99 级物理实验试题

1. 测量电压表内阻 R_{ν} 的线路如图所示。R 为电阻箱,E 为稳压电源,其内阻可忽略不计。实验测得一组不同 R 值时的电压表读数 ν (见下表)。试用一元线性归纳法(不要求计算相关系数和不确定度)求出 R_{ν} 。

R	20.0	50.0	100.0	200.0	300.0	400.0
v/V	2.80	2.72	2.60	2.38	2.20	2.04

(一元线性回归的计算公式为:
$$b = \frac{\overline{xy} - xy}{\overline{x}^2 - \overline{x}^2}$$
)

解: $a = \overline{y} - b\overline{x}$

$$v = E \times \frac{R_V}{R_V + R_x} \Rightarrow \frac{1}{v} = \frac{R_V + R_x}{E \cdot R_V} = \frac{R_x}{E \cdot R_V} + \frac{1}{E}$$

y = a + bx 令 y = 1/v ,则 $x = R_x$ (由于 R_x 的有效数字多,精度高,故 R_x 用做 x)

$$a=1/E$$
, $b=1/E\cdot R_{\scriptscriptstyle V}$, $R_{\scriptscriptstyle V}=a/b$

i	1	2	3	4	5	6	平均
v	2.8	2.72	2.6	2.33	2.2	2.04	2.448333
у	0.357143	0.367647	0.384615	0.429185	0.454545	0.490196	0.413889
x	20	50	100	200	300	400	178.3333
xy	7.142857	18.38235	38.46154	85.83691	136.3636	196.0784	80.37762
x^2	400	2500	10000	40000	90000	160000	50483.33

$$b = \frac{\overline{xy} - \overline{xy}}{\overline{x}^2 - \overline{x^2}} = 0.000352,$$

$$a = \overline{y} - b\overline{x} = 0.351192 ,$$

$$R_{\scriptscriptstyle V} = a\,/\,b = 997.7\Omega \quad .$$

(用各种处理方法时,大家一定要参照书上数据处理的实例,注意注意该列表的一定要列

出; 画图时曲线的性质一定要正确, 试验点一定要用符号标出, 具体方法参照书本!)

2. 用 mm 分度的钢卷尺测得某距离的长度 h 为126.38cm 。其不确定度由两个分量合成:一是来自仪器误差,一是来自测量的误差。已知后者带入的不确定度 u(h) = 0.03cm,若仪器误差限按最小分度的一半,试写出结果的正确表述?

$$\Delta_{\text{fix}}(h) = 0.05cm \Rightarrow u_b(h) = \frac{0.05}{\sqrt{3}} = 0.02887cm$$

$$U(h) = \sqrt{U_a^2(h) + U_b^2(h)} = 0.0416cm$$

$$h \pm u(h) = 126.38 \pm 0.04cm$$

3. 对下列数据

$$m_1 = 3147.226g$$
, $u(m_1) = 0.312 g$, $m_2 = 100.4211 g$, $u(m_2)/m_2 = 0.015\%$, $m_3 = 1.326 g$, $u(m_3) = 0.0044 g$, $m_4 = 604.279 g$, $u(m_4)/m_4 = 1/5000$:

(1) 按不确定度和有效数字的关系,其测量结果的正确表达应写成:

 $(3147.2 \pm 0.3)g$; $(100.42 \pm 0.02)g$; $(1.326 \pm 0.004)g$; $(604.3 \pm 0.1)g$

(2) 按精度的高低列出次序为: $m_3 < m_4 < m_5 < m_1$

相对不确定度越小,精度越高。

4. $Y = \ln d, d = 12.35cm$, 按有效数字运算法则,Y有_____有效数字;若

$$Y = \ln d, u(d) = 0.05cm, Y 有______有效数字。$$

(A) 5 位 (B) 4 位 (C) 3 位 (D) 2 位 解: (1)
$$Y = \ln d = 2.513656$$
 , 则 d $y = \frac{\mathrm{d}\,d}{d}$, $u(Y) = \frac{u(d)}{d} 0.01/12.35 = 0.0008097$ $Y \pm u(Y) = 2.513656 \pm 0.0008097 = 2.5137 \pm 0.0008$, Y 有 5 位有效数字

(2)
$$Y = \ln d = 2.513656$$
, $u(Y) = u(d)/d = 0.05/12.35 = 0.00405$

 $Y \pm u(Y) = 2.513656 \pm 0.00405 = 2.514 \pm 0.004$, Y有4位有效数字

5. (判断题)DT9923 型数字三用表测量电压的准确度可表示为 $\Delta U = 0.05\%N_x + 3$ 字。若电压表的读数为31.72V,则其不确定度为 $u~(U) = 0.05\% \times 99.99 + 3 \times 0.01 = 0.08V~. (99.99$ V 是电压表的满度值,0.01V 是电压表的最小量化单位)

解:
$$\Delta_{\text{{(U)}}}(U) = 0.05\% \times 31.72 + 3 \times 0.01 = 0.0459V$$
 $u(U) = \Delta_{\text{{$(U)$}}}(U) / \sqrt{3} \approx 0.02V$

6. (判断题) 已知 $V = 3.14L(D_1 + D_2)(D_1 - D_2)/4$, 测得 $L = (10.00 \pm 0.05)cm$,

解: 设 10 个条纹间距的位置为 h,即 h=10L

有
$$s = ih + S_0$$
 设 $s = y, i = x$, 则 b=h, $i = S_0$

i	1	2	3	4	5	6	7	8	9	平均
x	1	2	3	4	5	6	7	8	9	5
у	1.488	1.639	1.904	2.17	2.385	2.551	2.8	3.06	3.47	2.3852
xy	1.488	3.278	5.712	8.68	11.925	15.306	19.6	24.48	31.23	13.522
x^2	1	4	9	16	25	36	49	64	81	31.667

$$b = \frac{\overline{x} \cdot \overline{y} - \overline{xy}}{\overline{x}^2 - \overline{x}^2} = \frac{11.926 - 13.522}{25 - 31.667} = 0.239 mm$$

$$a = \overline{y} - b\overline{x}.....h = b.....a = S_0$$

l = h/10 = b/10 = 0.0239mm