

# Integrating Relation Constraints with Neural Relation Extractors

Yuan Ye, Yansong Feng\*, Bingfeng Luo, Yuxuan Lai, Dongyan Zhao

Wangxuan Institute of Computer Technology, Peking University

#### **Relation Extraction**



**Relation Extraction (RE)** aims to extract <u>predefined relations</u> between two <u>marked entities</u> in plain texts.

Barack Obama married Michelle Obama on October 3, 1992.

Entity<sub>1</sub>

Entity<sub>2</sub>

Spouse

### Motivation



| <usa, new="" york="">, LargestCity</usa,> |
|-------------------------------------------|
|                                           |
|                                           |
|                                           |

| <usa, d.c.="" washington="">, Capital</usa,> |
|----------------------------------------------|
|                                              |
|                                              |
|                                              |

| <richard fuld,="" usa="">, <i>Nationality</i></richard> |  |
|---------------------------------------------------------|--|
|                                                         |  |
|                                                         |  |
|                                                         |  |

#### **Motivation**



<USA, New York>, *LargestCity* 

Capital: 0.5

LargestCity: 0.4

LocationCity: 0.05

<USA, Washington D.C.>, *Capital* 

Capital: 0.95

LocationCity: 0.03

<Richard Fuld, USA>, *Nationality* 

*Nationality*: 0.7

BirthPlace: 0.2

#### **Motivation**



<USA, New York>, LargestCity

Capital: 0.5

LargestCity: 0.4

LocationCity: 0.05

<USA, Washington D.C.>, *Capital* 

*Capital*: 0.95

LocationCity: 0.03

<Richard Fuld, USA>, *Nationality* 

Nationality: 0.7

BirthPlace: 0.2

#### **Relation Constraints**



| Set                 | Sampled Positive Rules                                  |
|---------------------|---------------------------------------------------------|
| $C^{ts}$            | (almaMater, knowFor), (city, region), (spouse, child)   |
| $oldsymbol{C^{to}}$ | (almaMater, owner), (city, hometown), (capital, city)   |
| $C^{tso}$           | (birthPlace, capital), (child, spouse), (city, country) |
| $C^{cs}$            | almaMater, country, city, hometown                      |
| $C^{co}$            | foundationPerson, child, knownFor, product              |

Table 1: Example rules for each constraint set  $C^{\phi}$ .

#### **Relation Constraints**



| Set                 | Sampled Positive Rules                                  |
|---------------------|---------------------------------------------------------|
| $C^{ts}$            | (almaMater, knowFor), (city, region), (spouse, child)   |
| $oldsymbol{C^{to}}$ | (almaMater, owner), (city, hometown), (capital, city)   |
| $C^{tso}$           | (birthPlace, capital), (child, spouse), (city, country) |
| $C^{cs}$            | almaMater, country, city, hometown                      |
| $C^{co}$            | foundationPerson, child, knownFor, product              |

Table 1: Example rules for each constraint set  $C^{\phi}$ .















**Coherent** treats one constraint set as a whole.

**Semantic** pays more attention to which specific rules in the constraint sets the pairwise local predictions should satisfy.





Mini-batch







r<sub>0</sub>:almaMater r<sub>1</sub>:city r<sub>2</sub>:capital

r<sub>3</sub>:region



#### **Local Loss Calculator**









#### **Datasets**

- ◆ English Dataset: constructed by mapping triples in *Dbpedia* to sentences in the *New York Times* corpus
- ◆ Chinese Dataset: built by mapping the triples of *HudongBaiKe*, a large Chinese encyclopedia, with four Chinese economic newspapers

|                 | Dolotiona | Train Set |        | Test      | Set    | Constraints |  |
|-----------------|-----------|-----------|--------|-----------|--------|-------------|--|
|                 | Relations | # Triples | # Sent | # Triples | # Sent | Constraints |  |
| English Dataset | 51        | 50k       | 134k   | 30k       | 53k    | 541         |  |
| Chinese Dataset | 28        | 60k       | 120k   | 40k       | 83k    | 110         |  |



#### **Main Results**





#### **Main Results**

|                   | English Dataset |       |       |       |                 |  |
|-------------------|-----------------|-------|-------|-------|-----------------|--|
| <b>Model Name</b> | P@100           | P@200 | P@300 | Mean  | $\Delta_{Base}$ |  |
| ACNN              | 96.70           | 92.61 | 91.72 | 93.68 | _               |  |
| ACNN(Coh)         | 97.39           | 93.78 | 90.69 | 93.96 | +0.3            |  |
| ACNN(Sem)         | 97.62           | 95.87 | 94.12 | 95.87 | +2.2            |  |
| ACNN+ILP          | 97.87           | 94.36 | 93.16 | 95.13 | +1.5            |  |
| ACNN(Coh)+ILP     | 97.73           | 94.51 | 91.29 | 94.51 | +0.8            |  |
| ACNN(Sem)+ILP     | 98.17           | 96.6  | 95.48 | 96.75 | +3.1            |  |
| APCNN             | 100             | 98.97 | 97.41 | 98.79 | _               |  |
| APCNN(Coh)        | 100             | 99.57 | 97.33 | 98.97 | +0.2            |  |
| APCNN(Sem)        | 100             | 100   | 97.95 | 99.32 | +0.5            |  |
| APCNN+ILP         | 100             | 99.13 | 97.55 | 98.89 | +0.1            |  |
| APCNN(Coh)+ILP    | 100             | 100   | 98.03 | 99.34 | +0.6            |  |
| APCNN(Sem)+ILP    | 100             | 100   | 98.39 | 99.46 | +0.7            |  |



<USA, Washington D.C.>, Capital

Capital: 0.95

LocationCity: 0.03

<USA, New York>, *LargestCity* 

Capital: 0.5

LargestCity: 0.4

LocationCity: 0.05

<Richard Fuld, USA>, *Nationality* 

Nationality: 0.7

BirthPlace: 0.2



#### **Main Results**

|                   | English Dataset |       |       |       |                 |  |
|-------------------|-----------------|-------|-------|-------|-----------------|--|
| <b>Model Name</b> | P@100           | P@200 | P@300 | Mean  | $\Delta_{Base}$ |  |
| ACNN              | 96.70           | 92.61 | 91.72 | 93.68 | -               |  |
| ACNN(Coh)         | 97.39           | 93.78 | 90.69 | 93.96 | +0.3            |  |
| ACNN(Sem)         | 97.62           | 95.87 | 94.12 | 95.87 | +2.2            |  |
| ACNN+ILP          | 97.87           | 94.36 | 93.16 | 95.13 | +1.5            |  |
| ACNN(Coh)+ILP     | 97.73           | 94.51 | 91.29 | 94.51 | +0.8            |  |
| ACNN(Sem)+ILP     | 98.17           | 96.6  | 95.48 | 96.75 | +3.1            |  |
| APCNN             | 100             | 98.97 | 97.41 | 98.79 | -               |  |
| APCNN(Coh)        | 100             | 99.57 | 97.33 | 98.97 | +0.2            |  |
| APCNN(Sem)        | 100             | 100   | 97.95 | 99.32 | +0.5            |  |
| APCNN+ILP         | 100             | 99.13 | 97.55 | 98.89 | +0.1            |  |
| APCNN(Coh)+ILP    | 100             | 100   | 98.03 | 99.34 | +0.6            |  |
| APCNN(Sem)+ILP    | 100             | 100   | 98.39 | 99.46 | +0.7            |  |

After equipped with our *CLC* modules, i.e., *Coherent* and *Semantic*, both *ACNN* and *APCNN* obtain improvement on the English dataset.



#### **Main Results**

|                | English Dataset |       |       |       |                 |  |  |
|----------------|-----------------|-------|-------|-------|-----------------|--|--|
| Model Name     | P@100           | P@200 | P@300 | Mean  | $\Delta_{Base}$ |  |  |
| ACNN           | 96.70           | 92.61 | 91.72 | 93.68 | _               |  |  |
| ACNN(Coh)      | 97.39           | 93.78 | 90.69 | 93.96 | +0.3            |  |  |
| ACNN(Sem)      | 97.62           | 95.87 | 94.12 | 95.87 | +2.2            |  |  |
| ACNN+ILP       | 97.87           | 94.36 | 93.16 | 95.13 | +1.5            |  |  |
| ACNN(Coh)+ILP  | 97.73           | 94.51 | 91.29 | 94.51 | +0.8            |  |  |
| ACNN(Sem)+ILP  | 98.17           | 96.6  | 95.48 | 96.75 | +3.1            |  |  |
| APCNN          | 100             | 98.97 | 97.41 | 98.79 | _               |  |  |
| APCNN(Coh)     | 100             | 99.57 | 97.33 | 98.97 | +0.2            |  |  |
| APCNN(Sem)     | 100             | 100   | 97.95 | 99.32 | +0.5            |  |  |
| APCNN+ILP      | 100             | 99.13 | 97.55 | 98.89 | +0.1            |  |  |
| APCNN(Coh)+ILP | 100             | 100   | 98.03 | 99.34 | +0.6            |  |  |
| APCNN(Sem)+ILP | 100             | 100   | 98.39 | 99.46 | +0.7            |  |  |

Applying ILP to our approach can obtain further improvement.



#### **Main Results**

|     | English Dataset   |       |       |       |       |                 |  |  |
|-----|-------------------|-------|-------|-------|-------|-----------------|--|--|
|     | <b>Model Name</b> | P@100 | P@200 | P@300 | Mean  | $\Delta_{Base}$ |  |  |
| r   | <b>-</b> ACNN     | 96.70 | 92.61 | 91.72 | 93.68 | _               |  |  |
| 1.5 | ACNN(Coh)         | 97.39 | 93.78 | 90.69 | 93.96 | +0.3            |  |  |
| 0.5 | ACNN(Sem)         | 97.62 | 95.87 | 94.12 | 95.87 | +2.2            |  |  |
|     | <b>−</b> ACNN+ILP | 97.87 | 94.36 | 93.16 | 95.13 | +1.5            |  |  |
| 0.9 | ACNN(Coh)+ILP     | 97.73 | 94.51 | 91.29 | 94.51 | +0.8            |  |  |
| L   | ACNN(Sem)+ILP     | 98.17 | 96.6  | 95.48 | 96.75 | +3.1            |  |  |

#### **Conclusions**



- ➤ A unified framework to integrate relation constraints with neural networks for RE
  - Coherent (general perspectives), Semantic (precise perspectives)
  - Validating our approach on English and Chinese datasets
- ➤ Our study reveals that learning with the constraints can better utilize the constraints from a different perspective compared to the ILP post-processing method



# Thank you! Q&A

pkuyeyuan@pku.edu.cn WICT, PKU