Tema 1 Paradigme de Programare

1. Descrierea scheletului de cod

- NetworkData.hs
 - definitiile tipurilor de date care trebuie folosite in implementare
 - definitiile sunt suficiente pentru implementarea cerintelor
 - acest fisier NU trebuie modificat
- NetworkFunction.hs
 - definitiile tipurilor care reflecta procesarea din retea
 - definitiile sunt suficiente si fisierul NU trebuie modificat
- Utils.hs
 - contine definitii pentru cel mai general flow compact, cat si pentru cel mai general flow
 - aici puteti adauga orice functii ajutatoare de care aveti nevoie
- TestCompactFlow.hs
 - fisierul de testare pentru CompactFlow.hs
 - functia "test" produce o lista cu testele rulate: indexul testului, rezultatul si punctajul maxim acordat pentru acel test
 - functia "score" intoarce punctajul obtinut pe tema (maxim 20pt)
 - in timpul lucrului la tema e indicat sa comentati/stergeti orice portiune (teste) din acest fisier, concentrandu-va asupra testelor care verifica portiunea la care lucrati acum.
 - acest fisier o sa fie folosit si in punctarea temei (nu vor exista alte teste)
 - pentru obtinerea unui punctaj partial (teme incomplete):
 - fisierul TREBUIE sa compileze
 - punctajul este cel returnat de score
 - modificarea testelor astfel incat sa treaca atrage punctaj O pe intreaga tema
- TestFlow.hs
 - fisierul de testare pentru Flow.hs
 - inainte de a rula testele pentru Flow.hs, trebuie implementata functionalitatea pentru CompactFlow
 - functia "test" produce o lista cu testele rulate: indexul testului, rezultatul si punctajul maxim acordat pentru acel test
 - functia "score" intoarce punctajul obtinut pe tema (maxim 35pt)
 - in timpul lucrului la tema e indicat sa comentati/stergeti orice portiune (teste) din acest fisier, concentrandu-va asupra testelor care verifica portiunea la care lucrati acum.
 - acest fisier o sa fie folosit si in punctarea temei (nu vor exista alte teste)
 - pentru obtinerea unui punctaj partial (teme incomplete):
 - fisierul TREBUIE sa compileze

- punctajul este cel returnat de score
- modificarea testelor astfel incat sa treaca atrage punctaj 0 pe intreaga tema
- TestReachability.hs
 - fisierul de testare pentru Reachability.hs
 - inainte de a rula testele pentru Reachability.hs, trebuie implementata functionalitate pentru CompactFlow si Flow
 - functia "test" produce o lista cu testele rulate: indexul testului, rezultatul si punctajul maxim acordat pentru acel test
 - functia "score" intoarce punctajul obtinut pe tema (maxim 45pt)
 - in timpul lucrului la tema e indicat sa comentati/stergeti orice portiune (teste) din acest fisier, concentrandu-va asupra testelor care verifica portiunea la care lucrati acum.
 - acest fisier o sa fie folosit si in punctarea temei (nu vor exista alte teste)
 - pentru obtinerea unui punctaj partial (teme incomplete):
 - fisierul TREBUIE sa compileze
 - punctajul este cel returnat de score
 - modificarea testelor astfel incat sa treaca atrage punctaj 0 pe intreaga tema
- CompactFlow.hs
 - aici se va inrola CompactFlow la Eq si FlowLike
- Flow.hs
 - aici se va inrola Flow la Eq si FlowLike
- Reachability.hs
 - aici va trebui implementata functia "reachability"
- Elements.hs
 - contine definitiile tipurilor de date pentru cele trei tipuri de elemente: wire (fir), Filter, Rewriter
 - pentru fiecare tip de date in parte trebuie sa se faca inrolarea la clasa Element
 - clasa element defineste functia de conversie de la Wire, Filter sau Rewriter la perechea (Match, Modify) corespunzatoare (i.e. ofera implementarea elementului specificat printr-unul dintre constructori)
 - Hint: pentru inrolarea elementelor puteti profita de functia "fuse" definita deja in NetworkFunction.hs

2. Precizari generale

- Orice modificare a definitiilor tipurilor de date specificate atrage punctaj 0. Definitiile existente sunt suficiente pentru finalizarea temei, orice adaugari/modificari atrag complicatii nenecesare.
- Tema consta in efectuarea:
 - inrolarii Flow si CompactFlow la Eq si FlowLike

- inrolarii Wire, Rewriter si Filter la Element
- implementarii algoritmului "reachability" (conform enuntului)
- Respectati declaratiile functiilor care trebuie implementate (tipurile acestora) pentru a nu avea probleme la rularea testelor.
- Orice implementare voit incorecta care aduce punctaj pe anumite teste atrage punctaj nul pe intreaga tema. Nu rulati testele care testeaza functionalitate pe care nu ati implementat-o.
- Puteti folosi orice biblioteca sau feature al limbajului, nu exista restrictii.

3. Trimitere si testare tema

- Trebuie sa va asigurati inainte de deadline ca nu exista probleme de compilare.
- Codul care nu compileaza NU este punctat.
- Punctajul total este suma punctajelor intoarse de functia "score" din cele trei fisiere de test.
- Documentarea codului se va face ad-hoc, prin comentarii fisierele Readme sau orice altceva, mai putin fisierele *.hs nu sunt luate in considerare.
- Punctajul maxim este de 100 de puncte obtinut in intregime ca rezultat al testerului.
- Tema va fi trimisa sub forma unei arhive "zip" cu formatul: nume_prenume_3XYCZ.zip
 - de exemplu: popovici_matei_321CB.zip sau popovici_matei_342C1.zip
- Din cauza volumului, temele sunt corectate automat, daca nu se respecta conventiile, studentul este responsabil.

4. Resurse

- Haskell in general (http://learnyouahaskell.com/chapters)
- Module in Haskell (http://learnyouahaskell.com/modules)
- Operatori constructori de date (:-> , :!!:, :!?!: etc)