Pachet 1 (INTRO)

■ Tema 1 (Acomodare)

Executați comenzile MATLAB descrise în secțiunea "Ghid MATLAB" și trasați graficele semnalelor prezentate în partea teoretică a lucrării.

■ Tema 2 (Eşantionare)

a.Încărcați fişierele audio utilizate pentru test (din Tabelul 1.1), cu ajutorul comenzii load. Care este durata reală a fiecărui semnal? (Ţineţi cont de frecvenţa de eşantionare cu care au fost obţinute semnalele.)

Tabelul 1.1. Fişierele utilizate în cadul secțiunii 1.1.

Nume fişier	Conținut	Frecvența de eşantionare
sunet_a	semnal vocal, sunet /a/	8 kHz
sunet_i	semnal vocal, sunet /i/	8 kHz
sunet_s	semnal vocal, sunet /s/	8 kHz
xilo	semnal audio, xilofon	44,1 kHz

- **b.** Scrieți o funcție MATLAB care calculează semnalul obținut prin eşantionarea cu relația $x[n]=x_a \left(nT_s\right), \quad \forall \, n\in \mathbb{Z}$ a sinusoidei continue $x_a(t)=\sin(\Omega t)$. Argumentele de intrare sunt pulsația Ω a sinusoidei continue (frecvența fiind $\frac{\Omega}{2\pi}$), perioada de eşantionare T_s (sau frecvența de eşantionare $F_s=1/T_s$) și lungimea M a suportului semnalului discretizat. Argumentul de ieşire este un vector x de lungime M conținînd eşantioanele sinusoidei discrete pe suportul $\overline{0,M-1}$.
- **c.** Scrieți o funcție MATLAB care trasează pe același grafic sinusoidele continuă $x_a(t) = \sin(\Omega t)$ și discretizată $x[n] = \sin\left(n\Omega T_s\right)$, pentru un suport precizat (de exemplu $\overline{0,M-1}$). Un exemplu de grafic este prezentat în Figura 1.2, unde $\Omega = \pi/3$, $T_s = 1$, iar suportul este $\overline{0,12}$.

Figura 1.2. Semnalul discret $\sin(n\pi/3)$ (de perioadă 6) şi sinusoida continuă $\sin(\pi t/3)$.

□ Tema 3 (Sinusoide discrete)

Folosind funcțiile realizate, trasați graficele sinusoidelor discrete precizate mai jos, împreună cu sinusoidele continue din care sunt obținute. Alegeți $T_{_{s}}=1$ pentru comoditate, caz în care Ω se poate renota prin ω .

- **a.** Sinusoida discretă periodică avînd frecvența $\omega = \pi/15$. Care este perioada acesteia? Observați că, în $\omega = \frac{2k\pi}{N}$, avem k=1.
- **b.** Sinusoida discretă periodică cu frecvența $\omega=3\pi/15$. Care este perioada acesteia? Observați că, în $\omega=\frac{2k\pi}{N}$, avem k=3. Deduceți că numărul k reprezintă numărul de perioade ale semnalului sinusoidal continuu $x(t)=\sin\left(\omega t\right)$ care corespund

unei perioade a semnalului discret $x[n] = \sin(\omega n)$. Alegeți frecvențe ω astfel încît să obțineți și alte valori ale lui k.

- **c.** O sinusoidă discretă aperiodică, de exemplu alegînd $\omega = 1$.
- **d.** Două sinusoide discrete identice, dar cu frecvențe diferite (care provin din eșantionarea unor sinusoide continue diferite). Alegeți, de exemplu, $\omega_{_{\! 1}}=\pi/3$ și $\omega_{_{\! 2}}=2\pi+\pi/3$. Observați diferența dintre sinusoidele continue.

☐ Tema 4 (Ce relevă auto-corelaţiile)

a. Verificați că generatorul de numere aleatoare ${\bf randn}$ produce un semnal apropiat de zgomotul alb cu media nulă și dispersia unitară. Pentru aceasta, generați cu ${\bf randn}$ un semnal pseudo-aleator x de lungime N. Cu ajutorul funcției ${\bf mean}$, calculați media semnalului. Cu ajutorul funcției ${\bf xcorr}$, estimați primele L < N valori ale auto-corelației r. Apelul:

```
>> rx = xcorr(x,L,'biased') ;
```

produce secvența $\left\{\hat{r}_{\scriptscriptstyle x}[k]\right\}_{\scriptscriptstyle k\in\overline{-L,L}}$. Așadar, $\hat{r}_{\scriptscriptstyle x}[0]$ se găsește la poziția L+1 în vectorul ${\bf r}{\bf x}$. Trasați graficul secvenței de autocorelație și interpretați rezultatul. Păstrînd numărul L fix, măriți numărul N și constatați că mai multe eșantioane ale unui semnal aleator conduc la o imagine mai bună a caracteristicilor procesului aleator care generează semnalul.

- **b.**Generați un semnal sinusoidal cu suportul 0,N-1, astfel încît acesta să conțină cel puțin 5 perioade ale sinusoidei. Estimați auto-corelația $r_{_{\!x}}$ a acestui semnal. Observați care sunt valorile k pentru care $\hat{r}_{_{\!x}}[k]$ este un maxim sau un minim local. Care este legătura cu perioada sinusoidei? Oferiți toate explicațiile necesare.
- **c.** Semnalul **xilo** este aproape periodic în partea lui finală. Extrageți eşantioanele de la 8.000 la 10.000 şi estimați auto-corelațiile acestui fragment de semnal. Observați din nou legătura dintre (pseudo-)perioada semnalului şi maximele secvenței de auto-corelație.
- d.Reluați punctul anterior pentru semnalele vocale sunet_a, sunet_i şi sunet_s. Observați forma cvasi-periodică a

vocalelor și cea de zgomot alb aparent a sunetului /s/. Credeți totuși că semnalul asociat sunetului /s/ are caracteristici apropiate de cele ale unui zgomot alb? Oferiți o explicație riguroasă, cu referire la definiția zgomotului alb:

$$\mathrm{E}\{e[n]\}=0, \quad \forall n \in \mathbb{Z} \quad \mathrm{si}$$
 $\mathrm{E}\{e[n]e[n-k]\}=\lambda^2\delta_{_0}[k], \quad \forall k \in \mathbb{Z}.$

■ Tema 5 (Produce randn un semnal gaussian?)

Considerînd că valorile furnizate de funcția **randn** sunt realizări ale unei variabile aleatoare cu distribuție gaussiană, se pune problema dacă distribuția "experimentală" (numită ad hoc *histograma*) asociată coincide într-adevăr cu

$$\mathbf{p}(\xi) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left[-\frac{(\xi - \mu)^2}{2\sigma^2} \right].$$

Pentru aceasta, generați un vector suficient de lung cu **randn** și trasați histograma sa cu **hist**. Suprapuneți peste histogramă graficul densității de probabilitate (relația de mai sus). (Atenție, aceasta va trebui înmulțită cu numărul de valori din vectorul generat, pentru a avea aceeași scară.) Repetați experimentul pentru secvențe pseudo-aleatoare de lungimi din ce în ce mai mari și observați cum se îmbunătățește apropierea dintre cele două grafice.