习题 3.4

- 1. 验证:
 - (1) 函数 $y = \ln \frac{1}{1 + x}$ 满足关系式 $x \frac{dy}{dx} + 1 = e^y$;

(2) 函数
$$y = \frac{x^2}{2} + \frac{x}{2}\sqrt{x^2 + 1} + \ln \sqrt{x + \sqrt{x^2 + 1}}$$
 满足关系式 $2y = xy' + \ln y'$.

- 2. 求由下列方程所确定的隐函数 y = y(x) 的导数 $\frac{dy}{dx}$:
 - (1) $v^2 2xv + 6 = 0$:
 - (2) $x^3 + y^3 3axy = 0 \quad (a > 0)$;
 - (3) $y = 1 + xe^y$;
 - (4) $y \sin x \cos(x y) = 0$.
- 3. 求下列方程所确定的隐函数 y = y(x) 在点 x = 0 处的导数:
 - (1) $\sin(xy) + \ln(y x) = x$;
 - (2) $e^{xy} + \ln \frac{y}{x+1} = 0$;
 - (3) $e^{2x+y} \cos(xy) = e^{-1}$.
- 4. 设 y = f(x) 是由方程 $xy + \ln y = 1$ 所确定的隐函数.
 - (1) $\bar{x} f'(x)$; (2) $\bar{x} g(x) = f(\ln x)e^{f(x)}$, $\bar{x} g'(1)$.
- 5. 求曲线 $x^3 + y^3 3xy = 0$ 在点 $(\sqrt[3]{2}, \sqrt[3]{4})$ 处的切线方程和法线方程.
- 6. 求证: 星形线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}} (a > 0)$ 在两坐标轴间的切线长度为常数.
- 7. 求下列参数方程表示的函数的导数 $\frac{dy}{dx}$ 和 $\frac{dx}{dy}$:

(1)
$$\begin{cases} x = 1 - t^2, \\ y = t - t^3; \end{cases}$$
 (2)
$$\begin{cases} x = \frac{3at}{1 + t^2}; \\ y = \frac{3at^2}{1 + t^2}, \end{cases} \not\equiv \theta > 0.$$

- 8. 求下列参数方程表示的函数在指定点处的导数 $\frac{\mathrm{d}y}{1}$:

 - (1) $\begin{cases} x = \ln(1+t^2), & \text{在 } t = 1 \text{处}; \\ y = 1 \arctan t, & \text{ } \end{cases}$ (2) $\begin{cases} x = a(\cos t + t \sin t), & \text{ E } t = \frac{\pi}{4} \text{ D } t = -\frac{\pi}{4} \text{ D } t. \end{cases}$

10. 验证下列参数方程表示的函数满足对应的关系式:

(1)
$$\begin{cases} x = \sqrt{1+t}, & \text{if } \mathbb{Z} \ yy' + x = 0; \end{cases} (2) \begin{cases} x = \frac{1+\ln t}{t^2}, & \text{if } \mathbb{Z} \ yy' = 2xy'^2 + 1. \end{cases}$$
$$y = \frac{3+2\ln t}{t}$$

- 11. 求下列极坐标方程表示的曲线在指定点处的切线方程和法线方程:
 - (1) $r = \cos\theta + \sin\theta$ 对应于 $\theta = \frac{\pi}{4}$ 处; (2) $r = a\sin 2\theta (a > 0)$ 对应于 $\theta = \frac{\pi}{4}$ 处.