Lab Course Cognitive Systems: Depth & Bounding Box Prediction

Final Presentation WS 17/18

Motivation

1st STAGE

Goal Background

DeepTLR

2nd STAGE

Caffe FZI

FCRN-SSD

3rd STAGE

ResNet50-Deconv + VGG16-SSD

FCRN-DSSD

4th STAGE

ResNet50-Deconv-SSD-Deconv

Evaluation

5th STAGE

Results Challenges Solutions

Future Work

6th STAGE

Improvements

1. Motivation

Goal: Improve vehicle detections with CNN in real-time

- Issues: poor performance for largely overlapping vehicles
- Possible solution: using depth information to distinguish between overlapping vehicles
- Evaluation of synthetic GTA V training data

1. Motivation

Used datasets

KITTI 15k, 640 x 352, uint8/16 depth map 54205 boxes

GTA V 16k, 1280 x 720, uint8 depth map 80364 boxes

Learning from depth images for monocular object detection with convolutional neural networks, MA A. Lesi

Joint convolution depth prediction and object detection:

Training with KITTI & GTA V images

Current results: Depth map prediction

Current results: Model trained on GTA V

Inference on GTA V instance

Inference on KITTI instance

S. Aklanoglu, J. Schuck, Y. El himer, F. Retkowski

Current results: Model trained on KITTI + GTA V

Compared to the Model trained only on KITTI

S. Aklanoglu, J. Schuck, Y. El himer, F. Retkowski

22.03.2018

Evaluation:

	Trained on KITTI + GTA V		Trained on GTA V	
	Evaluated on KITTI	Evaluated	on GTA V	Evaluated on KITTI
REL	0.318767	-	0.317722	-
RMSE	109.07	-	108.68	189.00
LOG10	0.100764	-	0.0999771	-
d1	0.622377	-	0.627336	0.0165936
d2	0.92577	-	0.927262	0.057907
d3	0.958095	-	0.95856	0.170823

Deeper Depth Prediction with Fully Convolutional Residual Networks, Laina et al. + SSD: Single Shot MultiBox Detector, Liu et al.

ResNet50 (fully convolution mode) and deconvolution layers:

Current results: Model trained on KITTI, inferenced on KITTI testset

Current results: Model trained on GTA V, inferenced on GTA V testset

Current results: Model trained on GTA V, inferenced on KITTI testset

Evaluation:

	Trained on KITTI		Trained on GTA V	
	Evaluated on KITTI testset	Evaluated on	GTA V testset	Evaluated on KITTI testset
REL	-	-	-	-
RMSE	13.78	75.86	15.60	156.47
LOG10	2.02	2.03	0.48	4.27
d1	0.04	0.01	0.65	0.002
d2	0.09	0.02	0.80	0.004
d3	0.17	0.03	0.88	0.007

- We chose the FCRN approach because of superior depth prediction performance
- Deconvolutional network originally used for semantic segmentation did not train (with RMSE or Huber loss) and remained noisy
- Next step: combining with bounding box prediction
- Advantages of two isolated neural nets:
 - Stable depth prediction
 - Stable bounding box detection
 - In multitask learning often hard to get loss function right
 - Easier/better evaluation of GTA V data with two distinct networks

Deeper Depth Prediction with Fully Convolutional Residual Networks, Laina et al. + SSD: Single Shot MultiBox Detector, Liu et al.

VGG16 (without fully connected layers) with auxillary SSD layers:

Multibox approach:

- Boxes will be estimated on multiple feature layers with different feature map sizes and default boxes
- Hard negative mining with ratio of negative to positive examples of around 3:1

Evaluation: Model trained on KITTI, inferenced on KITTI testset

Trained on KITTI with GTA V Depth Channels

Evaluated on KITTI testset

mAP 0.25

Deeper Depth Prediction with Fully Convolutional Residual Networks, Laina et al. + SSD: Single Shot MultiBox Detector, Liu et al. + DSSD: Deconvolutional Single Shot Detector Fu et al.

End-to-end depth and bounding box prediction:

Image Preprocessing:

- Online image augmentation in Tensorflow
 - Bounding box adjustments
 - Random horizontal flip
 - Random color distortion
 - Patch sampling

1280 x 720 x 3 384 x 384 x 3

Current results:

KITTI

Model trained on KITTI, inferenced on KITTI testset

GTA V

Model trained on GTA V, inferenced on GTA V testset

Current results:

KITTI

Model trained on KITTI, inferenced on KITTI testset

KITTI

Model trained on GTA V, inferenced on KITTI testset

Evaluation:

	Trained on KITTI		Trained on GTA V	
	Evaluated on KITTI testset	Evaluated on	GTA V testset	Evaluated on KITTI testset
REL	199.94	188.51	65.82	62.57
RMSE	205.92	195.99	92.71	81.22
LOG10	-	-	5.32	-
d1	-	-	-	-
d2	-	-	-	-
d3	-	-	-	-
mAP	0.37	0.07	0.13	0.17

[•] training is slow ~ 6 days, inference ~1s per batch → 62,5 ms – 16 Hz

RGB ranges:

HSI ranges:

Bounding box distributions:

Bounding box positions:KITTI

GTA V

Summary:

- Depth prediction trained on GTA V data works good, due to "perfect" data with first 2 approaches, multitask learning doesn't perform good
- Bounding box prediction with GTA V data is difficult and needs careful parameter choosing/tuning for all approaches
- Using loss weights with 4:1 or 8:1 (DSSD:FCRN) when multitask training on GTA V or 1:2 when training on KITTI
- GTA V trained networks perform poor on KITTI datasets

6. Future Work

Datasets:

- → Do offline preprocessing to handle ground truth bounding boxes out of range
- → Need to use more GTA V images ~ 200.000 images, since difference in images is very low
- → Adjust color ranges of GTA V data according KITTI and better in-game traffic flow control
- → Eliminate wrong bounding boxes due to insufficient occlusion handling in game using stencil map for bounding box creation and matching with data needed

FCRN:

- → Using berHu loss instead of I2 norm (better results in paper), we already implemented it, but didn't train with
- → Combine KITTI and GTA datasets for training

SSD:

→ loss has problems to converge, especially for positive bounding box examples and localization; lots of small bounding boxes in GTA V data, better default box sizes, ratios and tiling needed

6. Future Work

FCRN-DSSD:

- → Networks are in modular architecture, it's easy to change certain parts/networks trying other detectors
- → Extend code to support multiple GPUs for faster training, since a lot of trial and error is needed to get optimal loss weights, default box sizes, ratios, tiling etc.
- → If learning rate too high, SSD loss will oscillate, depth loss will converge fast
- →If learning rate too low, depth loss will not converge, SSD loss will oscillate less
- → Finding optimal weight for both loss function Adaptive Loss Balancing

Questions?

Backup

Accomplished tasks:

- Caffe running
- Data processing & augmentation
- ✓ LMDB creation
- Training on KITTI
- Training on GTA V
- Training on mixed KITTI and GTA V
- Evaluation routines
- Using code from M. Weber and A. Lesi
- No modifications on framework planned
- Inference Speed: 20 45 ms

Loss during training:

Deeper Depth Prediction with Fully Convolutional Residual Networks, Laina et al. + SSD: Single Shot MultiBox Detector, Liu et al.

Pretrained weights trained on NYU v2 dataset:

What was available with FCRN?

- Architecture in TensorFlow
- Evaluation Routines in Matlab

What have we done with FCRN?

- Architecture customized
- Data Processing
- Trainings Routines
- Training on KITTI data
- Training on GTA V data
- Evaluation Routines

L2 training loss:

Deeper Depth Prediction with Fully Convolutional Residual Networks, Laina et al. + SSD: Single Shot MultiBox Detector, Liu et al.

Evaluation:

- Depth Images are generated by FCRN (epoch no. 67 at time of writing)
- Trained and Tested together with KITTI Object Challenge training dataset (60/40 split)
- Optimizer: RMSProp
- 8 images / batch, Ir: 0.001, weight_decay: 0.0005

• Loss Function:
$$L(x,c,l,g) = \frac{1}{N}(L_{conf}(x,c) + \alpha L_{loc}(x,l,g))$$

Deeper Depth Prediction with Fully Convolutional Residual Networks, Laina et al. + SSD: Single Shot MultiBox Detector, Liu et al. + DSSD: Deconvolutional Single Shot Detector Fu et al.

SSD Deconvolution Module:

Deeper Depth Prediction with Fully Convolutional Residual Networks, Laina et al. + SSD: Single Shot MultiBox Detector, Liu et al. + DSSD: Deconvolutional Single Shot Detector Fu et al.

SSD Prediction Module:

Deeper Depth Prediction with Fully Convolutional Residual Networks, Laina et al. + SSD: Single Shot MultiBox Detector, Liu et al. + DSSD: Deconvolutional Single Shot Detector Fu et al.

Loss functions:

• Depth: berHu

$$c = \frac{1}{5} \max_{i} (|\widetilde{y}_{i} - y_{i}|), \qquad B(x) = \begin{cases} |x|, & |x| \le c \\ \frac{x^{2} + c^{2}}{2c}, |x| > c \end{cases}$$

SSD:

$$L(x,c,p,g) = \frac{1}{N} \Big(L_{conf}(x,c) + \alpha L_{loc}(x,p,g) \Big), \alpha = 1, N = \# \text{ matched default bb}$$

$$L_{loc}(x,p,g) = \sum_{i \in Pos} \sum_{m \in \{cx,cy,w,h\}} x_{ij}^k smooth_{L1}(p_i^m - \widehat{g_j}^m)$$

$$L_{conf}(x,c) = -\sum_{i \in Pos} x_{ij}^p \log(\widehat{c_i}^p) - \sum_{i \in Pos} \log(\widehat{c_i}^0)$$

