Question:
Write the following queries in relational algebra, using the university schema.
a. Find the names of all students who have taken at least one Comp. Sci. course.
b. Find the IDs and names of all students who have not taken any course offering before Spring 2009.
c. For each department, find the maximum salary of instructors in that department. You may assume that every department has at least one instructor.
d. Find the lowest, across all departments, of the per-department maximum salary computed by the preceding query.

Step 1 of 1 employee(person_name, street, city) works (person_name, company_name, salary) company (company_name, city) manages(person_name, manage_ name) Figure 6.22Relational database for Exercises 6.2, 6.8, 6.11, 6.13, and 6.15 a. ∏name (student ⋈ takes ⋈ ∏course_id (¬dept_name= 'Comp.Sci.' (course)))

Note that if we join *student*, *takes*, and *course*, only students from the Comp. Sci. department would be present in the result; students from other departments would be eliminated even if they had taken a Comp. Sci. course since the attribute *dept_name*appears in both *student* and *course*.

- b. $\Pi_{ID,name}$ (student) $\Pi_{ID,name}$ ($\sigma_{year < 2009}$ (student \bowtie takes) Note that Spring is the first semester of the year, so we do not need to perform a comparison on semester.
- c. dept_nameGmax(salary)(instructor)
- d. Gmin(maxsal)(dept_nameGmax(salary) asmaxsal(instructor))

Consider the relational database of Figure 6.22, where the primary keys are underlined. Give an expression in the relational algebra to express each of the following queries:

- a. Find the names of all employees who work for "First Bank Corporation".
- b. Find the names and cities of residence of all employees who work for "First Bank Corporation".
- c. Find the names, street addresses, and cities of residence of all employees who work for "First Bank Corporation" and earn more than \$10,000.
- d. Find the names of all employees in this database who live in the same city as the company for which they work.
- e. Assume the companies may be located in several cities. Find all companies located in every city in which "Small Bank Corporation" is located.

Reference Figure 6.22:

```
employee (person_name, street, city)
works (person_name, company_name, salary)
company (company_name, city)
manages (person_name, manager_name)
```

Figure 6.22 Relational database

```
Step 1 of 1
a. \Pi_{person\_name}(\sigma_{company\_name} = \text{"First Bank Corporation"}(works))

 b. Π<sub>person_name</sub>, city(employee⋈

(ocompany_name= "First Bank Corporation" (works)))
c. ∏person_name, street, city
(σ(company name= "First Bank Corporation" ∧ salary > 10000)
works⋈ employee)
d. Π<sub>person_name</sub>(employee ⋈ works⋈ company)
e. Note: Small Bank Corporation will be included in each answer.
```

 $(\Pi_{city}(\sigma_{company_name} = \text{``Small Bank Corporation''} (company))))$

Π_{company_name} (company÷

Using the university example, write relational-algebra queries to find the course sections taught by more than one instructor in the following ways:

- a. Using an aggregate function.
- b. Without using any aggregate functions.

Step 1 of 1

- a. oinstrcnt>1 (course_id-section_id-year-semesterGcount(*) asinstrcnt(teaches))
- b. Π_{course_id}section_idyearsemester (σ_I D⇔ID2(takes ⋈

Ptakes1(ID2,course_id,section_id,year,semester)(takes)))

Question:
Consider the relational database of Figure 6.22. Give a relational-algebra expression for each of the following queries:
a. Find the company with the most employees.
b. Find the company with the smallest payroll.
c. Find those companies whose employees earn a higher salary, on average, than the average salary at First Bank Corporation.

```
Step 1 of 1
a. t_1 \leftarrow company\_nameGcount-distinct(person\_name)(works)
t_2 \leftarrow G_{max}(num\_employees)(\rho_{company\_strength}(company\_name,num\_employees)(t_1))
\Pi_{company\_name}(\rho_{t_3(company\_name,num\_employees)}(t_1) \bowtie \rho_{t_4(num\_employees)}(t_2))
b. t_1 \leftarrow company\_nameGsum(salary)(works)
t_2 \leftarrow G_{min(payroll)}(\rho_{company\_payroll}(company\_name,payroll)(t_1))
\Pi_{company\_name}(\rho_{t_3(company\_name,payroll)}(t_1) \bowtie \rho_{t_4(payroll)}(t_2))
c. t_1 \leftarrow company\_nameGavg(salary)(works)
t_2 \leftarrow \sigma_{company\_name} = \text{"First Bank Corporation"}(t_1)
\prod_{t_3 \cdot company\_name} ((\rho_{t_3(company\_name,avg\_salar\ y)}(t_1))
\bowtie_{t_2}-avg_salary> first_bank.avg_salary(\rho\ first_bank(company_name,avg_salar\ y)(t_2)))
```


Step 1 of 4

a. $t_1 \leftarrow \prod_{isbn}(\sigma_{publisher} = "McGraw-Hill" (books))$

 Π_{name} ((member \bowtie borrowed) \bowtie t_1))

Step 2 of 4

b. $t_1 \leftarrow \Pi_{isbn}(\sigma_{publisher="McGraw-Hill"}(books))$

 $\Pi_{name,isbn}(member \bowtie borrowed) \div t_1$

Step 3 of 4

c. $t_1 \leftarrow member \bowtie borrowed \bowtie (\sigma_{publisher="McGraw-Hill"}(books))$

 $\Pi_{name} (\sigma_{countisbn} > 5 ((memb_no G_{count-distinct}(isbn) ascountisbn(t_1))))$

Step 4 of 4

d. t₁ ←member⋈ borrowed ⋈ books

 $\Pi_{publisher,name}(\sigma_{countisbn} > 5 ((publisher,memb_noG_{count-distinct(isbn)} ascountisbn(t_1)))$

Consider the employee database of Figure 6.22. Give expressions in tuple relational calculus and domain relational calculus for each of the following queries:

- a. Find the names of all employees who work for "First Bank Corporation".
- b. Find the names and cities of residence of all employees who work for "First Bank Corporation".
- c. Find the names, street addresses, and cities of residence of all employees who work for "First Bank Corporation" and earn more than \$10,000.
- d. Find all employees who live in the same city as that in which the company for which they work is located.
- e. Find all employeeswho live in the same city and on the same street as their managers.
- f. Find all employees in the databasewho do notwork for "First Bank Corporation".
- g. Find all employees who earn more than every employee of "Small Bank Corporation".
- h. Assume that the companiesmay be located in several cities. Find all companies located in every city inwhich "Small BankCorporation" is located.

Reference Figure 6.22:

```
employee (person_name, street, city)
works (person_name, company_name, salary)
company (company_name, city)
manages (person_name, manager_name)
```

Figure 6.22 Relational database

Step 1 of 1

a. Find the names of all employees who work for First Bank Corporation:

```
i. \{f \mid \exists s \in works(f[per son\_name] = s[per son\_name]\}
```

ii.
$$\{ | \exists c, s (< p, c, s > \subseteq works \land c = "First Bank Corporation") \}$$

b. Find the names and cities of residence of all employees who work

for First Bank Corporation:

$$\land$$
 $t[city] = r[city] \land r[person_name] = s[person_name]$

ii.
$$\{ < p, c > 1 \exists co, sa, st (< p, co, sa > \subseteq works \}$$

c. Find the names, street address, and cities of residence of all employees who work for First Bank Corporation and earn more than \$10,000 per annum:

$$\land s[company_name] = "First Bank Corporation" $\land s[salar \ y] > 10000))$$$

ii.
$$\{ < p, s, c > | < p, s, c > \in employee \land \exists co, sa (< p, co, sa > \in works \}$$

d. Find the names of all employees in this database who live in the same city as the company for which they work:

```
    i. {t ∃ e ∈ employee∃ w ∈ works∃ c ∈ company
    (t[person_name] = e[person_name]
    ^ e[person_name] = w[person_name]
    ^ w[company_name] = c[company_name] ^ e[city] = c[city])}
    ii. { | ∃ st, c, co, sa(< p, st, c> ∈ employee
    ^<p, co, sa> ∈ works ^<co, c> ∈ company)}
```

e. Find the names of all employees who live in the same city and on the same street as do their managers:

```
    i. { t | ∃ | ∈ employee∃ m ∈ manages∃ r ∈ employee
    ( [[person_name] = m[person_name] ∧ m[manager_name] = r[person_name]
    ∧ [[street] = r[street] ∧ [[city] = r[city] ∧ t[person_name] = l[person_name]) }
    ii. {< t> | ∃ s, c, m (< t, s, c> ∈ employee ∧ < t, m > ∈ manages ∧ < m, s, c> ∈ employee) }
```

f. Find the names of all employees in this database who do not work for First Bank Corporation:

If one allows people to appear in the database (e.g. in *employee*) but not appear in *works*, the problemismore complicated.We give solutions for this more realistic case later.

```
 i. { t | ∃ w ∈ works(w[company_name] ≠ "First Bank Corporation"

   ^ t[person_name] = w[person_name])}
  ii. \{  | \exists c, s (< p, c, s > \in works \land c \neq "First Bank Corporation") \}
  If people may not work for any company:
  i. { t | ∃ e ∈ employee( t[person_name] = e[person_name] ∧ ¬ ∃ w ∈ works
  (w[company_name] = "First Bank Corporation"
   \( \mathbb{w}[person_name] = t[person_name]))\)
  ii. \{ \langle p \rangle \mid \exists s, c (\langle p, s, c \rangle \in employee) \land \neg \exists x, y \}
  (y = \text{"First Bank Corporation"} \land \langle p, y, x \rangle \subseteq works)
g. Find the names of all employees who earn more than every employee of Small Bank Corporation:
  i. \{t \mid \exists w \in works(t[person\_name] = w[person\_name] \land \forall s \in works\}
   (s[company_name] = "Small Bank Corporation" <math>\Rightarrow w[salary] > s[salary]))
  ii. \{ \langle p \rangle \mid \exists c, s (\langle p, c, s \rangle \in works \land \forall p_2, c_2, s_2 \}
  (\langle p_2, c_2, s_2 \rangle \notin works \lor c_2 \neq \text{"Small Bank Corporation"} \lor s > s_2))
```

h. Assume the companies may be located in several cities. Find all companies located in every city in which Small Bank Corporation is located.

Note: Small Bank Corporation will be included in each answer.

```
    i. {f| ∀ s∈ company(s[company_name] = "Small Bank Corporation" ⇒ ∃ r ∈ company (f[company_name] = r[company_name] ∧
    r[city] = s[city]))}
    ii. {< co> | ∀ co₂, ci₂ (< co₂, ci₂ > ∉ company
    ∨ co₂ ≠ "Small Bank Corporation" ∨ <co, ci₂ > ∈ company)}
```

Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write relational-algebra expressions equivalent to the following domain-relational- calculus expressions:

- a. $\{ < a > | \exists b (< a, b > \in r \land b = 17) \}$
- b. $\{\langle a, b, c \rangle | \langle a, b \rangle \in r \land \langle a, c \rangle \in s\}$
- c. $\{\langle a \rangle \mid \exists b \ (\langle a, b \rangle \in r) \lor \forall c (\exists d (\langle d, c \rangle \in s) \Rightarrow \langle a, c \rangle \in s)\}$
- d. $\{ \langle a \rangle \mid \exists c \ (\langle a, c \rangle \in s \land \exists b1, b2 \ (\langle a, b1 \rangle \in r \land \langle c, b2 \rangle \in r \land b1 > b2)) \}$

Step 1 of 1

- a. $\Pi_A(\sigma_{B=17}(r))$
- b. r⋈ s
- c. $\Pi_A(r) \cup (r \div \sigma_B(\Pi_C(s)))$
- d. $\Pi_{r,A}((r \bowtie s) \bowtie_{c=r2.A \land r,B > r2.B}(\rho_{r_2}(r)))$

It is interesting to note that (d) is an abstraction of the notorious query "Find all employees who earn more than their manager."

Let R= (emp, sal), S= (emp, mgr) to observe this.

Repeat Exercise 6.16, writing SQL queries instead of relational-algebra expressions.

Reference Exercise 6.16:

Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Write relational-algebra expressions equivalent to the following domain-relational- calculus expressions:

a.
$$\{ \langle a \rangle \mid \exists b \ (\langle a, b \rangle \in r \land b = 17) \}$$

b.
$$\{ < a, b, c > | < a, b > \in r \land < a, c > \in s \}$$

c.
$$\{\langle a \rangle \mid \exists b \ (\langle a, b \rangle \in r) \lor \forall c (\exists d (\langle d, c \rangle \in s) \Rightarrow \langle a, c \rangle \in s)\}$$

d.
$$\{ < a > | \exists c (< a, c > \in s \land \exists b1, b2 (< a, b1 > \in r \land < c, b2 > \in r \land b1 > b2)) \}$$

```
Step 1 of 1
a. selecta
from r
whereb = 17
b. selecta, b, c
fromr, s
where r.a = s.a
c. (selecta
from r)
union
(selecta
froms)
d. selecta
from rasr1, rasr2, s
```

where r1.a = s.a and r2.a = s.c and r1.b > r2.b

Let R = (A, B) and S = (A, C), and let r(R) and s(S) be relations. Using the special constant *null*, write tuple-relational-calculus expressions equivalent to each of the following:

- a. $r \bowtie S$
- b. $r \supset \subseteq s$
- c. $r \supset S$

Step 1 of 1

a.
$$\{t \mid \exists r \in R \exists s \in S(r[A] = s[A] \land t[A] = r[A] \land t[B] = r[B] \land t[C] = s[C]\}$$

$$\exists s \in S(\neg \exists r \in R(r[A] = s[A]) \land t[A] = s[A] \land t[C] = s[C] \land t[B] = null)$$

b.
$$\{t \mid \exists r \in R \exists s \in S(r[A] = s[A] \land t[A] = r[A] \land t[B] = r[B] \land t[C] = s[C]\}$$

$$\exists r \in R(\neg \exists s \in S(r[A] = s[A]) \land f[A] = r[A] \land f[B] = r[B] \land f[C] = null) \lor$$

$$\exists s \subseteq S(\neg \exists r \subseteq R(r[A] = s[A]) \land f[A] = s[A] \land f[C] = s[C] \land f[B] = null)\}$$

c.
$$\{t \mid \exists r \in R \exists s \in S(r[A] = s[A] \land t[A] = r[A] \land t[B] = r[B] \land t[C] = s[C]\}$$

$$\exists r \in R(\neg \exists s \in S(r[A] = s[A]) \land f[A] = r[A] \land f[B] = r[B] \land f[C] = null)$$

Give a tuple-relational-calculus expression to find the maximum value in relation r(A).

Step 1 of 1

 $\{ \langle a \rangle \mid \langle a \rangle \in r \land \forall \langle b \rangle \in R a = b \}$