الماضرة الخامسة: تصميم دائرة الجامع الكامل باستخدام خرائط كارنوف

د. سمير امبارك

مثال1 صمم دائرة تركيبية لها ثلاثة مداخل كل منهم عبارة عن عدد تنائي من خانة واحدة . مخرج الدائرة عبارة عن حاصل جمع المداخل الثلاثة

المدلخل

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

المخارج

S	Co	С	В	Α
0	0	0	0	0
1	0	1	0	0
1	0	0	1	0
0	1	1	1	0
1	0	0	0	1
0	1	1	0	1
0	1	0	1	1
1	1	1	1	1

- CO - 1	. 64		
11.0	Юн	- 1	:00
-		-	

الحل

اولا: ايجاد المعادلة الجبرية للمخرج 2:

نبسط الجدول باستخدام خرائط كارنوف

• نقوم بتسمية الخلايا في الجدول الا.

		С 0		1	۔ ھيل	ايضا للتس	مالات	'حت
	AB `	0	00	001				
	00	0	1					
		0	1		0	Α	В	
منطقة B	01	0:	10	011		0	0	
	"	1	0)	1	0	0	
	J	2	3		2	0	1	
منطقة Α	11	0	10	111	3	0	1	
] -	6	7	•	4	1	0	
	10		00	101	5	1	0	
		1	0)	6	1	1	
	L	4	5		7	1	1	
					-			

منطقة ٢

A	D	ر	•
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

 $S = \overline{A}. \overline{B}. C + \overline{A}. \overline{B}. \overline{C} + \overline{A}. B. C + \overline{A}. \overline{B}. \overline{C}$

تانيا: ايجاد المعادلة الجبرية للمخرج : C0

نبسط الجدول باستخدام خرائط كارنوف جدول الاحتمالات

نقوم بتسمية الخلايا في الجدول الاحتمالات ايضا للتسهيل

0	Α	В	C	Co
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

						لقة C	ملد	•
	АВ	С	0			1		
	00		0	000		0	001	
منطقة B	۲	0		010	1		011	
	01	2	0		3	1		
منطقة Α			1	110		1	111	
	10	6		100	7		101	
			0			1		

$$C_0 = B.C + A.B + A.C$$

هذه هي معادلة الجامع الكامل

$$S = A. B.C + A. B.C + A. B.C + A. B.C$$

 $C_0 = B.C + A. B + A.C$

وكما اوضحانا سابقا كيفية تبسيط هاتان المعادلتان باستخدام نظريات الجبر البولي نجد ان

$$S = A. B.C+A. B.C+A. B.C+A. B.C$$

$$C_0 = A.B + ABC + A.B.C$$

= $A.B + C (A \oplus B)$

وهذه هي دائرة الجامع الكامل.

الجامع الكامل

بستخدم الجامع الكامل لجمع عدد ثنائي من خانة واحدة A مع خانة واحدة B مع الكامل لجمع عدد ثنائي من خانة والناتج S مع C OUT للمرحلة التالية .
 التالية .

• فلجمع عدد ثنائي مثلا من 4 خانات مع عدد ثنائي من 4 خانات نحتاج الى 4 من الجامع الكامل FULL ADDER

عموما NBIT ADDER ستكون مداخلهم N (N) و (N) ويسمى
 N-BIT ADDER

انتهت المحاضرة