				_											
Reg. No	R	A	2	3	1	1	0	6	3	0	. 1	0	0	1	5

B.Tech/M.Tech(Integrated) DEGREE EXAMINATION, DECEMBER 2023

First Semester

21GNH101J - PHILOSOPHY OF ENGINEERING

(For the candidates admitted during the academic year 2022-2023 onwards)

N	-	b	-	
1.4	O	E.	œ	c

i. Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
 ii. Part - B and Part - C should be answered in answer booklet.

Time: 3 Hours Max. Marks: 75 Marks RI. CO $PART - A (20 \times 1 = 20 Marks)$ Answer all Ouestions 1. profession is discipline and of applying technical and scientific knowledge and utilizing natural laws and physical resources in order to design and implement materials (B) Mathematics (C) Engineering (D) Science Engineers apply the sciences of physics and mathematics to find suitable solutions to problems using (A) Philosophy (B) Methodology (C) Marketability (D) Flexibility 3. Engineering is considered a branch of applied 2 (A) Mathematics and science (B) Physics and mathematics (C) Imaginative and creative (D) Art and Technology The mechanism is the earliest known model of a mechanical computer in 3 history (A) Antikythera (B) Pneumatic (C) Phaistos (D) Cosmos Researchers assert that the introduction stage where design takes place determines 1 between and percent of the life cycle costs. (A) 40,60 (B) 50,50 (D) 70,90 (C)70.60describe concepts depending both on a particular domain and task (A) Application ontology (B) Reference ontology (C) Domain ontology (D) Foundational ontology is natural extension of PLM, and creates a truly full life cycle that takes 1 your obsolete or used products back into raw materials (A) Half loop cycle (B) Semi loop cycle (C) Open loop cycle (D) Closed loop cycle Ontology is sometimes referred as 3 (A) Reference (B) science of being (C) philosophy (D) Metaphysics

5 studocu

9.

(A) Engineering

(C) Mathematics

technology is the set of engineered creations put together

is creation based on the scientific knowledge put together, and 1

(B) Science

(D) Arts

10.	is the preferred modus operand of first principles is seen as the activity lead (A) Research (C) Experimental	i of this dimension, where the discovery ing to higher recognition (B) Scientific (D) Testing	1 1		2
11.	Engineering is creating new tools on knowledge (A) Practical	s, devices, and processes based (B) Scientific	1		1
		(D) Testing			
12.	as activity is related to the comaking new products.	nceptualization (pre-execution) stages of	1	1	2
	(A) Design	(B) Implementation			
	(C) Creation	(D) Thinking			
13	Hypothesis Testing method	MARY - A (20 × 1 = 20 Mar	1	1	2
15.	(A) Engineering	(B) Scientific			
	(C) ADDIE	(D) CDIO			
14.	The of the data the system of when designing a reliable and fault-tolerant	perates on is of the highest consideration architecture.	1	1	3
	(A) Security	(B) Integrity			
	(C) Consistency	(D) Reliability			
15.	An engineer identifies a specific need ? And then, he or she creates a s (A) Who, what, Why	need(s) because solution that meets the need. (B) Who,Why,What	1	1	1
	(C) What, Why, Who	(D) What, Who, Why			
16.	designers and training developers	ocess traditionally used by instructional	1	1	3
	(A) ADDIE	(B) CDIO			
	(C) Engineering				
17	In phase the project is review given. (A) Development	ed and revised according to any feedback (B) Requirement Analysis	1	1	1
	(C) Deployment	(D) Testing			
18	Good designers possible so building a list of as many solutions as poss (A) Research	lutions before opting to start a design, sible (B) Explore		1	3
	(C) Identify	(D) D			
10					2
19	Design is distinct from ana develop scientific initiatives.	lytic methodologies, which is crucial to			3
	(A) Developers	(B) Testers			
	(C) Thinkers	(D) Epistemology			
20		vith management of a wide range of fields		1	2
	(C) Planning	(D) Activity			
	PART - B (4 × 10 =	40 Marks)	Mar	ks BL	со
	Answer any 4 Q				
21	. What are the different stages of eng development of engineering with required	gineering history? Explain the historical diagrams.	10	2	2
22	Differentiate Reference ontology and app	lication ontology with an example.	10	. 3	2
23.	Compare the four dimensions of Engineer	ring.	10	4	2
Page 2 of 3				13DF	1-21GNH1

24.	With neat sketch explain the engineering design process.	10	3	2
25.	what are the essential engineer role to achieve the sustainable development.	10	4	2
26.	Sketch the STEAM pyramid diagram and explain the most significant aspect of STEAM?	10	4	1
PART - C (1 × 15 = 15 Marks) Answer any 1 Questions				со
	Answer any 1 Questions			
27.		15	4	1
	Answer any 1 Questions Classify the desired attributes of an Engineer with a minimum of ten key points. Explain the four stages of Product Life Cycle with neat sketch.	15 15	4 5	1

* * * * *

S studocu