微分積分学 IV·演習第9回

2021年11月16日

問 9-1

 $z = x^2 - y^2 + 4$ のグラフは次の図のようになる.

- (1) $[-2,2] \times [-2,2]$ において $x^2 y^2 + 4 \ge 0$ を示せ.
- (2) 立体 $\{(x,y,z) \mid -2 \le x \le 2, -2 \le y \le 2, 0 \le z \le x^2 y^2 + 4\}$ の体積を求めよ.

問 9-2

常に $f(x) \ge 0$ であるとき, $\{(x,y) \mid a \le x \le b, \ 0 \le y \le f(x)\}$ を x 軸を中心に回転させてできる立体(回転体)の体積 V は

$$V = \pi \int_{a}^{b} (f(x))^{2} \mathrm{d}x$$

であることを証明したい(この公式自体は高校の教科書にも載っている).

- (1) この回転体の上半分を z = g(x,y) と表すとき,g(x,y) を求めよ.(ヒント:y-z 平面に並行な平面で回転体を切断したとき,それはどのような形になるか?)
- (2) 積分を行う領域 D を適切に選び、

$$\int_{D} g(x, y) \mathrm{d}x \mathrm{d}y$$

を計算することで

$$V = \pi \int_{a}^{b} (f(x))^{2} \mathrm{d}x$$

を証明せよ.

問 9-3

以下のそれぞれについて体積を求めよ.

- (1) $\pm \{(x, y, z) \mid -1 \le x \le 1, -1 \le y \le 1, 0 \le z \le x^2 + y^2\}.$
- (2) 並体 $\{(x, y, z) \mid 0 \le z \le 1 x^2 y^2\}$.
- (3) $\{(x,y) \mid 0 \le x \le \pi, 0 \le y \le \sin(x)\}$ を x 軸を中心に回転させてできる立体.
- (4) $\{(x,y) \mid 0 \le y \le x \le 1\}$ を x 軸を中心に回転させてできる立体.