

Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probability Curvature

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, Yue Zhang (baoguangsheng@westlake.edu.cn)

Key Achievements

Additionally, Fast-DetectGPT **outperforms** commercial **GPTZero**.

CONTENTS

01 Background

02 Fast-DetectGPT

03 Experiments

04 Code and Demo

Which news is fake?

News 1: Maj Richard Scott, 40, is accused of driving at speeds of up to 95mph (153km/h) in bad weather before the smash on a B-road in Wiltshire. Gareth Hicks, 24, suffered fatal injuries when the van he was asleep in was hit by Mr Scott's Audi A6. Maj Scott denies a charge of causing death by careless driving ...

News 2: Maj Richard Scott, 40, is accused of driving at speeds of up to 95mph (153km/h) in bad weather before the fatal crash that claimed the lives of two young children. The incident occurred on the A34 motorway near Newbury, Berkshire, last Saturday. Eyewitnesses reported seeing Maj Scott's car weaving in and out of traffic before losing control and colliding with another vehicle ...

Al writings are hard to detect.

- Linguistics experts identified Al-generated content correctly only 38.9% of the time.
- None of the 72 experts correctly identified all four writing samples given to them.

Deepfake of Text Content

Uranium: Neutron Production and Absorption
B. FOSTER and E. PERLMUTTER
U.S. House of Representatives, Washington, DC
(Received July 20, 2022)

It has been observed that there is a plentiful emanation of neutrons from uranium (U) under the activity of slow neutrons. It is important to determine whether and how much the quantity of neutrons discharged surpasses the number retained.

Our research team examined this phenomenon by setting a photograph neutron source in the focal point of an enormous tank of water and looking at the quantity of warm neutrons present in the water. The neutrons were examined with uranium added to the tank and without. In the past examinations of this kind, it was endeavored to have as intently as conceivable a roundly even dissemination of neutrons. The quantity of warm neutrons present in the not set in stone by estimating along one span the neutron thickness p as an element of the distance r from the middle, and afterward working out $\int r^2 p dr$. A distinction for uranium of around five percent was accounted for by von Halban, Joliot and Kovarski.

Since one needs to gauge a little distinction, slight deviations from a roundly balanced dissemination could give misdirecting results. The current investigations which depend on a similar general rule don't need such balance. To quantify the quantity of warm neutrons in the water we filled the tank with a 10% arrangement of manganese sulfate (MnSO4). The movement prompted in manganese is corresponding to the quantity of warm neutrons present. We performed a physical averaging by mixing the arrangement prior to estimating the movement of a sample with an ionization chamber. To acquire an impact of adequate extent, around 200 kg of triuranium octoxide (U3O8) was utilized.

A photograph neutron source was put in the focal point of the tank. Around 250 of beryllium (Be) and 2 g of radium (Ra) were added. All neutrons radiated by the source and by the triuranium octoxide were dialed back and retained inside the tank. Every illumination reached out north of a few half-life times of radiomanganese and the noticed movement of the arrangement was multiple times the foundation of the ionization chamber. Rotating estimations were taken with the jars loaded

AIGC vs. Human Writing

Trustworthy AI:

- Build trust and credibility in communication
- Avoid misuse of AI technology

Demand Tools:

Machine-generated text detector

Key Factors of Machine-Generated Text Detector

- Source models:
 - > What source models are supported by the detector?
 - Do we need samples for the source models for training?
 - > Do we need access to the model parameters and architectures?
- Languages: what languages are supported by the detector?
- Domains: what domains (like news, review, and paper) are supported by the detector?

Approach I: Trained Detector

For example:

OpenAI AI classifier: https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text

CrossPlag AI content detector: https://crossplag.com/ai-content-detector
CopyLeaks AI content detector: https://copyleaks.com/ai-content-detector

Approach I: Trained Detector

Issues:

- Model/domain/language-specific: the trained detector overfits the training data,
 which generally covers specific source models, domains, and languages.
- Limited dataset: the collected datasets are relatively limited compared to large scale pretraining corpus.
- **High cost**: collecting LLM generations cost money, and training detectors with a big dataset costs computational resources.

Approach II: Zero-Shot Detector

Benefits:

- No training: using a pre-trained model for the detection.
- Cover various domains and languages: the pre-trained models are usually trained on large amounts of data covering various domains and languages.

Approach II: Zero-Shot Detector - Likelihood

Likelihood:
$$\frac{1}{N} \sum_{j} \log p(x_j | x_{< j})$$

Intuition: If a text has a very high likelihood according to a certain model, it might be an indication that the text was generated by that model or a similar one.

Approach II: Zero-Shot Detector - DetectGPT

DetectGPT: $\mathbf{d}(x, p_{\theta}, q_{\varphi}) = \log p_{\theta}(x) - \mathbb{E}_{\tilde{x} \sim q_{\varphi}(\cdot|x)} [\log p_{\theta}(\tilde{x})]$

Hypothesis: Minor rewrites of model-generated text tend to have lower log probability under the model than the original sample, while minor rewrites of human-written text may have higher or lower log probability than the original sample.

Approach II: Zero-Shot Detector - DetectGPT

DetectGPT - Probability Curvature

Approach II: Zero-Shot Detector - DetectGPT

Detection process:

- 1) Perturb
- 2) Score
- 3) Compare

Approach II: Zero-Shot Detector - DetectGPT

Issues:

- Model specific: DetectGPT requires the source model to achieve accurate detection
 of the model-generated text.
- **Slow detection**: DetectGPT can provide good accuracy but slow execution because of multiple model/api calls.
- **Hight cost**: DetectGPT calls API service by hundred times to performance one detection, which costs a lot of computational resources or service budget.

CONTENTS

01 Background

02 Fast-DetectGPT

- 03 Experiments
- 04 Code and Demo

Key Features

- A zero-shot detector: no training
- Use pretrained LLM: robust across various domains and languages.
- Use fixed LLMs to detect various LLMs: robust across source models.
- Use small LLMs to detect large LLMs: reduce costs

Key Intuition

Hypothesis: Humans and machines tend to select different words during the text-generation process, with machines exhibiting a propensity for choosing words with higher model probabilities.

The hypothesis is **rooted in the fact** that LLMs, pre-trained on the largescale corpus, mirror **human collective writing behaviors** instead of **human individual writing behavior**, resulting in a discrepancy in their word choices given a context.

Conditional Probability Curvature

Figure 1: Distribution of *conditional probability curvatures* of the original human-written passages and the machine-generated passages by four source models on 30-token prefix from XSum.

Conditional Probability Function

Good properties:

- Input is fixed for sampling and scoring
- One forward pass to obtain predictive distribution
- Conditional independent sampling

$$p_{\theta}(\tilde{x}|x) = \prod_{j} p_{\theta}(\tilde{x}_{j}|x_{< j})$$

.VS.

Probability function:

torch.distributions.categorical.Categorical(logits=lprobs).sample([10000])
$$=\prod_i p_{ heta}(ilde{x}_j| ilde{x}_{< j})$$

DetectGPT

Conditional Probability Curvature

$$\mathbf{d}(x, p_{\theta}, q_{\varphi}) = \frac{\log p_{\theta}(x|x) - \tilde{\mu}}{\tilde{\sigma}},\tag{3}$$

where

$$\tilde{\mu} = \mathbb{E}_{\tilde{x} \sim q_{\varphi}(\tilde{x}|x)} \left[\log p_{\theta}(\tilde{x}|x) \right] \quad \text{and} \quad \tilde{\sigma}^2 = \mathbb{E}_{\tilde{x} \sim q_{\varphi}(\tilde{x}|x)} \left[\left(\log p_{\theta}(\tilde{x}|x) - \tilde{\mu} \right)^2 \right].$$
 (4)

VS.

$$\mathbf{d}(x, p_{\theta}, q_{\varphi}) = \log p_{\theta}(x) - \mathbb{E}_{\tilde{x} \sim q_{\varphi}(\cdot | x)} \left[\log p_{\theta}(\tilde{x}) \right]$$

Detection Process

CONTENTS

01 Background

02 Fast-DetectGPT

03 Experiments

04 Code and Demo

Task Settings

The White-Box Setting:

We have the privilege of accessing the possible source model. We use the source model to aid in scoring the candidate passage to inform the classification decision in the setting.

The Black-Box Setting:

We operate without access to the source model. Instead, we rely on surrogate models to score the passage.

Settings – Source Models

Model	Model File/Service	Parameters	Training Corpus
mGPT (Shliazhko et al., 2022)	sberbank-ai/mGPT	1.3B	Wikipedia and Colossal Clean Crawled corpus.
GPT-2 (Radford et al., 2019)	gpt2-xl	1.5B	English WebText without Wikipedia.
PubMedGPT (Bolton et al., 2022)	stanford-crfm/pubmedgpt	2.7B	Biomedical abstracts and papers from the Pile.
OPT-2.7 (Zhang et al., 2022)	facebook/opt-2.7b	2.7B	A larger dataset including the Pile.
Neo-2.7 (Black et al., 2021)	EleutherAI/gpt-neo-2.7B	2.7B	The Pile (Gao et al., 2020).
GPT-J (Wang & Komatsuzaki, 2021)	EleutherAI/gpt-j-6B	6B	The Pile (Gao et al., 2020).
BLOOM-7.1 (Scao et al., 2022)	bigscience/bloom-7b1	7.1B	ROOTS corpus (Laurençon et al., 2022).
OPT-13 (Zhang et al., 2022)	facebook/opt-13b	13B	A larger dataset including the Pile.
Llama-13 (Touvron et al., 2023a)	huggyllama/llama-13b	13B	CommonCrawl, C4, Github, Wikipedia, Books,
Llama2-13 (Touvron et al., 2023b)	TheBloke/Llama-2-13B-fp16	13B	A new mix of publicly available online data.
NeoX (Black et al., 2022)	EleutherAI/gpt-neox-20b	20B	The Pile (Gao et al., 2020).
GPT-3 (Brown et al., 2020)	OpenAI/davinci	175B	CommonCrawl, WebText, English Wikipedia,
ChatGPT (OpenAI, 2022)	OpenAI/gpt-3.5-turbo	175B	CommonCrawl, WebText, English Wikipedia,
GPT-4 (OpenAI, 2023)	OpenAI/gpt-4	NA	NA

Settings – Datasets

Datasets:

- XSum (news), WritingPrompt (story), SQuAD (wikipedia), PubMedQA (technical)
- WMT16 English and German

1:1 positive and negative samples, where a machine-generated text is generated by the source model using the first 30 tokens of human-written text as the prefix.

machine-

applied to

the *black*-

s are aver-

where the

Overview

Method	5-Model Generations ↑	ChatGPT/GPT-4 Generations ↑	Speedup ↑
DetectGPT	0.9554	0.7225	1x
Fast-DetectGPT	0.9887 (relative↑ 74.7%)	0.9338 (relative↑ 76.1%)	340x

Table 1: Determined text the methods door setting (ut aged from data

DetectGPT uses GPU batch processing, splitting 100 perturbations into 10 batches. DetectGPT costs about 22 hours in five runs against five open-source models, while Fast-DetectGPT only costs 4 minutes.

'relative†' is calculated by (new - ota)/(1.0 - ota), representing now much improvement has been made relative to the maximum possible improvement. Speedup assessments were conducted using the XSum news dataset, with computations on a Tesla A100 GPU.

5-Model Generations – The White-Box Setting

Method	GPT-2	OPT-2.7	Neo-2.7	GPT-J	NeoX	Avg.		
The White-Box Setting								
Likelihood	0.9125	0.8963	0.8900	0.8480	0.7946	0.8683		
Entropy	0.5174	0.4830	0.4898	0.5005	0.5333	0.5048		
LogRank	0.9385	0.9223	0.9226	0.8818	0.8313	0.8993		
LRR	0.9601	0.9401	0.9522	0.9179	0.8793	0.9299		
DNA-GPT ♦	0.9024	0.8797	0.869	0.8227	0.7826	0.8513		
NPR ♦	0.9948†	0.9832†	0.9883	0.9500	0.9065	0.9645		
DetectGPT (T5-3B/*) \Diamond	0.9917	0.9758	-0.9797	0.9353	0.8943	0.9554		
Fast-DetectGPT (*/*)	0.9967	0.9908	0.9940†	0.9866	0.9754	0.9887		
(Relative↑)	60.2%	62.0%	70.4%	79.3%	76.7%	74.7%		
The Black-Box Setting								
DetectGPT (T5-3B/Neo-2.7) ♦	0.8517	0.8390	0.9797	0.8575	0.8400	0.8736		
Fast-DetectGPT (GPT-J/Neo-2.7)	0.9834	0.9572	0.9984	0.9592†	0.9404†	0.9677†		
(Relative↑)	88.8%	73.4%	92.1%	71.4%	62.8%	74.5%		

5-Model Generations – The Black-Box Setting

Method	GPT-2	OPT-2.7	Neo-2.7	GPT-J	NeoX	Avg.		
The White-Box Setting								
Likelihood	0.9125	0.8963	0.8900	0.8480	0.7946	0.8683		
Entropy	0.5174	0.4830	0.4898	0.5005	0.5333	0.5048		
LogRank	0.9385	0.9223	0.9226	0.8818	0.8313	0.8993		
LRR	0.9601	0.9401	0.9522	0.9179	0.8793	0.9299		
DNA-GPT ♦	0.9024	0.8797	0.869	0.8227	0.7826	0.8513		
NPR ♦	0.9948†	0.9832†	0.9883	0.9500	0.9065	0.9645		
DetectGPT (T5-3B/ $*$) \Diamond	0.9917	-0.9758	$-\ \overline{0}.\overline{9}7\overline{9}7^{-}$	0.9353	0.8943	0.9554		
Fast-DetectGPT (*/*)	0.9967	0.9908	0.9940†	0.9866	0.9754	0.9887		
(Relative↑)	60.2%	62.0%	70.4%	79.3%	76.7%	74.7%		
The Black-Box Setting								
DetectGPT (T5-3B/Neo-2.7) \diamondsuit	0.8517	0.8390	0.9797	0.8575	0.8400	0.8736		
Fast-DetectGPT (GPT-J/Neo-2.7)	0.9834	0.9572	0.9984	0.9592†	0.9404†	0.9677†		
(Relative↑)	88.8%	73.4%	92.1%	71.4%	62.8%	74.5%		

ChatGPT / GPT-4 Generations – The Black-Box Setting

Modhad	ChatGPT			GPT-4				
Method	XSum	Writing	PubMed	Avg.	XSum	Writing	PubMed	Avg.
RoBERTa-base	0.9150	0.7084	0.6188	0.7474	0.6778	0.5068	0.5309	0.5718
RoBERTa-large	0.8507	0.5480	0.6731	0.6906	0.6879	0.3821	0.6067	0.5589
GPTZero	0.9952	0.9292	0.8799	0.9348	0.9815	0.8262	0.8482	0.8853
Likelihood (Neo-2.7)	0.9578	0.9740	0.8775	0.9364	0.7980	0.8553	0.8104	0.8212
Entropy (Neo-2.7)	0.3305	0.1902	0.2767	0.2658	0.4360	0.3702	0.3295	0.3786
LogRank(Neo-2.7)	0.9582	0.9656	0.8687	0.9308	0.7975	0.8286	0.8003	0.8088
LRR (Neo-2.7)	0.9162	0.8958	0.7433	0.8518	0.7447	0.7028	0.6814	0.7096
DNA-GPT (Neo-2.7)	0.9124	0.9425	0.7959	0.8836	0.7347	0.8032	0.7565	0.7648
NPR (T5-11B/Neo-2.7)	0.7899	0.8924	0.6784	0.7869	0.5280	0.6122	0.6328	0.5910
DetectGPT (T5-11B/Neo-2.7)	0.8416	0.8811	0.7444	0.8223	0.5660	0.6217	0.6805	0.6228
Fast-Detect (GPT-J/Neo-2.7)	0.9907	0.9916	0.9021	0.9615	0.9067	0.9612	0.8503	0.9061
(Relative ↑)	94.1%	92.9%	61.7%	78.3%	78.5%	89.7%	53.1%	75.1%

^{*} Only the black-box setting

GPT-3 Generations – The Black-Box and White-Box Setting

Method	XSum	WritingPrompts	PubMedQA	Avg.
RoBERTa-base	0.8986	0.9282	0.6370	0.8212
RoBERTa-large	0.9325	0.9113	0.6894	0.8444
GPTZero	0.4860	0.6009	0.4246	0.5038
Likelihood (GPT-3) ♦	0.76	0.87	0.64	0.76
DetectGPT (T5-11B/GPT-3) ♦	0.84	0.87	0.84	0.85
Likelihood (Neo-2.7)	0.8307	0.8496	0.5668	0.7490
Entropy (Neo-2.7)	0.3923	0.3049	0.5358	0.4110
LogRank(Neo-2.7)	0.8096	0.8320	0.5527	0.7314
LRR (Neo-2.7)	0.6687	0.7410	0.4917	0.6338
DNA-GPT (Neo-2.7)	0.8209	0.8354	0.5761	0.7441
NPR (T5-11B/Neo-2.7)	0.8032	0.7847	0.6342	0.7407
DetectGPT (T5-11B/GPT-2)	0.8043	0.7699	0.6915	0.7552
DetectGPT (T5-11B/Neo-2.7)	0.8455	0.7818	0.6977	0.7750
DetectGPT (T5-11B/GPT-J)	0.8261	0.7666	0.6644	0.7524
Fast-DetectGPT (GPT-J/GPT-2)	0.9137	0.9533*	0.7589* -	0.8753
Fast-DetectGPT (GPT-J/Neo-2.7)	0.9396	0.9492	0.7225	0.8704*
Fast-DetectGPT (GPT-J/GPT-J)	0.9329*	0.9568	0.6664	0.8520

Usability Analysis

Low False Alarm, High Recall

False alarm: 1%

Recall on ChatGPT:

• Fast-Detect: 87%

DetectGPT: 6%

Recall on GPT-4:

• Fast-Detect: 44%

DetectGPT: 0%

Figure 3: ROC curves in log scale evaluated on stories (WritingPrompts), where the dash lines denote the random classifier.

Usability Analysis

Robustness across Domains and Languages

Figure 5: Compare with supervised detectors, evaluated in AUROC. We generate 200 test samples for each dataset and source model.

Usability Analysis

Robustness on Different Passage Lengths

Figure 4: Detection accuracy (AUROC) on story passages (WritingPrompts) truncated to target number of words.

CONTENTS

01 Background

02 Fast-DetectGPT

03 Experiments

04 Code and Demo

Github

https://github.com/bao guangsheng/fast-detectgpt

exp_gpt3to4/data	remove pii and fix path.	5 months ago
exp_main/data	generated data for main exper	5 months ago
local_infer_ref	reference distribution for local	5 months ago
scripts	Update local_infer.py	3 months ago
LICENSE	Initial commit	8 months ago
☐ README.md	Update README.md	3 weeks ago
attack.sh	entry scripts for experiments	5 months ago
gpt3to4.sh	add additional baselines	4 months ago
main.sh	add additional baselines	4 months ago
main_ext.sh	entry scripts for experiments	5 months ago
	View all files	

Local Demo

python scripts/local_infer.py

Please enter your text: (Press Enter twice to start processing)

Input passage

Disguised as police, they broke through a fence on Monday evening and broke into the cargo of a Swiss-bound plane to take the valuable items. The audacious heist occurred at an airport in a small European country, leaving authorities baffled and airline officials in shock.

Output result

Fast-DetectGPT criterion is 1.9299, suggesting that the text has **a** probability of 87% to be fake.

Deepfake of Text Content

Uranium: Neutron Production and Absorption
B. FOSTER and E. PERLMUTTER
U.S. House of Representatives, Washington, DC
(Received July 20, 2022)

It has been observed that there is a plentiful emanation of neutrons from uranium (U) under the activity of slow neutrons. It is important to determine whether and how much the quantity of neutrons discharged surpasses the number retained.

Our research team examined this phenomenon by setting a photograph neutron source in the focal point of an enormous tank of water and looking at the quantity of warm neutrons present in the water. The neutrons were examined with uranium added to the tank and without. In the past examinations of this kind, it was endeavored to have as intently as conceivable a roundly even dissemination of neutrons. The quantity of warm neutrons present in the not set in stone by estimating along one span the neutron thickness p as an element of the distance r from the middle, and afterward working out $\int r^2 p dr$. A distinction for uranium of around five percent was accounted for by von Halban, Joliot and Kovarski.

Since one needs to gauge a little distinction, slight deviations from a roundly balanced dissemination could give misdirecting results. The current investigations which depend on a similar general rule don't need such balance. To quantify the quantity of warm neutrons in the water we filled the tank with a 10% arrangement of manganese sulfate (MnSO4). The movement prompted in manganese is corresponding to the quantity of warm neutrons present. We performed a physical averaging by mixing the arrangement prior to estimating the movement of a sample with an ionization chamber. To acquire an impact of adequate extent, around 200 kg of triuranium octoxide (U3O8) was utilized.

A photograph neutron source was put in the focal point of the tank. Around 250 of beryllium (Be) and 2 g of radium (Ra) were added. All neutrons radiated by the source and by the triuranium octoxide were dialed back and retained inside the tank. Every illumination reached out north of a few half-life times of radiomanganese and the noticed movement of the arrangement was multiple times the foundation of the ionization chamber. Rotating estimations were taken with the jars loaded

AIGC vs. Human Writing

Trustworthy AI:

- Build trust and credibility in communication
- Avoid misuse of AI technology

Demand Tools:

Machine-generated text detector

Zero-Shot Detector - DetectGPT

Issues:

- Model specific: DetectGPT requires the source model to achieve accurate detection
 of the model-generated text.
- **Slow detection**: DetectGPT can provide good accuracy but slow execution because of multiple model/api calls.
- **Hight cost**: DetectGPT calls API service by hundred times to performance one detection, which costs a lot of computational resources or service budget.

Fast-DetectGPT:

- A zero-shot detector: no training
- Use pretrained LLM: robust across various domains and languages.
- Use fixed LLMs to detect various LLMs: robust across source models.
- Use small LLMs to detect large LLMs: reduce costs

Key Achievements

Additionally, Fast-DetectGPT outperforms commercial GPTZero.

Thank you!

Connect and further communicate.

知乎: 西湖老博士

Twitter: @gshbao

