Wyszukiwanie wzorca w tekście w stałej pamięci i czasie liniowym

Łukasz Selwa

Maj 2022

1 Wprowadzenie

Naiwny algorytm wyszukiwania wzorca w w tekście t wymaga jedynie stałej pamięci ale zajmuje czas $O(|w| \cdot |t|)$. Znane są algorytmy rozwiązujące problem wyszukiwania wzorca w czasie liniowym O(|w| + |t|), jak algorytm Knutha-Morrisa-Pratta, jednak najczęściej potrzebują liniowej dodatkowej pamięci.

W pracy "Time-Space-Optimal String Matching" Z. Galil i J. Seiferas jako pierwsi przedstawili algorytm do wyszukiwania wzorca działający w czasie liniowym i stałej pamięci. Niniejszy tekst jest oparty na późniejszej pracy M. Crochemore i W. Rytter "Squares, Cubes, and Time-Space Efficient StringS earching", która zawiera uproszczony opis i dowód oryginalnego algorytmu Galil-Seiferas.

2 Algorytm

2.1 Idea algorytmu

Idea algorytmu Galil-Seiferas polega na zmodyfikowaniu działania algorytmu Morris–Pratta tak aby oszczędzić trzymania w pamięci całej tablicy prefiksosufiksów. Dokonuje się tego poprzez dekompozycje wzorca w na słowa u,v, takie że w=uv,u jest stosunkowo krótkim słowem a v nie zawiera dużych prefiksów. W słowie t szukając wystąpień wzorca w będziemy znajdować wystąpienia v i dla każdego wystąpienia naiwnie sprawdzać czy bezpośrednio przed v występuje u. Okazuję się, że da się to zrobić tak, żeby cały algorytm dalej działał w czasie liniowym od |t|+|w|.

2.2 Opis Algorytmu

Definicja 2.1. k-HRP. $Dla \ k \geqslant 3$ m'owimy, 'ze $slowo\ v$ $jest\ k$ -wysoce-powtarzanym- $prefiksem\ (k$ -HRP, $ang.\ k$ -highly-repeating-prefix) $slowa\ w$, $je\'sli\ v^i$ $jest\ prefiksem$ w $dla\ pewnego\ i \geqslant k$ $oraz\ v$ $jest\ slowem\ pierwotnym$. $B\'edziemy\ oznacza\'c\ k$ -HRP $przez\ samo\ HRP\ je\'sli\ k$ $b\'edzie\ jasne\ z$ kontekstu.

Zauważmy, że najkrótszy okres słowa v^2 to |v|. Inaczej v nie byłoby słowem pierwotnym. Z definicji k-HRP v^2 jest prefiksem w. Dzięki temu możemy zdefiniować zakres v.

Definicja 2.2. Zakres. Niech v będzie k-HRP słowa w. Przedział [L, R] nazywamy zakresem v jeśli $L = |v^2|$ oraz [L, R] jest najdłuższym przedziałem takim, że dla każdego $i \in [L, R]$ najkrótszy okres w[1...i] jest równy |v|.

Lemat 2.1. Niech v_1, v_2 to k-HRP slowa w, $|v_1| < |v_2|$ oraz $[L_1, R_1], [L_2, R_2]$ to zakresy odpowiednio v_1, v_2 . Wtedy $R_1 < L_2$.

Dla słowa x, przez p(x) oznaczamy najkrótszy okres x.

Lemat 2.2. Niech $v_1, ..., v_r$ będzie sekwencją wszystkich k-HRP słowa w. Niech $[L_i, R_i]$ to zakres v_i . Wtedy dla każdego niepustego prefiksu u słowa w zachodzi:

$$p(u) = L_i/2$$
 jeśli $|u| \in [L_i, R_i]$ dla pewnego i $p(u) > |u|/k$ w przeciwnym przypadku

Dowód. Jeśli |u| nie należy do żadnego przedziału $[L_i, R_i]$ to każdy okres u musi być większy od |u|/k. Jeśli $|u| \in [L_i, R_i]$ to u musi być prefiksem v_i^e , dla $e \ge 2$. Z pierwotności v_i najkrótszy okres u to $|v_i| = L_i/2$.

Załóżmy, że w jest wzorcem, dla którego v_1 jest jedynym k-HRP z zakresem $[L_1, R_1]$. Wtedy możemy znaleźć wszystkie wystąpienia w w tekście t w czasie liniowym. Niech m = |w|, n = |t|.

Algorithm 1 SIMPLE-TEXT-SEARCH

```
\begin{array}{l} pos \leftarrow 0, j \leftarrow 0 \\ \textbf{while} \ pos + m \leqslant n \ \textbf{do} \\ \textbf{while} \ j < m \land w[j+1] = t[pos+j+1] \ \textbf{do} \\ j \leftarrow j+1 \\ \textbf{if} \ j = m \ \textbf{then} \\ \textbf{return} \ \ \text{Match at position } pos. \\ \textbf{if} \ j \in [L_1, R_1] \ \textbf{then} \\ pos \leftarrow pos + L_1/2 \\ j \leftarrow j - L_1/2 \\ \textbf{else} \\ pos \leftarrow pos + \lfloor j/k \rfloor + 1 \\ j \leftarrow 0 \end{array}
```

Poprawność algorytmu wynika z lematu 2.2. Algorytm działa w czasie liniowym ponieważ cały czas rośnie wartość $k \cdot pos + j$. Łatwo też zauważyć, że dodatkowa pamięć wymagana przez algorytm jest stała.

Definicja 2.3. k-perfekcyjna-dekompozycja. Dla danego w mówimy, że słowa u, v są k-perfekcyjną dekompozycją jeśli w = uv, v ma co najwyżej jedno k-HRP oraz |u| < 2p(v).

Zauważmy, że jeśli dla wzorca w mamy k-perfekcyjną dekompozycję to możemy łatwo znaleźć wszystkie wystąpienia wzorca w czasie liniowym i stałej pamięci za pomocą algorytmu 1. W czasie liniowym możemy wyszukać wszystkie wystąpienia v i dla każdego sprawdzić czy jest poprzedzane przez u. Złożoność zamortyzuje się do czasu liniowego ponieważ $|u| \leq 2|v|$. Przedstawimy algorytm znajdujący k-perfekcyjną dekompozycję.

2.3 Znajdowanie dekompozycji

Ustalmy $k \ge 3$. Przez HRP i(x) oznaczamy i-ty najkrótszy HRP słowa x.

Lemat 2.3. Zalóżmy, że x ma HRP, niech z = HRP(x) oraz x = zx'.

- 1. Jeśli istnieje HRP 2(x) to $|HRP 2(x)| > 2 \cdot |HRP 1(x)|$
- 2. Jeśli istnieje HRP 1(x') to HRP 1(x) jest prefiksem HRP 1(x')

Dowód. Załóżmy nie wprost, że $|\operatorname{HRP} 2(x)| \leq 2 \cdot |\operatorname{HRP} 1(x)|$. Ponieważ z definicji $\operatorname{HRP} 1(x)^2$ jest prefiksem x to $\operatorname{HRP} 2(x)$ jest prefiksem $\operatorname{HRP} 1(x)^2$. Co przeczy pierwotności $\operatorname{HRP} 2(x)$.

Ponieważ $k \ge 3$ to $(\operatorname{HRP} 1(x))^2$ jest prefiksem x'. Jeśli zachodziłoby $|\operatorname{HRP} 1(x')| < |\operatorname{HRP} 1(x)|$ to albo $\operatorname{HRP} 1(x)$ nie byłoby słowem pierwotnym albo nie byłoby najkrótszym HRP słowa x.

Definicja 2.4. Ciąg czynników. Dla słowa x ciąg $V(x) = (v_1, v_2, ...)$ definiujemy następująco, $v_1 = \text{HRP } 1(x)$. Niech x' będzie słowem takim, że $x = v_1 x'$. Wtedy $x_2 = \text{HRP}(x')$ i tak dalej dopóki HRP istnieją.

Z lematu 2.3 wynika, że ciąg czynników jest rosnący ze względu na długość.

Lemat 2.4 (Kluczowy Lemat). Niech $V(x) = (v_1, v_2, v_3...)$ będzie ciągiem czynników i niech HRP 2(x) istnieje. Niech i będzie największą liczbą taką, że $|v_1...v_i| < |\operatorname{HRP} 2(x)|$. Wtedy jeśli v_{i+1} istnieje to $|v_{i+1}| \ge |\operatorname{HRP} 2(x)|$

 $Szkic\ dowodu$. Niech $w=\operatorname{HRP}2(x)$. Załóżmy nie wprost, że $|v_{i+1}| \leq |w|$. Zauważmy, że v_{i+1} musi przecinać dwa wystąpienia w, to jest istnieją słowa u,y takie, że $v=uy,\ y\neq\epsilon$ jest prefiksem w a u jest sufiksem w. Niech z spełnia w=yz. Ponieważ $v_1...v_i$ jest prefiksem w, a w jest prefiksem $v_1...v_{i+1}$ to dla pewnego $j,\ z$ jest podsłowem $v_j...v_{i+1}$. Ponieważ $|v_{i+1}|<|w|$ to j< i+1. Przykładowa sytuacja pokazana jest na rysunku 1.

Rysunek 1: Ilustracja do dowodu lematu.

Należy rozważyć dwa przypadki. Pierwszy kiedy v_j jest prefiksem z. Wtedy za pomocą lematu 2.3 można pokazać, że w nie jest słowem pierwotnym. Drugi przypadek jest kiedy początek zy znajduje się ściśle wewnątrz v_j . Za pomocą lematu 2.3 można pokazać, że w tym przypadku v_j nie może być słowem pierwotnym.

Definicja 2.5. Pozycja specjalna. Lemat 2.4 pozwala na zdefiniowanie pojęcia pozycji specjalnych. Niech $V(x) = (v_1, ...)$ to ciąg czynników x. Pierwszą pozycją specjalną słowa x jest długość słowa $v_1...v_i$ takiego, że v_{i+1} albo nie istnieje albo $|v_1...v_{i+1}| \geqslant \operatorname{HRP} 2(x)$. Jeśli $x = v_1...v_i x'$ to kolejną pozycją specjalną definiujemy analogicznie dla x'. Robimy tak dopóki dla x istnieje $\operatorname{HRP} 2(x)$.

Twierdzenie 2.1 (O dekompozycji). Niech j będzie ostatnią specjalną pozycją słowa x. Niech u = x[1...j], v = x[j+1...n]. Wtedy uv jest k-perfekcyjną dekompozycją x.

Z definicji v nie może mieć HRP 2(v) pozostało zauważyć, że |u| < p(v). Kluczową obserwacją jest fakt, że dla kolejnych pozycji specjalnych j, j' zachodzi $2 \cdot |\operatorname{HRP} 2(x[j...])| \leq |\operatorname{HRP} 2(x[j'...])|$. Wynika to z lematów 2.3. 2.4. Na podstawie twierdzenia 2.1 możemy skonstruować algorytm do wyznaczania k-perfekcyjnej dekompozycji.

Algorithm 2 PERFECT-DECOMPOSITION

```
\begin{split} j &\leftarrow 0, hrp1 \leftarrow |\operatorname{HRP}1(x)|, hrp2 \leftarrow |\operatorname{HRP}2(x)| \\ \mathbf{while} \ hrp1 &\neq \operatorname{NULL} \wedge hrp2 \neq \operatorname{NULL} \ \mathbf{do} \\ j &\leftarrow j + hrp1 \\ hrp1 &\leftarrow |\operatorname{HRP}1(x[j...n]) \\ \mathbf{if} \ hrp1 &\geqslant hrp2 \ \mathbf{then} \\ hrp2 &\leftarrow |\operatorname{HRP}2(x[j...n]) \end{split}
```

Galil Seiferas pokazali, że jeśli potrafimy obliczyć HRP 1(x) oraz HRP 2(x) w czasie proporcjonalnym do $|\operatorname{HRP} 2(x)|$ to powyższy algorytm jest liniowy. Dowód tego faktu pominiemy. Pokażemy za to sam algorytm wyznaczania HRP 1(x) i HRP 2(x) w odpowiednim czasie.

2.4 Wyznaczanie k-HRP

Przedstawimy jak wyznaczyć wszystkie HRP słowa w o długości n. Załóżmy, że mamy policzony ciąg pierwszych HRP $v_1, v_2, ..., v_r$ i ich odpowiednie zakresy $[L_1, R_1], [L_2, R_2], ..., [L_r, R_r]$. W tedy z lematu 2.1 wiemy, że kolejny HRP może pojawić się od pozycji $R_r/2$.

Ustalmy pozycję $pos>R_r/2$. Załóżmy, że sprawdziliśmy wszystkie pozycje w przedziale $[R_r/2,pos)$ i wiemy, że żadna z nich nie jest HRP. Niech j będzie liczbą taką, że w[1...j] to najdłuższy wspólny prefiks w oraz w[pos...n]. Jeśli $pos\cdot k\leqslant pos+j$ to v[1...pos] jest k-HRP słowa w, ponieważ $(w[1...pos])^k$ jest prefiksem w oraz w jest słowem pierwotnym bo inaczej znaleźlibyśmy k-HRP wcześniej. Mamy też od razu obliczony zakres v_{r+1} , ponieważ z definicji $L_{r+1}=2\cdot pos$ oraz $R_{r+1}=pos+j$. Jeśli natomiast $pos\cdot k>pos+j$ to w[1...pos] nie może być k-HRP.

Zastanówmy się gdzie może być następny potencjalny koniec k-HRP. Jeśli j nie należy do żadnego zakresu $[L_i, R_i]$ to z lematu 2.2 najkrótszy okres w[1...j] jest większy od j/k. W takim przypadku możemy więc przesunąć pozycję pos o |j/k| + 1 i mieć pewność, że nie pominęliśmy kolejnego k-HRP.

Jeśli natomiast $j \in [L_i, R_i]$ dla pewnego k-HRP v_i to z lematu 2.2 wiemy, że $p(w[1...j]) = L_i/2$. Stąd następna potencjalna pozycja jest równa $pos+L_i/2$. Ale ponieważ $j \ge L_i$ to wiemy, że najdłuższy prefiks w i w[pos...n] ma co najmniej długość $j - L_i/2$. Taka analiza prowadzi do następującego algorytmu.

Algorithm 3 PREPROCESS

```
spcopes \leftarrow \texttt{empty list}
pos \leftarrow 1, j \leftarrow 0
\textbf{while } pos + m < n \textbf{ do}
\textbf{while } pos + j < m \land w[j+1] = w[pos+j+1] \textbf{ do}
j \leftarrow j+1
\textbf{if } k \cdot pos \leqslant pos+j \textbf{ then}
\texttt{Append } [2 \cdot pos, pos+j] \textbf{ to list } spcopes.
\textbf{if } j \in [L_i, R_i] \textbf{ for some } [L_i, R_i] \textbf{ in } scopes \textbf{ then}
pos \leftarrow pos + L_i/2
j \leftarrow j - L_i/2
\textbf{else}
pos \leftarrow pos + \lfloor j/k \rfloor + 1
j \leftarrow 0
\textbf{return } scopes
```

Podobnie jak w przypadku algorytmu 1 podany algorytm jest liniowy ponieważ cały czas rośnie wartość $k \cdot pos + j$.

Zauważmy, że jeśli zatrzymamy algorytm gdy znajdziemy HRP 1 i HRP 2 to dostaniemy algorytm obliczający pierwsze dwa HRP w stałej pamięci i liniowy od długości HRP 2. To kończy opis działania algorytmu Galil-Seiferas w wersji Crochemore-Rytter.