This listing of claims will replace all prior versions of claims in the application.

Claim 1. (currently amended) A compound of formula (I):

$$R^3$$
 R^5
 R^6
 W
 $(Y)_m$
 OR^1
 R^2
 $(Z)_p$

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(Y)_m$
 OR^1

Formula (I)

wherein

W is H, a C₁-C₄ branched alkyl, or straight chained alkyl;

X is CH₂, NH or NCH₃; n is 1 or 2;

Y is O or CH₂; m is 0 or 1, provided that if X is CH₂, n is 1 and m is 0, then R¹ is not CH₂CH₃;

 R^1 is H, a C_1 - C_7 straight chain alkyl, a C_3 - C_7 branched chain alkyl, a C_1 -4haloalkyl, a C_3 - C_7 cycloalkyl, an aryl, a heteroaryl, an aralkyl, or a heteroaralkyl;

R² is phenyl, 2-halophenyl or 2-pyridyl,

R³ is H, Cl, Br, F, I, CF₃ or NO₂; and wherein

R⁴ and R⁵ together is a double bond in the diazepine ring and R⁶ represents the group NHR⁷ wherein R⁷ is H, C₁₋₄ alkyl, benzyl, benzyl mono or disubstituted independently with halogen substituents, C₁₋₄alkylpyridyl or C₁₋₄ alkylimidazolyl-and p is zero;

or a pharmaceutically acceptable salt or solvate thereof.

Claims 2-3. (canceled)

Claim 4. (currently amended) A compound of formula (I):

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(Y)_m$
 OR^1
 R^2
 $(Z)_p$

$$\mathbb{R}^3$$
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^6
 \mathbb{R}^6
 \mathbb{R}^5
 \mathbb{R}^6
 \mathbb{R}^5
 \mathbb{R}^6
 \mathbb{R}^6
 \mathbb{R}^5
 \mathbb{R}^6

Formula (I)

wherein

W is H;

X is CH₂ or NH; n is 1;

Y is CH₂; m is 0 or 1, provided that if X is CH₂ and m is 0, then R¹ is not CH₂CH₃;

p is 0;

R¹ is CH₃, CH₂CH₃, (CH₂)₂CH₃, (CH₂)₃CH₃, CH(CH₃)₂, CH₂CH(CH₃)₂, C(CH₃)₃, benzyl or 4-pyridylmethyl; provided that when R¹ is CH₃ or benzyl then m=1;

R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl,

R³ is Cl, Br or NO₂;

R⁴ is H, CH₃ or CH₂CH₂N(CH₂CH₃)₂;

R⁵ and R⁶ together are O or S;

or a pharmaceutically acceptable salt or solvate thereof.

Claim 5. (currently amended) A compound of formula (I):

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(Y)_m$
 OR^1
 R^2
 $(Z)_p$

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(Y)_m$
 OR^1

Formula (I)

wherein

W is H;

X is CH_2 or NH; n is 1;

Y is CH₂; m is 0 or 1, provided that if X is CH₂ and m is 0, then R¹ is not CH₂CH₃;

p is 0;

R¹ is CH₃, CH₂CH₃, (CH₂)₃CH₃, CH(CH₃)₂, CH₂CH(CH₃)₂, C(CH₃)₃, benzyl or 4-pyridylmethyl; provided that when R¹ is 4-pyridylmethyl, then X is CH₂, n is 1, Y is CH₂, m is 1, R² is 2-fluorophenyl, R³ is Cl, R⁴ is H and R⁵ and R⁶ together are O; and further provided that when R¹ is CH₃ or benzyl then m=1;

R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl,

R³ is Cl, Br or NO₂;

 R^4 is H, CH_3 or $CH_2CH_2N(CH_2CH_3)_2$; provided that when R^4 is $CH_2CH_2N(CH_2CH_3)_2$, X is CH_2 , n is 1, Y is CH_2 , m is 1, R^1 is CH_3 or benzyl, R^2 is 2-fluorophenyl, R^3 is Cl and R^5 and R^6 together are O;

R⁵ and R⁶ together are O or S;

or a pharmaceutically acceptable salt or solvate thereof.

Claims 6-7. (cancelled)

Claim 8. (previously presented) A compound of formula (I):

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 $(X)_{n}$
 $(X)_{n}$
 $(Y)_{m}$
 $(X)_{m}$
 $(X$

wherein W is H, p is θ , and X, n, Y, m, R^{1-6} are as follows:

X	n	Υ	m	R ¹	R ²	\mathbb{R}^3	R ⁴	R ⁵ and R ⁶
CH ₂	1	CH ₂	1	CH ₃	2-fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1	CH ₃	2-fluorophenyl	Br	Н	0
CH ₂	1	CH ₂	1	CH ₃	2-pyridyl	CI	Н	0
CH₂	1	CH₂	1	CH₃	2-fluorophenyl	CI	CH ₃	О.

Claim 9. (currently amended) A compound of formula (I):

$$R^3$$
 R^5
 R^6
 W
 $(Y)_m$
 OR^1
 R^2
 $(Z)_p$

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(Y)_m$
 OR^1

Formula (I)

wherein W is H, X is CH_2 , n is 1, Y is CH_2 , m is 1, p is 0, R^1 is CH_3 , R^2 is 2-fluorophenyl, R^3 is Cl, R^4 is H and R^5 and R^6 together are 0.

Claim 10. (currently amended) A compound according to claim 1 wherein R^4 and R^5 together form a double bond in the diazepine ring, R^6 is the group NHR⁷ and R^1 is CH_3 -and R^3 is R^4 is R^4

Claim 11. (previously presented) A compound according to claim 10, wherein W is H, X is CH₂, n is 1, Y is CH₂, m is 1, R¹ is CH₃, R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl, R³ is Cl or Br and R⁷ is CH₃, CH₂CH₃, benzyl, 4-pyridylmethyl-, 4-pyridylethyl, CH(CH₃)₂, or 4-imidazolylethyl.

Claim 12. (currently amended) A compound according to claim 10, wherein W is H, X is CH₂, n is 1, Y is CH₂, m is 1, R¹ is CH₃, and R², R³ and R⁷ are as follows:

R ²	R ³	R ⁷
2-fluorophenyl	CI	CH₃
2-pyridyl	CI	CH ₃
2-fluorophenyl	Cl	CH ₂ CH ₃
2-fluorophenyl	CI	benzyl
2-fluorophenyl	CI	4-pyridylmethyl
2-fluorophenyl	CI	4-pyridylethyl
2-fluorophenyl	CI	CH ₂ CH(CH ₃) ₂
2-fluorophenyl	Cl	2-(4-imidazolyl)ethyl
2-fluorophenyl	Cl	CH ₂ CH ₂ OH
2-fluorophenyl	Br	CH ₃
2-chlorophenyl	CI	CH₃.

Claim 13. (previously presented) A compound according to claim 10, wherein W is H, X is CH₂, n is 1, Y is CH₂, m is 1, R¹ is CH₃, R² is 2-fluorophenyl, R³ is chlorine or bromine and R⁷ is methyl.

Claim 14. (original) A compound according to claim 10, wherein W is H, X is CH_2 , n is 1, Y is CH_2 , m is 1, R^1 is CH_3 , R^2 is 2-fluorophenyl, R^3 is Cl and R^7 is CH_3 .

Claims 15-23. (cancelled)

Claim 24. (previously presented) A method of producing sedation or hypnosis, inducing anxiolysis, inducing muscle relaxation or treating convulsions in a mammal in need thereof which comprises administering to the mammal an effective amount of a compound of claim 1.

Claim 25. (previously presented) A method of producing sedation or hypnosis, inducing anxiolysis, inducing muscle relaxation or treating convulsions in a mammal in need thereof which comprises administering to the mammal an effective amount of a compound of claim 10.

Claims 26-27. (cancelled)

Claim 28. (previously presented) Methyl-3-[(3S)-7-chloro-5-(2-fluorophenyl)-2-oxo-2,3-dihydro-1*H*-1,4-benzodiazepin-3-yl]propanoate and pharmaceutically acceptable salts or solvates thereof.

Claim 29. (previously presented) Methyl-3-[(3S)-7-chloro-5-(2-fluorophenyl)-2-(methylamino)-3H-1,4-benzodiazepin-3-yl]propanoate and pharmaceutically acceptable salts or solvates thereof.

Claims 30-31. (cancelled)

Claim 32. (previously presented) A pharmaceutical composition comprising a compound of claim 1.

Claim 33. (canceled)

Claim 34. (previously presented) A pharmaceutical composition comprising a compound of claim 28.

Claim 35. (previously presented) A pharmaceutical composition comprising a compound of claim 29.

Claims 36-37. (cancelled)

Claim 38. (currently amended) A compound of formula (I)

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(Y)_m$
 OR^1

Formula (I)

wherein W is H and X, n, Y, m, Z, p and R¹⁻⁶ are as follows:

		Γ		г_				-3	-4	75
X	N	Y	m	Z	p	\mathbb{R}^1	R ²	R ³	R ⁴	R ⁵ and R ⁶
CH ₂	1	CH ₂	1	-	0	CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1		0	-	0	CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1	-	0	CH ₃	2- fluorophenyl	Br	Н	О
CH ₂	1	CH ₂	1	-	0	benzyl	2- fluorophenyl	Cl	Н	О
CH ₂	1		0	- -	0	benzyl	2- fluorophenyl	Cl	Н	О
CH ₂	1	CH ₂	1	-	0	CH ₃	2- chlorophenyl	Cl	Н	О
CH ₂	1	CH ₂	2	-	0	CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1	-	0	benzyl	2-pyridyl	Cl	Н	О
CH ₂	1	CH ₂	1	-	0	CH ₃	2-pyridyl	Br	Н	О
CH ₂	1	CH ₂	1	-	0	CH ₃	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	2	-	0	C(CH ₃) ₃	2- fluorophenyl	C1	Н	0
CH ₂	1	CH ₂	1	-	0	CH ₃	2- fluorophenyl	NO ₂	Н	О
CH ₂	1	CH ₂	1	-	0	(CH ₂) ₂ CH ₃	2-pyridyl	Cl	Н	О
CH ₂	1	CH ₂	1	- -	0	4- pyridylmethyl	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1	-	0	(CH ₂) ₃ CH ₃	2- fluorophenyl	Cl	Н	О
CH ₂	1	CH ₂	1	-	0	(CH ₂) ₃ CH ₃	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1	-	0	CH ₂ CH(CH ₃) ₂	2-pyridyl	C1	Н	О
CH ₂	1		0	-	0	CH ₂ CH ₃	2- fluorophenyl	C1	Н	0
CH ₂	1	CH ₂	1	 -	0	CH(CH ₃) ₂	2-	Cl	Н	0

			Γ	-	T		fluorophenyl			
CH ₂	1	CH ₂	1	-	0	CH ₃	2- fluorophenyl	Cl	CH ₂ CH ₂ N(CH ₂ CH ₃) ₂	0
CH ₂	1	CH ₂	1	-	0	CH ₃	2- fluorophenyl	Cl	CH₃	0
CH ₂	1		0	-	0	benzyl	2- fluorophenyl	Cl	CH₃	0
CH ₂	1	CH ₂	1		0	benzyl	2- fluorophenyl	C1	CH ₂ CH ₂ N(CH ₂ CH ₃) ₂	0
NH	1	CH ₂	1		0	CH ₃	2- chlorophenyl	C1	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2- fluorophenyl	C1	Н	S
CH ₂	1	CH ₂	1		0	CH ₃	2- chlorophenyl	Cl	Н	S
CH ₂	1	CH ₂	1		0	CH ₃	2-pyridyl	Cl	Н	S
CH ₂	1	CH ₂	1	0	1	CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	benzyl	phenyl	NO ₂	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2- fluorophenyl	Н	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2-pyridyl	NO ₂	Н	0
CH ₂	1	CH ₂	1		0	benzyl	2-pyridyl	NO ₂	Н	0
CH ₂	1	CH ₂	1		0	benzyl	2- fluorophenyl	Н	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	phenyl	NO ₂	Н	0
CH ₂	1		0		0	3- pyridylmethyl	2- fluorophenyl	Cl	Н	0
CH ₂	1		0		0	4- pyridylmethyl	2- fluorophenyl	Cl	Н	0

Claim 39. (currently amended) A compound of formula (I)

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(Y)_m$
 OR^1
 R^2
 $(Z)_p$

Formula (I)

wherein W is H and X, n, Y, m, Z, p and R¹⁻⁶ are as follows:

X	n	Y	m	Z	р	R ¹	R ²	R ³	R ⁴	R ⁵ and R ⁶
CH ₂	1	CH ₂	1		0	CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1		0		0	CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2- fluorophenyl	Br	H	О
CH ₂	1	CH ₂	1		0	benzyl	2- fluorophenyl	Cl	Н	0
CH ₂	1		0		0	benzyl	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2- chlorophenyl	Cl	Н	0
CH ₂	1	CH ₂	2		0	CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	benzyl	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2-pyridyl	Br	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	2		0	C(CH ₃) ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2- fluorophenyl	NO ₂	Н	0
CH ₂	1	CH ₂	1		0	(CH ₂) ₂ CH ₃	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH₂CH₃	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	4- pyridylmethyl	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	(CH ₂) ₃ CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	(CH ₂) ₃ CH ₃	2-pyridyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH ₂ CH(CH ₃) ₂	2-pyridyl	Cl	Н	0
CH ₂	1		0		0	CH ₂ CH ₃	2- fluorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	CH(CH ₃) ₂	2- fluorophenyl	C1	Н	0
CH ₂	1	CH ₂	1		0	CH ₃	2- fluorophenyl	Cl	CH ₂ CH ₂ N(CH ₂ CH ₃) ₂	0

CH ₂	1	CH ₂	1		0	CH ₃	2- fluorophenyl	Cl	CH ₃	0
CH ₂	1		0		0	benzyl	2- fluorophenyl	Cl	CH ₃	0
CH ₂	1	CH ₂	1		0	benzyl	2- fluorophenyl	C1	CH ₂ CH ₂ N(CH ₂ CH ₃) ₂	0
NH	1	CH ₂	1		0	CH ₃	2- chlorophenyl	Cl	Н	0
CH ₂	1	CH ₂	1		0	СН3	2- fluorophenyl	Cl	Н	S
CH ₂	1	CH ₂	.1		0	CH₃	2- chlorophenyl	Cl	Н	S
CH ₂	1	CH ₂	1		0	CH ₃	2-pyridyl	C1	Н	S
CH ₂	1	CH ₂	1	0	1	CH ₃	2- fluorophenyl	C1	Н	0

Claim 40. (currently amended) A compound of formula (I):

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(Y)_m$
 OR^1
 R^2
 $(Z)_p$

$$R^3$$
 R^4
 R^5
 R^6
 W
 $(X)_n$
 OR^1

Formula (I)

wherein

W is H;

X is CH_2 or NH; n is 1;

Y is CH₂; m is 0 or 1, provided that if X is CH₂ and m is 0, then R¹ is not CH₂CH₃;

p is 0:

R¹ is CH₂CH₃, (CH₂)₂CH₃, (CH₂)₃CH₃, CH(CH₃)₂, CH₂CH(CH₃)₂, C(CH₃)₃, or 4-pyridylmethyl;

R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl,

R³ is Cl, Br or NO₂;

R⁴ is H, CH₃ or CH₂CH₂N(CH₂CH₃)₂;

R⁵ and R⁶ together are O or S;

or a pharmaceutically acceptable salt or solvate thereof.

Claim 41. (currently amended) A compound of formula (I):

$$R^3$$
 R^5
 R^6
 W
 $(Y)_m$
 OR^1
 $(Z)_p$

$$R^3$$
 R^5
 R^6
 W
 $(Y)_m$
 OR^1

Formula (I)

```
Feldman et al.
U.S.S.N. 09/980,680
Page 15
```

wherein

W is H;

X is CH₂ or NH; n is 1;

Y is CH₂; m is 0 or 1, provided that if X is CH₂ and m is 0, then R¹ is not CH₂CH₃;

p is 0;

R¹ is CH₂CH₃, (CH₂)₃CH₃, CH(CH₃)₂, CH₂CH(CH₃)₂, C(CH₃)₃, or 4-pyridy1methyl; provided that when R¹ is 4-pyridy1methyl, then X is CH₂, n is 1, Y is CH₂, m is 1, R² is 2-fluorophenyl, R³ is Cl, R⁴ is H and R⁵ and R⁶ together are O;

R² is 2-fluorophenyl, 2-chlorophenyl or 2-pyridyl,

R³ is Cl, Br or NO₂;

 R^4 is H, CH_3 or $CH_2CH_2N(CH_2CH_3)_2$; provided that when R^4 is $CH_2CH_2N(CH_2CH_3)_2$, X is CH_2 , n is 1, Y is CH_2 , m is 1, R^1 is CH_3 or benzyl, R^2 is 2-fluorophenyl, R^3 is Cl and R^5 and R^6 together are O;

R⁵ and R⁶ together are O or S;

or a pharmaceutically acceptable salt or solvate thereof.