MA 16200: Plane Analytic Geometry and Calculus II

Lecture 2: Dot and Cross Products

§13.3 The Dot Product

Definition

Definition 1 (Dot Product)

Let $\vec{u} = \langle u_1, u_2, \dots, u_n \rangle$ and $\vec{v} = \langle v_1, v_2, \dots, v_n \rangle$ be vectors. The **dot product** of \vec{u} and \vec{v} is:

$$\vec{u} \cdot \vec{v} \stackrel{\text{def}}{=} \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$

In 2-Dimensions (n = 2):

$$\vec{u} \cdot \vec{v} = \langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle = u_1 v_1 + u_2 v_2$$

In 3-Dimensions (n = 3):

$$\vec{u} \cdot \vec{v} = \langle u_1, u_2, u_3 \rangle \cdot \langle v_1, v_2, v_3 \rangle = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Examples

Problem 2

Compute the following:

- **■** ⟨1,2⟩ · ⟨3,4⟩
- $\langle 8,2 \rangle \cdot \langle 0,-2 \rangle$
- $\langle 4, -1, 1 \rangle \cdot \langle 1, 4, 0 \rangle$

$$\frac{50}{6} < 1,2 > \cdot < 3,4 > = 1(3) + 2(4) = 3 + 8 = 111$$

$$2 < 8,2 > \cdot < 0,-2 > = 8(0) + 2(-2) = -41$$

$$3 < 4,-1,1 > \cdot < 1,4,0 = 4(1) + (-1)(4) + 1(0) = 10$$

Extra Space

Properties Of Dot Products

Theorem 3

Let \vec{u} , \vec{v} , and \vec{w} be vectors and c a scalar:

$$\vec{0} \cdot \vec{u} = 0$$

$$\sqrt{\langle x,y\rangle \cdot \langle x,y\rangle} = \sqrt{\chi^2 + y^2}$$

- $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (Commutative Property)
- 4 $c(\vec{u} \cdot \vec{v}) = (c\vec{u}) \cdot \vec{v} = \vec{u} \cdot (c\vec{v})$ (Associative Property)
- $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \ (\textit{Distributive Property})$

The dot product gives a rough idea of how "aligned" two vectors

...can we be more precise than this?

Physics Definition of The Dot Product

Theorem 4

If \vec{u} and \vec{v} are **non-zero** vectors, then:

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta$$

where θ is the angle between \vec{u} and \vec{v}

Why? By properties of the dot product:

$$|\vec{u} - \vec{v}|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

$$= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v}$$

$$= |\vec{u}|^2 - 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$$

$$= |\vec{u}|^2 - 2(\vec{u} \cdot \vec{v}) + |\vec{v}|^2$$

Extra Space

Now by the Law of Cosines:

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}| |\vec{v}| \cos \theta$$

$$|\vec{u}|^2 - 2(\vec{u} \cdot \vec{v}) + |\vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}| |\vec{v}| \cos \theta$$

$$-2(\vec{u} \cdot \vec{v}) = -2|\vec{u}| |\vec{v}| \cos \theta$$

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta$$

Angle Between Vectors

Definition 5

Solving for
$$\theta$$
 we get the **angle between two vectors** \vec{u} and \vec{v} :
$$\theta = \cos^{-1}\left(\frac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}\right) \qquad \cos\theta = \frac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}$$

If either $\vec{u} = \vec{0}$ or $\vec{v} = \vec{0}$, then θ is undefined. Note that $0 \le \theta \le \pi$.

2 If $\vec{u} \cdot \vec{v} = 0$ (equivalently $\theta = \frac{\pi}{2}$), we say \vec{u} and \vec{v} are orthogonal.

In 2 and 3 dimensions, "orthogonal" and "perpendicular" mean the same thing.

Examples

$$\frac{7}{3} = \langle 1, 0, 0 \rangle$$

Problem 6

Use the dot product to show:

- 1 $2\vec{i} + 2\vec{j} \vec{k}$ and $5\vec{i} 4\vec{j} + 2\vec{k}$ are orthogonal;
- (2,1) is parallel to (10,5).

$$0 < 2.2.1 > . < 5. - 4.2 > = 2(5) + 2(-4) + (-1)(2) = 10 - 8 - 2 = 0$$

$$0 = \cos^{-1}(\frac{0}{||\vec{u}|||\vec{v}|}) = \cos^{-1}(0) = \frac{\pi}{2}$$

Extra Space
$$\frac{1}{\sqrt{1}} = \langle 2, 1 \rangle$$

 $= \langle 10, 5 \rangle$

Extra Space
$$\vec{\nabla} = \langle 10.5 \rangle$$

$$\vec{\nabla} = \langle 2.1 \rangle \cdot \langle 10.5 \rangle = 2(10) + 1(5) = 25$$

$$|\vec{u}| = \sqrt{2^2 + 1^2} = \sqrt{5}$$

$$|\vec{v}| = \sqrt{10^2 + 5^2} = \sqrt{125} = 5\sqrt{5}$$

$$|\vec{v}| = \sqrt{10^2 + 5^2} = \sqrt{125} = \cos^{-1}(\frac{25}{45(545)}) = \cos^{-1}(1)$$

$$= 0$$

Projecting Onto Other Vectors

Vectors can "cast a shadow" on another vector, what is the length and direction of that "shadow"?

Components and Projections

Definition 7

1 For a vector \vec{u} and a non-zero vector \vec{v} , the scalar component of \vec{u} in the direction of \vec{v} is:

$$\operatorname{scal}_{ec{v}} ec{u} = |ec{u}| \cos heta = rac{ec{u} \cdot ec{v}}{|ec{v}|}$$

2 The (orthogonal) projection of \vec{u} onto \vec{v} is:

$$\operatorname{proj}_{ec{v}} ec{u} = \left[\operatorname{scal}_{ec{v}} ec{u}
ight] rac{ec{v}}{|v|} = \left(rac{ec{u} \cdot ec{v}}{|v|^2}
ight) ec{v}$$

Example

Problem 8

Find
$$scal_{\vec{v}}\vec{u}$$
 and $proj_{\vec{v}}\vec{u}$ for $\vec{u} = -4\vec{i} - 3\vec{j}$ and $\vec{v} = \vec{i} - \vec{j}$.

$$Scal_{\vec{v}}\vec{u} = \vec{u} \cdot \vec{v} = \frac{\langle -4, -3 \rangle \cdot \langle 1, -1 \rangle}{\sqrt{1^2 + (-1)^2}}$$

$$= \frac{(-4)(1) + (-3)(-1)}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$$

$$proj_{\vec{v}}\vec{u} = [Scal_{\vec{v}}\vec{u}] \vec{v} = \frac{1}{\sqrt{2}}$$

$$= (-\frac{1}{2}) \frac{1}{\sqrt{2}} (1, -1) = (-\frac{1}{2}, \frac{1}{2})$$

Orthogonal Decompositions

Theorem 9

For a vector \vec{u} and a non-zero vector \vec{v} , \vec{u} can be written as the sum of two vectors:

$$\vec{u} = \vec{u}^{\parallel} + \vec{u}^{\perp}$$

where \vec{u}^{\parallel} is parallel to \vec{v} and \vec{u}^{\perp} is orthogonal to \vec{v} .

Why?

Application: Work

Problem 10

A wagon is pulled a distance of 100m along a horizontal path by a constant force of 50N. The handle of the wagon is held at an angle of 30° above the horizontal.

1) Express the force vector $\vec{F} = 50\langle\cos\frac{\pi}{6},\sin\frac{\pi}{6}\rangle = \langle25\sqrt{3},25\rangle$ as the sum of two vectors: one parallel to the ground and one perpendicular to the ground.

perpendicular to the ground.
$$\vec{v} = \vec{r} = \langle 1, 0 \rangle$$

$$\vec{v} = \vec{v} = \langle 1, 0 \rangle$$

$$\vec{v} = \langle 1,$$

F=(25,13,0) + (0,25)

Perpendicular to

2

Work Definition

Definition 11

Given a force vector \vec{F} and displacement vector \vec{D} , the work (W) done by the force is defined as:

$$W \stackrel{\text{def}}{=} (Force)(Distance) = (|\vec{F}|\cos\theta)|\vec{D}| = \vec{F} \cdot \vec{D}$$

2) In the previous problem, how much work was done?

§13.4 The Cross Product

Review of Determinants

A 2-by-2 determinant is defined by:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

A **3-by-3 determinant** is defined using 2-by-2 determinants:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

Notice the negative sign next to the a_2 .

$$= \frac{1(64) - (75) \cdot 1(4)}{10} + 30$$

$$= 25$$

Cross Product Definition

Definition 12

If $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$, then the **cross product** of \vec{u} and \vec{v} is:

$$\vec{u} \times \vec{v} \stackrel{\text{def}}{=} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
$$= (u_2 v_3 - u_3 v_2) \vec{i} + (u_3 v_1 - u_1 v_3) \vec{j} + (u_1 v_2 - u_2 v_1) \vec{k}$$

Notice how $\vec{u} \times \vec{v}$ is a vector and is only defined in 3-dimensions.

Examples

Problem 13

Compute $\vec{u} \times \vec{v}$ for:

$$\vec{u} = \langle 1, 2, 0 \rangle, \vec{v} = \langle 0, 3, 1 \rangle$$

$$\vec{u} = \langle 1, 1, 0 \rangle, \vec{v} = \langle -2, 3, 0 \rangle$$

$$\begin{array}{lll}
0 & \overrightarrow{U} \times \overrightarrow{V} = \begin{vmatrix} \overrightarrow{t} & \overrightarrow{J} & \overrightarrow{K} \\ 1 & 2 & 0 \end{vmatrix} = \overrightarrow{t} \begin{vmatrix} 2 & 0 \\ 3 & 1 \end{vmatrix} - \overrightarrow{J} \begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix} + \overrightarrow{k} \begin{vmatrix} 1 & 2 \\ 6 & 3 \end{vmatrix} \\
= (2-0)\overrightarrow{t} - (1-0)\overrightarrow{J} + (3-0)\overrightarrow{k} = 2\overrightarrow{t} - \overrightarrow{J} + 3\overrightarrow{k} \\
= (2,-1,3)$$

Note The cross product is not commutative
$$\vec{l} \times \vec{l} = |\vec{l} \times \vec{l} \times \vec{l} \times \vec{l} \times \vec{l} = |\vec{l} \times \vec{l} \times \vec{l} \times \vec{l} \times \vec{l} \times \vec{l} \times \vec{l} = |\vec{l} \times \vec{l} \times \vec{l$$

 $\vec{j} \times \vec{i} = |\vec{i} \cdot \vec{j} \cdot \vec{k}| = |\vec{i} \cdot \vec{i} \cdot \vec{k}|$

Properties of Cross Products

Theorem 14

$$\vec{u} \times \vec{v}$$
 is orthogonal to **both** \vec{u} and \vec{v} . $(\vec{u} \times \vec{v}) \cdot \vec{u} = (\vec{u} \times \vec{v}) \cdot \vec{v} = \vec{v}$

Theorem 15

Let \vec{u}, \vec{v} , and \vec{w} be vectors and c a scalar:

et
$$\vec{u}, \vec{v}$$
, and \vec{w} be vectors and c a scalar:

1 $\vec{u} \times \vec{u} = \vec{0}$ Any Parallel vectors will have a cross product of $\vec{v} \times \vec{v} = -(\vec{v} \times \vec{u})$ (anti-commutativity)

- $\vec{u} imes \vec{v} = -(\vec{v} imes \vec{u})$ (anti-commutativity)
- $(c\vec{u}) \times \vec{v} = \vec{u} \times (c\vec{v}) = c(\vec{u} \times \vec{v})$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- $(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$
- $\vec{u} \cdot (\vec{v} \times \vec{w}) = (u \times v) \cdot \vec{w}$
- $\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} (\vec{u} \cdot \vec{v})\vec{w}$

Physics Definition of Cross Product

Theorem 16

Given two **non-zero** 3-dimensional vectors \vec{u} and \vec{v} :

$$|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$$

where $0 \le \theta \le \pi$ is the angle between \vec{u} and \vec{v} .

The direction of $\vec{u} \times \vec{v}$ is given by the **right-hand rule**: Line up the tails of \vec{u} and \vec{v} . Curl your right hand from \vec{u} to \vec{v} , then $\vec{u} \times \vec{v}$ points in the same direction as your thumb. If \vec{u} or \vec{v} is $\vec{0}$, the direction is undefined.

Why?

$$\begin{aligned} |\vec{u} \times \vec{v}|^2 &= (u_2 v_3 - u_3 v_2)^2 + (u_3 v_1 - u_1 v_3)^2 + (u_1 v_2 - u_2 v_1)^2 \\ &= u_2^2 v_3^2 - 2u_2 u_3 v_2 v_3 + u_3^2 v_2^2 + u_3^2 v_1^2 - 2u_1 u_3 v_1 v_3 + u_1^2 v_3^2 \\ &+ u_1^2 v_2^2 - 2u_1 u_2 v_1 v_2 + u_2^2 v_1^2 \\ &= \left(u_1^2 + u_2^2 + u_3^2\right) \left(v_1^2 + v_2^2 + v_3^2\right) - \left(u_1 v_1 + u_2 v_2 + u_3 v_3\right)^2 \\ &= |\vec{u}|^2 |\vec{v}|^2 - (\vec{u} \cdot \vec{v})^2 \\ &= |\vec{u}|^2 |\vec{v}|^2 - |\vec{u}|^2 |\vec{v}|^2 \cos^2 \theta \\ &= |\vec{u}|^2 |\vec{v}|^2 \left(1 - \cos^2 \theta\right) \\ &= |\vec{u}|^2 |\vec{v}|^2 \sin^2 \theta \end{aligned}$$

Since $\sin \theta \ge 0$ for $0 \le \theta \le \pi$ we have $\sqrt{\sin^2 \theta} = \sin \theta$, so take the square root of both sides to get $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$

Test for Parallel Vectors

Corollary 17

- **1** \vec{u} and \vec{v} are parallel if and only if $\vec{u} \times \vec{v} = \vec{0}$
- 2 Three points A, B, and C are collinear if and only if $\overrightarrow{AB} \times \overrightarrow{AC} = \overrightarrow{0}$

$$\frac{\text{Why?}}{\Rightarrow \theta} \vec{u} \times \vec{v} = \vec{0} \Rightarrow \vec{0} = |u| |v| \sin \theta$$

$$\Rightarrow \theta = \sin^{-1}(\frac{0}{|\vec{u}||\vec{v}|}) = \sin^{-1}(0)$$

$$\Rightarrow \theta = 0 \text{ or } T$$

Example: The points A(-2, -4, 1), B(1, 3, 7), and C(4, 10, 13) are collinear.

Calculating Areas and Volumes

Theorem 18

- **1** The area of the parallelogram determined by \vec{u} and \vec{v} is $|\vec{u} \times \vec{v}|$;
- The area of the triangle determined by the non-collinear points A, B, and C is $\frac{1}{2}|\vec{AB} \times \vec{AC}|$.

Examples

Problem 19

- **1** Determine the area of the parallelogram with adjacent sides $\vec{u} = -4\vec{i} + 3\vec{k}$ and $\vec{v} = \vec{i} + \vec{j} + 2\vec{k}$.
- 2 Determine the area of the triangle with vertices (0,1),(-1,1), and (1,-1)

Divers to compute
$$|\vec{u} \times \vec{v}|$$

 $\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -4 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 3 \\ 1 & 2 \end{vmatrix} \vec{i} - \begin{vmatrix} -4 & 3 \\ 1 & 2 \end{vmatrix} \vec{j} + \begin{vmatrix} -4 & 6 \\ 1 & 1 \end{vmatrix} \vec{k}$
 $= (0-3)\vec{i} - (-8-3)\vec{j} + (-4-0)\vec{k}$
 $= -3\vec{i} + ||\vec{i} - 4\vec{k}|$

Extra Space
$$|\vec{u} \times \vec{v}| = \sqrt{(-3)^2 + |\vec{u}|^2 + (-4)^2} = \sqrt{|46|}$$

$$|\vec{u} \times \vec{v}| = \sqrt{(-3)^2 + |\vec{u}|^2 + (-4)^2} = \sqrt{|46|}$$

$$|\vec{A} \times \vec{A} \times \vec{A}$$

The Triple Scalar Product

Theorem 20

The volume of the parallelepiped determined by vectors \vec{u} , \vec{v} , and \vec{w} is the absolute value of the **triple scalar product**:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$\frac{\text{Why2 This is a HWV Problem.}}{= |\vec{\nabla} \times \vec{w}|} |\vec{u}| \cos \vec{v}$$

Example

Problem 21

Are the vectors $\vec{u}=\langle 1,4,-7\rangle$, $\vec{v}=\langle 2,-1,4\rangle$, and $\vec{w}=\langle 0,-9,18\rangle$ coplanar?

Check
$$\vec{U} \cdot (\vec{v} \cdot \vec{w}) = 0$$

Volume = $\begin{vmatrix} 1 & 4 - 7 \\ 2 & -1 & 4 \\ 0 & -9 & 18 \end{vmatrix} = (-18 + 36) - 4(36) - 7(-18) = (8 - 144 + 126) = 0$

Application: Torque

Definition 22

Applying a force \vec{F} at a point P, the twisting effect (or **torque**) about a point O is a vector $\vec{\tau}$ with:

$$|\vec{\tau}| = |\vec{OP} \times \vec{F}|$$

The direction of $\vec{\tau}$ is governed by the right hand rule.

It is common to write \vec{OP} as \vec{r} (for "radius").

Torque Example

Problem 23

A bolt is tightened by applying a 40-N force to a 0.25-m wrench at a 75° angle. Find the magnitude and direction of the torque about the center of the bolt.

Application: Magnetism

Definition 24

A point charge q experiences a force \vec{F} when it moves through a magnetic field \vec{B} with velocity \vec{v} governed by the equation:

$$\vec{F} = q(\vec{v} \times \vec{B})$$

Notice whether q is positive or negative influences the direction of the force.

Example

Problem 25

An electron ($q = -1.6 \times 10^{-19}$ C) enters a magnetic field $\vec{B} = \vec{i} + \vec{j}$ with velocity $\vec{v} = (2 \times 10^5 \text{ m/s})\vec{k}$.

- 1 Determine the magnitude and direction of the force.
- 2 Make a rough sketch of \vec{v} , \vec{B} , and \vec{F} .

See Diagram Above