{desafío} latam_

Regresión _

Regresión Lineal

Objetivo

- Características de la regresión: Marco analitico flexible para preguntas de asociación y causalidad.
- Responde a la pregunta: ¿Cómo el cambio de una variable afecta el valor de otra?
- Conjetura básica de la regresión:

Variable Dependiente Afecta Variable Independiente

Algunas definiciones

- Variable Dependiente: Objeto de estudio medido en una variable
- Variable Independiente: Posibles factores explicativos de la variable dependiente
- Error: Término residual asociado a lo no explicado por el modelo.
- Modelo: Aproximación funcional a nuestro fenómeno.
- Coeficientes: Componentes estimados del modelo que permiten aproximar características de los datos en la variable dependiente.

Codificación de Variables Categóricas

One-Hot Encoding (OHE)

	Africa	Americas	Asia	Europe	Oceania
0	1	0	0	0	0
1	1	0	0	0	0
2	1	0	0	0	0
3	1	0	0	0	0
4	1	0	0	0	0
			***		***
189	0	0	0	0	1
190	0	0	0	0	1
191	0	0	0	0	1
192	0	0	0	0	1
193	0	0	0	0	1

Binary Encoding

	Americas	Asia	Europe	Oceania	
0	0	0	0	0	
1	0	0	0	0	
2	0	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
	***	***	***	***	
189	0	0	0	1	
190	0	0	0	1	
191	0	0	0	1	
192	0	0	0	1	

194 rows × 4 columns

Codificación de Variables Categóricas

Label Encoding

	country	region	gdp	school	adfert	chldmort	life	pop	urban	femlab	literacy	co2	gini	Americas	Asia	Europe	Oceania
0	Algeria	Africa	7300.399902	6.716667	7.300000	34.75	72.316666	34172236	64.933334	0.4522	72.599998	15.00	NaN	0	0	0	0
1	Benin	Africa	1338.800049	3.100000	111.699997	122.75	54.733334	8237634	41.000000	0.8482	41.700001	1.20	NaN	0	0	0	0
2	Botswana	Africa	12307.400391	8.600000	52.099998	60.25	52.250000	1941233	59.250000	0.8870	84.099998	9.20	NaN	0	0	0	0
3	Burkina Faso	Africa	1063.400024	1.300000	124.800003	170.50	53.783333	15308383	23.583334	0.8584	23.600000	0.20	NaN	0	0	0	0
4	Burundi	Africa	349.200012	2.483333	18.600000	168.50	48.866665	7821783	10.250000	1.0344	66.599998	0.10	33.299999	0	0	0	0
			***				***	***		***	***		***	***	***	***	
189	Samoa	Oceania	4012.600098	10.300000	28.299999	26.75	71.533333	181600	20.666668	0.5010	98.800003	3.10	NaN	0	0	0	1
90	Solomon Islands	Oceania	2249.199951	4.500000	70.300003	36.00	66.500000	503617	17.766666	0.4858	NaN	1.40	NaN	0	0	0	1
91	Tonga	Oceania	4072.199951	10.133333	22.299999	19.25	71.833336	102550	23.266666	0.7150	99.000000	4.85	NaN	0	0	0	1
192	Tuvalu	Oceania	NaN	NaN	23.299999	36.50	66.033333	9767	49.233334	NaN	NaN	NaN	NaN	0	0	0	1
193	Vanuatu	Oceania	3809.800049	6.700000	54.000000	17.75	69.966667	225317	24.500000	0.8988	82.000000	1.50	NaN	0	0	0	1

194 rows × 17 columns

Regresión Lineal desde la Econometría

Conceptualizaciones de la Regresión

- Forma más simple: Tanto V.D como V.I son continuas.
- Resulta que cuando realizamos un diagrama de dispersión y agregamos esa recta de ajuste, estamos generando una regresión.
- Mediante la regresión, buscamos generar una explicación plausible de cómo V.I afecta los niveles de V.D, en promedio.

Nuestra Primera Regresión

Statsmodels

- Para implementar nuestra regresión utilizaremos el módulo ols de la librería statsmodels.
- Este genera un modelo de regresión mediante el método de mínimos cuadrados (Ordinary Least Squares).

```
import statsmodels.api as sm
import statsmodels.formula.api as smf
```


Bondad de Ajuste

- Métricas que informan sobre la capacidad explicativa y desempeño general del modelo.
 - R-squared y Adj. R-squared: ¿Cuál es la capacidad explicativa de nuestros regresores en la variabilidad de los puntajes de nuestro objetivo?
 - F-Statistic y Prob(F-Statistic): Prueba de rango de variabilidad entre partes explicadas y no explicadas.
 - Log-Likelihood (Log-Verosimilitud): Sirve para poder comparar el ajuste de nuestro modelo a los datos con respecto a un modelo sin predictores.
 - IC (Criterio de información de Akaike): Es una métrica de calidad relativa del ajuste de un modelo a los datos.
 - BIC (Criterio de Información Bayesiano): Métrica de ajuste relativo que debe ser comparada de entre los valores obtenidos para un conjunto de modelos candidatos.

Coeficientes

- Interpretación descriptiva de los coeficientes: cómo los valores de una variable dependiente numérica varían en subpoblaciones definidas por una función lineal de atributos.
- Interpretación causal de los coeficientes: cómo el cambio en nuestra variable independiente causa cambios en nuestra variable dependiente.
- Problema de la interpretación causal: Muchos supuestos para hacerla válida.

Validez de las Estimaciones

- Método de Mínimos Cuadrados Ordinarios.
- Encontrar un estimador que reduzca la distancia residual entre los valores predichos y sus correlatos observados.

$$eta = \operatorname*{argmin}_{eta \in \mathbb{R}^d} \mathbb{E} \left[(y_i - X^\mathsf{T} eta)^2
ight] \ = \sum_{i=0}^N (y_i - (eta_0 + eta_1 X))^2$$

Teorema de Gauss Markov

- La media del error es 0.
- El error es independiente de las variables explicativas.
- No existe correlación entre los residuos.
- El error debe ser constante.
- El error debe distribuirse de forma normal.

Diagnósticos

 Una serie de diagnósticos de los errores nos permite determinar si el modelo satisface las condiciones de Gauss-Markov

Variantes de la Regresión Lineal

Variables Binarias

Nuestra variable independiente toma dos valores.

$$earn_i = \beta_0 + \gamma_1 \times male_i + \varepsilon_i$$

Términos Polinomiales

• Consideramos la posible no-linealidad de nuestras variables independientes.

$$earn_i = \beta_0 + \beta_1 \times age_i + \beta_2 \times age_i^2 + \varepsilon_i$$

Múltiples Variables Independientes

 Se puede extender la cantidad de variables independientes a incluir en la ecuación, dando pie a una regresión lineal múltiple.

$$earn_i = \beta_0 + \beta_1 \times age_i + \gamma_2 \times male = 1_i + \varepsilon_i$$

Regresión Lineal desde Machine Learning

Estadística vs Machine Learning

Estadística	Machine Learning					
Modelos	Redes, Grafos					
Variable Dependiente	Vector Objetivo					
Variable Independiente, Covariable	Atributo					
Parámetros	Pesos					
Ajuste	Aprendizaje					
Desempeño en Entrenamiento	Generalización					

Pasos en el Flujo de Machine Learning

- Conocer los elementos:
 - Conocer qué representan.
- Determinar los objetivos de trabajo:
 - Los objetivos de trabajo determinan la arquitectura y modelos a implementar.
- Diseñar e implementar los Modelos:
 - ¿Qué esperamos como resultado?
 - ¿Qué parámetros estimaremos?
 - ¿Qué hiper parámetros consideraremos?

Importación de Módulos

- Parte del flujo de trabajo de Machine Learning depende de scikit-learn.
- Se sugiere siempre importar cada componente de scikit-learn para reducir el overhead.
- Deben existir dos imports mínimos:
 - o Uno de modelo.
 - Uno de métrica.

División de la Muestra

- Se generan dos conjuntos de datos:
 - Training: Donde implementamos el modelo.
 - o Test: Donde probamos el modelo.

Generación de Predicciones

- Con nuestro modelo entrenado, lo que evaluamos es su capacidad de generar explicaciones en un nuevo conjunto de datos no considerados anteriormente en el entrenamiento.
- Con ello, generamos una predicción de los valores en el conjunto de prueba que podemos contrastar posteriormente.

Evaluación del desempeño

$$\mathsf{MSE}(\hat{f},\mathsf{datos}) = \frac{1}{n} \sum_{i=0}^{n} \left(y_i - \hat{f}(\mathbf{x}_i) \right)^2$$

$$\mathsf{MSE}_{\mathsf{test}}(\hat{f},\mathsf{test}) = \frac{1}{n_{\mathsf{test}}} \sum_{i \in \mathsf{test}} \left(y_i - \hat{f}(\mathbf{x}_i) \right)^2 \qquad \mathsf{MSE}_{\mathsf{train}}(\hat{f},\mathsf{train}) = \frac{1}{n_{\mathsf{train}}} \sum_{i \in \mathsf{train}} \left(y_i - \hat{f}(\mathbf{x}_i) \right)^2$$

Trueque entre Sesgo y Varianza

• Criterio de evaluación: capacidad de generalización del modelo

Curva de Validación

Evaluamos cómo se comporta el desempeño del modelo condicional a su complejidad.

Curva de Aprendizaje

Evaluamos cómo se desempeña el modelo, condicional a la cantidad de datos.

{desafío} Academia de talentos digitales

www.desafiolatam.com