you only look once-Yolo

Outline

- Introduction
- Object localization
- Object detection
 - Sliding window detection
 - Convolutional implementation
- YOLO
 - Bounding box predictions

Introduction

 Deep learning has been successfully applied to computer vision, natural language processing, speech recognition, online advertising, etc.

Deep learning for computer vision:

- Two sources of knowledge:
- 1) Labeled data; 2) Hand engineered features/network architecture

• Localization vs Detection Image classification

• Single object

"dog"

Classification with localization

"dog"

Multiple objects

Detection

• Classification with localization $_{(0,0)}^{\text{(0,0)}}$

$$b_x = 0.55$$

$$b_y = 0.53$$

$$b_{h} = 0.70$$

$$b_{w} = 0.35$$

Class labels:

- 1. dog
- 2. cat
- 3. bird
- 4. background

- Defining the target label y
 - Need to output b_x , b_y , b_h , b_{w_x} and class label (1-4)

Classes (C):

1 - dog
 2 - cat

3 - bird

- Defining the target label y
 - Need to output b_x , b_y , b_h , b_{w_x} and class label (1-4)

Loss function

Classes (C):

- 1 dog
- 2 cat
- 3 bird

$$y = \begin{bmatrix} P_c \\ b_x \\ b_y \\ b_h \\ C_1 \\ C_2 \\ C_3 \end{bmatrix}$$

$$L(\hat{y}, y) = \begin{cases} (\widehat{y}_1 - y_1)^2 + (\widehat{y}_2 - y_2)^2 \\ + \dots + (\widehat{y}_8 - y_8)^2, & if \ y_1 = 1 \end{cases}$$
$$(\widehat{y}_1 - y_1)^2, \quad if \ y_1 = 0$$

Landmark detection

Facial landmarks

Landmark detection

• Pose estimation

• Dog detection example

• Training set:

Sliding window detection

• Sliding window detection

Sliding window detection

- Convolutional implementation
 - FC layers to convolutional layers

Convolutional implementation of sliding window

Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." (2013).

Convolutional implementation of sliding window

Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." (2013).

Convolutional implementation of sliding window

Sermanet, Pierre, et al. "Overfeat: Integrated recognition, localization and detection using convolutional networks." (2013).

Convolutional implementation of sliding window

Object detection
• Convolutional implement of sliding window

Convolutional implementation of sliding window

Bounding box prediction

Accurate bounding boxes

YOLO

You Only Look Once

Labels for training (for each cell):

$$y = \begin{bmatrix} P_c \\ b_x \\ b_y \\ b_h \\ C_1 \\ C_2 \\ C_3 \end{bmatrix} \quad y = \begin{bmatrix} 0 \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix}$$

$$y = egin{bmatrix} 1 \ b_x \ b_y \ b_h \ b_w \ 1 \ 0 \ 0 \end{bmatrix}$$

Classes (C):

1 - dog

2 - cat

3 - bird

Target output: 3×3×8

YOLO

You Only Look Once

YOLO - Bounding box prediction

Specify output labels

Labels for training (for each cell):

$$y = \begin{bmatrix} P_c \\ b_x \\ b_y \\ b_h \\ C_1 \\ C_2 \\ C_3 \end{bmatrix} \longrightarrow y = \begin{bmatrix} 1 \\ b_x \\ b_y \\ b_h \\ b_w \\ 0 \\ 0 \\ 1 \end{bmatrix} \xrightarrow{\text{An object is present.}} \text{Bounding box information.}$$

Classes (C):

 C_1 - \log

 C_2 - cat

 C_3 - chicken

YOLO - Bounding box prediction

Specify bounding boxes for objects

YOLO - Bounding box prediction

Output labels

Intersection over Union (IoU)

- Evaluation of object localization
 - IoU is a measure of the overlap between two bounding boxes

Intersection over Union (IoU)

Evaluation of object localization

 Object detection algorithm may find multiple detections of the same object.

Non-max suppression helps to ensure each object is only detected

once.

Initial bounding boxes After non-max suppression

 Object detection algorithm may find multiple detections of the same object.

- Technically, only one of those grid cells should predict that there is an object.
- However, in practice, an adjacent cell may also think the center of an object is inside itself.

Multiple detections per object

• Non-max suppression example

• After non-max suppression

Non-max suppression algorithm

For each of the 19×19 positions, the output prediction is:

$$\begin{bmatrix} b_x \\ b_y \\ b_h \\ b_w \end{bmatrix}$$

Discard all boxes with $p_c \leq Threshold$ (e.g. 0.6)

While there are any remaining boxes:

- Pick the boxes with the largest p_c . Output it as a prediction
- Discard any remaining boxes with IoU ≥
 0.5 with the box output in the previous step

- Overlapping objects
 - One grid cell has the midpoints of two objects

$$y = \begin{bmatrix} b_x \\ b_y \\ b_h \\ b_w \\ C_1 \\ C_2 \\ C_3 \end{bmatrix}$$

is not able to output multiple detections.

• Predefine different shapes – anchor boxes

Anchor box algorithm

Previously:

Each object in training image is assigned to a grid cell that contains that object's midpoint

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and an anchor box for the gird cell with highest IoU

Output y: $3 \times 3 \times 8$

Output y:
$$3 \times 3 \times 16$$

 $3 \times 3 \times 2 \times 8$

Anchor box 1:

Anchor box 2:

Output label of the center cell:

$$y = \begin{bmatrix} P_c \\ b_x \\ b_y \\ b_h \\ b_w \\ C_1 \\ C_2 \\ C_3 \\ P_c \\ b_x \\ b_y \\ b_h \\ b_w \\ C_1 \\ C_2 \\ C_3 \end{bmatrix}$$

$$egin{bmatrix} b_x \ b_y \ b_h \ b_w \ 1 \ 0 \ 1 \ b_x \ b_y \ b_h \ b_w \ 0 \ 1 \ 0 \ \end{bmatrix}$$

Classes (C): C_1 - person C_2 - car C_3 - bike

Anchor box 1:

Anchor box 2:

Output label of a grid cell only having part of a car:

$$y = \begin{bmatrix} P_c \\ b_x \\ b_y \\ b_h \\ b_w \\ C_1 \\ C_2 \\ C_3 \\ P_c \\ b_x \\ b_y \\ b_h \\ b_w \\ C_1 \\ C_2 \\ C_3 \end{bmatrix}$$

Classes (C): C_1 - person C_2 - car C_3 - bike

Construct a training set

Size of output y is $3 \times 3 \times 2$

imes 8 or 3 imes 3 imes 16

Anchor box 1:

Anchor box 2:

Anchor boxes Classes (C):

y =

 $egin{array}{c} P_c \ b_x \ b_y \ b_h \ c \end{array}$

 b_w

 C_1 - person C_2 - car C_3 - bike

[0] ? ? ? ? ? ? ? ? $\begin{bmatrix} 1 \\ b_x \\ b_y \\ b_h \\ 0 \\ 0 \\ ? \\ ? \\ ? \\ ? \\ \end{bmatrix}$

Makin

Outputting the non-max suppressed outputs

 For each grid cell, get 2 predicted bounding boxes

Outputting the non-max suppressed outputs

- For each grid cell, get 2 predicted bounding boxes
- Get rid of low probability predictions

Outputting the non-max suppressed outputs

- For each grid cell, get 2 predicted bounding boxes
- Get rid of low probability predictions
- For each class (person, car, bike) use non-max suppression to generate final perditions

Region proposal

• Region proposal : R-CNN

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.

Region proposal

• Region proposal : R-CNN

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.

Region proposal

• Faster algorithm Propose regions. Classify proposed regions one at a time.

Output label + bounding box

R-CNN:

Propose regions. Use convolution implementation of sliding

windows to classify all the proposed regions

Fast R-CNN:

Use convolution network to propose regions

Faster R-CNN:

Yolo

- YOLO solves the object detection as a regression problem to obtain the positions of all the objects in the image, their categories and the corresponding confidence probabilities.
- YOLO uses the convolutional layer to extract image features, the fully connected layer predicts the
 image position and category probability value. YOLO divides the input image into S * S grids. If the
 coordinates of the central position of an object fall into a grid, the grid is responsible for detecting
 the object. Each grid outputs a plurality of bounding box information (including the central
 position coordinates of the predicted object bounding box, the width and height of the bounding
 box, the accuracy of the object and the object position) and the probability information that the
 multiple objects belong to a certain category. YOLO uses sum of mean squares error as a loss
 function.
- The YOLO training can be divided into two steps: pre-training and using the top 20 convolutional layer network parameters obtained from the pre-training to initialize the network parameters of the top 20 convolutional layers of the YOLO model, and then annotate the data for model training.

Conclusions

- Object localization
- Object detection
 - Sliding window detection
 - Convolutional implementation
- YOLO
 - Bounding box predictions
 - Non-max suppression
 - Anchor boxes
- Region proposal for object detection

Training your own yolo

https://blog.paperspace.com/train-yolov5-custom-data/