# المملكة المغربية ROYAUME DU MAROC





معهد الحسن الثاني للزراعة والبيطرة

# Année universitaire 2021-2022 DEUXIEME ANNEE CYCLE D'INGENIEUR EN SCIENCES GEOMATIQUES ET INGENIERIE TOPOGRAPHIQIQUE

DU 23/05/2022 au 29/05/2022

# Stage de professionnalisme PROJET DE LA GÉODÉSIE

# Présenté et soutenu publiquement par

**BOUJDI SOUKAINA BOUNOUA ISMAIL BOUFERDOUSS NADA BOURRIZ MOHAMED MOUSSAOUI ASMAA** 

# **JURY**

M. MOHA EL AYACHI M. REDA YAACOUBI MME. LOUBNA MANSOURI (Encadrante) IAV HASSAN II

(Encadrant) IAV HASSAN II

(Encadrant) IAV HASSAN II

### **REMERCIEMENT:**

Nous tenons tout d'abord à remercier tout le corps pédagogique de l'école des sciences géomatiques et ingénieries topographiques pour leurs encadrements dans le développement et l'acquisition efficiente des notions théoriques enseignées durant notre cursus jusqu'à l'effectuation du stage du professionnalisme.

À ce titre, nous tenons à remercier particulièrement Mr.REDA YAAOUBI et Mr.MOHA EL AYACHI pour l'attention qu'elle nous ont apporté pendant la semaine de la géodésie. Grâce à leur expertise partagé au quotidien, on a pu s'accomplir totalement dans nos missions. Il fut d'une aide précieuse dans les moments les plus délicats.

Nous n'oublions pas non plus les chauffeurs des véhicules pour leurs gentillesses, leurs serviabilités et leurs engagements avec les étudiants.

Merci également à tous les membres de notre groupe pour leur persévérance et leur sens de responsabilité.

Merci à nos camarades de la classe pour l'effort fourni et la coordination éternelle qui ont permis d'atteindre les objectifs de ce chantier mémorable.

Toutes ces personnes ont contribué, par leur disponibilité et leur bonne humeur, à rendre cette période enrichissante et motivante.

# Table des matières

#### Partie1 : Rapport de la géodésie

| Rapp  | ort de la | Géodésie:                                                                | 6  |
|-------|-----------|--------------------------------------------------------------------------|----|
| I.    | Introdu   | oction Générale :                                                        | 6  |
| II.   | AV        | ANT PROJET :                                                             | 6  |
| 1.    | Obje      | ectif:                                                                   | 6  |
| 2.    | Zon       | e D'étude :                                                              | 7  |
| 3.    | Plan      | ification du projet :                                                    | 8  |
| 4.    | Con       | traintes rencontrées :                                                   | 8  |
| 5.    | Les       | livrables :                                                              | 8  |
| III.  | Exé       | cution des sorties de reconnaissance :                                   | 9  |
| 1.    | Obje      | ectif et planification :                                                 | 9  |
| IV.   | Filt      | rage, Report et répartition des nouveaux points:                         | 20 |
| 1.    | Les       | points adoptés :                                                         |    |
|       | 1.1.      | Pour le système ITRF05 :                                                 | 20 |
|       | 1.2.      | Pour le système NGM :                                                    | 21 |
| 2.    | Crite     | ère de la densification:                                                 | 21 |
| 3.    | Mat       | érialisation :                                                           | 22 |
|       | 3.1.      | Programme d'observation :                                                | 24 |
|       | 3.2.      | Transfert, importation et conversion des fichiers :                      | 24 |
|       | 3.3.      | Traitement avec les hauteurs ellipsoïdales :                             |    |
| 4.    | Miss      | sion GNSS :                                                              | 27 |
|       | 4.1.      | Objectif:                                                                | 27 |
|       | 4.2.      | Mode opératoire :                                                        | 27 |
|       | 4.3.      | Planification et configuration :                                         | 28 |
|       | 4.4.      | Traitement de lignes de bases :                                          | 29 |
|       | 4.5.      | Fermeture des boucles :                                                  |    |
|       | 4.6.      | Ajustement des observations sans géoïde :                                | 31 |
|       | 4.7.      | Ajustement des observations avec géoïde :                                |    |
| Parti | e2 : Rap  | port nivellement                                                         |    |
| v.    |           | iction Générale :                                                        |    |
| VI.   |           | ectifs :                                                                 |    |
| VII.  |           | ellement géométrique direct de précision pour le contrôle de stabilité : |    |
| 1.    |           | ojectif                                                                  |    |
| 2.    |           | RTIE DE RECONNAISSANCE :                                                 |    |
|       | 2.1.      | Planification de la sortie de reconnaissance :                           |    |
|       | 2.2.      | Répartition du tronçon :                                                 |    |
| 3.    |           | cution de la mission de nivellement :                                    |    |
| ٠.    | 3.1.      | Matériels :                                                              |    |
|       | 3.2.      | Mode opératoire :                                                        |    |
|       | 3.3.      | Les vérifications à effectuer :                                          |    |
| 4.    |           | ultats et leurs analyses :                                               |    |
|       | 4.1.      | Cheminement Aller:                                                       |    |
|       | 4.2.      | Chemin retour :                                                          |    |
|       | 4.3.      | Calcul des précisions et contrôle des résultats :                        |    |
|       | 4.4.      | Analyse des résultats:                                                   |    |
|       |           |                                                                          |    |

| IV    | C    | anelusian                                                             | 50 |
|-------|------|-----------------------------------------------------------------------|----|
| VIII. |      | Ajustement final du réseau de densification (planimétrie +altimétrie) | 49 |
|       | 5.2. | Calcul des Tolérances :                                               | 47 |
|       | 5.1. | Rattachement du point P8 (BORNE8):                                    | 47 |
| 5.    | Ra   | attachement altimétrique par nivellement de précision :               | 46 |

# Liste des Figures

| Figure 1:Image représentant la zone de travail                                                       | 7    |
|------------------------------------------------------------------------------------------------------|------|
| Figure 2: La répartition des zones pour la sortie de reconnaissance                                  | . 11 |
| Figure 3: Les points à visiter par le groupe 12                                                      | . 12 |
| Figure 4: Diagramme représentant l'état des points en Merchich                                       | . 15 |
| Figure 5: Diagramme représentant l'état des points en ITRF05                                         | . 17 |
| Figure 6: Diagramme représentant l'état des points en NGM                                            | . 19 |
| Figure 7: Diagramme représentant l'état des points géodésique visités                                | . 20 |
| Figure 8: l'emplacement du point 7                                                                   | . 22 |
| Figure 9: l'emplacement du point 8                                                                   | . 22 |
| Figure 10: Matérialisation de la borne 7                                                             |      |
| Figure 11: Matérialisation de la borne 8                                                             | . 24 |
| Figure 12: Coordonnées des points par traitement par un ajustement libre                             | . 25 |
| Figure 13: Coordonnées des points par traitement avec un minimum de contraintes                      | . 26 |
| Figure 14: Coordonnées des points par traitement avec un maximum de contraintes                      | . 26 |
| Figure 15: extrait du rapport final contenant la liste des points                                    |      |
| Figure 16: Schéma de planification faite en réunion des 2 sessions d'observation                     |      |
| Figure 17: Récapitulatif d'acceptation des observations de la GNSS                                   |      |
| Figure 18: Le résultat de rapport de fermeture des boucle                                            | . 30 |
| Figure 19: Les coordonnées des points résultantes d'un ajustement libre des observations sans géo    | oïde |
|                                                                                                      |      |
| Figure 20: Les coordonnées des points résultantes d'un ajustement avec contraintes des observations  | ons  |
| sans géoïde                                                                                          |      |
| Figure 21: Illustration des lignes de bases du réseau de densification de la mission établie         |      |
| Figure 22: Coordonnées finales des points adoptées résultante d'un ajustement sans géoïde            |      |
| Figure 23: interface du logiciel Trimble Grid Factory Utility                                        | . 33 |
| Figure 24:Coordonnées résultantes de l'ajustement avec géoïde                                        |      |
| Figure 25: Coordonnées résultantes de l'ajustement avec géoïde avec minimum de contraintes           | . 34 |
| Figure 26: Coordonnées résultantes de l'ajustement avec géoïde avec maximum de contraintes           |      |
| Figure 27: Coordonnées résultantes de l'ajustement définitif avec géoïde                             |      |
| Figure 28: Illustration des lignes de bases du réseau de densification de la mission établie sur TBC |      |
| Figure 29: Coordonnées définitives pour les points adoptées lors de la mission GNSS                  | . 36 |
| Figure 30: repère de nivellement pour le tronçon global                                              |      |
| Figure 31: Image de la borne P8                                                                      |      |
| Figure 32: extrait du rapport d'ajustement avec contraints avec le Géoïde hybride du Maroc GHM21     | 150  |

# Liste des tableaux :

| Tableau 1: Tableau représentant l'ensemble des points visités par le groupe 12     | 10 |
|------------------------------------------------------------------------------------|----|
| Tableau 2:Tableau représentant l'ensemble des points visités par le groupe 12      | 11 |
| Tableau 3: Les points visités sur le système Merchich                              | 14 |
| Tableau 4: L'état des points sur le système Merchich                               | 15 |
| Tableau 5: Les points visités sur le système ITRF05                                | 16 |
| Tableau 6: L'état des points sur le système ITRF05                                 | 16 |
| Tableau 7: Les points visités sur le système NGM                                   | 18 |
| Tableau 8: L'état des points sur le système NGM                                    | 19 |
| Tableau 9: L'état de tous les points visités                                       | 19 |
| Tableau 10: Les points exploitable sur le système ITRF05 :                         | 21 |
| Tableau 11: Les points exploitable sur le système NGM                              | 21 |
| Tableau 12: Le programme d'observation du groupe 12                                | 24 |
| Tableau 13: Programme d'observation de la mission GNSS                             | 29 |
| Tableau 14: Répartition du trajet en tronçons selon les groupes et les repères NGM | 39 |
| Tableau 15: Les observations obtenues pour le cheminement Aller du tronçon 4       | 41 |
| Tableau 16: Les observations obtenues pour le cheminement Retour du tronçon 4      | 41 |
| Tableau 17: les observations acquises dans l'ensemble des tronçons                 | 43 |
| Tableau 18: Tableau du nivellement                                                 | 47 |
| Tableau 19: Coordonnées planimétriques et altimétriques des points nouveaux        | 50 |

# Rapport de la Géodésie :

### L. Introduction Générale :

Le stage de professionnalisation est considéré comme l'un des piliers de la formation d'un Ingénieur Géomètre Topographe, il a pour but de donner à l'étudiant des savoir-faire complémentaires aux savoirs enseignés dans la partie théorique et aussi lui permettre de synthétiser et de comprendre l'enchainement des différentes disciplines.

En effet, la géodésie constitue la base de tous les travaux topographiques et photogrammétriques car elle permet d'équiper notre zone de projet par des points de rattachement afin de réaliser notre but ultime qui est la densification de notre réseau.

Cette partie repose sur la succession de plusieurs étapes nécessaire pour la réussite de n'importe quel projet de densification.

Ces étapes sont comme suite :

- **❖** Avant-projet
- Reconnaissance
- Projet définitif
- Observation par GNSS
- Calcul, contrôles, compensation et analyse des résultats
- \* Etablissement des plans, croquis, fiches signalétiques et schémas

# **II. AVANT PROJET:**

# 1. Objectif:

Le projet intitulé densification géodésique de la région « Tamesna-Rabat » a pour objectifs de :

- ❖ Améliorer nos connaissances théoriques et pratiques en tout ce qui concerne la densification géodésique.
- ♦ Améliorer nos compétences en conception et conduite d'un projet réel avec confrontation des contraintes.
- ♦ Comprendre l'enchaînement des différentes étapes de réalisation d'un projet de géodésie.
- ♦ Contrôler l'état des points géodésiques existants dans la région.
- → La détermination altimétrique des nouveaux points.

#### 2. Zone D'étude:

Le projet de cette année (2021-2022) a été réalisé dans les régions de Tamesna, RABAT.



Figure 1:Image représentant la zone de travail

La zone d'étude a été délimitée par points dont les cordonnées sont une combinaison (X, Y) des valeurs suivantes :

 $Xmax = 369103.0159 \ Xmin = 349512.9638$ 

 $Ymax = 371472.0628 \ Ymin = 352699.5497$ 

Avant sortir au terrain, il fallut avoir consulté toutes les données et les informations qu'on a sur la région de travail pour réduire l'effort et essayer de couvrir la zone le maximum possible sans visite préalable.

Sur Qgis on a donc importé un fond satellitaire de la zone étudiée sur lequel on a ajouté une liste des points déjà connus dans le datum Merchich (en jaune) et ITRF (en rouge) dans la région afin de savoir les points d'appuis qu'on va exploiter et donc qu'il faut visiter.

Pour les mêmes raisons on a utilisé une liste des répertoires de nivellement général du Maroc (en carré jaune) de la section concernée.

### 3. Planification du projet :

Les travaux sur ce projet ont commencé le 9 Mai 2022 et ont terminé le 14 Mai 2022. Ceci a déroulé comme suit :

- ① Mission de planification de l'avant-projet : jour 1
- ① Sortie de reconnaissance des points géodésiques anciens : jour 2
- ① Observation de nivellement de précision : jour 3
- ① Matérialisation de nouveaux points + Observations GNSS sur les points anciens et nouveaux : jour 4
- ① Traitement et analyse des données : jour 5
- ① Rattachement de nouveaux points et ré-observation du nivellement de précision (retour au terrain) : jour 6

#### 4. Contraintes rencontrées:

- Le nombre réduit des récepteurs qui nous pousse à mener le projet en optimisant les nombres des groupes en 6, donc quelques groupes se trouvent obliger à se séparer et d'où les livrables du jour sont éparpillés.
- Le non accès à des points géodésiques lors de la reconnaissance, ils sont détruits ou déplacés.
- Des points qui sont en bon état mais inaccessibles vu leur emplacement (ex : terrasse d'une maison)
- Les problèmes rencontrés avec les gens lors de la sortie de reconnaissance limitant notre mission vu la non disposition d'une autorisation.

#### 5. Les livrables :

- ✓ Fiches signalétiques des points visités.
- ✓ Listes des repères de nivellement en bon état.
- ✓ Fiches signalétiques d'observation.
- ✓ Observation GNSS du réseau global (points anciens et nouveaux).
- ✓ Ajustement avec et sans géoïde.
- ✓ Coordonnées des nouveaux points géodésiques de densification crées.

✓ Rattachement altimétrique de quelques points du réseau sur base des repères de Nivellement général du Maroc

# **III.** Exécution des sorties de reconnaissance :

### 1. Objectif et planification :

Afin de minimiser la liste des points aux points utiles et exploitable en indiquant l'état des points et leur matérialisation, et pour bien connaître la zone du projet, l'ensemble des équipes se sont mobiliser pour visiter les points et établir les fiches signalétiques.

La sortie de reconnaissance permettra par la suite de construire un réseau de point qui seront exploité pour la densification des points et le projet du nivellement.

Pour cela on a partagé la zone sur l'ensemble des groupes, puis on a procédé pour tirage au sort afin d'affecter les groupes aux zones.

Pour notre groupe, nous étions tenus à effectuer l'inventaire pour l'ensemble des points situé sur la zone 5.

Après avoir visiter les 6 points géodésiques affectés, des fiches signalétiques et un tableau contenant l'état de chaque point ont été réalisés par les membres du groupe.

Une fiche signalétique est une fiche qui contient :

- Le nom du point, sa commune et sa province.
- Le Code du point.
- Les coordonnées rectangulaires et géodésiques du point.
- Une Mapp de sa situation.
- Un croquis de son signal.
- Une description de l'itinéraire poursuivi pour atteindre le point.
- La date de visite.

Le tableau suivant regroupe les 6 points inspectés :

| Point             | Image du point | Description                                                                                                                                 |
|-------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Ould al<br>Ghoul  |                | Le point géodésique est matérialisé par une balisette composée d'un repère rectangulaire bâti et un cylindre en fer sans monopole.          |
| Delta 20 cote172  |                | Ce point est disparu, il se trouvait dans un champ du blé                                                                                   |
| Delta 43          |                | Le point est détruit à cause des travaux d'aménagement effectué par le propriétaire du terrain  Où il se trouve. (Témoignage des habitants) |
| Delta 19          |                | Ce point est disparu et il se<br>trouvait dans une propriété<br>privée                                                                      |
| Delta 17          |                | Le point géodésique est<br>matérialisé par une petite borne<br>en béton qui se trouve dans un<br>lotissement                                |
| Bir hadj<br>tahar |                | Point disparu à cause chasseurs des trésors                                                                                                 |

Tableau 1: Tableau représentant l'ensemble des points visités par le groupe 12

| Nom               | Signal          | Système  | X(m)      | Y(m)      | Etat    |
|-------------------|-----------------|----------|-----------|-----------|---------|
| Delta43           | Monopode        | Merchich | 361759.7  | 367727.67 | Disparu |
| Ould Al Ghoul     | Monopode        | Merchich | 361585.88 | 365542.43 | Disparu |
| Bir Hadj Tahar    | Monopode        | Merchich | 362834.14 | 363920.7  | Disparu |
| Delta 20 coté 172 | Monopode        | Merchich | 361049.85 | 362100.04 | Disparu |
| Delta17           | Petit borne     | Merchich | 360168.54 | 361219.3  | Existe  |
| Delta19           | Moule avec tube | Merchich | 360164.22 | 364163.96 | Disparu |

Tableau 2:Tableau représentant l'ensemble des points visités par le groupe 12



Figure 2: La répartition des zones pour la sortie de reconnaissance



Figure 3: Les points à visiter par le groupe 12

# 2. Synthèse de la sortie de reconnaissance :

L'ensemble des groupes ont visité les points affectés, les tableaux suivants présentent l'ensemble des points dans les différents systèmes :

# • Dans le système Merchich :

| Point   | X         | Y         | Signal        | Etat        | Groupe |
|---------|-----------|-----------|---------------|-------------|--------|
|         |           |           | Piquet en fer |             |        |
| Cote 46 | 351387,35 | 364900,47 | (hors centre) | Bon         | 3      |
|         |           |           |               | Non         |        |
| Delta 9 | 350543,32 | 361336,71 |               | exploitable | 7      |
| IX      |           |           |               | Non         |        |
| cote92  | 350736,74 | 361828,55 |               | exploitable | 7      |

| Pres21    |                |                 |                     |              |       |
|-----------|----------------|-----------------|---------------------|--------------|-------|
| cote71    | 351673,77      | 363389,52       | Borne en béton      | Bon          | 7     |
| sidi      |                |                 |                     |              | ,     |
| abdallah  | 348768,1       | 363160,22       | Disparu             | Disparu      | 3     |
| sidi      | ,              | ,               | <b>.</b>            | 1            |       |
| bouknad   |                |                 | Koubba              | Non          |       |
| el        | 349311,19      | 364923,1        | marabout            | exploitable  | 3     |
| 11        |                |                 | Borne centrée       | •            |       |
| G2184     |                |                 | par un piquet de    |              |       |
| cote142   | 355549,36      | 358201,77       | fer                 | Détruit      | 4     |
| 9bis Pr   |                |                 |                     |              |       |
| Douar     |                |                 |                     |              |       |
| cherkR    | 353927,57      | 362689,74       | Disparu             | Disparu      |       |
|           |                |                 | Antenne détruite    |              |       |
| antenne   |                |                 | (il ne reste que sa | Non          |       |
| radio     | 356390,05      | 355333,46       | base)               | exploitable  | 8     |
| bir hadj  |                |                 |                     |              |       |
| tahar     | 362834,14      | 363920,7        | monopode            | Disparu      | 12    |
| chaabate  |                |                 | Moule avec          |              |       |
| driwa     | 368126,39      | 360117,39       | balisette           | Inaccessible | 5     |
|           |                |                 |                     | Accès        |       |
| cote109   | 358185,7       | 364377,57       |                     | inaccessible | 1     |
|           |                |                 | _                   | Non          |       |
| cote222   | 362842,52      | 357161,1        | sein d'une ferme    | -            | 2     |
| cote252   | 359768,09      | 352093,74       | Disparu             | Disparu      | 8     |
| dar caid  |                |                 |                     |              |       |
| thami     | 362509,63      | 354938,72       |                     | Inaccessible | 6     |
| delta 43  | 361759,7       | 367727,67       | monopode            | Disparu      | 12    |
| delta10   |                |                 |                     |              |       |
| sidi      |                |                 |                     |              |       |
| mellouk   | 354639,99      | 360041,69       | Disparu             | Disparu      | 11    |
| delta12   | 357916,16      | 359376,24       | Disparu             | Disparu      | 4     |
| delta13   | 2 - 100 00     | 0 - 1 0         |                     | _            |       |
| dar thami |                | 361875,21       | Piquet en fer       | Bon          | 1     |
| delta14   | 355912,09      | 364255,49       | Borne               | Bon          |       |
| delta16   | 360148,22      | 358660,93       | Disparu             | Disparu      | 2     |
|           | 0.504.50.7.    |                 | Petite borne en     | _            | 10/01 |
| delta17   | 360168,54      | 361219,3        | béton               | Bon          | 12/01 |
| delta19   | 360164,22      | 364163,96       | Moule avec tube     | Disparu      | 12    |
| delta20   | 2 < 1 0 10 0 7 | 2 < 2 1 0 0 0 1 |                     | ъ.           |       |
| cote172   | 361049,85      | 362100,04       | monopode            | Disparu      | 12    |
| delta40   | 365872,95      | 364117,63       | Monopode            | Disparu      | 5     |

| el         |           |           |                 |              |    |
|------------|-----------|-----------|-----------------|--------------|----|
| koudiat    |           |           |                 |              |    |
| ben abid   |           |           |                 |              |    |
| cote 202   | 356308,58 | 355410,06 | Disparu         | Disparu      | 8  |
| el         |           |           |                 |              |    |
| menzah     |           |           |                 |              |    |
| bis        | 365408,35 | 358802,6  | Disparu         | Disparu      | 2  |
| el         |           |           | Quadripode mire |              |    |
| menzeh     | 365565,21 | 359930,96 | haute           | Disparu      | 5  |
| el         |           |           | Quadripode mire |              |    |
| menzeh     | 365565,1  | 359931,01 | basse           | Disparu      | 5  |
| IR 865     |           |           |                 |              |    |
| cote 142   | 353062,31 | 357026,78 |                 | Disparu      | 11 |
| maison     |           |           |                 |              |    |
| carrera    | 353509,43 | 364947,88 | Disparu         | Disparu      |    |
| mosquee    |           |           |                 | Toujours     |    |
| alabiad    | 363382,27 | 361555,55 | Axe au sommet   | existant     | 5  |
| ould al    |           |           | Cylindre en fer | Non          |    |
| ghoul      | 361585,88 | 365542,43 | sans monopode   | exploitable  | 12 |
| ouled      |           |           | Borne           |              |    |
| abdellah   | 354035,83 | 362814,71 | tronconique     | Détruit      | 7  |
| sidi el    |           |           |                 |              |    |
| achimi     | 356349,83 | 367180,2  | Disparu         | Disparu      | 9  |
| talaat ben |           |           |                 |              |    |
| zekri      | 361277,25 | 353920,27 |                 | Inaccessible | 6  |
| VI(Ron1    |           |           |                 |              |    |
| 354)       |           |           |                 |              |    |
| cote121    | 354873,98 | 360118,72 | Borne           | Disparu      | 11 |
| vitc       |           |           |                 | Non          |    |
| cote121    | 359441,57 | 363241,14 | Borne           | exploitable  | 1  |
| X(T.324)   |           |           |                 |              |    |
| cote62     | 357200,37 | 369146,49 | Borne           | Bon          | 10 |
| X(T.324)   |           |           |                 |              |    |
| cote62     | 357200,45 | 369146,59 | Borne           | Bon          | 10 |
| XX1300     |           |           |                 |              |    |
| mNestSi    |           |           |                 |              |    |
| Meulouk    | 352630,9  | 359253,67 | Borne           | Disparu      | 11 |

Tableau 3: Les points visités sur le système Merchich

# D'une manière statistique on trouve :

|               | Nb    | de |
|---------------|-------|----|
| Etat          | point |    |
| BON           |       | 7  |
| Inexploitable |       | 34 |
| Total         |       | 41 |

Tableau 4: L'état des points sur le système Merchich

# En établissant son diagramme on a :



Figure 4: Diagramme représentant l'état des points en Merchich

# • Dans le système ITRF 2005 :

|      |        |             |           |        |        |         | signal |      |     |
|------|--------|-------------|-----------|--------|--------|---------|--------|------|-----|
| Poin |        |             |           | Hauteu | X_ITR  | Y_ITRF  | (à     |      |     |
| t    | Signal | Latitude    | Longitude | r      | F05_I  | 05_I    | jour)  | etat | Grp |
| GH4  | Borne  | N33°53'22.8 | W6°57'55. |        | 455242 | 1416587 | Borne  |      |     |
| 5    | NGM    | 8872"       | 92704"    | 91 562 | ,92    | ,2      | NGM    | bon  | 10  |
| GH4  | Borne  | N33°51'54.8 | W7°00'27. |        | 451295 | 1413935 | Borne  |      |     |
| 0    | NGM    | 2516"       | 97140"    | 96 321 | ,74    | ,31     | NGM    | bon  | 3   |

| Gab  | Borne   | N33°51'07.7 | W6°51'13. |         | 465510 | 1412273 | Borne   |      |    |
|------|---------|-------------|-----------|---------|--------|---------|---------|------|----|
| 14   | NGM     | 3947"       | 85911"    | 222 281 | ,52    | ,94     | NGM     | bon  | 5  |
|      | Borne   | N33°47'23.4 | W6°55'48. |         | 458346 | 1405468 | Borne   | Bo   |    |
| B30  | NGM     | 2371"       | 66928"    | 225,03  | ,99    | ,17     | NGM     | n    | 8  |
|      |         |             |           |         |        |         |         | non  |    |
|      |         |             |           |         |        |         |         | exp  |    |
|      |         |             |           |         |        |         |         | loit |    |
|      | -       | N33°48'15.0 | W6°52'48. |         | 462999 | 1406988 | -       | abl  |    |
| 5587 | ode     | 0062"       | 60478"    | 271 025 | ,75    | ,94     | ode     | e    | 2  |
|      | Borne   | N33°49'05.8 | W6°54'54. |         | 459775 | 1408601 | borne   |      |    |
| B34  | NGM     | 2803"       | 90279"    | 189,25  | ,81    | ,35     | NGM     | bon  | 6  |
|      |         |             |           |         |        |         | Borne   |      |    |
|      | Borne   |             |           |         |        |         | sur     | Exi  |    |
|      | sur     | N33°49'44.6 | W6°58'09. |         | 454798 | 1409870 | terrass | sta  |    |
| 5346 | terasse | 1331"       | 23553"    | 169 214 | ,83    | ,47     | e       | nt   | 11 |
|      |         |             |           |         |        |         |         | Dis  |    |
|      |         | N33°52'02.0 | W6°57'22. |         | 456070 | 1414084 |         | par  |    |
| 5378 | Borne   | 4959"       | 23627"    | 150 037 | ,62    | ,6      |         | u    | 9  |
|      |         |             |           |         |        |         |         |      |    |
| 5482 |         | N33°53'57.5 | W6°54'59. |         | 459777 | 1417587 |         |      |    |
| HC   | Borne   | 7388"       | 97808"    | 147,07  | ,49    | ,83     | Borne   | bon  | 9  |
|      | Monop   |             |           |         |        |         | Monop   |      |    |
|      | ode     |             |           |         |        |         | ode     |      |    |
|      | avec    | N33°54'41.3 | W6°56'34. |         | 457360 | 1418973 | avec    | Bo   |    |
| 5418 | borne   | 9650"       | 87360"    | 108 181 | ,77    | ,55     | borne   | n    | 10 |
| 5311 |         | N33°55'00.0 | W6°58'42. |         | 454104 | 1419598 |         |      |    |
| HC   | Rivet   | 7601"       | 02466"    | 70 092  | ,82    | ,21     |         |      |    |

Tableau 5: Les points visités sur le système ITRF05

# D'une manière statistique on trouve :

|               | Nb    | de |
|---------------|-------|----|
| Etat          | point |    |
| BON           |       | 7  |
| Inexploitable |       | 3  |
| Total         |       | 10 |

Tableau 6: L'état des points sur le système ITRF05

# En établissant son diagramme on a :



Figure 5: Diagramme représentant l'état des points en ITRF05

# • Nivellement général du Maroc :

| MATRI  | POSITI | TYPE_R   | NATUR   | PHI_AP   | LAMBD    | NGM_   |      | Gro |
|--------|--------|----------|---------|----------|----------|--------|------|-----|
| CUL_1  | ON_R   | EPER     | E_OUV   | PROC     | A_APP    | Altitu | etat | upe |
| Gak313 |        | Médaillo |         | 3 378 98 |          | 178 00 |      |     |
| 30     | Droite | n Rivet  | Borne   | 7        | -693 027 | 7      | bon  | 8   |
| Gak313 |        | Médaillo |         | 3 380 05 |          | 166 23 | disp |     |
| 31     | Droite | n        | Pylône  | 1        | -692 574 | 7      | aru  | 8   |
| Gak313 |        | Médaillo | Aqueduc | 3 380 59 |          | 157 00 |      |     |
| 32     | Droite | n        | puisard | 6        | -692 385 | 9      | Bon  | 6   |
| Gak313 |        | Médaillo |         | 3 381 22 |          | 151 46 | disp |     |
| 33     | Droite | n        | Pylône  | 7        | -691 796 | 2      | aru  | 6   |
| Gak313 |        | Médaillo |         | 3 381 83 |          | 142 43 |      |     |
| 34     | Droite | n Rivet  | Borne   | 2        | -691 533 | 8      | bon  | 6   |
| Gak313 |        | Médaillo | Aqueduc | 3 382 27 |          | 125 81 | disp |     |
| 35     | Droite | n        | puisard | 7        | -691 184 | 1      | aru  | 2   |
| Gak313 | Droite | Médaillo | Pont    | 3 382 72 | -690 713 | 11431  | Bon  | 2   |

| 36     |        | n        |            | 4        |           | 1      |      |    |
|--------|--------|----------|------------|----------|-----------|--------|------|----|
| Gak313 |        | Médaillo | constructi | 3 382 97 |           |        |      |    |
| 37     | Droite | n        | on         | 4        | -690 595  | 125,03 | Bon  | 2  |
| Gak313 |        | Médaillo | constructi | 3 383 98 |           |        |      |    |
| 38     | Droite | n        | on         | 3        | -691 306  | 151,82 | Bon  | 1  |
| Gak313 |        | Médaillo | constructi | 3 383 93 |           | 143 43 |      |    |
| 39     | Gauche | n        | on         | 2        | -691 917  | 5      | Bon  | 1  |
| Gak313 |        | Médaillo | constructi | 3 383 38 |           | 136 35 |      |    |
| 40     | Droite | n        | on         | 5        | -692 687  | 2      | bon  | 4  |
| Gak313 |        | Médaillo |            | 3 383 93 |           | 108 33 |      |    |
| 41     | Gauche | n        | Aqueduc    | 2        | -693 445  | 2      | bon  | 4  |
| Gak313 |        | Médaillo |            | 3 384 51 |           | 113 92 |      |    |
| 42     | Gauche | n Rivet  | Borne      | 3        | -693 952  | 1      | Bon  | 1  |
| Gak313 |        | Médaillo |            | 3 385 06 |           |        | Exis |    |
| 43     | Droite | n        | Aqueduc    | 8        | -694 605  | 95 825 | tant | 11 |
| Gak313 |        | Médaillo | constructi | 3 385 81 |           |        | Disp |    |
| 44     | Gauche | n        | on         | 2        | -695 669  | 82 659 | aru  | 11 |
| Gak313 |        | Médaillo |            |          |           |        | disp |    |
| 45     | Droite | n Rivet  | Borne      | 338 636  | -69 653   | 97 887 | aru  | 9  |
| Gak313 |        | Médaillo | constructi | 3 386 90 |           |        | disp |    |
| 46     | Droite | n        | on         | 6        | -697 208  | 79 606 | aru  | 9  |
| Gak313 |        | Médaillo | constructi |          |           |        |      |    |
| 47     | Gauche | n        | on         | 338 718  | -69 753   | 70 905 | bon  | 9  |
| Gak313 |        | Médaillo |            | 3 387 54 |           |        |      |    |
| 48     | Droite | n        | Aqueduc    | 4        | -69 794   | 54 511 | bon  | 10 |
|        |        | Médaillo |            | 33 865 8 | -         |        |      |    |
| GH41   | Droite | n        | Borne      | 33       | 7 005 833 | 52 394 | bon  | 3  |
|        |        | Médaillo |            | 33 870 8 | -         |        | disp |    |
| GH42   | Gauche | n        | Aqueduc    | 33       | 6 999 444 | 48 861 | aru  | 3  |
|        |        | Médaillo |            | 33 879 1 | -         |        | Disp |    |
| GH43   | Gauche | n        | Pont       | 67       | 6 983 889 | 45 592 | aru  | 10 |
|        |        | Médaillo |            | 33 886 9 | _         |        |      |    |
| GH44   | Gauche | n        | Mur        | 44       | 6 975 556 | 36 996 | Bon  | 10 |
|        |        | Médaillo |            | 33 889 7 | _         |        |      |    |
| GH45   | Droite | n Rivet  | Borne      | 22       | 6 965 556 | 45 487 | Bon  | 10 |

Tableau 7: Les points visités sur le système NGM

# D'une manière statistique on trouve :

| Etat | Nb<br>point | de |
|------|-------------|----|
| BON  |             | 16 |

| Inexploitable | 8  |
|---------------|----|
| Total         | 24 |

Tableau 8: L'état des points sur le système NGM

### En établissant son diagramme on a :



Figure 6: Diagramme représentant l'état des points en NGM

Comme le montre les statistiques ci-dessus, l'ensemble des points dans le système Merchich sont disparus ou inaccessible et par suite afonctionnels pour établir un projet de densification par GNSS ce qui a exigé de travailler avec le système ITRF 2005 puisque la plupart de ces points sont accessibles et disponibles.

# Récapitulatif de la sortie de reconnaissance :

L'état de tous les points visités sont indiqués dans le tableau suivant :

|               | Nb    | de |
|---------------|-------|----|
| Etat          | point |    |
| BON           | 30    |    |
| Inexploitable | 45    |    |
| Total         | 75    |    |

Tableau 9: L'état de tous les points visités

# En établissant son diagramme on a :



Figure 7: Diagramme représentant l'état des points géodésique visités

# IV. Filtrage, Report et répartition des nouveaux points:

# 1. Les points adoptés :

Après avoir reçu et analysé l'ensemble des points examinés par tous les groupes, et en prenant en considération la non accessibilité de certains points ainsi que les différents obstacles qu'on peut les trouver sur terrain. On a choisi les points suivants :

# 1.1. Pour le système ITRF05 :

| Nom du point | Signal      | X(m)      | Y(m)       | Hauteur (m) |
|--------------|-------------|-----------|------------|-------------|
| GH40         | Borne NGM   | 451295.74 | 1413935.31 | 96.32       |
| 5418         | Monopode en | 457360.77 | 1418973.55 | 108.18      |

|        | fer             |           |            |        |
|--------|-----------------|-----------|------------|--------|
| 5482HC | Petite borne    | 459777.49 | 1417587.83 | 147.07 |
| 5587   | Monopode en fer | 462999.75 | 1406988.94 | 271.03 |
| B34    | Borne           | 459775.81 | 1408601.35 | 189.25 |
| GAB 14 | Borne           | 465510.52 | 1412273.94 | 222.28 |

Tableau 10: Les points exploitable sur le système ITRF05:

#### 1.2. Pour le système NGM :

| Nom du point | Latitude (N)         | Longitude (W)    | H(m)<br>Médaillon | H(m) Rivet |
|--------------|----------------------|------------------|-------------------|------------|
| GAK3I3 30    | 33N 47min<br>23.6sec | 6W 55min 49sec   | 178.007           | 178.374    |
| GAK3I3 34    | 33N 49min 6sec       | 6W 54min 55.2sec | 142.438           | 142.796    |
| GAK3I3 43    | 33N 51min<br>2.5sec  | 6W 56min 45.8sec | 95.825            |            |

Tableau 11: Les points exploitable sur le système NGM

#### 2. Critère de la densification :

Après avoir établit le projet définitif, l'étape qui suit est la densification de la zone d'étude qui doit respecter certaines normes qui sont :

- Les nouveaux points doivent être à l'intérieure du réseau de densification pour éviter le problème de l'extrapolation et ils doivent être encadrés au minimum par trois points anciens.
- Eviter les propriétés privées.
- Eviter les surfaces réfléchissantes pour éliminer l'effet des multi-trajets.
- Choisir des zones dégagées.
- Le réseau doit être constitué des formes géométriques rigide autrement dit il faut assurer la formation des triangles quasi-équilatéraux.
- Les grandeurs des côtés doivent être uniformes.
- Le milieu du point à matérialiser doit être bien choisi pour faciliter la mise en station.

En tenant compte et en respectant ces critères, nous nous sommes mis d'accord

# sur la création de 2 points (7 et 8) :

#### • Point 7:



Figure 8: l'emplacement du point 7

#### Point 8 :



Figure 9: l'emplacement du point 8

#### 3. Matérialisation:

L'une des opérations les plus pénible dans la construction des infrastructures géodésique est la matérialisation pour cela la classe a été divisée en 2 équipes, la première brigade a assuré la matérialisation du nouveau point 7 sous forme une borne cylindrique alors que la deuxième équipe a assisté à la matérialisation du point 8, le matériel et les étapes suivis étaient les mêmes.

Lors de cette opération, nous avons utilisé le matériel suivant :

- Une pelle et une pioche.
- Un moule.
- Un tube en fer.
- Des fils métalliques et une pince.

- Un sac en plastique.
- Du sable, gravier et ciment.
- Des pierres.
- Du l'eau.

Les étapes suivis lors de la construction de la borne sont comme suit :

On créé d'abord un trou carré de 50cm de profondeur en utilisant la pelle et la pioche pendant que les autres préparent le béton en mélangeant du sable avec le gravier et le ciment et de temps en temps on ajoute du l'eau, on rempli le trou dans un premier temps avec une couche du béton puis on ajoute des pierres collectées pour assurer l'élévation de la borne et puis on ajoute du béton.

On fonce un moule dans la couche des pierres et béton et on l'assemble par un fil en fer en utilisant une pince afin d'avoir une forme cylindrique, au milieu du moule on ajoute un tube en fer qui doit être vertical et on le remplit en combinant le béton avec les pierres.

Un sac de plastique est utilisé lors de cette opération de matérialisation afin de faciliter l'enlèvement du moule après le séchage du béton.

Le résultat des deux matérialisations est comme suit :

#### • Borne 7:



Figure 10: Matérialisation de la borne 7

#### • Borne 8:



Figure 11: Matérialisation de la borne 8

### 3.1. Programme d'observation :

Après avoir planifier et exécuter la mission d'observation par GNSS, le programme d'observation de notre groupe était comme suit :

|           | Programme d'observation |           |         |                |          |            |         |              |
|-----------|-------------------------|-----------|---------|----------------|----------|------------|---------|--------------|
| Dete      | F                       | D - ! 4 - |         | Temps          |          | Récepteurs |         |              |
| Date      | Equipe                  | Points    | Session | d'observations | Mode     | (S/N)      | (m)     | Observations |
|           | GROUPE12-               |           |         | de 14H37 à     |          | Topcon     |         | Hauteur      |
| 12/5/2022 | 2                       | B34       | S1-S2   | 20H31          | STATIQUE | 4530       | 0,8770m | mesurée      |
|           | 2                       |           |         | 20031          |          | 4550       |         | inclinée     |

Tableau 12: Le programme d'observation du groupe 12

# 3.2. Transfert, importation et conversion des fichiers :

Une fois arrivé au bureau, il faut s'assurer de la disposition de tous les récepteurs utilisés sur le terrain et de vérifier leurs numéros de séries puis on procède au transfert des observations vers les stations de traitements soit par une carte SD ou par un logiciel de transfert selon le type du récepteur, il faut noter qu'il est très utile de séparer les différentes observations et enregistrer chaque fichier dans son propre dossier portant le nom du numéro de série du

récepteur et de la hauteur d'antenne. Dans notre cas, on avait le récepteur Topcon HiperV lors de son vidage on obtient un fichier brute '' TPCN\_4530\_B34\_877C.tps'' qu'il faut le convertir en un format d'échange compatible avec le logiciel du traitement adopté durant le projet de densification, on a utilisé le logiciel TPS2rin pour la conversion du fichier brute en fichiers rinex (fichier d'observation et de navigation).

### 3.3. Traitement avec les hauteurs ellipsoïdales :

Après avoir traité et ajusté le réseau dans le système grille en fixant les points connus en planimétrie et en altimétrie (hauteur orthométrique), on peut procéder et effectuer un autre type de contrôle en fixant cette fois-ci les hauteurs ellipsoïdales de tous les points d'ITRF dans le système local puis en se basant sur le modèle du géoïde introduit le logiciel nous permet d'obtenir les hauteurs orthométriques de tous les points du réseau.

On commence le traitement du réseau par un ajustement libre sans contrainte afin de vérifier la cohérence interne du réseau, de détecter les erreurs d'observation et de les estimer.

Résultat de l'ajustement libre :

### Coordonnées géodésiques ajustées

| ID de point | Latitude         | Longitude       | Hauteur<br>(Mètre) | Hauteur Erreur<br>(Mètre) | Contrainte |
|-------------|------------------|-----------------|--------------------|---------------------------|------------|
| 5248hc      | N33°53'57.02337" | W6°54'59.62991" | 139.703            | 0.0081                    |            |
| B34         | N33°49'05.90730" | W6°54'54.90612" | 183.344            | 0.0086                    |            |
| GAB14       | N33°51'07.81888" | W6°51'13.86137" | 216.350            | 0.0097                    |            |
| GH40        | N33°51'54.90575" | W7°00'27.97584" | 90.373             | 0.0134                    |            |
| GH45        | N33°53'22.96867" | W6°57'55.93091" | 85.635             | 0.0091                    |            |
| POINT 6     | N33°50'41.59055" | W6°56'22.88670" | 154.518            | 0.0080                    |            |
| POINT 7     | N33°52'04.77882" | W6°55'37.00689" | 126.735            | 0.0068                    |            |
| POINT 8     | N33°50'14.96207" | W6°54'27.78663" | 189.893            | 0.0078                    |            |

Figure 12: Coordonnées des points par traitement par un ajustement libre

On passe ensuite à l'ajustement avec un minimum de contraintes qui consiste à fixer uniquement un point connu dans le réseau pour le rattacher au datum. Dans notre cas, on fixe le point B34 connu en planimétrie comme en altimétrie et on obtient le résultat suivant :

# Coordonnées géodésiques ajustées

| justement du res             | eau avec contraintes des na | ruteurs ellipsoidale: =      | To mol           |                | 15/11/21/2 |
|------------------------------|-----------------------------|------------------------------|------------------|----------------|------------|
| 05/2022 12:59<br>ID de point | Latitude                    | Rapport sur l'a<br>Longitude | justement du rés | Hauteur Erreur | Contrainte |
| 11) de point                 | Latitude                    | Longitude                    | (Mètre)          | (Mètre)        | Contrainte |
| 5248hc                       | N33°53'56.94384"            | W6°54'59.62657"              | 145.605          | 0.0142         |            |
| B34                          | N33°49'05.82803"            | W6°54'54.90279"              | 189.250          | ?              | LLh        |
| GAB14                        | N33°51'07.73950"            | W6°51'13.85830"              | 222.254          | 0.0129         |            |
| GH40                         | N33°51'54.82633"            | W7°00'27.97212"              | 96.277           | 0.0179         |            |
| GH45                         | N33°53'22.88917"            | W6°57'55.92737"              | 91.538           | 0.0151         |            |
| POINT 6                      | N33°50'41.51119"            | W6°56'22.88327"              | 160.423          | 0.0115         |            |
| POINT 7                      | N33°52'04.69939"            | W6°55'37.00351"              | 132.638          | 0.0130         |            |
| POINT 8                      | N33°50'14.88273"            | W6°54'27.78333"              | 195.799          | 0.0104         |            |

Figure 13: Coordonnées des points par traitement avec un minimum de contraintes

A fur et à mesure qu'on fixe les coordonnées des autres points déjà connus et on ajuste le réseau, on remarque l'amélioration des coordonnées calculées des points connus, on obtient le résultat suivant :

# Coordonnées géodésiques ajustées

| Latitude         | Longitude                                                                    | Hauteur<br>(Mètre)                                                                                                                           | Hauteur Erreur<br>(Mètre)                                                                                                                                                                                                                                                                                             | Contrainte                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N33°53'56.94328" | W6°54'59.62686"                                                              | 145.651                                                                                                                                      | 0.0512                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                    |
| N33°49'05.82803" | W6°54'54.90279"                                                              | 189.250                                                                                                                                      | ?                                                                                                                                                                                                                                                                                                                     | LLh                                                                                                                                                                                                                                                                                                                                                                                |
| N33°51'07.73947" | W6°51'13.85911"                                                              | 222.280                                                                                                                                      | ?                                                                                                                                                                                                                                                                                                                     | LLh                                                                                                                                                                                                                                                                                                                                                                                |
| N33°51'54.82516" | W7°00'27.97140"                                                              | 96.320                                                                                                                                       | ?                                                                                                                                                                                                                                                                                                                     | LLh                                                                                                                                                                                                                                                                                                                                                                                |
| N33°53'22.88872" | W6°57'55.92704"                                                              | 91.560                                                                                                                                       | ?                                                                                                                                                                                                                                                                                                                     | LLh                                                                                                                                                                                                                                                                                                                                                                                |
|                  | N33°53'56.94328"<br>N33°49'05.82803"<br>N33°51'07.73947"<br>N33°51'54.82516" | N33°53'56.94328" W6°54'59.62686"<br>N33°49'05.82803" W6°54'54.90279"<br>N33°51'07.73947" W6°51'13.85911"<br>N33°51'54.82516" W7°00'27.97140" | Latitude         Longitude         (Mètre)           N33°53'56.94328"         W6°54'59.62686"         145.651           N33°49'05.82803"         W6°54'54.90279"         189.250           N33°51'07.73947"         W6°51'13.85911"         222.280           N33°51'54.82516"         W7°00'27.97140"         96.320 | Latitude         Longitude         (Mètre)         (Mètre)           N33°53'56.94328"         W6°54'59.62686"         145.651         0.0512           N33°49'05.82803"         W6°54'54.90279"         189.250         ?           N33°51'07.73947"         W6°51'13.85911"         222.280         ?           N33°51'54.82516"         W7°00'27.97140"         96.320         ? |

ile:///C:/Users/bourriz/AppData/Local/Temp/TBCTemporal/24ouyeei.ua3/Rpta9ebb1c8.html

| 5/05/2022 13:00 |                  | Rapport sur l'aj | ustement du réseau |        |  |
|-----------------|------------------|------------------|--------------------|--------|--|
| POINT 6         | N33°50'41.51094" | W6°56'22.88310"  | 160.438            | 0.0407 |  |
| POINT 7         | N33°52'04.69906" | W6°55'37.00355"  | 132.665            | 0.0375 |  |
| POINT 8         | N33°50'14.88264" | W6°54'27.78349"  | 195.810            | 0.0340 |  |

Figure 14: Coordonnées des points par traitement avec un maximum de contraintes

Après avoir ajusté la totalité du réseau, on obtient la liste des points définitifs suivante :

| Données des fichiers                    | de l'étude                                                         | Système pour les   | coordonnées                  |
|-----------------------------------------|--------------------------------------------------------------------|--------------------|------------------------------|
| Nom :                                   | D:\2Cl Topo\S4\Stage profe\Géodésie<br>\traitement avec Géoide.vce | Nom:               | ITRF2005                     |
| Taille :                                | 144 KB                                                             | Datum:<br>Zone:    | ITRF 2005<br>ITRF2005 ZONE 1 |
| Modifié:                                | 14/05/2022 01:57:17 (UTC:1)                                        | Géoïde:            | GHM21                        |
| Fuseau horaire :<br>Numéro de référence | Maroc                                                              | Datum vertical:    |                              |
| Description :                           |                                                                    | Chantier calibré : |                              |
| Commentaire 1 :                         |                                                                    |                    |                              |
| Commentaire 2 :                         |                                                                    |                    |                              |
| Commentaire 3 :                         |                                                                    |                    |                              |

#### Liste de points

| ID      | Abscisse<br>(Mètre) | Ordonnée<br>(Mètre) | Altitude<br>(Mètre) | Code des entités<br>géographiques |
|---------|---------------------|---------------------|---------------------|-----------------------------------|
| 5248hc  | 459786.228          | 1417568.279         | 99.818              |                                   |
| B34     | 459775.811          | 1408601.351         | 142.686             |                                   |
| GAB14   | 465510.524          | 1412273.939         | 175.891             |                                   |
| GH40    | 451295.736          | 1413935.313         | 50.386              |                                   |
| GH45    | 455242.919          | 1416587.197         | 45.742              |                                   |
| POINT 6 | 457558.343          | 1411581.460         | 114.165             |                                   |
| POINT 7 | 458775.209          | 1414125.775         | 86.567              |                                   |
| POINT 8 | 460503.984          | 1410717.720         | 149.397             |                                   |

Figure 15: extrait du rapport final contenant la liste des points

Nous remarquons que toutes les hauteurs obtenues par cette méthode ont une erreur systématique de 10 cm de la valeur vraie qui se présente au niveau de la détermination des hauteurs ellipsoïdales du réseau ITRF, ces déterminations peuvent être améliorées en intégrant des stations permanentes disponible dans la région d'étude.

#### 4. Mission GNSS:

#### 4.1. Objectif:

Après avoir matérialisé les points nouveaux, on a commencé la détermination de leurs coordonnées par observation GNSS.

# 4.2. Mode opératoire :

- ➤ <u>Matériel utilisé</u>: Pour cette mission nous avons utilisé 4 récepteurs bi-fréquence TOPCON et 2 récepteurs bi-fréquence SP-60.
- ➤ <u>Mode d'observation</u>: pour établir un réseau géodésique avec une meilleure précision on a opté pour le mode relatif statique. Ce

- mode de positionnement permet d'éliminer une grande partie d'erreurs dues aux horloges des satellites et des récepteurs, aux orbites des satellites et à la réfraction ionosphérique et troposphérique.
- ➤ <u>Observation</u>: il existe 2 types d'observations (observables), les pseudodistances et les phases. Les premières donnent une faible exactitude de positionnement, elles sont généralement utilisées dans la navigation. Les secondes sont favorables dans les positionnements de haute précision.

Pour cette mission on a utilisé les phases.

- Femps d'occupation : les lignes de bases sont inférieures à 30km, les récepteurs utilisés sont bi-fréquence avec un mode d'observation relatif statique donc on a besoin, presque, de 15min + 1min/km + 1min/100m de Δh, on a choisi 3h d'observation pour chaque session pour s'assurer de nos observations, et on spécifie 15 secondes pour l'intervalle d'enregistrement.
- <u>Résultat</u>: par poste traitement des différentes lignes de bases et après ajustement des résultats, on a les coordonnées finales des nouveaux points ainsi que leurs précisions.

### 4.3. Planification et configuration :

Pour éviter tout sort d'extrapolation les nouveaux points doivent être entourer par les anciens points.



Figure 16: Schéma de planification faite en réunion des 2 sessions d'observation

Nous disposons seulement de 6 récepteurs donc la classe était subdiviser en 6 groupes qui sont réparti sur les points nouveaux et les points anciens.

La planification des observations doit être faite de façon à ce que le réseau soit formé avec des lignes de bases indépendantes. Pour en faire nous devons exécuter 2 sessions d'observation.

Les 2 groupes avec les récepteurs SP-60 on était déplacé dans la deuxième session.

Le programme de la mission GNSS pour l'ensemble de la classe était comme le montre le tableau suivant :

| Équipe | Point  | Session             | Temp<br>d'observation | Mode     | Récepteur | Hauteur(m) | Observations |  |
|--------|--------|---------------------|-----------------------|----------|-----------|------------|--------------|--|
| 1      | Gak3I3 | <b>S</b> 1          |                       | Statique | TOPCON    | 0.86       | Inclinée     |  |
|        | 42     | S2                  | 14h38-20h30           |          |           |            |              |  |
| 2      | 5248HC | <b>S</b> 1          |                       | Statique | TOPCON    | 1.492      | Inclinée     |  |
|        |        | S2                  | 14h49-20h30           |          |           |            |              |  |
| 3      | GH45   | <b>S</b> 1          | 15h30-17h30           | Statique | SP60      | 1.1578     | Crochet      |  |
|        | Gab14  | S2                  | 18h31-20h35           |          |           | 0.928      |              |  |
| 4      | PNT7   | PNT7 S1 15h30-20h30 | Statique              | TOPCON   | 1.11      | Crochet    |              |  |
|        |        | S2                  |                       |          |           |            |              |  |
| 5      | GH40   | <b>S</b> 1          | 15h-17h30             | Statique | SP60      | 0.876      | Incliné      |  |
|        | PNT8   | S2                  | 18h-20h30             | -        |           | 1.273      | Incliné      |  |
| 6      | B34    | <b>S</b> 1          | 14h37-20h31           | Statique | TOPCON    | 0.877      | Incliné      |  |
|        |        | S2                  |                       |          |           |            |              |  |

Tableau 13: Programme d'observation de la mission GNSS

# 4.4. Traitement de lignes de bases :

Les processus de traitement et d'ajustement des observations GNSS suivent chacun plusieurs étapes. On commence par traiter chaque session séparément, dans chaque session le nombre des lignes de bases est indépendant, donc on désactive les lignes de base effilées et les lignes de base formant des triangles très étroits, puis on commence le traitement. Le traitement des lignes de base doit aboutir à une résolution fixe de l'ambiguïté pour qu'elles soient enregistrées. Il faut s'assurer des valeurs du RMS et la précision horizontale. Si elles sont

tolérables, on peut valider le traitement.

La résolution de l'ambiguïté était bien faite et le traitement était bien passé, Vous trouverez en annexes un rapport de traitement de lignes de base fourni par le logiciel TBC.

|   | Récapitulatif d'acceptation      |    |   |  |   |  |  |
|---|----------------------------------|----|---|--|---|--|--|
|   | Traité Passé Drapeau 🏲 Echouer 🟲 |    |   |  |   |  |  |
| Γ | 16                               | 16 | 0 |  | 0 |  |  |

Figure 17: Récapitulatif d'acceptation des observations de la GNSS

#### 4.5. Fermeture des boucles :

Cette fermeture témoigne de la qualité géométrique de la figure que nous avons formée.

Il existe 2 types d'erreurs de fermetures de boucles :

Erreur de fermeture interne : obtenue en considérant les mesures des lignes de base d'une même session, l'erreur de fermeture interne est toujours nulle, lorsque le nombre de mesures est le même sur l'ensemble des points même si l'un d'entre eux a des mesures aberrantes. Donc ce n'est pas un indicateur de la qualité des mesures.

Erreur de fermeture externe: obtenue en considérant les mesures de lignes de base de plusieurs sessions différentes. Par exemple deux sessions avec une base commune. Le calcul de l'erreur de fermeture externe consiste à comparer deux résultats GNSS indépendants obtenus lors de sessions différentes. Elle représente bien un indicateur de la qualité des mesures puisque les résultats (différences de coordonnées) sont calculés de manière indépendante à partir de jeux de coordonnées issus de sessions différentes.

| Récapitulatif              |                                                              |                |                   |                  |          |  |  |  |  |
|----------------------------|--------------------------------------------------------------|----------------|-------------------|------------------|----------|--|--|--|--|
| Etapes dans la boucle 3    |                                                              |                |                   |                  |          |  |  |  |  |
| Nombre de boucles: 9       |                                                              |                |                   |                  |          |  |  |  |  |
| Nombre réussi: 9           |                                                              |                |                   |                  |          |  |  |  |  |
| Nombre échoué: 0           |                                                              |                |                   |                  |          |  |  |  |  |
|                            | Longueur<br>(Mètre)                                          | Δ3D<br>(Mètre) | ΔHoriz<br>(Mètre) | ΔVert<br>(Mètre) | PPM      |  |  |  |  |
| Critères de réussite/échec |                                                              |                | 0.1000            | 0.2000           |          |  |  |  |  |
| Meilleure                  |                                                              | 0.0006         | 0.0006            | -0.0001          | 0.047    |  |  |  |  |
| La plus mauvaise           |                                                              | 0.0344         | 0.0067            | -0.0338          | 1.684    |  |  |  |  |
| Boucle moyenne             | 14452.3273                                                   | 0.0088         | 0.0030            | 0.0077           | 0.544    |  |  |  |  |
| Erreur standard            | 3634.2697                                                    | 0.0135         | 0.0035            | 0.0130           | 0.490    |  |  |  |  |
| Date :15/05/2022 13:56:18  | Etude:D:\2CI Topo\S-<br>profe\Géodésie\traitem<br>Géoide.vce |                | Tri               | mble Busines     | s Center |  |  |  |  |

Figure 18: Le résultat de rapport de fermeture des boucle

### 4.6. Ajustement des observations sans géoïde :

Après avoir traité les lignes de base et contrôler la fermeture des boucles, on passe à la dernière étape du traitement du réseaux géodésique qui est à la base d'un ajustement.

Le but de l'ajustement est d'avoir une solution unique lorsqu'il existe une redondance des observations, de détecter les erreurs et les grandes erreurs en plus de minimiser les corrections apportées aux observations.

L'ajustement du réseau s'effectue suivant les opérations suivantes :

### 4.6.1. Ajustement libre:

Il s'agit d'un processus itératif qui permet de vérifier la cohérence interne du réseau et d'obtenir les estimations sur les erreurs d'observations. Cet ajustement s'effectue sans fixation d'aucun point connu, l'évaluation des résultats s'effectue par le test Chi-2 et s'il échoue, il faut recommencer le traitement avec un autre facteur de référence.

#### Z Erreur 3D Erreur Contrainte X Erreur Y Erreur $\mathbf{Z}$ ID de point (Mètre) (Mètre) (Mètre) (Mètre) (Mètre) (Mètre) (Mètre) 5248hc 5261052.438 0.0070 -638200.566 0.0013 3537247.132 0.0045 0.0084 B34 0.0074 | -638686.149 0.0013 3529822.782 0.0049 5266064.188 0.0090 0.0083 | -632796.050 0.0055 0.0101 GAB14 5264696.233 0.0016 3532961.326 **GH40** 5262071.161 0.0115 | -646825.567 0.0022 3534095.929 0.0077 0.0140 GH45 5261041.309 0.0079 -642762.639 0.0015 3536346.003 0.0051 0.0095 0.0083 POINT 6 5264138.134 0.0069 -640731.073 0.0012 ||3532255.711 0.0045 POINT 7 5262840.061 0.0059 |-639385.144 0.0010 3534368.785 0.0038 0.0071 POINT 8 5264977.623 0.0067 -637851.961 0.0012 3531593.940 0.0044 0.0081

### Coordonnées ECEF ajustées

Figure 19: Les coordonnées des points résultantes d'un ajustement libre des observations sans géoïde

#### 4.6.2. Ajustement avec contraintes:

#### > Avec minimum de contrainte :

On introduit dans le réseau les coordonnées d'un seul point connu dans notre cas c'était Borne B34.

A l'issue de ces résultats, on calcul les écarts entre les coordonnées ajustées des points connus avec leurs coordonnées réelles et puisque tous ces écarts sont acceptés, on passe à l'ajustement avec maximum de contraintes.

### > Avec maximum de contraintes :

On procède de la même manière, on ajoute dans le réseau les coordonnées d'autres points connus et puis on observe le comportement des autres points anciens non fixé dans le réseau, autrement dit on calcule les écarts entre les

coordonnées ajustées avec leurs coordonnées réelles. Dans notre cas, il s'est avéré que l'ajustement avec 4 contraintes qui sont : B34, Gab14, GH40, GH45 donne des résultats tolérables.

# Coordonnées ECEF ajustées

| ID de point   | X<br>(Mètre) | X Erreur<br>(Mètre) | Y<br>(Mètre) | Y Erreur<br>(Mètre) | Z<br>(Mètre) | Z Erreur<br>(Mètre) | 3D Erreur<br>(Mètre) | Contrainte |
|---------------|--------------|---------------------|--------------|---------------------|--------------|---------------------|----------------------|------------|
| <u>5248hc</u> | 5261054.106  | 0.0380              | -638200.690  | 0.0083              | 3537245.283  | 0.0250              | 0.0463               |            |
| <u>B34</u>    | 5266065.852  | ?                   | -638686.265  | ?                   | 3529820.958  | ?                   | ?                    | EN         |
| GAB14         | 5264697.887  | ?                   | -632796.194  | ?                   | 3532959.494  | ?                   | ?                    | EN         |
| GH40          | 5262072.848  | ?                   | -646825.655  | ?                   | 3534094.067  | ?                   | ?                    | EN         |
| GH45          | 5261042.963  | ?                   | -642762.739  | ?                   | 3536344.151  | ?                   | ?                    | EN         |
| POINT 6       | 5264139.801  | 0.0374              | -640731.182  | 0.0074              | 3532253.877  | 0.0244              | 0.0452               |            |
| POINT 7       | 5262841.725  | 0.0320              | -639385.260  | 0.0067              | 3534366.945  | 0.0208              | 0.0387               |            |
| POINT 8       | 5264979.282  | 0.0363              | -637852.082  | 0.0069              | 3531592.108  | 0.0241              | 0.0441               |            |

Figure 20: Les coordonnées des points résultantes d'un ajustement avec contraintes des observations sans géoïde

### > Ajustement définitif :

C'est un ajustement avec contraintes mais qui aboutit à la détermination des résultats finales, d'une autre manière les coordonnées définitives sont obtenues.



Figure 21: Illustration des lignes de bases du réseau de densification de la mission établie

Les ellipses d'erreurs apparaissant dans la figure renseignent sur la qualité et les orientations des erreurs.

| ID      | Abscisse<br>(Mètre) | Ordonnée<br>(Mètre) | Altitude<br>(Mètre) | Code des entités<br>géographiques |
|---------|---------------------|---------------------|---------------------|-----------------------------------|
| 5248hc  | 459786.227          | 1417568.280         | 140.043             |                                   |
| B34     | 459775.810          | 1408601.350         | 183.330             |                                   |
| GAB14   | 465510.520          | 1412273.940         | 216.696             |                                   |
| GH40    | 451295.740          | 1413935.310         | 90.717              |                                   |
| GH45    | 455242.920          | 1416587.200         | 85.978              |                                   |
| POINT 6 | 457558.343          | 1411581.460         | 154.824             |                                   |
| POINT 7 | 458775.208          | 1414125.776         | 127.034             |                                   |
| POINT 8 | 460503.983          | 1410717.720         | 190.197             |                                   |

Figure 22: Coordonnées finales des points adoptées résultante d'un ajustement sans géoïde

# 4.7. Ajustement des observations avec géoïde :

# 4.7.1. Importation du Géoïde:

En utilisant le logiciel Trimble Grid Factory Utility, et en suivant les étapes de guide avec le fichier Excel contenant les points connus en coordonnées géodésique (latitude, longitude) avec leurs ondulations de géoïde (la hauteur de géoïde par rapport à l'ellipsoïde de référence), on définit le géoïde établi par l'agence national de la conservation foncier du cadastre et de la cartographie.



Figure 23: interface du logiciel Trimble Grid Factory Utility

Pour qu'on puisse faire le traitement avec ce géoïde, on définit d'abord la projection ITRF05 dans le logiciel TBC, puis on import notre géoïde de format (ggf), puis on refait les mêmes étapes précédentes, en traitant les lignes de bases des 2 sessions, on établit le rapport de fermeture, puis on commence l'ajustement libre sans fixer aucun point.

# Coordonnées de grille ajustées

| ID de point   | Abscisse<br>(Mètre) | Abscisse Erreur<br>(Mètre) | Nord<br>(Mètre) | Nord Erreur<br>(Mètre) | Altitude<br>(Mètre) | Altitude Erreur<br>(Mètre) | Contrainte |
|---------------|---------------------|----------------------------|-----------------|------------------------|---------------------|----------------------------|------------|
| <u>5248hc</u> | 459786.186          | 0.0009                     | 1417570.747     | 0.0011                 | 93.869              | 0.0081                     |            |
| <u>B34</u>    | 459775.761          | 0.0010                     | 1408603.794     | 0.0011                 | 136.780             | 0.0086                     |            |
| GAB14         | 465510.501          | 0.0013                     | 1412276.386     | 0.0014                 | 169.961             | 0.0097                     |            |
| <u>GH40</u>   | 451295.661          | 0.0015                     | 1413937.796     | 0.0020                 | 44.439              | 0.0134                     |            |
| GH45          | 455242.857          | 0.0010                     | 1416589.661     | 0.0013                 | 39.817              | 0.0091                     |            |
| POINT 6       | 457558.288          | 0.0009                     | 1411583.913     | 0.0011                 | 108.245             | 0.0080                     |            |
| POINT 7       | 458775.159          | 0.0007                     | 1414128.233     | 0.0009                 | 80.637              | 0.0068                     |            |
| POINT 8       | 460503.939          | 0.0010                     | 1410720.167     | 0.0011                 | 143.481             | 0.0078                     |            |

Figure 24:Coordonnées résultantes de l'ajustement avec géoïde

Pour l'ajustement avec contraints, on introduit les coordonnées planimétriques de point en plus des hauteurs ortho-métrique.

### 4.7.2. Ajustement avec contraintes:

#### > Avec minimum de contrainte :

On introduit dans le réseau les coordonnées planimétriques ainsi que la hauteur ortho-métrique du point B34.

### Coordonnées de grille ajustées

| ID de point   | Abscisse<br>(Mètre) | Abscisse Erreur<br>(Mètre) | Nord<br>(Mètre) | Nord Erreur<br>(Mètre) | Altitude<br>(Mètre) | Altitude Erreur<br>(Mètre) | Contrainte |
|---------------|---------------------|----------------------------|-----------------|------------------------|---------------------|----------------------------|------------|
| <u>5248hc</u> | 459786.235          | 0.0016                     | 1417568.295     | 0.0018                 | 99.882              | 0.0139                     |            |
| <u>B34</u>    | 459775.810          | ?                          | 1408601.350     | ?                      | 142.796             | ?                          | EN e       |
| GAB14         | 465510.544          | 0.0017                     | 1412273.938     | 0.0018                 | 175.976             | 0.0126                     |            |
| <u>GH40</u>   | 451295.717          | 0.0020                     | 1413935.347     | 0.0025                 | 50.454              | 0.0175                     |            |
| <u>GH45</u>   | 455242.910          | 0.0016                     | 1416587.209     | 0.0021                 | 45.830              | 0.0148                     |            |
| POINT 6       | 457558.339          | 0.0013                     | 1411581.467     | 0.0014                 | 114.260             | 0.0112                     |            |
| POINT 7       | 458775.209          | 0.0014                     | 1414125.783     | 0.0017                 | 86.651              | 0.0127                     |            |
| POINT 8       | 460503.987          | 0.0012                     | 1410717.721     | 0.0013                 | 149.497             | 0.0101                     |            |

Figure 25: Coordonnées résultantes de l'ajustement avec géoïde avec minimum de contraintes

#### Avec maximum de contraintes :

On procède de la même manière, on ajoute dans le réseau les coordonnées et les hauteurs ortho-métrique d'autres points connus et puis on observe le comportement des autres points anciens non fixé dans le réseau, autrement dit on calcule les écarts entre les coordonnées et les hauteurs ajustées avec leurs coordonnées et les hauteurs réelles. Dans notre cas, il s'est avéré que l'ajustement avec 3 contraintes qui sont : B34, GH40, GH45 donne des résultats tolérables.

# Coordonnées de grille ajustées

| ID de point | Abscisse<br>(Mètre) | Abscisse Erreur<br>(Mètre) | Nord<br>(Mètre) | Nord Erreur<br>(Mètre) | Altitude<br>(Mètre) | Altitude Erreur<br>(Mètre) | Contrainte |
|-------------|---------------------|----------------------------|-----------------|------------------------|---------------------|----------------------------|------------|
| 5248hc      | 459786.231          | 0.0078                     | 1417568.281     | 0.0089                 | 99.893              | 0.0553                     |            |
| <u>B34</u>  | 459775.810          | ?                          | 1408601.350     | ?                      | 142.796             | ?                          | EN e       |
| GAB14       | 465510.531          | 0.0111                     | 1412273.938     | 0.0111                 | 175.982             | 0.0633                     |            |
| GH40        | 451295.740          | ?                          | 1413935.310     | ?                      | 50.470              | 0.0777                     | EN         |
| GH45        | 455242.920          | ?                          | 1416587.200     | ?                      | 45.839              | ?                          | EN e       |
| POINT 6     | 457558.344          | 0.0055                     | 1411581.461     | 0.0068                 | 114.270             | 0.0512                     |            |
| POINT 7     | 458775.211          | 0.0058                     | 1414125.776     | 0.0071                 | 86.662              | 0.0498                     |            |
| POINT 8     | 460503.986          | 0.0065                     | 1410717.719     | 0.0067                 | 149.502             | 0.0503                     |            |

Figure 26: Coordonnées résultantes de l'ajustement avec géoïde avec maximum de contraintes

# > Ajustement définitif :

C'est un ajustement avec contraintes qui aboutit à la détermination des coordonnées planimétrique et les hauteurs ortho-métrique finale.

# Coordonnées de grille ajustées

| ID de point   | Abscisse<br>(Mètre) | Abscisse Erreur<br>(Mètre) | Nord<br>(Mètre) | Nord Erreur<br>(Mètre) | Altitude<br>(Mètre) | Altitude Erreur<br>(Mètre) | Contrainte |
|---------------|---------------------|----------------------------|-----------------|------------------------|---------------------|----------------------------|------------|
| <u>5248hc</u> | 459786.230          | ?                          | 1417568.280     | ?                      | 99.893              | 0.0549                     | EN         |
| <u>B34</u>    | 459775.810          | ?                          | 1408601.350     | ?                      | 142.796             | ?                          | EN e       |
| GAB14         | 465510.520          | ?                          | 1412273.940     | ?                      | 175.974             | 0.0631                     | EN         |
| <u>GH40</u>   | 451295.740          | ?                          | 1413935.310     | ?                      | 50.472              | 0.0784                     | EN         |
| <u>GH45</u>   | 455242.920          | ?                          | 1416587.200     | ?                      | 45.839              | ?                          | EN e       |
| POINT 6       | 457558.344          | 0.0054                     | 1411581.461     | 0.0066                 | 114.270             | 0.0516                     |            |
| POINT 7       | 458775.210          | 0.0038                     | 1414125.776     | 0.0047                 | 86.661              | 0.0498                     |            |
| POINT 8       | 460503.983          | 0.0056                     | 1410717.720     | 0.0057                 | 149.497             | 0.0504                     |            |

Figure 27: Coordonnées résultantes de l'ajustement définitif avec géoïde



Figure 28: Illustration des lignes de bases du réseau de densification de la mission établie sur TBC

## Liste de points

| ID      | Abscisse<br>(Mètre) | Ordonnée<br>(Mètre) | Altitude<br>(Mètre) | Code des entités<br>géographiques |
|---------|---------------------|---------------------|---------------------|-----------------------------------|
| 5248hc  | 459786.230          | 1417568.280         | 99.893              |                                   |
| B34     | 459775.810          | 1408601.350         | 142.796             |                                   |
| GAB14   | 465510.520          | 1412273.940         | 175.974             |                                   |
| GH40    | 451295.740          | 1413935.310         | 50.472              |                                   |
| GH45    | 455242.920          | 1416587.200         | 45.839              |                                   |
| POINT 6 | 457558.344          | 1411581.461         | 114.270             |                                   |
| POINT 7 | 458775.210          | 1414125.776         | 86.661              |                                   |
| POINT 8 | 460503.983          | 1410717.720         | 149.497             |                                   |

Figure 29: Coordonnées définitives pour les points adoptées lors de la mission GNSS

# Partie2: Rapport nivellement

#### V. Introduction Générale :

Pour densifier notre réseau non seulement en planimétrie mais aussi en altimétrie, on réalise un nivellement de précision, cette opération représente une étape primordiale, c'est une phase dans laquelle on contrôle la stabilité de nos repères de nivellement.

Il existe plusieurs types de nivellement qui différent en termes de précision et du mode opératoire :

- Nivellement géométrique directe de précision
- Nivellement géométrique direct ordinaire
- Nivellement Trigonométrique

Dans notre projet, nous avons opté pour le nivellement de précision vu qu'on va densifier notre zone en repères altimétriques et qui doivent être déterminés avec une très grande précision.

# VI. Objectifs:

L'objectif de cette partie se résume essentiellement sur :

- Faire la reconnaissance des repères de NGM existants et Contrôler l'état des repères du nivellement général du Maroc (RNGM) existant dans la zone.
- -Rattacher les points nouveaux du réseau géodésique au réseau du RNGM.

# VII. Nivellement géométrique direct de précision pour le contrôle de stabilité :

# 1. L'objectif.

Le but de cette mission est d'évaluer et contrôler la stabilité du réseau altimétrique entre les repères NGM Gak313 36 et Gak313 42. Le long de ce trajet se trouve les points suivants : Gak313 37, Gak313 38, Gak313 39, Gak313 40, Gak313 41.

Ce contrôle nous permettra d'établir le rattachement altimétrique par nivellement de précision la borne BORNE8.

#### 2. SORTIE DE RECONNAISSANCE:

#### 2.1. Planification de la sortie de reconnaissance :

La sortie de reconnaissance des repères NGM nous a permis de savoir à l'avance l'état des points et différencier entre ceux qui sont exploitables et d'autres non exploitables.

On adopte pour notre projet les repères NGM en bonne état et accessible pour les utiliser le long du parcours de vérification de la stabilité des points,

Dans cette mission, la bonne gestion et distribution des parcours entre les groupes, aide à minimiser les couts et vérifier du bon et du forme la stabilité de ces points.



Figure 30: repère de nivellement pour le tronçon global

## 2.2. Répartition du tronçon :

La répartition des segments des repères entre les différents groupes s'est effectuée lors d'une réunion de façon à ce que chaque équipe se charge d'un tronçon de telle sorte que la répartition soit homogène. Pour ce le tronçon (Gak3l3 37- Gak3l3 38) est de grande distance donc la création d'un piquet est nécessaire afin d'attribuer cette partie à deux groupes.

On peut résumer la mission dans le tableau suivant :

| Groupe | Liste des tronçons | Repères                 |
|--------|--------------------|-------------------------|
| 3      | 0                  | [Gak3l3 42 - Gak3l3 41] |
| 2      | 2                  | [Gak313 41 - Gak313 40] |
| 1      | 3                  | [Gak313 40 - Gak313 39] |
| 7      | 4                  | [Gak313 39 - Gak313 38] |
| 5      | 6                  | [Gak313 38 - piquet]    |

| 4 | 6 | [Piquet - Gak313 37]    |
|---|---|-------------------------|
| 6 | • | [Gak313 37 - Gak313 36] |

Tableau 14: Répartition du trajet en tronçons selon les groupes et les repères NGM

#### 3. Exécution de la mission de nivellement :

#### 3.1. Matériels:

Le matériel utilisé pour l'exécution de la mission est énuméré comme suit :

- ✓ Un niveau N3 Topcon
- ✓ Un trépied
- ✓ Deux mires à code-barres
- ✓ 6 crapauds
- ✓ Piquets en fer
- ✓ Une Chaine de 30m
- ✓ Des plots de signalisation

#### 3.2. Mode opératoire :

La mission de contrôle de stabilité des deux repères de nivellement s'effectue comme suit :

- ✓ Un opérateur qui stationne le niveau et qui vise les mires.
- ✓ Un secrétaire qui note les observations sur une fiche.
- ✓ Un secrétaire qui calcule les contrôles de marche.
- ✓ Deux porteurs de mires.
- ✓ Deux chaîneurs.
- ✓ Un gardien de crapauds.

#### 3.3. Les vérifications à effectuer :

## • Les précautions à prendre :

Pour chaque mesure il faut effectuer prendre en considération les vérifications suivantes :

- ✓ La portée ne dépasse pas 50 m
- ✓ La permutation des mesures entre le cheminement 1 et 2 est non tolérable lors de la mission
- ✓ L'égalité des portées avec une tolérance de 1m si le terrain est plat, sinon la différence ait été centimétrique.
- ✓ L'égalité des demi-portes

$$D_1 - D_2 \leq 5cm$$

✓ Le contrôle de marche qui consiste dans le contrôle de la différence de la dénivelée entre les deux crapauds entre le coup avant et le coup arrière :

$$\Delta H_1(avant) - \Delta H_2(aarri\`ere) \le 0.4 mm$$

**N.B**: Le cheminement est considéré un cheminement de 3ème ordre donc la tolérance du contrôle de marché ne dépasse pas les 7 millièmes.

#### • L'utilité des vérifications :

Les vérifications effectuées dans le mode opératoire nous permettent de réduire ou d'éliminer les erreurs systématiques qui affectent la mesure. Ces erreurs sont les suivants :

- ✓ L'égalité des portés permet de réduire l'effet de la courbure terrestre et de la réfraction atmosphérique et d'éliminer l'erreur due au défaut de réglage de l'instrument.
- ✓ L'utilisation de la même mire sur les paires des crapauds pour le coup avant et arrière, sert à éliminer l'erreur du talon.
- ✓ Le contrôle de marche est un moyen de vérification de l'homogénéité des mesures entre les deux cheminements parallèles

#### 4. Résultats et leurs analyses :

Le calcul s'effectue par les formules suivantes :

• 
$$V = (\sum_{i} L_{V_i})_{ch2} - (\sum_{j} L_{V_j})_{ch1}$$

$$\bullet \quad \Delta H_{ch1} = \left(\sum_{i} (L_{R_i} - L_{v_i})_{ch1}\right)$$

$$\bullet \quad \Delta H_{ch2} = \left(\sum_{i} (L_{R_i} - L_{v_i})_{ch2}\right)$$

#### 4.1. Cheminement Aller:

Les observations et les calculs effectués sont représentées dans le tableau suivant sachant que :

|           | Coup Arrière |          | С        | Coup Avant |          |        | nce des le | ctures au | x FN   |      |
|-----------|--------------|----------|----------|------------|----------|--------|------------|-----------|--------|------|
|           | DS           | Echelle  | Echelle  | Echelle    | Echelle  | DS     | Arr        | ière      | Ava    | nt   |
|           |              | I        | II       | l          | II       |        |            | Contro    | ole de |      |
|           |              |          |          |            |          |        |            | mar       | che    |      |
|           |              | Niveleur | Niveleur | Niveleur   | Niveleur |        |            | (+)       | (-)    |      |
| S1        | 30,9         | 0,9335   | 0,9334   | 1,6326     | 1,6343   | 30,95  | -1         |           |        | 17   |
| S2        | 43,87        | 1,2873   | 1,2894   | 1,2679     | 1,2643   | 43,52  | 21         | 4         |        | -35  |
| S3        | 43,91        | 1,1776   | 1,1746   | 1,2431     | 1,2264   | 44,33  | -30        | 5         |        | -166 |
| S4        | 43,88        | 1,5372   | 1,5205   | 0,9926     | 0,9888   | 44,36  | -168       |           | -2     | -38  |
| S5        | 43,69        | 2,0918   | 2,0880   | 0,7960     | 0,7963   | 43,34  | -37        |           | 0      | 3    |
| S6        | 46,25        | 2,4638   | 2,4641   | 0,0597     | 0,0572   | 46,42  | 3          |           | 0      | -25  |
| <b>S7</b> | 33,02        | 2,6362   | 2,6332   | 0,3144     | 0,3211   | 32,56  | -31        |           | -5     | 67   |
| S8        | 23,45        | 2,33473  | 2,3412   | 0,6188     | 0,61037  | 23,01  | 65         |           | -3     | -84  |
| S9        | 16,17        | 1,59957  | 1,59099  | 0,76285    | 0,76299  | 15,97  | -85,8      |           | -1     | 1,4  |
|           | 325,14       | 16,0618  | 16,0354  | 7,6879     | 7,6618   | 324,46 |            |           | -2     |      |
|           |              | R=       | -264     | V=         | -260     |        |            | 9,4       | -12,9  |      |
|           |              |          |          |            |          |        | R          |           |        | V    |
|           |              |          |          |            |          |        | -264       | R-V=      | -4     | -260 |
|           |              | L(m)     | 649,6    | DI(m)      | 8,3739   | DII=   | 8,3736     | DII-DI=   | -4     |      |

Tableau 15: Les observations obtenues pour le cheminement Aller du tronçon 4

## 4.2. Chemin retour :

|            | Coup Arrière |          | Co       | oup Avant |          | Différer | ice des l | ectures a | ux FN  |        |
|------------|--------------|----------|----------|-----------|----------|----------|-----------|-----------|--------|--------|
|            | DS           | Echelle  | Echelle  | Echelle   | Echelle  | DS       | Arrière(( | ).1mm)    | Avant( | 0.1mm) |
|            |              | I        | II       | I         | II       |          |           | Contr     | ôle de |        |
|            |              |          |          |           |          |          |           | mai       | che    |        |
|            |              | Niveleur | Niveleur | Niveleur  | Niveleur |          |           | (+)       | (-)    |        |
| <b>S</b> 1 | 18,61        | 0,3398   | 0,3398   | 1,9265    | 1,9740   | 18,44    | 0         |           |        | 474    |
| S2         | 37,93        | 0,0908   | 0,1382   | 2,6244    | 2,6352   | 37,77    | 474       |           | 0      | 108    |
| <b>S</b> 3 | 38,58        | 0,0858   | 0,0966   | 2,2236    | 2,2308   | 38,49    | 108       | 0         |        | 73     |
| S4         | 38,18        | 0,4489   | 0,4561   | 2,0168    | 2,0311   | 38,5     | 72        |           | -1     | 143    |
| S5         | 40,19        | 0,8649   | 0,8786   | 1,8116    | 1,7976   | 39,95    | 136       |           | -6     | -141   |
| <b>S</b> 6 | 42,57        | 1,1267   | 1,1123   | 1,5195    | 1,5272   | 42,77    | -144      |           | -3     | 77     |
| <b>S</b> 7 | 40,92        | 1,3107   | 1,3186   | 1,0588    | 1,0628   | 40,56    | 79        | 1         |        | 40     |
| <b>S</b> 8 | 37,95        | 1,3999   | 1,4039   | 1,4563    | 1,4393   | 37,28    | 40        |           | 0      | -170   |
| <b>S</b> 9 | 30,64        | 1,53081  | 1,51373  | 0,93338   | 0,9333   | 30,94    | -170,8    | -1        |        | -0,8   |
|            | 325,57       | 7,1983   | 7,2578   | 15,5709   | 15,6313  | 324,7    |           |           | 1      |        |
|            |              | R=       | 595      | V=        | 604      |          | 595       | 2         | 170    | 604    |
|            |              |          |          |           |          |          | R         |           |        | V      |
|            |              |          |          |           |          |          | 595       | R-V=      | -9     | 604    |
|            |              | L(m)     | 650,27   | DI(m)     | -8,3726  | DII=     | -8,3735   | DII-      | -9     |        |
|            |              |          |          |           |          |          |           | DI=       |        |        |

Tableau 16: Les observations obtenues pour le cheminement Retour du tronçon 4

## 4.3. Calcul des précisions et contrôle des résultats :

On a:

$$\Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Aller}} = -8,373 m$$

$$\Delta H_{\text{(Gak3l3 39 - Gak3l3 38)}}$$
Retour = -8,3737 m

On sait que:

$$\Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Aller}} = \frac{\sum_{i=1}^{9} (L_R - L_V)_{ch1} + \sum_{i=1}^{9} (L_R - L_V)_{ch2}}{2}$$

Par propagation des erreurs on obtient :

$$\sigma_{(\Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Aller})}^{2} = \frac{1}{4} \sum_{i=1}^{9} 4 * \sigma_{L}^{2} = 9 * \sigma_{L}^{2} = 0.81 \text{ mm}^{2}$$

D'où:

$$\sigma_{\Delta H_{(Gak3l3 39 - Gak3l3 38)Aller}} = 0.9 mm$$

De même pour la dénivelée du retour, on obtient :

$$\Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Aller}} = \frac{\sum_{i=1}^{9} (L_R - L_V)_{ch1} + \sum_{i=1}^{9} (L_R - L_V)_{ch2}}{2}$$

$$\sigma_{\Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Aller}}} = 0.9 \ mm$$

De plus:

$$f = \Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Aller}} - \Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Retour}} = 0.7 \text{ mm}$$

$$\sigma_f^2 = \sigma_{(\Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Aller})}^2 + \sigma_{(\Delta H_{\text{(Gak3l3 39 - Gak3l3 38)Retour})}^2 = 1.8 \text{ mm}^2$$

D'où:

$$\sigma_f = 1,34 \, mm$$

$$T = 2.7 * \sigma_f = 3.618 mm$$

# Comme : f < T :

Donc On admet que les résultats obtenus, sont tolérables.

## 4.4. Analyse des résultats :

#### 4.4.1. Les observations :

| Liste des | Liste des |        | Poi    | nts     |          | ΔН       | Précision      | AH Managa  | Précision    |  |
|-----------|-----------|--------|--------|---------|----------|----------|----------------|------------|--------------|--|
| groupes   | tronçons  |        | Départ | Arrivée | Aller    | Retour   | Partielle (mm) | ΔH Moyenne | Moyenne (mm) |  |
| 3         | I         | Aller  | 42     |         | -5,5771  |          | 0,4            | -5,5782    | 0.4          |  |
| J         | 1         | Retour | 1      | 41      |          | 5,5792   | 0,3            | -5,5762    | 0,4          |  |
| 2         | II        | Aller  | 41     | _1      | 28,0058  |          | 0,4            | 28,0059    | 0.4          |  |
|           | 11        | Retour | 1      | 40      |          | -28,0059 | 0,4            | 20,0039    | 0,4          |  |
| 1         | III       | Aller  | 40     | _1      | 7,1031   |          | 0,3            | 7,1036     | 0,3          |  |
| 1         | 111       | Retour | 1      | 39      |          | -7,104   | 0,3            | 7,1030     | 0,3          |  |
| 7         | IV        | Aller  | 39     | 7       | 8,3737   |          | 0,3            | 8,3734     | 0,3          |  |
| 1         | 11        | Retour | 1      | 38      |          | -8,373   | 0,3            | 0,3734     | 0,3          |  |
| 5         | V         | Aller  | 38     |         | -5,4659  |          | 0,3            | -5,4663    | 0.3          |  |
| 3         | V         | Retour | 1      | piquet  |          | 5,4667   | 0,4            | -5,4005    | 0,3          |  |
| 4         | VI        | Aller  | piquet |         | -21,3271 |          | 0,4            | -21,3265   | 0.4          |  |
| +         | VI        | Retour | 1      | 37      |          | 21,3259  | 0,4            | -21,3203   | 0,4          |  |
|           | 7777      | Aller  | 37     |         | -10,7202 |          | 0,3            | 40.7004    | 0.2          |  |
| 6         | VII       | Retour | 1      | 36      |          | 10,7206  | 0,3            | -10,7204   | 0,3          |  |

Tableau 17: les observations acquises dans l'ensemble des tronçons

## 4.4.2. Compensation du réseau

#### • Méthode des conditions :

### > Analyse du problème :

• Nombre d'observation : n=7

• Nombre minimum d'éléments pour résoudre le problème n0=6

• Nombre de paramètres : u=0

• Degré de liberté :  $\vartheta = n - n0 = 1$ 

• Nombre d'équations : r= 1

#### > Identifications des variables :

## $\bar{L}$ : Vecteur des dénivelées observées

Avec:

$$\overline{L} = (\overline{l}_1 \quad \overline{l}_2 \quad \overline{l}_3 \quad \overline{l}_4 \quad \overline{l}_5 \quad \overline{l}_6 \quad \overline{l}_7)^T$$

$$\bar{L}$$
=  $(-5.5782 \ 20.0059 \ 7.1036 \ 8.3734 \ -5.4663 \ -21.3265 \ -10.7204)^T$ 

#### $\hat{V}$ : Vecteur des résiduelles

$$\hat{V} = \hat{\bar{L}} - \bar{L}$$

➤ Modèle mathématique implicite :

$$F\left(\widehat{\overline{L}}\right) = C$$

➤ Modèle mathématique générale :

$$F(\widehat{L}) = C \implies \widehat{l_1} + \widehat{l_2} + \widehat{l_3} + \widehat{l_4} + \widehat{l_5} + \widehat{l_6} + \widehat{l_7}$$

> Modèle mathématique linéarisé :

$$B\hat{V} + W = 0$$

Avec:

$$B = \frac{\partial F}{\partial \bar{L}}\Big|_{\bar{L}} \qquad W = F(\overline{L_0}) - C$$

Donc:

$$B = [1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1]$$

ET:

$$W = [14] * 10^{-1} mm$$

> Calcul de la matrice des poids :

$$P = \sigma_0^2 * \sum_{\bar{L}}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1.14 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.14 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.14 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1.14 \end{bmatrix}$$

Avec :  $\sigma_0^2 = 0.4^2$ 

 $\triangleright$  Calcul du vecteur des résiduels  $\widehat{V}$ :

$$M = BP^{-1}B^{T}$$

$$\hat{K} = -M^{-1}W$$

$$\hat{V} = P^{-1}B^{T}K$$

Alors:

$$\hat{V} = \begin{bmatrix} -2.15 \\ -2.15 \\ -1.87 \\ -1.87 \\ -1.87 \\ -2.15 \\ -1.88 \end{bmatrix} 10^{-1} mm$$

ightharpoonup Calcul de  $\hat{m{L}}$ :

$$\hat{\bar{L}} = \bar{L} + \hat{V}$$

$$\hat{\bar{L}} = \begin{bmatrix} \Delta h_{42-41} \\ \Delta h_{41-40} \\ \Delta h_{40-39} \\ \Delta h_{39-38} \\ \Delta h_{38-piquet} \\ \Delta h_{piquet-37} \\ \Delta h_{37-36} \end{bmatrix} = \begin{bmatrix} -5.5780 \\ 28.0057 \\ 7.1034 \\ 8.3732 \\ -5.4661 \\ -21.3263 \\ -10.7202 \end{bmatrix} m$$

On a:

H (Gak313 42) = H (Gak313 36) - Delta (Gak313 42 - Gak313 36)

Et Sachant que:

Alors: H (Gak313 36) = 114,311m

Delta (Gak313 42 – Gak313 36) = 0.3917m

D'où

H (Gak313 42) = 113,9193m

Et on a 
$$\sigma_{H_{42}} = \sqrt{\sigma_{\Delta H_{42-36}}^2 + \sigma_{H36}^2}$$

Et on a:

$$\sigma_{\rm H36}{}^2 = 0$$

Et par suite

$$\sigma_{H_{42}} = \sigma_{\Delta H_{42-36}} = \sqrt{0.4^2 + 0.4^2 + 0.4^2 + 0.3^2 + 0.3^2 + 0.3^2 + 0.3^2}$$
  
= 0.96mm

#### 5. Rattachement altimétrique par nivellement de précision :

Pour calculer les altitudes du nouveau point constituant le réseau de densification géodésique établie par GNSS, on a réalisé un rattachement altimétrique commençant par le piquet qu'on a déjà déterminé par Nivellement de précision et qui était stable, allant jusqu'à la borne construite pour pouvoir contrôler la valeur de l'altitude donnée par l'ajustement lors du traitement TBC.

## 5.1. Rattachement du point P8 (BORNE8):



Figure 31: Image de la borne P8

On a rattaché le point P8 au repère de nivellement, ce travail a été réalisé par un nivellement de précision réalisé par la moitié des membres de deux groupes, commençant par le point de départ qui est le piquet connu en altitude après avoir réalisé le traitement sur TBC de la densification du jour précédent.

Tableau contenant les valeurs du nivellement réalisé en cercle droit et cercle gauche, les deux échelles et les contrôles effectués sur terrain

|       | Cr         | D               | Cr              | G               | Cr               | D                | Cr              | G               | Arrière        | Avant            |            |                  |          |             |         |         |          |          |
|-------|------------|-----------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|----------------|------------------|------------|------------------|----------|-------------|---------|---------|----------|----------|
|       | F.Niveleur | Distance<br>(m) | F.Niveleur      | Distance<br>(m) | F.Niveleur       | Distance<br>(m)  | F.Niveleur      | Distance<br>(m) | -              | +                | T=1m       | T= 0,            | 05 m     | T= 0,0007 m |         |         |          |          |
| S 1   | 0.22050    | 22.02000        | 0.22060         | 22.02000        | 1 02700          | 22 21000         | 1 00640         | 22 22000        | 0.00010        | -0.03060         | 0.62000    | -0.01000         | 0.00000  |             |         |         |          |          |
| 31    | 0.32950    | 22.93000        | 0.32960         | 22.93000        | 1.65/00 22.51000 | 1.03/00 22.51000 | 1.83700 2       | 1.03/00         | 700 22.31000   | 22.31000 1.80640 | 22.32000   | -0.00010 0.61000 | -0.01000 | 0.00000     | •••••   |         |          |          |
| S 2   | 1.01200    | 17.28000        | 0.98240         | 17.27000        | 1.92850          | 16.98000         | 1.92430         | 16.99000        | -0.03050       | -0.00420         | 0.30000    | -0.01000         | -0.01000 | -0.00010    |         |         |          |          |
| 32    | 1.01290    | 17.20000        | 0.96240 17.2700 | 20000 0.90240   | 17.27000         | 1.52030          | 10.30000 1.3245 | 10.50000        | 32030 10.30000 | 1.92450          | 00 1.92450 | 10.55000         |          | 0.00010     | 0.28000 | 0.01000 | -0.01000 | -0.00010 |
| S 3   | 1.20490    | 24.38000        | 1.20060         | 24.38000        | 1.91850          | 24.45000         | 1.91860         | 24.43000        | -0.00430       | 0.00010          | -0.07000   | 0.02000          | 0.00000  | 0.00010     |         |         |          |          |
|       | 1.20490    | 24.30000        | 1.20000         | 24.36000        | 1.51030          | 1.91800 24.4300  | 24.43000        |                 | 0.00000        | -0.05000         | 0.02000    | 0.00000          | 0.00010  |             |         |         |          |          |
| Somme | 2.54730    | 64.59000        | 2.51260         | 64.58000        | 5.68400          | 63.74000         | 5.64930         | 63.74000        |                |                  |            |                  |          |             |         |         |          |          |
|       |            |                 |                 |                 |                  |                  |                 |                 |                |                  |            |                  |          |             |         |         |          |          |

Tableau 18: Tableau du nivellement

#### 5.2. Calcul des Tolérances:

|                                                      | Tolérance | T(cm)     |
|------------------------------------------------------|-----------|-----------|
| Egalité des portées de part et d'autre de la Station | 1 m       | 100.00000 |

| Egalité des portées des deux Crapaud               | 5 cm      | 5.00000  |
|----------------------------------------------------|-----------|----------|
| Contrôle de marche entre deux stations successives | 7/10 mm   | 0.07000  |
| Contrôle de différence d'altitude entre            | 7*sqrt(N) | 21.00000 |
| deux cheminement                                   | CH 1 (m)  | CH 2 (m) |
|                                                    | 3.13670   | 3.13670  |

## On a:

|         |        | H (m)     |
|---------|--------|-----------|
| Départ  | Piquet | 146.35370 |
| Arrivée | P8     | 149.49060 |

| Longueur du | CH 1     | CH 2     |
|-------------|----------|----------|
| cheminement | 75.63000 | 75.62500 |

## Calcul des dénivelés

| Delta H1 | 3.13670 |
|----------|---------|
| Delta H2 | 3.13670 |

## Calcul de la fermeture :

$$f = \Delta H_{cheminement1} - \Delta H_{cheminement2}$$

#### Calcul de la tolérance :

On a : T = 
$$2.7\sigma_{Diff}$$
 et  $\sigma_{Diff} = \sqrt{2} \sigma_{\Delta Hj} = \sqrt{2} \sqrt{9} \sigma_{\Delta Hji} = \sqrt{2} \sqrt{9} \sqrt{2} \sigma_{L}$   
Donc T =  $2.7*6\sigma_{L}$   
Or  $\sigma_{L} = 0.1$ mm  
Et donc :

T = 1.62 mm

 $HP8 = HPiquet + \Delta HP8$ -Piquet

**Alors** 

$$\sigma^{2}(HP8) = \sigma^{2}(HPiquet) + \sigma^{2}(\Delta HP8-Piquet)$$

$$\Delta$$
HP8-Piquet= ( $\Delta$ H1+  $\Delta$ H2)/2

**Alors** 

$$σ2(ΔHP8 - Piquet) = (σ2(ΔH1) + σ2(ΔH2))/4$$

$$σ2(ΔH1) = (σ2(∑Lr) + σ2(∑Lv))/4 = 2nσ2(L) et σ2(ΔH2) = (σ2(∑Lr) + σ2(∑Lv))/4 = 2nσ2(L)$$

$$\sigma^2(\Delta HP8 - Piquet) = \frac{n}{2}\sigma^2(L)$$

D'où

$$\sigma^2(\text{HP8}) = \sigma^2(\text{HPiquet}) + \frac{n}{2}\sigma^2(L)$$

Avec  $\sigma L^2=0.1$ mm et  $\sigma^2$  (HPiquet)= 0.4mm

D'où

$$\sigma^{2}(HP8) = 0.55 \text{mm}$$

# VIII. Ajustement final du réseau de densification (planimétrie +altimétrie)

Après avoir terminé la densification planimétrique du réseau par GNSS et celle altimétrique par nivellement de précision, on procède par la suite à un ajustement final en entrant les hauteurs orthométriques obtenue par le Nivellement de précision par rapport au Géoïde hybride du Maroc GHM21 et en fixant les points connus en planimétrie et en altimétrie étant stables.

#### Liste de points

| ID      | Abscisse<br>(Mètre) | Ordonnée<br>(Mètre) | Altitude<br>(Mètre) | Code des entités<br>géographiques |
|---------|---------------------|---------------------|---------------------|-----------------------------------|
| 5248hc  | 459786.230          | 1417568.280         | 99.893              |                                   |
| B34     | 459775.810          | 1408601.350         | 142.796             |                                   |
| GAB14   | 465510.520          | 1412273.940         | 175.974             |                                   |
| GH40    | 451295.740          | 1413935.310         | 50.472              |                                   |
| GH45    | 455242.920          | 1416587.200         | 45.839              |                                   |
| POINT 6 | 457558.344          | 1411581.461         | 114.270             |                                   |
| POINT 7 | 458775.210          | 1414125.776         | 86.661              |                                   |
| POINT 8 | 460503.983          | 1410717.720         | 149.497             |                                   |

| 14/05/2022 23:38:45 | Trimble Business Center |
|---------------------|-------------------------|

Figure 32: extrait du rapport d'ajustement avec contraints avec le Géoïde hybride du Maroc GHM21

| Point | X(m)       | Y(m)        | H(m)    |
|-------|------------|-------------|---------|
| P6    | 457558.344 | 1411581.461 | 114.270 |
| P7    | 458775.210 | 1414125.776 | 86.661  |
| P8    | 460503.983 | 1410717.720 | 149.497 |

Tableau 19: Coordonnées planimétriques et altimétriques des points nouveaux

# IX. Conclusion

Grace à cette semaine de la géodésie, on a pu réaliser notre première densification planimétrique et altimétrique du réseau hors l'institut qui était exactement au niveau de la région Tamesna.

Durant la conception et la réalisation du projet nous avons pu développer un sens d'analyse des problèmes, de gestion du temps, d'effort et du matériel disponible. Pour conclure, ce stage est un moyen pour améliorer nos connaissances et une opportunité pour apprendre d'affronter les contraintes et problèmes rencontrés lors des travaux associés aux ingénieurs topographes.