Herbst 13 Themennummer 2 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Benutzen Sie den Residuensatz, um das uneigentliche reelle Integral

$$\int_0^\infty \frac{x \sin(x)}{x^2 + c^2} dx$$

für $c \in \mathbb{R}, c \neq 0$, zu berechnen. Geben Sie insbesondere Integrationspfade explizit an und weisen Sie nach, dass die Werte der entsprechenden Kurvenintegrale gegen das gesuchte Integral konvergieren.

Lösungsvorschlag:

Wir argumentieren zunächst, dass das Integral überhaupt existiert. Der Integrand ist stetig, also lokal integrabel. Dabei geht im Besonderen $x^2 + c^2 \ge c^2 > 0$ ein, also, dass der Nenner nie 0 wird. Das Integral existiert also eigentlich auf [0,1]. Wir brauchen also nur das Integral über $[1,\infty)$ untersuchen. Wir integrieren partiell (der Sinus wird integriert und $\frac{x}{x^2+c^2}$ differenziert) und erhalten für alle T>1:

$$\int_{1}^{T} \frac{x \sin(x)}{x^{2} + c^{2}} dx = \frac{-T \cos(T)}{T^{2} + c^{2}} - \int_{1}^{T} \frac{\cos(x)x^{2}}{(x^{2} + c^{2})^{2}} dx$$

was für $T \to \infty$ gegen $-\int_1^\infty \frac{\cos(x)x^2}{(x^2+c^2)^2} \, \mathrm{d}x$ konvergiert. Dieses Integral existiert, weil sich der Integrand betragsmäßig gegen $\frac{x^2}{x^4} = x^{-2}$ abschätzen lässt und, weil $\int_1^T x^{-2} \, \mathrm{d}x = 1 - \frac{1}{T} \to 1$ für $T \to \infty$ gilt.

Wir betrachten nun das Integral über ganz \mathbb{R} , ändern also die untere Integralgrenze zu $-\infty$. Wegen $\frac{-x\sin(-x)}{(-x)^2+c^2}=\frac{x\sin(x)}{x^2+c^2}$ ist der Integrand gerade und das Integral über \mathbb{R} konvergiert gegen den doppelten Wert des gesuchten Integrals. Wir werden nun das Integral über \mathbb{R} mit dem Residuensatz bestimmen. Weil c und -c auf den gleichen Integranden und folglich auf identische Integralwerte führen, können wir im Folgenden zudem c>0 voraussetzen.

Die Funktion $f: \mathbb{C} \setminus \{-ic, ic\} \to \mathbb{C}, f(z) = \frac{ze^{iz}}{z^2+c^2}$ ist holomorph auf der offenen, konvexen Menge \mathbb{C} mit Ausnahme von zwei Singularitäten. Für jeden geschlossenen, stückweise stetig differenzierbaren Pfad in \mathbb{C} , der keine Singularität berührt, dürfen wir also den Residuensatz anwenden. Sei nun R > c.

Wir betrachten den, offensichtlich geschlossenen und stückweise stetig differenzierbaren, Weg $\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ mit

$$\gamma_1: [-R, R] \to \mathbb{C}, t \mapsto t; \qquad \gamma_2: [0, R] \to \mathbb{C}, t \mapsto R + it;
\gamma_3: [-R, R] \to \mathbb{C}, t \mapsto iR - t; \qquad \gamma_4: [0, R] \to \mathbb{C}, t \mapsto -R + (R - t)i.$$

Wir untersuchen jetzt die Integrale über die Teilwege γ_i :

j=1: Es gilt wegen der Eulerschen Formel und per Definitionem des Wegintegrals, dass

$$\int_{\gamma_1} f(z) dz = \int_{-R}^R \frac{\cos(x)x}{x^2 + c^2} dx + i \int_{-R}^R \frac{x \sin(x)}{x^2 + c^2} dx = i \int_{-R}^R \frac{\sin(x)x}{x^2 + c^2} dx \to i \int_{-\infty}^\infty \frac{x \sin(x)}{x^2 + c^2} dx,$$

weil $\frac{-x\cos(-x)}{(-x)^2+c^2}=-\frac{x\cos(x)}{x^2+c^2}$ ist und daher das zugehörige Integral über [-R,R] verschwindet.

j=2: Die Weglänge beträgt R, wir schätzen das Betragsmaximum von f entlang der Spur ab. Für alle $t \in [0, R]$ gilt $|\gamma_2(t)| = R^2 + t^2 \ge R^2$ und $|e^{i\gamma_2(t)}| = e^{-t} \le 1$ und mit der umgekehrten Dreiecksungleichung folgt daher

$$0 \le \left| \int_{\gamma_2} f(z) dz \right| \le R \frac{1}{R^2 - c^2},$$

was für $R \to \infty$ gegen 0 konvergiert.

j=3: Die Weglänge beträgt 2R, wir schätzen das Betragsmaximum von f entlang der Spur ab. Für alle $t \in [0, R]$ gilt $|\gamma_3(t)| = R^2 + t^2 \ge R^2$ und $|e^{i\gamma_3(t)}| = e^{-R} \le 1$ und mit der umgekehrten Dreiecksungleichung folgt daher

$$0 \le \left| \int_{\gamma_3} f(z) \mathrm{d}z \right| \le 2R \frac{1}{R^2 - c^2},$$

was für $R \to \infty$ gegen 0 konvergiert.

j=4: Die Weglänge beträgt R, wir schätzen das Betragsmaximum von f entlang der Spur ab. Für alle $t \in [0,R]$ gilt $|\gamma_4(t)| = R^2 + (R-t)^2 \ge R^2$ und $|e^{i\gamma_4(t)}| = e^{t-R} \le 1$ und mit der umgekehrten Dreiecksungleichung folgt daher

$$0 \le \left| \int_{\gamma_2} f(z) dz \right| \le R \frac{1}{R^2 - c^2},$$

was für $R \to \infty$ gegen 0 konvergiert.

Für $R \to \infty$ konvergiert also $\int_{\gamma} f(z) dz = \sum_{j=1}^{4} \int_{\gamma_j} f(z) dz$ gegen $i \int_{-\infty}^{\infty} \frac{x \sin(x)}{x^2 + c^2} dx$.

Wir berechnen nun noch $\int_{\gamma} f(z) dz$ mit dem Residuensatz. Die Anwendbarkeit desselbigen folgt, weil $|\pm ic| = c < R$ zeigt, dass keine Singularität auf γ_2, γ_3 oder γ_4 liegt und weil $\pm ic \notin \mathbb{R}$ ist, γ_1 jedoch nur in \mathbb{R} verläuft. Die einzige Singularität, die von γ umschlossen wird, ist ic und diese wird einmal positiv umlaufen. Daher gilt unabhängig von R > c, dass $\int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}_f(ic)$. Weil ic ein Pol erster Ordnung ist, gilt $\operatorname{Res}_f(ic) = \frac{ice^{-c}}{2ic}$ und damit ist $\int_{\gamma} f(z) dz = i\pi e^{-c}$, was für $R \to \infty$ gegen $i\pi e^{-c}$ konvergiert.

gegen $i\pi e^{-c}$ konvergiert. Es folgt $\int_{-\infty}^{\infty} \frac{x \sin(x)}{x^2 + c^2} dx = \pi e^{-c}$ und zuletzt $\int_{0}^{\infty} \frac{x \sin(x)}{x^2 + c^2} dx = \frac{\pi}{2e^c}$.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$