A structure-preserving scheme for a hyperbolic approximation of the Navier-Stokes-Korteweg equations

Firas Dhaouadi Università degli Studi di Trento

Joint work with Michael Dumbser (Università degli Studi di Trento)

January 16th, 2024

$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \mu \operatorname{div}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3}\operatorname{div}(\mathbf{u})\mathbf{I}\right)$$

$$+\rho \nabla\left(K(\rho)\Delta \rho + \frac{1}{2}K'(\rho)|\nabla \rho|^2\right)$$

$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \mu \operatorname{div}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3}\operatorname{div}(\mathbf{u})\mathbf{I}\right)$$

$$+\rho \nabla \left(K(\rho)\Delta \rho + \frac{1}{2}K'(\rho)|\nabla \rho|^2\right)$$

- ✓ General model for viscous-dispersive fluid flows.
- ✓ A diffuse interface option for viscous two-phase flows.

$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \mu \operatorname{div}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3}\operatorname{div}(\mathbf{u})\mathbf{I}\right)$$

$$+\rho \nabla \left(K(\rho)\Delta \rho + \frac{1}{2}K'(\rho)|\nabla \rho|^2\right)$$

- ✓ General model for viscous-dispersive fluid flows.
- ✓ A diffuse interface option for viscous two-phase flows.
- contains nonlinear high order derivatives (2nd and 3rd order).
 - ⇒ Crippling time-stepping.
 - ⇒ Violates principle of causality (infinite propagation speeds).

$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \mu \operatorname{div}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3}\operatorname{div}(\mathbf{u})\mathbf{I}\right)$$

$$+\rho \nabla \left(K(\rho)\Delta \rho + \frac{1}{2}K'(\rho)|\nabla \rho|^2\right)$$

- ✓ General model for viscous-dispersive fluid flows.
- ✓ A diffuse interface option for viscous two-phase flows.
- contains nonlinear high order derivatives (2nd and 3rd order).
 - ⇒ Crippling time-stepping.
 - → Violates principle of causality (infinite propagation speeds).
- Often associated with non-convex equations of state.

$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \mu \operatorname{div}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3}\operatorname{div}(\mathbf{u})\mathbf{I}\right)$$

$$+\rho \nabla \left(K(\rho)\Delta \rho + \frac{1}{2}K'(\rho)|\nabla \rho|^2\right)$$

- ✓ General model for viscous-dispersive fluid flows.
- ✓ A diffuse interface option for viscous two-phase flows.
- contains nonlinear high order derivatives (2nd and 3rd order).
 - ⇒ Crippling time-stepping.
 - → Violates principle of causality (infinite propagation speeds).
- Often associated with non-convex equations of state.
 - ⇒ Loss of hyperbolicity in the left-hand side.

Consider the Navier-Stokes-Korteweg system of equations :

$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \mu \operatorname{div}\left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3}\operatorname{div}(\mathbf{u})\mathbf{I}\right)$$

$$+\rho \nabla \left(K(\rho)\Delta \rho + \frac{1}{2}K'(\rho)|\nabla \rho|^2\right)$$

- ✓ General model for viscous-dispersive fluid flows.
- ✓ A diffuse interface option for viscous two-phase flows.
- contains nonlinear high order derivatives (2nd and 3rd order).
 - ⇒ Crippling time-stepping.
 - ⇒ Violates principle of causality (infinite propagation speeds).
- Often associated with non-convex equations of state.
 - ⇒ Loss of hyperbolicity in the left-hand side.

Suggested solution

A first-order hyperbolic approximation to the NSK system!

A subset of connected works and topics

- A family of Parabolic relaxation models of NSK equations.
 - ⇒ Diehl, Kremser, Kröner, Rohde 2016 (DG for NSK)
 - ⇒ Hitz, Keim, Munz, Rohde 2020 (Barotropic)
 - ⇒ Keim, Munz, Rohde 2023 [non-Isothermal NSK] and many other works...
- 2 Hyperbolic approximation of Euler-Korteweg equations.
 - ⇒ Dhaouadi, Favrie, Gavrilyuk 2019. (Schrödinger equation)
 - ⇒ Dhaouadi, Gavrilyuk, Vila 2022. (Thin films).
 - ⇒ Bourgeois, Lombard, Favrie 2020 (Solids with nonconvex EOS)
 - ⇒ Bresch *et al.*,2020 (2nd Order Hyperbolic)
- 4 Hyperbolic reformulation of Navier-Stokes equations.
 - ⇒ GPR model of continuum mechanics.[Godunov 1961,Romenski 1998,*Peshkov et al.* 2016]

A subset of connected works and topics

- A family of Parabolic relaxation models of NSK equations.
 - ⇒ Diehl, Kremser, Kröner, Rohde 2016 (DG for NSK)
 - ⇒ Hitz, Keim, Munz, Rohde 2020 (Barotropic)
 - ⇒ Keim, Munz, Rohde 2023 [non-Isothermal NSK] and many other works...
- 2 Hyperbolic approximation of Euler-Korteweg equations.
 - ⇒ Dhaouadi, Favrie, Gavrilyuk 2019. (Schrödinger equation)
 - ⇒ Dhaouadi, Gavrilyuk, Vila 2022. (Thin films).
 - ⇒ Bourgeois, Lombard, Favrie 2020 (Solids with nonconvex EOS)
 - ⇒ Bresch *et al.*,2020 (2nd Order Hyperbolic)
- 4 Hyperbolic reformulation of Navier-Stokes equations.
 - ⇒ GPR model of continuum mechanics.[Godunov 1961,Romenski 1998, Peshkov et al. 2016]

Idea

Combine our augmented Lagrangian model with the general *GPR* model of continuum mechanics.

Outline

- Myperbolic reformulation of the Navier-Stokes-Korteweg system
 - Hyperbolic reformulation of the Euler-Korteweg system
 - Extension to the Navier-Stokes-Korteweg system
- Exactly curl-free numerical scheme
 - Scheme details
 - Some numerical results
- Conclusion

The equations write:

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right) \end{cases}$$

where
$$\rho = \rho(\mathbf{x}, t)$$
, $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ and $(\mathbf{x}, t) \in \mathbb{R}^d \times [0, T]$

The equations write:

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right) \end{cases}$$
 where $\rho = \rho(\mathbf{x}, t)$, $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ and $(\mathbf{x}, t) \in \mathbb{R}^d \times [0, T]$

 $\bullet \ K(\rho) = \gamma$: Compressible flow with surface tension

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \gamma \rho \nabla(\Delta \rho) \end{cases}$$

The equations write:

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right) \end{cases}$$

where $\rho = \rho(\mathbf{x}, t)$, $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ and $(\mathbf{x}, t) \in \mathbb{R}^d \times [0, T]$

• $K(\rho) = \gamma$: Compressible flow with surface tension

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \gamma \rho \nabla(\Delta \rho) \end{cases}$$

• $K(\rho) = \frac{1}{4\rho}$: Quantum hydrodynamics

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}\left(\rho \mathbf{u} \otimes \mathbf{u} + \frac{1}{4\rho} \nabla \rho \otimes \nabla \rho\right) + \nabla\left(\frac{\rho^2}{2} - \frac{1}{4} \Delta \rho\right) = 0 \end{cases}$$

The equations write:

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \rho \nabla \left(K(\rho) \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right) \end{cases}$$

where $\rho = \rho(\mathbf{x}, t)$, $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ and $(\mathbf{x}, t) \in \mathbb{R}^d \times [0, T]$

ullet $K(
ho)=\gamma$: Compressible flow with surface tension

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \gamma \rho \nabla(\Delta \rho) \end{cases}$$

• $K(\rho) = \frac{1}{4\rho}$: Quantum hydrodynamics

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0\\ (\rho \mathbf{u})_t + \operatorname{div}\left(\rho \mathbf{u} \otimes \mathbf{u} + \frac{1}{4\rho} \nabla \rho \otimes \nabla \rho\right) + \nabla\left(\frac{\rho^2}{2} - \frac{1}{4}\Delta \rho\right) = 0 \end{cases}$$

Lagrangian for the Euler-Korteweg system

(EK) system can be derived from the Lagrangian:

$$\mathcal{L} = \int_{\Omega_t} \left(\frac{\rho |\mathbf{u}|^2}{2} - W(\rho) - \gamma \frac{|\nabla \rho|^2}{2} \right) d\Omega$$

Variational principle + Differential constraint : $\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0$

$$(\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla(P(\rho)) = \gamma \rho \nabla(\Delta \rho)$$

with
$$P(\rho) = \rho W'(\rho) - W(\rho)$$

Augmented Lagrangian approach

$$\mathcal{L}(\mathbf{u}, \rho, \nabla \rho) = \int_{\Omega_t} \left(\frac{1}{2} \rho |\mathbf{u}|^2 - W(\rho) - \gamma \frac{|\nabla \rho|^2}{2} \right) d\Omega$$
$$\rho_t + \operatorname{div}(\rho \mathbf{u}) = 0$$

'Augmented' Lagrangian approach [Favrie-Gavrilyuk 2017]

$$\tilde{\mathcal{L}}(\mathbf{u}, \rho, \boldsymbol{\eta}, \nabla \boldsymbol{\eta}) \qquad (\boldsymbol{\eta} \longrightarrow \rho)$$

$$\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - \gamma \frac{|\nabla \boldsymbol{\eta}|^2}{2} - \frac{1}{2\alpha\rho} (\rho - \boldsymbol{\eta})^2 \right) d\Omega$$

$$\frac{1}{2\alpha\rho}(\rho-\eta)^2$$
: Classical Penalty term

This is the system we have

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (P(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\ -\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \end{cases}$$

where:

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2} |\nabla \eta|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} - \gamma \nabla \eta \otimes \nabla \eta$$

This is the system we have

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (P(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\ -\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \end{cases}$$

where:

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2} |\nabla \eta|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} - \gamma \nabla \eta \otimes \nabla \eta$$

The obtained system :

still contains high order derivatives.

This is the system we have

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (P(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\ -\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \end{cases}$$

where:

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2} |\nabla \eta|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} - \gamma \nabla \eta \otimes \nabla \eta$$

The obtained system :

still contains high order derivatives.

is not hyperbolic.

This is the system we have

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (P(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\ -\gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \end{cases}$$

where:

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2} |\nabla \eta|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} - \gamma \nabla \eta \otimes \nabla \eta$$

The obtained system:

- still contains high order derivatives.
- is not hyperbolic.
- has an elliptic constraint.

This is the system we have

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (P(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\ \hline (...)_t + - \gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \end{cases}$$

where:

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2} |\nabla \eta|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} - \gamma \nabla \eta \otimes \nabla \eta$$

The obtained system:

- still contains high order derivatives.
- is not hyperbolic.
- X has an elliptic constraint.

This is the system we have

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla (P(\rho)) = \operatorname{div}(\mathbf{K}_{\alpha}) \\ \hline (\dots)_t + - \gamma \Delta \eta = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \end{cases}$$

where:

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2} |\nabla \eta|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} - \gamma \nabla \eta \otimes \nabla \eta$$

The obtained system:

still contains high order derivatives.

is not hyperbolic.

has an elliptic constraint.

Idea: Include $\dot{\eta}$ into the Lagrangian!

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

$$\tilde{\mathcal{L}}(\mathbf{u}, \rho, \boldsymbol{\eta}, \boldsymbol{\nabla}\boldsymbol{\eta}, \dot{\boldsymbol{\eta}}) \qquad \boldsymbol{\alpha}, \boldsymbol{\beta} \ll 1$$

$$\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - \frac{\gamma}{2} |\nabla \eta|^2 - \frac{1}{2\alpha\rho} \left(\rho - \eta \right)^2 + \frac{\beta\rho}{2} \dot{\eta}^2 \right) d\Omega$$

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

$$\tilde{\mathcal{L}}(\mathbf{u}, \rho, \boldsymbol{\eta}, \boldsymbol{\nabla}\boldsymbol{\eta}, \dot{\boldsymbol{\eta}}) \qquad \boldsymbol{\alpha}, \boldsymbol{\beta} \ll 1$$

$$\tilde{\mathcal{L}}(\mathbf{u}, \rho, \boldsymbol{\eta}, \boldsymbol{\nabla}\boldsymbol{\eta}, \dot{\boldsymbol{\eta}}) \qquad \boldsymbol{\alpha}, \boldsymbol{\beta} \ll 1$$

$$\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - \frac{\gamma}{2} |\boldsymbol{\nabla}\boldsymbol{\eta}|^2 - \frac{1}{2\alpha\rho} \left(\rho - \boldsymbol{\eta} \right)^2 + \frac{\beta\rho}{2} \dot{\boldsymbol{\eta}}^2 \right) d\Omega$$

Variational principle :
$$a = \int_{t_0}^{t_1} \tilde{\mathcal{L}} \ dt$$

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} - \mathbf{K}_{\alpha}(\rho, \eta, \nabla \eta)) + \nabla P(\rho) = 0 \\ (\beta \rho \dot{\eta})_t + \operatorname{div}(\beta \rho \dot{\eta} \mathbf{u} - \gamma \nabla \eta) = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \end{cases}$$

Augmented Lagrangian - Attempt 2

Augmented Lagrangian approach

$$\tilde{\mathcal{L}}(\mathbf{u}, \rho, \boldsymbol{\eta}, \nabla \boldsymbol{\eta}, \dot{\boldsymbol{\eta}}) \qquad \boldsymbol{\alpha}, \boldsymbol{\beta} \ll 1$$

$$\tilde{\mathcal{L}}(\mathbf{u}, \rho, \mathbf{\eta}, \nabla \mathbf{\eta}, \dot{\mathbf{\eta}}) \qquad \alpha, \beta \ll 1$$

$$\tilde{\mathcal{L}} = \int_{\Omega_t} \left(\rho \frac{|\mathbf{u}|^2}{2} - W(\rho) - \frac{\gamma}{2} |\nabla \mathbf{\eta}|^2 - \frac{1}{2\alpha\rho} (\rho - \mathbf{\eta})^2 + \frac{\beta\rho}{2} \dot{\mathbf{\eta}}^2 \right) d\Omega$$

Variational principle :
$$a = \int_{t_0}^{t_1} \tilde{\mathcal{L}} \ dt$$

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} - \mathbf{K}_{\alpha}(\rho, \eta, \nabla \eta)) + \nabla P(\rho) = 0 \\ (\beta \rho \dot{\eta})_t + \operatorname{div}(\beta \rho \dot{\eta} \mathbf{u} - \gamma \nabla \eta) = \frac{1}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \end{cases}$$

- \Rightarrow There are still high-order derivatives!
- \Rightarrow No time evolution for $\eta!$

1 We take $w = \dot{\eta}$ as independent variable. Thus:

$$w = \eta_t + \mathbf{u} \cdot \nabla \eta \implies (\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w$$

1 We take $w = \dot{\eta}$ as independent variable. Thus:

$$w = \eta_t + \mathbf{u} \cdot \nabla \eta \implies (\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w$$

2 We take $\mathbf{p} = \nabla \eta$ as independent variable. Take again $w = \eta_t + \mathbf{u} \cdot \nabla \eta$

1 We take $w = \dot{\eta}$ as independent variable. Thus:

$$w = \eta_t + \mathbf{u} \cdot \nabla \eta \implies (\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w$$

② We take $\mathbf{p} = \nabla \eta$ as independent variable. Take again $\nabla w = \nabla (\eta_t + \mathbf{u} \cdot \nabla \eta)$

$$\implies |\mathbf{p}_t + \nabla(\mathbf{p} \cdot \mathbf{u} - w) = 0|$$

1 We take $w = \dot{\eta}$ as independent variable. Thus:

$$w = \eta_t + \mathbf{u} \cdot \nabla \eta \implies (\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w$$

2 We take $\mathbf{p} = \nabla \eta$ as independent variable. Take again $\nabla w = \nabla (\eta_t + \mathbf{u} \cdot \nabla \eta)$

$$\implies |\mathbf{p}_t + \nabla(\mathbf{p} \cdot \mathbf{u} - w) = 0|$$

Important note

Initial data must be such that:

$$\mathbf{p}(\mathbf{x},0) = \nabla \eta(\mathbf{x},0), \quad w(\mathbf{x},0) = \dot{\eta}(\mathbf{x},0)$$

$$\begin{cases} \rho_t &+ \operatorname{div}(\rho \mathbf{u}) = 0\\ (\rho \mathbf{u})_t &+ \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho) \mathbf{Id} - \mathbf{K}_{\alpha}) = 0\\ (\rho w)_t &+ \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}) = \frac{1}{\alpha \beta} \left(1 - \frac{\eta}{\rho} \right)\\ \mathbf{p}_t &+ \nabla (\mathbf{p} \cdot \mathbf{u} - w) = 0\\ (\rho \eta)_t &+ \operatorname{div}(\rho \eta \mathbf{u}) = \rho w \end{cases}$$
$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2} |\mathbf{p}|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho} \right) \right) \mathbf{Id} - \gamma \mathbf{p} \otimes \mathbf{p}$$

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho)\mathbf{Id} - \mathbf{K}_{\alpha}) = 0 \\ (\rho w)_t + \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}) = \frac{1}{\alpha\beta} \left(1 - \frac{\eta}{\rho} \right) \\ \mathbf{p}_t + \nabla(\mathbf{p} \cdot \mathbf{u} - w) = 0 \\ (\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w \end{cases}$$

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\mathbf{p}|^2 - \frac{\eta}{\alpha}\left(1 - \frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma\mathbf{p} \otimes \mathbf{p}$$

But recall that $\mathbf{p} = \nabla \eta \implies \nabla \times \mathbf{p} = 0 \dots$

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho)\mathbf{Id} - \mathbf{K}_{\alpha}) = 0 \\ (\rho w)_t + \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}) = \frac{1}{\alpha\beta} \left(1 - \frac{\eta}{\rho} \right) \\ \mathbf{p}_t + \nabla(\mathbf{p} \cdot \mathbf{u} - w) + (\nabla \times \mathbf{p}) \times \mathbf{u} = 0 \\ (\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w \end{cases}$$

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2} |\mathbf{p}|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} - \gamma \mathbf{p} \otimes \mathbf{p}$$

But recall that $\mathbf{p} = \nabla \eta \Rightarrow \nabla \times \mathbf{p} = 0 \dots$

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho)\mathbf{Id} - \mathbf{K}_{\alpha}) = 0 \\ (\rho w)_t + \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}) = \frac{1}{\alpha\beta} \left(1 - \frac{\eta}{\rho} \right) \\ \mathbf{p}_t + \nabla(\mathbf{p} \cdot \mathbf{u} - w) + (\nabla \times \mathbf{p}) \times \mathbf{u} = 0 \\ (\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w \end{cases}$$

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\mathbf{p}|^2 - \frac{\eta}{\alpha}\left(1 - \frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma\mathbf{p} \otimes \mathbf{p}$$

But recall that $\mathbf{p} = \nabla \eta \Rightarrow \nabla \times \mathbf{p} = 0 \dots$

⇒ Now the system is Gallilean invariant...

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho)\mathbf{Id} - \mathbf{K}_{\alpha}) = 0 \\ (\rho w)_t + \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}) = \frac{1}{\alpha\beta} \left(1 - \frac{\eta}{\rho} \right) \\ \mathbf{p}_t + \nabla(\mathbf{p} \cdot \mathbf{u} - w) + (\nabla \times \mathbf{p}) \times \mathbf{u} = 0 \\ (\rho \eta)_t + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w \end{cases}$$

$$\mathbf{K}_{\alpha} = \left(\frac{\gamma}{2}|\mathbf{p}|^2 - \frac{\eta}{\alpha}\left(1 - \frac{\eta}{\rho}\right)\right)\mathbf{Id} - \gamma\mathbf{p} \otimes \mathbf{p}$$

But recall that $\mathbf{p} = \nabla \eta \Rightarrow \nabla \times \mathbf{p} = 0 \dots$

⇒ Now the system is Gallilean invariant... But is it hyperbolic ?

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$

$$\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 + \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a_\gamma^2 + a_\alpha^2 - a_\beta^2)^2 + 4a_\beta^2 a_\gamma^2} \\ a = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho} p^2} \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}$$

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$

$$\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 + \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2}(a^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2) \\ \psi_2 = \frac{1}{2}\sqrt{(a^2 + a_\gamma^2 + a_\alpha^2 - a_\beta^2)^2 + 4a_\beta^2 a_\gamma^2} \\ a = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}p^2} \\ a_\alpha = \frac{\eta}{\rho\sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta\rho}} \end{cases}$$

 a^2 : adiabatic sound speed.

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$

$$\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 + \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a_\gamma^2 + a_\alpha^2 - a_\beta^2)^2 + 4a_\beta^2 a_\gamma^2} \\ a = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho} p^2} \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}$$

 a^2 : adiabatic sound speed.

 a_{γ} : wave speed due to capillarity .

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$

$$\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 + \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a_\gamma^2 + a_\alpha^2 - a_\beta^2)^2 + 4a_\beta^2 a_\gamma^2} \\ a = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho} p^2} \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}$$

 a^2 : adiabatic sound speed.

 a_{γ} : wave speed due to capillarity .

 a_{α} and a_{β} : First and second relaxation speeds.

Hyperbolicity in 1-D

A admits 5 eigenvalues that can be expressed as follows : Reminder $(P(\rho))$: hydrostatic pressure, $p = \eta_x$

$$\xi = \begin{pmatrix} u \\ u + \sqrt{\psi_1 + \psi_2} \\ u + \sqrt{\psi_1 - \psi_2} \\ u - \sqrt{\psi_1 + \psi_2} \\ u - \sqrt{\psi_1 - \psi_2} \end{pmatrix} \text{ with } \begin{cases} \psi_1 = \frac{1}{2} (a^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2) \\ \psi_2 = \frac{1}{2} \sqrt{(a^2 + a_\gamma^2 + a_\alpha^2 - a_\beta^2)^2 + 4a_\beta^2 a_\gamma^2} \\ a = \sqrt{P'(\rho)}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho} p^2} \\ a_\alpha = \frac{\eta}{\rho \sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta \rho}} \end{cases}$$

 a^2 : adiabatic sound speed. (negative in non-convex regions!!)

 a_{γ} : wave speed due to capillarity .

 a_{α} and a_{β} : First and second relaxation speeds.

Van der Waals equation of state

In the context of two-phase flows, the equation of state is non-convex

$$p = \frac{\rho RT}{1 - b\rho} - a\rho^2, \qquad a > 0, \ b > 0$$

Figure 1: Van der Waals pressure for T=0.85, a=3, b=1/3, R=8/3

Navier-Stokes-Korteweg equations

In general, the equations write

$$\begin{cases} \rho_t + \operatorname{div}(\rho \mathbf{u}) = 0 \\ (\rho \mathbf{u})_t + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla P(\rho) = \underline{\underline{S}} + \underline{\underline{K}} \end{cases}$$

where $\rho = \rho(\mathbf{x}, t)$, $\mathbf{u} = \mathbf{u}(\mathbf{x}, t)$ and $(\mathbf{x}, t) \in \mathbb{R}^d \times [0, T]$ The (dispersive) Korteweg stress tensor is given by:

$$\underline{\underline{K}} = \rho \nabla \left(\gamma \Delta \rho + \frac{1}{2} K'(\rho) |\nabla \rho|^2 \right)$$

and the (viscous) Navier-Stokes stresses are given by

$$\underline{\underline{S}} = \mu \operatorname{div} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T - \frac{2}{3} \operatorname{div}(\mathbf{u}) \mathbf{I} \right)$$

Godunov-Peshkov-Romenski Model of continuum mechanics

Deformation gradient:

$$\mathbf{F} = \left[\frac{\partial x_i}{\partial X_j} \right]$$

Inverse Deformation gradient:

$$\mathbf{A} = \mathbf{F}^{-1} = \left[\frac{\partial X_i}{\partial x_j} \right]$$

 $\phi(X,t)$

Godunov-Peshkov-Romenski Model of continuum mechanics

Deformation gradient:

$$\mathbf{F} = \left[\frac{\partial x_i}{\partial X_j} \right]$$

Inverse Deformation gradient:

$$\mathbf{A} = \mathbf{F}^{-1} = \left[\frac{\partial X_i}{\partial x_i} \right]$$

$$\partial_t(\mathbf{A}) + \nabla(\mathbf{A}\mathbf{u}) + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}} - \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}}\right)^T\right) \cdot \mathbf{u} = \frac{1}{\tau} \mathbf{S}(\mathbf{A})$$
 (Fluids)

Hyperbolic NSK = Hyperbolic EK + Hyperbolic NS

(Black: Euler part, Red: Dispersive part, Blue: Viscous part.)

$$\partial_{t}(\rho) + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$\partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho)\mathbf{Id} - K_{\alpha} - \sigma) = 0$$

$$\partial_{t}(\rho \eta) + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w$$

$$\partial_{t}(\rho w) + \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}/\beta) = (\alpha \beta)^{-1} (1 - \eta/\rho)$$

$$\partial_{t}(\mathbf{p}) + \nabla (\mathbf{p} \cdot \mathbf{u} - w) + (\nabla \times \mathbf{p}) \times \mathbf{u} = 0,$$

$$\partial_{t}(\mathbf{A}) + \nabla(\mathbf{A}\mathbf{u}) + \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}} - \left(\frac{\partial \mathbf{A}}{\partial \mathbf{x}}\right)^{T}\right) \cdot \mathbf{u} = -\frac{3}{\tau} \det(\mathbf{A})^{5/3} \mathbf{A} \det(\mathbf{G})$$

where
$$\begin{cases} \sigma = -\rho c_s^2 \mathbf{G} \mathrm{dev}(\mathbf{G}) \text{ where } \mathbf{G} = \mathbf{A}^T \mathbf{A} \\ \mathbf{K}_{\alpha} = -\gamma \mathbf{p} \otimes \mathbf{p} + \left(\frac{\gamma}{2} |\mathbf{p}|^2 - \frac{\eta}{\alpha} \left(1 - \frac{\eta}{\rho}\right)\right) \mathbf{Id} \end{cases}$$

Eigenvalues - Hyperbolicity

 \Rightarrow 18 Real Eigenvalues (Linearized around $A = \mathbf{I}, \mathbf{p} = (p1, 0, 0)^T$)

Transport: $\lambda_{1-10} = u_1$

shear waves:
$$\begin{cases} \lambda_{11-12} = u_1 + c_s, \\ \lambda_{13-14} = u_1 - c_s, \end{cases}$$

Mixed waves:

$$\begin{cases} \lambda_{15} = u_1 - \sqrt{Z_1 + Z_2} \\ \lambda_{16} = u_1 - \sqrt{Z_1 - Z_2} \\ \lambda_{17} = u_1 + \sqrt{Z_1 + Z_2} \\ \lambda_{18} = u_1 + \sqrt{Z_1 - Z_2} \end{cases}$$

$$\begin{cases} \lambda_{15} = u_1 - \sqrt{Z_1 + Z_2} \\ \lambda_{16} = u_1 - \sqrt{Z_1 - Z_2} \\ \lambda_{17} = u_1 + \sqrt{Z_1 + Z_2} \\ \lambda_{18} = u_1 + \sqrt{Z_1 - Z_2} \end{cases}, \begin{cases} Z_1 = \frac{1}{2}(a_0^2 + a_s^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2), \\ Z_2 = \sqrt{Z_1^2 - a_\beta^2(a_0^2 + a_\alpha^2 + a_\beta^2)}, \\ a_0 = \sqrt{\rho W''(\rho)}, \quad a_s = \sqrt{\frac{4}{3}c_s^2} \\ a_\alpha = \frac{\eta}{\rho\sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta\rho}}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}p_1^2} \end{cases}$$

System to be solved numerically

A set of classical conservation laws:

$$\partial_{t}(\rho) + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$\partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho)\mathbf{Id} - K_{\alpha} - \sigma) = 0$$

$$\partial_{t}(\rho \eta) + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w$$

$$\partial_{t}(\rho w) + \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}/\beta) = (\alpha \beta)^{-1} (1 - \eta/\rho)$$

A set of potentially curl constrained vectors:

$$\partial_{t}(\mathbf{p}) + \nabla (\mathbf{p} \cdot \mathbf{u} - w) = 0,$$

$$\partial_{t}(\mathbf{A}_{1}) + \nabla (\mathbf{A}_{1} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{1}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{1}$$

$$\partial_{t}(\mathbf{A}_{2}) + \nabla (\mathbf{A}_{2} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{2}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{2}$$

$$\partial_{t}(\mathbf{A}_{3}) + \nabla (\mathbf{A}_{3} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{3}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{3}$$

System to be solved numerically

A set of classical conservation laws: MUSCL-Hancock FV scheme

$$\partial_{t}(\rho) + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$\partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho)\mathbf{Id} - K_{\alpha} - \sigma) = 0$$

$$\partial_{t}(\rho \eta) + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w$$

$$\partial_{t}(\rho w) + \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}/\beta) = (\alpha \beta)^{-1} (1 - \eta/\rho)$$

A set of potentially curl constrained vectors:

$$\partial_{t}(\mathbf{p}) + \nabla (\mathbf{p} \cdot \mathbf{u} - w) = 0,$$

$$\partial_{t}(\mathbf{A}_{1}) + \nabla (\mathbf{A}_{1} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{1}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{1}$$

$$\partial_{t}(\mathbf{A}_{2}) + \nabla (\mathbf{A}_{2} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{2}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{2}$$

$$\partial_{t}(\mathbf{A}_{3}) + \nabla (\mathbf{A}_{3} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{3}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{3}$$

System to be solved numerically

A set of classical conservation laws: MUSCL-Hancock FV scheme

$$\partial_{t}(\rho) + \operatorname{div}(\rho \mathbf{u}) = 0$$

$$\partial_{t}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u} + P(\rho)\mathbf{Id} - K_{\alpha} - \sigma) = 0$$

$$\partial_{t}(\rho \eta) + \operatorname{div}(\rho \eta \mathbf{u}) = \rho w$$

$$\partial_{t}(\rho w) + \operatorname{div}(\rho w \mathbf{u} - \gamma \mathbf{p}/\beta) = (\alpha \beta)^{-1} (1 - \eta/\rho)$$

A set of potentially curl constrained vectors: VIP Treatment

$$\partial_{t}(\mathbf{p}) + \nabla (\mathbf{p} \cdot \mathbf{u} - w) = 0,$$

$$\partial_{t}(\mathbf{A}_{1}) + \nabla (\mathbf{A}_{1} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{1}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{1}$$

$$\partial_{t}(\mathbf{A}_{2}) + \nabla (\mathbf{A}_{2} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{2}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{2}$$

$$\partial_{t}(\mathbf{A}_{3}) + \nabla (\mathbf{A}_{3} \cdot \mathbf{u}) + (\nabla \times \mathbf{A}_{3}) \times \mathbf{u} = -\frac{1}{\tau} \mathbf{S}_{3}$$

Exactly curl-free scheme: Staggered Grid

Figure 2: Schematic of the computational domain featuring the grid points and the staggered dual grid points. Red squares are barycenters and blue circles are the vertexes of the computational cells.

Exactly curl-free scheme: Gradient Stencil

Figure 3: Stencil of the gradient field computed in every corner

Exactly curl-free scheme: Curl stencil

Figure 4: Stencil of the curl operator computed in every cell-center

Compatible discrete curl-operator

Based on this corner gradient, one can now define a compatible discrete curl operator such that $(\nabla^h \times \nabla^h \phi)^{p,q} \cdot \mathbf{e_z}$ is given by

$$-\frac{(\partial_{y}^{h}\phi)^{p+\frac{1}{2},q+\frac{1}{2}} - (\partial_{y}^{h}\phi)^{p+\frac{1}{2},q-\frac{1}{2}}}{2\Delta x} + \frac{(\partial_{y}^{h}\phi)^{p-\frac{1}{2},q+\frac{1}{2}} - (\partial_{y}^{h}\phi)^{p-\frac{1}{2},q-\frac{1}{2}}}{2\Delta x} - \frac{(\partial_{x}^{h}\phi)^{p+\frac{1}{2},q+\frac{1}{2}} - (\partial_{x}^{h}\phi)^{p-\frac{1}{2},q+\frac{1}{2}}}{2\Delta y} - \frac{(\partial_{x}^{h}\phi)^{p+\frac{1}{2},q-\frac{1}{2}} - (\partial_{x}^{h}\phi)^{p-\frac{1}{2},q-\frac{1}{2}}}{2\Delta y}$$

It is straightforward to prove that

$$\nabla^h \times \nabla^h \phi \equiv 0$$

- For the conserved variables ρ , \mathbf{u} , $\rho\eta$, ρw :
 - ⇒ Classical MUSCL-Hancock scheme.

- For the conserved variables ρ , \mathbf{u} , $\rho\eta$, ρw : \Rightarrow Classical MUSCL-Hancock scheme.
- For the curl-free vector **p**

$$p_k^{p+\frac{1}{2},q+\frac{1}{2},n+1} = p_k^{p+\frac{1}{2},q+\frac{1}{2},n} - \Delta t \, \nabla_k^h \, (p_j u_j - w)^{p+\frac{1}{2},q+\frac{1}{2},n}$$

- For the conserved variables ρ , \mathbf{u} , $\rho\eta$, ρw : \Rightarrow Classical MUSCL-Hancock scheme.
- For the curl-free vector p

$$p_k^{p+\frac{1}{2},q+\frac{1}{2},n+1} = p_k^{p+\frac{1}{2},q+\frac{1}{2},n} - \Delta t \, \nabla_k^h \left(p_j u_j - w - h \, c^* \nabla_j^h p_j \right)^{p+\frac{1}{2},q+\frac{1}{2},n}$$

- For the conserved variables ρ , \mathbf{u} , $\rho\eta$, ρw : \Rightarrow Classical MUSCL-Hancock scheme.
- For the curl-free vector **p**

$$p_k^{p+\frac{1}{2},q+\frac{1}{2},n+1} = p_k^{p+\frac{1}{2},q+\frac{1}{2},n} - \Delta t \, \nabla_k^h \left(p_j u_j - w - h \, c^* \nabla_j^h p_j \right)^{p+\frac{1}{2},q+\frac{1}{2},n}$$

• Lastly, for A

$$A_{ik}^{p+\frac{1}{2},q+\frac{1}{2},n+1} = A_{ik}^{p+\frac{1}{2},q+\frac{1}{2},n} - \Delta t (\nabla_k^h (A_{ij}u_j) - h \ c^* \nabla_j^h A_{ij})^{p+\frac{1}{2},q+\frac{1}{2}}$$

$$- \Delta t \ h \ c^* \varepsilon_{kj3} \nabla_j^{p+\frac{1}{2},q+\frac{1}{2},n} \left(\varepsilon_{3lm} \nabla_l^h A_{im} \right)$$

$$- \frac{\Delta t}{4} \sum_{r=0}^{1} \sum_{s=0}^{1} u_m^{p+r,q+s,n} \left((\nabla_m^h A_{ik})^{p+\frac{1}{2},q+\frac{1}{2}} - (\nabla_k^h A_{im})^{p+\frac{1}{2},q+\frac{1}{2}} \right)$$

$$- \Delta t \frac{1}{2\pi} \det(\mathbf{A}^{p+\frac{1}{2},q+\frac{1}{2},n+1})^{5/3} A_{im}^{p+\frac{1}{2},q+\frac{1}{2},n+1} \mathring{G}_{mk}^{p+\frac{1}{2},q+\frac{1}{2},n+1}.$$

Near equilibrium bubble: density field

Figure 5: Results are shown for t=2 on a 512×512 grid. With $\gamma = 2.10^{-4}, \ \alpha = 10^{-2}, \ \beta = 10^{-5}, \ \mu = 10^{-2}, c_s = 10$. The computational domain is $\Omega_c = [-0.25, 0.25] \times [-0.25, 0.25]$.

Near equilibrium bubble: gradient field

Figure 6: Results are shown for t=2 on a 512×512 grid. With $\gamma=2.10^{-4}, \ \alpha=10^{-2}, \ \beta=10^{-5}, \ \mu=10^{-2}, c_s=10$. The computational domain is $\Omega_c=[-0.25,0.25]\times[-0.25,0.25]$.

Near equilibrium bubble: Discrete curl error over time

Figure 7: Time-evolution of the L_1 norm of the discrete curl errors on different mesh sizes.

2D Ostwald Ripening

Figure 8: Values used here are $\rho_l=1.8$, $\rho_v=0.3$, $\gamma=2.10^{-4}$, $\alpha=10^{-2}$, $\beta=10^{-5}$, $c_s=10$ and an effective viscosity of $\mu=10^{-2}$. The total domain is $\Omega=[-0.6,+0.6]\times[-0.6,+0.6]$ discretized over a 4096×4096 uniform grid with periodic boundary conditions.

Conclusion and Perspectives

Summary

- We conceived a hyperbolic relaxation model to the Navier-Stokes-Korteweg equations.
- The used scheme preserves the curl errors up to machine precision.
- Some numerical results blow up in finite time if a curl-free discretization is not used

Conclusion and Perspectives

Summary

- We conceived a hyperbolic relaxation model to the Navier-Stokes-Korteweg equations.
- The used scheme preserves the curl errors up to machine precision.
- Some numerical results blow up in finite time if a curl-free discretization is not used

Perspectives

- Extension to non-isothermal flows.
- Splitting of the fluxes for semi-implicit discretization
- Higher-order extension of the scheme
- Thermodynamically compatible curl-free discretizations.

Thank you for your attention !

- [1] Dhaouadi, Firas, and Michael Dumbser. "A first order hyperbolic reformulation of the Navier-Stokes-Korteweg system based on the GPR model and an augmented Lagrangian approach." *Journal of Computational Physics* 470 (2022): 111544.
- [2] Dhaouadi, Firas, and Michael Dumbser. "A Structure-Preserving Finite Volume Scheme for a Hyperbolic Reformulation of the Navier–Stokes–Korteweg Equations." *Mathematics* 11.4 (2023): 876.

And references therein.

Dispersion relation

Figure 9: Plot of the phase velocity (left) and the decay rate for several values of α along their counterparts for the Navier-Stokes-Korteweg system. The model parameters are as follows $\gamma=10^{-3}$, $\mu=10^{-3}$ and $\rho=1.8$

Scaling of relaxations

Representative characteristic velocities

$$\begin{cases} \lambda_{15} = u_1 - \sqrt{Z_1 + Z_2} \\ \lambda_{16} = u_1 - \sqrt{Z_1 - Z_2} \\ \lambda_{17} = u_1 + \sqrt{Z_1 + Z_2} \\ \lambda_{18} = u_1 + \sqrt{Z_1 - Z_2} \end{cases}, \begin{cases} Z_1 = \frac{1}{2}(a_0^2 + a_s^2 + a_\gamma^2 + a_\alpha^2 + a_\beta^2), \\ Z_2 = \sqrt{Z_1^2 - a_\beta^2(a_0^2 + a_\alpha^2 + a_\beta^2),} \\ a_0 = \sqrt{\rho W''(\rho)}, \quad a_s = \sqrt{\frac{4}{3}c_s^2} \\ a_\alpha = \frac{\eta}{\rho\sqrt{\alpha}}, \quad a_\beta = \sqrt{\frac{\gamma}{\beta\rho}}, \quad a_\gamma = \sqrt{\frac{\gamma}{\rho}p_1^2} \end{cases}$$

The different relaxation contributions scale as

$$a_{\alpha}^2 \sim \frac{1}{\alpha}, \quad a_{\beta}^2 \sim \frac{\gamma}{\beta \rho}, \quad a_s^2 \sim c_s^2$$

To keep the contributions at the same order of magnitude, we can take for example

$$\beta = \gamma \alpha, \quad c_s = \frac{1}{\sqrt{\alpha}}$$

Firas Dhaouadi

WONAPDE 2024