Scalar on Function Regression with Applications to Near-Infrared Spectography

Jonathan Willnow, Jakob Juergens, Jonghun Baek

Presentation Day

Introduction

- Near-Infrared (NIR) Spectroscopy enables fast diagnostics by using the NIR region of the electromagnetic spectrum (from 780 nm to 2500 nm)
- Suited for field-monitoring / on-line analysis
- Spectroscopy results in high-dimensional dataset.
- This set of measurements serves as set of discretized approximations of smooth spectral curves
- Regression to determine relationship between octane rating and spectral curves

Theory

A simple functional dataset is given by

$$\{x_i(t_{j,i}) \in \mathbb{R} \mid i = 1, 2, ..., N, j = 1, 2, ..., J_i, t_{j,i} \in [T_1, T_2]\}$$

- Continuous underlying process, where $x_i(t)$ exists $\forall t \in [T_1, T_2]$
- Only observed at $x_i(t_{j,i})$
- Growth curves, financial data, human perception (pitch), ...
- To abstract information from the curves, they must be interpretable!

Random Function

A **Random Variable** is a function $X:\Omega\to\mathcal{S}$ which is defined on a common probability space $(\Omega,\mathcal{F},\mathbb{P})$ where Ω is a probability space with a σ -algebra \mathcal{F} and a probability measure \mathbb{P} .

- If $S = \mathbb{R}$ then X is a random variable
- If $S = \mathbb{R}^n$ then X is a random vector
- If S is a space of functions, X is called a **Random Function**

Random Function

Let \mathbb{E} be the index set and this can be described as

$${X(t,\omega): t \in \mathbb{E}, \omega \in \Omega},$$

where $X(t,\cdot)$ is \mathcal{F} -measurable function on the sample space Ω .

- It can be shortened to X(t) by omitting ω
- The function is realized when the X(t) exists $\forall t \in \mathbb{E}$

Plots

Figure: Growth curves of 54 girls age 1-18

Figure: NIR spectrum of 60 gasoline samples

Square Integrable Function

If a function f(t) satisfies:

$$\int_0^1 \{f(t)\}^2 dt < \infty$$

the function f is called **Square Integrable Function** and in the set $\mathbb{L}^2[0,1]$.

- Without loss of generality, the interval is defined in [0,1]
- \blacksquare L² is the set of all square integrable functions
- We focus on $\mathbb{L}^2[0,1]$ since the domain of our function is on the real line.

Square Integrable Function

Let $f,g \in \mathbb{L}^2[0,1]$, then

$$\langle f,g\rangle = \int_0^1 f(t)g(t)dt$$

Orthogonality of two different functions $\langle f,g \rangle = 0$

Basis Expansion

Basis Expansion is a linear combination of functions defining a function as described:

$$X_i(t) = \sum_{k=1}^{\infty} c_{ik} \phi_k(t) pprox \sum_{k=1}^{K} c_{ik} \phi_k(t), \quad i = 1, \dots, n, \quad \forall t \in \mathbb{E}$$

where $\phi_k(t)$ is the k^{th} basis function of the expansion and c_{ik} is the corresponding coefficient. We truncate the basis at K to:

- make the function smoother
- replace the original curves $X_i(t)$ by a smaller collection of c_{nm}

Two Typical Types of Basis Function

Fourier Basis Function is written as

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n cos(2\pi nx) + b_n sin(2\pi nx)$$

B-spline Basis Function is a flexible curve defined by degree and knots.

Each B-spline basis function, *i*-th B-spline basis function of degree p, $N_{i,p}(u)$ is defined on Cox-de Boor recursion formula.

Plots of Basis Functions

Figure: Fourier basis functions with order 9

Plots of Basis Functions

Figure: Bspline basis functions with order 9

Trade Off between Bias and Variance

How do we choose the number K of basis functions?

$$\mathsf{MSE}[\hat{x}(t)] = \mathsf{Bias}^2[\hat{x}(t)] + \mathsf{Var}[\hat{x}(t)]$$

Integrated Mean Squared Error

- The larger K, the better fit to the data with also fitting noise
- If K is too small, it would miss some significant information that we want to estimate

Trade Off between Bias and Variance

Assume the following Data Generating Process

$$Y(\omega) = \alpha + \int_0^1 \beta(s) X(\omega)(s) ds + \epsilon(\omega)$$

• $Y(\omega)$ and $\epsilon(\omega)$ realize in $\mathbb R$ and $X(\omega)$ realizes in $\mathbb L^2[0,1]$

Let $\{\phi_i(t) \mid i = 1, ..., \infty\}$ be a basis of $\mathbb{L}^2[0,1]$ leading to the following representation of $\beta(t)$

$$eta(t) = \sum_{j=1}^{\infty} c_j \phi_j(t) pprox \sum_{j=1}^{L} c_j b_j(t)$$

We can transform the data generating process into:

$$Y(\omega) = \alpha + \int_0^1 \left[\left(\sum_{j=1}^\infty c_j \phi_j(s) \right) X(\omega)(s) \right] ds + \epsilon(\omega)$$

$$= \alpha + \sum_{j=1}^\infty \left[c_j \int_0^1 X(\omega)(s) \phi_j(s) ds \right] + \epsilon(\omega)$$

$$= \alpha + \sum_{j=1}^\infty c_j Z_j(\omega) + \epsilon(\omega)$$

Where a $Z_i(\omega)$ is a scalar random variable.

Each combination of $x_i(t)$ and $\phi_j(t)$ gives us

$$Z_{i,j} = \int_0^1 x_i(s)b_j(s)\mathrm{d}s$$

- This allows us to write each observation in the data set as $\{y_i, Z_{i,1}, Z_{i,2}, \dots\}$
- Truncating the functional basis yields an approximation $\{y_i, Z_{i,1}, Z_{i,2}, \dots, Z_{i,L}\}$

Coefficients can then be estimated using theory from **multivariate regression** leading to an estimated coefficient vector $\hat{c} \in \mathbb{R}^L$.

This can be translated into an estimated coefficient function $\hat{\beta}(t)$:

$$\hat{eta}_L(t) = \sum_{j=1}^L \hat{c}_{L,j} \phi_j(t)$$

This is dependent on...

- The basis $(\phi_j(t))_{j\in\mathcal{I}}$ for the estimation of $\beta(t)$
- The truncation parameter *L*
- The basis $(\psi_j(t))_{j\in\mathcal{I}}$ used for the expansion of the observations
- The truncation parameter in the approximation of the observations *K*

Karhunen-Loéve Expansion

Mean Function:

$$\mu(t) = \mathbb{E}\left[X(\omega)(t)\right]$$

Autocovariance Function:

$$c(t,s) = \mathbb{E}\big[\left(X(\omega)(t) - \mu(t)\right)\left(X(\omega)(s) - \mu(s)\right)\big]$$

The **Eigenvalues** and **Eigenfunctions**: $\{(\lambda_i, \nu_i) \mid i \in \mathcal{I}\}$ are solutions of the following equation:

$$\int_0^1 c(t,s)\nu(s)\mathrm{d}s = \lambda\nu(t)$$

Karhunen-Loéve Expansion

A random function $X(\omega)$ can be expressed in terms of its mean function and its Eigenfunctions:

$$X(\omega)(t) = \mu(t) + \sum_{j=1}^{\infty} \xi_j(\omega)\nu_j(t)$$

Where the ξ_j are scalar-valued random variables with the following properties.

3
$$Cov(\xi_i(\omega), \xi_j(\omega)) = 0$$
 for $i \neq i$

This is called the **Karhunen-Loéve Expansion** of $X(\omega)$ and the Eigenfunctions can serve as a basis.

Functional Principal Component Analysis

Rephrase this!

This idea can be extended to functional regressors in the form of **Functional Principal Component Analysis** (FPCA).

Empirical Mean Function:

$$\hat{\mu}(t) = \frac{1}{n} \sum_{j=1}^{n} f_j(t)$$

Empirical Autocovariance Function:

$$\hat{c}(t,s) = \frac{1}{n} \sum_{i=1}^{n} (f_j(t) - \hat{\mu}(t)) (f_j(s) - \hat{\mu}(s))$$

Functional Principal Component Analysis

The **Eigenvalues** and **Eigenfunctions**: $\{(\hat{\lambda}_i, \hat{\nu}_i) \mid i \in \mathcal{I}\}$ are solutions of the following equation:

$$\int_0^1 \hat{c}(t,s)\hat{\nu}(s)\mathrm{d}s = \hat{\lambda}\hat{\nu}(t)$$

The $\{\hat{\nu}_i(s) \mid i \in \mathcal{I}\}$ are called **Functional Principal Components** and can serve as a basis for representing the original curves.

The corresponding scores $\hat{\xi}_i$ can be derived as

$$\hat{\xi}_j(\omega) = \int_0^1 (F(\omega)(s) - \hat{\mu}(s))\hat{\nu}_j(s)\mathrm{d}s$$

FPCA - Plots

The math is for intuition. In practice there are problems and the fpc's are derived differently.

Simulation Setup & Application

- Use the **Gasoline Dataset** (NIR-spectroscopy, 60×401) to predict octane ratings.
- Generate similar curves from gasoline dataset:

$$ilde{\mathcal{F}}(\omega)(t) = \hat{\mu}(t) + \sum_{j=1}^J ilde{\xi_j}(\omega) \hat{
u}_j(t)$$

- lacksquare $ilde{\xi}_j \sim \mathcal{N}(0,\hat{\lambda}_j)$ and $ilde{\xi}_j \perp \!\!\! \perp \!\!\! \tilde{\xi}_k$ for j
 eq k
- Simplification: the ξ_i do not follow a normal
- $\tilde{F}(\omega)(t)$, $\hat{\mu}(t)$ and $\hat{\nu}_i(t)$ are approximated as vectors in \mathbb{R}^{401} .

Simulation Setup & Application cont.

Following **Reiss and Ogden (2007)**, let $f_1(t)$ and $f_2(t)$ be two coefficient functions:

Figure: $f_1(t)$, smooth function Figure: $f_2(t)$, bumpy function

Simulation Setup & Application cont.

Let

$$Y_{1,f} = \langle NIR, f \rangle + Z \frac{var(\langle NIR, f \rangle)}{0.9} - var(\langle NIR, f \rangle)$$

 $Y_{2,f} = \langle NIR, f \rangle + Z \frac{var(\langle NIR, f \rangle)}{0.6} - var(\langle NIR, f \rangle)$

where $Z \sim \mathcal{N}(0,1)$ be two responses for $f \in \{f_1(t), f_2(t)\}.$

- Four combinations with different number of cubic basis-function $n_{basis} \in (5, 6, ..., 25)$ to perform regression using basis expansion and the FPCR approach.
- Compare results via criteria (CV, Mallows CP,...)
- add results here!

Simulation Setup & Application cont.

- Use insights from the simulation study to uncover dependence.
- Similar setup, but using only bsplie basis expansion and initial 60 spectral curves.
- Validation set approach: Scores of testdata needs to be estimated by the trainingdata. explain in detail?
- Report results by MSE scaled by variance.

Summary

Jona

Just summarize what we have done...

further reading

Put footnotes here!

