# Jour 10: exponentielle

On considère les fonctions f et g définies pour tout réel x par :

$$f(x) = e^x$$
 et  $g(x) = 1 - e^{-x}$ .

Les courbes représentatives de ces fonctions dans un repère orthogonal du plan, notées respectivement  $\mathcal{C}_f$  et  $\mathcal{C}_g$ , sont fournies au verso de cette feuille.

### Partie A

Ces courbes semblent admettre deux tangentes communes. Tracer aux mieux ces tangentes sur la figure de l'annexe.

## Partie B

Dans cette partie, on admet l'existence de ces tangentes communes.

On note  $\mathcal D$  l'une d'entre elles. Cette droite est tangente à la courbe  $\mathcal C_f$  au point A d'abscisse a et tangente à la courbe  $\mathcal C_g$  au point B d'abscisse b.

- 1. a. Exprimer en fonction de a le coefficient directeur de la tangente à la courbe  $\mathscr{C}_f$  au point A.
  - **b.** Exprimer en fonction de b le coefficient directeur de la tangente à la courbe  $\mathscr{C}_g$  au point B.
  - **c.** En déduire que b = -a.
- **2.** Démontrer que le réel *a* est solution de l'équation

$$2(x-1)e^x + 1 = 0.$$

### Partie C

On considère la fonction  $\varphi$  définie sur  $\mathbb{R}$  par

$$\varphi(x) = 2(x-1)e^x + 1.$$

- **1. a.** Calculer les limites de la fonction  $\varphi$  en  $-\infty$  et  $+\infty$ .
  - **b.** Calculer la dérivée de la fonction  $\varphi$ , puis étudier son signe.
  - **c.** Dresser le tableau de variation de la fonction  $\varphi$  sur  $\mathbb{R}$ . Préciser la valeur de  $\varphi(0)$ .
- **2. a.** Démontrer que l'équation  $\varphi(x) = 0$  admet exactement deux solutions dans  $\mathbb{R}$ .
  - **b.** On note  $\alpha$  la solution négative de l'équation  $\varphi(x) = 0$  et  $\beta$  la solution positive de cette équation.

À l'aide d'une calculatrice, donner les valeurs de  $\alpha$  et  $\beta$  arrondies au centième.

## Partie D

Dans cette partie, on démontre l'existence de ces tangentes communes, que l'on a admise dans la partie B.

On note E le point de la courbe  $\mathscr{C}_f$  d'abscisse  $\alpha$  et F le point de la courbe  $\mathscr{C}_g$  d'abscisse  $-\alpha$  ( $\alpha$  est le nombre réel défini dans la partie C).

- **1.** Démontrer que la droite (EF) est tangente à la courbe  $\mathscr{C}_f$  au point E.
- **2.** Démontrer que (EF) est tangente à  $\mathcal{C}_g$  au point F.

