11 Entropy and information

Exercises: 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, 11.10, 11.11, 11.12, 11.13, 11.14, 11.15, 11.16, 11.17, 11.18, 11.19, 11.20, 11.21, 11.22, 11.23, 11.24, 11.25, 11.26.

11.1

Fair coin:

$$H(X) = 2\left(-\frac{1}{2}\log\frac{1}{2}\right) = 1.$$

Fair die:

$$H(X) = 6\left(-\frac{1}{6}\log\frac{1}{6}\right) = \log 6 \approx 2.585.$$

If they were unfair, the entropy would be smaller. Since there would be at least one outcome more probable than another, the average information gain after each toss would be smaller.

11.2

From property (1) we know that p and q are real values in the range [0,1], so there are always numbers a and b in the range $(-\infty,0]$ such that $p=2^a$ and $q=2^b$. So we have $I(pq)=I(2^a2^b)=I(2^{a+b})$, thus from property (3) we obtain that

$$I(2^{a+b}) = I(2^a) + I(2^b).$$

If we define the function $f(x) \equiv I(2^x)$, we get f(a+b) = f(a) + f(b). Because of property (2), we know that f must be continuous and smooth, and therefore, has a Taylor series form. For a = b = 0 we get f(0) = 0, and for b = -a we get f(-a) = -f(a), so it is clearly an odd function, hence

$$f(x) = \sum_{j=0}^{\infty} k_j x^{2j+1}.$$

Considering x = a + b we obtain

$$f(a+b) = \sum_{j=0}^{\infty} k_j (a+b)^{2j+1} = k_0 (a+b) + \sum_{j=1}^{\infty} k_j \sum_{n=0}^{2j+1} {2j+1 \choose n} a^n b^{2j+1-n},$$

but using the property that f must satisfy, we get

$$f(a) + f(b) = \sum_{j=0}^{\infty} k_j (a^{2j+1} + b^{2j+1}) = k_0 (a+b) + \sum_{j=1}^{\infty} k_j (a^{2j+1} + b^{2j+1}).$$

Therefore, the only way for the property to be true is if $k_j = 0$ for all j > 0, meaning f(x) = kx for some constant k. Now, since $f(x) = I(2^x)$, it is also true that $I(x) = f(\log x)$, and this gives us

$$I(p) = k \log p$$
.

The average of this function over the values of the set $\{p_1, \dots, p_n\}$ is precisely the Shannon entropy up to a multiplicative constant k

$$H(X) \equiv \langle I(p) \rangle = \sum_{i=1}^{n} p_i I(p_i) = k \sum_{j=1}^{n} p_i \log p_i.$$

11.3

$$\frac{dH_{\text{bin}}}{dp} = -\frac{d}{dp} [p \log(p)] - \frac{d}{dp} [(1-p) \log(1-p)]$$

$$= -\log(p) - 1 + \log(1-p) + 1$$

$$= \log(1-p) - \log(p).$$

Considering $p \in [0, 1]$, $dH_{bin}/dp = 0$ only for p = 1/2. The second derivative yields

$$\frac{d^2 H_{\text{bin}}}{dp^2} = -\frac{1}{1-p} - \frac{1}{p} = -\frac{1}{p(1-p)} \implies \frac{d^2 H_{\text{bin}}}{dp^2} < 0 \quad \forall \ p \in (0,1),$$

corresponding to constant negative concavity, so p = 1/2 corresponds to a maximum.

11.4

The second derivative of the binary entropy is negative for all $p \in (0,1)$ (see Exercise 11.3). It follows that for all, $p, x_1, x_2 \in [0,1]$, it holds

$$H_{\text{bin}}(px_1 + (1-p)x_2) \ge pH_{\text{bin}}(x_1) + (1-p)H_{\text{bin}}(x_2),$$

with the innequality being strict for all values $p \in (0,1)$. Since $H_{\text{bin}}(0) = H_{\text{bin}}(1) \equiv 0$, we get equality in the trivial cases: $x_1 = x_2$, or p = 0, or p = 1.

11.5

$$\begin{split} H(p(x,y)||p(x)p(y)) &= \sum_{x,y} p(x,y) \log \left[\frac{p(x,y)}{p(x)p(y)} \right] \\ &= \sum_{x,y} p(x,y) \log[p(x,y)] - \sum_{x,y} p(x,y) \log[p(x)p(y)] \\ &= \sum_{x,y} p(x,y) \log[p(x,y)] - \sum_{x} p(x) \log[p(x)] - \sum_{y} p(y) \log[p(y)] \\ &= H(p(x)) + H(p(y)) - H(p(x,y)). \end{split}$$

Considering that x are the possible outcomes of the random variable X, and y the possible outcomes of the random variable Y, we have $H(p(x)) \equiv H(X)$, $H(p(y)) \equiv H(Y)$, and $H(p(x,y)) \equiv H(X,Y)$. From the non-negativity of the relative entropy, we get $H(X,Y) \leq H(X) + H(Y)$. If we consider equality, then H(p(x,y)||p(x)p(y)) = 0, which means p(x,y) = p(x)p(y), hence X and Y are independent random variables. The converse is immediate.

11.6

Let us use the probability distribution given by p(x|y)p(z|y)p(y). The relative entropy between this distribution and p(x, y, z) will be

$$H(p(x,y,z)||p(x|y)p(z|y)p(y)) = \sum_{x,y,z} p(x,y,z) \log \left[\frac{p(x,y,z)}{p(x|y)p(z|y)p(y)} \right].$$

From Bayes' rule we can write p(x|y) = p(x,y)/p(y), and p(z|y) = p(y,z)/p(y), hence

$$\begin{split} H(p(x,y,z)||p(x|y)p(z|y)p(y)) &= \sum_{x,y,z} p(x,y,z) \log \left[\frac{p(x,y,z)p(y)}{p(x,y)p(y,z)} \right] \\ &= \sum_{x,y,z} p(x,y,z) \log[p(x,y,z)] + \sum_{y} p(y) \log[p(y)] \\ &- \sum_{x,y} p(x,y) \log[p(x,y)] - \sum_{y,z} p(y,z) \log[p(y,z)] \\ &= -H(X,Y,Z) - H(Y) + H(X,Y) + H(Y,Z). \end{split}$$

Using the fact that $H(p(x,y,z)||p(x|y)p(z|y)p(y)) \ge 0$ we get strong subadditivity

$$H(X,Y,Z) + H(Y) \le H(X,Y) + H(Y,Z).$$

If we consider equality, then H(p(x,y,z)||p(x|y)p(z|y)p(y))=0, which means (see Exercise A1.1)

$$p(x, y, z) = p(x|y)p(z|y)p(y) = p(z)p(y|z)p(x|y),$$

hence $Z \to Y \to X$ forms a Markov chain. The converse is immediate.

11.7

Let n_Y be the number of possible outcomes for the variable Y. The uniform distribution u(y) over Y is then given by $u(y) = 1/n_Y$ for all y. The relative entropy H(p(x,y)||p(x)u(y)) yields

$$\begin{split} H(p(x,y)||p(x)u(y)) &= \sum_{x,y} p(x,y) \log \left[\frac{p(x,y)}{p(x)\frac{1}{n_Y}} \right] \\ &= \sum_{x,y} p(x,y) \log[p(x,y)] - \sum_{x} p(x) \log[p(x)] - \log \frac{1}{n_Y} \\ &= -H(X,Y) + H(X) + \log n_Y. \end{split}$$

By definition, we have H(Y|X) = H(X,Y) - H(X), thus

$$H(Y|X) = \log n_Y - H(p(x, y)||p(x)u(y)).$$

Notice that $\log n_Y$ corresponds to the Shannon entropy of Y when it is completely independent of X and its probability distribution is the uniform distribution u(y), which is where it has its maximum value, thus $0 \le H(p(x,y)||p(x)u(y)) \le \log n_Y$ and therefore $H(Y|X) \ge 0$. Equality will hold when p(x,y) is the farthest possible from p(x)u(y), which is when Y is given by a deterministic function f of X, that is, $p(x,y) = p(x)\delta(y - f(x))$. To verify that, we can explicitly calculate

$$H(p(x)\delta(y - f(x))||p(x)u(y)) = \sum_{x,y} p(x)\delta(y - f(x))\log\left[\frac{\delta(y - f(x))}{\frac{1}{n_Y}}\right] = \sum_x p(x)\log n_Y = \log n_Y$$

$$\implies H(Y|X) = 0.$$

11.8

There are only four possible joint outcomes, which are given by: (x = 0, y = 0, z = 0), (x = 1, y = 0, z = 1), (x = 0, y = 1, z = 1), and (x = 1, y = 1, z = 0), all with equal probability of 1/4. So we can calculate the entropies

$$H(X) = H(Y) = H(Z) = 2\left(-\frac{1}{2}\log\frac{1}{2}\right) = 1,$$

$$H(X,Y) = H(X,Z) = H(Y,Z) = H(X,Y,Z) = 4\left(-\frac{1}{4}\log\frac{1}{4}\right) = 2.$$

By definition, we obtain

$$H(X,Y:Z) = H(X,Y) + H(Z) - H(X,Y,Z) = 1,$$

$$H(X:Z) = H(X) + H(Z) - H(X,Z) = 0,$$

$$H(Y:Z) = H(Y) + H(Z) - H(Y,Z) = 0,$$

and thus conclude that $H(X, Y : Z) \nleq H(X : Z) + H(Y : Z)$.

11.9

There are only two possible joint outcomes, which are given by: $(x_1 = x_2 = y_1 = y_2 = 0)$, and $(x_1 = x_2 = y_1 = y_2 = 1)$, all with equal probability of 1/2. So we calculate the entropies

$$H(X_i) = H(Y_i) = H(X_i, Y_i) = H(X_1, X_2) = H(Y_1, Y_2) = H(X_1, X_2, Y_1, Y_2) = 2\left(-\frac{1}{2}\log\frac{1}{2}\right) = 1,$$

for $i \in \{1, 2\}$. By definition, we obtain

$$H(X_1: Y_1) = H(X_1) + H(Y_1) - H(X_1, Y_1) = 1,$$

 $H(X_2: Y_2) = H(X_2) + H(Y_2) - H(X_2, Y_2) = 1,$

$$H(X_1, X_2 : Y_1, Y_2) = H(X_1, X_2) + H(Y_1, Y_2) - H(X_1, X_2, Y_1, Y_2) = 1,$$

and thus conclude that $H(X_1:Y_1) + H(X_2:Y_2) \nleq H(X_1,X_2:Y_1,Y_2)$.

11.10

If $X \to Y \to Z$ is a Markov chain, then the probability of Y = y is conditioned on X = x, and the probability of Z = z is conditioned on Y = y. In practice, this means that the probability of the joint result (X, Y, Z) = (x, y, z) is given by p(x)p(y|x)p(z|y). But from Bayes' rule (see Exercise A1.1)

$$p(x)p(y|x)p(z|y) = p(x|y)p(y)p(z|y) = p(x|y)p(y|z)p(z),$$

which is the probability of (X,Y,Z)=(x,y,z) when $Z\to Y\to X$ is a Markov chain.

11.11

$$\rho = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} : \quad S(\rho) = -1 \times \log 1 - 0 \times \log 0 = 0.$$

$$\rho = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} : \quad \text{this is } \rho = |+\rangle\langle +| \text{ in the } X \text{ basis, so}$$

$$S(\rho) = -1 \times \log 1 - 0 \times \log 0 = 0.$$

$$\rho = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} : \quad \det(\rho - \lambda I) = \lambda^2 - \lambda + \frac{1}{9} = 0 \quad \Longrightarrow \quad \text{eigenvalues} = \left\{ \frac{3 - \sqrt{5}}{6}, \frac{3 + \sqrt{5}}{6} \right\}, \text{ so}$$

$$S(\rho) = -\left(\frac{3 - \sqrt{5}}{6} \right) \log \left(\frac{3 - \sqrt{5}}{6} \right) - \left(\frac{3 + \sqrt{5}}{6} \right) \log \left(\frac{3 + \sqrt{5}}{6} \right) \approx 0.55.$$

11.12

$$\begin{split} \rho &= p \, |0\rangle\!\langle 0| + (1-p) \, |+\rangle\!\langle +| = p \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \frac{1-p}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} 1+p & 1-p \\ 1-p & 1-p \end{bmatrix}. \end{split}$$

$$\det(\rho - \lambda I) = \lambda^2 - \lambda + \frac{p(1-p)}{2} = 0$$

$$\implies \text{ eigenvalues} = \left\{ \frac{1 - \sqrt{1 - 2p(1-p)}}{2}, \frac{1 + \sqrt{1 - 2p(1-p)}}{2} \right\}.$$

If we define $q \equiv \frac{1-\sqrt{1-2p(1-p)}}{2}$, these eigenvalues can be rewritten as $\{q, 1-q\}$, so the von Neumann entropy will be

$$S(\rho) = -q \log(q) - (1-q) \log(1-q).$$

The Shannon entropy H(p,1-p) will be

$$H(p, 1 - p) = -p \log(p) - (1 - p) \log(1 - p).$$

11.13

-

11.14

-

11.15

-

11.16

_

11.17

_

11.18

-

11.19

_

11.20

_

11.21

-

11.22

_

11.23

_

11.24

-

11.25

-

11.26

-