(à l'ul de diverses variables 21 de gener de 2014 (1º part)

- n) Determinen l'agnació del pla que conté la reta $\begin{cases} 2x-y+z=1 & i \text{ passa pel punt } (1,0,1). \\ x-y+z=2 \end{cases}$
- 2) a) Esnévin la définició de continuitat d'una funció en un punt
 - b) Colculen el limit de $g(x,y) = (x \sin(x+y), \frac{e^{xy}}{1 \cos(x+y)})$ en el punt (0, 7).
 - c) (aladen $\lim_{(x_1y_1) \to (0,0)} \frac{x^3 y^3}{x^2 + y^2}$ gi existeix.
- 3) =, Raonen ni $g(x,y) = (x + y e^{x}, log(1 + x^2y^2))$ es diferenciable. Si es diferenciable, calculen Df(x,y).
 - b) Estudion la diferenciabilitat de $g: \mathbb{R}^2 \to \mathbb{R}$ definida per $g(x,y) = \begin{cases} \frac{x^2y + x^2y^2 + y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$
- y) by Esnivin l'equacis de pla tangent a l'esgera $x^2+y^2+z^2=6$ en el point (1,1,2).
 - b) Quina és la direcció de meixament més ràpid de $f(x,y,z) = y \cos x + z \log (1+x^2) y^2 e^{z^2}$ en (0,1,1).

Càlcul de diverses variables
21 de gener de 2014 (2º part)

- 1) Calculer $\int_{A} (xy-y^3) dxdy$, on $A = \{(x,y) \in \mathbb{R}^2 \mid xyy^2, yxx^2\}$.
- 2) Calculus $\int \frac{1}{x^2 + y^2} dx dy, \quad on$

A= 4(x,5) & R2 (x>0, 5>0, 1 & xy & 2).

Indicació: passen a coordenades poloros i recorden la propietat log $a - log b = log \frac{a}{b}$.

- 3) (al ulen de extreme de $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defineda per $f(x,y) = 3 \times^2 + 4 y^3 6 \times y$.
- 4) a) Escrivin l'enunciat del teoreme dels multiplicators de Le grange.
 - b) Determinen els extrems absoluts de la funció $f(x_1y_1z) = x + 2y + 2z \quad nobre \quad ||el. hipsoide$ $x^2 + 2y^2 + 4z^2 = 1.$