WORKSHEET 11

ADRIAN PĂCURAR

Problem 1. Using Newton's Method and starting with $x_1 = 2$, what is the second order approximation x_2 to the root of the equation $x^2 - 1 + 2\sin\left(\frac{\pi}{2}x\right)$?

Problem 2. In an attempt to solve the equation $2 + 4 \sin x = \cos x$ by Newton's method, we begin with $x_1 = \frac{\pi}{2}$. Find the value of x_2 in this process.

Problem 3. Suppose f(a) = 0 (so a is a root/zero of f). What happens if we try to apply Newton's method with initial value $x_1 = a$?

Problem 4. Find the slant asymptotes of the following functions:

a)
$$f(x) = \frac{x^2 + 4}{x}$$

b)
$$f(x) = \frac{2x^3 + x^2 + 1}{x^2 + 2}$$

Problem 5. Compute the general antiderivative F(x) for the following functions:

a)
$$f(x) = 4x^3$$

b)
$$f(x) = x^3$$

c)
$$f(x) = e^x$$

$$d) f(x) = e$$

e)
$$f(x) = \frac{3}{2}x^{1/2}$$

$$f) f(x) = \frac{1}{2\sqrt{x}}$$

g)
$$f(x) = x^{-1/2}$$

h)
$$f(x) = 4x^2 + 2$$

i)
$$f(x) = 7x^{2/5} + 8x^{-4/5}$$

j)
$$f(x) = \frac{x^{-1/5}}{x^{4/5}}$$

k)
$$f(x) = \frac{7x^{2/5} + 8x^{-4/5}}{x^{1/5}}$$

Problem 6. Compute the general antiderivative F(x) for the following functions:

- a) $f(x) = \cos x$
- b) $f(x) = \sin x + C$, where C is a constant
- c) $f(x) = -\cos x + Cx + D$, where C, D are constants

Problem 7. Find the antiderivative F of f that satisfies the given condition.

a)
$$f(x) = 5x^4 - 2x^5$$
, $F(0) = 4$

b)
$$f(x) = x + 2\sin x$$
, $F(0) = -6$

Problem 8. Suppose that $f''(x) = 56x^6 + \cos x$. Given that f'(0) = 5 and f(0) = 0, find the explicit formula for f(x).