APPM 4570/5570 Unit #2: Probability Theory

(Ch 3.1, 3.2, 3.3)

Why Probability Theory?

- One main objective of statistics/data science is to help make good decisions under conditions of uncertainty or chance.
 - Example: In trying to determine how prevalent a certain disease is in the population, we examine a sample of the population for the disease. The inference from sample to population is uncertain.
- **Probability Theory** is one way to quantify outcomes that cannot be predicted with certainty.

Sample Space

- Definition: A **probabilistic process** is a system or experiment whose outcome is uncertain, i.e. what is the outcome of flipping a coin?
- Definition: An **outcome** is a possible result of a probabilistic process
- Definition: A **sample space** of a probabilistic process is the **set** of *all* possible outcomes of that process, typically denoted by S or Ω .

Set Theory

- A set is a collection of objection or elements, denoted A={set description}
- Roster Notation for a set: Simply list the elements of the set

$$E = \{0, 2, 4, 6, ...\}$$
 = set of non-negative even integers

• Set builder notation: Give a description of the elements that make up the set:

$$E = \{\text{all integers n} \ge 0 \mid n \text{ is even}\}$$

Sample Space

- Definition: A **probabilistic process** is a system or experiment whose outcome is uncertain, i.e. what is the outcome of flipping a coin?
- Definition: An **outcome** is a possible result of a probabilistic process
- Definition: A **sample space** of a probabilistic process is the **set** of *all* possible outcomes of that process, typically denoted by S or Ω .

Set Theory

- A set is a collection of objection or elements, denoted A={set description}
- Roster Notation for a set: Simply list the elements of the set

$$E = \{0, 2, 4, 6,...\}$$
 = set of non-negative even integers

 Set builder notation: Give a description of the elements that make up the set:

$$E = \{all \text{ integers } n \ge 0 \mid n \text{ is even} \}$$

Sample Space - Example

- •Sample spaces for:
 - Tossing a coin: $S = \{H, T\}$, cardinality is |S| = 2

Sample Space - Example

- •Sample spaces for:
 - Tossing a coin: $S = \{H, T\}$, cardinality is |S| = 2
 - Selecting a card from a standard deck:

$$S = \{2D, 2C, 2H, 2S, ..., AD, AC, AH, AS\}, |S| = 52$$

Sample Space - Example

- •Sample spaces for:
 - Tossing a coin: $S = \{H, T\}$, cardinality is |S| = 2
 - Selecting a card from a standard deck:

$$S = \{2D, 2C, 2H, 2S, ..., AD, AC, AH, AS\}, |S| = 52$$

Measuring the commuting time on a particular morning:

$$S = \{ t \ge 0 \mid t \text{ is a real number} \}$$

(Here *S* is **uncountable**.)

Events

- •Definition: An **event** is any collection (subset) of outcomes from the sample space *S*.
- •An event is **simple** if it consists of exactly one outcome and **compound** if it consists of more than one outcome.
- •When an experiment is performed, a particular event (let's call that event A) is said to occur if the resulting experimental outcome is contained in A.

Combining Events

- Given events A and B we can create new events like the event that "A or B happens" or "A and B happens" or "A does not happen"
- Definition:
- 1. The <u>union</u> of two events A and B, denoted by $A \cup B$ and read "A or B," is the event consisting of all outcomes that are **either in A or in B or <u>in both</u> (called an "inclusive or") that is, all outcomes in at least one of the events.**

Combining Events

- Given events A and B we can create new events like the event that "A or B happens" or "A and B happens" or "A does not happen"
- <u>Definition:</u>
- 1. The <u>union</u> of two events A and B, denoted by $A \cup B$ and read "A or B," is the event consisting of all outcomes that are **either in A or in B or <u>in both</u> (called an "inclusive or") that is, all outcomes in at least one of the events.**
- 2. The <u>intersection</u> of two events A and B, denoted by $A \cap B$ and read "A and B," is the event consisting of all outcomes that are in **both A and B**.

Combining Events

- Given events A and B we can create new events like the event that "A or B happens" or "A and B happens" or "A does not happen"
- <u>Definition:</u>
- 1. The <u>union</u> of two events A and B, denoted by $A \cup B$ and read "A or B," is the event consisting of all outcomes that are **either in A or in B or <u>in both</u> (called an "inclusive or") that is, all outcomes in at least one of the events.**
- 2. The <u>intersection</u> of two events A and B, denoted by $A \cap B$ and read "A and B," is the event consisting of all outcomes that are in **both A and B**.
- 3. The <u>complement</u> of an event A, denoted by A' (or A^c), is the set of all outcomes in S that are not contained in A.

The Empty Set

• Sometimes sets A and B have no outcomes in common, so that the intersection of sets A and B is <u>empty</u>.

Definition:

• Let $\emptyset = \{ \}$ denote the <u>empty set</u> or <u>null event</u> (the event consisting of no outcomes whatsoever).

The Empty Set

• Sometimes sets A and B have no outcomes in common, so that the intersection of sets A and B is empty.

Definition:

- Let $\emptyset = \{ \}$ denote the <u>empty set</u> or <u>null event</u> (the event consisting of no outcomes whatsoever).
- When $A \cap B = \emptyset$, then A and B are said to be **mutually exclusive events** or **disjoint events** and there is <u>no chance</u> of the event "A and B" occurring.

The Empty Set

• Sometimes sets A and B have no outcomes in common, so that the intersection of sets A and B is <u>empty</u>.

Definition:

- Let $\emptyset = \{ \}$ denote the <u>empty set</u> or <u>null event</u> (the event consisting of no outcomes whatsoever).
- When $A \cap B = \emptyset$, then A and B are said to be **mutually exclusive events** or **disjoint events** and there is <u>no chance</u> of the event "A and B" occurring.
- **Example:** Roll a dice once, what's the chance of getting an even number and an odd number?

This is a **null event** so there is <u>no chance</u>, i.e. 0 probability!

Set Operations

$$A'$$
 or A^c

$$A\cap B=\emptyset$$

- Flip a coin 3 times.
- (a) The sample space is

 $S = \{HHH, THH, HTH, HHT, TTH, THT, HTT, TTT\}$ and |S| = 8

- Flip a coin 3 times.
- (a) The sample space is

$$S = \{HHH, THH, HTH, HHT, TTH, THT, HTT, TTT\}$$
 and $|S| = 8$

(b) Some possible events include:

```
A = getting all heads = {HHH} and
```

B = getting more than one tail = {TTH, THT, HTT, TTT}

- Flip a coin 3 times.
- (a) The sample space is

$$S = \{HHH, THH, HTH, HHT, TTH, THT, HTT, TTT\}$$
 and $|S| = 8$

(b) Some possible events include:

A = getting all heads = {HHH} and

B = getting more than one tail = {TTH, THT, HTT, TTT}

(c) Note that

 $A \cup B = \{HHH, TTH, THT, HTT, TTT\} = getting all heads or more than one tail$

- Flip a coin 3 times.
- (a) The sample space is

$$S = \{HHH, THH, HTH, HHT, TTH, THT, HTT, TTT\}$$
 and $|S| = 8$

(b) Some possible events include:

A = getting all heads = {HHH} and

B = getting more than one tail = {TTH, THT, HTT, TTT}

(c) Note that

 $A \cup B = \{HHH, TTH, THT, HTT, TTT\} = getting all heads$ **or**more than one tail

(d) And $A \cap B$ = getting all heads **and** more than one tail = $\{\} = \emptyset$

 (\bigstar) For any three events A, B, and C,

 $A \cup B \cup C =$ "at least one of the events A <u>or</u> B <u>or</u> C happens" and,

 $A \cap B \cap C =$ "event that A <u>and B</u> <u>and C</u> happens"

(★) **DeMorgans Laws**: Note that from the Venn diagram we see that

$$(A \cap B)^c = A^c \cup B^c$$

That is "events A and B do not happen" is the same as "A does not happen or B does not happen or both"

And, similarly

$$(A \cup B)^c = A^c \cap B^c$$

(★) Finally note that we have $(A^c)^c = A$

 (\star) For any three events A, B, and C,

 $A \cup B \cup C =$ "at least one of the events A <u>or</u> B <u>or</u> C happens" and,

 $A \cap B \cap C =$ "event that A <u>and</u> B <u>and</u> C happens"

 (\bigstar) For any three events A, B, and C,

 $A \cup B \cup C =$ "at least one of the events A <u>or</u> B <u>or</u> C happens" and,

 $A \cap B \cap C =$ "event that A <u>and</u> B <u>and</u> C happens"

(★) **DeMorgans Laws**: Note that from the Venn diagram we see that

$$(A \cap B)^c = A^c \cup B^c$$

That is "events A and B do not happen" is the same as "A does not happen or B does not happen or both"

And, similarly

$$(A \cup B)^c = A^c \cap B^c$$

 (\bigstar) For any three events A, B, and C,

 $A \cup B \cup C =$ "at least one of the events A <u>or</u> B <u>or</u> C happens" and,

 $A \cap B \cap C =$ "event that A <u>and B</u> <u>and C</u> happens"

(★) **DeMorgans Laws**: Note that from the Venn diagram we see that

$$(A \cap B)^c = A^c \cup B^c$$

That is "events A and B do not happen" is the same as "A does not happen or B does not happen or both"

And, similarly

$$(A \cup B)^c = A^c \cap B^c$$

(★) Finally note that we have $(A^c)^c = A$

Rules (Axioms) of Probability

Given an experiment and a sample space *S*, the objective of <u>probability</u> <u>theory</u> is to assign to each set/event *A*, a number *P*(*A*), called <u>the</u> <u>probability of the event *A*</u>, which quantifies how likely it is that A will occur.

The probability must satisfy the following assumptions:

Axiom 1: For any event A, we have $0 \le P(A) \le 1$.

Rules (Axioms) of Probability

Given an experiment and a sample space *S*, the objective of <u>probability</u> <u>theory</u> is to assign to each set/event *A*, a number *P*(*A*), called <u>the</u> <u>probability of the event *A*</u>, which quantifies how likely it is that A will occur.

The probability must satisfy the following assumptions:

Axiom 1: For any event A, we have $0 \le P(A) \le 1$.

Axiom 2: P(S) = 1 (the probability of the entire sample space is 1)

Rules (Axioms) of Probability

Given an experiment and a sample space S, the objective of <u>probability</u> <u>theory</u> is to assign to each set/event A, a number P(A), called <u>the</u> <u>probability of the event A</u>, which quantifies how likely it is that A will occur.

The probability must satisfy the following assumptions:

Axiom 1: For any event A, we have $0 \le P(A) \le 1$.

Axiom 2: P(S) = 1 (the probability of the entire sample space is 1)

Axiom 3: If $A_1, A_2, ..., A_n$ is any collection of <u>disjoint</u> events then:

$$P(A_1 \cup A_2 \cup ... \cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$

Some Theorems of Probability

Law of Complements:

For any event *A*,

$$P(A) + P(A^{c}) = 1$$
, so $P(A) = 1 - P(A^{c})$

Some Theorems of Probability

Law of Complements:

For any event *A*,

$$P(A) + P(A^{c}) = 1$$
, so $P(A) = 1 - P(A^{c})$

Inclusion-Exclusion Principle:

For any sets A and B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Some Theorems of Probability

Law of Complements:

For any event *A*,

$$P(A) + P(A^{c}) = 1$$
, so $P(A) = 1 - P(A^{c})$

Inclusion-Exclusion Principle:

For any sets A and B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

And, similarly,
$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

 $-P(A \cap B) - P(A \cap C) - P(B \cap C)$
 $+P(A \cap B \cap C)$

Events A and B are said to be <u>independent</u> if the probability of event A occurring has no effect on event B occurring.

Events A and B are said to be <u>independent</u> if the probability of event A occurring has no effect on event B occurring.

We can mathematically describe two events being independent in the following way:

<u>Proposition:</u> Events A and B are **independent events** if and only if

$$P(A \cap B) = P(A) \cdot P(B)$$

Events A and B are said to be <u>independent</u> if the probability of event A occurring has no effect on event B occurring.

We can mathematically describe two events being independent in the following way:

<u>Proposition:</u> Events A and B are **independent events** if and only if

$$P(A \cap B) = P(A) \cdot P(B)$$

For example, if we flip a fair coin twice, the probability that the first flip is a head <u>and</u> the second flip is a head, <u>using independence</u>, is

$$P(H_1 \cap H_2) = P(H_1) \cdot P(H_2) = \frac{1}{2} \cdot \frac{1}{2} = 1/4$$

Since the outcome of the first flip does not effect the outcome of the second flip these events are independent.

Events A and B are said to be <u>independent</u> if the probability of event A occurring has no effect on event B occurring.

We can mathematically describe two events being independent in the following way:

<u>Proposition:</u> Events A and B are **independent events** if and only if

$$P(A \cap B) = P(A) \cdot P(B)$$

For example, if we flip a fair coin twice, the probability that the first flip is a head <u>and</u> the second flip is a head, <u>using independence</u>, is

$$P(H_1 \cap H_2) = P(H_1) \cdot P(H_2) = \frac{1}{2} \cdot \frac{1}{2} = 1/4$$

Since the outcome of the first flip does not effect the outcome of the second flip these events are independent.

(Caution! Mutually exclusive events and independent events are <u>not</u> the same!)

Independent Events vs. Mutually Exclusive

 (\bigstar) Events A and B are **independent events** if and only if the <u>probabilities</u> P(A), P(B) and $P(A \cap B)$ satisfy the equation

$$P(A \cap B) = P(A) \cdot P(B)$$

Independent Events vs. Mutually Exclusive

 (\bigstar) Events A and B are **independent events** if and only if the <u>probabilities</u> P(A), P(B) and $P(A \cap B)$ satisfy the equation

$$P(A \cap B) = P(A) \cdot P(B)$$

(★) Recall that events A and B are said to be **mutually exclusive** or **disjoint** if the <u>intersection of A and B is empty</u>, that is

$$A \cap B = \emptyset$$

And in this case there is <u>no chance</u> of the event "A and B" occurring, that is $P(A \cap B) = 0$ and $P(A \cup B) = P(A) + P(B)$.

Independent Events vs. Mutually Exclusive

 (\star) Events A and B are **independent events** if and only if the <u>probabilities</u> P(A), P(B) and $P(A \cap B)$ satisfy the equation

$$P(A \cap B) = P(A) \cdot P(B)$$

(★) Recall that events A and B are said to be **mutually exclusive** or **disjoint** if the <u>intersection of A and B is empty</u>, that is

$$A \cap B = \emptyset$$

And in this case there is <u>no chance</u> of the event "A and B" occurring, that is $P(A \cap B) = 0$ and $P(A \cup B) = P(A) + P(B)$.

NOTE: If P(A)>0 and P(B)>0 and events A and B are mutually exclusive then these events cannot also be independent $P(A \cap B) = 0 \neq P(A) \cdot P(B)$.

Random Variables

DEFINITION: A <u>random variable</u>, r.v., is a function, X, that <u>measures the</u> outcome of an experiment and always has a probability associated to it.

Random Variables

DEFINITION: A <u>random variable</u>, r.v., is a function, X, that <u>measures the</u> outcome of an experiment and always has a probability associated to it.

Examples:

- (a) Suppose we flip a fair coin once and suppose we <u>let X denote the number</u> <u>of heads then this is a **random variable**</u>.
- (b) Suppose we have a <u>bias coin</u> that comes up heads 70% of the time and comes up tails 30% of the time. Suppose we flip this coin 3 times. <u>If the variable X counts the total number of heads then X is a **random variable**.</u>

If we have a bias coin that comes up heads 70% of the time and comes up tails 30% of the time and if we flip this coin 3 times then:

(a) The sample space is

 $S = \{TTT, HTT, THT, TTH, HHT, HTH, THH, HHH\}$

Note that if the outcomes were **equally likely** then each event above in *S* would have equal probability, i.e. 1/8, but since the coin is not fair, these events are **not** equally likely and so the probability of each event has to be calculated explicitly.

If we have a bias coin that comes up heads 70% of the time and comes up tails 30% of the time and if we flip this coin 3 times then:

(a) The sample space is

$$S = \{TTT, HTT, THT, TTH, HHT, HTH, THH, HHH\}$$

Note that if the outcomes were **equally likely** then each event above in *S* would have equal probability, i.e. 1/8, but since the coin is not fair, these events are **not** equally likely and so the probability of each event has to be calculated explicitly.

(b) Since each flip of the coin is independent, we can calculate, for example,

$$P(TTH) = P(T) \cdot P(T) \cdot P(H) = (0.3)(0.3)(0.7) = (0.3)^{2}(0.7) = 0.063$$

If we have a bias coin that comes up heads 70% of the time and comes up tails 30% of the time and if we flip this coin 3 times then:

(a) The sample space is

$$S = \{TTT, HTT, THT, TTH, HHT, HTH, THH, HHH\}$$

Note that if the outcomes were **equally likely** then each event above in *S* would have equal probability, i.e. 1/8, but since the coin is not fair, these events are **not** equally likely and so the probability of each event has to be calculated explicitly.

(b) Since each flip of the coin is independent, we can calculate, for example,

$$P(TTH) = P(T) \cdot P(T) \cdot P(H) = (0.3)(0.3)(0.7) = (0.3)^{2}(0.7) = 0.063$$

Caution! Since the events are <u>not</u> equally likely $P(TTH) \neq 1/8$.

(c) If the **random variable** *X* counts the total number of heads then the probability of each event or **probability distribution of** *X* is

$$P(X = 0) = P(TTT) = P(T) \cdot P(T) \cdot P(T) = (0.3)^3 = 0.027,$$

(c) If the **random variable** *X* counts the total number of heads then the probability of each event or **probability distribution of** *X* is

$$P(X = 0) = P(TTT) = P(T) \cdot P(T) \cdot P(T) = (0.3)^3 = 0.027,$$

 $P(X = 1) = P(HTT \cup THT \cup TTH)$
 $= P(HTT) + P(THT) + P(TTH) = 3(0.7)(0.3)^2 = 0.189$

(c) If the **random variable** *X* counts <u>the total number of heads</u> then the probability of each event or **probability distribution of** *X* is

$$P(X = 0) = P(TTT) = P(T) \cdot P(T) \cdot P(T) = (0.3)^3 = 0.027,$$

$$P(X = 1) = P(HTT \cup THT \cup TTH)$$

$$= P(HTT) + P(THT) + P(TTH) = 3(0.7)(0.3)^2 = 0.189$$

$$P(X = 2) = P(THH \cup HTH \cup HHT) = 3(0.7)^2 (0.3) = 0.441$$

(c) If the **random variable** *X* counts the total number of heads then the probability of each event or **probability distribution of** *X* is

$$P(X = 0) = P(TTT) = P(T) \cdot P(T) \cdot P(T) = (0.3)^{3} = 0.027,$$

$$P(X = 1) = P(HTT \cup THT \cup TTH)$$

$$= P(HTT) + P(THT) + P(TTH) = 3(0.7)(0.3)^{2} = 0.189$$

$$P(X = 2) = P(THH \cup HTH \cup HHT) = 3(0.7)^{2}(0.3) = 0.441$$

$$P(X = 3) = P(HHH) = (0.7)^{3} = 0.343$$

Think of drawing a card at random from a deck of 52 cards.

Each of the 52 cards has an equal chance of being selected, and |S| = 52 so

$$P(\text{selecting any specific card}) = \frac{1}{|S|} = \frac{1}{52}$$

Think of drawing a card at random from a deck of 52 cards.

Each of the 52 cards has an equal chance of being selected, and |S| = 52 so

$$P(\text{selecting any specific card}) = \frac{1}{|S|} = \frac{1}{52}$$

So if we have an event, like picking an ace, that is if

A = { an ace } = event that we select an ace from a 52 card deck

Then we have to count the number of ways that event A can occur, |A|, and divide it by the total number of outcomes in the sample space, |S|:

Think of drawing a card at random from a deck of 52 cards.

Each of the 52 cards has an equal chance of being selected, and |S| = 52 so

$$P(\text{selecting any specific card}) = \frac{1}{|S|} = \frac{1}{52}$$

So if we have an event, like picking an ace, that is if

A = { an ace } = event that we select an ace from a 52 card deck

Then we have to count the number of ways that event A can occur, |A|, and divide it by the total number of outcomes in the sample space, |S|:

$$P(A) = \frac{|A|}{|S|} = \frac{4}{52}$$
 = probability of picking an ace

We can use the properties and theorems of Probability to determine the chance of more complicated outcomes.

Draw a card from a standard 52 card deck, what's the probability of picking an ace or a spade? By Inclusion-Exclusion, we have

$$P(A \cup S) = P(A) + P(S) - P(A \cap S) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = 16/52 \approx 0.31$$

We can use the properties and theorems of Probability to determine the chance of more complicated outcomes.

Draw a card from a standard 52 card deck, what's the probability of picking an ace <u>or</u> a spade? By Inclusion-Exclusion, we have

$$P(A \cup S) = P(A) + P(S) - P(A \cap S) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = 16/52 \approx 0.31$$

And, for example, using the Law of Complements

$$P(A^c \cap S^c) = P((A \cup S)^c) = 1 - P(A \cup S) = 1 - 16/52 = 36/52$$

We can use the properties and theorems of Probability to determine the chance of more complicated outcomes.

Draw a card from a standard 52 card deck, what's the probability of picking an ace <u>or</u> a spade? By Inclusion-Exclusion, we have

$$P(A \cup S) = P(A) + P(S) - P(A \cap S) = \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = 16/52 \approx 0.31$$

And, for example, using the Law of Complements

$$P(A^c \cap S^c) = P((A \cup S)^c) = 1 - P(A \cup S) = 1 - 16/52 = 36/52$$

This is the probability of picking a card that is <u>neither an ace nor a spade</u>.

Interpretations of Probability

- Although the probability P is well-defined mathematically, how we *interpret* the probability P in real world situations is not always clear. E.g., coin flips vs. P(rain).
- The relative frequency interpretation of probability
 - This interpretation says that P is just long run relative frequency of events.

Interpretations of Probability

- The **subjective interpretation** of probability is also accepted by many.
 - This interpretation says that P represents one's "subjective degree of belief" in a claim about a random process, i.e. faith

There are other interpretations, and reasonable people disagree about the best interpretation. This has real consequences for statistical practice!

(For more on this, take a philosophy of statistics course)

In this section, we examine how the information that "an event B has occurred" affects the probability assigned to event A.

In this section, we examine how the information that "an event B has occurred" affects the probability assigned to event A.

For example, event A might refer to an individual having a particular disease.

If a certain blood test is performed on the individual and the result is negative, then the **updated probability of disease** will be different than if the blood test result was positive.

In this section, we examine how the information that "an event B has occurred" affects the probability assigned to event A.

For example, event A might refer to an individual having a particular disease.

If a certain blood test is performed on the individual and the result is negative, then the **updated probability of disease** will be different than if the blood test result was positive.

We will use the notation $P(A \mid B)$ to represent the **conditional probability of** event A given that the event B has occurred. B is the "conditioning event."

<u>Definition:</u> The **conditional probability of A given B**, P(A|B), is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

<u>Definition:</u> The **conditional probability of A given B**, P(A|B), is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Given that *B* has occurred, the relevant sample space is no longer all of *S* but it boils down to only the outcomes in *B*.

Specific computer parts are assembled in a plant that uses two different assembly lines, line A and line A'.

Line A uses older equipment than A', so it is somewhat slower and less reliable.

Suppose on a given day line A has assembled 8 parts, whereas A' has produced 10.

Specific computer parts are assembled in a plant that uses two different assembly lines, line A and line A'.

Line A uses older equipment than A', so it is somewhat slower and less reliable.

Suppose on a given day line A has assembled 8 parts, whereas A' has produced 10.

Let B denote the event that a defective part has occurred.

Specific computer parts are assembled in a plant that uses two different assembly lines, line A and line A'.

Line A uses older equipment than A', so it is somewhat slower and less reliable.

Suppose on a given day line A has assembled 8 parts, whereas A' has produced 10.

Let B denote the event that a defective part has occurred.

Suppose from the 8 parts from line A, 2 are defective and 6 are non-defective and from the 10 parts from line A', 1 was defective and 9 non-defective.

This information is summarized in the accompanying table.

		Condition	
		В	B'
Line	$A \\ A'$	2 1	6 9

Unaware of this information, the sales manager <u>randomly</u> selects 1 of these 18 parts for a test. Note <u>before</u> the test:

$$P(\text{part from line A selected}) = P(A) = \frac{|A|}{|S|} = \frac{8}{18} = 0.44$$

Now, say, for example, that the manager chose a part that turned out to be defective – i.e., event $B = \{defective \ part\}$ has occurred.

Now, say, for example, that the manager chose a part that turned out to be defective – i.e., event $B = \{defective \ part\}$ has occurred.

Then, the selected part must have been one of the 3 total defective parts made and the probability that it was made by the line A would be 2/3 or using **conditioning** we can calculate:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{2/18}{3/18} = \frac{2}{3}$$

The Multiplication Rule for $P(A \cap B)$

The definition of conditional probability yields the following result:

The Multiplication Rule:

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

This rule is important because it is often the case that $P(A \cap B)$ is desired, whereas only P(B) and $P(A \mid B)$ can be found from the information available.

By definition of P(B|A) we also have $P(A \cap B) = P(B|A) \cdot P(A)$

(★) Alternate Definition of Independence

Two events A and B are **independent** iff $P(A \mid B) = P(A)$ and are **dependent** otherwise.

The Multiplication Rule for $P(A \cap B)$

The definition of conditional probability yields the following result:

The Multiplication Rule:

$$P(A \cap B) = P(A \mid B) \cdot P(B)$$

This rule is important because it is often the case that $P(A \cap B)$ is desired, whereas only P(B) and $P(A \mid B)$ can be found from the information available.

By definition of P(B|A) we also have $P(A \cap B) = P(B|A) \cdot P(A)$

(★) Alternate Definition of Independence

Two events A and B are **independent** iff $P(A \mid B) = P(A)$ and are **dependent** otherwise.

Example

Suppose events A and B are independent, we show that A' and B are independent.

Example

Suppose events A and B are independent, we show that A' and B are independent. Note that

$$B = (B \cap A) \cup (B \cap A')$$

And so, by the inclusion exclusion principle, we have

$$P(B) = P((B \cap A) \cup (B \cap A')) = P(B \cap A) + P(B \cap A')$$

Example

Suppose events A and B are independent, we show that A' and B are independent. Note that

$$B = (B \cap A) \cup (B \cap A')$$

And so, by the inclusion exclusion principle, we have

$$P(B) = P((B \cap A) \cup (B \cap A')) = P(B \cap A) + P(B \cap A')$$

And so,

$$P(A'|B) = \frac{P(A' \cap B)}{P(B)} = \frac{P(B) - P(B \cap A)}{P(B)} = 1 - P(A|B) = 1 - P(A) = P(A')$$

Thus, A' and B are independent. Note that we can show that $P(\bullet | B)$ satisfies the axioms of probability for any fixed set B.

Independence of More Than Two Events

Definition

Events A_1, \ldots, A_n are <u>mutually independent</u> if for every k ($k = 2, 3, \ldots, n$) and every subset of indices i_1, i_2, \ldots, i_k ,

$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \cdots \cdot P(A_{i_k})$$

Definition

Events A_1, \ldots, A_n are **exhaustive events** if

$$A_1 \cup A_2 \cup \cdots \cup A_n = \mathcal{S}$$

(Recall $A_1,...,A_n$ are mutually exclusive events if $A_i \cap A_j = \emptyset$ for $i \neq j$.)

Law of Total Probability

Let A_1, \ldots, A_k be mutually exclusive and exhaustive events. Then for any other event B we have,

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \dots + P(B \cap A_k)$$

$$= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + \dots + P(B|A_k)P(A_k)$$

$$= \sum_{i=1}^{k} P(B|A_i)P(A_i)$$

(Note that if we divide both sides by P(B) the probabilities will sum to 1)

Bayes' Theorem

The multiplication rule is most useful when the experiment consists of **several** stages in succession.

The conditioning event B then describes the outcome of the first stage and A the outcome of the second, so that P(A|B), conditioning on what occurs first, will often be known.

The rule is easily extended to experiments involving more than two stages.

Bayes' Theorem

The multiplication rule is most useful when the experiment consists of **several** stages in succession.

The conditioning event B then describes the outcome of the first stage and A the outcome of the second, so that P(A|B), conditioning on what occurs first, will often be known.

The rule is easily extended to experiments involving more than two stages.

Bayes Theorem:

The computation of a **posterior probability** $P(A_j|B)$ from given **prior probabilities** $P(A_i)$ and **conditional probabilities** $P(B|A_i)$ occupies a central position in elementary probability.

The general rule, called **Bayes' Theorem**, for such computations goes back to Reverend Thomas Bayes, who lived in the 18th century.

An individual has 3 different email accounts. Most of her messages, in fact 70%, come into account #1, whereas 20% come into account #2 and the remaining 10% into account #3.

Of the messages into account #1, only 1% are spam, whereas the corresponding percentages for accounts #2 and #3 are 2% and 5% spam, respectively.

(Q) What is the probability that a randomly selected message is spam?

To answer this question, let's first establish some notation:

 $A_i = \{\text{message is from account } \# i\} \text{ for } i = 1, 2, 3,$

 $B = \{\text{message is spam}\}, \text{ we wish to find } P(B)$

To answer this question, let's first establish some notation:

 $A_i = \{\text{message is from account } \# i\} \text{ for } i = 1, 2, 3,$

 $B = \{\text{message is spam}\}, \text{ we wish to find } P(B)$

Then the given percentages imply that

$$P(A_1) = .70, P(A_2) = .20, P(A_3) = .10$$

and,

$$P(B|A_1) = .01, P(B|A_2) = .02, P(B|A_3) = .05$$

Now it is simply a matter of substituting into the equation for the *law of total probability* to find P(B):

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + P(B \cap A_3)$$

$$= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)$$

$$= (.01)(.70) + (.02)(.20) + (.05)(.10) = 0.016$$

In the long run, 1.6% of this individual's messages will be spam.

Now it is simply a matter of substituting into the equation for the *law of total probability* to find P(B):

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + P(B \cap A_3)$$

$$= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)$$

$$= (.01)(.70) + (.02)(.20) + (.05)(.10) = 0.016$$

In the long run, 1.6% of this individual's messages will be spam.

(Q) Say she randomly selected a message and it was indeed spam. What is the probability that it came from account #1?

Now it is simply a matter of substituting into the equation for the *law of total probability* to find P(B):

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + P(B \cap A_3)$$

$$= P(B|A_1)P(A_1) + P(B|A_2)P(A_2) + P(B|A_3)P(A_3)$$

$$= (.01)(.70) + (.02)(.20) + (.05)(.10) = 0.016$$

In the long run, 1.6% of this individual's messages will be spam.

(Q) Say she randomly selected a message and it was indeed spam. What is the probability that it came from account #1?

We wish to find $P(A_1|B)$.

Bayes' Theorem

Let A_1, A_2, \ldots, A_k be a collection of k mutually exclusive and exhaustive events with <u>prior</u> probabilities $P(A_i)$

Then for any other event B for which P(B) > 0, the <u>posterior</u> probability of A_j given that B has occurred is

$$P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^k P(B|A_i)P(A_i)}, j = 1, 2, \dots, k$$
 (3)

Bayes' Theorem

Let A_1, A_2, \ldots, A_k be a collection of k mutually exclusive and exhaustive events with <u>prior</u> probabilities $P(A_i)$

Then for any other event B for which P(B) > 0, the <u>posterior</u> probability of A_j given that B has occurred is

$$P(A_j|B) = \frac{P(A_j \cap B)}{P(B)} = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^k P(B|A_i)P(A_i)}, j = 1, 2, \dots, k$$
 (3)

So the answer to the spam question is

$$P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B)} = \frac{(0.01)(0.70)}{0.016} = 0.4375$$

Note that Equation (♠) is know as **Bayes' Theorem**.