#### Review 7

**Chapter 7** 

## Steps for determination of molecular geometry and type of hybridization

- The steps are as follows:
- 1. Draw the Lewis structure of the molecule.
- 2. Predict the overall arrangement of the electron pairs (both bonding pairs and lone pairs) using the VSEPR model.
- 3. Write the symbol of the molecule as ABxEy, then from the tables, determine the molecular geometry .
- 4. Deduce the hybridization of the central atom taken into account that the total number of electron pairs equals pure atomic orbitals that participate in the hybridization process. Then, you can choose the type of hybridization from the table related to this subject.

#### Q1)Show molecular geometry and hybridization in the following molecules



PCI3

(CI)

HCN
H-C=N

2 BP o LP -> AB\_ s linear

Total no. of electrons = 2 -> 5p hybridization





SO3

SSP No lone pairs > AB Trigonal planar

101

Total no. of e pairs = 3 = 5 P hybridization

e pairs 24. Total no of electron pairs=3 > SP2 hybridization PF5
F

Bonding pairs - ABs - Trigonal
Bipyramidal

Total no. of e-pairs = 5 - Spd hypridigation

## Q2) Show sigma bonds and pi bonds in the following



### Q3) show the type of hybridization for each carbon atom

## Q4) show the type of hybridization for each central atom





| lass of<br>olecule               | Total number of electron pairs | Number of<br>bonding pairs | Number of<br>lone pairs | Accompany of electron pairs*          | Geometry                                | Examples         |
|----------------------------------|--------------------------------|----------------------------|-------------------------|---------------------------------------|-----------------------------------------|------------------|
| AB;E                             | 3                              | 2                          | 1)                      | B B B Teigonal planar                 | Bent                                    | SO <sub>3</sub>  |
| AB,E                             | *                              | 3                          | i                       | B B Tetrahedral                       | Trigonal<br>pyvamidal                   | NH.              |
| (B <sub>2</sub> E <sub>2</sub> ) | 4                              | 2                          | 2                       | B<br>Tetrahedral                      | Bent                                    | H <sub>2</sub> O |
| AB <sub>4</sub> E                | 5                              |                            |                         | Trigonal hipyramidal                  | Distorted<br>tetrahedron<br>(or seesaw) | 37               |
| AB <sub>3</sub> E <sub>2</sub>   | 5                              |                            | 2                       | B B B B B B B B B B B B B B B B B B B | T-shaped                                | CIP              |
| AB <sub>2</sub> E <sub>3</sub>   | 5                              | 2                          | 3                       | Trigonal hipyramidal                  | Linear                                  |                  |
| AB,E                             | •                              | 5                          | i                       | B B B                                 | Square<br>pyvamidal                     | BeF,             |
| NB4E2                            | 6                              | 4)                         | 2                       | B TO B                                | Square planar                           |                  |

# مع خالص تمنیاتی لکم بالتوفیق و النجاح و النجاح