

/prj/prjmurad/mrborges/Dropbox/latex/figu

Geração Numérica de Campos Aleatórios

Autor: Marcio Borges

Petrópolis-RJ 20 de junho de 2022

	Sumário							
4	Geração Niun éporte jampos Areatórds/mrborges/							
	1.1 Campos	. 1						
	1.1.2 Descrição dos campos	orjmurad/mrborge						
L	1.1.3 Funções de Covariância Adotadas							
2 Métodos de Geração de Campos Aleatórios 3								
	2.1 Expansão de Karhunen-Loève (KL)	. 4						
	2.2 Método da Decomposição LU - campos condicionados	. 5						
	2.3 Método Labtran-Geo	6						
3	3 Informação Útil	10						
4	4 Programas OCTAVE/MATLAB	10						
5	5 Programas FORTRAN	11						
6	6 Method for generating permeability fields	12						

/prj/prjmurad/mrborge

1 GERAÇÃO NUMÉRICA DE CAMPOS ALEATÓRIOS

O conhecimento sobre a heterogeneidade de um meio poroso normalmente é incompleto devido a escassez de informações sobre o mesmo, o que nos leva à necessidade de fazermos uma descrição probabilística de suas propriedades. Neste sentido, as heterogeneidades das propriedades dos reservatórios (por exemplo, a permeabilidade, a porosidade e o módulo de Young) são representadas por campos aleatórios, com propriedades estatísticas específicas que serão gerados por três metodologias: Decomposição LU, Decomposição de Karhunen-Loève e Labtran-Geo. Desta forma, o objetivo deste relatório é apresentar os geradores construídos para serem utilizados no projeto: MO-DELAGEM E SIMULAÇÃO NUMÉRICA DE ESCOAMENTOS EM RESERVA-TÓRIOS HETEROGÊNEOS COM ACOPLAMENTO GEOMECÂNICO dentro da rede SIGER.

1.1 Campos

Neste trabalho, serão gerados somente campos em domínios retangulares com malhas também retangulares. Para padronizar tanto a geração quanto a utilização destes campos nos simuladores desenvolvidos apresentamos, a seguir, a formatação dos campos. Tomaremos como exemplo a representação esquemática de um campo aleatório posto em um domínio retangular Ω com dimensões físicas $L_1 \times L_2$, discretizado em uma malha de $n_1 \times n_2$ elementos (10×5 neste exemplo), conforme apresentado na Fig. 1.

		c_0	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	
	l_4	41	42	43	44	45	46	47	48	49	50	
	l_3	31	32	33	34	35	36	37	38	39	40	
	l_2	21	22	23	24	25	26	27	28	29	30	L_2
	l_1	11	12	13	14	15	16	17	18	19	20	
	l_0	1	2	3	4	5	6	7	8	9	10	
x_2						L	/1					

Figura 1: Representação esquemática de um campo aleatório posto em um domínio bidimensional Ω .

/prj/prjmurad/mrborge

```
1.000000

0.400000

10

5

1

0.500000

2

2

0

0.909149 -0.661580 -0.397227 0.308463 0.180042

0.015598 -0.849240 -0.458387 0.201703 0.100701

192837465

1

0.110745 -0.825363 0.365615 0.268071 ...
```

que, de acordo com a Fig. 1, as quatro primeiras linhas trazem informações sobre as dimensões físicas de Ω , sendo que a primeira representa o valor de L_1 , a segunda L_2 , a terceira n_1 , e a quarta n_2 . Estes dois últimos valores são os números de blocos na direção x_1 e x_2 , respectivamente. Os dois valores seguintes (quinta e sexta linhas) trazem informações sobre a covariância do campo. O quinto valor indica que o campo é exponencial se for igual a 1 e fractal caso seja 2. O valor da sexta linha é o do coeficiente de correlação λ se o campo é exponencial ou o expoente de Hurst β , se o campo é fractal. Os dois valores seguintes (sétima e oitava linha) não possuem utilidade.

Após as oito primeiras linhas, estão as indicações sobre o valor e a posição de cada bloco. O número zero indica a primeira linha (l_0) . Para este caso específico os dez números seguintes são os valores do campo nos blocos de 1 a 10, respectivamente. O número 192837465 é uma "bandeira" que indica o final de uma linha.

1.1.2 Descrição dos campos

Neste projeto consideraremos campos de permeabilidades aleatórios, escalares, com distribuição log-normal:

$$K(\mathbf{x}) = K_0 e^{\varrho Y(\mathbf{x})},\tag{1}$$

onde $K_0,\ \varrho\in\mathbb{R}$ e $Y(\mathbf{x})$ é um campo gaussiano aleatório, estacionário, caracterizado por sua média $\langle Y(\mathbf{x})\rangle=0$ e sua função de covariância

$$C(\mathbf{x}, \mathbf{y}) = \langle Y(\mathbf{x})Y(\mathbf{y}) \rangle, \tag{2}$$

/prj/prjmurad/mrborge

do campo correlacionado. O coeficiente de variação é utilizado como uma medida adimensional da heterogeneidade do campo de permeabilidades.

1.1.3 Funções de Covariância Adotadas

Consideramos neste trabalho formações geológicas caracterizadas por campos aleatórios com dois tipos de função de covariância: fractal e exponencial.

Para modelos em que introduzimos variabilidade sobre todas as escalas de comprimento, tal como no caso de formações sedimentares (Hewett, 1986) usamos campos nos quais a sua função de covariância é dada pela lei de potência:

$$C(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|^{-\beta}, \quad \beta > 0.$$
 (4)

O expoente β , chamado de coeficiente de Hurst, controla a importância relativa dos comprimentos de escala "grandes" e "pequenos" na geologia. Portanto, maiores valores de β enfatizam os comprimentos de escala "pequenos". Por outro lado, para menores valores de β os comprimentos de escala "grandes" são enfatizados. No caso em que $\beta \to \infty$ obtém-se o caso em que as variáveis são independentes.

Nos casos em que somente as pequenas escalas prevalecem consideraremos campos com função de covariância exponencial:

$$C(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{|\mathbf{x} - \mathbf{y}|}{\lambda}\right) \tag{5}$$

onde $\lambda > 0$ é o comprimento de correlação.

2 MÉTODOS DE GERAÇÃO DE CAMPOS ALEATÓRIOS

Vários métodos têm sido utilizados para gerar campos aleatórios, tais como: *Turning Bands Method* (Mantoglou e Wilson, 1982; Oh, 1998), Método de Decomposição LU de Matrizes (*Matrix Composition Method*) (Clifton e Neuman, 1982; Elishakoff, 1983), Adição Sucessiva Aleatória (*Successive Random Addition*) (Oh, 1998; Kikkinides e Burganos, 1999, 2000), Métodos Espectrais (*Spectral Methods*) (?), Método da Convolução (?Glimm et al., 1993), Método da Expansão KL (Karhunen, 1946; Loève, 1955) e o Método LABTRAN-GEO (Borges et al., 2008). Todos estes métodos apresentam vantagens e desvantagens tanto do ponto de vista computacional quanto da qualidade estatística das campos. Mais capacificamente, para presenta presista

/prj/prjmurad/mrborge

2.1 Expansão de Karhunen-Loève (KL)

Uma das metodologias escolhidas para a geração de campos aleatórios, neste projeto, é o Método de Karhunen-Loève desenvolvido, de forma independente, por Karhunen (1946) e Loève (1955) com base na decomposição da função de covariância em seus auto-pares. Neste método, um campo aleatório pode ser representado como uma expansão envolvendo um conjunto de funções determinísticas com seus respectivos coeficientes aleatórios.

Definição: Considere um campo aleatório $Y(\mathbf{x},\omega)$ definido sobre um espaço de probabilidades $(\Omega,\mathcal{A},\mathcal{P})$ composto pelo espaço amostral, conjunto de eventos e uma medida de probabilidade, respectivamente, e indexado a um domínio limitado $\mathcal{D}.$ O campo Y pode ser escrito como

$$Y(\mathbf{x}, \omega) = \langle Y(\mathbf{x}) \rangle + \sum_{i=1}^{\infty} \sqrt{\lambda_i} \phi_i(\mathbf{x}) \xi_i(\omega),$$
 (6)

onde λ_i e ϕ_i são os auto-valores e as auto-funções da função de covariância $\mathcal{C}_Y(\mathbf{x},\mathbf{y})$, respectivamente. Por definição, $\mathcal{C}_Y(\mathbf{x},\mathbf{y})$ é limitada, simétrica e definida positiva e tem a seguinte auto-decomposição:

$$C_Y(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{\infty} \lambda_i \phi_i(\mathbf{x}) \phi_i(\mathbf{y}).$$
 (7)

Os auto-valores e auto-funções de (7) são as soluções da equação integral de Fredholm dada por

$$\int_{\mathcal{D}} \mathcal{C}_Y(\mathbf{x}, \mathbf{y}) \phi_i(\mathbf{x}) d\mathbf{x} = \lambda_i \phi_i(\mathbf{y}).$$
 (8)

A solução de (8) forma um conjunto completo de auto-funções ortogonais, quadrado-integráveis, que satisfazem a equação

$$\int_{\mathcal{D}} \phi_i(\mathbf{x}) \phi_j(\mathbf{x}) = \delta_{ij}, \tag{9}$$

na qual δ_{ij} é a função delta de Kronecker.

O conjunto de variáveis aleatórias não-correlacionadas $\xi_i(\omega)$ pode ser expresso como

$$\xi_i(\omega) = \frac{1}{\sqrt{\lambda_i}} \int_{\mathcal{D}} \tilde{Y} \phi_i(\mathbf{x}) d\mathbf{x}, \tag{10}$$

onde \tilde{Y} é a flutuação.

Se os autovalores λ_i decaem rapidamente então podemos truncar a ex-

/prj/prjmurad/mrborge

A correspondente função de covariância é dada por

$$C_{\hat{Y}}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{M} \lambda_i \phi_i(\mathbf{x}) \phi_i(\mathbf{y}).$$
 (12)

A implementação numérica da expansão Karhunen-Loève esta associada à resolução, eficiente, da equação integral (8) para a obtenção dos pares $\{\lambda_i, \phi_i\}$. Neste projeto, o método de Galerkin será utilizado para a aproximação deste problema. Como podemos observar, este é um método bastante elegante e direto para geração de campos aleatórios. Por outro lado, o método apresenta um alto custo computacional, advindo da decomposição da matriz e, principalmente, da grande quantidade de memória requerida quando o número de pontos n ($n = n_1 \times n_2$), que representa a quantidade de blocos geológicos usados (com propriedades assumidas constantes no interior de cada bloco), aumenta substancialmente. Lembramos que a matriz \mathcal{C} tem dimensão $n \times n$. Por exemplo, para gerar um campo bidimensional com uma malha de 50×50 pontos, necessitamos de uma matriz \mathcal{C} de 2500×2500 componentes, o que requer cerca de 50MB de memória. Já um campo com uma malha de 200×200 pontos requer cerca de 12,8GB de memória. Essa característica praticamente inviabiliza a sua utilização para a geração de campos postos em malhas "finas".

2.2 Método da Decomposição LU - campos condicionados

Considere a distribuição, sobre um campo Ω , de um atributo $\xi\left(\mathbf{x}\right)$, $\mathbf{x}\in\Omega$. O objetivo é a geração de M realizações do campo ξ , igualmente prováveis. Cada realização é denotada pelo sobrescrito l: $\left\{\xi^{(l)}\left(\mathbf{x}\right), \quad \mathbf{x}\in\Omega\right\}$ e $l=1,\ldots,M$. Um conjunto de campos é dito ser condicionado se as realizações resultantes possuem a seguinte característica:

$$\xi^{(l)}(\mathbf{x}_{\alpha}) = \xi(\mathbf{x}_{\alpha}), \forall l. \tag{13}$$

Segundo Deutsch e Journel (1992), quando o número de dados que serão condicionados mais o número de nós simulados é pequeno (menor do que poucas centenas) e um grande número de realizações for requerido, a geração de campos através do método da decomposição LU da matriz de covariância é recomendado.

Seja $\xi\left(\mathbf{x}\right)$ um campo gaussiano, estacionário com função de covariância $\mathcal{C}((\mathbf{x}))$. Sejam $\mathbf{x}_{\alpha},$ $\alpha=1,\ldots,n$, os locais nos quais os dados serão condicionados e $\mathbf{x}_{i},$ i=1,dots,N os N nós que serão simulados. A matriz de covariância

/prj/prjmurad/mrborge

 $\left\{ \xi^{(l)}(\mathbf{x}_k), \quad k=1,\ldots,n+N \right\}$ é obtido pela multiplicação de $\mathbf L$ pelo vetor $\omega^{(l)}_{(n+N)\cdot n}$.

$$\xi^{(l)} = \begin{bmatrix} \left[\xi(\mathbf{x}_{\alpha}) \right]_{n \cdot 1} \\ \left[\xi^{(l)}(\mathbf{x}_{j}) \right]_{N \cdot 1} \end{bmatrix} = \mathbf{L}\omega^{(l)} = \begin{bmatrix} \mathbf{L}_{11} & \mathbf{0} \\ \mathbf{L}_{21} & \mathbf{L}_{22} \end{bmatrix} \cdot \begin{bmatrix} \omega_{1} \\ \omega_{2}^{(l)} \end{bmatrix}. \tag{15}$$

onde $[\xi(\mathbf{x}_{\alpha})]_{n\cdot 1}$ é o vetor dos n dados condicionados e $[\xi^{(l)}(\mathbf{x}_j)]_{N\cdot 1}$ é vetor do N valores de ξ condicionalmente simulados. A identificação dos dados condicionantes é escrito como $\mathbf{L}_{11}\omega_1=[\xi(\mathbf{x}_{\alpha})]$, assim o vetor ω_1 é construído da seguinte forma:

$$\omega_1 = [\omega_1]_{n\cdot 1} = \mathbf{L}_{11}^{-1} \cdot [\xi(\mathbf{x}_{\alpha})]_{n\cdot 1}.$$
 (16)

O vetor $\omega_2^{(l)}=\left[\omega_2^{(l)}\right]_{N\cdot 1}$ é o vetor de N variáveis aleatórias gaussianas independentes.

Como podemos observar, este é um método bastante elegante e direto para geração de campos aleatórios. Por outro lado, o método apresenta um alto custo computacional, advindo da decomposição da matriz e, principalmente, da grande quantidade de memória requerida quando o número de pontos n, que representa a quantidade de blocos geológicos usados (com propriedades assumidas constantes no interior de cada bloco), aumenta substancialmente. Lembramos que a matriz $\mathcal C$ tem dimensão $n\times n$. Por exemplo, para gerar um campo bidimensional com uma malha de 50×50 pontos, necessitamos de uma matriz $\mathcal C$ de 2500×2500 componentes, o que requer cerca de 50MB de memória. Já um campo com uma malha de 200×200 pontos requer cerca de 12,8GB de memória. Essa característica praticamente inviabiliza a sua utilização para a geração de campos postos em malhas "finas".

2.3 Método Labtran-Geo

O grande custo computacional associado ao método LU, descrito anteriormente, motivou a busca por alternativas mais eficientes, do ponto de vista computacional, para geração de campos aleatórios. Um desse métodos é o LABTRAN-GEO, desenvolvido por Borges et al. (2008), que passaremos a descrever.

Neste caso, o campo correlacionado $Y(\vec{x})$ é obtido através da soma sucessiva de campos gaussianos independentes. A ideia original para a construção numérica dos campos foi obtida no trabalho de Glimm e Sharp (1991), os quais para simplificar sua análise sobre o crescimento da região de mistura entre dois fluidos, escoando em meios porosos, idealizaram campos aleatórios hierárquicos. Portanto, da forma original como os campos foram idealizados,

/prj/prjmurad/mrborge

 2^{n+2}

 2^{n+1}

 2^n

 2^n

 2^{n+3}

(a) Diferentes níveis de malha (b) Rede de malhas uniformes encaicom lado 2^n . xadas.

Figura 2: Malhas uniformes.

$$\langle Y_{n,ij}Y_{n,kl}\rangle = \delta_{ij,kl}2^{-n\beta} \quad \text{ou} \quad \langle Y_{n,ij}Y_{n,ij}\rangle = 2^{-n\beta},$$

onde δ é o delta de Kronecker.

As variáveis assumem valores constantes nos elementos aos quais estão associadas (Y fica definido no plano). Para variáveis definidas em malhas distintas ($n \neq n'$), temos:

$$\langle Y_n(\mathbf{x})Y_{n'}(\mathbf{y})\rangle=0,\quad \text{para todo } n\neq n'.$$

Neste desenvolvimento o campo correlacionado $Y(\mathbf{x})$ é definido por:

$$Y(\mathbf{x}) \equiv \sum_{n=0}^{\infty} Y_n(\mathbf{x}). \tag{17}$$

Podemos demonstrar que o campo $Y(\mathbf{x})$ assim definido possui uma função de covariância da forma dada pela Eq. (2).

Esta primaira varaña da mátada fai tastada a aprocentou alguna proble

/prj/prjmurad/mrborge

mudança na base, utilizada para determinar o tamanho das malhas, a qual era fixa na construção anterior (valor 2). Usaremos agora a base $b \in \mathbb{R}, \, b > 1$. O objetivo desta mudança foi melhorar a aproximação da função de covariância, que é feita por segmentos de retas, mediante o aumento considerável destes segmentos na sua representação. A segunda modificação foi a realização de um deslocamento de malhas em cada nível n. Neste caso utilizamos $m = b^n$ (tomamos $m \in \mathbb{N}$, ou seja, m é arredondado para o valor inteiro mais próximo) malhas para cada nível n. As malhas são deslocadas em uma unidade (tamanho do menor de b^n dentre todas as malhas) nas direções x e y com relação à malha anterior. Este procedimento é introduzido para resolver o problema da falta de auto-similaridade do campo obtido.

Então, consideramos o conjunto de variáveis independentes, $Y_{n_m,ij}$, com as seguintes média e covariância:

- Para cada malha m:

$$\langle Y_{n_m,ij} \rangle = 0$$

$$\langle Y_{n_m,ij} Y_{n_m,kl} \rangle = \frac{1}{b^n} \left(\delta_{ij,kl} b^{-n\beta} \right)$$

$$\langle Y_{n_m,ij} Y_{n_m,ij} \rangle = \frac{b^{-n\beta}}{b^n}$$

- Em cada nível n:

$$\left\langle \sum_{m=1}^{b^n} Y_{n_m,ij} \right\rangle = 0$$

$$\left\langle \sum_{m=1}^{b^n} Y_{n_m,ij} \sum_{m=1}^{b^n} Y_{n_m,kl} \right\rangle = \delta_{ij,kl} b^{-n\beta}$$

$$\left\langle \sum_{m=1}^{b^n} Y_{n_m,ij} \sum_{m=1}^{b^n} Y_{n_m,ij} \right\rangle = b^{-n\beta}$$

onde $m=1,2,\ldots,b^n$ é o número de malhas em cada nível n.

As variáveis assumem valores constantes em cada elemento da malha e para variáveis definidas em níveis distintos $(n_m \neq n'_m)$ temos:

/prj/prjmurad/mrborge

$$\left\langle Y_{n_m}(\vec{x})Y_{n_{m'}}(\vec{y})\right\rangle = 0, \quad \text{para todo } m \neq m'.$$

Então, definimos $Y(\vec{x})$ como

$$Y(\vec{x}) \equiv \sum_{n=0}^{\infty} \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{x}) \right). \tag{18}$$

De forma similar ao que feito na primeira construção mostraremos que $Y(\vec{x})$ possui uma função de covariância dada por uma lei de potência do tipo da Eq. (2). Para isto, tomamos dois pontos no plano, \vec{x} e \vec{y} :

$$\langle Y(\vec{x})Y(\vec{y})\rangle = \left\langle \sum_{n=0}^{\infty} \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{x}) \right) \sum_{n'=0}^{\infty} \left(\sum_{m=1}^{b^{n'}} Y_{n'_m}(\vec{y}) \right) \right\rangle$$

$$= \sum_{n=0}^{\infty} \sum_{n'=0}^{\infty} \left\langle \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{x}) \right) \left(\sum_{m=1}^{b^{n'}} Y_{n'_m}(\vec{y}) \right) \right\rangle.$$
(19)

Seja $d=|\vec{x}-\vec{y}|$ e n_m^o um nível qualquer, a mesma análise feita para a primeira versão do método pode ser aplicada aqui. Se $d \geq b^{n_m^o}$, os pontos \vec{x} e \vec{y} estão em elementos distintos de malhas com espaçamento menor do que $b^{n_m^o}$ e temos que

$$\left\langle \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{x})\right) \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{y})\right) \right\rangle = 0,$$

para $n_m < n_m^o$. Por outro lado, se $d < b^{n_m^o}$, os pontos \vec{x} e \vec{y} estão no mesmo elemento de malhas com espaçamento $b^{n_m} > b^{n_m^o}$, e então,

$$\left\langle \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{x}) \right) \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{y}) \right) \right\rangle = b^{-n\beta}.$$

Portanto, retornando ao somatório (19) temos que:

/prj/prjmurad/mrborge

$$= \underbrace{\sum_{n=0}^{n^{\circ}-1} \left\langle \left(\sum_{m=1}^{b^{n}} Y_{n_{m}}(\vec{x}) \right) \left(\sum_{m=1}^{b^{n}} Y_{n_{m}}(\vec{y}) \right) \right\rangle}_{=0}$$

$$+ \sum_{n=n^o}^{\infty} \underbrace{\left\langle \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{x})\right) \left(\sum_{m=1}^{b^n} Y_{n_m}(\vec{y})\right) \right\rangle}_{=\frac{1}{b^{n\beta}}}.$$

Como $d=|\vec{x}-\vec{y}| \approx b^{(n^o+1)}$, então:

$$\langle Y(\vec{x})Y(\vec{y})\rangle = \sum_{n=n^o+1}^{\infty} \frac{1}{b^{n\beta}} = \underbrace{\frac{1}{b^{(n^o+1)\beta}}}_{=\frac{1}{d^\beta}} \underbrace{\sum_{n=0}^{\infty} \frac{1}{b^{n\beta}}}_{=c},$$

e obtemos o resultado esperado:

$$\langle Y(\vec{x})Y(\vec{y})\rangle \approx \frac{c}{|\vec{x}-\vec{y}|^{\beta}}\;,\quad \mbox{com}\; c = \frac{1}{1-b^{-\beta}}. \label{eq:composition}$$

3 Informação Útil

Seja Y uma variável aleatória Gaussiana, então $X=\exp\left(Y\right)$ é uma variável aleatória com distribuição log-normal com as seguintes média e variância:

$$\mu_X = \exp\left(\mu_Y + \frac{\sigma_Y^2}{2}\right)$$

$$\sigma_X^2 = \exp\left(2\mu_Y + \sigma_Y^2\right) \left[\exp\left(\sigma_Y^2\right) - 1\right].$$
(20)

Por outro lado,

$$\mu_Y = \ln(\mu_X) - \frac{1}{2} \ln\left(\frac{\sigma_X^2}{\mu_X^2} + 1\right) \tag{21}$$

/prj/prjmurad/mrborge

General Public License). Os programas são totalmente compatíveis com a linguagem e ambiente MATLAB (http://www.mathworks.com/products/matlab).

Em cada um dos diretórios que agrupam os programas desenvolvidos para cada metodologia de geração de campos existe um **programa principal** no qual são realizadas as entradas dos parâmetros. Os programas principais são: glu.m e glu3D.m para o Método da Decomposição LU, nos casos bi e tri-dimensional, respectivamente; e KL_cond.m para o Método da Expansão de Karhunen-Loève.

Nos programas principais, citados anteriormente, a entrada de dados é bastante similar:

```
% define o tipo de covariancia (1-fractal;
ntipo = 2;
                  2-exponencial; 3-exponencial quadratica)
Lx
      = 1.0;
               % dimensao fisica do Dominio (x)
               % dimensao fisica do Dominio (y)
Ly
      = 1.0;
      = 100;
              % numero de elementos na direcao x
nx
      = 100;
               % numero de elementos na direcao y
ny
varY = 1.0;
               % variancia dos campos
beta = 0.5;
               % valor do coeficiente de Hurst
                  (campos fractais)
cutoff = Lx/nx; % tamanho do cutoff
etax = .25;
               % valor do comprimento de correlacao
                 na direcao x (campos exponenciais)
      = .125; % valor do comprimento de correlacao
etay
                 na direcao y (campos exponenciais)
Nrand = 10;
               % numero de campos gerados
TIPOINPUT = 10; % se == 1 entrada dos pontos condicionados
                  (arquivo input_cond.dat)
```

5 PROGRAMAS FORTRAN

Estão disponibilizadas versões dos Métodos da Decomposição LU e Labtran-Geo, esta última em uma versão que permite o condicionamento de pontos conhecidos, construídas na linguagem FORTRAN 90. Os programas são: LU.f90 e LABTRAN_GEO.f90, respectivamente. A utilização dos programas é bastante simples e os dados de entrada encontram-se no arquivo entra.in no diretório in de cada método. A seguir mostramos um exemplo do arquivo de entrada com os parâmetros descritos. Os arquivos são bastante seme-

/prj/prjmurad/mrborge

```
# numero inicial e final dos campos
      0
           999
               1.00000
    1.00000
                          # Dimensoes Lx e Ly
    100
           100
                          # numero de elementos nas direcoes x e y
                          # tipo de campo (1=exponecial e 2=fractal
      1
  20.10000 1.000000
                          # coeficiente de hurst (ou comprimento de
   9876
        5432
                 1110
                          # sementes para geracao de campos aleator
                          # nome basico dos campos
campos/e100x100_20_
                          # numero de pontos condicionados
   0.71000
                          1.00000 # coordenada x, coordenada y e va
               0.63000
   0.09750
               0.27000
                          1.00000
   0.55000
               0.95000
                          1.00000
                          1.00000
   0.96000
               0.15000
    0.41000
               0.70000
                          1.00000
```

6 METHOD FOR GENERATING PERMEABILITY FIELDS

We consider random heterogeneous permeability fields $\kappa(\mathbf{x},\omega)$ Govinder et al. (2014)

REFERÊNCIAS

- M. R. Borges, F. Pereira, e H. P. Amaral Souto. Efficient generation of multiscale random fields: A hierarchical approach. *Communications in Numerical Methods in Engineering*, page n/a, 2008. URL 10.1002/cnm.1134.
- P. M. Clifton e S. P. Neuman. Effects of kriging and inverse modeling on conditional simulation of the avra valley aquifer in southern arizona. *Water Resources Research*, 18(4):1215–1234, 1982.
- Clayton V. Deutsch e A. G. Journel. *GSLIB: geostatistical software library and user's guide*, volume 1. Oxford University Press, 1992.
- L. Elishakoff. *Probability Methods in the Theory of Structures*. Jonh Wiley & Sons, New York, 1983.
- J. Glimm, W. B. Lindquist, F. Pereira, e Q. Zhang. A theory of macrodispersion for the scale-up problem. *Computational Geosciences*, 13(1):97–122, 1993.
- J. Glimm e D. H. Sharp. A random field model for anomalous diffusion in heterogeneous porous media. *Journal of Statistical Physics*, 62(1-2):415–424, 1991.

/prj/prjmurad/mrborge

- K. Karhunen. Zur spektraltheorie stochastischer prozesse. *Ann. Acad. Sci. Fennicae*, 1946.
- E. S. Kikkinides e V. N. Burganos. Structure and flow properties of binary media generated by fractional brownian motion models. *Physical Review E*, 59(6):7185–7194, 1999.
- E. S. Kikkinides e V. N. Burganos. Permeation properties of three-dimensional self-affine reconstructions of porous materials. *Physical Review E*, 62(5): 6906–6915, 2000.
- M. M. Loève. Probability Theory. Princeton, N.J., 1955.
- A. Mantoglou e J. L. Wilson. The turning bands method for simulation of random fields using the line integration by a spectral method. *Water Resources Research*, 18(5):1379–1394, 1982.
- W. Oh. Random field simulation and an application of kriging to image thresholding. Tese de Doutorado, State University of New York, 1998.