Tópicos de Matemática Discreta

— Exame – Época Normal [1^a chamada] — 10.jan'07 [resolução] —

- 1. Indique, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:
 - (a) Se o valor lógico da fórmula proposicional $(\neg p \Rightarrow q) \Leftrightarrow (\neg (p \land r) \Rightarrow q)$ é o de falsidade então a proposição p é verdadeira.

Falsa: No caso em que $p \in F$, $q \in F$ e $r \in V$, temos que a fórmula dada é, também, falsa. Portanto, o facto da fórmula proposicional $(\neg p \Rightarrow q) \Leftrightarrow (\neg (p \land r) \Rightarrow q)$ ser falsa não implica que a proposição p seja verdadeira.

(b) Existe um conjunto A tal que $\mathcal{P}(A) \cup A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}.$

Verdadeira: Consideremos $A = \{\emptyset, \{\emptyset\}\}\}$. Como $\mathcal{P}(A) = \{\emptyset, \{\emptyset\}\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}$, segue-se que $\mathcal{P}(A) \cup A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}$.

(c) Dada a função $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $g(x) = -x^2 - x + 6$, para todo o $x \in \mathbb{R}$, $g(\{-2,2,4\}) = \{-14,0,4\}$ e $g^{\leftarrow}(\mathbb{R}^-) =]-3,2[$.

Falsa: Facilmente se verifica que as raízes de $g(x) = -x^2 - x + 6$ são -3 e 2. Sendo o coeficiente de x^2 negativo, sabemos que g(x) < 0 se e só se x < -3 ou x > 2. Portanto, $g^{\leftarrow}(\mathbb{R}^-) = \{x \in \mathbb{R} : g(x) \in \mathbb{R}^-\} =]-\infty, 3[\cup]2, +\infty[$.

(d) A função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = x^2|x|$, para todo o real x, é injectiva ou é sobrejectiva.

Falsa: f não é injectiva porque, por exemplo, f(1) = f(-1) e tão pouco é sobrejectiva pois -2 é um elemento do conjunto de chegada mas não é imagem, por f, de nenhum elemento do domínio.

- 2. Construa uma prova para cada uma das seguintes afirmações:
 - (a) Se A, B e C são conjuntos tais que $A \subseteq C$ ou $B \subseteq C$ então $A \cap B \subseteq C$. Temos dois casos possíveis: 1^o : $A \subseteq C$; 2^o : $B \subseteq C$. No 1^o caso, temos então que $A \cap B \subseteq A \subseteq C$ e no 2^o temos que $A \cap B \subseteq B \subseteq C$. Em qualquer um dos casos podemos concluir que $A \cap B \subseteq C$.
 - (b) Para todo o natural $n \ge 4$, $n^2 > 3n + 3$.

Seja p(n) o predicado $n^2 > 3n + 3$ sobre os naturais. Mostremos que p(n) é uma proposição verdadeira para cada $n \ge 4$.

[i] Para n=4, temos que $n^2=16>15=3n+3$. Logo, p(4) é uma proposição verdadeira

[ii] Seja $k \in \mathbb{N}$, $k \ge 4$, tal que p(k) é verdadeira. Então, $k^2 > 3k + 3$. Mostremos que p(k+1) também é verdadeira, ou seja, que $(k+1)^2 > 3k + 6$:

$$(k+1)^2 = k^2 + 2k + 1 > 3k + 3 + 2k + 1,$$

pela hipótese de indução; como 2k + 1 > 3, segue-se que

$$(k+1)^2 > 3k+3+2k+1 > 3k+3+3=3k+6.$$

Por [i] e [ii], pelo Princípio de Indução em $\mathbb N$ de base 4, podemos concluir que $n^2>3n+3$, para todo o natural $n\geq 4$.

- (c) $\exists_{k \in \mathbb{N}} \ \forall_{n \in \mathbb{N}} \ (n \geq k \Rightarrow n^2 > 3n + 3)$. Basta considerar k = 4. De facto, atendendo à alínea anterior, sabemos que $\forall_{n \in \mathbb{N}} \ (n \geq 4 \Rightarrow n^2 > 3n + 3)$ é verdadeira.
- 3. Considere o conjunto $A = \{1, 2, 3, 4, 5, 6\}$, as relações binárias $S = \{(1, 1), (2, 3), (4, 6), (6, 4)\}$ e $T = \{(1, 5), (2, 3), (3, 5), (5, 4)\}$ em A e a partição $\Pi = \{\{1, 2\}, \{3, 4\}, \{5\}, \{6\}\}\}$ de A.
 - (a) Determine o domínio e o contradomínio de $T \circ S$. $T \circ S = \{(1,5), (2,5)\}$. Logo, $dom(T \circ S) = \{1,2\}$ e $contradom(T \circ S) = \{5\}$.
 - (b) Diga, justificando, se a relação S é reflexiva, se é simétrica, se é anti-simétrica e se é transitiva.

S não é reflexiva pois $(2,2) \not\in S$. S não é simétrica uma vez que $(2,3) \in S$, mas $(3,2) \not\in S$. S não é anti-simétrica porque $(4,6), (6,4) \in S$ e $4 \neq 6$. S não é transitiva pois $(4,6), (6,4) \in S$, mas $(4,4) \not\in S$.

(c) Determine a menor relação de ordem parcial em A que contém T. Tal relação U tem de ser a menor relação que seja reflexiva, anti-simétrica e transitiva que contenha T. Logo,

$$U = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,5), (2,3), (3,5), (5,4), (1,4), (2,5), (3,4), (2,4)\}.$$

- (d) Seja R a relação de equivalência associada a Π , definida em A. Indique três elementos $x, y \in z$ de A cujas classes de equivalência $[x]_R$, $[y]_R$ e $[z]_R$ sejam distintas. Por exemplo, x = 1, y = 3 e z = 5.
- 4. Sejam $X = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{4, 5, 6, 7\} \in B = \{1, 2, 4, 7\}.$
 - (a) Considere o c.p.o. (X, \leq) definido pelo diagrama de Hasse ao lado.

i. Indique, referindo a definição, os elementos minimais e maximais de X.

Os elementos minimais são os elementos a de X tais que não existe $x \in X$ tal que x < a [não existem elementos menores que a]. Os elementos maximais são os elementos b de X tais que não existe $x \in X$ tal que x > b [não existem elementos maiores que b]. Assim, os elementos maximais de X são o 1 e o 3. O 8 é o único elemento minimal de X.

ii. Indique, referindo a definição, os majorantes e os minorantes de A e de B. Determine o supremo e ínfimo de A e de B.

Dado um subconjunto C de X, $x \in X$ é um majorante de C se $x \geq c$ para todo o elemento c de C, e $y \in X$ é um minorante de C se $y \leq c$ para todo o elemento c de C. Assim, os majorantes de A são 1,2,3 e o único minorante de A é o 8. Relativamente a B, o seu único majorante é o 1 e o único minorante é o 8. O supremo de A é o 8, o supremo de A é o 8, o supremo de A é o 8.

- (b) O diagrama em cima representa um grafo G com X como conjunto dos vértices (i.e., $\mathcal{V}(G) = X$).
 - i. Indique um caminho simples que não seja caminho elementar de 1 para 3.
 Tal caminho deve ter vértices repetidos [para não ser elementar], mas não pode ter arestas repetidas [para ser simples]. Temos, por exemplo, o caminho 1256423

ii. O grafo G é uma árvore? Justifique a sua resposta. Para ser uma árvore teríamos de ter o número de vértices (v) igual ao número de arestas (a) adicionado de uma unidade, ou seja, v=a+1. Como v=8 e a=9, é óbvio que $v\neq a+1$ e o grafo não é uma árvore.

Cotação:

$$1. \sim (1, 5+1, 5+1, 5+1, 5); \, 2. \sim (1, 5+2+1); \, 3. \sim (1, 5+2+1+1); \, 4. \sim (1+1, 5+1+0, 5)$$