CANDIDATES' DECLARATION

This is to certify that the work which is being presented in the B.Tech. Project Report entitled "SCHEDULING OF FLEXIBLE MANUFACTURING SYSTEM USING GENETIC ALGORITHM", in partial fulfilment of the requirements for the award of the Bachelor of Technology in Computer Science & Engineering and submitted to the Department of Computer Science & Engineering of IMS Engineering College, Ghaziabad, UP is an authentic record of our own work carried out during a period from July, 2013 to April, 2014 under the supervision of

Mr VIJAI SINGH (Asst. Professor), Computer Science and Engineering Department.

The matter presented in this project report has not been submitted by me for the award of any other degree elsewhere.

NAVNIKAA RAJAN(1014310068) SRISHTI JAISWAL(1014310104) TANYA KALSI(1014310111)

CERTIFICATE

This is to certify that the B.Tech. Project Report entitled "Scheduling of flexible manufacturing system using genetic algorithm" submitted by Navnikaa Rajan (1014310068), Srishti Jaiswal (1014310104), Tanya Kalsi (1014310111) to the Department of Computer Science & Engineering of IMS Engineering College, Ghaziabad (UP), is a bonafide work carried out under my supervision and guidance and is worthy of consideration for the award of the degree of Bachelor of Technology in Computer Science & Engineering.

	Signature of Supervisor(s)
Date:	Mr.Vijai Singh
	Asst.Professor

Signature of HOD Signature of Director

Prof. (Dr.) Pankaj Agarwal Prof. (Dr.) S. P. Pandey

ACKNOWLEDGEMENT

We would like to express our deepest gratitude to Prof. (Dr) S.P. Pandey (Director) and Dr Pankaj Agarwal (H.O.D, Dept. of Computer Science) IMS Engineering College, Ghaziabad for providing us an opportunity to work in the institute of great esteem. We would like to extend our thanks to Mr Vijai Singh (Asst. Professor, IMS Engineering College, Ghaziabad) for his kind supervision. He has been extremely supportive and understanding during the entire project. We are heartily grateful to him.

We would also like to thank Mr Govind Prasad Gupta(Asst. Professor IMS Engineering College, Ghaziabad) and Ms Shivani Saluja(Asst. Professor IMS Engineering College, Ghaziabad), for their support and directions that they have provided us during the entire project period. We thank them for their willingness to help and troubleshoot most of our problems faced during this project.

Finally, yet importantly. We would like to express our heartfelt thanks to our beloved parents for their blessings, our friends/classmates for their wishes and encouragement for the successful completion of this project.

ABSTRACT

A flexible manufacturing system is an integrated, computer-controlled environment allows the system to react on occurrence of changes, whether predicted or unpredicted. Scheduling machines of varying capabilities in such an environment has always been a difficult task. This work reviews the various approaches applied to the scheduling problem in an FMS, the latter half of the project is an attempt to find a possible solution to the scheduling problem . Various genetic algorithm based approaches considering varied objectives and constraints have been studied and analysed to result in a comparative study. For achieving the desired performance in an FMS it is required that a good scheduling system, taking into account the system conditions should generate an optimal schedule at the right time. Genetic algorithm is capable of finding near to optimal solution in a short time although it doesn't guarantee to find an optimal solution. The project also applies genetic algorithm to generate a machine sequence to determine the order in which the various jobs would be assigned to a number of machines. The tool developed takes the input in tabulated form. Many iterations of genetic algorithm are applied in order to get a schedule with the minimum make span. The project also incorporates breakdown in the job shop environment. If a breakdown occurs then the existing schedule is discarded the system is rescheduled. The aim is to generate optimal schedule suitable for a medium sized system, with constant setup and delay times considering that breakdown occurs in the job floor.

TABLE OF CONTENTS

	PAGE NO.
CANDIDATES' DECLARATION	i
CERTIFICATE	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
1. INTRODUCTION	1
1.1 Project Overview	1
1.2 Objective	13
2. LITERATURE REVIEW	15
3. SYSTEM ANALYSIS	20
3.1 Platform Used	20
3.2 Feasibiity Study	20
3.2.1.1 Technical Feasibility	20
3.2.1.2 Economical Feasibility	21
3.2.1.3 Operational Feasibility	21
4. SYSTEM SPECIFICATION	22
4.1 Software Requirements	22
4.2 Hardware Requirements	22
5. SOFTWARE DESCRIPTION	23
5.1 Front End	23
5.1.1 Features	23
5.2 Backend	23
5.2.1 Backend Features	23
6. PROJECT DESCRIPTION	24
6.1 Problem Description	24
6.2 Overview of the Project	24
6.3 Module Description	26
6.3.1 Modules	26
6.4 Input Design	29

	6.5 O	utput Design	33
7.	SYST	EM IMPLEMENTATION	37
8.	RESU	LTS AND CONCLUSION	45
9.	CONC	CLUSION AND FUTURE SCOPE of STUDY	47
10	. APPE	NDIX	49
	10.1	Screenshots	49
	10.2	Research Publications	61
R	eference	es	

LIST OF TABLES

Table 1.2: Types of flexibilities	4
Table 2: The comparative analysis of the work studied	15
Table 8.1: Result comparison of previous work done	46

LIST OF FIGURES

Fig 1.1: Types Of flexibilities	2
Fig1.2: Application characteristics of FMS	3
Fig1.3: Steps of genetic algorithm	6
Fig1.4: Objectives	14
Fig6.3.1: Modular Architecture	26
Fig6.4.1: Input File	29
Fig6.4.2: Selection of the input file	30
Fig6.4.3: Input GUI	32
Fig6.5.1: Optimal Gantt Chart	33
Fig6.5.2: Load distribution graph	34
Fig6.5.3: Load distribution graph	35
Fig6.5.4: Machine sequence	36
Fig7.1: Front End	38
Fig7.2: Browsing the input file	39
Fig7.3: Input file	40
Fig7.4: Selecting values for various parameters	41
Fig7.5: Optimal Gantt Chart	42
Fig7.6: Load Distribution graph	43
Fig7.7: Machine sequence	44
Fig10.1: GUI of the project with Without Breakdown button clicked	49
Fig10.2: Input spreadsheet file	50
Fig10.3: Optimal Gantt chart	50
Fig10.4: Machine utilization graph	51
Fig10.5: Load distribution graph	52
Fig10.7: Input spreadsheet file with no setup and delay time	53
Fig10.8: GUI of the project where 'With Breakdown' button is pressed	54
Fig10.9: On clicking on browse button	55
Fig10.10: Select the parameter values for crossover and mutation rate	56

Fig10.11: Figure depicting that randomly breakdown occurred	
Fig10.12: Optimal Gantt chart	57
Fig10.13: Machine utilisation graph	58
Fig10.14: Load distribution graph	59
Fig10.15: Machine sequence	60