DACON 아파트값 예측 리뷰

19.01.26

김도완

처음 데이터분석 대회를 참여하면서 배운점을 얘기해보려고 한다.

Dacon, 4th competition, 아파트 거래가격 예측 11월~ Kaggle, 타이타닉 생존자 예측 1월~

목차

- 1. Work Flow에 대한 구체화
- 2. 모델의 특성
- 3. 특성에 대한 생각
- 4. 앙상블의 위력
- 5. 노가다가 반이다.
- 6. 현재 진행

1. Work Flow (기존)

- 1. 데이터 수집 : 데이터를 불러온다
- 2. 데이터 탐색 : 데이터의 탐색, 점검, 분석
- 3. 정제 : 이상치 제거와 특성추출 (2번 Loop)
- 4. 준비: 모델 적용 가능한 형태로 변환, 학습/평가용 데이터 분할
- 5. 모델:모델 선택 및 학습
- 6. 평가 : 모델 평가 (5번 Loop)

1. Work Flow (구체화)

1. 데이터 수집

- 데이터가 매우 클때는 먼저 일부분만 떼어낸 표본으로 시작한다.
- train과 test데이터를 불러온 다음 합친다. (특성변환, nan값 제거 등을 한꺼번에)
- test에는 target값이 없기 때문에 EDA나 모델링시에는 다시 분리시켜 진행한다.

2. 데이터 분석 (EDA)과 이상치 제거 (Pre-Processing for Data Cleaning)

- 특성에 대한 충분한 이해가 있어야 특성추출이 수월해진다.
- 이상치(NaN값)은 제거 또는 특정값으로 변환한다.
- Nan값 자체가 의미있는 정보가 될 수 있다.

3. 특성추출 (Feature Engineering and Variable Selection)

- EDA를 바탕으로 target 값과 상관성있는 중요한 특성을 선정한다.
- 특성을 조합하거나 변환하여 새로운 특성을 만들어낸다.
- 덧셈, 뺄셈, 곱하기, 나누기, 빈도수, 평균값, lag값

1. Work Flow (구체화)

4. 모델 적용 가능한 형태로 변환

라벨링, 원핫인코딩, 스케일링, 로그변환 등

5. 모델 학습과 평가 (Model Selection, Optimization)

- 모델특성에 대한 이해와 하이퍼파라미터 튜닝에 대한 경험과 노하우가 필요하다.
- (1) 처음에는 다양한 단일모델의 성능을 비교해본다.
- (2) 교차검증으로 모델의 성능을 확인한다.
- (3) 하이퍼파라미터 튜닝을 통해 단일모델성능을 최대한 끌어낸다.
- (4) 최고성능을 내는 모델들을 가지고 앙상블을 시도한다.
- (5) 피쳐추가, 삭제, 조합을 다르게 하여 위의 과정을 재시도해본다.

[참고] 교차검증

Clip slide

Feature Engineering Part 2

Cross-Validation

KFOLD는 K값 즉 몇 번으로 나 눌건지 정하고 K번만큼 Validation을 수행

각 Validation Set이 겹치지 않 게 검증하게 되고 결과는 Average하여 성능을 평가

시간이 오래걸림

보통 5회 사용, 많으면 10정도

2. 모델의 특성

트리기반 모델

- (1) 스케일링 및 로그변환 필요없음.
- (2) 원핫인코딩할 필요없음. (문자열은 라벨링까지만)
- (3) 연속형 수치에 대해서는 범위를 지정하여 라벨링할때 성능이 높아질때가 있다.
- (4) 참고, 타겟값을 평당가격으로 넣는게 성능 높임. (5~10%증가)

선형모델, SVM, 신경망

- (1) 스케일링과 로그변환은 성능을 올리는데 도움을 준다. 로그변환은 특성의 히스토그램을 종모양으로 만드는 쉽고 효과적인 방법 (역은 exp변환) (정규분포와 비슷할때 최고의 성능을 낸다.)
- (2) 문자열이나 라벨링에 대해 원핫인코딩하면 성능 좋아짐. (하지만 차원이 증가하기 때문에 한계)

[참고] 히스토그램

2. 모델의 특성

처리속도

선형모델 > 신경망 > 랜덤포레스트, 아다부스트, 그레디언트부스트

메모리 사용량

선형모델 > 신경망 > 아다부스트, 그레디언트부스트 > 랜덤포레스트

대용량 데이터 적합도

선형모델 > 신경망 > 아다부스트, 그레디언트부스트 > 랜덤포레스트 > SVM

학습율 (오버피팅)

아다부스트, 그레디언트부스트, 랜덤포레스트, 신경망 > SVM > 선형모델

3. 특성 중요도

특성중요도는 아래와 같이 종합적으로 판단한다.

- 상관계수 히트맵
- 트리모델 특성값 확인
- 선형모델 계수값 확인

약한 특성	강한특성	애매함
복도구조	지역(구,동)	지하철, 학교
난방방식	거래년도	면적비율(전용/공급)
난방연료	전용면적, 공급면적	주차비율(주차수/세대수)
방수, 화장실수	세대수, 동수	층수
	건축년도	
	층수(저층)	

[참고] 상관계수값

transaction_real_nrice	1 000000
real_price_by_area	0.825508
supply_area	0.521845
exclusive_use_area	0.518922
parking_ratio	0.400807
city	0.399349
latitude	0.386292
room_count	0.383066
bathroom_count	0.331598
total_parking_capacity_in_site	0.310130
key	0.296135
apartment_building_count_in_sites	0.290689
transaction_year_month	0.285657
transaction_year	0.285481
total_household_count_in_sites	0.216658
tallest_building_in_sites	0.193310
_area_ratio	0.192681
apartment_id	0.160393
year_of_completion	0.132442
floor	0.129241
lowest_building_in_sites	0.113520
subway_count	0.078583
transaction_date1	0.011092
transaction_month	0.002283
apt_age_year	-0.004598
total_household_count_of_area_type	-0.030591
room_id	-0.071792
school_count	-0.089539
longitude	-0.389087
address_by_law	-0.394201

real price by area	1.000000
transaction_real_price	0.825508
city	0.546510
latitude	0.532850
apartment_building_count_in_sites	0.398329
key	0.348511
transaction_year_month	0.335251
transaction_year	0.335118
total_parking_capacity_in_site	0.321249
total_household_count_in_sites	0.307601
parking_ratio	0.191207
subway_count	0.115398
apartment_id	0.105852
apt_age_year	0.089271
supply_area	0.083655
exclusive_use_area	0.073694
bathroom_count	0.073111
tallest_building_in_sites	0.067870
year_of_completion	0.058277
floor	0.052648
room_count	0.047320
total_household_count_of_area_type	0.046956
transaction_date1	0.010256
area_ratio	0.009899
lowest_building_in_sites	0.006823
transaction_month	-0.005577
school_count	-0.056439
room_id	-0.136072
longitude	-0.533870
address_by_law	-0.540505

3-1. 시간은 매우 중요한 특성

타임 피쳐링

- (1) 년도, 월, 일을 별도 컬럼으로 둔다. -> 년도 12개, 월 12개, 일 3개 라벨링월, 일 시간값 자체를 특성으로 주는 것은 주기성을 확인하는데 효과적이다.
- (2) 년, 월, 일을 모두 합친다. -> 12*12*3= 432 라벨링 (성능 증가, 5~10%) 또는 년, 월4분기 -> 12*4 = 48라벨링
- (3) 시간에 따른 가격의 변화를 확인하기 위해서는 LAG특성 (성능 증가) 과거의 평균값, 과거의 변화율 특정지역의 전분기, 전년도 평균값, 변화율

Feature Engineering Part 1

Datetime and Coordinate

1. Periodicity

Day number in week, month, season, year second, minute, hour.

2. Time since

- Row-independent moment
 For example: since 00:00:00 UTC, 1 January 1970;
- Row-dependent important moment
 Number of days left until next holidays/ time passed after last holiday.
- 3. Difference between dates

datetime_feature_1 - datetime_feature_2

간단하게 Datetime Feature이 주어졌을 때 각 항목을 나눠서 Feature에 추가

기준점으로부터 기간이 얼마나 지났는지 TimeSeries 대회에서 많이 사용

Datetime끼리 빼서 Feature를 추가하기도 합니다.

Date	week day	daynumber_ since_year_2 014	is_holiday	days_till_ holidays	sales
01.01.14	5	0	True	0	1213
02.01.14	6	1	False	3	938
03.01.14	0	2	False	2	2448
04.01.14	1	3	False	1	1744
05.01.14	2	4	True	0	1732
06.01.14	3	5	False	9	1022

Date	week day	daynumber_ since_year_2 014	is_holiday	days_till_ holidays	sales
01.01.14	5	0	True	0	1213
02.01.14	6	1	False	3	938
03.01.14	0	2	False	2	2448
04.01.14	1	3	False	1	1744
05.01.14	2	4	True	0	1732
06.01.14	3	5	False	9	1022

user _id	registration _date	last_purchase_ date	last_call_d ate	date_diff	churn
14	10.02.2016	21.04.2016	26.04.2016	5	0
15	10.02.2016	03.06.2016	01.06.2016	-2	1
16	11.02.2016	11.01.2017	11.01.2017	1	1
20	12.02.2016	06.11.2016	08.02.2017	94	0

월별 주기성이 있는가? 없음. (80~85 한정)

일별 주기성이 있는가? 없음 (80~85 한정)

ı_date1	1	11	21
count	154.000000	154.000000	154.000000
mean	408.988102	409.762186	409.863645
std	103.533128	102.623948	105.966424
min	241.790322	237.662349	236.419958
25%	334.043309	336.989845	333.688443
50%	402.076889	403.086961	396.267199
75%	446.721768	444.225796	450.584054

3분기 최대값 횟수 1~10 59회 11~20 38회 21~30 57회

3-2. 지역 또한 매우 중요한 특성

서울, 부산 합쳐서 총 41개의 지역구가 있으며 370개 이상의 법정동이 있음. 지역(위치)간의 가격차이를 구분할 수 있는 특성은? 370개를 모두 인코딩할 수 없다.

동일평형 84~85 -> 지역구 구분 (부산동래구 / 서울종로구) 지역구마다 값의 차이가 있음.

동일평형 84~85 -> 동일지역구 -> 법정동 구분 (명륜동/복천동) 같은 지역구내에서도 법정동마다 값의 차이가 있음.

동일평형 84~85 -> 동일법정동 -> 아파트 구분

아파트 신축/구축, 세대수, 층수, 지하철/학교위치 등 세부적인 차이

4. 앙상블의 위력

조금이라도 성능을 높이고 싶을때는 여러 개 모델을 만들어서 평균을 내라.

(신경망 조금씩 다르게 꾸민 다음 평균) (6천6백, 6천2백, 6천4백, 6천7백 평균 = 5천7백)

투표기반분류: 여러 분류기의 값을 모아 다수결 투표 또는 평균배강: 훈련세트를 무작위로 구성하여 동일한 분류기로 각기 다르게 학습시킴.

부스팅: 앞의 모델을 보완해나가면서 일련의 예측기를 학습시킴.

스태킹: 투표기반분류의 개선판

참고: https://www.slideshare.net/jeanbaptiste.dumont/the-ai-rush-121047435?next_slideshow=1

[참고] 투표기반분류

Figure 7-2. Hard voting classifier predictions

[참고] 배깅

Training Machine Learning Algorithms by **Bagging**

[참고] 부스팅

Boosting
Training Machine Learning Algorithms
via AdaBoost

[참고] 스태킹

Stacking

5. 노가다가 반이다.

■ EDA ■ 피쳐조합,선택 ■ 모델값 튜닝 ■ 모델선택

여러 피쳐조합과 다양한 모델들을 시험해야함. 모델자체의 파라미터값을 변경해가며 성능을 높임. 이런 노가다작업들을 자동화해야한다.

6. 현재 진행

- 1. Dacon, 4th competition, 아파트 거래가격 , 다음기회를
- 2. Kaggle, 타이타닉 생존자, 티셔츠, 공부차원
- 3. 캐글 커널 공부, 대회 꾸준히 참여
- 4. 여기서 공부한 내용을 본래의 목적인 주가예측에 적용하자. (main)

7. 결과

₩ DA	CON	Home Competition Winne	erCode Community About us Q 축
19	quatroappa	58,663,902.50794	2018-12-25 10:31:04
20	SachinKarmani	59,290,055.68309	2019-01-16 03:04:01
21	WJteam	59,407,441.64173	2019-01-24 10:05:42
22	호다닥	60,280,065.44538	2019-01-30 18:11:16
23	hongse	60,459,353.90819	2019-01-22 17:53:15
24	namu2018	60,569,998.92446	2019-01-31 17:53:07
25	claudkim(claudkim)	60,953,046.83016	2019-01-30 18:30:37
26	TAS	61,512,495.30823	2019-01-31 22:03:43
27	Jordana	61,842,849.42295	2019-01-15 18:26:07
28	윤동균	62,411,724.97471	2019-01-31 09:30:54
29	aiodia	62,859,769.29302	2019-01-02 07:47:03
30	김규진	63,515,571.99073	2018-12-10 18:50:12
31	TooDock_Lab	64,369,254.50081	2018-12-14 13:00:14
32	jhp	65,626,040.80520	2018-11-21 15:27:44

31 등 / 143 팀

rmse: 6,400만원

(순위권이 약 4,000 ~ 5,000만원)