Reserve Accumulation with a Private IIP*

Francisco Roldán[†]

César Sosa-Padilla‡

IMF

University of Notre Dame, Princeton IES, and NBER

September 2020

Abstract

JEL Classification F₃₂, F₃₄, F₄₁

Keywords International reserves, sovereign default, macroeconomic stabilization, fixed exchange rates, inflation targeting.

1

^{*}The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

[†]e-mail: froldan@imf.org ‡e-mail: csosapad@nd.edu

1. Model with government borrowing only

1.1 Model summary

Government choices Main problem in repayment

$$V^{R}(b, a, \mathbf{s}) = \max_{b', a', c_{T}, h} u(c_{T}, F(h)) + \beta \mathbb{E} \left[\mathcal{V} \left(b', a', \mathbf{s}' \right) \right]$$
subject to $c_{T} + q_{a}a' + \kappa^{C}b = a + y_{T}(\mathbf{s}) + q_{b}(b', a', \mathbf{s})(b' - (1 - \delta)b)$

$$h \leq \mathcal{H}(c_{T}, \bar{w})$$

$$(1)$$

Main problem in default

$$V^{D}(b, a, \mathbf{s}) = \max_{a', c_T, h} u(c_T, F(h)) + \beta \mathbb{E} \left[\theta \mathcal{V}(b, a', \mathbf{s}') + (1 - \theta) V^{D}(b, a', \mathbf{s}) \right]$$
subject to $c_T + q_a a' = a + \mathcal{D}(y_T(\mathbf{s}))$

$$h \leq \mathcal{H}(c_T, \bar{w})$$
(2)

Extreme value preference-for-default shocks yield default probabilities

$$\mathcal{P}(b, a, \mathbf{s}) = \frac{\exp(V^D((1 - \hbar)b, a, \mathbf{s})/\sigma^V)}{\exp(V^D((1 - \hbar)b, a, \mathbf{s})/\sigma^V) + \exp(V^R(b, a, \mathbf{s})/\sigma^V)}$$
(3)

Finally, the value of entering a period with access to markets (and hence an option to default) is

$$\mathcal{V}(b, a, \mathbf{s}) = (1 - \mathcal{P}(b, a, \mathbf{s}))V^{R}(b, a, \mathbf{s}) + \mathcal{P}(b, a, \mathbf{s})V^{D}((1 - \hbar)b, a, \mathbf{s})$$
(4)

Foreigners, debt prices Stochastic discount factor

$$m(\mathbf{s}, \mathbf{s}') = \exp(-r - \nu(\psi \epsilon' + 0.5\psi^2 \sigma_{\epsilon}^2)) \qquad \epsilon' = \log(y') - \rho \log(y) - (1 - \rho)\mu_y \tag{5}$$

$$q_a = \exp(-r) \tag{6}$$

$$q_b(b', a', \mathbf{s}) = \mathbb{E}\left[m(\mathbf{s}, \mathbf{s}')\left(\mathbb{1}_{\mathcal{D}'}(1 - \hbar)q_b(b', a', \mathbf{s}') + (1 - \mathbb{1}_{\mathcal{D}'})(\kappa^C + (1 - \delta)q_b(b', a', \mathbf{s}'))\right)\right]$$
(7)

Private economy Preferences

$$u(c_T, c_N) = \left[\varpi_N c_N^{-\eta} + \varpi_T c_T^{-\eta} \right]^{-\frac{1}{\eta}}$$
(8)

for $\varpi_N + \varpi_T = 1$.

Production and default costs

$$y_N(h, \mathbb{1}_D) = (1 - \Delta \mathbb{1}_D)h^{\alpha} \qquad \mathcal{D}(y) = (1 - \Delta)y$$
 (9)

Wage rigidities

$$h \leq \mathcal{H}(c_T, \bar{w}, \mathbb{1}_{\mathcal{D}}) \qquad \qquad \mathcal{H}(c_T, \bar{w}, \mathbb{1}_{\mathcal{D}}) = \left(\frac{\overline{\omega}_N}{\overline{\omega}_T} (1 - \Delta \mathbb{1}_{\mathcal{D}}) \frac{\alpha}{\bar{w}}\right)^{\frac{1}{1 + \alpha \eta}} c_T^{\frac{1 + \eta}{1 + \alpha \eta}} \tag{10}$$

1.2 Model results