Intelligence Artificielle pour la robotique

Sergio Rodriguez

Enseignant: Enseignant-chercheur au laboratoire SATIE – ENS UPSaclay

sergio.rodriguez@universite-paris-saclay.fr

Formation: Formation Master SETI

Université Paris-Saclay

Objectifs du module :

- i) Découvrir les enjeux actuels de la robotique mobile : Localisation, cartographie, planification, navigation en exploitant des méthodes classiques.
- ii) Comprendre les concepts fondamentaux de l'intelligence artificielle appliqués à la navigation robotique.

Compétences visées

Utilisation des outils d'intelligence artificielle pour une application robotique de navigation

IA pour la robotique

Planning du module

Activités / Dates	16 février	1 mars	8 mars
Cours	Introduction au modèle du perception	Topologies et apprentissage supérvisé	Apprentissage supérvisé
Travaux pratiques	Opérateurs logiques Navigation du robot Thymio	ANN multi-couche Réseaux recurrents	Apprentissage par supervisé pour la navigation du Thymio
Interrogation/Rendu	х	х	х

Modalités d'évaluation

- Contrôle continu en C/TP
- Contrôle de connaissances individuel par QCM
- Rapports en binôme : Document (pdf) rapportant formellement les résultats des expériences

IA pour la robotique

- Contenu de la séance
- Introduction à l'intelligence artificielle pour la robotique
- Les réseaux de neurones
- Modèle d'un neurone artificiel
- Application

Introduction

L'intelligence artificielle pour la robotique

La robotique est une discipline originaire de :

La mécanique, l'automatique, l'électronique, l'informatique et l'Intelligence artificielle

L'IA intervient dans la robotique dans :

Perception

Planification

Prise de décision

Modèles d'apprentissage vers l'autonomie

Les interactions homme/robot

Branches de l'IA :

Réseaux de neurones

Apprentissage profond

Logique floue

Algorithmes génétiques

Apprentissage statistique

Introduction

UNIVERSITÉ PARIS-SACLAY FACULTÉ DES SCIENCES D'ORSAY

Contexte historique

- Le début : Naissance de calculateurs (1950 Turing test)
- IBM en 1952
- Méthodes Bayésiens 1960
- ELIZA MIT (1964) Dialogue interactif homme-machine
- Perceptron (1969)
- Naissance du PROLOG / DARPA abandonne la recherche d'IA (1970)
- Réseaux de neurones Back propagation 1974
- Voitures intelligentes Dickmanns (1985)
- Premier robocup (1997)
- DARPA Challenge (2004)
- Self-driving car (2009)
- Kinect (2010)
- HRP-2 Robot humanoide
- Google's Alpha Go (2016)

IA pour la robotique

- Contenu de la séance
- Introduction à l'intelligence artificielle pour la robotique
- Les réseaux de neurones
- Modèle d'un neurone artificiel
- Application

Réseaux de neurones

UNIVERSITE PARIS-SACLAY

FACULTÉ
DES SCIENCES
D'ORSAY

Contexte historique – Réseaux de neurones

Phase 1 (1943-1974) Le début

Neurone artificiel

Turing test

Perceptron

Problème du OU-Exclusif

Back propagation (apprentissage supervisé)

Frank Rosenblatt

- Phase 2 (1985-1996) Les réseaux et les topologies

Autoencodeurs

Réseaux récurrents, convolution

Apprentissage par renforcement, LSTM

AutoEncoder

Phase 3 (2006-présent) L'accélération matérielle

Apprentissage profond

Classification ImageNet

AlphaGo, Apprentissage par GPU

Modèle du neurone

UNIVERSITE PARIS-SACLAY FACULTE DES SCIENCES

D'ORSAY

Principe

- Modèle bio-inspiré
- Processus de communication biochimique

Synapsies

Entrées : impulsion

Procès : transmission à travers le neurone (fonction)

Sortie : impulsion

• Processus élémentaire : la mémoire et de l'apprentissage

Modèle du neurone (II)

UNIVERSITE PARIS-SACLAY FACULTÉ DES SCIENCES D'ORSAY

Principe

- Modèle bio-inspiré
- Processus de communication biochimique

Synapsies

Entrées : impulsion

Procès : transmission à travers le neurone (fonction)

- Sortie: impulsion

Processus élémentaire : la mémoire et de l'apprentissage

Modèle du neurone (II)

UNIVERSITE PARIS-SACLAY FACULTÉ

DES SCIENCES

D'ORSAY

ANN à deux entrées

Équivalence mathématique du modèle :

$$x = \sum_{i=1}^{2} w_i \cdot x_i \qquad f(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{if } x \ge 0 \end{cases}$$

Fonction d'activation : Échelon

Modèle du neurone (III)

UNIVERSITE PARIS-SACLAY FACULTÉ

DES SCIENCES

D'ORSAY

ANN à deux entrées et un biais

Équivalence mathématique du modèle :

$$x = w_0 + \sum_{i=1}^{2} w_i \cdot x_i$$
 $f(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1, & \text{if } x \ge 0 \end{cases}$

Fonction d'activation : Échelon