Instrumentation

Pr. Joseph Moerschell, Dr. Marc Nicollerat

les.so// waters

3 Erreurs de mesure

- Quelles sont les sources d'erreurs
- Comprendre les spécifications des appareils
- Calculer les erreurs d'un système

3.1 Au menu des sources d'erreurs

Les sources d'erreur communes sont légions. Il s'agit de les identifier. Quelques sources possibles sont listées dans la Table 1.

Table 1: Quelques sources d'erreur.

Paramètre	Description	Parade
Offset	Lorsque la mesurande est null, l'offset apparaît comme une valeur non nulle à la sortie	Il peut être mesurés avant d'appliquer la mesurande et soustrait aux mesures
Précision	La précision donnée d'un capteur comprend toutes les erreurs	Choisir le capteur approprié
Erreur de linéarité	Cette erreur caractérise la relation entre la mesurande et la sortie, soit le gain	On peut calibrer l'appareil avec une mesurande connue
Stabilité	La stabilité représente la plage dans laquelle la sortie varie pour une même mesurande	Cette variation est liée à des facteurs d'influence ou au bruit de mesure. On peut prendre plusieurs mesures pour calculer une moyenne
Répétabilité	La répétabilité est la différence de sortie pour une même mesurande appliquée à plusieurs reprises	La procédure de mesure peut améliorer la répétabilité (on effectue les mesures toujours de la même façon)
Environnement	Les conditions de l'environnement (température) peuvent influencer la mesure	Contrôler l'environnement
Chaine d'acquisition	La sortie du capteur est mesurée par un appareil (un voltmètre par exemple)	La précision du système doit être adaptée.

3.2 Linéarité

Le principe utilisé pour la mesure n'a pas toujours une caractéristique linéaire. Ceci doit être compensé par l'instrument.

$$Y_{capteur} = ax^2 \implies Y_{sortie} = b\sqrt{Y_{Capteur}} \implies Y_{sortie} = b\sqrt{a} \cdot x$$
 (1)

La correction n'est jamais parfaite, elle peut demander des calibrations. Un appareil peut utiliser un polynôme du genre de Equation 2.

$$T=T_0\cdot \left(a0+a1*R+a2*R^2
ight)$$

Les paramètres a_i doivent être identifiés précisément pour minimiser l'erreur. Si une influence n'est pas modélisée, une erreur va apparaître. On aura une erreur de linéarité.

Figure 1: Mesure faussée par erreur de linéarité

3.3 Erreur d'offset et de gain

L'offset et le gain influencent la caractéristique comme le montre la Figure 2

Figure 2: Mesure faussée par un offset et un gain

Figure 3: Mesure faussée par un offset

Figure 4: Mesure faussée par un gain imprécis

3.4 Exemple d'influence sur l'offset ou le gain

analysant la structure d'un capteur et en comprenant comment il fonctionne, on peut Les grandeurs interférentes sont des grandeurs qui s'ajoutent à la mesure. En détecter les interférences possibles.

Exemple du pont de Wheatstone. La grandeur mesurée U sera affectée de façon...

- ullet additive par une erreur des résistance R,
- ullet multiplicative par une erreur de la tension U_0

$$\sigma = \epsilon \cdot E \left[rac{N}{m^2}
ight] \hspace{0.5cm} \Delta R = K \cdot R_0 \cdot \epsilon \left[\Omega
ight] \ \epsilon = rac{dL}{L} pprox rac{\Delta L}{L} [1] \hspace{0.5cm} U \cong -rac{K\epsilon}{4} U_0 \left[V
ight]$$

Jauge de contrainte mesurée par un 1/4 de pont.

i) Note

Exemple de développemenet dans le notebook jupyter python/exemple_erreur_add_mult.ipynb

3.5 Précision

Les sources d'erreurs possibles d'un capteur sont illustrées sur la Figure 5

Figure 5: Différentes erreurs de mesures

3.6 Dérive

Pendant son fonctionnement, un appareil peut voir varier sa caractéristique changer, par exemple à cause de son échauffement.

Figure 6: Dérive due à l'échauffement

3.7 Fidélité, justesse et précision

On peut qualifier un instrument selon sa justesse et sa fidélité. Un instrument juste et fidèle est précis.

Fidélité	Le	Les mesures se ressemblent mais ne sont pas forcément justes	mais ne sont pas
Justesse	Le	Les mesures sont précises	
Précision	Le	Les mesures sont justes et fidèles	dèles
	infidèle et précis	fidèle et imprécis	fidèle et précis

Figure 7: Variantes de fidélité et justesse

3.8 Précision constante, proportionnelle et combinée

Figure 8: Précision combinée

On a les combinaisons possibles d'une erreur **absolue** $E_X=X-X_0$ et d'une erreur relative $\epsilon_X = E_X/X_0$.

3.9 Classes de précision

Spécification de précision d'instruments de mesure :

- Basée sur une erreur absolue constante sur toute la plage de mesure
- Exprimée relativement à la plage de mesure
- Classes courantes: 0.1 0.2 0.5 1 1.5 2.5 5
- Normes: IEC 60051 pour les mesures électriques, IEC 60751 pour la température,

Classes de		Inte	Intensité en % de l'intensité Nominale	ntensité Nomin	olle	
précision	1%	5%	20%	20%	100%	120%
2				2%		2%
3				3%		w %
1		%	1,5%		%	26
0,5		1,5%	0,75%		0,5%	%9,0
0,55	1,5%	0,75%	0,5%		0,5%	%5.0
0,2		0,75%	0,35%		0,2%	0,2%
0,28	0,75%	0,35%	0,2%		0,2%	0,2%

Exemple de classe de précision

3.10 Distribution d'erreurs aléatoires

Les distributions d'erreur suivent très souvent une courbe de Gauss. L'équation est donnée par :

$$\eta(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}rac{x-\mu}{\sigma^2}}$$

La Figure 9 montre quelques traces pour les valeurs données dans le tableau.

i	Ī	Ī	Ī
σ	0.1	0.3	0.05
μ	0.5	0.7	0.8
Couleur	pleu	vert	magenta

Figure 9: Quelques gaussiennes

· Note

La distribution de Gauss est un modèle qui est souvent approximativement correct.

La plage des valeurs de mesure de la fonction de Gauss est théoriquement infinie.

En technique, nous travaillons souvent avec une plage de ±3σ autour de μ.

Elle n'est pas la seule distribution qui existe, mais elle permet des calculs analytiques simples.

3.11 Autres causes des erreurs de mesure

- Facteurs psychologiques
- angle de lecture
- fatigue
- lecture d'une valeur instable
- Temps de réponse
- Lecture trop rapide
- Crosstalk
- Un canal de lecture peut influencer l'autre

· Note

Plusieurs personnes mesurent une longeur avec un double-mètre.

3.12 Limites de précision

Certaines particularités limitent les possibilités de retrouver la mesurande avec précision.

- Hystérèse
- Un jeu mécanique, typiquement un engrenage. Le jeu fait que le mouvement d'un axe à l'entrée ne se voit pas tout de suite à la sortie.
- En magnétisme, l'aimantation a une hystérésis. La caractéristique n'est pas la même selon le sens de parcours.

- Un offset peut venir fausser la caractéristique.
- Fonction non univoque. Il n'est pas possible de trouver la bonne mesurande.
- Résolution : nombre de chiffres affichés par un multimètre.

3.13 Exemple de spécification

Exemple de données sur la précision d'un capteur de pression

Unit	72 /	S1%		,	±2015, (425)		2007	7013/ year	±%FS, each 1bar		ů	
Max.	0.5	0.5	1.25	0.75	1.25	0.75					(Cable)	5(Cable)
Тур.	0.25	0.25	0.75	0.5	0.75	0.5	0.5	0.2	0.05	0-20	-30~80; -10~70(Cable	-40~120; -20 ~85(Cable
Min.											-30-	-07-
	$0 \text{bar} \sim 1 \text{bar}$	2bar ~ 35bar	Obar ~ 1bar	2bar ~ 35bar	$0 ext{bar} \sim 1 ext{bar}$	2bar ∼ 35bar	<2bar	≤35bar	e effect	n temp.	temp.	emp.
	V	Accuracy	T Const	Zero inermal error	T OJ	ro mermal error	0	Stability	Static pressure effect	Compensation temp.	Operation temp.	Storage temp.

Paramètre	Echelle	Echelle Graphique
Accuracy	%FS	NL
Zero Thermal error %FS	%FS	offset
FS thermal error	%FS	gain(Température)
Stability	%FS	gain(temps)

Données sur la précision pour un capteur de pression

(1) Important

FS tient pour Full Scale. L'erreur est dépendante de la plage maximum du capteur. Si on utilise un capteur sur une plage réduite, cette erreur devient importante.

3.14 Exemple de spécification d'appareil de précision

Spécification du HP 3458, multimètre de précision

DC Voltage

Range	nge Full Scale	Maximum	Input Impedance	Input Impedance Temperature Coefficient (ppm of	ficient (ppm of
		Resolution		Reading + ppm of Range) / C	Range) / C
				Without ACAL!	With ACAL ²
	120.00000	10 nV	>10 GΩ	1.2 + 1	0.15+1
	1.20000000	10 nV	>10 GΩ	1.2 + 0.1	0.15 + 0.1
	12.0000000	100 nV	>10 GΩ	0.5 + 0.01	0.15 + 0.01
	120.000000	1 μV	$10 \text{ M}\Omega \pm 1\%$	2 + 0.4	0.15 + 0.1
1000 V	1050.00000	7η 01	$10 \text{ M}\Omega \pm 1\%$	2 + 0.04	0.15 + 0.01

Accuracy³ (ppm of Reading (ppm of Reading for Option 002) + ppm of Range)

Range	24 Hour 4	90 Day ⁵	1 Year 5	2 Year ⁵
100 mV	2.5 + 3	5.0 (3.5)+3	9 (5)+3	14 (10)+3
1 V	1.5 + 0.3	4.6 (3.1)+0.3	8(4)+0.3	14 (10)+0.3
10 V	0.5 + 0.05	4.1(2.6) + 0.05	8(4) + 0.05	14 (10)+0.05
100 V	2.5 + 0.3	6.0(4.5) + 0.3	10 (6)+0.3	14 (10)+ 0.3
$1000~\mathrm{V}^6$	2.5 + 0.1	6.0(4.5) + 0.1	10 (6)+0.1	14(10)+0.1

Transfer Accuracy/Linearity

	10 Min, Tref \pm 0.5°C	
Range	(ppm of Reading + ppm of	Conditions
	Range)	
100 mV	100 mV 0.5 + 0.5	 Following 4 hour warm-up. Full scale to 10% of full scale
		 Measurements on the 1000 V range are within 5% of the
1.V	0.3 + 0.1	initial meausurement value and following measurement
10 V	0.05 + 0.05	setting.
		 Tref is the starting ambient temperature.
100 V	0.5 + 0.1	 Measurements are made on a fixed range (>4 min.) using
1000 V	1.5+0.05	accepted metrology practices

3.15 Calcul d'erreur par opérations

L'erreur d'un système composé de plusieurs élément peut se calculer selon les opérations effectuées sur le signal.

Opération	Erreurs	Calcul
C=A+B	E_A,E_B,E_C	$C+E_C=A\pm E_A+B\pm E_B=$
		$C\pm \left(E_{A}+E_{B} ight) \implies E_{C}=E_{A}+E_{B}$
C = A - B	E_A,E_B,E_C	$C+E_C=A\pm E_A-(B\pm E_B)=$
		$C\pm \left(E_A + E_B ight) \implies E_C = E_A + E_B$
$C = A \cdot B$	$\epsilon_A=rac{E_A}{A},$	$C+E_C=(A+E_A)\cdot (B+E_B)=$
	$\epsilon_B = \frac{E_B}{P},$	$A(1+\epsilon_A)\cdot B(1+\epsilon_B) =$
		$(A\cdot B)(1+\epsilon_A+\epsilon_B+\epsilon_A\epsilon_B)$
	cC - B	$\cong C \cdot (1 + \epsilon_A + \epsilon_B) \implies E_C = C \cdot (\epsilon_A + \epsilon_B)$
C=A/B	$\epsilon_A = rac{E_A}{A},$	$C+E_C=(A+E_A)/(B+E_B)=$
	$\epsilon_B=rac{E_B}{B},$	$rac{A}{B} rac{1+\epsilon_A}{1+\epsilon_B} =$

$$\epsilon_B=rac{E_B}{B},$$

$$rac{A}{B} \, rac{(1 + \epsilon_A) \cdot (1 + \epsilon_B)}{1 - \epsilon_B^2}$$

$$\epsilon_C = rac{E_C}{B}$$

$$egin{aligned} E_{C} & E_{C} = E_{C} = C \cdot \left(\epsilon_{A} + \epsilon_{B}
ight) \end{aligned}
ightarrow \left(E_{C} = C \cdot \left(\epsilon_{A} + \epsilon_{B}
ight)
ight)$$

3.16 Calcul d'erreur par linéarisation

Les erreurs étant petites, on peut linéariser autour des valeurs nominales.

Pour une fonction $Y=F(X_1,X_2,\dots X_N)=Y(\mathbf{X}),$ on peut écrire :

$$Y(\mathbf{X}) = Y(\mathbf{X}_0) + \left\{ \left| rac{\partial Y}{\partial X_1}
ight|_{\mathbf{X}_0} \cdot E_{X1} \middle| + \left| rac{\partial Y}{\partial X_2}
ight|_{\mathbf{X}_0} \cdot E_{X2} \middle| + \ldots + \left| rac{\partial Y}{\partial X_N}
ight|_{\mathbf{X}_0} \cdot E_{X_N}$$

 $=Y_0\pm I$

3.17 Exercices et approfondissement

- Exercices du Prof Moerschell (cyberlearn)
- notebook python/ex_erreur_diviseur_resistif_sol.ipynb

