(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 21 March 2002 (21.03.2002)

PCT

(10) International Publication Number WO 02/22080 A2

(51) International Patent Classification⁷:

A61K

(21) International Application Number: PCT/US01/28861

(22) International Filing Date:

14 September 2001 (14.09.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/233,180

15 September 2000 (15.09.2000) US

- (71) Applicant (for all designated States except US): MERCK & CO., INC. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): EMINI, Emilio, A. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). YOUIL, Rima [AU/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). BETT, Andrew, J.

[CA/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). CHEN, Ling [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). KASLOW, David, C. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). SHIVER, John, W. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). TONER, Timothy, J. [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). CASIMIRO, Daniel, R. [PH/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

- (74) Common Representative: MERCK & CO., INC.; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

[Continued on next page]

(54) Title: ENHANCED FIRST GENERATION ADENOVIRUS VACCINES EXPRESSING CODON OPTIMIZED HIV1-GAG, POL, NEF AND MODIFICATIONS

Modifications made to the current acenovector backbone in the generation of the new

(57) Abstract: First generation adenoviral vectors and associated recombinant adenovirus-based HIV vaccines which show enhanced stability and growth properties and greater cellular-mediated immunity are described within this specification. These adenoviral vectors are utilized to generate and produce through cell culture various adenoviral-based HIV-1 vaccines which contain HIV-1 gag, HIV-1 pol and/or HIV-1 nef polynucleotide pharmaceutical products, and biologically relevant modifications thereof. These adenovirus vaccines, when directly introduced into living vertebrate tissue, preferably a mammalian host such as a human or a non-human mammal of commercial or domestic veterinary importance, express the HIV1- Gag, Pol and/or Nef protein or biologically modification thereof, inducing a cellular immune response which specifically recognizes HIV-1. The exemplified polynucleotides of the present invention are synthetic DNA molecules encoding HIV-1 Gag, encoding codon optimized HIV-1 Pol, derivatives of optimized HIV-1 Pol (including constructs wherein protease, reverse transcriptase, RNAse H and integrase activity of HIV-1 Pol is inactivated), HIV-1 Nef and derivatives of optimized HIV-1 Nef, including nef mutants which effect wild type characteristics of Nef, such as myristylation and down regulation of host CD4. The adenoviral vaccines of the present invention, when administered alone or in a combined modality regime, will offer a prophylactic advantage to previously uninfected individuals and/or provide a therapeutic effect by reducing viral load levels within an infected individual, thus prolonging the asymptomatic phase of HIV-1 infection.

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

TITLE OF THE INVENTION ENHANCED FIRST GENERATION ADENOVIRUS VACCINES EXPRESSING CODON OPTIMIZED HIV1-GAG, POL, NEF AND MODIFICATIONS

5 CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit, under 35 U.S.C. §119(e), of U.S. provisional applications 60/233,180, 60/279,056, and Attorney Docket 20867PV2 (serial number unassigned), filed September 15, 2000, March 27, 2001, and September 7, 2001, respectively.

10

15

20

25

30

35

STATEMENT REGARDING FEDERALLY-SPONSORED R&D Not Applicable

REFERENCE TO MICROFICHE APPENDIX

Not Applicable

FIELD OF THE INVENTION

The present invention relates to recombinant, replication-deficient first generation adenovirus vaccines found to exhibit enhanced growth properties and greater cellular-mediated immunity as compared to other replication-deficient vectors. The invention also relates to the associated first generation adenoviral vectors described herein, which, through the incorporation of additional 5' adenovirus sequence, enhance large scale production efficiency of the recombinant, replicationdefective adenovirus described herein. Another aspect of the instant invention is the surprising discovery that the intron A portion of the human cytomegalovirus (hCMV) promoter constitutes a region of instability in adenoviral vector constructs. Removal of this region from adenoviral expression constructs results in greatly improved vector stability. Therefore, improved vectors expressing a transgene under the control of an intron A-deleted CMV promoter constitute a further aspect of this invention. These adenoviral vectors are useful for generating recombinant adenovirus vaccines against human immunodeficiency virus (HIV). In particular, the first generation adenovirus vectors disclosed herein are utilized to construct and generate adenovirus-based HIV-1 vaceines which contain HIV-1 Gag, HIV-1 Pol and/or HIV-1 Nef polynucleotide pharmaceutical products, and biologically active modifications thereof. Host administration of the recombinant, replication-deficient adenovirus vaccines described herein results in expression of HIV-1 Gag, HIV-1- Pol and/or Nef protein or

immunologically relevant modifications thereof, inducing a cellular immune response which specifically recognizes HIV-1. The exemplified polynucleotides of the present invention are synthetic DNA molecules encoding codon optimized HIV-1 Gag, HIV-1 Pol, derivatives of optimized HIV-1 Pol (including constructs wherein protease, reverse transcriptase, RNAse H and integrase activity of HIV-1 Pol is inactivated), HIV-1 Nef, and derivatives of optimized HIV-1 Nef, including nef mutants which effect wild type characteristics of Nef, such as myristylation and down regulation of host CD4. The HIV adenovirus vaccines of the present invention, when administered alone or in a combined modality and/or prime/boost regimen, will offer a prophylactic advantage to previously uninfected individuals and/or provide a therapeutic effect by reducing viral load levels within an infected individual, thus prolonging the asymptomatic phase of HIV-1 infection.

BACKGROUND OF THE INVENTION

5

10

15

20

25

30

Human Immunodeficiency Virus-1 (HIV-1) is the etiological agent of acquired human immune deficiency syndrome (AIDS) and related disorders. HIV-1 is an RNA virus of the Retroviridae family and exhibits the 5'LTR-gag-pol-env-LTR 3' organization of all retroviruses. The integrated form of HIV-1, known as the provirus, is approximately 9.8 Kb in length. Each end of the viral genome contains flanking sequences known as long terminal repeats (LTRs). The HIV genes encode at least nine proteins and are divided into three classes; the major structural proteins (Gag, Pol, and Env), the regulatory proteins (Tat and Rev); and the accessory proteins (Vpu, Vpr, Vif and Nef).

The gag gene encodes a 55-kilodalton (kDa) precursor protein (p55) which is expressed from the unspliced viral mRNA and is proteolytically processed by the HIV protease, a product of the *pol* gene. The mature p55 protein products are p17 (matrix), p24 (capsid), p9 (nucleocapsid) and p6.

The *pol* gene encodes proteins necessary for virus replication; a reverse transcriptase, a protease, integrase and RNAse H. These viral proteins are expressed as a Gag-Pol fusion protein, a 160 kDa precursor protein which is generated via a ribosomal frame shifting. The viral encoded protease proteolytically cleaves the Pol polypeptide away from the Gag-Pol fusion and further cleaves the Pol polypeptide to the mature proteins which provide protease (Pro, P10), reverse transcriptase (RT, P50), integrase (IN, p31) and RNAse H (RNAse, p15) activities.

The *nef* gene encodes an early accessory HIV protein (Nef) which has been shown to possess several activities such as down regulating CD4 expression, disturbing T-cell activation and stimulating HIV infectivity.

The *env* gene encodes the viral envelope glycoprotein that is translated as a 160-kilodalton (kDa) precursor (gp160) and then cleaved by a cellular protease to yield the external 120-kDa envelope glycoprotein (gp120) and the transmembrane 41-kDa envelope glycoprotein (gp41). Gp120 and gp41 remain associated and are displayed on the viral particles and the surface of HIV-infected cells.

5

10

15

20

25

30

35

The *tat* gene encodes a long form and a short form of the Tat protein, a RNA binding protein which is a transcriptional transactivator essential for HIV-1 replication.

The *rev* gene encodes the 13 kDa Rev protein, a RNA binding protein. The Rev protein binds to a region of the viral RNA termed the Rev response element (RRE). The Rev protein promotes transfer of unspliced viral RNA from the nucleus to the cytoplasm. The Rev protein is required for HIV late gene expression and in turn, HIV replication.

Gp120 binds to the CD4/chemokine receptor present on the surface of helper T-lymphocytes, macrophages and other target cells in addition to other co-receptor molecules. X4 (macrophage tropic) virus show tropism for CD4/CXCR4 complexes while a R5 (T-cell line tropic) virus interacts with a CD4/CCR5 receptor complex. After gp120 binds to CD4, gp41 mediates the fusion event responsible for virus entry. The virus fuses with and enters the target cell, followed by reverse transcription of its single stranded RNA genome into the double-stranded DNA via a RNA dependent DNA polymerase. The viral DNA, known as provirus, enters the cell nucleus, where the viral DNA directs the production of new viral RNA within the nucleus, expression of early and late HIV viral proteins, and subsequently the production and cellular release of new virus particles. Recent advances in the ability to detect viral load within the host shows that the primary infection results in an extremely high generation and tissue distribution of the virus, followed by a steady state level of virus (albeit through a continual viral production and turnover during this phase), leading ultimately to another burst of virus load which leads to the onset of clinical AIDS. Productively infected cells have a half life of several days, whereas chronically or latently infected cells have a 3-week half life, followed by non-productively infected cells which have a long half life (over 100 days) but do not significantly contribute to day to day viral loads seen throughout the course of disease.

Destruction of CD4 helper T lymphocytes, which are critical to immune defense, is a major cause of the progressive immune dysfunction that is the hallmark of HIV infection. The loss of CD4 T-cells seriously impairs the body's ability to fight most invaders, but it has a particularly severe impact on the defenses against viruses, fungi, parasites and certain bacteria, including mycobacteria.

5

10

15

20

25

30

35

Effective treatment regimens for HIV-1 infected individuals have become available recently. However, these drugs will not have a significant impact on the disease in many parts of the world and they will have a minimal impact in halting the spread of infection within the human population. As is true of many other infectious diseases, a significant epidemiologic impact on the spread of HIV-1 infection will only occur subsequent to the development and introduction of an effective vaccine. There are a number of factors that have contributed to the lack of successful vaccine development to date. As noted above, it is now apparent that in a chronically infected person there exists constant virus production in spite of the presence of anti-HIV-1 humoral and cellular immune responses and destruction of virally infected cells. As in the case of other infectious diseases, the outcome of disease is the result of a balance between the kinetics and the magnitude of the immune response and the pathogen replicative rate and accessibility to the immune response. Pre-existing immunity may be more successful with an acute infection than an evolving immune response can be with an established infection. A second factor is the considerable genetic variability of the virus. Although anti-HIV-1 antibodies exist that can neutralize HIV-1 infectivity in cell culture, these antibodies are generally virus isolate-specific in their activity. It has proven impossible to define serological groupings of HIV-1 using traditional methods. Rather, the virus seems to define a serological "continuum" so that individual neutralizing antibody responses, at best, are effective against only a handful of viral variants. Given this latter observation, it would be useful to identify immunogens and related delivery technologies that are likely to elicit anti-HIV-1 cellular immune responses. It is known that in order to generate CTL responses antigen must be synthesized within or introduced into cells, subsequently processed into small peptides by the proteasome complex, and translocated into the endoplasmic reticulum/Golgi complex secretory pathway for eventual association with major histocompatibility complex (MHC) class I proteins. CD8⁺ T lymphocytes recognize antigen in association with class I MHC via the T cell receptor (TCR) and the CD8 cell surface protein. Activation of naive CD8⁺ T cells into activated effector or memory cells generally requires both TCR engagement of antigen as described above as well as engagement of costimulatory proteins. Optimal

induction of CTL responses usually requires "help" in the form of cytokines from CD4⁺ T lymphocytes which recognize antigen associated with MHC class II molecules via TCR and CD4 engagement.

5

10

15

20

25

30 .

35

European Patent Applications 0 638 316 (Published February 15, 1995) and 0 586 076 (Published March 9, 1994), (both assigned to American Home Products Corporation) describe replicating adenovirus vectors carrying an HIV gene, including *env* or *gag*. Various treatment regimens were used with chimpanzees and dogs, some of which included booster adenovirus or protein plus alum treatments.

Replication-defective adenoviral vectors harboring deletions in the E1 region are known, and recent adenoviral vectors have incorporated the known packaging repeats into these vectors; e.g., see EP 0 707 071, disclosing, *inter alia*, an adenoviral vector deleted of E1 sequences from base pairs 459 to 3328; and U.S. Patent No. 6,033,908, disclosing, *inter alia*, an adenoviral vector deleted of base pairs 459-3510. The packaging efficiency of adenovirus has been taught to depend on the number of incorporated individual A (packaging) repeats; *see*, *e.g.*, Gräble and Hearing, 1990 *J. Virol.* 64(5):2047-2056; Gräble and Hearing, 1992 *J. Virol.* 66(2):723-731.

Larder, et al., (1987, *Nature* 327: 716-717) and Larder, et al., (1989, *Proc. Natl. Acad. Sci.* 86: 4803-4807) disclose site specific mutagenesis of HIV-1 RT and the effect such changes have on *in vitro* activity and infectivity related to interaction with known inhibitors of RT.

Davies, et al. (1991, *Science* 252:, 88-95) disclose the crystal structure of the RNase H domain of HIV-1 Pol.

Schatz, et al. (1989, *FEBS Lett.* 257: 311-314) disclose that mutations Glu478Gln and His539Phe in a complete HIV-1 RT/RNase H DNA fragment results in defective RNase activity without effecting RT activity.

Mizrahi, et al. (1990, *Nucl. Acids. Res.* 18: pp. 5359-5353) disclose additional mutations Asp443Asn and Asp498Asn in the RNase region of the *pol* gene which also results in defective RNase activity. The authors note that the Asp498Asn mutant was difficult to characterize due to instability of this mutant protein.

Leavitt, et al. (1993, *J. Biol. Chem.* 268: 2113-2119) disclose several mutations, including a Asp64Val mutation, which show differing effect on HIV-1 integrase (IN) activity.

Wiskerchen, et al. (1995, *J. Virol*. 69: 376-386) disclose singe and double mutants, including mutation of aspartic acid residues which effect HIV-1 IN and viral replication functions.

It would be of great import in the battle against AIDS to produce a prophylactic- and/or therapeutic-based HIV vaccine which generates a strong cellular immune response against an HIV infection. The present invention addresses and meets these needs by disclosing a class of adenovirus vaccines which, upon host administration, express codon optimized and modified versions of the HIV-1 genes, gag, pol and nef. These recombinant, replication-defective adenovirus vaccines may be administered to a host, such as a human, alone or as part of a combined modality regimen and/or prime-boost vaccination regimen with components of the present invention and/or a distinct viral HIV DNA vaccine, non-viral HIV DNA vaccine, HIV subunit vaccine, an HIV whole killed vaccine and/or a live attenuated HIV vaccine.

SUMMARY OF THE INVENTION

5

10

The present invention relates to enhanced replication-defective recombinant adenovirus vaccine vectors and associated recombinant, replication-deficient 15 adenovirus vaccines which encode various forms of HIV-1 Gag, HIV-1 Pol, and/or HIV-1 Nef, including immunologically relevant modifications of HIV-1 Gag, HIV-1 Pol and HIV-1 Nef. The adenovirus vaccines of the present invention express HIV antigens and provide for improved cellular-mediated immune responses upon host administration. Potential vaccinees include but are not limited to primates and 20 especially humans and non-human primates, and also include any non-human mammal of commercial or domestic veterinary importance. An effect of the improved recombinant adenovirus-based vaccines of the present invention should be a lower transmission rate to previously uninfected individuals (i.e., prophylactic applications) and/or reduction in the levels of the viral loads within an infected 25 individual (i.e., therapeutic applications), so as to prolong the asymptomatic phase of HIV-1 infection. In particular, the present invention relates to adenoviral-based vaccines which encode various forms of codon optimized HIV-1 Gag (including but in no way limited to p55 versions of codon optimized full length (FL) Gag and tPA-Gag fusion proteins), HIV-1 Pol, HIV-1 Nef, and selected modifications of 30 immunological relevance. The administration, intracellular delivery and expression of these adenovirus vaccines elicit a host CTL and Th response. The preferred replication-defective recombinant adenoviral vaccine vectors include but are not limited to synthetic DNA molecules which (1) encode codon optimized versions of wild type HIV-1 Gag; (2) encode codon optimized versions of HIV-1 Pol; (3) encode 35 codon optimized versions of HIV-1 Pol fusion proteins; (4) encode codon optimized versions of modified HIV-1 Pol proteins and fusion proteins, including but not limited

to pol modifications involving residues within the catalytic regions responsible for RT, RNase and IN activity within the host cell; (5) encode codon optimized versions of wild type HIV-1 Nef; (6) codon optimized versions of HIV-1 Nef fusion proteins; and/or (7) codon optimized versions of HIV-1 Nef derivatives, including but not limited to nef modifications involving introduction of an amino-terminal leader sequence, removal of an amino-terminal myristylation site and/or introduction of dileucine motif mutations. The Nef-based fusion and modified proteins, disclosed within this specification and expressed from an adenoviral-based vector vaccine this specification, may possess altered trafficking and/or host cell function while retaining the ability to be properly presented to the host MHC I complex and in turn elicit a host CTL and Th response. Examples of HIV-1 Gag, Pol and/or Nef fusion proteins include but are not limited to fusion of a leader or signal peptide at the NH₂-teriminal portion of the viral antigen coding region. Such a leader peptide includes but is not limited to a tPA leader peptide.

5

10

15

20

25

30

35

The adenoviral vector utilized in construction of the HIV-1 Gag-, HIV-1 Poland/or HIV-1 Nef- based vaccines of the present invention may comprise any replication-defective adenoviral vector which provides for enhanced genetic stability of the recombinant adenoviral genome through large scale production and purification of the recombinant virus. In other words, an HIV-1 Gag-, Pol- or Nef-based adenovirus vaccine of the present invention is a purified recombinant, replicationdefective adenovirus which is shown to be genetically stable through multiple passages in cell culture and remains so during large scale production and purification procedures. Such a recombinant adenovirus vector and harvested adenovirus vaccine lends itself to large scale dose filling and subsequent worldwide distribution procedures which will be demanded of an efficacious monovalent or multivalent HIV vaccine. The present invention meets this basic requirement with description of a replication-defective adenoviral vector and vectors derived therefrom, at least partially deleted in E1, comprising a wildtype adenovirus cis-acting packaging region from about base pair 1 to between from about base pair 342 (more preferably, 400) to about base pair 458 of the wildtype adenovirus genome. A preferred embodiment of the instant invention comprises base pairs 1-450 of a wildtype adenovirus. In other preferred embodiments, the replication -defective adenoviral vector has, in addition thereto, a region 3' to the E1-deleted region comprising base pairs 3511-3523. Basepairs 342-450 (more particularly, 400-450) constitute an extension of the 5'region of previously disclosed vectors carrying viral antigens, particularly HIV antigens (see, e.g., PCT International Application PCT/US00/18332, published

January 11, 2001 (WO 01/02067), which claims priority to U.S. Provisional Application Serial Nos. 60/142,631 and 60/148,981, filed 7/6/1999 and 8/13/1999, respectively; these documents herein incorporated by reference. Applicants have found that extending the 5' region further into the E1 gene into the disclosed vaccine vectors incorporated elements found to be important in optimizing the packaging of the virus.

As compared to previous vectors not comprising basepairs from about 1 to between from about base pair 342 (more preferably, 400) to about base pair 458 of the wildtype adenovirus genome, vectors comprising the above region exhibited enhanced growth characteristics, with approximately 5-10 fold greater amplification rates, a more potent virus effect, allowing lower doses of virus to be used to generate equivalent immunity; and a greater cellular-mediated immune response than replication-deficient vectors not comprising this region (basepairs 1-450). Even more important, adenoviral constructs derived therefrom are very stable genetically in large-scale production, particularly those comprising an expression cassette under the control of a hCMV promoter devoid of intron A. This is because Applicants have surprisingly found that the intron A portion of the hCMV promoter constituted a region of instability when employed in adenoviral vectors. Applicants have, therefore, identified an enhanced adenoviral vector which is particularly suited for use in gene therapy and nucleotide-based vaccine-vectors which, favorably, lends itself to large scale propagation.

A preferred embodiment of this invention is a replication-defective adenoviral vector in accordance with the above description wherein the gene is inserted in the form of a gene expression cassette comprising (a) a nucleic acid encoding a protein or biologically active and/or immunologically relevant portion thereof; (b) a heterologous promoter operatively linked to the nucleic acid of part a); and, (c) a transcription terminator.

In preferred embodiments, the E1 gene, other than that contained within basepairs 1-450 or, alternatively, that contained within base pairs 1-450 and 3511-3523 has been deleted from the adenoviral vector, and the gene expression cassette has replaced the deleted E1 gene. In other preferred embodiments, the replication defective adenovirus genome does not have a functional E3 gene, or the E3 gene has been deleted. Most preferably, the E3 region is present within the adenoviral genome. Further preferred embodiments are wherein the gene expression cassette is in an E1 anti-parallel (transcribed in a 3' to 5' direction relative to the vector backbone)

orientation or, more preferably, an E1 parallel (transcribed in a 5' to 3' direction relative to the vector backbone) orientation.

5

10

15

20

25

30

35

Further embodiments relate to a shuttle plasmid vector comprising: an adenoviral portion and a plasmid portion, wherein said adenovirus portion comprises: a) a replication defective adenovirus genome, at least partially deleted in E1, comprising a wildtype adenovirus *cis*-acting packaging region from about base pair 1 to between from about base pair 342 (more preferably, 400) to about base pair 458 (preferably, 1-450) of the wildtype adenovirus genome and, preferably, in addition thereto, basepairs 3511-3523 of a wildtype adenovirus sequence; and b) a gene expression cassette comprising: (a) a nucleic acid encoding a protein or biologically active and/or immunologically relevant portion thereof; (b) a heterologous promoter operatively linked to the nucleic acid of part a); and (c) a transcription terminator and/or a polyadenylation site.

Other aspects of this invention include a host cell comprising said adenoviral vectors and/or said shuttle plasmid vectors; vaccine compositions comprising said vectors; and methods of producing the vectors comprising (a) introducing the adenoviral vector into a host cell which expresses adenoviral E1 protein, and (b) harvesting the resultant adenoviral vectors.

To this end, the present invention particularly relates to harvested recombinant, replication defective virus derived from a host cell, such as but not limited to 293 cells or PER.C6® cells, including but not limited to harvested virus related to any of the MRKAd5 vector backbones, with or without an accompanying transgene, including but not limited to the HIV-1 antigens described herein. An HIV-1 vaccine is represented by any harvested, recombinant adenovirus material which expresses any one or more of the HIV-1 antigens disclosed herein. This harvested material may then be purified, formulated and stored prior to host administration.

Another aspect of this invention is a method of generating a cellular immune response against a protein in an individual comprising administering to the individual an adenovirus vaccine vector comprising:

a) a recombinant, replication defective adenoviral vector, at least partially deleted in E1, comprising a wildtype adenovirus *cis*-acting adenovirus packaging region from about base pair 1 to between from about base pair 342 (more preferably, 400) to about base pair 458 (preferably, 1-450) and, preferably in addition thereto, base pairs 3511-3523 of a wildtype adenovirus sequence, and,

b) a gene expression cassette comprising:(i) a nucleic acid encoding a protein or biologically active and/or immunologically relevant portion thereof; (ii) a heterologous promoter operatively linked to the nucleic acid of part a); and (iii) a transcription terminator and/or a polyadenylation site.

5

10

15

20

25

30

35

In view of the efficacious nature of the adenoviral and/or DNA plasmid vaccines described herein, the present invention relates to all methodology regarding administration of one or more of these adenoviral and/or DNA plasmid vaccines to provide effective immunoprophylaxis, to prevent establishment of an HIV-1 infection following exposure to this virus, or as a post-HIV infection therapeutic vaccine to mitigate the acute HIV-1 infection so as to result in the establishment of a lower virus load with beneficial long term consequences. As discussed herein, such a treatment regimen may include a monovalent or multivalent composition, various combined modality applications, and/or a prime/boost regimen to as to optimize antigen expression and a concomitant cellular-mediated and/or humoral immune response upon inoculation into a living vertebrate tissue. Therefore, the present invention provides for methods of using the adenoviral and/or DNA plasmid vaccines disclosed herein within the various parameters disclosed herein as well as any additional parameters known in the art, which, upon introduction into mammalian tissue induces intracellular expression of the gag, pol and/or nef-based vaccines.

To this end, the present invention relates in part to methods of generating a cellular immune response in a vaccinee, preferably a human vaccinee, wherein the individual is given more than one administration of adenovirus vaccine vector, and it may be given in a regimen accompanied by the administration of a plasmid vaccine. The plasmid vaccine (also referred to herein as a "DNA plasmid vaccine" or "vaccine plasmid" comprises a nucleic acid encoding a protein or an immunologically relevant portion thereof, a heterologous promoter operably linked to the nucleic acid sequence, and a transcription terminator or a polyadenylation signal (such as bGH or SPA, respectively). There may be a predetermined minimum amount of time separating the administrations. The individual can be given a first dose of plasmid vaccine, and then a second dose of plasmid vaccine. Alternatively, the individual may be given a first dose of adenovirus vaccine, and then a second dose of adenovirus vaccine. In other embodiments, the plasmid vaccine is administered first, followed after a time by administration of the adenovirus vaccine. Conversely, the adenovirus vaccine may be administered first, followed by administration of plasmid vaccine after a time. In these embodiments, an individual may be given multiple doses of the same adenovirus serotype in either viral vector or plasmid form, or the virus may be of

differing serotypes. In the alternative, a viral antigen of interest can be first delivered via a viral vaccine other than an adenovirus-based vaccine, and then followed with the adenoviral vaccine disclosed. Alternative viral vaccines include but are not limited to pox virus and venezuelan equine encephilitis virus.

5

10

15

20

25

30

35

The present invention also relates to multivalent adenovirus vaccine compositions which comprise Gag, Pol and Nef components described herein; see, e.g., Example 29 and Table 25. Such compositions will provide for an enhanced cellular immune response subsequent to host administration, particularly given the genetic diversity of human MHCs and of circulating virus. Examples, but not limitations, include MRKAd5-vector based multivalent vaccine compositions which provide for a divalent (i.e., gag and nef, gag and pol, or pol and nef components) or a trivalent vaccine (i.e., gag, pol and nef components) composition. Such a mutlivalent vaccine may be filled for a single dose or may consist of multiple inoculations of each individually filled component; and may in addition be part of a prime/boost regimen with viral or non-viral vector vaccines as introduced in the previous paragraph. To this end, preferred compositions are MRKAd5 adenovirus used in combination with multiple, distinct HIV antigen classes. Each HIV antigen class is subject to sequence manipulation, thus providing for a multitude of potential vaccine combinations; and such combinations are within the scope of the present invention. The utilization of such combined modalities vaccine formulation and administration increase the probability of eliciting an even more potent cellular immune response when compared to inoculation with a single modality regimen.

The concept of a "combined modality" as disclosed herein also covers the alternative mode of administration whereby multiple HIV-1 viral antigens may be ligated into a proper shuttle plasmid for generation of a pre-adenoviral plasmid comprising multiple open reading frames. For example, a trivalent vector may comprise a gag-pol-nef fusion, in either a E3(-) or E3(+) background, preferably a E3 deleted backbone, or possibly a "2+1" divalent vaccine, such as a gag-pol fusion (i.e., codon optimized p55 gag and inactivated optimized pol; Example 29 and Table 25) within the same MRKAd5 backbone, with each open reading frame being operatively linked to a distinct promoter and transcription termination sequence. Alternatively, the two open reading frames may be operatively linked to a single promoter, with the open reading frames operatively linked by an internal ribosome entry sequence (IRES). Therefore, a multivalent vaccine delivered as a single, or possibly a second harvested recombinant, replication-deficient adenovirus is contemplated as part of the present invention.

Therefore, the adenoviral vaccines and plasmid DNA vaccines of this invention may be administered alone, or may be part of a prime and boost administration regimen. A mixed modality priming and booster inoculation scheme will result in an enhanced immune response, particularly if pre-existing anti-vector immune responses are present. This one aspect of this invention is a method of priming a subject with the plasmid vaccine by administering the plasmid vaccine at least one time, allowing a predetermined length of time to pass, and then boosting by administering the adenoviral vaccine. Multiple primings typically, 1-4, are usually employed, although more may be used. The length of time between priming and boost may typically vary from about four months to a year, but other time frames may be used. In experiments with rhesus monkeys, the animals were primed four times with plasmid vaccines, then were boosted 4 months later with the adenoviral vaccine. Their cellular immune response was notably higher than that of animals which had only received adenoviral vaccine. The use of a priming regimen may be particularly preferred in situations where a person has a pre-existing anti-adenovirus immune response.

5

10

15

20

25

30

35

It is an object of the present invention to provide for enhanced replication-defective recombinant adenoviral vaccine vector backbones. These recombinant adenoviral backbones may accept one or more transgenes, which may be passaged through cell culture for growth, amplification and harvest.

It is a further object to provide for enhanced replication-defective recombinant adenoviral vaccine vectors which encode various transgenes.

It is also an object of the present invention to provide for a harvested recombinant, replication-deficient adenovirus which shows enhanced growth and amplification rates while in combination with increased virus stability after continuous passage in cell culture. Such a recombinant adenovirus is particularly suited for use in gene therapy and nucleotide-based vaccine vectors which, favorably, lends itself to large scale propagation.

To this end, it is an object of the present invention to provide for (1) enhanced replication-defective recombinant adenoviral vaccine vectors as described herein which encode various forms of HIV-1 Gag, HIV-1 Pol, and/or HIV-1 Nef, including immunologically relevant modifications of HIV-1 Gag, HIV-1 Pol and HIV-1 Nef, and (2) harvested, purified recombinant replication-deficient adenovirus generated by passage of the adenoviral vectors of (1) through one or multiple passages through cell culture, including but not limited to passage through 293 cells or PER.C6[®] cells.

It is also an object of the present invention to provide for recombinant adenovirus harvested by one or multiple passages through cell culture. As relating to recombinant adenoviral vaccine vector, this recombinant virus is harvested and formulated for subsequent host administration.

5

10

15

20

25

30

35

It is also an object of the present invention to provide for replication-defective adenoviral vectors wherein at least one gene is inserted in the form of a gene expression cassette comprising (a) a nucleic acid encoding a protein or biologically active and/or immunologically relevant portion thereof; (b) a heterologous promoter operatively linked to the nucleic acid of part a); and, (c) a transcription terminator.

It is also an object of the present invention to provide for a host cell comprising said adenoviral vectors and/or said shuttle plasmid vectors; vaccine compositions comprising said vectors; and methods of producing the vectors comprising (a) introducing the adenoviral vector into a host cell which expresses adenoviral E1 protein, and (b) harvesting the resultant adenoviral vectors.

It is a further object of the present invention to provide for methods of generating

It is a further object of the present invention to provide for methods of generating a cellular immune response against a protein in an individual comprising administering to the individual an adenovirus vaccine vector comprising a) a replication defective adenoviral vector, at least partially deleted in E1, comprising a wildtype adenovirus cis-acting packaging region from about base pair 1 to between from about base pair 342 (more preferably, 400) to about 450 (preferably, 1-450) and, preferably, 3511-3523 of a wildtype adenovirus sequence, and, b) a gene expression cassette comprising:(i) a nucleic acid encoding a protein or biologically active and/or immunologically relevant portion thereof; (ii) a heterologous promoter operatively linked to the nucleic acid of part a); and (iii) a transcription terminator and/or a polyadenylation site.

It is also an object of the present invention to provide various alternatives for vaccine administration regimes, namely administration of one or more adenoviral and/or DNA plasmid vaccines described herein to provide effective immunoprophylaxis for uninfected individuals or a therapeutic treatment for HIV infected patients. Such processes include but are not limited to multivalent HIV-1 vaccine compositions, various combined modality regimes as well as various prime/boost alternatives. These methods of administration, relating to vaccine composition and/or scheduled administration, will increase the probability of eliciting an even more potent cellular immune response when compared to inoculation with a single modality regimen.

As used throughout the specification and claims, the following definitions and abbreviations are used:

"HAART" refers to -- highly active antiretroviral therapy --.

"first generation" vectors are characterized as being replication-defective.

They typically have a deleted or inactivated E1 gene region, and preferably have a deleted or inactivated E3 gene region as well.

"AEX" refers to Anion Exchange chromatography.

"QPA" refers to Quick PCR-based Potency Assay.

"bps" refers to basepairs.

"s" or "str" denotes that the transgene is in the E1 parallel or "straight" orientation.

"PBMCs" refers to peripheral blood monocyte cells.

"FL" refers to full length.

15

20

25

30

35

"FLgag" refers to a full-length optimized gag gene, as shown in Figure 2.

"Ad5-Flgag" refers to an adenovirus serotype 5 replication deficient virus which carries an expression cassette which comprises a full length optimized gag gene under the control of a CMV promoter.

"Promoter" means a recognition site on a DNA strand to which an RNA polymerase binds. The promoter forms an initiation complex with RNA polymerase to initiate and drive transcriptional activity. The complex can be modified by activating sequences such as enhancers or inhibiting sequences such as silencers.

"Leader" means a DNA sequence at the 5' end of a structural gene which is transcribed along with the gene. This usually results a protein having an N-terminal peptide extension, often referred to as a pro-sequences.

"Intron" means a section of DNA occurring in the middle of a gene which does not code for an amino acid in the gene product. The precursor RNA of the intron is exeised and is therefore not transcribed into mRNA not translated into protein.

"Immunologically relevant" or "biologically active" means (1) with regards to a viral protein, that the protein is capable, upon administration, of eliciting a measurable immune response within an individual sufficient to retard the propagation and/or spread of the virus and/or to reduce the viral load present within the individual; or (2) with regards to a nucleotide sequence, that the sequence is capable of encoding for a protein capable of the above.

"Cassette" refers to a nucleic acid sequence which is to be expressed, along with its transcription and translational control sequences. By changing the cassette, a vector can express a different sequence.

"bGHpA" refers to the bovine growth hormone transcription terminator/polyadenylation sequence.

"tPAgag" refers to a fusion between the leader sequence of the tissue plasminogen activator leader sequence and an optimized HIV gag gene, as exemplified in Figure 30A-B, whether in a DNA or adenovirus-based vaccine vector.

Where utilized, "IA" or "inact" refers to an <u>inactivated</u> version of a gene (e.g. IApol).

"MCS" is "multiple cloning site".

5

10

15

20

25

30

35

In general, adenoviral constructs, gene constructs are named by reference to the genes contained therein. For example:

"Ad5 HIV-1 gag", also referred to as the original HIV-1 gag adenoviral vector, is a vector containing a transgene cassette composed of a hCMV intron A promoter, the full length version of the human codon-optimized HIV-1 gag gene, and the bovine growth hormone polyadenylation signal. The transgene was inserted in the E1 antiparallel orientation in an E1 and E3 deleted adenovector.

"MRK Ad5 HIV-1 gag" also referred to as "MRKAd5gag" or "Ad5gag2" is an adenoviral vector taught herein which is deleted of E1, comprises basepairs 1-450 and 3511-3523, and has a human codon-optimized HIV-1 gene in an E1 parallel orientation under the control of a CMV promoter without intron A. The construct also comprises a bovine growth hormone polyadenylation signal.

"pV1JnsHIVgag", also referred to as "HIVFLgagPR9901", is a plasmid comprising the CMV immediate-early (IE) promoter and intron A, a full-length codon-optimized HIV gag gene, a bovine growth hormone-derived polyadenylation and transcriptional termination sequence, and a minimal pUC backbone.

"pV1JnsCMV(no intron)-FLgag-bGHpA" is a plasmid derived from pV1JnsHIVgag which is deleted of the intron A portion of CMV and which comprises the full length HIV gag gene. This plasmid is also referred to as "pV1JnsHIVgag-bGHpA", pV1Jns-hCMV-FL-gag-bGHpA" and "pV1JnsCMV(no intron) + FLgag + bGHpA".

"pV1JnsCMV(no intron)-FLgag-SPA" is a plasmid of the same composition as pV1JnsCMV(no intron)-FLgag-bGHpA except that the SPA termination sequence replaces that of bGHpA. This plasmid is also referred to as "pV1Jns-HIVgag-SPA" and pV1Jns-hCMV-FLgag-SPA".

"pdelE1sp1A" is a universal shuttle vector with no expression cassette (i.e., no promoter or polyA). The vector comprises wildtype adenovirus serotype 5 (Ad5) sequences from bp 1 to bp 341 and bp 3524 to bp 5798, and has a multiple cloning

site between the Ad5 sequences ending 341 bp and beginning 3524 bp. This plasmid is also referred to as the original Ad 5 shuttle vector.

"MRKpdelE1sp1A" or "MRKpdelE1(Pac/pIX/pack450)" or

5

10

15

20

25

30

35

"MRKpdelE1(Pac/pIX/pack450)Cla1" is a universal shuttle vector with no expression cassette (i.e. no promoter or polyA) comprising wildtype adenovirus serotype 5 (Ad5) sequences from bp1 to bp450 and bp 3511 to bp 5798. The vector has a multiple cloning site between the Ad5 sequence ending 450 bp and beginning 3511 bp. This shuttle vector may be used to insert the CMV promoter and the bGHpA fragments in both the straight ("str". or E1 parallel) orientation or in the opposite (opp. or E1 antiparallel) orientation)

"MRKpdelE1(Pac/pIX/pack450)+CMVmin+BGHpA(str.)" is still another shuttle vector which is the modified vector that contains the CMV promoter (no intronA) and the bGHpA fragments. The expression unit containing the hCMV promoter (no intron A) and the bovine growth hormone polyadenylation signal has been inserted into the shuttle vector such that insertion of the gene of choice at a unique *Bgl*II site will ensure the direction of transcription of the transgene will be Ad5 E1 parallel when inserted into the MRKpAd5(E1/E3+)Cla1 pre-plasmid. This shuttle vector, as shown in Figures 22 and 23, was used to insert the respective IApol and G2A,LLAA nef genes directly into.

"MRKpdelE1-CMV(no intron)-FLgag-bGHpA" is a shuttle comprising Ad5 sequences from basepairs 1-450 and 3511-5798, with an expression cassette containing human CMV without intron A, the full-length human codon-optimized HIV gag gene and bovine growth hormone polyadenylation signal. This plasmid is also referred to as "MRKpdelE1 shuttle +hCMV-FL-gag-BGHpA"

"MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA" is an adenoviral vector comprising all Ad5 sequences except those nucleotides encompassing the E1 region (from 451-3510), a human CMV promoter without intron A, a full-length human codon-optimized HIV gag gene, and a bovine growth hormone polyadenylation signal. This vector is also referred to as "MRKpAdHVE3 + hCMV-FL-gag-BGHpA", "MRKpAd5HIV-1gag", "MRKpAd5gag", "pMRKAd5gag" or "pAd5gag2".

"pV1Jns-HIV-pol inact(opt)" or "pV1Jns-HIV IA pol (opt) is the inactivated Pol gene (contained within SEQ ID NO:3) cloned into the BgIII site of V1Jns (Figure 17A-C). As noted herein, various derivatives of HIV-1 pol may be cloned into a plasmid expression vector such as V1Jns or V1Jns-tPA, thus serving directly as DNA vaccine candidates or as a source for subcloning into an appropriate adenoviral vector.

"MRKpdel+hCMVmin+FL-pol+bGHpA(s)" is the "MRKpdelE1(Pac/pIX/pack450)+CMVmin+BGHpA(str.)" shuttle mentioned above which contains the IA pol gene is the proper orientation. This shuttle vector is used in a bacterial recombination with MRKpAd(E1-/E3+)Cla1.

"MRKpAd+hCMVmin+FL-pol+bGHpA(S)E3+", also referred to herein as "pMRKAd5pol", is the pre-adenovirus plasmid which comprises a CMV-pol inact(opt)-pGHpA construct. The construction of this pre-adenovirus plasmid is shown in Figure 22.

"pV1Jns/nef (G2A,LLAA)" or "V1Jns/opt nef (G2A,LLAA)" comprises codon optimized HIV-1 Nef wherein the open reading frame codes for modifications at the amino terminal myristylation site (Gly-2 to Ala-2) and substitution of the Leu-174-Leu-175 dileucine motif to Ala-174-Ala-175 (SEQ ID NO:13; which comprises an initiating methionine residue at nucleotides 12-14 and a "TAA" stop codon from nucleotides 660-662). This fragment is subcloned into the Bgl II site of V1Jns and/orV1Jns-tPA (Figures 16A-B). As noted above for HIV-1 pol, HIV-1 nef constructs may be cloned into a plasmid expression vector such as V1Jns or V1Jns-tPA, thus serving directly as DNA vaccine candidates or as a source for subcloning into an appropriate adenoviral vector.

"MRKpdelE1hCMVminFL-nefBGHpA(s)", also referred to herein as "pMRKAd5nef", is the pre-adenovirus plasmid which comprises a CMV-nef (G2A,LLAA) codon optimized sequence. The construction of this pre-adenovirus plasmid is shown in Figure 23.

BRIEF DESCRIPTION OF THE FIGURES

5

10

15

20

25

30

35

Figure 1 shows the original HIV-1 gag adenovector (Ad5HIV-1gag). This vector is disclosed in PCT International Application No. PCT/US00/18332 (WO 01/02607) filed July 3, 2000, claiming priority to U.S. Provisional Application Serial No. 60/142,631, filed July 6, 1999 and U.S. Application Serial No. 60/148,981, filed August 13, 1999, all three applications which are hereby incorporated by reference.

Figure 2 shows the nucleic acid sequence (SEQ ID NO: 29) of the optimized human HIV-1 gag open reading frame.

Figure 3 shows diagrammatically the new transgene constructs in comparison with the original gag transgene.

Figure 4 shows the modifications made to the original adenovector backbone in the generation of the novel vectors of the instant invention.

Figure 5 shows the virus mixing experiments that were carried out to determine the effects of the addition made to the packaging signal region (Expt. #1) and the E3 gene on viral growth (Expt. #2). The bars denote the region of modifications made to the E1 deletion.

Figure 6 shows an autoradiograph of viral DNA analysis following the viral mixing experiments described in Examples 6 and 7.

5

10

15

20

25

30

35

Figures 7A, 7B and 7C are as follows: Figure 7A shows the hCMV-Flgag-bGHpA adenovectors constructed within the MRKpAdHVE3 and MRKpAdHVO adenovector backbones. Both E1 parallel and E1 antiparallel transgene orientation are represented. Figure 7B shows the hCMV-Flgag-SPA adenovectors constructed within the MRKpAdHVE3 and MRKpAdHVO adenovector backbones. Again, both E1 parallel and E1 antiparallel transgene orientation are represented. Figure 7C shows the mCMV-Flgag-bGHpA adenovectors constructed within the MRKpAdHVE3 and MRKpAdHVO adenovector backbones. Once again, both E1 parallel and E1 antiparallel transgene orientation are represented.

Figure 8A shows the experiment designed to test the effect of transgene orientation.

Figure 8B shows the experiments designed to test the effect of polyadenylation signal.

Figure 9 shows viral DNA from the four adenoviral vectors tested (Example 12) at P5, following *Bst*E11 digestion.

Figure 10 shows viral DNA analysis of passages 11 and 12 of MRKpAdHVE3, MRKAd5HIV-1gag, and MRKAd5HIV-1gagE3-.

Figure 11 shows viral DNA analysis (*Hind*III digestion) of passage 6 MRKpAdHVE3 and MRKAd5HIV-1gag used to initiate the viral competition study. The last two lanes are passage 11 analysis of duplicate passages of the competition study (each virus at MOI of 280 viral particles).

Figure 12 shows viral DNA analysis by *Hind* III digestion on high passage numbers for MRKAd5HIV-1gag in serum-containing media with collections made at specified times. The first lane shows the 1kb DNA size marker. The other lanes represent pre-plasmid control (digested with Pac1 and *Hind*III), MRKAd5HIV-1gag at P16, P19, and P21.

Figure 13 shows serum anti-p24 levels at 3 wks post i.m. immunization of balb/c mice (n=10) with varying doses of several Adgag constructs: (A) MRK Ad5 HIV-1 gag (through passage 5); (B) MRKAd5 hCMV-FLgag-bGHpA (E3-); (C) MRKAd5 hCMV-FLgag-SPA (E3+); (D) MRKAd5 mCMV-FLgag-bGHpA (E3+);

(E) research lot (293 cell-derived) of Ad5HIV-1 gag; and (F) clinical lot (Ad5gagFN0001) of Ad5HIV-1 gag. Reported are the geometric mean titers (GMT) for each cohort along with the standard error bars.

Figure 14 shows a restriction map of the pMRKAd5HIV-1gag vector.

Figures 15A-X illustrates the nucleotide sequence of the pMRKAd5HIV-1gag vector (SEQ ID NO:27.[coding] and SEQ ID NO:28 [non-coding]).

5

10

15

20

25

30

35

Figures 16A-B shows a schematic representation of DNA vaccine expression vectors V1Jns (A) and V1Jns-tPA (B), which are utilized for HIV-1 gag, pol and nef constructs in various DNA/viral vector combined modality regimens as disclosed herein.

Figures 17A-C shows the nucleotide (SEQ ID NO:3) and amino acid sequence (SEQ ID NO:4) of IA-Pol. Underlined codons and amino acids denote mutations, as listed in Table 1.

Figure 18 shows codon optimized nucleotide and amino acid sequences through the fusion junction of tPA-pol inact(opt) (contained within SEQ ID NOs: 7 and 8, respectively). The underlined portion represents the NH₂-terminal region of IA-Pol.

Figures 19A-B show a nucleotide sequence comparison between wild type nef(jrfl) and codon optimized nef. The wild type nef gene from the jrfl isolate consists of 648 nucleotides capable of encoding a 216 amino acid polypeptide. WT, wild type sequence (SEQ ID NO:19); opt, codon-optimized sequence (contained within SEQ ID NO:1). The Nef amino acid sequence is shown in one-letter code (SEQ ID NO:2).

Figures 20A-C show nucleotide sequences at junctions between nef coding sequence and plasmid backbone of nef expression vectors V1Jns/nef (Figure 20A), V1Jns/nef(G2A,LLAA) (Figure 20B), V1Jns/tpanef (Figure 20C) and V1Jns/tpanef(LLAA) (Figure 20C, also). 5' and 3' flanking sequences of codon optimized nef or codon optimized nef mutant genes are indicated by bold/italic letters; nef and nef mutant coding sequences are indicated by plain letters. Also indicated (as underlined) are the restriction endonuclease sites involved in construction of respective nef expression vectors. V1Jns/tpanef and V1Jns/tpanef(LLAA) have identical sequences at the junctions.

Figure 21 shows a schematic presentation of nef and nef derivatives. Amino acid residues involved in Nef derivatives are presented. Glycine 2 and Leucine 174 and 175 are the sites involved in myristylation and dileucine motif, respectively. For both versions of the tpanef fusion genes, the putative leader peptide cleavage sites are

indicated with "*", and a exogenous serine residue introduced during the construction of the mutants is underlined.

Figure 22 shows diagrammatically the construction of the pre-adenovirus plasmid construct, MRKAd5Pol.

Figure 23 shows diagrammatically the construction of the pre-adenovirus plasmid construct, MRKAd5Nef.

5

10

15

20

25

30

35

Figure 24 shows a comparison of clade B vs. clade C anti-gag T cell responses in clade B HIV-infected subjects.

Figure 25 shows a comparison of clade B vs. clade C anti-nef T cell responses in clade B HIV-infected subjects.

Figures 26A-AO illustrates the nucleotide sequence of the pMRKAd5HIV-1pol adenoviral vector (SEQ ID NO:32 [coding] and SEQ ID NO:33 [non-coding]), comprising the coding region of the inactivated pol gene (SEQ ID NO3).

Figures 27A-AM illustrates the nucleotide sequence of the pMRKAd5HIV-1 nef adenoviral vector (SEQ ID NO:34 [coding] and SEQ ID NO:35 [non-coding]), comprising the coding region of the inactivated pol gene (SEQ ID NO13).

Figure 28 shows the stability of MRKAd5 vectors comprising various promoter fragments (hCMV or mCMV) and terminations signals (bGH or SPA) in E3(+) or E3(-) backbones.

Figures 29A and B shows the anion-exchange HPLC viral particle concentrations of the freeze-thaw recovered cell associated virus at the 24, 36, 48, and 60 hpi time points (Figure 29A) and the timcourse QPA supernatant titers (Figure 29B) for MRKAd5gag, MRKAd5pol and MRKAd5nef.

Figure 30 shows the nucleotide sequence (SEQ ID NO:36) and amino acid sequence (SEQ ID NO:37) comprising the open reading frame of a representative tPA-gag fusion for use in the DNA and/or adenoviral vaccine disclosed herein.

Figure 31 shows the intracellular γIFN staining of PBMCs collected at week 10 (post DNA prime) and week 30 (post Ad boost). The cells were stimulated overnight in the presence or absence of the gag peptide pool. They were subsequently stained using fluorescence-tagged anti-CD3, anti-CD8, anti-CD4, and anti-γIFN monoclonal antibodies. Each plot shows all CD3+ T cells which were segregated in terms of positive staining for surface CD8 and γIFN production. The numbers in the upper right and lower right quadrants of each plot are the percentages of CD3⁺ cells that were CD8⁺γIFN⁺ and CD4⁺γIFN⁺, respectively.

Figure 32 shows a comparison of single-modality adenovirus immunization with DNA + adjuvant prime/adenovirus boost immunization.

Figures 33A-B show the nucleotide sequence (SEQ ID NO: 38) of the open reading frame for the gag-IApol fusion of Example 29.

Figures 34A-B show the protein sequence (SEQ ID NO:39) of the gag-IApol fustion frame.

5

10

15

20

25

30

35

DETAILED DESCRIPTION OF THE INVENTION

A novel replication-defective, or "first generation," adenoviral vector suitable for use in gene therapy or nucleotide-based vaccine vectors is described. This vector is at least partially deleted in E1 and comprises a wildtype adenovirus cis-acting packaging region from about base pair 1 to between about base pair 342 (more preferably, 400) to about 458 (preferably, 1-450) and, preferably, 3511-3523 of a wild-type adenovirus sequence. It has been found that a vector of this description possesses enhanced growth characteristics, with approximately 5-10 fold greater amplification rates, and is more potent allowing lower doses of virus to be used to generate equivalent immunity. The vector, furthermore, generates a harvested recombinant adenovirus which shows greater cellular-mediated immune responses than replication-deficient vectors not comprising this region (basepairs 342-450). Adenoviral constructs derived from these vectors are, further, very stable genetically, particularly those comprising a transgene under the control of a hCMV promoter devoid of intron A. Viruses in accordance with this description were passaged continually and analyzed; see Example 12. Each virus analyzed maintained it correct genetic structure. Analysis was also carried out under propagation conditions similar to that performed in large scale production. Again, the vectors were found to possess enhanced genetic stability; see Figure 12. Following 21 passages, the viral DNA showed no evidence of rearrangement, and was highly reproducible from one production lot to the next. The outcome of all relevant tests indicate that the adenoviral vector is extremely well suited for large-scale production of recombinant, replication-deficient adenovirus, as shown herein with the data associated with Figure 28.

A preferred adenoviral vector in accordance with this description is a vector comprising basepairs 1-450, which is deleted in E3. This vector can accommodate up to approximately 7,500 base pairs of foreign DNA inserts (or exogenous genetic material). Another preferred vector is one retaining E3 which comprises basepairs 1-450. A preferred vector of this description is an E3+ vector comprising basepairs 1-450 and 3511-3523. This vector, when deleted of the region spanning basepairs 451-3510, can accommodate up to approximately, 4,850 base pairs of foreign DNA inserts

(or exogenous genetic material). The cloning capacities of the above vectors have been determined using 105% of the wildtype Ad5 sequence as the upper genome size limit.

Wildtype adenovirus serotype 5 is used as the basis for the specific basepair numbers provided throughout the specification. The wildtype adenovirus serotype 5 sequence is known and described in the art; see, Chroboczek et al., 1992 J. Virology 186:280, which is hereby incorporated by reference. Accordingly, a particular embodiment of the instant invention is a vector based on the adenovirus serotype 5 sequence. One of skill in the art can readily identify the above regions in other adenovirus serotypes (e.g., serotypes 2, 4, 6, 12, 16, 17, 24, 31, 33, and 42), regions defined by basepairs corresponding to the above basepair positions given for adenovirus serotype 5. Accordingly, the instant invention encompasses all adenoviral vectors partially deleted in E1 comprising basepairs corresponding to 1-450 (particularly, 342-450) and, preferably, 3511-3523 of a wild-type adenovirus serotype 5 (Ad5) nucleic acid sequence. Particularly preferred embodiments of the instant invention are those derived from adenoviruses like Ad5 which are classified in subgroup C (e.g., Ad2).

Vectors in accordance with the instant invention are at least partially deleted in E1. Preferably the E1 region is completely deleted or inactivated. Most preferably, the region deleted of E1 is within basepairs 451-3510. It is to be noted that the extended 5' and 3' regions of the disclosed vectors are believed to effectively reduce the size of the E1 deletion of previous constructs without overlapping any part of the E1A/E1B gene present in the cell line used, i.e., the PER.C6® cell line transfected with base pairs 459-3510. Overlap of adenoviral sequences is avoided because of the possibility of recombination. One of ordinary skill in the art can certainly appreciate that the instant invention can, therefore, be modified if a different cell line transfected with a different segment of adenovirus DNA is utilized. For purposes of exemplification, a 5' region of base pairs 1 to up to 449 is more appropriate if a cell line is transfected with adenoviral sequence from base pairs 450-3510. This holds true as well in the consideration of segments 3' to the E1 deletion.

Preferred embodiments of the instant invention possess an intact E3 region (i.e., an E3 gene capable of encoding a functional E3). Alternate embodiments have a partially deleted E3, an inactivated E3 region, or a sequence completely deleted of E3. Applicants have found, in accordance with the instant invention, that virus comprising the E3 gene were able to amplify more rapidly compared with virus not comprising an E3 gene; see Figure 6 wherein a diagnostic CsCl band corresponding to the E3+ virus

tested (5,665 bp) was present in greater amount compared with the diagnostic band of 3,010 bp corresponding to the E3- virus. These results were obtained following a virus competition study involving mixing equal MOI ratio (1:1) of adenovectors both comprising the E3 gene and not comprising the E3 gene. This increased amplification capacity of the E3+ adenovectors was subsequently confirmed with growth studies; see Table 4A, wherein the E3+ virus exhibit amplification ratios of 470, 420 and 320 as compared with the 115 and 40-50 of the E3- constructs.

5

10

15

20

25

30

35

As stated above, vectors in accordance with the instant invention can accommodate up to approximately 4,850 base pairs of exogenous genetic material for an E3+ vector and approximately 7,500 base pairs for an E3- vector. Preferably, the insert brings the adenoviral vector as close as possible to a wild-type genomic size (e.g., for Ad5, 35,935 basepairs). It is well known that adenovirus amplifies best when they are close to their wild-type genomic size.

The genetic material can be inserted in an E1-parallel or an E1 anti-parallel orientation, as such is illustrated in Figure 7A, 7B, 7C and Figure 8A. Particularly preferred embodiments of the instant invention, have the insert in an E1-parallel orientation. Applicants have found, via competition experiments with plasmids containing transgenes in differing orientation (Figure 8A), that vector constructs with the foreign DNA insert in an E1-parallel orientation amplify better and actually outcompete E1-antiparallel-oriented transgenes. Viral DNA analysis of the mixtures at passage 3 and certainly at passage 6, showed a greater ratio of the virus carrying the transgene in the E1 parallel orientation as compared with the E1 anti-parallel version. By passage 10, the only viral species observed was the adenovector with the transgene in the E1 parallel orientation for both transgenes tested.

Adenoviral vectors in accordance with the instant invention are particularly well suited to effectuate expression of desired proteins, one example of which is an HIV protein, particularly an HIV full length gag protein. Exogenous genetic material encoding a protein of interest can exist in the form of an expression cassette. A gene expression cassette preferably comprises (a) a nucleic acid encoding a protein of interest; (b) a heterologous promoter operatively linked to the nucleic acid encoding the protein; and (c) a transcription terminator.

The transcriptional promoter is preferably recognized by an eukaryotic RNA polymerase. In a preferred embodiment, the promoter is a "strong" or "efficient" promoter. An example of a strong promoter is the immediate early human cytomegalovirus promoter (Chapman et al, 1991 *Nucl. Acids Res*19:3979-3986, which is incorporated by reference), preferably without intronic sequences. Most preferred

for use within the instant adenoviral vector is a human CMV promoter without intronic sequences, like intron A. Applicants have found that intron A, a portion of the human cytomegalovirus promoter (hCMV), constitutes a region of instability for adenoviral vectors. CMV without intron A has been found to effectuate (Examples 1-3) comparable expression capabilities *in vitro* when driving HIV gag expression and, furthermore, behaved equivalently to intron A-containing constructs in Balb/c mice *in vivo* with respect to their antibody and T-cell responses at both dosages of plasmid DNA tested (20 µg and 200 µg). Those skilled in the art will appreciate that any of a number of other known promoters, such as the strong immunoglobulin, or other eukaryotic gene promoters may also be used, including the EF1 alpha promoter, the murine CMV promoter, Rous sarcoma virus (RSV) promoter, SV40 early/late promoters and the beta-actin promoter.

5

10

15

20

25

30

35

In preferred embodiments, the promoter may also comprise a regulatable sequence such as the Tet operator sequence. This would be extremely useful, for example, in cases where the gene products are effecting a result other than that desired and repression is sought.

The combination of the CMV promoter (devoid of the intron A region) with the BGH terminator is particularly preferred although other promoter/terminator combinations in the context of FG adenovirus may also be used.

Other embodiments incorporate a leader or signal peptide into the transgene. A preferred leader is that from the tissue-specific plasminogen activator protein, tPA. Examples include but are not limited to the various tPA-gag, tPA-pol and tPA-nef adenovirus-based vaccines disclosed throughout this specification.

In view of the improved adenovirus vectors described herein, an essential portion of the present invention are adenoviral-based HIV vaccines comprising said adenovirus backbones which may be administered to a mammalian host, preferably a human host, in either a prophylactic or therapeutic setting. The HIV vaccines of the present invention, whether administered alone or in combination regimens with other viral- or non-viral-based DNA vaccines, should elicit potent and broad cellular immune responses against HIV that will either lessen the likelihood of persistent virus infection and/or lead to the establishment of a clinically significant lowered virus load

subject to HIV infection or in combination with HAART therapy, mitigate the effects of previously established HIV infection (antiviral immunotherapy(ARI)). While any HIV antigen (e.g., gag, pol, nef, gp160, gp41, gp120, tat, rev, etc.) may be utilized in the herein described recombinant adenoviral vectors, preferred embodiments include the codon optimized p55 gag antigen (herein exemplified as MRKAd5gag), pol and nef. Sequences based on different Clades of HIV-1 are suitable for use in the instant invention, most preferred of which are Clade B and Clade C. Particularly preferred embodiments are those sequences (especially, codon-optimized sequences) based on concensus Clade B sequences. Preferred versions of the MRKAd5pol and MRKAd5nef series of adenoviral vaccines will encode modified versions of pol or nef, as discussed herein. Preferred embodiments of the MRKAd5HIV-1 vectors carrying HIV envelope genes and modifications thereof comprise the HIV codon-optimized *env* sequences of PCT International Applications PCT/US97/02294 and PCT/US97/10517, published August 28, 1997 (WO 97/31115) and December 24, 1997, respectively; both documents of which are hereby incorporated by reference.

5

10

15

20

25

30

35

A most preferred aspect of the instant invention is the disclosed use of the adenoviral vector described above to effectuate expression of HIV gag. Sequences for many genes of many HIV strains are publicly available in GENBANK and primary, field isolates of HIV are available from the National Institute of Allergy and Infectious Diseases (NIAID) which has contracted with Quality Biological (Gaithersburg, MD) to make these strains available. Strains are also available from the World Health Organization (WHO), Geneva Switzerland. It is preferred that the gag gene be from an HIV-1 strain (CAM-1; Myers et al, eds. "Human Retroviruses and AIDS: 1995, IIA3-IIA19, which is hereby incorporated by reference). This gene closely resembles the consensus amino acid sequence for the clade B (North American/European) sequence. Therefore, it is within the purview of the skilled artisan to choose an appropriate nucleotide sequence which encodes a specific HIV gag antigen, or immunologically relevant portion thereof. As shown in Example 25, a clade B or clade C based p55 gag antigen will potentially be useful on a global scale. As noted herein, the transgene of choice for insertion in to a DNA or MRKAd-based adenoviral vector of the present invention is a codon optimized version of p55 gag. Such a MRKAd5gag adenoviral vector is documented in Example 11 and is at least referred to herein as MRKAd5HIV-1gag. Of course, additional versions are contemplated, including but not limited to modifications such as promoter (e.g., mCMV for hCMV) and/or pA-terminations signal (SPA for bGH) switching, as well as generating MRK Ad5 backbones with or without deletion of the Ad5 E3 gene.

5

10

15

20

25

30

35

The present invention also relates a series of MRKAd5pol-based adenoviral vaccines which are shown herein to generate cellular immune responses subsequent to administration in mice and non-human primate studies. Several of the MRKAd5pol series are exemplified herein. One such adenoviral vector is referred to as MRKAd5hCMV-inact opt pol(E3+), which comprises the MRKAd5 backbone, the hCMV promoter (no intron A), an inactivated pol transgene, and contains the Ad5 E3 gene in the adenoviral backbone. A second exemplified pre-adenovirus plasmid and concomitant virus is referred to as MRKAd5hCMV-inact opt pol(E3-), which is identical to the former adenoviral vector except that the E3 is deleted. Both constructions contain a codon optimized, inactivated version of HIV-1 Pol, wherein at least the entire coding region is disclosed herein as SEQ ID NO:3 and the expressed protein is shown as SEQ ID NO:4 (see also Figure 17A-C and Table 1, which show targeted deletion for inactivated pol. This and other preferred codon optimized versions of HIV Pol as disclosed herein are essentially as described in U.S. Application Serial No. 09/745,221, filed December 21, 2000 and PCT International Application PCT/US00/34724, also filed December 21, 2000, both documents which are hereby incorporated by reference. As disclosed in the above-mentioned documents, the open reading frame for these codon-optimized HIV-1 Pol-based DNA vaccines are represented by codon optimized DNA molecules encoding codon optimized HIV-1 Pol (e.g. SEQ ID NO:2), codon optimized HIV-1 Pol fused to an amino terminal localized leader sequence (e.g. SEQ ID NO:6), and especially preferable, and exemplified by the MRKAd5-Pol construct in e.g., Example 19, biologically inactivated pol ("inact opt Pol"; e.g., SEQ ID NO:4) which is devoid of significant PR, RT, RNase or IN activity associated with wild type Pol. In addition, a construct related to SEO ID NO:4 is contemplated which contains a leader peptide at the amino terminal region of the IA Pol protein. A specific construct is ligated within an appropriate DNA plasmid vector containing regulatory regions operatively linked to the respective HIV-1 Pol coding region, with or without a nucleotide sequence encoding a functional leader peptide. To this end, various HIV-1 Pol constructs disclosed herein relate to open reading frames for cloning to the enhanced first generation Ad vectors of the present invention (such a series of MRKAd5pol adenoviral vaccine vectors), including but not limited to wild type Pol (comprising the DNA molecule encoding WT opt Pol, as set forth in SEQ ID NO:2), tPA-opt WTPol, (comprising the DNA molecule encoding tPA Pol, as set forth in SEQ ID NO:6), inact opt Pol (comprising the DNA molecule encoding IA Pol, as set forth in SEQ ID NO:4), and tPA-inact opt Pol, (comprising the DNA molecule encoding tPA-inact opt

Pol, as set forth in SEQ ID NO:8). The pol-based versions of enhanced first generation adenovirus vaccines elicit CTL and Th cellular immune responses upon administration to the host, including primates and especially humans. As noted in the above, an effect of the cellular immune-directed vaccines of the present invention should be a lower transmission rate to previously uninfected individuals and/or reduction in the levels of the viral loads within an infected individual, so as to prolong the asymptomatic phase of HIV-1 infection.

5

The present invention further relates to a series of MRKAd5nef-based adenoviral vaccines which, similar to HIV gag and pol antigens, generate cellular immune responses subsequent to administration in mice and non-human primate 10 studies. The MRKAd5nef series are exemplified herein by utilizing the improved MRK adenoviral backbone in combination with modified versions of HIV nef. These exemplified MRKAd5nef vectors are as follows: (1) MRKAd5hCMVnef(G2A,LLAA) (E3+), which comprises the improved MRKAd5 backbone, a human CMV promoter an intact Ad5 E3 gene and a modified nef gene: (2) MRKAd5mCMV-15 nef(G2A,LLAA) (E3+), which is the same as (1) above but substituting a murine CMV promoter for a human CMV promoter; and (3) MRKAd5mCMV-tpanef(LLAA) (E3+), which is the same as (2) except that the nef transgene is tpanef(LLAA). Codon optimized versions of HIV-1 Nef and HIV-1 Nef modifications are essentially as described in U.S. Application Serial No. 09/738,782, filed December 15, 2000 and 20 PCT International Application PCT/US00/34162, also filed December 15, 2000, both documents which are hereby incorporated by reference. Particular embodiments of codon optimized Nef and Nef modifications relate to a DNA molecule encoding HIV-1 Nef from the HIV-1 ifrl isolate wherein the codons are optimized for expression in a mammalian system such as a human. The DNA molecule which encodes this protein 25 is disclosed herein as SEQ ID NO:9, while the expressed open reading frame is disclosed herein as SEQ ID NO:10. Another embodiment of Nef-based coding regions for use in the adenoviral vectors of the present invention comprise a codon optimized DNA molecule encoding a protein containing the human plasminogen activator (tpa) leader peptide fused with the NH2-terminus of the HIV-1 Nef 30 polypeptide. The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:11, while the expressed open reading frame is disclosed herein as SEQ ID NO:12. Another modified Nef optimized coding region relates to a DNA molecule encoding optimized HIV-1 Nef wherein the open reading frame codes for 35 modifications at the amino terminal myristylation site (Gly-2 to Ala-2) and substitution of the Leu-174-Leu-175 dileucine motif to Ala-174-Ala-175, herein

described as opt nef (G2A, LLAA). The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:13, while the expressed open reading frame is disclosed herein as SEQ ID NO:14. MRKAd5nef vectors (1) MRKAd5hCMV-nef(G2A,LLAA) (E3+) and (2) MRKAd5mCMV-nef(G2A,LLAA) (E3+) contain this transgene. An additional embodiment relates to a DNA molecule encoding optimized HIV-1 Nef wherein the amino terminal myristylation site and dileucine motif have been deleted, as well as comprising a tPA leader peptide. This DNA molecule, opt tpanef (LLAA), comprises an open reading frame which encodes a Nef protein containing a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfrl), wherein Leu-174 and Leu-175 are substituted with Ala-174 and Ala-175, herein referred to as opt tpanef (LLAA) is disclosed herein as SEQ ID NO:15, while the expressed open reading frame is disclosed herein as SEQ ID NO:16. The MRKAd5nef vector "MRKAd5mCMV-tpanef(LLAA) (E3+)" contains this transgene.

5

10

15

20

25

30

35

Along with the improved MRKAd5gag adenovirus vaccine vector described herein, generation of a MRKAd5pol and MRKAd5nef adenovirus vector provide for enhanced HIV vaccine capabilities. Namely, the generation of this trio of adenoviral vaccine vectors, all shown to generate effective cellular immune responses subsequent to host administration, provide for the ability to administer these vaccine candidates not only alone, but preferably as part of a divalent (i.e., gag and nef, gag and pol, or pol and nef components) or a trivalent vaccine (i.e., gag, pol and nef components). Therefore, a preferred aspect of the present invention are vaccine formulations and associated methods of administration and concomitant generation of host cellular immune responses associated with formulating three separate series of MRKAd5based adenoviral vector vaccines. Of course, this MRKAd5 vaccine series based on distinct HIV antigens promotes expanded opportunities for formulation of a divalent or trivalent vaccine, or possibly administration of separate formulations of one or more monovalent or divalent formulations within a reasonable window of time. It is also within the scope of the present invention to embark on combined modality regimes which include multiple but distinct components from a specific antigen. An example, but certainly not a limitation, would be separate MRKAd5pol vectors, with one vaccine vector expressing wild type Pol (SEQ ID NO:2) and another MRKAd5pol vector expressing inactivated Pol (SEQ ID NO:6). Another example might be separate MRKAd5nef vectors, with one vaccine vector expressing the tPA/LLAA version of Nef (SEQ ID NO:16) and another MRKAd5nef vector expressing the G2A,LLAA modified version of Nef (SEQ ID NO:14). Therefore, the MRKAd5 adenoviral vectors of the present invention may be used in combination

with multiple, distinct HIV antigen classes. Each HIV antigen class is subject to sequence manipulation, thus providing for a multitude of potential vaccine combinations; and such combinations are within the scope of the present invention. The utilization of such combined modalities vaccine formulation and administration increase the probability of eliciting an even more potent cellular immune response when compared to inoculation with a single modality regimen.

The present invention also relates to application of a mono-, dual-, or trimodality administration regime of the MRKAd5gag, pol and nef adenoviral vaccine series in a prime/boost vaccination schedule. This prime/boost schedule may include any reasonable combination of the MRKAd5gag, pol and nef adenoviral vaccine series disclosed herein. In addition, a prime/boost regime may also involve other viral and/or non-viral DNA vaccines. A preferable addition to an adenoviral vaccine vector regime includes but is not limited to plasmid DNA vaccines, especially DNA plasmid vaccines that contain at least one of the codon optimized gag, pol and nef constructions, as disclosed herein.

10

15

20

25

30

35

Therefore, one aspect of this invention is the administration of the adenoviral vector containing the optimized gag gene in a prime/boost regiment in conjunction with a plasmid DNA encoding gag. To distinguish this plasmid from the adenoviralcontaining shuttle plasmids used in the construction of an adenovirus vector, this plasmid will be referred to as a "vaccine plasmid" or "DNA plasmid vaccine". Preferred vaccine plasmids for use in this administration protocol are disclosed in pending U.S. patent application 09/017,981, filed February 3, 1998 and WO98/34640, published August 13, 1998, both of which are hereby incorporated by reference. Briefly, the preferred vaccine plasmid is designated V1Jns-FLgag, which expresses the same codon-optimized gag gene as the adenoviral vectors of this invention (see Figure 2 for the nucleotide sequence of the exemplified optimized codon version of full length p55 gag). The vaccine plasmid backbone, designated V1Jns contains the CMV immediate-early (IE) promoter and intron A, a bovine growth hormone-derived polyadenylation and transcription termination sequence as the gene expression regulatory elements, and a minimal pUC backbone; see Montgomery et al., 1993, DNA Cell Biol. 12:777-783. The pUC sequence permits high levels of plasmid production in E. coli and has a neomycin resistance gene in place of an ampicillin resistance gene to provide selected growth in the presence of kanamycin. Alternatively, a vaccine plasmid which has the CMV promoter deleted of intron A can be used. Those of skill in the art will recognize that alternative vaceine plasmid

vectors may be easily substituted for these specific constructs, and this invention specifically envisions use of such alternative plasmid DNA vaccine vectors.

10

15

20

25

30

35

Another aspect of the present invention is a prime/boost regimen which includes a vaccine plasmid which encodes an HIV pol antigen, preferably a codon optimized form of pol and also preferably a vaccine plasmid which comprises a nucleotide sequence which encodes a Pol antigen selected from the group of Pol antigens as shown in SEQ ID NOs: 2, 4, 6 and 8. The variety of potential DNA plasmid vaccines which encode various biologically active forms of HIV-1 Pol, wherein administration, intracellular delivery and expression of the HIV-1 Pol gene of interest elicits a host CTL and Th response. The preferred synthetic DNA molecules of the present invention encode codon optimized wild type Pol (without Pro activity) and various codon optimized inactivated HIV-1 Pol proteins. The HIV-1 pol open reading disclosed herein are especially preferred for pharmaceutical uses, especially for human administration as delivered via a recombinant adenoviral vaccine, especially an enhanced first generation recombinant adenoviral vaccine as described herein. Several embodiments of this portion of the invention are provided in detail below, namely DNA molecules which comprise a HIV-1 pol open reading frame, whether encoding full length pol or a modification or fusion as described herein, wherein the codon usage has been optimized for expression in a mammal, especially a human. Again, these DNA sequences are positioned appropriately within a recombinant adenoviral vector, such as the exemplified recombinant adenoviral vector described herein, so as to promote expression of the respective HIV-1 Pol gene of interest, and subsequent to administration, elicit a host CTL and Th response. Again, these preferred, but in no way limiting, pol genes are as disclosed herein and essentially as described in U.S. Application Serial No. 09/745,221, filed December 21, 2000 and PCT International Application PCT/US00/34724, also filed December 21, 2000, both documents which are hereby incorporated by reference.

A third series of vaccine plasmids which are useful in a combined modality and/or prime/boost regimen are vaccine plasmids which encode an HIV nef antigen or biologically and/or immunologically relevant modification thereof. As noted elsewhere, preferred vaccine plasmids contain a codon optimized form of nef and also preferably comprise a nucleotide sequence which encodes a Nef antigen selected from the group of Nef antigens as shown in SEQ ID NOs: 10, 12, 14 and 16. These preferred nef coding regions are disclosed herein, as well as being described in U.S. Application Serial No. 09/738,782, filed December 15, 2000 and PCT International

Application PCT/US00/34162, also filed December 15, 2000, both documents which are hereby incorporated by reference.

5

10

15

Therefore, the adenoviral vaccines and plasmid DNA vaccines of this invention may be administered alone, or may be part of a prime and boost administration regimen. A mixed modality priming and booster inoculation scheme will result in an enhanced immune response, particularly is pre-existing anti-vector immune responses are present. This one aspect of this invention is a method of priming a subject with the plasmid vaccine by administering the plasmid vaccine at least one time, allowing a predetermined length of time to pass, and then boosting by administering the adenoviral vaccine. Multiple primings typically, 1-4, are usually employed, although more may be used. The length of time between priming and boost may typically vary from about four months to a year, but other time frames may be used. In experiments with rhesus monkeys, the animals were primed four times with plasmid vaccines, then were boosted 4 months later with the adenoviral vaccine. Their cellular immune response was notably higher than that of animals which had only received adenoviral vaccine. The use of a priming regimen may be particularly preferred in situations where a person has a pre-existing anti-adenovirus immune response.

Furthermore and in the alternative, multiple HIV-1 viral antigens, such as the MRKAd5 adenoviral vaccines disclosed herein, may be ligated into a proper shuttle 20 plasmid for generation of a pre-adenoviral plasmid comprising multiple open reading frames. For example a trivalent vector may comprise a gag-pol-nef fusion, in either a E3(-) or E3(+) background, preferably a E3 deleted backbone, or possible a "2+1" divalent vaccine, such as a gag-pol fusion (i.e., codon optimized p55 gag and inactivated optimized pol; Example 29 and Table 25) within the same MRKAd5 25 backbone, with each open reading frame being operatively linked to a distinct promoter and transcription termination sequence. Alternatively, the two open reading frames may be operatively linked to a single promoter, with the open reading frames operatively linked by an internal ribosome entry sequence (IRES), as disclosed in International Publication No. WO 95/24485, which is hereby incorporated by 30 reference. Figure 9 shows that the use of multiple promoters and termination sequences provide for similar growth properties, while Figure 28 shows that these MRKAd5gag-based vectors are also stable at least through passage 21. In the absence of the use of IRES-based technology, it is preferred that a distinct promoter be used to 35 support each respective open reading frame, so as to best preserve vector stability. As examples, and certainly not as limitations, potential multiple transgene vaccines may

include a three transgene vector such as hCMV-gagpol-bGHpA + mCMV-nef-SPA in an E3 deleted backbone or hCMV-gagpol-bGHpA + mCMV-nef-SPA(E3+). Potential "2+1" divalent vaccines of the present invention might be a hCMV-gagbGHpA + mCMV-nef-SPA in an E3+ backbone (vector #1) in combination with hCMV-pol-bGHpA in an E3+ backbone (vector #2), with all transgenes in the E1 parallel orientation. Fusion constructs other than the gag-pol fusion described above are also suitable for use in various divalent vaccine strategies and can be composed of any two HIV antigens fused to one another (e.g.,, nef-pol and gag-nef). These adenoviral compositions are, as above, preferably delivered along with an adenoviral composition comprising an additional HIV antigen in order to diversify the immune response generated upon administration. Therefore, a multivalent vaccine delivered in a single, or possible second, adenoviral vector is certainly contemplated as part of the present invention. Again, this mode of administration is another example of whereby an efficaceous adenovirus-based HIV-1 vaccine may be administered via a combined modality regime. It is important to note, however, that in terms of deciding on an insert for the disclosed adenoviral vectors, due consideration must be dedicated to the effective packaging limitations of the adenovirus vehicle. Adenovirus has been shown to exhibit an upper cloning capacity limit of approximately 105% of the wildtype Ad5 sequence.

5

10

15

20

25

30

35

Regardless of the gene chosen for expression, it is preferred that the sequence be "optimized" for expression in a human cellular environment. A "triplet" codon of four possible nucleotide bases can exist in 64 variant forms. That these forms provide the message for only 20 different amino acids (as well as transcription initiation and termination) means that some amino acids can be coded for by more than one codon. Indeed, some amino acids have as many as six "redundant", alternative codons while some others have a single, required codon. For reasons not completely understood, alternative codons are not at all uniformly present in the endogenous DNA of differing types of cells and there appears to exist variable natural hierarchy or "preference" for certain codons in certain types of cells. As one example, the amino acid leucine is specified by any of six DNA codons including CTA, CTC, CTG, CTT, TTA, and TTG (which correspond, respectively, to the mRNA codons, CUA, CUC, CUG, CUU, UUA and UUG). Exhaustive analysis of genome codon frequencies for microorganisms has revealed endogenous DNA of E. coli most commonly contains the CTG leucine-specifying codon, while the DNA of yeasts and slime molds most commonly includes a TTA leucine-specifying codon. In view of this hierarchy, it is generally held that the likelihood of obtaining high levels of expression of a leucine-

rich polypeptide by an *E. coli* host will depend to some extent on the frequency of codon use. For example, a gene rich in TTA codons will in all probability be poorly expressed in *E. coli*, whereas a CTG rich gene will probably highly express the polypeptide. Similarly, when yeast cells are the projected transformation host cells for expression of a leucine-rich polypeptide, a preferred codon for use in an inserted DNA would be TTA.

5

10

15

20

25

30

35

The implications of codon preference phenomena on recombinant DNA techniques are manifest, and the phenomenon may serve to explain many prior failures to achieve high expression levels of exogenous genes in successfully transformed host organisms—a less "preferred" codon may be repeatedly present in the inserted gene and the host cell machinery for expression may not operate as efficiently. This phenomenon suggests that synthetic genes which have been designed to include a projected host cell's preferred codons provide a preferred form of foreign genetic material for practice of recombinant DNA techniques. Thus, one aspect of this invention is an adenovirus vector or adenovirus vector in some combination with a vaccine plasmid where both specifically include a gene which is codon optimized for expression in a human cellular environment. As noted herein, a preferred gene for use in the instant invention is a codon-optimized HIV gene and, particularly, HIV gag, pol or nef.

Adenoviral vectors in accordance with the instant invention can be constructed using known techniques, such as those reviewed in Hitt et al, 1997 "Human Adenovirus Vectors for Gene Transfer into Mammalian Cells" *Advances in Pharmacology* 40:137-206, which is hereby incorporated by reference.

In constructing the adenoviral vectors of this invention, it is often convenient to insert them into a plasmid or shuttle vector. These techniques are known and described in Hitt et al., *supra*. This invention specifically includes both the adenovirus and the adenovirus when inserted into a shuttle plasmid.

Preferred shuttle vectors contain an adenoviral portion and a plasmid portion. The adenoviral portion is essentially the same as the adenovirus vector discussed *supra*, containing adenoviral sequences (with non-functional or deleted E1 and E3 regions) and the gene expression cassette, flanked by convenient restriction sites. The plasmid portion of the shuttle vector often contains an antibiotic resistance marker under transcriptional control of a prokaryotic promoter so that expression of the antibiotic does not occur in eukaryotic cells. Ampicillin resistance genes, neomycin resistance genes and other pharmaceutically acceptable antibiotic resistance markers may be used. To aid in the high level production of the polynucleotide by

fermentation in prokaryotic organisms, it is advantageous for the shuttle vector to contain a prokaryotic origin of replication and be of high copy number. A number of commercially available prokaryotic cloning vectors provide these benefits. It is desirable to remove non-essential DNA sequences. It is also desirable that the vectors not be able to replicate in eukaryotic cells. This minimizes the risk of integration of polynucleotide vaccine sequences into the recipients' genome. Tissue-specific promoters or enhancers may be used whenever it is desirable to limit expression of the polynucleotide to a particular tissue type.

In one embodiment of this invention, the pre-plasmids (e.g., pMRKAd5pol, pMRKAd5nef and pMRKAd5gag were generated by homologous recombination using the MRKHVE3 (and MRKHVO for the E3- version) backbones and the appropriate shuttle vector, as shown for pMRKAd5pol in Figure 22 and for pMRKAd5nef in Figure 23. The plasmid in linear form is capable of replication after entering the PER.C6[®] cells and virus is produced. The infected cells and media were harvested after viral replication was complete.

Viral vectors can be propagated in various E1 complementing cell lines, including the known cell lines 293 and PER.C6[®]. Both these cell lines express the adenoviral E1 gene product. PER.C6[®] is described in WO 97/00326 (published January 3, 1997) and issued U.S. Patent No. 6,033,908, both of which are hereby incorporated by reference. It is a primary human retinoblast cell line transduced with an E1 gene segment that complements the production of replication deficient (FG) adenovirus, but is designed to prevent generation of replication competent adenovirus by homologous recombination. Cells of particular interest have been stably transformed with a transgene that encodes the AD5E1A and E1B gene, like PER.C6[®], from 459 bp to 3510 bp inclusive. 293 cells are described in Graham et al., 1977 *J. Gen. Virol* 36:59-72, which is hereby incorporated by reference. As stated above, consideration must be given to the adenoviral sequences present in the complementing cell line used. It is important that the sequences not overlap with that present in the vector if the possibility of recombination is to be minimized.

It has been found that vectors generated in accordance with the above description are more effective in inducing an immune response and, thus, constitute very promising vaccine candidates. More particularly, it has been found that first generation adenoviral vectors in accordance with the above description carrying a codon-optimized HIV gag gene, regulated with a strong heterologous promoter can be used as human anti-HIV vaccines, and are capable of inducing immune responses.

Standard techniques of molecular biology for preparing and purifying DNA constructs enable the preparation of the DNA immunogens of this invention.

A vaccine composition comprising an adenoviral vector in accordance with the instant invention may contain physiologically acceptable components, such as buffer, normal saline or phosphate buffered saline, sucrose, other salts and polysorbate. One preferred formulation has: 2.5-10 mM TRIS buffer, preferably about 5 mM TRIS buffer; 25-100 mM NaCl, preferably about 75 mM NaCl; 2.5-10% sucrose, preferably about 5% sucrose; 0.01 -2 mM MgCl₂; and 0.001%-0.01% polysorbate 80 (plant derived). The pH should range from about 7.0-9.0, preferably about 8.0. One skilled in the art will appreciate that other conventional vaccine excipients may also be used it make the formulation. The preferred formulation contains 5mM TRIS, 75 mM NaCl, 5% sucrose, 1mM MgCl₂, 0.005% polysorbate 80 at pH 8.0 This has a pH and divalent cation composition which is near the optimum for Ad5 stability and minimizes the potential for adsorption of virus to a glass surface. It does not cause tissue irritation upon intramuscular injection. It is preferably frozen until use.

The amount of adenoviral particles in the vaccine composition to be introduced into a vaccine recipient will depend on the strength of the transcriptional and translational promoters used and on the immunogenicity of the expressed gene product. In general, an immunologically or prophylactically effective dose of 1×10^{7} to 1×10^{12} particles and preferably about 1×10^{10} to 1×10^{11} particles is administered directly into muscle tissue. Subcutaneous injection, intradermal introduction, impression through the skin, and other modes of administration such as intraperitoneal, intravenous, or inhalation delivery are also contemplated. It is also contemplated that booster vaccinations are to be provided. Following vaccination with HIV adenoviral vector, boosting with a subsequent HIV adenoviral vector and/or plasmid may be desirable. Parenteral administration, such as intravenous, intramuscular, subcutaneous or other means of administration of interleukin-12 protein, concurrently with or subsequent to parenteral introduction of the vaccine compositions of this invention is also advantageous.

The adenoviral vector and/or vaccine plasmids of this invention polynucleotide may be unassociated with any proteins, adjuvants or other agents which impact on the recipients' immune system. In this case, it is desirable for the vector to be in a physiologically acceptable solution, such as, but not limited to, sterile saline or sterile buffered saline. Alternatively, the vector may be associated with an adjuvant known in the art to boost immune responses (i.e., a "biologically effective"

adjuvant), such as a protein or other carrier. Vaccine plasmids of this invention may, for instance, be delivered in saline (e.g., PBS) with or without an adjuvant. Preferred adjuvants are Alum or CRL1005 Block Copolymer. Agents which assist in the cellular uptake of DNA, such as, but not limited to, calcium ions, may also be used to advantage. These agents are generally referred to herein as transfection facilitating reagents and pharmaceutically acceptable carriers. Techniques for coating microprojectiles coated with polynucleotide are known in the art and are also useful in connection with this invention.

5

10

15

20

25

30

35

This invention also includes a prime and boost regimen wherein a first adenoviral vector is administered, then a booster dose is given. The booster dose may be repeated at selected time intervals. Alternatively, a preferred inoculation scheme comprises priming with a first adenovirus serotype and then boosting with a second adenovirus serotype. More preferably, the inoculation scheme comprises priming with a first adenovirus serotype and then boosting with a second adenovirus serotype, wherein the first and second adenovirus serotypes are classified within separate subgroups of adenoviruses. The above prime/boost schemes are particularly preferred in those situations where a preexisting immunity is identified to the adenoviral vector of choice. In this type of scheme, the individual or population of individuals is primed with an adenovirus of a serotype other than that to which the preexisting immunity is identified. This enables the first adenovirus to effectuate sufficient expression of the transgene while evading existing immunity to the second adenovirus (the boosting adenovirus) and, further, allows for the subsequent delivery of the transgene via the boosting adenovirus to be more effective. Adenovirus serotype 5 is one example of a virus to which such a scheme might be desirable. In accordance with this invention, therefore, one might decide to prime with a non-group C adenovirus (e.g., Ad12, a group A adenovirus, Ad24, a group D adenovirus, or Ad35, a group B adenovirus) to evade anti-Ad5 immunity and then boost with Ad5, a group C adenovirus. Another preferred embodiment involves administration of a different adenovirus (including non-human adenovirus) vaccine followed by administration of the adenoviral vaccines disclosed. In the alternative, a viral antigen of interest can be first delivered via a viral vaccine other than an adenovirus-based vaccine, and then followed with the adenoviral vaccine disclosed. Alternative viral vaccines include but are not limited to pox virus and venezuelan equine encephilitis virus.

A large body of human and animal data supports the importance of cellular immune responses, especially CTL in controlling (or eliminating) HIV infection. In humans, very high levels of CTL develop following primary infection and correlate

with the control of viremia. Several small groups of individuals have been described who are repeatedly exposed to HIV by remain uninfected; CTL has been noted in several of these cohorts. In the SIV model of HIV infection, CTL similarly develops following primary infection, and it has been demonstrated that addition of anti-CD8 monoclonal antibody abrogated this control of infection and leads to disease progression. This invention uses adenoviral vaccines alone or in combination with plasmid vaccines to induce CTL.

The following non-limiting Examples are presented to better illustrate the invention.

10

15

20

25

30

35

5

EXAMPLE 1

Removal of the Intron A Portion of the hCMV Promoter GMP grade pVIInsHIVgag was used as the starting material to amplify the hCMV promoter. PVIInsHIVgag is a plasmid comprising the CMV immediate-early (IE) promoter and intron A, a full-length codon-optimized HIV gag gene, a bovine growth hormone-derived polyadenylation and transcriptional termination sequence, and a minimal pUC backbone; see Montgomery et al., supra for a description of the plasmid backbone. The amplification was performed with primers suitably positioned to flank the hCMV promoter. A 5' primer was placed upstream of the Msc1 site of the hCMV promoter and a 3' primer (designed to contain the Bg/III recognition sequence) was placed 3' of the hCMV promoter. The resulting PCR product (using high fidelity Tag polymerase) which encompassed the entire hCMV promoter (minus intron A) was cloned into TOPO PCR blunt vector and then removed by double digestion with Msc1 and BgIII. This fragment was then cloned back into the original GMP grade pV1JnsHIVgag plasmid from which the original promoter, intron A, and the gag gene were removed following Msc1 and BglII digestion. This ligation reaction resulted in the construction of a hCMV promoter (minus intron A) + bGHpA expression cassette within the original pV1JnsHIVgag vector backbone. This vector is designated pVIJnsCMV(no intron).

The FLgag gene was excised from pV1JnsHIVgag using BglII digestion and the 1,526 bp gene was gel purified and cloned into pV1JnsCMV(no intron) at the BglII site. Colonies were screened using Sma1 restriction enzymes to identify clones that carried the Flgag gene in the correct orientation. This plasmid, designated pV1JnsCMV(no intron)-FLgag-bGHpA, was fully sequenced to confirm sequence integrity.

Two additional transgenes were also constructed. The plasmid, pV1JnsCMV(no intron)-FLgag-SPA, is identical to pV1JnsCMV(no intron)-FLgag-bGHpA except that the bovine growth hormone polyadenylation signal has been replaced with a short synthetic polyA signal (SPA) of 50 nucleotides in length. The sequence of the SPA is as shown, with the essential components (poly(A) site, (GT)_n, and (T)_n; respectively) underlined:

<u>AATAAA</u>AGATCTTTATTTTCATTAGATCT<u>GTGTG TTGGTTTTTTGTGTG</u> (SEQ ID NO:18).

The plasmid, pV1Jns-mCMV-FLgag-bGHpA, is identical to the pV1JnsCMV(no intron)-FLgag-bGHpA except that the hCMV promoter has been removed and replaced with the murine CMV (mCMV) promoter.

Figure 3 diagrammatically shows the new transgene constructs in comparison with the original transgene.

15 EXAMPLE 2

5

10

20

25

Gag Expression Assay for Modified Gag Transgenes

Gag Elisa was performed on culture supernatants obtained from transient tissue culture transfection experiments in which the two new hCMV-containing plasmid constructs, pV1JnsCMV(no intron)-FLgag-bGHpA and pV1JnsCMV(no intron)-FLgag-SPA, both devoid of intron A, were compared to pV1JnsHIVgag which, as noted above possesses the intron A as part of the hCMV promoter. Table 2 below shows the *in vitro* gag expression data of the new gag plasmids compared with the GMP grade original plasmid. The results displayed in Table 2 show that both of the new hCMV gag plasmid constructs have expression capacities comparable to the original plasmid construct which contains the intron A portion of the hCMV promoter.

Table 2: In vitro DNA transfection of original and new plasmid HIV-1 gag constructs.

Plasmid	μg gag/10e6 COS cells/5μg DNA/48 hr
HIVFL-gagPR9901 ^a	10.8
PVIJns-hCMV-FLgag-bGHpA ^b	16.6
pV1Jns-hCMV-FLgag-SPA ^{b,c}	12.0

^a GMP grade pV1Jns-hCMVintronA-FLgag-bGHpA.

10

EXAMPLE 3

Rodent (Balb/c) Study for Modified gag Transgenes
A rodent study was performed on the two new plasmid constructs
described above – pV1JnsCMV(no intron)-FLgag-bGHpA and pV1JnsCMV(no
intron)-FLgag-SPA - in order to compare them with the construct described above
possessing the intron A portion of the CMV promoter, pV1JnsHIVgag. Gag antibody
and Elispot responses (described in PCT International Application No.
PCT/US00/18332 (WO 01/02607) filed July 3, 2000, claiming priority to U.S.
Provisional Application Serial No. 60/142,631, filed July 6, 1999 and U.S.
Application Serial No. 60/148,981, filed August 13, 1999, all three applications which
are hereby incorporated by reference) were measured. The results displayed in Table
3 below, show that the new plasmid constructs behaved equivalently to the original
construct in Balb/c mice with respect to their antibody and T-cell responses at both
dosages of plasmid DNA tested, 20 μg and 200 μg.

⁵ b New plasmid constructions that have the intron A portion removed from the hCMV promoter.

^c In this construct the bGH terminator has been replaced with the short synthetic polyadenylation signal (SPA)

EXAMPLE 4

Table 3: HIV191: Immunogenicity of V1Jns-gag under different promoter and termination control elements.

DNAª	Dose, ug ^b		Anti-p24 Titers (3 Wk PD1) ^c		SFC/10^6 Cells (4 Wk PD1) ^d		
Promoter/terminator		GMT	+SE	SE	Media	gag197-205	p24
HIVFL-gagPR9901	200	12800	4652	3412	2(2)	129(19)	30(11)
(GMP grade)	20	5572	1574	1227	0	56(9)	25(6)
pV1Jns-hCMV-	200	11143	2831	2257	0	98(5)	12(6)
FL-gag-bGHpA	20	7352	2808	2032	0	73(9)	11(6)
pV1Jns-hCMV-	200	16890	5815	4326	1(1)	94(4)	26(7)
FL-gag-SPA	20	5971	5361	2825	0	85(17)	38(10)
Naïve	0	123	50	36	0	0	0

ain PBS

5

20

Construction of the Modified Shuttle Vector - "MRKpdelE1 Shuttle"

The modifications to the original Ad5 shuttle vector (pdelE1sp1A; a vector comprising Ad5 sequences from basepairs 1-341 and 3524-5798, with a multiple cloning region between nucleotides 341 and 3524 of Ad5, included the following three manipulations carried out in sequential cloning steps as follows:

- (1) The left ITR region was extended to include the *Pac1* site at the junction between the vector backbone and the adenovirus left ITR sequences. This allow for easier manipulations using the bacterial homologous recombination system.
- 10 (2) The packaging region was extended to include sequences of the wild-type (WT) adenovirus from 342 bp to 450 bp inclusive.
 - (3) The area downstream of pIX was extended 13 nucleotides (i.e., nucleotides 3511-3523 inclusive).
- These modifications (Figure 4) effectively reduced the size of the E1 deletion without overlapping with any part of the E1A/E1B gene present in the transformed PER.C6® cell line. All manipulations were performed by modifying the Ad shuttle vector pdelE1sp1A.

Once the modifications were made to the shuttle vector, the changes were incorporated into the original Ad5 adenovector backbones (pAdHVO and pAdHVE3) by bacterial homologous recombination using *E. coli* BJ5183 chemically competent cells.

bi.m. Injections into both quads, 50 μL per quad

cn=10;GMT, geometric mean titer; SE, standard. error

dn=5, pooled spleens; mean of triplicate wells and standard. deviation. in parentheses;

EXAMPLE 5

Construction of Modified Adenovector Backbones (E3+ and E3-)

The original adenovectors pAdHVO (comprising all Ad5 sequences except those nucleotides encompassing the E1 and E3 regions) and pADHVE3 (comprising 5 all Ad5 sequences except those nucleotides encompassing the E1 region), were each reconstructed so that they contained the modifications to the E1 region. This was accomplished by digesting the newly modified shuttle vector (MRKpdelE1 shuttle) with Pac1 and BstZ1101 and isolating the 2,734 bp fragment which corresponds to the adenovirus sequence. This fragment was co-transformed with DNA from either Cla1 10 linearized pAdHVO (E3- adenovector) or Cla1 linearized pAdHVE3 (E3+adenovector) into E. coli BJ5183 competent cells. At least two colonies from each transformation were selected and grown in Terrific™ broth for 6-8 hours until turbidity was reached. DNA was extracted from each cell pellet and then transformed into E. coli XL1 competent cells. One colony from each transformation was selected 15 and grown for plasmid DNA purification. The plasmid was analyzed by restriction digestions to identify correct clones. The modified adenovectors were designated MRKpAdHVO (E3- plasmid) and MRKpAdHVE3 (E3+ plasmid). Virus from these new adenovectors (MRKHVO and MRKHVE3, respectively) as well as the old version of the adenovectors were generated in the PER.C6® cell lines to accommodate 20 the following series of viral competition experiments. In addition, the multiple cloning site of the original shuttle vector contained ClaI, BamHI, Xho I, EcoRV, HindIII. Sal I, and Bgl II sites. This MCS was replaced with a new MCS containing Not I, Cla I, EcoRV and Asc I sites. This new MCS has been transferred to the MRKpAdHVO and MRKpAdHVE3 pre-plasmids along with the modification made 25 to the packaging region and pIX gene.

EXAMPLE 6

Analysis of the Effect of the Packaging Signal Extension

To study the effects of the modifications made to the E1 deletion region, the viruses obtained from the original backbone (pAdHVE3) and the new backbone (MRKpAdHVE3) were mixed together in equal MOI ratios (1:1 and 5:5) and passaged through several rounds; see Figure 5, Expt.#1. Both of the viruses in the experiment contained the E3 gene intact and did not contain a transgene. The only difference between the two viruses was within the region of the E1 deletion.

Following the coinfection of the viruses at P1 (passage 1), the mixtures were

propagated through an additional 4 passages at which time the cells were harvested

and the virus extracted and purified by CsCl banding. The viral DNA was extracted and digested with *Hind*III and the digestion products were then radioactively labeled. For the controls, the respective pre-plasmids (pAdHVE3 ("OLD E3+"); MRKpAdHVE3 ("NEW E3+")) were also digested with *Hind*III (and *Pac*1 to remove the vector backbone) and subsequently labeled with [³³P]dATP. The radioactively labeled digestion products were subjected to gel electrophoresis and the gel was dried down onto Whatman paper before being exposed to autoradiographic film. Figure 6 clearly shows that the new adenovirus which has the addition made to the packaging signal region has a growth advantage compared with the original adenovirus. In the experiments performed (at either ratio tested), only the digestion bands pertaining to the newly modified virus were present. The diagnostic band of size 3,206 (from the new virus) was clearly present. However, there was no evidence of the diagnostic band of size 2,737 bp expected from the original virus.

15 EXAMPLE 7

5

10

20

25

30

35

Analysis of the Effect of the E3 Gene

The second set of the virus competition study involved mixing equal MOI ratio (1:1) of the newly modified viruses, that obtained from MRKpAdHVO and MRKpAdHVE3 (Figure 5, Expt. #2). In this set, both viruses had the new modifications made to the E1 deletion. The first virus (that from MRKpAdHVO) does not contain an E3 gene. The second virus (that from MRKpAdHVE3) does contain the E3 gene. Neither of the viruses contain a transgene. Following coinfection of the viruses, the mixtures were propagated through an additional 4 passages at which time the cells were harvested and the total virus extracted and purified by CsCl banding. The viral DNA was extracted and digested with *Hind*III and the digestion products were then radioactively labeled. For the controls, the respective pre-plasmids MRKpAdHVO ("NEW E3-"); MRKpAdHVE3 ("NEW E3+") were also digested with $Hind\Pi$ (and Pac1 to remove the vector backbone) and then labeled with [33P]dATP. The radioactively labeled digestion products were subjected to gel electrophoresis and the gel was dried down onto Whatman paper before being exposed to autoradiographic film. Figure 6 shows the results of the viral DNA analysis of the E3+ virus and E3- virus mixing experiment. The diagnostic band corresponding to the E3+ virus (5,665 bp) was present in greater amount compared with the diagnostic band of 3,010 bp corresponding to the E3- virus. This indicates that the virus that contains the E3 gene is able to amplify more rapidly

compared with the virus that does not contain an E3 gene. This increased amplification capacity has been confirmed by growth studies; see Table 4 below.

EXAMPLE 8

Construction of the new shuttle vector containing modified gag transgene – "MRKpdelE1-CMV(no intron)-FLgag-bGHpA"

The modified plasmid pV1JnsCMV(no intron)-FLgag-bGHpA was digested with *Msc*1 overnight and then digested with *Sfi*1 for 2 hours at 50°C. The DNA was then treated with Mungbean nuclease for 30 mins at 30°C. The DNA mixture was desalted using the Qiaex II kit and then Klenow treated for 30 mins at 37°C to fully blunt the ends of the transgene fragment. The 2,559 bp transgene fragment was then gel purified. The modified shuttle vector (MRKpdelE1 shuttle) was linearized by digestion with EcoRV, treated with calf intestinal phosphatase and the resulting 6,479 bp fragment was then gel purified. The two purified fragments were then ligated together and several dozen clones were screened to check for insertion of the transgene within the shuttle vector. Diagnostic restriction digestion was performed to identify those clones carrying the transgene in the E1 parallel and E1 anti-parallel orientation. This strategy was followed to clone in the other gag transgenes in the MRKpdelE1 shuttle vector.

20

15

5

10

EXAMPLE 9

Construction of the MRK FG Adenovectors

The shuttle vector containing the HIV-1 gag transgene in the E1 parallel orientation, MRKpdelE1-CMV(no intron)-FLgag-bGHpA, was digested with Pac1. 25 The reaction mixture was digested with BsfZ171. The 5,291 bp fragment was purified by gel extraction. The MRKpAdHVE3 plasmid was digested with Cla1 overnight at 37°C and gel purified. About 100 ng of the 5,290 bp shuttle +transgene fragment and ~100 ng of linearized MRKpAdHVE3 DNA were co-transformed into E. coli BJ5183 chemically competent cells. Several clones were selected and grown in 2 ml 30 Terrific™ broth for 6-8 hours, until turbidity was reached. The total DNA from the cell pellet was purified using Qiagen alkaline lysis and phenol chloroform method. The DNA was precipitated with isopropanol and resuspended in 20 µl dH₂0. A 2 µl aliquot of this DNA was transformed into E. coli XL-1 competent cells. A single colony from each separate transformation was selected and grown overnight in 3 ml 35 LB +100 μg/ml ampicillin. The DNA was isolated using Qiagen columns. A positive clone was identified by digestion with the restriction enzyme BstEII which cleaves

within the gag gene as well as the plasmid backbone. The pre-plasmid clone is designated MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA and is 37,498 bp in size. This strategy was followed to generate E3- and E3+ versions of each of the other gag transgene constructions in both E1 parallel and E1 anti-parallel versions. Figures 7A, 7B and 7C show the various combinations of adenovectors constructed.

EXAMPLE 10

Plasmid Competition Studies

A series of plasmid competition studies was carried out. Briefly, the screening of the various combinations of new constructs was performed by mixing equal amounts of each of two competing plasmids. In the experiment shown in Figure 8A, plasmids containing the same transgene but in different orientations were mixed together to create a "competition" between the two plasmids. The aim was to look at the effects of transgene orientation. In the experiment shown in Figure 8B, plasmids containing different polyadenylation signals (but in the same orientation) were mixed together in equal amounts. The aim was to assess effects of polyA signals. Following the initial transfection, the virus was passaged through ten rounds and the viral DNA analyzed by radioactive restriction analysis.

Analysis of the viral species from the plasmid mixing experiment (Figure 8A) showed that adenovectors which had the transgene inserted in the E1 parallel orientation amplified better and were able to out-compete the adenovirus which had the transgene inserted in the E1 anti-parallel orientation. Viral DNA analysis of the mixtures at passage 3 and certainly at passage 6, showed a greater ratio of the virus carrying the transgene in the E1 parallel orientation compared with the E1 antiparallel version. By passage 10, the only viral species observed was the adenovector with the transgene in the E1 parallel orientation for both transgenes tested (hCMV(no intron)-FLgag-bGHpA and hCMV(no intron)-FLgag-SPA).

Analysis of the viral species from the plasmid mixing experiment #2 (Figure 8B) at passages 3 and 6 showed that the polyadenylation signals tested (bGHpA and SPA) did not have an effect on the growth of the virus. Even at passage 10 the two viral species in the mixture were still present in equal amounts.

30

5

10

15

20

EXAMPLE 11

Virus generation of an enhanced adenoviral construct – "MRK Ad5 HIV-1gag"

The results obtained from the competition study allowed us to make the following conclusions: (1) The packaging signal extension is beneficial; (2) Presence of E3 does enhance viral growth; (3) E1 parallel orientation is recommended; and (4) PolyA signals have no effect on the growth of the adenovirus.

MRK Ad5 HIV-1 gag exhibited the most desirable results. This construct contains the hCMV(no intron)-FLgag-bGHpA transgene inserted into the new E3+adenovector backbone, MRKpAdHVE3, in the E1 parallel orientation. We have designated this adenovector MRK Ad5 HIV-1 gag. This construct was prepared as outlined below:

The pre-plasmid MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA was digested was Pac1 to release the vector backbone and 3.3 µg was transfected by calcium phosphate method (Amersham Pharmacia Biotech.) in a 6 cm dish containing PER.C6® cells at ~60% confluence. Once CPE was reached (7-10 days), the culture was freeze/thawed three times and the cell debris pelleted. 1 ml of this cell lysate was used to infect into a 6 cm dish containing PER.C6[®] cells at 80-90% confluence. Once CPE was reached, the culture was freeze/thawed three times and the cell debris pelleted. The cell lysate was then used to infect a 15 cm dish containing PER,C6[®] cells at 80-90% confluence. This infection procedure was continued and expanded at passage 6. The virus was then extracted from the cell pellet by CsCl method. Two bandings were performed (3-gradient CsCl followed by a continuous CsCl gradient). Following the second banding, the virus was dialyzed in A105 buffer. Viral DNA was extracted using pronase treatment followed by phenol chloroform. The viral DNA was then digested with *Hind*III and radioactively labeled with [33P]dATP. Following gel electrophoresis to separate the digestion products the gel was dried down on Whatman paper and then subjected to autoradiography. The digestion products were compared with the digestion products from the pre-plasmid (that had been digested with Pac1/HindIII prior to labeling). The expected sizes were observed, indicating that the virus had been successfully rescued. This strategy was used to rescue virus from each of the various adenovector plasmid constructs prepared.

30

5

10

15

20

EXAMPLE 12

Stability Analyses

5

10

15

20

35

To determine whether the various adenovector constructs (e.g., MRK Ad5) HIV-1 gag) show genetic stability, the viruses were each passaged continually. The viral DNA was analyzed at passages 3, 6 and 10. Each virus maintained its correct genetic structure. In addition, the stability of the MRK Ad5 HIV-1 gag was analyzed under propagation conditions similar to that performed in large scale production. For this analysis, the transfections of MRK Ad5 HIV-1 gag as well as three other adenoviral vectors were repeated and the virus was purified at P3. The three other adenovectors were as follows: (1) that comprising hCMV(no intron)-Flgag with a bGHpA terminator in an E3- adenovector backbone; (2) that comprising hCMV(no intron)-Flgag with a SPA termination signal in an E3+ adenovector backbone, and that comprising a mCMV-Flgag with a bGHpA terminator in an E3+ adenovector backbone. All of the vectors have the transgene inserted in the E1 parallel orientation. Viral DNA was analyzed by radioactive restriction analysis to confirm that it was correct before being delivered to fermentation cell culture for continued passaging in serum-free media. At P5 each of the four viruses were purified and the viral DNA extracted for analysis by the restriction digestion and radiolabeling procedure. This virus has subsequently been used in a series of studies (in vitro gag expression in COS cells, rodent study and rhesus monkey study) as will be described below. The viruses from P5 are shown in Figure 9.

The passaging under serum-free conditions was continued for the MRKHVE3 (transgene-less, obtained from MRKpAdHVE3 pre-plasmid) and the MRKAd5HIV-1gag (obtained from MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA pre-plasmid) viruses. Figure 10 shows viral DNA analysis by radioactive restriction digestion at passage 11 for MRKHVE3, MRKAd5HIV-1gagE3-, and passage 11 and 12 for MRKAd5HIV-1gag. Aside from the first lane which is the DNA marker lane, the next three lanes are virus from the pre-plasmid controls (controls based on the original virus) - MRKpAdHVE3 (also referred to as "pMRKHVE3"), MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA, and pMRKAd5gag(E3-), respectively. As seen in Figure 10, each of the viral DNA samples show the expected bands with no extraneous bands showing. This signifies that there are no major variant adenovirus species present that can be detected by autoradiography.

Figure 11 shows the results of viral competition study between MRKHVE3 and MRKAd5HIV-1gag. These viruses were mixed together at equal MOI (140 viral

particles each; 280 vp total) at passage 6 and continued to be passaged until P11. Aside from the first lane which is the DNA marker lane, the next two lanes are the pre-plasmid controls obtained from MRKpAdHVE3 and MRKpAdHVE3+CMV(no intron)-FLgag-bGHpA. The next two lanes are the viral DNA from the starting viral material at passage six. The last two lanes are the competition studies performed in duplicate. The data in Figure 11 shows the effect the gag transgene in culture. Growth of a MRKAd5gag virus was compared with growth of a "transgene-less" MRKHVE3. These two viruses were infected at the same MOI (i.e. 140 vp each) at passage 6 and then passaged through to passage 11 and the viral pool was analyzed by radioactive restriction analysis. The data shows that one virus did not out compete the other. Therefore, the gag transgene did not show obvious signs of toxicity to the adenovirus.

5

10

15

20

25

30

Analysis by *Hind*III digestion shows that each virus specie is present in approximately equal amounts. As above, there does not appear to be signs of any extraneous bands. Figure 12 shows higher passage numbers for MRKAd5HIV-1gag grown under serum-containing conditions. The genome integrity again has been maintained and there is no evidence of rearrangements, even at the highest passage level (P21).

Each of the four vectors shown in Figure 9 were analyzed for amplification capacity. Table 4 below shows the QPA analysis used in the estimation of viral amplification ratios at P4. The determination of the amplification ratio for the original HIV-1 gag construct is based on the clinical lot at P12. It has been shown that amplification rates increases with higher passage number for the original virus. The reason for this observation is due to the emergence of variants which exhibit increased growth rates compared to the intact adenovector. With continued passaging of the original Ad gag vector, the level of variants increases and hence amplification rates increase also.

The MRK Ad5 HIV-1 gag virus has also been continually passaged under process conditions (i.e., serum-free media). Viral DNA extracted from passages 11 and 12 show no evidence of rearrangement.

Table 4:
Amplification Ratios Based on AEX and QPA Analysis of Virus Amplification from Passage 3 to Passage 4.

Ad gag construct	Amplification Ratio
MRKAd5gag	470
HCMV-Flgag-bGHpA [E3-]	115
HCMV-Flgag-SPA [E3+]	320
mCMV-FLgag-bGHpA [E3+]	420
Original construct *	40 - 50

⁵

EXAMPLE 13

10

15

Analytical Evaluation of the enhanced Ad5 Constructs

To study the effects of the transgene and the E3 gene on virus amplification, the enhanced adenoviral vector, MRK Ad5 HIV-1 gag, along with its transgene-less version (MRKpAdHVE3) and its E3- version (MRK Ad5 HIV-1 gag E3-), was studied for several passages under serum-free conditions. Table 5A shows the amplification ratios determined for passages P3 to P8 for MRK Ad5 HIV-1 gag. Within a certain MOI range, it has been determined that the virus output is directly proportional to the virus input. Therefore, the greater the number of virus particles per cell at infection, the greater the virus amount produced. Viral amplification ratios, on the other hand, are inversely proportional to the virus input. The lower the virus input, the greater the amplification ratio.

20

25

Table 5B shows the amplification rates of the new E3+ vector backbone MRKpAdHVE3. It has a significantly lower rate of amplification compared with the gag transgene containing version. This may be contributed to the larger size MRK Ad5 HIV-1 gag since it contains the transgene. This inclusion of the transgene brings the size of the adenovirus closer to the size of a wild type Ad5 virus. It is well known that adenoviruses amplify best when they are at close to their wild type genomic size.

^{*} This estimation is based on the clinical lot growth characteristics at Passage 12.

Wild type Ad5 is 35,935 bp. The MRKpAdHVE3 is 32, 905 bp in length. The enhanced adenovector MRK Ad5 HIV-1 gag is 35,453bp (See Figure 14 for vector map; see also Figure 15A-X show the complete pre-adenoviral vector sequence, which includes an additional 2,021 bp of the vector backbone).

5

10

Table 5C shows the amplification rates of the new E3- gag containing virus MRK Ad5 HIV-1 gag E3-. Once again, this virus shows lower growth rate than the enhanced adenoviral vector. This may be attributed to the decreased sized of this virus (due to the E3 gene deletion) compared with wild type Ad5. The MRK Ad5 HIV-1 gag E3- virus is 32,810 bp in length. This can be compared with the wild type Ad5 which is 35,935 bp and MRK Ad5 HIV-1 gag which is 35,453 bp in length.

Table 5A: Amplification ratios determined by AEX and QPA for **MRKAd5gag** over several continuous passaging in serum free media. Following P5, two replicate samples were taken (rep-1 and rep-2) and analyzed.

MRKAd5gag rep1

	Xv (10° cells/n	il), Viability (%)	Harvest Time	Cell Passage	Titer	Titer	QPA	Ratio	Amplification	AEX
	Inlection	Harvest	h.p.l.	Number	1010 vp/ml culture	10⁴ vp/cell	10° TCID ₅₀ /mì	AEX:QPA	Ratio	Internal Control
P4	1.49, 81%	0.58, 50%	44	46	8.7	5.9	1.72	50	470 (MQI = 125)	
P5	1.38, 93%	0.66, 47%	48	49	6.7	4.9	1.38	49	170	
P6	1.04, 94%	0.68, 77%	47	48	5.8	5.6	1.42	41	200	
P7	1.50, 84%	0.96, 61%	49.5	50	3.9	1.4	0.97	40	50	
P7	1.09, 97%	0.76, 59%	50	52	5.2	4.7	1.70	31	170	
P8	1.03, 94%	0.86, 64%	47.5	54	9.0	8.7	1.10	82	310	
P9	0.89, 95%	0.99, 73%	47.5	56	4.4	4.9	1.03	43	175	3.12 2.84
P10	1.09, 91%	1.06, 66%	47.5	58	3.0	2,8	1.16	26	100	2.70 2.60
P11	1.19, 88%	0.98, 85%	47	60	3.6	3.0	1.15	31	110	2.70 2.70
P12	0.98, 91%	0.85, 63%	47.5	47	5.4	5.5	1.20	45	200	2,86 2,60
P13	1.00, 88%	0.70, 87%	49	49	5.8	5.8	1.11	52	210	3.18 3.18
P14	1.94, 92%	0.88, 67%	48	53	8.6	4.4			160	3.28 3.27
P15	0.97, 96%	0.64, 68%	47	47	6.9	7.1			250	3,12 2,91

Table 5B: Amplification ratios determined by AEX and QPA for **MRKHVE3** over several continuous passaging in serum free media. **MRKHVE3** is the new vector backbone which does NOT carry a transgene.

MRKHVE3

	Xv (10 ⁶ cells/n	nl), Viability (%)	Harvest Time	Cell Passage	Titer	Titer	QPA	Ratio	Amplification	AEX
	Infection	Harvest	h.p.l.	Number	10 ¹⁰ vp/ml culture	10⁴ vp/cell	10 ⁹ TCID ₅₀ /ml	AEX:QPA	Ratio	internal Control
P4	1.10, 97%	1.28, 79%	49	54	4.1	3.8	1.70	25	300 (MDI = 125)	
P5	0.92, 89%	1.18, 77%	47	, 48	4.3	4.7	1.24	35	170	
P6	1.55, 86%	1.26, 76%	49.5	50	1,2	8.0	0.56	21	30	
P6	1.09, 97%	1.11, 81%	49	52	4.0	3.6	1.16	34	130	
P7	1.17, 91%	1,22, 91%	47.5	54	3.7	3.2	0.50	74	110	
P8	0.98, 88%	1.41,83%	48	56	2.1	2.1	0.47	45	75	3.12 2.84
Pg	1.20, 89%	1.26, 81%	47.5	58	0.8	0.7	0.29	28	25	2.70 2.60
P10	0.99, 82%	1.55, 86%	47	60	2.3	2.3	0.43	53	80	2.70 2.70
P11	1.07, 96%	1.25, 83%	48	47	2.7	2.5	0.41	66	90	2,86 2,60
P12	0.80, 91%	1.14, 80%	49,5	49	5.9	7.4	0.48	123	260	3.18 3.18
P13	1.96, 95%	1.14, 85%	45.5	53	5.8	3.0			110	3.28 3.27
P14	0.97, 96%	1.03, 98%	48.5	47	9.4	9.7			350	3.12 2.91
P15	0.87, 99%	0.97, 59%	49.5	49	5.3	6.1			218	2.78 2.52

Table 5C. Amplification ratios determined by AEX and QPA for MRKAd5gag(E3-) over several continuous passaging in serum free media. This construct is identical to the MRKAd5gag construct except that this version is DELETED of the E3 gene.

5

10

15

MRKAd5gag(E3-)

		nl), Viability (%)	Harvest Time	Cell Passage	Titer	Titer	QPA	Ratio	Amplification	AEX
	Infection	Harvest	h.p.l.	Number	10 ¹⁰ vp/ml culture	10° vp/cell	10° TCID ₅₀ /mì	AEX:QPA	Ratio	Internal Control
P4	1.62, 77%	1.12, 62%	47.5	46	2.0	1.2	0.92	20	100 (MOI=125)	·
P5	1.16, 92%	0.62, 43%	49	49	3.3	2.9	0.99	34	100	
P6	1.71, 86%	0.20, 10%	49	50	4.7	2,7	1.70	28	100	
P6	1.09, 97%	0.63, 54%	49.5	52	5.4	5.0	1.76	31	180	
P7	1.17, 91%	0,98,72%	47.50	54	7.1	6.1	0.67	106	220	
P8	0.98, 88%	0.77, 48%	48	56	3.1	3.2	0.66	47	115	3.12 2.84
P9	1.20, 89%	1.03, 72%	48	58	1.8	1.5	0.57	32	55	2.70 2.60
P10	0.99, 82%	0.80, 62%	46.5	60	3,2	3.2	0.58	47	115	2.70 2.70
P11	1.07, 96%	0.98, 70%	48.5	47	5.9	5.5	0.68	87	200	2.86 2.60
P12	0.80, 91%	0.67, 59%	50	49	5.1	6.4	0.72	71	230	3.18 3.18
P13	1.96, 95%	0.91, 59%	45.5	53	7.4	3.8			135	3.28 3.27
P14	0.97, 96%	0.81, 74%	48	47	6.8	7.0			250	3.12 2.91
P15	0.87, 99%	0.84, 56%	49	49	4.8	5.5			196	2.78 2.52

EXAMPLE 14

Gag Expression Analysis of the Novel Constructs

In vitro gag analysis of the MRK Ad5 HIV-1 gag and the original HIV-gag vectors (research and clinical lot) show comparable gag expression. The clinical lot shows only a slightly reduced gag expression level. The most noticeable difference is with the mCMV vector. This vector shows roughly 3 fold lower expression levels compared with the other vectors tested (which all contain hCMV promoters). The mCMV-FLgag with bGHpA assay was performed three times using different propagation and purification lots and it consistently exhibited weaker gag expression.

EXAMPLE 15

Evaluation of MRK Ad5 HIV-1 gag and Other gag-Containing Adenovectors in Balb/c Mice

Cohorts of 10 balb/c mice were vaccinated intramuscularly with escalating doses of MRK Ad5 HIV-1 gag, and the research and clinical lots of original Ad5HIV-1gag. Serum samples were collected 3 weeks post dose 1 and analyzed by anti-p24 sandwich ELISA.

Anti-p24 titers in mice that received MRK Ad5 HIV-1 gag (107 and 109 vp(viral particle) doses) were comparable (Figure 13) to those of the research lot of Ad5HIV-1 gag, for which much of the early rhesus data were generated on. These titers were also comparable when E3 is deleted (MRKAd5hCMVgagbGHpA(E3-)) or SPA is substituted for bGHpA terminator (MRKAd5 hCMV-gag-SPA (E3+)) or murine CMV promoter is used in place of hCMV (MRKAd5 mCMV-gag-bGHpA (E3+)) in the MRKAd5 backbone.

The results shown in Table 7 indicate that the three other vectors (in addition to the preferred vector, MRK Ad5 HIV-1 gag, are also capable of inducing strong anti-gag antibody responses in mice. Interestingly enough, while the mCMV-FLgag construct containing bGHpA and E3+ in an E1 parallel orientation showed lowest gag expression in the COS cell *in vitro* infection (Table 6) in comparison with the other vectors tested, it generated the greatest anti-gag antibody response this *in vivo* Balb/c study. Table 7 also shows a dose response in anti-gag antibody production in both the research and the clinical lot. As expected, the clinical lot shows reduced anti-gag antibody induction at each dosage level compared to the same dosage used for the research lot.

Table 6: In vitro analysis for gag expression in COS cells by Elisa assay.

20

15

5

Viral Vectors ^a	μg gag/4.8x10e5 COS/10e8 parts/48hr
MRKAd5gag ^b	1.40
Clinical lot Ad5gag ^c	1.28
Research lot Ad5gag ^d	1.32
MCMVFL-gagbGHpA ^e	0.42

^a A_{260nm} absorbance readings taken for viral particle determinations.

^b MRKAd5gag was produced in serum free conditions and purified at P5.

^c Clinical lot# Ad5gagFN0001

²⁵ d Research Ad5FLgag lot# 6399

^e mCMVFL-gagbGHpA was produced in serum free conditions and purified at P5.

Table 7: mHIV020 Anti-p24 Ab Titers in Balb/c mice (n=10) vaccinated with various Adgag constructs and iots (3 week post dose1).

Group	Vaccine	Dose (vp)	GMT	SE upper	SE lower
		(46)			
1 1	^a MRKAd5gag	10^7	25600	5877	4780
2	iii ii Maagag	10^9	409600	94028	76473
_		100	100000	54020	70170
3	hCMV FL-gag bGHpA [E3-] →	10^7	7352	2077	1620
4	# # # # # # # # # # # # # # # # # # #	10^9	235253	59767	47659
, '					
5	hCMV FL-gag SPA [E3+] →	10^7	12800	9905	236
6	" " " " " " " " " " " " " " " " " " "	10^9	310419	99181	75165
7	^b mCMV FL-gag bGHpA [E3+] →	10^7	44572	23504	15389
8	" " " " " " " " " " " " " " " " " " "	10^9	941014	239068	190636
9	^c hCMV FL-gag bGHpA [E3-] ←	10^7	3676	934	745
10	и	10^9	117627	17491	15227
11	research lot hCMV intronA FL-gag bGHpA [E3-] <-	10^6	528	262	175
12	н	10^7	14703	5274	3882
13	it	10^8	58813	14942	11915
14	ıt	10^9	204800	53232	42250
15	clinical lot hCMVintronA FL-gag bGHpA [E3-] <-	10^6	230	82	61
16	и	10^7	4222	3405	1138
17	н	10^8	19401	3939	3274
18	и	10^9	89144	25187	19639
					[
19	Naïve	none	93	7	6

*2x50 µL i.m. (quad) injections/animal

P.I.s: Youll, Chen, Casimiro Vaccination: T. Toner, Q. Su

Assay: M. Chen

5

10

^aThe structure of MRKAd5gag is: hCMVFL-gagbGHpA [E3+] → The <u>same lot</u> of MRKAd5gag used in this rodent study was used in the Rhesus monkey study (Tables 7 and 8).

^bThe same lot of mCMVFL-gagbGHpA[E3+] used in the *in vitro* study (Table 6) ws used here.

^cThis construct was designed by Volker Sandig. It contains a shorter version of the hCMV promoter than that used in the MRK constructs. The adenovector backbone is identical to the original backbone used in the original Adgag vector. Expression at 10e7 dose from this vector is 7 fold lower then the same dose of the MRKAd5gag and 4 fold lower than the research lot.

EXAMPLE 16

Comparison of Humoral and Cellular Responses Towards the Original Ad-gag Construct with the New MRK Ad5 HIV-1 gag in Rhesus Monkeys

Cohorts of 3 rhesus monkeys were vaccinated intramuscularly with MRK Ad5 HIV-1 gag or the clinical Ad5gag bulk at two doses, 10^{11} vp and 10^{9} vp. Immunizations were conducted at week 0, 4, and 25. Serum and PBMC samples were collected at selected time points. The serum sample were assayed for anti-p24 Ab titers (using competitive based assay) and the PBMCs for antigen-specific IFN-gamma secretion following overnight stimulation with gag 20-mer peptide pool (via ELISpot assay).

The results shown in Table 8 indicate comparable responses with respect to the generation of anti-gag antibodies. The frequencies of gag-specific T cells in

peripheral blood assummarized in Table 9 demonstrate a strong cellular immune response generated after a single dose with the new construct MRK Ad5 HIV-1 gag. The responses are also boostable with second dose of the same vector. The vector is also able to induce CD8+ T cell responses (as evident by remaining spot counts after CD4+ depletion of PBMCs) which are responsible for cytotoxic activity.

Table 8 Anti-p24 antibody titers (in mMU/mL) in rhesus macaques immunized with

gag-expressing adenovectors (Protocol HIV203).

Vaccine	Pre	Wk4	Wk 8	Wk 12	Wk 16	Wk 20 _	Wk 25	Wk 28
MR KAd5gaga, 10^11 vp								
97N010	<10	118	5528	11523	7062	21997	ND	51593
97N116	<10	62	772	1447	1562	2174	ND	20029
98X007	<10	66	3353	6156	6845	3719	ND	24031
MR K Ad5gag, 10^9 vp					-			
97N120	<10	51	204_	318	366	482	ND	6550
97N144	<10	18	118	274	706	888	ND	7136
98X008	<10	15	444	386	996	1072	ND	12851
Ad5gag ^b , Clinical Lot, 10^11 vp		_						
97X001	<10	87	2579_	4718	7174	7250	ND	69226
97N146	<10	72	3604	7380	7526	18906	ND	60283
98X009	<10	78	4183_	3946	3124	6956	ND	26226
Ad5gag, Clinical Lot, 10^9 vp								
97N020	<10	<10	143	371	<u>390</u>	1821	ND	17 <u>177</u>
97X003	<10	<10	39	93	156	596	ND	2053
98X012	<10	81	342	717	956	1558	ND	11861
^a MRKAd5gag (hCMV, bGHpA, E3+)								
^b orlginal Ac5gag vector (hCMV/Intro	on A, bGHp	4, E3-), lott	#FN0001_					
ND, not determined				l	<u> </u>			

Table 9. Number of gag-specific T cells per million peripheral blood mononuclear cells (PBMCs) in rhesus monkeys immunized with gag-expressing adenovectors. Also included are those frequencies in PBMCs depleted of CD4⁺ T cells.

Grp#	Vaccination	Monkey ID	T=4	Wk	T=6	Wk	T=1	Wk	T=10	5 Wk	T=2	5 Wk	T=28	3 Wk
	T=0.4.25 wks	_	Mediaa	Gag H ^b	Media	Gag H	Media	Gag H	Media	Gag H	Media	Gog H	Media	Gag H
1	MR K.Adagag	97N010	6	89	0	395	0	1058	0	1174	3	775 76	4	1074 594
1	10^11 vp	97N010(CD4-)	4	38	١. ١	609	3	993 534	4	395	0	261	0	408
		97N116	1	396	1	809	0	593	4	373	ο̈	184	0	666
		97N116(CD4-) 98X007	11 10	676 579	l o	1304	3	2193	l ı	2118	3	1588	Ö	2113
			20	965	ľ	1304	0	2675	'	2110	0	1656	ŏ	1278
		98X007(CD4-)	20	905				2075			U		Ů	
2	MR K Ada goog	97N120	5	275	1	249	4	141	4	119	9	206	4	219
	10/9 vp	97N120(CD4-)	11	170			0	85	_		0	75	1 1	219
		97N144	3	236	6	438	1	318	3	256	1	98	5	373
		97N144(CD4-)	6	148	i :		0	285			ND	ND	0	625
		98X008	4	368	1	1090	3	891	4	673	3	473	5	735
		98X008(CD4-)	14	696	ì '		0	1175	ì '	Ì	0	391	4	848
3	Adagog dinical lat	97X001	0	261	1	485	0	817	0	1220b	1	894	0	1858
"	10^11 vo	97X001(CD4-)	10	283			3	996			0	1010	0	1123
		97N146	3	150	1	465	0	339	1	1272	3	1238	3	1785
Į.		97N146(CD4-)	6	133			0	370	ļ		0	654	0	971
:		98X009	0	93	3	339	3	559	0	896	1	384	0	1748
		98X009(CD4-)	0	73			0	333			0	225	0	644
4	Adagaa dinical lot	97N020	3	30	1	101	0	66	0	36	0	26	0	41
Į i	10/9 vp	97N020(CD4-)	10	29	l		0	15		١	0	1	0	16
		97X003	4	68	5	134	0	18	1	38	4	38	6	81
		97X003(CD4-)	9	40		l	0	6	_	١	0	4	0	19
		98X012	5	95	3	54	1 1	34	0	18	0	20 8	1 ,	121 41
		98X012(CD4-)	11	70			0	11			0	8	0	41
- 5	Naive	96R041	6	8	1	1	0	0	0	0	0	0	1	0
		053F	14	18	5	16.	20	14	19	15	10	15	24	9

Based on either 4x10/5 or 2x10/5 cells per well (depending on spot density)

5

10

15

20

The adenovectors described herein and, particularly, MRK Ad5 HIV-1 gag, represent very promising HIV-gag adenovectors with respect to their enhanced growth characteristics in both serum and, more importantly, in serum-free media conditions. In comparison with the current HIV-1 gag adenovector construct, MRK Ad5 HIV-1 gag shows a 5-10 fold increased amplification rate. We have shown that it is genetically stable at passage 21. This construct is able to generate significant cellular immune responses *in vivo* even at a relatively low dose of 10^9 vp. The potency of the MRKAd5gag construct is comparable to, if not better than the original HIV-1gag vector as shown in this rhesus monkey study.

EXAMPLE 17 CODON OPTIMIZED HIV-1 POL AND CODON OPTIMZED HIV-1 POL MODIFICATIONS

The open reading frames for the various synthetic *pol* genes disclosed herein comprise coding sequences for the reverse transcriptase (or RT which consists of a polymerase and RNase H activity) and integrase (IN). The protein sequence is based

ND, not determined

mode or no peotide control

Pcol of 20-pa peptides overlapping by 10 as and encompassing the gas sequence

on that of Hxb2r, a clonal isolate of IIIB; this sequence has been shown to be closest to the consensus clade B sequence with only 16 nonidentical residues out of 848 (Korber, et al., 1998, Human retroviruses and AIDS, Los Alamos National Laboratory, Los Alamos, New Mexico). The skilled artisan will understand after review of this specification that any available HIV-1 or HIV-2 strain provides a potential template for the generation of HIV pol DNA vaccine constructs disclosed herein. It is further noted that the protease gene is excluded from the DNA vaccine constructs of the present invention to insure safety from any residual protease activity in spite of mutational inactivation. The design of the gene sequences for both wildtype (wt-pol) and inactivated pol (IA-pol) incorporates the use of human preferred ("humanized") codons for each amino acid residue in the sequence in order to maximize in vivo mammalian expression (Lathe, 1985, J. Mol. Biol. 183:1-12). As can be discerned by inspecting the codon usage in SEQ ID NOs: 1, 3, 5 and 7, the following codon usage for mammalian optimization is preferred: Met (ATG), Gly (GGC), Lys (AAG), Trp (TGG), Ser (TCC), Arg (AGG), Val (GTG), Pro (CCC), Thr (ACC), Glu (GAG); Leu (CTG), His (CAC), Ile (ATC), Asn (AAC), Cys (TGC), Ala (GCC), Gln (CAG), Phe (TTC) and Tyr (TAC). For an additional discussion relating to mammalian (human) codon optimization, see WO 97/31115 (PCT/US97/02294), which, as noted elsewhere in this specification, is hereby incorporated by reference. It is intended that the skilled artisan may use alternative versions of codon optimization or may omit this step when generating HIV pol vaccine constructs within the scope of the present invention. Therefore, the present invention also relates to non-codon optimized versions of DNA molecules and associated recombinant adenoviral HIV vaccines which encode the various wild type and modified forms of the HIV Pol protein disclosed herein. However, codon optimization of these constructs is a preferred embodiment of this invention.

5

10

15

20

25

30

35

A particular embodiment of this portion of the invention comprisies codon optimized nucleotide sequences which encode wt-pol DNA constructs (herein, "wt-pol" or "wt-pol (codon optimized))" wherein DNA sequences encoding the protease (PR) activity are deleted, leaving codon optimized "wild type" sequences which encode RT (reverse transcriptase and RNase H activity) and IN integrase activity. A DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:1, the open reading frame being contained from an initiating Met residue at nucleotides 10-12 to a termination codon from nucleotides 2560-2562. SEQ ID NO:1 is as follows:

AGATCTACCA TGGCCCCCAT CTCCCCCATT GAGACTGTGC CTGTGAAGCT GAAGCCTGGC

ATGGATGGCC CCAAGGTGAA GCAGTGGCCC CTGACTGAGG AGAAGATCAA GGCCCTGGTG

	CAAAMCMCCA	CTGAGATGGA	CAACCACCCC	እ እ እ እጥ ሮ ጠማሮ እ	አርአመጥሮሮሮሮር	CCACAACCCC
		CTGTGTTTGC		_		
		AGCTGAACAA				
_		GCCTGAAGAA				
5	TTCTCTGTGC	CCCTGGATGA	GGACTTCAGG	AAGTACACTG	CCTTCACCAT	CCCCTCCATC
	AACAATGAGA	CCCCTGGCAT	CAGGTACCAG	TACAATGTGC	TGCCCCAGGG	CTGGAAGGGC
	TCCCCTGCCA	TCTTCCAGTC	CTCCATGACC	AAGATCCTGG	AGCCCTTCAG	GAAGCAGAAC
	CCTGACATTG	TGATCTACCA	GTACATGGAT	GACCTGTATG	TGGGCTCTGA	CCTGGAGATT
	GGGCAGCACA	GGACCAAGAT	TGAGGAGCTG	AGGCAGCACC	TGCTGAGGTG	GGGCCTGACC
10	ACCCCTGACA	AGAAGCACCA	GAAGGAGCCC	CCCTTCCTGT	GGATGGGCTA	TGAGCTGCAC
	CCCGACAAGT	GGAC T GTGCA	GCCCATTGTG	CTGCCTGAGA	AGGACTCCTG	GACTGTGAAT
	GACATCCAGA	AGCTGGTGGG	CAAGCTGAAC	TGGGCCTCCC	AAATCTACCC	TGGCATCAAG
	GTGAGGCAGC	TGTGCAAGCT	GCTGAGGGGC	ACCAAGGCCC	TGACTGAGGT	GATCCCCCTG
	ACTGAGGAGG	CTGAGCTGGA	GCTGGCTGAG	AACAGGGAGA	TCCTGAAGGA	GCCTGTGCAT
15	GGGGTGTACT	ATGACCCCTC	CAAGGACCTG	ATTGCTGAGA	TCCAGAAGCA	GGGCCAGGGC
	CAGTGGACCT	ACCAAATCTA	CCAGGAGCCC	TTCAAGAACC	TGAAGACTGG	CAAGTATGCC
	AGGATGAGGG	GGGCCCACAC	CAATGATGTG	AAGCAGCTGA	CTGAGGCTGT	GCAGAAGATC
	ACCACTGAGT	CCATTGTGAT	CTGGGGCAAG	ACCCCCAAGT	TCAAGCTGCC	CATCCAGAAG
	GAGACCTGGG	AGACCTGGTG	GACTGAGTAC	TGGCAGGCCA	CCTGGATCCC	TGAGTGGGAG
20	TTTGTGAACA	CCCCCCCCT	GGTGAAGCTG	TGGTACCAGC	TGGAGAAGGA	GCCCATTGTG
	GGGGCTGAGA	CCTTCTATGT	GGA T GGGGCT	GCCAACAGGG	AGACCAAGCT	GGGCAAGGCT
	GGCTATGTGA	CCAACAGGGG	CAGGCAGAAG	GTGGTGACCC	TGACTGACAC	CACCAACCAG
	AAGACTGAGC	TCCAGGCCAT	CTACCTGGCC	CTCCAGGACT	CTGGCCTGGA	GGTGAACATT
	GTGACTGACT	CCCAGTATGC	CCTGGGCATC	ATCCAGGCCC	AGCCTGATCA	GTCTGAGTCT
25		ACCAGATCAT				
		ACAAGGGCAT				
		TGCTGTTCCT				
		GGAGGGCTAT				
		CCTGTGACAA				
30		GCATCTGGCA				
50		TGGCCTCCGG				
		ACTTCCTGCT				
		CCAACTTCAC				
		TTGGCATCCC				
25						
35		AGAAGATCAT				
	GTGCAGATGG	CTGTGTTCAT	CCACAACTTC	AAGAGGAAGG	GGGGCATCGG	GGGCTACTCC

GCTGGGGAGA GGATTGTGGA CATCATTGCC ACAGACATCC AGACCAAGGA GCTCCAGAAG
CAGATCACCA AGATCCAGAA CTTCAGGGTG TACTACAGGG ACTCCAGGAA CCCCCTGTGG
AAGGGCCCTG CCAAGCTGCT GTGGAAGGGG GAGGGGGCTG TGGTGATCCA GGACAACTCT
GACATCAAGG TGGTGCCCAG GAGGAAGGCC AAGATCATCA GGGACTATGG CAAGCAGATG
GCTGGGGATG ACTGTGTGC CTCCAGGCAG GATGAGGACT AAAGCCCGGG CAGATCT (SEQ
ID NO:1).

5

The open reading frame of the wild type pol construct disclosed as SEQ ID NO:1 contains 850 amino acids, disclosed herein as SEQ ID NO:2, as follows: Met Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro 10 Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile 15 Pro His Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln 20 Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val 25 Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln 30 Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp 35 Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala

Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr Glu Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Asp Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro 10 Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Asp Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Asp Asn Gly Ser Asn Phe Thr Gly Ala Thr Val 15 Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Glu Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly 20 Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp 25 Glu Asp (SEQ ID NO:2).

The present invention especially relates to an adenoviral vector vaccine which comprises a codon optimized HIV-1 DNA pol construct wherein, in addition to deletion of the portion of the wild type sequence encoding the protease activity, a combination of active site residue mutations are introduced which are deleterious to HIV-1 pol (RT-RH-IN) activity of the expressed protein. Therefore, the present invention preferably relates to an adenoviral HIV-1 DNA pol-based vaccine wherein the construct is devoid of DNA sequences encoding any PR activity, as well as containing a mutation(s) which at least partially, and preferably substantially, abolishes RT, RNase and/or IN activity. One type of HIV-1 pol mutant which is part and parcel of an adenoviral vector vaccine may include but is not limited to a mutated

30

5

10

15

20

25

DNA molecule comprising at least one nucleotide substitution which results in a point mutation which effectively alters an active site within the RT, RNase and/or IN regions of the expressed protein, resulting in at least substantially decreased enzymatic activity for the RT, RNase H and/or IN functions of HIV-1 Pol. In a preferred embodiment of this portion of the invention, a HIV-1 DNA pol construct contains a mutation or mutations within the Pol coding region which effectively abolishes RT, RNase H and IN activity. An especially preferable HIV-1 DNA pol construct in a DNA molecule which contains at least one point mutation which alters the active site of the RT, RNase H and IN domains of Pol, such that each activity is at least substantially abolished. Such a HIV-1 Pol mutant will most likely comprise at least one point mutation in or around each catalytic domain responsible for RT, RNase H and IN activity, respectfully. To this end, an especially preferred HIV-1 DNA pol construct is exemplified herein and contains nine codon substitution mutations which results in an inactivated Pol protein (IA Pol: SEQ ID NO:4, Figure 17A-C) which has no PR, RT, RNase or IN activity, wherein three such point mutations reside within each of the RT, RNase and IN catalytic domains. Therefore, an especially preferred exemplification is an adenoviral vaccine which comprises, in an appropriate fashion, a DNA molecule which encodes IA-pol, which contains all nine mutations as shown below in Table 1. An additional preferred amino acid residue for substitution is Asp551, localized within the RNase domain of Pol. Any combination of the mutations disclosed herein may suitable and therefore may be utilized as an IA-Pol-based vaccine of the present invention. While addition and deletion mutations are contemplated and within the scope of the invention, the preferred mutation is a point mutation resulting in a substitution of the wild type amino acid with an alternative amino acid residue.

\mathbf{I}	a	b]	e	1

			
wt aa	aa residue	mutant aa	enzyme function
Asp	112	Ala	RT
Asp	187	Ala	RT
Asp	188	Ala	RT
Asp	445	Ala	RNase H
Glu	480	Ala	RNase H
Asp	500	Ala	RNase H
Asp	626	Ala	IN
Asp	678	Ala	IN
Glu	714	Ala	IN
	Asp Asp Asp Asp Glu Asp Asp	Asp 112 Asp 187 Asp 188 Asp 445 Glu 480 Asp 500 Asp 626 Asp 678	Asp 112 Ala Asp 187 Ala Asp 188 Ala Asp 445 Ala Glu 480 Ala Asp 500 Ala Asp 626 Ala Asp 678 Ala

It is preferred that point mutations be incorporated into the IApol mutant adenoviral vaccines of the present invention so as to lessen the possibility of altering epitopes in and around the active site(s) of HIV-1 Pol.

To this end, SEQ ID NO:3 discloses the nucleotide sequence which codes for a codon optimized pol in addition to the nine mutations shown in Table 1, disclosed as follows, and referred to herein as "IApol":

```
AGATCTACCA TGGCCCCCAT CTCCCCCATT GAGACTGTGC CTGTGAAGCT GAAGCCTGGC
    ATGGATGGCC CCAAGGTGAA GCAGTGGCCC CTGACTGAGG AGAAGATCAA GGCCCTGGTG
    GAAATCTGCA CTGAGATGGA GAAGGAGGGC AAAATCTCCA AGATTGGCCC CGAGAACCCC
10
    TACAACACCC CTGTGTTTGC CATCAAGAAG AAGGACTCCA CCAAGTGGAG GAAGCTGGTG
    GACTTCAGGG AGCTGAACAA GAGGACCCAG GACTTCTGGG AGGTGCAGCT GGGCATCCCC
    CACCCCGCTG GCCTGAAGAA GAAGAAGTCT GTGACTGTGC TGGCTGTGGG GGATGCCTAC
    TTCTCTGTGC CCCTGGATGA GGACTTCAGG AAGTACACTG CCTTCACCAT CCCCTCCATC
    AACAATGAGA CCCCTGGCAT CAGGTACCAG TACAATGTGC TGCCCCAGGG CTGGAAGGGC
15
    TCCCCTGCCA TCTTCCAGTC CTCCATGACC AAGATCCTGG AGCCCTTCAG GAAGCAGAAC
    CCTGACATTG TGATCTACCA GTACATGGCT GCCCTGTATG TGGGCTCTGA CCTGGAGATT
    GGGCAGCACA GGACCAAGAT TGAGGAGCTG AGGCAGCACC TGCTGAGGTG GGGCCTGACC
    ACCCCTGACA AGAAGCACCA GAAGGAGCCC CCCTTCCTGT GGATGGGCTA TGAGCTGCAC
    CCCGACAGT GGACTGTGCA GCCCATTGTG CTGCCTGAGA AGGACTCCTG GACTGTGAAT
    GACATCCAGA AGCTGGTGGG CAAGCTGAAC TGGGCCTCCC AAATCTACCC TGGCATCAAG
20
    GTGAGGCAGC TGTGCAAGCT GCTGAGGGGC ACCAAGGCCC TGACTGAGGT GATCCCCCTG
    ACTGAGGAGG CTGAGCTGGA GCTGGCTGAG AACAGGGAGA TCCTGAAGGA GCCTGTGCAT
    GGGGTGTACT ATGACCCCTC CAAGGACCTG ATTGCTGAGA TCCAGAAGCA GGGCCAGGGC
    CAGTGGACCT ACCAAATCTA CCAGGAGCCC TTCAAGAACC TGAAGACTGG CAAGTATGCC
25
    AGGATGAGGG GGGCCCACAC CAATGATGTG AAGCAGCTGA CTGAGGCTGT GCAGAAGATC
    ACCACTGAGT CCATTGTGAT CTGGGGCAAG ACCCCCAAGT TCAAGCTGCC CATCCAGAAG
    GAGACCTGGG AGACCTGGTG GACTGAGTAC TGGCAGGCCA CCTGGATCCC TGAGTGGGAG
    TTTGTGAACA CCCCCCCCT GGTGAAGCTG TGGTACCAGC TGGAGAAGGA GCCCATTGTG
    GGGGCTGAGA CCTTCTATGT GGCTGGGGCT GCCAACAGGG AGACCAAGCT GGGCAAGGCT
30
    GGCTATGTGA CCAACAGGGG CAGGCAGAAG GTGGTGACCC TGACTGACAC CACCAACCAG
    AAGACTGCCC TCCAGGCCAT CTACCTGGCC CTCCAGGACT CTGGCCTGGA GGTGAACATT
     GTGACTGCCT CCCAGTATGC CCTGGGCATC ATCCAGGCCC AGCCTGATCA GTCTGAGTCT
    GTGCCTGCCC ACAAGGGCAT TGGGGGCAAT GAGCAGGTGG ACAAGCTGGT GTCTGCTGGC
35
    ATCAGGAAGG TGCTGTTCCT GGATGGCATT GACAAGGCCC AGGATGAGCA TGAGAAGTAC
    CACTCCAACT GGAGGGCTAT GGCCTCTGAC TTCAACCTGC CCCCTGTGGT GGCTAAGGAG
```

```
ATTGTGGCCT CCTGTGACAA GTGCCAGCTG AAGGGGGAGG CCATGCATGG GCAGGTGGAC
    TGCTCCCCTG GCATCTGGCA GCTGGCCTGC ACCCACCTGG AGGGCAAGGT GATCCTGGTG
    GCTGTGCATG TGGCCTCCGG CTACATTGAG GCTGAGGTGA TCCCTGCTGA GACAGGCCAG
    GAGACTGCCT ACTTCCTGCT GAAGCTGGCT GGCAGGTGGC CTGTGAAGAC CATCCACACT
    GCCAATGGCT CCAACTTCAC TGGGGCCACA GTGAGGGCTG CCTGCTGGTG GGCTGGCATC
5
    AAGCAGGAGT TTGGCATCCC CTACAACCCC CAGTCCCAGG GGGTGGTGGC CTCCATGAAC
    AAGGAGCTGA AGAAGATCAT TGGGCAGGTG AGGGACCAGG CTGAGCACCT GAAGACAGCT
    GTGCAGATGG CTGTGTTCAT CCACAACTTC AAGAGGAAGG GGGGCATCGG GGGCTACTCC
    GCTGGGGAGA GGATTGTGGA CATCATTGCC ACAGACATCC AGACCAAGGA GCTCCAGAAG
10
    CAGATCACCA AGATCCAGAA CTTCAGGGTG TACTACAGGG ACTCCAGGAA CCCCCTGTGG
    AAGGGCCCTG CCAAGCTGCT GTGGAAGGGG GAGGGGGCTG TGGTGATCCA GGACAACTCT
    GACATCAAGG TGGTGCCCAG GAGGAAGGCC AAGATCATCA GGGACTATGG CAAGCAGATG
    GCTGGGGATG ACTGTGTGGC CTCCAGGCAG GATGAGGACT AAAGCCCGGG CAGATCT (SEQ ID
    NO:3).
```

In order to produce the IA-pol-based adenoviral vaccines of the present 15 invention, inactivation of the enzymatic functions was achieved by replacing a total of nine active site residues from the enzyme subunits with alanine side-chains. As shown in Table 1, all residues that comprise the catalytic triad of the polymerase, namely Asp112, Asp187, and Asp188, were substituted with alanine (Ala) residues (Larder, et al., Nature 1987, 327: 716-717; Larder, et al., 1989, Proc. Natl. Acad. Sci. 20 1989, 86: 4803-4807). Three additional mutations were introduced at Asp445, Glu480 and Asp500 to abolish RNase H activity (Asp551 was left unchanged in this IA Pol construct), with each residue being substituted for an Ala residue, respectively (Davies, et al., 1991, Science 252:, 88-95; Schatz, et al., 1989, FEBS Lett. 257: 311-314; Mizrahi, et al., 1990, Nucl. Acids. Res. 18: pp. 5359-5353). HIV pol integrase 25 function was abolished through three mutations at Asp626, Asp678 and Glu714. Again, each of these residues has been substituted with an Ala residue (Wiskerchen, et al., 1995, J. Virol. 69: 376-386; Leavitt, et al., 1993, J. Biol. Chem. 268: 2113-2119). Amino acid residue Pro3 of SEQ ID NO:4 marks the start of the RT gene. The complete amino acid sequence of IA-Pol is disclosed herein as SEQ ID NO:4 and 30 Figure 17A-C, as follows:

Met Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg

Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys Lys Lys Lys Ser Val Thr Val Leu Ala Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile 5 Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Ala Ala Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln 10 Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu 15 Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile 20 Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Ala Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr Ala 25 Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Ala Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile 30 Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln 35 Leu Ala Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly

Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val
Lys Thr Ile His Thr Ala Asn Gly Ser Asn Phe Thr Gly Ala Thr Val
Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro
Tyr Asn Pro Gln Ser Gln Gly Val Val Ala Ser Met Asn Lys Glu Leu

5 Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr
Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly
Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr
Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn
Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro

10 Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn
Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp
Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp
Glu Asp (SEQ ID NO:4).

15

20

25

30

35

As noted above, it will be understood that any combination of the mutations disclosed above may be suitable and therefore be utilized as an IA-pol-based adenoviral HIV vaccine of the present invention, either when administered alone or in a combined modality regime and/or a prime-boost regimen. For example, it may be possible to mutate only 2 of the 3 residues within the respective reverse transcriptase, RNase-H, and integrase coding regions while still abolishing these enzymatic activities. However, the IA-pol construct described above and disclosed as SEQ ID NO:3, as well as the expressed protein (SEQ ID NO:4;) is preferred. It is also preferred that at least one mutation be present in each of the three catalytic domains.

Another aspect of this portion of the invention are codon optimized HIV-1 Pol-based vaccine constructions which comprise a eukaryotic trafficking signal peptide such as from tPA (tissue-type plasminogen activator) or by a leader peptide such as is found in highly expressed mammalian proteins such as immunoglobulin leader peptides. Any functional leader peptide may be tested for efficacy. However, a preferred embodiment of the present invention, as with HIV-1 Nef constructs shown herein, is to provide for a HIV-1 Pol mutant adenoviral vaccine construction wherein the pol coding region or a portion thereof is operatively linked to a leader peptide, preferably a leader peptide from human tPA. In other words, a codon optimized HIV-1 Pol mutant such as IA-Pol (SEQ ID NO:4) may also comprise a leader peptide at the amino terminal portion of the protein, which may effect cellular trafficking and hence, immunogenicity of the expressed protein within the host cell. As noted in Figure 16A-B, a DNA vector which may be utilized to practice the present invention may be modified by known recombinant DNA methodology to contain a leader signal

peptide of interest, such that downstream cloning of the modified HIV-1 protein of interest results in a nucleotide sequence which encodes a modified HIV-1 tPA/Pol protein. In the alternative, as noted above, insertion of a nucleotide sequence which encodes a leader peptide may be inserted into a DNA vector housing the open reading frame for the Pol protein of interest. Regardless of the cloning strategy, the end result is a polynucleotide vaccine which comprises vector components for effective gene expression in conjunction with nucleotide sequences which encode a modified HIV-1 Pol protein of interest, including but not limited to a HIV-1 Pol protein which contains a leader peptide. The amino acid sequence of the human tPA leader utilized herein is as follows: MDAMKRGLCCVLLLCGAVFVSPSEISS (SEQ ID NO:17). Therefore, another aspect of the present invention is to generate HIV-1 Pol-based vaccine constructions which comprise a eukaryotic trafficking signal peptide such as from tPA. To this end, the present invention relates to a DNA molecule which encodes a codon optimized wt-pol DNA construct wherein the protease (PR) activity is deleted and a human tPA leader sequence is fused to the 5' end of the coding region. A DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:5, the open reading frame disclosed herein as SEQ ID NO:6.

10

15

20

25

30

35

To this end, the present invention relates to a DNA molecule which encodes a codon optimized wt-pol DNA construct wherein the protease (PR) activity is deleted and a human tPA leader sequence is fused to the 5' end of the coding region (herein, "tPA-wt-pol"). A DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:5, the open reading frame being contained from an initiating Met residue at nucleotides 8-10 to a termination codon from nucleotides 2633-2635. SEQ ID NO:5 is as follows:

GATCACCATG GATGCAATGA AGAGAGGGCT CTGCTGTGTG CTGCTGCTGT GTGGAGCAGT
CTTCGTTTCG CCCAGCGAGA TCTCCGCCCC CATCTCCCCC ATTGAGACTG TGCCTGTGAA
GCTGAAGCCT GGCATGGATG GCCCCAAGGT GAAGCAGTGG CCCCTGACTG AGGAGAAGAT
CAAGGCCCTG GTGGAAATCT GCACTGAGAT GGAGAAGGAG GGCAAAAATCT CCAAGATTGG
CCCCGAGAAC CCCTACAACA CCCCTGTGTT TGCCATCAAG AAGAAGGACT CCACCAAGTG
GAGGAAGCTG GTGGACTTCA GGGAGCTGAA CAAGAGGACC CAGGACTTCT GGGAGGTGCA
GCTGGGCATC CCCCACCCCG CTGGCCTGAA GAAGAAGAAG TCTGTGACTG TGCTGGATGT
GGGGGATGCC TACTTCTCTG TGCCCCTGGA TGAGGACTTC AGGAAGTACA CTGCCTTCAC
CATCCCCTCC ATCAACAATG AGACCCCTGG CATCAGGTAC CAGTACAATG TGCTGCCCCA
GGGCTGGAAG GGCTCCCCTG CCATCTTCCA GTCCTCCATG ACCAAGATC TGGAGCCCTT
CAGGAAGCAG AACCCTGACA TTGTGATCTA CCAGTACATG GATGACCTGT ATGTGGGCTC
TGACCTGGAG ATTGGGCAGC ACAGGACCAA GATTGAGGAG CTGAGGCAGC ACCTGCTGAG

GTGGGGCCTG ACCACCCCTG ACAAGAAGCA CCAGAAGGAG CCCCCCTTCC TGTGGATGGG CTATGAGCTG CACCCCGACA AGTGGACTGT GCAGCCCATT GTGCTGCCTG AGAAGGACTC CTGGACTGTG AATGACATCC AGAAGCTGGT GGGCAAGCTG AACTGGGCCT CCCAAATCTA CCCTGGCATC AAGGTGAGGC AGCTGTGCAA GCTGCTGAGG GGCACCAAGG CCCTGACTGA 5 GGTGATCCCC CTGACTGAGG AGGCTGAGCT GGAGCTGGCT GAGAACAGGG AGATCCTGAA GGAGCCTGTG CATGGGGTGT ACTATGACCC CTCCAAGGAC CTGATTGCTG AGATCCAGAA GCAGGGCCAG GGCCAGTGGA CCTACCAAAT CTACCAGGAG CCCTTCAAGA ACCTGAAGAC TGGCAAGTAT GCCAGGATGA GGGGGGCCCA CACCAATGAT GTGAAGCAGC TGACTGAGGC TGTGCAGAAG ATCACCACTG AGTCCATTGT GATCTGGGGC AAGACCCCCA AGTTCAAGCT 10 GCCCATCCAG AAGGAGACCT GGGAGACCTG GTGGACTGAG TACTGGCAGG CCACCTGGAT CCCTGAGTGG GAGTTTGTGA ACACCCCCC CCTGGTGAAG CTGTGGTACC AGCTGGAGAA GGAGCCCATT GTGGGGGCTG AGACCTTCTA TGTGGATGGG GCTGCCAACA GGGAGACCAA GCTGGCCAAG GCTGGCTATG TGACCAACAG GGGCAGGCAG AAGGTGGTGA CCCTGACTGA CACCACCAAC CAGAAGACTG AGCTCCAGGC CATCTACCTG GCCCTCCAGG ACTCTGGCCT GGAGGTGAAC ATTGTGACTG ACTCCCAGTA TGCCCTGGGC ATCATCCAGG CCCAGCCTGA 15 TCAGTCTGAG TCTGAGCTGG TGAACCAGAT CATTGAGCAG CTGATCAAGA AGGAGAAGGT GTACCTGGCC TGGGTGCCTG CCCACAAGGG CATTGGGGGC AATGAGCAGG TGGACAAGCT GGTGTCTGCT GGCATCAGGA AGGTGCTGTT CCTGGATGGC ATTGACAAGG CCCAGGATGA GCATGAGAAG TACCACTCCA ACTGGAGGGC TATGGCCTCT GACTTCAACC TGCCCCCTGT 20 GGTGGCTAAG GAGATTGTGG CCTCCTGTGA CAAGTGCCAG CTGAAGGGGG AGGCCATGCA TGGGCAGGTG GACTGCTCCC CTGGCATCTG GCAGCTGGAC TGCACCCACC TGGAGGGCAA GGTGATCCTG GTGGCTGTGC ATGTGGCCTC CGGCTACATT GAGGCTGAGG TGATCCCTGC TGAGACAGGC CAGGAGACTG CCTACTTCCT GCTGAAGCTG GCTGGCAGGT GGCCTGTGAA GACCATCCAC ACTGACAATG GCTCCAACTT CACTGGGGCC ACAGTGAGGG CTGCCTGCTG GTGGGCTGGC ATCAAGCAGG AGTTTGGCAT CCCCTACAAC CCCCAGTCCC AGGGGGTGGT 25 GGAGTCCATG AACAAGGAGC TGAAGAAGAT CATTGGGCAG GTGAGGGACC AGGCTGAGCA CCTGAAGACA GCTGTGCAGA TGGCTGTTT CATCCACAAC TTCAAGAGGA AGGGGGGCAT CGGGGGCTAC TCCGCTGGGG AGAGGATTGT GGACATCATT GCCACAGACA TCCAGACCAA GGAGCTCCAG AAGCAGATCA CCAAGATCCA GAACTTCAGG GTGTACTACA GGGACTCCAG GAACCCCTG TGGAAGGGCC CTGCCAAGCT GCTGTGGAAG GGGGAGGGGG CTGTGGTGAT 30 CCAGGACAAC TCTGACATCA AGGTGGTGCC CAGGAGGAAG GCCAAGATCA TCAGGGACTA TGGCAAGCAG ATGGCTGGGG ATGACTGTGT GGCCTCCAGG CAGGATGAGG ACTAAAGCCC GGGCAGATCT (SEQ ID NO:5).

The open reading frame of the wild type tPA-pol construct disclosed as SEQ ID NO:5 contains 875 amino acids, disclosed herein as SEQ ID NO:6, as follows:

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly

Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu 5 Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro 10 Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly 15 Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile 20 Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln 25 Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly 30 Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr.Glu Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Asp Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu 35 Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile

Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Asp Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Asp Asn Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Glu Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly Gln Val 10 Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp 15 Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp (SEQ ID NO:6).

The present invention also relates to a codon optimized HIV-1 Pol mutant contained within a recombinant adenoviral vector such as IA-Pol (SEQ ID NO:4) 20 which comprises a leader peptide at the amino terminal portion of the protein, which may effect cellular trafficking and hence, immunogenicity of the expressed protein within the host cell. Any such adenoviral-based HIV-1 DNA pol mutant disclosed in the above paragraphs is suitable for fusion downstream of a leader peptide, such as a leader peptide including but not limited to the human tPA leader sequence. Therefore, 25 any such leader peptide-based HIV-1 pol mutant construct may include but is not limited to a mutated DNA molecule which effectively alters the catalytic activity of the RT, RNase and/or IN region of the expressed protein, resulting in at least substantially decreased enzymatic activity one or more of the RT, RNase H and/or IN functions of HIV-1 Pol. In a preferred embodiment of this portion of the invention, a 30 leader peptide/HIV-1 DNA pol construct contains a mutation or mutations within the Pol coding region which effectively abolishes RT, RNase H and IN activity. An especially preferable HIV-1 DNA pol construct is a DNA molecule which contains at least one point mutation which alters the active site and catalytic activity within the 35 RT, RNase H and IN domains of Pol, such that each activity is at least substantially abolished, and preferably totally abolished. Such a HIV-1 Pol mutant will most likely

comprise at least one point mutation in or around each catalytic domain responsible for RT, RNase H and IN activity, respectfully. An especially preferred embodiment of this portion of the invention relates to a human tPA leader fused to the IA-Pol protein comprising the nine mutations shown in Table 1. The DNA molecule is disclosed herein as SEQ ID NO:7 and the expressed tPA-IA Pol protein comprises a fusion junction as shown in Figure 18. The complete amino acid sequence of the expressed protein is set forth in SEQ ID NO:8. To this end, SEQ ID NO:7 discloses the nucleotide sequence which codes for a human tPA leader fused to the IA Pol protein comprising the nine mutations shown in Table 1 (herein, "tPA-opt-IApol"). The open reading frame begins with the initiating Met (nucleotides 8-10) and terminates with a "TAA" codon at nucleotides 2633-2635. The nucleotide sequence encoding tPA-IAPol is also disclosed as follows: GATCACCATG GATGCAATGA AGAGAGGGCT CTGCTGTGTG CTGCTGCTGT GTGGAGCAGT CTTCGTTTCG CCCAGCGAGA TCTCCGCCC CATCTCCCCC ATTGAGACTG TGCCTGTGAA GCTGAAGCCT GGCATGGATG GCCCCAAGGT GAAGCAGTGG CCCCTGACTG AGGAGAAGAT CAAGGCCCTG GTGGAAATCT GCACTGAGAT GGAGAAGGAG GGCAAAATCT CCAAGATTGG CCCCGAGAAC CCCTACAACA CCCCTGTGTT TGCCATCAAG AAGAAGGACT CCACCAAGTG GAGGAAGCTG GTGGACTTCA GGGAGCTGAA CAAGAGGACC CAGGACTTCT GGGAGGTGCA GCTGGCCATC CCCCACCCG CTGGCCTGAA GAAGAAGAAG TCTGTGACTG TGCTGGCTGT GGGGGATGCC TACTTCTCTG TGCCCCTGGA TGAGGACTTC AGGAAGTACA CTGCCTTCAC CATCCCTCC ATCAACAATG AGACCCCTGG CATCAGGTAC CAGTACAATG TGCTGCCCCA GGGCTGGAAG GGCTCCCTG CCATCTTCCA GTCCTCCATG ACCAAGATCC TGGAGCCCTT CAGGAAGCAG AACCCTGACA TTGTGATCTA CCAGTACATG GCTGCCCTGT ATGTGGGCTC TGACCTGGAG ATTGGGCAGC ACAGGACCAA GATTGAGGAG CTGAGGCAGC ACCTGCTGAG GTGGGGCCTG ACCACCCCTG ACAAGAAGCA CCAGAAGGAG CCCCCCTTCC TGTGGATGGG CTATGAGCTG CACCCCGACA AGTGGACTGT GCAGCCCATT GTGCTGCCTG AGAAGGACTC CTGGACTGTG AATGACATCC AGAAGCTGGT GGGCAAGCTG AACTGGGCCT CCCAAATCTA CCCTGGCATC AAGGTGAGGC AGCTGTGCAA GCTGCTGAGG GGCACCAAGG CCCTGACTGA GGTGATCCCC CTGACTGAGG AGGCTGAGCT GGAGCTGGCT GAGAACAGGG AGATCCTGAA GGAGCCTGTG CATGGGGTGT ACTATGACCC CTCCAAGGAC CTGATTGCTG AGATCCAGAA -GCAGGGCCAG GGCCAGTGGA CCTACCAAAT CTACCAGGAG CCCTTCAAGA ACCTGAAGAC TGGCAAGTAT GCCAGGATGA GGGGGGCCCA CACCAATGAT GTGAAGCAGC TGACTGAGGC TGTGCAGAAG ATCACCACTG AGTCCATTGT GATCTGGGGC AAGACCCCCA AGTTCAAGCT GCCCATCCAG AAGGAGACCT GGGAGACCTG GTGGACTGAG TACTGGCAGG CCACCTGGAT CCCTGAGTGG GAGTTTGTGA ACACCCCCC CCTGGTGAAG CTGTGGTACC AGCTGGAGAA GGAGCCCATT GTGGGGGCTG AGACCTTCTA TGTGGCTGGG GCTGCCAACA GGGAGACCAA

10

15

20

25

30

GCTGGGCAAG GCTGGCTATG TGACCAACAG GGGCAGGCAG AAGGTGGTGA CCCTGACTGA CACCACCAAC CAGAAGACTG CCCTCCAGGC CATCTACCTG GCCCTCCAGG ACTCTGGCCT GGAGGTGAAC ATTGTGACTG CCTCCCAGTA TGCCCTGGGC ATCATCCAGG CCCAGCCTGA TCAGTCTGAG TCTGAGCTGG TGAACCAGAT CATTGAGCAG CTGATCAAGA AGGAGAAGGT GTACCTGGCC TGGGTGCCTG CCCACAGGG CATTGGGGGC AATGAGCAGG TGGACAAGCT GGTGTCTGCT GGCATCAGGA AGGTGCTGTT CCTGGATGGC ATTGACAAGG CCCAGGATGA GCATGAGAAG TACCACTCCA ACTGGAGGGC TATGGCCTCT GACTTCAACC TGCCCCCTGT GGTGGCTAAG GAGATTGTGG CCTCCTGTGA CAAGTGCCAG CTGAAGGGGG AGGCCATGCA TGGGCAGGTG GACTGCTCCC CTGGCATCTG GCAGCTGGCC TGCACCCACC TGGAGGGCAA GGTGATCCTG GTGGCTGTGC ATGTGGCCTC CGGCTACATT GAGGCTGAGG TGATCCCTGC 10 TGAGACAGGC CAGGAGACTG CCTACTTCCT GCTGAAGCTG GCTGGCAGGT GGCCTGTGAA GACCATCCAC ACTGCCAATG GCTCCAACTT CACTGGGGCC ACAGTGAGGG CTGCCTGCTG GTGGGCTGGC ATCAAGCAGG AGTTTGGCAT CCCCTACAAC CCCCAGTCCC AGGGGGTGGT GGCCTCCATG AACAAGGAGC TGAAGAAGAT CATTGGGCAG GTGAGGGACC AGGCTGAGCA CCTGAAGACA GCTGTGCAGA TGGCTGTGTT CATCCACAAC TTCAAGAGGA AGGGGGGCAT 15 CGGGGGCTAC TCCGCTGGGG AGAGGATTGT GGACATCATT GCCACAGACA TCCAGACCAA GGAGCTCCAG AAGCAGATCA CCAAGATCCA GAACTTCAGG GTGTACTACA GGGACTCCAG GAACCCCTG TGGAAGGGCC CTGCCAAGCT GCTGTGGAAG GGGGAGGGGG CTGTGGTGAT CCAGGACAAC TCTGACATCA AGGTGGTGCC CAGGAGGAAG GCCAAGATCA TCAGGGACTA TGGCAAGCAG ATGGCTGGGG ATGACTGTGT GGCCTCCAGG CAGGATGAGG ACTAAAGCCC 20 GGGCAGATCT (SEQ ID NO:7).

The open reading frame of the tPA-IA-pol construct disclosed as SEQ ID NO:7 contains 875 amino acids, disclosed herein as tPA-IA-Pol and SEQ ID NO:8, as follows:

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys Lys Lys Lys Ser Val Thr Val Leu Ala Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Trp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Val Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr

Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Ala Ala Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu 10 Ile Ala Glu Ile Gln Lys Gln Gly Gln Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr 15 Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Ala Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr Ala Leu Gln Ala Ile Tyr Leu Ala 20 Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Ala Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile 25 Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Ala Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu 30 Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Ala Asn Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Ala Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly Gln Val 35 Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe

Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asp Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp (SEQ ID NO:8).

5

10

15

20

25

30

35

EXAMPLE 18

CODON OPTIMIZED HIV-1 NEF AND CODON OPTIMIZED HIV-1 NEF MODIFICATIONS

Codon optimized version of HIV-1 Nef and HIV-1 Nef modifications are essentially as described in U.S. Application Serial No. 09/738,782, filed December 15, 2000 and PCT International Application PCT/US00/34162, also filed December 15, 2000, both documents which are hereby incorporated by reference. As disclosed within the above-mentioned documents, particular embodiments of codon optimized Nef and Nef modifications relate to a DNA molecule encoding HIV-1 Nef from the HIV-1 ifrl isolate wherein the codons are optimized for expression in a mammalian system such as a human. The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:9, while the expressed open reading frame is disclosed herein as SEQ ID NO:10. Another embodiment of Nef-based coding regions for use in the adenoviral vectors of the present invention comprise a codon optimized DNA molecule encoding a protein containing the human plasminogen activator (tpa) leader peptide fused with the NH2-terminus of the HIV-1 Nef polypeptide. The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:11, while the expressed open reading frame is disclosed herein as SEQ ID NO:12. Another modified Nef optimized coding region relates to a DNA molecule encoding optimized HIV-1 Nef wherein the open reading frame codes for modifications at the amino terminal myristylation site (Gly-2 to Ala-2) and substitution of the Leu-174-Leu-175 dileucine motif to Ala-174-Ala-175, herein described as opt nef (G2A, LLAA). The DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:13, while the expressed open reading frame is disclosed herein as SEQ ID NO:14. An additional embodiment relates to a DNA molecule encoding optimized HIV-1 Nef wherein the amino terminal myristylation site and dileucine motif have been deleted, as well as comprising a tPA leader peptide. This DNA molecule, opt tpanef (LLAA), comprises an open reading frame which

encodes a Nef protein containing a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfrl), wherein Leu-174 and Leu-175 are substituted with Ala-174 and Ala-175, herein referred to as opt tpanef (LLAA) is disclosed herein as SEQ ID NO:15, while the expressed open reading frame is disclosed herein as SEQ ID NO:16.

As disclosed in the above-identified documents (U.S. Application Serial No. 09/738,782 and PCT International Application PCT/US00/34162) and reiterated herein, the following nef-based nucleotide and amino acid sequences which comprise the respective open reading frame are as follows:

5

10

15

20

25

30

35

1. The nucleotide sequence of the codon optimized version of HIV-1 jrfl nef gene is disclosed herein as SEQ ID NO:9, as shown herein:

GATCTGCCAC CATGGGCGGC AAGTGGTCCA AGAGGTCCGT GCCCGGCTGG TCCACCGTGA
GGGAGAGGAT GAGGAGGGCC GAGCCCGCCG CCGACAGGGT GAGGAGGACC GAGCCCGCCG
CCGTGGGCGT GGGCGCCGTG TCCAGGGACC TGGAGAAGCA CGGCGCCATC ACCTCCTCCA
ACACCGCCGC CACCAACGCC GACTGCGCCT GGCTGGAGGC CCAGGAGGAC GAGGAGGTGG
GCTTCCCCGT GAGGCCCCAG GTGCCCCTGA GGCCCATGAC CTACAAGGGC GCCGTGGACC
TGTCCCACTT CCTGAAGGAG AAGGGCGGCC TGGAGGGCCT GATCCACTCC CAGAAGAGGC
AGGACATCCT GGACCTGTGG GTGTACCACA CCCAGGGCTA CTTCCCCGAC TGGCAGAACT
ACACCCCCGG CCCCGGCATC AGGTTCCCCC TGACCTTCGG CTGGTGCTTC AAGCTGGTGC
CCGTGGAGCC CGAGAAGGTG GAGGAGGCCA ACGAGGGCGA GAACAACTGC CTGCTGCACC
CCATGTCCCA GCACGGCATC GAGGACCCCG AGAAGGAGGT GCTGGAGTGG AGGTTCGACT
CCAAGCTGGC CTTCCACCAC GTGGCCAGGG AGCTGCACC CGAGTACTAC AAGGACTGCT
AAAGCCCGGG C (SEQ ID NO:9).

Preferred codon usage is as follows: Met (ATG), Gly (GGC), Lys (AAG), Trp (TGG), Ser (TCC), Arg (AGG), Val (GTG), Pro (CCC), Thr (ACC), Glu (GAG); Leu (CTG), His (CAC), Ile (ATC), Asn (AAC), Cys (TGC), Ala (GCC), Gln (CAG), Phe (TTC) and Tyr (TAC). For an additional discussion relating to mammalian (human) codon optimization, see WO 97/31115 (PCT/US97/02294), which is hereby incorporated by reference. See also Figure 19A-B for a comparion of wild type vs. codon optimized nucleotides comprising the open reading frame of HIV-Nef.

The open reading frame for SEQ ID NO:9 above comprises an initiating methionine residue at nucleotides 12-14 and a "TAA" stop codon from nucleotides 660-662. The open reading frame of SEQ ID NO:9 provides for a 216 amino acid HIV-1 Nef protein expressed through utilization of a codon optimized DNA vaccine vector. The 216 amino acid HIV-1 Nef (jfrl) protein is disclosed herein as SEQ ID NO:10, and as follows:

Met Gly Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val

Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:10).

5

10

15

20

25

30

35

HIV-1 Nef is a 216 amino acid cytosolic protein which associates with the inner surface of the host cell plasma membrane through myristylation of Gly-2 (Franchini et al., 1986, Virology 155: 593-599). While not all possible Nef functions have been elucidated, it has become clear that correct trafficking of Nef to the inner plasma membrane promotes viral replication by altering the host intracellular environment to facilitate the early phase of the HIV-1 life cycle and by increasing the infectivity of progeny viral particles. In one aspect of the invention regarding codon-optimized, protein-modified polypeptides, the nef-encoding region of the adenovirus vector of the present invention is modified to contain a nucleotide sequence which encodes a heterologous leader peptide such that the amino terminal region of the expressed protein will contain the leader peptide. The diversity of function that typifies eukaryotic cells depends upon the structural differentiation of their membrane boundaries. To generate and maintain these structures, proteins must be transported from their site of synthesis in the endoplasmic reticulum to predetermined destinations throughout the cell. This requires that the trafficking proteins display sorting signals that are recognized by the molecular machinery responsible for route selection located at the access points to the main trafficking pathways. Sorting decisions for most proteins need to be made only once as they traverse their biosynthetic pathways since their final destination, the cellular location at which they perform their function, becomes their permanent residence. Maintenance of intracellular integrity depends in part on the selective sorting and accurate transport of proteins to their correct destinations. Defined sequence motifs exist in proteins which can act as 'address labels'. A number of sorting signals have

been found associated with the cytoplasmic domains of membrane proteins. An effective induction of CTL responses often required sustained, high level endogenous expression of an antigen. As membrane-association via myristylation is an essential requirement for most of Nef's function, mutants lacking myristylation, by glycine-to-alanine change, change of the dileucine motif and/or by substitution with a tpa leader sequence as described herein, will be functionally defective, and therefore will have improved safety profile compared to wild-type Nef for use as an HIV-1 vaccine component.

In another embodiment of this portion of the invention, either the DNA vector or the HIV-1 nef nucleotide sequence is modified to include the human tissue-specific plasminogen activator (tPA) leader. As shown in Figure 16A-B, a DNA vector may be modified by known recombinant DNA methodology to contain a leader signal peptide of interest, such that downstream cloning of the modified HIV-1 protein of interest results in a nucleotide sequence which encodes a modified HIV-1 tPA/Nef protein. In the alternative, as noted above, insertion of a nucleotide sequence which encodes a leader peptide may be inserted into a DNA vector housing the open reading frame for the Nef protein of interest. Regardless of the cloning strategy, the end result is a polynucleotide vaccine which comprises vector components for effective gene expression in conjunction with nucleotide sequences which encode a modified HIV-1 Nef protein of interest, including but not limited to a HIV-1 Nef protein which contains a leader peptide. The amino acid sequence of the human tPA leader utilized herein is as follows: MDAMKRGLCCVLLLCGAVFVSPSEISS (SEQ ID NO:17).

It has been shown that myristylation of Gly-2 in conjunction with a dileucine motif in the carboxy region of the protein is essential for Nef-induced down regulation of CD4 (Aiken et al., 1994, *Cell* 76: 853-864) via endocytosis. It has also been shown that Nef expression promotes down regulation of MHCI (Schwartz et al., 1996, *Nature Medicine* 2(3): 338-342) via endocytosis. The present invention relates in part to DNA vaccines which encode modified Nef proteins altered in trafficking and/or functional properties. The modifications introduced into the adenoviral vector HIV vaccines of the present invention include but are not limited to additions, deletions or substitutions to the nef open reading frame which results in the expression of a modified Nef protein which includes an amino terminal leader peptide, modification or deletion of the amino terminal myristylation site, and modification or deletion of the dileucine motif within the Nef protein and which alter function within the infected host cell. Therefore, a central theme of the DNA molecules and recombinant adenoviral HIV vaccines of the present invention is (1)

host administration and intracellular delivery of a codon optimized nef-based adenoviral HIV vaccine; (2) expression of a modified Nef protein which is immunogenic in terms of eliciting both CTL and Th responses; and, (3) inhibiting or at least altering known early viral functions of Nef which have been shown to promote HIV-1 replication and load within an infected host. Therefore, the nef coding region may be altered, resulting in a DNA vaccine which expresses a modified Nef protein wherein the amino terminal Gly-2 myristylation residue is either deleted or modified to express alternate amino acid residues. Also, the nef coding region may be altered so as to result in a DNA vaccine which expresses a modified Nef protein wherein the dileucine motif is either deleted or modified to express alternate amino acid residues. In addition, the adenoviral vector HIV vaccines of the present invention also relate to an isolated DNA molecule, regardless of codon usage, which expresses a wild type or modified Nef protein as described herein, including but not limited to modified Nef proteins which comprise a deletion or substitution of Gly 2, a deletion or substitution of Leu 174 and Leu 175 and/or inclusion of a leader sequence.

5

10

15

20

Therefore, specific Nef-based constructs further include the following, as exemplification's and not limitations. For example, the present invention relates to an adenoviral vector vaccine which encodes modified forms of HIV-1, an open reading frame which encodes a Nef protein which comprises a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfrl) is referred to herein as opt tpanef. The nucleotide sequence comprising the open reading frame of opt tpanef is disclosed herein as SEQ ID NO:11, as shown below:

CATGGATGCA ATGAAGAGAG GGCTCTGCTG TGTGCTGCTG CTGTGTGGAG CAGTCTTCGT TTCGCCCAGC GAGATCTCCT CCAAGAGGTC CGTGCCCGGC TGGTCCACCG TGAGGGAGAG 25 GATGAGGAGG GCCGAGCCCG CCGCCGACAG GGTGAGGAGG ACCGAGCCCG CCGCCGTGGG CGTGGGCGCC GTGTCCAGGG ACCTGGAGAA GCACGCCGCC ATCACCTCCT CCAACACCGC CGCCACCAAC GCCGACTGCG CCTGGCTGGA GGCCCAGGAG GACGAGGAGG TGGGCTTCCC CGTGAGGCCC CAGGTGCCCC TGAGGCCCAT GACCTACAAG GGCGCCGTGG ACCTGTCCCA CTTCCTGAAG GAGAAGGGCG GCCTGGAGGG CCTGATCCAC TCCCAGAAGA GGCAGGACAT 30 CCTGGACCTG TGGGTGTACC ACACCCAGGG CTACTTCCCC GACTGGCAGA ACTACACCCC CGGCCCGGC ATCAGGTTCC CCCTGACCTT CGGCTGGTGC TTCAAGCTGG TGCCCGTGGA GCCCGAGAAG GTGGAGGAGG CCAACGAGGG CGAGAACAAC TGCCTGCTGC ACCCCATGTC CCAGCACGGC ATCGAGGACC CCGAGAAGGA GGTGCTGGAG TGGAGGTTCG ACTCCAAGCT GGCCTTCCAC CACGTGGCCA GGGAGCTGCA CCCCGAGTAC TACAAGGACT GCTAAAGCC 35 (SEQ ID N0:11).

The open reading frame for SEQ ID NO:11 comprises an initiating methionine

residue at nucleotides 2-4 and a "TAA" stop codon from nucleotides 713-715. The open reading frame of SEQ ID NO:3 provides for a 237 amino acid HIV-1 Nef protein which comprises a tPA leader sequence fused to amino acids 6-216 of HIV-1 Nef, including the dileucine motif at amino acid residues 174 and 175. This 237 amino acid tPA/Nef (jfrl) fusion protein is disclosed herein as SEQ ID NO:12, and is shown as follows:

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val 10 Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp 15 Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Leu Leu His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His 20 Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:12). Therefore, this exemplified Nef protein, Opt tPA-Nef, contains both a tPA leader sequence as well as deleting the myristylation site of Gly-2A DNA molecule encoding HIV-1 Nef from the HIV-1 jfrl isolate wherein the codons are optimized for expression in a mammalian system such as a human. 25

In another specific embodiment of the present invention, a DNA molecule is disclosed which encodes optimized HIV-1 Nef wherein the open reading frame of a recombinant adenoviral HIV vaccine encodes for modifications at the amino terminal myristylation site (Gly-2 to Ala-2) and substitution of the Leu-174-Leu-175 dileucine motif to Ala-174-Ala-175. This open reading frame is herein described as opt nef (G2A,LLAA) and is disclosed as SEQ ID NO:13, which comprises an initiating methionine residue at nucleotides 12-14 and a "TAA" stop codon from nucleotides 660-662. The nucleotide sequence of this codon optimized version of HIV-1 jrfl nef gene with the above mentioned modifications is disclosed herein as SEQ ID NO:13, as follows:

30

GATCTGCCAC CATGGCCGGC AAGTGGTCCA AGAGGTCCGT GCCCGGCTGG TCCACCGTGA
GGGAGAGGAT GAGGAGGGCC GAGCCCGCCG CCGACAGGGT GAGGAGGACC GAGCCCGCCG
CCGTGGGCGT GGGCGCCGTG TCCAGGGACC TGGAGAAGCA CGGCGCCATC ACCTCCTCCA
ACACCGCCGC CACCAACGCC GACTGCGCCT GGCTGGAGGC CCAGGAGGAC GAGGAGGTGG
GCTTCCCCGT GAGGCCCCAG GTGCCCCTGA GGCCCATGAC CTACAAGGGC GCCGTGGACC
TGTCCCACTT CCTGAAGGAG AAGGGCGGCC TGGAGGGCCT GATCCACTCC CAGAAGAGGC
AGGACATCCT GGACCTGTGG GTGTACCACA CCCAGGGCTA CTTCCCCGAC TGGCAGAACT
ACACCCCCGG CCCCGGCATC AGGTTCCCCC TGACCTTCGG CTGGTGCTTC AAGCTGGTGC
CCGTGGAGCC CGAGAAGGTG GAGGAGGCCA ACGAGGGCGA GAACAACTGC GCCGCCCACC
CCATGTCCCA GCACGGCATC GAGGACCCCG AGAAGGAGGT GCTGGAGTGG AGGTTCGACT
CCAAGCTGGC CTTCCACCAC GTGGCCAGGG AGCTGCACCC CGAGTACTAC AAGGACTGCT
AAAGCCCGGG C (SEQ ID NO:13).

5

10

30

35

The open reading frame of SEQ ID NO:13 encodes Nef (G2A,LLAA), disclosed herein as SEQ ID NO:14, as follows:

Met Ala Gly Lys Trp Ser Lys Arg Ser Val Pro Gly Trp Ser Thr Val 15 Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr Lys Gly Ala Val Asp 20 Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro 25 Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn Asn Cys Ala Ala His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys Ser (SEQ ID NO:14).

An additional embodiment of the present invention relates to another DNA molecule encoding optimized HTV-1 Nef wherein the amino terminal myristylation site and dileucine motif have been deleted, as well as comprising a tPA leader peptide. This DNA molecule, opt tpanef (LLAA) comprises an open reading frame which encodes a Nef protein containing a tPA leader sequence fused to amino acid residue 6-216 of HIV-1 Nef (jfrl), wherein Leu-174 and Leu-175 are substituted with Ala-174 and Ala-175 (Ala-195 and Ala-196 in this tPA-based fusion protein). The nucleotide

sequence comprising the open reading frame of opt tpanef (LLAA) is disclosed herein as SEQ ID NO:15, as shown below:

CATGGATGCA ATGAAGAGAG GGCTCTGCTG TGTGCTGCTG CTGTGTGGAG CAGTCTTCGT TTCGCCCAGC GAGATCTCCT CCAAGAGGTC CGTGCCCGGC TGGTCCACCG TGAGGGAGAG 5 GATGAGGAGG GCCGAGCCCG CCGCCGACAG GGTGAGGAGG ACCGAGCCCG CCGCCGTGGG CGTGGGCGCC GTGTCCAGGG ACCTGGAGAA GCACGGCGCC ATCACCTCCT CCAACACCGC CGCCACCAAC GCCGACTGCG CCTGGCTGGA GGCCCAGGAG GACGAGGAGG TGGGCTTCCC CGTGAGGCCC CAGGTGCCCC TGAGGCCCAT GACCTACAAG GGCGCCGTGG ACCTGTCCCA CTTCCTGAAG GAGAAGGGCG GCCTGGAGGG CCTGATCCAC TCCCAGAAGA GGCAGGACAT 10 CCTGGACCTG TGGGTGTACC ACACCCAGGG CTACTTCCCC GACTGGCAGA ACTACACCCC CGGCCCGGC ATCAGGTTCC CCCTGACCTT CGGCTGGTGC TTCAAGCTGG TGCCCGTGGA GCCCGAGAAG GTGGAGGAGG CCAACGAGGG CGAGAACAAC TGCGCCGCCC ACCCCATGTC CCAGCACGC ATCGAGGACC CCGAGAAGGA GGTGCTGGAG TGGAGGTTCG ACTCCAAGCT GGCCTTCCAC CACGTGGCCA GGGAGCTGCA CCCCGAGTAC TACAAGGACT GCTAAAGCCC 15 (SEQ ID NO:15).

The open reading frame of SEQ ID NO:7 encoding tPA-Nef (LLAA), disclosed herein as SEQ ID NO:16, is as follows:

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly

Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser Lys Arg Ser Val Pro 20 Gly Trp Ser Thr Val Arg Glu Arg Met Arg Arg Ala Glu Pro Ala Ala Asp Arg Val Arg Arg Thr Glu Pro Ala Ala Val Gly Val Gly Ala Val Ser Arg Asp Leu Glu Lys His Gly Ala Ile Thr Ser Ser Asn Thr Ala Ala Thr Asn Ala Asp Cys Ala Trp Leu Glu Ala Gln Glu Asp Glu Glu Val Gly Phe Pro Val Arg Pro Gln Val Pro Leu Arg Pro Met Thr Tyr 25 Lys Gly Ala Val Asp Leu Ser His Phe Leu Lys Glu Lys Gly Gly Leu Glu Gly Leu Ile His Ser Gln Lys Arg Gln Asp Ile Leu Asp Leu Trp Val Tyr His Thr Gln Gly Tyr Phe Pro Asp Trp Gln Asn Tyr Thr Pro Gly Pro Gly Ile Arg Phe Pro Leu Thr Phe Gly Trp Cys Phe Lys Leu Val Pro Val Glu Pro Glu Lys Val Glu Glu Ala Asn Glu Gly Glu Asn 30 Asn Cys Ala Ala His Pro Met Ser Gln His Gly Ile Glu Asp Pro Glu Lys Glu Val Leu Glu Trp Arg Phe Asp Ser Lys Leu Ala Phe His His Val Ala Arg Glu Leu His Pro Glu Tyr Tyr Lys Asp Cys (SEQ ID NO:16). An adenoviral vector of the present invention may comprise a DNA sequence, regardless of codon usage, which expresses a wild type or modified Nef protein as 35 described herein, including but not limited to modified Nef proteins which comprise a deletion or substitution of Gly 2, a deletion of substitution of Leu 174 and Leu 175

and/or inclusion of a leader sequence. Therefore, partial or fully codon optimized DNA vaccine expression vector constructs are preferred since such constructs should result in increased host expression. However, it is within the scope of the present invention to utilize "non-codon optimized" versions of the constructs disclosed herein, especially modified versions of HIV Nef which are shown to promote a substantial cellular immune response subsequent to host administration.

Figure 20A-C show nucleotide sequences at junctions between nef coding sequence and plasmid backbone of nef expression vectors V1Jns/nef (Figure 20A), V1Jns/nef(G2A,LLAA) (Figure 20B), V1Jns/tpanef (Figure 20C) and V1Jns/tpanef(LLAA) (Figure 20C, also). 5' and 3' flanking sequences of codon optimized nef or codon optimized nef mutant genes are indicated by bold/italic letters; nef and nef mutant coding sequences are indicated by plain letters. Also indicated (as underlined) are the restriction endonuclease sites involved in construction of respective nef expression vectors. V1Jns/tpanef and V1Jns/tpanef(LLAA) have identical sequences at the junctions.

Figure 21 shows a schematic presentation of nef and nef derivatives. Amino acid residues involved in Nef derivatives are presented. Glycine 2 and Leucine174 and 175 are the sites involved in myristylation and dileucine motif, respectively.

20 EXAMPLE 19

5

10

15

25

30

35

MRKAd5Pol Construction and Virus Rescue

Steps performed in the construction of the vectors, including the pre-adenovirus plasmid - Key steps performed in the construction of the vectors, including the pre-adenovirus plasmid denoted MRKAd5pol, is depicted in Figure 22. Briefly, the adenoviral shuttle vector for the full-length inactivated HIV-1 pol gene is as follows. The vector MRKpdelE1(Pac/pIX/pack450)+CMVmin+BGHpA(str.) is a derivative of the shuttle vector used in the construction of the MRKAd5gag adenoviral pre-plasmid. The vector contains an expression cassette with the hCMV promoter (no intronA) and the bovine growth hormone polyadenylation signal. The expression unit has been inserted into the shuttle vector such that insertion of the gene of choice at a unique BglII site will ensure the direction of transcription of the transgene will be Ad5 E1 parallel when inserted into the MRKpAd5(E1-/E3+)Cla1 (or MRKpAdHVE3) preplasmid. The vector, similar to the original shuttle vector contains the Pac1 site, extension to the packaging signal region, and extension to the pIX gene. The synthetic full-length codon-optimized HIV-1 pol gene was isolated directly from the plasmid pV1Jns-HIV-pol-inact(opt). Digestion of this plasmid with Bgl II releases the pol

gene intact (comprising a codon optimized IA pol sequence as disclosed in SEQ ID NO:3). The pol fragment was gel purified and ligated into the MRKpdeIE1(Pac/pIX/pack450)+CMVmin+BGHpA(str.) shuttle vector at the BgIII site. The clones were checked for the correct orientation of the gene by using restriction enzymes DraIII/Not1. A positive clone was isolated and named MRKpdel+hCMVmin+FL-pol+bGHpA(s). The genetic structure of this plasmid was verified by PCR, restriction enzyme and DNA sequencing. The pre-adenovirus plasmid was constructed as follows. Shuttle plasmid MRKpdel+hCMVmin+FLpol+bGHpA(S) was digested with restriction enzymes Pac1 and Bst1107 I (or its isoschizomer, BstZ107 I) and then co-transformed into E. coli strain BJ5183 with 10 linearized (Cla1 digested) adenoviral backbone plasmid, MRKpAd(E1-/E3+)Cla1. The resulting pre-plasmid originally named MRKpAd+hCMVmin+FLpol+bGHpA(S)E3+ is now referred to as "pMRKAd5pol". The genetic structure of the resulting pMRKAd5pol was verified by PCR, restriction enzyme and DNA sequence analysis. The vectors were transformed into competent E. coli XL-1 Blue 15 for preparative production. The recovered plasmid was verified by restriction enzyme digestion and DNA sequence analysis, and by expression of the pol transgene in transient transfection cell culture. The complete nucleotide sequence of this pMRKAd5HIV-1pol adenoviral vector is shown in Figure 26 A-AO.

5

20

25

30

35

Generation of research-grade recombinant adenovirus - The pre-adenovirus plasmid, pMRKAd5pol, was rescued as infectious virions in PER.C6® adherent monolayer cell culture. To rescue infectious virus, 12 µg of pMRKAd5pol was digested with restriction enzyme Pacl (New England Biolabs) and 3.3 µg was transfected per 6 cm dish of PER.C6[®] cells using the calcium phosphate coprecipitation technique (Cell Phect Transfection Kit, Amersham Pharmaeia Biotech Inc.). PacI digestion releases the viral genome from plasmid sequences allowing viral replication to occur after entry into PER.C6®cells. Infected cells and media were harvested 6 -10 days post-transfection, after complete viral cytopathic effect (CPE) was observed. Infected cells and media were stored at $\leq -60^{\circ}$ C. This pol containing recombinant adenovirus is referred to herein as "MRKAd5pol". This recombinant adenovirus expresses an inactivated HIV-1 Pol protein as shown in SEQ ID NO:6.

EXAMPLE 20

MRKAd5Nef Construction and Virus Rescue

Construction of vector: shuttle plasmid and pre-adenovirus plasmid - Key steps performed in the construction of the vectors, including the pre-adenovirus

plasmid denoted MRKAd5nef, is depicted in Figure 23. Briefly, as shown in Example 19 above, the vector

5

10

15

20

25

30

35

MRKpdelE1(Pac/pIX/pack450)+CMVmin+BGHpA(str.) is the shuttle vector used in the construction of the MRKAd5gag adenoviral pre-plasmid. It has been modified to contain the *Pac*1 site, extension to the packaging signal region, and extension to the pIX gene. It contains an expression cassette with the hCMV promoter (no intronA) and the bovine growth hormone polyadenylation signal. The expression unit has been inserted into the shuttle vector such that insertion of the gene of choice at a unique *Bgl*11 site will ensure the direction of transcription of the transgene will be Ad5 E1 parallel when inserted into the MRKpAd5(E1-/E3+)Cla1 pre-plasmid. The synthetic full-length codon-optimized HIV-1 nef gene was isolated directly from the plasmid pV1Jns/nef (G2A,LLAA). Digestion of this plasmid with *Bgl*11 releases the pol gene intact, which comprises the nucleotide sequence as disclosed in SEQ ID NO:13. The nef fragment was gel purified and ligated into the

MRKpdelE1+CMVmin+BGHpA(str.) shuttle vector at the Bgl11 site. The clones were checked for correction orientation of the gene by using restriction enzyme Sca1. A positive clone was isolated and named MRKpdelE1hCMVminFL-nefBGHpA(s). The genetic structure of this plasmid was verified by PCR, restriction enzyme and DNA sequencing. The pre-adenovirus plasmid was constructed as follows. Shuttle plasmid MRKpdelE1hCMVminFL-nefBGHpA(s) was digested with restriction enzymes Pac1 and Bst1107 I (or its isoschizomer, BstZ107 I) and then co-transformed into E. coli strain BJ5183 with linearized (Cla1 digested) adenoviral backbone plasmid, MRKpAd(E1/E3+)Cla1. The resulting pre-plasmid originally named MRKpdelE1hCMVminFL-nefBGHpA(s) is now referred to as "pMRKAd5nef". The genetic structure of the resulting pMRKAd5nef was verified by PCR, restriction enzyme and DNA sequence analysis. The vectors were transformed into competent E. coli XL-1 Blue for preparative production. The recovered plasmid was verified by restriction enzyme digestion and DNA sequence analysis, and by expression of the nef transgene in transient transfection cell culture. The complete nucleotide sequence of this pMRKAd5HIV-1nef adenoviral vector is shown in Figure 27A-AM.

Generation of research-grade recombinant adenovirus - The pre-adenovirus plasmid, pMRKAd5nef, was rescued as infectious virions in PER.C6[®] adherent monolayer cell culture. To rescue infectious virus, 12 μg of pMRKAdnef was digested with restriction enzyme *Pac*1 (New England Biolabs) and 3.3 μg was transfected per 6 cm dish of PER.C6[®] cells using the calcium phosphate coprecipitation technique (Cell Phect Transfection Kit, Amersham Pharmacia Biotech

Inc.). Pac1 digestion releases the viral genome from plasmid sequences allowing viral replication to occur after entry into PER.C6®cells. Infected cells and media were harvested 6-10 days post-transfection, after complete viral cytopathic effect (CPE) was observed. Infected cells and media were stored at \leq -60°C. This nef containing recombinant adenovirus is now referred to as "MRKAd5nef".

EXAMPLE 21

5

Construction of Murine CMV Promoter Containing Shuttle Vectors for Inactivated Pol and Nef/G2A,LLAA

10 The murine CMV (mCMV) was amplified from the plasmid pMH4 (supplied by Frank Graham, McMaster University) using the primer set: mCMV (Not I) Forward: 5'-ATA AGA ATG CGG CCG CCA TAT ACT GAG TCA TTA GG-3' (SEO ID NO: 20); mCMV (Bgl II)Reverse: 5'-AAG GAA GAT CTA CCG ACG CTG GTC GCG CCT C-3' (SEQ ID NO:21). The underlined nucleotides represent the Not I and the Bgl II sites respectively for each primer. This PCR amplicon was 15 used for the construction of the mCMV shuttle vector containing the transgene in the E1 parallel orientation. The hCMV promoter was removed from the original shuttle vector (containing the hCMV-gag-bGHpA transgene in the E1 parallel orientation) by digestion with Not I and Bgl II. The mCMV promoter (Not I/Bgl II digested PCR product) was inserted into the shuttle vector in a directional manner. The shuttle 20 vector was then digested with Bgl II and the gag reporter gene (Bgl II fragment) was re-inserted back into the shuttle vector. Several clones were screened for correct orientation of the reporter gene. For the construction of the mCMV-gag in the E1 antiparallel orientation, the mCMV promoter was amplified from the plasmid pMH4 using the following primer set: mCMV (Asc I) Forward: 5'- ATA AGA ATG GCG 25 CGC CAT ATA CTG AGT CAT TAG G (SEQ ID NO:22); mCMV (Bgl II) Reverse: 5' AAG GAA GAT CTA CCG ACG CTG GTC GCG CCT C (SEQ ID NO:23). The underlined nucleotides represent the Asc I and Bgl II sites, respectively for each primer. The shuttle vector containing the hCMV-gag transgene in the E1 antiparallel orientation was digested with Asc1 and Bgl11 to remove the hCMV-gag portion of the 30 transgene. The mCMV promoter (Asc1/Bgl11 digested PCR product) was inserted into the shuttle vector in a directional manner. The vector was then digested with Bgl11 and the gag reporter gene (Bgl11 fragment) was re-inserted. Several clones were screened for correct orientation of the reporter gene. For each of the full length IA pol and full length nef/G2A,LLAA genes, cloning was performed using the unique 35

 $Bgl ext{ II}$ site within the mCMV-bGHpA shuttle vector. The pol and nef genes were excised from their respective pV1Jns plasmids by $Bgl ext{ II}$ digestion.

5

10

15

EXAMPLE 22

Construction of mCMV Full Length Inactivated Pol and Full Length nef/G2A.LLAA Adenovectors

Each of these transgenes of Example 21 were inserted into the modified shuttle vector in both the E1 parallel and E1 anti-parallel orientations. *Pac1* and *BstZ*110I digestion of each shuttle vector was performed and each specific transgene fragment containing the flanking Ad5 sequences was isolated and co-transformed with *Cla* I digested MRKpAd5(E3+) or MRKpAd5(E3-) adenovector plasmids via bacterial homologous recombination in BJ5183 *E. coli* cells. Recombinant preplasmid adenovectors containing the various transgenes in both the E3- and E3+ versions (and in the E1 parallel and E1 antiparallel orientations) were subsequently prepared in large scale following transformation into XL-1 Blue *E. coli* cells and analyzed by restriction analysis and sequencing.

EXAMPLE 23

Construction of hCMV-tpa-nef (LLAA) Adenovector

The tpa-nef gene was amplified out from GMP grade pV1Jns-tpanef (LLAA) vector using the primer sets: Tpanef (BamHI) F 5'-ATT GGA TCC ATG GAT GCA ATG AAG AGA GGG (SEQ ID 24); Tpanef (BamHI) R 5'-ATA GGA TCC TTA GCA GTC CTT GTA GTA CTC G (SEQ ID NO:25). The resulting PCR product was digested with BamHI, gel purified and cloned into the Bgl II site of MRKAd5CMV-bGHpA shuttle vector (Bgl II digested and calf intestinal phosphatase treated). Clones containing the tpanef (LLAA) gene (see SEQ ID NO:15 for complet coding region) in the correct orientation with respect to the hCMV promoter were selected following Sca I digestion. The resulting MRKAd5tpanef shuttle vector was digested with Pac I and Bst Z1101 and cloned into the E3+ MRKAd5 adenovector via bacterial homologous recombination techniques.

EXAMPLE 24

Immunogenicity of MRKAd5pol and MRKAd5nef Vaccine

Materials and Methods - Rodent Immunization - Groups of N=10 BALB/c

mice were immunized i.m. with the following vectors: (1) MRKAd5hCMV-IApol

(E3+) at either 10^7 vp and 10^9 vp; and (2) MRKAd5hCMV-IApol (E3-) at either

10^7 vp and 10^9 vp. At 7 weeks post dose, 5 of the 10 mice per cohort were boosted with the same vector and dose they initially received. At 3 weeks post the second does, sera and spleens were collected from all the animals for RT ELISA and IFNg ELIspot analyses, respectively. For all rodent immunizations, the Ad5 vectors were diluted in 5 mM Tris, 5% sucrose, 75 mM NaCl, 1 mM MgCl2, 0.005% polysorbate 80, pH 8.0. The total dose was injected to both quadricep muscles in 50 µL aliquots using a 0.3-mL insulin syringe with 28-1/2G needles (Becton-Dickinson, Franklin Lakes, NJ).

Groups of N=10 C57/BL6 mice were immunized i.m. with the following vectors: (1) MRKAd5hCMV-nef(G2A,LLAA) (E3+) at either 10^7 vp and 10^9 vp; (2) MRKAd5mCMV-nef(G2A,LLAA) (E3+) at either 10^7 vp and 10^9 vp; and (3) MRKAd5mCMV-tpanef(LLAA) (E3+) at either 10^7 vp and 10^9 vp. At 7 weeks post dose, 5 of the 10 mice per cohort were boosted with the same vector and dose they initially received. At 3 weeks post the second does, sera and spleens were collected from all the animals for RT ELISA and IFNg ELIspot analyses, respectively.

Non-human Primate immunization - Cohorts of 3 rhesus macaques (2-3 kg) were vaccinated with the following Ad vectors: (1) MRKAd5hCMV-IApol (E3+) at either 10^9 vp and 10^11 vp dose; and (2) MRKAd5hCMV-IApol (E3-) at either 10^9 vp and 10^11 vp; (3) MRKAd5hCMV-nef(G2A,LLAA) (E3+) at either 10^9 vp and 10^11 vp; and (4) MRKAd5mCMV-nef(G2A,LLAA) (E3+) at either 10^9 vp and 10^11 vp. The vaccine was administered to chemically restrained monkeys (10 mg/kg ketamine) by needle injection of two 0.5 mL aliquots of the Ad vectors (in 5 mM Tris, 5% sucrose, 75 mM NaCl, 1 mM MgCl₂, 0.005% polysorbate 80, pH 8.0) into both deltoid muscles. The animals were immunized twice at a 4 week interval (T=0, 4 weeks).

Murine anti-RT and anti-nef ELISA - Anti-RT titers were obtained following standard secondary antibody-based ELISA. Maxisorp plates (NUNC, Rochester; NY) were coated by overnight incubation with 100 μL of 1 μg/mL HIV-1 RT protein (Advanced Biotechnologies, Columbia, MD) in PBS. For anti-nef ELISA, 100 uL of 1 ug/mL HIV-1 nef (Advanced Biotechnologies, Columbia, MD) was used to coat the plates. The plates were washed with PBS/0.05% Tween 20 using Titertek MAP instrument (Hunstville, AL) and incubated for 2 h with 200 μL/well of blocking solution (PBS/0.05% tween/1% BSA). An initial serum dilution of 100-fold was performed followed by 4-fold serial dilution. 100-μL aliquots of serially diluted samples were added per well and incubated for 2 h at room temperature. The plates

were washed and 100 μ L of 1/1000-diluted HRP-rabbit anti-mouse IgG (ZYMED, San Francisco, CA) were added with 1 h incubation. The plates were washed thoroughly and soaked with 100 μ L 1,2-phenylenediamine dihydrochloride/hydrogen peroxide (DAKO, Norway) solution for 15 min. The reaction was quenched by adding 100 μ L of 0.5M H₂SO4 per well. OD₄₉₂ readings were recorded using Titertek Multiskan MCC/340 with S20 stacker. Endpoint titers were defined as the highest serum dilution that resulted in an absorbance value of greater than or equal to 0.1 OD₄₉₂ (2.5 times the background value).

5

25

30

35

Non-human primate and murine ELIspot assays - The enzyme-linked 10 immuno-spot (ELISpot) assay was utilized to enumerate antigen-specific INFγsecreting cells from mouse spleens (Miyahira, et al. 1995, J. Immunol. Methods 181:45-54) or macaque PBMCs. Mouse spleens were pooled from 5 mice/cohort and single cell suspensions were prepared at 5x10⁶/mL in complete RPMI media (RPMI1640, 10% FBS, 2mM L-glutamine, 100U/mL Penicillin, 100 u/mL streptomycin, 10 mM Hepes, 50 uM β-ME). Rhesus PBMCs were prepared from 8-15 15 mL of heparinized blood following standard Ficoll gradient separation (Coligan, et al, 1998, Current Protocols in Immunology. John Wiley & Sons, Inc.). Multiscreen opaque plates (Millipore, France) were coated with 100 µL/well of either 5 µg/mL purified rat anti-mouse IFN-γ IgG1, clone R4-6A2 (Pharmingen, San Diego, CA), or 15 ug/mL mouse anti-human IFN-γ IgG_{2a} (Cat. No. 1598-00, R&D Systems, 20 Minneapolis, MN) in PBS at 4°C overnight for murine or monkey assays, respectively. The plates were washed with PBS/penicillin/streptomycin and blocked with 200 µL/well of complete RPMI media for 37 °C for at least 2 h.

To each well, 50 μL of cell samples (4-5x10⁵ cells per well) and 50 μL of the antigen solution were added. To the control well, 50 μL of the media containing DMSO were added; for specific responses, either selected peptides or peptide pools (4 ug/mL per peptide final concentration) were added. For BALB/c mice immunized with the pol constructs, stimulation was conducted using a pool of CD4⁺-epitope containing 20-mer peptides (aa21-40, aa411-430, aa641-660, aa731-750, aa771-790) or a pool of CD8⁺-epitope containing peptides (aa201-220, aa311-330, aa781-800). For C57/BL6 mice immunized with the nef construct, either aa51-70 (CD8⁺ T cell epitope) or aa81-100 (CD4⁺) peptide derived from the nef sequence was added for specific stimulation. In monkeys, the responses against pol were evaluated using two pools (L and R) of 20-aa peptides that encompass the entire pol sequence and overlap by 10 amino acids. In monkeys vaccinated with the nef constructs, a single pool containing 20-mer peptides covering the entire HIV-1 nef sequence and overlapping

by 10 aa was used. Each sample/antigen mixture was performed in triplicate wells for murine samples or in duplicate wells for rhesus PBMCs. Plates were incubated at 37°C, 5% CO₂, 90% humidity for 20-24 h. The plates were washed with PBS/0.05% Tween 20 and incubated with 100 μL/well of either 1.25 μg/mL biotin-conjugated rat anti-mouse IFN-γ mAb, clone XMG1.2 (Pharmingen) or of 0.1 ug/mL biotinylated anti-human IFN-gamma goat polyclonal antibody (R&D Systems) at 4°C overnight. The plates were washed and incubated with 100 μL/well 1/2500 dilution of strepavidin-alkaline phosphatase conjugate (Pharmingen) in PBS/0.005% Tween/5% FBS for 30 min at 37 °C. Spots were developed by incubating with 100 μL/well 1-step NBT/BCIP (Pierce Chemicals) for 6-10 min. The plates were washed with water and allowed to air dry. The number of spots in each well was determined using a dissecting microscope and the data normalized to 10⁶ cell input.

Non-human Primate anti-RT ELISA - The pol-specific antibodies in the monkeys were measured in a competitive RT EIA assay, wherein sample activity is determined by the ability to block RT antigen from binding to coating antibody on the plate well. Briefly, Maxisorp plates were coated with saturating amounts of pol positive human serum (#97111234). 250 uL of each sample is incubated with 15 uL of 266 ng/mL RT recombinant protein (in RCM 563, 1% BSA, 0.1% tween, 0.1% NaN₃) and 20 uL of lysis buffer (Coulter p24 antigen assay kit) for 15 min at room temperature. Similar mixtures are prepared using serially diluted samples of a standard and a negative control which defines maximum RT binding. 200 uL/well of each sample and standard were added to the washed plate and the plate incubated 16-24 h at room temperature. Bound RT is quantified following the procedures described in Coulter p24 assay kit and reported in milliMerck units per mL arbitrarily defined by the chosen standard.

Results - Rodent Studies - BALB/c mice (n=5 mice/cohort) were immunized once or twice with varying doses of MRKAd5hCMV-IApol(E3+) and MRKAd5hCMV-IApol(E3-). At 3 weeks after the second dose, Anti-pol IgG levels were determined by an ELISA assay using RT as a surrogate antigen. Cellular response were quantified via IFNγ ELISpot assay against pools of pol-epitope containing peptides. The results of these assays are summarized in Table 10. The results indicate that the mouse vaccinees exhibited detectable anti-RT IgGs with an adenovector dose as low as 10^7 vp. The humoral responses are highly dose-dependent and are boostable with a second immunization. One or two doses of either pol vectors elicit high frequencies of antigen-specific CD4⁺ and CD8⁺ T eells; the responses are weakly dose-dependent but are boostable with a second immunization.

Table 10. Immunogenicity of MRKAd5pol Vectors in BALB/c mice.

	201 222	Ĭ		An	ti-RT igG Tite	rsª	s	FC/10^6 cell	s°
Group	Vaccine	Dose	No. of Doses	GMT	+SE	-SE	Medium	CD4+ peptide pool	CD8+ peptide pool
1	MRKAd5hCMVFLpol (E3+)	10^7 vp	2 1	310419 919	301785 372	153020 265	1(1) 1(1)	75(4) 72(9)	2313(67) 533(41)
2	MRKAd5hCMVFLpol (E3+)	10^9 vp	2 1	1638400 ^b 713155	0 528520	0 303555	2(2) 1(1)	114(9) 48(7)	2063(182) 733(89)
3	MRKAd5hCMVFLpol (E3-)	10^7 vp	2	3 10 419 6400	386218 14013	172097 4393	0(0) 10(8)	223(7) 141(21)	2607(27) 409(28)
4	MRKAd5hCMVFLpol (E3-)	10^9 vp	2	1638400 ^b 1241675 ^b	0 396725	0 300661	1(1) 0(0)	160(13) 39(13)	2385(11) 833(83)
5	Naïve	none	none	57	9	7	9(2)	11(4)	10(1)

^aGMT, geometric mean titer of the cohort of 5 mice; SE, standard error of the gemetric mean

C57/BL6 mice were immunized once or twice with varying doses of MRKAd5hCMV-nef(G2A,LLAA) (E3+), MRKAd5mCMV-nef(G2A,LLAA) (E3+) at either 10⁷ vp and(3) MRKAd5mCMV-tpanef(LLAA) (E3+) at either 10⁷ vp and 10^9 vp. The immune response were analyzed using similar protocols and the results are listed in Table 11. While anti-nef IgG responses could not be detected in this model system with any of the constructs, there are strong indications of a cellular 10 immunity generated against nef using the ELIspot assay.

Table 11. Immunogenicity of MRKAd5nef Vectors in C57/BL6 mice.

		Ĭ		Aı	til-nef igG Tite	ers*	8	FC/10^6 cell	s ^b
Group	Vaccine	Dose	No. of Doses	GM T	+SE	-SE	Medium	aa51-70 CD8+	aa81-100 CD4+
1	MRKAd5hCMVFLnef (E3+)	10^7 vp	2 1	174 132	70 42	50 32	1(1) 0(0)	23(1) 0(0)	1(1) 0(0)
2	MRKAd5hCMVFLnef (E3+)	10^9 vp	2	174 132	70 42	50 32	0(0) 1(1)	61(7) 62(7)	4(2) 3(1)
3	MRKAd5mCMVFLnef (E3+)	10^7 vp	2 1	132 115	42 46	32 33	3(1) 3(2)	15(5) 3(2)	5(2) 4(2)
4	MRKAd5mCMVFLnef (E3+)	10^9 vp	2 1	132 132	42 42	32 32	4(2) 2(1)	83(13) 29(2)	5(1) 4(0)
5	MRKAd5mCMVtpanef(E3+)	10^7 vp	2 1	132 100	42 0	32 0	3(2) 3(1)	14(2) 13(4)	5(1) 10(3)
6	MRKAd5mCMVtpanef(E3+)	10^9 vp	2	230 115	170 46	98 33	3(2) 7(1)	145(29) 151(14)	4(0) 10(0)
7	Naïve	none	none	152	78	52 ·	21(2)	- 18(6)	26(3)

^aGMT, geometric mean titer of the cohort of 5 mice; SE, standard error of the gemetric mean

15

Monkey Studies - Cohorts of 3 rhesus macaques were immunized with 2 doses

of MRKAd5hCMV-IApol(E3+) and MRKAd5hCMV-IApol(E3-). The number of antigen-specific T cells (per million PBMCs) were enumerated using one of two

Near or at the upper limit of the serial dilution; hence, could be greater than this value

[°]No. of Spot-forming Cells per million splecnoyles; mean values of triplicates are reported along with standard errors in parenthesis.

^bNo. of spot-forming cells per million splecnoyles; mean values of triplicates are reported along with standard errors in parenthesis.

peptide pools (L and R) that cover the entire pol sequence; the results are listed in Table 12. Moderate-to-strong T cell responses were detected in the vaccinees using either constructs even at a low dose of 10^9 vp. Longitudinal analyses of the anti-RT antibody titers in the animals suggest that the pol transgene product is expressed efficiently to elicit a humoral response (Table 13). It would appear that generally higher immune responses were observed in animals that received the E3- construct compared to the E3+ virus.

Table 12. Pol-specific T Cell Responses in MRKAd5pol Immunized Rhesus

10 Macaques.

5

Vaccine (T=0,4 wks)	Monk #		Prebleed			T=4			T=7			T≔16	
		Mock	Pol L	Pol R	Mock	Poi L	Pol R	Mock	Pol L	Pol R	Mock	Pol L	Poi R
MRKAc5hCMV-1Apol(E3+)	99C100	1	0	0	1	38	31	0	52	146	0	49	715
10^11 vp	99C215	1	2	2	10	98	249	1	109	305	22	88	250
10 /1 Vp	99D201	5	5	4	6	149	95	0	40	35	0	35	18
MRKAd5hCMV-IApol(E3+)	99D212	0	2	0	4	331	114	0	58	14	0	6	6
10'9 vp	99D180	0	4	2	0	19	192	4	36	156	5	38	106
	99C201	8	5	21	6	62	62	0	18	32	١	14	65
MRKAd5hCMV-IApol(E3-)	99D239	5	2	2	20	82	172	1	66	114	9	21	40
10^11 vp	99C186	4	12	6	5	120	421	2	271	489	16	875	530
·	99C084	1	8	9	8	84	464	0	14	236	1	24	264
MRKAci5hCMV-IApol(E3-)	CC7C	10	10	8	12	724	745	4	322	376	4	188	176
10/9 vp	CDIG	2	0	1	5	474	468	0	232	212	0	101	121
	CD11	6	6	12	10	98	110	5	60	80	8	25	34
Nave	083Q	nd	nd	nd	nd	nd	nd	4	2	2	2	1	2

nd, not determined Reported are SFC per million PBMCs; mean of duplicate wells.

Table 13. Anti-RT Ig Levels in MRKAd5pol Immunized macaques.

RT ANTIBODY ASSAY TITERS IN mMU/		7_7	T=12	T=16
Vaccine/Monkey Tag	T=4	T =7	1=12	1=10
MRKAd5hCMV-IApol(E3+), 10^11 vp				
99C100	61	1999	5928	4768
99C215	81	1541	2356_	2767
99D201	53	336	539	387
MRKAd5hCMV-IApol(E3+), 10^9 vp				
99D212	10	40	49	68
99D180	<10	36	79	93
99C201	<10	37	71	76
MRKAd5hCMV-IApol(E3-), 10^11 vp				
99D239	44	460	1234	1015
99C186	21	· 233	480	345
99C084	235	2637	2858	1626
MRKAd5hCMV-IApol(E3-), 10^9 vp				
CC7C	32	175	306	235
CDIG	20	140	273	419
CD11	15	112	149	237

When rhesus macaques were immunized i.m. with two doses of MRKAd5nef constructs, vigorous T cell responses ranging from 100 to as high as 1100 per million were observed in 8 of 12 vaccinees (Table 14). The efficacies of the mCMV- and hCMV- driven nef constructs are comparable on the basis of the data generated thus far.

5

Table 14. Nef-specific T cell Responses in MRKAd5nef Immunized Rhesus Macaques.

Vaccine (T=0,4 wks)	Monk #	Р	re	T:	=4	T:	=7	T=	:16
		Mock	Nef	Mock	Nef	Mock	Nef	Mock	Nef
MRKAd5hCMV-nef(G2A,LLAA) (E3+)	CD2D	0	4	31	440	4	368	1	251
10^11 vp	CC7B	0	0	2	521	0	178	1	1522
·	CC61	2	9	31	112	0	108	11	100
MRKAd5hCMV-nef(G2A,LLAA) (E3+)	CC2K	9	9	6	52	0	35	0	15
10^9 vp	CD15	5	4	30	998	2	586	0	434
·	CD16	6	1	6	1146	0	369	1	212
MRKAd5mCMV-nef(G2A,LLAA) (E3+)	99D191	1	- 5	4	614	0	298	2	419
10^11 vp	99D144	4	6	5	434	0	1100	2	932
·	99C193	1	2	1	58	1	22	0	64
MRKAd5mCMV-nef(G2A,LLAA) (E3+)	99D224	1	11	14	231	1	125	0	70
10^9 vp	99D250	8	9	4	108	0	54	0	5
	99C120	1	6	20	299	0	92	0	79
Naïve	083Q	nd	nd	18	22	4	5	2	1

EXAMPLE 25

Comparison of Clade B vs. Clade C T Cell Responses in HIV-Infected Subjects 15 PBMC samples collected from two dozens of patients infected with HIV-1 in US were tested in ELISPOT assays with peptide pools of 20-mer peptides overlapping by 10 amino acids. Four different peptide pools were tested for cross-clade recognition, and they were either derived from a clade B-based isolate (gag H-b; nef-20 b) or a clade C-based isolate (gag H-c, nef-c). Data in Table 15 shows that T cells from these patients presumably infected with clade B HIV-1 could recognize clade C gag and nef antigens in ELISPOT assay. Correlation analysis further demonstrated that these T cell responses against clade C gag peptide pool were about 60% of the clade B counterpart (Figure 24), while the T cell responses against clade C nef were 25 about 85% of the clade B counterpart (Figure 25). These results suggest that cellular immune responses generated in patients infected with clade B HIV-1 can recognize gag and nef antigens derived from clade C HIV-1. These data show that a HIV vaccine, such as a DNA or MRKAd5-based adenoviral vaccine expressing a clade B

gag and/or nef antigen will potentially have the ability to provide a prophylactic and/or therapetic advantage on a global scale.

Table 15
Responses Shown as the Number of gIFN-Secreting T Cells per Million PBMCs

5

10

20

subject	bleed date	gag epitope #	mock	gag H-b	gagH-c	nef-b	nef-c
		from mapping)					
#100	19-Jul-99	12	10	3950	1385	1295	1300
#101	25-Jul-99	3	15	3885	1280	na	1020
#102	25-Jul-99	4	15	1740	850	1255	1785
#104	7-Jun-99	2	5	1355	1185	na	1060
#107	11-Oct-99	2	25	3305	2795	670	870
#405	11-Jul-99	2	15	4575	3180	1700	1500
#501	19-Jul-99	2	15	1100	570	3365	3460
#505	18-Jul-99	5	10	2145	1725	1235	na
#506	28-Feb-99	2	25	150	45	400	610
#701	28-Mar-99	5	30	7620	4775	3320	2780
#709	17-May-99	3	15	2785	1945	1090	1630
#710	24-May-99	4	5	1055	1080	2210	2140

EXAMPLE 26
Characterization and Production of MRKAd5pol and MRKAd5nef
Vectors in Roller Bottles

Expansion of nef and pol Adenovectors - Nef and pol CsCl purified MRKAd5 seeds were used to infect roller bottles to produce P4 virus to be used as a seed for further experiments. P4 MRKAd5 pol and nef vectors were used to infect roller bottles at an MOI 280 vp/cell, except for hCMV-tpa-nef [E3+] which was infected at an MOI of 125 due to low titers of seed obtained at P4.

Table 16 Viral particle concentrations for P5 nef and pol adenovectors

Adenovector	AEX Titer	AEX Titer	Amplification
	(10 ¹⁰ vp/ml culture)	(10 ⁴ vp/cell)	Ratio
hCMV-FL-nef [E3+]	1.1	0.9	30
mCMV-FL-nef [E3+]	2.2	2.1	75
hCMV-tpa-nef [E3+]	0.07	0.1	5
mCMV-tpa-nef [E3+]	1.3	0.9	35
hCMV-FL-pol [E3+]	2.7	2.1	75
hCMV-FL-pol [E3-]	1.9	1.3	45

Roller Bottle Passaging - Passaging of the pol and nef constructs continued through passage seven. Cell-associated (freeze/thaw lysis) and whole broth (tritonlysis) titers obtained in all passages were very consistent. In general, MRKAd5pol is ca. 70% as productive as MRKAd5gag while MRKAd5nef is ca. 25% as productive as MRKAd5gag. Samples of P7 virus for both constructs were analyzed by V&CB by restriction digest analysis and did not show any rearrangements.

Table 17. Passage Six Viral Productivity for MRKAd5pol and MRKAd5nef

		Xviable (10	0 ⁶ cells/ml), ity (%) Harvest	Cell Passage Number	AEX Titer (Cell Associated) 10 ¹⁰ vp/ml culture	Titer 10 ⁴ vp/cell	Amplification Ratio	Triton Lysis Titer 10 ¹⁰ vp/ml culture
hCMV-FL-nef [E3+]	pool	1.22, 85%		62	0.8	0.7	25	1.6
	1		0.99, 62%					
	2		1.10,72%	}	}			
hCMV-FL-pol [E3+]	pool	1.42, 89%		62	4.5	3.2	115	7.0
	1		1.22, 70%					
	2		1.42,74%					

15 Table 18. Passage Seven Viral Productivity for MRKAd5pol and MRKAd5nef

13 Tuble 101 Tubbuge be tell titul 1 Touriest 103					101 1,111111111111111111111111111111111					
		Xviable (10 Viabili) ⁶ cells/ml), ty (%)	Cell Passage	AEX Titer (Cell Associated)	Titer	Amplification	Triton Lysis Titer		
		Infection	Harvest	Number	10 ¹⁰ vp/ml culture	10 ⁴ vp/cell	Ratio	10 ¹⁰ vp/ml culture		
hCMV-FL-nef [E3+]	Pool	1.33, 90%		66	1.0	0.8	29	2.1		
	1		0.96, 70%							
	2		1.18, 73%							
hCMV-FL-pol [E3+]	Pool	0.90*, 90%		56	4.2	4.7	168	6.5		
	1		1.18, 88%							
	_ 2		1.04, 80%			44				

MRKAd5nef and MRKAd5pol Viral Production Kinetics - A timecourse experiment was carried out in roller bottles to determine if the viral production kinetics of the MRKAd5pol and MRKAd5nef vectors were similar to those of
 MRKAd5gag. PER.C6[®] cells in roller bottle cultures were infected at an MOI of 280 vp/cells with P5 MRKAd5pol, P5 MRKAd5nef and P7 MRKAd5gag; for each adenovector, two infected bottles were sampled at 24, 36, 48, and 60 hours post infection. In addition, two bottles were left unsampled until 48 hpi when they were harvested under the Phase I process conditions. The anion-exchange HPLC viral
 particle concentrations of the freeze-thaw recovered cell associated virus at the 24, 36,

48, and 60 hpi timepoints are shown in Figure 29A-B. The QPA titers show a similar trend (data not shown).

Comparison of hCMV- and mCMV-FL-nef - As the titers obtained with the MRKAd5nef construct (hCMV-FL-nef) were lower than those obtained with MRKAd5gag or MRKAd5pol, a viral productivity comparison experiment was performed with mCMV-FL-nef. For each of the two adenovectors (hCMV- and mCMV-FL-nef), two roller bottles were infected at an MOI of 280 vp/cell with passage five clarified lysate. The macroscopic and microscopic observations of the four roller bottles were identical at the time of harvest. Analysis of the clarified lysate produced indicated a higher viral particle concentration in the bottles infected with mCMV-FL-nef, as shown in Table 19. It is stipulated that the higher productivity with mCMV promoter driven nef vector is due to lower nef expression levels in PER.C6[®] cells- experiments are underway at V&CB to measure nef expression levels.

15

Table 19. Passage Six Viral Productivity Comparison of hCMV- and mCMV-FL-nef

	[Xv (10 ⁶ cells/m	l), Viability (%)	Cell Passage	AEX Titer	Titer	Amplification	Triton Lysis Titer
		Infection	Harvest	Number	10 ¹⁰ vp/ml culture	104 vp/cell	Ratio	10 ¹⁰ vp/ml culture
hCMV-FL-nef	Poo1	1.11,91%		60	1.5	1.4	50	2.8
(MRKAd5nef)	1		1.23, 75%					
	2		1.34, 74%					
mCMV-FL-nef	Pool	1.11, 91%		60	2.3	2.1	75	4.6
	1		1.49, 84%					
	2		1.18,77%					

20

25

30

EXAMPLE 27

Characterization and Large Scale Production of MRKAd5nef Virus in Bioreactors

Materials and Methods - The experiment of the present example was run twice under the following conditions: 36.5°C, DO 30%, pH 7.30, 150rpm agitation rate, no sparging, Life Technologies (Gibco, Invitrogen) 293 SFM II (with 6mM L-glutamine), 0.5M NaOH as base for pH control. During the first run (B20010115), two 10L stirred vessel bioreactors were inoculated with PER.C6® cells at a concentration of 0.2x106 cells/ml. Cells were grown until they reached a cell concentration of approximately 1x106 cells/ml. The cells were infected with uncloned MRKAd5nef (G2A,LLAA) at a MOI of 280 virus particles (vp)/cell. For the second batch (B20010202), the same procedure as the first run was used, except the cells

were infected with cloned MRAd5nef. During both runs, the bioreactors were harvested 48 hours post-infection. Samples were taken and virus concentrations were determined from whole broth (with triton lysis), supernatant, and cell pellets (3 X freeze/thaw) with the AEX and QPA assays. Metabolites were measured with BioProfile 250 throughout the process.

Table 20: Experimental Conditions

Temperature	36.5 °C	
DO	30%	
PH	7.30	
Agitation	150 rpm	
Sparging	None	

Table 21: Virus source used for experiments.

10

15

B20010202-2

	Run	Batch ID	Cloned/Uncloned	MOI
			MRKAd5nef	(vp/cells)
	#1	B20010115-1	Uncloned	280
		B20010115-2	Uncloned	280
ı	#2	B20010202-1	Cloned	280
		B20010202-2	Cloned	280

Cloned

Results - Table 22 and 23 show an the ability to scale up production of MRKAd5nef by growth in a bioreactor.

Table 22: Virus Concentration as measured by the AEX assay

Run	Batch ID	Cloned/Uncloned	V	irus Concentration	@ 48hpi (1x	(10 ¹³ vp/L)
		MRKAd5nef	Supernatant	Clarified Lysate	Total	Triton Lysate
#1	B20010115-1	Uncloned	0.72	3.26	3.98	5.76
	B20010115-2	Uncloned	0.38	1.67	2.05	2.46
#2	B20010202-1	Cloned	0.80	6.00	6.80	8.88

Table 23: Virus Titers as measured by the QPA assay

0.50

Run	Batch ID	Cloned/Uncloned		Virus Concent	ration @ 48hpi	(1x10 ¹¹ IU/L)	
		MRKAd5nef	Whole	Supernatant	Clarified	Total	Triton
			Broth		Lysate		Lysate
#1	B20010115-1	Uncloned	0.13	1.12	1.76	2.88	11.28
	B20010115-2	Uncloned	0.14	0.73	1.54	2.27	5.86
#2	B20010202-1	Cloned	0.14	0.97	1.62	2.69	11.89
	B20010202-2	Cloned	0.14	1.17	1.70	2.97	12.47

6.00

6.50

8.47

20

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art

from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

EXAMPLE 28

MRKAd5HIV-1gag Boosting of DNA-Primed Animals

5

10

15

20

25

30

Groups of 3-5 rhesus macaques were immunized with (a) 5 mgs of V1Jns-Flgag (pVIJnsCMV(no intron)-FL-gag-bGHpA), (b) 5 mgs of V1Jns-Flgag formulated with 45 mgs of a non-ionic block copolymer CRL1005, or (c) 5 mgs of V1Jns-Flgag formulated with 7.5 mgs of CRL1005 and 0.6 mM benzalkonium chloride at weeks 0, 4, and 8. All animals received a single dose of 10e7 viral particles (vp) of the MRKAd5HIV-1gag at week 26. Note: 10e7 is too low to prime or boost effectively when used as a single modality (dose is selected to mimic preexposure to adenovirus); see Figure 32.

Blood samples were collected from all animals at several time points and peripheral blood mononuclear cells (PBMCs) were prepared using standard Ficoll method. The PBMCs were counted and analyzed for gamma-interferon secretion using the ELISpot assay (Table 24). For each monkey, the PBMCs were incubated overnight either in the absence (medium) or presence of a pool (called "gag H") of 50 20-aa long peptides that encompass the entire HIV-1 gag sequence.

The results indicate that MRKAd5HIV-1gag was very effective in boosting the T cell immune responses in these monkeys. At week 28 or 2 weeks after the viral boost, the number of gag-specific T cells per million PBMCs increased 2-48 fold compared to the levels observed at week 24 or 2 weeks prior to the boost.

The PBMCs were also analyzed by intracellular gamma-interferon staining prior to (at week 10) and after the MRKAd5gag boost (at week 30). The results for select animals are shown on Figure 31. The results indicate that (a) immunization with DNA/adjuvant formulation elicited T cell responses which can either be balanced, CD4⁺-biased or CD8⁺-biased, and (b) boosting with the MRKAd5gag construct produced in all cases a strongly CD8⁺-biased response. These results suggest that boosting with MRKAd5HIV-1gag construct is able to improve the levels of antigen-specific CD8⁺ T cells.

Table 24. Boosting of DNA/Adjuvant-Primed Rhesus Monkeys with MRKAd5gag

Number of SFC/million PBMCs

Grp#

Priming

T=0, 4, 8 wks T=26 wks DNA/5 mgs	#da:	Priming	Boost	Monk#	TaO		T=4		T=6	9	T=10		T=17	7	T=24	*	T=28	28	T=30	90
DNA5 mgs		T=0, 4, 8 wks	T=26 wks		Medium	gag H	Medium	gag H	Medium	gagH	Medium	-	ļ		Wedium	H Bag	Medium	gag H	Medium	Dag H
PBS 10-7 vp CC6X 0 0 15 0 46 0 58 0 75 0 75 0 95 1705 1 999 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DNA/5 mos	MRKAd5gag(E3+)	CB5H	ΑN	Ą	3	35	15	11	4	224	8	115	9	82	19	926	0	316
CRIL1005/45mgs + MFKAd5gag(E3+) CC1C C C C C C C C C		PBS	10^7 vp	×900	0	0	0	15	0	46	0	58	0	75	0	35	e	1705	-	755
MFKAdSgag(E3+) CC1C 0 4 1 1 60 0 111 5 270 4 280 8 222 3 959 19 4 AW3P 9 8 1 1 101 0 254 0 791 5 452 0 321 0 1915 1 CBSF NA NA 0 31 0 258 0 583 19 374 9 205 11 88 6 6 AK8B 9 12 4 36 1 119 0 439 0 439 0 425 6 105 9 205 18 1549 20 MHKAdSgag(E3+) AW2D 10 4 1 59 5 264 19 425 6 105 9 205 18 565 8 CBSW 4 3 0 26 1 91 0 106 11 609 5 628 1 106 14 1384 10 CBSW 4 3 0 26 1 91 0 106 11 609 5 628 1 1 759 0 2278 4 1 106 14 1384 10 None 980201 3 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 2 3 0 0		(D101)		AW3G	2	=	0	36	3	51	6	46	2	68	80	65	₽	686	0	395
CRIL1006/ASmgs 1077 vp Awap 9 8 1 1 101 0 254 0 791 5 452 0 321 0 1915 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DNA/Email	MEKAdscan(E3.1)	CCTC	c		-	9	-	=	7.	270	4	280	æ	232	6.	656	19	1345
AW3P 9 8 1 1 10 4 71 4 154 8 104 5 86 11 836 6 CBST NA NA 0 31 0 228 0 530 19 374 9 251 8 1529 20 CRL1006/7.5 mgs + 0.6 mM BAK 10^7 vp CBSW 4 3 0 136 0 136 0 164 1 629 5 10 164 1 169 1 1 169 0 164 1 1 169 0 164 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,	CRI 1005/45mgs	10v7 va	Š	7	0	_	101		254	•	16/	15	452	0	33	0	1915	-	1099
CESF NA NA 0 31 0 288 0 530 19 374 9 251 8 1549 20 AKRB 9 12 4 36 1 119 0 439 0 435 0 316 4 1529 5 DNA5 mgs + 0.6 mM BAK 10-77 up CBS 8 6 6 0 26 1 9 11 60 316 1 1 60 316 1 1 60 316 1 1 60 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 316 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 1 60 3 1 60 1 60				AWSP	σ.	60	_	0	4	7	4	154	80	\$	10	88	=	836	9	241
AKBB 9 12 4 36 1 119 0 425 0 425 0 316 4 1229 5 DNA5 mgs + 0.5 mgs + 0.5 mM BAK 10×7 vp CBSW 4 3 0 26 13 19 0 15 19 0 15 19 0 15 19 19 19 19 19 19 19 19 19 19 19 19 19	_			CBSF	ž	ž		ਲ	0	288	0	530	-61	374	G	251	80	1549	20	1734
DNA5 mgs+ 0.6 mM BAK 10×7 vp CA87 1 0 1 159 5 264 19 425 6 105 9 205 18 565 8 1 1 384 10 CRL1005/7.5 mgs + 0.6 mM BAK 10×7 vp CB58 8 6 0 6 3 119 0 274 6 282 1 208 0 63 1 1384 10 CB5W 4 3 0 26 1 91 0 138 1 60 1 1 60 9 5 626 1 759 0 2278 4 1 60 1 1 60 9 5 628 1 759 0 2278 4 1 60 1 1 60 9 5 628 1 759 0 2278 4 1 60 1 1 60 9 5 628 1 759 0 7278 4 1 759 0 7278 1 759 0 7278 1 759 0 7278 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 759 0 7578 1 7578 1 759 0 7578 1 7578 1 759 0 7578 1 7578 1 759 0 7578 1				AKBB	07	12	4	36	_	119	•	439	•	425	0	316	4	1229	z,	1354
DNA5 mgs+																				
10v7 vp CA4R 1 0 3 121 1 135 1 270 5 130 1 105 14 1384 10 CB58 8 6 0 6 3 119 0 274 6 282 1 208 0 676 1 CB5W 4 3 0 26 1 91 0 136 0 164 1 609 5 62 5 543 1 None 990201 3 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 2 3 0 0 0	6.	DNA/5 mas+	MRKAd5gag(E3+)	AW20	10	4	-	68	2	264	16	425	9	35	6	205	8	565	Φ,	40
CBSW 4 3 0 26 1 91 0 139 0 274 6 282 1 208 0 636 1 CBYW 4 3 0 26 1 91 0 139 0 164 1 62 8 5 543 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CBI 1005/7 5 mas + 0.6 mM BAK	10^7 vp	CAAB	-	0	ო	121	-	55	-	220	20	용	_	105	7	1384	2	978
CBSW 4 3 0 26 1 91 0 139 0 164 1 62 5 543 1 None 98C201 3 0 0 0 1 1 0 0 0 0 0 1 1 1 2 3 0 0		D		CBS8	80	9	0	9	e	119	0	274	9	283	-	208	0	636	-	8 28
CETO 1 0 0 136 0 316 1 609 5 626 1 759 0 2278 4 None 98C201 3 0 0 0 1 0 0 0 0 1 1 2 3 0 0				CBSW	4	e	0	56	-	6	.0	139	0	164	-	62	'n	543	-	349
None 980201 3 0 0 0 1 0 0 0 1 1 2 3 0 0				CB70	-	0	0	136	٥	316	_	609	2	929	-	759	0	2278	4	1831
None 980201 3 0 0 0 1 0 0 0 0 1 1 2 3 0 0	Ī																			
	4	none	None	980201	62	0	0	0	-	0	0	0	0	-	-	2	3	0	0	٥

EXAMPLE 29

Construction of gagpol fusion for MRKAd5gagpol fusion constructs

The open reading frames for the codon-optimized HIV-1 gag gene was fused directly to the open reading frame of the IA pol gene (consisting of RT, RNAseH and integrase domains) by stepwise PCR. Because the gene (SEQ ID NO: 38) does not include the protease gene and the frameshift sequence, it encodes a single polypeptide of the combined size of p55, RT, RNAse H and integrase (1350 amino acids; SEQ ID NO: 39).

5

10

15

20

25

30

35

4.

The fragment that extends from the BstEII site within the gag gene to the last non-stop codon was ligated via PCR to a fragment that extends from the start codon of the IApol to a unique BamHI site. This fragment was digested with BstEII and BamHI. Construction of gag-IApol fusion was achieved via three-fragment ligation involving the PstI-BstEII gag digestion fragment, the BstEII/BamHI digested PCR product and long PstI/BamHI V1R-FLpol backbone fragment.

The MRKAd5-gagpol adenovirus vector was constructed using the BglII fragment of the V1R-gagpol containing the entire ORF of gag-IApol fusion gene.

EXAMPLE 30

Immunogenicity Studies in Non-Human Primates

Cohorts of three (3) macaques were immunized with 10e8 or 10e10 viral particles (vp) of one of the following MRKAd5 HIV-1 vaccines: (1) MRKAd5gag; (2) MRKAd5pol; (3) MRKAd5nef; (4) a mixture containing equal amounts of MRKAd5gag, MRKAd5pol, and MRKAd5nef, or (5) a mixture of equal amounts of MRKAd5gagpol and MRKAd5nef. The vaccines were administered at weeks 0 and

The T cell responses against each of the HIV-1 antigens were assayed by IFN-gamma ELISpot assay using pools of 20-aa peptides that encompass the entire protein sequence of each antigen. The results (Table 25) are expressed as the number of spot-forming cells (sfc) per million peripheral blood mononuclear cells (PBMC) that respond to each of the peptide pools.

Results indicate the following observations: (1) each of the single gene constructs (MRKAd5gag, MRKAd5pol, or MRKAd5nef) is able to elicit high levels of antigen-specific T cells in monkeys; (2) the single-gene MRKAd5 constructs can be mixed as a multi-cocktail formulation capable of eliciting very broad T cell responses against gag, pol, and nef; (3) the MRKAd5 vector expressing the fusion

protein of gag plus IA pol is capable of inducing strong T cell responses to both gag and pol.

Table 25. Evaluation of Mixtures of MRKAd5 vectors expressing humanized

HIV-1 gag, pol, gagpol, nef in rhesus macaques

5

10

Grp#	Vaccine	Monk #			T=6 wks		
.	T=0, 4 wks		Mock	Gag H	Pol - 1	Pol - 2	Nef
1	MRKAd5 gag	CB9V	0	15	-	-	-
	10^10 vp	CD19	0 .	374	-	-	-
		109H	1	843	-	-	-
2	MRKAd5 gag	99D130	1	948	-	-	-
	10^8 vp	W277	16	324	-	-	-
		143H	4	595	-	-	-
3	MRKAd5 pol	CC1X	4	-	46	256	14
	10^10 vp	AW3W	3	-	463	550	-
		AV43	6	-	95	1333	-
4	MRKAd5 pol	AW38	1	-	19	30	-
ļ	10^8 vp	CC8K	0	-	50	995	-
		CC21	1	-	33	· 436	•
5	MRKAd5 nef	076Q	9	-	-	-	1204
	10^10 vp	091Q	4	-	-	-	85
		083Q	0	-	-	-	176
6	MRKAd5 nef	00C029	1	-	-	-	114
	10^8 vp	98D022	6	-	-	~	170
		98D160	3	-	-	-	198
7	MRKAd5gag+MRKAd5pol+MRKAd5nef	99D251	3	206	15	193	120
	10^10 vp each	05H	3	135	21	9	638
		00C016	3	26	4	51	23
8	MRKAd5gag+MRKAd5pol+MRKAd5nef	99D215	1	171	18	193	240
	10^8 vp each	81H	5	73	6	14	243
		12H	8	1140	115	811	719
9	MRKAd5gagpol +MRKAd5 nef	99D211	0	83	56	838	725
	10^10 vp each	22H	4	385	119	1194	1915
		61H	4	343	11	765	853
10	MRKAd5gagpol +MRKAd5 nef	34H	3	78	19	5	7 5
İ	10^8 vp each	48H	1	65	105	46	43
l l		70H	5	158	15	220	191

Indicated are numbers of spot-forming cells per million PBMCS against the peptide pools. Mock, no peptides; gag H, fifty 20-aa peptides encompassing p55 sequence; pol-1, 20-aa peptides representing N-terminal half of IA pol; pol-2, 20-aa peptides representing the carboxy-terminal half of IA pol; nef, 20-aa peptides encompassing the entire wild-type nef sequence. Responses to the antigens prior to the first immunization did not exceed 40 sfc/10^6 PBMC.

WHAT IS CLAIMED IS

5

10

1. A recombinant adenoviral vaccine vector at least partially deleted in E1 and devoid of E1 activity, comprising:

- a) an adenovirus *cis*-acting packaging region corresponding to from about base pair 1 to between from about base pair 400 to about base pair 458 of a wildtype adenovirus genome; and
- b) a gene encoding an HIV protein or immunologically relevant modification thereof.
- 2. A vector in accordance with claim 1 comprising a packaging region corresponding to from about base pair 1 to about base pair 450 of a wildtype adenovirus genome.
- 3. A vector in accordance with claim 1 further comprising nucleotides corresponding to between from about base pair 3511 to about 3524 to about base pair 5798 of a wildtype adenovirus genome.
 - 4. A vector in accordance with claim 3 comprising base pairs corresponding to 1-450 and 3511-5798 of a wildtype adenovirus genome.
- 5. A vector in accordance with claim 4 which is deleted of base pairs451-3510.
 - 6. A vector in accordance with claim 1 which is at least partially deleted in E3.
 - 7. A vector in accordance with claim 6 wherein the E3 deleted region is from base pairs 28,133-30,818.

8. A vector in accordance with claim 1 wherein the gene encoding the HIV protein or modification thereof comprises codons optimized for expression in a human.

- 9. A vector in accordance with claim 1 wherein the vector comprises agene expression cassette comprising:
 - a) a nucleic acid encoding a protein;
 - b) a heterologous promoter operatively linked to the nucleic acid encoding the protein; and
 - (c) a transcription termination sequence.
- 10. A vector in accordance with claim 9 wherein the gene expression cassette is inserted into the E1 region.
 - 11. An adenoviral vector in accordance with claim 9 wherein the gene expression cassette is in an E1 parallel orientation
- 12. An adenoviral vector in accordance with claim 9 wherein the geneexpression cassette is in an E1 antiparallel orientation.
 - 13. An adenoviral vector in accordance with claim 9 wherein the promoter is a cytomegalovirus promoter devoid of intronic sequences.
 - 14. An adenoviral vector in accordance with claim 13 wherein the promoter is an immediate early human cytomegalovirus promoter.
- 20 15. An adenoviral vector in accordance with claim 9 wherein the promoter is a murine cytomegalovirus promoter.
 - 16. An adenoviral vector in accordance with claim 9 wherein the transcription termination sequence is a bovine growth hormone polyadenylation and transcription termination sequence.

17. An adenoviral vector in accordance with claim 9 wherein the transcription termination sequence is a synthetic polyadenylation signal (SPA).

- 18. A cell comprising the adenoviral vector of claim 1.
- 19. Recombinant, replication-defective adenovirus particles harvested
 and purified subsequent to transfection of the adenoviral vector of claim 1 into a cell
 line which expresses adenovirus E1 protein at complementing levels.
 - 20. An HIV vaccine composition comprising purified adenovirus particles of claim 19.
- 21. An HIV vaccine composition of claim 20 which comprises aphysiologically acceptable carrier.
 - 22. A method of producing recombinant, replication defective adenovirus particles containing the adenoviral genome of the adenoviral vector of claim 1 which comprises introducing the adenoviral vector into a host cell which expresses adenoviral E1 protein, and harvesting the resultant recombinant, replication-defective adenovirus.
 - 23. A method according to claim 22 wherein the cell is a PER.C6[®] cell.

15

- 24. A method of generating a cellular-mediated immune response against HIV in an individual comprising administering to the individual a vaccine of claim 21.
- 25. A method according to claim 24 which further comprises administration to the individual a DNA plasmid vaccine, optionally administered with a biologically effective adjuvant, protein or other agent capable of increasing the immune response.

26. A method according to claim 25 wherein the DNA plasmid vaccine is administered to the individual prior to administration of an adenovirus vaccine.

- 27. A method according to claim 24 wherein the adenovirus vaccine is5 preceded by an adenovirus vaccine of a different serotype.
 - 28. A method according to claim 24 which comprises administering and readministering the adenovirus vaccine vector to the individual.
 - 29. An adenoviral vector in accordance with claim 1 wherein the HIV protein is HIV gag or an immunologically relevant modification thereof.
- 30. An adenoviral vector in accordance with claim 9 wherein the gene expression cassette comprises an open reading frame encoding an HIV gag protein or immunologically relevant modification thereof.
 - 31. A recombinant adenoviral vaccine vector at least partially deleted in E1 and devoid of E1 activity, comprising:
 - a) an adenovirus *cis*-acting packaging region corresponding to from about base pair 1 to about base pair 450 and from about 3511 to about 5798 of a wildtype adenovirus genome, and deleted for base pairs corresponding to from about base pair 451 to from about base pair 3510 of a wildtype adenovirus genome; and
 - b) a gene expression cassette comprising
 - i) SEQ ID NO: 29;
 - ii) a heterologous promoter operatively linked to i); and
 - iii) a transcription termination sequence.

32. An adenoviral vector in accordance with claim 31 wherein the gene expression cassette is in an E1 parallel orientation.

- 33 An adenoviral vector in accordance with claim 31 wherein the gene expression cassette is in an E1 antiparallel orientation.
- 34. An adenoviral vector in accordance with claim 31 wherein the promoter is a cytomegalovirus promoter devoid of intronic sequences.

5

15

- 35. An adenoviral vector in accordance with claim 31 wherein the transcription termination sequence is a bovine growth hormone polyadenylation and transcription termination sequence.
- 36. An adenoviral vector in accordance with claim 31 which is at least partially deleted in E3.
 - 37. A cell comprising the adenoviral vector of claim 30.
 - 38. Recombinant, replication-defective adenovirus particles harvested and purified subsequent to transfection of the adenoviral vector of claim 30 into a cell line which expresses adenovirus E1 protein at complementing levels.
 - 39. An HTV vaccine composition comprising purified adenovirus particles of claim 38.
 - 40. An HIV vaccine composition of claim 39 which comprises a physiologically acceptable carrier.
 - 41. A method of producing recombinant, replication defective adenovirus particles containing the adenoviral genome of the adenoviral vector of claim 30 which comprises introducing the adenoviral vector into a host cell which expresses adenoviral E1 protein, and harvesting the resultant recombinant, replication-defective adenovirus.

42. A method according to claim 41 wherein the cell is a PER.C6[®] cell.

43. A method of generating a cellular-mediated immune response against HIV in an individual comprising administering to the individual a vaccine of claim 21.

5

- 44. A method according to claim 43 which further comprises administration to the individual a DNA plasmid vaccine, optionally administered with a biologically effective adjuvant, protein or other agent capable of increasing the immune response.
- 45. A method according to claim 44 wherein the DNA plasmid vaccine is administered to the individual prior to administration of an adenovirus vaccine.
 - 46. A method according to claim 43 wherein the adenovirus vaccine is preceded by an adenovirus vaccine of a different serotype.
 - 47. A method according to claim 43 which comprises administering and readministering the adenovirus vaccine vector to the individual.
 - 48. An adenoviral vector in accordance with claim 1 wherein the HIV protein is HIV pol or an immunologically relevant modification thereof.
- 49. An adenoviral vector in accordance with claim 9 wherein the gene
 20 expression cassette comprises an open reading frame encoding an HIV pol protein or immunologically relevant modification thereof.
 - 50. A recombinant adenoviral vaccine vector at least partially deleted in E1 and devoid of E1 activity, comprising:

a) an adenovirus *cis*-acting packaging region corresponding to from about base pair 1 to about base pair 450 and from about 3511 to about 5798 of a wildtype adenovirus genome, and deleted for base pairs corresponding to from about base pair 451 to from about base pair 3510 of a wildtype adenovirus genome; and

5

10

- b) a gene expression cassette comprising
 - a nucleotide sequence selected the group consisting of SEQ ID NO: 1, SEQ ID NO: 5 and SEQ ID NO: 7;
 - ii) a heterologous promoter operatively linked to i); and
 - iii) a transcription termination sequence.
- 51. An adenoviral vector in accordance with claim 50 wherein the gene expression cassette is in an E1 parallel orientation.
- 52. An adenoviral vector in accordance with claim 50 wherein the gene expression cassette is in an E1 antiparallel orientation.
- 53. An adenoviral vector in accordance with claim 50 wherein the promoter is a cytomegalovirus promoter devoid of intronic sequences.
- 54. An adenoviral vector in accordance with claim 50 wherein the transcription termination sequence is a bovine growth hormone polyadenylation and transcription termination sequence.
- 20 55. An adenoviral vector in accordance with claim 50 which is at least partially deleted in E3.
 - 56. A cell comprising the adenoviral vector of claim 49.

57. Recombinant, replication-defective adenovirus particles harvested and purified subsequent to transfection of the adenoviral vector of claim 49 into a cell line which expresses adenovirus E1 protein at complementing levels.

- 58. An HIV vaccine composition comprising purified adenovirusparticles of claim 57.
 - 59. An HIV vaccine composition of claim 58 which comprises a physiologically acceptable carrier.
 - 60. A method of producing recombinant, replication defective adenovirus particles containing the adenoviral genome of the adenoviral vector of claim 49 which comprises introducing the adenoviral vector into a host cell which expresses adenoviral E1 protein, and harvesting the resultant recombinant, replication-defective adenovirus.

10

- 61. A method according to claim 60 wherein the cell is a PER.C6[®] cell.
- 62. A method of generating a cellular-mediated immune response against HIV in an individual comprising administering to the individual a vaccine of claim 59.
 - 63. A method according to claim 62 which further comprises administration to the individual a DNA plasmid vaccine, optionally administered with a biologically effective adjuvant, protein or other agent capable of increasing the immune response.
 - 64. A method according to claim 63 wherein the DNA plasmid vaccine is administered to the individual prior to administration of an adenovirus vaccine.

65. A method according to claim 62 wherein the adenovirus vaccine is preceded by an adenovirus vaccine of a different serotype.

- 66. A method according to claim 62 which comprises administering and readministering the adenovirus vaccine vector to the individual.
- 67. An adenoviral vector in accordance with claim 1 wherein the HIV protein is HIV nef or an immunologically relevant modification thereof.

5

10

15

- 68. An adenoviral vector in accordance with claim 9 wherein the gene expression cassette comprises an open reading frame encoding an HIV nef protein or immunologically relevant modification thereof.
- 69. A recombinant adenoviral vaccine vector at least partially deleted in E1 and devoid of E1 activity, comprising:
 - a) an adenovirus *cis*-acting packaging region corresponding to from about base pair 1 to about base pair 450 and from about 3511 to about 5798 of a wildtype adenovirus genome, and deleted for base pairs corresponding to from about base pair 451 to from about base pair 3510 of a wildtype adenovirus genome; and
 - b) a gene expression cassette comprising
 - i) a nucleotide sequence selected the group consisting of SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13 and SEQ ID NO: 15;
 - ii) a heterologous promoter operatively linked to i); and
 - iii) a transcription termination sequence.
- 70. An adenoviral vector in accordance with claim 69 wherein the gene expression cassette is in an E1 parallel orientation.

71. An adenoviral vector in accordance with claim 69 wherein the gene expression cassette is in an E1 antiparallel orientation.

72. An adenoviral vector in accordance with claim 69 wherein the promoter is a cytomegalovirus promoter devoid of intronic sequences.

5

10

15

- 73. An adenoviral vector in accordance with claim 69 wherein the transcription termination sequence is a bovine growth hormone polyadenylation and transcription termination sequence.
- 74. An adenoviral vector in accordance with claim 69 which is at least partially deleted in E3.
 - 75. A cell comprising the adenoviral vector of claim 68.
- 76. Recombinant, replication-defective adenovirus particles harvested and purified subsequent to transfection of the adenoviral vector of claim 68 into a cell line which expresses adenovirus E1 protein at complementing levels.
- 77. An HIV vaccine composition comprising purified adenovirus particles of claim 76.
 - 78. An HIV vaccine composition of claim 77 which comprises a physiologically acceptable carrier.
- 79. A method of producing recombinant, replication defective adenovirus particles containing the adenoviral genome of the adenoviral vector of claim 68 which comprises introducing the adenoviral vector into a host cell which expresses adenoviral E1 protein, and harvesting the resultant recombinant, replication-defective adenovirus.
- 80. A method according to claim 79 wherein the cell is a PER.C6[®] cell.

81. A method of generating a cellular-mediated immune response against HIV in an individual comprising administering to the individual a vaccine of claim 78.

- 82. A method according to claim 81 which further comprises

 administration to the individual a DNA plasmid vaccine, optionally administered with a biologically effective adjuvant, protein or other agent capable of increasing the immune response.
- 83. A method according to claim 82 wherein the DNA plasmid
 vaccine is administered to the individual prior to administration of an adenovirus
 vaccine.
 - 84. A method according to claim 81 wherein the adenovirus vaccine is preceded by an adenovirus vaccine of a different serotype.
 - 85. A method according to claim 81 which comprises administering and readministering the adenovirus vaccine vector to the individual.

15

- 86. A multivalent adenovirus vaccine composition comprising recombinant, replication-defective adenovirus particles, wherein the adenovirus particles are harvested and purified from a cell line expressing adenovirus E1 protein, and wherein the particles are harvested subsequent to transfection of the cells with an adenoviral vector or vectors in accordance with claim 9; said vector(s) comprising a gene expression cassette or cassettes comprising nucleotide sequences encoding HIV proteins selected from the group consisting of:
 - a) gag, pol, and nef, expressed independently from three individual vectors;

 gag, pol, and nef, expressed independently from one vector with the encoding nucleic acid sequences operatively linked to distinct promoters and transcription termination sequences;

- gag, pol, and nef, expressed via two vectors, one expressing a polnef fusion, and another expressing gag;
- d) gag, pol, and nef, expressed via two vectors, one expressing a gagpol fusion and another expressing nef;
- e) gag, pol and nef, expressed via two vectors, one expressing a nefgag fusion and another expressing pol;
- f) gag, pol, and nef, expressed via one vector expressing a gag-polnef fusion;
- g) gag and pol, expressed independently from two individual vectors;
- h) gag and pol, expressed independently from one vector with the encoding nucleic acid sequences operatively linked to distinct promoters and transcription termination sequences;
- i) pol and nef, expressed independently from two individual vectors;
- j) pol and nef, expressed independently from one vector with the encoding nucleic acid sequences operatively linked to distinct promoters and transcription termination sequences;
- k) nef and gag, expressed independently from two individual vectors;
- nef and gag, expressed independently from one vector with the encoding nucleic acid sequences operatively linked to distinct promoters and transcription termination sequences;
- m) gag and pol, expressed via one vector expressing a gag-pol fusion;

5

10

15

n) pol and nef, expressed via one vector expressing a pol-nef fusion; and

- o) nef and gag, expressed via one vector expressing a nef-gag fusion.
- 87. A multivalent adenovirus vaccine composition in accordance with claim 86 wherein the gag-pol fusion consists of SEQ ID NO: 39.
 - 88. A multivalent adenovirus vaccine composition in accordance with claim 86 wherein the fused sequences have the encoding nucleic acid sequences operatively linked to distinct promoters and transcription termination sequences.
- 89. A multivalent adenovirus vaccine composition in accordance with

 10 claim 86 wherein the fused sequences have the encoding nucleic acid sequences

 operatively linked to a single promoter; and the encoding nucleic acid sequences

 operatively linked by an internal ribosome entry sequence ("IRES").

Original Adenovector Construct:

Figure 1: Original HIV-1 gag adenovector.

Sequence of the open reading frame for FL-gag (human codon optimized)

atgggtgctagggcttctgtgctgtctggtggtgagctggacaagtgggagaagatcaggctgaggcctggtgg caagaagaagtacaagctaaagcacattgtgtgggcctccagggagctggagaggtttgctgtgaaccctggc agetgaggtccctgtacaacacagtggctaccctgtactgtgtgcaccagaagattgatgtgaaggacaccaag gaggccctggagaagattgaggaggagcagaacaagtccaagaagaaggcccagcaggctgctgctgctgc acaggcaactccagccaggigtcccagaactaccccattgtgcagaacctccagggccagatggtgcaccag gccatctcccccggaccctgaatgcctgggtgaaggtggtggaggagaaggccttctcccctgaggtgatccc catgttctctgccctgtctgagggtgccacccccaggacctgaacaccatgctgaacacagiggggggccatc aggetgecatgeagatgetgaaggagaceateaatgaggaggetgetgagtgggaeaggetgeateetgtge acgctggccccattgcccccggccagatgagggagcccaggggctctgacattgctggcaccacctccaccct ccaggagcagattggctggatgaccaacaacccccccatccctgtgggggaaatctacaagaggtggatcat cccttcagggactatgtggacaggttctacaagaccctgagggctgagcaggcctcccaggaggtgaagaact ggatgacagagaccetgetggtgcagaatgccaaccetgactgcaagaccatectgaaggccetgggccctg c t g ccaccctgg aggagatg at gacagcctgccagggggtgggggggccctggtcacaaggccagggtgctggctgaggccatgtcccaggtgaccaactccgccaccatcatgatgcagaggggcaacttcaggaaccagag gaagacagtgaagtgcttcaactgtggcaaggtgggccacattgccaagaactgtagggcccccaggaaga agggctgctggaagtgtggcaaggaggccaccagatgaaggactgcaatgagaggcaaggccaacttcctg ggcaaaatctggccctcccacaagggcaggcctggcaacttcctccagtccaggcctgagcccacagcccct agetgtacccctggcctcctgaggtccctgtttggcaacgacccctcctcccagtaaaataaagcccgggca gat (SEQ ID NO: 29)

Figure 2

Figure 3: Diagrammatic representation of the original HIV-1 gag transgene and the series of new transgene constructions.

Figure 4: Modifications made to the current adenovector backbone in the generation of the new vector.

Figure 5: Virus mixing experiments to determine the effects of the addition made to the packaging signal region (Expt #1) and analysis of the effects of the E3 gene on viral growth (Expt. #2). The red bars denote the region of modifications made to the E1 deletion.

Figure 6: Autoradiograph of viral DNA analysis following viral mixing experiments (expts. #1 and #2) as detailed in the text.

Figure 7A: hCMV-FLgag-bGHpA adenovectors constructed within the "MRK" backbone. E1 parallel and E1 antiparallel transgene orientation within the E3- and E3+ backbones were constructed.

Figure 7B: hCMV-FLgag-SPA adenovectors constructed within the "MRK" backbone. E1 parallel and E1 antiparallel transgene orientation within the E3- and E3+ backbones were constructed.

Figure 7C: mCMV-FLgag-bGHpA adenovectors constructed within the "MRK" backbone. E1 parallel and E1 antiparallel transgene orientation within the E3- and E3+ backbones were constructed.

Plasmid mixing expt: (orientation)

Figure 8A: Effect of transgene orientation

Plasmid Mixing expt: (poly A signal)

Figure 8B: Effect of polyadenylation signal

Figure 9: Viral DNA from the four Adgag candidates at P5, following BstE11 digestion.

Figure 10: Viral DNA analysis of passage 11 and/or 12 of MRKHVE3, MRKAd5gag and MRKAd5gag(E3-).

Figure 11: Viral DNA analysis (*Hin*dIII digestion) of passage 6 MRKHVE3 and MRKAd5gag used to initiate the viral competition study. Last two lanes are passage 11 analysis of duplicate passages of the competition study (each virus at MOI 280 vp).

Figure 12: Viral DNA analysis by *Hind*III digestion on high passage numbers for MRKAd5gag in serum containing media with collections made at specified times. The first lane shows the 1 Kb DNA size marker. The other lanes represent pre-plasmid control (digested with Pac1 and *Hind*III), and MRKAd5gag virus continually passaged to P16, P19 and P21(serum containing media).

Figure . Serum anti-p24 Levels at 3 Wks post i.m. immunization of balb'c mice (n=10) with Varying Doses of Several Adgag constructs: (A) MRKAd5gag (through passage 5): (B) MRKAd5 E3' hCMV-FLgag-bGHpA; (C) MRKAd5 E3' hCMV-FLgag-SPA; (D) MRKAd5 E3' mCMV-FLgag-bGHpA; (D) research Lot (293 cell-derived) of Ad5HIV-1gag; and (F) clinical lot (Ad5gagFN0001) of Ad5HIV-1gag. Reported are the geometric mean titers (GMT) for each cohort.

Figure 14

GGTCTACCAC

ACCTCCAGGG TGGAGGTCCC

GANCTACCCC ATTGTGCAGA

AGGTGTCCCA

AACTICAGGG

AGGETGETTS TOGGENCAGG

ANGGCCCAGC

1601

GGGACATGTT

CAGGITICTIC TICCGGGICG ICCGACGACG ACCGICICG TIGAGGITOG FCCACAGGG CITGATGGG TAACACGICT

AGCAGANUAA GAGCTGAGGT GGTAC(CGT); ACGACAGACC AGTACATOTA TCATGTAGA" CTGTGGGCCUT CCTATAGTAT GTANTCAAGT AATCACCTAT TTACTGCATA TATCATATE ATAGTATACC TCTCCACCT. TGTAGTTCAC CGTTTACCCG AGGGCTTCTG TCCCGAAGAC CCTCCAGGGA TCCCAGACTC TAACTCCTCC ATCCAACATA GATTTCCAAG CTCCATAGAA GACAAACTG GAGGTATCTT GGAGGTCCCT AGGCTCTGAG ATTIGAGGAGG ATTACGGGGT TGACGTCAAT CCTACITIGGG GGATGAACCG CTAAAGGTTC TACGITICITAT TAATGCCCCA ACTGCAGTTA ACATCAAGTG GCAAATIGGGC 200000000000 TCACGTTTTT ACTGCANANA GCCATTTTCG CGGTAAAAGC CGTTTACGTG GCAAATGCAC CATGGGTGCT ATTGTGTGG CCCACCTTTG GTACCCACGA TANCACACC CCCTGCAAAC CCTGGAGAAG GGACCTCTTC TAGGTAACGT GREGEOGGTA CCCCATTGAC COCCTANCTE CIGITITICAC THYGICACGE AAACACTGCA CACCGTTTTC GTAAGATTTG CATTCTAMC GGACTTTTGAC CCTGAMCTG ATCCATTGCA ATAGTAATCA CCCCGCCCAT ACTITGGCAGT TGAACCGTCA ATGGGACTITI TACCCTIGNA GACTCACGGG CTGAGTGCCC GTCCCNANG TATCATTAGT GOGNATOGING CATTGGAAKG CGGATTCCCC GIGCCAAGAG IGAGATCTAC ACTCTAGATG CCTAAAGCAC CGATTTCGTG CITCCAGCCCT CAGGTCGGGA CCANGGAGGC GGTTCCTCCG ATAGCGGTTT TATCGCCANA TTTTACAGCA TTGTTGAGGC GCCATCCACG CUCCCACCTC CTACTTATTA GATCAATAAT CGGGTTGCTG ATTTGACGG ACATIGACCITY TGTACTGGAA AACAACTCCG CGGTAGGTGC AGTORGOOG AACACATGTA AGGGACGGAT CCCTAACCGA CGCATFGGCT TCCCCCCCC ວນວລລນປນນອ TANACTISCCC CCCCCTCCAC Tructorty AGRICCCGGGG 20200222 GCCCAACGAC TCGTCTCGAG CAAATCACTT GGCAGTCTAG CGGACCTCTG CCCTTGCCAC GTAACCTTGC GCCTAAGGG CACGGTTCTC TCTGAGGGT GCAGGCAGAT CCTGGGCCAG AGACTCCCCA CCTCCCTCTA CAACCCCGTC AGAAGTACAA TCTTCATGIT GAAGATTGAT GITAARGACA CATAMATECC CACTICCTGT CATTGACGTC AATGGGTGGA GTATTTAGGG TACCCIRCACC CANAATCAAC GOGACTTTCC AAAATGTCGT GCCTOSAGAC ATGATAATGA TIGIGIACAT GTAAATTTGG CCAMANICCO CCTACARCAT CATTINAACC TATAAACAGA TATTATTATA ATAATAATAT TCATTATTCA ACTAATAACT CTRGGTTGACC GACCGACTCG TATGCCCAGT CCCGACCGTA ATACGCGTCA ATGGGCGTGTGG ATATFFFF TACTATTACT GTGTCACCGA TGGGACATGA CACACGTCCT CTTCTAACTA COTTOCTANGA TACAACTGTA ACTIVICION ANTICOCCOG CCGTCAGATC CGACTCCGGA CCACCGTTCT TATTTTCGAT TGAAGCCAAT ACTITION TELE ATACACACATA GTTCACCTTT CAACCGCAAA TTACCGGGCG TTACCCACCT CAGTACATCA GTCATGTAGT CCCTGAAAGG ATGITGACAT CCCCTCGCAT TATICHCHICAL TCACACCGCC GGATGTTGTA CATTTACCGG GCTGAGGCCT CTCTCCACCA CCCGGGTCAAA GGCCCAGTTF GTAATGGCGG TGAATGCCAT GTAACTGCAG GTAAATGGCC CCGGTTTTGG CAAAACCGING GITTITAGITIG GTTTAGTGAA TGTGTTACTC ACTITATIONA ACACAATGAG CATTACCOCC CGCCANAACC TGATGTTGCA ACTACAACGT ATAAAACCTA GETTTTAGG ATTGCGGTTA TCCCTGAAAG CCATGGTGAT GTTTTGGCAC AGAAGATCAG TCTTCTAGTC GCTGGAGACC CGACCTCTGG ACCUTOTACT AGGCACTTTC CAGTTACTGC GGTACCACTA ACCAGAGCTC GTCAATGACG TGAATAATTT ANACARCICNA TCATGTCCAA AGTACAGGTT GCGTTACATA CGCAATGTAT TAATATACCT ATTATATCA GGCGGAAGIG CCCCCTTCAC ATTTTCCCC TWANGCGG TTTCCCCCTT CCAGATATAT CIRCOGCOCC GAGGCGCCGG GACAAGTGGG ACCCTGGCCT TOGGACCOGA CACAGTGGCT ATGGGAGTTT TACCCTCAAA **GGTCTATATA** CTGTTCACCC AGAGTCCACA TAACGCCAAT CCCTATTGAC ATCCCTATTA TAGCGATAAT TTCTTAATTA ACATCATCAA TCTAGTAGTT GGAAGTGACA CCTTCACTGT **NAGTGANATC** TTCACTTTAG Tereaggret TTATATTGGC AATATAACCG ATCGAGTTCC TACCTCAAGG GOGATAACTG GTAGTAGTGT CATCATCACA CCGATCCAGC ACCACTCGAC PTROCTGTGA AAACGACACT CCCTGTACAA CCCTACCTCG NGCTGAGCTG ATCGGGTATA CAAGGGTATC CAAGTACGCC GTTCATGCGG CGTATTAGTC GCATAATCAG ATTIGACGICA **FAACTGCAGT FACOCITCOGA** ATGCCACCCT GGTGTACACA CTTATTCTCC CAGGIGTITT GTCCACAAAA ATATGTACAT TATACATGTA TAGCCCATAT GITCCCATAG CCCCCCACTIG CCACATGTGT GAATAAGAGG AAGAATTAAT CCCCCCTGAC 1501 1401 1101 1201 1301 801 1001 501 601 701 901 101 201 101 301

Figure ISA

PMRKAd5gag MER682

1/01	CACCAGGCCA	M. M. C.C.C.C.G	SACCULANT	C.C. 174 5.11.5	V: 11: 11: 11: 1V	TAMIN'S WINE TO STATE OF				
	GTGGTCCGGT	NGAGGGGGGC	CTGGGACTTA	COGACCCACT	TOTACCACCT	CONCINICACION	AAGAGGGGAC	TCCACTAGGG	GTACAAGAGA	CGGGACACAC
1801	AGGGTGCCAC	CCCCARGAC	CTGAACACCA	TCCTCAACAC	Arthrasasic	CATCACGCTG	CCATCCACAT	GCTGAAGGAG	ACCATCAATG	AGGNGGCTG
		GGGGGTCCTG	GACTTGTTGT	ACGACTTGTG	PCM TOTAL COLG	GTAGTCTGAG	GTACGTCTA	CGACTTCCTC	TCCTACTTAC	TCCTCCGAC:
1901	TGAGTGGGAC	AGGCTGCATC	CTGTGCACGC	TOGGCCCCATT	טטגעגעעטטטט	AGATGAGGA	GCCCAGGGGG	TCTGACATTIG	CTGGCACCAC	בעכניאכניבווי
	ACTCACCCTG	TCCGACGTAG	GACACGTTGCG	ACCGGGGTAA	נושמטמענטטט	TCTACTCCCT	CCCCCCC	AGACTGTAAC	GACCGTGGTG	GAGGTGGGAG
2001	CAGGAGCAGA	TYGGCTGGAT	GACCANCAAC	CCCCCCATCC	CHETTOGGGGA	AATCTACAAG	AGGTGGATCA	TCCTGGGCCT	GAACAAGATT	GTGAGGATGT
	Greener	AACCGACCTA	CTGGTTKTTG	GGGGGTAGG	GACACCCCCT	TTAGATETTE	TCCACCTAGT	AGGACCCGGA	CTTGTTICTAA	CACTCCTACA
2101	ACTCCCCCAC	CTCCATCCTG	GACATCANGC	ACCCCCCAA	GCAGCCCTTC	ACCGACTATG	TGGACAGGTT	CTACAAGACC	CTGAGGGCTG	AGCAGGCCT+ .
	TGAGGGGGTG	GAGGTAGGAC	CTGTACTCCG	TCCCGGGGTT	CCHCCCCCAAG	TCCCTGATAC	ACCIGICAN	GATGTTCTGG	GACTCCCGAC	TCGTCCGGAG
2201	CCAGGAGGTG	AAGAACTGGA	TGACAGAGAC	CCTGCTGGTG	CAGAATGCCA	ALCCIVIACTG	CANGACCATC	CTGAAGGCCC	TOGGCCC TOC	TOCCACCCTV
	GGTCCTCCAC	TICTICALCT	ACTGTCTCTG	GGACGACCAC	GTCTTACGGT	TOGGACTOAC	GTTCTGGTAG	GACTTCCGGG	ACCCGGGACG	ACGGTGGGAL
2301	CAGGAGATCA	TGACAGCCTG	CCACCCCCTG	GRACIONAL	CTCACAAGGC	CAGGGTGCTG	GCTGAGGCCA	TOTCCCAGGT	GACCAACTCC	GCCACCATC.
	CTCCTCTACT	ACTGTCGGAC	GGTCCCCCAC	CCCCCGGGAC	CAGTETTCCG	GTCCCACGAC	CGACTCCGGT	ACAGGGTCCA	CTGGTTGAGG	CGGTGGTAGT
2401	TGATGCAGAG	GGGCAACTTC	AGGAACCAGA	GGAAGACAGT	CAACTGCTTC	AACTYSTYGGGA	AGGTGGGCCA	CATTGCCAAG	AACTGTAGGG	CCCCCAGGAL.
	ACTACGICTC	CCCGTTGAAG	TCCTTGGTCT	CCTTCTGTCA	CTTCACGAAG	THEACACCGF	TCCACCCGGT	GTAACGGTTC	TTGACATCCC	GOGGGTCCT!
2501	GAAGGGCTGC	TOGAAGTGTG	GCANGGAGG	CCACCAGATG	ANGGACTGCA	ATGAGAGGCA	GCCCAACTTC	CTGGGCNAAA	TCTOSCCCTC	CCACAAGGGG
	CTTCCCGACG	ACCTTCACAC	CGTTCCTCCC	GGTGGTCTAC	TTCCTGACGT	TACTCTCCGT	CCGGTTGAAG	GACCCGTTTT	AGACCGGGAG	GCTCTTCCCC
2601	AGGCCTGGCA	ACTICCICCA	GTCCAGGCCT	GAGCCCACAG	CCCCTCCCGA	GGAGTCCTTC	AGGTTTCCCC	ACCACAACAC	CACCCCAGC	CACHAGCAG
	TCCGGACCGT	TGAAGGAGGT	CAGGTCCGGA	CTCGGGTGTC	GGGGAGGGCT	CCTCAGGAAG	TCCAMACCC	recrement	Gradecerca	GICTICGIC
									i vanna	Lyll)
2701	AGCCCATTGA	CAAGGAGCTG	TACCCCCTGG	CCTCCCTGAG	GTCCCTGTTT	CCCAACGACC	CCTCCTCCCA	GTANANTAAA	GCCCGGGCAG	ATCTGCTGTK
	TCGGGTAACT	GTTCCTCGAC	ATCCCCCCACC	CCACCCACTC	CAGGGACAAA	CCCFFTGCTGG	CGAGGAAGGGT	CATITITATIT	CGGGCCCGTC	TACACGACA
2801	CCTTCTAGTT	GCCAGCCATC	TGTTGTTTGC	CCCTCCCCCC	TRECTIFICETT	GACCCTGGAA	GGTGCCACTC	CCACTGTCCT	TTCCTAATAA	ANTCAGGAAV
	GGAAGATCAA	COGTCOCTAG	ACANCANACG	CCCAGGGGGG	ACCGAAGGAA	CTGGGACCTT	CCACGGTGAG	GCTCACAGGA	AAGGATTATT	TTACTCCTTT
										Sphi
2901	TTGCATCGCA	TTGTCTGAGT	AGGTGTCATT		CCCTCCCCCTC	CTATTCTCGG GGGTGGGTG GGGCAGGACA	CCAACCCCCA	CCATTOCCAA	GACAATAGCA	GUCATGCTGG
	AACGTAGCGT	AACAGACTCA	TCCACAGTAA	GATAAGACCC	CCCACCCCAC	CCCGTCCTGT	CGTTCCCCCT	CCTAACCCTT	CTGTTATCGT	CCCTACGACC
			Pvul	Asci						
						Kara Juliana	ACCOMOCAN	ACRATATATA	AGGTAGGGG	FITTATETAGE
3001	GGATGCGGTG	COCTCTATOG		CCGATCGCC CGCCGTALTG			TUCCACCUT	TCTTATATAT	TCCACCCCCA	GAATACATCA
	Transcent of the second								Sphi	
3101	THETATETE	TTTTCCAGCA	90000000000	CCATGAGGAG	CAACTCGTTT	GATGGAAAGCA	Treffgagete	ATATTTGACA	ACCICCIATIC	CCCCATAGGG
)	AAACATAGAC	AAAACGTCGT		GGTACTCGTG	GTTGAGCAAA	CTACCTTCGT	AACACTCGAG	TATAAACTGT	TGCGCGTACG	GCCCTACCC
3201	CGGGGTGCGT	CAGAATGTGA	TEGENETICENG	CATTGATCAT	COCCUCATION	TRICCICICANA	CTCTACTACC	TTGACCTACG	AGACCGTGTC	TOCANGGCCG
))	GCCCCACGCA				CCCCCCCCACC	ACGGGCGTTT	GAGATGATGG	AACTGGATGC	TCTGGCACAG	TCTGGCACAG ACCTTGCGGC

tique 15B

PMRKAdSgag MER682

ICAG IGTC	# C	Kraa Kelir	rger Acca	AGAT' FCT'A	MAAN TITIC TITIC	Acr	NGAC	GENG	117.7 7.7.1.:	AGIT: Psil	GGAC	CCCA	GGTC CCAG	אפניא	GGTC
AACACITGCAG TYGTCACGTC	TCGACAACC "F	GATCAAGCAA CTAGTTCG1 I	AGGACGFGFT TCCTGCACCA	TGTTGTAGAT	CANATIGITATIC	GCCCCTAAGT	CCCCCTFGTF			CCCTCTAGIC	AAGAGAGCTV; TTCTCTCGAC	TCGCCGCCCA AGCGCGCGT	GENERACE CONTRACTOR OF THE CON		GCGACCGGT
CCCCCTTGCA	CAAAGAGTCG	TTTCGATTTC AAACCTAAAC	tatttttc ataaaaagg	Tracegee Traces	TCGTCTAAGT ACCACATTCA	GTATAGGGAG	AACTTGGAGA			TCCGGGCTAG AGGCCCCCATC	ACCCCTCCA ACTCCTAGTE TGCCCGACGT TGACCATCAA	CCAAATCCC CAGAAGGCGC GGTTTAGGCG GTCTTCCGCG	GGTTCGTCAA		
	ACTTANTICAC TGANTTACAG	CCAGACTCTG GGTCTGAGAC	GGGTCCTNTG		CCGTCCGGGA	ACAAGGGTCG	TCCGTCGAAG ACGCACCTTC			CITITICCAA		CCAAATCCGC GGTTTAGGCG		AAAGCGACAT	
ACTGACTERG	TGACCCCCCA ACTGGGCCCCT	AAATAAAAAA TTTATTTTTT	CGCTCGTTGA GCCAGCAACT PSI		GATTGCCAGG	AGGTHAGGCTA	TAGAAGGAAA ATCTTCCTTT			GGGCGATGAA	CACACCTATT GTGTGGATAA	TTTTCCTGA AAAAGGGACT Sphi			TCACCA: IN.AA
cescaltera Graftman	TTCGATTCTT AACCTAAGAA	TTTAAAACAT AAATTTTGTA	CCAGCATICT CGATCATIGA GATCACAGA GCCAGCAACT	CAUNGACCIC ACCTCCATCG		CTGTATTTTT	TCATGTAGGT AGTACATCGA	<u> </u>	CCACGGTCTG	TCTACCTGCG AGATGGACGC	GCCCGTABAT	GACTECATARG			: GTACTCTGGG ; CATCAGACCC
ברארדימדינית מחיימים	TTTGGCACAA AAACCGTGTT	CCCAATGCGG	AGGCCGGGA TCCGAGCCCT			GCATCTTROGA	GGGAAATTTG	ATPORCCCAC TACCCGGGTG	GCCCCCCCCTC	CCCCTAGTAC	CCACTTACCG CACCCATIGG GCCCGTAAAT GCTGAATGCC CTCGCCACC CGGCTATTTA	CGTACAGGA			r cerestrade A ggageaeteg
Psil www. Gregetiya'AG Geografatag	TCACGCCTCT ACTCCCGAGA	TRECTREGGET	CGCGCGCGCA	CCATAACCCC	GTGCCTAAAA	GATATGAGAT CTATACTCTA	COCTOCACTT		TTTACAAAGC	GTTCAGATGG		CTTCGTTAA	TTTTCAACGG		; הממפהמתמה ב ממפפחמנט
CGCCGCTTCA	CATCACAAGT	CCCTCAAGGC	AGGGGT***TTG TCCCCAAAAC	AGATACATEG TCTATGTACC	GCTGGGGGTG	CATACGTGGG	ACAGTGTATC		ATAGGCCATT TATCCGGTAA	CACGCTTTGA	AGCAGGITCC TGACCAGCTG TCGTCCAAGG ACTCGTCGAC	CAGGGGGGCCC	GAAGCAAAGT CTTCGTTTCA	CTACGGCATC GATCCCCTAG	HETTTCCACG
MCCCC MGGCG	Arccocccc	CAGGITTCTG	GTCTTTATTT CAGAAATAAA	CTOGATGTTC		CCCTACCCAC				AACGTAAAGG		CAGCIGCECT CATCCCTGAG CAGGARAGEC GICCGCGGGACCCCGG	HETTGCAAG	CCACAGCTCG GTCACCTGCT GGTGTCGAGC CAGTGGACGA	CCAGACGGG CAGGGTCATG GGTCTGCCCG GTCCCAGTAC
PSII THOGAGACHG CAGCCI AACCTCTGAC GTCGG	CTTCCCGTTC	TCTGCGCCAG	GTGTCTTGCT	AAAGGTGACT TYTCCACTGA	GATCCAGTCG	CGGTTAAGCT	TOTTGTGCAG	ACCTCCAAGA	TGTTCCAGGA	CCTCACAGAT	CTGGGAAGAA GAUUUTIUTT	CAGCIGCCGT	GCGATAGCAG	CCACAGCTCG	CCAGACCGG
3301	3401	3501	3601	3701	3801	3901	4001	4101	4201	4301	4401	4501	4601	4701	4801

figure 15c

pMRKAd5gag MER682.

GRECAGNESS CAGGNESSAS GCGAGAAAATA CGCHCTTTAT AAAKEAGGTT TTTGGTCCA ¹	ATGACTONIC ATGACTGANIC AAGGAGGCTN TYCCTCGAT	NATANCCAM ACTANCCAM GTCTGCGAGG	HTCACCIGG() AAGTGGAC()	CCCCAACCT	AAGGAGGK TTGCGTGGG ACTCTCGG TGCAGGC	CGTCCACGTT GCAGGTTCCA GCACTCGTAT CCCCCCGACATA	APPECAGGY PAAGGTPETA PACGGGGGY APGECCGC GAGACTPACK CPCFGGATCK
TEGRETATA GYCCAGCCCC ACCACAGTAT CACCTCGGGG GAGCTTGGGC GCGTCTTTAT TCGGGGTCAA AAACCAGGTT AGCCCAGTT TTTGGTCCAA.	TOTCCCCTA TATCTCTTVI ACAGGGCAT ATGTCTGAM: GGCCAGCACG AAGGAGGCTA CCGGTCGTGC TTCCTCCGAT	TCAAGGAAGG TRA AGTICCTTCC ACT CCGCATCGCT GTC GGCGTAGCGA CAG	ogatitigata itic Cctaaactat aag			GGGGGGTCTG CG' CCCCCCAGAC GC' CGGCAAGCGC GC' GCCGTTCGCG CG	
CATTIGACCA TY GTAAACTGGT AG TYAGGGGGTA G ACTCCGGCAT C' CTCTGGCCGT T	AGGCTGTCCG TCCGACAGGC CTCGCGTCCA GAGCGCAGGT	CTCTTCGGCA GAGAAGCCGT TCACTCTCTT AGTGAGAA	AAAACGAGGA TITTGCTCCT	GGFGGCAAAC G	AGCTGCACGT TCGACGTGCA CAACGTCAAC GTTCCAGTTG	CONCINCE CONCINCE GCAGAGCAGG CATCCGCGGG GGGGGGGGGGGGGGGGG	CGTAGAGGGG GCATCTCCCC GAGGTCGGGA CTCCAGCCCT ACGTTGAAGC TGCAACTTCG
GGCAGATAG CCGGTCCATC POCAGACTATA ACGTCTGAAA GCCAGTGAG	GGTGACGAAA CCACTGCTTT CACACAAAGG	ACATGTCGCC TGTACAGCGG GCGTTCGTCC	TCAG	TGTCAAGCTT ACAGTTCGAA	CGCGATGTTT GCGCTACAAA TGCAGGGTGA ACGTCCCACT	GGTCTAGCTG CCAGATCGAC CGCCTGCTGC	
	GTCCACGCTC CAUGTGCGAG GGACCACTCT	GREATCH GREAT CONTROLL GREAT G		AGAAAAGACA ATCTTTTTGT TCTTTTCTGT TAGAAAAACA Pvul ************************************	GCTCCTTGGC CGAGGAACCG ACCGCGGTTG TGGCGCCAAC	GULGITAGGG CCCCCATCCC GCAACTCTAG	
CREMENTAGE CETACHERTE REPORTER CHARTHACH TECHNOLOGY CHARTHACH TECHNOLOGY CHTCCCCTE CARTHACHTCC CATTCCACGA	ATCHCCCCT TACTCCCCA ATAGNAACTC BACCTCTCCCCA		TCACTTCTGC	AGAAAAGACA TCTTTTCTGT Pvul		CGAGCAGAAT GCTCGTCTTA TTGCATCCTT	
GANGGGTRG CRENCTINGE CETROGERTE CTTCGCRACT GEORGANGE GANCGCGCAG CCCTTCGAACT TO				CACCGGGTA GCATCTGGTC AGAAAAGACA ATCTTTTTGT CACCGGCGTA GGTAGACCAG TCTTTTCTGT TAGAAAAACA CACCGGCGTA GGTAGACA TCTTTTCTGT TAGAAAAACA AACCGGCGTA GGTAGACAACA TCTTTTCTGT TAGAAAAACA AACCGGCGTA GGTAGACAACAACAACAAAAAAAAAA	GTTTTTGTCG CAAAAACAGC GGCACCAGGT CCGTGGTCCA	CCCCTTGCG GCGGGANGTC GTAGTCTATC	TYGGTGAGCG ACCCACTCGC TYGGCGCGCAC ACCGCGCGTG GATGGCATGT CTACCGTACA
TOCTGSTGCT O ACTACCAGA O GCCCAGCTTG O CGCGTCGAAC O TCCGCGCGC)			GCCCACANGE CTCCCTCTGA GAGGGAGACT	Greecegeat Cacegegeta	GCACCCAAAC GCCCTCGTCG CCCCTCGTCG	CAGAGGCGGC GTCTCCGCCG GCGCGTCGAA	TGGCATGCGG ACCGTACCCC CCGCGTATGC GGCGCCTACG TCTGCCTACG AGACGGACTT
AGGCTGGTCC 1 TCCGACCAGG 7 GGCCCTTGGC C CCGGGAACCG C GGAGTAGGCA C CCTCATCCGT 7			CCCCACTCACTA	OCCTITICAGG COGNANCICC	GCGATGGAGC CGCTACCTCG AGACGGTGGT TCTTGCACCA	GTTGGTCCAG CAACCAGGTC GGCAGCAGGC	CCCTCGTCCG GGGGACCCCA CCCCTGGGGT GCATCTTCCA CGTAGAAGGT CGGAAGACTA GCCTTCTGAT
GGRGCGCTTG A CCACGCGAAC 1 TCCGCGGAC 6 AGGCGCCGCA C CCGATTCCGG G GGCTAAGGCC C			CATCCACATC GCCACCTGTT CGGTCGACAA	CCGCGCTCAT GCCTTTGAGG GGCGCCACTA CGGAAACTCC	CAGCAACTTG GTCGTTGAAC CATTCGGGAA	GTAGGCCTC CATCCCCGAG AAAGACCCCG	TTTCTGGGGG GGGTTGAGTG CCCAACTCAC ATGTAGGGTA TACATCCCAT CTGCTCTGCT
4901 c 5001 7 5101 c	5201	5401	5601	5701	5801 5901	6001	6201 6301 6401

Figure 150

6501	GCGTCACGCA	CGAAGGAGGC	GTACGAGTCG	CGCAGCTTGT	するみごてみらいずこ	GGCGGTGACC	Treaceteta	GGCCCCACTA		Tectfeatha
	CGCAGTGCGT	GCTTCCTCCG	CATCCTCAGC	GUGTUGAACA	ACTIGGTCGAG	CCGCCACTGG	ACGTGCAGAT	CCCGCGTCAT	CAGGTCCCAA	AGGAACTACT
6601	TGTCATACTT	ATCCTGTCCC	TTTTTTCC	ACAGCTCGCG	GTTGAGGACA		GGTCTTTCCA	GTACTCTTGG	ATCCCAAACC	CONCECCT
	ACAGTATGAA	TAGGACAGGG	ANANANANGG	TGTCGAGCGC	CAACTCCTYST	TIKINGANGCC	CCAGNANGGT	CATGAGAACC	TAGCCTTTGG	GCACACACACA
6701	CGAACOGTAA	GAGCCTAGCA	TGTAGAACTG	GTTGACGGCC	TGG11AGGCGC	AGCATCCCTT	TTCTACCGGT	AGCGCGTATG	CCTGCCCCGC	CTTCCGGAC
	GCTTOCCATT	CICGGATCGT	ACATCTTGAC	CAACTGCCGG	ACCATCCGGG	TCC:TAGGGAA	AAGATGCCCA	TCGCGCATAC	GGACGCGCCG	GAAGGCCTrc:
6801	GAGGTGTGG	TGAGCGCAAA	GGTGTCCCTG	ACCATGACTT	TGACKTACTK	GTATTTGAAG	TCAGTGTCGT	CGCATCCGCC	CTGCTCCCAG	AGCANANAGT
	CTCCACACCC	ACTCGCGTTT	CCACAGGGAC	TYSTACTGAA	ACTCCATCAC	CATAAACTTC	AGTCACAGCA	GCGTAGGCGG	GACGAGGGTC	TCGTT/TTCA
6901	CCGAGCGCTT	TITIGGAACGC	GGATTTGGCA	GGCGAAGGT	GACATCGITG	AAGAGTATCT	Trececed	AGGCATAAAG	TTGCGTGTGA	TGCGGAAGGG
	GGCACGCGAA	AAACCTTGCG	CCTANACCGT	CCCGCTTCCA	CTGTAGCAAC	TTCTCATAGA	AAGGGGGGG	TCCGTATTTC	AACGCACACT	ACGCCTTCC!
7001	TCCCGGCACC	TCGGAACGGT	TOTTAATTAC	CTGGGCGCG	AGCACCATCT	CCTCAAAGCC	GTTCATCTTG	TCCCCCACAA	TETAAAGTTC	CAAGAAGCGC
	AGGGCCGTGG	ACCUTICCCA	ACAATTAATG	CACCCGCCGC	TCGTGCTAGA	GCACITITICGG	CANCTACAAC	ACCGGGTGTT	ACATTTCAMG	GTTCTTY.C.C.C.
7101	GGGATGCCCT	TGATGGAAGG	CAATTTTTA	AGTTCCTCGT	AGGTGAGCTC	TTCACCCCAG	CTCAGCCCGT	GCTCTGAAAG	GGCCCAGTCT	GCAAGATGAG
	CCCTACGGGA	ACTACCTTCC	GTTAAAAAAT	TCAAGGAGCA	TCCACTCGAG	ANGTOCOCTO	GACTCGCGCA	CGAGACTTTC	CCCCCTCAGA	COLLICIACIA
7201	GGTTGGAAGC	GACGAATCAG	CTCCACAGGT	CACCIGGCCAT	TAGGATTIGG	ACGICCICCC	GAMAGGTCCT	ANACTGGCGA	CCTATGGCCA	TITITICISC
	CCAACCTTCG	CTGCTTACTC	GAGGTGTCCA	GTGCCCGGTA	ATCGTAAACG	TCCACCAGCG	CTTTCCAGGA	THEACCGCT	GGATACCGGT	ANANANGACC
7301	GGTGATCCAG	THGAAGGTAA	accentra	TTCCCAGCGG	TCCCATCCAA	GETTEGEGGE	TAGGTCTCGC	GCGGCAGTCA	CTAGAGGCTC	Arcrececes
	CCACTACGTC	: ATCTTCCATT	CGCCCAGAAC	ANGGGTCGCC	AGGGTAGGTT	CENANGGECE	ATCCAGAGCG	CGCCGTCAGT	GATCTCCGAG	TAGAGGCGGC
7401	AACTTCATGA	CCAGCATGAA	GGGCACGAGC	TRCTTCCCAA	AGGCCCCCAT	CCAAGTATAG	GTCTCTACAT	CGTAGGTGAC	AAAGAGACGC	теватесвля
	TTGAAGTACT		cccerecres	ACGAAGGGTT	TCCCGGGGTA	GGTTCATATC	CAGAGATGTA	CCATCCACTG	Tricicide	AGCCACGCT
		Pvol								
7501	GATGCGAGCC	GATOCCAOCC GATCOCCAAG	AACTGGATCT	CCCGCCACCA	ATTGGAGGAG		TCTCGTCAAA	GTAGAAGTCC		CCGAACACTC
	CTACGCTCGG	CTAGCCCTTC	TTGACCTAGA	GGGCGGTTGT	TAACCTCCTC	ACCGATAACT	ACACCACTIT	CATCTTCAGG	GACGCTGCCC	CCCTTCTCAG
7601	Greenseett 11	TTGTAAAAC	GTGCGCAGTA	CTGGCAGCGG	TGCACGGGCT	GTACATCCTG	CACGAGGTFG	ACCTGACGAC	CCCCCACANG	GAAGCAGAGT
	CACGACCGAA	CACGACCGAA AACATITITIG	CACGCGTCAT	GACCGTCGCC	ACGTOCCOOA	CATGINGGAC	GTCCTCCAAC	TOGACTGCTG	GCGCCTCTTC	CITCGICTCA
								Xhol	Xhol	
7701	GOCAATTTGA	A OCCCCTEGCC	TGGCGGGTTT	GUTGGTGGT	CTTCTACTTC	GGCTGCTTGT	CCTTGACGT			ACCCPRCAIN:
	CCCTTAAACT	r cocconacce	ACCCCCCAAA	CCGACCACCA	GAAGATGAAG	CCCACCAACA	CATANCTCGCA	GACCGACGAG	CTCCCCTCAA	TOCCACCTAG
7801	GGACCACCAC	: GCCCCCCCGAG	CCCAAAGTCC	AGATGTCCGC	#3220000000	COGRACETTICA	TGACAACATC	GCCCAGATGG		TGGTCTGGAG
	CCTOGTGGTG	3 COGCGCGCTC	GGGTTTCAGG	TCTACAGGG	CGCCCCGCCA	GCCTCGAACT	ACTGTTGTAG	CGCGTCTACC	CTCGACAGGT	ACCAGACCTC
				Pșil						
1901	200202020	CACINCAGENCAGE	GCCCCACCTC	CICCACCITIT	ACCTOGGATA		GACGGTCAG GCCCCGGCT AGATCCAGGTC CTTGCCAGTC CCGCCCCGA TCTAGGTCCA	AGATCCAGGT TCTAGGTCCA	CTATGGATTA	AAGGTCCCCG
	ONGO COCC	5					***			
8001	TGGTTGGTGK	පි					פארידאריפרויא הייקריקריקר		01900000000 019000000000	TCCTTGGATC
	ACCAACCACC	C GCCGCAGCTA	CCGAACGTTC	TCCGCCGTAG	9353255555		CTGATGCCAT GOUGGGUGG	נרפרנערורפ		account of the

pMRKAd5qag MER682

8101 8201 8301 8501 8601 8701 8801 8801 8801 8801 8901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 9901 99	ATCCATCTAA TACGTAGATT AGGAGCTGGACCA GCTTGAACCT GAACTTGGA ACGACTTTCC CCAGGAAGG ACGCTCTTCC CCAGGAAGG ACGCTCTTCC CCAGGAAGG ACGCTCTTCC CCAGGAAGG GGTGCACGG GGTGCAACGT ACGGTTAACT TCCCAATTGA CTTCCATAAG			CCCCGAACCCA TCATTTCATCA GCGAACCCCA TCATTTCACTC CAATTTCCCT CTCATCCTCC CAATTTCCCT CTCATCCTCC CAATTTCCCT CTCATCCTCC CAATTTCCCT CTCATCCTCC CAATTTCCCT CTCATCCTCC CAACCCCTC CTCATCCCCTC GACGACCTCT ACATCCCCTC GACGACCCTC AAACACGTAG CCCCGCGCC TTTCTCCATC GCCCCCTCAACG GCCTCAACG GCCTCCAACG CCCGAGGTACC AACACGCTCC AACACCCTCC CCCGAGGTTCC CCCGAGGTACC CCCGCGCCT CTCCCCCTCCATCC CCCCCCCCCTC CCCCACCCTC CCCCACCCCTC CCCCACCCTC CCCCACCCTC CCCCACCCTC CCCCCCCC	PECCRIANTET MADEFICANTE PECANCECCA CIMETERATE PETANTECRET CHECTECATE CHECTECACA CHECTECATE BILL CHECTECACA TOTATECATE GARCICETT ACATECATE GARCICETT ACATECATE GENERICET A	TOTAL CONTROL OF THE ALTERNATION	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			GCGCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
9001	GAAGGTATTC GAAGGTATTC CTAGTAGAGG GTTGGCGGGGG CAACCGCCCC			GACCGCCGCC CTCGGTTACG GAGCCACTGC ACGCGCCTAA TGCCGCGATT	ACCCCTTCC GCGCGCGT GGCGCGTGCA CGCTACCTAGA	CCCTGTCCG TCTCGCGGGG AGAGCGCCC CAACAATTGT GTTGTTAACA	CCGCTCCTGC GCCCACTTGG CGCCTCCAACC TGTCTAGGTA ACACATCCAT	AAGACGCCC TTCTGCGGCG CTCCGCCGCC GAGCCGCCGG	TCCGCAGCT CCGTCATTGTC GGCAGTACAG GAGGGACCTG CTCCCTGGAC	GTTRCGCBAG CCGGTTATGG GCCCAATACG AGCGAGTCCT TCGCTCAGG
9201	CATCGACCGG GTAGCTGGCC	CATCGACCES ATCGGAAAAC GTAGCTGGC TAGCCTTTTG		CTCTCGACAA AGGCGTCTAA GAGAGCTCTT TCCGCAGATT	CCAGTCACAG GGTCAGTGTC	TCGCAAGGTA AGCGTTCCAT	GGCTGAGCAC CCGACTCGTG Sall	CCACCGCCCG	OCCURECCE CCGICCCCG	GGGGGTCGGG:
9301	GTTGTTTCTG CAACAAGAC TGAATGCGCA ACTTACGCGT	GENGTITICTG GOGGAGGTGC CAACAAAGAC CGCCTCCACG TGAATGCGCA GOCGGTCGGC ACTTACGCGT CCGCCAGCCG					GATGGTCGAC CTACCAGCTG TAGTAGTCTT ATCATCAGAA	AGAAGCACCA TETTCGTGGT GCATGAGCCT CGTACTCGGA	TETECTTOGG ACAGGAACCC TTCTACCOGC AAGATGGCGG	TCCGGCCTGC AGGCCGGACG ACTTCTTCT TGAAGAAGA
9501	CTCCTTCCTC GAGGAAGGAG GCCCTCATC CGGGGAGTAG	TTGTCCTGCA AACAGGACGT GGCTGAAGCA GGCTGAAGCA GCCTGAACCA	TCTCTTGCAT AGAGAACGTA GGGCTAGGTC CCCGATCCAG	CTATCGCTGC GATAGCGACG GGCGACAACG CCGCTGTTGC	CCCTCGCCGC CCTCGCCGC CCCTCGCTA CCGAGCCGAT	CTCAAACCGG TATTCGCCTG	GTMCATTGGCC CATCCACCTGC CTCCACCTGC GACGTGGACG	GCGAGNAGA GTGAGGGTAG CACTCCCATC	CCCATACGCAC GGGTACGCAC ACTCGAAGTC TGACCTTCAG	ACTEGGGCT I ATCCATGTCC TAGGTACAGG

Figure 15F

PMRKAd5gag MER682

9701	ACAAAGCGGT TGTTTTCGCCA	GGTATGCGCC CCATACGCGG	STGTTGATG	GTGTAAGTGC /	AGTTCCCCAT TCAACCGGTA	AACGGACCAG 1-TGCCTGGTC	TTAACGGTCT O	GCACTCCCCG (CCACTCCCCC)	CTGCGAGAGC GAGGCTCTCG	TCGGTGTACC AGCCACATGG
9801	TGAGACGCGA	Nhol water and the standard and standard acted and cartered attered and standard acted act		CGTACTCGTT GCATCGTT GCATCACAA GCATCACAAA GGATCACAAAA GGATCACAAAAA GGATAAAAAAAAAA	GETTEAGGGG	ACCARTACT GGTATGGGAC TGGTGGATGA CCATAGGGTG FeBIV		CANANAGTGC (GITTETCACG	GGCGGCGCT	GGCGCTAGAC! CCGCCATCTC
1066	GGGCCAGCGT	GOCCCAOCGT AGGGTGGCCG	GGGCTCCGGG	} - <	TCCAACATAA	CCCCTACTAT			TCCAGGTGNT AGGTCCACTA	
10001	GREGIEGAGG	CCCCCCTTT Xbal	GTCGGGACG	CCCAACCTCT	TGTTGGGAG ACAACGGGTC	CCCCAAAAAG GCCCTTTTTC	TGCTCCATGG ACGAGGTACC	TCGGGACGCT	CTGGCCGGTC	AGGGGGCG'; TCCGCGCGC';
10101	AATCGTTGAC TTAGCAACTG	60 CT 1	GTCCAAAAGG CACGTTTTCC	AGACCCTGTA TCTCGGACAT	AGCCCGGTGT TCGCCCGTGA		CTGGTGGATA		GGTATCATGG CCATAGTACC	CCCTCCTCGC
10201	GGGTTCGAGC CCCAAGCTCG	C CCCGTATCCG	GCCGTCCGCC CGCCAGGCCG	GTGATCCATG	CGGTTACCGC		MICCAGGIG		CHETTGCCCC	CTCACGAGGA
10301	ANACCGANGG	C TYCCAGGCGC	GGCGGCTGCT CCGCCGACGA	GCCCTAGCTT	TTTTGGCAC NANACCGGTG		CACCGTAAGC	CCAATCCCAC	CTTTCGCTTT	CGTAATTCAC
10401	CCTCCCTCCC	C TCTAGCCGGA	GCCANTAAAA	CCAAGGGTTG	AGTOCOCOON TCAGCGCCCT	-	_	DISCOSSING DECESSION	TCCGCCGCTTG	
10501	CTCCCCGTCA		CGCTTGCAAA	TTCCTCCGGA	AACAGGGAGG TTGTCCCTGC				CCCACCACCC	CGTCTACGC
10601	CCCCCTCCTC	C AGCAGCGGCA	AGAGCAACAG TCTCGTTCTC	CAGCGGCAGA	CATRCAGGGC GTACGTCCCG	ACCTCCCCT	CCTCCTACCG		CCGCTGTAGG	
10701	CGGCAGCAGA		GAACCCCCGC	90000000000 0000000000	CCGCCACTAC	CTOCACTTOS GACCTGAACC	AGGAGGGGGA TCCTCCCGCT	GGGCCTTGGCG CCCGGACCGC	CCCCATCCTC	
10801	TGAGCGGCAC		AGCTGAAGCG TCGACTTCGC	TGATACCCCT	CACCCCTACG	TOCCOCOGGA	GAACCTGTTT	_		
10901	ATGCGGGATC TACGCCCTAG				ATCCCCTCAA TACCGGACTT	A TEGEGAGEGG F AGEGETEGEE	TTGCTGCGCG	AGGAGGACTT TCCTCCTGAA		TGAGCCGGAC GCGCGAACCG ACTCGGGCTG CGCGCTTGGC
11001	GGATTAGTC CCTAATCAG	GGATTAGTCC CGCGCGCGA CCTAATCAGG GCGCGCGT	A CACGTGGCGG							TTTCAAAAA GCTTTAACAA AAAGTTTTTT GGAAATTGTI
11101	CCACGTGCGT GGTGCACGCA CTCATGGCGC GAGTACCGCG	NA TOCGAACACC SC AGCTGTTCCT SC AGCTGTTCCT SC TCGACAAGGA		CGCCCGARGA GGTGGCTATA GCGCGCTCCT CCACCGATAT TATAGTGCAG CACAGCAGAG ATATCACGTC GTGTCGTCCCC	GCTGACTACTGC CCTGACTACG ACAACGACGC TGTTGCTCCG	S ATCHGGGA S TAGACACCCT C ATTCAGGGAT S TAAGTCCCTA	CTTRITANIC GANACATTCG GCCCTCCTAA CGCGACGATT	GCCGACCTCG CCCGACCTCG ACATAGTAGA	_	

		ANNOUN ANNOUNCE	-							
11301	TCGATTTGAT	NANCATCCTG	CAGAGEATAG	TGCTGCAGGA	GCG NGCTTG					Traccitos.
	AGCTAAACTA	TITIGINGGAC	GITCTCGTATC	ACCIACITECET	CCTTTTTTTY	איניקאניניהאני	TOTTECTACCO	GCGGTAGTTG		ANTEGNET
11401	CAACTPUTINAC	GCCGCAAGA	TATACCATAC	CCCTTACGTT	CCCATACACA	ACCACCTANA (CATEGACGGG	TTCTACATGC (GCATGCCGCT	GAAGGTGCT .
()	GTTCAAAATG		ATATGGTATG	GGGAATGCAA		TUCTUCATET (CTAGGTGGG	AAGATGTACG	CGTACCGCGA	CTTCCACG/ 1
11501	ACCUMICACIC		CGTTTATCC	AACTOROGEA	TCCACAAAAGC	COTOAGCOTO	ACCCGGCCGC	GCGAGCTCAG	CGACCCCCGAG	CTGATGCACA
10011	THE TANGET		GCAANTAGG	TINCTCGCGT	AGGINGTINGG		TURGCCCGCCG	CGCTCGAGTC	GCTGGCGCTC	GACTACGTOT
11001	Description		GGLACCCCA	GUGGUGATAG	AGAGGGGGAG		ACGCGGGCGC	TGACCTGCGC	TGGGCCCCCAA	GCCGACGCGC
TOOTT	CGGACGTITIC		CCGINCCCGT	CGCCGCTATC	TUTCUCGUTC		TGCGCCGGG	ACTEGACECE	ACCCGGGGTT	CBACTIGCGC*:
11701	CURSTABLE		GACCTGGGCT	GACAGTAGCA	ესეესესებბ	CTGGCAACGT	CGGCGGCGTG	GACCAATATC	ACGAGGACGA	TGAGTACGAG
****	GCACCICCGT				29292552959	GACCGTTGCA	GCCGCCGCAC	CTCCTTATAC	recreerder	ACTICATIGCTC
								·	Psti	
11801	CTAGAGGGACG	: GCGAGTACTA	AGCGGTGATG	TPTCTGATCA	GATCATGCAA	GACCCAACGG	ACCCGGCGGT	9299299929	CTGCAGAGCC	AGCCGTCCG
	GGICTCCTGC	9		AAAGACTAGT	CTACTACGTT	CTGCGTTGCC	TGGGCGGCCA	202202222	GACGICICGG	TCGGCAGGCC
11901	CCTTAACTCC		GCCCCAGGT	CATCGACCGC	ATCATGTGG	TGACTGGGG	CAATCCTVIAC		AGCAGCCGCA	GGCCAACCG
	GGAATTGAGG		CCGCCGCTCCA	GTACCTGGCG	TAGTACAGUG	ACTGACGCGC	GTTAGGACTG	CCCANGCCCG	regregeedt	CCCCIMOCC
							Fviil			
12001	Cutoffer Caraba	THYTHEOLOGY	GGTCGTCCCG	GCGCGCGCAA	ACCCCACGCA	CGAGAAGGTG	CTGGCGATCG	TANACOCGCT	GGCCGAAAAC	AGGCCATC"
12001	GAGAGGCGTT			CGCGCGCGTT	TGGGGTGCGT	GCTCTTCCAC	GACCGCTAGC	ATTITICCCGA	CCGGCITTIG	JCCCGGTAG
12101	ASTUCTOR			COCTOCTTCA	CCGCCTCGCT	CGTTACAACA	GUGGUAAGGT	GCAGACCAAC	CTGGACCGGC	TOCTOCCCCA
4	CCGGCTGCT			GCGACGAAGT	CCCCCACCGA	CCANTGTTOT	CGCCCTTGCA	CGTCTGGTTG	GACCTGGCCG	ACCACCCCT
12201	TETECGCGAG		AGCGTGAGCG	CCCCCAGCAG	CAGGGCAACC	TOGGCTCCAT	GGTTGCACTA	AACGCCTTCC	TGAGTACACA	GCCCCCCAN
	ACACGCGCTC			GCCCGTCGTC	Greecering	ACCCGAGGTA	CCAACGTGAT	THECOCANOG	ACTCATGTGT	CGGCGGTTG
12301	GIGCCCCC			CTACACCAAC TITIGITGAGGG	CACTGCGGCT	AATGGTGACT	האפאכאככככ	AAAGTCAGGT	GTACCAGTCT	GGGCCAGACT
	CACOGCCCC	c crerecteer		ANACACTCGC	CTCACCCCCA	TTACCACTGA	CTCTGTGGCG	TITICACTICCA	CATGGTCAGA	CCCCCTCTGA
			Pst	-						
12401	ATTITITICCA	A GACCAGIAGA		CAACHCCTGC AGACCGTAAA	CCTGAGCCAG		ACTIFICANCE	CCTCTCCCCC	GRECERACINE	CCACAGGCGA
	TAMAMAAGGT	r createrer	GTTCCGGACG	TCTGGCATTT	CCACTCGGTC	CGANAGITIT	TGNACGTCCC	CCACACCCCC	CACGCCCGAG	Generación
12501	CCCCCCCACC	C GRETCTAGET	TECTION TO	CAACTUREGE	CTGTTGCTGC	TGCTAATAGC	GCCCTTCACG	GACAGTGGCA	GCGTGTCCCG	GGACACATAC
2	950000000		ACGACTGCGG	GTTGAGCGCG	GACAACGACG	ACGATTATCG	FGGGAAGTGC	CTGTCACCGT	CGCACAGGGC	CCTGTGTAIL
12601	CTAGGTCACT		r GTACCGCGAG	GCCATAGGTC	AGGCGCATGT		ACTITICCAGG	AGATTACAAG	TGTCAGCCGC	GCGC**********************************
i o i	GATCCAGTGA			CGGTATCCAG	TCCGCGTACA	CCTGCTCGTA	TUNNAGGICC	TCTAATGTTC	ACAGTCGGCG	CGCGACCCCG
								****	Prrei	
12701	ACCACACAC	C GCCCAGCCTG	GAGGCMCCC	TAAACTACCF	GUTGACTAAC	CONTRACTOR	AGATCCCCTC	GTTCCACAGT TTANACAGCG	TTANACAGCG	ACCACCACCC
40.44	recreeters		CTCCGTTTAGG	ATTFFCATCCA	CCACTICGTTG	CCCCCCCTCT	TCPAGGGGAG			TCCTCCTCC
12801	ChalmingCCCC	C TACGTGCAGC	שנאנכניואשני	CCTTAACCTG	ATRICICANCE	GERTANCOCC	CAGCGTGGCG	CTCGACATGA		CATGGAACCG
1000	GTANANCGCG	G ATGCACGTCG			TACGCATAGE	CCCATTRCCG	GTCGCACCGC	GACCTGTACT	GGCGCGCG TT	GTACCTTGGG

Figure 15H

pMRKAd54ag MER682

													yn ,	, 1•	£
CCCATCTTCA CCCTAGAACT	ACAGCGTGTT TGTCCCACAA	CTTGTCCGAT	CTCCTGGGC:		AGACCACACT	TACANANITT		CCCCCCTTT				GGGCTCCGGT	GCGACATCGG CGCTGTAGCC		
TTTCACCAAT AAAGTGGTTA	GACATAGACG CTGTATCTGC	GGCCAAGCAG CTTGTCCGAT'CCGAT'CCGGTTCGTC GAACAGGCTC	CCCCCCCCC CICCICAGC	CTCTCGGATC	CAGINCOCCC	CCACCCCTCT	ATCCCCCCCCT TACCCCCCCCCCCCCCCCCCCCCCCCC	CTCCCCTGGA			TGAACGAGTT ACTTGCTCAA	GTTCACCCTG	ACAGAACGGG GTTCTKGGAAA TGTCTTGCCC CAAGACCTTT		CCGTTCGGAA GGTCCTCCCG
ACCCCCAGTA TRASGOCTICAT	CCCTG		CTCGCACCAC GAGCGTGGTG	CAACGOGATA	AGGCACGACC TCCGTGCTGG	TTCCCCCCAG	TCCCCTTAGT AGGGGAATCA	CCCTTCGATG		AAACAATGAC TITIGITIACTG		AGTGGGTGGA TCACCCACCT	ACAGAACGGG TGTCTTGCCC	ATATCITITEC ACCCTT	CCGTTCGCAA
CONCONCINA	-	GCGAAAGGAA AGCTTCCGGA CGCTTTCCTT TCGAAGGCGT	CTTACCAGCA GAATGGTCGT	CATTTCCCAA GTAAAGGGTT	CCGTCGTCAA	TTTRCGCACC	TTTCTTGTAT	GCTRGGTTCT CGACCCAAGA	GCACCCCTAT CGTGGGGATA	CCCACTACA	GCATACCAAC	CTGAAATACG		CCCTVECCCAT	
GEATERCATE C				CTCCCTCCCC	GUCCAUCCAC	TRICETANCECES ACCEPTINGEDE	GAGCGTTGGT	TOUTGGCGGC	CTCTGAGTTG GAGACTCAAC	TTTCTGACCA	AAACCATCCT TTTGGFAGTA	Tracetecac Agtecacete		CAGAACAGTA	
TYKSACTACTT C	ACACCCCCC ATTCCAGTG CTTGAGTGTA TGTGGCCCCC TAAGCTCCAG	GCANCAGERE GARCAGACAG ARGEOGRAFT CGTTGTEGEG CTCGTECTGTE TECGEOGRAFA MINIMA	GTCARATGCT AGTAGCCCAT TTCCANGUT GATAGGGTCT CAGTCTACGA TCATCGGGTA AAGGTTCGAA CTANCCCAGA	TEGETISCIEC AFCEGEAGES CGANANANA CTOCCTEGGG ACCACGACG TEGGEGECE GETTTTTT G ACGANGEC	CCAGGCCCGC	TECCTCCCTC	CCATTACACC	GCCCCCCCTAC CGCCCCCGGTC	GCATCCGTTA	CCACAGCAAC		CGCTTGCCTA CTAAGGACAA GCGAACGGAT GATTCCTGTT Fyyl			CCCACTCCTT
AACCGCCTAA T	ACACCCCCCC	GCANCARCIC GARCAGAICAG COTTGTUGGG CTCGTCCGTC Hindill	AGTAGCCCAT	AGCCGCAGCG TCGGCGTCGC	CACCCTGCACGTG	GTCCTGGATT	CTCACCAAGG	TGTGGTGAGC ACACCACTGG	GCCTACCGGG GGGAGAAACA GCATCCGTTA CGGATGGCCC CCCTCTTTIGT CGTAGGCAAT	ACCAGAACGA	GCACTRAGAAC CGTGACCCCG		TGAACAACGC ACTTGTTGCG		ACCCACACACC
GCCGTTTATC /			CACTCTACT AG	TCCCTGCTGC AGCGGCAGCG AGCGACGACG TCGGCGTCGC	CCCAGGAGGA	CCACAGCAGC	AAATAAAAAA		GCCTACCOAG CGGATGGCCC			GATCGTGTCG CTACCACAGC	ATAGACCTTA	ACTICAGACT TGAAGTCTGA	GGTWGACTTC ACCCACAGGC
	GCTACCGCC C	CCGCAGACCC TOCTAGAGTT GGCGTCTGGG ACGATCTCAA	COCCCCCC OTCAGATICT AGTACICCAT TICCANGITT GATAGGTCT GCCGCCCCCC CAGTCTACGA TCATCCCCTA AGGTTCGAA CTAGCCCAGA PSIL	CCTAAACAAC	AAGACGTACG	ACTOGGCAGA	GCATGATGCA	CCTCCTCCCT	GIRCCITCTGC GGTACCTGCG	GGATGTGGCA	ATCANTCITIG	AGGCGCGGGT	ACTACTCCGA GACCATGACC TGATGAGCT CTGGTACTGG		CAGGATGCGG
	ACCGGACATAC G	TTCCCCGCAA CCGCAGACCC AAGGGGGGTT GGCGTCTGGG	CTAGGCGCTG (AGGAGGAGTA TECTECTECT					GIGCCITCCGC	ACAAGTCAAC	CACACAGACC	AATAAGITITA TTATTCAAAT	ACTACTCCGA TGATGAGGCT	GGTAAAGTTT	ATTTTGCTGC
12901	13001	13101	13201	13301	13401	13501	13601	13701	13801	13901	14001	14101	14201	14301	14401

Figure 15I

рмкклабана мек682

AGATGACACC GAACAGGGCG GGGCTGGCGCGCGCTACTGTGG CTTGTCCCGC CCCCACCGCGGGGGGGGGG	ACCCAGTACC TGGGTCATGG CGGAGCAGGT GCCTCGTCCA	GCGCCGAGCT GTYGCCGTG CACTCCAAGA CGCGGCTCGA CAACGGCAC GTGAGGTTCT Asci Accttrccc GAGAACCAGA TTTTGGCGGG	GCATCGGAGG CGTAGCCTCC GAGCCGCACT	CTCCGCCTCG ANGCGCTCCG TTCCCCACGC CCATCGACGC GGTAGCTGCG	GCGGGGCCCG GCGCTMTGCT AVANTAMENTAMEN CGCCTCCGGGC CGCGATACGA TTTTACTTCT CCTGCTTMAC CGCGCACGTC GCACCTCCCCCC GGACGAATTG GCGCGTGCAG CGTGGCCGGC	CGAGCGGCG CCGCAGCAGC CGCGGCCATTY GCTCGCCGGC GGCGCCCGTAA CCGTGCGCAC CCGCCCCCG CGCACTAGA GGCACGCGC GGCACCTAGA	GTCCAAGCGC AAAATCAAAG AAGAGATGCT
GCCTACCAGG CGAGCTFGAA AGANY CGSATGTTC GCTCGAACTT TCTAA CAGCTGCACCG GTGG GTCGACCGC TTACGTCGC CACC ACCGCCCC CGCC ACCGCCCC CGCC TCGCCCCC CGCC TCGCCCCC CGCC	TAAGCAATGA AFFCGTFACT FCCFGACGFA AGGACTFGAT	CAGCAACTIT CCGGTAGTAG GCGC GTCGTTGAAA GCCCACCACC CGCG TCTCTGACCC ACGTGTYCAA TCGC AGAGACTGGG TGCACAAGTT AGCG	GACCCTACCG CTGCGATGGC GTCTCGCCGC	AGAIGITIGG AGAIGITIGG TCTACAAACC GCGCACCACC	GOCCATTICAG AUGITGATIC GCR CCGGTAACTC TCGCACCACG CGCC RCCCAACTC CRATGGCGC CCTC CRGGTTGCC GCCGCGCG GGAC	ACGGGGGTC CAGGTGGGT CGTCGGTTGGTTGGTTGGTTGGTTGGTTGGTT	ACGAAGCTAT
CCCCACTETT GATETGAC GCCGCCTAACACTTG CCGCCCAACACAAC TCCAACACTTG TACACAACACTTGAACAC CTCAACACTTAACACACATTCCACC CTCAACACACAC	CCCCTGACAG AGACAGCAA GAAACGCAGT TACAACCTAA GGGGACTGTC TCCTGTCGTT CTTTGCGTCA ATGTTGGATT ACCCTCAGAC CGGAATTCGG TCATGGACCC TGCTTTGCAC TGGGAGTCTG GCCTTAGGCG AGTAACGTGG ACGAAACGTG	TTCCGCTCCA CGCGCGTCTA GTY AAGGCGAGGT GCGCGGTCTA GTY AACTCATCCG CCAGTTTACC TC' TTGAGTAAGC GGTCAAATGG AG	TGAAAACGTT CCTYXCTCTCA CA ACTTTTGCAA GGACGAGAGT GT TGCCCTACG FTTACAAGAC CC	AAATGTTCCG CCCGACGCG CCCGACGCG CACAAACGCG	CCAGTGTFCA CACTTGACGC GG GGTCACAGTGT GTCACCTGCG CC GCCGCCGACC CCCCACTTGCC CC CCGCGGCTGG GCCGTGACGG CG	GGCCGCGGT ATTGTCACTG TC CCGGCGCCC TAACAGTGAC AC GTGTATTGGG TGCGCGACTC GG CACATAACCC ACGCGCTGAG CC	CITICITATICITA TECAGOGGG GOGGGGGG
GCTAACATTC CCATTGTAAG GCAGGGGG CGTGGCGGG GGCTGAGGAG		CCCCGTGACC GGGGCACTGG GTCTACTCCC CAGATGAGGG	CCACCGTCAG GGTGGCAGTC ACGCCGCACC	TOCCOCCTICG CCCAOCANTA GGGCCOTTAT ACCCCCCCC TGGCGCCCC	CACGCCCCCA GTCCTGCTGT CGTCTCCACC GCAGCGGTGG	CTCGAAGGCT GAGCTTCCGA CAGGGCAAC	CACTOCTACT
CETACGATCA TOTOGRAGGT GGATGCTACT AGACCTCCCA AGGCGCAGC AACAGCAGTG TCCGCCGTCG TTGTCGTCAC GGCGACACCT TTGCCACCG CCGCTGTGGA AACGGTGTGC	AGANGAAACC GGTGATCAAA TCTTCTTTGG CCACTAGTTT Kyn CCTTGCATAC AACTAGGGGGGGGGAACGTATG TTGATGCGGGG	TTGCCAGACA TGATGCAAGA CCCCGTGACC AACGGTCTGT ACTACGTTCT GGGCACTTGGGCTTCTACAACGTCTACAACGTCCAGGCC GTCTACTCCCCGGAAGATGTT GCTGGTCCGG CAGATGAAGGG	CCCCCCACC CCCACCATCA CCCCCCCACC CCCACCATCA GGGCCCATCA CTGACGCTAGT	CACTGGTANT CATTATATCG GCATGTCCAT CCTTATATCG CGTACAGGTA GGAATATAGC AGTGCGCTTG CGCGGGCACT TCACGCGTAC GCGCGGGCACT	GAGGCGCGA ACTACACGCC CTCCGCGGGT TGATGTGCGG GACGGCGGG GCGCGTAGCA CTGCCGCCTC CGCGCATCGT	ACGGGCGCC ATGCGGGCG TGCCCGGC TACGCCCGGC AGTGCTATGA CTCAGGGTCG TCACCATACT GAGTCCCAGC	
14501 14601 14701	14801	15001	15201	15401	15601	15801	16001

Figure 15J

рмкклабаза мек682

16101	CCAGGTCATC GGTCCAGTAG	BgIII CCAGGTCATC GCGCCGGAGA TCTATGGTCC CCCGAAGAAG GGTCCAGTTAG CGCGGCCTCT AGATACCGGG GGGCTTCTTC			בדוליונפונכ	ATTACAAGCE I	CCGAAAGCTA AAGCGGGTCA AAAAGAAAAA GCCTTTCGAT TTCGCCCAGT TTTTCTTTTT	AAGCGGGTCA AAAAGAAAAA TTCGCCCAGT TTTTCTTTTT Sall		GNANGATRAT CITTCTACT
16201	GATGATGAAC	TTGACGACGA	GGTYGAACTG CCACCTTGAC	CTGCACGCTA	CTGCCCCAG GCGACGGTA				AAAACGIGITT	TTGCGACCC
16301	GCACCACCGT	AGTCTTTACG TCAGAAATGC	CCCCATGAGC	GCTCCACCCG	CACCITACAAG	COCOTOTATO		CCCCTCCTC	CTGGACGAAC	ACCAGGCCAA TCGTCCGGTT
16401	CGAGCGCCTC GCTCGCGGAG Pstl	GCCCTCAAAC	CCTACGGAAA GGATGCCTTT	GCGGCATAAG	GACATGCTGG CTGTACGACC	CCAACGGCGA	CCTCCTCCCG	AACCCAACAC TTGGGTTGTG	CTAGCCTAAA GATCGGATTT	GCCCGTAACA CGCGCATTGT Knnl
16501	CTGCAGCAGG GACGTCGTCC	ACG			ACCICCICCT TCCCGCCR3A	AAAGCGCGAG THTCGCGCTC		TOGCACCCAC ACCGTGGGTG	CCACCINCGAC AACCACCING	ATREFTACECA TACCATAGGT FREEGRACT
16601	AGCGCCAGCG TCGCGGTCGC	D D			GGAACCTGAG	CACCTCGGGC		COCCOGNIAG	TICGICCACC	GCGCCCTGA
16701	OCCCGTOCAG CCCGCACGTC	ACCOTOGACO TGCCACCTGC	TTCAGATACC AAGTCTATGG	CACTACCAGT	AGCACCAGTA TCGTGGTCAT	TTGCCACCGC AACGGTGGCG	GTGTCTCCCG	TACCTCTGTG	TTTGCAGGGG	CCAACGGAGT
16801	GCGGTGGCGG	ATCCCCCCCT.	GCAGGCGGTC CGTCCCCCAG	GCTGCGGCGGCGCGCGCGCGCGGCGGCGGCGGGCGGGGGG	CGPCCAAGAC	CTCTACGGAG	GTECAAACGG	ACCCGTGGAT TGGGCACCTA	CANAGEGEAN	AGTCGGGGG
16901	30000000000000000000000000000000000000	CCGTTCGAGG	AAGTACGGCG	CCGCCAGCGC	GCTACTGCCC	GAATATGCCC	TACATCCTTC	CATTICCCCCT	ACCCCCGGCT	ATCGTGGCT TAGCACCGAT
17001	CACCTACCGC		GAGCAACTAC	CCCACGCCGA	ACCACCACTG TGGTGGTGAC	GAACCCGCCG	CCCCCCCTCGC GCCCCCAGCG	CCTCCCCAGC	CCGNGCTGCC	CCCANTINCC
17101	CACGCGTCCC		ACCACCCACC	ACCCTOGTOC TGGACCACG	TGCCAACAGC ACGGTTGTCG	GCCCTACCAC CCCGATGGTG	CCCAGCATCG	TTTAAAAGCC	GGICTTTGIG CCAGAAACAC	GTTCTTGCAG CAAGAAGGTC Sphi
17201	ATATGGCCCT	r cacettoccoca A GTGGACGGCG	CTCCGTTTCC	COGRECCOGG		AGAATGCACC TCTTACGTGG	ATTICICACIA AGAATGCACC GTAGGAGGG TAAGGICCT TCTTACGTGG CATCCTCCC Sali	CATGGCCGGC GTACCGGCCG	CACOCCTCA GTGCCGGACT	COGGCCCCTAT
17301	GRACCOGGAA CGCAGGACGC CGCAGCACGC GRACCCGGAA CACGGGCCTT	GACCACCGGC GTGGTGGCCG A TTGCATCCGT T AACGTAGGCA	GGCGGCGCGCGCGGGGGGGGGGGGGGGGGGGGGGGGGG	GTCGCACCGT GCGCACACACACACACACACACACACACACACACACACA	\$ 5 0 0 5 5		GCGGTATCCT GCCCCTCCTT CGCCATAGGA CGGGGAAGGAA AACAAGTTGC ATGTGGAAAA TTGTTCAACG TACACCTTTT	ATTCCACTGA TAAGGTGACT ATCAANATAA TAGTTTTATT	PCGCCGCGCGCGCAGCCGAAAGTCTGGAATCTTGGAACCTGAAGTCTTGGAAGCCTGAAGCCTGAAGCCTGAAGCCTGAAGCCTAGAAGAAGAAGAAAAAAAA	CTANCGCGCC CTANCGCGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
17501	CGCTTGGTCC		TOTANCTAIT TTCTAGAATG ACATTGATAA AACATCTTAC		GAAGACATCA ACTITIGGGTC TCTGGCCCCG	TCTGGCCCCG AGACCGGGGC	GAAGACATCA ACTITIGGGTC TCTGGCCCCG CGACACGGCT CGCGCCCGTP CTTCTGTAGT TGAAACGCAG AGACCAGGAC GCTGTGCGA GCGGGGCAA	CGCGCCCGTT	CATGGGAAAC GTACCCTTTTG	TGGCAA

Figure 15K

EOPHV TCGGCACCAG CAN	CAATATGAGC	667666667		CTCGCTCTCT AGCGCCATTA		AAAATTTYGG '	TTCCACCGTT /	AAGAACTATG TTCTTGATAC	GCAGCAAGGC
AGCCGMGGTC GTTATACTCG	ט פ	CCACCGCGGA	GGATAAGTTG			AAACCTCCTA			TAGEGGGT
		TCTACGACTC				TTTCCACCAT	CTACCGGACC (GGAGACCGTA	ATCGCCCCA
GTOGACCTOG CCAACCAGGC	E) 0	AGTGCAAAAT	AAGATTAACA	GTANATITIGA	TCCCCGCCCT CCCGTAGAGG		AGCCTCCACC TCGGAGGTGG	CCCCCTCCAC	ACAGITGTC'I'' TGTCACAG'':
CACCTOGACC COTTOGACC CAGAGGGGCG TOCCGAAAAG		CGTCCGCGCC	CCGACAGGGA	AGAMACTETG	GREACECANA TWACGAGGC CACTGCGTTT ATCTGCTCGG	TACACGACC	TCCCTCGTAC AGGGAGCATG	CTCCTCCGTO	TANAGCANT: ATTTCGTTC:
) at F		TCGCCCCAT GCCTACCCAAAGCCCCAACCCT		AGCACACACC TCGTGTGTGG	CGTAACGCTG GCATTGCGAC	GACCTCCCTC	CCCCCCCCCA GGGGCCGCT Pvol	CACCCAGCA() GINGGTCGT()
AAACCTGTGC TGCCAGGCCC	N S		GACCGCCGTT GTTGTAACCC GTCCTAGCCG CGCGTCCTG	GTTGTANCCC GTCCTAGCCG CGCGTCCCTG CAACATTGG CAGGATCGGC GGGAGGGAC		ລອກລອລນອລນ	CCAGCGGTCC	GCCTAGCAAC	CCCCCCCTAC
	00		GCATCGTGGG	TCTGGGGGTG AGACCCCCAC	CAATCCCTGA GITTAGGGACT	AGCGCCGACG TCGCGGCTGC		TAGCTAACGT	GTCGTATGEG CAGCATACA
	F 4	CGCCGCCAGA	CCTCGACGAC	AGCCGCCGCG TCGCCGCGCGC	CCCCCCCTTT	CCAAGATAGC GGTTCTACCG	TACCCCTTCG	ATGATGCCCC TACTACGGCG	ACTICATORY I
	. . .			CCCCGGCTGG	TGCAGTTTGC ACGTCAAACG	CCGCGCCACC	GAGACGTACT	TCAGCCTGAA AGTCGGACTT	TAACAAGTITT ATTGTTCAAA
	() [7		GTGACCACAG	ACCRETCICA	GCGTTTGACG CGCAAACTGC	CTGCGGTTCA GACGCCAAGT		CCCTGAGGAT	ACTGGGTACT
	ט ט	CTAGCIVITGG	GTGATAACCG	TGTGCTGGAC ACACGACCTG	ATGGCTTCCA TACCGAAGGT	CCTACTITICA	CATCCCCCCCC	CACGACCTGT	
	- € 등	CTGCCTACAA GACGGATGTT	GCCCCTGGCT	CCCANGGGTG	CCCCAAATCC	TTGCCAATGG	GATCAAGCTG	CTACTGCTCT	
CTAGAAGAAG AGGACGATGA GATCTTCTTC TCCTGCTACT	4 -	CAACGAAGAC GTTGCTTCTG	CTTCATCTGC	AGCAAGCTGA TCGTTCGACT	GCAGCANANA		PROGECAGGE GESTIFATION ANCEGETEEG CGGNATAAGA	CCCTTATTCT	_
	5 E	ATAGGTGTCG TATCCACAGC	AAGGTCAAAC	ACCTAAATAT TGGATTTATA	GCCGATAAAA		TGAACCTCAA ACTTGGAGTT		
CGAAACAGAA ATTAATCATG GCTTTGTCTT TAATTAGTAC	5 5	CAGCTGGGAG	AGTCCTANAA TCAGGATTTT	ANGACTACCC					
GGGCAAGGCA TTCTTGTAAA CCCGTTCCGT AAGAACATTT	3 F	CCTTGTTTTA	F GGANAGCTAG			TTTTTCTCAA	TTTTTCTCAA CTACTGAGGC AAAAAGAGTT GATGACTCCG		TTACCACTAL
ACTTIGACTICC TAAAGTGGTA TGAACTGAGG ATTTTCACCAT	\$ 5	TTGTACAGTG	S ANGATICTAGA TTCTACATCT		TATAGAAACC CCAGACACTC ATATCTTTGG GGTCTGTGAG	atattectea Tataaagaat	ATATATICTTA CATGCCOACT ATTWASANG TATAAAAGAAT GTACGGGTGA TAATTCCTTC	ATTAMOGAMO TAATTCCTTC	

Figure 15L

10101		TABURA	CHRITICION	, TARTOTTAR	TACATTGCTT	T TACCCACAA T	TTTTATTCGT (CTAATGTATT 1	ACAACAGCAC	GOSTAATATG
19301	TOTAL TANK						ANANTANCCA		TGTTGTCGTG	CCCATTATAC
19401		SCCAAGC			TAGATITECA A	AGACAGAAAC A	ACAGAGETTT (THITCCTTGAT	TCCATTIGGTS
		COGITICS	TAGCGTCAAC	TTACGACAAC	ATCTAAACGT '	TCTGTCTTTG 1	-		AAACGAACTA	ACCTAACCAF
19501	ATAGAACCAG	GTACTMTTCT	ATCTCCANTC	AGCCICITICA	CAGCTATGAT (CCAGATGTTA C	GANTTATINA		ACTGAAGATG	AACTICCAAA
1	TATCTTGGTC	GRAAAAGA	TACACCTTAG	TCCGACACT	GTCGATACTA (GGTCTACAAT (CTTAATAACT		TGACTTCTAC	TTGAALX:TTF
19601	TTACTGCTTT	CTGGGAG	GTGTGATTAA	TACAGAGACT	CTTACCAAGG	TAAAACCTAA 1			GGGAAAAAGA	TGCTACAGAA
i i	AATGACGAAA	CACCCTC	CACACTAATT	ATCTCTCTGA	GAATGGTTCC	ATTTECATT 1	Trefecatic		CCCTTTTCT	ACGATGICIT
19701	TITTCAGATA	AAAATGAAAT	AAGAGTTGGA	AATAATTTTG	CCATGGAAAT				CCTGTACTCC	AACATAGCG
	AAAAGTCTAT	TTTTACTTTA	TTCTCAACCT	TTATTAAAAC	GGTACCTTTA				CCACAITING	TIGIATEG
19801	TGFATTTGCC	CGACAAGCTA	AAGTACAGTC	CTTCCAACGT					ANGCGAGTOG	TOGCTCCCO:
	ACATAAACGG	GCTGTTCGAT	TTCATGTCAG	GAAGGTTGCA	TTTTTANAGA	CTATTGGGTT 1			וומכונארו	ALCOMODE
19901	CCTAGTGGAC	TOCTACATTA	ACCTTGGAGC	ACCCTOGNOC	CTTGACTATA		CANCCCATTT		CCAATGCTGG	CCTGCGCTAC
	CGATCACCTG		TEGAACCTCG	TGCGACCAGG	GAACTGATAT	ACCTGTTGCA	GITTCCCTAAA	Trecreered	CGITTACGACC	GGACGCGATT
20001	CGCTCAATGE		TGGTCGCTAT	GIGCCCTTCC	ACATCCAGGT		TTCTTTGCCA	TTANANACCT	CCTTCTCCTG	CCGGCTCAT
1	GCGAGTTACA		ACCAGCGATA	CACGGGAAGG	TGTAGGTCCA	CGGAGTCTTC	AAGAAACGGT	AATTTTGGA	GGAAGAGGAC	GGCCCGAGIV
					Pstl					
20101	ACACCTACGA	GTGGAACTTC	ACCANGGATG	TTAACATGGT			ATCACCTAAC		CCCACCATTA	ACT TECATAL:
	TGTGGATGCT	CACCITICAAG	TCCTTCCTAC	AATTGTACCA	AGACGTCTCG		TACTGGATTC	CCAACTGCCT	Concernan	TOWNS PULL
20201	CATTITICCTIT	TACCCCACCT	"INCIPICOCCA"	GGCCCACAAC	ACCOCCTCCA	_	CATGCTTAGA	AACGACACCA	ACGACCACTC	CITTIANCO!
	GTRAACGGAA	ATCCGGTGGA	AGAAGGGGTA	CCGGGTGTTG	TOCKSCHOOL	GCGAACTCCG	GTACGAATCT	TRETTEGE	TGCTGFTCAG	GAMITICE
20301	TATCTCTCC	CCCCCAACAT	GCTCTACCCT	ATACCCGCCA	ACCCTACCAA	CGTGCCCATA	TCCATCCCCT	CCCGCAACTG	GCCCCTTTC	_
1	ATAGAGAGG		CCACATCCCA	TATGGGCGGT	TGCGATGGTT	GCACGGGTAT	AGGTAGGGGA	GOGCGTTGAC	CCCCCGNANG	_
20401	CCTTCACGCG	CCTTAAGACT	AAGGAAACCC	CATCACTEGG	CTCGGGCTAC	GACCCTTAIT	ACACCTACTC	TOCCICTATA	CCCTACCTAG	
	GGAAGTGCGC		TICCTTIGGG	GTAGTGACCC	GAGCCCGATE	CTGGGAATAA	TCTCCATCAG	ACCGAGATAT	GGGATGGATC	TACCTIGGE
20501	TTACCTCAAC	CACACCTITA	AGANGGTGGC	CATTACCTTT	GACTCTTCTG	TCAGCTGGCC	TOCCANTOAC	CGCCTGCTTA	CCCCCAACGA	GITTICANATI
	AATGGAGTTG		TCTTCCACCG	GINATGGANA	CTGAGAAGAC	AGTCGACCOG	ACCGTTACTG	GCCCACCAAT	מאאייויונייניין	CMMCITIAN
20601	AAGCGCTCAG	TTGACGGGGA	GGGTTACAAC	GTTGCCCAGT	GTAACATGAC	CANAGACTOG	TTCCTGGTAC	ANATIGETAGE	TAACTATAAC	
1	TTCGCGAGTC	2	CCCAAATGTTG	CAACGGGTCA	CATIGIACIG	GITTCIBACC	AAGGACCATG	TTTACGATCG	ATTIGATATIE	
20701	ACCOUNT		AGCTACAAGG	ACCGCATGTA	CICCITCITY	AGANACITICO	AGCCCATGAG	CCGTCAGGTG	GTGGATGATA	-
5	TCCCGAAGAT		TCGATGTTCC	TRECETACAT	GNGGAAGAAA	TCTTTCAACG	TCGGGTACTC	GCCAGTCCAC	CACCTACTAT	
20801	CACACTACTAA	CAGGTGGGCA	TCCTACACCA	ACACAACAAC	TCTGGATTTG	TTGGCTACCT	TRACECECATE	ATTCCCCGAAG	GACAGGCCTA	
3	CCTGATGGTT		AGGATGTGGT	TGTGTTGTTG	AGACCTANAC	AACCGATGGA	ACGGGGGGTGG	TACGCGCTTC	CTGTCCGGAT	GGGACGALTE
							Pvtf			
20901	distribution of the Wilde	THE CONTRACT CONTRACTOR	CAAGACCGCA	GTTGACAGCA	TTACCCAGAA	AAAGTTTCTT	TYCCIATCOCA	CCCTTTGGCG CATCCCATTIC		
* ^ 7 ^ 7	AAGGGGATAG	AAGGGATAG GCGAATATCC			MTGGGTCTT	TTTCAAAGAA	ACGCTAGCGT	GGGNANCCGC	GTACGCTAAG	AGGTCATTGA

Figure ISM

									Rand II	,
410	to di Contratto di				مان الله الأروزيل	ששטעניניני	ACCCCCTACA (CATGACTETE	GAGGTCGATC	CCATCGACGA
10017	AATACAGGTA	CCCCCCTGAG						GTACTGAAAA	CTCCACCTAG	GGTACCTGCT
21101	GCCCACCCTT	CTTTATGTTT		CTTTGACGTG	CAGGCACACG	ACCAGCCCA (TEGTCGCCT)	CCGCGCCGCAG .	ATCGAAACCG TAGCTTTGGC	TCTACCTGCG AC/ "GACGC	CACGCCCT" :
										High
21201	TOBSCCBGCA	ACCCCACAAC	ATANAGAAGC	AAGCAACATC	AACAACAGCT	GCCCCCATCG	GCTCCAGTGA	GCAGGAACTG	AAACCCATTG TTTCGGTAAC	TCAAAGATCT AGTTICTAGA
	AGCCGGCCGT	recedent	rariaciace	TICKITKITAG				GULTGUGCCA	TAGTCAATAC	CCCCCTCC
21301	ACCAACACCC	GCATATTTTT	ACCCCTCCAT	ACTICATICGGG	AAAGGTCCGA			COGACGCGGT	ATCAGTTATG	CCGCCCAGCC
21401	GAGACTGGGG	g	GATGCCCTTT	GCCTYAGAACC	COCACTCAAA	MCATGCTAC	CTCTTTGAGC	CCTMMCCCTM	Preference AAGACTG AAGACTGGTC	CCACTCAAGE GCTGAGTTC
	CTCTGACCCC	g	CTACCGGAAA	COGNICLIES	CCC NEW STATE			AACCCTGGAA	AAGTECACCC	AAAGCGTAC v
21501	TCCAAATGGT	CAAACTCATG	CTCAGTGAGG	ACCCGGCATC	GCGGTAACGA			TTGCGACCTT	PTCAGGTGGG	TTICGCATGF
21601	OGGGCCCAAC	Ę	GTGGACTATT	CTGCTGCATG	TTTCTCCACG		CTGGCCCCCAA	ACTCCCATGG	ATCACAACCC	CACCATGAA
	CCCCGGGTTG	NOCCOCCOCA :	CACCTGATAA	GACGACGTAC	ANAGNGGTGC	GGNAACGGTT	GACCGGGGTT	TGAGGGTACC	TAGITGITTOOKS	GIGGTACT
		Kpm								
21701	CITATITACCG		CICCATGCTC	AACAGTCCCC	AGGTACAGCC		CGCAACCAGG	AACAGCTCTA	CAGCIFICCIG	Chraceasta
	GAATAATGGC	: CCCATGGGTT	GAGGTACGAG	TTCTCAGGG	rccarcacca		GCGFICEILC		SI COMMODIC	CICOCOON.
21801	CCCCTACTT	_	ACTECGCAGA	TTAGGAGCGC	CACTITETIT		ANAACATGTA	AAAATAATGT	ACTAGATACA	CHITCAATAA
	GCGGGATGAA	A GOCGINGGING	TCACGCGTCT	AATCCTCGCG	GTGAAGAAAA		TTTTGTACAT	THE PROPERTY OF THE PARTY OF TH	Ignicial	
21901	AGGCANATGC		ACACTCTCGG	GTGATTATT	אטככטכאכטכ		CGCCGTTTAA	ANATCAANGO	Gerrichece Gerrichece	CGCATCGCTA
	TCCGTTTACG	3 AAAATAAACA	TGTGACAGCC	CACTANTANA	1666761666		GCCCCCAAATT	LINGING	CLANGACIAGE	100000000000000000000000000000000000000
22001	TOCOCCACTO		GTTGCGATAC	TOGICITIAG	TGCTCCACTT		ACAACCATCC	GCGGCAGCTC	CCACHTERAR	ACTOROGENOR
	ACCCCCTGAC	: corcerord	CAACGCTATG	ACCACAAATC	ACCAGCITGAA	TTTCAGTCCG	TGT TGG TWO	coccorcon		
					errorror.					
22101	GGCTGCGCAC				CCATATCTTC	AAGTUGUAGT	TGGGGCCTCC	GCCCTGCGCG	CECCACTICE	CTATGEORY
	CCGACGCGTG				CACTATAGAAC	TICMSCORES	MCCC. Solds	acceptance a		CELLECTION
22201	GTITGCAGCAC				CTGCCCAGCA	COCTOTACIO	CCTCTACTCT	AGGGGGGGT	CCAGGAGGCG	CAACGAGTCC
	CAACGTCGTG					GLUMONOLMO	CC ICIMOTO	Courses	Chincanance	J.J. M. W. L. C., IM. C.
22301	GCGAACGGAG		TAGCTGCCTT	CCCANANAGG	CCCCCTACGG	ACCUTTTCAC	TTGCACTCGC AACGTGAGCG	TOCCATCACC	GTAGITITICC	ACTGGCACGG
	_					THE COLUMN	CAGCCTTTTTC	GCCTTTCAGAG	AAGAACATGC	CGLAAGACTT
22401	COCHCIOCOC	C CTTAGGATAC	AGCGCCTGCA Traccacacat	ATTTEGGAA		TITICGGTGGA	CTCGGAAACG	CGGAAG I: TC	Tremenace	FFCTGAA
	accusarces.						Ball			
22501	GCCGGNAAAC		TGATTGGCCG GACAGGCCGC		CACCACCTTG		GGAGATICTIGG	ACCACATITIC	ACCACATTTC GGCCCCACCG	ACCACATTIC GGCCCACCG GTTCTTCACG
	CGGCCTTTTG	G ACTANACCGGC	CTGTCCGGCG	CAGCACGTGC	GTCGTGGAAC	GCAGCCACAA	כר ורדיאטארט	1901010000	2001000000	

Figure 15N

pMRKAd5gag MER682

		ACCCCTCCC	GTCGACCGGA	AGCGGACAAG TCGCCTGTTC	N ACCECNATOR	TOCKETGCCA ACGCCACGGT	ACTECANGAT ACCCCTATCC TGCGGTGCGA		ANAMAGGTTT	24101
Ecofiv									Thesessor	
_			_	TGAAGATGGG	CCCCCCVCA	CCAGCCCAAC	ACCOCACATG	•	ACCCCCCAAA	24001
			•		_	-	AACGETCTCG	A GACGCTGCGC	CCCCCTAATA	
ITICT CACCGCGCGG	GTGGATAAGA	CTACGAACGC	TCAGCCTTGC	ATAGCCCATT		_		_	-	23901
_		TECACGACAA	CACCCTCTGC						CENCACCET	23801
		-	GTGGGAGACG	CTACCTAGAT	GGCATGGCGA	GGGGACGAAA	Activistican	ACTACHEMENT A		
Psil								-	ככובכובכוו	
THET GENECIFICATION	TTTCGTTCT	TGTCTCCTAT	GAGTCATGGT	TICTICATEGE					GOAGGAGGA	23/01
	AAAAGCAAGA	ACAGAGGATA	CTCAGTACCA	ACGAGGACCG	AGCGAAGACG				200100101	
CGTG GGGGGGAACT	CAGCTCCGTG	GTCCAAGGCG	TOTGCGGATG	CTACGGCGGT			_		AGAAGGACAG	73001
	GTCGAGGCAC	CACCITICCCC	ACGCCCCTAC	GATGCCGCCA		TUCCULACIA			בייייייייייייייייייייייייייייייייייייי	,
CCIC AGTCAGCTC	CTAGTACCTC	_		CCCCTANGG	GAAGGGCTGA	COCNCINCAGO	CCACCAMAGC	COCOCICOSO	OCACCOCOTO	23501
	CATCHACTOR		SCCCO TOTAL	כויכוניברבי		حددوديورود	CGANANAACC	GCCGAGTAGG	GAGCTATGCG	
COCC ACGNOCCCC	TOGETTCCCCC	ACGICCICCA	CGGGGGACGAC	GCCACCCCCA	CGARGCGGCG	<u> </u>	GCTTTTTGG	COCCICATO	CTCGATACGC	23401
	CTCAGAAGGA	CAGAACACTA	CGTGGTCGCG	CCACACGCGC	GGCGCCCCGAC	TCCAGCTACC	AGGCGGCGGC		ACAACCCGCG	70567
_	GAGTCTTCCT	GTCTTGTGAT	GCACCAGCGC	GGINTINCECE	CCCCCCCCCTC	AGGTCGATGG	J CCGCCGCCG		Teat rooms	וטנננ
CGCG PAGANANGA	TUTTUCCOCG	GCCCGAACCC	CCGCCCCCGA	CAGACCACTA	GGTGCTAATG	AGGAGGGACA	AAGAGAAAGA	GCGCCACATC	ACCATTTGTA	23201
SCGC TYCTYPPPCT	AGAAGGGCGC	COSTUTORS	Landada	Carrior	CCG15MCMC	ואאפורניסרפ	CCAGCAGAAG		GCCCTATCCT	
_	CCGCACCCAA	MACTARTOGT	PTTCCCATGC	CCANTICONCE	CGCACTGTGC	ATTCAGCCGC	GOTCOTCTTC		CCGCATACCA	23101
NGAA GGAGAACGCA	AGAACKCAGAA	AAGCGACCCG	GTGAAAGGCG	TGGCATTAMA	GCCCAAGTAG	CCTCTCAGTC	CTGTGCTAGC	-	GGTACGGGAA)))
	TCTTCCTCTT	TTCBCTGGGC	CACTITICCGC	ACCGTAATTT	CGGGTTCATY	GCACACTCAG	GACACGAITCG	CTCCCACGCA	CCATGCCCTT	23001
							Pvol		PI WIGHT	
scac acacatca v	GTAGTCGCGC	CCATGAACAG	NATAGGTGCA	CAAATCTAGC	ACTICAAGCG	CCGTCATCAA	GTGAACCAGT	GGTCTCGAAG	GTATIGUEGE	10677
	CATICAGCGCG	GGTACTTGTC	TTATCCACGT	CTITAGATOG	TRANGTINGS	GCCACTAGTT	CACTITICATICA	CC SC SC STIME	Chair Cocco	,000
AGINC GUITCCAGAAC	GGAGCAAGTC	GGCGCCACGA	GTCGACGTTG	ACCACTTCCA	CAGAACAACG	GCAGTGTTTC	CGGGGTAGTA	Argreerrag	CASSINCECCO	10077
	CCTCGTTCAG	CCGCGGTGCT	CAGCIFGCAAC	TOCACOL	GTCTTGTTGC	CGTCACAAAG	GCCCATCAT	TELAGGAATC		22801
	7	TACGAACATC	ACCCCACACAC	COLUMBO	GREGGERG	GCGTCGCCAC	AGCTAGAGTC	TTCGAGCGGA	CATCTGTGAA	
CTG CAAACGACTG	GIVENCETCING	ATCCTTCTAG	TGGGCTCGTG	GCGCAGCCCG		CCCAGCGGTG	TCGATCTCAG	ARCTCGCCT	GTAGACACTT	22701
He's						COCCM-SON : NO	באומן אנאו אנאו ארבו	ACGAILTGAL	TAGAACCIASA	
TAT TACGNAGGEA	ATT''''''' TAAATAG	ATTICANTCA CONOCICCIT ATTINICATA TANACATA TANACATACAT	ATTICAATCA TAAAAGTTAGT	CCACTCACATCC	CCANANGCGA	COCCOCATOR	CTCCTTCAGC	TGCTAGACTG	ATCTTGGCCT	22601
	The state of the s		The state of the s							

Figure 150

PMRKAd5gag MER682

24201	CCTCGCTCAA		MANTETITE	AGGTETTEG					ANCAGCGANA	ATGAAAGTCA
	GGAGCGAGTT	GGAGCGAGTT GCTTCACGGT	TTTTAGAAAC Xhol	TCCCAGAACC	TGCGCTGCTC	TRIGGGGGCC	GTTTISC CAISA	CGTIGRECTT	rigineerit	TALITICAGE
24301	cretedagic	TTGGTGGAAC TCGACGGTGA	TCGACGCTCA	Chacecean	CTAGCCCTAC				CCTACCCGGC	ACTIVACCTA
	GAGACCTICAC	AACCACCTTG AGCTCCCACT	AGCTCCCACT	GTTGCGCGCG	CATCGGCATG	ATTTCCCTC	GTAGCTCCAG	TOCCTCAAAC	GGATGGGCCG	TGAATTGGAT
24401	CCCCCCAAGG	TCATGAGCAC	AGTCATGAGT	GAGCTGATCG	TYSCALCGIVE	GCAGCCCCTG			AGAACAAACA	GAGGAGGGC**
	GGGGGTTCC	AGTACTCGTG	TCAGTACTCA	CTCGACTAGC	ACGUGGCACG	CCTCGGGGAC	CTCTCCCTAC	GTTTAAACGT	rcrierrier	CTCCTCCCC
24501	TACCCGCAGT	TOCCGACGAG	CAGCTAGGG	CCTCCCTTCA	AACGCGCGAG	CCTGCCGACT	TGGAGGAGCG		ATGATGGCCG	CAGTY:CTCGT
	ATGGGCGTCA	ACCOCTOCITC GICGAICGUG	GTCGATCGCG	CGACCGAAGT	TTGCGCGCTC	GGACGGCTGA	ACCTCCTCGC	TGCGTTTGAT	TACTACCGGC	GTCACGAGGA
		Sphi	fil Assert							•
24601	TACCGLGGAG CT	CTTGAGTGCA	CAGTGCA TGCAGCGGTT		CCGGAGATGC				CCTTTCGACA	GOCCTACGTA
	ATGGCACCTC	GAACTCACGT	ACGICGCCAA	GAAACGACTG	GGCCTCTACG	TCGCGTTCGA	Terecrimen	AACGIGAIGI	GUNANGCIUT.	CCCGAIGCAI
		Boll								
24701	COCCAGGCCT	COCCAGGCCT GCAAGATCTC	CAACGTGGAG	CTCTGCAACC	TGGTCTCCTA	CCTTGGAATT	TTGCACGAAA		GCANAACGTG	CTTCATTCCA
	GCGCTCCGGA	GCGCTCCOGA COTTCTAGAG	GTTCCACCTC	GAGACGTTGG	ACCAGAGGAT	GGAACCTTAA	AACGTGCTTT	TOCCOGNACC	CGITTINGCAC	GAAGTAAGGT
		Ascl	š							
24801	CGCTCAAGGG	CGCTCAAGGG CGAGGGGGG CGCGACTACG	CGCGACTACG	TCCGCGACTG	CGTTTACTTA	TTTCTATGCT			GGCGTTTGGC	AGCAGTGCT1
	GCGAGTTCCC	GCTCCGCGCG	GCGCTGATGC	ARGCGCTGAC	GCNANTGANT	AAAGATACGA	TGTCGACCGT	CTCCCCCTAC	CCGCAAACCG	TEGTCACGAA
			PSH							
24901	CCACCACTCC	. AACCTCAAGG	MGCTGCAGAA	ACTGCTAAAG	CHANANCTIGA	AGGACCTATG	GACGGCCTTC	AACGAGCGCT	CCGNGGCCGC	GCACCTROGC:
	CCTCCTCACG	TIGGAGTICC	PCGACGICTT	TGACGATTTC	GTTTTGAACT	TCCTGGATAC	CTRCCRGAAG	TRECTEGEGA	GGCACCGGCG	CGTGGACCGC
25001	GACATCATTT	TECCEGANEG	CCTGCTTAAA	ACCCTGCAAC	AGGGTCTGCC	AGACTTCACC	ACTCANAGCA	TGTTGCAGAA	CTTTAGGAAC	THTATCC'FM'
	CTGTAGTAAA	AGGGGCTTGC	GGACGAATTT	TOGGACGTTG	TUCCAGACGG	TCTGAAGTGG	TCAGTTTCGT	ACAACGTCTT	GANATOCTING	MATAGGATE
25101	AGCOCTCAGG	AATCTTGCCC	GCCACCTGCT	GTGCACTTCC	TARCGACTIT	GTGCCCATTA	AGTACCGCGA	ATGCCCTCCG	CCGCTTTGGG	GCCACTGCTA
	TCGCGAGTCC	TTAGAACGGG	CGCTGGACGA	CACGTGAAGG	ATCCCTGAAA	CACCGGTAAT	TCATGGCGCT	TACGGGAGGC	GCCGAAACCC	CCCTCACCAT
	Pell	1								
25201	CCFTCTGCAG	CCTTCTGCAG CTAGCCAACT	ACCITIGCCTA	CCACTCTGAC	ATAATGGAAG	ACGTGAGCGG TGACGGTCTA			ACTIGITOGOTIG	CAACCITATICS
	GGAAGACGTC	GATCGGTTGA	TGGAACGGAT	GGTGAGACTG	TATTACCTTC	TCCACTCCCC ACTGCCAGAT		GACCTCACAG	TGACAGCGAC	GTTGGATACK
						Kpri		Psll		
25301	ACCCCCCACC	acrecerest	TTGCAATTCG	CAGCTGCTTA	ACGANAGTCA	AATTATCGGT	AATTATCGGT ACCTTTGAGC TGCAGGGTCC		CTCGCCTGAC	GANNAGTCCG
	TGGGGCGTGG	CGAGGGACCA	AACGITAAGC	GTCGACGAAT	TGCTTTCAGT	TTAATAGCCA	TGGAAACTCG	ACGTCCCAGG	GAGCGGACTG	CTTTTCAGG
25401	505000000	GTTGAAACTC	ACTCCGGGGC	TGTGGACGTC	GGCTTACCTT	CCCANATITE	TACCTGAGGA	CTACCACGCC	CACGAGATTA	GGTTCTACGA
	CCCCAGCCCC	CAACTTTGAG	TGAGGCCCCG	ACACCTGCAG	CCGAATGGAA	GCGTTTAAAC	ATGRACTCCT	GATGGTGCGG	GTGCTCTAAT	CCNAGATGCT
25501	AGACCAATCC	: CGCCCGCCTA	ATGCGGAGCT	TACCGCCTGC	CTCATTACCC		TCTTGGCCAA	TIGUNAGOCA	TCAACAAAGC	CCGCCAAGA
	TCTGGTTAGG	GCGGGCGGAT	TACGCCTCGA	ATGGCGGACG	CAGTAATAGG	TOCCGGTGTA		AACGITICGGT	AGTTGTTTCG	GCCGCTTCTV
25601	TTTCTGCTAC	: GANAGGGACG	GGGGGTTTAC	TTGGACCCCC	AGTECEGEGEA	GGAGCTCAAC			GCCCTATCAG	באמכאטככני.
١.	AAAGACGATG	CTTTCCCTGC	CCCCCAAATG	AACCTGGGGG	TCAGGCCGCT	CCTCGAGTTG	GGTTAGGGGG	GCGGCGGCGT	CCCCATAGTC	GICGICGCG

Figure 15P

CTTCTCGGGA

ACTITAACCC

CCATCGGTCT

NGACCICTOG AGCNGGNGAC TCGGCGCGAG ACCTCCGTNA CCTTGAGACG TTNAATNACT CCTCANACAC GGINGCCAGA TGAAATTGGG GNAGAGCCCT

POGAGOCATT GGAACTCTGC AATTTATTGA (GAGITTGTG

POSTCOTOTIG AGGGGGGCTC

TCTGCAGACC

27201

pMRKAd5gag MER682

CTACTICATTIG TATORGCAME ATGACCCCG INTRAGGGI GCGGGAIGIA CACCICAANG GTCGGTGTTT ACCTGAACG CCGACCTCGA CGGGTTCTGA TGAGTTGGGC TTAITTGAYG TACTCGCGCC GATGACTAAC GTTAGGATTG CCCGGGANCG AAGGGCCTA CCGTGGGTTT TICTTCCACG TCCACACG CYTTVAGTGC CTGCTCCTCC TTATGACCCT GTCAGTCGT CTCCTCCA ACCCCCAACG' GCCCACCGGA GACCCCCCGAG CTGCCCCCTC GCTACCCACT CTCTTAAGGA CAGTCAGGCA GAGGAGGTTT TUBUCUSACCU CCGCTGGCCI GAGAATTICC CTCGNGGNGC GAACCAGAGG CAGGCCTGCC CTCTAAAGTC TAGCCGCCGC GGCCGGCGAG AAGTAAGTGC GGAGCAGTCC ACACCTCOTA CCCCCTCCCA CCACTCTGGGT ACTTCCCAGA GACGCCCAGG CCGAAGTTCA GCGAGGTATT TGTGGAGCAT CCTCGTCAGG TCAGCGCCAT GCCTTCAAGT GITIAGICTICC CGCTCCATAA GAMACACCGT CACTGCCCGT GTGACGGGCA GGTTCCGATG CAGAAGCANA TTGGCCATAG TOCCOCCION AGTCGCGGTA AATAAACTAC CTTTGTGGCA CCAAGGCTAC CATCACGGCG GTAG1GCCGC Greates AACCCGTATC CAGGTCTCTG GTCCAGAGAC ACCCCCCACT CTGCGCGTCC ATAATGGTGG CAATCAGAGG TTCATTCACG GATATICECES STEAMCHRAM TACHECEC ECHANACECA ATTETECTION AACAGGEGGE TATTAGEACE GGTGTCAGAC CCCAGAAATC GGCAACCAGT TXCAACATGG CTACAACCTC CGCTCCTCAG GCGCCGCCGG THETTETCGC TCTTCTCTAC CTTCCCGTAT CAACGAACGA ACGTTCTGAC ACCCCCTTG TAGAGGAAGC GGGCGGCGAA AGANGAGATG AGCGGCCACA GATOTOGGGT ATGACGTOGC CGCCGTCGCC GTCGTTGTCG TCGCCGGTGT CGACGCAGAC CGCGGGTTGC CAGTAAATAC GICATITATE **GCACCTGTTG** GGGCGCGGT CGTGGACAAC ACTCAACCCG CACGAGGAGG ANTACTGGGA CCACAGTCTG ეენიენებებე NACAACAGCG GCCCCCAACG AAATAAAAA TITATITI TUGGGGCAAC ATCTCCTTCG CCGCCGCTT CACAGEGEG GEAGEAGEAG GAOGAGAGE GETOCETETO AACAGAGCAG GGGCCAAGAA CAAGAGCTGA GCCCAAGACT TTGTCCCCCG GGTCCTTTCA GGCGAGGGT GGTGACACCA TGAAGGGTCT ACTCACCTGA GRETCECACG CCAGCGGCC CGTCCCATAT TGAGTGGACT TOGARCCAGG GCCGGTAAGT CCAAGCAGCC GCGGCGGTTA GCCCAAGAGC CGGGTTCTCG CAGCAACAGC AGGCTCTCTT TCCGAGAGAA CCGGCCGGCTC AGGTCGAAGA TCCAGCTTCT CCGTTRGCCA AGCTCGTACC GATGTTYSGAG GCGAGGAGTC GTTCTCGACT CCCGCCCCCA ATCAGCITICG GCGCACGCTG GNAGACGCGG CGGCCATTCA GGTTCGTCGG CGGCGGAAT CTACAGECEN TACTACACES GEGGEAGEGG CGTCGTCGTC CTCCTCCTCG Trencreere ecceerrer THITCGCITC TAGICGAAGE CCCGTCCGAC CITICTGCGCC AAATTTAAGC GCGAAAACTA CGTCATCTCC AGCGGCCACA GCAGTAGAGG TCGCCGGTGT GCCTTTCGCT TAAGAGGACC GGTCGCCCGG GCAGGGTATA GICCOGACGG GACATTICAS AICGGCGGCG TOGGACTING GOCTGGAGCT GAAGCTTCCG CTTCGAAGGC GULYCCACG CENCETECING TACTACETIC TGACCETCIC GGATCTGCIN ACTOGGAGAG CCTAGACGAG AAGAAGETEC AUTTREPORCE CACAGGGTGC TITANATICG CGCTTITGAT CAGCCACAM CCAGGAAAGT CCTATATATC CAGTTGCCTT ATGCGCGGGT GIGTCGCCGC GTGAGACATA CGATATAAAG TGCAAGACTG CCCTOGTGTA GGGACCACAT CGGCTTTCGT GCCGNAAGCA CITIOCITCICC GTGGAGTTAC ATGATGGAAG GGGTCTTTAG CCCTCTCGTG ACCTTGGTCC ACCONCATOR TGGCAGTAGA CCAAGAAATC GGTTCTTTAG CACTCTCTAT NANGCGANG GGCACCCAAA GAACGCCATA GTTGCTTGCT AGCTTGCGGG TEGETGGCCC CTGCATTACT GACTGTTTCG GGATTTTTCC CCTANAAAGG CCTGTATCAC GGACATAGTG GCCCTTTCTC CCCCAAAGAC CCCCCTACAT CHOOCCHOTA CTATAGGGCC TOCCCCCTG ACCOGGCGAC TEGNACOCCC GAGCTCCTCG GGGACACCAC GACGTANTGA CTGACAAAGC GGAGGAGGAC AGCGGCCGCG TYCCCAGGAT EDOFIV TGCTCAGCCA GGGGCATCA SAAATTCCCA PCCCCGTAGT TCAGGGGCGC GCGGGCACAA CCGTAACATC ATCOTTCTGA CTTAGAAACA GAATCTTTGT CCCCCAGCTG COCCTCCAC CTAGTTTCGC SATCANAGCG GACCCCACAT 1GTCCCCGCG ACGAGTCGGT TTOCCATCTA CCCCGTGTT GCCATTICTAG TAGCAAGACT GGCCCTTGC TGGACGAGGA ACCITGCTCCT CGCATTCCCC GCGTAAGGGG AACCGTAGAT 27101 26501 26801 26901 27001 26101 26401 26601 26701 25901 26001 26201 25701 26301 25801

Figure 150

DMRKAd5gag MER682

	CCTCCGGCC	ACTATCCOGA	TCAATTTATT (CCTAACTTTG	ACCITICATAMA				AAGTGGAGAG	GCAGAGCAAC
CGAG	GGNGGCCGG	TGATAGGCCT	AGTTAAATAA (GGATTGAAAC	TOCCITCATIT	CCTGAGGGGG			TICACCICIC	CONCINCIA
1900	TOCOCCTGAA	ACACCTGGTC TGTGGACCAG	CACTGTCGCC	CCCACAAGTC	CTTTOCECCC	GACTCCGGTG	AGTITIOCTA	CTTTGANTTG	GGGCTCCTAG	ATATCCAGGG
		GOCGTCCGGC			GCCCCTAGCC CCCCCATCGG	TGATTCGGGA ACTAAGCCCT	GTTTACCCAG CAAATGGGTC	CGCCCCCTGC	tagitigageg atcaactege	GGACAGGG':A CCTGTCCC'''
222	CCCMGNGTYC	TCACTGTGAT	TTGCAACTGT	CCTAACCCTG	GATTACATCA CTAATCTAGT	TTTGT	TCCCATCTCT ACCCTAGAGA	GTGCTGAGTA CACGACTCAT	TAATAAATAC ATTATTTATG	AGNAATTA:A' TCITTAAT'
A T	ATATACTOGG			AACGCCACG TTGUGGTGGC	TCTTCACCCG AGANGTGGGC	CCCAAGCAAA GGGTTCGTTT	CCANGGCGAA	CCTTACCTOG	TACTITITAAC ATGAAAATTG	Arcretect Tagadage:/
5 6	CTCTCATTTA		AACCCAGACG TTCGGTCTGC	GAGTGAGTCT	ACGAGAGAAC TGCTCTCTTG	CTCTCCCAGC	TCACCTACTC AGTCGATGAG	CATCAGAAAA	AACACCACCC TTGTGGTGGG	AGGNATGGAC
88	CCGGGAACGT	ACGAGTOCOT TOCTCACGCA	CACCGGCCGC	TGCACCACAC ACGTGGTGTG	CTACCGCCTG GATGGCGGAC	ACCGTAAACC TGGCATTTGG	AGACTTTTTC TCTGAAAAAG	COCACACACC	AGTTATTGAG	ACMATGGTC
\$ E	AACAGGAGGT TTGTCCTCCA		AACCCTTAGG TTGGGAATCC	GTATTAGGCC CATAATCCGG	AAAGGGGAG TTTCCGCGTC	CTACTGTGGG GATGACACCC	GTTTATGAAC CAAATACTTG	ANTTCAAGCA TTAAGTTCGT	ACTICTACIOGO TGAGATGCCC	CATARGAT"
₹ ₹	TCAGGITTICT AGTCCAAAGA	Keel TCAGGITTICT CTAGAATCGG AGTCCAAAGA GATCTTAGCC	GGTTGGGGTT CCAACCCCAA	ATTCTCTGTC TAAGAGACAG	TTGTGATTCT AACACTAAGA	CTTTATTCTT	ATACTAACGC TATGATTCCG			GCCTGCTK+ 3 CGCACGACAC
₽ 2	TOCACATTEG ACGTGTAAAC	CAPITATICE CINANIANCA	CACCTTTTTA	AACGCTGGGG TTGCGACCCC	TCGCCACCCA AGCGCTGGGT	agatgattag Tctactaatc	GTACATAATC CATGTATTAG	CTAGGTTTAC GATCCAAATG	AGTOGGAACO	
\$ 8 € €	Kpni GGTACCACC CCATGGTGGG	S AAAAGGTGGA S TITTCCACCT F GCTTATTCGC		CCAGCCTGTA GGTCGGACAT AAATTGGCAA				GCACCACTCT CGTGGTGAGA TGACACTACA	TATAAAATGC ATATTTTACG GAGTATAATG	ACCACAGA/ TGGTGTCTT:
₹ 5	TACTFFFCGA	_		5	CATACGACAA	ATACGATAAA TGTCCGACAT	TACCATGTAC			
8 5 5	GGTCCCATTT CAAAATTGTG GTTTTAACAC	T TCAGTATTTT G TGGAAAACAC C ACCTTTTGTG	TOGCACTTTC TOGCACTTTC						CTATAITIAAA GATATAATIT	TACAAAAGCA TAGTTTTCCT
5525	CTCCCTCCA ATA AAAAGTTAC ATI TTTTCAATCG TA	T TATTIGNGGAN A ATAACTICCTIT C ATTATAATTA G TAATATTAAT	A AAGAAAATGC F TYCTTTTACG A GAATAGGATT F CTTATCCTAA	CTTAATTTAC GAATTAAATG TAAACCCCCC ATTTCCCCCC	TANGTTACAA ATTCAATGTT GGTCATTTCC CCAGTAAAGG	AGCTAATGTC TCGATTACAG TCCTCAATAC ACGAGTTATG	ACCACTANCT TGGTSATTGA CATTCCCCTG GTAAGGGGAC	CGAAATGAGC CGAAATTGAC AACAATTGAC		

pMRKAd5gag MEH682

28901	GCGCTACAAC	CTTGAAGTCA	GGCTTCCTGG	TACACITICAL	CPCACTTIGG (CCAGCACCTG T GGTCGTGGAC A	TCCCGCCGAT TIGHTCCAGT AGGCGCCTA AACAAGGTCA			CCM CCMC C
		Special Charles						PC: Label Company	TTTT: N'AATA	ACTOGGATAA
29001		GACCAACACA	ACCAACGCGG	CCGCCGCTAC	CCCTCTATACA	AGATOGRETA T			AAACAGTTAT	TGACCCTATT
	ATTIGICICIA	CICACITICION	1001 100.000							ACC ACT CATE
29101		TOGTOGFTET	CCATAGGGCT	TATGTFIGTA			CATCTCTCC	CINAMICCICA	MACCECCECE PHACCECCECECE	TGGTGGGTAG
	GAACCCCGTAC	ACCACCAAGA	GGTATCGCGA	ATACADACAT						
29201	TATAGTCCCA	TATAGRECCA TEATTGREET	ACACCCANAC	AATGATCGAA	TCCATAGATT	GCACGCACTG A	ANACACATGT		TACAGTATGA	TIMMILIAN
1	ATATCAGGGT	ATATCAGGGT AGTNACACGA	rctgggtttg	TTACTACCTT	AGGTATCTAA	CCTGCCTGAC 1	TTTGTGTACA	ACAAAAGAGA	ATGTCATACT	AATHTACTCT
	^{	Xhoi								C College Control
29301	CATCATTCCT	CATGATTCCT CGAGTTTTTA	TATTACTIGAC	CCTTGTTGCG	CTTTTTGTG CGTGCTCCAC				A CONTROL OF THE P	CACCTANG
	GTACTAAGGA	GTACTAAGGA GCTCAAAAT	ATAATGACTG	CCAACAACCC	GAAAAAACAC GCACGAGGTG		TANCCCACCC	CAAAGAGIGI	AGUILLAICI	פשרפו שמיניו
					Psil					
29401	GCCTTCACAG	GCCPTCACAG TCTATTTTGCT	TTACGGATTT	GTCACCCTCA	CGCTCATCTC CAGCCTCATC		ACTIGING TOCCOLLINAT	TCGCCTTTAT	CCAGTGCATT	GACTOGGTCT
	CGGAAGTGTC	CGGAAGTGTC AGATAAACGA	AATGCCTAAA	CACTGGGAGT	GCGAGTAGAC GTCGGAGTAG		TGACACCAGT AGCGGAAATA		GGTCACGTAA	CIGACCCALIA
							EcoAl	_}		
29501	Cancatraccacam	TCCATATCTC	AGACACCATC	CCCAGTACAG	GGACAGGACT	ATAGCTGAGC	TUCHTAGAAT TCHTTAATTA		TGANATITIAC	Tereacter"
1000	CACACGCGAA			GGGTCATGTC	CCTGTCCTGA	TATCGACTCG	ANGAATCTTA AGAAATTAAT		ACTITIONATIO	ACACTGAAAA
*0.00	CHCHCCCOTT.				CTCAAGCC	TCAAAGACAT A	ATATCATECA GATTCACTEG		TATATEGAAT	ATTICCAAG1 T
T0962	CTGCTGATTA				GGAGGTINGG		TATAGTACGT		ATATACCITIA	TAAGGTTCAA
	CACCACTACT	Water Const					Pstl			
1				A de la destruction de la constitución de la consti	WELL BATT ATT	الداملانامة لاطلائ	TGTTCTGCAG	TACCATCITA	GCCCTAGCTA	TATATCCCIA
29701	OCTACAATGA	AAAAAGCGAT					ACAAGACGTC		CGGGATCGAT	ATATAGGGAT
	CGATGTTACT	TTTTCGCTA	GAMAGGCITIC		ALGINGING				Chichardood Coochadan	Understand the Control
29801	CCTTGACATT	COCTOGNACG	CANTAGATGC	CATGAACCAC	CCAACTITICC				Contractor opposition.	COCCENTRAL.
	GGAACTGTAA		: GTTATCTACG	GFACTTGGTG	GGTTGAAAGG	2000000000	ATACGAAGGT	GACGITGITIC	AACAACGGCC	GCCGAAAW /
		,							Annuman Paris	arange .
									and the same	
10001		Acaremental Co.	ACCTICACC	ACCUCCACTO	ANATCACCTA	CTTTAATCTA	ACALGGAGGAG, ATGACTGACA	ATGACTGACA	CCCTAGATCT AGAAATGGAC	AGAAATGGAC
10667	CONCERNING	TYTERACTORS			TITAGTCGAT	GANATTAGAT	TGTCCTCCTC	TACTGACTGT	GGGATCTAGA	TCTTTACCTG
וחחחנ	CORPURATOR			AGACGCAGGG	CAGCGGCGA	GCAACAGCGC	ATGAATCAAG	AGCTCCAAGA	CATGGTTAAC	
TOOOE	CCTTAATAAT	5	_	-		CGTTGTCGCG	TACTTAGTTC	TCGAGGTTCT	GTACCAATTG	
10101	CCAPAROTO				CACCTACGAC	AGTANTACCA	CCGGACACCG	CCTTAGCTAC	AAGTTGCCAA	
20105	CENTITICEC	. Z			CTCCATCCTC	TCATTATCST	GGCCTGTGGC	GGNATCGATG	TTCAACGGTT	
10000	ONL CONTRACTOR		T GAGAAAAGCC	CATTACCATA	ACTCAGCACT	CCACTACTANA	CGAAGGCTGC	ATTCACTCAC	CTTGTCAAGG	
30501	CTTTAACCAC	CAGTACCACC				GCCATCITIG	GCTTCCGACG	TAAGTGAGTG	GAACAGTTCC	TOGACTCCTA
				Bûll	3					
10101		TEATTANGAC	CCTGTGCGGT	CCTGTGCGGF CTCAAAGATC TTATTCCCTT	TTATTCCCTT	TAACTAATAA	ANANANATAA	ANAMANTAN TANAGCATCA CTTACTTANA	CTTACTTARA	ATCAGTTAGC
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		GAGACGTGGG AATAATTCTG	3 GGACACGCCA	GGACACCCCA GAGTTTCTAG ANTANGGGAA	ANTANGGGAA	ATTCATTATT	ተ ፕተ ተ ፕተለተተ	TTTTTTTATT ATTTCGTAGT GAATGAATTT	GAATGAATTT	TAGTCAATCG

pMRKAd5gag MER682

30401	AAATTICTGT	CCAGTITATI	CAGCAGCACC	Tectrocer	CCTCCCAGCT	CTGGTATTGC	AGCTTCCTCC	TOGCTOCAAA	CITITOTICOAC	AATCTAAATG
30501	GAATGICAGT	TTCCTCCTGT	TCCTGTCCAT	CCGCACCCAC		TTGTTGCAGA	TGAAGCGCGC			TCAACCCC:T
30601	GTATCCATAT	GACACGGAAA	CCGGTCCTCC	AACTGTGCCT TTGACACGGA	TTTCTTACTC AAAGAATGAG	CICCCTTTGT	ATCCCCAAT TAGGGGGTTA	GGGTTTCAAG	AGAGTCCCCC TCTCAGGGGG	TGGGGTACT : ACCCCATGAG
30701	TCTTTGCGCC	TATCCGAACC	TCTAGTTACC	TCCAATGGCA TGCTTGGGCT AGGTTACGGT ACGNACGGGA		CAAAATGGGC	AACGGCGGAGA	CTCTGGACGA	GGCCGGCAAC	CTTACCTCCC:
30801	AAAATGTAAC	CACTGTGAGG	CCACCTCTCA	AAAAAACCAA		AACCTGGAAA		CCTCACAGIT	ACCTCAGAAG TGGAGTCTTC	CCCTAACTUT
30901	GGCTGCCGCC	GCACCTCTAA	TGGTCGCGGG	CAACACACTC	ACCATGCAAT	CACAGGCCCC	CCTAACCGIG	CACGACTCCA	AACTTAGGAT	TGCCACCCAA ACGGTGGG1 1
31001	GGACCCCTCA	CACTGTCAGA	AGGAAAGCTA TCCTTTTCGAT	GCCCTGCAAA	CATCAGGCCC	CCTCACCACC	ACCGATAGCA TGGCTATCGT	GTACCCTTAC	TATCACTOCC	TCACCCCCT" AGTGGGGGAA
31101	TAACTACTGC	CACTGGTAGC	TTGGGCATTG	ACTTGAAAGA TGAACTTTCT	CCCCATTITAT	ACACANAATG TGTGTTTTAC	GANANCTAGG	ACTABAGTAC	CCCCGAGGAA	TOCATOTAL .
31201	AGACGACCTA	AACACTITIGA	CCGTAGCAAC	TOGTCCAGGT	GTGACTATTA	ATAATACTTC TATTATGAAG	CTTGCNACT	AAAGITIACIIG	GAGCCTTGGG	TITITGATICA AMACTAN
31301	CAAOGCAATA	TCCAACTTAA	TČTAGCAGGA ACATCGTCCT	GCACTAACGA	TECATTCTCA	NAACAGACGC	CTTATACTTG	ATCTTACTTA	TCCGTTTGAT AGGCAAACTA	GCTCANAACC CGAGTTTTC
31401	AACTAAATCT	AAGACTAGGA TTCTGATCCT Hindii	CAGGGCCCTC	<i>TTTTTATANA</i> AAAAATATTT	CTCAGCCCAC GAGTCGGGTG	AACTTGGATA TTGAACCTAT	TTAACTACAA AATTGATGTT	CAAAGGCCTT	TACTTGTTTA	CAGCTTCAA \ GTCGAAGTT F
31501	CAATTCCAAA	AAGCTTGAGG TTCGAACTCC	TTAACCTAAG AATTGGATTC	CACTGCCANG	GGGTTGATGT	TTGACGCTAC	AGCCATAGCC TCGCTATCGG	ATTAATGCAG TAATTACGTC	GAGATGGGCT	TGAATTTGGF ACTTAAAGGA
31601	TCACCTAATG	CACCAAACAC	AAATCCCCTC TTTAGGGGAG	AAAACAAAAA	TTGGCCATGG AACCGGTAGC	CCTAGAATTF	GATTCAAACA	AGGCTATGGT	TCCTAAACTA	GGMCTRGAT CCTTGACCRG
31701	ATICANACE CI	CAGCACAGGT	GCCATTACAG	TAGGNAACAA	ANATAATGAT TTTATTACTA	AAGCTAACTT TTCCATTGAA	TGTGGACCAC ACACCTGGTG	ACCAGCTCCA	TCTCCTAACT	GTAGACTAAA CATCTGATT
31801	TECAGAGAAA GA ACGTCTCTTT CT	TECAGAGAAA GATECTAAAC	TCACTITIOGT	CTTAACAAAA	TCTCCCAGTC ACACCGTCAG	MATACTIGC	TACAGITITCA	CANANCCENC	TTAAAGGCAG	TTTGGCTCCA
31901	ATATCTGGAA CAG' TATAGACCTT GTC! Bgff	ATATCTEGAA CAGTTCAAAG TATAGACCTE GTCAAGTTTC Bgil	TGCTCATCTT ACGAGTAGAA	ATTATAAGAT TAATATTCTA	TTCACGAAAA	TGGAGTGCTA ACCTCACGAT	ctaaacaatt Gattigitaa	CCTTCCTGGA	CCCAGAATAT	tl, jaacttta Accttgaaat
32001	GAAATGGAGA TC	TCTTACTGAA AGNATGACTT	GGCACAGCCT	ATACAAACGC TATGTTTGCG	TGTTGGATTT	ATGCCTAACC TACGGATTGG	TATCAGCTTA	TCCAAAATCT AGGTTTTAGA	CACOGTAAAA	CTGCCAAAAG GACGGTTTTC

Figure 15T

PMRKAd5gag MER682

GTGTTGAGTT ATTGCCCANT TAACGCGATT CCACCACTA GGTGGTGTT	ANGAGGO AGTGATATI .	TCACTATA/ GGCGAAGGA* CCGCTTCCT*							CACTGCAGGG GTGACGTCC TGTCTCAAA ACAGAGTTT	GICATAITT
TTTGTCCTCT TTTTTCATAC AAAAGTATG AAAAGCCCCA	TACACAGTCC ATGTGTCAGG AACGCTCATC	TTGCGAGTAG CTTAACGGGC GAATTGCCCG	TGCTGCCGCC	CACAGCAGCG GTGTCGTCGC	CCTCATGGCG	TCTTTTGGCA	90000000000000000000000000000000000000	GTTISGCACAA CAACCGTGTT	GTAAATCCCA CATTINGGGT CGCCGGTTTC GCGCCCAAAG	GCCGGACGTA CGGCCTGCAT
CCATCACAGG CCATCATACAC CCPCTTACAC GCACAATCAC CATTCACACAC	ACACACAGAG TGTGTGTCTC TGTCGAGGCA	ACAGCICGGT CTTGCG3TTG GAACGCCAAC	GCCITIATITIG	GAGGAGGCCC	TGTATCCAAA ACATAGGTTT	aaacattacc titgtaatgg	NANCCAGCTG GCCAAACCT GCCGGCGGGCGGTTTTTTTTTT	TGATATCAAT GTIGGCACAA ACTATAGITA CAACCGIGIT	CTGAATCAGC GACTTAGTCG AGTATGGTAG TCATACCATC	CANATIGGNAC GCCGCACGTA GITTACCTTG CGCCCTGCAT
	CACCCTCCCA CACCCAGGGT CACCGTTTCC	GTGCCAAAGG TGCTGTCCAA ACGACAGGTT Pstt	GTAGAGTCAT ANTCTGCAT CAGGATAGGG CGGTGGTGCT GCAGCAGCGC GCGAATAAAC CATCTCAGTA TTAGCAGGTA GTCCTATCCC GCCACGACGA CGTCGTCGCG CGCTTATTTG	AAGGCGCCTT TTCCGCGGAA	TGC AAGGCGC ACGTTCCGCG			ATGCTCGTCA	TCCCAGGGAA CAACCCATTC AGGGCCCTT GTTGGGTANG GCAGCAGCAG ATGATCCTCC CCTCGTCGTC TACTAGGAGG	AGTGTCATGC TCACAGTACG
	AACCTGCCAC TYGGACGGTG TTATATTCCA	ANTATANGGT GTGCCAAAGG AGCCACAGGC TGCTGTCCAA TCGGTGTCGG AGGCAGGTT AGGTGTCGG AGGCAGGTT AGGTGTCGG AGGCAGGTT AGGTGTCGG AGGCAGGTT AGGTGTCGG	CGGTGGTGCT GCCACCACGA	CTCAGCGATG ATTCGCACCG CCCGCACAT GAGTCGCTAC TAAGCGTYAC GGGCGTCGTA		CTCATAAACA GAGTATTTGT	CCACCATCCT	ANGGANCANG ANGCAGGAGA TACCTAGTAG TACGAGGAGT	TCCCAGGGAA CAACCCATTC AGGGCCCTT GTTGGGTAAG GCAGCAGGG ATGATCCTCC CCTCGTCGC TACTAGGAGG	TGTTGGTUGT ACAACCAGCA
	CCTAGIATTC GGATCATAAG TTCTTAGGTG	AN TANTECAC CCAC-TGCTG GCTCCACGAC	CAGGATAGGG GTCCTATCCC	ATTCGCACCG TAAGCGTGGC	TATTCTACAA	GACCGCTGGG	GCGCCATCCA	ACTUCUTANCO TGAGCATTGG	TAGAACCATA ATCTTOGTAT TTACATTCGG	ACCGAGATCG TGGCTCTAGC
AGACAMACT TERETTITION TOCHEROPE ACCAGACEG GRESTTATT	CTCACAGAAC GAGTCTCTTG AACAGACATA	TTGTCTGTAT ANIMATICCAG ATGTCCCTGT CCAGCTGCTG TACAGCGACA GCTCCACGAC	AATCGTGCAT	CTCAGCGATG	ACCACCACAA	GGTAGATTAA		AGAGCCCAGG TCTCGGGTCC	CCTCCCGCGT GGAGGCGCA TGTCAAAGTG ACAGTTTCAC	CCCCGAGACA
ACTTAAACGG / TGAATTTGCC ' TTCATGGGAC ' AAGTACCCTG / AAGTACCTG / ATGTTTCAAC C	CTTAATCAAA GAATTAGTTT G TATCATGGGT	ATAGTACCCA ACTTAACTTC TGAATTCAAG	GREGAGTCAT.	CAGTOGICTC GTCACCAGAG Pstt	CAC	CACAAGCCCA	TAAACCTCTG ATTAAACATG ATTTGGAGAC TAATTTGTAC	ATGACAGTOG TACTGTCACC	ATTACAAGCT TAATGTTCGA CGTTGTGCAT GCAACACGTA	GTACGGAGTG
	ATCACCGTAC C TAGTGGCATG C ANAAGCATCA 1		TACATGGGG	PACAACATGG (CAGCACAGTA S	GCCATCATAC CGGTAGTATG Kpml	CCCATCCATA		CTTCCTCAGG GAAGGAGTCC ACGTAACTCA TGCATTGAGT	
TAACATTGTC A ATTGTAACAG T AGTGCATACT C TCACGTATGA G AATAAAGAAT C TTATTTCTTA G	GCTTATACAG A CGAATATGTC T GCTGGCCTTA A		AAGTCCACGC CTACATGGGG TTCAGGTGCG GATGTACCCC Pstl	CCTGCGGGAA TACAACATGG GGACGTCCTT ATGTTGTACC	TCACTTARAT CAGTGATTER C	AACCCACGIG C	CACCACCTCC C GTGGTGGAGG C	GGAACCGG CCTTGGCC	COTOCATACA O GCACGTATIGT O AAGACCTCGC A	
	32401		32701	32801	32901	33001	33101	33201	33301	33501

pMRKAd5gag MER682

TCCCACGITA CGTCACTICC CTTIGETITE GGITTITIGG GIGITGAAGG ACTTIAGCAG TGAAGGCAAA AGGGTGCAAT GCAGTGAAGG CGTCCCCATC GGAGGTGGAA GCTAGGGCAT CCACACTGAT GETGTGACTA **AACAACCC7"** TTGTTGGGAV TACAGGGCTTT **NATAGCACCC** TOTAGTACTY GYAGTATATE CACTETETA AAACCTY 7AAA CAAAAAATCI CTCTT'ACCG! GCCTAGGCAA COCATCCGTT ACTAANAAG AAAACCTATT AAAANAACAC TTTTTGGATAA TTTTTTTGTG AGAAAAAGAC CAACAGGAAA CITICACCTATA CICCICGGIC GACCACCCAC ATACATACCC TATGTATGGG ACCACCITICA TCGTGGAAGT ATAAAATGCA AGGTGCTGCT TCCACGACGA TCTTTTTCTG CTTATTCGGT TCTAATAGGT TAAGATGTTG AGGTCTCCCG TITITATOGC ACAAAAGAAC TCTTTTTG CATCATATAG AGATTATCCA ATTCTACAAC TCCAGAGGGC AAAAATACCG GANTAAGCCA TETTICCTOT ACCATEAGTA CONGTACGTE TATTICCGTE CATTICGAGGE CTIGGTGGTG CCACCCACAG TGACGTAACG ACCANCCATG GNACCACCAC GCCTGTCTTA CGGACAGAAT GGTGCCTGTC **€CCCCCCCCCCCA** COGCCCCCT ANACCCTCCT TTTGGGAGGA ACTCCATTCC ACTITICCGUIT TEEGGTGGEG TEGTEANACT CTACAGECAN AGNACAGATA ATGGCATTTE THITTAGACG CCAGGGAACE GIVECOGING ACTIVITATIA GLACGIVEAG ACGIGECTOG TEGEGEEGGT GAAGGGGGGG TECHTGGIAE TANACATTCC AAAAATCTGC TATITIACGE GTCGTCCCCT TTATTCCAAA TACCGTANAC ATTTGTAAGG GAACATTAAC CTTGTAATTG ACATCATCAA CACCACCGCA CCCATGTAAG CTTGTTGCAT GGGCGCGAT ACGICICACT CAPATATATE CICATTITI GOCTACATTC GAACAACGTA CCCGCCGCTA AACATTAGAA TTANAMAGCA CTGGCTTTAT **AACACCTGNA** TTGTGGACTT TCATTITIC GACTAAAAAA TCAAATCGTC GTAAGCTCCG TTGTAATCTT AATTTTTCGT GACCGANATA TYTCCCCTTA GATCCCTCTG CTAGGGGAGAG GCCCTCCC TGATAACATC ACTATIONAG CHALLALLE TCTTGTCTAT ATCTCCTCTA TAGAGGAGAT CGGCCATMGT GCCGGTAACA TTCAAAAGCG AAGTTTTCGC CTICCCCCCC ATAGGAGAGA AAAACACATA GECCATECCE GCETSACCET ANAMANCTE GICACCETGA COCACTOGCA TITITITICAC CAGTGGCACT CACCCTTACC ANATAACANA ANAACAFIFTA CGATTTTCG TITIGICIAL GTATATAG CACAACTICC AGGAAGTACG CGGCGACGGG GCGCGAGGG AGCCACCGC ACCAGTTRGA GATGTCGGTT CACGTCCAAG TCGACGTAAA GGCTAAACCC TTCAGGGTGA GAAGAGITIAT ATAGAGAFIC GIFTAGGGCT TATAATFCAG TTANGTCCAA GGAGTGTCTG GACATATTCT TEGTAGTEAF CETEATGEAG ATAMAGGEAG AAGACGIATI TGTGTTTAT TTTATTGTTT TTTTGTAAAT GCTAANAAGC GTCCGAATCG CAACAACCAT CCGATTTCGG AAGTCCCACT CHTCTCAATA TATCTCTAAG CAAATCCCGA ATATTAAGTC CTGTATAAGA TGCACGGACC AGCGCGGCCA AGCGGCGAAT Hindfil AACACATCAG GTTGATTCAC ATCGGTCAGT THORSTAGIC CAACTAAGIG TAGCCAGICA TOTOGOGIST ATCCTCCATA TIGITITAAT TATCCTCTCT CAGCGCTTCC ACAGCGGCAG CCATAACAGT TGTCGCCGTC GGTATTGTCA TGCAGAGCGA CCANNANACC CCTCACAGAC CCAACACCTG TCCTTCATGC GTCTCCGGTC CAGAGGCCAG CAATCAGTCA CAGTGTAAAA AAGGGCCAAG AACAAAATTA TYCCCGGTTC GNACGNANG TGAACATAAT CGTGCAGGTC ATACTCOGAG CTATGCTAAC CAGGGTAGGC GTCCCATCGG ACACANNATA **AATTCAGGTT** ACCAGGIGG GGCGTGACAA ACAGATCTGC TGTCTTAGACG CTATGTAAAC CGAAGCCCAA GATACATITG GGGAGGAGCG ACCTCCATTT TACCAGGTAT GTCCCGAAGG CCTACGCCCA GCCTGCGCTT GGATGCGGGT CAGCCTCANG CAGCGAATCA TGATTGCAAA TITICCOGGA GIGCAGGITC ACTAACGITT AGAAAGCACA TTCTCCATAA CCGGTACGC GATACGATTG ATGAAGATCT ATTAAGTGAA CGCGCTCCCC GCTTCGCGTT AGTCACACAC CCCCACTGTT GTTAGTCAGT CGCACGCGAA GAACAACATA TATGAGCCTC **GCGCGTTTTT** GTCTCCCCCCT CAGACGCCCA GACCCACTAC CTGCCTGATG AGACTCCGTA TCTGAGCCAT ACAGCCCCCA CTTGTTGTAT TAATTCACTT COCCOCANANA AAGCATCCAG GEGCCCCCTG CGCGGGGGAC ACCTACACAT TOGITCIGO **AAACGGCCCT** TAGAGCGGTG CAGGGCCAGC ATCTCGCCAC GTCCCTTAGT GACTINGGITT TOGICCACGC GGGTCTTTTG CCGTTTCGGA AGTATTACAT AGACAACATT CCGTGGTCGA CCCAGAAAAC ATACTIGICG GGCAAAGCCT TCTCAAACAT AGAGTTTGTA ATANGCATAA TCATAATGTA rererretaa PCCCGCTCCA ACCCCCAGGT **TATTCGTATT FACTTCTAGA** TCCAAAAGGC GGTTTTCCG AATAATTCTC FFATTAAGAG GTCOGAGTTC COPCCCFFICG TATGACACOC CTGAAGCAAA PTCGTAGGTC 35201 35101 34901 35001 34401 34501 34601 34801 34101 34201 34301 34701 33901 34001 33601 33701 33801

Figure 15V

35301	CATTTTAAGA	AAACTACAAT	TCCCAACACA	TACAAGTTAC	TCCGCCCTAA AGCCGGGATT	AACCTACGTC ACCCGCCCCG TTGGATCCAG TYGGCGGGGGGCCC		TTCCCACGCC AAGGGTGCGG	CCGCGCCACG	TCACAAACTC AGTGTTTGAG
						Pacl	cl Fcofil			
35401	CACCCCCTCA	TTATCATATT	GGCTTCAATC	CANANTANGG	TATATTATTG	ATCATCTTAA TACTACAATT		GGATCTGCGA	CGCCAGGCTG	GATEGECTT: CTACCGGAAG
35501	CCCATTATGA	THEFFERE	TTCCGCGGC	ATCGGGATGC	CCGCCTTGCA	GOCCATGCTG	TCCAGGCAGG	TAGATGACGA	CCATCAGGGA	CAGCTTCAAG
	GCCTAATACT	AAGAAGAGCG	AAGGCCGCCG	TAGCCCTACG	GGCGCAACGT	CCCCTACGAC	AGGTCCGTCC	ATCTACTGCT	GGTAGTCCCT	GICGNAGITIC
35601	CCCAGCAAAA	GGCCAGGAAC	CCTAAAAAGG	CCGCGTTGCT	GGCGTTTTTC	CATAGGCTCC	GCCCCCCTGA	CCAGCATICAC GCTCGTAGTG	AAAAATCGAC TTTTTAGCTG	GCTCAAGTC7. CGAGTTCAGT
35701	CAGCTGGCGA	AACCCCACAG	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	GAAGCTCCCT	CGRECCCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC
35801	CTGTCCGCCT		GGGAAGCGTG	GCGCTTTCTC	ATAGCTCACG	CTGTAGGTAT	CTCAGTTCGG	TOTAGGTCGT	TOCCTOCAG	CTCCCCTCT
	GACAGGCGGA		CCCTTCGCAC	CGCGANAGAG	TATCGAGTGC	GACATCCATA	GAGTCAAGCC	ACATCCAGCA	AGCGAGGTTC	GACCCGACM.
35901	TGCACGAACC ACGTGCTTGG	CCCCGTTCAG	CCCGACCGCT	GCGCCTTATC	CGCTAACTAT	CCTCTTGAGT	CCAACCCGGT	AAGACACGAC TTCTGTGCTG	TTATCGCCAC	TGGCAGCAGY ACCGTCGTC
36001	CACTOGTAAC	AGGATTAGCA TCCTAATCGT	GAGCGAGGTA	TGTAGGCGGT ACATCCGCCA	GCTACAGAGT CGATGTCTCA	TCTTGAAGTG AGAACTTCAC	GTGGCCTAAC	TACCCCTACA	CTAGAAGGAC	AGTATITIGG! TCATAAACCA
36101	ATCTOCGCTC TAGACGCGAG		AGITACCITIC ÍCANTOGAAG	GGAAAAAGAG CCTTTTTCTC	THE GRANGETE AACCATEGAG	TTGATCCGGC AACTAGGCCG	AAACAAACCA TTTGTTTGGT	CCCCTGGTAG	CCCACCAAAA	TTTGTTTGC.
36201	AGCAGCAGAT	TACGCGCAGA	ANANANGGAT	CTCAAGAAGA GAGTTCTTCT	TCCTTTGATC	TTTTCTACGG	GGTCTGACGC CCAGACTGCG	TCAGTGGAAC AGTCACCTTG	GNANACTCAC	GTTANGGGAT CANTITCCCTA
36301	AAACCAGTAC		AAAGGATCTT TTTCCTAGAA	CACCTAGATC	CTTTTAAATC	AATCTAAAGT TTAGATTTCA	ATATATGAGT TATATACTCA	AAACTTGGTC	TGACAGTTAC ACTGTCAATG	CAATGCTTAA
36401	TCAGTGAGGC AGTCACTCCG		GCGATCTGTC	TATTTCGFTC	ATCCATAGIT TAGGIATCAA	GCCTGACTCC	CCGTCGTGTA	GATAACTACG	ATACGGGAGG TATCCCCTCC	GCTTACCATY CGAATGGTAG
36501	TOGCCCCAOT	GCTGCAATGA CGACGTTACT	TACCCCCAGA	CCCACGCTCA	CCGGCTCCAG	ATTTATCAGE TAAATAGTCG	AATAAACCAG TTATTTGGTC	CCAGCCGGGAA	GGGCCGAGCG	CACIANGINGOT
36601	CCTGCAACTT	TATCCGCCTC		CATCCAGTCT ATTAATTIGTT GTAGGTCAGA TAATTAACAA	GCCGGGAAGC	TAGAGTAAGT ATCTCATTCA	AGTFCGCCAG TCAAGCGGTC	TTAATAGTTT AATTATCAAA	GCGCAACGTT	GINGCCATIG
36701	CTACAGGCAT GATGTCCGTA	COTOGRAPHCA CCACCACAGE	CCCTCGTCGT GCGAGCAGCA	CCCTCGTCGT TTGGTATGCCGGCGGAGCAGA AACCATACCG	TTCATTCAGC	PRECEDENTEEC ACCCAAGGG	AACGATCAAG TTGCTAGTTC	GCGAGTTACA	TGATCCCCCA ACTAGGGGGGT	TCTTGTGCAA
36801	AAAAGCGGTT	r Agencented		GTCCTCCGAT CGTTGTCAGA		ACTAAGTING CCCCAGIGIT	ATCACTCATG TAGTGAGTAC	GITTATICICAG CAATACCGTC	CACTGCATAA	TICTCTTACT
36901	GTCATGCCAT			CTTTTCTGTG ACTCGTGAGT GAAAAGACAC TGACCACTCA	ACTUMACCAA	ACTOGRAGT ACTUACCAA GTCATTCTGA TGACCACTCA TGAGTTGGTT CAGTAAGACT		GAATAGTGTA TOCGGCGACC CTTATCACAT ACGCCGCTGG	GAGTTGCTCT	TOCCCGGCGT ACGGGCCGCA

Figure 15W

PMRKAd5gag MER682

2 ID NO: 27) 2 ID NO: 28)	TAAT (SEC	TUCGNATINET	CATGACATTA ACCTATAAAA ATAGGGGTAT CACGAGGGCC TITCGICTIC AAGAATIGGA TCGGAATTCT TAAT (SEQ ID NO: 27) GTACTGTAAT TXGATATTTT TATCGGCATA GTGCTCGGGG AAAGGAGAAG TTCTTAAGCT AGGCTFAAGA ATTA (SEQ ID NO: 28)	AAAGCAGAAG	CACGAGGECE	ATAGGCGTAT	ACCTATAAAA TGGATATTTT	CATGACATTA	37401
		FcoRI HI	Barniff						
CECCIATGIA TAAACITACA TAAATCITIT TATTIGITTA TCCCCAAGG GCGTUTAAAG GGCCTTTICA COGTGGACTG CAGATICITT GGTAATAATA	COCTCGACT	GGCCTTTTCA	GCCTCTAAAG	TCCCCAAGGC	TATTTGTTTA	TAAATCTTTT	TAAACTTACA	CGCCTATGTA	
GCGGATACAT ATTIGAATGI ATTIAGAAAA ATAAACAAAT AGGGGTTTCG GGGATTTC CCCGAAAAGT GCCACCTGAC GTCTAAGAAA CCATTATTAI	GCCACCTGA	CCCGAAAAAGT	CACACATTIC	AGGGSTTTCG	ATMACANAT	ATTTAGAAAA	ATTTGAATGT	GCGGATACAT	37301
COOCGITITI TOCCITATIC COCCIGIGG TITACAACIT ANGAGITATGA GAAGGAAAA GITATAATAA CITOGAAAA AGTOCCAATA ACAGAGTACT	CTTCGTAAA	GTTATAATAA	GAAGGAAAAA	ATGAGTATGA	TTTACAACTT	CCCC	TCCCTTATIC	CGGCGTTTTT	
GCCGCANAAA AGGGNATAAG GGCGACACGG AAATCTTGAA TACTCATACT CTTCCTTTT CAATATAAT GNGCATTTA TCAGGGTTAT TGTCTCATGA	GMGCATTT	CAATATTATT	CITCUITIT	TACTCATACT	AAATGTTGAA	GGCGACACGG	AGGGNATAAG	GCCGCANAAA	37201
STETAGGICA AGETACATIG GGICAGCACG TEGGITCACT AGAMINITA GAAAAISAAA GTGTGCAA AGACCCACTC GITTITGTCC TICCGITTIA	AGACCCACT	GTGGTCGCAA	GAAAATGAAA	AGAACTECCTEA	TCCCTTCACT	GGTCAGCACG	AGCTACATTG	CTCTAGGTCA	
GAGATCCAGT TCGATTTAAC CCACTCGTGC ACTCAACTGA TCTTTAGTAT CTTTTACTTT CACTAAGGT TCTCGGTGAG CAAAAACAG AACCCAAAAT	TCTCGGTGA	CACCAGGGTT	CTTTTACTTT	TCTTTCAGCAT	ACTEAACTEA	CCACTCGTGC	TCGATGTAAC	GAGATCCAGT	37101
GITGIGCCCI AITAIGGCGC GGIGIAICGI CIICAAAITT ICACGAGIAG TAACCITITIG CAAGAAGCCC CGCITITIGAG AGITCCIAGA AIGGGAAAA	CCCTTTTCA	CHACAAGCCC	TAACCTTTTG	TCACCACTAG	CTTCAAATFF	CCTCTATCCT	ATTATGGCGC	GTTGTGCCCT	
37001 CAACAGGA TAATACGGG CCACATAGGA GAACTTTAAA AGTAGTGATG ATTGAAAAC GTTCTTGGG GCBAAAACTC TCAAGGATCT TAGGGGTTT	GCGAAAACT	GTTCTTCGGG	ATTRICIANANC (AGTGCTCATC	GAACTTTAAA	CCACATAGCA	TANTACCGCG	CAACACGGGA	37001

Figure 15X

FIGURE 16

AGATET ACCATGGCCCCCATCTCCCCCATTGAGACTGTGCCTGTGAAGCCTGAAGCCTGGCATGGCCCCAAGGTGAA

Bg/ll MetAloProlieSerProlleGluThrVoiProVoiLysLeuLysProGlyMetAspGlyProLysVolLy

1 10 20

GCAGTGGCCCCTGACTGAGGAGAAGATCAAGGCCCTGGTGGAAATCTGCACTGAGATGGAGAAGGAGGGCAAAATCTCCA sGInTrpProLeuThrGIuGiu_ysIieLysAIaLeuVaIGIuIIeCysThrGIuMetGIuLysGIuGIyLysIieSerL 30 40 50

ACATTGGCCCCGAGAACCCCCTACAACACCCCTGTGTTTGCCATCAAGAAGAAGAAGACTCCACCAAGTGGAGGAAGCTGGTG
yslieGlyProGluAsnProTyrAsnThrProVolPheAlolleLysLysLysAspSerThrLysTrpArgLysLeuVol
60 70

GACTICAGGGAGCTGAACAAGAGGACCCAGGACTTCTGGGAGGTGCAGCTGGGCATCCCCCACCCCGCTGGCCTGAAGAA AspPheArgGluLeuAsnLysArgThrGlnAspPheTrpGluVolGlnLeuGlylleProHisProAloGlyLeuLysLy 80 90 100

GAAGAAGTCTGTGACTGTGCTGGGGGGATGCCTACTTCTCTGTGCCCCTGGATGAGGACTTCAGGAAGTACACTG slyslysSerVolThrVolLeu<u>Alo</u>VolGlyAspAloTyrPheSerVolProLeuAspGluAspPheArglysTyrThrA 110 120 130

CCTTCACCATCCCCTCCATCAACAATGAGACCCCTGGCATCAGGTACCAGTACAATGTGCTGCCCCAGGGCTGGAAGGGC loPheTnrlleProSerlleAsnAsnGluThrProGlylleArgTyrGInTyrAsnVciLeuProGlnGlyTrpLysGly 140 150

TCCCCTGCCATCTTCCAGTCCTCCATGACCAAGATCCTGGAGCCCTTCAGGAAGCAGAACCCTGACATTGTGATCTACCA SerProAlollePheGInSerSerMetThrLyslleLeuGluProPheArgLysGInAsnProAsplleVollleTyrGI 160 170 180

GTACATGGCTGCCCTGTATGTGGGCTCTGACCTGGAGATTGGGCAGCACGAGCACAAGATTGAGGAGCTGAGGCAGCACC
nTyrMetAloAloLeuTyrVolGTySerAspLeuGTuIteGTyGTnHisArgThrLysIteGTuGTuLeuArgGInHisL
190 200 210

TGCTGAGGTGGGGCCTGACCACCCCTGACAAGAAGCACCAGAAGGAGCCCCCCTTCCTGTGGATGGGCTATGAGCTGCAC euleuArgTrpGlyleuThrThrProAsplysLysHisGinLysGluProProPheLeuTrpMetGlyTyrGluLeuHis 220 230

CCCGACAGTGGACTGTGCAGCCCATTGTGCTGCCTGAGAAGGACTCCTGGACTGTGAATGACATCCAGAAGCTGGTGGG ProAspLysTrpThrVaiGinProIieVaiLeuProGiuLysAspSerTrpThrVaiAsnAspIieGinLysLeuVaiGi 240 250 260

CAAGCTGAACTGGGCCTCCCAAATCTACCCTGGCATCAAGGTGAGGCAGCTGTGCAAGCTGCTGAGGGGCACCAAGGCCCC
yLysLeuAsnTrpAloSerGinlieTyrProGiyIieLysVolArgGinLeuCysLysLeuLeuArgGiyThrLysAloL
270 280 290

FIGURE 17A

GGGGTGTACTATGACCCCTCCAAGGACCTGATTGCTGAGATCCAGAAGCAGGGCCAGGGGCCAGTGGACCTACCAAATCTA
GlyVolTyrTyrAspProSerLysAspLeulleAloGlulleGlnLysGlnGlyGlnGlyGlnTrpThrTyrGlnlleTy
320
330
340

CCACGAGCCCTTCAAGAACCTGAAGACTGGCAAGTATGCCAGGATGAGGGGGGGCCCACACCAATGATGTGAAGCAGCTGA rGInGIuProPheLysAsnLeuLysThrGIyLysTyrAlaArgMetArgGIyAloHisThrAsnAspVolLysGInLeuT 350 360 370

CTGAGGCTGTGCAGAAGATCACCACTGAGTCCATTGTGATCTGGGGCAAGACCCCCAAGTTCAAGCTGCCCATCCAGAAG hrGluAloVolGInLyslleThrThrGluSerlleVollleTrpGlyLysThrProLysPheLysLeuProlleGInLys 380 390

GGTGAAGCTGTGGTACCAGCTGGAGAAGGAGCCCCATTGTGGGGGGCTGAGACCTTCTATGTGGCTGGGGCTGCCAACAGGG uVollysleuTrpTyrGInLeuGIuLysGIuProlleVolGlyAloGIuThrPheTyrVolAloGIyAloAloAsnArgG 430 440 450

AAGACTGCCCTCCAGGCCATCTACCTGGCCCTCCAGGACTCTGGCCTGGAGGTGAACATTGTGACTGCCTCCCAGTATGC LysThr<u>Alo</u>LeuGInAlolleTyrLeuAloLeuGInAspSerGlyLeuGIuVolAsnIleVolThr<u>Alo</u>SerGInTyrAl 480 490 500

CCTGGGCATCATCCAGGCCCAGCCTGATCAGTCTGAGTCTGAGCTGGTGAACCAGATCATTGAGCAGCTGATCAAGAAGG oLeuGIylieIieGinAloGinProAspGinSerGiuSerGiuLeuVolAsnGinlieIieGiuGinLeulieLysLysG 510 520 530

AGAAGGTGTACCTGGCCTGGCTGCCCACAAGGCCATTGGGGGCAATGAGCAGGTGGACAAGCTGGTGTCTGCTGGC
!ulysvoiTyrleuAioTrpvoiProAioHislysGiyileGlyGlyAsnGluGinVoiAspLysLeuVoiSerAloGly
540 550

ATCAGGAAGGTGCTGTTCCTGGATGGCATTGACAAGGCCCAGGATGAGAAGTACCACTCCAACTGGAGGGCTAT

11eAr gLysVolleuPheleuAspGlyI1eAspLysAloG1nAspGluHisGluLysTyrHisSerAsnTrpAr gAloMe
560 570 580

FIGURE 17B

GGCCTCTGACTTCAACCTGCCCCCTGTGGTGGCTAAGGAGATTGTGGCCTCCTGTGACAAGTGCCAGCTGAAGGGGGAGG tAlaSerAspPheAsnLeuProProVolVolAlaLysGluileVolAlaSerCysAspLysCysGlnLeuLysGlyGluA 590 600 610

GCTGTGCATGTGGCCTCCGGCTACATTGAGGCTGAGGTGATCCCTGCTGAGACAGGCCAGGAGACTGCCTACTTCCTGCT AlovoHisVolAloSerGlyTyrIleGluAloGluVolIleProAloGluThrGlyGlnGluThrAloTyrPheLeuLe 640 650 660

GAAGCTGGCTGGCAGGTGGCCTGTGAAGACCATCCACACTGCCAATGGCTCCAACTTCACTGGGGCCACAGTGAGGGCTG
uLysLeuAloGlyArgTrpProVolLysThrlleHisThrAloAsnGlySerAsnPheThrGlyAloThrVolArgAloA
680
690

CCTGCTGGTGGGCTGGCATCAAGCAGGAGTTTGGCATCCCCTACAACCCCCAGTCCCAGGGGGTGGTGGCCTCCATGAAC LoCysTrpTrpAloGlylleLysGInGluPheGlylleProTyrAsnProGInSerGinGlyVolVolAloSerMetAsn 700 710

AAGGAGCTGAAGAAGATCATTGGGCAGGTGAGGGACCAGGCTGAGCACCTGAAGACAGCTGTGCAGATGGCTGTGTTCAT LysGluLeuLysLyslielleGlyGlnVolArgAspGlnAloGluHisLeuLysThrAloVolGlnMetAloVolPhell 720 730 740

CCACAACTTCAAGAGGAAGGGGGGCATCGGGGGCTACTCCGCTGGGGAGAGGATTGTGGACATCATTGCCACAGACATCC eHisAsnPheLysArgLysGlyGly1leGlyGlyTyrSerAlaGlyGluArgleValAsplleIleAlaThrAsplleG 750 760 770

AGACCAAGGAGCTCCAGAAGCAGATCACCAAGATCCAGAACTTCAGGGTGTACTACAGGGACTCCAGGAACCCCCTGTGG
InThrLysGluLeuGInLysGln!!eThrLysIleGInAsnPheArgVolTyrTyrArgAspSerArgAsnProLeuTrp
780 790

AAGGGCCCTGCCAAGCTGCTGTGGAAGGGGGAGGGGGGCTGTGGTGATCCAGGACAACTCTGACATCAAGGTGGTGCCCAG LysGtyProAtoLysLeuLeuTrpLysGtyGtuGtyAtoVotVotTteGtnAspAsnSerAspIteLysVotVotProAr 800 810 820

AAAGCCCCGCCAGATC" (SEQ ID NO: 3) Xx Bq/Il (SEQ ID NO: 4)

FIGURE 17C

CATCACCATGCAATGAAGAGAGGCTCTGCTGTGCTGCTGCTGTGGAGCAGTCTTTGGTTTCCC
MetAspAtoMetLysArgGlyLeuCysCysVatLeuLeuCysGlyAloVatPheVatSerP
-25

(within SEQ 10 NO: 7) (within SEQ 10 NO: 8) RoSerGiuileSerAtoProlieSerProlieGiuThrVoiProVoiLysLeuLysProGlyMetAspGly 20 10

FIGURE 18

WT OPT	- ATG GGT GGC AAG TGG TCA AAA CGT AGT GTG CCT GGA TGG TCT -42	
	M G G K W S K R S V P G W S -14	
WT	- ACT GTA AGG GAA AGA ATG AGA CGA GCT GAG CCA GCA GCA GAT -84	
OPT	- ÁCC GTG ÁGG GÁG ÁGG ÁTG ÁGG AGG GCC GÁG CCC GCC GCC GAC T V R E R M R R A E P A A D -28	
WT	- AGG GTG AGA CGA ACT GAG CCA GCA GCA GTA GGG GTG GGA GCA -126	
OPT	- AGG GTG AGG AGG ACC GAG CCC GCC GTG GGC GTG GGC GCC R V R R T E P A A V G V G A -42	
WT	- GTA TCT CGA GAC CTG GAA AAA CAT GGA GCA ATC ACA AGT AGC -168	
OPT	. GTG TCC AGG GAC CTG GAG AAG CAC GGC GCC ATC ACC TCC TCC V S R D L E K H G A I T S S -56	
WT	- AAT ACA GCA GCT ACC AAT GCT GAT TGT GCC TGG CTA GAA GCA -210	
OPT	- AAC ACC GCC GCC ACC AAC GCC GAC TGC GCC TGG CTG GAG GCC N T A A T N A D C A W L E A -70	
WT	- CAA GAG GAT GAG GAA GTG GGT TTT CCA GTC AGA CCT CAG GTA .252	
OPT	- CAG GAG GAC GAG GTG GGC TTC CCC GTG AGG CCC CAG GTG Q E D E E V G F P V R P Q V -84	
WT	- CCT TTA AGA CCA ATG ACT TAC AAG GGA GCT GTA GAT CTT AGC .294	,
OPT	- CCC CTG AGG CCC ATG ACC TAC AAG GGC GCC GTG GAC CTG TCC P L R P M T Y K G A V D L S -98	
WT	- CAC TTT TTA AAA GAA AAG GGG GGA CTG GAA GGG CTA ATT CAC -336	j
OPT	- CAC TTC CTG AAG GAG AAG GGC GGC CTG GAG GGC CTG ATC CAC H F L K E K G G L E G L I H -112	<u>}</u>
₩T	- TCA CAG AAA AGA CAA GAT ATC CTT GAT CTG TGG GTC TAC CAC -378	3
OPT	- TCC CAG AAG AGG CAG GAC ATC CTG GAC CTG TGG GTG TAC CAC S Q K R Q D I L D L W V Y H -126	5
WT	- ACA CAA GGC TAC TTC CCT GAT TGG CAG AAC TAC ACA CCA GGG -420)
OPT	- ACC CAG GGC TAC TTC CCC GAC TGG CAG AAC TAC ACC CCC GGC T Q G Y F P D W Q N Y T P G -140)

FIGURE 19A

WT OPT	CCA	 GG C	ATC	Н	Hc		CTG	ACC	HC	GGC	 TGG	III TGC		111		462 154
WT OPT	CTA CTG	GTA	CCA	GTT II	GAG GAG	CCA CCC	GAA GAG	AAG AAG	GTA GTG	GAA GAG	GAG GAG	GCC 111 GCC	AAT AAC	GAG		504
WT OPT	GGA GGC	GAG	AAC AAC	AAC AAC	TGC TGC	TTG CTG	TTA CTG	CAC	CCT	ATG	AGC TCC	CAG	CAC	11		546 182
WT OPT	ATA	111	GAC	CCC	III GAG	AAG	GAG	GTG	CTG	GAG	 TGG	AGG	TTC	11		5 88
WT OPT	TCC	11!	 CTG	GCC	HC	CAC	CAC	GTG	GCC	AGG	III GAG	CTG	CAC	CCC		·630 ·210
WT OPT		-111	TAC	AAG	GAC	TGC	TAA	(c	onta		l wit		SEQ	D NO	9)	-651 -216

FIGURE 19B

Srf1 Bg111

CAC CCC GAG TAC TAC AAG GAC TGC TAA AGCCCGGGCAGAICIGCTGGCCTTCTAGTTGCCAGC (SEQ 1D NO: 38)

H P E Y Y K D C * (Contained within SEQ 1D NO: 10:

V1Jns/nef(G2A.LLAA)

Psti Catgggictitic<u>igcag</u>tcaccgiccttg<u>agatct</u>gccacc atg gcc ggc ang tgg tcc aag agg tcc gtg ccc . M A G K W S K R S V P

SrfI BgIII H P E Y Y K D C * (contained within SEQ ID NO:14)

ViJns/tpanef & ViJns/tpanef(LLAA)

PSt. Catgggtcattgtgtgatcatcgtcattatatctagatcacc atg gat gca atg ang aga ggg ctc tgc tgt gtg M D A M K R G L C C V

CTG CTG CTG TGT GGA GCA GTC TTC GTT TCG CCC AGC GAG AIC ICC TCC AAG AGG TCC GTG CCC L L C G A V F V S P S $\stackrel{\rm goll}{
m E}$ I S S K R S V P

SrfI BgIIICAC CCC GAG TAC TAC AAG GAC TGC TAA *AGCCCGGGCAGAICIGCTGTGCCTTCTAGTTGCCAGC* (SEQ ID NO: 40) H P E Y Y K D C * (contained withon SEQ ID NO: 16)

FIGURE 21

FIGURE 22

FIGURE 23

Comparison of Clade B vs. Clade C Anti-gag T Cell Responses in Clade B HIV-Infected Subjects

FIGURE 25

g

Comparison of Clade B vs. Clade C Anti-nef T Cell Responses in Clade B HIV-Infected Subjects

MRKAd5pol MER1062 (MRKAd5 Pre-Adenoviral Vector Containing the IA opt pol Coding Region)

1	CATCATCAAT	AATATACCTT	ATTTTGGATT	GAAGCCAATA	TGATAATGAG
	${\tt GTAGTAGTTA}$	${\tt TTATATGGAA}$	TAAAACCTAA	CTTCGGTTAT	ACTATTACTC
51				TGGGAACGGG	
	CCCCACCTCA	AACACTGCAC	CGCGCCCCGC	ACCCTTGCCC	CGCCCACTGC
101	тастастстс	CCCCAACTCT	ርልጥርጥጥርርልል	GTGTGGCGGA	ACACATGTAA
101				CACACCGCCT	
	111 0271 0110110		011101210011		
151	GCGACGGATG	TGGCAAAAGT	GACGTTTTTG	GTGTGCGCCG	GTGTACACAG
	CGCTGCCTAC	ACCGTTTTCA	${\tt CTGCAAAAAC}$	CACACGCGGC	CACATGTGTC
201			=	GATGTTGTAG	
	CTTCACTGTT	AAAAGCGCGC	CAAAATCCGC	CTACAACATC	ATTTAAACCC
251	CCMX	መን አር አጥጥጥርር	<u> </u>	GGGAAAACTG	AATAAGAGGA
231			GGTAAAAGCG		TTATTCTCCT
	GCATIGGCIC	711 101722100			11111101001
301	AGTGAAATCT	GAATAATTTT	GTGTTACTCA	TAGCGCGTAA	TATTTGTCTA
	TCACTTTAGA	CTTATTAAAA	CACAATGAGT	ATCGCGCATT	ATAAACAGAT
351				AGACTCGCCC	
	CCCGGCGCCC	CTGAAACTGG	CAAATGCACC	TCTGAGCGGG	TCCACAAAAA
401	omas acmamm	mmooccommo	000000033330	TTGGCGTTTT	እመመ <u>አመው</u> አመአር
401				AACCGCAAAA	
	GAGICCACAA	DAAGGCGCAAG	GCCCAGIIIC	MCCGCMMA	IMIMIMIC
451	GCGGCCGCGA	TCCATTGCAT	ACGTTGTATC	CATATCATAA	TATGTACATT
	CGCCGGCGCT	AGGTAACGTA	TGCAACATAG	GTATAGTATT	ATACATGTAA
501				TGTTGACATT	
	ATATAACCGA	GTACAGGTTG	TAATGGCGGT	ACAACTGTAA	CTAATAACTG
F C 1	ma (mma mma a	m> cm> > mc> >	mm > CC CCCmc	ATTAGTTCAT	ACCCC ATAMA
551		-		TAATCAAGTA	
	Altmainnii	ALCALIAGII	ANIGCCCCAG	IMITCHIOIA	100001111111
601	TGGAGTTCCG	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG
	ACCTCAAGGC	GCAATGTATT	GAATGCCATT	TACCGGGCGG	ACCGACTGGC
651				ATGACGTATG	
	G GGTTGCT G G	GGGCGGGTAA	CTGCAGTTAT	TACTGCATAC	AAGGGTATCA
= 0.1	AACGCCAATA	00000000000	3 mmc 3 ccmc 3	NECCCECCNC	ma mmma cccm
/01	AACGCCAATA	CCCTCANACC	TA ACTICACTICA	TACCCACCTC	ATAAATGCCA
	IIGCGGIIAI	CCCIGAAAGG	IAACIGCAGI	INCCUNCCIC	PIRMIGGE:
751	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT	ATCATATGCC	AAGTACGCCC
	TTTGACGGGT	GAACCGTCAT	GTAGTTCACA	TAGTATACGG	TTCATGCGGG
801	CCTATTGACG	TCAATGACGG	TAAATGGCCC	GCCTGGCATT	ATGCCCAGTA
	GGATAACTGC	AGTTACTGCC	ATTTACCGGG	CGGACCGTAA	TACGGGTCAT
05-	01-01-00-	maaa3 cmmma	OHNOPPOCE.	Com N Co a m Com 7 Co	
851	CATGACCTTA				CATAATCAGT
	GTACTGGAAT	MUCCIGHAAG	GWIGWWCCGI	CUIGIUGUIG	CUITULICUGI

7 i jure 26A

901	TCGCTATTAC AGCGATAATG				
951	TAGCGGTTTG ATCGCCAAAC				
1001	TGGGAGTTTG ACCCTCAAAC				
1051	ACAACTCCGC TGTTGAGGCG		CAAATGGGCG GTTTACCCGC		
1101		CGTCTCGAGC	AAATCACTTG	GCAGTCTAGC	GGACCTCTGC
1151		ACAAAACTGG	AGGTATCTTC	TGTGGCCCTG	GCTAGGTCGG
1201	AGGCGCCGGC	CCTTGCCACG	ATTGGAACGC TAACCTTGCG	CCTAAGGGGC	ACGGTTCTCA
1251	CTCTAGATGG	TACCGGGGGT	TCTCCCCCAT AGAGGGGGTA	ACTCTGACAC	GGACACTTCG
1301	ACTTCGGACC	GTACCTACCG	CCCAAGGTGA GGGTTCCACT	TCGTCACCGG	GGACTGACTC
1351	CTCTTCTAGT	TCCGGGACCA	GGAAATCTGC CCTTTAGACG	TGACTCTACC	TCTTCCTCCC
1401	GTTTTAGAGG	TTCTAACCGG	CCGAGAACCC GGCTCTTGGG	GATGTTGTGG	GGACACAAAC
1451	GGTAGTTCTT	CTTCCTGAGG	ACCAAGTGGA TGGTTCACCT	CCTTCGACCA	CCTGAAGTCC
1501	CTCGACTTGT	TCTCCTGGGT	CCTGAAGACC	CTCCACGTCG	TGGGCATCCC ACCCGTAGGG
1551	GGTGGGGCGA	CCGGACTTCT	TCTTCTTCAG	ACACTGACAC	CTGGCTGTGG GACCGACACC
		GAAGAGACAC	GGGGACCTAC	TCCTGAAGTC	CTTCATGTGA
	CGGAAGTGGT	AGGGGAGGTA	GTTGTTACTC	TGGGGACCGT	TCAGGTACCA AGTCCATGGT
	CATGTTACAC	GACGGGGTCC	CGACCTTCCC	GAGGGGACGG	ATCTTCCAGT TAGAAGGTCA
	GGAGGTACTG	GTTCTAGGAC	CTCGGGAAGT	CCTTCGTCTT	CCCTGACATT GGGACTGTAA
1801	GTGATCTACC CACTAGATGG	AGTACATGGC TCATGTACCG	TGCCCTGTAT ACGGGACATA	GTGGGCTCTG CACCCGAGAC	ACCTGGAGAT TGGACCTCTA

1851	TGGGCAGCAC ACCCGTCGTG	A CCAAGA TCCTGGTTCT	TTGAGGAGCT AACTCCTCGA	GAGGCAGCAC CTCCGTCGTG	CTGCTG T GACGACTCCA
1901			AAGAAGCACC TTCTTCGTGG		
1951			CCCCGACAAG GGGGCTGTTC		
2001			GGACTGTGAA CCTGACACTT		
2051			CAAATCTACC GTTTAGATGG		
2101			CACCAAGGCC		
2151			AGCTGGCTGA TCGACCGACT		
2201			TATGACCCCT ATACTGGGGA		
2251			CCAGTGGACC GGTCACCTGG		
2301			GCAAGTATGC CGTTCATACG		
2351			ACTGAGGCTG TGACTCCGAC		
2401			GACCCCCAAG CTGGGGGTTC		
2451			GGACTGAGTA CCTGACTCAT		
2501			ACCCCCCCC TGGGGGGGGG		
2551	CTGGAGAAGG GACCTCTTCC				TGGCTGGGGC ACCGACCCCG
2601	TGCCAACAGG ACGGTTGTCC	GAGACCAAGC CTCTGGTTCG	TGGGCAAGGC ACCCGTTCCG	TGGCTATGTG ACCGATACAC	ACCAACAGGG TGGTTGTCCC
2651	GCAGGCAGAA CGTCCGTCTT	GGTGGTGACC CCACCACTGG	CTGACTGACA GACTGACTGT	CCACCAACCA GCTGGTTGGT	GAAGACTGCC CTTCTGACGG
2701	CTCCAGGCCA GAGGTCCGGT				AGGTGAACAT TCCACTTGTA
2751	TGTGACTGCC ACACTGACGG	TCCCAGTATG AGGGTCATAC	CCCTGGGCAT GGGACCCGTA	CATCCAGGCC GTAGGTCCGG	CAGCCTGATC GTCGGACTAG

2801				TTGAGCAGCT AACTCGTCGA	
2851	GAGAAGGTGT CTCTTCCACA	ACCTGGCCTG TGGACCGGAC	GGTGCCTGCC CCACGGACGG	CACAAGGGCA GTGTTCCCGT	TTGGGGGCAA AACCCCCGTT
2901				CATCAGGAAG GTAGTCCTTC	
2951				ATGAGAAGTA TACTCTTCAT	
3001				CCCCCTGTGG GGGGGACACC	
3051				GAAGGGGGAG CTTCCCCCTC	
3101				AGCTGGCCTG TCGACCGGAC	
3151				GTGGCCTCCG CACCGGAGGC	
3201				GGAGACTGCC CCTCTGACGG	
3251	TGAAGCTGGC ACTTCGACCG	TGGCAGGTGG ACCGTCCACC	CCTGTGAAGA GGACACTTCT	CCATCCACAC GGTAGGTGTG	TGCCAATGGC ACGGTTACCG
3301				GCCTGCTGGT CGGACGACCA	
3351				CCAGTCCCAG GGTCAGGGTC	
3401				TTGGGCAGGT AACCCGTCCA	
3451				GCTGTGTTCA CGACACAAGT	
3501	CAAGAGGAAG GTTCTCCTTC	GGGGGCATCG CCCCCGTAGC	GGGGCTACTC CCCCGATGAG	CGCTGGGGAG GCGACCCCTC	AGGATTGTGG TCCTAACACC
3551	ACATCATTGC TGTAGTAACG	CACAGACATC GTGTCTGTAG	CAGACCAAGG GTCTGGTTCC	AGCTCCAGAA TCGAGGTCTT	GCAGATCACC CGTCTAGTGG
3601					ACCCCCTGTG TGGGGGACAC
3651	GAAGGGCCCT CTTCCCGGGA	GCCAAGCTGC CGGTTCGACG	TGTGGAAGGG ACACCTTCCC	GGAGGGGGCT CCTCCCCGA	GTGGTGATCC CACCACTAGG
3701	AGGACAACTC TCCTGTTGAG	TGACATCAAG ACTGTAGTTC	GTGGTGCCCA CACCACGGGT	GGAGGAAGGC CCTCCTTCCG	CAAGATCATC GITCTAGTAG

Figure 26 D

3751	AGGGACTATG	AGCAGAT	GGCTGGGGAT	GACTGTGTĞĞ	CCTCCA CA
	TCCCTGATAC	CO.TCGTCTA	CCGACCCCTA	CTGACACACC	GGAGGT GT
3801				TGTGCCTTCT ACACGGAAGA	
3851				CCTTGACCCT GGAACTGGGA	
3901				GAAATTGCAT CTTTAACGTA	
3951	GAGTAGGTGT	CATTCTATTC	TGGGGGGTGG	GGTGGGGCAG	GACAGCAAGG
	CTCATCCACA	GTAAGATAAG	ACCCCCCACC	CCACCCCGTC	CTGTCGTTCC
4001	GGGAGGATTG	GGAAGACAAT	AGCAGGCATG	CTGGGGATGC	GGTGGGCTCT
	CCCTCCTAAC	CCTTCTGTTA	TCGTCCGTAC	GACCCCTACG	CCACCCGAGA
4051	ATGGCCGATC	GGCGCGCCGT	ACTGAAATGT	GTGGGCGTGG	CTTAAGGGTG
	TACCGGCTAG	CCGCGCGCCA	TGACTTTACA	CACCCGCACC	GAATTCCCAC
4101	GGAAAGAATA	TATAAGGTGG	GGGTCTTATG	TAGTTTTGTA	TCTGTTTTGC
	CCTTTCTTAT	ATATTCCACC	CCCAGAATAC	ATCAAAACAT	AGACAAAACG
4151	AGCAGCCGCC	GCCGCCATGA	GCACCAACTC	GTTTGATGGA	AGCATTGTGA
	TCGTCGGCGG	CGGCGGTACT	CGTGGTTGAG	CAAACTACCT	TCGTAACACT
4201	GCTCATATTT CGAGTATAAA	GACAACGCGC CTGTTGCGCG	ATGCCCCCAT TACGGGGGTA	GGGCCGGGT	GCGTCAGAAT CGCAGTCTTA
4251	GTGATGGGCT	CCAGCATTGA	TGGTCGCCCC	GTCCTGCCCG	CAAACTCTAC
	CACTACCCGA	GGTCGTAACT	ACCAGCGGGG	CAGGACGGGC	GTTTGAGATG
4301	TACCTTGACC	TACGAGACCG	TGTCTGGAAC	GCCGTTGGAG	ACTGCAGCCT
	ATGGAACTGG	AIGCTCTGGC	ACAGACCTTG	CGGCAACCTC	TGACGTCGGA
4351	00000000000000000000000000000000000000	TTCAGCCGCT AAGTCGGCGA	GCAGCCACCG CGTCGGTGGC	CCCGCGGGAT GGGCGCCCTA	TGTGACTGAC ACACTGACTG
4401	TTTGCTTTCC	TGAGCCCGCT	TGCAAACAGT	GCAGCTTCCC	GTTCATCCGC
	AAACGAAAGG	ACTCGGGCGA	ACGTTTGTCA	CGTCGAAGGG	CAAGTAGGCG
4451	CCGCGATGAC	AAGTTGACGG	CTCTTTTGGC	ACAATTGGAT	TCTTTGACCC
	GGCGCTACTG	TTCAACTGCC	GAGAAAACCG	TGTTAACCTA	AGAAACTGGG
4501	GGGAACTTAA CCCTTGAATT	TGTCGTTTCT ACAGCAAAGA	CAGCAGCTGT GTCGTCGACA	TGGATCTGCG ACCTAGACGC	CCAGCAGGTT GGTCGTCCAA
4551	TCTGCCCTGA AGACGGGACT	AGGCTTCCTC TCCGAAGGAG	CCCTCCCAAT GGGAGGGTTA	GCGGTTTAAA CGCCAAATTT	ACATAAATAA TGTATTTATT
4601	AAAACCAGAC	TCTGTTTGGA	TTTGGATCAA	A GCAAGTGTCT	TGCTGTCTTT
	TTTTGGTCTG	AGACAAACCT	AAACCTAGTI	CGTTCACAGA	ACGACAGAAA
4651	ATTTAGGGGT TAAATCCCCA	TTTGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	CGGTAGGCCC CGCCATCCGGC	GGGACCAGCG GCCTGGTCGC	GTCTCGGTCG CAGAGCCAGC

Figure 26E

4701				TGGTAAAGGT ACCATTTCCA	
4751				GGGGTGGAGG CCCCACCTCC	
4801				AGATGATCCA TCTACTAGGT	
4851				TTCAGTAGCA AAGTCATCGT	
4901				AAAGCGGTTA TTTCGCCAAT	
4951				TGGACTGTAT ACCTGACATA	
5001	••			TTCATGTTGT AAGTACAACA	
5051				TTTGTCATGT AAACAGTACA	
5101				TGTGACCTCC ACACTGGAGG	
5151				CCACGGGCGG GGTGCCCGCC	
5201				GTTGTGTTCC CAACACAAGG	
5251	••			GGAGGGTGCC CCTCCCACGG	
5301				TTACCCTCAC AATGGGAGTG	
5351				CATGTCTACC GTACAGATGG	
5401	TGAAGAAAAC ACTTCTTTTG	GGTTTCCGGG CCAAAGGCCC	GTAGGGGAGA CATCCCCTCT	TCAGCTGGGA AGTCGACCCT	AGAAAGCAGG TCTTTCGTCC
5451	TTCCTGAGCA AAGGACTCGT				AAATCACACC TTTAGTGTGG
5501	TATTACCGGC ATAATGGCCG				CCGTCATCCC GGCAGTAGGG
5551	TGAGCAGGGG ACTCGTCCCC				CATGTTTTCC GTACAAAAGG
5601	CTGACCAAAT GACTGGTTTA				GCAGTTCTTG CGTCAAGAAC

Figure 26F

5651	CAAGGAAGCA GTTCCTTCGT			ACCGTCCGCC TGGCAGGCGG	
5701				GGTCCCACAG CCAGGGTGTC	
5751				CCTCGTTTCG GGAGCAAAGC	
5801				TCGTCCAGAC AGCAGGTCTG	
5851				CAGCGTAGTC GTCGCATCAG	
5901				CCAGGGTGCG GGTCCCACGC	
5951				TCGCCCTGCG AGCGGGACGC	
6001				CCCCTCCGCG GGGGAGGCGC	
6051				CGCACGAGGG GCGTGCTCCC	
6101			GGGCGCGAGA CCCGCGCTCT	AATACCGATT TTATGGCTAA	CCGGGGAGTA GGCCCCTCAT
6151				CTCGCATTCC GAGCGTAAGG	
6201	ACTCGAGACC	GGCAAGCCCC	AGTTTTTGGT	GGTTTCCCCC CCAAAGGGGG	TACGAAAAAC
6251				CGGTGTCCAC GCCACAGGTG	
6301	GAAAAGGCTG CTTTTCCGAC	TCCGTGTCCC AGGCACAGGG	CGTATACAGA GCATATGTCT	CTTGAGAGGC GAACTCTCCG	CTGTCCTCGA GACAGGAGCT
6351	GCGGTGTTCC CGCCACAAGG	GCGGTCCTCC	TCGTATAGAA AGCATATCTT	ACTCGGACCA TGAGCCTGGT	CTCTGAGACA GAGACTCTGT
		AGGTCCGGTC	GTGCTTCCTC	CGATTCACCC	TCCCCATCGC
6451	GTCGTTGTCC CAGCAACAGG	ACTAGGGGGT TGATCCCCCA	CCACTCGCTC	CAGGGTGTGA GTCCCACACT	AGACACATGT TCTGTGTACA
		CCGTAGTTCC	TTCCACTAAC	CAAACATCCA	CATCCGGTGC
6551	TGACCGGGTG ACTGGCCCAC	TTCCTGAAGG AAGGACTTCC	GGGGCTATAA CCCCGATATT	AAGGGGGTGG TTCCCCCACC	GGGCGCGTTC CCCGCGCAAG

Figure 266

6601	ርጥሮርጥር እርጥ ር	ጥርጥጥርርርርልጥ	CGCTGTCTGC	GAGGGCCAGG	TETTGGGGATG
0001	CAGGAGTGAG	AGGCGTA	GCGACAGACG	CTCCCGGTCG	ACAACC
6651	AGTACTCCCT TCATGAGGGA	CTGAAAAGCG GACTTTTCGC	GGCATGACTT CCGTACTGAA	CTGCGCTAAG GACGCGATTC	ATTGTCAGTT TAACAGTCAA
6701				TGGCCCGCGG	
				ACCGGGCGCC	
6751	GAGGGTGGCC CTCCCACCGG	GCATCCATCT CGTAGGTAGA	GGTCAGAAAA CCAGTCTTTT	GACAATCTTT CTGTTAGAAA	TTGTTGTCAA AACAACAGTT
6801				TGGACAGCAA	
				ACCTGTCGTT	•
6851				GCGCGCTCCT CGCGCGAGGA	
6901	GTTTAGCTGC	ACGTATTCGC	GCGCAACGCA	CCGCCATTCG	GGAAAGACGG
				GGCGGTAAGC	
6951	TGGTGCGCTC	GTCGGGCACC	AGGTGCACGC	GCCAACCGCG	GTTGTGCAGG
				CGGTTGGCGC	
7001	GTGACAAGGT	CAACGCTGGT	GGCTACCTCT	CCGCGTAGGC	GCTCGTTGGT
	CACTGTTCCA	GTTGCGACCA	CCGATGGAGA	GGCGCATCCG	CGAGCAACCA
7051	CCAGCAGAGG	CGGCCGCCCT	TGCGCGAGCA	GAATGGCGGT	AGGGGGTCTA
	GGTCGTCTCC	GCCGGCGGGA	ACGCGCTCGT	CTTACCGCCA	TCCCCCAGAT
7101	GCTGCGTC TC	GTCCGGGGG	TCTGCGTCCA	CGGTAAAGAC	CCCGGGCAGC
	CGACGCAGAG	CAGGCCCCCC	AGACGCAGGT	GCCATTTCTG	GGGCCCGTCG
7151	AGGCGCGCGT	CGAAGTAGTC	TATCTTGCAT	CCTTGCAAGT	CTAGCGCCTG
	TCCGCGCGCA	GCTTCATCAG	ATAGAACGTA	GGAACGTTCA	GATCGCGGAC
7201	CTGCCATGCG	CGGGCGGCAA	GCGCGCGCTC	GTATGGGTTG	AGTGGGGGAC
	GACGGTACGC	GCCCGCCGTT	CGCGCGCGAG	CATACCCAAC	TCACCCCCTG
7251				CGTACATGCC	
	GGGTACCGTA	CCCCACCCAC	TCGCGCCTCC	GCATGTACGG	CGTTTACAGC
7301	TAAACGTAGA	GGGGCTCTCT	GAGTATTCCA	AGATATGTAG	GGTAGCATCT
	ATTTGCATCT	CCCCGAGAGA	CTCATAAGGT	TCTATACATC	CCATCGTAGA
7351	TCCACCGCGG	ATGCTGGCGC	GCACGTAATC	GTATAGTTCG	TGCGAGGGAG
	AGGTGGCGCC	TACGACCGCG	CGTGCATTAG	CATATCAAGC	ACGCTCCCTC
7401	CGAGGAGGTC	GGGACCGAGG	TTGCTACGGG	CGGGCTGCTC	TGCTCGGAAG
	GCTCCTCCAG	CCCTGGCTCC	AACGATGCCC	GCCCGACGAG	ACGAGCCTTC
7451	ACTATCTGCC	TGAAGATGGC	ATGTGAGTTG	GATGATATGG	TTGGACGCTG
	TGATAGACGG	ACTTCTACCG	TACACTCAAC	CTACTATACC	AACCTGCGAC
7501	GAAGACGTTG	AAGCTGGCGI	CTGTGAGACC	TACCGCGTCA	CGCACGAAGG
	CTTCTGCAAC	TTCGACCGCA	A GACACTCTGG	ATGGCGCAGT	GCGTGCTTCC

Figure 26 H

7551	A CCCCCTIA CCA	CCCACC	TTGTTGACCA	CCTCCCCCGT	GACCTC
1221	TCCCCATCCT	CAGCGCGTCG	AACAACTGGT	CGAGCCGCCA	CTGGACGTGC
	10000111001	000000-00	12701210200		
7601	TCTAGGGCGC	AGTAGTCCAG	GGTTTCCTTG	ATGATGTCAT	ACTTATCCTG
	AGATCCCGCG	TCATCAGGTC	CCAAAGGAAC	TACTACAGTA	TGAATAGGAC
7651			CGCGGTTGAG		
	AGGGAAAAA	AAGGTGTCGA	GCGCCAACTC	CTGTTTGAGA	AGCGCCAGAA
7701	ጥርር እርጥ አርጥር	ттссатсска	AACCCGTCGG	CCTCCGAACG	GTAAGAGCCT
7,01			TTGGGCAGCC		
7751			GGCCTGGTAG		
	TCGTACATCT	TGACCAACTG	CCGGACCATC	CGCGTCGTAG	GGAAAAGATG
7001	GGGTT GGGGG	mamaccmccac	CGGCCTTCCG	CARCGARGER	TGGGTGAGCG
7801			GCCGGAAGGC		
	CCCATCGCGC	AIACGOACGC	000000000000000000000000000000000000000	01000100110	
7851	CAAAGGTGTC	CCTGACCATG	ACTTTGAGGT	ACTGGTATTT	GAAGTCAGTG
			TGAAACTCCA		
7901			CCAGAGCAAA		
	AGCAGCGTAG	GCGGGACGAG	GGTCTCGTTT	TTCAGGCACG	CGAAAAACCT
7951	እ <i>ር</i> ርርርር እጥጥጥ	CCCACCCCA	AGGTGACATC	GTTGAAGAGT	ATCTTTCCCG
/951			TCCACTGTAG		
8001	CGCGAGGCAT	AAAGTTGCGT	GTGATGCGGA	AGGGTCCCGG	CACCTCGGAA
	GCGCTCCGTA	TTTCAACGCA	CACTACGCCT	TCCCAGGGCC	GTGGAGCCTT
			0000100100	A CHCCCCC A A	AGCCGTTGAT
8051	CGGTTGTTAA	AATCCACCC	CCCCTCCTCC	TAGAGCAGTT	TCGGCAACTA
	GCCAACAAII	AAIGGACCCG	ccgcrcgrgc	IACIACCIOII	10000.1101
8101	GTTGTGGCCC	ACAATGTAAA	GTTCCAAGAA	GCGCGGGATG	CCCTTGATGG
	CAACACCGGG	TGTTACATTT	CAAGGTTCTT	CGCGCCCTAC	GGGAACTACC
8151					
	TTCCGTTAAA	AAATTCAAGG	AGCATCCACT	CGAGAAGTCC	CCTCGACTCG
8201	СССТССТСТС	A A A G G G C C C A	GTCTGCAAGA	TGAGGGTTGG	AAGCGACGAA
8201	GGCACGAGAC	TTTCCCGGGT	CAGACGTTCT	ACTCCCAACC	TTCGCTGCTT
8251	TGAGCTCCAC	AGGTCACGGG	CCATTAGCAT	TTGCAGGTGG	TCGCGAAAGG
	ACTCGAGGTG	TCCAGTGCCC	GGTAATCGTA	AACGTCCACC	AGCGCTTTCC
			0002 BBBBBB	opecoome vm	GCAGTAGAAG
8301	TCCTAAACTG	CCCTCCATAC	CCCTALAAA	CIGGGGIGAI	CGTCATCTTC
	AGGATTTGAC	CGCIGONIAC	CGGIMMAAA	J.10000710144	
8351	GTAAGCGGGT	CTTGTTCCCA	GCGGTCCCAT	CCAAGGTTCG	CGGCTAGGTC
	CATTCGCCCA	GAACAAGGGT	CGCCAGGGTA	GGTTCCAAGC	GCCGATCCAG
8401	TCGCGCGGCA	GTCACTAGAG	GCTCATCTCC	GCCGAACTTC	ATGACCAGCA
	AGCGCGCCGT	CAGTGATCTC	CGAGTAGAGG	CGGCTTGAAG	TACTGGTCGT
8/51	ጥርል አ ሮርርርር እር	GAGCጥGCጥጥC	CCAAAGGCCC	CCATCCAAGT	ATAGGTCTCT
0477	ACTTCCCGTG	CTCGACGAAG	GGTTTCCGGG	GGTAGGTTCA	TATCCAGAGA

Figure 26I

8501	ACATCGTAGG	TAAAGAG	ACGCTCGGTG	CGAGGATGCG	AGCCGA
	TGTAGCATCC	ACTGTTTCTC	TGCGAGCCAC	GCTCCTACGC	TCGGCTAGCC
8551				GGAGTGGCTA CCTCACCGAT	
8601	GAAAGTAGAA	GTCCCTGCGA	CGGGCCGAAC	ACTCGTGCTG	GCTTTTGTAA
	CTTTCATCTT	CAGGGACGCT	GCCCGGCTTG	TGAGCACGAC	CGAAAACATT
8651	AAACGTGCGC	AGTACTGGCA	GCGGTGCACG	GGCTGTACAT	CCTGCACGAG
	TTTGCACGCG	TCATGACCGT	CGCCACGTGC	CCGACATGTA	GGACGTGCTC
8701	GTTGACCTGA	CGACCGCGCA	CAAGGAAGCA	GAGTGGGAAT	TTGAGCCCCT
	CAACTGGACT	GCTGGCGCGT	GTTCCTTCGT	CTCACCCTTA	AACTCGGGGA
8751	CGCCTGGCGG	GTTTGGCTGG	TGGTCTTCTA	CTTCGGCTGC	TTGTCCTTGA
	GCGGACCGCC	CAAACCGACC	ACCAGAAGAT	GAAGCCGACG	AACAGGAACT
8801	CCGTCTGGCT	GCTCGAGGGG	AGTTACGGTG	GATCGGACCA	CCACGCCGCG
	GGCAGACCGA	CGAGCTCCCC	TCAATGCCAC	CTAGCCTGGT	GGTGCGGCGC
8851	CGAGCCCAAA GCTCGGGTTT	GTCCAGATGT CAGGTCTACA	CCGCGCGCGC	CGGTCGGAGC GCCAGCCTCG	TTGATGACAA AACTACTGTT
8901	CATCGCGCAG	ATGGGAGCTG	TCCATGGTCT	GGAGCTCCCG	CGGCGTCAGG
	GTAGCGCGTC	TACCCTCGAC	AGGTACCAGA	CCTCGAGGGC	GCCGCAGTCC
8951	TCAGGCGGGA	GCTCCTGCAG	GTTTACCTCG	CATAGACGGG	TCAGGGCGCG
	AGTCCGCCCT	CGAGGACGTC	CAAATGGAGC	GTATCTGCCC	AGTCCCGCGC
9001	GGCTAGATCC	AGGTGATACC	TAATTTCCAG	GGGCTGGTTG	GTGGCGGCGT
	CCGATCTAGG	TCCACTATGG	ATTAAAGGTC	CCCGACCAAC	CACCGCCGCA
9051	CGATGGCTTG	CAAGAGGCCG	CATCCCCGCG	GCGCGACTAC	GGTACCGCGC
	GCTACCGAAC	GTTCTCCGGC	GTAGGGGCGC	CGCGCTGATG	CCATGGCGCG
9101	GGCGGGCGGT CCGCCCGCCA	CCCGGCGCCCC	GGTGTCCTTG CCACAGGAAC	GATGATGCAT CTACTACGTA	CTAAAAGCGG GATTTTCGCC
9151	TGACGCGGGC	GAGCCCCCGG	AGGTAGGGGG	GGCTCCGGAC	CCGCCGGGAG
	ACTGCGCCCG	CTCGGGGGCC	TCCATCCCC	CCGAGGCCTG	GGCGGCCCTC
9201	AGGGGGCAGG TCCCCCGTCC	GGCACGTCGG CCGTGCAGCC	CGCCGCGCGC	GGGCAGGAGC CCCGTCCTCG	TGGTGCTGCG ACCACGACGC
9251	CGCGTAGGTT	GCTGGCGAAC	GCGACGACGC	GGCGGTTGAT	CTCCTGAATC
	GCGCATCCAA	CGACCGCTTG	CGCTGCTGCG	CCGCCAACTA	GAGGACTTAG
9301	TGGCGCCTCT ACCGCGGAGA	GCGTGAAGAC CGCACTTCTG	GACGGGCCCG	GTGAGCTTGA CACTCGAACT	ACCTGAAAGA TGGACTTTCT
9351	GAGTTCGACA CTCAAGCTGT	GAATCAATTI CTTAGTTAAA	CGGTGTCGTT	CACGCCGGCC	TGGCGCAAAA ACCGCGTTTT
9401	TCTCCTGCAC AGAGGACGTG	GTCTCCTGAG CAGAGGACTC	TTGTCTTGAT	AGGCGATCTC	GGCCATGAAC CCGGTACTTG

Figure 26 J

9451	TGCTCGATCT	CTCCTG	GAGATCTCCG	CGTCCGGCTC	GCTCCATT
		GAAGGAGGAC TCGTTGGAAA			
9501		AGCAACCTTT			
9551	GGCCTCCCTC	GTTCCAGACG CAAGGTCTGC	CGGCTGTAGA	CCACGCCCCC	TTCGGCATCG AAGCCGTAGC
9601		TGACCACCTG			
2002		ACTGGTGGAC			
9651		TTTCGCAGGC AAAGCGTCCG			
9701		CACGAAGAAG			
		GTGCTTCTTC			
9751		CCAAGGCCTC GGTTCCGGAG			
9801		AAAAACTGGG TTTTTGACCC			
9851		GATGAGCTCG			
9001			CGCTGTCACA		
9901		CCTCTTCTTC GGAGAAGAAG			
9951		TCTTCTGGCG			
		AGAAGACCGC			
10001		CGGGAGGCGG GCCCTCCGCC			
10051		TGGTCTCGGT ACCAGAGCCA			
10101		CCGCCCGTCA			
10101		GGCGGGCAGT			
10151	CATGCGGCAG GTACGCCGTC	GGATACGGCG CCTATGCCGC	CTAACGATGC GATTGCTACG	ATCTCAACAA TAGAGTTGTT	TTGTTGTGTA AACAACACAT
10201	GGTACTCCGC	CGCCGAGGGA	CCTGAGCGAG	TCCGCATCGA	CCGGATCGGA
					GGCCTAGCCT
10251	AAACCTCTCG TTTGGAGAGC	AGAAAGGCGT TCTTTCCGCA	GATTGGTCAG	TGTCAGCGTT	GGTAGGCTGA CCATCCGACT
10301	GCACCGTGGC	GGGCGGCAGC	TODODODODO	CGGGGTTGTT	TCTGGCGGAG AGACCGCCTC
10351					GGCGGATGGT
10321	CACGACGACT	ACTACATTAA	TTTCATCCGC	CAGAACTCTG	CCGCCTACCA

Figure 26 K

10401	CGACAGAAGC GCTGTCTTCG	A TGTCCT TCTACAGGA	TGGGTCCGGC ACCCAGGCCG	CTGCTGAATG* GACGACTTAC	CGCAGGCATT GCGTCCCAA
10451				GGCGCAGGTC CCGCGTCCAG	
10501				TCTTCTCCTT AGAAGAGGAA	
10551				GGCGGAGTTT CCGCCTCAAA	
10601				CGAAGCCCCT GCTTCGGGGA	
10651				GCTAATATGG CGATTATACC	
10701	CTGCGTGAGG GACGCACTCC	GTAGACTGGA CATCTGACCT	AGTCATCCAT TCAGTAGGTA	GTCCACAAAG CAGGTGTTTC	CGGTGGTATG GCCACCATAC
10751	CGCCCGTGTT GCGGGCACAA	GATGGTGTAA CTACCACATT	GTGCAGTTGG CACGTCAACC	CCATAACGGA GGTATTGCCT	CCAGTTAACG GGTCAATTGC
10801				TACCTGAGAC ATGGACTCTG	
10851				CCGCACCAGG GGCGTGGTCC	
10901				AGAGGGGCCA TCTCCCCGGT	
10951				ATAAGGCGAT TATTCCGCTA	
11001				GGCGGTGGTG CCGCCACCAC	
11051				GCAGCGGCAA CGTCGCCGTT	
11101	ATGGTCGGGA TACCAGCCCT	CGCTCTGGCC	GGTCAGGCGC CCAGTCCGCG	GCGCAATCGT CGCGTTAGCA	TEACGCTCTA ACTGCGAGAT
11151					TGGTCTGGTG ACCAGACCAC
11201	GATAAATTCG CTATTTAAGC	CAAGGGTATC	ATGGCGGACG	ACCGGGGTTC TGGCCCCAAG	GAGCCCCGTA CTCGGGGCAT
11251	TCCGGCCGTC AGGCCGGCAG	CGCCGTGATC	CATGCGGTTA GTACGCCAAT	CCGCCCGCGT GGCGGGGGGA	GTCGAACCCA CAGCTTGGGT
11301	GGTGTGCGAC CCACACGCTG	GTCAGACAAC CAGTCTGTTG	GGGGGAGTGC CCCCTCACG	TCCTTTTGGC AGGAAAACCG	TTCCTTCCAG AAGGAAGGTC

Figure 26L

11351	CGCGCCGCCG	TGCGCTA ACGCGCGAT	GCTTTTTTGG CGAAAAAACC	CCACTGGCCG GGTGACCGGC	CGCGCA GT GCGCGT GCA
11401	AAGCGGTTAG TTCGCCAATC	GCTGGAAAGC CGACCTTTCG	GAAAGCATTA CTTTCGTAAT	AGTGGCTCGC TCACCGAGCG	TCCCTGTAGC AGGGACATCG
11451				GGGACCCCCG CCCTGGGGGC	
11501				TTGCCTCCCC AACGGAGGGG	
11551				GACGAGCCCC CTGCTCGGGG	
11601				GCGCCCCCT CGCGGGGGGA	
11651	GGCAAGAGCA CCGTTCTCGT	AGAGCAGCGG TCTCGTCGCC	CAGACATGCA GTCTGTACGT	GGGCACCCTC CCCGTGGGAG	CCCTCCTCCT GGGAGGAGGA
11701	ACCGCGTCAG TGGCGCAGTC	GAGGGGCGAC CTCCCCGCTG	ATCCGCGGTT TAGGCGCCAA	GACGCGGCAG CTGCGCCGTC	CAGATGGTGA GTCTACCACT
11751	TTACGAACCC AATGCTT GG G	CCGCGGCGCC	GGGCCCGCA CCCGGGCCGT	CTACCTGGAC GATGGACCTG	TTGGAGGAGG AACCTCCTCC
11801	GCGAGGGCCT CGCTCCCGGA	GGCGCGGCTA CCGCGCCGAT	GGAGCGCCCT CCTCGCGGGA	CTCCTGAGCG GAGGACTCGC	GCACCCAAGG CGTGGGTTCC
11851				TACGTGCCGC ATGCACGGCG	
11901	GTTTCGCGAC CAAAGCGCTG	CGCGAGGGAG GCGCTCCCTC	AGGAGCCCGA TCCTCGGGCT	GGAGATGCGG CCTCTACGCC	GATCGAAAGT CTAGCTTTCA
11951				TGAATCGCGA ACTTAGCGCT	
12001	CGCGAGGAGG GCGCTCCTCC	ACTTTGAGCC TGAAACTCGG	CGACGCGCGA GCTGCGCGCT	ACCGGGATTA TGGCCCTAAT	GTCCCGCGCG CAGGGCGCGC
12051	CGCACACGTG GCGTGTGCAC	GCGGCCGCCG	ACCTGGTAAC TGGACCATTG	CGCATACGAG GCGTATGCTC	CAGACGGTGA GTCTGCCACT
12101	ACCAGGAGAT TGGTCCTCTA	TAACTTTCAA ATTGAAAGTT	AAAAGCTTTA TTTTCGAAAT	ACAACCACGT TGTTGGTGCA	GCGTACGCTT CGCATGCGAA
12151	GTGGCGCGCG CACCGCGCGC	AGGAGGTGGC TCCTCCACCG	TATAGGACTG ATATCCTGAC	ATGCATCTGT TACGTAGACA	GGGACTTTGT CCCTGAAACA
12201	AAGCGCGCTG TTCGCGCGAC	GAGCAAAACC CTCGTTTTGG	CAAATAGCAA GTTTATCGTT	GCCGCTCATG CGGCGAGTAC	GCGCAGCTGT CGCGTCGACA
12251	TCCTTATAGT AGGAATATCA	GCAGCACAGC CGTCGTGTCG	AGGGACAACG	AGGCATTCAG TCCGTAAGTC	GGATGCGCTG CCTACGCGAC

7 igure 26 M

12301	CTAAACATAG GATTTGTATC	T GCCCGA ATCTCGGGCT	GGGCCGCTGG CCCGGCGACC	CTGCTCGATT GACGAGCTAA	TGATAA T ACTATTTGTA
12351	CCTGCAGAGC GGACGTCTCG			CTTGAGCCTG GAACTCGGAC	
12401	TGGCCGCCAT ACCGGCGGTA			TGGGCAAGTT ACCCGTTCAA	
1 2451	AAGATATACC TTCTATATGG			GACAAGGAGG CTGTTCCTCC	
12501	GGGGTTCTAC CCCCAAGATG	ATGCGCATGG TACGCGTACC	CGCTGAAGGT GCGACTTCCA	GCTTACCTTG CGAATGGAAC	AGCGACGACC TCGCTGCTGG
12551				AGGCCGTGAG TCCGGCACTC	
12601				CACAGCCTGC GTGTCGGACG	
12651				CGAGTCCTAC GCTCAGGATG	
12701				GCGCCCTGGA CGCGGGACCT	
12751				CGCGCTGGCA GCGCGACCGT	
12801	CGTGGAGGAA GCACCTCCTT	TATGACGAGG ATACTGCTCC	ACGATGAGTA TGCTACTCAT	CGAGCCAGAG GCTCGGTCTC	GACGGCGAGT CTGCCGCTCA
12851				GCAAGACGCA CGTTCTGCGT	
12901				CCGGCCTTAA GGCCGGAATT	
12951	GACTGGCGCC CTGACCGCGG	AGGTCATGGA TCCAGTACCT	CCGCATCATG GGCGTAGTAC	TCGCTGACTG AGCGACTGAC	CGCGCAATCC GCGCGTTAGG
13001	TGACGCGTTC ACTGCGCAAG	CGGCAGCAGC GCCGTCGTCG	CGCAGGCCAA GCGTCCGGTT	CCGGCTCTCC	GCAATTCTGG CGTTAAGACC
13051	AAGCGGTGGT TTCGCCACCA	CCCGCCCCCC	GCAAACCCCA CGTTTGGGGT	CGCACGAGAA GCGTGCTCTT	GGTGCTGGCG CCACGACCGC
13101	ATCGTAAACG TAGCATTTGC	CGCTGGCCGA GCGACCGGCT	AAACAGGGCC TTTGTCCCGG	ATCCGGCCCG TAGGCCGGGC	ACGAGGCCGG TGCTCCGGCC
13151	CCTGGTCTAC GGACCAGATG	GACGCGCTGC CTGCGCGACG	TTCAGCGCGT AAGTCGCGCA	GGCTCGTTAC CCGAGCAATG	AACAGCGGCA TTGTCGCCGT
13201	ACGTGCAGAC TGCACGTCTG	CAACCTGGAC GTTGGACCTG	CGGCTGGTGG GCCGACCACC	GGGATGTGCG CCCTACACGC	CGAGGCCGTG

Figure 26 N

13251	GCGCAGCGTG CGCGTCGCAC	A CCGCGCA TCGCGCGCGT	GCAGCAGGGC CGTCGTCCCG	AACCTGGGCT TTGGACCCGA	CCATGG CC GGTACCAACG
13301			CACAGCCCGC GTGTCGGGCG		
13351			AGCGCACTGC TCGCGTGACG		
13401			GTCTGGGCCA CAGACCCGGT		
13451			TAAACCTGAG ATTTGGACTC		
13501			GCTCCCACAG CGAGGGTGTC		
13551	AGCTTGCTGA TCGAACGACT	CGCCCAACTC GCGGGTTGAG	GCGCCTGTTG CGCGGACAAC	CTGCTGCTAA GACGACGATT	TAGCGCCCTT ATCGCGGGAA
13601			CCCGGGACAC GGGCCCTGTG		
13651			GGTCAGGCGC CCAGTCCGCG		
13701			CCGCGCGCTG GGCGCGCGAC		
13751	CCTGGAGGCA GGACCTCCGT	ACCCTAAACT TGGGATTTGA	ACCTGCTGAC TGGACGACTG	CAACCGGCGG GTTGGCCGCC	CAGAAGATCC GTCTTCTAGG
13801			AGCGAGGAGG TCGCTCCTCC	AGCGCATTTT TCGCGTAAAA	GCGCTACGTG CGCGATGCAC
13851	CAGCAGAGCG GTCGTCTCGC	TGAGCCTTAA ACTCGGAATT	CCTGATGCGC GGACTACGCG	GACGGGGTAA CTGCCCCATT	CGCCCAGCGT GCGGGTCGCA
13901					TATGCCTCAA ATACGGAGTT
13951	ACCGGCCGTT TGGCCGGCAA	TATCAACCGC ATAGTTGGCG	CTAATGGACT GATTACCTGA	ACTTGCATCG TGAACGTAGC	CGCCGCCGCC
14001	GTGAACCCCG CACTTGGGGC	AGTATTTCAC TCATAAAGTC	CAATGCCATC GTTACGGTAG	TTGAACCCGC AACTTGGGCG	ACTGGCTACC TGACCGATGG
14051	GCCCCTGGT CGGGGGACCA	TTCTACACCG AAGATGTGGC	GGGGATTCGA CCCCTAAGCT	GGTGCCCGAG CCACGGGCTC	GGTAACGATG CCATTGCTAC
14101	GATTCCTCTG CTAAGGAGAC	GGACGACATA CCTGCTGTAT	GACGACAGCG CTGCTGTCGC	TGTTTTCCCCC	GCAACCGCAG CGTTGGCGTC
14151	ACCCTGCTAG TGGGACGATC	AGTTGCAACA TCAACGTTGI	GCGCGAGCAG CGCGCTCGTC	GCAGAGGCGG CGTCTCCGCC	CGCTGCGAAA CGCGACGCTTT

7, gure 260

14201	GGAAAGCTTC	CAGGCCAA	GCAGCTTGTC	CGATCTAGĞC¨	GCTGCGCCC
	CCTTTCGAAG	GCCGGTT	CGTCGAACAG	GCTAGATCCG	CGACGC
14251				GCTTGATAGG CGAACTATCC	
14301	AGCACTCGCA	CCACCCGCCC	GCGCCTGCTG	GGCGAGGAGG	AGTACCTAAA
	TCGTGAGCGT	GGTGGGCGGG	CGCGGACGAC	CCGCTCCTCC	TCATGGATTT
14351	CAACTCGCTG	CTGCAGCCGC	AGCGCGAAAA	AAACCTGCCT	CCGGCATTTC
	GTTGAGCGAC	GACGTCGGCG	TCGCGCTTTT	TTTGGACGGA	GGCCGTAAAG
14401	CCAACAACGG	GATAGAGAGC	CTAGTGGACA	AGATGAGTAG	ATGGAAGACG
	GGTTGTTGCC	CTATCTCTCG	GATCACCTGT	TCTACTCATC	TACCTTCTGC
14451				GGCGCGGGGG	
14501				GTGGGAGGAC CACCCTCCTG	
14551				GGAGTGGCAA CCTCACCGTT	
14601	CACCTTCGCC	CCAGGCTGGG	GAGAATGTTT	TAAAAAAAAA	AAAAGCATGA
	GTGGAAGCGG	GGTCCGACCC	CTCTTACAAA	TTTTTTTT	TTTTCGTACT
14651	TGCAAAATAA	AAAACTCACC	AAGGCCATGG	CACCGAGCGT	TGGTTTTCTT
	ACGTTTTATT	TTTTGAGTGG	TTCCGGTACC	GTGGCTCGCA	ACCAAAAGAA
14701				TGTATGAGGA ACATACTCCT	
14751	CCCTCCTACG	AGAGTGTGGT	GAGCGCGGCG	CCAGTGGCGG	CGGCGCTGGG
	GGGAGGATGC	TCTCACACCA	CTCGCGCCGC	GGTCACCGCC	GCCGCGACCC
14801	TTCTCCCTTC	GATGCTCCCC	TGGACCCGCC	GTTTGTGCCT	CCGCGGTACC
	AAGAGGGAAG	CTACGAGGGG	ACCTGGGCGG	CAAACACGGA	GGCGCCATGG
14851				GTTACTCTGA CAATGAGACT	
14901	CTATTCGACA	CCACCCGTGT	GTACCTGGTG	GACAACAAGT	CAACGGATGT
	GATAAGCTGT	GGTGGGCACA	CATGGACCAC	CTGTTGTTCA	GTTGCCTACA
14951	GGCATCCCTG	AACTACCAGA	ACGACCACAG	CAACTIICTG	ACCACGGTCA
	CCGTAGGGAC	TTGATGGTCT	TGCTGGTGTC	GTTGAAAGAC	TGGTGCCAGT
15001	TTCAAAACAA AAGTTTTGTT	TGACTACAGO	CCGGGGGAGG GGCCCCTCC	CAAGCACACA GTTCGTGTGT	GACCATCAAT CTGGTAGTTA
15051	CTTGACGACC	GGTCGCACTG	GGGCGGCGAC	CTGAAAACCA	TCCTGCATAC
	GAACTGCTGG	CCAGCGTGAC	CCCGCCGCTG	GACTTTTGGT	AGGACGTATG
15101	CAACATGCCA	AATGTGAACG	AGTTCATGTT	TACCAATAAG	TTTAAGGCGC
	GTTGTACGGT	TTACACTTGC	TCAAGTACAA	ATGGTTATTC	AAATTCCGCG

Figure 26 P

15151	GGGTGATGGT CCCACTACCA	CAGCGCGAAC	CCTACTAAGG GGATGATTCC	ACAATCAGGT TGTTAGTCCA	GGAGCTA CCTCGACTTT
15201		TGGAGTTCAC ACCTCAAGTG			
15251	GACCATAGAC CTGGTATCTG	CTTATGAACA GAATACTTGT	ACGCGATCGT TGCGCTAGCA	GGAGCACTAC CCTCGTGATG	TTGAAAGTGG AACTTTCACC
15301		CGGGGTTCTG GCCCCAAGAC			
15351		GACTGGGGTT CTGACCCCAA			
15401		AACGAAGCCT TTGCTTCGGA			
15451		CTTCACCCAC GAAGTGGGTG			
15501		CCTTCCAGGA GGAAGGTCCT			
15551		ATTCCCGCAC TAAGGGCGTG			
15601		CACCGAACAG GTGGCTTGTC			CAGCAACAGC GTCGTTGTCG
15651	AGTGGCAGCG TCACCGTCGC	GCGCGGAAGA CGCGCCTTCT	GAACTCCAAC CTTGAGGTTG	GCGGCAGCCG CGCCGTCGGC	CGGCAATGCA GCCGTTACGT
15701		GACATGAACG CTGTACTTGC			
15751		GGAGAAGCGC CCTCTTCGCG			CGAAGCTGCC GCTTCGACGG
15801					AACCGGTGAT TTGGCCACTA
15851	CAAACCCCTG GTTTGGGGAC	ACAGAGGACA TGTCTCCTGT	GCAAGAAACG CGTTCTTTGC	CAGTTACAAC GTCAATGTTG	CTAATAAGCA GATTATTCGT
15901	ATGACAGCAC TACTGTCGTG	CTTCACCCAG GAAGTGGGTC	TACCGCAGCT ATGGCGTCGA	GGTACCTTGC CCATGGAACG	ATACAACTAC TATGTTGATG
15951	GGCGACCCTC CCGCTGGGAG	AGACCGGAAT TCTGGCCTTA	CCGCTCATGG GGCGAGTACC	ACCCTGCTTT TGGGACGAAA	GCACTCCTGA CGTGAGGACT
160,01	CGTAACCTGC GCATTGGACG	GGCTCGGAGC CCGAGCCTCG	AGGTCTACTG TCCAGATGAC	GTCGTTGCCA CAGCAACGGT	GACATGATGC CTGTACTACG
16051	AAGACCCCGT TTCTGGGGCA	GACCTTCCGC CTGGAAGGCG	TCCACGCGCC AGGTGCGCGG	AGATCAGCAA TCTAGTCGTT	CTTTCCGGTG CAAAGGCCAC

16101	GTGGGCGCCG	A TGTTGCC	CGTGCACTCC	AAGAGCTTCT	ACAACG CA
	CACCCGCGGC	T ACAACGG	GCACGTGAGG	TTCTCGAAGA	TGTTGC T
16151				TACCTCTCTG ATGGAGAGAC	
16201				GCGCGGGCGG	
16251				CTCACAGATC GAGTGTCTAG	
16301				GCGAGTGACC CGCTCACTGG	
16351	CCAGACGCCG	CACCTGCCCC	TACGTTTACA	AGGCCCTGGG	CATAGTCTCG
	GGTCTGCGGC	GTGGACGGGG	ATGCAAATGT	TCCGGGACCC	GTATCAGAGC
16401	CCGCGCGTCC	TATCGAGCCG	CACTTTTTGA	GCAAGCATGT	CCATCCTTAT
	GGCGCGCAGG	ATAGCTCGGC	GTGAAAAACT	CGTTCGTACA	GGTAGGAATA
16451	ATCGCCCAGC	AATAACACAG	GCTGGGGCCT	GCGCTTCCCA	AGCAAGATGT
	TAGCGGGTCG	TTATTGTGTC	CGACCCCGGA	CGCGAAGGGT	TCGTTCTACA
16501				ACCCAGTGCG TGGGTCACGC	
16551	CACTACCGCG	CGCCCTGGGG	CGCGCACAAA	CGCGGCCGCA	CIGGGCGCAC
	GTGATGGCGC	GCGGGACCCC	GCGCGTGTTT	GCGCCGGCGT	GACCCGCGTG
16601	CACCGTCGAT	GACGCCATCG	ACGCGGTGGT	GGAGGAGGCG	CGCAACTACA
	GTGGCAGCTA	CTGCGGTAGC	TGCGCCACCA	CCTCCTCCGC	GCGTTGATGT
16651	CGCCCACGCC	GCCACCAGTG	TCCACAGTGG	ACGCGGCCAT	TCAGACCGTG
	GCGGGTGCGG	CGGTGGTCAC	AGGTGTCACC	TGCGCCGGTA	AGTCTGGCAC
16701	GTGCGCGGAG	CCCGGCGCTA	TGCTAAAATG	AAGAGACGGC	GGAGGCGCGT
	CACGCGCCTC	GGGCCGCGAT	ACGATTTTAC	TTCTCTGCCG	CCTCCGCGCA
16751	AGCACGTCGC TCGTGCAGCG	CACCGCCGCC GTGGCGGCGG	GACCCGGCAC CTGGGCCGTG	TGCCGCCCAA ACGGCGGGTT	CGCGCGCGC
16801	CGGCCCTGCT	TAACCGCGCA	CGTCGCACCG	GCCGACGGGC	GGCCATGCGG
	GCCGGGACGA	ATTGGCGCGT	GCAGCGTGGC	CGGCTGCCCG	CCGGTACGCC
16851	GCCGCTCGAA	GGCTGGCCGC	GGGTATTGTC	ACTGTGCCCC	CCAGGTCCAG
	CGGCGAGCTT	CCGACCGGCG	CCCATAACAG	TGACACGGGG	GGTCCAGGTC
16901	GCGACGAGCG	GCCGCCGCAG	CAGCCGCGCC	CATTAGTGCT	ATGACTCAGG
	CGCTGCTCGC	CGGCGGCGTC	GTCGGCGCCC	GTAATCACGA	TACTGAGTCC
16951	GTCGCAGGGG CAGCGTCCCC	CAACGTGTAT GTTGCACATA	TGGGTGCGCGC	ACTCGGTTAG TGAGCCAATC	CGGCCTGCGC GCCGGACGCG
17001	GTGCCCGTGC CACGGGCACG	GCACCGCCC CGTGGGCGGG	CCCGCGCAAC	TAGATTGCAA ATCTAACGTT	GAAAAAACTA CTTTTTTGAT

17051	CTTAGACTCG GAATCTGAGC	T GTTGTA ATGACAACAT	TGTATCCAGC ACATAGGTCG	ccecceccec	CGCAAC G GCGTTGCTIC
17101	CTATGTCCAA GATACAGGTT		AAAGAAGAGA TTTCTTCTCT		
17151	GAGATCTATG CTCTAGATAC		GAAGGAAGAG CTTCCTTCTC		
17201			AAAAGAAAGA TTTTCTTTCT		
17251			GCTACCGCGC CGATGGCGCG		
17301			TGTTTTGCGA ACAAAACGCT		
17351	TACGCCCGGT ATGCGGGCCA	GAGCGCTCCA CTCGCGAGGT	CCCGCACCTA GGGCGTGGAT	CAAGCGCGTG GTTCGCGCAC	TATGATGAGG ATACTACTCC
17401			CTTGAGCAGG GAACTCGTCC		
17451			TAAGGACATG ATTCCTGTAC		
17501	GGGCAACCCA CCCGTTGGGT	ACACCTAGCC TGTGGATCGG	TAAAGCCCGT ATTTCGGGCA	AACACTGCAG TTGTGACGTC	CAGGTGCTGC GTCCACGACG
17551			GAAAAGCGCG CTTTTCGCGC		
17601			GCTGATGGTA CGACTACCAT		
17651			CCGTGGAACC GGCACCTTGG		
17701			GTGGCGCCGG CACCGCGGCC		GCAGACCGTG CGTCTGGCAC
17751	GACGTTCAGA CTGCAAGTCT	TACCCACTAC ATGGGTGATG	CAGTAGCACC GTCATCGTGG	AGTATTGCCA TCATAACGGT	CCGCCACAGA GGCGGTGTCT
17801	GGGCATGGAG CCCGTACCTC	ACACAAACGT TGTGTTTGCA	CCCCGGTTGC GGGGCCAACG	CTCAGCGGTG GAGTCGCCAC	GCGGATGCCG CGCCTACGGC
17851	CGGTGCAGGC GCCACGTCCG	GGTCGCTGCG CCAGCGACGC	GCCGCGTCCA CGGCGCAGGT	AGACCTCTAC TCTGGAGATG	GGAGGTGCAA CCTCCACGTT
17901	ACGGACCCGT TGCCTGGGCA	GGATGTTTCG CCTACAAAGO	CGTTTCAGCC CCAAAGTCGG	GCCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CGCGCCGTTC GCGCGGCAAG
17951	GAGGAAGTAC CTCCTTCATG	GGCGCCGCCA CCGCGGCGGT	GCGCGCTACT CGCGCGATGA	GCCCGAATAT CGGGCTTATA	GCCCTACATC CGGGATGTAG

18001	CTTCCATTGC GAAGGTAACG	GCCTACCCCC	GGCTATCGTG CCGATAGCAC	GCTACACCTAL CGATGTGGAT	GGCGGG T
18051	AGACGAGCAA TCTGCTCGTT	CTACCCGACG GATGGGCTGC	CCGAACCACC GGCTTGGTGG	ACTGGAACCC TGACCTTGGG	CGGCGGCGGC
18101	TCGCCGTCGC AGCGGCAGCG	CAGCCCGTGC GTCGGGCACG	TGGCCCCGAT ACCGGGGCTA	TTCCGTGCGC AAGGCACGCG	AGGGTGGCTC TCCCACCGAG
18151	GCGAAGGAGG CGCTTCCTCC	CAGGACCCTG GTCCTGGGAC	GTGCTGCCAA CACGACGGTT	CAGCGCGCTA GTCGCGCGAT	CCACCCCAGC GGTGGGGTCG
18201				GCAGATATGG CGTCTATACC	
18251	CCGCCTCCGT GGCGGAGGCA	TTCCCGGTGC AAGGGCCACG	CGGGATTCCG GCCCTAAGGC	AGGAAGAATG TCCTTCTTAC	CACCGTAGGA GTGGCATCCT
18301				GCATGCGTCG CGTACGCAGC	
18351	CGCCGCCGC	GCGCGTCGCA CGCGCAGCGT	CCGTCGCATG GGCAGCGTAC	CGCGGCGGTA GCGCCGCCAT	TCCTGCCCCT AGGACGGGGA
18401				CGCCGTGCCC GCGGCACGGG	
18451	CCGTGGCCTT GGCACCGGAA	GCAGGCGCAG CGTCCGCGTC	AGACACTGAT TCTGTGACTA	TAAAAACAAG ATTTTTGTTC	TTGCATGTGG AACGTACACC
18501	AAAAATCAAA TTTTTAGTTT			CGCTCGCTTG GCGAGCGAAC	
18551				CGTCTCTGGC GCAGAGACCG	
18601	GGCTCGCGCC CCGAGCGCGG	CGTTCATGGG GCAAGTACCC	AAACTGGCAA TTTGACCGTT	GATATCGGCA CTATAGCCGT	CCAGCAATAT GGTCGTTATA
18651					TTAAAAATT AATTTTTAAT
18701	TCGGTTCCAC AGCCAAGGTG	CGTTAAGAAC GCAATTCTTG	TATGGCAGGA ATACCGTCGT	AGGCCTGGAA TCCGGACCTT	CAGCAGCACA GTCGTCGTGT
18751	GGCCAGATGC CCGGTCTACG	TGAGGGATAA ACTCCCTATT	GTTGAAAGAG CAACTTTCTC	CAAAATTTCC GTTTTAAAGG	AACAAAAGGT TTGTTTTCCA
18801	GGTAGATGGC CCATCTACCG	CTGGCCTCTG GACCGGAGAC	GCATTAGCGG CGTAATCGCC	GGTGGTGGAC CCACCACCTG	CTGGCCAACC GACCGGTTGG
18851	AGGCAGTGCA TCCGTCACGT	AAATAAGATT TTTATTCTAA	AACAGTAAGO TTGTCATTCG	TTGATCCCCG	CCCTCCCGTA CGGAGGGCAT
18901	GAGGAGCCTC CTCCTCGGAG	CACCGGCCGT GTGGCCGGCA	GGAGACAGTG CCTCTGTCAC	TCTCCAGAGG AGAGGTCTCC	GGCGTGGCGA CCGCACCGCT

Figure 26T

18951	AAAGCGTCCG TTTCGCAGGC	CCGACA GCGGGCTGT	GGGAAGAAAC CCCTTCTTTG	TCTGGTGACG AGACCACTGC	CAAATA G
19001		GTACGAGGAG CATGCTCCTC			
19051		CCATGGCTAC GGTACCGATG			
19101		CCTCCCCCG GGAGGGGGGC			
19151		CGTTGTTGTA GCAACAACAT			
19201		GTCCGCGATC CAGGCGCTAG			
19251		AACAGCATCG TTGTCGTAGC			
19301		CTGATAGCTA GACTATCGAT			
19351		CAGAGGAGCT GTCTCCTCGA			
19401		TTCGATGATG AAGCTACTAC			CATCTCGGGC GTAGAGCCCG
19451		CGGAGTACCT GCCTCATGGA			
19501					CCCACGGTGG GGGTGCCACC
19551		CGACGTGACC GCTGCACTGG			GACGCTGCGG CTGCGACGCC
19601					AGGCGCGGTT TCCGCGCCAA
19651	CACCCTAGCT GTGGGATCGA	GTGGGTGATA CACCCACTAT	ACCGTGTGCT TGGCACACGA	GGACATGGCT CCTGTACCGA	TCCACGTACT AGGTGCATGA
19701	TTGACATCCG AACTGTAGGC	CGGCGTGCTG GCCGCACGAC	GACAGGGGCC CTGTCCCCGG	CTACTTTTAA GATGAAAATT	GCCCTACTCT CGGGATGAGA
19751	GGCACTGCCT CCGTGACGGA	ACAACGCCCT TGTTGCGGGA	GGCTCCCAAG CCGAGGGTTC	GGTGCCCCAA CCACGGGGTT	ATCCTTGCGA TAGGAACGCT
19801	ATGGGATGAA TACCCTACTT	GCTGCTACTG CGACGATGAC	CTCTTGAAAT GAGAACTTTA	AAACCTAGAA TTTGGATCTT	GAAGAGGACG CTTCTCCTGC
19851	ATGACAACGA TACTGTTGCT	AGACGAAGTA TCTGCTTCAT	GACGAGCAAG	CTGAGCAGCA GACTCGTCGT	AAAAACTCAC TTTTTGAGTG

Figure 26 U

19901	GTATTTGGGC CATAAACCCG		AATATTACAA TTATAATGTT	
19951	TCAAATAGGT AGTTTATCCA		ATATGCCGAT TATACGGCTA	
20001			GGTACGAAAC CCATGCTTTG	
20051	CATGCAGCTG GTACGTCGAC		ACCCCAATGA TGGGGTTACT	
20101			TGGAGGGCAA ACCTCCCGTT	
20151	TAAAGCAACA ATTTCGTTGT		AAGTGGAAAT TTCACCTTTA	
20201			GATAACTTGA CTATTGAACT	
20251			AACCCCAGAC TTGGGGTCTG	
20301			CACGAGAACT GTGCTCTTGA	
20351	CAATCTATGC GTTAGATACG		GCTTTTAGGG CGAAAATCCC	
20401			TATGGGTGTT ATACCCACAA	
20451			TGCAAGACAG ACGTTCTGTC	
20501			GGTGATAGAA CCACTATCTT	
20551			TGATCCAGAT ACTAGGTCTA	
20601			CAAATTACTG GTTTAATGAC	
20651			AAGGTAAAAC TTCCATTTTG	CTAAAACAGG GATTTTGTCC
20701	TCAGGAAAAT AGTCCTTTTA		AGAATTTTCA TCTTAAAAGT	
20751	AAATAAGAGT TTTATTCTCA			AAATGCCAAC TITACGGTTG
20801				TGCCCGACAA ACGGGCTGTT

Figure 26 V

20851	GCTAAAGTAC	ACCCTTCCA	ACGTAAAAAT	TTCTGATÄÄC	CCAAAC) T
	CGATTTCATG	TGAAGGT	TGCATTTTTA	AAGACTATTG	GGTTTG A
20901	ACGACTACAT	GAACAAGCGA	GTGGTGGCTC	CCGGGCTAGT	GGACTGCTAC
	TGCTGATGTA	CTTGTTCGCT	CACCACCGAG	GGCCCGATCA	CCTGACGATG
20951				TATATGGACA ATATACCTGT	
21001	ATTTAACCAC	CACCGCAATG	CTGGCCTGCG	CTACCGCTCA	ATGTTGCTGG
	TAAATTGGTG	GTGGCGTTAC	GACCGGACGC	GATGGCGAGT	TACAACGACC
21051	GCAATGGTCG	CTATGTGCCC	TTCCACATCC	AGGTGCCTCA	GAAGTTCTTT
	CGTTACCAGC	GATACACGGG	AAGGTGTAGG	TCCACGGAGT	CTTCAAGAAA
21101	GCCATTAAAA	ACCTCCTTCT	CCTGCCGGGC	TCATACACCT	ACGAGTGGAA
	CGGTAATTTT	TGGAGGAAGA	GGACGGCCCG	AGTATGTGGA	TGCTCACCTT
21151	CTTCAGGAAG	GATGTTAACA	TGGTTCTGCA	GAGCTCCCTA	GGAAATGACC
	GAAGTCCTTC	CTACAATTGT	ACCAAGACGT	CTCGAGGGAT	CCTTTACTGG
21201	TAAGGGTTGA	CGGAGCCAGC	ATTAAGTTTG	ATAGCATTTG	CCTTTACGCC
	ATTCCCAACT	GCCTCGGTCG	TAATTCAAAC	TATCGTAAAC	GGAAATGCGG
21251				TCCACGCTTG AGGTGCGAAC	
21301	TAGAAACGAC	ACCAACGACC	AGTCCTTTAA	CGACTATCTC	TCCGCCGCCA
	ATCTTTGCTG	TGGTTGCTGG	TCAGGAAATT	GCTGATAGAG	AGGCGGCGGT
21351	ACATGCTCTA	CCCTATACCC	GCCAACGCTA	CCAACGTGCC	CATATCCATC
	TGTACGAGAT	GGGATATGGG	CGGTTGCGAT	GGTTGCACGG	GTATAGGTAG
21401	CCCTCCCGCA	ACTGGGCGGC	TTTCCGCGGC	TGGGCCTTCA	CGCGCCTTAA
	GGGAGGGCGT	TGACCCGCCG	AAAGGCGCCG	ACCCGGAAGT	GCGCGGAATT
21451	GACTAAGGAA	ACCCCATCAC	TGGGCTCGGG	CTACGACCCT	TATTACACCT
	CTGATTCCTT	TGGGGTAGTG	ACCCGAGCCC	GATGCTGGGA	ATAATGTGGA
21501	ACTCTGGCTC	TATACCCTAC	CTAGATGGAA	CCTTTTACCT	CAACCACACC
	TGAGACCGAG	ATATGGGATG	GATCTACCTT	GGAAAATGGA	CTTGGTGTGG
21551	TTTAAGAAGG	TGGCCATTAC	CTTTGACTCT	TCTGTCAGCT	GGCCTGGCAA
	AAATTCTTCC	ACCGGTAATG	GAAACTGAGA	AGACAGTCGA	CCGGACCGTT
21601	TGACCGCCTG	CTTACCCCCA	ACGAGTTTGA	AATTAAGCGC	TCAGTTGACG
	ACTGGCGGAC	GAATGGGGGT	TGCTCAAACT	TTAATTCGCG	AGTCAACTGC
21651	GGGAGGGTTA	CAACGTTGCC	CAGTGTAACA	TGACCAAAGA	CTGGTTCCTG
	CCCTCCCAAT	GTTGCAACGG	GTCACATTGT	ACTGGTTTCT	GACCAAGGAC
21701	GTACAAATGC CATGTTTACG	TAGCTAACTA ATCGATTGAT	TAACATTGGC ATTGTAACCG	TACCAGGGCT ATGGTCCCGA	TCTATATCCC AGATATAGGG
21751	AGAGAGCTAC TCTCTCGATG	: AAGGACCGCA	TGTACTCCTT	CTTTAGAAAC GAAATCTTTG	TTCCAGCCCA AAGGTCGGGT

21801	TGAGCCGTCA ACTCGGCAGT	GCTGGTGGAT CCACCTA	GATACTAAAT CTATGATTTA	ACAAGGACTA TGTTCCTGAT	ECAACAECTG GGTTGT
21851	GGCATCCTAC CCGTAGGATG			TTTGTTGGCT AAACAACCGA	
21901				TAACTTCCCC ATTGAAGGGG	
21951				AGAAAAAGTT TCTTTTTCAA	
22001				AACTTTATGT TTGAAATACA	
22051				CGCCAACTCC GCGGTTGAGG	
22101				ACGAGCCCAC TGCTCGGGTG	
22151				GTGCACCAGC CACGTGGTCG	
22201				CTTCTCGGCC GAAGAGCCGG	
22251				AGCTGCCGCC TCGACGGCGG	
22301				ATCTTGGTTG TAGAACCAAC	
22351	TTTTTGGGCA AAAAACCCGT	CCTATGACAA GGATACTGTT	GCGCTTTCCA CGCGAAAGGT	GGCTTTGTTT CCGAAACAAA	CTCCACACAA GAGGTGTGTT
22401	GCTCGCCTGC CGAGCGGACG	GCCATAGTCA CGGTATCAGT	ATACGGCCGG TATGCCGGCC	TCGCGAGACT AGCGCTCTGA	GGGGGCGTAC CCCCCGCATG
22451				CAAAAACATG GTTTTTGTAC	
22501	GAGCCCTTTG CTCGGGAAAC	GCTTTTCTGA CGAAAAGACT	CCAGCGACTC GGTCGCTGAG	AAGCAGGTTT TTCGTCCAAA	ACCAGTTTGA TGGTCAAACT
22551	GTACGAGTCA CATGCTCAGT	CTCCTGCGCC GAGGACGCGG	GTAGCGCCAT CATCGCGGTA	TGCTTCTTCC ACGAAGAAGG	CCCGACCGCT GGGCTGGCGA
22601	GTATAACGCT CATATTGCGA	GGAAAAGTCC CCTTTTCAGG	ACCCAAAGCG TGGGTTTCGC	TACAGGGGCC ATGTCCCCGG	CAACTCGGCC GTTGAGCCGG
22651	GCCTGTGGAC CGGACACCTG	TATTCTGCTG ATAAGACGAC	CATGTTTCTC GTACAAAGAG	CACGCCTTTG GTGCGGAAAC	CCAACTGGCC GGTTGACCGG
22701	CCAAACTCCC GGTTTGAGGG	ATGGATCACA TACCTAGTGT	ACCCCACCAT TGGGGTGGTA	GAACCTTATT CTTGGAATAA	ACCGGGGTAC TGGCCCCATG

22751	CCAACTCCAT GGTTGAGGTA	GCTCAACAGT CTTGTCA	CCCCAGGTAC GGGGTCCATG	AGCCCACGCAT TCGGGTGGGA	GGCAGC GGCAGC
22801				CACTCGCCCT GTGAGCGGGA	
22851				TTTTTGTCAC AAAAACAGTG	
22901				ATAAAGGCAA TATTTCCGTT	
22951				ACCCTTGCCG TGGGAACGGC	
23001				GCTATGCGCC CGATACGCGG	
23051				ACTTAAACTC TGAATTTGAG	
23101				CACAGGCTGC GTGTCCGACG	
23151				CTTGAAGTCG GAACTTCAGC	
23201	CTCCGCCCTG GAGGCGGGAC	CGCGCGCGAG GCGCGCGCTC	TTGCGATACA AACGCTATGT	CAGGGTTGCA GTCCCAACGT	GCACTGGAAC CGTGACCTTG
23251		CCGGGTGGTG GGCCCACCAC	CACGCTGGCC GTGCGACCGG		TGTCGGAGAT ACAGCCTCTA
23301			CCGCGTTGCT GGCGCAACGA	CAGGGCGAAC GTCCCGCTTG	GGAGTCAACT CCTCAGTTGA
23351				GCCCAGGCTT CGGGTCCGAA	
23401	TCGCACCGTA AGCGTGGCAT	GTGGCATCAA CACCGTAGTT	AAGGTGACCG TTCCACTGGC	TGCCCGGTCT ACGGGCCAGA	GGGCGTTAGG CCCGCAATCC
23451	ATACAGCGCC TATGTCGCGG	TGCATAAAAG ACGTATTTTC	CCTTGATCTG GGAACTAGAC	CTTAAAAGCC GAATTTTCGG	ACCTGAGCCT TGGACTCGGA
23501	TTGCGCCTTC AACGCGGAAG	AGAGAAGAAC TCTCTTCTTG	ATGCCGCAAG TACGGCGTTC	ACTTGCCGGA TGAACGGCCT	AAACTGATTG TTTGACTAAC
23551	GCCGGACAGG CGGCCTGTCC	CCGCGTCGTG GGCGCAGCAC	CACGCAGCAC GTGCGTCGTG	CTTGCCTCGG GAACGCAGCC	TGTTGGAGAT ACAACCTCTA
23601	CTGCACCACA GACGTGGTGT	TTTCGGCCCC AAAGCCGGGG	ACCGGTTCTT TGGCCAAGAA	CACGATCTTG GTGCTAGAAC	GCCTTGCTAG CGGAACGATC
23651	ACTGCTCCTT TGACGAGGAA	CAGCGCGCGC GTCGCGCGCG	TGCCCGTTTT ACGGGCAAAA	CGCTCGTCAC GCGAGCAGTG	ATCCATTTCA TAGGTAAAGT

Figure 26 Y

23701	ATCACGTGCT TAGTGCACGA				
23751	GCCTTCGATC CGGAAGCTAG				
23801	CGTGATGCTT GCACTACGAA		TCTGCAAACG AGACGTTTGC		
23851	AATCGCCCA TTAGCGGGT		AAAGGTCTTG TTTCCAGAAC		
23901	CAACCCGCGG	TGCTCCTCGT	TCAGCCAGGT	CTTGCATACG	GCCGCCAGAG
	GTTGGGCGCC	ACGAGGAGCA	AGTCGGTCCA	GAACGTATGC	CGGCGGTCTC
23951	CTTCCACTTG	GTCAGGCAGT	AGTTTGAAGT	TCGCCTTTAG	ATCGTTATCC
	GAAGGTGAAC	CAGTCCGTCA	TCAAACTTCA	AGCGGAAATC	TAGCAATAGG
24001	ACGTGGTACT	TGTCCATCAG	CGCGCGCGCA	GCCTCCATGC	CCTTCTCCCA
	TGCACCATGA	ACAGGTAGTC	GCGCGCGCGT	CGGAGGTACG	GGAAGAGGGT
24051			TCAGCGGGTT AGTCGCCCAA		
24101	CCGCTTCGCT	GGGCTCTTCC	TCTTCCTCTT	GCGTCCGCAT	ACCACGCGCC
	GGCGAAGCGA	CCCGAGAAGG	AGAAGGAGAA	CGCAGGCGTA	TGGTGCGCGG
24151	ACTGGGTCGT	CTTCATTCAG	CCGCCGCACT	GTGCGCTTAC	CTCCTTTGCC
	TGACCCAGCA	GAAGTAAGTC	GGCGGCGTGA	CACGCGAATG	GAGGAAACGG
24201	ATGCTTGATT	AGCACCGGTG	GGTTGCTGAA	ACCCACCATT	TGTAGCGCCA
	TACGAACTAA	TCGTGGCCAC	CCAACGACTT	TGGGTGGTAA	ACATCGCGGT
24251	CATCTTCTCT	TTCTTCCTCG	CTGTCCACGA	TTACCTCTGG	TGATGGCGGG
	GTAGAAGAGA	AAGAAGGAGC	GACAGGTGCT	AATGGAGACC	ACTACCGCCC
24301	CGCTCGGGCT	TGGGAGAAGG	GCGCTTCTTT	TTCTTCTTGG	GCGCAATGGC
	GCGAGCCCGA	ACCCTCTTCC	CGCGAAGAAA	AAGAAGAACC	CGCGTTACCG
24351	CAAATCCGCC	GCCGAGGTCG	ATGGCCGCGG	GCTGGGTGTG	CGCGGCACCA
	GTTTAGGCGG	CGGCTCCAGC	TACCGGCGCC	CGACCCACAC	GCGCCGTGGT
24401	GCGCGTCTTG	TGATGAGTCT	TCCTCGTCCT	CGGACTCGAT	ACGCCGCCTC
	CGCGCAGAAC	ACTACTCAGA	AGGAGCAGGA	GCCTGAGCTA	TGCGGCGGAG
24451	ATCCGCTTTT TAGGCGAAAA	TTGGGGGCGC AACCCCCGCG	CCGGGGAGGC GGCCCCTCCG	CCCCCCACC CCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCTGCCCCT
24501	CGACACGTCC GCTGTGCAGG	TCCATGGTTG AGGTACCAAC	GGGGACGTCG CCCCTGCAGC	CGCCGCACCG	CGTCCGCGCT GCAGGCGCGA
24551	CGGGGGTGGT GCCCCACCA	TTCGCGCTGC	TCCTCTTCCC AGGAGAAGGG	GACTGGCCAT CTGACCGGTA	TTCCTTCTCC AAGGAAGAGG
24601	TATAGGCAGA ATATCCGTCT	AAAAGATCAT TTTTCTAGTA	GGAGTCAGTC	GAGAAGAAGG CTCTTCTTCC	ACAGCCTAAC TGTCGGATTG

Figure 262

24651	CGCCCCCTCT GCGGGGGAGA	TCGCCA CTCAAGCGGT	CCACCGCCTC GGTGGCGGAG	CACCGATGCC GTGGCTACGG	GCCAAC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
24701		CCCCGTCGAG GGGGCAGCTC			
24751		ACCCAGGTTT TGGGTCCAAA			
24801		GATAAAAAGC CTATTTTTCG			
24851		GCGGGGGGAC CGCCCCCTG			
24901		TGTTGAAGCA ACAACTTCGT			
24951		GAGCGCAGCG CTCGCGTCGC			
25001		ACGCCACCTA TGCGGTGGAT			
25051		CATGCGAGCC GTACGCTCGG			
25101		GAGGTGCTTG CTCCACGAAC			
25151		ATCCTGCCGT TAGGACGGCA			
25201		AGGGCGCTGT TCCCGCGACA			
25251		TTTGAGGGTC AAACTCCCAG			GCGGCAAACG CGCCGTTTGC
25301		GGAAAACAGC CCTTTTGTCG			
25351	GAACTCGAGG CTTGAGCTCC	GTGACAACGC CACTGTTGCG	GCGCCTAGCC CGCGGATCGG	GTACTAAAAC CATGATTTTG	GCAGCATCGA CGTCGTAGCT
25401	GGTCACCCAC CCAGTGGGTG	TTTGCCTACC AAACGGATGG	CGGCACTTAA GCCGTGAATT	CCTACCCCCC	AAGGTCATGA TTCCAGTACT
25451	GCACAGTCAT CGTGTCAGTA	GAGTGAGCTG CTCACTCGAC	ATCGTGCGCC TAGCACGCGG	GTGCGCAGCC CACGCGTCGG	CCTGGAGAGG GGACCTCTCC
25501	GATGCAAATT CTACGTTTAA	TGCAAGAACA ACGTTCTTGT	AACAGAGGAG TTGTCTCCTC	GGCCTACCCG CCGGATGGGC	CAGTTGGCGA GTCAACCGCT
25551	CGAGCAGCTA GCTCGTCGAT	GCGCGCTGGC CGCGCGACCG	TTCAAACGCG AAGTTTGCGC	CGAGCCTGCC CCTCGGACGG	GACTTGGAGG CTGAACCTCC

7 igure 26 AA

25601	AGCGACGCAA TCGCTGCGTT	A ATGATG TGATTACTAC	GCCGCAGTGC CGGCGTCACG	TCGTTACCGT AGCAATGGCA	GGAGCT AG
25651		GGTTCTTTGC CCAAGAAACG			
25701		TACACCTTTC ATGTGGAAAG			
25751		GGAGCTCTGC CCTCGAGACG			
25801		TTGGGCAAAA AACCCGTTTT			
25851		TACGTCCGCG ATGCAGGCGC			
25901		CATGGGCGTT GTACCCGCAA			
25951		AGAAACTGCT TCTTTGACGA			
26001		CGCTCCGTGG GCGAGGCACC			
26051					CACCAGTCAA GTGGTCAGTT
26101		AGAACTTTAG TCTTGAAATC			CAGGAATCTT GTCCTTAGAA
26151		TGCTGTGCAC ACGACACGTG			ATTAAGTACC TAATTCATGG
26201					GCAGCTAGCC CGTCGATCGG
26251					GCGGTGACGG CGCCACTGCC
26301	TCTACTGGAG AGATGACCTC	TGTCACTGTC ACAGTGACAG	GCTGCAACCT CGACGTTGGA	ATGCACCCCG TACGTGGGGC	CACCGCTCCC GTGGCGAGGG
26351	TGGTTTGCAA ACCAAACGTT	TTCGCAGCTG AAGCGTCGAC	CTTAACGAAA GAATTGCTTT	GTCAAATTAT CAGTTTAATA	CGGTACCTTT GCCATGGAAA
26401	GAGCTGCAGG CTCGACGTCC	GTCCCTCGCC CAGGGAGCGG	TGACGAAAAG ACTGCTTTTC	TCCGCGGCTC AGGCGCCGAG	CGGGGTTGAA GCCCCAACTT
26451	ACTCACTCCG TGAGTGAGGC	GGGCTGTGGA CCCGACACCT	CGTCGGCTTA GCAGCCGAAT	CCTTCGCAAA GGAAGCGTTT	TTTGTACCTG AAACATGGAC
26501	AGGACTACCA TCCTGATGGT	CGCCCACGAG GCGGGTGCTC	ATTAGGTTCT TAATCCAAGA	ACGAAGACCA TGCTTCTGGT	ATCCCGCCCG TAGGGCGGGC

26551		ACTTACCGC TCGAATGGCG			
26601		GCCATCAACA CGGTAGTTGT			
26651		TTACTTGGAC AATGAACCTG			
26701		CGCAGCCCTA GCGTCGGGAT			
26751	GGATGGCACC CCTACCGTGG	CAAAAAGAAG GTTTTTCTTC	CTGCAGCTGC GACGTCGACG	CGCCGCCACC GCGGCGGTGG	CACGGACGAG GTGCCTGCTC
26801		GGGACAGTCA CCCTGTCAGT			
26851		GAAGACTGGG CTTCTGACCC			
26901		AGACGAAACA TCTGCTTTGT			
26951		AATCGGCAAC TTAGCCGTTG			
27001		CCGGCACTGC GGCCGTGACG			
27051		CAGGGCCGGT GTCCCGGCCA			
27101		AGCGCCAAGG TCGCGGTTCC			
27151		TGCTTGCAAG ACGAACGTTC			TTCGCCCGCC AAGCGGGCGG
27201		CTACCATCAC GATGGTAGTG			
27251	TACTACCGTC ATGATGGCAG	ATCTCTACAG TAGAGATGTC	CCCATACTGC GGGTATGACG	ACCGGCGGCA TGGCCGCCGT	GCGGCAGCAA CGCCGTCGTT
27301	CAGCAGCGGC GTCGTCGCCG	CACACAGAAG GTGTGTCTTC	CAAAGGCGAC GTTTCCGCTG	CGGATAGCAA GCCTATCGTT	GACTCTGACA CTGAGACTGT
27351	AAGCCCAAGA TTCGGGTTCT	AATCCACAGC TTAGGTGTCG	GGCGGCAGCA CCGCCGTCGT	GCAGGAGGAG CGTCCTCCTC	GAGCGCTGCG CTCGCGACGC
27401	TCTGGCGCCC AGACCGCGGG	AACGAACCCG TTGCTTGGGC	TATCGACCCG ATAGCTGGGC	CGAGCTTAGA GCTCGAATCT	AACAGGATTT TTGTCCTAAA
27451	TTCCCACTCT AAGGGTGAGA	GTATGCTATA CATACGATAT	TTTCAACAGA AAAGTTGTCT	GCAGGGGCCA CGTCCCGGT	AGAACAAGAG TCTTGTTCTC

Tigure 26 AC

27501	CTGAAAATAA GACTTTTATT	A CAGGTC TTTTGTCCAG	TCTGCGATCC AGACGCTAGG	CTCACCCGCA GAGTGGGCGT	GCTGCC A
27551			TTCGGCGCAC AAGCCGCGTG		
27601			CTGACTCTTA GACTGAGAAT		
27651			ACTACGTCAT TGATGCAGTA		
27701			CCATTATGAG GGTAATACTC		
27751			CAAATGGGAC GTTTACCCTG		
27801			CTACATGAGC GATGTACTCG		
27851			CCCACCGAAA GGGTGGCTTT		
27901			CGTAATAACC GCATTATTGG		
27951	GCTGCCCTGG CGACGGGACC	TGTACCAGGA ACATGGTCCT	AAGTCCCGCT TTCAGGGCGA	CCCACCACTG GGGTGGTGAC	TGGTACTTCC ACCATGAAGG
28001		CAGGCCGAAG GTCCGGCTTC	TTCAGATGAC AAGTCTACTG		GCGCAGCTTG CGCGTCGAAC
28051		TCGTCACAGG AGCAGTGTCC	GTGCGGTCGC CACGCCAGCG		TATAACTCAC ATATTGAGTG
28101	• • • • • • • • • • • • • • • • • • • •	GAGGGCGAGG CTCCCGCTCC			CGGTGAGCTC GCCACTCGAG
28151			ACGGGACATT TGCCCTGTAA		
28201	GCTCTTCATT CGAGAAGTAA	CACGCCTCGT GTGCGGAGCA	CAGGCAATCC GTCCGTTAGG	TAACTCTGCA ATTGAGACGT	GACCTCGTCC CTGGAGCAGG
28251	TCTGAGCCGC AGACTCGGCG	GCTCTGGAGG CGAGACCTCC	CATTGGAACT GTAACCTTGA	CTGCAATTTA GACGTTAAAT	TTGAGGAGTT AACTCCTCAA
29301	TGTGCCATCG ACACGGTAGC	GTCTACTTTA CAGATGAAAT	ACCCCTTCTC TGGGGAAGAG	GGGACCTCCC CCCTGGAGGG	GGCCACTATC CCGGTGATAG
28351	CGGATCAATT GCCTAGTTAA	TATTCCTAAC ATAAGGATTG	TTTGACGCGGG AAACTGCGCC	TAAAGGACTC ATTTCCTGAG	GGCGGACGGC CCGCCTGCCG
28401	TACGACTGAA ATGCTGACTT	TGTTAAGTGG ACAATTCACC	AGAGGCAGAG TCTCCGTCTC	CAACTGCGCC GTTGACGCGG	TGAAACACCT ACTTTGTGGA

Figure 26 AD

28451			AGTGCTTTGC TCACGAAACG		
28501			GATCATATCG CTAGTATAGC		
28551			GCTTGCCCGT CGAACGGGCA	_	
28601			AGCGGGACAG TCGCCCTGTC		
28651			CCTGGATTAC GGACCTAATG		
28701			ATACAGAAAT TATGTCTTTA		
28751			ACCGTCTTCA TGGCAGAAGT		
28801			TAACATCTCT ATTGTAGAGA		
28851			GTCTACGAGA CAGATGCTCT		
28901			ACCCTCCTTA TGGGAGGAAT		
28951			ACACCTACCG TGTGGATGGC		
29001			ACTCTGTTTA TGAGACAAAT		
29051	AGAAAACCCT TCTTTTGGGA	TAGGGTATTA ATCCCATAAT	GGCCAAAGGC CCGGTTTCCG	GCAGCTACTG CGTCGATGAC	TGGGGTTTAT ACCCCAAATA
29101			CGGGCTATTC GCCCGATAAG		
29151	TCGGGGTTGG AGCCCCAACC	GGTTATTCTC CCAATAAGAG	TGTCTTGTGA ACAGAACACT	TTCTCTTTAT AAGAGAAATA	TCTTATACTA AGAATATGAT
29201	ACGCTTCTCT TGCGAAGAGA	GCCTAAGGCT CGGATTCCGA	CGCCGCCTGC GCGGCGGACG	TGTGTGCACA ACACACGTGT	TTTGCATTTA AAACGTAAAT
29251	TTGTCAGCTT AACAGTCGAA				TTAGGTACAT AATCCATGTA
29301	AATCCTAGGT TTAGGATCCA		TTGCGTCAGC AACGCAGTCG		
29351	TGGATTTTAA ACCTAAAATT				TGAAGCTAAT ACTTCGATTA

Figure 26 AE

29401	GAGTGCACCA CTCACGTGGT	CAGAATATT CAGAATATTT	ATGCACCACA TACGTGGTGT	GAACATGAAA CTTGTACTTT	AGCTGC AT TCGACGAATA
29451			GCAAGTATGC CGTTCATACG		
29501			AATGTTACAG TTACAATGTC		
29551			TCCATTTTAT AGGTAAAATA		
29601			AGTTGTGGCC TCAACACCGG		
29651			ACTGCTATGC TGACGATACG		
29701			TAAATACAAA ATTTATGTTT		
29751			TTACTAAGTT AATGATTCAA		
29801 !			GCAAAACAAA CGTTTTGTTT		
29851			CCCCGGTCAT GGGGCCAGTA		ATACCATTCC TATGGTAAGG
29901			TGGGATATGC ACCCTATACG		
29951	GTCAGGCTTC CAGTCCGAAG	CTGGATGTCA GACCTACAGT	GCATCTGACT CGTAGACTGA	TTGGCCAGCA AACCGGTCGT	CCTGTCCCGC GGACAGGGCG
30001			ACAGCGACCC TGTCGCTGGG		
30051			CTACCGGACT GATGGCCTGA		
30101	CCCAAGTTTC GGGTTCAAAG	TGCCTTTGTC ACGGAAACAG	AATAACTGGG TTATTGACCC	ATAACTTGGG TATTGAACCC	CATGTGGTGG GTACACCACC
30151	TTCTCCATAG AAGAGGTATC	CGCTTATGTT GCGAATACAA	TGTATGCCTT ACATACGGAA	ATTATTATGT TAATAATACA	GGCTCATCTG CCGAGTAGAC
30201	CTGCCTAAAG GACGGATTTC	CGCAAACGCG GCGTTTGCGC	CCCGACCACC GGGCTGGTGG	CATCTATAGT GTAGATATCA	CCCATCATTG GGGTAGTAAC
30251	TGCTACACCC ACGATGTGGG	AAACAATGAT TTTGTTACTA	GGAATCCATA CCTTAGGTAT	GATTGGACGG CTAACCTGCC	ACTGAAACAC TGACTTTGTG
30301	ATGTTCTTTT TACAAGAAAA	CTCTTACAGI GAGAATGTCA	ATGATTAAAT TACTAATTTA	GAGACATGAT CTCTGTACTA	TCCTCGAGTT AGGAGCTCAA

Figure 26 AF

30351	TTTATATTAC AAATATAATG	T CCTTGT ACTGGGAACA	TGCGCTTTTT ACGCGAAAAA	TGTGCGTGCT ACACGCACGA	CCAÇAT C GGTGTAACCG
30401	TGCGGTTTCT ACGCCAAAGA				
30451	TGCTTTACGG ACGAAATGCC		CTCACGCTCA GAGTGCGAGT		
30501			CATTGACTGG GTAACTGACC		
30551			ACAGGGACAG TGTCCCTGTC		
30601			TTACTGTGAC AATGACACTG		
30651			CCGACCTCCA GGCTGGAGGT		
30701			GAATATTCCA CTTATAAGGT		
30751			TATATGCAAT ATATACGTTA		
30801			GCTATATATC CGATATATAG		
30851		ATGCCATGAA TACGGTACTT	CCACCCAACT GGTGGGTTGA	TTCCCCGCGC AAGGGGCGCG	
30901			CCGGCGGCTT		
30951	GCCCACCTTC CGGGTGGAAG				TCTAACAGGA AGATTGTCCT
31001			ATCTAGAAAT TAGATCTTTA		ATTACAGAGC TAATGTCTCG
31051	AGCGCCTGCT TCGCGGACGA	AGAAAGACGC TCTTTCTGCG	AGGGCAGCGG TCCCGTCGCC	CCGAGCAACA GGCTCGTTGT	GCGCATGAAT CGCGTACTTA
31101	CAAGAGCTCC GTTCTCGAGG	AAGACATGGT TTCTGTACCA	TAACTTGCAC ATTGAACGTG	CAGTGCAAAA GTCACGTTTT	GGGGTATCTT CCCCATAGAA
31151	TTGTCTCGTA AACAGAGCAT	AAGCAGGCCA TTCGTCCGGT	AAGTCACCTA TTCAGTGGAT	CGACAGTAAT GCTGTCATTA	ACCACCGGAC TGGTGGCCTG
31201	ACCGCCTTAG TGGCGGAATC	CTACAAGTTG GATGTTCAAC	CCAACCAAGC GGTTGGTTCG	GTCAGAAATT CAGTCTTTAA	GGTGGTCATG CCACCAGTAC
31251	GTGGGAGAAA CACCCTCTTT	AGCCCATTAC TCGGGTAATG	CATAACTCAG GTATTGAGTC	CACTCGGTAG GTGAGCCATC	AAACCGAAGG TITGGCTTCC

31301 -	CTGCATTCAC GACGTAAGTG	TCTTGTC AGTGGAACAG	AAGGACCTGA TTCCTGGACT	GGATCTCTGC CCTAGAGACG	ACCCTT TA TGGGAALAAT
31351	AGACCCTGTG TCTGGGACAC	CGGTCTCAAA GCCAGAGTTT	GATCTTATTC CTAGAATAAG	CCTTTAACTA GGAAATTGAT	ATAAAAAAA TATTTTTTTAT
31401				TAGCAAATTT ATCGTTTAAA	
31451				AGCTCTGGTA TCGAGACCAT	
31501	CTCCTGGCTG GAGGACCGAC	CAAACTTTCT GTTTGAAAGA	CCACAATCTA GGTGTTAGAT	AATGGAATGT TTACCTTACA	CAGTTTCCTC GTCAAAGGAG
31551				CATGTTGTTG GTACAACAAC	
31601	GCGCAAGACC CGCGTTCTGG	GTCTGAAGAT CAGACTTCTA	ACCTTCAACC TGGAAGTTGG	CCGTGTATCC GGCACATAGG	ATATGACACG TATACTGTGC
31651	GAAACCGGTC CTTTGGCCAG	CTCCAACTGT GAGGTTGACA	GCCTTTTCTT CGGAAAAGAA	ACTCCTCCCT TGAGGAGGGA	TTGTATCCCC AACATAGGGG
31701	CAATGGGTTT GTTACCCAAA	CAAGAGAGTC GTTCTCTCAG	CCCCTGGGGT GGGGACCCCA	ACTCTCTITG TGAGAGAAAC	CGCCTATCCG GCGGATAGGC
31751	AACCTCTAGT TTGGAGATCA			CGCTCAAAAT GCGAGTTTTA	
31801	CTCTCTCTGG GAGAGAGACC	ACGAGGCCGG TGCTCCGGCC	CAACCTTACC GTTGGAATGG	TCCCAAAATG AGGGTTTTAC	TAACCACTGI ATTGGTGACA
31851	GAGCCCACCT CTCGGGTGGA	CTCAAAAAAA GAGTTTTTTT	CCAAGTCAAA GGTTCAGTTT	CATAAACCTG GTATTTGGAC	GAAATATCTG CTTTATAGAC
31901	CACCCCTCAC GTGGGGAGTG	AGTTACCTCA TCAATGGAGT	GAAGCCCTAA CTTCGGGATT	CTGTGGCTGC GACACCGACG	CGCCGCACCT GCGGCGTGGA
31951	GATTACCAGC	GCCCGTTGTG	TGAGTGGTAC	CAATCACAGG GTTAGTGTCC	GGGGCGATTG
		AGGTTTGAAT	CGTAACGGTG	GGTTCCTGGG	GAGTGTCACA
		CGATCGGGAC	GTTTGTAGTC	CGGGGGAGTG	GTGGTGGCTA
		AATGATAGTG	ACGGAGTGGG	GGAGATTGAT	GACGGTGACC
		TAACTGAACT	TTCTCGGGTA	A AATATGTGTT	TTACCTTTTG
32201	TAGGACTAAA ATCCTGATTT	GTACGGGGC1	CCTTTGCATO GGAAACGTAC	TAACAGACGA ATTGTCTGCT	CCTAAACACT GGATTTGTGA

Figure 26 AH

32251	TTGACCGTAG AACTGGCATC	CTGGTCC	AGGTGTGACT TCCACACTGA	ATTAATAATTA TATTATTAAT	CTTCCTTCA GAAGGA GT
32301				TTCACAAGGC AAGTGTTCCG	
32351				CTCAAAACAG GAGTTTTGTC	
32401				AACCAACTAA TTGGTTGATT	
32451				CCACAACTTG GGTGTTGAAC	
32501				CAAACAATTC GTTTGTTAAG	
32551				ATGTTTGACG TACAAACTGC	
32601				TGGTTCACCT ACCAAGTGGA	
32651	ACACAAATCC TGTGTTTAGG			ATGGCCTAGA TACCGGATCT	
32701				GGCCTTAGTT CCGGAATCAA	
32751	AGGTGCCATT TCCACGGTAA			TGATAAGCTA ACTATTCGAT	
32801	CCACACCAGC GGTGTGGTCG	TCCATCTCCT AGGTAGAGGA	AACTGTAGAC TTGACATCTG	TAAATGCAGA ATTTACGTCT	GAAAGATGCT CTTTCTACGA
32851			AAAATGTGGC TTTTACACCG	AGTCAAATAC TCAGTTTATG	TTGCTACAGT AACGATGTCA
32901				TCCAATATCT AGGTTATAGA	GGAACAGTTC CCTTGTCAAG
32951	AAAGTGCTCA TTTCACGAGT	TCTTATTATA AGAATAATAT	AGATTTGACG TCTAAACTGC	AAAATGGAGT TTTTACCTCA	GCTACTAAAC CGATGATTTG
33001	AATTCCTTCC TTAAGGAAGG	TGGACCCAGA ACCTGGGTCT	ATATTGGAAC TATAACCTTG	TTTAGAAATG AAATCTTTAC	GAGATCTTAC CTCTAGAATG
33051	TGAAGGCACA ACTTCCGTGT	GCCTATACAA CGGATATGTT	ACGCTGTTGG TGCGACAACC	ATTTATGCCT TAAATACGGA	AACCTATCAG TTGGATAGTC
33101	CTTATCCAAA GAATAGGTTT	ATCTCACGGT TAGAGTGCCA	AAAACTGCCA TTTTGACGGT	AAAGTAACAT TTTCATTGTA	TGTCAGTCAA ACAGTCAGTT
33151	GTTTACTTAA CAAATGAATT	ACGGAGACAA TGCCTCTGTT	AACTAAACCT TTGATTTGGA	GTAACACTAA CATTGTGATT	CCATTACACT GGTAATGTGA

Figure 26 AI

33201	AAACGGTACA TTTGCCATGT	GAAACAG GACTTTGTC	GAGACACAAC CTCTGTGTTG	TCCAAGTGCA [*] AGGTTCACGT	TACTCT ST ATGAGAL.CA
33251				ACATTAATGA TGTAATTACT	
33301				CAAGAATAAA GTTCTTATTT	
33351				TGCAGAAAAT ACGTCTTTTA	
33401				CATAGCTTAT CTATCGAATA	
33451				ATTCAACCTG TAAGTTGGAC	
33501				CCCGGCTGGC GGGCCGACCG	
33551				GGTGTTATAT CCACAATATA	
33601		GCCAAACGCT CGGTTTGCGA			TCCCCGGGCA AGGGGCCCGT
33651		GTTCATGTCG CAAGTACAGC			AGGCTGCTGT TCCGACGACA
33701		GTTGCTTAAC CAACGAATTG		GGAGAAGTCC CCTCTTCAGG	ACGCCTACAT TGCGGATGTA
33751		TCATAATCGT AGTATTAGCA		AGGGCGGTGG TCCCGCCACC	TGCTGCAGCA ACGACGTCGT
33801				CCGTCCTGCA GGCAGGACGT	
33851				ACCGCCCGCA TGGCGGGCGT	
33901	CCTTGTCCTC GGAACAGGAG	CGGGCACAGC GCCCGTGTCG	AGCGCACCCT TCGCGTGGGA	GATCTCACTT CTAGAGTGAA	AAATCAGCAC TTTAGTCGTG
33951	AGTAACTGCA TCATTGACGT			TCAAAATCCC AGTTTTAGGG	
34001	GCGCTGTATC CGCGACATAG	CAAAGCTCAT GTTTCGAGTA	GGCGGGGACC CCGCCCCTGG	ACAGAACCCA TGTCTTGGGT	CGTGGCCATC GCACCGGTAG
34051					AACACGCTGG TTGTGCGACC
34101	ACATAAACAT TGTATTTGTA	TACCTCTTTT ATGGAGAAAA	GGCATGTTGT CCGTACAACA	AATTCACCAC TTAAGTGGTG	CTCCCGGTAC GAGGGCCATG

Figure 26 AJ

34151				TCCACCACCAT AGGTGGTGGT	
34201				CTGCAGGGAA GACGTCCCTT	
34251				AACCATGGAT TTGGTACCTA	
34301				CACACGTGCA GTGTGCACGT	
34351				CATATCCCAG GTATAGGGTC	
34401				AGGGAAGACC TCCCTTCTGG	
34451				TCGGGCAGCA AGCCCGTCGT	
34501		GTAGCGCGGG CATCGCGCCC		AAAAGGAGGT TTTTCCTCCA	AGACGATCCC TCTGCTAGGC
34551		AGTGCGCCGA TCACGCGGCT		ATCGTGTTGG TAGCACAACC	TCGTAGTGTC AGCATCACAG
34601		GAACGCCGGA CTTGCGGCCT			CAAAACCAGG GITTTGGTCC
34651				GGTCTCGCCG CCAGAGCGGC	
34701	TCTGTGTAGT AGACACATCA			CTCAAAGCAT GAGTTTCGTA	
34751	CCTGGCTTCG GGACCGAAGC	GGTTCTATGT CCAAGATACA	AAACTCCTTC TTTGAGGAAG		GCCCTGATAA CGGGACTATT
34801					ACATTCGTTC TGTAAGCAAG
34851	TGCGAGTCAC ACGCTCAGTG	ACACGGGAGG TGTGCCCTCC	AGCGGGAAGA TCGCCCTTCT	GCTGGAAGAA CGACCTTCTT	CCATGTTTTT GGTACAAAAA
34901	TTTTTTATTC AAAAAATAAG	CAAAAGATTA GTTTTCTAAT	TCCAAAACCT AGGTTTTGGA	CAAAATGAAG GTTTTACTTC	ATCTATTAAG TAGATAATTC
34951	TGAACGCGCT ACTTGCGCGA	CCCCTCCGGT GGGGAGGCCA	GGCGTGGTCA CCGCACCAGT	AACTCTACAG TTGAGATGTC	CCAAAGAACA GGTTTCTTGT
35001	GATAATGGCA CTATTACCGT	TTTGTAAGAT AAACATTCTA	GTTGCACAAT CAACGTGTTA	GGCTTCCAAA CCGAAGGTTT	AGCCAAACGG TCCGTTTGCC
35051	CCCTCACGTC GGGAGTGCAG	CAAGTGGACG GTTCACCTGC	TAAAGGCTAA ATTTCCGATI	ACCCTTCAGG TGGGAAGTCC	GTGAATCTCC CACTTAGAGG

35101	TCTATAAACA AGATATTTGT	TAGCACC AAGGTCGTGG	TTCAACCATG AAGTTGGTAC	CCCAAATAAT GGGTTTATTA	TCTCAT G AGAGTAGAGC
35151				CCGAATATTA GGCTTATAAT	
35201				CCTTCAGCCT GGAAGTCGGA	
35251				AGACCTGTAT TCTGGACATA	
35301				CGTAGGTCCC GCATCCAGGG	
35351				GACCAGCGCG CTGGTCGCGC	
35401				TGATTATGAC ACTAATACTG	
35451				TAAGCTTGTT ATTCGAACAA	
35501				ATCAGGCAAA TAGTCCGTTT	
35551				GCAGATAAAG CGTCTATTTC	
35601				TTTCTCTCAA AAAGAGAGTT	
35651				CAAAAAAACA GTTTTTTGT	TTTAAACATT AAATTTGTAA
35701					ATAAGACGGA TATTCTGCCT
35751					GTGATTAAAA CACTAATTTT
35801	AGCACCACCG TCGTGGTGGC	ACAGCTCCTC TGTCGAGGAG	GGTCATGTCC CCAGTACAGG	GGAGTCATAA CCTCAGTATT	TGTAAGACTC ACATTCTGAG
35851	GGTAAACACA CCATTTGTGT	TCAGGTTGAT AGTCCAACTA	TCACATCGGT AGTGTAGCCA	CAGTGCTAAA GTCACGATTT	AAGCGACCGA TTCGCTGGCT
35901	AATAGCCCGG TTATCGGGCC	GGGAATACAT CCCTTATGTA	ACCCGCAGGC TGGGCGTCCG	GTAGAGACAA CATCTCTGTT	CATTACAGCC GTAATGTCGG
35951	CCCATAGGAG GGGTATCCTC	GTATAACAAA CATATTGTTT	ATTAATAGGA TAATTATCCT	GAGAAAAACA CTCTTTTTGT	CATAAACACC GTATTTGTGG
36001	TGAAAAACCC ACTTTTTGGG	TCCTGCCTAG AGGACGGATC	GCAAAATAGC CGTTTTATCG	ACCCTCCCGC TGGGAGGGCG	TCCAGAACAA AGGTCTTGTT

36051	CATACAGCGC	TACAGCG	GCAGCCATAA	CAGTCAGCCT	TACCAG LA
	GTATGTCGCG	AAGGTGTCGC	CGTCGGTATT	GTCAGTCGGA	ATGGTCATTT
36101			ACACCACTCG TGTGGTGAGC		
36151	GTCACAGTGT	AAAAAAGGGC	CAAGTGCAGA	GCGAGTATAT	ATAGGACTAA
	CAGTGTCACA	TTTTTTCCCG	GTTCACGTCT	CGCTCATATA	TATCCTGATT
36201	AAAATGACGT	AACGGTTAAA	GTCCACAAAA	AACACCCAGA	AAACCGCACG
	TTTTACTGCA	TTGCCAATTT	CAGGTGTTTT	TTGTGGGTCT	TTTGGCGTGC
36251			AAAGCCAAAA TTTCGGTTTT		
36301			GTTACGTCAC CAATGCAGTG		
36351			TTACTCCGCC AATGAGGCGG		
36401	CCCGTTCCCA GGGCAAGGGT	CGCCCCGCGC	CACGTCACAA GTGCAGTGTT	ACTCCACCCC TGAGGTGGGG	CTCATTATCA GAGTAATAGT
					PacI
36451	TATTGGCTTC	AATCCAAAAT	AAGGTATATT	ATTGATGATG	TTAATTAAGA
	ATAACCGAAG	TTAGGTTTTA	TTCCATATAA	TAACTACTAC	AATTAATTCT
36501			GCTGGATGGC CGACCTACCG		ATGATTCTTC TACTAAGAAG
36551	TCGCTTCCGG	CGGCATCGGG	ATGCCCGCGT	TGCAGGCCAT	GCTGTCCAGG
	AGCGAAGGCC	GCCGTAGCCC	TACGGGCGCA	ACGTCCGGTA	CGACAGGTCC
36601	CAGGTAGATG	ACGACCATCA	GGGACAGCTT	CAAGGCCAGC	AAAAGGCCAG
	GTCCATCTAC	TGCTGGTAGT	CCCTGTCGAA	GTTCCGGTCG	TTTTCCGGTC
36651	GAACCGTAAA	AAGGCCGCGT	TGCTGGCGTT	TTTCCATAGG	CTCCGCCCCC
	CTTGGCATTT	TTCCGGCGCA	ACGACCGCAA	AAAGGTATCC	GAGGCGGGGG
36701	CTGACGAGCA	TCACAAAAAT	CGACGCTCAA	GTCAGAGGTG	GCGAAACCCG
	GACTGCTCGT	AGTGTTTTA	GCTGCGAGTT	CAGTCTCCAC	CGCTTTGGGC
36751	ACAGGACTAT	AAAGATACCA	GGCGTTTCCC	CCTGGAAGCT	CCCTCGTGCG
	TGTCCTGATA	TTTCTATGGT	CCGCAAAGGG	GGACCTTCGA	GGGAGCACGC
36801	CTCTCCTGTT GAGAGGACAA	CCGACCCTGC GGCTGGGACG	CGCTTACCGG GCGAATGGCC	ATACCTGTCC TATGGACAGG	GCCTTTCTCC
36851	CTTCGGGAAG	CGTGGCGCTT	TCTCATAGCT	CACGCTGTAG	GTATCTCAGT
	GAAGCCCTTC	GCACCGCGAA	AGAGTATCGA	GTGCGACATC	CATAGAGTCA
36901	TCGGTGTAGG	TCGTTCGCTC	CAAGCTGGGC	TGTGTGCACG	AACCCCCCGT
	AGCCACATCC	AGCAAGCGAG	GTTCGACCCG	ACACACGTGC	TTGGGGGGCA

Figure 26 AM

36951	TCAGCCCGAC	TGCGCCT	TATCCGGTAA	CTATCGTCTT	GAGTCC CC
	AGTCGGGCTG	GCGACGCGGA	ATAGGCCATT	GATAGCAGAA	CTCAGG CG
37001	CGGTAAGACA	CGACTTATCG	CCACTGGCAG	CAGCCACTGG	TAACAGGATT
	GCCATTCTGT	GCTGAATAGC	GGTGACCGTC	GTCGGTGACC	ATTGTCCTAA
37051	AGCAGAGCGA	GGTATGTAGG	CGGTGCTACA	GAGTTCTTGA	AGTGGTGGCC
	TCGTCTCGCT	CCATACATCC	GCCACGATGT	CTCAAGAACT	TCACCACCGG
37101				TGGTATCTGC ACCATAGACG	
37151				GCTCTTGATC CGAGAACTAG	
37201				TGCAAGCAGC ACGTTCGTCG	
37251				GATCTTTTCT CTAGAAAAGA	
37301				GGATTTTGGT CCTAAAACCA	
37351	TCAAAAAGGA	TCTTCACCTA	GATCCTTTTA	AATCAATCTA	AAGTATATAT
	AGTTTTTCCT	AGAAGTGGAT	CTAGGAAAAT	TTAGTTAGAT	TTCATATATA
37401	GAGTAAACTT	GGTCTGACAG	TTACCAATGC	TTAATCAGTG	AGGCACCTAT
	CTCATTTGAA	CCAGACTGTC	AATGGTTACG	AATTAGTCAC	TCCGTGGATA
37451	CTCAGCGATC	TGTCTATTTC	GTTCATCCAT	AGTTGCCTGA	CTCCCCGTCG
	GAGTCGCTAG	ACAGATAAAG	CAAGTAGGTA	TCAACGGACT	GAGGGGCAGC
37501	TGTAGATAAC	TACGATACGG	GAGGGCTTAC	CATCTGGCCC	CAGTGCTGCA
	ACATCTATTG	ATGCTATGCC	CTCCCGAATG	GTAGACCGGG	GTCACGACGT
37551	ATGATACCGC	GAGACCCACG	CTCACCGGCT	CCAGATTTAT	CAGCAATAAA
	TACTATGGCG	CTCTGGGTGC	GAGTGGCCGA	GGTCTAAATA	GTCGTTATTT
37601	CCAGCCAGCC	GGAAGGGCCG	AGCGCAGAAG	TGGTCCTGCA	ACTTTATCCG
	GGTCGGTCGG	CCTTCCCGGC	TCGCGTCTTC	ACCAGGACGT	TGAAATAGGC
37651	CCTCCATCCA	GTCTATTAAT	TGTTGCCGGG	AAGCTAGAGT	AAGTAGTTCG
	GGAGGTAGGT	CAGATAATTA	ACAACGGCCC	TTCGATCTCA	TTCATCAAGC
37701	CCAGTTAATA GGTCAATTAT	GTTTGCGCAA CAAACGCGTT	CGTTGTTGCC	ATTGCTACAG TAACGATGTC	GCATCGTGGT CGTAGCACCA
37751	GTCACGCTCG CAGTGCGAGC	TCGTTTGGTA AGCAAACCAT	TGGCTTCATT ACCGAAGTAA	CAGCTCCGGT GTCGAGGCCA	TCCCAACGAT AGGGTTGCTA
37801	CAAGGCGAGT	TACATGATCC	CCCATGTTGT	GCAAAAAAGC	GGTTAGCTCC
	GTTCCGCTCA	ATGTACTAGG	GGGTACAACA	CGTTTTTCG	CCAATCGAGG
37851	TTCGGTCCTC AAGCCAGGAG	CGATCGTTGT GCTAGCAACA	CAGAAGTAAG GTCTTCATTC	TTGGCCGCAG	TGTTATCACT ACAATAGTGA

Figure 26 AN

37901	CATGGTTATG GTACCAATAC	GCACTGC CGTCGTGACG	ATAATTCTCT TATTAAGAGA	TACTGTCATG* ATGACAGTAC	TCATCOTAN TTAJODATDO
37951	GATGCTTTTC				
	CTACGAAAAG	ACACTGACCA	CTCATGAGTT	GGTTCAGTAA	GACTCTTATC
38001				GCGTCAACAC	
				CGCAGTTGTG	
38051				CATCATTGGA	
				GTAGTAACCT	
38101				TGTTGAGATC	
				ACAACTCTAG	
38151				GCATCTTTTA	
				CGTAGAAAAT	
38201				AAATGCCGCA	
				TTTACGGCGT	
38251				TACTCTTCCT	
				ATGAGAAGGA	
38301				ATGAGCGGAT	
				TACTCGCCTA	
38351				TCCGCGCACA	
				AGGCGCGTGT	
38401				TTATCATGAC	
				AATAGTACTG	
38451				CTTCAAGAAT	
	TTTTTATCCG	CATAGTGCTC	CGGGAAAGCA	GAAGTTCTTA	ACCTAGGCT"1
		PacI			
38501	TTCTTAATTT				
	AAGAATTAAA	GAATTAATT	(SEQ ID NO	:33)	

Figure 26 AO

MRKAd5nef MER1063 (MRKAd5 Pre-Adenoviral Vector Containing the G2A,LLA nef Coding Region)

1			ATTTTGGATT TAAAACCTAA		
51			cececccec ececececec		
101			GATGTTGCAA CTACAACGTT		
151			GACGTTTTTG CTGCAAAAAC		
201			GTTTTAGGCG CAAAATCCGC		
251			CCATTITCGC GGTAAAAGCG		
301			GTGTTACTCA CACAATGAGT		
351			GTTTACGTGG CAAATGCACC		
401			CGGGTCAAAG GCCCAGTTTC		
451			ACGTTGTATC TGCAACATAG		
501			ATTACCGCCA TAATGGCGGT		
551			TTACGGGGTC AATGCCCCAG	ATTAGTTCAT TAATCAAGTA	AGCCCATATA TCGGGTATAT
601			CTTACGGTAA GAATGCCATT		TGGCTGACCG ACCGACTGGC
651	CCCAACGACC GGGTTGCTGG	CCCGCCCATT GGGCGGGTAA	GACGTCAATA CTGCAGTTAT	ATGACGTATG TACTGCATAC	TTCCCATAGT AAGGGTATCA
701	AACGCCAATA TTGCGGTTAT	GGGACTTTCC CCCTGAAAGG	ATTGACGTCA TAACTGCAGT	ATGGGTGGAG TACCCACCTC	TATTTACGGT ATAAATGCCA
751	AAACTGCCCA TTTGACGGGT	CTTGGCAGTA GAACCGTCAT	CATCAAGTGT GTAGTTCACA	ATCATATGCC TAGTATACGG	AAGTACGCCC TTCATGCGGG
801	CCTATTGACG GGATAACTGC	TCAATGACGG AGTTACTGCC	TAAATGGCCC ATTTACCGGG	GCCTGGCATT CGGACCGTAA	ATGCCCAGTA TACGGGTCAT

Figure 27A

851	CATGACCTTA GTACTGGAAT	TACTTTC	CTACTTGGCA GATGAACCGT	GTACATCTAC CATGTAGATG	ĞTATTA CATAATCAGT
901				AGTACATCAA TCATGTAGTT	
951				CTCCACCCCA GAGGTGGGGT	
1001				GGACTTTCCA CCTGAAAGGT	
1051				GTAGGCGTGT CATCCGCACA	
1101				CGTCAGATCG GCAGTCTAGC	
1151				ACACCGGGAC TGTGGCCCTG	
1201				GGATTCCCCG CCTAAGGGGC	
1251				CAAGAGGTCC GTTCTCCAGG	
1301				CCGAGCCCGC GGCTCGGGCG	
1351	CACTCCTCCT	GGCTCGGGCG	GCGTCACCCG	GTGGGCGCCG CACCCGCGGC	ACAGGTCCCT
1401				CAACACCGCC GTTGTGGCGG	
1451	GGCTGACGCG	GACCGACCTC	CGGGTCCTCC	ACGAGGAGGT TGCTCCTCCA	CCCGAAGGGG
1501				ACCTACAAGG TGGATGTTCC	
		AAGGACTTCC	TCTTCCCGCC	GGACCTCCCG	GACTAGGTGA
	CCGTCTTCTC	CGTCCTGTAG	GACCTGGACA	CCCACATGGT	CACCCAGGGC GTGGGTCCCG
		TGACCGTCTT	GATGTGGGGG	CCGGGGCCGT	AGTCCAAGGG
1701	CCTGACCTTC GGACTGGAAG	GGCTGGTGCT CCGACCACGA	TCAAGCTGGT AGTTCGACCA	GCCCGTGGAG CGGGCACCTC	CCCGAGAAGG GGGCTCTTCC
1751	TGGAGGAGGC ACCTCCTCCG	CAACGAGGGC GTTGCTCCCG	GAGAACAACT CTCTTGTTGA	GCGCCGCCCA CGCGGCGGGT	CCCCATGTCC GGGGTACAGG

Figure 278

1801			GTGCTGGAGT CACGACCTCA	
1851	- -		 GGAGCTGCAC CCTCGACGTG	
1901			CTGTGCCTTC GACACGGAAG	
1951		- -	 TCCTTGACCC AGGAACTGGG	_
2001			GGAAATTGCA CCTTTAACGT	
2051			 GGGTGGGGCA CCCACCCGT	
2101			 GCTGGGGATG CGACCCCTAC	
2151			TGTGGGCGTG ACACCCGCAC	
2201			GTAGTTTTGT CATCAAAACA	
2251			CGTTTGATGG GCAAACTACC	
2301			TGGGCCGGGG ACCCGGCCCC	
2351			CGTCCTGCCC GCAGGACGGG	
2401			CGCCGTTGGA GCGGCAACCT	
2451			 GCCCGCGGGA CGGGCGCCCT	
2501			TGCAGCTTCC ACGTCGAAGG	CGTTCATCCG GCAAGTAGGC
2551	CCCGCGATGA GGGCGCTACT			TTCTTTGACC AAGAAACTGG
2601				GCCAGCAGGT CGGTCGTCCA
2651				AACATAAATA TTGTATTTAT
2701				TTGCTGTCTT AACGACAGAA

Figure 27C

2751				CGGGACCAGC GCCCTGGTCG	
2801				GTGGTAAAGG CACCATTTCC	
2851	TGTTCAGATA ACAAGTCTAT	CATGGGCATA GTACCCGTAT	AGCCCGTCTC TCGGGCAGAG	TGGGGTGGAG ACCCCACCTC	GTAGCACCAC CATCGTGGTG
2901				TAGATGATCC ATCTACTAGG	
2951				TTTCAGTAGC AAAGTCATCG	
3001				CAAAGCGGTT GTTTCGCCAA	
3051	GGGTGCATAC CCCACGTATG	GTGGGGATAT ÇACCCCTATA	GAGATGCATC CTCTACGTAG	TTGGACTGTA AACCTGACAT	TTTTTAGGTT AAAAATCCAA
3101	GGCTATGTTC CCGATACAAG	CCAGCCATAT GGTCGGTATA	CCCTCCGGGG GGGAGGCCCC	ATTCATGTTG TAAGTACAAC	TGCAGAACCA ACGTCTTGGT
3151	CCAGCACAGT GGTCGTGTCA	GTATCCGGTG CATAGGCCAC	CACTTGGGAA GTGAACCCTT	ATTTGTCATG TAAACAGTAC	TAGCTTAGAA ATCGAATCTT
3201	GGAAATGCGT CCTTTACGCA	GGAAGAACTT CCTTCTTGAA	GGAGACGCCC CCTCTGCGGG	TTGTGACCTC AACACTGGAG	CAAGATTTTC GTTCTAAAAG
3251				CCCACGGGCG GGGTGCCCGC	
3301				AGTTGTGTTC TCAACACAAG	CAGGATGAGA GTCCTACTCT
3351	TCGTCATAGG AGCAGTATCC	CCATTTTTAC GCTAAAAATG	AAAGCGCGGG TTTCGCGCCC	CGGAGGGTGC GCCTCCCACG	CAGACTGCGG GTCTGACGCC
3401					CAGATTTGCA GTCTAAACGT
3451				TCATGTCTAC AGTACAGATG	CTGCGGGGCG GACGCCCCGC
3501	ATGAAGAAAA TACTTCTTTT	CGGTTTCCGG GCCAAAGGCC	GGTAGGGGAG	ATCAGCTGGG TAGTCGACCC	AAGAAAGCAG TTCTTTCGTC
3551	GTTCCTGAGC CAAGGACTCG	AGCTGCGACT TCGACGCTGA	TACCGCAGCC ATGGCGTCGG	GCTGGGCCCG CCACCCGGGC	TAAATCACAC ATTTAGTGTG
3601	CTATTACCGG GATAATGGCC	CTGCAACTGG GACGTTGACC	TAGTTAAGAG ATCAATTCTC	AGCTGCAGCT TCGACGTCGA	GCCGTCATCC CGGCAGTAGG
3651	CTGAGCAGGG GACTCGTCCC	GGGCCACTTC CCCGGTGAAG	GTTAAGCATG	TCCCTGACTC AGGGACTGAG	GCATGTTTTC CGTACAAAAG

3701	CCTGACCAAA GGACTGGTTT	GCCAGAA AGGCGGTCTT	GGCGCTCGCC CCGCGAGCGG	GCCCAGCGAT CGGGTCGCTA	AGCAGT TT TCGTCAAGAA
3751			AACGGTTTGA TTGCCAAACT		
3801			CAGTTCCAGG GTCAAGGTCC		
3851			CCAGCATATC GGTCGTATAG		
3901			GTAGTCGGTG CATCAGCCAC		
3951			AGGGTCCTCG TCCCAGGAGC		
4001			CTGCGCGCTG GACGCGCGAC		
4051			GCTGCCGGTC CGACGGCCAG		
4101			TCATAGTCCA AGTATCAGGT		
4151			GGAGGAGGCG CCTCCTCCGC		
4201			TGGGCGCGAG ACCCGCGCTC		
4251			CCGCAGACGG GGCGTCTGCC		
4301			GTCAAAAACC CAGTTTTTGG		
4351					CGCTCGGTGA GCGAGCCACT
4401	CGAAAAGGCT GCTTTTCCGA				CCTGTCCTCG GGACAGGAGC
4451					ACTCTGAGAC TGAGACTCTG
4501	AAAGGCTCGC TTTCCGAGCG	GTCCAGGCCA CAGGTCCGGT	GCACGAAGGA CGTGCTTCCT	GGCTAAGTGG CCGATTCACC	GAGGGGTAGC CTCCCCATCG
4551					AAGACACATG TTCTGTGTAC
4601					TGTAGGCCAC ACATCCGGTG

4651	GTGACCGGGT CACTGGCCCA	CAAGGACTTC	GGGGGCTATA CCCCCGATAT	AAAGGGGGTG TTTCCCCCAC	GGGGC(TT CCCCGCGCAA
4701		CTCTTCCGCA GAGAAGGCGT			
4751		TCTGAAAAGC AGACTTTTCG			
4801		GAGGAGGATT CTCCTCCTAA			
4851		CGCATCCATC GCGTAGGTAG			
4901		CAAACGACCC GTTTGCTGGG			
4951		GTTTGGTTTT CAAACCAAAA			
5001	TGTTTAGCTG ACAAATCGAC	CACGTATTCG GTGCATAAGC			
5051		CGTCGGGCAC GCAGCCCGTG			
5101		TCAACGCTGG AGTTGCGACC			
5151		GCGGCGGG			TAGGGGGTCT ATCCCCCAGA
5201		CGTCCGGGGG GCAGGCCCCC			CCCCGGGCAG GGGGCCCGTC
5251		TCGAAGTAGT AGCTTCATCA			TCTAGCGCCT AGATCGCGGA
5301					GAGTGGGGGA CTCACCCCT
5351	CCCCATGGCA GGGGTACCGT				CGCAAATGTC GCGTTTACAG
5401	GTAAACGTAG CATTTGCATC	AGGGGCTCTC TCCCCGAGAG	TGAGTATTCC ACTCATAAGG	AAGATATGTA TTCTATACAT	GGGTAGCATC CCCATCGTAG
5451	TTCCACCGCG AAGGTGGCGC	GATGCTGGCG CTACGACCGC	CGCACGTAAT GCGTGCATTA	CGTATAGTTC GCATATCAAG	GTGCGAGGGA CACGCTCCCT
5501	GCGAGGAGGT CGCTCCTCCA	CGGGACCGAG GCCCTGGCTC	GTTGCTACGG CAACGATGCC	GCGGGCTGCT CGCCCGACGA	CTGCTCGGAA GACGAGCCTT
5551	GACTATCTGC CTGATAGACG	CTGAAGATGG GACTTCTACC	CATGTGAGTT GTACACTCAA	GGATGATATG CCTACTATAC	GTTGGACGCT CAACCTGCGA

5601				CTACCGCGTC GATGGCGCAG	
5651				AGCTCGGCGG TCGAGCCGCC	
5701				GATGATGTCA CTACTACAGT	
5751				GGACAAACTC CCTGTTTGAG	
5801				GCCTCCGAAC CGGAGGCTTG	
5851	TAGCATGTAG ATCGTACATC			GGCGCAGCAT CCGCGTCGTA	
5901				GGAGCGAGGT CCTCGCTCCA	
5951				TACTGGTATT ATGACCATAA	
6001				AAAGTCCGTG TTTCAGGCAC	
6051				CGTTGAAGAG GCAACTTCTC	
6101				AAGGGTCCCG TTCCCAGGGC	
6151				GATCTCGTCA CTAGAGCAGT	
6201				AGCGCGGGAT TCGCGCCCTA	
6251				AGCTCTTCAG TCGAGAAGTC	
6301	CCCGTGCTCT GGGCACGAGA	GAAAGGGCCC CTTTCCCGGG	AGTCTGCAAG TCAGACGTTC	ATGAGGGTTG TACTCCCAAC	GAAGCGACGA CTTCGCTGCT
6351	ATGAGCTCCA TACTCGAGGT	CAGGTCACGG GTCCAGTGCC	GCCATTAGCA CGGTAATCGT	TTTGCAGGTG AAACGTCCAC	GTCGCGAAAG CAGCGCTTTC
6401	GTCCTAAACT CAGGATTTGA	GGCGACCTAT CCGCTGGATA	GGCCATTTTT CCGGTAAAAA	TCTGGGGTGA AGACCCCACT	TGCAGTAGAA ACGTCATCTT
6451	GGTAAGCGGG CCATTCGCCC	TCTTGTTCCC AGAACAAGGG	AGCGGTCCCA TCGCCAGGGT	TCCAAGGTTC AGGTTCCAAG	GCGGCTAGGT CGCCGATCCA
6501	CTCGCGCGGC GAGCGCGCCG	AGTCACTAGA TCAGTGATCT	GGCTCATCTC CCGAGTAGAG	CGCCGAACTT GCGGCTTGAA	CATGACCAGC GTACTGGTCG

Figure 27G

6551	ATGAAGGGCA TACTTCCCGT			CCCATCCAAG GGGTAGGTTC	
6601				GCGAGGATGC CGCTCCTACG	
6651	•			AGGAGTGGCT TCCTCACCGA	
6701				CACTCGTGCT GTGAGCACGA	
6751				GGGCTGTACA CCCGACATGT	
6801				AGAGTGGGAA TCTCACCCTT	
6851				ACTTCGGCTG TGAAGCCGAC	
6901				GGATCGGACC CCTAGCCTCG	
6951				GCGGTCGGAG CGCCAGCCTC	
7001				TGGAGCTCCC ACCTCGAGGG	
7051				GCATAGACGG CGTATCTGCC	
7101				GGGGCTGGTT CCCCGACCAA	
7151				GGCGCGACTA CCGCGCTGAT	
7201				GGATGATGCA CCTACTACGT	
7251	GTGACGCGGG CACTGCGCCC	CGAGCCCCCG GCTCGGGGGC	GAGGTAGGGG CTCCATCCCC	GGGCTCCGGA CCCGAGGCCT	CCCGCCGGGA GGGCGGCCCT
7301					CTGGTGCTGC GACCACGACG
7351					TCTCCTGAAT AGAGGACTTA
7401	CTGGCGCCTC GACCGCGGAG	TGCGTGAAGA ACGCACTTCT	CGACGGGCCC GCTGCCCGGG	GGTGAGCTTG CCACTCGAAC	AACCTGAAAG TTGGACTTTC
7451					CTGGCGCAAA GACCGCGTTT

7501		GTTGTCTTGA CAACAGAACT	GCCGGT. T
7551		GGAGATCTCC CCTCTAGAGG	
7601		ATGCGGGCCA TACGCCCGGT	
7651		GCGGCTGTAG CGCCGACATC	
7701		 GCGCGAGATT CGCGCTCTAA	
7751		CGCTGAAAGA GCGACTTTCT	
7801		GTACATAACC CATGTATTGG	
7851		CAAGGCGCTC GTTCCGCGAG	
7901		GAGTTGCGCG CTCAACGCGC	
7951		GGCGACAGTG CCGCTGTCAC	
8001		CTTCTTCAAT GAAGAAGTTA	
8051		GGCGGTGGGG CCGCCACCCC	
8101		GTCGACAAAG CAGCTGTTTC	
8151		TGACGGCGCG ACTGCCGCGC	
8201		ATGTCCCGGT TACAGGGCCA	CGGGGGGCTG GCCCCCGAC
8251			ATTGTTGTGT TAACAACACA
8301	AGGTACTCCG TCCATGAGGC		ACCGGATCGG TGGCCTAGCC
8351			AGGTAGGCTG TCCATCCGAC
8401			TTCTGGCGGA AAGACCGCCT

Figure 27I

8451		ATGTAAT TACTACATTA			
8501		CACCATGTCC GTGGTACAGG			
8551		CCCAGGCTTC GGGTCCGAAG			
8601	GTCTTGCATG CAGAACGTAC	AGCCTTTCTA TCGGAAAGAT			
8651		TGCATCTATC ACGTAGATAG			
8701		TTCCTCCCAT AAGGAGGGTA			
8751		AGGTCGGCGA TCCAGCCGCT			
8801	GGACGCACTC	GGTAGACTGG CCATCTGACC	TTCAGTAGGT	ACAGGTGTTT	CGCCACCATA
8851		TGATGGTGTA ACTACCACAT			
8901	CCAGACCACT	CCCGGCTGCG GGGCCGACGC	TCTCGAGCCA	CATGGACTCT	GCGCTCATTC
8951		AAATACGTAG TTTATGCATC			
9001	GGGTGGTTTT	AGTGCGGCGG TCACGCCGCC	GCCGACCGCC	ATCTCCCCGG	TCGCATCCCA
9051					TGATATCCGT ACTATAGGCA
9101		GGACATCCAG CCTGTAGGTC			
9151	GGAAAGTCGC CCTTTCAGCG				AAAAGTGCTC TTTTCACGAG
	GTACCAGCCC	TGCGAGACCG	GCCAGTCCGC	GCGCGTTAGC	TTGACGCTCT AACTGCGAGA
9251					GTGGTCTGGT CACCAGACCA
9301					CGAGCCCCGT GCTCGGGGCA
9351	ATCCGGCCGT TAGGCCGGCA	CCGCCGTGAT GGCGGCACTA	CCATGCGGTT GGTACGCCAA	ACCGCCCGCG TGGCGGGCGC	TGTCGAACCC ACAGCTTGGG

Figure 27J

9401			CTCCTTTTGG GAGGAAAACC	
9451			GCCACTGGCC CGGTGACCGG	
9501			 AAGTGGCTCG TTCACCGAGC	
9551		·	CGGGACCCCC GCCCTGGGGG	
9601	- •		 TTTGCCTCCC AAACGGAGGG	
9651			 GGACGAGCCC CCTGCTCGGG	
9701			 TGCGCCCCCC ACGCGGGGGG	
9751			AGGGCACCCT TCCCGTGGGA	
9801			TGACGCGGCA ACTGCGCCGT	
9851			 ACTACCTGGA TGATGGACCT	
9901			TCTCCTGAGC AGAGGACTCG	
9951			GTACGTGCCG CATGCACGGC	
10001			AGGAGATGCG TCCTCTACGC	
10051			CTGAATCGCG GACTTAGCGC	
10101	GCGCGAGGAG CGCGCTCCTC			AGTCCCGCGC TCAGGGCGCG
10151				GCAGACGGTG CGTCTGCCAC
10201				TGCGTACGCT ACGCATGCGA
				TGGGACTTTG ACCCTGAAAC
				GGCGCAGCTG CCGCGTCGAC

10351		T GCACAG ACGTCGTGTC			
10401		GTAGAGCCCG CATCTCGGGC			
10451		CATAGTGGTG GTATCACCAC			
10501		TCAACTATTC AGTTGATAAG			
10551		CATACCCCTT GTATGGGGAA			
10601		CATGCGCATG GTACGCGTAC			
10651		ATCGCAACGA TAGCGTTGCT			
10701		CTCAGCGACC GAGTCGCTGG			
10751		GGGCAGCGGC CCCGTCGCCG			CTTTGACGCG GAAACTGCGC
10801		TGCGCTGGGC ACGCGACCCG			AGGCAGCTGG TCCGTCGACC
10851		GGGCTGGCGG CCCGACCGCC			AACGTCGGCG TTGCAGCCGC
10901					GGACGGCGAG CCTGCCGCTC
10951	TACTAAGCGG ATGATTCGCC	TGATGTTTCT ACTACAAAGA	GATCAGATGA CTAGTCTACT	TGCAAGACGC ACGTTCTGCG	AACGGACCCG TTGCCTGGGC
11001	GCGGTGCGGG CGCCACGCCC	CGGCGCTGCA GCCGCGACGT	GAGCCAGCCG CTCGGTCGGC	TCCGGCCTTA AGGCCGGAAT	ACTCCACGGA TGAGGTGCCT
11051	. CGACTGGCGC GCTGACCGCG	CAGGTCATGG GTCCAGTACC	ACCGCATCAT TGGCGTAGTA	GTCGCTGACT CAGCGACTGA	GCGCGCAATC CGCGCGTTAG
11101	CTGACGCGTT GACTGCGCAA	CCGGCAGCAG GGCCGTCGTC	CCGCAGGCCA GGCGTCCGGT	ACCGGCTCTC TGGCCGAGAG	CGCAATTCTG GCGTTAAGAC
11151	GAAGCGGTGG CTTCGCCACC	TCCCGGCGCGC AGGGCCGCGC	CGCAAACCCC GCGTTTGGGG	ACGCACGAGA TGCGTGCTCT	AGGTGCTGGC TCCACGACCG
11201	GATCGTAAAC CTAGCATTTG	GCGCTGGCCG CGCGACCGGC	AAAACAGGGC TTTTGTCCCG	CATCCGGCCC GTAGGCCGGG	GACGAGGCCG CTGCTCCGGC
11251	GCCTGGTCTA CGGACCAGAT	CGACGCGCTG GCTGCGCGAC	CTTCAGCGCG GAAGTCGCGC	TGGCTCGTTA ACCGAGCAAT	CAACAGCGGC GTTGTCGCCG

Figure 27L

11301				GGGGATGTGC CCCCTACACG	
11351				CAACCTGGGC GTTGGACCCG	
11401				CCAACGTGCC GGTTGCACGG	
11451				CGGCTAATGG GCCGATTACC	
11501				AGACTATTTT TCTGATAAAA	
11551	GTAGACAAGG	CCTGCAGACC	GTAAACCTGA	GCCAGGCTTT	CAAAAACTTG
	CATCTGTTCC	GGACGTCTGG	CATTTGGACT	CGGTCCGAAA	GTTTTTGAAC
11601	CAGGGGCTGT	GGGGGGTGCG	GGCTCCCACA	GGCGACCGCG	CGACCGTGTC
	GTCCCCGACA	CCCCCCACGC	CCGAGGGTGT	CCGCTGGCGC	GCTGGCACAG
11.651	TAGCTTGCTG	ACGCCCAACT	CGCGCCTGTT	GCTGCTGCTA	ATAGCGCCCT
	ATCGAACGAC	TGCGGGTTGA	GCGCGGACAA	CGACGACGAT	TATCGCGGGA
11701	TCACGGACAG	TGGCAGCGTG	TCCCGGGACA	CATACCTAGG	TCACTTGCTG
	AGTGCCTGTC	ACCGTCGCAC	AGGGCCCTGT	GTATGGATCC	AGTGAACGAC
11751	ACACTGTACC	GCGAGGCCAT	AGGTCAGGCG	CATGTGGACG	AGCATACTTT
	TGTGACATGG	CGCTCCGGTA	TCCAGTCCGC	GTACACCTGC	TCGTATGAAA
11801				GGGGCAGGAG CCCCGTCCTC	
11851	GCCTGGAGGC	AACCCTAAAC	TACCTGCTGA	CCAACCGGCG	GCAGAAGATC
	CGGACCTCCG	TTGGGATTTG	ATGGACGACT	GGTTGGCCGC	CGTCTTCTAG
11901	CCCTCGTTGC	ACAGTTTAAA	CAGCGAGGAG	GAGCGCATTT	TGCGCTACGT
	GGGAGCAACG	TGTCAAATTT	GTCGCTCCTC	CTCGCGTAAA	ACGCGATGCA
11951	GCAGCAGAGC	GTGAGCCTTA	ACCTGATGCG	CGACGGGGTA	ACGCCCAGCG
	CGTCGTCTCG	CACTCGGAAT	TGGACTACGC	GCTGCCCCAT	TGCGGGTCGC
12001	TGGCGCTGGA	CATGACCGCG	CGCAACATGG	AACCGGGCAT	GTATGCCTCA
	ACCGCGACCT	GTACTGGCGC	GCGTTGTACC	TTGGCCCGTA	CATACGGAGT
12051	AACCGGCCGT TTGGCCGGCA	TTATCAACCG AATAGTTGGC	CCTAATGGAC GGATTACCTG	TACTTGCATC ATGAACGTAG	CGCGCCGGCG
12101	CGTGAACCCC	GAGTATTTCA	CCAATGCCAT	CTTGAACCCG	CACTGGCTAC
	GCACTTGGGG	CTCATAAAGT	GGTTACGGTA	GAACTTGGGC	GTGACCGATG
12151	CGCCCCTGG	TTTCTACACC	GGGGGATTCG	AGGTGCCCGA	GGGTAACGAT
	GCGGGGACC	AAAGATGTGG	CCCCTAAGC	TCCACGGGCT	CCCATTGCTA
12201	GGATTCCTCT	GGGACGACAT	AGACGACAGC	GTGTTTTCCC	CGCAACCGCA
	CCTAAGGAGA	CCCTGCTGTA	TCTGCTGTCG	CACAAAAGGG	GCGTTGGCGT

Figure 27 M

12251				GCCAGAGGCG CCGTCTCCGC	
12301				CCGATCTAGG GGCTAGATCC	
12351		- -		AGCTTGATAG TCGAACTATC	
12401	CAGCACTCGC GTCGTGAGCG			GGGCGAGGAG CCCGCTCCTC	
12451				AAAACCTGCC TTTTGGACGG	
12501			- -	AAGATGAGTA TTCTACTCAT	
12551				GGGCGCGGGC	
12601				TGTGGGAGGA ACACCCTCCT	
12651				GGGAGTGGCA CCCTCACCGT	
1 2701				TTAAAAAAAA TTTTTTTTAA	
12751				GCACCGAGCG CGTGGCTCGC	
12801				ATGTATGAGG TACATACTCC	
12851				GCCAGTGGCG CGGTCACCGC	
12901				CGTTTGTGCC GCAAACACGG	
12951	CTGCGGCCTA GACGCCGGAT			CGTTACTCTG GCAATGAGAC	
13001	CCTATTCGAC GGATAAGCTG			GGACAACAAG CCTGTTGTTC	
13051	TGGCATCCCT ACCGTAGGGA			GCAACTTTCT CGTTGAAAGA	
13101				GCAAGCACAC CGTTCGTGTG	AGACCATCAA TCTGGTAGTT
13151	TCTTGACGAC AGAACTGCTG			CCTGAAAACC GGACTTTTGG	

13201	CCAACATGCC GGTTGTACGG	AMTGTGAAC T. CACTTG	GAGTTCATGT CTCAAGTACA	TTACCAATAA TAATGGTTATT	CAAATT C
13251				GACAATCAGG CTGTTAGTCC	
13301				GGGCAACTAC CCCGTTGATG	
13351				TGGAGCACTA ACCTCGTGAT	
13401	GGCAGACAGA CCGTCTGTCT	ACGGGGTTCT TGCCCCAAGA	GGAAAGCGAC CCTTTCGCTG	ATCGGGGTAA TAGCCCCATT	AGTTTGACAC TCAAACTGTG
13451				CACTGGTCTT GTGACCAGAA	
13501	GGGTATATAC CCCATATATG	AAACGAAGCC TTTGCTTCGG	TTCCATCCAG AAGGTAGGTC	ACATCATTTT TGTAGTAAAA	GCTGCCAGGA CGACGGTCCT
13551			CAGCCGCCTG GTCGGCGGAC	AGCAACTTGT TCGTTGAACA	
13601				GATCACCTAC CTAGTGGATG	
13651	AGGGTGGTAA TCCCACCATT	CATTCCCGCA GTAAGGGCGT	CTGTTGGATG GACAACCTAC	TGGACGCCTA ACCTGCGGAT	CCAGGCGAGC GGTCCGCTCG
13701				GGCGCAGGCG CCGCGTCCGC	
13751	CAGTGGCAGC GTCACCGTCG	GGCGCGGAAG CCGCGCCTTC	AGAACTCCAA TCTTGAGGTT	CGCGGCAGCC GCGCCGTCGG	GCGGCAATGC CGCCGTTACG
13801				TTCGCGGCGA AAGCGCCGCT	
13851				GAAGCAGCGG CTTCGTCGCC	
13901	CGCCCCGCT GCGGGGGCGA	GCGCAACCCG	AGGTCGAGAA TCCAGCTCTT	GCCTCAGAAG CGGAGTCTTC	AAACCGGTGA TTTGGCCACT
13951	TCAAACCCCT AGTTTGGGGA	GACAGAGGAC CTGTCTCCTG	AGCAAGAAAC TCGTTCTTTG	GCAGTTACAA CGTCAATGTT	CCTAATAAGC GGATTATTCG
14001	AATGACAGCA TTACTGTCGT	CCTTCACCCA GGAAGTGGGT	GTACCGCAGO CATGGCGTCG	TGGTACCTTG ACCATGGAAC	CATACAACTA GTATGTTGAT
14051	CGGCGACCCT GCCGCTGGGA	CAGACCGGAA GTCTGGCCTT	TCCGCTCATG	GACCCTGCTT CTGGGACGAA	TGCACTCCTG ACGTGAGGAC
14101	ACGTAACCTG TGCATTGGAC	CGGCTCGGAG	CAGGTCTACT GTCCAGATGA	GGTCGTTGCC	AGACATGATG TCTGTACTAC

Irgure 270

14151	CAAGACCCCG GTTCTGGGGC	TTTCCG ACTGGAAGGC	CTCCACGCGC GAGGTGCGCG	CAGATCAGCA GTCTAGTCGT	ACTTTC/ T TGAAAGGCCA
14201			CCGTGCACTC GGCACGTGAG		
14251			ATCCGCCAGT TAGGCGGTCA		
14301			CCAGATTTTG GGTCTAAAAC		
14351			ACGTTCCTGC TGCAAGGACG		
14401			GGAGGAGTCC CCTCCTCAGG		
14451			CTACGTTTAC GATGCAAATG		
14501			GCACTTTTTG CGTGAAAAAC		
14551			GGCTGGGGCC CCGACCCCGG		
14601			CTCCGACCAA GAGGCTGGTT		
14651			GCGCGCACAA CGCGCGTGTT		
14701			GACGCGGTGG CTGCGCCACC		
14751			GTCCACAGTG CAGGTGTCAC		
14801	GGTGCGCGGA CCACGCGCCT	GCCCGGCGCT CGGGCCGCGA	ATGCTAAAAT TACGATTITA	GAAGAGACGG CTTCTCTGCC	CGGAGGCGCG GCCTCCGCGC
14851			CGACCCGGCA GCTGGGCCGT		
14901	GCGGCCCTGC CGCCGGGACG	TTAACCGCGC AATTGGCGCG	ACGTCGCACC TGCAGCGTGG	GGCCGACGGG CCGGCTGCCC	CGGCCATGCG GCCGGTACGC
14951	GGCCGCTCGA CCGGCGAGCT	AGGCTGGCCG TCCGACCGGC	CGGGTATTGT GCCCATAACA	CACTGTGCCC GTGACACGGG	CCCAGGTCCA GGGTCCAGGT
15001	GGCGACGAGC CCGCTGCTCG	GGCCGCCGCA CCGGCGGCGT	GCAGCCGCGG CGTCGGCGCC	CCATTAGTGC GGTAATCACG	TATGACTCAG ATACTGAGTC
15051	GGTCGCAGGG CCAGCGTCCC	GCAACGTGTA CGTTGCACAT	TTGGGTGCGC AACCCACGCG	GACTCGGTTA CTGAGCCAAT	GCGGCCTGCG CGCCGGACGC

Figure 27P

15 101		er cccccc			
1 5151		GTACTGTTGT CATGACAACA			
15201		AGCGCAAAAT TCGCGTTTTA			
15251		GGCCCCCGA CCGGGGGGCT			
15301		GGTCAAAAAG CCAGTTTTTC			
15351		AACTGCTGCA TTGACGACGT			
15401		CGCGTAAAAC GCGCATTTTG			
15451		TGAGCGCTCC ACTCGCGAGG			
15501		ACGAGGACCT TGCTCCTGGA			
15551	GTTTGCCTAC CAAACGGATG	GGAAAGCGGC CCTTTCGCCG	ATAAGGACAT TATTCCTGTA	GCTGGCGTTG CGACCGCAAC	CCGCTGGACG GGCGACCTGC
15601		AACACCTAGC TTGTGGATCG			
15651		CACCGTCCGA GTGGCAGGCT			
15701		CCCACCGTGC GGGTGGCACG			
15751		GGAAAAAATG CCTTTTTTAC			
15801	CGCGTGCGGC GCGCACGCCG	CAATCAAGCA GTTAGTTCGT	GGTGGCGCCG CCACCGCGCGC	GGACTGGGCG CCTGACCCGC	TGCAGACCGT ACGTCTGGCA
15851	GGACGTTCAG CCTGCAAGTC	ATACCCACTA TATGGGTGAT	CCAGTAGCAC GGTCATCGTG	CAGTATTGCC GTCATAACGG	ACCGCCACAG TEGCGGTGTC
15901	AGGGCATGGA TCCCGTACCT	GACACAAACG CTGTGTTTGC	TCCCCGGTTG AGGGGCCAAC	CCTCAGCGGT GGAGTCGCCA	CCCCCTACCC
15951	GCGGTGCAGG CGCCACGTCC	CGGTCGCTGC GCCAGCGACG	GGCCGCGTCC CCGGCGCAGG	AAGACCTCTA TTCTGGAGAT	CGGAGGTGCA GCCTCCACGT
16001					CCGCGCCGTT GGCGCGGCAA

Figure 270

16051		GCCGCGGCG			
16101		CGCCTACCCC GCGGATGGGG			
16151		ACTACCCGAC TGATGGGCTG			
16201		CCAGCCCGTG GGTCGGGCAC			
16251		GCAGGACCCT CGTCCTGGGA			
16301		AAGCCGGTCT TTCGGCCAGA			
16351		TTTCCCGGTG AAAGGGCCAC			
16401		CCGGCCACGG GGCCGGTGCC			
16451		CGCGCGTCGC GCGCGCAGCG			
16501		ACTGATCGCC TGACTAGCGG			CGGAATTGCA GCCTTAACGT
16551		TGCAGGCGCA ACGTCCGCGT			GTTGCATGTG CAACGTACAC
16601					GGTCCTGTAA CCAGGACATT
16651					CCCCGCGACA GGGGCGCTGT
16701					ACCAGCAATA TGGTCGTTAT
16751	TGAGCGGTGG ACTCGCCACC	CGCCTTCAGC GCGGAAGTCG	TGGGGCTCGC ACCCCGAGCG	TGTGGAGCGG ACACCTCGCC	CATTAAAAAT GTAATTTTTA
16801	TTCGGTTCCA AAGCCAAGGT	CCGTTAAGAA GGCAATTCTT	CTATGGCAGC GATACCGTCG	AAGGCCTGGA TTCCGGACCT	ACAGCAGCAC TGTCGTCGTG
16851	AGGCCAGATG TCCGGTCTAC	CTGAGGGATA GACTCCCTAT	AGTTGAAAGA TCAACTTTCT	GCAAAATTTC CGTTTTAAAG	CAACAAAAGG GTTGTTTTCC
16901	TGGTAGATGG ACCATCTACC	CCTGGCCTCT GGACCGGAGA	GGCATTAGCG CCGTAATCGC	GGGTGGTGGA CCCACCACCT	CCTGGCCAAC GGACCGGTTG
16951	CAGGCAGTGC GTCCGTCACG	AAAATAAGAT TTTTATTCTA	TAACAGTAAG ATTGTCATTC	CTTGATCCCC GAACTAGGGG	GCCCTCCCGT CGGGAGGGCA

17001		cereccecc carcecce.			
17051		GCGCCCCGAC CGCGGGGCTG			
17101	•	CGTACGAGGA GCATGCTCCT			
17151		CCCATGGCTA GGGTACCGAT			
17201		GCCTCCCCC CGGAGGGGGG			
17251		CCGTTGTTGT GGCAACAACA			
17301		GGTCCGCGAT CCAGGCGCTA			
17351		GAACAGCATC CTTGTCGTAG			
17401		TCTGATAGCT AGACTATCGA			
17451		CCAGAGGAGC GGTCTCCTCG			
17501		CTTCGATGAT GAAGCTACTA			
17551		TCGGAGTACC AGCCTCATGG			
17601		GTACTTCAGC CATGAAGTCG			
17651		ACGACGTGAC TGCTGCACTG			
17701		GTGGACCGTG CACCTGGCAC			
17751	TCACCCTAGC AGTGGGATCG	TGTGGGTGAT ACACCCACTA	AACCGTGTGC TTGGCACACG	TGGACATGGC ACCTGTACCG	TTCCACGTAC AAGGTGCATG
17801	TTTGACATCC AAACTGTAGG				AGCCCTACTC TCGGGATGAG
17851	TGGCACTGCC ACCGTGACGG	TACAACGCCC ATGTTGCGGG	TGGCTCCCAA ACCGAGGGTT	GGGTGCCCCA CCCACGGGGT	AATCCTTGCG TTAGGAACGC
17901	AATGGGATGA TTACCCTACT	AGCTGCTACT TCGACGATGA	GCTCTTGAAA CGAGAACTTT	TAAACCTAGA ATTTGGATCT	AGAAGAGGAC TCTTCTCCTG

Figure 275

17951				GCTGAGCAGC CGACTCGTCG	
18001				AAATATTACA TTTATAATGT	
18051	TTCAAATAGG AAGTTTATCC			AATATGCCGA TTATACGGCT	
18101				TGGTACGAAA ACCATGCTTT	
18151				TACCCCAATG ATGGGGTTAC	
18201				ATGGAGGGCA TACCTCCCGT	
18251				CAAGTGGAAA GTTCACCTTT	
18301				TGATAACTTG ACTATTGAAC	
18351				AAACCCCAGA TTTGGGGTCT	
18401				TCACGAGAAC AGTGCTCTTG	
18451				TGCTTTTAGG ACGAAAATCC	
18501				ATATGGGTGT TATACCCACA	
18551				TTGCAAGACA AACGTTCTGT	GAAACACAGA CTTTGTGTCT
18601				TGGTGATAGA ACCACTATCT	ACCAGGTACT TGGTCCATGA
18651				ATGATCCAGA TACTAGGTCT	TGTTAGAATT ACAATCTTAA
18701					GCTTTCCACT CGAAAGGTGA
18751	GGGAGGTGTG CCCTCCACAC				CCTAAAACAG GGATTTTGTC
18801	GTCAGGAAAA CAGTCCTTTT	TGGATGGGAA ACCTACCCTT	AAAGATGCTA TTTCTACGAT	CAGAATTTTC GTCTTAAAAG	AGATAAAAAT TCTATTTTTA
18851					TAAATGCCAA ATTTACGGTT

Figure 27T

18901	CCTGTGGAGA GGACACCTCT	A TCCTGT TTAAAGGACA	ACTCCAACAT TGAGGTTGTA	AGCGCTGTAT TCGCGACATA	TTGCCC A
18951				TTTCTGATAA AAAGACTATT	
19001				CCCGGGCTAG GGGCCCGATC	
19051				CTATATGGAC GATATACCTG	
19101		CCACCGCAAT GGTGGCGTTA		GCTACCGCTC CGATGGCGAG	AATGTTGCTG TTACAACGAC
19151				CAGGTGCCTC GTCCACGGAG	
19201				CTCATACACC GAGTATGTGG	
19251				AGAGCTCCCT TCTCGAGGGA	
19301				GATAGCATTT CTATCGTAAA	
19351				CTCCACGCTT GAGGTGCGAA	
19401				ACGACTATCT TGCTGATAGA	
19451				ACCAACGTGC TGGTTGCACG	
19501				CTGGGCCTTC GACCCGGAAG	
19551				GCTACGACCC CGATGCTGGG	
19601	TACTCTGGCT ATGAGACCGA	CTATACCCTA GATATGGGAT	CCTAGATGGA GGATCTACCT	ACCTTTTACC TGGAAAATGG	TCAACCACAC AGTTGGTGTG
19651					TGGCCTGGCA ACCGGACCGT
19701					CTCAGTTGAC GAGTCAACTG
19751	GGGGAGGGTT CCCCTCCCAA	ACAACGTTGC TGTTGCAACG	CCAGTGTAAC GGTCACATTG	ATGACCAAAG TACTGGTTTC	ACTGGTTCCT TGACCAAGGA
19801					TTCTATATCC AAGATATAGG

19851	CAGAGAGCTA GTCTCTCGAT			TCTTTAGAAA AGAAATCTTT	
19901				TACAAGGACT ATGTTCCTGA	
19951				ATTTGTTGGC TAAACAACCG	
20001				CTAACTTCCC GATTGAAGGG	
20051				CAGAAAAAGT GTCTTTTCA	
20101				TAACTTTATG ATTGAAATAC	
20151		=		ACGCCAACTC TGCGGTTGAG	
20201				GACGAGCCCA CTGCTCGGGT	
20251				TGTGCACCAG ACACGTGGTC	
20301				CCTTCTCGGC GGAAGAGCCG	
20351			_	CAGCTGCCGC GTCGACGGCG	
20401				GATCTTGGTT CTAGAACCAA	-
20451				AGGCTTTGTT TCCGAAACAA	
20501				GTCGCGAGAC CAGCGCTCTG	
20551	CACTGGATGG GTGACCTACC				GCTACCTCTT CGATGGAGAA
20601	TGAGCCCTTT ACTCGGGAAA				TACCAGTTTG ATGGTCAAAC
20651	AGTACGAGTC TCATGCTCAG				CCCCGACCGC GGGGCTGGCG
20701	TGTATAACGC ACATATTGCG				CCAACTCGGC GGTTGAGCCG
20751					GCCAACTGGC CGGTTGACCG

Figure 27 V.

20801	CCCAAACTCC GGGTTTGAGG		AACCCCACCA TTGGGGTGGT		
20851			TCCCCAGGTA AGGGGTCCAT		
20901			TCCTGGAGCG AGGACCTCGC		
20951			AGCGCCACTT TCGCGGTGAA		
21001			AGACACTTTC TCTGTGAAAG		
21051			TATTTACCCC ATAAATGGGG		
21101			TGCCGCGCAT ACGGCGCGTA		
21151			TTTAGTGCTC AAATCACGAG		
21201			AGTTTTCACT TCAAAAGTGA		CGCACCATCA GCGTGGTAGT
21251			GGCGCCGATA CCGCGGCTAT		
21301			GTTGCGATAC CAACGCTATG		
21351			GCACGCTGGC CGTGCGACCG		
21401			TCCGCGTTGC AGGCGCAACG		
21451	TTTGGTAGCT AAACCATCGA	GCCTTCCCAA CGGAAGGGTT	AAAGGGCGCG TTTCCCGCGC	TGCCCAGGCT ACGGGTCCGA	TTGAGTTGCA AACTCAACGT
21501	CTCGCACCGT GAGCGTGGCA	AGTGGCATCA TCACCGTAGT	AAAGGTGACC TTTCCACTGG	GTGCCCGGTC CACGGGCCAG	TGGGCGTTAG ACCCGCAATC
21551	GATACAGCGC CTATGTCGCG	CTGCATAAAA GACGTATTTT	GCCTTGATCT CGGAACTAGA	GCTTAAAAGC CGAATTTTCG	CACCTGAGCC GTGGACTCGG
21601	TTTGCGCCTT AAACGČGGAA	CAGAGAAGAA GTCTCTTCTT	CATGCCGCAA GTACGGCGTT	GACTTGCCGG CTGAACGGCC	AAAACTGATT TTTTGACTAA
21651	GGCCGGACAG CCGGCCTGTC	GCCGCGTCGT CGGCGCAGCA	GCACGCAGCA CGTGCGTCGT	CCTTGCGTCG GGAACGCAGC	GTGTTGGAGA CACAACCTCT
21701	TCTGCACCAC AGACGTGGTG	ATTTCGGCCC TAAAGCCGGG	CACCGGTTCT GTGGCCAAGA	TCACGATCTT AGTGCTAGAA	GGCCTTGCTA CCGGAACGAT

71 gure 27 W

21751	GACTGCTCCT CTGACGAGGA	TCGCGCG AGTCGCGCGC	CTGCCCGTTT GACGGGCAAA	TCGCTCGTCA AGCGAGCAGT	CATCCAT C GTAGGTAAAG
21801			TCATAATGCT AGTATTACGA		
21851	CGCCTTCGAT GCGGAAGCTA	CTCAGCGCAG GAGTCGCGTC	CGGTGCAGCC GCCACGTCGG	ACAACGCGCA TGTTGCGCGT	GCCCGTGGGC CGGGCACCCG
21901			CTCTGCAAAC GAGACGTTTG		
21951	GAATCGCCCC CTTAGCGGGG		CAAAGGTCTT GTTTCCAGAA		
22001			TTCAGCCAGG AAGTCGGTCC		
22051	GCTTCCACTT CGAAGGTGAA	GGTCAGGCAG CCAGTCCGTC	TAGTTTGAAG ATCAAACTTC	TTCGCCTTTA AAGCGGAAAT	GATCGTTATC CTAGCAATAG
22101	CACGTGGTAC GTGCACCATG	TTGTCCATCA AACAGGTAGT	CCCCCCCCCC	AGCCTCCATG TCGGAGGTAC	CCCTTCTCCC GGGAAGAGGG
22151	ACGCAGACAC TGCGTCTGTG	GATCGGCACA CTAGCCGTGT	CTCAGCGGGT GAGTCGCCCA	TCATCACCGT AGTAGTGGCA	AATTTCACTT TTAAAGTGAA
22201			CTCTTCCTCT GAGAAGGAGA		
22251			GCCGCCGCAC CGGCGGCGTG		
22301			GGGTTGCTGA CCCAACGACT		
22351			GCTGTCCACG CGACAGGTGC		GTGATGGCGG CACTACCGCC
22401			GGCGCTTCTT CCGCGAAGAA		
22451	CCAAATCCGC GGTTTAGGCG				GCGCGGCACC CGCGCCGTGG
22501	AGCGCGTCTT TCGCGCAGAA	GTGATGAGTC CACTACTCAG	TTCCTCGTCC AAGGAGCAGG	TCGGACTCGA AGCCTGAGCT	TACGCCGCCT ATGCGGCGGA
22551	CATCCGCTTT GTAGGCGAAA	TTTGGGGGCG AAACCCCCGC	CCCGGGGAGG GGGCCCCTCC	CGGCGGCGAC GCCGCCGCTG	GGGGACGGGG CCCCTGCCCC
22601	ACGACACGTC TGCTGTGCAG	CTCCATGGTT GAGGTACCAA	GGGGGACGTC CCCCCTGCAG	GUGCCGCACC CGCGGCGTGG	GCGTCCGCGC CGCAGGCGCG
22651	TCGGGGGTGG AGCCCCCACC	TTTCGCGCTG AAAGCGCGAC	CTCCTCTTCC GAGGAGAACG	CGACTGGCCA GCTGACCGGT	TTTCCTTCTC AAAGGAAGAG

Figure 27X

22701			CGAGAAGAAG GCTCTTCTTC	
22751		 	CCACCGATGC GGTGGCTACG	
22801		 •	CTTGAGGAGG GAACTCCTCC	
22851			AGACGACGAG TCTGCTGCTC	
22901			ACAACGCAGA TGTTGCGTCT	
22951			GGCGACTACC CCGCTGATGG	
23001			CCAGTGCGCC GGTCACGCGG	
23051			TCGCCATAGC AGCGGTATCG	
23101	· · - · - - · ·		CGCGTACCCC GCGCATGGGG	
23151			CCTCAACTTC GGAGTTGAAG	
23201			ACATCTTTTT TGTAGAAAAA	
23251			AGCCGAGCGG TCGGCTCGCC	
23301			TATCGCCTCG ATAGCGGAGC	
23351			ACGAGAAGCG TGCTCTTCGC	
23401	GCTCTGCAAC CGAGACGTTG			GAGTGTTGGT CTCACAACCA
23451				CGCAGCATCG GCGTCGTAGC
23501				CAAGGTCATG GTTCCAGTAC
23551				CCCTGGAGAG GGGACCTCTC
23601				GCAGTTGGCG CGTCAACCGC

Figure 27 Y

23651	ACGAGCAGCT TGCTCGTCGA			GCGAGCCTGC CGCTCGGACG	
23701		,		CTCGTTACCG GAGCAATGGC	
23751		=		GATGCAGCGC CTACGTCGCG	
23801			_	ACGTACGCCA TGCATGCGGT	
23851				TCCTACCTTG AGGATGGAAC	
23901				TTCCACGCTC AAGGTGCGAG	
23951				ACTTATTTCT TGAATAAAGA	
24001	_			TGCTTGGAGG ACGAACCTCC	
24051				CTTGAAGGAC GAACTTCCTG	
24101				TGGCGGACAT ACCGCCTGTA	
24151				CTGCCAGACT GACGGTCTGA	
24201		=		CCTAGAGCGC GGATCTCGCG	-
24251				ACTTTGTGCC TGAAACACGG	
24301				TGCTACCTTC ACGATGGAAG	
24351	CAACTACCTT GTTGATGGAA			GGAAGACGTG CCTTCTGCAC	
24401	GTCTACTGGA CAGATGACCT				GCACCGCTCC CGTGGCGAGG
24451	CTGGTTTGCA GACCAAACGT			AGTCAAATTA TCAGTTTAAT	
24501	TGAGCTGCAG ACTCGACGTC				
24551	AACTCACTCC TTGAGTGAGG			ACCTTCGCAA TGGAAGCGTT	

Figure 27Z

24601				TACGAAGACC ATGCTTCTGG	
24651				TACCCAGGGC ATGGGTCCCG	
24701				AAGAGTTTCT TTCTCAAAGA	
24751				GGCGAGGAGC CCGCTCCTCG	
24801		- -		CGGCGCGCCGG	
24851		· · ·		CCGCCGCCAC GGCGGCGGTG	
24901				GGTTTTGGAC CCAAAACCTG	
24951				ACGAGGAAGC TGCTCCTTCG	
25001				TCGGTCGCAT AGCCAGCGTA	
25051	•		-	CATGGCTACA GTACCGATGT	_
25101				GACCCAACCG CTGGGTTGGC	
25151				CAGCCGCCGC GTCGGCGGCG	
25201				ATGGCGCGGG TACCGCGCCC	
25251				GCAACATCTC CGTTGTAGAG	
25301	CGCTTTCTTC GCGAAAGAAG				ACATCCTGCA TGTAGGACGT
25351	TTACTACCGT AATGATGGCA				AGCGGCAGCA TCGCCGTCGT
25401	ACAGCAGCGG TGTCGTCGCC				AGACTCTGAC TCTGAGACTG
25451	AAAGCCCAAG TTTCGGGTTC				GGAGCGCTGC CCTCGCGACG
25501					AAACAGGATT TTTGTCCTAA

Figure 27 AA

25 551	TTTCCCACTC AAAGGGTGAG				
25601			CTCTGCGATC GAGACGCTAG		
25651	ATCACAAAAG TAGTGTTTTC		CTTCGGCGCA GAAGCCGCGT		
25701	CTCTTCAGTA GAGAAGTCAT		GCTGACTCTT CGACTGAGAA		
25751	TTCTCAAATT AAGAGTTTAA				
25801			GCCATTATGA CGGTAATACT		
25851			ACAAATGGGA TGTTTACCCT		
25901			ACTACATGAG TGATGTACTC		
25951			GCCCACCGAA CGGGTGGCTT		
26001			TCGTAATAAC AGCATTATTG		
26051			AAAGTCCCGC TTTCAGGGCG		
26101			GTTCAGATGA CAAGTCTACT		GGCGCAGCTT CCGCGTCGAA
26151			GGTGCGGTCG CCACGCCAGC		GTATAACTCA CATATTGAGT
26201					TCGGTGAGCT AGCCACTCGA
26251	CCTCGCTTGG GGAGCGAACC	TCTCCGTCCG AGAGGCAGGC	GACGGGACAT CTGCCCTGTA	TTCAGATCGG AAGTCTAGCC	GCGCGCCGGC GGGCGCCGGC
26301					AGACCTCGTC TCTGGAGCAG
26351					ATTGAGGAGT TAACTCCTCA
26401	TTGTGCCATC AACACGGTAG	GGTCTACTTT CCAGATGAAA	AACCCCTTCT TTGGGGAAGA	CGGGACCTCC GCCCTGGAGG	CGGCCACTAT GCCGGTGATA
26451					CGGCGGACGG GCCGCCTGCC

Figure 27 AB

26501	CTACGACTGA GATGCTGACT	A TAAGTG TACAATTCAC			
26551		TCGCCGCCAC AGCGGCGGTG			
26601		AATTGCCCGA TTAACGGGCT			
26651		GCCCAGGGAG CGGGTCCCTC			
26701		CCTGCTAGTT GGACGATCAA			
26751		ACTGTCCTAA TGACAGGATT			
26801		GAGTATAATA CTCATATTAT			
26851		CTGTAAACGC GACATTTGCG			
26901		CCTGGTACTT GGACCATGAA			ATTTACAACA TAAATGTTGT
26951		AGACGGAGTG TCTGCCTCAC			CGAGCTCAGC GCTCGAGTCG
27001		GAAAAAACAC CTTTTTTGTG			
27051		GCCGCTGCAC CGGCGACGTG			
27101		AGACCTCAAT TCTGGAGTTA			
27151					GTGGGGTTTA CACCCCAAAT
27201	TGAACAATTC ACTTGTTAAG	AAGCAACTCT TTCGTTGAGA	ACGGGCTATT TGCCCGATAA	CTAATTCAGG GATTAAGTCC	TTTCTCTAGA AAAGAGATCT
27251	ATCGGGGTTG TAGCCCCAAC	GGGTTATTCT CCCAATAAGA	CTGTCTTGTG GACAGAACAC	ATTCTCTTTA TAAGAGAAAT	TTCTTATACT AAGAATATGA
27301	AACGCTTCTC TTGCGAAGAG	TGCCTAAGGC ACGGATTCCG	TCGCCGCCTG AGCGGCGGAC	CTGTGTGCAC GACACACGTG	ATTTGCATTT TAAACGTAAA
27351	ATTGTCAGCT TAACAGTCGA	TTTTAAACGC AAAATTTGCG	TGGGGTCGCC ACCCCAGCGG	ACCCAAGATG TGGGTTCTAC	ATTAGGTACA TAATCCATGT
27401	TAATCCTAGG ATTAGGATCC	TTTACTCACC AAATGAGTGG	CTTGCGTCAG GAACGCAGTC	CCCACGGTAC GGGTGCCATG	CACCCAAAAG GTGGGTTTTC

Figure 27AC

27451	•	_	ACATTCGCAG TGTAAGCGTC	
27501			AGAACATGAA TCTTGTACTT	
27551			CTGTTTATGC GACAAATACG	
27601			 GTTTTCCAGG CAAAAGGTCC	
27651	TAAAACTTTT ATTTTGAAAA		 TGAAATGTGC ACTTTACACG	
27701			CCCCACAAAA GGGGTGTTTT	
27751			 CTAATTACAG GATTAATGTC	
27801			 AAGCAGACGC TTCGTCTGCG	
27851			 TACAAAGCTA ATGTTTCGAT	
27901			ATTCAAAAAG TAAGTTTTTC	
27951			 TTTCCTGCTC AAAGGACGAG	
28001			CTCCAGCGCT GAGGTCGCGA	
28051			 TTTGGCCAGC AAACCGGTCG	
28101			CACCCTAACA GTGGGATTGT	GAGATGACCA CTCTACTGGT
28151	ACACAACCAA TGTGTTGGTT			CACAAATACA GTGTTTATGT
28201				GCATGTGGTG CGTACACCAC
28251				TGGCTCATCT ACCGAGTAGA
28301				TCCCATCATT AGGGTAGTAA
28351				GACTGAAACA CTGACTTTGT

Figure 27AD

28401	CATGTTCTTT GTACAAGAAA	TTACAG AGAGAATGTC	TATGATTAAA ATACTAATTT	TGAGACATGÄ ACTCTGTACT	TTCCTC T
28451	TTTTATATTA	CTGACCCTTG	TTGCGCTTTT	TTGTGCGTGC	TCCACATTGG
	AAAATATAAA	GACTGGGAAC	AACGCGAAAA	AACACGCACG	AGGTGTAACC
28501			GTAGACTGCA CATCTGACGT		
28551	TTGCTTTACG	GATTTGTCAC	CCTCACGCTC	ATCTGCAGCC	TCATCACTGT
	AACGAAATGC	CTAAACAGTG	GGAGTGCGAG	TAGACGTCGG	AGTAGTGACA
28601	GGTCATCGCC	TTTATCCAGT	GCATTGACTG	GGTCTGTGTG	CGCTTTGCAT
	CCAGTAGCGG	AAATAGGTCA	CGTAACTGAC	CCAGACACAC	GCGAAACGTA
28651	ATCTCAGACA	CCATCCCCAG	TACAGGGACA	GGACTATAGC	TGAGCTTCTT
	TAGAGTCTGT	GGTAGGGGTC	ATGTCCCTGT	CCTGATATCG	ACTCGAAGAA
28701	AGAATTCTTT	AATTATGAAA	TTTACTGTGA	CTTTTCTGCT	GATTATTTGC
	TCTTAAGAAA	TTAATACTTT	AAATGACACT	GAAAAGACGA	CTAATAAACG
28751	ACCCTATCTG	CGTTTTGTTC	CCCGACCTCC	AAGCCTCAAA	GACATATATC
	TGGGATAGAC	GCAAAACAAG	GGGCTGGAGG	TTCGGAGTTT	CTGTATATAG
28801	ATGCAGATTC TACGTCTAAG		GGAATATTCC CCTTATAAGG		
28851	GCGATCTTTC	CGAAGCCTGG	TTATATGCAA	TCATCTCTGT	TATGGTGTTC
	CGCTAGAAAG	GCTTCGGACC	AATATACGTT	AGTAGAGACA	ATACCACAAG
28901			AGCTATATAT TCGATATATA		ACATTGGCTG TGTAACCGAC
28951	GAACGCAATA	GATGCCATGA	ACCACCCAAC	TTTCCCCGCG	CCCGCTATGC
	CTTGCGTTAT	CTACGGTACT	TGGTGGGTTG	AAAGGGGCGC	GGGCGATACG
29001	TTCCACTGCA	ACAAGTTGTT	GCCGGCGGCT	TTGTCCCAGC	CAATCAGCCT
	AAGGTGACGT	TGTTCAACAA	CGGCCGCGA	AACAGGGTCG	GTTAGTCGGA
29051					ATCTAACAGG TAGATTGTCC
29101	AGGAGATGAC	TGACACCCTA	GATCTAGAAA	TGGACGGAAT	TATTACAGAG
	TCCTCTACTG	ACTGTGGGAT	CTAGATCTTT	ACCTGCCTTA	ATAATGTCTC
29151	CAGCGCCTGC	TAGAAAGACG	CAGGGCAGCG	GCCGAGCAAC	AGCGCATGAA
	GTCGCGGACG	ATCTTTCTGC	GTCCCGTCGC	CGGCTCGTTG	TCGCGTACTT
29201	TCAAGAGCTC	CAAGACATGG	TTAACTTGCA	CCAGTGCAAA	AGGGGTATCT
	AGTTCTCGAG	GTTCTGTACC	AATTGAACGT	GGTCACGTTI	TCCCCATAGA
29251	TTTGTCTCGT AAACAGAGCA	AAAGCAGGCC	AAAGTCACCT TTTCAGTGGA	ACGACAGTAA TGCTGTCATT	TACCACCGGA ATGGTGGCCT
29301	CACCGCCTTA	GCTACAAGTT	GCCAACCAAG	CGTCAGAAAT	TGGTGGTCAT
	GTGGCGGAAT	CGATGTTCAA	CGGTTGGTTC	CGAGTCTTTA	ACCACCAGTA

Figure 27 AE

29351				GCACTCGGTA CGTGAGCCAT	
29401				AGGATCTCTG TCCTAGAGAC	
29451				CCCTTTAACT GGGAAATTGA	
29501				TTAGCAAATT AATCGTTTAA	
29551				CAGCTCTGGT GTCGAGACCA	
29601			- - · ·	AAATGGAATG TTTACCTTAC	
29651				TCATGTTGTT AGTACAACAA	
29701	• • • • • • • • • • • • • • • • • • • •			CCCGTGTATC GGGCACATAG	
29751				TACTCCTCCC ATGAGGAGGG	
29801	• • • • • • • • • • • • • • • • • • • •		- - · · · ·	TACTCTCTTT ATGAGAGAAA	
29851				GCGCTCAAAA CGCGAGTTTT	
29901				CTCCCAAAAT GAGGGTTTTA	
29951				ACATAAACCT TGTATTTGGA	
30001				ACTGTGGCTG TGACACCGAC	
30051					GCCCCGCTAA CGGGGCGATT
30101					CCTCACAGTG GGAGTGTCAC
30151					CCACCACCGA GGTGGTGGCT
30201					ACTGCCACTG TGACGGTGAC
30251	GTAGCTTGGG CATCGAACCC	CATTGACTTG GTAACTGAAC	AAAGAGCCCA TTTCTCGGGT	TTTATACACA AAATATGTGT	AAATGGAAAA TTTACCTTTT

30301	CTAGGACTAA GATCCTGATT	A CGGGGC TCTGCCCCG	TCCTTTGCAT AGGAAACGTA	GTAACAGAČG CATTGTCTGC	TGGATTTUTG
30351				TATTAATAAT ATAATTAATA	
30401				ATTCACAAGG TAAGTGTTCC	
30451				TCTCAAAACA AGAGTTTTGT	
	ACTTGATGTT TGAACTACAA				
30551				CCCACAACTT GGGTGTTGAA	
30601		·		TCAAACAATT AGTTTGTTAA	
30651			_	GATGTTTGAC CTACAAACTG	
30701				TTGGTTCACC AACCAAGTGG	
30751				CATGGCCTAG GTACCGGATC	
30801				TGGCCTTAGT ACCGGAATCA	
30851				ATGATAAGCT TACTATTCGA	
30901		•		CTAAATGCAG GATTTACGTC	
30951				CAGTCAAATA GTCAGTTTAT	
31001				CTCCAATATC GAGGTTATAG	TGGAACAGTT ACCTTGTCAA
31051	CAAAGTGCTC GTTTCACGAG			GAAAATGGAG CTTTTACCTC	
31101				CTTTAGAAAT GAAATCTTTA	GGAGATCTTA CCTCTAGAAT
31151	CTGAAGGCAC GACTTCCGTG	AGCCTATACA TCGGATATGT	AACGCTGTTG TTGCGACAAC	GATTTATGCC CTAAATACGG	TAACCTATCA ATTGGATAGT
31201				AAAAGTAACA TTTTCATTGT	TTGTCAGTCA AACAGTCAGT

Figure 27 AG

31251				TGTAACACTA ACATTGTGAT	
31301				CTCCAAGTGC GAGGTTCACG	
31351				TACATTAATG ATGTAATTAC	
31401	CACATCCTCT GTGTAGGAGA			CCAAGAATAA GGTTCTTATT	
31451				TTGCAGAAAA AACGTCTTTT	
31501				ACATAGCTTA TGTATCGAAT	
31551				TATTCAACCT ATAAGTTGGA	
31601		CAGAGTACAC GTCTCATGTG		CCCCGGCTGG GGGGCCGACC	CCTTAAAAAG GGAATTTTTC
31651	CATCATATCA GTAGTATAGT			AGGTGTTATA TCCACAATAT	
31701	TTTCCTGTCG AAAGGACAGC			TATTAATAAA ATAATTATTT	
31751				TGCTGAGCCA ACGACTCGGT	
31801				AGGAGAAGTC TCCTCTTCAG	CACGCCTACA GTGCGGATGT
31851				TAGGGCGGTG ATCCCGCCAC	
31901					AGGAATACAA TCCTTATGTT
		CAGAGGAGTC	GCTACTAAGC	GTGGCGGGCG	TCGTATTCCG
32001	GCCTTGTCCT CGGAACAGGA	CCGGGCACAG GGCCCGTGTC	CAGCGCACCC	TGATCTCACT ACTAGAGTGA	TAAATCAGCA ATTTAGTCGT
32051	CAGTAACTGC GTCATTGACG	AGCACAGCAC TCGTGTCGTG	CACAATATTG GTGTTATAAC	TTCAAAATCC AAGTTTTAGG	CACAGTGCAA GTGTCACGTT
32101	GGCGCTGTAT CCGCGACATA	CCAAAGCTCA GGTTTCGAGT	TGGCGGGGAC ACCGCCCCTG	CACAGAACCC GTGTCTTGGG	ACGTGGCCAT TGCACCGGTA
32151	CATACCACAA GTATGGTGTT	GCGCAGGTAG CGCGTCCATC	ATTAAGTGGC TAATTCACCG	GACCCCTCAT CTGGGGAGTA	AAACACGCTG TTTGTGCGAC

Figure 27 AH

32201				TAATTCACCA ATTAAGTGGT	_
32251				ATCCACCACC TAGGTGGTGG	
32301				ACTGCAGGGA TGACGTCCCT	
32351				TAACCATGGA ATTGGTACCT	
32401				GCACACGTGC CGTGTGCACG	
32451				CCATATCCCA GGTATAGGGT	
32501				CAGGGAAGAC GTCCCTTCTG	
32551				TTCGGGCAGC AAGCCCGTCG	
32601				CAAAAGGAGG GITTTCCTCC	
32651				GATCGTGTTG CTAGCACAAC	
32701				ATTTCCTGAA TAAAGGACTT	
32751		-		CGGTCTCGCC GCCAGAGCGG	
32801				TCTCAAAGCA AGAGTTTCGT	
32851				CATGCGCCGC GTACGCGGCG	
32901	ACATCCACCA TGTAGGTGGT				CACATTCGTT GTGTAAGCAA
32951					ACCATGTTTT TGGTACAAAA
33001					GATCTATTAA CTAGATAATT
33051	GTGAACGCGC CACTTGCGCG	TCCCCTCCGG AGGGGAGGCC	TGGCGTGGTC ACCGCACCAG	AAACTCTACA TTTGAGATGT	GCCAAAGAAC CGGTTTCTTG
33101					AAGGCAAACG TTCCGTTTGC

33151	GCCCTCACGT CGGGAGTGCA	GTGGAC GTCACCTG	GTAAAGGCTA CATTTCCGAT	AACCCTTCAG TTGGGAAGTC	CCACTIT. AG
33201		ATTCCAGCAC TAAGGTCGTG			
33251		CAATATATCT GTTATATAGA			
33301		TCTGCTCCAG AGACGAGGTC			
33351		GCAAAAATTC CGTTTTTAAG			
33401		TTAACAAAAA AATTGTTTTT			
33451	GGTCGACTTG	ATAATCGTGC TATTAGCACG	TCCAGACGTG	CCTGGTCGCG	CCGGTGAAGG
33501		CCATGACAAA GGTACTGTTT			
33551	GCCTCGATAC	CTAACCAGCG GATTGGTCGC	ATCGGGGCTA	CATTCGAACA	ACGTACCCGC
33601	CGCTATATTT	ATGCAAGGTG TACGTTCCAC	GACGAGTTTT	TTAGTCCGTT	TCGGAGCGCG
33651	TTTTTTCTTT	GCACATCGTA CGTGTAGCAT	CAGTACGAGT	ACGTCTATTT	CCGTCCATTC
33701	GAGGCCTTGG	ACCACAGAAA TGGTGTCTTT	TTCTGTGGTA	AAAAGAGAGT	TTGTACAGAC
33751	GCCCAAAGAC	CATAAACACA GTATTTGTGT	TTTATTTTAT	TGTTTTTTG	TAAATTTGTA
33801	ATCTTCGGAC	AGAATGTTGT	CCTTTTTGTT	GGGAATATTC	
33851	TGATGCCGGT	ACGGCCGCAC	TGGCATTTTT	TTGACCAGTG	CGTGATTAAA GCACTAATTT
	TTCGTGGTGG	CTGTCGAGGA	GCCAGTACAG	GCCTCAGTAT	ATGTAAGACT TACATTCTGA
	GCCATTTGTG	TAGTCCAACT	AAGTGTAGCC	AGTCACGATT	AAAGCGACCG TTTCGCTGGC
	TTTATCGGGC	CCCCTTATGT	ATGGGÇGTCC	GCATCTCTGT	ACATTACAGC TGTAATGTCG
34051	CCCCATAGGA GGGGTATCCT	GGTATAACAA CCATATTGTT	AATTAATAGG TTAATTATCC	AGAGAAAAAC TCTCTTTTTG	ACATAAACAC TGTATTTGTG

Figure 27AJ

34101	CTGAAAAACC GACTTTTTGG	CETTGCCTA G. ACGGAT	GGCAAAATAG CCGTTTTATC	CACCCTCC@GG GTGGGAGGGC	GAGGTC TA
34151	ACATACAGCG TGTATGTCGC			ACAGTCAGCC TGTCAGTCGG	
34201	AAAAGAAAAC TTTTCTTTTG				
34251				AGCGAGTATA TCGCTCATAT	
34301				AAACACCCAG TTTGTGGGTC	
34351				AAACCCACAA TTTGGGTGTT	
34401				CTTCCCATTT GAAGGGTAAA	
34451				CCTAAAACCT GGATTTTGGA	
34501	CCCCGTTCCC GGGGCAAGGG	ACGCCCCGCG TGCGGGGGCGC	CCACGTCACA GGTGCAGTGT	AACTCCACCC TTGAGGTGGG	CCTCATTATC GGAGTAATAG
					PacI
34551				TATTGATGAT ATAACTACTA	
34551 34601	TATAACCGAA AATTCGGATC	GTTAGGTTTT TGCGACGCGA	ATTCCATATA GGCTGGATGG		CAATTAATTC
	TATAACCGAA AATTCGGATC TTAAGCCTAG CTCGCTTCCG	GTTAGGTTTT TGCGACGCGA ACGCTGCGCT GCGGCATCGG	ATTCCATATA GGCTGGATGG CCGACCTACC GATGCCCGCG	ATAACTACTA CCTTCCCCAT	CAATTAATTC TATGATTCTT ATACTAAGAA TGCTGTCCAG
34601	TATAACCGAA AATTCGGATC TTAAGCCTAG CTCGCTTCCG GAGCGAAGGC GCAGGTAGAT	GTTAGGTTTT TGCGACGCGA ACGCTGCGCT GCGGCATCGG CGCCGTAGCC GACGACCATC	ATTCCATATA GGCTGGATGG CCGACCTACC GATGCCCGCG CTACGGGCGC	ATAACTACTA CCTTCCCCAT GGAAGGGGTA TTGCAGGCCA AACGTCCGGT TCAAGGCCAG	CAATTAATTC TATGATTCTT ATACTAAGAA TGCTGTCCAG ACGACAGGTC
34601 34651	TATAACCGAA AATTCGGATC TTAAGCCTAG CTCGCTTCCG GAGCGAAGGC GCAGGTAGAT CGTCCATCTA GGAACCGTAA	GTTAGGTTTT TGCGACGCGA ACGCTGCGCT GCGGCATCGG CGCCGTAGCC GACGACCATC CTGCTGGTAG	ATTCCATATA GGCTGGATGG CCGACCTACC GATGCCCGCG CTACGGGCGC AGGGACAGCT TCCCTGTCGA TTGCTGGCGT	ATAACTACTA CCTTCCCCAT GGAAGGGGTA TTGCAGGCCA AACGTCCGGT TCAAGGCCAG	TATGATTCTT ATACTAAGAA TGCTGTCCAG ACGACAGGTC CAAAAGGCCA GTTTTCCGGT GCTCCGCCCC
34601 34651 34701 34751	TATAACCGAA AATTCGGATC TTAAGCCTAG CTCGCTTCCG GAGCGAAGGC GCAGGTAGAT CGTCCATCTA GGAACCGTAA CCTTGGCATT CCTGACGAGGC	GTTAGGTTTT TGCGACGCGA ACGCTGCGCT GCGGCATCGG CGCCGTAGCC GACGACCATC CTGCTGGTAG AAAGGCCGCG TTTCCGGCGC	ATTCCATATA GGCTGGATGG CCGACCTACC GATGCCCGCG CTACGGGCGC AGGGACAGCT TCCCTGTCGA TTGCTGGCGT AACGACCGCA	ATAACTACTA CCTTCCCCAT GGAAGGGGTA TTGCAGGCCA AACGTCCGGT TCAAGGCCAG AGTTCCGGTC TTTTCCATAG AAAAGGTATC AGTCAGAGGT	CAATTAATTC TATGATTCTT ATACTAAGAA TGCTGTCCAG ACGACAGGTC CAAAAGGCCA GTTTTCCGGT GCTCCGCCCC CGAGGCGGGG
34601 34651 34701 34751 34801	TATAACCGAA AATTCGGATC TTAAGCCTAG CTCGCTTCCG GAGCGAAGGC GCAGGTAGAT CGTCCATCTA CGTCCATCTA CCTTGGCATT CCTGACGAGC GGACTGCTCG GGACTGCTCG	GTTAGGTTTT TGCGACGCGA ACGCTGCGCT GCGCGTAGCC GACGACCATC CTGCTGGTAG AAAGGCCGCG TTTCCGGCGC ATCACAAAAA TAGTGTTTTT TAAAGATACC	ATTCCATATA GGCTGGATGG CCGACCTACC GATGCCCGCG CTACGGGCGC AGGGACAGCT TCCCTGTCGA TTGCTGGCGT AACGACCGCA ACGACCGCA AGCTGCGAGT AGCTGCGAGT	ATAACTACTA CCTTCCCCAT GGAAGGGGTA TTGCAGGCCA AACGTCCGGT TCAAGGCCAG AGTTCCGGTC TTTTCCATAG AAAAGGTATC AGTCAGAGGT TCAGTCTCCA	TATGATTCTT ATACTAAGAA TGCTGTCCAG ACGACAGGTC CAAAAGGCCA GTTTTCCGGT GCTCCGCCCC CGAGGCGGGG GGCGAAACCC
34601 34651 34701 34751 34801 34851	TATAACCGAA AATTCGGATC TTAAGCCTAG CTCGCTTCCG GAGCGAAGGC GCAGGTAGAT CGTCCATCTA CCTTGGCATT CCTGACGAGC GGACTGCTCG GACAGGACTAG CTGTCCTGGCATT CTGTCCTGAT CTGTCCTGAT	GTTAGGTTTT TGCGACGCGA ACGCTGCGCT GCGGCATCGG CGCCGTAGCC GACGACCATC CTGCTGGTAG AAAGGCCGCG TTTCCGGCGC ATCACAAAAA TAGTGTTTTT TAAAGATACC ATTTCTATGG	ATTCCATATA GGCTGGATGG CCGACCTACC GATGCCCGCG CTACGGGCGC AGGGACAGCT TCCCTGTCGA TTGCTGGCGT AACGACCGCA AGCTGCGAGT AGCTGCGAGT AGCTGCGAGT CCGCAAAGG CCGCTTACCG	ATAACTACTA CCTTCCCCAT GGAAGGGGTA TTGCAGGCCA AACGTCCGGT TCAAGGCCAG AGTTCCGGTC TTTTCCATAG AAAAGGTATC AGTCAGAGGT TCAGTCTCCA CCCTGGAAGC GGGACCTTCG	TATGATTCTT ATACTAAGAA TGCTGTCCAG ACGACAGGTC CAAAAGGCCA GTTTTCCGGT GCTCCGCCCC CGAGGCGGGG GGCGAAACCC CCGCTTTGGG TCCCTCGTGC AGGGAGCACG
34601 34651 34701 34751 34801 34851 34901	TATAACCGAA AATTCGGATC TTAAGCCTAG CTCGCTTCCG GAGCGAAGGC GCAGGTAGAT CGTCCATCTA CCTTGGCATT CCTGACGAGC GGACTGCTCG GACAGGACTA CTGTCCTGAT CTGTCCTGAT CTGTCCTGAT CCTCCTGAT CCTCCCTGAT CCTCCCGGAA	GTTAGGTTTT TGCGACGCGA ACGCTGCGCT GCGGCATCGG CGCCGTAGCC GACGACCATC CTGCTGGTAG AAAGGCCGCG ATCACAAAAA TAGTGTTTTT TAAAGATACC ATTTCTATGG TCCGACCCTG AGGCTGGCACCTG	ATTCCATATA GGCTGGATGG CCGACCTACC GATGCCCGCG CTACGGGCGC AGGGACAGCT TCCCTGTCGA TTGCTGGCGT AACGACCGCA AGCTGCGAGT AGCTGCGAGT CCGCAAAGG CCGCTTACCG GGCGAATGGC	ATAACTACTA CCTTCCCCAT GGAAGGGGTA TTGCAGGCCA AACGTCCGGT TCAAGGCCAG AGTTCCGGTC TTTTCCATAG AAAAGGTATC AGTCAGAGGT TCAGTCTCCA CCCTGGAAGC GGGACCTTCG GATACCTGTC CTATGGACAG TCACGCTGTA	TATGATTCTT ATACTAAGAA TGCTGTCCAG ACGACAGGTC CAAAAGGCCA GTTTTCCGGT GCTCCGCCCC CGAGGCGGGG GCGAAACCC CCGCTTTGGG TCCCTCGTGC AGGGAGCACG CGCCTTTCTC

35051			TTATCCGGTA AATAGGCCAT		
35101			GCCACTGGCA CGGTGACCGT		
35151			GCGGTGCTAC CGCCACGATG		
35201			AGGACAGTAT TCCTGTCATA		
35251			AAGAGTTGGT TTCTCAACCA		
35301	TTGGTGGCGA	CCATCGCCAC	GTTTTTTTGT CAAAAAAACA	AACGTTCGTC	GTCTAATGCG
35351	CGTCTTTTTT	TCCTAGAGTT	GAAGATCCTT CTTCTAGGAA	ACTAGAAAAG	ATGCCCCAGA
35401			CTCACGTTAA GAGTGCAATT		
35451	TAGTTTTTCC	TAGAAGTGGA	AGATCCTTTT TCTAGGAAAA	TTTAGTTAGA	TTTCATATAT
35501			GTTACCAATG CAATGGTTAC		
35551	AGAGTCGCTA	GACAGATAAA	CGTTCATCCA GCAAGTAGGT	ATCAACGGAC	TGAGGGGCAG
35601	CACATCTATT	GATGCTATGC	GGAGGGCTTA CCTCCCGAAT	GGTAGACCGG	GGTCACGACG
35651	TTACTATGGC	GCTCTGGGTG	GCTCACCGGC CGAGTGGCCG	AGGTCTAAAT	AGTCGTTATT
35701	TGGTCGGTCG	GCCTTCCCGG	GAGCGCAGAA CTCGCGTCTT	CACCAGGACG	TTGAAATAGG
	CGGAGGTAGG	TCAGATAATT	AACAACGGCC	CTTCGATCTC	TAAGTAGTTC ATTCATCAAG
	CGGTCAATTA	TCAAACGCGT	TGCAACAACG	GTAACGATGT	
35851					TTCCCAACGA AAGGGTTGCT
35901					CGGTTAGCTC GCCAATCGAG
35951					GTGTTATCAC CACAATAGTG

Figure 2 7AL

36001	TCATGGTTAT	AGCACTG	CATAATTCTC	TTACTGTCAT	GCCATC
	AGTACCAATA	CCGTCGTGAC	GTATTAAGAG	AATGACAGTA	CGGTAGGCAT
36051		-		ACCAAGTCAT	
	TCTACGAAAA	GACACTGACC	ACTCATGAGT	TGGTTCAGTA	AGACTCTTAT
36101				GGCGTCAACA	
	CACATACGCC	GCTGGCTCAA	CGAGAACGGG	CCGCAGTTGT	GCCCTATTAT
				max max mmac	7 7 7 7 CCDCC
36151				TCATCATTGG AGTAGTAACC	
	GGCGCGGTGT	AICGICITGA	AATTTICACG	MGIAGIAACC	IIIIGCAAGA
36201	TCGGGGCGAA	AACTCTCAAG	GATCTTACCG	CTGTTGAGAT	CCAGTTCGAT
30201		TTGAGAGTTC			GGTCAAGCTA
			•••••		
36251	GTAACCCACT	CGTGCACCCA	ACTGATCTTC	AGCATCTTTT	ACTTTCACCA
	CATTGGGTGA	GCACGTGGGT	TGACTAGAAG	TCGTAGAAAA	TGAAAGTGGT
36301	GCGTTTCTGG	GTGAGCAAAA	ACAGGAAGGC		AAAAAAGGGA
	CGCAAAGACC	CACTCGTTTT	TGTCCTTCCG	TTTTACGGCG	TTTTTTCCCT
		•			
36351		CACGGAAATG			TTTTTCAATA
	TATTCCCGCT	GTGCCTTTAC	AACTTATGAG	TATGAGAAGG	AAAAAGTTAT
25401		3 mmm3 ma3 ac		CATGAGCGGA	ጥአር አጥአጥ ጥጥር
36401				GTACTCGCCT	
	AATAACTTCG	TAAATAGICC	CAMIANCAGA	GIACICGCCI	AIGIAITE
36451	ል አጥር ጥል ጥጥጥ ል	CAAAAATAAA	CAAATAGGGG	TTCCGCGCAC	ATTTCCCCGA
20477				AAGGCGCGTG	
	2	•	•		
36501	AAAGTGCCAC	CTGACGTCTA	AGAAACCATT	ATTATCATGA	CATTAACCTA
	TTTCACGGTG	GACTGCAGAT	TCTTTGGTAA	TAATAGTACT	GTAATTGGAT
36551					TTGGATCCGA
	ATTTTTATCC	GCATAGTGCT	CCGGGAAAGC	AGAAGTTCTT	AACCTAGGCT
		PacI			
		~~~~~~			

36601 ATTCTTAATT TCTTAATTAA (SEQ ID NO:34)

TAAGAATTAA AGAATTAATT (SEQ ID NO:35)

Figure 27AM





FIGURE 28



FIGURE 29A



FIGURE 29B

atg Met 1	gat Asp	gca Ala	atg Met	aag Lys 5	aga Arg	ggg Gly	ctc Leu	tgc Cys	tgt Cys 10	gtg Val	ctg Leu	ctg Leu	ctg Leu	tgt Cys 15	gga Gly	48
gca Ala	gtc Val	ttc Phe	gtt Val 20	tcg Ser	ccc Pro	agc Ser	gag Glu	atc Ile 25	tcc Ser	att Ile	gtg Val	tgg Trp	gcc Ala 30	tcc Ser	agg Arg	96
gag <b>Gl</b> u	ctg Leu	gag Glu 35	agg Arg	ttt Phe	gct Ala	gtg Val	aac Asn 40	cct Pro	ggc Gly	ctg Leu	ctg Leu	gag Glu 45	acc Thr	tct Ser	gag Glu	144
ggg	tgc Cys 50	agg Arg	cag Gln	atc Ile	ctg Leu	ggc Gly 55	cag <b>Gl</b> n	ctc Leu	cag Gln	ccc Pro	tcc Ser 60	ctg Leu	caa Gln	aca Thr	ggc Gly	192
tct Ser 65	gag Glu	gag Glu	ctg Leu	agg Arg	tcc Ser 70	ctg Leu	tac Tyr	aac Asn	aca Thr	gtg Val 75	gct Ala	acc Thr	ctg Leu	tac Tyr	tgt Cys 80	240
gtg Val	cac His	cag Gln	aag Lys	att Ile 85	gat Asp	gtg Val	aag Lys	gac Asp	acc Thr 90	aag Lys	gag <b>G</b> lu	gcc Ala	ctg Leu	gag Glu 95	aag Lys	288
att Ile	gag <b>G</b> lu	gag Glu	gag Glu 100	cag <b>G</b> ln	aac Asn	aag Lys	tcc Ser	aag Lys 105	aag Lys	aag Lys	gcc Ala	cag Gln	cag Gln 110	gct Ala	gct Ala	336
gct Ala	ggc	aca Thr 115	ggc <b>G</b> ly	aac Asn	tcc Ser	agc Ser	cag Gln 120	gtg Val	tcc Ser	cag Gln	aac Asn	tac Tyr 125	ccc Pro	att Ile	gtg Val	384
cag <b>G</b> ln	aac Asn 130	ctc Leu	cag <b>G</b> ln	ggc <b>G</b> ly	cag Gln	atg Met 135	gtg Val	cac His	cag Gln	gcc Ala	atc Ile 140	tcc Ser	ccc Pro	cgg Arg	acc Thr	432
ctg Leu 145	aat Asn	gcc Ala	tgg Trp	gtg Val	aag Lys 150	gtg Val	gtg Val	gag <b>G</b> lu	gag Glu	aag Lys 155	gcc Ala	ttc Phe	tcc Ser	cct Pro	gag Glu 160	480
gtg Val	atc Ile	ccc Pro	atg Met	ttc Phe 165	tct Ser	gcc Ala	ctg Leu	tct Ser	gag Glu 170	ggt Gly	gcc Ala	acc Thr	ccc Pro	cag Gln 175	gac Asp	528
ctg Leu	aac Asn	acc Thr	atg Met 180	ctg Leu	aac Asn	aca Thr	gtg Val	ggg Gly 185	ggc Gly	cat His	cag Gln	gct Ala	gcc Ala 190	atg Met	cag Gln	576
atg Met	ctg Leu	aag Lys 195	gag Glu	acc Thr	atc Ile	aat Asn	gag Glu 200	Glu	gct Ala	gct Ala	gag <b>Gl</b> u	tgg Trp 205	Asp	agg Arg	ctg Leu	624
cat His	cct Pro 210	Val	<b>c</b> ac His	gct Ala	ggc <b>G</b> ly	ccc Pro 215	att Ile	gcc Ala	ccc Pro	ggc	cag Gln 220	atg Met	agg Arg	gag Glu	ccc Pro	672
agg Arg 225	Gly	tct Ser	gac <b>As</b> p	att Ile	gct Ala 230	ggc Gly	acc Thr	acc Thr	tcc Ser	acc Thr 235	Leu	<b>c</b> ag Gln	gag Glu	cag Gln	att Ile 240	720
ggc Gly	tgg Trp	atg Met	acc Thr	aac Asn 245	Asn	ccc Pro	ccc Pro	atc Ile	cct Pro 250	Val	ggg Gly	gaa <b>Gl</b> u	atc Ile	tac Tyr 255	гуs	768

Figure 30'A'

agg Arg	tgg Trp	atc Ile	atc Ile 260	ctg Leu	Gly ggc	ctg Leu	aac Asn	aag Lys 265	att Ile	gtg Val	agg Arg	atg Met	tac Tyr 270	tcc Ser	ccc Pro	816
acc Thr	tcc Ser	atc Ile 275	ctg Leu	gac Asp	atc Ile	agg Arg	cag Gln 280	ggc Gly	ccc Pro	aag Lys	gag Glu	ccc Pro 285	t <b>t</b> c Phe	agg Arg	gac Asp	864
tat Tyr	gtg Val 290	gac Asp	agg Arg	ttc Phe	tac Tyr	aag Lys 295	acc Thr	ctg Leu	agg Arg	gct Ala	gag Glu 300	cag Gln	gcc Ala	tcc Ser	cag Gln	912
gag Glu 305	gtg Val	aag Lys	aac Asn	tgg Trp	atg Met 310	aca Thr	gag Glu	acc Thr	ctg Leu	ctg Leu 315	gtg Val	cag Gln	aat Asn	gcc Ala	aac Asn 320	960
cct Pro	gac Asp	tgc Cys	aag Lys	acc Thr 325	atc Ile	ctg Leu	aag Lys	gcc Ala	ctg Leu 330	ggc Gly	cct Pro	gct Ala	gcc Ala	acc Thr 335	ctg Leu	1008
gag Glu	gag Glu	atg Met	atg Met 340	aca Thr	gcc Ala	tgc Cys	cag Gln	ggg Gly 345	gtg Val	ggg Gly	ggc	ect Pro	ggt Gly 350	cac His	aag Lys	1056
gcc Ala	agg Arg	gt <b>g</b> Val 355	ctg Leu	gct Ala	gag Glu	gcc Ala	atg Met 360	tcc Ser	cag Gln	gtg Val	acc Thr	aac Asn 365	tcc Ser	gcc Ala	acc Thr	1104
atc Ile	atg Met 370	atg Met	cag Gln	agg Arg	ggc Gly	aac Asn 375	ttc Phe	agg Arg	aac Asn	cag Gln	agg Arg 380	aag Lys	aca Thr	gtg Val	aag Lys	1152
tgc Cys 385	ttc Phe	aac Asn	tgt Cys	ggc Gly	aag Lys 390	gtg Val	ggc Gly	cac His	att Ile	gcc Ala 395	aag Lys	aac Asn	tgt Cys	agg Arg	gcc Ala 400	1200
ccc Pro	agg Arg	aag Lys	aag Lys	ggc Gly 405	tgc Cys	tgg Trp	aag Lys	tgt Cys	ggc Gly 410	aag Lys	gag Glu	ggc Gly	cac His	cag Gln 415	atg Met	1248
aag Lys	gac Asp	tgc Cys	aat Asn 420	gag Glu	agg Arg	cag Gln	gcc Ala	aac Asn 425	ttc Phe	ctg Leu	ggc Gly	aaa Lys	atc Ile 430	tgg Trp	ccc Pro	1296
tcc Ser	cac His	aag Lys 435	ggc Gly	agg Arg	cct Pro	ggc	aac Asn 440	ttc Phe	ctc Leu	cag Gln	tcc Ser	agg Arg 445	cct Pro	gag Glu	ccc Pro	1344
aca Thr	gcc Ala 450	cct Pro	ccc Pro	gag Glu	gag Glu	tcc Ser 455	ttc Phe	agg Arg	ttť Phe	Gly	gag Glu 460	gag Glu	aag Lys	acc Thr	acc Thr	1392
ccc Pro 465	agc Ser	cag Gln	aag Lys	cag Gln	gag Glu 470	ccc Pro	att Ile	gac Asp	aag Lys	gag Glu 475	ctg Leu	tac Tyr	ccc	ctg Leu	gcc Ala 480	1440
tcc <b>Se</b> r	ctg Leu	agg Arg	tcc Ser	ctg Leu 485	Phe	ggc	aac Asn	gac Asp	ccc Pro 490	Ser	tcc Ser	cag <b>Gl</b> n	taa *	(SI (SI	D NO:36) D NO:37)	1482

Figure 30 B

Figure 31



139/144

FIGURE 32



## FIGURE 33A

ATGGGTGCTA	GGGCTTCTGT	GCTGTCTGGT	GGTGAGCTGG	ACAAGTGGGA	GAAGATCAGG
CTGAGGCCTG	GTGGCAAGAA	GAAGTACAAG	CTAAAGCACA	TTGTGTGGGC	CTCCAGGGAG
CTGGAGAGGT	${\tt TTGCTGTGAA}$	CCCTGGCCTG	CTGGAGACCT	CTGAGGGGTG	CAGGCAGATC
CTGGGCCAGC	TCCAGCCCTC	CCTGCAAACA	GGCTCTGAGG	AGCTGAGGTC	CCTGTACAAC
ACAGTGGCTA	CCCTGTACTG	TGTGCACCAG	AAGATTGATG	TGAAGGACAC	CAAGGAGGCC
	TTGAGGAGGA				
GGCACAGGCA	ACTCCAGCCA	GGTGTCCCAG	AACTACCCCA	TTGTGCAGAA	CCTCCAGGGC
CAGATGGTGC	ACCAGGCCAT	CTCCCCCGG	ACCCTGAATG	CCTGGGTGAA	GGTGGTGGAG
GAGAAGGCCT	${\tt TCTCCCTGA}$	GGTGATCCCC	ATGTTCTCTG	CCCTGTCTGA	GGGTGCCACC
	TGAACACCAT				
CTGAAGGAGA	CCATCAATGA	$\tt GGAGGCTGCT$	GAGTGGGACA	GGCTGCATCC	TGTGCACGCT
GGCCCCATTG	CCCCGGCCA	GATGAGGGAG	CCCAGGGGCT	CTGACATTGC	TGGCACCACC
TCCACCCTCC	AGGAGCAGAT	${\tt TGGCTGGATG}$	ACCAACAACC	CCCCCATCCC	TGTGGGGGAA
ATCTACAAGA	GGTGGATCAT	CCTGGGCCTG	AACAAGATTG	TGAGGATGTA	CTCCCCCACC
TCCATCCTGG	ACATCAGGCA	GGGCCCCAAG	GAGCCCTTCA	GGGACTATGT	GGACAGGTTC
TACAAGACCC	TGAGGGCTGA	GCAGGCCTCC	CAGGAGGTGA	AGAACTGGAT	GACAGAGACC
CTGCTGGTGC	AGAATGCCAA	CCCTGACTGC	AAGACCATCC	TGAAGGCCCT	GGGCCCTGCT
GCCACCCTGG	AGGAGATGAT	GACAGCCTGC	CAGGGGGTGG	GGGGCCCTGG	TCACAAGGCC
AGGGTGCTGG	CTGAGGCCAT	GTCCCAGGTG	ACCAACTCCG	CCACCATCAT	GATGCAGAGG
GGCAACTTCA	GGAACCAGAG	GAAGACAGTG	AAGTGCTTCA	ACTGTGGCAA	GGTGGGCCAC
ATTGCCAAGA	ACTGTAGGGC	CCCCAGGAAG	AAGGGCTGCT	GGAAGTGTGG	CAAGGAGGGC
CACCAGATGA	AGGACTGCAA	TGAGAGGCAG	GCCAACTTCC	TGGGCAAAAT	CTGGCCCTCC
CACAAGGGCA	GGCCTGGCAA	CTTCCTCCAG	TCCAGGCCTG	AGCCCACAGC	CCCTCCCGAG
	GGTTTGGGGA				
	ACCCCCTGGC				
ATGGCTCCCA	TCTCCCCCAT	TGAGACTGTG	CCTGTGAAGC	TGAAGCCTGG	CATGGATGGC
	AGCAGTGGCC				
ACTGAGATGG	AGAAGGAGGG	CAAAATCTCC	AAGATTGGCC	CCGAGAACCC	CTACAACACC
	CCATCAAGAA				
	AGAGGACCCA				
	AGAAGAAGTC				
	AGGACTTCAG				
	TCAGGTACCA				
	CCTCCATGAC				
	AGTACATGGC				
	TTGAGGAGCT				
	AGAAGGAGCC				
	AGCCCATTGT				
	GCAAGCTGAA				
	TGCTGAGGGG				
GCTGAGCTGG	AGCTGGCTGA	GAACAGGGAG	ATCCTGAAGG	AGCCTGTGCA	TGGGGTGTAC

## FIGURE 33B

TATGACCCCT	CCAAGGACCT	${\tt GATTGCTGAG}$	ATCCAGAAGC	AGGGCCAGGG	CCAGTGGACC
TACCAAATCT	ACCAGGAGCC	${\tt CTTCAAGAAC}$	${\tt CTGAAGACTG}$	GCAAGTATGC	CAGGATGAGG
GGGGCCCACA	CCAATGATGT	GAAGCAGCTG	ACTGAGGCTG	TGCAGAAGAT	CACCACTGAG
TCCATTGTGA	${\tt TCTGGGGCAA}$	GACCCCCAAG	${\tt TTCAAGCTGC}$	CCATCCAGAA	GGAGACCTGG
GAGACCTGGT	GGACTGAGTA	${\tt CTGGCAGGCC}$	ACCTGGATCC	${\tt CTGAGTGGGA}$	GTTTGTGAAC
ACCCCCCCC	${\tt TGGTGAAGCT}$	GTGGTACCAG	${\tt CTGGAGAAGG}$	AGCCCATTGT	GGGGGCTGAG
ACCTTCTATG	TGGCTGGGGC	TGCCAACAGG	GAGACCAAGC	TGGGCAAGGC	TGGCTATGTG
ACCAACAGGG	GCAGGCAGAA	${\tt GGTGGTGACC}$	CTGACTGACA	CCACCAACCA	GAĄGACTGCC
CTCCAGGCCA	TCTACCTGGC	CCTCCAGGAC	${\tt TCTGGCCTGG}$	AGGTGAACAT	TGTGACTGCC
TCCCAGTATG	CCCTGGGCAT	CATCCAGGCC	${\tt CAGCCTGATC}$	AGTCTGAGTC	TGAGCTGGTG
AACCAGATCA	${\tt TTGAGCAGCT}$	GATCAAGAAG	GAGAAGGTGT	ACCTGGCCTG	GGTGCCTGCC
CACAAGGGCA	TTGGGGGCAA	TGAGCAGGTG	GACAAGCTGG	TGTCTGCTGG	CATCAGGAAG
GTGCTGTTCC	TGGATGGCAT	TGACAAGGCC	${\tt CAGGATGAGC}$	${\tt ATGAGAAGTA}$	CCACTCCAAC
TGGAGGGCTA	TGGCCTCTGA	CTTCAACCTG	CCCCCTGTGG	TGGCTAAGGA	GATTGTGGCC
TCCTGTGACA	AGTGCCAGCT	GAAGGGGGAG	GCCATGCATG	GGCAGGTGGA	CTGCTCCCCT
GGCATCTGGC	AGCTGGCCTG	CACCCACCTG	GAGGGCAAGG	TGATCCTGGT	GGCTGTGCAT
GTGGCCTCCG	GCTACATTGA	GGCTGAGGTG	ATCCCTGCTG	AGACAGGCCA	GGAGACTGCC
TACTTCCTGC	TGAAGCTGGC	TGGCAGGTGG	CCTGTGAAGA	CCATCCACAC	TGCCAATGGC
TCCAACTTCA	CTGGGGCCAC	AGTGAGGGCT	GCCTGCTGGT	GGGCTGGCAT	CAAGCAGGAG
TTTGGCATCC	CCTACAACCC	CCAGTCCCAG	GGGGTGGTGG	CCTCCATGAA	CAAGGAGCTG
AAGAAGATCA	TTGGGCAGGT	GAGGGACCAG	GCTGAGCACC	TGAAGACAGC	TGTGCAGATG
GCTGTGTTCA	TCCACAACTT	CAAGAGGAAG	GGGGGCATCG	GGGGCTACTC	CGCTGGGGAG
AGGATTGTGG	ACATCATTGC	CACAGACATC	CAGACCAAGG	AGCTCCAGAA	GCAGATCACC
AAGATCCAGA	ACTTCAGGGT	GTACTACAGG	GACTCCAGGA	ACCCCCTGTG	GAAGGGCCCT
GCCAAGCTGC	TGTGGAAGGG	GGAGGGGGCT	GTGGTGATCC	AGGACAACTC	TGACATCAAG
GTGGTGCCCA	GGAGGAAGGC	CAAGATCATC	AGGGACTATG	GCAAGCAGAT	GGCTGGGGAT
GACTGTGTGG	CCTCCAGGCA	GGATGAGGAC	AAT		
SEQ ID NO:	38				

142/144

## FIGURE 34A

Met Gly Ala Arg Ala Ser Val Leu Ser Gly Glu Leu Asp Lys Trp Glu Lys Ile Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Lys Leu Lys His Ile Val Trp Ala Ser Arg Glu Leu Glu Arg Phe Ala Val Asn Pro Gly Leu Leu Glu Thr Ser Glu Gly Cys Arg Gln Ile Leu Gly Gln Leu Gln Pro Ser Leu Gln Thr Gly Ser Glu Glu Leu Arg Ser Leu Tyr Asn Thr Val Ala Thr Leu Tyr Cys Val His Gln Lys Ile Asp Val Lys Asp Thr Lys Glu Ala Leu Glu Lys Ile Glu Glu Glu Gln Asn Lys Ser Lys Lys Lys Ala Gln Gln Ala Ala Ala Gly Thr Gly Asn Ser Ser Gln Val Ser Gln Asn Tyr Pro Ile Val Gln Asn Leu Gln Gly Gln Met Val His Gln Ala Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val Val Glu Glu Lys Ala Phe Ser Pro Glu Val Ile Pro Met Phe Ser Ala Leu Ser Glu Gly Ala Thr Pro Gln Asp Leu Asn Thr Met Leu Asn Thr Val Gly Gly His Gln Ala Ala Met Gln Met Leu Lys Glu Thr Ile Asn Glu Glu Ala Ala Glu Trp Asp Arg Leu His Pro Val His Ala Gly Pro Ile Ala Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr Ser Thr Leu Gln Glu Gln Ile Gly Trp Met Thr Asn Asn Pro Pro Ile Pro Val Gly Glu Ile Tyr Lys Arg Trp Ile Ile Leu Gly Leu Asn Lys Ile Val Arg Met Tyr Ser Pro Thr Ser Ile Leu Asp Ile Arg Gln Gly Pro Lys Glu Pro Phe Arg Asp Tyr Val Asp Arg Phe Tyr Lys Thr Leu Arg Ala Glu Gln Ala Ser Gln Glu Val Lys Asn Trp Met Thr Glu Thr Leu Leu Val Gln Asn Ala Asn Pro Asp Cys Lys Thr Ile Leu Lys Ala Leu Gly Pro Ala Ala Thr Leu Glu Glu Met Met Thr Ala Cys Gln Gly Val Gly Gly Pro Gly His Lys Ala Arg Val Leu Ala Glu Ala Met Ser Gln Val Thr Asn Ser Ala Thr Ile Met Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys Thr Val Lys Cys Phe Asn Cys Gly Lys Val Gly His Ile Ala Lys Asn Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu Gly His Gln Met Lys Asp Cys Asn Glu Arg Gln Ala Asn Phe Leu Gly Lys Ile Trp Pro Ser His Lys Gly Arg Pro Gly Asn Phe Leu Gln Ser Arg Pro Glu Pro Thr Ala Pro Pro Glu Glu Ser Phe Arg Phe Gly Glu Glu Lys Thr Thr Pro Ser Gln Lys Gln Glu Pro Ile Asp Lys Glu Leu Tyr Pro Leu Ala Ser Leu Arg Ser Leu Phe Gly Asn Asp Pro Ser Ser Gln Met Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val Leu Ala Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Ala Ala Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro

## FIGURE 34B

Asp Lys Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Ala Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr Ala Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Ala Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Ala Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Ala Asn Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Ala Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly Jle Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp SEQ ID NO: 39