Seminar 1

Xiaoguang Ling

August 26. 2020

1 Jehle & Reny 1.8. Axioms of consumer choice

Sketch a map of indifference sets that are all **parallel**, **negatively sloped straight lines**, with **preference increasing north-easterly**. We know that preferences such as these satisfy Axioms 1, 2, 3, and 4.

Prove that they also satisfy Axiom 5'.

Prove that they do not satisfy Axiom 5.

1.1 Axiom 1. Completeness

We can always choose

 $\forall x^1, x^2 \text{ in } X$, we have: $x^1 \succsim x^2 \text{ or } x^2 \succsim x^3 \text{ or both}$

- 1.2 Axiom 2. Transitivity
- 1.3 Axiom 3. Continuity
- 1.4 Axiom 4'. Local non-satiation
- 1.5 Axiom 4. Strict monotonicity
- 1.6 Axiom 5'. Convexity
- 1.7 Axiom 4. Strict convexity

2 Jehle & Reny 1.9

Sketch a map of indifference sets that are **all parallel right angles that 'kink' on the line** $x_1 = x_2$. If **preference increases north-easterly**, these preferences will satisfy Axioms 1, 2, 3, and 4'.

Prove that they also satisfy Axiom 5'.

Do they satisfy Axiom 4?

Do they satisfy Axiom 5?

3 Jehle & Reny 1.13

A consumer has lexicographic preferences over xR2 if the relation satisfies x_1, x_2 whenever $x_1^1 > x_1^2$, or $x_1^1 = x_1^2$ and $x_1^1 \ge x_1^2$.

- (a) Sketch an indifference map for these preferences.
- (b) Can these preferences be represented by a continuous utility function? Why or why not?

4 Jehle & Reny 1.15

Prove that the budget set, B, is a **compact, convex set whenever** $p \gg 0$.

5 **Jehle & Reny 1.26**

A consumer of **two goods** faces **positive prices** and has a **positive income**. His utility function is

$$u(x_1, x_2) = x_1$$

Derive the Marshallian demand functions.

6 Jehle & Reny 1.27

A consumer of **two goods** faces **positive** prices and has a **positive income**. His utility function is

$$u(x_1, x_2) = max[ax_1, ax_2] + min[x_1, x_2], where 0 < a < 1.$$

Derive the Marshallian demand functions.