

In-Depth Analysis of Chicago Traffic

Providing insights to improve road safety

Name: Jackson Weisner

Email: jweis4@uic.edu

Data

Git: jweis4

Erica Hammond
ehammo2@uic.edu
Hammond-EC

Junha Liu jliu238@uic.edu junhaliu Mohammed Riaz mraiz5@uic.edu riazmb01

Prit Patel

ppate425@uic.edu

pppate425

Introduction

- Our project is a comprehensive analysis of chicago traffic collisions
- We changed the scope to just Chicago, instead of three cities
- Our findings will help drivers know the risks of being on the road, and will help keep the community safe

Data

Traffic Crashes - Crashes

General information about the crash

Traffic Crashes - People

Details about the people involved in a crash

Traffic Crashes - Vehicles
Information about vehicles and damage

EDA - Jackson

- Majority of crashes have 2 units involved
- 1 and 3 units are around the same number
- The number of crashes with over 3 units gets lower with each number

EDA - Jackson

Weather Conditions For Crashes

Weather Conditions For Crashes, Excluding 'CLEAR'

- Majority of crashes were in clear weather
- The second most common weather condition was rain

EDA - Erica

EDA - Erica

EDA - Mohammed

- Increases steadily, peaking on Friday, with the exception of a slight dip on Wednesday
- Sunday has the lowest rate of accidents, with a strong dip

EDA – Junha

- Rising sharply from early morning
- Peaking between 3 pm 5 pm
 Declining during the night

EDA - Prit

- Majority of all crashes happen in the daylight which is expected as a large percentage of people drive in the daylight
- Darkness accounts for almost the rest of the crashes
- Dusk and dawn are in last with small percentages of crashes

Hypotheses

Hypothesis - Jackson

- Percent chance that a weather condition will result in a certain fatality number
- Overall low chance of dying
- Highest was "Severe Cross Wind Gate" and "Blowing Snow" for one fatal injury

Hypothesis - Erica

Men between the ages of 22 and 31 are the most likely to be involved in the greatest number of fatal accidents.

Hypothesis -Mohamed

- Hypothesis: Adverse roadway conditions will increase the likeliness that an accident takes place due to some primary contributing cause
- Majority of incidents take place in dry conditions
 - Normalized by road condition
- Conclusion: The data supports that some
 primary contributing causes of traffic
 accidents are in fact more frequent in certain
 roadway surface conditions

Hypothesis -Mohammed

The analysis confirms my hypothesis, where some primary contributing causes to accidents are increased in adverse conditions.

For example, failure to reduce speed, following too closely, and failing to yield right of way are all more likely to cause an accident in wet conditions, rather than dry.

Hypothesis - Junha

- Peaking on Weekday near 4 pm
- Early mornings across all days show the lowest frequencies

Hypothesis - Junha

- Significant decrease in traffic crashes around March 2020 (COVID-19 shutdown)
- The COVID-19 pandemic led to a global shift towards remote work and reduced travel, resulting in fewer traffic collisions

Hypothesis - Prit

Hypothesis: Collisions occurring in **night light** conditions result in **more severe injuries** compared to collisions during daylight hours.

- Injury severity rises in the night lighting.
- Fatal crashes are almost **4 times more likely** in the dark compared to day lighting.
- Incapacitating injury is 2 times more likely.

Machine Learning Andlyses

Machine Learning Analysis - Jackson

- Decision tree classifier
- Features
 - Total injuries
 - Number of units
 - Crash hour
 - Lane count
- Class (7 classes)
 - Air bag status
 - 'DEPLOYED OTHER (KNEE, AIR, BELT,

ETC.)', 'DEPLOYED, COMBINATION',

'DEPLOYED, FRONT', 'DEPLOYED, SIDE'

'DEPLOYMENT UNKNOWN', 'DID NOT

DEPLOY', 'NOT APPLICABLE'

99% Accuracy

Machine Learning Analysis - Jackson

- Decision tree classifier
- Features
 - o Blood alcohol result value
 - Physical condition
 - Sex
- Class
 - o Cell phone use
- ~62% accuracy score
- Majority of leaves were classified as "Yes"

62% Accuracy

Machine Learning Analysis - Jackson

• Logistic regression

• Feature: Vehicle year

• Class: Was towed?

- ~94% accuracy score
- Only 5% are false positives
- Majority of vehicles were towed

94% Accuracy

Machine Learning Analysis - Erica

Confusion Matrix

80000

- 60000

40000

- 20000

Non-normalized

Normalized

Machine Learning Analysis - Mohammed

- Hypothesis: Certain features are strongly correlated with fatal outcomes than others
- Logistic regression on what features are associated with fatal outcomes
- Conclusions:
 - Any accident involving a pedestrian is highly likely to produce a fatal outcome
 - Lower risk for pedalcyclist
 - Hitting a fixed object is second most likely to lead to a fatality
 - A head-on collision is positively correlated with a fatality, where rear-end accidents are significantly negatively correlated with a fatality
 - Parking lots are statistically safe
 - Severe cross wind gates are the only weather-related condition to have a positive correlation with fatalities

Machine Learning Analysis – Junha Traffic Crash Hotspots in Chicago

- Used Geographical data (latitude and longitude)
- Our goal is to find traffic crash areas with high density
- DBSCAN
 - Unsupervised Learning Algorithm
 - Density-based algorithm
 - It groups together points that are close to each other
 based on density
 - Clustering algorithm
 - Used it to find areas with high concentration
 by removing as many noise points as possible

Machine Learning Analysis – Junha Traffic Crash Hotspots in Chicago

- Significant traffic incidents around major landmarks and areas
 - O'Hare Airport
 - Midway Airport
 - South Side of Chicago
 - Downtown
 - North Side Area (Magnificent Mile and Navy Pier)
- High traffic volumes and urban density contribute to the increased crash occurrences
- It highlights urban planning interventions are needed to mitigate crash risks

Machine Learning Analysis - Prit

Will the collision result in a fatal or non-fatal injury?

Deciding Factors:

- 'LIGHTING_CONDITION'
 - Daylight
 - Darkness
- 'WEATHER_CONDITION'
 - Snow
 - Rain
- 'CRASH_TYPE'
 - Tow Required
- 'ROAD_DEFECT'
 - Debris
 - Potholes
 - Shoulder

Accuracy Score: 99%+

Takeaways

- We uncovered some interesting insights from our project
- Learned how to use ML and other techniques to analyse large datasets

What went well

- Team communication
- Amount of work completed

Challenges

- Challenging to work with large data
- Challenging to decide what to do our analyses on

