MIPS32神经网络协处理器设计

北京航空航天大学1队

提纲

- CPU结构设计
- 协处理器结构设计
- 协处理器交互

CPU结构 -传统的5级流水

CPU结构 -初赛设计的5级流水

频率:42MHZ 周期性能:1.229

CPU结构 -决赛设计的7级流水

频率:75MHZ 周期性能:1.007

协处理器结构 - 主要特点

- 协处理器在内部RAM进行计算
 - 避免与主CPU争用访存周期,提高双方性能
 - 内部RAM单独编址,实现针对多分支等复杂网络结构的灵活定制
- 协处理器使用定点数(16bit)进行运算
 - 对输入图片进行归一化, 使得神经元激活的动态范围可以接受
 - 在FPGA上,使用很少的资源快速实现乘法器
 - Sigmoid函数定点化:线性插值
- 向量化计算
 - 针对NN规整的结构, 堆积运算单元, 增加吞吐

协处理器结构

协处理器-CPU交互

- 使用访存指令与Coprocessor进行交互
 - CPU将输入写入Coprocessor对应地址段
 - CPU向Coprocessor发送开始命令
 - 以轮询或中断方式得知计算是否完成
 - 取结果, 进行后续处理

协处理器性能

- On mnist dataset:
 - Top-1 accuracy: 90%
- Input -> fc -> sigmoid -> fc -> argmax
 - Coprocessor performance: ~450 cycles / inference (without data loading cycles)
 - CPU performance: ~100 000 cycles / inference (without data loading cycles)