# **MATEMÁTICA DISCRETA**

Ano Letivo 2021/22 (Versão: 11 de Junho de 2022)

Departamento de Matemática, Universidade de Aveiro https://elearning.ua.pt/

# CAPÍTULO V ELEMENTOS DE TEORIA DOS GRAFOS

**PARTE II** 

**CAMINHOS DE CUSTO MÍNIMO** 

# ÍNDICE

1. Alguns conceitos métricos

2. Conexidade

3. Grafos particulares

4. Problemas de caminho de «custo mínimo» em grafos

# 1. ALGUNS CONCEITOS MÉTRICOS

# Passeios em grafos

# Definição

Seja  $G = (V, E, \psi)$  um grafo. Um passeio em G é uma sequência

$$P = (v_0, e_1, v_1, e_2, \dots, e_k, v_k)$$

finita onde 
$$v_0, v_1, \ldots, v_k \in V$$
,  $e_1, e_2, \ldots, e_k \in E$  e, para cada  $i = 1, 2, \ldots, k$ ,  $\psi(e_i) = v_{i-1}v_i$ .

## Passeios em grafos

## Definição

Seja  $G = (V, E, \psi)$  um grafo. Um passeio em G é uma sequência

$$P = (v_0, e_1, v_1, e_2, \dots, e_k, v_k)$$

finita onde 
$$v_0, v_1, \ldots, v_k \in V$$
,  $e_1, e_2, \ldots, e_k \in E$  e, para cada  $i = 1, 2, \ldots, k$ ,  $\psi(e_i) = v_{i-1}v_i$ .

Neste caso diz-se que P é um passeio entre os vértices  $v_0$  e  $v_k$  (ou um passeio- $(v_0, v_k)$ ).

# PASSEIOS EM GRAFOS

# Definição

Seja  $G = (V, E, \psi)$  um grafo. Um passeio em G é uma sequência

$$P = (v_0, e_1, v_1, e_2, \dots, e_k, v_k)$$

finita onde  $v_0, v_1, \ldots, v_k \in V$ ,  $e_1, e_2, \ldots, e_k \in E$  e, para cada  $i = 1, 2, \ldots, k$ ,  $\psi(e_i) = v_{i-1}v_i$ .

Neste caso diz-se que P é um passeio entre os vértices  $v_0$  e  $v_k$  (ou um passeio- $(v_0, v_k)$ ). O vértice  $v_0$  designa-se por vértice inicial do passeio P e  $v_k$  designa-se por vértice final do passeio P, os vértices  $v_1, \ldots, v_{k-1}$  designam-se por vértices intermédios.

## PASSEIOS EM GRAFOS

# Definição

Seja  $G = (V, E, \psi)$  um grafo. Um passeio em G é uma sequência

$$P = (v_0, e_1, v_1, e_2, \dots, e_k, v_k)$$

finita onde  $v_0, v_1, \ldots, v_k \in V$ ,  $e_1, e_2, \ldots, e_k \in E$  e, para cada  $i = 1, 2, \ldots, k$ ,  $\psi(e_i) = v_{i-1}v_i$ .

Neste caso diz-se que P é um passeio entre os vértices  $v_0$  e  $v_k$  (ou um passeio- $(v_0, v_k)$ ). O vértice  $v_0$  designa-se por vértice inicial do passeio P e  $v_k$  designa-se por vértice final do passeio P, os vértices  $v_1, \ldots, v_{k-1}$  designam-se por vértices intermédios.

#### Nota

Num grafo simples, um passeio é determinado pela sequência dos sucessivos vértices; isto é, basta considerar

$$P = (v_0, v_1, \ldots, v_k).$$

# TRAJETOS, CAMINHOS, CIRCUITOS E CICLOS

# Definição

Seja  $\mathbf{G} = (\mathbf{V}, \mathbf{E}, \psi)$  um grafo.

# TRAJETOS, CAMINHOS, CIRCUITOS E CICLOS

# Definição

Seja  $G = (V, E, \psi)$  um grafo.

• Um trajeto é um passeio sem arestas repetidas.

# Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final ( $v_0 = v_k$ ). Um trajeto fechado diz-se também circuito.

# Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final ( $v_0 = v_k$ ). Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.

# Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final ( $v_0 = v_k$ ). Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.
- Um ciclo P em G é intuitivamente um «caminho fechado». Mais rigorosamente,

# Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final ( $v_0 = v_k$ ). Um trajeto fechado diz-se também circuito.
- · Um caminho é um trajeto que não repete vértices.
- Um ciclo *P* em *G* é intuitivamente um «caminho fechado». Mais rigorosamente,
  - 1.  $P \in \text{um lacete } P = (v_0, e, v_0)$ , ou

# Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final ( $v_0 = v_k$ ). Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.
- Um ciclo *P* em *G* é intuitivamente um «caminho fechado». Mais rigorosamente,
  - 1.  $P \in \text{um lacete } P = (v_0, e, v_0)$ , ou
  - 2.  $P = (v_0, a, v_1, b, v_0)$  com  $v_0 \neq v_1$  e  $a \neq b$ , ou

# Definição

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final ( $v_0 = v_k$ ). Um trajeto fechado diz-se também circuito.
- Um caminho é um trajeto que não repete vértices.
- Um ciclo P em G é intuitivamente um «caminho fechado». Mais rigorosamente,
  - 1.  $P \in um \ lacete \ P = (v_o, e, v_o)$ , ou
  - 2.  $P = (v_0, a, v_1, b, v_0) \text{ com } v_0 \neq v_1 \text{ e } a \neq b$ , ou
  - 3.  $P = (v_0, e_1, v_1, e_2, \dots, e_k, v_k, e_{k+1}, v_0)$  é um passeio com  $k \ge 2$  e  $(v_0, e_1, v_1, e_2, \dots, e_k, v_k)$  é um caminho.

# Definição

Seja  $G = (V, E, \psi)$  um grafo.

- Um trajeto é um passeio sem arestas repetidas.
- Um trajeto diz-se fechado quando tem pelo menos uma aresta e o vértice inicial coincide com o vértice final ( $v_0 = v_k$ ). Um trajeto fechado diz-se também circuito.
- · Um caminho é um trajeto que não repete vértices.
- Um ciclo *P* em *G* é intuitivamente um «caminho fechado». Mais rigorosamente,
  - 1.  $P \in \text{um lacete } P = (v_0, e, v_0)$ , ou
  - 2.  $P = (v_0, a, v_1, b, v_0)$  com  $v_0 \neq v_1$  e  $a \neq b$ , ou
  - 3.  $P = (v_0, e_1, v_1, e_2, \dots, e_k, v_k, e_{k+1}, v_0)$  é um passeio com  $k \ge 2$  e  $(v_0, e_1, v_1, e_2, \dots, e_k, v_k)$  é um caminho.

#### **Nota**

Num grafo simples, um ciclo tem pelo menos três vértices.

# **COMPRIMENTO DE PASSEIOS**

# Definição

Seja  $G=(V,E,\psi)$  um grafo e seja  $P=(v_0,e_1,v_1,e_2,\dots e_k,v_k)$  um passeio de G. Então, o comprimento de P é

$$comp(P) = k;$$

ou seja, comp(P) é o número de arestas (com eventual repetição) que o constitui.

# **COMPRIMENTO DE PASSEIOS**

# Definição

Seja  $G=(V,E,\psi)$  um grafo e seja  $P=(v_0,e_1,v_1,e_2,\dots e_k,v_k)$  um passeio de G. Então, o comprimento de P é

$$comp(P) = k;$$

ou seja, comp(P) é o número de arestas (com eventual repetição) que o constitui.

#### **Nota**

No caso dos caminhos e dos trajetos, o comprimento coincide com o número de arestas.

# **COMPRIMENTO DE PASSEIOS**

# Definição

Seja  $G=(V,E,\psi)$  um grafo e seja  $P=(v_0,e_1,v_1,e_2,\dots e_k,v_k)$  um passeio de G. Então, o comprimento de P é

$$comp(P) = k$$
;

ou seja, comp(P) é o número de arestas (com eventual repetição) que o constitui.

## **Nota**

No caso dos caminhos e dos trajetos, o comprimento coincide com o número de arestas.

# **Exemplos**

Uma aresta é um caminho de comprimento 1 e um vértice é um caminho de comprimento o.

# DISTÂNCIA ENTRE VÉRTICES

# Definição

Seja  $G = (V, E, \psi)$  um grafo (finito). Para  $x, y \in V$ , consideremos o conjunto

$$\mathcal{P}_{x,y} = \{ \text{os caminhos entre } x \in y \}.$$

Designa-se por distância entre vértices de G a função

dist: 
$$V \times V \longrightarrow \{0, 1, \dots, \nu(G), \infty\}$$

$$(x,y) \longmapsto egin{cases} \min\{\operatorname{comp}(P) \mid P \in \mathcal{P}_{x,y}\} & \text{se } \mathcal{P}_{x,y} 
eq \varnothing, \\ \infty & \text{se } \mathcal{P}_{x,y} = \varnothing. \end{cases}$$

# DISTÂNCIA ENTRE VÉRTICES

# Definição

Seja  $G = (V, E, \psi)$  um grafo (finito). Para  $x, y \in V$ , consideremos o conjunto

$$\mathcal{P}_{x,y} = \{ \text{os caminhos entre } x \in y \}.$$

Designa-se por distância entre vértices de G a função

$$\begin{split} \text{dist: } V \times V &\longrightarrow \{0,1,\dots,\nu(G),\infty\} \\ (x,y) &\longmapsto \begin{cases} \min\{\text{comp}(P) \mid P \in \mathcal{P}_{x,y}\} & \text{se } \mathcal{P}_{x,y} \neq \varnothing, \\ \infty & \text{se } \mathcal{P}_{x,y} = \varnothing. \end{cases}$$

#### **Nota**

Tem-se

$$\operatorname{dist}(x,x) = 0$$
,  $\operatorname{dist}(x,y) + \operatorname{dist}(y,z) \ge \operatorname{dist}(x,z)$ ,

e dist(x, y) = dist(y, x), para todos os  $x, y, z \in V$ .

## **Teorema**

Seja G = (V, E) um grafo simples finito.

## **Teorema**

Seja G = (V, E) um grafo simples finito.

• G contém um caminho P tal que comp $(P) \ge \delta(G)$ .

#### **Teorema**

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$ .
- Se  $\delta(G) \geq$  2, então G contém um ciclo C tal que comp(C)  $\geq \delta(G) +$  1.

#### **Teorema**

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$ .
- Se  $\delta(G) \geq$  2, então G contém um ciclo C tal que comp(C)  $\geq \delta(G) +$  1.

# Demonstração.

Seja  $P = (v_0, v_1, \dots, v_k)$  um caminho de maior comprimento em G.

#### **Teorema**

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$ .
- Se  $\delta(G) \ge 2$ , então G contém um ciclo C tal que comp $(C) \ge \delta(G) + 1$ .

# Demonstração.

Seja  $P = (v_0, v_1, \dots, v_k)$  um caminho de maior comprimento em G.

Portanto, todos os vizinhos de  $v_k$  pertencem ao caminho (se não, podia-se prolongar o caminho),



#### **Teorema**

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$ .
- Se  $\delta(G) \ge 2$ , então G contém um ciclo C tal que comp $(C) \ge \delta(G) + 1$ .

# Demonstração.

Seja  $P = (v_0, v_1, \dots, v_k)$  um caminho de maior comprimento em G.

Portanto, todos os vizinhos de  $v_k$  pertencem ao caminho (se não, podia-se prolongar o caminho), portanto,

$$comp(P) \geq d(v_k) \geq \delta(G)$$
.



#### **Teorema**

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$ .
- Se  $\delta(G) \geq$  2, então G contém um ciclo C tal que comp(C)  $\geq \delta(G) +$  1.

## Demonstração.

Seja  $P = (v_0, v_1, \dots, v_k)$  um caminho de maior comprimento em G.

Portanto, todos os vizinhos de  $v_k$  pertencem ao caminho (se não, podia-se prolongar o caminho), portanto,

$$comp(P) \geq d(v_k) \geq \delta(G)$$
.

Seja  $i_0 = \min\{i \mid v_i v_k \in E\}.$ 



#### **Teorema**

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$ .
- Se  $\delta(G) \geq$  2, então G contém um ciclo C tal que comp(C)  $\geq \delta(G) +$  1.

# Demonstração.

Seja  $P = (v_0, v_1, \dots, v_k)$  um caminho de maior comprimento em G.

Portanto, todos os vizinhos de  $v_k$  pertencem ao caminho (se não, podia-se prolongar o caminho), portanto,

$$comp(P) \ge d(v_k) \ge \delta(G)$$
.

Seja  $i_0 = \min\{i \mid v_i v_k \in E\}$ . Então,  $C = (v_i, v_{i+1}, \dots, v_k, v_i)$  é um ciclo (note-se que  $(v_i, v_{i+1}, \dots, v_k)$  tem pelo menos três vertices porque  $d(v_k) \ge 2$ )



#### **Teorema**

Seja G = (V, E) um grafo simples finito.

- G contém um caminho P tal que comp $(P) \ge \delta(G)$ .
- Se  $\delta(G) \geq$  2, então G contém um ciclo C tal que comp(C)  $\geq \delta(G) +$  1.

# Demonstração.

Seja  $P = (v_0, v_1, \dots, v_k)$  um caminho de maior comprimento em G.

Portanto, todos os vizinhos de  $v_k$  pertencem ao caminho (se não, podia-se prolongar o caminho), portanto,

$$comp(P) \ge d(v_k) \ge \delta(G)$$
.

Seja  $i_0 = \min\{i \mid v_i v_k \in E\}$ . Então,  $C = (v_i, v_{i+1}, \dots, v_k, v_i)$  é um ciclo (note-se que  $(v_i, v_{i+1}, \dots, v_k)$  tem pelo menos três vertices porque  $d(v_k) \geq 2$ ) de comprimento  $d(v_k) + 1 \geq \delta(G) + 1$ .

# Definição

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ .

# Definição

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ .

• A cintura g(G) de G é o comprimento de um circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario  $g(G) = \infty$ .

# Definição

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ .

- A cintura g(G) de G é o comprimento de um circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario  $g(G) = \infty$ .
- Seja v ∈ V. A maior distância entre v e todos os vértices de G designa-se por excentricidade de v e denota-se por e(v).

Mais formalmente:  $e(v) = \max_{u \in V} \operatorname{dist}_G(u, v)$ .

# Definição

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ .

- A cintura g(G) de G é o comprimento de um circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario  $g(G) = \infty$ .
- Seja v ∈ V. A maior distância entre v e todos os vértices de G designa-se por excentricidade de v e denota-se por e(v).

Mais formalmente:  $e(v) = \max_{u \in V} \operatorname{dist}_{G}(u, v)$ .

 A maior excentricidade dos seus vértices designa-se por diâmetro de G e denota-se por diam(G).

**Nota**:  $diam(G) = \max_{x,y \in X} d(x,y)$ .

# Definição

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ .

- A cintura g(G) de G é o comprimento de um circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario  $g(G) = \infty$ .
- Seja v ∈ V. A maior distância entre v e todos os vértices de G designa-se por excentricidade de v e denota-se por e(v).
   Mais formalmente: e(v) = max dist<sub>G</sub>(u, v).
- A maior excentricidade dos seus vértices designa-se por diâmetro de G e denota-se por diam(G).

**Nota**:  $diam(G) = \max_{x,y \in X} d(x,y)$ .

 A menor excentricidade dos vértices de G designa-se por raio e denota-se por r(G).

### **CINTURA E EXCENTRICIDADE**

### Definição

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ .

- A cintura g(G) de G é o comprimento de um circuito de menor comprimento em G se existe pelo menos um circuito em G; caso contrario  $g(G) = \infty$ .
- Seja v ∈ V. A maior distância entre v e todos os vértices de G designa-se por excentricidade de v e denota-se por e(v).
   Mais formalmente: e(v) = max dist<sub>G</sub>(u, v).
- A maior excentricidade dos seus vértices designa-se por diâmetro de G e denota-se por diam(G).

**Nota**:  $diam(G) = \max_{x,y \in X} d(x,y)$ .

- A menor excentricidade dos vértices de G designa-se por raio e denota-se por r(G).
- Um vértice v diz-se central quando e(v) = r(G). O conjunto dos vértices centrais designa-se por centro do grafo.

## **Exemplo (TPC)**



### **Exemplo (TPC)**

Considere o seguinte grafo G.



1. Determine a cintura do grafo G.

### **Exemplo (TPC)**



- 1. Determine a cintura do grafo G.
- 2. Determine a excentricidade dos vértices de G.

### **Exemplo (TPC)**



- 1. Determine a cintura do grafo G.
- 2. Determine a excentricidade dos vértices de G.
- 3. Determine o raio e o diâmetro de G.

### **Exemplo (TPC)**



- 1. Determine a cintura do grafo G.
- 2. Determine a excentricidade dos vértices de G.
- 3. Determine o raio e o diâmetro de G.
- 4. Determine o centro de G.

### **Exemplo**

Seja G =  $(V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ . Então,

$$r(G) \leq \mathsf{diam}(G) \leq 2r(G).$$

### **Exemplo**

Seja G =  $(V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ . Então,

$$r(G) \leq \mathsf{diam}(G) \leq 2r(G).$$

### **Exemplo**

Seja G = (V, E,  $\psi$ ) um grafo finito com V  $\neq$   $\varnothing$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

• 
$$r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$$
.

### **Exemplo**

Seja G = (V, E,  $\psi$ ) um grafo finito com V  $\neq$   $\varnothing$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

- $r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$ .
- $\operatorname{diam}(G) = \max_{x,y \in X} d(x,y)$ .

### **Exemplo**

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

- $r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$ .
- $\operatorname{diam}(G) = \max_{x,y \in X} d(x,y)$ .
- $\operatorname{dist}(x,y) = \operatorname{comprimento} \operatorname{do} \operatorname{menor} \operatorname{caminho} \operatorname{entre} x \operatorname{e} y \operatorname{(ou} \infty).$

#### **Exemplo**

Seja G = (V, E,  $\psi$ ) um grafo finito com V  $\neq$   $\varnothing$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$ .
- $diam(G) = \max_{x,y \in X} d(x,y)$ .
- $\operatorname{dist}(x,y) = \operatorname{comprimento} \operatorname{do} \operatorname{menor} \operatorname{caminho} \operatorname{entre} x \operatorname{e} y \operatorname{(ou} \infty).$

Logo,  $r(G) \leq diam(G)$ .

### **Exemplo**

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$ .
- $diam(G) = \max_{x,y \in X} d(x,y)$ .
- dist(x, y) = comprimento do menor caminho entre x e y (ou  $\infty$ ).

Logo,  $r(G) \leq \operatorname{diam}(G)$ .

**Caso 1:** Suponhamos que existem  $x, y \in V$  com dist $(x, y) = \infty$ .

Então, para todo o  $z \in V$ ,

### **Exemplo**

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$ .
- $\operatorname{diam}(G) = \max_{x,y \in X} d(x,y)$ .
- dist(x, y) = comprimento do menor caminho entre x e y (ou  $\infty$ ).

Logo,  $r(G) \leq diam(G)$ .

**Caso 1:** Suponhamos que existem  $x, y \in V$  com dist $(x, y) = \infty$ .

Então, para todo o  $z \in V$ ,  $\operatorname{dist}(z,x) = \infty$  ou  $\operatorname{dist}(z,y) = \infty$  e por isso  $r(G) = \infty$  e  $\operatorname{diam}(G) = \infty$ .

### **Exemplo**

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$ .
- $\operatorname{diam}(G) = \max_{x,y \in X} d(x,y)$ .
- dist(x,y) = comprimento do menor caminho entre x e y (ou  $\infty$ ).

Logo,  $r(G) \leq diam(G)$ .

**Caso 2:** Suponhamos que  $\operatorname{dist}(x,y) < \infty$ , para todos os  $x,y \in V$ .

#### **Exemplo**

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \varnothing$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$ .
- $diam(G) = \max_{x,y \in X} d(x,y)$ .
- dist(x, y) = comprimento do menor caminho entre x e y (ou  $\infty$ ).

Logo,  $r(G) \leq \operatorname{diam}(G)$ .

**Caso 2:** Suponhamos que dist $(x, y) < \infty$ , para todos os  $x, y \in V$ .

Sejam x, y os vértices com a maior distância dist(x, y) = diam(G) e seja z um vértice central (ou seja, e(z) = r(G)).

### Mais um exemplo

#### **Exemplo**

Seja  $G = (V, E, \psi)$  um grafo finito com  $V \neq \emptyset$ . Então,

$$r(G) \leq \operatorname{diam}(G) \leq 2r(G)$$
.

Recordamos que:

- $r(G) = \min_{x \in V} \max_{y \in V} d(x, y)$ .
- $diam(G) = \max_{x,y \in X} d(x,y)$ .
- dist(x, y) = comprimento do menor caminho entre x e y (ou  $\infty$ ).

Logo,  $r(G) \leq diam(G)$ .

**Caso 2:** Suponhamos que  $dist(x, y) < \infty$ , para todos os  $x, y \in V$ .

Sejam x, y os vértices com a maior distância dist(x, y) = diam(G) e seja z um vértice central (ou seja, e(z) = r(G)). Portanto:

$$\operatorname{diam}(G) = \operatorname{dist}(x, y) \leq \operatorname{dist}(x, z) + \operatorname{dist}(z, y) \leq 2 e(z) = 2r(G).$$



### Definição

Seja  $G=(V,E,\psi)$  um grafo. Os vértices  $u,v\in V$  dizem-se conexos quando existe um caminho entre eles em G.

### **Exemplo**



Por exemplo: i e b são conexos, e j e c não são conexos.

### Definição

Seja  $G=(V,E,\psi)$  um grafo. Os vértices  $u,v\in V$  dizem-se conexos quando existe um caminho entre eles em G. O grafo G com pelo menos um vértice diz-se conexo quando todos os seus vértices são conexos.

### **Exemplo**



Grafo conexo

### Definição

Seja  $G=(V,E,\psi)$  um grafo. Os vértices  $u,v\in V$  dizem-se conexos quando existe um caminho entre eles em G. O grafo G com pelo menos um vértice diz-se conexo quando todos os seus vértices são conexos. Um grafo não conexo diz-se desconexo.

### **Exemplo**



Grafo desconexo

### Definição

Seja  $G = (V, E, \psi)$  um grafo. Os vértices  $u, v \in V$  dizem-se conexos quando existe um caminho entre eles em G. O grafo G com pelo menos um vértice diz-se conexo quando todos os seus vértices são conexos. Um grafo não conexo diz-se desconexo.

#### **Nota**

A relação de conexidade definida por

 $x \sim y$  quando x e y são conexos

é uma relação de equivalência em *V*.

### Definição

Seja  $G = (V, E, \psi)$  um grafo. Os vértices  $u, v \in V$  dizem-se conexos quando existe um caminho entre eles em G. O grafo G com pelo menos um vértice diz-se conexo quando todos os seus vértices são conexos. Um grafo não conexo diz-se desconexo.

#### Nota

A relação de conexidade definida por

$$x \sim y$$
 quando  $x$  e  $y$  são conexos

é uma relação de equivalência em V.

#### **Nota**

Seja  $G = (V, E, \psi)$  um grafo conexo. Então,  $\nu(G) \leq \varepsilon(G) + 1$ .

Ver a solução do exercício 25.

## Definição

Os subgrafos induzidos pelas classes de equivalência da relação de conexidade dizem-se componentes conexas.

### **Exemplo**



### Definição

Os subgrafos induzidos pelas classes de equivalência da relação de conexidade dizem-se componentes conexas. O número de componentes conexas de G denota-se por cc(G).

#### **Exemplo**



cc(G) = 2.

### Definição

Os subgrafos induzidos pelas classes de equivalência da relação de conexidade dizem-se componentes conexas. O número de componentes conexas de G denota-se por cc(G).

### **Exemplo**



cc(G) = 2.

#### **Nota**

• Um grafo G é conexo se e só se cc(G) = 1.

### Definição

Os subgrafos induzidos pelas classes de equivalência da relação de conexidade dizem-se componentes conexas. O número de componentes conexas de G denota-se por cc(G).

### **Exemplo**



cc(G) = 2.

#### **Nota**

- Um grafo G é conexo se e só se cc(G) = 1.
- As componentes conexas são precisamente os subgrafos (induzidos) conexos maximais.

### **PONTES**

### Definição

Seja  $G = (V, E, \psi)$  um grafo. Uma aresta  $a \in E$  diz-se uma ponte (ou uma aresta de corte) quando cc(G - a) > cc(G).

### **Exemplo**

G:



A aresta a é uma ponte de G.

#### **PONTES**

### Definição

Seja  $G = (V, E, \psi)$  um grafo. Uma aresta  $a \in E$  diz-se uma ponte (ou uma aresta de corte) quando cc(G - a) > cc(G).

### **Exemplo**



A aresta a é uma ponte de G.

#### **Nota**

Ou seja, a é uma ponte de G se a eliminação de a aumenta o número de componentes de G.

#### **PONTES**

### Definição

Seja  $G = (V, E, \psi)$  um grafo. Uma aresta  $a \in E$  diz-se uma ponte (ou uma aresta de corte) quando cc(G - a) > cc(G).

### **Exemplo**



A aresta a é uma ponte de G.

#### **Teorema**

Sejam  $G = (V, E, \psi)$  um grafo e  $a \in E$  com  $\psi(a) = \{u, v\}$ . Então, as seguintes afirmações são equivalentes:

- (i) A aresta a é uma ponte de G
- (ii) cc(G a) = cc(G) + 1 (supondo que G é finito).
- (iii) Os vértices u e v não são conexos em G a.
- (iv) A aresta a não pertence a nenhum circuito de G.

## **VOLTANDO AO KÖNIGSBERG**



## **VOLTANDO AO KÖNIGSBERG**



## VOLTANDO AO KÖNIGSBERG



# Voltando ao Königsberg

### Definição

Seja  $G=(V,E,\psi)$  um grafo finito. Um circuito em G diz-se circuito de Euler quando contém todas as arestas de G.

# Voltando ao Königsberg

### Definição

Seja  $G = (V, E, \psi)$  um grafo finito. Um circuito em G diz-se circuito de Euler quando contém todas as arestas de G.

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

# Voltando ao Königsberg

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

## Demonstração.

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

### Demonstração.

Suponha que G tem um circuito de Euler, digamos



#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

### Demonstração.

Suponha que G tem um circuito de Euler, digamos



Se um vértice v aparece n vezes em P, então d(v) = 2n é par.

## Voltando ao Königsberg

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

### Demonstração.

Suponha agora que todos os vértices de G tem grau par.

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

### Demonstração.

Suponha agora que todos os vértices de G tem grau par. Seja

P: 
$$v_0$$
  $v_1$   $v_{k-1}$   $v_k$ 

um trajeto de maior comprimento em G.

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

### Demonstração.

Suponha agora que todos os vértices de G tem grau par. Seja

um trajeto de maior comprimento em G. Logo, P contém todas as arestas com um vértice em  $v_k$ . Logo, como  $d(v_k)$  é par,  $v_0 = v_k$ .

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

### Demonstração.

Suponha agora que todos os vértices de G tem grau par. Seja

um trajeto de maior comprimento em G. Logo, P contém todas as arestas com um vértice em  $v_k$ . Logo, como  $d(v_k)$  é par,  $v_0 = v_k$ . Suponha que existe uma aresta fora de P; neste caso existe uma aresta  $v \longrightarrow v_i$  fora de P com  $v_i$  em P.

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um circuito de Euler se e só se todos os vértices de G tem grau par.

### Demonstração.

Suponha agora que todos os vértices de G tem grau par. Seja

um trajeto de maior comprimento em G. Logo, P contém todas as arestas com um vértice em  $v_k$ . Logo, como  $d(v_k)$  é par,  $v_0 = v_k$ . Suponha que existe uma aresta fora de P; neste caso existe uma aresta  $v \longrightarrow v_i$  fora de P com  $v_i$  em P. Então,

P: 
$$V V_i V_k \equiv V_0 V_i$$

é um trajeto mais comprido, uma contradição.

# Voltando ao Königsberg



### **Exemplo**



Os vértices tem grau 3, 5, 3 e 3, respetivamente; logo, não existe um circuito de Euler.

#### **Exemplo**



Os vértices tem grau 3, 5, 3 e 3, respetivamente; logo, não existe um circuito de Euler.

### Definição

Seja  $G = (V, E, \psi)$  um grafo finito. Um trajeto em G diz-se trajeto de Euler quando contém todas as arestas de G.

#### **Exemplo**



Os vértices tem grau 3, 5, 3 e 3, respetivamente; logo, não existe um circuito de Euler.

### Definição

Seja  $G=(V,E,\psi)$  um grafo finito. Um trajeto em G diz-se trajeto de Euler quando contém todas as arestas de G.

#### **Teorema**

Seja G um grafo finito e conexo. Então, G tem um trajeto de Euler se e só o número de vértices de grau ímpar é o ou 2.



### Definição

Um grafo simples G diz-se completo quando todos os pares de vértices são adjacentes.

### Definição

Um grafo simples G diz-se completo quando todos os pares de vértices são adjacentes. Um grafo  $G=(V,E,\psi)$  diz-se nulo quando  $E=\varnothing$ ; ou seja, quando não tem arestas.

### Definição

Um grafo simples G diz-se completo quando todos os pares de vértices são adjacentes. Um grafo  $G=(V,E,\psi)$  diz-se nulo quando  $E=\varnothing$ ; ou seja, quando não tem arestas.

#### Nota

• A menos de isomorfismo, existe um único grafo completo de ordem  $n \in \mathbb{N}$ . Denota-se este grafo por  $K_n$ , e tem-se  $\epsilon(K_n) = \binom{n}{2}$ .

### **Exemplos (Grafos completos)**









### Definição

Um grafo simples G diz-se completo quando todos os pares de vértices são adjacentes. Um grafo  $G=(V,E,\psi)$  diz-se nulo quando  $E=\varnothing$ ; ou seja, quando não tem arestas.

#### Nota

- A menos de isomorfismo, existe um único grafo completo de ordem  $n \in \mathbb{N}$ . Denota-se este grafo por  $K_n$ , e tem-se  $\epsilon(K_n) = \binom{n}{2}$ .
- Cada grafo nulo é simples, de facto, os grafos nulos são precisamente os grafos complementares dos grafos completos. Portanto, denotamos o grafo nulo com n vértices por  $K_n^{\mathbb{C}}$ .

### **Exemplos (Grafos completos)**









### Definição

Seja  $k \in \mathbb{N}$ . Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum  $k \in \mathbb{N}$ .

### Definição

Seja  $k \in \mathbb{N}$ . Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum  $k \in \mathbb{N}$ .

## **Exemplos (Grafos 2-regulares)**









### Definição

Seja  $k \in \mathbb{N}$ . Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum  $K \in \mathbb{N}$ .

### **Exemplos (Grafos 2-regulares)**









#### **Nota**

Os grafos 3-regulares designam-se por grafos cúbicos.

### Definição

Seja  $k \in \mathbb{N}$ . Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum  $k \in \mathbb{N}$ .

## **Exemplos (Grafos 2-regulares)**









#### **Nota**

- Os grafos 3-regulares designam-se por grafos cúbicos.
- O grafo  $K_n$  é (n-1)-regular.

### Definição

Seja  $k \in \mathbb{N}$ . Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum  $k \in \mathbb{N}$ .

### **Exemplos (Grafos 2-regulares)**









#### **Nota**

- Os grafos 3-regulares designam-se por grafos cúbicos.
- O grafo  $K_n$  é (n-1)-regular. De facto, um grafo simples G com n vértices é (n-1)-regular se e só se G é completo.

### Definição

Seja  $k \in \mathbb{N}$ . Um grafo G diz-se k-regular quando todos os seus vértices têm grau k. Um grafo G diz-se regular quando G é k-regular para algum  $k \in \mathbb{N}$ .

## **Exemplos (Grafos 2-regulares)**









#### **Nota**

- Os grafos 3-regulares designam-se por grafos cúbicos.
- O grafo  $K_n$  é (n-1)-regular. De facto, um grafo simples G com n vértices é (n-1)-regular se e só se G é completo.
- Um grafo G é o-regular se e só se G é um grafo nulo.

### Definição

Um grafo  $G = (V, E, \psi)$  diz-se bipartido quando existem subconjuntos não-vazios  $X, Y \subseteq V$  de V com  $V = X \cup Y$  e  $X \cap Y = \emptyset$  tais que os grafos G[X] e G[Y] são nulos.



#### Definição

Um grafo  $G = (V, E, \psi)$  diz-se bipartido quando existem subconjuntos não-vazios  $X, Y \subseteq V$  de V com  $V = X \cup Y$  e  $X \cap Y = \emptyset$  tais que os grafos G[X] e G[Y] são nulos.

Isto é, não existem arestas entre qualquer par de vértices de X nem entre qualquer par de vértices de Y; ou seja, cada aresta de G tem um extremo em X e outro em Y.



#### Definição

Um grafo  $G = (V, E, \psi)$  diz-se bipartido quando existem subconjuntos não-vazios  $X, Y \subseteq V$  de V com  $V = X \cup Y$  e  $X \cap Y = \emptyset$  tais que os grafos G[X] e G[Y] são nulos.

Isto é, não existem arestas entre qualquer par de vértices de X nem entre qualquer par de vértices de Y; ou seja, cada aresta de G tem um extremo em X e outro em Y.

Uma tal partição  $\{X,Y\}$  do conjunto V dos vértices de G designa-se por bipartição dos vértices. Neste caso denota-se G por  $(X,Y,E,\psi)$  (ou simplesmente (X,Y,E) se G é simples).



#### **Teorema**

 $G^a$  é bipartido  $\iff$  G não tem circuitos $^b$  de comprimento ímpar.

 $^a\mathrm{com}$  pelo menos dois vértices

 $^{\it b}$ circuito = passeio fechado sem repetição de arestas.

#### **Teorema**

G é bipartido  $\iff$  G não tem circuitos de comprimento ímpar.

Demonstração.

#### **Teorema**

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

#### Demonstração.

Suponha que G é bipartido (com a partição  $\{X,Y\}$ ) e seja

$$P: \qquad \underbrace{e_1}_{V_0} \underbrace{v_1}_{V_1} \underbrace{v_{k-1}}_{V_{k-1}} \underbrace{v_k}_{V_k} = v_0$$

um circuito em G. Suponhamos que  $v_o \in X$ .

#### Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

#### Demonstração.

Suponha que G é bipartido (com a partição  $\{X,Y\}$ ) e seja

P: 
$$v_0 = v_1 + v_k = v_0$$

um circuito em G. Suponhamos que  $v_0 \in X$ . Então,  $v_1 \in Y$ ,  $v_2 \in X$ , ...,  $v_{k-1} \in Y$  e  $v_0 \in X$ .

#### Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

#### Demonstração.

Suponha que G é bipartido (com a partição  $\{X,Y\}$ ) e seja

$$P: \qquad \frac{e_1}{v_0} \quad \frac{e_k}{v_1} \quad \frac{e_k}{v_{k-1}} \quad v_k = v_0$$

um circuito em G. Suponhamos que  $v_0 \in X$ . Então,  $v_1 \in Y$ ,  $v_2 \in X$ , ...,  $v_{k-1} \in Y$  e  $v_0 \in X$ . Portanto, há um número ímpar de vértices em P – contando possivelmente com repetição – e por isso

#### Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

#### Demonstração.

Suponha que G é bipartido (com a partição  $\{X,Y\}$ ) e seja

$$P: \qquad \frac{e_1}{v_0} \quad \frac{e_k}{v_1} \quad \frac{e_k}{v_{k-1}} \quad v_k = v_0$$

um circuito em G. Suponhamos que  $v_0 \in X$ . Então,  $v_1 \in Y$ ,  $v_2 \in X$ , ...,  $v_{k-1} \in Y$  e  $v_0 \in X$ . Portanto, há um número ímpar de vértices em P – contando possivelmente com repetição – e por isso um número par de arestas.

#### Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

### Demonstração.

Suponha agora que  $G=(V,E,\psi)$  não tem circuitos de comprimento ímpar (e G é conexo).

#### **Teorema**

G é bipartido ⇔ G não tem circuitos de comprimento ímpar.

#### Demonstração.

Suponha agora que  $G=(V,E,\psi)$  não tem circuitos de comprimento ímpar (e G é conexo). Seja  $x_0\in V$ . Consideremos a partição  $V=X\cup Y$  dada por

$$X = \{x \in V \mid \mathsf{dist}(x, x_0) \ \text{\'e par}\} \neq \varnothing, \quad Y = \{y \in V \mid \mathsf{dist}(y, x_0) \ \text{\'e impar}\} \neq \varnothing.$$

#### Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

#### Demonstração.

Suponha agora que  $G=(V,E,\psi)$  não tem circuitos de comprimento ímpar (e G é conexo). Seja  $x_0 \in V$ . Consideremos a partição  $V=X \cup Y$  dada por

$$X = \{x \in V \mid \operatorname{dist}(x, x_0) \text{ \'e par}\} \neq \varnothing$$
,  $Y = \{y \in V \mid \operatorname{dist}(y, x_0) \text{ \'e impar}\} \neq \varnothing$ .

Suponhamos que existem  $x, x' \in X$  adjacentes (com  $a \in E$ ).

#### Teorema

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

#### Demonstração.

Suponha agora que  $G=(V,E,\psi)$  não tem circuitos de comprimento ímpar (e G é conexo). Seja  $x_0\in V$ . Consideremos a partição  $V=X\cup Y$  dada por

$$X = \{x \in V \mid \mathsf{dist}(x, x_\mathsf{o}) \ \mathsf{\acute{e}} \ \mathsf{par}\} \neq \varnothing, \quad \mathsf{Y} = \{y \in V \mid \mathsf{dist}(y, x_\mathsf{o}) \ \mathsf{\acute{e}} \ \mathsf{impar}\} \neq \varnothing.$$

Suponhamos que existem  $x, x' \in X$  adjacentes (com  $a \in E$ ). Sejam

$$P: X \longrightarrow X_0 \qquad P': X_0 \longrightarrow X'$$

caminhos de menor comprimento (necessariamente par).

#### **Teorema**

G é bipartido ←⇒ G não tem circuitos de comprimento ímpar.

#### Demonstração.

Suponha agora que  $G=(V,E,\psi)$  não tem circuitos de comprimento ímpar (e G é conexo). Seja  $x_0\in V$ . Consideremos a partição  $V=X\cup Y$  dada por

$$X = \{x \in V \mid \mathsf{dist}(x, x_\mathsf{o}) \ \text{\'e par}\} \neq \varnothing, \quad Y = \{y \in V \mid \mathsf{dist}(y, x_\mathsf{o}) \ \text{\'e impar}\} \neq \varnothing.$$

Suponhamos que existem  $x, x' \in X$  adjacentes (com  $a \in E$ ). Sejam

$$P: X \longrightarrow X_0 \qquad P': X_0 \longrightarrow X'$$

caminhos de menor comprimento (necessariamente par). Portanto,

$$X_0$$
  $X'$   $X$   $X_0$ 

é um passeio fechado de comprimento ímpar, logo existe um circuito de comprimento ímpar (TPC!!), uma contradição.

4. PROBLEMAS DE CAMINHO DE «CUSTO MÍNIMO» EM

**GRAFOS** 

### **O PROBLEMA**



### **FORMALIZAR O PROBLEMA**

### Na linguagem de grafos



- · Os vértices representam cruzamentos
- As arestas representam estradas com distância/tempo/preço/ ...

#### Definição

Um grafo com custos não negativos nas arestas G = (V, E, W) é dado por um grafos simples (V, E) e uma matriz de custos

$$W \colon V \times V \longrightarrow [0, \infty]$$

tais que, W(u,v) = W(v,u), W(u,u) = 0 e, para todos os  $u \neq v \in V$ ,  $W(u,v) = \infty$  se  $uv \notin E$ .

#### Definição

Um grafo com custos não negativos nas arestas G = (V, E, W) é dado por um grafos simples (V, E) e uma matriz de custos

$$W\colon V\times V\longrightarrow [0,\infty]$$

tais que, W(u,v) = W(v,u), W(u,u) = 0 e, para todos os  $u \neq v \in V$ ,  $W(u,v) = \infty$  se  $uv \notin E$ . (Logo, podemos dispensar E.)

#### Definição

Um grafo com custos não negativos nas arestas G = (V, E, W) é dado por um grafos simples (V, E) e uma matriz de custos

$$W\colon V\times V\longrightarrow [0,\infty]$$

tais que, W(u,v) = W(v,u), W(u,u) = 0 e, para todos os  $u \neq v \in V$ ,  $W(u,v) = \infty$  se  $uv \notin E$ . (Logo, podemos dispensar E.)

 $w(u,v) = \infty$  se  $uv \notin L$ . (Logo, podemos dispensar L.)

Para um caminho  $P = (v_0, v_1, \dots, v_k)$  em G, o custo de P é

$$W(P) = \sum_{i=0}^{R-1} W(v_i, v_{i+1})$$

(onde  $\alpha + \infty = \infty = \infty + \alpha$ ).

### Definição

Um grafo com custos não negativos nas arestas G = (V, E, W) é dado por um grafos simples (V, E) e uma matriz de custos

$$W\colon V\times V\longrightarrow [0,\infty]$$

tais que, W(u, v) = W(v, u), W(u, u) = 0 e, para todos os  $u \neq v \in V$ ,  $W(u, v) = \infty$  se  $uv \notin E$ . (Logo, podemos dispensar E.)

Para um caminho  $P = (v_0, v_1, \dots, v_k)$  em G, o custo de P é

$$W(P) = \sum_{i=0}^{R-1} W(v_i, v_{i+1})$$

(onde  $\alpha + \infty = \infty = \infty + \alpha$ ).

### **Objetivo**

Encontrar o caminho de menor custo entre dois vértices.

### **Considerações iniciais**

Se  $(v_0, v_1, \dots, v_{k-1}, v_k)$  é o caminho de «menor custo» entre  $v_0$  e  $v_k$ , então  $(v_0, v_1, \dots, v_{k-1})$  é o caminho de «menor custo» entre  $v_0$  e  $v_{k-1}$ .



DIJKSTRA, EDSGER W. (1959). «A note on two problems in connexion with graphs». Em:

Numerische Mathematik 1.(1), pp. 269–271.

Edsger Wybe Dijkstra (1930 – 2002), matemático e cientista da computação holandês. Ver também https://www.cs.utexas.edu/users/EWD/welcome.html.















### As variáveis

 $\bullet \ \, \text{start} = \text{o v\'ertice inicial}.$ 

- start = o vértice inicial.
- Para cada  $v \in V$ :

- start = o vértice inicial.
- Para cada  $v \in V$ :
  - marca(v) = «custo» do caminho de menor «custo» entre start e v (até o momento).

- start = o vértice inicial.
- Para cada  $v \in V$ :
  - marca(v) = «custo» do caminho de menor «custo» entre start e v (até o momento).
  - ant(v) = antecessor de v ≠ start no caminho de menor «custo» entre start e v (até o momento).

- start = o vértice inicial.
- Para cada  $v \in V$ :
  - marca(v) = «custo» do caminho de menor «custo» entre start e v (até o momento).
  - $ant(v) = antecessor de v \neq start no caminho de menor «custo» entre start e <math>v$  (até o momento).
- **temp** = lista dos vértices com valores temporários.

- start = o vértice inicial.
- Para cada  $v \in V$ :
  - marca(v) = «custo» do caminho de menor «custo» entre start e v (até o momento).
  - $ant(v) = antecessor de v \neq start no caminho de menor «custo» entre start e <math>v$  (até o momento).
- **temp** = lista dos vértices com valores temporários.
- menor = vértice de menor «custo» (neste momento).

### O desenvolvimento

· Inicializar as variáveis:

#### O desenvolvimento

- · Inicializar as variáveis:
  - Para cada  $v \in V$ :  $marca(v) = \infty$ ,  $ant(v) = \emptyset$ .

#### O desenvolvimento

- · Inicializar as variáveis:
  - Para cada  $v \in V$ :  $marca(v) = \infty$ ,  $ant(v) = \emptyset$ .
  - $\bullet \ \, \boldsymbol{marca}(\mathtt{start}) = \mathtt{o}.$

#### O desenvolvimento

- · Inicializar as variáveis:
  - Para cada  $v \in V$ :  $marca(v) = \infty$ ,  $ant(v) = \emptyset$ .
  - marca(start) = o.
  - $temp = V \setminus \{start\} e menor = start.$

#### O desenvolvimento

- · Inicializar as variáveis:
  - Para cada  $v \in V$ :  $marca(v) = \infty$ ,  $ant(v) = \emptyset$ .
  - marca(start) = o.
  - $temp = V \setminus \{start\} e menor = start.$
- Repetir:

#### O desenvolvimento

- · Inicializar as variáveis:
  - Para cada  $v \in V$ :  $marca(v) = \infty$ ,  $ant(v) = \emptyset$ .
  - marca(start) = 0.
  - $temp = V \setminus \{start\} e menor = start.$
- · Repetir:
  - $c_{\text{aux}} = \infty$ .
  - Para todo o v em **temp**:
    - Se marca(v) > marca(menor) + W(menor, v), então

$$\begin{aligned} \mathbf{marca}(v) &= \mathbf{marca}(\mathtt{menor}) + W(\mathtt{menor}, v), \\ \mathbf{ant}(v) &= \mathtt{menor} \,. \end{aligned}$$

#### O desenvolvimento

- · Inicializar as variáveis:
  - Para cada  $v \in V$ : marca $(v) = \infty$ , ant $(v) = \emptyset$ .
  - marca(start) = o.
  - $temp = V \setminus \{start\} e menor = start.$
- Repetir:
  - $c_{\text{any}} = \infty$ .
  - Para todo o v em **temp**:
    - Se marca(v) > marca(menor) + W(menor, v), então

$$marca(v) = marca(menor) + W(menor, v),$$
  
 $ant(v) = menor.$ 

• Se  $marca(v) < c_{aux}$  então  $c_{aux} = marca(v)$  e  $v_{aux} = v$  (lembrar do «menor custo»).

#### O desenvolvimento

- · Inicializar as variáveis:
  - Para cada  $v \in V$ : **marca** $(v) = \infty$ , **ant** $(v) = \emptyset$ .
  - marca(start) = o.
  - $temp = V \setminus \{start\} e menor = start.$
- · Repetir:
  - $c_{\mathrm{aux}} = \infty$ .
  - Para todo o v em temp:
    - Se marca(v) > marca(menor) + W(menor, v), então

$$marca(v) = marca(menor) + W(menor, v),$$
  
 $ant(v) = menor.$ 

- Se  $marca(v) < c_{aux}$  então  $c_{aux} = marca(v)$  e  $v_{aux} = v$  (lembrar do «menor custo»).
- temp = temp  $\setminus \{v_{\text{aux}}\}$  e menor =  $v_{\text{aux}}$ .

| 1      | 2             | 3             | 4             | menor | temp          |
|--------|---------------|---------------|---------------|-------|---------------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | $\{2, 3, 4\}$ |
|        |               |               |               |       |               |
|        |               |               |               |       |               |
|        |               |               |               |       |               |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        |               |               |               |       |         |
|        |               |               |               |       |         |
|        |               |               |               |       |         |



- vértice inicial: 1.
- · vértice terminal: 4.
- Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        | (0,1)         | (1, 1)        | $(\infty, -)$ |       |         |
|        |               |               |               |       |         |
|        |               |               |               |       |         |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        | (0,1)         | (1, 1)        | $(\infty, -)$ | 2     | {3,4}   |
|        |               |               |               |       |         |
|        |               |               |               |       |         |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        | (0,1)         | (1, 1)        | $(\infty, -)$ | 2     | {3,4}   |
|        |               | (1, 1)        | (3, 2)        |       |         |
|        |               |               |               |       |         |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        | (0,1)         | (1, 1)        | $(\infty, -)$ | 2     | {3,4}   |
|        |               | (1, 1)        | (3, 2)        | 3     | {4}     |
|        |               |               |               |       |         |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        | (0,1)         | (1, 1)        | $(\infty, -)$ | 2     | {3,4}   |
|        |               | (1, 1)        | (3, 2)        | 3     | {4}     |
|        |               |               | (2,3)         |       |         |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        | (0,1)         | (1, 1)        | $(\infty, -)$ | 2     | {3,4}   |
|        |               | (1, 1)        | (3, 2)        | 3     | {4}     |
|        |               |               | (2,3)         | 4     | Ø       |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        | (0,1)         | (1, 1)        | $(\infty, -)$ | 2     | {3,4}   |
|        |               | (1,1)         | (3, 2)        | 3     | {4}     |
|        |               |               | (2,3)         | 4     | Ø       |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

| 1      | 2             | 3             | 4             | menor | temp    |
|--------|---------------|---------------|---------------|-------|---------|
| (0, -) | $(\infty, -)$ | $(\infty, -)$ | $(\infty, -)$ | 1     | {2,3,4} |
|        | (0,1)         | (1, 1)        | $(\infty, -)$ | 2     | {3,4}   |
|        |               | (1, 1)        | (3, 2)        | 3     | {4}     |
|        |               |               | (2,3)         | 4     | Ø       |



- vértice inicial: 1.
- · vértice terminal: 4.
- · Notação: (custo, vértice anterior).

## **INFORMAÇÕES ADICIONAIS**

- DOLAN, STEPHEN (2013). «Fun with semirings: a functional pearl on the abuse of linear algebra». Em: Proceedings of the 18th ACM SIGPLAN international conference on Functional programming ICFP '13. Vol. 48. 9. ACM. ACM Press, pp. 101–110. URL: https://www.cl.cam.ac.uk/~sd601/papers/semirings.pdf.
- JONES, SIMON PEYTON e GOLDBERG, ANDREW (2010). «Getting from A to B: fast route-finding on slow computers». URL: https:
  //www.microsoft.com/en-us/research/video/getting-from-a-b-fast-route-finding-using-slow-computers/. A talk by Simon Peyton-Jones for Think Computer Science 2010.