Chapter 2

변수

변수(Variable)

- 다양한 값을 지니고 있는 하나의 속성
- 변수는 데이터 분석의 대상

	변수		상수
소득	성별	학점	국적
1,000만 원	남자	3.8	대한민국
2,000만 원	남자	4.2	대한민국
3,000만 원	여자	2.6	대한민국
4,000만 원	여자	4.5	대한민국

변수 생성하기


```
a <- 1
а
## [1] 1
b <- 2
b
## [1] 2
c <- 3
С
## [1] 3
d <- 3.5
## [1] 3.5
```

연산자

연산자

```
산술 연산자
+,-,*,/
논리 연산자
>,<,<=,>=,==,!=
```

```
a+b

## [1] 3

a+b+c

## [1] 6

4/b

## [1] 2

5*b

## [1] 10
```

연산자

연산자

```
산술 연산자
+,-,*,/
논리 연산자
>,<,<=,>=,==,!=
```

```
a+b

## [1] 3

a+b+c

## [1] 6

4/b

## [1] 2

5*b

## [1] 10
```

연속 변수 만들기

```
c()
var1 <- c(1, 2, 5, 7, 8)
var1
## [1] 1 2 5 7 8

var2 <- c(1:5)
var2
## [1] 1 2 3 4 5</pre>
```

연속 문자 변수 만들기

```
str4 <- c("a", "b", "c")
str4

## [1] "a" "b" "c"

str5 <- c("Hello!", "World", "is", "good!")
str5

## [1] "Hello!" "World" "is" "good!"</pre>
```

연속 변수 만들기

```
seq()
```

```
var3 <- seq(1, 5)</pre>
var3
## [1] 1 2 3 4 5
var4 < - seq(1, 10, by = 2)
var4
## [1] 1 3 5 7 9
var5 < - seq(1, 10, by = 3)
var5
## [1] 1 4 7 10
```

변수삭제

rm(변수명)

Chapter 2

데이터 타입

데이터 타입

주요 데이터 유형

숫자(numeric) – 숫자로 이루어져 있으며 정수(integer) 실수(double)을 모두 포함

문자(character)- 문자로 이루어져 있으며 길이에 관계없이 형식이 같음

논리형(logical): - TRUE, FALSE. 즉 참 거짓

범주형(factor): - 명목/순서형 변수

특수 데이터 유형

NA -결측값(값이 존재하지 않음)

NaN- 수학적으로 정의가 불가한 수

Inf- 무한값

연속 변수

범주 변수

함수	기능
class()	타입확인
str()	구조확인
levels()	범주형 확인

B

데이터 타입

```
숫자로 구성된 factor 변수
var1 <- c(1,2,3,1,2) # numeric 변수 생성
var2 <- factor(c(1,2,3,1,2)) # factor 변수 생성
var1 # numeric 변수 출력
## [1] 1 2 3 1 2
var2 # factor 변수 출력
## [1] 1 2 3 1 2
## Levels: 1 2 3
```

문자로 구성된 factor 변수

```
var3 <- c("a", "b", "c")
var4 <- factor(c("a", "b", "c"))

var3
## [1] "a" "b" "c"

var4
Levels: a b b c</pre>
```


데이터 타입

변환 함수(Coercion Function)

함수	기능
as.numeric()	numeric으로 변환
as.factor()	factor로 변환
as.character()	character로 변환
as.data.frame()	Data Frame으로 변환
as.Date(표준서식)	날짜형 변환

Figure 2.1 R data structures

ata frames

• 데이터 프레임 외에도 다양한 데이터 구조가 있음

• 데이터 구조에 따라 활용 방법 다름

데이터 구조	차원	특징
벡터(Vactor)	1차원	한 가지 변수 타입으로 구성
데이터 프레임(Data Frame)	2차원	다양한 변수 타입으로 구성
매트릭스(Matrix)	2차원	한 가지 변수 타입으로 구성
어레이(Array)	다차원	2차원 이상의 매트릭스
리스트(List)(완전혼합형)	다차원	서로 다른 데이터 구조 포함

1. 벡터(Vactr)

- 하나 또는 여러 개의 값으로 구성된 데이터 구조
- 여러 타입을 섞을 수 없고, 한 가지 타입으로만 구성 가능

```
# 벡터 만들기
a <- 1
а
## [1] 1
b <- "hello"
b
## [1] "hello"
# 데이터 구조 확인
class(a)
## [1] "numeric"
class(b)
## [1] "character"
```


2. 데이터 프레임(Data Frame)

- 행과 열로 구성된 2차원 데이터 구조
- 다양한 변수 타입으로 구성 가능

O

객체형 데이터 타입

3. 매트릭스(Matrix)

- 행과 열로 구성된 2차원 데이터 구조
- 한 가지 타입으로만 구성 가능

```
# 매트릭스 만들기 - 1~12 로 2 열

x2 <- matrix(c(1:12), ncol = 2)

x2

## [,1] [,2]

## [1,] 1 7

## [2,] 2 8

## [3,] 3 9

## [4,] 4 10

## [5,] 5 11

## [6,] 6 12

# 데이터 구조 확인

class(x2)

## [1] "matrix"
```


5. 리스트(List)

- 모든 데이터 구조를 포함하는 데이터 구조
- 여러 데이터 구조를 합해 하나의 리스트로 구성 가능

Chapter 2 수고하셨습니다