Learning Objectives

In this chapter you will learn about:

- Computer data
- Computer codes: representation of data in binary
- Most commonly used computer codes
- Collating sequence

Data Types

- Numeric Data consists of only numbers 0, 1, 2, ..., 9
- Alphabetic Data consists of only the letters A, B, C, ..., Z, in both uppercase and lowercase, and blank character
- Alphanumeric Data is a string of symbols where a symbol may be one of the letters A, B, C, ..., Z, in either uppercase or lowercase, or one of the digits 0, 1, 2, ..., 9, or a special character, such as + - * / , . () = etc.

Computer Codes

- Computer codes are used for internal representation of data in computers
- As computers use binary representation, computer schemes numbers for internal data codes use binary coding
- In binary coding, every symbol that appears in the data is represented by a group of bits
- The group of bits used to represent a symbol is called a byte

(Continued on next slide)

Computer Codes

(Continued from previous slide..)

- As most modern coding schemes use 8 bits to represent a symbol, the term byte is often used to mean a group of 8 bits
- Commonly used computer codes are BCD, EBCDIC, and ASCII

BCD

- BCD stands for Binary Coded Decimal
- It is one of the early computer codes
- It uses 6 bits to represent a symbol
- It can represent 64 (26) different characters

Coding of Alphabetic and Numeric Characters in BCD

Char	BCD (Code	Octal
	Zone	Digit	
Α	11	0001	61
В	11	0010	62
С	11	0011	63
D	11	0100	64
Е	11	0101	65
F	11	0110	66
G	11	0111	67
Н	11	1000	70
I	11	1001	71
J	10	0001	41
K	10	0010	42
L	10	0011	43
М	10	0100	44

Char	BCD	Code	Octa
	Zone	Digit	_
N	10	0101	45
O	10	0110	46
Р	10	0111	47
Q	10	1000	50
R	10	1001	51
S	01	0010	22
Т	01	0011	23
U	01	0100	24
V	01	0101	25
W	01	0110	26
X	01	0111	27
Υ	01	1000	30
Z	01	1001	31

(Continued on next slide)

Coding of Alphabetic and Numeric Characters in BCD

(Continued from previous slide..)

	BCD Code		Octal
Character	Zone	Digit	Equivalent
1	00	0001	01
2	00	0010	02
3	00	0011	03
4	00	0100	04
5	00	0101	05
6	00	0110	06
7	00	0111	07
8	00	1000	10
9	00	1001	11
10	00	1010	12

BCD Coding Scheme (Example 1)

Example

Show the binary digits used to record the word BASE in BCD

Solution:

B = 110010 in BCD binary notation

A = 110001 in BCD binary notation

S = 010010 in BCD binary notation

E = 110101 in BCD binary notation

So the binary digits

11001 <u>0</u>	110001	010010	110101
В	Α	S	Е

will record the word BASE in BCD

BCD Coding Scheme (Example 2)

Example

Using octal notation, show BCD coding for the word DIGIT

Solution:

D= 64 in BCD octal notation I=71 in BCD octal notation G=67 in BCD octal notation I=71 in BCD octal notation I=23 in BCD octal notation

Hence, BCD coding for the word DIGIT in octal notation will be.

<u>64</u>	<u>71</u>	<u>67</u>	<u>71</u>	<u>23</u>
D	I	G	I	Т

EBCDIC

- EBCDIC stands for Extended Binary Coded Decimal Interchange Code
- It uses 8 bits to represent a symbol
- It can represent 256 (28) different characters

Coding of Alphabetic and Numeric Characters in EBCDIC

Char	EBCDIC Code		Не
Cital	Digit	Zone	x
А	1100	0001	C1
В	1100	0010	C2
С	1100	0011	C3
D	1100	0100	C4
Е	1100	0101	C5
F	1100	0110	C6
G	1100	0111	C7
Н	1100	1000	C8
I	1100	1001	C9
J	1101	0001	D1
K	1101	0010	D2
L	1101	0011	D3
М	1101	0100	D4

	EBCD:	IC Code	
Char	Digit	Zone	Hex
N	1101	0101	D5
0	1101	0110	D6
Р	1101	0111	D7
Q	1101	1000	D8
R	1101	1001	D9
S	1110	0010	E2
Т	1110	0011	E3
U	1110	0100	E4
V	1110	0101	E5
W	1110	0110	E6
Х	1110	0111	E7
Υ	1110	1000	E8
Z	1110	1001	E9

(Continued on next slide)

Coding of Alphabetic and Numeric Characters in EBCDIC

(Continued from previous slide..)

	EBCD	EBCDIC Code	
Character	Digit	Zone	a l Equivalent
0	1111	0000	F0
1	1111	0001	F1
2	1111	0010	F2
3	1111	0011	F3
4	1111	0100	F4
5	1111	0101	F5
6	1111	0110	F6
7	1111	0111	F7
8	1111	1000	F8
9	1111	1001	F9

Zoned Decimal Numbers

- Zoned decimal numbers are used to represent numeric values (positive, negative, or unsigned) in EBCDIC
- A sign indicator (C for plus, D for minus, and F for unsigned) is used in the zone position of the rightmost digit
- Zones for all other digits remain as F, the zone value for numeric characters in EBCDIC
- In zoned format, there is only one digit per byte

Examples Zoned Decimal Numbers

Numeric Value	EBCDIC	Sign Indicator
345	F3F4F5	F for unsigned
+345	F3F4C5	C for positive
-567	F5F6D7	D for negative
-345	F3F4D5	D for negative

Packed Decimal Numbers

Packed decimal numbers are formed from zoned decimal numbers in the following manner:

Step 1:The zone half and the digit half of the rightmost byte are reversed

Step 2: All remaining zones are dropped out

- Packed decimal format requires fewer number of bytes than zoned decimal format for representing a number
- Numbers represented in packed decimal format can be used for arithmetic operations

Examples of Conversion of Zoned Decimal Numbers to Packed Decimal Format

Numeric Value	EBCDIC	Sign Indicator
345	F3F4 <mark>F5</mark>	34 5 F
+345	F3F4C5	34 5 C
-345	F3F4 <mark>D5</mark>	34 5 D
3456	F3F4F5F6	3456F

EBCDIC Coding Scheme

Example

Using binary notation, write EBCDIC coding for the word BIT. How many bytes are required for this representation?

Solution:

 $B = 1100\ 0010$ in EBCDIC binary notation

 $I = 1100 \ 1001$ in EBCDIC binary notation

 $T = 1110\ 0011$ in EBCDIC binary notation

Hence, EBCDIC coding for the word BIT in binary notation will be

11000010	11001001	11100011
В	I	Т

3 bytes will be required for this representation because each letter requires 1 byte (or 8 bits)

ASCII

ASCII stands for American Standard Code for Information Interchange.

- ASCII is of two types ASCII-7 and ASCII-8
- ASCII-7 uses 7 bits to represent a symbol represent 128
 (2⁷) different characters
- ASCII-8 uses 8 bits to represent a symbol represent 256
 (28) different characters
- First 128 characters in ASCII-7 and ASCII-8 are same

Coding of Numeric and Alphabetic Characters in ASCII

Character	ASCII-7	/ ASCII-8	Hexadecim
	Zone	Digit	al Equivalent
0	0011	0000	30
1	0011	0001	31
2	0011	0010	32
3	0011	0011	33
4	0011	0100	34
5	0011	0101	35
6	0011	0110	36
7	0011	0111	37
8	0011	1000	38
9	0011	1001	39

(Continued on next slide)

Coding of Numeric and Alphabetic Characters in ASCII

(Continued from previous slide..)

	ASCII-7 / ASCII-8		Hexadecimal
Character	Zone	Digit	Equivalent
А	0100	0001	41
В	0100	0010	42
С	0100	0011	43
D	0100	0100	44
Е	0100	0101	45
F	0100	0110	46
G	0100	0111	47
Н	0100	1000	48
I	0100	1001	49
J	0100	1010	4A
K	0100	1011	4B
L	0100	1100	4C
М	0100	1101	4D

(Continued on next slide)

Coding of Numeric and Alphabetic Characters in ASCII

(Continued from previous slide..)

Character	ASCII-7	Hexadecima	
	Zone	Digit	l Equivalent
N	0100	1110	4E
0	0100	1111	4F
Р	0101	0000	50
Q	0101	0001	51
R	0101	0010	52
S	0101	0011	53
Т	0101	0100	54
U	0101	0101	55
V	0101	0110	56
W	0101	0111	57
X	0101	1000	58
Υ	0101	1001	59
Z	0101	1010	5A

ASCII-7 Coding Scheme

Example

>Write binary coding for the word BOY in ASCII-7. How many bytes are required for this representation?

Solution:

B = 1000010 in ASCII-7 binary notation

O = 1001111 in ASCII-7 binary notation

Y = 1011001 in ASCII-7 binary notation

Hence, binary coding for the word BOY in ASCII-7 will be

1000010	1001111	<u>1011001</u>
В	0	Υ

Since each character in ASCII-7 requires one byte for its representation and there are 3 characters in the word BOY, 3 bytes will be required for this representation

ASCII-8 Coding Scheme

Example

Write binary coding for the word SKY in ASCII-8. How many bytes are required for this representation?

Solution:

S = 01010011 in ASCII-8 binary notation

K = 01001011 in ASCII-8 binary notation

Y = 01011001 in ASCII-8 binary notation

Hence, binary coding for the word SKY in ASCII-8 will be

01010011	01001011	01011001
S	K	Y

Since each character in ASCII-8 requires one byte for its representation and there are 3 characters in the word SKY, 3 bytes will be required for this representation

Unicode

Why Unicode:

- No single encoding system supports all languages
- Different encoding systems conflict

Unicode features:

- Provides a consistent way of encoding multilingual plain text
- Defines codes for characters used in all major languages of the world.
- Defines codes for special characters, mathematical symbols, technical symbols, and diacritics

Unicode

- Unicode features (continued):
 - Capacity to encode as many as a million characters
 - Assigns each character a unique numeric value and name
 - Reserves a part of the code space for private use
 - Affords simplicity and consistency of ASCII, even corresponding characters have same code
 - Specifies an algorithm for the presentation of text with bidirectional behavior
- Encoding Forms
 - UTF-8, UTF-16, UTF-32

Collating Sequence

- Collating sequence defines the assigned ordering among the characters used by a computer
- Collating sequence may vary, depending on the type of computer code used by a particular computer
- In most computers, collating sequences follow the following rules:
 - 1. Letters are considered in alphabetic order (A < B < C ... < Z)
 - 2. Digits are considered in numeric order $(0 < 1 < 2 \dots < 9)$

Sorting in EBCDIC

Example

Suppose a representation of strings 23, A1, 1A?

computer uses EBCDIC as its internal characters. In Which order will this computer sort the

Solution:

In EBCDIC, numeric characters are treated to be greater than alphabetic characters.

Hence, in the said computer, numeric characters will be placed after alphabetic characters and the given string will be treated as:

A1 < 1A < 23

Therefore, the sorted sequence will be: A1, 1A, 23.

Sorting in ASCII

Example

Suppose a computer uses ASCII for its internal representation of characters. In which order will this computer sort the strings 23, A1, 1A, a2, 2a, aA, and Aa?

Solution:

In ASCII, numeric characters are treated to be less than alphabetic characters. Hence, in the said computer, numeric characters will be placed before alphabetic characters and the given string will be treated as:

Therefore, the sorted sequence will be: 1A, 23, 2a, A1, Aa, a2, and aA

Key Words/Phrases

- Alphabetic data
- Alphanumeric data
- American Standard Code for Information Interchange (ASCII)
- Binary Coded Decimal (BCD) code
- Byte
- Collating sequence
- Computer codes
- Control characters
- Extended Binary-Coded Decimal Interchange Code (EBCDIC)
- Hexadecimal equivalent
- Numeric data
- Octal equivalent
- Packed decimal numbers
- Unicode
- Zoned decimal numbers