

Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh Reconstruction

Wenjia Wang ^{1,2} Yongtao Ge ³ Haiyi Mei ⁴ Zhongang Cai ⁴ Qingping Sun ⁴ Yanjun Wang ⁴ Chunhua Shen ⁵ Lei Yang ^{2,4} Taku Komura ¹

¹The University of Hong Kong

²Shanghai Al Laboratory

³The University of Adelaide

⁴SenseTime Research

⁵The Zhejiang University

Introduction

• **Motivation:** Existing 3D human mesh reconstruction methods use a constant f or estimate one based on the background context. Such f deviates a lot from distorted images caused by perspective projection.

The distortion is directly caused by the distance and the facing angle to the camera center.

Close-view shots could cause distortion on human bodies, which could be used to calculate the f.

Contribution

A novel camera system for the perspective-distorted 3DHMR task. A new neural model, and a hybrid re-projection loss. A new and the first synthetic dataset, PDHuman, for perspective-distorted 3D human pose estimation.

Camera System Design

- HMR. f = 5000. Most methods follow this setting.
- SPEC. The f is estimated by a network pre-trained on other datasets.
- CLIFF. Use the diagonal length as f if no ground truth f.
- Zolly. $f = shT_z/2$. Where T_z is the z-axis distance.

The weak-perspective camera parameters (s, t_x, t_y) , which represent 2D orthographic transformation, could be used to approximate the projection:

$$\begin{bmatrix} f(x+T_x)/T_z \\ f(y+T_y)/T_z \end{bmatrix} = \begin{bmatrix} s(x+t_x) \\ s(y+t_y) \end{bmatrix}, s \times T_z = f, T_x = t_x, T_y = t_y.$$
 (1)

In previous methods, they either use a constant or estimated f, and calculate distance by $T_z = f/s$. On contrary, we estimate T_z based on human body distortion clues and calculate f by $f = s \times T_z$. (NDC space)

Proposed Pipeline

- Translation Estimation Module. We use a Transformer to regress the z-axis distance from the warped I_{IUV} image and use sigmoid then $\times 10$ to restrict T_z less than 10m.
- Mesh Estimation Module. We adopt an MLP structure to predict the coordinates of a coarse mesh of the body, then up-sample the mesh using two fully connected layers.
- Loss Functions. The total loss function is the summation of mesh loss, translation loss, and re-projection loss.

$$\mathcal{L}_{total} = \mathcal{L}_{Mesh} + \mathcal{L}_{Transl} + \mathcal{L}_{2D}^{W} + \mathcal{L}_{2D}^{P}$$
 (2)

where the \mathcal{L}_{2D^W} is the weak-perspective and \mathcal{L}_{2D^P} is the perspective projection.

New Virtual Dataset: PDHuman

- Amount: 126, 198 images in the training and 27, 448 images in the testing
- Annotations: Camera intrinsic matrix, 2D/3D keypoints, SMPL parameters θ , β , and translation.
- Camera: Use the dolly-zoom effect to generate random camera intrinsic matrices.
- **Rendering**: Use human models from RenderPeople and body pose sequences from Mixamo, with HDRi images as backgrounds.

Experiments

Results on ordinary datasets and distorted datasets.

Method Backhone				3DPW	Human3.6M		
Method Backbone		PA-JPE	MPJPE	PVE	PA-JPE	MPJPE	
\overline{HN}	1R	Res50	72.6	116.5	-	56.8	88.0
SPE	EC	Res50	52.7	96.4	-		
CLI	FF	HR48	43.0	69.0	81.2	32.7	47.1
Zol	ly	HR48	39.8	65.0	76.3	32.3	49.4

Mathad	Rackhone	PDHuman (p5)			SPEC-MTP (p3)		
Method Backbone		PA-JPE	PVE	mloU	PA-JPE	PVE	mloU
HMR	Res50	62.5	106.7	21.7	73.9	145.6	16.0
SPEC	Res50	65.8	109.6	19.6	76.0	144.6	18.8
CLIFF	HR48	66.2	115.2	24.8	74.3	132.4	23.7
Zolly	HR48	49.9	82.0	26.5	67.4	126.7	30.4

Quality Results

Qualitative results of SOTA methods. Row 1: PDHuman test. Row 2, 3, 4: web images. Row 4: SPEC-MTP. Row 6: 3DPW. The number under each image represents predicted/ground-truth f, FoV angle, and T_z . The focal lengths here are all transformed to pixels in full image.

