ESMA 5015: Simulaciones Estocasticas

Alejandro Ouslan

Spring 2025

Contents

1	Introduccion	1
2	Distribusion empirica e probabilidad	1
3	Simulacion de insectos	1
	3.1 Metodo 1	2
	3.2 Metodo 2	2

1 Introduccion

Sea X una variable aleatoria (V.A) tal que

$$p(X = i) = \frac{1}{n}$$
 para $i = 1, 2, \dots, n$.

Calcule E[X]

$$E[X] = \sum_{i=1}^{n} i \cdot p(X = i)$$

$$= \sum_{i=1}^{6} i \cdot \frac{1}{6}$$

$$= \frac{1}{6} \sum_{i=1}^{6} i$$

$$= \frac{1}{6} \cdot \frac{6 \cdot 7}{2}$$

$$= \frac{7}{2} = 3.5$$

para generar alores de un avariable aleatoria se usa sample(1:6, observasiones, replace = TRUE). Detras del sample hay una distribucion uniforme. El generador aleatorio es bueno si internamente genera buenas variables uniformes.

2 Distribusion empirica e probabilidad

 $t = 1, 2, \dots, n$

3 Simulación de insectos

Un insecto produce un gran numero de huevos y cada uno sobrevive con probabilidad p. en promedio. Cuantos huevos sobreviven?

3.1 Metodo 1

- 1. variable aleatoria x=numero de huevos y $x\sim \mathrm{Binomial}(n,p)$
- 2. variable aleatoria y=un gran numero de huevos y $y\sim \mathrm{Poisson}(\lambda)$

Si xy yson variables aleatorias, entonces $\boldsymbol{E}[x] = \boldsymbol{E}[\boldsymbol{E}[x|y]]$

$$E[x|y] = yp$$

$$E[x] = E[yp] = pE[y] = p\lambda$$

3.2 Metodo 2