CSC236 Week 08: Machines, Expressions: Equivalence

Hisbaan Noorani

October 28 - November 3, 2021

Contents

1	NFSA that accepts $L((0+10)(0+10)^*)$	1
2	NFSA that accepts $Rev(L((0+10)(0+10)^*))$	2
3	FSAs and regexes are equivalent. 3.1 Step 1.0: convert $L(R)$ to $L(M')$	
4	State elimination recipe for state q	5
5	FSAs and regexes are equivalent: 5.1 Step 3: convert $L(M)$ to $L(R)$ and eliminate states	5

1 NFSA that accepts $L((0+10)(0+10)^*)$

The ε transition makes it non deterministic. $A \xrightarrow{0} A \cup B$ and $C \xrightarrow{0} A \cup B$.

The corresponding DFSA is as follows:

2 NFSA that accepts $Rev(L((0+10)(0+10)^*))$

The corresponding DFSA is as follows:

3 FSAs and regexes are equivalent.

L=L(M) for some DFSA $M\iff L=L(M')$ for some NFSA $M'\iff L=L(R)$ for some regular expression R.

3.1 Step 1.0: convert L(R) to L(M').

Start with $\emptyset, \varepsilon, a \in \Sigma$.

• Base case: Let s in $\{\emptyset, \varepsilon, a\}$ for some $a \in \Sigma$. $L(\emptyset) = L(M), \text{ where } M \text{ is:}$

 $L(\varepsilon) = L(M)$, where M is:

L(0) = L(M), where M is:

3.2 Step 1.5: Convert L(R) to L(M').

Suppose r_1 and r_2 denote languages accepted by M_1 and M_2 respectively.

 $L(r_1 + r_2) = L(r_1) \cup L(r_2)$. We could build the corresponding machine using product construction

on M_1 and M_2 or we could use a NFSA.

 $L(r_1^*) = L(r_1)^*$. We want to transform M_1 into a machine that accepts the Kleene star of the language accepted by M_1 .

 $L(r_1r_2) = L(r_1)L(r_2)$. How do we combine M_1 and M_2 to accept this concatenated language? We concatenate the two machines!

Not that all three techniques use non-determinism but we can use subset construction to create an equivalent deterministic machine so these answers are no less valid.

4 State elimination recipe for state q

- 1. $s_1 \ldots s_n$ are states with transition to q, with labels $S_1 \ldots S_n$.
- 2. $t_1 \dots t_n$ are states with transition from q, with labels $T_1 \dots T_n$.
- 3. Q is any self-loop state on q.
- 4. Eliminate q, and add (union) transition label $S_iQ^*T_j$ from s_i to t_j .

5 FSAs and regexes are equivalent:

L=L(M) for some DFSA $M\iff L=L(M')$ for some NFSA $M'\iff L=L(R)$ for some regular expression R.

5.1 Step 3: convert L(M) to L(R) and eliminate states.

Then we eliminate Q_1 :

Then we eliminate Q_2 !

So our regular expression is (0+11+10(1+00)*01)*.