2. Surface Plasmons on Smooth Surfaces

In this chapter the fundamental properties of SPs are reviewed and thus give the background for Chaps. 3-7.

2.1 Fundamental Properties: Dispersion Relation, Extension and Propagation Length for the Electromagnetic Fields of the Surface Plasmons

Dispersion Relation

The electron charges on a metal boundary can perform coherent fluctuations which are called surface plasma oscillations, Ritchie [2.1]. Their existence has been demonstrated in electron energy-loss experiments by Powell and Swan [2.2]. The frequency ω of these longitudinal oscillations is tied to its wave vector k_x by a dispersion relation $\omega(k_x)$. These charge fluctuations, which can be localized in the z direction within the Thomas-Fermi screening length of about 1 Å, are accompanied by a mixed transversal and longitudinal electromagnetic field which disappears at $|z| \to \infty$, Fig. 2.1, and has its maximum in the surface z = 0, typical for surface waves. This explains their sensitivity to surface properties. The field is described by

$$E = E_0^{\pm} \exp\left[+i(k_x x \pm k_z z - \omega t) \right]$$
 (2.1)

with + for $z \ge 0$, - for $z \le 0$, and with imaginary k_z , which causes the exponential decay of the field E_z . The wave vector k_x lies parallel to the x direction; $k_x = 2\pi/\lambda_{\rm p}$, where $\lambda_{\rm p}$ is the wavelength of the plasma oscillation. Maxwell's

Fig. 2.1. The charges and the electromagnetic field of SPs propagating on a surface in the x direction are shown schematically. The exponential dependence of the field E_z is seen on the right. H_y shows the magnetic field in the y direction of this p-polarized wave

equations yield the retarded dispersion relation for the plane surface of a semi-infinite metal with the dielectric function ($\varepsilon_1 = \varepsilon_1' + i\varepsilon_1''$), adjacent to a medium ε_2 as air or vacuum:

$$D_0 = \frac{k_{z1}}{\varepsilon_1} + \frac{k_{z2}}{\varepsilon_2} = 0 \qquad \text{together with}$$
 (2.2)

$$\varepsilon_i \left(\frac{\omega}{c}\right)^2 = k_x^2 + k_{zi}^2 \quad \text{or}$$
(2.3)

$$k_{zi} = \left[\varepsilon_i \left(\frac{\omega}{c}\right)^2 - k_x^2\right]^{1/2} , \quad i = 1, 2 .$$

The wave vector k_x is continuous through the interface (for the derivation see Appendix I). The dispersion relation (2.2) can be written as

$$k_x = \frac{\omega}{c} \left(\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \right)^{1/2} . \tag{2.4}$$

If we assume besides a real ω and ε_2 that $\varepsilon_1'' < |\varepsilon_1'|$, we obtain a complex $k_x = k_x' + ik_x''$ with

$$k_x' = \frac{\omega}{c} \left(\frac{\varepsilon_1' \varepsilon_2}{\varepsilon_1' + \varepsilon_2} \right)^{1/2} \tag{2.5}$$

$$k_x'' = \frac{\omega}{c} \left(\frac{\varepsilon_1' \varepsilon_2}{\varepsilon_1' + \varepsilon_2} \right)^{3/2} \frac{\varepsilon_1''}{2(\varepsilon_1')^2} . \tag{2.6}$$

For real k'_x one needs $\varepsilon'_1 < 0$ and $|\varepsilon'_1| > \varepsilon_2$, which can be fulfilled in a metal and also in a doped semiconductor near the eigen frequency; k''_x determines the internal absorption, see below. In the following we write k_x in general instead of k'_x .

The dispersion relation, see Fig. 2.2, approaches the light line $\sqrt{\varepsilon_2}\omega/c$ at small k_x , but remains larger than $\sqrt{\varepsilon_2}\omega/c$, so that the SPs cannot transform into light: it is a "nonradiative" SP, see below. At large k_x or

$$\varepsilon_1' \to -\varepsilon_2$$
 (2.7)

the value of ω approaches

$$\omega_{\rm sp} = \left(\frac{\omega_{\rm p}}{1 + \varepsilon_2}\right)^{1/2} \tag{2.8}$$

Fig. 2.2. The dispersion relation of nonradiative SPs (—), right of the light line $\omega=ck_x$; the retardation region extends from $k_x=0$ up to about $k_p=2\pi/\lambda_p$ (λ_p plasma wavelength). The dashed line, right of $\omega=ck_x$, represents SPs on a metal surface coated with a dielectric film (ε_2). Left of the light line, $\omega(k_x)$ of the radiative SPs starts at ω_p (—). (The dotted line represents the dispersion of light in a metal: $\omega/k_x=c/\left|\varepsilon_1'\right|^{1/2}$ or in the case of free electrons $\omega^2=\omega_p^2+c^2k_x^2$.) The slight modulation in the dashed dispersion curve comes from an eigen frequency in a monomolecular dye film deposited on a Langmuir-Blodgett film (ε_2). The latter depresses $\omega_p/\sqrt{2}$ to $\omega_p/\sqrt{1+\varepsilon_2}$

for a free electron gas where $\omega_{\rm p}$ is the plasma frequency $\sqrt{4\pi ne^2/m}$, with n the bulk electron density. With increasing ε_2 , the value of $\omega_{\rm sp}$ is reduced.

At large k_x the group velocity goes to zero as well as the phase velocity, so that the SP resembles a localized fluctuation of the electron plasma.

Spatial Extension of the SP Fields

Wave vectors k_{z2} and k_{z1} are imaginary due to the relations $\omega/c < k_x$ and $\varepsilon'_1 < 0$, see (2.3), so that, as mentioned above, the field amplitude of the SPs decreases exponentially as $\exp(-|k_{zi}||z|)$, normal to the surface. The value of the (skin) depth at which the field falls to 1/e, becomes

$$\hat{z} = \frac{1}{|k_{zi}|} \quad \text{or} \tag{2.9}$$

in the medium with
$$\varepsilon_2$$
: $\hat{z}_2 = \frac{\lambda}{2\pi} \left(\frac{\varepsilon_1' + \varepsilon_2}{\varepsilon_2^2}\right)^{1/2}$
in the metal with ε_1 : $\hat{z}_1 = \frac{\lambda}{2\pi} \left(\frac{\varepsilon_1' + \varepsilon_2}{\varepsilon_1'^2}\right)^{1/2}$. (2.10)

For $\lambda = 6000$ Å one obtaines for silver $\hat{z}_2 = 3900$ Å and $\hat{z}_1 = 240$ Å, and for gold 2800 Å and 310 Å, respectively.

At large k_x , \hat{z}_i is given by about $1/k_x$ leading to a strong concentration of the field near the surface in both media.

At low k_x or large $|\varepsilon_1'|$ values, the field in air has a strong (transverse) component E_z compared to the (longitudinal) component E_x , namely $E_z/E_x = -i|\varepsilon_1'|^{1/2}$ and extends far into the air space; it resembles thus a guided photon field (Zenneck-Sommerfeld wave). In the metal, E_z is small against E_x since $E_z/E_x = i|\varepsilon_1'|^{-1/2}$. These relations are derived from div $\mathbf{E} = 0$, valid outside the surface air/metal. At large k_x both components E_x and E_z become equal: $E_z = \pm iE_x$ (air: +i, metal: -i).

Propagation Length of the SPs

The intensity of SPs propagating along a smooth surface decreases as $e^{-2k_x''x}$ with k_x'' from (2.6). The length L_i after which the intensity decreases to 1/e is then given by

$$L_i = (2k_x'')^{-1} (2.11)$$

In the visible region, L_i reaches the value of $L_i = 22 \,\mu$ in silver at $\lambda = 5145 \,\text{Å}$ and $L_i = 500 \,\mu$ (0.05 cm) at $\lambda = 10 \,600 \,\text{Å}$. The absorbed energy heats the film, and can be measured with a photoacoustic cell, see Sect. 2.3.

Instead of regarding the spatial decay of the SPs along the coordinate x, the temporal decay time T_i can be of interest. The values of L_i and T_i are correlated by $L_i = T_i v_{\rm g}$ with $v_{\rm g}$ the group velocity. Assuming a complex $\omega = \omega' - i\omega''$ and real k_x' , with $T_i = 2\pi/\omega''$, we obtain from (2.4)

$$\omega'' = k'_x c \frac{\varepsilon_1''}{2(\varepsilon_1')^2} \frac{\varepsilon_1' \cdot \varepsilon_2}{\varepsilon_1' + \varepsilon_2}$$

$$\omega' = k'_x c \frac{\varepsilon_1' + \varepsilon_2^{1/2}}{\varepsilon_1' \varepsilon_2} . \tag{2.12}$$

More detailed information on SPs can be found in [2.3-5].

2.2 Excitation of Surface Plasmons by Electrons and by Light

Excitation by Electrons

Electrons penetrating a solid transfer momentum $\hbar q$ and energy ΔE_0 to the electrons of the solid. The projection of q upon the surface of the film k_x determines the wave vector and, together with the dispersion relation, the energy loss of the scattered electron $\Delta E = \hbar \omega$, see Fig. 2.3. Since the electrons are scattered at different angles θ , they transfer different momenta $\hbar k_x = \hbar k'_{\rm el} \sin \theta \cong \hbar k_{\rm el} \theta$ with $k_{\rm el} = 2\pi/\lambda_{\rm el}$. If one observes the energy loss $\Delta E = \hbar \omega$ at an increasing angle θ (or smaller $\lambda_{\rm el}$) the dispersion relation of the SPs can be measured up to large k_x beyond the Brillouin zone. The physics of SPs has thus been studied intensively with electrons, especially with fast electrons, and the fundamen-