Package 'cdashQC'

April 24, 2017

Title Quality control for TFLs

Version 0.1.6
Depends $R(>=3.1.1)$
Imports lubridate(>= 1.6.0), reshape2(>= 1.4.1), dplyr(>= 0.5.0), haven(>= 0.2.1), knitr(>= 1.14)
Author Bin Zhuo
Maintainer Bin Zhuo din.zhuo@celerion.com>
Description This package creates table and listings for QC of cdash format data.
License What license is it under?
LazyData TRUE
RoxygenNote 5.0.1
NeedsCompilation no
R topics documented:
assign_ae_trt
codes
count_percent
create_aet

 format_time
 10

 gcv
 10

 get_summary_stats
 11

2 assign_ae_trt

Index		26
	weight_height_bmi	25
	summary_vs_eg	
	summary_teae	
	summary_pkpd	
	summary_labshift	
	summary_lab	
	summary_dem	
	summary_ae_sev	
	summary_ae_rel	
	sdtm_pkpd	
	round_df	
	replicate_data	
	replicate_clean	
	replicate_check	
	replicate_average	
	normal_range	16
	listing_dem	15
	listing_concom	15
	listing_ae	14
	lab_oor	14
	guess_test	13
	guess_reps	12
	guess_race_age	12
	guess_base_phour	11

assign_ae_trt

Assing AE to treatment

Description

Assign ae to a treatment.

Usage

```
assign_ae_trt(ae, ex)
```

Arguments

ae the dataset ae read from sas ex the dataset ex read from sas

Value

a data frame with one more column specifying which treatment the AE should be in.

clean_lab 3

clean_lab

Clean the lab test data set.

Description

clean the lab data, handling rechecks/unscheduled included.

Usage

```
clean_lab(lab, return_prob = FALSE)
```

Arguments

lab the dataset returned by create_lab

return_prob should the problematic observations (e.g, unscheduled, early terminatio, and

those supposed to be done predose, but actually done postdose) be shown?

FALSE by default.

Value

lab data with necessary variables kept for further summarization.

See Also

create_lab

codes

the data set codes.

Description

A dataset containing the lab test code and its corresponding full name

Usage

codes

Format

a data frame containing all possible LB_TESTC and the corresponding full names.

TESTNUM Maybe the number code?

LB_TESTC the code for laboratory test

TTL the full name

COLWIDE The column width? ...

Source

https://github.com/statswork/cdashQC/tree/master/data-raw/

4 create_aet

count_percent

add percentage to a frequency table

Description

count to percent

Usage

```
count_percent(data, var1, var2, digit_keep = 3)
```

Arguments

data the data should contain at least 2 columns var1 which column should be the group

var2 which columns are used to calculate percentage (could be a vector)

digit_keep how many digits should be kept.

Value

a data frame

Examples

```
trait = rep(c("A", "B", "C"), 3); subtype = paste(trait, rep(1:3, each=3), sep = "")
data <- data.frame(trait, subtype, count1 = rpois(9, 5), count2 = rpois(9, 10))
count_percent(data, var1= 1, var2 = 3:4)

r1 <- get_summary_stats(eg, group = "PERIOD", var = "EG_TEST")
count_percent(r1, var1 = 1, var2 = 3:5)</pre>
```

create_aet

do what createaet does.

Description

createaet.

Usage

```
create_aet(ae, ex)
```

Arguments

ae the dataset ae read from sas ex the dataset ex read from sas

Value

aet the data

create_baseline 5

create_baseline

create baseline indicator.

Description

create an extra column inidcating whether the current row should be considered as baseline.

Usage

```
create_baseline(data, var_identifier = "_TEST")
```

Arguments

```
data currently support vs, eg and 1b_cq.
var_identifier a string that can be used to identify the variable name e.g.(VS_TEST, EG_TEST, LB_TEST)
```

Value

a data frame with an extra column status whose value could be one of BASELINE, POSTDOSE and PREDOSE (NOT BASELINE)

See Also

```
guess_base_phour
```

create_dem

create the demographics data.

Usage

```
create_dem(dm, vs, included)
```

Arguments

dm the dm data set vs the vs data set

inlcuded the included data set created by create_included

Value

a data frame

See Also

```
create_included
```

6 create_included

create_eg

create variable columns for the ECGs parameters.

Description

dcast the ecg variables

Usage

```
create_eg(eg, included)
```

Arguments

eg the dataset eg read from sas

included the included data set created by create_included

Value

eg1 data with necessary variables kept for further summarization.

create_included an integrated data set.

Description

create_included.

Usage

```
create_included(ex, cr, ds)
```

Arguments

ex the dataset ex read from sas
cr the dataset cr read from sas
ds the dataset ds read from sas

Value

the included data set which contains the following information

CLIENTID the patient ID

SCRID the corresponding screening ID

SEQ the treatment sequence, from ex data

PERIOD CRF study period, from ex data

EX_ROUTE Route

EX_FORM Formulation

EX_STDAT Date of first dosing

7 create_lab

EX_STTIM Time of first dosing EX_DOSE Dose Amount EX_LASTDOSEDAT Date of last dosing (Created in this function) EX_LASTDOSETIM Time of last dosing CHK_IN_DAT date of check-in for each period time of check in for each period CHK_IN_TIM RETURN_DAT date of return for each period RETURN_TIM time of return for each period Primary reason for discontinuation DS_TRM_D

DS_SPEC specify

Date of completion or discontinuation per subject DS_STDAT

DS_LSDAT Date of last contact per subject

create_lab create the lab test data set.

Description

create the lab data

Usage

```
create_lab(lb_cq, included)
```

Arguments

lb_cq the dataset lb_cq read from sas

included the included data set created by create_included

Value

lab data with necessary variables kept for further summarization.

Create protocol hour create_phour

Description

Create protocol hour variable if it's not already in the data set.

Usage

```
create_phour(data, digit = 2)
```

8 create_vs

Arguments

data either eg, vs or lb_cq

digit round the hour by digit, default set to be 2.

Value

the same data set with one more column if Phour is created, otherwise returns the input data.

create_seq Create SEQ

Description

Create SEQ variable (treatment) if it's not already in the data set.

Usage

```
create_seq(data, included)
```

Arguments

data either eg, vs or lb_cq

included the included data set created by create_included

Value

the same data set with one more column if SEQ is created, otherwise returns the input data.

create_vs create the vital sign data set.

Description

create the vs data

Usage

```
create_vs(vs, included)
```

Arguments

vs the dataset dm read from sas

included the included data set created by create_included

Value

vs data with necessary variables kept for further summarization.

eg_rm 9

eg_rm

remove the unwanted ecgs and return the "good" ones

Description

clean the dirty ecgs by looking at the comments. This function finds the ecgs to be removed identified by exact event time.

Usage

```
eg_rm(eg_prob, rm_row)
```

Arguments

eg_prob the ("dirty") data set from replicate_data

rm_row A vector specifying the rows to be removed.

Value

the pruned ecg data

ex_start

Get the start time of each treatment

Description

Get the start time of each treatment

Usage

```
ex_start(ex)
```

Arguments

ex

the dataset ex read from sas

Value

a data frame specifying the start time of each treatment

10 gcv

fο	rmat	+ i	mΔ
ΤO	rılla t	LL	шe

Format the time variable in a data set

Description

Format the time variable in a data set

Usage

```
format_time(data, date = "AE_STDT", time = "AE_STTM",
  newname = paste(date, time, sep = "_"))
```

Arguments

data the data which contains the time variables

date the date variable

time the time (in seconds)

newname what should the new variable that concatnates date and time be named?

Value

the same data set but time has been changed to "hh:mm:ss" format.

gcv

calculate geometric CV

Description

Calculate geometric CV

Usage

```
gcv(v1, log = FALSE)
```

Arguments

v1

a vector

Value

the geometric CV

get_summary_stats 11

<pre>get_summary_stats</pre>	get summary statistics
------------------------------	------------------------

Usage

```
get_summary_stats(data, group = "EX_TRT_C", var = "race", na.rm = TRUE)
```

Arguments

data the data

group which column should be the group var which columns are used to summarize

na.rm should missing value be removed? TRUE by default.

Value

a data frame

Examples

```
SEQ = rep(c("A", "B", "C"), 3); subtype = sample(c("ONE", "TWO", "THREE"), 9, replace = TRUE)
data <- data.frame(SEQ, subtype, BMI = rnorm(9, 25, 4), HEIGHT = rnorm(9, 175,3))
get_summary_stats(data, group = "SEQ", var = "subtype")
get_summary_stats(data, group = "SEQ", var = "BMI")</pre>
```

guess_base_phour

find the baseline hour for each test

Description

find the baseline hour for each test category

Usage

```
guess_base_phour(data, var_identifier = "_TEST")
```

Arguments

```
data currently support vs, eg and lb_cq.

var_identifier a string that can be used to identify the variable name e.g.(VS_TEST, EG_TEST, LB_TEST)
```

Value

a data frame where by-subject baseline hour is determined.

12 guess_reps

Examples

```
# the following two will give you exactly the same result
r1 <- guess_base_phour(vs)
r2 <- guess_base_phour(vs, var_identifier = "VS_TEST")

# If you want to find baseline hours for eg, the following two methods are equivalent
r3 <- guess_base_phour(eg)
r4 <- guess_base_phour(eg, var_identifier = "EG_TEST")</pre>
```

guess_race_age

race and ethnicity indicator, age.

Description

create necessary variable for the demographic summary tables and listing.

Usage

```
guess_race_age(dm, included)
```

Arguments

dm the dataset dm read from sas
ex the dataset ex read from sas

Value

a data frame with additional columns listed as follows

race the race of the subject

ethnic has two levels, "NOT HISPANIC OR LATINO" and "HISPANIC OR LATINO".

EX_TRT_C the treatment groups

ptno convert CLIENTID to numerical values of subject number

age Age calculated from start date of treatment

guess_reps

guess the number of replicates

Description

guess the number of replicates for each SEQ/PERIOD/PHOUR/TESTCODE

Usage

```
guess_reps(data, var_identifier = "_TEST")
```

guess_test

13

Arguments

```
data data of eg (created by create_eg) or vs (created by create_vs)
var_identifier,
which columns is the variable for test code names.
```

Value

a data frame containing number of reps per PERIOD/PHOUR/TESTCODE

Examples

```
eg0 <- create(eg, included)
d1 <- guess_reps(eg0)</pre>
```

guess_test

guess the name of the test

Description

guess the name of the test code: it should end with var_identifier.

Usage

```
guess_test(data, var_identifier = "_TEST")
```

Arguments

Value

the test code

Examples

```
guess_test(eg)
```

14 listing_ae

lab_oor

Find OOR

Description

Find the out-of-range values

Usage

```
lab_oor(lab)
```

Arguments

lab

the data returned by create_lab.

Value

a list containg OOR.

listing_ae

list Adverse Envent

Description

list the ae

Usage

```
listing_ae(aet, type = 1)
```

Arguments

aet

created by create_aet

type

an indicator. Should I list ae1 (type = 1), ae2 (type = 2) or ae3 (type = 3)?

Value

a data frame

See Also

```
create_aet
```

listing_concom 15

listing_concom

list concomitant.

Description

list concomitant medication data

Usage

```
listing_concom(cm)
```

Arguments

cm

the dataset cm read from sas

Value

the data with related columns

listing_dem

demographics listing.

Description

Summarize the demographic data

Usage

```
listing_dem(dmt)
```

Arguments

dmt

the data set created by ${\tt create_dem}.$

Value

a data frame

See Also

```
create_included and create_dem
```

16 replicate_average

normal_range

Find normal range for lab test

Description

Find the normal range of each test code

Usage

```
normal_range(lab)
```

Arguments

lab

the dataset generated by create_lab

Value

a data frame containing test codes and their corresponding normal range

replicate_average

 $get \ the \ averanges \ of \ the \ replicates for \ vs \ or \ eg \ data.$

Description

Get the averages of the replicates

Usage

```
replicate_average(data_clean, digits = NULL, na_rm = TRUE)
```

Arguments

data_clean an object returned from replicate_clean digits should the averages be rounded? Default NO.

na_rm should missing values be excluede? Default TRUE.

Value

the averages

See Also

```
replicate_clean
```

Examples

```
eg2 \leftarrow replicate\_data(eg) \# find the triplicates
```

replicate_check 17

replicate_check

check the replicates and issue a message if there's issue

Description

check data qualities, reporting missing and RECHECKS

Usage

```
replicate_check(data, reps = NULL, printed = TRUE)
```

Arguments

data of eg (created by create_eg) or vs (created by create_vs)

reps the number of replicates planned. (should be tabled by TESTCODE, SEQ, PE-

RIOD and PHOUR). If NULL, guess_reps will be invoked to guess the number

of replicates.

printed whether to print the observations having issues at the console.

Value

a data frame containing subject and issues at given period and protocol hours

See Also

```
guess_reps.
```

Examples

```
eg0 <- create_eg(eg, incldued)
d1 <- replicate_check(eg1)</pre>
```

replicate_clean

get the cleaned replicates by combining the "clean" data and "dirty"

data

Description

get cleaned replicates

Usage

```
replicate_clean(data, rm_row = NULL)
```

Arguments

data an object returned from replicate_data (works for vs and eg)

rm_row a vector of integers specifying which rows should be removed from the dirty

data.

18 replicate_data

Value

the cleaned replicates

See Also

```
replicate_data
```

Examples

```
eg2 <- replicate_data(eg) # step 1: find the triplicates
eg_prob <- eg2$data_dirty  # need manual check
# specifies the rows that should be removed
rows_removed <- c(8, 31:33, 67, 68, 95, 119, 144, 145, 176, 200, 221, 245, 272, 296)
eg3 <- replicate_clean(eg2, rows_removed)</pre>
```

replicate_data

get the replicates for eg or vs data.

Description

get the replicates for each protocol hour (PHOUR)

Usage

```
replicate_data(data, reps = NULL)
```

Arguments

data the data set created by create_eg (for ecg data) or by create_vs (for vital signs

data).

reps specifies the structures of reps. If not specified, guess_resp will be invoked.

Default set to be NULL.

Value

a list

data_clean the subjects containing correct number of resplicates

data_dirty the subjects that have different number of replicates than desired

See Also

```
create_eg, guess_resp and replicate_check
```

round_df

 $round_df$

round data frame

Description

round a data frame if the column is numerical

Usage

```
round_df(df, digits = 3)
```

Arguments

df the data frame

digits how many digits you want to keep

Value

a data frame with numerical columns rounded.

sdtm_pkpd

prepare PK/PD data

Description

```
create the pc, pd and pp data
```

Usage

```
sdtm_pkpd(data, ex)
```

Arguments

data the SDTM format data of either pc, pd or pp.

ex the SDTM data ex where treatment information is stored.

Value

the data set with necessary variables selected for analysis

20 summary_ae_sev

summary_ae_rel	Adverse event by relationship to study drug
----------------	---

Description

summarize adverse events by relationship to study drug

Usage

```
summary_ae_rel(data, group = "STUDYNO", var = "EX_TRT_C", by = "subject")
```

Arguments

data the data set created by create_aet

group choose a variable that has all values identical (e.g., "STUDYNO").

var the treatment variable name, "EX_TRT_C" for example

by has two options, either "event" or "subject". If by = "subject", that means

When a subject experienced the same AE at more than one level of drug rela-

tionship during a treatment period, each AE was counted separately

Value

a list

pt frequency table by preferred term total frequency table by treatment

Description

summarize adverse events by severity

Usage

```
summary_ae_sev(data, group = "STUDYNO", var = "EX_TRT_C", by = "subject")
```

Arguments

data the data set created by create_aet

group choose a variable that has all values identical (e.g., "STUDYNO").

var the treatment variable name, "EX_TRT_C" for example

by has two options, either "event" or "subject". If by = "subject", the subject

will be counted under the highest severity level.

summary_dem 21

Value

a list

pt frequency table by preferred term

total frequency table by treatment

summary_dem

demographic summary.

Description

Summarize the demographic data

Usage

```
summary_dem(dmt, group = "SEQ", na.rm = TRUE)
```

Arguments

dmt the data set created by create_dem.

group which variable name would be used to calculate summary statistics?

na.rm should missing values be included? TRUE by default.

Value

a data frame

See Also

```
create_included and create_dem
```

Examples

```
included <- create_included(ex, dm, cr, ds)
dmt <- create_dem(dm, ex, vs, included)
summary_dem(dmt, group = "SEQ")  # the summary by group
summary_dem(dmt, group = "SPONSOR")  # to get the overall summary</pre>
```

22 summary_labshift

summary_lab

summary statistics for lab shift.

Description

Summarize the lab statistics

Usage

```
summary_lab(lb_clean, digits = 3)
```

Arguments

lb_clean the dataset returned by clean_lab.

digits how many digits should be kept for the final data.

Value

the summary statistics by test code, time point and by treatment.

See Also

```
clean_lab
```

Examples

```
included <- create_included(ex, dm, cr, ds)
lab <- create_lab(lb_cq)
lb_clean <- clean_lab(lab, included= included, ex= ex)
s1 <- summary_lab(clean_lab) #not urinalysis</pre>
```

 $summary_labshift$

create the lab shift table.

Description

Create the lab shift table.

Usage

```
summary_labshift(lb_clean)
```

Arguments

1b_clean the dataset returned by clean_lab.

Value

the shift table

summary_pkpd 23

See Also

```
clean_lab
```

Examples

```
included <- create_included(ex, dm, cr, ds)
lab <- create_lab(lb_cq)
lb_clean <- clean_lab(lab, included, ex)
lbshift <- summary_labshift(lb_clean)</pre>
```

summary_pkpd

calculate the 10-point statistics for PK/PD

Description

Summary statistics for the PK/PD data. Celerion standard: When calculating Geom Mean and GCV, SAS code takes the concentration values of 0.00 that would go into the calculation and sets them to missing and then calculates the geom mean and gcv with those values removed. Those 0.00 values are used when calculating all other summary statistics.

Usage

```
summary_pkpd(data, na_rm = TRUE)
```

Arguments

data the object returned from sdtm_pkpd
na_rm should NA be removed? Default TRUE

Value

the statistics

n number of observations

mean the mean

sd standard deviation
cv coefficient of variation
sem standard error of the mean

min minimum

median the median

max the maximum

geom geometric mean

gcv geometric standard deviation GCV = sqrt(exp(var(log(x)))-1)

24 summary_vs_eg

summary_teae	teae by number of subjects	or by number of events
J <u>-</u>		j j

Description

summarize treatment-emergent adverse event

Usage

```
summary_teae(data, group = "STUDYNO", var = "EX_TRT_C", by = "subject")
```

Arguments

data the data set created by create_aet

group choose a variable that has all values identical (e.g., "STUDYNO").

var the treatment variable name, "EX_TRT_C" for example

by has two options, either "event" or "subject"

Value

a list

ae frequency table for teae

soc summarization by system organ class and by preferred term

summary_vs_eg summary statistics

Description

Summary statistics for vital signs or eg

Usage

```
summary_vs_eg(data_clean, inter_digit = NULL, final_digits = 3,
    na_rm = TRUE, ischangefrombase = FALSE)
```

Arguments

data_clean the clean data set returned by replicate_clean.

inter_digit if rounding happens for the intermediate averages, what digits should be kept.

na_rm should missing values be excluede? Default set to be TRUE.

is change from base

Is this summary for change from baseline? Default set to be FALSE

final_digit what is the digit for final summary?

Value

a data frame with summary statistics by test, time point and treatment.

weight_height_bmi 25

 $weight_height_bmi$

read BMI Weight and Height info from Screening stage.

Description

extract BMI, weight and height from vs.sas7bat.

Usage

```
weight_height_bmi(vs, period = "SCREEN")
```

Arguments

٧S

the vs sas data

Value

a data frame containing BMI, WEIGHT and HEIGHT from admission stage

Index

```
*Topic datasets
                                                   summary_ae_rel, 20
    codes, 3
                                                   summary_ae_sev, 20
                                                   summary_dem, 21
assign_ae_trt, 2
                                                   summary_lab, 22
                                                   summary_labshift, 22
clean_lab, 3, 22, 23
                                                   summary\_pkpd, \textcolor{red}{23}
codes, 3
                                                   summary_teae, 24
count_percent, 4
                                                   summary_vs_eg, 24
create_aet, 4, 14, 20, 24
create_baseline, 5
                                                   weight_height_bmi, 25
create_dem, 5, 15, 21
create_eg, 6, 13, 17, 18
create_included, 5, 6, 6, 7, 8, 15, 21
create_lab, 3, 7, 14
create_phour, 7
create_seq, 8
create_vs, 8, 13, 17, 18
eg_rm, 9
ex_start, 9
format\_time, 10
gcv, 10
get_summary_stats, 11
guess_base_phour, 5, 11
guess_race_age, 12
guess_reps, 12
guess_resp, 18
guess_test, 13
lab_oor, 14
listing_ae, 14
listing_concom, 15
listing_dem, 15
normal_range, 16
replicate_average, 16
replicate_check, 17, 18
replicate_clean, 16, 17, 24
replicate_data, 9, 18, 18
round_df, 19
sdtm_pkpd, 19, 23
```