M5237L,ML

3-TERMINAL ADJUSTABLE REGULATOR

DESCRIPTION

The M5237 is a semiconductor integrated circuit which is designed for variable output voltage regulator and is low power dissipation type with input-output voltage difference are quite low.

Housed in its 3-pin package are Reference voltage generator circuit, Differential amplifier and Drive circuit.

FEATURES

Wide operating supply voltage range.

$$V_{1N} = 3.5V \sim 36V$$
. $V_{0} = 1.5V \sim 33V$

 The input-output voltage differences can be small moved by the external PNP transistors.

(T_R: V_{CE(sat)} state)

 $V_{1-O(min)} = 0.2V$

- The output voltage can be freely adjusted by the external resistors.
- Built in Over-current protection circuit (Drooping fold-back unit), ASO protection circuit and Thermal protection circuit.
- Its possible Taping (Automatic insert) and Lead forming.

APPLICATION

Car stereos, radio cassettes, portable stereos, and other general usage electronic power supplies

RECOMMENDED OPERATING CONDITIONS

Supply voltage range V_{IN} = 3.5V \sim 30V Output voltage range V_O = 1.5V \sim 25V

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, unless otherwise noted)

Symbol Parameter		Ratings	Unit	
VIN	Input voltage	36	V	
ID	Drive current	30	mA	
$V_1 - V_0$	Input/output voltage difference	30	V	
Pd	Internal power dissipation	900(L)/500(ML)	mW	
Topr	Operating ambient temperature	-20~+75		
Tsta	Storage temperature	-55~+150		

ELECTRICAL CHARACTERISTICS

(measurement circuit (a) is used with Ta = 25 °C , V1 = 15V , V0 = 12V , IL = 200 mA , CREF = 1 μ F , R1 = 4.3k Ω)

Symbol	Parameter	Test condition	Limits			11.3
			Min	Тур	Max	Unit
VIN	Input voltage	(between Pin 1 and Pin 2)	3.5		36	V
V ₀	Output voltage	$R_2 = 0.82 k \Omega \sim 108 k \Omega$	1.5		33	V
V _I – V _O	Minimum input/output voltage difference			0.2		V
VREF	Reference voltage	(between Pin 2 and Pin 3)	1.20	1.26	1.32	V
Reg-in	Input voltage regulation	V _I = 15~20V		0.02	0.1	%/V
Reg-L	Loading voltage regulation	I_ = 10~200mA		0.02	0.1	%
l _B	Bias current	IL=0 (disregarding the current in resistors R ₁ , R ₂)		1.7	3.0	mΑ
TCvo	Output voltage thermal confficient	Ta=0~75℃		0.02		%/℃
RR	Ripple rejection	f = 120Hz (measured with circuit (b))		68		dB
V _{NO}	Output noise voltage	f = 20Hz 100kHz		25		μVrms

TEST CIRCUIT

(a) Standard test circuit

$$\begin{aligned} &V_{O} = V_{REF}(1 + \frac{R_{2}}{R_{1}}) = 1.26 \times (1 + \frac{R_{2}}{4.3}) \text{ (V)} \\ &R_{2} = R_{1}(\frac{V_{O}}{V_{REF}} - 1) = 4.3 \times (\frac{V_{O}}{1.26} - 1) \text{ (k}\Omega \text{)} \end{aligned}$$

$$(R_1 = 4.3k\Omega, V_{REF} = 1.26V)$$

(b) Ripple rejection test circuit

4-23

TYPICAL CHARACTERISTICS

APPLICATION CIRCUIT

1. Standard application circuit

$$V_O = V_{REF} \times \left(1 + \frac{R_2}{R_1}\right) V$$

$$V_{REF} = 1.26V$$

$$*1. R_1 = 180 \sim 220 \Omega$$

Note: Please use the capacitor not to depend on the ambient temperature

2. Maximum drive current controller application circuit

Fig. 1 MAXIMUM DRIVE CURRENT

Fig. 2 DRIVE CURRENT VS. INPUT VOLTAGE

INPUT VOLTAGE VI (V)

3. Output voltage ON/OFF controller

Set control circuit resistor R so that voltage of point A is more than 1.5V and less than 5V.

REFERENCE VOLTAGE VS. AMBIENT TEMPERATURE

OUTPUT VOLTAGE VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

OUTPUT NOISE VOLTAGE VS. AMBIENT TEMPERATURE

DRIVE CURRENT VS. AMBIENT TEMPERATURE

RIPPLE REJECTION RATIO VS. AMBIENT TEMPERATURE

BIAS CURRENT VS. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE Ta (°C)

