

?ADVANCED GEOMETRY?

- ConvexGeometry
- LatheGeometry
- ExtrudeGeometry
- ExtrudeTube
- ExtrudeSVG
- ParametricGeometry
- TextGeometry render text
- Binary operation

Convex Geometry

Membuat convexhull dari sekumpulan titik

ConvexGeometry

```
function generatePoints() {
   // add 10 random spheres
   var points = [];
   for (var i = 0; i < 20; i++) {
     var randomX = -15 + Math.round(Math.random() * 30);
     var randomY = -15 + Math.round(Math.random() * 30);
     var randomZ = -15 + Math.round(Math.random() * 30);
     points.push(new THREE.Vector3(randomX, randomY, randomZ));</pre>
```

```
// use the same points to create a convexgeometry
var convexGeometry = new THREE.ConvexGeometry(points);
convexMesh = createMesh(convexGeometry);
scene.add(convexMesh);
```

LatheGeometry

Membuat bentuk-bentuk dari kurva

LatheGeometry

LatheGeometry

```
function generatePoints(segments, phiStart, phiLength)
 // add 10 random spheres
 var points = [];
 var height = 5;
 var count = 30;
 for (var i = 0; i < count; i++) {
   points.push(new THREE.Vector3((Math.sin(i * 0.2)
     + Math.cos(i * 0.3)) * height + 12,
     0, (i - count) + count / 2));
   // use the same points to create a convexgeometry
   var latheGeometry = new THREE.LatheGeometry
     (points, segments, phiStart, phiLength);
   latheMesh = createMesh(latheGeometry);
   scene.add(latheMesh);
```

Tube Geometry

TubeGeometry membuat tabung yang bergerak di sepanjang spline 3D. Kita bisa menentukan jalur menggunakan sejumlah simpul, dan TubeGeometry akan membuat tabung.

Constructor

TubeGeometry(path : curve , tubularSegments : integer, radius: Float, radialSegements : integer , closed : boolean)

Path = parameter 3d path yang meminta fungsi kurva seperti untuk dijadikan path tube

tubularSegments = jumlah segmen untuk membentuk tube

Radius = jari - jari tube

radialSegments = jumlah segmen yang membentuk cross section

Closed = tube terbuka atau tertutup

```
const path = new CustomSinCurve( 10 );
const geometry = new THREE.TubeGeometry( path, 20, 2, 8, false );
const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } );
const mesh = new THREE.Mesh( geometry, material );
scene.add( mesh );
```

Contoh kode

Parametric Geometry

Dengan Geometri Parametrik kita dapat membuat geometri berdasarkan persamaan matematika

Constructor

ParametricGeometry(func : function, slices : integer, stacks : integer)

Func = parameter berupa fungsi yang mengambil nilau u dan v antara 0 dan 1 dan memodifikasi nilai argument ketiga yaitu vector3

Slices = jumlah potongan atau slices yang digunakan untuk fungsi

Stacks = jumlah tumpukan atau stacks yang digunakan untuk fungsi

```
const geometry = new THREE.ParametricGeometry( THREE.ParametricGeometries.klein, 25,
25 );
const material = new THREE.MeshBasicMaterial( { color: 0x00ff00 } );
const klein = new THREE.Mesh( geometry, material );
scene.add( klein );
```

Contoh kode

Extrude Geometry

Membuat objek 3D dari objek 2D

Extrude Geometry

Constructor

ExtrudeGeometry(shapes : Array, options : Object)

Parameter

- Shapes Shape or an array of shape
- Options object that can contain the following parameters

Code example

Extrude SVG

Membuat objek 3D dari file SVG

Extrude SVG

Menggunakan library dari https://github.com/asutherland/d3-threeD untuk convert SVG menjadi bentuk 3D

```
function drawShape() {
   var svgString = $("#batman-path").attr("d");
   var shape = transformSVGPathExposed(svgString);
   return shape;
  var options = {
   amount: 10,
   bevelThickness: 2,
bevelSize: 1,
bevelSegments: 3,
bevelEnabled: true,
curveSegments: 12,
steps: 1
shape = createMesh(new THREE.ExtrudeGeometry(drawShape(),
options));
```

Text Geometry

Dengan Text Geometry, maka kita dapat menghasilkan sebuah text menjadi sebuah objek 3D.

Text Geometry

```
var controls = new function() {
    this.appliedMaterial = applyMeshNormalMaterial
    this.castShadow = true;
    this.groundPlaneVisible = true;
    this.size = 90:
    this.height = 90;
    this.bevelThickness = 2;
    this.bevelSize = 0.5;
    this.bevelEnabled = true;
    this.bevelSegments = 3;
    this.bevelEnabled = true;
    this.curveSegments = 12;
    this.steps = 1;
    this.fontName = "bitstream vera sans mono";
```

Properties:

Size: Ukuran teks

Height: Ketebalan teks menuju sumbu z

bevelThickness: Ketebalan bevel pada teks (sumbu z)

bevelSize: Ukuran bevel

bevelEnabled: Mengaktifkan bevel

bevelSegments : Menunjukkan tingkat smoothness bevel (keberaturan cekungan)

fontName : Merupakan nama dari font yang digunakan

Binary operation memungkinkan kita untuk melakukan operasi terhadap 2 mesh untuk membentuk mesh yang baru.

Subtract Operation

Subtract akan membuat mesh baru dengan mengurangi atau menghilangkan bagian dari mesh pertama yang bersentuhan atau overlaping dengan mesh kedua.

Intersect Operation

Intersect akan membuat mesh baru dari bagian mesh pertama yang bersentuhan atau overlap dengan mesh kedua

Union Operation

Union akan membuat mesh baru dengan menggabungkan mesh pertama dan kedua.

