Ткачев С.Б.

каф. Математического моделирования МГТУ им. Н.Э. Баумана

ДИСКРЕТНАЯ МАТЕМАТИКА

ИУ5 — 4 семестр, 2015 г.

Лекция 6. ТЕОРЕМА ПОСТА

6.1. Полные множества булевых функций

Определение 6.1. Множество булевых функций F называют **полным**, если любая булева функция может быть представлена некоторой формулой над F.

Стандартный базис $\{\lor, \land, ^-\}$ является полным множеством, в силу теоремы о представлении любой булевой функции дизъюнктивной или конъюнктивной нормальной формой.

Теорема 1. Пусть F и G — некоторые множества булевых функций, причем F — полное множество. Тогда, если каждая функция из F может быть представлена некоторой формулой над множеством G, то G — полное множество. (без доказательства)#

Базис $\{\wedge, \bar{} \}$ является полным множеством. Согласно законам де Моргана, дизьюнкцию можно выразить через коньюнкцию и отрицание.

Базис $\{\lor, \bar{} - \}$ является полным множеством. Согласно закону де Моргана, конъюнкцию можно выразить через дизъюнкцию и отрицание

$$x \wedge y = \overline{\overline{x} \vee \overline{y}}.$$

Пример 6.1. Рассмотрим множество, состоящее из единственной функции — **штриха Шеффера**: $\{|\}$ ($x|y=\overline{x\cdot y}$).

Это множество полно, т.к. любая функция стандартного базиса может быть представленя формулой над {|}:

$$\begin{split} \overline{x} &= (x|\underline{x}), \\ x \cdot y &= \overline{(\overline{x \cdot y})} = \overline{(x|y)} = (x|y)|(x|y), \\ x \vee y &= \overline{\overline{x} \cdot \overline{y}} = \overline{(x|x) \cdot (y|y)} = (x|x)|(y|y). \end{split}$$

6.2. Базис Жегалкина

Рассмотрим **базис Жегалкина** $\{\oplus, \, \cdot, \, 1\}$.

Чтобы доказать полноту этого множества, представим каждый элемент стандартного базиса формулой над базисом Жегалкина

$$x \lor y = x \cdot y \oplus x \oplus y, \quad \overline{x} = x \oplus 1.$$

В силу полноты стандартного базиса и теоремы 1 базис Жегалкина является полным.

Полином Жегалкина.

Общий вид полинома Жегалкина от трех переменных:

$$a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{13}x_1x_3 \oplus \oplus a_{23}x_2x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0 \quad (6.1)$$

Полином Жегалкина от n переменных можно записать в виде

$$P(x_1, \dots, x_n) = \sum_{\{i_1, i_2, \dots, i_m\} \subseteq I} (\text{mod } 2) \, a_{i_1 i_2 \dots i_m} x_{i_1} x_{i_2} \dots x_{i_m},$$

где $I=\{1,2,\ldots,n\}$, а коэффициенты полинома $a_{i_1i_2\ldots i_m}\in\{0,1\}$ индексированы всеми возможными подмножествами множества $\{1,2,\ldots,n\}$ (коэффициент a_0 соответствует пустому множеству).

Утверждение 6.1. Полином Жегалкина для любой булевой функции определен однозначно.

Доказательство.

Количество коэффициентов в полиноме Жегалкина от n переменных равно числу подмножеств множества $\{1,\,2,\,\ldots,\,n\}$, т.е. 2^n . Каждый коэффициент может принимать два значения — 0 и 1. Следовательно, различных полиномов Жегалкина столько же, сколько булевых функций от n переменных — $2^{(2^n)}$.

Для функций от небольшого числа переменных (не превышающего 4) можно использовать **метод неопределенных коэффициентов**, позволяющий получить полином Жегалкина данной функции. Проиллюстрируем этот метод на примере.

Пример 6.2. Пусть f = (1,1,0,0,1,0,1,1) . Найдем полином Жегалкина, представляющий f .

Функция f представляется некоторым полиномом Жегалкина третьей степени, общий вид которого дает формула

$$a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{13}x_1x_3 \oplus \oplus a_{23}x_2x_3 \oplus a_1x_1 \oplus a_2x_2 \oplus a_3x_3 \oplus a_0$$
 (6.2)

Значение функции f на наборе 000 равно коэффициенту a_0 :

$$f(0,0,0) = a_0 = 1.$$

Чтобы найти коэффициенты a_3 , a_2 и a_1 , нужно рассмотреть значения функции на наборах 001, 010 и 100 соответственно.

$$f(0,0,1) = a_3 \oplus a_0 = a_3 \oplus 1 = 1,$$

Решая это уравнение относительно a_3 в поле \mathbb{Z}_2 , получим $a_3=0$;

$$f(0,1,0) = a_2 \oplus 1 = 0 \implies a_2 = 1;$$

 $f(1,0,0) = a_1 \oplus 1 = 1 \implies a_1 = 0;$

Чтобы найти коэффициенты a_{12} , a_{13} и a_{23} , нужно рассмотреть значения функции на наборах 110, 101 и 011 соответственно.

Для первого набора получим

$$f(1,1,0) = a_{12}x_1x_2 \oplus a_1x_1 \oplus a_2x_2 \oplus a_0 = = a_{12} \oplus a_2 \oplus a_0 = a_{12} \oplus 1 \oplus 1 = a_{12}$$

(сумма по модулю 2 любого четного числа равных слагаемых равна 0).

Поскольку
$$f(1,1,0) = 1$$
, то $a_{12} = 1$.

Аналогично находим
$$a_{13}$$
 . $f(1,0,1)=0$

$$f(1,0,1) = a_{13} \oplus a_0 = a_{13} \oplus 1 = 0$$

откуда
$$a_{13} = 1$$
;

$$f(0,1,1) = a_{23} \oplus a_2 \oplus a_0 = a_{23} \oplus 1 \oplus 1 = 0,$$

$$a_{23} = 0$$
.

 $f(1,1,1)=a_{123}\oplus a_{12}\oplus a_{13}\oplus a_{2}\oplus a_{0}=a_{123}=1.$ Полином Жегалкина, представляющий f есть:

$$f = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_2 \oplus 1.$$

6.3. Классы Поста

Рассмотрим некоторые специальные множества функций.

Определение 6.2. Функцию f называют функцией, сохраняющей константу 0, если $f(\tilde{0})=0$, где $\tilde{0}$ — нулевой набор значений переменных функции f .

Определение 6.3. Функцию f называют функцией, сохраняющей константу константу 1, если $f(\tilde{1})=1$, где $\tilde{1}$ — единичный набор значений переменных функции f .

Например, функция f = (00111101) является функцией, сохраняющей и константу 0, и константу 1. Отрицание не сохраняет ни 0, ни 1.

Множество всех функций, сохраняющих константу 0 обозначается через T_0 .

Множество всех функций, сохраняющих константу 1 обозначается через T_1 .

Pirst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Наборы $\tilde{\alpha}$ и $\overline{\tilde{\alpha}}$ из булева куба $\mathbb{B}^n = \{0, 1\}^n$ (для про-извольного фиксированного n) будем называть **взаимно противоположными**.

Говорят, что набор $\overline{\tilde{\alpha}}$ есть отрицание набора $\tilde{\alpha}$.

Определение 6.4. Функцию $g \in \mathcal{P}_{2,n}$ называют двойственной к функции $f \in \mathcal{P}_{2,n}$, если для всякого $\tilde{\alpha} \in \{0, 1\}^n$ (n > 0) имеет место

$$g(\tilde{\alpha}) = \overline{f}(\overline{\tilde{\alpha}}).$$

Константа 0 является двойственной к константе 1 и наоборот.

Пример 6.3.

а. Стрелка Пирса есть функция, двойственная к штриху Шеффера, так как

$$x\downarrow y=\overline{x\vee y}=\overline{\overline{\overline{x}\cdot\overline{y}}}=\overline{\overline{x}|\overline{y}}.$$

б. Сумма по модулю 2 двойственна к эквивалентности, так как

$$x \sim y = \overline{x \oplus y} = \overline{\overline{x} \oplus \overline{y}}.$$

В общем случае в силу свойства единственности отрицания функция h , двойственная к функции g , которая двойственна к f , равна f .

Определение 6.5. Функцию $f \in \mathcal{P}_{2,n}$ называют самодвойственной, если она двойственна к себе самой, т.е.

$$(\forall \tilde{\alpha} \in \{0, 1\}^n)(f(\tilde{\alpha}) = \overline{f}(\overline{\tilde{\alpha}})),$$

ИЛИ

$$(\forall \tilde{\alpha} \in \{0, 1\}^n)(f(\overline{\tilde{\alpha}}) = \overline{f}(\tilde{\alpha})).$$

Функция самодвойственна тогда и только тогда, когда на взаимно противоположных наборах она принимает взаимно противоположные значения.

Для того чтобы убедиться в несамодвойственности заданной функции f, достаточно найти хотя бы одну пару взаимно противоположных наборов $\tilde{\alpha}$ и $\overline{\tilde{\alpha}}$, таких, что значения функции на них совпадают, т.е. $f(\tilde{\alpha})=f(\overline{\tilde{\alpha}})$.

Так, функция $f_1=(0101)$ является самодвойственной, поскольку

$$f_1(0,0) = 0 = \overline{f}_1(\overline{0}, \overline{0}) = \overline{f}_1(1,1) = \overline{1} = 0,$$

$$f_1(0,1) = 1 = \overline{f}_1(\overline{0},\overline{1}) = \overline{f}_1(1,0) = \overline{0} = 1.$$

Функция $f_2=(1001)$ (эквивалентность) не является самодвойственной, поскольку при $\tilde{\alpha}=(0,\,0)$ $0\sim 0=1$ и $1\sim 1=1$.

Множество всех самодвойственных функций (при всех $n \geq 1$) обозначим S .

◆ First ◆ Prev ◆ Next ◆ Last ◆ Go Back ◆ Full Screen ◆ Close ◆ Quit

Определение 6.6. Функцию $f\in\mathcal{P}_{2,n}$ называют монотонной, если для любых наборов $\tilde{\alpha}$, $\tilde{\beta}\in\mathbb{B}^n$, таких, что $\tilde{\alpha}\leq\tilde{\beta}$, имеет место $f(\tilde{\alpha})\leq f(\tilde{\beta})$.

Функция f=(0011) монотонна. Штрих Шеффера — немонотонная функция, так как 00<11 , но 0|0=1 , а 1|1=0 . Множество всех монотонных функций принято обозначать через M .

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Формула вида

$$\sum_{i=1}^{n} \pmod{2} a_i x_i \oplus a_0 \tag{6.3}$$

называется полиномом Жегалкина первой степени от переменных. В таком полиноме отсутствуют "нелинейные" слагаемые.

Определение 6.7. Функцию $f \in \mathcal{P}_{2,n}$ называют **линейной**, если она может быть представлена полиномом Жегалкина первой степени от n переменных.

Например, $1 \oplus x_1 \oplus x_2 \oplus x_3$ — полином первой степени от 3 переменных.

Множество всех линейных функций обозначают через $\,L\,$.

Определение 6.8. Множества функций T_0 , T_1 , S, M, L называются классами Поста.

Пример 6.4. Штрих Шеффера не принадлежит ни одному из классов Поста.

Все свойства, кроме нелинейности, следуют из таблицы этой функции. Нелинейность же доказывается выводом полинома Жегалкина для штриха Шеффера:

$$x|y = \overline{x \cdot y} = x \cdot y \oplus 1.$$

Полученный полином Жегалкина имеет степень выше первой.

Определение 6.9. Множество булевых функций F называют **замкнутым**, если любая формула над F представляет некоторую функцию из F.

Фундаментальным свойством каждого класса Поста является его замкнутость (в смысле определения 6.9).

Определение 6.10. Функция $f(g_1, \ldots, g_n)$ называется суперпозицией функций f, g_1, \ldots, g_n . Для любого $\tilde{\alpha} \in \mathbb{B}^m$ имеет место равенство

$$f(g_1,\ldots,g_n)(\tilde{\alpha})=f(g_1(\tilde{\alpha}),\ldots,g_n(\tilde{\alpha})).$$

Замкнутость классов Поста: для любого из классов Поста C всякая суперпозиция над C снова есть элемент C .

Теорема 2. Каждый класс Поста замкнут.

◀ Для каждого класса Поста $C \in \{T_0, T_1, S, M, L\}$ нужно доказать, что замыкание [C] множества булевых функций C совпадает с C, т.е. любая функция, представляемая формулой построенной над классом C, принадлежит этому классу.

Пусть $f(g_1, \ldots, g_n)$ — какая-то суперпозиция над C. Обозначим ее через φ .

Без ограничения общности можно считать, что все функции f, g_1 , ..., g_n зависят от n переменных (для некоторого n).

1. Рассмотрим $C = T_0$.

Пусть f , g_1 , . . . , $g_n \in T_0$, т.е. $f(\tilde{0}) = 0$ и $g_i(\tilde{0}) = 0$.

Тогда $\varphi(\tilde{0}) = f(g_1(\tilde{0}), \dots, g_n(\tilde{0})) = f(0, \dots, 0) = 0$.

Следовательно, $\varphi \in T_0$.

2. При $C = T_1$ рассуждаем точно так же.

3. Пусть C=S , т.е. f , g_1 , . . . , $g_n\in S$. Докажем, что $\varphi=f(g_1,\ldots,g_m)\in S$.

Фиксируем произвольный набор $\tilde{\alpha} \in \{0, 1\}^n$ и покажем, что $\varphi(\overline{\tilde{\alpha}}) = \overline{\varphi}(\tilde{\alpha})$, используя самодвойственность всех функций:

$$\varphi(\overline{\tilde{\alpha}}) = f(g_1(\overline{\tilde{\alpha}}), \dots, g_n(\overline{\tilde{\alpha}})) =$$

$$= f(\overline{g_1}(\tilde{\alpha}), \dots, \overline{g_n}(\tilde{\alpha})) =$$

$$= \overline{f}(g_1(\tilde{\alpha}), \dots, g_n(\tilde{\alpha})) = \overline{\varphi}(\tilde{\alpha}).$$

Следовательно, $\varphi \in S$.

4. C=M , т.е. f , g_1 , . . . , $g_n\in S$. Берем произвольно наборы $\tilde{\alpha}$ и $\tilde{\beta}$ так, что $\tilde{\alpha}\leq \tilde{\beta}$. Докажем, что $\varphi=f(g_1,\ldots,g_m)\in M$. Имеем

$$\varphi(\tilde{\alpha}) = f(g_1(\tilde{\alpha}), \dots, g_n(\tilde{\alpha})) \le f(g_1(\tilde{\beta}), \dots, g_n(\tilde{\beta}))$$

так как все функции g_i , $i=\overline{1,n}$, монотонны, вектор $(g_1(\tilde{\alpha}),\ldots,g_n(\tilde{\alpha}))$ не больше вектора $(g_1(\tilde{\beta}),\ldots,g_n(\tilde{\beta}))$, функция f также монотонна. Следовательно, $\varphi\in M$.

5. Если же C=L, то очевидно, что при подстановке в линейную функцию (полином Жегалкина первой степени) вместо ее переменных произвольных линейных функций получится снова линейная функция.

Доказана замкнутость каждого класса Поста. >

Приведем теорему, характеризующую важное свойство немонотонных функций.

Теорема 3. Если функция f не является монотонной, т.е. $f \notin M$, то найдутся два таких набора $\tilde{\alpha}$, $\tilde{\beta}$, что

$$\tilde{\alpha} = (\alpha_1, \ldots, \alpha_{i-1}, 0, \alpha_{i+1}, \ldots, \alpha_n),$$

$$\tilde{\beta} = (\alpha_1, \ldots, \alpha_{i-1}, 1, \alpha_{i+1}, \ldots, \alpha_n),$$

и $f(\tilde{\alpha})=1$, $f(\tilde{\beta})=0$, т.е. эти два набора различаются значениями в точности одной компоненты, а значение функции равно 0 на большем наборе и равно 1 на меньшем.

6.4. Реализация функций формулами

Реализация констант 0 и 1.

Рассмотрим два случая реализации констант 0 и 1 .

1. Пусть имеется функция f_0 , не сохраняющая константу 0 ($f_0 \notin T_0$), и сохраняющая константу 1 ($f_0 \in T_1$), т.е. $f_0(0,\ldots,0)=1$ и $f_0(1,\ldots,1)=1$.

Константа 1 представляется формулой

$$1 = f_0(x, \dots, x).$$

Чтобы выразить константу 0 , используем любую функцию $g \in F$, не сохраняющую константу 1 ($g \notin T_1$):

$$0 = g(1, \dots, 1) = g(f_0(x, \dots, x), \dots, f_0(x, \dots, x)).$$

Пусть имеется функция f_1 , не сохраняющая константу 1 ($f_0 \notin T_1$), но сохраняющая константу 0 ($f_0 \in T_0$), т.е. $f_0(0,\ldots,0)=0$ и $f_0(1,\ldots,1)=0$. Константа 0 представляется формулой

$$0 = f_0(x, \dots, x).$$

Если существует функция $g \notin T_0$, то

$$1 = g(0, \dots, 0) = g(f_0(x, \dots, x), \dots, f_0(x, \dots, x)).$$

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

2. Реализация констант 0 и 1 из несамодвойственной функции с использованием отрицания.

Утверждение. Если функция несамодвойственная, то с использованием отрицания из нее можно реализовать константу.

Пусть функция f_S — несамодвойственная. Тогда найдется такой набор $\tilde{\alpha}=(\alpha_1,\,\ldots,\,\alpha_n)$, что

$$f_S(\overline{\tilde{\alpha}}) = f_S(\tilde{\alpha}).$$

Введем функцию от одного переменного

$$h(x) = f_S(x^{\alpha_1}, \dots, x^{\alpha_n}).$$

Заметим, что

$$0^{\sigma} = \begin{cases} 1, & \sigma = 0; \\ 0, & \sigma = 1. \end{cases}$$

Поэтому $0^{lpha_i}=\overline{lpha_i}$. Аналогично $1^{lpha_i}=lpha_i$.

Получим

$$h(0) = f_S(\overline{\tilde{\alpha}}) = f_S(\tilde{\alpha}) = h(1),$$

Таким образом, значение h(x) есть константа.

Реализация отрицания.

Утверждение. Если функция f_M **немонотонная**, то с использованием констант 0 и 1 из нее можно реализовать отрицание.

Для немонотонной функции f_M согласно теореме 3 найдутся два таких набора $\tilde{\alpha}$ и $\tilde{\beta}$, что

$$\tilde{\alpha} = (\alpha_1, \ldots, \alpha_{i-1}, 0, \alpha_{i+1}, \ldots, \alpha_n),$$

$$\tilde{\beta} = (\alpha_1, \ldots, \alpha_{i-1}, 1, \alpha_{i+1}, \ldots, \alpha_n),$$

$$f_M(\tilde{\alpha}) = 1$$
, a $f_M(\tilde{\beta}) = 0$.

Тогда

$$\overline{x} = f_M(\alpha_1, \dots, \alpha_{i-1}, x, \alpha_{i+1}, \dots, \alpha_n),$$

где
$$\alpha_1, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_n \in \{0, 1\}$$
.

Частный случай. Если для немонотонной функции имеет место $f_M \notin T_0$ и $f_M \notin T_1$, то

$$f_M(0,\ldots,0) = 1,$$

$$f_M(1,\ldots,1) = 0.$$

Тогда

$$\overline{x} = f_2(x, \dots, x).$$

Реализация конъюнкции с использованием констант и отрицания.

Утверждение. Если функция f_L нелинейная, то с использованием констант и отрицания из нее можно реализовать конъюнкцию.

В полиноме Жегалкина этой функции выбираем произвольное нелинейное слагаемое, содержащее наименьшее число переменных.

Пусть это будет слагаемое x_{i_1}, \ldots, x_{i_k} при $2 \le k \le n$. Вместо каждого переменного x_m функции f_L , где $m \notin \{i_1, \ldots, i_k\}$, подставим константу 0.

Получим новую функцию

$$f'_{L}(x_{i_{1}},...,x_{i_{k}}) =$$

$$= x_{i_{1}}...x_{i_{k}} \oplus a_{i_{1}}x_{i_{1}} \oplus ... \oplus a_{i_{k}}x_{i_{k}} \oplus a_{0} =$$

$$= f_{L}(0,...,0,x_{i_{1}},0,...,0,x_{i_{k}},0,...,0).$$

Разобьем множество переменных $\{x_{i_1},\ldots,x_{i_k}\}$ на две части: $\{x_{i_1},\ldots,x_{i_m}\}$ и $\{x_{i_{m+1}},\ldots,x_{i_k}\}$, где $1\leq m\leq k-1$ так, чтобы после замены всех переменных первой части переменным x, а переменных второй части — переменным y, получить функцию от двух переменных

$$\chi(x,y) = xy \oplus ax \oplus by \oplus c,$$

где
$$a=a_{i_1}\oplus\ldots\oplus a_{i_m}$$
, $b=a_{i_{m+1}}\oplus\ldots\oplus a_{i_k}$, $c=a_0$.

Функция χ может быть представлена такой формулой над F :

$$\chi(x,y) = f_L(0,\ldots,0,\underbrace{x}_{i_1},0,\ldots,0,\underbrace{x}_{i_m},0,\ldots,0,\underbrace{$$

Определим функцию

$$\psi(x,y) = \chi(x \oplus b, y \oplus a) \oplus ab \oplus c.$$

Выразив функцию $\,\psi(x,y)\,$ из полинома Жегалкина для $\,\chi$, получим

$$\psi(x,y) = \chi(x \oplus b, y \oplus a) \oplus ab \oplus c =$$

$$= (x \oplus b)(y \oplus a) \oplus a(x \oplus b) \oplus b(y \oplus a) \oplus c \oplus ab \oplus c =$$

$$= xy \oplus ax \oplus by \oplus ab \oplus ax \oplus ab \oplus by \oplus ab \oplus c \oplus ab \oplus c =$$

$$= xy,$$

т.к. сумма по модулю 2 любого четного числа равных слагаемых равна 0 .

Функция ψ есть конъюнкция.

Прибавление к любой функции константы по модулю 2 есть либо сама исходная функция, либо ее отрицание. Поскольку отрицание доступно, то конъюнкция реализована формулой.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Теорема 4 (критерий Поста). Множество F булевых функций полно тогда и только тогда, когда оно не содержится целиком ни в одном из классов Поста.

Чеобходимость. Пусть множество F булевых функций полно. Предположим, что оно содержится целиком в одном из классов Поста, то есть для некоторого класса Поста C выполняется $F \subseteq C$.

Всякая суперпозиция над F , согласно теореме 2, снова лежала бы в C .

Существуют функции, не содержащиеся ни в одном из классов Поста, например штрих Шеффера.

Таким образом, нашлась функция, которую нельзя представить в виде суперпозиции над F, что противоречит предположению о полноте F.

Достаточность. Для доказательства полноты множества F, удовлетворяющего условию теоремы, построим формулы над F для **отрицания** и **коньюнкции**, поскольку множество, образованное этими функциями, полно. Тогда в силу теоремы 1 будет полным и множество F.

По условию теоремы в F найдется хотя бы одна функция $f_1 \notin T_0$. Если $f_1 \in T_1$, то можно реализовать константу 1. Если $f_1 \notin T_1$, то можно реализовать отрицание.

По условию теоремы в F найдется хотя бы одна функция $f_2 \notin T_1$. Если $f_2 \in T_0$, то можно реализовать константу 0. Если $f_2 \notin T_1$, то можно реализовать отрицание.

Таким образом, могут быть реализованы либо две константы 0 и 1, либо только отрицание, либо константы и отрицание.

По условию теоремы в F найдется хотя бы одна **немонотонная** функция, хотя бы одна **несамодвойственная** функция и хотя бы одна **нелинейная** функция.

В случае, если из первых двух классов (T_0 , T_1) построены только формулы для констант, с использованием немонотонной функции $f_M \notin M$ можно реализовать отрицание.

Если реализовано только отрицание, с использованием несамодвойственной функции $f_S \notin S$ можно реализовать константы.

Имея константы и отрицание, из нелинейной функции $f_L \notin L$ можно реализовать коньюнкцию.

Таким образом, отрицание и конъюнкция реализованы формулами над F . Множество полно. \blacktriangleright

Чтобы исследовать полноту конкретного множества функций

$$F = \{f_1, f_2, \ldots, f_n\},\$$

используют критериальную таблицу

Таблица 6.1

	T_0	T_1	S	M	L
f_1					
f_2					
:					
f_n					

Строки таблицы соответствуют функциям исследуемого множества, а столбцы — классам Поста.

Пример 6.5. Пусть $F = \{\sim, \lor, 0\}$. Заполненная критериальная таблица:

Таблица 6.2

	T_0	T_1	S	M	L
~	-	+	_		+
V	+	+	_	+	_
0	+	_	_	+	+

В множестве F есть функции, не принадлежащие каждому из пяти классов Поста. Согласно теореме Поста, множество F — полное.

Реализация констант, отрицания и конъюнкции над F

Константа 0 принадлежит самому множеству F .

Функция \sim (эквивалентность) не сохраняет константу 0 , но сохраняет константу 1 , поэтому $1=x\sim x$.

Поскольку $0 \sim 0 = 1$, $1 \sim 0 = 0$, то $\overline{x} = x \sim 0$.

Конъюнкцию можно представить формулой над F , следуя доказательтву теоремы Поста.

Берем единственную нелинейную функцию данного множества, дизъюнкцию, и записываем для нее полином Жегалкина:

$$x_1 \vee x_2 = x_1 \cdot x_2 \oplus x_1 \oplus x_2.$$

Этот полином есть функция

$$\chi(x_1, x_2) = xy \oplus ax \oplus by \oplus c$$

при a=b=1 и c=0 .

Следовательно,

$$x_1 \cdot x_2 = \chi(x_1 \oplus 1, x_2 \oplus 1) \oplus 1.$$

Так как $\,x\oplus 1=\overline{x}=x\sim 0$, то

$$x_1 \cdot x_2 = (\underbrace{(x_1 \sim 0)}_{x_1 \oplus 1} \vee \underbrace{(x_2 \sim 0)}_{x_2 \oplus 1}) \sim 0.$$

Этот же результат в данном конкретном случае можно получить и гораздо проще:

$$x_1 \cdot x_2 = \overline{\overline{x}_1 \vee \overline{x}_2} = ((x_1 \sim 0) \vee (x_2 \sim 0)) \sim 0.$$

Замечание. Это полное множество $F = \{\sim, \lor, 0\}$ двойственно к базису Жегалкина в том смысле, что каждая из его функций двойственна к соответствующей функции базиса Жегалкина: эквивалентность двойственна к сумме по модулю 2, дизъюнкция — к конъюнкции, константа 0 — к константе 1.

Никакое собственное подмножество заданного множества не будет полным.

First
 Prev
 Next
 Last
 Go Back
 Full Screen
 Close
 Quit