

Misura delle caratteristiche di stabilizzazione di regolatori lineari (a dissipazione) di tipo serie

≥ Elementi di teoria di base:

Formula della stabilizzazione

$$\Delta V_{o} = S_{v} \Delta V_{i} + R_{o} \Delta I_{o} + S_{T} \Delta T$$

- In questa esperienza di laboratorio si dovranno stimare S_v e R_o
- Regolatori in prova
 - 1. Stabilizzatore a componenti discreti (BJT di potenza + diodo zener)
 - 2. Stabilizzatore di tipo integrato a 3 terminali, LM7805

SCHEMI ELETTRICI

Circuito A

Per la piedinatura del diodo zener (Dz) e transistor (Q1) vedere i datasheet allegati

Valori nominali

$$V_{z} = 8.2 \text{v, } I_{z} = 20 \text{mA}$$

$$V_{o} = V_{z} \cdot V_{be} = 8.2 \cdot 0.6 = 7.6 \text{V}$$

$$V_{ce} = 4 \text{V}$$

$$V_i = V_{ce} + V_o = 11.6V$$

Circuito B

$$V_0 = V_0 \left(1 + \frac{R_2}{R_1}\right) = 7.26 V$$

Misure da effettuare sui 2 circuiti

- 1. Fissare la condizione di lavoro nominale con $R_L = 94\Omega$. Misurare le tensioni effettive V_i e V_o ed i valori di resistenza, osservando quindi lo scostamento dai valori nominali V_{in} e V_{on} .
- 2. Calcolare S_v nelle seguenti condizioni R_L = $(47\Omega+47\Omega)$ = 94Ω $V_{in} \pm 2V$ ovvero V_{in}^+ =13.6V; V_{in}^- =9.6V $I_O \cong cost$

Circuiti	Vi	V _o	$\Delta V_i = V_i - V_{in}$	$\Delta V_{o} = V_{o} - V_{on}$	Sv
A	V _{in} ±2V				
В	V _{in} ±2V				

3. Calcolare Ro nelle seguenti condizioni

$$I_{on}=V_{on}/94\Omega$$
; $V_{in}=11.6V$

R_L	$I_o = V_o/R_L$	V _o	$\Delta \mathbf{I}_{L} = \mathbf{I}_{on} - \mathbf{I}_{o}$	$\Delta V_{\rm o} = V_{\rm o} - V_{\rm on}$	R _o
27Ω					
47Ω					

4. Calcolare il rendimento del regolatore in condizioni nominali

$$\eta = \frac{P_o}{P_i} = \frac{V_{on}I_o}{V_{in}I_{in}} = \frac{V_{on}^2/R_L(94\Omega)}{V_{in}I_{in}}$$

Nome files datasheets allegati:

- Datasheets.pdf
- LM7805.pdf