Anjali Sajeevan (001563277)

Program Structures & Algorithms Spring 2021

Assignment No. 3

Task

- o Implement height-weighted Quick Union with Path Compression. For this, you will flesh out the class UF_HWQUPC. All you have to do is to fill in the sections marked with // TO BE IMPLEMENTED ... // ...END IMPLEMENTATION. (b) Check that the unit tests for this class all work. You must show "green" test results in your submission (screenshot is OK).
- O Step 2: Using your implementation of UF_HWQUPC, develop a UF ("union-find") client that takes an integer value n from the command line to determine the number of "sites." Then generates random pairs of integers between 0 and n-1, calling connected () to determine if they are connected and union () if not. Loop until all sites are connected then print the number of connections generated. Package your program as a static method count () that takes n as the argument and returns the number of connections; and a main () that takes n from the command line, calls count () and prints the returned value.

If you prefer, you can create a main program that doesn't require any input and runs the experiment for a fixed set of n values. Show evidence of your run(s).

O Step 3: Determine the relationship between the number of objects (n) and the number of pairs (m) generated to accomplish this (i.e., to reduce the number of components from n to 1). Justify your conclusion.

Solution

The methods doPathCompression(int i), mergeComponents(int i, int j) and find(int p) was implemented in the UF_HWQUPC class. All the unit tests of UF_HWQUPC_Test has passed. The UnionFindClient class was implemented and the relation between the number of objects (n) and the number of pairs (m) generated was determined. The below figures show the number of pairs generated for different values of n.

This figure below shows the chosen random points of a and b, the number of unions and the number of pairs(m) for n number of sites are shown. The union count is the number of unions made, for 5 number of sites the unions was generated to be 4. It was checked for various values of n and the relationship was determined as n-1.

• Relationship Conclusion:

The relationship between the number of objects/sites(n) and the number of pairs(m) can be concluded from the results that its higher than n but lower than nlogn, the values obtained are very close to $\frac{1}{3}nlogn$. i.e., number of pairs generated is $\sim \frac{1}{3}nlogn = c * nlogn$, where c is a constant and logarithm is to the base 2. When natural logarithm is considered then the number of pairs generated is $\sim \frac{1}{2}nln n$.

Evidence to support the conclusion and graphical representation:

The below results are obtained for 20 random values of n (number of sites). The graphical representation is plotted below. The blue represents the values of m (number of pairs), the orange represents 1/3nlogn values and grey represents 1/2nln n values.

n	m	base	logn	nlogn	1/3nlogn	ln n	n ln n	1/2n ln n
804	2418	2	9.651052	7759.446	2586.482	6.689599	5378.438	2689.219
1444	6021	2	10.49586	15156.01	5052.005	7.275172	10505.35	5252.674
1749	6815	2	10.77231	18840.78	6280.259	7.466799	13059.43	6529.716
2651	8926	2	11.37232	30148.02	10049.34	7.882692	20897.02	10448.51

2855	12209	2	11.47928	32773.33	10924.44	7.956827	22716.74	11358.37
2981	15161	2	11.54158	34405.45	11468.48	8.000014	23848.04	11924.02
3368	20436	2	11.71768	39465.13	13155.04	8.122074	27355.15	13677.57
3860	16839	2	11.91439	45989.53	15329.84	8.258422	31877.51	15938.76
4008	18625	2	11.96867	47970.42	15990.14	8.296048	33250.56	16625.28
4745	17043	2	12.21219	57946.85	19315.62	8.464847	40165.7	20082.85
5560	24902	2	12.44087	69171.23	23057.08	8.623353	47945.84	23972.92
5825	25646	2	12.50804	72859.35	24286.45	8.669914	50502.25	25251.13
6976	39947	2	12.76818	89070.85	29690.28	8.850231	61739.21	30869.61
7333	33089	2	12.84019	94157.1	31385.7	8.90014	65264.73	32632.36
7899	32732	2	12.94745	102271.9	34090.65	8.974491	70889.51	35444.75
8078	35775	2	12.97978	104850.7	34950.23	8.9969	72676.95	36338.48
8397	42267	2	13.03566	109460.4	36486.81	9.03563	75872.18	37936.09
8528	41088	2	13.05799	111358.6	37119.52	9.05111	77187.87	38593.93
9687	38089	2	13.24183	128273.6	42757.88	9.17854	88912.52	44456.26
9897	45038	2	13.27278	131360.7	43786.89	9.199987	91052.27	45526.14

n	m	1/3nlogn	1/2nlnn
804	2418	2586.482	2689.219
1444	6021	5052.005	5252.674
1749	6815	6280.259	6529.716
2651	8926	10049.34	10448.51
2855	12209	10924.44	11358.37
2981	15161	11468.48	11924.02
3368	20436	13155.04	13677.57
3860	16839	15329.84	15938.76
4008	18625	15990.14	16625.28
4745	17043	19315.62	20082.85
5560	24902	23057.08	23972.92
5825	25646	24286.45	25251.13
6976	39947	29690.28	30869.61
7333	33089	31385.7	32632.36
7899	32732	34090.65	35444.75
8078	35775	34950.23	36338.48
8397	42267	36486.81	37936.09
8528	41088	37119.52	38593.93
9687	38089	42757.88	44456.26
9897	45038	43786.89	45526.14

When the values of n is increased the below results are obtained.

n	m	base	logn	nlogn	1/3nlogn	In n	nln n	1/2nlnn
10000	47737	2	13.28771	132877.1	33219.28	9.21034	92103.4	46051.7
20000	109939	2	14.28771	285754.2	95251.42	9.903488	198069.8	99034.88
40000	213406	2	15.28771	611508.5	203836.2	10.59663	423865.4	211932.7
80000	435698	2	16.28771	1303017	434339	11.28978	903182.6	451591.3
160000	919629	2	17.28771	2766034	922011.3	11.98293	1917269	958634.3

n	m	1/3nlogn	1/2nlnn	
10000	47737	33219.28	46051.7	
20000	109939	95251.42	99034.88	
40000	213406	203836.2	211932.7	
80000	435698	434339	451591.3	
160000	919629	922011.3	958634.3	

As per the above graph it can be seen that the values obtained for the number of pairs-m (blue) are very close or overlapping 1/3nlogn(orange) and 1/2nlnn(grey). Hence this provides the evidence that number of pairs generated is $\sim \frac{1}{2} n \ln n$ when natural logarithm is considered and it is $\sim \frac{1}{3} n \log n$ when logarithm to the base 2 is considered.

• Unit tests result:

1. UF-HWQUPC_Test- Test case result

