TITLE

ALCOHOL DETECTION SYSTEM

CONTENTS

- o Problem statement
- o Scope of the solution
- o Required components
- o Simulated circuit
- o Video of the demo
- o Gerber file
- o Code for the solution

PROBLEM STATEMENT

The main purpose behind this project is "drunken driving detection", now a days many accidents are happening because of the alcohol consumptions of the drivers. Thus drunk driving is a major reason for accidents all over the world

SCOPE OF THE SOLUTION

This system can be used to detect alcohol and prevents the consumption. Thus, in future it can be made as an useful service to the government to stop consumption of alcohol which ultimately saves many lives.

REQUIRED COMPONENTS

- Arduino Uno R3
- Gas Sensor
- ❖ 10 ka Resistor
- ❖ Red LED
- ❖ Bread Board
- Jumper Wires
- ❖ A Buzzer

SIMULATED CIRCUIT

Circuit diagram

VIDEO OF THE DEMO

GERBER FILE

						1 1 1 55
	_		C.	P	-	
-10	YezName	Quantity	Component			
2	U1		Arduino Uno R3			
-3-	GAS1		Gas Sensor			
-4	R1		10 kā□; Resistor			
es-	D1		Red LED			
· 65-						
7						
25-						
- 10-						
10						
22						
12						
13						
1-6						
115						
16						
17						
7.65						
110						
20						
21						
22						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
-6-4						

CODE FOR THE SOLUTION

```
// c+ + code
//
//pin configuration
Const int alcohol sensor pin= A0; // analog pin for the alcohol sensor
Const int led pin =13
                                     // digital pin for an led
Void setup(){
Serial .begin(9600);
Pin mode( led pin, output);
```

```
Void loop() {
// read the analog value from the alcohol sensor int alcohol value = analog read
(alcohol sensor pin);
//print the raw sensor value to the serial monitor serial .print ("alcohol sensor value
:"); serial .print (alcohol value );
// you may need to adjust the threshold based on your sensor and environment
Int threshold =500;
//check if alcohol level is above the threshold if ( alcohol value > threshold){
Digital write (led pin , HIGH); //turn on the led
Serial .print in (" high alcohol level detected !");
} else {
Digital write (led pin , low ); // turn off the led
Delay (1000);
                //delay for stability
```

GITHUB LINK

https://github.com/BoppasamudramAswitha/Aswitha.git