

La Técnica k-NN

Máster en Ciencia de Datos

Rodrigo García Manzanas (rodrigo.manzanas@unican.es)

Departamento de Matemática Aplicada y Ciencias de la Computación

Universidad de Cantabria

Contents

- k-NN for classification
- k-NN for regression
- The curse of dimensionality
- k-NN in the climate science

Aprendizaje supervisado

Clasificación (Cla) Regresión/ predicción (Reg)

- Regresión logística (Cla)
- Regresión lineal (Reg)
- k-NN (Cla, Reg)
- Árboles de decisión (Cla, Reg)
- Métodos de ensembles: Random forests (Cla,Reg); AdaBoost (Cla); GBoost (Cla, Reg)
- Métodos de kernels (Cla, Reg)
- Máquinas de vector soporte (Cla, Reg)
- Redes neuronales (Cla, Reg)
- Redes probabilísticas (Cla, Reg)
- etc.

Aprendizaje no supervisado

Asociación (Aso) Clustering (Clu)

Reducción de la dimensionalidad (RDim)

- Reglas de asociación (Aso): Algoritmo Apriori, Algoritmo Eclat
- Clustering jerárquico (Clu): Dendograma
- Clustering no jerárquico (Clu): k-means
- Reducción de la dimensionalidad lineal (RDim): PCA, LDA
- Reducción de la dimensionalidad no lineal (RDim): MDS, MMF, Isomap, LLE, SNE
- Redes probabilísticas (Rdim)
- etc.

Minería de Datos

Estadística

Aprendizaje Automático

Aprendizaje Automático II

In **classification** problems...

Aim:

To **classify** a **discrete** target variable, based on some similarity measure in the predictors' space.

In **classification** problems...

Initial Data New example to class A Class B Class B X-Axis

Aim:

To classify a discrete target variable, based on some similarity measure in the predictors' space.

In **classification** problems...

Aim:

To classify a discrete target variable, based on some similarity measure in the predictors' space.

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	1	5.1	3.5	1.4	0.2	setosa
	2	4.9	3.0	1.4	0.2	setosa
	3	4.7	3.2	1.3	0.2	setosa
•						
	55	6.5	2.8	4.6	1.5	versicolor
	56	5.7	2.8	4.5	1.3	versicolor
	57	6.3	3.3	4.7	1.6	versicolor
	148	6.5	3.0	5.2	2.0	virginica
	149	6.2	3.4	5.4	2.3	virginica
	150	5.9	3.0	5.1	1.8	virginica

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width		Species
1	5.1	3.5	1.4	0.2	•	setosa
2	4.9	3.0	1.4	0.2	·	setosa
3	4.7	3.2	1.3	0.2	•	setosa
55	6.5	2.8	4.6	1.5		versicolor
56	5.7	2.8	4.5	1.3	•	versicolor
57	6.3	3.3	4.7	1.6		versicolor
148	6.5	3.0	5.2	2.0		virginica
149	6.2	3.4	5.4	2.3		virginica
150	5.9	3.0	5.1	1.8		virginica
151	5.4	2.7	4.6	1.4		?
					l	

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width		Species
1	5.1	3.5	1.4	0.2		setosa
2	4.9	3.0	1.4	0.2		setosa
3	4.7	3.2	1.3	0.2		setosa
					,	
55	6.5	2.8	4.6	1.5		versicolor
56	5.7	2.8	4.5	1.3		versicolor
57	6.3	3.3	4.7	1.6		versicolor
					,	
148	6.5	3.0	5.2	2.0		virginica
149	6.2	3.4	5.4	2.3		virginica
150	5.9	3.0	5.1	1.8		virginica
151	5.4	2.7	4.6	1.4		?
STE	1: Computin	g distances	_	_		

New instance to be classified

$$d_{151,1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$$

$$d_{151,2}$$
=3.47

$$d_{151,3} = 3.62$$

$$d_{151,55} = 1.11$$

$$d_{151,56} = 0.35$$

$$d_{151,57}$$
=1.10

$$d_{151,148} = 1.42$$

$$d_{151,149} = 1.61$$

$$d_{151,150}$$
=0.87

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
55	6.5	2.8	4.6	1.5	versicolor
56	5.7	2.8	4.5	1.3	versicolor
57	6.3	3.3	4.7	1.6	versicolor
148	6.5	3.0	5.2	2.0	virginica
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica
151	5.4	2.7	4.6	1.4	?

New instance to be classified

STEP 1: Computing distances

$$\begin{array}{lll} d_{151,1} = \sqrt{(5.4-5.1)^2 + (2.7-3.5)^2 + (4.6-1.4)^2 + (1.4-0.2)^2} = 3.52 \\ d_{151,2} = 3.47 & d_{151,3} = 3.62 & \text{STEP 2:} \\ d_{151,3} = 3.62 & \text{Ordering} \\ d_{151,55} = 1.11 & \text{distances} \\ d_{151,55} = 0.35 & d_{151,55} = 1.10 \\ d_{151,57} = 1.10 & d_{151,148} = 1.42 \\ d_{151,148} = 1.42 & d_{151,149} = 1.61 \\ d_{151,149} = 1.61 & d_{151,149} = 3.52 \\ d_{151,150} = 0.87 & d_{151,3} = 3.62 \\ \end{array}$$

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
55	6.5	2.8	4.6	1.5	versicolor
56	5.7	2.8	4.5	1.3	versicolor
57	6.3	3.3	4.7	1.6	versicolor
148	6.5	3.0	5.2	2.0	virginica
149	6.2	3.4	5.4	2.3	virginica
150	5.9	3.0	5.1	1.8	virginica
151	5.4	2.7	4.6	1.4	?

New instance to be classified

STEP 1: Computing distances

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species					
1	5.1	3.5	1.4	0.2	setosa					
2	4.9	3.0	1.4	0.2	setosa					
3	4.7	3.2	1.3	0.2	setosa					
55	6.5	2.8	4.6	1.5	versicolor					
56	5.7	2.8	4.5	1.3	versicolor					
57	6.3	3.3	4.7	1.6	versicolor					
••	•									
14	.8 6.5	3.0	5.2	2.0	virginica					
14	.9 6.2	3.4	5.4	2.3	virginica					
15	5.9	3.0	5.1	1.8	virginica					
15	1 5.4	2.7	4.6	1.4	versicolor					
STE	STEP 1: Computing distances									
$d_{\scriptscriptstyle 1}$	$d_{151,1} = \sqrt{(5.4 - 5.1)^2 + (2.7 - 3.5)^2 + (4.6 - 1.4)^2 + (1.4 - 0.2)^2} = 3.52$									
	=3.47 =3.62	STEP 2:	$egin{array}{c} d_{_{151,56}} \ d_{_{151,150}} \end{array}$	=0.35 $k = 0.87$	151:					

 $\begin{array}{c} d_{151,1} = \sqrt{(5.4-5.1)} + (2.7-3.5) + (4.6-1.4) + (1.4-0.2) = 3.52 \\ d_{151,2} = 3.47 \\ d_{151,3} = 3.62 \\ \vdots \\ d_{151,55} = 1.11 \\ d_{151,56} = 0.35 \\ d_{151,55} = 1.10 \\ d_{151,57} = 1.10 \\ d_{151,148} = 1.42 \\ \end{array}$

 $d_{151,1}$ =3.52

 $d_{151,3}$ =3.62

 $d_{151,149} = 1.61$

 $d_{151,150} = 0.87$

		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
	1	5.1	3.5	1.4	0.2	setosa
	2	4.9	3.0	1.4	0.2	setosa
	3	4.7	3.2	1.3	0.2	setosa
	•••					
	55	6.5	2.8	4.6	1.5	versicolor
	56	5.7	2.8	4.5	1.3	versicolor
	57	6.3	3.3	4.7	1.6	versicolor
	148	6.5	3.0	5.2	2.0	virginica
	149	6.2	3.4	5.4	2.3	virginica
	150	5.9	3.0	5.1	1.8	virginica
	151	5.4	2.7	4.6	1.4	versicolor
5	STEP	1: Computin	g distances			
	$d_{_{151,}}$	$_{1} = \sqrt{(5.4 - 5.3)}$	$(1)^2 + (2.7 - 3.5)$	$(4.6-1.4)^2$	(1.4 - 0.3)	$(2)^2 = 3.52$
	$d_{_{151,3}} \atop d_{_{151,5}}$	=3.47 =3.62 ₅ =1.11	STEP 2: Ordering distance	$egin{array}{ccccc} d_{_{151,150}} \ d_{_{151,57}} \end{array}$	$=0.35$ $_{0}=0.87$ $=1.10$ $=1.11$	151: versicolor
$d_{151,56} = 0.35$ $d_{151,57} = 1.10$		₇ =1.10		$d_{_{151,148}} \ d_{_{151,148}}$	₃ =1.42 ST ₉ =1.61 cla	EP 3: NN-based assification
	$d_{_{151,1}}$	$_{48} = 1.42$ $_{49} = 1.61$ $_{50} = 0.87$		$d_{_{151,2}}$ = $d_{_{151,1}}$ = $d_{_{151,3}}$ =	=3.52	
_				- ,-		

Pros:

- Easy to understand
- Non-parametric: No assumption is made on the underlying data distribution
- Versatile: Classification and regression problems
- Good performance (benchmark)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	Р
1	5.1	3.5	1.4	0.2	setosa	•
2	4.9	3.0	1.4	0.2	setosa	•
3	4.7	3.2	1.3	0.2	setosa	
55	6.5	2.8	4.6	1.5	versicolor	•
56	5.7	2.8	4.5	1.3	versicolor	
57	6.3	3.3	4.7	1.6	versicolor	•
148	6.5	3.0	5.2	2.0	virginica	•
149	6.2	3.4	5.4	2.3	virginica	
150	5.9	3.0	5.1	1.8	virginica	•
151	5.4	2.7	4.6	1.4	versicolor	•
	P 1: Computin	~				•
$d_{\scriptscriptstyle 151}$	$_{1,1} = \sqrt{(5.4 - 5.3)}$	$(1)^2 + (2.7 - 3.5)$	$(4.6 - 1.4)^2$	$(-1.4 - 0.1)^2$	$(2)^2 = 3.52$	
:	_{.2} =3.47	STEP 2:	$d_{_{151,56}}$	=0.35	3 151:	
$d_{_{151}}$	_{.3} =3.62	Orderin	$u_{151,150}$	0.07	versicolor	
101	_{,55} =1.11	distance	es $d_{151,57}$	=1.10 =1.11		
	$_{.56}$ = 0.35		,	=1.42 ST	TEP 3: NN-base	d
$d_{151,57} = 1.10$			_	- 1.01	assification	
101	$_{,148} = 1.42$		d _{151,2} =			
	$_{.149} = 1.61$ $_{.150} = 0.87$		$d_{_{151,1}}=$	=3.52 -3.62		
151	,150 — 0.07		d _{151,3} =	-3.02		

Pros:

- Easy to understand
- Non-parametric: No assumption is made on the underlying data distribution
- Versatile: Classification and regression problems
- Good performance (benchmark)

Cons:

- Non-generative: Computationally expensive
- Sensitive to scale of the data
- Sensitive to outliers
- Performance can be severely degraded in high dimensional problems

					0.0 100		
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species		
1	5.1	3.5	1.4	0.2	setosa		
2	4.9	3.0	1.4	0.2	setosa		
3	4.7	3.2	1.3	0.2	setosa		
				•			
55	6.5	2.8	4.6	1.5	versicolor		
56	5.7	2.8	4.5	1.3	versicolor		
57	6.3	3.3	4.7	1.6	versicolor		
				•			
148	6.5	3.0	5.2	2.0	virginica		
149	6.2	3.4	5.4	2.3	virginica		
150	5.9	3.0	5.1	1.8	virginica		
151	5.4	2.7	4.6	1.4	versicolor		
STEP 1: Computing distances $d_{151,1} = \sqrt{(5.4-5.1)^2 + (2.7-3.5)^2 + (4.6-1.4)^2 + (1.4-0.2)^2} = 3.52$ $d_{151,2} = 3.47$ $d_{151,3} = 3.62$ $0rdering$ $d_{151,55} = 1.11$ $d_{151,56} = 0.35$ $d_{151,55} = 1.10$ $d_{151,57} = 1.10$ $d_{151,148} = 1.42$ $d_{151,149} = 1.61$ $STEP 2:$ $d_{151,150} = 0.87$ $d_{151,150} = 1.10$ $d_{151,148} = 1.42$ $d_{151,149} = 1.61$ $STEP 3: NN-based classification$ $d_{151,149} = 3.52$							
,-	$_{50}^{49} = 0.87$		$d_{151,3} = d_{151,3}$				

Pros:

- Easy to understand
- Non-parametric: No assumption is made on the underlying data distribution
- Versatile: Classification and regression problems
- Good performance (benchmark)

Cons:

- Non-generative: Computationally expensive
- Sensitive to scale of the data
- Sensitive to outliers
- Performance can be severely degraded in high dimensional problems

Applications:

- Economic sciences
- Political sciences
- Genetics
- Image recognition
- Climate

Configuring the Method: Key Aspects

Distance metric

Different distance metrics can be used, depending on the application.

Number of neighbors (k)

This is the unique model parameter. Must be carefully chosen.

Inference criterion

Majority vote

Random

• etc.

There is a large number of available distance metrics: see Prasath et al. 2019 and this interesting post for details

There is a large number of available distance metrics: see Prasath et al. 2019 and this interesting post for details

Geometric nature Topological nature

There is a large number of available distance metrics: see Prasath et al. 2019 and this interesting post for details

Minkowsky-based geometric distances

$$D_{Minkowsky}(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^p\right)^{1/p}$$

$$D_{Manhattan}(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

$$D_{Euclidean}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$D_{Chebychev}(x,y) = \max_{i=1}^{n} |x_i - y_i|$$

There is a large number of available distance metrics: see Prasath et al. 2019 and this interesting post for details

$$D_{Minkowsky}(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^p\right)^{1/p}$$

$$D_{Manhattan}(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

Most commonly used

$$D_{Euclidean}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

$$D_{Chebychev}(x,y) = \max_{i=1}^{n} |x_i - y_i|$$

Which model would you prefer?

Classification borders obtained for different values of *k*

Which model would you prefer?

Resulting model Value of *k*

Overfitted Too large k

Underfitted Optimum k

Optimum Too small k

Which model would you prefer?

Resulting model

Value of *k*

Overfitted

Too large k

Underfitted

Optimum k

Optimum

Which model would you prefer?

Resulting model

Overfitted

Underfitted

Value of *k*

Too large k

Optimum k

Which model would you prefer?

Value of *k*

Too large k

Optimum k

Which model would you prefer?

Value of *k*

Too large k

Which model would you prefer?

Which model would you prefer?

Cross-validation is needed to find the optimal *k*!

complexity ~ k

In classification problems, the choice of *k* can lead to **ties**

k = 1

Nearest point is red, so x_{test} classified as red

k = 3

Nearest points are {red, blue, blue} so x_{test} classified as blue

k = 4

Nearest points are {red, red, blue, blue} so classification of x_{test} is not properly defined

In classification problems, the choice of *k* can lead to **ties**

Nearest points are {red, red, blue, blue} so classification of x_{test} is not properly defined

Odd values for k are recommended

In classification problems, the choice of *k* can lead to **ties**

Nearest points are {red, red, blue, blue} so classification of x_{test} is not properly defined

Odd values for k are recommended

Multinomial

classification?

In classification problems, the choice of *k* can lead to **ties**

Nearest points are {red, red, blue, blue} so classification of x_{test} is

not properly defined

Odd values for k are recommended

Nearest point is red, so x_{test} classified as red

Nearest points are {red, red, blue, blue, green}. The model cannot choose between blue and red because both appear twice

Examples in R

Based on the **iris** dataset, **classify** the following **new instance**: (sepal I., sepal w., petal I., petal w.) = (5.4, 2.7, 4.6, 1.4)

```
## new instance
d.new = c(5.4, 2.7, 4.6, 1.4)
## euclidean distance between the new instance and all the
others
eucli = rep(***)
for (i in 1:nrow(iris)) {
 eucli[i] = ***
## ordering distances
ind.sort = sort(***)
## classifying based on the nearest
neighbor
pred.k1 = ***
## classifying based on the 20 nearest
neighbors
pred.k20 = ***
summary(pred.k20)
```

Examples in R

Divide **iris** into train and test (75% and 25% of the total dataset, respectively) and find the **test error** for the nearest neighbor method (**k=1**). Use the function **knn** from package **class**

```
## train/test partition
n = nrow(iris)
indtrain = sample(1:n, round(0.75*n))
indtest = setdiff(1:n, indtrain)
iris.train = iris[indtrain,]
iris.test = iris[indtest,]
```

```
## classifying using the nearest neighbor method
library(class)
pred = knn(***)
```

```
## validation (accuracy)
table(***)

acc.class()
```

```
## evaluation function
acc.class = function(x, y) {
  stopifnot(length(x) == length(y))
  return(sum(diag(table(x, y))) / length(x))
}
```

Examples in R

For the **iris** dataset, use the package **caret** (method knn) to **find the optimal k**. To do so, check **how the validation error varies with increasing k** (for values from **1 to 50**) under a **2-fold cross-validation** scheme. Then, check whether or not the optimal model is overfitted.

```
## predicting in test with the optimal k pred = predict(knn.fit, iris.test) acc = acc.class(pred, iris.test$Species) 0.9392613
```


Would you say your model is overfitted/underfitted?

In **regression** problems...

Aim:

To **predict** a **continuous** target variable, based on some **similarity measure in the predictors' space**.

	Wind (m/s)	Pressure (hPa)	Humidity (%)
1	4.1	1018	68
2	7.9	1020	64
3	1.6	1015	72

Temperature (°C)
21
23
18

14

16

17

• • •

498	12.3	1008	83	
499	15.1	1010	80	
500	4.3	1014	71	

501	7.8	1013	74	?
			7 -	, and the second second

New instance to be predicted

In **regression** problems...

Aim:

To **predict** a **continuous** target variable, based on some **similarity measure in the predictors' space**.

What do we need?

As for classification:

- A distance metric (e.g. Euclidean)
- A value for *k*
- An inference criterion (e.g. the mean, a particular percentile, a random value, etc.)

	Wind (m/s)	Pressure (hPa)	Humidity (%)
1	4.1	1018	68
2	7.9	1020	64
3	1.6	1015	72

Temperature (°C)
21
23
18

14

16

• • •

	83	1008	12.3	498
	80	1010	15.1	499
	71	1014	4.3	500

501	7.8	1013	74	?

New instance to be predicted

In **regression** problems...

Aim:

To predict a continuous target variable,		4.1	1018	
based on some similarity measure in the	2	7.9	1020	
predictors' space.	3	1.6	1015	
•				

Temperature (°C) 21 23 18

•••

Wind

(m/s)

498	12.3	1008	83
499	15.1	1010	80
500	4.3	1014	71

Pressure

(hPa)

17

• A value for *k*

What do we need?

As for classification:

•	An inference criterion (e.g. the mean, a
	particular percentile, a random value, etc.)

A distance metric (e.g. Euclidean)

501	7.8	1013	74	?

Humidity

(%)

68

64

72

To take into account:

• Predictor variables which are larger in magnitude and/or variability may have more weight in the search of neighbors. Thus, **standardizing the predictor data is highly recommended** to make the distance metric more meaningful $Z = \frac{X - \mu}{\sigma}$

Wind

(m/s)

In **regression** problems...

To predict a continuous target variable,		4.1	1018	68
based on some similarity measure in the	2	7.9	1020	64
predictors' space.	3	1.6	1015	72
•				

Temperature (°C)
21
23
18

What do we need?

As for classification:

- A distance metric (e.g. Euclidean)
- A value for *k*
- An inference criterion (e.g. the mean, a particular percentile, a random value, etc.)

498	12.3	1008	83	14
499	15.1	1010	80	16
500	4.3	1014	71	17

Pressure Humidity

(%)

(hPa)

501	7.8	1013	74	?

To take into account:

 Predictor variables which are larger in magnitude and/or variability may have more weight in the search of neighbors. Thus, standardizing the predictor data is highly recommended to make the distance metric more meaningful

New instance to be predicted

Note: In the preceding examples this was not important because all predictor variables in the iris dataset are similar in terms of magnitude and variability

In **regression** problems...

Aim:

To **predict** a **continuous** target variable, based on some **similarity measure in the predictors' space.**

	Wind (m/s)	Pressure (hPa)	Humidity (%)
1	4.1	1018	68
2	7.9	1020	64
3	1.6	1015	72

Temperature (°C)
21
23
18

What do we need?

As for classification:

- A distance metric (e.g. Euclidean)
- A value for *k*
- An inference criterion (e.g. the mean, a particular percentile, a random value, etc.)

498	12.3	1008	83	14
499	15.1	1010	80	16
500	4.3	1014	71	17

501	7.8	1013	74	?

To take into account:

• Predictor variables which are larger in magnitude and/or variability may have more weight in the search of neighbors. Thus, **standardizing the predictor data is highly recommended** to make the distance metric more meaningful $Z = \frac{X - \mu}{\sigma}$

• Likewise, outlier values in the predictors' space may bias the search for neighbors. Thus, if needed, the **removal of outliers is recommended**

For regression, we will work with the dataset **carseats** (included in the package **ISLR**). Our target variable will be **Sales**. First, we will remove all the categorical variables from the dataset, retaining only the continuous ones. We will use the function **knn.reg** from the package **FNN**. As you did for the case of classification, divide the total dataset in **75% for train and 25% for test** and see **how the test error** (**in terms of the RMSE**) **varies with k**

For regression, we will work with the dataset **carseats** (included in the package **ISLR**). Our target variable will be **Sales**. First, we will remove all the categorical variables from the dataset, retaining only the continuous ones. We will use the function **knn.reg** from the package **FNN**. As you did for the case of classification, divide the total dataset in **75% for train and 25% for test** and see **how the test error** (**in terms of the RMSE**) **varies with k**

```
## prepare the data
library(ISLR)
attach(Carseats)
dataset = Carseats[, -c(7,10,11)]

## evaluation function
rmse <- function(x, y) {
    sqrt(mean((x - y)^2))
}

## train/test division
n = nrow(dataset)
indtrain = sample(1:n, round(0.75*n));
dataset.train = dataset[indtrain, ]
indtest = setdiff(1:n, indtrain);
dataset.test = dataset[indtest, ]</pre>
```

```
## test error as a function of k, from k=1 to k=50
library(FNN)
kmax = 50
test.err = rep(***)
for (k in 1:kmax) {
   pred = knn.reg(***)
   test.err[k] = rmse(***)
}
plot(1:kmax, test.err, type = "o", pch = 19,
xlab = "k", ylab = "RMSE"); grid()
```


Continue with the same example. Let's now assess the **effect of standardizing the predictor data**. Use the function **scale**

predictor ranges
boxplot(dataset[,-1])

Continue with the same example. Let's now assess the **effect of standardizing the**

predictor data. Use the function **scale**

```
## predictor ranges
boxplot(dataset[,-1])
```

```
## test error as a function of k (for standardized predictors)
test.err2 = rep(***)
for (k in 1:kmax) {
    ## prediction
    pred = knn.reg(***)
    ## validation
    test.err2[k] = rmse(***)
}
```


Be careful: Standardization must be properly done!

Do the **same exercise**, but this time using **caret**, under a **2-fold cross-validation scheme**. Recall to standardize your predictor data to obtain meaningful results

predicting in test with the optimal k
pred = predict(***)
evaluation of test error
rmse(***)

Would you say your model is overfitted/underfitted?

David Scott, Multivariate Density Estimation, Wiley, 1992

Dimension	2	
Rel. vol.	0.79	

David Scott, Multivariate Density Estimation, Wiley, 1992

Dimension	2	3	
Rel. vol.	0.79	0.53	

David Scott, Multivariate Density Estimation, Wiley, 1992

Dimension	2	3	4	
Rel. vol.	0.79	0.53	0.31	

David Scott, Multivariate Density Estimation, Wiley, 1992

Dimension	2	3	4	5	
Rel. vol.	0.79	0.53	0.31	0.16	

David Scott, Multivariate Density Estimation, Wiley, 1992

Dimension	2	3	4	5	6	
Rel. vol.	0.79	0.53	0.31	0.16	0.08	

David Scott, Multivariate Density Estimation, Wiley, 1992

Volume of the sphere relative to that of the cube?

Dimension	2	3	4	5	6	7
Rel. vol.	0.79	0.53	0.31	0.16	80.0	0.04

Any thought?

David Scott, Multivariate Density Estimation, Wiley, 1992

Volume of the sphere relative to that of the cube?

Dimension	2	3	4	5	6	7
Rel. vol.	0.79	0.53	0.31	0.16	0.08	0.04

As dimensionality increases, a larger percentage of the training data resides in the corners of the predictors' space. Therefore, *k*-NN is unhelpful in high dimensional problems because distances are less meaningful.

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar meteorological conditions

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar meteorological conditions

Problem: Y' (projection) for 26 Mar 2046?

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar

meteorological conditions

Problem: Y' (projection) for 26 Mar 2046?

1) Take X' for 26 March 2046: X'26-03-2046

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar meteorological conditions **Problem: Y'** (projection) for 26 Mar 2046?

Y: historical observations X: historical simulations (low-resolution, large-scale of the local-scale, target variable circulation) (e.g. surface temperature) time 1 Jan 1981 (20-30)years) 2 Jan 1981

3 Jan 1981

4 Jan 1981

etc.

1) Take X' for 26 March 2046: X'26-03-2046

2) Search the nearest neighbor/s to $X'_{26-03-2046}$ within X. Let's suppose k=1

 $X_{03-01-1981}$

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar **Problem: Y'** (projection) for 26 Mar 2046?

meteorological conditions

Y: historical observations X: historical simulations (low-resolution, large-scale of the local-scale, target variable circulation) (e.g. surface temperature) time 1 Jan 1981 (20-30)years) 2 Jan 1981 3 Jan 1981 4 Jan 1981 etc.

1) Take X' for 26 March 2046: X'26-03-2046

2) Search the nearest neighbor/s to $X'_{26-03-2046}$ within X. Let's suppose k=1

 $X_{03-01-1981}$

Can you imagine what the projection for 26 Mar 2046 will be?

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar **Problem: Y'** (projection) for 26 Mar 2046?

meteorological conditions

time

years)

Y: historical observations X: historical simulations (low-resolution, large-scale of the local-scale, target variable circulation) (e.g. surface temperature) 1 Jan 1981 (20-30)2 Jan 1981 3 Jan 1981 4 Jan 1981

etc.

1) Take X' for 26 March 2046: X'26-03-2046

2) Search the nearest neighbor/s to $X'_{26-03-2046}$ within X. Let's suppose k=1

 $X_{03-01-1981}$

3) The projection made, $Y'_{26-03-2046}$, is the recorded observation, Y₀₃₋₀₁₋₁₉₈₁

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar

meteorological conditions

Problem: Y' (projection) for 26 Mar 2046?

X: historical simulations Y: historical observations (low-resolution, large-scale of the local-scale, target variable circulation) (e.g. surface temperature) time 1 Jan 1981 (20-30)years) 2 Jan 1981 3 Jan 1981 4 Jan 1981 etc.

1) Take X' for 26 March 2046: X'26-03-2046

2) Search the nearest neighbor/s to $X'_{26-03-2046}$ within X. Let's suppose k=1

 $X_{03-01-1981}$ 3) The projection made, $Y'_{26-03-2046}$, is the recorded observation, Y₀₃₋₀₁₋₁₉₈₁

In the climate science, two important factors must be taken into account for the application of the k-NN technique:

- Large differences exist, in magnitude and variability, across predictors: **Scaling** must be applied
- The dimensionality of the predictors' space can be very large: **Dimensionality reduction** techniques (e.g. PCA) are commonly used

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar meteorological conditions

Problem: Y' (projection) for 26 Mar 2046?

Is there any **limitation** you may think of in a **climate change** context?

The analog technique (Lorenz, 1969): Similar atmospheric patterns lead to similar meteorological conditions

Problem: Y' (projection) for 26 Mar 2046?

Y: historical observations of the local-scale, target variable (e.g. surface temperature)

time (20-30 years)

Y: historical simulations (low-resolution, large-scale circulation)

X: historical simulations (low-resolution, large-scale circulation)

1) Take X' for 26 March 2046: X'26-03-2046

2) Search the nearest neighbor/s to $X'_{26-03-2046}$ within X. Let's suppose k=1

 $X_{03-01-1981}$ 3) The projection made, $Y'_{26-03-2046}$, is the recorded observation, $Y_{03-01-1981}$

k-NN has **no ability for extrapolation** beyond the learning space!