บทที่ 3

วิธีดำเนินการวิจัย

สำหรับวิธีการดำเนินการวิจัยการพัฒนาระบบการรู้จำท่าทางภาษามือไทยด้วยโครงข่ายประสาทเทียง แบบวนกลับ มีขั้นตอนดังภาพที่ 3.1

ภาพที่ 3.1 กรอบการดำเนินการวิจัย

3.1 การเตรียมข้อมูล

3.1.1 การรวบรวมข้อมูล

ในการเตรียมข้อมูลสำหรับการสร้างระบบรู้จำท่าทางภาษามือไทยด้วยโครงข่าย ประสาทเทียมแบบวนกลับจะเก็บข้อมูลเป็นวิดีโอภาษามือไทยจำนวน 10 คำที่เป็นคำทั่วไปที่ใช้ใน ชีวิตประจำวันของผู้ที่ใช้ภาษามือในการสื่อสาร โดยจะเก็บวิดีโอต่อคำเป็น 85 วิดีโอต่อ 1 คำและใน 1 วิดีโออัตราเฟรมต่อวินาทีคือ 30 FPS ขนาดของวิดีโอคือ 640 x 480 ระยะของ 1 วิดีโอคือ 1 วินาที ต่อ 1 วิดีโอ โดยอัดวิดีโอจาก Laptop ของผู้วิจัย

ภาพที่ 3.2 ปัจจัยควบคุมในการรวบรวมข้อมูล

- 1. ตัวของผู้ทำท่าทางภาษามือจะต้องอยู่ในเฟรม ดังในภาพที่ 3.1 ในข้อ A
- 2. ในการทำท่าทางจะต้องอยู่ในเฟรมไม่หลุดออกจากเฟรม ดังภาพที่ 3.2 ในข้อ B
- 3. ในการบันทึกวิดีโอแสงจะต้องไม่มืดเกินไป ดังภาพภาพที่ 3.2 ในข้อ C
- 4. คุณภาพของวิดีโอจะต้องมีความละเอียดตั้งแต่ 640 × 480 หรือสูงกว่าสำหรับกระบวนการบันทึก วิดีโอ ดังภาพที่ 3.2 ในข้อ D

ซึ่งคำที่จะใช้ในการวิจัยครั้งนี้ดังตารางที่ 3.1 ตารางที่ 3.1 คำศัพท์ภาษามือที่ใช้ในโครงงาน

คำภาษาไทย	คำภาษาอังกฤษ	ความหมาย
ขอบคุณ	Thank You	กล่าวแสดงความรู้สึกถึงบุญคุณหรือกล่าวเมื่อได้รับความ
		ช่วยเหลือ
ขอโทษ	Sorry	ขออภัยเมื่อได้ทำผิดพลาดอย่างใดอย่างหนึ่ง
ไม่เป็นไร	That is OK	คำแสดงความรู้สึกที่ไม่ได้ถือโทษหรือโกรธเคืองใด ๆ
		เพื่อให้ผู้ฟังรู้สึกดีขึ้นหรือไม่ต้องรู้สึกผิด
สบายดี	Fine	สภาวะปกติของทั้งร่างกายและจิตใจ ร่างกายไม่เจ็บป่วย
		รวมทั้งอารมณ์ดี มีความสุข ไม่มีอะไรให้กังวล
ชอบ	Like	พอใจ แสดงอาการพึงพอใจ
รัก	Love	มีใจผูกพันอย่างมาก
ไม่สบาย	Sick	สภาวะที่ร่างกายและจิตใจไม่ปกติ หรือเกิดอาการป่วย
สวัสดี	Hello	ใช้สำหรับการทักทายผู้คน
ฉัน	IAm	ใช้สำหรับการเรียกแทนตัวเอง
คุณ	You	ใช้สำหรับเรียกแทนผู้ที่เราพูดด้วย

3.1.2 การแปลงข้อมูล

ในขั้นตอนนี้คือการแปลงข้อมูลเพื่อให้เหมาะสมกับโมเดลที่จะนำไปเทรนได้แก่โมเดล ซึ่งก็คือ การนำวิดีโอที่ได้จากการรวบรวมข้อมูลมาแปลงใหม่ด้วยการสกัดลักษณะเด่นของวิดีโอเด่นภาษามือ นั้นขึ้นอยู่กับการใช้มือและท่าทาง การนำวิดีโอที่เป็นภาษามือมาใช้ในการเทรนโมเดลนั้นจึงเป็นเรื่อง ยาก ผู้วิจัยจึงได้ใช้เครื่องมือ MediaPipe ที่เป็น Framework มาใช้ในการแก้ปัญหา ซึ่งวิธีการคือการ ใช้ MediaPipe ในการ Keypoints ขึ้นตามจุดต่าง ๆ ของร่างกายเป็นค่า มิติ X, Y, Z ของหน้า, มือ และ

ในมือแต่ละข้างนั้น MediaPipe จะสกัดออกมาได้ 21 Keypoints ซึ่ง Keypoint จะถูก คำนวณแบบ 3 มิติ X, Y, Z ของมือทั้งสองข้าง โดยจะได้ Keypoints จากการสกัดจากมือดังนี้

Keypoins in hand x Three dimensions x No. of hands = (21 x 3 x 2) = 126 Keypoints ดังภาพที่ 3.3

ภาพที่ 3.3 ลำดับและป้ายกำกับ Keypoints ของมือใน MediaPipe ที่มา : MediaPipe (2023: Online)

ในส่วนของท่าทางนั้น MediaPipe จะสกัดออกมาได้ 33 Keypoints คำนวณแบบ 3 มิติ X, Y, Z และเพิ่มค่า Visibility เข้าไปซึ่งเป็นค่าที่จะระบุว่าจุดนั้นมองเห็นหรือซ่อนอยู่ (ที่ถูกปิดโดยจุดอื่น ของร่างกาย) บนเฟรมดังนั้นจะได้ค่า Keypoints ดังนี้

Keypoints in pose x (Three dimenstions + Visibility) = (33 + (33 + 1)) = 132 Keypoints ดังภาพที่ 3.4

ภาพที่ 3.4 ลำดับและป้ายกำกับ Keypoints ของท่าทางใน MediaPipe ที่มา : MediaPipe (2023: Online)

สำหรับหน้านั้น Mediapipe สกัดออกมาได้ 468 Keypoints ได้แก่ รูปทรงรอบหน้าและ หน้า, ๓า, ปากและคิ้ว ซึ่งคำนวณค่า 3 มิติ X, Y, Z ได้ดังนี้

ภาพที่ 3.5 Keypoints บนหน้า

ดังนั้นเมื่อรวม Keypoint ทั้งหมดเข้าด้วยกันไม่ว่าจะเป็นจาก หน้า ท่าทางและมือจะสามารถ คำนวณได้ดังนี้

Keypoints in hands + in pose + inface = (126 + 132 + 1404) = 1662 Keypoints

3.1.3 การแบ่งข้อมูล

ในขั้นตอนนี้ผู้วิจัยจะแบ่งข้อมูลข้อมูลออกเป็น 2 ส่วนเพื่อสำหรับการในการไปเทรน และสำหรับการนำไปทดสอบ โดยข้อมูลทั้งหมดคือ 850 วิดีภาษามือ จะทำการเป็นข้อมูลเป็น อัตราส่วน 90:10 และนำข้อมูลข้อมูลในอัตราส่วน 90% นั้นมาทำการแบ่งสำหรับการทำ K-Fold 5 Fold เพื่อให้โมเดลฝึกฝน ดังภาพที่ 3.6

ภาพที่ 3.6 การแบ่งข้อมูลสำหรับเทรนและทดสอบ

3.2 การฝึกฝนโมเดล

ผู้วิจัยได้ใช้โมเดลในการเทรนทั้งหมด 3 โมเดลได้แก่ LSTM, GRU, BiSLTM ในงานวิจัยครั้งนี้ Number of Nodes คือ จำนวนของ Input Node ซึ่งผู้วิจัยกำหนดขั้นต่ำไว้ 64 จนถึง 256 Activation คือตัวฟังก์ชันที่ใช้ในการรับผลรวมจากการประมวลผลทั้งหมดจากทุก Input Node เข้า มาพิจารณาตามกลไกลการคำนวณของ Activation Function นั้น ๆ แล้วส่งต่อไปเป็น Output ซึ่ง ในงานวิจัยนี้ได้เลือกใช้ 2 ตัว คือ Rectified Linear Unit (ReLU) และ Softmax Optimizer คือ อัลกอริทึมการเพิ่มประสิทธิภาพ (Optimizer) ทำหน้าที่เป็นกลไกการปรับปรุงค่า น้ำหนักของตัวแปรต้นต่าง ๆ รวมถึงค่าความคลาดเคลื่อน (Bias) ในงานวิจัยนี้ได้เลือกใช้ Optimizer ได้แก่ Adagrad. Adamax, Adam or RMSprop ดังตารางที่ 3.2

ตารางที่ 3.2 พารามิเตอร์ของเลเยอร์โมเดล

Parameters	Value
RNN Model	GRU, LSTM, BILSTM
Number of Nodes	Between (64, 256)
Activation	'Relu' or 'Softmax'
Optimizer	'Adagrad', 'Adamax', 'Adam' or 'RMSprop'

3.3 การวัดประสิทธิภาพโมเดล

การวัดประสิทธิภาพของโมเดล ผู้วิจัยได้ใช้ตัวชี้วัดคือค่า Accuracy หรือก็คือค่าอัตราความ ถูกต้องของการทำนายของโมเดลโดยในการวิจัยครั้งนี้ ผู้วิจัยตั้งเป้าหมายของค่าความถูกต้องไว้ที่ > 90% และจะทำการทดสอบค่าความถูกต้องในการทำนายของโมเดลที่เทรนด้วยวิธี Cross Validation โดยทำการแบ่งข้อมูลออกเป็น 2 ส่วน ได้แก่ ส่วนที่เอาไว้ใช้สำหรับการเทรนและอีกส่วนคือส่วน สำหรับการทดสอบ จะทำการสุ่มข้อมูลตามอัตราส่วนร้อยละ 90:10 และแบ่งข้อมูลสำหรับทำ K-Fold 5 Fold

3.4 การเปรียบเทียบประสิทธิภาพโมเดล

ในขั้นตอนการเปรียบประเทียบประสิทธิภาพ ผู้วิจัยจะนำโมเดลที่ผ่านการเทรนทั้งหมด 3 โมเดล ได้แก่ LSTM, GRU, BiLSTM ซึ่งจะเปรียบประสิทธิภาพเรื่องของ ค่า Accuracy, ค่า Loss และ จำนวนรอบที่ใช้ในการเทรนโมเดล (epochs) เพื่อหาว่าโมเดลใด มีความแม่นยำมากที่สุด แล้วจะ นำโมเดลที่มีความแม่นยำมากที่สุดนั้นมาทดสอบทำนายท่าท่างภาษามือไทย

3.5 การทดสอบโมเดล

หลังจากได้รับโมเดลที่มีประสิทธิภาพที่ดีที่สุดแล้ว ผู้วิจัยจะนำโมเดลนั้นมาทดสอบด้วยวิดีโอ ที่เตรียมไว้สำหรับทดสอบ โดยประเภทของการทดสอบนั้นจะมีอยู่ 2 รูปแบบได้แก่ 1. เป็นคำศัพท์ 2. เป็นประโยค ซึ่งจะเป็นการทดสอบเพื่อหาประสิทธิภาพของโมเดลด้วยการทำ Confusion Matrix เพื่อหา Accuracy