Indian Institute of Technology Bhilai

IC105: Probability and Statistics

Assignment 6

February 11, 2022

1. The joint pdf of X and Y is given as

$$f_{X,Y}(x,y) = \begin{cases} k(1-x-y), & x > 0, y > 0, x+y < 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find the E(X|Y=1/2) and E(Y|X=1/2).

2. A two dimensional discrete random vector (X,Y) having p.m.f. as

$$f_{X,Y}(x,y) = P(X = x, Y = y) = \begin{cases} c(3x + 4y), & x = 0, 1, 2, 3, y = 1, 2, 3, 4, \\ 0, & \text{otherwise.} \end{cases}$$

Find the E(X|Y=1) and E(Y|X=0).

3. The joint p.d.f. of X and Y is given as

$$f_{X,Y}(x,y) = \begin{cases} \frac{6-x-y}{8}, & 0 < x < 2, \ 2 < y < 4, \\ 0, & \text{otherwise.} \end{cases}$$

Find the E(X|Y=3) and E(Y|X=1).

- 4. Let X and Y be two independent U(0,1) random variables. Then find the distributions of (a) XY,
 - (b) $\frac{X}{Y}$.
- 5. Let X be Poisson Po(2) and Y be Bin(10, 3/4) random variables. If X and Y are independent, then find the value of P(XY = 0).
- 6. The p.m.f. of a two dimension discrete random vector (X,Y) is given as

Y/X	-1	0	1
-2	1/6	1/12	1/6
1	1/6	1/12	1/6
2	1/12	0	1/12

Find the joint distribution of |X| and Y^2 .

- 7. Let X and Y be independent and identically distributed uniform random variable over the interval (0,1) and let S=X+Y. Find the probability that the quadratic equation $9x^2+9Sx+1=0$ has no real root.
- 8. Let the random variables X and Y have joint p.d.f.

$$f_{X,Y}(x,y) = \begin{cases} ce^{-(x+y)}, & y > x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the value of c.
- (b) Find the value of E(Y|X=2).

Let X_1 and X_2 be iid exponential random variables with parameter λ . Find the conditional distribution of X_1 given that $X_1 + X_2 = 1$.

10. Let X_1 , X_2 , X_3 , X_4 , X_5 be independent random variables such that $X_1 \sim N(200, 8)$, $X_2 \sim N(104, 8)$, $X_3 \sim N(108, 15)$, $X_4 \sim N(120, 15)$ and $X_5 \sim N(210, 15)$. Let $U = \frac{X_1 + X_2}{2}$ and $V = \frac{X_3 + X_4 + X_5}{3}$. Then find the value of P(U > V).