

Brain Tumor Diagnosis System Using Vision Transformers

Andy Achouche

Background

Early diagnosis of brain tumors is critical, yet traditional workflows—spanning patient screening, lab tests, and MRI analysis—are often fragmented and slow. Recent deep learning advances, particularly Vision Transformers, offer a promising alternative for more accurate and scalable MRI image classification.

Research Question

Can a Vision Transformer model accurately classify MRI images for brain tumor diagnosis and be effectively deployed via a web-based application to support clinical decision-making?

Implications

- Enhanced Diagnostic Accuracy:
 Earlier and more accurate tumor
 detection improves patient outcomes.
- Streamlined Clinical Workflow: Realtime, automated MRI analysis reduces delays and supports faster decisionmaking.
- Increased Efficiency: Automation minimizes radiologist workload and reduces misclassification rates.
- Scalable Al Framework: Establishes a robust platform for future integration of advanced diagnostic tools.

Materials & Methods

- Programming: Python 3.10, PyTorch (vit-pytorch), Jupyter Notebook
- Hardware: Apple Silicon (M3 Pro with GPU/MPS), AWS EC2 (p3.2xlarge)
- Web & Deployment: Flask, Docker, Gunicorn
- Libraries: scikit-learn, Matplotlib

References

- Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021.
- Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention is All You Need. NeurIPS 2017.
- Nickparvar, M. (2021, September 24).
 Brain Tumor MRI dataset. Kaggle.
- AWS. (n.d.). Deployments on an EC2/ On-Premises compute platform - AWS CodeDeploy.

I would like to acknowledge the support I received from my professors and mentors, my family, and my classmates, whose guidance, encouragement, and collaboration made this capstone possible.