National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Calculus and Analytical Geometry	Course Code:	MT 1003
Degree Program:	BS (CS, SE & DS)	Semester:	Fall 2022
Exam Duration:	3 hours	Total Marks:	90
Paper Date:	24- 12- 22	Weight	50%
Section:	ALL	Page(s):	
Exam Type:	Final Exam		

Instruction/Notes: Attempt all questions. Programmable calculators are not allowed.

Question#1: CLO-4 [10+5]

- a) A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft / sec. It reaches a height of $s = 160t 16t^2$ ft after t sec.
- i. How high does the rock go?
- ii. What are the velocity and speed of the rock when it is 256 ft above the ground on the way up? On the way down?
- iii. What is the acceleration of the rock at any time t during its flight (after the blast)?
- iv. When does the rock hit the ground again?
 - b) Show that the point (2, 4) lies on the curve $x^3 + y^3 9xy = 0$. Then find the tangent and normal to the curve.

Question#2: CLO-3 [10+5]

a) For the given function

$$f(x) = \begin{cases} x^2 - 1, & -1 \le x \le 0, \\ 2x, & 0 < x < 1, \\ 1, & x = 1, \\ -2x + 4, & 1 < x < 2, \\ 0, & 2 < x < 3. \end{cases}$$

- i. Does f(-1) exist?
- ii. Does $\lim_{x \to -1^+} f(x)$ exist?
- iii. Does $\lim_{x \to -1^+} f(x) = f(-1)$?
- iv. Is f continuous at x = -1?
- v. Is f defined at x = 3?
- vi. Is f continuous at x = 3?
- vii. At what value of x, f is continuous?
- viii. What value should be assigned to f(2) to make the extended function continuous at x = 2?

b) Find the horizontal asymptote of $\frac{x^3-2}{|x|^3+1}$.

Question#3: CLO-5 [10+5]

- a) An open-top box is to be made by cutting small congruent squares from the corners of a 12-in.-by-12-in. sheet of tin and bending up the sides. How large should the squares cut from the corners be to make the box hold as much as possible?
- b) Evaluate the integral $\int \frac{\cos\sqrt{x}}{\sqrt{x}\sin^2\sqrt{x}} dx$.

Question#4: CLO-6 [10+5]

a) Use Shell method to find the volume of the solid generated by revolving the region bounded by the curve and line about the y-axis.

$$y = \frac{3}{(2\sqrt{x})}$$
, $y = 0, x = 1, x = 4$.

 $y = \frac{3}{(2\sqrt{x})}, \quad y = 0, x = 1, x = 4.$ b) Find the length of curve $x = \int_0^y \sqrt{\sec^4 t - 1} dt, \quad -\frac{\pi}{4} \le y \le \frac{\pi}{4}.$

Question#5: CLO-6 [5+5+5]

- a) Use L-Hopital's rule to find the limit $\lim_{x \to (\frac{\pi}{2})^{-}} (x \frac{\pi}{2}) \sec x$.
- b) Express the integrand as a sum of partial fractions and evaluate the integral $\int \frac{s^4 + 81}{s(s+9)^2} ds$
- c) Evaluate the integral $\int 8sin^3y \cos^2y \, dy$

Question#6: CLO-6 [7+8]

Evaluate the improper integrals and determine whether the given improper integral

a)
$$\int_0^2 \frac{s+1}{\sqrt{4-s^2}} \, ds$$

b)
$$\int_0^{\ln 2} x^{-2} e^{-1/x} dx$$