

Universidad de la República

FACULTAD DE CIENCIAS ECONOMÍCAS Y DE ADMINISTRACIÓN

TRABAJO	FINAL DE	GRADO	

metaSurvey

generación de recetas mediant	niento de encuestas por muestreo con e metaprogramación y estimación de arianzas.
Estudiante: Mauro Loprete	Tutora: Dra. Natalia da Silva

Trabajo final de grado presentado como requisito para la obtención del titulo Licenciado en Estadística

``wwww"

wwww

Resumen

metaSurvey

by Mauro Loprete

El trabajo presenta *metaSurvey*, un paquete de R diseñado para mejorar el procesamiento de encuestas por muestreo y la estimación de parámetros poblacionales. Utiliza meta-programación y técnicas de remuestreo para ofrecer resultados precisos, evaluar la incertidumbre y fomentar la reproducibilidad. A diferencia de otras bibliotecas, *metaSurvey* combina flexibilidad mediante meta-programación con las capacidades de procesamiento de encuestas del paquete *survey*. Los objetivos incluyen proporcionar una herramienta útil, incorporar técnicas de remuestreo para usuarios no expertos, permitir la generación de 'recetas' personalizadas, y fomentar la contribución de la comunidad. Se destaca como alternativa a paquetes propietarios, enfocándose en la transparencia y reproducibilidad para mejorar la confiabilidad de las estimaciones poblacionales.

A grade cimientos

Acá le voy a agradcer a alguien?

Table of contents

\mathbf{R}	esum	nen	iii
\mathbf{A}	grad	ecimientos	v
D	escri	pción del proyecto	1
1	Int	roducción	3
2	Ma	rco conceptual	9
	2.1	Inferencia en muestreo de poblaciones finitas	9
		2.1.1 Diseño muestral	6
		2.1.2 Probabilidades de inclusión y estimador de Horvitz-Thompson	11
		2.1.3 Ponderación basada en el diseño y estimadores más comunes $$.	11
		2.1.4 Medidas de incertidumbre y errores estándar	12
	2.2	Desarrollo de paquetes en R	14
		2.2.1 ¿Por qué desarrollar un paquete en R?	15
		2.2.2 Elementos básicos de un paquete en R	15
	2.3	Paradigmas de programación en R	16
		2.3.1 Programación funcional	16
		2.3.2 Programación orientada a objetos	17
		2.3.3 Meta-programación	17
3	Ant	tecedentes	19
	3.1	Investigación reproducible	19
		3.1.1 Conceptos clave	21
		3.1.2 Workflow reproducible	21
	3.2	Investigación reproducible en R	22
		3.2.1 Herramientas para el procesamiento de encuestas	22
	3.3	Diseño de encuestas y estimación de varianza	23
4	Me	todología	25
5	\mathbf{Ide}	as	27
6	Res	sultados	29
7	ТΩ	DO. D. d	
•		DO: Revisar como escribir la viñeta de uso de recipes y darle un texto en el capitulo.	31
	7.1	ECH	31
	$7.1 \\ 7.2$	EAII	$\frac{31}{32}$
	7.0	TDII	94

Appendices	37
Apendice aburrido de muestreo	37

List of Figures

List of Tables

List of Abbreviations

 $\begin{array}{ll} \mathbf{LAH} & \mathbf{List} \ \mathbf{Abbreviations} \ \mathbf{Here} \\ \mathbf{WSF} & \mathbf{What} \ (\mathrm{it}) \ \mathbf{S} \mathrm{tands} \ \mathbf{For} \end{array}$

Notación

distance

 $\stackrel{m}{W}(J\ s^1)$ Ppower

angular frequency rad

Acá va la dedicatoria

Descripción del proyecto

⚠ Warning

Este capítulo está en proceso de escritura. Consulte la rama de desarrollo para ver el avance del capítulo

Capítulo 1

Introducción

Note

Este capítulo está en proceso de validación. Cualquier comentario es bienvenido

El presente trabajo tiene como objetivo presentar e investigar el procesamiento y obtención de indicadores a partir de encuestas por muestreo en ciencias sociales. En general, las encuestas por muestreo son una herramienta fundamental para la obtención de información sobre la población de interés, ya que permiten obtener información a partir de una muestra representativa de la misma. Cada encuesta por muestreo tiene una estructura y un proceso generador de datos que permite obtener estimaciones puntuales y sus errores asociados. En general, el procesamiento de encuestas puede ser tedioso y propenso a errores o difíciles de brindar transparencia y reproducibilidad, especialmente si se quiere obtener indicadores que requieren varios pasos como tasas de mercado laboral, ingreso salarial, índices de pobreza, entre otros. En general, el proceso de transformación de los microdatos a indicadores requiere de un conocimiento profundo de la encuesta y en su mayoría no es de conocimiento general.

Al trabajar con encuestas es importante tener presente la incertidumbre y errores asociados a las estimaciones producidas, en general esto no es considerado por los usuarios no expertos en metodología de muestreo. Esto puede llevar a conclusiones erróneas ya que en algunos casos el estimador asociado a la estimación no es confiable debido a su alta variabilidad o fue calculado sin tener en cuenta el diseño muestral correcto. Es importante que al realizar estas tareas se puedan obtener estimaciones puntuales y sus errores asociados de manera sencilla y con estos resultados hacer recomendaciones sobre la utilidad y confianza de la estimación mediante coeficientes de variación, intervalos de confianza, tamaño de muestra efectivo, entre otros sin tener que ser un experto en metodología de estimación de varianzas y remuestreo.

Además de considerar el proceso de inferencia también es importante tener en cuenta el proceso de transformación de los microdatos a indicadores ya que es crucial para interpretar los indicadores de manera correcta además de poder realizar comparaciones a lo largo del tiempo y formalizar la metodología de su construcción. Muchas veces, diferentes usuarios hacen el mismo esfuerzo de construcción de indicadores de manera independiente y sin compartir el código fuente o la metodología de construcción de indicadores, ya que cada uno utiliza su propio estilo de programación o hasta diferentes paquetes estadísticos, en su mayoría propietarios como SPSS, SAS o STATA, donde si bien el usuario puede compartir

la sintaxis para su construcción, esta está ligada al software y depende de que el usuario tenga el software instalado con una licencia activa y pueda correr el código.

En este sentido, es importante construir una herramienta que permita al usuarios tener un control total sobre el proceso de transformación de los microdatos a indicadores, ya que esto permite que el usuario pueda validar y entender el proceso de construcción de indicadores, además de brindar una herramienta común libre de estilos de programación y definiendo con simples pasos el proceso de construcción de variables sintéticas, como recodificar variables creando grupos en base a criterios complejos, tratamiento de variables continuas como el ingreso salarial en base a una metodología rigurosa y fácil de referenciar en la implementación. Es crucial que este proceso sea transparente y entendible para el usuario y esto sera plasmado en el paquete metaSurvey, disponible en R (R Core Team, 2023).

R es un lenguaje de programación de código abierto ampliamente utilizado en la comunidad científica para el análisis de datos, estadística y aprendizaje automático, y en general se utiliza el concepto *paquete* para referirse a una colección de funciones, métodos y clases que extienden las funcionalidades de R propuestas por la misma comunidad de usuarios.

Actualmente existen varios esfuerzos para facilitar el procesamiento de encuestas, entre ellos existen principalmente dos tipos de paquetes, aquellos que implementan la metodología de inferencia en muestreo de poblaciones finitas como puede ser el paquete survey (Lumley, 2024), gustave (Chevalier, 2023), vardpoor (Breidaks et al., 2020), svrep (Schneider, 2023), weights y aquellos que permiten acceder y manipular encuestas específicas como ech (Detomasi, 2020), eph (Kozlowski et al., 2020), tidycensus (Walker & Herman, 2024), casen (Vargas, 2024) entre otros. Sin embargo, estos últimos tienen limitaciones en cuanto a la flexibilidad y transparencia del proceso de transformación de los microdatos a indicadores de interés, como puede ser el indice de pobreza, tasas del mercado laboral, ingreso salarial, etc. En general, sus implementaciones son muy sensibles a la estructura y las variables que componen la encuesta, un cambio en la estructura de la encuesta suele implicar una actualización del paquete utilizado para obtener los indicadores en la nueva edición de la encuesta, lo que resulta poco flexible ante cambios en la estructura, que pueden ser frecuentes en la práctica. Además en las implementaciones actuales, el usuario cuenta con una función de alto nivel que actúa como una caja negra, donde no se permite modificar el código para adaptarlo a sus necesidades o entender cada paso que se realiza para obtener el indicador sin tener que leer el código fuente o la documentación adjunta.

Este tipo de problemas puede verse en ech (Detomasi, 2020), donde existen funciones para crear variables de mercado laboral, educación o ingresos, pero estas funciones dependen de la existencia de ciertas variables en la encuesta, cuya estructura puede cambiar de una versión a otra de la encuesta. Sin revisar el cuerpo de la función, no se conoce el proceso de construcción de variables. Algo similar ocurre con eph (Kozlowski et al., 2020), donde se tienen funciones de alto nivel que no permiten modificar el código para adaptarlo a sus necesidades o entender cada paso que se realiza para obtener el indicador sin inspeccionar a fondo cómo se construyen las funciones del paquete. Esta inspección del código fuente, como consultar el repositorio de GitHub del paquete o revisar la definición de la función, puede ser una tarea tediosa y no garantiza que el usuario pueda entender el proceso de construcción de variables. Esto se debe a que el código puede ser muy extenso o que el usuario no tenga el conocimiento suficiente para entender el código o se empleen ciertos frameworks que el usuario no conozca, como el uso de las librerías dplyr (Wickham et al., 2023) o

tidyr (Wickham, Vaughan, et al., 2024), muy populares en R para el manejo de datos. También puede ser difícil aislar el proceso de manipulación de la encuesta de la implementación específica de la función para manejar la forma de presentación, estructura del objeto a devolver, etc. Un claro ejemplo de esto puede verse en tidycensus (Walker & Herman, 2024), donde existe una función para obtener datos sobre la migración de la comunidad estadounidense, pero en la misma función también se encuentran pasos para mejorar la estructura del conjunto de datos a devolver. En este sentido, el usuario no puede aislar el proceso de re-codificación/construcción de variables sobre variables originales y la obtención de datos geográficos y presentación.

Para científicos sociales, es importante tener en cuenta que el proceso de transformación de los microdatos a indicadores requiere de un conocimiento profundo de la encuesta y en su mayoría no es de conocimiento general. Es de interés obtener información histórica de indicadores y en general es un proceso tedioso y propenso a errores, especialmente si proviene de encuestas donde su estructura y/o forma de preguntar o su codificación puede cambiar con el tiempo. Esto resulta en un proceso extenso y difícil de entender hasta llegar a la construcción de esta serie de indicadores. Muchas veces, diferentes usuarios hacen el mismo proceso de construcción de indicadores de manera independiente y sin compartir el código fuente o la metodología de construcción de indicadores, ya que cada uno utiliza su propio estilo de programación o hasta diferentes paquetes estadísticos, en su mayoría propietarios como SPSS, SAS o STATA, donde si bien el usuario puede compartir la sintaxis para su construcción, esta está ligada al software y depende de que el usuario tenga el software instalado con una licencia activa y pueda correr el código.

En este sentido, es importante que el usuario pueda tener un control total sobre el proceso de transformación de los microdatos a indicadores, ya que esto permite que el usuario pueda validar y entender el proceso de construcción de indicadores, además de brindar una herramienta común libre de estilos de programación y definiendo con simples pasos el proceso de construcción de variables sintéticas, como recodificar variables creando grupos en base a criterios complejos, tratamiento de variables continuas como el ingreso salarial en base a una metodología rigurosa y fácil de referenciar en la implementación. Es crucial que este proceso sea transparente y entendible para el usuario. En capítulos posteriores se abordarán ejemplos con los paquetes mencionados anteriormente y se presentará el paquete metaSurvey y su implementación de recetas para la construcción de indicadores mediante la metaprogramación.

Al trabajar con encuestas por muestreo, es importante tener en cuenta la forma en la que se obtuvieron los datos y su proceso generador para poder realizar inferencias sobre la población de interés. En general, obtener estimaciones puntuales de estadísticos de totales, promedios o proporciones es relativamente sencillo, pero puede ser que se reporte una estimación donde no exista un tamaño de muestra suficiente para obtener una estimación confiable y/o que la variabilidad de la estimación sea alta y no sea recomendable su uso. En este sentido, es importante que el usuario no experto tenga de forma nativa una forma de obtener estimaciones puntuales y sus errores asociados de manera sencilla. Es común utilizar estimaciones puntuales sin tener una medida de incertidumbre o aún peor incluir una estimación del error estándar sin tener en cuenta el diseño muestral correcto, lo que puede llevar a conclusiones erróneas sobre la variabilidad de la estimación. metaSurvey permite que el usuario pueda obtener estimaciones puntuales y sus errores asociados de forma nativa y con estos resultados hacer recomendaciones sobre la utilidad y

confianza de la estimación mediante coeficientes de variación, intervalos de confianza, tamaño de muestra efectivo, entre otros sin tener que ser un experto en metodología de estimación de varianzas y remuestreo. En capítulos posteriores se abordarán ejemplos con los paquetes mencionados anteriormente y se presentará el paquete metaSurvey y su implementación de estimaciones puntuales y sus errores asociados.

El desarrollo de un paquete en R es un proceso que requiere contar con una idea bien formada y los medios para llevarla a cabo es por esto que es importante contar con una metodología de trabajo ordenada, heredada del desarrollo de software convencional ya que para la publicación y difusión del paquete se tiene que cumplir con ciertos estándares de calidad y documentación para que otros usuarios puedan utilizarlo. En este sentido, es importante tener en cuenta que el desarrollo de un paquete en R puede llevar tiempo y esfuerzo, a consecuencia de esto, en el documento se presentarán diferentes conceptos sobre metodología para el desarrollo de paquetes en R y se abordaran ejemplos con la implementación de metaSurvey.

En este sentido, metaSurvey pretende ser una herramienta relevante para el trabajo con encuestas en ciencias sociales, buscando solucionar las limitaciones anteriormente mencionadas. Todo el proceso de transformación de los microdatos a indicadores se realiza a través de una serie de funciones que permiten al usuario tener un control total y transparente sobre el proceso de transformación de los microdatos a indicadores. Además, metaSurvey permite que el usuario pueda realizar el proceso de transformación de los microdatos a indicadores de manera reproducible y transparente. El usuario puede compartir el código de una forma entendible, casi como un "recetario de cocina". El procedimiento aplicado a los datos utilizados para obtener los indicadores se realiza mediante lo que denominamos steps y recipes, conformando así una especie de camino transparente para la construcción de indicadores. Esto permite compartir en forma visual un DAG (Directed Acyclic Graph) que permite visualizar el proceso de construcción de indicadores sin tener que abrir un script de R. En complemento al proceso de creación de variables, metaSurvey permite que el usuario pueda obtener estimaciones puntuales y sus errores asociados de manera sencilla y brindar recomendaciones sobre la utilidad de la estimación en el caso de que se cuente con una variabilidad alta en la estimación, en base a recomendaciones a su coeficiente de variación o métricas similares.

El enfoque que permite la flexibilidad a la hora de construir los indicadores es la meta-programación. La meta-programación es un paradigma de programación que permite que un programa pueda modificar su estructura interna en tiempo de ejecución. En R, la meta-programación se realiza a través de las funciones eval, parse, substitute, do.call y quote, que permiten evaluar y parsear código de manera dinámica. En este sentido, metaSurvey utiliza la meta-programación para permitir que el usuario pueda modificar el código que se utiliza para transformar los microdatos a indicadores, teniendo funciones de alto nivel similares a las que se utilizan en el paquete recipes de la librería tidymodels (Kuhn et al., 2024).

En el siguiente capitulo se presentara un marco conceptual básico sobre el muestreo de poblaciones finitas, diferentes paradigmas de programación como puede ser la programación orientada a objetos, programación funcional y la meta-programación y como se utilizan en el desarrollo del paquete. Luego, se ahondara en antecedentes previos tanto en la parte de metodología de estimación de varianzas y paquetes e ideas similares donde se basa el desarrollo del paquete. Finalmente, se presentarán ejemplos de cómo utilizar el paquete metaSurvey para construir indicadores de mercado laboral

a partir de los microdatos de la \mathbf{ECH} y para mostrar su flexibilidad, se incluirá un ejemplo con la \mathbf{EPH}

Capítulo 2

Marco conceptual

Note

Este capítulo está en proceso de validación. Cualquier comentario es bienvenido

El objetivo principal de este capítulo es presentar los conceptos básicos que se utilizarán a lo largo de este trabajo, en específico en las secciones de antecedentes y metodología. En primer lugar se presentara un marco básico de inferencia en muestreo de poblaciones finitas para luego presentar diferentes métodos de estimación de parámetros poblacionales y sus respectivos errores estándar. Se hará una primera introducción a diseños sencillos y se propondrán diferentes estimadores y se hará mención a su diferencia con los diseños complejos, situación común en Encuestas Socioeconomícas. Luego, se presentarán los conceptos básicos de la programación funcional y orientada a objetos en R para luego enfocarnos en la meta-programación. Finalmente, se presentará un breve resumen de cómo crear un paquete en R, los componentes mínimos para su publicación en **CRAN** (repositorio donde se encuentran disponibles versiones estables de diferentes paquetes de R), y las herramientas que se pueden utilizar para su desarrollo.

2.1 Inferencia en muestreo de poblaciones finitas

Como fue mencionado anteriormente las encuestas por muestreo son la principal fuente de información para la construcción de indicadores socio-demográficos y económicos, en este sentido, es importante tener en cuenta un marco teórico para realizar inferencias. Es sumamente sencillo obtener estimaciones puntuales de estadísticos usuales aunque es importante considerar la variabilidad de los estimadores, tanto para poder realizar un proceso de inferencia completo así como también para poder cuantificar la confiabilidad de la estimación. A continuación, se definen los conceptos básicos de inferencia en muestreo de poblaciones finitas como son el diseño muestral, probabilidades de inclusión basadas en el diseño, estimadores de Horvitz-Thompson **HT**, ponderación, medidas de incertidumbre y errores estándar basados en (Särndal et al., 2003).

2.1.1 Diseño muestral

El concepto de diseño muestral refiere al mecanismo mediante el cual se selecciona una muestra e inducen propiedades estadísticas claves como puede ser la distribución en el muestreo, valores esperados y varianzas de estimadores poblacionales. En diseños sencillos es posible calcular la función de diseño o encontrar una expresión analítica

con facilidad mientras que en diseños mas complejos como pueden ser los multietapicos es necesario abordar el problema de otra forma y asumir ciertas hipótesis para poder construir probabilidades de inclusión tanto de primer orden como segundo orden.

La definición matemática se basa en que dado un universo U de N elementos (puede ser conocido o no) $\{u_1, u_2, \cdots, u_N\}$ y se considera un conjunto de tamaño n de elementos de U que se denota como $s = \{u_1, u_2, \cdots, u_n\}$ al cual comúnmente denominamos **muestra**, el diseño muestral puede definirse de la siguiente forma:

$$Pr(S = s) = p(s)$$

Realizando un poco de inspección en la definición anterior se puede observar que el diseño muestral es una función de probabilidad que asigna una probabilidad a cada subconjunto de U de tamaño n. En este sentido, es posible definir diferentes tipos de diseño, entre ellos los mas comunes:.

• Diseño Aleatorio Simple (SI)

El diseño aleatorio simple es el diseño más sencillo y se define de la siguiente forma:

$$p(s) = \frac{1}{\binom{N}{n}}$$

Donde $\binom{N}{n}$ es el número de subconjuntos posibles de U de tamaño n.

• Diseño Bernoulli (BE)

El (**BE**) es un diseño sencillo que se utiliza cuando se desea seleccionar una muestra de un universo de tamaño N además de considerar una una probabilidad de inclusión π para cada elemento de U. Se define el diseño Bernoulli de la siguiente forma:

$$p(s) = \underbrace{\pi \times \pi \times \dots \times \pi}_{n_s} \times \underbrace{(1-\pi) \times (1-\pi) \times \dots \times (1-\pi)}_{N-n_s} = \pi^{n_s} (1-\pi)^{N-n_s}$$

Una diferencia fundamental entre el diseño (BE) y el diseño SI es que en el BE el tamaño de muestra es aleatorio y su distribución es binomial, mientras que en el diseño SI el tamaño de muestra es fijo.

• Diseño Estratificado (ST)

El diseño estratificado es un diseño que se utiliza cuando se desea seleccionar una muestra de tamaño n de un universo de tamaño N donde además se quiere dividir el universo en H estratos U_1, U_2, \cdots, U_H . Dentro de cada estrato se selecciona una muestra de tamaño n_h y se define el diseño estratificado de la siguiente forma:

$$p(s) = \prod_{l=1}^{H} p(s_H)$$

En cada estrato se puede utilizar un diseño diferente pero en general se utiliza el diseño SI, mas conocido STSI (Stratified Simple Random Sampling). En este caso cada $p_h(s_h)$ es el diseño aleatorio simple en el estrato h.

2.1.2 Probabilidades de inclusión y estimador de Horvitz-Thompson

Una vez definido el concepto de diseño muestral es posible definir la probabilidad de que un elemento de la población sea seleccionado en la muestra, esta probabilidad se conoce como probabilidad de inclusión y se define de la siguiente forma:

• Probabilidad de inclusión de primer orden

$$\pi_k = Pr(u_k \in s) = Pr(I_k = 1)$$

Donde I_k es una variable aleatoria que toma el valor de 1 si el elemento u_k es seleccionado en la muestra y 0 en caso contrario. Definir estas variables indicadoras son de utilizada para entender el comportamiento de los estimadores bajo el diseño muestral y nos permite definir los estimadores en U y no en S. Es claro que $I_k \sim Bernoulli(\pi_k)$ y $E(I_k) = Pr(I_k) = \pi_k$.

Esta probabilidad es importante ya que es la la base para la construcción de estimadores insesgados y eficientes, en este sentido, es posible definir el estimador de Horvitz-Thompson (**HT**) para estimar un total $t = \sum_{U} t_k$ de la siguiente forma:

$$\hat{t}_y = \sum_{k=1}^N \frac{y_k}{\pi_k} \times I_k$$

Este estimador es propuesto por Horvitz y Thompson en 1952 y es un estimador insesgado en el diseño, en el sentido de que $E(\hat{t}_y)=t$ y es eficiente en el sentido de que $Var(\hat{t}_y)$ es el menor posible entre los estimadores insesgados. Este estimador es muy utilizado en la práctica y es la base para la construcción de otros estadísticos,como medias, proporciones, varianzas, entre otros. Para mas detalles sobre las propiedades de Horvitz-Thompson (**HT**) se puede consultar en (Särndal et al., 2003) y (Horvitz & Thompson, 1952).

2.1.3 Ponderación basada en el diseño y estimadores más comunes

En general es utilizado el concepto de ponderador para realizar estimaciones de totales, medias, proporciones, varianzas, entre otros. En este sentido, es posible definir el ponderador inducido por el diseño muestral de la siguiente forma:

$$w_k = \frac{1}{\pi_k}$$

Este ponderador puede interpretarse como el número individuos que representa el individuo k en la población. Este valor es el que comúnmente se publica junto a los microdatos y el estándar en los diferentes softwares para procesar encuestas. Junto al estimador de un total es posible definir el estimador de un promedio, proporción o razón en el contexto de la \$-expansión.

Estimador de un promedio

$$\hat{\bar{y}} = \frac{\sum_{k=1}^{N} w_k I_k y_k}{\sum_{k=1}^{N} w_k I_k}$$

Este estimador puede ser utilizados en encuestas de hogares, donde se desea estimar el ingreso promedio de los hogares de una región de forma anual, o mensual.

Estimador de una proporción

$$\hat{p} = \frac{\sum_{k=1}^{N} I_k w_k y_k}{\sum_{k=1}^{N} w_k I_k} = \frac{\sum_{k=1}^{N} I_k w_k y_k}{\hat{N}}$$

Puede ser de interés estimar la proporción de hogares que tienen acceso a internet en una región, en este caso se puede utilizar el estimador de proporción.

Estimador de una razón

Se quiere estimar la razón $R=\frac{\sum_{k=1}^N y_k}{\sum_{k=1}^N z_k}$. En este caso se puede definir el estimador de la razón de la siguiente forma:

$$\hat{R} = \frac{\sum_{k=1}^{N} w_k y_k}{\sum_{k=1}^{N} w_k z_k} = \frac{\sum_{k=1}^{N} w_k y_k}{\hat{N}}$$

El estimador de razón es utilizado para construir variables de mercado de trabajo como la tasa de desempleo, tasa de ocupación, entre otros.

Inferencia sobre el tamaño de la población

Una vez definidos los estimadores, podemos ver que los estimadores de medias y proporciones son un caso particular del estimador de razón. Un detalle no menor es que asumimos N fijo pero desconocido, por esto al realizar proporciones se ajusta el total sobre un estimador del tamaño de la población:

$$\hat{N} = \sum_{k=1}^{N} I_k w_k$$

Existen diseños denominados **auto-ponderados** donde por definición $\sum_{k=1}^{N} w_k = N$, en este caso particular el estimador de medidas y proporciones es un caso particular del estimador de total, ya que el estadístico puede definirse de la siguiente forma:

$$\hat{\bar{y}}_s = \frac{\sum_{k=1}^{N} I_k w_k y_k}{\sum_{k=1}^{N} w_k I_k} = \frac{\sum_{k=1}^{N} I_k w_k y_k}{N} = \frac{1}{N} \times \sum_{k=1}^{N} I_k w_k y_k = a \times \hat{t}_y$$

2.1.4 Medidas de incertidumbre y errores estándar

Se puede medir la variabilidad de los estimadores y calcular su varianza. Esto es útil para entender cuán confiables son estos estimadores. Veamos cómo se calcula la varianza de diferentes tipos de estimadores, como el total, promedio, proporción o razón.

2.1.4.1 Momentos muéstrales y estimadores de varianza

Para un estadístico θ , su varianza bajo un diseño muestral p(s) se define como:

$$V(\hat{\theta}) = E((\theta - E(\hat{\theta}))^2) = \sum_{s \in S} p(s) \left(\hat{\theta}_s - E(\hat{\theta}_s)\right)$$

La forma de calcular la varianza depende del estimador $\hat{\theta}$. Por ejemplo, para el estimador de varianza de un total, se utiliza la siguiente fórmula:

$$V(\hat{t}_y) = \sum_{U} V(I_k \times y_k \times w_k) + \sum_{U} \sum_{k \neq l} Cov(I_k \times y_k \times w_k, I_l \times y_l \times w_l)$$

Después de simplificar, obtenemos:

$$V(\hat{t}_y) = \sum_{U} V(I_k) \times w_k \times y_k^2 + \sum_{U} \sum_{k \neq l} Cov(I_k, I_l) \times y_k \times w_k \times y_l \times w_l$$

Donde definimos las siguientes identidades para simplificar cálculos:

$$Cov(I_k,I_l) = \Delta_{kl} = \pi_{kl} - \pi_k \times \pi_l$$

$$\check{y}_k = y_k \times w_k$$

$$\check{\Delta}_{kl} = \Delta_{kl} \times \frac{1}{\pi_{kl}} = \Delta_{kl} \times w_{kl}$$

Una vez definida la varianza del estimador, necesitamos estimar su varianza. Para esto, utilizamos la técnica de π -expansión. Después de algunas manipulaciones algebraicas, obtenemos la varianza del estimador:

$$V(\hat{t}_y) = \sum_{U} \check{y}_k^2 + \sum_{U} \sum_{k \neq l} \Delta_{kl} \times \check{y}_k \times \check{y}_l = \sum_{U} \sum \Delta_{kl} \times \check{y}_k \times \check{y}_l$$

Podemos verificar que este estimador de varianza es insesgado con la definiciones de $E(I_kI_l)$ y tomando esperanzas. Es decir, se verifica que $E(\hat{V}(\hat{t}_y)) = V(\hat{t}_y)$. Al ser un estimador insesgado, su eficiencia depende del diseño muestral y de la varianza de los ponderadores, es decir, de la varianza de las probabilidades de inclusión. En algunos casos es donde entra en juego dividir grupos heterogéneos en estratos o realizar muestreos en varias etapas.

Para el caso de un estimador de un promedio, la varianza se define de la siguiente forma:

$$V(\hat{\bar{y}}) = \frac{1}{N^2} \times \sum_{U} \sum_{k \neq l} \Delta_{kl} \times \check{y}_k \times \check{y}_l$$

Esto es válido en el caso de contar con un tamaño de población conocido, en otro caso el estimador de la media no es un estimador lineal y para calcular su varianza deben optar por métodos de estimación de varianzas más complejos como el de linealización de Taylor.

Es importante considerar que en esta sección se presenta un caso ideal donde la muestra es obtenida de un listado **perfecto** de la población objetivo denominado **marco de muestreo**. En la práctica, el marco de muestreo es imperfecto y se debe considerar la no respuesta, la cobertura y la falta de actualización del marco de muestreo. En general para la publicación de microdatos se publican ciertos ponderadores que no son precisamente los ponderadores originales definidos en la sección anterior sino que son sometidos a un proceso de **calibración** donde se intenta ajustar a ciertas variables de control y mejorar problemas causados por la no respuesta. Al realizar el proceso de calibración los ponderadores calibrados son lo mas cercano posible a los ponderadores originales, de forma que si los ponderadores originales son insesgados, los ponderadores calibrados serán próximos a ser insesgados.

En la practica para diseños complejos no se dispone de las probabilidades de selección de segundo orden insumo principal para calcular los errores estándar, por esto es que se requiere optar con metodologías alternativas como el método del ultimo conglomerado, método de replicación jackknife, método de bootstrap, entre otros. En este sentido, es importante tener en cuenta que la varianza de los estimadores es un componente fundamental para realizar inferencias y cuantificar la confiabilidad de los resultados.

En resumen, para realizar estimaciones puntuales ya sean totales, medias, proporciones o razones, simplemente debemos ponderar los datos con los estadísticos anteriormente mencionadas pero para realizar un proceso de inferencia completo se requiere calcular sus errores estándar, construir intervalos de confianza y/o poder medir estabilidad de nuestros resultados. En este sentido, es importante tener al alcance herramientas que permitan realizar este tipo de cálculos, ya que si bien en diferentes softwares estadísticos junto a la estimación puntual se presentan los errores estándar aunque por defecto se asumen diseños sencillos como por ejemplo, el diseño BE donde la probabilidad de inclusión de segundo orden es sencilla de calcular y unicamente es necesario las probabilidades de inclusión de primer orden para computar estimadores del error estándar, siendo un valor completamente erróneo.

Una vez presentado conceptos básicos de muestreo es importante entender como esto estará disponible en el paquete metaSurvey, en este sentido, se presentarán los conceptos básicos de programación funcional y orientada a objetos en R para luego enfocarnos en la meta-programación.

2.2 Desarrollo de paquetes en R

R es un lenguaje de código abierto y además cuenta con una gran comunidad de usuarios, en diferentes áreas de investigación, esto ha permitido que se desarrollen una gran cantidad de paquetes que permiten realizar diferentes tareas de análisis de datos, visualización, bioinformática, aprendizaje automático y ramas afines a la estadística. Dentro de la comunidad existen diferentes organizaciones que se encargan de mantener la calidad de los paquetes y de asegurar que los paquetes cumplan con ciertos estándares de calidad, una de estas organizaciones es el **Comprehensive R Archive Network** (**CRAN**), que es un repositorio de paquetes de R que contiene versiones estables de los paquetes de R, bioconductor, que es un repositorio de paquetes de R que contiene paquetes para el análisis de datos biológicos, y rOpenSci que Para casi cualquier disciplina científica o en la industria se puede encontrar una comunidad de usuarios que desarrollan paquetes en R, en este sentido, el desarrollo

de paquetes en R es una tarea que se ha vuelto muy común entre los usuarios de R y es muy sencillo de realizar. A continuación, se presentan los conceptos básicos para el desarrollo de paquetes en R.

2.2.1 ¿Por qué desarrollar un paquete en R?

Desarrollar un paquete en R tiene varias ventajas, entre las cuales se pueden mencionar las siguientes:

- Reutilización de código: Es importante tener en cuenta que existe una comunidad que hace cosas similares a las que uno hace, por lo que es posible que alguien ya haya escrito una función que uno necesita. Por lo tanto, siempre es buena buscar si existe algún paquete que ya tenga las funcionalidades que se requieren.
- Compartir código: La comunidad de R es muy activa y siempre está dispuesta a compartir código, por esta razón es que se mantienen en constante desarrollo de paquetes.
- Colaboración: El trabajo colaborativo es esencial en el desarrollo de paquetes en R, ya que permite que diferentes personas puedan aportar con nuevas funcionalidades, correcciones de errores, entre otros.

2.2.2 Elementos básicos de un paquete en R

Para que nuestro conjunto de funciones, datos y documentación sea considerado un paquete en R, es necesario que cumpla con ciertos requisitos mínimos. A continuación, se presentan los componentes mínimos que debe tener un paquete en R para ser publicado en CRAN.

- Directorio: Un paquete en R debe estar contenido en un directorio que contenga al menos los siguientes archivos y directorios:
 - R/: Directorio que contiene los archivos con las funciones que se desean incluir en el paquete.
 - man/: Directorio que contiene los archivos con la documentación de las funciones que se encuentran en el directorio R/. En general se utiliza Roxygen2 (Wickham, Danenberg, et al., 2024) para generar la documentación de las funciones.
 - DESCRIPTION: Archivo que contiene la descripción del paquete, incluyendo el nombre, versión, descripción, autor, entre otros.
 - NAMESPACE: Archivo que contiene la información sobre las funciones que se exportan y las dependencias del paquete.
 - LICENSE: Archivo que contiene la licencia bajo la cual se distribuye el paquete.
 - README.md: Archivo que contiene información general sobre el paquete.
- Documentación: La documentación de las funciones es un componente esencial de un paquete en R, ya que permite que los usuarios puedan entender el funcionamiento de las funciones que se encuentran en el paquete. La documentación de las funciones se realiza utilizando el sistema de documentación de R, que se basa en el uso de comentarios en el código fuente de las funciones.
- **Pruebas**: Es importante que el paquete tenga pruebas que permitan verificar que las funciones se comportan de la manera esperada. Las pruebas se realizan

utilizando el paquete testthat (Wickham, 2011) que permite realizar pruebas unitarias.

- Control de versiones: Es importante que el paquete tenga un sistema de control de versiones que permita llevar un registro de los cambios que se realizan en el paquete. El sistema de control de versiones más utilizado en la comunidad de R es git.
- Licencia: Es importante que el paquete tenga una licencia que permita a los usuarios utilizar, modificar y distribuir el paquete. La licencia más utilizada en la comunidad de R es la licencia MIT.

El proceso de subir un paquete a CRAN es un proceso que puede ser tedioso, ya que se deben cumplir con ciertos requisitos que son revisados por los mantenedores de CRAN, no es trivial y puede tomar tiempo, sin embargo, es un proceso que vale la pena ya que permite que el paquete sea utilizado por una gran cantidad de usuarios.

El proceso de chequeo fue automatizado con GitHub actions, por lo que cada vez que se realiza un cambio en el repositorio, se ejecutan los chequeos de CRAN y se notifica si el paquete cumple con los requisitos para ser publicado en caso de que no cumpla con los requisitos se notifica el error y no puede ser incluido en la rama principal del repositorio hasta que se corrija el error.

Todo el proceso y código fuente del paquete se encuentra disponible en el repositorio de github del paquete. En el caso que este interesado en colaborar con el desarrollo del paquete puede consultar la guía de contribución

2.3 Paradigmas de programación en R

R es un lenguaje de programación que permite realizar programación funcional y orientada a objetos, lo que permite que los usuarios puedan utilizar diferentes paradigmas de programación para resolver problemas. A continuación, se presentan los conceptos básicos de la programación funcional y orientada a objetos en R.

2.3.1 Programación funcional

La programación funcional es un paradigma de programación que se basa en el uso de funciones para resolver problemas. En R, las funciones son objetos de primera clase, lo que significa que se pueden utilizar como argumentos de otras funciones, se pueden asignar a variables, entre otros (Wickham, 2019, pp. 204–281). A continuación, se presentan los conceptos básicos de la programación funcional en R.

- Funciones de orden superior: En R, las funciones de orden superior son funciones que toman como argumento una o más funciones y/o retornan una función. Un ejemplo de una función de orden superior en R es la función lapply que toma como argumento una lista y una función y retorna una lista con los resultados de aplicar la función a cada elemento de la lista.
- Funciones anónimas: En R, las funciones anónimas son funciones que no tienen nombre y se crean utilizando la función function. Un ejemplo de una función anónima en R es la función function(x) x^2 que toma como argumento x y retorna x^2.
- Funciones puras: En R, las funciones puras son funciones que no tienen efectos secundarios y retornan el mismo resultado para los mismos argumentos. Un

ejemplo de una función pura en R es la función **sqrt** que toma como argumento un número y retorna la raíz cuadrada de ese número.

Este paradigma de programación es muy útil para realizar análisis de datos, ya que permite que los usuarios puedan utilizar funciones para realizar operaciones sobre los datos de manera sencilla y eficiente, dentro de metaSurvey no existe una presencia fuerte de programación funcional, sin embargo, se utilizan algunas funciones de orden superior para realizar operaciones sobre los datos.

2.3.2 Programación orientada a objetos

La programación orientada a objetos es un paradigma de programación que se basa en el uso de objetos para resolver problemas. En R, los objetos son instancias de clases que tienen atributos y métodos (Mailund, 2017; Wickham, 2019, pp. 285–370). A continuación, se presentan los conceptos básicos de la programación orientada a objetos en R.

- Clases y objetos: En R, las clases son plantillas que definen la estructura y el comportamiento de los objetos y los objetos son instancias de clases. En R, las clases se definen utilizando la función setClass y los objetos se crean utilizando la función new.
- Atributos y métodos: En R, los atributos son variables que almacenan información sobre el estado de un objeto y los métodos son funciones que permiten modificar el estado de un objeto. En R, los atributos se definen utilizando la función setClass y los métodos se definen utilizando la función setMethod.

Dentro de metaSurvey se utiliza la programación orientada a objetos para definir las clases de los objetos que se utilizan para representar los datos de las encuestas mediante una creación de una clase especifica llamada Survey que permite además de almacenar los datos de la encuesta añadir atributos y métodos que permiten realizar operaciones sobre los datos de manera sencilla y eficiente.

De forma similar se modelan las clases Step, Recipe y Workflow elementos cruciales en el ecosistema de metaSurvey donde se definen los pasos de preprocesamiento, recetas de preprocesamiento y flujos de trabajo respectivamente. En este caso particular se utiliza el paquete R6 (Chang, 2022) que permite definir clases de manera sencilla y eficiente además de permitir la herencia de clases y la definición de métodos y atributos de manera sencilla.

2.3.3 Meta-programación

La meta-programación es un paradigma de programación que se basa en el uso de código para manipular código (Thomas Mailund, 2017; Wickham, 2019, pp. 373–500) . En R, la meta-programación se realiza utilizando el sistema de meta-programación de R que se basa en el uso de expresiones, llamadas y funciones. A continuación, se presentan los conceptos básicos de la meta-programación en R.

- Expresiones: En R, las expresiones son objetos que representan código y se crean utilizando la función quote. Un ejemplo de una expresión en R es la expresión quote(x + y) que representa el código x + y.
- Llamadas: En R, las llamadas son objetos que representan la aplicación de una función a sus argumentos y se crean utilizando la función call. Un ejemplo

- de una llamada en R es la llamada call("sum", 1, 2, 3) que representa la aplicación de la función sum a los argumentos 1, 2 y 3.
- Funciones: En R, las funciones son objetos que representan código y se crean utilizando la función function. Un ejemplo de una función en R es la función function(x, y) x + y que representa el código x + y.

Antecedentes

♠ Warning

Este capítulo está en proceso de escritura. Consulte la rama de desarrollo para ver el avance del capítulo

En este capitulo se presentan los antecedentes y conceptos aplicados en el desarrollo de metasurvey considerando conceptos de investigación reproducible, la importancia de R como herramienta para la investigación reproducible, la revisión de paquetes de R para el procesamiento de encuestas por muestreo y la importancia del diseño muestral, la importancia de la estimación de las varianzas en la generación de indicadores y los trabajos previos en los que se basa el paquete. Estos conceptos son fundamentales para poder entender el desarrollo y la importancia de tener un flujo de trabajo para la generación de indicadores sociales.

En la actualidad, la generación de indicadores sociales se ha vuelto una tarea fundamental tanto para la toma de decisiones como para la investigación. embargo, este proceso puede ser complejo, requiriendo conocimiento sobre el formulario de la encuesta, formas de construir ciertos indices o variables auxiliares que no necesariamente sea trivial y depende de la experiencia del usuario.

Este proceso de generación de indicadores en algunos casos no es transparente o no se documenta de manera adecuada, en parte por la falta de herramientas que lo permitan y en otra parte por la falta de cultura de la reproducibilidad en la generación de indicadores ya que en la mayoría de los casos se hace referencia a los datos y no al proceso de generación de los indicadores.

3.1 Investigación reproducible

El concepto de investigación reproducible ha cobrado relevancia en los últimos años, tanto en la academia como en la industria y esto se debe a la fricción que puede llegar a existir al momento de presentar resultados de investigación o generación indicadores relevantes para la toma de decisiones debido al proceso de generación de los mismos. Dentro de las diferentes disciplinas generar ambientes de trabajo reproducibles puede llegar a ser un desafío, ya que en la mayoría de los casos se utilizan diferentes herramientas, lenguajes de programación y bases de datos.

En la actualidad existen diferentes revistas científicas que promueven la investigación reproducible, herramientas, guías para buenas prácticas para trabajar con datos y código fuente como Sumatra (Davison & Huth, 2012), implementaciones de programación literal (Knuth, 1984) como RMarkdown (Allaire et al., 2024) o Jupyter Notebook (Kluyver et al., 2024) y diferentes implementaciones para gestionar dependencias de software como Anaconda (Anaconda, 2024), aunque algunas de ellas se han vuelto herramientas de pago o ya no existen en la actualidad, mas referencias y casos de uso pueden encontrarse en (Stodden et al., 2014).

Antes de continuar es necesario definir conceptos fundamentales en el ámbito de la investigación reproducible, tales como la *Reproducibilidad* que refiere a la capacidad de poder repetir los resultados de un estudio, experimento o la obtención de un indicador. Si bien la reproducibilidad en un artículo de investigación científica al utilizar indicadores tanto en contextos académicos como en aplicaciones de monitoreo o divulgación de información, rara vez se documenta o se menciona de que manera se generó ese resultado haciendo referencia únicamente a los datos y rara vez al código fuente. Aún compartiendo el código fuente, esto aún no suficiente para poder reproducir un estudio o un indicador por incompatibilidades de versiones de software, cambios en la estructura de los datos interpretaciones de los datos, estilos de programación, entre otros pudiendo llevar mucho tiempo y esfuerzo para poder replicar un resultado.

El proceso de tratamiento de datos y limpieza forma parte de lo que se conoce como publicaciones grises (Vilhuber, 2020). Este concepto se refiere a la publicación de datos, código y reportes que no son publicaciones formales, pero son esenciales para generar conocimiento científico. En su mayoría al no tener una revisión por pares o una forma estandarizada esto se incluye de forma muy dispar o sin ningún tipo de documentación para poder ser reproducido y esto forma una gran parte de la investigación científica que no se encuentra aprovechada.

Existen diversas iniciativas destinadas a fomentar la reproducibilidad en la ciencia, lo que ha llevado a las revistas a establecer políticas de datos y código abierto. Sin embargo, persisten desafíos en la generación de indicadores sociales, ya que como se menciono anteriormente no basta con hacer referencia a los datos, como se señala en (Bechhofer et al., 2013); además de publicar el artículo junto a los datos, es necesario vincular los objetos de investigación (Research Objects RO), existen diferentes plataformas que permiten la publicación de estos objetos como Zenodo y Figshare o OSF que permiten la integración de datos, código e interacción con repositorios con control de versiones como GitHub o GitLab.

De conceptos generales sobre reproducibilidad es importante contar con un flujo de trabajo (Workflow managment System (Prabhu & Fox, 2020)) para la obtención de estimadores en el procesamiento de encuestas por muestreo ya que el indicador final es el resultado de una serie de pasos que se deben seguir de manera ordenada y documentada para poder ser auditados y replicados en diferentes contextos, inspirado en (Sandve et al., 2013) se pueden considerar algunas buenas prácticas para la generación de indicadores:

- Para cada resultado, se debe tener un respaldo de como fue construido: Al trabajar con lenguajes de programación como R, los script de código fuente son un respaldo de como obtener cierto resultado, sin embargo, esto puede estar ligado a tu estilo de programación y la versión de los paquetes que se utilizan.
- Crear manuales en la manipulación de datos: Es importante resumir cada paso por mas mínimo que sea en la transformación de variables, esto permite entender todo el proceso de generación de un indicador.

- Guardar las versiones de los paquetes utilizados: Al trabajar con R, es importante guardar las versiones de los paquetes que se utilizan, esto permite que en un futuro se pueda replicar el proceso de generación de indicadores, para esto puede utilizarse herramientas como renv (Ushey & Wickham, 2023) un paquete que permite crear ambientes locales con versiones especificas de paquetes de R, venv (Python Software Foundation, 2024) que son ambientes virtuales en python o Docker (Merkel, 2014) para poder emular un ambiente de trabajo en diferentes sistemas operativos.
- Guardar pasos intermedios, en un formato estándar: Al trabajar con encuestas por muestreo y para crear indicadores sencillos se realizan dos grandes tipos de operaciones: crear grupos o categorías o realizar operaciones matemáticas, es importante guardar estos pasos en un formato estándar para poder ser reutilizados en diferentes contextos.
- Compartir las ejecuciones y scripts: Es importante que los scripts de código fuente estén disponibles para que puedan ser auditados y replicados en diferentes contextos.

3.1.1 Conceptos clave

metasurvey se basa en las buenas prácticas mencionadas anteriormente y permite crear herramientas de flujo de trabajo siguiendo los siguientes principios:

- Reusable: Se separa el proceso de transformación de variables en Steps que refiere a transformaciones de columnas, estos procedimientos pueden ser comunes tanto en diferentes encuestas como en diferentes indicadores. Estos Steps pueden ser reutilizados en diferentes Recipes para calcular indicadores de mercados de trabajo, pobreza, e incluso aplicarlos en varias encuestas simultáneamente mediante un Workflow.
- Repetible: Al tener un proceso definido en un Workflow, es posible repetir el proceso de generación de indicadores de la misma manera y automatizar la generación de reportes.
- Referenciable y Acreditable: Al contar con un Workflow, es posible hacer referencia al proceso de generación de indicadores indicando todos los pasos seguidos y el autor o equipo que lo realizó. Además, se puede acreditar a los autores de los Steps y Recipes que se utilizaron en el proceso.

3.1.2 Workflow reproducible

El concepto de Workflow no es nuevo y exclusivo en la comunidad científica, en la actualidad en la industria de la ciencia de datos se han desarrollado diferentes herramientas para la gestión de flujos de trabajo para el procesamiento de datos, con diferentes enfoques y objetivos. metaSurvey se inspira en diferentes herramientas como Apache AirFlow (Apache Airflow Documentation, n.d.) que es una plataforma de orquestación de flujos de trabajo de código abierto, Great Expectations (Expectations, 2024) que es una biblioteca de validación de datos para la generación de reportes de calidad de datos y Make que es una herramienta de automatización de flujos de trabajo que se basa en la definición de reglas y dependencias.

En el ámbito del aprendizaje automático existe un gran esfuerzo para poder desgranar y documentar los modelos conocido como **Model Cards** (Mitchell et al., 2019) donde se hace un detalle de los algoritmos utilizados, las métricas de evaluación, los datos utilizados y su procesamiento, siendo esto el análogo a los **Steps** y **Recipes** de **metaSurvey**. Este concepto se ha extendido siendo un estándar en la industria y siendo adoptado por diferentes organizaciones como **Google** y **Hugging Face**.

Tomando en cuenta estos conceptos, metaSurvey tiene disponible la posibilidad de generar, compartir y visualizar los flujos de trabajo de manera gráfica permitiendo la transparencia y auditabilidad de los procesos de generación de indicadores.

3.2 Investigación reproducible en R

Dentro de CRAN existe una guía sobre conjunto de paquetes y herramientas con objetivos comunes denominado **Task Views** que agrupa paquetes de R que se utilizan para un propósito específico. En el Task View de Reproducible Research se encuentran diferentes paquetes que permiten la generación de reportes dinámicos, la gestión de flujos de trabajo y la generación de documentos interactivos aunque también existen herramientas para la gestión de flujos de trabajo generales como **targets** (Landau, 2021) y drake (Landau, 2018), metaSurvey fue inspirado en los conceptos y la forma de trabajo de estos paquetes.

Los conceptos de meta-programación y programación orientada a objetos fue inspirado en el paquete mlr3pipelines (Binder et al., 2021) que permite la creación de flujos de trabajo para el preprocesamiento de datos y la generación de modelos de aprendizaje automático, aquí se definen PipeOps que son operaciones que se pueden aplicar a los datos y se pueden combinar en un Graph que define el flujo de trabajo para ello se definen clases y métodos que permiten una fácil extensión por parte del usuario y la creación de flujos de trabajo complejos.

Dentro de la comunidad existen organizaciones como ROpenSci que promueven la ciencia abierta y la reproducibilidad en la investigación científica, proporcionando herramientas y guías para promover la ciencia abierta mediante R. Esta organización promueve la creación de paquetes donde además de la guías sobre el desarrollo de paquetes y la revisión de los mismos, se promueve la creación de paquetes que sean de utilidad para la comunidad científica definiendo estándares de calidad y documentación. Para formar parte de ROpenSci, se sigue una evaluación entre pares y una revisión de la calidad del paquete, además de la documentación y la calidad del código complementado con tests automatizados.

3.2.1 Herramientas para el procesamiento de encuestas

En el ámbito de las encuestas por muestreo, existen diferentes paquetes que permiten el procesamiento de encuestas por muestreo o la generación de estadísticas oficiales, esto se puede ver en el Task View de Official Statistics & Survey Methodology donde se encuentran diferentes tipos de paquetes desde la preparación de formularios, calibración, análisis de datos, acceso a datos oficiales, entre otros.

Para el procesamiento de encuestas por muestreo, existe una serie de paquetes que permiten implementar la metodología de encuestas por muestreo como puede ser el caso de survey (Lumley, 2024) que permite el análisis de encuestas complejas, srvyr (Ellis & Schneider, 2023) aunque estos son utilizados en el proceso final o de inferencia y no en el proceso de la construcción y limpieza de los datos como si lo

hace ech (Detomasi, 2020) que tiene diferentes funciones para la ECH y permite al usuario crear variables referidas a Vivienda, Educación, Mercado de Trabajo, Ingresos y Pobreza algo similar con eph (Kozlowski et al., 2020) que permite la descarga de datos de la EPH y la creación de variables para analizar la pobreza y el mercado de trabajo.

Este ultimo grupo de paquetes o **caja de herramientas** tienen la limitación que no permiten la reutilización de los pasos de limpieza y transformación de los datos de forma sencilla y nativa, además de no poder visualizar el flujo de trabajo de manera gráfica, lo que dificulta la auditoría y la replicabilidad de los procesos de generación indicadores, **metasurvey** busca llenar este vacío permitiendo la reutilización de los pasos de limpieza y transformación de los datos, la visualización del flujo de trabajo y la generación de reportes de manera sencilla.

3.3 Diseño de encuestas y estimación de varianza

Como fue introducido en el capitulo anterior y en la sección de antecedentes es sencillo obtener estimaciones puntuales, sin embargo, es necesario presentar una medida de precisión de la estimación ya que en algunos casos puede ser que el tamaño de la muestra no sea suficiente para obtener estimaciones precisas. En el caso de las encuestas por muestreo, es necesario tener en cuenta el diseño de la encuesta, la estratificación, la ponderación y el efecto de conglomerados, ya que estos factores influyen en la precisión de la estimación. Para ello, es necesario contar con alguna metodología que permita estimar varianzas ya que para diseños complejos o estadísticos no lineales, la estimación de varianzas no es trivial.

En la actualidad, existen diferentes métodos para la estimación de varianzas, aunque en la mayoría de los casos se utilizan métodos de remuestreo como el Boostrap o el Jackknife, sin embargo existen diferentes ideas o propuestas como se menciona en (Deville & Tille, 1998) y (Deville & Tillé, 2005) que demuestran con resultados numéricos estimadores del tipo H-T bajo un diseño balanceado puede aproximarse desde el enfoque de regresión o calibración. Además existen estimadores alternativos donde complementan métodos de remuestreo para aproximar probabilidades de inclusión de segundo orden (Escobar & Berger, 2013) utilizando ciertas aproximaciones límites (Hajek, 1964).

Cada metodología depende de cada diseño y variables a estimar, por esto es que existen diferentes metodologías y paquetes como gustave (Chevalier, 2023), vardpoor (Breidaks et al., 2020), svrep (Schneider, 2023) y samplingVarEst (Escobar et al., 2023), aunque existen similitudes entre implementaciones y métodos es difícil encontrar una implementación que permita la estimación de varianzas de manera sencilla y que permita la reutilización de los pasos de limpieza y transformación de los datos.

En capítulos posteriores se presentará la implementación de conceptos de workflows, meta-programación y metodologías de estimación de varianzas en metasurvey para la generación de indicadores sociales.

Metodología

⚠ Warning

Este capítulo está en proceso de escritura. Consulte la rama de desarrollo para ver el avance del capítulo

Ideas

Ш	Metodología de estimación de varianzas
	Revisión de medidas de incertidumbre y recomendaciones sobre su uso
	Implementación de recetas y metaprogramación
	Revisión de API de Javascript y Base´ de MONGODB
	Interacción desde R

Resultados

⚠ Warning

Este capítulo está en proceso de escritura. Consulte la rama de desarrollo para ver el avance del capítulo

TODO: Revisar como escribir la viñeta de uso de recipes y darle un contexto en el capitulo.

Acá va la viñeta Use recipes

7.1 ECH

```
metasurvey::set_engine("data.table")
Engine:
  ech_meta = metasurvey::load_survey(
    path = metasurvey::load_survey_example("ech_2018.csv"),
    svy_type = "ech",
    svy_edition = "2018",
    svy_weight = "pesoano"
  ech_meta_steps = ech_meta |>
    metasurvey::step_recode(
      "pea",
      pobpcoac %in% 2:5 ~ 1,
      .default = 0
    metasurvey::step_recode(
      "pet",
      pobpcoac != 1 ~ 1,
      .default = 0
    metasurvey::step_recode(
      "po",
      pobpcoac == 2 \sim 1,
      .default = 0
    metasurvey::step_recode(
      "pd",
```

```
pobpcoac %in% 3:5 ~ 1,
    .default = 0
metasurvey::view_graph(ech_meta_steps)
```

7.2 **EAII**

```
svy_example = metasurvey::load_survey(
    svy_type = "eaii",
    svy_edition = "2019-2021",
    svy_weight = "w_trans",
    input = metasurvey::load_survey_example("2019-2021.csv"),
    dec = ","
)
# as.data.frame(svy_example)
# as.tibble(svy_example)
new_svy = svy_example |>
    metasurvey::step_recode(
        new_var = "realiza_innovacion",
        B1_1_1 == 1 \sim 1,
        B1_2_1 == 1 \sim 1,
        B1_3_1 == 1 \sim 1,
        B1_4_1 == 1 ~ 1,
        B1_5_1 == 1 \sim 1,
        B1_6_1 == 1 \sim 1,
        B1_7_1 == 1 \sim 1,
        B1_8_1 == 1 \sim 1,
        B1_9_1 == 1 \sim 1,
        .default = 0
    ) |>
    metasurvey::step_recode(
        new_var = "sector",
        data.table::between(Division, 10, 33) ~ "Industria",
        data.table::between(Division, 34, 99) ~ "Servicios",
        Division == "C1" ~ "Industria",
        Division == "C2" ~ "Servicios",
        Division == "E1" ~ "Servicios"
    ) |>
    metasurvey::step_recode(
        new_var = "innovativa",
        E1_1_1 == 1 \sim 1,
        E1_2_1 == 1 \sim 1,
        .default = 0
    ) |>
    metasurvey::step_recode(
```

7.2. EAII 33

```
new_var = "tipo_actividad",
    B1_1_1 == 1 ~ "I + D Interna",
    B1 2 1 == 1 \sim "I + D Externa",
    B1_3_1 == 1 \sim "Bienes de Capital",
    B1_4_1 == 1 \sim "Software",
    B1_5_1 == 1 ~ "Propiedad Intelectual",
    B1_6_1 == 1 ~ "Ingeniería",
    B1_7_1 == 1 \sim "Capacitación",
    B1_8_1 == 1 \sim "Marketing",
    B1_9_1 == 1 \sim "Gestión",
    .default = "Otra"
) |>
metasurvey::step_recode(
    new_var = "tipo_innovacion",
    E1_1_1 == 1 \sim "Producto",
    E1_2_1 == 1 \sim "Proceso",
    .default = "Otra"
) |>
metasurvey::step_recode(
    new_var = "cant_traba_tramo",
    data.table::between(IG_4_1_3, 0, 4) ~ "1",
    data.table::between(IG_4_1_3, 5, 19) ~ "2",
    data.table::between(IG_4_1_3, 20, 99) ~ "3",
    IG_4_1_3 > 99 \sim "4"
) |>
metasurvey::step_recode(
    new_var = "ingreso_vta_pesos",
    data.table::between(IG_5_1_1_3, 0, 9942787) ~ "1",
    data.table::between(IG_5_1_1_3, 9942788, 49713934) ~ "2", # nolint
    data.table::between(IG_5_1_1_3, 49713935, 372854507) ~ "3", # nolint
    IG 5 1 1 3 > 372854507 ~ "4"
) |>
metasurvey::step_recode(
    new_var = "tamanio",
    cant_traba_tramo == "1" & ingreso_vta_pesos == "1" ~ "Pequenias",
    cant_traba_tramo == "2" & ingreso_vta_pesos == "2" ~ "Pequenias",
    cant_traba_tramo == "2" & ingreso_vta_pesos == "1" ~ "Pequenias",
    cant_traba_tramo == "1" & ingreso_vta_pesos == "2" ~ "Pequenias",
    cant_traba_tramo == "3" & ingreso_vta_pesos == "3" ~ "Medianas",
    cant_traba_tramo == "3" & ingreso_vta_pesos == "2" ~ "Medianas",
    cant_traba_tramo == "3" & ingreso_vta_pesos == "1" ~ "Medianas",
    cant_traba_tramo == "1" & ingreso_vta_pesos == "3" ~ "Medianas",
    cant_traba_tramo == "2" & ingreso_vta_pesos == "3" ~ "Medianas",
    cant_traba_tramo == "4" & ingreso_vta_pesos == "4" ~ "Grandes",
    cant_traba_tramo == "4" & ingreso_vta_pesos == "3" ~ "Grandes",
    cant_traba_tramo == "4" & ingreso_vta_pesos == "2" ~ "Grandes",
    cant_traba_tramo == "4" & ingreso_vta_pesos == "1" ~ "Grandes",
    cant_traba_tramo == "1" & ingreso_vta_pesos == "4" ~ "Grandes",
    cant_traba_tramo == "2" & ingreso_vta_pesos == "4" ~ "Grandes",
    cant_traba_tramo == "3" & ingreso_vta_pesos == "4" ~ "Grandes"
```

```
) |>
    metasurvey::step_compute(
        subsector = Division
     )
metasurvey::get_metadata(new_svy)
Type: eaii
Edition: 2019-2021
Engine: data.table
Weight: w_trans
Steps:
- New group: realiza_innovacion
- New group: sector
- New group: innovativa
- New group: tipo_actividad
- New group: tipo_innovacion
- New group: cant_traba_tramo
- New group: ingreso_vta_pesos
- New group: tamanio
- New variable: subsector
metasurvey::view_graph(new_svy)
```

7.3 EPH

```
ph2022_3 = metasurvey::load_survey(
 path = metasurvey::load_survey_example("eph2022_3.csv"),
  svy_type = "eph",
 svy_edition = "2022_3",
  svy_weight = "PONDERA"
) |>
  metasurvey::step_recode(
    "pea",
   ESTADO %in% 1:2 ~ 1,
    .default = 0
  ) |>
  metasurvey::step_recode(
    "pet",
   ESTADO !=4~1,
    .default = 0
  ) |>
  metasurvey::step_recode(
    "po",
   ESTADO == 1 \sim 1,
    .default = 0
  metasurvey::step_recode(
```

7.3. EPH 35

```
"pd",
    ESTADO == 2 ~ 1,
    .default = 0
)

metasurvey::view_graph(ph2022_3)
```

Apendice aburrido de muestreo

- Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., & Atkins, A. (2024). RMarkdown. https://rmarkdown.rstudio.com/
- Anaconda, Inc. (2024). Anaconda distribution. https://www.anaconda.com/
- Apache airflow documentation. (n.d.). https://airflow.apache.org/docs/latest/
- Bechhofer, S., Buchan, I., De Roure, D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides, D., Owen, S., Newman, D., Sufi, S., & Goble, C. (2013). Why linked data is not enough for scientists. Future Generation Computer Systems, 29(2), 599–611. https://doi.org/10.1016/j.future.2011.08.004
- Binder, M., Pfisterer, F., Lang, M., Schneider, L., Kotthoff, L., & Bischl, B. (2021). mlr3pipelines flexible machine learning pipelines in r. *Journal of Machine Learning Research*, 22(184), 1–7. https://jmlr.org/papers/v22/21-0281.html
- Breidaks, J., Liberts, M., & Ivanova, S. (2020). Vardpoor: Estimation of indicators on social exclusion and poverty and its linearization, variance estimation. Central Statistical Bureau of Latvia. https://csblatvia.github.io/vardpoor/
- Chang, W. (2022). R6: Encapsulated classes with reference semantics.
- Chevalier, M. (2023). Gustave: A user-oriented statistical toolkit for analytical variance estimation. https://CRAN.R-project.org/package=gustave
- Davison, A. P., & Huth, J. E. (2012). Sumatra: A toolkit for reproducible research. arXiv Preprint arXiv:1207.5548.
- Detomasi, G. M. &. R. (2020). Ech: Caja de herramientas para procesar la encuesta continua de hogares. https://github.com/calcita/ech
- Deville, J.-C., & Tille, Y. (1998). Unequal probability sampling without replacement through a splitting method. *Biometrika*, 85(1), 89–101. https://www.jstor.org/stable/2337311
- Deville, J.-C., & Tillé, Y. (2005). Variance approximation under balanced sampling. Journal of Statistical Planning and Inference, 128(2), 569–591. https://doi.org/10.1016/j.jspi.2003.11.011
- Ellis, G. F., & Schneider, B. (2023). Srvyr: 'Dplyr'-like syntax for summary statistics of survey data. https://CRAN.R-project.org/package=srvyr
- Escobar, E. L., & Berger, Y. G. (2013). A new replicate variance estimator for unequal probability sampling without replacement. *The Canadian Journal of Statistics / La Revue Canadienne de Statistique*, 41(3), 508–524. https://www.jstor.org/stable/43186201
- Escobar, E. L., Zamudio, E. B., & Rosas, J. F. M. (2023). sampling VarEst: Sampling variance estimation.
- Expectations, G. (2024). *Great expectations documentation*. Superconductive. https://docs.greatexpectations.io
- Hajek, J. (1964). Asymptotic theory of rejective sampling with varying probabilities from a finite population. *The Annals of Mathematical Statistics*, 35(4), 1491–1523. https://doi.org/10.1214/aoms/1177700375
- Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. *Journal of the American Statistical Association*,

- 47(260), 663–685. https://doi.org/10.2307/2280784
- Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., & others. (2024). Jupyter notebook. https://jupyter.org/
- Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97111.
- Kozlowski, D., Tiscornia, P., Weksler, G., Rosati, G., & Shokida, N. (2020). Eph: Argentina's permanent household survey data and manipulation utilities. https: //holatam.github.io/eph/
- Kuhn, M., Wickham, H., & Hvitfeldt, E. (2024). Recipes: Preprocessing and feature engineering steps for modeling. https://github.com/tidymodels/recipes
- Landau, W. M. (2018). The drake r package: A pipeline toolkit for reproducibility and high-performance computing. Journal of Open Source Software, 3(21). https: //doi.org/10.21105/joss.00550
- Landau, W. M. (2021). The targets r package: A dynamic make-like function-oriented pipeline toolkit for reproducibility and high-performance computing. Journal of Open Source Software, 6(57), 2959. https://doi.org/10.21105/joss.02959
- Lumley, T. (2024). Survey: Analysis of complex survey samples.
- Mailund, T. (2017). Advanced object-oriented programming in r: programming for data science, analysis and finance. SPRINGER.
- Merkel, D. (2014). Docker: Lightweight linux containers for consistent development and deployment. Linux Journal, 2014(239), 2.
- Mitchell, M., Wu, S., Zaldivar, A., Barnes, P., Vasserman, L., Hutchinson, B., Spitzer, E., Raji, I. D., & Gebru, T. (2019). Model cards for model reporting. 220–229. https://doi.org/10.1145/3287560.3287596
- Prabhu, A., & Fox, P. (2020). Reproducible workflow. http://arxiv.org/abs/2012. 13427
- Python Software Foundation. (2024). Python 3 documentation: Venv creation of virtual environments. Python Software Foundation. https://docs.python.org/3/ library/venv.html
- R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
- Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten Simple Rules for Reproducible Computational Research. PLOS Computational Biology, 9(10), e1003285. https://doi.org/10.1371/journal.pcbi.1003285
- Särndal, C.-E., Swensson, B., & Wretman, J. (2003). Model Assisted Survey Sampling. Springer Science & Business Media.
- Schneider, B. (2023). Svrep: Tools for creating, updating, and analyzing survey replicate weights. https://CRAN.R-project.org/package=svrep
- Stodden, V., Leisch, F., & Peng, R. D. (2014). Implementing Reproducible Research. CRC Press.
- Thomas Mailund. (2017).Metaprogramming in r (1st ed.). //www.amazon.com/Metaprogramming-Advanced-Statistical-Programming-Analysis/dp/1484228804
- Ushey, K., & Wickham, H. (2023). Renv: Project environments. https://CRAN.Rproject.org/package=renv
- Vargas, M. (2024). Casen: Metodos de estimación con disenio probabilistico y estratificado en encuesta CASEN (estimation methods with probabilistic stratified sampling in CASEN survey). https://pacha.dev/casen/
- Vilhuber, L. (2020). Reproducibility and Replicability in Economics. Harvard Data Science Review, 2(4). https://doi.org/10.1162/99608f92.4f6b9e67
- Walker, K., & Herman, M. (2024). Tidycensus: Load US census boundary and

7.3. EPH 39

attribute data as 'tidyverse' and 'sf'-ready data frames. https://walker-data.com/tidycensus/

- Wickham, H. (2011). Testthat: Get started with testing. *The R Journal*, 3, 510. https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
- Wickham, H. (2019). Advanced r, second edition. CRC Press.
- Wickham, H., Danenberg, P., Csárdi, G., & Eugster, M. (2024). roxygen2: In-Line Documentation for R. https://roxygen2.r-lib.org/
- Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). *Dplyr: A grammar of data manipulation*. https://dplyr.tidyverse.org
- Wickham, H., Vaughan, D., & Girlich, M. (2024). *Tidyr: Tidy messy data.* https://tidyr.tidyverse.org