

ISTA 421 + INFO 521 Introduction to Machine Learning

Lecture 4: Higher Dimensions, Geometry of LLMS, Nonlinear response (basis fns)

Clay Morrison

claytonm@email.arizona.edu Harvill 437A Phone 621-6609

29 August 2018

1

Next Topics

- · Moving to higher dimensions
 - Linear Algebra: Quick review of some operations
 - Some Geometry of Linear Algebra
 - Least Mean Squares in Matrix formulation
 - The Geometry of LMS solution
- Nonlinear Response: Basis Functions
- Model Selection
 - Generalization and Overfitting
 - Method 1: Cross Validation
- Regularized Least Squares

Solving LMS: Method 1 (analytic)

(for single variable, 2 parameter linear model)

$$\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} (w_1^2 x_n^2 + 2w_1 x_n (w_0 - t_n) + w_0^2 - 2w_0 t_n + t_n^2)$$

• Partial derivative for w_0 :

$$\frac{\partial \mathcal{L}}{\partial w_0} = 2w_0 + 2w_1 \frac{1}{N} \left(\sum_{n=1}^N x_n \right) - \frac{2}{N} \left(\sum_{n=1}^N t_n \right)$$

• Set $\frac{\partial \mathcal{L}}{\partial w_0} = 0$ and solve for w_0 :

$$w_0 = \frac{1}{N} \left(\sum_{n=1}^N t_n \right) - w_1 \frac{1}{N} \left(\sum_{n=1}^N x_n \right) = \overline{t} - w_1 \overline{x}$$

• Partial derivative for w_1 :

$$\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \frac{1}{N} \left(\sum_{n=1}^N x_n^2 \right) + \frac{2}{N} \left(\sum_{n=1}^N x_n (w_0 - t_n) \right)$$

• Plug in
$$w_0$$
, set $\frac{\partial \mathcal{L}}{\partial w_1} = 2w_1 \frac{1}{N} \left(\sum_{n=1}^N x_n^2 \right) + \frac{2}{N} \left(\sum_{n=1}^N x_n (w_0 - t_n) \right)$
• Plug in w_0 , set $\frac{\partial \mathcal{L}}{\partial w_1} = 0$ and solve for w_1 :
$$w_1 = \frac{\left(\frac{1}{N} \sum_{n=1}^N x_n t_n \right) - \left(\frac{1}{N} \sum_{m=1}^N t_n \right) \left(\frac{1}{N} \sum_{m=1}^N x_n \right)}{\left(\frac{1}{N} \sum_{n=1}^N x_n^2 \right) - \left(\frac{1}{N} \sum_{n=1}^N x_n \right)^2} = \frac{\overline{xt} - \overline{xt}}{\overline{x^2} - (\overline{x})^2}$$

The so-called normal equations!

3

How about more than 1 input?

- Most problems will involve more than just the relationship between 1 input attribute and a target.
- Extending our linear models to higher dimensions is desirable. For 2 inputs it is easy to visualize the geometry: now the "line" is a plane in 3D
- In general, a (regression) linear model with *n* input variables and **n**+1 parameters (the **w**'s, with their values determined) is an *n*dimensional "hyperplane" embedded in n+1 dimensions.

$$\mathbf{a}^{ op}\mathbf{b} = \sum_{n=1}^{N} a_n b_n$$

$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \sum_{n=1}^{N} a_n b_n$ Matrix Product

Let C = AB, where

A is a $N \times P$ matrix

 ${f B}$ is a $P \times M$ matrix

C is a $N \times M$ matrix and each entry C of C is: $C_{ij} = \sum_k A_{ik} B_{kj}$

$$egin{array}{lll} b_{11} & b_{12} \ b_{21} & b_{22} \end{array}$$

(1st edition of FCML, has small error on p.18: copies first line, but index for a's become a_{21}, a_{22})

5

Inner versus Outer Product

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{x}^\top = [x_1, x_2, \cdots, x_n] \quad \mathbf{A} \begin{bmatrix} \mathbf{a}_{1,1} \, \mathbf{a}_{1,2} \\ \mathbf{a}_{2,1} \, \mathbf{a}_{2,2} \\ \mathbf{a}_{3,1} \, \mathbf{a}_{3,2} \\ \mathbf{a}_{4,1} \, \mathbf{a}_{4,2} \end{bmatrix} \quad \mathbf{A} \begin{bmatrix} \mathbf{a}_{1,1} \, \mathbf{a}_{1,2} \\ \mathbf{a}_{2,1} \, \mathbf{a}_{2,2} \\ \mathbf{a}_{4,1} \, \mathbf{a}_{4,2} \end{bmatrix}$$

Inner (dot) product of vectors **a** and **b** (where both are size *N*)

$$\mathbf{a}^{\top}\mathbf{b} = \sum_{n=1}^{N} a_n b_n$$

Inner product is commutative: $\mathbf{a}^\mathsf{T}\mathbf{b} = \mathbf{b}^\mathsf{T}\mathbf{a}$

Outer product of vectors vectors a (of size N) and \mathbf{b} (of size M)

$$\mathbf{a}\mathbf{b}^{ op} = egin{bmatrix} a_1b_1 & a_1b_2 & \dots & a_1b_m \ a_2b_1 & a_2b_2 & \dots & a_2b_m \ dots & dots & \ddots & dots \ a_nb_1 & a_nb_2 & \dots & a_nb_m \end{bmatrix}$$

Outer product is not necessarily commutative: $\mathbf{a}\mathbf{b}^{\mathsf{T}} \neq \mathbf{b}\mathbf{a}^{\mathsf{T}}$ (in general)

Both inner and outer products are just special cases of matrix product.

Simple Linear Model in Matrix Notation

• First, express our original 1-variable, 2-param model in matrix notation:

$$\mathbf{w} = egin{bmatrix} w_0 \ w_1 \end{bmatrix} \quad \mathbf{x}_n = egin{bmatrix} 1 \ x_n \end{bmatrix}$$
 $f(x_n; w_0, w_1) = \mathbf{w}^{ op} \mathbf{x}_n = w_0 + w_1 x_n$ $\mathcal{L} = rac{1}{N} \sum_{n=1}^{N} (t_n - \mathbf{w}^{ op} \mathbf{x}_n)^2$

 $\mathcal{L} = \frac{1}{N} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\top} \mathbf{x}_n)^2$ Simple Linear Model in Matrix Notation

 Next, express the operations involving all of the data (the inputs x_n and the targets t_n):

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}, \quad \mathbf{x}_n = \begin{bmatrix} 1 \\ x_n \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1^\mathsf{T} \\ \mathbf{x}_2^\mathsf{T} \\ \vdots \\ \mathbf{x}_N^\mathsf{T} \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_N \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{bmatrix} \quad (\mathbf{t} - \mathbf{X}\mathbf{w})^\mathsf{T} (\mathbf{t} - \mathbf{X}\mathbf{w}) = \begin{bmatrix} t_1 - w_0 - w_1 x_1 \\ t_2 - w_0 - w_1 x_2 \\ \vdots \\ t_N - w_0 - w_1 x_N \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_N \end{bmatrix} \times \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_N \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots \\ 1 & x_N \end{bmatrix} \times \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_N \end{bmatrix}$$

$$= \sum_{n=1}^{N} (t_n - (w_0 + w_1 x_n))^2$$

$$= \sum_{n=1}^{N} (t_n - f(x_n; w_0, w_1))^2$$

$$\mathcal{L} = \frac{1}{N} (\mathbf{t} - \mathbf{X}\mathbf{w})^\mathsf{T} (\mathbf{t} - \mathbf{X}\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (t_n - \mathbf{w}^\mathsf{T}\mathbf{x}_n)^2 = \frac{1}{N} \sum_{n=1}^{N} (t_n - (w_0 + w_1 x_n))^2$$

$$\mathbf{Much nicer!} \quad \mathsf{The } \mathbf{x}^\mathsf{T} \mathbf{y} \text{ operation allows us to drop the sums!}$$

Simple Linear Model in **Matrix Notation**

Now that we have the matrix version of the loss function, "just" take derivative...

Relation of a^Tb to Geometry

• **a**^T**b** is special (also **a**•**b**), called the *dot product* (aka scalar product; the inner product for the Euclidean space)

$$\mathbf{a}\cdot\mathbf{b}=\sum_{i=1}^n a_ib_i=a_1b_1+a_2b_2+\cdots+a_nb_n$$
 (algebraic def.

- Plays a role in defining
 - Euclidean distance (norm)
 - Angles

The dot product of vectors

orthogonal) is = 0

that are 90° (or more generally,

10

(geometric def.)

 $\mathsf{IAI}\;\mathsf{cos}\theta$

Geometry of Linear Systems and their Solution

A linear equation expresses a constraint between variables

A system of linear equations – more constraints!

$$\begin{bmatrix} u & 2 & -1 \\ v & -1 & 2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$X w = t$$
 $w = X^{-1} t$

"Solving" the linear system involves finding the linear combinations (i.e., the amounts w_0 and w_1) of c_1 and c_2 that equal the column vector $(0,3)^T$.

Solve using your favorite method (e.g., Gaussian Elimination)

Here, the solution happens to be $w_0=1$ (1 c_1), $w_1=2$ (+ $2c_2$) The w_1 's and w_2 's corresponds to the point where the two

The w_0 's and w_1 's corresponds to the point where the two lines cross!

11

Geometry of Linear Systems and their Solution

But what happens if we're **over-constrained**? **GOAL**: Find a solution that is *closest* to (minimizes the distance between) the crossing points!

$$2w_0 - w_1 = 0$$
$$-w_0 + 2w_1 = 3$$

$$2w_0 + w_1 = 2$$

X w = t $X \hat{w} =$

"Solving" the linear system involves finding the linear combinations (i.e., the amounts w_0 and w_1) of c_1 and c_2 that equal the column vector $(0,3,2)^T$.

The Normal Equations

For model:
$$t=f(x_1,...,x_k;w_0,...,w_k)=\sum_{i=0}^k x_iw_i$$

$$w_0 = \bar{t} - w_1 x$$

$$w_0 = \overline{t} - w_1 x$$

$$w_1 = \frac{\overline{xt} - \overline{x}\overline{t}}{\overline{x^2} - (\overline{x})^2}$$

$$\mathbf{\hat{w}} = \left(\mathbf{X}^{\top}\mathbf{X}\right)^{-1}\mathbf{X}^{\top}\mathbf{t}$$

$$\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}, \quad \mathbf{x}_n = \begin{bmatrix} 1 \\ x_n \end{bmatrix}$$
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\mathsf{T} \\ \mathbf{x}_2^\mathsf{T} \\ \vdots \\ \mathbf{x}_N^\mathsf{T} \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix}, \quad \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_N \end{bmatrix}$$

