Scene Recognition using Mid-level features from CNN

Ashudeep Singh Anant Raj Vishal Kumar Gupta

Convolutional Neural Networks

- A convolutional neural network is a type of feed-forward neural network where the individual neurons are tiled in such a way that they respond to overlapping regions in the visual field.
- Convolutional networks were inspired by biological processes and are variations of multilayer perceptrons which are designed to use minimal amounts of preprocessing.
- Widely used models for image recognition.

Why CNN?

Results on MNIST

Types of Classifiers	Test Error Percentage (%)	Reference
K-NN	0.52	Keysers et al. IEEE PAMI 2007
SVM	0.56	DeCoste, MLJ 2002
Neural Network (6-layer)	0.35	Ciresan et al. 2010
CNN	0.23	Ciresan et al. CVPR 2012

Results on ImageNet

Results: ILSVRC 2012

Scene Recognition

MIT Indoor Scene Recognition Dataset

- The database contains 67 Indoor categories, and a total of 15620 images.
- The number of images varies across categories, but there are at least 100 images per category.

Scene Recognition

15 Scene Dataset

- ~4500 Grayscale images
- Outdoor scene classes

Motivation for using Mid Level Features

- In human also at very first layer we perceive *edges* i.e. *low level features*. At the end we perceive the whole object as semantics.
- It is lesser known that what happens in middle layers of the human neural network.
- Mid-level features represent a mixture of low-level and high-level features which could be important to distinguish intra-class variations.
- Hence, using the middle level features from a trained Convolutional Neural Network, which is a model of human vision system, has become a trend in the recent times.

Visualizing the features

- The shallow level features represent edges.
- As we go deeper into the network, the filters tend to reflect semantic information also.

Pre-Trained ImageNet Features

- DeCAF A Deep Convolutional Activation Feature for Generic Visual Recognition
 - We use DeCAF to extract the middle layer pretrained CNN features on ImageNet.
- We experiment whether the features extracted from the activation of a deep convolutional network trained in a supervised manner on ImageNet Dataset can be re-purposed to novel generic tasks such as scene recognition.

Our approach

Use the following features out of the pretrained CNN:

- 5th layer features the last convolutional layer output, of size 6x6x256.
- 6th layer features: the 4096 dimensional feature after the first fully connected layer.
 - Divide the image into 4 quadrants to get the above features for the whole image as well as the 4 parts.
 - Bag of words of 5th level image features.
 - Spatial histogram

Results

Features used	Method	Accuracy
5 th layer	Normalized features SVM, Chi-squared kernel	68.23%
6 th layer	Normalized features SVM, Chi-squared kernel	60%
5 th layer, 3 layer spatial histogram		
	Bag-of-words, vocab-size=16	34.6%

Results on 37 classes out of 67 in CVPR MIT-67 Dataset

Further Work

- Explore the use of features at the 5th layer by modifying:
 - The normalization of features
 - Using a Bag of Words histogram approach.
- Use a reconfigurable part model: A model that is based on the assumption that the different parts of the scene can be reconfigured in certain ways.

Reference:

- Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." arXiv preprint arXiv:1311.2524 (2013).
- Donahue, Jeff, et al. "Decaf: A deep convolutional activation feature for generic visual recognition." arXiv preprint arXiv:1310.1531 (2013).
- Zeiler, Matthew D., and Rob Fergus. "Visualizing and Understanding Convolutional Neural Networks." arXiv preprint arXiv:1311.2901 (2013).
- Razavian, Ali Sharif, et al. "CNN Features off-the-shelf: an Astounding Baseline for Recognition." arXiv preprint arXiv:1403.6382 (2014).