

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 1

 Название:
 Синхронные одноступенчатые триггеры со статическим и динамическим управлением записью

 Дисциплина:
 Архитектура ЭВМ

Студент	ИУ7-46Б		А. Е. Богаченко
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			Т. Д. Крыгина
		(Подпись, дата)	(И.О. Фамилия)

Москва, 2020

Цель работы – исследование триггеров, получение их статических и динамических характеристик.

Асинхронный RS-триггер с инверсными входами

Асинхронный RS-триггер – это простейший триггер, который используется как запоминающая ячейка.

Табл. 1. Таблица переходов асинхронного RS-триггера

<u>S</u>	<u>R</u>	Q_{t-1}	Q_t	Пояснение
0	0	0	X	Запрещенная
0	0	1	X	операция
0	1	0	1	Установка 1
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	0	Хранение
1	1	1	1	

Синхронный RS-триггер в статическом режиме

Синхронный RS-триггер имеет два входа управления (R и S) и один вход синхронизации С. При C = 0 синхронный RS-триггер сохраняет предыдущее значение. При C = 1 – работает как асинхронный RS-триггер.

Табл. 2. Таблица переходов синхронного RS-триггера

Пояснение	Q_t	Q_{t-1}	R	S	С	
Хранение	Q_{t-1}	Q_{t-1}	А	А	0	
Хранение	0	0	0	0	1	
	1	1	0	0	1	
Установка 0	0	0	1	0	1	
	0	1	1	0	1	
Установка 1	1	0	0	1	1	
	1	1	0	1	1	
Запрещенная	X	0	1	1	1	
операция	X	1	1	1	1	

Синхронный D-триггер в статическом режиме

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

Табл. 3. Таблица переходов синхронного D-триггера

		, 1	1 1	1
С	D	Q_{t-1}	Q_t	Пояснение
0	0	0	0	Хранение
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	Установка 0
1	0	1	0	
1	1	0	1	Установка 1
1	1	1	1	

Синхронный D-триггер с динамическим управлением записью

Сигнал D в данном случае меняется только тогда, когда сигнал C меняется.

Синхронный DV-триггер с динамическим управлением записью

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. $Q_t = Q_{t-1}$. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

Синхронный Т-триггер

Т-триггер имеет один информационный вход T, называемый счетным входом. Асинхронный T-триггер переходит в противоположное состояние каждый раз при подаче на T-вход единичного сигнала. Таким образом T-триггер реализует счет по модулю 2: $Q_t = T_{t-1} \oplus Q_{t-1}$. Синхронный T-триггер имеет вход C и вход T. Синхронный T-триггер переключается в противоположное состояние сигналом C, если на счетном входе T действует сигнал логической 1.

Синхронный TV-триггер

Ответы на контрольные вопросы

1. Что называется триггером?

Триггер является запоминающим элементом с двумя устойчивыми состояниями, которые кодируются цифрами 0 и 1.

2. Какова структурная схема триггера?

Структурную схему триггера можно представить в виде запоминающей ячейки (ЗЯ) и схемы управления (СУ).

- 3. По каким основным признакам классифицируют триггеры?
- 1) По способу организации логических связей, т.е. по виду логического уравнения, характеризующего состояние входов и выходов триггера в момент времени tn до его срабатывания и в момент tn+1 после его срабатывания, различают триггеры:
 - * с раздельной установкой состояний "0" и "1" (RS-триггеры);
 - * со счетным входом (Т-триггеры);
 - * универсальные с раздельной установкой состояний "0" и "1" (ЈК- триггеры);
 - * с приемом информации по одному входу (D триггеры);
 - * универсальные с управляемым приемом информации по одному входу (DV триггеры);
 - * комбинированные (например, RST-, JKRS, DRS триггеры) и т.д.
- 2) По способу запаси информации различают триггеры:
 - * асинхронные (не синхронизируемые);
 - * синхронные (синхронизируемые), или тактируемые.
- 3) По способу синхронизации различают триггеры: синхронные со статическим управлением записью; синхронные с динамическим управлением записью.
- 4) По способу передачи информации с входов на выход различают триггеры о одноступенчатым и двухступенчатым запоминанием информации.
- 4. Каково функциональное назначение входов триггеров?

S-вход – вход для раздельной установки триггера в состояние "1" (Set – установка)

R-вход – вход для раздельной установки триггера в состояние "0" (Reset – сброс, очистка)

J-вход − вход для установки состояния "1" в универсальном JK-триггере (Jerk − внезапное включение)

K-вход – вход для установки состояния "0" в универсальном JK-триггере (Kill – внезапное отключение)

D-вход −информационный вход для установки триггера в состояния "1" или "0" (Data – данные, Delay – задержка)

V-вход – подготовительный управляющий вход для разрешения приема информации (Valve – клапан, вентиль)

С-вход - исполнительный управляющий (командный) вход для осуществления приема информации, вход синхронизации (Clock – источник синхросигналов)

5. Что такое асинхронный и синхронный триггеры?

Асинхронный RS -триггер - это простейший триггер, который используется как запоминающая вчейка

Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C.

6. Что такое таблица переходов?

Таблица переходов отражает зависимость выходного сигнала триггера в момент времени tn+1 от входных сигналов и от состояния триггера в предыдущий момент времени tn.

7. Как работает асинхронный RS-триггер?

при S=0 и R=I триггер устанавливается в состояние "0", а при S=1 и R=0 - в состояние "1"). Если = 0 и R=0, то в триггере сохраняется предыдущее внутреннее состояние).

При S=R=1 состояние триггера является неопределенным (после снятия входных сигналов S и R). Такая комбинация входных сигналов S=R=1 является недопустимой (запрещенной). Для нормальной работы триггера необходимо выполнение запрещающего условия SR= 0.

8. Как работает синхронный RS -триггер? Какова его таблица переходов? Как и все синхронные триггеры, синхронный RS - триггер при C = 0 сохраняет предыдущее внутреннее состояние, т.е. Qn+1 = Qn . Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C=1 синхронный триггер переключается как асинхронный (табл.2). Одновременная подача сигналов C=S=R= 1 запрешена. При S=R=0 триггер не изменяет своего состояния.

апрещена. При о-т-о тринтер не изменяет своего состояния.							
С	S	R	Q_{t-1}	Q_t	Пояснение		
0	A	A	Q_{t-1}	Q_{t-1}	Хранение		
1	0	0	0	0	Хранение		
1	0	0	1	1			
1	0	1	0	0	Установка 0		
1	0	1	1	0			
1	1	0	0	1	Установка 1		
1	1	0	1	1			
1	1	1	0	X	Запрещенная		
1	1	1	1	X	операция		

9. Что такое D-триггер?

Синхронный D -триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому D - триггер — элемент задержки (хранения) входных сигналов на один такт.

10. Объясните работу синхронного D-триггера.

Схему синхронного D -триггера можно получить из схемы синхронного RS — триггера, подавая сигнал D на вход S, а сигнал \overline{D} , т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR =01 при D=0 или SR =10 при D=1, что соответствует записи в триггер логического 0 или 1. Путем логических преобразований инвертор можно исключить и получить схему синхронного D —триггера. Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

11. Что такое DV –триггер?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

12. Объясните работу DV-триггера.

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn . При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn .

13. Что такое Т-триггер? Какова его таблица переходов?

Т-триггер имеет один информационный вход T, называемый счетным входом. Асинхронный T-триггер переходит в противоположное состояние каждый раз при подаче на T-вход единичного сигнала. Таким образом T-триггер реализует счет по модулю 2: $Q_t = T_{t-1} \oplus Q_{t-1}$. Синхронный T-триггер имеет вход C и вход T. Синхронный T-триггер переключается в противоположное состояние сигналом C, если на счетном входе T действует сигнал логической 1

- 14. Объясните работу схемы синхронного RS-триггера со статическим управлением. При C=0 триггеры переходят в режим хранения, запоминая последнее состояние
- 15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала.

16. Как работает схема синхронного D -триггера с динамическим управлением записью на основе трех RS -триггеров?

Триггер имеет асинхронные входы Sa и Ra начальной установки в состояния 1 и 0. Если схему D -триггера дополнить входом V, то получим структуру DV-триггера. Временные диаграммы D - триггера соответствуют временным диаграммам DV- триггера при V= 1

- 17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.
- 18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

$$Q_t = DV + \underline{V}Q_{t-1} = DVC + (\underline{V} + \underline{C})Q_{t-1}$$

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. $Q_t = Q_{t-1}$. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

- 19. Составьте временные диаграммы синхронного DV-триггера.
- 20. Объясните режимы работы D-триггера.

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.