Let A be an n by n grid, in wich each cell has a color. Let a_{ij} denote the cell at the intersection of the i-th row and the j-th column, and let $c(a_{ij})$ denote the color of cell a_{ij} . We say a directed path **monotonic** if it only goes downward (in the direction that the rowindex increases) and rightward (in the direction that the column-index increases). We say a path **bichromatic** if it only visits cells of **at most** two colors. Figure 1 shows a bichromatic monotonic path from a_{11} to a_{nn} for n=3.

Write a program to decide whether the given n by n grid contains a bichormatic monotonic path P from a_{11} to a_{nn} .

Figure 1: A bichromatic monotonic path from a_{11} to a_{33} .

Hint

If a bichromatic monotonic path from a_{11} to a_{nn} exists, then one color must be $c(a_{11})$. Which color is the other? You may find bichromatic monotonic paths for each guess of the other color.

Input

The first line contains n. Each of the subsequent n lines contains the color of n cells on a row so that the second line represents the first row, the third line represents the second row, and so on. You may assume that n is an integer in [2,100] and $c(a_{ij})$ is a letter in $\{a,b,\ldots,z\}$ for every $i,j\in[1,n]$.

Output

Output "Yes" if such a bichromatic monotonic path exists, or "No" otherwise.

Sample Input

3

b g y

y g r

r b b

Sample Output

Yes