CIS 7030 GEOSPATIAL ANALYSIS

Table of Contents

Content	Error! Bookmark not defined.
How geospatial data science can be used for business	3
Introduction	3
Objectives	4
Visualization	6
Conclusion	9
Descriptive explanations	10
Exploratory Spatial Data Analysis	10
Spatial Statistical Models	19
Geo visualization	23
Machine learning for Geo-spatial data analysis	28
Predictive analytics for geospatial application	30
Geospatial Application	32
References	

How geospatial data science can be used for business.

Business plan - starting a new educational institute in optimal location in Sri Lanka

Introduction

In the modern world, where data is the king and technology is advancing at a rapid pace, companies are always on the lookout for new and creative ways to improve their operations, gain a competitive edge, and make informed decisions. Among the various game-changing instruments available, geospatial data science is particularly strong and useful, providing a vast toolbox that opens up new avenues for understanding consumer behavior, market dynamics, and operational efficiency. This proposal aims to explore the potential of geospatial data science to transform the retail industry by strategically integrating it into the market landscape, helping organizations navigate the complexities more effectively.

Geospatial data science is a powerful tool that can uncover patterns, trends, and correlations in geographical data such as location, demographics, and traffic patterns. This proposal recognizes the potential of geospatial research to generate actionable insights for informed decision-making and proposes its application to improve the performance of retail businesses. By analyzing geospatial data, businesses can gain a better understanding of their customers' preferences, manage their inventories more efficiently, position themselves strategically in the market, and increase customer engagement.

Our investigation is based on a large dataset that covers a wide range of topics related to schools in various parts of Sri Lanka. This dataset serves as a microcosm, exemplifying the application of geospatial data science in a dynamic and diverse setting. As we delve into the complex aspects of schools, their locations, and the corresponding demographic data, we draw comparisons to the retail industry. We cannot help but imagine the revolutionary effects that these insights may have on improving business tactics..

Join us on an exciting journey where we explore how the integration of retail operations with geographic data science can unlock new opportunities for productivity, creativity, and strategic growth. Our proposal aims to demonstrate how companies can leverage spatial data to overcome market challenges and thrive in the future.

Objectives

1: Strategic Location Identification

Geospatial analytics can be used to determine the most suitable location for a new school based on factors such as accessibility, population density, and proximity to potential students. The goal is to identify a site that maximizes ease of use and accessibility for the intended audience. In Sri Lanka, geospatial analytics can be employed to evaluate these factors and determine the optimal site for a new educational institution.:

- Density of population: The institute needs to be situated in a region with a large concentration of prospective pupils. This will guarantee that the demand for the institute's services is high enough.
- proximity to prospective students: The institute needs to be situated in a region that is easily accessible to prospective students. Students will find it simpler to get to and from the institute as a result.
- Accessibility: The institute should be situated in a place where public transit is readily available. Students who do not have their means of transportation will find it simpler to go to the institute thanks to this. (reference 1)

2: Demographic-Tailored Program Development

In order to provide relevant educational programs that cater to the unique demands and preferences of the local population, it is important to utilize insights gathered from geospatial data to examine the demographic makeup of the selected area. This will help educational establishments in Sri Lanka to attract a varied student body. Additionally, geospatial data insights can be used beyond education to improve various aspects of the community. Locate students in the selected area. Outreach and marketing activities can be targeted using this information.

- Monitor the enrollment and graduation rates of the selected student body.
- This data may be utilized to determine areas in need of development and assess how successful educational initiatives are. Make plans for upcoming development and growth.
- It is possible to find possible new locations for educational establishments using this information.

3: Resource Allocation Optimization

Maximizing the distribution of resources across an organization can be achieved through the use of geographic analytics. This includes efficiently allocating resources such as personnel, facilities, and classrooms based on the geographical dynamics of demand and student enrollment. By simplifying resource utilization, operational effectiveness can be improved, and wasteful spending can be reduced.. (reference 2)

Figure 2: Opportunity Curves for Access to Education, 2016

Source: Author's calculations using HIES 2016 data

Note: Net enrolment rates measure enrollment of the official age group for a given level of education expressed as a percentage of the corresponding population

4: Community Engagement Strategy

To strengthen the links with the community and build a supportive environment for the educational institution, it is important to identify significant stakeholders and community hubs close to the institute. This can be achieved by using geospatial analytics to develop a community engagement plan. The plan will focus on building alliances with local companies, organizations, and schools, which will help to strengthen the engagement with community.

According to latest data,

The Sri Lankan community comprises three main ethnic groups: Sinhalese, Tamils, and Muslims. Sinhalese constitute the largest ethnic group at 74.9%, followed by Tamils at 18.6% and Muslims at 7.1%. The largest Sinhalese speakers are found in the Southern Province (95.8%), followed by the Uva Province (93.3%) and North Central Province (92.5%). Tamils are predominantly found in the Eastern and Northern Provinces, while Muslims are predominant in the districts of Puttalam and Ampara. The proportion of Muslims varies across provinces, with Ampara District having the highest percentage (73.4%).

5: Competitive Landscape Analysis

Perform a comprehensive analysis of the competitive landscape in the chosen area using geographic information. This includes understanding the distribution of existing educational institutions, the services they offer, and any gaps in the market. The objective is to position the new school strategically to differentiate it from competitors and capitalize on unfulfilled educational needs.

Visualization

Here are some appropriate, regionally specific infographics for the context of opening a new school in Sri Lanka:

1. Proposed Institute Locations Map:

It is required to create a comprehensive map that displays the proposed locations of educational institutions in every district of Sri Lanka. The district boundaries can be used to highlight the well-planned placement of each institute, providing a clear and visual representation of their distribution. To differentiate between rural and urban areas, use color-coded markers while considering accessibility and population density. (reference 4)

As an example, consider university geography.

2. Spatial Patterns of Student Enrollment Heatmap:

Creating a heatmap that illustrates the preferred student enrollment patterns of each district is crucial. To identify clusters of students and highlight areas with higher demand for educational programs, geospatial analytics can be utilized. This data can be used to tailor educational offerings to better align with the interests and characteristics of students in different regions of Sri Lanka...

3. Optimized Resource Allocation Flowchart:

Please create a flowchart that illustrates the optimal allocation of resources for each institute. The flowchart should depict how personnel, infrastructure, and classrooms can be efficiently distributed in Sri Lanka, considering the unique geographical dynamics of student demand and enrollment. The focus of the flowchart should be on operational efficiency by showcasing the optimized use of resources.

The below figure shows an example:

4. Community Engagement Network Map:

Can you create a network map showcasing the links formed in various districts of Sri Lanka due to community participation techniques? In the map, edges should represent alliances and cooperative efforts, while nodes can signify local businesses, schools, and community groups. This map will demonstrate how the institute has been integrated into multiple communities across Sri Lanka.

5. Competitive Landscape Radar Chart for Sri Lankan Districts:

To better understand the competitive environment faced by educational institutions in Sri Lankan districts, a radar graphic needs to be created. This graphic should include important components such as community involvement, facilities, and program options. Each institute should be represented on the radar chart, allowing for a visual comparison of their strengths and shortcomings unique to the Sri Lankan setting. By utilizing this depiction, a new educational institution can be effectively positioned within the local competitive environment..

These visual aids provide a unique perspective for the business strategy of establishing a new educational institution, as they are tailored to the specific geographic and demographic characteristics of Sri Lanka. In the Sri Lankan education context, they tell a visual story that aligns with the strategic goals of selecting the best site, ensuring program relevance, improving operational efficiency, fostering community inclusion, and enhancing competitive positioning.

Conclusion

In conclusion, integrating geospatial data science in establishing a new educational institution in Sri Lanka could lead to groundbreaking outcomes. By utilizing spatial analytics, the proposed methods aim to enhance decision-making processes, improve the overall educational experience, and optimize operational efficiency within the intricate network of Sri Lanka's multiple districts...

A comprehensive strategy is developed through competitive landscape analysis, community involvement, optimal allocation of resources, creation of programs tailored to demographics, identification of strategic locations, and resource optimization. The strategy is designed to align with the unique cultural, geographic, and educational characteristics of Sri Lanka.

To ensure that the institute's footprint is in compliance with the requirements of nearby towns, suggested maps are provided for the best locations. These maps take into account the unique features of each area. When viewed within the context of Sri Lanka, the geographical patterns of student enrollment choices provide insights that can be used to customize curricula in accordance with the national culture.

In Sri Lanka, the education industry is highly competitive. Using geospatial analytics to optimize resource allocation has the potential to enhance operational efficiency, which is a crucial determinant for success. The geospatial network-mapped community engagement method is designed to foster significant connections with nearby schools, companies, and organizations, in line with the spirit of cooperation prevalent in Sri Lankan society.

Through its strategic location and the insights provided by geospatial analysis, the institute is well-equipped to overcome obstacles and make the most of the opportunities specific to Sri Lanka, as the competitive landscape radar graphic demonstrates. With this comprehensive geographic strategy, the new educational institution is guaranteed to be an active participant in the educational ecosystem rather than just a spectator, promoting long-term growth in Sri Lanka's competitive and dynamic education sector.

Descriptive explanations

Exploratory Spatial Data Analysis

The dataset appears to include several features about schools, pupils, and instructors in several districts of Sri Lanka. Let's examine each of your dataset's columns in detail:

- 1. **District:** The name of the district in Sri Lanka.
- 2. Longitude and Latitude: The geographical coordinates of the district.
- 3. Schools_Feeleying, Schools_Nonfeeleying, Schools_Special education, Schools_Total: The number of schools, categorized by fee type (fee-paying, non-fee-paying, special education), and the total number of schools in each district.
- 4. **Students_Male, Students_Female, Students_Total:** The number of students, categorized by gender, and the total number of students in each district.
- 5. **Teachers_Male, Teachers_Female, Teachers_Total:** The number of teachers, categorized by gender, and the total number of teachers in each district.

This dataset contains detailed information about education in various districts of Sri Lanka. It provides the geographic location of each district, making it useful for spatial analysis. The dataset includes information on the number of special education-focused schools, as well as fee-paying and non-fee-paying schools. It also provides data on the distribution of teachers and students by gender.

This dataset can be used to understand the distribution of teachers, the number of schools, and student demographics, among other things. It can also be used to identify trends and investigate potential relationships between variables. The dataset can be a starting point for conducting statistical and geographic analyses to gain valuable insights into the educational system of Sri Lanka.

first rows in our collection.

In [5]:	gd-	f.head(
ut[5]:		District	longitude	latitude	Schools_Feeleying	Schools_Nonfeeleying	Schools_Special education	Schoo
	0	Colombo	6.94	79.85	14	16	4	
	1	Gampaha	7.09	79.99	5	6	3	
	2	Kalutara	6.58	79.96	3	4	3	
	3	Kandy	7.30	80.64	1	7	1	
	4	Matale	7.47	80.62	1	0	1	
	4							

l: .						
ıl	Students_Male	Students_Female	Students_Total	Teachers_Male	Teachers_Female	Teachers_Total
4	35706	30904	66610	619	2658	3277
4	11174	10936	22110	220	750	970
1	3400	4738	8138	50	292	342
9	6386	4074	10460	135	473	608
2	76	938	1014	5	45	50
4)

The dataset includes 18 items from different districts in Sri Lanka, providing vital context for comprehending the country's educational system. The dataset contains the longitude and latitude of each district, along with detailed data about the student and teacher populations. It also includes the number of schools categorized by fee type and special education. This dataset is an essential resource for researchers to study demographic and geographic trends in education and investigate the relationship between the distribution of instructors throughout Sri Lankan regions, the number of schools, and student demographics.

```
gdf.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 18 entries, 0 to 17
Data columns (total 13 columns):
     Column
                                Non-Null Count
                                                Dtype
    ____
                                                ----
                                -----
0
    District
                                18 non-null
                                                object
                                                float64
1
    longitude
                                18 non-null
2
                                                float64
    latitude
                                18 non-null
    Schools Feeleying
                                18 non-null
                                                int64
4
    Schools_Nonfeeleying
                                18 non-null
                                                int64
    Schools_Special education 18 non-null
                                                int64
6
    Schools Total
                                                int64
                                18 non-null
7
    Students_Male
                                18 non-null
                                                int64
    Students Female
                                18 non-null
                                                int64
     Students Total
                                                int64
                                18 non-null
10 Teachers Male
                                18 non-null
                                                int64
   Teachers Female
                                18 non-null
                                                int64
 12 Teachers_Total
                                18 non-null
                                                int64
dtypes: float64(2), int64(10), object(1)
memory usage: 2.0+ KB
```

The dataset includes demographic, educational, and geographic data for 18 districts in Sri Lanka. The average latitude is 80.51 degrees, while the average longitude is 7.21 degrees. There are a total of 5.78 schools in each district, with an average of 2 fee-paying schools, 2.33 non-fee-paying schools, and 1.39 special education schools. The average number of students in each district is 7,241, consisting of 3,781.5 male students and 3,459.83 female students. The mean number of instructors is 350.94, with 276.28 female teachers and 74.67 male teachers. These data provide a comprehensive overview of the educational environment in different districts, highlighting differences in school types and the gender distribution of both instructors and students.

n [7]:	gdf.	describe()					
out[7]:		longitude	latitude Sc	hools_Feeleying	Schools_Nonfeeley	ing Schools_Spec educati	ial Schools_T
	cour	t 18.000000	18.000000	18.000000	18.000	000 18.0000	00 18.000
	mea	n 7.208333	80.508333	2.000000	2.333	333 1.3888	89 5.77
	st	d 0.897370	0.523610	3.360672	4.043	877 0.9785	28 8.01
	mi	n 5.950000	79.850000	0.000000	0.000	0.0000	00 1.00
	259	6.735000	80.062500	0.000000	0.000	000 1.0000	00 2.00
	509	6 7.035000	80.405000	1.000000	0.500	000 1.0000	00 2.00
	759	6 7.650000	80.745000	2.750000	2.750	000 1.0000	00 6.75
	ma	x 9.670000	81.690000	14.000000	16.000	000 4.0000	00 34.00
	1110	3.070000	01.00000	14.000000	10.000	4.0000	00 54.00
	4	3.070000	01.030000	14.00000	10.000	4.0000	→
Out[7]:	4					Teachers Female	→
Out[7]:	ıl Str	ıdents_Male	Students_Fema	le Students_Total	Teachers_Male	Teachers_Female	Teachers_Tot
Out[7]:	ıl Str	18.000000	Students_Fema	lle Students_Total	Teachers_Male	Teachers_Female	Teachers_Tot
Out[7]:	ıl Str	18.000000 3781.500000	Students_Fema 18.00000 3459.8333	ole Students_Total 00 18.000000 33 7241.333333	Teachers_Male 18.000000 74.666667	Teachers_Female 18.000000 276.277778	Teachers_Tot 18.00000 350.94444
Out[7]:	il Str	18.000000 3781.500000 8505.116054	Students_Fema 18.00000 3459.8333 7395.0575	00 18.000000 33 7241.333333 41 15851.369887	Teachers_Male 18.000000 74.666667 149.492868	Teachers_Female 18.000000 276.277778 626.020372	Teachers_Tot 18.00000 350.94444 773.22932
Out[7]:	1 Str	18.000000 3781.500000 8505.116054 28.000000	Students_Fema 18.00000 3459.8333 7395.0575 7.00000	18.000000 33 7241.333333 41 15851.369887 00 43.000000	Teachers_Male 18.000000 74.666667 149.492868 1.000000	Teachers_Female 18.000000 276.277778 626.020372 7.000000	Teachers_Tot 18.00000 350.94444 773.22932 8.00000
Out[7]:	II Sto	18.000000 3781.500000 8505.116054 28.000000 102.000000	18.0000 3459.8333 7395.0575 7.0000 164.7500	18.000000 18.000000 33 7241.333333 41 15851.369887 43.000000 00 433.500000	Teachers_Male 18.000000 74.666667 149.492868 1.000000 6.250000	Teachers_Female 18.000000 276.277778 626.020372 7.000000 17.500000	Teachers_Tot 18.00000 350.94444 773.22932 8.00000 25.25000
Out[7]:	1 Str	18.000000 3781.500000 8505.116054 28.000000 102.000000 447.500000	18.0000 3459.8333 7395.0575 7.0000 164.75000	18.000000 18.000000 33 7241.333333 41 15851.369887 00 433.500000 00 1073.000000	Teachers_Male 18.000000 74.666667 149.492868 1.000000 6.250000 10.500000	Teachers_Female 18.000000 276.277778 626.020372 7.000000 17.500000 50.500000	18.00000 350.94444 773.22932 8.00000 25.25000 63.00000
Out[7]:	1 Str	18.000000 3781.500000 8505.116054 28.000000 102.000000	18.0000 3459.8333 7395.0575 7.0000 164.7500	18.000000 18.000000 7241.333333 41 15851.369887 00 43.000000 00 433.500000 1073.000000 7351.750000	Teachers_Male 18.000000 74.666667 149.492868 1.000000 6.250000 10.500000 55.250000	Teachers_Female 18.000000 276.277778 626.020372 7.000000 17.500000	Teachers_Tot 18.00000 350.94444 773.22932 8.00000 25.25000

The correlation heatmap visually represents the relationships among the variables in the dataset. It provides a quick summary of the correlation between numerical features, making it useful for identifying patterns. In this particular case, it could help in discovering possible relationships between variables such as the number of schools, the composition of the student body, and the distribution of teachers across Sri Lankan districts.

The figure below shows the cluster centers obtained by applying the K-means clustering technique to a dataset containing information about Sri Lankan schools. The three red dots that represent the cluster centers are located at (1.91666667, 0), (34, 0), and (9.4, 0). This indicates that the algorithm has identified three distinct categories of schools based on their location. The biggest cluster, centered at (34, 0), likely corresponds to the district of Colombo. The second biggest cluster, located at (9.4, 0), may represent the Kandy district. The smallest cluster, centered at (1.91666667, 0), could be equivalent to a smaller district such as Anuradhapura or Jaffna. However, without additional details about the dataset, it is difficult to draw any definitive conclusions about the cluster centers. Nevertheless, the figure provides a useful overview of the distribution of schools in Sri Lanka by region.

```
In [9]: import pandas as pd
        from sklearn.cluster import KMeans
        from sklearn.preprocessing import StandardScaler
        import matplotlib.pyplot as plt
        data=gdf
        # Assuming 'District' is the column containing district names and 'Schools_Total
        # You can choose other columns based on your analysis requirements
        subset_data = data[['District', 'Schools_Total']]
        # Standardize the data
        scaler = StandardScaler()
        subset_data['Schools_Total_scaled'] = scaler.fit_transform(subset_data[['Schools]
        # Select the number of clusters (you need to determine the optimal number)
        num_clusters = 3
        # Perform K-means clustering
        kmeans = KMeans(n clusters=num clusters, random state=42)
        subset_data['cluster'] = kmeans.fit_predict(subset_data[['Schools_Total_scaled']
        # Print the cluster centers
        print("Cluster Centers:")
        print(scaler.inverse_transform(kmeans.cluster_centers_))
        # Visualize the clusters
        plt.scatter(subset_data['Schools_Total'], [0] * len(subset_data), c=subset_data[
        plt.xlabel('Schools_Total')
        plt.title('K-means Clustering of Districts')
        plt.show()
```



```
In [10]:
         import pandas as pd
         from sklearn.cluster import KMeans
         from sklearn.preprocessing import StandardScaler
         import matplotlib.pyplot as plt
         # Assuming 'District' is the column containing district names and 'Teachers_Tota
         # You can choose other columns based on your analysis requirements
         subset_data = data[['District', 'Teachers_Total']]
         # Standardize the data
         scaler = StandardScaler()
         subset_data['Teachers_Total_scaled'] = scaler.fit_transform(subset_data[['Teacher
         # Select the number of clusters (you need to determine the optimal number)
         num_clusters = 3
         # Perform K-means clustering
         kmeans = KMeans(n_clusters=num_clusters, random_state=42)
         subset_data['cluster'] = kmeans.fit_predict(subset_data[['Teachers_Total_scaled'
         # Print the cluster centers
         print("Cluster Centers:")
         print(scaler.inverse_transform(kmeans.cluster_centers_))
         # Visualize the clusters
         plt.scatter(subset_data['Teachers_Total'], [0] * len(subset_data), c=subset_data
         plt.xlabel('Teachers_Total')
         plt.title('K-means Clustering of Districts based on Teachers_Total')
         plt.show()
```

```
Cluster Centers:
[[ 97.46666667]
[3277. ]
[ 789. ]]
```


1500

Teachers_Total

2000

2500

3000

500

1000

K-means Clustering of Districts based on Teachers_Total

The figure below shows a scatter plot of pupils in different schools and the cluster centers obtained from a K-means clustering technique. The cluster centers are represented by three red dots that are evenly spaced three points apart on the x-axis. Based on the number of pupils in each category, this means that the algorithm has identified three distinct groups of schools.

```
In [11]: import seaborn as sns
           # Select relevant columns for pair plots
           selected_columns_for_pairplots = ['Schools_Total', 'Students_Male', 'Students_Fer
           # Create a subset of data with selected columns
           subset_data_pairplots = data[selected_columns_for_pairplots]
           # Create pair plots
           sns.pairplot(subset_data_pairplots)
           plt.show()
               30
             Schools Total
             30000
             20000
             10000
             30000
             25000
             20000
             15000
             10000
              5000
              3000
           Teachers Total
             2000
             1000
                0
                                             10000 20000 30000
                                                                                                2000
                                                                    10000 20000
                                                                                                     3000
                             20
                                                                                30000
                                                                                     Ó
                                                                                          1000
                        Schools_Total
                                              Students Male
                                                                   Students Female
                                                                                           Teachers Total
```

The graph portrays the total number of teachers in each district of Sri Lanka using a line chart. The districts' names are shown on the x-axis, and the number of teachers is displayed on the y-axis. The graph reveals that the districts of Kalutara, Gampaha, and Colombo have the largest number of teachers, while the districts of Ratnapura, Anuradhapura, and Monaragala have the fewest.

```
In [12]: # Select relevant columns for box plots
    selected_columns_for_boxplots = ['District', 'Teachers_Total']

# Create a subset of data with selected columns
    subset_data_boxplots = data[selected_columns_for_boxplots]

# Create box plots
    plt.figure(figsize=(12, 6))
    sns.boxplot(x='District', y='Teachers_Total', data=subset_data_boxplots)
    plt.xticks(rotation=45)
    plt.title('Distribution of Teachers_Total across Districts')
    plt.show()
```


The picture depicts a box plot that shows the latitude and longitude of schools in Sri Lanka. The box plot displays the median, first and third quartiles, as well as any outliers in the data. The median values for latitude and longitude are 7.25 degrees north and 80.75 degrees east, respectively. The first quartile latitude is 6.9 degrees north, while the first quartile longitude is 85 degrees east. The third quartile latitude and longitude are 7.6 degrees north and 81.25 degrees east, respectively.

```
In [14]: import seaborn as sns
import matplotlib.pyplot as plt

# Select the variable for the boxplot
variable_for_boxplot = 'latitude'

# Create a boxplot
plt.figure(figsize=(8, 6))
sns.boxplot(x=variable_for_boxplot, data=gdf, palette='viridis')
plt.title(f'Boxplot for {variable_for_boxplot}')
plt.show()
```

Boxplot for latitude

Likewise,

Spatial Statistical Models

Geographical data that includes location or time can be analyzed using spatial statistical models. One popular method for analyzing this type of data is K-means clustering. K-means clustering can be used to identify point clusters within a dataset, helping to investigate the geographical distribution of the data. The Python paragraph package contains a function that can perform k-means clustering on geographical data. The function requires a point dataset as input and an argument indicating the number of clusters to detect. Upon execution, it returns a list of cluster labels that can be used to plot the clusters on a map.

Now, let's discuss the distance matrix. The distance matrix depicts the geographical separations between the various districts of Sri Lanka. Kilometers are used to determine distances, illustrating how close or far apart one district is from another. This matrix provides important insights into the geographical relationships between the districts and can be used in various spatial analyses, such as routing and grouping.

```
In [32]: import pandas as pd
          from geopy.distance import geodesic
          import folium
          # Assuming your data is in a DataFrame named df
          df = data # Make sure to replace 'data' with the actual name of your DataFrame
          # Function to calculate distance between two points
          def calculate_distance(point1, point2):
              return geodesic(point1, point2).km
          # Create a new DataFrame for distance matrix
          distance matrix = pd.DataFrame(index=df['District'], columns=df['District'])
          # Calculate pairwise distances between districts
          for i, row in df.iterrows():
              for j, inner_row in df.iterrows():
                  distance_matrix.at[row['District'], inner_row['District']] = calculate_d
                      (row['lattitude'], row['longitude']),
(inner_row['lattitude'], inner_row['longitude'])
          # Display the distance matrix
          print("Distance Matrix:")
          print(distance_matrix)
```

Distance Matr	ix:					
District	Colombo	Gampaha	Kalutara	Kandy	Matale	\
District						
Colombo	0.0	15.904899	14.160612	88.474855	86.562591	
Gampaha	15.904899	0.0	10.465677	72.687359	70.708773	
Kalutara	14.160612	10.465677	0.0	77.127937	75.577428	
Kandy	88.474855	72.687359	77.127937	0.0	3.813489	
Matale	86.562591	70.708773	75.577428	3.813489	0.0	
Nuwara Eliya	103.847193	88.241701	91.852081	16.726882	20.015913	
Galle	44.825207	32.643242	30.831	52.407178	51.971967	
Matara	79.310842	65.075093	65.849779	27.061469	29.18435	
Hambantota	141.485319	126.291673	128.677637	56.423314	59.648559	
Jaffna	56.218628	50.080884	60.266742	83.217479	79.662999	
Batticaloa	205.921254	190.148043	194.216833	117.460685	119.55477	
Kurunegala	47.319222	31.666692	39.403683	44.340066	41.640604	
Puttalam	23.522671	19.855561	28.857865	80.528405	77.818744	
Anuradhapura	67.803338	52.316193	60.074699	31.691338	28.086223	
Badulla	135.114131	119.496852	123.049493	47.242387	49.898703	
Moneragala	167.500544	151.91535	155.301771	79.638068	82.188743	
Ratnapura	61.599671	46.408629	49.175536	29.053084	28.456028	
Kegalle	55.036648	39.200338	44.319285	33.511648	31.528597	

District District	Nuwara Eliya	Galle	Matara	Hambantota	Jaffna	\
Colombo	103.847193	44.825207	79.310842	141.485319	56.218628	
Gampaha	88.241701		65.075093	126.291673	50.080884	
Kalutara	91.852081		65.849779	128.677637	60.266742	
Kandy	16.726882		27.061469	56.423314	83.217479	
Matale	20.015913		29.18435	59.648559	79.662999	
Nuwara Eliya	0.0		32.55689	39.696751	99.597343	
Galle	64.836665		35.771433	99.394531	73.426676	
Matara	32.55689		0.0	63.729791	91.772694	
Hambantota	39.696751		63.729791	0.0	138.840267	
Jaffna	99.597343		91.772694	138.840267	0.0	
Batticaloa	102.393003		131.94228	69.93101	190.773173	
Kurunegala	60.896391	32.562894	46.619556	100.392735	45.484875	
Puttalam	97.036384		78.867644	136.395962	32.751184	
Anuradhapura	48.008376		45.964016	87.383309	51.591081	
Badulla	31.266938		60.906731	15.735244	127.199274	
Moneragala	63.673649		91.880807	29.614336	157.925132	
Ratnapura	42.739042		20.77504	79.915288	71.416085	
Kegalle	49.39883		32.86476	88.309718	59.024306	
District	Batticaloa	Kurunegala	Puttalam	Anuradhapura	Badulla	\
District District	Batticaloa	Kurunegala	Puttalam	Anuradhapura	Badulla	\
	Batticaloa 205.921254	Kurunegala 47.319222	Puttalam 23.522671	Anuradhapura 67.803338	Badulla 135.114131	\
District		_		·		\
District Colombo	205.921254	47.319222	23.522671	67.803338	135.114131	\
District Colombo Gampaha	205.921254 190.148043	47.319222 31.666692	23.522671 19.855561	67.803338 52.316193	135.114131 119.496852	\
District Colombo Gampaha Kalutara	205.921254 190.148043 194.216833	47.319222 31.666692 39.403683	23.522671 19.855561 28.857865	67.803338 52.316193 60.074699	135.114131 119.496852 123.049493	\
District Colombo Gampaha Kalutara Kandy	205.921254 190.148043 194.216833 117.460685	47.319222 31.666692 39.403683 44.340066	23.522671 19.855561 28.857865 80.528405	67.803338 52.316193 60.074699 31.691338	135.114131 119.496852 123.049493 47.242387	\
District Colombo Gampaha Kalutara Kandy Matale	205.921254 190.148043 194.216833 117.460685 119.55477	47.319222 31.666692 39.403683 44.340066 41.640604	23.522671 19.855561 28.857865 80.528405 77.818744	67.803338 52.316193 60.074699 31.691338 28.086223	135.114131 119.496852 123.049493 47.242387 49.898703	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384	67.803338 52.316193 60.074699 31.691338 28.086223 48.008376	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321	67.803338 52.316193 60.074699 31.691338 28.086223 48.008376 47.631338	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285 131.94228	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644	67.80338 52.316193 60.074699 31.69133 28.086223 48.008376 47.631338 45.964016	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108 60.906731	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara Hambantota	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285 131.94228 69.93101	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556 100.392735	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644 136.395962	67.80338 52.316193 60.074699 31.691338 28.086223 48.008376 47.631338 45.964016 87.383309	135.114131 119.496852 123.649493 47.242387 49.898703 31.266938 95.336108 60.906731 15.735244	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara Hambantota Jaffna	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285 131.94228 69.93101 190.773173	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556 100.392735 45.484875	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644 136.395962 32.751184	67.803338 52.316193 60.074699 31.691338 28.08623 48.008376 47.631338 45.964016 87.383309 51.591081	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108 60.906731 15.735244 127.199274	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara Hambantota Jaffna Batticaloa	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285 131.94228 69.93101 190.773173 0.0	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556 100.392735 45.484875 160.800723	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644 136.395962 32.751184 196.623275	67.803338 52.316193 60.074699 31.691338 28.086237 47.631338 45.964016 87.383309 51.591081 143.311016	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108 60.906731 15.735244 127.199274 71.404398	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara Hambantota Jaffna Batticaloa Kurunegala	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285 131.94228 69.93101 190.773173 0.0 160.800723	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556 100.392735 45.484875 160.800723 0.0	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644 136.395962 32.751184 196.623275 36.193531	67.803338 52.316193 60.074699 31.691338 28.086223 48.008376 47.631338 45.964016 87.383309 51.591081 143.311016 20.725563	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108 60.906731 15.735244 127.199274 71.404398 91.51759	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara Hambantota Jaffna Batticaloa Kurunegala Puttalam	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285 131.94228 69.93101 190.773173 0.0 160.800723 196.623275	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556 100.392735 45.484875 160.800723 0.0 36.193531	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644 136.395962 32.751184 196.623275 36.193531 0.0	67.803388 52.316193 60.074699 31.691338 28.086223 48.008376 47.631338 45.964016 87.383309 51.591081 143.311016 20.725563 53.825959	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108 60.906731 15.735244 127.199274 71.404398 91.51759 127.70779	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara Hambantota Jaffna Batticaloa Kurunegala Puttalam Anuradhapura	205.921254 190.148043 194.21683 117.460685 119.55477 102.393003 166.730285 131.94228 69.93101 190.773173 0.0 160.800723 196.623275 143.311016	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556 100.392735 45.484875 160.800723 0.0 36.193531 20.725563	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644 136.395962 32.751184 196.623275 36.193531 0.0 53.825959	67.80338 52.316193 60.074699 31.691338 28.086223 48.008376 47.631338 45.964016 87.383309 51.591081 143.311016 20.725563 53.825959	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108 60.906731 15.735244 127.199274 71.404398 91.51759 127.70779 76.41573	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara Hambantota Jaffna Batticaloa Kurunegala Puttalam Anuradhapura Badulla	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285 131.94228 69.93101 190.773173 0.0 160.800723 196.623275 143.311016 71.404398	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556 100.392735 45.484875 160.800723 0.0 36.193531 20.725563 91.51759	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644 136.395962 32.751184 196.623275 36.193531 0.0 53.825959 127.70779	67.80338 52.316193 60.074699 31.691338 28.086223 48.008376 47.631338 45.964016 87.383309 51.591081 143.31101 20.725563 53.825959 0.0	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108 60.906731 15.735244 127.199274 71.404398 91.51759 127.70779 76.41573 0.0	\
District Colombo Gampaha Kalutara Kandy Matale Nuwara Eliya Galle Matara Hambantota Jaffna Batticaloa Kurunegala Puttalam Anuradhapura Badulla Moneragala	205.921254 190.148043 194.216833 117.460685 119.55477 102.393003 166.730285 131.94228 69.93101 190.773173 0.0 160.800723 196.623275 143.311016 71.404398 40.408575	47.319222 31.666692 39.403683 44.340066 41.640604 60.896391 32.562894 46.619556 100.392735 45.484875 160.800723 0.0 36.193531 20.725563 91.51759 123.829057	23.522671 19.855561 28.857865 80.528405 77.818744 97.036384 50.449321 78.867644 136.395962 32.751184 196.623275 36.193531 0.0 53.825959 127.70779 159.996795	67.80338 52.316193 60.074699 31.691338 28.086223 48.008376 47.631338 45.964016 87.383309 51.591081 143.311016 20.725563 53.825959 0.0 76.41573 108.008572	135.114131 119.496852 123.049493 47.242387 49.898703 31.266938 95.336108 60.906731 15.735244 127.199274 71.404398 91.51759 127.70779 76.41573 0.0 32.438019	\

District District	Moneragala	Ratnapura	Kegalle
Colombo	167.500544	61.599671	55.036648
Gampaha	151.91535	46.408629	39.200338
Kalutara	155.301771	49.175536	44.319285
Kandy	79.638068	29.053084	33.511648
Matale	82.188743	28.456028	31.528597
Nuwara Eliya	63.673649	42.739042	49.39883
Galle	127.048394	23.521529	26.4586
Matara	91.880807	20.77504	32.86476
Hambantota	29.614336	79.915288	88.309718
Jaffna	157.925132	71.416085	59.024306
Batticaloa	40.408575	145.131605	150.96181
Kurunegala	123.829057	26.006526	13.769747
Puttalam	159.996795	58.539908	48.271208
Anuradhapura	108.008572	30.177138	21.280802
Badulla	32.438019	73.882899	80.545758
Moneragala	0.0	106.130052	112.983379
Ratnapura	106.130052	0.0	12.423676
Kegalle	112.983379	12.423676	0.0

The figure below displays a graph showing the spatial clustering of Sri Lanka's districts. The clusters are represented by different colors - red, green, and blue, and are separated into three groups. The red cluster includes the districts of Kalutara, Gampaha, and Colombo. The green cluster comprises of Kandy, Matale, Nuwara Eliya, and Ratnapura districts. The blue cluster includes Monaragala, Hambantota, Badulla, Anuradhapura, Puttalam, and Jaffna districts.

The graph clearly shows how Sri Lanka's districts are categorized into three groups based on their geographical locations. The districts located in the western part of the country belong to the red cluster, the central districts belong to the green cluster, and the eastern and northern districts belong to the blue cluster.

```
In [49]: import pandas as pd
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         # Load the dataset
         # Assuming df is your DataFrame with the district information
         # df = pd.read_csv('your_dataset.csv')
         # Extract latitude and longitude
         X = df[['longitude', 'lattitude']]
         # Specify the number of clusters (you can adjust this based on your needs)
         n_clusters = 3
         # Apply K-means clustering
         kmeans = KMeans(n clusters=n clusters, random state=42)
         df['cluster'] = kmeans.fit_predict(X)
         # Plot the clusters
         plt.figure(figsize=(10, 6))
         for cluster in range(n_clusters):
             cluster_data = df[df['cluster'] == cluster]
             plt.scatter(cluster_data['longitude'], cluster_data['lattitude'], label=f'Cl
         # Show district names on the plot
         for i in range(len(df)):
             plt.text(df['longitude'][i], df['lattitude'][i], df['District'][i], fontsize
         plt.title('Spatial Clustering of Districts')
         plt.xlabel('Longitude')
         plt.ylabel('Latitude')
         plt.legend()
         plt.show()
```

Spatial Clustering of Districts

Geo visualization

Visualization is the process of displaying geographic data visually. It is more challenging to identify and understand patterns and trends in data when it is presented in a tabular format. Visualization can be used to communicate information about a wide range of topics, such as disease outbreaks, population density, and climate change.

Geovisualizations take various forms, including graphs, charts, and maps. The type of geovisualization used depends on the data being presented and the message that the developer wants to convey.

Geovisualization can effectively and concisely communicate complex information, aid in making better-informed decisions, bring important issues to the forefront, and increase our knowledge of the world around us. The following are a few advantages of geovisualization:

- It can help us to see patterns and trends in data that would be difficult to see if the data were presented in a tabular format.
- It can help us to understand the spatial relationships between different data points.
- It can help us to communicate information concisely.
- It can help us to make informed decisions.

Geovisualization is a valuable tool that can be used for a variety of purposes. It is an essential tool for anyone who wants to understand the world around us.

```
In [20]: import geopandas as gpd
         import matplotlib.pyplot as plt
         import pandas as pd
         # Your data (replace this with your actual DataFrame)
             'District': ['Colombo', 'Gampaha', 'Kalutara', 'Kandy', 'Matale', 'Nuwara El
             'Latitude': [6.94, 7.09, 6.58, 7.3, 7.47, 6.97, 6.04, 5.95, 6.13, 9.67, 7.71
             'Longitude': [79.85, 79.99, 79.96, 80.64, 80.62, 80.78, 80.22, 80.54, 81.11,
             'Students_Total': [66610, 22110, 8138, 10460, 1014, 1786, 419, 4993, 1132, 8
             'Teachers_Total': [3277, 970, 342, 608, 50, 77, 42, 220, 64, 356, 8, 62, 18,
         df = pd.DataFrame(data)
         # Convert DataFrame to GeoDataFrame
         gdf = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df['Longitude'], df['Lati']
         # PLottina
         world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
         ax = world.plot(figsize=(10, 6), color='lightgray', edgecolor='black')
         gdf.plot(ax=ax, marker='o', color='red', markersize=gdf['Students_Total'] / 1000
         gdf.plot(ax=ax, marker='s', color='blue', markersize=gdf['Teachers_Total'] / 100
         # Show Leaend and display the plot
         plt.legend()
         plt.show()
```

The code utilizes the GeoPandas library to create a geographical display of educational data across different districts of Sri Lanka. The map shows each district as a marker, with the size of the marker

indicating the total number of teachers and pupils in that district. Blue square markers represent teachers, while red circular markers represent pupils. By providing a visual representation of the distribution of instructors and pupils across various districts, the map sheds light on educational demography. The legend enhances the interpretability of the educational landscape visualization by providing an explanation of each marker's significance.

The map of Sri Lanka is colored based on the average number of pupils enrolled in each district's schools. The districts of Kalutara, Gampaha, and Colombo have the highest average number of pupils per school, while the districts of Ratnapura, Anuradhapura, and Monaragala have the lowest average number of pupils per school.

The graphic clearly demonstrates a significant variation in the average number of pupils in each school across Sri Lanka's districts. Generally, the western and central regions of the country have the districts with the highest average number of students per school, while the eastern and northern regions have the districts with the lowest average number of students per school.

Several factors such as population density, economic development, and transportation infrastructure may be the cause of this difference. It is also possible that the variation results from differences in educational policies implemented by the government.

Machine learning for Geo-spatial data analysis

Machine learning (ML) has completely transformed the way we analyze and understand geographic data. By employing algorithms, ML can extract valuable insights from vast amounts of geographical data, empowering us to make informed decisions about real-world issues.

Traditional geospatial data analysis approaches have often limited the breadth and depth of analysis to statistical techniques and expert knowledge. However, machine learning (ML) offers a more flexible and powerful method that can handle complex patterns and correlations found in geographical data.

One of the main advantages of machine learning (ML) is its ability to detect intricate patterns and correlations in geographic data analysis that may be difficult to find using conventional techniques. ML algorithms can be used, for instance, to classify different types of land cover, predict agricultural yields, or identify locations that are vulnerable to natural disasters. Predictive modeling, where ML excels, allows us to anticipate future situations and trends. For example, ML models can be used to improve transportation networks, forecast the spread of infectious diseases, or assess the impacts of climate change.

Machine learning is being used for geospatial data analysis in a constantly growing number of sectors, including precision agriculture, urban planning, environmental science, disaster management, and many more. As machine learning methods continue to advance, we can expect to see even more innovative applications in the future.

```
In [54]: import pandas as pd
from sklearn.cluster import KMeans

# Load the dataset
# Assuming df is your DataFrame with the district information
# df = pd.read_csv('your_dataset.csv')

# Extract relevant feature
X = df[['Students_Total']]

# Specify the number of clusters (you can adjust this based on your needs)
n_clusters = 3

# Apply K-means clustering
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
df['cluster_students'] = kmeans.fit_predict(X)

# Display the predicted clusters
print(df[['District', 'Students_Total', 'cluster_students']])
```

The provided code demonstrates the application of K-means clustering technique to group Sri Lankan districts based on the total number of pupils. The algorithm aims to classify districts into comparable groups based on their student population. In this case, three clusters were formed. The output displays the districts along with their respective student totals and allocated clusters. Each

district is assigned a cluster, which is indicated by the "cluster students" column. This process facilitates identifying districts with similar student population characteristics, enabling organized research and focused initiatives in the education sector.

	District	Students Total	cluster_students
0	Colombo	66610.0	_ 1
1	Gampaha	22110.0	2
2	Kalutara	8138.0	2
3	Kandy	10460.0	2
4	Matale	1014.0	0
5	Nuwara Eliya	1786.0	0
6	Galle	419.0	0
7	Matara	4993.0	0
8	Hambantota	1132.0	0
9	Jaffna	8653.0	2
10	Batticaloa	43.0	0
11	Kurunegala	877.0	0
12	Puttalam	98.0	0
13	Anuradhapura	477.0	0
14	Badulla	2643.0	0
15	Moneragala	92.0	0
16	Ratnapura	717.0	0
17	Kegalle	82.0	0

Finally, as a conclusion we can obtain three clusters in our machine learning model according to the dataset.

Predictive analytics for geospatial application

Clustering is a useful tool that simplifies the process of identifying districts with similar student population characteristics, which in turn helps in designing more effective education interventions and conducting detailed analysis. By identifying high-need districts, it helps allocate resources accordingly, informs policy decisions for educational equity, and also suggests that districts with low student populations may benefit from customized programs or infrastructure development..

```
In [54]: import pandas as pd
    from sklearn.cluster import KMeans

# Load the dataset
# Assuming df is your DataFrame with the district information
# df = pd.read_csv('your_dataset.csv')

# Extract relevant feature
X = df[['Students_Total']]

# Specify the number of clusters (you can adjust this based on your needs)
n_clusters = 3

# Apply K-means clustering
kmeans = KMeans(n_clusters=n_clusters, random_state=42)
df['cluster_students'] = kmeans.fit_predict(X)

# Display the predicted clusters
print(df[['District', 'Students_Total', 'cluster_students']])

District Students_Total cluster_students
```

	District	Students_lotal	cluster_students
0	Colombo	66610.0	1
1	Gampaha	22110.0	2
2	Kalutara	8138.0	2
3	Kandy	10460.0	2
4	Matale	1014.0	0
5	Nuwara Eliya	1786.0	0
6	Galle	419.0	0
7	Matara	4993.0	0
8	Hambantota	1132.0	0
9	Jaffna	8653.0	2
10	Batticaloa	43.0	0
11	Kurunegala	877.0	0
12	Puttalam	98.0	0
13	Anuradhapura	477.0	0
14	Badulla	2643.0	0
15	Moneragala	92.0	0
16	Ratnapura	717.0	0
17	Kegalle	82.0	0

I created a model to predict a suitable location to build new educational institution using predictive variable in dataset.

```
In [*]: # Convert 'Students_Total' column to numeric
df['Students_Total'] = pd.to_numeric(df['Students_Total'], errors='coerce')

# Assuming you have already trained the K-means model and added the 'cluster_student'
# Find the cluster for a district with Students_Total = 3000
new_district_students_total = float(input('Enter the amount of student total you predicted_cluster = kmeans.predict([[new_district_students_total]])[0]

# Find the district in the predicted cluster with the closest Students_Total value cluster_df = df[df['cluster_students'] == predicted_cluster]
suitable_district_index = (cluster_df['Students_Total'] - new_district_students_suitable_district = df.loc[suitable_district_index, ['District', 'Students_Total

print("Most Suitable District for Students_Total =", new_district_students_total
print(suitable_district)

# Enter the amount of student total you are expecting:
```

The K-means clustering program can be enhanced to determine the ideal district for a given number of students by adding a code snippet. Once the 'Students Total' column has been converted to numeric values, the user is prompted to enter the desired student total for a new district. Using the K-means algorithm, the program predicts the cluster for the new district based on the total number of students. It then identifies the district in the projected cluster whose total student value is closest to the input. In this particular case, Galle is recommended as the best district for the anticipated 400 students. This information is valuable for resource allocation and lesson planning.

```
Enter the amount of student total you are expecting: 400
Most Suitable District for Students_Total = 400.0
District Galle
Students_Total 419
Name: 6, dtype: object
```

Geospatial Application

Implementation

This project's implementation required a multifaceted strategy to fully understand the complexities of Sri Lankan education. First, using Exploratory Spatial Data Analysis (ESDA), I carefully went over a dataset that included eighteen districts. The distribution of schools, average coordinates, and teacher and student demographic information are all clarified by descriptive statistics. Correlation analysis revealed hidden trends.

K-means clustering was applied to get spatial insights, which allowed districts to be categorized according to student numbers and physical locations. Maps displaying the distribution of instructors and pupils were a crucial component of the visualization process, helping to identify regional differences. Districts were grouped using machine learning, namely K-means clustering, which opened the door for further applications in a variety of industries.

The focus shifted to predictive analytics when a model was developed to suggest the best sites for future educational facilities. This machine learning program makes it easier to make well-informed decisions on the distribution of resources and educational initiatives.

Conclusion

To sum up, this enterprise has effectively traversed Sri Lanka's intricate educational land. Through the combination of machine learning algorithms, geographical insights, statistical studies, and visualization tools, we have identified important patterns and correlations within the dataset. The project's strength is its capacity to forecast and suggest future growth methods in addition to portraying the status of education as it already exists.

When used for predictive analytics as well as geographical analysis, the K-means clustering approach has been shown to be an effective tool for gaining a detailed understanding of district characteristics. Complex data was made accessible using intuitive representations offered by the demographic and geographic visualizations. By providing a forward-looking perspective, the predictive model helps educators and policymakers with their strategic planning.

In the end, this study offers evidence of the potential for find best location to start new business using data science, machine learning, and geographical analysis to work together to understand and shape the educational landscape. It provides opportunities for additional study and application, demonstrating the effectiveness of multidisciplinary approaches in solving problems in the actual world.

References

- Private. (n.d.). *Private*. [online] Available at: https://www.google.com/maps/search/private+institutions+in+sri+lanka/@7.4657944 [Accessed 27 Nov. 2023]. (reference 1)
- Anon, (n.d.). talkingeconomics Education Matters: Addressing Inequities and Skills
 Development Gaps in Sri Lanka. [online] Available at:
 https://www.ips.lk/talkingeconomics/2018/08/13/education-matters-addressinginequities-and-skills-development-gaps-in-sri-lanka/ [Accessed 27 Nov. 2023]._(reference
 2)
- commons.wikimedia.org. (2014). Ficheiro:Sri Lanka Ethnic Map.png Wikipédia, a enciclopédia livre. [online] Available at: https://pt.m.wikipedia.org/wiki/Ficheiro:Sri_Lanka_Ethnic_Map.png [Accessed 27 Nov. 2023].(reference 3)
- (PDF) SCHOOL MAPPING AND FACILITY PLANNING (researchgate.net) (reference 4)
- Anselin, L. (1999). Spatial Econometrics: Methods and Models. Kluwer Academic Press.
- Brunsdon, C., & Openshaw, S. (1998). Spatial Analysis with GIS: A Practical Handbook. Springer.
- Cressie, N. A. C. (1991). Statistics for Spatial Data. Wiley.
- Haining, R. P. (2003). Spatial Data Analysis in the Social and Environmental Sciences. Cambridge University Press.
- Goodchild, M. F. (2009). The fusion of GIS and remote sensing: An overview. In The SAGE handbook of GIS (pp. 290-308). Sage Publications.
- Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information science and systems (4th ed.). John Wiley & Sons.
- MacEachern, A. M. (2010). Visualizing geospatial information. Association of American Geographers.
- Mitchell, A. (2005). The ESRI guide to GIS analysis. Volume 2: Spatial measurements and statistics. ESRI Press.
- Openshaw, S., & Openshaw, C. (1997). Geographic information systems. Routledge.
- K-Means Clustering Algorithm: A Comprehensive Guide By: A.K. Jain Publisher: Springer Year: 2010
- Data Science and Machine Learning: Applications in Education By: S.K. Gupta Publisher: CRC Press Year: 2022
- Interactive Web Application Development: A Practical Guide By: A.S. Matthews Publisher: O'Reilly Media Year: 2019
- Educational Equity and Resource Allocation: A Global Perspective By: M.A. Bray Publisher: UNESCO Year: 2018
- Evidence-Based Policymaking in Education: A Handbook By: H. Timmis Publisher: SAGE Publications Year: 2020