FARMACOINFORMÁTICA

<u>dramirezs@udec.cl</u> <u>Web lab: ramirezlab.github.io</u>

Pharmacoinformatics & Drug Design Lab
Departamento de Farmacología
Facultad de Ciencias Biológicas
Universidad de Concepción

FARMACOINFORMÁTICA

David Ramírez

<u>dramirezs@udec.cl</u> <u>Web lab: ramirezlab.github.io</u>

Claudia Martinez camartinezga@unal.edu.co

Laura González laura.gonzalezc@javeriana.edu.co

Farmacoinformática:

Disciplina donde la tecnología juega un papel fundamental en los aspectos que involucran el ciclo del medicamento, desde las ciencias básicas para el descubrimiento de nuevas moléculas bioactivos, pasando por manufactura hasta llegar a ensayos clínicos y fármacovigilancia.

Descripción:

La asignatura de carácter teórico-práctico y tiene como principal objetivo presentar herramientas computacionales para optimizar los procesos de diseño, optimización y selección de compuestos bioactivos con potencial terapéutico. El curso se orienta en el empleo de métodos computacionales desde el uso de bases de datos de interés farmacéutico, químico, biológico y medicinal, pasando por herramientas para estudiar los mecanismos moleculares de la interacción de un ligando con su respectivo receptor, hasta la aplicación de algoritmos de aprendizaje automático para crear modelos que permitan ayudar en la toma de decisiones cuando se requiera diseñar y/o optimizar una entidad química. Incluyendo el uso de nuevas tecnologías para enfrentar los desafíos del proceso de diseño de fármacos.

Contenidos

Sesión Teórica I: Martes 03 de octubre				
17:00 – 17:15	00	Presentación e introducción		
17:15 – 18:00	01	Nociones básicas sobre el uso de computadoras para el		
		diseño de fármacos.		
18:00 - 18:45	02	Uso de sistema operativo Unix y lenguaje de		
		programación Python / KNIME en diseño de fármacos.		
18:45 – 19:00	Break			
19:00 – 20:00	03	Representación, visualización y modelamiento		
		molecular de compuestos bioactivos y		
		macromoléculas. Uso de PyMol y VMD.		
Sesión Teórica II: Jueves 05 de octubre				
17:00 – 18:00	04	Bases de datos de interés farmacéutico, químico,		
		biológico y medicinal.		
18:00 – 19:00	05	Métodos biofísicos para obtención de macromoléculas		
19:00 – 19:15	Break			
19:15 – 20:00	06	Diseño de fármacos basado en el ligando I		

17:00 - 18:00	06	Diseño de fármacos basado en el ligando II
18:00 – 18:45	07	Modelamiento de Farmacóforos
18:45 – 19:00	Break	<u> </u>
19:00 – 20:00	08	Diseño de fármacos basado en la estructura I
	1	
Sesión Teórica 17:00 – 18:00	IV: Miércoles :	L1 de octubre Diseño de fármacos basado en la estructura II
	1	
17:00 – 18:00 18:00 – 18:45	08	Diseño de fármacos basado en la estructura II
17:00 – 18:00	08	Diseño de fármacos basado en la estructura II

Sesión Práctica I: Viernes 13 de octubre				
7:00 – 8:30	01	Adquirir y analizar datos de ChEMBL - Python		
8:30 - 10:00	02	Adquirir y analizar datos de ChEMBL - KNIME		
10:00 - 10:30	Break			
10:30 - 11:30	03	Visualización datos - Python		
11:30 - 13:00	04	Farma/quimio informática - KNIME		
	,			
Sesión Práctica I: <u>Viernes</u> 13 de octubre				
7:00 - 8:30	05	Cribado Virtual Basado en el Ligando – Machine		
		Learning - Python		
8:30 - 10:00	06	Virtual Screening – ZINC Pharmer		
10:00 - 10:30	Break			
10:30 - 11:30	07	Docking Molecular – <u>Smina</u> - <u>Pyhton</u>		
11:30 – 12:45	08	Redes de interacción proteína-ligando - CytoScape		
12:45 – 13:00	Clausura curso Farmacoinformática – sesiones prácticas.			

Requisitos

Instalación de software gratuito:

KNIME: https://www.knime.com/

CytoScape: https://cytoscape.org/

MobaXterm: https://mobaxterm.mobatek.net/

Pymol: https://pymol.org/2/

Software (gratuito) opcional a instalar para optimizar clases:

CONDA (o versiones):

https://docs.conda.io/projects/conda/en/latest/user-

guide/install/index.html

VMD: https://www.ks.uiuc.edu/Research/vmd/

Maestro (Académico):

https://www.schrodinger.com/products/maestro