DFA - Slide

Gabriel Rovesti

1 Consegna 1

Linguaggio: L'insieme di tutte e sole le stringhe che contengono un numero pari di zeri e un numero pari di uni (alfabeto $\{0,1\}$).

Soluzione

Per tenere traccia in maniera deterministica della parità di zeri e di uni, è sufficiente "ricordare" (con gli stati) se finora abbiamo letto un numero pari o dispari di 0 e un numero pari o dispari di 1. Definiamo allora 4 stati:

$$Q = \{ (p0, p1), (p0, d1), (d0, p1), (d0, d1) \}$$

dove p0 significa "letti finora zero in numero pari", d0 "letti zero in numero dispari" (analogamente per p1/d1 riguardo ai 1). Lo stato iniziale è (p0, p1), in cui non abbiamo ancora letto nulla (numero di 0 e di 1=0, entrambi pari); è anche finale, perché ci servono entrambi i conteggi pari. Le transizioni si definiscono così:

- Leggere 0 inverte la parità dei 0 ma non tocca la parità dei 1. - Leggere 1 inverte la parità dei 1 ma non tocca quella dei 0.

Graficamente, etichetteremo i 4 stati così:

$$q_{pp} = (p0, p1), \quad q_{pd} = (p0, d1), \quad q_{dp} = (d0, p1), \quad q_{dd} = (d0, d1).$$

La funzione di transizione δ può essere illustrata in un diagramma come segue:

Si vede che q_{pp} è l'unico stato accepting (poiché vogliamo parità di zero e uno). Questo DFA accetta esattamente le stringhe con numero pari di 0 e numero pari di 1.

2 Consegna 2

Linguaggio: L'insieme di tutte le stringhe (su $\{0,1\}$) che terminano con 00.

Soluzione

Qui basta "tenere d'occhio" gli ultimi due simboli letti. Progettiamo un piccolo DFA con 3 stati significativi:

- q_0 : stato iniziale, significa "non ho ancora riconosciuto di terminare con 0 (oppure la stringa è vuota oppure termina con 1)".
- q_1 : so che l'ultimo simbolo letto è 0 ma non ho ancora 00.
- q_2 : so che gli ultimi due simboli letti sono 00 (stato *finale*).

Le transizioni: - Da q_0 , se leggo 0, passo a q_1 ; se leggo 1, rimango in q_0 (continuo a non finire in 0). - Da q_1 , se leggo 0, allora ho "finisco in 00", vado a q_2 ; se leggo 1, torno a q_0 . - Da q_2 (ultimo due simboli 00), se leggo 0 resto in q_2 (continuo a finire in 00), se leggo 1 torno a q_0 (ora finisco in 01).

Diagramma:

Stato finale è solo q_2 , perché significa "la stringa letta fin qui finisce con 00".

3 Consegna 3

Linguaggio: L'insieme di tutte le stringhe che contengono *esattamente* tre zeri (anche non consecutivi).

Soluzione

Costruiamo un automa che conti quanti 0 ha visto. Se il totale supera 3, andiamo in uno stato di trap. Formalmente:

- q_0 : "letti 0 zeri". (Iniziale)
- q_1 : "letti 1 zero".
- q_2 : "letti 2 zeri".
- q_3 : "letti 3 zeri". (questo è finale)
- q_4 : "letti più di 3 zeri" (trap state, da cui non si esce più).

Le transizioni:

- Da q_0 leggendo $0 \to q_1$, leggendo $1 \to q_0$.
- Da q_1 leggendo $0 \rightarrow q_2$, leggendo $1 \rightarrow q_1$.
- Da q_2 leggendo 0 $\rightarrow q_3$, leggendo 1 $\rightarrow q_2$.
- Da q_3 leggendo 0 $\rightarrow q_4$, leggendo 1 $\rightarrow q_3$.
- q_4 è trap: se leggo 0 o 1, rimango in q_4 .

 q_3 è lo $stato\ finale\ unico,\ perché\ significa$ "è stato letto esattamente un totale di 3 zeri". Diagramma:

4 Consegna 4

Linguaggio: L'insieme di tutte le stringhe che *cominciano* oppure *finiscono* (o entrambe) con 01.

Soluzione (cenno con 2 DFA e unione)

L'insieme richiesto è

 $L = \{\text{stringhe che iniziano con } 01\} \cup \{\text{stringhe che terminano con } 01\}.$

Ciascuno dei due linguaggi è regolare e anzi definibile da un piccolo DFA. L'automa che accetta "inizia con 01" (denotiamolo $M_{\rm start}$) può essere ad esempio:

perché se la stringa non inizia con '0' o non prosegue con '1', finiamo in uno stato trap. Se invece leggiamo "01" come primi due simboli, passiamo nello stato finale s_2 e continuiamo ad accettare qualsiasi coda (restando in s_2).

Analogamente, il DFA per "termina con 01" (chiamiamolo $M_{\rm end}$) è:

dove t_2 rappresenta lo stato "gli ultimi due simboli letti sono 01". Notare che t_0 non è accettante, perché la stringa non termina (ancora) con 01; t_1 neppure.

L'automa complessivo $M_{\text{start}} \cup M_{\text{end}}$ (unione di due linguaggi) in teoria si può costruire prendendo il *prodotto* dei due DFA e marcando come finali tutte le coppie (s,t) in cui s è finale in M_{start} o t è finale in M_{end} . In

pratica, si può disegnare anche un NFA più piccolo tramite ε -transizioni (il che a volte rende più immediata la comprensione). In ogni caso, esiste un DFA risolutivo (il suo minimale ha effettivamente 8 stati), ma talvolta, per mero esercizio, è sufficiente uno schema come sopra: due automi distinti e l'osservazione che il linguaggio cercato è la loro unione.