

MATHEMATISCHE MODELLE DER KONTINUUMSMECHANIK [MA2904] SoSe 2019
PROF. DR. DANIEL MATTHES matthes@ma.tum.de
BENEDIKT GRASWALD benedikt.graswald@ma.tum.de

Aufgabenblatt 3

Tutorübungen am 22./23./29. Mai

Aufgabe T3.1 (Mehrskalenansatz)

Gegeben sei das folgende Anfangswertproblem für t > 0

$$x''(t) + 2\epsilon x'(t) + (1 + \epsilon^{2})x(t) = 0$$
$$x(0) = 0$$
$$x'(0) = 1$$

mit kleinem Parameter $\epsilon > 0$.

- a) Berechnen Sie die asymptotische Entwicklung der Lösung x(t) bis zur 1. Ordnung in ϵ .
- b) Bestimmen Sie die exakte Lösung des Anfangswertproblems und vergleichen Sie diese mit der asymptotischen Entwicklung aus Teil a). Für welche Zeiten ist die Approximation gut?
- c) Um eine bessere Approximation zu finden versuchen Sie den Ansatz

$$x(T_0, T_1) = x_0(T_0, T_1) + \epsilon x_1(T_0, T_1) + \epsilon^2 x_2(T_0, T_1) + \cdots$$

wobei $T_0 := t$ und $T_1 := \epsilon t$ sei. Bestimmen Sie $x_0(T_0, T_1)$.

(*Hinweis*: Die Gleichung zur Ordnung ϵ^0 bestimmt x_0 nicht eindeutig. Wählen Sie die Lösung so, dass die Gleichung zur Ordnung ϵ^1 möglichst einfach wird.)

Aufgabe T3.2 (Singuläre Störung)

Gegeben seien die folgenden Anfangswertprobleme für t>0

(i)
$$\epsilon x'(t) + \sin(\epsilon)x(t) = \epsilon^2 t$$
, $x(0) = 1$
 (ii) $\epsilon x'(t) + \cos(\epsilon)x(t) = \epsilon t$, $x(0) = 1$

mit kleinen Parameter $\epsilon > 0$.

Untersuchen Sie, ob diese Anfangswertprobleme regulär oder singulär gestört sind. Und bestimmen Sie, falls das Problem regulär gestört ist, die asymptotische Entwicklung bis zur ersten Ordnung in ϵ .