INVESTIMENTO RESIDENCIAL EM UM MODELO SFC-SSM

XII Encontro Internacional da AKB

29 de Agosto de 2019

Gabriel Petrini da Silvera Lucas Teixeira

Estrutura do artigo

Pergunta

Por que e como incluir o investimento residencial em um modelo de crescimento heterodoxo?

- 1. Contextualização empírica
- 2. Revisão da literatura
- 3. Modelo SFC-SSM

Atenção Resultado parcial da dissertação em andamento

Imóveis na metodologia SFC

Contextualização: EUA

Housing share vs. Capacity utilization ratio Trough to trough (Markers size increases over time)

Revisão da literatura

Problema deixado por Harrod Alternativas dentro da heterodoxia para resolver este problema:

- Cambridge
- Kaleckiano tradicional (Oxford)
- Supermultiplicador Sraffiano (SSM)
- Kaleckiano híbrido (Kaleckiano + SSM)

Selecionando o modelo

MODELO SFC-SSM

Matriz dos estoques

	Famílias	Firmas	Bancos	Σ
Depósitos	+M		-M	0
Empréstimos		-L	+L	0
Hipotecas	-MO		+MO	0
Σ Riqueza financeira líquida	V_h	V_f	V_b	0
Capital		$+K_f$		$+K_f$
Imóveis	$+K_{HD}$			$+K_H$
∑ Riqueza líquida total	NW_h	NW_f	NW_b	+K

Fonte: Elaboração própria

Figure 3: Imóveis na matriz de estoques

Matriz dos fluxos

	Famílias		Firmas		Bancos	Total
	Corrente	Capital	Corrente	Capital		\sum
Consumo	-C		+C			0
Investimento			+If	-If		0
Investimento residencial		-Ih	+Ih			0
[Produto]			[<i>Y</i>]			[Y]
Salários	+W		-W			0
Lucros	+FD		-FT	+FU		0
Juros (depósitos)	$+r_m\cdot M_{-1}$				$-r_m \cdot M_{-1}$	0
Juros (empréstimos)			$-r_l \cdot L_{-1}$		$+r_l \cdot L_{-1}$	0
Juros (hipotecas)	$-r_{mo} \cdot MO_{-1}$				$+r_{mo}\cdot MO_{-1}$	0
Subtotal	$+S_h$	$-I_h$		$+NFW_f$	$+NFW_b$	0
Variação dos depósitos	$-\Delta M$			v	$+\Delta M$	0
Variação das hipotecas		$+\Delta MO$			$-\Delta MO$	0
Variação dos empréstimos				$+\Delta L$	$-\Delta L$	0
Total	0	0	0	0	0	0

Fonte: Elaboração própria

Principais Equações

$$Y = \begin{cases} C = \alpha \cdot W \\ I_f = h \cdot Y \\ I_h = Z = (1 + \overline{g}_Z)I_{h_{t-1}} \end{cases} \qquad \dot{h} = h_{t-1} \cdot \gamma_u(u - u_N)$$

$$\Delta MO = I_h$$

$$K = K_f + K_h$$

Representação do modelo

(a) Fluxos

(b) Fluxos-Estoques

Solução analítica

$$Y_t = rac{1}{1 - \omega - h_t} \cdot I_{h_t}$$
 $g = g_Z + rac{h_{t-1} \cdot \gamma_u (u - u_N)}{1 - \omega - h_t}$ $u o u_N : g o g_Z \qquad h^* = rac{g_Z \cdot v}{u_N} \qquad g_K = f^{rac{\overline{S} \cdot \overline{u}_N}{\overline{V}}}$ $rac{K_h}{K} = 1 - rac{h^*}{(1 - \omega)}$

Choque em g_Z

Choque em ω

Conclusões

- Nosso modelo reproduz as principais características do supermultiplicador sraffiano
 - $\circ u \rightarrow u_N$
 - \circ $g \rightarrow g_Z$
 - o $\Delta\omega \Rightarrow g^*$: distribuição não afeta o crescimento de LP
 - Taxa de juros hipotecárias impacta endividamento das famílias apenas
- $\uparrow g_Z \Rightarrow \Downarrow \% K_h$

Próximos passos explorar os determinantes do investimento residencial

OBRIGADO!

Avanços

Inclusão da taxa própria de juros dos imóveis (own)

$$g_Z = \phi_0 - \phi_1 \cdot \left(rac{1 + r_{mo}}{1 + \mathit{infla}} - 1
ight)$$

Nova condição de estabilidade

$$own < \frac{\phi_1}{\phi_0}$$

 Estimação de um VEC com taxa própria e investimento residencial

Próximos passos Endogeneizar os preços dos imóveis

Unindo os pontos

Por que SSM? Por dar a devida atenção aos gastos autônomos e por ser capaz de replicar alguns fatos estilizados.

Por que SFC?

- Rigor contábil
- Capacidade de mapear os fluxos e estoques

Por que SFC-SSM? Por adicionar um tratamento adequado das relações financeiras no SSM.

Solução analítica de k: Passo a passo

$$k = \frac{K_f}{K}$$

$$\frac{K_f}{K_h} = \frac{g_Z \cdot v}{u_N \cdot (1 - \omega - h^*)}$$

$$\frac{K_f}{K_h} = \frac{h^*}{(1 - \omega - h^*)}$$

$$\frac{K_h}{K} = 1 - \frac{h^*}{(1 - \omega)}$$

Choque em r_m

Referências centrais

Serrano (1995): Long Period Effective Demand and the Sraffian Supermultiplier

Leamer (2007): Housing IS the Business Cycle

Teixeira (2015): Crescimento liderado pela demanda na economia norte-americana nos anos 2000: uma análise a partir do supermultiplicador sraffiano com inflação de ativos

Brochier & Macedo e Silva (2018): A supermultiplier Stock-Flow Consistent model: the "return" of the paradoxes of thrift and costs in the long run?