

Integration von Climate Risk und Geospatial Analyse zur Risikobewertung von Immobilienportfolios

Masterarbeit Uyen Truong

1. Hypothekendaten - Zusammenfassung Cochran-Formel

- •Analyse des Geschäftsberichts der Münchener Hypothekenbank
- •Erstellung eines realistischen Portfolios erforderlich, da die vertraulichen Wohnimmobilien-Hypothekenportfolios von Banken nicht öffentlich bekannt gegeben werden
- •Portfolio spiegelt die Struktur von Wohnimmobilien-Hypotheken wider
- •Kreditmerkmale: Durchschnittlicher Beleihungsauslauf: 54,1% (Beleihungsauslauf = $\frac{Darlehensbetrag}{Immobilienwert}$
- •31.12.2023: Wohnimmobilienfinanzierungen in Bayern 8,92 Mrd. €
- Durchschnittliche Darlehensgröße: 163.700 €
- => 54.500 Darlehen im Portfolio

Cochran-Formel

•Berechnung des erforderlichen Stichprobenumfangs (Cochran, 1953):

$$n = \frac{Z^2 \cdot P(1 - P)}{\epsilon^2}$$
 (1)

- n: Initialer Stichprobenumfang
- •Z: Z-Wert des Konfidenzintervalls
- •P: Erwartete Wahrscheinlichkeit des Merkmals
- •ε: Tolerierter Fehler
- •Modifikation für begrenzte Populationen:

$$n' = \frac{n}{1 + \frac{n-1}{N}}$$
 (2)

- •n': Angepasste Stichprobengröße
- •N: Gesamtpopulationsgröße

- Konfidenzintervall von 99 % und Fehlermarge von 2 % ergeben 4.147 Datenpunkte.
- Gleichung 5 reduziert dies auf 3.853 Darlehen für 54.500 Elemente.

Frage: Ist ein Konfidenzintervall von 99 % mit einer Fehlermarge von 2 % angemessen?

2. Geodaten zu Hypotheken und Hochwasser

•Geografische Koordinaten sind nötig für die Verbindung von Hypotheken- und

Hochwasserdaten.

•Immobilienverteilung in Bayern ist ungleichmäßig ->Bevölkerungsdichte bestimmt die Koordinatenzuweisung.

- •Zufällige Platzierung von 3.853 Datenpunkten in Postleitzahlgebieten basierend auf der Bevölkerungsdichte.
- Hochwasserrisikodaten vom Bayerischen Landesamt für Umwelt

Übersicht über das Hypothekenportfolio

Objekt-Variablen	Erklärung
ID	Identifikationsnummer
Ort	Ort der Immobilie
Landkreis	Landkreis der Immobilie
Geometrie	Geometrische Lage der Immobilie, bestehend aus Breiten- und Längengrad zur Berechnung der Überschwemmungsgefahr an diesem Punkt
GEB_Q	GEB_Q (spezifische Kennzeichnung)
Überschwemmungsrisiko Stufe	Stufe des Überschwemmungsrisikos
Überschwemmung Tiefe	Tiefe der Überschwemmung an dem Punkt
Aktueller Immobilienwert	Der aktuelle Wert der Immobilie
Aktuelles LTV	Aktuelles Verhältnis von Darlehen zu Wert (Loan-to-Value)

4. Physische Risiken

- Hochwasserrisikogebiete in Deutschland basieren auf HQT_n-Ereignissen, wobei HQ100 ein Hochwasser alle 100 Jahre beschreibt.
- In Bayern werden Hochwasser vom Bayerischen Landesamt für Umwelt als häufig (5-20 Jahre), HQ100 (100 Jahre) und extrem (HQextrem) eingestuft.
- Ein Digitales Geländemodell (DGM) wird benutzt, um die Erdoberfläche ohne Vegetation und Bebauung als Punktwolke von Open-Data-Geodaten Bayern darzustellen
- Die Wasserhöhe wird anhand von Pegelstand und Pegelnullpunkt berechnet, um die Überflutungstiefe an einem Hypothekenpunkt im Portfolio zu bestimmen.
- Verwendung von Basel III-Daten zur Berechnung der RWA für Kreditrisiken nach dem Standardansatz (CRE20) mit festgelegten Risikogewichten.

LTV ≤ 50%	50% < LTV ≤ 60%	60% < LTV ≤ 80%	80% < LTV ≤ 90%	90% < LTV ≤ 100%	LTV > 100%
20%	25%	30%	40%	50%	70%

• Schadensfunktionen aus Huizingas Studie (2007) werden genutzt, um Schäden basierend auf der Überflutungstiefe an Hypothekenpunkten zu bewerten.

Überflutungsrisiko-Auswirkungsmodell

1. Berechnung des Schadens:

```
D(i,j) = e(j) * d(h(i,j), v(j))
```

D(i,j) ist der Schaden, e(j) der Immobilienwert am Ort j, d() die Schadensfunktion, h(i,j) die Überflutungstiefe für Ereignis i am Ort j, und v(j) die Verwundbarkeit des Objekts am Ort j.

2. Berechnung des neuen Immobilienwertes:

Neuer Immobilienwert = Ursprünglicher Immobilienwert - Schaden.

3. Berechnung der neuen Beleihungsquote (LTV):

Neue Beleihungsguote = Darlehenbetrag / Neuer Immobilienwert

4. Berechnung der risikogewichteten Aktiva (RWA):

RWA = Darlehenbetrag * Risikogewicht // Erläuterung: Das Risikogewicht wird basierend auf der Beleihungsquote bestimmt.

5. Berechnung der prozentualen Änderung der RWA:

% Änderung RWA = (Neue RWA / Ursprüngliche RWA) - 1

6. Erwarteter jährlicher Einfluss (EAI):

 $EAI(j) = \Sigma(i=1 \text{ bis n}) D(i,j) / n // Erläuterung: Durchschnittlicher jährlicher Schaden über n Jahre.$

7. Erwarteter Einfluss (EI) über die Kreditlaufzeit:

EI(j) = EAI(j) * T // Erläuterung: Gesamter erwarteter Schaden über die Kreditlaufzeit T.

5. Transitionsrisiken und Modell der Auswirkungen von Transitionsrisiken

- Transitionsrisiken sind finanzielle Verluste durch den Übergang zu einer CO2-armen Wirtschaft
- Der Wert von Wohnimmobilien ändert sich wegen steigender Energiekosten
- Prognostizierte Energiepreise in verschiedenen NGFS-Szenarien bis 2040

Szenario	Prognostizierter Preis (2040)	
Current Policies	Nahezu unverändert	
Below 2°C	Anstieg, aber unter 50 Cent/kWh	
Net Zero 2050	Über 50 Cent/kWh	
Disorderly	Schneller und ungleichmäßiger Anstieg, möglicherweise über 50 Cent/kWh	

- Wenn die Energiekosten steigen, erhöhen sich die erwarteten Gesamtkosten für das Gebäude, was zu einem Rückgang des aktuellen Wertes des Gebäudes führt.
- Preisberechnung eines Gebäudes basierend auf erwarteten Energiekosten : $P_j = P_0 \sum_{h=1}^T \frac{EC_j \times p_{\mathrm{E}t}}{(1+r)^h}$

wobei:

- P_i: Der aktuelle Preis des Gebäudes mit einem Energieverbrauch j,
- P₀: Der ursprüngliche Preis des Gebäudes (ohne Energiekosten),
- EC_i: Der Energieverbrauch des Gebäudes j (kWh/m²/Jahr),
- PE,: Die prognostizierten Energiekosten
- r: Abzinsungsatz
- T: Der Prognosezeitraum.

Zusammenfassung

• Die Thesis analysiert die erwarteten Verluste bei Hypotheken in Bayern unter kurzfristigen und langfristigen physikalischen Risiko-Szenarien bis 2024 und 2050.