Ayush Agrawal

■ ayushagrawal26@ucla.edu | 🔰 +1 (424) 430-5322 | 🚱 ayushagrawal149.github.io | in https://www.linkedin.com/in/ayush145agrawal/

EDUCATION ____

University of California, Los Angeles

California, USA

Master of Science in Mechanical Engineering, specializing in Robotics

Sept 2024 - March 2026

• Recipient of the prestigious Narotam Sekhsaria Foundation PG Scholarship given to 15 students across India

2024

Indian Institute of Technology (IIT) Bombay

Mumbai, India

Bachelor of Technology in Mechanical Engineering with minors in Controls Engineering; GPA: 9.37/10.0 July 2017- June 2021

• Conferred with the MITACS Globalink Research Fellowship for conducting research at the University of Toronto

nto 2020

TECHNICAL SKILLS

Programming C++ (Object Oriented Programming), Python, MATLAB, Maple, Git, Excel VBA

RoboticsROS 1/2, Gazebo, Simulink, MATLAB - Robotics Toolbox, MATLAB - Control Systems ToolboxSoftwareCarMaker 8.1, SolidWorks, ABAQUS, Agile Framework, Jira, Confluence, LaTex, 3D-ExperienceRelevant CourseworkLinear and Nonlinear Control Systems, Computer Vision, Optimization, Dynamics of Machines

PROFESSIONAL EXPERIENCE

Jaguar Land Rover TBSI Pvt. Ltd. | Motion Controls Engineer

Bangalore, India

Active Ride Functionality | Dept. of Chassis & Motion Controls Systems | Publication

August 2021 - August 2024

Active ride functionality is a vehicle ride enhancement algorithm designed to deliver superior comfort than JLR's adaptive dampers

- Spearheaded the model-based design of optimal controllers to reduce road-induced vibrations in Range Rover by 38.6%
- Tuned MPC to limit actuation power consumption to 0.08% of battery capacity for 30-minute-long WLTP test cycle
- Designed Kalman Filter for state-estimation of heave velocity, pitch, and roll angle signals with max RMS error = 0.11
- Responsible for maintaining the Git repository for the active ride functions, including LQR, MPC, and H-infinity algorithms
- Assessed the controller's performance in the presence of noise, delays, and 5% actuation bandwidth in Carmaker + Simulink

Torque Split for Efficiency (TSE) | Dept. of Powertrain Energy & Thermal Management Systems April 2023 - Sept 2023 TSE is an optimization algorithm for the most energy-efficient distribution of driver's torque demand between front and rear EDU

- Modified TSE for improved efficiency by integrating energy consumption maps for vanes, fans, & pumps in the cost function
- Designed the logic architecture diagram outlining the signal flow among EDUs, powertrain cooling and refrigeration circuits
- Reported 80Wh energy saving using the updated algorithm by co-simulating 30min WLTP test cycle in GTSuite + Simulink

AI & Robotics Technology Park | Robot Programming & Controls Intern | Publication Bangalore, India Formation control of differential-drive robot with input saturation and constraints on formation size May 2021 - August 2021

- Developed a novel path tracking controller ensuring 99% tracking accuracy and smooth saturation of robot's speed limits
- Extended the tracking controller as a scalable formation control framework for navigating goods inside a warehouse
- Verified the stability of control framework for a formation of n = 5 Turtle Bot 3 through simulations in ROS2/Gazebo
- \circ Determined **constraints on the formation size** as a function of the path curvature (κ) to prevent instability while cornering

KEY ROBOTICS PROJECTS ____

Control design of ABB-IRB 1600 - 6-DoF Robotic Manipulator | Report

Jan 2020 - April 2020

- Modelled the dynamics of 6-DoF robotic manipulator with spherical joint using DH parameters in MATLAB robotics toolbox
- Implemented Independent Joint Control with 1% tracking error for end-effector path planned using quintic polynomials
- Reduced tracking error to **0%** using **Joint Space Inverse Dynamics Controller** even with 5% error in gravity load estimation

Image Creating Robotic Arm | Certificate | Report

May 2018 - July 2018

- Designed a 2-link manipulator in SolidWorks and determined the requisite torque capacity for servo motor using FEA
- · Assembled the manipulator using Aluminium brackets and double-axle servo motors with base mounted on plywood
- Deployed Canny Edge Detection algorithm to convert an input RGB image to bit-Matrix for planning end-effector's path
- Determined the joint space trajectory using Inverse Dynamics and programmed Arduino with PD control to trace the edges

Publications _

- Agrawal, A., Negi, A., and Joshi, D., Exploring Capabilities of Hydraulic Actuators to Achieve Vehicle Ride Targets in Frequency Range beyond Their Operational Bandwidth, SAE Technical Paper 2024-26-0060, 2024. Link to Publication
- **A. Agrawal**, M. Bharatheesha and S. Kolathaya, "Formation Control of Differential-Drive Robots with Input Saturation and Constraint on Formation Size," 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, pp. 8620-8627. **Link**