Chapter 7: Relational Database Design

- Pitfalls in Relational Database Design
- Decomposition
- Normalization Using Functional Dependencies
- Normalization Using Multivalued Dependencies
- Normalization Using Join Dependencies
- Domain-Key Normal Form
- Alternative Approaches to Database Design

Pitfalls in Relational Database Design

- Relational database design requires that we find a "good" collection of relation schemas. A bad design may lead to
 - Repetition of information.
 - Inability to represent certain information.
- Design Goals:
 - Avoid redundant data
 - Ensure that relationships among attributes are represented
 - Facilitate the checking of updates for violation of database integrity constraints

Example

Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets, customer-name, loan-number, amount)

- Redundancy:
 - Data for branch-name, branch-city, assets are repeated for each loan that a branch makes
 - Wastes space and complicates updating
- Null values
 - Cannot store information about a branch if no loans exist
 - Can use null values, but they are difficult to handle

Decomposition

Decompose the relation schema Lending-schema into:

Branch-customer-schema = (branch-name, branch-city, assets, customer-name)

Customer-loan-schema = (customer-name, loan-number, amount)

• All attributes of an original schema (R) must appear in the decomposition (R_1 , R_2):

$$R = R_1 \cup R_2$$

Lossless-join decomposition.
 For all possible relations r on schema R

$$r = \Pi_{R_1}(r) \bowtie \Pi_{R_2}(r)$$

Example of a Non Lossless-Join Decomposition

• Decomposition of R = (A, B) $R_1 = (A)$ $R_2 = (B)$

A	B
α	1
α	2
β	1
r	

$$egin{array}{c} A \\ \alpha \\ \beta \end{array}$$

 $\Pi_{B(r)}$

•
$$\Pi_A(r) \bowtie \Pi_B(r)$$

$$\begin{array}{|c|c|c|c|} \hline A & B \\ \hline \alpha & 1 \\ \alpha & 2 \\ \beta & 1 \\ \beta & 2 \\ \hline \end{array}$$

 $\Pi_{A}(r)$

Goal — Devise a Theory for the Following:

- Decide whether a particular relation R is in "good" form.
- In the case that a relation R is not in "good" form, decompose it into a set of relations $\{R_1, R_2, ..., R_n\}$ such that
 - each relation is in good form
 - the decomposition is a lossless-join decomposition
- Our theory is based on:
 - functional dependencies
 - multivalued dependencies

Normalization Using Functional Dependencies

When we decompose a relation schema R with a set of functional dependencies F into R_1 and R_2 we want:

- Lossless-join decomposition: At least one of the following dependencies is in F+:
 - $-R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$
- No redundancy: The relations R_1 and R_2 preferably should be in either Boyce-Codd Normal Form or Third Normal Form.
- Dependency preservation: Let F_i be the set of dependencies in F^+ that include only attributes in R_i . Test to see if:

$$- (F_1 \cup F_2)^+ = F^+$$

Otherwise, checking updates for violation of functional dependencies is expensive.

Example

$$\bullet R = (A, B, C)$$

$$F = \{A \rightarrow B, B \rightarrow C\}$$

- $R_1 = (A, B), R_2 = (B, C)$
 - Lossless-join decomposition:

$$R_1 \cap R_2 = \{B\} \text{ and } B \rightarrow BC$$

- Dependency preserving
- \bullet $R_1 = (A, B), R_2 = (A, C)$
 - Lossless-join decomposition:

$$R_1 \cap R_2 = \{A\} \text{ and } A \rightarrow AB$$

- Not dependency preserving (cannot check $B \rightarrow C$ without computing $R_1 \bowtie R_2$)

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F^+ of the form $\alpha \to \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

Example

•
$$R = (A, B, C)$$

 $F = \{A \rightarrow B \ B \rightarrow C\}$
Key = $\{A\}$

- R is not in BCNF
- Decomposition $R_1 = (A, B), R_2 = (B, C)$
 - R_1 and R_2 in BCNF
 - Lossless-join decomposition
 - Dependency preserving

BCNF Decomposition Algorithm

```
result := \{R\};
done := false;
compute F^+;
while (not done) do
    if (there is a schema R_i in result that is not in BCNF)
      then begin
                let \alpha \rightarrow \beta be a nontrivial functional
                  dependency that holds on R_i
                  such that \alpha \to R_i is not in F^+,
                  and \alpha \cap \beta = \emptyset;
                result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
             end
      else done := true;
```

Note: each R_i is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

 R = (branch-name, branch-city, assets, customer-name, loan-number, amount)

```
F = {branch-name → assets branch-city | loan-number → amount branch-name} 
Key = {loan-number, customer-name}
```

- Decomposition
 - R_1 = (branch-name, branch-city, assets)
 - $-R_2 = (branch-name, customer-name, loan-number, amount)$
 - $-R_3 = (branch-name, loan-number, amount)$
 - $R_4 = (customer-name, loan-number)$
- Final decomposition

 R_1, R_3, R_4

BCNF and Dependency Preservation

It is not always possible to get a BCNF decomposition that is dependency preserving

•
$$R = (J, K, L)$$

 $F = \{JK \rightarrow L$
 $L \rightarrow K\}$

Two candidate keys = JK and JL

- R is not in BCNF
- Any decomposition of R will fail to preserve

$$JK \rightarrow L$$