Bioinformatic approaches to regulatory genomics and epigenomics

376-1347-00L - 2022 | week 06

Pierre-Luc Germain

Plan

- Quick things (see slack):
 - Polls
 - New channel for discuss project ideas
 - New packages to install
- Debriefing on last week's assignment
- Overview of transcription factors and their binding specificity
- Motifs and related analysis

A few extra questions raised

- Where do the files we export get saved? Can you move/copy files in your folders for them to be accessible by a new Markdown document?
- Why do we have to save the things from ENCODE with .gz in the end and not just e.g. .bed?
- What exactly are seqlevels?
- Why are overlaps asymmetric?

Why are overlaps asymmetric?

Why are overlaps asymmetric?

Set A:

Set B:

How many elements of A overlap elements of B? \rightarrow 2/3

How many elements of B overlap elements of A? \rightarrow 1/3

Intersection & overlap: The example of bivalent domains

H3K4me3: H3K27me3: method one (overlapsAny): find the H3K4me3 peaks that overlap a H3K27me3 domain method two (intersect): find the regions that are covered by both H3K4me3 and H3K27me3

https://youtu.be/SMtWvDbfHLo

Additional regulatory elements

Enhancer-driven gene regulation

What is a transcription factor?

Proteins capable of both:

- 1) Binding DNA in a sequence-specific manner
- 2) Regulating transcription

(Lambert et al., Cell 2018)

Anatomy of a transcription factor (TF)

Review (Cell 2018)

The Human Transcription Factors

Samuel A. Lambert ^{1, 9}, Arttu Jolma ^{2, 9}, Laura F. Campitelli ^{1, 9}, Pratyush K. Das ³, Yimeng Yin ⁴, Mihai Albu ², Xiaoting Chen ⁵, Jussi Taipale ^{3, 4, 6} \bowtie \bowtie , Timothy R. Hughes ^{1, 2} \bowtie \bowtie , Matthew T. Weirauch ^{5, 7, 8} \bowtie

Proteins capable of both:

- 1) Binding DNA in a sequence-specific manner
- 2) Regulating transcription

According to their census, humans have 1570 transcription factors

78 TFs with Multiple DBDs

713 TFs with C2H2 ZF arrays

779 TFs with a single DBD

Transcription factors are highly conserved

DNA binding domains show much higher conservation than effector domains

(Soto et al., Molecular Cell 2021)

1554 Human TFs

(Lambert et al., Cell 2018)

Sequence-specificity

E.g. The LexA bacterial TF recognizes the consensus sequence

5'-GAACAnnTGTTC-3'

An example of TF motif degeneracy: Nuclear hormone receptors

Variations in DNA binding specificity

Multiple DBDs

Oct-1 can bind to different DNA sites using different arrangements of its two DNA-binding domains (91,92); motifs from (24)

POU_{HD} site POU_s site POU site

Multiple Modes of DNA Binding

Elk1 can bind both as a monomer or as a dimer (95)

Gcn4 dimers can bind to bipartite

sites with half-sites separated by variable-length spacers (82); motifs

from (73,74)

Alternate Structural Conformations

D

SREBP can bind to different DNA sites by adopting alternate structural conformations (96,97); motifs from (44)

(Siggers and Gordân, NAR 2014)

Cooperative binding

A

Multi-Protein Recognition Codes

Enhanced binding to composite site

(Siggers and Gordân, NAR 2014)

Two examples of Cooperative binding

OCT4 (POU5f1) binding upon differentiation

(Merino et al., Structure 2014)

Clock-Bmal-Cry during circadian rythm

Motif analysis

- Motif discovery aims at finding new motifs that are enriched in a set of sequences (e.g. peaks)
 versus a background
 - Example method: meme (Meme suite)
 - Bioconductor method: rGADEM package (see also the memes package)
- **Motif enrichment** analysis aims at finding **known** motifs that are enriched in a set of sequences (e.g. peaks) versus a background
 - Example method: AME (Meme suite)
 - Bioconductor method: PWMEnrich package
- Motif scanning aims at finding the occurrences of known motifs in a set of sequences (methodologically fairly simple – which method doesn't matter much)
 - Example method: fimo (Meme suite)
 - Bioconductor method: searchSeq function of the TFBSTools package

Assignment

- Choose a transcription factor, e.g. CREB1, REST, GATA5, EGR1, GCR (or any of your choice that has a motif and available ChIPseq data)
- Download the (e.g. Mouse) peaks for that factor (whatever cell type)
- Identify the instances of the factor's motif
- Answer the following questions:
 - Of all the peaks, what proportion contains a motif for the factor?
 - Expected form of an answer: of the XX peaks, XX (XX%) contain a motif
 - Of all instances of that motif in the genome, what proportion is bound by the factor (i.e. has a peak)?
 - Expected form of an answer: of the XX motif instances, XX (XX%) overlap a peak

Don't forget to render your markdown and push it as assignment.html!