Master's Thesis

Rohit Gupta, Sumit Basu

June 28, 2019

Contents

1	Intr	oduction	2	
2	Motivation		3	
3	1D	Simulation	4	
	3.1	Formulation	4	
	3.2	Implementation	4	
	3.3	Optimization Problem	6	
	3.4	Cell Size	6	
	3.5	Results	8	
		3.5.1 Normal	8	
		3.5.2 Extreme	9	
		3.5.3 Height	12	
	3.6	Conclusion	13	
4	2D	Simulation	14	
	4.1	Method	14	
	4.2	1D Elasticity	14	
	4.3	Optimal Design of Elastic structures	14	
	4.4	Homogenization method	16	
	4.5	Implementation 2D Homogenization	19	
	4.6	Examples	19	
5	Results		22	
6	References		22	
List of Figures				
	1	Cross-sectional micrograph showing the dimensions of typical parent cell [?]		

Axisymmetric radial distribution of fibres and parenchyma ob-		
tained for an annular rod with inner radius 12mm and outer		
radius 36mm with $\sigma_{max}=28 \mathrm{MPa}$ and $M_{max}=580~\mathrm{N}\text{-m}$	8	
Radius of parenchyma cell size obtained for an annular rod with		
inner radius 12mm and outer radius 36mm with $\sigma_{max} = 28 \text{MPa}$		
and $M_{max} = 580 \text{ N-m} \dots \dots \dots \dots \dots$	Ĝ	
(a) Axisymmetric radial distribution of fibres and parenchyma,		
(b)Radius of parenchyma cell size obtained for an annular rod		
with inner radius 90mm and outer radius 100mm with $\sigma_{max} =$		
150MPa and $M_{max} = 630$ N-m	10	
(a) Axisymmetric radial distribution of fibres and parenchyma,		
(b)Radius of parenchyma cell size obtained for an solid rod with		
radius 20mm with $\sigma_{max} = 24$ MPa and $M_{max} = 420$ N-m	11	
Density variation with height and radius obtained for an annular		
rod with inner radius 12mm and outer radius 36mm	12	
	tained for an annular rod with inner radius 12mm and outer radius 36mm with $\sigma_{max}=28$ MPa and $M_{max}=580$ N-m Radius of parenchyma cell size obtained for an annular rod with inner radius 12mm and outer radius 36mm with $\sigma_{max}=28$ MPa and $M_{max}=580$ N-m	

List of Tables

Abstract

Fill it.

1 Introduction

2 Motivation

3 1D Simulation

Bamboo is a natural composite which is composed of fibers embedded in a matrix of parenchyma cells. Bamboo fibers are mainly composed of cellulose, hemicellulose and lignin [L.Y.Mwaikambo et al.]. Fibers are spread out across the cross-section in a graded manner with higher density towards the periphery. Also, the size of parenchyma cells decreases along the radially outward direction as the air content reduces. This results in axisymmetric areal density variation in the radial direction. [Plot showing the distribution of fibers.]

This can be modeled as the distribution of two materials, and air (captured in parenchyma cells). First material being the denser and stiffer fibers and second material being the parenchyma cellular material excluding air. The properties of fibers and parenchyma are taken from [Mannan et al., L.Y.Mwaikambo et al.].

Bamboo, like any other living organism, is a result of an evolutionary process. Survival of the fittest means that bamboo species is nature's best solution for some natural condition lead to the existence of bamboo. Bamboo grows tall up to 20m to rise above the other competing plantation. With such a slender structure, bending load due to high-speed tropical winds are a significant constraint which the evolution had overcome. Bamboo has a very high specific strength, which is also the desired attribute in industrial applications. It is desired to develop composites with high stiffness and lower weight.

3.1 Formulation

Therefore, we frame a constrained problem, optimizing the radial distribution of two material, with properties corresponding to that of fibers and parenchyma, in an annular cross-section composites. The objective function to optimize is specific strength subjected to the constraints of maximum stress and maximum bending moment. The dimensions of the composites are kept the same as in [Mannan et al.]. Also, the limits of max bending moment and stress are taken from [Mannan et al.]. The general problem formulation is written as

$$\begin{array}{ll} \underset{\chi}{\text{maximize}} & strength(\chi) \\ \text{subject to} & \sigma(r) \leq \sigma_{max} & \forall r \in [r_i, r_o] \\ & M \leq M_{max} \end{array}$$

where, χ is the distribution of the two material in the domain whose inner radius is r_i and outer radius is r_o . σ is the stress in the longitudinal direction and M is the bending moment.

3.2 Implementation

Now, flexural rigidity is used as measure of strength which can be written as

$$EI(r) = \iint_{R} E(r)y^{2} dA = \int_{r_{1}}^{r_{2}} \int_{0}^{2\pi} E(r)(r\sin\theta)^{2}(rdrd\theta)$$

$$= \pi \int_{r_{1}}^{r_{2}} E(r)r^{3}dr \qquad \text{Integrating over } \theta$$
(1)

Therefore, specific flexural rigidity will be written as

$$strength(\chi) = \frac{EI}{\rho}$$

$$= \frac{\pi \sum_{r_i}^{r_o} E(r) r^3 \Delta r}{2\pi r \sum_{r_i}^{r_o} \rho(r) \Delta r}$$

$$= \frac{\sum_{r_i}^{r_o} E(r) r^3}{2 \sum_{r_i}^{r_o} \rho(r) r}$$
(2)

where

$$E(r) = \chi_1(r)E_1 + \chi_2(r)E_2$$

$$\rho(r) = \chi_1(r)\rho_1 + \chi_2(r)\rho_2$$
(3)

Here $\{E_1, \rho_1\}$ and $\{E_2, \rho_2\}$ are the material properties of the fibers and parenchyma respectively. χ_1 and χ_2 are the proportion of first and second material corresponding to fiber and parenchyma respectively.

Assuming small deformation, from Euler Bernoulli Beam Theory, we get strain ε_{xx} as

Put Schematics for Beam Theory

$$\varepsilon_{xx} = \frac{\Delta x' - \Delta x}{\Delta x}$$

$$= \frac{(R+y)\Delta\theta - R\Delta\theta}{R\Delta\theta}$$

$$= \frac{y}{R}$$
(4)

Therefore, using constitutive relation, we get σ_{xx} as

$$\sigma_{xx} = E\varepsilon_{xx} = \frac{E}{R}y\tag{5}$$

$$\sigma = \frac{E}{R}r\sin\theta \quad (\because y = r\sin\theta) \tag{6}$$

Now, moment can be written as

$$M(x) = \int \int y \cdot \sigma(x, y) \cdot dy dz$$

$$M = \int_{r_i}^{r_o} \int_0^{2\pi} \sigma(r) r^2 sin\theta \, dr \, d\theta \qquad \text{For a particular } x$$

$$= \int_{r_i}^{r_o} \int_0^{2\pi} \frac{E(r) r sin\theta}{R} r^2 sin\theta \, dr \, d\theta \qquad \text{(From eqn (6))}$$

$$= \pi \int_{r_i}^{r_o} \frac{r^3 E(r)}{R} \, dr$$

3.3 Optimization Problem

Using (2), (6), (7), the optimization problem becomes

$$\max_{\chi} \quad \frac{\sum_{r_{i}}^{r_{o}} E(r) r^{3}}{\sum_{r_{i}}^{r_{o}} \rho(r) r}$$

$$s.t. \quad \frac{rE(r)}{R} \leq \sigma_{max} \quad \forall r \in [r_{i}, r_{o}]$$

$$\sum_{r_{i}}^{r_{o}} r^{3} E(r) \leq \frac{M_{max} R}{\pi \Delta r}$$
(8)

3.4 Cell Size

For calculating parenchyma cell size, it is assumed that the cell thickness remains constant as we move from inner radius to the outer radius. The cell thickness has been determined from the dimensions given in Figure 4(a) in [?].

Figure 1: Cross-sectional micrograph showing the dimensions of typical parenchyma cell [?]

Parenchyma cells consists of cellular material and air packets. Assuming cell to be spherical, let v_a be the volume of air and v_p be the volume of cellular material. From fig. 1

$$v_a = \frac{4}{3}\pi r^3$$

3.5 Results

3.5.1 Normal

Figure 2: Axisymmetric radial distribution of fibres and parenchyma obtained for an annular rod with inner radius 12mm and outer radius 36mm with $\sigma_{max}=28$ MPa and $M_{max}=580$ N-m

Figure 3: Radius of parenchyma cell size obtained for an annular rod with inner radius 12mm and outer radius 36mm with $\sigma_{max}=28$ MPa and $M_{max}=580$ N-m

3.5.2 Extreme

We have also obtained results for different types of bamboos, like bamboos with large cross-sectional diameter but thin annular cross-section and bamboos with small diameter but solid cross section with no hollow center.

It should be noted that we didn't have the experimental data for the set of constraint for these cases of bamboos. To obtain these constraints we first provide a rough estimate using the Euler Bernoulli beam equation. Then if the obtained variation of parenchyma cell size goes beyond what is generally observed in nature that set of constraints are rejected and the optimization problem is solved for a new set of sequentially generated constraints. This process is repeated untill a variation of cell size consistent with nature is observed.

Figure 4: (a)Axisymmetric radial distribution of fibres and parenchyma, (b)Radius of parenchyma cell size obtained for an annular rod with inner radius 90mm and outer radius 100mm with $\sigma_{max}=150 \mathrm{MPa}$ and $M_{max}=630$ N-m

Figure 5: (a) Axisymmetric radial distribution of fibres and parenchyma, (b) Radius of parenchyma cell size obtained for an solid rod with radius 20mm with $\sigma_{max}=24 \text{MPa}$ and $M_{max}=420 \text{ N-m}$

3.5.3 Height

Figure 6: Density variation with height and radius obtained for an annular rod with inner radius $12\mathrm{mm}$ and outer radius $36\mathrm{mm}$

3.6 Conclusion

Assuming axisymmetry, the radial distribution of constituent materials of bamboo is optimal for the constraints of maximum stress and bending moment that are applicable to bamboo under the loading conditions.

2D Simulation 4

In the previous chapter, we showed that bamboo has optimal one dimensional distribution of the given material for the some constraints. In this chapter, we will discuss the development of 2D topology optimization code required for the generating optimal two dimensional structures from the given materials.

4.1 Method

The idea of asymptotic homogenization. In a repeating cell Y,

$$\sigma_{ij} = C_{ijkl}\epsilon_{kl} \tag{9}$$

where $C_{ijkl}(x + yY) = C_{ijkl}(x)$

$$\Rightarrow C_{ijkl}(x_1 + n_1Y_1x_2 + n_2Y_2x_3 + n_3Y_3) = C_{ijkl}(x_1, x_2, x_3)$$
(10)

 $C_{ijkl}(\underline{x})$ is Y-periodic

$$y = \frac{x}{\epsilon} \tag{11}$$

 $\underline{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$ defines the domain of the composite Ω . The domain is composed of base cells of dimensions, $\varepsilon Y_1, \varepsilon Y_2, \varepsilon Y_3$ where $y = \frac{x}{\varepsilon}$

4.21D Elasticity

$$\sigma^{\varepsilon} = E^{\varepsilon} \frac{\partial u^{\varepsilon}}{\partial x} \tag{13}$$

$$\frac{\partial \sigma^{\varepsilon}}{\partial x} + \gamma^{\varepsilon} = 0 \quad E^{\varepsilon} \gamma^{\varepsilon} \to macroscopically uniform \tag{14}$$

Inside each cell,

$$E^{\varepsilon}(x, \frac{x}{\varepsilon}) = E(y)$$
 (15)

$$\gamma^{\varepsilon}(x, \frac{x}{\varepsilon}) = \gamma(y) \tag{16}$$

Let

$$u^{\varepsilon}(x) = u^{0}x, y + \varepsilon u^{1}(x, y) + \varepsilon^{2}u^{2}(x, y) + \dots$$
(17)

$$\sigma^{\varepsilon}(x) = \sigma^{0}x, y + \varepsilon\sigma^{1}(x, y) + \varepsilon^{2}\sigma^{2}(x, y) + \dots$$
(18)

Optimal Design of Elastic structures 4.3

 $\mathbf{b} \to \mathrm{body}$ forces $\mathbf{t} \to \mathrm{surface} \ \mathrm{tractions}$

Optimal choice of $\mathbb{C}_{ijkl} \in U_{ad} \leftarrow$ admissible set of elasticity $\mathbb{C}_{ijkl}(\mathbf{x}) \forall \mathbf{x} \in \Omega \text{ has } 21 \text{ independent components}$ $a_E(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathbb{C}_{ijkl} \, \varepsilon_{kl}(\mathbf{u}) \, \varepsilon_{kl}(\mathbf{v}) d\mathbf{v} \to \text{energy bilinear form}$ $L(\mathbf{v}) = \int_{\Omega} \mathbf{v} \, d\mathbf{x} + \int_{\partial \Omega_t} \mathbf{t} \cdot \mathbf{v} ds \to \text{load linear form.}$

Minimum compliance problem:

$$minimize L(\mathbf{v}), (19)$$

subject to
$$\mathbb{C}_{ijkl} \in \mathbb{U}_{ad}$$
 (20)

$$a_E(\mathbf{u}, \mathbf{v}) = L(\mathbf{v}) \quad \forall \mathbf{v} \in \mathbb{U}$$
 (21)

where $\mathbb{U} \to \text{kinematically admissible displacements}$. For optimal shape design:

$$\mathbb{C}_{ijkl}(\mathbf{x}) = \chi(\mathbf{x})\overline{\mathbb{C}}_{ijkl}$$
, where $\overline{\mathbb{C}}_{ijkl} \to \text{stiffness matrix of the material}(22)$

$$\chi(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \Omega^m, \\ 0 & \text{if } \mathbf{x} \in \Omega \backslash \Omega^m \end{cases}$$
 (23)

where $\Omega^m \to \text{part}$ of the domain occupied by the material. For sizing problem:

$$\mathbb{C}_{ijkl}(\mathbf{x}) = h(\mathbf{x})\overline{\mathbb{C}}_{ijkl} \tag{24}$$

$$\int_{\Omega} \chi(\mathbf{x}) d\mathbf{x} = V_f \tag{25}$$

$$\int_{\Omega} \chi(\mathbf{x}) d\mathbf{x} = V_f$$
 (25)
&
$$\int_{\Omega} h(\mathbf{x}) d\mathbf{x} = V_f.$$
 (26)

where h(x) is a sizing function.

Traditionally shape design problems are initiated in the following manner:

$$Ref doamin : \Omega_0 \in \mathbb{R}^3$$
 (27)

$$\phi: \Omega_0 \to \phi(\Omega_0)$$
 is a diffeomorphism. (28)

$$L(\mathbf{v}) = \int_{\Omega_0} \mathbf{f} \cdot \mathbf{v} |det(D\underline{\phi}^{-1})| d\mathbf{x} + \int_{\partial \Omega_t} \mathbf{t} \cdot \mathbf{v} |det(D\underline{\phi}^{-1})| ds \qquad (29)$$

$$a_{E} = \int_{\Omega} \mathbb{C}_{ijkl}(\mathbf{x}\varepsilon_{kl}(\mathbf{v})\varepsilon_{ij}(\mathbf{v})d\mathbf{x}$$

$$= \int_{\Omega_{0}} \mathbb{C}_{ijkl}\varepsilon_{kl}(\mathbf{v})\varepsilon_{ij}(\mathbf{v})|det(D\underline{\phi}^{-1})|d\mathbf{x}$$
(30)

Now,

$$\mathbb{C}_{ijkl}\varepsilon_{kl} = \mathbb{C}_{ijkl}\frac{1}{2}(u_{k,l} + u_{l,k})$$

$$= \frac{1}{2}\mathbb{C}_{ijkl}u_{k,l} + \frac{1}{2}\mathbb{C}_{ijlk}u_{l,k}$$

$$= \mathbb{C}_{ijkl}u_{k,l}$$
(31)

$$a_{E} = \int_{\Omega_{0}} \mathbb{C}_{ijkl} u_{k,l}(\mathbf{u}) u_{i,j}(\mathbf{v}) | \det(D\underline{\phi}^{-1}) | d\mathbf{x}$$

$$= \int_{\Omega_{0}} \mathbb{C}_{ijkl} \frac{\partial u_{k}}{\partial \mathbf{x}_{m}} (D\underline{\phi}^{-1})_{ml} \frac{\partial u_{i}}{\partial \mathbf{x}_{p}} (D\phi^{-1})_{pj} | \det(D\underline{\phi}^{-1}) | d\mathbf{x}$$
(32)

$$\Rightarrow \mathbb{C}_{ijkl}(\underline{D}\underline{\phi}^{-1})_{ml}(\underline{D}\underline{\phi}^{-1})_{pj}|det(\underline{D}\underline{\phi}^{-1})| = \bar{\mathbb{C}}_{ipkm}$$
(33)

$$\bar{\mathbb{C}}_{ijkl} = \mathbb{C}_{ipkm}(D\underline{\phi}^{-1})_{lm}(D\underline{\phi}^{-1})_{jp}|det(D\underline{\phi}^{-1})|$$
(34)

Treating ϕ as a design variable is tedious.

4.4 Homogenization method

$$E_{ijkl}^{\varepsilon}(\mathbf{x}) = E_{ijkl}(\mathbf{x}, \mathbf{y}), \qquad \mathbf{y} = \frac{\mathbf{x}}{\varepsilon}$$
 (35)

The tensor E_{ijkl}^{ε} is a material constant which satisfies the symmetry condition and is assumed to satisfy strong ellipticity condition for every \mathbf{x} .

$$\Rightarrow E_{ijkl}^{\varepsilon} = E_{jikl}^{\varepsilon} = E_{ijlk}^{\varepsilon} = E_{klij}^{\varepsilon} \tag{36}$$

$$E_{ijkl}^{\varepsilon}(\mathbf{x})\mathbf{X}_{ij}\mathbf{X}_{kl} \ge m\mathbf{X}_{ij}\mathbf{X}_{ij}$$
 for some $m > 0 \& \forall \mathbf{X}_{ij} = \mathbf{X}_{ji}$ (37)

Let the domain Ω has a boundary Γ . Let \mathbf{f} be the body force acting on Ω and \mathbf{t} be the traction acting on Γ_t part of the boundary Γ . Also, let Γ_D be the part of boundary on which displacement is defined. Then the displacement \mathbf{u}^{ε} can be obtained as the solution to the following minimization problem

$$\min_{\mathbf{v}^{\varepsilon} \in U} \quad F^{\varepsilon}(\mathbf{v}^{\varepsilon}), \tag{38}$$

where F^{ε} is total potential energy given as

$$F^{\varepsilon}(\mathbf{v}^{\varepsilon}) = \frac{1}{2} \int_{\Omega} E^{\varepsilon}_{ijkl} \varepsilon_{kl}(\mathbf{v}^{\varepsilon}) \varepsilon_{ij}(\mathbf{v}^{\varepsilon}) dx - \int_{\Omega} \mathbf{f} \cdot \mathbf{v}^{\varepsilon} dx - \int_{\Gamma_{t}} \mathbf{t} \cdot \mathbf{v}^{\varepsilon} ds$$
(39)

and \mathcal{U} is the set of admissible displacements defined such that

$$\mathcal{U} = \{ \mathbf{v} = v_i \mathbf{e}_i : v_i \in H^1(\Omega) \text{ and } \mathbf{v} \in \mathcal{G} \text{ on } \Gamma_D \}$$
(40)

where \mathcal{G} is set of displacement defined along the boundary Γ_D . Let

$$\mathbf{v}^{\varepsilon}(\mathbf{x}) = \mathbf{v}_0(\mathbf{x}) + \varepsilon \mathbf{v}_1(\mathbf{x}, \mathbf{y}), \qquad \mathbf{y} = \frac{\mathbf{x}}{\varepsilon}.$$
 (41)

Using chain rule for functions in two variables

$$\frac{\partial f(\mathbf{x}, \mathbf{y}(\mathbf{x}))}{\partial \mathbf{x}} = \frac{\partial f}{\partial \mathbf{x}} + \frac{\partial f}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial \mathbf{x}}
= \frac{\partial f}{\partial \mathbf{x}} + \frac{1}{\varepsilon} \frac{\partial f}{\partial \mathbf{y}} \tag{42}$$

Using above two equations, we can write the linerized strain as

$$\epsilon_{ij}(\mathbf{v}^{\varepsilon}(\mathbf{x})) = \frac{\partial(v_{0i}(\mathbf{x}) + \varepsilon v_{1i}(\mathbf{x}, \mathbf{y}))}{\partial x_{j}}$$

$$= \frac{\partial v_{0i}}{\partial x_{j}} + \varepsilon \left\{ \frac{\partial v_{1i}}{\partial x_{j}} + \frac{1}{\varepsilon} \frac{\partial v_{1i}}{\partial y_{j}} \right\}$$

$$\approx \frac{\partial v_{0i}}{\partial x_{j}} + \frac{\partial v_{1i}}{\partial y_{j}} \qquad \leftarrow \{\varepsilon << 1\}$$
(43)

Therefore, equation (39) can be written as

$$F^{\varepsilon}(\mathbf{v}^{\varepsilon}) = \frac{1}{2} \int_{\Omega} E_{ijkl}^{\varepsilon} \left(\frac{\partial v_{0k}}{\partial x_l} + \frac{\partial v_{1k}}{\partial y_l} \right) \left(\frac{\partial v_{0i}}{\partial x_j} + \frac{\partial v_{1i}}{\partial y_j} \right) dx - \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_0 dx - \int_{\Gamma_t} \mathbf{t} \cdot \mathbf{v}_0 ds + \varepsilon R^{\varepsilon}(\mathbf{v}_0, \mathbf{v}_1)$$
(44)

Here, R^{ε} is the contribution of $\varepsilon \mathbf{v}_1$ in the calculation of energy from body force and traction. Using

$$\lim_{\varepsilon \to 0} \int_{\Omega} \Phi(x, x/\varepsilon) dx = \frac{1}{|Y|} \int_{\Omega} \int_{Y} \Phi(x, y) dy dx, \tag{45}$$

we get,

$$\lim_{\varepsilon \to 0} F^{\varepsilon}(\mathbf{v}^{\varepsilon}) = F(\mathbf{v}_{0}, \mathbf{v}_{1})$$

$$= \frac{1}{2|Y|} \int_{\Omega} \int_{Y} E_{ijkl}(x, y) \left(\frac{\partial v_{0k}}{\partial x_{l}} + \frac{\partial v_{1k}}{\partial y_{l}} \right) \left(\frac{\partial v_{0i}}{\partial x_{j}} + \frac{\partial v_{1i}}{\partial y_{j}} \right) dy \, dx \quad (46)$$

$$- \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{0} dx - \int_{\Gamma_{1}} \mathbf{t} \cdot \mathbf{v}_{0} ds$$

A minimizer $\{\mathbf{u}_0, \mathbf{u}_1\}$ of the functional F, follow the following equations:

$$\frac{1}{|Y|} \int_{\Omega} \int_{Y} E_{ijkl}(x, y) \left(\frac{\partial u_{0k}}{\partial x_{l}} + \frac{\partial u_{1k}}{\partial y_{l}} \right) \left(\frac{\partial v_{0i}}{\partial x_{j}} \right) dy dx$$

$$= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{0} dx + \int_{\Gamma_{t}} \mathbf{t} \cdot \mathbf{v}_{0} ds \quad \text{for every } \mathbf{v}_{0}$$
(47)

$$\frac{1}{|Y|} \int_{\Omega} \int_{Y} E_{ijkl}(x, y) \left(\frac{\partial u_{0k}}{\partial x_{l}} + \frac{\partial u_{1k}}{\partial y_{l}} \right) \left(\frac{\partial v_{i}}{\partial x_{j}} \right) dy \, dx = 0, \quad \text{for every } \mathbf{v}_{1}$$
 (48)

Now, from localizing u_{1k}

$$u_{1k}(x,y) = -\chi_k^{pq}(y) \frac{\partial u_{0p}}{\partial x_q}(x), \tag{49}$$

$$\Rightarrow \int_{\Omega} \int_{Y} E_{ijkl}(x,y) \left(\frac{\partial u_{0k}}{\partial x_{l}} - \frac{\partial \chi_{k}^{pq}}{\partial y_{l}} \frac{\partial u_{0p}}{\partial x_{q}} \right) \frac{\partial v_{i}}{\partial x_{j}} dy \, dx = 0$$

$$\int_{\Omega} \int_{Y} \left(E_{ijkl} \frac{\partial u_{0k}}{\partial x_{l}} - E_{ijkl} \frac{\partial \chi_{k}^{pq}}{\partial y_{l}} \frac{\partial u_{0p}}{\partial x_{q}} \right) \frac{\partial v_{i}}{\partial x_{j}} dy \, dx = 0$$

$$\int_{\Omega} \int_{Y} \left(E_{ijkl} \frac{\partial u_{0k}}{\partial x_{l}} - E_{ijpq} \frac{\partial \chi_{p}^{kl}}{\partial y_{q}} \frac{\partial u_{0k}}{\partial x_{l}} \right) \frac{\partial v_{i}}{\partial x_{j}} dy \, dx = 0$$

$$\int_{\Omega} \int_{Y} \frac{\partial u_{0k}}{\partial x_{l}} \left(E_{ijkl} - E_{ijpq} \frac{\partial \chi_{p}^{kl}}{\partial y_{q}} \right) \frac{\partial v_{i}}{\partial x_{j}} dy \, dx = 0$$

$$\int_{\Omega} \frac{\partial u_{0k}}{\partial x_{l}} dx \cdot \int_{Y} \left(E_{ijkl} - E_{ijpq} \frac{\partial \chi_{p}^{kl}}{\partial y_{q}} \right) \frac{\partial v_{i}}{\partial x_{j}} dy \, dx = 0$$

$$\Rightarrow \int_{Y} \left(E_{ijkl} - E_{ijpq} \frac{\partial \chi_p^{kl}}{\partial y_q} \right) \frac{\partial v_i}{\partial x_j} dy = 0 \quad \text{for k, l} = 1 \text{ and 2,}$$
 (50)

Similarly, substituting equation (49) in (47) gives the homogenized equation.

LHS =
$$\frac{1}{|Y|} \int_{\Omega} \int_{Y} E_{ijkl}(x,y) \left(\frac{\partial u_{0k}}{\partial x_{l}} + \frac{\partial u_{1k}}{\partial y_{l}} \right) \left(\frac{\partial v_{0i}}{\partial x_{j}} \right) dy dx$$

= $\frac{1}{|Y|} \int_{\Omega} \int_{Y} \left(E_{ijkl} \frac{\partial u_{0k}}{\partial x_{l}} - E_{ijpq} \frac{\partial \chi_{p}^{kl}}{\partial y_{q}} \frac{\partial u_{0k}}{\partial x_{l}} \right) \frac{\partial v_{0i}}{\partial x_{j}} dy dx$
= $\frac{1}{|Y|} \int_{\Omega} \left\{ \int_{Y} \left(E_{ijkl} - E_{ijpq} \frac{\partial \chi_{p}^{kl}}{\partial y_{q}} \right) dy \right\} \frac{\partial u_{0k}}{\partial x_{l}} \frac{\partial v_{0i}}{\partial x_{j}} dx$
= $\int_{\Omega} E_{ijkl}^{H}(x) \frac{\partial u_{0k}}{\partial x_{l}} \frac{\partial v_{0i}}{\partial x_{j}} dx$

Homogenized equation

$$\int_{\Omega} E_{ijkl}^{H}(x) \frac{\partial u_{0k}}{\partial x_{l}} \frac{\partial v_{0i}}{\partial x_{j}} dx = \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{0} dx + \int_{\Gamma_{t}} \mathbf{t} \cdot \mathbf{v}_{0} ds \quad \text{for every } \mathbf{v}_{0} \quad (51)$$

where $E_{ijkl}^{H}(x)$ is

$$E_{ijkl}^{H} = \frac{1}{|Y|} \int_{Y} \left(E_{ijkl} - E_{ijpq} \frac{\partial \chi_{p}^{kl}}{\partial y_{q}} \right) dy$$
 (52)

Now, Define

$$a_{H}(\mathbf{u}, \mathbf{v}) = \int_{\Omega} E_{ijkl}^{H}(\mathbf{x}) \frac{\partial u_{k}}{\partial x_{l}} \frac{\partial v_{i}}{\partial x_{j}} dx, \tag{53}$$

$$a_Y(\chi^{kl}, \mathbf{v}) = \int_Y E_{ijpq}(\mathbf{x}, \mathbf{y}) \frac{\partial \chi_p^{kl}}{\partial y_q} \frac{\partial v_i}{\partial y_j} dy, \tag{54}$$

$$L_Y^{kl}(\mathbf{v}) = \int_Y E_{ijkl} \frac{\partial v_i}{\partial y_j} \, dy \tag{55}$$

At microscopic level, we have

$$a_Y(\chi^{kl}, \mathbf{v}) = L_Y^{kl}(\mathbf{v}) \qquad \forall \mathbf{v} \in \mathcal{U}_Y,$$
 (56)

At macroscopic level, we have

$$a_H(\mathbf{u}, \mathbf{v}) = L(\mathbf{v}) \qquad \forall \mathbf{v} \in \mathcal{U}_0$$
 (57)

where U_0 is homogeneous case of U, i.e., $\mathbf{g} = 0$.

4.5 Implementation 2D Homogenization

Basic homogenization equation,

$$u_{1i}(\mathbf{x}, \mathbf{y}) = -\chi_i^{pq} \frac{\partial u_{0p}(\mathbf{x})}{\partial x_q}$$
 (58)

Solve χ_p^{kl} from:

$$\int_{Y} \left(E_{ijkl} - E_{ijpq} \frac{\partial \chi_{p}^{kl}}{\partial y_{q}} \right) \frac{\partial v_{1i}}{\partial y_{j}} dy = 0$$
(59)

Compute:

$$E_{ijkl}^{H} = \frac{1}{|Y|} \int_{Y} \left(E_{ijkl} - E_{ijpq} \frac{\partial \chi_{p}^{kl}}{\partial y_{q}} \right) dy \tag{60}$$

4.6 Examples

Consider: k=1, l=1

$$\int_{Y} E_{ijkl} \frac{\partial v_{i}}{\partial y_{j}} dy = \int_{Y} E_{ij11} \frac{\partial v_{i}}{\partial y_{j}} dy$$

$$= \int_{Y} \left(E_{1111} \frac{\partial v_{1}}{\partial y_{1}} + E_{2211} \frac{\partial v_{2}}{\partial y_{2}} \right) dy$$
(61)

$$\begin{split} \int_{Y} E_{ijpq} \frac{\partial \chi_{pl}^{k}}{\partial y_{q}} \frac{\partial v_{i}}{\partial y_{j}} dy &= \int_{Y} E_{ijpq} \frac{\partial \chi_{pl}^{11}}{\partial y_{q}} \frac{\partial v_{i}}{\partial y_{j}} dy \\ &= \int_{Y} \left\{ E_{11pq} \frac{\partial \chi_{pl}^{11}}{\partial y_{q}} \frac{\partial v_{i}}{\partial y_{1}} + E_{12pq} \frac{\partial \chi_{pl}^{11}}{\partial y_{q}} \frac{\partial v_{i}}{\partial y_{2}} \right. \\ &\quad + E_{21pq} \frac{\partial \chi_{pl}^{11}}{\partial y_{q}} \frac{\partial v_{i}}{\partial y_{1}} + E_{22pq} \frac{\partial \chi_{pl}^{11}}{\partial y_{q}} \frac{\partial v_{2}}{\partial y_{2}} \right\} dy \\ &= \int_{Y} \left\{ \left(E_{1111} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{1112} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{1121} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{1122} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{1}}{\partial y_{1}} \\ &\quad + \left(E_{1211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{1212} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{1221} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{1222} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{1}}{\partial v_{2}} \\ &\quad + \left(E_{2111} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{2112} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{2121} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{2122} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{2}}{\partial y_{2}} \\ &\quad + \left(E_{2211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{2122} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{2221} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{2222} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{2}}{\partial y_{2}} \\ &\quad + \left(E_{1111} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{1122} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{1221} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{1222} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{2}}{\partial y_{2}} \\ &\quad + \left(E_{1211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{1212} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{1221} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{1222} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{1}}{\partial y_{2}} \\ &\quad + \left(E_{2211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{2212} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{2221} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{2222} \frac{\partial \chi_{2}^{21}}{\partial y_{2}} \right) \frac{\partial v_{1}}{\partial y_{2}} \\ &\quad + \left(E_{2211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{2222} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{2221} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{2222} \frac{\partial \chi_{2}^{21}}{\partial y_{2}} \right) \frac{\partial v_{1}}{\partial y_{2}} \\ &\quad + \left(E_{2211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{2222} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{2221} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} + E_{2222} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{1}}{\partial y_{2}} \\ &\quad + \left(E_{2211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{2222} \frac{\partial \chi_{2}^{11}}{\partial y_{$$

Therefore, using equations (56), (62) and (61) for k=1, l=1 we have:

$$\int_{Y} \left\{ \left(E_{1111} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{1122} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{1}}{\partial y_{1}} \right. \\
+ E_{1212} \left(\frac{\partial \chi_{1}^{11}}{\partial y_{2}} + \frac{\partial \chi_{2}^{11}}{\partial y_{1}} \right) \left(\frac{\partial v_{1}}{\partial y_{2}} + \frac{\partial v_{2}}{\partial y_{1}} \right) \\
+ \left(E_{2211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} + E_{2222} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{2}}{\partial y_{2}} \right\} dy =$$

$$\int_{Y} \left(E_{1111} \frac{\partial v_{1}}{\partial y_{1}} + E_{2211} \frac{\partial v_{2}}{\partial y_{2}} \right) dy \tag{63}$$

From equation (60), we can write

$$E_{1111}^{H} = \frac{1}{|Y|} \int_{Y} \left(E_{1111} - E_{1111} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} - E_{1122} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) dy \tag{64}$$

$$E_{2211}^{H} = \frac{1}{|Y|} \int_{Y} \left(E_{2211} - E_{2211} \frac{\partial \chi_{1}^{11}}{\partial y_{1}} - E_{2222} \frac{\partial \chi_{2}^{11}}{\partial y_{2}} \right) dy$$
 (65)

$$E_{1211}^{H} = -\frac{1}{|Y|} \int_{Y} \left(E_{1212} \frac{\partial \chi_{1}^{11}}{\partial y_{2}} + E_{1221} \frac{\partial \chi_{2}^{11}}{\partial y_{1}} \right) dy$$
 (66)

Let $\chi_1^{11} = \Phi_1, \chi_2^{11} = \Phi_2$ and $E_{1111} = D_{11}, E_{2222} = D_{22}, E_{1212} = D_{66}, E_{1122} = E_{2211} = D_{12}$

$$\int_{Y} \left\{ \left(D_{11} \frac{\partial \Phi_{1}^{11}}{\partial y_{1}} + D_{12} \frac{\partial \Phi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{1}}{\partial y_{1}} \right. \\
+ D_{66} \left(\frac{\partial \Phi_{1}^{11}}{\partial y_{2}} + \frac{\partial \Phi_{2}^{11}}{\partial y_{1}} \right) \left(\frac{\partial v_{1}}{\partial y_{2}} + \frac{\partial v_{2}}{\partial y_{1}} \right) \\
+ \left(D_{12} \frac{\partial \Phi_{1}^{11}}{\partial y_{1}} + D_{22} \frac{\partial \Phi_{2}^{11}}{\partial y_{2}} \right) \frac{\partial v_{2}}{\partial y_{2}} \right\} dy = \\
\int_{Y} \left(D_{11} \frac{\partial v_{1}}{\partial y_{1}} + D_{12} \frac{\partial v_{2}}{\partial y_{2}} \right) dy$$
(67)

Also,

$$D_{11}^{H} = \frac{1}{|Y|} \int_{Y} \left(D_{11} - D_{11} \frac{\partial \Phi_{1}}{\partial y_{1}} - D_{12} \frac{\partial \Phi_{2}}{\partial y_{2}} \right) dy \tag{68}$$

Rearranging Eq. (67)

$$\int_{Y} \left\{ \frac{\partial v_{1}}{\partial y_{1}} \quad \frac{\partial v_{2}}{\partial y_{2}} \quad \frac{\partial v_{1}}{\partial y_{2}} + \frac{\partial v_{2}}{\partial y_{1}} \right\} \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & D66 \end{bmatrix} \\
\times \begin{bmatrix} \frac{\partial \Phi_{1}}{\partial y_{1}} \\ \frac{\partial \Phi_{2}}{\partial y_{2}} \\ \frac{\partial \Phi_{2}}{\partial y_{2}} + \frac{\partial \Phi_{2}}{\partial y_{1}} \end{bmatrix} dY \tag{69}$$

$$= \int_{Y} \left\{ \frac{\partial v_{1}}{\partial y_{1}} \quad \frac{\partial v_{2}}{\partial y_{2}} \quad \frac{\partial v_{1}}{\partial y_{2}} + \frac{\partial v_{2}}{\partial y_{1}} \right\} \begin{bmatrix} D_{11} \\ D_{12} \\ 0 \end{bmatrix} dY$$

Let us define

$$\mathbf{b} = \begin{bmatrix} \frac{\partial}{\partial y_1} & 0\\ 0 & \frac{\partial}{\partial y_2}\\ \frac{\partial}{\partial y_1} & \frac{\partial}{\partial y_2} \end{bmatrix}$$
 (70)

and

$$\mathbf{D} = \begin{bmatrix} \mathbf{d}_1 & \mathbf{d}_2 & \mathbf{d}_3 \end{bmatrix} \tag{71}$$

Then Eq (67), can be written as

$$\int_{Y} \mathbf{v}^{T} \mathbf{b}^{T} \mathbf{D} \mathbf{b} \Phi dY = \int_{Y} \mathbf{v}^{T} \mathbf{b}^{T} \mathbf{d}_{1} \qquad \forall \mathbf{v} \in \mathbf{V}_{Y}$$
(72)

and eq. (68) becomes:

$$D_{11}^{H} = \frac{1}{|Y|} \int_{Y} \left(D_{11} - \mathbf{d}_{1}^{T} \mathbf{b} \Phi \right) dy$$

$$\tag{73}$$

5 Results

[1] [2]

6 References

References

- [1] John Doe. Title. Journal, 2017.
- [2] Intel. Example website. http://example.com, Dec 1988. Accessed on 2012-11-11.