Lecture 18: Satisfiability Modulo Theories

17-355/17-655/17-819: Program Analysis

Rohan Padhye and Jonathan Aldrich

April 6, 2021

* Course materials developed with Claire Le Goues

Sometimes we need to reason about formulas

- Verification: verification condition generation turns a Hoare triple into a formula
 - Is that formula valid (i.e. always true the precondition always implies the postcondition)?
- Symbolic execution: builds path conditions as execution proceeds
 - Is that path condition satisfiable (i.e. potentially true given the right inputs)?
- More applications: test generation, program synthesis, program repair, ...

Can tools automatically reason about formula validity or satisfiability?

First step: reduce validity to satisfiability

- Formula validity: $\forall x \cdot F(x)$ is true
- Equivalent to $\neg \exists x \cdot F(x)$ is false
- Equivalent to $\neg \exists x . \neg F(x)$ is true
 - \circ This is asking whether $\neg F(x)$ is *satisfiable*

(x stands for the *free variables* of F)

Satisfiability *modulo theories*

- Satisfiability is for Boolean formulas
 - \circ Variables, Boolean operators such as $\wedge \vee \neg$
- Verification conditions, path conditions, etc. have other elements
 - Integer, real constants and variables
 - Operations over numbers like <> + -
- We can enhance satisfiability checkers to incorporate theories
 - \circ Presburger arithmetic can prove that 2 * x = x + x
 - \circ The theory of arrays can prove that assigning x[y] to 3 and then looking up x[y] yields 3

Satisfiability (SAT) solving

- Let's start by considering Boolean formulas: variables connected with $\wedge \vee \neg$
- First step: convert to conjuctive normal form (CNF)
 - A conjunction of disjunctions of (possibly negated) variables $(a \lor \neg b) \land (\neg a \lor c) \land (b \lor c)$

$$\neg (P \lor Q) \iff \neg P \land \neg Q
\neg (P \land Q) \iff \neg P \lor \neg Q
\neg \neg P \iff P
(P \land (Q \lor R)) \iff ((P \land Q) \lor (P \land R))
(P \lor (Q \land R)) \iff ((P \lor Q) \land (P \lor R))$$

SAT solving goal

- Prove that a formula is satisfiable by giving a satisfying assignment
 - A map from formula variables to Boolean values
- Example: $X \vee Y$ is satisfiable
 - \circ A satisfying assignment is $X\mapsto \mathtt{true}, Y\mapsto \mathtt{false}$
- Example: $X \wedge \neg X$ is unsatisfiable
 - No satisfying assignment exists

SAT is NP-complete

- Cook-Levin theorem proved NP-completeness
 - In NP, because can verify a satisfying assignment by evaluating the formula
 - NP-hard by reduction to polynomial-time acceptance by a nondeterministic Turing machine

- Simple solution approach: try all satisfying assignments
 - Takes O(2ⁿ) time for an n-variable formula

- Developed by Davis, Putnam, Logemann, and Loveland
 - Still exponential in theory, but on many problems is much faster than trying all assignments

Key innovation #1: unit propagation

$$(b \lor c) \land (X) \land (\neg a \lor c \lor d) \land (\neg c \lor d) \land (\neg c \lor \neg d \lor \neg a) \land (b \lor d)$$

In this example, a appears alone. It must be true.

- Developed by Davis, Putnam, Logemann, and Loveland
 - Still exponential in theory, but on many problems is much faster than trying all assignments

- Key innovation #1: unit propagation
- Key innovation #2: pure literal elimination

$$(b \lor c) \land (c \lor d) \land (\neg c \lor d) \land (\neg c \lor \neg d) \land (b \lor d)$$

- This example is simplified from the previous slide, based on unit propagation
- Note that b appears only positively. Setting b to true can only help us, not hurt us!

- Developed by Davis, Putnam, Logemann, and Loveland
 - Still exponential in theory, but on many problems is much faster than trying all assignments
- Key innovation #1: unit propagation
- Key innovation #2: pure literal elimination
- When we are stuck, we guess (and backtrack later if necessary)

$$(c \lor d) \land (\neg c \lor d) \land (\neg c \lor \neg d)$$

- \circ Let's guess that c is true! Then we get $(d) \wedge (\neg d)$
- \circ We apply unit propagation to set d=true. Unfortunately the result is $(true) \land (false)$ so we failed to find a satisfying assignment

- Developed by Davis, Putnam, Logemann, and Loveland
 - Still exponential in theory, but on many problems is much faster than trying all assignments

- Key innovation #1: *unit propagation*
- Key innovation #2: pure literal elimination
- When we are stuck, we guess (and backtrack later if necessary)

$$(c \lor d) \land (\neg c \lor d) \land (\neg c \lor \neg d)$$

- \circ Now let's guess that c is false! Then we get (d)
- We apply unit propagation to set d=true and the formula is satisfied

The Full DPLL Algorithm

```
function DPLL(\phi)
    if \phi = \mathtt{true} then
        return true
    end if
    if \phi contains a false clause then
        return false
    end if
    for all unit clauses l in \phi do
         \phi \leftarrow \text{UNIT-PROPAGATE}(l, \phi)
    end for
    for all literals l occurring pure in \phi do
         \phi \leftarrow \text{PURE-LITERAL-ASSIGN}(l, \phi)
    end for
    l \leftarrow \text{CHOOSE-LITERAL}(\phi)
    return DPLL(\phi \wedge l) \vee DPLL(\phi \wedge \neg l)
end function
```

Heuristic: Apply unit propagation first because it creates more units and pure literals. Pure literal assignment only removes entire clauses.

Try both assignments of the chosen literal. If we assume \vee is short-circuiting, then this implements backtracking.

(c) 2021 J. Aldrich, C. Le Goues, R. Padhye

Practice: Applying DPLL

• Show how DPLL (unit propagation, pure literal elimination, choosing a literal, backtracking) applies to the following formula:

$$(a \lor b) \land (a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (\neg d)$$

From SAT to SMT

We'd like to check the satisfiability of formulas like

$$f(f(x) - f(y)) = a \land f(0) = a + 2 \land x = y$$

- Includes arithmetic and the theory of unknown functions
 - o E.g. we assume f is some mathematical function
- We may have solvers for each theory, but how can we combine them?
 - Note that separate satisfying assignments for two theories might not be compatible!
- SMT's solution: solve theories separately, use SAT to combine them

The running example is due to Oliveras and Rodriguez-Carbonell

Nelson-Oppen replaces expressions with variables

$$f(f(x) - f(y)) = a \land f(0) = a + 2 \land x = y$$

Now we have formulas in two theories

Theory of uninterpreted functions

$$f(e1) = a$$

$$e2 = f(x)$$

$$e3 = f(y)$$

$$f(e4) = e5$$

$$x = y$$

Theory of arithmetic

$$e1 = e2 - e3$$

 $e4 = 0$
 $e5 = a + 2$
 $x = y$

• Congruence closure: for all f, x, and y, if x = y then f(x) = f(y) Theories communicate using equalities

Combining Theories using DPLL

- Consider the following source formula: $x \ge 0 \land y = x + 1 \land (y > 2 \lor y < 1)$ We can convert each subformula to a variable: $p1 \land p2 \land (p3 \lor p4)$
- Now we solve with DPLL and get a satisfying assignment: $p1, p2, \neg p3, p4$
- We ask the theories if this assignment is feasible
 - The theory of arithmetic says no. p1, p2, and p4 can't all be true, because p1 and p2 together imply $y \ge 1$
- We add a clause expressing this and run DPLL again on

$$p1 \land p2 \land (p3 \lor p4) \land (\neg p1 \lor \neg p2 \lor \neg p4)$$

- One satisfying assignment is $p1, p2, p3, \neg p4$
 - We check this against the theories and it succeeds

Details on equality

- Sometimes a theory doesn't tell us an equality, but rather that one of two
 equalities are true
 - O That's fine—we just encode this as a formula and give it to DPLL. For example:

$$(e1 = e2 \lor e1 \neq e2) \land (e2 = e3 \lor e2 \neq e3)$$

DPLL will choose which equalities are true, and we try those with other theories.

SMT uses a variant of DPLL called DPLL(T)

- T is for Theory
- Differences vs. plain DPLL
 - DPLL(T) doesn't use pure literal elimination
 - Variables may not be independent when they represent a formula so setting x to true can hurt you, even when x is a pure literal!
 - For example: $(\mathbf{x} > \mathbf{10} \lor x < 3) \land (\mathbf{x} > \mathbf{10} \lor x < 9) \land (x < 7)$
 - Can't just set x > 10 to true, because x < 7 will be false
 - DPLL(T) supports adding clauses to the formula
 - To represent knowledge gained from theories, as mentioned above

How to solve arithmetic

- Approach #1: Substitution
 - \circ If we have y = x+1, we can eliminate y by substituting it with x+1 everywhere
 - O High school math!
- Approach #2: Fourier-Motzkin Elimination
 - Applies when we have inequalities rather than equalities
 - Transform all inequalities mentioning x into $A \le x$ or $x \le B$
 - Then eliminate X, replacing the inequalities with $A \le B$
 - Detail: if there are multiple inequalities, we conjoin the cross product of them