DS4

4 heures

- Tout résultat ou raisonnement doit être clairement justifié, sauf mention du contraire.
- La qualité de la rédaction sera prise en compte dans l'évaluation.
- La présentation de la copie sera prise en compte dans l'évaluation :
 - ⊳ | encadrez les résultats principaux;
 - > soulignez les résultats et arguments intermédiaires importants;
 - *⊳* soignez votre écriture ;
 - ▷ maintenez une marge dans vos copies, aérez vos copies;
 - ⊳ enfin, numérotez vos copies (et non vos pages).
- Les documents, calculatrices et autres appareils électroniques sont interdits.
- Pour répondre à une question, vous pouvez admettre des résultats issus des questions précédentes en le signalant.
- Si vous constatez ce qui vous semble être une erreur d'énoncé, signalez-le sur votre copie en expliquant les initiatives que vous avez été amené à prendre.
- Ne rendez pas le sujet avec vos copies.

DS4 1/7

Étude d'une suite de racines

Application à l'optimalité d'un contrôle

Les parties I, II, VI et VII peuvent être cherchées sans que les autres parties n'aient été traitées.

Donnée générale

Dans ce qui suit, on fixe un entier naturel n tel que $n \ge 2$.

Partie I – Équivalent d'une suite classique

Données

Dans cette partie, on fixe $a, b \in \mathbb{R}^*$.

- **1.** Déterminer la limite de l'expression $\left(1+\frac{a}{n}\right)^n$ quand $n\to\infty$.
 - 2. Déterminer un équivalent simple de

$$\left(a + \frac{b}{n}\right)^n$$
 quand $n \to \infty$

3. (a) Montrer que

$$\ln\left(\frac{1+\frac{a}{n}}{1+\frac{a}{n+1}}\right) \sim \frac{a}{n^2} \quad \text{quand } n \to \infty.$$

(b) En déduire que

$$\left(a + \frac{b}{n}\right)^n \sim \left(a + \frac{b}{n+1}\right)^n$$
 quand $n \to \infty$.

Partie II – Un contrôle classique

4. Soit $P \in \mathbb{C}[X]$ un polynôme unitaire de degré n qu'on écrit

$$P = X^{n} + \sum_{k=0}^{n-1} a_k X^{k}$$

avec $\forall k \in [0, n-1], a_k \in \mathbb{C}$.

Soit $\alpha \in \mathbb{C}$ une racine de P.

Montrer que

$$(\forall k \in [0, n-1], |a_k| \leqslant 1) \implies |\alpha| < 2.$$

On pourra raisonner par l'absurde.

Notations générales

- Pour tout $P \in \mathbb{C}[X]$, on désigne par $Z_{\mathbb{C}}(P)$ l'ensemble des racines complexes de P.
- $Si \mathscr{P}(n)$ est un prédicat de $n \in \mathbb{N}$: \triangleright on notera « $\mathscr{P}(n)$ APCR » l'assertion « $\exists N_0 \in \mathbb{N} : \forall n \geqslant N_0, \mathscr{P}(n)$ »; \triangleright « $\mathscr{P}(n)$ APCR » se lit « $\mathscr{P}(n)$ (est vraie) à partir d'un certain rang ».
- On pose

$$P_n := X^n - X^{n-1} - X^{n-2} - \dots - X - 1.$$

Dans ce problème, on s'intéresse aux racines du polynôme P_n .

Partie III – Étude d'une fonction auxiliaire

Notation

Dans la suite, on considère la fonction

$$f_n: \left\{ \begin{array}{ll} [1,2] & \longrightarrow \mathbb{R} \\ t & \longmapsto t^{n+1} - 2t^n + 1. \end{array} \right.$$

- **5.** (a) Étudier le signe de $f'_n(t)$ pour $t \in [1, 2]$.
 - (b) En déduire la valeur de u_n telle que le tableau de variations de f_n soit

t	1	$2-u_n$	2
$\int f_n$		$f_n(2-u_n)$	<i>></i>

On précisera les valeurs en 1 et 2 mais on ne calculera pas $f_n(2-u_n)$.

- (c) En utilisant le théorème des valeurs intermédiaires, montrer que f_n s'annule en un unique point sur [1,2].
- 6. On note

$$m_n := 1 - \left(2 - \frac{2}{n+1}\right)^n \times \frac{2}{n+1}$$
.

- (a) Déterminer un équivalent simple de m_n quand $n \to \infty$.
- (b) En déduire la limite de la suite $(m_n)_n$.
- 7. Dessiner l'allure de \mathscr{C}_{f_n} .

On attend un dessin propre, schématique, sur lequel figurent quelques valeurs remarquables.

Partie IV – Premières propriétés de la suite des racines

_	/ \	~ .	7 7		
0	/ _ \	U = : I = I = I	17 ()	N /1 1	
_	121	>0 IL $T \leftarrow$	11 71	MIONERAR	α 111 Θ
٠.	1001	Soit $t \in$	11, 41.	TATOTIOLCI	que

$$P_n(t) = 0 \iff f_n(t) = 0.$$

Notation

Dans toute la suite du problème, pour tout $n \ge 2$, on note x_n cette unique racine.

$$2 - \frac{2}{n+1} \leqslant x_n < 2.$$

10. (a) Calculer
$$x_2$$
.

(b) Montrer que
$$x_2 > \frac{3}{2}$$
.

11. Montrer que
$$x_n \longrightarrow 2$$
.

Partie V – Optimalité du contrôle classique

Notations et définition

- Pour tout $n \in \mathbb{N}^*$, on note \mathcal{E}_n l'ensemble des polynômes unitaires de degré n à coefficients complexes de module au plus 1.
- On pose

$$\mathscr{E} := \bigcup_{n\geqslant 0} \mathscr{E}_n.$$

• Soit $M \in \mathbb{R}_+$. On dit que M contrôle les racines de \mathscr{E} quand

$$\forall P \in \mathscr{E}, \ \forall \alpha \in \mathsf{Z}_{\mathbb{C}}(P), \ |\alpha| \leqslant M.$$

- 12. Montrer que 2 contrôle les racines de \mathscr{E} .
- 13. Optimalité du contrôle.

Soit $M \in \mathbb{R}_+$. Montrer que

M contrôle les racines de $\mathscr{E} \implies M \geqslant 2$.

Partie VI – Un premier lemme

Notations

• Dans cette partie, on se donne :

$$\triangleright (\delta_n)_n \in \mathbb{R}^{\mathbb{N}} \text{ une suite telle que } \delta_n \longrightarrow 0;$$

$$(p_n)_n \in \mathbb{R}^{\mathbb{N}} \ une \ suite;$$

$$\triangleright \ell \in \mathbb{R}$$
.

• On va montrer le résultat suivant, qui servira dans la suite :

$$\delta_n = \mathsf{o}\!\left(\frac{1}{n}\right) \quad \Longrightarrow \quad (1 + \delta_n)^n \longrightarrow 1.$$

14. Montrer que

$$\delta_n \times p_n \longrightarrow \ell \implies (1 + \delta_n)^{p_n} \longrightarrow e^{\ell}.$$

15. Applications.

(a) (i) Soit $n \ge 2$. Montrer que

$$n! \geqslant 3^{n-2}$$
.

(ii) En déduire que

$$\left(1+\frac{1}{n!}\right)^{2^n}\longrightarrow 1.$$

On n'utilisera pas la formule de Stirling.

- (b) Déterminer la limite de la suite de terme général $\left(1 + \frac{1}{n^n}\right)^{(n+1)^n}$.
- 16. Le premier lemme.

Montrer que

$$\delta_n = \mathsf{o}\Big(\frac{1}{n}\Big) \quad \Longrightarrow \quad (1+\delta_n)^n \longrightarrow 1.$$

Partie VII - Un deuxième lemme

Soit $(\delta_n)_n \in \mathbb{R}^{\mathbb{N}}$.

Dans cette partie, on va montrer le résultat suivant, qui servira dans la suite :

$$\delta_n = O\left(\frac{1}{2^n}\right) \implies (1 + \delta_n)^n - 1 \sim n \times \delta_n$$

ainsi qu'un raffinement.

17. Soit $(u_n)_n \in \mathbb{R}^{\mathbb{N}}$. A-t-on

$$u_n = O\left(\frac{1}{2^n}\right) \implies u_n = o\left(\frac{1}{n}\right) ?$$

Comme d'habitude, on attend une preuve dans le cas où la réponse est positive et un contreexemple dans le cas contraire.

18.	On suppose	que \	$\forall n \in \mathbb{N},$	δ_n 7	$\neq 0$ et	que $\delta_n =$	0	$(\frac{1}{2^n})$).
-----	------------	-------	-----------------------------	--------------	-------------	------------------	---	-------------------	----

(a) Montrer que

$$\frac{(1+\delta_n)^n - 1}{n\delta_n} = 1 + \frac{\delta_n}{n} \sum_{k=2}^n \binom{n}{k} \delta_n^{k-2}.$$

(b) Montrer que

$$\left| \frac{\delta_n}{n} \sum_{k=2}^n \binom{n}{k} \delta_n^{k-2} \right| \leqslant \frac{2^n |\delta_n|}{n} \text{ APCR.}$$

(c) Le deuxième lemme.

En déduire que

$$(1+\delta_n)^n-1\sim n\delta_n$$
 quand $n\to\infty$.

19. Un raffinement.

Sous les mêmes hypothèses, montrer que

$$(1+\delta_n)^n = 1 + n\delta_n + \frac{n^2\delta_n^2}{2} + o(n^2\delta_n^2)$$
 quand $n \to \infty$.

Partie VIII – Étude de la suite des racines

Rappels

On rappelle que la suite $(x_n)_n$ introduite dans la partie III. vérifie la relation suivante

$$\forall n \geqslant 2, \ x_n^{n+1} - 2x_n^n + 1 = 0$$

et qu'on a montré que $x_n \longrightarrow 2$.

20. Montrer que
$$f_n(x_{n+1}) > 0$$
.

21. Montrer que
$$(x_n)_n$$
 est strictement croissante.

22. On considère la suite
$$(\varepsilon_n)_n$$
 définie par

$$\forall n \geqslant 2, \ x_n = 2 - \varepsilon_n.$$

(a) Montrer que

$$\varepsilon_n = \frac{1}{2^n} \frac{1}{\left(1 - \frac{\varepsilon_n}{2}\right)^n}.$$

(b) En déduire que

$$\varepsilon_n \leqslant \left(\frac{3}{4}\right)^n$$
 APCR.

(c) En déduire que $\varepsilon_n \sim \frac{1}{2^n}$ quand $n \to \infty$.

23. On considère la suite $(\alpha_n)_n$ définie par

$$\forall n \geqslant 2, \ x_n = 2 - \frac{1}{2^n} + \alpha_n.$$

- İ......
- (a) Montrer que $\alpha_n = o\left(\frac{1}{2^n}\right)$.
- :
- (b) Montrer que

$$2^{n}\alpha_{n}\left(1 - \frac{1}{2^{n+1}} + \frac{\alpha_{n}}{2}\right)^{n} = \left(1 - \frac{1}{2^{n+1}} + \frac{\alpha_{n}}{2}\right)^{n} - 1.$$

- (c) En déduire que $\alpha_n \sim -\frac{n}{2 \times 4^n}$.

Conclusion

On a donc prouvé que

$$x_n = 2 - \frac{1}{2^n} - \frac{n}{2 \times 4^n} + o\left(\frac{n}{4^n}\right).$$

- **24.** Donner le terme suivant du développement asymptotique de x_n . Cette question nécessite de prendre des initiatives.

FIN DU SUJET.

