Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

↑ Números complexos e plano de Argand-Gauss

1. Escreva os números complexos na forma z = a + bi, com $a, b \in \mathbb{R}$. Em seguida, calcule o módulo $(|z| = \sqrt{a^2 + b^2})$ e o complexo conjugado $(\overline{z} = a - bi)$.

(a)
$$(1+i) - (2-3i)$$

(d)
$$\frac{5-i}{3+4i}$$

(b)
$$\left(4 - \frac{1}{2}i\right) - \left(9 + \frac{5}{2}i\right)$$

(e)
$$\frac{3}{4-3i}$$

(c)
$$(4-7i)(1+3i)$$

(f)
$$1 + i^{101}$$

2. Determine $z \in \mathbb{C}$ tal que:

(a)
$$(3+4i)^2 - 2\overline{z} = z$$

(c)
$$\left(\frac{1+i}{1-i}\right)^2 + \frac{1}{z} = 1+i$$

(b)
$$iz + 3\overline{z} = 5 - 2i$$

(d)
$$z^2 = 4 + 2i\sqrt{5}$$

3. Determine todas as soluções das equações no conjunto C.

(a)
$$9z^2 + 16 = 0$$

(c)
$$2z^2 - 2z + 1 = 0$$

(c)
$$2z^2 - 2z + 1 = 0$$
 (e) $z^4 + 3z^2 + 2 = 0$

(b)
$$z^4 - 1 = 0$$

(d)
$$z^2 + z + 2 = 0$$

(d)
$$z^2 + z + 2 = 0$$
 (f) $z^4 - 2z^2 + 4 = 0$

4. Denote por Re(z) a parte real de z e Im(z) a parte imaginária. Mostre que as seguintes relações são válidas para quaisquer z, z_1 e z_2 .

(a)
$$z + \overline{z} = 2 \operatorname{Re}(z)$$

(d)
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\operatorname{Re}(z_1\overline{z}_2)$$

(b)
$$z - \overline{z} = 2i \operatorname{Im}(z)$$

(c)
$$|\operatorname{Re}(z)| \le |z|$$

(e)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

5. Represente graficamente os pontos z = x + iy que satisfazem as condições abaixo.

(a)
$$|z| = 2$$

(c)
$$|z| > 2$$

(e)
$$|z+1| = |z-1|$$

(b)
$$|z| < 2$$

(d)
$$|z-1|=2$$

(f)
$$|z+1| \ge |z|$$

↑ Forma polar dos números complexos e fórmulas de De Moivre

- 6. Sendo $z = r(\cos \theta + i \sin \theta)$ um número complexo não nulo na forma polar, mostre que $\frac{1}{z} = \frac{1}{z}(\cos\theta - i\sin\theta).$
- 7. Determine a forma polar para zw, z/w e 1/z colocando primeiro z e w na forma polar com argumento entre 0 e 2π .

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 03/09/2024 até 16:00 horas

Ciência da Computação

Prof. Tiago J. Arruda

(a) $z = 2\sqrt{3} - 2i$, w = 8i

- (c) $z = 5(\sqrt{3} + i), w = -3 3i$
- (b) $z = \sqrt{3} + i$, $w = 1 + \sqrt{3}i$
- (d) $z = 4\sqrt{3} 4i$, w = -1 + i
- 8. Determine as potências indicadas usando o teorema de De Moivre.
- (a) $(1-\sqrt{3}i)^6$ (b) $(1-i)^8$ (c) $(2\sqrt{3}+2i)^7$ (d) $(1+i)^{40}$
- 9. Determine as raízes indicadas e as esboce no plano complexo de Argand-Gauss.
 - (a) As raízes quadradas de i
- (d) As raízes cúbicas de -8i
- (b) As raízes cúbicas de 1

- (e) As raízes quintas de -32
- (c) As raízes quartas de 1+i
- (f) As raízes sextas de 64

<u>∧</u> Fórmula de Euler

10. Para valores reais de $|x| \ll 1$, podemos escrever as aproximações polinomiais

Use essas aproximações para verificar que $e^{ix} = \cos x + i \sin x$, onde $i^2 = -1$.

- 11. Escreva o número complexo na forma a + bi, com $a, b \in \mathbb{R}$, usando a fórmula de Euler: $e^{i\theta} = \cos\theta + i\sin\theta.$
 - (a) $e^{-i\pi/2}$

(c) $e^{i\pi/3}$

(e) $e^{2+i\pi}$

(b) $e^{2\pi i}$

(d) $e^{-i\pi}$

- 12. Use a fórmula de Euler para demonstrar as seguintes fórmulas para $\cos x$ e sen x:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
, $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$.

Em seguida, prove o teorema fundamental da trigonometria: $\sin^2 x + \cos^2 x = 1$.

Graus	0°	30°	45°	60°	90°	180°
Radianos	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
sen θ	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\cos(\theta)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tan(heta)	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0

