1	Claims:
2	
3	1. A protective coating for use on a surface of an article in a corrosive
4	environment, consisting of:
5	a polycrystalline diamond film material made by chemical vapor deposition
6	having a thermal conductivity greater than 1000 W/mK and a Raman Full Width
7	at Half Maximum of less than 10 cm ⁻¹ , said diamond film material having a
8	thickness not greater than 150 microns.
9	
10	2. A protective coating according to claim 1, wherein:
11	said diamond film material has a thickness between 5 and 40 microns.
12	
13	3. A protective coating according to claim 1, wherein:
14	said diamond film material is transparent to infrared radiation.
15	
16	4. A protective coating according to claim 1, wherein:
17	said diamond film material has a Raman Full Width at Half Maximum of
18	less than 5 cm ⁻¹ .
19	
20	5. A protective coating according to claim 1, further comprising:
21	a dopant added to said polycrystalline diamond film material to increase its
22	electrical conductivity.
23	
24	6. A protective coating according to claim 5, wherein:
25	said dopant is boron.
26	

1	7. An apparatus for processing a semiconductor wafer, comprising:
2	a) a processing chamber having an inner surface; and
3	b) a mandrel within said chamber and adapted to receive and hold the
4	semiconductor wafer,
5	at least one of said inner surface and said mandrel including a protective
6	coating comprising a polycrystalline diamond film material made by chemical
7	vapor deposition having a thermal conductivity greater than 1000 W/mK and a
8	Raman Full Width at Half Maximum of less than 10 cm ⁻¹ , said diamond film
9	material having a thickness not greater than 100 microns.
10	
11	8. A apparatus according to claim 7, wherein:
12	said processing chamber includes a heat source and at least one window
13	which is substantially transparent to heat from said heat source, at least a portion of
14	said window being provided with said protective coating.
15	
16	9. A processing chamber according to claim 7, wherein:
17	said mandrel is adapted to rotate about an axis within said chamber.
18	
19	10. A processing chamber according to claim 7, wherein:
20	said protective coating has a Raman Full Width at Half Maximum of less
21	than 5 cm ⁻¹ .
22	

- 1 11. An electrode, comprising:
- 2 a) an electrically conductive body;
- 3 b) a polycrystalline diamond film coating on said body, said coating having been
- 4 made by chemical vapor deposition and having a thermal conductivity greater than
- 5 1000 W/mK and a Raman Full Width at Half Maximum of less than 10 cm⁻¹, said
- 6 diamond coating having a thickness not greater than 40 microns; and
- 7 c) a dopant in said diamond coating for increasing its electrical conductivity.

8

- 9 12. An electrode according to claim 11, wherein:
- said polycrystalline diamond film has a Raman Full Width at Half Maximum
- of less than 5 cm⁻¹.

12

- 13. A method of growing a thin film diamond coating which resists corrosion and
- 14 erosion, said method comprising:
- a) positioning a substrate element on a deposition mandrel in a processing
- 16 chamber of a chemical vapor deposition (CVD) system
- b) growing a diamond coating on said substrate to a thickness of between 5 and
- 18 150 microns, the diamond coating having a Raman Full Width at Half Maximum
- 19 of less than 10 cm⁻¹, and
- 20 c) removing said substrate from said processing chamber.

21

- 22 14. A method according to claim 13, wherein:
- said substrate is maintained at a temperature of greater than 700°C.

24

- 25 15. A method according to claim 13, wherein:
- said diamond coating is grown at a rate of between 0.5 and 6.0 microns per
- 27 hour.

7	
2	16. A method according to claim 13, wherein:
3	said diamond coating has a thermal conductivity greater than 1000 W/mK.
4	
5	17. A method according to claim 13, wherein:
6	said diamond coating has a Raman Full Width at Half Maximum of less than
7	10 cm ⁻¹ .
8	
9	18. A method according to claim 13, wherein:
10	said diamond coating has a Raman Full Width at Half Maximum of less than
11	5 cm ⁻¹ .