Vector Spaces and Subspaces

CS 556 Erisa Terolli

Vector Spaces and Subspaces

- The space \mathbb{R}^n consists of all columns vectors \mathbf{v} with n components.
- We can add any two vectors in \mathbb{R}^n , and we can multiply any vector \mathbf{V} by any scalar c.
- Vector spaces must be closed under addition and multiplication

Examples:

- The vector space \mathbb{R}^2 is represented by the xy plane. Vector examples in this space: (3, 2), (0, 0) etc.
- The vectors space \mathbb{R}^3 is represented by the xyz 3-dimensional space. Vector examples in this space: (1, 2, 3), (0, 0, 0) etc.

Subspace

A subspace is defined as a set of all vectors that can be created by taking linear combinations of some vectors or a set of vectors.

Formally, a subspace is the set of all vectors that satisfy the following conditions:

- Must be closed under addition and multiplication
- Must contain the zero vector

$$\forall v, w \in \mathbf{V}, \forall \lambda, \mu \in \mathbb{R}; \ \lambda \mathbf{v} + \mu \mathbf{w} \in \mathbf{V}$$

- Lines that pass through the origin
- The zero vector $\mathbf{z} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Column Space

- The column space of a matrix A consists of all the linear combinations of the columns of A.
- The combinations are all possible vectors $A\mathbf{x}$, which fill the columns space denoted by C(A).
- The system $A\mathbf{x} = b$ is solvable if and only if b is in the columns space of A.

Column Space Example

Null Space

- The null space of a matrix A_{mxn} consists of all the solutions to $A\mathbf{x} = 0$.
- The solution vectors x have n components. They are vectors in \mathbb{R}^n , so the null space is a subspace of \mathbb{R}^n . The columns space C(A) is a subspace of \mathbb{R}^m .

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix}
1 & 1 & 2 \\
R_2 - 2R_1 & 2 & 1 & 3 \\
R_3 - 3R_1 & 3 & 1 & 4
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
= 0
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
REDUCED ROW-ECHELON FORM

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
Pivot Free Column

$$\mathbf{S} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
Special Solution

$$\mathbf{Z} = c \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
Null Space

Four Fundamental Subspaces

The four fundamental subspaces of A_{mxn} .

Name	Notation	Note
Column Space	$C(A) \in \mathbb{R}^m$	All combinations of the columns of matrix A.
Null Space	$N(A) \in \mathbb{R}^n$	
Row Space	$C(A^T) \in \mathbb{R}^n$	All combinations of the rows of matrix A.
Left Null Space	$N(A^T) \in \mathbb{R}^m$	

Complete Solution System of Linear Equations

Complete Solution to Ax = b

- Set all free variables to 0, then solve Ax = b for pivot variables to find $x_{particular}$.
- Find the null space: $x_{null\ space}$.
- The compete solution is:

$$x = x_{particular} + x_{null\ space}$$

Matrix Rank

Matrix Rank

- The rank of a matrix denoted by r or rk(A) or rank(A) is the number of pivot columns.
- Single number the provides insights into the amount of information that is contained in the matrix.
- $r \in \mathbb{N}, s.t. \ 0 \le r \le min\{\#cols, \#rows\}$

Matrix Rank

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 0 & 5 \end{bmatrix}$$

Perform Gaussian elimination until the matrix is in row-echelon form and then count the number of pivot columns

Computing the rank

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \qquad rk(A) = ?$$

Linear Independence

Linear Independence

The sequence of vectors $v_1, ..., v_n$ is linearly independent if the only combination that gives the zero vectors is $0v_1 + 0v_2 + ... + 0v_n$.

$$x_1v_1 + x_2v_2 + \dots + x_nv_n = 0$$

only happens when all x's are zero.

$$z \neq \alpha x + \beta y$$

z can not be express as a linear combination of x and y

Are these sets of vectors linearly independent?

Are these sets of vectors linearly independent?

Are these sets of vectors linearly independent?

There are a maximum of N independent vectors in \mathbb{R}^N .

Span

Span of a space is defined as all possible linear combinations of all the vectors in that space.

$$span(\{v_1, v_2, ..., v_n\}) = \alpha_1 v_1 + ... + \alpha_n v_n, \ \alpha_i \in \mathbb{R}$$

Span Example 1

- $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ span the full space \mathbb{R}^2 .
- $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ span the full space \mathbb{R}^2 .
- $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ span a line in \mathbb{R}^2 .

Span Example 2

To determine if a vector \mathbf{v} is in the span of a set S we need to check whether \mathbf{v} can be expressed as a linear combination of vectors in S.

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \mathbf{S} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 7 \\ 0 \end{bmatrix} \right\}.$$
 Check if $\mathbf{v} \in \mathbf{S}$

$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \frac{5}{6} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \frac{1}{6} \begin{bmatrix} 1 \\ 7 \\ 0 \end{bmatrix} \text{ Yes, } \mathbf{V} \in \mathbf{S}$$

Basis

Basis and Dimension

- A basis for a vector space is a sequence of vectors with two properties:
 - The vectors are linearly independent.
 - The vectors span the space.
- Every vector in the space is a unique combination of the basis vectors.
- A space can be spanned by multiple basis.
- The dimension of a space is the number of vectors in every basis.

Natural Basis

Another Basis

Changing Basis

$$\mathbf{b}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \mathbf{x}_{b} = \begin{bmatrix} 3/2 \\ 1/2 \end{bmatrix}, \mathbf{x}_{e} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

$$\hat{e}_{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{x}_b = \begin{bmatrix} 3/2 \\ 1/2 \end{bmatrix} \qquad \mathbf{x}_e = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} 9/2 + 1/2 \\ 3/2 + 1/2 \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \qquad \mathbf{x}_e = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \qquad \mathbf{x}_b = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 3/2 \\ 1/2 \end{bmatrix}$$

Thank you!