Théorème de Brouwer

Lemme 1. (Milnor)

Soient $K \subset \mathbb{R}^n$ un compact, $U \subset \mathbb{R}^n$ un voisinage ouvert de K et $\Omega \subset \mathbb{R}^n$ un ouvert relativement compact tel que $K \subset \Omega \subset \overline{\Omega} \subset U$. Soit encore $v : U \to \mathbb{R}^n$ de classe C^1 . Pour $t \in \mathbb{R}$, posons

$$v_t: U \to \mathbb{R}^n$$

 $x \to x + tv(x)$

Alors,

- 1. Il existe $\alpha > 0$ tel que pour $|t| < \alpha$, on ait $\det(dv_t(x)) > 0$, pour tout $x \in \Omega$.
- 2. Il existe $\gamma > 0$ tel que $vt : \Omega \to v_t(\Omega)$ soit un C^1 -difféomorphisme.

Démonstration. 1. Pour tous t, x on a $dv_t(x) = id_{\mathbb{R}^n} + tdv(x)$. Sur le compact $\kappa := [-1, 1] \times \overline{\Omega}$, on définit la fonction continue $(t, x) \mapsto \det(dv_t(x))$, qui en vertu du théorème de Heine, est uniformément continue sur κ et pour $\varepsilon := \frac{1}{2}$ choisissons $\eta > 0$ tel que

$$\forall (t, x), (t', x') \in \kappa, \ \|(t - t', x - x')\| < \eta \ \Rightarrow \ |\det(dv_t(x)) - \det(dv_{t'}(x'))| < \frac{1}{2},$$

d'où

$$\forall t \in [-1, 1], \ \forall x \in \overline{\Omega}, \ |t| = \|(t, 0)\| < \eta \ \Rightarrow \ |\det(dv_t(x)) - 1| < \frac{1}{2} \ \Rightarrow \ \det(dv_t(x)) > 0,$$
 et $\alpha = \eta$ convient.

2. D'après le théorème des accroissements finis, toute application de classe \mathcal{C}^1 est localement lipschitzienne et donc lipschitzienne sur tout compact. On en déduit que v est lipschitzienne sur $\overline{\Omega}$, de rapport k, disons. Soient $x, y \in \overline{\Omega}$ et supposons que $v_t(x) = v_t(y)$. On a alors

$$0 = ||v_t(y) - v_t(x)|| = ||y - x + t(v(y) - v(x))||$$

$$\geq |||y - x|| - |t|||v(y) - v(x)||| \geq |(1 - |t|k)||y - x|||.$$

ainsi, si $|t| < \frac{1}{k}$, v_t est injective sur $\overline{\Omega}$, donc sur Ω . Si $\gamma := \min\left(\frac{1}{k}, \alpha\right)$, alors v_t est injective sur Ω et de différentielle inversible et donc $v_t : \Omega \to v_t(\Omega)$ est un \mathcal{C}^1 -difféomorphisme d'après la version globale du théorème d'inversion locale, ce qui conclut.

<u>Théorème</u> 1. (Point fixe de Brouwer)

Toute application continue $f: \mathbb{B}^n \to \mathbb{B}^n$ admet au moins un point fixe.

Démonstration. Tout d'abord, on peut supposer que $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$ est telle que $f(\mathbb{B}^n) \subset \mathring{\mathbb{B}^n}$. En effet, si $f \in \mathcal{C}^0(\mathbb{B}^n, \mathbb{B}^n)$, par le théorème de Stone-Weierstrass, il existe une suite (g_k) de fonctions polynômiales sur \mathbb{R}^n telle que

$$0 = \lim_{k \to \infty} ||f - g_k||_{\infty, \mathbb{B}^n}.$$

Posons alors

$$f_k := \frac{1 - \frac{1}{k}}{\max(1, ||g_k||_{\infty})} g_k.$$

On a $f_k \in C^1(\mathbb{R}^n, \mathbb{R}^n)$ et $f_k(\mathbb{B}^n) \subset (\mathbb{B}^n)$ ainsi que $\lim_{k\to\infty} \|f-f_k\|_{\infty} = 0$. Supposons alors que $x_k \in \mathbb{B}^n$ soit un point fixe de f_k pour tout $k \geq 0$. Par le théorème de Bolzano-Weierstrass, la suite (x_k) admet une valeur d'adhérence $x \in \mathbb{B}^n$ et considérons une sous-suite (x_k) qui converge vers x. Alors, on a f(x) = x. En effet, pour $\varepsilon > 0$, on a

$$||f(x) - x|| \le ||f(x) - f(x_{k_n})|| + ||f(x_{k_n}) - f_{k_n}(x_{k_n})|| + ||x_{k_n} - x||$$

$$\le ||f(x) - f(x_{k_n})|| + ||f - f_{k_n}||_{\infty} + ||x_{k_n} - x||,$$

et en considérant $N_0 > 0$ assez grand, on a pour $n \ge N_0$, $||f - f_{k_n}||_{\infty} < \frac{\varepsilon}{3}$, $||f(x) - f(x_{k_n})|| < \frac{\varepsilon}{3}$ et $||x_{k_n} - x|| < \frac{\varepsilon}{3}$ et donc $||f(x) - x|| < \varepsilon$. Comme $\varepsilon > 0$ est arbitraire, on en déduit que f(x) = x.

Soit donc $f \in \mathcal{C}^1(\mathbb{R}^n, \mathbb{R}^n)$ tel que $f(\mathbb{B}^n) \subset \mathring{\mathbb{B}}^n$. Si f n'admet pas de point fixe, alors il existe un voisinage ouvert U de \mathbb{B}^n ainsi que $r \in \mathcal{C}^1(U, \mathbb{S}^{n-1})$ tel que $r_{|\mathbb{S}^{n-1}} = id_{\mathbb{S}^{n-1}}$. En effet, posons $U := f^{-1}(\mathring{\mathbb{B}}^n)$. Alors U est ouvert et $\mathbb{B}^n \subset U$. Si $x \in U$, on a $f(x) \neq x$, donc la demi-droite affine $\Delta_x := f(x) + \mathbb{R}_+(x - f(x))$ coupe \mathbb{S}^{n-1} en un unique point f(x) + t(x)(x - f(x)). Si, pour un $t \geq 0$, on a $f(x) + t(x - f(x)) \in \Delta_x \cap \mathbb{S}^{n-1}$, alors

$$||f(x) + t(x - f(x))||_2^2 = 1 \iff ||f(x)||^2 - 1 + 2t \langle f(x), x - f(x) \rangle + t^2 ||x - f(x)||^2 = 0$$

ce qui est équivalent à

$$t = t(x) = \frac{\langle f(x), f(x) - x \rangle + \sqrt{\langle f(x), f(x) - x \rangle^2 + (1 - ||f(x)||^2)||f(x) - x||^2}}{||f(x) - x||^2}.$$

On voit alors que $x \mapsto t(x)$ est de classe \mathcal{C}^1 et si ||x|| = 1, alors t(x) = 1 et en définissant

$$r: x \mapsto f(x) + t(x)(x - f(x)),$$

on a bien r(x) = x pour ||x|| = 1 et $r: U \to \mathbb{S}^{n-1}$ est de classe \mathcal{C}^1 .

Nous allons montrer qu'il n'existe pas de telle application $r \in \mathcal{C}^1(U, \mathbb{S}^{n-1})$. En effet, si tel était le cas, définissons

$$\begin{array}{cccc} v & : & U & \to & \mathbb{R}^n \\ & x & \mapsto & r(x) - x \end{array}$$

et soit, pour $t \in \mathbb{R}$,

$$v_t: U \rightarrow \mathbb{R}^n$$

 $x \mapsto x + tv(x) = (1 - t)x + tr(x)$

On peut choisir un ouvert relativement compact $\Omega \subset \mathbb{R}^n$ tel que $\mathbb{B}^n \subset \Omega \subset \overline{\Omega} \subset U$. Soit $\delta > 0$, donné par le Lemme de Milnor, tel que pour $|t| < \delta$, $v_t : \Omega \to v_t(\Omega)$ soit un \mathcal{C}^1 -difféomorphisme et tel que $\det(dv_t(x)) > 0$, pour tout $x \in \Omega$. Soit $t \in \mathbb{R}$ tel que $|t| < \delta$. On a $v_t(\mathbb{B}^n) = \mathbb{B}^n$. En effet, comme $v_{t|\Omega}$ est ouverte et que $\mathring{\mathbb{B}}^n$ est ouvert, $v_t(\mathring{\mathbb{B}}^n)$ est ouvert dans $\mathring{\mathbb{B}}^n$. Ensuite, si (y_k) est une suite dans $v_t(\mathring{\mathbb{B}}^n)$ telle que $y = \lim_{k \to \infty} y_k \in \mathring{\mathbb{B}}^n$, choisissons $x_k \in \mathring{\mathbb{B}}^n$ tels que $v_t(x_k) = y_k$. Par le théorème de Bolzano-Weierstrass, on peut choisir $x \in \mathbb{B}^n$ une valeur d'adhérence de (x_k) , ainsi qu'une sous-suite (x_{k_n}) qui converge vers x. On a

$$v_t(x) = \lim_{n \to \infty} v_t(x_{k_n}) = \lim_{n \to \infty} y_{k_n} = y$$

et si ||x|| = 1, alors r(x) = x, d'où $y = v_t(x) = x \notin \mathring{\mathbb{B}}^n$, ce qui est exclus. Ainsi, $y = v_t(x) \in \mathring{\mathbb{B}}^n$ et donc $v_t(\mathring{\mathbb{B}}^n)$ est fermé. On en tire que $v_t(\mathring{\mathbb{B}}^n)$ est un ouvert-fermé non vide de $\mathring{\mathbb{B}}^n$ et par connexité de ce dernier ensemble, on a $v_t(\mathring{\mathbb{B}}^n) = \mathring{\mathbb{B}}^n$. Comme, de plus, v_t est continue, on en

déduit que $v_t(\mathbb{B}^n) = \mathbb{B}^n$.

Définissons

$$\phi : \mathbb{R} \to \mathbb{R}$$

$$t \mapsto \lambda_n(\mathbb{B}^n) - \int_{\mathbb{B}^n} \det(dv_t(x)) dx$$

Comme l'application $t \mapsto \det(dv_t(x)) = \det(id_{\mathbb{R}^n} + tdv(x))$ est polynômiale, il en est de même de $t \mapsto \int_{\mathbb{B}^n} \det(dv_t(x)) dx$ et il en est donc de même de ϕ . Si $|t| < \delta$, on a par changement de variable,

$$\int_{\mathbb{B}^n} \det(dv_t(x)) dx = \int_{v_t(\mathbb{B}^n)} ds = \int_{\mathbb{B}^n} ds \stackrel{\text{def}}{=} \lambda_n(\mathbb{B}^n),$$

d'où $\phi(t) = 0$. Ainsi, ϕ est identiquement nulle sur l'ouvert $] - \delta, \delta[$ et comme ϕ est un polynôme, elle est identiquement nulle sur \mathbb{R} . En particulier, pour t = 1, on obtient

$$0 = \phi(1) = \lambda_n(\mathbb{B}^n) - \int_{\mathbb{B}^n} \det(dv_1(x)) dx = \lambda_n(\mathbb{B}^n) - \int_{\mathbb{B}^n} \det(dr(x)) dx.$$

Si, pour un $x \in \mathbb{B}^n$, on avait $\det(dr(x)) \neq 0$, par le théorème d'inversion locale, il existerait un voisinage ouvert V de x dans U tel que $r: V \to r(V)$ soit un \mathcal{C}^1 -difféomorphisme et r(V) serait alors un ouvert de \mathbb{R}^n contenu dans \mathbb{S}^{n-1} , qui est d'intérieur vide et ceci est absurde. On en tire que $\det(dr(x)) = 0$ pour tout $x \in \mathbb{B}^n$ et donc

$$\lambda_n(\mathbb{B}^n) = \int_{\mathbb{B}^n} \det(dr(x)) dx = 0.$$

Cette contradiction finale achève la preuve.