

Abstract Algebra 2024–I

Homework 2

Christian Chávez

February 18, 2024

- 1. Determine which of the following binary operations are associative.
 - (a) the operation \star on \mathbb{Z} defined by $a \star b = a b$
 - (b) the operation \star on \mathbb{R} defined by $a \star b = a + b + ab$
 - (c) the operation \star on \mathbb{Q} defined by $a \star b = \frac{a+b}{5}$
 - (d) the operation \star on $\mathbb{Z} \times \mathbb{Z}$ defined by $(a, b) \star (c, d) = (ad + bc, bd)$
 - (e) the operation \star on $\mathbb{Q}\setminus\{0\}$ defined by $a\star b=\frac{a}{b}$
- **2.** Prove that addition of residue classes in $\mathbb{Z}/n\mathbb{Z}$ is associative. (Assume it is well defined.)
- 3. Determine which of the following sets are groups under addition:
 - (a) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are odd
 - (b) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators are even
 - (c) the set of rational numbers of absolute value < 1
 - (d) the set of rational numbers of absolute value ≥ 1 together with 0
 - (e) the set of rational numbers with denominators equal to 1 or 2
 - (f) the set of rational numbers with denominators equal to 1, 2 or 3
- **4.** Let $G = \{z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+\}.$
 - (a) Prove that G is a group under multiplication (called the group of roots of unity in \mathbb{C}).
 - (b) Prove that G is not a group under addition.
- 5. Let $G = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}.$
 - (a) Prove that G is a group under addition.

- (b) Prove that the nonzero elements of G are a group under multiplication. ("Rationalize the denominators" to find multiplicative inverses.)
- **6.** Find the orders of each element of the additive group $\mathbb{Z}/12\mathbb{Z}$.
- 7. Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/12\mathbb{Z})^{\times}$:

$$\overline{1}, \overline{-1}, \overline{5}, \overline{7}, \overline{-7}, \overline{13}.$$

8. Find the orders of the following elements of the additive group $\mathbb{Z}/36\mathbb{Z}$:

$$\overline{1}, \overline{2}, \overline{6}, \overline{9}, \overline{10}, \overline{12}, \overline{-1}, \overline{-10}, \overline{-18}.$$

- **9.** Let x be an element of G. Prove that $x^2 = 1$ if and only if |x| is either 1 or 2.
- **10.** Let x be an element of G. Prove that if |x| = n for some positive integer n then $x^{-1} = x^{n-1}$.
- **11.** Let x and y be elements of G. Prove that xy = yx if and only if $y^{-1}xy = x$ if and only if $x^{-1}y^{-1}xy = 1$.
- 12. Let $x \in G$ and let $a, b \in \mathbb{Z}^+$.
 - (a) Prove that $x^{a+b} = x^a x^b$ and $(x^a)^b = x^{ab}$.
 - (b) Prove that $(x^a)^{-1} = x^{-a}$.
 - (c) Establish part (a) for arbitrary integers a and b (positive, negative or zero).
- 13. For x an element in G show that x and x^{-1} have the same order.
- **14.** If x and g are elements of the group G, prove that $|x| = |g^{-1}xg|$. Deduce that |ab| = |ba| for all $a, b \in G$.
- **15.** Prove that if $x^2 = 1$ for all $x \in G$, then G is abelian.
- **16.** Assume H is a nonempty subset of (G, \star) which is closed under the binary operation on G and is closed under inverses, i.e., for all h and k elements of H it holds $hk, h^{-1} \in H$. Prove that H is a group under the operation \star restricted to H (such a subset H is called a subgroup of G).
- 17. Prove that if x is an element of the group G then $\{x^n \mid n \in \mathbb{Z}\}$ is a subgroup (cf. the preceding exercise) of G (called the cyclic subgroup of G generated by x).
- **18.** Compute the order of each of the elements in (a) D_6 , (b) D_8 , and (c) D_{10} .
- 19. Let σ be the permutation

$$1 \mapsto 3 \quad 2 \mapsto 4 \quad 3 \mapsto 5 \quad 4 \mapsto 2 \quad 5 \mapsto 1$$

and let τ be the permutation

$1 \mapsto 5 \quad 2 \mapsto 3 \quad 3 \mapsto 2 \quad 4 \mapsto 4 \quad 5 \mapsto 1.$

Find the cycle decompositions of each of the following permutations: $\sigma, \tau, \sigma^2, \sigma\tau, \tau\sigma$, and $\tau^2\sigma$.

- 20.
- 21.
- 22.
- 23.
- 24.
- **25**.
- 26.
- 27.
- 28.