China-France Mathematics Talents Class

Variétés différentielles

- Examen du 12/01/2022 -8h30 - 11h30

Les exercices peuvent être traités indépendamment mais certains pourront utiliser des résultats obtenus auparavant.

- I. On note X_r l'ensemble des matrices de $M_{m,n}(\mathbb{R})$ de rang r.
- a) Soit A une matrice carrée d'ordre r inversible. Montrer que la matrice

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in M_{m,n}(\mathbb{R})$$

appartient à X_r si et seulement si $D = CA^{-1}B$. Indication: On cherchera une matrice inversible $P \in M_m(\mathbb{R})$ telle que

$$PM = \begin{pmatrix} A & B \\ 0 & * \end{pmatrix}.$$

- b) Montrer que X_r est une sous-variété différentiable de $M_{m,n}(\mathbb{R})$ et calculer sa dimension.
- II. Montrer que l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = (x^2 y^2, 2xy)$ est propre et calculer son degré.
- III. Soit $\varphi: M \to N$ une application C^{∞} entre deux variétés différentielles sans bord. On dit qu'un champ de vecteurs $X \in \mathfrak{X}(M)$ est φ -lié à $Y \in \mathfrak{X}(N)$ si $d\varphi_x(X_x) = Y_{\varphi(x)}$ pour chaque $x \in M$.
- a) Montrer que si φ n'est pas injective, il existe un champs de vecteurs sur M qui n'est φ -lié à aucun champ de vecteurs sur N.
- b) Montrer que $X \in \mathfrak{X}(M)$ est φ -lié à $Y \in \mathfrak{X}(N)$ si et seulement si $X(\varphi^*(f)) = \varphi^*(Y(f))$ pour toute fonction $f \in C^{\infty}(N)$.
- c) Si $X, X' \in \mathfrak{X}(M)$ sont φ -liés à $Y, Y' \in \mathfrak{X}(N)$ respectivement, montrer que [X, X'] est φ -lié à [Y, Y'].

- IV. a) Soit $n \geq 1$ un entier et p_1, \ldots, p_n des points distincts du plan. Calculer la cohomologie de De Rham de $\mathbb{R}^2 \setminus \{p_1, \ldots, p_n\}$. Indication: Traiter le cas n = 1, puis appliquer une récurrence en utilisant la suite exacte de Mayer-Vietoris associée à un recouvrement de $\mathbb{R}^2 \setminus \{p_1, \ldots, p_{n-1}\}$ par deux ouverts bien choisis.
- b) On appelle X la réunion des trois axes de coordonnées dans \mathbb{R}^3 . Calculer la cohomologie de $\mathbb{R}^3 \setminus X$. Indication : On pourra utiliser le point précédent.
- c) Soient x_0 et x_1 deux points de \mathbb{R}^n . Montrer qu'il existe R > 0 et un difféomorphisme φ de \mathbb{R}^n tel que $\varphi(x_0) = x_1$ et $\varphi(x) = x$ quel que soit x avec $||x|| \ge R$.
- d) Soit M une variété différentiable connexe et x_0 et x_1 deux points de M. Montrer que $M \setminus \{x_0\}$ et $M \setminus \{x_1\}$ sont difféomorphes. *Indication*: On peut relier x_0 et x_1 par un chemin et recouvrir celui-ci par un nombre fini d'ouverts de l'atlas.
- e) Soient Z_1 et Z_2 deux parties finies de \mathbb{R}^2 . Montrer que $\mathbb{R}^2 \setminus Z_1$ et $\mathbb{R}^2 \setminus Z_2$ sont difféomorphes si et seulement si Z_1 et Z_2 ont même cardinal.
- **V.** a) Montrer que $\mathbb{C}P^1$ est difféomorphe à S^2 . Indication : On porra construire le difféomorphisme en utilisant l'atlas standard de $\mathbb{C}P^1$ et l'atlas de S^2 défini par les projections stéréographiques $\varphi_1: S^2 \setminus (0,0,1) \to \mathbb{R}^2$ et $\varphi_2: S^2 \setminus (0,0,-1) \to \mathbb{R}^2$. On peut calculer le changement de carte de cet atlas, sans beaucoup de calculs, dans le plan contenant les pôles Nord et Sud, et un autre point sur la sphère.
- a) Montrer que $\mathbb{C}\mathrm{P}^n\setminus\{x\}$ a le même type d'homotopie que $\mathbb{C}\mathrm{P}^{n-1}$. *Indication :* On peut utiliser IV d) et choisir $x=[0:\ldots:0:1]$.
 - b) En utilisant la suite exacte de Mayer-Vietoris et une récurrence sur n, montrer que

$$H^k(\mathbb{C}\mathrm{P}^n) = \begin{cases} \mathbb{R}, & k = 2p, \ 0 \le p \le n \\ 0, & \text{sinon.} \end{cases}$$

c) Soit $j: \mathbb{C}\mathrm{P}^{n-1} \to \mathbb{C}\mathrm{P}^n$ l'inclusion définie par

$$j([x_0:\ldots:x_{n-1}])=[x_0:\ldots:x_{n-1}:0].$$

Montrer que $\bar{j}: H^2(\mathbb{C}\mathrm{P}^n) \to H^2(\mathbb{C}\mathrm{P}^{n-1})$ est un isomorphisme.

- **VI.** a) Soit x un générateur de $H^n(S^n)$ et p_1, p_2 les projections canoniques de $S^n \times S^n$ sur S^n . Montrer, en utilisant la formule de Künneth, que $H^n(S^n \times S^n)$ est engendré par $x_1 := \overline{p_1}(x)$ et $x_2 := \overline{p_2}(x)$ et que $x_1 \wedge x_2 \neq 0$.
- b) Supposons qu'il existe $e \in S^n$ et $f: S^n \times S^n \to S^n$ telle que f(e,p) = f(p,e) = p quel que soit $p \in S^n$. Montrer que n est impair.