P3. (2.5 p) A uniform magnetic field \vec{B} is established in a region of space. We know that when a proton is launched from the origin with a velocity $\vec{v_1}$ that forms an angle α with the X-axis, it does not experience any force that deflects its trajectory. However, if the proton is launched with a velocity \vec{v}_2 of the same magnitude as above but directed in the positive direction of the X-axis it experiences a force $\vec{F} = F\vec{k}$.

- a) Calculate \vec{B} .
- b) Calculate the radius and pitch of the helix that the proton would describe in the second case.

DATA:
$$v_1 = v_2 = 2 \times 10^5 \text{ m/s}; \alpha = 35^\circ; F = 5 \times 10^{-15} \text{ N}$$

a) When the proton is (a unched) with \vec{V}_L then $\vec{F}_L = q \vec{V}_L \times \vec{B} = 0$
 $\vec{V}_L \times \vec{B} = 0 \rightarrow \vec{V}_L 17 \vec{B}$ or $\vec{V}_L 7 \vec{B}$

When the proton is (aunched) with \vec{V}_Z then $\vec{F}_Z = q \vec{V}_Z \times \vec{B} = F \cdot \vec{K}$
 $\vec{V}_L \times \vec{B} = 0 \rightarrow \vec{V}_L 17 \vec{B}$ or $\vec{V}_L 7 \vec{B}$

When the proton is (aunched) with \vec{V}_Z then $\vec{F}_Z = q \vec{V}_Z \times \vec{B} = F \cdot \vec{K}$
 $\vec{V}_L \times \vec{B} = 0 \rightarrow \vec{K}$ or $\vec{V}_L \times \vec{B} = \vec{K}$
 $\vec{V}_L \times \vec{B} = 0 \rightarrow \vec{K}$ or $\vec{V}_L \times \vec{B} = \vec{K}$
 $\vec{V}_L \times \vec{B} = 0 \rightarrow \vec{K}$ or $\vec{V}_L \times \vec{B} = \vec{K}$
 $\vec{V}_L \times \vec{B} = 0 \rightarrow \vec{K}$ or $\vec{V}_L \times \vec{B} = \vec{K}$
 $\vec{V}_L \times \vec{B} = 0 \rightarrow \vec{K}$ or $\vec{V}_L \times \vec{B} = \vec{K}$
 $\vec{V}_L \times \vec{B} = 0 \rightarrow \vec{K}$ or $\vec{V}_L \times \vec{A} = 0 \rightarrow \vec{K}$ or $\vec{V}_L \times \vec$

= F > O - B sin D > O -1 sin 9 70, where I is the angle between \vec{v}_2 and \vec{B} that can be either $9:0:35^{\circ}$ or $9:180^{\circ}+0:215^{\circ}$ as we have shown above. Since sin 9 70 we

find that 9=a=35° and therefore the magnetic field B is parallel to Vi: B: Bcosait + Bsinais F2 = 9 V2 B Sinon - 1 B = Transina and the magnetic field' B= F (co)ai + sinai) = = 0.2237 + 0.456 J T b) If the proton is launched with Vz in the presence of B, it

will describe a helical trojectory with its axis along B (ie Vi) and radius R= mVI where VII and radius R= mVI where VIII of the component of the speed that is perpendicular to B ie VI= V2 sing

and
$$R = \frac{mV_2 \sin \alpha}{9B} = 4.4 \text{ mm}$$

The pitch $L_p = V_1 \cdot T$

The pit