Hybrid PSO-GA for mixed continuous-discrete problems

Presentation for the exam of Global and Multiobjective Optimisation

Continuous optimization

- set of solutions is uncountably infinite
- for many classes of problems polynomial algorithms exists
- very effective methods in practice when other properties holds (e.g. differentiability)

Discrete optimization

- set of solutions is typically finite
- many problems of this kind are provably NP-hard
- often hard to solve in practice, heuristics are commonly used

Continuous optimization

Discrete optimization

Some applicable metaheuristics

Particle Swarm Optimization

Differential Evolution

Explicit methods (e.g. Estimation of Distribution Algorithms)

Genetic Algorithm

Evolution Strategies

Simulated Annealing

but many have variations for the other type

Mixed continuous-discrete optimization problems

discrete space

could be a finite subset of \mathbb{R}^n (but in general even categorical)

Mixed problems in the wild - examples

when optimizing NNs:

- learning rate(continuous)
- neurons in a layer (integers)
- activation function (categorical)

in an engineering or industrial settings:

- variables that can be tuned freely (continuous)
- counting variables (naturals)
- variables that can assume only certain values (discrete)

some properties like continuity or differentiability may be preserved

Variable encoding

General schema of the proposed algorithm

Diversity preserving structures

Matrix-like structure

Discrete space is divided into **hypercubes**

For each hypercube we keep track of the **continuous part** of the best particle with discrete part in the hypercube

During **PSO**, given a particle, the best particle component is the one in the matrix that is in the **same hypercube**

- (+) fast, easy to implement
- (-) feasible only for low dimension, static

Diversity preserving structures

List-like structure

A list of **fixed length** is maintained

An element **replace** another if the **distance** between their discrete part is small and it has a better value.

An element replace a bad element in the list if it is **good** enough and **sufficiently far** away from the elements in the list

During **PSO**, given a particle, the best particle component is the one in the list that is **closer** in their discrete part

- (+) dynamic, tunable
- (-) many parameters to tune, costly

Genetic Algorithm adjustments

Selection → no adjustments needed w.r.t. standard GA

Crossover → standard GA can be used on the *whole* encoded vector but some improvement can be done

Mutation → two possible options: only for the discrete part or for both continuous and discrete part

Selection - implemented

- the best 1/5th of the population is directly selected
- **tournaments** of **size 3** among the whole population decides the other individuals to be selected
- the number of individuals to be selected is equal to half the population

Crossover - implemented

- the best 1/10th of the population is **preserved**
- then two parents are selected uniformly from the **whole** selected **population**. A crossover is performed, randomly selected among the three types available, generating two children
- this is iterated until we reach a population equal to the initial population
 minus 1/10th of the initial population

There are **three types** of crossovers:

- □ discrete-continuous crossover
- □ double one point crossover
- □ *uniform* crossover

Discrete-continuous crossover

One children inherits the **discrete part** from the *first parent* and the **continuous part** from the *second parent*.

The role of the parents is switched for the other children.

Double one point crossover

One point is selected for the **discrete part** and another for the **continuous part**. *One point crossover* is performed for both parts.

Uniform crossover

A *classic uniform crossover* is performed on the first parent (the whole encoded vector) with probability ½ of selecting the gene from the second parent.

The same is done for the second parent with the roles reversed.

Mutation - implemented

- **1/10th** of the population is preserved **without mutation** (the one that avoided crossover)
- the rest of the population is mutated by one of the following **mutations**:
 - o **discrete** only mutation: each discrete variable is mutated, with a certain probability, of a small step (if total ordering) or randomly (if categorical)
 - o **continuous** only mutation: each continuous variable is mutated, with a certain probability, of a small epsilon
 - both of them together (possibly with smaller step/epsilon)
- the preserved population is copied and then mutated using the discrete only mutation.

Discrete-only ϵ mutation

Continuous-only ϵ mutation

Continuous and discrete

Experimental results

Artificial benchmark functions

- Continuous benchmark functions with half of the variables discretized
- Hard to optimize even in the continuous case, minimum in $\vec{0}$.

Alpine 1

$$f(\vec{x}) = \sum_{i=1}^{D} |x_i sin(x_i) + 0.1x_i|$$

Schwefel 2.21

$$f(\vec{x}) = \max_{i=1,\dots,D} |x_i|$$

Ackley

Salomon

$$f(\vec{x}) = 1 - \cos\left(2\pi\sqrt{\sum_{i=1}^{D} x_i^2}\right) + 0.1\sqrt{\sum_{i=1}^{D} x_i^2}$$

Some **low dimensional** results

- Population size: **50**
- Number of dimensions: 4 (2 discrete and 2 continuous)
- Number of discrete values: **101** (each coordinate)
- PSO iterations: 5
- Number of independent runs: **10**

Schwefel 2.21

GA-PSO $2.93 \cdot 10^{-50}$

RS 3.80

Bent Cigar

GA-PSO $9.3 \cdot 10^3$

RS $3.2 \cdot 10^6$

Some intermediate dimensional results

- Population size: **50**
- Number of dimensions: **20** (10 **discrete** and 10 **continuous**)
- Number of discrete values: **101** (each coordinate)
- PSO iterations: 5
- Number of independent runs: 10

Schwefel 2.21 6.24 **GA-PSO** RS 51.5

Random search GA-PSO std Random search std

20000

25000

30000

Higher dimensional results

• Population size: **50**

• Number of dimensions: **50** (25 **discrete** and 25 **continuous**)

• Number of discrete values: **401** (each coordinate)

PSO iterations: 5

• Number of independent runs: **10**

Schwefel 2.21

GA-PSO 59.4

RS 76.8

Salomon

Ackley

Pressure Vessel Design optimization problem

$$f(T_s, T_h, R, L) = 0.6224 \cdot T_s \cdot R \cdot L + 1.7781 \cdot T_h \cdot R^2 + 3.1611 \cdot T_s^2 \cdot L + 19.84 \cdot T_s^2 \cdot R$$

while satisfying the following **constraints**
$$-T_h + 0.0193R \le 0$$
 $-T_s + 0.00954R \le 0$ $-T_s + 0.00954R \le 0$ $T_s, T_h \in \{0.0625 \cdot i | i = 1, 2, \dots, 99\}$ $-\pi R^2 L - \frac{4}{3}\pi R^3 + 1296000 \le 0$

Constraints handling - maintain

theoretical **minimum** is around 6059.714

Constraints handling - maintain

theoretical **minimum** is around 6059.714

Constraints handling - repeat

theoretical **minimum** is around 6059.714

Constraints handling - repeat

theoretical minimum is around 6059.714

