

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková	
	organizace, Praskova 399/8, Opava, 746 01	
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5	
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129	
Název projektu	SŠPU Opava – učebna IT	
Typ šablony klíčové aktivity:	V/2 Inovace a zkvalitnění výuky směřující k rozvoji odborných	
	kompetencí žáků středních škol (32 vzdělávacích materiálů)	
Název sady vzdělávacích materiálů:	KOM III	
Popis sady vzdělávacích materiálů:	Konstrukční měření III, 3. ročník.	
Sada číslo:	J-05	
Pořadové číslo vzdělávacího materiálu:	20	
Označení vzdělávacího materiálu:	VY_52_INOVACE_J-05-20	
(pro záznam v třídní knize)		
Název vzdělávacího materiálu:	Měření úchylek tvaru a polohy	
Zhotoveno ve školním roce:	2011/2012	
Jméno zhotovitele:	Ing. Karel Procházka	

Měření úchylek tvaru a polohy

Úchylky tvaru a polohy udávají maximální povolenou úchylku prvku součásti (v milimetrech) od ideálního geometrického prvku – u úchylek tvaru, nebo od jiného prvku – u úchylek polohy.

Příklad značení na výkrese:

Úchylky tvaru

Probereme si tyto úchylky a jejich značky:

	přímost
	rovinnost
0	kruhovitost
♦	válcovitost

Úchylka přímosti

Je to největší naměřená kolmá vzdálenost povrchu součásti od obalové přímky.

Přímost měříme porovnáním součásti s nějakou přesnou přímkou. Tuto přímku můžeme vytvořit různě, například:

- nožovým pravítkem průsvitem proti světlu;
- napnutou strunou a měřením její vzdálenosti od povrchu součásti;
- laserovým paprskem a měřením jeho vzdálenosti od povrchu součásti;
- měřícím můstkem například s číselníkovým úchylkoměrem.

Úchylka rovinnosti

Je to největší naměřená kolmá vzdálenost povrchu součásti od obalové roviny.

Rovinnost měříme porovnáním povrchu součásti s nějakou přesnou rovinou. Používá se například:

- měřením přímosti nožovým pravítkem v několika směrech;
- otisk na barvu přesně vyrobená příměrná deska se natře barvou a přiloží se na měřenou plochu. Barva se otiskne na vrcholky plochy, čím je otisků více, tím je rovinnost lepší;
- interferenčně pomocí planparalelního skla používá se u malých ploch. Čím více vidím interferenčních proužků, tím je rovinnost horší;
- laserem na ploše jsou umístěna zrcátka, která vlivem křivosti plochy odklání laserový paprsek.

Úchylka kruhovitosti

Je to největší naměřená kolmá vzdálenost povrchu součásti od obalové kružnice.

Měříme číselníkovým úchylkoměrem při otáčení součásti v prizmatické podložce nebo tříosým souřadnicovým měřidlem. Také existují speciální měřidla – kruhoměry s otočným vřetenem nebo otočným stolem.

Úchylka válcovitosti

Je to největší naměřená kolmá vzdálenost povrchu součásti od obalového válce.

Měříme například jako kruhovitost několika příčných řezů a přímost několika površek válce.

Úchylky polohy

Často používané úchylky a jejich značky:

//	rovnoběžnost
(a)	souosost

7 obvodové házení

7 čelní házení

Tyto úchylky se měří běžnými měřidly za použití přípravků, trnů nebo kalibrů. Házení měříme číselníkovým úchylkoměrem při otáčení součásti upnuté mezi hroty.

Seznam použité literatury

- MARTINÁK, M.: Kontrola a měření. Praha: SNTL, 1989. ISBN 80-03-00103-X.
- ŠULC, J.: *Technologická a strojnická měření*. Praha: SNTL, 1982. ISBN 04-214-82.