Macchine di Turing Non Deterministiche: Esercitazioni

Appunti da Trascrizione Automatica

30 giugno 2025

Indice

1		oduzione e Richiami sulle Macchine di Turing Linguaggi Ricorsivi e Ricorsivamente Enumerabili	2 2
2	Tecı	nica di Progettazione: "Guess and Check"	2
3	Esei	mpi Pratici di NTM	3
	3.1	Esempio 1: Riconoscimento di $L = \{ww \mid w \in \{0,1\}^+\}$	3
			3
		3.1.2 Descrizione delle Transizioni	3
	3.2	Esempio 2: Riconoscimento di $L = \{A\#B \mid A, B \in \{0,1\}^+, A \subseteq B \lor A^R \subseteq B\} \ldots$	4
		3.2.1 Architettura dell'NTM	4
		3.2.2 Descrizione delle Transizioni	4
		3.2.3 Errore Comune di Progettazione: Check Ambigui	6
	3.3	Esempio 3: Riconoscimento di $L = \{X^n \# W_1 \# \dots \# W_n \# \mid n > 0, W_i \in \{a, b, c, d\}^+, \forall i \in A\}$	
		$[1,n] \exists S_i \subseteq W_i, S_i = i, S_i = S_i^R \} \dots $	6
		3.3.1 Discussione della Strategia (Non Soluzione Completa)	6

1 Introduzione alle Macchine di Turing Non Deterministiche (NDTM)

Riprendiamo dalla discussione sulle Macchine di Turing Non Deterministiche (NDTM). Una caratteristica fondamentale delle NDTM è la loro capacità di "indovinare" o "guessare" porzioni di stringa o decisioni computazionali. Questa non è una capacità intrinseca della macchina di indovinare nel senso umano, né implica una computazione parallela di tutte le possibilità. È una metafora per descrivere il fatto che se esiste almeno una sequenza di scelte che porta all'accettazione, allora la macchina accetterà.

Tuttavia, per garantire che una NDTM accetti solo le stringhe che appartengono al linguaggio desiderato, la fase di guess deve essere sempre seguita da una fase di check (controllo). La fase di check è cruciale per filtrare le "scelte sbagliate" fatte dalla macchina non deterministica, assicurando che solo le computazioni corrette portino a uno stato di accettazione.

Un esempio pratico di questa capacità delle NDTM è la possibilità di scrivere in anticipo su un nastro ausiliario delle stringhe che saranno necessarie in un momento successivo della computazione. Questo comportamento è particolarmente utile quando si analizzano le classi di complessità computazionale (es. NP).

2 Esercizi

Analizziamo alcuni esercizi per applicare i concetti delle NDTM.

2.1 Esercizio 1: Sottostringa Palindroma di Lunghezza Variabile

Definizione 1 (Linguaggio L_1). Sia L_1 il linguaggio definito come: $L_1 = \{X^N \# W_1 \# W_2 \# \dots \# W_N \mid N > 0, W_i \in \{a, b, c, d\}^+, \forall i \in [1, N], \exists S_i \subseteq W_i \ t.c. \ |S_i| = i \ e \ S_i = S_i^R \}$ dove X^N indica N occorrenze del simbolo X.

2.1.1 Strategia della Macchina di Turing

La macchina utilizzerà cinque nastri:

- Nastro 1 (Input): Contiene la stringa di input.
- Nastro 2 (Conteggio N): Per memorizzare il numero di blocchi W_i .
- Nastro 3 (Conteggio i): Per memorizzare il valore corrente dell'indice i.
- Nastro 4 (Guess S_i): Per scrivere la stringa S_i "indovinata".
- Nastro 5 (Guess S_i per S_i^R): Una copia di S_i per il controllo di palindromia.

L'idea principale è che per ogni W_i , la macchina non deterministicamente "indovina" la stringa S_i sul Nastro 4 e 5. Successivamente, verifica che S_i sia palindroma (confrontando Nastro 4 e Nastro 5) e che sia effettivamente una sottostringa di W_i (confrontando Nastro 4 con il Nastro 1). La lunghezza di S_i viene controllata usando il Nastro 3.

2.1.2 Descrizione degli Stati e delle Transizioni

Sia $\Sigma_I = \{X, \#, a, b, c, d\}$ l'alfabeto di input e $\Gamma_T = \Sigma_I \cup \{B, ausiliari\}$ l'alfabeto del nastro. Usiamo α per un simbolo generico da $\{a, b, c, d\}$.

- Stato Q_0 (Inizio):
 - Transizione per X^N : Legge X dal Nastro 1, lo riscrive e si muove a destra. Scrive X sul Nastro 2 (inizialmente vuoto) e si muove a destra. Passa allo stato Q_1 . Questo ciclo si ripete per tutti gli X iniziali.
 - -(X, B, B, B, B) → (X, X, B, B, B), (R, R, S, S, S)
- Stato Q_1 (Copia N e Inizio W_1):
 - Transizione per #: Quando legge # sul Nastro 1, lo riscrive e si muove a destra (posizionandosi all'inizio di W₁). Sul Nastro 2 (che contiene gli X per N), legge un X, lo cancella (B) e si muove a sinistra (si posizione sull'ultimo X restante o B). Sul Nastro 3 (inizialmente vuoto), scrive X e si muove a destra (questo inizia il conteggio di i = 1). Passa a Q₂.
 - $(\#, X, B, B, B) \rightarrow (\#, B, X, B, B), (R, L, R, S, S)$
- Stato Q_2 (Guess S_i): Questo stato gestisce la generazione non deterministica di S_i sui nastri 4 e 5. Il loop avviene basandosi sul Nastro 3 (che contiene i).
 - Transizione (Loop per guess S_i): Mentre Nastro 3 contiene X (cioè, S_i non ha ancora raggiunto la lunghezza i):
 - * Nastro 1: Legge α (qualsiasi simbolo di input), lo riscrive e si muove a destra (continua a leggere W_i).
 - * Nastro 2: Non modificato.
 - * Nastro 3: Legge X, lo riscrive e si muove a destra (avanza nel conteggio di i).
 - * Nastro 4: Legge B, scrive α (un simbolo non deterministico dall'alfabeto di input) e si muove a destra.
 - * Nastro 5: Legge B, scrive α (lo stesso simbolo di Nastro 4) e si muove a destra.

Questo loop rimane in Q_3 (si passa a Q_3 nella descrizione, il diagramma usa $Q_2 \to Q_3 \to Q_3$).

- (α , any, X, B, B) → (α , any, X, α , α), (R, S, R, R) (Questo α su Nastro 1 è solo lettura, α è il simbolo guessed).
- Transizione (Fine guess S_i): Quando Nastro 3 legge B (ha scritto i simboli su Nastro 4 e
 5):
 - * Nastro 1: Legge α , lo riscrive e si muove a destra.
 - * Nastro 2: Non modificato.
 - * Nastro 3: Legge B, lo riscrive e si muove a sinistra (riavvolge il conteggio di i).
 - * Nastro 4: Legge B, lo riscrive e si muove a sinistra (riavvolge Nastro 4).
 - * Nastro 5: Legge B, lo riscrive e si muove a sinistra (riavvolge Nastro 5).

Passa a Q_4 .

- $(\alpha, \text{any}, B, B, B) \rightarrow (\alpha, \text{any}, B, B, B), (R, S, L, L, L)$

- Stato Q_4 (Riavvolgimento): Questo stato riavvolge i nastri 3, 4 e 5 per prepararsi al controllo. Si continua a muoversi a sinistra su Nastro 3, 4 e 5 finché non si raggiunge il B iniziale.
 - Transizione (Loop di riavvolgimento): Mentre Nastro 4 non è B:
 - * Nastro 1: Ignorato (ma continua a leggere W_i).
 - * Nastro 2: Ignorato.
 - * Nastro 3: Legge *X*, lo riscrive, si muove a sinistra.
 - * Nastro 4: Legge α , lo riscrive, si muove a sinistra.
 - * Nastro 5: Legge α , lo riscrive, si muove a sinistra.

Questo loop rimane in Q_4 .

- $(any, any, X, \alpha, \alpha) \rightarrow (any, any, X, \alpha, \alpha), (S, S, L, L, L)$
- − Transizione (Fine riavvolgimento): Quando Nastro 4 e Nastro 5 leggono B (sono all'inizio di S_i):
 - * Nastro 1: Ignorato.
 - * Nastro 2: Ignorato.
 - * Nastro 3: Legge B, lo riscrive, si muove a destra.
 - * Nastro 4: Legge B, lo riscrive, si muove a destra.
 - * Nastro 5: Legge B, lo riscrive, si muove a destra (posiziona il capo del Nastro 5 sulla fine di S_i per il reverse check).

Passa a Q_5 .

- $(any, any, B, B, B) \rightarrow (any, any, B, B, B), (S, S, R, R, R)$
- Stato Q_5 (Check S_i e S_i^R in W_i): Questo stato non deterministicamente cerca l'inizio di S_i in W_i sul Nastro 1 e contemporaneamente verifica la palindromia di S_i tra Nastro 4 (leggendo in avanti) e Nastro 5 (leggendo all'indietro).
 - Transizione (Salto in W_i): Nondeterministicamente salta caratteri in W_i sul Nastro 1 fino a trovare un possibile inizio di S_i .
 - * Nastro 1: Legge α , lo riscrive, si muove a destra.

Loop su Q_5 .

- $(\alpha, \text{any}, \text{any}, \text{any}) \rightarrow (\alpha, \text{any}, \text{any}, \text{any}), (R, S, S, S, S)$
- Transizione (Confronto e Palindromia): Quando si decide di iniziare il confronto:
 - * Nastro 1: Legge α , lo riscrive, si muove a destra (confronta con S_i).
 - * Nastro 4: Legge α , lo cancella (B), si muove a destra (consuma S_i).
 - * Nastro 5: Legge α , lo cancella (B), si muove a sinistra (consuma S_i^R).

Passa a Q_6 . Questo loop continua in Q_6 .

- $(\alpha, \text{any}, \text{any}, \alpha, \alpha) \rightarrow (\alpha, \text{any}, \text{any}, B, B), (R, S, S, R, L)$
- Stato Q₆ (Continuazione del Check):
 - Transizione (Fine del confronto): Quando Nastro 4 e Nastro 5 leggono B (hanno verificato tutta S_i):
 - * Nastro 1: Ignorato.

- * Nastro 4: Legge B, lo riscrive, si ferma.
- * Nastro 5: Legge B, lo riscrive, si ferma.

Passa a Q_7 .

- $(any, any, any, B, B) \rightarrow (any, any, any, B, B), (S, S, S, S, S)$
- Stato Q_7 (Controllo Prossima W_i o Accettazione):
 - Transizione (Prossima W_i): Se Nastro 2 contiene ancora X (ci sono altre W_i da processare):
 - * Nastro 1: Continua a leggere α e si sposta a destra (fino a fine W_i o #).
 - * Nastro 2: Legge X, lo riscrive, si ferma (la cancellazione avverrà tornando a Q_1).
 - * Nastro 3: Riavvolge a sinistra fino a B.

Questa è una transizione composta: $\{(\alpha, X, \alpha, B, B) \rightarrow (\alpha, X, \alpha, B, B), (R, S, L, S, S)\}$ (Loop per riavvolgere Nastro 3) Al raggiungimento del B su Nastro 3 e # su Nastro 1: $(\#, X, B, B, B) \rightarrow (\#, X, B, B, B), (R, S, R, S, S)$ e torna a Q_1 (per processare il prossimo # e la prossima W_i , decrementando N su Nastro 2).

- − Transizione (Accettazione): Se Nastro 2 legge B (non ci sono più *X* per *N*, quindi tutte le *W_i* sono state processate):
 - * Nastro 1: Controlla che sia finito (legga B).
 - * Nastro 2: Legge B, lo riscrive, si ferma.

Passa a Q_{acc} .

- $(B, B, any, B, B) \rightarrow (B, B, any, B, B), (S, S, S, S, S)$ (e si sposta in Q_{acc}).

2.2 Esercizio 2: Coppie di W_i

Definizione 2 (Linguaggio L_2). *Sia* L_2 *il linguaggio definito come:* $L_2 = \{A \# B \# W_1 W_1 W_2 W_2 \dots W_N W_N \mid A, B, W_i \in \{0, 1\}^+, |A| > |B|, N = |A| - |B|, |W_i| \ge |B| \}$

2.2.1 Strategia della Macchina di Turing

- Nastro 1 (Input): Contiene $A \# B \# W_1 W_1 \dots$
- Nastro 2 (Conteggio N): Per memorizzare N = |A| |B|.
- Nastro 3 (Copia B): Per memorizzare la stringa B.
- Nastro 4 (Copia W_i): Per memorizzare W_i e confrontarla con la sua seconda occorrenza.

2.2.2 Descrizione degli Stati e delle Transizioni

Sia $\Sigma_I = \{0,1,\#\}$ l'alfabeto di input e $\Gamma_T = \Sigma_I \cup \{B,X\}$ l'alfabeto del nastro. Usiamo α per un simbolo generico da $\{0,1\}$.

- Stato Q_0 (Copia A):
 - Legge α da Nastro 1, riscrive α , R. Scrive X su Nastro 2, R.
 - Alla lettura di #: riscrive #, R. Su Nastro 2, S. Passa a Q_1 .

• Stato Q_1 (Copia B e Calcolo N):

- Legge α da Nastro 1, riscrive α , R.
- Legge *X* da Nastro 2, lo cancella (B), *L*. (Inizia a calcolare |A| |B|).
- Scrive α su Nastro 3, R. (Copia B).
- Loop in Q_2 .

• Stato Q_2 (Fine Calcolo N e Copia B):

- Alla lettura di # (dopo *B*): riscrive #, *R*.
- Su Nastro 2: legge X, lo riscrive, S. (Controlla |A| > |B|: se Nastro 2 fosse B qui, allora $|A| \le |B|$, quindi rifiuterebbe implicitàmente).
- Su Nastro 3: legge B, riscrive B, L. (Riavvolge Nastro 3 per preparare B per confronti futuri).
- Passa a Q_3 .
- Stato Q_3 (Processa W_i prima occorrenza): Questo stato si occupa di copiare la prima occorrenza di W_i sul Nastro 4 e di verificare che $|W_i| \ge |B|$.
 - − Nondeterministicamente, la macchina può saltare caratteri in W_i finché non decide di iniziare a copiare la sottostringa W_i e allo stesso tempo verificare $|W_i| \ge |B|$.
 - Loop in Q_3 : Legge α da Nastro 1, riscrive α , R. Copia α su Nastro 4, R.
 - Questo loop continua finché non si raggiunge la fine di W_i (prossimo # o B).
 - Alla lettura di #: riscrive #, R.
 - Cancella un *X* dal Nastro 2, *L*. (Decrementa *N*).
 - Riavvolge Nastro 4 a sinistra per preparare il confronto. Passa a Q_5 .
- **Stato** Q_5 **(Verifica** W_iW_i): Confronta la W_i copiata sul Nastro 4 con la seconda occorrenza di W_i sul Nastro 1.
 - Legge α da Nastro 1, lo riscrive, R.
 - Legge α da Nastro 4, lo cancella (B), R.
 - Se i simboli non corrispondono, la macchina si blocca e rifiuta (non c'è transizione definita per questa situazione).
 - Loop in Q_6 .
 - Quando Nastro 4 è B (fine di W_i copiata):
 - * Su Nastro 1: deve esserci l'inizio della seconda W_i .
 - * Passa a Q₇.

• Stato Q_7 (Prossima Coppia W_iW_i o Accettazione):

- Se Nastro 2 contiene X (ci sono altre coppie W_iW_i):
 - * Nastro 1: Posiziona il capo lettura sull'inizio della prossima W_i (dopo il #).
 - * Riavvolge Nastro 3 e 4.
 - * Torna a Q_3 .
- Se Nastro 2 è B (tutte le coppie W_iW_i sono state processate):
 - * Nastro 1: Controlla che sia B (fine input).
 - * Accetta (Qacc).

2.3 Esercizio 3: Parità di Lunghezza di W_i

Definizione 3 (Linguaggio L_3). Sia L_3 il linguaggio definito come: $L_3 = \{A \# B \# W_1 \# W_2 \# \dots \# W_N \mid A, B, W_i \in \{a, b, c, d\}^+, |A| > |B|, N = |A| - |B|, \quad (se |W_i| è pari, allora <math>B \subseteq W_i$) \land (se $|W_i|$ è dispari, allora $B^R \subseteq W_i$)

2.3.1 Strategia della Macchina di Turing

- Nastro 1 (Input): Contiene la stringa di input.
- Nastro 2 (Conteggio *N*): Per memorizzare N = |A| |B|.
- **Nastro 3 (Copia** *B*): Per memorizzare la stringa *B*. La stringa *B*^R sarà controllata rileggendo *B* dal Nastro 3 all'indietro.
- Nastro 4: Non esplicitamente usata per copie permanenti in questa strategia, ma potrebbe servire per un flag temporaneo di parità o per verificare sottostringhe temporanee. Il professore descrive un metodo che evita un nastro specifico per la parità, ma usa stati distinti.

2.3.2 Descrizione degli Stati e delle Transizioni

Sia $\Sigma_I = \{a, b, c, d, \#\}$ l'alfabeto di input e $\Gamma_T = \Sigma_I \cup \{B, X\}$ l'alfabeto del nastro. Usiamo α per un simbolo generico da $\{a, b, c, d\}$.

- Stato Q_0 (Copia A):
 - Legge α da Nastro 1, riscrive α , R. Scrive X su Nastro 2, R. (Copia A come Xs su Nastro 2).
 - Alla lettura di #: riscrive #, R. Su Nastro 2, L. Passa a Q_1 .
- Stato Q_1 (Copia B e Calcolo N):
 - Legge α da Nastro 1, riscrive α , R.
 - Legge X da Nastro 2, lo cancella (B), L. (Inizia a calcolare |A| |B|).
 - Scrive α su Nastro 3, R. (Copia B).
 - Loop in Q_2 .
- Stato Q_2 (Fine Calcolo N e Copia B):
 - Alla lettura di # (dopo *B*): riscrive #, *R*.
 - Su Nastro 2: legge X, lo riscrive, S. (Controlla |A| > |B|).
 - Su Nastro 3: legge B, riscrive B, L. (Riavvolge Nastro 3 all'inizio di B).
 - Passa a Q_3 .
- Stato Q_3 (Inizio Parity Check per W_i):
 - Legge α da Nastro 1, riscrive α , R. (Legge il primo carattere di W_i).
 - Su Nastro 2: legge X, lo cancella (B), L. (Decrementa N per questa W_i).
 - Su Nastro 3: S.

– Passa a Q_4 (stato per lunghezza dispari, avendo letto il 1° carattere).

• Stato Q_4 (Lunghezza W_i dispari / Prossimo carattere):

- Transizione (Prossimo carattere pari): Legge α da Nastro 1, riscrive α , R. Passa a Q_5 . (Se siamo in Q_4 con k caratteri letti, il prossimo carattere rende la lunghezza k+1, che è pari).
- Transizione (Fine W_i dispari): Legge # o B da Nastro 1, riscrive, L. (Ritorna all'inizio di W_i). Passa a Q_6 . (La lunghezza di W_i è dispari, quindi cerchiamo B^R).

• Stato Q_5 (Lunghezza W_i pari / Prossimo carattere):

- Transizione (Prossimo carattere dispari): Legge α da Nastro 1, riscrive α , R. Passa a Q_4 . (Se siamo in Q_5 con k caratteri letti, il prossimo carattere rende la lunghezza k+1, che è dispari).
- Transizione (Fine W_i pari): Legge # o B da Nastro 1, riscrive, L. (Ritorna all'inizio di W_i). Passa a Q_9 . (La lunghezza di W_i è pari, quindi cerchiamo B).

• Stato Q_6 (Cerca B^R in W_i - Lunghezza dispari):

- Si muove non deterministicamente su Nastro 1 (leggendo α , riscrivendo, L) per trovare l'inizio della B^R in W_i .
- Quando decide di iniziare il confronto: Legge α da Nastro 1, riscrive α , R. Legge α da Nastro 3, riscrive α , L. Passa a Q_7 . (Nastro 3 ha B, leggendolo L si legge B^R).

• Stato Q_7 (Confronto B^R):

- Legge α da Nastro 1, riscrive α , R. Legge α da Nastro 3, riscrive α , L.
- Loop in Q_7 .
- Quando Nastro 3 legge B (fine di B^R): Nastro 1 continua a leggere α , riscrive α , R. Passa a Q_8 .

• Stato Q_8 (Pulizia dopo B^R):

- Riavvolge Nastro 1 a destra fino al prossimo # o B. Riavvolge Nastro 3 a destra fino al B iniziale.
- Quando # o B su Nastro 1 e B su Nastro 3 sono raggiunti, passa a Q_{loop_check} (stato intermedio per decidere se continuare o accettare).

• Stato Q_9 (Cerca B in W_i - Lunghezza pari):

- Si muove non deterministicamente su Nastro 1 (leggendo α , riscrivendo, R) per trovare l'inizio della B in W_i .
- Quando decide di iniziare il confronto: Legge α da Nastro 1, riscrive α , R. Legge α da Nastro 3, riscrive α , R. Passa a Q_{10} . (Nastro 3 ha B, leggendolo R si legge B).

• Stato Q_{10} (Confronto B):

- Legge α da Nastro 1, riscrive α , R. Legge α da Nastro 3, riscrive α , R.
- Loop in Q_{10} .

– Quando Nastro 3 legge B (fine di *B*): Nastro 1 continua a leggere α , riscrive α , *R*. Passa a Q_{11} .

• Stato Q_{11} (Pulizia dopo B):

- Riavvolge Nastro 1 a destra fino al prossimo # o B. Riavvolge Nastro 3 a destra fino al B iniziale.
- Quando # o B su Nastro 1 e B su Nastro 3 sono raggiunti, passa a Q_{loop_check}.

• Stato Q_{loop_check} (Controllo N e Ciclo/Accetta):

- Se Nastro 2 ha ancora X (altre W_i):
 - * Nastro 1: legge # o B, riscrive, R.
 - * Nastro 2: legge X, riscrive X, S. (Indica che ci sono ancora W_i da processare, la cancellazione è stata fatta in Q_3).
 - * Nastro 3: riavvolge.
 - * Torna a Q_3 .
- Se Nastro 2 è B (tutte le W_i sono state processate):
 - * Nastro 1: legge B, riscrive B, S.
 - * Accetta (Qacc).

2.4 Esercizio 4: A o B^R in W_i in base alla Parità dell'Indice i

Definizione 4 (Linguaggio L_4). Sia L_4 il linguaggio definito come: $L_4 = \{A \# B \# W_1 \# W_2 \# \dots \# W_N \mid A, B, W_i \in \{a, b, c, d\}^+, |A| > |B| > 0, N = |A| + |B|, (se i è dispari, allora <math>A \subseteq W_i$) \land (se i è pari, allora $B^R \subseteq W_i$)

2.4.1 Strategia della Macchina di Turing

- Nastro 1 (Input): Contiene la stringa di input.
- Nastro 2 (Conteggio N e Parità Indice): Memorizza N = |A| + |B|. Per ogni W_i processata, un X viene cancellato, permettendo al nastro di fungere anche da contatore di indice i (implicitamente).
- **Nastro 3 (Copia** *A*): Memorizza la stringa *A*.
- Nastro 4 (Copia B): Memorizza la stringa B. Per B^R, Nastro 4 verrà letto all'indietro.

2.4.2 Descrizione degli Stati e delle Transizioni

Sia $\Sigma_I = \{a, b, c, d, \#\}$ l'alfabeto di input e $\Gamma_T = \Sigma_I \cup \{B, X\}$ l'alfabeto del nastro. Usiamo α per un simbolo generico da $\{a, b, c, d\}$.

- Stato Q_0 (Copia $A \in |A|$ su Nastro 2):
 - Legge α da Nastro 1, riscrive α , R. Scrive X su Nastro 2, R. (Copia A come Xs su Nastro 2). Scrive α su Nastro 3, R. (Copia A su Nastro 3).
 - Alla lettura di #: riscrive #, R. Riavvolge Nastro 3 (L). Passa a Q_1 .

• Stato Q_1 (Copia B e Calcolo |A| + |B| su Nastro 2):

- Legge α da Nastro 1, riscrive α , R. Scrive X su Nastro 2, R. (Aggiunge |B| a Nastro 2). Scrive α su Nastro 4, R. (Copia B su Nastro 4).
- Alla lettura di #: riscrive #, R. Riavvolge Nastro 4 (*L*).
- Controlla |A| > |B| > 0: questo avviene verificando che Nastro 2 ha almeno due Xs dopo aver contato A e B e che Nastro 4 ha almeno un X. Implicitamente, si assicura che B non sia vuoto e che A sia più lungo di B.
- Passa a Q_2 .

• Stato Q_2 (Preparazione e Inizio Loop W_i):

- Riavvolge Nastro 2 a sinistra per posizionarsi sul primo *X* da consumare. Riavvolge Nastro 3 all'inizio di *A*. Riavvolge Nastro 4 all'inizio di *B*.
- Passa a Q_3 .

• **Stato** Q_3 (**Processa** W_i - **indice dispari**): Questo stato gestisce W_i con i dispari (es. $W_1, W_3, ...$).

- Su Nastro 2: legge X, lo cancella (B), L. (Decrementa N per questa W_i).
- Nondeterministicamente cerca l'inizio di A in W_i su Nastro 1 (legge α , riscrive, R).
- Quando decide di iniziare il confronto: Legge α da Nastro 1, riscrive α , R. Legge α da Nastro 3, riscrive α , R. Passa a Q_4 .

• Stato Q₄ (Confronto A):

- Legge α da Nastro 1, riscrive α , R. Legge α da Nastro 3, riscrive α , R.
- Loop in Q_4 .
- Quando Nastro 3 è B (fine di A): Nastro 1 continua a leggere α , riscrive α , R. Passa a Q_5 .

• Stato Q_5 (Pulizia dopo A e Preparazione per W_{i+1}):

- Riavvolge Nastro 3 a sinistra al B iniziale.
- Riavvolge Nastro 1 a destra fino al prossimo # o B.
- Quando # su Nastro 1 è raggiunto e Nastro 3 è riavvolto: Legge #, riscrive #, R. Passa a Q_6 .

• Stato Q_6 (Processa W_i - indice pari): Questo stato gestisce W_i con i pari (es. W_2, W_4, \ldots).

- Su Nastro 2: legge X, lo cancella (B), L. (Decrementa N per questa W_i).
- Nondeterministicamente cerca l'inizio di B^R in W_i su Nastro 1 (legge α , riscrive, L posizionandosi per il reverse check).
- Quando decide di iniziare il confronto: Legge α da Nastro 1, riscrive α , R. Legge α da Nastro 4, riscrive α , L. Passa a Q_7 .

• Stato Q_7 (Confronto B^R):

- Legge α da Nastro 1, riscrive α , R. Legge α da Nastro 4, riscrive α , L.
- Loop in Q_7 .

- Quando Nastro 4 è B (fine di B^R): Nastro 1 continua a leggere α , riscrive α , R. Passa a Q_8 .
- Stato Q_8 (Pulizia dopo B^R e Preparazione per W_{i+1}):
 - Riavvolge Nastro 4 a sinistra al B iniziale.
 - Riavvolge Nastro 1 a destra fino al prossimo # o B.
 - Quando # su Nastro 1 è raggiunto e Nastro 4 è riavvolto: Legge #, riscrive #, R. Passa a Q_3 (per la prossima W_i dispari).
- Accettazione (*Qacc*):
 - Dopo l'elaborazione dell'ultima W_N , se Nastro 2 legge B (tutti gli X sono stati consumati) e Nastro 1 legge B (fine input):
 - * $(B, B, any, any) \rightarrow (B, B, any, any), (S, S, S, S)$ e accetta.

3 Conclusioni

Le esercitazioni di oggi hanno permesso di approfondire la progettazione di Macchine di Turing Non Deterministiche, in particolare mostrando come la capacità di guess (indovinare) combinata con un robusto check (controllo) possa semplificare la logica di alcune verifiche complesse. È stato evidenziato come le NDTM possano scrivere in anticipo su nastri ausiliari stringhe che verranno poi validate. Nella prossima lezione, si inizierà a esplorare i concetti di calcolabilità, inclusi problemi indecidibili e il concetto fondamentale di riduzione, che sarà un pilastro per comprendere la complessità dei problemi.