Corresponding functions of SW in GSW

This table shows some function names in the GSW Oceanographic Toolbox of TEOS-10 and the corresponding function names in the SeaWater Matlab Library of EOS-80, http://www.cmar.csiro.au/datacentre/ext_docs/seawater.htm.

Variable	SeaWater & ESO-80	Gibbs-SeaWater (GSW) & TEOS-10
Absolute Salinity	ı	gsw_SA_from_SP(SP,p,long,lat)
Conservative Temperature	ı	gsw_CT_from_t(SA,t,p)
density (i.e. in situ density)	sw_dens(SP,t,p)	gsw_rho_CT(SA,CT,p), or gsw_rho(SA,t,p), or
		gsw_rho_CT25(SA,CT,p)
potential density	sw_pden(SP,t,p,pr)	gsw_rho_CT(SA,CT,pr), or
		gsw_rho_CT25(SA,CT,pr)
potential temperature	sw_ptmp(SP,t,p,pr)	gsw_pt_from_t(SA,t,p,pr)
σ_0 , using	sw_dens(SP, θ_0 ,0)	gsw_sigma0_CT(SA,CT)
$\theta_0 = \text{sw_ptmp}(\text{SP,t,p,0})$	– 1000 kg m ⁻³	
σ_2 , using	sw_dens(SP, θ_2 ,2000)	gsw_sigma2_CT(SA,CT)
θ_2 = sw_ptmp(SP,t,p,2000)	$-1000~{ m kg}~{ m m}^{-3}$	
σ_4 , using	sw_dens(SP, θ_4 ,4000)	gsw_sigma4_CT(SA,CT)
$\theta_4 = \text{sw_ptmp}(\text{SP,t,p,4000})$	– 1000 kg m ⁻³	
specific volume anomaly	sw_svan(SP,t,p)	gsw_specvol_anom_CT(SA,CT,p) or
		gsw_specvol_anom_CT25(SA,CT,p)
dynamic height anomaly	- sw_gpan(SP,t,p)	gsw_geo_strf_dyn_height(SA,CT,p,delta_p,interp_style)
geostrophic velocity	sw_gvel(ga,lat,long)	gsw_geostrophic_velocity(geo_str,long,lat,p)
N^2	sw_bfrq(SP, t, p, lat)	gsw_Nsquared_CT25(SA,CT,p,lat)
pressure from height	$sw_pres(-z,lat)$	gsw_p_from_z(z,lat)
(SW uses depth, not height)		
height from pressure	$z = -sw_dpth(p,lat)$	gsw_z_from_p(p,lat)
(SW outputs depth, not height)		
in situ temperature from pt	sw_temp(SP,pt,p,pr)	gsw_pt_from_t(SA,pt,pr,p)
sound speed	sw_svel(SP,t,p)	gsw_sound_speed(SA,t,p)
isobaric heat capacity	sw_cp(SP,t,p)	gsw_cp(SA,t,p)
adiabatic lapse rate*	sw_adtg(SP,t,p)	gsw_adiabatic_lapse_rate(SA,t,p)
SP from cndr, (PSS-78)	sw_salt(cndr,t,p)	gsw_SP_from_cndr(cndr,t,p)
cndr from SP, (PSS-78)	sw_cndr(SP,t,p)	gsw_cndr_from_SP(SP,t,p)
distance	sw_dist(lat,long,units)	gsw_distance(long,lat,p)
gravitational acceleration	sw_g(lat,z)	gsw_grav(lat,p)
Coriolis parameter	sw_f(lat)	gsw_f(lat)
testing of all functions	sw_test	gsw_check_functions
contents	Contents	gsw_contents

^{*} The SW and GSW functions output the adiabatic lapse rate in different units, being $K \left(dbar \right)^{-1}$ and $K Pa^{-1}$ respectively.