9 הרצאה

תכנון דינאמי

קבוצה בלתי תלויה של אינטרוולים עם משקל מקסימלי

נתונים n אינטרוולים (נניח שכבר אחרי מיון לפי זמן סיום) אינטרוולים (נניח שכבר אחרי מיון לפי זמן סיום) אינטרוולים ולפי אינטרוולים ולפי זמן אינטרוולים ולפי זמן אינטרוולים וא מהשניים $a_i,a_j\in I$ אחד מהשניים ומשקל ומשקל $a_i,a_j\in I$ אחד מהשניים ומשקל ומשקל ומשקל וער אינטרוולים ואינטרוולים באינטרוולים ומשקל ומשקל ומשקל ומשקל ומשקל וער אינטרוולים ואינטרוולים ואינטרוולים ומשקל ו

$$s(a_j) > e(a_i)$$
 .1

$$s(a_i) > e(a_j)$$
 .2

רוצים למצוא קבוצה בלתי תלויה של אינטרוולים עם משקל מקסימלי.

דוגמה: קלט לבעיה וקבוצה בלתי תלויה במשקל 13.

נסמן
$$A_i=(a_1,\ldots,a_i)$$
 נסמן

$$p(i) = \max \begin{cases} \max\{j : e(a_j) < s(a_i)\} \\ 0 \end{cases}$$

כלומר a_i מתחיל או 0 אם לא מחתיל פני ש- a_j מסתיים לפני ש- a_j הוא האינדקס המקסימלי כך ש- a_j מסתיים לפני ש a_i הוא הערך אותו אנחנו מחפשים. נגדיר את $\alpha(i)$ הוא הערך אותו אנחנו מחפשים.

טענה 1.

$$\alpha(i) = \max \begin{cases} w(i) + \alpha(p(i)) \\ 0 + \alpha(i-1) \end{cases}$$

כפו כן פתקיים ש:

$$\alpha(0) = 0$$

i הוכחה. באינדוקציה על

בסיס: עבור i=0 טריוויאלי.

 $.OPT_i = OPT \cap A_i$ ונסמן ונסמן פתרון אופטימלי פתרון לשהו כלשהו עבור עבור

אם הנחת האינדוקציה לפי הנחת להכיל אף אינטרוול להכיל להכיל לא לא לא לא לא לא לפי אז OPT אז $a_{i+1} \in \mathit{OPT}$

$$\alpha(p(i)+1) \ge w(OPT_{p(i)})$$

ולכן הטענה מתקיימת כי

$$\alpha(i) \ge \alpha(p(i)) + w(a_i) \ge w(OPT_{p(i)}) + w(a_i)$$

מצד שני, אם $OPT \notin a_{i+1} \notin OP$ מצד שני,

$$\alpha(i-1) \ge OPT_{i-1}$$

והטענה מתקיימת.

חישוב יעיל של

כיצד נחשב את הערכים (למשל במערך) אז חישוב n ערכי n מ-1 עד מחשבים את מחשבים למשל במערך) אז חישוב של כל ערך לוקח O(1) זמן. אמן הריצה של האלגוריתם:

....

$$O(n \log n)$$
 - מיון

(i ריפוש בינארי לכל (חיפוש בינארי לכל) (חישוב $O(n \log n)$

$$O(n)$$
 - O חישוב.

 $O(n \log n)$ סך הכל

דוגמת הרצה:

נחשב:

i	0	1	2	3	4	5	6	7	8	9	10	11
p	0	0	0	1	2	0	4	3	6	7	7	9
α	0	2	3	4	4	6	8	8	9	10	10	12

נמצא את הקבוצה עצמה:

p 0 0 0 1 2 0 4 3 6 7 7 9 α 0 2 3 4 4 6 8 8 9 10 10 1	i	0	1	2	3	4	5	6	7	8	9	10	11
α 0 2 3 4 4 6 8 8 9 10 10 1	p	0	0	0	1	2	0	4	3	6	7	7	9
	α	0	2	3	4	4	6	8	8	9	10	10	12

נקודות חשובות:

- מה יקרה אם במקום לחשב את ערכי α בסדר עולה ושמירת הערכים במערך נחשב את ערכי בסדר ערכי α בסדר ערכי פסדר המחסנית ?
 - מה יקרה אם לכל תא במערך נזכור גם את הקבוצה שמתאימה לערך התא ?

מסלולים קלים ביותר

כעת נפתור את בעיית המסלול הקל ביותר.

תזכורת: בהינתן גרף (מכוון או לא) G=(E,V), פונקציית משקל $w:E o\mathcal{R}$, צומת מקור G=(E,V), וצומת יעד או למצוא מסלול מ-s למצוא מסלול מ-s ל-

ניסיון ראשון

ינם ש: מתקיים ש: a(v) אז מתקיים ש:

$$a(v) = \min_{uv \in E} a(u) + w(uv))$$

? מה הבעיה

ניסיון שני

(אז מתקיים ש: G[U] אז מתקיים ש: s ל-v בגרף להיות המסלול הקל ביותר מs

$$a(v, U) = \min_{uv \in E} a(u, U \setminus \{v\}) + w(uv)$$

מה הבעיה ?

פתרון

נגדיר את לכל היותר מסלול קל ביותר מ-s ל-v עם להיות מסלול קל להיות מסלול אותר מ-s

$$\begin{array}{ll} \forall \ v \neq s, 1 \leq k \leq n-1 & a(v,k) = \min_{uv \in E} a(u,k-1) + w(uv) \\ \forall \ u \neq s & a(u,0) = \infty \\ & a(s,0) = 0 \end{array}$$

vטענה v. אם ב-v אין פעגלים שליליים אז לכל v אין לכל v אין פעגלים שליליים אז לכל v

הוכחת נכונות: כתרגיל.

גרף החישוב

בהינתן נוסחת נסיגה, f, נסתכל על גרף החישוב שלה, G_f זהו גרף מכוון שבו כל צומת מתאימה למצב (ערך פרמטרים מסוים . s_j אמ"מ לצורך חישוב מצב s_i יש צורך לחשב את מצב s_j למצל s_j למשל עבור הקלט הבא לבעיית האינטרוולים:

ונוסחת הנסיגה

$$\alpha(i) = \max \begin{cases} w(i) + \alpha(p(i)) \\ 0 + \alpha(i-1) \end{cases}$$

גרף החישוב יראה כך (ניתן אף לשים משקלים מתאימים על הקשתות):

מה נדרוש מגרף החישוב ?

- 1. חסר מעגלים
- 2. לא גדול מדי
- 3. ניתן לחשב את הערכים של הבורות

דוגמה נוספת, כיצד יראה גרף החישוב עבור נוסחת הנסיגה של מסלולים קלים ביותר והקלט הבא:

