Springboard – DCS

Capstone Project 2

Predicting Fetal Cardiac Health Outcomes Using Cardiotocogram Data

By Michael Bobal

January 2023

Introduction

- Congenital malformations like heart defects (CHD), are responsible for nearly 20% of infant deaths.
- CHDs affect nearly 1% of children born alive, totaling nearly 40,000 cases per year.
- Of those 1% of children born with CHDs, about 25% are critical.

Introduction

Cardiotogography (CTG) is a non-invasive, in-utero fetal heart-health test that obstetricians use to detect the presence of CHD.

Interpreting the results usually requires a highly trained physician, who carefully considers the multiple measurements of the CTG in order to classify fetuses as either normal, suspect, or pathological.

Accurate diagnosis is a critical step for our stakeholders: Affected children, parents, obstetricians, surgeons, and hospitals.

Develop a machine learning model that uses CTG

data to quickly and accurately predict the cardiac status of a fetus.

Goal:

Approach: Data Acquisition and Wrangling

Data is from University of California Irvine Machine Learning Repository

Ayres de Campos et al. (2000) SisPorto 2.0 A Program for Automated Analysis of Cardiotocograms. J Matern Fetal Med 5:311-318

Our project only used the columns corresponding to features suggested in the data file, totaling 21 independent variables for 2126 CTG instances

Our data:

- Each CTG instance classified as Normal, Suspect, or Pathological by a medical professional
- Includes "Suspect" as a class designation, which we eliminated from modeling
- Highly imbalanced

Feature correlations:

- Highly correlated features with features:

>Mean, Median, Mode

>Min, Width

- 0.50

- 0.25

- -0.75

- Highly correlated features with target:

>ASTV and ALTV with Normal class

>Mean/Median/Mode with

Pathological class

Baseline Modeling

Goal of modeling: High sensitivity (good detection abilities)

Performance metric of choice: Recall (True Positives / All Positives)

Reason: Medical classification problems tend to value reducing false negatives

Good is Bad

- Initial algorithm chosen for model-building was Logistic Regression
- Model performance without any tuning achieved improbable results
- >90% on all standard performance metrics
- Recall score = 0.91
- Data leakage is a likely culprit

Classificatio	n Report for	Test Dat	a	
	precision	recall	f1-score	support
N	0.99	1.00	0.99	414
P	0.95	0.91	0.93	44
accuracy			0.99	458
macro avg	0.97	0.95	0.96	458
weighted avg	0.99	0.99	0.99	458

Investigating single features for leakage

- Using a feature hold-out function, the model was repeatedly run.
- Precision and Recall scores for each iteration were charted.
- No obvious signs that one feature is the source of the data leakage issue.

Leakage Located

- Further review of the data showed that most subjects had multiple CTG data entries
- Data from subjects was ending up in both the training set and the testing set for modeling
- The model was over-fit to the particular patients involved

Redo EDA

- Using grouping and aggregation, we condensed the data from 2126 to 352 data-points

- Class imbalance remained ~10:1

Redo Baseline Modeling

- Repeating our steps from before, we used Logistic Regression
- Again, the results are astoundingly good. Too good.
- Recall = 1.00
- The leakage issue is not solved

Classification Report for Test Data							
	precision	recall	f1-score	support			
N	1.00	0.99	0.99	72			
Р	0.88	1.00	0.93	7			
accuracy			0.99	79			
macro avg	0.94	0.99	0.96	79			
weighted avg	0.99	0.99	0.99	79			

The problem of leakage is consistent:

Comparing cross-validation performance when using over-sampling techniques on the data show similarly excellent results.

	Recall Score
None LogisticRegression(C=100, max_iter=5000, solver='saga')	0.935462
None RandomForestClassifier()	0.783333
RandomOverSampler() LogisticRegression(C=100, max_iter=5000, solver='saga')	0.987933
RandomOverSampler() RandomForestClassifier()	1.000000
Borderline SMOTE() LogisticRegression(C=100, max_iter=5000, solver='saga')	0.987987
Borderline SMOTE() RandomForestClassifier()	0.991017
SMOTENC(categorical_features=[20, 21]) LogisticRegression(C=100, max_iter=5000, solver='saga')	0.985011
SMOTENC(categorical_features=[20, 21]) RandomForestClassifier()	0.993939
ADASYN() LogisticRegression(C=100, max_iter=5000, solver='saga')	0.981872
ADASYN() RandomForestClassifier()	0.993939
KMeans SMOTE() LogisticRegression(C=100, max_iter=5000, solver='saga')	0.987933
KMeans SMOTE() RandomForestClassifier()	0.987987
SVMSMOTE() LogisticRegression(C=100, max_iter=5000, solver='saga')	0.985011
SVMSMOTE() RandomForestClassifier()	0.997024

Findings

Unfortunately, upon further inspection of the raw data, we discovered:

- 1. The CTG entries corresponding to each patient overlapped in time. Some of the data-points encompassed entirely the rest of that patient's data.
- 2. Some unseen data leakage is continuing to occur, even after the fixes we established.

Findings

Unfortunately, upon further inspection of the raw data, we discovered:

- 1. The CTG entries corresponding to each patient overlapped in time. Some of the data-points encompassed entirely the rest of that patient's data.
- 2. Some unseen data leakage is continuing to occur, even after the fixes we established.

Conclusions

Based on our findings, we strongly recommend making the following concrete data collection improvements:

- 1. Supply the data team with CTG data from more subjects. Increasing the testing is a more reliable approach than artificially oversampling limited data.
- 2. Include in future data collection only a single data entry per patient. This was a cause of major information leakage, led to over-fitting during modeling, and is a bad practice for the type of problem that we are trying to solve.
- 3. Ensure a standard amount of time that each CTG may collect data for.

Thank you to AJ, my mentor, for helping to steer me in the proper direction throughout this project.