Econometricks: Short guides to econometrics

Trick 02: Specific Distributions

D. Rostam-Afschar

Content

- 1. The normal distribution
- 2. Method of transformations
- 3. The χ^2 distribution
- 4. The F-distribution
- 5. The student t-distribution
- 6. The lognormal distribution
- 7. The gamma distribution
- 8. The beta distribution
- 9. The logistic distribution
- 10. The Wishart distribution

Specific Distributions

Thanks to Ping Yu

Discrete distributions

The Bernoulli distribution for a single binomial outcome (trial) is

$$Prob(x = 1) = p,$$

 $Prob(x = 0) = 1 - p,$

where $0 \le p \le 1$ is the probability of success.

- ightharpoonup E[x] = p and
- $V[x] = E[x^2] E[x]^2 = p p^2 = p(1-p).$

4

Discrete distributions

The distribution for x successes in n trials is the **binomial distribution**,

$$Prob(X = x) = \frac{n!}{(n-x)!x!}p^{x}(1-p)^{n-x} \quad x = 0, 1, ..., n.$$

The mean and variance of x are

- \triangleright E[x] = np and
- ▶ V[x] = np(1-p).

Example of a binomial [n = 15, p = 0.5] distribution:

Discrete distributions

The limiting form of the binomial distribution, $n \to \infty$, is the **Poisson distribution**,

$$Prob(X = x) = \frac{e^{\lambda} \lambda^{x}}{x!}.$$

The mean and variance of x are

- $ightharpoonup E[x] = \lambda$ and
- $ightharpoonup V[x] = \lambda.$

Example of a Poisson [3] distribution:

The normal distribution

Random variable $x \sim N[\mu, \sigma^2]$ is distributed according to the **normal distribution** with mean μ and standard deviation σ obtained as

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}.$$
 (1)

The density is denoted $\phi(x)$ and the cumulative distribution function is denoted $\Phi(x)$ for the standard normal. Example of a standard normal, $(x \sim N[0,1])$, and a normal with mean 0.5 and standard deviation 1.3:

Transformation of random variables

Continuous variable x may be transformed to a discrete variable y. Calculate the mean of variable x in the respective interval:

$$Prob(Y = \mu_1) = P(-\infty < X \le a),$$

 $Prob(Y = \mu_2) = P(a < X \le b),$
 $Prob(Y = \mu_3) = P(b < X \le \infty).$

Method of transformations

If x is a continuous random variable with pdf $f_x(x)$ and if y = g(x) is a continuous monotonic function of x, then the density of y is obtained by

$$Prob(y \le b) = \int_{-\infty}^{b} f_{x}(g^{-1}(y))|g^{-1}(y)|dy.$$

With $f_y(y) = f_x(g^{-1}(y))|g^{-1}(y)|dy$, this equation can be written as

$$Prob(y \leq b) = \int_{-\infty}^{b} f_y(y) dy.$$

Example

If $x \sim N[\mu, \sigma^2]$, then the distribution of $y = g(x) = \frac{x - \mu}{\sigma}$ is found as follows:

$$g^{-1}(v) = x = \sigma v + \mu$$

$$g^{-1}(y) = \frac{dx}{dy} = \sigma$$

Therefore with $f_x(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}[(g^{-1}(y) - \mu)^2/\sigma^2]} |g^{-1}(y)|$

$$f_y(y) = \frac{1}{\sqrt{2\pi}} e^{-[(\sigma y + \mu) - \mu]^2/2\sigma^2} |\sigma| = \frac{1}{\sqrt{2\pi}} e^{-y^2/2}.$$

Properties of the normal distribution

Preservation under linear transformation: If $x \sim N[\mu, \sigma^2]$, then $(a + bx) \sim N[a + b\mu, b^2\sigma^2]$.

► Convenient transformation $a=-\mu/\sigma$ and $b=1/\sigma$: The resulting variable $z=\frac{(x-\mu)}{\sigma}$ has the standard normal distribution with density

$$\phi(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}.$$

- ▶ If $x \sim N[\mu, \sigma^2]$, then $f(x) = \frac{1}{\sigma} \phi[\frac{x-\mu}{\sigma}]$
- ▶ $Prob(a \le x \le b) = Prob\left(\frac{a-\mu}{\sigma} \le \frac{x-\mu}{\sigma} \le \frac{b-\mu}{\sigma}\right)$
- $lacktriangledown \phi(-z) = 1 \phi(z)$ and $\Phi(-x) = 1 \Phi(x)$ because of symmetry

Method of transformations

If $z \sim N[0, 1]$, then $z^2 \sim \chi^2[1]$ with pdf $\frac{1}{\sqrt{2\pi y}}e^{-y/2}$.

Example

$$\begin{split} f_x(x) &= \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \\ y &= g(x) = x^2 \\ g^{-1}(y) &= x = \pm \sqrt{y} \text{ there are two solutions to } g_1, g_2. \\ g^{-1\prime}(y) &= \frac{dx}{dy} = \pm 1/2y^{-1/2} \\ f_y(y) &= f_x(g_1^{-1}(y))|g_1^{-1\prime}(y)| + f_x(g_2^{-1}(y))|g_2^{-1\prime}(y)| \\ f_y(y) &= f_x(\sqrt{y})|1/2y^{-1/2}| + f_x(-\sqrt{y})| - 1/2y^{-1/2}| \\ f_y(y) &= \frac{1}{2\sqrt{2\pi y}} e^{-\frac{y}{2}} + \frac{1}{2\sqrt{2\pi y}} e^{-\frac{y}{2}} = \frac{1}{\sqrt{2\pi y}} e^{-\frac{y}{2}} \end{split}$$

Distributions derived from the normal

- ▶ If $z \sim N[0, 1]$, then $z^2 \sim \chi^2[1]$ with $E[z^2] = 1$ and $V[z^2] = 2$.
- ▶ If $x_1, ..., x_n$ are *n* independent $\chi^2[1]$ variables, then

$$\sum_{i=1}^n x_i \sim \chi^2[n].$$

▶ If z_i , i = 1, ..., n, are independent N[0, 1] variables, then

$$\sum_{i=1}^n z_i^2 \sim \chi^2[n].$$

▶ If z_i , i = 1, ..., n, are independent $N[0, \sigma^2]$ variables, then

$$\sum_{i=1}^n \left(\frac{z_i}{\sigma}\right)^2 \sim \chi^2[n].$$

▶ If x_1 and x_2 are independent χ^2 variables with n_1 and n_2 degrees of freedom, then

$$x_1 + x_2 \sim \chi^2 [n_1 + n_2].$$

The χ^2 distribution

Random variable $x \sim \chi^2[n]$ is distributed according to the **chi-squared distribution** with n degrees of freedom

$$f(x|n) = \frac{x^{n/2-1}e^{-x/2}}{2^{n/2}\Gamma(\frac{n}{2})},$$
 (2)

where Γ is the Gamma-distribution (more below).

- \triangleright E[x] = n
- V[x] = 2n

Example of a $\chi^2[3]$ distribution:

The F-distribution

If x_1 and x_2 are two independent chi-squared variables with degrees of freedom parameters n_1 and n_2 , respectively, then the ratio

$$F[n_1, n_2] = \frac{x_1/n_1}{x_2/n_2} \tag{3}$$

has the **F** distribution with n_1 and n_2 degrees of freedom.

The student t-distribution

If z is an N[0, 1] variable and x is $\chi^2[n]$ and is independent of z, then the ratio

$$t[n] = \frac{z}{\sqrt{x/n}}. (4)$$

has the t distribution with n degrees of freedom.

Example for the t distributions with 3 and 10 degrees of freedom with the standard normal distribution.

Comparing (3) with $n_1 = 1$ and (4), if $t \sim t[n]$, then $t^2 \sim F[1, n]$.

The t[30] approx. the standard normal

Approximating a χ^2

For degrees of freedom greater than 30 the distribution of the chi-squared variable x is approx.

$$z = (2x)^{1/2} - (2n-1)^{1/2},$$
 (5)

which is approximately standard normally distributed. Thus,

$$Prob(\chi^2[n] \le a) \approx \Phi[(2a)^{1/2} - (2n-1)^{1/2}].$$

The lognormal distribution

The **lognormal distribution**, denoted $LN[\mu, \sigma^2]$, has been particularly useful in modeling the size distributions.

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{1}{2[(\ln x - \mu)/\sigma]^2}}, \qquad x > 0$$

A lognormal variable x has

• $E[x] = e^{\mu + \sigma^2/2}$, and

Var[x] = $e^{2\mu+\sigma^2}(e^{\sigma^2}-1)$.

If $y \sim LN[\mu, \sigma^2]$, then $\ln y \sim N[\mu, \sigma^2]$.

The gamma distribution

The general form of the gamma distribution is

$$f(x) = \frac{\lambda^P}{\Gamma(P)} e^{-\lambda x} x^{P-1}, \qquad x \ge 0, \lambda > 0, P > 0.$$
 (6)

Many familiar distributions are special cases, including the **exponential distribution**(P=1) and **chi-squared**($\lambda=1/2, P=n/2$). The **Erlang distribution** results if P is a positive integer. The mean is P/λ , and the variance is P/λ^2 . The **inverse gamma distribution** is the distribution of 1/x, where x has the gamma distribution.

The beta distribution

For a variable constrained between 0 and c>0, the **beta distribution** has proved useful. Its density is

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{x}{c}\right)^{\alpha - 1} \left(1 - \frac{x}{c}\right)^{\beta - 1} \frac{1}{c}, \qquad x \ge 0, \lambda > 0, P > 0.$$

It is symmetric if $\alpha = \beta$, asymmetric otherwise. The mean is $ca/(\alpha + \beta)$, and the variance is $c^2\alpha\beta/[(\alpha + \beta + 1)(\alpha + \beta)^2]$.

The logistic distribution

The **logistic distribution** is an alternative if the normal cannot model the mass in the tails; the cdf for a logistic random variable is

$$F(x) = \Lambda(x) = \frac{1}{1 + e^{-x}}.$$

The density is $f(x) = \Lambda(x)[1 - \Lambda(x)]$. The mean and variance of this random variable are zero and $\pi^2/3$.

The Wishart distribution

The **Wishart distribution** describes the distribution of a random matrix obtained as

$$f(\mathbf{W}) = \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)'.$$

where x_i is the *i*th of nK element random vectors from the multivariate normal distribution with mean vector, μ , and covariance matrix, Σ . The density of the Wishart random matrix is

$$f(\boldsymbol{W}) = \frac{\exp\left[-\frac{1}{2} trace(\boldsymbol{\Sigma}^{-1} \boldsymbol{W})\right] |\boldsymbol{W}|^{-\frac{1}{2}(n-K-1)}}{2^{nK/2} |\boldsymbol{\Sigma}|^{K/2} \pi^{K(K-1)/4} \prod_{j=1}^{K} \Gamma\left(\frac{n+1-j}{2}\right)}.$$

The mean matrix is $n\Sigma$. For the individual pairs of elements in W,

$$Cov[w_{ij}, w_{rs}] = n(\sigma_{ir}\sigma_{js} + \sigma_{is}\sigma_{jr}).$$

The Wishart distribution is a multivariate extension of χ^2 distribution. If $\mathbf{W} \sim W(n, \sigma^2)$, then $\mathbf{W}/\sigma^2 \sim \chi^2[n]$.

References I

Greene, W. H. (2003): *Econometric Analysis*. Prentice Hall, 5 edn.