EL-2114

INSTITUTO TECNOLÓGICO DE COSTA RICA

PRIMER SEMESTRE, 2016	
Campus: Cartago	

ESCUELA DE INGENIERÍA ELECTRÓNICA

Circuitos Eléctricos en Corriente Alterna Primer Examen Parcial

(Tiempo de la prueba: DOS Y MEDIA horas)

Nombre:	 LUCI	ON	Carné:	
- · · · · · · · · · · · · · · · · · · ·			Carne.	

Problema	Puntos	P. Obtenidos
1	1	
2	1	
3	1	
4	2	
5	3	
6	2	
7	2	
8	2	
9	2	
10	2	
11	12	
12	9	
TOTAL	39	

Instrucciones Generales

- Esta es una prueba individual.
- Escriba solo en la parte frontal de la hoja.
- 3. Las hojas deben estar numeradas y el orden de resolución debe ser el de presentación.
- 4. Debe resolverse en el tiempo estipulado, el cual incluye la lectura inicial de la prueba.
- 5. En la sección de opción y selección múltiple se debe seleccionar la(s) opción(es) correcta(as). Puede haber más de una correcta.
- 6. En la sección de respuesta corta y desarrollo debe contener todos los pasos para llegar a la respuesta final, la cual debe encerrarse en un recuadro.
- 7. Resuelva la prueba de forma clara y ordenada. No se aceptan áclaraciones a posteriori.
- 8. No se aceptan reclamos de pruebas realizadas a lápiz, con borrones o con corrector de lapicero.
- 9. El uso de lapicero rojo o similares no está permitido.
- 10. El uso de celulares/tablets y reproductores de medios no está permitido durante la prueba, favor matener estos aparatos apagados o en modo silencioso.
- 11. No se permite el uso de calculadoras programables.
- 12. Únicamente se aclararán dudas de forma.
- 13. Al retirarse el primer estudiante no se puede salir del aula a menos que se entregue la prueba.
- 14. El no cumplimiento de los puntos anteriores equivale a una nota igual a cero en el ejercicio correspondiente o en el exámen según la falta cometida.
- 15. Devuelva el enunciado al finalizar la prueba.
- 16. Realizar la prueba implica que se entienden y aceptan estas instrucciones.
- 17. Toda respuesta deberá estar debidamente justificada dentro de su cuaderno de exámen o en el enunciado, incluyendo respuesta corta y selección múltiple.

Firma:	
Firma.	
I II III CU.	

SECCIÓN A: Opción y selección múltiple

1. (1 pts.) Considere las figuras 1 y 2. Si se quiere que la salida del circuito (V_o) sea igual a la onda mostrada en la figura 2, elija la(s) posible(s) condición(es) de las fuentes de entrada $(V_1 \ge V_2)$ que pueden dar lugar a la salida mostrada.

Figura 1: Circuito del problema 1.

Figura 2: Señal de salida del problema 1.

$$V_1 = 7sin(\omega t)V V_2 = 15V.$$
b) $V_1 = -7sin(\omega t)V V_2 = -15V.$
c) $V_1 = 15sin(\omega t)V V_2 = 7V.$

b)
$$V_1 = -7\sin(\omega t)V$$
 $V_2 = -15V$

c)
$$V_1 = 15 sin(\omega t) V$$
 $V_2 = 7 V$.

$$V_1 = 7sin(\omega t + 45^{\circ})V$$
 $V_2 = 15V.$

e)
$$V_1 = -15sin(\omega t + 45^{\circ})V$$
 $V_2 = 7V$.

2. (1 pts.) El circuito mostrado en la figura 3 está excitado senoidalmente. opción(es) que relacionan adecuadamente a las señales $S1.\ S2$ y S3 mostradas en la figura 4 con las corrientes y voltajes del circuito.

Figura 3: Circuito del problema 2.

Figura 4: Circuito del problema 2.

a)
$$I_R \to S1$$
 $I_L \to S2$ $I_C \to S3$.

b)
$$I_R \to S2$$
 $I_L \to S1$ $I_C \to S3$

a)
$$I_R \to S1$$
 $I_L \to S2$ $I_C \to S3$.
b) $I_R \to S2$ $I_L \to S1$ $I_C \to S3$.
 $\swarrow I_R \to S2$ $I_L \to S3$ $I_C \to S1$.

d)
$$V_R \rightarrow S3$$
 $V_L \rightarrow S2$ $V_C \rightarrow S1$.
e) $V_R \rightarrow S2$ $V_L \rightarrow S3$ $V_C \rightarrow S1$.

e)
$$V_R \to S2$$
 $V_L \to S3$ $V_C \to S1$.

- 3. (1 pts.) Elija la(s) afirmación(es) verdadera(s) respecto a circuitos lineales excitados senoidalmente.
 - a) La superposición no se aplica para circuitos con fuentes de diferente frecuencia.

La superposición de fasores es posible para circuitos con fuentes de igual frecuencia.

- c) Debido a que los amplificadores operacionales se hacen con transistores y otros elementos no lineales, los circuitos que los contienen no se pueden analizar con fasores.
- d) La transformación de fuentes es una técnica reservada al análisis de circuitos en corriente directa, y no se puede aplicar para circuitos en corriente alterna debido a la no linealidad de la onda senoidal de las fuentes.

La superposición de potencias se aplica en todos los casos de circuitos RLC debido a que son circuitos lineales

4. (2 pts.) En el circuito mostrado en la figura 5, se tiene que cuando se da una máxima transferencia de potencia a la carga \mathbb{Z}_L , se disipan 100W en esta carga. Elija él o los valores de Z_x que permiten esto.

Figura 5: Circuito del problema 4.

5. (3 pts.) Una fuente de $115V_{rms}$ alimenta dos cargas conectadas en paralelo: 7kW@3kVAR y 4kVAR @ pf=0.85 de atraso. Elija la impedancia y el factor de potencia total del circuito.

a)
$$Z = 1.142cos(\omega t + 26.15^{\circ}) + 1.142sin(\omega t + 26.15^{\circ})\Omega$$
 $pf = 0.8976$.
 $Z = 1.142cos(26.15^{\circ}) + j1.142sin(26.15^{\circ})\Omega$ $pf = cos(26.15^{\circ})$.
c) $Z = 1.142cos(26.15^{\circ}) + 1.142sin(26.15^{\circ})\Omega$ $pf = sen(26.15^{\circ})$.

$$Z = 1.142cos(26.15^{\circ}) + j1.142sin(26.15^{\circ})\Omega$$
 $pf = cos(26.15^{\circ})$

c)
$$Z = 1.142cos(26.15^{\circ}) + 1.142sin(26.15^{\circ})\Omega$$
 $pf = sen(26.15^{\circ})$

 $1.142\angle 26.15^{\circ}\Omega$ pf = 0.8976.

e) $1.142\angle - 26.15^{\circ}\Omega$ pf = 0.8976.

SECCIÓN B: Respuesta Corta

6. (2 pts.) Para el circuito mostrado en la figura 6, se tiene que $v(t) = 20e^{j(20t+15^{\circ})}V$ e $i(t) = 1.49e^{j(20t+63^{\circ})}A$, a partir de esos datos determine el valor de la resistencia R y la capacitancia C.

Figura 6: Circuito del problema 6.

R: 8.982 C: 5mF

7. (2 pts.) Considere el circuito mostrado en la figura 7. donde $R=1\Omega, L=1mH, C=100\mu F$ y $V_s(t)=10e^{j(10^3t+0^\circ)}V$. Esboce el diagrama fasorial para los fasores V_s, V_R, V_L, V_C e I rotulando correctamente los ejes del plano complejo.

Figura 7: Circuito del problema 7.

8. (2 pts.) Para el circuito mostrado en la figura 8, calcule el valor de \mathbb{Z}_{ab} en la red

Figura 8: Circuito del problema 8.

9. (2 pts.) Considere la corriente i(t) que se muestra en la figura 9. Determine el valor rms de la forma de onda de corriente y la potencia promedio entregada a una resistencia eléctrica de 12Ω cuando dicha corriente la atraviesa.

Figura 9: Circuito del problema 9.

Ims: 5.773 A P: 400 W

10. (2 pts.) En una aplicación industrial se conecta una carga a una línea de potencia $120V_{rms}@60Hz$, donde la carga absorbe una potencia de 4kW sujeto a un factor de potencia en adelanto de 0.8, pero por regulaciones se necesita aumenta el factor de potencia a 0,95. Determine la bobina L que se necesita para llegar al factor de potencia deseado.

SECCIÓN C: Desarrollo

- 11. (12 pts.) Se tiene el circuito de la figura 10 en la cual el $v_s(t) = 4\cos(1000t 60^\circ)V$. Asumiendo que los dos amplificadores operacionales son ideales, encuentre:
 - a) El valor del voltaje de Thévenin ubicado en los terminales, donde se presenta $v_o(t)$, en función del tiempo (6 pts).
 - b) El valor de la corriente de Norton en los terminales indicados en el punto anterior. (4 pts).
 - c) Con base en lo anterior calcule el valor de la impedancia de Thévenin y dibuje el circuito equivalente de Thévenin en función del tiempo. ¿A qué se debe que el valor de la resistencia es negativo? (2 pts.).

Figura 10: Circuito del problema 11.

- 12. (9 pts.) Para el desarrollo de este problema considere el circuito mostrado en la figura 11.
 - a) Calcule la potencia compleja en cada elemento (4 pts.).
 - b) Compruebe la conservación de la potencia compleja en el circuito (1 pts.).
 - c) Considerado que la impedancia Z_1 se puede modelar como una resistencia en serie con un inductor $(R+jX_L)\Omega$, calcule la potencia instantánea en t=1s en el inductor con reactancia X_L (asuma la frecuencia de las fuentes de corriente igual a 60 Hz) (2 pts.).
 - d) Dibuje los triángulos de potencia en Z_1 y Z_2 según los cálculos del punto a). Indique todas las magnitudes y el ángulo de la potencia compleja en cada impedancia (2 pts.).

Figura 11: Circuito del problema 12.
