(c)
$$\lim_{x\to 0} \frac{e^{\alpha x} - e^{bx}}{x}$$
Sugestão. $\lim_{x\to 0} \frac{e^{\alpha x} - e^{bx}}{x} = \lim_{x\to 0} \frac{(e^{\alpha x} - 1) - (e^{bx} - 1)}{x}$

(d)
$$\lim_{x\to 0} \frac{e^{ax}-1}{e^{bx}-1}$$

(c) Sga
$$f(x)=R$$
 sende $a\in R$ uma constante fixa
Sabemos que $f'(x)=aR^{ax}$, logo $f'(0)=aR^{a}=0$.

Per entre lade,
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{e^{\alpha x} - 1}{x}$$
Loge, $\lim_{x \to 0} \frac{e^{x} - 1}{x} = \alpha$ (1)

wands o mesmo argumento temos que

$$\lim_{x\to 0} \frac{b^{x}-1}{x} = b$$
 (2)

Daste modo, para calcularmos o limite de ex-ex usaremos as iognaldades acima (1) e (2)

somando e subtraindo por 1, ou seja,

$$\lim_{x \to 0} \frac{e^{x} - e^{x}}{x} = \lim_{x \to 0} \frac{e^{x} - 1 + 1 - e^{x}}{x}$$

$$= \lim_{x \to 0} \left[\frac{e^{x} - 1}{x} - \frac{e^{x} - 1}{x} \right]$$

$$= \lim_{x \to 0} \frac{e^{x} - 1}{x} - \lim_{x \to 0} \frac{e^{x} - 1}{x} = \alpha - b$$

Finalmente,

$$\lim_{x \to 0} \frac{ax}{x} = a - b$$

(d) Do masmo modo mostramos que lum $\frac{e-1}{b^{2}-1} = \frac{a}{b}$

Pensem russo!!