TEMA 2: Cálculo Integral en una variable

Cálculo para los Grados en Ingeniería

EPIG - UNIOVI

Definiciones

► Función primitiva

Decimos que la función F(x) es una función primitiva de f(x) si

$$F'(x) = f(x)$$

para todo punto x del dominio de f.

Función integral indefinida

Dada la función f, se llama función integral indefinida de f al conjunto de todas sus funciones primitivas. Se suele escribir

$$\int f(x)dx = F(x) + C$$

con C constante arbitraria, y F una primitiva cualquiera de f.

Integrales inmediatas

$$\int x^{p} dx = \frac{x^{p+1}}{p+1} + C, \quad p \neq -1 \qquad \int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^{x} dx = e^{x} + C \qquad \qquad \int p^{x} dx = \frac{p^{x}}{\ln p} + C, \quad p > 0, \quad p \neq 1$$

$$\int \sin x dx = -\cos x + C \qquad \qquad \int \cos x dx = \sin x + C$$

$$\int \tan x dx = -\ln|\cos x| + C \qquad \qquad \int \cot x dx = \ln|\sin x| + C$$

$$\int \sec^{2} x dx = \tan x + C \qquad \qquad \int \csc^{2} x dx = -\cot x + C$$

$$\int \frac{dx}{1+x^{2}} = \arctan x + C \qquad \qquad \int \frac{dx}{a^{2}+x^{2}} = \frac{1}{a} \arctan x + C$$

Integrales inmediatas

$$\int \frac{dx}{1 - x^2} = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{dx}{\sqrt{1 - x^2}} = \arcsin x + C$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln \left| x + \sqrt{x^2 \pm 1} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C$$

Propiedades

Linealidad de la integral

Dadas dos funciones f y g que admiten primitiva y una constante $k \in \mathbb{R}$ se verifica

$$i) \int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$
$$ii) \int kf(x) dx = k \int f(x) dx$$

Propiedad

Dada una función f(x) que admite primitiva y dos constantes a, $b \in \mathbb{R}$ se verifica

$$Si \int f(x)dx = F(x) + C \Rightarrow \int f(ax)dx = \frac{1}{a}F(ax) + C$$

$$Si \int f(x)dx = F(x) + C \Rightarrow \int f(x+b)dx = F(x+b) + C$$

Técnicas generales de integración

- Cambio de variable
- Integración por partes
- Fórmulas de reducción
- Integrales de funciones racionales
- Integración de funciones reducibles a racionales
- Integración de funciones trigonométricas
- Integración de algunas funciones irracionales cuadráticas

Cambio de variable

Sea $\varphi(t)$ una función con derivada $\varphi'(t)$ continua y que admite inversa, y sea f(x) una función continua. Entonces, haciendo $x = \varphi(t)$, se tiene

$$\int f\left[\varphi(t)\right]\varphi'(t)dt = \int f(x)dx$$

Una vez resuelta la integral en la nueva variable (la cual se supone más sencilla) debe deshacerse el cambio realizado.

Integración por partes

Dadas dos funciones derivables u y v se verifica

$$\int u dv = uv - \int v du$$

Como "regla" general la integración por partes es recomendada para integrales de la forma

polinomio · función logarítmica polinomio · función trigonométrica inversa dv u

y también de la forma

polinomio · función exponencial polinomio · función trigonométrica u dv

Fórmulas de reducción

Sea I_n una integral indefinida que depende de un número natural n. Se denomina fórmula de reducción a una relación recurrente del tipo

$$f(I_n, I_{n+1}, ..., I_{n+p}, n, x) = 0$$

En la mayoría de los casos prácticos la relación recurrente es del tipo

$$I_n = f(I_{n-1}, x, n)$$

con lo que nos basta conocer una integral para obtener las siguientes.

Para obtener la fórmula de recurrencia se suele utilizar integración por partes.

Integrales de funciones racionales

Función racional expresada como cociente (fracción simplificada y propia) de dos polinomios

$$\frac{Q(x)}{f(x)}$$

 Método: Descomposición en fracciones simples según las raíces del denominador

$$f(x) = 0$$

A cada:

Raíz real simple a le corresponde una fracción:

$$\frac{A}{(x-a)}$$

Integrales de funciones racionales

A cada:

 Raíz real múltiple a de orden n le corresponden n fracciones:

$$\frac{A_n}{(x-a)^n} + \frac{A_{n-1}}{(x-a)^{n-1}} + \ldots + \frac{A_1}{(x-a)}$$

3) Par de raíces complejas conjugadas simples le corresponde una fracción:

$$\frac{Ax+B}{x^2+px+q}$$

4) Par de raíces complejas conjugadas múltiples de orden *n* le corresponden *n* fracciones:

$$\frac{A_{n}x + B_{n}}{(x^{2} + px + q)^{n}} + \frac{A_{n-1}x + B_{n-1}}{(x^{2} + px + q)^{n-1}} + \dots + \frac{A_{1}x + B_{1}}{x^{2} + px + q}$$

Integrales de funciones racionales

Primitivas de las fracciones simples

Tipo 1)
$$\int \frac{A}{x-a} dx = A \ln|x-a| + C$$

Tipo 2)
$$\int \frac{A}{(x-a)^n} dx = \frac{A(x-a)^{-n+1}}{-n+1} + C, \ n \neq 1$$

$$\frac{A}{2} \int \frac{2x+p}{x^2+px+q} dx = \frac{A}{2} \ln|x^2+px+q| + C$$

$$\int \frac{B-\frac{Ap}{2}}{x^2+px+q} dx = \int \frac{B-\frac{Ap}{2}}{(x-r)^2+s^2} dx = \frac{B-\frac{Ap}{2}}{s} \arctan\left(\frac{x-r}{s}\right) + C$$

Integración de funciones reducibles a racionales

Integrales del tipo

$$\int R(f(x))dx$$

con R una función racional y f una función cuya inversa tiene derivada racional.

▶ Para este tipo de funciones, el cambio de variable

$$f(x) = t$$

transforma la integral en racional.

Integración de funciones trigonométricas

Integrales del tipo

$$\int R(\sin x, \cos x) dx$$

con R función racional.

Cambio universal

Se pueden reducir siempre a una integral racional con el cambio de variable

$$\operatorname{tg}(\frac{x}{2})=t$$

$$\operatorname{sen} x = \frac{2t}{1+t^2}; \cos x = \frac{1-t^2}{1+t^2}; dx = \frac{2dt}{1+t^2}$$

Integración de funciones trigonométricas

► Cambios Alternativos

Si R es una función	Cambio:
i) impar en $sen x$ R(-sen x, cos x) = -R(sen x, cos x)	$\cos x = t$
ii) impar en $\cos x$ $R(\sec x, -\cos x) = -R(\sec x, \cos x)$	sen x = t
iii) par en sen x y cos x $R(-\operatorname{sen} x, -\operatorname{cos} x) = R(\operatorname{sen} x, \operatorname{cos} x)$	tg x = t

Integración de funciones trigonométrica

Métodos Alternativos

iv) Las integrales

$$\int \operatorname{sen} ax \cos bx dx; \quad \int \operatorname{sen} ax \operatorname{sen} bx dx; \quad \int \cos ax \cos bx dx$$

se tranforman en integrales inmediatas mediante las fórmulas

$$2 \operatorname{sen} A \operatorname{sen} B = \cos(A - B) - \cos(A + B)$$

$$2\cos A\cos B = \cos(A-B) + \cos(A+B)$$

$$2 \operatorname{sen} A \cos B = \operatorname{sen}(A - B) + \operatorname{sen}(A + b)$$

v) Las integrales del tipo

$$\int \operatorname{sen}^n x dx; \ \int \cos^n x dx$$

siendo n un exponente positivo y par, se simplifican mediante las fórmulas

$$sen^2 x = \frac{1 - \cos 2x}{2}; \cos^2 x = \frac{1 + \cos 2x}{2}$$

Integración de algunas funciones irracionales cuadráticas

Las integrales del tipo

$$\int R(x, \sqrt{a^2 \pm x^2}) dx \ y \ \int R(x, \sqrt{x^2 - a^2}) dx$$

con R función racional se pueden reducir a alguno de los tipos analizados anteriormente mediante los siguientes cambios de variable:

$$R(x, \sqrt{a^2-x^2})$$
 se resuelve con el cambio $x=a \sec t$ ó $x=a \cos t$ $R(x, \sqrt{a^2+x^2})$ se resuelve con el cambio $x=a \sec t$ ó $x=a \sec t$

$$R(x, \sqrt{x^2 - a^2})$$
 se resuelve con el cambio $x = a \sec t$ ó $x = a \operatorname{ch} t$

Sea y = f(x) una función acotada en un intervalo [a, b].

Partición

Se llama partición del intervalo cerrado [a, b] a todo conjunto finito

$$P = \{x_0, x_1, x_2, \dots, x_n \ / \ a = x_0 < x_1 < x_2 < \dots < x_n = b\}$$

Supongamos que $f(x) \geq 0$, $\forall x \in [a,b]$. Efectuamos una partición P_1 en n intervalos parciales. Sea m_i el ínfimo de f y M_i el supremo de f en cada intervalo. Se denominan suma inferior y suma superior correspondiente a la partición P_1 a:

$$s_1(P_1) = \sum_{i=1}^n m_i(x_i - x_{i-1}) = \sum_{i=1}^n m_i \Delta x_i$$

$$S_1(P_1) = \sum_{i=1}^n M_i(x_i - x_{i-1}) = \sum_{i=1}^n M_i \Delta x_i$$

Repetimos indefinidamente este proceso con particiones P_3, P_4, \dots cada vez más finas.

Función integrable en el sentido de Riemann

Cuando

$$\lim_{m\to\infty} s_m = s = \lim_{m\to\infty} S_m = S$$

se dice que la función y = f(x) es integrable (en el sentido Riemann) en el intervalo [a, b].

A dicho valor común s=S se le denomina integral definida según Riemann y se le representa por

$$\int_{a}^{b} f(x) dx$$

▶ Otra forma de imponer la condición de integrabilidad. Consideremos una partición P_1 en n intervalos parciales. Tomemos en cada subintervalo un punto intermedio $c_i \in [x_{i-1}, x_i]$ y formemos la denominada suma de Riemann

$$S_n = \sum_{i=1}^n f(c_i) \Delta x_i$$

Repitiendo de nuevo este proceso con particiones cada vez más finas, de forma que n tienda hacia ∞ , la integrabilidad de la función se basa en la existencia de límite de la sucesión de sumas de Riemann.

► Función integrable en el sentido de Riemann

La función y=f(x), acotada en el intervalo [a,b], es integrable (en el sentido Riemann) en dicho intervalo cuando, para cualquier sucesión de particiones con $n\to\infty$ y cualesquiera que sean los puntos c_i elegidos, existe un mismo límite para la sucesión de sumas de Riemann. Este límite es la integral definida.

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x_{i}$$

Interpretación geométrica de la integral definida

Si y = f(x) es integrable en [a, b] y $f(x) \ge 0$, $\forall x \in [a, b]$, el valor

$$A = \int_{a}^{b} f(x) dx$$

representa el área A encerrada por la curva y = f(x), el eje Ox y las rectas x = a, x = b.

Funciones Integrables

▶ Toda función y = f(x) monótona en un intervalo cerrado [a, b] es integrable en el mismo.

 Toda función continua en un intervalo cerrado es integrable en el mismo.

▶ Si f(x) y g(x) son integrables en [a, b], la función f(x) + g(x) es también integrable en dicho intervalo, verificándose

$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

▶ Si f(x) es integrable en [a,b], la función $K \cdot f(x)$ es integrable en dicho intervalo y se verifica

$$\int_{a}^{b} Kf(x)dx = K \int_{a}^{b} f(x)dx$$

- ▶ Si f(x) es integrable en [a, b], |f(x)| también lo es.
- ightharpoonup Si f(x) es integrable se verifican las siguientes expresiones

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt; \quad \int_{a}^{a} f(x)dx = 0; \quad \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

▶ Si f(x) es integrable, cualesquiera que sean a, b y c, se verifica

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

▶ $Si\ f(x) \ge 0, \forall x \in [a, b]$ entonces

$$\int_{a}^{b} f(x) dx \ge 0$$

▶ $Si\ f(x) \ge g(x), \forall x \in [a, b]$ entonces

$$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

▶ Si f(x) es integrable en [a, b], se verifica

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

Valor medio

Sea f(x) una función acotada e integrable en el intervalo [a,b]. Se llama valor medio de dicha función en ese intervalo [a,b] al número real dado por

$$\overline{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Primer teorema del valor medio

Si la función f(x) es continua en un intervalo [a,b] existe algún punto $c \in [a,b]$ tal que

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Teoremas Fundamentales del Cálculo

La integral como función de su límite superior.

$$F(x) = \int_{a}^{x} f(t)dt$$

Teoremas Fundamentales del Cálculo

Primer teorema fundamental del cálculo

Sea f(t) una función acotada e integrable en el intervalo cerrado [a,b]. En estas condiciones, la función F(x) definida por

$$F(x) = \int_{a}^{x} f(t)dt$$

en donde $x \in [a, b]$, es continua en [a, b]. Asímismo, si f(t) es continua en el intervalo [a, b], entonces F(x) es derivable en dicho intervalo, verificándose que

$$\frac{dF(x)}{dx} = f(x), \ \forall x \in [a, b]$$

Teoremas Fundamentales del Cálculo

► Segundo teorema fundamental del cálculo. Regla de Barrow

Sea f(x) una función integrable en el intervalo [a,b] y supongamos que existe alguna función F(x) continua para la que en dicho intervalo se verifique

$$F'(x) = f(x), \ \forall x \in [a, b]$$

En estas condiciones

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Cálculo de integrales definidas

Integración por partes

Dadas dos funciones con derivada continua u(x) y v(x), $\forall x \in [a,b]$ se verifica

$$\int_a^b u dv = [uv]_a^b - \int_a^b v du$$

Cambio de variable

Sea $\varphi(t)$ una función con derivada $\varphi'(t)$ continua $\forall t \in [a,b]$ y que admite inversa, y sea f(x) una función continua $\forall x \in [\varphi(a),\varphi(b)]$. Entonces, haciendo $x = \varphi(t)$, se tiene

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f \left[\varphi(t) \right] \varphi'(t) dt$$

Integrales Impropias

Definición

Se dice que la integral

$$\int_{a}^{b} f(x) dx$$

es una integral impropia, si el intervalo de integración [a,b] es infinito, o bien cuando la función subintegral f(x) no está acotada en algún o algunos puntos de dicho intervalo.

Integrales Impropias de Primera especie

Definición

Dada una integral impropia, diremos que es de primera especie si tiene infinito en su intervalo de integración y la función subintegral f(x) está acotada en dicho intervalo. Por consiguiente

$$\int_{a}^{+\infty} f(x)dx; \quad \int_{-\infty}^{b} f(x)dx; \quad \int_{-\infty}^{+\infty} f(x)dx$$

son las tres formas en que pueden presentarse estas integrales.

Integrales Impropias de Primera especie

Definición

$$I = \int_{a}^{+\infty} f(x) dx = \lim_{M \to +\infty} \int_{a}^{M} f(x) dx$$

$$I = \int_{-\infty}^{b} f(x) dx = \lim_{N \to -\infty} \int_{N}^{b} f(x) dx$$

$$I = \int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx$$

$$= \lim_{N \to -\infty} \int_{N}^{c} f(x) dx + \lim_{M \to +\infty} \int_{c}^{M} f(x) dx$$

La integral I es: Convergente, si existe el límite y éste es finito
Divergente, cuando el límite es infinito
Oscilante, si no existe dicho límite

Primera especie. Criterio de Convergencia

Sea la integral impropia de primera especie

$$I = \int_{a}^{\infty} f(x) dx$$

con f(x) acotada y no negativa en $[a, \infty)$.

Proposition

Criterio del Límite

Si

$$\lim_{X\to\infty}\frac{f(x)}{\frac{1}{X^{\lambda}}}=\left\{\begin{array}{ll} \textit{K finito (puede ser 0)} & \textit{con }\lambda>1\Longrightarrow\textit{I es convergente}\\ \textit{K}\neq\textit{0 (puede ser \infty)} & \textit{con }\lambda\leq1\Longrightarrow\textit{I es divergente} \end{array}\right.$$

Integrales Impropias de Segunda especie

Definición

Se dice que una integral impropia lo es de segunda especie si la función subintegral f(x) no está acotada en algún o algunos puntos de su intervalo de integración. Casos:

1. f(x) no acotada en el extremo superior b del intervalo.

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x)dx$$

2. f(x) no acotada en el extremo inferior a del intervalo.

$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x)dx$$

3. f(x) no acotada en ambos extremos.

$$\int_{a}^{b} f(x) dx = \lim_{\epsilon_2 \to 0^+} \lim_{\epsilon_1 \to 0^+} \int_{a+\epsilon_1}^{b-\epsilon_2} f(x) dx$$

Integrales Impropias de Segunda especie

Definición

4. f(x) no acotada en un punto intermedio $c \in (a, b)$.

$$\int_{a}^{b} = \int_{a}^{c} + \int_{c}^{b} = \lim_{\varepsilon_1 \to 0^+} \int_{a}^{c - \varepsilon_1} f(x) dx + \lim_{\varepsilon_2 \to 0^+} \int_{c + \varepsilon_2}^{b} f(x) dx$$

La integral I es: Convergente, si existe el límite y éste es finito
Divergente, cuando el límite es infinito
Oscilante, si no existe dicho límite

Segunda especie. Criterio de Convergencia

Sea la integral impropia de segunda especie

$$I = \int_a^b f(x) dx$$
, con $f(b) = \infty$ o $f(a) = \infty$

Criterio del Límite

Sea l cualquiera de los límites

$$\lim_{x\to b^-}\frac{f(x)}{\frac{1}{(b-x)^\lambda}}\left(\textit{cuando }f(b)=\infty\right);\ \ \lim_{x\to a^+}\frac{f(x)}{\frac{1}{(x-a)^\lambda}}\left(\textit{cuando }f(a)=\infty\right)$$

$$Si\ I = \left\{ egin{array}{ll} K\ ext{finito (puede ser 0)} & con\ \lambda < 1 \Longrightarrow & I\ ext{ es convergente} \ K
eq 0\ ext{(puede ser }\infty) & con\ \lambda \geq 1 \Longrightarrow & I\ ext{ es divergente} \end{array}
ight.$$

Definición

Las integrales de la forma

$$\int_{a}^{b} (f(x,\lambda_{1},\lambda_{2},...)dx$$

donde $\lambda_1, \lambda_2, ...$ son parámetros que permanecen constantes durante la integración, pudiendo a su vez los extremos a y b depender o no de dichos parámetros, reciben el nombre de integrales paramétricas.

Nuestro estudio se limitará a integrales dependientes de un parámetro λ , las cuales denotaremos por

$$I(\lambda) = \int_{a}^{b} f(x, \lambda) dx$$

► Ejemplo. Transformada de Laplace

Sea f(t) una función definida para t>0. Si converge la integral impropia

$$\int_0^{+\infty} e^{-st} f(t) dt$$

decimos que f(t) admite transformada de Laplace y se denota por

$$F(s) = \mathcal{L}[f(t)] = \int_0^{+\infty} e^{-st} f(t) dt$$

Ejemplo. Función Γ de Euler

Se denomina función Γ de Euler a la integral impropia

$$\Gamma(p) = \int_0^{+\infty} x^{p-1} e^{-x} dx, \quad p > 0$$

y recibe también el nombre de integral de Euler de primera especie. Se demuestra que la integral impropia es convergente para todo p > 0.

Propiedades de la Función Γ de Euler

a)
$$\Gamma(1/2) = \sqrt{\pi}$$

b) $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin \pi p}$, $0 c) $\Gamma(p+1) = p\Gamma(p)$, $p > 0$$

► Ejemplo. Función *B* de Euler

Se denomina función B de Euler a la integral

$$B(p,q) = \int_0^1 x^{p-1} (1-x)^{q-1} dx, \quad p, q > 0$$

y recibe también el nombre de integral de Euler de segunda especie. Se demuestra que la integral impropia es convergente para todo p, q > 0.

Propiedades de la Función B de Euler

a)
$$B(p,q) = B(q,p), \forall p,q > 0$$

b)
$$B(p,q) = 2 \int_0^{\pi/2} \sin^{2p-1} x \cos^{2q-1} x dx$$
, $\forall p, q > 0$

c)
$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}, \forall p,q>0$$

Integrales Paramétricas. Propiedades

Continuidad

Si la función $f(x, \lambda)$ es continua en la bola cerrada

$$B = \left\{ (x, \lambda) \in \mathbb{R}^2 / a \le x \le b, c \le \lambda \le d \right\}$$

entonces la función $I(\lambda)$ es continua $\forall \lambda \in (c, d)$.

Derivabilidad

Caso a) Caso en que los extremos a y b no dependen del parámetro

$$I(\lambda) = \int_{a}^{b} f(x,\lambda) dx \implies \frac{dI(\lambda)}{d\lambda} = \int_{a}^{b} f'_{\lambda}(x,\lambda) dx$$

Caso b) Caso en que los extremos a y b dependan del parámetro

$$\frac{dI(\lambda, a, b)}{d\lambda} = \int_{a(\lambda)}^{b(\lambda)} f'_{\lambda}(x, \lambda) dx + f(b, \lambda) \frac{db}{d\lambda} - f(a, \lambda) \frac{da}{d\lambda}$$

Aplicaciones de la Derivación Paramétrica

La derivación bajo el signo integral permite en muchas ocasiones calcular integrales que dependen de un parámetro. Sea la integral paramétrica

$$I(\lambda) = \int_{a}^{b} f(x, \lambda) dx$$

cuya resolución directa se considera complicada. Mediante derivación

$$\frac{dI(\lambda)}{d\lambda} = h(\lambda)
dI(\lambda) = h(\lambda)d\lambda \Rightarrow I(\lambda) = \int h(\lambda)d\lambda$$

integral ésta que puede ser mucho más sencilla que la dada y de cuya relación se tendrá

$$I(\lambda) = \int h(\lambda) d\lambda = H(\lambda) + C$$

Para hallar C basta conocer la integral dada por algún valor de λ .

$$I(\lambda_0) = H(\lambda_0) + C \Longrightarrow C = I(\lambda_0) - H(\lambda_0)$$

Áreas planas

Si y = f(x) es integrable en [a, b]

(a) Si
$$f(x) \ge 0, \forall x \in [a, b]$$
:

$$A = \int_{a}^{b} f(x) dx$$

(b) Área entre dos curvas $y=f(x), y=g(x): A=\int_a^b|f(x)-g(x)|dx$

(c) Si f(x) cambia de signo en [a, b]:

$$A = \int_{a}^{b} |f(x)| dx$$

Nota: Para que el área sea positiva el intervalo de integración debe tomarse siempre creciente.

Longitud de un arco de curva

Si y = f(x) es una curva con f'(x) continua $\forall x \in [a, b]$, el valor

$$L = \int_a^b \sqrt{1 + \left[f'(x)\right]^2} \, dx$$

representa la longitud del arco de curva y = f(x) limitada por los puntos (a, f(a) y (b, f(b)).

Nota: Para que la longitud sea positiva el intervalo de integración debe tomarse siempre creciente.

Áreas y Volúmenes de cuerpos de revolución

Consideremos el cuerpo de revolución engendrado por el trapecio curvilíneo limitado por la curva y=f(x), el eje Ox y las rectas x=a, x=b al girar alrededor del eje Ox.

Volumen =
$$\pi \int_a^b [f(x)]^2 dx$$

Área = $2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} dx$

Nota: Para que el área y el volumen sean positivos el intervalo de integración debe tomarse siempre creciente.