

MIT PROF. SCHWARZ

WIE IRRATIONAL DARF ES SEIN? VON HIMMLISCHER SPHÄRENMUSIK UND CHAOS IM DREIKÖRPERPROBLEM

> 11. DEZEMBER 2024 19:15 UHR, HÖRSAAL 3

Der Glühwein- und Punschverkauf startet 18:30 Uhr vor dem Ziegenledersaal (Innenhof). Dort wird es auch weihnachtliches Gebäck geben.

Bringt euch gern einen eigenen Becher mit :)

Diskrete Strukturen (WS 2024-25) - Halbserie 7

7.1

Seien A und B Mengen mit |A| = |B|. Zeigen Sie dass $|A^2| = |B^2|$.

Solution. Da |A| = |B|, haben wir eine Bijektion $f: A \to B$. Definieren wir $g: A \times A \to B \times B$ mit g(x,y) := (f(x),f(y)).

Wir wollen zeigen, dass g bijektiv ist. Sei $(a,b) \in B^2$. Da f surjektiv ist, haben wir f(x) = a, f(y) = b für einige $x, y \in A$. Daher ist g(x,y) = (f(x), f(y)) = (a,b).

Wir wollen nun zeigen, dass g injektiv ist. Nehmen wir an, dass $(a, b), (c, d) \in A^2$ so sind, dass g(a, b) = g(c, d). Dann ist (f(a), f(b) = (f(c), f(d)). Durch die Schlüsseleigenschaft des geordneten Paares haben wir f(a) = f(c) und f(b) = f(d). Da f injektiv ist, folgern wir a = c und b = d, was zeigt, dass (a, b) = (c, d).

$$7.2 ag{4}$$

Für eine Menge M und $k \in \mathbb{N}$, definieren wir $\mathcal{P}_k(M) := \{X \subset M : |X| = k\}$. Seien A und B Mengen mit |A| = |B|.

- (a) Zeigen Sie, dass $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.
- (b) Zeigen Sie, dass für jede $k \in \mathbb{N}$ gilt $|\mathcal{P}_k(A)| = |\mathcal{P}_k(B)|$

Solution.

(a) Da |A| = |B|, haben wir eine Bijektion $f: A \to B$. Wir definieren $p: \mathcal{P}(A) \to \mathcal{P}(B)$ durch die Formel p(X) := f(X), wobei $X \subset A$. Wir wollen zeigen, dass p bijektiv ist.

Sei $g := f^{-1}$ die inverse Funktion zu g. Da f(g(X)) = X, wenn $X \subset B$, haben wir auch p(g(X)) = X. Dies zeigt, dass p surjektiv ist.

Für die Injektivität seien X und Y Teilmengen von X so, dass p(X) = p(Y). Dies bedeutet, dass f(X) = f(Y), und somit X = g(f(X)) = g(f(Y)) = Y.

(b) Da f bijektiv ist, stellen wir fest, dass |f(A)| = |A|. Dies impliziert, dass $p(\mathcal{P}_k(A)) = \mathcal{P}_k(B)$, und somit definiert p die erforderliche Bijektion.'

7.3

Sei A eine unendliche abzählbare Menge. Zeigen Sie dass $|\mathcal{P}_2(A)| = \aleph_0$. (Hinweise: Sie können die Resultate der vorherigen Übungen auf diesem oder einem vorherigen Blatt verwenden.)

Solution.

Da gilt $|A| = |\mathbb{N}|$, aus der letzten Übung haben wir $|\mathcal{P}_2(A)| = |\mathcal{P}_2(\mathbb{N})|$. Deswegen reicht es zu zeigen dass $|\mathcal{P}_2(\mathbb{N})| = |\mathbb{N}|$. Nach CSB es reicht zewi Injektionen $f : \mathbb{N} \to \mathcal{P}_2(\mathbb{N})$ und $g : \mathcal{P}_2(\mathbb{N}) \to \mathbb{N}$ zu definieren.

Um f zu definieren, setzen wir $f(x) := \{x\}.$

Um g zu definieren, benutzen wir eine Übung aus vorherigen Blatt, die sagt, dass $|\mathbb{N}| = |\mathbb{N}^2|$, also es gibt eine Bijektion $b \colon \mathbb{N}^2 \to \mathbb{N}$.

Deswegen definieren wir erst eine Injektion $h: \mathcal{P}_2(\mathbb{N}) \to \mathbb{N}^2$ mit $h(\{x,y\}) := (x,y)$, wobei wir nehmen an, dass x < y. Dann ist $h; b: \mathcal{P}_2(\mathbb{N}) \to \mathbb{N}$ eine Injektion.

7.4 Gegeben sei eine injektive Funktion $g: \mathbb{N}^2 \to \mathbb{N}$. Zeigen Sie, dass die Funktion $h: \mathbb{N}^3 \to \mathbb{N}$, definiert durch $h(x_1, x_2, x_3) = g(g(x_1, x_2), x_3)$ für alle $x_1, x_2, x_3 \in \mathbb{N}$ ebenfalls injektiv ist.

Solution. Seien $x_1, x_2, x_3, y_1, y_2, y_3 \in \mathbb{N}$ und gelte $h(x_1, x_2, x_3) = h(y_1, y_2, y_3)$. Das heißt es gilt $g(g(x_1, x_2), x_3) = g(g(y_1, y_2), y_3)$. Da g injektiv ist, folgt daraus $(g(x_1, x_2), x_3) = (g(y_1, y_2), y_3)$. Und mit der selben Begründung folgt aus $g(x_1, x_2) = g(y_1, y_2)$, dass $(x_1, x_2) = (y_1, y_2)$ gilt. Damit gilt also $(x_1, x_2, x_3) = (y_1, y_2, y_3)$ und h ist injektiv.

7.5 Zeigen Sie mit Hilfe des Satzes von Cantor-Schröder-Bernstein, dass

$$|\{q\in\mathbb{Q}\mid q\geq 1\}|=|[0,1]\cap\mathbb{Q}|$$

gilt. Dabei bezeichnet [0, 1] das geschlossene Intervall reeller Zahlen von 0 bis 1.

Solution. Zwei Mengen sind gleichmächtig, wenn es eine Bijektion zwischen ihnen, also in unserem Fall eine bijektive Funktion $h:\{q\in\mathbb{Q}\mid q\geq 1\}\to [0,1]\cap\mathbb{Q}$ gibt.

Nach CSB-Satz existiert eine solche Bijektion h, wenn es zwei injektive Funktionen $f: \{q \in \mathbb{Q} \mid q \geq 1\} \to [0,1] \cap \mathbb{Q}$ und $g: [0,1] \cap \mathbb{Q} \to \{q \in \mathbb{Q} \mid q \geq 1\}$ gibt.

Wir defier Tarski, Fixpunkte ____

- **7.6** Betrachten Sie die Funktion $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$, die wie folgt definiert ist: für alle $X \in \mathcal{P}(\mathbb{N})$ sei f(X) die Menge, die aus X entsteht, indem jede gerade Zahl $x \in X$ durch x+1 ersetzt wird, und jede ungerade Zahl $x \in X$ durch x+3 ersetzt wird. So ist beispielsweise $f(\{0,8,17,23\}) = \{1,9,20,26\}$.
 - 1. Zeigen Sie, dass für alle $X, Y \in \mathcal{P}(\mathbb{N})$ gilt: Wenn $X \subseteq Y$, dann $f(X) \subseteq f(Y)$.
 - 2. Besitzt f einen Fixpunkt? Begründen Sie Ihre Antwort.

Solution.

- 1. Angenommen $X \subseteq Y$ und sei $x \in f(X)$. Wir machen eine Fallunterscheidung:
 - (i) Gelte x ungerade. Dann ist $x-1 \in X$ und wegen $X \subseteq Y$ ist auch $x-1 \in Y$. Also $x \in f(Y)$.
 - (ii) Gelte x gerade. Dann ist $x-3 \in X$ und wegen $X \subseteq Y$ ist auch $x-3 \in Y$. Also auch $x \in f(Y)$.
- 2. Ja. Es gilt $f(\emptyset) = \emptyset$, d.h. \emptyset ist ein Fixpunkt von f. Alternativ kann man aus Lemma von Knaster und Tarski schliessen, dass f einen Fixpunkt besitzen muss.

nieren $f: \{q \in \mathbb{Q} \mid q \geq 1\} \to [0,1] \cap \mathbb{Q}$ durch $x \mapsto x^{-1}$, und $g: [0,1] \cap \mathbb{Q} \to \{q \in \mathbb{Q} \mid q \geq 1\}$ durch $x \mapsto x+1$. Beide Funktionen sind injektiv. Damit existiert eine Bijektion h und die beiden Mengen sind gleichmächtig.

- 7.7 Betrachten Sie die Funktion $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$, die wie folgt definiert ist: für alle $X \in \mathcal{P}(\mathbb{N})$ sei f(X) die Menge, die aus X entsteht, indem jede gerade Zahl $x \in X$ durch x+1 ersetzt wird, und jede ungerade Zahl $x \in X$ durch x+3 ersetzt wird. So ist beispielsweise $f(\{0,8,17,23\}) = \{1,9,20,26\}$.
 - 1. Zeigen Sie, dass für alle $X, Y \in \mathcal{P}(\mathbb{N})$ gilt: Wenn $X \subseteq Y$, dann $f(X) \subseteq f(Y)$.
 - 2. Besitzt f einen Fixpunkt? Begründen Sie Ihre Antwort.

Solution.

- 1. Angenommen $X \subseteq Y$ und sei $x \in f(X)$. Wir machen eine Fallunterscheidung:
 - (i) Gelte x ungerade. Dann ist $x-1 \in X$ und wegen $X \subseteq Y$ ist auch $x-1 \in Y$. Also $x \in f(Y)$.
 - (ii) Gelte x gerade. Dann ist $x-3 \in X$ und wegen $X \subseteq Y$ ist auch $x-3 \in Y$. Also auch $x \in f(Y)$.
- 2. Ja. Es gilt $f(\emptyset)=\emptyset$, d.h. \emptyset ist ein Fixpunkt von f. Alternativ kann man aus Lemma von Knaster und Tarski schliessen, dass f einen Fixpunkt besitzen muss.

7.8

Gegeben sei die Menge $M = \{0, 1, 2, 3, 4, 5\}$ und die **Ordnungsrelation** $R \subseteq M \times M$, dargestellt als **Hasse-Diagramm**:

- 1. Geben Sie R explizit als eine Telimenge von $M \times M$ an.
- 2. Geben Sie für R

- (a) <u>alle</u> minimalen Elemente,
- (c) <u>alle</u> unteren Schranken für {0, 1},
- (b) <u>alle</u> oberen Schranken für {1, 3},
- (d) das größte Element von $\{0, 3\}$ an.

Solution.

- 1. $R = \{(m,m) \mid m \in M\} \cup \{(0,2), (1,2), (0,3), (0,5), (3,5), (1,4), (1,5), (4,5)\}$ alternativ $R = \{(x,y) \in M \times M \mid x \leq y\} \setminus \{(1,3), (2,3), (0,4), (2,4), (3,4), (2,5)\}$
- 2. (a) 0 und 1 sind minimale Elemente (es gibt kein Element m in M mit $(m,0) \in R$ oder $(m,1) \in R$)
 - (b) $\{5\}$, denn (nur) für 5 gilt $(1,5) \in R$ und $(3,5) \in R$
 - (c) es gibt keine unteren Schranken für $\{0,1\}$ (0 selber ist keine untere Schranke von $\{0,1\}$, da dazu $(0,1) \in R$ gelten müsste)
 - (d) 3 ist das grösste Element von $\{0,3\}$, denn $(0,3) \in R$, $(3,3) \in R$ (also 3 ist obere Schranke von $\{0,3\}$ und $3 \in \{0,3\}$.

7.9 [2]

Gegeben sei die Relation $R \subseteq \mathbb{N} \times \mathbb{N}$, definiert durch

 $(a,b) \in R$ genau dann, wenn a ist Teiler von b.

Ist (\mathbb{N}, R) eine **total geordnete Menge**? Begründen Sie Ihre Antwort.

Solution. Nein. Sie ist nämlich nicht vollständig. Gegenbeispiel: Es gilt für $2,3 \in \mathbb{N}$ weder $(2,3) \in R$ noch $(3,2) \in R$.