Введение в алгоритмы

@pvavilin

24 июля 2022 г.

Outline

Зачем нужны алгоритмы?

Задача

Подсчитать, какое количество сочетаний по три элементов входного массива даст в сумме 0.

Зачем нужны алгоритмы?

Результат наивной реализации

```
% python ./first_try.py 1K
2 вызовов для 1К данных: лучший результат равен
42.02
% python ./first_try.py 2K
2 вызовов для 2К данных: лучший результат равен
340.84
```

Бинарный поиск

```
def binary_search(
            lst:List[int], target:int
   ) -> int:
       start:int = 0
       end:int = len(lst) - 1
       while(start <= end):</pre>
            mid = (start + end) // 2
            if(lst[mid] > target):
                end = mid - 1
            elif(lst[mid] < target):</pre>
                 start = mid + 1
            else:
                return mid
Янлекс Практreturn -1
```

Быстрый ThreeSum

```
def counter(a: List[int]) -> int:
  # O(NlogN)
  arr:List[int] = sorted(a)
  N:int = len(arr)
  counter:int = 0
  for i in range(N):
    for j in range(i+1, N):
      # O(logN)
      if binary_search(
        arr, -(arr[i]+arr[j])
      ) > i:
        counter += 1
  return counter
```

Результат быстрого ThreeSum

```
% python fast_threesum.py 1K
2 вызовов для 1К данных: лучший результат равен
1.64
% python fast_threesum.py 2K
2 вызовов для 2К данных: лучший результат равен
7.36
% python fast_threesum.py 4K
2 вызовов для 4К данных: лучший результат равен
31.31
```

Алгоритмическая сложность

order of grow	th of time		10x factor	for a program that takes a few hours for input of size N		
description	function	2x factor		predicted time for 10N	predicted time for 10N on a 10x faster computer	
linear	N	2	10	a day	a few hours	
linearithmic	$N \log N$	2	10	a day	a few hours	
quadratic	N^2	4	100	a few weeks	a day	
cubic	N^3	8	1,000	several months	a few weeks	
exponential	2^N	2^N	2^{9N}	never	never	

Predictions on the basis of order-of-growth function

Нужны ли алгоритмы backend-разработчику?

Какие алгоритмы нужнее всего?

Зависит от задачи, области применения

- алгоритмы на строках нужны например биоинформатикам, для работы с последовательностями ДНК
- алгоритмы на деревьях
 - компиляторы
 - машинное обучение
 - построение маршрутов
 - парсинг сайтов

Структуры данных. Очередь

FIFO First In First Out

Структуры данных. Стек

LIFO Last In First Out

Яндекс Практикум

Структуры данных. Граф

```
graph = {
    'A': ['B', 'C'],
    'B': ['A', 'D', 'E'],
    'C': ['A', 'F'],
    'D': ['B'],
    'E': ['B', 'F'],
    'F': ['C', 'E']
}
```


Поиск вглубину. Depth-First Search

```
def dfs(graph, start, goal):
  stack = [(start, [start])]
  while stack:
    (v, p) = stack.pop()
    paths = set(qraph[v]) - set(p)
    for nxt in paths:
      if nxt == qoal:
        vield p + [nxt]
      else:
        stack.append((nxt, p+[nxt]))
print(list(dfs(graph, 'A', 'F')))
[['A', 'C', 'F'], ['A', 'B', 'E', 'F']]
```

Глупая сортировка / сортировка дурака

```
def sort_alg(1):
  while True:
    C = 0
    for i in range(len(1)-1):
      if 1[i] > 1[i+1]:
        1[i+1], 1[i] = 1[i], 1[i+1]
      else:
        c += 1
    if c == (len(1) - 1): return 1
print(sort alg([1, 3, 2, 0]))
[0, 1, 2, 3]
```

Результат глупой сортировки

■ Эффективность глупой сортировки: $\mathcal{O}(N^3)$

```
% ./fool_sort.py 1K
```

2 вызовов для 1K данных: лучший результат равен 0.12

% ./fool_sort.py 2K

2 вызовов для 2К данных: лучший результат равен

0.53

% ./fool_sort.py 4K

2 вызовов для 4K данных: лучший результат равен 2.15

Пузырьковая сортировка

[-1, 0, 1, 2, 3]

Результат пузырьковой сортировки

■ Эффективность пузырьковой сортировки: $\mathcal{O}(N^2)$

```
% ./bubble_sort.py 1K
```

- 2 вызовов для 1К данных: лучший результат равен 0 11
- % ./bubble_sort.py 2K
- 2 вызовов для 2К данных: лучший результат равен
- 0.45
- % ./bubble_sort.py 4K
- 2 вызовов для 4K данных: лучший результат равен 1.86

Сортировка слиянием (Merge Sort)

- Код
- мультик

Сортировка слиянием позволяет нам распараллелить процесс сортировки. Это очень эффективно на больших данных и широко используется в алгоритмах map/reduce.

Результат Merge Sort

■ Эффективность Merge Sort: O(NlogN)

```
% ./merge_sort.py 1K
```

2 вызовов для 1K данных: лучший результат равен 0.01

% ./merge_sort.py 4K

2 вызовов для 4K данных: лучший результат равен 0.03

% ./merge_sort.py 8K

2 вызовов для 8K данных: лучший результат равен 0.07

% ./merge_sort.py 32K

2 вызовов для 32K данных: лучший результат равен 0.31

Сравнение алгоритмов сортировки

Comparison sorts									
Name	Best	Average	Worst	Memory	Stable	Method	Other notes		
Quicksort	$n \log n$	$n \log n$	n^2	$\log n$	No	Partitioning	Quicksort is usually done in-place with $O(\log n)$ stack space. ^{[5][6]}		
Merge sort	$n \log n$	$n \log n$	$n \log n$	n	Yes	Merging	Highly parallelizable (up to $O(\log n)$ using the Three Hungarians' Algorithm). ^[7]		
In-place merge sort	-	-	$n \log^2 n$	1	Yes	Merging	Can be implemented as a stable sort based on stable in-place merging. ^[8]		
Introsort	$n \log n$	$n \log n$	$n \log n$	$\log n$	No	Partitioning & Selection	Used in several STL implementations.		
Heapsort	$n \log n$	$n \log n$	$n \log n$	1	No	Selection			
Insertion sort	n	n^2	n ²	1	Yes	Insertion	O(n+d), in the worst case over sequences that have d inversions.		
Block sort	n	$n \log n$	$n \log n$	1	Yes	Insertion & Merging	Combine a block-based $O(n)$ in-place merge algorithm ⁽⁹⁾ with a bottom-up merge sort.		
Timsort	n	$n \log n$	$n \log n$	n	Yes	Insertion & Merging	Makes n-1 comparisons when the data is already sorted or reverse sorted.		
Selection sort	n^2	n^2	n^2	1	No	Selection	Stable with $O(n)$ extra space, when using linked lists, or when made as a variant of Insertion Sort instead of swapping the two items. ^[10]		
Cubesort	п	$n \log n$	$n \log n$	n	Yes	Insertion	Makes n-1 comparisons when the data is already sorted or reverse sorted.		
Shellsort	$n \log n$	$n^{4/3}$	$n^{3/2}$	1	No	Insertion	Small code size.		
Bubble sort	п	n^2	n^2	1	Yes	Exchanging	Tiny code size.		
Exchange sort	n^2	n^2	n^2	1	Yes	Exchanging	Tiny code size.		
Tree sort	$n \log n$	$n \log n$	n log n (balanced)	п	Yes	Insertion	When using a self-balancing binary search tree.		
Cycle sort	n^2	n^2	n^2	1	No	Selection	In-place with theoretically optimal number of writes.		
Library sort	$n \log n$	$n \log n$	n^2	n	No	Insertion	Similar to a gapped insertion sort. It requires randomly permuting the input to warrant with-high-probability time bounds, which makes it not stable.		
Patience sorting	n	$n \log n$	$n \log n$	n	No	Insertion & Selection	Finds all the longest increasing subsequences in $O(n \log n)$.		
Smoothsort	n	$n \log n$	$n \log n$	1	No	Selection	An adaptive variant of heapsort based upon the Leonardo sequence rather than a traditional binary heap.		
Strand sort	n	n^2	n^2	n	Yes	Selection			
Tournament sort	$n \log n$	$n \log n$	$n \log n$	n[11]	No	Selection	Variation of Heapsort.		
Cocktail shaker sort	n	n^2	n^2	1	Yes	Exchanging	A variant of Bubblesort which deals well with small values at end of list		
Comb sort	$n \log n$	n^2	n^2	1	No	Exchanging	Faster than bubble sort on average.		
Gnome sort	n	n^2	n^2	1	Yes	Exchanging	Tiny code size.		

Умножение двух чисел

(1)

Умножение двоичных чисел

Алгоритм Каратцубы

```
x = 5678

y = 1234

a = 56; b = 78

c = 12; d = 34
```

Алгоритм Каратцубы

```
# step1
step1 = a * c
# step2
step2 = b * d
# step3
a_b = a + b
c d = c + d
step3 = a_b * c_d
# step4:
# step3 - step2 - step1
step4 = step3 - step2 - step1
```

Алгоритм Каратцубы

Умножение матриц

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \times \begin{bmatrix} E & F \\ G & H \end{bmatrix} = \begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix}$$
 (2)

Умножение матриц

Где ошибка в этом коде?

```
def mxm(A, X):
    n = len(A)  # A: n×m
    m = len(A[0])
    p = len(X[0]) # X: m×p
    B = [[0] * p] * n
    for i in range(n):
        for j in range(p):
            for k in range(m):
                 B[i][j] += A[i][k]*X[k][j]
    return B
```

Умножение матриц

```
def mxm(A, X):
    n = len(A)  # A: nxm
    m = len(A[0])
    p = len(X[0]) # X: mxp
    B = [[0] * p for _ in range(n)]
    for i in range(n):
        for j in range(p):
            for k in range(m):
                 B[i][j] += A[i][k]*X[k][j]
    return B
```

O(*n*³) Можно ли лучше?

Алгоритм Штрассена

$$\begin{bmatrix} 11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

$$\begin{bmatrix} 11 & 21 & 31 & 41 \\ 12 & 22 & 32 & 42 \\ 13 & 23 & 33 & 43 \\ 14 & 24 & 34 & 44 \end{bmatrix} = \begin{bmatrix} E & F \\ G & H \end{bmatrix}$$

Алгоритм Штрассена

```
P_{1} = A(F - H),
P_{2} = (A + B)H,
P_{3} = (C + D)E,
P_{4} = D(G - E),
P_{5} = (A + D)(E + H),
P_{6} = (B - D)(G + H),
P_{7} = (A - C)(E + F)
\begin{bmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{bmatrix} = \begin{bmatrix} P_{5} + P_{4} - P_{2} + P_{6} & P_{1} + P_{2} \\ P_{3} + P_{4} & P_{1} + P_{5} - P_{3} + P_{7} \end{bmatrix}
```

векторизация

■ Большинство операций процессора это SISD: Single Instruction Single Data

■ Процессор может поддерживать специальные регистры для SIMD: Single Instruction Multiple Data

Пример умножения матриц

Article

Логистическая регрессия

$$z = w_0 x + w_1 x + \dots + w_n x + b$$

 $a = \frac{1}{1 + e^{-z}}$

Котики!

<u>GitHub</u>

Tensorflow

Colab

Как изучать алгоритмы

- Яндекс.Практикум
- Coursera (Part I, Part II)
- Альманах алгоритмов: Т.Кормен, Ч.Лейзерсон, Р.Ривест, К.Штайн «Алгоритмы. Построение и анализ.»
- Порешать задачки. Timus

Вопросы-ответы

