 38614472 18.3848 6.9658 2.95858 1061.9 89727.0 339 114921 38958219 18.4120 6.9727 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.9418 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.92398 1074.4 91863.3 343 117649 40353607 18.5203 7.0000 2.91545 1077.6 92401.3 344 118336 40707584 18.5472 7.0068	331 332	109561	36264691 36591368	18.1934	6.9244	3.02115	1039 9	86049.0 86569.7 87092.0
338 114244 38614472 18.3848 6.9658 2.95858 1061.9 89727.0 339 114921 38958219 18.4120 6.9727 2.94985 1065.0 90258.7 340 115600 39304000 18.4391 6.9795 2.94118 1068.1 90792.0 341 116281 39651821 18.4662 6.9864 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.92398 1074.4 91863.3 343 117649 40353607 18.5203 7.0000 2.91545 1077.6 92401.3 344 118336 40707584 18.5742 7.0068 2.90698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.89855 1083.8 93482.0 346 119716 41421736 18.6011 7.0203 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0°71 <td>335 336</td> <td>112225</td> <td>37595375 37933056</td> <td>18.3030 18.3303</td> <td>6.9451</td> <td>2.98507</td> <td>1052.4</td> <td>87615.9 88141.3 88668.3</td>	335 336	112225	37595375 37933056	18.3030 18.3303	6.9451	2.98507	1052.4	87615.9 88141.3 88668.3
341 116281 39651821 18.4662 6 9864 2.93255 1071.3 91326.9 342 116964 40001688 18.4932 6.9932 2.92398 1074.4 91863.3 343 117649 40353607 18.6203 7.0000 2.91545 1077.6 92401.3 344 118336 40707584 18.5472 7.0068 2.96698 1080.7 92940.9 345 119025 41063625 18.5742 7.0136 2.89855 1083.8 93482.6 346 119716 41421736 18.6011 7.0203 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.0°71 2.88184 1090.1 94569.6 348 121104 42144192 18.6548 7.0338 2.87356 1093.3 95114.9	338 339	114244	38614472 38958219	18.3848	6.9658 6.9727	2.95858	1061.9	89727.0
345 119025 41063625 18.5742 7.0136 2.89855 1083.8 93482 c 346 119716 41421736 18.6011 7.0203 2.89017 1087.0 94024.7 347 120409 41781923 18.6279 7.021 2.88184 1090.1 94569.0 348 121104 42144192 18.6548 7.0338 2.87356 1093.3 95114.9	341 342	116281 116964 117649	39651821 40001688 40353607	18.4662 18.4932 18. 5 203	6 9864 6 9932 7 0000	2.93255 2.92398 2.91545	1071.3 1074.4 1077.6	91326.9 91863.3 92401.3
348 121104 42144192 18.6548 7.0338 2.87356 1093.3 95114.9	345 346	119025	41063625	18.5742 18.6011	7.0136	2.89855	1083.8 1087.0	92940.9 93482 0 94024.7
	348 349	121104	42144192 42508549	18.6548 18.6815	7.0338 7.0406	2.87356	1093.3 1096.4	94569.0 95114.9 95662.3 96211.3

Numbers (351 to 400), Squares, Cubes, Square Roots, Cube Roots, 261 Reciprocals, Circumferences and Circular Areas

N	\mathbf{N}^2	N ³	Ä	∛Ñ	1000 N	πN	$\frac{\pi N^2}{4}$
351 352 353	123201 123904 124609	43243551 43614208 43986977	18.7350 18.7617 18.7883	7.0540 7.0607 7.0674	2.84900 2.84091 2.83286	1102.7 1105.8 1109.0	96761.8 97314.0 97867.7
354 355 356	125316 126025 126736	44361864 44738875 45118016	18 8149 18.8414 18.8680	7.0740 7.0807 7.0873	2.82486 2.81690 2.80899	1112.1 1115.3 1118.4	98423.0 98979.8 99538.2
357 358 359	127449 128164 128881	45499293 45882712 46268279	18.8944 18.9209 18.9473	7.0940 7.1006 7.1072	2.80112 2.79330 2.78552	1121.5 1124.7 1127 8	100098 100660 101223
360	129600	46656000	18 9737	7 1138	2 77778	1131.0	101788
361 362 363	130321 131044 131769	47045881 47437928 47832147	19.0000 19.0263 19.0526	7.1204 7.1269 7.1335	2.77008 2.76243 2.75482	1134.1 1137.3 1140.4	102354 102922 103491
364 365	132496 133225	48228544 48627125	19.0788 19.1050	7.1400 7.1466	2 74725 2 73973	1143.5	104062 104635
366 367 368	133956 134689 135424	49027896 49430863 49836032	19.1311 19.1572 19.1833	7.1531 7.1596 7.1661	2.73224 2.72480 2.71739	1149.8 1153.0 1156.1	105209 105785 106362
3 ⁶⁹ _	136161	50243409	19 2354	7 1726	2 71003	$\frac{1159.2}{1162.4}$	106941
371 372	137641 138384	51064811 51478848	19.2614 19.2873	7 1855 7.1920	2 69542 2 68817	1165.5	108103
373 374	139129 139876	51895117 52313624	19.3132 19.3391	7.1984	2.68097 2.67380	1171.8	109272
375 376	140625 141376	52734375 53157376	19.3649 19.3907	7 2112 7.2177	2 66667 2 65957	1178.1	110447
377 378	142129 142884	53582633 54010152	19.4165 19.4422	7.2240	2.65252	1184.4	111628
379 380	143641	54439939 54872000	19 4679	$\frac{7.2368}{7.2432}$	2.63852	1190.7	112815
381	145161	55306341 55742968	19.5192 19.5448	7.2495 7.2558	2.62467	1196 9	114009
383	146689	56181887	19.5704	7.2622	2.61097	1203.2	115209
384 385 386	147456 148225 148996	56623104 57066625 57512456	19.5959 19.6214 19.6469	7.2685 7.2748 7.2811	2.60417 2.59740 2.59067	1206.4 1209 5 1212.7	115812 116416 117021
387 388 389	149769 150544 151321	57960603 58411072 58863869	19.6723 19.6977 19.7231	7.2874 7.2936 7.2999	2 58398 2 57732 2 57069	1215.8 1218.9 1221.1	117628 118237 118847
390	152100	59319000	19.7184	7.3061	2 56410	1225.2	119459
391 392	152881 153664	59776471 60236288	19.7737	7.3124 7.3186	2.55755	1228.4	1 2007 2 1 20687
393 394	154449	61162984	19 8242	7.3248	2.54453	1234.6	121304
395 396	156025 156816	61629875	19.8746	7 · 3372 7 · 3434	2.53165	1240.9 1244.I	122542
397 398 399	157609 158404 159201	62570773 63044792 63521199	19.9249 19.9499 19.9750	7.3496 7.3558 7.3619	2.51889 2.51256 2.50627	1247.2 1250.4 1253.5	123786 124410 125036
400	160000	64000000	20.0000	7.3681	2.50000	1256.6	125664

262 Numbers (401 to 450), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	N ²	N³	Ä	Ä	1000 N	πŊ	$\frac{\pi N^2}{4}$
401 402	160801 161604	64481201 64964808	20.0250 20.0499	7 · 3742 7 · 3803	2.49377 2.48756	1259.8	126293 126923
403	162409 163216	65450827	20.0749	7.3864	2.48139	1266.1	127556
404 405	164025	65939264 66430125	20 1246	7.3925	2.47525 2.46914	1269.2	128190
406	164836	66923416	20.1494	7.4047	2.46305	1275.5	129462
407 408	165649 166464	67419143	20.1742	7.4108 7.4169	2 45700 2 .45098	1278.6	130100 130741
409	167281	68417929	20 2237	7 4229	2 44499	1284.9	131382
410	168100	68921000	20 2485	7 . 4 290	2 43902	1288.1	132025
411	168921	69426531	20.2731	7 - 4350	2.43309	1291.2	132670
412	169744	69934528 70444997	20.2978	7.4410	2.42718	1294.3	133317 133965
414	171396	70957944	20 3470	7 4530	2.41546	1300.6	134614
415	172225	71473375	20.3715	7.4590	2.40964	1303.8	135265
416 417	173056	71991296	20.3961	7.4650	2.40385	1306.9	135918
418	173009	73034632	20.4450	7.4770	2.39.34	1313.2	137228
419	175561	73560059	20.4695	7.4829	2.38664	1316 3	137885
420	176400	74088000	20.4939	7.4889	2 38095	1319 5	_13 ⁹ 54 <u>4</u>
42I 422	177241	74618461 75151448	20.5183	7.4948	2.37530	1322.6 1325.8	139205 139867
423	178929	75686967	20.5670	7.5067	2.36407	1328.9	140531
424	179776	76225024	20.5913	7.5126	2.35849	1332.0	141196
425 426	180625	76765625 77308776	20 6155 20.6398	7.5185 7.5244	2.35294	1335 2	141863 142531
427	182329	77854483	20 6640	7.5302	2.34192	1341.5	143201
428	183184	78402752	20.6882	7.5361	2.33645	1344 6	143872
429	184041	_78953589_	20.7123	7.5420	2.33100	1347 - 7	144545
430	184900	79507000 80062991	20.7364	7.5478 7.5537	2.32558	1350.9	145220
431	186624	80621568	20.7846	7-5595	2 31482	1357.2	145590
433	187489	81182737	20.8087	7.5654	2.30947	1360.3	147254
434	188356	81746504	20.8327	7.5712 7.5770	2.30415	1363.5 1366.6	147934
435 436	189225 190096	82312875 82881856	20.8806	7.5828	2.29358	1369.7	148617 149301
437	190969	83453453	20.9045	7.5886	2.28833	1372.9	149987
438	191844	84027672	20.9284	7 . 5944	2.28311	1376.0	150674
439 440	192721	84604519	20 9523	7.6001 7.6059	2.27790	1379.2	151363
441	194481	85766121	21.0000	7.6117	2.26757	1385.4	152745
442	195364	86350888	21.0238	7.6174	2.26244	1388.6	153439
443	196249	86938307	21.0476	7.6232	2.25734	1391.7	154134
444 445	197136 198025	87528384 88121125	21.0713	7.6289 7.6346	2.25225	1394.9	154830 155528
446	198916	88716536	21.1187	7.6403	2.24215	1401.2	156228
447	199809	89314623	21.1424	7.6460	2.23714	1404.3	156930
448 449	200704 201601	89915392 90518849	21.1660 21.1896	7.6517	2.23214	1407.4	157633 158337
450	202500	91125000	21.2132	7.6631	2.22222	1413.7	159043

Numbers (451 to 500), Squares, Cubes, Square Roots, Cube Roots, 263 Reciprocals, Circumferences and Circular Areas

N	N^2	N_3	Ä	√N	1000 N	πN	$\frac{\pi N^2}{4}$
	202401	91733851	27 0.68	7.6688	2 21722	7475.0	
451 452	203401 204304	91733351	21 . 2368 21 . 2603	7.6744	2.21730	1416 9	159751 160460
453	205209	92959677	21.2838	7.6801	2.20751	1423.1	161171
454	206116	93576664	21.3073	7.6857	2 20264	1426 3	161883
455	207025	94196375	21.3307	7.6914	2.19780	1429.4	162597
456	207936	94818816	21.3542	7.6970	2.19298	1432.6	163313
457	208849	95443993	21.3776	7.7026	2.18818	1435.7	164030
458 459	209764 - 210681	96702579 96702579	21.4243	7.7082	2.18341 2.17865	1438 9	164748 165468
460	211600	97336000	21.4476	7.7194	2.17391	1445.1	166190
461	212521	97972181	21.4709	7.7250	2 16420	1448.3	166914
462	213444	98611128	21 4942	7.7306	2.16450	1451.4	167639
463	214369	99252847	21.5174	7.7362	2.15983	1454.6	168365
464	215296	99897344	21.5407	7.7418	2.15517	1457.7	169093
465	216225	100544625	21.5639	7.7473	2.15054	1460.8	169823
466	217156	101194696	21.5870	7.7529	2.14592	1464.0	170554
467 468	218089	101847563	21,6102	7 7584	2.14133	1467.1	171287
469	219961	103161709	21.6564	7.7695	2.13220	1473 4	172757
470	220900	103823000	21.6795	7.7750	2.12766	1476.5	173494
471	221841	104487111	21.7025	7.7805	2.1231.1	1479.7	174234
472	222784	105154048	21.7256	7.7860	2.11864	1482.8	174974
473	223729	105823817	21.7486	7.7915	2.11417	1486.0	175716
474	224676 225625	106496424 107171875	21.7715	7.7970	2.10971	1489.1	176460
475 476	226576	107850176	21.8174	7.8023	2,10084	1492.3	177205
477	227529	108531333	21.8403	7.8134	2.09644	1498.5	178701
478	228484	109215352	21.8632	7.8188	2.09205	1501.7	179451
479	229441	109902239	21.8861	7.8243	2.08768	1504.8	180203
480	230400	110592000	21 9089	7 8297	2 08333	1508.0	180956
481	231361	111284641	21.9317	7.8352	2.07900	1511.1	181711
482 483	232324 233289	111980168	21.9545	7.8406 7.8460	2.07469	1514.3	182467
484	234256	113379904	22.0000	7.8514	2.06612	1520.5	183984
485	235225	114084125	22.0227	7.8568	2.06186	1523.7	184745
486	236196	114791256	22.0454	7.8622	2.05761	1526.8	185508
487	237169	115501303	22.0681	7.8676	2.05339	1530.0	186272
488	238144	116214272	22.0907	7.8730	2.04918	1533.1	187038
489	239121	116930169	22.1133	7.8784	2 .04499	1536.2	187805
490	240100	117649000	22.1359	7.8891	2.03666	1539.4	
491 492	242064	119095488	22.1505	7.8944	2.03000	1542.5	189345
493	243049	119823157	22.2036	7.8998	2.02840	1548.8	190890
494	244036	120553784	22.2261	7.9051	2.02429	1551.9	191665
495	245025	121287375	22.2486	7.9105	2.02020	1555.1	192442
496	246016	122023936	22.2711	7.9158	2.01613	1558.2	193221
497 498	247009	122763473	22.2935	7.9211	2.01207	1561.4	194000
499	249001	123505992	22.3159	7.9204	2.00401	1567.7	194782
500	250000	12500000	22.3607	7.9370	2.00000	1570.8	196350
				1		1 7	2 00

264 Numbers (501 to 550), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	\mathbb{N}^2	N^3	\sqrt{N}	∛Ñ	1000 N	πN	$\frac{\pi N^2}{4}$
501 502	251001 252004	125751501	22 3830 22 4054	7 9423 7 9476	1.99601	1573.9	197136 197923
5°3	253009	127263527	22.4277	7.9528	1.98807	1580.2	198713
5°4	254016	128024064	22.4499	7.9581	1.98413	1583.4	199504
5°5	255025	128787625	22.4722	7.9934	1.98020	1586.5	200 <i>2</i> 96
506 507 508	256036 257049 258064	129554216 130323843 131096512	22.4944 22.5167 22.5389	7.9686 7.9739 7.9791	1.97629 1.97239 1.96850	1589.7 1592.8 1595.9	201090 201886 202683 203482
509	259081	131872229	22 5610 22 5832	7_9843 7_9896	1 96464 1 96678	1599.1	204282
511	261121	133432831	22.6053	7.9948	1.95695	1605 4	205084
512	262144	134217728	22.6274	8 0000	1.95312	1608.5	205887
513	263169	135005697	22.6495	8.0052	1.94932	1611.6	206692
514	264196	135796741	22 6716	8.0104	1.91553	1614.8	207499
515	265225	136590875	22.6936	8.0156	1.94175	1617.9	208307
516	266256	137388096	22.7156	8.0208	1.93798	1621.1	209117
517	267289	138188413	22 7376	8 0260	1.93424	1624.2	209928
518	268324	138991832	22.7596	8.0311	1.93050	1627 3	210741
519	269361	139798359	22 7816	8.0363	1.92678	1630 5	211556
520	270400	1.40000000	22 8035	8 0415	1.92308	1633 6	212372
521	271441	141420761	22 8254	8.0517	1 91939	1636 8	213189
522	272484	142236648	22 8473		3 91571	1639 9	214008
523	273529	143055667	22 8692		1 91205	1643 1	214829
524	274576	143877824	22.8910	8 0620	1.908.40	1646.2	215651
525	275625	144703125	22.9129	8 0671	1.90476	1649.3	216475
526	276676	145531576	22.9347	8 0723	1.90114	1652.5	217301
527	277729	146363183	22 9565	8 0774	1 89753	1655 6	218128
528	278784	147197952	22 9783	8.0825	1.89394	1658.8	218956
529	279841	148035889	23 0000	8.0876	1 89036	1661.9	219787
530 531	280900	148877000	23 0217	8 0927 8 0978	1 88679 1 88324	1665.0	220618
53 ²	283024	150568768	23.0051	8 1028	1 87970	1671 3	222287
533	284089	151419437	23.0808	8.1079	1.87617	1674.5	223123
534	285156	152273304	23.1084	8.1130	1.87266	1677.6	223961
535	286225	153130375	23.1301	8.1180	1.86916	1680.8	224801
536	287296	153990656	23.1517	8.1231	1.86567	1683.9	225642
537	288369	154854153	23.1733	8.1281	1.86220	1687.0	226484
538	289444	155720872	23.1948	8.1332	1.85874	1690.2	227329
539	290521	156590819	23.2164	8.1382	1.85529	1693.3	228175
540	291600	157464000	23 2379	8 1433	1.85185	1696_5	229022
541	292681	158340421	23 · 2594	8.1483	1.84843	1699.6	229871
542	293764	159220088	23 · 2809	8.1533	1.84502	1702.7	230722
543	294849	160103007	23 · 3024	8.1583	1.84162	1705.9	231574
544	295936	160989184	23.3238	8.1633	1.83824	1709.0	232428
545	297025	161878625	23.3452	8.1683	1.83486	1712.2	233283
546	298116	162771336	23.3666	8.1733	1.83150	1715.3	234140
547	299209	163667323	23.3880	8.1783	1 82815	1718.5	234998
548	300304	164566592	23.4094	8.1833	1.82482	1721.6	235858
549	301401	165469149	23.4307	8.1882	1.82149	1724.7	236720
550	302500	166375000	23.4521	8 1932	1.81818	1727.9	237583

Numbers (551 to 600), Squares, Cubes, Square Roots, Cube Roots, 265 Reciprocals, Circumferences and Circular Areas

N	N ²	N_3	Ä	√N	1003 N	πΝ	$\frac{\pi N^2}{4}$
551	303601	167284151	23 4734	8,1982	1 81488	1731.0	238448
552	304704	168196608	23 - 4947	8.2031	1 81159	1734.2	239314
553	305809	169112377	23.5160	8.2081	1.80832	1737.3	240182
554 555	306916	170031464	23.5372	8.2130	1.80505 1 S0180	1740.4	241051 241922
556	309136	171879616	23.5797	8.2229	1 79856	1746.7	242795
557	310249	172808693	23.6008	8 2278	1 79533	1749 9	243669
558	311364	173741112	23.6220	8.2327	1.79211	1753 0	244545
559 5 60	312481	174676879	23 6432	8 2377	1 78891	1756 2	245422
561	313600	175616000	23 6643	8 2426	1 78253	1759 3	246301
562	314/21	177504328	23.7065	8 2524	I 77936	1765 6	248063
563	316969	178453547	23.7276	8.2573	1 77620	1768.7	248947
564	318096	179406144	23.7487	8.2621	1.77305	1771.9	249832
565	319225	180362125	23.7697	8 2670	1,76991	1775.0	250719
566 567	320356	181321496	23.7908	8.2719	1.76678	1778.1	251607 252497
568	322024	183250432	23.8328	8 2816	1 76056	1784.4	253388
569	323761	184220009	23 8537	8 2865	1 75747	1787 6	254281
570_	324900	185193000	23 8747_	8 2913	1 75439	1790.7	255176
571	320041	186169411	23.8956	8.2962	1 75131	1793 9	256072
572 573	327184	187149248 188132517	23 9165 23 9374	8 3010	1 74825 1 74520	1797.0	256970 257869
574	329476	189119224	23 9583	8 3107	1.74216	1803 3	258770
575	330625	190109375	23 9792	8 3155	1 73913	1806.4	259672
576	331776	191102976	24 0000	8.3203	1.73611	1809.6	260576
577	332929	192100033	24 0208 24 0416	8 3251	1.73310	1812 7	261482 262389
578 579	33408 4 335241	194104539	24 0621	8 3300	1.73010 1.72712	1819 0	263298
580	330400	195112000	24 0832	8 3396	1.72414	1822 T	264208
581	337561	196122911	24 . 1039	8 3443	1.72117	1825 3	265120
582	338724	197137368	24.1247	8 3491	1.71821	1828 4	266033
583 584	339889	198155287	24 1454 24 1661	8 3539 8 3587	1.71527	1831.6	266948 267865
504 585	341056 342225	200201625	24.1868	8.3634	1.71233	1837.8	268783
586	343396	201230056	24.2074	8 3682	1.70649	1841.0	269701
587	344569	202262003	24 228t	8 3730	.1.70358	1844.1	270624
588 589	345744	203297472	24 2487 24 2693	8.3777	1.70068 1.69779	1847.3 1850 4	271547 272471
590	348100	204336469	24 2899	8 3825 8 3872	1 69492	1853.5	273397
591	349281	206425071	24 3105	8.3919	1.69205	1856.7	274325
592	350464	207474688	24.3311	8.3967	1.68919	1859.8	275254
593	351649	208527857	24 3516	8.4014	1.68634	1863.0	276184
594	352836	209584584	24.3721	8.4061	1.68350 1.68067	1866.1	277117
595 596	354025 355216	210644875 211708736	24.3926 24.4131	8.4108 8.4155	1.67785	1872.4	278051
597	356409	212776173	24.4336	8.4202	1.67504	1875.5	279923
598	357604	213847192	24 4540	8.4249	1.67224	1878.7	280862
599	358801	214921799	24 4745	8 4296	1 66945	1881.8	281802
600	360000	216000000	24 4949	8.4343	1 66667	1885 0	282743

266 Numbers (601 to 650), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	N ²	N ₃	Ä	∛Ñ	1000 N ,	πN	$\frac{\pi N^2}{4}$
601	361201	217081801	24.5153	8.4390	1 66389	1888 г	283687
602	362404	218167208	24.5357	8.4437	1 66113	1891 2	284631
603	363609 364816	219256227	24.5561	8 4484	1.65837	1894.4	285578 286526
605	366025	221445125	24 5764 24 5967	8.4530 8 4577	1 65563 1 65289	1900.7	287475
606	367236	222545016	24.6171	8 4623	1 65017	1903.8	288426
607	368449	223648543	24.6374	8.4670	1 64745	1907 0	289379
608	369664	224755712	24.6577	8 4716	1.64474	1910 1	290333
609	370881	225866529	24 6779	8 4763	1.64204	1913 2	291 e 89
610	372100	226981000	24.6982	8 4809	1 63934	1916 4	292247
611	373321	228099131	24.7184	8 4856 8 4902	1.63666	1919 5	293206 294166
613	374544 375769	229220928 230346397	24.7386 24.7588	8.4948	1 63399 1 63132	1925 8	294100
614	376996	231475544	24.7790	8 4994	1.62866	1928.9	296092
615	378225	232608375	24.7992	8.5040	1.62602	1932.1	297057
616	379456	233744896	24.8193	8 5086	1.62338	1935.2	298024
617	380689	234885113	24.8395	8 7132	1 62075	1938 4	298992
618	381924	236029032	24.8596	8.5178	1 61812	1941.5	299962
619	383161	237176659	24.8797	8.5224	1 61551	1944.7	300934
621	384400	238328000	24.8998	8.5270	1.61290	1947 8	301907
622	385641 386884	239483061 240641848	24.9199 24.9399	8.5316 8.5362	1.60772	1950.9 1954.1	302882 303858
623	388129	241804367	24.9600	8.5408	1.60514	1957.2	304836
624	389376	242970624	24.9800	8.5453	1 60256	1960.4	305815
625	390625	244140625	25 0000	8.5499	1.60000	1963.5	306796
626	391876	245314376	25.0200	8 5544	1.59744	1966 6	307779
627	39 129	246491883	25.0400	8 5590	1.59490	1969.8	308763
629	394384 395641	247673152 248858189	25.0599	8.5635 8.5681	1.59236	1972 9 1976 I	309748 310736
630	396900	250047000	25.0998	8 5726	1.58730	1979 2	311725
6, I	398161	25123959	25.1197	8 5772	1.58479	1982.4	312715
6 2	399424	252435968	25 1396	8.5817	1.58228	1985.5	313707
633	400689	253636137	25.1595	8.5862	1.57978	1988.6	314700
634	401956	254840104 256047875	25.1794	8.5907	1.57729	1991.8	315696
635 636	403225	257259456	25.1992 25.2190	8.5952	1.57480	1994.9	316692 317690
637	405769	258474853	25.2389	8 6043	1.56986	2001.2	318690
638	407044	259694072	25.2587	8.6088	1.56740	2004.3	319692
639	408321	260917119	25.2784	8 6132	1 56495	2007.5	320695
640	409600	26 1 14000	25.2982	8.6177	I 56250	2010.6	321699
641	410881	2633 4721	25.3180	8 6222	1.56006	2013.8	322705
642 643	413449	264609288 265047707	25.3377 25.3574	8 6267 8 6312	1 55763	2016.9	323713
644	414736	267089904	25.3772	8 6357	1.55280	2023.2	325733
645	416025	2683 6125	25.3969	8.6401	1.55039	2026.3	325745
646	417316	269586136	25.4165	8.6446	1.54799	2029.5	327759
647	418609	270840023	25.4362	8.6490	1.54560	2032.6	328775
648	419904	272097792	25.4558	8.6535	1.54321	2035.8	329792
649 650	421201	273359449	25.4755 25.4951	8.6579	1.54083	2038.9	330810
1 050	422500	2/4025000	25.4951	0.0024	1.53040	2042.0	351031

Numbers (651 to 700), Squares, Cubes, Square Roots, Cube Roots, 267 Reciprocals, Circumferences and Circular Areas

N	N ²	N³	\sqrt{N}	∛Ñ	1000 N	πN	$\frac{\pi N^2}{4}$
651 652	423801 425104	275894451 277167808	25.5147 25.5343	8.6668 8.6713	1.53610	2045.2	332853 333876
653	426409	278445077 279726264	25.5539	8 6757 8.6801	1.53139	2051.5	334901
654 655 656	427716 429025 430336	281011375 282300416	25 5734 25 5930 25.6125	8.6845 8.6890	1.52905 1.52672 1.52439	2054.6 2057.7 2060.9	335927 336955 337985
657	431649	283593393	25.6320	8 6934	1.52207	2064.0	339016
658	432964	284890312	25.6515	8 6978	1.51976	2067.2	340049
659 660	434281	286191179 287496000	25 6710	8 7022 8 7066	1.51745	2070.3	341084
661	436921	288804781	25 7099	8.7110	1.51286	2076.6	343157
662	438244	290117528	25 7294	8 7154	1.51057	2079.7	344196
663	439569	291434247	25 7488	8 7198	1.50830	2082.9	345237
664	440896	292754944	25.7682	8 7241	1.50602	2086.0	346279
665	442225	294079625	25.7876	8 7285	1.50376	2089.2	347323
666	443556	295408296	25.8070	8 7329	1.50150	2092.3	348368
667	444889	296740963	25 8263	8 7373	1.49925	2095 4	349415
668	446224	298077632	25 8457	8 7416	1.49701	2098.6	350464
669	447561	299418309	25 8650	8 7460	1.49477	2101.7	351514
670	448900	300763000	25 8844	8.7503	1 49254	2104.9	352565
671	450241	302111711	25.9037	8 7547	1.49031	2108.0	353618
672	451584	303464448	25.9230	8 7590	1.48810	2111.2	354673
673	452929	304821217	25.9422	8.7634	1.48588	2114.3	355730
674	454276	306182024	25 9615	8.7677	1 48368	2117.4	356788
675	455625	307546875	25 9808	8.7721	1.48148	2120.6	357847
676	456976	308915776	26 0000	8.7764	1.47929	2123.7	358908
677	458329	310288733	26.0192	8 7807	1.47711	2126.9	359971
678	459684	311665752	26.0384	8 7850	1.47493	2130.0	361035
679	461041	313046839	26.0576	8 7893	1.47275	2133 I	362101
680	462400	314432000	26 0768	8.7937	1.47059	2136.3	363168
681	463761	315821241	26.0960	8.7980	1.46843	2139.4	364237
682	465124	317214568	26.1151	8.8023	1.46623	2142.6	365308
683	466489	318611987	26.1343	8.8066	1.46413	2145.7	366380
684	467856	320013504	26.1534	8 8109	1.46199	2148.9	367453
685	469225	321419125	26.1725	8.8152	1.45985	2152 0	368528
686	470596	322828856	26.1916	8 8194	1.45773	2155.1	369605
687	471969	324242703	26.2107	8.8237	1.45560	2158.3	370684
688	473344	325660672	26.2298	8.8280	1.45349	2161.4	371764
689	474721	327082769	26.2488	8.8323	1.45138	2164.6	372845
690	476100	32 509000	26 2679	8.8366	1.44928	2167.7	373928
691	477481	329939371	26.2869	8 8408	1.44718	2170.8	375013
692	478864	331373888	26.3059	8 8451	1.44509	2174.0	376099
693	480249	332812557	26.3249	8 8493	1.44300	2177.1	377187
694	481636	334255384	26.3439	8 8536	1.44092	2180.3	378276
695	483025	335702375	26.3629	8 8578	1.43885	2183.4	379367
696	484416	337153536	26.3818	8 8621	1.43678	2186.6	380459
697	485809	338608873	26.4008	8 8663	1.43472	2189.7	381554
698	487204	340068392	26.4197	8 8706	1.43267	2192.8	382649
699	488601	341532099	26.4386	8 8748	1.43062	2196.0	383746
700	490000	343000000	26.4575	8.8790	1.42857	2199.1	384845

268 Numbers (701 to 750), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	N ²	N ₃	Ä	∛Ñ	1000 N	πN	$\frac{\pi N^2}{4}$
701	491401	344472101	26.4764	8.8833	1.42653	2202.3	385945
702	492804	345948408	26.4953	8.8875	1.42450	2205.4	387047
703	494209	347428927	26.5141	8.8917	1.42248	2208.5	388151
704	495616	348913664	26.5330	8.8959	1.42046	2211.7	389256
705	497025	350402625	26.5518	8.9001	1.41844	2214 8	390363
706	498436	351895816	26.5707	8 9043	1.41643	2218.0	391471
707	499849	353393243	26.5895	8.9085	1.41443	2221.1	392580
708	501264	354894912	26.6083	8.9127	1.41243	2224.3	393692
709	502681	356400829	26.6271	8.9169	1.41044	2227.4	394805
710	504100	357911000	26 6458	8.9211	1.40845	2230.5	395919
711	505521	359425431	26.6646	8.9253	1.40647	2233.7	397035
712	506944	360944128	26.6833	8.9295	1.40449	2236.8	398153
713	508369	362467097	26.7021	8.9337	1.40253	2240.0	399272
714	509796	363994344	26.7208	8.9378	1.40056	2243.I	400393
715	511225	365525875	26.7395	8.9420	1.39860	2246.2	401515
716	512656	367061696	26.7582	8.9462	1.39665	2249.4	402639
717	514089	368601813	26.7769	8.9503	1.39470	2252.5	403765
718	515524	370146232	26.7955	8.9545	1.39276	2255.7	404892
719	516961	371694959	26.8142	8.9587	1.39082	2258.8	406020
720	518400	373248000	26.8328	8.96.8	1.38889	2261 9	407150
721	519841	374805361	26.8514	8.9670	1.38696	2265.1	408282
722	521284	376367048	26.8701	8.9711	1.38504	2268.2	409416
723	522729	377933067	26.8887	8.9752	1.38313	2271.4	410550
724	524176	379503424	26.9072	8 9794	1.38122	2274.5	411687
725	525625	381078125	26.9258	8 9835	1.37931	2277.7	412825
726	527076	382657176	26.9444	8 9876	1.37741	2280.8	413965
727	528529	384240583	26.9629	8.9918	1.37552	2283 9	415106
728	529984	385828352	26.9815	8.9959	1.37363	2287.1	416248
729	531441	387420489	27.0000	9.0000	1.37174	2290.2	417393
730	532900	389017000	27.0185	9.0041	1.36936	2293.4	418539
731	534361	390617891	27.0370	9.0082	1.36799	2296.5	419686
732	535824	392223168	27.0555	9.0123	1.36612	2299.7	42083 5
733	537289	393832837	27.0740	9.0164	1.36426	2302.8	421986
734	538756	395446904	27.0924	9.0205	1.36240	2305.9	423138
735	540225	397065375	27.1109	9.0246	1.36054	2309.1	424293
736	541696	398688256	27.1293	9.0287	1.35870	2312.2	425448
737	543169	400315553	27.1477	9.0328	1.35685	2315.4	426604
738	544644	401947272	27.1662	9.0369	1.35301	2318.5	427762
739	546121	403583419	27.1646	9.0410	1.35318	2321.6	428922
740	547600	405224000	27.2029	9.0450	1.35133	2324.8	430084
741	549081	406869021	27.2213	9.0491	1.34953	2327.9	431247
742	550564	408518488	27.2397	9.0532	1.34771	2331.1	432412
743	552049	410172407	27.2580	9.0572	1.34590	2334.2	433578
744	553536	411830784	27.2764	9.0613	1.34409	2337.3	434746
745	555025	413493625	27.2947	9.0654	1.34228	2340.5	43<916
746	556516	415160936	27.3130	9.0694	1.34048	2343.6	437087
747	558009	416832723	27.3313	9.0735	1 33869	2346.8	438259
748	559504	418508992	27.3496	9.0775	1.33690	2349.9	439433
749	561001	420189749	27.3679	9.0816	1.33511	2353.1	440609
750	562500	421875000	27.3861	9.0856	1.33333	2356.2	441786

Numbers (751 to 800), Squares, Cubes, Square Roots, Cube Roots, 269 Reciprocals, Circumferences and Circular Areas

N	\mathbf{N}^2	N ³	Ä	√N	1000 N	πN	$\frac{\pi N^2}{4}$
751	564001	423564751	27.4044	9.0896	1.33156	2359.3	442965
752	565504	425259008	27.4226	9.0937	1.32979	2362.5	444146
753	567009	420957777	27.4408	9.0977	1.32802	2365.6	445328
754	568516	428661064	27.4591	9.1017	1.32626	2368.8	446511
755 756	570025 571536	430368875	27.4773 27.4955	9.1057	1.32450	2371.9	447697 448883
757	573049	433798093	27.5136	9.1138	1.32100	2378.2	450072
758	574564	435519512	27.5318	9.1178	1.31926	2381.3	451262
759	576581	437245479	27.5500	9.1218	1.31752	2384.5	452453
760	577600	438976000	27 5681	9.1258	1.31579	2387.6	453646
761	579121	440711081	27.5862	9.1298	1.31406	2390.8	454841
762 763	580644 582169	442450728	27.6043 27.6225	9.1338	1.31234 1.31062	2393.9	456037
764	583696	445943744	27.6405	9.13/0	1.30890	2397.0	457234 458434
765	585225	447097125	27.6586	9.1458	1.30719	2403.3	459635
766	586756	449455096	27.6767	9.1498	1.30548	2406.5	460837
767	588289	451217663	27.6948	9.1537	1.30378	2409.6	462042
768	589824	452984832	27.7128	9.1577	1.30208	2412.7	463247
769	591361	454750000	21 7308	9.1617	1.30039	2415 9	464454
770	502000	450533000	27.7489_ 27.7669	$\frac{9.1657}{9.1696}$	1.29870	2419 0	465663 466873
771 772	594441 595984	460099648	27.7849	9.1736	I.29702 I.29534	2425 3	468085
773	597529	461889917	.7.8029	9.1775	1.29366	2428.5	469298
774	599076	463684824	27 8209	9.1815	1.29199	2431.6	470513
775	600625	465484375	27.8388	9.1855	1.20032	2434.7	471730
776	602176	407288570	27.8568	9.1894	1.28866	2437.9	472948
777 778	603729 605284	469097433 470910952	27.8747 27.8927	9.1933	1.28700	2441.0 2444.2	474168 475389
779	656841	472729139	27.9100	9.2012	1.28470	2447.3	476612
780	608400	474552000	27.9285	9.2052	1.28205	2450.4	477836
781	609961	476379541	27.9464	9 2091	1.28041	2453.6	479062
782	611524	478211768	27.9643	9.2130	1.27877	2456.7	480290
783	613089	480048687	27.9821	9.2170	1.27714	2459.9	481519
784	614656	481890304	28.0000	9.2209	1.27551	2463.0	482750
785 786	616225 617796	483736625 485587656	28.0179 28.0357	9.2248 9.2287	1.27389	2406.2 2469.3	483982 485216
787	619369	487443403	28.0535	9 2326	1.27065	2472.4	486451
788	620944	489303872	28.0713	9.2365	1.26904	2475.6	487688
789	622521	491169069	28.0891	9.2404	1.26743	2478 7	488927
790	624100	493039000	28.1069	9.2443	1.26582	2481.9	490167
791	625681	494913671	28.1247	9.2482	1.26422	2485.0	491409
792 793	627264 628849	496793088 498677257	28.1425 28.1603	9.2521	1.26263 1.26103	2488.1 2491.3	492652 4 93897
793	630436	500566184	28.1780	9.2599	1.25945	2494.4	495143
794	632025	502459875	28.1957	9.2638	1.25786	2497.6	496391
796	633616	504358336	28.2135	9.2677	1.25628	2500.7	497641
797	635209	506261573	28.2312	9.2716	1.25471	2503.8	498892
798	636804	508169592	28.2489	9.2754	1.25313	2507.0	500145
799	638401	510082399	28.2666	$\frac{9.2793}{9.2832}$	1.25156	2510.1	501399
800	640000	512000000	20.2043	9.2032	1.25000	2513.3	502655

270 Numbers (801 to 850), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	N ²	N ₃	Ä	∛Ñ	1000 N	πN	$\frac{\pi N^2}{4}$
801 802	641601 643204	513922401 515849608	28.3019 28.3196	9.2870	1.24844	2516.4 2519.6	503912
803	644809	517781627	28.3373	9.2948	1.24533	2522.7	506432
804	646416	519718464	28.3549	9.2986		2525.8	507694
805	648025	521660125	28.3725	9.3025		2529.0	508958
806	649636	523606616	28.3901	9.3063	1.24069	2532.1	510223
807	651249	525557943	28.4077	9.3102	1.23916	2535.3	511490
808	652864	527514112	28.4253	9.3140	1.23762	2538.4	512758
809	654481	539475129	28.4429	9.3179	1.23609	2541.5	514028
811	657721	533411731	28.4781	9·3 ² 55	1.23305	2547.8	516573
812	659344	535387328	28.4956	9·3 ² 94	1.23153	2551.0	517848
813	660969	537367797	28.5132	9·333 ²	1.23001	2554.1	519124
814	662596	539353144	28.5307	9.3370	1.22850	2557-3	520402
815	664225	541343375	28.5482	9.3408	1.22699	2560.4	521681
816	665856	543338496	28.5657	9.3447	1.22549	2563.5	522962
817	667489	545338513	28.5832	9.3485	1.22399	2566.7	524245
818	669124	547343432	28.6007	9.3523	1.22249	2569.8	525529
819	670761	549353259	28.6182	9.3561	1.22100	2573.0	526814
820	672400	551368000	28.6356	9 3599	1.21951	2576.1	528102
821	674041	553387661	28.6531	9.3637 9.3675 9.3713	1.21803	2579.2	529391
822	675684	555412248	28.6705		1.21655	2582.4	530681
823	677329	557441767	28.6880		1.21507	2585.5	531973
824	678976	559476224	28.7054	9.3751	1.21359	2588.7	533267
825	680625	561515625	28.7228	9.3789	1.21212	2591.8	534562
826	682276	563559976	28.7402	9.3827	1.21065	2595.0	535858
827	683929	565609283	28.7576	9.3865	1.20919	2598.1	537157
828	685584	567663552	28.7750	9.3902	1.20773	2601.2	538456
829	687241	569722789	28.7924	9.3940	1.20627	2604.4	539758
830	688900	571787000	28.8097	9.3978	1.20482	2607.5	541061
831	690561	573856191	28.8271	9.4016	1.20337	2610.7	542365
832	692224	575930368	28.8444	9.4053	1.20192	2613.8	543671
833	693889	578009537	28.8617	9.4091	1.20048	2616.9	544979
834	695556	580093704	28.8791	9.4129	1.19904	2620.1	546288
835	697225	582182875	28.8964	9.4166	1.19760	2623.2	547599
836	698896	584277056	28.9137	9.4204	1.19617	2626.4	548912
837	700569	586376253	28.9310	9.4241	1.19474	2629.5	550226
838	702244	588480472	28.9482	9.4279	1.19332	2632.7	551541
839	703921	590589719	28.9655	9.4316	1.19189	2635.8	552858
840	705600	592704000	28.9828	9-4354	1.19048	2638.9	554177
841	707281	594823321	29.0000	9.4391	1.18906	2642.1	555497
842	708964	596947688	29.0172	9.4429	1.18765	2645.2	556819
843	710649	599077107	29.0345	9.4466	1.18624	2648.4	558142
844	712336	601211584	29.0517	9.4503	1.18483	2651.5	55946 7
845	714025	603351125	29.0689	9.4541	1.18343	2654.6	560794
846	715716	605495736	29.0861	9.4578	1.18203	2657.8	562122
847	717409	607645423	29.1033	9.4615	1.18064	2660.9	563452
848	719104	609800192	29.1204	9.4652	1.17925	2664.1	564783
849	720801	611960049	29.1376	9.4690	1.17786	2667.2	566116
850	722500	614125000	29.1548	9.4727	1.17647	2670.4	567450

Numbers (851 to 900), Squares, Cubes, Square Roots, Cube Roots, 271 Reciprocals, Circumferences and Circular Areas

851 852 853	724201 725904	1			N		4
1	725904	616295051	29.1719	9.4764	1.17509	2673.5	568786
	727609	618470208	29.1890	9.4801	1.17371	2676.6 2679.8	570124
854	729316	622835864	29.2233	9.4875	1.17096	2682.9	572803
855 856	731025 732736	625026375 627222016	29.2404 29.2575	9.4912	1.16959	2686 I 2689.2	574146 575490
857	734449	629422793	29.2746	9.4986	1.16686	2692.3	576835
858 859	736164 737881	631628712 633839779	29.2916 29.3087	9.5023 9.5060	1.16550	2695.5 2698 6	578182 579530
860	739600	636056000	29.3258	9 5097	16279	2701.8	580880
861	741321	638277381	29.3428	9.5134	1.16144	2704.9	582232
862 863	743044 744769	640503928 642735647	29.3598 29.3769	9.5171	1.16009	2708.I 2711.2	583585 584940
864	746496	644972544	29.3939	9.5244	1.15741	2714.3	586297
865 866	748225 749956	647214625 649461896	29.4109 29.4279	9.5281	1.15607 1.15473	2717.5 2720.6	587655 589014
867	751689	651714363	29.4449	9.5354	1.15340	2723.8	590375
868 869	753424 753161	653972032 656234909	29.4618 29.4788	9.5391 9.5427	1.15207 1.15075	2726.9 2730 0	591738 593102
870	756900	658503000	29 4958	9.5464	I.14943	2733 :	594468
871	758641	660776311	29.5127	9.5501	1.14811	2736.3	595835
872 873	760384	663054848 665338617	29.5296 29.5466	9·5537 9·5574	1.14679 1.14548	2739.5 2742.6	597204 59857 5
874	763876	667627624	29.5635	9.5610	1.14416	2745.8	599947
875 876	765625 767376	669921875	29.5804 29.5973	9.5647 9.5683	1.14286 1.14155	2748.9 2752.0	601320 602696
877	769129	674526133	29.6142	9.5719	1.14025	2755.2	604073
878 879	770884	676836152 679151439	29.6311 29.6479	9.5756 9.5792	1.13895 1.13766	2758.3 2761.5	605451 606831
880	774400	681472000	29 6648	9 5828	1.13700	2764.6	608212
881	776161	683797841	29.6816	9.5865	1.13507	2767.7	609595
882 883	777924	686128968 688465387	29.6985 29.7153	9.5901 9.5937	1.13379	2770.9 2774.0	610980 612366
884	781456	690807104	29.7321	9.5973	1.13122	2777.2	613754
885 886	783225 784996	693154125 695506456	29.7489 29.7658	9.6010 9.6046	1.12994 1.12867	2780.3 2783.5	615143 616534
887	786769	697864103	29.7825	9.6082	1.12740	2786.6	617927
888 889	788544	700227072	29.7993 29.8161	9.6118	1.12613	2789.7	619321 620717
890	790321	702595369	29 8329	9.6154	1.12360	2792.9 2796.0	622114
891	793881	707347971	29.8496	9.6226	1.12233	2799.2	623513
892 893	795664 797449	709732288	29.8664 29.8831	9.6262 9.6298	1.12108	2802.3 2805.4	624913 626315
894	799236	714516984	29.8998	9.6334	1.11857	2808.6	627718
895 896	801025	716917375	29.9166	9.6370 9.6406	1.11732 1.11607	2811.7 2814 9	629124 630530
897	804609	719323136	29 9333 29 9500	9.6442	1.11483	2818.0	631938
898	806404 808201	724150792	29.9666	9.6477	1.11359	2821.2	633348
899 900	810000	726572699	30.0000	9 6513	1.11235	2824.3	634760

272 Numbers (901 to 950), Squares, Cubes, Square Roots, Cube Roots, Reciprocals, Circumferences and Circular Areas

N	N ²	N ₃	Ä	-3∕N	1000 N	πΝ	$\frac{\pi N^2}{4}$
901	811801	731432701	30 0167	9.6585	1.10988	2830.6	637587
902	813604	733870808	30.0333	9.6620	1.10865	2833.7	639003
903	815409	736314327	30.0500	9.6656	1.10742	2836.9	640421
903 904 905 906	817216 819025 820836	738763264 741217625 743677416	30.0666 30.0832 30.0998	9.6692 9.6727 9.6763	1.10619 1.10497	2840.0 2843.1 2846.3	641840 643261 644683
907 908 909	822649 824464 826281	746142643 748613312 751089429	30.1164 30.1330 30.1496	9.6799 9.6834 9.6870	1.10375 1.10254 1.10132 1.10111	2849.4 2852.6 2855.7	646107 647533 648960
910	828100	753571000	30.1662	9 6905	1.09890	2858 8	650388
911	829921	756058031	30.1828	9 6941	1.09769	2862.0	651818
912	831744	758550528	30.1993	9.6976	1.09649	2865.1	653250
913	833569	761048497	30.2159	9.7012	1.09529	2868.3	654684
914	835396	763551944	30.2324	9.7047	1.09409	2871.4	656118
915	837225	766060875	30.2490	9.7082	1.09290	2874.6	657555
916	839056	768575296	30.2655	9.7118	1.09170	2877.7	658993
917	840889	771095213	30.2820	9.7153	1.09051	2880.8	660433
918	842724	773620632	30.2985	9.7188	1.08932	2884 0	661874
919	844561	776151559	30.3150	9.7224	1.08814	2887 T	663317
920	846400	778688000	30 3315	9 7259	1.08696	2890.3	664761
921	848241	781229961	30.3480	9.7294	1.08578	2893.4	666207
922	850084	783777448	30.3645	9.7329	1.08460	2896.5	667654
923	851929	786330467	30.3809	9.7364	1.08342	2899.7	669103
924	853776	788889024	30.3974	9.7400	1.08225	2902.8	670554
925	855625	791453125	30.4138	9.7435	1.08108	2906.0	672006
926	857476	794022776	30.4302	9.7470	1.07991	2909.1	673460
927	859329	796597983	30.4467	9.7505	1.07875	2912.3	674915
928	861184	799178752	30.4631	9.7540	1.07759	2915.4	676372
929	863041	801765089	30.4795	9.7575	1.07643	2918.5	677831
930	864900	804357000	39 4959	9 7610	1 07527	2921.7	679291
931	866761	806954491	30.5123	9.7645	1.07411	2924 8	680752
932	868624	809557568	30.5287	9.7680	1.07296	2928.0	682216
933	870489	812166237	30.5450	9.7715	1.07181	2931.1	683680
934	872356	814780504	30.5614	9.7750	1.07066	2934.2	685147
935	874225	817400375	30.5778	9.7785	1.06952	2937.4	686615
936	876096	820025856	30.5941	9.7819	1.06838	2940.5	688084
937	877969	822656953	30.6105	9.7854	1.06724	2943.7	689555
938	879844	825293672	30.6268	9.7889	1.06610	2946.8	691028
939	881721	827936019	30.6431	9.7924	1.06496	2950 0	692502
940	883600	830584000	30.6594	9 7959	1 06383	2953 1	693978
941	885481	833237621	30.6757	9 7993	1.06270	2956.2	695455
942	887364	835896888	30.6920	9 8028	1.06157	2959.4	696934
943	889249	838561807	30.7083	9 8063	1.06045	2962.5	698415
944	891136	841232384	30.7246	9.8097	1.05932	2965.7	699897
945	893025	843908625	30.7409	9.8132	1.05820	2968.8	701380
946	894916	846590536	30.7571	9.8167	1.05708	2971.9	702865
947	896809	849278123	30.7734	9.8201	1.05597	2975.1	704352
948	898704	851971392	30.7896	9.8236	1.05485	2978.2	705840
949	900601	854670349	30.8058	9.8270	1.05374	2981.4	707330
950	902500	857375000	30.8221	9.8305	1.05263	2984.5	708822

Numbers (951 to 1000), Squares, Cubes, Square Roots, Cube Roots, 273 Reciprocals, Circumferences and Circular Areas

N	N ²	N ₃	\sqrt{N}	Ä	1000 N	πN	#N ²
951	904401	860085351	30 8383	9 8339	1.05152	2987.7	710315
952	906304	862801408	30.8545	9.8374	1.05042	2990.8	711809
953	908209	865523177	30.8707	9 8408	1.04932	2993.9	713306
954 955	910116	868250664	30 8869	9 8443	1.04822	2997.1	714803
956	913936	873722816	30.9192	9.8511	1.04603	3000.2	716303
957	915849	876467493	30.9354	9.8546	1.04493	3006.5	719306
958	917764	879217912	30.9516	9.8580	1.04384	3009.6	720810
959	919681	881974079	30.9677	9 8614	1 04275	3012 8	722316
960	921600	884736000	30 9839	9.8648	1 04167	3015 9	72,823
961 962	923521	887503681	31.0000	9.8683	1.04058	3019.1	725332
963	927369	893056347	31.0322	9.8751	1.03950	3025 4	728354
964	929296	895841344	31.0483	9.8785	1.03734	3028.5	729867
965	931225	898632125	31.0644	9 8819	1.03627	3031.6	731382
966	933156	901428696	31.0805	9.8854	1.03520	3034.8	732899
967 968	935089	904231063	31.0966	9.8888	1.03413	3037.9	734417
966 969	937024 938961	907039232	31.1127	9 8922	1.03306	3044.2	735937
970	9.10000	912073000	31.1448	9 8990	1.03093	3047.3	7,28981
971	942841	915493611	31.1609	9 9024	1.02987	3050 5	740506
972	944784	918330048	31.1769	9 9058	1.02881	3053.6	742032
973	946729	921167317	31.1929	9.9092	1.02775	3056.8	743559
974 975	948676 950625	924010424 926859375	31.2090 31.2250	9.9126	1.02669	3059.9 3063.1	745088
976	952576	929714176	31.2410	9.9194	1.02304	3066 2	748151
977	954529	932574833	31.2570	9.9227	1.02354	3069.3	749685
978	956484	935441352	31.2730	9.9261	1.02249	3072.5	751221
979	958441	938313739	31.2890	9.9295	1.02145	3075.6	752758
980	960400	941192000	31 3050	9.9329	1.02041	3078.8	754296
981 982	962361 964324	944076141 946966168	31.3209 31.3369	9 9363 9 9396	1.01937	3081.9	755837 757378
983	966289	949862087	31.3528	9.9430	1.01729	3088.2	758922
984	968256	952763904	31.3688	9.9464	1.01626	3091.3	760466
985	970225	955671625	31.3847	9 - 9497	1.01523	3094.5	762013
986	972196	958585250	31.4000	9.9531	1.01420	3097.6	763561
987 988	974169 976144	961504803 964430272	31.4166	9 9565 9.9598	1.01317	3100.8	765111 766662
989	978121	967361669	31.4484	9 9632	1 01112	3107.0	768214
990	980100	970299000	31 4643	9 9666	1.01010	3110.2	769769
991	982081	973242271	31.4802	9 9699	80000.1	3113.3	771325
992	984064	976191488	31.4960	9.9733	1.00806	3116.5	772882
993 994	986049 988036	979146657	31.5119	9.9766	1.00705 1.00604	3119.6	774441 776002
994	990025	985074875	31.5276	9.9833	1.00503	3122.7	777564
996	992016	988047936	31.5595	9.9866	1.00402	3129.0	779128
997	994009	991026973	31.5753	9.9900	1.00301	3132.2	780693
998	996004	994011992	31.5911	9.9933	I.00200	3135.3	7822 60
1000	1000000	1000000000	31.6228	9 9967	1.00000	3138 5 3141 6	783828 785398
	100000		31.0220	10.0000	1.0000	3141 0	102390

Divide the smaller number b by a, and find c. Then $\sqrt{a^2+b^2}=a+bc$ Values of c

0.00	b/a	0 000	0 001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009
0.02	0.00	0.000	0.0005	0.0010	0.0015	0.0020	0.0025	0.0030	0.0035	0.0040	0.0045
0.03											
0.04											
0.05		•	I .	1	1	P	B	1		ı	
0.06											
0.07											
0.08	1										
0.09											
O.11											
0.12	0.10	0.0499	0.0504	0.0500	0.0514	0.0519	0.0524	0.0529	0.0534	0.0538	0.0543
0.13	0.11	0.0548	0.0553	0.0558	0.0563	0.0568	0.0573	0.0578	0.0583	0.0588	0.0593
0.14	0.12										
0.15	0.13		1						(1 - 1
0.16 0.0795 0.0805 0.0816 0.0815 0.0824 0.0824 0.0834 0.0834 0.0834 0.0834 0.0834 0.0844 0.0849 0.0856 0.0856 0.0868 0.0873 0.0878 0.0883 0.0883 0.0898 0.193 0.0937 0.0917 0.0917 0.0927 0.0937 0.0937 0.0938 0.093 0.0938 0.0917 0.0917 0.0927 0.0937 0.0938 0.0938 0.0938 0.0938 0.0942 0.0942 0.0942 0.0956 0.0966 0.0966 0.0976 0.0976 0.0988 0.0988 0.0938 0.0338 0.0338 0.1338 0.1338 0.1339 0.1345		0.0697	0.0702	0.0707	0.0711	0.0716	0.0721	0.0726	0.0731	0.0736	0.0741
0.17		0.0746	0.0751	0.0750	0.0701	0.0700	0.0770	0.0775	0.0780	0.0785	0.0790
0.18											
O.19											
0.20 0.0990 0.0995 0.1000 0.1015 0.1015 0.1016 0.1024 0.1029 0.103 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.114 0.115 0.115 0.1164 0.1164 0.1164 0.1174 0.1176 0.1173 0.1174 0.1176 0.1173 0.1174 0.1173 0.1174 0.1173 0.1174 0.1174 0.1174 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
0.21 0.1039 0.1044 0.1048 0.1053 0.1058 0.1063 0.1068 0.1073 0.1077 0.1082 0.22 0.1087 0.1092 0.1097 0.1102 0.1106 0.1111 0.1116 0.1121 0.1126 0.1136 0.23 0.1135 0.1140 0.1145 0.1150 0.1154 0.1159 0.1164 0.1169 0.1174 0.1178 0.24 0.1183 0.1188 0.1193 0.1198 0.1202 0.1207 0.1212 0.1217 0.1222 0.1227 0.25 0.1231 0.1236 0.1241 0.1245 0.1250 0.1255 0.1260 0.1265 0.1265 0.1269 0.1272 0.26 0.1279 0.1284 0.1288 0.1293 0.1298 0.1303 0.1307 0.1312 0.1317 0.1322 0.27 0.1326 0.1331 0.1336 0.1341 0.1345 0.1350 0.1355 0.1359 0.1364 0.1364 0.29 0.1421 0.1425 0.1435 0.1435 0.1435 0.1397 0.1402 0.1407 0.1411 0.1416 0.29 0.1421 0.1425 0.1430 0.1435 0.1440 0.1444 0.1449 0.1454 0.1458 0.1458 0.1463 0.30 0.1364 0.1585 0.1586 0.1593 0.1507 0.1525 0.1506 0.33 0.1507 0.1512 0.1506 0.1575 0.1575 0.1580 0.1538 0.1542 0.1507 0.1552 0.1556 0.33 0.1607 0.1612 0.1617 0.1621 0.1626 0.1631 0.1635 0.1608 0.1694 0.1644 0.1645 0.36 0.36 0.1654 0.1658 0.1663 0.1667 0.1672 0.1677 0.1681 0.1686 0.1690 0.1644 0.1645 0.36 0.1745 0.1750 0.1754 0.1759 0.1762 0.1677 0.1681 0.1686 0.1690 0.1644 0.1645 0.36 0.1745 0.1795 0.1754 0.1759 0.1763 0.1768 0.1773 0.1777 0.1782 0.1786 0.37 0.1795 0.1506 0.1854 0.1759 0.1863 0.1687 0.1685 0.1685 0.1690 0.1693 0.38 0.1836 0.1841 0.1845 0.1850 0.1854 0.1859 0.1833 0.1868 0.1872 0.1877 0.1881 0.1881 0.1882 0.1826 0.1890 0.1895 0.1895 0.1863 0.1868 0.1912 0.1917 0.1925 0.1807 0.1801 0.1851 0.1851 0.1851 0.1851 0.1852 0.1857 0.1851 0.1855 0.1855 0.1855 0.1854 0.1859 0.1948 0.1953 0.1957 0.1962 0.1877 0.1962 0.1960 0.1961 0.1961 0.1961 0.1975 0.1975 0.1984 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010 0.41 0.1970 0.1975 0.1935 0.1938 0.1944 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010 0.41 0.1970 0.1975 0.1975 0.1984 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010 0.41 0.1970 0.1975 0.1975 0.1984 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010 0.41 0.1970 0.1975 0.1975 0.1984 0.1988 0.1993 0.1997 0.20	0.20										
0.22 0.1087 0.1092 0.1097 0.1102 0.1106 0.1111 0.1116 0.1121 0.1126 0.1136 0.123 0.123 0.1135 0.1135 0.1145 0.1155 0.1155 0.1155 0.1155 0.1155 0.1155 0.1155 0.1155 0.1255 0.126	0.21										
0.24	0.22										
0.25	0.23		1						-		
0.26											
0.27		0.1231	0.1236	0.1241	0.1245	0.1250	0.1255	0.1200	0.1265	0.1269	0.1274
0.28	l .										
0.29 0.1421 0.1425 0.1435 0.1435 0.1444 0.1449 0.1454 0.1458 0.1468 0.1472 0.1477 0.1482 0.1486 0.1491 0.1496 0.1500 0.1505 0.1515 0.31 0.1515 0.1519 0.1524 0.1528 0.1538 0.1538 0.1542 0.1547 0.1555 0.1538 0.1538 0.1542 0.1547 0.1555 0.1575 0.1575 0.1580 0.1575 0.1575 0.1584 0.1589 0.1591 0.1640 0.1644 0.1642 0.1640 0.1644											
0.30 0.1468 0.1472 0.1477 0.1482 0.1486 0.1491 0.1496 0.1500 0.1505 0.1516 0.31 0.1515 0.1519 0.1524 0.1528 0.1533 0.1538 0.1542 0.1547 0.1525 0.1536 0.32 0.1561 0.1566 0.1570 0.1575 0.1580 0.1584 0.1589 0.1598 0.1698 0.33 0.1607 0.1617 0.1621 0.1626 0.1631 0.1635 0.1640 0.1644 0.1649 0.34 0.1654 0.1658 0.1667 0.1672 0.1677 0.1681 0.1686 0.1690 0.1695 0.35 0.1700 0.1704 0.1709 0.1713 0.1718 0.1772 0.1672 0.1677 0.1681 0.1686 0.1690 0.1736 0.36 0.1745 0.1754 0.1759 0.1763 0.1763 0.1773 0.1772 0.1732 0.1773 0.1773 0.1777 0.1782 0.1826 0.1826 0.1											
0.31 0.1515 0.1519 0.1524 0.1528 0.1533 0.1538 0.1542 0.1547 0.1552 0.1552 0.1536 0.32 0.1561 0.1566 0.1570 0.1575 0.1580 0.1584 0.1589 0.1594 0.1598 0.1698 0.33 0.1607 0.1612 0.1617 0.1621 0.1626 0.1631 0.1635 0.1640 0.1644 0.1649 0.34 0.1658 0.1658 0.1667 0.1672 0.1677 0.1681 0.1686 0.1690 0.1695 0.35 0.1700 0.1750 0.1713 0.1718 0.1722 0.1727 0.1732 0.1736 0.1736 0.1736 0.1736 0.1786 0.1770 0.1782 0.1786 0.1780 0.1786 0.1780 0.1804 0.1809 0.1813 0.1818 0.1822 0.1822 0.1826 0.1826 0.1826 0.1856 0.1856 0.1856 0.1856 0.1856 0.1856 0.1856 0.1856 0.1856 0.1895 0.1895 0.1948 0.1948 0.1948 0.1953 0.1957 0.1962											
0.32 0.1561 0.1566 0.1570 0.1575 0.1580 0.1584 0.1589 0.1594 0.1598 0.1603 0.33 0.1607 0.1612 0.1617 0.1621 0.1626 0.1631 0.1635 0.1640 0.1644 0.1645 0.34 0.1658 0.1658 0.1667 0.1672 0.1677 0.1681 0.1686 0.1690 0.1695 0.35 0.1700 0.1704 0.1709 0.1713 0.1718 0.1722 0.1727 0.1732 0.1735 0.1741 0.37 0.1745 0.1750 0.1754 0.1759 0.1763 0.1768 0.1773 0.1773 0.1773 0.1782 0.1837 0.1838 0.1836 0.1841 0.1845 0.1850 0.1854 0.1859 0.1813 0.1818 0.1822 0.1827 0.1837 0.38 0.1836 0.1841 0.1845 0.1850 0.1854 0.1859 0.1853 0.1868 0.1872 0.1877 0.1921 0.1926 0.1935 0.19											
0.34 0.1658 0.1668 0.1667 0.1672 0.1677 0.1681 0.1686 0.1690 0.1695 0.35 0.1700 0.1704 0.1709 0.1713 0.1718 0.1722 0.1727 0.1732 0.1736 0.1741 0.1745 0.1750 0.1754 0.1759 0.1768 0.1776 0.1777 0.1732 0.1786 0.1777 0.1782 0.1786 0.1777 0.1782 0.1876 0.1877 0.1891 0.1893 0.1881 0.1822 0.1827 0.1827 0.1831 0.1881 0.1826 0.1827 0.1877 0.38 0.1831 0.1831 0.1838 0.1822 0.1827 0.1877 0.39 0.1881 0.1886 0.1872 0.1877 0.39 0.1881 0.1886 0.1872 0.1877 0.39 0.1881 0.1886 0.1872 0.1877 0.39 0.1881 0.1826 0.1912 0.1917 0.1921 0.1917 0.1921 0.1917 0.1925 0.1918		0.1561	0.1566	0.1570	0.1575	0.1580	0.1584	0.1589	0.1594	0.1598	0.1603
0.35	0.33	0.1607	0.1612	0.1617	0.1621	0.1626	0.1631	0.1635	0.1640	0.1644	0.1649
0.36 0.1745 0.1750 0.1754 0.1759 0.1763 0.1768 0.1773 0.1777 0.1782 0.1786 0.37 0.1791 0.1795 0.1800 0.1804 0.1809 0.1813 0.1818 0.1822 0.1827 0.1832 0.38 0.1836 0.1841 0.1845 0.1850 0.1854 0.1859 0.1863 0.1868 0.1872 0.1877 0.39 0.1881 0.1886 0.1890 0.1895 0.1899 0.1903 0.1908 0.1912 0.1917 0.1921 0.41 0.1970 0.1975 0.1979 0.1984 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010											
0.37 0.1791 0.1795 0.1804 0.1804 0.1809 0.1813 0.1818 0.1822 0.1827 0.1837 0.38 0.1836 0.1841 0.1845 0.1850 0.1854 0.1859 0.1863 0.1868 0.1872 0.1877 0.39 0.1881 0.1886 0.1890 0.1895 0.1899 0.1903 0.1908 0.1912 0.1917 0.1921 0.41 0.1970 0.1975 0.1979 0.1984 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010											
0.38 0.1836 0.1847 0.1845 0.1850 0.1859 0.1859 0.1863 0.1868 0.1872 0.1877 0.39 0.1881 0.1886 0.1890 0.1895 0.1899 0.1903 0.1908 0.1912 0.1917 0.1921 0.40 0.1926 0.1930 0.1935 0.1939 0.1944 0.1948 0.1953 0.1957 0.1962 0.1962 0.1962 0.2010 0.41 0.1970 0.1975 0.1979 0.1984 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010	-								1		
0.39 0.1881 0.1886 0.1895 0.1895 0.1895 0.1903 0.1908 0.1912 0.1917 0.1921 0.40 0.1926 0.1930 0.1935 0.1939 0.1944 0.1948 0.1953 0.1957 0.1962 0.1962 0.1962 0.2010 0.41 0.1970 0.1975 0.1979 0.1984 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010											
0.40 0.1926 0.1930 0.1935 0.1939 0.1944 0.1948 0.1953 0.1957 0.1962 0.1962 0.1962 0.1962 0.1963 0.1993 0.1993 0.1997 0.2002 0.2016 0.2010	-	0.1881	0.1886	0.1890	0.1895	0.1899	0.1003	0.1908	0.1912	0.1917	0.1921
0.41 0.1970 0.1975 0.1979 0.1984 0.1988 0.1993 0.1997 0.2002 0.2006 0.2010											
0.42 0.2015 0.2019 0.2024 0.2028 0.2032 0.2037 0.2041 0.2046 0.2050 0.2055	0.42										
0.43 0.2059 0.2063 0.2068 0.2072 0.2076 0.2081 0.2085 0.2090 0.2094 0.2098	0.43										
0.44 0.2103 0.2107 0.2112 0.2116 0.2120 0.2125 0.2129 0.2133 0.2138 0.2142											
0.45 0.2146 0.2151 0.2155 0.2159 0.2164 0.2168 0.2173 0.2177 0.2181 0.2185	0.45	0.2146	0.2151	0.2155	0.2159	0.2164	0.2168	0.2173	0.2177	0.2181	0.2185
0.46 0.2190 0.2194 0.2198 0.2203 0.2207 0.2211 0.2216 0.2220 0.2224 0.2229											
0.47 0.2233 0.2237 0.2241 0.2246 0.2259 0.2254 0.2259 0.2263 0.2267 0.2271 0.48 0.2276 0.2286 0.2284 0.2289 0.2293 0.2297 0.2301 0.2306 0.2310 0.2314	0.47	0.2233	0.2237	0.2241	2280	0.2250	0.2254	2.2259	2.220310	2.2207	2.2271
0.49 0.2318 0.2323 0.2327 0.2331 0.2335 0.2340 0.2344 0.2348 0.2357 0.2357	0.49	0.2318	0.2323	0.2327	0.2331	0.2335	0.2340	0.2344	0.2348	0.2352	0.2357
0.50 0.2361 0.2365 0.2369 0.2373 0 2378 0.2382 0.2386 0.2399 0.2394 0.2399											

Divide the smaller number b by a, and find c. Then $\sqrt{a^2+b^2}=a+bc$ Values of c

b/a	0 000	0.001	0.002	0.003	0.004	0 005	0 006	0.007	0.008	0.009
0.50	0.2361	0.2365	0.2369	0.2373	0.237	0.2382	0.2386	0.2390	0.2394	0.2399
0.51						0.2424		***************************************		
0.52						0.2465				
0.53		1				0.2507	-			
0.54	0.2528	0.2532	0.2536	0.2540	0.2544	0.2548 0.2589	0.2552	0.2556	0.2560	0.2565
0.55	0.2509	0.2573	0.2577	0.2581	0.2585	0.2630	0.2593	0.2597	0.2001	0.2005
0.57						0.2670				
0.58	0.2690	0.2694	0.2698	0.2702	0.2706	0.2710	0.2714	0.2718	0.2722	0.2726
0.59						0.2750				
0 60						0.2790				
0.61						0.2829				
0.62	0.2849	0.2852	0.2856	0.2860	0.2864	0.2868	0.2872	0.2876	0.2880	0.2884
0.63	1				1 :	0.2907		,		
0.64						0.2945				
0.65						0.2984 0.3022				
0.67		1 -			1	0.3022				
0.68	0.3040	0.3082	0.3085	0.3089	0.3033	0.3097	0.3100	0.3007	0.3108	0.3112
0.69	0.3115	0.3119	0.3122	0.3126	0.3130	0 3134	0.3137	0 3141	0.3145	0.3149
0.70						0.3171				
0.71						0.3207				
0.72	0.3226	0.3220	0.3233	0.3236	0.3240	0.3244	0.3247	0.3251	0.3255	0.3258
0.73						0.3280				
0.74						0.3316				
0.75						0.3351 0.3386				
0.76		, ,				0.3421			el .	
0.77						0.3456				
0.79						0.3491				
0.80	0.3508	0.3511	0.3515	0.3518	0.3522	0.3525	0.3528	0.3532	0.3535	0.3539
0.81	0.3542	0.3545	0.3549	0.3552	0.3556	0.3559	0.3562	0.3566	0.3569	0.3572
0.82	0.3576	0.3579	0 3583	0.3586	0.3589	0.3593	0.3596	0.3599	0.3603	0.3606
0.83						0.3626				
0.84						0.3659				
0.85						0.3692 0.3725				
0.87						0.3757				
0.88	0.3774	0.3777	0.3780	0.3783	0.3786	0.3790	0.3793	0.3796	0.3799	0.3802
0.89	0 3806	0.3809	0.3812	0.3815	0.3818	0.3822	0.3825	0.3828	0.3831	0.3834
0.90						0.3853				
0.91	0.3869	0.3872	0.3875	0.3878	0.3882	0.3885	0.3888	0.3891	0.3894	0.3897
0.92	0.3900	0.3903	0.3907	0.3910	0.3913	0.3916	0.3919	0.3922	0.3925	0.3928
0.93						0.3947			. 1	
0.94	0.3962	0.3965	0.3968	0.3971	0.3974	0.3978	0.3981	0.3984	0.3987	0.3990
0.95	0.3993	0.3996	0.3999	0.4002	0.4005	0.4008	0.4011	0.4014	0.4017	0.4020
0.96 0.97						0.4068				
0.97	0.4053	0.4086	0.4089	0.4092	0.4005	0.4008	0.4101	0.4104	0.4107	0.4110
0.99	0.4113	0.4116	0.4119	0.4122	0.4125	0.4128	0.4130	0.4133	0.4136	0.4139
1.00	0 4142	0 4145	0.4148	0.4151	0.4154	0.4157	0.4160	0 4163	0.4166	0.4168

Degs.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0										0.0157
1										0.0332
2										0.0506
3										0.0681
4										0.0855
5 6										0.1030
6										0.1204
7	0.1222	0 1239	0.1257	0.1274	0.1292	0.1309	0.1326	0.1344	0.1361	0.1379
8	0.1396	0 1414	0.1431	0 1449	0.1400	0.1484	0.1501	0.1518	0.1536	0.1553
10										0.1728
11										0.1902
12	0.1920	0.1937	0.2120	0.1972	0.2164	0.2007	0.2025	0.2217	0.2234	0.2251
13	0.2269	0.2286	0.2304	0.2321	0.2339	0.2350	0.2374	0.2391	0.2409	0.2251 0.2426
14	0.2443	0 2461	0.2478	0.2496	0.2513	0.2531	0.2548	0.2566	0.2583	0.2601
15	0.2618	0.2635	0.2653	io.2670	0.2688	0.2705	0.2723	0.2740	0.2758	0 2775
16	0.2793	0.2810	o.2827	0.2845	0.2862	0.2880	0.2897	0.2915	0.2932	0.2950
17	0.2967	0.2985	0.3002	0.3019	0.3037	0 3054	0.3072	0.3089	0.3107	0.3124
18										0.3299
20				0 3368						
21				0.3718						0.3648
22				0.3892						
23										0.4171
24		1	l .	1		1	1	1	1	0 4346
25	0.4363	0.4381	0.4398	0.4416	0 4433	0.4451	0 4468	0.4485	0.4503	0.4520
26	0.4538	0.4555	0.4573	0.4590	0.4608	0.4625	0.4643	0.4660	0.4677	0.4693
27	0.4712	0.4730	0.4747	0.4765	0 4782	0.4800	0.4817	0.4835	0.4852	0.4869
28 29	0.4007	0.4901	0.4922	0.4939	0.4957	0.4974	0.4992	0.5009	0.5027	0.5044 0.5219
30										0.5393
31										0.5568
32	0.5585	0.5603	0.5620	0.5637	0 5655	0 5672	0.5690	0.5707	0.5725	0.5742
33	0.5760	0.5777	0.5794	0.5812	0.5829	0.5847	0.5864	0.5882	0.5899	0.5917
34	0.5934	2.5952	0.5969	0.5986	0.6004	0.6021	0 6039	0 6056	0.6074	0.6091
35	0.6109	0.6126	0.6144	0.6161	0.6178	0.6196	0.6213	0.6231	0.6248	0.6266
36										0.6440
37 38	0.0458	0.0475	0.6667	0.0510	0.0528	0.0545	0.0502	0.6580	0.0597	0.6615 0.6789
39	0.6807	0.6824	0.6842	0.6859	0 6877	0.6894	0.6912	0.6929	0.6946	0.6964
40				0.7034						
41				0.7208						
42	0.7330	0.7348	0.7365	0.7383	0.7400	0.7418	0.7435	0.7453	0.7470	0.7487
				0 7557						
44				0.7732						
45	0.7854			0.7906						
	0'	6′	12'	18	24'	30'	36′	42'	48′	54'
90°=	= 1 . 5708	radia	- ($o^{\circ} = \frac{\pi}{6}$,			\circ ° = $\frac{\pi}{3}$,		$=\frac{\pi}{2}$ ra	
180°=	=3.1416	radia	ns 120	$\circ = \frac{2\pi}{3}$, 135°=	$\frac{3\pi}{4}$, 15	$\circ^{\circ} = \frac{5\pi}{6}$, 180	e π ra	dians
270°=	-4.7124	radia								adians
360°=	=6.2 832	radia	ns 300	$o^{\circ} = \frac{5\pi}{3}$, 315°=	$=\frac{7\pi}{4}$, 33	$90^{\circ} = \frac{11}{6}$	π , 360°	°=2π r	adians

Degs.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
45	0.7854	0.78710	. 7889	0.7906	0.7924		0.7959		0.7994	
46		0.80460								
47	0.8203	0.82210	8238	0.8255	0.8273	0.8290	0.8308	0.8325	0.8343	0.8360
48	0.8378	0.83950	.8412	0.8430	0.8447	0.8465	0.8482	0.8500	0 8517	0 8535
49		0 8570 0								
50	0.8727	0.8744 0	8762	0.8779	0 8796	0 8814	0.8831	0.8849	0.8866	0 8884
51	0 , 8901	0.8919	. 8936	0 8954	0.8971	0.8988	0.9006	0.9023	0 9041	0.9058
52	0 9070	0.90930	9111	0.9128	0 9146	0 9163	0.9180	0.9198	0.9215	0 9233
53		0.9268								
54	0.9425	0.94420	9400	0.9477	0.9495	0 9512	0.9529	0 9547	0.9564	0 9582
55		0 9617 0								
56	0.9//4	0.9791 0	9009	0.9020	0.904.1	0 9001	0.9879	0.9890	0.9913	0 9931
57 58	0.9948	0.99660	.9983	1 0001	1.0018	1 0030	1 0053	1 0071	1 0088	1.0105
59	1 0207	1 0140 t 1 0315 I	0222	1.0350	1.0193	1 0285	1.0228	1.0245	1.0203	1.0200
60		1.0489 1								
61										
62	1.0821	1 .0064 1 .0838 1	.0001 0856	1.0099	1 0801	1.0734	1.0/51	1.0043	1.0760	1.0004
63	1 0006	1.10131	.1030	1.1048	1.1065	1.1083	1.1100	1.1118	1.1135	1.1153
64		1.1188								
65	1.1345	1.1362	1380	1.1307	1.1313	1.1437	1.1449	1.1465	1.1481	1.1502
66		1.1537 1								
67		1.1711								
68	1.1868	1.1886 1	. 1903	1.1921	1,1938	1.1950	1.1973	1.1990	1.2008	1.2025
69	1.2043	1.2000 1	. 2078	1.2095	1.2113	1 2130	1.2147	1 2105	1 2182	1.2200
70	1 2217	1.2235 1	. 2252	1 2270	1.2287	1.2305	1 2322	1 2339	1.2357	1.2374
71	1.2392	1.24001	. 2427	1.2444	1.2462	1.2479	1.2497	1.2514	1.2531	1.2549
72	1.2566	1.25841	. 260 i	1 2619	1.2636	1.2654	1.2671	1.2689	1.2706	1.2723
73		1.2758								
7.4	1.2915	1.2933 1	2950	1.2968	1.2985	1.3003	1.3020	1.3038	1.3055	1.3073
75	1.3000	1.31071	.3125	1 3142	1.3100	1.3177	1.3195	1.3212	1.3230	1 3247
76		1.32821								
77 78	1 . 3439	1.3456 1	3474	1.3491	1.3500	1 3520	1.3544	1.3501	1.3579	1.3590
79	1 3788	1.38061	.3040	1.3000 1.3840	1.3003 1.3858	1.3701 1.2875	T 3803	1.3730	1.3028	1 30/5
80	1 2062	1.3980	2008	1 4015	L 1022	1 4050	T 1062	1 4085	1 4102	1 4120
81		1.4155	1000							
82		1.4329								
83		1.45041								
84		1.4678 1								
85	1.4835	1.4853 1	4870	1.4888	1.4905	I.4923	1.4940	1.4957	I . 4975	1.4992
86	1.5010	1.5027 1	5045	1.5062	1.5080	1.5097	1.5115	1.5132	1.5149	1.5167
87	1.5184	1.5202 1	5219	1.5237	1.5254	1.5272	1.5289	1.5307	1.5324	1.5341
88	1.5359	1.5376 1	5394	1.5411	1.5429	1.5446	1.5464	1.5481	1.5499	1.5516
89		1.5551								
90	1 5708	1.5725 [
	o'	6′	12'	18'	24'	30'	36'	42'	48'	54'
90°=	1.5708	radians	1			•	$0^{\circ} = \frac{\pi}{3},$			
180°=	3.1416	radians	120	$^{\circ}=\frac{2\pi}{3}$,	135°=	$\frac{3\pi}{4}$, 150	$0^{\circ} = \frac{5\pi}{6}$, 180°	= т гас	lians
270°=	4.7124	radians	210	$\circ = \frac{7\pi}{6}$,	225°=	$\frac{5\pi}{4}$, 240	$\circ = \frac{4\pi}{3}$, 270°	$=\frac{3\pi}{2}$ ra	dians
360°=	6.2832	radians	300	$^{\circ} = \frac{5\pi}{3}$	315°=	$\frac{7\pi}{4}$, 33	$\circ^{\circ} = \frac{117}{6}$	π, 360°	= 2π ra	dians

Degs.	Function	0.0°	0.1°	0.2°	0.3^	0.4°	0.5°	o.6°	0.7°	o.8°	0.9°
0	sin	0 0000	- 1	0 0035		0 0070	0 0087	0 0105	0 0122	0 0140	0 0157
	cos tan	0 0000	0 0017	0 0035	0 0052	0 0070	0 0087	o 9999 o 0105	0 9999	o 9999 o 0140	0 9999
1	sin cos	0 0175	o o192 o 9998	o o200 o 9998	0 0227 0 9997	0 0244 0 9997	o o262 o 9997	o o279 o 9996	o o297 o.9996	0 0314	0 0332 0 9995
_	tan	0.0175	0 0192	0 0209	0 0227	0 0244	0 0262	0 0279	0 0297	0 0314	0 0332
2	sin cos	0 0349 0 9991	o 9366 o 9993	o o384 o 9993		0 0419 0 9991			0 0471 0 9989	o 0488 o 9988	o 0506 o.9987
	tan	0 0349	0 0367	0 0384					0 0472	0 0489	0.0507
3	sin cos	o o52,3 o 9986	0 0541 0 9985	o o558 o 9981	0 9983	0 9982	0 9981	0.9980	0.0645 0.9979	0 0663	0 0680
	tan sin	0.0524 0.0648	0 0542	0 0559	0 0577	0 0591	0.0612	0 0629	0.0647	0.0664	0.0682
4	cos tan	o 9976 o o699	0 9974	o 9973 o 0734	0 9972 0 0752	0 9971	o 9969	0.9968	0 9966	0.9965	0.9963 0.0857
_	sin	0.0872	o o889			0.0941	0 0958		0 0993	0.1011	0 1028
5	cos tan	o 9962 o.0875	o 9960 o o 892	0 9959 0 0910		o 9956 o.o945		0 9952	0 9951 0.0998	o 9949 o.1016	o 9947 o 1033
6	sin	0.1045	0 1063				0 1132	0 1149		0 1181	0 1201
"	cos tan	0 9945 0 1051	0 9913 0 1069		0 9940	0 9938	0 9936 0 1139	0 9934	o 9932 o 1175	0.9930 0.1192	0.9928
7	sin cos	0.1219 0.9925	0 1236		0 1271	0 1288	0 1305 0 9914	0.1323		0 1357	0 1371 0 9905
	tan	0 1228	· ·	0 1263		0.1299		0 1334		0.1370	0 1388
8	sin cos	0.9903	0.1409	0.9898	0.1144	0.9893	o 9890	0.9888	o 9885	0.9882	0.9380
	tan sin	0.1405 0.1564	0.1423		0.1459			0.1512	0.1530	0.1548	0.1566
9	cos tan	0.9877	0.9874	0.9871	0.9869	o 9866	0.9863	o.986o	o 9857 o.1709	0.9854	0 9851
	sin	0.1364								0.1874	0.1891
10	cos tan	0 9848 0 1763	0.9845	0.9842	0 9839 0.1817	0.983b 0.1835	0.9833 0.1853	0.9829 0 1871	o 9826 o.1890	0.9823	0.9820
11	sin cos	0.1908	0.1925	0.1942	0.1959	0.1977			0.2028	0.2045	0.2062
**	tan	0.9816 0.1944	0 9813	0.9810 0.1980	0.9806 0.1998	0.9803 0.2016		0.9796 0.2053	0.9792	0.9789	0.9785 0.2107
12	sin cos	0 2079 0.9781	0.2096 0.9778	0.2113 0.9774	0.2130	0.2147		0.2181	0.2198	0.2215	0.2232
	tan sin	0.2126	0.2144	0.2162	0.2180	0.2199	0.2217	0.2235	0.2254	0.2272	0.2290
13	cos	0.2250 0.9744	0.2267	o. 2284 o. 9736	0.2300	0.2318	0.9724	0.2351	0.2368	0.2385	0.2402
	tan sin	0.2309	0.2327	0.2345	0.2364	0.2382	0.2401	0.2419	0.2438	0.2456	0.2475
14	cos tan	0.9703	0.9699	0.9694	0 9690	o.9686 o.2568	0.9681	0.9677	0.9673	0.9668	0.9664
ļ											
Degs.	Function	o'	6′	12'	18′	24'	30'	36′	42'	48′	54'

Degs.	Function	0.0°	0.10	0.2	0 3°	0.4°	0.5°	0.6°	0.7°	o.8°	0.9°
15	sin cos	o 2588 o 9659	o 2605 o 9655	o 2622 o 9650	0 9646	0 9641	0 9636	o 2689 o 9632	ი 9627	0.2723 0.9622	0 9617
16	tan sin cos	0 2679 0 2756 0 9613	0 2698 0 2773 0 9608	0 2717 0 2790 0.9603	o 2736 o 2807 o 9598	0 2754 0 2823 0 9593	0.2773 0.2840 0.9588	0 2792 0 2857 0.9583	0 2811 0 2874 0 9578	o 2830 o 2890 o 9573	o 2849 o 2907 o 9568
	tan sin	o 2867	o 2886 o 2940	o 2905 o 2957	0 2924 0 2974	0 2943 0 2990		0 2981	0 3000	0 3019 C 3057	0 3038
17	cos tan	o 9563 o 3057	o 9558 o 3076	o 9553 o 3096			,	0 9532	0 9527 0 3191	0 9521 0 3211	0.9516 0 3230
18	sin cos tan	0 3090 0 9511 0.3249	0 3107 0 9505 0 3269	o 3123 o 9500 o 3288	0 3140 0 9494 0 3307		0 3173 0 9483 0 3346	0 3190 0 9478 0 3365	0 3206 0 9472 0 3385	0 3223 0 9466 0 3404	0 3230 0 9461 0 3424
19	sin cos tan	0 3256 0 9455 0 3443	0 9449	0 9444	0 9438	0 3322 0 9432 0 3522	0 9426			0 3387 0 9409 0 3600	0.3404 0.9403 0.3620
20	sin cos tan	0.3420 0.9397 0.3610	0 9391	0 3453 0 9385 0 3679		0 3486 0 9373 0 3719	0 3502 0 9367 0 3739	o 3518 o 9361 o 3759	0 3535 0 9354 0 3779	0 3551 0 9348 0 3799	0 3567 0 9342 0 3819
21	sin cos tan	0 3584 0 9336 0 3839	0 3660 0 9330	o 3616 o 9323 o 3879	0 3633 0 9317	0 3649 0 9311	0 3665 0 9304 0 3039	o 3681 o 9298 o 3959	o 3697 o 9291 o 3979	0 3714 0 9285 0 4000	0 3730 0 9278 0.4020
22	sin cos tan	0 3746 0 9272 0.4010	0 3762 0 9265 0 4061	0.3778 0.9259 0.4081	0 3795 0.9252 0.4101	0 3811 0.9245	0 3827 0 9239	0 3843 0 9232 0 4163	0.3859 0.9225	0 3875 0 9219 0.4204	0 3891 0 9212 0.4224
23	sin cos tan	0 3907 0 9205 0.4245		0 3939 0 9191 0.4286	0 3955 0 9184	0 3971 0 9178 0 4327	c 3987 c 9171	o 4003 o 9164 o 4369	0 4CI9 0 9157	0 4035 0 9150 0 4411	0.4051 0.9143 0.4431
24	sin cos tan	o 4067 o.9135	0.4083 0.9128	0.4099 0.9121	0 4115 0 9114	0 4131 0 9107	0 4147 0 9100	o 4163 o 9092	o 4179 o 9085	o 4195 o 9078	0.4210
25	sin cos	0.4452 0.4226 0.9063	- 1	0.4258 0.9048	0.4274 0 9041	0.4289	0.4305 0.9026		0 4337 0.9011	0.4352 0 9003	0.4642 0.4368 0.8996
26	tan sin cos	0 4663 0.4381 0 8988	0.4684 0.4399 0.8980	0.4706 0.4415 0.8973	0.4727 0.4431 0.8965	0.4748 0.4446 0.8957	0 4770 0 4462 0 8949	0.4478 0.8942	0 4813 0 4493 0.8934	o 4834 o 4509 o 8926	0.4856 0.4524 0.8918
27	tan sin cos	0.4877 0.4510 0.8910	0.4899 0.4555 0.8902	0.4921 0.4571 0.8894	o 4942 o.4586 o 8886	o 4964 o 4602 o 8878	o 4986 o 4617 o.8870	0.5008 0.4633 0.8862	o 5029 o 4648 o 8854	0 5051 0.4664 0 8846	0.5073 0.4679 0.8838
28	tan sin cos	0.5095 0.4695 0.8829	0.5117 0.4710 0.8821	0.5139 0.4726 0.8813	o.5161 o 4741 o 8805	0 5184 0 4755 0 8796	o 5206 o.4772 o 8788	0.5228 0.4787 0.8780	0 5250 0 4802 0 8771	0.5272 0.4818 0.8763	0.5295 0.4833 0.8755
	tan sin	0.5317	0.5340	0.8813 0.5362 0.4879	0.4894	0.4909	0.5430 0.4924	0.5452	0.5475	0.5498	0.5520
29	cos tan	o 8746 o.5543	0.8738 0.5566	o 8729 o.5589	0.8721 0.5612	0.8712	0.8704 0.5658	o 8695 o.5681	o.8686 o.5704	o.8678 o.5727	o.8669 o.5750
Degs.	Function	o'	6′	12'	18′	24'	30′	36′	42'	48′	54'

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	0.8°	0.9°
30	sin cos tan	o 5000 o 8660 o 5774	0 5015 0 8652 0 5797	o 5030 o 8643 o 5820	0.5045 0.8634 0.5844		0.5075 0.8616 0.5890	o 5090 o 8607 o 5914	o.5105 o.8599 o 5938	o 5120 o.8590 o.5961	0.5135 0.8581 0.5985
31	sin cos tan	o 5150 o 857 · o 6009	0 5165 0 8563 0 6032	o 518 o 8551 o 6056	o 5195 o 8545 o 6080	o 5210 o 8536 o.6104	o 8526	0 5240 0 8517 0.6152	o 5255 o 8508 o.6176	0.5270 0.8199 0.6200	0 5281 0 8490 0.6224
32	sin cos tan	0 5299 0 8480 0.6249	0 8.171	0 8462	0 8453			o 5388 o.8125 o.6395	0.5402 0.8415 0.6420	0.5417 0.8406 0.6445	0.5432 0.8396 0.6469
33	sin cos tan	0 5416 0 8387 0 6491	0 8377		0.8358	0 8348	o 5510 o 8330 o.6619	0.5531 0.8329 0.6644		0.5563 0.8310 0.6694	0.5577 0.8300 0.6720
34	sin cos tan	0 5592 0 8230 0 6745	0 8231	0 5621 0 8271 0.6796	0 8261	0.8251	o 5664 o 8241 o 6873	0 5678 0 8231 0.6893	0.5603 0 8221 0.6924	0 5707 0 8211 0.6950	0.5721 0.8202 0.6976
35	sin cos tan	0.5736 0.8192 0.7002	0 575) 0 8181 0 7028	0 8171	0 8161	0 8151	0 8141	0 5821 0 8131 0.7159	0.5835 0.8121 0.7186	0.5%50 0.8111 0.7212	0.5864 0.8100 0.7239
36	sin cos tan	0.5878 0.8090 0.7265	0 803)	o 8070	0 8051	0.8510		0.5962 0.8023 0.7427		0 5990 0,8007 0.7481	o 6004 0.7997 0.7508
37	sin cos tan	0.6518 0.7786 0.7536		0 7 165	0 7.155	0.7111	0 6088 0.7931 0 7673	0 6101 0 7923 0 7701	0 6115 0 7912 0.7729	o 6129 o.7902 o 7757	0.6143 0.7871 0.7785
38	sin cos tan	0 6157 0 7830 0 7813		0.7859		0 783-	0 6225 0 7835 0 7951	o 6239 o 7813 o 7983	0 7801	0.6266 0.7793 0.8040	0,6280 0 7782 0,8069
39	sin cos tan	0 6233 0 7771 0.8533	0 776	0.6320 0 7747 0 8156	0.7734	0 7727	0 6361 0 7716 0,8243		0.6388 0.7674 0.8302	o 6401 o 7683 o.8332	0.6111 0.7672 0.8361
40	sin cos tan	0 6128 0.7650 0.8391		0.6455 0.7638 0.8451			0.6491 0.7654 0.8541		0.6521 0.7591 0.8601	0 6534 0.7575 0.8632	0.6547 0.7559 0.8662
41	sin cos tan	0 6561 0.7517 0.8693	0 6574 0 7536 0.8724		0.7513	0.7501	o 6626 o 7490 o 8847	0.6639 0.7478 0.8878	0.6652 0.7466 0.8310	o 6665 o.7455 o.8941	0.6678 0.7443 0.8972
42	sin cos tan	0 6691 0 7431 0.9001	0 6701 0 7120 0.9035	0.6717 0.7408 0.9067	0.7395		o.6756 o 7373 o 9163	0.6767 0.7361 0.9175	0.6782 0.7319 0.9228	0.6794 0.7337 0.9260	0.6857 0 7325 0 9293
43	sin cos tan	0 6820 0 7314 0.9325	0 6833 0,7322 0,9358	0.6845 0.72')0 0.9391	0.7278	0.7266	0.6384 0.7254 0.9439	0.68)6 0.7242 0.9523	0.6309 0.7232 0.9556	0.6921 0.7218 0.9590	o 6)34 o.7206 o.9623
44	sin cos tan	0.6917 0.7193 0.9657	0.6959 0.7141 0.9691	0.6972 0.7169 0.9725	0.698‡ 0.7157 0.9759	0 7115	0.7009 0.7133 0.9827	0 7120	o 7031 o 7108 o.9896	0.7016 0.7096 0.9930	0.7059 0.7083 0.9965
Degs.	Function	o′	6′	12'	18′	24′	30'	36′	42'	48′	54'

			ı	1				1	i	1	
Degs.	Function	0.0°	0.10	0.2°	0.3°	0.4"	0.5°	o.6°	0.7°	o.8°	0.9°
45	sin cos	0.707I 0.707I	o 7083 o 7059	o 7096 o.7016	o 7108 0.7034	0 7120 0 7022	0 7133 0 7000	o 7145 o 6997	o 7157 o 6984	o 7169 o 6972	o 7181 o 6959
46	tan sin cos	0 7193 0 6947	0 7206 0 6934	0 7218 0 6921	0.7230 0.6909	0 7242 0 6896	1.0176 0 7254 0 6884	0.7266 0.6871	o 7278 o 6858	0 7290 0.6845	0.7302 0.6833
47	tan sin cos	1.0355 c.7314 v 6820	0 7325 0 6807	1 0428 0 7337 0 6794	1.0461 0.7349 0.6782	0.7361 0.6769	1.0538 0.7373 0.6756	1 0575 0 7385 0 6743	1 0612 0 7396 0 6730	1.0649 0 7408 0 6717	1 0686 0 7420 0 6704
	tan sin	0 7431	1.0761 0 7443	1.0799 0 7455	1.0837 o 7466	1.0875 0.7478	1.0913 0 7490	1.0951 0.7501	1 0990	1 1028 0 7524	1 1067 0 7536
48	cos tan sin	0 6691 1.1106 0 7547	0 6678 1 1145 0.7559	_ ``	0.6652 1 1224 0 7581	0.6639 1.1263 0.7593		0 6613 1 1343 0 7615		0 6587 1 1423 0.7638	0 6574 1 1463 0 764
49	cos tan	0.6561 1.1504	0 6517 1.1544	o 6531 1 1 5 85	o 6521 1.1626	0.6508 1.1667	0 6494 1.1708	0 6481 1.1750	o 6468 I 1792	0.6455 I 1833	0 6441 I 1875
50	sin cos tan	0.7660 0 6428 1.1918	0,7672 0 6414 1,1960	0 7683 0,6401 1,2002	o 7694 o 6388 I 2015	0. 7 705 0 6374 1, 2088	0 7716 0 6361 1.2131	0 7727 0 6347 1 2174	0 6331	0 7749 0 6320 1 2261	0 7760 0 6307 1.2305
51	sin cos tan	0 7771 0 6293 1.2319	0.7782 0.6280 1.2393	779362661 2437	0.7804 0 6252 1.2482	0 6239		0.7837 0 6211 1.2617	0.7848 0 6198 1 2662	0 7859 0 6184 1 2708	0 7869 0 6170 1 2753
52	sin cos tan	0.7885 0.6157 1.2799	o 7891 o.6143 1.2846	0 7902 0 6129 1,2892	0.7912 0.6115 1.2938	0.7923 0 6101 1.2985	0.7934 6.6688 1.3032	0.7944 0.6074 1 3079	0 7955 0 6060 1 3127	o 7965 o 6046 I 3175	0 7976 0 6032 1 3222
53	sin cos tan	0.79°6 0.6018 1.3270		0 5990	o 8018 o 5976 1 3416	0.8028 0.5/162 1.3165	o. 8039 o. 5948	o 8049 o 5934 1 3564	o 8059 o 5920 1 3613	o 8070 o 5906 I 3663	o 8080 o 5892 I 3713
54	sin cos tan	0.8090 0.5878 1 3764	0.8100 0 5864 1.3814	0 8111	0.8121 0.5835 1.3916	0.8131	o 8141 o 5807	0.8151 0.5793 1.4071	0 8161	0 8171 0 5764 1.4176	o 8181 o 5750 1.4229
55	sin cos	0.8192 0.5736	0.8202 0.5721	0.8211	o 8221 o 5693	0.8231 0.5678	0.8241 0.5664	o 8251 o 5650	o 8261 o 5635	0 8271 0.5621	o 8281 o 5606
56	tan sin cos	1.4281 0.8290 0.5592	0 8300 0.5577	1 4388 0 8310 0 5563	0 5548	0 5531	0.8339 0.5519	o 8348	0 5490	1 4715 0 8368 0 5476	0 8377 0 5461
57	tan sin cos	1.4826 0.8387 0.5446		1.4938 0 8406 0 5417	0 8415 0 5402	0.8425 0.5388	1.5108 0.8434 0.5373	0 8443 0.5358	0 8453 0 5344	0.8462 0.5329	0 8471 0 5314
58	tan sin cos	0.8480 0.5299	0 8490 0 5281	1.5517 0 8499 0.5270	o 8508 o 5255	0 8517 0 5240	1.5697 0.8526 0.5225	1.5757 0.8536 0.5210	0 8545 0 5195	0.8554 0.5180	0 8563 0 5165
59	tan	1.6003 0.8572	1.6066 0.8581	0.8590	o 8599		1 6319 0 8616 0 5075	1.6383 0.8625 0.5060	1.6447 0 8634 0 5045	0.8643	0.8652
	tan	0.5150 1.6643	0.5135 1.6709	0.5120	0.5105	0 5090 1.6909	1 6977	1.7045	1.7113	0 5030 1.7182	0 5015 1.7251
Degs.	Function	o'	6′	12′	18′	24'	30'	36′	42'	48′	54'

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	0.8°	0.9°
60	sin	o 8660	0.8669	o 8678	o 8686	o 8695	0 8704	0 8712	0.8721	0.8729	o 8738
	cos	o 5000	0.4985	o 4970	o 4955	o 4930	0 4924	0.4909	0.4894	0.4879	o 4863
	tan	1 7321	1 7391	1.7461	1.7532	1.7603	1.7675	1.7747	1.7820	1.7893	1.7966
61	sin	0 8746	0.8755	o 8763	0.8771	0 8780	0.8788	o 8796	0 8805	0 8813	0 8821
	cos	0 4848	0.4833	o.4818	0 4802	0.4787	0.4772	o 4756	0 4741	0 4726	0 4710
	tan	1 8040	1.8115	1 8190	1 8265	1 8341	1.8418	i 8495	1 8572	1 8650	1 8728
62	sin cos tan	o 8829 o 4695 i 8807	0,8838 0 4679 1,8887		o 8854 c. 4648 1. 9047	0,8862 0,4633 1,9128	0 8870 0,4617 1 9219	0 8878 0 4602 1,9292	o 8886 o.4586 I 9375	0.8894 0.4571 1.9458	0.8902 0.4555 1.9542
63	sin cos tan	o 8910 o 4540 r 9626	o 8918 o 4524 1.9711		0 8934 0.4493 1.9883	0 8942 0.4478 1.9970	0 8949 0 4462 2,0057	0 8957 0 4446 2 0145	o 8965 o 4431 2 0233	0 8973 0 4415 2.0323	o 8980 o 4399 2.0413
64	sin cos tan	o 8988 o 4384 2.0503	o. 8996 o. 4368 2. 0594	0,9003 0,4352 2,0686	0.9011 9.4337 2.0778	0.9018 0.4321 2.0872	0.9026 0.4305 2.0065		0 9011 0 4274 2 1155	o 9048 o 4258 2 1251	0 9056 0 4242 2.1348
65	sin	0.9063	0.9070	0.9078	0.9085	0 9092	o 9100	0 9107	0 9114	0 9121	0 9128
	cos	0 4226	0.4210	0.4195	0.4179	0.4163	o 4147	0 4131	0 4115	0 4099	0.4083
	tan	2.1445	2.1513	2.1642	2.1744	2.1842	2.1943	2 2015	2 2148	2 2251	2.2355
66	sin cos tan	0 9135 0 4067 2 2460	0 9143 0.4051 2 2566	0.9150 0.4035 2.2673	0.9157 0.4019 2.2781	0.9164	0 9171 0 3987 2,2998	0 9178 0 3971 2 3109	0 918; 0 3955 2 3220	0 9191 0, 3939 2 3332	o 9198 o 3923 2 3415
67	sin	0 9205	0 9212	0 9219	0. 9225	0.9232	0 9239	0 9245	0 9252	0 9259	0 9265
	cos	0 3907	0 3891	0.3875	0. 3859	0.3843	0 3827	0 3811	0 3795	0 3778	0 3762
	tan	2 3559	2 3673	2 3789	2. 3906	2.4023	2 4142	2 4262	2 4383	2 4504	2.4627
68	sin	0.9272	o 9278	0.9285	0.9291	0.9298	0 9304	0 9311	0 9317	0 9323	0 9330
	cos	0 3746	o 3730	0.3714	0.3697	0.3681	0 3665	0 3649	0 3633	0 3616	0 3600
	tan	2.4751	2 4876	2 5002	2.5129	2.5257	2.5386	2 5517	2 5649	2.5782	2,5916
69	sin	0 9336	0 9342	0 9348	0.9354	0.9361	o 9367	0 9373	0 9379	0 9385	0 9391
	cos	0 3584	0 3567	0 3551	0.3535	0.3518	o 3502	0 3486	0 3469	0 3453	0 3437
	tan	2 6051	2 6187	2 6325	2 6464	2.6605	2.6746	2 6889	2 7034	2.7179	2.7326
70	sin	0.9397	0 9403	0.9409	0.9415	0.9421	o 9426	0 9432	0 9438	0 9444	0 9449
	cos	0.3420	0 3404	0.3387	0.3371	0.3355	o.3338	0 3322	0 3305	0.3289	0 3272
	tan	2.7475	2.7625	2.7776	2.7929	2.8083	2.8239	2 8397	2 8556	2 8716	2.8878
71	sin	0 9455	0 9461	0 9466	0.9472	0 9478	o 9483	0 9489	0 9494	o 9500	0.9505
	cos	0 3256	0 3239	0.3223	0.3206	0.3190	o 3173	0 3156	0.3140	o.3123	0.3107
	tan	2.9042	2 9208	2.9375	2.9544	2.9714	2.9887	3 0061	3.0237	3 0415	3.0595
72	sin	0.9511	o 9516	0.9521	o 9527	0.9532	0.9537	0 9542	0.9548	0 9553	0 9558
	cos	0.3090	o 3074	0.3057	o 3040	0.3024	0.3007	0 2990	0.2974	0 2957	0 2940
	tan	3.0777	3.0961	3 1146	3 1334	3.1524	3 1716	3 1910	3.2106	3 2305	3 2506
73	sin	0.9563	o 9568	0 9573	0.9578	0.9583	0.9588	o 9593	o 9598	o 9603	0.9608
	cos	0.2924	o 2907	0 2890	0.2874	0.2857	0 2840	o 2823	o 2807	o 2790	0.2773
	tan	3.2709	3 2914	3 3122	3.3332	3 3544	3 3759	3 3977	3 4197	3 4420	3.4646
74	sin	0 9613	0 9617	o 9622	o 9627	0 9632	o 9636	o 9641	o 9646	o 9650	o 9655
	cos	0 2756	0 2740	o 2723	o 2706	0 2689	o 2672	o 2656	o. 2639	o 2622	o 2605
	tan	3 4874	3 5105	3 5339	3 5576	3 5816	3 6059	3 6305	3 6554	3 6806	3 7062
Degs.	Function	0'	6′	12'	18′	24'	30′	36′	42'	48′	54'

	T	7		ī		1		1	1	1	1
Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	0.8°	0.9°
75	sin cos tan	o 9659 o 2588 3-7321	0 2571	0.2554	0 2538	0 2521	0 2504	o 9686 o 2487 3 8947	0 2,170	0 2453	0.9699 0 2436 3 9812
76	sin cos tan	0.9703 0.2419 4.0108	0.2402	0.2385	0.2368	0.2351	0.2334	0.9728 0.2317 4.1976	0 2300	0.2284	0 9740 0.2267 4 2972
77	sin cos tan	0.9714 0.2250 4.3315	0 2232	0 2215	0.2198	0,2181	0 2164	0 9767 0 2147 4 5483	0 2130	0 2113	0 9778 0 2096 4 6646
78	sin cos tan	0.9781 0.2079 4.7046	0.2062	0.2045	0,2028	0.2011	0 1994		0 1959	0 1942	0 1925
79	sin cos tan	0.9816 0.1908 5.1446	o 9820 o 1891 5 1929	0.1874	0.1857	0 1840		o 9836 o 1805 5 4486	0 1788		0 9845 0 1754 5 6140
80	sin cos tan	0.9848 0 1736 5.6713	0.1719		0.1685		0.9863 0.1650 5.9758	0 1633	0 1616	0 1599	0 9874 0 1582 6.2432
81	sin cos tan	0.9877 0.1561 6.3138	o 9880 o 1547 6 3859	0.1530	0.1513	0.1495	o 9890 o.1478 6.6912	0.9893 0 1461 6 7720	0 1444	o 9898 o 1426 6 9395	0 9900 0 1409 7 0264
82	sin cos tan	0 9903 0 1392 7.1154	0 9905 0 1374 7 2066	0.1357	0.1340	0 1323	o 9914 o 1305 7.5958	o 9917 o 1288 7 6996	0 1271	0 9921 0 1253 7 9158	0.9923 0 1236 8 0285
83	sin cos tan	0 9925 0.1219 8.1443	0 9928 0 1201 8.2636	0 1184	0.1167	0.1149	0.9936 0.1132 8.7769	0 1115	0 1097	0 1080	0.9943 0.1063 9 3572
84	sin cos tan	0 9945 0.1045 9.5144	0.9947 0 1028 9.6768	0.1011	0.0993		0 9954 0.0958 10.39		1	0 9959 0 0906 10.99	
85	sin cos tan	0 9962 0.0872 II.43		0.9965 0.0837 11.91			0 9969 0.0785 12 71	0 9971 0 0767 13 00	0 9972 0.0750 13 30	0.9973 0 0732 13 62	0 9974 0.0715 13 95
86	sin cos tan	0,9976 0,0698 14,30	0.9977 0.0680 14.67	0.9978 0.0663 15.06	0.9979 0.0645 15.46		0.9981 0 0610 16.35	0.9982 0 0593 16.83	o 9983 o.o576 17.34	o 9984 o 0558 17 89	o 9985 o 0541 18.46
87	sin cos tan	0.9986 0 0523 19.08	0.9987 0.0506 19.74	0.9988 0.0488 20.45	0 9989 0 0471 21 20	0.9990 0.0454 22.02	0,9990 0,0436 22,90	0 9991 0 0419 23.86	0 9992 0.0401 24.90		0 9993 0.0366 27.27
88	sin cos tan	0.9994 0.0349 28 64	0 9995 0 0332 30.14	0.9995 0.0314 31.82		0.9996 0.0279 35 80	0.9997 0 0262 38.19	0 9997 0 0244 40.92	0.9997 0.0227 44 07	o 9998 o.o2o9 47.74	0.9998 0.0192 52 08
89	sin cos tan	0 0175		0 0140	0 0122	o 9999 o 0105 95 49	1 000 0 0087 114.6	1.000 0 0070 143 2	1.000 0.0052 191.0	1.000 0.0035 286 5	1.000 0.0017 \$7 3 .0
Degs.	Function	o'	6′	12'	18'	24′	30'	36′	42'	48'	54'

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	o.8°	0.9°
0	log sin log cos log tan	80 80	7 2419 0 7.2419	7·5429 o 7·5429	7.7190 0 7.7190	7.8439 0 7.8439	7.9408 o 7.9409	8.0200 0 8.0200	8.0870 0 8.0870	8.1450 0 8.1450	8.1961 9.9999 8.1962
1	log sin	8 2419	8 2832	8 3210	8.3558	8.3880	8.4179	8 4459	8.4723	8,4971	8,5206
	log cos	9 9999	9 9999	9 9999	9.9999	9.9 <u>0</u> 99	9.9999	9.9998	9 9098	9,9998	9,9998
	log tan	8 2419	8.2833	8 3211	8.3559	8.3881	8.4181	8 4461	8.4725	8,4973	8,5208
2	log sin log cos log tan	8 5428 9 9997 8 5431	8 5640 9 9997 8 5643	8 5842 9 9997 8 5845	8 6035 9 9996 8 6038		8 6397 9 9996 8 6401	8 6567 9 9996 8 6571	8.6731 9.9995 8.6736	8,6889 9,9995 8,6894	8 7041 9.9994 8.7046
3	log sin log cos log tan	8.7188 9 9994 8 7191	8.7330 9 9994 8 7337	8 7168 9 9993 8 7475	8 7602 9 9993 8 7609	9 9992	8 7857 9 9992 8.7865	8 7979 9 9991 8.7988	8 8098 9.9991 8.8107	8.8213 9.9990 8.8223	8 8326 9.9990 8,8336
4	log sin	8 8136	8 8543	8 8647	8 8740	8 8840	8 8946	8,9042	8 9135	8 9226	8 9315
	log cos	9 9989	9 9989	9 9988	9 9988	9 9987	9 9987	q 9986	9 9985	9 9685	9 9984
	log tan	8 8446	8 8554	8,8659	8 8762	8.8862	8 8960	8,9056	8.9150	8.9241	8.9331
5	log sin	8 9403	8 9489	8 9573	8 9655	8 9736	8 9816	8 9804	8 9970	9.0046	9.0120
	log cos	9 9983	9 9983	9 9982	0 9981	9 9981	9 9980	9.9979	9 9978	9.9978	9.9977
	log tan	8 9420	8 9505	8 9591	8 9674	8 9756	8 9836	8.9915	8 9992	9.0068	9.0743
6	log sin log cos log tan	9 0192 9 9976 9 0216	9 0264 9 9975 9 0289	9 0331 9 9975 9 0360	9 9971 9 9430	9 0472 9 9973 9 .0499	9 0539 9 9972 9 0567	9 0605 9 9971 9 0633	9.0670 9.9970 9.0699	9.0734 9.9969 9.0764	9 0797 9.95,68 9.0828
7	log sin	9 0859	9 0920	9 0981	9 1040	9 1090	9 1157	9 1211	9 1271	9 1326	9.1381
	log cos	9 9068	9 9967	9 9966	9 9965	9 9061	9.9963	9 9962	9 9961	9 9960	9.9959
	log tan	9 0891	9 0954	9 1015	9 1076	9 1135	9 1194	9 1252	9.1310	9.1367	9.1423
8	log sin	9 1436	9 1489	9.1542	9 1594	9 1646	9 1697	9 1747	9 1707	9.1847	9 1895
	log cos	9 9958	9 9956	9.9955	9 9954	9 9953	9 9952	9 9951	9 9950	9.9949	9 9947
	log tan	9 1478	9 1533	9.1587	9 1640	9 1693	9 1745	9 1797	9 1848	9.1898	9 1948
9	log sin	9.1943	9 1991	9 2038	9 2085	9.2131	9.2176	9 2221	9 2266	9.2310	9.2353
	log cos	9.9946	9 9945	9 9944	9 9943	9.9941	9.9940	9.9939	9 9937	9.9936	9.9935
	log tan	9.1997	9 2046	9 2094	9 2142	9.2189	9.2236	9.2282	9.2328	9.2374	9.2419
10	log sin	9 2397	9 2439	9 2482	9.2524	9.2565	9 2606	9 2647	9 2687	9 2727	9.2767
	log cos	9 9931	9 9932	9.9931	9.9929	9.9928	9 9927	9 9925	9 9924	9.9922	9.9921
	log tan	9.2463	9 2507	9.2551	9.2594	9.2637	9 2680	9 2722	9 2764	9.2805	9.2846
11	log sin	9 2806	9.2845	9.2883	9 2921	9 2959	9.2997	9 3034	9.3070	9.3107	9.3143
	log cos	9 9919	9.9918	9.9916	9.9915	9.4313	9.9912	9 9910	9.9900	9.9907	9.9906
	log tan	9 2887	9.2927	9.2967	9 3006	9 3046	9.3085	9.3123	9.3162	9.3200	9.3237
12	log sin	9 3179	9 3211	9.3250	9 3284	9 3319	9.3353	9 3387	9 3421	9 3455	9.3488
	log cos	9.9904	9 9902	9.9901	9 9899	9.9897	9.9896	9 9894	9 9892	9,9891	9 9889
	log tan	9 3275	9 3312	9.3349	9 3385	9.3422	9.3458	9 3493	9 3529	9,3564	9 3599
13	log sin	9 3521	9.3554	9 3586	9.3618	9.3650	9.3682	9 3713	9 3745	9 3775	9.38of
	log cos	9.9887	9.9885	9 9884	9.9882	9.9880	9.9878	9 9876	9 9875	9 9873	9.9871
	log tan	9 3634	9.3668	9 3702	9.3736	9.3770	9.3804	9 3837	9.3870	9 3903	9.3935
14	log sin	9 3837	9 3867	9 3897	9 3927	9 3957	9 3986	9.4015	9 4044	9.4073	9 4102
	log cos	9 9869	9 9867	9 9865	9 9863	9.9861	9 9859	9 9857	9.9855	9.9853	9.9851
	log tan	9 3968	9.4000	9 4032	9 4064	9 4095	9 4127	9.4158	9 4189	9.4220	9 4250
Degs.	Function	o'	6′	12'	18′	24'	30'	36′	42'	48'	54'

Degs.	Function	0.0°	0.10	0.2°	0.3°	0.4°	0.5°	o.6°	0.7°	o.8°	0.9°
15	log sin	9.4130	9.4158	9 4186	9 4214	9 4242	9 4269	9 4296	9 4323	9 4350	9 4377
	log cos	9.9849	9.9847	9.9845	9.9813	9 9841	9 9839	9 9837	9 9835	9 9833	9 9831
	log tan	9.4281	9.4311	9.4341	9 4371	9 4400	9 4430	9 4159	9 4488	9 4517	9 4540
16	log sin log cos log tan	9 4403 9 9828 9 4575	9 4130 9 9826 9 4603		9 4482 9 9822 9 4660	9 4508 9 9820 9 4688	9 1533 9 9817 9 4716	9 4559 9 9815 9 4744	9 4584 9 9813 9.4771	9 4609 9 9811 9 4799	9 4634 9 9808 9.4826
17	log sin log cos log tan	9 4659 9 9806 9 4853	9 9804	9.4709 9.9801 9.4907	9 9799	9 4757 9 9797 9 4961	9 1781 9 9791 9 4987	8 4805 9 9792 9 5014	9,4829 9,9789 9 5040	9.4853 9.9787 9.5066	9 4876 9 9785 9 5092
18	log sin log cos log tan	9 4900 9 9782 9 5118	9 4923 9 9780 9 5143	9 9777	9.4969 9.9775 9.5195	9 4992 9.9772 9 5220	9 5015 9 9770 9.5245	9 5037 9 9767 9 5270	9.5060 9.9761 9.5295	9 5082 9 9762 9 5320	9 5104 9 9759 9 5345
19	log sin log cos log tan	9.5126 9.9757 9.5370	9 5148 9 9751 9 5394	9 5170 9.9751 9.5419		9 5213 9 9746 9 5467	9 5235 9.9743 9 5491	9 5256 9.9741 9 5516	9 5278 9 9738 9 5539	9 5299 9 9735 9 5563	9 5320 9.9733 9 5587
20	log sin	9 5341	9 5361	9 5382	9 5402	9 5423	9 5143	9 5463	9 5484	9 5504	9.5523
	log cos	9 9730	9 9727	9 9724	9 9722	9 9719	9 9716	9 9713	9 9710	9 9707	9.9704
	log tan	9 5611	9 5634	9 5658	9 5681	9-5794	9 5727	9 5750	9 5773	9 5796	9.5819
21	log sin log cos log tan	9.5543 9.9702 9.5842	9 5563 9 9699 9.5861	9 5583 9 9696 9 5887	9-5602 9-9693 9-5909		9.5641 9.9687 9.5951	9.5660 9.9681 9.5976	9.5679 9.9681 9.5998	9 5698 9 9678 9 6020	9.5717 9 9675 9 6042
22	log sin log cos log tan	9 5736 9 9672 9 6064	9 - 575 t 9 - 9669 9 - 6086		9 5792 9 9662 9 6129		9 5828 9 9656 9 6172	ç 9653	9 5865 9 9650 9.6215	9 5883 9.9647 9.6236	9.5901 9.9643 9.6257
23	log sin	9 5919	9 5937	9 5951	9 5972	9 5990	9,6007	9.6024	9 6042	9 6059	9.6076
	log cos	9 9640	9.9637	9 9634	9 9631	9 9627	9,9624	9.9621	9 9617	9 9614	9.9611
	log tan	9 6279	9 6300	9 6321	9.6341	9.6362	9,6383	9.6404	9.6424	9 6445	9.6465
24	log sin	9.6093	9,6110	9.6127	9 6141	9 6161	9 6177	9 6194	9 6210	9 6227	9.6243
	log cos	9.9607	9,9604	9.9601	9 9597	9 9594	9 9590	9 9587	9 9583	9 9580	9.9576
	log tan	9.6486	9 6506	9.6527	9 6547	9,6567	9 6587	9 6607	9 6627	9 6647	9 6667
25	log sin	9 6259	9.6276	9 6292	9.6308	9 6324	9.6340	9 6336	9.6371	9 6387	9 6403
	log cos	9 9573	9.9569	9 9566	9.9562	9.9558	9.9555	9 9551	9.9548	9 9544	9 9540
	log tan	9 6687	9.6706	9 6726	9.6746	9 6765	9.6785	9 6804	9.6824	9 6843	9 6863
26	log sin	9 6418	9 6434	9 6449	9 6465	9,6480	9 6495	9.6510	9 6526	9 6541	9.6556
	log cos	9-9537	9 9533	9 9529	9.9525	9 9522	9.9518	9.9514	9 9510	9 9506	9.950;
	log tan	9.6882	9 6901	9 6920	9.6939	9,6958	9.6977	9.6996	9.7015	9 7034	9.705.
27	log sin	9.6570	9.6585	9.6600	9 6615	9.6629	9.6644	9.6659	9.6673	9.6687	9.6702
	log cos	9.9499	9 9495	9 9491	9.9487	9.9483	9.9479	9 9475	9.9471	9.9467	9.9462
	log tan	9.7072	9.7090	9.7109	9.7128	9.7146	9.7165	9.7183	9.7202	9.7220	9.7238
28	log sin	9.6716	9.6730	9.6744	9.6759	9.6773	9.6787	9.6801	9 6814	9.6828	9.6842
	log cos	9 9459	9.9455	9 9451	9 9447	9.9443	9.9439	9 9435	9.9431	9.9427	9.9422
	log tan	9.7257	9.7275	9.7293	9.7311	9.7336	9.7348	9 7366	9 7384	9.7402	9.7420
29	log sin	9.6856	9.6869	9 6883	9.6896	9.6910	9.6923	9 6937	9.6950	9.6963	9 6977
	log cos	9.9418	9.9414	9.9410	9.9406	9.9401	9.9397	9 9393	9 9388	9.9384	9.938c
	log tan	9.7438	9.7455	9 7473	9.7491	9.75%	9.7526	9 7544	9 7562	9.7579	9.7597
Degs.	Function	o′	` 6′	12'	18′	24'	30′	36′	42'	48′	54'

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	0.8°	0.9°
30	log sin log cos log tan	9 6990 9 9375 9 7614	9 7003 9 9371 9 7632	9.7016 9 9367 9.7649	9.7029 9.9362 9.7667	9.7042 9 9358 9.7684	9 7055 9.9353 9.7701	9 7068 9 9349 9 7719	9 7080 9 9344 9 7736	9.7093 9.9340 9.7753	9 7106 9 9335 9.7771
31	log sin log cos log tan	9.7118 9.9331 9.7788	9.7131 9 9326 9 7805	9 7144 9 9322 9.7822	9.7156 9.9317 9.7839	9 7168 9 9312 9.7856	9 7181 9 9308 9.7873	9 7193 9.9303 9.7890	9.7205 9.9298 9.7907	9.7218 9 9294 9.7924	9 7230 9 9289 9 7941
32	log sin log cos log tan	9 7242 9.9284 9.7958	9 7254 9.9279 9.7975	9 7266 9.9275 9.7992	9.7278 9.9270 9.8008	9 7290 9 9265 9 8025	9.7302 9.9260 9.8042	9.7314 9.9255 9.8059	9 7326 9 9251 9.8075	9.7338 9.9246 9.8092	9 7349 9 9241 9.8109
33	log sin log cos log tan	9 7361 9 9236 9 8125	9 7373 9 9231 9.8142	9.7384 9 9226 9 8158	9 7396 9 9221 9.8175	9 7407 9 9216 9 8191	9.741 <u>9</u> 9 9211 9 8208	9 7430 9 9206 9.8224	9.7442 9 9201 9 8241	9 7453 9 9196 9.8257	9.7464 9 9191 9.8274
34	log sin log cos log tan	9 7476 9.9186 9.8290	9.7487 9.9181 9.8306	9 7498 9 9175 9 8323	9 7599 9 9170 9.8339	9 7520 9.9165 9.8355	9 7531 9 9160 9.8371	9 7542 9 9155 9.8388	9 7553 9 9149 9.8404	9.7564 9.9144 9.8420	9 7575 9 9139 9 8436
35	log sin log cos log tan	9.7586 9.9134 9.8452	9.7597 9.9128 9.8468	9.7607 9.9123 9.8484	9.7618 9.9118 9.8501	9 7629 9 9112 9 8517	9.7640 9 9107 9.8533	9.7650 9.9101 9.8549	9.7661 9 9096 9 8565	9.7671 9 9091 9 8581	9 7682 9 9085 9 8597
36	log sin log cos log tan	9.7692 9 9080 9.8613	9 7703 9 9074 9.8629	9.7713 9.9069 9.8644	9.7723 9.9063 9.8660	9 7734 9 9057 9.8676	9.7744 9 9052 9.8692	9.7754 9.9046 9.8708	9 7764 9 9041 9 8724	9 7774 9 9935 9 8740	9.7785 9 9029 9 8755
37	log sin log cos log tan	9 7795 9 9023 9.8771	9 7805 9,9018 9,8787	9 7815 9,9012 9,8803	9 7825 9.9006 9.8818	9 7835 9 9000 9 8834	9.7844 9.8995 9.8850	9 7854 9.8989 9 8865	9 7864 9 8983 9 8881	9 7874 9 8977 9 8897	9 7884 9 8971 9 8912
38	log sin log cos log tan	9.7893 9.8965 9.8928	9 7903 9 8959 9 8944	9 7913 9.8953 9 8959	9.8917	9 7932 9 8941 9 8990	9.7941 9.8935 9.9006	9 7951 9 8929 9 9022	9 7960 9 8923 9 9037	9 7970 9 8917 9 9053	9 7979 9 8911 9 9068
39 .	log sin log cos log tan	9.7989 9.8905 9.9084	9 7998 9 8899 9 9099	9.8007 9.8893 9.9115	9.8887	9.8026 9.8880 9.9146	9 8035 9 8874 9.9161			9 8063 9.8855 9.9207	9 8072 9.8849 9 9223
40	log sin log cos log tan	9 8081 9 8843 9 9238	9.8090 9.8836 9.9254	9 8099 9.8830 9 9269	9.8823	9.8117 9.8817 9.9300	9 8810	9.8804	9 8143 9 8797 9 9346	9 8152 9 8791 9 9361	9 8161 9 8784 9 9376
41	log sin log cos log tan	9.8169 9.8778 9.9392	9.8178 9.8771 9.9407	9 8187 9.8765 9.9422	9 8758	9.8204 9.8751 9.9453	9.8745	9 8738	9 8731	9.8238 9.8724 9.9514	9.8247 9.8718 9.9529
42	log sin log cos log tan	9 8255 9.8711 9.9544	9.8264 9.8704 9.9560	9.8272 9.8697 9.9575	9.8690	9.8683	9.8676	9 8569	9 8662	9 8322 9.8655 9.9666	9 8330 9 8648 9.9681
43	log sin log cos log tan	9.8338 9.8641 9.9697	9.8346 9.8634 9.9712	9.8627	9.8620	9.8613	9.8606	9.8598	9 8591	9.8402 9.8584 9.9818	9 8410 9.8577 9.9833
44	log sin log cos log tan	9.8418 9.8569 9.9848	9.8562	1	9.8547	9.8449 9.8540 9.9909	9.8532	9.8525	9.8517	9.8510	9.8502
Degs.	Function	o'	6′	12'	18'	24'	30'	36′	42'	48'	54'

	,										
Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	o.8°	0.9°
45	log sin log cos log tan	9.8495 9.8495 0.0000	9.8487	9 8480	9.8517 9.8472 0.0045	9.8525 9.8464 0.0061		9 8540 9.8449 0.0091	9.8547 9.8441 0.0106	9.8555 9.8433 0.0121	9.8562 9.8426 0.0136
46	log sin log cos log tan	9.8569 9.8418 0.0152		9 8584 9 8402 0.0182	9.8591 9 8394 0 0197	9 8598 9 8386 0.0212		9 8370	9 8620 9 8362 0 0258	9 8627 9 8354 0.0273	9 8634 9 8346 0.0288
47	log sin log cos log tan	9 8641 9.8338 o o3o3		9 8655 9.8322 0 0334		9 8660 9 8305 0.0361		9 8683 9 8289 0 0395	9.8690 9.8280 0.0410	9 8697 9 8272 0,0425	9 8704 9 8264 0 0440
48	log sin log cos log tan	9 8711 9 8255 0 0456	9.8718 9.8247 0.0471	9 8724 9.8238 o 0486	9 8731 9.8230 0.0501	9 8738 9.8221 0.0517		1	9 8758 9 8195 0 0562	9 8765 9 8187 0 0578	9 8771 9.8178 0.0593
49	log sin log cos log tan	9 8778 9 8169 0.0608		9 8791 9 8152 0.0639	9 8797 9 8143 0.0654	9.8804 9.8134 0.0670	9.8810 9.8125 0.0685	9 8817 9 8117 0.0700	9 8823 9 8108 0 0716	9 8830 9 8099 0 0731	9 8836 9.8090 0.0746
50	log sin log cos log tan	9.8843 9.8081 0.0762	9 8849 9 8072 0.0777	9.8855 9.8063 0.0793	9 8862 9 8053 o 0808	9 8868 9 8044 0 0824	9.8874 9.8035 0.0839	9 8880 9 8026 o 0854	9 8887 9 8017 0 0870	9 8893 9 8007 0 0885	9 8899 9 7998 0.0901
51	log sin log cos log tan	9 8905 9 7989 0.0916	9 7979	9.8917 9.7970 0.0947	9 8923 9.7960 0.0963	9 8929 9 7951 0.0978	9.8935 9.7941 0.0994	9 8941 9 7932 0 1010	9 8947 9 7922 0 1025	9 8953 9.7913 0.1041	9 8959 9 7903 0 1056
52	log sin log cos log tan	9 8965 9 7893 0 1072		9 8977 9.7874 0 1103	9 8983 9 7864 0 1119	9 898 9 785 0.1135	9 8995 9 7844 0.1150	9 9000 9 7835 0 1166	9 9006 9 7825 0.1182	9 9012 9 7815 0.1197	9.9018 9.7805 0.1213
53	log sin log cos log tan	9 9023 9 7795 0.1229	9 7785	9 9035 9.7774 0 1260	9.9041 9.7764 0.1276	9 9046 9 7751 0.1292	9 9052 9 7744 0 1308	9 9°57 9 7734 o 1324	9 9063 9 7723 0 1340	9 9069 9.7713 0.1356	9 9074 9 7703 0 1371
54	log sin log cos log tan	9 9080 9 7692 0 1387	9 7682	9 9091 9 7671 0.1419	9 9096 9 7661 0.1435	9 9101 9.7650 0 1451	9 9107 9 7640 0 1467	9 9112 9 7629 0 1483	9 9118 9.7618 0.1499	9.9123 9 7607 0 1516	9 9128 9 7597 0 1532
55	log sin log cos log tan	9 9134 9 7586 0.1548	9 7575	9 9144 9 7564 0.1580	9 9149 9 7553 o 1596	9 9155 9 7542 0,1612	9 9160 9.7531 0.1629	9 9165 9 7520 0.1645	9 9170 9.7509 0.1661	9 9175 9.7498 0 1677	9 9181 9.7487 0.1694
56	log sin log cos log tan	9.9186 9.7476 0.1710	9.7464 0.1726	9 9196 9 7453 0.1743	9 9201 9.7442 0.1759	9.9206 9.7130 0.1776	9 9211 9.7419 0 1792	9 9216 9 7407 0.1809	9.9221 9.7396 0.1825	9 9226 9 7384 0.1842	9.9231 9.7373 0.1858
57	log sin log cos log tan	9 9236 9 7361 0 1875	9 7349 0,1891	9 9246 9 7338 0 1908	9 9251 9 7326 0 1925	9 9255 9.7314 0 1941	9 9260 9 7302 0 1958	9 9265 9.7290 0 1975	9 9270 9 7278 0 1992	9 9275 9.7266 0.2008	9 9279 9 7254 0 2025
58	log sin log cos log tan	9 9284 9.7242 0.2042	9 9289 9.7230 0.2059	9 9294 9 7218 0.2076	9 9298 9 7205 0 2093	9 9303 9.7193 0 2110	9 9308 9.7181 0.2127	9 9312 9 7168 0.2144	9 9317 9.7156 0.2161	9.9322 9.7144 0.2178	9 9326 9.7131 0.2195
59	log sin log cos log tan	9.9331 9.7118 0 2212	9.9335 9 7106 0.2229	9 9340 9 7093 0 2247	9 9344 9 7080 0 2264	9 9349 9 7068 0.2281	9 9353 9 7055 0.2299	9.9358 9 7042 0.2316	9.9362 9 7029 0 2333	9.9367 9.7016 0.2351	9 9371 9.7003 0.2368
Degs.	Function	o'	6′	12'	18'	24'	30'	36'	42'	48′	54′

Degs	Function	0.0°	0.1°	0.2"	0.3°	0.4	0.5°	o.6°	0.7°	o.8°	0.9°
60	log sin log cos log tan	9 9375 4.6990 o 2386	9 9380 9 6977 0 2403	9 9384 9 6963 0 2421		9 9393 9 6937 0 2456	9 9397 9 6923 0 2474	9 9401 9 6910 0 2491	9 9406 9 6896 0 2509	9 9410 9 6883 0.2527	9 9414 9 6869 0 2545
61	log sin log cos log tan	9 9418 9 6856 0 2562	9 9422 9 6842 0 2580	9 6828	9 9131 9 6814 0 2616		9 9139 9 6787 0 2652	9 9413 9 6773 0,2670	9 9447 9 6759 0 2689	9 9451 9 6744 0.2707	9 9455 9 6730 0, 2725
62	log sin log cos log tan	9 9459 9 6716 0 2743	9 9463 9.6702 0 27 62		9 9471 9 6673 0,2798		9 9470 9 6644 0 2835	9,9483 9 6629 0 2854	9 9187 9 6615 0 2872	9 9491 9 6600 0,2891	9.9495 9 6585 0.2910
63	log sin log cos log tan	9 9490 9 6570 0,2928	9 9503 9 6556 9 2947		9.4510 9.6526 0.2985		9.9518 9.6495 0.3023		9 9525 9 6465 0.3061	9.9529 9.6449 0.3080	9 · 9533 9 · 6434 0 · 3099
64	log sin log cos log tan	9 9537 9.6418 0 3118	9 9510 9 6403 0 3137	9 9544 9 6387 0 3157	9 9513 9.6371 0 3176	9 9551 9 6356 0.3196	9 9555 9 6340 9 3215	9 9558 9.6324 0.3235	9 9562 9 6308 0 3254	9 9566 9.6292 0.3274	9 9569 9 6276 9 3294
65	log sin log cos log tan	9 9573 9 6259 0 3313	9 9576 9 6243 0 3333	9 9580 9 6227 9 3353	9 9583 9 6210 9 3373	9 9587 9 6194 9 3393	9 0500 9 6177 0,3413	9 9594 9 6161 9 3133	9.9597 9.6141 9.3453	9 9601 9 6127 0 3173	9 9601 9.6110 0 3494
66	log sin log cos log tan	9 9607 9 6693 0 3511		9, 961 1 9-6059 9-3555	9 9617 9 6012 0.3576	9 9621 9 6024 0.3596	9 9621 9 6007 0.3617	9 9627 9 5990 0 3638	9 9631 9-5972 0 3659	9 9634 9 5951 o 3679	9 9637 9 5937 9 37∞
67	log sin log cos log tan	9 9640 9 5919 0 3721	9,9613 9 5901 0,3743	9 5883	9.9650 9.5865 0.3785	9.9653 9.5847 0.3806	9 9656 9.5828 o 3828	9 9659 9 5810 0 3849	9 9662 9 5792 0 3871	9 9666 9 5773 0,3892	9,9669 9,5754 0 3914
68	log sin log cos log tan	9 9672 9 5736 0 3936	9.9675 9.5717 0.3958	9 9678 9 5698 0,3980	9 9681 9.5679 0.4002	9.9684 9.5666 9.4024	9 9687 9.5611 o 4046	9 9600 9 5621 0 4068	9 9693 9 5602 0 4091	9 9696 9 5583 0 4113	9.9699 9.5563 0.4136
69	log sin log cos log tan	9 9702 9-5513 0 4158	9 9701 9 5523 0.4181	9 5504	9 9710 9 5484 0 4227	9.9713 9.5463 9.4250	9.9716 9.5443 9.4273	9 9719 9 5423 0 4296	9 9722 9 5402 0 4319	9 9721 9 5382 9 4342	9 9727 9.5361 0.4366
70	log sin log cos log tan	9 9730 9 5341 0.4389	9 9733 9 5320 0 4413	9 5299	9 9738 9 5278 0.4461	9 9741 9.5256 0.4484	9 9743 9 5235 0 4509	9 9746 9.5213 0.4533	9.9749 9.5192 9.4557	9 9751 9 5170 0.4581	9.9754 9.5148 0.4606
71	log sin log cos log tan	9 9757 9 5126 0.4630	9 9759 9 5104 0.4655	9 9762 9 5082 0 4680	9 9764 9 5060 0.4705	9.9767 9 5037 0 4730	9.9770 9 5015 9 4755	9 9772 9 4992 0.4780	9.9775 9.4969 0.4805	9.9777 9.4946 0.4831	9.9780 9.4923 0.4857
72	log sin log cos log tan	9.9782 9.4900 0.4882	9 9785 9.4876 0.4908	9.9787 9-4853 0.4931	9 9789 9 4829 0.4960	9.9792 9.4805 0.4986	9 9791 9 4781 0.5013	9 9797 9 4757 0 5039	9.9799 9.4733 0.5066	9.9801 9.4709 0.5093	9.9804 9.4684 0.5120
73	log sin log cos log tan	9.9806 9.4659 0 5147	9.9808 9.4634 0 5174	9 9811 9.4609 0 5201	9 9813 9 4584 0.5229	9.9815 9.4559 0.5256	9 9817 9 4533 0.5284	9 9820 9.4508 0.5312	9.9822 9.4482 0.5340	9.9824 9.4456 0.5368	9 9826 9 4430 0 5397
74	log sin log cos log tan	9 9828 9.4403 0 5425	9.9831 9.4377 9.5454	9 9833 9 4350 0 5483	9 9835 9 4323 0 5512	9 9837 9 4296 0 5541	9 9839 9 4269 0 5570	9.9841 9.4242 o.5600	9 9843 9 4214 0 5629	9.9845 9 4186 o 5659	9.9847 9.4158 0.5689
Degs.	Function	o'	6′	12'	18′	24′	30'	36′	42'	48′	54′

Common Logarithms of Sines, Cosines and Tangents

289 75°–89.9°

Degs.	Function	0.0°	0.1°	0.2°	0.3°	0.4°	0.5°	0.6°	0.7°	o.8°	0.9°
75	log sin log cos log tan	9 9849 9 4130 0 5719	9 4102	9 4073	i	9 9857 9 4015 0.5842	9 3986	9 9861 9 3957 0.5905	9.9863 9.3927 0.5936	9.9865 9.3897 0.5968	9-9867 9-3867 0-6000
76	log sin log cos log tan	9 9869 9 3837 0 6032	9 3806	9.9873 9.3775 o 6o97	9 9875 9 3745 o 6130	9 9876 9 3713 0 6163	9 3682	9 9880 9 3650 0 6230	9 9882 9.3618 0.6261	9.9884 9.3586 o.6298	9 9885 9-3554 o 6332
77	log sin log cos log tan	9 9887 9 3521 0 6366	9 9889 9 3488 o 6401	9 9891 9 3455 o 6436	9 9892 9 3421 0 6471	9.9894 9.3387 0.6507	9 3353	9.3319		9 9901 9.3250 0 6651	9.9902 9.3214 0.6688
78	log sin log cos log tan	9 9904 9 3179 0 6725	9 3143	9.9907 9.3107 0.6800	9 9909 9 3070 o 6838	9 3034	9 2097	9 2959	9 2921	9 9016 9 2883 0.7033	9.9918 9 2845 0.7073
79	log sin log cos log tan	9 9919 9 2806 0.7113	9 2707	9.9922 9 2727 0 7195	9 9924 9 2687 0.7236		9 2606		9 2524	9 9931 9.2482 0.7449	9 9932 9.2439 0.7493
80	log sin log cos log tan	9 9934 9 2397 9 7537	9.9935 9.2353 0.7581	9.9936 9.2310 0.7626	9,9937 9,2266 9,7672	9 9939 9 2221 0 7718	9 2176	9 9941 9 2131 0 7811	9 9943 9 2085 0.7858	9.9944 9 2038 9.7906	9 9945 9 1991 0.7954
81	log sin	9 9946	9.9947	9 9949	9 9950	9.9951	9 9052	9 9953	9·9954	9 9955	9 9956
	log cos	9 1943	9.1895	9 1847	9 1797	9.1747	9 1697	9 1646	9 1594	9.1542	9 1489
	log tan	0 8003	0.8052	0.8102	0 8152	0.8203	0.8255	0.8307	0 8360	0 8413	0.8467
82	log sin	9 9958	9 9959	9 9965	9.9961	9,9962	9 9963	9.9964	9.9965	9 9966	9 9967
	log cos	9 1436	9 1381	9 1326	9.1271	9 1214	9 1157	9.1099	9 1040	9 0981	9.0920
	log tan	0.8522	0.8377	0,8633	0.8690	0 8748	o 8806	0.8865	0.8924	0 8985	0.9046
83	log sin	9 9068	9 9968	9.9969	9 9970	9 9971	9 9972	9 9973	9.9974	9.9975	9 9975
	log cos	9.0859	9 0797	9.9731	9 0670	9 0605	9 9539	9.0472	9.0403	9.9334	9.0264
	log tan	0.9100	0 9172	0.9236	0.9301	0 9367	9 9433	0.9501	0.9570	0.9640	0 9711
84	log sin	9.9976	9 9977	9 9978	9 9978	9 9979	9.0980	9 9981	9.9981	9.9982	9 9983
	log cos	9.0192	9 0120	9 0016	8 9970	8,9894	8.9816	8 9736	8.9655	8 9573	8.9489
	log tan	0.9784	0.9857	0 9932	1 0008	1,0085	1.0164	1.0244	1.0326	1.0409	1.0494
85	log sin	9 9983	9 9984	9 9985	9 9985	9 9986	9.9987	9.9987	9.9988	9.9988	9.9989
	log cos	8.9403	8 9315	8 9226	8 9135	8,9042	8.8946	8.8849	8.8749	8.8647	8.8543
	log tan	1.0580	1.0669	1.0759	1 0850	1,0944	1.1040	1.1138	1.1238	1.1341	1.1446
86	log sin	9 0989	9 9990	9.9990	9.9991	9.9991	9 9992	9.9992	9.9993	9.9993	9.9994
	log cos	8.8436	8 8326	8.8213	8.8098	8.7979	8.7857	8.7731	8.7602	8.7468	8.7330
	log tan	1.1554	1.1664	1.1777	1.18 <u>93</u>	1.2012	1.2135	1.2261	1.2391	1.2525	1.2663
87	log sin	9.9994	9 9994	9.9995	9.9995	9 9996	9 9996	9.9996	9 9996	9.9997	9 9997
	log cos	8.7188	8 7041	8 6889	8 6731	8 6567	8.6397	8.6220	8.6035	8.5842	8.5640
	log tan	1.2806	1.2954	1.3106	1.3264	1.3429	1.3599	1.3777	1 3962	1.4155	1.4357
88	log sin	9.9997	9.9998	9.9998	9 9998	9 9998	9 9999	9.9999	9.9999	9.9999	9.9999
	log cos	8.5428	8 5206	8 4971	8 4723	8.4159	8.4179	8.3880	8.3558	2.3210	8.2832
	log tan	1.4569	1.4792	1.5027	1.5275	1.5539	1.5819	1.6119	1.6441	1.6789	1.7167
89	log sin	9.9999	9.9999	0	0	0	0	o	0	0	0
	log cos	8.2419	8.1961	8 1450	8 0870	8,0200	7 9408	7.8439	7.7190	7.5429	7 2419
	log tan	1.7581	1.8038	1.8550	1 9130	1,9800	2.0591	2.1561	2.2810	2.4571	2.7581
Degs.	Function	o'	6′	12'	18′	24'	30'	36′	43'	48′	54′

Angle	Function	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	sinh cosh tanh	1.0000	1.0001	1.0002	1.0005	1.0008	1.0013	1.0018	1.0025	1.0032	0.0901 1.0041 0.0898
0.1	sinh cosh tanh	1.0050	1.0061	1.0072	1.0085	0.1405 1.0098 0.1391	1.0113	1.0128	1.0145	1.0162	
0.2	sinh cosh tanh	1.0201	1.0221	1.0243	1.0266	0. 2423 1.0289 0. 2355	1.0314	1.0340	1.0367	1.0395	1.0423
0.3	sinh cosh tanh	1.0453	1.0484	1.0516	1.0549	1.0584	1.0619	1.0655	1.0692	1.0731	0.4000 1.0770 0.3714
0.4	sinh cosh tanh	1.0811	1.0852	1.0895	1.0939	0.4543 1.0984 0.4136	1.1030	1 1077	1.1125	1.1174	0.5098 1.1225 0.4542
0.5	sinh cosh tanh	1.1276	1.1329	1.1383	1 1438	1.1494	1.1551	1.1609	1.1669	1.1730	0.6248 1.1792 0.5299
0.6	sinh cosh tanh	1.1855	1.1919	1.1984	1.2051	0.6846 1.2119 0.5649	1.2188	1.2258	1.2330	1.2402	0.7461 1.2476 0.5980
0.7	sinh cosh tanh	1.2552	1.2628	1.2706	1.2785	1.2865	1.2947	1.3030	1.3114	1.3199	0.8748 1.3286 0.6584
0.8	sinh cosh tanh	1.3374	1.3464	1.3555	1.3647		1.3835	1.3932	1.4029	1.4128	1.0122 1.4229 0.7114
0.9	sinh cosh tanh	1.4331	1.4434	1.4539	1.4645		1.4862	1.4973	1.5085	1.5199	1 1598 1.5314 0.7574
1.0	sinh cosh tanh	1.5431	1.5549	1.5669	1.5790	1.5913	1.6038	1.6164	1.6292	1.6421	1.3190 1 6552 0.7969
1.1	sinh cosh tanh	1.6685	1.6820	1.6056	1.7093	1.4035 1.7233 0.8144	1.7374	1.7517	1.7662	1.7808	
1.2	sinh cosh tanh	1.8107 0.8337	1.8258 0.8367	1.8412 0.8397	1.8568 0.8426	1.8725 0.8455	1.8884 0.8483	1.9045 0.8511	1.9208 0.8538	1.9373 0.8565	0.8591
1.3	sinh cosh tanh	1.9709	1.9880	2.0053	2.0228	2.0404	2.0583	2.0764	2.0947	2.1132	1.8829 2.1320 0.8832
1.4	sinh cosh tanh	2.1509	2.1700	2.1894	2 2090	2.2288	2.2488	2.2691	2.2896	2.3103	2.1059 2.3312 0.9033

Angle	Function	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.5	sinh cosh tanh	2.3524	2.3738	2.3955	2.4174	2.2251 2.4395 0.0121	2.2496 2.4619 0.9138	2.4845	2.5074	2.5305	2.3499 2.5538
1.6	sinh cosh	2.3756 2.5775	2.4015 2.6013	2.4276 2.6255	2.4540 2.6499	2.4806 2.6746	2.5075 2.6995 0.9289	2.5346 2.7247	2.5620 2.7502	2.5896 2.7760	2.6175 2.8020
1.7	sinh cosh tanh	2.6456 2.8283	2.6740 2.8549	2.7027 2.8818	2.7317 2.9090	2.7609 2.9364	2.7904 2.9642 0.9414	2.8202 2.992 <i>2</i>	2.8503 3.0206	2.8806 3.0493	2.9112 3.0782
1.8	sinh cosh tanh	3.1075	3.1371	3.1669	3.1972	3.2277	3.1013 3.2585 0.9518	3.2897	3.3212	3.3530	3.3852
1.9	sinh cosh tanh	3.4177	3.4506	3.4838	3.5173	3.5512	3·4432 3·5855 0.9603	3.6201	3.6551	3.6904	3.7261
2.0	sinh cosh tanh	3.7622	3.7987	3.8355	3.8727	3.9103	3.8196 3.9483 0.9674	3.9867	4.0255	4.0647	4.1043
2.1		4.1443	4.1847	4.2256	4.2668	4.3085	4.2342 4.3507 0.9732	4.3932	4.4362	4.4797	4.5236
2.2	sinh cosh tanh	4.5679	4.6127	4.6580	4.7037	4.7499	4.6912 4.7966 0.9780	4.8437	4.8914	4.9395	4.9881
2.3	sinh cosh tanh	5.0372	5.0868	5.1370	5.1876	5.2388	5.1951 5.2905 0.9820	5.3427	5.3954	5.4487	5.5026
2.4	sinh cosh tanh	5.5569 0.9837	5.6119 0.9840	5.6674 5.9843	5.7235 0.9846	5.7801 0.9849	5.7510 5.8373 0.9852	5.8951 0.9855	5·9535 0.9858	6.0125 0.9861	6.0721 0.9864
2.5		6.1323 ი.9866	6.1931 0.9869	6.2545 0.9871	6.3166 0.9874	6.3793 0.9876	6.3645 6.4426 0.9879	6.5066 0.9881	6.5712 0.9884	6.6365 0.9886	6.7024 0.9888
2.6	tanh	6.7690 0.9890	6.8363 0. 9892	6.9043 0.9895	6.9729 0.9897	7.0423 0.9899	7.0417 7.1123 0.9901	7.1831 0.9903	7.2546 0.9905	7.3268 0.9906	7.3998 0.9908
2.7	tanh	7·4735 0.9910	7·5479 0.9912	7.6231 0.9914	7.6991 0.9915	7.7758 0.9917	7.7894 7.8533 0.9919	7.9316 0.9920	8.0106 0.9922	8.0905 0.9923	8.1712 0.9925
2.8		8.2527 0.9925	8.3351 0.9928	8.418 <i>2</i> 0.9929	8.5022 0.9931	8.5871 0.9932	8.6150 8.6728 0.9933	8.7594 0.9935	8.8469 0.9936	8.9352 0.9937	9.0244 0.9938
2.9	sinh cosh tanh	9.1146	9.2056	9.2976	9.3905	9.4844	9.5268 9.5792 0.9945	9.6749	9.7716	9.8693	9.9680

Angle	Function	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
3.0	sinh cosh tanh	10.068	10.168	10.270	10.373	10.476	10.534 10.581 0.9955	10.687	10.794	10.902	11.011
3.1	sinh cosh tanh	11.121	11.233	11.345	11.459	11.574	11.647 11.689 0.9963	11.806	11.925	12.044	12.165
3.2	sinh cosh tanh	12.287	12.410	12.534	12.660	12.786	12.876 12.915 0.9970	13.044	13.175	13.307	13.440
3.3	sinh cosh tanh	13.575	13.711	13.848	13.987	14 127	14.234 14.269 0.9975	14.412	14.556	14.702	14.850
3.4	sinh cosh tanh	14.999	15.149	15.301	15.455	15.610	15.734 15.766 0.9980	15 924	16.084	16.245	16.408
3.5	sinh cosh tanh	16.573	16.730	16.907	17.077	17.248	17.392 17.421 0.9984	17.596	17.772	17 951	18.131
3.6	sinh cosh tanh	18.313	18.497	18.682	18.870	19.059	19.224 19.250 0.9987	19.444	19.639	19.836	20 035
3.7	sinh cosh tanh	20.230	20.439	20.044	20.852	21.001	21.249 21.272 0.9989	21.486	21.702	21.919	22.139
3.8	sinh cosh tanh	22.362	22.586	22.813	23.042	23.273	23.486 23.507 0.9991	23.743	23.482	24.222	24.466
3.9	sinh cosh tanh	24.711	24.959	25.210	25.463	25.719	25.958 25.977 0.9993	26.238	26.502	26.768	27.037
4.0	sinh cosh tanh	27.308	27.503	27.860	28.139	28.422	28.690 28.707 0.9994	28.996	29.287	29.581	29.878
4.1	sinh cosh tanh	30.178	30.482	30.788	31.097	31.400	31.709 31.725 0.9995	32.044	32.305	32.691	33.019
4.2	sinh cosh tanh	33.351 0. 9996	ვვ.ჩ8ჩ ბ. <u>ე</u> ეენ	34.024 0.9996	34.366 0.9996	34.711 0.9996	კ5.046 კ5.060 ე.9996	35.412 0.9996	35.768 0.9996	36.127 0.9996	36.490 0.9996
4.3	sinh cosh tanh	30.857	37.227	37.001	37-979	38.300	38.733 38.746 0.9997	39.135	39.528	39.925	40.326
4.4	sinh cosh tanh	40.732	41.141	41.554	41.972	42.393	42.808 42.819 0.9997	43.250	43.684	44.123	14.566

4.50-5.99

Angle	Function	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
4.5	sinh cosh tanh	45.014	45.466	45.923	46.385	46.851	47.311 47.321 0.9998	47.797	48.277	48.762	49.242 49.252 0.9998
4.6	sinh cosh tanh	49-737 49-747 0.9998	50.237 50 247 0.9998	50.742 50.752 0.9998	51.252 51.262 0.9998	51.767 51.777 0.9998	52.288 52.297 0.9998	52.813 52.823 5.9998	53-354 53-354 0.9998	53.880 53.890 0.9998	54.422 54.431 0.9998
4.7	sinh cosh tanh	54.978	55.531	56.089	56.652	57.221	57-788 57-796 0-9999	58.377	58.964	59.556	60.147 60.155 0.9999
4.8	sinh cosh tanh	60.759	61.370	61.987	62,609		63.874	64.516	65.16	65.810	66.473 66.481 0.9999
4.9		67.149	67.823	68.505	69.193	69.889	70 591	71.300	72.017	72.741	73.465 73.472 0.9999
5.0	sinh cosh tanh	74.210	74.956	75.709	76 470	77.238	78.014	$ 78.79^{8}$	79.599	80.390	81.192 81.198 0.9999
5.1	sinh cosh tanh	82.014	82.838	83.671	84.512	85.361	86.219	87.085	87.960	88.844	89.732 89.737 90.9999
5.2	sinh cosh tanh	90.639	91 550	92.470	93.399	194.338	95.286	96.243	97.211	198.188	299.169 399.174 1.0000
5.3	sinh cosh tanh	100.17	101.18	102.19	103.22	104.26	105.31	106.37	107.4	108.51	100.60
5.4	sinh cosh tanh	110.71	111.82	112.94	114.08	115.22	116.38	117.55	118.7	119.93	121.13
5.5	sinh cosh tanh	122.35	123.58	1 24.82	126.07	127.34	128 62	129.91	131.2	132.54	133.87 133.87 1.0000
5.6	sinh cosh tanh	135.22	136.57	137.95	139.33	140.73	142.15	143.58	145.0	2 146.48	147.95 147.95 1.0000
5.7	sinh cosh tanh	149.44	1 50.94	152.45	153 99	£155.53	157.10	158.68	160.2	7 161.88	3 163.51 3 163.51 0 1.0000
5.8	sinh cosh tanh	165.15	166.81	168.49	170.18	\$171.89	173.62	175.36	177.1	3 178.9	180.70 180.70 1.0000
5.9	sinh cosh tanh	182.52	184.35	186.21	;188.o8	3 189.97	191.88	193.81	195.7	5 197.7	2 199.71 2 199.71 0 1.0000

x	Func- tion	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	ϵ^x ϵ^{-x}	1.0000	1.0101 0.9900	1.0202 0.9802	1.0305 0.9704	1.0408 0.9608	1.0513	1.0618 0.9418	1.0725 0.9324	1.0833	1.0942 0.9139
0.1	ϵ^x ϵ^{-x}	1.1052 0.9048	1.1163 0.8958	1.1275 0.8869	1.1388 0.8781	1.1503 0.8694	1.1618 0.8607	1.1735 0.8521	1.1853 0.8437	1.1972 0.8353	1.2093 0.8270
0.2	ϵ^x ϵ^{-x}										1.3364 0.7483
0.3	ϵ^x ϵ^{-x}	1.3499 0.7408	1.3634 0.7334	1.3771 0.7261	1.3910 0.7189	1.4049 0.7118	1.4191 0.7047	1.4333 0.6977	1.4477 0.6907	1.4623 0.6839	1.4770 0.6771
0.4	ϵ^x ϵ^{-x}						1.5683 0.6376				1.6323 0.6126
0.5	ϵ^x ϵ^{-x}	1.6487 0.6065	1.6653 0.6005	1.6820 0.5945	1.6989 0.5886	1.7160 0.5827	1.7333 0.5769	1.7507 0.5712	1.7683 0.5655	1.7860 0.5599	1.8040 0.5543
0.6	ϵ^x ϵ^{-x}	1.8221 0.5488	1.8404 0.5434	1.8589 0.5379	1.8776 0.5326	1.8965 0.5273	1.9155 0.5220	1.9348 0.5169	1.9542 0.5117	1.9739 0.5066	1.9939 0.5017
0.7	ϵ^x ϵ^{-x}	2. 0 138 0.4966	2.0340 0.4916	2.0544 0.4868	2.0751 0.4819	2.0959 0.4771	2.1170 0.4724	2.1383 0.4677	2.1598 0.4630	2.1815 0.4584	2,2034 0,4538
0.8	ϵ^x ϵ^{-x}						2.3396 0.4274				2.4351 0.4107
0.9	ϵ^x ϵ^{-x}	2.4596 0.4066	2.4843 0.4025	2.5093 0.3985	2.5345 0.3946	2.5600 0.3906	2.5857 0.3867	2.6117 0.3829	2.6379 0.3791	2.6645 0.3753	2.6912 0.3716
1.0	ϵ^x ϵ^{-x}	2.7183 0.3679	2.7456 0.3642	2.7732 0.3606	2.8 0 11 0.3570	2.8292 0.3535	2.8577 0.3499	2.8864 0.3465	2.9154 0.3430	2.9447 0.3396	2.9743 0.3362
1.1	ϵ^x ϵ^{-x}	3. 0 042 0.3329	3.0344 0.3296	3.0649 0.3263	3.0957 0. <i>323</i> 0	3.1268 0.3198	3.1582 0.3166	3.1899 0.3135	3.2220 0.3104	3.2544 0.3073	3.2871 0.3042
1.2	ϵ^x ϵ^{-x}	3.3201 0.3012	3·3535 0.2982	3.3872 0.2952	3.4212 0.2923	3. 4 556 0.2894	3.4903 0.2865	3.5254 0.2837	3.5609 0.2808	3.5966 0.2780	3.6328 0.2753
1.3	ϵ^x ϵ^{-x}	3.6693 0.2725	3.7062 0.2698	3·7434 0.2671	3.7810 0.2645	3.8190 0.2618	3.8574 0.2592	3.8962 0.2567	3.9354 0.2541	3.9749 0.2516	4.0149 0.2491
1.4	ϵ^x ϵ^{-x}	4.0552 0.2466	4.0960 0.2441	4.1371 0.2417	4.1787 0.2393	4.2207 0.2369	4.2631 0.2346	4.3060 0.2322	4.3492 0.2299	4.3929 0.2276	4.4371 0.2254
1.5	ϵ^x	4.4817 0.2231	4.5267 0.2209	4.5722	4.6182 0.2165	4.6646 0.2144	4.7115 0.2122	4.7588 0.2101	4.8066 0.2080	4.8550 0.2060	4.9037 0.2039
1.6	ϵ^x ϵ^{-x}	4.9530 0.2019	5.0028 0.1999	5.0531 0.1979	5.1039 0.1959	5.1552 0.1940	5.2070 0.1920	5.2593 0.1901	5.3122 0.1882	5.3656 0.1864	5.4195 0.1845
1.7	ϵ^x ϵ^{-x}	5.4739 0.1827	5.5290 0.1809	5.5845	5.6407 0.1773	5.6973 0.1755	5.7546 0.1738	5.8124	5.8709 0.1703	5.9299 0.1686	5.9895 0.1670
1.8	ϵ^x ϵ^{-x}	0.1653	0.1637	0.1620	0.1604	0.1588	0.1572	0.1557	0.1541	0.1526	6.6194 0.1511
1.9	ϵ^x ϵ^{-x}	6.6859 0.1496	6.7531 0.1481	6.8210 0.1466	6.8895 0.1451	6.9588 0.1437	7.0287 0.1423	7.0993 0.1409	7.1707 0.1395	7.2427	7.3155 0.1367

x	Func- tion	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
2.0	ϵ^x	7.3891 0.1353	7.4633 0.1340	7.5383 0.1327	7.6141 0.1313	7.6906 0.1300	7.7679 0.1287	7.8460 0.1275	7.9248 0.1262	8.0045 0.1249	8.0849 0.1237
2. 1	ϵ^x ϵ^{-x}	8.1662 0.1225	8.2482 0.1212	8.3311 0.1200	8.4149 0.1188	8.4994 0.1177	8.5849 0.1165	8.6711 0.1153	8.7583 0.1142	8.8463 0.1130	8.9352 0.1119
2.2	ϵ^x ϵ^{-x}	9.0250 0.11 0 8	9.1157 0.1097	9.2073 0.1086	9.2999 0.1075	9.3933 0.1065	9.4877 0.1054	9.5831 0.1044	9.6794 0.1033	9.7767 0.10 <i>2</i> 3	9.8749 0.1013
2.3	ϵ^x ϵ^{-x}	9.9742 0.1 00 3	10.074 0.0993	10.176 0.0983	10.278 0.0973	10.381 0.0963	10.486 0.0954	10.591 0.0944	10.697 0.0935	10.805 0.0926	10.913 0.0916
2.4	$\epsilon^x \\ \epsilon^{-x}$	11.023 0.0907	11.134 0.0898	11.246 0.0889	11.359 0.0880	11.473 0.087 <i>2</i>	11.588 0.0863	11.705 0.0854	11.822 0.0846	11.941 0.0837	12.061 0.0829
2.5	ϵ^x ϵ^{-x}						12.807 0.0781				
2.6	ϵ^x ϵ^{-x}	13.464 5.0743	13.599 0.0735	13.736 0.0728	13.874 0.0721	14.013 0.0714	14.154 0.0707	14.296 0.0699	14.440 0.0693	14.585 0.0686	14.732 0.0679
2.7	ϵ^x ϵ^{-x}						15.643 0.0639				
2.8	ϵ^x ϵ^{-x}	16.445 0.0608	16.610 0.0602	16.777 0.0596	16.945 0.0590	17.116 0.0584	17.288 0.0578	17.462 0.0573	17.637 0.0567	17.814 0.0561	17.993 0.0556
2.9	ϵ^x ϵ^{-x}	18.174 3.0550	18.357 0.0545	18.541 0.0539	18.728 0.0534	18.916 0.0529	19.106 0.0523	19.298 0.0518	19.492 0.0513	19.688 0.0508	19.886 0.0503
3.0	ϵ^x ϵ^{-x}	o.0498	0.0493	0.0488	0.0483	0.0478	21.115 0.0474	0.0469	0.0464	0.0460	0.0455
3.1	ϵ^x ϵ^{-x}	0.0450	0.0446	0.0442	0.0437	0.0433	23.336 0.0429	0.0424	0.0420	0.0416	0.0412
3.2		24.533 0.0408	24.779 0.0404	25.028 0.0400	25.280 0.0396	25.53.1 0.0392	25.790 0.0388	26.050 0.0384	26.311 0.0380	26.576 0.0376	26.843 0.0373
3.3	ϵ^x ϵ^{-x}	ა.ივნე	0.0365	0.0362	0.0358	0.0354	28.503 0.0351	0.0347	0.0344	0.0340	0.0337
3.4	ϵ^{-x}	0.0334	0.0330	0.0327	0.0324	0.0321	31.500 0.0317	0.0314	2.0311	0.0308	0.0305
3.5							34.813 0.0287	1		ì	
3.6		36.598 5.0273	36.966 0.0271	37.338 0.0268	37.713 0.0265	38.092 0.0263	38.475 0.0260	38.861	39.252 0.0255	39.646 0.0252	40. 0 45 0.0250
3.7	ϵ^x ϵ^{-x}	0.0247	o.c245	0.0242	0.0240	0.0238	42.521 0.0235	0.0233	0.0231	0.0228	c.0226
3.8	ϵ^x ϵ^{-x}	0.0224	0.0221	0.0219	0.0217	0.0215	46.993 0.0213	0.0211	0.0209	0.0207	0.0204
3-9	ϵ^x ϵ^{-x}	49.402 0.0202	49.899 0.0200	50.4∞ 0.0198	50.907 0.0196	51.419 0.0195	51.935 0.0193	52.457 0.0191	52.985 0.0189	53.517 0.0187	54.055 ၁.0185

x	Func- tion	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
4.0	ϵ^x ϵ^{-x}	54.598 0.0183	55.147 0.0181	55.701 5.0180	56.261 0.0178	56.826 0.0176	57·397 0.0174	57-974 0.0172	38.557 3.0171	59.145	59.740 0.0167
4.1	ϵ^x ϵ^{-x}	60.340 ი.ი.66	60.9.17 0.016.1	61.559 5.5162	62.178	62.80; 0.0159	63.434 0.0158	64.072 0.0156	64.715 0.0155	65.366 0.0153	66.023 0.0151
1.2	ϵ^x ϵ^{-x}	66.686 0.0150	67.357 0.0148	68.033 0.0147	68.717 c.0146	69.408 0.0144	70.105 0.0143	70.810 0.0141	71.522 0.0140	72.240 0.0138	72.966 0.0137
4.3	ϵ^x ϵ^{-x}	73.700 0.0136	74.440	75.189 0.0133	75·944 0.0132	76.708 0.0130	77.478 2.0129	78.257 0.0128	79.044 0.01 <i>2</i> 7	79.838 0.01 <i>2</i> 5	80.640 0.0124
4.4	ϵ^x ϵ^{-x}	81.451 0.0123	82.269	83.096 0.0120	83.931 0.0119	84.775 0.0118	85.627 0.0117	86.488 0.0116	87.357 0.0114	88.235 0.0113	89.121 0.0112
4.5	ϵ^x ϵ^{-x}						94.632 0.0106				98.494 0.0102
4.6	ϵ^x ϵ^{-x}										108.85 0.009 <i>2</i>
4.7	€ ^x	109.95 0.0091	111.05 0.0090	112.17 0.0089	113.30 0.0088	114.43 0.0087	115.58 0.0087	116.75 0.0086	117.92 0.0085	119.10 0.0084	120.30 0.0083
4.8	ϵ^x ϵ^{-x}										132.95 0.0075
4.9	ϵ^x ϵ^{-x}						1.11.17 0.0071				146.94 0.0068
5.0	ϵ^x ϵ^{-x}										162.39 0.0062
5. 1	$\epsilon - x$						172.43 0.0058				179.47 0.0056
5.2	ϵ^x ϵ^{-x}	181.27 0.0055	183.09 0.0055	184.93 0.0054	186.79 0.0054	188.67 0.0053	190.57 0.0052	τ92.48 0.0052	194.42 0.0051	196.37 0.0051	198.34 0.0050
5.3	ϵ^x						210.61 0.0047				219.20 0. 0 046
5-4	ϵ^x ϵ^{-x}	221.41 2.0045	223.63 0.0045	225.88 0.0044	228.15 0.0044	230.44 0.004 '	232.76 0.0043	235.10 0.0043	237.46 0.004 <i>2</i>	239.85 0.0042	242.26 0.0041
5.5	ϵ^x ϵ^{-x}	244.69 2.0041	247.15 0.0040	249.64 0.0040	252.14 0. 00 40	254.68 0.0039	257.24 0.0039	259.82 0.0038	262.43 0.0038	265.07 0.0038	267.74 0.0037
5.6	ϵ^x ϵ^{-x}						28 4.2 9 0.0035				
5.7	ϵ^x ϵ^{-x}	298.87 5.0033	301.87 0. 0 033	304.90 0.0033	307.97 0.003 <i>2</i>	311.06 0.0032	314.19 0.0032	317.35 0.0032	320.54 0.0031	323.76 0.0031	327.01 0.0031
5.8	ϵ^x ϵ^{-x}						347.23 3.0029				
5.9	ϵ^x ϵ^{-x}	365.04 0.0027	368.71 0.0027	372.41 0.0027	376.15 0.0027	379-93 0.0026	383.75 3.0026	387.61 0.0026	391.51 0.0026	395·44 0.0025	399.41 0.0025

Frac- tions	Decimals	Frac- tions	Decimals	Frac- tions	Decimals	Frac- tions	Decimals
04 04 32 0 t	0.015625 0.03125 0.046875 0.0625	174 92294 684 168	0.265625 0.28125 0.296875 0.3125	347257 36-1337 16	0.515625 0.53125 0.546875 0.5625	9,7581/4,26 4,609,661,7	0.765625 0.78125 0.796875 0.8125
5 64 32 7 64 1 8	0.078125 0.09375 0.109375 0.125	264 110 120 130 130 130 130 130 130 130 130 130 13	0.328125 0.34375 0.359375 0.375	5/40:015/4 5/0 4 (55)65/5/6	0.578125 0.59375 0.609375 0.625	56265678	0.828125 0.84375 0.859375 0.875
64 5 11 63 15	0.140625 0.15625 0.171875 0.1875	2615217H 15217H 1	0.390625 0.40625 0.421875 0.4375	46 26 26 46 46 46	0.640625 0.65625 0.671875 0.6875	74983914 56 569956671	0.890625 0.90625 0.921875 0.9375
134 675154 4	0.203125 0.21875 0.234375 0.25	A companie – N	0.453125 0.46875 0.484375 0.5	ने द अध्यक्ति अभ	0.703125 0.71875 0.734375 0.75	exercise i	0.953125 0.96875 0.984375

Greek Alphabet

A α Alpha B β Beta F γ Gamma A δ Delta E ϵ Epsilon Z ζ Zeta H η Eta Θ θ Theta I ι Iota K κ Kappa A λ Lambda M μ Mu	N ν ξ Ο ο Π π ρ σ τ ν φ χ ψ ω	Nu Xi Omicron Pi Rho Sigma Tau Upsilon Phi Chi Psi Omega
--	-------------------------------	---

Factorials

n	n! == 1·2·3···n	1/n!	n	n! = 1 · 2 · 3 · · · · n	1/n! ·
1	1	1.	11	$399,168 \times 10^{2}$ $479,002 \times 10^{3}$ $622,702 \times 10^{4}$	0.250521 × 10 ⁻⁷
2	2	0.5	12		.208768 × 10 ⁻⁸
3	6	.166667	13		.160590 × 10 ⁻⁹
4	24	$.416667 \times 10^{-1}$	14	$871,783 \times 10^{8}$ $130,767 \times 10^{7}$ $209,228 \times 10^{8}$.114707 × 10 ⁻¹⁰
5	120	$.8333333 \times 10^{-2}$	15		.764716 × 10 ⁻¹²
6	720	$.138889 \times 10^{-2}$	16		.477948 × 10 ⁻¹³
7	5,040	.198413 × 10 ⁻³	17	$355,687 \times 10^{9}$.281146 × 10 ⁻¹⁴
8	40,320	.248016 × 10 ⁻⁴	18	$640,237 \times 10^{10}$.156192 × 10 ⁻¹⁵
9	362,880	.275573 × 10 ⁻⁶	19	$121,645 \times 10^{12}$.822064 × 10 ⁻¹⁷
10	3,628,800	.275573 × 10 ⁻⁶	20	243,290 × 10 ¹⁸	.411032 × 10 ⁻¹⁸

298 Length of arc (L), length of chord (C), height of segment (H) and area of segment (A) subtending an angle (θ) in a circle of radius (R)

8	L Ř	C R	H R	A R²	θ	L R	C R	H R	A R²
1 2 3	0.017 0.035 0.052	0.017 0.035 0.052	0.0000 0.0002 0.0003	00000 0	46 47 48	o.8o3 o.82o o.838	0.781 0.797 0.813	0.0795 0.0829 0.0865	0.04176 0.04448 0.04731
4	0.070	0 087	0.0006	6.00003	49	o.855	0.829	0.0900	0.05025
5	0.087		0.0010	0.00006	50	o.873	0.845	0.0937	0.05331
6	0.105		0.0014	0.00010	51	o.890	0.861	0.0974	0.05649
7	0.122		0.0019	0.00015	52	0.908	0.877	0.1012	0.05978
8	0.140		0.0024	0.00023	53	0.925	0.892	0.1051	0.06319
9	0.157		0.0031	0.00032	54	0.942	0.908	0.1090	0.06673
10	0.175	0.174	0.0038	0.00044	55	0.960	0.923	0.1130	0.07039
11	0.192	0.192	0.0046	0.00059	56	0.977	0.939	0.1171	0.07417
12	0.209	0.209	0.0055	0.00076	57	0.995	0.954	0.1212	0.07808
13	0.227	0 226	0.0064	0.00097	58	1.012	0.970	0.1254	0.08212
14	0.244	0.244	0.0075	0.00121	59	1.030	0.985	0.1296	0.08629
15	0.262	0.261	0.0086	0.00149	60	1.047	1.000	0.1340	0.09059
16	0 279	0.296	0 0097	0.00181	61	1.065	1.015	0.1384	0.09502
17	0.297		0.0110	0.00217	62	1.082	1.030	0.1428	0.0958
18	0.314		0.0123	0.00257	63	1.100	1.045	0.1474	0.10428
19	0.332	0.347	0.0137	0.00302	64	I.117	1.060	0.1520	0.10911
20	0.349		0.0152	0.00352	65	I.134	1.075	0.1566	0.11408
21	0.367		0.0167	0.00408	66	I.152	t.089	0.1613	0.11919
22	0.384	o 382	0 0184	o oo468	67	1.169	1.104	0.1661	0.12443
23	0.401	o 399	0.0201	o.oo535	68	1.187	1.118	0.1710	0.12982
24	0.419	o.416	0.0219	o.oo6o7	69	1.204	1.133	0.1759	0.13535
25	0.436		0.0237	0.00686	70	I.222	1.147	0.1808	0.14102
26	0.454		0.0256	0.00771	71	I.239	1.161	0.1859	0.14683
27	0.471		0.0276	0.00862	72	I.257	1.176	0.1910	0.15279
28	0.489	0.501	0.0297	0.00961	73	1.274	1.190	0.1961	0.15889
29	0.506		0.0319	0.01067	74	1.292	1.204	0.2014	0.16514
30	0.524		0.0341	0.01180	75	1.309	1.218	0.2066	0.17154
31	0.541	0.534	0.0364	0.01301	76	1.326	1.231	0.2120	0.17808
32	0.559	0.551	0.0387	0.01429	77	1.344	1.245	0.2174	0.18477
33	0.576	0.568	0.0412	0.01566	78	1.361	1.259	0.2229	0.19160
34	0.593	0.585	0.0437	0.01711	79	1.379	1.272	0.2284	0.19859
35	0.611	0.601	0.0463	0 01864	80	1.396	1.286	0.2340	0.20573
36	0.628	0.618	0.0489	0.02027	81	1.414	1.299	0.2396	0.21301
37	0.646	o.635	0.0517	0.02198	8 ₂	1.431	1.312	0.2453	0.22045
38	0.663	o.651	0.0545	0.02378	8 ₃	1.449	1.325	0.2510	0.22804
39	0.681	o.668	0.0574	0.02568	8 ₄	1.466	1.338	0.2569	0.23578
40	0.698	0.700	0.0603	0.02767	85	1.484	1.351	0.2627	0.24367
41	0.716		0.0633	0.02976	86	1.501	1.364	0.2686	0.25171
42	0.733		0.0664	0.03195	87	1.518	1.377	0.2746	0.25990
43	0.750	0.749	0.0696	0.03425	88	1.536	1.389	0.2807	0.26825
44	0.768		0.0728	0.03664	89	1.553	1.402	0.2867	0.27677
45	0.785		0.0761	0.03915	90	1.571	1.414	0.2929	0.28540

Length of arc (L), length of chord (C), height of segment (H) and area 299 of segment (A) subtending an angle (θ) in a circle of radius (R)

θ	L Ř	C R	H R	A R²	θ	L R	C R	H R	A R ¹
91	1.588	I.427	0.2991	0.2942	136	2.374	1.854	o 6254	o.8395
92	1.606	I.439	0.3053	0.3032	137	2.391	1 861	o.6335	o.8545
93	1.623	I.451	0.3116	0.3123	138	2.409	1 867	o.6416	o.8697
94	1.641	1.463	0.3180	0.3215	139	2 426	1 873	o 6498	o.8850
95	1.658	1.475	0.3244	0.3309	140	2 443	1.879	o 6580	o.9003
96	1.676	1.486	0.3309	0.3405	141	2.461	1 885	o 6662	o.9158
97	1.693	1.498	0.3374	0.3502	142	2.478	1.891	0 6744	0.9313
98	1.710	1.509	0.3439	0.3601	143	2.496	1.897	0.6827	0.9470
99	1.728	1.521	0.3506	0.3701	144	2.513	1.902	0.6910	0.9627
100	1.745	I.532	0.3572	0.3803	145	2.531	1.907	0.6993	0.9786
101	1.763	I.543	0.3639	0.3906	146	2.548	1.913	0.7076	0.9945
102	1.780	I.554	0.3707	0.4010	147	2.566	1.918	0.7160	1.0105
103	1.798	1.565	0.3775	0.4117	148	2.583	1.923	0.7244	1.0266
104	1.815	1.576	0.3843	0.4224	149	2 601	1.927	0.7328	1.0427
105	1.833	1.587	0.3912	0.4333	150	2.618	1.932	0.7412	1.0590
106	1.850	1.597	0 3982	0.4444	151	2 635	1 936	0 7496	1.0753
107	1.868	1.608	0.4052	0.4556	152	2 653	1 941	0.7581	1.0917
108	1.885	1.618	0.4122	0.4669	153	2 670	1 945	0 7666	1.1082
111	1.902	1.628	0.4193	0.4784	154	2.688	1 949	0.7750	1.1247
110	1.920	1.638	0.4264	0.4901	155	2.705	1.953	0.7836	1.1413
109	1.937	1.648	0.4336	0.5019	156	2.723	1 956	0.7921	1.1580
112	1.955	1.658	0.4408	0.5138	157	2.740	1.960	o 8006	1.1747
113	1.972	1.668	0.4481	0.5259	158	2.758	1.963	o .8092	1.1915
114	1.990	1.677	0.4554	0.5381	159	2.775	1.967	o .8178	1.2083
115	2.007	1.687	0.4627	0.5504	160	2.793	1.970	o.8264	I.2252
116	2.025	1.696	0.4701	0.5629	161	2.810	1.973	o.8350	I.2422
117	2.042	1.705	0.4775	0.5755	162	2.827	1.975	o.8436	I.2592
118	2.059	I.714	o.4850	0.5883	163	2.845	1 978	0.8522	1.2763
119	2.077	I.723	o 4925	0.6012	164	2.862	1.981	0.8608	1.2933
120	2.094	I.732	o.5000	0.6142	165	2.880	1.983	0.8695	1.3105
121	2.112	I.741	0.5076	0.6273	166	2.897	1.985	o.8781	1.3277
122	2.129	I.749	0.5152	0.6406	167	2.915	1.987	o.8868	1.3449
123	2.147	I.758	0.5228	0.6540	168	2.932	1.989	o.8955	1.3621
124	2.164	1.766	0.5305	0.6676	169	2.950	1.991	0 9042	1.3794
125	2.182	1.774	0.5383	0.6812	170	2.967	1.992	0.9128	1.3967
126	2.199	1.782	0.5460	0.6950	1 71	2.985	1.994	0.9215	1.4140
127	2.217	1.790	o 5538	0.7090	172	3.002	1.995	o 9302	1.4314
128	2.234	1.798	o 5616	0.7230	173	3.019	1.996	o 9390	1.4488
129	2.251	1.805	o 5695	0.7372	174	3.037	1.997	o 9477	1.4662
130	2.269	1.813	0.5774	0.7514	175	3.054	1.998	0.9564	1.4836
131	2.286	1.820	0.5853	0.7658	176	3.072	1.999	0.9651	1.5010
132	2.304	1.827	0.5933	0.7803	177	3.089	1.999	0.9738	1.5185
133	2.321	1.834	0.6013	0.7950	178	3 107	2.000	0.9825	1.5359
134	2.339	1.841	0.6093	0.8097	179	3.124	2.000	0.9913	1.5533
135	2.356	1.848	0.6173	0.8245	180	3.142	2.000	1.0000	1.5708

300	weights o	I Materials	
M aterial	Lbs. per cu. ft.	Material	Lbs. per cu. ft.
Air *	0.0809 0.0733 168 49-57 168	copper, pure	554 549-558 552-558 555-558 15.6
" cast	160 168 67	Erbiumemery	297 250
ammonia *	0.0482 414 0.113 357 125-175	Feldspar	158-162 162 0.0920
asphaltumBariumbasalt	69-94 234 180	german silverglass, common 'flintglueinum.	515-535 150-175 180-280
bismuthboron.brass.brick.bromine	609 159 510-542 100-150	glycerinegold. granite. gravel. gun arabic.	78.6 1203 125–187 90–147 90
bronzeCadmiumcaesium.	545 ⁻ 555 540	gun metalgutta perchagypsum.	533 61 144
calciumcarbon	98.6 125-144	Hydrogen *	
" bisulphide " dioxide * " monoxide * celluloid	80.6 0.124 0.0782 90	lceiodineiridiumiron, pure	55-57 300 1399 491
cement, loose	72-10,5 168-187 437 119-175	" gray cast " white cast " wrought " steel	439-445 473-482 487-492 474-494
charcoal chlorine *chromium chromium clay, hard	17-35 0.196 368 129-133	Leadleather, dry	114 710 54
" soft	118 81-106 47-58 78-88	limelimestonelithium	53-75 156-162 39
" lignitecobalt	44-54 52 530-563 62-105	Magnesium " carbonate manganese	65-88 107 150 462
" loose	23-32 452 146	marble masonry mercury *	157-177 100-165 849
" (1:3:6)	139 156	mica molybdenum	165-200 529

^{*} At o' Cent. and atmospheric pressure.

Material	Lbs. per	Material	Lbs. per cu. ft.
mortar, hard	103	steel	474-494
muck	40-74	strontium	158
mud	80-130	sulphur	120-130
Naptha	53	Tala	- 60
nickel	540-550	Taletantalum	168
nickelnitrogen *	0.0782	tar	1040 62.4
nitrous oxide *	0.0838	tellurium	389
Oil, cotton-seed	60,2	thallium	739
		thorium	686
" lard " linseed	57.4 58.8	l tile	113
" lubricating		" hollow	26-45
" petroleum		tin	455
" transformer		titanium	218
" turpentine	54.2	п пар госк	187-190
" whale	57.3	tungsten	1174
osmium	1400	turf	20-30
oxygen *	0.0895	Uranium	1165
Palladium	711	Vanadium	343
paperparaffin	44-72		545
paramit	54-57 20-30	Water, max. dens	62.4
phosphorus	146	" sca	
pitch	67	wax, beeswood, ash	60.5
plaster of Paris	144	" bamboo	45-47
platinum	1336	" beech	22-25 43-56
porcelain	143-156	" birch	32-48
potassium	53 - 7	" butternut	24-28
pumice stone	23-56	" cedar	37-38
Quartz	165	" cherry	
	Ť	cnestnut	43-56 38-40
Resin	67	cypress	32-37
rhodiumrubber, pure	773	ebony	69-83
" compound	106-124	" elm " fir	35-36
" ebonite		" hemlock	34-35
rubidium	955	" hickory	
ruthenium	767	" lig. vitæ	78-83
		" mahogany	32-53
Salt	129-131	" maple	49-50
sand	90-120	" oak	37-56
sandstoneselenium	124-200	" pine	24-45
shale	300 162	popiar	24-27
silicon.	131	red wood	30-32
silver	660	spruce	25-32
slate	162-205	" walnut " willow	38-45
snow, fresh fallen	5-12	WIIIOW	24-37
" wet compact	15-50	Xenon *	0.284
soapstone	162-175	l I	
sodium	60.5	Zinc	448
spermaceti	59	zirconium	258
	i		

[•] At o° Cent. and atmospheric pressure.

Coefficients of discharge (c) for circular orifices, with full contractions *

Head from cen-	Diameters in feet									
ter of orifice in feet	0.02	0.05	0.1	0.2	0.6	1.0				
0.5 0.8 1.0 1.5 2.0	o.648 o 644 o.637 o.632 o 629	0.627 0 620 0 617 0.613 0.610 0.608	0.615 0.610 0.608 0.605 0.604 0.603	0.600 0.601 0 600 0 600 0.599 0.599	0.592 0.594 0.595 0.596 0.597 0.598	0.591 0.591 0.593 0.595 0.596				
3.0 3.5 4.0 6.0	0 627 0.625 0.623 0 618 0.614	0.606 0.606 0.605 0.604 0.603	0.603 0.602 0.602 0.600	0.599 0.599 0.599 0.598	0.598 0.598 0.597 0.597	0.597 0.596 0.596 0.596				
8.0 10.0 20.0 50.0 100.0	0.611 0.601 0.596 0.593	0.601 0.598 0.595 0.592	0.598 0.596 0.594 0.592	0.598 0.597 0.596 0.594 0.592	0.596 0.596 0.596 0.594 0.592	0.596 0.595 0.594 0.593 0.592				

Coefficients of discharge (c) for square orifices, with full contractions *

Head from cen-	Length of side of square in feet									
ter of orifice in feet	0.02	0.05	0.1	0.2	0.6	1.0				
0.5 0.8 1.0 1.5 2.0 2.5 3.0 3.5 4.0 6.0 8.0	0.652 0.648 0.641 0.637 0.634 0.632 0.630 0.628	o.633 o.625 o 622 o 619 o.615 o.613 o 612 o.611 o.610 o.609	0.619 0.613 0.613 0.608 0.607 0.607 0.606 0.605	o.6o5 o 6o5 o 6o5 o.6o5 o.6o5 o.6o5 o.6o5 o.6o5 o.6o5 o.6o5	0.597 0.600 0.601 0.602 0.604 0.604 0.604 0.604 0.603 0.603	0.597 0.599 0.601 0.602 0.602 0.603 0.602 0.602 0.602				
10.0 20.0 50.0 100.0	0.019 0.616 0.606 0.602 0.599	o.608 o.606 o.603 o.601 o.598	o.604 o.602 o.600 o.598	o.6o3 o.6o2 o.6o0 o.598	0.602 0.601 0.599 0.598	o.6oo o.599 o.598				

[•] From Hamilton Smith's Hydraulics.

Coefficients of discharge (c) for contracted weirs *
For use in the Hamilton Smith formula.

Effec- tive	Length of weir in feet											
head in feet	0.66	1	2	3	4	5	7	10	15	19		
0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.8 1.0 1.2 1.4	o.611 o.605 o.601 o.595 o.590 o.587	0.612 0.608 0.601 0.596 0.593	0.626 0.621 0.616 0.609	o.630 o.624 o 619 o.613 o.608 o.605 o.600 o.595 o.591 o.587	0.631 0.625 0.621 0.614 0.610 0.607 0.602 0.598 0.594	0.631 0.626 0.621 0.615 0.608 0.604 0.601 0.597	0.654 0.632 0.623 0.617 0.613 0.611 0.607 0.604 0.601 0.598	0.633 0.628 0.624 0.618 0.615 0.613 0.611 0.608 0.605	o 634 o 628 o 624 o 619 o 616 o 614 o 612 o 608 o 608	0.634 0.629 0.625 0.620 0.617 0.615 0.611 0.610		

Coefficients of discharge (c) for suppressed weirs * For use in the Hamilton Smith formula.

Effective	Length of weir in feet										
head in feet	0.66	2	3	4	5	7	10	15	19		
0.1					0.659	0.658	0.658	0.657	0.657		
0.2	0.656	0.645	0.642	0 641	0.638	0.637	0.637	0.636	0.635		
0.25	0.653	0 641	0.638	0 636		० 6रु	0 632	0.631	0.630		
0.3	0.651	0.639	0.636	0 633	0.631	0 629	0.628	0.627	0.626		
0.4	0 650	0 636	0 633	0.630		0.625	0.623	0.622	0.621		
0.5	0.650	0.637	0.633			0.624					
0.6	0.651	0.638	0 634			0 623	0.620	0.619	0 618		
0.8	0.656		0.637			0.625			0.618		
0.1		0.648	0.641	0.637	0.633	0 628		0.621	0.619		
1.2				0.641		0.632			0.620		
1.4				0.644		0.634					
1.6				0.647	0.642	0.637	0.631	0.626	0.623		

[•] From Hamilton Smith's Hydraulics.

Friction Factors

Values of friction factor (f) for clean cast-iron pipes

Diam-	Velocity in feet per second									
eter in inches	0.5	I	2	3	6	10	20			
1	0.0398	0.0353	0 0317	0.0299	0.0266	0.0244	0.0228			
3 6	0.0354	0.0316	0.0288	0 0273	0 0248	0.0232	0.0218			
6	0.0317	0.0289	0 0264	0 0?52	0 0231	0.0219	0.0208			
9	0.0290	0.0269	0.0247	0.0237	0 0220	0.0209	0.0200			
12	0.0268	0.0251	0.0233	0 0224	0 0209	0.0201	0.0192			
18	0.0238	0 0224	0 0211	0 0204	0 0193	0.0188	0.0181			
24	0.0212	0 0194	0.0193	0 0187	0.0180	0.0176	0.0170			
30	0.0194	9810 0	0.0179	0.0175	0 0170	0.0166	0.0161			
36	0.0177	0.0172	0 0167	0 0164	0 0160	0 0156	0.0152			
48	0.0153	0.0150	0 0147	0 0145	0.0143	0.0141	0.0138			
60	0.0137	0.0135	0.0133	0 0132	0.0130	0.0128	0.0125			
72	0.0125	0.0124	0 0122	0 0150	8110.0	0.0117	0.0117			
96	6,010	0 0107	0 0106	0 0106	0 0105	0.0104	0.0103			

Values of friction factor (f) for old cast-iron pipes

Diameter	Velocity in feet per second									
in inches	r	3	6	10						
3	0.0608	0.0556	0 0512	0.0488						
3 6	0.0540	0.0468	0.0432	0.0412						
9	. 0.0488	0 04.20	0.0400	0.0368						
12	0 0432	0.0384	0.0356	0.0336						
15	0 0396	0.0348	0.0324	0.0312						
15	0.0348	0.0312	0.0292	0 0276						
24	0.0304	0.0268	0.0252	0.0240						
30	0.0268	0.0244	0.0228	0.0220						
36	0.0244	0.0224	0 0208	0.0200						
42	0.0232	0 0208	0.0200	0.0192						
48	0.0228	0 0204	0.0196	0.0184						

Values of coefficient (c) in Chezy Formula

Radius	Velocity in feet per second										
in Feet	I	2	3	4	6	10	15				
0.5	96	104	109	112	116	121	124				
1.0	100	116	121	124	129	134	138				
1.5	117	124	128	132	136	143	147				
2.0	123	130	134	137	142	150	155				
2.5	128	134	139	142	147	155					
3.0	132	138	142	145	150						
3.5	135	141	145	149	153						
4.0	137	143	148	151							

Values of coefficients (c) in Kutter's formula

Slope	n		Hydraulic radius r in feet									
Stope		0.2	0.4	0.6	0.8	1.0	1.5	2.3	6.0	10.0	15.0	50.0
0.00005	0.010	87	109	123	133	140	154	164	199	213	220	245
Ĭ	0.015	52	66	76	83	89	99	107	138	150	159	181
	0.020	35	45	5.3	59	64	72	8c	105	116	125	148
]	0.025	26	35	41	45	49	57	62	85	96	104	127
l	0.030	22	28	33	37	40	47	51	72	83	90	112
	c . 040	15	20	24	27	29	34	38	56	64	71	93
1000.0	0.010	98	118	131	140	147	158	167	196	206	212	227
	0.015	57	72	81	88	93	103	109	134	143	150	166
	0.020	38	50	57	63	67	75	81	102	111	118	1.34
	0.025	28	38	43	48	51	59	64	84	93	98	114
	0.030	23	30	35	39	42	48	52	72	78	85	100
	0.040	16	22	25	28	31	35	33	54	62	68	83
0.0002	0.010	105	125	137	145	150	162	169	193	202	206	220
	0.015	61	76	84	91	96	105	110	132	140	145	158
	0.020	42	53	60	65	€8	76	82	100	108	113	126
	0.025	,30	40	45	50	54	60	65	83	90	95	108
	0,030	25	32	37	40	43	49	53	69	77	82	94
	0 040	17	2,3	26	29	32	36	40	53	60	65	78
c.0004	0.010	110	128	140	148	153	164	171	192	198	203	215
	0.015	64	78	87	93	98	106	112	130	137	142	154
	0.020	43	55	61	67	70	77	83	99	106	110	123
	0.025	32	42	47	51	55	60	65	82	88	92	104
	0.030	26	33	38	41	44	50	54	68	75	80	91
	0.040	18	23	27	30	32	37	40	5.3	. 59	63	75_
100.0	0.010	113	132	143	150	155	165	172	190	197	201	212
	0.015	66	80	88	94	98	107	112	130	135	141	151
	0.020	45	56	62	68	71	78	84	98	105	109	120
	0.025	33	43	48	52	55	61	65	81	87	91	101
	0.030	27	34	38	42	45	50	54	68	74	78	89
	0 040	18	24	27	30	33_	37	40	53	58	61	72
0.01	0.010	114	133	143	151	156	165	172	190	196	200	210
	0.015	67	81	89	95	99	107	113	129	135	140	150
	0.020	46	57	63	68	72	78	84	98	105	108	119
	0.025	34	44	49	52	56	62	65	80	86	90	100
	0.030	27	35	39	43	45	51	55	67	73	77	87
	0.040	19	24	28	30	33	37	40	52	58	61	71

Values of coefficients (c) in Bazin's Formula *

Hydraulic		(Coefficient of	roughness r	n	
radius in feet	0.06	0.16	0.46	0.85	1.30	1.75
0.2	126	96	55	36	25	19
0.3	132	103	55 63	41	30	23 26
0.4	134	108	68	46	33	26
0.5	136	112	71	50	33 36	29
0.75	140	811	80	57 62	42	34
1.0	142	122	86		47	34 38
1.25	143	125	90	66	51	41
1.5	145	127	94	70	54	44
2.0	146	131	99	76		49
2.5	147	133	104	80	59 63	53
3.0	148	135	106	83	67	57
5.0	150	140	115	93	77	57 6 5
10.0	152	144	125	106	91	79
20.0	154	148	133	117	103	92

[•] From Russell's "Textbook on Hydraulics."

STEAM TABLES

Abridged from "Thermodynamic Properties of Steam" by Joseph H. Keenan and Frederick G. Keyes
Copyright, 1937, by Joseph H. Keenan and Frederick G. Keyes
Published by John Wiley & Sons, Inc., New York

Table 1. Saturation: Temperatures

	Tom	Fahr.	% 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	& 5 % 8 % 8	110° 120 130 140 150	16° 00° 19° 20° 20° 20°	210° 212 220 230 240
		Sat. Vapor Sg	2 1877 2 1770 2 1597 2 1429 2 1264	2 0948 2 0647 2 0360 2 0087 1 9826	1 9577 1 9339 1.9112 1.8894 1.8685	I.8485 I.8293 I.8109 I.7932 I.7762	1 7598 1 7566 1 7440 1 7288 1 7140
	Entropy	Evap.	2 1877 2 1709 2 1435 2 1167 2 0903	2 0393 1 9902 1 9423 1 5972 1 8531	1 S126 1 7694 1 7296 1 6537	1 6174 1 5322 1 5480 1 5147 1 4824	1 4508 1 4446 1 4201 1 3901 1.3609
		Sat. Liquid sf	c cccc c ccc c coci c c162 c c262 c c361	0.0555 0.0745 0.0932 0.1115	0 1471 0 1545 0 1816 0 1984 0 2149	0 2311 0 2472 0 2630 0 2785 0 2938	0.3090 0.3120 0.3230 0.3387 0.3531
atures		Sat. Vapor hg	1075.8 1077.1 1079.3 1031.5	1538.0 1592.3 1096.6 1100.9	5 9011 1113 7 1117 9 122 0 1.05211	1130.2 1134.2 1138.1 1142.0	1149.7 1150.4 1153.4 1157.0 1160.5
catalanon: Acmporatures	Enthalpy	Evap. hfg	1075.8 1074.1 1071.3 1068.4 1065.6	1059.9 1054.3 1048.6 1042.9 1037.2	1031.6 1025.8 1020.0 1014.1 1008.2	1002.3 996.3 990.2 984.1	971.6 970.3 965.2 958.2 952.2
		Sat. Liquid hf	0 0 3 02 8 05 13 06 18.07	28.06 38.04 48.02 57.99 67.97	77 94 87.92 97.90 107.89 117.89	127 89 137 90 147 92 157 95 107.99	178 05 180 07 188.13 198 23 238 34
TOTAL TO	пе	Sat. Vapor	3306 2947 2444 2036 4 1703 2	1226 7 857 9 633 1 468 0 350.4	265.4 203.27 157.34 123.01 97.07	77 29 62 06 80 23 40 96 33 64	27 82 26 80 23 15 19 382 16 323
	Specific Volume	Evap. víg	3306• 2947 2444 2036.4 1703.2	1206.6 867.8 633.1 468.0 350.3	265 3 203.25 157 32 122 99 97.06	77.27 62.04 50.21 40.94 33.62	27.80 26.78 23.13 19.365 16.306
		Sat. Liquid vf	0 01602 0 01602 0 01602 0 01603	0 01604 0 01606 0 01608 0.01610 0.01613	0.01617 0 01620 0 01625 0 01629 0.01634	0 01639 0 01645 0 01651 0 01657 0 01663	0.01670 0.01672 0.01677 0.01684 0.01692
	Abs. Press.	Lb. Sq. In. p	0 08854 0 09995 0 12170 0 14752 0 17811	o 2553 o 3531 o 5059 o 6982 o 9492	1 2748 1.6924 2 2225 2 8836 3 718	4 741 5 992 7 510 9 339 11.526	14.123 14.696 17.186 20.780 24.969
	Тетр.	Fahr. t	32° 35 40 50	\$ 5 8 8 8 10 8 8 8 8	110° 120 130 140 150	160° 170 180 190 200	210° 212 220 230 240

250° 260 270 280 290	300° 310 330 340	350 370 380 390 390	400° 410 420 440	450° 460 470 480	500 520 540 560 580	620 640 660 680 680	700° 705.4
1 6998 1.6860 1 6727 1.6597 1 6472	1.6350 1.6231 1.6115 1.6002 1.5891	1 5783 1 5577 1 5573 1 5471 1 5371	1 5272 1 5174 1 5078 1 4982 1 4887	I 4793 I.4700 I 4606 I 4513 I.4419	1 4325 1 4136 1 3942 1 3742 1 3532	I 3307 I 3062 I 2789 I 2472 I 207I	1 1389 1 0580
1 3323 1 3043 1 2769 1 2501 1 2238	1 1980 1.1727 1.1478 1 1233 1.0992	1 2754 1 0519 1 0287 1 0059 0 9832	0 9508 0 9386 0 9155 0 8947 0 8730	0 8513 0 8298 0 8083 0 7858 0 7653	0 7438 0 7005 0 6568 0 6121 0 5559	0 5176 0 4664 0 4110 0 3485 0 2719	0.1484
0 3675 0.3817 0.3958 0.4096	0.4359 0.4504 0.4537 0.4759 0.1900	0 5029 0 5153 0 5286 0 5413 0 5539	0.5564 0.5758 0.5912 0.6035 0.6158	0.6280 0.6402 0.6523 0.6645	0 6887 0 7130 0 7374 0 7621 0 7872	0 8131 0 8398 0 8579 0 8987 0 9351	0.9905 1.0580
1164.0 1167.3 1170.6 1173.8 1176.8	1179 7 1182 5 1185 2 1187 7 1190 1	1192 3 1194 4 1195 3 1198 1	1201 0 1202 1 1203 1 1203 8 1204 3	1204 6 1204 6 1204 3 1203 7 1202 8	1201 7 1198 2 1193 2 1195 4 1177 3	1165 5 1150 3 1130 5 1104 4 1067.2	995.4
945.5 938 7 931 8 924 7 917 5	910 1 902 6 894 9 887 0 879 0	870 7 862 2 853 5 844 6 835 4	826 o 816 3 806 3 796 o 785 4	774 5 763 2 751 5 739 4	713 9 686 4 656 6 624 2 588 4	548 503 6 452 0 390 2 309 9	172.I 0
218.48 228.64 238.84 249.06 259.31	269 59 279 92 290 28 300 68 311 13	321 63 332 18 342 79 353 45 364 17	374 97 375 83 396 77 407 79 418 90	430 I 441 4 452 8 464 4 475 0	447 8 536 6 536 6 588 9	617 0 646 7 678 6 714 2 757.3	823 3 902.7
13.821 11.763 10.061 8.645 7.461	6 466 5 626 4 914 4 307 3 788	3 342 2 957 2 625 2 335 2 0836	1 8633 1 67co 1 5000 1 3499 1 2171	1 0993 0 9944 0 9009 0 8172 0 7423	0 6749 0 5594 0 4549 0 3968	0 2201 0 1798 0 1442 0 1115	0 0761
13 804 11 746 10 044 8.628	6 449 5.609 4.896 3 770	3 324 2 939 2 606 2 317 2 0651	1 8447 1 6512 1 4811 1.3308 1 1979	0 0799 0 9748 0 8811 0 7972 0 7221	0 6545 0.5335 0 4434 0 3647 0.2989	0.2432 0 1955 0 1538 0 1165	0.039 2 0
0 01700 0 01709 0 01717 0.01726 0 01735	0.01745 0.01755 0.01765 0.01776 0.01787	0 01799 0 01811 0 01823 0 01836 0 01836	0 01864 0 01978 0 01910 0 01910	0 0194 0 0196 0 0198 0 0250 0 0202	0 0204 0 0209 0 0215 0 0221 0 0228	0 0236 0 0247 0 0276 0 0278 0.0305	0.0369
29.825 35.429 41.858 49.203 57.556	67.013 77.68 89.66 103.06 118.01	134 63 153 04 173.37 195.77 220 37	247 31 276 75 308 83 343 72 381 59	422 6 465 9 514 7 566.1 621 4	680.8 812.4 962.5 1133.1 1325.8	1542 9 1786 6 2059 7 2365.4 2708.1	3093.7 3206.2
250° 250° 270 280 290	300° 310 320 330 340	350 370 370 390 390	400° 410 430 440	450° 450 470 490	500° 5750 5760 5760 5760	600 620 640 660 680	705.4

Table 2. Saturation: Pressures

Abs. Press.	Temp.	Specific	Specific Volume		Enthalpy			Ептору		Internal Energy	Energy	Abs. Press
Lb. Sq. la.	Fahr. t	Sat. Liquid vf	Sat. Vapor vg	Sat. Liquid hf	Evap. hfg	Sat. Vapor hg	Sat. Liquid sf	Evap.	Sat. Vapor ^S g	Sat. Liquid uf	Sat. Vapor ug	Sq. In.
1 2 2 3 5 0 5 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0	101.74 125.08 141.48 152.97 162.24	0 01614 0 01623 0 01630 0 01636	333 6 173.73 118 71 9c.63 73 52	69 70 93 99 109 37 12c 86 13c.13	1036 3 1022 2 1013 2 1005 4 1001.0	1106 0 1116 2 1122 6 1127 3 1131.1	0 1326 0 1749 0 2008 0 2198 0 2347	1 8456 1 7451 1 6855 1 6427 1 6094	1 97%2 1 9200 1 8863 1.8625 1 8441	69 70 93 98 109 36 120 85 130 12	1044 3 1051 9 1056.7 1060.2 1063 1	0.0 0.0 0.4 0.0 0.0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	170 05 176 85 182.86 188 28 193 21	o o1645 c.c1649 o.o1653 o.o1656 o.c1659	61 98 53 64 47 34 38 42	137 96 144 76 150 79 156 22 161 17	996 z 992 I 988 5 985 z 985 z	1134 2 1135 9 1139 3 1141 4 1143 3	0 2472 0 2581 0 2674 0 2759 0 2835	1 5586 1 5586 1 5383 1 5203 1 5241	1 8292 1 8157 1 8057 1.7952 1.7876	137 94 144 74 150 77 156 19 161 14	1065.4 1057.4 1069.2 1070.8	0 0 0 0 0 0 0 0 0
14 695 15 20 25 30	212 00 213 03 227 96 240 07 250.33	0.01672 0 C1672 0 01683 0.01592 0 01701	26.80 26.29 20.689 16.303 13.746	180 07 181 11 196 16 208 42 218 82	970 3 979 7 960 1 952 1	1150 4 1150 8 1156.3 1150.6 1164.1	0.3120 0.3135 0.355 0.3680	1 4146 1 4415 1 3952 1 3506 1 3313	1 7566 1.7549 1.7319 1 7139 1 6993	180 02 181 06 196 10 208 34 218 73	1077 5 1077 8 1081 9 1085.1	14.696 20 25 30
864888	259 28 257 25 274 44 281 01 287.07	0 01708 0.01715 0 01721 0 01727 0.01732	11.898 10 498 9 401 8 515 7.787	227 91 235.03 243 35 250 09 250 30	939 2 933 7 928 6 924 0 919 6	1167 1 1169 7 1172 0 1174 1	0 3307 0 3919 0 4019 0 4110 0 4193	1.3063 1.2844 1.2650 1.2474 1.2316	1 6870 1.6763 1 6679 1 6585 1.6509	227 80 235 90 243 22 249 93 256.12	1090.1 1092 o 1093 7 1095 3 1096 7	£ 4 4 5 8 8
825 E &	292 71 297 97 302 92 307 60 312 03	0 01738 0 01743 0 01745 0 01753	7 175 6 655 6.266 5.816 5.472	262 09 267 50 272 61 277 43 282.02	915 5 911 6 907 9 904 5 901 1	1177 6 1179 1 1185 6 1181 9	0 4270 0 4342 0 4409 0 4472 0 4574	1.2168 1.2032 1.1906 1.1787 1.1676	1 6438 1.6374 1 6315 1 6259 1.6207	261 90 267 29 272 38 277 19 281 76	1097 9 1099 1 1100 2 1101.2	877 758 877 758
88 98 100 110	316 25 320 27 324 12 327.81 334 77	0 01751 0 01766 0 01770 0 01774 0 01782	5 168 4 896 4 652 4 432 4 049	286 39 290 56 294.56 298.40 305.66	897 8 894.7 891.7 888.8 883.2	1184 2 1185 3 1186.2 1187.2 1183 9	0.4587 0.4641 0.4740 0.4740	1 1571 1.1471 1 1376 1 1286 1 1117	1.6158 1.6112 1.6058 1.6026 1.5948	286.11 290.27 294.25 298.08 305.30	1102 9 1103 7 1104 5 1105 2 1106.5	85 85 10 110

						_
120 130 150 150	170 180 190 200 250	300 350 400 500	555 650 70 70 75 75	8850 9850 10850	1100 1200 1300 1400 1500	2500 3300 3206
1107 6 1108 6 1109 6 1110 5	1111 9 1112 5 1113 1 1113 7 1113 8	1117 1 1118 0 1118 5 1118 7 1118 6	1118 2 1117 7 1117 1 1115 3	1114 4 1113 3 1112 1 1110 8 1139 4	1106.4 1103.0 1099.4 1095.4 1091.2	1055 6 1030 6 972 7 872 9
312 05 318 38 324 35 330.01	340 52 345 42 350 15 354 68 375 14	392 79 408 45 422 6 435 5 447 6	8 4 4 59 4 8 4 4 8 8 4 8 4 4 8 0	506 6 515 0 523 1 530 9 538 4	552 9 556 7 550 0 502 7 605 1	662 2 717 3 783 4 872 9
1 5878 1 5812 1 5751 1 5694 1 5640	1 5590 1 5542 1 5497 1 5453 1 5253	1 5104 1 4366 1 4734 1 4734 1 4734	1 4542 1 4454 1 4374 1 4295 1 4223	1 4153 1 4085 1 4020 1 3957 1 3897	1.3780 1.3587 1.3559 1.3454 1.3351	1 2849 1 2322 1 1615 1 0589
1 0962 1 0817 1 0682 1 0585 1 0555	1 c324 1 0217 1 0115 1 c218 c 958	0 9225 0 8910 0 8930 0 8378 0 8147	0 7934 0 7734 0 7548 0 7371	0 7045 0 6891 0 6744 0 6602 0 6467	0 5255 0 5950 0 5719 0 5491 0 5239	0 4230 0.3147 0 1885 0
0 4915 0 4995 0 5559 0 5138 0 5224	0 52% 0 53.55 0 53.81 0 5435 0 5435	0 5879 0 6556 0 6359 0 6359	0 6608 0 6720 0 6926 0 6925 0 7019	0 7108 0 7194 0 7275 0 7355 0 7430	0 7575 0 7711 0 7810 0 7963 0 8082	0 8419 0 9126 0 9731 1 0580
1190 4 1191 7 1193 0 1193 0 1194 1	1195 0 11,75 9 11,75 5 11,93 4 1 1231	1202 8 1203 9 1204 5 1204 6 1304 6	1203 9 1203 2 1202 3 1201 2 1200 0	1198 6 1197 1 1195 4 1193 7 1191 8	1187.8 1183.4 1178.6 1173.4 1167.9	1135 1 1091.1 1020 3 920 7
877 872 868 863 853 859 859 859	825.8 825.8 825.8 825.1	84.25 94.85 94.84	743 731 6 720 5 709 7	688 9 673 8 663.8 659 1 649.4	630 4 611 7 593 2 574 7 556 3	463 4 360 5 217 8 0
312 44 318.81 324.82 335 51 335 51	341 99 346 63 350 79 3750 0	393 84 409 69 424 0 437 2 449 4	460.8 471.6 491.8 500.8	509 7 518 3 526 6 534 6 542 4	557 4 571 7 578 7 508 7 611 6	671 7 730 6 802 5 902 7
3.728 3.455 3.220 3.015 2.834	2 675 2 532 2 404 2 208 1 8433	1 5433 1 3250 1 1613 1 6320 0 9278	0 8424 0 7698 0 7083 0 6554 0 6092	0 5587 0 5327 0 5006 0 4717 0 4456	0 4001 0 3519 0 3293 0 3012 0 2765	0 1978 0 1307 c 0858 0 0503
0.01789 0.01796 0.01802 0.01809	0 01822 0 01827 0 01833 0 01859	0 01890 0 01913 0 0193 0 0195 0 0195	0 0199 0 0201 0 0203 0 0205	0 0209 0 0210 0 0212 0 0214 0 0215	0 0220 0 0223 0 0227 0 0231 0 0235	0 0257 0 0287 0 0346 0.0503
341 25 347 32 353 02 358 42 363.53	368 41 373 96 377 51 381 79 400 95	417 .33 431 72 444 59 455 23 457 01	475 94 486 21 494 90 503 10 510.86	518.23 525.26 531.98 538.43 544.61	555 31 567.22 577.46 587 10 596 23	635 82 668.13 695.36 705 40
120 130 140 150	170 180 190 200 250	33 33 50 50 50 50	550 650 67 67 67	800 850 900 450 1000	1100 1200 1100 1400 1500	2000 2500 3000 3205 2

Table 3. Superheated Vapor

				A Commence		rear 3. Department appr	3	1					
Abs. Press.					T	Temperature-Degrees Fahrenheit	e-Degrees	Fahrenhei					
(Sat. Temp.)	200°	300°	400°	500°	,009	,000	800°	906ء	1000°	1100°	1200°	1400°	1600°
v r (roi.74)	392.6 1150.4 2 0512	452 3 1195 8 2.1153	512 0 1241.7 2.1720	571 6 1288 3 2 2233	631 2 1335 7 2 2702	690 8 1383 8 2.3137	750 4 1432 8 2 3542	809.9 1482.7 2.3923	869 5 1533 5 2 4283	929.1 1585.2 2.4625	988 7 1637 7 2 4952	1107 8 1745 7 2.5566	1227.0 1857.5 2.6137
5 h (162.24) s	78 16 1148.8 1.8718	90.25 1195 0 1.9370	102 26 1241 2 1.9942	114.22 1288 0 2 0456	126 16 1335 4 2 0927	138.10 1383 6 2 1361	150 03 1432 7 2 1767	161 95 1482 6 2.2148	173 87 1533 4 2.2509	185 79 1585 1 2 2851	197.71 1637 7 2.3178	221 6 1745 7 2.3792	245.4 1857.4 2 4363
ro h (193.21) s	38 85 1146.6 1.7927	45 00 1193 9 1 8595	51 04 1240 6 1 9172	57 05 1287 5 1 9689	63 03 1335 1 2 0160	69.01 1383.4 2.0596	74 98 1432 5 2 1002	80 95 1482 4 2 1383	86.92 1533.2 2.1744	92 S8 1585 0 2 2086	98 84 1637.6 2.2413	110 77 1745 6 2.3028	122.69 1857 3 2.3598
v 14.696 h (212.00) s		30 53 1192 8 1.8160	34 68 1239 9 1.8743	38.78 1287 I 1.9261	42 86 1334 8 1 9734	46 94 1383 2 2.0170	51 00 1432 3 2 0576	55 07 1482 3 2 0958	59.13 1533 1 2 1319	63 19 1584 8 2 1662	67 25 1637.5 2.1989	75.37 1745 5 2 2603	83 48 1857 3 2.3174
20 h (227.96) s		22 36 1191.6 1.7808	. 25 43 1239 2 1 8396	28 46 1286 6 1.8918	31 47 1334 4 1 9392	34 47 1382 9 1 9829	37 46 1432 1 2 0235	40 45 1482 1 2.0618	43 44 1533 0 2.0978	46 42 1584 7 2 1321	49 41 1637 4 2.1648	55 37 1745 4 2 2263	61.34 1857 2 2 2834
40 h (267.25) s		11.040 1186 8 1 6994	12.628 1236.5 1.7608	14 168 1284 8 1.8140	15 688 1333 1 1.8619	17.198 1381 9 1.9058	18.702 1431 3 1 9467	20 20 1481 4 1.9850	21 70 1532 4 2.0212	23 20 1584 3 2.0555	24.69 1637 o 2.0883	27 68 1745 1 2 1498	30.66 1857 0 2.2069
60 h s (17.292)		7 259 II81.6 I.6492	8.357 1233 6 1.7135	9.403 1283 0 1.7678	10 427 1331 8 1 8162	11 441 1380 9 1.8605	12 449 1430.5 1 9015	13 452 1480 8 1 9400	14 454 1531 9 1 9762	15 453 1583 8 2 0106	16 451 1636 6 2.0434	18 446 1744 8 2.1049	20.44 1856.7 2 1621
80 h (312.03) s			6 220 7 1230 7 1.6791	7 020 1281 1 1.7346	7, 797 1330 5 1.7836	8 562 1379 9 1.8281	9 322 1429 7 1 8694	10 077 1480 1 1 9079	IO 830 I531.3 I 9442	11.582 1583 4 1.9787	12.332 1636.2 2.0115	13 830 1744 5 2.0731	15 325 1856 5 2 1303
100 h (327.81) s			4.937 1227.6 1.6518	5 589 1279.1 1 7085	6.218 1329 I I 7581	6.835 1378.9 1.8c29	7.446 1428 9 1 8443	8.052 I479 5 I 8829	8.656 1532 8 1 9193	9 259 1582 9 1.9538	9 860 1635.7 1.9867	11.060 1744 2 2.0484	12.258 1856.2 2.1056

10.213	3 468 3 954 4 413 4 861 5 301 5 738 6 172 6 604 7 .035 7 .895 8 .752 1221 1 1275 2 1326 4 1765.8 1427.3 1487.8 1582 7 1581.9 1634.9 1743.5 1855.7 1 6087 1 6683 1 .7199 1 .7645 1 .8653 1 .8451 1 .8451 1 .8451 1 .9163 1 .9493 2 .0110 2 .0683	7.656	6.804	6.123	5.565	5 100	4 707	4 370	4.078	3 147	3 055
1856.0		1855.5	1855 2	1855 0	1854 7	1854 5	1354 2	1854 0	1853.7	1740 3	1852 5
2.0854		2.0535	2.0404	2.0287	7 2.0181	2.0084	1 9995	1.9912	1 9835	1.9086 1.9663	1.9513
9.214	7.895	6 906	6 136	5.521	5 017	4 597	4.242	3 938	3 674	3 147	2.751
1743.9	1743 5	1743 2	1742 9	1742.6	1742 3	1742 0	I741.7	1741 4	I74I 0	1740 3	1739 5
2.0281	2.0110	1.9962	1 9831	1.9713	1 9607	1 9510	I 9420	1.9337	I 9260	1.9086	1.8936
8.212	7.035	6 152	5 466	4 917	4 467	4 c93	3 776	3 504	3 269	2.798	2 445
1635 3	1634.9	1634 5	1634 1	1633 7	1633 3	1632 9	1632 5	1632 I	1631 7	1630 7	1629 6
1.9664	1.9493	1.9344	1 9212	1 9094	1 8987	1 8889	1 8799	I 8716	1 8638	1 8463	1 8311
7 710	6 604	5 775	5 129	4 613	4 191	3 839	3 541	3 286	3 065	2 622	2 290
1582 4	1581 9	1581 4	1581 0	1580 5	1580 0	1579 6	1579 1	1578 6	1578 1	1577 0	1575 8
1 9335	1 9163	1 9014	1.8882	1.8763	1.8656	1 8558	1.8467	1.8383	1 8305	1 8130	1 7977
7.207	6 172	5 396	4 792	4 339	3 913	3 584	3 305	3 066	2 859	2 445	2 134
1530 2	1529 7	1529.1	1528 6	1528 0	1527 5	1525 9	1526 3	1525 8	1525 2	I523 8	1522 4
1.8990	1 8817	1 8667	1.8534	1.8415	1.8308	1 8209	1.8118	1 8033	1 7954	I.7777	1 7623
6 702 1478.8 1.8625	5 738 1478 2 1.8451	3.849 4.244 4 631 5 015 5 396 5 775 6 152 6 906 1325.0 1375.7 1426.4 1477.5 1529.1 1881.4 1634.5 17.943 2 1.9962	4.452 1476.8 1.8167	4 002 1476 2 1 So48	2 772 3 56 3 372 3 634 3 913 4 191 4 457 5 017 1320.7 1372 6 1421 0 1475 5 1575 5 1580 0 1633 3 1742 3 1 6652 1 7120 1 7545 1 7939 1 .8308 1 .8356 1 8987 1 9507	3 068 3 327 3 584 3 839 4 693 4 597 5 100 1423.2 1474 8 1526 9 1579 6 1632 9 1742 0 1854 5 1 7444 1.7839 1 8299 1 8558 1 8889 1 9510 2.008	2.063 2.330 2.582 2.827 3.067 3.057 3.559 1.8169 1.8163 2.827 1.8163 2.827 1.8163 2.827 1.8163 2.8457 1.846	2 176 2 392 2 62 2 62 2 2 142 2 845 3 566 3 286 3 53 3 3 4	17675 2 005 2 227 2 442 2 652 2 839 3 065 3 269 3 674 1257 1314 1365 1 420 6 1472 8 1525 2 1578 1 631 1741 1 5701 1 6268 1 6751 1 7184 1 758 1 7954 1 8305 1 8638 1 956	1 4923 1 7036 1 8980 2 084 2 266 2 445 2 622 1251.5 1310 9 1365 5 1418 5 1471 1 1523 8 1577 0 1 5481 1 6070 1.6563 1 7002 1 7403 1.7777 1 8130	1 2851 1 4 4 6 6 1
6 195	5 301	4 631	4.110	3 693	3 352	3 068	2 827	2 621	2 442	2 084	1 8161
1428 1	1427.3	1426.4	1425.6	1424 8	1424 0	1423.2	1422 3	1421 5	1420 6	1418 5	1416 4
1.8237	1.8063	I 7911	1.7776	1.7655	I 7545	1 7444	1 7352	1 7265	I 7184	1 7002	1 6842
5.683	4 861	4.244	3.764	3 380	3 ¢56	2 804	2 582	2 392	2 227	1 8980	1 6508
1377.8	1376.8	1375 7	1374 7	1373 6	1372 6	1371 5	1370 4	1369 4	1365 3	1365 5	1362.7
1.7822	1.7645	1.7491	1.7355	1.7232	I 7120	1 7017	I 6922	I 6834	1 6751	1.6563	1.6398
5.165	4 413	3.849	3 411	3 060	2 772	2 533	2 330	2 156	2 005	1 7036	1.4770
1327.7	1326 4	1325.0	1323.5	1322 1	1320.7	1319 2	1317 7	1315 2	1314 7	1310 9	1306 9
1.7370	1.7190	1.7033	1.6894	1 6767	1.6652	1.6546	1 6447	1.6354	1 6268	1 6070	1 5984
4.636	3 954	3 443	3 044	2 726	2.465	1 9276 2.247 2.533 2.804	2.063	1 9047	1 7675	1 4923	1 2851
1277.2	1275 2	1273 1	1271 5	1268 9	1266.7	1222 5 1264 5 1319 2 1371 5	1262.3	1260 0	1257 6	1251.5	1245 1
1.6869	1 6683	1.6519	1 6373	1.6240	1.6117	1 5319 1.6503 1.6546 1 7217	1.5897	1 5795	1 5701	1 5481	1.5281
	3 468 1221 1 1 6087	3.008 1217.6 1.5908	2 649 1214 0 1.5745	2 361 1210 3 1.5594	2 125 1206 5 1 5453						
» p. c	s =- c	» u	>.c o	>.d o	>.c v	>4 a	≯'त ∾	> t s	>-= w	» u «	νπα
120	140	160	1 %	200	220	240	260	280	300	350	420
(341.25)	(353.02)	(363.53)	(373.06)	(381.79)	(389.86)	(397.37)	(404.42)	(411 05)	(417.33)	(431.72)	(444 59)

Table 3. Superheated Vapor

Abs. Press.						Tempers	ature-Deg	Temperature-Degrees Fahrenheit	enbeit					
Lb./Sq. In. (Sat. Temp.)	500°	550°	0009	620°	640°	ووه	و80°	°007	800°	900	1000°	1200	1400°	1600°
450 h (456.28) s	v 1 1231 1 .2155 h 1238 4 1272.0 1 s 1.5095 1.5437	I 1231 I .2155 I .3005 I .3305 I .355 I .4278 I .4354 I 6074 I 7516 I 8938 2 170 2 .443 I .5095 I .5437 I .5735 I .5654 I .6554 I .6554 I .6554 I .6553 I .6553 I .6590 I .7108 I .7486 I .8177 I .8903	1.3005 1302.8 1.5735	1 3332 1314 6 1.5845	1 3552 1326 2 1.5951	1 3967 1337 5 1 6054	1.4278 1348 3 1.6153	I.4584 I359 9 I 6250	1 6074 1414 3 1 6699	1467.7 1 1108	I 8928 I521.0 I 7486	2 170 1628 6 1.8177	2.443 1738.7 I 8803	2 714 1851 9 1 9381
soo h (467.01) s	v 0 9927 I. 0800 I 1591 I. 1893 I. 2188 I 2478 I 2753 I 3044 I 4405 I 5715 I 6966 I 9524 2 197 2 197 3 1337 9 R I 4919 I. 5280 I 5701 I. 5810 I. 5810 I. 5815 I. 6015 I 6115 I 6571 I 6982 I. 7363 I. 8683	1.0800 1266.8 1.5280	1 1591 1298 6 1 5588	1.1893 1310 7 1.5701	1.2188 1322 6 1.5810	1 2478 1334 2 1.5915	1 2753 1345 7 1 6016	1 3044 1357 0 1 6115	1 4405 1412 1 1 6571	1 5715 1466 0 1 6982	1 6996 1519 6 1.7363	1 9504 1627 6 1.8056	2 197 1737 9 1.8683	2 442 1851 3 1 926.7
550 h (476.94) s	v 0 8852 0 9686 1.0431 1 0 0 1 <t< th=""><th>c 9686 1261 2 1.5131</th><th>1.0431 1294 3 1 5451</th><th>1306 8 1306 8 1 5558</th><th>1 0989 1318 9 1.5680</th><th>1 1259 1330.8 1.5787</th><th>1 1523 1342 5 1 5890</th><th>1.1783 1354 o 1 5991</th><th>I 3038 1409 9 I.6452</th><th>1 4241 1464 3 1 6868</th><th>1 5414 1518 2 1.7250</th><th>9022 I 9 979 I 9 979 I</th><th>1737 I 1737 I 1 8575</th><th>2 219 1850 6 1.9155</th></t<>	c 9686 1261 2 1.5131	1.0431 1294 3 1 5451	1306 8 1306 8 1 5558	1 0989 1318 9 1.5680	1 1259 1330.8 1.5787	1 1523 1342 5 1 5890	1.1783 1354 o 1 5991	I 3038 1409 9 I.6452	1 4241 1464 3 1 6868	1 5414 1518 2 1.7250	9022 I 9 979 I 9 979 I	1737 I 1737 I 1 8575	2 219 1850 6 1.9155
600 h (486.21) s	V 0 7947 0 8753 C 9453 0 9789 0 9988 1 .2241 1 0480 1 7321 1 .1899 1 3013 1 4996 1 6263 1 7373 1 8800 S 1 14586 1 4996 1 5323 1 .5443 1 5558 1 .5567 1 .5575 1 .5875 1 .5875 1 .5875 1 .5476 1 .994	0 8753 1255 5 I 4990	c.9453 1289 9 1 5323	0 9729 1302 7 1.5443	0 9988 1315 2 1 5558	1.c241 1327.4 1.5667	1 0489 1339 3 1 5773	1 9732 1351 1 1.5875	1.1899 1407 7 1.6343	1 3013 1462 5 1 6762	1 4096 1516 7 1 7147	1 6208 1625.5 1.7846	1735 3 1735 3 1.8476	2.033 1850 0 1.9056
700 h (503.10) s		0 7277 0 7934 0 8177 0 8411 0 8639 0 8360 0 9077 1 0108 1 1082 1 1.2024 1 .3853 1 5541 1 7465 1 1243 2 1280 6 1294 3 1307 5 1320 3 1332.8 1345 0 1403 2 1459 0 1513 9 1623 5 1731 4 1848.8 1 1.4722 1 .5044 1 .5212 1 .3333 1 .5449 1 .5859 1 .5865 1 .6147 1 .6573 1 .6963 1 .7666 1 .8299 1 .8881	0 7934 1250 6 1.5084	c 8177 1294 3 1.5212	0 8411 1307 5 1 5333	0 8639 1320 3 1 5449	c 8860 1332.8 1.5559	0 9077 1345 0 1.5565	2 5 CC 1 2 5 CC 1 2 T CC 1	1 1382 1459 0 1 6573	1.2024 1513 9 1.6963	1.3853 1623 5 1 7666	1734 5 1734 5 1.8299	1 7405 1848.8 1.8881
800 h (518.23) s		0.6154 1229 8 1.4467	0 6779 1270 7 1.4853	0 7006 1285 4 1 5000	0.7223 1299 4 1.5129	0 7433 1312 9 1 5250	0.7635 1325 9 1.5366	0 7833 1338 6 1.5476	0 8763 1398 6 1 5972	0.6154 0 6779 0 7006 0.7223 0 7433 0.7635 0 7833 0 8763 0 9533 1 0470 1 2088 1 3462 1 .5214 1 1 209 4 1312 9 1325 9 1338 6 1398 6 1455 4 1511 0 1611 4 1733 2 1847 5 1 4467 1 14853 1 5000 1 .5129 1 5250 1 .5350 1 .5407 1 .5972 1 .6407 1 .6321 1 .7510 1 .8146 1 .8729	1 0475 1511 c 1 63c1	1 2088 1621 4 1.7510	1 3 ⁶⁶² 1733 2 1 8146	1.5214 1847 5 1 8729
900 h (531.98) s		0.5264 0.5873 0.6299 0.6294 0.6491 0.6689 0.6873 0.7716 0.8556 0.9272 1.0714 1.2120 1.220 0.1200 1.200 0.1200 1.2121 1.330 0.1200 1.200 0.1200	0.5873 1260 I 1.4653	0 6089 0 2721 1.4800	0.6294 1290 9 I 4938	0.6491 1305 1 1 5066	0.6680 1318 8 1.5187	0 6%3 1332 1 1 5303	0 7716 1393 9 1 5814	0 8506 1451 8 1.6257	c 9262 ISC ^R I I 6656	1619 3 1 7371	1 2124 1731.6 1 8009	1 3509 1846 3 1.8595
r 1000 h (544 61) s		0 4533 0 5140 0 .5357 0 5540 0 5733 0 5912 0 6535 0 6578 0 7604 0 8294 0 9518 1 .0893 1 2145 1 1983 1 1347 1 1359 1 1448 2 1 155 1 1617 3 1730 1 1845 1 3961 1 .4450 1 .4757 1 .4757 1 .4893 1 .5141 1 .5770 1 .6121 1 .6525 1 .7245 1 .7886 1 .8474	0 5140 1248 8 1.4450	0.535c 1255.9 1.4510	o 5546 1281 9 1 4757	0 5733 1297 0 1.4893	o 5912 1311 4 1 5021	0 658; 1325 3 1 5141	0 6878 1389 2 1.5670	0 7604 1448 2 1 6121	0 8294 1505 1 1 6525	0 9515 1617 3 1.7245	1,0893 1730 1,786	1 2146 1845 0 1.8474
v s (1556.31)			0 4532 1236 7 1.4251	0.4738 1255.3 1 4425	0 4929 1272 ± 1.4583	0 5110 1288 5 1 4728	0 5281 1303 7 1.4862	0 5445 1318 3 1 4959	o 6191 1354.3 1.5535	0 4532 0 4738 0 4929 0 5110 0 5281 0 5445 0 6191 0 6966 0 7503 0 8716 0 9885 1 1031 1235 7 1255.3 1772 4 1878 4 1896 1 15535 1 1425 1 4425 1 4425 1 1425 1 1428 1 1728 1 14728 1 1498 1 1498 1 15335 1 5995 1 6405 1 17130 1 7775 1 18363	0 7503 1502 2 1 6405	0 8716 1515 2 1.7130	0 9885 1728 4 1 7775	1 1031 1843 8 1.8363
1200 h (567 22) s			0.4016 1223.5 1 4052	0 4222 1243 9 1.4243	0 4410 1262 4 I 4413	o 4586 1279.6 1 4568	0 475± 1295 7 1 4710	0.4909, I3II.0 I.4843	o 5617 1379.3 1 5409	0.4016 0 4222 0 4410 0 4586 0 4754 0.4909 0 5617 0 6255 0 6843 0 7967 0 9046 I 0101 (222.5 124.5 124.3 I 1440.7 1499 2 1613 I 1726.9 1842.5 (149.2 I 1.4243 I 14413 I 4568 I 4710 I 14843 I 5409 I 5879 I 6293 I 1.7025 I 1.7672 I 1.8263	o 6843 1499 2 I 6293	0 7967 1613 1 1.7025	0 9046 1726.9 1.7672	I 0101 1842.5 I.8263

27 0.8640 1840.0 89 I.8083	58 0.7545 1837 5 18 1.7926	0.2407 0.2597 0.2766 0.2907 0.3502 0.3956 0.4421 0.5218 0.5968 0.6693 (185 1 1214 0 1238.5 1260.3 1347.2 1417 4 1450.8 1600 4 1717 3 1535.0 1.4044 1.4765 1.5301 1.5752 1.6520 1.7185 1.7786		C 1434 C 1686 O 2294 O 2710 O 3051 O 3678 O 4244 O 4784 C 1732 3 1176 S 1393 C 1387 8 1458 4 1585 3 1706 L 1826.2 C 1 2687 I 3073 I 4127 I 4772 I 5273 I 6088 I 6775 I 7389		0 1583 0 1981 0 2288 0 2806 0 3257 0 3703 1255 5 11355 2 1434 7 1569 8 1694 6 1817.2 1 3508 1 14309 1 14874 1 5742 1 1452 1 17880	0 0357 0 1364 0 1762 0 2547 0 2977 0 .3381 750 5 1224 9 1340 7 1424 5 1553 3 1689 8 1813.6 0 9515 1 3241 1 4127 1 4723 1 5515 1 .6336 1 .6968	C 2257 0 1352 0 14°2 0 1743 0 219.2 0 2581 0 2943 7°5 8 1174 8 1314 4 1406 8 1552 1 1681.7 1607.2 C 947 1 2757 1 3827 1 4482 1 5417 1 5154 1 16795	0 2692 1800 9 0 1.6640		0.0262 0.0463 0.0880 0.1143 0.1516 0.1825 0.2106 741.3 985 0 1224.1 1349.3 1518.2 1657.0 1788.1 0.9090 1.1093 1.2930 1.3821 1.4908 1.5699 1.6369
0.77 723 7 1.74	0.6738 1720 5 1 7328	c 5968 1717 3 1 7185	0.5352 1714.1 1 7055	0 4244 1706 1 1 6775	0 3505 1698 0 1.6540	c 3257 1694 6 1 0452	0 2977 1689 8 1.6336	0 2581 1681.7 1 6154	0 2273 1673 5 1.599c	0 2027 1665.3 1.5839	0.1825 1657.0 1.5699
0.6789 1608.9 1.6836	o 590° 1604 6 I 6669	0.5218 1600 4 1.6520	0 4668 1596 1 1.6384	0 3678 1585 3 1.668	0 3018 1574 3 1 5837	0 28c6 1569 8 1 5742	0 254 ^f 15 ^{63 3} 1 5 ⁵ 15	0 2192 1552 1 1 5417	0 1917 1540 8 1 5235	0 1696 1529 5 1 5266	0 1516 1518 2 1.4908
0.5805 1493.2 1 6093	o 5027 1487.0 1.5914	0.4421 148c.8 1.5752	o 3935 1474 5 I 5603	o 3061 1458 4 1.5273	c 2476 1441 8 1 4984	c 2288 1434 7 1.4874	0 2058 1424 5 1 4723	0 1743 1406 8 1 4482	0 1500 1388 4 1 4253	0 13c3 1369 5 I 4c34	0.1143 1349.3 1.3821
0.5281 1433.1 1 5666	0.4553 1425.3 1.5476	o 3986 1417 4 I 5301	c 3532 1409 2 I 5139	0 2710 1387 8 1.4772	0 2159 1365 0 1.4439	c 19 ⁶ 1 1355 2 1.4309	0 1762 1340 7 1 1127	0 14 ² 2 1314 4 1 3827	0 1226 1286 5 1 3529	0 1036 1255 5 1 3231	0 0880 1224.1 1 2930
0.3174 0.3390 0.3580 0.3753 0.3751 0.4052 0.4714 0.5801 0.5805 0.6789 0.1703.0 1228.4 1240.4 1260.3 1.778 5 1205 5 1309.1 1.5877 1.4079 1.4028 1.4419 1.4567 1.5777 1.566 1.6093 1.6836	0.2733 0.2936 0.312 0.3417 0.4034 0.4034 0.4553 0.5027 0.590 0.6738 1187.8 1228 1229 1229 1229 1278.7 1358.4 1425.3 1425.7 1604 0.1720 1720 1720 1.3489 1.314 1.3922 1.4137 1.4303 1.4964 1.5476 1.5914 1.6669 1.7328	0.3502 1347.2 1.4765	0.3574 1335 5 1 4576	o 2294 1303 6 1 4127	0.1760 1.267 1.3590	0 1583 1250 5 1 3508	0 1364 1 3241 1 3241	0 1752 1174 8 1 2757	0 027 ^{ct} 0 0738 0 1225 0 1500 0 1917 0 2273 753 5 1113 9 128 ^{ct} 5 1338 4 1540 8 1673 5 1 0 0.9235 1 2204 1 3529 1 4253 1 5235 1 5990	0 0593 1047 I I 1622	0 0463 985 0 1.1093
o 4062 1295 5 1.4567	o 3417 1278.7 1.4303	0.2907 1260 3 1.4044	0.24% 1240.0 1.3783	c 1686 1175 8 1 3073	9961 1 1 1 1 1 1 1 1 1 1	: : :	0 0306 785 5 0 9515	763 8 763 8 763 8	2 027 ⁶ 753 5 0.9235	0 0268 746 4 0 9152	0.0252 741.3 0.9090
o 3912 1278 5 1.4419	0 3271 1259 6 I.4137	o 2760 1238.5 I 3355	0.2337 1214 8 1.35 ⁶ 4	c 1434 1132 3 1 2687			: : :				
c 3753 1260.3 1.4258	0 3112 1238 7 1.3952	o 2597 1214 0 I 3638	0.2161 1184 9 1 3300								
0.3580 1240.4 1.4079	0.2935 1215 2 1 3741	0.2407 1185 1 1 3377	0 1935 1145 6 1 2945						::		
0.3390 1218.4 1.3877	0.2733 1187.8 1.3489										0.0262 741.3 0.999
0.3174 1193.0 1.3639											
ν¤κ	>-¤ 0	4 Þ	b to a	\$-tc w	s tr	» L «	» th	>-c o	» td »	γςs	» th
1400 (587.10)	1600 (604.90)	18∞ (621.03)	2000 (635 82)	2500 (668.13)	3000 (695.36)	3206 2 (705 40)	3500	4000	4500	2000	5500

Average values (0° to 100° C. unless otherwise stated) of c in the formula Q = Mkc ($t_2 - t_1$), c being measured in gram-calories per gram per degree C. or British thermal units per pound per degree F. See page 156.

Acetylene * (15) air * (-30 to +10) air † (-30 to +10) alcohol, ethyl (30) aluminum ammonia (liq. 0) ammonia *	0.383 0.238 0.169 0.615 0.226 1.098	Ice (-20 to 0)iridiumiron, castiron, wrought	0.505. 0.0323 0.119 0.115
ammonia †	0.391 0.0504 0.195	Marble	0.206
Berylliumbismuthbrass (60 Cu, 40 Zn)bronze (80 Cu, 20 Sn)	0.425 0.0297 0.0917 0.0860	Nickelnitrogen *nitrogen †	0.109 0.244 0.173
Calciumcarbon, gascarbon, graphite	0.149 0.315 0.310	Oxygen *osmium	0.224 0 155 0.0311
carbon dioxide * (15 to 100) carbon dioxide † (15 to 100) carbon monoxide * carbon monoxide †	0.202 0.168 0.243 0.173	Paraffinpetroleumplatinumporcelain (15 to 950)	0.589 0.504 0.0319 0.260
cement, Portland chalk chloroform (liq., 30)	0.271 0.230 0.235	Quartz (12 to 100) Rock salt (13 to 45)	0.188
chloroform (gas, 100 to 200) chromium	0.147 0.111 0.220	rubber, hard	0.219
coalcobalt	0.201	Selenium (-188 to +18) silicon silver	0.0680 0.175 0.0560
copper	0.0928 0.485	steam (100 to 200)	0.480
cotton	0.362	steelsulphur (-188 to +18)	0.118
Gasoline	0.500	Tantalum (58)	0.0360 0.0556
german silverglass	0.0945 0.180	tungsten	0.0340
glycerine (15 to 50)	0.576 0.0312	turpentine (o)	0.411
granite (12 to 100)	0.192	Water (15)	1.000
		woodwool	0.420
Hydrogen *hydrogen †	3.41 2.42	Zinc	0.0950

[•] Constant pressure of one atmosphere. † Constant volume.

Average values (0° to 100° C. unless otherwise stated) of **a** in the formula, $l_t = l_0 (r + at)$, t being measured in degrees C.

Substance	a × 10 ⁸	Substance	a × 108
Aluminum (20 to 100) antimony (15 to 101) Beryllium (20) bismuth (19 to 101) brass brick bronze (80 Cu, 20 Sn) (o to 800)	23.8 10.9 12.2 13.4 18.7 9.50	Marble, Rutland blue (15 to 100)	15.0
Cadmium	31.6 25.0 1.18 5 40 7.86 109.	Osmium (40)	6.57
Ice (- 20 to - 1)	51.0 5.71 11.9 10.6 11.4	Tin (18 to 100)	26.9 4.60 6.10 2.57 6.58 26.3

(At atmospheric pressure)

Substance	Melts °C.	Boils °C.	Substance	Melts °C.	Boils °C.
Acetylene	-81.3	-72.2	Neodymium	840	
alcohol, ethyl	-115	78.3	neon	-248.7	-245.9
" methyl	-97.8	64.7	nickel	1455	2900
aluminum	659.7	1800	nitric oxide	-160.6	-153
ammonia	-75	-33 5	nitrogen	- 209.9	-195.8
antimony	630.5	1385	Osmium	2700	>5300
argon	-189.2	-185.7	oxvgen	-218.4	-183
Barium	850	1140	ozone	- 251.4	-112
beryllium	1350	1500	Palladium	1553	2200
bismuth	271.3	1450	paraffin	52.4	
borax	561		phosphorus	44.1	280
boron	2300	2550	platinum	1773.5	4300
brass bromine	900± -72	58 8	potassium	62.3	760
bronze	900±	30 0	praseodymium		1
Cadmium	320 9	767	Radium	960	1140
calcium	810	1170	radon	- 110	
carbon	>3500	4700	rhenium rhodium	3000 1985	2500
" dioxide	-57	- 80	rose's alloy	93.7	> 2500
" monoxide.		-191 5	rubber	100	
cerium	640	1.100	rubidium	38 5	700
cesium	28.5	670	ruthenium	2450	> 2700
chlorine	-101.5	-31 6	Samarium	>1300	l
chromium	1615	2200	seandium	1200	2400
cobalt columbium	1480 1950	3000 2900	selenium	220	688
copper	1950	2300	silicon	1420	2600
Fluorine	- 223	187	silver	960.5	1950
O 111		>1600	sodium chloride	97.5	880
german silver	29.75 1100士		steel, Bessemer.	772 1400	
germanium	958.5	2700	strontium	800	1150
glass, flint	1300		sugar	160	
gold	1063	2600	sulphur	112.8	444.6
gutta percha	100		Tantalum	2850	>4100
Hafnium	1700	> 3200	tellurium	452	1390
helium	< -272.2	-268.9	thallium	303.5	1650
hydrogen	-259.1	-252.7	thorium	1845	> 3000
Indium	155	1450	tin	231.9	2260
iodine	113 5	184.3	titanium	1800	> 3000
iridium	2350	>4800	tungsten turpentine	3370	59 0 0
iron, pure	1535	3000			101
" gray pig " white pig	1 200		Uranium	< 1850	
Krypton	1050 —169	-151.8	Vanadium	1710	3000
Lanthanum	826	1800	Wood's alloy	75.5	
lead	327.4	1620	Xenon	-140	-109
lithium	186	>1220	Ytterbium	1800	1
Magnesium	651	1110	yttrium	1490	2500
maganese	1260	1900	·		
mercury	-38 87 2620	356.9	Zinc	419.5	907
molybdenum	2020	3700	zirconium	1900	> 2900

Average values of k in the formula, $Q=\frac{ckS\theta t}{x}.$ See page 181 for descriptions of units.

Substance	Temp. range	k × 103	Substance	Temp. range	k × 103
Air	0	0 0568	Ice		3.9
aluminum	18	480	iron, pure	18	161
antimony	0	44.2	" cast	18	109
argon	0	0.0389	" wrought	18	144
asbestos, paper.		0.6	Lamp black	100	0.07
Bismuth	0	17 7	lead	18	83
blotting paper		0.15	leather, c'hide.		0.42
brass	0	204	. " chamois		0.15
brick, alumina	o to 700	2.0	lime		0.29
" building		1.5	linen		0.21
• Carborungum	100 to 1000	23	Magnesia		0 3
" fire	o to 1300	3 1	magnesium, carb.		0.23
" graphite			marble	15 to 30	8.4
" magnesia		7 I 2.0	mercury mica	17	0.86
" silica Cadmium		2.0	Nickel	81	142
cambric, varn		0.60	nitrogen	0	0.0524
carbon, gas		130	Oxygen	Ö	0.0563
" graphite	100 to 942	290	Paper		0.31
" dioxide.		0.0307	paraffin		0.62
" monox.	0	0.0499	pasteboard		0.45
carborundum		0 50	plaster of Paris	20 to 155	0.42
cardboard		0 50	plaster, mortar.		1.3
cement, Port		0.17	platinum	18 to 100	170
chalk	o to 100	0.28	plumbago	20 to 155	1.0
charcoal, powd'd	0 to 100	0 22	poplox (Na ₂ SiO ₃)		0.13
clinkers, small	0 to 700	1.1	porcelain	3 30	4.3
coal		0.30	petroleum	23	0.39
coke, powdered.	o to 100	0 44	pumice stone	20 to 155	0.43
concrete, cinder		0.81	Quartz, pr. to ax.		30
" stone		2 2	" perp. to axis		160
copper		918	Rubber, hard Para		0.43
cotton wool		0.043	Sand, dry		0.38
cotton batting,		0.11	sandstone	20 to 155	}
cotton batting,		0.11	sawdust		5 · 5 0 · 14
packed		0.072	silica, fused	100	2.55
Earth, average		4.0	silk	50 to 100	0.13
eiderdown, l'se.		0.108	silver	18	974
" packed		0.045	slate	94	4.8
Feathers	20 to 155	0.16	snow		0.60
felt	21 to 175	0.22	stec1		115
fiber, red		1.1	Terra cotta	100 to 1000	2.3
flannel	50	0.035	tin	18	155
German silver	o to 100	80	Water	0	1.4
glass, crown		2.5		30	1.6
" flint		2.0	wood, fir, with gr.		0.30
gold	18	700	" fir, cross grain		0.09
granite	100	4.5	wool, sheep's	20 to 100	0.14
graphite		12	" mineral	o to 175	0.11
gutta percha		0.48	" steel woolen, loose	100	0.20
gypsum		3.I			
Hair " cloth, felt	20 to 155	0.15 0.042	wadding woolen, packed		0.12
helium	0	0.339	wadding	ĺ	0.055
horn		0.339	Zinc	18	265
hydrogen	0	0.327		10	-~3
, a. ogo		0.34/	1		

(British Thermal Units)

Substance*	Per Pound	Per gallon	Per cu. ft.†
Acetylene	21,500		1,480
alcohol, ethyl, denatured	11,600	78,900	1,400
" pure (0.816)	12,400	84,300	
" methyl (0.798)	9,540	63,700	
		03,700	
Bagasse, dry	8,300		
50% H ₂ O	3,000		
benzine (0.879)	18,500	136,000	3,810
benzine (0.679)	17,900	102,000	
Carbon, to CO	4,400		
" to CO ₂	14,500		
carbon disulphide	5,820	62,700	
carbon monoxide, to $CO_2 \dots$	4,370		323
charcoal, peat	11,600		
" wood	13,500		
coal, anthracite	11,500-14,000		
" bituminous	11,000-15,300	1	
" cannel	12,000-16,000		
" lignite	5,500-11,000		
" semi-bituminous	11,000-15,300		
coke	12,000-14,400		
Gas, blast furnace			90-110
" coal			630-680
" coke oven			430-600
" illuminating			550600
" natural			700-2470
" oil			450-950
" producer			110-185
" water, blue			290-320
" carburetted			400-680
gasoline (0.710)	21,200	126,000	
" (0.770)	20,000	129,000	
Hydrogen	62,000		326
Kerosene (0.783)	20,000	131,000	
Kerosene (0.783)	20,160	136,000	
Peat	3,500-10,000	-	
petroleum (0.785)	20,000	131,000	
" (1.000)	18,300	153,000	
Strawsulphur	5,100-6,700 4,020		
Wood, air-dried	5,420-6,830		

^{*} Numbers indicate specific gravity. † At 60° F. and atmos. pressure.

Size	Area	Resistance	Weight	Cu	rrent capacit amperes	y in
American Wire Gage	Circular mils	Ohms per 1000 feet at 25° C.	Pounds per	Rubber Insu- lation	Var- níshed Cloth	Other Insu- lations
18	1,620	6.51	4.92	3		5
16	2,580	4.09	7.82	3 6		10
14	4,110	2.58	12.4	15	18	20
12	6,530	1.62	19.8	20	25	25
10	10,400	1.02	31.4	25	30	30
8	16,500	0.641	50.0	35	40	50
6	26,300	0.403	79.5	50	60	70
5	33,100	0.319	100	55	65	80
4	41,700	0.253	126	70	85	90
3	52,600	0.205	163	80	95	100
2	66,400	0.162	205	yo	110	125
I	83,700	0.129	258	100	1 20	150
0	106,000	0.102	326	125	150	200
00	133,000	0 0811	411	150	180	225
000	168,0∞	0.0642	518	175	210	275
0000	212,000	0.0509	653	225	270	325
	300,000	0.0360	926	275	330	400
	400,000	0.0270	1240	325	390	500
	500,000	0.0216	1540	400	480	600
	600,000	0.0180	1850	450	540	680
	700,000	0.0154	2160	500	600	760
	800,000	0.0135	2470	550	660	840
	900,000	0.0120	2780	600	720	920
• • • • • • • •	1,000,000	0.0108	3090	650	780	1000
	1,100,000	0.00981	3400	690	830	1080
	1,200,000	0.00899	3710	730	880	1150
	1,300,000	0.00830	4010	770	920	1220
	1,400,000	0.00770	4320	810	970	1 290
	1,500,000	0.00719	4630	850	1020	1360
	1,600,000	0.00674	4940	890	1070	1430
	1,700,000	0.00634	5250	9,30	1120	1490
	1,800,000	0.00599	5560	970	1160	1550
	1,900,000	0.00568	5870	1010	1210	1610
	2,000,000	0.00539	6180	1050	1260	1670

^{*} For wires larger than No. 4 the values given are for stranded wires. The carrying capacity of insulated aluminum wires is 84 per cent of that given for copper.

NOTE A. Multiply abscissa scale by 10. NOTE B. Multiply abscissa scale by 200.

Resistivity (ρ) in microhms per cm. cube and Temperature Coefficient of 321 Resistance (α) of Certain Conductors.

(Temperature is 20° C. unless otherwise specified.)

Material	ρ	α	Material	ρ	α
Aluminum Antimony 3 Barium Beryllium Bismuth Carbon 3 Calcium Cerium Cerium Chromium Cobalt Copper Gold Graphite 8 Iron " cast Lead	2.688 9.1 at 0 9.8 10.1 120 \$500 at 0 4.59 78 19 at 0 2.6 at 0 9.7 1.724 2.44	0 00403 0.0036 0.0033 04 -0.0009 0.00364 (0-600) 000558 (0-100) 0.0039 0.0034 00047 81 0	Mercury Molybdenun Monel metal Nickel Osmium Palladium Potassium Rhodium Silver Sodium Strontium Tantalum Tellurium	95.8 5.08 at 0 42 7 8 9.5 11 9.83 at 0 6.1 at 0 5.11 at 0 1.629 at 18 4 3 at 0 24.8 15.5 2×106 17.6 at 0 18 11.5 3.0	0.00089 0.0047 (0-100) 0.00537 (20-100) 0.0033 0.003 0.0055 at 0 0.0043 at 0

Resistivity (ρ) in megohms per cm. cube and Dielectric Constant (k) of Certain Insulators at Room Temperature

Material	ρ	k	Material	ρ	k
Alcohol, ethyl "methyl Amber Amylacetate Asbestospaper Asphalt Bakelite Beeswax Cellophane Celluloid Cellulose acetate Glass Glycerine Gutta percha Ice Ivory Marble Mica	$ \begin{array}{c} 0.14 \\ 5 \times 10^{10} \\ 1.6 \times 10^{5} \\ 1.0^{5} - 10^{10} \\ 6 \times 10^{8} \\ 2 \times 10^{4} \\ \\ 5 \times 10^{5} - 10^{10} \\ 3 \times 10^{4} \\ 720 \\ 200 \\ 10^{3} - 10^{5} \end{array} $	31.2-35.0 4.81 2.7 2.7 4.5-5.5 	Paper. Paraffin. Porcelain. Quartz. Rosin. Rubber, hard. Sealing wax. Selenium. Shellac. Silica, fused. Slate. Sulphur. Turpentine. Water, dist Wood,	10 ¹⁰ 2×10 ¹⁰ 10 ⁴ -10 ⁹ 5×10 ¹⁰ -5×10 ¹² 3×10 ⁸ 10 ⁸ -5×10 ¹² 7×10 ⁹ -5×10 ¹⁰ 3×10 ¹⁰ -10 ¹² 10 ⁹ -8×10 ⁹ 0.06 10 ¹⁰ 10 ⁸ -10 ¹⁸ 10 ² -10 ⁴ 8×10 ⁹ -10 ¹¹	4.4 4.7-5.1 2.5 2.0-3.5 6.1-7.4 3.0-3.7 3.5-3.6 6.6-7.4 2.9-3.2 2.23 81

The customary units of weight and mass are avoirdupois units unless designated otherwise. The symbol (8) represents the density of a material expressed as a decimal fraction. g equals 980.7 cms. per sec. per sec.

Multiply	by	to obtain
Abamperes	10	amperes.
	3×1010	statamperes.
abamperes per square cm.	64.52	amperes per sq. inch.
abampere-turns	10	ampere-turns.
	12.57	gilberts.
abampere-turns per cm.	25.40	ampere-turns per inch.
abcoulombs	10 3×10¹0	coulombs.
abcoulombs per square cm.	64.52	coulombs per sq. inch.
abfarads	109	farads.
"	10 ¹⁵	microfarads.
44	9×10 ²⁰	statfarads.
abhenries	10-9	henries.
"	10-6	millihenries.
	1/9×10 ⁻²⁰	stathenries.
abmhos per cm. cube	$10^{5}/\delta$ 1.662×10^{2}	mhos per meter-gram.
	1.002 \ 10	mhos per mil foot. megmhos per cm. cube.
abohms	10-15	megohnis.
"	10-3	microhms.
"	10-9	ohms.
"	$1/9 \times 10^{-20}$	statohms.
abohms per cm. cube	10^{-3}	microhms per cm. cube.
" " " " " " " " " " " " " " " " " " " "	6.015×10 ⁻³	ohms per mil foot.
1	10 ⁻⁵ δ	ohms per meter-gram.
abvolts	1/3×10 ⁻¹⁰	statvolts.
acres	43,560	square feet.
"	6,272,640	square inches.
"	4047	square meters.
"	1.562×10^{-3}	square miles.
"	4840	square yards.
acre-feet	43,560	cubic-feet.
ampagas	3.259×10 ⁵	gallons.
amperes	1/10 3×10°	abamperes. statamperes.
amperes per square cm.	6.452	amperes per sq. inch.
amperes per square inch .	0.01550	abamperes per sq. cm.
""""…	0.1550	amperes per sq. cm.
""""	4.650×108	statamperes per sq. cm.
ampere-turns	1/10	abampere-turns.
ampara turna par arr	1.257	gilberts.
ampere-turns per cm	2.540	ampere-turns per inch.
ampere-turns per men	0.03937 0.3937	abampere-turns per cm. ampere-turns per cm.
	0.4950	gilberts per cm.
ares	0.02471	acres.
"	100	square meters.
atmospheres	76	cms. of mercury.
	29.92	inches of mercury.
	33.90	feet of water.
"	10,332	kgs. per square meter.
"	14.70 1.058	pounds per sq. inch.
	1.050	tons per sq. foot.

Multiply	by	to obtain
Bars	0.9869	atmospheres.
"	106	dynes per sq. cm.
"	1.020×104	kgs. per square meter.
"	2,089	pounds per square foot.
	14.50	pounds per square inch.
board-feet	144 sq. in. X 1 in.	cubic inches.
British thermal units	778.3	foot-pounds.
	3.931×10 ⁻⁴	horse-power-hours.
	1055 0.2520	kilogram-calories.
	107.6	kilogram-meters.
	2.930×10 ⁻⁴	kilowatt hours.
B.t.u. per min	12.97	foot-pounds per sec.
	0.02357	horse-power.
	0.01758	kilowatts.
_ " "	17.58	watts.
B.t.u. per sq. ft. per min	0.1221	watts per square inch.
bushels	1.244	cubic feet.
	2150	cubic inches.
	0.03524	cubic meters.
	6 ₄	pecks. pints (dry).
		quarts (dry).
	32	quarts (dry).
Centares	I	square meters.
centigrams	0.01	grams.
centiliters	0.01	liters.
centimeters	3.281×10^{-2}	feet.
"	0.3937	inches.
	0.01	meters.
	6.214×10 ⁻⁶	miles. millimeters.
	10	mils.
	393.7 1.094×10 ⁻²	vards.
centimeter-dynes	1.020×10 ⁻³	centimeter-grams.
" " " " " " " " " " " " " " " " " " "	1.020×10-8	meter-kilograms.
	7.376×10 ⁻⁸	pound-feet.
centimeter-grams	980.7	centimeter-dynes.
" "	10-6	meter-kilograms.
	7.233×10 ⁻⁵	pound-feet.
centimeters of mercury	0.01316	atmospheres.
	0.4461	feet of water.
	136.0	kgs. per square meter. pounds per square foot.
	27.85 0.1934	pounds per square inch.
centimeters per second	1.969	feet per minute.
11 11 11	0.03281	feet per second.
	0.036	kilometers per hour.
	o.Ğ	meters per minute.
	0.02237	miles per hour.
" " "	3.728×10 ⁻⁴	miles per minute.
cms. per sec. per sec	0.03281	feet per sec. per sec.
	0.036	kms. per hour per sec.
circular mils	0.02237	miles per hour per sec.
circular mils	5.067×10 ⁻⁶ 7.854×10 ⁻⁷	square centimeters.
	7.034 \ 10	square menes.

Multiply	by	to obtain
circular mils (cont.)	0.7854	square mils.
cord-feet	4 ft.×4 ft.×1 ft.	cubic feet.
cords	8 $ft.\times 4$ $ft.\times 4$ $ft.$	cubic feet.
coulombs	1/10	abcoulombs.
	3×109	stateoulombs.
coulombs per square inch.	0.01550	abcoulombs per sq. cm. coulombs per sq. cm.
	0.1550 4.650×108	stateouls, per sq. cm.
cubic centimeters	3.531×10 ⁻⁵	cubic feet.
11	6.102×10 ⁻²	cubic inches.
" "	10-6	cubic meters.
	1.308×10 ⁻⁶	cubic yards.
1 " "	2.642×10 ⁻¹	gallons.
1 " "	10-3	liters.
	2.113×10^{-3} 1.057×10^{-3}	pints (liq.). quarts (liq.).
cubic feet	2.832×10^{4}	cubic ems.
" "	1728	cubic inches.
	0.02832	cubic meters.
"""	0.03704	cubic yards.
	7.481	gallons.
1 " "	28.32	liters.
" "	59.84	pints (liq.).
cubic feet per minute	29.92 472.0	quarts (liq.). cubic cms. per sec.
" " " " "	0.1247	gallons per sec.
	0.4720	liters per second.
	62.4	pounds of water per min.
cubic inches	16.39	cubic centimeters.
	5.787×10 ⁻⁴	cubic feet.
	1.639×10 ⁻⁵	cubic meters.
	2.143×10 ⁻⁵	eubic yards. gallons.
	4.329×10^{-3} 1.639×10^{-2}	liters.
	1.061×10 ⁵	mil-feet.
" "	0.03463	pints (liq.).
	0.01732	quarts (liq.).
cubic meters	106	cubic centimeters.
	35.31	cubic feet.
	61,023	cubic inches. cubic yards.
	1.308 264.2	gallons.
" " ::::::::	103	liters.
" "	2113	pints (liq.).
"""	1057	quarts (liq.).
cubic yards	7.646×10 ⁵	cubic centimeters.
	27	cubic feet.
	46,656	cubic inches. cubic meters.
	0.7646 202.0	gallons.
	764.6	liters.
	1616	pints (liq.).
" "	807.9	quarts (liq.).
cubic yards per minute	0.45	cubic feet per second.
	3.367	gallons per second.
	12.74	liters per second.

Multiply	by	to obtain
Days	24	hours.
٠،	1440	minutes.
"	86,400	seconds.
decigrams	0.1	grams.
deciliters	0.1	liters.
decimeters	0.1	meters.
degrees (angle)	6 o	minutes.
;; ;;	0.01745	radians.
	3600	seconds.
degrees per second	0.01745 0.1667	radians per second. revolutions per minute.
	0.002778	revolutions per minute.
dekagrams	10	grams.
dekaliters	10	liters.
dekameters	10	meters.
drams	1.772	grams.
"""	0.0625	ounces.
dynes	1.020×10^{-3}	grams.
	7.233×10^{-5}	poundals.
"	2.248×10^{-6}	pounds.
dynes per square cm	10-6	bars.
Ergs	9.480×10 ⁻¹¹	British thermal units.
1	I	dyne-centimeters.
"	7.378×10^{-8}	foot-pounds.
	1.020×10^{-3}	gram-centimeters.
	10 ⁻⁷	joules.
	2.389×10 ⁻¹¹	kilogram-calories.
unga sag unuand	1.020×10 ⁻⁸ 5.688×10 ⁻⁹	kilogram-meters. B.t. units per minute.
ergs per second	4.427×10 ⁻⁶	foot-pounds per minute.
	7.378×10 ⁻⁸	foot-pounds per second.
	1.341×10 ⁻¹⁰	horse-power.
	1.433×10^{-9}	kgcalories per minute.
""""	10-10	kilowatts.
Farads	10-9	abfarads.
	106	microfarads.
"	9×1011	statfarads.
fathoms	6	feet.
feet	30.48	centimeters.
	12	inches.
	0.3048	meters.
"	1.894×10-4	miles.
feet of water	1/3 0.02950	atmospheres.
ieet of water	0.8826	inches of mercury.
	304.8	kgs. per square meter.
" " "	62.43	pounds per square foot.
	0.4335	pounds per square inch.
feet per minute	0.5080	centimeters per second.
""""	0.01667	feet per second.
" "	0.01829	kilometers per hour.
""""	0.3048	meters per minute.
"""	0.01136	miles per hour.
feet per second	30.48	centimeters per second.

Multiply	by	to obtain
feet per second (cont.)	1.097	kilometers per hour.
" " " " " " " " " " " " " " " " " " " "	0.5921	knots.
1 ;; ;; ;;	18.29	meters per minute.
	0.6818	miles per hour. miles per minute.
feet per 100 feet	0.01130	per cent grade.
feet per second per second	30.48	cms. per sec. per sec.
	1.097	kms. per hour per sec.
11 11 11 11 11	0.3048	meters per sec. per sec.
	0.6818	miles per hour per sec.
foot-pounds	1.285×10 ⁻³	British thermal units.
	1.356×10 ⁷ 5.050×10 ⁻⁷	ergs. horse-power-hours.
	1.356	ioules.
	3.238×10-4	kilogram-calories.
	0.1383	kilogram-meters.
	3.766×10 ⁻⁷	kilowatt-hours.
foot-pounds per minute	1.285×10 ⁻³	B.t. units per minute.
	0.01667 3.030×10 ⁻⁵	foot-pounds per second. horse-power.
	3.238×10 ⁻⁴	kgcalories per min.
	2.260×10 ⁻⁵	kilowatts.
foot-pounds per second	7.709×10 ⁻²	B.t. units per minute.
	1.818×10-3	horse-power.
	1.943×10 ⁻²	kgcalories per min.
fundament.	1.356×10 ⁻³	kilowatts.
furiongs	40	Tods.
Gallons	3785	cubic centimeters.
	0.1337	cubic feet.
	231	cubic inches.
	3.785×10^{-3} 4.951×10^{-3}	cubic meters. cubic yards.
44	3.785	liters.
"	8	pints (liq.).
	· 4	quarts (liq.).
gallons per minute	2.228×10-3	cubic feet per second.
	0.06308	liters per second.
gausses	6.452 0.07958	lines per square inch. abampere-turns.
gnoerts	0.7958	ampere-turns.
gilberts per centimeter	2.021	ampere-turns per inch.
gills	0.1183	liters.
"	0.25	pints (liq.).
grains	I 06.90	grains (av.).
46	0.06480 0.04167	grams. pennyweights (troy).
grams	980.7	dynes.
· · · · · · · · · · · · · · · · · · ·	15.43	grains.
"	10-8	kilograms.
44	103	milligrams.
4	0.03527	ounces. ounces (troy).
	0.03215 0.07093	poundals.
" :::::::::::::::	2.205×10 ⁻³	pounds.
gram-calories (IT)	3.968×10 ⁻³	British thermal units.
6	5.9.0/(10	

Multiply	by	to obtain
gram-centimeters	9.297×10 ⁻⁸	British thermal units.
- " " "	980.7	ergs.
	7.235×10 ⁻⁵	foot-pounds.
	9.807×10 ⁻⁵	joules.
	2.343×10 ⁻⁸ 10 ⁻⁵	kilogram-calories.
grams per cm	5.600×10 ⁻³	pounds per inch.
grams per cu. cm	62.43	pounds per cubic foot.
- " " " "	0.03613	pounds per cubic inch.
" " "	3.405×10 ⁻⁷	pounds per mil-foot.
Hectares	0.487	00000
Hectares	2.471 1.076×10 ⁵	acres.
hectograms	100	grams.
hectoliters	100	liters.
hectometers	100	meters.
hectowatts	100	watts.
hemispheres (solid angle) .	0.5	sphere.
	6.283	spherical right angles.
henries	0.283 10 ⁹	steradians. abhenries.
nennes	10 ³	millihenries.
"	1/9×10 ⁻¹¹	stathenries.
horse-power	42.40	B.t. units per min.
	33,000	foot-pounds per minute.
" "	550	foot-pounds per second.
	1.014	horse-power (metric).
	10.68	kgcalories per minute.
	0.7457	kilowatts. watts.
horse-power (boiler)	745·7 33.520	B.t.u. per hour.
noise-power (boner)	9.804	kilowatts.
horse-power-hours	2544	British thermal units.
	1.98×106	foot-pounds.
	2.684×106	joules.
ii ii ii · · · · · · · · · · · · · · ·	641.1	kilogram-calories.
	2.737×10 ⁵	kilogram-meters. kilowatt-hours.
hours	0.7455 4.167×10 ⁻²	days.
"	60	minutes.
"	3600	seconds.
"	5.952×10^{-3}	weeks.
Inches	2.540	centimeters.
"	8.333×10 ⁻²	feet.
"	1.578×10 ⁻⁶	miles.
"	103	mils.
	2.778×10^{-2}	yards.
inches of mercury	0.03342	atmospheres.
	1.133	feet of water. kgs. per square meter.
	345·3 70·73	pounds per square foot.
	0.4912	pounds per square inch.
inches of water	0.002458	atmospheres.
	0.07355	inches of mercury.
" " "	25.40	kgs. per square meter.
	- •	

Multiply	by	to obtain
inches of water (cont.)	0.5781	ounces per square inch.
" " "	5.204	pounds per square foot.
"""	0.03613	pounds per square inch.
Joules (Int.)	9.480×10 ⁻⁴	British thermal units.
1 " "	107	ergs.
" "	0.7378	foot-pounds.
1 " "	2.389×10^{-4}	kilogram-calories.
	0.1020 2.778×10 ⁻⁴	kilogram-meters.
	2.776 \ 10	watt-nours.
Kilograms	980,665	dynes.
	103	grams.
	70.93 2.205	poundals.
" !!!!!!!	1.102×10^{-3}	tons (short).
kilogram-calories	3.968	British thermal units.
" "	3088	foot-pounds.
	1.560×10 ⁻³	horse-power-hours.
" "	4186	joules. kilogram-meters.
" "	427.0 1.163×10 ⁻³	kilowatt-hours.
kilogram-calories per min.	51.47	foot-pounds per second.
1 " " " 1	0.09358	horse-power.
. " " " !	0.06977	kilowatts.
kgscms. squared	2.373×10^{-3}	pounds-feet squared. pounds-inches squared.
kilogram-meters	0.3417 9.294×10 ⁻³	British thermal units.
1 " "	9.804×10^{7}	ergs.
" "	7.233	foot-pounds.
" "	9.804	joules.
" " ' ' ' '	2.342×10^{-3} 2.723×10^{-6}	kilogram-calories. kilowatt-hours.
kilograms per cubic meter	10-3	grams per cubic em.
1 " " " 1	0.06243	pounds per cubic foot.
	3.613×10-6	pounds per cubic inch.
1	3.405×10 ⁻¹⁰	pounds per mil foot.
kgs. per meter	0.6720 9.678×10 ⁻⁵	pounds per foot.
1 " " " "	98.07×10 ⁻⁶	bars.
	3.281×10^{-3}	feet of water.
	2.896×10 ⁻³	inches of mercury.
	0.2048 1.422×10 ⁻³	pounds per square foot.
kgs. per square millimeter	1.422 × 10 °	pounds per square inch. kgs. per square meter.
kilolines	103	maxwells.
kiloliters	108	liters.
kilometers	105	centimeters.
"	3281	feet.
" ::::::::	3.937×104 103	meters.
"	0.6214	miles.
"	1094	yards.
kilometers per hour	27.78	centimeters per second.
" " "	54.68	feet per minute.
	0.9113 0.5396	feet per second.
	0.5590	Allows.

Multiply	by	to obtain
kilometers per hour (cont.)	16.67	meters per minute.
" "	0.6214	miles per hour.
kms. per hour per sec	27.78	cms. per sec. per sec.
	0.9113	ft. per sec. per sec.
	0.2778	meters per sec. per sec.
	0.6214	miles per hr. per sec.
kilometers per min	60	kilometers per hour.
kilowatts	56.88 4.427×10 ⁴	B.t. units per min.
	737.8	foot-pounds per min. foot-pounds per sec.
"	1.341	horse-power.
· ::::::::::::::::::::::::::::::::::::	14.33	kgcalories per min.
"	103	watts.
kilowatt-hours	3413	British thermal units.
" "	2.656×10 ⁶	foot-pounds.
	1.341	horse-power-hours.
	3.6×106	joules.
" "	860	kilogram-calories.
	3.672×106	kilogram-meters.
knots (length)	6080 1.853	feet. kilometers.
	1.152	miles.
	2027	yards.
knots (speed)	51.48	centimeters per second.
" (speed)	1.689	feet per second.
	1.853	kilometers per hour.
	1.152	miles per hour.
Lines per square cm lines per square inch links (engineer's)	1 0.1550 12	gausses. gausses. inches.
links (surveyor's)	7.92	inches.
liters	103	cubic centimeters.
	0.03531 61.02	cubic feet.
"	10 ⁻³	cubic meters.
"	1.308×10 ⁻³	cubic yards.
"	0.2642	gallons.
44	2.113	pints (liq.).
"	1.057	quarts (liq.).
liters per minute	5.885×10 ⁻⁴	cubic feet per second.
	4.403×10 ⁻³	gallons per second.
$\log_{10} N$	2.303	$\log \epsilon N$ or $\ln N$.
log e N or ln N	0.4343 1	$\log_{10} N$. foot-candles.
lumens per sq. ft	•	1000-Candida.
Maxwells	10-3	kilolines.
megalines	106	maxwells.
megmhos per cm. cube .	10_3	abmhos per cm. cube.
" " " " "	2.540	megmhos per inch cube.
	102/8	mhos per meter-gram.
·	0.1662	mhos per mil foot.
megmhos per inch cube .	0.3937	megmhos per cm. cube.
megohms	106	ohms.
meters	100 3.281	feet.
		inches.
	39-37	menes.

Multiply	by	to obtain
meters (cont.)	10_3	kilometers.
"	6.214×10 ⁻⁴	miles.
"	103	millimeters.
	1.094	yards.
meter-kilograms	9.807×10 ⁷	centimeter-dynes.
	105	centimeter-grams.
meters per minute	7.233 1.667	centimeters per second.
meters per minute	3.281	feet per minute.
	0.05468	feet per second.
	0.06	kilometers per hour.
	0.03728	miles per hour.
meters per second	196.8	feet per minute.
1	3.281	feet per second.
	3.6	kilometers per hour.
	0.06	kilometers per minute. miles per hour.
	2.237 0.03728	miles per minute.
meters per sec. per sec	3.281	feet per sec. per sec.
	3.6	kms. per hour per sec.
	2.237	miles per hour per sec.
mhos per meter-gram	10 ⁻⁵ δ	abmhos per cm. cube.
	10-2δ	megmhos per cm. cube.
	2.540×10 ⁻² 8	megmhos per inch cube.
	1.662×10 ⁻³ δ	mhos per mil foot.
mhos per mil foot	6.015×10 ⁻³ 6.015	abmhos per cm. cube. megmhos per cm. cube.
	15.28	megnihos per in. cube.
	601.5/8	mhos per meter-gram.
microfarads	10-15	abfarads.
"	10-6	farads.
	9×10 ⁵	statfarads.
micrograms	10-6	grams.
microliters	10 ³	liters.
inicionnis	10 ⁻¹²	abohms.
	10-6	ohms.
"	1/9×10 ⁻¹⁷	statohms.
microhms per cm. cube .	103	abohms per cm. cube.
1 " " " .	0.3937	microhms per inch cube.
	10-28	ohms per meter-gram.
	6.015	ohms per mil foot.
microhms per inch cube .	2.540 10 ⁻⁶	microhms per cm. cube.
microns	1.609×10 ⁵	meters.
miles	5280	feet.
" :::::::::::::::::::::::::::::::::::::	6.336×104	inches.
"	1.609	kilometers.
"	1760	yards.
miles per hour	44.70	centimeters per sec.
	88	feet per minute.
	1.467	feet per second.
	1.609	kilometers per hour.
	0.8684 26.82	knots.
miles per hour per second.	44.70	meters per minute. cms. per sec. per sec.
" " " " " " " " " " " " " " " " " " "	1.467	feet per sec. per sec.
· ·	1.40/	reet per sect per sect.

Multiply	Ъу	to obtain
miles per hr. per sec. (cont.)	1.609	kms. per hour per sec.
	0.4470	meters per sec. per sec.
miles per minute	2682	centimeters per second.
	88 1.600	feet per second.
	52.10	kilometers per min.
	60	miles per hour.
mil-feet	9.425×10 ⁻⁶	cubic inches.
milliers	103	kilograms.
milligrams	10-3	grams.
millihenries	106	abhenries.
	10 ⁻⁸ 1/9×10 ⁻¹⁴	henries.
milliliters	1/9×10	liters.
millimeters	0.1	centimeters
	3.281×10 ⁻³	feet.
	0.03937	inches.
"	6.214×10^{-7}	miles.
	39.37	mils.
	1.094×10 ⁻³	yards.
mils	2.540×10^{-3} 8.333×10^{-5}	centimeters.
"	10-8	inches.
"	2.540×10 ⁻⁸	kilometers.
"	2.778×10 ⁻⁶	yards.
miner's inches	1.5	cubic feet per min.
minutes	6.944×10^{-4}	days.
	1.667×10 ⁻²	hours. weeks.
minutes (angle)	9.921×10 ⁻⁵ 2.909×10 ⁻⁴	radians.
minutes (angle)	60	seconds (angle).
months	30.42	days.
"	730	hours.
"	43.800	minutes.
	2.628×10 ⁶	seconds.
myriagrams	10 10	kilograms.
myriawatts	10	kilowatts.
myriawassa		1110 11 11 11 11 11 11 11 11 11 11 11 11
Ohms	109	abohms.
4	10-6	megohms.
"	106	microhms.
	1/9×10 ⁻¹¹ 10 ⁵ /δ	statohms.
ohms per meter-gram	10 '/δ 10 ² /δ	abohms per cm. cube. microhms per cm. cube.
	39.37/δ	microhms per in. cube.
	601.5/δ	ohms per mil foot.
ohms per mil foot	166.2	abohms per cm. cube.
	0.1662	microhms per cm. cube.
	0.06524	microhms per inch cube.
ounces	1.662×10 ⁻³ δ 16	ohms per meter-gram.
ounces	437.5	grains.
" ::::::::::	28.35	grams.
"	0.0625	pounds.
ounces (fluid)	1.805	cubic inches.
	0.02957	liters.

Multiply	by	to obtain
ounces (troy)	480	grains.
" "	31.10	grams.
" "	20	pennyweights (troy).
	0.08333	pounds (troy).
ounces per square inch	0.0625	pounds per square inch.
Pennyweights (troy)	24	grains.
"	1.555	grams.
", ",	0.05	ounces (troy).
perches (masonry)	24.75	cubic feet.
pints (dry)	33.60	cubic inches.
pints (liq.)	473.2 1.671×10 ⁻²	cubic centimeters.
	28.87	cubic inches.
	4.732×10 ⁻⁴	cubic meters.
" "	6.189×10-4	cubic yards.
" "	0.125	gallons.
" "	0.4732	liters.
poundals	13,826	dynes.
	14.10	grams.
	0.03108	pounds.
pounds	444,823	dynes.
	7000	grains.
	453.6	grams.
	16	ounces. poundals.
pounds (troy)	32.17 0.8229	pounds (av.).
pound-feet	1.356×10 ⁷	centimeter-dynes.
podna reco	13,825	centimeter-grams.
" "	0.1383	meter-kilograms.
pounds-feet squared	421.3	kgscms. squared.
	144	pounds-inches squared.
pounds-inches squared	2.926	kgsems. squared.
	6.945×10^{-3}	pounds-feet squared.
pounds of water	0.01602	cubic feet.
	27.68 0.1198	cubic inches.
pounds of water per min.	2.669×10 ⁻⁴	gallons. cubic feet per sec.
pounds per cubic foot	0.01602	grams per cubic cm.
podnas per edbie root	16.02	kgs. per cubic meter.
	5.787×10 ⁻⁴	pounds per cubic inch.
" " " "	5.456×10 ⁻⁹	pounds per mil foot.
pounds per cubic inch	27.68	grams per cubic cm.
" " " " "	2.768×10 ⁴	kgs. per cubic meter.
	1728	pounds per cubic foot.
	9.425×10 ⁻⁶	pounds per mil foot.
pounds per foot	1.488 178.6	kgs. per meter.
pounds per mil foot	2.306×10 ⁶	grams per cm. grams per cubic cm.
pounds per square foot	4.725×10 ⁻⁴	atmospheres.
- " - " " "	0.01602	feet of water.
	1.414×10 ⁻²	inches of mercury.
""""	4.882	kgs. per square meter.
" " " "	6.944×10 ⁻⁸	pounds per square inch.
pounds per square inch	0.06804	atmospheres.
	2.307	feet of water.
	2.036	inches of mercury.

Multiply	by	to obtain
pounds per square in. (cont.)	703.1 144	kgs. per square meter. pounds per square foot.
Quadrants (angle)	90 5400 1.571	degrees. minutes. radians.
quarts (dry)	67.20 946.4 3.342×10 ⁻²	cubic inches. cubic centimeters. cubic feet. cubic inches.
4 4 · · · · · · · · · · · · · · · · · ·	57.75 9.464×10^{-4} 1.238×10^{-3} 0.25	cubic meters. cubic yards. gallons.
quintals quires	0.946̃3 100 25	liters. pounds. sheets.
Radians	57.30 3438 0.6366	degrees. minutes. quadrants.
radians per second	57.30 9.549 0.1592	degrees per second. revolutions per minute. revolutions per second.
radians per sec. per sec	573.0 9.549 0.1592 500	revs. per min. per min. revs. per min. per sec. revs. per sec. per sec. sheets.
revolutions	360 4 6.283	degrees. quadrants. radians.
revolutions per minute	6 0.1047 0.01667	degrees per second. radians per second. revolutions per second.
revs. per min. per min	1.745×10 ⁻³ 0.01667 2.778×10 ⁻⁴ 360	rads. per sec. per sec. revs. per min. per sec. revs. per sec. per sec degrees per second.
revs. per sec. per sec	6.283 60 6.283	radians per second. revs. per minute. radians per sec. per sec.
rods	3600 60 16.5	revs. per min. per min. revs. per min. per sec. fect.
Seconds	1.157×10^{-5} 2.778×10^{-4} 1.667×10^{-2}	days. hours. minutes.
seconds (angle)	1.654×10 ⁻⁶ 4.848×10 ⁻⁶ 12.57	weeks. radians. steradians. hamisphores
spherical right angles	0.25 0.125 1.571	hemispheres. spheres. steradians.
square centimeters	1.973×10 ⁵ 1.076×10 ⁻³ 0.1550	circular mils. square feet. square inches.
	10-4	square meters.

Multiply	by	to obtain	
square centimeters (cont.)	3.861×10 ⁻¹¹	square miles.	
" "	100	square millimeters.	
	1.196×10 ⁻⁴	square yards.	
sq. cmscms. sqd	0.02402	sq. inches-inches sqd.	
square feet	2.296×10 ⁻⁶	acres.	
1 " "	1.833×108	circular mils.	
	929.0	square centimeters.	
	144 0.09290	square inches.	
11 11	3.587×10 ⁻⁸	square miles.	
" "	1/9	square yards.	
sq. feet-feet sqd	2.074×104	sq. inches-inches sqd.	
square inches	1.273×106	circular mils.	
" "	6.452	square centimeters.	
	6.944×10^{-3}	square feet.	
" "	645.2	square millimeters.	
	106	square mils.	
	7.716×10-4	square yards.	
sq. inches-inches sqd	41.62	sq. cmscms. sqd.	
aguaga Isilamatana	4.823×10 ⁻⁵	sq. feet-feet sqd.	
square kilometers	247.I 10.76×10 ⁶	acres. square feet.	
	1.550×109	square inches.	
" "	106	square meters.	
" "	0.3861	square miles.	
" "	1.196×106	square yards.	
square meters	2.471×10-4	acres.	
1 " "	10.76	square feet.	
" "	1550	square inches.	
	3.861×10 ⁻⁷	square miles.	
1	1.196	square yards.	
square miles	640	acres.	
	27.88×10 ⁶	square feet.	
" "	2.590 3.098×10 ⁶	square yards.	
square millimeters	1.973×10 ³	circular mils.	
square minimeters	0.01	square centimeters.	
" "	1.550×10 ⁻³	square inches.	
square mils	1.273	circular mils.	
1 " "	6.452×10^{-6}	square centimeters.	
" "	10-6	square inches.	
square yards	2.066×10^{-4}	acres.	
1 " "	9	square feet.	
	1296	square inches.	
	0.8361 3.228×10 ⁻⁷	square meters.	
statamperes	1/3×10 ⁻¹⁰	square miles. abamperes.	
" Constitution of the cons	1/3×10-9	amperes.	
statcoulombs	1/3×10 ⁻¹⁰	abcoulombs.	
	1/3×10-9	coulombs.	
statfarads	$1/9 \times 10^{-20}$	abfarads.	
"	1/9×10 ⁻¹¹	farads.	
"	1/9×10-6	microfarads.	
stathenries	9×10 ²⁰	abhenries.	
	9×10 ¹¹	henries.	
	9×10 ¹⁴	millihenries.	
statohms	9×10 ²⁰	abohms.	

Multiply	by	to obtain
statohms (cont.)	9×10 ⁵	megohms.
44	9×1017	microhms.
statvolts	9×10 ¹¹ 3×10 ¹⁰	ohms.
statvoits	300	volts.
steradians	0.1592	hemispheres.
"	0.0:958	spheres.
steres	0.6366 10 ³	spherical right angles.
	10	1100151
Temp. (degs. Cent.) $+273$.	ı	abs. temp. (degs. Cent.).
+17.8.	1.8	temp. (degs. Fahr.).
temp. (degs. Fahr.) +460	5/9	abs. temp. (degs. Fahr.). temp. (degs. Cent.).
tons (long)	1016	kilograms.
" " "	2240	pounds.
tons (metric)	103	kilograms.
tons (short)	2205 907.2	pounds. kilograms.
" "	2000	pounds.
tons (short) per sq. ft	9765	kgs. per square meter.
tone (short) per eq. in	13.89 1.406×10 ⁶	pounds per square inch. kgs. per square meter.
tons (short) per sq. in	2000	pounds per square inch.
Volts	108	abvolts.
volts per inch	1/300 3.937×10 ⁷	abvolts per em.
· · · · · · · · · · · · · · · · · · ·	1.312×10 ⁻²	statvolts per cm.
Watts	0.05688	B.t. units per min.
watts	107	ergs per second.
"	44.27	foot-pounds per min.
"	0.7378	foot-pounds per second.
"	1.341×10 ⁻³ 0.01433	horse-power. kgcalories per minute.
"	10 ⁻³	kilowatts.
watt-hours	3.413	British thermal units.
	2656	foot-pounds.
	1.341×10 ⁻³ 0.860	horse-power-hours. kilogram-calories.
" "	367.2	kilogram-meters.
	10-3	kilowatt-hours.
webers	10 ⁸ 168	maxwells.
"	10,080	minutes.
"	604,800	seconds.
Yards	91.44	centimeters.
"	3	feet.
<i>a</i>	36	inches.
	0.9144	meters.
years (common)	5.682×10 ⁻⁴ 365	days.
" " "	8760	hours.
years (leap)	366 8784	days.
·· · · · · · · · · · · · · · · · · · ·	8784	hours.

INDEX

Note. — Numbers refer to pages.

Abbreviations, mathematical, 248 Acceleration, linear, 68 angular, 70 Adiabatic change, 161 Admittance, electrical, 220 Air compressors, 177 " humidity of, 186 Air and vapor mixtures, 185 Algebra, 1 Allowable stress, 114 Alternating currents, harmonic, 214 Alternating currents, non-harmonic, Alternating currents, three-phase, 222 Alternating-current machinery, 230 Analytic geometry, plane, 20 solid, 29 Angle of repose, 101 " sliding friction, 103 "static friction, 101 Angles, structural steel, 84, 128, 130 Annuities, 7 Area of circles, 254 "circular segments, 298 " plane figures, 15, 52 "surface of solids, 18, 54 Armature reaction, d.-c., 228 a.-c., 231

Bazin (channel) formula, 153
Beams, 119

" under various loadings, 121
Bearings, pivot, 105
Belt friction, 106
Bending moment, 119

" strength, table, 114
Bernouilli's theorem, 145

Binomial equation, 6

"expansion, 1
"series, 35

Biquadratic equation, 5

Boilers, 172

Boiling points, 316

Calorimeters, 167 Canals, 152 Capacitance, electrical, 202 Cardioid, 27 Carnot cycle, 169 Catenary, 17, 26, 67 Center of gravity, 74 " percussion, 97 " pressure, 142 Channel coefficients, 305 Channels, structural steel, 85, 133 Chezy (channel) formula, 152 Chimney draft, 173 Chords, length of, 298 Circle, 16, 21, 81, 254 Circuits, direct current, 204 a.-c., single-phase, 214 a.-c., three-phase, 222 Circular areas, 254 motion, 69 Circumferences of circles, 254 Cissoid, 24 Coefficient of expansion, 315 " friction, 101, 102, 103 Columns, 139 Combustion, 174 Complex quantities, 61 Compression refrigeration, 179 Compressive strength, table, 114 Condensers, electric, 202

Conductance, electrical, 206, 220 Conductivity, thermal, 181, 183, 317 Conductors, resistance of, 321 Cone, 18, 93 Conic, 22 Conversion factors, 322 Converter, synchronous, 235 Cosecant curve, 25 Cotangent curve, 25 Couple, 108, 111 Cube, 18, 89 Cubes of numbers, 254 Cube roots of numbers, 254 Cubic equation, 4 Cubical parabola, 24 Curvature, radius of, 33 Cycloid, 17, 27 Cylinder, 18, 90

Degrees to radians, 276
Derivatives, table, 31
Dielectric constants, 321
" flux density, 202
" intensity, 199
Differential calculus, 31
" equations, 56
" gage, 140
Direct currents, 204
Direct current machinery, 228
Dynamic action of jets, 154

Dynamos, 228

Enthalpy, 159

Decimal equivalents, 297

Eddy current loss, 199
Elastic curve of a beam, 120

" limit, 114
Electricity, 188
Electromagnetism, 190
Electromotive force, 204, 228, 231
Electrostatics, 199
Ellipse, 17, 23, 83
Ellipsoid, 19, 92
Energy, kinetic, 95, 97, 98

" potential, 95
Engine, internal combustion, 170

" steam, 168

Entropy, 158
Epicycloid, 27
Equilibrium of forces, 111
Euler (column) formula, 139
Expansion, linear, 157
Exponential curve, 26
"series, 35

Factor of safety, 114

Gases, perfect, 160
Generator, direct-current, 228
Generator, alternating-current, 230, 238
Girders, 119
Gordon (column) formula, 139
Greek alphabet, 297

Hyperbola, 23

338 Index

tions, 284

Lumber, prop. of, 136

table,

Hyperbolic functions, 65;

Maclaurin's theorem, 34 290 Magnetic intensity, 190 Hypocycloid, 27 Magnetism, 188 Hysteresis loss, 198 Magnetization curves, 320 Magnetomotive force, 192 Mass, 74 I beams, structural steel, 84, 126 Impact, 107 center of, 74 Impedance, electrical, 216, 219, 221 Mathematics, 1 Impulse, linear, 95 Maximum and minimum, 33 angular, 96 Mechanics, 68 Inclined plane, 103 Melting points, 316 Indeterminates, evaluation of, 1, 37 Mensuration, plane, 15 Induction machines, 238 solid, 18 Inertia, moment of, plane, 75 Modulus of elasticity, 114, 115 " polar, 77 Moment, 74, 96, 110 " solid, 87 of inertia, plane, 75 44 Inductance, self-, 194 polar, 77 mutual-, 197 solid, 87 " Instantaneous axis, 99 " momentum, 96 Insulation resistance, 321 Momentum, linear, 95 Integral calculus, 39 angular, 96 table, 40 Motion, laws of, 94 Integrals, definite, 51 Motors, direct-current, 228 Intensity of stress, 113, 114 synchronous, 230 induction, 238 Interest, 7 Internal combustion engines, 170 Mutual-inductance, 197 Inverse trigonometric functions, II Involute, 28 Natural sines, etc., 278 N-leaved rose, 28 Isothermal change, 161 Neutral axis, beam, 120 Kelvin's law, 211 plane, beam, 119 Kinematics, 68 Non-harmonic alternating currents. 226 Kinetics, 94 Kirchhoff's laws, 209 Kutter (channel) formula, 153 Ohm's law, 208 Orifices, 146 Lemniscate, 28 Orifice coefficients, 302 Length of circular arcs, 298 Oscillatory wave, 26 Linear expansion, 157 Parallel circuit, d.-c., 207 Liquids and vapors, 161 Logarithmic curve, 26 a.-c., 22I Parabola, 17, 22, 83 series, 35 Logarithms, base, 10, 3; table, 250 Paraboloid, 19, 93 base ϵ , 3; table, 252 Parallelogram, 15 of trigonometric func-Partial derivatives, 38

Pendulum, 99

Perfect gases, 160

Stresses in framed structures, 112

Strophoid, 24

Permeability, magnetic, 189 Refrigeration, compression, 179 Percussion, center of, 97 Reluctance, magnetic, 192 Phase angle, 216, 221 Resistance, electrical, 205, 221, 227 Pipes, flow in, 150 Resistivity, electrical, 206; table, 321 Pivot friction, 105 Riveted joints, 116 Plane sections, properties of, 78 Rolling friction, 106 Points of inflection, 34 Roof truss, 113 Poisson's ratio, 114 Rotation, 96 Polar coördinates, 20 Screw, square-threaded, 104 Polygon, 16 Polynomial expansion, 2 sharp-threaded, 104 Secant curve, 25 Potential, electrostatic, 200 direct current, 207 Section modulus, beam, 125 alternating current, 220 Segments, area of, 298 Power, 95 height of, 298 Power factor, 216, 221, 225 Self-inductance, 194 Semicubical parabola, 24 Powers and roots, I Pratt truss, 112 Series, 35 Principal axes, plane, 77 Shafts, 140 solid, 88 Shearing strength, table, 114 Prism, 18, 89 Sine wave, 25 Prismatoid, 19 Sinking fund, 7 Product of inertia, plane, 76 Slope of a curve, 33 solid, 87 Sliding friction, 103 Progressions, 7 Solid angle, 19 Specific heat, 156 Projectile, path of a, 71 " table, 314 Prony brake, 101 Properties of materials, 113 Sphere, 19, 91 " plane sections, 78 Spirals, 28 " various solids, 89 Square, 15, 78 Pumps, 176 roots of numbers, 254 Pyramid, 18, 93 Squares of numbers, 254 Static friction, 101 Quadratic equation, 4 Statical moment, plane, 74 Statics, 107 Radians to degrees, 276 Steam engine, 168 " table, 306 Radius of curvature, 33 "gyration, plane, 76 Steel bars, 134 solid, 87 Straight line, 21 Strain, 115 Rankine cycle, 170 Stray power, (rotational losses), 229 Ratio and proportion, 2 Reactance, electrical, 216, 221, 228 Strength of materials, 113 Reaction, armature, 228, 231 " riveted joints, 117 Reciprocals of numbers, 254 Stress, 113 Rectangle, 15, 79 Stress-strain diagram, 115

Rectangular coördinates, 20 Rectilinear motion, 68

340 Index

Structural shapes, 127
Structures, reactions in, 112
Susceptance, electrical, 213
Symbols, mathematical, 248
Synchronous converter, 235
"machines, 230

Tangent curve, 25 Taylor's theorem, 34 Temperature coefficient of expansion, 157; table, 315 Temperature coefficient of resistance, 206; table, 321 Tensile strength, table, 114 Thermal conductivity, 181, 183, 317 Three-moment equation, 124 Three-phase circuits, 222 Torque, 96, 194, 229 Torus, 20, 92 Transformers, 236 Transient currents, 211 Translation, 94 and rotation, 98 Transmission line, d.-c., 210 a.-c., three-phase, 242

Trapezium, 16 Trapezoid, 15, 80 Triangle, oblique, 14, 80 Triangle, plane, 13

"right, 13

Trigonometric functions, 8

"table, 278

"cquation, 12
"series, 36

Trigonometry, 8 Trusses, 112

Ultimate strength, table, 114
"stress, 114

Values of ϵ^x and ϵ^{-x} , 294 Vectors, 62 Velocity, linear, 68 "angular, 69 Venturi meter, 150 Vertical shear, 119

Wedge, 104
Weights of materials, 300
Weir coefficients, 303
Weirs, 148
Wire table, 319
Witch, 24
Work, 95, 97, 98
Working stress, 114

Yield point, 114

		. 91	