25. Интерференция света в тонких пленках. Условия максимумов и минимумов интерференции. Полосы равной толщины и равного наклона, кольца Ньютона

Интерференция света в тонких пленках

Интерференция:

При наложении гармонических (в общем случае когерентных) световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других — минимумы интенсивности.

Явление сложения световых пучков, ведущее к образованию светлых и темных полос.

Многим людям приходилось наблюдать радужную окраску мыльных пленок; цвета побежалости закаленных стальных деталей, покрытых тонким прозрачным слоем окисных пленок; тонких пленок нефти, бензина, масел, плавающих на поверхности воды. Все эти явления вызваны интерференцией света в тонких пленках. Интерференцию света в тонких пленках можно наблюдать в проходящем или отраженном свете.

Рассмотрим интерференцию света на отражение от тонкой прозрачной пленки (пластинки) толщиной d с абсолютным показателем преломления n.

Пластинка (пленка) находится в вакууме ($n_1 = n_{\text{вак}} = 1$, λ – длина волны света в вакууме, причем $n > n_1$).

Пусть на пленку падает плоская монохроматическая волна λ под углом α (луч AO). В точке О на верхней поверхности этот луч частично отражается (луч OM) и частично преломляется (луч OC). Преломленный луч OC, достигнув нижней поверхности пленки, в точке C испытывает, в свою очередь отражение (луч CE) и преломление (луч CH), переходя снова в вакуум.

Отраженный луч СЕ на верхней поверхности пленки в точке Е испытывает частичное отражение (луч ЕК) и частичное преломление (луч ЕР).

Преломленный луч EP и отраженный луч OM когерентны и при наложении интерферируют. Действительно, если на их пути поставить собирательную линзу, то в точке К на экране можно наблюдать интерференционную картину на отражение, максимум и минимум которой будут определяться оптической разностью хода, возникающей между лучами OM и EP от точки 0 до плоскости EM.

Аналогичный расчет можно провести для интерференции в тонких пленках на просвет в точке Q. Однако дополнительной оптической разности хода в этом случае не наблюдается. Поэтому максимум интерференции в тонких пленках на просвет соответствует условию минимума на отражение и, наоборот, минимум интерференции в тонких пленках на просвет соответствует максимуму на отражение. При освещении пленки белым светом для некоторых длин волн будет выполняться условие максимума, а для других – условие минимума, поэтому пленка в отраженном свете выглядит окрашенной.

Разность фаз колебаний

$$\delta = \omega \left(\frac{s_2}{v_2} - \frac{s_1}{v_1} \right) = \frac{\omega}{c} (n_2 s_2 - n_1 s_1) \qquad \left(n = \frac{c}{v} \right)$$

$$\delta = \frac{2\pi}{\lambda_0} \Delta$$

$$\Delta = n_2 s_2 - n_1 s_1 = L_2 - L_1$$
 — оптическая разность хода
$$L = ns$$
 — оптическая длина пути

Условие максимума: $\Delta = \pm m\lambda_0$ (m = 0, 1, 2...)

Условие минимума: $\Delta = \pm (m + \frac{1}{2})\lambda_0$ (m = 0, 1, 2...)

λ₀ - длина волны в вакууме

Пластинки постоянной толщины

Полосы равного наклона

При падении сходящегося (расходящегося) пучка света на плоскопараллельную пластинку (пленку) при интерференции могут возникнуть полосы равного наклона. Для каждой пары лучей 1 и 1^* , 2 и 2^* оптическая разность хода δ определяется формулой

$$\delta = 2dn\cos\beta - \frac{\lambda}{2}$$

При наблюдении интерференционной картины используют собирательную линзу (Л) и экран (Э). В каждой точке экрана собираются и интерферируют лучи, которые после отражения от пленки параллельны прямым линиям, соединяющими их с оптическим центром линзы 0. Например, лучи 1 и 1* – в точке В, лучи 2 и 2* – в точке А и т. д.

Интерференционная картина на экране имеет вид чередующихся светлых и темных полос (полосы равного наклона), каждой из которых соответствует определенное значение угла падения α .

Максимум или минимум интерференции на отражение в этом случае зависти от угла падения лучей. При освещении пленки белым светом на экране возникает система разноцветных полос равного наклона.

Тонкая пластинка освещается рассеянным монохроматическим светом.

В фокальной плоскости линзы возникает системы полос – полос равного наклона.

Полосы равной толщины

Несколько другая интерференционная картина наблюдается при освещении светом тонких пленок, толщина которых изменяется (плоский клин). Пусть на клин с малым углом θ между его боковыми поверхностями падает плоская волна монохроматического света (луч AO) под углом α .

Складываемые волны, возникающие в результате отражения света от верхней (луч ОВ) и нижней (луч ДЕ) поверхностей клина, имеют оптическую разность хода δ , которая находится по формуле

$$\delta = 2dn\cos\beta - \frac{\lambda}{2}$$

где **d** – средняя толщина клина на участке ОС.

При фиксированных значениях n и α участкам пленки с одинаковым значением d соответствуют равные оптические разности хода световых лучей, поэтому в отраженном свете наблюдаются интерференционные полосы равной толщины. Расходящиеся лучи ОВ и DE кажутся исходящими из некоторой точки M, расположенной вблизи поверхности клина. Поэтому полосы равной толщины локализованы вблизи поверхности пленки и параллельны ребру клина.

Тонкая пластинка в виде клина освещается плоской световой волной.

В плоскости экрана возникает системы полос – полос равной толщины.

Кольца Ньютона

Полосы равной толщины можно наблюдать с помощью установки «Кольца Ньютона». Установка состоит из плосковыпуклой стеклянной линзы с радиусом кривизны \mathbf{R} , которая выпуклой частью опирается на плоскопараллельную стеклянную пластинку. Пространство между линзой и пластинкой может быть заполнено жидкостью с абсолютным показателем преломления \mathbf{n} (например, для воды \mathbf{n} =1,33).

Если на плоскую поверхность линзы падает нормально (перпендикулярно) плоская волна монохроматического света, то в точке B(r=BD) свет частично преломляется (луч BE) и отражается от верхней (луч BM) и нижней (луч EK) поверхностей клина между линзой и пластинкой.

Таким образом, при сложении отраженных волн от поверхностей клина возникают интерференционные кольца равной толщины. В центре находится темное пятно (минимум), которое окружено системой концентрических светлых (максимум) и темных колец, ширина и интенсивность которых постепенно убывают по мере удаления от центра.

С учетом потери полуволны

$$\Delta = \frac{r^2}{R} + \frac{\lambda_0}{2} \qquad \Longrightarrow$$

Светлые кольца:
$$r_m = \sqrt{(m - \frac{1}{2})\lambda_0 R}$$
 $(m = 1, 2, 3, ...)$

Темные кольца:
$$r_m^* = \sqrt{m\lambda_0 R}$$
 $(m = 0, 1, 2, ...)$