

Continuous Projection Filter

Introduction to Computational SDE

Muhammad F. Emzir 2022

- Biography
- Background
- A Brief Overview of Differential Geometry
- Mathematical Setup
- The Nonlinear Filtering Equation
- The Projection Filtering Equation
- The Difficulties
- Recent Results
- Numerical Examples
- Questions ?

Biography

- Muhammad F. Emzir.
- Academic Experience
 - Control and Instrumentation Engineering Dept., KFUPM, 2021- Now
 - Postdoc, Electrical Engineering and Automation Dept. Aalto, 2018-2021.
 - Postdoc, College of Engineering Computing and Computer Science, ANU, 2017-2018.
- Research interest:
 - Stochastic filtering, Nonlinear estimation and control, Quantum Control.

Background

- Optimal filtering problems involve obtaining the best estimate of unobserved stochastic processes x_t based on a record of noisy observation processes y_t .
- It is the equivalent to calculating the evolution of the conditional probability density of the state given the observation up to the present time.
- Under certain regularity assumptions, the evolution of generic nonlinear dynamics with nonlinear observations may be represented by a stochastic partial differential equation (SPDE) known as the Stratonovich-Kushner (SK) equation.
- The SK equation is difficult to solve since it is a nonlinear SPDE with a complex structure.
- Zakai presented an alternative formulation of the SK equation, resulting in a linear SPDE for the conditional density (unnormalized).
- Even though the Zakai equation is linear, it is nonetheless difficult to solve. In the majority of applications, only approximate solutions are available.

φ $\varphi(p) = \theta$

A Brief Overview of Differential Geometry

- A manifold $\mathcal M$ is a set that is locally "similar" to $\mathbb R^n$.
- For an open subset $U\subset \mathcal{M}$, we have a bijection φ that maps U to an open subset of \mathbb{R}^n . $\varphi(p)=[\theta_1(p),\cdots,\theta_n(p)]$ is called coordinate systems for U and $\theta_i:U\to\mathbb{R}$ is called the coordinate function.
- ullet We call (U,arphi) a chart.

- Suppose $\psi(p) = [\rho_1(p), \cdots, \rho_n(p)]$ is another coordinate systems for an open set $V \subset \mathcal{M}$ where $U \cap V \neq \emptyset$. Then on $U \cap V$, $\psi \circ \varphi^{-1}$ and $\varphi \circ \psi^{-1}$ are maps $\mathbb{R}^n \to \mathbb{R}^n$.
- The manifold M is invariant against the change of coordinate system. Concepts like distance, differentiability, volume, e.t.c, should not depend on the choice of local coordinate systems.
- We said that a topological space \mathcal{M} with an atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$, (such that $\bigcup_{\alpha} U_{\alpha} = \mathcal{M}$), is a differentiable manifold if:
 - $\circ \; arphi_{lpha}$ is bijection from U_{lpha} to subset of \mathbb{R}^n ,
 - \circ for any lpha,eta such that $U_lpha \cap U_eta
 eq \emptyset$, $arphi_lpha \circ arphi_eta^{-1}$ is a diffeomorphism.
- ullet For simplicity, we consider C^∞ diffeomorphism, hence C^∞ (smooth) manifold.

6 / 25

$T_p\mathcal{M}$ $\gamma(t)$

Tangent Space

- Let $f:\mathcal{M} o\mathbb{R}$. If for any $p\in\mathcal{M}$, $f\circ \varphi^{-1}$ is k-th differentiable, then we say $f\in C^k(\mathcal{M})$, where we write $\left(\frac{\partial}{\partial \theta_i}\right)_p f:=\left(\frac{\partial (f\circ \varphi^{-1})}{\partial \theta_i}\right)_{\varphi(p)}$.
- We define a tangent vector v at a point p via curves on $\mathcal M$ that passes p. It is the velocity of a curve $\gamma(t)\subset \mathcal M$ that passes p; i.e., $\dot{\gamma}(0)=v$ assuming that $\gamma(0)=p$.
- A tangent vector at a point $p, v: f \mapsto v(f) \in \mathbb{R}$ is a linear operator and satisfies Leibniz identity:
 - \circ For $a,b\in \mathbb{R},$ v(af+bg)=av(f)+bv(g) .
 - $\circ \ v(fg) = f(p)v(g) + v(f)g(p).$

- Set of all tangent vectors at p is called as tangent space at p, $T_p\mathcal{M}$, and if \mathcal{M} is n dimensional, then so is $T_p\mathcal{M}$.
- $T_p\mathcal{M}$ is spanned by $\{\frac{\partial}{\partial \theta_i}\}$: this can be seen from $\left(\frac{\partial}{\partial \theta_i}\right)_p \theta_j = \left(\frac{\partial (\theta_j \circ \varphi^{-1})}{\partial \theta_i}\right)_{\varphi(p)} = \delta_{i,j}$.
- ullet Any $v\in T_p\mathcal{M}$ can be expressed as $v(f)=\sum_{i=1}^n v_i\left(rac{\partial}{\partial heta_i}
 ight)_p f$.
- We can define an inner product on $T_p\mathcal{M}$, $\langle v,w \rangle$, where $g_{ij} = \left\langle \left(\frac{\partial}{\partial \theta_i}\right)_p, \left(\frac{\partial}{\partial \theta_j}\right)_p \right\rangle$ is known as the metric tensor.
- In information geometry, \mathcal{M} is related to a set of parametric probability distributions and we normally use single chart (\mathcal{M}, φ) .
- For more details, please consult Amari & Nagaoka, 2000 and other references in differential geometry.

Mathematical Setup

- Let λ be the Lebesque measure on \mathbb{R}^{d_x} , and define \mathscr{M} to be the set of all non-negative, finite measure μ absolutely continuous w.r.t λ , whose density is λ positive a.e.
- ullet For any density p on \mathbb{R}^{d_x} , $\mathbb{E}_p[\cdot]$ denote the expectation w.r.t. p.
- Set $\mathscr{H}=\{p=d\mu/d\lambda:\mu\in\mathscr{M}\}$. If $p\in\mathscr{H}$ then $p\in L^1$ and $\sqrt{p}\in L^2$. Hence $\mathscr{R}=\{\sqrt{p}:p\in\mathscr{H}\}\subset L^2$, is a metric space with $d(\sqrt{p},\sqrt{q})=\|\sqrt{p}-\sqrt{q}\|$
- There exists m-dimensional submanifold N of L^2 which is contained in \mathscr{R} . Since N is a manifold, $\forall \sqrt{p} \in N \subset \mathscr{R}$, \exists an open neighborhood $S^{1/2}$ of \sqrt{p} in N and diffeomorphism $\varphi: S^{1/2} \to \Theta \subset \mathbb{R}^m$ such that φ^{-1} is a differentiable mapping from Θ to L^2 ; i.e., $\varphi^{-1}: \Theta \to S^{1/2}$, and $\theta \mapsto \sqrt{p(\cdot,\theta)}$.
- ullet We associate $S^{1/2}$ to the set of parametric density $S=\{p(\cdot, heta): heta\in\Theta\subseteq\mathbb{R}^m\}.$

- Since $(S^{1/2}, \varphi)$ is a chart on N, then $\left\{\left(\frac{\partial}{\partial \theta_i}\right)_{\sqrt{p_\theta}}, \cdots, \left(\frac{\partial}{\partial \theta_m}\right)_{\sqrt{p_\theta}}\right\}$ is the linear independent basis vectors in L^2 .
- ullet The tangent vector space to $S^{1/2}$ at $\sqrt{p(\cdot, heta)}$ is given by

$$T_{\sqrt{p(\cdot, heta)}}S^{1/2}= \mathrm{span}\left\{\left(rac{\partial}{\partial heta_i}
ight)_{\sqrt{p_ heta}},\cdots,\left(rac{\partial}{\partial heta_m}
ight)_{\sqrt{p_ heta}}
ight\}. \quad (1)$$

• We define their inner product

$$g_{ij}(heta) = \left\langle \left(rac{\partial}{\partial heta_i}
ight)_{\sqrt{p_ heta}}, \left(rac{\partial}{\partial heta_j}
ight)_{\sqrt{p_ heta}}
ight
angle = rac{1}{4} \int rac{1}{p(x, heta)} rac{\partial p(\cdot, heta)}{\partial heta_i} rac{\partial p(\cdot, heta)}{\partial heta_j} dx = rac{1}{4} I_{ij}(heta)$$

The matrix g_{ij} is the Riemannian metric on $S^{1/2}$ where I_{ij} coincides with the Fisher metric.

• The bases in (1) are generally not orthogonal. Using (1) we can define linear projection $\Pi_{\theta}:L^2\to T_{\sqrt{p(\cdot,\theta)}}S^{1/2}$ as below:

$$\Pi_{ heta}v = \sum_i \left(\sum_j 4I^{ij} \left\langle v, \left(rac{\partial}{\partial heta_j}
ight)_{\sqrt{p_{ heta}}}
ight
angle
ight) \left(rac{\partial}{\partial heta_i}
ight)_{\sqrt{p_{ heta}}}$$

- ullet For a parametric density $p_{ heta}$, we write $\mathbb{E}_{ heta}:=\mathbb{E}_{p_{ heta}}$.
- ullet If $\mathbb{E}_{ heta}[|u|^2]<\infty$ then $v=u\sqrt{p_{ heta}}\in L^2$, we can explicitly write

$$\Pi_{ heta}v = \sum_i \left(\sum_j 4I^{ij}\mathbb{E}_{ heta}\left(urac{\partial \log p_{ heta}}{\partial heta_j}
ight)
ight) \left(rac{\partial}{\partial heta_i}
ight)_{\sqrt{p_{ heta}}}.$$

See (Brigo, 1999, Lemma 2.1).

The Exponential Families

• Definition : Let $\{c_i\}$ be scalar measurable function on \mathbb{R}^{d_x} such that $\{1,c_1,\ldots,c_m\}$ are linearly independent, and

$$\Theta_o := \left\{ heta \in \mathbb{R}^m : \psi(heta) = \log \int \exp(c(x)^ op heta) dx < \infty
ight\}$$

has non-empty interior. Then

$$ext{EM}(c) := \left\{ p(\cdot, heta) = \exp(c(x)^ op heta - \psi(heta)), heta \in \Theta
ight\},$$

is called an exponential family of probability densities, where $\Theta \subset \Theta_o$ open.

• On exponential family,
$$\eta_i:=\mathbb{E}_{ heta}[c_i]=rac{\partial \psi(heta)}{\partial heta_i}$$
 , $I_{ij}=rac{\partial^2 \psi(heta)}{\partial heta_i \partial heta_j}$

The Nonlinear Filtering Equation

• Let $(\Omega, \mathscr{F}, \mathbb{P})$ be standard probability space with filtration $\{\mathscr{F}_t\}$. Consider the following Itô processes for state and observation dynamics:

$$dx_t = f(x_t, t)dt + \sigma(x_t, t)dW_t, \quad (2a)$$
 $dy_t = h(x_t, t)dt + dV_t. \quad (2b)$

• The nonlinear filtering problem consists in finding π_t the conditional probability distribution of the state x_t given the obserbvation up to time t; $\pi_t(g) := \int g(x) \mathbb{P}[dx|\mathscr{Y}_t] = \mathbb{E}[g|\mathscr{Y}_t]$, where $\mathscr{Y}_t := \sigma(y_s, 0 \le s \le t)$.

• Under some regularity condition, $\{\pi_t\}$ satisfies SK equation:

$$egin{align} \pi_t(g) = & \pi_0(g) + \int_0^t \pi_s(\mathscr{L}_s g) ds \ &+ \sum_{i=1}^{d_y} \int_0^t \left(\pi_s(h_{s,k}g) - \pi_s(h_{s,k}) \pi_s(g)
ight) (dy_{s,k} - \pi_s(h_{s,k}) ds
ight). \end{align}$$

where \mathscr{L}_t is the backward diffusion operator.

ullet The conditional expectation π_t corresponds to density p_t , which can be written in the Stratonovich form as

$$dp_t = \mathscr{L}_t^* p_t - rac{1}{2} p_t \left(h_t^ op h_t - \mathbb{E}_{p_t} \left[h_t^ op h_t
ight]
ight) dt + \sum_{i=1}^{d_y} p_t \left(h_{t,k} - \mathbb{E}_{p_t} \left[h_{t,k}
ight]
ight) ullet dy_{t,k}.$$
 (3)

The Projection Filtering Equation

• The projection filter for the family S is defined as the projection of $d\sqrt{p_t}$ obtained form (3) onto the tangent space $T_{\sqrt{p(\cdot,\theta)}}S^{1/2}$

$$d\sqrt{p_t} = rac{1}{2}\sqrt{p_t}\left(rac{\mathscr{L}_t^*p_t}{p_t} - rac{1}{2}\left(h_t^ op h_t - \mathbb{E}_{p_t}\left[h_t^ op h_t
ight]
ight)
ight)dt + rac{1}{2}\sqrt{p_t}\left[h - \mathbb{E}_{p_t}[h_t]
ight]^ opullet dy_t$$

- By requiring that for any $u\in\{rac{\mathscr{L}_t^*p_t}{p_t},h_t^{ op}h_t,h_{k,t}\}$, $\sup\mathbb{E}_{ heta}[u^2]<\infty$, the right hand side belongs to L^2 for any $p_t=p_{ heta}$.
- Therefore, we can consider $d\sqrt{p_{\theta}}$ as a vector in L^2 , and we can project this vector to $T_{\sqrt{p_{\theta}}}S^{1/2}$ to obtain $\Pi(d\sqrt{p_{\theta}})=\sum_i \frac{\partial \sqrt{p_{\theta}}}{\partial \theta_i}$ $d\theta_{i,t}$, where

$$d heta_t = I(heta_t)^{-1} \mathbb{E}_{ heta_t} \left[\left(rac{\mathscr{L}_t^* p_{ heta_t}}{p_{ heta_t}} - rac{1}{2} h_t^ op h_t
ight) rac{\partial \log p_{ heta_t}}{\partial heta_t}
ight] dt + I(heta_t)^{-1} \sum_{i=1}^{d_y} \mathbb{E}_{ heta_t} \left[h_{k,t} rac{\partial \log p_{ heta_t}}{\partial heta_t}
ight] ullet dy_{k,t}$$

The Projection Filtering Equation for $\mathrm{EM}(c)$

• For the exponential family $\mathrm{EM}(c)$, the parameter θ_t of the density $p(\cdot,\theta_t)$ satisfies:

$$egin{aligned} d heta_t &= I(heta_t)^{-1} \mathbb{E}_{ heta_t} \left[\mathscr{L}_t \left[c
ight] - rac{1}{2} h_t^ op h_t \left[c - \eta(heta_t)
ight]
ight] dt \ &+ I(heta_t)^{-1} \sum_{k=1}^{d_y} \mathbb{E}_{ heta_t} \left[h_{t,k} \left[c - \eta(heta_t)
ight]
ight] ullet dy_{t,k}. \end{aligned}$$

The Difficulties

- The filter equation for exponential family is model-specific and depends on the natural statistics used. One needs to write down the filtering equation analytically by hand.
- The log partition function and several expected statistics values need to be calculated every step via numerical integration.
- The projection filter numerical implementation relies upon a recursion procedure to compute some expectations and the Fisher information matrix (Brigo, 1995). This recursion is, in general, only feasible for unidimensional problems.

Recent Results

- Emzir et al., 2022 use the first Chebyshev polynomial expansion for unidimensional problems and sparse-grid integrations for higher dimensional problems to compute $\exp(\psi)$.
- The numerical integration is only required to calculate the log partition function; the expectations and Fisher metric are calculated using auto-differentiations.
- Some assumptions need to be made: state variables and the measurement SDEs have diffusion and drift parts represented by polynomials. Then, choosing natural statistics as monomials simplifies the SDEs for the parameters significantly.
- This configuration permits the automated implementation of projection filters. The derivation of the filter equation by hand is no longer required.
- At each time:
 - \circ Compute $\exp(\psi^N(heta_t))$ via sparse-grid quadrature and a bijection $\phi:(-1,1)^{d_x} o \mathbb{R}^{d_x}.$
 - \circ Compute $\mathbb{E}_{ heta_t}[c]$ and I via partial differentiation of $\psi^{(N)}(heta_t)$
 - \circ Compute $d heta_t$.

Numerical Examples

Unidimensional

Consider

$$egin{aligned} dx_t = & \sigma dW_t, \ dy_t = & eta x_t^3 dt + dV_t \end{aligned}$$

- ullet We use the exponential manifold with $c_i \in \{x, x^2, x^3, x^4\}$ with $heta_0 = [0, 1, 0, -1]$.
- ullet We compare two choices of the bijections, the first is $anh^{-1}(ilde x)$ and the second is $\phi=rac{ ilde x}{1- ilde x^2}$

•

Densities obtained using finite difference scheme, and projection filter using \tanh^{-1} .

Densities obtained using finite difference scheme, and projection filter using $\phi=\frac{\tilde{x}}{1-\tilde{x}^2}$.

Multidimensional

• The dynamic model considered is the Van-der-Pol oscillator:

$$egin{aligned} degin{bmatrix} x_{1,t} \ x_{2,t} \end{bmatrix} = egin{bmatrix} \kappa x_{1,t} + x_{2,t} \ \mu(1-x_{1,t}^2)x_{2,t} - x_{1,t} + \kappa x_{2,t} \end{bmatrix} dt + egin{bmatrix} 0 \ \sigma_w \end{bmatrix} dW_t, \ dY = &x_{1,t}dt + \sigma_v dV_t. \end{aligned}$$

- $\mu=0.3, \kappa=1$, and $\sigma_v=\sigma_w=1$. We also set $dt=2.5 imes 10^{-4}$. We use sparse-grid integration where we set the level equals to 4.
- ullet We compare with the result with empirical density from the particle filter with $1.6 imes10^6$ samples.

Questions?

References

- Aubin, T., 2001. A course in differential geometry, Graduate studies in mathematics. American Mathematical Society, Providence, R.I.
- Frankel, T., 2012. The geometry of physics: an introduction, 3rd ed. ed. Cambridge University Press, Cambridge; New York.
- Lee, J.M., 2013. Introduction to smooth manifolds, 2nd ed. ed, Graduate texts in mathematics. Springer, New York; London.
- Amari, S., Nagaoka, H., 2000. Methods of information geometry, Translations of mathematical monographs. American Mathematical Society, Providence, RI.
- Brigo, D., Hanzon, B., Gland, F.L., 1999. Approximate nonlinear filtering by projection on exponential manifolds of densities. **Bernoulli** 5, 495.
- Emzir, M.F., Zhao, Z., Särkkä, S., 2023. Multidimensional projection filters via automatic differentiation and sparse-grid integration. Signal Processing 204, 108832.
- Emzir, M.F., Zhao, Z., Sparse-Grid-AutoDiff-Projection-Filters, GitHub Repository, https://github.com/puat133/Sparse-Grid-Autodiff-Projection-Filters