Parametrised Data Sampling for Fairness Optimisation

Vladimiro G. Zelaya, Paolo Missier and Dennis Prangle KDD XAI Workshop, 5 August 2019 Anchorage, Alaska

What is This Talk About?

- Method for correcting classifier fairness
- Model and definition agnostic
- Tune correction level to optimise fairness

Population Subgroups

By Protected Attribute (PA):

Favoured (F)

Unfavoured (U)

By Class Label:

Positive (+)

Negative (—)

Train Set Correction

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010

¹[Chawla et al., 2002]

²[Kamiran and Calders, 2010]

Ratio Form of Fairness Definitions

$$P(\hat{Y} = 1 \mid PA = U) = P(\hat{Y} = 1 \mid PA = F)$$

$$\frac{P(\hat{Y} = 1 \mid PA = U)}{P(\hat{Y} = 1 \mid PA = F)} = 1$$

Ratio Form of Fairness Definitions

$$P(\hat{Y} = 1 \mid PA = U) = P(\hat{Y} = 1 \mid PA = F)$$

$$\frac{P(\hat{Y} = 1 \mid PA = U)}{P(\hat{Y} = 1 \mid PA = F)} = 1$$

Some Fairness Ratios

Demographic Parity

$$DPR = \frac{P(\hat{Y} = 1 \mid PA = U)}{P(\hat{Y} = 1 \mid PA = F)}$$

Equality of Opportunity

$$EOR = \frac{P(\hat{Y} = 1 \mid PA = U, Y = 1)}{P(\hat{Y} = 1 \mid PA = F, Y = 1)}$$

Counterfactual (Proxy)

$$CFR = \frac{PR \left(Test_{PA \leftarrow U} \right)}{PR \left(Test_{PA \leftarrow F} \right)}$$

Experiments

Dataset	Protected	Favoured	Positive Class	Instances
COMPAS	Race	White	Won't reoffend	6907
Credit	Gender	Male	Will repay loan	1000
Income	Gender	Male	Income > \$50k	48842

Effects on Test Set (COMPAS, Undersampling)

· Effect is correlated with correction

- · But it occurs to a different extent
- Intersection is *not* at d = 0

Optimal Correction by Fairness and Sampling

Plots for Income dataset

Accuracy vs Fairness Trade-off

Plots for *Income* dataset corrected by Preferential Sampling

Conjecture: A LR model is FTU \Leftrightarrow CFR = 1

Conclusions

- · Fairness-agnostic optimisation with a relatively small loss in accuracy
- · Ideal correction level is definition dependant
- · Different sampling strategies produced similar results

Future Work

- Generalise to non-binary cases (easy for PA)
- · Optimise for more than one fairness definition
- Optimise for fairness and accuracy

Thank You!

Any Questions?

c.v.gonzalez-zelaya2@ncl.ac.uk

These slides: https://git.io/fjHK5

For Further Reading

Kamiran, F. and Calders, T. (2010).
Classification with no discrimination by preferential sampling.
In Proc. 19th Machine Learning Conf. Belgium and The Netherlands, pages 1–6.

In Proc. 19th Machine Learning Conf. Belgium and The Netherlands, pages 1–6 Citeseer.