

Winning Space Race with Data Science

lustinian Chirila 23.06.2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Falcon 9 Stage One is good for light payloads (between 2000kg and 4000kg)
- Best launching site is KSC LC-39A
- Most successful launches are after 2017
- The best method to recover is via drone ship
- Model can predict the recovery with accuracy of 83,33%

Introduction

- Falcon 9 is a partially reusable medium-lift launch vehicle that can carry cargo and crew into Earth orbit, designed, manufactured and launched by American aerospace company SpaceX.
- With Falcon 9, SpaceX can recover and reuse a large and expensive component of the rocket called Stage One.
- We will predict if SpaceX Stage One recovery will be successful or not.

Methodology

Executive Summary

- Data collection methodology:
 - The data was collected from SpaceX API
- Perform data wrangling
 - Modifying and transforming data we can use for training models
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Training and test data

Data Collection

- For collecting data we need a .json file
- The file contains data with rocket launches from SpaceX
- Download the file
- Transform it into Dataframes
- Null values are converted to means

Data Collection – SpaceX API

Data Collection - Scraping

Use Beautiful Soup to parse SpaceX Wikipedia

Add data to a dictionary

Convert dictionary to a pandas Dataframe

Data Wrangling

- We have to determine if the recovery is successful or not
- In the dataframe are 8 types of outcomes and 2 values for each, success or failure.
- True ASDS, True RTLS and True Ocean as successful landings
- None ASDS, False ASDS, False RTLS, False Ocean and None None as failed landings
- We could create a column "class" to differentiate between successful and unsuccessful
- 1 for successful and 0 for unsuccessful recover

GitHub

EDA with Data Visualization

- Plots showing relationships between different variables:
 - Flight Number vs. Payload (Cat plot)
 - Flight Number vs. Launch Site (Cat plot)
 - Launch Site vs. Payload (Scatter plot)
 - Success Rate vs. Orbit type (Bar plot)
 - Orbit type vs. Flight Number (Scatter plot)
 - Orbit type vs. Payload (Scatter plot)
 - Success rate vs. Time in years (Line plot)

GitHub

EDA with SQL

- We made some queries on our data for the relationship between variables
 - Launch Site
 - Payload Mass
 - Mission Outcome
 - Booster Version
 - Date

• GitHub

Build an Interactive Map with Folium

- We used Folium package to create a map where we can:
 - See the distance to the closest coastline, city, railway and highway
 - See where each Falcon 9 is located
 - Learn how many launches have occurred at each location
 - Green markers is for successful recovery and red markers for failed ones

GitHub

Build a Dashboard with Plotly Dash

- We made a dashboard through Ploty Dash
 - To see the proportion of successful recovery to unsuccessful ones we used a pie chart
 - A scatter plot Recovery Outcomes vs Payload Mass with a range 0-10000kg with bounds that can be changed
- The dashboard provides insight into the launch sites and payload masses relationships with the recovery outcomes

• GitHub

Predictive Analysis (Classification)

GitHub

Results

- Exploratory data analysis results
 - Launches are most successful after year 2017
 - Light payloads are easier to recover (mass between 2000kg and 4000kg)
 - KSC LC-39A seems to be the ideal launch site because of success rate of over
 75%
 - Drone ships are the best recovery methods
- Predictive analysis results
 - Each model performed almost equally predicting a recovery outcome rate of 83.33%

Flight Number vs. Launch Site

• Success rate has grown over time for each site, KSC LC-39A is the most consistent

Payload vs. Launch Site

• Smaller payloads correlate with higher success rate (<6500kg-7000kg)

Success Rate vs. Orbit Type

• ES-L1, SSO, HEO and GEO have the highest success rate

Flight Number vs. Orbit Type

- LEO, SSO and VLEO have high success rate while having sample size
- Each ES-L1, HEO and GEO have only one site

Payload vs. Orbit Type

• LEO and SSO orbits success due light payload

Launch Success Yearly Trend

• Success rate has increased from 2013 to 2017

All Launch Site Names

- We have 4 launch sites
 - CCAFS LC-40
 - CCAFS SLC-40
 - KSC LC-39A
 - VAFB SLC-4E

Launch Site Names Begin with 'CCA'

These are the firs 5 launch sites that begin with CCA

DATE	time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

• Total payload mass carried by boosters from NASA is 111.268

Average Payload Mass by F9 v1.1

Average payload mass carried by booster version F9 v1.1 is 2534

First Successful Ground Landing Date

• First successful landing outcome on ground pad occurred on 04.06.2010

Successful Drone Ship Landing with Payload between 4000 and 6000

- These are the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000
 - F9 FT B1022
 - F9 FT B1026
 - F9 FT B1021.2
 - F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

• The total number of successful and failure mission outcomes is 101 from where 100 with success and 1 failure

Boosters Carried Maximum Payload

- Booster which have carried the maximum payload mass are:
 - F9 B5 B1048.4
 - F9 B5 B1049.4
 - F9 B5 B1051.3
 - F9 B5 B1056.4
 - F9 B5 B1048.5
 - F9 B5 B1051.4
 - F9 B5 B1049.5
 - F9 B5 B1060.2

- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

2015 Launch Records

• The failed landing outcomes in drone ship, their booster versions, and launch site names in year 2015 are:

DATE	landing_outcome	booster_version	launch_site
2015-01-10	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
2015-04-14	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank of landing outcomes from 2010-06-04 and 2017-03-20, in descending order

landing_outcome	counts	
No attempt	10	
Failure (drone ship)	5	
Success (drone ship)	5	
Controlled (ocean)	3	
Success (ground pad)	3	
Failure (parachute)	2	
Uncontrolled (ocean)	2	
Precluded (drone ship)	1	

Launch Site Locations Map

 SpaceX has one launch site on Pacific coast (California) and the rest on Atlantic coast (Florida)

VAFB SLC-4E and KSC LC-39 Recovery Outcomes

• Green markers are successful recovery of Falcon 9 Stage One and red ones are unsuccessful recovery

KSC LC-39A, CCAFS LC-40 and CCAFS SLC-40 Nearby Locations

 Blue lines represents the distance to the nearest coastline, city/town, railway and highway

KSC LC-39A Successful Launches

KSC LC-39A have fewer launches but the success rate is high

CCAFS LC-40 Successful Launches

 CCAFS LC-40 have the most launches and it has the most successful launches

Recovery Outcome vs Payload Mass

- Between 2000 and 4000 are the most successful payload range
- FT booster is very effective and v1.1 have the most failure

Classification Accuracy

- Log Reg has 83,33% accuracy
- SVM has 83,33% accuracy
- Decision Tree has 77,77% accuracy
- KNN has 83,33% accuracy
- So Log Reg, SVM and KNN have the same and the best accuracy

Confusion Matrix

• Overall the model is mostly accurate, however it wrongly predicted 3 landings as successful but they are not

Conclusions

- Falcon 9 Stage One is good for light payloads (between 2000kg and 4000kg)
- Best launching site is KSC LC-39A
- Most successful launches are after 2017
- The best method to recover is via drone ship
- Model can predict the outcome of the given recovery with a accuracy of 83,33%

