

# GOVERNO DO ESTADO DO RIO DE JANEIRO SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA – FAETEC



## FACULDADE DE EDUCAÇÃO TECNOLÓGICA DO ESTADO DO RIO DE JANEIRO

# Exercícios de Fundamentos de Programação - Professor Leonardo Vianna Matrizes

#### Questão 01:

A seguir é apresentado um código que manipula uma matriz de inteiros. Considerando a chamada realizada pela função *main*, solicita-se o que é exibido pelo programa ao longo de sua execução.

```
#include <stdio.h>
void questao02 (int x, int y, int m[x][y]) {
 int i, j;
 for (j=0;j< y;j++) {
   m[0][j] = j;
 for (i=1;i< x;i++) {
   for (j=0;j< y;j++) {
     m[i][j] = m[i-1][j]+i+j;
 }
 exibirMatriz (x,y,m);
 for (i=0;i<x;i++) {
   for (j=i+1;j< y;j++) {
     m[i][j] = m[i+1][j]-1;
 exibirMatriz (x,y,m);
void main ()
 int matriz[6][6];
 questao02 (6, 6, matriz);
```

<u>Nota</u>: Considerem a existência da função *exibirMatriz* que, conforme implementada em nossas aulas, exibe o conteúdo de uma matriz, organizada em linhas e colunas.

## Questão 02:

Implementar uma função que, dadas uma matriz M de inteiros (com lin linhas e col colunas) e duas colunas c1 e c2, inverta a ordem (por linha) dos elementos compreendidos entre estas colunas.

Exemplo:

|   | c1 |   |   | <i>c</i> 2 |   |   |
|---|----|---|---|------------|---|---|
| 1 | 2  | 4 | 8 | 6          | 2 | 0 |
| 9 | 7  | 4 | 0 | 3          | 1 | 0 |
| 8 | 8  | 4 | 1 | 2          | 0 | 1 |
| 4 | 7  | 2 | 1 | 5          | 4 | 8 |
| 2 | 1  | 2 | 4 | 0          | 1 | 0 |
| 1 | 8  | 7 | 2 | 1          | 3 | 6 |
| 9 | 4  | 5 | 2 | 0          | 3 | 2 |
| 0 | 1  | 3 | 5 | 6          | 9 | 8 |
| 7 | 4  | 1 | 2 | 3          | 5 | 0 |



| 1 | 6 | 8 | 4 | 2 | 2 | 0 |
|---|---|---|---|---|---|---|
| 9 | 3 | 0 | 4 | 7 | 1 | 0 |
| 8 | 2 | 1 | 4 | 8 | 0 | 1 |
| 4 | 5 | 1 | 2 | 7 | 4 | 8 |
| 2 | 0 | 4 | 2 | 1 | 1 | 0 |
| 1 | 1 | 2 | 7 | 8 | 3 | 6 |
| 9 | 0 | 2 | 5 | 4 | 3 | 2 |
| 0 | 6 | 5 | 3 | 1 | 9 | 8 |
| 7 | 3 | 2 | 1 | 4 | 5 | 0 |

 $\underline{\text{Nota}}$ : se as colunas c1 e c2 forem inválidas, nada será realizado e o valor 0 retornado pela função; caso contrário, a inversão dos elementos será feita e o código 1 retornado.

### Questão 03:

O conceito de simetria de matrizes considera a diagonal principal como referencial. Porém, supondo que se deseja determinar se uma matriz é simétrica em relação às colunas, pede-se o desenvolvimento de uma função que, dada uma matriz de ordem n, verifique se é ou não "simétrica verticalmente".

#### Questão 04:

Considere a existência de uma matriz M, contendo números reais, com x linhas e y colunas. Pede-se a implementação de uma função que, a partir de M, gere dois vetores, conforme descritos a seguir:

- V1, com x posições, de forma que cada posição i do vetor armazene quantos elementos da linha i de M são múltiplos do primeiro valor desta linha (excluindo o próprio primeiro número);
- V2, com y posições, de forma que cada posição i do vetor armazene quantos elementos da coluna i de M são múltiplos do primeiro valor desta coluna (excluindo o próprio primeiro número).