

第六章 数值积分与数值微分

第一节 等距节点的Newton-Cotes求积公式

第二节 复化求积公式

第三节 提高求积公式精度的外推方法

第四节 Gauss型求积公式

第五节 二重积分的数值方法

第六节 数值微分

引言

Newton - Leibnitz公式(其中F(x)为f(x)的原函数)

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

例如,对概率积分
$$\frac{2}{\sqrt{\pi}} \int_0^t e^{-x^2} dx$$
 $t \in [0, +\infty)$

由于被积函数的原函数F(x)不可能找到,牛顿-莱布尼兹公式也就无能为力了。

所谓数值积分,从近似计算的角度看,就是在区间[a,b]上适当地选取若干个点 x_i ,然后用这些节点上的函数值 $f(x_i)$ 的加权平均方法获得定积分的近似值,即

$$\lim_{\Delta x_i \to 0} \sum_{i=1}^n f(\bar{x}_i) \Delta x_i \int_a^b f(x) dx \approx \sum_{i=0}^n A_i f(x_i)$$

从数值逼近的观点看,所谓数值积分,就是用一个具有一定精度的简单函数 $\varphi(x)$ 代替被积函数f(x),而求出定积分的近似值,即

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} \varphi(x)dx$$

取 $\varphi(x)=p_n(x)$ 得插值型求积公式,

即:用插值多项式 $p_n(x) \approx f(x)$,

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} p_{n}(x)dx$$

第一节 等距节点的牛顿——柯特斯求积公式

一、 牛顿——柯特斯求积公式

1、插值型求积公式的推导

设 $x_0,x_1,\dots,x_n \in [a,b], p_n(x)$ 是f(x)的n次Lagrange 插值多项式

$$p_n(x) = \sum_{i=0}^n f(x_i) l_i(x)$$

则有

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \omega_{n+1}(x)$$
$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n), a < \xi(x) < b$$

则有

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \omega_{n+1}(x)$$
$$\omega_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n), a < \xi(x) < b$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} p_{n}(x)dx + \int_{a}^{b} \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \omega_{n+1}(x)dx$$

$$= \int_{a}^{b} \sum_{i=0}^{n} f(x_{i}) l_{i}(x) dx + \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi(x)) \omega_{n+1}(x) dx$$

$$= \sum_{i=0}^{n} A_{i} f(x_{i}) + \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi(x)) \omega_{n+1}(x) dx$$

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} A_{i}f(x_{i}) + \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi(x))\omega_{n+1}(x)dx$$

插值型求积公式

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} A_{i} f(x_{i}) + R(f) \approx \sum_{i=0}^{n} A_{i} f(x_{i}) \quad (1)$$

$$A_i = \int_a^b l_i(x) dx \quad i = 0, 1, \dots, n$$
 (2)

$$l_{j}(x) = \frac{(x - x_{0}) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_{n})}{(x_{j} - x_{0}) \cdots (x_{j} - x_{j-1})(x_{j} - x_{j+1}) \cdots (x_{j} - x_{n})} = \prod_{i=0, i \neq j}^{n} \frac{x - x_{i}}{x_{j} - x_{i}}$$

截断误差或余项为

$$R(f) = \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi(x)) \omega_{n+1}(x) dx \quad (3)$$

数值求积公式的一般形式

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$

$$A_i$$
($i=0,1,...,n$)称为求积系数,

$$x_i$$
 ($i=0,1,...,n$) 称为求积节点。

2、 牛顿一柯特斯求积公式含义

当求积**节点等距**分布时,插值型求积公式称为牛顿——柯特斯(Newton-Cotes) 求积公式。

将积分区间[a,b] n等分,节点 x_i 为 $x_i=a+ih$, i=0,1,2,...,n 其中h=(b-a)/n。有

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$
 (4)

其中
$$A_i = \int_a^b l_i(x) dx$$

引进变换
$$x=a+th$$
 $, 0 \le t \le n$

$$A_{i} = \int_{a}^{b} l_{i}(x)dx = \int_{a}^{b} \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} dx$$

$$\frac{dx = hdt}{h = (b-a)/n}$$

$$x_j=a+jh, j=0,1,2,...,n$$

 $dx=hdt$
 $h=(b-a)/n$

$$= h \int_{0}^{n} \prod_{\substack{j=0 \ i \neq i}}^{n} \frac{t-j}{i-j} dt = (b-a)C_{i}^{(n)} , \quad i = 0, 1, \dots, n$$

$$, \quad i=0,1,\cdots,n$$

$$C_{i}^{(n)} = \frac{1}{n} \int_{0}^{n} \prod_{\substack{j=0\\j\neq i}}^{n} \frac{t-j}{i-j} dt = \frac{(-1)^{n-i}}{i!(n-i)!n} \int_{0}^{n} \prod_{\substack{j=0\\j\neq i}}^{n} (t-j) dt$$
 (5)

 $C_i^{(n)}$ 称为柯特斯系数。

$$i=0,1,\cdots,n$$

于是牛顿一柯特斯求积公式为

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i} f(x_{i}) = (b-a) \sum_{i=0}^{n} C_{i}^{(n)} f(x_{i})$$
 (6)

牛顿——柯特斯系数C_i(n)

n	co	\mathfrak{c}_1	c ₂	сз	c ₄	c ₅	сб	c ₇	c8
1	1/2	1/2						n	$\sigma(n)$
2	1/6	2/3	1/6		可记	止明 <u>)</u>	$A_j = b -$	$-a, \sum_{j=0}^n$	$C_j^{(n)} = 1$
3	1/8	3/8	3/8	1/8		J		J	
4	7/90	16/45	2/15	16/45	7/90				
5	19/288	25/96	25/144	25/144	25/96	19/288			
б	41/840	9/35	9/280	34/105	9/280	9/35	41/840		
_	751	3577	1323	2989	2989	1323	3577	751	
7	17280	17280	17280	17280	17280	17280	17280	17280	
8	989	5888	- 928	10496	- 4540	10496	- 928	5888	989
	28350	28350	28350	28350	28350	28350	28350	28350	28350

(1) 梯形公式(n=1)

$$x_0 = a$$
, $x_1 = b$, $h = b - a$, $c_0^{(1)} = c_1^{(1)} = 1/2$

$$\mathbf{I} = \int_{a}^{b} f(x)dx \approx \frac{b-a}{2} (f(a) + f(b)) = T$$

梯形公式的几何意义是用四边梯形 x_0ABx_1 的面积。

(2) 辛卜生公式 (n=2)

$$x_0 = a, x_1 = a + h, x_2 = b, h = (b - a)/2$$

 $C_0^{(2)} = 1/6$, $C_1^{(2)} = 4/6$, $C_2^{(2)} = 1/6$

$$\mathbf{I} = \int_{a}^{b} f(x)dx \approx \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b)) = S$$

或
$$I = \int_a^b f(x)dx \approx \frac{h}{3}(f(a) + 4f(\frac{a+b}{2}) + f(b)) = S$$

辛卜生公式又称为抛物线公式。

辛卜生公式的几何意义是用抛物线 $y=P_2(x)$ 围成的曲边梯形面积代替由y=f(x)围成的曲边梯形面积图2。

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b))$$

例: 用梯形公式与辛卜生公式

I=0.7668010

求
$$I = \int_{1}^{3} e^{-\frac{x}{2}} dx$$
 的近似值。

解:

梯形公式
$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b))$$

$$I = \int_{1}^{3} e^{-\frac{x}{2}} dx \approx \frac{2}{2} (e^{-\frac{1}{2}} + e^{-\frac{3}{2}}) \approx 0.829660819$$

$$\stackrel{?}{\underset{3}{\rightleftharpoons}} \stackrel{\bot}{\underset{x}{\rightleftharpoons}} \stackrel{\bot}{\underset{x}{\rightleftharpoons}$$

$$I = \int_{1}^{3} e^{-\frac{x}{2}} dx \approx \frac{2}{6} (e^{-\frac{1}{2}} + 4e^{-\frac{2}{2}} + e^{-\frac{3}{2}}) \approx 0.766575505$$

例 n=3 为3/8 辛卜生公式

$$x_0 = a$$
, $x_1 = a + h$, $x_2 = a + 2h$, $x_3 = b$, $h = (b-a)/3$

$$\int_{x_0}^{x_3} f(x)dx \approx \frac{b-a}{8} (f_0 + 3f_1 + 3f_2 + f_3)$$

n=4为 Cotes 公式

$$x_0 = a$$
, $x_1 = a + h$, $x_2 = a + 2h$, $x_3 = a + 3h$, $x_4 = b$, $h = (b-a)/4$

$$\int_{x_0}^{x_4} f(x)dx \approx \frac{b-a}{90} (7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$$

例: 用Newton-Cotes公式计算

$$I = \int_{0}^{1} \frac{\sin x}{x} dx$$

解: 当n取不同值时, 计算结果如下所示。

 $I_{\text{#}}=0.9460831$

n	近似结果
1	0.9207354
2	0.9461359
3	0.9461109
4	0.9460830
5	0.9460830

二、插值型求积公式的代数精度

定义1: 若求积公式 $\int_a^b f(x)dx \approx \sum_{i=0}^n A_i f(x_i)$ 对一切不高于m次的多项式p(x)都等号成立,即R(p(x))=0;而对于某个m+1次多项式等号不成立,则称此公式的代数精度为m. 定义1 \longleftrightarrow 定义2。 若求积公式 $\int_a^b f(x)dx \approx \sum_i A_i f(x_i)$ 对

定义2: 若求积公式 $\int_a^b f(x)dx \approx \sum_{i=0}^b A_i f(x_i)$ 对 $f(x)=1,x,x^2,x^3...x^m$,都等号成立,即 $R(x^i)=0$;而对于 x^{m+1} 等号不成立,则称此公式 的代数精度为m.

代数精度求法 $从 f(x)=1,x,x^2,x^3...$ 依次验证求积公式是否成立,若第一个不成立的等式是 x^m ,则其代数精度是m-1. 代数精度越高,数值求积公式越精确

例1: 证明下面数值求积公式具有1次代数精度.

$$\int_0^1 f(x)dx \approx \frac{1}{2}(f(0) + f(1))$$

解: 取f(x) = 1,

左=1=
$$\int_0^1 f(x)dx = \frac{1}{2}(f(0)+f(1)) = 1=$$
右取 $f(x) = x$,

左=
$$\frac{1}{2}$$
= $\int_0^1 f(x)dx = \frac{1}{2}(f(0) + f(1)) = \frac{1}{2}$ =右
取 $f(x) = x^2$,

左=
$$\frac{1}{3}$$
= $\int_0^1 f(x)dx \neq \frac{1}{2}(f(0)+f(1)) = \frac{1}{2}$ =右

所以求积公式具有 1 次代数精度。

例2: 设有 $\int_{-1}^{1} f(x)dx \approx A_0 f(-1) + A_1 f(0) + A_2 f(1)$

成立,确定 A_0 , A_1 , A_2 , 使上述数值求积公式的代数 精度尽可能高,并求代数精度。

解: 分别取
$$f(x)=1$$
, x , x^2 , 则有 $A_0+A_1+A_2=2$ $-A_0+A_2=0$ $A_0+A_2=2/3$

解得
$$A_0=1/3$$
, $A_1=4/3$, $A_2=1/3$;

则
$$\int_{-1}^{1} f(x)dx \approx \frac{1}{3} (f(-1) + 4f(0) + f(1))$$

取
$$f(x)=x^3$$
, 左=右=0;

$$f(x)=x^4$$
,左= $\int_{-1}^{1} x^4 dx = 2/5 \neq 右=2/3$

所以具有 3 次代数精度。

Newton-Cotes公式的代数精度

定理6-1: 由n+1个互异节点 x_0 、 x_1 、… x_n 构造的插值型求积公式的代数精度至少为n。

由于Newton-Cotes公式是其特殊情形(等距节点),它的代数精度至少是n,还可以证明 当n为偶数时 Newton-Cotes公式的代数精度至少是n+1.

这里系数 A_i 只依赖于求积节点与积分区间,与f(x)无关。

显然当f(x)是任何一个不超过n次的多项式时,余项

$$R(f) = \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi) \omega_{n+1}(x) dx = 0$$

其中 $\omega_{n+1}(x)$ = $(x-x_0)$ $(x-x_1)$... $(x-x_{n-1})$ $(x-x_n)$

即求积公式 $\int_a^b f(x)dx \approx \sum_{j=0}^n A_i f(x_j)$ 至少具有n次代数精度。

三、Newton-Cotes公式的截断误差

引理: (第二积分中值定理) 如果函数f(x)在[a,b]上连续,函数g(x)在[a,b]上 可积且不变号,则存在 $\eta \in (a,b)$ 使

$$\int_{a}^{b} f(x)g(x)dx = f(\eta)\int_{a}^{b} g(x)dx$$

定理3:设f(x)在[a,b]上有二阶连续导数,则梯形求积公式的截断误差为

$$R_{T}(f) = \int_{a}^{b} f(x)dx - \frac{b-a}{2}(f(a)+f(b))$$
$$= -\frac{(b-a)^{3}}{12}f''(\eta)$$

证明: n=1,由截断误差公式(3)有

$$R_{T}(f) = \int_{a}^{b} \frac{f''(\xi)}{2} (x-a)(x-b)dx, \quad \xi \in [a,b]$$

由于 $f''(\xi)$ 是依赖于x的函数且在[a,b]上连续,又 $(x-a)(x-b) \le 0$, $x \in [a,b]$,由引理知,在区间[a,b]上存在一点 η 使得

$$R_{T}(f) = \frac{f''(\eta)}{2} \int_{a}^{b} (x-a)(x-b) dx = -\frac{(b-a)^{3}}{12} f''(\eta)$$

带误差项的梯形公式是

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2}(f(a)+f(b)) - \frac{(b-a)^{3}}{12}f''(\xi)$$

数值分析

定理4: 设f(x)在 [a,b]上有4阶连续导数,则辛卜生求积公式的截断误差为

$$R_{S}(f) = \int_{a}^{b} f(x)dx - \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b))$$
$$= -\frac{(b-a)^{5}}{2880} f^{(4)}(\eta)$$

证:已知辛卜生求积公式的代数精度为3,因此考虑构造一个三次插值多项式 $p_3(x)$ 满足下列条件

$$p_3(a) = f(a)$$

$$p_3(b) = f(b)$$

$$p_3(\frac{a+b}{2}) = f(\frac{a+b}{2})$$

$$p_3'(\frac{a+b}{2}) = f'(\frac{a+b}{2})$$

根据插值余项定理得:

$$f(x) - p_{3}(x) = \frac{f^{(4)}(\xi)}{4!}(x - a)(x - \frac{a+b}{2})(x - b)$$

两边求定积分得

$$\int_{a}^{b} f(x)dx - \int_{a}^{b} p_{3}(x)dx = \frac{1}{4!} \int_{a}^{b} f^{(4)}(\xi)(x-a)(x-\frac{a+b}{2})^{2}(x-b)dx$$

因为是 $p_3(x)$ 是三次多项式(代数精度为3),所以

$$\int_{a}^{b} p_{3}(x)dx = \frac{b-a}{6} \left[p_{3}(a) + 4p_{3}(\frac{a+b}{2}) + p_{3}(b) \right] = \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right]$$

得到截断误差

$$R(f) = \frac{1}{4!} \int_{a}^{b} f^{(4)}(\xi)(x-a)(x-\frac{a+b}{2})^{2}(x-b)dx$$

假设 $f^{(4)}(\xi)$ 在区间[a,b]上连续,

而且当
$$x \in [a,b]$$
时 $(x-a)(x-\frac{a+b}{2})^2(x-b) \le 0$

由引理知,在[a,b]上总存在一点 η 使得

因此辛卜生求积公式的截断误差为

$$R(f) = \frac{1}{4!} \int_{a}^{b} f^{(4)}(\xi)(x-a) \left(x - \frac{a+b}{2}\right)^{2} (x-b) dx$$

$$= \frac{1}{4!} f^{4}(\eta) \int_{a}^{b} (x-a) \left(x - \frac{a+b}{2}\right)^{2} (x-b) dx$$

$$= -\frac{(b-a)^{5}}{2880} f^{(4)}(\eta) \qquad a \le \eta \le b$$

带误差项的辛卜生公式是

$$\int_{a}^{b} f(x)dx = \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b)) - \frac{(b-a)^{5}}{2880} f^{(4)}(\eta)$$

$$a < \eta < b$$

设
$$x_0 = a, x_n = b, h = \frac{1}{n}(b-a).$$

(1) 若 $f \in C^{n+2}[a,b]$, n是偶数, 则

$$\int_{a}^{b} f(x)dx = (b-a)\sum_{j=0}^{n} C_{j}^{(n)} f(x_{j}) + \frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{0}^{n} t^{2} (t-1) \cdots (t-n) dt$$

(2) 若 $f \in C^{n+1}[a,b]$, n是奇数, 则

$$\int_{a}^{b} f(x)dx = (b-a)\sum_{j=0}^{n} C_{j}^{(n)} f(x_{j}) + \frac{h^{n+2} f^{(n+1)}(\xi)}{(n+1)!} \int_{0}^{n} t(t-1) \cdots (t-n)dt$$

例: 证明
$$\sum_{j=0}^{n} A_{j} = b - a, \qquad \sum_{j=0}^{n} C_{j}^{(n)} = 1$$

$$\sum_{j=0}^{n} C_{j}^{(n)} = 1$$

证:
$$n \ge 1$$
, 取 $f(x) = 1$,

由
$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i} f(x_{i}) = (b-a) \sum_{i=0}^{n} C_{i}^{(n)} f(x_{i})$$
及 $R(f) = \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi(x)) \omega_{n+1}(x) dx$

$$\mathbb{Z} R(f) = \frac{1}{(n+1)!} \int_{a}^{b} f^{(n+1)}(\xi(x)) \omega_{n+1}(x) dx$$

知
$$R(f) = 0$$

所以
$$b-a = \int_a^b f(x)dx = \sum_{i=0}^n A_i f(x_i) = \sum_{i=0}^n A_i$$

$$= (b-a)\sum_{i=0}^{n} C_{i}^{(n)} f(x_{i}) = (b-a)\sum_{i=0}^{n} C_{i}^{(n)}$$

$$\therefore \sum_{j=0}^{n} A_{j} = b - a, \qquad \sum_{j=0}^{n} C_{j}^{(n)} = 1$$

四、Newton-Cotes公式的数值稳定性分析

初步看来似乎n值越大,代数精度越高。是不是n 越大越好呢?答案是否定的。考察Newton-Cotes公式的数值稳定性,即讨论舍入误差对计算结果的影响。

 $|\hat{\mathbf{p}}|_{\circ} \quad I = \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i}) = (b-a) \sum_{i=0}^{n} C_{i}^{(n)} f(x_{i}) = I_{n}$

用 I_n 近似计算I时,若计算函数值 $f(x_k)$ 有误差 ε_k , $k=0,1,2,\ldots,n$;设 $C_k^{(n)}$ 没有误差,则在牛顿-柯特斯求积公式的计算中,由 ε_k 引起的误差为

$$e_{n} = (b-a)\sum_{k=0}^{n} C_{k}^{(n)} f(x_{k}) - (b-a)\sum_{k=0}^{n} C_{k}^{(n)} (f(x_{k}) + \varepsilon_{k})$$

$$= (b-a)\sum_{k=0}^{n} C_{k}^{(n)} \varepsilon_{k}$$

n	co	ϵ_1	c ₂	cз	c ₄	c ₅	сб	c ₇	c 8
1	1/2	1/2							
2	1/6	2/3	1/6						
3	1/8	3/8	3/8	1/8					
4	7/90	16/45	2/15	16/45	7/90				
5	19/288	25/96	25/144	25/144	25/96	19/288			
б	41/840	9/35	9/280	34/105	9/280	9/35	41/840		
-	751	3577	1323	2989	2989	1323	3577	751	
7	17280	17280	17280	17280	17280	17280	17280	17280	
8	989	5888	- 928	10496	- 4540	10496	- 928	5888	989
	28350	28350	28350	28350	28350	28350	28350	28350	28350

但是, Newton-Cotes公式的系数在当n=8 时,出现负数,说明当n≥8时,稳定性将得不到保证,另一方面误差项中有高阶导数,一般地说,难以进行误差估计。因此,在实际计算中,不用高阶的牛顿——柯特斯求积公式,一般我们只取n=1,2,4。