

## Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

Prädikatenlogik: Sequenzenkalkül





#### **Definition**

Eine *Sequenz* ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 $\Gamma$  wird Antezedent und  $\Delta$  Sukzedent genannt.



#### Definition

Eine *Sequenz* ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 $\Gamma$  wird Antezedent und  $\Delta$  Sukzedent genannt. Sowohl  $\Gamma$  als auch  $\Delta$  kann die leere Menge sein.



#### Definition

Eine Sequenz ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 $\Gamma$  wird Antezedent und  $\Delta$  Sukzedent genannt.

Sowohl  $\Gamma$  als auch  $\Delta$  kann die leere Menge sein.

Sei  $\mathcal{D}$  eine prädikatenlogische Struktur und  $\beta$  eine Variablenbelegung:

$$\mathit{val}_{\mathcal{D},\beta}(\Gamma\Rightarrow\Delta)=\mathit{val}_{\mathcal{D},\beta}(\bigwedge\Gamma\Rightarrow\bigvee\Delta)$$



#### Definition

Eine Sequenz ist ein Paar endlicher Formelmengen und wird notiert in der Form

$$\Gamma \Rightarrow \Delta$$
.

 $\Gamma$  wird Antezedent und  $\Delta$  Sukzedent genannt.

Sowohl  $\Gamma$  als auch  $\Delta$  kann die leere Menge sein.

Sei  $\mathcal D$  eine prädikatenlogische Struktur und  $\beta$  eine Variablenbelegung:

$$\mathit{val}_{\mathcal{D},\beta}(\Gamma\Rightarrow\Delta)=\mathit{val}_{\mathcal{D},\beta}(\bigwedge\Gamma\Rightarrow\bigvee\Delta)$$

Es gelten die üblichen Vereinbarungen für leere Disjunktionen und Konjunktionen.



axiom 
$$\overline{\Gamma, F \Rightarrow F, \Delta}$$



axiom 
$$\overline{\Gamma, F \Rightarrow F, \Delta}$$
not-left  $\overline{\Gamma, \neg F \Rightarrow \Delta}$ 



axiom 
$$\overline{\Gamma, F \Rightarrow F, \Delta}$$

$$\text{not-left} \ \frac{\Gamma, \Rightarrow F, \Delta}{\Gamma, \neg F \Rightarrow \Delta}$$

$$\text{not-right} \ \frac{\Gamma, F \Rightarrow \Delta}{\Gamma \Rightarrow \neg F, \Delta}$$



axiom 
$$\overline{\Gamma,F\Rightarrow F,\Delta}$$

$$\operatorname{not-left} \ \frac{\Gamma,\Rightarrow F,\Delta}{\Gamma,\neg F\Rightarrow \Delta}$$

$$\operatorname{not-right} \ \frac{\Gamma,F\Rightarrow \Delta}{\Gamma\Rightarrow \neg F,\Delta}$$

$$\operatorname{impl-left}$$

$$\frac{\Gamma\Rightarrow F,\Delta \quad \Gamma,G\Rightarrow \Delta}{\Gamma,F\rightarrow G\Rightarrow \Delta}$$



axiom 
$$\overline{\Gamma,F\Rightarrow F,\Delta}$$

$$\operatorname{not-left} \ \ \frac{\Gamma,\Rightarrow F,\Delta}{\Gamma,\neg F\Rightarrow \Delta}$$

$$\operatorname{not-right} \ \ \frac{\Gamma,F\Rightarrow \Delta}{\Gamma\Rightarrow \neg F,\Delta}$$

$$\operatorname{impl-left}$$

$$\frac{\Gamma\Rightarrow F,\Delta\quad \Gamma,G\Rightarrow \Delta}{\Gamma,F\rightarrow G\Rightarrow \Delta}$$

$$\operatorname{impl-right} \ \ \frac{\Gamma,F\Rightarrow G,\Delta}{\Gamma\Rightarrow F\rightarrow G,\Delta}$$



axiom 
$$\frac{\Gamma, F \Rightarrow F, \Delta}{\Gamma, F \Rightarrow F, \Delta}$$
 and-left  $\frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \land G \Rightarrow \Delta}$  not-left  $\frac{\Gamma, \Rightarrow F, \Delta}{\Gamma, \neg F \Rightarrow \Delta}$  not-right  $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma \Rightarrow \neg F, \Delta}$  impl-left  $\frac{\Gamma \Rightarrow F, \Delta}{\Gamma, F \rightarrow G \Rightarrow \Delta}$  impl-right  $\frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta}$ 



$$\begin{array}{ll} \text{axiom} & \frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \Rightarrow F, \Delta} & \text{and-left} & \frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \land G \Rightarrow \Delta} \\ \text{not-left} & \frac{\Gamma, \Rightarrow F, \Delta}{\Gamma, \neg F \Rightarrow \Delta} & \text{and-right} \\ \text{not-right} & \frac{\Gamma, F \Rightarrow \Delta}{\Gamma \Rightarrow \neg F, \Delta} & \frac{\Gamma \Rightarrow F, \Delta \quad \Gamma \Rightarrow G, \Delta}{\Gamma \Rightarrow F, \Delta \quad \Gamma, G \Rightarrow \Delta} \\ \text{impl-left} & \frac{\Gamma \Rightarrow F, \Delta \quad \Gamma, G \Rightarrow \Delta}{\Gamma, F \Rightarrow G, \Delta} \\ \text{impl-right} & \frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta} \end{array}$$



axiom 
$$\frac{\Gamma, F \Rightarrow F, \Delta}{\Gamma, F \Rightarrow F, \Delta}$$
 and-left  $\frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \land G \Rightarrow \Delta}$ 
not-left  $\frac{\Gamma, \Rightarrow F, \Delta}{\Gamma, \neg F \Rightarrow \Delta}$  and-right  $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma, \neg F, \Delta}$  or-left  $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma, F \Rightarrow G, \Delta}$  or-left  $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma, F \Rightarrow G, \Delta}$  impl-right  $\frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta}$ 



axiom 
$$\frac{\Gamma, F \Rightarrow F, \Delta}{\Gamma, F \Rightarrow F, \Delta}$$
 and-left  $\frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \land G \Rightarrow \Delta}$ 
not-left  $\frac{\Gamma, \Rightarrow F, \Delta}{\Gamma, \neg F \Rightarrow \Delta}$  and-right  $\frac{\Gamma, F \Rightarrow \Delta}{\Gamma, \neg F, \Delta}$  or-left  $\frac{\Gamma, F, G \Rightarrow \Delta}{\Gamma, F \Rightarrow G, \Delta}$   $\frac{\Gamma \Rightarrow F, \Delta \quad \Gamma \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta}$  impl-right  $\frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta}$  or-right  $\frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta}$  or-right  $\frac{\Gamma, F \Rightarrow G, \Delta}{\Gamma, F \Rightarrow G, \Delta}$ 



all-left

$$\frac{\Gamma, \forall x F, \{x/X\}F \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

X neue Variable.



all-left

$$\frac{\Gamma, \forall x F, \{x/X\}F \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

X neue Variable.

all-right

$$\frac{\Gamma \Rightarrow \{x/f(\bar{x})\}F, \Delta}{\Gamma \Rightarrow \forall xF, \Delta}$$

f neues Funktionssymbol,  $\bar{x} = x_1, \dots, x_n$ alle freien Variablen in  $\forall x F$ .



all-left

ex-right

$$\frac{\Gamma, \forall x F, \{x/X\}F \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

$$\frac{\Gamma \Rightarrow \exists xF, \{x/X\}F, \Delta}{\Gamma, \Rightarrow \exists xF, \Delta}$$

X neue Variable.

X neue Variable.

all-right

$$\frac{\Gamma \Rightarrow \{x/f(\bar{x})\}F, \Delta}{\Gamma \Rightarrow \forall xF, \Delta}$$

f neues Funktionssymbol,  $\bar{X} = X_1, \dots, X_n$ alle freien Variablen in  $\forall x F$ .



all-left

$$\frac{\Gamma, \forall x F, \{x/X\}F \Rightarrow \Delta}{\Gamma, \forall x F \Rightarrow \Delta}$$

$$\frac{\Gamma \Rightarrow \exists xF, \{x/X\}F, \Delta}{\Gamma, \Rightarrow \exists xF, \Delta}$$

X neue Variable.

X neue Variable.

all-right

$$\frac{\Gamma \Rightarrow \{x/f(\bar{x})\}F, \Delta}{\Gamma \Rightarrow \forall xF, \Delta}$$

$$\frac{\Gamma, \{x/f(\bar{x})\}F \Rightarrow \Delta}{\Gamma, \exists xF \Rightarrow \Delta}$$

f neues Funktionssymbol,  $\bar{X} = X_1, \dots, X_n$ alle freien Variablen in  $\forall x F$ . f neues Funktionssymbol  $\bar{X} = X_1, \dots, X_n$ alle freien Variablen in  $\exists x F$ .



identity-right

$$\Gamma \Rightarrow s \doteq s, \Delta$$



identity-right

$$\Gamma \Rightarrow s \doteq s, \Delta$$

symmetry-right

$$\frac{\Gamma \Rightarrow s \doteq t, \Delta}{\Gamma \Rightarrow t \doteq s, \Delta}$$



identity-right

$$\Gamma \Rightarrow s \doteq s, \Delta$$

symmetry-right

$$\frac{\Gamma \Rightarrow s \doteq t, \Delta}{\Gamma \Rightarrow t \doteq s, \Delta}$$

symmetry-left

$$\frac{\Gamma, s \doteq t \Rightarrow \Delta}{\Gamma, t \doteq s \Rightarrow \Delta}$$



identity-right

eq-subst-right

$$\Gamma \Rightarrow s \doteq s, \Delta$$

symmetry-right

$$\frac{\Gamma \Rightarrow s \doteq t, \Delta}{\Gamma \Rightarrow t \doteq s, \Delta}$$

symmetry-left

$$\frac{\Gamma, s \doteq t \Rightarrow \Delta}{\Gamma, t \doteq s \Rightarrow \Delta}$$

$$\frac{\Gamma, s \doteq t \Rightarrow F(t), \Delta}{\Gamma, s \doteq t \Rightarrow F(s), \Delta}$$



identity-right

$$\Gamma \Rightarrow s \doteq s, \Delta$$

$$\frac{\Gamma, s \doteq t \Rightarrow F(t), \Delta}{\Gamma, s \doteq t \Rightarrow F(s), \Delta}$$

symmetry-right

$$\frac{\Gamma \Rightarrow \mathbf{s} \doteq t, \Delta}{\Gamma \Rightarrow t \doteq \mathbf{s}, \Delta}$$

eq-subst-left

symmetry-left

$$\frac{\Gamma, s \doteq t \Rightarrow \Delta}{\Gamma, t \doteq s \Rightarrow \Delta}$$

$$\frac{\Gamma, F(t), s \doteq t \Rightarrow \Delta}{\Gamma, F(s), s \doteq t \Rightarrow \Delta}$$

### Ableitungsbaum in S



#### Definition

Ein Ableitungsbaum ist ein Baum, dessen Knoten mit Sequenzen markiert sind und:

1. hat ein Knoten n (nur) einen Nachfolgerknoten  $n_1$  und sind  $\Gamma \Rightarrow \Delta$  und  $\Gamma_1 \Rightarrow \Delta_1$  die Markierungen von n und  $n_1$ , dann gibt es eine Sequenzenregel

$$\frac{\Gamma_1 \Rightarrow \Delta_1}{\Gamma \Rightarrow \Delta}$$

### Ableitungsbaum in S



#### Definition

Ein Ableitungsbaum ist ein Baum, dessen Knoten mit Sequenzen markiert sind und:

1. hat ein Knoten n (nur) einen Nachfolgerknoten  $n_1$  und sind  $\Gamma \Rightarrow \Delta$  und  $\Gamma_1 \Rightarrow \Delta_1$  die Markierungen von n und  $n_1$ , dann gibt es eine Sequenzenregel

$$\frac{\Gamma_1 \Rightarrow \Delta_1}{\Gamma \Rightarrow \Delta}$$

2. hat ein Knoten n zwei Nachfolgerknoten  $n_1$  und  $n_2$  und sind  $\Gamma \Rightarrow \Delta$ ,  $\Gamma_1 \Rightarrow \Delta_1$  und  $\Gamma_2 \Rightarrow \Delta_2$  die Sequenzen an den Knoten n,  $n_1$  und  $n_2$  dann gibt es eine Sequenzenregel

$$\frac{\Gamma_1 \Rightarrow \Delta_1 \quad \Gamma_2 \Rightarrow \Delta_2}{\Gamma \Rightarrow \Delta}$$

### Geschlossener Ableitungsbaum



#### **Definition**

Wir nennen einen Beweisbaum *geschlossen* oder *vollständig* wenn er zusätzlich noch die folgende Bedingung erfüllt:

3. es gibt eine Substitution  $\sigma$ , so daß für die Markierung A jedes Knoten n, der keinen Nachfolgerknoten hat,  $\sigma(A)$  ein Axiom ist. Dazu zählen auch die beiden Gleichheitsaxiome.

### Geschlossener Ableitungsbaum



#### **Definition**

Wir nennen einen Beweisbaum *geschlossen* oder *vollständig* wenn er zusätzlich noch die folgende Bedingung erfüllt:

3. es gibt eine Substitution  $\sigma$ , so daß für die Markierung A jedes Knoten n, der keinen Nachfolgerknoten hat,  $\sigma(A)$  ein Axiom ist. Dazu zählen auch die beiden Gleichheitsaxiome.

### Geschlossener Ableitungsbaum



#### **Definition**

Wir nennen einen Beweisbaum *geschlossen* oder *vollständig* wenn er zusätzlich noch die folgende Bedingung erfüllt:

3. es gibt eine Substitution  $\sigma$ , so daß für die Markierung A jedes Knoten n, der keinen Nachfolgerknoten hat,  $\sigma(A)$  ein Axiom ist. Dazu zählen auch die beiden Gleichheitsaxiome.

Man beachte daß zunächst  $A \equiv p(s) \Rightarrow p(t)$  kein Axiom zu sein braucht.

Ist  $\sigma$  aber ein Unifikator von s und t dann ist  $\sigma(A) \equiv p(\sigma(s)) \Rightarrow p(\sigma(t))$  zu einem Axiom wird.

# Korrektheit und Vollständigkeit des Sequenzenkalküls



#### **Theorem**

Es seien  $M \subseteq For_{\Sigma}$ ,  $A \in For_{\Sigma}$ . Dann gilt

$$M \vdash_{S} A \Rightarrow M \models A$$

# Korrektheit und Vollständigkeit des Sequenzenkalküls



#### **Theorem**

Es seien  $M \subseteq For_{\Sigma}$ ,  $A \in For_{\Sigma}$ . Dann gilt

$$M \vdash_{\mathcal{S}} A \Rightarrow M \models A$$

#### Theorem

Es seien  $M \subseteq For_{\Sigma}$ ,  $A \in For_{\Sigma}$ . Dann gilt

$$M \models A \Rightarrow M \vdash_{\mathcal{S}} A$$