

<110> Victor Roschke

<120> 29 Human Cancer Associated Proteins

<130> PA004P1

<150> unassigned

<151> 2001-12-21

<150> PCT/US00/23794

<151> 2000-08-30

<150> 60/152,296

<151> 1999-09-03

<150> 60/158,003

<151> 1999-10-06

<160> 138

<170> PatentIn Ver. 2.0

<210> 1

<211> 733

<212> DNA

<213> Homo sapiens

<400> 1

gggatccgga	gcccaaatact	tctgacaaaa	ctcacacatg	cccaccgtgc	ccagcacctg	60
aattcgaggg	tgcacccgtca	gtcttcctct	tccccccaaa	acccaaggac	accctcatga	120
tctcccgac	tcctgagggtc	acatgcgtgg	tggttggacgt	aagccacgaa	gaccctgagg	180
tcaagttcaa	ctggtagctg	gacggcgtgg	agggtgcataa	tgccaagaca	aagccgcggg	240
aggagcagta	caacacgcacg	taccgtgtgg	tcagcgtcct	caccgtcctg	caccaggact	300
ggctgaatgg	caaggagtagac	aagtgcacagg	tctccaacaa	agccctccca	accccccattcg	360
agaaaaccat	ctccaaagcc	aaagggcagc	cccgagaacc	acaggtgtac	accctgcccc	420
catcccgaaa	tgagctgacc	aagaaccagg	tcagcctgac	ctgcctggtc	aaaggcttct	480
atccaagcga	catcgccgtg	gagtgggaga	gcaatgggca	gccggagaac	aactacaaga	540
ccacgcctcc	cgtgtggac	tccgacggct	ccttcttcct	ctacagcaag	ctcaccgtgg	600
acaagagcag	gtggcagcag	gggaacgtct	tctcatgctc	cgtgatgcat	gaggctctgc	660
acaaccacta	cacgcagaag	agcctctccc	tgtctccggg	taaatgagtg	cgacggccgc	720
gactctagag	gat					733

<210> 2

<211> 5

<212> PRT

<213> Homo sapiens

<220>

<221> Site

<222> (3)

<223> Xaa equals any of the twenty naturally occurring L-amino acids

<400> 2

Trp Ser Xaa Trp Ser

1

5

<210> 3

<211> 86

<212> DNA

<213> Artificial Sequence

<220>

<221> Primer_Bind

<223> Synthetic sequence with 4 tandem copies of the GAS binding site found in the IRF1 promoter (Rothman et al., Immunity 1:457-468 (1994)), 18 nucleotides complementary to the SV40 early promoter,

and a Xho I restriction site.

<400> 3		
gcccctcgag atttccccga aatcttagatt tcccccggaaat gatttccccg aaatgatttc	60	
cccgaaaatat ctgcctatctc aattag	86	
<210> 4		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> Primer_Bind		
<223> Synthetic sequence complementary to the SV40 promoter; includes a Hind III restriction site.		
<400> 4		
gcggcaagct ttttgcaaag cctaggc	27	
<210> 5		
<211> 271		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> Protein_Bind		
<223> Synthetic promoter for use in biological assays; includes GAS binding sites found in the IRF1 promoter (Rothman et al., Immunity 1:457-468 (1994)).		
<400> 5		
ctcgagattt ccccgaaatc tagatttccc cgaaatgatt tcccccggaaat gatttccccg	60	
aaatatctgc catctcaatt agtcagcaac catagtcccg cccctaactc cgcccatccc	120	
gcccttaact ccgcccagg ttccggccat ggctgactaa ttttttttat	180	
ttatgcagag gccgaggccg ctcggccctc tgagctattc cagaagtgtt gaggaggctt	240	
ttttggaggc ctaggctttt gaaaaagct t	271	
<210> 6		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> Primer_Bind		
<223> Synthetic primer complementary to human genomic EGR-1 promoter sequence (Sakamoto et al., Oncogene 6:867-871 (1991)); includes a Xho I restriction site.		
<400> 6		
gcgctcgagg gatgacagcg atagaacccc gg	32	
<210> 7		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<221> Primer_Bind		
<223> Synthetic primer complementary to human genomic EGR-1 promoter sequence (Sakamoto et al., Oncogene 6:867-871 (1991)); includes a Hind III restriction site.		
<400> 7		
gcgaagcttc gcgactcccc ggatccgcct c	31	
<210> 8		

```

<211> 12
<212> DNA
<213> Homo sapiens

<400> 8
ggggactttc cc 12

<210> 9
<211> 73
<212> DNA
<213> Artificial Sequence

<220>
<221> Primer_Bind
<223> Synthetic primer with 4 tandem copies of the NF-KB binding site
(GGGGACTTCCC), 18 nucleotides complementary to the 5' end of the
SV40 early promoter sequence, and a XhoI restriction site.

<400> 9
gcggcctcg a gggactttc cggggactt tccgggact ttccggact ttccatcctg 60
ccatctcaat tag 73

<210> 10
<211> 256
<212> DNA
<213> Artificial Sequence

<220>
<221> Protein_Bind
<223> Synthetic promoter for use in biological assays; includes NF-KB
binding sites.

<400> 10
ctcgagggga ctcccggg gactttccgg ggactttccg ggactttcca tctgccatct 60
caattagtca gcaacccatag tcccgccct aactccgccc atccggccc taactccgcc 120
cagttccgccc catttcgc cccatggctg actaattttt ttatttatg cagaggccga 180
ggccgcctcg gcctctgagc tattccagaa gtagtgagga ggctttttg gaggcctagg 240
ctttgcaaa aagctt 256

<210> 11
<211> 1388
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1388)..(1388)
<223> n equals a,t,g, or c

<400> 11
cggtcgacc cacgcgtccg gtccctagga gataagagta tcttgcacag cagggtgcagg 60
tttcccagca gctcaggcaa gagtccgatg tttgtccat ctgatcctga tgtctggaga 120
gatagccatg tgtgagccctg aatttggca tgacaaggcc agggagccga gcgtgggtgg 180
caggtggcga gtgtccttgt acgaacgggt tgtcagccca tgtctggctc aactgctgg 240
ctctgtctc ttcatctca tcgggtgcct gtcgggtatt gagaatggga cggacactgg 300
gctgctgcag ccggccctgg cccacgggt ggcttgggg ctcgtattt ccacgcgtgg 360
aatatcagt ggtggacact tcaaccctgc ggtgtccctg gcagccatgc tgatcgagg 420
cctcaacctg gtgatgctcc tcccgtaactg ggtctcacag ctgctcgaaa ggtatgctgg 480
ggctgcctt gccaaggcgg tgagtccatg ggagagggtc tggatgcattt ctggggcggc 540
ctttgtgaca gtccaggagc aggggcaggt ggcaggggcg ttgggtggcag agatcatcct 600
gacgacgcgt ctggccctgg ctgtatgcat ggggtccatc aatgagaaga caaaggcccc 660
tctggccccc ttctccatcg gctttggccgt caccgtggat atcctggctg gggggccctgt 720
gtctggaggc tgcatgaatc cggccctgtc ttttgacat ggggtggcgg ccaaccactg 780
gaacttccac tggatctact ggctgggccc actcctggct ggcctgctt ttggactgct 840
cattaggtgc ttcattggag atgggaagac ccgcctcatc ctgaaaggcgt agtgaagcag 900
agctcggtt attcctgtcg ctccagggtt cctcagctca cctgtccctg actgaggaca 960

```

ggggagttcc	tgcat	tcct gccaggcgag	aggcccagag	gagcgacccc	ctgttccac	1020
tgcttggcc	tgctt	tcata gata	gactga	ctgtgagga	ggctctaggt	1080
ccttgcgt	catc	agagac cccagcctgg	ggaacacgct	gccgcactg	cccagagagc	1140
agtcaaaca	ccaca	acacg agcgtttc	ttgagaggaa	tgtccccgag	ttggacaagg	1200
aggctttc	tgcac	atcg ctcat	tcatttccc	gcaccccatt	tcttkcttga	1260
ggggcctgg	ccact	tcct gctcaag	ctgacaattc	tgcactttgc	aataaatagt	1320
ccagtgttcc	cttcc	aaaaaaa aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1380
aaaaaaaaan						1388

<210> 12
<211> 1478
<212> DNA
<213> Homo sapiens

<400> 12						60
ccacgcgtcc	ggaagtaatg	atgacaaaat	actctaacc	ttccttggag	agtcat	120
tctcgctgac	tgctt	cac	tttacaagtc	tgcccattcc	ggaagtaatg	180
actccaaac	actt	catttgc	aaatcataaca	tctca	tgcacatgt	240
tggaaaaaaa	tat	catttgc	aaacgac	ctgctgt	actcacatgt	300
cttctggga	tgt	gattca	gtaaatgt	cttgaaaaaa	aggggatgaa	360
attaccatgt	cagt	gccaca	gaaggc	atccat	tttgcata	420
atagcgaaca	act	ggga	acttcttgc	tgcata	tttgcata	480
catttaattt	cg	gat	ccctt	tttgcata	tttgcata	540
gggattccgt	tgt	cttgg	gtt	tttgcata	tttgcata	600
acagtgtt	tag	gtgt	tttgcata	tttgcata	tttgcata	660
tcaatggaa	aaac	cgca	aat	tttgcata	tttgcata	720
aggatctt	ttgg	gttcc	tttgcata	tttgcata	tttgcata	780
ttgttgcatt	aa	tttgcata	tttgcata	tttgcata	tttgcata	840
ttcttttagt	gg	cttattt	tttgcata	tttgcata	tttgcata	900
tggatgtt	gaa	aaat	tttgcata	tttgcata	tttgcata	960
tagaaaataa	tg	cccc	cagg	tttgcata	tttgcata	1020
tcgtgtcaag	ag	taat	ggg	tttgcata	tttgcata	1080
tgaagaacat	ct	gat	tttt	tttgcata	tttgcata	1140
gtagtttgc	aata	atac	tttgcata	tttgcata	tttgcata	1200
tttttacat	aag	caag	tttgcata	tttgcata	tttgcata	1260
actaatttca	tctt	ggat	tttgcata	tttgcata	tttgcata	1320
agtacatgaa	cta	atgt	tttgcata	tttgcata	tttgcata	1380
actttttgc	cattt	ggat	tttgcata	tttgcata	tttgcata	1440
tgtataattt	ttc	atgt	tttgcata	tttgcata	tttgcata	1478
aaaaatgaaa	aaaa	aaaa	aaaa	aaaa	aaaa	

<210> 13
<211> 1684
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (1)..(1)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (18)..(18)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (63)..(63)
<223> n equals a,t,g, or c

<400> 13						60
ncggcgcgac	cccccc	antt	ttaatgacgc	ctgcgtcc	gtccgaaatt	cccggtcga
ccncgcgtcc	ggcggg	accg	gtttcg	gg	agattctgt	gacaatcacc
aaggaggctt	catc	cttct	ctcat	cctcg	ctgtgtct	ccgttcaggt
catgtacgc	ctgt	tatt	tgac	ctgt	tttgcata	cata
						ctgttaatc

atgacgcgtg	tctgttggc	aaagctgatc	caaaaactttt	ttaccgcccag	tgttggaagt	300
tttatgactg	cagctaccc	tctatctcca	aaggcctggg	gctgaagaag	ctccagtaca	360
gctgttgcctt	gaaggacctg	tgcaacggga	gtgccagggt	ctctgggatg	acagcggtga	420
tgctgtcccc	cttgcggcg	gcagccttga	cgcttgcgt	ctaaatcaac	accgggaggc	480
cttctcctaa	actttccgtg	tctccgtata	ctccttattt	ccttggctgc	tgcacatgccc	540
cagctttattt	tcacctgtcc	cgttgggcaa	gactaacact	agtttgggca	acttgggtgac	600
aagagaggct	ctgagagacg	ttgaagggtca	gtcctgtggg	cagcgaagac	ccgtcggagg	660
gacatgttat	aaaagggtgc	agcacgtgc	atctgagctc	ggccgcacgt	ttcttcctcg	720
gcttttacaca	agagcagcct	cgcagggaca	gcttgsgtac	ctcagatctt	ctgcaggggcc	780
cggcatgggt	tatccccct	ctgatggctt	ggaggtgatt	ttaaaataact	ctgatctgga	840
ggggaggggcg	gtggtaactgg	gacaggggggt	tctttcgac	agcctctccc	agggaatgct	900
ttcatcctct	cccttatgg	caccgcgt	gccaagcagg	cccgaccacg	ctcccacatg	960
cgggctgttg	gggagggccc	gggagattct	cagtgcgtgg	tgatgcacgt	gaccttgta	1020
gtctcaactc	gccccgtgcct	ggcagggaag	gagggggagct	ttccacacgg	cagggccttg	1080
aactcccagg	tctgttcc	aaaaagtagc	agtggctaaa	atcagatgtt	tcctctatca	1140
ctcggttgc	aatgggctt	gcttgtctgc	agtagagaaa	cttagcatct	aataatgatg	1200
tgtgaaaatt	attccctcaa	ctttgcate	agatgggtgg	ggtatcttgg	ctttgtcaca	1260
cgcagttaaa	gtctkaacgt	tggcacatc	tgttaaaaat	aactcgtagt	ggggcacctg	1320
ggggctcag	tgggttaaag	cctctacctt	gggatcatga	cctgaggtga	aggcagaggc	1380
ctagcccaact	gagccaccca	ggcgcaccca	aaagtgttac	accttttgag	gaagagttt	1440
gccttttct	tggggctgtt	cctgaataat	ttgcaagatc	cagcgtcgg	aaggacactt	1500
gttttctwat	catctcggct	gtctctaaca	gcacagctt	gcttttgca	gatgaaggtg	1560
ggacttcagg	attaacattt	tttttcactc	ccttgctcat	gtaatctatg	taacaggctg	1620
aatgactga	tgccttctg	aaaataaaaat	gtaatcaagt	gcaaaaaaaaaa	aaaaaaaaaa	1680
aaaa						1684

<210> 14

<211> 1173

<212> DNA

<213> Homo sapiens

<400> 14

ccacgcgtcc	aaaaatcatc	aactaagaag	gggcacatcg	tatagagaac	gttagcctgt	60
ggagctgtga	atgtgatgg	gacaagattt	agtgtatagc	tctgtctact	gcctgggttt	120
ccttttaggt	tctttatcc	tagatggac	agctgagaaa	tcttaggtga	ttcatattcg	180
taatcatgtt	ttaacatgc	cattggggt	tgcacatttt	tttttatcat	acattttct	240
ccgttttcta	ttaaaagaaca	tgctctaggg	gaactattaa	tagcccacca	gtcgggtagg	300
cagcattcaa	tccttctatg	ccttcttgc	ccacctgtt	aggctttct	tctgaaacaa	360
agaagaaaata	gacaaatcag	acttgcctc	ttggaaatgt	ggtccagatt	tctctactcc	420
caagctccaa	aaaaggcata	cattggatgg	gctagatcaa	ctcctcctga	gagccataaa	480
tccgccaaga	gttgggttcc	atgtaaagggt	gtggtacaat	ggggAACGCC	tgatgttgg	540
ggaaagcagg	aggactttag	agtggagtt	cattctaattc	tctctgcgc	ttcaactatg	600
tgacctgggg	caaatgat	aaactctat	agccttttc	cttatcttta	aatgaagag	660
aagtaataacc	tacccctgt	ggctgttgc	aggattaaat	gaagtaatgc	atacagtgc	720
taacaaagta	ttaacatca	tattttttaa	aagctcatga	aatattttgt	tttcttcctt	780
ccccttttc	tatttctct	cctgttccct	tttctctccc	tcctctgccc	tctcttcct	840
ttagatgtt	gtctaaaaca	gcaccttgc	tctaagcgc	acctttgaga	aagaaaagac	900
tgcttcaaga	atgtctatgtt	gcaccttcc	tccgtatgt	gcctaaatgc	ctaggttgg	960
tcaatagttt	aatttttta	ttgaactgtt	taatatttgc	tatggactta	cattcaactt	1020
tactgtttt	tgtatattt	cttttgcgtt	aaagttttta	atattgacta	tttacctctg	1080
ctcattttt	ttgatttttct	gtatttttc	aatgaaaatt	ataataaaaa	ttattttgt	1140
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaa			1173

<210> 15

<211> 1013

<212> DNA

<213> Homo sapiens

<400> 15

ggtgacatcc	cagtgcaccc	cgtgcaggca	aggcacaccc	gaagcgtgcc	atccctggggc	60
aggaggaggc	gctgcggctg	cacgcctgt	gccgcgtct	gcgcgagggt	gaccctgc	120
gggctgtgt	ctcccaagacg	ctgcagcgt	cactggccaa	gtatgcggag	ctcgaccgtg	180
aggatgactt	ctgtgaggct	gccgaggccc	cggacatcca	gcctaagacc	caccagaagc	240
cagaggccag	gatgccacgc	ctgtcccagg	ggaagggggcc	tgacatctc	catcggtgg	300
ggcccctgtc	tgtgttctca	gccaagaacc	ggtggccgct	ggtggggccc	gtccacactg	360
cccgaggaga	ggccggctt	ggcctcacgc	ttcggggaga	ctcgccctgtc	ctcatcgctg	420

ccgtcattcc	agggagccag	gccgcggcg	ctggcctgaa	ggagggcgac	tacattgtgt	480
cagtgaatgg	gcagccatgc	aggtgttgg	gacacgcgga	ggtggtgacg	gagctgaagg	540
ctgcgggaga	ggcggcgcc	agcctgcagg	ttgtgtcgct	gctgcccagc	tctagactgc	600
ccagcttggg	ggaccgcgg	cccgtcctgc	ttggccccag	ggggcttcta	aggagccaga	660
gggagcatgg	ttgcaagacc	ccggcatcca	cgtggccag	tcccccggcc	ctccctcaact	720
ggagccgaaa	ggcccgccag	ggcaagactg	gaggctgccc	cagccctgtg	ccccagtgaa	780
gcagactccg	ccctcatct	tgaagcaccc	agggtggccg	tgaggggccag	gatccctgca	840
cgcctcagcc	ctggctccag	ctggcagcaa	gcaccggagca	tgcctcccc	acccagagga	900
cctccggca	atgcctgtcc	cgcctcatgc	tggaggctgc	tcggggcacc	tgcctgccc	960
ttaaagactg	gtcagacctg	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaa	1013

<210> 16

<211> 1616

<212> DNA

<213> Homo sapiens

<400> 16

ggcacgaggg	aacattctgg	taattttag	agatctgtt	gcacatctgc	ttcacaaact	60
ggaaaaaaatc	attttaagt	cttgcataatt	acttttctt	gagaagaaaa	aaaatgtac	120
agttgcaaac	aaatgtatag	ttttcaaaaa	gaagcaactt	ttttgctccc	cagtttattc	180
ttagtttcca	gccccacgcct	tgcgatagcg	ataggcatag	tgatggccctc	aattctttct	240
ctcttgcatc	cgtaccttt	gctgtgtgac	tttgagctc	ctctcattaa	agaggcagag	300
ccccctctcc	caccatagg	agcagggttt	gagagtaaca	gaatgaagt	aaaatgacac	360
tgtgccagtt	ctaagaccag	ccctcaaaagg	ttcatgtgtt	tctgcttgc	ttcactgtat	420
ttgaatgtt	gctgtgagaa	agacatctt	gaaacagctg	aatggccctt	agaaaaaggat	480
gagagatgca	gggagcagag	ctcccaactg	aggccaggcc	agatcaccc	agagccaggc	540
ccccagttt	ctctcatgtg	taagcaataa	atgttttaccc	cagcaatacc	accaagggtt	600
gtgggtgggt	tatatacagc	attaatgtgg	caatagggtgc	aatacacccct	gttaaacaaaa	660
ccatacacat	atgactctaa	ccctaattcat	aaatttattt	agtctgttca	gttccacaac	720
gctgtttcc	ccagaatctc	acagatgact	tactaaatcc	aacacaaata	cacccatcagac	780
tttctgtct	gctcccaacc	agttaaaagc	aattttaat	atttttttt	ttagtcgtag	840
tgcaaaagta	tattctctcc	ctttctctat	agttttctt	cattttgtct	tcagacctag	900
aagcatgaga	gccccagctgt	caaagtcatc	tagacccct	tcagaaggc	attaaatttg	960
tctatttcc	aggattgca	gataaaatac	agaatgccc	gttgaattt	aacttcggat	1020
aaacaacaaa	tttttttta	gtataagcat	atccatata	atattttgg	tataatttata	1080
tttttatat	gtttatctga	cgttcaagct	aactggcat	cctgtatattt	tcttagctaa	1140
atctggcaac	tgtgtctattt	cattggaaac	ctgaaagtgt	acaaagaagg	aagaagcaga	1200
atctgccata	tgagtaatag	aagtggcag	gccaggact	ccctaagtc	agaaaccaag	1260
aggcgtcatt	acggaaaaga	gtaactcacc	ctgtgtgctc	cttggtagtt	ctccctcagc	1320
gatcccccca	tgttatgaat	ggggaaaagt	tcactgaagg	gttcatagtg	aagaaaacttt	1380
ttggatgatt	tctgttgggt	gtttttggat	accttcaagg	gatcagaaaa	taatataactt	1440
aggaaatttt	ggtaatgtca	tcattactt	ctacattatt	attatgacgg	ttacaatttgc	1500
taaatctagg	ttgtgggtat	gtgggttata	ttgtacatga	tttttaactt	gtctgcatgt	1560
ttgaaattat	aataaagtca	ataaataat	tattgagaca	caaaaaaaaaa	aaaaaaa	1616

<210> 17

<211> 963

<212> DNA

<213> Homo sapiens

<400> 17

ggcacgagcc	gagttgaccc	cacggctctga	gatgtccaag	ctgcccacag	acagcagtgt	60
cccgccagac	ggcgcggcg	atggtgacag	agacgtcccg	caggcggaga	atacaagagc	120
ttgaagaacg	ccgcaggcga	ttcgttggaa	cctgcagac	aagggaagca	gcgtttatgt	180
ccgaatatac	gcgaaatcc	cacagggtgg	acctcgat	ttaaccctt	acgatagtc	240
tgactgcctc	tgaagtttac	aaccctctga	tagaagaact	tggttgcgt	aagtttatca	300
atagagaata	gttatgtgtt	gacactactt	caagagaacc	tctgcattcc	agtcatatcca	360
atcctgcaac	ttgattttca	gaagtcaaga	gtatatcg	ataagacagt	gcacaggtgg	420
agggggaaaa	aagggggg	gggaagctt	tcttgaaaaa	gcatcacaga	agtagaaaaa	480
aatgtcgaaa	gcattataac	tgttacgtt	tttgatgtt	tgattgtatcc	acatttttcc	540
ccctgcattt	tggaaaatgt	ctctcagcat	tgcttttata	caaagtaaag	gatggtttta	600
taaaatttgc	actgtatggaa	catcaataact	agagcccatg	aggatgaaag	aaatttatcaa	660
atagtgtctg	acagaataag	atgttacgtc	tgaggatttt	ggacttggaaag	gctatgaaaa	720
gaacttgc	ttgttgcggat	atgtgtctc	ttcatgtcat	attcaataga	agtttctagt	780
ttaagatttgc	ttttgtgttt	tcttagggat	ttcaagtgc	aagcaaaatg	aatgtatata	840
ttatgtgata	aatcatgttt	tcaagaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	900

aaaaaaaaaaaa	aaaaaaaaaaa	aaaaaaaaaaa	aaaaaaaaaaa	aaaaaaaaaaa	aaaaaaaaaaa	aaaaaaaaaaa	960
aaa							963

<210> 18

<211> 1369

<212> DNA

<213> Homo sapiens

<400> 18

ccacgcgtcc	gggaagttgg	ccggcggtc	gctgggcttg	gctgtgggc	ggaggtggt	60
ggctagctt	ggcccttgg	aggcctcagc	agggcttcag	taactacctg	ggtgggctgc	120
ctgaggagag	aagtgaagt	tggaaactt	ggggaccctg	taggagcgct	atgaaggttc	180
agaaggtgt	ggtgcctccc	ttgcttgaag	tgcagtggc	agttcttgag	ccccccaata	240
agcctcagaa	ccacccat	tagttttga	ccctcttac	caaggattgt	ggcagaaagg	300
aagatgttac	caagtattt	agtgaattcc	ccaatgcagg	ggaacggatg	ttgaactcca	360
gggatgcagc	aagacacaca	gcggagcaa	acgctacaaa	tacctgagaa	gacttttcg	420
tttccggcag	atggacttt	agtttgcgtc	atggcagatg	ctctacat	ttacttcccc	480
acagagagat	tacagaaatt	ttcattatcg	aaagcagaca	aggatcaat	ggccagaga	540
tgaccctgc	ttcttggtcc	tgttaagtat	ttggctctgt	gtgtccacta	taggatttgg	600
ctttgtcctg	gacatggat	ttttttagac	gataaaagctg	ctcctttggg	ttgtcttcat	660
agattgtgt	ggcgttggc	ttctcatatc	aacttaatg	tggtttatct	cgaacaagta	720
cttagtgaag	cgccaaagca	gggactatga	tgtggagtgg	ggttatgcct	tcgacgtgca	780
tctgaatgc	ttttatcctc	tcttagtcat	tctgcatttt	atccagctt	tcttcattaa	840
ccatgttattc	ctgacggaca	catttatttg	atattttgtt	ggaaaatact	tgtgctgg	900
ggcagtgggc	tattatatct	atgtaacctt	tctaggatac	agtgcattgc	cattttgaa	960
aaatacagta	attctcttt	atccatttgc	gcctctcatt	ctgctctacg	gcctgtccct	1020
ggcacttagga	tggaaactca	cccacacact	gtgctccttc	tacaagtaca	gagtaaaatg	1080
aaggcgttg	gagactatgc	catcttacct	gtgccacagg	cagagatggt	gagggatga	1140
tttcttcgca	aacttgcaaa	taaactgtct	ttgttagatat	cttcagagtg	taaagtttgc	1200
aaatttgagt	aagtatataa	tgtaacgccta	ttgtcaatac	attccttaaa	actactaaaa	1260
gttacatttc	tataataat	atttttaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1320
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1369

<210> 19

<211> 1298

<212> DNA

<213> Homo sapiens

<400> 19

atgaaccctc	cttccctgaa	ggtgggattt	caggaagacc	ccaccacccc	gtttcacctt	60
agtccaggga	catagttccc	aagtggggc	cgtggccctg	aggcttctg	ggaagggtcc	120
cgggggggca	cttgggttgt	gggtggact	tggcggggc	ccagccctga	cagctggcct	180
gccacagaat	gacacagacc	tgtacagcga	ctgtctccga	accttcttga	cctgccccca	240
ctgtggccat	catgcgcccc	tcacgcccc	ggagcgcate	gccccatgaga	acacactgccc	300
ccaggccccca	caggatggc	ccccaggtaa	gcacaggact	gtggggaccc	ggccacctct	360
gccccagccgt	ctgccccatcc	catgatggc	tcctgtcggt	gtgagcactt	gctagagctt	420
cgaggactga	cgacccctcac	ccgctggccc	tggctggtgc	cacacacagg	ccttgcctg	480
aagatcagga	gccccaggca	gggagagcct	ggagcgcac	ctctttctgt	ctgcctgtcc	540
cctgtggtgt	ctctgtgtt	ctgtctttgt	ctctgtttct	gtctctctgt	ggctatgtct	600
cttggttattt	ttctctgtcc	tgcagctatc	tctgccttgg	tcacctccac	cctgttgtca	660
cccagggtatg	ccacacactg	gggttcagtg	ggggagatag	cactggggcc	acatgcctcc	720
atccccggct	ggctgtgtct	gcctgtcaat	ctccatgtct	ctccttgcgt	ctttctctct	780
gtctctctca	ctggcaggga	tgcggagtaa	agacagacat	gtgtatttt	attaatctgg	840
gaggggcttc	tggaggaggc	aaaactgggt	tctccaaagg	ccaggagaga	acctgagccc	900
cacagggtcc	tgccattttgg	gtgcgggtag	acctgtgcac	tggAACACG	ccctcacagc	960
ctccctcctt	tcctccctta	ggggctgagg	aagctgcctc	cgaaaccctc	cagaagacat	1020
ctgtcctgca	gaggccctac	cactgcagg	cctgcggaa	ggacttcctc	tttacaccca	1080
cagaggtgt	gcccacccgg	aaggcgcacg	tgtgagctgg	gccaggagcc	ctgcccacct	1140
ccgtgcagct	gacctccct	ccagcccaagg	actagggggca	ggactcttgc	ctgaaccccc	1200
agcctgggt	tagccctgt	gtcctgtccc	agtgcagagg	gcctggagca	cgattgtga	1260
ataaaagccgc	acatgctat	aaaaaaaaaa	aaaaaaaaaa			1298

<210> 20

<211> 1967

<212> DNA

<213> Homo sapiens

<400> 20
 accacccatc cccccaccac tgccaccacc cggcgacga ccaccaggcg tccaacaacc 60
 acagtccgaa ccactacgcg gacaaccacc accaccacm mcaaaccac cactccatc 120
 cccacctgtc cccctggac cttggAACCG cacgacgtg atggcaacct gataatgagc 180
 tccaatggga tcccagagt ctacgctgaa gaagatgagt ttcaggcgtt ggagactgac 240
 actgcgtac ctacgagaaga ggcacgtt atatatgtg aagattatga atttgagacg 300
 tcaaggccac caaccaccac tgaggcttcg accactgcta ccacaccgag ggtgatccca 360
 gaggaggcg ccatcgttc ctttcctgaa gaagaatttgc atctggctgg aaggaaacga 420
 ttgttgctc cttacgtgac gtacctaaat aaagaccat cagccccgtg ctctctgact 480
 gatgcactgg atcacccca agtggacagc ctggatgaaa tcatacccaaa tgacctgaag 540
 aagagtgtac tgcctccca gcatgctccc cgcaacatca ccgtgggtggc cgtggaaagg 600
 tgccactcat ttgtcattgt ggactggac aaagccaccc caggagatgt ggtcacaggt 660
 tacttggtt acagtgcac cttacgtgac ttcatcagga acaagtggc cactcaagct 720
 tcatacgtaa ctcacttgcc cattgagaac ctaaagccca acacgaggta ttatTTaaa 780
 gtgcaaggcac aaaatcctca tggctacgga cctatcagcc cttcggctc atttgtcacc 840
 gaatcagata atcctctgtc ttgtgtgagg ccccccaggcg gtgaggctat ctggatccca 900
 ttcgcttca aacatgatcc cagctacacg gactgccc gacggcaata tgtgaagcgc 960
 acgtggatc gaaaggatcg gggaggatgtt ctttgtaatt cactgaggta taaaatctac 1020
 ctcagtgaca acctgaaaaga tacattctac agcattggag acagctgggg aagaggtgaa 1080
 gaccattgcc aatttggta ttcacaccc ttttggatgaa cagggcctca gtccttatgt 1140
 gaagccctcc ctactattca aggctactat cgccagttc gtcaggagcc tgtcagggtt 1200
 gggaaacatcg gcttggAACAC cccctactac tatgtggct ggtacgagg tgggtctcc 1260
 atccctggaa agtggtaatc acaggaccgt catgtgcaa gcttggccctg cccagcccca 1320
 ccaactaagt cgcacttaggg gctgtgagca aagacagccca gctgtgtcc ccccgctgcc 1380
 cttagtgcac ggaagggtcay agatggacac tggccatttc ggtcatctca gtctggaaact 1440
 cagtccttc tcttggctc gacaatgaaac aggattcgt ttgtgttta actttgttc 1500
 tctactttt ttgtgtgtt ttaatgaaac catcccagag acatcagaaaa ccagcaactg 1560
 attcgtgtg atttccagac tttttaggca tggaaatttcg acacttcgtt atttccagga 1620
 atagcatatg cacgtgttca ttgttcatg gaatgctaca tgctttctgt ttttcttatt 1680
 ttggatttct caaaaactaa ctgaatttac gcttcaggc cctttgtatg cagtagaaag 1740
 gaattattaa aaacaccacc aaagaaaata aatataccct acttggaaatt tactctatgg 1800
 acttacccac tgctagaata aatgtatcaa atcttatttgc taaattctca attttgat 1860
 atatatgtat atatgcatat acatatccac acttgtctgc aagaatatttgc attaaaatttgc 1920
 ctaaatttgc acttgttac caaaaaaaaaaaaaaaaac tcgtgcc 1967

<210> 21
<211> 850
<212> DNA
<213> Homo sapiens

<400> 21
 ggcacgagct ttgacccatt caaggatgtc tctggctgaa gaactagatc ctgactcgt 60
 ggcagcatag gttctccccc agggtggtc tgaacttcg ctcagaagca gcctggaccc 120
 catcttaccc ccaagatgg ttttaggt actctgttc cagttttgtt gcaactttagt 180
 taaaatggagg aggacttgcg cagatgtatc tctaaatgtc acactggagg tttgtcaac 240
 ataaaatggagg tgatTTggc gcagagcgaa gtctagaaat ttgcctttaaa ttatTTgtgg 300
 tactcttagg aacgtggat tttttttttt gtgtatgtgt gtatgtgtgt ttgaaatatacg 360
 attgaacgtt agatgttct aagaccagaa tttagattaa aatgcataac atattaatgt 420
 tttttttttt ttatattgtt atatgtatc ttgtgtgtt tttagtttttgc ttttttttttgc 480
 tttaatttgc tgcttacatc gtttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 540
 cttttttttttgc ccatcttcag tatggaaaat gtctatgtt agtttcccttc tcaggccacaa 600
 ttagatTTttt attgacatttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc 660
 agtcaagaga gtgattacca gccaatggaa aaaaatgtga ccaagcgat tgccaggatc 720
 aataaaacca tcgtggatgc ttatcatagc atcagcgaa actgagtttgc ttttttttttgc 780
 aagtctctaa ggaagtatcc tcttgcgtt aaacttggta caagtttgc accaaaaaaa 840
 aaaaaaaaaaaaaaaaac tcgtgcc 850

<210> 22
<211> 1205
<212> DNA
<213> Homo sapiens

<400> 22
 ccacgcgtcc gggttttct tccatctgac atctggccagc ctctctgtt ggaagttgt 60
 aatgtttgc acgaatccag ctcacttgc aaataagaat ctatgacatt aaatgttagt 120

gatgcttatta	gcgcttgtca	gagagggtgg	tttcttcaat	cagtaca	aag tactgagaca	180
atggtaggg	ttgttttctt	aattctttc	ctggtagggc	aacaaga	acc atttccaatc	240
tagaggaa	ag ccccccagca	ttgcttgctc	ctgggcaa	ac	attgctctg agttaagtga	300
cctaattccc	ctgggagaca	tacgcata	ctgtggaggt	ccgagg	gagaaggat	360
accaccacc	tttcaagggt	cacaagctca	ctctctgaca	agtca	gagaactgc	420
ttctatccct	ccaatggaga	gattctggca	accttgaac	agcccagagc	ttgcaaccta	480
gcctcaccca	agaagactgg	aaagagacat	atcttcagc	ttttcagga	ggcgtgcctg	540
ggaaatccagg	aacttttga	tgctaattag	aaggccttga	ctaaaaatg	ccactatggg	600
gtgcactcta	cagttttga	aatgc tagga	ggcagaaggg	gcagagaga	aaaaacatga	660
cctggtagaa	ggaagagagg	caaaggaaac	tgggtgggga	gatcaatta	gagaggaggc	720
acctgggatc	caccccttcc	cttaggtccc	ctccctccatc	agcaaaaggag	cacttctcta	780
atcatgccct	ccgaagact	ggctgggaga	aggtttaaaa	acaaaaaaatc	caggagtaag	840
agccttaggt	cagttgaaa	ttggagacaa	actgtctggc	aaagggtgcg	agagggagct	900
tgtgctcagg	agtccagccg	tccagcctcg	gggtgttaggt	ttctgaggtg	tgccattggg	960
gcctcagcct	tctctgtga	cagaggctca	gctgtggcca	ccaacacaca	accacacaca	1020
cacaaccaca	cacaaaatg	ggggcaacca	catccagtagc	aagctttac	aatgttatt	1080
agtgtccctt	tttatttcta	atgccttgc	ctctttaaaag	ttat	tttatttt tgttattt	1140
atttgttctt	gactgttaat	tgtgaatgg	aatgcataaa	agtgccttgc	tttagatggaa	1200
	aaaaaa					1205

<210> 23

<211> 1167

<212> DNA

<213> Homo sapiens

<400> 23

ccacgcgtcc	ggaagaaggc	ctaattccta	acctgggacc	cagagagaga	cataagat	60
ccagagat	atgcaccaag	aaactgcaat	ttatacaaaag	acagtcaaa	agcagactgaa	120
gacagaatga	gagagaaact	aagtaaaaaga	aacttgcattc	ctccaaatg	aagagtatgc	180
ctcatttcca	tatgttact	gaaaagctct	ccactttga	aataaaaggct	tactatagag	240
cagccctgg	aatagaacta	caagacttat	aataacttcc	tggttgcgtt	gaaatgaaaa	300
ctcataaaga	atctatgcta	ttaacccctt	aatttatact	tttgcatttct	tttatgttgc	360
attttgtatt	ttatgttgc	cttctttttt	aaaattttgt	atttattttt	aattgaaaaaa	420
taattgtgt	tacttattgt	tgtacaacat	gatgtttga	tatgttgc	tgttgcgtt	480
tgactaaatc	aagctgttta	acatgcatt	taccccttact	atttattcatt	tatttgcgtt	540
gagaacat	aaaatctact	ctgttagcaa	ttttgcgtt	tagaatacac	tatgtcaact	600
ataatcatgg	tgttgcgtt	taggttcaaa	tgttgcattt	tctccatctt	aactgaaaaat	660
ttgtatctt	tgaccaacat	ctccctggc	cctccatctc	ctccctgg	aactaccatt	720
attttttttt	ctttttttt	aaaaaaagct	tttagttcg	agggtacacg	tgttagttcg	780
ttatata	aaacacaagt	catgggactg	tgttgcgtt	atttgcattt	cgtccacgt	840
ctaaggcttag	tgcccaatag	ttat	tgctcttctc	cctcccttca	ccctctggca	900
tcaagttggc	ctaatgtcta	ttgttccctt	ctttgttaca	accactctaa	tctctgttgc	960
taagggttcc	tatgttgc	ttctttccct	tgatgttgc	agatgttgc	acgttgcgt	1020
tgcagcgtt	gtttattttt	tttcattt	ggatgttgc	cctttgttgc	aacataaaatt	1080
gctgtatggc	gatgtttgaa	ttgtttccag	tttttgcgtt	ttatgttgc	tgcgttgcgt	1140
	aaaaaa	aaaaaa	aaaaaa			1167

<210> 24

<211> 929

<212> DNA

<213> Homo sapiens

<400> 24

gagaagggtgg	ttatttatac	aaacatggac	atactcactc	ccaagggtgt	atgagatgt	60
gaattttctt	ttggggcatt	cattaattgt	cccagctgca	gcfactggag	caagtcttgc	120
agctgcctgt	gctaagacca	cccagctgca	cctgggttct	catccttaggg	ccttctttgc	180
ttccaggtca	ggggacctgc	ttcaatgaga	aagcaactga	attgaggctt	ggagaggtag	240
ggagagctga	gttctgactt	cacctgttgc	gaactctctg	ccccatgtt	acctggactg	300
gaacagactg	tgaatata	agaagggtcc	aagaactctg	gtgtctgacc	tagaagaggc	360
acagttctct	ctactggaaa	gaaaacgttgc	tagccatttgc	cacaagggttgc	ccaagggttgc	420
acccaggatg	gcccataaa	gaaacctggg	ggaggatgc	ggaggcttgc	ggatgcacc	480
tggcatttct	ctcactgtgc	tcttaccgc	tcagcaaccc	ccaaacttttgc	ggcctactct	540
gccccccatg	cgtgaatacc	ctgttgcgtt	gctgttgcgtt	tccgggttgc	ctctaagccc	600
ctttctccag	ggcatgttgg	tttccctggc	ctctcgttgc	ccttacttgc	gcccagagtg	660
ccttgcgttgc	agccaggaga	cggtgttgc	ctggccctcc	acaccta	gtccttaca	720
ttaacttatt	ggtcttgc	aacaccttgc	gccatttgc	agtggcttgc	tcctcgttgc	780

cagagctgga	attgtgtggg	gtttagtgct	aaataacttca	ataaaagtctg	ttttttgtga	840
ttggctgaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	900
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa				929
<210> 25						
<211> 397						
<212> DNA						
<213> Homo sapiens						
<400> 25						
ggcacgagaa	ataataggaa	aagtactact	agatgggcct	aaaaatgctt	tggttctcta	60
acttgtgtgt	aatggccaac	atcattaaga	caaggacatg	tgacagacta	attttgaaaa	120
tttattctca	tgttactgca	tttttggtat	tctagttatc	aatctacacc	cataccacaa	180
tgctgctta	ttttgttgt	ttgttggtt	gttttgagg	tggagtctgt	caccaggct	240
ggagtgcaca	cctgtaatcc	cagctactcg	ggaggctgac	gcaggagaat	tgcttgaacc	300
tgggagggtgg	aggtgtcagt	gagccgagat	cgcgccattt	caatccagcc	tggacaacag	360
agtgagactc	catctcaaaa	aaaaaaaaaa	aaaaaaaaaa			397
<210> 26						
<211> 949						
<212> DNA						
<213> Homo sapiens						
<400> 26						
gaggccctct	ccattttctc	ttctcaactct	atccccacc	gaagagggct	cagaaaaaaag	60
tttttattaa	tatatttggg	gtcggagaaa	tacaaacatc	acaaagaata	cgatatcccc	120
agcttaaatg	tactggaaacg	tttgcgtatg	agtttcattt	ccaaagtta	ccctacatag	180
ggaattttag	aagtggat	gttagaagtga	gttcgtgtga	aaccctggaa	agaaaacaaa	240
agccccatgc	aacacgttcc	gggctgttgt	gtagatgttt	attctagtca	ctaggggaaag	300
cacataaaaa	cacctgaggt	gtgtgtgctg	aaggcgaat	tttgccttt	tggggagttc	360
atgatataaa	catctagaac	caaaaagtca	aatcagaagg	tcaagttagg	ctttagttct	420
ctttgaggaa	agatttaaag	caatagacta	taatagttac	ccggtagact	aaaaaaaaattt	480
gccttaatt	ctttgattt	gaattttttt	ttacaaagtt	tggagcatgg	aaacaaatgaa	540
aaattgaacc	tgcatttttt	tttagatggt	gtattgtatgg	ccccaaacaga	atttctaa	600
atcatgcgt	aaacatatat	gatagtaggt	gtaaaatgc	tcttggttt	aaaatgttga	660
gtaattatcg	atagaaattt	tgcgttccat	tcatacattt	tttcaattaa	cttccatttg	720
taaaaaatttgc	ggggattgtat	gtttggttt	gtttgtgggg	agtgaagagg	actactggag	780
ggacctgtt	tgcattttttt	ttttcttttt	ttaatttatac	atcaagtcta	ggaaaggagt	840
aagttgccga	caattgtcac	ttttccctcc	taagaaagta	acatgttaag	attcccacct	900
accagcctgg	gtgacagtga	gactcccg	tcaaaaaaaaaa	aaaaaaaaaa		949
<210> 27						
<211> 1053						
<212> DNA						
<213> Homo sapiens						
<400> 27						
gcaaaaggga	aaattcaaaa	tttagaaaaaa	acatttagaaa	tgttaatatg	ggatattttt	60
gacttaagac	attcagaaaa	gttaatgttt	taacacgata	tgtgattata	gaattctatt	120
catatatgtg	ttcacattta	tacactttgc	tatactttgt	atttataaaat	ataattctgt	180
tagataaaa	agtgattcat	attttgtcaa	aactattttt	aaatttcaat	atttaaaata	240
tttttgaatc	actggttttc	gttaagtggc	atcatagatg	agatttgatt	ccatgttagca	300
tataattttt	gattgttcct	ctctcacccc	ttttaaactc	tttcaagcat	tgcttattact	360
ggggttgcct	ttggggaaaac	ttacttctag	atactaccat	atatctgaaa	tttagaggt	420
ggatgttaat	aaaattcata	aaataatcat	gtattactt	ttttgattta	ccactggaaag	480
gaaatacagt	catgtgcaat	ataatgacgt	tttggtcatt	gagaccacca	tgtgtgacag	540
tggtccata	aggatgttgc	tgaaaaattt	ctgttgcgtc	ctagtgacac	tgttagccatc	600
gtaacgccc	atgcacgacac	gttactcacc	tgttcatgg	gatgctgg	taaacaaacc	660
tgtgctgcca	gtcatacataaa	agtatagcac	aatgacaatt	atgtacagtt	tatcataatt	720
cttgataata	aatgactatg	ttacaggtt	atgttattgt	tccactttt	gtcatttattt	780
tggaatgtc	tctactata	tataaaaaaa	aaaaggat	ctgtaaaaaa	gcctcaggca	840
ggtcctttag	ggggcattcc	agaagaagac	atgttacca	taggagatga	cagcttatg	900
tgtgttatttgc	ccccctgaaga	ccttcattgt	ggcagaggata	tggagggaa	agacagtgc	960
atgggtgatc	ctgaccctgt	gtagggctag	gtaatgtgt	gtgtgtcctc	gtttttaaca	1020
agaaagtta	aaaagtaaaa	aaaaaaaaaa	aaa			1053

<210> 28
<211> 689
<212> DNA
<213> Homo sapiens

<400> 28
ggcacgagat gagaaccact gccttgcac ctccagtata atgaggcccc agtggtaact 60
gcaactggaa agtccaggag cttgttaaaa gtgcagatac actgattcca ccccaagaatg 120
gacaccgaga aatcttgat cccaaaggtt tggtggctt tatcatgcc cttagtcatt 180
tctgagtggt tcctcatac ctgcattcat gtgatggag gcaaattttc tcataatctg 240
ctttgcttc tcatcaagct actatgcccc accattgctg gctctgctt tggttgctgc 300
aatgttagga gcgctgtttc ttgttcttac cactttaac tatcttaaaa tagaacctga 360
ctctgattct ccattaagaa gtggaaactg gctgggtgtc gtggctcatg tctgtatcc 420
cggcactttg gcctctatc tgaggctaaa gcaggggat cactagggc caggagttt 480
agactagcct gggcaacata gtgagaccct gtctctatca aaaattttaa aagttagctg 540
ggcgtgtgg tgcacacctg tcctctgagc tctcagctac ttggggaggt gggcaggag 600
gaccgcttga gctgtgatca tgccactgca gtccagctt agtgacagca caagaccctg 660
tcacaaaaaa aaaaaaaaaa aaaaaaaaaa 689

<210> 29
<211> 1358
<212> DNA
<213> Homo sapiens

<400> 29
ggcacgagt cctctcttctttcaggca aatgtcttca aaaagttaat tgttatatgct 60
ttcaccattt cctcacccctt cattctctt tgaggctact ttaatcaggc ttttatccca 120
accctccaaac caaagatgtt tttatcaagg gtgcagtgc acgcacattt ccagacttag 180
tccacatatt gctaatactg tcacaaggctt ttgacacagt ccatacttc ctccttggac 240
actgtctcaa gtgtctgggt tcctgaatag cacaccctt tgagatttcc tcctgcctt 300
aatggtctca gccccttgc ctggctccctt atcttccag tctctacaca tcactttgct 360
gaatggggg attatcccag tttatggct ttaaatatca tctcaatgtt tggtatactc 420
aaatgtatat tcccaattca gactgtcccc cgaattccaa gcttattttac cccaaactatc 480
tcttcataatc tccacttggat tatctaatttca tcatgtcaca cttagatcat gccaatttctt 540
ctcagtctcg gtaaataaca ccaccaactt agttgtctt gccaatattt ttttttttcc 600
ttttttttttt ttggagtctcg ggtctactc tgcactcg gctggatgtc agtgggtgcga 660
tcatgtctca ctgcagccctt aacctccctg ggctcagggtt atcctccac ctcacactcc 720
caagtacctg ggactacagg cacatgcccc catgcccaggc taattttatgat ttttttttgc 780
aagacagggt ttgtcagggt tgcccaggctt ggttgcac tccctgaattt aagtcatcca 840
cctaccttgg cctcccttgc ttctgggattt acaggcatga gtcattgtc ttggctccaa 900
aatcttaaaa gcctatctaa aatgttctt ttgatttcat gcccacaaat ttgttagctc 960
caccttaaaa atatattttat attaagacact ctcttcataa ccaccctgtt gtcaccctaa 1020
caaagcaacc atcatctctt aaaaataatc ctaatgttcc tagggcttcc taggcctact 1080
ctttatgccc caggattactt atccagggtt atcttccca gttctccctt atgaattttt 1140
gtctcacaga atgcattgtac cattgcactt tgtaacgttca gtctcccca ccagacaatg 1200
atcagatttc tagtttctt ttataccat ttcacagtgc actgactgag cacaatattt 1260
aggcttaatc aaatggtaag tgaatgaata atgaatgaat gaatgttaca atattgatta 1320
taatggataa agagatataat tgacctgtttt gacagaaaa 1358

<210> 30
<211> 767
<212> DNA
<213> Homo sapiens

<400> 30
ggcacgaggta aattttggaaa cttatgttta agattttacc agggcagagg catatccat 60
cataaataat gttgccatta taaactctt tccttcctat ctcaacagga aatgagcaat 120
tattgtttca tgcttcaatg cactgttttta aataactgtt taatttttttta aagggtgttt 180
actgttttaat ttatcttcata cgttttttttta aacaataact gattggacat ggcgtgcacg 240
ccaggcttgc ggcttggatc ctcaagggtt tcacaggggta ggctggaaat gggaaacaagc 300
acatgtgtaa ctgttgcata gacagtctaa ttggtagaaaa atcagcgaaac aaagaaggcag 360
acaaattttaga aaatggaaatgtt aagggtgtttt gctaaaaaaa gggtagccat tatgtcagt 420
tccttcaggag aaggtagcactt ccccttgcac cggatggca gaaaaggatc catccctgcct 480
agcccgatctt ggacttggatc agaaggcaggc tgataaaaaaaa accaaatattt gtacattttt 540
agaagttgc ccgctgactt gagagagagg ttggcgatc caggtgttca atgtccttattt 600
aaaaagttga atatttcgatc catctctatc aatacattttt aatgttgcata gcttttccctt 660

ccagaagctc atgtcattt caacacacac ttctatttac ctttatgttag tttctaaaaa	720
ttgaaaacca gaattggagg ttttttaaa aaaaaaaaaa aaaaaaaaa	767
<210> 31	
<211> 2116	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (4)..(4)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (7)..(7)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (16)..(16)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (25)..(25)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (35)..(35)	
<223> n equals a,t,g, or c	
<400> 31	
ctcnccnctc tcctcntgaa aaccnctata gggantgctg gtacgcctgc aggtaccgg	60
cgggaattcc cgggtcgacc cacgcgtccg aaatgaatag atgggccagc tggaaagg	120
accacacagt aaggggccatc ttattgaacc cccaagaagt caaatgttagt catcccta	180
caaccacagg gcacttgtgc ggcgcacac acacacacac acacaatata gcaaata	240
attgaactca actcccttga gtttgaatg aataaatata atccaattt caagtctt	300
aaccacattt gggatctaa gtatttgcc tcagtatacc aatgacatat tcttctgg	360
aaaagaaattt cccttcccc agacaaaataa aactagtaca aggacgcata ctctcaac	420
aaatcctggg aaatcctgca agagaaaagag aatccctact actttgttc ctgttcc	480
aaccaagcat ccgacattcc aacatcaaag cttttagtca ccacatcc ttagcgtt	540
atatcctctc taccccgaa ccaacccttgc ccatctgca taaaatgtgc ccatatattt	600
agacctgtct caaatattttt ttgaccaga aagtctgacc tcccagcagg atcaactt	660
ccttcctttt tcttttttc ttctcgcctt actttgacat tcagctgatc attccctgt	720
ttatcttgc tgcgttgc accgtctgtc cttttacgtg tggaggtcag aaacgtgt	780
gttcgtgtt catcacctca gcaccctgca cagggatgg cacaaaacag ccactcaaa	840
agtaattgtt gattacaattt gatctgacca tttcccttgg tgaccctttt gtcttgt	900
tagaccaaag tcatgatctt tgatcccttcc tgccatgttc tcagaaggct tgcgttgg	960
atttggacaa agtgaccctt tttatagagg ttatttttt cccattccctc cagctcc	1020
tttgcgttt ttcttagtgcc catagtagca gatgcacata cttcaacacc ctttctt	1080
aattctgagc taccatcata ttatattttt gtttattgtt gatggaaat tgcttgata	1140
agaatctctc agtaagagtc tattatccgt gtttattgtt gatggaaat tgcttgata	1200
ttatcttgc tctgtgttta cttttcatg tattttgtt gtttgggacc tttgtggagc	1260
ttacatttca gtcttgcattt gcttaattgc tattcaatat ctatataat aattttctt	1320
cccaaagggtt gaagaaaaaa atggactact tcaaaacaaa cacaccattc agtttctt	1380
aagagctgac ttcacaagac tgctcagaat cgcgactggc agcttctgcc tttgtggaa	1440
ggcatgatgt ttttagtcatc tcactgtgtt ttgcataatcag agaaagcaga tcaggaa	1500
tgggagttgt agatctcaca ttttgcgttgc tgaatctcag atactgcaga aaacttcaa	1560
cgacatcaatc aaacaattctt accgttcaag aggcttta aacagaccc ttttacgaa	1620
tggctattttt ttatattttt ccaaccaccc tgggtgggtgc ctgcattttt ggttttttgg	1680
ccccaaacca ggttgcgaa gagatgttaga gtaccttat gaaaggccagc agaggggt	1740
gtagactgtt gtttgcattt agttctttaga agaggctcaa gaaaggactt tgcgtgggtt	1800
taacatcttca agctccgtt atcaaaaacag agtcaacatcg agaaaatgtt ggcggcttc	1860
agagacagctt ccataaaactg tctggaggct gggaaaaraat ttgtcatgca tgcttaat	1920

gtaaaagcact	ctttagaata	aatggaaatt	ggtgatggta	aaaaaaaaaaa	tttaaaaaaaaa	1980
aaaaaaaaaaa	aaaaaaaaaaa	aaaaggcg	ccgctctaga	ggatccaagc	ttacgtacgc	2040
gtgcatgcga	cgtcatagct	cttctatagt	gtcaccta	tcaattcac	tggccgtcgt	2100
tttacaacgt	cgtgac					2116

<210> 32

<211> 1564

<212> DNA

<213> Homo sapiens

<400> 32						
ggcacgaggc	tgggtgattc	ttctggtctc	aactggattt	actcttgcat	ctgagttcag	60
ttgtgggtca	gcagggaaact	ttgtttctgg	ggtgccttgg	ctctttgcca	catcatctta	120
tccttcacta	agctagcctg	ggcttgttcg	catgggttgt	gcagggtatc	aagatagagt	180
gaatgcatgc	aggctcagaa	ctggccatta	tcacttctgc	ctcattccat	aggctcaaagc	240
aagtcatgag	gctgggttcc	attcaaggaa	atagactcca	cctcttgatg	ggaagatagg	300
caaagtaca	tggcaaagga	catggatact	gacagggggg	ggttagagact	aaggccatt	360
tggcggtca	cataccaccc	cagcagtac	aagcccactg	caccaggccc	tggcagggaa	420
caaggggctga	aaaaggctgt	gtcaggagga	gataactgag	gattaaatgc	ctcatggAAC	480
aaccccccaccc	actcaatcca	gcaagaatag	aggcttgaag	cagccagagt	aactactctt	540
ttaagagctt	aatgtttctg	taaaatcttt	ttgtactcaa	atgttgacag	ctgtgttgat	600
cagggtcatg	gcaggtggca	gaaggacctg	caaacgatta	actggagaaa	gtttaataga	660
gtgatatatctc	tggaggtaca	gcagggcaaa	tgagatggtg	cagtgcctta	ggactagcaa	720
ggatggggac	ctgttatccc	ccagccttag	ggacgagagg	aggcactggc	tttgcaggag	780
gcctggtag	agatgaact	ggaggtgggg	ctgctggcag	gagctgtggc	ctcagaaaga	840
gggttccagc	cactgcctca	cttgcgtacca	aaccaggagg	gagcagggggt	ggtggggatc	900
agataacctaa	acctccctct	cctcccccaccc	ccctgtctcc	tgccaaagggt	taaccagagg	960
gcaagggggcc	cagggccccca	tgcaggagga	ggaagtgtg	ggggaaaggca	gaataacaag	1020
cagagaaact	aatttttaa	aaagggtttt	aaaatgttgt	gggtgaaaata	aaacacgagc	1080
tatcgttaa	tctgtataaac	caatgcctaa	tttcattacc	tctcttggtcc	aacttcctca	1140
tcaagaaaat	gagcatagcc	acatctttt	ttgccttaag	gggagagggg	gaatccctaac	1200
aatcataaga	catgattcct	gatgtgtgcg	tgatcccccac	tgaatctgag	agtcaagcac	1260
tgttgcctcg	gtcatacaac	atgtatgtgt	tgattctgac	tttgcaccag	gtccatttct	1320
cacccttagt	gagaagttaa	ggctcagaga	gttaaggagt	ttgccttaagg	tcacacagca	1380
cagaagagtc	agtaaattca	tttgctggcg	ggacacgggt	gctcactct	gtaatcccag	1440
tactttggga	ggccaagggt	ggaggatggc	ttgagccca	gggttcaaga	ccagcatggg	1500
aaaaatagca	agaccctgtc	tctacacaaa	taattttttt	tactaaaaaa	aaaaaaaaaaa	1560
aaaa						1564

<210> 33

<211> 762

<212> DNA

<213> Homo sapiens

<400> 33						
ggcacgagg	ttgtttccct	cagctgaggc	aagtggtaga	gtatacagga	taacgaagta	60
acatgtaaa	ggcaggacgc	acataaagg	gtacatggct	attgtttcac	ctggagaaac	120
cacatgatt	ggacctgaag	gtttactgac	tgactacagg	ggctgattgt	gaagcacgag	180
gaaccccatg	tgtgtggaga	ctgtagggtg	agaccacaca	attattagca	tcatttctga	240
gtgatctcac	agattttttt	tcttgtt	gtttgctt	ttgacaactg	cttcccccac	300
gttccttgc	attctattct	ctcaccttca	cttactatt	tgtattcgat	ggaccaggat	360
aattcaggca	aggttacctt	gtaaacttga	attggccaca	caccatgtt	tcaccaggct	420
ggctatgaag	tgaataatgg	tactgaaaat	aaactgaag	acctttctca	gatctatttt	480
aagtctgat	ctgaccaacc	atggaaaata	ttcgacatga	attaatgtag	agaactataa	540
agcattatg	acagctccaa	aaaaatcat	ctactctatg	caggagat	gtttagagac	600
ctctcagaaa	aacttgcctg	gtttgaggtt	acacagtacc	attttaatct	tctgaaaata	660
tctgtattcc	tgctttttt	ctgctgtcac	tgtcaatctg	ctatattttt	cactatccct	720
ttaaaatatt	actgtctcct	ttaaaaaaaa	aaaaaaaaaa	aa		762

<210> 34

<211> 862

<212> DNA

<213> Homo sapiens

<400> 34						
ggcacgag	aaaacaggga	tttccctct	ctagatccct	gccaggtccc	tctccaggag	60

gcccctctgc	tctcctgaag	ggtggtccct	gagggtctgc	ccagccttgg	cacgagaggt	120
tgttccagc	ccctggcagg	gcttccttcc	aagggccct	gcagcctaca	aactgggcct	180
cgggcgactc	aaaataagt	ctcttggggg	tggctctacc	ccattaccc	ccccagccac	240
aactcctggc	cttcgacttc	tggctgggtt	agccagaccc	tggtttctct	accctgatgt	300
tgcatgagac	ctggtaacag	tgtctccctc	ccagctcctt	gccaaagct	ctgttgagac	360
ctgggcttct	tgtagccct	tctccctctg	gccagctgca	cagcgtgtgg	gaggtgcccgg	420
gcccaggctg	ggtgtgggg	aagctggtcc	ctgctgtggg	ttgcgtgtgg	gacctagggg	480
ctccctctga	gggtggcct	gtggcctctg	ggctgtatgc	ctctgggggt	taggaagag	540
gcgggaggag	tcatggggat	ggggagcgcc	agggggagag	agggggccctc	gacaaaggct	600
tggaaatga	ggggaggtgg	aggcagggca	ggggaaagcga	agagtcaaggc	ttggagagag	660
caccctgggg	cctccgtgtc	ggggtacacc	cagcacttt	cgacctgccc	cccagcaggc	720
gcggaggatg	gcggggagga	agccagcagc	ccctgtgttt	actgtcgta	gaaaggctt	780
gtgttttgtt	tttgggggtt	ttgttttgtt	tgtgttttgt	ttggcttgtt	tgttttttaa	840
ggggaaaaaaaa	aaaaaaaaaa	aaaaaa				862

<210> 35

<211> 1499

<212> DNA

<213> Homo sapiens

<400> 35

gtgcactgtg	cagtcgtgt	gtgttttagg	gtctcataacc	cgtgtgcgcc	agcagggacca	60
cagctgtgac	cggctgtcc	agaagaagt	ggtgggttga	gaccccaccc	gcagggtcac	120
tggggtagc	aggccctctg	tcagcactga	cttcgtatc	atgtcaggga	tttttagggc	180
ggcaagctca	ggtggacagg	cagtttatt	ctgttccca	tgtcaagttc	agccccagac	240
tgactttctg	aggtcacaga	cgagcctca	ccccatccaa	ggcgggtgtcc	tggactccca	300
ctgtgtcc	cagagggcag	ggtgagtgcg	ttggcattcc	ttggcggggc	ttgggtgcctc	360
tgtggacctg	gcgtgaggct	tctctgtttc	tgagtctct	atggaccatc	tgtttctgt	420
gtggctgtc	aggaatcaca	ctgggggtgc	cgtgccgtg	gctgaatgag	aacaggaccc	480
ccatgctgca	cagccctgct	taacgcgggg	gtggcccccag	aagcgggtgg	gcgaggctgg	540
gcagcaggga	ttggctgaaa	tcatatgcag	agcccaagag	gcagggggaa	ggcggcaatt	600
tcagggtccc	tttggtcgcc	aggtacctgg	ggcccaagccc	gggcggcagg	agggactcag	660
cccctcgccc	aggcaggaag	ggtcccaagc	agaggccccct	ccctcaggca	ctccccagcc	720
cacacctgca	gcactgggac	caagactaat	aaaacaccccg	cctcacggaa	gacagctta	780
tcttgttgc	cggaagtctg	ccagcccaat	ttatgtatgg	acataagatc	tctaaatctg	840
attttacat	ctgtacgtca	acgagagggtc	aataaagat	aaacggggct	caggagagga	900
ccagcgtcag	gctcactgcg	aggtgtctgc	cagaaaaaccc	acagccagag	ccctggggcc	960
cagcccaaggc	aagaccagaa	aggaggggg	caggtggggag	accagcctgg	ggctccgggg	1020
aagcccacgg	gatggaggcg	ggagagccag	gaggcctggg	gcaaccctgg	gacgggtcct	1080
ggatcggagga	gagcaggggg	gtgtatgggg	ttccctcagg	gctggggagc	cttctcctgg	1140
tctcagaccc	acccccccttc	agctcccaag	ccctgggtgc	ccctggctct	gaggacagtt	1200
ggaaatcttc	cctgaggcag	gttcaaggac	agactctga	ccctggccca	gggctgcttt	1260
gggtgcctat	gaactcggt	tctggctca	agcgttccc	tgcacccctt	cctgagccct	1320
ctgtcctctg	gaacccgtgg	gcagggtgag	ggacgggtgt	tccttctgg	tggggccctg	1380
ggcgcggcc	cagcacgacg	ctggcttgc	gagcttaggg	cagaccccg	cttcagaatt	1440
tatacaaata	aatgaatga	aaagtgtctgg	caacctgaaa	aaaaaaaaaa	aaaaaaaaaa	1499

<210> 36

<211> 2791

<212> DNA

<213> Homo sapiens

<400> 36

ccacgcgtcc	ggattacatg	tagttattga	gaatccccc	gaattcagtg	gttaatcat	60
gaatgtctaa	atattgtga	cattaggatg	atacatgtaa	attaaagtt	cattgttta	120
gcataagacaa	gcttaacatt	gtagatgttt	ctcttccaaa	atcatctta	acatttgcatt	180
ttggaaattgt	gttaaataga	atgtgtggaa	cactgttata	gtaaacttca	tcacctttct	240
acttccttat	agtttgaact	tttcagtttt	tgttagtccc	aaacagtgc	tcaattttaga	300
gcaaattaaat	ttaacacccgt	ccaaaaaaag	gctgctgttg	gcttatcagt	tgtctttaaa	360
ttcaaatgt	catgtgactt	ttatcacatc	aaaaaaatatt	tcattaatga	ttcacccctt	420
gctctgaaaa	ttaccccggtt	tagtaattat	agtggggctt	taaaaacatg	caactctttt	480
tgatagttat	ttgagaattt	ttgtgaaaaa	tatttagctg	agggcagat	agaacttata	540
aaccaatata	ttgatatttt	taaaacattt	ttacatataaa	gttaactgccc	atcttgagc	600
ataactacat	ttaaaaataa	agctgcata	ttttaatca	agtgtttaac	aagaatttat	660
atttttattt	ttttaaaattt	aaaaataatt	tatatttcct	ctgttgcatg	aggattctca	720
tctgtgctta	taatggtag	agattttattt	tgtgtgaaat	gaagtggggc	ttgttagtcat	780

ggttctagtg	tttcagtttg	ccaagtctgt	ttactgcagt	gaaattcatc	aatgtttca	840
gtgtggttt	ctgtagccta	tcatttactg	gctattttt	tatgtacacc	tttaggattt	900
tctgcctact	ctatccagtt	gtccaaatga	tatccatcat	tttacaaatg	ccctttcagt	960
ttctatttc	ttttccatt	aaattgccct	catgtcccaa	tgtcagtt	gtaagtgtgt	1020
gtgtgtgtgt	ctgtgtgtgt	gtgaatttga	tttcaagag	tgcttagactt	ccaaatttgag	1080
agattaaata	attaattca	ggcaaacatt	tttcatttgg	atttcacagt	tcattgtaat	1140
gaaaatgtt	atcccggat	accccttgaca	tacagtaatg	aatcttggat	attaatgaat	1200
ttgttagtag	catctgtat	tggtttttaa	tgaggatatt	tc当地ggat	gcataaaaacc	1260
aaagttggca	tactgaaat	tttattatca	agttccattt	ggctactgat	ggacaaaaaaa	1320
tagaaatgccc	ttccttatgga	gagttttttt	cctttaaaaaa	attaaaaaagg	ttaatttattt	1380
tgaaaaaaaaaa	aaatcgaccc	acgcgtccgg	attacatgt	gttatttgaga	atcccttcga	1440
attcagtggc	ttaatcatga	atgtctaaat	attgttgaca	tttaggatgat	acatgtaaat	1500
taaagttaaca	tttggtagc	atagacaagc	ttaacattgt	agatgttttct	cttcaaaaaat	1560
catcttaaac	atttgcattt	gaaattgtgt	taaatagaat	gtgtgaaaca	ctgttattgt	1620
aaacttcattc	accttctac	ttccttatag	tttgaacttt	tcaaaaaaaaa	tagtccccaa	1680
acagttgctc	aatttagagc	aaattaattt	aacacctgca	aaaaaaaaggc	tgctgttggc	1740
ttatcagttt	tctttaaatt	caaagtcata	tgtgactttt	atcacatcaa	aaaatatttc	1800
attaatgat	caccccttagc	tctgaaaattt	accgcgttta	gtaattatag	tgggcttata	1860
aaaacatgca	actctttttt	atagttttt	gagaattttt	gtgaaaaata	tttagctgag	1920
ggcagttatag	aacttataaa	ccaaatattt	gatattttt	aaacattttt	acatataagt	1980
aaactgccccat	ctttgagcat	aactacattt	aaaaataaaag	ctgcataattt	ttaaatcaag	2040
tggtttacaaa	gaatttatat	tttttatttt	ttaaaaattaa	aaataatttta	tatttcctct	2100
gttgcatgag	gatttcatc	tgtgcttata	atggtagag	attttatttt	tgtgaatga	2160
agtggggctt	gtagtcatgg	ttcttagtgg	tcagtttgc	aagtctgtt	actgcagtga	2220
aattcatcaa	atgtttcagt	gtggttttct	gtagccata	attactggc	tatttttttta	2280
tgtacaccc	taggattttc	tgccctactct	atccagttt	ccaaatgata	tcctacattt	2340
tacaatgcc	ctttcagttt	ctatttctt	tttcattaa	attgcctca	tgtcctaattt	2400
tgcagttttt	aagtgtgtgt	gtgtgtgtct	gtgtgtgtgt	gaatttgattt	ttcaagagtg	2460
ctagacttcc	aatttgagag	attaaataat	ttaattcagg	caaacattt	tcatggaaat	2520
ttcacagttc	attgtatata	aatgttaat	cctggatgac	cttgacata	cagtaatgaa	2580
tcttggatata	taatgaattt	gttagtagca	tcttgatgt	tgttttaatg	agtttattttc	2640
aaagttgtgc	attaaaccaa	agttggcata	ctggaaatgt	ttatatacaag	ttccattttgg	2700
ctactgtatgg	acaaaaaaaata	gaaatgcctt	cctatggaga	gtatttttcc	tttaaaaaaaat	2760
taaaaaaggtt	aattttttt	aaaaaaaataa	a			2791

<210> 37
<211> 1013
<212> DNA
<213> Homo sapiens

<400> 37	60					
ggcacgagcc	tgaagaaaata	tccatggatt	tgattttagg	ttttccctta	gatgtgtgg	60
agggttttgc	taatattcaa	aatatgccca	tattgcctt	ttaaaaacccc	aaagattatg	120
aattctgaaa	cacatccagc	ccagcggtt	ttggatagg	ggttgttaggc	attnaaggcag	180
cctcacat	tgggtgact	tcatccaaa	catggaaaata	ttacaaggca	atttctattt	240
tttatattt	ttgggtcaat	gtttgaaacaa	cttggatttt	tgctggggga	agaaaaaaaag	300
aaccaaccc	gagttgtgatt	gttacggaaa	ctaattgactt	tgtttttaaa	ggatcacatt	360
gattcaacac	cttctatttgg	acccagaatgt	gcgttaatat	tacctatgtt	agtaaacgtt	420
taattatcat	tcagttttaa	tgttggcctt	ctgtatgt	ccaagaacag	ctcatttgt	480
gaatttcagt	ttttaagtgg	ctgctttttt	atttgggtgt	attattttat	tataatgtat	540
ttgcaagttat	attaaaaaaat	taacatttgg	ccataaaaaat	ccccaaat	gttcaaggac	600
ttcataattt	aaaatataat	gaaaacaatc	cttacttctt	tttacaaaaaa	caaaatcatg	660
gaaattttt	tttttatattt	atttagttt	aaatcttctt	ctggggccgg	cgtggggct	720
cacggccagtt	atcccagcac	tttggggagggc	tgagacaggc	gaatcacagg	gtcaggagtt	780
cgagaccagc	ctggccaaaca	tggtaaaacc	ccgtctctac	tggaaataca	aaaaatttagc	840
tggacacggt	ggcaggcacc	tgtgtgtggc	ggggccggc	tactcaggag	gctgaggcag	900
gagaatcgt	tgaacccagg	aggcagaggt	tgcaatgt	caagatttgc	ccactgcact	960
ccagcctagg	tgacagtgtc	tcaaaaaaaa	aaaaaaaataa			1013

<210> 38
<211> 718
<212> DNA
<213> Homo sapiens

<400> 38	60					
ggcacgagac	ccccctgcccc	cgtgacctt	acccacactg	gcttgggagc	aggatctt	60

tttggccatca	tcctgggtac	tgcccgtt	gccttggctg	cttactccctaa	ctttcggtata	120
aaccggagaa	caatccggctt	ccagcatttt	gagtccgaag	aggacattaa	tgttgcagct	180
cttggcaaggc	agcaggctga	aatatatctcg	aacccttgc	atgagagcac	aacctcagct	240
ccccccagaac	cttcctacga	ccccttcacg	gactctgaag	aacggcagct	tgagggcaat	300
gacccttgc	ggacactgtg	agggccttgg	cgggagatgc	cagccatcac	tcactgccac	360
ctggggccatc	aactgtgaat	tctcagcacc	agttgcctt	taggaacgta	aagtccctta	420
agcactcaga	agccataacct	catctctctg	gctgatctgg	gggttggttt	tgtgggttag	480
agatgtgttgc	ctgtggccac	ccagtagcage	ttcctccat	gacccttgg	ctcttcttcc	540
tttgtactct	tcagctggca	cctgctccat	tctggccat	atgatgggt	actgtgatct	600
ttcttcctgt	tttagattgt	agcctccgtc	tttgtatccc	agcccctagc	ccagtgcctg	660
acacaggaac	tgtgcacaat	aaaggttat	ggaacagaaa	aaaaaaaaaa	aaaaaaaaaa	718

<210> 39

<211> 374

<212> DNA

<213> Homo sapiens

<400> 39

ggcacgagag	cttattcatt	gaaggagtaa	gtggctgctc	actccttct	gctgaaactc	60
tttcctgtcc	ttgttagccta	gtgtggaaatg	ggagcagggt	cacagtaaaa	gagctgaatc	120
tccccaccca	cccacactgc	agcaggctgc	ggctggccga	cttggtaatt	gccgagcagg	180
aacacagcag	caagctgcgg	caccctact	tgctacagtt	gatggctgtg	tgtctctccc	240
aggacctaga	aaaaacccgc	cttgggtacg	agcgcatac	tatcggcaca	ttgttcagtg	300
tccttcatga	acgagtaaac	tgctgtttcc	gtggattttc	aaaaaaaaaa	aaaaaaaaaa	360
aaaaaaaaaa	aaaa					374

<210> 40

<211> 1410

<212> DNA

<213> Homo sapiens

<400> 40

ccacgcgtcc	ggcccttagg	agataagagt	atctgcaca	gcaggtgcag	gtttcccagc	60
agctcaggca	agagtccgat	gtttgtgcca	tctgatccctg	atgtctggag	agatagccat	120
gtgtgagcct	gaatttggca	atgacaaggc	caggagccg	agcgtgggtg	gcaggtggcg	180
agtgtcttgc	tacgaacggt	ttgtgcagcc	atgtctgggt	gaactgctgg	gctctgctct	240
cttcatcttc	atcgggtgccc	tgtcggtcat	tgagaatggg	acggacactg	ggctgctgca	300
gccggccctg	gccccacgggc	tggctttggg	gctcggtatt	gccacgctgg	ggaatatcag	360
ttgtggacac	ttcaaccctg	cggtgtccct	ggcagccatg	ctgatcgagg	gcctcaacct	420
ggtgtatgctc	ctcccgtaact	gggtctcaca	gctgctcggg	gggatgctcg	gggctgcctt	480
ggccaaggcg	gtgagtcctg	aggagaggtt	ctggaatgca	tctggggcgg	cctttgtgac	540
agtccaggag	caggggcagg	tggcaggggc	gttgggtggca	gagatcatcc	tgaccgacgt	600
gctggccctg	gctgtatgca	tgggtgcatt	caatgagaag	acaaaggggcc	ctctggcccc	660
gttctccat	ggcttgcgc	tcaccgtga	tatctggct	ggggggccctg	tgtctggagg	720
ctgcatgat	cccgccctgc	tctttggacc	tgcgggtgt	gccaaccact	ggaacttcca	780
ctggatctac	tggctgggc	cactcctggc	tggctgttt	gttggactgc	tcatttagtg	840
cttcatttgg	gatggaaaga	cccgctcat	cctgaaggct	cagtgaagca	gagctcgtgg	900
gattcctgt	gctccagggt	tcctcagctc	acctgtccca	gactgaggac	aggggagttc	960
ctgcatttcc	tgccaggggca	gaggcccaga	ggagcgacc	cctgcttcca	ctgcttgggc	1020
ctgcttctc	agatagactg	actgctgagg	aggctctagg	ttcttggaaat	tcctttgtgc	1080
tcattcagaga	cccccaggctg	gggaacacgc	tgcggcact	gcccagagag	cagtgcacac	1140
accacaacac	gagcgtgttt	cttggagagga	atgtcccccga	gttggacaag	gaggctgttt	1200
ctgcacatcata	gctcatttcc	cgcacccat	ttctgttttg	attgttttgc	tggggccctg	1260
gccacttcct	tgcttctcaa	gctgacaatt	ctcactttgc	aataaaatagt	ccagtgtttc	1320
cttccaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1380
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa				1410

<210> 41

<211> 1493

<212> DNA

<213> Homo sapiens

<400> 41

tcgacccacg	cgtccggaaag	taatgatgac	aaaatactct	aacctttctt	tggagagtca	60
taaacttctcg	ctgactgctt	cacctttac	aagtctgccc	atcccggaaag	taatgatgac	120
aaaatactcc	aacctttctt	tggaaagtc	taacatctca	ctgactgaac	attccagtgt	180

gccagtgaa	aaaaatatac	ctttagaacg	accttctgct	gtagaactca	catgtcagtt	240
cacaacttct	ggggatgtga	attcagtaaa	tgtgacttgg	aaaaaagggg	atgaacaact	300
taagaattac	catgtcagtgc	ccacagaagg	catcctgtat	acccagtaca	agttttccat	360
cattaatagc	gaacaactgg	gaagctatttc	ttgttcttt	gaagaggaaa	aggaacgaag	420
gggcacattt	aatttcggag	tccctgaagt	tcagagaaaaa	aacaaaccat	tgatcactta	480
tgtgggggat	tccgttgtct	tggtgtgtaa	atgcccacac	tgtgctcctt	taaattggac	540
ctggtagtacat	ggttagatgg	gtgtacaggt	tcctcttgat	gttcacatga	atgaaaagta	600
tgcgatcaat	ggaacaaacg	cgaatgaaac	aaggcttaag	ataatgcagc	tttcagaaga	660
cgataaaggaa	tcttattggt	gccccatcaat	gttccagttg	ggcgagagcc	aagaaagtgt	720
tgaactgggt	gtgataagtt	atttggtgcc	cctcaaaacca	tttcttggaa	tagttgtga	780
aggattttctt	ttatgtggcta	ttattctgtt	ttgtgaaaatg	cacacccaaa	agaaaaagat	840
gcacatggat	gatggggaaag	aatttgaaca	agttgaacag	ttgaaatcag	acgatagcaa	900
cgccatagaa	aataatgccc	ccaggcacag	aaaaaatgaa	gctatgagcc	agtggaaagca	960
aaacatcggt	tcaagagtaa	tgggaagatg	tatagtttct	acttcagctt	tgtttatgtt	1020
tcctgtgaag	aacatctgag	tttttatttt	tacaaggatg	aaaagtttat	gtgatatgct	1080
cagcagtagt	tttgcataaa	tacctgctat	ctcagatcca	aagatataatt	ttccttctgt	1140
gattattttt	cattaaagca	aggttaatc	tattaaatat	gttctatgag	ctataacccaa	1200
ggataactaa	tttcatcttg	gtcatcaagg	gatgcacaga	agagatacca	gcaaaaccag	1260
tttagtagtac	atgaactaat	gtcattcaag	acctgcgtat	aaccaaagaa	ttcattaaag	1320
agaaaaacttt	tttgcattt	gccttgkttt	ttttttaat	tatgcttaat	atgtgttagaa	1380
atatttgtaa	taatttcat	gtaatgkta	ccctctgtca	tattggataa	aaacatcttt	1440
attaagaaat	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaagggcggc	cgc	1493
<210> 42						
<211> 1557						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (1)..(1)						
<223> n equals a,t,g, or c						
<220>						
<221> misc_feature						
<222> (9)..(9)						
<223> n equals a,t,g, or c						
<220>						
<221> misc_feature						
<222> (1347)..(1347)						
<223> n equals a,t,g, or c						
<220>						
<221> misc_feature						
<222> (1527)..(1527)						
<223> n equals a,t,g, or c						
<220>						
<221> misc_feature						
<222> (1533)..(1533)						
<223> n equals a,t,g, or c						
<400> 42						
natgcccant	cctataggga	agctggta	cctgcaggta	ccggccggaa	attcccggt	60
cgaccacgc	gtccgaaaat	catcaactaa	gaaggggcca	tcagtataga	gaacgttagc	120
ctgtggagct	gtgaatgtga	tggagacaag	atttagtgta	tagctctgt	acctgcctgg	180
tgttccttg	agtttcttta	tccttagatt	tgacagctga	gaaatctagg	tggattcata	240
ttcgtaatca	ttgattaaca	tgcacatttg	ggtttgcaca	tttttgtta	tcatacattt	300
ttctccgtt	tctattaaag	aacatgctt	aggggaacta	ttaatagccc	accagtccgg	360
taggcagcat	tcaatccctc	tatgccttct	ttcggccacct	gttgagggtt	ttcttctgaa	420
acaaagaaga	aatagacaaa	ttagacttgc	cctttggaa	atgtggtcca	gatttctcta	480
ctcccaagct	ccaaaaaaagg	catacatgg	atgggctaga	tcaactcctc	ctgagagcca	540
taaatccggc	aagagttgtt	ttccatgtaa	gggtgtggta	caatggggaa	cgccgtatgt	600
tggagggaaag	caggaggact	ttagagtgg	gttgcattct	aatctctgt	ccgcttcaac	660
tatgtgac	ggggcaatg	atataaactc	tatgagcctc	tttccttatac	tttaaaatga	720

agagaagtaa	tacctacctt	gtagggctgt	tgtgaggatt	aatgaagta	atgcatacag	780
tgcctaacaa	agtatccaac	atcatatttt	ttaaaagctc	atggaaatatt	agtttttctt	840
ccttccccc	tttctatttt	ctctccgtt	ccctttctc	tcccttcctc	gccctctcct	900
tccttcagat	gttagtctaa	aacagcacct	tggatctaag	cagcacctt	gagaaaagaaa	960
agactgttc	aagaatgtct	agttgcacct	ccttccgt	tgtggcctaa	atgccttaggt	1020
tggatcaata	gtttaatttt	tttattgaac	tgtttaatat	tgactatgg	cttacattca	1080
cttttactgt	tttctgtata	tttactttt	cttgaagtgt	ttaatattt	actatttacc	1140
tctgctcatt	tttatttattt	ttctgtattt	tttcaatgaa	aatttataata	aaaaatttattt	1200
tttgtaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaagg	gcggccgctc	tagaggatcc	1260
aagcttaacgt	acgcgtgcat	gcgacgtcat	agctttctca	tagtgcacc	taaattcaat	1320
tcactgccc	tcgttttaca	acgtcgcngac	tgggaaaacc	ctggcgttac	ccaacttaat	1380
cgccttgcag	cacatcccc	tttcgcgcagc	tggcgttaata	gcgaagaggc	ccgcaccgat	1440
cgccttccc	aacagttgcg	cagcctgaat	ggcgaatggg	acgcgcctg	tagcggcgc	1500
ttaaqcqcgq	cggggtgtgg	ggtaacncgc	agngtgaccg	ctacacttgc	cagcgcc	1557

<210> 43
<211> 1013

<212> DNA
<213> *Homo sapiens*

<400> 43

ggtgacatcc	cagtccccg	cgtgcaggca	aggcacacct	gaagcgtgcc	atcctgggc	60
aggaggaggc	gctcgccgtg	cacccctgt	gcccgtcct	gcccggatgt	gaccgtttc	120
gggctgtat	ctccccagacg	ctgcaggcg	cactggccaa	gtatcgggag	ctcgaccgtg	180
aggatgactt	ctgtgaggct	gcccggcc	cggacatccaa	gcctaagacc	caccagaagc	240
cagaggccag	gatgccacgc	ctgtcccaagg	ggaaggggcc	tgacatcttc	catcggttg	300
ggccctgtc	tgtgttctca	gccaagaacc	ggtggccggct	ggggggccc	gtccacactga	360
cccgaggaga	gggcggctt	ggcctcacgc	ttcggggaga	ctcgccgtc	ctcatcgctg	420
ccgtcattcc	agggagccag	gcccggccgg	ctggcctgaa	ggagggcgcac	tacattgtgt	480
cagtgaatgg	gcagccatgc	aggtgttga	gacacgcgg	ggtgtgacg	gagctgaagg	540
ctgcgggaga	ggcgggccc	agcctgcagg	tgtgtcgct	gctgcccagc	tctagactgc	600
ccagcttggg	ggaccggccgg	cccgtccctgc	tggggcccaag	ggggcttcta	aggagccaga	660
gggagcatgg	ttgcaagacc	ccggcatcca	cgtggggccaa	tccccggcc	ctccctcaact	720
ggagccgaaa	ggcccggcag	ggcaagactg	gagggtgtccc	cagccctgtg	ccccagtgaa	780
ggccagctccg	gcttcatcc	tgaagcaccc	agggtggccg	tgaggcccg	gatccctgca	840
cgccctcgcc	ctggctccag	ctggcagcaa	gcacccggac	tgccctcccc	acccagaggg	900
cctccggca	atgcctgtcc	cgcctcatgc	tggaggctgc	ctcgggcacc	tgccctgcccc	960
ttaaagactg	gtcagacactg	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaa	1013

<210> 44

<211> 986

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (131) . . (131)

<223> n equals a,t,g, or c

<400> 44

ccgagttgac cccacggctc gagatgtcca agctgcccac agacagcagt gtccgcaga
caggcgcggc gaatggtgac agagacgtcc cgcaggcggga gaatacaaga gtttgaagaa
cgccgcagga nttcgtggc agcctgcaga gcaaggaaat cagcgttgc tgccgaat
cagcgaaaatc ctcacagggt ggacctcgat attttaacct ttcgcataat tcgtactgcc
tctgaatgtt tcaaacctctc gatagaagaa ctgggttgcg ataaggtttat caatagagaa
tagtttaggtg gtgacactac ttcaagagaa cctctgcatt ccagtcatac caatccgtca
acttgatttt cagaagtcaa gagtatatcg cgataagaca gtgcacaggt ggaggggaaa
aaaaggggga gggggaaagct tatcttggaa aagcatcaca gaagttagaaa aaaatgtcga
aagcattata actgtAACGT tctttgagtt tgtgattgtt ccacattttt cccctgcatt
tatggaaaat gtctctcagc attgcctttat tacaaaagttt aggatggttt tataaaattt
agactgtga aacatcaata cttagagccca tgaggatgaa agaaaatttcc aaatagtgt
gaacagaata agatgttaac gctgagttat taggactggaa aggctatgaa aagaatgtga
aatttgcggc atatgtgcctc ttcttcatgtc attttcaata gaatttctca gtttaagatt
gattttgtt ttcttcaggc atttcaagtg acaagcaaaat taaatgtata tattatgtga
taaatcatgt ttcaagaac gtcaaaatttcc tggactttttt tctttcaattt ttaattttt
aaagtttttt tggttattaaa aaatctatttcc acaagccaaa aaatatataaa aatatacagc

gaaaagccaa	aaaaaaaaaa	aaaaaac	986			
<210> 45						
<211> 810						
<212> DNA						
<213> Homo sapiens						
<400> 45						
ggcacgagat	tcaaggctac	tatcgccagt	atcgtcagga	gcctgtcagg	tttggaaaca	60
tcggcttcgg	aacccctac	tactatgtgg	gctggacga	gtgtgggtc	tccatccctg	120
gaaaagtggta	atcacaggac	cgtcatgctg	caagcttgcc	ctgcccagcc	ccaccaacta	180
agtgcacta	ggggctgtga	gcaaagacag	ccagcgtgct	cagccccgt	gcccttaggt	240
ccaggaaggt	catagatgga	cactggccat	tctggtcattc	tcaagtctgaa	actcagtccc	300
acttcttggc	ctggacaatg	aacaggattc	agttttgctg	ttaactttgc	ttctctactt	360
ttttttgttt	gtttgtataa	gcacatccca	gagacatcag	aaaccagcaa	ctgattcagt	420
gtgatttcca	gacttttag	gcatgaaatt	cgagacactc	agtatttcca	ggaatagcat	480
atgcacgctg	ttcttgcttc	atgaaatgtc	acatgcttcc	tgtttttctc	attttggatt	540
tctccaaaata	taactgaatt	taagcttcag	gtccctttgt	atgcagtaga	aaggaaattat	600
taaaaacacc	acccaaagaaa	ataaatatat	cctacttgaa	atttactcta	tggacttacc	660
cactgctaga	ataaatgtat	caaattttat	ttgttaaattc	tcaattttga	tatatatatg	720
tatatatatca	tatacatatc	cacacttgc	tgcaagaata	ttgattaaaa	ttgctaaatt	780
tgtaacttgg	caaaaaaaaaa	aaaaaaaaaa				810
<210> 46						
<211> 880						
<212> DNA						
<213> Homo sapiens						
<220>						
<221> misc_feature						
<222> (864)..(865)						
<223> n equals a,t,g, or c						
<220>						
<221> misc_feature						
<222> (868)..(868)						
<223> n equals a,t,g, or c						
<220>						
<221> misc_feature						
<222> (878)..(878)						
<223> n equals a,t,g, or c						
<400> 46						
gggcacgagc	tttgaccat	tcaaggatgt	ctctgcctgg	agaacttagat	cctgactcag	60
ttgcagcata	gttttcccc	cagggtggtg	ctgaacttca	gctcagaagc	agcctggacc	120
ccatcttacc	tccagataag	gtgttttagg	tactctgttg	ccagtgttag	tgcaacttag	180
ttaaaaaata	gaggacttgt	tacagatgt	ctctaaatgt	cacactggag	ttttgtgcaa	240
cataaagtag	gtgatttgg	agcagagcga	agtctagaaa	tttgccttaa	attatttgg	300
gtactctaga	gaacgtggta	tgtgtatgt	tgtatgtgt	tttgaatata	ggaactagtt	360
cattgaacgt	tagattgttc	taagaccaga	attagattaa	aatgcataa	catattaagt	420
attaaaaaagt	gttttatattg	tatatgaatt	ttttgcggta	agtttagctt	ggcattttag	480
gttttaatgt	atgttaatc	tgtaaaaatg	atgtactgt	ttttaaatgt	ttctaattgt	540
gtttttttgt	accatcttca	gtatgaaaaa	tgtcagtatt	tagttccctt	ctcaggcaca	600
attagatttt	tattgacatt	gtttcccccc	ttaactcatg	taatttagtca	tagcaaccaa	660
gagtcaagag	agtgattacc	agccaattaa	gaaaaatgtg	accaagcaga	ttgcagagta	720
caataaaaacc	atcgtggatg	ctttacatag	catcagcgga	aactgagttt	aagtccactg	780
aaagtctcta	aggaagtatc	ctcttgctgc	taaacttggt	acaagttgac	taccaaaaaa	840
aaaaaaaaaa	agccgaggkg	ggcnngtncc	aaggccntg			880
<210> 47						
<211> 1668						
<212> DNA						
<213> Homo sapiens						
<400> 47						

ggaaactgcc	aaaagtgtgc	atttggctac	agtggactcg	actgttaagga	caaatttcag	60
ctgatccctca	ctattgtggg	caccatcgct	ggcattgtca	ttctcagcat	gataattgca	120
ttgattttsa	cagcaagatc	aaataacaaa	acgaaggcata	ttgaagaaga	gaacttgatt	180
gacgaagact	ttcaaaaatct	aaaactgcgg	tcgacaggct	tcaccaatct	tggagcagaa	240
gggagcgtct	ttcctaagggt	caggataacg	gcctccagag	acagccagat	gcaaaatccc	300
tattcaagcc	acagcagcat	gcccccccct	gactattaga	atcataagaa	tgtgaaaccc	360
gccatggccc	ccaaccaatg	tacaagctat	tathtagagt	gtttagaaag	actgtatggag	420
aagtgagcac	cagtaaagat	ctggccctcg	gggtttttct	tccatctgac	atctgcgcgc	480
ctctctgaat	ggaagtgtgt	aatgttgca	acgaatccag	ctcaactgtct	aaaaataagaat	540
ctatgacatt	aatatgttagt	gatgctatta	gcgcttgtca	gagagggtgt	tttcttcaat	600
cagtagacaaag	tactgagaca	atggtttaggg	ttgttttctt	aattctttc	ctggtagggc	660
aacaagaacc	atttccaatc	tagagggaaag	ctccccagca	ttgcttgctc	ctgggcaaac	720
attgctcttg	agtttaagtga	cctaattccc	ctgggagaca	tacgcatcaa	ctgtggaggt	780
ccgaggggat	gagaagggat	acccaccaccc	tttcaagggt	cacaagctca	ctctctgaca	840
agtcagaata	gggacactgc	ttctatccct	ccaaatggaga	gattctggca	acctttgaac	900
agccccagagc	ttgcaaccta	gcctcaccca	agaagactgg	aaagagacat	atctctcagc	960
tttttcagga	ggcgtgcctg	ggaatccagg	aacttttga	tgctaattag	aaggcctgga	1020
ctaaaaatgt	ccactatggg	gtgcactcta	cagttttga	aatgcttagga	ggcagaaggg	1080
gcagagagta	aaaaaacatga	cctggtagaa	ggaaagagagg	caaaggaaac	tgggtgggga	1140
ggatcaatta	gagaggaggc	acctgggatc	caccttcttc	cttaggtccc	ctccctccatc	1200
agccaaaggag	cacttctcta	atcatggccct	cccgaaagact	ggctgggaga	aggtttaaaaa	1260
acaaaaaaaaatc	caggagtaag	agccttaggt	cagtttggaaa	ttggagacaa	actgtctggc	1320
aaagggtgcg	agagggagct	tgtgctcagg	agtccagccg	tccagcctcg	gggtgttaggt	1380
ttctgaggtg	tgccattggg	gcctcagcct	tctctggtga	cagaggctca	gctgtggcca	1440
ccaaacacaca	accacacaca	cacaaccaca	cacacaaaatg	ggggcaacca	catccagtac	1500
aagctttac	aaatgttatt	agtgtccctt	tttatttcta	atgccttgtc	ctcttaaaag	1560
tttatatttatt	tgttattatt	atttggtctt	gactgttaat	tgtgaatggt	aatgcaataa	1620
agtgccttgc	ttagatggaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1668

<210> 48
<211> 851
<212> DNA
<213> *Homo sapiens*

<400> 48	cacgagagaaa	ggtgttatt	tatacaaaca	tggacatact	cactccaaag	ggctgtatgag	60
atgctgaatt	ttctttgggg	gcattcatta	attgtccca	ctgcagcgac	ttggacaagt		120
ctggaaagctg	cctgtctaa	gaccacccag	ctgtccctgg	gttctcatcc	tagggcttc		180
tttgcttcca	ggtcaggggg	cctgtctaa	tgagaaagca	actgaattga	ggcttaggaga		240
ggtagggaga	gctgagttct	gacttcacct	gtgcagaact	ctctcccccc	atgttacctg		300
gactggaaaca	gactgtaat	atagcagaag	gttccaagaa	ctctgtgtc	tgacctagaa		360
gaggcacagt	tctctctact	ggaaagaaaa	cgatgttagcc	gattgcacaa	gggtgccaag		420
ggaagaccca	ggatggccca	tcaaaggaac	ctgggggagg	atgcaggagg	ctgaagggat		480
gcacctggca	tttctctcac	tgtgcttta	ccgcatcagc	aaccccaac	ttttgggcct		540
actctggccc	ccatgcgtga	ataccctgt	tgatgtctgt	gtctttccgg	tttgtctcta		600
agcccccttc	tccaggggcat	gttgggttcc	ctggcccttc	agtgtctta	ctggagcccc		660
gagtgcttgc	ttctgagccca	ggagacggct	gaggactggc	cctccacacc	taagcgtcct		720
ttacattaac	ttattgttct	tgtataaac	ctggtgccat	tgccaagtgg	ctgtgtcctc		780
agctacagag	cttggaaattgt	gtggggttta	gtgctaaata	cttcaataaa	gtctgttttt		840
tgtgattggc	t						851

```
<210> 49  
<211> 511  
<212> DNA  
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (1)..(1)
<223> n equals a,t,q, or c
```

```

<400> 49
naggcccatt ttactttgcc cccctcggtt ttctgtcaag caggtcaata tatctcttta 60
tccattataa tcaatattgt agcattcatt cattcattat tcatttcattt accatttatt 120
gaagccttaa atttgtgctc agtcagtgc ctgtgaatgg gtataaaagag acaactaaga 180
atctgtatcat tgctctggtaa qaqagactqa cggtacaaag tgcaatggta catgcattct 240

```

gtgagacaga aattcatgga ggagaactgg aagagattca cctggatagg tagcctgggg	300
cataaagagt aggccttagga agccctaagg acattaggat ttattttag agatgatggt	360
tctttgtta gggtgacagc agggtggta tgaagagagg tcttaatcta aatatatttt	420
aaaggtggag ctaacaatt ttgtggcatg aaatcaaaga gaacattttt gataggctt	480
aaagatttt gagccaagca caatgactca t	511
<210> 50	
<211> 817	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> misc_feature	
<222> (778)..(778)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (791)..(791)	
<223> n equals a,t,g, or c	
<220>	
<221> misc_feature	
<222> (801)..(801)	
<223> n equals a,t,g, or c	
<400> 50	
ggcacgaggtaattttgaa acttatgctt aagatttaac cagggcagag gcataattca	60
gcataaataatgttgccatt ataaactttt atcccttcata tctcaacagg aaatgagcaa	120
ttattgtttc atgctcaat gcactgtttt aaaatactgt ttaattttt aaaggtgtga	180
actgtttat ttatctcaca cggtttttt aacaaatact gattggacat ggcgtgcacg	240
ccaggcttttggcttggtac ctcagggttc tcacaggggaa ggcttggaaat ggaacaacagc	300
acatgtgtaa ctgttgtgtt gacagtctaa ttggtagaaaa atcagcgaac aaagaaggcag	360
acaaaattttagaaaatgaacgt aagggtatgtt gctaaaaaaa gggtagccat tatgtcagt	420
tccttcagag aaggtagcac tccctgagac cggaaatggca gaaagaagtc catctgcct	480
agcccagtttggactgtgtgg agaaggcaggc tgataaaaaga accaaatattt gtacatttt	540
aagaagtgc cgcgtactt gagagagagg ttgtcggtt caggtgctga atgtccttat	600
aaaagggtttagatatttcgag catctctatc aatacattttt aatgctgaga gctttccctt	660
ccagaagctc atgtcattttt caacacacac ttctattttt ctttatgttag tttctaaaaaa	720
ttgaaaacca gaattggagg tttttttttt aaaaaaaaaaaa aaaaaagccg aggkgggnaa	780
agtamaaatngcctkwgcc ntttcctttc cccgtcc	817
<210> 51	
<211> 762	
<212> DNA	
<213> Homo sapiens	
<400> 51	
ggcacgaggttgttttcct cagctgaggc aagtggtaga gtatacagga taacgaagta	60
acatgtaaaaa ggcaggacgc acataaagggt gtacatggctt attgtttcac ctggagaaac	120
cacatgatttggacctgaag gtttactgac tgactacagg ggctgatgtt gaagcacag	180
gaacccccatgtgtgtggaga ctgttaggggtt agagcacaca attatttgcat tcatttctga	240
gtgtatctcac agatttttttt tcttgcgtttt ttgtttttt ttgacaactt ctttcccac	300
gttccttgca attctattctt ctcacccatca ctttactatt tttttttttt ttgttgcgtt ggaccaggat	360
aattcaggca aggttacctt gtaaaacttga attggccaca cccatgttg tcacccagct	420
ggctatgaag tgaataatgg tactgaaatgtt aaaccttgaag acctttctca gatctat	480
aagtctgagt ctgaccaacc atggaaaata ttgcacatga attaatgttag agaactataa	540
agcatttttgc acagctccaa gaaaaatcat ctactctatg caggagatattt gtttagagac	600
ctctcagaaaaa aacttgcctt gtttgggtt acacagtacc attttatct tctgaaaata	660
tctgtatttttgc tgcgtgtcac tgtcaatctg ctatattttt cactatccat	720
ttaaaaatatttactgtcttctt tttttttttt aaaaaaaaaaaa aa	762
<210> 52	
<211> 1417	
<212> DNA	
<213> Homo sapiens	

<220>
<221> misc_feature
<222> (1378)..(1378)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (1392)..(1392)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (1399)..(1399)
<223> n equals a,t,g, or c

<220>
<221> misc_feature
<222> (1404)..(1404)
<223> n equals a,t,g, or c

<400> 52

tgagaccctg	tctcaataat	aataataata	ataataatag	taataatgaa	gtaaatggga	60
taaggaaaga	argataatta	tctttaaagg	ttgattccca	ccctccctcc	ccagttactt	120
aaggaactaa	gtgagtacat	ctccagttgc	ccatgaaagc	ataagtttg	tttcctcagc	180
tgaggcaagt	ggtagagtt	acaggataac	gaagtaacat	gtaaaaggca	ggacgcacat	240
aaaggtgtac	atggcttatt	tttcacctgg	agaaacaca	tgattgggac	ctgaaggttt	300
actgactgac	tacaggggct	gattgtgaag	cacgaggaac	cccatgtgt	tggagactgt	360
agggtgagag	cacacaatta	ttagcatcat	ttctgagtga	tctcacagat	ttttttctt	420
gtgtttgtt	tgcttttga	caactgctc	tcccacgttc	cttgcattt	tattctctca	480
ccttcacttt	actatttgtt	ttcgatggac	caggataatt	caggcaaggt	taccttgtaa	540
acttgaattt	gccacacacc	atgttgtcac	ccagctggct	atgaagtgaa	taatggtaact	600
gaaagtaaac	ctgaagacct	ttctcagatc	tatttaagt	ctgagtcgaa	ccaaccatgg	660
aaaatattcg	acatgaatta	atgttagagaa	ctataaagca	tttatgcacag	ctccaagaaaa	720
aatcatctac	tctatgcagg	agatatgtt	agagacctt	cagaaaaact	tgcctggttt	780
gagggtacac	agtaccattt	taatcttctg	aaaatatctg	tatttcctgt	cttttctgc	840
tgtcaactgc	aatctgctat	attttcaat	atcctattaa	aatttactg	tctccctttat	900
ctgttcaatg	tccatatttt	aaaaaaaaatct	tccttgcatt	agctattctg	atccaaataaa	960
tttctctgtat	atttctctat	atggctccca	caacaatttc	attgttgtt	gcatatctat	1020
ttctccatac	attgtaaaac	tgtatccctt	aggtatttct	aaaacataaa	gaggagaatt	1080
aagtcaactg	cagaacaatg	gggctgawtc	ytctgctttt	tctctggaaa	atctttcatt	1140
gcttttgggt	gaaatttacc	tagaggttac	aaccacagga	tgtagctgg	tctcttattt	1200
gcctttttgg	gaaaccaatt	aagattaata	caggataaaag	gaaaaaaagca	atctattcat	1260
tatataaacac	agttgtttgt	attacttgc	ccctgcaaaag	gcaaattctgt	tgaatgcttg	1320
cattttggaa	ttcttttcta	ataggaacaa	ccaaaaaaagg	gcttcttgc	ggcagncg	1380
gaaaaaaagg	tncattttnt	tggnttgcatt	tcttaac			1417

<210> 53
<211> 2793
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (2793)..(2793)
<223> n equals a,t,g, or c

<400> 53

ccacgcgtcc	ggattacatg	tagttattga	gaatccttc	gaattcagtg	gcttaatcat	60
gaatgtctaa	atattgttga	cattaggatg	atacatgtaa	attaaaggta	catttggta	120
gcataagacaa	gcttaacatt	gtagatgttt	ctcttcaaaa	atcatcttaa	acatttgcatt	180
tttggaaattgt	gttaaataga	atgtgtgaaa	cactgttata	gtaaaacttca	tcaccccttct	240
acttccttat	agtttgaact	tttcagtttt	tgtatccctt	aaacagttgc	tcaattttaga	300
gcaaatttaat	ttaacaccctg	ccaaaaaaagg	gctgctgttgc	gcttattcagt	tgtctttaaa	360
ttcaaatgtt	catgtgactt	ttatcacatc	aaaaaaatatt	tcattaaatgt	ttcaccccttta	420
gctctgaaaa	ttaccgcgtt	tagtaattat	agtgggcattt	taaaaaacatg	caactctttt	480

tgtatgttat	ttgagaattt	tggtaaaaaa	tatttagctg	agggcagtat	agaacttata	540
aacaatata	ttgatatttt	taaaacattt	ttacatataa	gtaaactgcc	atctttgagc	600
ataactacat	ttaaaaataa	agctgcatat	ttttaaatca	agtgttaac	aagaattttat	660
atttttatt	ttttaaaaatt	aaaataatt	tatatttcct	ctgtgcatg	aggattctca	720
tctgtgccta	taatggtag	agattttatt	tgtgtggaat	gaagtgaggc	tttgtactcat	780
ggttcttagt	tttcagttt	ccaagtctgt	ttactgcagt	gaaattccatc	aatgtttca	840
gtgtggttt	ctgtagccct	tcattttact	gctatttttt	tatgtacacc	tttaggattt	900
tctgcctact	ctatccagg	gtccaaatga	tatcctcat	tttacaaatg	cccttcagtt	960
ttcttatttc	ttttccatt	aaatggccct	catgtcctaa	tgtgcagttt	gtaaagtgtgt	1020
gtgtgtgtgt	ctgtgtgtgt	gtgaatttga	tttcaagag	tgcttagactt	ccaaatttgag	1080
agattaaata	attaattca	ggcaaacatt	tttcatttgg	atttcacagt	tcattgtaat	1140
gaaaatgtta	atccctggat	accttgcaca	tacagtaatg	aatcttggat	attaatgaat	1200
ttgttagtag	catcttgat	tgtgtttaa	ttagtttattt	tcaaagtgtt	gcattaaacc	1260
aaagttggca	tactggaaat	gtttatatac	agttccattt	ggctactgtat	ggacaaaaaa	1320
tagaaatgcc	ttcctatgg	gagtattttt	cccttaaaaaa	attaaaaagg	ttaatttattt	1380
tgaaaaaaaaa	aaatcgacc	acgcgtccgg	attacatgt	gttatttgaga	atcccttgcg	1440
attcagtgcc	ttaatcatga	atgtcttaat	atgttgaca	tttaggtat	acatgttaat	1500
taaagtaca	tttggtagc	atagacaaag	ttaacattgt	agatgtttct	cttcääaaat	1560
catcttaaac	atttgcattt	ggaatttgtt	taaatagaat	gtgtgaaaca	ctgtatttagt	1620
aaacttcatc	acctttctac	ttccttata	tttgaacttt	tcagttttt	tagttccaa	1680
acagttgctc	aatttagagc	aaattaattt	aacacctgccc	aaaaaaaggc	tgctgttggc	1740
ttatcagttg	tctttaaatt	caaatgctca	tgtgactttt	atcacatcaa	aaaatatttc	1800
attaatgatt	cacctttagc	tctgaaaaatt	accgcgttta	gtatattatag	tgggcattata	1860
aaaacatgca	actctttttt	atagtttattt	gagaattttt	gtgaaaaattt	tttagctgag	1920
ggcagttatag	aacttataaa	ccaatattat	gatatttttta	aaacattttt	acatataagt	1980
aaactccat	cttgagcat	aactacattt	aaaaataaaag	ctgcatattt	ttaaatcaag	2040
tgtttaacaa	gaattttat	tttttatttt	ttaaaattaa	aaataattta	tatttcctct	2100
gttgcatgag	gattctcatc	tgtgcttata	atggtttagag	attttatttg	tgtggaatga	2160
agtggagctt	gtagtcatgg	ttcttagtgtt	tcagtttgcc	aagtctgttt	actgcagtga	2220
aattcatcaa	atgtttcagt	gtgstyttct	gtagyctatc	atttactggc	tatttttttt	2280
tgtacacctt	taggattttc	tgcctactct	atccagttgt	ccaaatgata	tcctacattt	2340
tacaaatgcc	cttcagttt	ctatttctt	tttccattaa	attgcctca	tgtcctaattg	2400
tgcagtttgt	aagtgtgtgt	gtgtgtgtt	gtgtgtgtgt	gaattttgtt	ttcaagaggt	2460
ctagacttcc	aatttgagag	attaaataat	ttaatttcagg	caaacattttt	tcattggat	2520
ttcacagttc	attgtatga	aaatgttaat	cctggatgac	ctttgacata	cagtaatgaa	2580
tcttggatat	taatgaattt	gttagtagca	tcttgatgt	tgttttaatg	agtttattttc	2640
aaagttgtgc	attaaacc	agttggcata	ctggaaagtgt	ttatatacag	ttccattttgg	2700
ctactgatgg	acaaaaaaata	gaaatgcctt	cctatggaga	gtattttcc	ttaaaaaaaat	2760
taaaaaagtt	aatttattttg	aaaaaaaaaa	acn			2793

<210> 54
<211> 393
<212> DNA
<213> *Homo sapiens*

```
<220>
<221> misc_feature
<222> (214)..(214)
<223> n equals a,t,g, or c
```

<400> 54
aattcggcac gagagcttat tcattgaagg agtaagtggc tgctcaactcc tttctgctga 60
aactcttcc tgtccttgta gccttagtgc gaatgggagc agggtcacag taaaagagct 120
gaatctcccc acccaccac actgcagcag gctgcggctg gccgacttgt taattgcccga 180
gcaggaaacac agcagcaagc tgccggccac cctnacttg tacagttgat ggctgttgt 240
ctctcccaagg accttagagaa aaccgcstt gtgtacgagc gcatacaact cggcacattg 300
ttcatgtcct tcatgaacgr gtaaaactgcgttccgtgg rttttcaaaa aaaaaaaaaaa 360
aaaaaaaaaa aaaaaaaaaaag ctcggggatq qgc 393

<210> 55
<211> 261
<212> PRT
<213> Homo sapiens

<400> 55 Met Ser Gly Glu Ile Ala Met Cys Glu Pro Glu Phe Gly Asn Asp Lys

1	5	10	15
Ala Arg Glu Pro Ser Val Gly Gly Arg Trp Arg Val Ser Trp Tyr Glu			
20	25	30	
Arg Phe Val Gln Pro Cys Leu Val Glu Leu Leu Gly Ser Ala Leu Phe			
35	40	45	
Ile Phe Ile Gly Cys Leu Ser Val Ile Glu Asn Gly Thr Asp Thr Gly			
50	55	60	
Leu Leu Gln Pro Ala Leu Ala His Gly Leu Ala Leu Gly Leu Val Ile			
65	70	75	80
Ala Thr Leu Gly Asn Ile Ser Gly Gly His Phe Asn Pro Ala Val Ser			
85	90	95	
Leu Ala Ala Met Leu Ile Gly Gly Leu Asn Leu Val Met Leu Leu Pro			
100	105	110	
Tyr Trp Val Ser Gln Leu Leu Gly Met Leu Gly Ala Ala Leu Ala			
115	120	125	
Lys Ala Val Ser Pro Glu Glu Arg Phe Trp Asn Ala Ser Gly Ala Ala			
130	135	140	
Phe Val Thr Val Gln Glu Gln Gly Gln Val Ala Gly Ala Leu Val Ala			
145	150	155	160
Glu Ile Ile Leu Thr Thr Leu Leu Ala Leu Ala Val Cys Met Gly Ala			
165	170	175	
Ile Asn Glu Lys Thr Lys Gly Pro Leu Ala Pro Phe Ser Ile Gly Phe			
180	185	190	
Ala Val Thr Val Asp Ile Leu Ala Gly Gly Pro Val Ser Gly Gly Cys			
195	200	205	
Met Asn Pro Ala Arg Ala Phe Gly Pro Ala Val Val Ala Asn His Trp			
210	215	220	
Asn Phe His Trp Ile Tyr Trp Leu Gly Pro Leu Leu Ala Gly Leu Leu			
225	230	235	240
Val Gly Leu Leu Ile Arg Cys Phe Ile Gly Asp Gly Lys Thr Arg Leu			
245	250	255	
Ile Leu Lys Ala Gln			
260			

<210> 56
<211> 310
<212> PRT
<213> Homo sapiens

<400> 56			
Met Met Thr Lys Tyr Ser Asn Leu Ser Leu Glu Ser His Asn Phe Ser			
1	5	10	15
Leu Thr Ala Ser Pro Leu Thr Ser Leu Pro Ile Pro Glu Val Met Met			
20	25	30	
Thr Lys Tyr Ser Asn Leu Phe Leu Glu Ser His Asn Ile Ser Leu Thr			
35	40	45	

Glu His Ser Ser Val Pro Val Glu Lys Asn Ile Thr Leu Glu Arg Pro
 50 55 60
 Ser Ala Val Glu Leu Thr Cys Gln Phe Thr Thr Ser Gly Asp Val Asn
 65 70 75 80
 Ser Val Asn Val Thr Trp Lys Lys Gly Asp Glu Gln Leu Lys Asn Tyr
 85 90 95
 His Val Ser Ala Thr Glu Gly Ile Leu Tyr Thr Gln Tyr Lys Phe Ser
 100 105 110
 Ile Ile Asn Ser Glu Gln Leu Gly Ser Tyr Ser Cys Phe Phe Glu Glu
 115 120 125
 Glu Lys Glu Arg Arg Gly Thr Phe Asn Phe Gly Val Pro Glu Val Gln
 130 135 140
 Arg Lys Asn Lys Pro Leu Ile Thr Tyr Val Gly Asp Ser Val Val Leu
 145 150 155 160
 Val Cys Lys Cys Arg His Cys Ala Pro Leu Asn Trp Thr Trp Tyr Ser
 165 170 175
 Gly Asn Arg Ser Val Gln Val Pro Leu Asp Val His Met Asn Glu Lys
 180 185 190
 Tyr Ala Ile Asn Gly Thr Asn Ala Asn Glu Thr Arg Leu Lys Ile Met
 195 200 205
 Gln Leu Ser Glu Asp Asp Lys Gly Ser Tyr Trp Cys His Ala Met Phe
 210 215 220
 Gln Leu Gly Glu Ser Gln Glu Ser Val Glu Leu Val Val Ile Ser Tyr
 225 230 235 240
 Leu Val Pro Leu Lys Pro Phe Leu Gly Ile Val Val Glu Val Ile Leu
 245 250 255
 Leu Val Ala Ile Ile Leu Phe Cys Glu Met His Thr Gln Lys Lys Lys
 260 265 270
 Met His Met Asp Asp Gly Lys Glu Phe Glu Gln Val Glu Gln Leu Lys
 275 280 285
 Ser Asp Asp Ser Asn Gly Ile Glu Asn Asn Ala Pro Arg His Arg Lys
 290 295 300
 Asn Glu Ala Met Ser Gln
 305 310

<210> 57
 <211> 117
 <212> PRT
 <213> Homo sapiens

<400> 57
 Met Gly Ser Lys Gly Gly Phe Ile Leu Leu Ile Leu Ala Val Leu
 1 5 10 15
 Cys Arg Ser Gly His Ser Leu Thr Cys Tyr Ala Cys Ile Asp Arg Glu
 20 25 30

Thr Cys Asn Lys Thr Thr Val Cys Ser Val Asn His Asp Ala Cys Leu
 35 40 45

Leu Val Lys Ala Asp Pro Lys Leu Phe Tyr Arg Gln Cys Trp Lys Phe
 50 55 60

Asp Asp Cys Ser Tyr Leu Ser Ile Ser Lys Ala Leu Gly Leu Lys Lys
 65 70 75 80

Leu Gln Tyr Ser Cys Cys Gln Lys Asp Leu Cys Asn Gly Ser Ala Arg
 85 90 95

Val Ser Gly Met Thr Ala Leu Met Leu Leu Pro Leu Leu Ala Ala Ala
 100 105 110

Leu Thr Leu Cys Leu
 115

<210> 58
 <211> 135
 <212> PRT
 <213> Homo sapiens

<400> 58
 Met His Ile Trp Val Cys Thr Phe Leu Phe Ile Ile His Phe Ser Pro
 1 5 10 15

Phe Ser Ile Lys Glu His Ala Leu Gly Glu Leu Leu Ile Ala His Gln
 20 25 30

Ser Gly Arg Gln His Ser Ile Leu Leu Cys Leu Leu Ser Pro Pro Val
 35 40 45

Glu Val Phe Leu Leu Lys Gln Arg Arg Asn Arg Gln Ile Arg Leu Ala
 50 55 60

Leu Leu Glu Met Trp Ser Arg Phe Leu Tyr Ser Gln Ala Pro Lys Lys
 65 70 75 80

Ala Tyr Ile Gly Trp Ala Arg Ser Thr Pro Pro Glu Ser His Lys Ser
 85 90 95

Ala Lys Ser Cys Phe Pro Cys Lys Gly Val Val Gln Trp Gly Thr Pro
 100 105 110

Asp Val Gly Gly Lys Gln Glu Asp Phe Arg Val Glu Leu His Ser Asn
 115 120 125

Leu Ser Ala Ala Ser Thr Met
 130 135

<210> 59
 <211> 257
 <212> PRT
 <213> Homo sapiens

<400> 59
 His Pro Ser Ala Pro Arg Ala Gly Lys Ala His Leu Lys Arg Ala Ile
 1 5 10 15

Leu Gly Gln Glu Glu Ala Leu Arg Leu His Ala Leu Cys Arg Val Leu
 20 25 30

Arg Glu Val Asp Leu Leu Arg Ala Val Ile Ser Gln Thr Leu Gln Arg
 35 40 45
 Ser Leu Ala Lys Tyr Ala Glu Leu Asp Arg Glu Asp Asp Phe Cys Glu
 50 55 60
 Ala Ala Glu Ala Pro Asp Ile Gln Pro Lys Thr His Gln Lys Pro Glu
 65 70 75 80
 Ala Arg Met Pro Arg Leu Ser Gln Gly Lys Gly Pro Asp Ile Phe His
 85 90 95
 Arg Leu Gly Pro Leu Ser Val Phe Ser Ala Lys Asn Arg Trp Arg Leu
 100 105 110
 Val Gly Pro Val His Leu Thr Arg Gly Glu Gly Phe Gly Leu Thr
 115 120 125
 Leu Arg Gly Asp Ser Pro Val Leu Ile Ala Ala Val Ile Pro Gly Ser
 130 135 140
 Gln Ala Ala Ala Ala Gly Leu Lys Glu Gly Asp Tyr Ile Val Ser Val
 145 150 155 160
 Asn Gly Gln Pro Cys Arg Trp Trp Arg His Ala Glu Val Val Thr Glu
 165 170 175
 Leu Lys Ala Ala Gly Glu Ala Gly Ala Ser Leu Gln Val Val Ser Leu
 180 185 190
 Leu Pro Ser Ser Arg Leu Pro Ser Leu Gly Asp Arg Arg Pro Val Leu
 195 200 205
 Leu Gly Pro Arg Gly Leu Leu Arg Ser Gln Arg Glu His Gly Cys Lys
 210 215 220
 Thr Pro Ala Ser Thr Trp Ala Ser Pro Arg Ala Leu Leu Asn Trp Ser
 225 230 235 240
 Arg Lys Ala Gln Gln Gly Lys Thr Gly Gly Cys Pro Ser Pro Val Pro
 245 250 255
 Gln

<210> 60
 <211> 72
 <212> PRT
 <213> Homo sapiens

<400> 60
 Met Tyr Ser Phe Gln Lys Glu Ala Thr Phe Leu Leu Pro Ser Leu Phe
 1 5 10 15

Leu Val Ser Ser Pro Arg Leu Ala Ile Ala Ile Gly Ile Val Met Ala
 20 25 30

Ser Ile Leu Ser Leu Leu His Pro Tyr Leu Leu Leu Cys Asp Phe Ala
 35 40 45

Ala Pro Leu Ile Lys Glu Ala Glu Pro Pro Leu Pro Pro Ile Gly Ala
 50 55 60

Gly Phe Glu Ser Asn Arg Met Lys
65 70

<210> 61
<211> 84
<212> PRT
<213> Homo sapiens

<400> 61
Val Ser Arg Arg Gln Ala Arg Arg Met Val Thr Glu Thr Ser Arg Arg
1 5 10 15
Arg Arg Ile Gln Glu Leu Glu Arg Arg Arg Arg Phe Val Glu Ala
20 25 30
Cys Arg Ala Arg Glu Ala Ala Phe Asp Ala Glu Tyr Gln Arg Asn Pro
35 40 45
His Arg Val Asp Leu Asp Ile Leu Thr Phe Thr Ile Ala Leu Thr Ala
50 55 60
Ser Glu Val Ile Asn Pro Leu Ile Glu Glu Leu Gly Cys Asp Lys Phe
65 70 75 80
Ile Asn Arg Glu

<210> 62
<211> 216
<212> PRT
<213> Homo sapiens

<400> 62
Met Asp Phe Glu Phe Ala Ala Trp Gln Met Leu Tyr Leu Phe Thr Ser
1 5 10 15
Pro Gln Arg Val Tyr Arg Asn Phe His Tyr Arg Lys Gln Thr Lys Asp
20 25 30
Gln Trp Ala Arg Asp Asp Pro Ala Phe Leu Val Leu Leu Ser Ile Trp
35 40 45
Leu Cys Val Ser Thr Ile Gly Phe Gly Phe Val Leu Asp Met Gly Phe
50 55 60
Phe Glu Thr Ile Lys Leu Leu Leu Trp Val Val Phe Ile Asp Cys Val
65 70 75 80
Gly Val Gly Leu Leu Ile Ser Thr Leu Met Trp Phe Ile Ser Asn Lys
85 90 95
Tyr Leu Val Lys Arg Gln Ser Arg Asp Tyr Asp Val Glu Trp Gly Tyr
100 105 110
Ala Phe Asp Val His Leu Asn Ala Phe Tyr Pro Leu Leu Val Ile Leu
115 120 125
His Phe Ile Gln Leu Phe Phe Ile Asn His Val Ile Leu Thr Asp Thr
130 135 140
Phe Ile Gly Tyr Phe Val Gly Asn Thr Leu Trp Leu Val Ala Val Gly
145 150 155 160

Tyr	Tyr	Ile	Tyr	Val	Thr	Phe	Leu	Gly	Tyr	Ser	Ala	Leu	Pro	Phe	Leu
				165					170						175
Lys	Asn	Thr	Val	Ile	Leu	Leu	Tyr	Pro	Phe	Ala	Pro	Leu	Ile	Leu	Leu
				180				185							190
Tyr	Gly	Leu	Ser	Leu	Ala	Leu	Gly	Trp	Asn	Phe	Thr	His	Thr	Leu	Cys
				195				200							205
Ser	Phe	Tyr	Lys	Tyr	Arg	Val	Lys								
				210			215								

<210> 63
<211> 142
<212> PRT
<213> Homo sapiens

<400> 63															
Met	Met	Val	Ser	Cys	Ala	Cys	Glu	His	Leu	Leu	Glu	Leu	Arg	Gly	Leu
1					5				10						15
Thr	Thr	Ser	Thr	Arg	Trp	Pro	Trp	Leu	Val	Pro	His	Thr	Gly	Leu	Val
					20				25						30
Leu	Lys	Ile	Arg	Ser	Pro	Arg	Gln	Gly	Glu	Pro	Gly	Ala	Pro	Pro	Leu
							35		40				45		
Ser	Val	Cys	Leu	Ser	Pro	Val	Val	Ser	Leu	Cys	Cys	Cys	Leu	Cys	Leu
						50		55				60			
Cys	Phe	Cys	Leu	Ser	Val	Ala	Met	Ser	Leu	Val	Ile	Phe	Leu	Cys	Pro
						65		70			75				80
Ala	Ala	Ile	Ser	Ala	Leu	Val	Thr	Ser	Thr	Leu	Leu	Ser	Pro	Arg	Asp
						85			90					95	
Ala	Thr	His	Trp	Gly	Ser	Val	Gly	Glu	Ile	Ala	Leu	Gly	Pro	His	Ala
						100		105							110
Ser	Ile	Pro	Gly	Trp	Leu	Cys	Leu	Pro	Val	Ser	Leu	His	Val	Ser	Pro
						115		120							125
Cys	Val	Phe	Leu	Ser	Val	Ser	Leu	Thr	Gly	Arg	Asp	Ala	Glu		
							130		135				140		

<210> 64
<211> 367
<212> PRT
<213> Homo sapiens

<400> 64															
Met	Ser	Ser	Asn	Gly	Ile	Pro	Glu	Cys	Tyr	Ala	Glu	Asp	Glu	Phe	
1					5					10					15
Ser	Gly	Leu	Glu	Thr	Asp	Thr	Ala	Val	Pro	Thr	Glu	Glu	Ala	Tyr	Val
					20			25							30
Ile	Tyr	Asp	Glu	Asp	Tyr	Glu	Phe	Glu	Thr	Ser	Arg	Pro	Pro	Thr	Thr
						35		40							45
Thr	Glu	Pro	Ser	Thr	Thr	Ala	Thr	Thr	Pro	Arg	Val	Ile	Pro	Glu	Glu

50

55

60

Gly Ala Ile Ser Ser Phe Pro Glu Glu Phe Asp Leu Ala Gly Arg
 65 70 75 80

Lys Arg Phe Val Ala Pro Tyr Val Thr Tyr Leu Asn Lys Asp Pro Ser
 85 90 95

Ala Pro Cys Ser Leu Thr Asp Ala Leu Asp His Phe Gln Val Asp Ser
 100 105 110

Leu Asp Glu Ile Ile Pro Asn Asp Leu Lys Lys Ser Asp Leu Pro Pro
 115 120 125

Gln His Ala Pro Arg Asn Ile Thr Val Val Ala Val Glu Gly Cys His
 130 135 140

Ser Phe Val Ile Val Asp Trp Asp Lys Ala Thr Pro Gly Asp Val Val
 145 150 155 160

Thr Gly Tyr Leu Val Tyr Ser Ala Ser Tyr Glu Asp Phe Ile Arg Asn
 165 170 175

Lys Trp Ser Thr Gln Ala Ser Ser Val Thr His Leu Pro Ile Glu Asn
 180 185 190

Leu Lys Pro Asn Thr Arg Tyr Tyr Phe Lys Val Gln Ala Gln Asn Pro
 195 200 205

His Gly Tyr Gly Pro Ile Ser Pro Ser Val Ser Phe Val Thr Glu Ser
 210 215 220

Asp Asn Pro Leu Leu Val Val Arg Pro Pro Gly Gly Glu Pro Ile Trp
 225 230 235 240

Ile Pro Phe Ala Phe Lys His Asp Pro Ser Tyr Thr Asp Cys His Gly
 245 250 255

Arg Gln Tyr Val Lys Arg Thr Trp Tyr Arg Lys Phe Val Gly Val Val
 260 265 270

Leu Cys Asn Ser Leu Arg Tyr Lys Ile Tyr Leu Ser Asp Asn Leu Lys
 275 280 285

Asp Thr Phe Tyr Ser Ile Gly Asp Ser Trp Gly Arg Gly Glu Asp His
 290 295 300

Cys Gln Phe Val Asp Ser His Leu Asp Gly Arg Thr Gly Pro Gln Ser
 305 310 315 320

Tyr Val Glu Ala Leu Pro Thr Ile Gln Gly Tyr Tyr Arg Gln Tyr Arg
 325 330 335

Gln Glu Pro Val Arg Phe Gly Asn Ile Gly Phe Gly Thr Pro Tyr Tyr
 340 345 350

Tyr Val Gly Trp Tyr Glu Cys Gly Val Ser Ile Pro Gly Lys Trp
 355 360 365

<210> 65

<211> 55

<212> PRT

<213> Homo sapiens

<400> 65
 Met Met Tyr Cys Ile Leu Lys Tyr Ser Asn Cys Ala Phe Leu Tyr His
 1 5 10 15
 Leu Gln Tyr Glu Lys Cys Gln Tyr Leu Val Pro Phe Ser Gly Thr Ile
 20 25 30
 Arg Phe Leu Leu Thr Leu Phe Ser Pro Leu Thr His Val Ile Ser His
 35 40 45
 Ser Asn Gln Glu Ser Arg Glu
 50 55

<210> 66
<211> 46
<212> PRT
<213> Homo sapiens
<400> 66
 Met Thr Leu Asn Val Val Asp Ala Ile Ser Ala Cys Gln Arg Gly Gly
 1 5 10 15
 Phe Leu Gln Ser Val Gln Ser Thr Glu Thr Met Val Arg Val Val Phe
 20 25 30
 Leu Ile Leu Phe Leu Val Gly Gln Gln Glu Pro Phe Pro Ile
 35 40 45

<210> 67
<211> 49
<212> PRT
<213> Homo sapiens
<400> 67
 Met Ser Thr Ile Ile Met Val Leu Tyr Ser Arg Ser Lys Cys Ile His
 1 5 10 15
 Phe Ser Tyr Leu Thr Glu Asn Leu Tyr Leu Leu Thr Asn Ile Ser Leu
 20 25 30
 Val Pro Pro Ser Pro Pro Leu Val Thr Thr Ile Ile Phe Phe Ser Phe
 35 40 45
 Phe

<210> 68
<211> 50
<212> PRT
<213> Homo sapiens
<400> 68
 Met Leu Asn Phe Leu Trp Gly His Ser Leu Ile Val Pro Ala Ala Ala
 1 5 10 15
 Thr Gly Ala Ser Leu Glu Ala Ala Cys Ala Lys Thr Thr Gln Leu Ser
 20 25 30
 Leu Gly Ser His Pro Arg Ala Phe Phe Ala Ser Arg Ser Gly Asp Leu
 35 40 45

Leu Gln
50

<210> 69
<211> 49
<212> PRT
<213> Homo sapiens

<400> 69
Met Leu Leu His Phe Cys Tyr Ser Ser Tyr Gln Ser Thr Pro Ile Pro
1 5 10 15

Gln Cys Cys Phe Ile Leu Phe Val Cys Leu Phe Val Phe Glu Val Glu
20 25 30

Ser Val Thr Gln Ala Gly Val His Thr Cys Asn Pro Ser Tyr Ser Gly
35 40 45

Gly

<210> 70
<211> 94
<212> PRT
<213> Homo sapiens

<400> 70
Gly Pro Leu Pro Phe Leu Phe Ser Leu Tyr Pro Pro Pro Lys Arg Ala
1 5 10 15

Gln Lys Lys Val Phe Ile Asn Ile Phe Gly Val Gly Glu Ile Gln Thr
20 25 30

Ser Gln Arg Ile Arg Tyr Pro Gln Leu Lys Cys Thr Gly Thr Phe Val
35 40 45

Ser Glu Phe His Phe Gln Ser Leu Pro Tyr Ile Gly Asn Cys Arg Ser
50 55 60

Glu Leu Val Glu Val Ser Ser Cys Glu Thr Leu Glu Arg Lys Gln Lys
65 70 75 80

Pro His Ala Thr Arg Ser Gly Leu Leu Cys Arg Cys Leu Phe
85 90

<210> 71
<211> 52
<212> PRT
<213> Homo sapiens

<400> 71
Met Thr Met Leu Gln Val Tyr Val Leu Ile Pro Leu Phe Val Ile Ile
1 5 10 15

Leu Glu Cys Thr Pro Thr Asn Tyr Lys Lys Glu Lys Val Asn Cys Lys
20 25 30

Lys Ala Ser Gly Arg Ser Phe Arg Arg His Ser Arg Arg Arg His Cys
35 40 45

Tyr His Arg Arg
50

<210> 72
 <211> 41
 <212> PRT
 <213> Homo sapiens

<400> 72
 Met Arg Gly Lys Phe Pro His Asp Leu Leu Cys Phe Leu Ile Lys Leu
 1 5 10 15

Leu Cys Pro Thr Ile Ala Gly Ser Ala Tyr Gly Cys Cys Asn Val Gly
 20 25 30

Ser Ala Val Ser Cys Ser Tyr His Phe
 35 40

<210> 73
 <211> 63
 <212> PRT
 <213> Homo sapiens

<400> 73
 Met Arg Gly Leu Ser Gln Phe Tyr Gly Phe Lys Tyr His Leu Asn Ala
 1 5 10 15

Trp Asp Thr Gln Met Tyr Ile Pro Asn Ser Asp Cys Pro Pro Asn Ser
 20 25 30

Lys Leu Ile Tyr Pro Asn Tyr Leu Phe Gln Ser Pro Leu Gly Tyr Leu
 35 40 45

Ile Ile Met Ser His Leu Asp His Ala Asn Ser Ser Gln Ser Arg
 50 55 60

<210> 74
 <211> 30
 <212> PRT
 <213> Homo sapiens

<400> 74
 Met Arg Cys Thr Pro Gly Phe Gly Leu Gly Thr Ser Gly Phe Ser Gln
 1 5 10 15

Gly Arg Leu Glu Val Glu Thr Ser Thr Cys Val Thr Val Val
 20 25 30

<210> 75
 <211> 46
 <212> PRT
 <213> Homo sapiens

<400> 75
 Met Thr Tyr Ser Phe Trp Gln Lys Lys Phe Pro Phe Pro Arg Gln Ile
 1 5 10 15

Lys Leu Val Gln Gly Arg Ile Leu Ser Thr Glu Ile Leu Gly Asn Pro
 20 25 30

Ala Arg Glu Arg Glu Ser Leu Leu Leu Cys Phe Leu Leu Pro
 35 40 45

<210> 76

<211> 71

<212> PRT

<213> Homo sapiens

<400> 76

Met Val Gln Cys Pro Arg Thr Ser Lys Asp Gly Asp Leu Leu Ser Pro
 1 5 10 15

Ser Leu Arg Asp Glu Arg Arg His Trp Leu Cys Arg Arg Pro Gly Glu
 20 25 30

Arg Trp Asn Trp Arg Trp Gly Cys Trp Gln Glu Leu Trp Pro Gln Lys
 35 40 45

Glu Gly Ser Ser His Cys Leu Thr Cys Asp Gln Thr Arg Arg Glu Gln
 50 55 60

Gly Trp Trp Gly Ser Asp Thr
 65 70

<210> 77

<211> 51

<212> PRT

<213> Homo sapiens

<400> 77

Met Phe Arg Asp Leu Ser Glu Leu Ala Trp Phe Glu Gly Thr Gln
 1 5 10 15

Tyr His Phe Asn Leu Leu Lys Ile Ser Val Phe Leu Leu Phe Phe Cys
 20 25 30

Cys His Cys Gln Ser Ala Ile Phe Phe Thr Ile Leu Leu Lys Tyr Tyr
 35 40 45

Cys Leu Leu
 50

<210> 78

<211> 107

<212> PRT

<213> Homo sapiens

<400> 78

Met Pro Leu Gly Cys Arg Glu Glu Ala Gly Gly Val Met Gly Met Gly
 1 5 10 15

Ser Gly Arg Gly Arg Glu Gly Pro Ser Thr Lys Ala Trp Glu Met Arg
 20 25 30

Gly Gly Gly Gly Arg Ala Gly Glu Ala Lys Ser Gln Pro Trp Arg Glu
 35 40 45

His	Pro	Gly	Ala	Ser	Val	Ser	Gly	Tyr	Thr	Gln	His	Phe	Ala	Thr	Cys
50						55					60				
Gly	Pro	Ala	Gly	Ala	Glu	Asp	Gly	Gly	Glu	Glu	Ala	Ser	Ser	Pro	Cys
65					70					75					80
Val	Tyr	Cys	Arg	Gln	Lys	Gly	Leu	Val	Phe	Trp	Phe	Trp	Gly	Phe	Cys
									85		90				95
Phe	Val	Cys	Val	Leu	Phe	Gly	Leu	Phe	Val	Phe					
									100		105				

<210> 79
<211> 105
<212> PRT
<213> *Homo sapiens*

<400> 79
Met Glu Ala Gly Glu Pro Gly Gly Leu Gly Gln Pro Trp Asp Gly Ser
1 5 10 15

Trp Ile Glu Glu Ser Arg Gly Val Met Arg Val Pro Ser Gly Leu Gly
20 25 30

Ser Leu Leu Leu Val Ser Asp Pro Pro Pro Phe Ser Ser Gln Ala Leu
35 40 45

Gly Ala Pro Gly Ser Glu Asp Ser Trp Glu Ser Ser Leu Arg Gln Val
50 55 60

Gln Gly Gln Ser Ser Asp Pro Gly Pro Gly Leu Leu Trp Val Pro Met
65 70 75 80

Asn Ser Ala Ser Gly Ser Glu Gln Phe Pro Ala Pro Leu Pro Glu Pro
85 90 95

Ser Val Leu Trp Asn Pro Trp Ala Gly
100 105

<210> 80
<211> 67
<212> PRT
<213> *Homo sapiens*

<400> 80
Met Cys Val Leu Met Ser Tyr Phe Gln Ser Cys Ala Leu Asn Gln Ser
1 5 10 15

Trp His Thr Gly Ser Val Tyr Ile Lys Phe His Leu Ala Thr Asp Gly
20 25 30

Gln Lys Ile Glu Met Pro Ser Tyr Gly Glu Tyr Phe Ser Phe Lys Lys
35 40 45

Leu Lys Arg Leu Ile Ile Leu Lys Lys Lys Asn Arg Pro Thr Arg Pro
50 55 60

Asp Tyr Met
65

<210> 81
<211> 38
<212> PRT
<213> Homo sapiens

<400> 81
Met Leu Trp Arg Cys Phe Val Ile Phe Lys Ile Cys Pro Tyr Cys Leu
1 5 10 15
Phe Lys Thr Pro Lys Ile Met Asn Ser Glu Thr His Pro Ala Gln Arg
20 25 30
Val Leu Asp Lys Gly Leu
35

<210> 82
<211> 106
<212> PRT
<213> Homo sapiens

<400> 82
Gly Thr Arg Pro Pro Ala Pro Val Thr Leu Thr His Thr Gly Leu Gly
1 5 10 15
Ala Gly Ile Phe Phe Ala Ile Ile Leu Val Thr Gly Ala Val Ala Leu
20 25 30
Ala Ala Tyr Ser Tyr Phe Arg Ile Asn Arg Arg Thr Ile Gly Phe Gln
35 40 45
His Phe Glu Ser Glu Glu Asp Ile Asn Val Ala Ala Leu Gly Lys Gln
50 55 60
Gln Pro Glu Asn Ile Ser Asn Pro Leu Tyr Glu Ser Thr Thr Ser Ala
65 70 75 80
Pro Pro Glu Pro Ser Tyr Asp Pro Phe Thr Asp Ser Glu Glu Arg Gln
85 90 95
Leu Glu Gly Asn Asp Pro Leu Arg Thr Leu
100 105

<210> 83
<211> 124
<212> PRT
<213> Homo sapiens

<400> 83
His Glu Ser Leu Phe Ile Glu Gly Val Ser Gly Cys Ser Leu Leu Ser
1 5 10 15
Ala Glu Thr Leu Ser Cys Pro Cys Ser Leu Val Trp Asn Gly Ser Arg
20 25 30
Val Thr Val Lys Glu Leu Asn Leu Pro Thr His Pro His Cys Ser Arg
35 40 45
Leu Arg Leu Ala Asp Leu Leu Ile Ala Glu Gln Glu His Ser Ser Lys
50 55 60
Leu Arg His Pro Tyr Leu Leu Gln Leu Met Ala Val Cys Leu Ser Gln
65 70 75 80

Asp Leu Glu Lys Thr Arg Leu Val Tyr Glu Arg Ile Thr Ile Gly Thr
 85 90 95

Leu Phe Ser Val Leu His Glu Arg Val Asn Cys Cys Phe Arg Gly Phe
 100 105 110

Ser Lys
 115 120

<210> 84

<211> 261

<212> PRT

<213> Homo sapiens

<400> 84

Met Ser Gly Glu Ile Ala Met Cys Glu Pro Glu Phe Gly Asn Asp Lys
 1 5 10 15

Ala Arg Glu Pro Ser Val Gly Gly Arg Trp Arg Val Ser Trp Tyr Glu
 20 25 30

Arg Phe Val Gln Pro Cys Leu Val Glu Leu Leu Gly Ser Ala Leu Phe
 35 40 45

Ile Phe Ile Gly Cys Leu Ser Val Ile Glu Asn Gly Thr Asp Thr Gly
 50 55 60

Leu Leu Gln Pro Ala Leu Ala His Gly Leu Ala Leu Gly Leu Val Ile
 65 70 75 80

Ala Thr Leu Gly Asn Ile Ser Gly Gly His Phe Asn Pro Ala Val Ser
 85 90 95

Leu Ala Ala Met Leu Ile Gly Gly Leu Asn Leu Val Met Leu Leu Pro
 100 105 110

Tyr Trp Val Ser Gln Leu Leu Gly Gly Met Leu Gly Ala Ala Leu Ala
 115 120 125

Lys Ala Val Ser Pro Glu Glu Arg Phe Trp Asn Ala Ser Gly Ala Ala
 130 135 140

Phe Val Thr Val Gln Glu Gln Gly Gln Val Ala Gly Ala Leu Val Ala
 145 150 155 160

Glu Ile Ile Leu Thr Thr Leu Leu Ala Leu Ala Val Cys Met Gly Ala
 165 170 175

Ile Asn Glu Lys Thr Lys Gly Pro Leu Ala Pro Phe Ser Ile Gly Phe
 180 185 190

Ala Val Thr Val Asp Ile Leu Ala Gly Gly Pro Val Ser Gly Gly Cys
 195 200 205

Met Asn Pro Ala Arg Ala Phe Gly Pro Ala Val Val Ala Asn His Trp
 210 215 220

Asn Phe His Trp Ile Tyr Trp Leu Gly Pro Leu Leu Ala Gly Leu Leu
 225 230 235 240

Val Gly Leu Leu Ile Arg Cys Phe Ile Gly Asp Gly Lys Thr Arg Leu
 245 250 255

Ile Leu Lys Ala Gln
260

<210> 85
<211> 310
<212> PRT
<213> Homo sapiens

<400> 85
Met Met Thr Lys Tyr Ser Asn Leu Ser Leu Glu Ser His Asn Phe Ser
1 5 10 15
Leu Thr Ala Ser Pro Leu Thr Ser Leu Pro Ile Pro Glu Val Met Met
20 25 30
Thr Lys Tyr Ser Asn Leu Phe Leu Glu Ser His Asn Ile Ser Leu Thr
35 40 45
Glu His Ser Ser Val Pro Val Glu Lys Asn Ile Thr Leu Glu Arg Pro
50 55 60
Ser Ala Val Glu Leu Thr Cys Gln Phe Thr Thr Ser Gly Asp Val Asn
65 70 75 80
Ser Val Asn Val Thr Trp Lys Lys Gly Asp Glu Gln Leu Lys Asn Tyr
85 90 95
His Val Ser Ala Thr Glu Gly Ile Leu Tyr Thr Gln Tyr Lys Phe Ser
100 105 110
Ile Ile Asn Ser Glu Gln Leu Gly Ser Tyr Ser Cys Phe Phe Glu Glu
115 120 125
Glu Lys Glu Arg Arg Gly Thr Phe Asn Phe Gly Val Pro Glu Val Gln
130 135 140
Arg Lys Asn Lys Pro Leu Ile Thr Tyr Val Gly Asp Ser Val Val Leu
145 150 155 160
Val Cys Lys Cys Arg His Cys Ala Pro Leu Asn Trp Thr Trp Tyr Ser
165 170 175
Gly Asn Arg Ser Val Gln Val Pro Leu Asp Val His Met Asn Glu Lys
180 185 190
Tyr Ala Ile Asn Gly Thr Asn Ala Asn Glu Thr Arg Leu Lys Ile Met
195 200 205
Gln Leu Ser Glu Asp Asp Lys Gly Ser Tyr Trp Cys His Ala Met Phe
210 215 220
Gln Leu Gly Glu Ser Gln Glu Ser Val Glu Leu Val Val Ile Ser Tyr
225 230 235 240
Leu Val Pro Leu Lys Pro Phe Leu Gly Ile Val Val Glu Val Ile Leu
245 250 255
Leu Val Ala Ile Ile Leu Phe Cys Glu Met His Thr Gln Lys Lys Lys
260 265 270
Met His Met Asp Asp Gly Lys Glu Phe Glu Gln Val Glu Gln Leu Lys
275 280 285
Ser Asp Asp Ser Asn Gly Ile Glu Asn Asn Ala Pro Arg His Arg Lys

† PROTEIN SEQUENCES FROM PROTEIN BANK

290

295

300

Asn Glu Ala Met Ser Gln
 305 310

<210> 86
<211> 135
<212> PRT
<213> Homo sapiens

<400> 86
Met His Ile Trp Val Cys Thr Phe Leu Phe Ile Ile His Phe Ser Pro
1 5 10 15
Phe Ser Ile Lys Glu His Ala Leu Gly Glu Leu Leu Ile Ala His Gln
20 25 30
Ser Gly Arg Gln His Ser Ile Leu Leu Cys Leu Leu Ser Pro Pro Val
35 40 45
Glu Val Phe Leu Leu Lys Gln Arg Arg Asn Arg Gln Ile Arg Leu Ala
50 55 60
Leu Leu Glu Met Trp Ser Arg Phe Leu Tyr Ser Gln Ala Pro Lys Lys
65 70 75 80
Ala Tyr Ile Gly Trp Ala Arg Ser Thr Pro Pro Glu Ser His Lys Ser
85 90 95
Ala Lys Ser Cys Phe Pro Cys Lys Gly Val Val Gln Trp Gly Thr Pro
100 105 110
Asp Val Gly Gly Lys Gln Glu Asp Phe Arg Val Glu Leu His Ser Asn
115 120 125
Leu Ser Ala Ala Ser Thr Met
130 135

<210> 87
<211> 257
<212> PRT
<213> Homo sapiens

<400> 87
His Pro Ser Ala Pro Arg Ala Gly Lys Ala His Leu Lys Arg Ala Ile
1 5 10 15
Leu Gly Gln Glu Glu Ala Leu Arg Leu His Ala Leu Cys Arg Val Leu
20 25 30
Arg Glu Val Asp Leu Leu Arg Ala Val Ile Ser Gln Thr Leu Gln Arg
35 40 45
Ser Leu Ala Lys Tyr Ala Glu Leu Asp Arg Glu Asp Asp Phe Cys Glu
50 55 60
Ala Ala Glu Ala Pro Asp Ile Gln Pro Lys Thr His Gln Lys Pro Glu
65 70 75 80
Ala Arg Met Pro Arg Leu Ser Gln Gly Lys Gly Pro Asp Ile Phe His
85 90 95

Arg Leu Gly Pro Leu Ser Val Phe Ser Ala Lys Asn Arg Trp Arg Leu
 100 105 110
 Val Gly Pro Val His Leu Thr Arg Gly Glu Gly Gly Phe Gly Leu Thr
 115 120 125
 Leu Arg Gly Asp Ser Pro Val Leu Ile Ala Ala Val Ile Pro Gly Ser
 130 135 140
 Gln Ala Ala Ala Ala Gly Leu Lys Glu Gly Asp Tyr Ile Val Ser Val
 145 150 155 160
 Asn Gly Gln Pro Cys Arg Trp Trp Arg His Ala Glu Val Val Thr Glu
 165 170 175
 Leu Lys Ala Ala Gly Glu Ala Gly Ala Ser Leu Gln Val Val Ser Leu
 180 185 190
 Leu Pro Ser Ser Arg Leu Pro Ser Leu Gly Asp Arg Arg Pro Val Leu
 195 200 205
 Leu Gly Pro Arg Gly Leu Leu Arg Ser Gln Arg Glu His Gly Cys Lys
 210 215 220
 Thr Pro Ala Ser Thr Trp Ala Ser Pro Arg Ala Leu Leu Asn Trp Ser
 225 230 235 240
 Arg Lys Ala Gln Gln Gly Lys Thr Gly Gly Cys Pro Ser Pro Val Pro
 245 250 255
 Gln

<210> 88
 <211> 84
 <212> PRT
 <213> Homo sapiens

 <220>
 <221> SITE
 <222> (28)
 <223> Xaa equals any of the naturally occurring L-amino acids

 <400> 88
 Val Ser Arg Arg Gln Ala Arg Arg Met Val Thr Glu Thr Ser Arg Arg
 1 5 10 15
 Arg Arg Ile Gln Glu Leu Glu Glu Arg Arg Arg Xaa Phe Val Glu Ala
 20 25 30
 Cys Arg Ala Arg Glu Ala Ala Phe Asp Ala Glu Tyr Gln Arg Asn Pro
 35 40 45
 His Arg Val Asp Leu Asp Ile Leu Thr Phe Thr Ile Ala Leu Thr Ala
 50 55 60
 Ser Glu Val Ile Asn Pro Leu Ile Glu Glu Leu Gly Cys Asp Lys Phe
 65 70 75 80
 Ile Asn Arg Glu

<210> 89
<211> 42
<212> PRT
<213> Homo sapiens

<400> 89
His Glu Ile Gln Gly Tyr Tyr Arg Gln Tyr Arg Gln Glu Pro Val Arg
1 5 10 15
Phe Gly Asn Ile Gly Phe Gly Thr Pro Tyr Tyr Tyr Val Gly Trp Tyr
20 25 30
Glu Cys Gly Val Ser Ile Pro Gly Lys Trp
35 40

<210> 90
<211> 55
<212> PRT
<213> Homo sapiens

<400> 90
Met Met Tyr Cys Ile Leu Lys Tyr Ser Asn Cys Ala Phe Leu Tyr His
1 5 10 15
Leu Gln Tyr Glu Lys Cys Gln Tyr Leu Val Pro Phe Ser Gly Thr Ile
20 25 30
Arg Phe Leu Leu Thr Leu Phe Ser Pro Leu Thr His Val Ile Ser His
35 40 45
Ser Asn Gln Glu Ser Arg Glu
50 55

<210> 91
<211> 46
<212> PRT
<213> Homo sapiens

<400> 91
Met Thr Leu Asn Val Val Asp Ala Ile Ser Ala Cys Gln Arg Gly Gly
1 5 10 15
Phe Leu Gln Ser Val Gln Ser Thr Glu Thr Met Val Arg Val Val Phe
20 25 30
Leu Ile Leu Phe Leu Val Gly Gln Gln Glu Pro Phe Pro Ile
35 40 45

<210> 92
<211> 50
<212> PRT
<213> Homo sapiens

<400> 92
Met Leu Asn Phe Leu Trp Gly His Ser Leu Ile Val Pro Ala Ala Ala
1 5 10 15
Thr Gly Ala Ser Leu Glu Ala Ala Cys Ala Lys Thr Thr Gln Leu Ser
20 25 30

Leu Gly Ser His Pro Arg Ala Phe Phe Ala Ser Arg Ser Gly Asp Leu
 35 40 45

Leu Gln
 50

<210> 93
 <211> 38
 <212> PRT
 <213> Homo sapiens

<400> 93
 Met Pro Gln Ala Thr Tyr Pro Gly Glu Ser Leu Pro Val Leu Leu His
 1 5 10 15

Glu Phe Leu Ser His Arg Met His Val Pro Leu His Phe Val Thr Ser
 20 25 30

Val Ser Pro Thr Arg Gln
 35

<210> 94
 <211> 30
 <212> PRT
 <213> Homo sapiens

<400> 94
 Met Arg Cys Thr Pro Gly Phe Gly Leu Gly Thr Ser Gly Phe Ser Gln
 1 5 10 15

Gly Arg Leu Glu Val Glu Thr Ser Thr Cys Val Thr Val Val
 20 25 30

<210> 95
 <211> 51
 <212> PRT
 <213> Homo sapiens

<400> 95
 Met Phe Arg Asp Leu Ser Glu Lys Leu Ala Trp Phe Glu Gly Thr Gln
 1 5 10 15

Tyr His Phe Asn Leu Leu Lys Ile Ser Val Phe Leu Leu Phe Phe Cys
 20 25 30

Cys His Cys Gln Ser Ala Ile Phe Phe Thr Ile Leu Leu Lys Tyr Tyr
 35 40 45

Cys Leu Leu
 50

<210> 96
 <211> 68
 <212> PRT
 <213> Homo sapiens

<400> 96
 Met Phe Arg Asp Leu Ser Glu Lys Leu Ala Trp Phe Glu Gly Thr Gln

1	5	10	15
---	---	----	----

Tyr His Phe Asn Leu Leu Lys Ile Ser Val Phe Leu Leu Phe Phe Cys
 20 25 30

Cys His Cys Gln Ser Ala Ile Phe Phe Thr Ile Leu Leu Lys Tyr Tyr
 35 40 45

Cys Leu Leu Tyr Leu Phe Asn Val His Ile Leu Lys Lys Ser Ser Leu
 50 55 60

Tyr Glu Leu Phe
 65

<210> 97

<211> 63

<212> PRT

<213> Homo sapiens

<400> 97

Met Ser Tyr Phe Gln Ser Cys Ala Leu Asn Gln Ser Trp His Thr Gly
 1 5 10 15

Ser Val Tyr Ile Lys Phe His Leu Ala Thr Asp Gly Gln Lys Ile Glu
 20 25 30

Met Pro Ser Tyr Gly Glu Tyr Phe Ser Phe Lys Lys Leu Lys Arg Leu
 35 40 45

Ile Ile Leu Lys Lys Asn Arg Pro Thr Arg Pro Asp Tyr Met
 50 55 60

<210> 98

<211> 75

<212> PRT

<213> Homo sapiens

<400> 98

Ile Arg His Glu Ser Leu Phe Ile Glu Gly Val Ser Gly Cys Ser Leu
 1 5 10 15

Leu Ser Ala Glu Thr Leu Ser Cys Pro Cys Ser Leu Val Trp Asn Gly
 20 25 30

Ser Arg Val Thr Val Lys Glu Leu Asn Leu Pro Thr His Pro His Cys
 35 40 45

Ser Arg Leu Arg Leu Ala Asp Leu Leu Ile Ala Glu Gln Glu His Ser
 50 55 60

Ser Lys Leu Arg Ala Pro Leu Thr Cys Tyr Ser
 65 70 75

<210> 99

<211> 9

<212> PRT

<213> Homo sapiens

<400> 99

His Phe Asn Pro Ala Val Ser Leu Ala

1 5

```

<210> 100
<211> 9
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (1)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (2)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (5)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (6)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (7)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (8)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (9)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 100
Xaa Xaa Asn Pro Xaa Xaa Xaa Xaa
 1               5

<210> 101
<211> 38
<212> PRT
<213> Homo sapiens

<400> 101
Met Ser Gly Glu Ile Ala Met Cys Glu Pro Glu Phe Gly Asn Asp Lys
 1               5               10               15

Ala Arg Glu Pro Ser Val Gly Gly Arg Trp Arg Val Ser Trp Tyr Glu
 20              25              30

Arg Phe Val Gln Pro Cys
 35

```

<210> 102
<211> 16
<212> PRT
<213> Homo sapiens

<400> 102
Leu Val Glu Leu Leu Gly Ser Ala Leu Phe Ile Phe Ile Gly Cys Leu
1 5 10 15

<210> 103
<211> 10
<212> PRT
<213> Homo sapiens

<400> 103
Ser Val Ile Glu Asn Gly Thr Asp Thr Gly
1 5 10

<210> 104
<211> 17
<212> PRT
<213> Homo sapiens

<400> 104
Leu Leu Gln Pro Ala Leu Ala His Gly Leu Ala Leu Gly Leu Val Ile
1 5 10 15

Ala

<210> 105
<211> 13
<212> PRT
<213> Homo sapiens

<400> 105
Thr Leu Gly Asn Ile Ser Gly Gly His Phe Asn Pro Ala
1 5 10

<210> 106
<211> 17
<212> PRT
<213> Homo sapiens

<400> 106
Val Ser Leu Ala Ala Met Leu Ile Gly Gly Leu Asn Leu Val Met Leu
1 5 10 15

Leu

<210> 107

<211> 46
<212> PRT
<213> Homo sapiens

<400> 107
Pro Tyr Trp Val Ser Gln Leu Leu Gly Gly Met Leu Gly Ala Ala Leu
1 5 10 15
Ala Lys Ala Val Ser Pro Glu Glu Arg Phe Trp Asn Ala Ser Gly Ala
20 25 30
Ala Phe Val Thr Val Gln Glu Gln Gly Gln Val Ala Gly Ala
35 40 45

<210> 108
<211> 17
<212> PRT
<213> Homo sapiens

<400> 108
Leu Val Ala Glu Ile Ile Leu Thr Thr Leu Leu Ala Leu Ala Val Cys
1 5 10 15

Met

<210> 109
<211> 10
<212> PRT
<213> Homo sapiens

<400> 109
Gly Ala Ile Asn Glu Lys Thr Lys Gly Pro
1 5 10

<210> 110
<211> 17
<212> PRT
<213> Homo sapiens

<400> 110
Leu Ala Pro Phe Ser Ile Gly Phe Ala Val Thr Val Asp Ile Leu Ala
1 5 10 15

Gly

<210> 111
<211> 27
<212> PRT
<213> Homo sapiens

<400> 111
Gly Pro Val Ser Gly Gly Cys Met Asn Pro Ala Arg Ala Phe Gly Pro
1 5 10 15

Ala Val Val Ala Asn His Trp Asn Phe His Trp
20 25

<210> 112
<211> 17
<212> PRT
<213> Homo sapiens

<400> 112
Ile Tyr Trp Leu Gly Pro Leu Leu Ala Gly Leu Leu Val Gly Leu Leu
1 5 10 15
Ile

<210> 113
<211> 16
<212> PRT
<213> Homo sapiens

<400> 113
Arg Cys Phe Ile Gly Asp Gly Lys Thr Arg Leu Ile Leu Lys Ala Gln
1 5 10 15

<210> 114
<211> 320
<212> PRT
<213> Homo sapiens

<400> 114
Phe Pro Gly Arg Pro Thr Arg Pro Glu Val Met Met Thr Lys Tyr Ser
1 5 10 15
Asn Leu Ser Leu Glu Ser His Asn Phe Ser Leu Thr Ala Ser Pro Leu
20 25 30

Thr Ser Leu Pro Ile Pro Glu Val Met Met Thr Lys Tyr Ser Asn Leu
35 40 45

Phe Leu Glu Ser His Asn Ile Ser Leu Thr Glu His Ser Ser Val Pro
50 55 60

Val Glu Lys Asn Ile Thr Leu Glu Arg Pro Ser Ala Val Glu Leu Thr
65 70 75 80

Cys Gln Phe Thr Thr Ser Gly Asp Val Asn Ser Val Asn Val Thr Trp
85 90 95

Lys Lys Gly Asp Glu Gln Leu Lys Asn Tyr His Val Ser Ala Thr Glu
100 105 110

Gly Ile Leu Tyr Thr Gln Tyr Lys Phe Ser Ile Ile Asn Ser Glu Gln
115 120 125

Leu Gly Ser Tyr Ser Cys Phe Phe Glu Glu Lys Glu Arg Arg Gly
130 135 140

Thr Phe Asn Phe Gly Val Pro Glu Val Gln Arg Lys Asn Lys Pro Leu
145 150 155 160

Ile Thr Tyr Val Gly Asp Ser Val Val Leu Val Cys Lys Cys Arg His
 165 170 175

Cys Ala Pro Leu Asn Trp Thr Trp Tyr Ser Gly Asn Arg Ser Val Gln
 180 185 190

Val Pro Leu Asp Val His Met Asn Glu Lys Tyr Ala Ile Asn Gly Thr
 195 200 205

Asn Ala Asn Glu Thr Arg Leu Lys Ile Met Gln Leu Ser Glu Asp Asp
 210 215 220

Lys Gly Ser Tyr Trp Cys His Ala Met Phe Gln Leu Gly Glu Ser Gln
 225 230 235 240

Glu Ser Val Glu Leu Val Val Ile Ser Tyr Leu Val Pro Leu Lys Pro
 245 250 255

Phe Leu Gly Ile Val Val Glu Val Ile Leu Leu Val Ala Ile Ile Leu
 260 265 270

Phe Cys Glu Met His Thr Gln Lys Lys Met His Met Asp Asp Gly
 275 280 285

Lys Glu Phe Glu Gln Val Glu Gln Leu Lys Ser Asp Asp Ser Asn Gly
 290 295 300

Ile Glu Asn Asn Ala Pro Arg His Arg Lys Asn Glu Ala Met Ser Gln
 305 310 315 320

<210> 115
<211> 256
<212> PRT
<213> Homo sapiens

<400> 115
Phe Pro Gly Arg Pro Thr Arg Pro Glu Val Met Met Thr Lys Tyr Ser
 1 5 10 15

Asn Leu Ser Leu Glu Ser His Asn Phe Ser Leu Thr Ala Ser Pro Leu
 20 25 30

Thr Ser Leu Pro Ile Pro Glu Val Met Met Thr Lys Tyr Ser Asn Leu
 35 40 45

Phe Leu Glu Ser His Asn Ile Ser Leu Thr Glu His Ser Ser Val Pro
 50 55 60

Val Glu Lys Asn Ile Thr Leu Glu Arg Pro Ser Ala Val Glu Leu Thr
 65 70 75 80

Cys Gln Phe Thr Thr Ser Gly Asp Val Asn Ser Val Asn Val Thr Trp
 85 90 95

Lys Lys Gly Asp Glu Gln Leu Lys Asn Tyr His Val Ser Ala Thr Glu
 100 105 110

Gly Ile Leu Tyr Thr Gln Tyr Lys Phe Ser Ile Ile Asn Ser Glu Gln
 115 120 125

Leu Gly Ser Tyr Ser Cys Phe Phe Glu Glu Glu Lys Glu Arg Arg Gly
 130 135 140

Thr Phe Asn Phe Gly Val Pro Glu Val Gln Arg Lys Asn Lys Pro Leu
 145 150 155 160

Ile Thr Tyr Val Gly Asp Ser Val Val Leu Val Cys Lys Cys Arg His
 165 170 175

Cys Ala Pro Leu Asn Trp Thr Trp Tyr Ser Gly Asn Arg Ser Val Gln
 180 185 190

Val Pro Leu Asp Val His Met Asn Glu Lys Tyr Ala Ile Asn Gly Thr
 195 200 205

Asn Ala Asn Glu Thr Arg Leu Lys Ile Met Gln Leu Ser Glu Asp Asp
 210 215 220

Lys Gly Ser Tyr Trp Cys His Ala Met Phe Gln Leu Gly Glu Ser Gln
 225 230 235 240

Glu Ser Val Glu Leu Val Val Ile Ser Tyr Leu Val Pro Leu Lys Pro
 245 250 255

<210> 116

<211> 17

<212> PRT

<213> Homo sapiens

<400> 116

Phe	Leu	Gly	Ile	Val	Val	Glu	Val	Ile	Leu	Leu	Val	Ala	Ile	Ile	Leu
1				5				10					15		

Phe

<210> 117

<211> 47

<212> PRT

<213> Homo sapiens

<400> 117

Cys	Glu	Met	His	Thr	Gln	Lys	Lys	Lys	Met	His	Met	Asp	Asp	Gly	Lys
1				5					10				15		

Glu	Phe	Glu	Gln	Val	Glu	Gln	Leu	Lys	Ser	Asp	Asp	Ser	Asn	Gly	Ile
				20				25					30		

Glu	Asn	Asn	Ala	Pro	Arg	His	Arg	Lys	Asn	Glu	Ala	Met	Ser	Gln
							35	40				45		

<210> 118

<211> 246

<212> PRT

<213> Homo sapiens

<400> 118

Met Met Thr Lys Tyr Ser Asn Leu Ser Leu Glu Ser His Asn Phe Ser
 1 5 10 15

Leu Thr Ala Ser Pro Leu Thr Ser Leu Pro Ile Pro Glu Val Met Met
 20 25 30

Thr Lys Tyr Ser Asn Leu Phe Leu Glu Ser His Asn Ile Ser Leu Thr
 35 40 45

Glu His Ser Ser Val Pro Val Glu Lys Asn Ile Thr Leu Glu Arg Pro
 50 55 60

Ser Ala Val Glu Leu Thr Cys Gln Phe Thr Thr Ser Gly Asp Val Asn
 65 70 75 80

Ser Val Asn Val Thr Trp Lys Lys Gly Asp Glu Gln Leu Lys Asn Tyr
 85 90 95

His Val Ser Ala Thr Glu Gly Ile Leu Tyr Thr Gln Tyr Lys Phe Ser
 100 105 110

Ile Ile Asn Ser Glu Gln Leu Gly Ser Tyr Ser Cys Phe Phe Glu Glu
 115 120 125

Glu Lys Glu Arg Arg Gly Thr Phe Asn Phe Gly Val Pro Glu Val Gln
 130 135 140

Arg Lys Asn Lys Pro Leu Ile Thr Tyr Val Gly Asp Ser Val Val Leu
 145 150 155 160

Val Cys Lys Cys Arg His Cys Ala Pro Leu Asn Trp Thr Trp Tyr Ser
 165 170 175

Gly Asn Arg Ser Val Gln Val Pro Leu Asp Val His Met Asn Glu Lys
 180 185 190

Tyr Ala Ile Asn Gly Thr Asn Ala Asn Glu Thr Arg Leu Lys Ile Met
 195 200 205

Gln Leu Ser Glu Asp Asp Lys Gly Ser Tyr Trp Cys His Ala Met Phe
 210 215 220

Gln Leu Gly Glu Ser Gln Glu Ser Val Glu Leu Val Val Ile Ser Tyr
 225 230 235 240

Leu Val Pro Leu Lys Pro
 245

<210> 119
 <211> 81
 <212> PRT
 <213> Homo sapiens

<400> 119
 Gly His Ser Leu Thr Cys Tyr Ala Cys Ile Asp Arg Glu Thr Cys Asn
 1 5 10 15

Lys Thr Thr Val Cys Ser Val Asn His Asp Ala Cys Leu Leu Val Lys
 20 25 30

Ala Asp Pro Lys Leu Phe Tyr Arg Gln Cys Trp Lys Phe Asp Asp Cys
 35 40 45

Ser Tyr Leu Ser Ile Ser Lys Ala Leu Gly Leu Lys Lys Leu Gln Tyr

50

55

60

Ser Cys Cys Gln Lys Asp Leu Cys Asn Gly Ser Ala Arg Val Ser Gly
 65 70 75 80

Met

<210> 120

<211> 78

<212> PRT

<213> Homo sapiens

<400> 120

Leu Thr Cys Tyr Ala Cys Ile Asp Arg Glu Thr Cys Asn Lys Thr Thr
 1 5 10 15

Val Cys Ser Val Asn His Asp Ala Cys Leu Leu Val Lys Ala Asp Pro
 20 25 30

Lys Leu Phe Tyr Arg Gln Cys Trp Lys Phe Asp Asp Cys Ser Tyr Leu
 35 40 45

Ser Ile Ser Lys Ala Leu Gly Leu Lys Lys Leu Gln Tyr Ser Cys Cys
 50 55 60

Gln Lys Asp Leu Cys Asn Gly Ser Ala Arg Val Ser Gly Met
 65 70 75

<210> 121

<211> 18

<212> PRT

<213> Homo sapiens

<400> 121

Leu Asn Ser Arg Asp Ala Ala Arg His Thr Ala Glu Gln Asn Ala Thr
 1 5 10 15

Asn Thr

<210> 122

<211> 15

<212> PRT

<213> Homo sapiens

<400> 122

Met Leu Pro Ser Ile Ser Val Asn Ser Pro Met Gln Gly Asn Gly
 1 5 10 15

<210> 123

<211> 13

<212> PRT

<213> Homo sapiens

<400> 123

Gly Phe Val Leu Asp Met Gly Phe Phe Glu Thr Ile Lys
 1 5 10

<210> 124
<211> 37
<212> PRT
<213> Homo sapiens

<400> 124
Ser Thr Leu Met Trp Phe Ile Ser Asn Lys Tyr Leu Val Lys Arg Gln
1 5 10 15
Ser Arg Asp Tyr Asp Val Glu Trp Gly Tyr Ala Phe Asp Val His Leu
20 25 30
Asn Ala Phe Tyr Pro
35

<210> 125
<211> 12
<212> PRT
<213> Homo sapiens

<400> 125
Leu Thr Asp Thr Phe Ile Gly Tyr Phe Val Gly Asn
1 5 10

<210> 126
<211> 9
<212> PRT
<213> Homo sapiens

<400> 126
Tyr Ser Ala Leu Pro Phe Leu Lys Asn
1 5

<210> 127
<211> 21
<212> PRT
<213> Homo sapiens

<400> 127
Ser Leu Ala Leu Gly Trp Asn Phe Thr His Thr Leu Cys Ser Phe Tyr
1 5 10 15
Lys Tyr Arg Val Lys
20

<210> 128
<211> 249
<212> PRT
<213> Homo sapiens

<220>
<221> SITE
<222> (4)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (5)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (18)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (28)
<223> Xaa equals any of the naturally occurring L-amino acids

<220>
<221> SITE
<222> (35)
<223> Xaa equals any of the naturally occurring L-amino acids

<400> 128
Met Leu Pro Xaa Xaa Pro Trp Asn Ser Pro Met Pro Gly Asn Gly Cys
1 5 10 15
Trp Xaa Ser Arg Gly Cys Gln Gln Asp Thr Gln Xaa Ser Lys Thr Leu
20 25 30
Pro Ile Xaa Glu Lys Thr Phe Ser Phe Ser Gln Met Asp Phe Glu Phe
35 40 45
Ala Ala Trp Gln Met Leu Tyr Leu Phe Thr Ser Pro Gln Arg Val Tyr
50 55 60
Arg Asn Phe His Tyr Arg Lys Gln Thr Lys Asp Gln Trp Ala Arg Asp
65 70 75 80
Asp Pro Ala Phe Leu Val Leu Ser Ile Trp Leu Cys Val Ser Thr
85 90 95
Ile Gly Phe Gly Phe Val Leu Asp Met Gly Phe Phe Glu Thr Ile Lys
100 105 110
Leu Leu Leu Trp Val Val Phe Ile Asp Cys Val Gly Val Gly Leu Leu
115 120 125
Ile Ser Thr Leu Met Trp Phe Ile Ser Asn Lys Tyr Leu Val Lys Arg
130 135 140
Gln Ser Arg Asp Tyr Asp Val Glu Trp Gly Tyr Ala Phe Asp Val His
145 150 155 160
Leu Asn Ala Phe Tyr Pro Leu Leu Val Ile Leu His Phe Ile Gln Leu
165 170 175
Phe Phe Ile Asn His Val Ile Leu Thr Asp Thr Phe Ile Gly Tyr Phe
180 185 190
Val Gly Asn Thr Leu Trp Leu Val Ala Val Gly Tyr Tyr Ile Tyr Val
195 200 205
Thr Phe Leu Gly Tyr Ser Ala Leu Pro Phe Leu Lys Asn Thr Val Ile
210 215 220
Leu Leu Tyr Pro Phe Ala Pro Leu Ile Leu Leu Tyr Gly Leu Ser Leu
225 230 235 240

Ala Leu Gly Trp Asn Phe Thr His Thr
245

<210> 129
<211> 61
<212> PRT
<213> Homo sapiens

<400> 129
Met Met Val Ser Cys Ala Cys Glu His Leu Leu Glu Leu Arg Gly Leu
1 5 10 15
Thr Thr Ser Thr Arg Trp Pro Trp Leu Val Pro His Thr Gly Leu Val
20 25 30
Leu Lys Ile Arg Ser Pro Arg Gln Gly Glu Pro Gly Ala Pro Pro Leu
35 40 45
Ser Val Cys Leu Ser Pro Val Val Ser Leu Cys Cys Cys
50 55 60

<210> 130
<211> 17
<212> PRT
<213> Homo sapiens

<400> 130
Leu Cys Leu Cys Phe Cys Leu Ser Val Ala Met Ser Leu Val Ile Phe
1 5 10 15
Leu

<210> 131
<211> 40
<212> PRT
<213> Homo sapiens

<400> 131
Cys Pro Ala Ala Ile Ser Ala Leu Val Thr Ser Thr Leu Leu Ser Pro
1 5 10 15
Arg Asp Ala Thr His Trp Gly Ser Val Gly Glu Ile Ala Leu Gly Pro
20 25 30
His Ala Ser Ile Pro Gly Trp Leu
35 40

<210> 132
<211> 16
<212> PRT
<213> Homo sapiens

<400> 132
Cys Leu Pro Val Ser Leu His Val Ser Pro Cys Val Phe Leu Ser Val
1 5 10 15

<210> 133
<211> 8
<212> PRT
<213> Homo sapiens

<400> 133
Ser Leu Thr Gly Arg Asp Ala Glu
1 5

<210> 134
<211> 73
<212> PRT
<213> Homo sapiens

<400> 134
Met Asp Thr Glu Lys Ser Trp Ile Pro Arg Val Trp Leu Ala Leu Ser
1 5 10 15
Cys Pro Leu Val Ile Ser Glu Trp Phe Leu Ile Leu Cys Ile His Val
20 25 30
Met Arg Gly Lys Phe Pro His Asp Leu Leu Cys Phe Leu Ile Lys Leu
35 40 45
Leu Cys Pro Thr Ile Ala Gly Ser Ala Tyr Gly Cys Cys Asn Val Gly
50 55 60
Ser Ala Val Ser Cys Ser Tyr His Phe
65 70

<210> 135
<211> 88
<212> PRT
<213> Homo sapiens

<400> 135
Met Pro Leu Gly Cys Arg Glu Glu Ala Gly Gly Val Met Gly Met Gly
1 5 10 15
Ser Gly Arg Gly Arg Glu Gly Pro Ser Thr Lys Ala Trp Glu Met Arg
20 25 30
Gly Gly Gly Arg Ala Gly Glu Ala Lys Ser Gln Pro Trp Arg Glu
35 40 45
His Pro Gly Ala Ser Val Ser Gly Tyr Thr Gln His Phe Ala Thr Cys
50 55 60
Gly Pro Ala Gly Ala Glu Asp Gly Gly Glu Glu Ala Ser Ser Pro Cys
65 70 75 80
Val Tyr Cys Arg Gln Lys Gly Leu
85

<210> 136
<211> 16

<212> PRT
<213> Homo sapiens

<400> 136
Val Phe Trp Phe Trp Gly Phe Cys Phe Val Cys Val Leu Phe Gly Leu
1 5 10 15

<210> 137
<211> 118
<212> PRT
<213> Homo sapiens

<400> 137
Glu Gln Asp Pro His Ala Ala Gln Pro Cys Leu Thr Arg Gly Trp Pro
1 5 10 15

Gln Lys Arg Val Gly Glu Ala Gly Gln Gln Gly Leu Ala Glu Ile Ile
20 25 30

Cys Arg Ala Gln Glu Ala Gly Glu Arg Arg Gln Phe Gln Gly Pro Phe
35 40 45

Val Arg Gln Val Pro Gly Ala Gln Pro Gly Arg Gln Glu Gly Leu Ser
50 55 60

Pro Ser Pro Arg Gln Glu Gly Ser Gln Ala Glu Ala Pro Pro Ser Gly
65 70 75 80

Thr Pro Gln Pro Thr Pro Ala Ala Leu Gly Pro Arg Leu Ile Lys His
85 90 95

Pro Pro His Gly Arg Gln Leu Tyr Leu Val Asp Arg Lys Ser Ala Ser
100 105 110

Pro Ile Tyr Asp Gly Thr
115

<210> 138
<211> 155
<212> PRT
<213> Homo sapiens

<400> 138
Thr Gly Ala Gln Glu Arg Thr Ser Val Arg Leu Thr Ala Arg Cys Cys
1 5 10 15

Thr Glu Asn Pro Gln Pro Glu Pro Leu Gly Pro Ala Gln Ala Arg Pro
20 25 30

Glu Lys Glu Gly Ala Gly Gly Arg Pro Ala Trp Gly Ser Arg Glu Ala
35 40 45

His Gly Met Glu Ala Gly Glu Pro Gly Gly Leu Gly Gln Pro Trp Asp
50 55 60

Gly Ser Trp Ile Glu Glu Ser Arg Gly Val Met Arg Val Pro Ser Gly
65 70 75 80

Leu Gly Ser Leu Leu Leu Val Ser Asp Pro Pro Phe Ser Ser Gln

85

90

95

Ala Leu Gly Ala Pro Gly Ser Glu Asp Ser Trp Glu Ser Ser Leu Arg
100 105 110

Gln Val Gln Gly Gln Ser Ser Asp Pro Gly Pro Gly Leu Leu Trp Val
115 120 125

Pro Met Asn Ser Ala Ser Gly Ser Glu Gln Phe Pro Ala Pro Leu Pro
130 135 140

Glu Pro Ser Val Leu Trp Asn Pro Trp Ala Gly
145 150 155