```
main:
                    FDEMW 5
daddui r1,r0,<mark>0</mark>
daddui r2,r0,100
                        FDEMW 1
loop:
l.d f1,v1(r1)
                          FDEMW 1
l.d f2,v2(r1)
                          FDEMW 1
                           FDSEEMW 3
add.d f7,f1,f2
l.d f3,v3(r1)
                            FSDEsMW 1
div.d f8, f7, f3
                              FDSSdddddddddMW 9
l.d f4,v4(r1)
                               FSSDEMW 0
l.d f5,v5(r1)
                                   FDEMW 0
mul.d f9, f4, f5
                                   FDSmmmmmmmMW 4
l.d f6,v6(r1)
                                    FSDEMW 0
div.d f10,f9,f6
                                      FDSSSSSSdddddddddMW 8
add.d f11,f8,f10
                                        FSSSSSSDSSSSSSEEMW 2
                                               FSSSSSSSDESMW 1
s.d f11,v7(r1)
daddui r1,r1,8
                                                       FDSEMW 1
daddi r2,r2,-1
                                                         FSDEMW 1
                                                           FSDEMW 2
bnez r2,loop
Halt
                                                             Fxxxx 1
```

5 + 1 + (1+1+3+1+9+4+8+2+1+1+1+2+1) * 100 = 3506

Computer Architectures -- example

Question 2

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 8 stages
 - v. 1 FP divider unit, which is not pipelined: 8 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 2 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).
- o Complete the table reported below showing the processor behavior for the 2 initial iterations.

0

0		_				
# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	1.d f1,v1(r1)	1	24	3	4	5
1	1.d f2,v2(r1)	1	311	4	- 5	6
1	add.d f7,f1,f2	λ (6A ←		-8>	9
1	1.d f3,v3(r1)	l	LM	5	6 \	9
1	div.d f8,f7,f3	3	90 <		- 17	18 18
1	1.d f4,v4(r1)	3	5M	6 /	7 /	18
1	1.d f5,v5(r1)	5	6M	7	- 8// \	19
1	mul.d f9,f4,f5	Ι,	9x ←		一17/	19
1	1.d f6,v6(r1)	5	μĘ	8 /	9\	20
1	div.d f10,f9,f6	5	1180) <		- 26 \	27
1	add.d f11,f8,f10	6	/ Z+A ←		29	30
1	s.d f11,v7(r1)	6	1 gr		7	30
1	daddui r1,r1,8	ž	81		9	31
1	daddi r2,r2,-1	7	91		- 10	31
1	bnez r2,loop	8	111			32
2	1.d f1,v1(r1)	9	1011	11	12	<u>32</u> 33
2	1.d f2,v2(r1)	9	11M	12	- 13	3}
2	add.d f7,f1,f2	10	14A <		—16	११
2	1.d f3,v3(r1)	1,0	12M	13	14	33 36
2	div.d f8,f7,f3	11	(17D) <			
2	1.d f4,v4(r1)	11	1			
2	1.d f5,v5(r1)	17				
2	mul.d f9,f4,f5			ASS		
2	1.d f6,v6(r1)	13		FUCIALI	ll-	
2	div.d f10,f9,f6	13		1 OCYCH	· ·	
2	add.d f11,f8,f10	14				
2	s.d f11,v7(r1)	14				
2	daddui r1,r1,8	15				
2	daddi r2,r2,-1	15				
2	bnez r2,loop	16				

Computer Architectures -- example

Question 2

Considering the same loop-based program, and assuming the following processor architecture for a superscalar MIPS64 processor implemented with multiple-issue and speculation:

- issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 8 stages
 - v. 1 FP divider unit, which is not pipelined: 8 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 2 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).
- Complete the table reported below showing the processor behavior for the 2 initial iterations.

0

0						
# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)	1	2M	3	4	5
1	1.d f2,v2(r1)	1	311	ل ل	<u> </u>	6
1	add.d f7,f1,f2	λ	6A ←		<u> </u>	9
1	1.d f3,v3(r1)	l	LM	5	6	9
1	div.d f8,f7,f3	3	90 <		-17 h	18
1	1.d f4,v4(r1)	3	5n	6 /	7 / (18
1	1.d f5,v5(r1)	5	6M	7	-8/	19
1	mul.d f9,f4,f5	4	9x €		一17/\ \	19
1	1.d f6,v6(r1)	5	ηf	8	9\\	20
1	div.d f10,f9,f6	5	~ 25D E		-33 \\	34
1	add.d f11,f8,f10	6 /	1/34A +		36	37
1	s.d f11,v7(r1)	1 6 /	/ 84		/ //	37
1	daddui r1,r1,8		81		9- 1/	38
1	daddi r2,r2,-1	7	91		- 10 V	38
1	bnez r2,loop	8	111		l l	39
2	1.d f1,v1(r1)	9	1011	11	12 /	39
2	1.d f2,v2(r1)	9	11M	12	-13/	Lo
2	add.d f7,f1,f2	10	14A ←		— 16X	40
2	1.d f3,v3(r1)	1.0	\ 12M	13 /	25	41
2	div.d f8,f7,f3	11	`170 ←		251	41
2	1.d f4,v4(r1)	11\	13n	11,	15 / /	42
2	1.d f5,v5(r1)	12	14 n	15	-16//	Ĺζ
2	mul.d f9,f4,f5	12	17X ←—		- 25//	43
2	1.d f6,v6(r1)	13	/15M	16	18.	43
2	div.d f10,f9,f6	1)	>>330 ←		-41\	44
2	add.d f11,f8,f10	14	42A ←		45\ /	45
2	s.d f11,v7(r1)	14	>16m			45
2	daddui r1,r1,8	15	161		-184	ζ <i>6</i> , ζ6
2	daddi r2,r2,-1	15	181 ←	<u> </u>	_19 €	46
2	bnez r2,loop	16	20←	——		47