1. Bo invested \$15000, part at 9¼ % simple interest and the remaining part at 11½ % simple
interest. After one year the total interest earned was \$1623.75. How many dollars were investe
at 9.25%?

- a) 4400
- b) 4500
- c) 4600
- d) 4700
- e) None of these

2. Burger Barn sells 3 drinks for every 2 burgers. Drinks are \$.70 and burgers are \$1.30. If Burger Barn wants to take in as close to \$200 as possible, how many drinks must be sold? Assume the number of drinks and burgers sold must be positive integers.

- a) 120
- b) 123
- c) 126
- d) 129
- e) None of these

3. Find the ratio of 10 kilometers to 4 miles. Assume 1 inch = 2.54 cm. Round the final answer to the nearest 0.0001.

- a) 1.5531
- b) 1.5532
- c) 1.5533
- d) 1.5534
- e) None of these

4. You mix 30% acid solution with 50% acid solution to make 100 pints of 43% acid solution. How many pints of the 30% acid solution are needed?

- a) 35
- b) 45
- c) 55
- d) 65
- e) None of these

5. Find y-x whenever $\frac{2}{x} + \frac{3}{y} = 4$ and $\frac{5}{x} + \frac{6}{y} = 5$.

- b) $\frac{13}{30}$ c) $\frac{17}{30}$ d) $\frac{19}{30}$
- e) None of these

6. One plane leaves the airport at noon heading east at x mph. Another plane leaves the same airport heading west 30 minutes later at y mph. At 3 p.m., the two planes are 1800 miles apart. At 5 p.m., the two planes are 3100 miles apart. Find x - y.

- a) 48
- b) 49
- c) 50
- d) 51
- e) None of these

7. All of the	outside surface	es of a cylindrical tank	are to be painted.	The tank is 10 me	ters tall
and the circul	lar bases have	a diameter of 15 meters	s. How many qua	rts of paint are nee	ded if one
quart will cov	ver 10 m ² . Rou	and answers to the near	est 0.001.		

- a) 82.468
- b) 82.467
- c) 82.466
- d) 82.465
- e) None of these

8. Each exterior angle of a regular 50-gon is x° . Each exterior angle of a regular 40-gon is y° . A regular 30-gon has d distinct diagonals. Find 10x+10y+d.

- a) 567
- b) 568
- c) 569
- d) 570
- e) None of these

9. Given: $f(x) = \frac{x+8}{x}$, $g(x) = x^3 + 5$, and $g(f(-5)) = \frac{a}{b}$, where a and b are relatively prime positive integers. Find a - b.

- a) 471
- b) 472
- c) 473
- d) 474
- e) None of these

10. A crew of 80 men can do a job in 24 days. If the contractor increases the work force by ½ and productivity is unchanged, how many days will be saved by adding the additional workers?

- a) 7.8
- b) 8.0
- c) 8.2
- d) 8.4
- e) None of these

11. There are red, white, and blue marbles in a jar. The ratio of white to blue is 4:5. The ratio of red to white is 2:3. If the red and blue total 322, how many marbles are in the jar?

- a) 490
- b) 488
- c) 486
- d) 484
- e) None of these

12. Find the volume of the sphere inscribed in a regular tetrahedron with total surface area $36\sqrt{3}$. Round to the nearest 0.0001 cubic unit.

- a) 7.6952
- b) 7.6953
- c) 7.6954
- d) 7.6955
- e) None of these

- 13. If A men can do B jobs in C days, how long should it take D fewer men to do E jobs. Assume A>D.
- a) $AB^{-1}CE(A-D)^{-1}$ days b) $ABCE^{-1}(A-D)^{-1}$ days
- c) $A^{-1}BC^{-1}E(A-D)^{-1}$ days d) $AB^{-1}C^{-1}E(A-D)^{-1}$ days e) None of these
- 14. Find 12(m+b) where y = mx + b is the equation of the line tangent to $(x-3)^2 + (y+8)^2 = 169$ at the point (8, -20).
- a) -273 b) -274 c) -275
- d) -276
 - e) None of these
- 15. The hyperbola $16x^2 = 36y^2 + 1$ has asymptote $y = \pm mx$ and foci $\left(\pm \sqrt{\frac{a}{b}}, 0\right)$ where a and b are relatively prime positive integers and m > 0. Find b - 10a + 12m.
- a) 22
- b) 23
- c) 24
- d) 25
- e) None of these
- 16. $\cos\left(Arc\tan\frac{15}{8} Arc\sin\frac{7}{25}\right) = \frac{a}{b}$, where a and b are relatively prime positive integers. Find b - a.
- a) 127
- b) 128
- c) 129
- d) 130
- e) None of these
- 17. The product of the 3 solutions of $2\sin x = 1 + \csc x$ on $0 \le x < 2\pi$ is $\frac{a}{b}\pi^3$ where a and b are relatively prime positive integers. Find a + b.
- a) 146
- b) 147
- c) 148
- d) 149 e) None of these
- 18. All of the points on the graph of y = 2x + 3 are rotated 90° counter clockwise with the origin as the center of each rotation. y = mx + b is the equation of the new graph formed. Find m + b.
- a) -5
- b) -4
- c) -3
- d) -2
- e) None of these

- 19. Find the area enclosed by $r = \cos 3\theta$.
- a) $.2\pi$
- b) $.25\pi$
- c) $.3\pi$
- d) $.\overline{3}\pi$ e) None of these
- 20. Find the length of the arc of $4x = y^2$ between the y-axis and the line containing the latus rectum. Round to the nearest .0001.
- a) 4.5912
- b) 4.5913
- c) 4.5914
- d) 4.5915
- e) None of these

- 21. $\frac{d}{dx} \int_{x^2}^{17} \sqrt{\cos \theta} \ d\theta$

- a) $2x\sqrt{\cos x}$ b) $2x\sqrt{\cos x^2}$ c) $-2x\sqrt{\cos x}$ d) $-2x\sqrt{\cos x^2}$ e) None of these

- 22. Find the area of the ellipse $\begin{cases} x = 5\cos\theta \\ y = 6\sin\theta \end{cases}$
- a) 26π
- b) 27π
- c) 28π
- d) 29π
- e) None of these

- 23. Find the average value of $\cos x$ for $\frac{\pi}{3} \le x \le \frac{\pi}{2}$.
- a) $\frac{1}{\pi}$

c) $3\pi^{-1}(2-\sqrt{3})$

d) $\frac{2}{3\pi}$

- e) None of these
- 24. Find the area between the curve $y = (x^2 1)(x^2 + 1)^{-1}$ and its horizontal asymptote.
- a) π
- b) 1.5π
- c) 2π
- d) 2.5π
- e) None of these

Solutions

- 1. B
- 2. D
- 3. D
- 4. A
- 5. D
- 6. C
- 7. B
- 8. A
- 9. C
- 10. B
- 11. A
- 12. B
- 13. A
- 14. C
- 15. A
- 16. B
- 17. D
- 18. D
- 19. B
- 20. A
- 21. D
- 22. E
- 23. C
- 24. C