Linear Regression

Formula	Evplanation		
1 OTHIUIG	Explanation		
$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}}, \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$	Least squares estimates of β 's		
where $SS_{xy} = \sum xy - \frac{(\sum x)(\sum y)}{n}$			
$SS_{xx} = \sum_{n} x^2 - \frac{(\sum_{n} x)^2}{n}$			
$n = \sum w = n$			
$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$	Least-squares line		
$SSE = \sum (y_i - \hat{y}_i)^2 = SS_{yy} - \hat{\beta}_1 SS_{xy}$	Sum of squared errors		
	Sum of squared offers		
where $SS_{yy} = \sum y^2 - \frac{(\sum y)^2}{n}$			
$s^2 = \frac{\text{SSE}}{n-2}$	Estimated variance of σ^2 of ϵ		
$\frac{\sigma}{n-2}$			
$s_{\hat{\beta}_1} = \frac{s}{\sqrt{SS_{xx}}}$	Estimated standard error of $\hat{\beta}_1$		
V SS III			
$T = \hat{\beta}_1 - \beta_1(0) = \hat{\beta}_1 - 0 = \hat{\beta}_1$	Test statistic for $H : B = 0$		
$T = \frac{\hat{\beta}_1 - \beta_1(0)}{s_{\hat{\beta}_1}} = \frac{\hat{\beta}_1 - 0}{s_{\hat{\beta}_1}} = \frac{\hat{\beta}_1}{s_{\hat{\beta}_1}}$	Test statistic for H_0 : $\beta_1 = 0$		
	i.e. # of SDs from the student's T distribution mean		
$\hat{eta}_1 \pm (t_{lpha/2}) s_{\hat{eta}_1}$	$(1-\alpha)100\%$ confidence interval for β_1		
β 1 (α /2) β 1			
- CC CCF			
$r^2 = rac{\mathrm{SS}_{yy} - \mathrm{SSE}}{\mathrm{SS}_{yy}}$	Coefficient of determination		
99			
$SS_{xy} = \pm \sqrt{2} (some sim as \hat{\theta})$	Coefficient of correlation		
$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} = \pm \sqrt{r^2} \text{ (same sign as } \hat{\beta}_1\text{)}$	Coefficient of correlation		
$\hat{y} \pm (t_{\alpha/2}) s \sqrt{\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}$	$(1-\alpha)100\%$ confidence interval for $E(y)$ when $x=x_p$		
$g + (\alpha/2)^{\sigma} \sqrt{n}$ SS _{xx}	$L = x_1 = x_2 = x_3 = x_4 = x_4 = x_5 = $		
$\hat{y} \pm (t_{\alpha/2})s\sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}$	$(1-\alpha)100\%$ prediction interval for y when $x=x_p$		
. γ ουχχ	-		

Linear Regression Example

X	Y	\hat{Y}	$Y - \hat{Y}$	$(Y-\hat{Y})^2$
1	420	408.16	11.84	139.7124
2	410	422.36	-12.36	153.2644
3	437	436.56	0.44	0.1764
4	467	450.76	16.24	263.0884
5	448	464.96	-16.96	288.3204
6	460	479.16	-19.16	261.7924
7	507	493.36	13.64	185.5044
8	514	507.56	6.44	41.2164
$\sum X = 36$	$\sum Y = 3,663$	$\sum \hat{Y} = 3662.88$	$\sum (Y - \hat{Y}) = 0.12$	$\sum (Y - \hat{Y})^2 = 1439.1569$

$$\sum xy = 1 \cdot 420 + 2 \cdot 410 + 3 \cdot 437 + 4 \cdot 467 + 5 \cdot 448 + 6 \cdot 460 + 7 \cdot 507 + 8 \cdot 514 = 17080$$

$$SS_{xy} = 17080 - \frac{36 \cdot 3663}{8} = 596.05$$

$$\sum x^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 = 204$$

$$SS_{xx} = 204 - \frac{36^2}{8} = 42$$

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} = \frac{597.04}{42} = 14.20238$$

$$\bar{x} = 36/8 = 4.5$$

$$\bar{y} = 3663/8 = 457.875$$

$$\hat{\beta}_0 = 457.875 - 14.20238 \cdot 4.5 = 393.96$$

$$\hat{y} = 393.96 + 14.20x$$

$$SSE = \sum (y_i - \hat{y}_i)^2 = 1439.1569$$

$$s^2 = \frac{SSE}{n-2} = 239.8595$$

$$s = \sqrt{239.8595} = 15.4874$$

$$s_{\hat{\beta}_1} = \frac{15.4874}{\sqrt{42}} = 2.389757326$$

$$T = \frac{\hat{\beta}_1}{s_{\hat{\delta}_1}} = \frac{14.20238}{2.389757326} = 5.943021848$$
(1)

Looking at the table for the students T distribution for 6 degrees of freedom, we see that at the 95% confidence level, in order to accept the null hypothesis we must be within \pm 2.44691185 standard deviations of the mean error. Our results show that we are +5.943021848 standard deviations from the mean. Therefore we reject the null hypothesis and the values of X and Y are correlated and NOT random.

If we use the p calculator for student's T distribution for 5.943021848 and 6 degrees of freedom, we get a p value of 0.0010140, which also leads us to the conclusion that we reject the null hypothesis.

The 95% confidence interval for β_1 is $\hat{\beta}_1 \pm (t_{\alpha/2})s_{\hat{\beta}_1} = 14.20238 \pm 2.44691185 \cdot 2.389757326 = (8.3525, 20.0475)$

$$(8.3525, 20.0475)$$

 $r^2 = \frac{8468.879 - 1439.1569}{8468.879} = 0.8548 \text{ where } SS_{yy} = 8468.879$
 $r = \sqrt{r^2} = 0.9245$

Confidence interval of the mean value of
$$y$$
 when $x=2$ $422.36 \pm 2.44691185 \cdot 15.4874 \cdot \sqrt{1/8 + \frac{(2-4.5)^2}{42}} = (402.5301, 442.1899)$

Confidence interval of the predicted value of
$$y$$
 when $x=2$ $422.36 \pm 2.44691185 \cdot 15.4874 \cdot \sqrt{1+1/8+\frac{(2-4.5)^2}{42}} = (379.5890314,465.1310)$