```
In [1]: import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from plotnine import ggplot, aes, geom_boxplot, labs, theme, element_t
```

In [2]: from google.colab import drive
 drive.mount('/content/drive')
 df = pd.read_csv('/content/drive/My Drive/Colab Data/train.csv')
 df.info()

Mounted at /content/drive <class 'pandas.core.frame.DataFrame'> RangeIndex: 31480 entries, 0 to 31479 Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	id	31480 non-null	int64
1	target	31480 non-null	object
2	day	31480 non-null	int64
3	month	31480 non-null	object
4	duration	31480 non-null	int64
5	contactId	31480 non-null	int64
6	age	31480 non-null	int64
7	gender	31480 non-null	object
8	job	31480 non-null	object
9	maritalStatus	31480 non-null	object
10	education	31480 non-null	object
11	creditFailure	31480 non-null	object
12	accountBalance	31480 non-null	int64
13	house	31480 non-null	object
14	credit	31480 non-null	object
15	contactType	31480 non-null	object
16	numberOfContacts	31480 non-null	int64
17	daySinceLastCampaign	5738 non-null	float64
18	numberOfContactsLastCampaign	31480 non-null	int64
19	lastCampaignResult	31480 non-null	object
dtyp	es: float64(1), int64(8), obje	ct(11)	

memory usage: 4.8+ MB

In [3]: df

_			$\Gamma \sim$		
11		-	1 -2	а	
v	u		IJ)	

	id	target	day	month	duration	contactId	age	gender	job	maritalS
0	432148809	no	27	may	166	623	30	female	worker	ma
1	432184318	no	26	oct	183	1992	42	female	manager	m
2	432182482	no	5	jun	227	2778	26	female	services	ţ
3	432150520	no	2	jun	31	3070	34	male	unemployed	divo
4	432145870	no	15	may	1231	6583	48	male	worker	m
								•••		
31475	432184725	yes	30	nov	1628	69542367	58	female	technical	ma
31476	432147139	no	21	may	173	69542565	40	female	manager	•
31477	432166958	no	17	nov	422	69543453	51	female	worker	ma
31478	432166312	no	29	aug	69	69544121	30	male	technical	m
31479	432171709	no	2	feb	171	69546604	50	male	technical	div

31480 rows × 20 columns

```
In [4]: df.columns
```

```
In [6]: df[df['daySinceLastCampaign'].isnull()]['numberOfContactsLastCampaign'
```

Out[6]: array([0])

```
In [7]:
        df['daySinceLastCampaign'].fillna(-1, inplace=True)
In [8]: df.isnull().sum()
Out[8]: id
                                           0
                                           0
         purchase
                                           0
         day
        month
                                           0
                                           0
         duration
         contactId
                                           0
         age
                                           0
         gender
                                           0
         job
                                           0
         maritalStatus
                                           0
         education
                                           0
         creditFailure
                                           0
         accountBalance
                                           0
         house
                                           0
         credit
                                           0
         contactType
                                           0
        numberOfContacts
                                           0
         daySinceLastCampaign
                                           0
         numberOfContactsLastCampaign
                                           0
         lastCampaignResult
                                           0
         dtype: int64
In [9]: encoded_df=pd.get_dummies(data=df, drop_first=True)
```

In [10]: import pandas as pd # Numeric features numericFeatures = ['day', 'duration', 'age', 'accountBalance', 'number # Calculate mean values grouped by 'purchase' grouped_means = df[numericFeatures].groupby('purchase').mean() # Display the table print(grouped_means) #findings: it shows that longer the call with the potential customer i #the more money a person has in their account, the more likely they wo #??? interestingly, the more time has passed since the last campaign b

	day	duration	age	accountBalance	numberOfC
ontacts	\				
purchase					
no	15.903384	221.600036	40.829770	1287.468143	2
.866379					
yes	15.015405	535.535135	41.731351	1807.032703	2
.128649					
	daySinceLa	stCampaign	numberOfCon	n	
purchase					
no		36.415551		0.50784	7
yes		68.985676		1.15864	9

In [11]:

```
import plotly.graph_objects as go
#campaign_success = purchased
#campaign_failure = not purchased
# Data
Labels = ['Campaign_Success', 'Campaign_Failure']
successes = len(df[df['purchase'] == 'yes'])
failures = len(df[df['purchase'] == 'no'])
success_color = 'green'
failure_color = 'red'
Values = [successes, failures]
# Create bar graph
fig = go.Figure(data=[go.Bar(x=Labels, y=Values, marker_color=[success]
# Add title and axis labels
fig.update_layout(title='Campaign Success vs Failure Comparison',
                  xaxis_title='Did the Target Consumer Make a Purchase
                  yaxis_title='Count of Consumers')
# Show the graph
fig.show()
#the distribution shows that our current dataset is imbalanced, so we
```

```
In [12]: df_compare=df.copy()
df_compare.replace("unknown", np.nan, inplace=True)
```

```
import matplotlib.pyplot as plt
In [13]:
         import seaborn as sns
         import pandas as pd
         # Assuming Data is your DataFrame and is already defined.
         # Count the occurrences of each combination of 'purchase' and 'contact
         purchase_contact_counts = df_compare.groupby(['purchase', 'contactType'])
         plt.figure(figsize=(10, 6))
         # Use seaborn to create the bar chart
         sns.barplot(data=purchase_contact_counts, x='purchase', y='counts', hu
         # Add title and labels to the plot
         plt.title('Relationship Between Purchase and Contact Type')
         plt.xlabel('Purchase')
         plt.ylabel('Number of Contacts')
         # Display the plot
         plt.legend(title='Contact Type')
         plt.show()
```



```
In [14]: from plotnine import ggplot, aes, geom_bar, scale_fill_manual, labs

df_filtered = df[df['education'] != 'unknown']

(
    # Now create the plot with the filtered DataFrame
ggplot(df_filtered) +
    aes(x="purchase", fill="education") +
    geom_bar(position="fill") +
    scale_fill_manual(values=["#FF5733", "#33FF57", "#3366FF"]) +
    labs(y="the number of customers")
)
```


Out[14]: <Figure Size: (640 x 480)>

In [15]: df

Out[15]:

	id	purchase	day	month	duration	contactId	age	gender	job	marit
0	432148809	no	27	may	166	623	30	female	worker	
1	432184318	no	26	oct	183	1992	42	female	manager	
2	432182482	no	5	jun	227	2778	26	female	services	
3	432150520	no	2	jun	31	3070	34	male	unemployed	
4	432145870	no	15	may	1231	6583	48	male	worker	

31475	432184725	yes	30	nov	1628	69542367	58	female	technical	
31476	432147139	no	21	may	173	69542565	40	female	manager	
31477	432166958	no	17	nov	422	69543453	51	female	worker	
31478	432166312	no	29	aug	69	69544121	30	male	technical	
31479	432171709	no	2	feb	171	69546604	50	male	technical	

31480 rows × 20 columns

/usr/local/lib/python3.10/dist-packages/plotnine/stats/stat_bin.py:10
9: PlotnineWarning:

'stat_bin()' using 'bins = 82'. Pick better value with 'binwidth'.

Distribution of Age by whether they purchase or not

Out[16]: <Figure Size: (640 x 480)>

```
In [17]:
```

```
import seaborn as sns
encoded df2=pd.get dummies(data=df, columns=["purchase"], drop first=1
dropped_column=encoded_df2[['id','contactId']]
encoded df2=encoded df2.drop(dropped column, axis=1)
print(encoded_df2)
corr_mat=encoded_df2.corr(numeric_only=True)
plt.figure(figsize=(14,7))
sns.heatmap(corr mat, annot=True, vmin=-1, vmax=1, fmt=".1f", cmap="Rd
plt.xticks(rotation=15)
plt.yticks(rotation=0)
plt.show()
       day month
                   duration
                                    gender
                                                    job maritalStatus
                              age
                                                                         \
0
        27
                               30
                                    female
              may
                         166
                                                 worker
                                                               married
1
        26
              oct
                         183
                               42
                                    female
                                                manager
                                                               married
2
         5
              jun
                         227
                               26
                                    female
                                               services
                                                                single
3
         2
              jun
                          31
                               34
                                      male
                                            unemployed
                                                              divorced
4
                        1231
                               48
        15
                                      male
                                                 worker
                                                               married
              may
              . . .
                                       . . .
                         . . .
                               . . .
31475
        30
                        1628
                               58
                                    female
                                             technical
              nov
                                                               married
                               40
31476
        21
              may
                         173
                                    female
                                                manager
                                                                single
31477
        17
                         422
                               51
                                    female
                                                 worker
                                                               married
              nov
        29
                                                               married
31478
                          69
                               30
                                      male
                                             technical
              aug
31479
         2
              feb
                         171
                               50
                                      male
                                             technical
                                                              divorced
              education creditFailure accountBalance house credit con
tactType
             highSchool
                                                    -202
                                     no
                                                             no
                                                                    no
unknown
          uniGraduated
                                                    2463
1
                                     no
                                                             no
                                                                    no
                                                                          С
ellPhone
             highSchool
                                                    2158
                                     no
                                                            yes
                                                                   yes
landline
          uniGraduated
3
                                                      75
                                    yes
                                                            yes
                                                                    no
unknown
       secondarySchool
                                                     559
                                     no
                                                            yes
                                                                    no
unknown
. . .
31475
             highSchool
                                                    3399
                                     no
                                                             no
                                                                    no
landline
31476
       secondarySchool
                                                     858
                                     no
                                                            yes
                                                                    no
unknown
             highSchool
31477
                                                    1414
                                     no
                                                            yes
                                                                    no
unknown
31478
          uniGraduated
                                     no
                                                       1
                                                             no
                                                                          С
                                                                    no
ellPhone
31479
             highSchool
                                                       8
                                     no
                                                             no
                                                                          С
                                                                    no
ellPhone
```

		daySinceLastCampaign	numberOfContactsLastCa
mpaign 0	2	-1.0	
0	2	-1.0	
0 2	1	-1.0	
0 3	3	-1.0	
0 4 0	2	-1.0	
31475 8	2	188.0	
31476 0	1	-1.0	
31477	3	186.0	
2 31478	21	-1.0	
0 31479 1	2	5.0	

	lastCampaignResult	purchase_yes
0	unknown	False
1	unknown	False
2	unknown	False
3	unknown	False
4	unknown	False
31475	success	True
31476	unknown	False
31477	failure	False
31478	unknown	False
31479	other	False

[31480 rows x 18 columns]

In [18]: encoded_df2

Out[18]:

	day	month	duration	age	gender	job	maritalStatus	education	creditF
0	27	may	166	30	female	worker	married	highSchool	
1	26	oct	183	42	female	manager	married	uniGraduated	
2	5	jun	227	26	female	services	single	highSchool	
3	2	jun	31	34	male	unemployed	divorced	uniGraduated	
4	15	may	1231	48	male	worker	married	secondarySchool	
31475	30	nov	1628	58	female	technical	married	highSchool	
31476	21	may	173	40	female	manager	single	secondarySchool	
31477	17	nov	422	51	female	worker	married	highSchool	
31478	29	aug	69	30	male	technical	married	uniGraduated	
31479	2	feb	171	50	male	technical	divorced	highSchool	

31480 rows × 18 columns

Out[19]: <Figure Size: (640 x 480)>

In [20]: df_job=df.copy()
df_job["job"]=df_job['job'].apply(lambda x: 'Unemployed' if x == 'unem
df_job

0	$\Gamma \cap \Omega \cap \Gamma$
υuτ	$\lfloor 20 \rfloor$

	id	purchase	day	month	duration	contactId	age	gender	job	mari
0	432148809	no	27	may	166	623	30	female	Employed	
1	432184318	no	26	oct	183	1992	42	female	Employed	
2	432182482	no	5	jun	227	2778	26	female	Employed	
3	432150520	no	2	jun	31	3070	34	male	Unemployed	
4	432145870	no	15	may	1231	6583	48	male	Employed	
31475	432184725	yes	30	nov	1628	69542367	58	female	Employed	
31476	432147139	no	21	may	173	69542565	40	female	Employed	
31477	432166958	no	17	nov	422	69543453	51	female	Employed	
31478	432166312	no	29	aug	69	69544121	30	male	Employed	
31479	432171709	no	2	feb	171	69546604	50	male	Employed	

31480 rows × 20 columns

Number of Purchase by Employment

Out[21]: <Figure Size: (640 x 480)>

In [21]:

Out[22]: <Figure Size: (640 x 480)>

Out[23]: <Figure Size: (640 x 480)>

In [23]:

In [23]:

```
In [24]: from plotnine import scale_fill_brewer, scale_color_brewer, geom_freqp
from plotnine.facets import facet_grid, facet_wrap

p1=(
    ggplot(df_job, aes(x="accountBalance", color="job",fill="job"))+
        geom_density(alpha=0.3)+
        coord_cartesian(xlim = [0, 5000])

p1
```


Out[24]: <Figure Size: (640 x 480)>

/usr/local/lib/python3.10/dist-packages/plotnine/stats/stat_bin.py:10
9: PlotnineWarning:

'stat_bin()' using 'bins = 1255'. Pick better value with 'binwidth'.

Out[25]: <Figure Size: (640 x 480)>

Out[26]: <Figure Size: (640 x 480)>

Out[27]: <Figure Size: (640 x 480)>

```
In [28]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         #Libraries for Data preprocessing
         from sklearn.preprocessing import OneHotEncoder
         from imblearn.over sampling import RandomOverSampler
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         #Machine learning
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.linear_model import LogisticRegression
         from sklearn.neighbors import KNeighborsClassifier
         #Libraries for machine learning Metrics
         from sklearn.metrics import accuracy score
         from sklearn.metrics import classification_report
         from sklearn.metrics import roc curve,auc
         from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
         #Code for Neural Network
         from keras.models import Sequential
         from keras.layers import Dense
```

In [29]: | df.copy()

data=df.drop(["daySinceLastCampaign","lastCampaignResult","id","contac

In [30]: data

Out[30]:

	purchase	day	month	duration	age	gender	job	maritalStatus	educati
0	no	27	may	166	30	female	worker	married	highSch
1	no	26	oct	183	42	female	manager	married	uniGraduat
2	no	5	jun	227	26	female	services	single	highSch
3	no	2	jun	31	34	male	unemployed	divorced	uniGraduat
4	no	15	may	1231	48	male	worker	married	secondarySch
31475	yes	30	nov	1628	58	female	technical	married	highSch
31476	no	21	may	173	40	female	manager	single	secondarySch
31477	no	17	nov	422	51	female	worker	married	highSch
31478	no	29	aug	69	30	male	technical	married	uniGraduat
31479	no	2	feb	171	50	male	technical	divorced	highSch

31480 rows × 16 columns

In [31]: |data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 31480 entries, 0 to 31479
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	purchase	31480 non-null	object
1	day	31480 non-null	int64
2	month	31480 non-null	object
3	duration	31480 non-null	int64
4	age	31480 non-null	int64
5	gender	31480 non-null	object
6	job	31480 non-null	object
7	maritalStatus	31480 non-null	object
8	education	31480 non-null	object
9	creditFailure	31480 non-null	object
10	accountBalance	31480 non-null	int64
11	house	31480 non-null	object
12	credit	31480 non-null	object
13	contactType	31480 non-null	object
14	numberOfContacts	31480 non-null	int64
15	numberOfContactsLastCampaign	31480 non-null	int64
	es: int64(6), object(10)		
memo	ry usage: 3.8+ MB		

```
In [32]: purchase_new = {"purchase": {"yes": 1, "no": 0}}
data.replace(purchase_new, inplace=True)
```

```
In [33]: # Selecting all Categorical Features
    category = data.select_dtypes(include=["object"])
    enc = OneHotEncoder(sparse=False)

# Applying OneHotEncoder to the categorical data
    Cat_new = enc.fit_transform(category)

# Creating a DataFrame from the encoded categories with appropriate concategory_columns = enc.get_feature_names_out(input_features = category_category = pd.DataFrame(Cat_new, columns = category_columns)

# Selecting all Numerical Features
    num = data.select_dtypes(exclude=["object"])

# Merging Categorical Feature and Numerical Feature
    n_data = pd.concat([num, category], axis="columns")

# Replacing null values with mean values
    n_data.fillna(n_data.mean(), inplace=True)
```

/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_encode rs.py:868: FutureWarning:

`sparse` was renamed to `sparse_output` in version 1.2 and will be re moved in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.

In [34]: n_data

Out[34]:

	purchase	day	duration	age	accountBalance	numberOfContacts	numberOfContactsLa
0	0	27	166	30	-202	2	
1	0	26	183	42	2463	2	
2	0	5	227	26	2158	1	
3	0	2	31	34	75	3	
4	0	15	1231	48	559	2	
					•••		
31475	1	30	1628	58	3399	2	
31476	0	21	173	40	858	1	
31477	0	17	422	51	1414	3	
31478	0	29	69	30	1	21	
31479	0	2	171	50	8	2	

31480 rows × 49 columns

```
In [35]: counts = df['purchase'].value_counts()

# Plotting the bar chart
counts.plot(kind='bar', figsize=(8, 6), color=['skyblue', 'orange'], t

total = len(df['purchase'])
for index, value in enumerate(counts):
    percentage = f'{(value / total) * 100:.2f}%'
    plt.text(index, value, percentage, ha='center', va='bottom')

plt.show()
```



```
In [36]: X=n_data.drop(['purchase'], axis=1)
y=n_data['purchase']
```

```
# Making the data balanced
ros = RandomOverSampler(sampling_strategy=1)
X_res, y_res = ros.fit_resample(X,y)
# We are spliting data to trian 70% and test 30%
x_train, x_test, y_train, y_test = train_test_split(X_res, y_res, test)

In [38]: scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(x_train)
X_test_scaled = scaler.transform(x_test)
```

```
In [39]: t = pd.DataFrame(y_train, columns=['purchase'])

# Calculating the value counts of the 'Purchase' column
counts = t['purchase'].value_counts()

# Plotting the bar chart
counts.plot(kind='bar', figsize=(8, 6), color=['skyblue', 'orange'], t

total = len(t['purchase'])
for index, value in enumerate(counts):
    percentage = f'{(value / total) * 100:.2f}%'
    plt.text(index, value, percentage, ha='center', va='bottom')

plt.show()
```


Now the data is balanced

```
In [40]: X_tree=n_data.drop(['purchase'], axis=1)
    y_tree=n_data['purchase']

# Making the data balanced
    ros_tree = RandomOverSampler(sampling_strategy=1)
    X_res_tree, y_res_tree = ros.fit_resample(X_tree,y_tree)

# We are spliting data to trian 70% and test 30%
    x_train_tree, x_test_tree, y_train_tree, y_test_tree = train_test_spli

In [41]: from sklearn.tree import DecisionTreeClassifier
    dtree_model = DecisionTreeClassifier(random_state=42)

# Fitting the classifier to the training data
    dtree_model.fit(x_train_tree, y_train_tree)

# Predicting the labels of the test set
    y_pred_tree = dtree_model.predict(x_test_tree)
```

Accuracy for Decision Tree Model: 0.9558435325173986

print("Accuracy for Decision Tree Model: ", accuracy_score(y_test_tree

```
In [42]: # Extract importance values for each feature (column of X)
    importances = dtree_model.feature_importances_

# create a dataframe to store the values and their labels
    df_feature = pd.DataFrame({'feature': x_train_tree.columns, 'importanc'

# sort dataframe by descending order, showing the most important feature df_feature = df_feature.sort_values('importance', ascending = True)

df_feature.set_index('feature', inplace=True)

# Plot the importance of each feature with features on the y-axis
    ax = df_feature.tail(5).plot(kind='barh', fontsize=7)

plt.tight_layout()
    plt.show()
```


In [43]: X

Out[43]:

	day	duration	age	accountBalance	numberOfContacts	numberOfContactsLastCampaig
0	27	166	30	-202	2	_
1	26	183	42	2463	2	
2	5	227	26	2158	1	
3	2	31	34	75	3	
4	15	1231	48	559	2	
31475	30	1628	58	3399	2	
31476	21	173	40	858	1	
31477	17	422	51	1414	3	
31478	29	69	30	1	21	
31479	2	171	50	8	2	

31480 rows × 48 columns

In [44]: df_feature

Out[44]:

importance

feature	
creditFailure_yes	0.000428
creditFailure_no	0.000695
job_retired	0.001259
job_unknown	0.001479
month_dec	0.002648
job_houseWife	0.002771
job_selfEmployed	0.003005
gender_male	0.003171
education_highSchool	0.003244
credit_yes	0.003304
job_unemployed	0.003662
contactType_landline	0.003806
education_unknown	0.004089

maritalStatus_divorced	0.004140
education_secondarySchool	0.004316
maritalStatus_single	0.004566
job_entrepreneur	0.004579
job_services	0.004615
gender_female	0.004767
job_administrative	0.005114
maritalStatus_married	0.005148
job_student	0.005433
education_uniGraduated	0.005451
month_sep	0.006044
job_manager	0.006398
job_worker	0.006594
job_technical	0.007013
month_jul	0.007616
month_jan	0.008555
credit_no	0.008712
month_jun	0.008943
month_aug	0.009128
contactType_cellPhone	0.009313
month_nov	0.009874
month_may	0.012689
month_feb	0.014292
house_no	0.017811
month_oct	0.018223
month_apr	0.020791
month_mar	0.023405
numberOfContacts	0.025882
house_yes	0.033852
contactType_unknown	0.048701
numberOfContactsLastCampaign	0.061489

```
age 0.061781
accountBalance 0.072691
day 0.077608
duration 0.340905
```

```
In [46]: conf_mat = confusion_matrix(y_test, pred)

# Generate the classification report
class_rep = classification_report(y_test, pred)

# Print the confusion matrix and classification report
print("Confusion Matrix:")
print(conf_mat)

print("\nClassification Report:")
print(class_rep)
```

Confusion Matrix: [[7741 569] [32 8326]]

Classification Report:

	precision	recall	f1-score	support
0 1	1.00 0.94	0.93 1.00	0.96 0.97	8310 8358
accuracy macro avg weighted avg	0.97 0.97	0.96 0.96	0.96 0.96 0.96	16668 16668 16668

```
In [47]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.
# Feature Scaling: StandardScaler
scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Logistic Regression model
log_reg_model = LogisticRegression()

log_reg_model.fit(X_train_scaled, y_train)

y_pred = log_reg_model.predict(X_test_scaled)

# Calculating the accuracy of the logistic regression model
accuracy = log_reg_model.score(X_test_scaled, y_test)

# Printing the results
print("Accuracy for Logistic Regression: ", accuracy)

Accuracy for Logistic Regression: 0.8982422702244811
```

```
In [48]: # Generating the confusion matrix and classification report
    conf_mat = confusion_matrix(y_test, y_pred)
    class_rep = classification_report(y_test, y_pred)

print("Confusion Matrix:")
    print(conf_mat)
    print("\nClassification Report:")
    print(class_rep)
```

Confusion Matrix: [[8157 194] [767 326]]

Classification Report:

	precision	recall	f1-score	support
0 1	0.91 0.63	0.98 0.30	0.94 0.40	8351 1093
accuracy macro avg weighted avg	0.77 0.88	0.64 0.90	0.90 0.67 0.88	9444 9444 9444

```
In [49]: coef=log_reg_model.coef_[0]
    df_coef=pd.DataFrame({"Coeffcient":coef},index=X_train.columns)
    coef=np.sort(coef)
    coef[::-1][:5]
    df_coef.sort_values(by="Coeffcient", ascending=False)
    top_5_coef=df_coef.loc[["duration", "day", "accountBalance", "age","coeps_coef=top_5_coef.sort_values(by="Coeffcient", ascending=False)
    top_5_coef
```

Out[49]:

duration	1.075500
day	0.071372
accountBalance	0.043125
age	0.038699

Coeffcient

contactType_unknown -0.486155

```
In [50]: plt.figure(figsize=(12, 5))
   plt.barh(top_5_coef.index,top_5_coef["Coeffcient"])
   plt.show()
```


In [51]:

```
# import statspackage
import statsmodels.api as sm
# note: statsmodels is missing the constant term in the sigmoid,
# so we need to add it back...
X_train_scaled_labeled=pd.DataFrame(X_train_scaled,columns=X_train.col
X test scaled labeled=pd.DataFrame(X test scaled,columns=X train.colum
X train scaled with constant = sm.add constant(X train scaled labeled)
X test scaled with constant = sm.add constant(X test scaled labeled)
logit_reg = sm.Logit(y_train, X_train_scaled_with_constant).fit()
print(logit_reg.params[["duration", "day", "accountBalance", "age","cd
summary_table = logit_reg.summary()
summary_df = pd.DataFrame(summary_table.tables[1].data[1:], columns=su
summary_df.rename(columns={'''': 'features'}, inplace=True)
specific_features_summary=summary_df[summary_df["features"].isin(["dur
# or summary_df.iloc[[1,2,3,4,6],:]
specific features summary.sort values(by="coef", ascending=False).rese
```

Warning: Maximum number of iterations has been exceeded.

Current function value: 0.251289

Iterations: 35

 duration
 1.076307

 day
 0.071771

 accountBalance
 0.043111

 age
 0.038755

 contactType_unknown
 -0.487028

dtype: float64

/usr/local/lib/python3.10/dist-packages/statsmodels/base/model.py:607
: ConvergenceWarning:

Maximum Likelihood optimization failed to converge. Check mle_retvals

Out [51]:

	features	coef	std err	z	P> z	[0.025	0.975]
0	contactType_unknown	-0.4870	7.09e+05	-6.87e-07	1.000	-1.39e+06	1.39e+06
1	duration	1.0763	0.023	46.041	0.000	1.030	1.122
2	day	0.0718	0.029	2.487	0.013	0.015	0.128
3	accountBalance	0.0431	0.022	1.983	0.047	0.001	0.086

4 age 0.0388 0.033 1.192 0.233 -0.025 0.102

In [52]: import pandas as pd import math # Assuming specific_features_summary is your DataFrame specific_features_summary['coef'] = pd.to_numeric(specific_features_su # Now you can apply math.exp specific_features_summary['exp_coef'] = specific_features_summary['coe specific_features_summary.reset_index(drop=True)

<ipython-input-52-b3097db5f217>:5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy(https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

<ipython-input-52-b3097db5f217>:8: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy(https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

Out [52]:

	features	coef	std err	z	P> z	[0.025	0.975]	exp_coef
0	day	0.0718	0.029	2.487	0.013	0.015	0.128	1.074440
1	duration	1.0763	0.023	46.041	0.000	1.030	1.122	2.933804
2	age	0.0388	0.033	1.192	0.233	-0.025	0.102	1.039563
3	accountBalance	0.0431	0.022	1.983	0.047	0.001	0.086	1.044042
4	contactType_unknown	-0.4870	7.09e+05	-6.87e-07	1.000	-1.39e+06	1.39e+06	0.614467

Accuracy for KNN Classifier: 0.8846886912325286

Confusion Matrix: [[8205 146] [943 150]]

Classification Report:

	precision	recall	f1-score	support
0 1	0.90 0.51	0.98 0.14	0.94 0.22	8351 1093
accuracy macro avg weighted avg	0.70 0.85	0.56 0.88	0.88 0.58 0.85	9444 9444 9444

```
In [ ]: |X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.
      # Scale the features
      scaler = StandardScaler()
      X_train_scaled = scaler.fit_transform(X_train)
      X test scaled = scaler.transform(X test)
      # Build the neural network
      model = Sequential()
      model.add(Dense(10, input_dim=X_train_scaled.shape[1], activation='rel
      model.add(Dense(5, activation='relu')) # Hidden layer
      model.add(Dense(1, activation='sigmoid')) # Output layer for binary cl
      # Compiling the model
      model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['
      # Training the model
      model.fit(X_train_scaled, y_train, epochs=100, batch_size=10)
      _, accuracy = model.evaluate(X_test_scaled, y_test)
      print('Accuracy: %.2f' % (accuracy*100))
      Epoch 1/100
      98 - accuracy: 0.8831
      Epoch 2/100
      16 - accuracy: 0.8959
      Epoch 3/100
      2204/2204 [============== ] - 6s 3ms/step - loss: 0.22
      50 - accuracy: 0.8983
      Epoch 4/100
      09 - accuracy: 0.8985
      Epoch 5/100
      72 - accuracy: 0.9012
      Epoch 6/100
      48 - accuracy: 0.9012
      Epoch 7/100
```

1 1 1 1 1 1 1 1

F - 2 - - / - + - -

```
In []: # Assuming y_test are true labels and y_pred are your predictions
        y_pred = model.predict(X_test scaled)
        # For binary classification, a threshold of 0.5 is settled
        y_pred_binary = (y_pred > 0.5).astype("int32")
        conf_matrix = confusion_matrix(y_test, y_pred_binary)
        class_rep = classification_report(y_test, y_pred_binary)
        print("Confusion Matrix:")
        print(conf_matrix)
        print("\nClassification Report:")
        print(class rep)
In [ ]: |# Accuracy Score Data Frame
        Acc index = np.array([0.9659827213822895, 0.8982422702244811, 0.884688)
        Acc_index = np.round(Acc_index, 3)
        Acc_column = ["Random Forest", "Logistic Regression", "KNN", "Neural N
        Acc_df = pd.DataFrame(Acc_index.reshape(1,4), columns=Acc_column, inde
        Acc_df
        Testing it using the test dataset
In [ ]: | import matplotlib.pyplot as plt
        import numpy as np
        import pandas as pd
        from plotnine import ggplot, aes, geom_boxplot, labs, theme, element_t
In [ ]: from google.colab import drive
        drive.mount('/content/drive')
        df test = pd.read_csv('/content/drive/My Drive/Colab Data/test.csv')
        df test.info()
In [ ]: |df_test.isnull().sum()
        dft=df_test.copy()
       'accountBalance', 'house', 'credit', 'contactType', 'numberOfCo
               'daySinceLastCampaign', 'numberOfContactsLastCampaign',
               'lastCampaignResult')
```

```
In [ ]:
        dft['daySinceLastCampaign'].fillna(-1, inplace=True)
In [ ]: dft id=dft["id"]
        dft_job_ab_st=dft[["job", 'accountBalance', "duration", "education"]]
        dft=dft.drop(["daySinceLastCampaign","lastCampaignResult","id","contac
In [ ]:
        dft=dft.drop(["purchase"], axis=1)
In [ ]: # Selecting all Categorical Features
        category = dft.select_dtypes(include=["object"])
        enc = OneHotEncoder(sparse=False)
        # Applying OneHotEncoder to the categorical data
        Cat_new = enc.fit_transform(category)
        # Creating a DataFrame from the encoded categories with appropriate cd
        category_columns = enc.get_feature_names_out(input_features = category
        category = pd.DataFrame(Cat_new, columns = category_columns)
        # Selecting all Numerical Features
        num = dft.select_dtypes(exclude=["object"])
        # Merging Categorical Feature and Numerical Feature
        dft2 = pd.concat([num, category], axis="columns")
        # Replacing null values with mean values
        dft2.fillna(dft2.mean(), inplace=True)
In [ ]: | X ts=dft2
        scaler = StandardScaler()
        X_ts_scaled = scaler.fit_transform(X_ts)
        y_pred = rfc.predict(X_ts_scaled)
        # Comparing predictions to the actual values
        pred = pd.DataFrame({'Predicted': y_pred},index=dft_id)
        pred
```

```
In []: test_ids = [432184585, 432167969, 432146206]
    specific_pred = pred[pred.index.isin(test_ids)]
    # Step 4: Display the result
    specific_pred
```

```
In [ ]: Probs = rfc.predict_proba(X_ts_scaled)
    test_predict = Probs[:,1]
    df_prob=pd.DataFrame(columns=["Test ID", "Expected", "Job", "Account E
    df_prob["Test ID"]=dft_id.values
    df_prob["Expected"]=test_predict
    df_prob["Job"]=dft_job_ab_st["job"]
    df_prob["Account Balance"]=dft_job_ab_st["accountBalance"]
    df_prob["Education"]=dft_job_ab_st["education"]
    df_prob["Duration"]=dft_job_ab_st["duration"]
```

```
In [ ]: test_ids = [432184585, 432167969, 432146206]
    specific_pred_with_features = df_prob[df_prob["Test ID"].isin(test_ids
    specific_pred_with_features
```