

DISTANCE LEARNING PROGRAMME

(Academic Session: 2015 - 2016)

LEADER TEST SERIES / JOINT PACKAGE COURSE

TARGET: PRE-MEDICAL 2016

Test Type: ALL INDIA OPEN TEST (MAJOR) Test Pattern: AIPMT

TEST DATE: 21 - 02 - 2016

ANSWER KEY																				
Que	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	4	3	3	4	2	3	1	2	2	2	4	2	4	4	3	2	3	3	3
Que	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	2	4	1	1	1	3	2	2	2	2	2	2	4	1	4	2	1	3	2	1
Que	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	3	1	1	4	2	1	1	3	1	4	3	1	1	2	3	1	1	4	3
Que	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	3	4	3	4	1	1	1	1	4	1	4	4	2	3	1	3	3	3	1	1
Que	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	4	4	3	1	4	3	2	1	2	1	2	1	4	3	1	2	2	1	2	4
Que	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	4	1	3	2	4	3	1	1	3	2	3	2	1	2	3	2	4	4	2	3
Que	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
Ans.	2	3	1	2	2	3	4	1	3	2	1	2	2	4	3	1	4	3	2	4
Que	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
Ans.	3	2	1	3	4	1	4	2	3	2	3	2	1	4	4	3	3	2	2	4
Que	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
Ans.	4	3	4	1	2	4	4	4	3	3	2	2	2	3	3	4	4	4	2	4

HINT - SHEET

1.
$$\vec{G}_{AB} = \vec{G}_A - \vec{G}_B$$

$$2. \qquad \Delta \phi = \frac{2\pi}{\lambda} \cdot \frac{\lambda}{6} = \frac{\pi}{3}$$

$$I = I_0 + I_0 + 2\sqrt{I_0^2} \left(\frac{1}{2}\right) = I_0 + I_0 + I_0 = 3I_0$$

$$I_{max} = \left[\sqrt{I_1} + \sqrt{I_2}\right]^2 = 4I_0$$

$$\frac{I}{I_{\text{max}}} = \frac{3I_0}{4I_0} = \frac{3}{4}$$

3.

$$T = 840 \text{ N}$$

$$ma = T-mg$$

$$T = m (g + a)$$

$$840 = 60 (10 + 9)$$

$$9 = 4 \, \text{m/s}^2$$

4. Stability α move BE/A

5.
$$k \alpha t$$

$$v\alpha\sqrt{t}$$

$$F = ma a = \frac{dv}{dt} \alpha \frac{1}{\sqrt{t}}$$

$$F\alpha \frac{1}{\sqrt{t}}$$

6.
$$\frac{N_1}{N_2} = \frac{I_2}{I_1}$$

$$\frac{140}{280} = \frac{I_2}{4} \Longrightarrow I_2 = 2A$$

$$D_2 - RB$$

$$D_2 - RB$$

 $D_1 - RB$

7.
$$T \propto r^{\frac{3}{2}}$$

$$\frac{T^1}{T} = (4)^{\frac{3}{2}}$$

$$T^1 = 5 \times 8 = 40$$

8.
$$v_{\text{mix}} = \frac{Cp_{\text{mix}}}{Cv_{\text{min}}} = \frac{n_1cp_1 + n_2cp_2}{n_1cv_1 + n_2cv_2}$$

9.
$$\vec{u} = \hat{i} + 2\hat{j}$$
 $u \cos \theta = 1 \tan \theta = 2$

$$u \sin \theta = 2 \ u^2(1) = 1 + 4 = 5$$

$$y = x \tan \theta - \frac{g}{2(u\cos\theta)^2} x^2 \qquad u = \sqrt{5}$$

$$y = x(2) - \frac{10}{2 \times 5} (1+4)x^2$$
 $\sec^2 \theta = 1 + \tan^2 \theta$
 $y = 2x - 5x^2$

$$F_{\rm C} = \frac{Gm^2}{(2R)^2} = \frac{mv^2}{R}$$

$$V = \sqrt{\frac{Gm}{4R}}$$

11.
$$I = \frac{12}{4+2} = 2A$$

12.
$$I_x = \frac{1}{2}mR^2 = \frac{1}{2}(\rho\pi R^2 t)R^2$$

$$I_y = \frac{1}{2}m_2(4R)^2 = \frac{1}{2}(\rho\pi(4R)^2\left(\frac{t}{4}\right) = (4R)^2$$

$$= 64 I_x \qquad \Rightarrow \boxed{I_y = 64I_x}$$

$$\left(2\sqrt{2}F + F/2\right) + F_1 = 0$$

$$\left(2\sqrt{2}+1\right)\frac{kQ^2}{a^2} - \frac{kQq}{\left(\frac{a}{\sqrt{2}}\right)^2} = 0$$

$$q = \frac{Q}{4} \left(1 + 2\sqrt{2} \right)$$

$$v^{2} = 0^{2} + 2a(\cdot 2)$$

 $v^{2} = \cdot 4a$
 $0^{2} = v^{2} - 2 \times 10 \times 2$

$$v^2 = 40 = 4a = \frac{4a}{10}$$

$$a = 100$$

$$F = ma$$

$$= .2 \times 100 = 20 \text{ N}$$

15.
$$F_{av} = 0 + F/2 = F/2$$

$$W = \left(\frac{0+F}{2}\right)\ell = \frac{F\ell}{2}$$

16.
$$V_T = \frac{2r^2}{9\eta}(\rho - \sigma)g$$

17.
$$\frac{C_1V_1 - C_2V_2}{C_1 + C_2} = 0$$

$$C_1V_1 = C_2V_2$$

 $3C_1 = 5C_2$
 $C_1120 = C_2 200$

18. W E
$$B = \frac{\mu_0 I}{2\pi r}$$
 south

19.
$$(\Delta g)_{in} = (\Delta g)_{out}$$

$$\left(\frac{d}{R}\right)g = \left(\frac{2h}{R}\right)g$$

$$d = 2h$$

$$V_{in} = V_s = kq / R$$

$$V_p = \frac{kQ}{R/2} + \frac{kq}{R}$$

$$V_p = \frac{2Q}{4\pi \in_0 R} + \frac{q}{4\pi \in_0 R}$$

21. W = T.
$$\Delta$$
A = T $(4\pi r_2^2 - 4\pi r_1^2)$

22.
$$0^2 = u^2 - 2as_1$$

$$S_1 = \frac{u^2}{2a}$$

$$\frac{S_1}{S_2} = \left(\frac{u_1}{u_2}\right)^2 = \frac{u^2}{16u^2} = \frac{1}{16} \Rightarrow 1:16$$

23.

$$t_1 = \frac{u}{g}$$

$$t_2 = nt_1 = \frac{nu}{g}$$

$$H = -ut_2 + \frac{1}{2}gt_2^2$$

put & solve

$$2g H = nu^2 (n-2)$$

24.
$$I = I_0 e^{-t/\tau}$$

$$I_0 = \frac{E}{R} = \frac{100}{100} = 1$$

$$\tau = \frac{L}{R} = \frac{100 \times 10^{-3}}{100} = 1 \text{ m sec}$$

$$I = 1 \cdot e^{-1} = \frac{1}{e} A$$

25.

Using, energy - conservation theorem

Loss in PE = gain in kE

$$mg(\Delta h) = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

$$\Delta h = 80 \text{m}, \ \omega = \frac{v}{r}; \ I = \frac{2}{5} \text{m} r^2$$

$$g = 10 \text{ m/s}^2$$

$$v = 40\sqrt{\frac{5}{7}} \text{ m/s}$$

$$Y = \overline{\overline{A} \cdot \overline{B}} = \overline{\overline{A}} + \overline{\overline{B}} = A + B$$
 OR gate

$$W = \frac{mgL}{2n^2}$$

$$W = 3.6 J$$

$$L = 2m$$

$$y = \frac{L}{n} \qquad \qquad n = \frac{10}{3}$$

29. use TIR
$$r = 90$$

1.sin $\theta = \mu \sin r$

$$\mu \sin (90-r) = 1.\sin 90$$

 $\mu \cos r = 1$

$$\sin \theta = \frac{2}{\sqrt{3}} \left(\frac{1}{2}\right) = \frac{1}{\sqrt{3}} \qquad \cos r = \frac{1}{\mu}$$

$$\cos r = \frac{1}{\mu}$$

$$\theta = \sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

$$\sin r = \sqrt{1 - \frac{1}{\mu}} = \sqrt{1 - \frac{3}{4}}$$

$$\sin r = \frac{1}{2}$$

$$r = 300$$

30.
$$\frac{R}{S^5} = \frac{80}{20}$$

$$R = 220 \Omega$$

31.
$$|P| = [M^1 L^{-1} T^{-2}], |\lambda| = [M^1 L^2 T^{-1}]$$

32.
$$\alpha = {}_{2}He^{4}$$

$$\beta^- = -1e^{\circ}$$
 remove

$$\beta^+ = +1e^{o}$$

$$I = \frac{ma^2}{6} + m\left(\frac{a}{\sqrt{2}}\right)^2 = \frac{2}{3}ma^2$$

34.
$$S = 2R$$

$$P = \frac{R}{2}$$
 $S = 2 (2P)$

$$S = 4P$$
 $n = 4$

35.
$$dv = \frac{kdq}{x} = \left(\frac{kQ}{L}\right) \frac{dx}{x}$$

$$dq = \left(\frac{Q}{L}\right) dx$$

$$v = \int_{L}^{2L} \frac{kQ}{L} \frac{dx}{x}$$

$$= \frac{Q}{4\pi \in_{0} L} \ell n_{2}$$

37.
$$W = pE\cos\theta = \frac{pE}{2}$$

38.
$$E_1 = \frac{13.6 \text{eV}}{\text{n}^2}$$

$$n = 2$$

$$E_2 = 3.4 \text{ eV}$$

40.

The direction of $\vec{\omega}$ vector is always \perp^r to the plane containing $\vec{r} \& \vec{v}$, as shown in fig. (at any instant).

Angular momentum

$$\vec{L} = I\vec{\omega}$$

Obviously, \vec{L} changes, as $\vec{\omega}$ changes in direction but $\vec{\tau} \cap d\vec{\theta}$.

.. No work is done by torque due to weight of

So $|\vec{\omega}| = \text{constant}$

or
$$|\vec{L}| = constant$$

41. RP
$$\propto \frac{1}{\lambda} = 5:4$$

15 S = area under v-t graph

$$S = \frac{1}{72}ft^2$$

45.
$$\int_{mg}^{T} da \qquad \qquad \downarrow_{R} \tau = I \alpha \boxed{I = mR^{2}}$$

$$T.R = mR^2 \cdot \frac{a}{R}$$

$$\left(\frac{M}{0}\right)9 = T$$

$$ma = mg - T \qquad(1)$$

$$(m + m)a = mg$$

- a = g/2
- **48.** –CH₃ group have more ∝H
- **49.** More acidic reacts faster
- **50.** Reactivity of inter halogen is more than halogens excepts F_2 .
- **53.** Reactivity towards $SN^2 1^\circ > 2^\circ > 3^\circ$ Alkyl halide

54.
$$\underbrace{\frac{H - Br}{R_2 O_2}}_{A.M.R.} \underbrace{CH_2 - Br}$$

55.
$$H_3BO_3 + OH \rightarrow OH \rightarrow OH OH OH$$
 aprotic acid

60. $\operatorname{Zn} + \operatorname{dil}. \operatorname{HNO}_3 \rightarrow \operatorname{Zn}(\operatorname{NO}_3)_2 + \operatorname{N}_2\operatorname{O} \text{ (Nitrous oxide)}$

63.
$$CH_3-C-C_2H_5 \xrightarrow{NH_2-NH_2/OH^\circ} CH_3-CH_2-CH_2-CH_3$$
Wolf Kishner Reduction

65.
$$(NH_4)$$
, $Cr_2O_7 \xrightarrow{\Delta} N_2 + Cr_2O_3 + H_2O$

- **69.** I.E \Rightarrow Be⁺² > Li⁺ > He > He⁻
- 73. Reactivity towards (HCl) or Electrophile∞ stability of carbocation

$$\propto \frac{+M/+I}{-M/-I}$$

77.
$$C_2CIHI Br \Rightarrow I \\ Br \\ C = C \\ H$$

asymmetric carbon absent

78.
$$CH_3-C \equiv C - CH_3 \xrightarrow{O_3} CH_3-C-C-CH_3$$
 $CH_3-C = C - CH_3 \xrightarrow{O_3} CH_3-C-C-CH_3$

79. Solubility \Rightarrow LiI > LiBr > LiCl > LiF

80.
$$Cr_2O_3 + 2A\ell \rightarrow 2Cr + A\ell_2O_3$$

82.
$$\begin{array}{c} \text{HOOC} \\ \text{HOOC} \\ \text{C} = \text{C} \\ \text{H} \\ \text{2} \end{array}$$

Same priority same side - 'Z' (Cis)

83.
$$C_2H_5C1 \xrightarrow{\text{Moist} \atop \text{Ag}_2\text{O}} CH_3 - CH_2 - OH \xrightarrow{\text{Al}_2O_3} \overrightarrow{\text{360}^{\circ}\text{C}}$$

$$CH_{2} = CH_{2} \xrightarrow{S_{2}Cl_{2}} S + CH_{2} - CH_{2} - S - CH_{2} - CH_{2}$$

$$Mustard gas$$

84.
$$IF_5$$
 $F < 90^{\circ}$

88.
$$\longrightarrow \xrightarrow{\text{CH}_3-\text{OH/H}^{\oplus}} \xrightarrow{\text{H}} \text{O-CH}_3$$

- **91.** NCERT XII, Pg. # 23
- **92.** NCERT XII Pg # 55
- **93.** NCERT Pg # 23,24
- 94. Allen Booklet 2, page 17
- **98.** NCERT XII Pg. # 133 figure 7.5
- **100.** Module Pg. # 6
- **102.** NCERT XII Pg # 43
- **104.** NCERT Pg # 57
- **106.** NCERT Pg. # 169, 170
- **107.** NCERT Pg. # 207
- **110.** Module Pg. # 2,3
- 111. NCERT XII, Pg. # 27
- **113.** NCERT Pg # 34
- **114.** NCERT Pg # 57/ Allen booklet 2 pg. 60(E), 61(H)

- **116.** NCERT Pg. # 131
- **117.** NCERT Pg. # 223
- **119.** NCERT Pg. # 260
- **123.** NCERT Pg # 17
- **126.** NCERT Pg. # 168, 169
- **127.** NCERT Pg. # 250
- **129.** NCERT Pg. # 271
- **131.** NCERT XII, Pg. # 25
- **133.** NCERT Pg # 101,102
- **137.** NCERT Pg. # 243
- **139.** NCERT Pg. # 232-233,234
- **141.** NCERT XIth Pg#78,79,80,81
- **143.** NCERT Pg # 103
- **146.** NCERT Pg. # 159
- **147.** NCERT XII Pg. # 127 Ist para

- **149.** NCERT Pg. # 270,271,272,274
- **153.** NCERT Pg # (E) 115, (H) 116
- **156.** NCERT Pg. # 156/159
- **157.** NCERT XII Pg. # 136 figure 7.8 (c)
- **159.** Module Pg. # 34
- **161.** NCERT XIth Pg#85
- **162.** NCERT Pg # 34
- **163.** Allen Booklet 2 Pg # (E) 148, (H) 155
- **166.** NCERT Pg. # 228
- **169.** Module Pg. # 48
- **171.** NCERT XII Pg # 43
- **172.** NCERT Pg # 17
- **173.** NCERT Pg # (E) 52, (H) 51,52
- **176.** NCERT Pg. # 208
- **179.** Module Pg. # 5,6,7