ESc201: Introduction to Electronics

Sequential Circuits

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

Synchronous Sequential Circuits

Employs signals that affect the storage elements only at discrete instants of time.

Synchronization is achieved via the *clock pulses*.

Synchronous Clocked Sequential Circuits

Synchronous Sequential Circuit Example

Analysis (recap)

Output z depends on the input x and on the current state of the memory (A,B)

The memory has 2 FFs and each FF can be in state 0 or 1. Thus there are four possible states: AB: 00,01,10,11.

To describe the behavior of a sequential circuit, we need to show

- 1. How the system goes from one memory state to the next as the input changes
- 2. How the output responds to input in each state

Analysis of Sequential Circuits (recap)

$$D_A = A.x + B.x$$
; $D_B = A.x$; $z = (A + B).x$

A(t+1) = A(t).x + B(t).x
$B(t+1) = \overline{A(t)}.x$
$z=(A+B).\overline{x}$

P	reser	nt State	Input	Next	State	Output
	Α	В	Х	Α	В	z
	0	0 0	0 1	0	0 1	0
ŀ	0	1	0	0	0	1 0
ŀ	1	0	0	0	0	1 0
	1 1	1 1	0 1	0	0	1 0

State Transition Table Present State Input **Next State** Output В Α Α В Χ Ζ 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

0

00 Memory state in which FF A& B have output values 00

If x = 0 then z = 0, When the clock edge comes the system would stay in 00 state.

If x = 1 then z = 0. When the clock edge comes the system would go to 01 state.

Analysis of Sequential Circuits

1	Present State In		Input	Nov	t State	Output
	Fresent State		input	ivex	Siale	Output
	Α	В	X	Α	В	Z
	0	0	0	0	0	0
	0	0	1	0	1	0
	0	1	0	0	0	1
	0	1	1	1	1	0
	1	0	0	0	0	1
	1	0	1	1	0	0
	1	1	0	0	0	1
	1 .	4		_	_	

System specification to State diagram

Detect 3 or more consecutive 1's in the input stream

Conversion of State transition graph to a circuit

Example-1

3 blocks need to be designed

- 1. How many FFs do we need?
- N FFS can represent 2^N states so Minimum is 1

2. Which FF do we choose?

- Say D FF
- 3. How are the states encoded?
- Say FF output Q=0 represents S₀ and Q=1 represents S₁ state

Present State In		Input	Next State	D	Output
	Q(t)	Х	Q(t+1)		Z
	0 0	0 1	0 1		0 0
	1 1	0 1	1 0		0

Excitation Table

		Inputs
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State	Input	Next State	D	Output
Q(t)	Х	Q(t+1)		z
0	0 1	0 1	0	0 0
1	0	1 0	1 0	0 1

$$D = \overline{Q}.x + Q.\overline{x} \quad ; \quad z = Q.x$$

Example-2

- How many FFs do we need?
- 2. Which FF do we choose? Say JK FF
- 3. How are the states encoded? Say FF output Q=0 represents S_0 and Q=1 represents S_1 state

Present State	Input	Next State	J K	Output
Q(t)	Х	Q(t+1)		z
0	0 1	0 1	0 X 1 X	0 0
1 1	0	1 0	X 0 X 1	0 1

$$J = x$$
; $K = x$; $z = Q.x$

Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

Example-3

 State
 FF O/P A B

 S_0 0 0

 S_1 0 1

 S_2 1 0

 S_3 1 1

For 4 states a minimum of two FFs will be required. Let us choose 2 D FFs A &B

Preser	nt State	Input	Next	State		
Α	В	Х	Α	В	D_A	D_B
0 0	0 0	0 1	0 0	1 0	0	1 0
0 0	1	0 1	1 1	1 0	1	1 0
1 1	0 0	0 1	1 1	1 0	1	1 0
1 1	1 1	0 1	0 1	0 1	0	0

Present State Input		Input	Next	State		
Α	В	Х	Α	В	D_A	D_B
0 0	0 0	0 1	0 0	1 0	0	1 0
0	1	0 1	1 1	1 0	1	1
1	0	0 1	1 1	1 0	1	1
1	1 1	0 1	0	0 1	0	0 1

$$D_A = \overline{A}B + xB + A\overline{B}$$
$$= A \oplus B + x.B$$

$$D_{B} = \overline{x}.\overline{A} + \overline{x}.\overline{B} + x.A.B$$

$$= \overline{x}.(\overline{A} + \overline{B}) + x.A.B$$

$$= \overline{x}.\overline{AB} + x.AB = \overline{x} \oplus \overline{AB}$$

$$D_A = A \oplus B + x.B$$

$$D_B = \overline{x \oplus AB}$$

