上海大学 2011 ~2012 学年 秋 季学期试卷

课程名: 概率论与数理统计 A (答案) 课程号 01014016 学分: 5 应试人声明:

我保证遵守《上海大学学生手册》中的《上海大学考场规则》, 如有考试违纪、作 弊行为,愿意接受《上海大学学生考试违纪、作弊行为界定及处分规定》的纪律处分。

应试人 应试人学号 应试人所在院系

题号	_	1 1	111	四	五	六	七	八	九	+
得分										

- 一、填充题(每格2分,共20分)
- 1. $\exists \exists P(A) = 0.5, P(B) = 0.6, P(B/A) = 0.8, \quad \exists P(A \cup B) = 0.7, \quad P(A B) = 0.1$
- 2. 设 $X_1 \sim N(1,2), X_2 \sim N(0,3), X_3 \sim N(2,1),$ 相互独立,则 $2X_1 + 3X_2 X_3 \sim N(0,36)$

 $P\{0 \le 2X_1 + 3X_2 - X_3 \le 6\} = 0.3413$

- 3. 设随机变量 X 的概率密度函数为 $f(x) = Ce^{-x^2+x}$, $-\infty < x < +\infty$, $C = e^{-0.25}\pi^{-0.5} = \frac{1}{\sqrt[4]{c_0/r_0}}$
- 4. *X* 的分布律

1474 111			
X	-1	1	3
<u>Pk</u>	0.3	0.5	0.2

- 5. 设随机变量 $X_1, X_2 \dots, X_n$ 独立同分布, $EX_1 = \mu$, $DX_1 = 8$,记 $Y_n = \frac{1}{n} \sum_{i=1}^{n} X_i$,则用 切比雪夫不等式估计 $P(|Y_n - \mu| < 2) \ge 1 - \frac{2}{n}$ 。
- 6. 设总体 X 与 Y 相互独立,且 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$. X_1, X_2, \dots, X_n 为来自 总体 X 的样本, Y_1,Y_2,\cdots,Y_n 为来自总体 Y 的样本.则

$$Z = \overline{X} + \overline{Y} \sim N(\mu_1 + \mu_2, \frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2})$$
.

7. 设 X_1, X_2, \dots, X_n 是来自 $N(\mu, \sigma^2)$ 的样本, \overline{X}_1, S^2 分别表示样本均值和样本方差,则 μ 未 知 时 , σ^2 的 置 信 水 平 为 $1-\alpha$ 的 双 侧 置 信 区 间 为

- 8. 要检验两个正态总体的方差是否相等,可以用 F 检验法。
- 二、单选题(每格2分,共10分)
- - (A)对任何实数 μ ,都有 $p_1 = p_2$; (B)对任何实数 μ ,都有 $p_1 < p_2$;
 - (C)只对个别 μ , 才有 $p_1 = p_2$; (D)对任何实数 μ , 都有 $p_1 > p_2$;
- 2. 设 A 和 B 任意两个概率非零的不相容事件,则(D).
 - (A) A 的逆事件与 B 的逆事件不相容;
- (B) P(AB) = P(A)P(B)
- (C) A 逆事件与 B 的逆事件相互独立; ; (D) P(A-B) = P(A).
- 3. 设总体 X 的方差为 σ^2 , (X_1, X_2, \dots, X_n) 是来自 X 的样本,则(C).
 - (A) S是 σ 的无偏估计量; (B) S是 σ 的最大似然估计量;
 - (C)S是 σ 的相合估计量; (D)S与 \overline{X} 独立.
- 4. 设 μ_n 是n次独立重复试验中事件A出现的次数,p是事件A在每次试验中发生的概

率,则对于任意的 $\varepsilon > 0$,均有 $\lim_{n \to \infty} P\{|\frac{\mu_n}{n} - p| > \varepsilon\}$ (A)

(C) > 0

- (D) 不存在
- 5. 对正态总体的数学期望 μ 进行假设检验,如果在显著水平 0.05 下接受 $H_{\rm s}$: $\mu = \mu_{\rm s}$, 那么在显著水平 0.01 下,下列结论中正确的是(D
 - (A) 不接受, 也不拒绝 *H*。
- (B) 可能接受 H, 也可能拒绝 H。

(C) 必拒绝 H

(D) 必接受 *H*。

三、数字通讯过程中,信号源发射 0、1 两种信号。其中发 0 的概率为 0.55, 发 1 的概率为 0.45。由于信道中存在干扰,在发 0 的时候,接收端分别以概率 0.9、0.05 和 0.05 接收为 0、1 和 "不清"。在发 1 的时候,接收端分别以概率 0.85、0.05 和 0.1 接收为 1、0 和 "不清"。现接收端接收到一个"1"的信号,问发射端发出的是"0"的概率是多少。(8 分)

解: 设事件 A: 发射端发出 "0"; 事件 B: 接收端收到 "1"。 (1分)

$$P(A) = 0.55$$
, (1分), $P(B|A) = 0.05$, (1分) $P(B|\bar{A}) = 0.85$, (1分) $P(\bar{A}) = 0.45$, (1分)

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid \overline{A})P(\overline{A})} = \frac{0.05 \times 0.55}{0.05 \times 0.55 + 0.85 \times 0.45}$$

$$(1 \cancel{/}) \qquad (1 \cancel{/})$$

$$= 0.067 \qquad (1 \cancel{/})$$

四、设(X,Y)的联合分布律为:

Y X	1	2
1	1/8	3/8
2	1/12	A
3	1/24	В

- (1) 确定数 A, B, 使随机变量 X 与 Y 相互独立。(5 分)
- (2) 求 $U = \max(X,Y)$ 的分布律。(3分)

解: (1)
$$\frac{1}{8} + \frac{3}{8} + \frac{1}{12} + A + \frac{1}{24} + B = 1$$
 ①(1分)

$$P(X = 1) = \frac{1}{8} + \frac{1}{12} + \frac{1}{24}, \quad P(Y = 2) = \frac{1}{12} + A \quad (1分),$$

X,Y 独立,:
$$P(x=1, y=2) = P(x=1) \cdot P(y=2) \Rightarrow \frac{1}{12} = \left(\frac{1}{8} + \frac{1}{12} + \frac{1}{24}\right) \cdot \left(\frac{1}{12} + A\right)$$
 ②(1分)

综合①②有:
$$A = \frac{1}{4}$$
 $B = \frac{1}{8}$ (1%)

(2) 每个数字 0.5 分

·= / 7 1 //	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
U	1	2	3
p_k	1/8	17/24	1/6

五、设随机变量(*X*,*Y*)的概率密度为 $f(x,y) = \begin{cases} \frac{1}{25} \left(\frac{20-x}{x} \right) & 10 \le x \le 20, \frac{x}{2} \le y \le x \\ 0 &$ 其它

求(1) $f_x(x)$; (3分) (2)求条件概率密度 $f_{Y|X}(y|x)$ (4分) (3)求x = 12时,

Y的条件概率密度。(1分)

解: (1)
$$\mathbf{10} < x < \mathbf{20}$$
时, $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy = \int_{\frac{x}{2}}^{x} \frac{1}{25} \frac{20-x}{x} dy = \frac{1}{50} (20-x)$ (1分)

$$f_X(x) = \begin{cases} \frac{1}{50}(20 - x) & 10 < x < 20 \\ 0 & \text{其它} \end{cases} \tag{1 分)$$

(2)

10 < x < 20时,条件概率密度 $f_{Y|X}(y|x)$ 存在。 (1分)

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{\frac{1}{25}(\frac{20-x}{x})}{\frac{1}{50}(20-x)} = \frac{2}{x} & \frac{x}{2} < y < x \\ 0 & \text{其它} \end{cases}$$
(1分)

(公式1分)

(3) 当x = 12时,Y的条件概率密度函数为

$$f_{Y|X}(y|12) = \begin{cases} \frac{1}{6} & 6 < y < 12 \\ 0 & \text{其它} \end{cases}$$
 (1 分)

六、设随机变量 $X \sim N(\mu, \sigma^2)$, 求 $Y = e^{2X}$ 的概率密度函数。(8分)

 $解: y = e^{2x}$ 是严格增函数,仅在 (0,+∞)上取值。反函数为 $h(y) = \frac{1}{2} \ln y$, $h'(y) = \frac{1}{2y}$ (1分)

 $y \le 0$ 时, $F_Y(y) = 0$,从而 $f_Y(y) = 0$ 。 (1分)

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \tag{1 }$$

$$y > 0$$
 时, $f_Y(y) = f_X(h(y))|h'(y)| = \frac{1}{2\sqrt{2\pi}\sigma y} exp\left(-\frac{(\ln y - 2\mu)^2}{8\sigma^2}\right)$
(1分) (2分)

七、商店销售某种商品,每出售一公斤可获利a元,如果未售完,则余下商品每公斤净亏损 $\frac{2}{3}a$ 元。假设该商品需求量X服从区间[0,100]上的均匀分布。为使商店获得最

大的期望利润,商店应贮备该商品多少公斤? $(10 \, \text{分})$ 解: 设贮备该商品s公斤,则利润

$$Y = f(X) = \begin{cases} as, & X > s \\ aX - \frac{2}{3}a(s - X), & 0 \le X < s \end{cases}$$
 (25)

$$EY = Ef(X) = \int_0^s \left(\frac{5}{3}ax - \frac{2}{3}as\right) \frac{1}{100} dx + \int_s^{100} as \frac{1}{100} dx$$

$$= \frac{1}{100} \left[-\frac{5}{6}as^2 + 100as \right]$$
(2 \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)

$$EY$$
 最大, $s = 60$ (公斤) (2分)

八、某元件的寿命服从均值为 100 小时的指数分布。现随机取 16 个,设它们的寿命是相互独立的。用中心极限定理求这 16 个元件的寿命总和大于 1920 小时的概率。(8 分)

解: 设 X_i 为第 i 个元件的寿命, $i=1,2,\cdots,16$, $E(X_i)=100$ $D(X_i)=10000$

(1分)

 $X = \sum_{i=1}^{16} X_i$ 表示 16 个元件的寿命总和,

$$E(X) = 16 \times 100 = 1600$$
, $D(X) = 16 \times 10000 = 160000$

$$(1 \%) \qquad (1 \%)$$

$$P(\sum_{i=1}^{16} X_i \ge 1920) = P\left(\frac{X - 1600}{\sqrt{160000}} \ge \frac{1920 - 1600}{\sqrt{160000}}\right) \qquad (1 \%)$$

$$= 1 - P\left(\frac{X - 1600}{400} < \frac{320}{400}\right) \qquad (1 \%)$$

$$\approx 1 - \Phi(0.8) \qquad (1 \%)$$

$$= 1 - 0.7881 \qquad (1 \%)$$

$$= 0.2119 \qquad (1 \%)$$

草 稿 纸

九、已知随机变量
$$X$$
 的密度函数为 $f(x) = \begin{cases} (\theta+1)(x-5)^{\theta} & 5 < x < 6 \\ 0 & \text{其他} \end{cases}$

其中 θ 为未知参数,求 θ 的矩估计量与极大似然估计量. (10 分) 解: (1) 矩估计法

$$EX = \int_{5}^{6} x(\theta+1)(x-5)^{\theta} dx = \int_{5}^{6} xd(x-5)^{\theta+1} = 6 - \int_{5}^{6} (x-5)^{\theta+1} dx = 6 - \frac{1}{\theta+2}$$

$$(1 \%)$$

$$(1 \%)$$

故
$$\theta$$
 的矩估计量为 $\hat{\theta} = \frac{1}{6-\bar{X}} - 2$ (2分)

(2) 极大似然估计法

似然函数
$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = (\theta + 1)^n \prod_{i=1}^{n} (x_i - 5)^{\theta}$$
, (1分)

$$\ln L(\theta) = n \ln(1+\theta) + \theta \sum_{i=1}^{n} \ln(x_i - 5)$$
 (1 $\frac{1}{2}$)

$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{1+\theta} + \sum_{i=1}^{n} \ln(x_i - 5) = 0$$

$$(1 \%)$$

$$\theta$$
的极大似然估计量为 $\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln(X_i - 5)} - 1$ (1分)

+, (3)
$$H_0: \sigma^2_B < 17.66^2 = 311.8756$$
 $H_1: \sigma^2_B \ge 17.66^2 = 311.8756$

检验统计量为 $\chi^2 = \frac{(n-1)S^2}{311.8756}$, 拒绝域为 $\chi^2 \ge \chi^2_{0.05}(n-1)$, $\chi^2_{0.05}(13) = 22.362$

经计算, $\chi^2 = 2.4768$,不在拒绝域内,故接受 H_0 ,认为B类基金的方差小于A类基金。

即B类基金的风险较小。投资B类基金较好。

(计算 χ^2 值1分,查表1分,最后结论1分)

十、有 A 和 B 两类投资基金,都以最近 3 年为计算周期,A 类基金的年投资回报率的算术平均数和标准差分别是 27.00%和 17.66%。抽取 14 家 B 类基金,它们的年投资回报率的数据如下:

B类投资基金	X_i (%)	B类投资基金	X_i (%)
1	31. 50	8	20.72
2	12.46	9	13.80
3	9. 77	10	21. 49
4	22. 47	11	11. 35
5	18. 47	12	17. 48
6	15. 47	13	18.61
7	38. 16	14	18. 37

- (1) 求 B 类投资基金年投资回报率的样本均数和样本方差, 并求 B 类投资基金年投资回报率算术平均数和方差的估计值。(4分)
- (2) 如果希望得到较大的平均收益,应该投资哪类基金?用假设检验的方法说明理由。 $(\alpha = 0.05)(3 \, f)$
- (3) 从收益的波动的角度考虑风险,希望风险较小,应该投资哪类基金?用假设检验的方法说明理由。($\alpha = 0.05$)(3分)

解: (1)
$$\bar{x}$$
 =19.29429, (1分) $S^2 = 59.42083$, . (1分)

算术平均数的估计值为 19. 29429. (1分)方差的估计值 59. 42083 (1分)

(2) H_0 : $\mu_B < 27$, H_1 : $\mu_B \ge 27$

检验统计量为
$$t = \frac{\bar{x}-27}{\frac{S}{\sqrt{n}}}$$
, 拒绝域为 $t \ge t_{0.05}(n-1)$, $t_{0.05}(13) = 1.7709$

经计算,t = -3.74031,不在拒绝域内,故接受 H_0 ,认为 B 类基金的平均收益小于 A 类基金。投资 A 类基金较好。

(计算 t 值 1 分, 查表 1 分, 最后结论 1 分)

(3) 见左

标准正态分布表

	你准止念分仲衣									
Z	0	1	2	3	4	5	6	7	8	9
0.2	0.5793	0.5832	0.7201	0.591	0.7227	0.5987	0.7253	0.6064	0.7279	0.6141
0.3	0.6179	0.6217	0.7329	0.6293	0.7354	0.6368	0.7379	0.6443	0.7403	0.6517
0.4	0.6554	0.6591	0.7451	0.6664	0.7474	0.6736	0.7497	0.6808	0.752	0.6879
0.5	0.6915	0.695	0.7565	0.7019	0.7586	0.7088	0.7608	0.7157	0.7629	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.758	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.791	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.834	0.8365	0.8389
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.877	0.879	0.881	0.883
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.898	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.937	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633

t 分布表

n	α=0.1	0.05	0.025	0.01
11	1.3634	1.796	2.201	2.718
12	1.3562	1.782	2.179	2.681
13	1.3502	1.771	2.16	2.65
14	1.345	1.761	2.145	2.624
15	1.3406	1.753	2.131	2.602
16	1.3368	1.746	2.12	2.583

χ²分布表

			70 / 1	111111		
n	α=0.99	0.975	0.95	0.1	0.05	0.025
11	3.053	3.816	4.575	17.275	19.675	21.92
12	3.571	4.404	5.226	18.549	21.026	23.337
13	4.107	5.009	5.892	19.812	22.362	24.736
14	4.66	5.629	6.571	21.064	23.685	26.119
15	5.229	6.262	7.261	22.307	24.996	27.488
16	5.812	6.908	7.962	23.542	26.296	28.845

草 稿 纸