$12n_{0388} \ (K12n_{0388})$

Ideals for irreducible components of X_{par}

$$\begin{split} I_1^u &= \langle -u^{25} + u^{24} + \dots + 4b - 4, \ -2u^{26} + 3u^{25} + \dots + 4a - 2, \ u^{27} - 2u^{26} + \dots - 2u^2 + 2 \rangle \\ I_2^u &= \langle -u^2 + b - u - 1, \ -u^3 - 2u^2 + 2a - u, \ u^4 + u^2 + 2 \rangle \\ I_3^u &= \langle -a^2u - a^2 - au + b + a - 2, \ a^3 + 2a^2u - 3au + u, \ u^2 + u + 1 \rangle \\ I_4^u &= \langle b + u, \ a + u - 1, \ u^2 + 1 \rangle \\ I_5^u &= \langle u^3 + u^2 + b - 1, \ a - u - 1, \ u^4 + 1 \rangle \\ I_1^v &= \langle a, \ b - 1, \ v - 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{25} + u^{24} + \dots + 4b - 4, -2u^{26} + 3u^{25} + \dots + 4a - 2, u^{27} - 2u^{26} + \dots - 2u^2 + 2 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{26} - \frac{3}{4}u^{25} + \dots - \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{25} - \frac{1}{4}u^{24} + \dots + \frac{1}{2}u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{22} - u^{20} + \dots - \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{2}u^{17} + \frac{3}{2}u^{15} + \dots - u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}u^{24} - \frac{5}{4}u^{22} + \dots + \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{26} + u^{24} + \dots - u^{2} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{10} + u^{8} + 2u^{6} + u^{4} + u^{2} + 1 \\ u^{10} + 2u^{8} + 3u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} \\ \frac{1}{4}u^{22} - u^{20} + \dots - \frac{3}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{24} + u^{22} + \dots + \frac{1}{2}u^{2} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{7} - 2u^{5} - 2u^{3} - 2u \\ u^{9} + u^{7} + u^{5} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + u \\ u^{5} + u^{3} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{26} - 4u^{25} + 10u^{24} - 16u^{23} + 28u^{22} - 46u^{21} + 58u^{20} - 88u^{19} + 86u^{18} - 130u^{17} + 114u^{16} - 168u^{15} + 124u^{14} - 168u^{13} + 116u^{12} - 166u^{11} + 96u^{10} - 118u^9 + 40u^8 - 68u^7 + 20u^6 - 44u^5 - 6u^4 + 8u^3 - 20u^2 + 2u - 8$$

Crossings	u-Polynomials at each crossing
c_1	$u^{27} - 2u^{26} + \dots - 1367u + 256$
c_2, c_5	$u^{27} + 2u^{26} + \dots - 13u + 16$
c_3,c_{10}	$u^{27} - 2u^{26} + \dots - 2u^2 + 2$
c_4	$u^{27} - 5u^{26} + \dots + 4404u + 1706$
c_6, c_7, c_{12}	$u^{27} - 2u^{26} + \dots + 19u + 16$
c_8	$u^{27} + 4u^{26} + \dots - 358556u + 54322$
c_9, c_{11}	$u^{27} - 10u^{26} + \dots + 8u + 4$

Crossings	Riley Polynomials at each crossing
c_1	$y^{27} + 74y^{26} + \dots + 1160081y - 65536$
c_2, c_5	$y^{27} + 2y^{26} + \dots - 1367y - 256$
c_3, c_{10}	$y^{27} + 10y^{26} + \dots + 8y - 4$
c_4	$y^{27} + 49y^{26} + \dots - 17215544y - 2910436$
c_6, c_7, c_{12}	$y^{27} - 46y^{26} + \dots - 2839y - 256$
<i>c</i> ₈	$y^{27} + 82y^{26} + \dots + 70277723880y - 2950879684$
c_9, c_{11}	$y^{27} + 14y^{26} + \dots + 1024y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.697654 + 0.748808I		
a = 1.026780 + 0.002420I	-3.52813 + 0.07338I	-9.79527 - 0.84081I
b = 1.06126 - 1.23166I		
u = 0.697654 - 0.748808I		
a = 1.026780 - 0.002420I	-3.52813 - 0.07338I	-9.79527 + 0.84081I
b = 1.06126 + 1.23166I		
u = 0.864921 + 0.447342I		
a = -0.587169 + 0.347747I	12.22120 - 2.26521I	-0.78342 + 1.87468I
b = -0.479795 - 0.989527I		
u = 0.864921 - 0.447342I		
a = -0.587169 - 0.347747I	12.22120 + 2.26521I	-0.78342 - 1.87468I
b = -0.479795 + 0.989527I		
u = -0.770627 + 0.681378I		
a = 0.728531 - 0.074268I	0.458304 - 0.114158I	0.422197 - 0.454382I
b = 0.086141 + 1.355080I		
u = -0.770627 - 0.681378I		
a = 0.728531 + 0.074268I	0.458304 + 0.114158I	0.422197 + 0.454382I
b = 0.086141 - 1.355080I		
u = -0.878083 + 0.542301I		
a = -0.606653 + 0.267104I	11.64340 - 6.38697I	-1.19981 + 2.11434I
b = -1.19080 - 1.81606I		
u = -0.878083 - 0.542301I		
a = -0.606653 - 0.267104I	11.64340 + 6.38697I	-1.19981 - 2.11434I
b = -1.19080 + 1.81606I		
u = 0.100635 + 1.097690I		
a = -0.85192 + 1.71040I	6.60434 + 0.15878I	5.87983 + 0.02677I
b = -0.550049 + 1.253330I		
u = 0.100635 - 1.097690I		
a = -0.85192 - 1.71040I	6.60434 - 0.15878I	5.87983 - 0.02677I
b = -0.550049 - 1.253330I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.669390 + 0.942059I		
a = -0.88412 + 1.56066I	-2.93763 - 5.34360I	-7.41989 + 6.92820I
b = 0.57563 + 1.56765I		
u = 0.669390 - 0.942059I		
a = -0.88412 - 1.56066I	-2.93763 + 5.34360I	-7.41989 - 6.92820I
b = 0.57563 - 1.56765I		
u = 0.686168 + 0.447957I		
a = 0.405997 - 0.432049I	1.78018 + 2.00372I	-0.59189 - 2.09997I
b = -0.812403 + 0.706687I		
u = 0.686168 - 0.447957I		
a = 0.405997 + 0.432049I	1.78018 - 2.00372I	-0.59189 + 2.09997I
b = -0.812403 - 0.706687I		
u = 0.040008 + 1.207920I		
a = -0.99416 - 2.11968I	18.1739 - 4.5997I	4.36505 + 2.18290I
b = -0.43164 - 1.73930I		
u = 0.040008 - 1.207920I		
a = -0.99416 + 2.11968I	18.1739 + 4.5997I	4.36505 - 2.18290I
b = -0.43164 + 1.73930I		
u = 0.601091 + 1.054470I		
a = 0.61079 - 1.66086I	3.48901 - 6.97695I	1.70016 + 6.49908I
b = -1.15984 - 0.98023I		
u = 0.601091 - 1.054470I		
a = 0.61079 + 1.66086I	3.48901 + 6.97695I	1.70016 - 6.49908I
b = -1.15984 + 0.98023I		
u = -0.710977 + 1.000460I		
a = -1.42612 - 0.55763I	1.40487 + 5.73270I	1.73930 - 4.91111I
b = -0.14675 - 1.63948I		
u = -0.710977 - 1.000460I		
a = -1.42612 + 0.55763I	1.40487 - 5.73270I	1.73930 + 4.91111I
b = -0.14675 + 1.63948I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.074391 + 0.718228I		
a = 0.98792 - 1.24993I	0.94642 + 1.42613I	1.85713 - 5.82586I
b = -0.006103 - 0.217922I		
u = -0.074391 - 0.718228I		
a = 0.98792 + 1.24993I	0.94642 - 1.42613I	1.85713 + 5.82586I
b = -0.006103 + 0.217922I		
u = 0.638164 + 1.116710I		
a = -1.48999 + 0.10418I	14.2506 - 3.2919I	1.72901 + 2.48936I
b = -0.054880 + 0.864766I		
u = 0.638164 - 1.116710I		
a = -1.48999 - 0.10418I	14.2506 + 3.2919I	1.72901 - 2.48936I
b = -0.054880 - 0.864766I		
u = -0.688671 + 1.094800I		
a = 1.11378 + 2.20355I	13.3230 + 12.1918I	0.72580 - 6.39342I
b = -1.22699 + 2.17626I		
u = -0.688671 - 1.094800I		
a = 1.11378 - 2.20355I	13.3230 - 12.1918I	0.72580 + 6.39342I
b = -1.22699 - 2.17626I		
u = -0.350564		
a = 0.932661	-1.03514	-11.2560
b = 0.672452		

II.
$$I_2^u = \langle -u^2 + b - u - 1, -u^3 - 2u^2 + 2a - u, u^4 + u^2 + 2 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + \frac{1}{2}u\\u^{2} + u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + \frac{1}{2}u + 1\\u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} + \frac{1}{2}u\\u^{2} + u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1\\u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u\\u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3}\\u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} + \frac{1}{2}u\\-u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3}\\-u^{3} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} - u\\-u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7	$(u-1)^4$
c_2, c_{12}	$(u+1)^4$
c_3, c_4, c_8 c_{10}	$u^4 + u^2 + 2$
<i>c</i> ₉	$(u^2 + u + 2)^2$
c_{11}	$(u^2 - u + 2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{12}$	$(y-1)^4$
c_3, c_4, c_8 c_{10}	$(y^2 + y + 2)^2$
c_9, c_{11}	$(y^2 + 3y + 4)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.676097 + 0.978318I		
a = -0.97807 + 2.01465I	-0.82247 - 5.33349I	-2.00000 + 5.29150I
b = 1.17610 + 2.30119I		
u = 0.676097 - 0.978318I		
a = -0.97807 - 2.01465I	-0.82247 + 5.33349I	-2.00000 - 5.29150I
b = 1.17610 - 2.30119I		
u = -0.676097 + 0.978318I		
a = -0.021927 - 0.631100I	-0.82247 + 5.33349I	-2.00000 - 5.29150I
b = -0.176097 - 0.344557I		
u = -0.676097 - 0.978318I		
a = -0.021927 + 0.631100I	-0.82247 - 5.33349I	-2.00000 + 5.29150I
b = -0.176097 + 0.344557I		

III. $I_3^u = \langle -a^2u - a^2 - au + b + a - 2, \ a^3 + 2a^2u - 3au + u, \ u^2 + u + 1 \rangle$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a^{2}u+a^{2}+au-a+2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -a^{2}u-a^{2}+2a-2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a^{2}u-a^{2}-au+2a-2 \\ -2a^{2}u-a^{2}+au+4a-2u-4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a^{2}u+a^{2}-a+2 \\ 2a^{2}u+a^{2}-au-3a+2u+4 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -4u 2

Crossings	u-Polynomials at each crossing
c_1	$u^6 + 4u^5 + 6u^4 + 3u^3 - u^2 - u + 1$
c_2, c_5, c_6 c_7, c_{12}	$u^6 - 2u^4 + u^3 + u^2 - u + 1$
c_3,c_{10}	$(u^2+u+1)^3$
c_4	u^6
c_8, c_9, c_{11}	$(u^2 - u + 1)^3$

Crossings	Riley Polynomials at each crossing
c_1	$y^6 - 4y^5 + 10y^4 - 11y^3 + 19y^2 - 3y + 1$
c_2, c_5, c_6 c_7, c_{12}	$y^6 - 4y^5 + 6y^4 - 3y^3 - y^2 + y + 1$
c_3, c_8, c_9 c_{10}, c_{11}	$(y^2 + y + 1)^3$
c_4	y^6

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I		
a = 0.741145 + 0.632163I	2.02988I	0 3.46410I
b = -0.395862 + 0.291743I		
u = -0.500000 + 0.866025I		
a = 0.439111 - 0.046276I	2.02988I	0 3.46410I
b = 1.51194 + 0.59451I		
u = -0.500000 + 0.866025I		
a = -0.18026 - 2.31794I	2.02988I	0 3.46410I
b = 0.883917 - 0.886250I		
u = -0.500000 - 0.866025I		
a = 0.741145 - 0.632163I	-2.02988I	0. + 3.46410I
b = -0.395862 - 0.291743I		
u = -0.500000 - 0.866025I		
a = 0.439111 + 0.046276I	-2.02988I	0. + 3.46410I
b = 1.51194 - 0.59451I		
u = -0.500000 - 0.866025I		
a = -0.18026 + 2.31794I	-2.02988I	0. + 3.46410I
b = 0.883917 + 0.886250I		

IV.
$$I_4^u = \langle b + u, \ a + u - 1, \ u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u+1 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u+2 \\ -u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u+1 \\ -u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 2u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6 c_7, c_{11}	$(u-1)^2$
c_2, c_9, c_{12}	$(u+1)^2$
c_3, c_4, c_8 c_{10}	$u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_7, c_9 c_{11}, c_{12}	$(y-1)^2$
c_3, c_4, c_8 c_{10}	$(y+1)^2$

Solutions to I_4^u		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.000000I		
a =	1.00000 - 1.00000I	3.28987	4.00000
b =	-1.000000I		
u =	-1.000000I		
a =	1.00000 + 1.00000I	3.28987	4.00000
b =	1.000000I		

V.
$$I_5^u = \langle u^3 + u^2 + b - 1, \ a - u - 1, \ u^4 + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u+1 \\ -u^{3}-u^{2}+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} - 1 \\ u^{3} + u^{2} - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u-1 \\ u^{3}+u^{2}-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} \\ u^{3}+u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + u + 1 \\ -u^{2} + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ u^{3}+u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u^{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	$(u-1)^4$
c_3, c_4, c_8 c_{10}	$u^4 + 1$
c_5, c_6, c_7	$(u+1)^4$
c_9,c_{11}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{12}$	$(y-1)^4$
c_3, c_4, c_8 c_{10}	$(y^2+1)^2$
c_9,c_{11}	$(y+1)^4$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.707107 + 0.707107I		
a = 1.70711 + 0.70711I	-1.64493	-4.00000
b = 1.70711 - 1.70711I		
u = 0.707107 - 0.707107I		
a = 1.70711 - 0.70711I	-1.64493	-4.00000
b = 1.70711 + 1.70711I		
u = -0.707107 + 0.707107I		
a = 0.292893 + 0.707107I	-1.64493	-4.00000
b = 0.292893 + 0.292893I		
u = -0.707107 - 0.707107I		
a = 0.292893 - 0.707107I	-1.64493	-4.00000
b = 0.292893 - 0.292893I		

VI.
$$I_1^v = \langle a, b-1, v-1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_{12}	u-1
c_3, c_4, c_8 c_9, c_{10}, c_{11}	u
c_5, c_6, c_7	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_7, c_{12}$	y-1
c_3, c_4, c_8 c_9, c_{10}, c_{11}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0	0	0
b = 1.00000		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{11}(u^6 + 4u^5 + 6u^4 + 3u^3 - u^2 - u + 1)$ $\cdot (u^{27} - 2u^{26} + \dots - 1367u + 256)$
c_2	$(u-1)^{5}(u+1)^{6}(u^{6}-2u^{4}+u^{3}+u^{2}-u+1)$ $\cdot (u^{27}+2u^{26}+\cdots-13u+16)$
c_3, c_{10}	$u(u^{2}+1)(u^{2}+u+1)^{3}(u^{4}+1)(u^{4}+u^{2}+2)(u^{27}-2u^{26}+\cdots-2u^{2}+2)$
c_4	$u^{7}(u^{2}+1)(u^{4}+1)(u^{4}+u^{2}+2)(u^{27}-5u^{26}+\cdots+4404u+1706)$
c_5	$(u-1)^{6}(u+1)^{5}(u^{6}-2u^{4}+u^{3}+u^{2}-u+1)$ $\cdot (u^{27}+2u^{26}+\cdots-13u+16)$
c_6, c_7	$(u-1)^{6}(u+1)^{5}(u^{6}-2u^{4}+u^{3}+u^{2}-u+1)$ $\cdot (u^{27}-2u^{26}+\cdots+19u+16)$
C ₈	$u(u^{2}+1)(u^{2}-u+1)^{3}(u^{4}+1)(u^{4}+u^{2}+2)$ $\cdot (u^{27}+4u^{26}+\cdots-358556u+54322)$
<i>c</i> ₉	$u(u+1)^{2}(u^{2}+1)^{2}(u^{2}-u+1)^{3}(u^{2}+u+2)^{2}$ $\cdot (u^{27}-10u^{26}+\cdots+8u+4)$
c_{11}	$u(u-1)^{2}(u^{2}+1)^{2}(u^{2}-u+1)^{3}(u^{2}-u+2)^{2}$ $\cdot (u^{27}-10u^{26}+\cdots+8u+4)$
c_{12}	$(u-1)^{5}(u+1)^{6}(u^{6}-2u^{4}+u^{3}+u^{2}-u+1)$ $\cdot (u^{27}-2u^{26}+\cdots+19u+16)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{11}(y^6 - 4y^5 + 10y^4 - 11y^3 + 19y^2 - 3y + 1)$ $\cdot (y^{27} + 74y^{26} + \dots + 1160081y - 65536)$
c_2, c_5	$(y-1)^{11}(y^6 - 4y^5 + 6y^4 - 3y^3 - y^2 + y + 1)$ $\cdot (y^{27} + 2y^{26} + \dots - 1367y - 256)$
c_3, c_{10}	$y(y+1)^{2}(y^{2}+1)^{2}(y^{2}+y+1)^{3}(y^{2}+y+2)^{2}$ $\cdot (y^{27}+10y^{26}+\cdots+8y-4)$
c_4	$y^{7}(y+1)^{2}(y^{2}+1)^{2}(y^{2}+y+2)^{2}$ $\cdot (y^{27}+49y^{26}+\cdots-17215544y-2910436)$
c_6, c_7, c_{12}	$(y-1)^{11}(y^6 - 4y^5 + 6y^4 - 3y^3 - y^2 + y + 1)$ $\cdot (y^{27} - 46y^{26} + \dots - 2839y - 256)$
c_8	$y(y+1)^{2}(y^{2}+1)^{2}(y^{2}+y+1)^{3}(y^{2}+y+2)^{2}$ $\cdot (y^{27}+82y^{26}+\cdots+70277723880y-2950879684)$
c_9,c_{11}	$y(y-1)^{2}(y+1)^{4}(y^{2}+y+1)^{3}(y^{2}+3y+4)^{2}$ $\cdot (y^{27}+14y^{26}+\cdots+1024y-16)$