

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesor: Mauricio Bustamante – Estudiante: Benjamín Mateluna

Topología Algebraica - MAT2850 Tarea 1 21 de agosto de 2025

Problema 1

Lema: Sean $f_0, f_1: X \to Y$ homotópicas y $g_0, g_1: Y \to Z$ homotópicas, entonces $g_0 \circ f_0$ es homotópica a $g_1 \circ f_1$.

Demostración. Consideramos la función

$$H: X \times [0,1] \to Z$$
 dada por $(x,t) \to H_q(H_f(x,t),t)$

donde H_g es una homotopía entre g_0 y g_1 , similarmente para H_f . Notemos que

$$H(x,0) = H_q(H_f(x,0),0) = g_0(f_0(x)) = g_0 \circ f_0(x)$$

análogamente, se tiene que $H(x,1) = g_1 \circ f_1(x)$. Veamos que H es continua, para ello tenemos el siguiente diagrama

$$X \times [0,1] \xrightarrow{id_X \times i} X \times [0,1]^2 \xrightarrow{H_f \times id_{[0,1]}} Y \times [0,1] \xrightarrow{H_g} Z$$

donde $i:[0,1] \to [0,1]^2$ esta dada por i(t)=(t,t), que es continua por la propiedad universal de la topología producto, de modo similar, el resto de funciones son continuas. Por lo tanto, H es continua, ya que corresponde a la composición de funciones continuas.

Debemos probar tres puntos, que son los siguientes,

- (1) Sea X espacio topológico, veamos que $X \sim X$. Consideramos el homeomorfismo $id_X : X \to X$, en particular, se tiene que $id_X \circ id_X = id_X$ es homotópica a id_X mediante la homotopía constante, luego $X \sim X$.
- (2) Debemos verificar que si $X \sim Y$ entonces $Y \sim X$. Como $X \sim Y$, existe $f: X \to Y$ equivalencia homotópica, sea $g: Y \to X$ su inversa homotópica. En particular, $g: Y \to X$ es continua y se cumple que $g \circ f \sim id_Y$ y $f \circ g \sim id_X$, es decir, g es equivalencia homotópica. Por lo tanto, $Y \sim X$.
- (3) Sea $f: X \to Y$ una equivalencia homotópica y sea f_h su inversa homotópica. Consideramos $g: Y \to Z$ equivalencia homotópica. Afirmamos que $g \circ f: X \to Z$ es equivalencia homotópica. En efecto, veamos que la función

$$f_h \circ g_h : Z \to X$$

es equivalencia homotópica. Notemos, por el lema previo, que

$$g \circ f \circ f_h \circ g_h \sim g \circ id_Y \circ g_h = g \circ g_h \sim id_Z$$

del mismo modo $f_h \circ g_h \circ g \circ f \sim id_X$. Concluimos que $X \sim Z$.

Problema 2

Para este problema diremos que $x \sim_p y$ si y solo si $[x]^p = [y]^p$, donde $[\cdot]^p$ es la componente conexa del punto. Esta relación resulta ser de equivalencia.

Lema: Sea $h: X \to X$ con $h \sim id_X$, entonces $x \sim_p h_x$ para todo $x \in X$.

Demostración. Sea $x \in X$. Como $h \sim id_X$, existe $H: X \times [0,1] \to X$ una homotopía entre h e id_X . Definimos la función $\gamma: [0,1] \to X$ dada por $\gamma(t) := H(x,t)$, que es continua por la propiedad universal de la topología de subespacio. Así, $h(x) \in [x]^p$, lo que implica que $x \sim_p h(x)$.

Sean $X \sim Y$, existe $f: X \to Y$ equivalencia homotópica y sea $g: Y \to X$ su inversa homotópica. Afirmamos que si $x \not\sim_p y$ entonces $f(x) \not\sim_p f(y)$. Supongamos que existen $x, y \in X$ tales que $x \not\sim_p y$ y $f(x) \sim_p f(y)$. Como g es continua, tenemos que $g(f(x)) \sim_p g(f(y))$. Por el lema, resulta que

$$x \sim_p g \circ f(x) \sim_p g \circ f(y) \sim_p y$$

lo cual es una contradicción.

Lo anterior prueba que hay una inyección de las componentes arcoconexas de X en las de Y. Por simetría, vemos que también hay una inyección de las componentes arcoconexas de Y en X, así, por cantor bernstein, ambos conjuntos estan en correspondencia uno a uno.

Problema 3

Problema 4

Problema 5

Debemos triangular tres espacios, que son los siguientes

(1) En \mathbb{R}^2 consideramos los puntos $v_0 = (1,1)$, $v_1 = (-1,1)$, $v_2 = (-1,-1)$ y $v_3 = (1,-1)$. Y sean $\sigma_0 = \langle v_0, v_1 \rangle$, $\sigma_1 = \langle v_0, v_3 \rangle$, $\sigma_2 = \langle v_2, v_1 \rangle$ y $\sigma_3 = \langle v_2, v_3 \rangle$ los 1-simplices generados por los vértices. Sea $K := \bigcup \{\sigma_i, v_i\}$, es claro que K es complejo simplicial.

Probaremos que $|K| \cong \mathbb{S}^1$. Denotamos por $|\cdot|$ la norma euclideana y $||\cdot||$ a la norma que corresponde al máximo del valor absoluto de cada entrada. Consideramos la función

$$f: |K| \to \mathbb{S}^1$$
 dada por
$$x \to \frac{x}{|x|}$$

que resulta ser continua ya que $|K| \subseteq \mathbb{R}^2 \setminus \{0\}$. Afirmamos que $g: \mathbb{S}^1 \to |K|$ dada por

$$g(x) := \frac{x}{\|x\|}$$

Notemos que g esta bien definida, ya que $\{x \in \mathbb{R}^2 \setminus \{0\} : ||x|| = 1\} = |K|$. Como $||\cdot||$ y $|\cdot|$ son normas equivalentes, inducen la misma topología y por lo tanto g es continua ya que $\mathbb{S}^1 \subseteq \mathbb{R}^2 \setminus \{0\}$. Luego,

$$f \circ g(x) = f\left(\frac{x}{\|x\|}\right) = \frac{\frac{x}{\|x\|}}{\left|\frac{x}{\|x\|}\right|} = x$$

es decir, $f \circ g = id_{\mathbb{S}^1}$. Del mismo modo, $g \circ f = id_{|K|}$. Lo que prueba que (K, f) es una triangulación de \mathbb{S}^1 . Así, la característica de Euler de la triangulación es V - E + F = 4 - 4 + 0 = 0.

(2) En \mathbb{R}^3 tomemos los puntos de la forma $(\pm 1, \pm 1, \pm 1)$ que en total son 8 y son vértices del cubo $[-1,1]^3$. Definimos el complejo simplicial K que tiene por poliedro al cubo y que esta representado en la siguiente figura

Los puntos v_i corresponden a los vértices del complejo, los segmentos a los 1-simplejos y también se consideran los 2-simplejos encerrados por tres segmentos, por ejemplo, el simplice $\sigma = \langle v_0, v_3, v_4 \rangle$. Afirmamos que $|K| \cong \mathbb{S}^2$. Del mismo modo que antes definimos la función continua $f: |K| \to \mathbb{S}^2$ dada por

$$f(x) = \frac{x}{|x|}$$

con inversa continua $g: \mathbb{S}^2 \to |K|$ dada por

$$g(x) := \frac{x}{\|x\|}$$

donde $|\cdot|$ y $||\cdot||$ son la norma euclideana y la norma del máximo respectivamente. Concluimos que (K, f) es una triangulación de \mathbb{S}^2 cuya característica de Euler es V - E + F = 8 - 18 + 12 = 2.

(3) -

Triangulamos $[0,1]^2$ del siguiente modo,

Donde cada vértice corresponde a un par ordenado con coordenadas en el conjunto $\{0, 1/3, 2/3, 1\}$, denotaremos por V_{\square} al conjunto de vértices. Definimos $f: V_{\square} \to V$ de modo que cada vértice en V_{\square} se mapea a |K| como en la siguiente figura,

Luego, f se extiende linealmente a una función continua continua de $[0,1]^2$ a |K|. Como f es sobreyectiva en vértices, se tiene que f es cociente. Así, la función realiza las siguientes acciones sobre $[0,1]^2$

Sea π la proyección a \mathbb{T}^2 . Veamos que f es constante en las fibras de π y viceversa. (...). Así, por propiedad universal de topología cociente, f induce una función continua $\rho: |K| \to \mathbb{T}^2$ y del mismo modo π induce una función $h: \mathbb{T}^2 \to |K|$ también continua. Tenemos el siguiente diagrama,

Veamos que h es la inversa de ρ . Sabemos que $\rho \circ f = \pi$ y $h \circ \pi = f$. Luego, sea $y \in |K|$, existe $x \in [0,1]^2$ tal que y = f(x), así $h \circ \rho(y) = h \circ \rho \circ f(x) = h \circ \pi(x) = f(x) = y$, por otro lado, $\rho \circ h([x]) = \rho \circ h \circ \pi(x) = \rho \circ f(x) = [x]$. Por lo tanto, (K, ρ) es una triangulación del toro. La característica de Euler es V - E + F = 9 - x.