# Spectral Density Continued

Jared Fisher

Lecture 11b

### Announcements

► Homework 6 is due Friday, April 30 by 11:59pm PDT

### Announcements

- ▶ Homework 6 is due Friday, April 30 by 11:59pm PDT
- ▶ New Grading Policy: Homework drop may be used on a project checkpoint instead.

#### Announcements

- ▶ Homework 6 is due Friday, April 30 by 11:59pm PDT
- ▶ New Grading Policy: Homework drop may be used on a project checkpoint instead.
- New Grading Policy: Contact me if you are concerned with failing/not passing and we'll work out a late homework/checkpoint submission option (maximum score of C- or P).

► Tuesday 4/27: Lecture on Spectral density part 2

- ► Tuesday 4/27: Lecture on Spectral density part 2
- ► Thursday 4/29: Lecture on Extensions, Conclusion

- ► Tuesday 4/27: Lecture on Spectral density part 2
- ► Thursday 4/29: Lecture on Extensions, Conclusion
- Friday 4/30: no formal lab but project Q&A, HW6 due

- ► Tuesday 4/27: Lecture on Spectral density part 2
- ► Thursday 4/29: Lecture on Extensions, Conclusion
- ► Friday 4/30: no formal lab but project Q&A, HW6 due
- ▶ Monday 5/10: Final Project Report and Forecasts due

### Disclaimer

Like last time, we're discussing several things about the frequency domain, but not too in depth. The purpose is to

1. Give you exposure to a set of tools that are available

### Disclaimer

Like last time, we're discussing several things about the frequency domain, but not too in depth. The purpose is to

- 1. Give you exposure to a set of tools that are available
- 2. Connect several things we've been talking about this semester



### Definition: Discrete Fourier Transform

For data  $x_0, \ldots, x_{n-1} \in C$  the discrete Fourier transform (DFT) is given by  $b_0, \ldots, b_{n-1} \in C$ , where

$$b_j = \sum_{t=0}^{n-1} x_t \exp\left(-\frac{2\pi i j t}{n}\right) \text{ for } j = 0, \dots, n-1.$$

(In R, the DFT is calculated by the function fft().)

## Definition: Periodogram

For real values data  $x_0,\ldots,x_{n-1}$  with DFT  $b_0,\ldots,b_{n-1}$  the **periodogram** is defined as

$$I(j/n) = \frac{|b_j|^2}{n}$$
 for  $j = 1, \dots, \lfloor n/2 \rfloor$ 

# Theorem: Connection between periodogram and $\hat{\gamma}$

For some data  $x_0, \ldots, x_{n-1}$  let  $\hat{\gamma}(h)$  for  $h = 0, \ldots, n-1$  be its sample ACVF. Then

$$I(j/n) = \sum_{h=-(n-1)}^{n-1} \hat{\gamma}(h) \exp\left(-\frac{2\pi i j h}{n}\right) \text{ for } j=1,\ldots,\lfloor n/2 \rfloor.$$

▶ We've shown that every dataset can be written in terms of sinusoids.

- ▶ We've shown that every dataset can be written in terms of sinusoids.
- The magnitude of the sinusoid component with frequency j/n is given by the respective periodogram I(j/n).

- ▶ We've shown that every dataset can be written in terms of sinusoids.
- The magnitude of the sinusoid component with frequency j/n is given by the respective periodogram I(j/n).
- ▶ But this is a discrete representation and leads to leakage!

- ▶ We've shown that every dataset can be written in terms of sinusoids.
- The magnitude of the sinusoid component with frequency j/n is given by the respective periodogram I(j/n).
- But this is a discrete representation and leads to leakage!
- ▶ Now we extend these definitions to the process  $\{X_t\}$  itself.

- ▶ We've shown that every dataset can be written in terms of sinusoids.
- The magnitude of the sinusoid component with frequency j/n is given by the respective periodogram I(j/n).
- ▶ But this is a discrete representation and leads to leakage!
- Now we extend these definitions to the process  $\{X_t\}$  itself.
- ▶ Remember that ACVF is related to the periodogram, and that leads to the following natural process-analog of the periodogram.

# Definition: Spectral Density

For a stationary process with ACVF  $\gamma_X(h)$  with  $\sum_{h=-\infty}^{\infty} |\gamma_X(h)| < \infty$  we define the spectral density as

$$f(\lambda) := \sum_{h=0}^{\infty} \gamma_X(h) \exp(-2\pi i \lambda h) \text{ for } -1/2 \le \lambda \le 1/2.$$

# Notes on the Spectral Density

• f is symmetric:  $f(-\lambda) = f(\lambda)$ 

# Notes on the Spectral Density

- f is symmetric:  $f(-\lambda) = f(\lambda)$
- f is always nonnegative:  $f(\lambda) \ge 0$

# Notes on the Spectral Density

- ▶ f is symmetric:  $f(-\lambda) = f(\lambda)$
- ▶ f is always nonnegative:  $f(\lambda) \ge 0$
- Like the periodogram, the spectral density gives the strengths of sinusoids at various frequencies contributing to a stationary stochastic process.

# Thoerem: ACVF and Spectral Density

For a stationary process with spectral density  $f(\lambda)$ ,  $-1/2 \le \lambda \le 1/2$ , it holds for its ACVF that

$$\gamma_X(h) = \int_{-1/2}^{1/2} e^{2\pi i \lambda h} f(\lambda) d\lambda = \int_{-1/2}^{1/2} \cos(2\pi \lambda h) f(\lambda) d\lambda.$$

### Definition: Linear Time Invariant Filter

A linear time-invariant filter with coefficients  $\{a_j\}$  for  $j=\ldots,-2,-1,0,1,2,3,\ldots$  transforms an input time series  $\{X_t\}$  into an output time series  $\{Y_t\}$  via

$$Y_t = \sum_{j=-\infty}^{\infty} a_j X_{t-j}.$$

In the above definition, the coefficients  $\{a_j\}$  are often assumed to satisfy  $\sum_{j=-\infty}^{\infty}|a_j|<\infty.$ 

### Autocovariance of Linear Time Invariant Filter

▶ Suppose that the input time series  $\{X_t\}$  is stationary with ACVF  $\gamma_X$ .

## Autocovariance of Linear Time Invariant Filter

- ▶ Suppose that the input time series  $\{X_t\}$  is stationary with ACVF  $\gamma_X$ .
- ▶ Then for the autocovariance function of  $\{Y_t\}$  we observe

$$\gamma_{Y}(h) = \operatorname{cov}(Y_{t}, Y_{t+h})$$

$$= \operatorname{cov}\left(\sum_{j} a_{j} X_{t-j}, \sum_{k} a_{k} X_{t+h-k}\right)$$

$$= \sum_{j,k} a_{j} a_{k} \operatorname{cov}(X_{t-j}, X_{t+h-k})$$

$$= \sum_{j,k} a_{j} a_{k} \gamma_{X}(h-k+j).$$

### Autocovariance of Linear Time Invariant Filter

- ▶ Suppose that the input time series  $\{X_t\}$  is stationary with ACVF  $\gamma_X$ .
- ▶ Then for the autocovariance function of  $\{Y_t\}$  we observe

$$\gamma_{Y}(h) = \operatorname{cov}(Y_{t}, Y_{t+h})$$

$$= \operatorname{cov}\left(\sum_{j} a_{j} X_{t-j}, \sum_{k} a_{k} X_{t+h-k}\right)$$

$$= \sum_{j,k} a_{j} a_{k} \operatorname{cov}(X_{t-j}, X_{t+h-k})$$

$$= \sum_{j,k} a_{j} a_{k} \gamma_{X}(h-k+j).$$

Note that the above calculation shows also that  $\{Y_t\}$  is stationary (like you did on your homework earlier!).

▶ Let  $f_X$  be the spectral density of the input  $\{X_t\}$ .

- ▶ Let  $f_X$  be the spectral density of the input  $\{X_t\}$ .
- Recall

$$\gamma_X(h) = \int_{-1/2}^{1/2} e^{2\pi i h \lambda} f_X(\lambda) d\lambda.$$

- ▶ Let  $f_X$  be the spectral density of the input  $\{X_t\}$ .
- Recall

$$\gamma_X(h) = \int_{-1/2}^{1/2} e^{2\pi i h \lambda} f_X(\lambda) d\lambda.$$

Combining this with the ACVF of  $\{Y_t\}$  from the last slide, we get the spectral density  $f_Y$  of the output  $\{Y_t\}$ :

$$\gamma_{Y}(h) = \sum_{j} \sum_{k} a_{j} a_{k} \int e^{2\pi i (h - k + j)\lambda} f_{X}(\lambda) d\lambda$$
$$= \int e^{2\pi i h \lambda} f_{X}(\lambda) \left( \sum_{j} \sum_{k} a_{j} a_{k} e^{-2\pi i k \lambda} e^{2\pi i j \lambda} \right) d\lambda$$

- ▶ Let  $f_X$  be the spectral density of the input  $\{X_t\}$ .
- ► Recall

$$\gamma_X(h) = \int_{-1/2}^{1/2} e^{2\pi i h \lambda} f_X(\lambda) d\lambda.$$

Combining this with the ACVF of  $\{Y_t\}$  from the last slide, we get the spectral density  $f_Y$  of the output  $\{Y_t\}$ :

$$\gamma_{Y}(h) = \sum_{j} \sum_{k} a_{j} a_{k} \int e^{2\pi i (h - k + j)\lambda} f_{X}(\lambda) d\lambda$$
$$= \int e^{2\pi i h \lambda} f_{X}(\lambda) \left( \sum_{j} \sum_{k} a_{j} a_{k} e^{-2\pi i k \lambda} e^{2\pi i j \lambda} \right) d\lambda$$

We'll simplify this rearranged formula on the last line.

### **Definition: Transfer Function**

For a time invariant linear filter with coefficients  $\{a_j\}$ , we define the **transfer function** 

$$A(\lambda) := \sum_{j} a_{j} e^{-2\pi i j \lambda} \text{ for } -1/2 \le \lambda \le 1/2.$$
 (1)

## Note: Complex Numbers

▶  $A(\lambda)$  contains  $i \Rightarrow$  complex number!

## Note: Complex Numbers

- $ightharpoonup A(\lambda)$  contains  $i \Rightarrow$  complex number!
- ► Recall Euler's equation:  $e^{ix} = \cos x + i \sin x$ , and it's conjugate  $e^{-ix} = \cos x i \sin x$

## Note: Complex Numbers

- $\blacktriangleright$   $A(\lambda)$  contains  $i \Rightarrow$  complex number!
- ► Recall Euler's equation:  $e^{ix} = \cos x + i \sin x$ , and it's conjugate  $e^{-ix} = \cos x i \sin x$
- ► Thus

$$A(\lambda) = \sum_{j} a_{j} e^{-2\pi i j \lambda}$$

$$= \sum_{j} a_{j} [\cos(2\pi j \lambda) - i \sin(2\pi j \lambda)]$$

$$= \left[ \sum_{j} a_{j} \cos(2\pi j \lambda) \right] - i \sum_{j} a_{j} \sin(2\pi j \lambda)$$

## Note: Complex Numbers

- $\blacktriangleright$   $A(\lambda)$  contains  $i \Rightarrow$  complex number!
- ► Recall Euler's equation:  $e^{ix} = \cos x + i \sin x$ , and it's conjugate  $e^{-ix} = \cos x i \sin x$
- ► Thus

$$A(\lambda) = \sum_{j} a_{j} e^{-2\pi i j \lambda}$$

$$= \sum_{j} a_{j} [\cos(2\pi j \lambda) - i \sin(2\pi j \lambda)]$$

$$= \left[ \sum_{j} a_{j} \cos(2\pi j \lambda) \right] - i \sum_{j} a_{j} \sin(2\pi j \lambda)$$

► Conjugate: 
$$\overline{A(\lambda)} = \left[\sum_j a_j \cos(2\pi j \lambda)\right] + i \sum_j a_j \sin(2\pi j \lambda) = \sum_j a_j e^{2\pi i j \lambda}$$

► Recall our previous equation for the ACVF of Y:

$$\gamma_Y(h) = \int e^{2\pi i h \lambda} f_X(\lambda) \left( \sum_i \sum_k a_j a_k e^{-2\pi i k \lambda} e^{2\pi i j \lambda} \right) d\lambda$$

► Recall our previous equation for the ACVF of Y:

$$\gamma_Y(h) = \int e^{2\pi i h \lambda} f_X(\lambda) \left( \sum_i \sum_k a_j a_k e^{-2\pi i k \lambda} e^{2\pi i j \lambda} \right) d\lambda$$

Applying the definition of the transfer function:

$$\gamma_Y(h) = \int e^{2\pi i \lambda h} f_X(\lambda) A(\lambda) \overline{A(\lambda)} d\lambda,$$

where, of course,  $\overline{A(\lambda)}$  denotes the complex conjugate of  $A(\lambda)$ .

► Recall our previous equation for the ACVF of Y:

$$\gamma_Y(h) = \int e^{2\pi i h \lambda} f_X(\lambda) \left( \sum_i \sum_k a_i a_k e^{-2\pi i k \lambda} e^{2\pi i j \lambda} \right) d\lambda$$

Applying the definition of the transfer function:

$$\gamma_Y(h) = \int e^{2\pi i \lambda h} f_X(\lambda) A(\lambda) \overline{A(\lambda)} d\lambda,$$

where, of course,  $\overline{A(\lambda)}$  denotes the complex conjugate of  $A(\lambda)$ .

As a result, we have

$$\gamma_Y(h) = \int e^{2\pi i \lambda h} f_X(\lambda) |A(\lambda)|^2 d\lambda.$$

► Recall our previous equation for the ACVF of Y:

$$\gamma_Y(h) = \int e^{2\pi i h \lambda} f_X(\lambda) \left( \sum_i \sum_k a_j a_k e^{-2\pi i k \lambda} e^{2\pi i j \lambda} \right) d\lambda$$

▶ Applying the definition of the transfer function:

$$\gamma_Y(h) = \int e^{2\pi i \lambda h} f_X(\lambda) A(\lambda) \overline{A(\lambda)} d\lambda,$$

where, of course,  $\overline{A(\lambda)}$  denotes the complex conjugate of  $A(\lambda)$ .

As a result, we have

$$\gamma_Y(h) = \int e^{2\pi i \lambda h} f_X(\lambda) |A(\lambda)|^2 d\lambda.$$

► This is clearly of the form  $\gamma_Y(h) = \int e^{2\pi i \lambda h} f_Y(\lambda) d\lambda$ .

### Definition: Power Transfer Function

The function  $\lambda\mapsto |A(\lambda)|^2$  is called the **power transfer function**.

▶ We therefore have

$$f_Y(\lambda) = f_X(\lambda) |A(\lambda)|^2$$
 for  $-1/2 \le \lambda \le 1/2$ .

We therefore have

$$f_Y(\lambda) = f_X(\lambda) |A(\lambda)|^2 \text{ for } -1/2 \le \lambda \le 1/2.$$

So what does the filter do to the spectrum? It modifies the spectrum by multiplying it with the power transfer function  $|A(\lambda)|^2$ .

We therefore have

$$f_Y(\lambda) = f_X(\lambda) |A(\lambda)|^2 \text{ for } -1/2 \le \lambda \le 1/2.$$

- So what does the filter do to the spectrum? It modifies the spectrum by multiplying it with the power transfer function  $|A(\lambda)|^2$ .
- ▶ Depending on the value of  $|A(\lambda)|^2$ , some frequencies may be enhanced in the output while other frequencies will be diminished.

We therefore have

$$f_Y(\lambda) = f_X(\lambda) |A(\lambda)|^2$$
 for  $-1/2 \le \lambda \le 1/2$ .

- So what does the filter do to the spectrum? It modifies the spectrum by multiplying it with the power transfer function  $|A(\lambda)|^2$ .
- ▶ Depending on the value of  $|A(\lambda)|^2$ , some frequencies may be enhanced in the output while other frequencies will be diminished.
- ▶ Thus, the spectral density is very useful while studying the properties of a filter.

We therefore have

$$f_Y(\lambda) = f_X(\lambda) |A(\lambda)|^2$$
 for  $-1/2 \le \lambda \le 1/2$ .

- So what does the filter do to the spectrum? It modifies the spectrum by multiplying it with the power transfer function  $|A(\lambda)|^2$ .
- ▶ Depending on the value of  $|A(\lambda)|^2$ , some frequencies may be enhanced in the output while other frequencies will be diminished.
- ▶ Thus, the spectral density is very useful while studying the properties of a filter.
- While the autocovariance function of the output series  $\gamma_Y$  depends in a complicated way on that of the input series  $\gamma_X$ , the dependence between the two spectral densities is very simple.

▶ Consider lag s differencing  $Y_t = X_t - X_{t-s}$ 

- ▶ Consider lag *s* differencing  $Y_t = X_t X_{t-s}$
- ▶ This corresponds to the weights  $a_0 = 1$  and  $a_s = -1$  and  $a_j = 0$  for all other j.

- ▶ Consider lag *s* differencing  $Y_t = X_t X_{t-s}$
- ▶ This corresponds to the weights  $a_0 = 1$  and  $a_s = -1$  and  $a_j = 0$  for all other j.
- ▶ Then the transfer function is given by

$$A(\lambda) = \sum_{j} a_{j} e^{-2\pi i j \lambda}$$

$$= a_{0} e^{-2\pi i (0)\lambda} + a_{s} e^{-2\pi i s \lambda}$$

$$= (1)e^{0} + (-1)e^{-2\pi i s \lambda}$$

$$= 1 - e^{-2\pi i s \lambda}$$

$$= 1 - \cos(2\pi s \lambda) + i \sin(2\pi s \lambda)$$

The power transfer function:

$$|A(\lambda)|^{2} = \sqrt{Re(A(\lambda))^{2} + Im(A(\lambda))^{2}}^{2}$$

$$= [1 - \cos(2\pi s\lambda)]^{2} + \sin^{2}(2\pi s\lambda)$$

$$= 1 - 2\cos(2\pi s\lambda) + \cos^{2}(2\pi s\lambda) + \sin^{2}(2\pi s\lambda)$$

$$= 1 - 2\cos(2\pi s\lambda) + 1$$

$$= 2 - 2\cos(2\pi s\lambda)$$

The power transfer function:

$$\begin{aligned} |A(\lambda)|^2 &= \sqrt{Re(A(\lambda))^2 + Im(A(\lambda))^2}^2 \\ &= [1 - \cos(2\pi s\lambda)]^2 + \sin^2(2\pi s\lambda) \\ &= 1 - 2\cos(2\pi s\lambda) + \cos^2(2\pi s\lambda) + \sin^2(2\pi s\lambda) \\ &= 1 - 2\cos(2\pi s\lambda) + 1 \\ &= 2 - 2\cos(2\pi s\lambda) \end{aligned}$$

▶ To understand this function, we only need to consider the interval [0, 1/2] because it is symmetric on [-1/2, 1/2].

s = 1





▶ When s = 1, the function  $|A(\lambda)|^2$  is increasing on [0, 1/2].

- ▶ When s = 1, the function  $|A(\lambda)|^2$  is increasing on [0, 1/2].
- ► This means that first order differencing enhances the higher frequencies in the data and diminishes the lower frequencies.

- ▶ When s = 1, the function  $|A(\lambda)|^2$  is increasing on [0, 1/2].
- ► This means that first order differencing enhances the higher frequencies in the data and diminishes the lower frequencies.
- ► Therefore, it will make the data "more wiggly" as it elminates low frequency elements (i.e. trend!).

For higher values of s, the function  $A(\lambda)$  goes up and down and takes the value zero for  $\lambda = 0, 1/s, 2/s, \ldots$ 

- For higher values of s, the function  $A(\lambda)$  goes up and down and takes the value zero for  $\lambda = 0, 1/s, 2/s, \ldots$
- In other words, it eliminates all components of period s.



#### Power Transfer Function, q=1



#### Power Transfer Function, q=5



#### Power Transfer Function, q=20



Now consider the smoothing filter which corresponds to the coefficients  $a_i = 1/(2q+1)$  for  $|j| \le q$ .

- Now consider the smoothing filter which corresponds to the coefficients  $a_i = 1/(2q+1)$  for |i| < q.
  - ▶ For  $-1/2 < \lambda < 1/2$ , the transfer function is

$$A(\lambda) = \sum_{j=-q}^{q} \frac{1}{2q+1} e^{-2\pi i j \lambda}$$

$$= \frac{\sum_{j=-1}^{-q} e^{-2\pi i j \lambda} + 1 + \sum_{j=1}^{q} e^{-2\pi i j \lambda}}{2q+1}$$

$$= \frac{\sum_{j=0}^{-q} e^{-2\pi i j \lambda} - 1 + \sum_{j=0}^{q} e^{-2\pi i j \lambda}}{2q+1}$$

- Now consider the smoothing filter which corresponds to the coefficients  $a_i = 1/(2q+1)$  for  $|j| \le q$ .
- ▶ For  $-1/2 \le \lambda \le 1/2$ , the transfer function is

$$A(\lambda) = \sum_{j=-q}^{q} \frac{1}{2q+1} e^{-2\pi i j \lambda}$$

$$= \frac{\sum_{j=-1}^{-q} e^{-2\pi i j \lambda} + 1 + \sum_{j=1}^{q} e^{-2\pi i j \lambda}}{2q+1}$$

$$= \frac{\sum_{j=0}^{-q} e^{-2\pi i j \lambda} - 1 + \sum_{j=0}^{q} e^{-2\pi i j \lambda}}{2q+1}$$

When  $\lambda = 0$  it is easy to see that and  $A(0) = \frac{q+1-1+q+1}{2q+1} = 1$ .

- Now consider the smoothing filter which corresponds to the coefficients  $a_j = 1/(2q+1)$  for  $|j| \le q$ .
- ▶ For  $-1/2 < \lambda < 1/2$ , the transfer function is

$$A(\lambda) = \sum_{j=-q}^{q} \frac{1}{2q+1} e^{-2\pi i j \lambda}$$

$$= \frac{\sum_{j=-1}^{-q} e^{-2\pi i j \lambda} + 1 + \sum_{j=1}^{q} e^{-2\pi i j \lambda}}{2q+1}$$

$$= \frac{\sum_{j=0}^{-q} e^{-2\pi i j \lambda} - 1 + \sum_{j=0}^{q} e^{-2\pi i j \lambda}}{2q+1}$$

- ▶ When  $\lambda = 0$  it is easy to see that and  $A(0) = \frac{q+1-1+q+1}{2q+1} = 1$ .
- When  $\lambda \neq 0$  then  $\exp(2\pi i\lambda) \neq 1$  and this function can be evaluated using the geometric series formula, e.g.  $\sum_{i=0}^{q} e^{-2\pi i j \lambda} = \frac{1-e^{2\pi i \lambda(q+1)}}{1-e^{2\pi i \lambda}}$ .

▶ Then, because

$$e^{i\theta} - 1 = \cos\theta + i\sin\theta - 1 = 2e^{i\theta/2}\sin(\theta/2)$$

we get

$$S_q(\lambda) = rac{\sin \pi q \lambda}{\sin \pi \lambda} e^{i\pi \lambda (q-1)}.$$

▶ Then, because

$$e^{i heta}-1=\cos heta+i\sin heta-1=2e^{i heta/2}\sin( heta/2)$$

we get

$$S_q(\lambda) = rac{\sin\pi q\lambda}{\sin\pi} e^{i\pi\lambda(q-1)}.$$

► Thus

$$S_q(\lambda) + S_q(-\lambda) = 2rac{\sin(\pi q \lambda)}{\sin(\pi \lambda)}\cos(\pi \lambda (q-1)),$$

which implies that the transfer function is given by

which implies that the transfer function is given by 
$$A(\lambda)=\frac{1}{2q+1}\left(2\frac{\sin(\pi(q+1)\lambda)}{\sin(\pi\lambda)}\cos(\pi q\lambda)-1\right).$$

Then, because

$$e^{i\theta}-1=\cos heta+i\sin heta-1=2e^{i heta/2}\sin( heta/2)$$

we get

$$S_q(\lambda) = rac{\sin \pi q \lambda}{\sin \pi \lambda} e^{i\pi \lambda (q-1)}.$$

Thus

$$S_q(\lambda) + S_q(-\lambda) = 2 rac{\sin(\pi q \lambda)}{\sin(\pi \lambda)} \cos(\pi \lambda (q-1)),$$

which implies that the transfer function is given by

$$A(\lambda) = rac{1}{2q+1} \left( 2 rac{\sin(\pi(q+1)\lambda)}{\sin(\pi\lambda)} \cos(\pi q \lambda) - 1 
ight).$$

► For *q* large, it drops to zero very quickly ⇒ the filter kills the high frequency components in the input process.



# Big Picture from Lecture 6b: modeling and forecasting



## Model the linear trend



#### Residuals with Trend removed



# No more trend, check periodogram for seasonality



# Frequency is clearly 3/100



#### Add Sinusoid to model



## Residuals without Linear Trend and Sinusoid



# No more large spikes either



# For reference: Periodogram of Gaussian Noise



#### Comment

Because we know

$$f_Y(\lambda) = f_X(\lambda) |A(\lambda)|^2$$
 for  $-1/2 \le \lambda \le 1/2$ 

we can compute the spectral density of the unique stationary solution of a causal ARMA process.

# Theorem: Spectral Density of ARMA Process

Let  $\{X_t\}$  be a stationary causal ARMA process  $\phi(B)X_t = \theta(B)W_t$  with  $\phi$  and  $\theta$  having no common roots.

Then, for the definition of spectral density  $f_X$  of  $\{X_t\}$  that uses the ACVF:

$$f(\lambda) := \sum_{h=-\infty}^{\infty} \gamma_X(h) \exp\left(-2\pi i \lambda h\right) \text{ for } -1/2 \le \lambda \le 1/2.$$

it holds that

$$f_X(\lambda) = \sigma_W^2 \frac{|\theta(e^{-2\pi i j \lambda})|^2}{|\phi(e^{-2\pi i j \lambda})|^2}$$
 for  $-1/2 \le \lambda \le 1/2$ 

▶ Let 
$$U_t = \phi(B)X_t = \theta(B)W_t$$
.

- ▶ Let  $U_t = \phi(B)X_t = \theta(B)W_t$ .
- First, write the spectral density of  $U_t = \phi(B)X_t$  in terms of that of  $\{X_t\}$ : specifically  $U_t$  can be viewed as the output of a filter applied to  $X_t$ .

- ▶ Let  $U_t = \phi(B)X_t = \theta(B)W_t$ .
- First, write the spectral density of  $U_t = \phi(B)X_t$  in terms of that of  $\{X_t\}$ : specifically  $U_t$  can be viewed as the output of a filter applied to  $X_t$ .
- ▶ The filter is given by  $a_0 = 1$  and  $a_j = -\phi_j$  for  $1 \le j \le p$  and  $a_j = 0$  for all other j.

- ▶ Let  $U_t = \phi(B)X_t = \theta(B)W_t$ .
- ▶ First, write the spectral density of  $U_t = \phi(B)X_t$  in terms of that of  $\{X_t\}$ : specifically  $U_t$  can be viewed as the output of a filter applied to  $X_t$ .
- ▶ The filter is given by  $a_0 = 1$  and  $a_j = -\phi_j$  for  $1 \le j \le p$  and  $a_j = 0$  for all other j.
- Let  $A_{\phi}(\lambda)$  denote the transfer function of this filter.

- ▶ Let  $U_t = \phi(B)X_t = \theta(B)W_t$ .
- ▶ First, write the spectral density of  $U_t = \phi(B)X_t$  in terms of that of  $\{X_t\}$ : specifically  $U_t$  can be viewed as the output of a filter applied to  $X_t$ .
- ▶ The filter is given by  $a_0 = 1$  and  $a_j = -\phi_j$  for  $1 \le j \le p$  and  $a_j = 0$  for all other j.
- ▶ Let  $A_{\phi}(\lambda)$  denote the transfer function of this filter.
- ► Then we have

$$f_U(\lambda) = |A_{\phi}(\lambda)|^2 f_X(\lambda).$$

# Proof (page 2)

Similarly, using the fact that  $U_t = \theta(B)W_t$  and that the spectral density of white noise is constant,  $f_W(\lambda) = \sigma_W^2$ , we write

$$f_U(\lambda) = |A_{\theta}(\lambda)|^2 f_W(\lambda) = \sigma_W^2 |A_{\theta}(\lambda)|^2$$

where  $A_{\theta}(\lambda)$  is the transfer function of the filter with coefficients  $a_0=1$  and  $a_j=\theta_j$  for  $1\leq j\leq q$  and  $a_j=0$  for all other j.

# Proof (page 2)

Similarly, using the fact that  $U_t = \theta(B)W_t$  and that the spectral density of white noise is constant,  $f_W(\lambda) = \sigma_W^2$ , we write

$$f_U(\lambda) = |A_{\theta}(\lambda)|^2 f_W(\lambda) = \sigma_W^2 |A_{\theta}(\lambda)|^2$$

where  $A_{\theta}(\lambda)$  is the transfer function of the filter with coefficients  $a_0=1$  and  $a_j=\theta_j$  for  $1\leq j\leq q$  and  $a_j=0$  for all other j.

▶ Equating the two  $f_U(\lambda)$ ,

$$f_X(\lambda) = \frac{|A_{\theta}(\lambda)|^2}{|A_{\phi}(\lambda)|^2} \sigma_W^2 \text{ for } -1/2 \le \lambda \le 1/2.$$

# Proof (page 3)

► Now

$$A_{\phi}(\lambda) = 1 - \phi_1 e^{-2\pi i(1)\lambda} - \phi_2 e^{-2\pi i(2)\lambda} - \dots - \phi_p e^{-2\pi i(p)\lambda}$$
$$= \phi(e^{-2\pi ij\lambda})$$

# Proof (page 3)

Now

$$A_{\phi}(\lambda) = 1 - \phi_1 e^{-2\pi i(1)\lambda} - \phi_2 e^{-2\pi i(2)\lambda} - \dots - \phi_p e^{-2\pi i(p)\lambda}$$
$$= \phi(e^{-2\pi ij\lambda})$$

Note that the denominator  $A_{\phi}(\lambda)$  is non-zero for all  $\lambda$  because of stationarity.

# Proof (page 3)

Now

$$A_{\phi}(\lambda) = 1 - \phi_1 e^{-2\pi i(1)\lambda} - \phi_2 e^{-2\pi i(2)\lambda} - \dots - \phi_p e^{-2\pi i(p)\lambda}$$
$$= \phi(e^{-2\pi ij\lambda})$$

- Note that the denominator  $A_{\phi}(\lambda)$  is non-zero for all  $\lambda$  because of stationarity.
- ▶ Similarly  $A_{\theta}(\lambda) = \theta(e^{-2\pi i j \lambda})$ , which completes the proof:

$$f_X(\lambda) = \sigma_W^2 \frac{|\theta(e^{-2\pi i j \lambda})|^2}{|\phi(e^{-2\pi i j \lambda})|^2}$$
 for  $-1/2 \le \lambda \le 1/2$ 

## Example: MA(1)

For the MA(1) process:  $X_t = W_t + \theta W_{t-1}$ , we have  $\phi(z) = 1$  and  $\theta(z) = 1 + \theta z$ . Therefore

$$\begin{split} f_X(\lambda) &= \sigma_W^2 \left| 1 + \theta e^{2\pi i \lambda} \right|^2 \\ &= \sigma_W^2 \left| 1 + \theta \cos 2\pi \lambda + i\theta \sin 2\pi \lambda \right|^2 \\ &= \sigma_W^2 \left[ (1 + \theta \cos 2\pi \lambda)^2 + \theta^2 \sin^2 2\pi \lambda \right] \\ &= \sigma_W^2 \left[ 1 + \theta^2 + 2\theta \cos 2\pi \lambda \right] \text{ for } -1/2 \le \lambda \le 1/2. \end{split}$$

Check that for  $\theta=-1$ , the quantity  $1+\theta^2+2\theta\cos(2\pi\lambda)$  equals the power transfer function of the first differencing filter.

Example: MA(1)

Visualize in code!

## Example: AR(1)

For AR(1):  $X_t - \phi X_{t-1} = W_t$ , we have  $\phi(z) = 1 - \phi z$  and  $\theta(z) = 1$ . Thus

$$f_X(\lambda) = \sigma_W^2 \frac{1}{|1 - \phi e^{2\pi i \lambda}|^2} = \frac{\sigma_W^2}{1 + \phi^2 - 2\phi \cos 2\pi \lambda}$$

for  $-1/2 \le \lambda \le 1/2$ .

## Example: AR(2)

For the AR(2) model:  $X_t - \phi_1 X_{t-1} - \phi_2 X_{t-2} = W_t$ , we have  $\phi(z) = 1 - \phi_1 z - \phi_2 z^2$  and  $\theta(z) = 1$ . Here it can be shown that

$$f_X(\lambda) = \frac{\sigma_W^2}{1 + \phi_1^2 + \phi_2^2 - 2\phi_1(1 - \phi_2)\cos 2\pi\lambda - 2\phi_2\cos 4\pi\lambda}$$

for  $-1/2 \le \lambda \le 1/2$ .



In code and on the whiteboard

Want to estimate the spectral density of a stationary process?

- ▶ Want to estimate the spectral density of a stationary process?
- lacktriangle One approach: consider a parametric ARMA model  $\phi(B)X_t=\theta(B)W_t$

- Want to estimate the spectral density of a stationary process?
- lacktriangle One approach: consider a parametric ARMA model  $\phi(B)X_t= heta(B)W_t$
- lacksquare Estimate its parameters  $\phi_1,\ldots,\phi_p, heta_1,\ldots, heta_q$

- Want to estimate the spectral density of a stationary process?
- lacktriangle One approach: consider a parametric ARMA model  $\phi(B)X_t=\theta(B)W_t$
- lacksquare Estimate its parameters  $\phi_1,\ldots,\phi_p,\theta_1,\ldots,\theta_q$
- ▶ Plug in these estimates into the ARMA spectral density equation.

- Want to estimate the spectral density of a stationary process?
- lacktriangle One approach: consider a parametric ARMA model  $\phi(B)X_t=\theta(B)W_t$
- Estimate its parameters  $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$
- Plug in these estimates into the ARMA spectral density equation.
- ► For convenience, usually a parametric spectral estimator is obtained by fitting an AR(p) model, where the order p is determined by model selection such as AIC or BIC.

- Want to estimate the spectral density of a stationary process?
- lacktriangle One approach: consider a parametric ARMA model  $\phi(B)X_t=\theta(B)W_t$
- Estimate its parameters  $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$
- Plug in these estimates into the ARMA spectral density equation.
- ► For convenience, usually a parametric spectral estimator is obtained by fitting an AR(p) model, where the order p is determined by model selection such as AIC or BIC.
- ► The following theorem shows that any spectral density can be approximated arbitrary close by the spectrum of an AR process, see Property 4.7 in TSA4e.

## Theorem: AR Spectal Approximation

Let  $g(\lambda)$  be the spectral density of a stationary process. Then, given  $\epsilon>0$ , there is a time series with the representation

$$\phi(B)X_t=W_t,$$

for some finite order p polynomial  $\phi$  and some white noise  $W_t$  with variance  $\sigma^2$ , such that

$$|f_X(\lambda) - g(\lambda)| < \epsilon$$
 for all  $\lambda \in [-1/2, 1/2]$ .

Moreover, the roots of  $\phi$  outside the unit circle.

ightharpoonup Unfortunately, this Theorem does not tell us how large p, it might be very large in some cases.

- ightharpoonup Unfortunately, this Theorem does not tell us how large p, it might be very large in some cases.
- ▶ In R, we can use the function *spec.ar* to fit the best model via AIC and plot the resulting spectrum.

- ightharpoonup Unfortunately, this Theorem does not tell us how large p, it might be very large in some cases.
- ▶ In R, we can use the function *spec.ar* to fit the best model via AIC and plot the resulting spectrum.
- ▶ In the following, we will not discuss properties of these estimates further, but rather will consider a different class of estimates for the spectral density of a stationary process, which does not rely on some specific parametric model assumptions.

- ightharpoonup Unfortunately, this Theorem does not tell us how large p, it might be very large in some cases.
- ▶ In R, we can use the function *spec.ar* to fit the best model via AIC and plot the resulting spectrum.
- ▶ In the following, we will not discuss properties of these estimates further, but rather will consider a different class of estimates for the spectral density of a stationary process, which does not rely on some specific parametric model assumptions.
- ► For further reading on parametric density estimation see TSA4e Chapter 4.5.