Gerichtete Graphen

Nico Pistel

Diskrete Mathematik und Stochastik, 2019

Fachbereich Wirtschaft und Informationstechnik Westfälische Hochschule Bocholt

Outline

First Main Section

First Subsection

Second Subsection

Topologisches Sortieren

Beispiel: Topologisches Sortieren

Kahn's Algorithmus

Wege in Digraphen

Wege als transitiver Abschluss der Kantenrelation

Warshall's Algorithmus

Kürzeste Wege

Dijkstra's Algorithmus

First Main Section

First Slide Title

- My first point.
- My second point.

• First item.

- First item.
- Second item.

- First item.
- Second item.
- Third item.

- First item.
- Second item.
- Third item.
- Fourth item.

- First item.
- Second item.
- Third item.
- Fourth item.
- Fifth item.

- First item.
- Second item.
- Third item.
- Fourth item.
- Fifth item. Extra text in the fifth item.

Topologisches Sortieren

Beispiel: Topologisches Sortieren

Beispiel: Topologisches Sortieren

Kahn's Algorithmus

jo

i	v	A(v)
	Α	
	B C	
	D	
	Ε	
	F	
	G	
	Н	

i	v	A(v)
	Α	{H}
	B C	
	D	
	Ε	
	F	
	F G	
	Н	

i	v	A(v)
	Α	{H}
	В	Ø
	B C	
	D	
	Ε	
	F	
	G	
	Н	

i	v	A(v)
	Α	{H}
	В	Ø
	B C	Ø
	D	
	Ε	
	F	
	G	
	Н	

i	v	A(v)
	Α	{H}
	В	Ø
	B C	Ø
	D	Ø
	Ε	
	F	
	G	
	Н	

i	v	A(v)
	Α	{H}
	В	Ø
	C	Ø
	D	Ø
	Ε	{B, D}
	F	
	G	
	Н	

i	v	A(v)
	Α	{H}
	В	Ø
	C	Ø
	D	Ø
	Ε	$\{B,D\}$
	F	$\{E,H\}$
	G	
	Н	

i	v	A(v)
	Α	{H}
	В	Ø
	C	Ø
	D	Ø
	Ε	{B, D}
	F	{E, H}
	G	{B, H}
	Н	

i	v	A(v)
	Α	{H}
	В	Ø
	С	Ø
	D	Ø
	Ε	$\{B,D\}$
	F	$\{E,H\}$
	G	$\{B,H\}$
	Н	$\{C,D\}$

i	v	A(v)
	Α	{H}
	В	Ø
	C	Ø
	D	Ø
	Ε	$\{B,D\}$
	F	$\{E,H\}$
	G	$\{B,H\}$
	Н	$\{C,D\}$

В			

i	v	A(v)
	Α	{H}
1	В	Ø
	C	Ø
	D	Ø
	Ε	$\{B,D\}$
	F	$\{E,H\}$
	G	$\{B,H\}$
	Н	$\{C,D\}$

i	v	A(v)
	Α	{H}
1	В	Ø
	C	Ø
	D	Ø
	Ε	$\{ \not \! B, \mathsf D \}$
	F	{E, H}
	G	{Ø, H}
	Н	{C, D}

(B)			

i	v	A(v)
	Α	{H}
1	В	Ø
	С	Ø
	D	Ø
	Ε	$\{\not\! B,\mathsf D\}$
	F	$\{E,H\}$
	G	$\{\not\! B,H\}$
	Н	$\{C,D\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	С	Ø
	D	Ø
	Ε	$\{\not\! B,\mathsf D\}$
	F	$\{E,H\}$
	G	$\{\not\! B,H\}$
	Н	$\{C,D\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	C	Ø
	D	Ø
	Ε	$\{\not\! B,D\}$
	F	$\{E,H\}$
	G	$\{\not\! B,H\}$
	Н	$\{\mathcal{L},D\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	С	Ø
	D	Ø
	Ε	$\{\not\! B,\mathsf D\}$
	F	$\{E,H\}$
	G	$\{\not\! B,H\}$
	Н	$\{\mathcal{L},D\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	С	Ø
3	D	Ø
	Ε	$\{\not\! B,\mathsf D\}$
	F	$\{E,H\}$
	G	$\{\not\! B,H\}$
	Н	$\{\mathcal{L},D\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	С	Ø
3	D	Ø
	Ε	$\{\not\! B,\not\!\! D'\}$
	F	$\{E,H\}$
	G	$\{ \not \! B, H \}$
	Н	$\{\mathcal{L},\mathcal{D}'\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	C	Ø
3	D	Ø
	Е	$\{ \not \! B, \not \! D \}$
	F	$\{E,H\}$
	G	$\{ \not \! B, H \}$
	Н	$\{\mathscr{C}, \mathscr{D}'\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	C	Ø
3	D	Ø
4	Е	$\{ \not \! B, \not \! D \}$
	F	$\{E,H\}$
	G	$\{ \not \! B, \mathsf H \}$
	Н	$\{\mathscr{C}, \mathscr{D}\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	С	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D \}$
	F	$\{\cancel{E},H\}$
	G	$\{ \not \! B, \mathsf H \}$
	Н	$\{\mathscr{C}, \mathscr{D}'\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	С	Ø
3	D	Ø
4	Ε	$\{\cancel{\mathbb{B}},\cancel{\mathbb{D}}\}$
	F	$\{\cancel{E},H\}$
	G	$\{\not\! B,H\}$
	Н	$\{\mathcal{L},\mathcal{D}\}$

i	v	A(v)
	Α	{H}
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D' \}$
	F	$\{\cancel{E},H\}$
	G	$\{\not\! B,H\}$
5	Н	$\{\mathcal{C},\mathcal{D}\}$

i	v	A(v)
	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D' \}$
	F	$\{E, H\}$
	G	$\{\mathcal{B},\mathcal{H}\}$
5	Н	$\{\mathcal{L},\mathcal{D}\}$

i	v	A(v)
	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D \}$
	F	$\{E,H\}$
	G	$\{\mathbb{B},\mathbb{H}\}$
5	Н	$\{\mathcal{L},\mathcal{D}\}$

i	v	A(v)
6	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{\not\! B,\not\!\! D'\}$
	F	$\{ \cancel{E}, \cancel{H} \}$
	G	$\{\mathbb{B},\mathbb{H}\}$
5	Н	$\{\mathcal{L},\mathcal{D}'\}$

		1
i	v	A(v)
6	Α	$\{\mathbb{H}\}$
1	В	Ø
2	C	Ø
3	D	Ø
4	Е	$\{\not\! B,\not\!\! D'\}$
	F	$\{E,H\}$
	G	$\{\mathcal{B},\mathcal{H}\}$
5	Н	$\{\mathscr{C}, \not\!\!D'\}$

i	v	A(v)
6	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D' \}$
7	F	$\{E, H\}$
	G	$\{\mathcal{B},\mathcal{H}\}$
5	Н	$\{\mathscr{C}, \mathscr{D}\}$

		ı
i	v	A(v)
6	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D \}$
7	F	$\{\cancel{E},\cancel{H}\}$
	G	$\{\mathbb{B},\mathbb{H}\}$
5	Н	$\{\mathscr{C}, \not\!\!\!D'\}$

i	v	A(v)
6	Α	{ M }
1	В	Ø
2	C	Ø
3	D	Ø
4	Ε	$\{ \not\! B, \not\!\! D' \}$
7	F	$\{E, H\}$
8	G	$\{\mathcal{B},\mathcal{H}\}$
5	Н	$\{\mathcal{C},\mathcal{D}'\}$

Wege in Digraphen

Wege in Digraphen

- Existenz von Wegen zwischen beliebigen Knoten
- ullet Adjazenzmatrix $\mathbf{M} \longrightarrow \mathsf{Erreichbarkeitsmatrix} \ \mathbf{M}^*$
- ullet Kantenrelation $E\longrightarrow {\sf transitiver\ Abschluss\ } E^*$

Wege als transitiver Abschluss der Kantenrelation

- Kantenrelation E: Menge von Wegen der Länge 1 zwischen Knoten
- ullet Menge von Wegen der Länge 2 als Komposition von E mit sich selber:

$$E \circ E = \{(v_1, v_2) \in V^2 | \exists u \in V : (v_1, u) \in E \land (u, v_2) \in E\}$$

- Menge von Wegen einer Länge k: $\underbrace{E \circ \cdots \circ E}_{k \text{ mal}}$
- Transitiver Abschluss als Vereinigung dieser Mengen:

$$E^* = E \cup E \circ E \cup \cdots \cup \underbrace{E \circ \cdots \circ E}_{n \text{ mal}}$$

Potenzieren der Adjazenzmatrix

- Komposition von E als logisches Matrixprodukt der Adjazenzmatrix ${\bf M}$
- Weitere Komposition durch das Potenzieren von M
- Vereinigen der Mengen durch das logische oder der Matrizen
- Logisches oder zweier Matrizen wird komponentenweise gebildet
 - $\bullet \ (\mathbf{A} \vee \mathbf{B})_{ij} = \mathbf{A}_{ij} \vee \mathbf{B}_{ij}$

Berechnung der Erreichbarkeitsmatrix M*

$$\mathbf{M}^* = \mathbf{M} \vee \mathbf{M}^2 \vee \dots \vee \mathbf{M}^n$$

Beispiel: Potenzieren der Adjazenzmatrix

$$= \begin{bmatrix} A & B & C & D \\ A & 0 & 0 & 0 & 1 \\ C & 1 & 0 & 1 & 1 \\ C & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{3} = \begin{bmatrix} \mathbf{A} & 1 & 0 & 0 & 0 \\ \mathbf{B} & 1 & 0 & 1 & 1 \\ \mathbf{C} & 0 & 0 & 1 & 0 \\ \mathbf{D} & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}^{3} = \begin{bmatrix} A & \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{M}^{4} = \begin{bmatrix} A & \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{M}^* = \begin{bmatrix} A & B & C & D \\ A & 1 & 0 & 1 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & 1 & 0 & 1 & 1 \\ D & 1 & 0 & 1 & 1 \end{bmatrix}$$

Warshall's Algorithmus

- Matrixmultiplikation ist aufwändig
 - Berechnen der Potenzen bei Graphen mit vielen Knoten ist problematisch
- ullet Warshall ermittelt ${f M}^*$ in Worst-Case $\Theta(n^3)$ Zeit
- Warshall's Algorithmus arbeitet In-Place
 - M wird iterativ in M* überführt
- ullet Warshall erzeugt Matrizen $\mathbf{W}_0, \mathbf{W}_1, \dots, \mathbf{W}_n$
 - ullet Wobei $\mathbf{W}_0 = \mathbf{M}$ und $\mathbf{W}_n = \mathbf{M}^*$
- $\mathbf{W}_k[i,j]=1 \Longleftrightarrow$ Es existiert ein Weg von v_i nach v_j , wobei alle Zwischenknoten $\in \{v_1,v_2,\ldots,v_k\}$ sind

Pseudocode: Warshall's Algorithmus

Algorithm 1 Warshall's Algorithmus

```
1: function Warshall(M)
 2:
       W \leftarrow M
   for k=1 to n do
 3.
           for i = 1 to n do
 4:
              if W[i,k] then
 5:
                  for j = 1 to n do
 6:
                      W[i,j] \leftarrow W[i,j] \lor W[k,j]
 7:
                  end for
 8:
               end if
 9:
           end for
10:
       end for
11:
       return W
12:
13: end function
```


$$\mathbf{W}_4 = egin{array}{c} \mathsf{A} & \mathsf{B} & \mathsf{B} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{array}$$

 $\mathbf{W}_4 = egin{bmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{C}$

$$\mathbf{W}_4 = \left[egin{array}{cccccc} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} & \mathsf{C} \end{array} \right]$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} A & B & C & D \\ B & C & D \\ C & D & D \end{bmatrix}$$

$$\mathbf{W}_4 = \left[egin{array}{c} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} & \mathsf{D} \end{array} \right]$$

$$\mathbf{W}_4 = \left[egin{array}{c} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} \end{array} \right]$$

$$\mathbf{W}_4 = \begin{bmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} A & B & C & D \\ B & C & D \\ C & D & C \end{bmatrix}$$

$$\mathbf{W}_3 = \begin{bmatrix} \mathsf{B} & \mathsf{C} & \mathsf{C} \\ \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \end{bmatrix}$$

$$\begin{array}{ccccc}
0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}$$

$$\begin{bmatrix}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1
\end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{C} \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{W}_4 = \left[egin{array}{c} \mathsf{A} \ \mathsf{B} \ \mathsf{C} \ \mathsf{D} \end{array}
ight]$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{W}_4 = \left[egin{array}{ccccc} & \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ & \mathsf{A} & & & & & \\ & \mathsf{B} & & & & \\ & \mathsf{C} & & & & \\ & \mathsf{D} & & & & & \end{array} \right]$$

$$\mathbf{W}_4 = \left[egin{array}{cccccc} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{array}
ight]$$

$$\mathbf{W}_4 = \left[egin{array}{ccccc} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{array} \right]$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{D} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$\mathbf{r}_{2} = \begin{bmatrix} A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & D & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{W}_3 = \begin{bmatrix} A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & 1 & 0 & 0 & 1 \\ D & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$T_2 = \begin{bmatrix} A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & D & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_3 = \begin{bmatrix} \mathsf{B} & \mathsf{I} & \mathsf{0} & \mathsf{I} & \mathsf{I} \\ \mathsf{C} & \mathsf{I} & \mathsf{0} & \mathsf{0} & \mathsf{I} \\ \mathsf{I} & \mathsf{0} & \mathsf{0} & \mathsf{I} \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{B} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{C} & \mathsf{D} & \mathsf{D} \end{bmatrix}$$

$$V_2 = egin{array}{c} \mathsf{A} \\ \mathsf{B} \\ \mathsf{C} \\ \mathsf{D} \end{array} egin{array}{c} \mathsf{0} & \mathsf{0} & \mathsf{0} & \mathsf{1} \\ \mathsf{1} & \mathsf{0} & \mathsf{1} & \mathsf{1} \\ \mathsf{1} & \mathsf{0} & \mathsf{0} & \mathsf{1} \\ \mathsf{0} & \mathsf{0} & \mathsf{1} & \mathsf{0} \end{array}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$V_3 = egin{array}{c|c} \mathsf{B} & 1 & 0 & 1 & 1 \\ \mathsf{C} & 1 & 0 & 0 & 1 \\ \hline \mathsf{D} & 1 & 0 & 1 & 1 \\ \hline \end{array}$$

$$\mathbf{W}_4 = \begin{bmatrix} A & B & C & D \\ A & B & C & D \end{bmatrix}$$

$$\mathbf{W}_1 = \begin{bmatrix} \mathbf{B} & 1 & 0 & 1 & 1 \\ \mathbf{C} & 1 & 0 & 0 & 1 \\ \mathbf{D} & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_3 = \begin{bmatrix} \mathsf{B} & \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & & 1 & 0 & 1 & 1 \\ \mathsf{C} & & & & \\ \mathsf{D} & & & & & \end{bmatrix}$$

$$\mathbf{W}_4 = egin{pmatrix} \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{1} & \mathsf{0} & \mathsf{1} & \mathsf{1} \end{bmatrix}$$

15

$$\mathbf{V}_2 = \begin{bmatrix} & \mathsf{A} & & & \mathsf{B} \\ & \mathsf{B} & & & & \mathsf{I} \\ & \mathsf{C} & & & \mathsf{I} \\ & \mathsf{D} & & & \mathsf{I} \end{bmatrix} \begin{bmatrix} & \mathsf{0} & & \mathsf{0} & & \mathsf{1} \\ & 1 & & \mathsf{0} & & \mathsf{1} & & \mathsf{I} \\ & 1 & & \mathsf{0} & & \mathsf{0} & & \mathsf{1} \\ & 0 & & \mathsf{0} & & \mathsf{1} & & \mathsf{0} \end{bmatrix}$$

$$\mathbf{W}_1 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_{3} = \begin{bmatrix} \mathbf{B} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} & \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & & 1 & 0 & 1 & 1 \\ \mathsf{B} & & 1 & 0 & 1 & 1 \\ \mathsf{C} & & & & & \\ \mathsf{D} & & & & & \end{bmatrix}$$

15

$$\mathbf{W}_{4} = \begin{bmatrix} A & B & C & D \\ A & B & C & D \\ B & 1 & 0 & 1 & 1 \\ C & D & 1 & 1 \end{bmatrix}$$

$$\mathbf{W}_1 = \begin{bmatrix} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & \\ & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} & & & & & \\ & & & \\ & & & \\ \end{bmatrix}$$

$$\mathbf{W}_{3} = \begin{bmatrix} \mathsf{B} & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{D} & \mathsf{D} & \mathsf{C} & \mathsf{C} \end{bmatrix} \begin{bmatrix} \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \\ \mathsf{C} & \mathsf{C} & \mathsf{C} & \mathsf{C} \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} A & B & C & D \\ A & 1 & 0 & 1 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & D & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} A & B & C & D \\ A & 1 & 0 & 1 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & D & 1 & 1 \end{bmatrix}$$

$$V_2 = \begin{bmatrix} A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & 1 & 0 & 0 & 1 \\ D & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_1 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_3 = \begin{bmatrix} A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} A & B & C & D \\ A & \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ C & \end{bmatrix} \\ D & \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$$

$$W_2 = egin{array}{c} \mathsf{A} & 0 & 0 & 0 & 1 \\ \mathsf{B} & 1 & 0 & 0 & 1 \\ \mathsf{C} & 1 & 0 & 0 & 1 \\ \mathsf{D} & 0 & 0 & 1 & 0 \\ \end{array}$$

$$\mathbf{W}_1 = \begin{bmatrix} \mathsf{B} & 1 & 0 & 1 & 1 \\ \mathsf{C} & 1 & 0 & 0 & 1 \\ \mathsf{D} & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{W}_3 = \begin{bmatrix} A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & 1 & 0 & 0 & 1 \\ D & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{W}_4 = \begin{bmatrix} & \mathsf{A} & \mathsf{B} & \mathsf{C} & \mathsf{D} \\ \mathsf{A} & & 1 & 1 & 1 \\ \mathsf{B} & & 1 & 0 & 1 & 1 \\ \mathsf{C} & & 1 & 0 & 1 & 1 \\ \mathsf{D} & & 1 & 0 & 1 & 1 \end{bmatrix}$$

Kürzeste Wege

Kürzeste Wege

yo

Dijkstra's Algorithmus

jawohl

v	d(v)	p(v)
Α		
В		
C		
D		
Ε		
F		
	1	

v	d(v)	p(v)
Α	0	Ø
В		
C		
D		
Ε		
F		

v	d(v)	p(v)
Α	0	Ø
В	∞	Ø
C	∞	Ø
D	∞	Ø
Ε	∞	Ø
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	∞	Ø
C	∞	Ø
D	∞	Ø
Е	∞	Ø
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	∞	Ø
C	∞	Ø
D	∞	Ø
Е	∞	Ø
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	∞	Ø

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	∞	Ø
D	4	Α
E	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	11	Е

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	9	D

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	8	C

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
E	3	Α
F	8	C

Shortest-Path Baum

v	d(v)	p(v)
Α	0	Ø
В	5	Α
C	6	D
D	4	Α
Ε	3	Α
F	8	С
	'	

Blocks

Block Title

You can also highlight sections of your presentation in a block, with it's own title

Theorem

There are separate environments for theorems, examples, definitions, lemmas and proofs.

Lemma

$$\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$$

Proof.

Left as an exercise to the reader.

Example

Here is an example of an example block.

Summary

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

Appendix

For Further Reading i

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.

