Semantics-Aware Android Malware Classification Using Weighted Contextual API Dependency Graphs

Mu Zhang

Yue Duan

Heng Yin

Zhiruo Zhao

Department of Electrical Engineering and Computer Science, Syracuse University

Android Malware Detection: Need For Speed

TOTAL MOBILE MALWARE

Source: McAfee Labs, 2014.

McAfee Threat Report:

Totaled 3.73 million samples at the end of 2013, a 197% increase over 2012

Malware Variants and Zero-day Malware

NEW MOBILE MALWARE

Source: McAfee Labs, 2014.

McAfee Threat Report:

2.47 million new mobile malware samples were collected in 2013

Motivation: Existing Techniques have Limitations

Code Pattern-based

- Riskranker [MobiSys'12], DroidRanger [NDSS'12], Antivirus Software, etc.
- Rely on code patterns
- Evaded by transformation attacks (DroidChameleon [TIFS'14, ASIACCS'13])

Machine Learning-based

- DroidMiner [ESORICS'14], Drebin [NDSS'14],
 DroidAPIMiner [SecureComm'13], Peng et al. [CCS'12], etc.
- Rely on application syntax rather than program semantics
- Susceptible to evasion

DroidSIFT: Semantics-Aware Malware Classification

Deployment

- Complement to Bouncer
- Signature detection: new variants
- Anomaly detection: zero-day

Design Goals

- Semantic-based Detection
- High Scalability
- Variant Resiliency

Offline Graph Database
Construction & Training Phase

Related Work: Semantic-based Malware Detection

Semantic-based Approaches

- Control-flow Graph: M. Christodorescu et al. [Oakland'05]
- Data Dependency Graph: M. Fredrikson et al.
 [Oakland'10], C. Kolbitsch et al. [Usenix Security'09]
- Permission Event Graph: K. Z. Chen et al. [NDSS'13]

Limitations

- Manually crafted specifications
- Specifications are produced from known malware
- To pursue exact matches

Approach Overview

DroidSIFT

- Contextual API Dependency Graphs, automatically and statically extracted "specifications"
- Weighted Graph Similarity, to address malware variants & zero-day

Behavior Graph Generation

Matching-based Graph Query

Similarity-based Feature Vector Extraction

Classification-based Anomaly & Signature Detection

Weighted Contextual API Dependency Graph

Weights are assigned to API nodes, giving greater weights to the nodes containing critical calls

Weighted Contextual API Dependency Graph

Context (Entry Point) Discovery

Entry point discovery is to reveal whether the user is aware that a certain API call has been made.

Graph Similarity based Classification

Graph Similarity-based Feature Extraction

- Generate behavior graphs for dataset
- Each unique graph → A feature
- Example:

Index of Graph in DB

G1	G2	G3	G4	G5	G6	G7	G8	•••	G861	G862
0	0	0	0.9	0	0	0.9	0.7	•••	0	0

Similarity to the Graphs of a given APP

Graph Similarity Score

Weighted Graph Similarity (WGS)

$$wgs(G,G',\beta) = 1 - \frac{wged(G,G',\beta)}{wged(G,\phi,\beta) + wged(\phi,G',\beta)}$$

Weighted Graph Edit Distance (WGED)

$$wged(G, G', \beta) = \min(\sum_{v_I \in \{V'-V\}} \beta(v_I) + \sum_{v_D \in \{V-V\}} \beta(v_D) + |E_I| + |E_D|)$$

- Weight only on vertices
- Need to enhance Bipartitie algorithm

Weight Assignment

- Selection of Critical API Labels
 - Sensitive to Malware
 - Concept Learning
 - Rarely occur in benign apps
 - Happen more frequently in malware
 - 108 Critical APIs, automatically assigned weights >> 1
 - The rest, assigned a weight of 1

Weight Assignment

Optiitiization Problem:

Output: Optimal Weight Vector

Graph Database Query

Bucket-based Indexing

- Bitvector of Critical API Package Names as Index
- Exact match on index

Malware Classification

Anomaly Detection

- Binary detector: compare against benign graphs
- Empirically: all similarity scores <70% = Anomaly

Signature Detection

- Multi-label detector: compare against malware graphs
- Generate feature vectors to train a Naive-Bayes classifier

	G1	G2	G3	G4	G5	G6	G7	G8	•••	G861	G862
ADRD	0	0	0	0	0	0.8	0.9	0	•••	0	0
DroidDream	0.9	0	0	0	0.8	0.7	0.7	0	•••	0	0
DroidKungFu	0	0.7	0	0	0.6	0	0.6	0	•••	0	0.9

Evaluation: Overview

Dataset

- 2200 malware instances
 - Android Malware Genome Project, McAfee Labs
- 13500 benign samples
 - Google Play

Evaluation: Runtime Performance

Most apps (96%) can be processed within 10 minutes.

Evaluation: Classification Results

Signature Detection

- Database: 862 unique graphs from Android Malware Genome Project
- 1050 malware samples to train classifier
- 193 testing samples
- Correctly label the families of 93% malware
- Mislabeled cases:
 - DroidKungFu ←→ DroidDream
 - Zitmo, Zsone, YZHC

Evaluation: Classification Results

Anomaly Detection

- Convergence of unique behavioral graphs for benign apps

Evaluation: Classification Results

Anomaly Detection

- Database: 10420 unique graphs from 11400 benign apps
- 2200 malware testing sample
 - False negative rate: 2% (Exploits and Downloaders)
- 2100 benign testing sample
 - False positive rate: 5.15%
- Detection of new malware (Android.HeHe)

Evaluation: Obfuscated Samples

- Detection of Transformation Attacks (TIFS'14)
 - 21 Malware, 2 Benign

Evaluation: Effectiveness of Weight Generation

Bipartite algorithm produces 73% true positive rate in signature detection and 10% false negative rate in anomaly detection

Weighted graph similarity metric is more sensitive to program semantics

Related Work

- [1] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: Scalable and accurate zero-day android malware detection. In Proceedings of MobiSys'12.
- [2] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market: Detecting malicious apps in official and alternative android markets. In Proceedings of NDSS'12.
- [3] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: Evaluating android anti-malware against transformation attacks. In TIFS'14.
- [4] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android. In Proceedings of SecureComm'13.
- [5] D. Arp, M. Spreitzenbarth, M. HÃijbner, H. Gascon, and K. Rieck. Drebin: Efficient and Explainable Detection of Android Malware in Your Pocket. In Proceedings of NDSS'14.
- [6] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru, and I. Molloy. Using Probabilistic Generative Models for Ranking Risks of Android Apps. In Proceedings of CCS'12.
- [7] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware malware detection. In Proceedings of Oakland'05.
- [8] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan. Synthesizing near-optimal malware specifications from suspicious behaviors. In Proceedings of Oakland'10.
- [9] K. Z. Chen, N. Johnson, V. D'Silva, S. Dai, K. MacNamara, T. Magrino, E. X. Wu, M. Rinard, and D. Song. Contextual policy enforcement in android applications with permission event graphs. In Proceedings of NDSS'13.

Conclusion

- We propose novel *semantic-based* approach that classifies Android malware via dependency *graphs*.
- To fight against malware variants and zero-day malware, we introduce *graph similarity metrics* to uncover homogeneous application behaviors while tolerating minor implementation differences.

Questions?

Evaluation: Measurements of Graphs

The amount of graphs/nodes is manageable.

(a) Graphs per Benign App.

(c) Nodes per Benign Graph.

(b) Graphs per Malware.

(d) Nodes per Malware Graph.