Liite lukuun 4.

Partikkelisysteemin kinetiikka - harjoitustehtäviä

4.1 Laske, kuinka suuri pystysuuntainen kiihtyvyys 2 kg palloilla on niiden irrotessa vaakatasolta, kun voima F = 60 N. Vast. 5,19 m/s²

4.2 Kolme massaa $m_A = 10 \text{ kg}$, $m_B = 15 \text{ kg}$ ja $m_C = 8 \text{ kg}$ liikkuvat pitkin pystysuoraa johdetta, joka on kiinnitetty kattoon kohdasta D. Tarkasteluhetkellä A liikkuu alaspäin kiihtyvyydellä 2 m/s^2 , C liikkuu ylöspäin kiihtyvyydellä 1,5 m/s² ja B liikkuu ylöspäin vakionopeudella 0,8 m/s. Laske johteen rasitus T kohdassa D, kun johteen omaa painovoimaa ei oteta huomioon. Vast. 316 N

4.3 Laske kuvan mukaisten sylintereiden muodostaman systeemin massakeskiön kiihtyvyys, joka aiheutuu voimista 500 N ja 250 N. Massa m=10 kg ja kitka on merkityksetön. Vaijereiden ja väkipyörien massa oletetaan nollaksi.

Vast. 15,19 m/s²

4.4 Kolme samanlaista teräspalloa on hitsattu kahteen sauvaan, jolloin ne muodostavat jäykän kokonaisuuden. Pallon massa on m ja sauvan massa merkityksetön. Systeemi lähtee levosta liikkeelle kuvan mukaisesta asemasta. Määritä pallojen nopeus niiden tullessa vaakatasolle. Kitkaa ei oteta huomioon. Vast. $\sqrt{b g \sqrt{2}}$

4.5 Määritä kuvan tilanteessa nopeus v vaunujen ollessa vaakatasolla, kun niiden nopeus ympyräradan korkeimmassa kohdassa on 30 km/h. Kitkaa ei oteta huomioon. Kaikilla kuudella vaunulla on sama massa. Vast. 72,7 km/h

4.6 Vaunun A massa on 16 kg ja se liikkuu vaakasuuntaan nopeudella 1,2 m/s. Vaunuun on kiinnitetty massattomilla sauvoilla neljä palloa, joiden kunkin massa on 1,6 kg. Etualalla olevien pallojen 1 ja 2 systeemi pyörii vastapäivään pyörimisnopeudella 80 r/min ja taka-alalla olevien pallojen 3 ja 4 systeemi myötäpäivään pyörimisnopeudella 100 r/min. Määritä

koko systeemin liike-energia, liikemäärä ja liikemäärän momentti massakeskiön G suhteen. Vast. $54,7 \, \text{J} \, 26,9 \, \text{kg} \cdot \text{m/s} \, 2,42 \, \text{kg} \cdot \text{m}^2 \, / \text{s}$

4.7 Kahden teräspallon ja sauvan muodostama systeemi on aluksi levossa kitkattomalla vaakatasolla. Pallojen massa on m, sauvan pituus on L ja massa merkityksetön. Systeemiin vaikuttaa äkillisesti voima F kuvan mukaisesti. Määritä systeemin massakeskiön saama kiihtyvyys sekä nopeus $\ddot{\theta}$, jolla sauvan kulmanopeus $\dot{\theta}$ muuttuu välittömästi voiman vaikutuksen alettua.

Vast. F/(2m) $2Fb/(mL^2)$

4.8 Kuvan mukainen pallojen ja massattomien varsien systeemi pyörii z-akselin ympäri myötäpäivään kulmanopeudella $\dot{\theta}=20~\text{rad/s}$. Laske kuinka kauan vastapäiväisen vakiomomentin M=30~Nm pitää vaikuttaa, jotta kulmanopeudeksi tulisi $\dot{\theta}=20~\text{rad/s}$ vastapäivään.

Vast. 2,72 s

Dynamiikka 3

4.9 Kaksi palloa on kiinnitetty massattomaan ja jäykkään sauvaan, joka on ripustettu vaijerilla tukeen kuvan mukaisesti. Systeemi on aluksi levossa, kunnes voima F = 60 N vaikuttaa äkillisesti. Laske systeemin massakeskiön saama kiihtyvyys a_G ja nopeus $\ddot{\theta}$, jolla sauvan kulmanopeus $\dot{\theta}$ muuttuu. Vast. 20 m/s^2 336 rad/s^2

4.10 Partikkelien A, B ja C massat ovat $m_A = 2 \, kg$, $m_B = 3 \, kg$ ja $m_C = 4 \, kg$. Tietyllä ajan hetkellä niiden paikkavektorit ovat $\vec{r}_A = (2\,\vec{i} + \vec{j} - 2\,\vec{k}) m$, $\vec{r}_B = (2\,\vec{i} + 2\,\vec{j} - \vec{k}) m$ ja $\vec{r}_C = (\,\vec{i} - 2\,\vec{j} - 2\,\vec{k}) m$. Nopeusvektorit ovat samanaikaisesti $\vec{v}_A = (3\,\vec{i} + 2\,\vec{j} - 2\,\vec{k}) m/s$, $\vec{v}_B = (2\,\vec{i} + 3\,\vec{j} + \vec{k}) m/s$ ja $\vec{v}_C = (-2\,\vec{i} - 2\,\vec{j} + \vec{k}) m/s$. Laske kyseisen partikkelisysteemin liikemäärän momentti origon O suhteen. Vast. $(-5\,\vec{i} - 4\,\vec{j} - 16\,\vec{k}) kg \cdot m^2/s$

4.11 Kolme rautatievaunua liikkuu vaakasuuntaisia kiskoja pitkin kuvan mukaisilla nopeuksilla. Kun vaunut törmäävät toisiinsa, ne kytkeytyvät

yhteen, minkä jälkeen ne liikkuvat yhteisellä nopeudella v. Vaunujen massat ovat $m_A = 65 \cdot 10^3 \text{ kg}$, $m_B = 50 \cdot 10^3 \text{ kg}$ ja $m_C = 75 \cdot 10^3 \text{ kg}$. Määritä nopeus v ja laske montako prosenttia on energiahäviö törmäyksessä. Vast. 0,355 km/h 95,0 %

4.12 Kuvan tilanteessa mies ja nainen lähtevät kulkemaan toisiaan kohti alustan

päistä. Miehen massa on m_1 , naisen massa on m_2 ja alustan massa m_0 . Alusta on aluksi levossa kohdassa s=0 ja se liikkuu kitkattomasti. Laske miehen ja naisen kohtaamishetkeä vastaava alustan siirtymän s lauseke miehen alustaan nähden kulkeman matkan

 x_1 funktiona. Alustan pituus on I. Vast. $\frac{(m_1 + m_2)x_1 - m_2 I}{m_0 + m_1 + m_2}$

4.13 Kuvassa on annettu vaunujen A ja B sekä kivenlohkareen K massat ja alkunopeudet. Laske systeemin yhteinen loppunopeus v, kun a) K putoaa ennen vaunujen törmäystä ja b) K putoaa vaunujen törmäyksen jälkeen. Vast. 0,205 m/s

Dynamiikka 4

4.14 Kuvan systeemi liikkuu kitkattomasti vaakatasossa olevia johteita pitkin (kuva on esitetty tason normaalin suunnasta katsottuna) nopeudella v. Kun $\theta=0^{\circ}$, nopeus v=0.6 m/s. Massattomaan varteen kiinnitetty pallo pyörii kiinnitysnivelen ympäri kitkattomasti kulmanopeudella $\dot{\theta}=4$ rad/s. Alustan massa on m=20 kg, pallon massa $m_p=5$ kg ja varren pituus r=0.4 m. Määritä nopeus v kulman θ funktiona ja laske v_{max} .

Vast. 0,92 m/s

4.15 Kaksi 10 kg ammusta laukaistaan alustalta, jonka massa on 1000 kg. Alusta liikkuu ennen laukaisua nopeudella $v_0 = 1,2 \text{ m/s}$ laukaisusuuntaan nähden vastakkaiseen suuntaan. Ammukset lähtevät nopeudella $v_r = 1200 \text{ m/s}$ putken suhteen. Laske alus-

tan nopeus v' laukaisun jälkeen, kun ammukset lähtevät a) yhtäaikaa ja b) peräkkäin. Pyörien massaa eikä kitkaa oteta huomioon. Vast. a) 24,7 m/s b) 24,8 m/s