Feedback — In-Video Quizzes Week 4

Help Center

You submitted this quiz on Sun 3 Feb 2013 10:24 AM PST. You got a score of 5.00 out of 5.00.

Question 1

4-3 Perfect Information Extensive Form: Strategies, BR, NE

What is the number of pure strategies that each player has:

Your Answer		Score	Explanation
a) Both have 2 strategies.			
b) Both have 4 strategies.	~	1.00	

o c) Player 1	has 2, and	player 2	has 4
---------------	------------	----------	-------

od) Player 1 has 3, and player 2 has 4.

Total 1.00 / 1.00

Question Explanation

(b) is true.

- Each player has two decision nodes and in each decision node there are two possible actions: Left or Right.
- Thus, players 1 and 2 both have 4 pure strategies:
 - Left, Left;
 - Left, Right;
 - Right, Left;
 - Right, Right;

Question 2

4-4 Subgame Perfection

How many subgames are in this game? Which is a subgame perfect equilibrium?

Your Answer		Score	Explanation
a) There are 1 subgames; (L), (U,D);			
b) There are 1 subgames; (L), (U,U);			
c) There are 3 subgames; (L), (U,D);	~	1.00	
od) There are 3 subgames; (L), (U,U).			
Total		1.00 / 1.00	

Question Explanation

(c) is true.

- There are 3 subgames: the original game and two single-player subgames (both nodes in which 2 has to decide between U and D).
- In the subgame following 1 choosing L, it is (uniquely) optimal for 2 to choose U; in the subgame such that 1 chooses R, it is (uniquely)

- 6/15/2016
- optimal for 2 to choose D.
- Then 1 prefers L leading to (2, 0) to R leading to (0, 2).

Question 3

4-5 Backward Induction

Consider a modified version of the entry game:

Which is the backward induction solution of this game? [Here (Enter,Fight), (Fight, Acc.)) indicates that player 1 chooses Enter at the first decision node and Fight at the second decision node, and 2 chooses Fight at the left node and Accommodate at the right node.]

Your Answer		Score	Explanation
a) (Enter, Acc.), (Fight, Fight).			
b) (Enter, Fight), (Acc., Acc.).			
c) (Stay out, Acc.), (Fight, Acc.).			
od) (Enter, Acc.), (Fight, Acc.).	✓	1.00	

Total 1.00 / 1.00

Question Explanation

(d) is true.

- (a) and (b) cannot be the answer:
 - If 1 plays Fight, 2 prefers to Fight;
 - If 1 plays Acc., 2 prefers to Acc.;
 - Thus, the backward induction solution requires 2 playing (Fight, Acc.)
- Since 2 plays (Fight, Acc.), 1 prefers to Acc. than Fight (payoff of Acc. is 3 and payoff of Fight is -2).
- If 1 enters, he knows that by backward induction he will receive 3. This is better than 0, the outcome of staying out.

Question 4

4-6 Subgame Perfect Application: Ultimatum Bargaining

Consider the modified game:

- Player A makes an offer x in 0, 1, ... 10 to player B;
- Player B can accept or reject;
- A gets 10-x and B gets x if accepted;
- If rejected, player A gets 0 and player B gets a punishment of -1.

Which is a possible outcome (payoff to players A,B) from backward induction?

Your Answer	Score	Explanation	
a) (9, 1).			
(b) (5, 5).			
o) (0, -1).			

● d) (10, 0).✓ 1.00Total1.00 / 1.00

Question Explanation

(d) is true.

- In the subgame, it is optimal for B to accept always since by accepting B guarantees a payoff of at least 0, which is larger than the payoff of rejecting (-1).
- (a) and (b) cannot be backward induction outcomes, because A could offer 0 and get a payoff of 10 (since B always accepts).
- (c) cannot be a backward induction outcome since it corresponds to the outcome when B rejects.
- Thus, (d) is the **only** backward induction outcome.

Question 5

4-8 Imperfect Information Extensive Form: Definition, Strategies

What is player 3's knowledge of player 1's choice:

Score	Explanation
✓ 1.00	
1.00 / 1	.00

Question Explanation

- c) is true.
- From the figure, after 1 makes a choice, 3 knows whether the choice is A or not, but cannot distinguish player 2's choice, whether it was L or R, since they lead to the same information set of player 3.