Integers (continued) Floating point

Jinyang Li

Lesson plan

- 2's complement
 - The negation trick
- A short history of processors:
 - from 8-bit to 64-bit machines
- Byte ordering
 - Big vs. small endian
- Intro to floating points

Two's complement: 8-bit signed integer

```
01011000 = 0*(-2^{7}) + 1*2^{6} + 0*2^{5} + 1*2^{4} + 1*2^{3} + 0*2^{2} + 0*2^{1} + 0*2^{0} = 88
11011000 = 1*(-2^{7}) + 1*2^{6} + 0*2^{5} + 1*2^{4} + 1*2^{3} + 0*2^{2} + 0*2^{1} + 0*2^{0} = -40
```

```
00000000 = 0
11111111 = -1
10000000 = -2^7 = -128
01111111 = 2^{7-1} = -127
```

2's complement: find a number's negation

$$(40)_{10}$$
 $(-40)_{10}$ $?$?

A useful trick to do negation:

Step-1: flip all bits

Step-2: add 1

```
00101000 (40)<sub>10</sub>

Step-1: flip bits

11010111

Step-2: +00000001

11011000 (-40)<sub>10</sub>
```

Why does the negation trick work

$$\vec{b} + (\sim \vec{b}) = 11...11_2 = -1$$

b with bits flipped

$$-\vec{b} = (\sim \vec{b}) + 1$$

Negation trick lets us find bit pattern of a negative number more easily

The bit pattern of 8-bit signed integer -33?

Negation trick helps computers do subtraction

Instead of doing this:

1 1 1 1 1 1 1 0 (-2)₁₀

Do this instead:

Works for both signed and unsigned subtraction

The evolution of integer sizes in processors

8-bit processors: e.g. Intel 8080 (1974)

CPU
Arithmetic Logic
Unit
registers 0x4c

8 bits machine: 8 bits length of

- Memory processor transfer
- CPU register

32-bit processors: Intel 386 (1985)

Memory

32 bits machine: 32 bits length of

- Memory processor transfer
- CPU register
- Memory address

Most commonly used desktop/server processors in the latest 80s to early 00s

64-bit processors: Intel Pentium 4 (2000)

Memory

0x00bacbea4c1eaf0f

64 bits machine: 64 bits length of

- Memory processor transfer
- CPU register
- Memory address

Nowadays: Intel/AMD 64-bit x86 processors used for servers/laptops Mobile phones/tablets: 64-bit ARM processors (made by Apple/Qualcomm/Samsung etc)

C's Integer data types on 64 bits machine

	Length	Min	Max
char	1 byte	-2 ⁷	2 ⁷ - 1
unsigned char	1 byte	0	28 - 1
short	2 bytes	-2 ¹⁵	2 ¹⁵ - 1
unsigned short	2 bytes	0	2 ¹⁶ - 1
int	4 bytes	-2 ³¹	$2^{31} - 1$
unsigned int	4 bytes	0	$2^{32} - 1$
long	8 bytes	-2 ⁶³	$2^{63} - 1$
unsigned long	8 bytes	0	2 ⁶⁴ - 1

Your first C program

```
#include <stdio.h>
int
main()
{
    char x = -127;
    char y = 0x81;
    char z = x + y;
    printf("hello world sum is %d\n", z);
}
```

Memory layout for multi-byte integers

Memory layout: Little Endian

Advantage of Little Endian

0x12345678

+ 0x12131415

Processor performs the calculation from the least significant bit

Processor can simultaneously perform memory transfer and calculation.

Another advantage of Little Endian

a:

Memory layout: Big Endian

support both endian

Advantages of Big Endian

Quick to test whether the number is positive or negative

Examine byte stored at the address offset zero.

Breakout time!

Breakout exercises

- 2's complement of -15 (8-bit, in hex)
- Computers use different hardware circuitry to perform addition vs subtraction.
- Computers use different hardware circuitry to perform unsigned addition vs. signed addition.
- long x = 0xdeadbeef01234567 Assume a Little Endian machine, and x is stored in memory starting at address a. What 1-byte value is stored at address a+3?

Lesson plan

- 2's complement
 - The negation trick
- A short history of processors:
 - From 8-bit to 64-bit machines
- Byte ordering
 - Big vs. small endian
- Intro to floating points

Representing Real Numbers using bits

What about real numbers?

Decimal Representation

Decimal Representation

```
Real Numbers Decimal Representation (Expansion) 11/2 (5.5)_{10} 1/3 (0.3333333...)_{10} \sqrt{2} (1.4128...)_{10}
```

$$(5.5)_{10} = 5 * 10^{0} + 5 * 10^{-1}$$

 $(0.333333...)_{10} = 3 * 10^{-1} + 3 * 10^{-2} + 3 * 10^{-3} + ...$
 $(1.4128...)_{10} = 1 * 10^{0} + 4 * 10^{-1} + 1 * 10^{-2} + 2 * 10^{-3} + ...$

Decimal Representation

```
Real Numbers
                    Decimal Representation (Expansion)
      11/2 (5.5)_{10}
      1 / 3 (0.3333333...)<sub>10</sub>
       \sqrt{2} (1.4128...)<sub>10</sub>
(1.4128...)_{10} = 1 * 10^{0} + 4 * 10^{-1} + 1 * 10^{-2} + 2 * 10^{-3} + ...
```

Binary Representation

$$(5.5)_{10} =$$

$$=(101.1)_2$$

Binary Representation

$$(0.333333...)_{10} = 1/4 + 1/16 + 1/64 + ...$$

= $(0.01010101...)_2$

Binary Representation

Binary representation

What's the decimal value of $(10.01)_2$

Strawman representation: fixed point

Fixed point representation

Example: (10.011)₂

0 000000000000000 01100000000000

Problems of Fixed Point

Range?

Precision?

Problems of Fixed Point

- Limited range and precision: e.g., 32 bits
 - Range: [-2¹⁵+2⁻¹⁶,2¹⁵-2⁻¹⁶]
 - Highest precision: 2⁻¹⁶
- → Rarely used (No built-in hardware support)

Floating point: key idea

- Limitation of fixed point:
 - Even spacing results in hard tradeoff between high precision and high magnitude

How about un-even spacing between numbers?

Floating Point: decimal

Based on exponential notation (aka normalized scientific notation)

$$r_{10} = \pm M * 10^{E}$$
, where 1 <= M < 10

M: significant (mantissa), E: exponent

Floating Point: decimal

Example:

$$365.25 = 3.6525 * 10^{2}$$

 $0.0123 = 1.23 * 10^{-2}$

Decimal point **floats** to the position immediately after the first nonzero digit.

Floating Point: binary

Binary exponential representation

$$r_{10} = +M * 2^{E}$$
, where 1 <= M < 2

$$M = (1.b_1b_2b_3...b_n)_2$$

M: significant, E: exponent

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Floating Point

Binary exponential representation

$$r_{10} = \pm M * 2^E$$
, where 1 <= M < 2
 $M = (1.b_1b_2b_3...b_n)_2$
Normalized representation of r

M: significant, E: exponent

$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Normalization: give a number r, obtain its normalized representation

Normalized representation of $(10.25)_{10}$?

Normalized representation in computer

Normalized representation

```
significant exponent +M * 2^{E}, where 1 <= M < 2 M = (1.b_1b_2b_3...b_{23})_2
```

Example:
$$(5.5)_{10} = (101.1)_2 = (1.011)_2 * 2^2$$

Summary

- 2's complement
 - The negation trick, and its use for subtraction
- What are 32-bit or 64-bit processors?
- Byte ordering
 - Big vs. small endian
- Intro to floating points