J09Q.1 - Dressed States and Rabi Oscillation

Problem

Rabi oscillation occurs in a quantum system when two states couple to an external field. Generally, the phenomenon can be understood from a semi-classical approach, which is quantum states + classical field. We are going to look at the problem by using a quantized field.

Considering a two-level spin system coupled to magnetic fields, the interaction Hamiltonian can be written as $H_1 = \gamma \vec{\sigma} \cdot \vec{B}$. Here γ is the coupling strength, $\vec{\sigma}$ represents Pauli matrices, and \vec{B} is the magnetic field. The spin states are $|\uparrow\rangle$ and $|\downarrow\rangle$. Assuming \vec{B} is composed of a DC longitudinal field $B - z\vec{z}$ and an AC transverse field $\vec{B}_T = B_x \vec{x} + B_y \vec{y}$, the interaction Hamiltonian is $H_1 = \gamma \sigma_z B_z + \gamma \vec{\sigma}_T \cdot \vec{B}_T$. To simplify the problem, we say that \vec{B}_T is a rotating field, and its classical form is $\vec{B}_T = B_r \cos \omega t \vec{x} + B_r \sim \omega t \vec{y}$ with frequency $\omega = 2\gamma B_z/\hbar$.

Now we want to use a quantized magnetic field, so \vec{B}_T is an operator, and $\vec{B}_T = B_r[(a+a^{\dagger})\vec{x} + i(a-a^{\dagger})\vec{y}]/2$, where a and a^{\dagger} are the ladder operators of photon state $|n\rangle$ of the magnetic field. Here, the photon energy is $\hbar\omega = 2\gamma B_z$. If there is no coupling between the transverse field and the spin, we find state $|\uparrow\rangle|n\rangle$ and state $|\downarrow\rangle|n+1\rangle$ are degenerate. The degeneracy is lifted into orthogonal dressed states when the coupling of the transverse field is present.

- a) Please use the full Hamiltonian (including the photon energy) to fin the energies of the dressed states as functions of B_r .
- b) Assuming at t = 0 the probability of finding the system in the state $|\uparrow\rangle|n\rangle$ is 1 and in $|\downarrow\rangle|n+1\rangle$ is 0, how will the probabilities of the two states evolve (Rabi oscillation) for t > 0?