Recent Advancements in Spiking Neural Networks

Student: Petec Răzvan-Gabriel

Content

- 1) Introduction
- 2) Context
- 3) Spiking Neuron and Learning
- 4) Related Work
- 5) Methodology
- 6) Expected Results
- 7) Conclusions

Introduction

Spiking Neural Networks are often called the third generation of neural networks ^[2]. The main features of this architecture are the following:

- neural networks inspired by the human brain,
- energy efficient on specific hardware.

Biological Neural Network

Spiking Neural Networks

Artificial Neural Network

Biological Neural Network

- Information is transmitted through discrete electrochemical signals via synapses.
- Time plays a critical role; real neurons fire at specific moments based on ion-channel dynamics.

Spiking Neural Networks

- Information is transmitted through discrete spikes across synapses.
- Spike timing plays a key role (Temporal coding via spikes).

Artificial Neural Network

- Information is transmitted through continuous values passed between layers.
- No explicit notion of time; computations are synchronous.

Biological Neural Network

- Information is transmitted through discrete electrochemical signals via synapses.
- Time plays a critical role; real neurons fire at specific moments based on ion-channel dynamics.

Spiking Neural Networks

- Information is transmitted through discrete spikes across synapses.
- Spike timing plays a key role (Temporal coding via spikes).

Artificial Neural Network

- Information is transmitted through continuous values passed between layers.
- No explicit notion of time; computations are synchronous.

Biological Neural Network

- Information is transmitted through discrete electrochemical signals via synapses.
- Time plays a critical role; real neurons fire at specific moments based on ion-channel dynamics.
- Very efficient; human brain consumes ~20 watts [1].
- Massively parallel at the neuron level.
- Asynchronous, sparse spiking activity.

Spiking Neural Networks

- Information is transmitted through discrete spikes across synapses.
- Spike timing plays a key role (Temporal coding via spikes).
- Energy-efficient compared to ANN, as spikes are sparse.
- Sparse and event-based parallelism.
- Asynchronous spike communication.

Artificial Neural Network

- Information is transmitted through continuous values passed between layers.
- No explicit notion of time; computations are synchronous.
- Computationally expensive, especially with large-scale networks (requires GPUs/TPUs).
- Layer-wise parallelism (often done in GPUs).
- Synchronous communication of continuous values.

Data Encoding

• SNNs process temporal data; encoding converts input signals (e.g., images, audio, biomedical signals) into spike trains for neural computation.

Rate encoding

$$r = \frac{\text{Number of spikes}}{\text{Time window}}.$$

Latency encoding

$$x_i = f(t_i - t_{\rm ref})$$

* for images:

```
def apply_latency_encoding(input_data: np.ndarray):
    times = np.maximum(0.0, 1.0 - input_data)
    times[times == 1.0] = np.inf
    return times
```

Data Encoding

Spiking Neuron

Neuron Model

Leaky Integrate-and-Fire

NEURON 10

Learning

LIF Neurons Dynamics

EARNING 11

Learning - Unsupervised

Spike Timing-Dependent Plasticity

EARNING 1

Learning - Supervised

Surrogate Gradient Descent

EARNING 13

Unsupervised Results on MNIST

Model	Description	Accuracy
Dielh et al. 2015 ^[8]	Single Layer SNN	95.0%
Kheradpisheh et al. 2018 ^[9]	Convolutional SNN + SVM	98.4%
Falez et al. 2019 ^[10]	Convolutional SNN + SVM	98.6%

Supervised Results on ImageNet

	Year	Work	Architecture	Time Steps	SNN Acc. (%)
ImageNet	2021	STBP-tdBN [45]	ResNet-50	6	64.88
	2021	Diet-SNN [46]	VGG-16	5	69.00
	2022	TET [48]	ResNet-34	6	64.79
	2022	IM-loss [49]	VGG-16	5	70.65
	2022	TEBN [50]	ResNet-34	4	64.29
	2022	GLIF [52]	ResNet-34	4	67.52
	2022	RecDis-SNN [53]	ResNet-34	6	67.33
	2023	MPBN [55]	ResNet-34	4	64.71
	2023	Attention SNN [59]	ResNet-34	1	69.15

[13]

Applications

Research Directions

[6]

So much work still to be done!

Lots of low hanging fruit and possible questions/projects.

Can we make this more efficient?

- Run faster
- Local learning version
- Better scaling
- Sparse connectivity

Computational advantages of SNNs?

- Fast decision making?
- Robust to noise?
- Robust to adversarial attacks?
- More generalisable?
- Low power (neuromorphic computing)

Answer biological questions?

- What is the role of spikes?
 Just energy efficiency / transmission?
- Local learning rules
- Interaction with synapse/neuron dynamics

Conclusions

Promise of SNNs

- Spiking Neural Networks (SNNs) represent a paradigm shift toward biologically plausible, energy-efficient computation.
- Their ability to process spatiotemporal data with sparse activity makes them ideal for real-time and low-power applications.

Advancements

- Progress in training methods (e.g., surrogate gradients, STDP)
 has improved performance and scalability.
- Hybrid architectures combining SNNs and ANNs are bridging the gap in accuracy for complex tasks.

Challenges

- Training complexity, scalability issues, and hardware limitations remain barriers.
- Accuracy lags behind traditional ANNs for large-scale datasets.

Future Directions

- Development of more scalable training algorithms for deeper SNNs.
- Advancements in neuromorphic hardware to handle larger and more complex networks.
- Targeting niche areas (e.g., robotics, biomedical devices) to capitalize on SNN strengths.

Thanks for your attention! Q&A time

FINAL 19

Bibliography

- [1] Roy, Kaushik, Akhilesh Jaiswal, and Priyadarshini Panda. "Towards spike-based machine intelligence with neuromorphic computing." Nature 575.7784 (2019): 607-617.
- [2] Maass, Wolfgang. "Networks of spiking neurons: the third generation of neural network models." Neural networks 10.9 (1997): 1659-1671.
- [3] Wang, Xiangwen, Xianghong Lin, and Xiaochao Dang. "Supervised learning in spiking neural networks: A review of algorithms and evaluations." Neural Networks 125 (2020): 258-280.
- [4] Shrestha, Amar, et al. "A survey on neuromorphic computing: Models and hardware." IEEE Circuits and Systems Magazine 22.2 (2022): 6-35.
- [5] Falez, Pierre, et al. "Mastering the output frequency in spiking neural networks." 2018 international joint conference on neural networks (IJCNN). IEEE, 2018.
- [6] Dan Goodman. "Cosyne tutorial 2022 on spiking neural networks." Youtube, 2022.
- [7] Hu, Yangfan, et al. "Toward Large-scale Spiking Neural Networks: A Comprehensive Survey and Future Directions." arXiv preprint arXiv:2409.02111 (2024).
- [8] Eshraghian, Jason K., et al. "Training spiking neural networks using lessons from deep learning." Proceedings of the IEEE (2023).