

Микропроцессорные устройства обработки сигналов

Лекция L17 «Операционная система»

http://vykhovanets.ru/course67/

Технология разработки

Разработка алгоритмов

Мультипроцессорная обработка

DSP/BIOS

DSP/BIOS (Digital Signal Processing Base Instrumentation Operation System) – операционная система реального времени, предоставляющая следующие сервисы:

- мультизадачный планировщик задач;
- аппаратурная абстракция устройств ввода-вывода данных;
- независимый от устройств обмен потоками данных в реальном времени;
- анализа поведения приложений и обмен данными с ними;
- статическая конфигурация устройств ввода-вывода и приоритетов задач.

Программные модули DSP/BIOS:

- редактор конфигурирования;
- модуль анализа реального времени;
- модуль аппаратурной абстракции;
- модуль ввода-вывода;
- модуль управления потоками;
- модуль синхронизации потоков.

Применение DSP/BIOS

Ядро DSP/BIOS

Разделение времени

Компоненты DSP/BIOS

IA - Instrumentation/Real-Time Analysis

LOG	Message Log manger
STS	Statistics accumulator manager
TRC	Trace manager
RTDX	Real-Time Data Exchange manager

TT - Thread Types

HWI	Hardware interrupt manager
SWI	Software interrupt manager
TSK	Multitasking manager
IDL	Idle function & processing loop manager

PF - Clock and Periodic Functions

CLK	System clock manager
PRD	Periodic function manger

CS - Comm/Synch threads

SEM	Semaphores manager
MBX	Mailboxes manager
LCK	Resource lock manager

IO - Input/Output

PIP	Data pipe manager
HST	Host input/output manager
SIO	Stream I/O manager
DEV	Device driver interface

LP - Memory and Low-level Primitives

MEM	Memory manager
SYS	System services manager
QUE	Queue manager
ATM	Atomic functions
GBL	Global setting manager

Thread Types (TT)

Hardware Clock Interrupts **Functions** (HWI) (CLK) Software Priority Periodic Signals **Functions** (SWI) (PRD) 14 levels Tasks (TSK) 15 levels Background Thread (IDL)

Типы потоков (нитей):

- 1) аппаратурные прерывания (HWI);
- 2) программные прерывания (SWI);
- 3) потоки задач (TSK)
- 4) фоновые потоки (IDL).

TSK_checkstacks	TSK_isTSK
TSK_create	TSK_itick
TSK_delete	TSK_self
TSK_deltatime	TSK_setenv
TSK_disable	TSK_seterr
TSK_enable	TSK_setpri
TSK_exit	TSK_settime
TSK_getenv	TSK_sleep
TSK_geterr	TSK_stat
TSK_getname	TSK_tick
TSK_getpri	TSK_time
TSK getsts	TSK yield

ТТ – Состояния потоков

Выполнение (поток выполняться и занимает процессор). Готовность (поток находится в очереди на исполнение). Блокировка (поток ожидает системного события). Завершение (поток завершен и больше не выполняется).

ТТ – Ресурсы потоков

```
int main(int num, ...)
   int x, y[1024];
void IDL THREAD()
   int x, y[1024];
void TSK THREAD()
   int x, y[1024];
void SWI THREAD()
   int x, y[1024];
void HWI_THREAD()
   int x, y[1024];
```


ТТ – Переключение потоков

ТТ – Выполнение потоков

Clock & Periodic Functions (PDF)

Функции времени и периодов:

- 1) PRD_getticks получить номер текущего периода (тика);
- 2) PRD_start задать период исполнения периодической функции;
- 3) PRD_stop сбросить период исполнения периодической функции;
- 4) PRD_tick разрешение выполнения периодической функции.

Comm/Synch threads (CS)

Примитивы синхронизации:

- 1) Semaphore (семафор) блокировка потока пока семафор равен нулю.
- 2) Mailbox (почтовый ящик) блокировка потока пока не отправлены данные;
- 3) Queue (очередь, массив почтовых ящиков) блокировка пока нет данных.
- 4) Lock (блокировка).

Примитивы коммуникации:

- 1) Ріре (канал) обмен данными между потоками путем чтения-записи;
- 2) Stream (поток) обмен между потоком и устройством.

CS – Семафоры

Функции семафоров:

- 1) SEM_create() создание семафора;
- 2) SEM_delete() удаление семафора;
- 3) SEM_pend() ожидание на семафоре;
- 4) SEM_post() сигнал семафору;
- 5) SEM_ipost() сигнал семафору (для процедур прерывания);
- 6) SEM_reset() сброс семафора;
- 7) SEM_new() инициализация семафора;
- 8) SEM_count() счетчик семафора.

CS – Почтовые ящики

Функции почтовых ящиков:

- 1) MBX_create создание почтового ящика;
- 2) MBX_delete удаление почтового ящика;
- 3) MBX_pend ожидание сообщения в почтовом ящике;
- 4) MBX_post передача сообщения в почтовой ящик.

CS - Очереди

Функции почтовых ящиков:

- 1) MSGQ_open создание очереди (читатель);
- 2) MSGQ_close удаление очереди (читатель);
- 3) MSGQ_locate подключение к очереди (писатель);
- 4) MSGQ_release— отключение от очереди (писатель).
- 5) MSGQ_alloc создать сообщение (писатель);
- 6) MSGQ free удалить сообщение (читатель).
- 7) MSGQ_get получение сообщения (читатель);
- 8) MSGQ_put передача сообщения (писатель).

CS – Каналы

Функции каналов:

- 1) PIP_alloc создание канал;
- 2) PIP_free освобождение канала;
- 3) PIP_get передать данные;
- 4) PIP_put получить данные.

CS – Потоки

Функции потока:

- 1) SIO_create создание потока;
- 2) SIO_delete уничтожение потока;
- 3) SIO_get обмен буфера получателем из потока;
- 4) SIO_put обмен буфера заполнителем потока;
- 5) SIO_ctrl управление потоком;
- 6) SIO_idle приостановка потока;
- 7) SIO_flush освобождение потока;
- 8) SIO_select ожидание буфера из потока;
- 9) SIO_issue занесение буфера в потока;
- 10) SIO_reclaim получение буфера из потока;
- 11) SIO_staticbuf передача буфера в поток и ожидание его обработки.

Application SIO Driver ISR DEV Device

CS – Устройства

Функции устройств:

1) Dxx_open — открыть устройство;

2) Dxx_close – закрыть устройство;

3) Dxx_issue — передать буфер устройство;

4) Dxx_reclaim – получить буфер от устройства;

5) Dxx_ctrl — управление устройством;

6) Dxx_idle — приостановка устройства;

7) Dxx ready – получение состояния устройства.

CS – Потоки и устройства

Memory and Low-level Primitives

Низкоуровневые функции:

- 1) MEM_alloc выделение блока памяти;
- 2) MEM_free освобождение блока памяти;
- 3) MEM_stat состояние памяти;
- 4) MEM_post передача сообщения в почтовой ящик.

Instrumentation/Real-Time Analysis

Сервисы анализа:

- 1) Message Event Log (журнал сообщений) сбор и предоставление данных о событиях, формируемых потоками.
- 2) Statistic Accumulator (сбор статистики) сбор и предоставление динамических параметров (счетчики, времена выполнения, объемы ресурсов);
- 3) Trace (трассировка) отслеживание поведения потоков в реальном времени;
- 3) Real-Time Data Exchange (каналы обмена данными с главным компьютером)
- потоки данных для тестирования и анализа поведения потоков и ресурсов.

LOG – Message Log manger

Функции протоколирования:

- 1) LOG_disable Disable the system log;
- 2) LOG_enable Enable the system log;
- 3) LOG_error Write a user error event to the system log;
- 4) LOG_event Append unformatted message to a message log;
- 5) LOG_message Write a user message to the system log;
- 6) LOG_printf Append a formatted message to a message log;
- 7) LOG_reset Reset the system log.

CSL - Chip Support Library (CSL CDB

STS – Statistics accumulator manager

Функции статистики:

- 1) STS_add() обновление статистики (значение);
- 2) STS_delta() обновление статистики (изменение);
- 3) STS_reset() сброс значения статистики;
- 4) STS_set() сохранения статистики.

Типы статистик:

- 1) Count (счетчик) число значений;
- 2) Total (всего) сумма значений;
- 3) Average (среднее) среднее значение;
- 4) Maximum (максимум) максимальное значение.

STS	Count	Total	Max	Average
initTerminateTSK	0	0 inst	-2147483648 inst	0.00
tBaseRateTSK	0	0 inst	-2147483648 inst	0.00
Task0	0	0 inst	-2147483648 inst	0.00
TSK_idle	Ö	0 inst	-2147483648 inst	0.00
IDL_busyObj	416019	-4.59118e+007	-71	-110.36

TRC – Trace manager

RTDX – Real-Time Data Exchange manager

Приложение

Программа

ARM u DSP

SoC (ARM® + DSP)

Emulators / Analyzers

- XDS560™ Emulator
- XDS560 Trace

Operating Systems

- DSP/BIOS Kernel
 - DSP/BIOS Link
- Network Developer's Kit (NDK)
- MontaVista Linux
- VirtualLogix Linux
- Windows® CE

Development Kits and Boards

- Starter Kits
- Development Boards / EVMs
- Development Platforms
- Daughter Cards

*NDK only applicable to DSP-centric design