Homework 7.2 – Quantum Models of Motion

Name:
Excercise 7D.1(b) (5 points)
Evaluate the linear momentum and kinetic energy of a free proton described by the wavefunction e^{-ikx} with $k=5nm^{-1}$
Exercise 7D.8(a) (5 points)
An electron is confined to a square well of length L . What would be the length of the box such that the zero-poin energy of the electron is equal to its rest mass energy, $m_e c^2$? Express your answer in terms of the parameter $\lambda_C = h/m_e c$, the "Compton wavelength" of the electron.
Exercise 7D.9(a) (5 points)
For a particle in a box of length L and in the state with $n=3$, at what positions is the probability density at a maxi

mum? At what positions is the probability density zero?

Exercise '	7D.15(b)) (51	points)

Suppose that a proton of an acidic hydrogen atom is confined to an acid that can be represented by a barrier of height $2.0\,eV$ and length $100\,pm$. Calculate the probability that a proton with energy $1.4\,eV$ can escape from the acid.

Exercise 7E.2(a) (5 points)

For a certain harmonic oscillator of effective mass $1.33 \times 10^{-25}~kg$, the difference in adjacent energy levels is 4.82~zJ. Calculate the force constant of the oscillator

Exercise 7E.5(a) (5 points)

Assuming the vibrations of a $^{35}\text{Cl}_2$ molecule are equivalent to those of a harmonic oscillator with a force constant $k_f = 329~Nm^{-1}$, what is the zero-point energy of vibration of this molecule? Use $m(^{35}\text{Cl}) = 34.9688~m_u$.

Exercise 7E.7(a) (5 points)

How many nodes are there in the wavefunction of a harmonic oscillator with (i) v = 3; (ii) v = 4?

Exercise 7F.1(b) (5 points)

The rotation of a molecule an be represented by the motion of a particle moving over the surface of a sphere with angular momentum quantum number l=2. Calculate the magnitude of its angular momentum and the possible components of the angular momentum along the z-axis. Express your results as multiples of \hbar .

Exercise 7F.10(a) (5 points)

How many angular nodes are there for the spherical harmonic $Y_{3,0}$ and at which values of θ do they occur?

Exercise 7F.12(a) (5 points)

What is the degeneracy of a molecule rotating with J=3?