HW Relations

- 1. Write the following relation using a table diagram and {}
 - a. Relation R on $\{1, 2, 3, 4\}$ defined by $(x, y) \in R$ if $x^2 \ge y$
 - b. Relation R on $\{1,2,3,4,5,6,7,8,9\}$ defines by $(x, y) \in R$ if $x = y^2$
 - c. $(x, y) \in R$ on $\{1,2,3,4,5\}$ if 3 divides x + 2y.
- 2. Give examples of relations on {1, 2, 3, 4} having the following properties
 - a. Partial order
 - b. Anti-symmetric
 - c. Reflexive, non-symmetric and not transitive
 - d. Equivalence relation
- 3. Write the following two relations as a set of order pairs.

a.

- 4. Let R1 and R2 be the relations as {1, 2, 3,4} given by R1 = {(1,1), (1,2), (3,4), (4,2)} and R2 = {(1,1), (2,1), (3,1),(4,4), (2,2)} , list all the elements of R1 O R2 and R2 O R1
- 5. Determine whether the given relation is an equivalence relation on the set of all the people
 - a. $\{(x,y) \mid x \text{ and } y \text{ have the same parents} \}$
 - b. $(x,y) \in \{1,2,3,4,5\}$, $R = \{(x,y) \mid 1 \le x \le 5, 1 \le y \le 5\}$
- 6. List the members of the equivalence relation on { 1,2,3,4} by the given partition
 - a. A. {{1,2}, {3,4}}
 - b. {{1,2,3,4}}
 - c. Your own choice of partition
- 7. Find the matrix of the relation R from x to y relative to the orderings
 - a. $R = \{(x, a), (x, c), (y, a), (y, b), (z, d)\}$ with the ordering of X : x, y, z and Y : a, b, c, d
- 8. The following relation has been given using a matrix.

i. Write the relation R in pairs	
ii. Use matrix to s determine if the relation is reflexive, symmetric, transitive,	
equivalence 1 0 1 0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 0 0 1	
9. Give the matrix of the following relation called A1 and A2. R1 = $\{(x, y) \mid x + y \le 6\}$, R2 = $\{(y, z) \mid y = 6\}$	
$= z + 1$, $X = Y = Z = \{1, 2, 3, 4, 5$. Use the ordering of x, y, z : 1, 2, 3, 4, 5 to create the matrix	
a. Give the matrix product of A1 X A2	
b. use the product to find the matrix relation of R2 O R1	
10. Given the matrix of a relation from X to y, how can we find the matrix of the inverse relation R ⁻¹ .	
11. Find the inverse of the following matrix which is a relation from {1, 2} to {1, 2, 3, 4}	
1 0 1 0	
12. Suppose the matrix of relation R1 on {1, 2, 3} is	
1 0 0	_
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
and the matrix of the relation R2 on the set [1, 2, 3]	
$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	
$egin{pmatrix} 0 & 1 & 0 \ 1 & 0 & 1 \ \end{pmatrix}$	
Find the matrix of relation R1u R2 relative to the ordering of {1, 2, 3}	
	_

VIGOMAR KIM ALGADOR CSC 28 - O1 SU 22

HOMEWORK 06 08 JULY 2022

1. (a) Relation R on $\{1,2,3,4\}$ $(x,y) \in \mathbb{R}$ if $x^2 \ge y$

 $R = \{(1,1), (2,1), (2,2), (2,3), (2,4),$ (3,1),(3,2),(3,3),(3,4),(4,1), (4,2),(4,3),(4,4)}

C	
XX.	
J. K.	>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

•						
	X	٧	×	7	×	٧
•	1	1	3	1	4	2
	2	1	3	2	4	3
	2	2	3	3	4	4
	2	3	3	4		
	2	4	4	1		

(b) Relation R on $\{1,2,3,...,7,8,9\}$ $\{x,y\} \in \mathbb{R}$ if $x \in \mathbb{Y}^2$

 $R = \{(1,1), (4,2), (9,3)\}$

-	
X	7
1	1
4	2
9	3

(c) $(x,y) \in \mathbb{R}$ on $\{1,2,3,4,5\}$ if 3 divides x+2y

X+2y=3z

 $R = \{(1,1), (1,4), (2,2), (2,5), \times | \gamma | \times | \gamma |$

(1,1), (1,7), (4,4), (4,5),	••	•			
(3,3), (4,1), (4,4), (5,2),	1	1	4	1	
(5.5)}	1	4	4	4	
G	2	2	5	2	
\sim 2	2	5	5	5	
~O _k / ₃₂	3	3			

```
(q) PARTIAL ORDER
                            R = \{ (1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (2,3) \}
          (b) ANTI-SYMMETRIC
                          R = \{ (1,2), (2,2) \}
           (C) REFLECTIVE, NON - SYMMETRIC, NOT TRANSITIVE
                            R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,3), (3,4)\}
           (d) EQUIVALENCE RELATION
                           R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2
                                               (1,3),(3,1),(1,4),(4,1),(2,3),(3,2),
                                               (2,4),(4,2),(3,4),(4,3)
                                                                                                                               (b)
 3. (q)
                         R = \{(a,b), (a,c), (b,a), (b,d),
                                                                                                                                             R = \{(3,3), (3,5), (4,3), (4,4), \}
                                       (c,c),(c,d)}
                                                                                                                                                         (5,4),(5,5)
 4. {1,2,3,4}
                                                      R1 = \{(1,1), (1,2), (3,4), (4,2)\}
                                                      R2 = \{(1,1), (2,1), (3,1), (4,4), (2,2)\}
              R1 \circ R2 = \{(1,1), (1,2), (3,4), (4,1), (4,2)\}
              R2 \circ R1 = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2), (4,2)\}
5. (a) \{(x,y) \mid x \text{ and } y \text{ have the same parents} \}
                         • Reflective: x related to x TRUE
                         · Symmetric: x related to y -> y related to x TRUE
                         *Transitive: if x related to y and y related to 2,
                                                                                  then x related to 7 TRUE
        (b) (x,y) \in \{1,2,3,4,5\}, R = \{(x,y) \mid 1 \le x \le 5, 1 \le y \le 5\}
                         * Reflective: (1,1), (2,2), (3,3), (4,4), (5,5) TRUE
                         · Symmetric: (1,2), (2,1) TRUE
                         Transitive: (1,2), (2,3), (1,3)TRUE
```

2. {1,2,3,4}

```
6. {1,2,3,4}
                (a) {{1,2}, {3,4}}
                                              R = \{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}
               (b) \{\{1,2,3,4\}\}
                                             R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2,1), (2
                                                                             (1,3),(3,1),(1,4),(4,1),(2,3),(3,2),
                                                                               (2,4),(4,2),(3,4),(4,3)
              (c) { {1}, {2}, {3}, {4}}
                                              R = \{(1,1), (2,2), (3,3), (4,4)\}
7. R = {(x,q), (x,c), (y,q), (y,b), (z,d)}
                         with ordering of x:x,y,z and y:a,b,c,d
                                                                                    a b c d
                                                                               1 0 1 0
8.
                                                                                                                                       (a) R = \{(W,W), (W,Y), (Y,W), (Y,Y), (Z,Z)\}
                                                                                                                                            • Symmetric:
                   (b) · Reflective:
                                                           not reflective
                                                                                                                                                                                symmetric
```

· Transitive:

$$\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

Transitive

• Equivalence:

since the given relation is not reflective, therefore, it is not equivalence relation

(a) Matrix product of A1 × A2

(b)
$$R_2 \circ R_1 = \{ (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (4,1) \}$$

10. R = X × Y - R-1 = Y × X (rows and columns are switched)

11.
$$R = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$
 $R^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 1 1

$$\begin{bmatrix}
10 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{bmatrix}$$