Systèmes dynamiques

Feuille d'exercices 9

Exercice 1. Une autre version du théorème de Kolmogorov-Sinai

Soit (X, \mathcal{F}, μ) un espace probabilisé, f une transformation de X préservant μ et α_n une suite croissante de sousalgèbres finies de \mathcal{F} telle que $\sigma\left(\bigcup_{n\in\mathbb{N}}\alpha_n\right)=\mathcal{F}$. Reprendre la démonstration du théorème de Kolmogorov-Sinai et montrer que

$$h_{\mu}(f) = \lim_{n} h_{\mu}(f, \alpha_n).$$

Exercice 2. Entropie de certains systèmes inversibles

Soit (X, \mathcal{X}, T, ν) un système dynamique pmp inversible. On suppose qu'il existe une partition finie mesurable ξ tel que la famille $\xi_n = \xi \vee T^{-1}(\xi) \vee \cdots \vee T^{-n+1}(\xi)$ forme une famille génératrice, i.e $\sigma(\bigcup_{n \in \mathbb{N}} \xi_n) = \mathcal{X}$. Montrer que $h_{\nu}(T) = 0$.

Exercice 3. Quelques propriétés de l'entropie métrique

Soit (X, \mathcal{X}, T, μ) un système dynamique pmp.

1. Soit ν une autre mesure de probabilité préservée par T. Montrer que pour $t \in [0,1]$,

$$h_{t\mu+(1-t)\nu}(T) \ge th_{\mu}(T) + (1-t)h_{\nu}(T).$$

- 2. Soit A un ensemble T-invariant avec $\mu(A) > 0$. Montrer que $h_{\mu}(T) = \mu(A)h_{\mu_A}(T|_A) + \mu(A^c)h_{\mu_{A^c}}(T|_{A^c})$.
- 3. Soient, pour $i \in \{1,2\}$ $(X_i, \mathcal{X}_i, T_i, \mu_i)$ deux systèmes dynamiques pmp sur des espaces standards. Montrer que

$$h_{\mu_1 \otimes \mu_2}(T_1 \times T_2) = h_{\mu_1}(T_1) + h_{\mu_2}(T_2).$$

4. On suppose que $(X_2, \mathcal{X}_2, T_2, \mu_2)$ est un pmp facteur de $(X_1, \mathcal{X}_1, T_1, \mu_1)$. Montrer que $h_{\mu_2}(T_2) \leq h_{\mu_1}(T_1)$.

Exercice 4. Entropie métrique et mesures boréliennes

Soit (X, d) un espace métrique compact, μ une mesure de probabilité borélienne et $f: X \to X$ une transformation mesurable préservant μ .

1. Pour toute partition finie de boréliens \mathcal{P} et tout $x \in X$, on note $\mathcal{P}(x)$ l'élement de \mathcal{P} contenant x. Soit $(\mathcal{P}_n)_{n \in \mathbb{N}}$ une suite croissante de partitions finies telle que pour tout $x \in X$,

diam
$$\mathcal{P}_n(x) \to 0$$
.

Montrer que $h_{\mu}(f) = \lim_{n} h_{\mu}(f, \mathcal{P}_n)$.

2. On suppose $X = S^1$, μ est la mesure de Haar et f est une rotation. Montrer que $h_{\mu}(f) = 0$.

Exercice 5. Entropie métrique pour les applications expansives

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation continue. On suppose que f est expansive, c'est-à-dire qu'il existe $\delta > 0$ tel que pour tous $x, y \in X$,

$$\sup_{n \in \mathbf{N}} d(f^n(x), f^n(y)) < \delta \implies x = y.$$

1. Soit \mathcal{P} une partition finie de X telle que diam $(P) < \delta$ pour tout $P \in \mathcal{P}$, et μ une probabilité borélienne sur X préservée par f. Montrer que

$$h_{\mu}(f) = h_{\mu}(f, \mathcal{P}).$$

2. En déduire l'entropie métrique des applications expansives E_m , $m \in \mathbb{N}^*$, du cercle pour la mesure de Haar.

Exercice 6. Inégalité de Rokhlin

Soient (X, \mathcal{X}, μ) un espace de probabilité et $m \in \mathbb{N}$. Si $\xi = \{C_1, \dots, C_m\}$ et $\eta = \{D_1, \dots, D_m\}$ sont deux partitions mesurables finies de X, on note

$$d_R(\xi, \eta) = H_{\mu}(\xi|\eta) + H_{\mu}(\xi|\eta).$$

- 1. Montrer que pour toute partition α de cardinal m, on a $H_{\mu}(\xi|\eta) \leq H_{\mu}(\xi|\alpha) + H_{\mu}(\alpha|\eta)$.
- 2. En déduire que d_R est une distance sur l'ensemble des partitions mesurables finies de cardinal m de X (modulo les ensembles négligeables).
- 3. Montrer que pour toute transformation $f:X\to X$ préservant μ on a

$$|h_{\mu}(f,\xi) - h_{\mu}(f,\eta)| \le d_R(\xi,\eta).$$

On définit une deuxième distance sur \mathcal{P}_m par

$$D(P,Q) = \min_{\sigma \in \mathfrak{S}_m} \sum_{i=1}^m \mu(P_i \Delta Q_{\sigma(i)}).$$

- 1. Montrer que D définit bien une distance sur \mathcal{P}_m .
- 2. Montrer que D et d_R sont deux distances topologiquement équivalentes.