MATH UN1208, Honors Math B

Columbia University, Spring 2020

Mateo Maturana

Contents

L	Jan	uary 22, 2020	1
	1.1	Introduction	1
	1.2	Linear Algebra Recap	1
	1.3	Continuation	2
	1.4	Linear maps from \mathbb{R}^n to \mathbb{R}^m	3
	1.5	Matrices	3

1 January 22, 2020

1.1 Introduction

Administrative Stuff

- Webpage . . . /honorsmathB
- HW 1 due in a week (1/29)
- Office Hours: T 9 11, F 1-2
- Midterm in class last Wed before Spring Break
- Textbook: Vol II this semester
- \bullet Will cover almost all linear algebra, multivariable calculus with fund thm of calculus in dim ≤ 3

1.2 Linear Algebra Recap

- We defined a field (e.g. $\mathbb{R}, \mathbb{Q}, \mathbb{C}$)
- We defined vector spaces. Has vector addition and scalar multiplication obeying various laws. (e.g. $\mathbb{R}^n := \{\text{functions } [n] \to \mathbb{R}\}$ = $\{\text{n-tuples of elements in } \mathbb{R}\}$)
- We defined linear maps $V \to W$ (i.e. a function $F: V \to W$ such that $F(V_1 + V_2) = \overline{F(V_1)} + F(V_2)$ and $F(cV_1) = cF(V_1)$)
- We defined a subspace of a vector space

 $W_1, W_2 \subseteq V$ subspaces $\Rightarrow W_1 \cap W_2$ is a subspace

1.3 Continuation

Definition. Given a linear map $f: V \to W$,

$$\ker f := \{v \in V \mid f(v) = 0\} \subseteq V$$

$$\operatorname{im} f := f(V) = \{w \in W \mid \exists v \in V, f(V) = W\}$$

Proposition. Given a linear $f: V \to W$,

- 1. f injective \iff ker $f = \{0\}$
- 2. f surjective \iff im f = W

"Pf". .

- 1. HW
- 2. Obvious

Definition. A linear $f: V \to W$ is an isomorphism if it is bijective.

Proposition. A linear map $f: V \to W$ is bijective if and only if it has a linear inverse.

Proof. Assume f is a bijection. Let $g: W \to V$ be the inverse. Need to check that g is linear. We know $f \circ g = Id_W$ and $g \circ f = Id_V$. Given $W_1, W_2 \in W$,

$$\begin{split} g(W_1 + W_2) &= g(f(g(W_1))) + f(g(W_2)) \\ &= g(f(g(W_1) + g(W_2))) \\ &= g(W_1) + g(W_2) \\ \\ g(cW_1) &= g(cf(g(W_1))) \\ &= g(f(cg(W_1))) \\ &= cg(W_1) \end{split}$$

Definition. V, W vector spaces/F

$$\mathcal{L}(V, W) := \{linear \ maps \ V \rightarrow W\} \subseteq \{functions \ V \rightarrow W\}$$

On HW: Check that $\mathcal{L}(V, W)$ is a vector space.

Proposition. If $f: U \to V$ and $g: V \to W$ are linear, then $g \circ f: V \to W$ is linear.

Proof.

$$(g \circ f)(cV_1) = g(f(cV_1))$$

$$= g(cf(V_1))$$

$$= cg(f(V_1))$$

$$= c(g \circ f)(V_1)$$

and similar for addition.

1.4 Linear maps from \mathbb{R}^n to \mathbb{R}^m

Definition. The <u>standard basis vectors</u> of \mathbb{R}^n are $e_i = (0, 0, \dots, 1, \dots, 0)$.

e.g.
$$e_1 = (1, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, \dots, 0, 1)$

Notation: if $X \in \mathbb{R}^n$, then $x = (x_1, \dots, x_n)$. Call x_i then ith component of x.

 $(e_i)_j = \delta_{ij}$ "Kronecker delta"

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Proposition. $\forall x \in \mathbb{R}^n$,

$$\forall i, x_i = a_i \Longleftrightarrow x = \sum_{i=1}^n a_i e_i$$

In other words, $x = \sum_{i=1}^{n} x_i e_i$.

Proof.

$$\sum_{i=1}^{n} x_i e_i = (1, 0, 0, \dots, 0) x_1 + (0, 1, \dots, 0) x_2 + \dots + (0, 0, \dots, 1) x_n$$
$$= (x_1, 0, 0, \dots, 0) + (0, x_2, 0, \dots) + \dots + (0, 0, \dots, x_n)$$
$$= (x_1, x_2, \dots, x_n)$$

In other words, any vector in \mathbb{R}^n can be uniquely written as a linear combinations of the e_i .

1.5 Matrices

Definition. For $m, n \in \mathbb{Z}_{\geq 0}$, an $m \times n$ matrix over F is a $m \times n$ box of elements of F.

$$e.g. \begin{bmatrix} 0 & 3 \\ -3 & \pi \\ 0 & 4 \end{bmatrix}$$

Better Definition. An $m \times n$ matrix A over F is a function $[m] \times [n] \to F$.

Notation: Write $A((i, j)) =: A_{ij}$

$$B = \begin{bmatrix} 1 & 0 \\ 2 & 5 \end{bmatrix} B_{11} = 1, B_{12} = 0, B_{21} = 2, B_{22} = 5$$

Set of $m \times n$ matrices over F is called $M_{m \times n}(F)$. It is a vector space!

$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} + \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{pmatrix}$$
$$c \begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = \begin{pmatrix} cA_{11} \\ cA_{21} \end{pmatrix}$$

Overall Result $\Rightarrow M_{m \times n}(F)$ is an F - vector space.

Will prove: $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ is isomorphic to $M_{m \times n}(\mathbb{R})$.