75.03 & 95.57 Organización del Computador

U5 – COMPONENTES DE UN COMPUTADOR ADMINISTRACIÓN DE MEMORIA

- Administración de Memoria
 - Sistema Operativo
 - "Software que administra los recursos del computador, provee servicios y controla la ejecución de otros programas"
 - Algunos servicios que provee
 - Schedule de procesos
 - Administración de memoria
 - Monitor
 - Parte residente del Sistema Operativo

- Uniprogramación
 - Un solo proceso de usuario en ejecución a la vez
 - La memoria de usuario está completamente disponible para ese único proceso
 - Uso del procesador a lo largo del tiempo

- Run: Tiempo efectivo de uso del CPU
- Wait: Tiempo ocioso del CPU esperando E/S (Idle time)

- Administración de memoria simple
 - Sistema con uniprogramación
 - Se divide la memoria en dos partes
 - Monitor del S.O.
 - Programa en ejecución en ese momento
 - Ventajas:
 - Simplicidad
 - Desventajas:
 - Desperdicio de memoria
 - Desaprovechamiento de los recursos del computador
 - Ej. MS-DOS, iPhone OS v1-3, IBM OS/PCP (Primary Control Program)

- Administración de memoria simple
 - Memoria

Multiprogramación

- Varios procesos de usuario en ejecución a la vez
- Se divide la memoria de usuario entre los procesos en ejecución
- Se comparte el tiempo de procesador entre los procesos en ejecución (timeslice)

- Multiprogramación
 - Condiciones de finalización de los procesos:
 - Termina el trabajo
 - Se detecta un error y se cancela
 - Requiere una operación de E/S (suspensión)
 - Termina el timeslice (suspensión)

- Administración de memoria por asignación particionada
 - Sistema con multiprogramación
 - La memoria de usuario se divide en particiones de tamaño fijo:
 - Iguales
 - Distintas
 - Ventajas:
 - Permite compartir la memoria entre varios procesos
 - Desventajas:
 - Desperdicio de memoria
 - Fragmentación interna (dentro de una partición)
 - Fragmentación externa (particiones no usadas)
 - Ej. IBM OS/MFT (Multiprogramming with a Fixed number of Tasks)

Admin. de memoria por asignación

particionada

Particiones Fijas

- Iguales
- Distintas

- Administración de memoria por asignación particionada reasignable
 - Sistema con multiprogramación
 - Swapping
 - La memoria de usuario se divide en particiones de tamaño variable
 - Compactación para eliminar la fragmentación
 - Se usa un recurso de hardware (registro de reasignación) para la realocación
 - Realocación dinámica en tiempo de ejecución
 - Ventajas:
 - Permite compartir la memoria entre varios procesos
 - Elimina el desperdicio por fragmentación interna. Con la compactación se elimina además la fragmentación externa
 - Desventajas:
 - La tarea de compactación es costosa
 - Ej. IBM OS/MVT (Multiprogramming with a Variable number of Tasks)

 Admin. de memoria por asignación particionada reasignable

Particiones variables

- Administración de memoria paginada simple
 - Sistema con multiprogramación
 - Se divide el address space del proceso en partes iguales (páginas) (ej. IA-32 4KB c/u)
 - Se divide la memoria principal en partes iguales (frames)
 - Hay una tabla de páginas por proceso
 - Hay una lista de frames disponibles
 - Se cargan a memoria las páginas del proceso en los frames disponibles (no es necesario que sean contiguos)
 - Las direcciones lógicas se ven como número de página y un offset
 - Se traducen las direcciones lógicas en físicas (address translation) con soporte del hardware (MMU Memory Management Unit)
 - La paginación es transparente para el programador

Administración de memoria paginada

simple

Páginas y frames

Administración de memoria paginada

simple

 Traducción de direcciones lógicas a físicas

- Administración de memoria paginada simple
 - Ventajas:
 - Permite compartir la memoria entre varios procesos
 - Permite el uso no contiguo de la memoria
 - Minimiza la fragmentación interna (solo existe dentro de la última página de cada proceso)
 - Elimina la fragmentación externa
 - Desventajas:
 - Se requiere subir todas las páginas del proceso a memoria
 - Se requieren estructuras de datos adicionales para mantener información de páginas y frames

- Administración de memoria paginada por demanda (memoria virtual)
 - Sistema con multiprogramación
 - Solo se cargan a memoria principal las páginas necesarias para la ejecución de un proceso
 - Cuando se quiere acceder a una posición de memoria de una página no cargada se produce un page fault
 - El page fault dispara una interrupción por hardware (MMU) atendida por el sistema operativo
 - El sistema operativo (page fault handler) levanta la página solicitada desde memoria secundaria (memoria virtual)
 - Si no hay frames libres es necesario bajar páginas a memoria secundaria y reemplazarlas (page swapping)
 - Algoritmos para reemplazo de páginas (por ejemplo FIFO, First In First Out o LRU, Least Recently Used)
 - Thrashing: el CPU pasa más tiempo reemplazando páginas que ejecutando instrucciones

- Administración de memoria paginada por demanda
 - Ventajas:
 - No es necesario cargar todas las páginas de un proceso a la vez
 - Maximiza el uso de la memoria al permitir cargar más procesos a la vez
 - Un proceso puede ocupar más memoria de la efectivamente instalada en el computador
 - Desventajas:
 - Mayor complejidad por la necesidad de implementar el reemplazo de páginas
 - Ej. Windows 3.x en adelante, Linux

- Administración de memoria por segmentación
 - Sistemas con multiprogramación
 - Generalmente visible al programador
 - La memoria del programa se ve como un conjunto de segmentos (múltiples espacios de direcciones)
 - Los segmentos son de tamaño variable y dinámico
 - El sistema operativo administra una tabla de segmentos por proceso
 - Permite separar datos e instrucciones
 - Permite dar privilegios y protección de memoria como por ej. lectura, escritura, ejecución. (segmentation faults como mecanismos de excepción de hardware para accesos indebidos)
 - Las referencias a memoria se forman con un número de segmento y un offset dentro de él. Con ayuda de hardware (MMU – Memory Management Unit) se hacen las traducciones de las direcciones lógicas a físicas
 - Se pueden usar para implementar memoria virtual (solo se suben a memoria física algunos segmentos por proceso)

 Administración de memoria por segmentación

- Administración de memoria por segmentación
 - Ventajas:
 - Simplifica el manejo de estructuras de datos con crecimiento
 - Permite compartir información entre procesos dentro de un segmento
 - Permite aplicar protección/privilegios sobre un segmento fácilmente
 - Desventajas:
 - Fragmentación externa en la memoria principal por no poder alojar un segmento
 - Hardware más complejo que memoria paginada para la traducción de direcciones
 - Ej. Burroughs Corporation B5000-B6500, IBM AS/400, Intel x86 (por compatibilidad hacia atrás)

- Administración de memoria
 - Distintas combinaciones (Ej. Intel Pentium)
 - Sin segmentación y sin paginación
 - Direcciones lógicas iguales a las físicas. No es útil para multiprogramación. Usado en controladores de alta performance
 - Paginación sin segmentación
 - La protección y administración de la memoria se hace a través de las páginas.
 - Ej. Berkeley UNIX
 - Segmentación sin paginación
 - La memoria se ve como una colección de espacios lógicos, con protección a nivel segmentos.
 - Segmentación con paginación
 - Segmentos para controlar el acceso a particiones de memoria.
 - Páginas para administrar la locación dentro de los segmentos
 - Ej. UNIX System V

Referencias

- "Computer Organization and Architecture Designing for Perfomance"
 9na edición. William Stallings
 (http://williamstallings.com/ComputerOrganization/)
- "Structured Computer Organization" 6ta edición. Andrew Tanenbaum / Todd Austin (http://www.pearsonhighered.com/educator/product/Structured-Computer-Organization-6E/9780132916523.page)
- "Understanding Operating Systems" 8va edición. Ann McHoes / Ida M.
 Flynn