Метод бисекции или *метод деления отрезка пополам* — простейший <u>численный метод</u> для решения <u>нелинейных уравнений</u> вида f(x)=0. Предполагается только непрерывность функции f(x). Поиск основывается на теореме о промежуточных значениях.

Обоснование

Алгоритм основывается на следующем следствии теоремы Больцано — Копи:

Пусть функция
$$f(x) \in \mathrm{C}([a,\ b])$$
, тогда если $f(a)>0,$ $f(b)<0$, то $\exists c\in [a,\ b]:\ f(c)=0$.

Таким образом, если мы ищем ноль, то на концах отрезка функция должна быть разных знаков. Разделим отрезок пополам и возьмём ту из половинок, для которой на концах функция по-прежнему принимает значения разных знаков. Если серединная точка оказалось искомым нулём, то процесс завершается.

Если задана точность вычисления ε , то процедуру следует продолжать до тех пор, пока длина отрезка не станет меньше ε .

Для поиска произвольного значения достаточно вычесть из значения функции искомое значение и искать ноль получившейся функции.

Описание алгоритма

Задача заключается в нахождении корней нелинейного уравнения

$$f(x) = 0. \tag{1}$$

Для начала итераций необходимо знать интервал $[x_L, x_R]$ значений x, на концах которого функция принимает значения разных знаков:

$$f(x_L)f(x_R) < 0. \tag{2}$$

Из непрерывности функции f и условия (2) следует, что на интервале $[x_L, x_R]$ существует хотя бы один корень уравнения (в случае наличия нескольких корней метод приводит к нахождению одного из них)

Выберем точку внутри интервала

$$x_M = (x_R + x_L)/2.$$
 (3)

Если $f(x_M)=0$, то корень найден. Если $f(x_M)\neq 0$ разобьём интервал $[x_L,x_R]$ на два: $[x_L,x_M]$ и $[x_M,x_R]$. Теперь найдём новый интервал, в котором функция меняет знак. Пусть $f(x_L)f(x_M)<0$ и соответственно корень находится внутри интервала $[x_L,x_M]$. Тогда обозначим $x_R=x_M$ и повторим описанную процедуру до достижения требуемой точности. За количество итераций N первоначальный отрезок делится в 2^N раз.

Поиск значения монотонной функции