Boolean Function Simplification Using Karnaugh Map

Digital Design. M. Morris Mano

Prof. Imane Aly Saroit Ismail

1

Logic Design

Karnaugh Map (K-map) is a diagram made up of squares, with each square representing one minterm/maxterm of the function that is to be minimized. Since any Boolean function can be expressed as a sum of minterms (or a product of maxterms), it follows that a Boolean function is recognized graphically in the map from the area enclosed by those squares whose minterms/maxterms are included in the function.

Karnaugh map is used for Boolean function simplification.

The minterms/maxterms are transferred from a truth table onto a two-dimensional grid where, in Karnaugh maps, the cells are ordered in Gray code.

Simplification is obtained by optimal groups of 1s or 0s are identified, which represent the terms of a canonical form of the logic in the original truth table. These terms can be used to write a minimal Boolean expression representing the required logic.

The grid is toroidally connected, which means that rectangular groups can wrap across the edges. Cells on the extreme right are actually 'adjacent' to those on the far left, in the sense that the corresponding input values only differ by one bit; similarly, so are those at the very top and those at the bottom.

Prof. Imane Aly Saroit Ismail

4

Logic Design

Combine the cells (squares) in the toroidal grid into one or more group, each of 2^n , where n=0,1,2,3... etc.

It is better to have larger groups (i.e. it is better to maximize the number of grouped cells), as it will leads to less variables in a term.

A cell may be included in more than one group.

Do not add new groups if all cells are included in others.

In SoP Groups are composed of 1's

A term is composed of the product of the variable(s) whom value is not changed in the group.

Unchanged variable with value=1 is used as it is. But if the value of the unchanged variable=0, its complement is used.

Then the sum of the terms are used.

For example: $F(A,B,C,D) = \overline{BC} + CD + \overline{AD}$

In PoS, Groups are composed of 0's

A term is composed of the sum of the variable(s) whom value is not changed in the group.

Unchanged variable with value=0 is used as it is. But if the value of the unchanged variable=1, its complement is used.

Then the product of the terms are used.

For example:
$$F(W,X,Y,Z) = (W + X + \overline{Y} + \overline{Z})(\overline{X} + \overline{Y} + Z)(\overline{W} + Y + \overline{Z})$$

Var2		
Var1	0	1
0	00	01
0	0	1
1	10	11
1	2	3

In each square:

Black values represents the binary values. Red values represents the decimal values.

Example 1:

Using k-map, optimize:

$$F(A,B) = \sum_{m} (1,3)$$

As SoP form.

$$F(A,B)=B$$

9

Var2 Var3				
Var1	00	01	11	10
0	000	001	011	010
0	0	1	3	2
4	100	101	111	110
1	4	5	7	6

In each square:

Black values represents the binary values. Red values represents the decimal values.

Example 2:

Using k-map, optimize:

 $F(A,B,C) = \sum_{m} (0,1,4)$ as PoS form.

As we need F as PoS, so we need to use maxterms.

$$F(A,B,C) = \Pi_M (2,3,5,6,7)$$

$$F(A,B,C) = \overline{B}(\overline{A} + \overline{C})$$

Exercise:

Using k-map, optimize: $F(X,Y,Z) = \sum_{m} (0,1,3,5,6)$ as PoS form.

Exercise:

Using k-map, optimize the following function as SoP form.

$$F(A,B,C) = \overline{AB}C + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C} + ABC$$

Exercise:

Using k-map, optimize the following function as PoP form.

$$F(A,B,C) = \overline{A}\overline{B} + \overline{A}B\overline{C}$$

Var3 Var4				
Var1 Var2	00	01	11	10
00	0000	0001	0011	0010
00	0	1	3	2
04	0100	0101	0111	0110
01	4	5	7	6
11	1100	1101	1111	1110
11	12	13	15	14
40	1000	1001	1011	1010
10	8	9	11	10

In each square:

Black values represents the binary values. Red values represents the decimal values.

Example 3:

Using k-map, optimize:

$$F(A,B,C,D) =$$
 $\Pi M (1,2,5,6,9,11,13,14,15)$
as PoS.

$$F(A, B, C, D) = (C + \overline{D})(\overline{A} + \overline{D})(A + \overline{C} + D) \quad \text{or} \quad (\overline{B} + \overline{C} + D)$$

Prof. Imane Aly Saroit Ismail

16

Logic Design

Example 4:

Using k-map, optimize F in an SoP form:

$$F(A, B, C, D) = \overline{A}\overline{C}\overline{D} + \overline{A}D + \overline{B}C + CD + A\overline{B}\overline{D}$$

We need to find minterms or maxterms. We can use truth table. But an easier way can be used is by adding 1's (in case of SoP) or 0's (in case of PoS) in the square(s) that met the value of the variables. Of course do not add two 1's (or 0's) in the same square.

- For \overline{ABC} add 1's in the squares where A=0, B=0, C=0 (2)
- For $\overline{A}D$ add 1's in the squares where A=0, D=1 (4)
- For $\overline{B}C$ add 1's in the squares where B=0, C=1 (4)
- For CD add 1's in the squares where C=1, D=1 (4)
- For $A\overline{B}\overline{D}$ add 1's in the squares where A=1, B=0, D=0 (2)

$$F(A, B, C, D) = \overline{A}\overline{C}\overline{D} + \overline{A}D + \overline{B}C + CD + A\overline{B}\overline{D}$$

	CD					
AE	3	00	01	11	10	
	00	1	1	144	1	
	01	1	1	14		
	11			1		\Rightarrow
	10	1		14	11	

$$F(A, B, C, D) = \overline{A}\overline{C} + CD + \overline{B}\overline{D}$$

$$F(A, B, C, D) = \overline{A}\overline{C}\overline{D} + \overline{A}D + \overline{B}C + CD + A\overline{B}\overline{D}$$

CD				
AB	00	01	11	10
00	1	1	1	1
01	1	1	1	
11			1	
10	1		1	1

Note that we can obtain the minterms and maxterms directly from the k-map.

$$F(A,B,C,D) =$$

$$= \sum_{m} (0,1,2,3,4,5,7,8,10,11,15)$$

$$= \prod_{M} (6,9,12,13,14)$$

Exercise:

Using k-map, optimize F as SoP.

 $F(W,X,Y,Z)=\Pi_M(0,1,2,4,7,8,9,10,12,15)$

Exercise:

Using k-map, optimize F as SoP & PoS

$$F(A,B,C,D) = B\overline{C} + \overline{A}B + BC\overline{D} + \overline{A}\overline{B}D + A\overline{B}\overline{C}D$$

Prof. Imane Aly Saroit Ismail

22

Logic Design

		Var1=1							
Var4 Var5					Var4 Var5 Var2 Var3				
Var2 Var3	00	01	11	10	varz vars	00	01	11	10
	00000	00001	00011	00010	00	10000	10001	10011	10010
00	$\begin{vmatrix} 00 \\ 0 \end{vmatrix} \begin{vmatrix} 1 \\ 3 \end{vmatrix} \begin{vmatrix} 2 \\ 2 \end{vmatrix}$	2	00	16	17	19	18		
	00100	00101	00111	111 00110	0.1	10100	10101	10111	10110
01	4	5	7	6	01	20	21	23	22
	01100	01101	01111	01110	11	11100	11101	11111	11110
11	12	13	15	14	11	28	29	31	30
	01000	01001	01011	01010	10	11000	11001	11011	11010
10	8	9	11	10	10	24	25	27	26

In each square: Black values represents the binary values. Red values represents the decimal values.

Prof. Imane Aly Saroit Ismail

23

Logic Design

Example 5:

Using k-map, optimize:

 $F(V,W,X,Y,Z) = \Pi_M(0,4,7,8,12,15,16,20,23,24,28,29,30,31)$

As PoS form.

$$F(V, W, X, Y, Z) = (Y + Z)(\overline{X} + \overline{Y} + \overline{Z})(\overline{V} + \overline{W} + \overline{Z})$$

Exercise:

Using k-map, optimize F as SoP.

$$F(V,W,X,Y,Z) = \sum m$$

(0,2,4,6,9,10,12,13,14,15,16,17,21,25,26,28,29,30,31)

Exercise:

Using k-map, optimize F as SoP.

$$F(A,B,C,D,E) = (A + \overline{B} + \overline{C})(\overline{A} + D + \overline{E})(\overline{C} + \overline{D} + E)(B + \overline{C})$$

Then get its minterms & maxterms.

A don't-care term for a function is an input-sequence (a series of bits) for which the function output does not matter. An input that is known never to occur is a can't-happen term. Both these types of conditions are treated the same way in logic design and may be referred to collectively as don't-care conditions.

An "x" is added on the cell of don't care conditions. The cell may be used iff it will lead to more simplified function.

don't care conditions (Example 6)

Example 6:

Using k-map, optimize:

$$F(A,B,C,D)=$$

$$\sum_{m}$$
 (0,2,3,6,7,8,10,11) + d(5,14,15)

As PoS form.

$$F(A,B,C,D) = \Pi_M(1,4,9,12,13)$$

$$+ d(5,14,15)$$

Prof. Imane Aly Saroit Ismail

$$F(A, B, C, D) = (\overline{B} + C)(C + \overline{D})$$

31

Exercise:

Compare the simplified SoP function (using k-map) of:

$$F(A,B,C,D) = \sum_{m} (0,2,3,6,7,8,10,11)$$

$$F(A,B,C,D) = \sum_{m} (0,2,3,6,7,8,10,11) + d(5,14,15)$$

Exercise:

Using k-map, optimize $F(A,B,C) = \sum_{m} (4,5) + d(0,6,7)$ as SoP.

Exercise:

Using k-map, optimize F as SoP

$$F(A,B,C,D,E) = ABE(\overline{C}D + \overline{D}) + \overline{A}(\overline{C}E + \overline{B}D)$$
$$+d(5,12,13,14,15,17,22,23,31)$$

Also get the function' minterms & maxterms.

F(A	B	\mathbf{C}	D F) =	AB]	E(C	D +	<u>D</u>) +	- A (C E	+ B	D)					
1 (1)	1,0	, , ,	,,,	<i>)</i>									4,15	,17,2	2,23	,31)	