

Data Structures and Algorithms Design DSECLZG519

BITS Pilani

Plani | Dubai | Goa | Hyderabad

Parthasarathy

Contact Session #5 DSECLZG519 – Heaps & Heap Sort

Agenda for CS #5

- 1) Recap of CS#4
- 2) Introduction to Heap
 - What is Heap?
 - Types of Heap
 - Heapification
 - Build a Heap
 - Insertion into a Heap
 - Removal from a Heap
 - Exercises
- 3) Heap Sort
- 4) Q&A

innov

Tree Traversal: In-order

In-order

- o Traverse the left sub-tree of R in in-order
- o Process the root R
- Traverse the right sub-tree of R in in-order
 a.k.a left-node-right (LNR)

In-order (LNR) traversal yields:

G, H, F, I, E, A, B, D, C

Tree Traversal: Pre-order

Preorder

- Process the root R
- o Traverse the left sub-tree of R in preorder
- o Traverse the right sub-tree of R in preorder
- a.k.a node-left-right (NLR)

Preorder (NLR) traversal yields: A, H, G, I, F, E, B, C, D

ar ar

lead

Tree Traversal: Post-Order

Post-order

- Traverse the left sub-tree of R in post-order
- o Traverse the right sub-tree of R in post-order
- Process the root R
- a.k.a left-right-node (LRN)

Postorder (LRN) traversal yields: G, F, E, I, H, D, C, B,A

Application of Binary Trees

- Data Base indexing
- In video games
- Path finding algorithms in AI applications
- Huffman Coding
- Heaps
- o Syntax tree.
- 0
- 0 ..

Heap

- Heap is a special tree-based data structure, that satisfies the following special heap properties:
 - Shape Property
 - Heap Property

innovate achieve lead

Shape Property

Heap data structure is always a complete binary tree, which means all levels of the tree are fully filled till h-1 and at level h (last level), the nodes are filled from left to right.

Complete Binary tree

innovate achieve lead

Heap Property

- All nodes are either [greater than or equal to] or [less than or equal to] each of its children.
- ➤ If the parent nodes are greater than their children, then such a heap is called: **Max-Heap.** So, The root of any subtree holds the **greatest** value in the sub-tree
- ➤ If the parent nodes are smaller than their children, then such a heap is called: **Min-Heap.** So, the root of any sub-tree holds the **least** value in that sub-tree.

Examples of min-heap and max-heap

Heap Representation

- ➤ Since, a heap is always a complete binary tree, can we represent heap as array easily and effectively? YES
- > Similar to array implementation of binary trees
- > Root is at index 1
- \triangleright For any node at index i
 - The left child is at index 2i
 - The right child is at index 2i + 1
 - \circ Parent is at floor(i/2)

innovate achieve lead

Heapification (Max-Heapify)

- ➤ Before discussing the method for building heap of an arbitrary complete binary tree, we discuss a simpler problem.
- Let us consider a binary tree in which left and right subtrees of the root satisfy the heap property but not the root. See the following fig:

- Now the Question is how to transform the above tree into a Heap?
- Heapification !! Commonly referred as Max-Heapify()

Sequence Depicting the Heapification process

innovat

achiev

lead

Algorithm: Max-Heapify(B, s)

```
Algorithm 1: Max-Heapify Pseudocode
 Data: B: input array; s: an index of the node
 Result: Heap tree that obeys max-heap property
 Procedure Max-Heapify (B, s)
     left = 2s;
     right = 2s + 1;
     if left \leq B.length and B[left] > B[s] then
        largest = left;
     else
     | largest = s;
     end
     if right \leq B.length and B/right > B/largest then
        largest = right;
     end
     if largest \neq s then
        swap(B/s], B[largest]);
        Max-Heapify(B, largest);
     end
 end
```

The time complexity of max-Heapify is $O(\log n)$

*Since the complete binary tree is perfectly balanced, shifting up a single node takes O(log n) time.

Build Heap

- ➤ Heap building can be done efficiently with **bottom up fashion**.
- ➤ Given an arbitrary complete binary tree, we can assume each leaf is a heap
- > Start building the heap from the *parents of these leaves* i.e., Max-Heapify subtrees rooted at the parents.
- The Heapify process continues till we reach the root of the tree.

```
Algorithm 2: Building a Max-Heap Pseudocode

Data: B: input array

Result: Heap tree

Procedure Max-Heap-Building(B)

| B.heapsize = B.length;
| for k = B.length/2 down to 1 do
| Max-Heapify(B, k);
| end
| end
```

All leaf nodes are from $\lfloor n/2 \rfloor + 1$ to n All non-leaf nodes are from 1 to $\lfloor n/2 \rfloor$

16

innovate achieve lead

Build Heap Analysis

We are calling MAX_HEAPIFY() on n/2 nodes (as leaf's are already a heap).

Since we call MAX_HEAPIFY O(n) times and MAX_HEAPIFY takes $O(\log n)$, the overall complexity is $O(n \log n)$.

But his is not tight! We can also prove that building a heap is not $O(n\log n)$ but just O(n).

There is a beautiful proof about this in CLRS using progression. Please refer the same and start a discussion if required!

Insertion into a Heap

Inserting an element *e* in the heap has

- Three steps
 - \triangleright Find the insertion point z
 - So that we maintain complete binary tree property
 - \triangleright Store e at insertion point z
 - Check if the heap follows heap-order property
 - Restore the heap-order property by *Up-heap bubbling*

Example:

► Insert the element 1 into the min-heap

Insertion into a Heap

Insertion into a Heap

innovate achieve lead

Insertion into a Heap

- \triangleright After the insertion of a new element e, the heap-order property may be violated.
- ➤ Up-heap bubbling restores the heap-order property
 - Compare and swap e along an upward path from the insertion point
 - Up-heap bubbling terminates when the element *e* reaches
 - the root
 - a node where the heap order property is satisfied
- Since the heap has a complete binary tree structure, its height = log n (where n is no of elements). In the worst case (element inserted at the bottom has to be swapped at every level from bottom to top up to the root node to maintain the heap property), 1 swap is needed on every level. Therefore, the maximum no of times this swap is performed is log n. Hence, Insertion in a heap takes O(log n) time.

Three steps

- > Remove the element at the root node from the heap
- > Fill the root node with the element from the last node
 - maintain Complete binary tree property
- > Check if the heap follows the heap-order property
 - Restore the heap-order property by *down-heap bubbling*

Example: Perform a delete operation on the given min-heap

- After replacing the root with the element from the last node *e*, the heap-order property may be violated
- > Down-heap bubbling restores the heap-order property
 - Compare and swap e along a downward path from the root node
 - Choose the eligible (min/max) child of *e* and swap it with *e*
 - Down-heap terminates when the element e reaches
 - A leaf
 - A node where the heap order property is satisfied
- \triangleright Here again, in worst case, we may have to perform down-heap bubbling till the node reaches the leaf. Complexity is $O(\log n)$

Exercise 1

Min-Heap

- ➤ Illustrate the result of inserting the elements 35, 33, 42, 10, 14, 19 and 27 one at a time, into an initially empty binary min-heap in that order. Draw the resulting min-heap after each insertion.
- ➤ Perform 2 delete operation for the min-heap constructed in the earlier example.

Max Heap

- ➤ Illustrate the result of inserting the elements 35, 33, 42, 10, 14, 19 and 27 one at a time, into an initially empty binary max-heap in that order. Draw the resulting max-heap after each insertion.
- ➤ Perform 2 delete operation for the max-heap constructed in the earlier example.

Consider a binary max-heap implemented using an array. Which one of the following array represents a binary max-heap?

Draw the heap structure and find out the right answer/s

innovate achieve lead

Heap-Sort Algorithm

In-Place: A sorting algorithm is said to be "in-place" if it moves the items within the array itself and, thus, requires only a small O(1) amount of extra storage.

- ➤ Heap sort is one of the best sorting methods being in-place and with no quadratic worst-case scenarios.
- Heap sort is divided into two basic parts :
 - o Creating a heap of the unsorted list
 - Then a sorted array is created by repeatedly removing the largest/smallest element form the heap and inserting it into the array
 - Heap is reconstructed after each removal

Why study Heapsort?

- ➤ It is a well-known, traditional sorting algorithm you will be expected to know!!
- Heapsort is always O(n log n)
- ➤ Heapsort is a *really cool* algorithm!

- > Given an array of n element, first we build the heap ..
- The largest element is at the root, but its position in sorted array should be at last. So swap the root with the last.
- ➤ We have placed the highest element in its correct position we left with an array of n-1 elements. Repeat the same of these remaining n-1 element to place the next largest elements in its correct position.
- Repeat the above step till an elements are placed in their correct positions.
- ➤ For increasing (ascending) order → Create a Max-Heap
- ➤ For a decreasing (descending) order → Create a Min-Heap

Illustrate heap sort for the given array S = [4, 7, 2, 1, 3]. Sort S in increasing order. First phase: Build max-heap

laad

Heap Sort Example

	S[1]	S[2]	S[3]	S[4]	S[5]		
Initial	4	7	2	1	3		
i=1	4	7	2	1	3		
i =2	7	4	2	1	3		
i =3	7	4	2	1	3		
i =4	7	4	2	1	3		
i =5	7	4	2	1	3		
	Represents heap						
	Represents array elements not in heap						

Phase 1: Heap Creation is completed!

Heap S = [7, 4, 2, 1, 3]

Second phase: Remove elements from heap and add them to the sorted array

34

	S[1]	S[2]	S[3]	S[4]	S[5]		
Initial	7	4	2	1	3		
i=1	4	3	2	1	7		
i =2	3	1	2	4	7		
i =3	2	1	3	4	7		
i =4	1	2	3	4	7		
i =5	1	2	3	4	7		
	Represents heap						
	Sorted array						

Phase 2: Heap Deletion is completed! And result is sorted elements!!

Pseudocode for Heap Sort

Heapsort(A)

- 1. Build-Max-Heap(A)
- 2. for $i \leftarrow length[A]$ downto 2
- 3. **do** exchange $A[1] \leftrightarrow A[i]$
- 4. $heap\text{-size}[A] \leftarrow heap\text{-size}[A]\text{-}1$
- 5. Max-Heapify(A,1)

The time complexity of the heap sort algorithm is in ?

Phase 1 – Building the heap takes O(n)

Phase 2 - Remove the roots till we are left with only 1 element (log n)

Overall Complexity: O (n log n)

Exercise 3

• Given set of elements: 16,14,10,8,7,9,3,2,4,1

Exercise 1:

• Implement Heap Sort by showing each step and the resultant must be in increasing order. Hint: Create max-heap!

Exercise 2:

• Implement Heap Sort by showing each step and the resultant must be in decreasing order. Hint: Create min-heap!

Find K'th smallest element in an array using Heap.

Input:

arr =
$$[7, 4, 6, 3, 9, 1]$$

k = 3

Output:

k'th smallest element in the array is 4

Procedure

- 1. Construct a min-heap of size 'N'
- 2. Pop first K-1 elements from it
- 3. Now K'th smallest element will reside at the root of the min-heap.

See you in the next class to explore Graphs!

Thank You for your time & attention!

Contact: parthasarathypd@wilp.bits-pilani.ac.in

Slides are Licensed Under: CC BY-NC-SA 4.0

