→ Breast Cancer Classification

Predict whether a tumor is benign or malignant.

Identify correlations between the following 9 independent variables and the class of the tumor (benign or malignant).

- Clump Thickness
- Uniformity of Cell size
- · Uniformity of cell shape
- Marginal adhesion
- Single epithelial cell
- Bare Nuclei
- · Bland chromatin
- Normal nucleoli
- Mitosis

Importing the libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Importing the dataset

```
df = pd.read_csv('breast_cancer.csv')
X = df.iloc[:, 1:-1].values
y = df.iloc[:, -1].values
df.head()
```

df.info()

Sample code number	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	B Chrom
1000025	5	1	1	1	2	1	

RangeIndex: 683 entries, 0 to 682 Data columns (total 11 columns):

<class 'pandas.core.frame.DataFrame'>

#	Column	Non-Null Count	Dtype
0	Sample code number	683 non-null	int64
1	Clump Thickness	683 non-null	int64
2	Uniformity of Cell Size	683 non-null	int64
3	Uniformity of Cell Shape	683 non-null	int64
4	Marginal Adhesion	683 non-null	int64
5	Single Epithelial Cell Size	683 non-null	int64
6	Bare Nuclei	683 non-null	int64
7	Bland Chromatin	683 non-null	int64
8	Normal Nucleoli	683 non-null	int64
9	Mitoses	683 non-null	int64
10	Class	683 non-null	int64

dtypes: int64(11)
memory usage: 58.8 KB

Splitting the dataset into the Training set and Test set

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state =
```

▼ Training the Logistic Regression model on the Training set

```
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train)
```

```
LogisticRegression
LogisticRegression(random_state=0)
```

Predicting the Test set results

```
y_pred = classifier.predict(X_test)
```

Making the Confusion Matrix

Computing the accuracy with k-Fold Cross Validation

```
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10)
print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))

Accuracy: 96.87 %
Standard Deviation: 1.57 %
```

Colab paid products - Cancel contracts here

① 0s completed at 8:35 PM