Control Systems

G V V Sharma*

3

CONTENTS

1	Stability	1
	1.1 Second order System	1
2	Routh Hurwitz Criterion	2

4 Compensators 4

5 Nyquist Plot 4

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

State-Space Model

svn co https://github.com/gadepall/school/trunk/control/codes

1 STABILITY

1.1 Second order System

3

1.1. Consider the following second order system with the transfer function

$$G(s) = \frac{1}{1 + 2s + s^2} \tag{1.1.1}$$

Is the system stable?

Solution: The poles of

$$G(s) = \frac{1}{1 + 2s + s^2} \tag{1.1.2}$$

are at

$$s = -1$$
 (1.1.3)

i.e., the left half of s-plane. Hence the system is stable.

1.2. Find and sketch the step response c(t) of the system.

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.2

Solution: For step-response, we take input as unit-step function u(t)

$$C(s) = U(s).G(s) = \left[\frac{1}{s}\right] \left[\frac{1}{1+2s+s^2}\right]$$

$$= \frac{1}{s(1+s)^2}$$

$$= \frac{1}{s} - \frac{1}{(1+s)} - \frac{1}{(1+s)^2}$$
(1.2.3)

Taking the inverse Laplace transform,

$$c(t) = L^{-1} \left[\frac{1}{s} \right] - L^{-1} \left[\frac{1}{1+s} \right] - L^{-1} \left[\frac{1}{(1+s)^2} \right]$$

$$= (1 - e^{-t} - te^{-t}) u(t)$$
(1.2.5)

The following code plots c(t) in Fig. 1.2

codes/ee18btech11002/plot.py

1.3. Find the steady state response of the system using the final value theorem. Verify using 1.2.5

Solution: To know the steady response value

of c(t), using final value theorem,

$$\lim_{t \to \infty} c(t) = \lim_{s \to 0} sC(s) \tag{1.3.1}$$

We get

$$\lim_{s \to 0} s \left(\frac{1}{s}\right) \left(\frac{1}{1+s+s^2}\right) = \frac{1}{1+0+0} = 1$$
(1.3.2)

Using 1.2.5,

$$\lim_{t \to \infty} c(t) = \lim_{t \to \infty} \left(1 - e^{-t} - t e^{-t} \right) u(t) \tag{1.3.3}$$

$$= (1 - 0 - 0) = 1 \tag{1.3.4}$$

$$= (1 - 0 - 0) = 1 \tag{1.3.4}$$

1.4. Find the time taken for the system output c(t) to reach 94% of its steady state value.

Solution: Now, 94% of 1 is 0.94, so we should now solve for a positive t such that

$$1 - e^{-t} - te^{-t} = 0.94 (1.4.1)$$

The following code

codes/ee18btech11002/solution.py

provides the necessary solution as

$$t = 4.5228 \tag{1.4.2}$$

2 ROUTH HURWITZ CRITERION

2.1. Consider a unity feedback system as shown in Fig. 2.1, with an integral compensator $\frac{k}{a}$ and open-loop transfer function

$$G(s) = \frac{1}{s^2 + 3s + 2}$$
 (2.1.1)

where k greater than 0. Find its closed loop transfer function.

Fig. 2.1

Solution: H(s) = 1 in Fig. 2.1, due to unity

feedback, the transfer function is given by

$$\frac{Y(s)}{X(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
 (2.1.2)

$$\implies T(s) = \frac{k}{s^3 + 3s^2 + 2s}$$
 (2.1.3)

2.2. Find the *characteristic* equation for G(s). **Solution:** The characteristic equation is

$$1 + G(s)H(s) = 0 (2.2.1)$$

$$\implies 1 + \left[\frac{k}{s^3 + 3s^2 + 2s} \right] = 0 \tag{2.2.2}$$

or,
$$s^3 + 3s^2 + 2s + k = 0$$
 (2.2.3)

2.3. Using the tabular method for the Routh hurwitz criterion, find k > 0 for which there are two poles of unity feedback system on $j\omega$ axis.

Solution: This criterion is based on arranging the coefficients of characteristic equation into an array called Routh array. For any characteristic equation

$$q(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = 0$$
(2.3.1)

the Routh array can be constructed as

$$\begin{vmatrix} s^{n} \\ s^{n-1} \\ s^{n-2} \\ \vdots \end{vmatrix} \begin{vmatrix} a_{0} & a_{2} & a_{4} & \cdots \\ a_{1} & a_{3} & a_{5} & \cdots \\ b_{1} & b_{2} & b_{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \cdots \end{vmatrix}$$
(2.3.2)

where

$$b_1 = \frac{a_1 a_2 - a_0 a_3}{a_1} \tag{2.3.3}$$

$$b_2 = \frac{a_1 a_4 - a_0 a_5}{a_1} \tag{2.3.4}$$

$$c_1 = \frac{b_1 a_3 - a_1 b_2}{b_1} \tag{2.3.5}$$

$$c_2 = \frac{b_1 a_5 - a_1 b_3}{b_1} \tag{2.3.6}$$

For poles to lie on imaginary axis any one entire row of hurwitz matrix should be zero. Constructing the routh array for the characteristic equation obtained in 2.2.1,

$$s^3 + 3s^2 + 2s + k = 0 (2.3.7)$$

$$\begin{vmatrix} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \end{vmatrix} \begin{vmatrix} 1 & 2 \\ 3 & k \\ \frac{6-k}{3} & 0 \\ k & 0 \end{vmatrix}$$
 (2.3.8)

For poles on $j\omega$ axis any one of the row should be zero.

$$\therefore \frac{6-k}{3} = 0 \text{ or } k = 0$$
 (2.3.9)

$$\implies k = 6 \quad \because k > 0 \tag{2.3.10}$$

2.4. Repeat the above using the determinant method.

Solution: The *Routh matrix* can be expressed as

$$\mathbf{R} = \begin{pmatrix} a_0 & a_2 & a_4 & \cdots \\ a_1 & a_3 & a_5 & \cdots \\ 0 & a_0 & a_2 \cdots \\ 0 & a_1 & a_3 \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \cdots \end{pmatrix}$$
 (2.4.1)

and the corresponding Routh determinants are

$$D_1 = |a_0| (2.4.2)$$

$$D_2 = \begin{vmatrix} a_0 & a_2 \\ a_1 & a_3 \end{vmatrix} \tag{2.4.3}$$

$$D_{3} = \begin{vmatrix} a_{1} & a_{3} \\ a_{0} & a_{2} & a_{4} \\ a_{1} & a_{3} & a_{5} \\ 0 & a_{0} & a_{2} \end{vmatrix}$$
 (2.4.4)

$$\dots \qquad (2.4.5)$$

If at least any one of the Determinents are zero then the poles lie on imaginary axes. From (2.2.1),

$$D_1 = 1 \neq 0 \tag{2.4.6}$$

$$D2 = \begin{vmatrix} 1 & 2 \\ 3 & k \end{vmatrix} = k - 6 = 0 \implies k = 6 \quad (2.4.7)$$

2.5. Verify your answer using a python code for both the determinant method as well as the tabular method.

Solution: The following code

codes/ee18btech11005/ee18btech11005.py

provides the necessary soution.

• For the system to be stable all coefficients should lie on left half of s-plane. Because if any pole is in right half of s-plane then there will be a component in output that increases without bound, causing system to be unsta-

ble. All the coefficients in the characteristic equation should be positive. This is necessary condition but not sufficient. Because it may have poles on right half of s plane. Poles are the roots of the characteristic equation.

- A system is stable if all of its characteristic modes go to finite value as t goes to infinity. It is possible only if all the poles are on the left half of s plane. The characteristic equation should have negative roots only. So the first column should always be greater than zero. That means no sign changes.
- A system is unstable if its characteristic modes are not bounded. Then the characteristic equation will also have roots in the right side of s-plane. That means it has sign changes.

3 STATE-SPACE MODEL

3.1. State the general model of a state space system specifying the dimensions of the matrices and vectors.

Solution:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \tag{3.1.1}$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + Du(t) \tag{3.1.2}$$

A,B,C are matrices, D is scalar, u(t) is input to the system and y(t) is output to the system.

- 3.2. Find the transfer function $\mathbf{H}(s)$ for the general system.
- 3.3. Given

$$H(s) = \frac{1}{s^3 + 3s^2 + 2s + 1}$$
 (3.3.1)

$$b1 = \begin{vmatrix} 0 & 0 & 1 \end{vmatrix} \tag{3.3.2}$$

$$b1^T = B \tag{3.3.3}$$

and D=0, find A and C. Solution: FINDING TRANSFER FUNCTION so

$$\dot{X(t)} = AX(t) + BU(t) \tag{3.3.4}$$

$$Y(t) = CX(t) + DU(t)$$
 (3.3.5)

by applying laplace transforms on both sides of equation 1 we get

$$s.X(s)-X(0)=A.X(s)+B.U(s)$$

$$s.X(s)-A.X(s)=B.U(s)+X(0)$$

$$(sI-A)X(s)=X(0)+B.U(s)$$

 $X(s) = X(0)([sI-A])^{-1} + (([sI-A])^{-1}B)U(s)$
Laplace transform of equation 2 and sub X(s)
 $Y(s)=C.X(s)+D.U(s)$

$$Y(s) = C.[X(0)([sI - A])^{-1} + (([sI - A])^{-1}B)U(s)] + DU(s)$$

If X(0)=0

then
$$Y(s) = C[(([sI - A])^{-1}B)U(s)] + DU(s)$$

 $\frac{Y(s)}{U(s)} = C[(([sI - A])^{-1}B)] + D = H(s)$

As we know that

$$Y(s) = H(s) \times U(s) = (\frac{1}{s^3 + 3s^2 + 2s + 1}) \times U(s)$$

$$H(s) = \frac{Y(s)}{U(s)} = \left(\frac{\frac{Y(s)}{x_1(s)}}{\frac{U(s)}{x_1(s)}}\right) = \frac{1}{s^3 + 3s^2 + 2s + 1}$$

let
$$x_1(s) = \frac{U(s)}{s^3 + 3s^2 + 2s + 1}$$

$$Y(s) = x_1(s) \times 1$$

$$s^{3}x_{1}(s) + 3s^{2}x_{1}(s) + 2sx_{1}(s) + x_{1}(s) = U(s)$$
(3.3.6)

Taking inverse laplace transform we get

$$x_1(t) + x_1(t) + x_1(t) + x_1(t) = U(t)$$

$$\dot{x_1} = x_2$$

$$\ddot{x_1} = \dot{x_2} = x_3$$

$$\ddot{x}_1 = \ddot{x}_2 = \dot{x}_3$$

so equation 1.1.4 can be written as

$$\begin{bmatrix} sx_1(s) \\ s^2x_1(s) \\ s^3x_1(s) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \times \begin{bmatrix} x_1(s) \\ sx_1(s) \\ s^2x_1(s) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times U$$
(3.3.7)

taking inverse laplace transform

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \times U$$
(3.3.8)

therfore

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \tag{3.3.9}$$

Since $Y(s) = x_1(s) \times numerator$

therefore $Y(s) = x_1(s)$

$$Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} x_1(s) \\ sx_1(s) \\ s^2x_1(s) \end{bmatrix}$$
(3.3.11)

taking inverse laplace transform

$$Y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \tag{3.3.13}$$

$$C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \tag{3.3.14}$$

- 4 Compensators
- 5 Nyquist Plot