IV. Line Formation in Expanding Atmospheres

1. Doppler - Effect

> need to be accounted for Stellar winds → velocity fields in radiative transfer

$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu}(s)I_{\nu} + \epsilon_{\nu}(s)$$

$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu}(s, \vec{V})I_{\nu} + \epsilon_{\nu}(s, \vec{V})$$

velocity fields affect $\kappa_{\nu}, \ \epsilon_{\nu}$ through Doppler - Effect

$$\nu' = \nu \gamma (1 - \beta \cos \theta)$$

$$\gamma = (1 - \beta)^{1/2}$$

$$\beta = |\vec{V}|/c$$

$$u'$$
 = frequency of photon in moving system u = observer θ = angle between photon direction and $\vec{V}(\vec{r})$

Relativistic formula including "transversal" effect at 0=90°

stellar winds are non-relativistiv with V/c << 1

$$\begin{split} \nu^{'} &= \nu \ (1 - \beta \ cos\theta) \\ \nu^{'} &= \nu \ (1 - \frac{\mid \vec{V} \mid}{c} cos\theta) \\ \nu^{'} &= \nu \ (1 - \frac{1}{c} \vec{V} \bullet \vec{n}) \end{split} \quad \text{photon}$$

Atom moving with \vec{V} "sees" photon with \vec{V} non-moving observer "sees" photon with \vec{V} non-moving photosphere emits photon with

2. The line absorption coefficient

line absorption coefficient in static case with $\vec{V} = 0$

$$\kappa_{\nu}^{line} = \frac{\pi e^2}{mc} f_{lu} \{ n_l(s) - \frac{g_l}{g_u} n_u(s) \} \phi(\nu)$$
 "classical" oscillator occupation line cross section strength numbers l,u broadening

 $\phi(\nu)$ contains thermal line broadening natural pressure

$$\phi(\nu) = \frac{1}{\Delta\nu_D} \frac{1}{\sqrt{\pi}} e^{-(\frac{\nu-\nu_0}{\Delta\nu_D})^2} \qquad \text{in winds} \rightarrow \text{thermal broadening}$$

$$\Delta\nu_D = \nu_0 \frac{v_{th}}{c} = \frac{\nu_0}{c} \{\frac{2kT}{m_{ion}}\}^{1/2} \qquad \text{thermal Doppler width}$$

thermal Doppler width

Introducing the "dimensionless frequency" x

$$x=rac{
u-
u_0}{\Delta
u_D}$$
 $\phi(x)=rac{1}{\pi^{1/2}}e^{-x^2}$ and the line profile $\phi(x)$

$$\kappa_{\nu}^{line}(s) = k(s) \ \phi(x)$$

$$k(s) = \frac{\pi e^2}{mc} f_{lu} \{ n_l - \frac{g_l}{g_u} n_u \} \frac{1}{\Delta \nu_D}$$

we obtain the static line absorption coefficient

Note: the static line absorption coefficient is

- (i) is isotropic (no dependence on angle θ)
- (ii) varies smoothly as a function of s through k(s)
- (iii) varies strongly as a function of x through $\varphi(x)$

hydrostatic atmosphere

smooth function of s

strong function of ν width determined by $\Delta \nu_D$

$$\phi(x)$$

Hydrodynamic atmosphere with $ec{V} eq 0$

 \longrightarrow Atom moving with $ec{V}(s)$ sees shifted frequencies

$$\nu \longrightarrow \nu'$$

$$\nu' - \nu = -\nu_0 \,\mu \, \frac{V(s)}{c}$$

$$\mu = \cos \theta \quad V(s) = |\vec{V}(s)|$$

profile function changes from

$$\phi(x) = \pi^{-1/2} e^{-x^2} = \pi^{-1/2} e^{-(\frac{\nu - \nu_0}{\Delta \nu_D})^2}$$

to

$$\phi \left(x - \frac{\nu_0}{c} \frac{\mu V(s)}{\Delta \nu_D} \right) = \pi^{-1/2} e^{-\left(\frac{\nu - \nu_0}{\Delta \nu_D} - \frac{\nu_0}{c} \frac{\mu V(s)}{\Delta \nu_D}\right)^2}$$

Introducing

$$\vec{v}(r) = \frac{1}{v_{th}} \; \vec{V}(r)$$

velocity in units of thermal velocity

$$\vec{v}(r) = \frac{1}{v_{th}} \; \vec{V}(r)$$
 and using $v_{th} = \frac{c}{\nu_0} \; \Delta \nu_D$

$$\phi(x) \longrightarrow \phi(x - \mu v(r)) = \pi^{-1/2} e^{-(x - \mu v)^2}$$

we obtain the absorption coefficient in the hydrodynamic case

$$\kappa_{\nu}^{line} = k(s) \ \phi(x - \mu v(s))$$

$$\phi (x - \mu v(s)) \longrightarrow anisotropic$$

$$\phi (x - \mu \ v(s)) \longrightarrow \frac{\text{extreme depth}}{\text{dependent}}$$

light ray passes through velocity field absorbed by atoms with different Doppler shifts

frequency of photon as seen by gas

at
$$\mathbf{s} = \mathbf{s}_0$$
: $\nu' = \nu_0$ resonance absorption

projected velocity

at
$$\mathbf{s} = \mathbf{s}_0$$
: $x = \mu \ v$ resonance absorption

 κ_{ν} has strong maximum at $s = s_0$:

$$au(s) = \int \kappa ds$$
 optical depth is step function
$$au_S ext{optical thickness of interaction region}$$

geometrical width of interaction region

radiative line transfer with $V(r)\gg v_{th}$

photon - gas interaction restricted to thin interaction zone around the resonance condition defined by

$$x = \mu \ v(r)$$
 or
$$x = \vec{n} \bullet \vec{v}(r)$$

Note: hydrostatic radiative line transfer

photons reach observer from layers with $\tau \approx 1$

hydrodynamic radiative line transfer

photons come from interaction zone defined by resonance condition independent of value of $\boldsymbol{\tau}$

3. Interaction surfaces in spherical symmetry

"(p,z) - geometry"

$$r^{2} = p^{2} + z^{2}$$

$$z = \mu r$$

$$p = r (1 - \mu^{2})^{1/2}$$

- · all rays characterized by impact parameter p
- z coordinate along ray
- \cdot p, z, r all in units of stellar photospheric radius R_{\star}

For each ray with frequency x and impact parameter p exists interaction point \mathbf{z}_0 where $x=\mu\ v$

the set of all interaction points is $z_0(x,p)$ "interaction surface"

the shape of $z_0(x,p)$ depends on the velocity field v(r)

observed v(r) for hot stars

$$v(r) = v_{\infty} (1 - \frac{1}{r})^{\beta}$$
$$\beta = 0.5..4.0$$
$$\frac{dv}{dr} \ge 0 \quad v \to v_{\infty}, \ r \gg 1$$

general shape of interaction surfaces

discussion of $z_0(x,p)$

a) line center frequency x=0

resonance condition

$$x = \mu \ v(r) = \frac{z}{r}v(r)$$
 $\mu = \frac{z}{r}$

interaction surface

for
$$p \le 1$$
: $r = 1$, since $v(r) = 0$
 $p > 1$: $z = 0$, since $r > 1$
and $v(r) > 0$

b) radial axis towards observer with $p = 0, x \neq 0$

$$x = \mu v(r) \quad \text{but} \quad p = 0 \quad \longrightarrow \quad \mu = 1$$

$$p = r (1 - \mu^2)^{1/2}$$

$$r^2 = p^2 + z^2$$

$$\Rightarrow x = v_{\infty} \left(1 - \frac{1}{(p^2 + z_0^2)^{1/2}}\right)^{\beta} = v_{\infty} \left(1 - \frac{1}{z_0}\right)^{\beta}$$

$$z_{0,p=0} = \frac{1}{1 - \left(\frac{x}{v_{\infty}}\right)^{\frac{1}{\beta}}}$$

for
$$x < x_{max} = v_{\infty}$$

max. Doppler-shi

max. Doppler-shift

c) p
$$\neq$$
 0, but $x/v_{\infty} \longrightarrow 1$

$$\text{x/v}_{\infty}$$
 approaching 1 \longrightarrow $z_0(x,p)\gg 1$

$$r^2 = p^2 + z^2$$
$$\mu = z/r$$

$$x = \frac{z_0}{(p^2 + z_0^2)^{1/2}} v_\infty (1 - \frac{1}{(p^2 + z_0^2)^{1/2}})^\beta$$

$$(\frac{x}{v_{\infty}})^2 (p^2 + z_0^2) = z_0^2 (1 - \frac{1}{(p^2 + z_0^2)^{1/2}})^{2\beta}$$

$$\approx z_0^2 (1 - \frac{2\beta}{(p^2 + z_0^2)^{1/2}})$$

$$\approx z_0^2 (1 - \frac{(p^2 + z_0^2)^{1/2}}{(p^2 + z_0^2)^{1/2}})$$

$$(1+\epsilon)^n \approx 1 + n\epsilon$$
$$|\epsilon| \ll 1$$

solve for $z_0^2 \rightarrow$

$$z_0^2(x,p) = \frac{(x/v_\infty)^2}{\{1 - \frac{x^2}{v_\infty^2} - \frac{2\beta}{(p^2 + z_0^2)^{1/2}}\}} p^2$$

$$\text{for p =0 } \Rightarrow \{\ \} = 0 \ \longrightarrow \ z_{0,p=0} = \frac{2\beta}{1-\frac{x^2}{v_{\infty}^2}} = \frac{2}{1+\frac{x}{v_{\infty}}} \ \frac{\beta}{1-\frac{x}{v_{\infty}}}$$

$$|p| > 0 \to \{ \} > 0 \longrightarrow \{ \} = 2\beta \left(\frac{1}{z_{0,p=0}} - \frac{1}{(z_0^2 + p^2)^{1/2}} \right)$$

$$(z_0, p=0)$$
 $(z_0^2 + p^2)^{1/2}$
 $(z_0^2 + p^2)^{1/2} \Rightarrow z_{0,p=0}$
 $|p| \Rightarrow 1 \longrightarrow$
 $(z_0^2 + p^2)^{1/2} \gg z_{0,p=0}$

$$z_0(x,p) = \frac{x/v_{\infty}}{(1 - \frac{x^2}{v_{\infty}^2})^{1/2}} p$$

interaction surface linear with p at large p

general shape of interaction surfaces

detailed calculation by numerical solution of

$$f(z_0, x, p, \beta) = 0$$

$$f = \frac{x}{v_{\infty}} - \frac{z_0}{r_0} (1 - \frac{1}{r_0})^{\beta}$$
 $r_0 = (z_0^2 + p^2)^{1/2}$

$$x/v_{\infty} = -0.9, -0.8, -0.7 \dots +0.7, +0.8, +0.9$$

 $x/v_{\infty} = -0.9, -0.8, -0.7 \dots +0.7, +0.8, +0.9$

a very simple case: linear velocity fields

$$v(r) = a \bullet r$$

$$x = \frac{z_0}{r} \ a \ r = z_0 \ a$$

$$\rightarrow$$
 $z_0 = \frac{x}{a}$ independent of p!!!

plane interaction surfaces

Supernovae have linear velocity fields

4. Optical thickness of interaction surface

Optical thickness of interaction surface determines how much is absorbed and re-emitted

calculate τ along ray withp = const.

$$\tau(x, p, z) = R_* \int_{z_{min}}^{z} k[r(\tilde{z}, p)] \phi[x - \mu(\tilde{z}, p)v(r(\tilde{z}, p))] d\tilde{z}$$

integrand has peak at interaction point $\mathbf{z_0}$, where $x - \mu(z_0, p) \ v(r(z_0, p)) = 0$

$$\frac{\partial(\mu v)}{\partial z}$$
 large \longrightarrow peak narrow

$$\rightarrow$$
 k(r)=k(r₀)=const over peak

$$u = x - \mu \ v \longrightarrow d\tilde{z} = -\left\{\frac{\partial(\mu v)}{\partial \tilde{z}}\right\}^{-1} du$$

$$\tau(x, p, z) = R_* \int_{u(x, p, z)}^{u(x, p, z_{min})} k(r) \left\{ \frac{\partial(\mu v)}{\partial \tilde{z}} \right\}^{-1} \phi(u) du$$

$$\approx R_* \ k(r(z_0, p)) \left\{ \frac{\partial(\mu v)}{\partial z} \right\}^{-1} \int_u^{u(z_{min})} \phi(u) du$$

$$\tau_s(p, z_0) \qquad \Phi(u)$$

since
$$u(z_{min}) > 1 \longrightarrow \Phi(u) \approx \int_{u}^{\infty} \phi(\tilde{u}) d\tilde{u} = \pi^{-1/2} \int_{u}^{\infty} e^{-\tilde{u}^2} d\tilde{u} = Erfc(u)$$

step function

$$\Phi(u) = 0, u > 0$$

$$\Phi(u) = 1, u \leq 0$$

complementary error function

explanation for previous page

u as a function of z

$$u = x - \mu \ v = x - \frac{z}{(z^2 + p^2)^{1/2}} \ v_{\infty} (1 - \frac{1}{r})^{\beta}$$

For
$$z = z_{min} \rightarrow -\infty$$
 \longrightarrow $u \rightarrow u = x + v_{\infty}$

$$o$$
 $au(x,p,z) \approx \tau_s(p,z_0) \Phi[u(x,p,z)]$

 au_s optical thickness of interaction surface for ray with p, x

$$au_s = R_* k(r) rac{\partial (\mu v)}{\partial z}^{-1}$$
 p = const.

$$\frac{\partial}{\partial z} \{ \mu(z, p) \ v(r(z, p)) \} = \mu \frac{\partial v}{\partial r} \frac{\partial r}{\partial z} + v \frac{\partial \mu}{\partial z} \qquad \Rightarrow \begin{array}{c} p^2 + z^2 = r^2 & z = r\mu \\ r \partial r = z \partial z & \\ \hline \rightarrow \frac{\partial r}{\partial z} = \frac{z}{r} = \mu \end{array}$$

$$\frac{\partial \mu}{\partial z} = \frac{1}{r} = \mu$$

$$\frac{\partial \mu}{\partial z} = \frac{1}{r} - \frac{z}{r^2} \mu$$

$$\tau_s = R_* \frac{k(r)}{Q(r,\mu)} = R_* \frac{k(r)}{\mu^2 \frac{\partial v}{\partial r} + (1-\mu^2) \frac{v}{r}}$$

$$\tau_s = R_* \frac{k(r)}{Q(r,\mu)} = R_* \frac{k(r)}{\mu^2 \frac{\partial v}{\partial r} + (1-\mu^2) \frac{v}{r}}$$

$$Q(r,\mu) = \mu^2 \frac{\partial v}{\partial r} + (1-\mu^2) \frac{v}{r}$$
 symmetric in μ radial tangential velocity gradient

$$Q(r,\mu) = \frac{v}{r}(1+\sigma\mu^2) \qquad \sigma = \frac{\partial\ ln\ v}{\partial\ ln\ r} - 1 \quad \begin{array}{c} \text{departure from} \\ \text{homologous expansion} \\ v \propto r \end{array}$$

$$\tau_S \approx R_* \ k \ \Delta l_s$$

$$\Delta l_s = \frac{1}{Q(r,\mu)}$$

geometrical width of interaction region (dimensionless)

5. The Sobolev Approximation

we made approximation

$$\tau(x, p, z) \approx R_* k(r(z_0, p)) \int \phi(x - \mu v) d\tilde{z}$$

only justified, if k(r) ~ const over peak of integrand width of peak is $\Delta l_s = \frac{1}{Q(r,\mu)}$

k(r) varies with density ρ or on comparable scale

$$\Delta l_{dyn} = \mid \frac{d\rho}{dr} \frac{1}{\rho} \mid^{-1}$$

approximation is ok, if

$$\Delta l_s \ll \Delta l_{dyn}$$
 Sobolev approximation

in winds (as we will learn later)

$$\rho(r) \propto r^{-n}, n = 1...4$$

$$\rightarrow$$
 $\Delta l_{dyn} = \frac{r}{n}$

on the other hand

$$\Delta l_s pprox rac{r}{v}$$

 $\rightarrow \quad \text{if} \quad v \gg n \qquad \quad \text{which is the case for strongly} \\ \text{supersonic winds with} \quad v \gg 1$

Sobolev approximation is ok

6. Radiative transfer

solution of transfer eq. in (p,z) - geometry

$$\frac{1}{R_{\text{ord}}} \frac{dI(x, p, z)}{dz} = \kappa_x(r(p, z)) \{ I(x, p, z) - S(r(p, z)) \}$$

$$\kappa_x = \kappa_{
u}^{bg} + n_E \; \sigma_E + k(r) \; \phi(x - \mu v)$$
 total absorption

background opacity/ emissivity

Thomson scattering

line absorption emission

$$\epsilon_x = \epsilon_{\nu}^{bg} + n_E \ \sigma_E \ J_{\nu} + \epsilon(r) \ \phi(x - \mu v)$$

coefficient

total emission coefficient

$$S(r) = rac{\kappa_{
u}^{bg}}{\kappa_x} S_{bg}(r) + rac{n_E \ \sigma_E}{\kappa_x} \ J_{
u} + rac{k(r)}{\kappa_x} \ S_L(r)$$
 total source function

$$S_{bg}(r) = \frac{\epsilon_{\nu}^{bg}}{\kappa_{\nu}^{bg}}, \quad S_L = \frac{\epsilon(r)}{k(r)}$$

formal solution along ray with p = const.

$$I(x, p, z) = R_* \int_{z_{min}}^{z} S(r(p, \tilde{z})) e^{-\Delta \tau(x, p, \tilde{z})} \kappa_x(r(p, \tilde{z})) d\tilde{z} + I_{z_{min}} e^{-\tau(x, p, z)}$$

$$au(x,p,z)=R_*\int_{z_{min}}^z \kappa_x(r(p, ilde{z}))d ilde{z}$$
 optical path z_{min} to z

$$\Delta \tau(x,p,\tilde{z}) = \tau(x,p,z,) - \tau(x,p,\tilde{z}) \quad \text{ optical path } \quad \tilde{z} \quad \text{to} \quad z$$

discussion of formal solution

$$I(x, p, z) = R_* \int_{z_{min}}^{z} S(r(p, \tilde{z})) e^{-\Delta \tau(x, p, \tilde{z})} \kappa_x(r(p, \tilde{z})) d\tilde{z} + I_{z_{min}} e^{-\tau(x, p, z)}$$

 $I_{z_{min}}$

$$I_{z_{min}}e^{-\tau(\tilde{z})}$$

$$S(\tilde{z})\kappa_x(\tilde{z}) = \epsilon_x(\tilde{z})$$

re-emitted intensity at
$$\tilde{z}$$

$$S(\tilde{z})\kappa_x(\tilde{z})e^{-\Delta\tau(\tilde{z})}$$

fraction of intensity emitted at
$$\tilde{z}$$
 arriving at z ; weakened by absorption between \tilde{z} and z

$$R_* \int_{z_{min}}^z ...d\tilde{z}$$

Integration of contributions from all
$$\tilde{z}$$

$$I(x, p, z) = R_* \int_{z_{min}}^{z} S(r(p, \tilde{z})) e^{-\Delta \tau(x, p, \tilde{z})} \kappa_x(r(p, \tilde{z})) d\tilde{z} + I_{z_{min}} e^{-\tau(x, p, z)}$$

$I_{z_{min}}(p)$ depends on impact parameter p

$$0 \leq |p| \leq 1$$
 $I_{z_{min}}(p) = I_c(p)$ continuum intensity from stellar core

$$1 \leq \mid p \mid$$
 integration starts at $z = -\infty$

$$I_{z_{min}}(p) = 0$$

With $\kappa_x(r)$ and S(r) known we can calculate

$$I(x, p, z = z_{max})$$

intensity arriving at observer observer sees integral over all p weighted by area from ring with ~2pdp

observer sees flux

$$F(x) \propto R_*^2 \int_0^\infty I(x, p, z_{max}) 2pdp$$

continuum flux from stellar surface

$$F_{cont}(x) \propto R_*^2 \int_0^1 I_c(x,p) 2p dp$$

observed normalized line profile

$$P(x) = \frac{\int_0^\infty I(x, p, z = z_{max})pdp}{\int_0^1 I_c(p)pdp}$$

standard stellar wind diagnostics

$$\kappa_x(r) = \kappa_x(r)$$
 from solution of NLTE rate equations

then numerical solution to calculate line profile P(x)

- spectral diagnostics of line profiles
- determination of $v(r), \;
 ho(r), \; \dot{M}$

for better understanding of wind diagnostics

2 approximations in the following

1. Line opacity dominates

$$k(r) \gg \kappa_{\nu}^{bg}, n_E \sigma_E$$

- 2. assumption $\frac{dv}{dr}$ large
 - → Sobolev approximation

radiative transfer only in interaction zones

Approximation 1

$$\kappa_x = k(r) \ \phi(x - \mu v)$$

$$\epsilon_x = \epsilon(r) \ \phi(x - \mu v)$$

$$S(r) = S_L(r) = \frac{\epsilon(r)}{k(r)}$$

with exakt expression for

$$\epsilon(r), \ k(r)$$

$$k(r) = \frac{\pi e^2}{mc} f_{lu} \{ n_l - \frac{g_l}{g_u} n_u \} \frac{1}{\Delta \nu_D}$$

$$\epsilon(r) = \frac{\pi e^2}{mc} f_{lu} \frac{2h\nu^3}{c^2} \frac{g_l}{g_u} n_u \frac{1}{\Delta \nu_D}$$

formal solution in p-z geometry (p. 28)

$$I(x, p, z) = R_* \int_{z_{min}}^{z} S(r(p, \tilde{z})) e^{-\Delta \tau(x, p, \tilde{z})} \kappa_x(r(p, \tilde{z})) d\tilde{z} + I_{z_{min}} e^{-\tau(x, p, z)}$$

changes to

$$I(x, p, z) = R_* \int_{z_{min}}^{z} S_L(r) e^{-\Delta \tau(x, p, \tilde{z})} k(r) \phi(x - \mu v) d\tilde{z} + I_{z_{min}} e^{-\tau(x, p, z)}$$

$$\tau(x, p, z) = R_* \int_{z_{min}}^{z} k(r)\phi(x - \mu v)d\tilde{z}$$

$$\Delta \tau(x, p, \tilde{z}) = \tau(x, p, z,) - \tau(x, p, \tilde{z})$$

$$r = r(p, \tilde{z})$$

$$\mu = \mu(p, \tilde{z})$$

see pages 20 to 26 Approximation 2

T(x,P,2)

$$\tau(x, p, z) \approx \tau_s(p, z_0) \Phi[u(x, p, z)]$$

$$\Phi pprox 0, z < z_0$$

$$\Phi \approx 0, \ z < z_0 \qquad \Phi \approx 1, \ z \geq z_0$$

$$R_* \int_{z_{min}}^z S_L(r) e^{-\Delta \tau(x, p, \tilde{z})} k(r) \phi(x - \mu v) d\tilde{z}$$

$$\approx R_* S_L(r(p, z_0)) \int_{z_{min}}^z e^{-\Delta \tau(x, p, \tilde{z})} k(r) \phi(x - \mu v) d\tilde{z}$$

$$\begin{array}{c} \text{substituting} \ \ \tilde{z} \to \Delta \tau(\tilde{z}) \\ \Delta \tau(\tilde{z}) = \tau(z) - \tau(\tilde{z}) \end{array} \longrightarrow \begin{array}{c} d(\Delta \tau) = -R_* \ k(\tilde{z}) \phi(x - \mu v) d\tilde{z} \\ \Delta \tau(z) = 0 \quad \Delta \tau(z_{min}) = \tau(z) = \tau_S \Phi \end{array}$$

$$= S_L(r_0(p, z_0)) \int_0^{\tau_S \phi} e^{-\Delta \tau} d\Delta \tau = S_L(r_0(p, z_0)) (1 - e^{-\tau_S \Phi})$$

note: z_0 is z-value of interaction zone along p = const.for frequency x

Remember: general shape of interaction surfaces

now we can calculate line profile by integrating over pdp along interaction surface

\longrightarrow Intensity determined by $S_L(r_0), \tau_S(r_0)$) at interaction zone

$$I(x, p, z) = S_L(r_0(p, z_0))(1 - e^{-\tau_S(p, z_0)\Phi(z)}) + I_{z_{min}}e^{-\tau_S(p, z_0)\Phi(z)}$$

$$I_{z_{min}}(p) = 0$$

$$1 \leq \mid p \mid$$

see p. 30
$$I_{z_{min}}(p) = I_c(p)$$
 $0 \le |p| \le 1$

$$0 \le |p| \le 1$$

Intensity arriving at telescope has $\Phi(z \ge z_0) = 1$

$$x \ge 0$$
 blue frequencies

$$I(x, p, z = \infty) = S_L(r_0(p, z_0))(1 - e^{-\tau_S(p, z_0)}) + I_c e^{-\tau_S(p, z_0)} \quad 0 \le |p| \le 1$$

$$I(x, p, z = \infty) = S_L(r_0(p, z_0))(1 - e^{-\tau_S(p, z_0)}) + 0 \qquad |p| \ge 1$$

$$x \leq 0$$
 red frequencies

$$I(x, p, z = \infty) = I_c(p)$$

$$I(x, p, z = \infty) = S_L(r_0(p, z_0))(1 - e^{-\tau_S(p, z_0)})$$

$$0 \le \mid p \mid \le 1$$

$$|p| \geq 1$$

Remember: general shape of interaction surfaces

now we can calculate line profile by integrating over pdp along interaction surface

 $x/v_{\infty} = -0.9, -0.8, -0.7 \dots +0.7, +0.8, +0.9$

now we can calculate the line profile

$$P(x) = \frac{\int_0^\infty I(x, p, z = \infty)pdp}{\int_0^1 I_c(p)pdp}$$

If we neglect limb-darkening of continuum radiation from stellar photosphere, then $I_c(p) = I_c = const. \longrightarrow \int_0^1 I_c \ p \ dp = \frac{1}{2}I_c$

 $x \ge 0$ blue frequencies

$$P(x) = \frac{2}{I_c} \left\{ \int_0^\infty S_L(r_0) (1 - e^{-\tau_S(r_0)}) p dp + I_c \int_0^1 e^{-\tau_S(r_0)} p dp \right\}$$
$$= \int_0^\infty \frac{S_L(r_0)}{I_c} (1 - e^{-\tau_S(r_0)}) 2p dp + \int_0^1 e^{-\tau_S(r_0)} 2p dp$$

 $x \leq 0$ red frequencies

$$P(x) = \frac{2}{I_c} \left\{ \int_0^1 I_c p dp + \int_1^\infty S_L(r_0) (1 - e^{-\tau_S(r_0)}) p dp \right\}$$
$$= 1 + \int_1^\infty \frac{S_L(r_0)}{I_c} (1 - e^{-\tau_S(r_0)}) 2p dp$$

$$P(x) = \int_0^\infty \frac{S_L(r_0)}{I_c} (1 - e^{-\tau_S(r_0)}) 2p dp + \int_0^1 e^{-\tau_S(r_0)} 2p dp$$

blue emission integral from 0 to ∞

red emission integral from 1 to ∞

$$P(x) = 1 + \int_{1}^{\infty} \frac{S_L(r_0)}{I_c} (1 - e^{-\tau_S(r_0)}) 2p dp$$

with definitions

$$P_{em}(x) = \int_{1}^{\infty} \frac{S_L}{I_c}(p, z_0) (1 - e^{-\tau_S(p, z_0)}) 2p dp$$

$$P_{abs}(x) = \int_{0}^{1} \{ \frac{S_L}{I_c}(p, z_0) (1 - e^{-\tau_S(p, z_0)}) + e^{-\tau(p, z_0)} \} 2p dp$$

$$x \leq 0$$
 red

line profiles $x \leq 0$ red $x \geq 0$ blue

$$P(x) = 1 + P_{em}(x)$$
 $P(x) = P_{abs}(x) + P_{em}(x)$

Discussion

1. Red part of line profile x < 0

since
$$P_{em}(x) > 0 \longrightarrow P(x) > 1$$

always in emission!!!!!

2. Blue part of line profile x > 0

$$S_L/I_c < 1 \longrightarrow P_{abs}(x) < 1$$

= 1 = 1
> 1

 S_L/I_c determines symmetry of line profile red/blue equal for S_L/I_c =1 (good test of programs)

3. If $S_L/I_c < 1$ and if in addition $P_{abs}(x) + P_{em}(x) < 1$ \longrightarrow blue absorption!!!!

$$P_{abs}(x) = (P_{abs}(x) + P_{em}(x)) - P_{em}(x)$$

disentangling of emission and absorption integral possible!!! wind tomography possible!!!!

wind tomography

 $x/v_{\infty} = -0.9, -0.8, -0.7 \dots +0.7, +0.8, +0.9$

Examples of stellar wind diagnostics

Example 1: H_a in O-stars

ionization from ground or excited level

cascade of subsequent spontaneous emissions

detailed NLTE calculations show $n_3/n_2 \sim const.$ through winds

$$\longrightarrow$$
 $S_L(r) = \frac{2h\nu^3}{c^2} \frac{1}{\frac{n_2}{n_3} \frac{g_3}{g_2} - 1} \approx const.$

 \rightarrow $S_L/I_c \sim const.$ We adopt $S_L/I_c \sim 1$ for simplicity

$$\rightarrow$$
 $P_{abs}(x) = 1$

emission line with similar red and blue part

$P(x) = 1 + P_{em}(x)$ strength of emission determined by $P_{em}(x)$

$$P_{em}(x) = \int_{1}^{\infty} \frac{S_L}{I_c}(p, z_0) (1 - e^{-\tau_S(p, z_0)}) 2p dp$$

$$\approx \int_{1}^{\infty} (1 - e^{-\tau_S(p, z_0)}) 2p dp$$

For O-stars $au_S^{H_lpha} \ll 1$ optically thin interaction region

$$P_{em}(x) pprox \int_{1}^{\infty} au_{S}(p, z_{0}) 2p dp$$

$$au_s = R_* \; rac{k(r)}{\mu^2 rac{\partial v}{\partial r} + (1 - \mu^2) rac{v}{r}} \propto R_* \; k(r)$$
 p. 24

$$k(r) = \frac{\pi e^2}{mc} f_{lu} \ n_2(r) \{1 - \frac{n_3}{n_2} \frac{g_2}{g_3}\} \frac{1}{\Delta \nu_D} \propto n_2(r)$$
 p. 34

detailed NLTE calculations show $n_2 \sim n_E n_D \sim \rho^2(r)$

 \rightarrow k(r) ~ ρ^2 (r) with equation of continuity

$$\dot{M} = R_*^2 4\pi r^2 \rho v$$
 \longrightarrow $\rho^2(r) = (\frac{\dot{M}}{R_*^2})^2 \frac{1}{r^4 v^2}$

$$P_{em}(x) \approx \frac{S_L}{I_c} \int_1^\infty \tau_S(p, z_0) 2p dp$$
 $\tau_s = R_* \frac{k(r)}{\mu^2 \frac{\partial v}{\partial r} + (1 - \mu^2) \frac{v}{r}}$

$$P_{em}(x) \propto (\frac{\dot{M}}{R_*^{3/2}})^2 \int_1^\infty \frac{1}{r^4 v^2(r)} \frac{1}{\mu^2 \frac{\partial v}{\partial r} + (1 - \mu^2) \frac{v}{r}} 2p dp$$

Strength of stellar wind emission depends on $\frac{M}{R_*^{3/2}}$ H_a excellent mass-loss indicator

Ha as mass-loss indicator

dashed profile calculated with 25% higher mass-loss rate

exact integration of $P_{em}(x)$ along interaction surfaces for each frequency x yields line profile

velocity field adopted was
$$v(r) = v_{\infty}(1 - \frac{1}{r})^{\beta}, \; \beta = 2/3$$

Ha emission O-star

Exact NLTE model calculation

Variation of \dot{M} by $\pm 20\%$

Kudritzki & Puls, 2000, AARA 38, 613

Ha emission B supergiant - stellar wind

Example 2: strong UV resonance line $au_S\gg 1$

resonance transition

absorption is followed by spontaneous emission line scattering detailed NLTE calculations show $S_L(r) \approx \frac{1}{2} I_c \frac{1}{r^3}$ is reasonable approximation

$$P_{em}(x)=\int_{1}^{\infty}rac{S_L}{I_c}(p,z_0)(1-e^{- au_S(p,z_0)})2pdp$$
 in the same way
$$pprox \int_{1}^{\infty}rac{1}{r^3}pdp$$
 $P_{abs}pprox \int_{0}^{1}rac{1}{r^3}pdp$

P Cygni profile, because $P_{abs}(x) + P_{em}(x) < 1$ but no information about mass-loss rates, since $\tau_S \gg 1$ However the shape of velocity field v(r) can be determined

$$v(r) = v_{\infty} (1 - \frac{1}{r})^{\beta}$$

solid
$$\beta = 1$$

dashed
$$\beta = 3/2$$

exact integration of $P_{em}(x)$ and $P_{abs}(x)$ along interaction surfaces for each frequency x yields line profile

P Cygni profiles and Vinfinity

