ЗАДАНИЕ ПО ФИЗИКЕ ВАРИАНТ 7771 для 7 класса

1. В НИУ «МЭИ» проводятся «университетские субботы» — научно-познавательные лекции и занятия со школьниками. Одна из таких встреч состоялась на кафедре физики и была посвящена законам механики. При обсуждении закона всемирного тяготения школьникам задали вопрос: «Как известно, на все тела на Земле действует сила притяжения со стороны Солнца. Днём эта сила вычитается из силы притяжения тел к Земле, а ночью складывается с ней. Означает ли это, что ночью все тела на Земле весят больше, чем днём?» Сможете ли вы повторить правильный ответ, который дали будущие студенты МЭИ?

Ответ: ночью и днём все тела весят одинаково.

2. Винни Пух решил слетать к пчёлам за мёдом на воздушном шаре. Поднявшись до дупла, в котором жили «неправильные» пчелы, он привязал корзину воздушного шара к дереву и стал заполнять мёдом пустые банки. Когда он заполнил 8 банок и отвязал корзину от дерева, то стал опускаться на землю с постоянной скоростью. Сколько банок с мёдом Пух должен вынуть на земле, чтобы воздушный шар стал равномерно подниматься с той же скоростью? Масса воздушного шара и Пуха равна массе четырёх банок с мёдом. На воздушный шар действует постоянная подъёмная сила, равная весу девяти банок с мёдом. Массой пустой банки пренебречь.

Ответ: 6 банок.

3. От пристани «Школьная» до пристани «Студенческая», расположенной ниже по течению реки, ходит речной трамвайчик. При отправлении семиклассница Таня уронила в речку мячик. Во сколько раз дольше, чем трамвайчик, будет плыть мячик от «Школьной» до «Студенческой»? (Таня знает, что если тем же маршрутом следует буксир с тяжёлой баржей, скорость которого (относительно воды) в n раз меньше скорости трамвайчика, то он затрачивает на свой путь в k раз больше времени, чем трамвайчик).

Ответ: в
$$k \cdot \frac{n-1}{n-k}$$
 дольше.

4. Два шарика одинаковых размеров закреплены на концах длинной, невесомой и нерастяжимой нити, перекинутой через невесомый блок. Блок неподвижно закреплён над бассейном с водой, при этом длина нити такова, что оба шарика не могут одновременно находиться в воде. Массы шариков равны *т* и 2*т*, при этом плотность шарика массой 2*т* в три раза больше плотности воды. Определите отношение скорости установившегося движения системы, в случае, когда первый из шариков движется в воде, а второй в воздухе, к скорости установившегося движения в случае, когда второй шарик движется в воде, а первый в воздухе. Сила вязкого трения шарика о воду пропорциональна скорости движения шарика в воде, прочими потерями пренебречь.

Ответ:
$$\frac{V_1}{V_2} = 5$$
.

5. Исследователь-энтомолог наблюдает за пауком Caponia abyssinica, который плетёт паутину. Паук сначала натягивает в одной плоскости радиальные нити, которые расходятся из центра в разные стороны, соседние нити составляют друг с другом угол α =30°. Затем паук закрепляет на радиальных нитях клейкую нить, которую по спирали тянет в центр паутины. Чтобы описать этот сложный процесс, энтомолог придумал следующую модель. Допустим, что паук закрепил клейкую нить на радиальной нити на каком-то расстоянии от центра паутины. Пусть на следующей радиальной нити на том же расстоянии от центра находится "воображаемый" паук. Оба паука одновременно

Олимпиада школьников «Надежда энергетики». Заключительный этап. Очная форма.

начинают движение в центр, но скорость движения "воображаемого" паука в 8 раз меньше. Паук, плетущий паутину, добирается до центра и переходит на следующую радиальную нить. Клейкую нить паутины он натягивает и закрепляет там, где встречается с "воображаемым" пауком. Затем процесс с участием "воображаемого" паука повторяется много раз, причём создатель паутины последовательно обходит все нити до тех пор, пока клейкая нить не закрепится в центре. Определите путь, пройденный пауком в процессе создания паутины, если первая точка крепления клейкой нити расположена на расстоянии 0,5 м от центра.

Ответ: 4 метра.