```
------ Pick(), Ceil(), ------
Pick(Ceil(Rand()*4), 'Received', 'Approved', 'Pending', 'Denied')
Match([Månad],'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec') as MånadNr,
//Ceil avrundar värdet till hösta heltal
// pick väljer en av värdena 'Received', 'Approved', 'Pending', 'Denied' beroende på första indata (Ceil....)
------ FieldValue () , Peek() -------
FieldValue(field name , elem no)
FieldValue('First name','1') Finds value of row number '1' in the field 'First Name'
Peek(field_name[, row_no[, table_name ] ])
Peek() finds the value of a field in a table for a row that has already been loaded or that exists in internal memory.
------ Mapping ------
Map:
MAPPING LOAD * INLINE [
ID, Status
1,Received
2, Approved
3,Pending
4,Denied
];
Data:
LOAD
ApplyMap('Map',Ceil(Rand()*4)) AS Status
Autogenerate xx;
------ LookUp ------
Lookup('Category', 'ProductID', ProductID, 'ProductList')
Lookup(1, 2, 3, 4)
   1. Värdena i den kolumn som ska tas från LookUp tabellen och fyllas in i destination tabellen
   2. Värdena som ska matchas till (i LookUp tabellen)
   3. Värdena i destinationstabellen som ska matchas till LookUp tabellen
      (Det kolumn som ligger i samma tabell som man fyller i)
   4. Tabellen som värdena i punkt 1 ska tas
------ IterNo(), RecNo(), RowNo()
IterNo() används som räknare inom while loopar
RowNo() ger radnummer
RecNo() anväds som räknare för Autogenerate
```

#TempTest:

```
load * inline [
FIELD
one
two
three
];
FOR Each a in FieldValueList('FIELD')
Test:
LOAD
'$(a)' &'-'&RecNo() as NEWFIELD,
'$(a)' &'-'&RowNo() as NEWFIELD2,
'$(a)' &'-'&IterNo() as NEWFIELD3
AutoGenerate 2
while IterNo()<4;
NEXT a
Drop table #TempTest;
```

----- sum({1}sales) vs Total(Sum(sales)) ------

```
Sales:
Load * Inline
[
Customer, Sales, Brand
A, 100, B1
B, 120, B2
C, 90, B1
D, 110, B2
];
```

Use Text objects to understand the logic...

=SUM(Sales)

The above expression gives you 420 but it will change according to your selection on Customer or Brand.

=SUM({1}Sales)

The above expression gives you 420 but it will not change according to your selection on Customer or Brand.

So the answer would be 420 even after selecting any dimension

=SUM(Total Sales)

The above expression will give you Total Sales ignoring dimension but if you select any dimension, it will change accordingly. SUM(Total Sales) is useful if you want to show Total Sales against each line in Pivot or Straight Table or in any other objects.

Create a Pivot Table Dimensions Customer Brand

Expressions
SUM(Total Sales)
SUM(Total <Brand> Sales)
Here second expression will give you Total Sales Brand wise....

=SUM(All Sales)

Same as SUM({1}Sales)......

Sum({1}TOTAL [Premie]) Detta visar totala värden I hela data

Sum({<[Försäkringsbolag]>} ALL [Premie]) Sum({1} [Premie]) Sum(all [Premie])

Sum(TOTAL [Premie])

Den ändras med slicersval

Sum({<[Försäkringsbolag]>} TOTAL [Premie])

Den ändras med alla slicersval men inte med {<[Försäkringsbolag]>} Slicer.

Example	Result
sum({\$ <orderdate =="" deliverydate="">} Sales)</orderdate>	Returns the sales for the current selection where OrderDate = DeliveryDate.
sum({1 <region =="" {us}="">} Sales)</region>	Returns the sales for region US, disregarding the current selection.
sum({\$ <region =="">} Sales)</region>	Returns the sales for the selection, but with the selection in <i>Region</i> removed.
sum({ <region =="">} Sales)</region>	Returns the same as the example above. When the set to modify is omitted, \$ is assumed.
sum({\$ <year={2000}, region="<br">{"U*"}>} Sales)</year={2000},>	Returns the sales for the current selection, but with new selections both in Year and in Region.

https://help.qlik.com/en-US/qlikview/12.0/Subsystems/Client/Content/ChartFunctions/S etAnalysis/set-analysis-expressions.htm

Expressions	Results			
=sum ({1} Sale)	Return total sales of the application irrespective of selection, it will not disregard dimensions.			
=sum ({\$} Sale)	Return sales for current selection			
=sum ({\$1} Sale}	Return the sale of previous selection			

The Modifier in <> overwrite the first identifier:

Expressions	Results
=Sum ({\$ <company_name= {'a'}="">} Sale)</company_name=>	Return sales of Company A of current selection.
=sum ({1 <company_name= {'a'}="">} Sale)</company_name=>	Return sales of Company A irrespective of selection
=sum ({1-\$ <company_name= {'a'}="">} Sale)</company_name=>	Return sales of Company A excluding current selection
=Sum ({\$ <year= company_name="{'A'}" {2012},="">} Sale)</year=>	Return sales of Company A of year 2012
=sum({\$ <company_name={'a','b'}>}Sale)</company_name={'a','b'}>	Return sales of Company A and B for Current selection
=sum({ \$ < Year= > } Sale)	Return sales for all three years of current selection

Dollar Sign Expansion:

If we want to compare current year sale with previous year, previous year sales should reflect values in relation to current selection of year. For example if current selection of year is 2012, previous year should be 2011 and for current selection of year 2013, previous year is 2012.

```
"=Sum ({$<Year = {$ (=Max (Year)-1)} >} Sale) "
```

Above expression always returns sale for previous year. Here \$ sign (Font color red) is used to evaluate the value for previous year. \$ sign is used to evaluate expression and to use variables in set modifiers. If we have variable that holds last year value (vLASTYEAR) then expression can be written as:

```
"=Sum ({$vLASTYEAR)} >} Sale) "

Indirect SET ANALYSIS: Function P() and E()
```

Let us take a scenario, where we want to show current sales of the companies who had sales last year.

Expression should be similar like:

```
=sum({$<Year={$(=Max(Year))},Company_Name={Companies who had sales last year}> } Sale)
```

First we have to identify companies who had sales last year. To fix this problem, we will use function P() that is used to identify values within a field and function E() that exclude values within a field.

Expressions	Result
Company_Name=p(Company_Name)	All companies who had sales across year (2011 to 2013)
Company_Name=P({ <year={2012}>} Company_Name)>})</year={2012}>	All companies who had sales in year (2012)
Company_Name= P({ <year={\$(=max(year)-1)}>} Company_Name)</year={\$(=max(year)-1)}>	All companies who had sales in previous year

Finally, we have expression:

```
=sum({<Year={$(=Max(Year))},Company_Name=P({<Year={$(=Max(Year)-1)}>}Company_Name)>}Sale)
```

https://www.analyticsvidhya.com/blog/2014/01/set-analysis-qlikview/

<u>Set analysis - ignores filters on all fields but one</u> sum({1<FieldToKeep=P(FieldToKeep)>}Fieldname)

```
------ Concatinate och flera function inuti set analys ------ ((sum({$ <[Function Area] = {"803 IT Function Strategy"}, [Service Area] =, [Räkenskapsår] = {"$(='FY'&'$(=Max(Right([Räkenskapsår],2)))')"}>} BruttoUtfall)*-1)
```

Detta kan användas för att välja sista FY året och jämföra med året innan (med Right() -1)

----- SUM(Total Value) Aggr(nodistinct) ------TempTest: load * inline [ColA, ColB, Value 200 a, A, b, 250 В, 300 a, A, b, 450 C, b, 400 C, 500 c,]; =Sum(Total =Aggr(sum(Value), =Aggr(Nodistinct ColA =Sum(Total Value) <ColB> Value) CoIB) sum(Value), CoIB) 2100 450 450 1100 2100 1100 250 250 1100 2100 1100 1100 В 300 300 500 2100 500 С 2100 500 500 500 500 500 400 400 1100 2100 1100 =Aggr({<ColB ={'b','a'}, ColA=-{"b"} >} nodistinct =Aggr(sum(Value), CoIA) =Aggr(Nodistinct sum(Value), CoIA) sum(Value), CoIA, CoIB) 900 700 999 799 300 300 900 900 400 900

Sum({<[1]>} TOTAL <2> [Premie])

 $\{<[1] = \{'x'\}>\}$ summan Filtreras med x dvs bara dem som innehåller x får summan av Premie Om man skriver $\{<[1]>\}$ eller $\{<[1]=>\}$ istället då används för alla värde oavsett slicervar.

TOTAL gör att summan görs av hela kolumnen (grupperingar tas bort) och <2> gör gruppering enligt värdena i kolumnen (t.ex.).

Above(total x) kan skjuta x ett steg neråt. Utan total ska grupperingen påverka det. Om man skriver Above(total x,1,3) då detta ger tillbaka tre värde ovan samma rad.

ColA Q	ColB	Q	Value Q	=Agg	r(Nodistinct sum({1} Value), CoIA, CoIB)	=Aggr(sum(Value), CoIB)	=Aggr(Nodistinct sum(Value), CoIB)	=Aggr(sum(Value), CoIA)	=Aggr(Nodistinct sum(Value), Col	=Aggr({ <colb ={'b','a'},="" cola="-</th"><th>('b') >} nodistinct sum(Value), CoIA, CoIB)</th></colb>	('b') >} nodistinct sum(Value), CoIA, CoIB)
Totals					-	-	-			-	
A	a		200		200	850	850	1450	14	0	200
A	b		250		700	1420	1420		14	0	700
A	b		450		700		1420		14	0	700
A	С		550		550	2170	2170		14	0 -	
В	а		100		250	-	850	1150	11:	0 -	
В	a		150		250	-	850	-		0 -	
В	b		300		300	-	1420	-	11:	0 -	
В	C		600		600	-	2170	-	111	0 -	
С	a		400		400	-	850	1840	18	0	400
С	b		420		420	-	1420	-	18	0	420
С	C		500		1020	-	2170	-	18-	0 -	
	C		520		1020	-	2170	-	18-	0 -	
С											
C COIA Q		Q	Value Q	=sum(Value)	=Aggr(Nodistinct sum({1} Value), CoIA, CoIB)	=(Aggr(nodistinct above(Value)		ve(Total sum(Total <coia,coib> Value))</coia,coib>	=Sum(Total <colb> Value)</colb>	=Sum(Total Value)
		Q	Value Q	=sum(Value)	=Aggr(Nodistinct sum({1} Value), CoIA, CoIB)			/ve(Total sum(Total <coia,coib> Value))</coia,coib>	=Sum(Total <colb> Value)</colb>	=Sum(Total Value)
ColA		Q	Value Q		=Aggr(Nodistinct sum(Value),CoIA,CoIB)) = abov			
ColA	ColB	Q	value	4449	=Appr(Nodistinct sum(-	Value),CoIA,CoIB)) = abov		4440	4440
ColA	* CoIB	Q	200	4440 200	~Aggr(Nodistinct sum(200	Value),CoIA,CoIB)) = abov	-	4440 850	4440 4440
ColA	ColB	Q	200 250	4449 200 250	=Agpr(Nodistinct sum(- 200 700	Value),CoIA,CoIB)) = abov - - - 280	200	4449 859 1429	4449 4440 4440
ColA	ColB a b b	Q	200 250 450 550	200 250 450 550	=Agpr(Nodistinct sum(- 200 700 700 550 250	Value	200 200 700 550	200 700 700 550	4449 859 1420 1426 2178 859	4440 4440 4440 4440
COIA Q	COIB a b c	Q	200 250 450 550	200 250 450 550	-Agpr(Nodistinct sum(- 200 700 700 550	Value	- abox - 288 - 288 - 788	200 700 700	850 1420 1420 2170	4440 4440 4440 4440 4440
COIA Q Totals A A B	COIB a b c a	Q	200 250 450 550	200 250 450 550	*Aggr(Nodistinct sum(- 200 700 700 550 250	Value	200 200 700 550	200 700 700 550	4449 859 1420 1428 2179 859 859	4449 4449 4449 4449 4449 4449
ColA Q Totals A A A B B B B B B	ColB a b c a a	Q	200 250 450 550 100 150 300 600	4449 200 259 459 559 100 159 300 600	=Aggr(Nodistinct sum(200 700 700 550 250 250 300 600	Value	- abox -	200 700 700 700 550 250 250 300	859 1428 1429 2279 859 859 1429 2179	4449 4440 4440 4440 4440 4440 4440 4440
ColA Q Totals A A A B B B B	COIB a b c a a b b	Q	200 250 450 550 100 150 300 600 400	4449 200 250 450 550 100 150 300 600 490	-Aggr(Nodistinct sum(200 700 700 700 550 250 250 300 600 400	Value	200 200 200 200 200 200 200 200 200 200	200 700 700 550 250 250 300 600	859 1429 1429 2179 859 859 1429 2179 859	4449 4449 4449 4449 4449 4449 4449 444
ColA Q Totals A A A B B B B B B	COIB a b c a a b c c	Q	200 250 450 550 100 150 300 600 400	4449 200 250 450 550 100 150 300 600 400	-Aggr(Nodistinet sum(200 700 700 550 250 250 300 600	Value	200 200 200 200 200 200 200 200 200 200	200 700 700 700 550 250 250 300 600 400	4440 859 1478 1429 2170 859 859 1420 2178 859	4449 4449 4449 4449 4449 4449 4449 444
ColA Q Totals A A A B B B B C C	COIB a b c a a b c c a a b c	Q	200 250 450 550 100 150 300 600 400	4449 200 250 450 550 100 150 300 600 490	*Aggr(Nodistinct sumé	200 700 700 700 550 250 250 300 600 400	Value	200 200 200 200 200 200 200 200 200 200	200 700 700 550 250 250 300 600	859 1429 1429 2179 859 859 1429 2179 859	4449 4449 4449 4449 4449 4449 4449 444

2 conditions within 1 expression

 $= COUNT (\{< uDATE = \{'>=\$(=Date(vStartDate)) <=\$(=Date(vEndDate))'\} , SCORECARDNUMBER = \{'>=\$(=ScorecardStart) <=\$(=ScoreCardEnd)'\} >\} DOCUMENT_COUNT)$

https://help.qlik.com/en-

 $\underline{US/sense/September 2018/Subsystems/Hub/Content/Sense \quad Hub/ChartFunctions/ColorFunctions/color-functions-charts.htm}$

```
=Colormix1 ((Value/ MAX(Total Value)), RGB (255, 150, 100), RGB (100, 150, 255))
=Colormix2 ((Value/ MAX(Total Value)-0.5)*2,RGB (255, 100, 0), RGB (0, 150, 100),RGB (0, 0, 0))
//=ColorMapJet ((((Value-Min(Total Value)+0.01)/Max(Total Value))))
```

Colorized each dimension in the pivot table::::

```
=IF( Dimensionality()= 1
, RGB (250,250,230) //Yellow
,IF( Dimensionality()= 2
,RGB(230,250,230)// Green
,IF( Dimensionality()= 3
, RGB(230,250,250) //Blue
, RGB (250,230,230) //Red
```

------ Hierarchy

Test4:

```
Load distinct
```

Num#([Kostnadsställe]) AS NodeID1,

Num#(left("Function Area",3)) As ParentID1,//Num#(left([Kostnadsställe],3)) As ParentID1,

[KostnadsställeNamn] AS NodeName1

Resident DimOrganisation;

Concatenate(Test4)

Load

Num#(left([Function Area],3)) AS NodeID1,

9999999 As ParentID1,

[Function Area] As NodeName1

RESIDENT DimOrganisation;

Concatenate(Test4)

LOAD * inline

Γ

NodeID1, ParentID1, NodeName1

9999999, , Earth

1;

Hierarchy (NodeID1, ParentID1, NodeName1, ParentName1, NodeName1, PathName1, '\', DepthNew1) Load * Resident Test4;

autonumber(expression[, AutoID])

This script function returns a unique integer value for each distinct evaluated value of *expression*, The expression can be composite from some fields. (field1&field2....)

Hierarchy:

 $\label{eq:hierarchy} Hierarchy (Bolags ID, Parent ID, Bolags namn, Parent, Bolags namn, Path Name, '\', Depth) \\ LOAD$

```
Bolagsnamn,
  AutoNumber(Bolagsnamn) as BolagsID,
  if(Ägarbolag <> 'Koncernmoder', AutoNumber(Ägarbolag)) as ParentID
  //AutoNumber(Ägarbolag) as ParentID
FROM [lib://30.2.TAX/8.Import\Uppsalavisualisering.xlsx]
(ooxml, embedded labels, header is 1 lines, table is [Qlikförteckning Bolag])
where len(trim(Bolagsnamn)) > o;
----- vissa Definition
variabelnamn, definition
"BU" "Affärsenhet"
"CR", "Client responsible, kundansvarig"
"Intäkt (R12)", "Upparbetat värde senaste 12 månader"
"Marknadspenetration", "Andel företag/koncerner som är PwC-kunder av alla företag/koncerner"
"Omsättning", "Med omsättning avses ett företags eller en organisations totala försäljning (såväl kontant som fakturerad) under en
viss tidsperiod, vanligen per år.'
"Proposition", "Beskrivning av affärens område"
"Prospect", "Företag på marknaden där varken upparbetade intäkter eller affärsmöjligheter har registrerats under de senaste 12
"Segment (bolag)", "Sätts utifrån företagets nettoomsättning enligt CMD-specifik klassificering"
"Segment (koncern)", "Sätts utifrån koncernens nettoomsättning enligt CMD-specifik klassificering"
"Target", "Ett företag där aktiv bearbetning pågår och affärsmöjlighet finns registrerad"
"Tier (bolag)", "Sätts utifrån företagets nettoomsättning enligt CMD-specifik klassificering"
"Tier (koncern)", "Sätts utifrån koncernens nettoomsättning enligt CMD-specifik klassificering"
"Uppskattat värde", "Säljarens uppskattning av affärens värde ("Estimated value")"
"Viktat värde", "Ett värde beräknat från uppskattad affärsvärde och vilken fas försäljningen befinner sig i ("weighted value")"
------ For, Next loop
For i= NoOfTables()-1 to 0 step -1
         LET vTable = TableName($(i));
   IF WildMatch('$(vTable)', 'Data*') THEN
                 LEFT JOIN ([Fact]) LOAD * RESIDENT [$(vTable)];
                 DROP TABLE [$(vTable)];
                 ENDIF
Next i
        ------ To ignore Excel Header -----
*Header line
Col1,Col2
a,B
c,D
Using the header is 1 lines specifier, the first line will not be loaded as data. In the example,
the embedded labels specifier tells Qlik Sense to interpret the first non-excluded line as containing
```

field labels.

LOAD Col1, Col2

```
FROM 'lib://files/header.txt'
(txt, embedded labels, delimiter is ',', msq, header is 1 lines);
```

```
------ rangesum(above(sum(Field),0, 3))------
```

https://community.qlik.com/docs/DOC-4252

Aggr(Above(Sum(Sales)), Year, Month)

displays the value from the previous month from the same year. But if you change the order of the dimensions, as in

```
Aggr(Above(Sum(Sales)), Month, Year)
```

Dual('> 2,00 %', 4))))

the expression will display the value from the <u>same month from the previous year</u>. The only difference is the order of the dimensions. The latter expression is sorted first by Month, then by Year. The result can be seen below:

Sun	(Sale:	s)		
Year	Month	Sum(Sales)	Only(Aggr(Above(total Sum({\$ <year=,month=>}Sales)), Year,Month))</year=,month=>	Only(Aggr(Above(Sum({\$ <year=,month=>}Sales)), Month,Year))</year=,month=>
2012	Jan	783	-	-
2012	Feb	676	783	-
2012	Mar	547	676	-
2012	Apr	753	547	-
2012	May	587	753	-
2012	Jun	786	587	-
2012	Jul	915	786	-
2012	Aug	992	915	-
2012	Sep	954	992	-
2012	Oct	1018	954	-
2012	Nov	969	1018	-
2012	Dec	1087	969	-
2013	Jan	878	1087	783
2013	Feb	785	878	676
2013	Mar	788	785	547
2013	Apr	828	788	753
2013	May	770	828	587

An Aggr() table is always sorted by the load order of the dimensions, one by one. This means that you can change the meaning of Above() by changing the order of the dimensions. With this, I hope that you understand the Above() function better.

```
// en annan sätt att göra det
DIM TotalAvgift:
LOAD
   _FörsäkringsnummerSK,
   "Total portföljavgift",
         If("Total portföljavgift"*100 < 1, dual('< 1,00 %',0.0001),
                  IF("Total portföljavgift"*100 > 2, dual('> 2,00 %',4),
                            IF("Total portföljavgift"*100 >= 1 AND "Total portföljavgift"*100 < 1.5, dual('1,00% - 1,49%', 1),
                            dual('1,50% - 2,00%',2)
                  ))) as "Portföljsavgiftintervall"
----- ( Pareto Chart) ------
Assume we have a data source with this fields: Product / Qty
1- Make a combo chart with
- Dimension -> Product
- Measure -> Sum(Qty)

    Measure -> Accumulation % formula : RangeSum(Above(Sum(Qty), 0, RowNo())) / Sum(TOTAL Qty)

- Measure -> 80 % line formula : 0.8
Set the Accumulation % and the 80% line as Line charts on the secondary axis with a "# ##0%" number
format.
2- Sort by Product (decrease) with a formula : Sum(Qty)
 ------ ( Hide Chart) ------
Om man vill dölja en ritning med vissa filteringar eller slicer då kan man göra det genom att skriva koden:
=GetFieldSelections([Förvaltningsform]) = 'Fond' Or GetFieldSelections([Förvaltningsform]) = ('Fond' And 'Trad')
                                                                                                    Include zero values
In I calculation condition på Add-ons. Då visualiseringen blir grått för inte vald slicer (här för Trad).
                                                                                                   Calculation condition
                                                                                                   -GetFieldSelections([Förvaltni fx
                                                                                                   Visas bara för Fond
Man kan även göra det helt enkelt skriva koder som nollställer datat vid filteringer så som:
=if(GetFieldSelections(Förvaltningsform) = 'Fond' or isnull(GetFieldSelections(Förvaltningsform))
                                                                                                   ► Reference lines
, Avg({<Förvaltningsform = {'Fond'}>} [Total portföljavgift])
```

//,Avg([Total portföljavgift])*o) Som visar noll för Trad. Om man av bockar "Include Zero values" då visas inte visualiseringen. Sorting Add-ons ▼ Data handling Include zero values =GetFieldSelections([Förvaltni] fx Displayed message Visas bara för Fond

▶ Reference lines


```
----- (Linear, Power and Exponential Trend line)
För att skapa linjär linje på en chart:
DimVerDatum:
left Keep (FactResultat)
LOAD
 VerDatum,
 AutoNumber(Year(VerDatum)*12 + Month(VerDatum),1) \ As \ MonthSeq
FROM [$(vG.TransformPath)vu_FAB_DimVerDatum.qvd]
(qvd);
GroupTestTemp:
Load
VerDatum,
MonthSeq
Resident DimVerDatum;
join
load
VerDatum,
(Utfall*-1) As Budget
Resident FactResultat;
// Group By MonthSeq;
GroupTest:
Load
MonthSeq,
Sum(Budget) As Budget
Resident GroupTestTemp
Group By MonthSeq;
TrendTable:
load
//MonthSeq,
LINEST_M(Budget,MonthSeq) as Slope,
LINEST_B(Budget,MonthSeq) As Intersect
Resident GroupTest;
//Group by Kostnadsställe//, MonthSeq;
//Order by MonthSeq;
Sedan skapar man en chart med datum som Dimension och Budget och Slope*MonthSeq+Intersect som measures.
Resultatet är det samma om man skapar en measure med :
=linest_m(total aggr(Sum(Utfall*-1),MonthSeq), MonthSeq)*MonthSeq + linest_b(total aggr(Sum(Utfall*-1),MonthSeq)
1),MonthSeq),MonthSeq)
Power Trend line:
                      y = c * POW(x, b)
log(aggr(fAbs(Sum(Utfall)),MonthSeq)),log(MonthSeq)))
                          y = c * POW(e, b * x)
Exponential Trend line:
log(aggr(fAbs(Sum(Utfall)),MonthSeq)),MonthSeq))
Set vConcatenate = ;
For each vFile in FileList('.\*.txt')
Data:
$(vConcatenate)
LOAD * FROM [$(vFile)];
Set vConcatenate = Concatenate;
Next vFile
```