Neural Networks

Part 1

History of the Artificial Neural Networks

- history of the ANNs stems from the 1940s, the decade of the first electronic computer.
- However, the first important step took place in 1957 when Rosenblatt introduced the first concrete neural model, the perceptron. Rosenblatt also took part in constructing the first successful neurocomputer, the Mark I Perceptron. After this, the development of ANNs has proceeded as described in *Figure*.

Artificial Neural Network

• An artificial neural network consists of a pool of simple processing units which communicate by sending signals to each other over a large number of weighted connections.

Artificial Neural Network

- A set of major aspects of a parallel distributed model include:
- a set of processing units (cells).
- a state of activation for every unit, which equivalent to the output of the unit.
- connections between the units. Generally each connection is defined by a weight.
- a propagation rule, which determines the effective input of a unit from its external inputs.
- an activation function, which determines the new level of activation based on the effective input and the current activation.
- an external input for each unit.
- a method for information gathering (the learning rule).
- an environment within which the system must operate, providing input signals and _ if necessary _ error signals.

Computers vs. Neural Networks

"Standard" Computers

Neural Networks

one CPU

highly parallel processing

•fast processing units

slow processing units

•reliable units

unreliable units

•static infrastructure

dynamic infrastructure

Why Artificial Neural Networks?

- •There are two basic reasons why we are interested in building artificial neural networks (ANNs):
- Technical viewpoint: Some problems such as character recognition or the prediction of future states of a system require massively parallel and adaptive processing.
- Biological viewpoint: ANNs can be used to replicate and simulate components of the human (or animal) brain, thereby giving us insight into natural information processing.

Artificial Neural Networks

- The "building blocks" of neural networks are the neurons.
 - In technical systems, we also refer to them as **units** or **nodes**.
- Basically, each neuron
 - receives **input** from many other neurons.
 - changes its internal state (activation) based on the current input.
 - sends one output signal to many other neurons, possibly including its input neurons (recurrent network).

Artificial Neural Networks

- Information is transmitted as a series of electric impulses, so-called **spikes**.
- The **frequency** and **phase** of these spikes encodes the information.
- In biological systems, one neuron can be connected to as many as 10,000 other neurons.
- Usually, a neuron receives its information from other neurons in a confined area, its so-called **receptive field**.

• An artificial neural network (ANN) is either a hardware implementation or a computer program which strives to simulate the information processing capabilities of its biological exemplar. ANNs are typically composed of a great number of interconnected artificial neurons. The artificial neurons are simplified models of their biological counterparts.

ANN is a technique for solving problems by constructing software

that works like our brains.

- The Brain is A massively parallel information processing system.
- Our brains are a huge network of processing elements. A typical brain contains a network of 10 billion neurons.

A processing element

Dendrites: Input

Cell body: Processor

Synaptic: Link

Axon: Output

A processing element

A neuron is connected to other neurons through about 10,000 synapses

A processing element

A neuron receives input from other neurons. Inputs are combined.

A processing element

Once input exceeds a critical level, the neuron discharges a spike - an electrical pulse that travels from the body, down the axon, to the next neuron(s)

A processing element

The axon endings almost touch the dendrites or cell body of the next neuron.

A processing element

Transmission of an electrical signal from one neuron to the next is effected by neurotransmitters.

A processing element

Neurotransmitters are chemicals which are released from the first neuron and which bind to the Second.

A processing element

This link is called a synapse. The strength of the signal that reaches the next neuron depends on factors such as the amount of neurotransmitter available.

An artificial neuron is an imitation of a human neuron

• Now, let us have a look at the model of an artificial neuron.

A Single Neuron

The signal is not passed down to the next neuron verbatim

The output is a function of the input, that is affected by the weights, and the transfer functions

Artificial Neural Networks

An ANN can:

- 1. compute *any computable* function, by the appropriate selection of the network topology and weights values.
- 2. learn from experience!
- Specifically, by trial-and-error

Learning by trial-and-error

Continuous process of:

➤Trial:

Processing an input to produce an output (In terms of ANN: Compute the output function of a given input)

>Evaluate:

Evaluating this output by comparing the actual output with the expected output.

>Adjust:

Adjust the weights.

How it works?

- Set initial values of the weights randomly.
- Input: truth table of the XOR
- Do
- Read input (e.g. 0, and 0)
- Compute an output (e.g. 0.60543)
- Compare it to the expected output. (Diff= 0.60543)
- Modify the weights accordingly.
- Loop until a condition is met
- Condition: certain number of iterations
- Condition: error threshold

Design Issues

- Initial weights (small random values ∈[-1,1])
- Transfer function (How the inputs and the weights are combined to produce output?)
- Error estimation
- Weights adjusting
- Number of neurons
- Data representation
- Size of training set

Transfer Functions

- Linear: The output is proportional to the total weighted input.
- Threshold: The output is set at one of two values, depending on whether the total weighted input is greater than or less than some threshold value.
- Non-linear: The output varies continuously but not linearly as the input changes.

Error Estimation

• The **root mean square error** (**RMSE**) is a frequentlyused measure of the differences between values predicted by a model or an estimator and the values actually observed from the thing being modeled or estimated

Weights Adjusting

- After each iteration, weights should be adjusted to minimize the error.
 - All possible weights
 - Back propagation

Back Propagation

- Back-propagation is an example of supervised learning is used at each layer to minimize the error between the layer's response and the actual data
- The error at each hidden layer is an average of the evaluated error
- Hidden layer networks are trained this way

Back Propagation

- N is a neuron.
- N_w is one of N's inputs weights
- N_{out} is N's output.
- $N_w = N_w + \Delta N_w$
- $\Delta N_w = N_{out} * (1 N_{out}) * N_{ErrorFactor}$
- $N_{ErrorFactor} = N_{ExpectedOutput} N_{ActualOutput}$
- This works only for the last layer, as we can know the actual output, and the expected output.

Number of neurons

- Many neurons:
 - Higher accuracy
 - Slower
 - Risk of over-fitting
 - Memorizing, rather than understanding
 - The network will be useless with new problems.
- Few neurons:
 - Lower accuracy
 - Inability to learn at all
- Optimal number.

Data representation

- Usually input/output data needs pre-processing
- Pictures
 - Pixel intensity
- Text:
 - A pattern

Size of training set

- No one-fits-all formula
- Over fitting can occur if a "good" training set is not chosen
- What constitutes a "good" training set?
 - Samples must represent the general population.
 - Samples must contain members of each class.
 - Samples in each class must contain a wide range of variations or noise effect.
- The size of the training set is related to the number of hidden neurons

Learning Paradigms

- Supervised learning
- Unsupervised learning

Supervised learning

- This is what we have seen so far!
- A network is fed with a set of training samples (inputs and corresponding output), and it uses these samples to learn the general relationship between the inputs and the outputs.
- This relationship is represented by the values of the weights of the trained network.

Unsupervised learning

- No desired output is associated with the training data!
- Faster than supervised learning
- Used to find out *structures within data:*
 - Clustering
 - Compression

Applications Areas

- Function approximation
 - including time series prediction and modeling.
- Classification
 - including patterns and sequences recognition, novelty detection and sequential decision making.
 - (radar systems, face identification, handwritten text recognition)
- Data processing
 - including filtering, clustering blinds source separation and compression.
 - (data mining, e-mail Spam filtering)

Advantages / Disadvantages

- Advantages
 - Adapt to unknown situations
 - Powerful, it can model complex functions.
 - Ease of use, learns by example, and very little user domain-specific expertise needed
- Disadvantages
 - Forgets
 - Not exact
 - Large complexity of the network structure

Conclusion

- Artificial Neural Networks are an imitation of the biological neural networks, but much simpler ones.
- The computing would have a lot to gain from neural networks. Their ability to learn by example makes them very flexible and powerful furthermore there is need to device an algorithm in order to perform a specific task.

Conclusion

- Neural networks also contributes to area of research such a neurology and psychology. They are regularly used to model parts of living organizations and to investigate the internal mechanisms of the brain.
- Many factors affect the performance of ANNs, such as the transfer functions, size of training sample, network topology, weights adjusting algorithm, ...

References

- Introduction to Artificial Neural Networks, Nicolas Galoppo von Borries
- Tom M. Mitchell, Machine Learning, WCB McGraw-Hill, Boston, 1997.