Hierarchical Clustering

HIERACHICAL CLUSTERING

• Agglomerative and divisive clustering on the data set {a, b, c, d, e}

AGGLOMERATIVE CLUSTERING

- The **agglomerative clustering** is the most common type of hierarchical clustering used to group objects in clusters based on their similarity.
- The algorithm starts by treating each object as a singleton cluster.
- Next, pairs of clusters are successively merged until all clusters have been merged into one big cluster containing all objects.
- The result is a tree-based representation of the objects, named *dendrogram*

AGGLOMERATIVE CLUSTERING

- 1. Convert object attributes to distance matrix
- 2. Set each object as a cluster (thus if we have N objects, we will have N clusters at the beginning)
- 3. Repeat until number of cluster is one (or known # of clusters)
 - a. Merge two closest clusters
 - b. Update distance matrix

DENDOGRAM

STARTING SITUATION

 Start with clusters of individual points and a distance/proximity matrix

Find the clusters using single link technique. Use Euclidean distance, and draw the dendrogram.

	X	Y
P1	0.40	0.53
P2	0.22	0.38
P3	0.35	0.32
P4	0.26	0.19
P5	0.08	0.41
P6	0.45	0.30

	X	Y
P1	0.40	0.53
P2	0.22	0.38
P3	0.35	0.32
P4	0.26	0.19
P5	0.08	0.41
P6	0.45	0.30

Janliary E

Calculate Euclidean distance, create the distance matrix.

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance $(P1,P2)$ = $\sqrt{(0.40 - 0.22)^2 + (0.53 - 0.38)^2}$
 $(0.40,0.53), (0.22,0.38) = \sqrt{(0.18)^2 + (0.15)^2}$
= $\sqrt{0.0324 + 0.0225}$
= $\sqrt{0.0549}$
= 0.23

$d(p_1, p_2) = \sqrt{(0.22 - 0.40)^2 + (0.38 - 0.5)^2}$	Y	х	Sample No.
= 0.23	0.53	0.40	P1
$d(p_1, p_3) = \sqrt{(0.35 - 0.40)^2 + (0.32 - 0.5)^2}$	0.38	0.22	P2
	0.32	0.35	Р3
= 0.22	0.19	0.26	P4
$d(p_2, p_3) = \sqrt{(0.35 - 0.22)^2 + (0.32 - 0.3)^2}$	0.41	0.08	P5
- 0 1 <i>4</i>	0.30	0.45	P6

The distance matrix is

	P1	P2	P3	P4	P5	P6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

The distance matrix is

	P1	P2	P3	P4	P5	P6
P1	0					
P2	0.24	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

Jar

The distance matrix is

	P1	P2	P3	P4	P5	P6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

- To update the distance matrix MIN[dist(P3,P6),P1)]
- MIN(dist(P3,P1), (P6,P1))

```
= \min[(0.22,0.23)]
```

$$= 0.22$$

- To update the distance matrix MIN[dist(P3,P6),P2)]
- MIN(dist(P3,P2), (P6,P2))

```
= \min[(0.15, 0.25)]
```

$$= 0.15$$

- To update the distance matrix MIN[dist(P3,P6),P4)]
- MIN(dist(P3,P4), (P6,P4))

```
= \min[(0.15,0.22)]
```

$$= 0.15$$

- To update the distance matrix MIN[dist(P3,P6),P5)]
- MIN(dist(P3,P5), (P6,P5))

```
= \min[(0.28, 0.39)]
```

$$= 0.28$$

The updated distance matrix for cluster P3, P6

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.23	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

٠

The distance matrix is

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.23	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

The distance matrix fro cluster P2, P5

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.23	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

- To update the distance matrix MIN[dist(P2,P5),P1)]
- MIN[dist(P2,P1), (P5,P1)]

```
= \min[(0.23,0.34)]
```

= 0.23

- To update the distance matrix MIN[dist(P2,P5),(P3,P6)]
- MIN[dist(P2,(P3,P6)), (P5,(P3,P6))]

```
= \min[(0.15, 0.28)]
```

= 0.15

- To update the distance matrix MIN[dist(P2,P5),P4)]
- MIN[dist(P2,P4), (P5,P4)]

 $= \min[(0.20,0.29)]$

= 0.20

The updated distance matrix for cluster P2,P5

	P1	P2,P5	P3,P6	P4
P1	0			
P2,P5	0.23	0		
P3,P6	0.22	0.15	0	
P4	0.37	0.20	0.15	0

The distance matrix is

	P1	P2,P5	P3,P6	P4
P1	0			
P2,P5	0.23	0		
P3,P6	0.22	0.15	0	
P4	0.37	0.20	0.15	0

- To update the distance matrix MIN[dist((P2,P5),(P3,P6)),P1]
- MIN[dist((P2,P5),P1), ((P3,P6),P1)]

```
= \min[(0.23,0.22)]
```

$$= 0.22$$

- To update the distance matrix MIN[dist((P2,P5),(P3,P6)),P4]
- MIN[dist((P2,P5),P4), ((P3,P6),P4)]
 - $= \min[(0.20,0.15)]$
 - = 0.15

The updated distance matrix for cluster P2,P5,P3,P6

	P1	P2,P5,P3,P6	P4
P1	0		
P2,P5,P3,P6	0.22	0	
P4	0.37	0.15	0

The distance matrix is

	P1	P2,P5,P3,P6	P4
P1	0		
P2,P5,P3,P6	0.22	0	
P4	0.37	0.15	0

- To update the distance matrix MIN[dist(P2,P5,P3,P6),P4]
- MIN[dist((P2,P5,P3,P6),P1), (P4,P1)]

 $= \min[(0.22,0.37)]$

= 0.22

The updated distance matrix for cluster P2,P5,P3,P6,P4

	P1	P2,P5,P3,P6,P4
P1	0	
P2,P5,P3,P6,P4	0.22	0

DETERMINING CLUSTERS

INTER CLUSTER DISTANCE MEASURES

- Single Link
- Average Link
- Complete Link
- Distance between centroids

INTERMEDIATE SITUATION

• We want to merge the two closest clusters (C2 and C5) and update the distance matrix.

SINGLE LINK

• Smallest distance between an element in one cluster and an element in the other

$$D(c_i, c_j) = \min_{x \in c_i, y \in c_j} D(x, y)$$

COMPLETE LINK

• Largest distance between an element in one cluster and an element in the other

$$D(c_i, c_j) = \max_{x \in c_i, y \in c_j} D(x, y)$$

AVERAGE LINK

• Avg distance between an element in one cluster and an element in the other

$$D(c_i, c_j) = \underset{x \in c_i, y \in c_j}{avg} D(x, y)$$

DISTANCE BETWEEN CENTROIDS

• Distance between the centroids of two clusters

$$d_{AB} = ((1-1.5)^2 + (1-1.5)^{2)1/2} = 0.707$$

Euclidean distance

	X1	X2	
A	1	1	
В	1.5	1.5	
\mathbf{C}	5	5	
D	3	4	
E	4	4	
F	3	3.5	

Data matrix

Dist	A	В	\mathbf{C}	D	E	\mathbf{F}
A	0.00	0.71	5.66	3.61	4.24	3.20
В	0.71	0.00	4.95	2.92	3.54	2.50
\mathbf{C}	5.66	4.95	0.00	2.24	1.41	2.50
D	3.61	2.92	2.24	0.00	1.00	0.50
\mathbf{E}	4.24	3.54	1.41	1.00	0.00	1.12
F	3.20	2.50	2.50	0.50	1.12	0.00

Dist	A	В	C	D	E	F
A	0.00	0.71	5.66	3.61	4.24	3.20
В	0.71	0.00	4.95	2.92	3.54	2.50
\mathbf{C}	5.66	4.95	0.00	2.24	1.41	2.50
D	3.61	2.92	2.24	0.00	1.00	0.50
E	4.24	3.54	1.41	1.00	0.00	1.12
F	3.20	2.50	2.50	0.50	1.12	0.00

Min Distance – Single Linkage

$$D_{(D,F)\to A} = min(d_{DA}, d_{FA}) = min(3.61, 3.20) = 3.20$$

$$D_{(D,F)\to B} = min(d_{DB}, d_{FB}) = min(2.92, 2.50) = 2.50$$

$$D_{(D,F)\to C} = min(d_{DC}, d_{FC}) = min(2.24, 2.50) = 2.24$$

$$D_{(D,F)\to E} = min(d_{DE}, d_{FE}) = min(1.00, 1.12) = 1.00$$

Dist	A	В	C	D,F	E	Dis
A	0.00	0.71	5.66	?	4.24	A
В	0.71	0.00	4.95	?	3.54	В
\mathbf{C}	5.66	4.95	0.00	?	1.41	\longrightarrow C
D,F	?	?	?	0.00	?	D,F
\mathbf{E}	4.24	3.54	1.41	?	0.00	E
		-	- <u>- </u>	-		•

Dist	A	В	С	D,F	E
A	0.00	0.71	5.66	3.20	4.24
В	0.71	0.00	4.95	2.50	3.54
\mathbf{C}	5.66	4.95	0.00	2.24	1.41
D,F	3.20	2.50	2.24	0.00	1.00
E	4.24	3.54	1.41	1.00	0.00

Dist	A	В	C	D,F	E
A	0.00	0.71	5.66	3.20	4.24
В	0.71	0.00	4.95	2.50	3.54
\mathbf{C}	5.66	4.95	0.00	2.24	1.41
D,F	3.20	2.50	2.24	0.00	1.00
\mathbf{E}	4.24	3.54	1.41	1.00	0.00

$$D_{(A,B)\to C} = min(d_{CA}, d_{CB}) = min(5.66, 4.95) = 4.95$$

$$D_{(A,B)\to(D,F)} = min(d_{DA}, d_{DB}, d_{FA}, d_{FB})$$

= min(3.61, 2.92, 3.20, 2.50) = 2.50

$$D_{(A,B)\to E} = min(d_{AE}, d_{BE}) = min(4.24, 3.54) = 3.54$$

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge cluster D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge cluster E and (D, F) into ((D, F), E) at distance 1.00
- 5. We merge cluster ((D, F), E) and C into (((D, F), E), C) at distance 1.41
- 6. We merge cluster (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 2.50
- 7. The last cluster contain all the objects, thus conclude the computation