Ishan Sethi | ID: 110941217 | CSE 215 | Homework 6 in LATEX

Professor McDonnell | Assigned: April 13, 2017 | Due: April 25, 2017

Contents

7 Functions

7.1 3b, 3d, 10d, 10e, 10f, 12c, 12d, 41

3b)

$$g(1) = b$$
, $g(3) = b$ and $g(5) = b$

3d) 3 is not the inverse image of a, 1 is the inverse image of b.

10d)

$$T(5) = 5 \text{ and } 1$$

10e)

$$T(18) = 1, 2, 3, 6, 9 \text{ and } 18$$

10f)

$$T(21) = 1, 3, 7 \text{ and } 21$$

12c)
$$G(3, 2) = ((2 \cdot (3) + 1) \mod 5, (3 \cdot (2) - 2) \mod 5) = (2, 4)$$

12d)
$$G(1, 5) = ((2 \cdot (1) + 1) \mod 5, (3 \cdot (5) - 2) \mod 5) = \boxed{(3,3)}$$

 $\overline{41}$ \forall subsets of C and D of Y, Justify that $F^{-1}(C-D) = F^{-1}(C) - F^{-1}(D)$

$$x \in F^{-1}(C-D) \Rightarrow F(x) \in (C-D)$$
 – Due to the inverse image law $F(x) \in (C-D) \Rightarrow F(x) \in C$ and $F(x) \notin D$ – Set Difference Law

Now proceed to the right side

$$x \in F^{-1}(C) - F^{-1}(D) \Rightarrow x \in F^{-1}(C)$$
 and $x \notin F^{-1}(D)$ – Set Difference Law $x \in F^{-1}(C)$ and $x \notin F^{-1}(D) \Rightarrow F(x) \in C$ and $F(x) \notin D$ – Inverse Image Law

Since fundamental element argument is the same for both sides, they are both subsets of each other - Definition of Subsets.

$$F^{-1}(C-D)\subseteq F^{-1}(C)-F^{-1}(D) - \text{Definition of Subsets}$$
 $x\in F^{-1}(C)-F^{-1}(D)\Rightarrow x\in F^{-1}(C) \text{ and } x\notin F^{-1}(D) - \text{Set Difference Law}$ $x\in F^{-1}(C) \text{ and } x\notin F^{-1}(D)\Rightarrow F(x)\in C \text{ and } F(x)\notin D - \text{Inverse Image Law}$

Now proceed to the right side

$$x\in F^{-1}(C-D)\Rightarrow F(x)\in (C-D)$$
 – Due to the inverse image law $F(x)\in (C-D)\Rightarrow F(x)\in C$ and $F(x)\notin D$ – Set Difference Law

Since fundamental element argument is the same for both sides, they are both subsets of each other - Definition of Subsets.

$$F^{-1}(C) - F^{-1}(D) \subseteq F^{-1}(C - D)$$
 – Definition of Subsets

Since they are subsets of each other they are equal $\Rightarrow F^{-1}(C-D) = F^{-1}(C) - F^{-1}(D)$

7.2 7b, 9c, 9d, 12, 18, 23

- 7b) Since no points map to g in the set of Y, the definition of onto is violated and it is not onto.
- 9c) If you took all the points from the set X and mapped it to one point out of more than one in the set Y, you have a function that is not onto and not one-to-one.
- 9d) If the set of X are the values $\{1,2,3\}$ and the set Y are the values $\{1,2,3\}$ and $F:X\to Y$ would result in the mappings 1 to 2, 2 to 3 and 3 to 1, this would be one-to-one, onto and not the identity function.

12a)
$$F: \mathbb{Z} \to \mathbb{Z}$$
 by the rule $F(n) = 2 - 3n \ \forall n \in \mathbb{Z}$

(i) Definition of one-to-one: $\forall x_1 \text{ and } \forall x_2, \text{ if } F(x_1) = F(x_2) \text{ then } x_1 = x_2$

$$F(x_1) = 2 - 3(x_1)$$

$$F(x_2) = 2 - 3(x_2)$$

$$2 - 3(x_1) = 2 - 3(x_2)$$

$$x_1 = x_2$$

This means that the function is one to one.

(ii) Definition of onto: $\forall y \in Y \text{ and } \forall n \in X, F(x) = y.$

Suppose $y \in \mathbb{Z}$

$$y = 2 - 3(n)$$

$$n = \frac{y - 2}{3}$$
When $y = 0$, because

When y = 0, because it can be any integer.

$$n = \frac{2}{3}$$
 not an integer.

This means that the function is not onto.

More on the next page.

12b) $G: \mathbb{R} \to \mathbb{R}$ by the rule G(x) = 2 - 3x

Definition of onto: $\forall y \in Y$ and $\forall x \in X$ such that if F(x) = y then the function is onto.

Suppose $y \in \mathbb{R}$

$$y = 2 - 3(x)$$

$$x = \frac{y - 2}{3}$$

$$F(x) = 2 - 3\left(\frac{y - 2}{-3}\right)$$

$$F(x) = y$$

This means that the function is onto as per the definition.

$$\frac{1}{18) \ f(x) = \frac{x+1}{x-1} \ \forall x \in \mathbb{R} \text{ and } x \neq 1}$$

Prove if this is one-to-one

Definition of one-to-one: $\forall x_1 \text{ and } \forall x_2 \text{ and } x_1 \neq 1 \text{ and } x_2 \neq 2, \text{ if } F(x_1) = F(x_2) \text{ then } x_1 = x_2$

$$F(x_1) = \frac{x_1 + 1}{x_1 - 1}$$

$$F(x_2) = \frac{x_2 + 1}{x_2 - 1}$$

$$\frac{x_2 + 1}{x_2 - 1} = \frac{x_1 + 1}{x_1 - 1}$$

$$x_1 x_2 - x_1 + x_2 - 1 = x_1 x_2 + x_1 - x_2 - 1$$

$$2x_1 = 2x_2$$

$$x_1 = x_2$$

This means that the function is one to one.

23) $H: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by the rule $H(x,y) = (x+1,2-y), \forall (x,y) \in \mathbb{R} \times \mathbb{R}$

$$H(x_1, y_1) = (x_1 + 1, 2 - y_1)$$

$$H(x_2, y_2) = (x_2 + 1, 2 - y_2)$$

$$x_1 + 1 = x_2 + 1$$

$$2 - y_1 = 2 - y_2$$

$$x_1 = x_2$$

$$y_1 = y_2$$

Thus $(x_1, y_1) = (x_2, y_2)$ This is means that it is one-to-one

7.3 7, 10, 17, 20, 24, 25

7)
$$H: \mathbb{Z} \to \mathbb{Z}$$
 and $K: \mathbb{Z} \to \mathbb{Z}$, $H(a) = 6a$ and $K(a) = a \mod 4 \ \forall a \in \mathbb{Z}$
 $(K \circ H)(0) = K(H(0)) = K(6(0)) = K(0) = 0$
 $(K \circ H)(1) = K(H(1)) = K(6(1)) = K(6) = 2$
 $(K \circ H)(2) = K(H(2)) = K(6(2)) = K(12) = 0$
 $(K \circ H)(3) = K(H(3)) = K(6(3)) = K(18) = 2$

10)
$$G: \mathbb{R}^+ \to \mathbb{R}^+$$
 and $G^{-1}: \mathbb{R}^+ \to \mathbb{R}^+$, $G(x) = x^2$ and $G^{-1}(x) = \sqrt{x}$ $(G \circ G^{-1})(x) = (\sqrt{x})^2 = x = I_x$ $(G^{-1} \circ G)(x) = (\sqrt{x^2}) = x = I_x$ We Gucci

17)

20)
$$f: W \to X$$
 and $g: X \to Y$ and $h: Y \to Z$ must $h \circ (g \circ f) = (h \circ g) \circ f$
Given a $W \in h \circ (g \circ f)$ this essentially means $W \in h(g(f(w)))$

Given a $W \in (h \circ g) \circ f$ this essentially means $W \in h(g(f(w)))$

These are the same making them subsets of each other therefore being equal by the definition of subsets.

24)
$$f: \mathbb{R} \to \mathbb{R}$$
 and $g: \mathbb{R} \to \mathbb{R}$
 $f(x) = x + 3$ $g(x) = -x$
 $(g \circ f) = -x - 3$
 $(g \circ f)^{-1} = -x - 3$
 $g^{-1} = -x$
 $f^{-1} = x - 3$
 $(f^{-1} \circ g^{-1}) = -x - 3$
They are the same.

25) f(x) is one-to-one

f(x) is one-to-one

$$f(x) = f(y)$$

 $g(f(x)) = f(g(y))$ Definition of composition
 $x = y$ by the given condition of $(g \circ f) = I_x$

g(x) is one-to-one

$$g(x) = g(y)$$

$$g(f(x)) = f(g(y)) \text{ Definition of composition}$$

$$x = y \text{ by the given condition of } (g \circ f) = I_y$$

f(x) is onto

Suppose
$$x \in Y$$
 because $(f \circ g) = I_y = y$
$$(f \circ g)(x) = y$$

$$f(g(x)) = y \text{ and } x \in X$$

While $x \in Y$ such that f(g(x)) results in x and $x \in X$: it is ONTO

g(x) is onto

Suppose
$$x \in X$$
 because $(g \circ f)(x) = x$
$$(g \circ f)(x) = x$$

$$g(f(x)) = x \text{ and } x \in Y$$

While $x \in X$ g(f(x)) gives x and $x \in Y$: g(x) is ONTO

Because f(g(y)) = y, both $g^{-1} = f$ and $f^{-1} = g$... the co-domain of one equals the domain of the other.