





# Understanding applications with Paraver

Judit Gimenez judit@bsc.es

CRHPCS19, San José

# Extrae and Paraver Hands-on



## **Install Paraver**

Download from <a href="https://tools.bsc.es/downloads">https://tools.bsc.es/downloads</a>





# **Install Paraver (II)**

- Download tutorials:
  - Documentation
    - Paraver tutorials





# Uncompress, rename & move

Paraver

@ your laptop

- > tar xf wxparaver-4.8.1-linux-x86\_64.tar.gz
- > mv wxparaver-4.8.1-linux-x86\_64 paraver

Tutorials

@ your laptop

- > tar xf paraver-tutorials-20150526.tar.gz
- > mv paraver-tutorials-20150526 paraver/tutorials



# **Check that everything works**

• Start Paraver @ your laptop

- > paraver/bin/wxparaver
- Check that tutorials are available

Supercomputing

Centro Nacional de Superi omputación





Trouble installing locally? Remote open from kabre

@ cluster.cenat.ac.cr

- > ssh -Y <USER>@cluster.cenat.ac.cr
- > In -s ~gimenez1/tools/wxparaver64/bin/wxparaver
  wxparaver

# Log in to kabré

@ your laptop

```
> ssh -Y <USER>@cluster.cenat.ac.cr
```

Copy the examples to your home folder:

@ cluster.cenat.ac.cr



# **OpenMP example: matrix**

Comparing the location of the parallel for pragma

matrix.l1 matrix.l2

- Check the script content
- Submit the job script

@ cluster.cenat.ac.cr

```
> cd $HOME/BSC-handson/apps/matrix
```

> qsub matrix.pbs



# **OpenMP example: matrix**

Copy the traces to your laptop

@ your laptop

```
> scp <USER>@cluster.cenat.ac.cr: \
   BSC_handson/apps/matrix/matrix.l?.* $HOME
```

Load the traces with Paraver

@ your laptop

> wxparaver matrix.1?.prv\*

- Trouble getting in the queues? Already available at ~/BSC-handson/traces/matrix/matrix.l?.\*
- Compare the two executions with paraver



# MPI example: jacobi

Submit the job script

@ cluster.cenat.ac.cr

- > cd \$HOME/BSC-handson/apps/jacobi
- > qsub job.kabre
- Copy the traces to your laptop and load the trace with Paraver

@ your laptop

```
> scp <USER>@cluster.cenat.ac.cr: \
    BSC_handson/apps/jacobi/jacobi.???* $HOME
> wxparaver jacobi.prv*
```

- Trouble getting in the queues? Already available at ~/BSChandson/traces/jacobi/jacobi.???\*
- Look at the execution with paraver



# **Extrae features**

- Platforms
  - Intel, Cray, BlueGene, MIC, ARM, Android, Fujitsu Sparc...
- Parallel programming models
  - MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, Java, Python..
- Performance Counters
  - Using PAPI interface
- Link to source code
  - Callstack at MPI routines
  - OpenMP outlined routines
  - Selected user functions (Dyninst)
- Periodic sampling
- User events (Extrae API)



No need to recompile / relink!

# **Extrae overheads**

|                              | Average values | Kábre (login) | Kabré (Zárate) |  |
|------------------------------|----------------|---------------|----------------|--|
| Event                        | 150-200 ns     | 180 ns        | 600 ns         |  |
| Event + PAPI                 | 750 ns – 1 us  | 580 ns        | 4.7 us         |  |
| Event + callstack (1 level)  | 600 ns         | 750 ns        | 3.4 us         |  |
| Event + callstack (6 levels) | 2 us           | 1.7us         | 8.2 us         |  |



# **How does Extrae work?**

- Symbol substitution through LD\_PRELOAD
  - Specific libraries for each combination of runtimes
    - MPI
    - OpenMP
    - OpenMP+MPI
    - ...

Recommended

- Dynamic instrumentation
  - Based on Dyninst (developed by U.Wisconsin / U.Maryland)
    - Instrumentation in memory
    - Binary rewriting
- Alternatives
  - Compiler instrumentation (-finstrument-functions Intel, GNU)
  - Static link (i.e., PMPI, Extrae API)



# **Using Extrae in 3 steps**

1. Adapt your job submission scripts

- 2. (Optional) **Tune** the Extrae XML configuration file
  - Examples distributed with Extrae at \$EXTRAE\_HOME/share/example
- **3.** Run it!
- For further reference check the Extrae User Guide:
  - https://tools.bsc.es/sites/default/files/documentation/html/extrae/index.html
  - Also distributed with Extrae at \$EXTRAE\_HOME/share/doc



# Step 1: Adapt the job script to load Extrae

@ cluster.cenat.ac.cr

> vi \$HOME/BSC-handson/apps/lulesh/job.kabre

### job.kabre

```
#PBS -N extrae
#PBS -q phi-n1h72
#PBS -l nodes=1:ppn=27
#PBS -l walltime=00:20:00

cd $PBS_O_WORKDIR

module load mpich/3.2.1
mpirun ./lulesh2.0 -i 20 -s 64 -p
```



# Step 1: Adapt the job script to load Extrae

@ cluster.cenat.ac.cr

> vi \$HOME/BSC-handson/apps/lulesh/job.kabre

### job.kabre

```
#PBS -N extrae
#PBS -q phi-n1h72
#PBS -l nodes=1:ppn=27
#PBS -l walltime=00:20:00

cd $PBS_O_WORKDIR

module load mpich/3.2.1

export TRACE_NAME=lulesh2_27p.prv

mpirun ./extrae/trace.sh ./lulesh2.0 -i 20 -s
64 -p
```



# Step 1: Adapt the job script to load Extrae

@ cluster.cenat.ac.cr

> vi \$HOME/BSC-handson/apps/lulesh/extrae/trace.sh



Centro Nacional de Supercomputación

# **Step 1: Which tracing library?**

Choose depending on the application type

| Library                         | Serial | MPI          | OpenMP | pthread | CUDA |
|---------------------------------|--------|--------------|--------|---------|------|
| libseqtrace                     | ✓      |              |        |         |      |
| libmpitrace[f] <sup>1</sup>     |        | $\checkmark$ |        |         |      |
| libomptrace                     |        |              | ✓      |         |      |
| libpttrace                      |        |              |        | ✓       |      |
| libcudatrace                    |        |              |        |         | ✓    |
| libompitrace[f] <sup>1</sup>    |        | ✓            | ✓      |         |      |
| libptmpitrace[f] <sup>1</sup>   |        | $\checkmark$ |        | ✓       |      |
| libcudampitrace[f] <sup>1</sup> |        | $\checkmark$ |        |         | ✓    |



<sup>&</sup>lt;sup>1</sup> include suffix "f" in Fortran codes

# Step 3: Run it!

Submit your job

@ cluster.cenat.ac.cr

- > cd \$HOME/BSC-handson/apps/lulesh
- > qsub job.kabre

• Easy! ☺



# **Step 2: Extrae XML configuration**

@ cluster.cenat.ac.cr

> vi \$HOME/BSC-handson/apps/lulesh/extrae/extrae.xml

```
<mpi enabled="yes">
 <counters enabled="yes" />
                                                           Trace the MPI calls
</mpi>
                                                      (What's the program doing?)
<openmp enabled="no">
 <locks enabled="no" />
 <counters enabled="yes" />
</openmp>
<pthread enabled="no">
 <locks enabled="no" />
 <counters enabled="yes" />
                                                   Trace the call-stack
</pthread>
                                                  (Where in my code?)
<callers enabled="yes">
  <mpi enabled="yes">1-3</mpi>
 <sampling enabled="no">1-5</sampling>
</callers>
    Supercomputing
```

Centro Nacional de Supercomputación

# Step 2: Extrae XML configuration (II)

@ cluster.cenat.ac.cr

> vi \$HOME/BSC-handson/apps/lulesh/extrae/extrae.xml

```
<counters enabled="yes">
 <cpu enabled="yes" starting-set-distribution="1">
   <set enabled="yes" domain="all" changeat-time="500000us">
     PAPI TOT INS, PAPI TOT CYC, PAPI L1 DCM, PAPI L2 DCM, PAPI BR MSP, RESOURCE STALLS
    </set>
   <set enabled="yes" domain="all" changeat-time="500000us">
     PAPI TOT INS, PAPI TOT CYC, PAPI L3 TCM, PAPI LD INS, PAPI SR INS
    </set>
   <set enabled="yes" domain="all" changeat-time="500000us">
     PAPI TOT INS, PAPI TOT CYC, PAPI VEC DP
                                                                         Select which HW counters
   </set>
   <set enabled="yes" domain="all" changeat-time="500000us">
                                                                               are measured
     PAPI TOT INS, PAPI TOT CYC, PAPI VEC SP, PAPI FP INS
   </set>
  </cpu>
 <network enabled="no" />
 <resource-usage enabled="no" />
  <memory-usage enabled="no" />
</counters>
```



# Step 2: Extrae XML configuration (III)

@ cluster.cenat.ac.cr

> vi \$HOME/BSC-handson/apps/lulesh/extrae/extrae.xml



# All done! Check your resulting trace

Once finished (check with `squeue`) you will have the trace (3 files):

- Trouble getting in the queues? Already available at ~/BSC-handson/traces/ lulesh/lulesh2\_27p.\*
- Now let's look into it!



# First steps of analysis

Copy the trace to your laptop

@ your laptop

```
> scp <USER>@cluster.cenat.ac.cr: \
    BSC_handson/apps/lulesh/lulesh2_27p.* $HOME
```

Load the trace with Paraver



Follow Tutorial #3

Barcelona Supercomputing

Centro Nacional de Supercomputación





# Measure the parallel efficiency

- Click on "mpi\_stats.cfg"
  - Check the Average for the column labeled "Outside MPI"





# Hints: a good place to start!

Paraver suggests CFG's based on the information present in the trace





# CFG's distribution

Paraver comes with many more included CFG's





