Math 302/401/600 Fall 2010 Homework #9

Due Nov. 10, Wed. in class

- * Use the standard Euclidean metric for a Euclidean space unless otherwise specified.
- 1. Let A be a path connected set in a metric space (M, d) and f be a continuous function on M. Show that f(A) is path connected.
- 2. Show that the unit circle in \mathbb{R}^2 is path connected, i.e. $\mathbb{S}^1 := \{(x,y) : x^2 + y^2 = 1\}$ is path connected. (*Hint*: you may assume that the functions sin and cos are continuous on \mathbb{R} .)
- 3. (1) Let f be a continuous function on a metric space (M, d) and A be a nonempty set in M. Show that if f is uniformly continuous on the closure of A, so is on A.
 - (2) Let $g: \mathbb{R}^2 \to \mathbb{R}$ be continuous on \mathbb{R}^2 . Let (a, b] and (c, d) be two intervals in \mathbb{R} . Use (1) to show that g is uniformly continuous on $(a, b] \times (c, d)$.
- 4. Use the negation of uniform continuity to show that the function $f(x) := x^{-2}$ is not uniformly continuous on the interval (0,2]. (Hint: find sequences (x_n) and (y_n) in (0,2] such that $(x_n y_n) \to 0$ but $(f(x_n) f(y_n)) \cdots$.)