Combinatory Logic and Combinators in Array Languages

Conor Hoekstra

ARRAY 2022

June 13, 2022

Slide deck can be found at: github.com/codereport/Content

About Me

Conor Hoekstra / @code_report

About Me

Conor Hoekstra / @code_report

About Me

Conor Hoekstra / @code_report

☐ Introduction
☐ A Brief Introduction to Array Languages
☐ A Brief History of Array Languages
☐ A Brief History of Combinatory Logic
☐ Combinator Specializations
☐ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
□ Examples
□ Summary

☐ Introduction
☐ A Brief Introduction to Array Languages
☐ A Brief History of Array Languages
☐ A Brief History of Combinatory Logic
☐ Combinator Specializations
☐ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
□ Examples
□ Summary

First 10 Odd Numbers

ι10

1 2 3 4 5 6 7 8 9 10

2×110

2 4 6 8 10 12 14 16 18 20

 $-1 + 2 \times 110$

1 3 5 7 9 11 13 15 17 19

Multiplication Table

ι10

1 2 3 4 5 6 7 8 9 10

$(110) \circ . \times 110$

```
3
             5
                       8
                              10
   2
          4
                6
2
   4
      6
          8
            10
               12
                  14
                     16
                              20
                         18
   6
                  21 24 27
                              30
3
            15 18
      9
        12
     12 16 20 24 28 32 36
4
   8
                              40
  10
     15
        20 25 30 35 40 45
                              50
  12 18 24 30 36 42 48
                         54
                              60
                              70
  14
     21 28 35
               42 49 56
                         63
        32 40 48
                  56
                      64 72
                              80
  16 24
     27
        36
           45
              54
                  63
                      72 81
                              90
  18
                  70
                      80 90
 20
     30
        40
            50
               60
                            100
```

o.×~10

```
3
              5
                         8
                                10
    2
           4
                  6
 2
    4
        6
           8
             10
                 12
                       16
                           18
                                20
                    14
                               30
    6
             15 18
 3
                    21 24 27
        9
          12
             20 24
 4
    8
      12
                    28 32 36
                                40
         16
   10
      15
         20 25 30 35 40 45
                                50
                                60
   12 18
         24 30
                36
                    42 48
                           54
 6
                                70
   14
      21 28 35
                42 49 56 63
          32 40
                48
                    56
                       64 72
                                80
   16 24
 8
   18
         36
             45
                54
                    63
                       72 81
                                90
      27
             50
                    70
                       80 90
                              100
10
  20
      30
         40
                 60
```

Maximum Consecutive Ones

vec + 1 1 0 1 1 1 0 0 1

vec⊆vec

1 1 1 1 1

1 1 1 1 1

≢"⊆**~**vec

2 3 1

☐ Introduction
☑ A Brief Introduction to Array Languages
☐ A Brief History of Array Languages
☐ A Brief History of Combinatory Logic
☐ Combinator Specializations
☐ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
☐ Examples
□ Summary

☐ Introduction
☑ A Brief Introduction to Array Languages
☐ A Brief History of Array Languages
☐ A Brief History of Combinatory Logic
☐ Combinator Specializations
☐ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
☐ Examples
□ Summary

Table 1. Array languages timeline.

Language	Year
APL	1966
Dyalog APL 1.0	1983
J	1990
K	1994
Q	2003
I	2012
BQN	2020
Dyalog APL 18.0	2020

Table 1. Array languages timeline.

Language	Year
APL	1966
Dyalog APL 1.0	1983
J	1990
K	1994
Q	2003
I	2012
BQN	2020
Dyalog APL 18.0	2020

☐ Introduction
☑ A Brief Introduction to Array Languages
☑ A Brief History of Array Languages
☐ A Brief History of Combinatory Logic
☐ Combinator Specializations
☐ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
□ Examples
□ Summary

☐ Introduction
☑ A Brief Introduction to Array Languages
☑ A Brief History of Array Languages
☐ A Brief History of Combinatory Logic
☐ Combinator Specializations
☐ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
□ Examples
□ Summary

Moses Schönfinkel 1988 - 1942

Moses Schönfinkel 1988 - 1942

Haskell Curry 1900-1982

Year	Author(s)	Title	Introduced
1924	Schönfinkel	On the building blocks of mathematical logic	SKIBC
1929	Curry	An Analysis of Logical Substitution	W
1930	Curry	The Foundations of Combinatory Logic	$B_n(B_1, B_2, \ldots)$
1931	Curry	The Universal Quantifier in Combinatory Logic	$\Psi, \Phi_n (\Phi, \Phi_1, \ldots)$
1958	Curry and Feys	Combinatory Logic: Volume I	

Table 2. The elementary combinators.

Combinator	Elementary Name
I	Elementary Identificator
C	Elementary Permutator
W	Elementary Duplicator
В	Elementary Compositor
K	Elementary Cancellator

Table 3. Combinators and lambda expressions.

Combinator	Lambda Expression
I	λa.a
K	λ ab.a
W	λab.abb
C	λabc.acb
В	λabc.a(bc)
S	λabc.ac(bc)
D	λ abcd.ab(cd)
B_1	λ abcd.a(bcd)
Ψ	λ abcd.a(bc)(bd)
Φ	λ abcd.a(bd)(cd)
D_2	λ abcde.a(bd)(ce)
E	λabcde.ab(cde)
Φ_1	λabcde.a(bde)(cde)
Ê	λabcdefg.a(bde)(cfg)

def i(x): return x

def k(x, y): return x

```
def s(f, g):
return lambda x: f(x, g(x))
```

```
defi(x):
                 return x
def k (x, y):
                 return x
def ki(x, y):
                 return y
def s (f, g):
                 return lambda x: f(x, g(x))
def b (f, q):
                 return lambda x: f(g(x))
def c (f):
                 return lambda x, y: f(y, x)
def w (f):
                 return lambda x: f(x, x)
                 return lambda x, y: f(x, g(y))
def d (f, g):
                 return lambda x, y: f(g(x, y))
def b1 (f, g):
def psi(f, g):
                 return lambda x, y: f(g(x), g(y))
def phi(f, g, h): return lambda x: g(f(x), h(x))
```

☐ Introduction
☑ A Brief Introduction to Array Languages
☑ A Brief History of Array Languages
☑ A Brief History of Combinatory Logic
☐ Combinator Specializations
☐ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
□ Examples
□ Summary

☐ Introduction
☑ A Brief Introduction to Array Languages
A Brief History of Array Languages
A Brief History of Combinatory Logic
☐ Combinator Specializations
☐ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
□ Examples
□ Summary

Phrasal Forms

K. E. Iverson Toronto E. E. McDonnell
I. P. Sharp Associates
Palo Alto

NOTE: In this paper we use the linguistic terms verb and pronoun interchangeably with the mathematical terms function and variable.

INTRODUCTION

In standard APL [ISO88] certain forms are ungrammatical, and new definitions could be adopted for them without conflict. Such definitions we shall call *phrasal forms* [AHD76]. For example, if b and c are pronouns, the phrase b c is meaningless, and in APL2 [IBM85] the definition (c b), (c c), where c is the APL2 *enclose* function, is adopted for it.

VERB RANK

The notion of verb rank, first introduced by Iverson [Iv78], later elaborated by Keenan [Ke79], and further evolved by Whitney [Wh84], has been adopted by Iverson in his Dictionary [Iv87]. It refers to the rank of the subarrays of an argument which are the cells to which the verb aplies. For example, the cells that negate applies to are items, and items are rank zero objects, and thus we say the rank of negate is zero. Similarly, the cells to which reverse applies are lists, or rank ome objects, and thus we say the rank of reverse is one. Not only primitive verbs, but also derived and defined verbs have rank. The idea is a powerful one, producing great simplifications, and so we define the ranks of the new constructions we describe herein.

DEFINITIONS

In the following definitions, f, g, and h denote verbs and α and ω denote pronouns.

HOOK. A *hook* is denoted by f g and is defined formally by identities and informally by hook-shaped diagrams as follows:

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and note is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and /or specific permission. Copyright 1989 ACM 0-87971-327-2/0008/0197 \$1.50

The rank of the hook f g is the maximum of the ranks of f and g. Note that the verb is used monadically.

FORK. A *fork* is denoted by f g h and is defined formally by identities and informally by forking diagrams as follows:

$$(fgh)\omega \leftrightarrow (f\omega)g(h\omega); \quad \alpha(fgh)\omega \leftrightarrow (\alpha f\omega)g(\alpha h\omega)$$

The rank of the fork fgh is the maximum of the ranks of f and g. Note that the central verb is used dyadically or monadically according to whether the fork is applied to two arguments or one. Parenthesis are required around hook and fork forms only to avoid ambiguity.

DISCUSSION OF HOOK AND FORK

HOOK. In combinatory logic one of the most useful primitive combinators is designated by S [Sch24]. Curry defines Sfgx in prefix notation to be fx(gx)[CuFeCr74]. In common mathematical infix notation this would be given by (x)f(g(x)), which one can write in APL as xfgx, and this is the hook form (fg)x. The combinatory logician appreciates this form because of its great expressiveness: it can be shown that S, along with K, the constancy combinator, suffice to define all other combinators of interest [Ro50]. (The constancy combinator K is defined in infix notation so that cKx has the value c for all x.) Users of APL will appreciate the hook for the same reasons.

For example, $+\div$ adds the reciprocal of the right argument to the left argument, a form used in describing continued fractions. Thus $(++) \setminus 3$ 7 16 $^-$ 294 gives the first four convergents to pi, which, to nine decimals, are 3, 3.1412857143, 3.14159292, and 3.141592654. Further, $= \lfloor$ is a proposition that tests whether its argument is an integer, the number of primes less than positive integer ω is approximately $(+\otimes)\omega$; and to decompose a number ω into numerator and denominator, one can write $(+\vee)/\omega$, 1 (where \vee is the greatest common divisor).

FORK. The forks f + h and $f \times h$ and $f \neq h$ provide formal treatment of the identical but informal phrases used in mathematics [e.g. Ef89] for the sum and product and quotient,

d further evolved by erson in his Dictionary arrays of an argument ies. For example, the d items are rank zero ate is zero. Similarly, , or rank ome objects, ne. Not only primitive s have rank. The idea olifications, and so we is we describe herein.

enote verbs and α and

is defined formally by diagrams as follows:

$$\omega \leftrightarrow \alpha f g \omega$$

and g. Note that the central verb is used dyadically or monadically according to whether the fork is applied to two arguments or one. Parenthesis are required around hook and fork forms only to avoid ambiguity.

DISCUSSION OF HOOK AND FORK

HOOK. In combinatory logic one of the most useful primitive combinators is designated by **S** [Sch24]. Curry defines $\mathbf{S} f g x$ in prefix notation to be fx(gx)[CuFeCr74]. In common mathematical infix notation this would be given by (x)f(g(x)), which one can write in APL as xfgx, and this is the hook form (fg)x. The combinatory logician appreciates this form because of its great expressiveness: it can be shown that S, along with K, the constancy combinator, suffice to define all other combinators of interest [Ro50]. (The constancy combinator **K** is defined in infix notation so that $c\mathbf{K}x$ has the value c for all x.) Users of APL will appreciate the hook for the same reasons.

For example, $+ \div$ adds the reciprocal of the right argument to the left argument, a form used in describing continued fractions. Thus $(+\div) \setminus 3$ 7 16 -294 gives the first four convergents to pi, which, to nine decimals, are 3, 3,1412857143.

Curry [Cu31] defines a formalizing combinator, Φ , in prefix notation, such that $\Phi fghx$ means f(gx)(hx). In common mathematical infix notation this would be designated by (g(x))f(h(x)). An example of this form is $\Phi + \sin^2 \cos^2 \theta$, meaning $\sin^2 \theta + \cos^2 \theta$. The fork $(fgh)\omega$ has the same meaning, namely $(f\omega)g(h\omega)$. Curry named this the formalizing combinator because of its role in defining formal implication in terms of ordinary implication.

Iverson and Whitney have made several earlier suggestions of ways to achieve what the fork form provides: the scalar operators of [Iv78], [Iv79a], [Iv 79b], the til operator of [Iv82], the union and intersection conjunctions of [Iv87], and the yoke adverb of [Iv88]. Benkard [Bk87] has also suggested a way to achieve the meaning of this form, in his proposal for $\dagger g/(fh)\alpha \omega$, using the notion of function pair (\dagger is APL2's first function). The present proposal has significant advantages over these earlier ones.

Table 4. 2 and 3-trains in APL, BQN and J.

Year	Language	2-Train	3-Train
1990	J	S and D	Φ and Φ_1
2014	Dyalog APL	B and B_1	Φ and Φ_1
2020	BQN	B and B ₁	Φ and Φ_1

Table 5. History of combinators in Dyalog APL.

Year	Version	Combinator	Spelling
1983	1.0	B, D, C	·~
2003	10.0	W	::
2013	13.0	K	-
2014	14.0	B, B_1, Φ, Φ_1	trains
2020	18.0	B, B_1, Ψ, K	°°~

☐ Introduction
☑ A Brief Introduction to Array Languages
☐ A Brief History of Array Languages
☐ A Brief History of Combinatory Logic
☐ Combinator Specializations
☑ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
☐ Examples
□ Summary

☐ Introduction
☑ A Brief Introduction to Array Languages
☑ A Brief History of Array Languages
☑ A Brief History of Combinatory Logic
☐ Combinator Specializations
☑ Evolution of Combinatory Logic in Array Languages
☐ Combinators in APL, BQN and J
☐ The Power of Combinators in Array Languages
☐ Examples
□ Summary

Table 14. Ψ combinator.

Language	Name	Symbol
APL	Over	ö
BQN	Over	0
J	Appose	&:

Table 14. Ψ combinator.

A	\mathbf{P}	\mathbf{L}

Language	Name	Symbol
APL	Over	ö
BQN	Over	0
J	Appose	&:

	APL		J
I	7	+][
K	1	1]
KI	7	Т	
S		6	2 Train
В	• ö ö 2T	•O 2T	@: &:
С	:	~	~
W	: ~	~	~
B ₁	° 2T	。 2T	@:
D	•	6	2 Train
Ψ	ö	0	&:
Ф	3 Train	3 Train	3 Train
Φ ₁	3 Train	3 Train	3 Train
D_2		-0-	

	APL		J
I	-1 -	⊣ ⊢][
K	1	1]
KI	Т	Т	[
S		6	2 Train
В	∘öö 2T	•O 2T	@: &:
С	:	~	~
W	:	~	~
B ₁	° 2T	• 2T	@:
D	0	6	2 Train
Ψ	ö	0	&:
Ф	3 Train	3 Train	3 Train
Φ ₁	3 Train	3 Train	3 Train
D_2		-90-	

	APL		J
I	-11-	⊣⊢][
К	F	F]
KI	-	4	[
S		o -	2 Train
В	∘öö 2T	•O 2T	@: &:
С	:	~	~
W	:	~	~
B ₁	° 2T	• 2T	@:
D	•	6	2 Train
Ψ	ö	0	&:
Ф	3 Train	3 Train	3 Train
Φ ₁	3 Train	3 Train	3 Train
D ₂		-00-	

	APL		J
I	+	⊣⊢][
K	1	F]
KI	T	4	[
S		6 -	2 Train
В	∘ ः ö 2T	•O 2T	@: &:
С	:-	~	~
W	:	~	~
B ₁	° 2T	• 2T	@:
D	•	6 -	2 Train
Ψ	ö	0	&:
Ф	3 Train	3 Train	3 Train
Φ ₁	3 Train	3 Train	3 Train
D_2		-00-	
Σ		-	
Δ		-0	

☐ Introduction ■ A Brief Introduction to Array Languages A Brief History of Array Languages A Brief History of Combinatory Logic ☐ Combinator Specializations **Evolution of Combinatory Logic in Array Languages** ☐ The Power of Combinators in Array Languages Examples ☐ Summary

Thank You!

Conor Hoekstra
choekstra@ryerson.ca
conorhoekstra@gmail.com
@code_report