Question 1 (a,b)

Original population follows normal distribution $\mu=1.20~mm,~\sigma=0.25~mm$ Distribution of means of samples of size n is normal: $\mu_{\bar{X}}=\mu$, $\sigma_{\bar{X}}=\sigma/\sqrt{n}$

(a)
$$\mu_{\bar{x}} = \mu = 1.20 \ mm$$

(b)
$$\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n} = \frac{(0.25)^2}{16} = 0.00391 \text{ mm}^2$$

Question 1 (c)

• C) Standardization

Question 1 (d)

The mean of X follows normal distribution $N(\mu, \sigma^2/n)$ n=16

5

Question 1 (e)

The mean of X follows normal distribution $N(\mu, \sigma^2/n)$ n=32

(e)
$$z_1 = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{1.35 - 1.20}{0.25/\sqrt{32}} = 3.39$$

= $1 - P(Z < 3.39)$
= $1 - 0.9997$
= 0.0003

Question 1 (f)

• For the variances (S^2) of samples , χ^2 follow chi-squared distribution

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \ ,$$

 σ^2 is variance of original population

v = n-1 is degree of freedom

(f)
$$\chi^2 = \frac{(16-1)*0.1146}{(0.25)^2} = 27.504$$
 $P(\chi^2 > 27.504) = \alpha = 0.025$

	The shaded area is equal to α for $\chi^2 = \chi^2_{\alpha}$.									
df	X 205	X2900	X 2 275	X2060	$\chi^{2}_{.900}$	χ _{.100} ²	X ² ,060	χ ² ,(25		
1	0.000	0.000	0.001	0.004	0.016	2,706	3.841	5.024		
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378		
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9,348		
4	0.207	0.297	0.484	0.711	1.064	7,779	9.488	11.143		
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833		
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449		
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013		
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535		
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023		
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483		
11	2.603	3.053	3.816	4.575	5,578	17.275	19.675	21.920		
12	3.074	3.571	4.404	5.226	6.304	18,549	21.026	23.337		
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736		
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119		
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488		

Question 1 (g)

• For the variances (S^2) of randomly selected samples of size n from a normal population, χ^2 follow chi-squared distribution

$$\bullet \ \chi^2 = \frac{(n-1)S^2}{\sigma^2}$$

(g)
$$\chi^2 = \frac{(31-1)*0.1146}{(0.25)^2} = 55.008$$
 $P(\chi^2 > 55.008) = \alpha \approx 0.004$

df	X2995	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	X2500	$\chi^{2}_{.100}$	$\chi^2_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^2_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.87
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.59
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.83
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.86
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.75
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.50
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.27
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.95
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.58
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.18
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.75
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.30
13	3,565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.81
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.31
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.80
16	5.142	5.812	6,908	7.962	9.312	23.542	26.296	28.845	32.000	34.26
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33,409	35.7
18	6.265	7.015	8.231	9,390	10.865	25.989	28,869	31.526	34.805	37.13
19	6.844	7.633	8,907	10.117	11.651	27.204	30.144	32.852	36.191	38.5
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.99
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.40
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.79
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.18
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.50
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.92
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.29
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.64
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.99
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.33
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.67

Question 2

- Original population $\sim N(\mu = 109 \ db$, $\sigma = 23 \ db)$
- Distribution of means of samples of size n is normal: $\mu_{\bar{X}} = \mu$, $\sigma_{\bar{X}} = \sigma/\sqrt{n}$

2.
$$z_1 = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{115 - 109}{23/\sqrt{8}} = 0.7379 \cong 0.74$$

= $1 - P(Z < 0.74)$
= $1 - 0.7704$
= 0.2296
 $\cong 0.23$

Question 3

• For the variances (S^2) of randomly selected samples of size n from a normal population, χ^2 follow chi-squared distribution

$$\chi^{2} = \frac{(n-1)S^{2}}{\sigma^{2}}, df = n-1=4, \alpha=0.05$$

$$P(S^{2} > S_{0}^{2}) = P(\chi^{2} > \chi_{0}^{2}) = 0.05$$

$$\chi_{0}^{2} = 9.488 = \frac{(5-1)S_{0}^{2}}{(0.6)^{2}} \Rightarrow S_{0}^{2} = 0.854 \, s^{2}$$

Chi-Square Distribution Table $\,$ The shaded area is equal to α for $\chi^2=\chi^2_{\alpha}.$

df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592
							10

Question 4

• Original population $\sim N(\mu = 12.5 \, day)$, $\sigma = 5.5 \, day$

$$z_{1} = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{14 - 12.5}{5.5 / \sqrt{12}} = 0.9448 \approx 0.95$$

$$= 1 - P(Z < 0.95)$$

$$= 1 - 0.8289$$

$$= 0.1711$$

$$\approx 0.17$$

Question 5

- Original population $\sim N(\mu = 120 \text{ days}, \sigma = unknown)$
- T-distribution is used when population standard deviation is unknown
- Sample with n=8 observations, $\bar{X} = 133$ days, S = 16 days

•
$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}} = \frac{133 - 120}{16/\sqrt{8}} = 2.298$$

 $t_{0.025} = 2.365$ The claim is valid

Question 6

- If you want to compare variances of two independent samples from two normal populations, then use the f-distribution where
- $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$, $v_1 = n_1 1$, $v_2 = n_2 1$, $f_{1-\alpha}(v_1, v_2) = 1/f_{\alpha}(v_2, v_1)$
- $n_1 = 10, S_1^2 = 10.441, n_2 = 8, S_2^2 = 1.846$ $\frac{\sigma_1^2}{\sigma_2^2} = 1 \Rightarrow F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{10.441}{1.846} = 5.66$

According to fisher distribution table (next slide): $v_1 = 9 \ v_2 = 7, F = 5.66 \Rightarrow 0.01 < \alpha < 0.05$ Online fisher calculator

v_2	$f_{0.01}(v_1, v_2)$										
	0.1	2	3	4		6	7 9	8	9		
1	4052.18	4999.50	5403.35	5624.58	5763.65	5858.99	5928.36	5981.07	6022.47		
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39		
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35		
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66		
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16		
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98		
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72		

$$v_1 = 9 \ v_2 = 7, F = 5.66 \Rightarrow 0.01 < \alpha < 0.05$$

Question 7

- $\mu_1 = 292.50$, $\sigma_1 = 15.6$, $\mu_2 = 266.10$, $\sigma_2 = 18.20$
- two samples taken from different populations with size $n_1=16 \& n_2=16$
- Difference of means of two samples (from different populations) with size n₁ and n₂ follow normal distribution where:

$$\mu_{\bar{X}_1 - \bar{X}_2} = \mu_1 - \mu_2, \qquad \sigma_{\bar{X}_1 - \bar{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

•
$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}} = \frac{30 - (292.50 - 266.10)}{5.9927} = 0.60$$

• 1 - P(Z < 0.6) = 1 - 0.7257 = 0.02743

15