CLAIMS

What is claimed is:

1	1. An apparatus to limit power to a load, comprising:		
2	a power source to drive the load using an input signal;		
3	a voltage monitor coupled to the power source to detect a voltage supplied by the power		
4	source and to provide a voltage signal representative of said voltage;		
5	a current monitor coupled to the power source to detect a current supplied by the power		
6	source and to provide a current signal representative of said current;		
7	the control circuit to receive said voltage signal and said current signal, said control		
8	circuit to provide a value based on said voltage signal and said current signal according to one or		
9	more control parameters; and,		
10	a signal attenuator coupled to the power source and the control circuit, the signal		
11	attenuator to limit said input signal based on said value.		
1	2. The apparatus of claim 1 further comprising an amplifier coupled to the power		
2	source and the load.		
1	3. The apparatus of claim 2 wherein the amplifier includes the voltage monitor and		
2	the current monitor.		

1	4.	The apparatus of claim 1 wherein the voltage signal is sampled by a first analog-			
2	to-digital converter to generate a digital voltage signal.				
1	5.	The apparatus of claim 4 wherein the current signal is sampled by a second			
1					
2	analog-to-digi	tal converter to generate a digital current signal.			
1	6.	The apparatus of claim 5 wherein the control circuit further comprises a multiplier			
2	to receive the	digital voltage signal and the digital current signal, and to calculate an			
3	instantaneous	power.			
1	7.	The apparatus of claim 1 wherein the control circuit implements a linear gain			
2	control.				
1	8.	The apparatus of claim 1 wherein the control circuit implements a nonlinear gain			
2	control.				
1	9.	The apparatus of claim 1 wherein the control circuit implements a recursive gain			
2	control.				
1	10	The apparatus of claim 1 wherein the control circuit implements a non-recursive			
1	10.	The apparatus of claim 1 wherein the control eneutr implements a non-recursive			
2	gain control.				

- 1 11. The apparatus of claim 1 wherein the one or more control parameters comprises a
- 2 power averaging time and a power threshold.

includes an attack time and a release time.

- 1 12. The apparatus of claim 11 wherein the one or more control parameters further
- 1 13. The apparatus of claim 11 wherein an averaging coefficient (T_A) is calculated by
- 2 the control circuit using the power averaging time according to $T_A = e^{\frac{-n}{t_o f_s}}$, where *n* is a filter
- 3 order, t_a is the power averaging time in seconds, and f_s is a sampling frequency.
- 1 14. The apparatus of claim 12 wherein said value is a gain value, and wherein the
- 2 control circuit calculates the gain value using the power threshold expressed as follows:

$$gain = \sqrt{\frac{P_T A_I A_V}{L}},$$

- where L is an averaged power level, P_T is the power threshold, A_I is a corrective factor
- for the current signal, A_V is a corrective factor for the voltage signal and T_R is a release
- 6 coefficient.

2

- 1 15. The apparatus of claim 14 wherein the release coefficient is calculated by the
- 2 control circuit according to,

$$T_R = e^{\frac{-n}{t_R f_S}},$$

- where n is a filter order, t_R is the release time, and f_s is a sampling frequency.
- 1 16. The apparatus of claim 1 wherein the one or more control parameters are selected
- 2 from a library of control parameters that is accessible using a graphical user interface.
- 1 17. The apparatus of claim 16 wherein the load is a loudspeaker and the library of
- 2 control parameters comprises optimized control parameters for a plurality of particular
- 3 loudspeakers.
- 1 18. The apparatus of claim 17 wherein the one or more control parameters are
- 2 selected by a user from the library of control parameters by selecting from a list of available
- 3 loudspeakers using the graphical user interface.
- 1 19. The apparatus of claim 1 wherein the one or more control parameters are
- 2 manually provided to the control circuit by a user.

- 1 20. The apparatus of claim 1 wherein said one or more control parameters comprises
- 2 a thermal threshold value.
- 1 21. The apparatus of claim 20, wherein the thermal threshold value is calculated
- 2 according to,

$$\frac{R_T}{R_0} = 1 + \alpha (T_T - T_0) + \beta (T_T - T_0)^2,$$

- where α and β are thermal coefficients of resistance, T_0 is a resistance of said load at
- 5 ambient temperature and T_T is a threshold temperature of the load.
- 1 22. The apparatus of claim 21, wherein said value is a gain value, and wherein the
- 2 control circuit calculates said gain value using the thermal threshold value expressed as follows:

$$gain = \frac{R_0 A_I I}{R_T A_V I_0},$$

- 4 where A_I is a corrective factor for the current signal, A_V is a corrective factor for the
- voltage signal, I_0 is representative of a modeled current and I is representative of a measured
- 6 current.
- 1 23. An apparatus to limit power to a load, comprising:
- 2 a power source to drive the load;
- a monitor coupled to the power source to detect a power level supplied by the power
- 4 source and to provide a power signal representative of said power level;

5	the cont	rol circuit to receive said power signal and to provide a value based on said			
6	power signal according to one or more control parameters; and,				
7	a signal	attenuator coupled to the power source and the control circuit, the signal			
8	attenuator to limit said power level based on said value.				
1	24.	The apparatus of claim 23 further comprising an amplifier coupled to the power			
2	source and the load.				
1	25.	The apparatus of claim 24 wherein the amplifier includes the monitor.			
1		The apparatus of claim 23 wherein the power signal is sampled by an analog-to-			
2	digital converte	er to generate a digital power signal.			
1	27.	The apparatus of claim 26 wherein the control circuit further comprises a			
2	multiplier to receive the digital power signal, and to calculate an instantaneous power.				
1	28.	The apparatus of claim 23 wherein the control circuit implements a linear gain			
2	control.				
		,			
1	29.	The apparatus of claim 23 wherein the control circuit implements a nonlinear gain			
2	control.				
_					

- The apparatus of claim 23 wherein the control circuit implements a recursive gain 1 30. 2 control. The apparatus of claim 23 wherein the control circuit implements a non-recursive 31. 1 2 gain control. The apparatus of claim 23 wherein the one or more control parameters includes a 32. 1 power averaging time and a power threshold. 2 The apparatus of claim 32 wherein the one or more control parameters further 1 33. includes an attack time and a release time. 2 The apparatus of claim 32 wherein an averaging coefficient (T_A) is calculated by 1 34. the control circuit using the power averaging time according to $T_A = e^{\frac{1}{t_a f_s}}$, where n is a filter 2 order, t_a is the power averaging time in seconds, and f_s is a sampling frequency. 3
- 1 35. The apparatus of claim 33 wherein said value is a gain value, and wherein the control circuit calculates the gain value using the power threshold according to,

 $gain = \sqrt{\frac{P_T A_I A_V}{L}},$

- where L is an averaged power level, P_T is the power threshold, A_I is a corrective factor
- for the current signal, A_V is a corrective factor for the voltage signal and T_R is a release
- 6 coefficient.
- 1 36. The apparatus of claim 35 wherein the recovery coefficient is calculated by the control circuit expressed as follows:
- $T_R = e^{\frac{-n}{t_R f_S}},$
- where n is a filter order, t_R is the release time and f_s is a sampling frequency.
- 1 37. The apparatus of claim 23 wherein the one or more control parameters are 2 selected from a library of control parameters that is accessible using a graphical user interface.
- 1 38. The apparatus of claim 37 wherein the load is a loudspeaker and the library of control parameters contains optimized control parameters for a plurality of particular loudspeakers.
- The apparatus of claim 38 wherein the one or more control parameters are selected by a user from the library of control parameters by selecting from a list of available loudspeakers using the graphical user interface.

- 1 40. The apparatus of claim 23 wherein the one or more control parameters are
- 2 manually provided to the control circuit by a user.
- 1 41. The apparatus of claim 23 wherein said one or more control parameters comprises
- 2 a thermal threshold value.
- 1 42. The apparatus of claim 41, wherein the thermal threshold value is calculated
- 2 according to,

$$\frac{R_T}{R_0} = 1 + \alpha (T_T - T_0) + \beta (T_T - T_0)^2,$$

- where α and β are thermal coefficients of resistance, T_0 is a resistance of said load at
- 5 ambient temperature and T_T is a threshold temperature of the load.
- 1 43. The apparatus of claim 42, wherein said value is a gain value, and wherein the
- 2 control circuit calculates said gain value using the thermal threshold value expressed as follows:

$$gain = \frac{R_0 A_I I}{R_T A_V I_0},$$

- where A_I is a corrective factor for the current signal, A_V is a corrective factor for the
- voltage signal, I_0 is representative of a modeled current and I is representative of a measured
- 6 current.
- 1 44. A method for limiting power to a load comprising:
- 2 driving the load with an input signal;

3	providing a voltage signal that is representative of a voltage of the input signal;				
4	providing a current signal that is representative of a current of the input signal;				
5	calculating a value based on said voltage signal and said current signal according to one				
6	or more control parameters; and,				
7	limiting the input signal based on the value.				
1	45. The method of claim 44 further comprising amplifying the input signal before				
2	said driving the load with the input signal.				
1	46. The method of claim 44 further comprising generating a digital voltage signal by				
2	sampling the voltage signal with a first analog-to-digital converter.				
1	47. The method of claim 44 further comprising generating a digital current signal by				
2	sampling the current signal with a second analog-to-digital converter.				
1	48. The method of claim 47 further comprising calculating an instantaneous power by				
	combining the digital voltage signal and the digital current signal.				
2	combining the digital voltage signal and the digital current signal.				
1	49. The method of claim 44 further comprising implementing linear gain control				
2	using a control circuit that is used for said calculating the gain value.				

The method of claim 44 further comprising implementing nonlinear gain control 50. 1 using a control circuit that is used for said calculating the gain value. 2 The method of claim 44 further comprising implementing recursive gain control 1 51. using a control circuit that is used for said calculating the gain value. 2 The method of claim 44 further comprising implementing non-recursive gain 52. 1 control using a control circuit that is used for said calculating the gain value. 2 The method of claim 44 wherein the one or more control parameters includes a 1 53. power averaging time and a power threshold. 2 The method of claim 53 wherein the one or more control parameters further 54. 1 includes an attack time and a release time. 2 The method of claim 53 further comprising calculating an averaging coefficient 1 55.

Express Mail Label No. EL696985645US

2

3

 (T_A) using the power averaging time according to $T_A = e^{\overline{t_a f_s}}$, where n is a filter order, t_a is the

power averaging time in seconds, and f_s is a sampling frequency.

- 1 56. The method of claim 54 wherein said value is a gain value, the method further
- 2 comprising calculating the gain value using the power threshold according to,

$$gain = \sqrt{\frac{P_T A_I A_V}{L}} ,$$

- where L is an averaged power level, P_T is the power threshold, A_I is a corrective factor
- for the current signal, A_V is a corrective factor for the voltage signal and T_R is a release
- 6 coefficient.
- 1 57. The method of claim 56 further comprising calculating the release coefficient
- 2 according to,

$$T_R = e^{\frac{-n}{t_R f_S}},$$

- where n is a filter order, t_R is the release time and f_s is a sampling frequency.
- 1 58. The method of claim 44 further comprising selecting the one or more control
- 2 parameters from a library of control parameters that is accessible using a graphical user interface.
- 1 59. The method of claim 58 wherein the load is a loudspeaker and the library of
- 2 control parameters comprises optimized control parameters for a plurality of particular
- 3 loudspeakers.

- 1 60. The method of claim 59 wherein said selecting the one or more control
- 2 parameters comprises selecting the one or more control parameters from the library of control
- 3 parameters by selecting from a list of available loudspeakers using the graphical user interface.
- 1 61. The method of claim 44 further comprising manually selecting the one or more
- 2 control parameters by a user.
- 1 62. The method of claim 44 wherein said one or more control parameters comprises a
- 2 thermal threshold value.
- 1 63. The method of claim 62, further comprising calculating the thermal threshold
- 2 value expressed as follows:

$$\frac{R_T}{R_0} = 1 + \alpha (T_T - T_0) + \beta (T_T - T_0)^2,$$

- where α and β are thermal coefficients of resistance, T_0 is a resistance of said load at
- 5 ambient temperature and T_T is a threshold temperature of the load.
- 1 64. The method of claim 63, wherein said value is a gain value, and wherein the
- 2 method further comprises calculating said gain value using the thermal threshold value according
- 3 to,

$$gain = \frac{R_0 A_I I}{R_T A_V I_0},$$

5	where A_I is a corrective factor for the current signal, A_V is a corrective factor for the		
5	voltage signal, I_0 is representative of a modeled current and I is representative of a measured		
7	current.		
1	65. A method for limiting power to a load comprising:		
2	driving the load with an input signal from a power source;		
3	providing a power signal that is representative of a power level of the input signal;		
4	calculating a value based on said power signal according to one or more control		
5	parameters; and,		
6	limiting the input signal based on the value.		
1	66. The method of claim 65 further comprising generating a digital power signal by		
2	sampling the power signal with a analog-to-digital converter.		
	CZ The weether the factor of forther commissing color lating on instantaneous power		
1	67. The method of claim 65 further comprising calculating an instantaneous power		
2	based on the digital power signal.		
1	68. The method of claim 65 wherein the one or more control parameters includes a		
2	power averaging time, a power threshold, an attack time and a release time.		
	*		

- 1 69. The method of claim 68 further comprising calculating an averaging coefficient
- 2 (T_A) using the power averaging time according to $T_A = e^{\frac{a}{t_a f_s}}$, where *n* is a filter order, t_a is the
- 3 power averaging time in seconds, and f_s is a sampling frequency.
- The method of claim 68 wherein the value is a gain value, and the method further
- 2 comprises calculating the gain value using the power threshold according to,

$$gain = \sqrt{\frac{P_T A_I A_V}{L}} ,$$

- where L is an averaged power level, P_T is the power threshold, A_I is a corrective factor
- 5 for the current signal, A_V is a corrective factor for the voltage signal and T_R is a release
- 6 coefficient.
- The method of claim 70 further comprising calculating the release coefficient
- 2 according to,

$$T_R = e^{\frac{-n}{t_R f_S}},$$

- where n is a filter order, t_R is the release time and f_s is a sampling frequency.
- 1 72. The method of claim 65 further comprising selecting the one or more control
- 2 parameters from a library of control parameters that is accessible using a graphical user interface,
- 3 and wherein said load is a loudspeaker and the library of control parameters contains optimized
- 4 control parameters for a plurality of particular loudspeakers.

- The method of claim 72 wherein said selecting the one or more control
- 2 parameters comprises selecting the one or more control parameters from the library of control
- 3 parameters by selecting from a list of available loudspeakers using the graphical user interface.
- The method of claim 65 wherein said one or more control parameters comprises a
- 2 thermal threshold value.
- The method of claim 74 further comprising calculating the thermal threshold
- 2 value according to,

$$\frac{R_T}{R_0} = 1 + \alpha (T_T - T_0) + \beta (T_T - T_0)^2,$$

- where α and β are thermal coefficients of resistance, T_0 is a resistance of said load at
- 5 ambient temperature and T_T is a threshold temperature of the load.
- The method of claim 75, wherein said value is a gain value, and wherein the
- 2 method further comprises control circuit calculates said gain value using the thermal threshold
- 3 value expressed as follows:

$$gain = \frac{R_0 A_I I}{R_T A_V I_0},$$

- where A_I is a corrective factor for the current signal, A_V is a corrective factor for the
- 6 voltage signal, I_0 is representative of a modeled current and I is representative of a measured
- 7 current.