Intro to Data Science

Connor Watson

Outline

- I. Define Data Science
- II. Data
 - A. Big Data and Distributed Computing
- III. Visualization
- IV. Machine Learning
 - A. Supervised
 - B. Unsupervised

Data Science

- Data Science (DS) The study of using data efficiently allowing humans/machines to make informed decisions.
 - Businesses make important product decisions.
 - Computers learn their environments.

Applications

- Finance Using stock data to buy/sell
- Gaming Determine which characters are least popular
- Recommendation Systems
- Chatbots
- Healthcare Predicting diagnosis

Data

- Structured Data Table based information
 - Rows observations
 - Columns features / attributes

	First	Last	Age
0	Jane	Doe	23
1	Terell	Smith	24
2	Elizabeth	Chen	22
3	Nishant	Patel	25

Stats Review

- grades = [99, 75, 77, 57, 58, 59, 51, 68, 69, 60, 90, 92, 50, 51, 54, 53, 52, 53, 57, 50, 50, 57, 96, 98, 99, 100, 87, 94, 97, 50, 50]
- Average grade is a 70 (C) ...decent
- Median grade is a 59 (F) ...failing
 - Average is sensitive to outliers (weighted)
 - Median shows measure of center/distribution
 - \circ At least 50% of students failed \rightarrow 17/31 students failed

5 Number Summary

- Max = 100
- Q3 = 87
- Q2 (Median) = 59
- Q1 = 52
- Min = 50

Big Data

- How "big" is Big Data?
 - o MB? GB? TB?
- Companies have LOTS of data
- How do we efficiently handle it all?

Big Data

Big Data

Distributed Computing

- NJIT Kong
 - https://ist.njit.edu/high-performance-computing-kong/
- Worker nodes handle small tasks
- Head node combines result

Scatter Plot

Bar Chart

Learning

- Supervised
 - Hyperplane
 - o SVM
 - Linear Regression
- Unsupervised
 - K Nearest Means

Supervised Learning

- Knowledge about the data is known...
 - Can we classify new data points?

Classification - Hyperplane

- Draw a line between two classes
- Left side is class 1 (dog)
- Right side is class 2 (cat)

Classification - Support Vector Machine

- Introduce a Decision Boundary
- Separates points based on their distance to the hyperplane

Regression - Predicting Continuous Values

- Given number of plays:
 - o Can we predict revenue?
- x axis: explanatory
 - independent
- y axis: response
 - dependent

Unsupervised Learning

- Knowledge about the data is NOT known...
 - Can we cluster data points to learn their behavior?

k Means Clustering

- Pick k random centroids
- Find the points closest to them
- Recalculate mean (new centroid)
- Mean is outlier sensitive

k Means Clustering

- Pick k random centroids
- Find the points closest to them
- Recalculate mean (new centroid)
- Mean is outlier sensitive

How Does This Help You?

- Build an interactive data viz tool!
 - React, D3.js, Dash by plotly
- Try a Kaggle competition!
 - Classification problems
- Clean a data set and present some statistics!

NJIT Data Science

https://join.slack.com/t/njitdatascienceclub/shared_invite/enQtNzEzMzc4Mjk1ODQ 2LWI1ZWQ5NjcyZjJIYTBhM2EyYmY2ODQzZjQ3MmM0NzFhNWY3YTYzNzMyYz YwNDc5ZGNjYmlyOGY3NWVjMGQ1OTc

- Workshops (like this one)
- Mini lectures
- Industry sponsors

