GBTL-CUDA: Graph Algorithms and Primitives for GPUs

Peter Zhang, Samantha Misurda, Marcin Zalewski, Scott McMillan, Andrew Lumsdaine

What is this talk about?

Graph BLAS

- an emerging paradigm for graph computation
- programs new graph algorithms in a highly abstract language of linear algebra.
- executes in a wide variety of programming environments

Our implementation of Graph BLAS

- Graph BLAS Template Library (GBTL)
- High-level C++ frontend
- Switchable backends: CUDA and sequential
- Released at: https://github.com/cmu-sei/gbtl

Graph BLAS Forum http://www.graphblas.org

Software Engineering Institute Carnegie Mellon University

CREST Indiana University

Graph algorithms meet hardware: love lost in translation?

Current Graph Algorithms

High Level Algorithm (BFS, MIS, MST, SSSP)

Implementation Concerns

Sequential

- for loops
- contiguous memory

Data Parallel

- Parallel kernels
- PCI Memory transfer
- ...

Distributed

- Message passing
- Workload balancing
- ...

CPU

CUDA

MPI

It's the representation...

- Matrices?!

BLAS for Linear Algebra

Application

Unified BLAS Interface

X86-specific BLAS Optimization

X86 Architecture

ARM-specific BLAS
Optimization

ARM Architecture

PPC-specific BLAS
Optimization

PPC Architecture

Graph BLAS

Graph BLAS

- A community effort to define a set of primitives used to describe graph algorithms using sparse linear algebra
- Rich data structures, algebraic abstraction
 - Sparse adjacency matrices represent graphs
 - Semirings to define specific behavior

Graph BLAS: Semiring

The standard arithmetic semiring:

The "minPlus" semiring, for BFS with parents:

Graph BLAS: BFS example

- Breadth-first Search (BFS): can be represented by matrix-vector multiplications in linear algebra
- Wavefront: vector
- One multiplication operation results in the next wave front

Graph BLAS: BFS traversal

Graph BLAS Template Library (GBTL)

- A C++ implementation of Graph BLAS
 - Allows for generic programming and metaprogramming
- A frontend-backend design
 - Uniform frontend for algorithm abstraction
 - generic semantic checks
 - simplifies the templates
 - Hardware-specific backend optimized for different architecture
- A separation of concerns: render unto hardware experts hardware-specific optimizations

Graph Analytic Applications

Graph Algorithms

GraphBLAS API (Separation of Concerns)

Graph Primitives (tuned for hardware)

Hardware Architecture

GBTL: Frontend and Backend

- Graph BLAS API: boundary between the algorithms and hardware-specific implementations
- Frontend forwards calls to backend namespace via C++ templates
 - performs generic semantic checks and implementation independent operations
 - simplifies templates passed in by user for meta programming

Graph Analytic Applications

Graph Algorithms

GraphBLAS API (Separation of Concerns)

Graph Primitives (tuned for hardware)

Hardware Architecture

GBTL: Algorithm Example

```
1 // wavefront initialized with root vertex = 0
2 bfs(graph, wavefront) {
      vector visited = wavefront;
3
      while(!wavefront.empty()) {
          // increment level in next wavefront
          wavefront = vXm(wavefront,
                           graph,
                           Add1NotZero):
9
10
          // filter out already visited vertices
11
          // if the vertices have values less than
12
          // current level in visted vector
13
          wavefront = eWiseMult(wavefront,
                                 visited,
15
                                 Mult);
16
17
          //update visited vector by filtered wavefront
18
          visited = eWiseAdd(wavefront,
19
                              visited,
20
                              throwException);
21
22
      return visited:
23
24 }
```


GBTL: Frontend Matrix

 Frontend Matrix class: an opaque data structure, uniform across backends

Frontend Matrix Object Construction:

```
Matrix <double, DenseMatrixTag,
DirectedMatrixTag> matrix(...);
```

- User can provide hints to frontend Matrix at construction time through parameter pack, backend can make decisions based on hints
- Backend Matrix classes: specialized for hardware and implementation

GBTL: Frontend Matrix Class

```
1 // TagsT template parameters provide hints
2 template <typename ScalarT, typename... TagsT>
3 class Matrix :
      public backend::Matrix<ScalarT, TagsT...>
5 {
6 public:
      typedef ScalarT ScalarType;
      // Empty construction; fixed dimensions
      Matrix(IndexType num_rows, IndexType num_cols);
11
      // Other frontend matrix interface...
12
13
14 private:
      // immutable dimensions:
      IndexType const m_num_rows, m_num_cols;
16
17
      // opaque backend implementation
18
      Mackend::Matrix<
19
               ScalarType,
20
               detail::SparsenessCategoryTagT,
21
              TagsT...>
22
          m_matrix;
23
24 };
```

GBTL: Algorithm Example

```
1// wavefront initialized with root vertex = 0
2 bfs(graph, wavefront) {
      vector visited = wavefront;
      while(!wavefront.empty()) {
          // increment level in next wavefront
          wavefront = (vXm(wavefront,
                           graph,
                           Add1NotZero);
9
10
          // filter out already visited vertices
11
          // if the vertices have values less than
12
          // current level in visted vector
13
          wavefront = eWiseMult(wavefront,
                                 visited,
15
                                 Mult);
16
17
          //update visited vector by filtered wavefront
18
          visited = eWiseAdd(wavefront,
19
                              visited,
20
                              throwException);
21
22
      return visited;
23
24 }
```

GBTL: vXm, semiring overloading

```
template<typename AVectorT,</pre>
                                                                   typename BMatrixT,
                                                                   typename CVectorT,
                                                                   typename SemiringT = graphblas::ArithmeticSemiring<T>,
                                                                   typename AccumT = graphblas::math::Assign<T> >
                                                                                                                                                                                                                                                                                      \oplus
                                inline void vxm(AVectorT const &a,
                                                                                             BMatrixT const &b,
                                                                                             CVectorT &c,
                                                                                             SemiringT s = SemiringT(),
                                                                                             AccumT accum = AccumT())
                                                 vector multiply dimension check(a, b.get shape());
                                                  backend::vxm(a.m vec, b.m mat, c.m vec, s, accum);
                                 }
                                                                                                                        Multiplication
                        "Add1NotZero" Semiring:
Domain D \leftarrow D, Select D, 
                                                                   T SelectAdd1(T first, T second) {
                                                         Addition first == 0? 0: ++finst ditive Identity
```


GBTL: Algorithm Example

```
1// wavefront initialized with root vertex = 0
2 bfs(graph, wavefront) {
      vector visited
                      wavefront =
      while(!wavefro
                      wavefront ⊗ visited
          // increme
          wavefront
                           Aà
                                 tZero);
9
10
          // filter out already visited vertices
11
          // if the vertices have values loss than
12
          // curren
13
                     visited =
          wavefront
14
                     wavefront ⊕ visited
15
16
17
          //update visited vector by filtered wavefront
18
          visited = (eWiseAdd(wavefront,
19
                              visited,
20
                              throwException);
21
22
      return visited;
23
24 }
```


GBTL: GPU Backend

- Implemented using CUSP: parallel algorithms and data structures for sparse linear algebra
- CUSP: built on top of the Thrust, a C++ library with GPU programming primitives
- Generalization meets performance

GRAPHBLAS API (Separation of Concerns)

GBTL-CUDA Backend

CUSP Library

Thrust Library (implements raw CUDA Kernels)

GPU Backend Data Type: Sparse Matrix

We use sparse matrices to improve storage efficiency

Sparse matrices have unstored elements called

structural zeros

Blank space in matrix

- Different sparse matrix formats: Compressed Sparse Row (CSR), Coordinate (COO), List Of Lists (LIL)
- Backend makes decision on format-of-choice, based on hardware layout

Sparse Matrix Example: COO A tale of three vectors

- COO matrices: enables easy stream processing
 - Regularity in data layout

GPU Backend: mXm Scaling

mXm scaling in Millions of Floating-point Operations Per Second (MFLOPS)

- Erdős–Rényi graphs
- Average of 16 runs

GPU Backend: BFS Performance

 We test runtime of our BFS algorithm on several real world graphs

Graph Name	# Vertices	# Edges	Runtime(ms)	MTEPS(*)
Journals	124	12,068	5.76	2.1
G43	1,000	19,980	14.61	1.4
ship_003	121,728	3,777,036	558.95	6.8
belgium_osm	1,441,295	3,099,940	10502.4	0.3
roadNet-CA	1,971,281	5,533,214	4726.21	1.2
delaunay_n24	16,777,216	100,663,202	65507.7	1.5

*MTEPS = Millions of Traversed Edges Per Second

GBTL: API Overhead

GraphBLAS Template Library Overhead

Environment:

- NVIDIA GPU
- Overhead of API call compared against direct CUSP call

Methodology:

 Average of 16 runs on Erdős–Rényi graphs generated using the same dimension and sparsity

Recap and Future Plans

Graph BLAS:

Graph algorithms on sparse linear algebra primitives

Graph BLAS Template Library (GBTL):

- Extensibility meets performance
- Abstraction layer: translator with low overhead penalty
- Proof-of-concept: it works well!

Future Plans

- Multi-GPU backend
- Distributed CPU/GPU backend
- Participate in community discussion on future specifications

Thank You

Questions?

