Projected fire change 2000 - 2099 Unvetted preliminary rush draft from developmental code

Matthew Leonawicz

January 20, 2015

1 Projected fire change tables

In each subsection below, the third table down with percentages relates to table 8.1 in the original document. This uses strictly ALFRESCO output. The tables use years 2000 - 2009 and 2090 - 2099. There is one section for each region, Alaska and the five LCCs.

1.1 Alaska

1.1.1 Historical fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	$50 \mathrm{th}$	59	3159
SRES B1	$95 \mathrm{th}$	85	17428
SRES A1B	$50 \mathrm{th}$	59	3135
SRES A1B	$95 \mathrm{th}$	85	18079
SRES A2	$50 \mathrm{th}$	59	3060
SRES A2	$95 \mathrm{th}$	84	17579

1.1.2 Projected fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	53	2576
SRES B1	$95 \mathrm{th}$	75	11429
SRES A1B	50th	55	4904
SRES A1B	$95 \mathrm{th}$	83	25677
SRES A2	50th	51	3412
SRES A2	$95 \mathrm{th}$	79	23435

1.1.3 Percent change

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	$50 \mathrm{th}$	-10.2	-18.5
SRES B1	$95 \mathrm{th}$	-11.4	-34.4
SRES A1B	$50 \mathrm{th}$	-6.8	56.4
SRES A1B	$95 \mathrm{th}$	-2.5	42.0
SRES A2	$50 \mathrm{th}$	-13.6	11.5
SRES A2	$95 \mathrm{th}$	-5.9	33.3

1.2 Arctic

1.2.1 Historical fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	1	10
SRES B1	$95 \mathrm{th}$	4	6232
SRES A1B	$50 \mathrm{th}$	1	10
SRES A1B	$95 \mathrm{th}$	3	6058
SRES A2	50th	1	10
SRES A2	95th	3	6042

1.2.2 Projected fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	1	40
SRES B1	$95 ext{th}$	3	1421
SRES A1B	$50 \mathrm{th}$	1	215
SRES A1B	$95 \mathrm{th}$	4	7525
SRES A2	50th	1	56
SRES A2	$95 \mathrm{th}$	3	5473

1.2.3 Percent change

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	$50 \mathrm{th}$	0.0	300.0
SRES B1	$95 ext{th}$	-28.2	-77.2
SRES A1B	$50 \mathrm{th}$	0.0	2050.0
SRES A1B	$95 \mathrm{th}$	18.3	24.2
SRES A2	$50 \mathrm{th}$	0.0	460.0
SRES A2	$95\mathrm{th}$	-15.0	-9.4

1.3 North Pacific

1.3.1 Historical fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	0	2
SRES B1	$95 \mathrm{th}$	2	23
SRES A1B	$50 \mathrm{th}$	0	2
SRES A1B	$95 \mathrm{th}$	2	25
SRES A2	$50 \mathrm{th}$	0	2
SRES A2	$95 \mathrm{th}$	2	24

1.3.2 Projected fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	0	2
SRES B1	$95 \mathrm{th}$	2	44
SRES A1B	$50 \mathrm{th}$	0	6
SRES A1B	$95 \mathrm{th}$	3	274
SRES A2	$50 \mathrm{th}$	0	4
SRES A2	$95 \mathrm{th}$	3	121

1.3.3 Percent change

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	-	-
SRES B1	$95 \mathrm{th}$	29.03	91.3
SRES A1B	$50 \mathrm{th}$	-	-
SRES A1B	$95 \mathrm{th}$	93.55	996
SRES A2	$50 \mathrm{th}$	-	-
SRES A2	$95 \mathrm{th}$	64.52	404.17

1.4 Northwest Interior Forest North

1.4.1 Historical fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	42	2230
SRES B1	$95 \mathrm{th}$	63	10264
SRES A1B	$50 \mathrm{th}$	42	2200
SRES A1B	$95 \mathrm{th}$	63	10426
SRES A2	$50 \mathrm{th}$	42	2186
SRES A2	$95 \mathrm{th}$	63	10422

1.4.2 Projected fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	38	1798
SRES B1	$95 \mathrm{th}$	57	8090
SRES A1B	$50 \mathrm{th}$	40	3174
SRES A1B	$95 \mathrm{th}$	62	12217
SRES A2	$50 \mathrm{th}$	37	2176
SRES A2	$95 \mathrm{th}$	61	12642

1.4.3 Percent change

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	-7.2	-19.4
SRES B1	$95 \mathrm{th}$	-9.2	-21.2
SRES A1B	50th	-3.6	44.3
SRES A1B	$95 \mathrm{th}$	-0.6	17.2
SRES A2	50th	-10.8	-0.5
SRES A2	$95 \mathrm{th}$	-3.1	21.3

1.5 Northwest Interior Forest South

1.5.1 Historical fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	10	212
SRES B1	$95 \mathrm{th}$	20	2283
SRES A1B	$50 \mathrm{th}$	10	203
SRES A1B	$95 \mathrm{th}$	20	2362
SRES A2	50th	10	200
SRES A2	95th	20	2289

1.5.2 Projected fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	8	143
SRES B1	$95 \mathrm{th}$	17	1298
SRES A1B	$50 \mathrm{th}$	9	308
SRES A1B	$95 \mathrm{th}$	19	8689
SRES A2	50th	8	203
SRES A2	$95 \mathrm{th}$	18	4810

1.5.3 Percent change

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	$50 \mathrm{th}$	-10.5	-32.5
SRES B1	$95 ext{th}$	-15.3	-43.1
SRES A1B	$50 \mathrm{th}$	-5.3	51.7
SRES A1B	$95 \mathrm{th}$	-2.3	267.9
SRES A2	$50 \mathrm{th}$	-15.8	1.5
SRES A2	$95 \mathrm{th}$	-10.2	110.1

1.6 Western Alaska

1.6.1 Historical fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	$50 \mathrm{th}$	8	332
SRES B1	$95 \mathrm{th}$	17	7251
SRES A1B	$50 \mathrm{th}$	8	330
SRES A1B	$95 \mathrm{th}$	17	7529
SRES A2	$50 \mathrm{th}$	8	334
SRES A2	$95 \mathrm{th}$	17	7407

1.6.2 Projected fire

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	50th	6	360
SRES B1	$95 \mathrm{th}$	14	5842
SRES A1B	$50 \mathrm{th}$	7	1329
SRES A1B	$95 ext{th}$	15	9979
SRES A2	50th	7	824
SRES A2	$95 \mathrm{th}$	15	10651

1.6.3 Percent change

Climate-change scenario	Percentile	Ignitions	Area burned
SRES B1	$50 \mathrm{th}$	-23.5	8.4
SRES B1	$95 ext{th}$	-18.1	-19.4
SRES A1B	$50 \mathrm{th}$	-17.6	302.7
SRES A1B	$95 \mathrm{th}$	-14.4	32.5
SRES A2	$50 \mathrm{th}$	-17.6	146.7
SRES A2	$95 \mathrm{th}$	-12.1	43.8

2 Percentile fire trends by scenario

The below graph relates to figure 8.2 in the original document. This uses strictly ALFRESCO output.

2.1 Alaska

Figure 1: Alaska

All five following separate LCC graphs relate to figure 8.3 in the original document. This uses strictly ALFRESCO output.

2.2 Arctic

Figure 2: Arctic

2.3 North Pacific

Figure 3: North Pacific

2.4 Northwest Interior Forest North

Figure 4: Northwest Interior Forest North

2.5 Northwest Interior Forest South

Figure 5: Northwest Interior Forest South

2.6 Western Alaska

Figure 6: Western Alaska