9 Identificação de Cônicas - Translação

1.

2. Seja $\mathcal C$ o lugar geométrico dos pontos P=(x,y) do plano cujas coordenadas x e y satisfazem

$$2y^2 - 3x^2 - 4y + 12x + 8 = 0$$

- a) Qual é o tipo de cônica \mathcal{C} ? Encontrar novas coordenadas para escrever a equação de \mathcal{C} na forma canônica.
- b) Encontrar os focos, os vértices e a excentricidade de $\mathcal C$ nas coordenadas x e y. No caso de hipérbole, encontrar também as equações das assíntotas em x e y. Fazer um esboço do gráfico da cônica $\mathcal C$.

Resposta:

- a) Hipérbole.
- b) Depende do feito em a). Uma solução é

	Sist. $x'y'$	Sist. xy
F_1	$(\sqrt{15},0)$	$(\sqrt{15}+2,1)$
F_2	$(-\sqrt{15},0)$	$(-\sqrt{15}+2,1)$
V_1	$(\sqrt{6},0)$	$(\sqrt{6}+2,1)$
V_2	$(-\sqrt{6},0)$	$(-\sqrt{6}+2,1)$
Ass.1	$y' = \frac{3}{\sqrt{6}}x'$	$y-1 = \frac{3}{\sqrt{6}}(x-2)$
Ass. 2	$y' = -\frac{3}{\sqrt{6}}x'$	$y - 1 = -\frac{3}{\sqrt{6}}(x - 2)$

3. Seja ℓ o lugar geométrico dos pontos P=(x,y) no plano cujas coordenadas satisfazem a equação

$$\ell \colon 9x^2 - 16y^2 - 54x + 48y + 81 = 0.$$

- a) Determinar que tipo de cônica é ℓ . Escrever a equação canônica de ℓ .
- b) Encontrar os focos, a excentricidade e os vértices de ℓ . Se ℓ for hipérbole, encontrar as equações das assíntotas de ℓ .

Resposta:

a) A cônica é uma hiperbole e sua equação canônica é

$$\frac{(y')^2}{\frac{9}{4}} - \frac{(x')^2}{4} = 1.$$

b) Focos:

$$F_1 = (3, -1)$$
 $F_2 = (3, 4)$

Vértices:

$$V_1 = (3,0) V_2 = (3,3)$$

Exentricidade e = 5/3

Assíntotas

$$(x-3) = \frac{4}{3}\left(y - \frac{3}{2}\right)$$
 e $(x-3) = -\frac{4}{3}\left(y - \frac{3}{2}\right)$.

4. Considere a cônica de equação

$$2x^2 + 3y^2 + 4x - 12y + 8 = 0$$

Determine

- a) se é elipse, hipêrbole ou parábola,
- b) focos, vértices e assíntotas (se houver) no sistema de coordenadas $S=\{O, \{\vec{e_1}, \vec{e_2}\}\},$
- c) exentricidade,
- d) um esboço do gráfico.

Resposta:

- a) A curva é uma elipse.
- b) No sistema de coordenadas $S=\{O,~\{\vec{e}_1,\vec{e}_2\}\}$, os focos e vertices estão em

$$V_1: (-1+\sqrt{3},2)$$

$$V_2: (-1-\sqrt{3},2)$$

$$F_1:(0,2)$$

$$F_2:(-2,2)$$

- c) a exentricidade é $e = \frac{1}{\sqrt{3}}$
- 5. Tome x'y' o sistema de eixos do plano que é a translação do sistema xy para a nova origem O' = (1, 1), i.é., x' = x 1 e y' = y 1.
 - i- Dado o ponto P=(1,4) no sistema xy, encontre as coordenadas de P no sistema $x^\prime y^\prime$.
 - ii- Dado o ponto A=(2,1) no sistema x'y', encontre as coordenadas de A no sistema xy.
 - iii- Dada a equação $x^2 4x + y^2 6y = 12$, encontre tal equação nas variáveis x'y'.

Resposta:

i-
$$P = (1 - 1, 4 - 1) = (0, 3)$$
 no sistema $x'y'$.

ii-
$$A = (2+1, 1+1) = (3, 2+)$$
 no sistema xy .

$$(x')^2 - 2x' + (y')^2 - 4y' = 4$$
. No sistema $x'y'$.

6. Encontre os vértices (ou vértice), os focos (ou foco) e a excentricidade de cada uma das cônicas. E esboce o gráfico.

i-
$$4x^2 + 9y = 144$$

ii-
$$49x^2 - 9y^2 = 441$$

iii-
$$3x^2 - 14y = 0$$

Resposta:

		Foco	Vértice	Reta diretriz	Excentricidade
i-	(x',y')	$\left(0, \frac{-9}{16}\right)$	(0,0)	$y' = \frac{9}{16}$	1
	(x,y)	$\left(0, \frac{247}{16}\right)$	(0, 16)	$y = \frac{265}{16}$	1

ii-
$$F_1$$
 F_2 V_1 V_2 $(-\sqrt{58},0)$ $(\sqrt{58},0)$ $(-3,0)$ $(3,0)$

$$e = \frac{\sqrt{58}}{3}$$

iii- Temos e=1

$$F = \left(\frac{7}{6}, 0\right)$$
 $V = (0, 0)$ $r: x = -\frac{7}{6}$.

7. Para cada uma das equações abaixo decida se a cônica C determinada pela equação é degenerada ou não. Nos casos em que não são degeneradas encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.

i-
$$9x^2 - 18x + 9y^2 - 6y = 10$$

ii-
$$4x^2 - 4x + 9y^2 - 18y = 26$$

iii-
$$4y^2 - 4y - 24x + 9 = 0$$

iv-
$$36x^2 - 24x + 36y^2 - 36y - 23 = 0$$

$$v- 4x^2 - 8x - 9y^2 + 6y - 69 = 0$$

vi
$$9y^2 - 9x^2 + 6x = 1$$
.

Resposta:

i- Circunferência com centro em $\left(1,\frac{1}{3}\right)$ e raio $r=\frac{\sqrt{20}}{3}.$

ii-				x'y'		xy	
	F_1			$(\sqrt{5},0)$		$\left(\sqrt{5} + \frac{1}{2}, 1\right)$	
	F_2			$(-\sqrt{5},0)$ $\left(-\sqrt{5}+\frac{1}{2}\right)$		$\left(-\sqrt{5} + \frac{1}{2}, 1\right)$	١
	V_1			(3,0)		$\left(\frac{7}{2},1\right)$	
	V_1			(-3,0)		$\left(-\frac{5}{2},1\right)$	
	e			$\frac{\sqrt{5}}{3}$		$\frac{\sqrt{5}}{3}$	
				x'y'		xy	
iii		F		$\left(\frac{3}{2},0\right)$		$\left(\frac{11}{6},\frac{1}{2}\right)$	
	.1-	V		(0,0)		$\left(\frac{1}{3},\frac{1}{2}\right)$	
		r		$x' = -\frac{3}{2}$		$x = -\frac{7}{6}$	

iv- Circunferência com centro em

$$\left(\frac{1}{3}, \frac{1}{2}\right)$$
 e raio $r = 1$

		x'y'	xy
V-	F_1	$(\sqrt{26},0)$	$\left(1+\sqrt{26},\tfrac{1}{3}\right)$
	F_2	$(-\sqrt{26},0)$	$\left(1-\sqrt{26}, \frac{1}{3}\right)$
	V_1	$(\sqrt{18},0)$	$\left(1+\sqrt{18},\tfrac{1}{3}\right)$
	V_1	$(-\sqrt{18},0)$	$\left(1-\sqrt{18},\tfrac{1}{3}\right)$
	Assíntotas	$y' = \pm \sqrt{\frac{4}{9}}x'$	$\left(y - \frac{1}{3}\right) = \pm \sqrt{\frac{4}{9}}(x - 1)$ ou
			$y = \frac{1}{3} \pm \frac{2}{3}(x - 1)$

vi- É uma cônica degenerada correspondente ao par de retas

$$r_1: y = \left(x - \frac{1}{3}\right)^2$$
 e $r_2: y = -\left(x - \frac{1}{3}\right)^2$

que se intersectam em

$$P = \left(0, \frac{1}{3}\right).$$