실전 모의고사

3회

제한시간 30분

배점 50점

정답과 해설 49쪽

문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고 하시오. 3점 문항에만 점수가 표시되어 있습니다. 점수 표시가 없 는 문항은 모두 2점입니다.

01

▶22067-0271

다음은 2가지 반응의 화학 반응식이다. (가)와 (나)는 각각 에탄올, 아세트산 중 하나이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

□ 보기 [

- ㄱ. (가)는 손 소독제의 재료로 이용된다.
- ㄴ. (나)의 수용액은 산성이다.
- ㄷ. (가)와 (나)는 모두 탄소 화합물이다.

 \bigcirc

② ⊏

③ ¬. ∟

4 ١, ٥

(5) ¬, ∟, ⊏

다음은 2주기 바닥상태 원자 X와 Y에 대한 자료이다.

- 전자가 1개만 채워진 오비탈 수는 X가 Y의 2배이다.
- $\circ \frac{p}{s}$ 오비탈의 전자 수 는 Y가 X의 2.5배이다.

이에 대한 설명으로 옳은 것만을 $\langle 보기 \rangle$ 에서 있는 대로 고른 것은? (단. X, Y는 임의의 원소 기호이다.)

보기

- ¬. X는 산소(○)이다.
- L. Y의 원자가 전자 수는 7이다.
- 다. 전자가 들어 있는 오비탈 수는 X>Y이다.

① ¬

- 2 L
- ③ ⊏

- ④ 7. ⊏
- ⑤ し に

03

▶22067-0273

다음은 용기 (가)와 (나)에 들어 있는 Cl_2 에 대한 자료이다.

- 자연계에 존재하는 Cl는 ³⁵Cl, ³⁷Cl의 2가지이고, ³⁵Cl, ³⁷Cl의 원자량은 각각 35, 37이며, Cl의 평균 원자량은 35,5이다.
- (가)에는 자연계의 Cl₂ 1 mol이 들어 있고, (가)와 (나)에 들어 있는 Cl₂의 질량비는 71: 72이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, Cl의 원자 번호는 17이다.) [3점]

- 보기

- ㄱ. (나)에 들어 있는 ³⁵Cl₂의 양은 0.4 mol이다.
- ㄴ. ³⁷Cl 원자 수비는 (가) : (나)=1 : 2이다.
- 다. 중성자의 양은 (나)에서가 (가)에서보다 1 mol만큼 많다.

① ¬

② L

③ ⊏

④ ¬. ⊏

(5) L. C

04 • 22067-0274

다음은 3가지 기체 (가)~(다)에 대한 자료이다.

- (가)~(다)의 질량은 모두 같다.
- X의 질량비는 (가): (다)=1:2이다.
- Z의 질량비는 (나): (다)=4:15이다.

기체	구성 원소	분자당 구성 원자 수	단위 질량당 전체 원자 수(상댓값)
(フト)	X, Y	2	20
(나)	Y, Z	6	12
(다)	X, Z	7	35

이에 대한 설명으로 옳은 것만을 $\langle 보기\rangle$ 에서 있는 대로 고른 것은? (단, $X\sim Z$ 는 임의의 원소 기호이다.) [3점]

□ 보기 [

- $\neg. \frac{(다)의 \%(mol)}{(7)의 \%(mol)} = \frac{1}{2}$ 이다.
- L. (다)의 분자식은 Z₃X₄이다.
- с. 원자량비는 Y: Z=6:7이다.

① ¬

② ⊏

③ ¬, ∟

4 L. C

(5) 7. L. E

그림은 원자 $W\sim Z$ 의 제1, 제2 이온화 에너지를 나타낸 것이다. W~Z는 각각 B. N. O. F 중 하나이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? [3점]

보기

- ¬. Z는 플루오린(F)이다.
- ∟. 제1 이온화 에너지는 X>Z이다.
- □. W~Z 중 원자가 전자가 느끼는 유효 핵전하는 Z가 가장 크다.
- (1) ¬
- ② L
- (3) □

- ④ ¬. ∟
- ⑤ し. に

06▶22067-0276

표는 수용액 (가)와 (나)에 대한 자료이다. 화학식량은 A가 B의 2배이다.

수용액	용	질	HTI(see I)		
구용액	종류 질량(g)		부피(mL)	밀도(g/mL)	
(フト)	A	2w	1000	d	
(나)	В	w	500	d	

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단. 온도는 일정하다.)

- ㄱ. 수용액 속 용질의 양(mol)은 (가)가 (나)의 2배이다.
- ㄴ. 몰 농도는 (나)가 (가)의 2배이다.
- (7)와 (4)의 수용액 속 물의 질량 차는 (500d w) g이다.
- (1) ¬
- (2) L
- (3) □

- (4) ¬. ⊏
- ⑤ し, に

07

▶22067-0275

▶22067-0277

표는 바닥상태 원자 $X\sim Z$ 에 대한 자료이다. n은 주 양자수, l은 방위(부) 양자수이다. $X\sim Z$ 의 원자 번호는 20 이하이다.

	X	Y	Z
n+l=3인 전자 수	5	7	8
원자가 전자 수	x	y	5

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단, X~<mark>Z는 임의의 원소</mark> 기호이다.)

보기

- $\neg x+y=9$ 이다.
- L. 홀전자 수는 Z>X이다.
- 다. 전자가 모두 채워진 오비탈 수는 Z가 Y의 $\frac{3}{2}$ 배이다.

(1) ¬

- ② L
- (3) □
- (4) 7. C (5) L. C

08

>22067-0278

다음은 Cu와 O_2 의 반응에 대한 실험이다. 원자량은 O, Cu가 각 각 16, 63,5이다.

[자료]

Cu와 O_2 는 다음과 같은 2가지의 화학 반응이 가능하다.

반응 I: $aCu(s) + O_2(g) \longrightarrow aCuO(s)$

반응 $\mathbb{I}: bCu(s) + O_2(g) \longrightarrow cCu_2O(s)$ $(a \sim c = t)$ 계수)

 t° C. 1 atm에서 (가)와 같이 실린더에 Cu(s)와 $O_2(g)$ 를 넣 고 반응을 완결시켰더니 (나)와 같이 되었다. t° C, 1 atm에서 는 반응 Ⅰ과 Ⅱ 중 한 반응만이 일어난다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단, t° C, 1 atm에서 기체 1 mol의 부피는 24 L이며, 온도 와 압력은 일정하고, 피스톤의 질량과 마찰, 고체의 부피는 무시한 다.) [3점]

□ 보기 [

- ㄱ. (나)에서 O₂의 질량은 2.4 g이다.
- ㄴ. (나)에는 CuO(s)가 존재한다.
- 다. (나)에 Cu(s) 0.2 mol을 넣어 모두 반응시키면, 실린더 내 기체의 부피는 0.6 L가 된다.
- 1 7
- 2 L
- ③ 7. ⊏

- 4 L. C
- ⑤ 7. L. C

표는 18족 원소를 제외한 2주기 바닥상태 원자 $X\sim Z$ 에 대한 자료이다. $X\sim Z$ 중 원자 번호는 X가 가장 크다.

원자	X	Y	Z
전자가 들어 있는 오비탈 수	~	a 1	a+2
+ 홀전자 수	a	a+1	a+2

이에 대한 설명으로 옳은 것만을 $\langle 보기\rangle$ 에서 있는 대로 고른 것은? (단, $X\sim Z$ 는 임의의 원소 기호이다.)

보기 [

- 기. 원자 반지름은 Z>Y이다.
- ∟ 제2 이온화 에너지는 Z>Y이다.
- L Ne과 같은 전자 배치를 갖는 이온의 이온 반지름은 $\mathsf{Y} > \mathsf{X}$ 이다.
- ① L
- ② ⊏
- ③ 7, ∟

- ④ ¬, ⊏
- 5 7, 6, 6

EBS

10 ►22067-0280

다음은 $\mathbf{A}(g)$ 와 $\mathbf{B}(g)$ 가 반응하여 $\mathbf{C}(g)$ 와 $\mathbf{D}(g)$ 를 생성하는 반응의 화학 반응식이다. c는 3 이하의 자연수이다.

 $A(g)+bB(g)\longrightarrow cC(g)+3D(g)\;(b,c$ 는 반응 계수) 그림 (가)는 실린더에 A(g)와 B(g)가 들어 있는 상태를, (나)는 반응이 완결된 상태를 나타낸 것이다. (나)에서 $\frac{D(g)$ 의 질량(g) 남은 반응물의 질량(g) = $\frac{27}{32}$ 이고, 분자량비는 B:D=16:9이다.

 $b \times \frac{\text{(L)} \text{에서 } \mathrm{C}(g) \text{의 } \mathrm{S}(\mathrm{mol})}{\text{(L)} \text{에서 } \mathrm{OM}}$ 은? (단, 실린더 속 기체의 온도와 압력은 일정하다.) [3점]

- \bigcirc 1
- 2 2
- ③ 4

- (4) 6
- (5) **8**

11

►22067-0281

다음은 산 염기 반응 (가)~(다)의 화학 반응식이다.

- (7) $HCl(aq) + H₂O(l) \longrightarrow Cl⁻(aq) + H₃O⁺(aq)$
- (나) $HCO_3^-(aq) + H_2O(l) \longrightarrow CO_3^{2-}(aq) + H_3O^+(aq)$
- $(\Box) CO_3^{2-}(aq) + HCl(aq) \longrightarrow \boxed{\bigcirc} (aq) + Cl^{-}(aq)$

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

- 보기
- ㄱ. (가)에서 HCl는 수소 이온(H⁺)을 내어놓는다.
- L. (가)와 (나)에서 H₂O은 모두 브뢴스테드·로리 산이다.
- ㄷ. ①은 HCO3 ⁻이다.
- \bigcirc
- ② L
- ③ ⊏

- ④ 7, ⊏
- ⑤ し, に

12

22067-0282

다음은 AB_2 와 CBD의 반응을 화학 반응식으로 나타낸 것이고, 그림은 AB_2 와 CBD를 결합 모형으로 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 \langle 보기 \rangle 에서 있는 대로 고른 것은? (단, $A\sim$ D는 임의의 원소 기호이다.)

- 보기
- ¬. *m*=1이다.
- ㄴ. (가)는 공유 결합 물질이다.
- ㄷ. $\dfrac{$ 비공유 전자쌍 수}{ 공유 전자쌍 수}는 $AB_2 > D_2 B$ 이다.
- ① ¬
- 2 L
- ③ ¬. ⊏

- 4 L. C
- 5 7. L. C

▶22067-0283

표는 수소(H)가 포함된 3가지 분자 (가)~(다)에 대한 자료이다. $X \sim Z$ 는 2주기 원자이고, 분자 내에서 옥텟 규칙을 만족한다.

분자		구성 원	일자 수		비공유 전자쌍 수 / 사다 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기
군시	X	Y	Z	Н	<u>비공유 전자쌍 수</u> 공유 전자쌍 수
(フト)	2	0	0	2	3
(나)	0	2	0	2	8
(다)	0	1	1	а	3

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단, X~Z는 임의의 원소 기호이다.) [3점]

□ 보기 □

¬. a=2이다.

ㄴ. (다)에는 2중 결합이 존재한다.

다. ZY₂ 1 mol에 들어 있는 전자의 양은 22 mol이다.

 \bigcirc

14

▶22067-0284

그림은 3가지 분자 (가) \sim (다)의 구조식을 나타낸 것이다. $\alpha\sim\gamma$ 는 결합각이고, $\alpha > \gamma$ 이다.

$$\begin{array}{ccc} F & F \\ \downarrow \searrow \alpha & \downarrow \searrow \beta \\ F - B \stackrel{\downarrow}{\rightarrow} F & F - N \stackrel{\downarrow}{\rightarrow} F \\ (7 \downarrow) & (L \downarrow) \end{array}$$

$$F \xrightarrow{\gamma} F$$

(가)~(다)에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고 른 것은? (단. X는 임의의 2주기 원소 기호이다.)

□ 보기 □

¬. α>β이다.

ㄴ. 극성 분자는 1가지이다.

ㄷ. 중심 원자에 비공유 전자쌍이 존재하는 분자는 1가지이다.

① ¬

15

>22067-0285

다음은 원자 $W \sim Z$ 에 대한 자료이다. $W \sim Z$ 는 각각 O, F, S, Cl중 하나이고, 분자 내에서 옥텟 규칙을 만족한다.

- WX₂와 YZ₂에서 X와 Z의 산화수는 같다.
- WZ₂에서 W는 음의 산화수를 가진다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

│ 보기 ┌

- ¬. W는 S이다.
- L. 바닥상태 전자 배치에서 ⊅ 오비탈에 들어 있는 전자 수는 Y가 X의 2배이다.
- 다. W₉X₉에는 무극성 공유 결합이 있다.

16

▶22067-0286

다음은 2가지 반응 (가)와 (나)에 대한 자료이다.

- (가) 탄산 칼슘(CaCO₃)을 가열하면 분해되어 이산화 탄소 (CO₂)가 발생한다.
- (나) 이산화 탄소(CO₂)를 수산화 나트륨(NaOH) 수용액과 반응시키면 수용액의 온도가 높아진다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

- 기. (가), (<mark>나)는 모두 열이 출입하는 반응이다</mark>.
- ㄴ. (나)는 발열 반응이다.
- ㄷ. (나)는 반응물의 에너지 합이 생성물의 에너지 합보다 크다.
- (1) ¬
- ② ⊏
- ③ ¬, ∟

- (4) L. C
- (5) 7, L, E

17 **22067-0287**

표는 25° C에서 수용액 (가) \sim (다)에 대한 자료이다. a+b=90고, (7)와 (1)에 들어 있는 H_3O^+ 의 양(1)은 같다.

수용액	(フト)	(나)	(⊏⊦)
pН	а	9	b
<u>pOH</u> [H ₃ O ⁺](상댓값)	x	1	1.8×10^{-4}
부피(mL)	$V_{\scriptscriptstyle 1}$	V_{2}	${V}_{\scriptscriptstyle 2}$

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단, 온도는 25°C로 일정하고, 25°C에서 물의 이온화 상수 (K_w) 는 1×10^{-14} 이다.) [3점]

│ 보기 [

$$\neg . \frac{b}{a} = 2$$
이다.

 $-x=1\times10^{-5}$ 이다.

$$= . \frac{V_2}{V_1} = 10$$
이다.

- (1) ¬
- 2 L
- ③ ¬. ∟

- (4) L. C
- (5) 7. L. C

18 ►22067-0288

표는 밀폐된 진공 용기 (가)~(다)에 같은 양(mol)의 $\mathrm{X}(l)$ 를 각각 넣은 후, 시간 $t_1 \sim t_3$ 일 때 X 의 증발 속도와 응축 속도를 나타 낸 자료이다. O 과 U 은 각각 X 의 증발 속도와 응축 속도 중 하나 이고. u>x이다.

용기	(フト)	(나)		(다)	
시간	t_1		t_2		t_3	
(1)	x		z		y	9
©.	y		z			

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것<mark>은?</mark> (단, 온도는 일정하다.) [3점]

- 보기 [
- ㄱ. ⑦은 증발 속도이다.
- $L. t_1 > t_3$ 이다.
- \bigcirc
- (2) L
- ③ 7. L

- 4 L. C
- ⑤ ¬, ∟, ⊏

EBS

>22067-0289

다음은 산화 환원 반응 (가)~(다)의 화학 반응식이다.

- (7) $N_2 + 3F_2 \longrightarrow 2NF_3$
- (\downarrow) $2N_2H_4+N_2O_4 \longrightarrow 3N_2+4H_2O$
- (다) $a \operatorname{Fe}^{2+} + b \operatorname{MnO}_{4}^{-} + 8 \operatorname{H}^{+} \longrightarrow a \operatorname{Fe}^{3+} + b \operatorname{Mn}^{2+} + c \operatorname{H}_{2} \operatorname{O}$ $(a \sim c \vdash t \circ A \uparrow)$

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

- 보기
- ㄱ. (가)에서 N의 산화수는 감소한다.
- L. (나)에서 N₂O₄는 산화제이다.
- ㄷ. (다)에서 ${
 m H_2O}$ 1 mol이 생성될 때 이동하는 전자의 양은 $\frac{5}{4}$ mol이다.
- (1) ¬
- (2) T
- ③ 7. ∟

- 4 L. C
- (5) 7, L, E

>22067-0290

다음은 중화 반응에 대한 실험이다.

[자료]

- 수용액 ③과 ⓒ은 각각 *x* M HA(*aq*)과 *x* M H₂B(*aq*) 중 하나이다.
- 수용액에서 HA는 H⁺과 A⁻으로, H₂B는 H⁺과 B²⁻으로, HC는 H⁺과 C⁻으로 모두 이온화된다.

[실험 과정]

- (가) x M HA(aq), x M H₂B(aq), y M HC(aq), 1 M NaOH(aq)을 각각 준비한다.
- (나) *x* M HA(*aq*)과 *x* M H₂B(*aq*)에 각각 1 M NaOH (*aq*)을 서로 다른 부피로 혼합하여 30 mL의 혼합 용액 I. Ⅲ을 만든다.
- (다) \mathbb{I} 과 \mathbb{H} 에 각각 y M HC(aq)을 30 mL씩 첨가하여 혼합 용액 \mathbb{I} , \mathbb{N} 를 만든다.

[실험 결과]

- 혼합 용액에 존재하는 양이온의 몰 농도비는 I : II = 3: 2이다.
- 혼합 용액에 존재하는 모든 이온의 몰 농도비는 I : Ⅲ= 6:5이다.
- \circ (다)에서 생성된 H_{\circ} O의 질량비는 $\mathbb{I}: \mathbb{V}=3:2$ 이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 혼합 용액의 부피는 혼합 전 각 용액의 부피의 합과 같고, 물의 자동 이온화는 무시한다.) [3점]

- 보기
- ¬. ⑤은 HA(aq)이다.
- L. a<1이다.
- $\vdash \frac{y}{x} = \frac{2}{3}$ 이다.
- ① ¬
- ② ⊏
- ③ ¬. ∟

- ④ ١. ٢
- (5) 7, L, E

실전 모의고사

제한시간 30분

배점 50점

정답과 해설 53쪽

문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고 하시오. 3점 문항에만 점수가 표시되어 있습니다. 점수 표시가 없 는 문항은 모두 2점입니다.

01

22067-0291

다음은 화합물 (가)~(다)에 대한 자료와 이에 대한 세 학생의 대화 이다. (가)~(다)는 각각 에탄올(C₂H₅OH), 아세트산(CH₃COOH), 포도당 $(C_6H_{12}O_6)$ 중 하나이다.

- $\circ \frac{H 원자 수}{C 원자 수} 는 (가)>(나)이다.$
- 분자량은 (나)>(다)이다.

제시한 내용이 옳은 학생만을 있는 대로 고른 것은? (단. H. C. 0의 원자량은 각각 1, 12, 16이다.)

- ① X
- ② Z
- ③ X. Y

- (4) Y. Z
- ⑤ X. Y. Z

02

▶22067-0292

다음은 A(aq)에 대한 실험이다.

[실험 과정]

- (가) A(s) x g을 모두 물에 녹여 a M A(aq) 100 mL를 만 든다.
- (나) (가)에서 만든 A(aq) 50 mL에 A(s) y g을 모두 녹이 고 물을 넣어 A(aq) 200 mL를 만든다.
- (다) (가)에서 만든 A(aq) 50 mL와 (나)에서 만든 A(aq)50 mL를 혼합하고 물을 넣어 b M A(aq) 200 mL를 만든다.

[실험 결과]

○ *a*: *b*=16: 7이다.

$\frac{y}{x}$ 는? (단, 온도는 일정하다.)

- ① $\frac{3}{4}$
- 21 $3\frac{5}{4}$ $4\frac{3}{2}$
- (5)2

N3

>22067-0293

그림은 강철 용기에 $C_x H_u$ 와 산소 (O_2) 를 넣고 반응시켰을 때, 반 응 전과 후 용기에 존재하는 물질과 양을 나타낸 것이다.

- ① $\frac{4}{3}$
- (2) 2
- $3\frac{5}{2}$
- $4\frac{8}{2}$
- (5) **3**

04

▶22067-0294

다음은 기체 반응에 대한 실험이다.

[화학 반응식]

 $A(g) + 2B(g) \longrightarrow cC(g)$ (c는 반응 계수)

[실험 과정]

(가) t° C, 1 atm에서 꼭지로 분리된 실린더와 용기에 A(g)~ C(g)를 그림과 <mark>같이 넣는</mark>다.

- (나) 실린더에서 어느 한 기체가 모두 소모될 때까지 반응을 완 결시킨다.
- (다) 꼭지를 열고 어느 한 기체가 모두 소모될 때까지 반응을 완결시킨 후, 충분한 시간 동안 기다린다.

[실험 결과]

○ 각 과정 후 실린더 <mark>속 기체에</mark> 대한 자료

과정	(フト)	(나)	(다)
C의 양(mol) 전체 기체의 양(mol)	$\frac{1}{3}$	$\frac{3}{4}$	
부피(L)	3	2	1

(다) 과정 후 실린더에 들어 있는 $\mathrm{C}(g)$ 의 질량(g)은? (단, 온도 와 외부 압력은 각각 t° C. 1 atm으로 일정하고. 피스톤의 질량과 마찰, 연결관의 부피는 무시한다.) [3점]

- $2\frac{6}{5}$ $3\frac{4}{5}$ $4\frac{11}{15}$

다음은 $X(g) \sim Z(g)$ 에 대한 자료이다.

- 분자당 구성 원자 수비는 X:Y:Z=2:4:3이다.
- 1 g당 전체 원자 수는 모두 같다.

그림은 t° C, 1 atm에서 X(g)와 Y(g)의 혼합 기체와 Z(g)가 각각 실린더에 들어 있는 것을 나타낸 것이다. 단위 부피당 전체 원자 수는 (가)와 (나)에서 같고, X(g)와 Y(g)는 서로 반응하지 않는다.

 $\dfrac{Z$ 의 분자량 $}{Y$ 의 분자량 $} imes\dfrac{(\mathcal{T})$ 에서 Y(g)의 질량 $}$ 은? (단, 온도와 압력은 일정하고, 피스톤의 마찰은 무시한다.) [3점]

- $1\frac{1}{2}$
- (2) **1**

- (4) 2

06

다음은 자연계에 존재하는 원소 X, Y 및 분자 XY에 대한 자료 이다.

○ 자연계에 존재하는 X와 Y에 대한 자료

	X	Y		
동위 원소	aX, $a+2X$	^b Y, ^{b+2} Y		
평균 원자량	a+1			

- 분자량이 가장 작은 XY의 존재 비율(%) = 3이다. 분자량이 가장 큰 XY의 존재 비율(%)
- ^aX, ^{a+2}X, ^bY^{b+2}Y의 원자량은 각각 a, a+2, b, b+2이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단. X와 Y는 임의의 원소 기호이다.) [3점]

□ 보기 [

- ㄱ. 자연계 존재 비율은 "X"+2X가 "X₂의 2배이다.
- L. Y의 평균 원자량은 *b*+1이다.
- $_{\text{--}}$ 자연계에 존재하는 XY 중 분자량이 a+b+2인 분자의 존재 비율은 25%이다.
- \bigcirc
- (2) L
- ③ 7. ⊏

- 4 L, C
- 5 7. L. C

07

▶22067-0297

다음은 바닥상태 알루미늄(Al) 원자에서 전자가 들어 있는 오비 탈 (7)~(C)에 대한 자료이다. n은 주 양자수. l은 방위(+) 양자 수이다.

- (n-l)은 (가)와 (나)가 같다.
- 원자가 전자는 (가)와 (다)에 들어 있다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

보기

- \neg . (나)의 자기 양자수(m_i)는 0이다.
- ㄴ. 에너지 준위는 (가)>(다)이다.
- ㄷ. 오비탈에 들어 있는 전자 수는 (나)=(다)이다.
- 1 7
- 2 L
- ③ 7. ∟

- (4) L. C
- (5) フ. L. ロ

08

▶22067-0298

다음은 2주기 바닥상태 원자 $X \sim Z$ 에 대한 자료이다.

- 홀전자 수는 X>Y>Z이다.
- 원자 번호는 X>Y>Z이다.
- 전자가 2개 들어 있는 <mark>오비탈 수는</mark> X>Y이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단, X~Z는 임의의 원소 기호이다.) [3점]

□ 보기 □

- ¬. X의 홀전자 수는 2이다.
- ∟. X~Z의 원자가 전자 수의 합은 9이다.
- 다. S 오비탈에 들어 있는 전자 수는 Y와 Z가 같다.
- 1 7
- 2 L
- (3) L

- ④ ¬. ⊏
- (5) し. に

▶22067-0299

그림은 주기율표의 일부를 나타낸 것이다.

주기족	1	2	13	14	15	16	17	18
1	A							
2						В		
3		С					D	

이에 대한 설명으로 옳은 것만을 $\langle 보기\rangle$ 에서 있는 대로 고른 것은? (단, $A\sim D$ 는 임의의 원소 기호이다.)

- □ 보기 □
- ㄱ. AD는 이온 결합 물질이다.
- L. CB에서 양이온의 전자 수와 음이온의 전자 수는 같다.
- 다. 비공유 전자쌍 수는 B₂>D₂이다.
- (1) ¬
- 2 L
- (3) ⊏

- ④ ٦, ١
- 5 L, C

EBS

10

▶22067-0300

다음은 2주기 원자 $W \sim Z$ 에 대한 자료이다.

- W~Z는 바닥상태에서 (원자가 전자 수—홀전자 수)가 같다.
- 제1 이온화 에너지는 W>X>Y이다.
- 제2 이온화 에너지는 W>X>Y이다.

 $W\sim Z$ 에 대한 설명으로 옳은 것만을 $\langle \pm 7 \rangle$ 에서 있는 대로 고른 것은? (단. $W\sim Z$ 는 임의의 원소 기호이다.) [3점]

- ___ 보기 [
- ㄱ. 바닥상태 원자의 홀전자 수는 Z>W이다.
- ㄴ. 제2 이온화 에너지는 Z>X이다.
- 다. $\frac{ 제2 \ \text{이온화 에너지}}{ 제1 \ \text{이온화 에너지}} 는 Z > Y \ \text{이다.}$
- ① ¬
- ② L
- ③ ⊏

- ④ ¬. ∟
- (5) L. C

11

▶22067-0301

표는 원소 $W\sim Z$ 로 구성된 물질 $(\gamma)\sim (\alpha)$ 에 대한 자료이다. $W\sim Z$ 는 각각 C, C, C, C0, C1, C2, C3 하나이다.

물질		(フト)	(나)	(다)	(라)
화章	학식	W WY XY ₂		XY_2	Z_2Y
거기 저도서	고체	있음	없음	없음	없음
전기 전도성	액체	있음	있음	없음	0

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

보기

- ¬. (가)는 금속 결합 <mark>물질이다</mark>.
- L. '있음'은 ①으로 적절하다.
- 다. 원자가 전자 수는 W>Z이다.
- ① ¬
- 2 L
- ③ ¬. ⊏

- ④ ∟, ⊏
- (5) 7, L, E

≥22067-0302

그림은 AB 와 CDA 의 반응을 화학 결합 모형으로 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 $\langle 보기\rangle$ 에서 있는 대로 고른 것은? (단, $A\sim D$ 는 임의의 원소 기호이다.) [3점]

보기 🗀

- ㄱ. A와 C는 같은 족 원소이다.
- $\mathsf{L}_{\cdot} \ \mathrm{A_2D}$ 는 분자의 쌍극자 모멘트가 $\mathsf{0}$ 이다.
- с. ABD₃에서 B의 산화수는 +5이다.
- ① ¬
- 2 L
- ③ 7. ⊏

- 4 L. C
- (5) 7, L, E

13 ►22067-0303

그림은 2, 3주기 원소 $X\sim Z$ 로 이루어진 물질 XY와 Z_2Y 의 루이스 전자점식을 나타낸 것이다. X^{a+} 과 Y^{a-} 은 전자 수가 같고, 전기 음성도는 Y가 Z보다 크다.

$$\left[\mathbf{X}\right]^{a+}\left[\mathbf{:}\ddot{\mathbf{Y}}\mathbf{:}\right]^{a-}$$
 $\mathbf{:}\ddot{\mathbf{Z}}\mathbf{:}\ddot{\mathbf{Y}}\mathbf{:}\ddot{\mathbf{Z}}\mathbf{:}$

이에 대한 설명으로 옳은 것만을 $\langle 보기\rangle$ 에서 있는 대로 고른 것은? (단. $X\sim Z$ 는 임의의 원소 기호이다.) [3점]

보기 🗔

- ㄱ. *a*=2이다.
- L. X와 Z는 같은 주기 원소이다.
- $\mathsf{C}_{\mathsf{L}} \, \mathsf{Z}_{\mathsf{2}} \mathsf{Y}$ 에서 Y 는 부분적인 양전하 (δ^+) 를 띤다.
- \bigcirc
- (2) T
- ③ 7. ∟

- 4 L. C
- (5) 7, L, E

EBS

14 • 22067-0304

표는 3가지 분자 HCN, C_2H_2 , NH_3 를 3가지 기준에 따라 각각 분류한 것을 나타낸 것이다.

분류 기준	분류 기준		예	아니요	
(フト)			C_2H_2	HCN,	NH_3
구성 원자가	모두				
동일 평면에 존재	배하는가?				
극성 분자인	l가?		©	(2)	

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

보기

- ㄱ. '무극성 공유 결합이 있는가?'는 (가)로 적절하다.
- ㄴ. ⓒ에 해당되는 분자는 2가지이다.
- ㄷ. ¬과 ②에 해당되는 분자의 모양은 모두 직선형이다.
- ① ¬
- (2) L
- ③ 7. ∟

- 4 L, E
- 5 7. L. C

15

►22067-0305

표는 2주기 원소 $X\sim Z$ 로 구성된 분자 (가)와 (나)에 대한 자료이다. X와 Y는 바닥상태 원자의 홀전자 수가 같고, (가), (나)에서 $X\sim Z$ 는 옥텟 규칙을 만족한다.

분자	(フト)	(나)
분자식	XY_2	Y_2Z_2
공유 전자쌍 수 비공유 전자쌍 수	1	$\frac{3}{10}$

이에 대한 설<mark>명으로 옳은 것만을 (</mark>보기)에서 있는 대로 고른 것은? (단, $X \sim Z$ 는 임의의 원소 기호이다.) [3점]

보기

- ㄱ. (가)는 극성 분자이다.
- ㄴ. 공유 전자쌍 수는 (가)가 (나)보다 크다.
- 1 7
- (2) L
- ③ 7. ∟

- ④ ∟, ⊏
- (5) 7. L. E

16 • 22067-0306

표는 밀폐된 진공 용기에 $H_2O(l)$ 을 넣은 후, 시간에 따른 $H_2O(l)$ 의 증발 속도와 $H_2O(g)$ 의 응축 속도를 나타낸 것이다. $0 < t_1 < t_2 < t_3 < t_4$ 이고, t_3 일 때 동적 평형에 도달하였다.

시간	0	t_1	t_2	t_3	t_4
$H_2O(l)$ 의 증 <mark>발 속도</mark>	v	v	v	v	v
$H_2O(g)$ 의 응축 속도	0	v_1	v_2	v_3	v_4

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? (단, 온도는 일정하다.)

__ 보기 [

- $\neg . v_1 > v$ 이다.
- $L. v_3=v_4$ 이다.
- $_{\text{-}}$. $H_2O(g)$ 의 양(mol)은 t_2 일 때가 t_4 일 때보다 크다.
- ① ¬
- 2 L
- ③ ¬. ⊏

- 4 L. C
- (5) 7, L, E

다음은 산 염기 반응 (가)~(다)의 화학 반응식이다.

- (7) $NH_3 + H_2O \longrightarrow NH_4^+ + \bigcirc$
- (나) $HBr + H_2O \longrightarrow Br^- + H_3O^+$
- (다) $HCO_3^- + H_2O \longrightarrow H_2CO_3 + OH^-$

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

□ 보기 □

- ㄱ. ۞은 OH⁻이다.
- ㄴ. (나)에서 HBr는 브뢴스테드·로리 산이다.
- 다. (다)에서 HCO3 은 브뢴스테드·로리 염기이다.
- 1 7
- 2 L
- ③ 7. ⊏

- 4 L, E 5 7, L, E

18 ▶22067-0308

표는 $x \to HCl(aq)$ 과 $y \to NaOH(aq)$ 을 혼합한 용액 (가)~(마)에 대한 자료이다.

혼합	용액	(フト)	(나)	(다)	(라)	(□})
혼합 전	HCl(aq)	20	20	20	20	20
용액의 부피(mL)	NaOH(aq)	V	2V	3V	4V	5V
모든 이온의 몰	농도의 합(M)	a	$\frac{3}{4}a$	9	$\frac{2}{3}a$	$\frac{5}{7}a$

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단, 혼합 용액의 부피는 혼합 전 각 용액의 부피의 합과 같 고, 물의 자동 이온화는 무시한다.) [3점]

- □ 보기 [
- ㄱ. *V*는 10이다.
- $\vdash \frac{x}{y} = \frac{4}{3}$ 이다.
- (1) ¬
- (2) L
- ③ 7. ⊏

- 4 L. T 5 7. L. T

19

▶22067-0309

다음은 산화 환원 반응 (가)와 (나)의 화학 반응식이다.

- (7) $SO_2 + 2H_2O + Cl_2 \longrightarrow H_2SO_4 + 2HCl$
- $(\downarrow) Cu + aNO_3^- + bH^+ \longrightarrow Cu^{2+} + cNO_2 + dH_2O$

(*a*∼*d*는 반응 계수)

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? [3점]

보기 🔽

- 기. (가)에서 Cl의 산<mark>화수는 증</mark>가한다.
- L. (가)에서 SO₂은 환원제로 작용한다.
- \mathbf{L} . (나)에서 b+d>a+c이다.
- (1) ¬
- 2 L
- ③ 7. □

- 4 L. C
- (5) 7, L, E

20 ▶22067-0310

다음은 A(s)와 B(s)가 물에 용해되는 반응에서 열의 출입을 알 아보기 위한 실험이다.

- 25°C 물에 25°C A(s)를 녹였더니 수용액의 온도가 높아
- 25°C 물 100 g에 25°C B(s) w g을 녹이고 수용액의 최저 온도를 측정하였더<mark>니 10℃였</mark>다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

□ 보기 [

- \neg . A(s)가 물에 용해될 때 열이 방출된다.
- \cup . B(s)가 물에 용해되는 반응은 흡열 반응이다.
- □ 25°C 물 100 g에 25°C B(s) ½w g을 녹이면 수용액의 최저 온도는 10℃보다 낮다.
- ① ¬
- 2 L
- ③ 7. ∟

- 4 L. T 5 7. L. T

실전 모의고사

5 1

제한시간 30분

배점 50점

정답과 해설 57쪽

문항에 따라 배점이 다르니, 각 물음의 끝에 표시된 배점을 참고 하시오. 3점 문항에만 점수가 표시되어 있습니다. 점수 표시가 없 는 문항은 모두 2점입니다.

01

22067-0311

다음은 화학이 실생활 문제 해결에 기여한 사례에 대한 설명이다.

하버와 보슈는 A_2 기체를 H_2 기체와 반응시켜 화합물 X를 대량 합성하는 공업적 생산 공정을 개발하였고, A가 포함된 비료의 대량 생산에 기여하였다.

이에 대한 설명으로 옳은 것만을 $\langle 보기 \rangle$ 에서 있는 대로 고른 것은? (단. A는 임의의 원소 기호이다.)

□ 보기 □

- ¬. A는 질소(N)이다.
- L. A₂에는 다중 결합이 있다.
- 다. X의 대량 합성은 식량 문제 해결에 기여하였다.

① ¬

2 L

③ 7. ⊏

④ ∟. ⊏

⑤ 7, ∟, ⊏

○2 ►22067-0312

다음은 탄소 화합물 (가) \sim (다)에 대한 자료이다. (가) \sim (다)는 각각 에테인 (C_2H_6) , 에탄올 (C_2H_5OH) , 아세트산 (CH_3COOH) 중하나이다.

- 수용액이 산성인 것은 (가)이다.
- 분자량은 (나)가 (다)보다 크다.

이에 대한 설명으로 옳은 것만을 $\langle 보기 \rangle$ 에서 있는 대로 고른 것은? (단, H, C, O의 원자량은 각각 1, 12, 16이다.)

보기

- ㄱ. (가)는 에테인이다.
- ㄴ. (나)는 손 소독제를 만드는 데 사용된다.
- 다. 1 mol을 완전 연소시켰을 때 생성되는 H_2O 의 양(mol) 은 (다)가 (나)보다 크다.
- ① ¬
- ② L
- ③ ¬, ⊏

- 4 ١, ٥
- (5) 7, L, E

03

▶22067-0313

표는 기체 (가)~(다)에 대한 자료이다. 원자량은 Z가 Y보다 크다.

기체	(フト)	(나)	(다)
구성 원소	X	Y, Z	Y, Z
분자당 구성 원자 수	2	2	3
1 g당 분자 <mark>수</mark>	11 <i>N</i>	11 <i>N</i>	7N

이에 대한 설명으로 옳은 <mark>것만을 (</mark>보기)에서 있는 대로 고른 것은? (단, $X\sim Z$ 는 임의의 원소 기호이다.) [3점]

보기 🔽

- ㄱ. 분자량은 (가)와 (나)가 같다.
- ㄴ. (다)의 분자식은 Y₂Z이다.
- 다. 1 g에 들어 있는 원자 수는 (다)가 (가)보다 크다.
- \bigcirc
- ② ⊏
- ③ 7, ∟

- ④ ∟, ⊏
- ⑤ ¬, ∟, ⊏

04

▶22067-0314

다음은 $A_2(g)$ 와 $B_2(g)$ 가 반응하여 X(g)가 생성되는 반응의 화학 반응식이다.

 $aA_2(g)+bB_2(g) \longrightarrow cX(g) (a\sim c$ 는 반응 계수)

표는 실린더에 $A_2(g)$ 와 $B_2(g)$ 를 넣고 반응을 완결시켰을 때, 반응 전과 후 기체에 대한 자료이다. 실험 (나)에서 A_2 가 모두 반응하였다.

		반응 전	반응 후		
실험	$\mathrm{A}_2(g)$ 의 질량 (g)	$\mathrm{B}_{\scriptscriptstyle 2}(g)$ 의 질량 (g)	전체 기체의 부피(L)	X(g)의 질량 (g)	전체 기체의 부피(L)
(フト)	14	6	xV	17	5V
(나)	42	12	15V	w	9V

이에 대한 설<mark>명으로 옳은 것만을 〈</mark>보기〉에서 있는 대로 고른 것은? (단, A, B는 임의의 <mark>원소 기</mark>호이고, 실린더 속 기체의 온도와 압력은 일정하다.) [3점]

보기 🗆

- ㄱ. w>50이다.
- ㄷ. $x \times \frac{\text{B의 원자량}}{\text{A}_2$ 의 분자량 $= \frac{1}{4}$ 이다.
- ① ¬
- 2 L
- ③ ¬. ⊏

- (4) L. C
- (5) 7, L, E

▶22067-0315

다음은 $0.01~{
m M}$ 포도당 $({
m C}_6{
m H}_{12}{
m O}_6)$ 수용액을 만드는 실험이다. x+y=600이다.

[실험]

- (나) $a \le C_6H_{12}O_6(aq) \ y \le A$ 등 취하여 $500 \le C_6H_{12}O_6(aq)$ 을 만든다.

이에 대한 설명으로 옳은 것만을 $\langle 보기 \rangle$ 에서 있는 대로 고른 것은? (단, $C_6H_{12}O_6$ 의 분자량은 180이고, 온도는 일정하다.) [3점]

□ 보기 [

- ㄱ. '부피 플라스크'는 ⊙으로 적절하다.
- ㄴ. a M $C_6H_{12}O_6(aq)$ x mL에 들어 있는 $C_6H_{12}O_6$ 의 질량은 0.18 g이다.
- $\vdash a \times \frac{y}{x} = \frac{1}{2} \circ \vdash \Box$

 \bigcirc

② C

(3) 7 L

④ ∟. ⊏

(g) L, E (g) 1,

○6 ►22067-0316

표는 자연계에 존재하는 X의 동위 원소에 대한 자료이다.

동위 원소	^a X	$^{b}\mathrm{X}$
원자량	10	11
존재 비율(%)	20	80

이에 대한 설명으로 옳은 것만을 \langle 보기 \rangle 에서 있는 대로 고른 것은? (단, X는 임의의 원소 기호이다.)

보기 [

- ㄱ. 중성자수는 ${}^{b}X>{}^{a}X$ 이다.
- ㄴ. X의 평균 원자량은 10.5보다 크다.
- ㄷ. $\frac{{}^b\!X}{{}^a\!X} \frac{1}{2} \, g$ 에 들어 있는 원자 수 > 1이다.
- (1) ¬
- (2) L
- ③ ७, ७

- 4 L. C
- ⑤ 7, ∟, ⊏

07

▶22067-0317

그림은 바닥상태 질소(N) 원자의 전자 배치를 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

보기

- 7. <u>홀전자 수</u> =1이다.
- $_{-}$ 모든 전자의 스핀 자기 양자수(m_s)의 합은 0이 아니다.
- 다. 주 양자수(n)와 방위(+) 양자수(l)의 합이 2인 전자 수는 2이다.
- \bigcirc
- ② L
- ③ 7. ⊏

- 4 L, E
- (5) 7, L, E

○8 ►22067-0318

표는 2,3주기 바닥상태 원자 $X\sim Z$ 에 대한 자료이다.

원자	X	Y	Z
전자가 들어 있는 <i>p</i> 오비탈 수 전자가 들어 있는 <i>s</i> 오비탈 수	1	$\frac{3}{2}$	$\frac{3}{2}$
<u>홀전자 수</u> 전자가 들어 있는 <i>p</i> 오비탈 수	$\frac{1}{3}$	$\frac{2}{3}$	1

 $X\sim Z$ 에 대한 설명으로 옳은 것만을 \langle 보기 \rangle 에서 있는 대로 고른 것은? (단, $X\sim Z$ 는 임의의 원소 기호이다.) [3점]

보기 🗀

- ㄱ. X는 3주기 원소이다.
- L. 홀전자 수는 Y가 가장 크다.
- ㄷ. 원자 반지름은 Z>Y이다.
- ① ¬
- 2 L
- ③ ¬. ⊏

- 4 ١, ٦
- (5) 7. L. E

○9 ►22067-0319

표는 바닥상태 원자 $X\sim Z$ 의 전자 배치를 나타낸 것이다. $X\sim Z$ 의 이온은 Ar의 전자 배치를 갖는다.

원자	전자 배치
X	$1s^2 2s^2 2p^6 3s^2 3p^4$
Y	$1s^2 2s^2 2p^6 3s^2 3p^5$
Z	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

이에 대한 설명으로 옳은 것만을 $\langle 보기\rangle$ 에서 있는 대로 고른 것은? (단, $X\sim Z$ 는 임의의 원소 기호이다.)

보기

- ㄱ. 전자가 들어 있는 오비탈 수는 X와 Y가 같다.
- ∟. ZY₂는 공유 결합 물질이다.
- 다. 이온 반지름은 Z의 이온이 Y의 이온보다 크다.
- \bigcirc
- ② ⊏
- ③ ¬, ∟

- (4) L. C
- (5) 7, L, E

EBS

10 ►22067-0320

그림은 원소 $A\sim$ C의 순차 이온화 에너지에 대한 자료이다. $A\sim$ C는 각각 Na, Mg, Al 중 하나이다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? [3점]

□ 보기 □

- ¬. A는 Na이다.
- ㄴ. 제1 이온화 에너지는 A>B이다.
- 다. 원자가 전자가 느끼는 유효 핵전하는 B>C이다.
- ① ¬
- 2 L
- ③ ¬. ⊏

- 4 L. C
- 5 7. L. C

-11

▶22067-0321

다음은 3가지 산 염기 반응의 화학 반응식이다.

$$\circ \underbrace{\operatorname{NH}_3(g)} + \operatorname{OH}^-(aq) \longrightarrow \operatorname{NH}_2^-(aq) + \operatorname{H}_2\operatorname{O}(l)$$

$$\circ \text{HNO}_3(aq) + \underbrace{\text{H}_2\text{O}}_{\circ}(l) \longrightarrow \text{NO}_3^-(aq) + \text{H}_3\text{O}^+(aq)$$

$$\circ \operatorname{HF}(aq) + \underbrace{\operatorname{HCO}_{3}^{-}}_{\text{(E)}}(aq) \longrightarrow \operatorname{F}^{-}(aq) + \operatorname{H}_{2}\operatorname{CO}_{3}(aq)$$

⊙~© 중 브뢴스테드 · 로리 염기만을 있는 대로 고른 것은?

- 1 7
- (2) (L)
- (3) (7), (E)

- (4) (L), (E)
- (5) (7), (L), (E)

12 ►22067-0322

그림은 2주기 원자 $X\sim Z$ 의 루이스 전자점식이다.

 $\cdot \dot{\mathbf{X}} \cdot : \ddot{\mathbf{Y}} \cdot : \ddot{\mathbf{Z}} \cdot$

이에 대한 설명으로 옳은 것만을 $\langle 보기 \rangle$ 에서 있는 대로 고른 것은? (단, $X \sim Z$ 는 임의의 원소 기호이다.) [3점]

보기

- ¬. XZ₃의 분자 모양은 삼각뿔형이다.
- L. YZ₂는 극성 분자이다.
- c. XZ₄ 에서 X와 Z는 모두 옥텟 규칙을 만족한다.
- ① L
- ② T
- ③ 7. ∟

- (4) 7. E
- (5) L. C

13

▶22067-0323

다음은 ABC와 CD의 반응에서 반응물을 화학 결합 모형으로 나타낸 화학 반응식이다.

이에 대한 설명으로 옳은 것만을 \langle 보기 \rangle 에서 있는 대로 고른 것은? (단. $A\sim$ D는 임의의 원소 기호이다.) [3점]

_ 보기 [

- ㄱ. 녹는점은 (가)>NaF이다.
- L. A(s)는 연성(뽑힘성)이 있다.
- C. 공유 전자쌍 수는 $B_2 > C_2$ 이다.
- ① ¬
- 2 L
- ③ ¬. ⊏

- ④ ∟. ⊏
- 5 7. L. C

다음은 학생 A가 가설을 세우고 수행한 탐구 활동이다.

[가설]

○ 극성 공유 결합이 있는 분자는 극성 분자이다.

[탐구 과정]

- H, C, N, O, F의 전기 음성도를 조사한다.
- CH₄, NF₃, CO₂의 구조식과 분자의 쌍극자 모멘트를 조사 한다.

[탐구 결과]

○ H, C, N, O, F의 전기 음성도

원소	Н	С	N	0	F
전기 음성도	2.1	2.5	x	y	4.0

○ CH₄, NF₂, CO₂의 구조식과 분자의 쌍극자 모멘트

분자	CH ₄	NF_3	CO_2
구조식	H H-C-H H	F-N-F F	O=C=O
분자의 쌍극자 모멘트	0	0보다 큼	0

[결	론]				
0		(-	<u> </u>		

학생 A의 결론이 타당할 때, 이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은?

□ 보기 □

¬. *y>x*이다.

ㄴ. '가설은 옳다.'는 □으로 적절하다.

다. NF_3 에서 N는 부분적인 양전하(δ^+)를 띤다.

1 7

(2) L

③ ¬. ⊏

(4) L. C

5 7. L. E

15 ▶22067-0325

다음은 열량계를 이용한 실험이다.

[실험 과정]

- (가) 25°C의 물 100 g이 담긴 열량계 I~Ⅱ을 준비한다.
- (나) I 에 25°C의 X(s)를 넣고 X(aq)의 최고 온도 또는 최 저 온도를 측정한다.
- (다) I에 25℃의 Y(s)를 넣고 Y(aq)의 최고 온도 또는 최 저 온도를 측정한다.
- (라) \mathbb{I} 에 25°C의 Z(s)를 넣고 Z(aq)의 최고 온도 또는 최저 온도를 측정한다.

[실험 결과]

○ I ~ Ⅲ에 들어 있는 수용액의 최고 온도 또는 최저 온도

열량계	수용액	최고 온도 또는 최저 온도(℃)
I	X(aq)	40
I	Y(aq)	35
II	Z(aq)	15

흡열 반응이 일어나는 열량계만을 있는 대로 고른 것은? (단. 열 량계와 외부 사이의 열 출입은 없다.)

(1) I

② Ⅲ

③ I. **I**

(4) II. II

(5) I. I. II

16

표는 밀폐된 진공 용기 안에 $\mathbf{X}(l)$ 1 \mathbf{mol} 을 넣은 후 시간에 따 른 X의 $\frac{$ 증발 속도}{ 응축 속도}와 X(l)의 양(mol)에 대한 자료이다. $0 < t_1 < t_2 < t_3$ $0 | \Box |$

시간	t_1	t_2	t_3
<u> 증발 속도</u> 응축 속도	a	1	ь
X(l)의 양(mol)	0.9	C	0.7

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단. 온도는 일정하다.)

보기 🗀

¬. *a×b>*1이다.

L. c=0.8이다.

ㄷ. $\frac{t_3$ 일 때 $\mathbf{X}(g)$ 의 양(mol)} = 3이다.

① ¬

② L

③ ¬. ⊏

4 L. T 5 7. L. T

다음은 분자 (가)~(다)에 대한 자료이다.

- (가)~(다)는 각각 N₂, FCN, COF₂ 중 하나이다.
- (가)~(다)의 비공유 전자쌍 수

분자	(フト)	(나)	(다)
비공유 전자쌍 수(상댓값)	a	4	1

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? [3점]

__ 보기 [_

- ¬. a=2이다.
- ㄴ. (가)에는 3중 결합이 있다.
- ㄷ. 분자의 쌍극자 모멘트는 (나)가 (다)보다 크다.
- \bigcirc
- (2) L
- ③ 7. □

- 4 L. C
- 57. L. E

18 ►22067-0328

그림은 25°C에서 수용액 (가)와 (나)를 나타낸 것이다. (가)에서 H_3O^+ 의 양(mol)과 (나)에서 OH^- 의 양(mol)은 같다.

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단, 온도는 25°C로 일정하고, 25°C에서 물의 이온화 상수 $(K_{\rm w})$ 는 1×10^{-14} 이다.)

□ 보기 □

- ㄱ. (가)에서 [H₃O⁺]=1×10⁻³ M이다.
- (카)에서 OH⁻의 양(mol) =1×10⁻⁸이다. (나)에서 OH⁻의 양(mol)
- 다. (나)에 물을 넣어 50 mL로 만든 수용액의 pH는 12보다 작다.
- \bigcirc
- (2) L
- ③ 7. ⊏

- (4) L. C
- (5) 7, L, C

19

▶ 22067-0329

다음은 산화 환원 반응 (가)와 (나)의 화학 반응식이다.

- (7) 3HClO₃ \longrightarrow HClO₄+H₂O+2ClO₂
- (나) $a Br O_3^- + b Br^- + c H^+ \longrightarrow d Br_2 + d H_2 O$

(*a*∼*d*는 반응 계수)

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것은? [3점]

보기 📗

- 기. (가)에서 Cl의 산화수 중 가장 큰 값은 +7이다.
- L c+d=6이다.
- Γ . (나)에서 환원제 1 mol이 반응했을 때 생성되는 H_2 O의 양은 3 mol이다.

(1) ¬

20

▶22067-0330

다음은 중화 반응에 대한 실험이다.

[자료]

○ 수용액에서 X(OH)₂는 X²+과 OH 으로, HY는 H+과 Y⁻으로, H₂Z는 H⁺과 Z²⁻으로 모두 이온화된다.

[실험 과정]

- (가) $0.4 \text{ M X}(OH)_2(aq)$, y M HY(aq), $z \text{ M H}_2Z(aq)$ 을
- (나) $X(OH)_2(aq)$ V mL에 HY(aq) a mL를 조금씩 첨가
- (다) (나) 과정 후 혼합 용액에 $H_2Z(aq)$ a mL를 첨가한다.

[실험 결과]

○ (나)에서 첨가한 HY(aa)의 부피에 따른 A 이온의 몰 농도

HY(aq)의 부피(mL)	0	10	15	a
A 이온의 몰 농도 $($ 상댓값 $)$	8	3	2	

- (다) 과정 후 혼합 용액은 중성이다.
- (다) 과정 후 혼합 용액에서 양이온 수와 음이온 수의 비율

이에 대한 설명으로 옳은 것만을 〈보기〉에서 있는 대로 고른 것 은? (단. 혼합 용액의 부피는 혼합 전 각 용액의 부피의 합과 같 고, 물의 자동 이온화는 무시하며, \mathbf{X}^{2+} , \mathbf{Y}^- , \mathbf{Z}^{2-} 은 반응하지 않 는다.) [3점]

□ 보기 □

- ㄱ. A 이온은 X²⁺이다.
- $L. \frac{V}{a} = \frac{1}{2}$
- = y+z=0.4이다.