Mobilenet

Adam Jabłonowski KNUM CORE #3 29.04.2020

What is convolutional neural network

 In deep learning, a convolutional neural network (CNN, or ConvNet) is a class of deep neural networks, most commonly applied to analyzing visual imagery.

 It consists of few blocks made of combination of convolutional layers and functions adding non-linearity and fully connected layer at end of network.

2 / 24

What is Mobilenet

- Mobilenet is a convolutional neural network used for tasks as image classification, detetion in segmentation.
- Mobilenet is desinged to run in constrained environments like mobile phones and focuses on low inference latency
- Network is often used as element of bigger architectures.
 - For example as encoder in image segmentation framework Deeplab
 - https://github.com/tensorflow/models/tree/master/research/deeplab
 - https://arxiv.org/abs/1802.02611
- Competes with other architectures like:
 - SqueezeNet, MnasNet, BlazeFace, TinyYOLO / Darknet, SqueezeNext,
 ShuffleNet, CondenseNet, ESPNet, DiCENet, FBNet & ChamNet, GhostNet,
 MixNet, EfficientNet

Scientific papers

- "MobileNets: Efficient Convolutional Neural Networks for Mobile VisionApplications" 2017
 - https://arxiv.org/pdf/1704.04861.pdf
- "MobileNetV2: Inverted Residuals and Linear Bottlenecks" 2018
 - https://arxiv.org/pdf/1801.04381.pdf
- "MnasNet: Platform-Aware Neural Architecture Search for Mobile" 2019
 - https://arxiv.org/abs/1807.11626
- "Searching for MobileNetV3" 2019
 - https://arxiv.org/pdf/1905.02244.pdf

Previous work

- A network out of fully factorized convolutions, showed the potential of extremely factorized networks.
 - "Flattened Convolutional Neural Networks for Feedforward Acceleration" https://arxiv.org/abs/1412.5474
- Squeezenet which uses a bottleneck approach.
 - "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" https://arxiv.org/abs/1602.07360
- Other reduced computation networks include:
 - "Structured Transforms for Small-Footprint Deep Learning" https://arxiv.org/abs/1510.01722
 - "Deep Fried Convnets" https://arxiv.org/abs/1412.7149

Popular methods for making network small

- Different approaches for obtaining small networks are:
 - shrinking, pruning, which cuts of some elements like neurons or neuron connections
 - factorizing, which replace one element with few simpler
 - compressing pretrained networks based on:
 - product quantization
 - hashing
 - pruning
 - vector quantization
 - Huffman coding
 - distillation, which uses a larger network to teach a smaller network.
 - low bit networks, which elements are represented by very small numbers of bits

Mobilenet v1 Depthwise separable convolutions

- Factorize a standard convolution into a depthwise convolution and a 1×1 convolution called a pointwise convolution, what drastically reduses computation costs.
- Assume h is height, w width, d depth, i, j index of layer, k kernel
 - Standard convolutions have the computational cost of:
 - hi·wi·di·dj·k·k
 - Depthwise separable convolutions cost:
 - hi·wi·di(k·k+dj)
- The trade off is that such kernel is less expressive

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Mobilenet v1 Architecture

- Streamlined architecture
- All layers are followed by a batchnorm and ReLU nonlinearity with the exception of the final fully connected layer which has no nonlinearity and feeds into a softmax layer for classification.
 - "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift" https://arxiv.org/abs/1502.03167
- A final average pooling reduces the spatial resolution to 1 before the fully connected layer.
- Counting depthwise and pointwise convolutions as separate layers, MobileNet has 28 layers.

Mobilenet v1 Computations

- Model structure puts nearly all of the computation into dense 1×1 convolutions. This can be implemented with highly optimized general matrix multiply (GEMM) functions. And 1×1 convolutions do not require an initial reordering in memory in order to map it to a GEMM.
- MobileNet spends 95% of it's computation time in1×1 convolutions which also has 75% of the parameters. Nearly all of the additional parameters are in the fully connected layer.

Mobilenet v1 Hyper-Parameters

- There are introduced two simple global hyper-parameters that efficiently trade off between latency and accuracy.
- width multiplier α
 - The number of input channels in depthwise separable convolutions **di** becomes **αdi** and the number of output channels **dj** becomes **αdj**.
 - The computational cost with width multiplier α is
 - hi·wi·α·di(k·k+α·dj)
- resolution multiplier ρ
 - The input image and the internal representation of every layer is subsequently reduced by the same multiplier. In practice we implicitly set ρ by setting the input resolution.
 - The computational cost with is
 - ρ·hi·ρ·wi·α·di(k·k+α·dj)
- Resolution multiplier has the effect of quadratically reducing computational cost and width multiplier roughly quadratically.

Mobilenet v1 Results

 Performance compared to other popular models on ImageNet http://image-net.org/download classification and face recognition

Table 8. MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
1.0 MobileNet-224	70.6%	569	4.2
GoogleNet	69.8%	1550	6.8
VGG 16	71.5%	15300	138

Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million	
	Accuracy	Mult-Adds	Parameters	
0.50 MobileNet-160	60.2%	76	1.32	
Squeezenet	57.5%	1700	1.25	
AlexNet	57.2%	720	60	

Table 10. MobileNet for Stanford Dogs

Model	Top-1	Million	Million	
	Accuracy	Mult-Adds	Parameters	
Inception V3 [18]	84%	5000	23.2	
1.0 MobileNet-224	83.3%	569	3.3	
0.75 MobileNet-224	81.9%	325	1.9	
1.0 MobileNet-192	81.9%	418	3.3	
0.75 MobileNet-192	80.5%	239	1.9	

Table 14. MobileNet Distilled from FaceNet

Model	1e-4	Million	Million	
	Accuracy	Mult-Adds	Parameters	
FaceNet [25]	83%	1600	7.5	
1.0 MobileNet-160	79.4%	286	4.9	
1.0 MobileNet-128	78.3%	185	5.5	
0.75 MobileNet-128	75.2%	166	3.4	
0.75 MobileNet-128	72.5%	108	3.8	

Mobilenet v2 Ideas

- The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity.
- It is important to remove non-linearities in the narrow layers in order to maintain representational power.
- Approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides a convenient framework for further analysis.
- Network significantly decreases the number of operations and memory needed while retaining the same accuracy.

Mobilenet v2 Inverted residual with linear bottleneck

- Main improvement is a novel layer module the inverted residual with linear bottleneck.
- This module takes as an input a low-dimensional compressed representation which is
 - first expanded to high dimension
 - filtered with a lightweight depthwise convolution
 - Features are subsequently projected back to a lowdimensional representation with a linear convolution.

Mobilenet v2 Implementation

- The official implementation is available as part of TensorFlow-Slim model library
 - https://github.com/tensorflow/models/tree/ master/research/slim/nets/mobilenet
- Module is suitable for mobile designs, because it significantly reduces the memory footprint needed during inference by never fully materializing large intermediate tensors.
- This reduces the need for main memory access in many embedded hardware designs, that provide small amounts of very fast software controlled cache memory.

Mobilenet v2 Results

Accuracy on ImageNet

Mobilenet v2 Segmentation results

 When used with Deeplab for image segmentation, compared with state of art in PASCAL VOC 2012 segmentation test Xception65 model

Checkpoint name	Eval OS	Eval scales	Left- right Flip	Multiply- Adds	Runtime (sec)	PASCAL mIOU	File Size
mobilenetv2_dm05_coco_voc_trainaug	16	[1.0]	No	0.88B	-	70.19% (val)	7.6MB
mobilenetv2_dm05_coco_voc_trainval	8	[1.0]	No	2.84B	-	71.83% (test)	7.6MB
mobilenetv2_coco_voc_trainaug	16 8	[1.0] [0.5:0.25:1.75]	No Yes	2.75B 152.59B	0.1 26.9	75.32% (val) 77.33 (val)	23MB
mobilenetv2_coco_voc_trainval	8	[0.5:0.25:1.75]	Yes	152.59B	26.9	80.25% (test)	23MB
xception65_coco_voc_trainaug	16 8	[1.0] [0.5:0.25:1.75]	No Yes	54.17B 3055.35B	0.7 223.2	82.20% (val) 83.58% (val)	439MB
xception65_coco_voc_trainval	8	[0.5:0.25:1.75]	Yes	3055.35B	223.2	87.80% (test)	439MB

- "dm" means depth multiplier, "OS" means output stride (input/output ratio)
- Models where pretrained on ImageNet then trained on coco and voc datasets $^{16/24}$

Mobilenet v3 Main changes

- The architecture was partially found through automated network architecture search (NAS)
- Inspired by MnasNet architecture found by NAS
- The main changes are
 - expensive layers were redesigned
 - use of Swish instead of ReLU6
 - squeeze-and-excitation modules

MnasNet

- Model found by network architecture search
 - "MnasNet: Platform-Aware Neural Architecture Search for Mobile" https://arxiv.org/abs/1807.11626
- MnasNet was built upon the MobileNetV2 structure by introducing lightweight attention modules based on squeeze and excitation into the bottleneck structure.
- Squeeze-and-Excitation (SE) block adaptively recalibrates channel-wise feature responses by explicitly modelling interdependencies between channels.

MnasNet Sqeeze and excitation

squeeze

- Squeeze global spatial information into a channel descriptor
- Use global average pooling to generate channel-wise statistics
- More sophisticated strategies, then the simplest aggregation technique, global average pooling, could be employed

excitation

- To make use of the information aggregated in the squeeze operation, follow it with a second operation, which aims to fully capture channel-wise dependencies
- Employ a simple gating mechanism with a sigmoid activation, parameterised by forming a bottleneck with two fully-connected (FC) layers around the non-linearity
- The final output of the block is obtained by rescaling with the activations
- SE blocks intrinsically introduce dynamics conditioned on the input, resulting in self-attention function on channels, whose relationships are not confined to the local receptive field the convolutional filters.

Mobilenet v3 vs MnasNet

Differences with MnasNet

- the activation is h-swish (but as mentioned in the earlier layers it is ReLU)
- the number of filters used by the expansion layers is different (the NetAdapt algorithm was used to find optimal values for these)
- the number of channels that are output by the bottleneck layers may be different (also found by NetAdapt)
- the squeeze-and-excitation (SE) modules only reduce the number of channels by a factor 3 or 4
- instead of a sigmoid, the SE module uses the formula ReLU6(x + 3) / 6
 as a rough approximation (just like what h-swish does)

Mobilenet v3 Results

Accuracy on ImageNet and latency

Latency, pixel 1, ms

Latency, pixel 1, ms

Deploying model

- U can use neural network inference frameworks like
 - TensorFlow Lite
 - Mace
- quantize your pretrained model to speed up CPU inference
 - Quantization replaces float32 model variables used while training with uint8 values, which slightly decreases quality of network output
- use quantization aware training

References

Papers

- "MobileNets: Efficient Convolutional Neural Networks for Mobile VisionApplications" https://arxiv.org/pdf/1704.04861.pdf
- "MobileNetV2: Inverted Residuals and Linear Bottlenecks" https://arxiv.org/pdf/1801.04381.pdf
- "MnasNet: Platform-Aware Neural Architecture Search for Mobile" https://arxiv.org/abs/1807.11626
- "Searching for MobileNetV3" https://arxiv.org/pdf/1905.02244.pdf

Images

- https://machinethink.net/blog/mobilenet-v2/
- https://medium.com/@neuralnets/swish-activation-function-by-google-53e1 ea86f820
- Netron model visualizer https://lutzroeder.github.io/netron/
- PASCAL VOC 2012

End