Understanding Recurrence Relations

What is a Recurrence Relation? 👺

- A recurrence relation is an equation that defines a sequence
- It relates each term to previous **terms**
- Example: Fibonacci sequence

$$\circ \ f(n)=f(n-1)+f(n-2)$$

$$f(1) = 1, f(2) = 1$$

How to Solve Recurrence Relations 🥮

- Find the first few terms of the sequence
- Set up the recurrence relation
- Going back in the sequence until you get to the terms you know
- Going forward in the sequence until you get to the term you want

Example: Fibonacci Sequence 🖖

•
$$f(n) = f(n-1) + f(n-2)$$

•
$$f(1) = 1, f(2) = 1$$

Question: What is f(5)?

Example: Fibonacci Sequence 🖖

Going back in the sequence:

- ullet In the sequence, f(5)=f(4)+f(3)
- f(4) = f(3) + f(2)
- f(3) = f(2) + f(1)
- f(2) = 1
- f(1) = 1

Example: Fibonacci Sequence 🖖

Going forward in the sequence:

•
$$f(3) = f(2) + f(1) = 1 + 1 = 2$$

•
$$f(4) = f(3) + f(2) = 2 + 1 = 3$$

•
$$f(5) = f(4) + f(3) = 3 + 2 = 5$$

Answer: f(5) = 5

Exam Question

Everyday at school, Jo climbs a flight of 6 stairs. Jo can take the stairs 1, 2, or 3 at a time. For example, Jo could climb 3, then 1, then 2. In how many ways can Jo climb the stairs?

Finding the Recurrence Relation

The question is asking for the number of ways to climb the stairs. We can use a recurrence relation to solve this problem.

Let f(n) be the number of ways to climb n stairs. The recurrence relation is

$$f(n) = f(n-1) + f(n-2) + f(n-3)$$

Here is why:

When there are n stairs left, Jo can either:

- ullet Take 1 step, then f(n-1) ways to climb the remaining stairs
- ullet Take 2 steps, then f(n-2) ways to climb the remaining stairs
- ullet Take 3 steps, then f(n-3) ways to climb the remaining stairs

So,
$$f(n) = f(n-1) + f(n-2) + f(n-3)$$

Finding the first few terms

We just need to know the first three terms:

- When there is 1 stair left, there is 1 way to climb it
- When there is 2 stairs left, there are 2 ways to climb it (1+1, 2)
- When there is 3 stairs left, there are 4 ways to climb it (1+1+1, 1+2, 2+1, 3)

So,
$$f(1) = 1, f(2) = 2, f(3) = 4$$

Finding the number of ways to climb 6 stairs \blacksquare

We can use the recurrence relation to find the number of ways to climb 6 stairs:

•
$$f(4) = f(3) + f(2) + f(1) = 4 + 2 + 1 = 7$$

•
$$f(5) = f(4) + f(3) + f(2) = 7 + 4 + 2 = 13$$

•
$$f(6) = f(5) + f(4) + f(3) = 13 + 7 + 4 = 24$$

Answer: f(6) = 24