Trigonometry Identities add: formula of tangent and normal					3-D Vector Geometry (+ Formulas)	
$a^2=b^2+c^2-2bc\cos A$ $\sin{(\alpha\pm\beta)}=\sin{\alpha}\cos{\beta}\pm\cos{\alpha}$			1 1		Dot Product and Cross Product	
$A=\cos^{-1}\left(rac{b^2+c^2-a^2}{} ight) \qquad \cos\left(lpha\pmeta ight) = \coslpha\coseta\mp\sinlpha$. 4		Dot Product: $a \cdot b = a b \cos \theta$ Cross Product: $a \times b = a b \sin \theta \hat{n}$, \hat{n} : unit vector		
(2bc)	$\frac{1}{2 \tan x} \left(\frac{2bc}{2} \right) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$			4 4	Cross Product: $a \times b = a b \sin \theta n$, n : unit vector $\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2)i - (a_1b_3 - a_3b_1)j + (a_1b_2 - a_2b_1)k$	
$ an 2x = rac{2 an x}{1- an^2 x}$ $ an (lpha \pm eta) = rac{1 \mp an lpha an eta}{\cot lpha \pm \cot lpha}$		$\cos P + \cos Q$	$r=2\cos{1\over 2}(P+Q)\cos{1\over 2}(P-Q)$	Area between 2 vectors: $ a \times b $	(
$1 - \tan x$	$\cot(\alpha \pm \beta) = \frac{\cos(\alpha + \beta)}{\cos(\alpha + \beta)}$	$ot \beta \pm \cot \alpha$	$\cos P - \cos Q$	$r=-2\sinrac{1}{2}(P+Q)\sinrac{1}{2}(P-Q)$	Magnitude: $ a = \sqrt{x^2 + y^2 + z^2}$	
Limit Laws/Results Squeeze Theo			rem L'Hopital's Rule		Equation of Plane + Plane Formulas	
$1.\lim_{x o c}(f(x)\pm g(x))=\lim_{x o c}f(x)\pm\lim_{x o c}g(x)$ Supp			$f(x) \le f(x) \le h(x),$	$\lim_{x o c}rac{f(x)}{g(x)}=\lim_{x o c}rac{f'(x)}{g'(x)}\left(rac{0}{0}/rac{\infty}{\infty} ight)$	with normal $\langle a, b, c \rangle$ and point (x_0, y_0, z_0) ,	
$2.\lim_{x o c} kf(x) = k\lim_{x o c} f(x)$		$\lim_{x o c}g(x)=\lim_{x o c}h(x)=L,$		$x ightarrow c g(x) \qquad \overline{x ightarrow c} \ g'(x) \setminus 0 \ ' \ \infty \ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 1. \ (r - r_0). < a, \ b, \ c >= 0 \\ 2. \ ar + by + az + d = 0 \end{array}$	
$3.\lim_{x o c}(f(x)g(x)) = \Bigl(\lim_{x o c}f(x)\Bigr)\Bigl(\lim_{x o c}(g(x))\Bigr) \qquad ext{the}$		$\lim_{x o c}f(x)=L$		Differentiation Misc	$3. a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$	
6() 1: 6()		x→c Replacement Law				
		$f(x) = g(x) \text{ for } x \neq a.$		$y=f(x)^{g(x)}$	Dist from point to plane = $\left \frac{ax_0 + by_0 + cz_0 + d}{\sqrt{a^2 + b^2 + c^2}} \right $	
5. If g is continuous at point b and $\lim_{x \to c} f(x) = b$,		$1.\lim_{x o a}f(x)=\lim_{x o a}g(x)\mathrm{OR}$		$\ln y = q(x) \ln f(x)$	Equation of Line + Line Formulas	
$rac{ ext{then }\lim_{x o c}g(f(x))=g(b)=g\Bigl(\lim_{x o c}f(x)\Bigr)}{ ext{If }\lim_{x o c}g(x)=0,}$ Fu		$2. ext{Limit does not exists}$		Change of base	with point (x_0,y_0,z_0) on line and direction vector $<$ a, b, c $>$	
				$\log_a x = rac{\ln x}{\ln a}, a > 0$ and $a eq 1$	$1 \ 1. \ r(t) \ = \ (x_0, y_0, z_0) + t < a, b, c >$	
$\lim \frac{\sin(g(x))}{\sin(g(x))} = \lim \frac{g(x)}{\sin(g(x))} = 1$		I (**)		Functions Laws	$2. \ x = x_0 + ta; \ y = y_0 + tb; \ z = z_0 + tc$	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		$\int_a f(t)dt = F(b) - F(a)$		$f(f\pm g)(x) = f(x) \pm g(x)$	With vector function $\vec{r}(t) = \langle i(t), j(t), k(t) \rangle$	
$\lim_{x o c}rac{ an\left(g(x) ight)}{g(x)}=\lim_{x o c}rac{g(x)}{ an\left(g(x) ight)}=1 \qquad \left[rac{J_a}{d} ight]$		$\frac{d}{dx} \int_{a}^{x} f(t)$	dt = f(x)	(fg)(x) = f(x)g(x) $(fg)(x) = f(x)g(x)$	$r'(t) = \langle i'(t), j'(t), k'(t) \rangle$	
dx		$\int dx \int_a \int_a \int_a \int_a \int_a \int_a \int_a \int_a \int_a \int_a$	<i>j</i> (w)			
$oxed{rac{d}{dx}\left(u\pm v ight)=rac{du}{dx}\pmrac{du}{dz}}$	$\frac{dv}{dx}$	$\frac{d}{d} \int_{-\infty}^{g(x)} f(x) dx$	f(t) dt = f(q(x)) q'(x)	$\left(\frac{1}{g}\right)(x) = \frac{g(x)}{g(x)} \left[g(x) \neq 0\right]$	$0 \frac{ r'(t) }{ \text{Other Formulas} }$	
$egin{array}{c} dx & dx & dx \ \dfrac{d}{dx}(uv) = \dfrac{du}{dx}v + dx \end{array}$		$dx J_a$	$f(t)dt=f(g(x))g'(x) oxed{\left(rac{f}{g} ight)}(x)=rac{f(x)}{g(x)}\left\lceil g(x) eq 0$		Distance between $P_1(x_1, y_1, z_1) \& P_2(x_2, y_2, z_2)$,	
an an	Colo		First Derivative Tes	st Second Derivative Test	$\left P_1 P_2 = \sqrt{ \left(x_2 - x_1 ight)^2 + \left(y_2 - y_1 ight)^2 + } ight $	$\overline{\left(z_2-z_1 ight)^2}$
$rac{d}{dx} \Big(rac{u}{v}\Big) = rac{rac{du}{dx}v - v}{v^2}$	$u\frac{dv}{dx}$				'	
$\frac{dx}{dx} \cdot \frac{v}{dt} = \frac{dy}{dt} \cdot \frac{dt}{dx}$			$f'(x) > 0 ext{ before } x = c \ f'(x) < 0 ext{ after } x = c \ f'(c) = 0 ext{ and } f''(c) < 0 ext{ after } x = c \ f'(c) = 0 ext{ and } f''(c) < 0 ext{ after } x = c \ f''(c) = 0 ext{ and } f''(c) < 0 ext{ after } x = c \ f''(c) = 0 ext{ and } f''(c) < 0 ext{ after } x = c ext{ after } x = c$			
					Vector between $A(x_1, y_1, z_1) \& B(x_2, y_2, z_2)$,	
$rac{d^2y}{dx^2}=rac{d}{dt}igg(rac{dy}{dx}$	$\left(\frac{dt}{dx}\right) \cdot \frac{dt}{dx}$			$=c \left f'(c) = 0 ext{ and } f''(c) > 0 ight $	$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 angle$	/
M					$egin{align*} ext{Angle between vectors}: heta = \cos^{-1}\left(rac{ec{a}\cdotec{b}}{ ec{a} ec{b} } ight) \end{aligned}$	
Series Test $\rightarrow \bigcap_{n \neq 0}^{\text{lim}} S_n = L \Rightarrow Convergent / = \pm o / DNE \Rightarrow D$ n-th Term Test (take limit) / Divergence Test $\rightarrow \bigcap_{n \neq 0}^{\text{lim}} \alpha = 0 \Rightarrow \bigcap_{n \neq 0}^{\text{lim}} \alpha$			Power Series (about a)		Tingle between vectors . $v = \cos \left(\frac{ \vec{a} \vec{b} }{ \vec{a} \vec{b} } \right)$	
χ.			Power Series $\implies \sum_{n=0}^{\infty} c_n (x-a)^n$		Equation of Sphere with centre $C(h,k,l)$:	
$\lim_{n o\infty}a_n eq 0 ext{ or does not exist } o \sum_{n=1}^\infty a_n ext{ diverges}$					$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$	
Integral Test $n=1$			Radius of Convergence (R, use Ratio Test)		$\text{Arclength: } \int_a^b \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2 + 1} dt$	
$f(x) = a_n$ and $f(x)$ is continuous, positive, decreasing left k			1. 1 m = 1 (-0, 0)		Integration by parts	
$\int_{-\infty}^{\infty} f(x) dx$ converge/diverg	$\operatorname{ge} \implies \sum_{n=0}^{\infty} a_n \operatorname{conv}$	verge/diverge	2 lim (Wat) = 0, converge = > 2 = C, R=0, I= 203		f f	ownula tov Tangent: y-f(suo) = m(sc-ko)
J_1 $N_1 = 1$ Comparison Test (by creating 2 nd series b)			3. lim [Uner] = 1/20-c/< => x-c/<			ommle for Normal:
$\sum_{n=1}^{\infty} b_n ext{ converge, } a_n \leq b_n ext{ for all } n \implies \sum_{n=1}^{\infty} a_n ext{ converges}$			3. If $n \to \infty$ $\frac{ u }{ u } = \frac{1}{ x } x-c < 1 \Rightarrow x-c < R$ (5) Employers included or not, need to test the individual endpoints for convergence		Try to differentiate in order (highest to lowest priority):	y - of (20) = (x-x0)
$\sum_{n=1}^{\infty} b_n$ converge, $a_n \leq b_n$	for all $n \implies \sum_{n=1}^{\infty}$	a_n converges	Interval of Convergence (I)		. ,	Direct Companison:
m m			$R < x - c < R \implies I = (-R + c, R + c)$		$\ln x, x^n, e^x, e^{-x}, \sin x, \cos x$	limit Comparison:
$\sum_{n=1}^{\infty} b_n ext{ diverge}, \ a_n \geq b_n ext{ for all } n \implies \sum_{n=1}^{\infty} a_n ext{ diverge}$			$-\mathbf{n} < x - c < \mathbf{n} \implies I = (-\mathbf{n} + c, \mathbf{n} + c)$ Taylor/Maclaurin Series		Areas and Volumes	lim An = constant
Geometric Series Test				()	$\int V_{aboutx} = \pi \int^b \left[f(x) ight]^2 - \left[g(x) ight]^2 dx$	Abdolute Sevies Test:
$\sum_{n=1}^{\infty} ar^{n-1} \operatorname{converge} \iff r < 1 \implies \sum_{n=1}^{\infty} a^{n-1} = \frac{a_n}{1-r}$			Taylor $\implies \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$; about a		J a	はらしかし、ちゅっし
- 1			n=0		$oxed{V_{abouty} = \pi \int_a^o [f(y)]^2 - [g(y)]^2 dy}$	GADJOINTELY CONVEYENT
p-series			Maclaurin $\implies \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$; about $a=0$		$A = \int^b f(x) - g(x) dx$; where $\mathrm{f}(\mathrm{x}) > \mathrm{g}(\mathrm{x})$	b Conditionally Convergent
$\sum_{i=1}^{\infty} 1$			n=0		J a	wisc complete
$\sum_{n=1}^{\infty} \frac{1}{n^p}, p > 1 \implies \text{converge}; p \leq 1 \implies \text{diverge};$			Common Maclaurin Series (centered at 0)		$V_{cone} = rac{1}{3} \pi r^2 / A_{cone} = \pi r \sqrt[2]{r^2 \! + \! h^2} + \pi r^2 .$	9= 4 (12) 3 (22)
Ratio Test			$ \text{For } -1 < x < 1 \text{ and } p \geq 1 $		$oxed{V_{cylinder} = \pi r^2 h / A_{cylinder} = 2\pi r h + 2\pi r^2} {4}$	1my = g(x) In (f(x))
$\lim_{n o\infty}\left rac{a_{n+1}}{a_n} ight $			$\left rac{1}{1-x^p} = \sum_{n=0}^{\infty} x^{pn} = 1 + x^p + x^{2p} + \dots ight.$		$V_{sphere}=rac{4}{3}\pi r^3 / A_{sphere}= 4\pi r^2$	•
$<1 \implies \text{converge}; >1 \implies \text{diverge}; 1 \implies \text{inconclusive}$			$oxed{1 \over 1 + x^p} = \sum_{n=0}^{\infty} (-1)^n x^{pn} = 1 - x^p + x^{2p} - \dots$		$r_{ ho}$	$(a^2 + ab + b^2)$
Root Test			$\frac{1}{1+x^p} = \sum_{n=0}^{\infty} (-1)^n x^{pn}$	$=1-x^r+x^{-r}-\dots$	$oxed{V_{bounded\ by\ x\ rotated\ about\ y}} = \int_a^b 2\pi x f(x) dx$	(A-+ Ab + B-)
$\lim_{n\to\infty} \sqrt[n]{ a_n }$			$\ln(1+x) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$		$oxed{V_{bounded\ by\ y\ rotated\ about\ x} = \int_a^b 2\pi y f(y) dx}$	
$ \stackrel{n \to \infty}{<} \stackrel{V}{\longrightarrow} \text{converge;} > 1 =$	\Rightarrow diverge; 1 \Longrightarrow	in conclusive	n=1		• u	L
Alternating Series Test			$\int an^{-1} x = \sum_{n=0}^{\infty} rac{(-1)^n}{2n+1} x^{2n+1} = x - rac{x^3}{3} + rac{x^5}{5} - \dots$		Applications of Differentiation	
$b_n \ge 0$, $\frac{b_n}{b_n} \le b_n$	$=0 \implies \sum_{n=0}^{\infty} (-1)^n$	⁴b, converge	$egin{aligned} rac{1}{\left(1-x ight)^2} &= \sum_{n=1}^{\infty} n x^{n-1} = 1 + 2x + 3x^2 + \dots \end{aligned}$		Increasing / Decreasing Functions	_
n = 0, $n = 0$, $n = 0$		-,,			f is increasing on [a,b] if $f'x > 0f$ is decreasing on [a,b] if $f'x < 0$	
Useful Info	1		$=rac{1}{\left(1-x ight)^3}=rac{1}{2}\sum_{r=2}^{\infty}n(n-1)x^{n-2}=rac{1}{2}ig(2+6x+12x^2+\ldotsig)$		The decreasing on [a,b] if $f(x < 0)$ Concave Upward / Downward Functions	\dashv
$\sum_{n=1}^{\infty}rac{1}{n} ext{is divergent(even though }\lim_{n o\infty}rac{1}{n}=0)$			()		Let f be differentiable on $(a,b), c \in (a,b),$	
Partial Fractions			$\frac{1}{\left(1+x\right)^{2}}=\sum_{n=0}^{\infty}\left(-1\right)^{n}(n+1)x^{n}=1-2x+3x^{2}-\dots$		f is concave upward if $f''(c) > 0$ at $(c, f(c))f$ is concave downward if $f''(c) < 0$ at $(c, f(c))$	
	A B	3	For $-\infty < x < +\infty$		f has a point of inflection at $(c, f(c))$ if $f''(c) =$	0
()()	$-=rac{A}{x-a}+rac{B}{x-a}$		For $-\infty < x < +\infty$ $\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$		Partial Differentiation For function $x = f(x, x)$	
$\frac{px+q}{(x-x)^2}=\frac{1}{2}$	$rac{A}{x-a} + rac{B}{(x-a)^2}$	2	$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{-n}}{(2n+1)^n}$	$\frac{x}{9!} = x - \frac{x}{3!} + \frac{x}{5!} - \frac{x}{7!} + \dots$	For function $z = f(x, y)$, $f_x = \frac{\partial z}{\partial x}$, $f_y = \frac{\partial z}{\partial y}$	
$rac{px^2 + qx + r}{(x-a)^2(x-b)} = rac{A}{x-a} + rac{B}{(x-a)^2} + rac{C}{x-b}$			$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = x - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$		$J_x = \frac{1}{\partial x}, J_y = \frac{1}{\partial y}$ Clairaut's Theorem: $f_{xy}(a, b) = f_{yx}(a, b)$	
			n=0		Gradient S Theorem: $f_{xy}(a,b) = f_{yx}(a,b)$	\neg
$px^2 + qx + r$	= A $+$ B	+ <u>C</u>	$e^x = \sum_{n=0}^{\infty} rac{x^n}{n!} = 1 + x + rac{x^2}{2!} + rac{x^3}{3!} + \dots$		$ abla f(a,b) = f_x(a,b)i + f_{y(a,b)}j$	_
					$ abla f(a,b) \cdot u = D_u f(a,b)$	
$rac{px^2+qx+r}{(x-a)(x^2+bx+c)}=rac{A}{x-a}+rac{Bx+C}{x^2+bx+c}$					Maximum value of $D_u f(x, y)$,	
$(x-a)(x+ox+c) \qquad x-a \qquad x^2+ox+c$					$ \nabla f(x,y) = \sqrt{f_x(a,b)^2 + f_y(a,b)^2}$	

$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}$ $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n}{n^2 + 1} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1 + \frac{1}{n^2}} = \frac{0}{1 + 0} = 0.$ $f'(x) = \frac{d}{dx}(\frac{x^3}{9}) + \frac{d}{du}\left(\int_0^u \cos(\sin(t-2)) dt\right) \cdot \frac{du}{dx}$ where x = x(s, t), y = y(s, t), z = z(s, t): $=\frac{x^2}{3}+\cos(\sin(u-2))\cdot\frac{1}{2\sqrt{x+3}}=\frac{x^2}{3}+\frac{\cos(\sin(\sqrt{x+3}-2))}{2\sqrt{x+3}}.$ $\frac{\partial w}{\partial t} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial t}$ Note that for each $n \ge 2$, by truncating the smaller factors of n!, we have $C = 3 \cdot 2 \cdot xy + 6 \cdot (2xz + 2yz) = 6xy + 12(x + y) \cdot \frac{32}{xy}$ (by (*)) $\frac{\partial f}{\partial f} \frac{\partial y}{\partial x} +$ We that for each $n \ge 2$, by truthcaung use smaller backers of n, we have $n! = n \cdot (n-1) \cdots 2 \cdot 1 \ge \begin{cases} n \cdot (n-1) \cdots \frac{n+2}{2} \ge (\frac{n+2}{2})^{n/2} \ge (\frac{n}{2})^{(n+1)/2} \ge (\frac{n}$ $\frac{\partial f}{\partial f} \frac{\partial x}{\partial x} +$ Hence we have $f'(1) = \frac{1}{3} + \frac{\cos(\sin(\sqrt{1+3}-2))}{2\sqrt{1+3}} = \frac{1}{3} + \frac{1}{4} = \frac{7}{12}.$ $\partial f \ \partial z$ $C = 6xy + \frac{384}{x} + \frac{384}{v}$. (**) ∂s $\overline{\partial x} \ \overline{\partial s}$ $\overline{\partial y} \ \overline{\partial s}$ $\overline{\partial z} \ \overline{\partial s}$ ence of the power series $\sum_{n=1}^{\infty} \frac{(4x+3)^{2n+1}}{(-3)^n}$. Justify your Thus for all $n \ge 2$, we have $n! \ge \left(\frac{n}{2}\right)^{n/2}$, and thus $C_x = 6y - \frac{384}{x^2}, \quad C_y = 6x - \frac{384}{y^2}. \quad (***)$ Directional Derivative (b) Let f(x) be a function such that f''(x) is continuous on $\mathbb R$. It is given that $f(\pi)=2$, and Given f(x, y) at point (a, b), By L'Hôpital's Rule, we have $\lim_{n\to\infty}\frac{\ln n}{\sqrt{n/2}}=\lim_{x\to\infty}\frac{1}{\sqrt{n/2}}=\frac{1}{x}=\lim_{x\to\infty}\frac{\frac{1}{x}}{\sqrt{x/2}}=\lim_{x\to\infty}\frac{\frac{1}{x}}{\sqrt{\frac{1}{x^2}+x^{-1/2}}}=\lim_{x\to\infty}\frac{2\sqrt{2}}{\sqrt{x}}=0$ Hence, by squeeze theorem, we have $\lim_{n\to\infty}|\mu_n|^{1/n}=0<1$. $\begin{cases} C_x = 0 \\ C_y = 0 \end{cases} \implies \begin{cases} 6y - \frac{384}{v^2} = 0 \\ 6x - \frac{384}{v^2} = 0 \end{cases} \implies \begin{cases} x^2y = 64, \\ xy^2 = 64. \end{cases}$ with unit vector $u = u_1 i + u_2 j$, $D_u f(a,b) = f_x(a,b) \cdot u_i \, + \, f_y(a,b) \cdot u_2$ Hence by the Root Test, the series $\sum_{n=2}^{\infty} a_n = \sum_{n=2}^{\infty} \frac{(\ln n)^n}{n!}$ converges abs Since $x \neq 0$, $y \neq 0$, it follows from (1) and (2) that Second Derivative Test $x^2y = xy^2 \implies xy(x-y) = 0 \implies x-y$ (a) The region bounded by the curve $y=\frac{x^2}{x^2(1+\ln x)^3}$, the line y=0, the line x=e and the line $x=e^x$ is revolved completely about the line x=0. Find the volume of the solid generated. Justify your answer, and give your answer in terms of π . (a, b) is a critical point if, $x^3 = 64 \implies x = 4 \text{ and } y = x = 4 \implies (x, y) = (4, 4)$ $f_x(a, b) = 0 \text{ and } f_y(a, b) = 0$ Thus C(x, y) has a critical point at (x, y) = (4, 4). From (***), we have $D=f_{xx}(a,b)f_{yy}(a,b)-f_{xy}(a,b)^2$ $C_{xx} = \frac{1152}{x^3}$, $C_{xy} = 6$, $C_{yy} = \frac{1152}{v^3}$. Local Maximum (a,b): If D > 0 and $f_{xx}(a,b) < 0$ $L<1\iff \frac{|4x+3|^2}{3}<1\iff |4x+3|<\sqrt{3}\iff |x+\frac{4}{3}|<\frac{\sqrt{3}}{4}.$ $egin{aligned} ext{Local Minimum (a,b): } & ext{If } D > 0 ext{ and } f_{xx}(a,b) > 0 \end{aligned}$ $D(4,4) = C_{xx}(4,4)C_{yy}(4,4) - (C_{xy}(4,4))^2 = \frac{1152}{4^3} \cdot \frac{1152}{4^3} - 6^2 = 18 \cdot 18 - 36 = |288 > (8) \cdot (4,4) = 18 \cdot (4,4$ also, the series diverges if $L > 1 \iff \frac{|4x+3|^2}{3} > 1 \iff |x+\frac{4}{3}| > \frac{\sqrt{3}}{4}$. Saddle Point (a,b): If D < 0urve $y = \frac{2}{x+1}$ and the line y = 2x+2 are (-2,-2) and (0,2). The point of tion of the two lines y = x and y = 2x+2 is (-2,-2). If D = 0No Conclusion: f_{yy} can replace f_{xx} $C(4,4)=6\cdot 4\cdot 4+\frac{384}{4}+\frac{384}{4}=288.$ 9. (10 marks) Let y(x) be a function such that $y(0)=e^2$, and $5 = \int_0^{\pi} (f(x) + f''(x)) \sin x \, dx = \int_0^{\pi} f(x) \sin x \, dx + \int_0^{\pi} f''(x) \sin x \, dx.$ Tangent Plane (2 / 3 variable) Volume = $\int_{e}^{e^2} 2\pi x \cdot \frac{1}{x^2(1 + \ln x)^3} dx = \int_{e}^{e^2} \frac{2\pi}{x(1 + \ln x)^3} dx$. $x = \left[f'(x) \sin x \right]_0^n - \int_0^n f'(x) \cos x \, dx \qquad \text{Let } u = \ln x. \text{ Then } \frac{du}{dx} = \frac{1}{x}, \text{ so that } \frac{dx}{x} = du.$ $= 0 - 0 - \left[\left[f(x) \cos x \right]_0^n - \int_0^x f(x) (-\sin x) \, dx \right] \text{When } x = e, u = 1. \text{ When } x = e^2, u = 2. \text{ Thus we have } \frac{dx}{dx} = \frac{1}{x}.$ $\frac{dy}{dx} = \frac{3y \ln y}{2x + 2} - \frac{3y}{\ln y}$ $x=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)$ $\int_{0}^{\pi} f''(x) \sin x \, dx = \left[f'(x) \sin x \right]_{0}^{\pi} - \int_{0}^{\pi} f'(x) \cos x \, dx$ $abla f(a,b,c)\cdot \langle x-a,y-b,z-c angle =0$ $= \int_{u=1}^{u=2} \frac{2\pi}{(1+u)^3} du = \left[\frac{2\pi(1+u)^{-2}}{-2} \right]_{u=1}^{u=2} = \left[\frac{-\pi}{(1+u)^2} \right]_{u=1}^{u=2} = \frac{-\pi}{(1+2)^2} + \frac{\pi}{(1+1)^2} = \frac{5\pi}{36}$ Implicit Partial Differentiation $= f(\pi) + f(0) - \int_0^{\pi} f(x) \sin x \, dx$ Solution. Note that the given differential $y(1) = e^{\sqrt{3(1+1)+(1+1)^3}} = e^{\sqrt{14}} = 42.17$. $\implies \int_{0}^{\pi} f(x) \sin x \, dx + \int_{0}^{\pi} f''(x) \sin x \, dx = f(\pi) + f(0) = 2 + f(0).$ $f_x(x,y,z)$ $\frac{1}{v}\frac{dy}{dx} = \frac{3\ln y}{2x+2} - \frac{3}{\ln y}, \quad y(0) = e^2. \quad (1)$ $f_z(x,y,z)$ f(x,y,z)=0 $f_y(x, y, z)$ Now we let $w = \ln y$. Then by chain rule, we have $\frac{dw}{dx} = \frac{1}{y} \cdot \frac{dy}{dx}$. So (1) gives $f_z(x,y,z)$ $\frac{dw}{dx} = \frac{3w}{2x+2} - \frac{3}{w}, \quad w(0) = \ln(e^2) = 2$ $\implies \frac{dw}{dx} - \frac{3}{2x+2}w = -3w^{-1}, \quad w(0) = 2. \quad (2)$ Double Integrals Area = $\int_{-2}^{0} (2x+2-x) dx + \int_{0}^{1} (\frac{2}{x+1}-x) dx$ $= \left[\frac{x^2}{2} + 2x\right]_{-2}^{0} + \left[2\ln|x + 1| - \frac{x^2}{2}\right]_{0}^{1} = 0 - (2 - 4) + (2\ln 2 - \frac{1}{2}) - 0 = \frac{3}{2} + 2\ln 2 \approx 2.89.$ $\iint_D f(x,y)dA \implies \int_a^b \int_c^d f(x,y)dydx$ (a) Let a be a positive number. Find the value of the iterated integral $S = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 36, \ z \ge 0, \ x^2 + (y - 3)^2 \le 9 \text{ and } x + y \ge 0 \right\}.$ $D=\{(x,y):\, a\leq x\leq b,\, c\leq y\leq d\}$ Find the surface area of S. Justify your answer, and give your answer correct to two $\int_{0}^{2a} \int_{x/a}^{2} x \sqrt{1 + y^{3}} \, dy \, dx.$ Note: z = f(x, y)decimal places Fubini's Theorem: Justify your answer, and give your answer in terms of a Solution. Note that $\int_a^b \int_c^d f(x,y) dy dx = \int_c^d \int_a^b f(x,y) dx dy$ (b) Consider the solid region in ℝ³ given by $x^2 + y^2 + z^2 = 36 \& z \ge 0 \iff z = \sqrt{36 - x^2 - y^2}$ $W = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 25 \text{ and } x^2 + y^2 \ge 9\}.$ Thus *S* is the graph of the function $f(x, y) = \sqrt{36 - x^2 - y^2}$ over the domain $D = \{(x,y) \in \mathbb{R}^2 : x^2 + (y-3)^2 \le 9 \text{ and } x + y \ge 0\}.$ on. (a) Consider the region in R2 given by Type 1 / Type 2 regions First we write D in polar coordinates (r,θ) with $r \ge 0$ and $-\pi \le \theta \le \pi$. In polar coordinates, the inequality $x^2 + (y-3)^2 \le 9$ becomes $D = \{(x, y) \in \mathbb{R}^2, : 0 \le x \le 2a, \frac{x}{a} \le y \le 2\}$ $= \{(x,y) \in \mathbb{R}^2, : 0 \le y \le 2, \ 0 \le x \le ay\}.$ $y = g_2(x)$ $r^2\cos^2\theta + (r\sin\theta - 3)^2 \le 9 \iff r^2 - 6r\sin\theta \le 0 \iff 0 \le r \le 6\sin\theta, \ 0 \le \theta \le \pi.$ (Here the last inequality $0 \le \theta \le \pi$ follows from the fact that for $-\pi \le \theta \le \pi$, one has $\sin \theta \ge 0 \iff 0 \le \theta \le \pi$.) In polar coordinates, the line x + y = 0 corresponds to the $x = h_1(y)$ $x = h_2(y)$ two rays $\theta = \frac{3\pi}{4}$ and $\theta = -\frac{\pi}{4}$. Then one easily checks that $x + y \ge 0 \iff -\frac{\pi}{4} \le \theta \le \frac{3\pi}{4}.$ $y = g_1(x)$ From (1) and (2), one sees that in polar coordinates, $D = \{(r, \theta) \mid 0 \le \theta \le \frac{3\pi}{4} \text{ and } 0 \le r \le 6 \sin \theta\}.$ $D=\{h_1\leq x\leq h_2,\,c\leq y\leq d\}\ \Big|\ D=\{a\leq x\leq b,\,g_1\leq y\stackrel{b}{\leq}g_2\}$ $\int^{g_2} f(x,y) dy dx$ $\int_{0}^{2a} \int_{x/a}^{2} x \sqrt{1 + y^{3}} \, dy \, dx = \iint_{D} x \sqrt{1 + y^{3}} \, dA$ $f_x = \frac{1}{2\sqrt{36 - x^2 - y^2}} \cdot (-2x) = \frac{-x}{\sqrt{36 - x^2 - y^2}}, \quad f_y = \frac{1}{2\sqrt{36 - x^2 - y^2}} \cdot (-2y) = \frac{-y}{\sqrt{36 - x^2 - y^2}}$ f(x,y)dxdy $= \int_{0}^{2} \int_{0}^{ay} x \sqrt{1 + y^{3}} \, dx \, dy$ Polar Form (dA => r dr d θ) $= \int_0^2 \left[\frac{x^2}{2} \sqrt{1 + y^3} \right]_0^{ay} dy$ Area(S) = $\iint_D \sqrt{1 + (f_x)^2 + (f_y)^2} dA = \iint_D \sqrt{1 + \frac{x^2 + y^2}{36 - x^2 - y^2}} dA = \iint_D \sqrt{\frac{36}{36 - x^2 - y^2}} dA$ $R = \{(r, \theta) : a \le r \le b, \ \alpha \le \theta \le \beta\}$ $= \int_{0}^{3\pi/4} \int_{0}^{6\sin\theta} \frac{6}{\sqrt{36-r^2}} r dr d\theta = \int_{0}^{3\pi/4} \left[-6\sqrt{36-r^2} \right]_{0}^{6\sin\theta} d\theta$ $= \int_{0}^{2} \frac{a^{2}y^{2}}{2} \sqrt{1+y^{3}} dy = \left[\frac{a^{2}}{9} (1+y^{3})^{3/2} \right]_{0}^{2} = \frac{a^{2}(27-1)}{9} = \frac{26a^{2}}{9}.$ $\int_{0}^{\beta} \int_{a}^{b} f(r\cos\theta, r\sin\theta)(r) \, dr \, d\theta$ $x^2 + y^2 + z^2 \le 25 \iff z^2 \le 25 - x^2 - y^2 \iff -\sqrt{25 - x^2 - y^2} \le z \le \sqrt{25 - x^2 - y^2}$, and the inequalities are valid only when $x^2 + y^2 \le 25$. Thus we may regard W as the solid region between the graphs of the functions $z = \sqrt{25 - x^2 - y^2}$ and $z = -\sqrt{25 - x^2 - y^2}$ over the annular domain $= \int_{0}^{3\pi/4} -6(\sqrt{36-36\sin^2\theta}-6)d\theta = 36 \int_{0}^{3\pi/4} (1-|\cos\theta|)d\theta$ $r^2 = x^2 + y^2$ $x = r \cos \theta$ $=36\Big(\int_0^{3\pi/4}d\theta-\int_0^{\pi/2}\cos\theta\,d\theta+\int_{\pi/2}^{3\pi/4}\cos\theta\,d\theta\Big)$ $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ $=36\left(\frac{3\pi}{4}-\left[\sin\theta\right]_{0}^{\pi/2}+\left[\sin\theta\right]_{\pi/2}^{3\pi/4}\right)=36\left(\frac{3\pi}{4}-(1-0)+\left(\frac{1}{\sqrt{2}}-1\right)\right)=27\pi-72+18\sqrt{2}=38.28$ $$\begin{split} D &= \{(x,y) \in \mathbb{R}^2 : 9 \le x^2 + y^2 \le 25\} \\ &= \{(r,\theta) : 3 \le r \le 5, \ 0 \le \theta \le 2\pi\} \quad \text{(in polar coordinates)}. \end{split}$$ Surface Area (let f(x,y) = z) 8. (10 marks) Consider the two surfaces in R3 given by the equations $\iint_D \sqrt[2]{(f_x)^2} + (f_y)^2 + 1 \, dA$ Volume(W) = $\iint_{D} (\sqrt{25 - x^2 - y^2} - (-\sqrt{25 - x^2 - y^2})) dx dy$ respectively. Here the coordinates x, y, z in \mathbb{R}^3 are measured in cm. It is given that C is a curve in \mathbb{R}^3 lying on both of the above surfaces, and C passes through the point (3,5,4). The temperature T at any point (x,y,z) in \mathbb{R}^3 is given by $= \int_0^{2\pi} \int_3^5 2\sqrt{25 - r^2} \cdot r \, dr \, d\theta$ $= \int_{0}^{2\pi} \left[-\frac{2(25-r^2)^{3/2}}{3} \right]_{0}^{5} d\theta = \int_{0}^{2\pi} -\frac{2(0-64)}{3} d\theta = \frac{128}{3} \int_{0}^{2\pi} d\theta = \frac{128}{3} \cdot 2\pi = \frac{256\pi}{3}$ Integration by substitution $T(x, y, z) = (x - 1)^2 + y^2 + (z - 3)^2$ measured in ${}^{\circ}$ C. An insect flies along the curve C at a constant speed of 3 cm per second and in such a way that it experiences an increase in temperature as time increases. Find the rate of change of temperature experienced by the insect at the instant when the insect passes through the point (3,5,4). Justify your answer, and give your answer in ${}^{\circ}$ C not graceful. $\int f(u) du$ f(g(x))g'(x) dx =(a) Consider the function $g(t)=t-\pi-\sin t$. Show that the equation g(t)=0 has exactly one solution $t=\pi$ in the interval $[0,\infty)$. Hence deduce that for time $t\geq 0$, A and B meet only at $t=\pi$. Ordinary Differential Equation Separable Equation y' =g(y/x) Given $\frac{dy}{dx} = f(x)g(y)$ (b) Find the distance that A has travelled from the time t = 0 to the time when A and B meet. Justify your answer, and give your answer in metres and correct to two decimal places. $\overline{\operatorname{Put} y} = vx$ $\int \frac{dv}{g(v) - v} = \int \frac{dx}{x} + C$ $\nabla f(x,y,z) = \langle 4x, -2y, 4z \rangle, \quad \nabla g(x,y,z) = \langle 2x, -2y, 2z \rangle.$ $\frac{dy}{dx} = f(x) dx$ Then we get normal vectors to the two surfaces at (3, 5, 4) given by **Solution.** (a) Consider the function $g(t)=t-\pi-\sin t$. Clearly, for $t\geq 2\pi$, one has $g(t)\geq 2\pi-\pi-1>0$. Now on the interval $[0,2\pi)$, one has $g'(t)=1-\cos t$, and thus g'(t)>0 on the interval $[0,2\pi)$. Hence g(t) is increasing on the interval $[0,2\pi]$. Also, $g(t)=\pi-\pi-\sin \pi=0$. Hence g(t)<0 for $all\ t\in [0,\pi]$ and g(t)>0 for $all\ t\in [\pi,2\pi)$. Hence the equation g(t)=0 has exactly one solution in the interval $[0,\infty)$. $\begin{aligned} \mathbf{n}_1 &= \nabla f(3,5,4) = 12\mathbf{i} - 10\mathbf{j} + 8\mathbf{k} & \text{and} \\ \mathbf{n}_2 &= \nabla g(3,5,4) = 6\mathbf{i} - 10\mathbf{j} + 8\mathbf{k} \end{aligned}$ $\int \frac{1}{g(y)} dy = \int f(x) dx + C$ respectively. Since the curve C lies on both surfaces, it follows that a tangent vector to C at (3,5,4) is perpendicular to both \mathbf{n}_1 and \mathbf{n}_2 and thus it can be given by From the above result, one knows that for $t \ge 0$ the z coordinates of A and B are equal only at $t = \pi$. Hence A and B can meet at most once at time $t = \pi$. Now one checks that the coordinates of A at time $t = \pi$ are $(\pi^{1/2}, \cos \pi, \sin \pi) = (\pi^{1/2}, -1, 0)$. Similarly, the coordinates of B at time $t = \pi$ are $(\pi^{1/2}, +\pi, -1, +\pi, -\pi, -\pi, \pi) = (\pi^{1/2}, -1, 0)$. Thus A and B meet at time $t = \pi$, since they have the same coordinates at $t = \pi$. $\mathbf{v} = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 12 & -10 & 16 \\ 6 & -10 & 8 \end{vmatrix} = 80\mathbf{i} - 60\mathbf{k}$ Linear Equation With y' + P(x)y = Q(x), Then a unit tangent vector to C at (3, 5, 4) can be given by $I(x) = e^{\int P(x)dx}, I(x)y' = I(x)Q(x)$ In summary, for $t \ge 0$, A and B meet only at $t = \pi$. $u = \frac{v}{\|v\|} = \frac{80i - 60k}{\sqrt{80^2 + 60^2}} = \frac{4}{5}i - \frac{3}{5}k = \langle \frac{4}{5}, 0, -\frac{3}{5} \rangle.$ $y = \frac{\int Q(x)I(x) \, dx}{\int Q(x)I(x) \, dx}$ Given the temperature function $T(x, y, z) = (x - 1)^2 + y^2 + (z - 3)^2$, it follows that Note that $\mathbf{r}'(t) = (\frac{3}{2}t^{1/2}, -\sin t, \cos t)$. From part (a), we know that A and B meet at time $t = \pi$. Distance travelled by A is equal to the length of the above curve from t = 0 to $t = \pi$. Thus $\nabla T\left(x,y,z\right) = \left\langle 2x-2,2y,2z-6\right\rangle \implies \nabla T\left(3,5,4\right) = \left\langle 4,10,2\right\rangle.$ Bernoulli Equation add organic chem tutor's Let the position vector of the insect at time t be given by $\mathbf{r}(t) = (x(t), y(t), z(t))$, and let t_0 be the time at which the insect passes through the point P(3,5,4), so that $\mathbf{r}(t_0) = (3,5,4)$. Since the insect flies along C, it follows that $\mathbf{r}(t_0)$ is parallel to \mathbf{u} . Since the insect flies at a constant speed of 3 cm per second, it follows that $\|\mathbf{r}'(t_0)\| = 3$. Hence we have y' + P(2) y = 0(2) y" y == = = [[(10) 0(4) 1(4) dx + L] I(x) = e [(1-n) P(x) da Distance = $\int_{0}^{\pi} ||\mathbf{r}'(t)|| dt = \int_{0}^{\pi} \sqrt{(\frac{3}{2}t^{1/2})^2 + \sin^2 t + \cos^2 t} dt = \int_{0}^{\pi} \sqrt{\frac{9t}{4} + 1} dt$ $= \int_{0}^{\pi} \frac{3}{2} \cdot (t + \frac{4}{9})^{1/2} dt = \left[(t + \frac{4}{9})^{3/2} \right]_{0}^{\pi} = (\pi + \frac{4}{9})^{3/2} - \frac{8}{27} \approx 6.49.$

(a) $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2+1} \frac{\text{Solution.}}{b_n = \frac{n}{n^2+1}} > \text{0. Also, for each } n \geq 1, \text{ we have}$

 $\begin{array}{l} t, & \cdots & n + 1 \\ \text{(b)} & \sum_{n=0}^{\infty} \frac{(\ln n)^n}{n!} & b_{n-b_{n+1}} = \frac{n}{n^2 + 1} \cdot \frac{n + 1}{(n + 1)^2 + 1} = \frac{n((n + 1)^2 + 1) - (n + 1)(n^2 + 1)}{(n^2 + 1)((n + 1)^2 + 1)} = \frac{n^2 + n - 1}{(n^2 + 1)((n + 1)^2 + 1)} \\ \end{array}$

 $f(x) = \frac{x^3}{9} + \int_0^{\sqrt{x+3}} \cos(\sin(t-2)) dt$.

For function w = f(x, y, z),

where x = x(t), y = y(t), z = z(t):

 $\mathbf{r}'(t_o) = ||\mathbf{r}'(t_o)||\mathbf{u} = 3\mathbf{u}$ or $\mathbf{r}'(t_o) = -||\mathbf{r}'(t_o)||\mathbf{u} = -3\mathbf{u}$.