

BINARY ARITASSIGNMENT Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Bernhard Kainz (with thanks to A. Gopalan, N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

Binary Arithmetic

Unsigned

· Addition, Suntagition Multiplication to Addition to Addi

Signed

https://tutorcs.com

- Two's Complement Addition, Subtraction, Multiplication and Division
 - Chosen because of its widespread use

Binary Arithmetic

- Couple of definitions
 - · Subtrahend Aversagia havingt subtrigeted Exam Help
 - · Minuend: what it but project from

- Example: 612 485 = 127
- 485 is the subtrahend, 612 is the minuend, 127 is the result

Binary Addition – Unsigned

- Reasonably straight forward
- Example: Perform the binary addition 111011 + 101010
 Assignment Project Exam Help

Carry		1	1	1		1		
		ittps	://tu	tores	CO1	n		
Α		P =	1	1	1	0	1	1
	_							
В		WeC	hat:	cstu	torc	S 0	1	0
Sum		1	1	0	0	1	0	1
Step		7	6	5	4	3	2	1

In Decimal: 59 + 42 = 101

Binary Subtraction – Unsigned

- Reasonably straight forward as well ©
- Example: Perform the binary subtraction 1010101 11100

ASS	ign	mer	nt D	10 CO1C	ct _o E	xar	n H	elp
A		1	0	1	0	1	0	1
В	b ++	5 0./	/4-14	1	1	1	0	0
Diff	Htt	p 5./	/ tut	DIACS	1.GO	110	0	1
Step		7	6	5	4	3	2	1

Ak- BW Pitchat: cstutorcs
1-0=1 Condt. Cstatores
0 - 0 = 0
1 – 1 = 0
$0-1$ Borrow by subtracting 1 from $A_{75}=101$ to
give $A'_{75}=100 \text{ and } A'_{4}=10.$
Now use A' instead of A, e.g. $A'_4 - B_4$
10 – 1 =1
0 – 1 Subtract 1 from A' _{7,6} =10 to give A'' _{7,6}
=01, A" ₅ = 10.
Now use A" instead of A', e.g. A" ₅ – B ₅
10 – 1 =1
10 - 1 = 1 1 - 0 = 1 i.e. A" ₆ – B ₆
$1 - 0 = 1$ i.e. $A_6 - B_6$

Binary Multiplication – Unsigned

• Example: Perform the binary multiplication 11101 x 111

Assignment Project Exam Help

A	44.0	//4-	1404	1	1	1	0	1
В	ittps	:://t t	ItOI	cs.c	OHĻ	1	1	1
	XI.	7h 04	• 000	1	1	1	0	1
	Ve(Hat	. C\$	tuto	rcs ₁	0	1	
		1	1	1	0	1		
Answer	1	1	0	0	1	0	1	1
Carry	1	10	10	1	1			

Binary Division – Unsigned

- Recall:
 - Division is: Aissi gruntient remainder oject Exam Help
 - Or: dividend = quotient to sor/tutones.com
 - Left as an exercise Chat: cstutorcs
 - Can use long division

Binary Arithmetic – Signed

Two's complement Arithmetic because of it's widespread use

- Recall Assignment Project Exam Help
 - Addition and subtraction in two growns without having a separate sign bit

- Overflow
 - Result of an arithmetic operation is too large or too small to fit into the resultant bit-group (E.g.: 9 can't fit into 4-bits in Two's complement)
 - Normally left to programmer to deal with this situation

Two's Complement – Addition

Add the values and discard any carry-out bit

• Example: Adds i atomental Recipe and Example bit two's complement https://tutorcs.com

(+3)	00000011	nat: c	stut	Orcs 111	1110	
+(-8)	1111 1000		+(-5)	1111	1011	
(-5)	1111 1011		(-7)	1 1111	1001	
				↑ Disca	ard Cai	rry-Out

Two's Complement – Addition

- Overflow
 - Occurs if and solgifatent's Projectent and they both have the same sign (both positive or both negative) and the result has the positive or both negative) and
 - Adding two positive numbers must give a positive result
 - Adding two negative result
 - Never occurs when adding operands with different signs
 - E.g.
 - (+A) + (+B) = -C
 - (-A) + (-B) = +C

Two's Complement – Addition

Overflow

• Example: Using ighin whis Projetementanum barth $-8 \le x \le +7$), calculate (-7) + (-6)

https://tutorcs.com

W	e(1981	t:	cstuto	rcs
+(-		1010			
6)					
(+3)	1	0011	'	"Overflow"	
					l

Two's Complement – Subtraction

- Accomplished by negating the subtrahend and adding it to the minuend
 - · Any carry-out bit is rdiscarded roject Exam Help
- Example: Calculateps://tologiageme-bit two's complement representation • Recall: $8-5 \rightarrow 8 + (-5)$ WeChat: cstutorcs

(+8)	0000 1000		0000 1000
-(+5)	0000 0101	-> Negate ->	+ 1111 1011
(+3)			1 0000 0011
			♠ Discard

Two's Complement – Subtraction

- Overflow
 - Occurs if and soly in antwots Project mentaum berspare subtracted, and their signs are different, and the result has the same sign as the subtrahend https://tutorcs.com
 - E.g.

- (+A) (-B) = -C
- (-A) (+B) = +C

Two's Complement – Subtraction

Overflow

• Example: Using ighin whis Pronjetementanum blash $-8 \le x \le +7$), calculate 7 - (-6)

https://tutorcs.com

V	Ve(+7)	o111 lationestutores

(+7)	0111
-(-6)	0110 (Negated)
(-3)	1101 "Overflow"

Two's Complement – Summary

- Addition
 - Add the values, discarding any carry-out bit

Assignment Project Exam Help

- Subtraction
 - Negate the subtracted and the subtraction of the subtract

Overflow

- Adding two positive numbers produces a negative result
- Adding two negative numbers produces a positive result
- Adding operands of unlike signs never produces an overflow
- Note discarding the carry out of the most significant bit during Two's Complement addition is a normal occurrence, and does not by itself indicate overflow

Two's Complement – Multiplication and Division

- Cannot be accomplished using the standard technique
- Example: considerix ent_Project Exam Help
 - Two's complement of -Y is $2^n-Y X^*$ (Y) = X * $(2^n-Y) = 2^nX XY$ WeChat: cstutorcs
 - Expected result should be 2²ⁿ XY

Signed multiplication

- Booth's multiplication algorithm
- Let m and r be the multiplicand and multiplier, respectively; and let x and y represent the number of bits in m and r.
- Determine the values of A and S, and the initial value of P. All of these numbers should have a least signal to ent Project Exam Help
 - A: Fill the most significant (leftmost) bits with the value of \mathbf{m} . Fill the remaining (y + 1) bits with zeros.
 - S: Fill the most significant hit with the value of (s.m.) in two's complement notation. Fill the remaining (y + 1) bits with zeros.
 - P: Fill the most significant x bits with zeros. To the right of this, append the value of r. Fill the least significant (rightmost) bit with a zero.
- least significant (rightmost) bit with a zero.

 Determine the two least significant (rightmost) bits of P.
 - If they are 01, find the value of P + A. Ignore any overflow.
 - If they are 10, find the value of P + S. Ignore any overflow.
 - If they are 00, do nothing. Use *P* directly in the next step.
 - If they are 11, do nothing. Use *P* directly in the next step.
- Arithmetically shift the value obtained in the 2nd step by a single place to the right. Let P now equal this new value.
- Repeat steps 2 and 3 until they have been done y times.
- Drop the least significant (rightmost) bit from P. This is the product of m and r.

Booth's multiplication example

- Find $3 \times (-4)$, with **m** = 3 and **r** = -4, and x = 4 and y = 4:
- m = 0011, -m = 1101, r = 1100
- A = 0011 0000 0
- S = 1101 000 ssignment Project Exam Help
- P = 0000 1100 0
- Perform the loop for loop for the loop for loop for the loop for the loop for the loop for the loop for the
 - $P = 0000 \ 1100 \ 0$. The last two bits are 00.
 - P = 0000 0110 0. With well a tight still torcs
 - $P = 0000 \ 0110 \ 0$. The last two bits are 00.
 - P = 0000 0011 0. Arithmetic right shift.
 - P = 0000 001**1 0**. The last two bits are 10.
 - P = 1101 0011 0. P = P + S.
 - P = 1110 1001 1. Arithmetic right shift.
 - P = 1110 100**1 1**. The last two bits are 11.
 - P = 1111 0100 1. Arithmetic right shift.
- The product is 1111 0100, which is −12.

Two's Complement – Multiplication and Division

• Can perform multiplication and division by converting the two's complement numbers to their absolute values and then negate the result if the signs of the personds are different

https://tutorcs.com

 Most architectures implement more sophisticated algorithms (Booth's multiplication algorithm, Wallace tree, Dadda multiplier)