

(1) Publication number:

0 289 896 B1

9	EUROPEAN	PATENT	SPECIFICATION
----------	----------	--------	---------------

- (48) Date of publication of patent specification: 08.07.92 (61) Int. Cl.5. C12N 5/00. A61K 35/14. C12N 5/08
- (21) Application number: 88106566.8
- Date of filing: 23.04.88

- A simplified method for the preparation of human lymphokine activated killer cells.
- Priority: 27.04.87 US 42998
- Date of publication of application: 09 11 88 Bulletin 88/45
- (45) Publication of the grant of the patent: 08.07.92 Bulletin 92/28
- (a) Designated Contracting States: AT BE CH DE ES FR GB GR IT LI LU NL SE
- (56) References cited: US-A- 4 464 167

PROCEEDINGS OF THE NATIONAL ACADEM-IE OF SCIENCES, USA, vol. 82, April 1985, pags 2468-2472; D.L. THIELE et al.: "Regulation of cellular function by products of lysosomal enzyme activity: elimination of human natural killer cells by a dipeptide methyl ester generated from L-leucine methvi ester by monocytes or polymorphonuclear leukocytes"

(73) Proprietor: TERUMO Kabushiki Kaisha 44-1 Hatagaya 2-chome Shibuya-ku Tokyo(JP)

> Proprietor: HAEMONETICS CORPORATION 400 Wood Boad Braintree Massachusetts 02184(US)

- (7) Inventor: Dunn, George Franks, Jr. 306 West Mantua Avenue Wenonah New Jersey 08090(US) Inventor: Irr, Joseph David 386 Briar Lane Newark Delaware 19711(US) Inventor: Halpern, Lise Nadine 17 Old Winchester Street Newton Highlands Massachusetts 02161(US)
- (%) Representative: von Kreisler, Alek. Dipl.-Chem. et al Deichmannhaus am Hauptbahnhof W-5000 Köln 1(DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

FEDERATION PROCEEDINGS, vol. 44, no. 5, 8th March 1985, 69th annual meeting, Anaheim, California, 2tth-28th April 1985, page 1688, abstract no. 7469; T. MEINEKE et al.: "Monocyte modulation of IL-2 induction of lymphokine activated killer cells"

CANCER, vol. 55, 1985, pages 1327-1333; A.A. RAYNER et al.: "Lymphokine-activated killer (LAK) cells"

NEW ENGLAND JOURNAL OF MEDICINE, vol. 313, no. 23, pages 1485-1492, 5th December 1985; S.A. ROSENBERG et al.: "Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer"

Description

FIELD

5

This invention pertains to adoptive immunotherapy, more particularly to the in vitro generation of human lymphokine activated killer cells for use in such therapy.

BACKGROUND

Adoptive immunotherapy has recently produced encouraging clinical results against some forms of cancer. See articles in the Wall Street Journal, April 9, 1987, and Time Magazine, April 20, 1987. The therapy involves removing peripheral blood from a patient, removing red blood cells (RBC's) from the blood to produce a lymphocyte-containing white blood cell (WBC) fraction, incubating the blood fraction in culture medium with interleukin-2 (IL-2) to produce activated, tumor-destroying lymphocytes called LAK cells, and 16 injecting the LAK cells and additional IL-2 into the patient. In some cases IL-2 is nijected into the patient before removal of the blood in order to stimulate organization of lymphocytes.

One objection to adoptive immunotherapy is that it is very expensive. One reason it is expensive is that the current procedure for producing LAK cells is labor-intensive and time consuming. This procedure is described in Muul et al., "Large scale production of human lymphokine activated killer cells for use in an adoptive immunotherapy, "Journal of Immunological Methods, 88:265-276 (1986). As described in Muul et al., in order to generate enough LAK cells for a singlic treatment about 2×10° lymphocytes were obtained by 10 successive leukaphereses of peripheral blood. In each leukapheresis, about 10-12 liters of whole blood were processed in an automated cell separator over a 4-hour period to produce a 40-6500 ml leucoyte fraction. This fraction was diluted with 2 parts of a salt solution, then poured into 50 ml conical centrifuge tubes (40 ml/tube, approx. 30-40 tubes) and underlayed with 10 ml Ficoll-Hypaque solution. The contents were centrifuged, causing separation into a platelet-rich supernatant layer, a lymphocyte-rich layer, a Ficoll-Hypaque layer, a granulocyte layer and RBC layer. The supernatant was removed from each tube and discarded. The lymphocyte-rich fraction floating on the Ficoll-Hypaque was removed from each tube; these fractions were pooled and washed three times by suspension in salt solution and centrifugation. Since these steps must be repeated for each leukapheresis, 300-400 tubes must be handled for a single treatment.

Haemonetics Corporation of Braintree, Massachusetts, markets an automated blood cell separator known as the Haemonetics V-50, which utilizes a 2-port conically-shaped centrifuge bow similar to the bowd described in U.S. Patent 3,145,713. The V-50 can be operated according to a standard leukapheresis protocol or according to a Surgeel lymphocytopheresis protocol. The latter procedure, as described in U.S. 95 Patents, 4,464,167 and 4,416,654, involves intermittent eutivation with previously-separated plasma, and is capable of providing more precise fractions of platelets, WBC's and RBC's than can be achieved with standard fleukapheresis; it is referred to hereinafter elutriation leukapheresis.

For LAK cell processing, Haemonetics recommends use of the V-50 to separate a Buffy coat composed mostly of platelets and WBC's, followed by a secondary separation using Ficoll-Hyaque to provide a 40 density gradient in the same centrifuge bowl for isolation of mononuclear cells(lymphocytes and monocytes) from the Buffy coat. Although this procedure is much less time-consuming and labor-intensive than the standard flootl centrifugation described in Muul et al., it would be desirable to eliminate the ficoil separation step because it adds to the cost and can cause a reduced yield of lymphocytes. However, up to now it has been considered essential by those skilled in the art to conduct a ficoil separation in order to obtain a lymphocyte fraction sufficiently free of RBC's and granulocytes to be useful for production of LAK cells. It was assumed that RBC's and granulocytes would unduly interfere with the activation of the lymphocytes.

SUMMARY OF THE INVENTION

We have discovered that the step of ficoil density gradient centrifugation can be eliminated without unduly interfering with lymphocyte activation. Thus, our invention is an improvement in the method of producing LAK cells in vitro which comprises removing BRC's from whole blood to produce a lymphocyte-containing WBC-rich fraction and incubating the WBC-rich fraction in culture medium with IL-2 to activate the lymphocytes. The improvement comprises using the lymphocyte-containing WBC-rich fraction without intermediate separation of a lymphocyte and monocyte layer on a ficoil gradient.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the improved method for this invention, the RBC's can be removed in various ways. These include standard loukspheresis, edurabheresis, and centrifugation without use of flocil. Fiscoll is a synthetic water-soluble polysaccharide that has a weight average molecular weight of about 400,000 and that is widely used for the preparation of density gradients. It is available as such and in admixture with other substances under registered trademarks such as Fiscoll-Paque, Fiscoll-Hypaque and Fiscoll-slopaque. Leukapheresis refers to a process in which peripheral blood is withdrawn from a patient or donor, a WBC-rich fraction is separated out, and other blood fractions (plasma, platelets and RBC's are returned to the source. Standard centrifugation is used to separate blood from donors into plasma, WBC-rich and RBC fractions which are stored for later use. (The term "Buffy coat" as used hereinafter refers specifically to the tow WBC-rich fraction obtained by standard centrifugation, atthough the term is also used in the art to refer to a platelet-rich, WBC-rich fraction obtained by leukapheresis.

The various methods of removing RBC's produce WBC-rich fractions with varying amounts of residual RBC's and varying differentials. (The term "differential" or "diff" refers to the number percent of lymphocytes, monocytes and granulocytes based on the total number of those three cell types in a WBC-15 rich fraction.) Compositions of the various fractions will also vary depending upon the source. For example, a patient who has been primed with IL-2 may have a very high lymphocyte count. Typical ranges for the WBC-rich fractions obtained by various methods are compared with typical ranges for whole blood in the following table.

	No RBC	No WBC	Differential L M G
Standard Leukapheresis per 240 ml pack Vol. % RBC 10-20	10 ¹¹ to 5x10 ¹¹	2x10 ⁹ to 10 ¹¹	60-80 5-2 5 5-2 5
Elutriation Leukapheresis per 400 ml pack Vol. % RBC 1-6	2x10 ¹⁰ to 10 ¹¹	2×10 ⁹ to 10 ¹¹	80-85 10-20 1-5
Buffy Coat per 40 ml pack Vol. % RBC 40-50	10 ¹¹ to 3x10 ¹¹	10 ⁸ to 2×10 ¹⁰	20-50 10-30 20-50
Wormal Whole Blood per 450 ml unit	1.6-2.4x10 ¹²	2.3-4.6x10 ⁹	25-40 4-10 50-65

20

25

30

From the above table, it can be seen that lymphocyte-containing WBC-rich fractions usable in this invention can have RBC/WBC ratios from about 0.2 to about 300 and granulocyte contents from about 1% to about 50%. As a practical matter Buffy coats would principally be used for screening to determine whether a patient is capable of developing LAK cells. For generating LAK cells for use in adoptive immunotherapy the leukapheresis products having RBC vol. % of about 1-20% and RBC/WBC ratio of about 0.2-250 would be preferred.

At the present time, it is preferred to use the elutriation leukapheresis product because it is more nearly like the ficioli-separated products in both RBC and granulocyte content, and therefore would probably be more readily accepted by workers in the art. In addition, it appears that elutriation leukaphersis products can be cultured at a somewhat higher cell density (e.g., 1x10³/ml or higher) than can standard leukaphersis products on a routine basis. From the above table, it can be seen that elutriation leukaphersis products typically have a RBC/WBC ratio of about 0.2 to about 50, a RBC vol. percent of about 1.6 and a granulocyte content of 1-5. More typical ranges are RBC/WBC of about 0.5-25 and RBC vol. % of about 2.

Standard leukapheresis can be performed using instruments available from various manufacturers, sincluding Haemonetics, Fenwall, and Cobe and following the manufacturers' instructions. The only instrument now available for performing elutriation leukapheresis is the Haemonetics V-50. Following the teaching of U.S. Patents 4.464,167 and 4.416,654 or the instructions provided by Haemonetics, the V-50 can be used to provide a WBC-rich fraction having low RBC and granulocyte content.

Monocyte content of the WBC-rich fraction can be reduced below the figures shown in the table by treatment of the leukapheresis product with an L-amino acid lower alkyl ester or hydrogen chloride salt thereof, e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl, or t-butyl ester of phenylamaine, glutamic acid, glutamine or tyrosine. Phenyl alanine methyl ester is preferred. Further details are given in copending U.S. 5 application Serial No. 868,697, filed May 30, 1986, and in the examples below.

Activation of the lymphocytes by incubation with IL-2 is accomplished in this invention in the same manner as in the prior art. Containers such as conventional flasks and roller bottles can be used, but the preferred containers are 0.2-5 filter tissue culture bags made from flexible copolymeric film materials as disclosed in copending application Serial No. 008,273, filed January 29, 1987. Most preferred is a bag 10 made of a copolymer of 97 mol % ethylene and 1-octene. Any suitable culture medium can be used, but the preferred culture medium is RPMI 1640, which is described in "Culture of Animal Cells", Freshney, 72-73, Alan R. Luss, Inc., NY, supplemented with serum. Initial cell concentrations of up to about 1x10° cells can be used with an elutriation leukapheresis product. A concentration of at least 1x10° cells mil should be used for reason of economy. Preferred ranges would be \$x10° to 10° cellsmil for elutriation leukapheresis products and 1-5x10° cellsmil for standard leukapheresis products. The cells are incubated with IL-2 for about 2-7 days, preferably about 3-5 days, at a temporature of about 35-39° C, preferably 37° C.

"Interleukin-2" (IL-2) as used herein means human IL-2. It includes natural and recombinant IL-2 (IL-2) and biologically functional equivalents thereof, such as the rIL-2 muterial disclosed in U.S. Patent 4,518,584. 20 Preferably, the IL-2 is a rIL-2 composition consisting essentially of water, rIL-2 and, optionally, a polyois as described in assignee's copending application Serial No. 825,133, filed on January 31, 1986. Preferably, the IL-2 concentration in the culture medium is in the range of about 5x10° to about 5x10° pM, most preferably 1000 to 2000 pM.

The LAK cells prepared by the process of the invention can be suspended in a pharmaceutically acceptable carrier, such as saline, saline containing 5% normal human serum albumin, or Hank's balanced salt solution, to provide a composition which can be infused into a patient afflicted with a tumor. The patient is concurrently treated with rit-2 as further described by Rosenburg et al., The New England Journal of Medicine 313, 1485-1492 (1985). In that modality, the patient's blood is withdrawn, subjected to leukapheresis and harvested cells are immediately cultured for 3 days to generate LAK cells. The LAK cells are rither infused in the patient. Typically, about 3x10¹⁰ to 14x10¹⁰ LAK cells are infused in 4-9 doses. Interleukin-2 is administered every eight hours at doses such as 10,000, 30,000 or 100,000 units per kilogram of weight. The treatment consists of a two-week regime of leukapheresis and reinfusion and enerally receition starting the third week. Recombinant L2 can be included in the LAK cell composition.

35 Cytotoxicity (LAK) Assay

50

In the following examples, unless otherwise stated, a 4 hour ⁹ °Cr release assay was used to measure cytotoxicity of LAK cells for fumor cells (LAK activity). Tumor cells at a concentration of about 2×10° to 10×10° per ml were incubated with 100 µCi of Na₂ ⁹ °CrO₄ in 0.4 mL of Tris-phosphate buffered saline for 1 to hour at 37° °C. The cells were washed 3 times with PAMI 1840 containing 5% or 10% fetal call serum (FCS) and resuspended to 10° cells/mL in RMPI-20% FCS or RPMI-10% FCS. The effector costs (LAK cells) were suspended to various concentrations of 0.1 mL was added in to wells round bottom microliter plates. The \$^1°Cr labeled target cells (O.1 mL) were added to all wells. After 4 hours of incubation at 37° °C, the plates were centrifuged and 0.1 mL of resulting supernatant was removed from each well and counted in a gamma counter, Percent cytolysis is calculated from the following formula:

Each variable was tested in triplicate and the resulting data are expressed as % cytolysis. This cytotoxicity test is further described in "Selected Methods in Cellular Immunology," Mishell and Shiigi, eds., 124-137, W. H. Freeman and Co., San Francisco (1980).

In other experiments, the results of the assays are presented as "Lytic Units" (LU or LU30) which are the number of target cells per 100 effector cells when 30% of the target cells are killed when LAK cells and target cells are incubated together for 4 hours at 37°C. The calculation of LU is based upon the method of Pross et al., Journal of Immunological Methods 68, 235-249 (1984). The greater the number of LU, the

greater the potency of the LAK cell preparation.

All patents, patent applications and other printed publications cited in this application are incorporated herein by reference, especially the disclosure of U.S. Patents 4,464,167 and 4,416,654 relating to the production of a WBC-rich fraction by elutriation leukapheresis using previously separated plasma as selutriant.

EXAMPLE 1

Purpose:

- 1) To study the LAK activity of cells obtained from a Haemonetics V50 using the elutriation technique to obtain white blood cells.
- 2) To study the effects of phenyl alanine methyl ester (ØAla) treatment and Ficoll treatment on the LAK activity of cells obtained from the Haemonetics V50 elutriation technique.

Cells:

15

20

25

40

50

55

Human lymphocytes (obtained from Haemonetics Corporation using V50 elutriation technique). Raji cells

Materials:

- 1) Cell culture medium (CCM) = RPMI 1640 with 10% FBS, L-glutamine and Gentamicin
- 2) Phosphate buffered saline (PBS) 1x without Ca** and Mg
- 3) Ficoll Hypaque (Ficoll)
- 4) øAla
- 5) Unopette® for WBC count
- 6) Ethylene butene copolymer Bag for cell culture
- 7) T25 tissue culture flasks
- 30 8) 1% NP 40
 - 9) 2x TD buffer
 - 10) 51Cr (as sodium chromate)
 - 11) recombinant Interleukin-2, 10 units/ml in 0.5M glucose (IL-2)
 - 12) 96 well μ bottom tissue culture plate
- 5 13) SCS Harvesting System (Skatron)
 - 14) Beckman Gamma 4000 Counter
 - 15) Trypan Blue

Procedure:

A) Preparation of Cells

- A total of 250 ml of a white blood cell fraction was collected from a Haemonetics V50 machine using the elutriation procedure as described in U.S. Patents 4,416,654 and 4,464,167.
- 45 2) A WBC count was performed using a Unopette®. The fraction contained 1.36x10⁷ WBC/ml and was estimated to contain approximately 3 vol. % RBC.
 - 3) The cells were then brought to a concentration of 1x107 WBC/ml (total volume = 340 ml).
 - 4) 40 MI of cells were put directly into culture (as described below).
 - 5) The remaining 300 ml were treated with øAla (as described below).

B) øAla Treatment

- 1) Place 300 ml of cells into T150 flask.
- 2) Add 30 ml of øAla to cells
- Mix well (gently).
 - 4) Incubate at room temperature for 40 minutes.
 - 5) After incubation, separate blood into 2 aliquots each containing 165 ml
 - a) aliquot 1 was placed into culture

b) aliquot 2 was underlayed with Ficoll (as described below) and then placed into culture.

C) Set Up Culture

5 1) Cells Straight from V50 (No Ficoll; No øAla)

- a) place 40 ml cells into a 50 ml centrifuge tube
- b) centrifuge cells 10 minutes at 1200 rpm
- c) discard supernatant
- d) resuspend cells in CCM to a total volume of 40 ml
- e) place desired amount of cells into T25 flasks
- f) add CCM to flasks to bring white cells to desired concentration
- g) add 5 µl IL-2 to each flask (final concentration 10 units/ml)
- h) place flasks in 37 °C incubator with 5% CO2.

15

20

26

Set up 3 - T25 Flasks 5X10⁶ WBC/ml 1x1

 1x 10 6 WBC/ml
 5X10 6 WBC/ml
 1x10 7 WBC/ml

 1 ml cells
 5 ml cells
 10 ml cells

 9 ml media (CCM)
 5 ml media (CCM)
 5 μl IL-2

 5 μl IL-2
 5 μl IL-2

2) Aliquot 1 → Cells from V50 (ØAla and No Ficoll)

- a) place 165 ml of øAla treated cells into a 250 ml centrifuge tube
- b) centrifuge for 10 minutes at 1200 rpm
- 30 c) discard supernatant
 - d) resuspend cells in 50 ml CCM
 - e) perform cell count using Unopette®; the WBC count was 1.9x107 per ml
 - f) set up cultures in bags and flasks according to cell concentrations desired
 - g) place cultures in 37°C incubator with 5% CO2.

35

45

Set Up 2 Cultures: T25 Flask 5x10⁶ cells/ml Bag 9x10⁶ cells/ml

55 3) Aliquot 2 → Cells from V50(øAla and Ficoll)

- a) place 40 ml of øAla treated cells into 4-50 ml centrifuge tubes
- b) underlay blood with 10 ml of Ficoll

c) centrifuge for 30 minutes at 1900 rpm

d) collect interface layer with a sterile pasteur pipette and place cells into a sterile 50 ml centrifuge tube

e) bring volume in the tube up to 50 ml using PBS

f) centrifuge for 10 minutes at 1200 rpm
 g) discard supernatant

h) resuspend pellet in 50 ml of CCM

i) centrifuge for 10 minutes at 1200 rpm

j) resuspend in 5 ml of CCM

15

20

25

30

40

50

55

k) perform cell count using trypan blue; then

I) set up cultures in bags and flasks according to cell concentrations desired

m) place cultures in 37°C incubator with 5% CO2.

NOTE: No interface layer resulted after step 3; therefore, the cells were resuspended, re-underlayed with Ficoll and recentrifuged. After this, the cells in the interface were collected.

$$\frac{5 \times 10^6}{6.8 \times 10^7} = .074 \times 10 = .740 \text{ ml cells}$$

$$9.260 \text{ ml media (CCM)}$$
in T25 flast

$$\frac{1 \times 10^{7}}{6.8 \times 10^{7}} = .147 \times 10 = 1.47 \text{ ml cells}$$

$$8.53 \text{ ml media (CCM)}$$

$$5 \text{ µl IL-2}$$
in T25 flask

D) LAK Assay

The LAK assay was performed after cells were in culture for 4 days, according to the procedure given

45 above.
NOTE: Due to the overabundance of red blood cells contained in the specimens, 3 specimens were treated

NOTE: Due to the overabundance of red blood cells contained in the specimens, 3 specimens were tre with lysis buffer prior to the LAK assay.

Lysing solution: .83 g Ammonium Chloride 200 ml distilled H₂O

1) resuspended cell pellet in 10 ml lysing solution

2) incubate for 20 minutes at room temperature

3) centrifuge for 10 minutes at 1200 rpm

4) discard supernatant

5) resuspende in 1 ml of CCM

6) perform cell count

7) set up E:T ratios as described in LAK assay procedure.

<u>DATA</u> Cell Counts

Specimen	Counts	Cells	Total Cells
Straight from V50	68	1.36x10 ⁷	3.4x10 ⁹ /250 ml
After #Ala	97	1.9x10 ⁷	9.7x10 ⁸ /50 ml
After #Ala and			•
Ficoll	344	6.8x10 ⁷	3.4x10 ⁸ /5 ml

Prepare Cells for #Ala Treatment (Bring all cells to 1x10⁷ cells/ml)

$$\frac{1 \times 10^7}{1.36 \times 10^7} = .735 \times 340 = 250 \text{ ml cells}$$

Take off 40 ml and put into culture.

Add 30 ml of øAla to remaining cells and incubate 40 minutes at room temperature.

Day 4 - 51Cr Release Data

Specimen	Viable	Won- Viable	% <u>Viable</u>	Cells/ mls	Mis of Celis	Mls of Media	Tota Cel
Straight from ¥50							
*1x10 ⁶ Flask	39	3	92%	7.8x10 ⁶	. 256	.744	
*5x10 ⁶ Flask	113	44	87%	2.2x10 ⁷	.091	.909	
Fl×10 ⁶ Flask	136			2.7x10 ⁷	.074	.926	5.42
SAla No Ficoll							
*5x10 ⁶ Flask	44	2	95%	8.8x10 ⁶	. 228	. 772	
F9x10 ⁶ Bag	92			1.8x10 ⁷	.111	.889	3.62
#Als and Ficoll							
5x10 ⁶ Flask	154	21	88%	3x10 ⁷	.067	. 933	
10x10 ⁶ Flask	158	30	84%	3.2x10 ⁷	.063	. 937	6.4x
1.9x10 ⁶ Bag	48	2	92%	9.6x10 ⁶	. 208	.792	
Raji	82	5	94%	1.6x10 ⁷	.240	39.760	

Straight From V50

50

$$1 \times 10^6 \text{ Flask} \quad \frac{2 \times 10^6}{7.8 \times 10^6} = .256$$

$$5 \times 10^6 \text{ Flask } \frac{2 \times 10^6}{2.2 \times 10^7} = .091$$

$$10 \times 10^6 \text{ Flask } \frac{2 \times 10^6}{2.7 \times 10^7} = .074$$

#Ala No Ficoll

$$5x10^6$$
 Flask $\frac{2x10^6}{8.8x10^6}$ = .228

$$9 \times 10^6$$
 Bag $\frac{2 \times 10^6}{1.8 \times 10^7} = .111$

#Ala and Ficoll

20

25

30

35

40

50

55

$$1x10^6 \text{ Flask } \frac{2x10^6}{3x10^7} = .067$$

$$10x10^6$$
 Flask $\frac{2x10^6}{3.2x10^7}$ = .063

$$1.9 \times 10^6 \text{Bag} \qquad \frac{2 \times 10^6}{9.6 \times 10^6} = .208$$

$$\frac{\text{Raji}}{1.6 \times 10^{7}} = \frac{1 \times 10^{5}}{1.6 \times 10^{7}} = .006 \times 40 = .240 \text{ ml cells}$$
39.760 ml media

- specimens which were processed with lysing solution prior to LAK assay
 - F specimens counted using Unopette* method

Day 4 - 51Cr Release Data

Maximum (Total) Release =	2011	Spontaneous Release	-	463	21.0%
	2215			469	21.3%
	2361			573	26.0%
Avg =	2196	CPM AVE	-	502cpm	22.8%

EP 0 289 896 B1 Cells Straight From V50 - NogAla and No Ficoll

		Flas	k lxl0 ⁶	Flas	k 5x10 ⁶	Plask	1x10 ⁷
5	Dilution	CPM	lysis	CPM	lysis	CPM	lysis
	20:1	1011	30.1	1102	35.4	1222	42.5
10		978 1068	28.1 33.4	1143 1142	37.9 37.8	1437 1321	55.2 48.4
		mean	30.5	mean	<u>37.0</u>	mean	48.7
	10:1	821 736	18.9 13.8	752 861	14.8 21.2	1014 1072	30.2 33.7
15		758 mean	15.1 15.9	861 mean	21.2 19.1	1361 mean	50.7 38.2
	5:1	613	6.6	757	15.1	907	23.9
	5.1	638	8.0	719	12.8	874 815	22.0 18.5
20		591 mean	5.3 _6.6	747 mean	14.5 <u>14.1</u>	mean	21.5
	2.5:1	512	0.6	635	7.9	584	4.9
25		548 495	2.7 -0.4	699 592	11.6 5.3	629 1012	7.5 30.1
		mean	<u>_1.0</u>	mean	<u>8.3</u>	mean	14.2

#Ala and No Ficoll

30		Flas	k 5x10 ⁶	Bag	9x10 ⁶		
			Cyto-		% Cyto-		
	Dilution	CPM	lysis	CPM	lysis		
35	20:1	838	19.9	670	9.9		
		716	12.7	962	27.2		
		727	13.3	1158	38.7		
		mean	<u>15.3</u>	mean	25.3		
40	10:1	624	7.2	811	18.3		
		550	2.9	723	13.1		
		636	7.9	764	15.5		
		mean	_6.0	mean	15.6		
45	5:1	541	2.3	719	12.8		
		506	0.3	713	12.5		
		654	9.0	822	18.9		
		mean	3.9	mean	14.7		

2.5:1	476	-1.5	709	12.2
	488	-0.8	713	12.5
	405	-5.7	727	13.3
	mean	-2.7	mean	12.7

#Ala and No Ficoll

		Flas	k 1x10 ⁶	Flas	k 5x10 ⁶	Plask	1x10 ⁷
10			Cyto-		% Cyto-		% Cyto-
	Dilution	CPM	lysis	CPM	lysis	CPM	lysis
	20:1	1030	31.2	1239	43.5	1498	58.8
		1010	30.0	1200	41.2	1227	42.8
15		1069	33.5	1288	46.4	1187	40.5
		mean	31.6	mean	43.7	mean	47.4
	10:1	769	15.8	982	28.4	1125	36.8
		781	16.5	999	29.4	1188	40.5
20		745	14.4	939	25.8	1261	44.8
		mean	15.5	mean	27.8	mean	40.7
	5:1	623	7.2	876	22.1	1127	36.9
		624	7.2	755	15.0	953	26.6
25		676	10.3	759	15.2	1326	48.7
		mean	8.2	mean	17.4	mean	37.4
	2.5:1	422	-4.7	627	7.4	983	28.4
		464	-2.2	556	3.2	940	25.9
30		426	-4.5	563	3.7	894	23.2
		mean	-3.8	mean	4.8	mean	25.8

35 EXAMPLE 2

5

Protocol:

40

50

55

The following diagram summarizes the protocol for this example.

P - T-25 Plask B - Culture Bag

Procedure:

5

10

15

20

25

40

50

55

A) Separation of Cells

30 1) Cells were collected via elutriation technique on Haemonetics V-50.

2) A cell count was performed = 1.3x107 cells/ml in 442 mls. 5.8x109 total cells.

3) Cell Volume was split in two for processing.

35 B) LAB Ficoll

1) 221 mls of cells were mixed with PBS and layered on Ficoll.

2) Centrifuged 30 min. at 2000 rpm

3) Cells were then washed and counted

256 cells viable

99% Viability

1 nonviable cell

5.1x108 cells ml

2x109/40 ml

4) Set up cells in Culture for LAK @ 1x106 45

```
Sample Conc.
Code # Wanted Calculation ml cells + ml Media + µl IL-2
                     1x106/
                     5.1 \times 10^{7} \times 10 = 0.2 \text{ ml} + 9.8 \text{ ml} + 5 \text{ ul}
```

5) The remaining of these FicoII layered cells were set up for ØAla

a) $V_1C_1 = V_2C_2$ $(40 \text{ m/s})(5.1\times10^7) = V_2 (1\times10^7)$ #mls total = V2 = 200 mls #mls media = V2-V1 = 160

```
#mls øAla = 1/-9 = 200.9 = 22.2 mlsøAla
b) Incubate 40 min and then wash.
c) Perform cell count and put cells in culture for LAK
Viable cells = 229
Nonviable = 6
% Viability = 97%
Cells/ml = 4.6 x 10°
d) Set up cells for culture
```

```
Sample Conc.
Code # Wanted Mis Cells + M1 media + ul IL-2

#1 1x10<sup>6</sup> 0.20 ml + 9.8 mls + 5 ul

#2 5x10<sup>6</sup> 10.9 mls + 89.1 ml + 50 ul

#3 1x10<sup>7</sup> 21.8 ml + 78.2 ml + 50 ul
```

C) LAK directly from V-50

25

40

1) The second half of cells were used at this time. The amount of cells necessary to have cultures at a concentration of 1x10⁶, 5x10⁶ and 1x10⁷ were used and the remaining cells were diluted and treated with phenyl alanine methyl ester.

```
Sample
                             Conc.
                   Code #
                             Wanted ml Cells + ml media + ul IL-2
30
                              1x10<sup>6</sup>
                                          0.76 \text{ ml} + 9.2 \text{ mls} + 5 \text{ } \mu\text{l}
                             5x10<sup>6</sup>
                      #6
                                          3.9 ml + 6.1 ml + 50 ul
                              1x10<sup>7</sup>
                                          7.7 ml + 2.3 ml + 50 ul
                    *#7A
                             1x10<sup>7</sup>
                                          7.7 \text{ ml} + 2.3 \text{ ml} + 50 \text{ ul} added
     *10 ml sample - centrifuged - removed 5 mls plasma:
      added 5 mls media. Diluted cells to 1x107.
```

D) øAla without Ficoll

#Ala cells without separating with FicoII first 45 C₁V₂ = C₂V₅ (200 ml)(1.2x10⁷) = (k)(1x10⁷) = x = 260 # mls media = 60 mls # mls #Ala = 29 mls. Incubate 40 min.

50 Wash.
Perform cell count and put up in culture
Viable 240
%Viable 93%
Cells/ml = 4.8x10⁷
55 Total = 19x10⁹440 ml

Sample Code #		ml Cells + ml media + µl IL-2
#8	1x10 ⁶	0.2 ml + 9.8 mls + 5 µl
#9	5x10 ⁶	10.4 ml + 89.6 ml + 50 µl
#10	1×10 ⁷	20.8 ml + 72.2 ml + 50 ul

5

55

All cultures were incubated for 3 days at 37 °C and 5% CO₂, LAK - ⁵ °Cr release performed. In the tables which follow, % REL means % Release, which is the same as % Cytolysis, calculated as explained above. E:T means the ratio of effector (LAK) cells to target (tumor) cells. Cell counts were performed on all cultures.

15					
	Sample	Viable	Non-Viable	* Viable	Total
	A	33	4	88	6.5x10 ⁶ /ml
20	В	99	8	93	2.0x10 ⁸ /10 ml
	С	236	17	93	4.7x10 ⁸ /10 ml
	D	7	0	100	1.4x10 ⁶ /m1
	*E	22	1	96	4.4x10 ⁶ /ml
25	F	45	5	91	1.8x10 ⁷ /2 ml
	G	38	4	90	7.6x10 ⁶ /m1
	H	75	6	93	1.5x10 ⁸ /10 ml
30	J	141	15	90	2.8x10 ⁸ /10 ml
	K	31	4	89	6.2x10 ⁶ /ml
					_
35	# 1	34	1	97	6.8x10 ⁶ /ml
	2	162	8	95	3.2x10 ⁸ 10 /m1
	3	375	20	94	7.5x10 ⁸ /10 ml
40	4	41	2	95	8.1x10 ⁶ /m1
40	5	27	2	93	5.4x10 ⁶ /ml
	6	43	1	98	1.7x10 ⁷ /2 ml
	7	121	17	88	4.8x10 ⁷ /2 ml
45	7 A	149	9	94	6.0x10 ⁷ /2m1
	8	50	0	100	1x10 ⁷ /m1
	9	113	5	96	2.3x10 ⁸ /10 ml
50	10	424	47	90	8.5x10 ⁸ /10 ml

*Letter E had a heavy fibrin clot after centrifugation. Raji tumor cells were prepared as target - Viability was 100% with a concentration of 3.6x10⁵/ml

Lab	Γi	CO	11	-	øAla
	#1	a	1 x	10	6

		WI G INIO	
5	<u>E:T</u>	CPM	* REL
	20	500	59.06
	20	501	59.23
	20	470	54.03
10	10	377	38.42
	10	372	37.58
	10	326	29.87
15	5	233	14.26
	5	288	23.49
	5	253	17.62
20	2.5	197	8.22
	2.5	198	8.39
	2.5	196	8.05
25		#2 @ 5x10 ⁶	
	E:T		
	20	<u>CPM</u> 607	REL
30	20		77.01
30		478	55.37
	20	480	55.70
	10	471	54.19
35	10	527	63.59
	10	512	61.07
	5	383	39.43
40	5	317	28.36
	5	393	41.11
	2.5	338	31.88
_	2.5	271	20.64
45	2.5	242	15.77

		#3 @ 1x10	7		
	E:T	CPM	* REL		
5	20	603	76.34		
	20	647	83.72		
	20	571	70.97		
10	10	546	66.78		
	10	408	43.62		
	10	405	43.12		
15	5	351	34.06		
,,,	5	333	31.04		
	5	324	29.53		
	2.5	265	19.63		
20	2.5	217	11.58		
	2.5	271	20.64		
25		STD Ficoll - No			
	#4 @ 1x10 ⁶				
	E:T	CPM	3 REL		
	20	565	69.97		
30	20	507	60.23		
	20	529	62.42		
	10	483	56.21		
35	10	400	42.28		
	10	462	52.68		
	5	276	21.48		
40	5	255	17.95		
	5	291	23.99		
	2.5	288	23.49		
	2.5	263	19.30		

2.5

14.60

EP 0 289 896 B1

Elutriation - No Ficoll or #Ala #5 @ 1x10⁶

		#2 6 1X10	
5	<u>E:T</u>	CPM	3 REL
	20	588	73.83
	20	496	58.39
	20	466	53.36
10	10	305	26.34
	10	296	24.83
	10	339	32.05
15	5	285	22.99
	5	281	22.32
	5	228	13.42
20	2.5	211	10.57
	2.5	229	13.59
	2.5	237	14.93
25		#6 @ 5x10 ⁶	i
	E:T	CPM	% REL
	20	759	102.52
30	20	626	80.20
	20	512	61.07
	10	543	66.28
35	10	533	64.60
00	10	521	62.58
	5	373	37.75
	5	474	54.70
40	5	408	43.62
	2.5	224	12.75
	2.5	341	32.38

266

2.5

55

19.80

		#7 @ 1x10 ⁷	
	E:T	CPM	* REL
5	20	314	27.85
	20	288	23.49
	20	312	27.52
	10	. 203	9.23
10	10	186	6.38
	10	206	9.73
	5	187	6.54
15	5	185	6.21
	5	177	4.87
	2.5	157	1.51
20	2.5	190	7.05
	2.5	167	3.19
		#7A @ 1x10 ⁷	
	E:T	<u>CPM</u>	* REL
25	20	481	55.87
	20	308	26.85
	20	297	25.00
30	10	249	16.95
	10	281	22.32
	10	252	17.45
35	5	197	8.22
	5	144	-0.67
	5	167	3.19
	2.5	160	2.01
40	2.5	197	8.22
	2.5	164	2.68

Elutriation - #Ala, No Ficol1 #8 @ 1x10⁶

20 592 74.56 20 574 71.46 20 463 52.81 10 377 38.42 10 438 48.66 10 425 46.46 15 5 257 18.25 5 228 13.42 5 431 47.46 2.5 207 9.90 2.5 217 11.56 2.5 217 11.56 2.5 211 10.57 20 687 90.44 20 573 71.31 20 598 75.56 10 636 81.88 30 10 609 77.35 10 647 83.72 5 284 22.82 40 5 352 34.23 40 5 352 34.23 40 5 352 34.23			MO 6 INTO	
20 592 74.56 20 574 71.46 20 463 52.88 20 463 52.88 10 438 48.66 10 425 46.46 10 425 18.29 5 257 18.29 5 228 13.46 5 431 47.46 20 2.5 207 9.99 2.5 207 9.99 2.5 217 11.56 2.5 217 10.55 25 211 10.55 26 89 6 87 90.46 20 573 71.31 20 598 75.50 10 636 81.88 30 10 609 77.38 10 609 77.38 40 647 83.72 5 284 22.82 40 5 352 34.23 40 5 352 34.23		E:T	CPM	3 REL
20 463 52.81 10 377 38.42 10 438 48.66 10 425 46.46 15 5 257 18.22 5 228 13.44 5 431 47.46 20 2.5 207 9.99 2.5 217 11.56 2.5 211 10.57 20 687 90.44 20 573 71.31 20 598 75.55 10 636 81.86 35 10 609 77.35 10 647 83.72 5 284 22.82 40 5 352 34.22 40 5 352 34.22 40 5 352 36.22	5	20	592	74.50
10 10 377 38.44 10 438 48.66 10 425 46.46 10 425 16.46 15 5 257 18.22 15 431 47.46 20 2.5 207 9.99 2.5 217 11.56 2.5 211 10.55 25		20	574	71.48
10 438 48.64.46 10 425 46.46 10 425 46.46 15 5 257 18.25 15 228 13.47 15 5 431 47.46 2.5 207 9.96 2.5 217 11.55 2.5 211 10.57 25		20	463	52.85
10 425 46.46 15 5 257 18.25 5 228 13.46 5 431 47.46 2.5 207 9.90 2.5 217 11.55 2.5 211 10.55 25	10	10	377	38.42
15 5 257 18.25 5 228 13.42 5 431 47.44 2.5 207 9.90 2.5 217 11.50 2.5 211 10.57 20 687 90.44 20 573 71.31 20 598 75.55 10 636 81.88 30 10 609 77.35 10 647 83.72 5 255 17.95 40 647 83.72 5 254 22.82 40 5 352 34.22 40 5 352 34.22		10	438	48.66
5 228 13.44 5 431 47.46 5 431 47.46 2.5 207 9.99 2.5 217 11.56 2.5 211 10.57 25 #9 @ 5x10 ⁶		10	425	46.48
5 431 47.44 2.5 207 9.90 2.5 217 11.56 2.5 211 10.55 2.5 211 10.55 2.5 211 10.56 2.5 25 211 30.55 2.5 25 25 25 25 25 25 25 25 25 25 25 25 25	15	5	257	18.29
20 2.5 207 9.99 2.5 217 11.56 2.5 211 10.55 2.5 211 10.55 2.5 211 10.55 2.5 221 211 20.55 2.5 284 22.82 40 5 352 34.23 2.5 264 19.46		5	228	13.42
25 2.5 217 11.56 2.5 211 10.57 25 #9 @ 5x10 ⁶ E:T CPM REI 20 687 90.44 50 20 573 71.31 20 598 75.50 10 636 81.88 10 609 77.35 10 647 83.72 5 255 17.95 40 5 352 34.23 2.5 264 19.46		5	431	47.48
2.5 217 11.56 2.5 211 10.55 25 #9 @ 5x10 ⁶ E:T CPM 3 REI 20 687 90.44 20 598 75.56 10 636 81.88 10 609 77.35 10 647 83.72 5 255 17.95 5 264 22.62 40 5 352 34.23 2.5 264		2.5	207	9.90
#9 @ 5x10 ⁶ E:T CPM \$ REI 20 687 90.44 20 573 71.35 20 598 75.55 10 636 81.88 10 647 83.72 5 255 17.95 5 284 22.82 40 5 352 34.22 2.5 264 19.46	20	2.5	217	11.58
E:T CPM % REI 20 687 90.46 20 573 71.31 20 598 75.55 10 636 81.88 10 609 77.35 10 647 83.72 5 255 17.99 5 284 22.82 40 5 352 34.23 40 2.5 264 19.46		2.5	211	10.57
E:T CPM % REI 20 687 90.46 20 573 71.31 20 598 75.55 10 636 81.88 10 609 77.35 10 647 83.72 5 255 17.99 5 284 22.82 40 5 352 34.23 40 2.5 264 19.46				
E:T CPM % REI 20 687 90.46 20 573 71.31 20 598 75.55 10 636 81.88 10 609 77.35 10 647 83.72 5 255 17.99 5 284 22.82 40 5 352 34.23 40 2.5 264 19.46	25		#9 @ 5x10 ⁶	
20 573 71.31 20 598 75.50 10 636 81.88 10 609 77.32 10 647 83.72 5 255 117.95 5 284 22.82 40 5 352 34.23 2.5 264 19.46		E:T		% REL
20 598 75.50 10 636 81.88 10 609 77.35 10 647 83.72 5 255 17.95 5 284 22.82 40 5 352 34.23 2.5 264 19.46		20	687	90.44
10 636 81.888 10 609 77.35 10 647 83.72 5 255 17.95 5 284 22.82 40 5 352 34.23 2.5 264 19.46	30	20	573	71.31
10 636 81.888 10 609 77.35 10 647 83.72 5 255 17.95 5 284 22.82 40 5 352 34.23 2.5 264 19.46		20	598	75.50
5 10 647 83.72 5 255 17.95 5 284 22.82 40 5 352 34.23 2.5 264 19.46			636	81.88
10 647 83.72 5 255 17.95 5 284 22.82 40 5 352 34.23 2.5 264 19.46	ar.	10	609	77.35
5 284 22.82 40 5 352 34.23 2.5 264 19.46	35	10	647	83.72
40 5 352 34.23 2.5 264 19.46		5	255	17.95
2.5 264 19.46		5	284	22.82
	40	5	352	34.23
2.5 346 33.22		2.5	264	19.46
		2.5	346	33.22

2.5

45

50

55

315

28.02

		#10 @ 1x10'	
	E:T	<u>CPM</u>	% REL
5	20	572	71.14
3	20	586	73.49
	20	493	57.89
	10	349	33.72
10	10	288	23.49
	10	254	17.79
	5	183	5.87
15	5	204	9.40
	5	233	14.26
	2.5	205	9.56
20	2.5	214	11.07
	2.5	195	7.89

25 EXAMPLE 3

A standard leukapheresis product containing 225 mls human leukocytes prepared from 3600 mls whole blood collected in 550 mls anticoagulant ACD-B was obtained from Biological Speciality Corporation, Lansdale, PA. The following procedures were performed using this product.

Set up a Unopette® (WBC) and a differential.

Differential:

90% Lymphocytes

6% Monocytes

4% Granulocytes

Direct = 165 cells

3.3x10⁷ cells/ml

7.4x109 cells/225 mls

Set up cells in culture for LAK

@ 1x10⁵ = 0.30 ml cells + 9.70 ml media +5 µl IL-2

@ 5x10° = 1.52 ml cells + 8.48 ml media + 5 μl IL-2

@ 1x10⁷ = 3.04 ml cells + 6.96 ml media + 5 µl IL-2

Incubated @ 37 °C, 5% CO2 for 4 days.

3) Next 20 mls of cells were removed from the remaining cells and mixed with 20 mls of PBS without Ca** and Mg**. 40 mls of this mixture was layered onto 40 mls of Ficoll and centrifuged for 1/2 hour.

45 Removed mononuclear cell layer and washed these cells 3 times. Performed 90 min. monocyte adherence. Washed 2 more times and performed cell count and put in culture for LAK. This is the

Standard Sample. Standard Cell Count:

Viable = 155

Non-viable = 1

% Viable = 99%

Cells/ml = 3.1×10^7 /ml

Total = $7.7 \times 10^8 / 25$ ml.

Dilution for cell conc. of 1x106 = 0.32 ml cells + 9.68 ml media + 5 µl (IL-2).

 The remaining cells (200 mls) were then diluted with 460 mls CCM to bring the cell count to 1x10⁷/ml, and treated with 73 mls @Ala.

Incubated at R.T. for 40 min.

Cells clotted during incubation.

Rem	loved as much unclotted suspension as possible
-	 washed and counted cells with WBC Unopette®.
	26 cells viable
	1 cell nonviable
	96% viability
	5.2x10 ⁶ cells/ml
	1.04x109 cells/200 mls.
Put 6	cells up in a bag at 5x106 = 48 mls cells + 2 ml media + 25 µl IL-2.
Incul	bated at 37 ° C 5% CO ₂ for 4 days for LAK.
5) C	ell Counts After Incubation

EP 0 289 896 B1

	Viable	Non-Viable	% Viable	Cells/ml	Total
Std.	25	1	96	4.9x10 ⁶	
Direct @ 1x10 ⁶	27	1	96	5.3x10 ⁶	
Direct @ 5x10 ⁶	11	1	92	2.1x10 ⁶	1.1x10 ⁷ /5ml
Direct @ 1x10 ⁷	24	5	83	4.8x10 ⁶	4.8x10 ⁷ /10ml
6Ala @ 5x10 ⁶	19	0	100	3.8×10 ⁶	
Raji	85	7	92	1.7x10 ⁷	

E:T ratio 20:1, 10:1, 5:1, 2.5:1

Dilutions

2x10⁶

ZAIV	
Std.	0.41 mls cells + 0.59 mls media
Direct 1x10 ⁶	0.38 ml cells + 0.62 ml media
Direct 5x10 ⁶	0.95 ml cells + 0.05 ml media
Direct 11x10 ⁷	0.42 ml cells +0.58 ml media
dAla	0.53 ml cells + 0.47 ml media
Raji	0.12 ml cells + 19.88 ml media

Results:

Total and Spontaneous CPM

E:T	Pos. Code	CPM	% Cytolysis
Blank	1 BLAN	-5.9	.0
	2 BLAN	-8.6	.0
	3 BLAN	-10.3	.0
	O MEAN	-8.3	.0
Max.	4 TOTA	823.0	.0
Release	5 TOTA	700.9	.0
	6 TOTA	896.9	.0
	O MEAN	806.9	100.0
Spont.	7 REFR	104.5	13.0
Release	8 REFR	97.5	12.1
	9 REFR	109.3	13.5
	O MEAN	103.B	.0

	Standard Picoll 1x106					
	20:1	10 UNKS	276.5	24.6		
5		11 UNKS	287.2	26.1		
9		12 UNKS	309.1	29.2		
		O MEAN	291.0	26.6		
	10:1	13	226.2	17.4		
10		14	212.4	15.4		
10		15	255.8	21.6		
		O MEAN	231.4	18.2		
	5:1	16	174.4	10.0		
		17	180.4	10.9		
15		18	162.4	8.3		
		O MEAN	172.4	9.8		
	2.5:1	19	134.2	4.3		
		20	124.8	3.0		
20		21	99.6	6		
		O MEAN	119.5	2.2		
		Direct - 1	o Ficoll 1x106			
25	20:1	22	490.6	55.0		
		23	436.5	47.3		
		24	423.7	45.5		
		O MEAN	450.3	49.3		
30	10:1	25	484.5	54.1		
		26	526.7	60.1		
		27	495.8	55.8		
		O MEAN	502.4	56.7		
35	5:1	28	391.6	40.9		
		29	395.3	41.5		
		30	432.2	46.7		
		O MEAN	406.4	43.0		
40	2.5:1	31	236.5	18.9		
		32	298.4	27.7		
		33	220.7	16.6		
		o mean	251.9	21.1		
45		Direct - N	o Ficoll 5x106			
	20:1	34	409.2	43.4		
		35	370.9	38.0		
50		36	361.2	36.6		
50		O MEAN	380.5	39.3		

	10:1	37	352.4	35.4
		38	409.3	43.4
		39	364.4	37.1
		O MEAN	375.3	38.6
5				
	5:1	40	313.3	29.8
		41	293.3	27.0
		42	292.5	24.0
10		O MEAN	293.1	26.9
,,	2.5:1	43	194.5	12.9
	2.3.1	44	227.2	17.6
		45	194.9	13.0
		O MEAN	205.5	14.5
15		Direct - P	o Ficoll 1x1	07
	20:1	46	245.6	20.2
		47	193.2	12.7
20		48	195.7	13.1
		O MEAN	211.5	15.3
	10:1	49	191.3	12.4
		50	188.6	12.1
		51	232.2	18.3
25		O MEAN	204.1	14.3
	5:1	52	174.1	10.0
		53 54	166.8	9.0 8.2
		O MEAN	161.8 167.6	9.1
30		U MEAN	107.0	9.1
	2.5:1	55	136.0	4.6
		56	149.8	6.5
		57	114.9	1.6
35		O MEAN	133.6	4.2
		ØA.	a 5x10 ⁶	
	•		270 1	24 -
	20:1	58	278.1	24.8 16.7
40		59 60	221.1 226.6	17.5
		O MEAN	241.9	19.6
		UMEAN	241.9	19.0
	10:1	61	206.5	14.6
		62	188.9	12.1
45		63	195.9	13.1
		O MEAN	197.1	13.3
	5:1	64	186.5	11.8
		65	199.8	13.7
50		66	173.3	9.9
50		O MEAN	186.5	11.8

2.5:1	67	199.2	13.6
	68	175.1	10.1
	69	212.7	15.5
	O MEAN	195.7	13.1

EXAMPLE 4

A standard leukapheresis product containing 230 mls human leukocytes prepared from 3600 ml whole blood collected in 520 mls anticoagulant ACD-B was obtained from Biological Specialty Corporation, Lansdale, PA. The following procedures were performed using this product.

15 1) Removed 10 mls of cells

A)

- 1) Took 5 mls of this blood and mixed with 5 mls of PBS
- 2) Underlayered 10 mls of Ficoli
- 3) Centrifuged for 30 min @ 2000 rpm
 - Washed and counted
 - 5) This was the Standard @ 1.5x106 cells/ml in 10 ml flask
 - Standard
 - Viable = 49
- Non-viable = 0 % Viable = 100%
 - Cells/ml = 9.8x10⁶/ml
 - Total = 1.96x10⁸/20 ml.
 - Dilution: 1.5 ml cells + 8.5 mls media + 1 µl IL-2
- 30

40

45

50

20

- 1) The second 5 mls was used for direct testing
- 2) A WBC (via Unopette®) and differential were performed:
- 3) WBC 4.5x10⁷/ml
- 2.25x108/5 ml
- 35 Diff. 72% Lymphocytes
 - 22% Granulocytes
 - 6% Monocytes
 - 4) Cells were then put up in culture at 1.5x106/ml and 5x106/ml in 10 ml flasks
 - 1.5x10⁶/ml = 0.33 ml/cells + 9.67 ml media + 1 μl IL-2
 - 5x10⁶/ml = 1.11 ml/cells + 8.89 ml media + 1 μl IL-2
 - Cells were incubated 4 days; chromium release assay was run.

Cell Count:

		Non-Viable	% Viable	Cells/ml
Standard 1.5x10 ⁶		3	93	8x10 ⁶
Direct @ 1.5x10 ⁶	40	2	94	8x10 ⁶
Direct @ 5x10 ⁶	24	1	96	4.8x10 ⁶
Raji	40	6	87	8x10 ⁶

55 3) LAK Assay

E:T ratio 40:1, 20:1, 10:1, 5:1, 2.5:1 1.25:1 Cells were diluted to 4x10⁶

Raji's were diluted to 1x105

Dilutions				
Std.	0.5 ml cells + 0.5 ml media			
Direct 1.5x10 ⁶	0.5 ml cells + 0.5 ml media			
Direct 5x10 ⁶	0.83 ml cells + 0.17 ml media			
Raji	0.25 ml cells + 19.75 ml media			

Total and Spontaneous CPA	To	tal	and	Spontaneou	s CPM
---------------------------	----	-----	-----	------------	-------

	local and spo	ntaneous	CITA
E:T	Pos. Code	CPM	Cytolysis
Blank	1 BLAN	-11.0	.0
	2 BLAN	-10.6	.0
	3 BLAN	-10.6	.0
	O MEAN	-10.7	.0
Max.	4 TOTA	576.9	. 0
Release	5 TOTA	564.6	.0
	6 TOTA	584.6	.0
	O MEAN	575.4	100.0
Spont.	7 REFR	139.7	24.3
Release	8 REFR	140.6	24.4
	9 REFR	152.3	26.5
	O MEAN	144.2	.0
	Standard	1.5x10 ⁶	
40:1	10 UNKS	540.1	91.8
	11 UNKS	547.0	93.4
	12 UNKS	518.3	86.8
	o MEAN	535.2	90.7
20:1	13	459.5	73.1
	14	503.2	83.3
	15	458.0	72.8
	O MEAN	473.6	76.4
10:1	16	404.5	60.4
	17	410.8	61.8
	18	439.1	68.4
	O MEAN	418.1	63.5
5:1	19	320.5	40.9
•	20	279.1	31.3
	21	275.0	30.3
	O MEAN	291.5	34.2
2.5:1	22	222.1	18.1
	23	253.0	25.2
	24	232.1	20.4
	O MEAN	235.7	21.2
1.25:1	25	175.7	7.3
	26	205.6	14.2
	27	207.9	14.8
	O MEAN	196.4	12.1

		Direct -	No Ficoll 1.5x10 ⁶	
	80:1	28	415.5	62.9
		29	393.0	57.7
5		30	461.8	73.7
		O MEAN	423.4	64.8
	40:1	31	417.7	63.4
		32	404.2	60.3
10		33	405.6	60.6
		O MEAN	409.2	61.5
	20:1	34	381.1	55.0
15		35	407.0	60.9
15		36	447.9	70.4
		O MEAN	412.0	62.1
	10:1	37	430.5	66.4
		38	407.4	61.0
20		39	442.6	69.2
		O MEAN	426.8	65.5
	5:1	40	337.5	44.8
		41	357.4	49.5
25		42	358.0	49.6
		O MEAN	351.0	48.0
	2.5:1	43	240.8	22.4
30		44	270.9	29.4
30		45	262.1	27.3
		O MEAN	257.9	26.4
	1.25:1	46	186.9	9.9
35		47	194.1	11.6
35		48	182.7	8.9
		O MEAN	187.9	10.1
		Direct -	No Ficoll 5x106	
40	40:1	49	391.0	57.2
		50	392.1	57.5
		51	399.6	59.2
		O MEAN	394.2	58.0

45

50

55

20:1

52 53

54 O MEAN 386.3 381.1

377.0 381.5

56.2 54.9

54.0 55.0

	10:1	55	346.0	46.8
	10.1	56	346.0	46.8
		57	325.5	42.0
		O MEAN	339.2	45.2
5				
	5:1	58	296.5	35.3
		59	236.6	21.4
		60	239.0	22.0
		O MEAN	257.4	26.2
10				
	2.5:1	61	190.6	10.B
		62	172.8	6.6
		63	190.5	10.7
15		O MEAN	184.6	9.4
15				
	1.25:1	64	151.7	1.7
		65	172.5	6.6
		66	203.8	13.8
20		O MEAN	176.0	7.4

EXAMPLE 5

25 Materials:

Buffy coat - 52 mls of blood Cell count - 4.3x10' cells/ml (total WBC) 1.8x10' neutrophils/ml (42%) 30 (est.) 1-2x10' lymphocytes/ml (20-50%) (est.) 5x10' BBC/ml (est.) 0.5-1x10' monocytes/ml Ficoll-Hypaque (Ficoll) CCM - 5% FGS - RPMI

Procedures:

1) No Ficoll

- a) To 10.5 ml of Buffy coat add 215 ml CCM. Cell Count 2x106 cells/ml (total WBC)
- b) Add 10 µI/ml of IL-2
 - c) Place 112 ml of culture mix in flask
- d) Place 112 ml of culture mix in bag
- e) Incubate at 37 °C for 20 days.
- f) Sample at 3, 6, 12, 17 and 20 days for cell count and 51Cr Release (LAK) assay.

2) FicoII

- a) Put 42 mls Buffy Coat in 50 ml centrifuge tube
- b) Centrifuge at 800 g for 10 minutes
 - c) Discard supernatant, recover mononuclear WBC layer (Lymphocytes and monocytes) floating on Ficoll layer, wash 3X, 300x10⁶ total mononuclear cells isolated.
 - d) Add CCM to provide mononuclear cell concentration of 2x106/ml
 - e) Place 75 ml in flask
- 55 f) Place 75 ml in bag
 - i) Place 75 mi in bag
 - g) Incubate at 37°C for 20 days
 - h) Sample at 3, 6, 12, 17 and 20 days for cell count and 51Cr release (LAK) assay.

Summary of Cell Counts (#x10⁶/ml)

Days		Flasks		Bags	
5	<u>Culture</u>	Ficoll	No Ficoll	Ficol1	No Ficoll
	0	2x10 ⁶	2x10 ⁶	2x10 ⁶	2x10 ⁶
	3	1.5x10 ⁶	0.9x10 ⁶	2.1x10 ⁶	.7x10 ⁶
10	6	2x10 ⁶	0.4x10 ⁶	2x10 ⁶	.8x10 ⁶
	12	2.5x10 ⁶	1.4x10 ⁶	2.7x10 ⁶	2x10 ⁶
	17	1.6x10 ⁶	1.2x10 ⁶	1.9x10 ⁶	1.1 x 10 ⁶
	20	1.1x106	0.6x106	2.4×10 ⁶	1.2x10 ⁶

Summary of LAK Activity

3 LU30

00	30				
20		Flas	Bags		
	Days <u>Culture</u> 3	Ficol1	No Ficol1	Ficoll 5	No Ficoll 20
25	6	5	100	5	14
	. 12	2.5	1	2	<1
	17	7	<1	7	1
30	20	7	2	2.5	1

Claims

- 1. In the method of producing LAK cells in vitro which comprises removing RBC's and plasma from whole blood to reduce a lymphocyte-containing WBC-rich fraction and incubating the WBC-rich fraction in culture medium with IL-2, the improvement which comprises removing RBC's and plasma and using the WBC-rich fraction without an intermediate separation of lymphocytes on a ficoil gradient.
- Method of Claim 1 wherein the RBC's are removed by leukapheresis and the volume percent of RBC's in the WBC-rich fraction is in the range of about 1-20.
- Method of Claim 2 wherein the RBC/WBC ratio in the WBC-rich fraction is in the range of about 0.2 250.
 - Method of Claim 1 wherein the RBC's are removed by elutriation leukapheresis and the volume percent of RBC's in the WBC-rich fraction is in the range of about 1-6.
- 50 5. Method of Claim 4 wherein the RBC/WBC ratio in the WBC-rich fraction is in the range of about 0.2-50.
 - Method of Claim 5 wherein the WBC differential is about 80-85% lymphocytes, about 10-20% monocytes, and about 1-5% granulocytes.
- Method of Claim 6 wherein the volume percent RBC's in the WBC-rich fraction is in the range of about 2-4, the RBC/WBC ratio in the WBC-rich fraction is in the range of about 0.5-25.
 - 8. Method of Claim 1 wherein the monocytes are depleted by treatment with phenyl alanine methyl ester

before incubation of the WBC-rich fraction.

- Method of Claim 2 wherein the WBC-rich fraction is washed with salt solution prior to incubation to inhibit clotting.
- 10. In the method of generating LAK cells by incubating a lymphocyte-containing WBC-rich fraction in culture medium with IL-2, the improvement which comprises using a lymphocyte-containing WBC-rich fraction having a RBC/WBC ratio by number in the range of about 0.2 to 300 and RBC volume percent of about 1-50.
- Method of Claim 10 wherein the RBC/WBC ratio is in the range of about 0.2-250 and the RBC volume percent is in the range of about 1-20 in the WBC-rich fraction.
- 12. Method of Claim 11 wherein the RBC/WBC ratio is in the range of abut 0.2-50 and the RBC volume percent is in the range of about 1-6 in the WBC-rich fraction.
 - Method of Claim 12 wherein the differential of WBC-rich fraction is about 1-5% granulocytes, 0-20% monocytes and greater than about 80% lymphocytes.
- 20 14. Method of Claim 13 wherein the RBC/WBC ratio is in the range of about 0.5-25 and the RBC volume content is about 2-4 in the WBC-rich fraction.
 - 15. In the method of treatment of a cancer patient by adoptive immunotherapy which comprises removing peripheral blood from the patient, separating a lymphocyte-containing WBC-rich fraction from the blood, incubating the lymphocyte-containing WBC-rich fraction with interleukin-2 to produce lymphokine-activated killer cells, and reinjecting the activated cells into the patient, the improvement which comprises separating the lymphocyte-containing WBC-rich fraction without use of a ficoll gradient, whereby the volume percent of RBC's in the WBC-rich fraction is in the range of about 1-20.
- 30 16. Method of Claim 15 wherein the lymphocyte-containing WBC-rich fraction is separated by elutriation leukapheresis whereby the volume percent of RBC's in the WBC fraction is in the range of about 1-6.

Revendications

26

- 3. 1. Dans le procédé de production in vitro de lymphocytes-tueurs activés par lymphokine (LAK) consistant à extraire les globules rouges (RBC) et le plasma du sang entier afin de produire une fraction riche en globules blancs (WBC) contenant des lymphocytes et à incuber cette fraction riche en WBC dans un milieu de culture avec IL-2, l'amélioration qui consiste à extraire les RBC et le plasma et à utiliser la fraction riche en WBC sans séparation intermédiaire des lymphocytes sur un gradient de ficoll.
 - Procédé selon la revendication 1, dans lequel les RBC sont éliminés par leucophérèse et le pourcentage en volume des RBC dans la fraction riche en WBC est compris dans l'intervalle d'environ 1 à 20.
 - Procédé selon la revendication 2, dans lequel le rapport RBC/WBC dans la fraction riche en WBC est compris dans l'intervalle d'environ 0,2 à 250.
 - 4. Procédé selon la revendication 1, dans lequel les RBC sont éliminés par leucophérèse par élutriation et le pourcentage en volume de RBC dans la fraction riche en WBC est compris dans l'intervalle d'environ 1 à 6.
 - Procédé selon la revendication 4, dans lequel le rapport RBC/WBC dans la fraction riche en WBC est compris dans l'intervalle d'environ 0,2 à 50.
- 6. Procédé selon la revendication 5, dans lequel la composition des WBC est d'environ 80 à 85% de lymphocytes, d'environ 10 à 20% de monocytes et d'environ 1 à 5% de granulocytes.
 - Procédé selon la revendication 6, dans lequel le pourcentage en volume des RBC dans la fraction riche en WBC est dans l'intervalle d'environ 2 à 4, le rapport RBC/WBC dans la fraction riche en WBC est

dans l'intervalle d'environ 0.5 à 25.

- Procédé selon la revendication 1, dans lequel il y a appauvrissement en monocytes par traitement avec l'ester méthylique de la phénylalanine avant l'incubation de la fraction riche en WBC.
- Procédé selon la revendication 2, dans lequel la fraction riche en WBC est lavée par une solution saline avant l'incubation afin d'inhiber la coagulation.
- 10. Dans le procédé de génération de cellules LAK par l'incubation d'une fraction riche en WBC contenant des lymphocytes dans un milieu de culture avec II-2, l'amélioration qui consiste à utiliser une fraction, riche en WBC, contenant des lymphocytes ayant un rapport RBC/WBC, par nombre, dans l'intervallle d'environ 0,2 à 300 et un pourcentage en volume de RBC d'environ 1 à 50.
- Procédé solon la revendication 10, dans lequel le rapport RBC/WBC est compris dans l'intervalle d'environ 0,2 à 250 et le pourcentage en volume des RBC est compris dans l'intervalle d'environ 1 à 20 dans la fraction riche en WBC.
- 12. Procédé selon la revendication 11, dans lequel le rapport RBC/WBC est compris dans l'intervalle d'environ 0.2 à 50 et le pourcentage en volume des RBC est compris dans l'intervalle d'environ 1 à 6 dans la fraction riche en WBC.
 - 13. Procédé selon la revendication 12, dans lequel la composition de la fraction riche en WBC est d'environ 1 à 5% de granulocytes, 0 à 20% de monocytes et supérieure à environ 80% de lymphocytes.
- 14. Procédé selon la revendication 13, dans lequel le rapport RBC/WBC est compris dans l'intervalle d'environ 0,5 à 25 et la teneur en volume des RBC est d'environ 2 à 4 dans la fraction riche en WBC.
- 15. Dans le procédé de traitement d'un patient souffrant d'un cancer par immunothérapie adoptive consistant à enlever du sang circulant à la périphérie du patient, séparer une fraction riche en WBC contenant des lymphocytes à partir du sang, incuber la fraction riche en WBC contenant des lymphocytes avec interleucine-2 afin de produire des lymphocytestueurs activés par lymphokine, et réinjecter les cellules ainsi activées au patient, l'amélioration consiste à séparer la fraction, riche en WBC, contenant des lymphocytes, sans l'utilisation d'un gradient en ficoli de manière à ce que le pourcentage en volume des RBC dans la fraction riche en WBC est compris dans l'intervalle d'environ 1 à 20.
 - 16. Le procédé selon la revendication 15, dans lequel la fraction riche en WBG contenant des lymphocytes est séparée par leucophérèse par élutriation de manière à ce que le pourcentage en volume des RBC dans la fraction WBC soit compris dans l'intervalle d'environ 1 à 6.

Patentansprüche

- 1. Vorfahren zur Erzeugung von LAK-Zellen in vitro, umfassend das Entfernen der RBCs und des Plasmas aus Vollblut zur Gewinnung einer Lymphocyten enthaltenden, an WBCs reichen Fraktion und Inkubieren der WBC-reichen Fraktion in einem Kulturmedium mit IL-2, dadurch gekennzeichnet, daß die RBCs und das Plasma entfernt werden und die WBC-reiche Fraktion ohne intermediäre Abtrennung von Lymphocyten auf einem Ficiol-Tradienten verwendet wird.
- Verfahren nach Anspruch 1, worin die RBCs durch Leukapherese entfernt werden und der Anteil der RBCs in der WBC-reichen Fraktion im Bereich von etwa 1 bis 20 Vol.-% liegt.
 - Verfahren nach Anspruch 2, worin das Verhältnis RBC/WBC in der WBC-reichen Fraktion im Bereich von etwa 0,2 bis 250 liegt.
 - Verfahren nach Anspruch 1, worin die RBCs durch Schlämm-Leukapherese entfernt werden und der Anteil der RBCs in der WBC-reichen Fraktion im Bereich von etwa 1 bis 6 Vol.-% liegt.

- Verfahren nach Anspruch 4, worin das Verhältnis RBC/WBC in der WBC-reichen Fraktion im Bereich von etwa 0.2 bis 50 liegt.
- Verfahren nach Anspruch 5, worin das WBC-Differential etwa 80 bis 85 % Lymphocyten, etwa 10 bis 20 % Monocyten und etwa 1 bis 5 % Granulocyten zeigt.
 - Verfahren nach Anspruch 6, worin der Anteil der RBCs in der WBC-reichen Fraktion im Bereich von etwa 2 bis 4 Vol.-% liegt und das Verhältnis RBC/WBC in der WBC-reichen Fraktion im Bereich von etwa 0,5 bis 25 liegt.
- Verfahren nach Anspruch 1, worin vor der Inkubation der WBC-reichen Fraktion die Monocyten durch Behandlung mit Phenylalaninmethylester abgereichert werden.
- Verfahren nach Anspruch 2, worin die WBC-reiche Fraktion vor der Inkubation mit Salz-Lösung gewaschen wird, um eine Gerinnsel-Bildung zu hemmen.
 - 10. Verfahren zur Erzeugung von LAK-Zellen durch Inkubieren einer Lymphocyten enthaltenden, WBC-reichen Fraktion in einem Kulturmedium mit IL-2, dadurch gekennzeichnet, daß eine Lymphocyten enthaltende, WBC-reiche Fraktion mit einem Zahlen-Verhältnis RBC/WBC im Bereich von etwa 0,2 bis 300 und einem Anteil der RBCs von etwa 1 bis 50 Vol.-% eingesetzt wird.
 - 11. Verfahren nach Anspruch 10, worin das Verhältnis RBC/WBC im Bereich von etwa 0,2 bis 250 liegt und der Anteil der RBCs in der WBC-reichen Fraktion im Bereich von etwa 1 bis 20 Vol.-% liegt.
- 25 12. Verfahren nach Anspruch 11, worin das Verhältnis RBC/WBC im Bereich von etwa 0,2 bis 50 liegt und der Anteil der RBCs in der WBC-reichen Fraktion im Bereich von etwa 1 bis 6 Vol.-% liegt.
 - 13. Verfahren nach Anspruch 12, worin das Differential der WBC-reichen Fraktion etwa 1 bis 5 % Granulocyten, 0 bis 20 % Monocyten und mehr als etwa 80 % Lymphocyten zeigt.
 - 14. Verfahren nach Anspruch 13, worin das Verhältnis RBC/WBC im Bereich von etwa 0,5 bis 25 liegt und der Anteil der RBCs in der WBC-reichen Fraktion etwa 2 bis 4 Vol.-% beträgt.
 - 15. Verfahren zur Behandlung eines Krebs-Patienten durch passive Immuntherapie, umfassend
 - das Abtrennen einer Lymphocyten enthaltenden, an WBCs reichen Fraktion aus dem Blut, das Inkubieren der Lymphocyten enthaltenden, WBC-reichen Fraktion mit Interleukin-2, um Lymphokin-
 - aktivierte Killer-Zellen zu erzeugen, und das Rückiniizieren der aktivierten Zellen in den Patienten.

die Entnahme von peripherem Blut des Patienten.

- addurch gekennzeichnet, daß die Lymphocyten enthaltende, WBC-reiche Fraktion ohne Anwendung eines Ficoll-Gradienten abgetrennt wird, wodurch der Anteil der Anteil der RBCs in der WBC-reichen Fraktion im Boreich von etwa 1 bis 20 Vol.-% liegt.
- 16. Verfahren nach Anspruch 15, worin die Lymphocyten enthaltende, WBC-reiche Fraktion durch
 Schlämm-Leukapherese abgetrennt wird, wodurch der Anteil der RBCs in der WBC-reichen Fraktion im Bereich von etwa 1 bis 6 Vol.-% liedt.

55