PROBLEM STATEMENT

A real estate agent want help to predict the house price for regions in USA. He gave us the dataset to work on to use Linear Regression model. Create a model that helps him to estimate of what the house would sell for

DATA COLLECTION

In [1]:

```
# import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]:

df=pd.read_csv(r"C:\Users\user\Downloads\10_USA_Housing.csv")
df

Out[3]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	
0	79545.458574	5.682861	7.009188	4.09	23086.800503	1.059034e+06	208 Michael 674\nLaur
1	79248.642455	6.002900	6.730821	3.09	40173.072174	1.505891e+06	188 John: Suite (Kathl
2	61287.067179	5.865890	8.512727	5.13	36882.159400	1.058988e+06	9127 Stravenue\nD W
3	63345.240046	7.188236	5.586729	3.26	34310.242831	1.260617e+06	USS Barnett
4	59982.197226	5.040555	7.839388	4.23	26354.109472	6.309435e+05	USNS Raym
4995	60567.944140	7.830362	6.137356	3.46	22837.361035	1.060194e+06	USNS Willia AP 30
4996	78491.275435	6.999135	6.576763	4.02	25616.115489	1.482618e+06	PSC 8489\nAPO <i>i</i>
4997	63390.686886	7.250591	4.805081	2.13	33266.145490	1.030730e+06	4215 Trac Suite 076\nJo
4998	68001.331235	5.534388	7.130144	5.44	42625.620156	1.198657e+06	USS Wallace
4999	65510.581804	5.992305	6.792336	4.07	46501.283803	1.298950e+06	37778 Geor Apt. 509\nf
5000 rows × 7 columns							

In [5]:

df.head(5)

Out[5]:

Ad	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Fer 674\nLaurabu ;	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Suite 079\ Kathleen	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Eliz Stravenue∖nDanie WI 0€	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFf	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\ AE	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4
•							4

DATA CLEANING AND PRE-PROCESSING

In [7]:

#to find null values
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [8]:

```
#to display summary of statistics
df.describe()
```

Out[8]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

In [9]:

```
#to display column heading
df.columns
```

Out[9]:

EDA and VISUALIZATION

In [10]:

sns.pairplot(df)

Out[10]:

<seaborn.axisgrid.PairGrid at 0x1edb8531730>

In [31]:

```
#normal distribution
sns.distplot(df['Price'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[31]:

<AxesSubplot:xlabel='Price', ylabel='Density'>

In [13]:

In [15]:

```
#heat map
sns.heatmap(df1.corr())
```

Out[15]:

<AxesSubplot:>

To train the model-model building

We are going to train Linear Regression model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x (output) we could ignore address column as it is not required for our model

In [16]:

In [20]:

```
# to split my dataset into training and test data
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [22]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[22]:

LinearRegression()

In [23]:

```
print(lr.intercept_)
```

-2627905.3551811427

In [24]:

coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff

Out[24]:

	Co-efficient
Avg. Area Income	21.541046
Avg. Area House Age	164758.849448
Avg. Area Number of Rooms	120924.705303
Avg. Area Number of Bedrooms	967.250894
Area Population	15.175661

In [27]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[27]:

<matplotlib.collections.PathCollection at 0x1edbc1491f0>

In [29]:
print(lr.score(x_test,y_test))
0.9180544706943
In []: