Propagação e Radiação de Ondas Eletromagnéticas

Cartas de Smith

Acrónimos: CC (curto-circuito); CA (circuito-aberto); CS (Carta de Smith)

- 1) Esboce no caderno um gráfico cartesiano tendo por eixo real a resistência (R_L sempre positiva em circuitos passivos) e a reactância de uma carga (X_L: positiva –indutiva- ou negativa capacitiva) e use uma Carta de Smith (CS). Assuma uma linha de transmissão de 50 Ω.
 - a) Trace retas verticais passando por RL=10 Ω , 25 Ω , 50 Ω , 100 Ω e 250 Ω . Sobre estas retas estão todas as impedâncias possíveis para uma mesma resistência (reactância varia entre 0 e ∞ Ω). Marque os lugares dos afixos do coeficiente de reflexão na CS.
 - b) Trace retas horizontais passando por X_L = -j100 Ω , -j50 Ω , -j25 Ω , -j10 Ω , j0 Ω , +j10 Ω , +j25 Ω , +j50 Ω , +j100 Ω . Sobre esta reta estão todas as impedâncias possíveis para uma mesma reactância (resistência varia entre 0 e ∞ Ω). Marque os lugares dos afixos do coeficiente de reflexão na CS.
 - c) Identifique os pontos de cruzamento no gráfico cartesiano e os correspondentes na CS.
- 2) Observe as escalas na CS. Tem escalas radiais no fundo da carta e circulares nas periferias.
 - a) Identifique todas as escalas circulares distância e fases- e a sua utilidade prática.
 - b) Identifique as principais escalas radiais: coeficiente de reflexão (módulo), coeficiente de reflexão de potência, Return Loss, Reflection loss, etc. Sugestões: Verifique a coerência mútua das escalas confirmando correspondências. Exemplo 1: |ρ| = 0.1 dá um RL=20 dB e um coeficiente de reflexão de potência de 0.01. Exemplo 2: |ρ| = 0.707; RL=3dB; coeficiente de reflexão de potência de 3dB; Transmission Coeficient de P=0.5; Reflection Loss=3 dB. Exemplo 3: |ρ| = 0.5 dá VSWR=3
 - c) Com uma régua trace um sistema de coordenadas retangular sobre a CS que lhe permita ler a parte real e imaginária do coeficiente de reflexão e legende os eixos com ρ_r e ρ_i .
- 3) Marque na CS os seguintes coeficientes de reflexão e transmissão:
 - a) O coeficiente de reflexão em coordenadas cartesianas: $\rho_1 = 0.2 + j0.4$.
 - b) O coeficiente de reflexão em coordenadas polares: $\rho_2 = 0.447 \angle + 63.4^{\circ}$
 - c) O coeficiente de transmissão em coordenadas cartesianas: $\rho_t = 1.2 + j0.4$.
 - d) O coeficiente de transmissão em coordenadas polares: $\rho_t = 1.265 \angle + 18.4^{\circ}$.
 - e) Calcule as impedâncias correspondentes às marcações anteriores assumindo Z_0 =50 Ω . Resp: $Z_L=50+j50\,\Omega$.
- 4) Usando apenas a CS (sem recorrer a meios de cálculo) e assumindo uma linha de impedância característica $Z_0=50~\Omega$ represente:
 - a) As impedâncias Z_L =50, 25 e 100 Ω e obtenha os respetivos coeficientes de reflexão em formato polar e em representação cartesiana.
 - b) As impedâncias Z_L =j50 e Z_L =-j50 Ω e obtenha os respetivos coeficientes de reflexão.
 - c) A impedância Z_L =50+j100 Ω e o respetivo coeficiente de reflexão.

- 5) Considere a carga Z_{L1} constituída por uma resistência de 100 Ω em série com um condensador cuja impedância a uma determinada frequência é Z_C=-j100 Ω. Considere uma carga Z_{L2} constituída por uma resistência de 100 Ω em série com uma bobina cuja impedância a uma determinada frequência é Z_B=+j100 Ω. Assumindo as cargas a terminar uma linha de impedância característica de 50 Ω represente:
 - a) O afixo do coeficiente de reflexão da carga Z_{L1} na CS e trace o trajeto deste ponto quando a frequência aumenta até 4 vezes.
 - b) O trajeto do ponto quando a capacidade se reduz até ¼ do valor inicial.
 - c) O afixo do coeficiente de reflexão da carga Z_{L2} na CS e trace o trajeto deste ponto quando a frequência aumenta até 4 vezes.
 - d) O trajeto do ponto quando a indutância se reduz até ¼ do valor inicial.
- 6) Uma linha de transmissão com perdas desprezáveis e Z_0 =50 Ω é terminada por uma resistência de 150 Ω em série com uma reactância capacitiva de 30 Ω .
 - a) Qual é o coeficiente de onda estacionária (VSWR)? Resp: VSWR=3.13.
 - b) Se a resistência puder variar continuamente entre 20Ω e 500Ω , qual será o valor da resistência que produzirá o menor VSWR. *Resp:* R=58 Ω para um VSWR de 1.76.
- 7) Assumindo uma carga $Z_L=50+j50~\Omega$ a terminar uma linha de $50~\Omega$ obtenha, usando a CS, as seguintes grandezas escalares usadas frequentemente para caracterizar a transferência de potência de um gerador adaptado à linha a uma carga.
 - a) O Return Loss (dB) e o coeficiente de reflexão em logmag. Resp: $R_L = 7 dB$; -7dB (logmag)
 - b) O Power Transmission Coefficient T_c . Resp: $T_c = 0.8$
 - c) A Reflection Loss (dB). Resp: $Ref_{loss} \cong 1 dB$
 - d) Calcule agora todos os valores anteriores algebricamente.
- 8) Uma linha de transmissão "sem perdas" com dielétrico ar tem Z_0 =50 Ω e 34 cm de comprimento está terminada por uma resistência R_L =12.5 Ω .
 - a) Determine a impedância de entrada da linha a 150 MHz supondo o dielétrico ar. *Resp:* Z_{in} =44.6+j70.7 Ω .
 - b) Calcule os parâmetros do circuito paralelo equivalente à impedância de entrada da linha de transmissão à mesma frequência. Resp: $Rp=156.5\Omega l/Lp=104nH$. Sugestão: Calcular o ponto diametralmente oposto a z_{in} o qual é a admitância y_{in} , desnormalizar multiplicando por $Y_0=\frac{1}{Z_0}$
- 9) Resolva, com a CS sempre que possível, as seguintes questões assumindo um sistema de impedância característica Z_0 =50 Ω .
 - a) Marque o coeficiente de reflexão ρ =0.5e $^{j40^{\circ}}$ e estime a carga que causa este coeficiente de reflexão. *Resp:* Z_L =(1.55+j1.3)*50=77.5+j65 Ω
 - b) Calcule $Z(d = 0.1\lambda)$. Resp: $Z(0.1\lambda)=(1.85-j.*1.3)*50 \Omega$
 - c) Calcule a distância à carga a que encontra o 1° máximo e 1° mínimo de tensão. $Resp: d_{max}=(0.25-0.194)\lambda; d_{min}=(0.5-0.194)\lambda$
 - d) Calcule o valor das impedâncias nestes pontos. Resp: $Z(d_{max})=150\Omega$ e $Z(d_{min})=16.67\Omega$
 - e) Dimensione um transformador de $\lambda/4$, a colocar num máximo de tensão, que promova a adaptação. *Resp:* Z_1 =86.6 Ω

- f) Repita a alínea anterior se optar por colocar o transformador de $\lambda/4$ num mínimo de tensão. *Resp*: Z_1 =28.9 Ω
- 10) Considere a impedância Z_L =50+j100 Ω .
 - a) Qual a mínima distância à carga d_1 para a qual a impedância de entrada da linha é puramente real e qual o seu valor? Compare o seu valor normalizado com o VSWR. A partir deste ponto e para que gama de distâncias d a carga é de natureza capacitiva? Nota: Marque na periferia da carta a rotação e legende-a: sentido de rotação e etiqueta com d_1 . $Resp: d_1 = 0.062\lambda;$ $r_{in1} = 5.83 = VSWR; R_{in1} = 291\Omega; d \in [0.062 \quad 0.25 + 0.062]\lambda$
 - b) Obtenha a impedância de entrada da linha Z_{in2} a uma distância de $d_2=0.1\lambda$ (sentido do gerador) desta carga. $Resp: z_{in2}=2.08-i2.68; Z_{in2}=104-j134 \Omega$ (capacitiva)
 - c) Calcule a impedância de entrada da linha Z_{in3} a uma distância $d_3=0.25\lambda$ (ponto diametralmente oposto). Compare-a com a dada pelas equações do transformador de $\lambda/4$. Resp: $z_{in3}=0.2-j0.4$; $Z_{in3}=10-j20~\Omega$.
 - d) Calcule a segunda distância mais próxima da carga, d_4 , para a qual a impedância de entrada da linha Z_{in} , é puramente real. Compare o seu valor normalizado com o VSWR e calcule essa impedância. $Resp: z_{in4} = 0.172 = \frac{1}{VSWR}; Z_{in4} = 8.58 \,\Omega$
 - e) A partir deste ponto, e no sentido do gerador, a impedância é de natureza indutiva até que distância adicional relativa a d_4 ? $Resp: \Delta d = 0.25\lambda$
 - f) Como denomina a circunferência que acabou por desenhar? Resp: Circunferência de VSWR constante ou $|\rho|$ constante.
- 11) Use uma CS e represente o coeficiente de reflexão da carga $Z_L=20+j20~\Omega$ numa linha de impedância característica $50~\Omega$.
 - a) Calcule a distância da carga ao 1º máximo e ao 1º mínimo de tensão. Resp: $d_{max}=0.182\lambda;\,d_{min}=0.430\lambda$
 - b) Calcule a impedância no ponto de máximo e de mínimo de tensão. Resp: $Z_{max}\cong 148~\Omega$; $Z_{min}\cong 17\Omega$.
 - c) Determine a que distâncias da carga, d_1 e d_2 , estão os dois primeiros pontos em que a resistência de entrada da linha é igual a $R_{in}=50~\Omega$ (ou seja $real(Z_{in})=50$) e determine a correspondente reactância. $Resp: 1^{\circ}$, $d_1=0.098\lambda$; $X_{in1}=+57~\Omega$; $d_{21}=0.265\lambda$; $X_{in2}=-57~\Omega$
- 12) Um stub é um troço de linha terminado em CC ou CA que implementa uma reactância ou susceptância a qual é usada em sistemas de adaptação de impedâncias. Dimensionamento em impedância.
 - a) Stub em CC. Represente a impedância $Z_L = 0$ na CS e dimensione o comprimento da linha que implementa uma reactância:
 - i. Indutiva de 100 Ω ou seja $Z_{in1}=j100~\Omega;~z_{in1}=j2.~Resp:~l_1=0.176\lambda$
 - ii. Capacitiva de -50 Ω ou seja $Z_{in2}=-j50~\Omega, Z_{in2}=-j1.~Resp: l_2=0.375\lambda$ (ultrapassa $\lambda/4$)
 - b) Stub em CA. Represente a impedância $Z_L = \infty$ na CS e dimensione o comprimento da linha que implementa uma reactância:
 - i. Capacitiva de -100 Ω ou seja $Z_{in1}=-j100~\Omega;~z_{in}=-j2.~Resp:~l_1=0.074\lambda$
 - ii. Indutiva de 50 Ω ou seja $Z_{in2}=j50$ Ω ; $Z_{in2}=j1$. Resp: $l_2=0.375\lambda$ (ultrapassa $\lambda/4$)

- 13) Um stub é um troço de linha que, terminado em CC ou CA, implementa uma reactância ou susceptância a qual é usada em sistemas de adaptação de impedância. Dimensionamento em admitância. Pretende-se dimensionar, usando uma CS de impedâncias, um stub com uma admitância $Y_{in} = -0.01 \, S$ (indutiva).
 - a) Normalize a admitância Y_{in} . Resp: $y_{in} = -j0.5$
 - b) Admitindo um stub em CC, represente $z_L = 0$ e o ponto diametralmente oposto $y_L = \infty$. Poderá agora ver a CS como uma carta de admitâncias.
 - c) Represente y_{in} e calcule o comprimento do stub l_s . Resp: $l_s = 0.178\lambda$
 - d) Dimensione o mesmo stub mas com a linha em aberto $Z_L = \infty$. Resp: $l_s = 0.428 \lambda$
- 14) Usando a CS projete um sistema de adaptação de uma carga Z_L = 100+j50 Ω a um gerador com impedância interna de 50 Ω usando um stub em série. Opte pelos comprimentos mais curtos.
 - a) Represente a carga na CS e calcule a mais curta distância à carga d_1 para a qual a resistência de entrada da linha é $R_{in}=50~\Omega$. Apresente ainda a reactância de entrada da linha, X_{in} , no mesmo local. $Resp: d_1=0.125\lambda; \ X_{in}=-50; \ Z_{in}(d_1)=50-j50~\Omega$ (capacitiva);
 - b) Determine o comprimento mais curto, l_s , do stub. Resp: $l_s = 0.125\lambda$ (em CC).
 - c) Resolva o mesmo problema para a 2ª distância à carga.
- 15) Usando a CS projete um sistema de adaptação de uma carga Z_L = 100+j50 Ω a um gerador com impedância interna igual a 50 Ω usando um stub paralelo. Opte pelos comprimentos mais curtos.
 - a) Represente Z_L e marque o ponto diametralmente oposto o qual representa Y_L normalizado, ou seja y_l . Legende o ponto.
 - b) Determine a menor distância à carga d_1 para a qual a condutância de entrada da linha é 1/50 S ou g=1 (normalizada) e a susceptância normalizada a essa distância. Resp: $d_1=0.199\lambda$; $b(d_1)=1$; $y(d_1)=1+j1$ (capacitiva)
 - c) Dimensione o comprimento do stub, l_{s1} , de forma a ser o mais curto possível (opte por CC ou CA). Resp: Stub em CC (indutivo) $l_{s1}=0.125\lambda$
 - d) Resolva para uma segunda distância d_2 implementando um stub o mais curto possível. *Resp:* $d_2 = 0.375\lambda$; $b(d_2) = -1$; $y(d_1) = 1 j1$ (*indutiva*); *stub em CA* (*capacitivo*) $l_{s1} = 0.125\lambda$.
- 16) Uma linha com Z_0 =70 Ω é terminada numa carga Z_L =84+j85.75 Ω . Pretende-se adaptar a carga à linha com um stub em paralelo.
 - a) Determine, usando a CS, as distâncias à carga (d₁ e d₂) em que deverá ser ligado o stub. *Resp:* d_1 =0.237 λ ; d_2 =0.405 λ
 - b) O comprimento do stub (com a mesma impedância característica da linha) o qual deve ser terminado em CC. *Resp: lstub1=0.116λ; lstub2=0.384λ*.
- 17) Usando a impedância Z_L =77.5+ $j65~\Omega$ resolva as seguintes questões assumindo um sistema de impedância característica Z_0 =50 Ω e a frequência 300 MHz.
 - a) A distância d da carga a que poderá conseguir Z_{in} =50+j Ω colocando em série na linha um condensador de capacidade C_s . Resp: d=(0.5-(0.194-0.166)) λ =0.472 λ
 - b) Calcule C_s . Resp: C_s =9.22pF (ressonância série com reactância de entrada da linha X_{in} =1.15*50=57.5 Ω)

- c) Repita as duas alíneas anteriores, mas agora usando uma bobina em série de indutância L_s . Resp: $d=0.140\lambda$ e $L_s=30.12nH$
- 18) Usando a impedância de carga Z_L =77.5+j65 Ω resolva as seguintes questões assumindo um sistema de impedância característica Z_0 =50 Ω e a frequência 300 MHz.
 - a) Calcule as distâncias d_1 e d_2 a que a carga pode ser adaptada à linha usando um stub em paralelo. Resp: $d_1 = 0.222\lambda$ e $d_2 = 0.390\lambda$
 - b) Calcule o menor comprimento possível dos stubs. Resp: $l_{s1} = 0.115\lambda$ em CC e $l_{s2} = 0.135\lambda$ em CA.
 - c) Determine os valores nominais de elementos concentrados a colocar em paralelo com a linha que efetuam a adaptação. $Resp: L = 23.36 \, nH \, e \, C = 12.05 pF \, respetivamente$.
- 19) A CS combinada de impedância e admitâncias pode ser útil para quem analisa circuitos envolvendo impedâncias em série e em paralelo. Use uma CS de impedâncias e admitâncias.
 - a) Represente na carta de impedâncias a carga Z_L =20+j20 Ω numa linha de impedância característica Z_0 =50 Ω .
 - b) Calcule a admitância normalizada e represente-a na Carta de Admitâncias. *Resp: O ponto coincide com o da alínea a*).
 - c) Calcule o ponto diametralmente oposto ao representado na alínea a) e leia-o na carta de impedâncias. Resp: O valor é exatamente igual ao da admitância na alínea b). Conclusão: Usando a carta de Admitâncias não é necessário recorrer ao ponto diametralmente oposto quando se pretende mudar de impedância para admitância e vice-versa.
- 20) Pretende-se adaptar uma carga Z_L a um gerador com impedância interna $Z_0 = 50 \Omega$ usando uma malha de dois elementos concentrados constituída por um condensador C em paralelo com Z_0 e uma bobina L em série.
 - a) Determine na CS a localização das admitâncias, y_{π}^+ , apresentadas pelo paralelo de Z_0 com C admitindo $C \in [0, \infty]$.
 - b) Represente agora a correspondente localização das impedâncias z_{π}^+ .
 - c) Admitindo a indutância $L \in [0 \infty]$ identifique a área onde poderá estar Z_{out} .
 - d) As cargas adaptáveis por esta malha serão $Z_L = Z_{out}^*$ ou $Z_{out} = Z_L^*$. Identifique esta área sombreando-a na CS de impedâncias.
- 21) Use o sistema de adaptação do problema 20) para adaptar, a uma frequência de 300 MHz, uma carga $Z_L=15+j10~\Omega$ a um sistema de $Z_0=50~\Omega$.
 - a) Calcule L e C. Nota: Sugere-se o uso da carta de admitâncias na primeira fase. Resp: L=8 nH; C=16 pF.
 - b) Confirme a sua resolução: calcule a impedância do paralelo de Z_0 com a impedância do condensador (z_{π}^+), a impedância série deste valor com a impedância da bobina e verifique se o resultado é Z_L^* . *Nota: pode usar o Matlab*
 - c) Confirme a sua resolução: calcule a impedância da série Z_L com a impedância da bobina e, de seguida, o paralelo desta com a impedância do condensador. Verifique se o resultado é Z_0 . Nota: pode usar o Matlab ou CS de impedância+ admitância.

