

ME613 - Análise de Regressão

Parte 7

Samara F. Kiihl - IMECC - UNICAMP

Soma extra de quadrados

Motivação

- Verificar a redução na soma de quadrados do erro quando uma ou mais variáveis preditoras são adicionadas no modelo de regressão, dado que outras variáveis preditoras já estão incluídas no modelo.
- Equivalentemente, podemos utilizar a soma extra de quadrados para medir o aumento na soma de quadrados da regressão ao adicionarmos uma ou mais preditoras no modelo.
- Em resumo, a soma extra de quadrados pode nos auxiliar na decisão de inclusão ou retirada de variáveis no modelo.

Exemplo

Relação entre gordura corporal e 3 medidas corporais.

Subject /	Triceps Skinfold Thickness X ₁₁	Thigh Circumference X ₁₂	Midarm Circumference X ₁₃	Body Fat
1	19.5	43.1	29.1	11.9
2	24.7	49.8	28.2	22.8
3	30.7	51.9	37.0	18.7
18	30.2	58.6	24.6	25.4
19	22,7	48.2	27.1	14.8
20	25.2	51.0	27.5	21.1

	(a) Regression of $\hat{Y} = -1.496 + 1.496$	of Y on X ₁ .8572X ₁	
Source of Variation	, SS	df	MS
Regression	352.27	1	352.27
Error	143.12	18	7.95
Total	495.39	19	
Variable	Estimated Regression Coefficient	Estimated Standard Deviation	t*
X ₁	$b_1 = .8572$	$s\{b_1\} = .1288$	6.66

$$SQReg(X_1) = 352.27$$

$$SQE(X_1) = 143.12$$


```
dat = read.table('./dados/fat.txt')
colnames(dat) <- c("X1","X2","X3","Y")
X1 = dat[,1]
X2 = dat[,2]
X3 = dat[,3]
Y = dat[,4]

modelo1 <- lm(Y ~X1)
summary(modelo1)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.4961046 3.3192346 -0.4507378 6.575609e-01
```

0.8571865 0.1287808 6.6561675 3.024349e-06

X1

anova(modelo1)

$$SQReg(X_2) = 381.97$$

$$SQE(X_2) = 113.42$$


```
modelo2 <- lm(Y \sim X2)
summary(modelo2)$coefficients
       Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -23.6344891 5.6574137 -4.177614 5.656662e-04
## X2 0.8565466 0.1100156 7.785681 3.599996e-07
anova(modelo2)
## Analysis of Variance Table
##
## Response: Y
## Df Sum Sq Mean Sq F value Pr(>F)
## X2 1 381.97 381.97 60.617 3.6e-07 ***
## Residuals 18 113.42 6.30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

IMECC

(c) Regression of Y on X_1 and X_2 $\hat{Y} = -19.174 + .2224X_1 + .6594X_2$					
Source of Variation	SS	df	MS		
Regression	385.44	2	192.72		
Error	109.95	17	6.47		
Total	495.39	19			
Variable	Estimated Regression Coefficient	Estimated Standard Deviation	t*		
X ₁	$b_1 = .2224$	$s\{b_1\} = .3034_{m}$.73		
X ₂	$b_2 = .6594$	$s\{b_2\} = .2912$	2.26		

$$SQReg(X_1, X_2) = 385.44$$

$$SQE(X_1, X_2) = 109.95$$


```
modelo12 <- lm(Y \sim X1 + X2)
summary(modelo12)$coefficients
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -19.1742456 8.3606407 -2.2933943 0.03484327
## X1
         0.2223526 0.3034389 0.7327755 0.47367898
## X2
      0.6594218 0.2911873 2.2645969 0.03689872
anova(modelo12)
## Analysis of Variance Table
## Response: Y
   Df Sum Sq Mean Sq F value Pr(>F)
## X1 1 352.27 352.27 54.4661 1.075e-06 ***
## X2
           1 33.17 33.17 5.1284 0.0369 *
## Residuals 17 109.95 6.47
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```



```
SQReg <- sum(anova(modelo12)[1:2,2])
SQReg</pre>
```

[1] 385.4387

Quando ambos X_1 e X_2 estão no modelo, temos que $SQE(X_1, X_2) = 109.95$, que é menor do que com apenas X_1 no modelo, $SQE(X_1) = 143.12$.

Esta diferença é denominada soma extra de quadrados:

$$SQReg(X_2 \mid X_1) = SQE(X_1) - SQE(X_1, X_2) = 143.12 - 109.95 = 33.17$$

Equivalentemente:

$$SQReg(X_2 \mid X_1) = SQReg(X_1, X_2) - SQReg(X_1) = 385.44 - 352.27 = 33.17$$

Na tabela, a linha X_2 contém $SQReg(X_2 \mid X_1)$.

Exemplo: Regressão de Y em X_1 , X_2 e X_3

(d) Regression of Y on
$$X_1$$
, X_2 , and X_3

$$\hat{Y} = 117.08 + 4.334X_1 - 2.857X_2 - 2.186X_3$$

Source of
Variation
$$SS \qquad df \qquad MS$$
Regression
$$396.98 \qquad 3 \qquad 132.33$$
Error
$$98.41 \qquad 16 \qquad 6.15$$
Total
$$495.39 \qquad 19$$
Estimated
$$495.39 \qquad 19$$
Estimated
$$Standard Deviation \qquad t^*$$

$$X_1 \qquad b_1 = 4.334 \qquad s\{b_1\} = 3.016 \qquad 1.44$$

$$X_2 \qquad b_2 = -2.857 \qquad s\{b_2\} = 2.582 \qquad -1.11$$

$$X_3 \qquad b_3 = -2.186 \qquad s\{b_3\} = 1.596 \qquad -1.37$$

$$SQReg(X_1, X_2, X_3) = 396.98$$

$$SQE(X_1, X_2, X_3) = 98.41$$

Exemplo: Regressão de Y em X_1 , X_2 e X_3

```
modelo123 <- lm(Y ~ X1 + X2 + X3)
summary(modelo123)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 117.084695 99.782403 1.173400 0.2578078
## X1 4.334092 3.015511 1.437266 0.1699111
## X2 -2.856848 2.582015 -1.106441 0.2848944
## X3 -2.186060 1.595499 -1.370142 0.1895628
```

anova(modelo123)

Quando X_1 , X_2 e X_3 estão no modelo, temos que $SQE(X_1, X_2, X_3) = 98.41$, que é menor do que com apenas X_1 e X_2 no modelo, $SQE(X_1, X_2) = 109.95$.

Esta diferença é denominada soma extra de quadrados:

$$SQReg(X_3 \mid X_1, X_2) = SQE(X_1, X_2) - SQE(X_1, X_2, X_3)$$

= 109.95 - 98.41 = 11.54

Equivalentemente:

$$SQReg(X_3 \mid X_1, X_2) = SQReg(X_1, X_2, X_3) - SQReg(X_1, X_2)$$

= 396.98 - 385.44 = 11.54

Na tabela, a linha X_2 contém $SQReg(X_2 \mid X_1)$.

Na tabela, a linha X_3 contém $SQReg(X_3 \mid X_1, X_2)$.

Podemos avaliar, também, a adição de mais de uma variável ao mesmo tempo. Por exemplo, podemos avaliar o efeito de incluir X_2 e X_3 a um modelo com apenas X_1 :

$$SQReg(X_2, X_3 \mid X_1) = SQE(X_1) - SQE(X_1, X_2, X_3)$$

= 143.12 - 98.41 = 44.71

Equivalentemente:

$$SQReg(X_2, X_3 \mid X_1) = SQReg(X_1, X_2, X_3) - SQReg(X_1)$$

= 396.98 - 352.27 = 44.71


```
modelo1 <- lm(Y \sim X1)
modelo123 < -lm(Y ~X1 + X2 + X3)
anova(modelo1, modelo123)
## Analysis of Variance Table
##
## Model 1: Y ~ X1
## Model 2: Y \sim X1 + X2 + X3
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 18 143.120
## 2 16 98.405 2 44.715 3.6352 0.04995 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

$$SQReg(X_2, X_3 \mid X_1) = 44.71$$

Soma extra de quadrados

Em geral, se temos X_1 e X_2 no modelo, podemos escrever:

$$SQReg(X_1, X_2) = SQReg(X_1) + SQReg(X_2 \mid X_1)$$

ou, dado que a ordem de entrada das variáveis é arbitrária no modelo, temos:

$$SQReg(X_1, X_2) = SQReg(X_2) + SQReg(X_1 \mid X_2)$$

Exemplo

Soma extra de quadrados

Se temos X_1 , X_2 e X_3 no modelo, podemos escrever, por exemplo:

$$SQReg(X_1, X_2, X_3) = SQReg(X_1) + SQReg(X_2 \mid X_1) + SQReg(X_3 \mid X_1, X_2)$$

$$SQReg(X_1, X_2, X_3) = SQReg(X_2) + SQReg(X_3 \mid X_2) + SQReg(X_1 \mid X_2, X_3)$$

$$SQReg(X_1, X_2, X_3) = SQReg(X_1) + SQReg(X_2, X_3 \mid X_1)$$

Teste para β_k usando soma extra de quadrados

- H_0 : $\beta_k = 0$.
- $H_1: \beta_k \neq 0.$

Vimos que podemos usar a seguinte estatística do teste:

$$t^* = \frac{\hat{\beta}_k}{\sqrt{Var(\hat{\beta}_k)}} \stackrel{\text{sob}}{\sim} H_0$$

Equivalentemente, podemos utilizar soma extra de quadrados para o mesmo teste de hipóteses.

Estatística do teste:

$$F^* = \frac{SQReg(X_k \mid X_1, ..., X_{k-1}, X_{k+1}, ..., X_{p-1})}{1} \div \frac{SQE(X_1, ..., X_{p-1})}{n-p}$$

$$\int_{\sim}^{\infty} F_{1,n-p}$$

4/27/2020

Exemplo: Regressão de Y em X_1 , X_2 e X_3

Queremos testar se X_3 pode ser excluída do modelo.

```
modelo12 <- lm(Y ~X1 + X2)
modelo123 <- lm(Y ~X1 + X2 + X3)
anova(modelo12, modelo123)

## Analysis of Variance Table
##</pre>
```

```
##
## Model 1: Y ~ X1 + X2
## Model 2: Y ~ X1 + X2 + X3
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 17 109.951
## 2 16 98.405 1 11.546 1.8773 0.1896
```

 $F^* = 1.88$. Não encontramos evidências para rejeitar H_0 : $\beta_3 = 0$.

Teste para vários β_k 's usando soma extra de quadrados

- $H_0: \beta_q = \beta_{q+1} = \dots = \beta_{p-1} = 0.$
- H_1 : pelo menos um $\beta_q, \dots, \beta_{p-1}$ não é zero.

(por conveniência, a notação assume que os últimos p-q coeficientes do modelo serão testados)

Estatística do teste:

$$F^* = \frac{SQReg(X_q, \dots, X_{p-1} \mid X_1, \dots, X_{q-1})}{p-q} \div \frac{SQE(X_1, \dots, X_{p-1})}{n-p}$$

$$\underset{\sim}{\text{sob}} H_0$$

$$F_{p-q,n-p}$$

Exemplo: Regressão de Y em X_1 , X_2 e X_3

Queremos testar se X_2 e X_3 podem ser excluídas do modelo.

```
modelo1 <- lm(Y \sim X1)
modelo123 < -lm(Y ~ X1 + X2 + X3)
anova(modelo1, modelo123)
## Analysis of Variance Table
##
## Model 1: Y ~ X1
## Model 2: Y ~ X1 + X2 + X3
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 18 143.120
## 2 16 98.405 2 44.715 3.6352 0.04995 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F^* = 3.64.
```


Coeficiente de Determinação Parcial

Motivação

Para avaliar o modelo: observar quanto da SQT está contida em SQReg e quanto está na SQE.

Podemos utilizar para avaliar o modelo:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \bar{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}} = \frac{SQReg}{SQT}$$

conhecido como **coeficiente de determinação**, que é a proporção da variabilidade total explicada pelo modelo de regressão ajustado.

O coeficiente de determinação parcial irá avaliar a contribuição marginal de alguma(s) preditora(s), dado que as demais já estão no modelo.

Caso de duas variáveis preditoras

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \varepsilon_i$$

· Coeficiente de determinação parcial entre Y e X_1 , dado que X_2 já está no modelo:

$$R_{Y1|2}^2 = \frac{SQE(X_2) - SQE(X_1, X_2)}{SQE(X_2)} = \frac{SQReg(X_1 \mid X_2)}{SQE(X_2)}$$

· Coeficiente de determinação parcial entre Y e X_2 , dado que X_1 já está no modelo:

$$R_{Y2|1}^{2} = \frac{SQE(X_{1}) - SQE(X_{1}, X_{2})}{SQE(X_{1})} = \frac{SQReg(X_{2} \mid X_{1})}{SQE(X_{1})}$$

Exemplos

$$R_{Y1|23}^2 = \frac{SQReg(X_1 \mid X_2, X_3)}{SQE(X_2, X_3)}$$

$$R_{Y2|13}^2 = \frac{SQReg(X_2 \mid X_1, X_3)}{SQE(X_1, X_3)}$$

$$R_{Y3|12}^2 = \frac{SQReg(X_3 \mid X_1, X_2)}{SQE(X_1, X_2)}$$

$$R_{Y4|123}^{2} = \frac{SQReg(X_{4} \mid X_{1}, X_{2}, X_{3})}{SQE(X_{1}, X_{2}, X_{3})}$$

Exemplo: Gordura corporal

```
SQE1 <- deviance(modelo1) #SQE modelo só com X1
SQE2 <- deviance(modelo2) #SQE modelo só com X2
SQE12 <- deviance(modelo12) #SQE modelo com X1 e X2
SQE123 <- deviance(modelo123) #SQE modelo com X1 X2 e X3
SQReg2.1 \leftarrow SQE1-SQE12 \# SQReg(X2|X1)
SQReg3.12 \leftarrow SQE12-SQE123 \# SQReg(X3|X1,X2)
RY2.1 <- SQReg2.1/SQE1 # Coef. det. parcial de Y com X2 dado X1 no modelo
RY2.1
## [1] 0.2317564
RY3.12 <- SQReq3.12/SQE12 # Coef. det. parcial de Y com X3 dado X1 e X2 no modelo
RY3.12
## [1] 0.1050097
```


Exemplo: Gordura corporal

Quando X_2 é adicionada ao modelo contendo apenas X_1 , a $SQE(X_1)$ é reduzida em 23%. A inclusão de X_2 no modelo explica 23% da variação em Y que não pode ser explicada apenas por X_1 .

Quando X_3 é adicionada ao modelo contendo X_1 e X_2 , a $SQE(X_1, X_2)$ é reduzida em 10%. Isto é, 10% da variação em Y que não pode ser explicada pelo modelo com X_1 e X_2 é explicada pela inclusão de X_3 no modelo.

Propriedades

O coeficiente de determinação parcial assume valores entre 0 e 1.

Outra maneira de obter $R_{Y1|2}^2$:

- · Obtenha os resíduos da regressão de Y em X_2 : $e_i(Y \mid X_2)$.
- · Obtenha os resíduos da regressão de X_1 em X_2 : $e_i(X_1 \mid X_2)$.
- · Calcule R^2 entre $e_i(Y \mid X_2)$ e $e_i(X_1 \mid X_2)$.

O diagrama de dispersão de $e_i(Y \mid X_2)$ versus $e_i(X_1 \mid X_2)$ fornece uma representação gráfica da relação entre $Y \in X_1$, ajustada por X_2 . É também chamado de *added variable plot* ou **gráfico de regressão parcial**.

Regressão Múltipla Padronizada

Motivação

Erros de precisão numérica quando

- · $\mathbf{X}^T\mathbf{X}$ tem determinante próximo de 0.
- · elementos de $\mathbf{X}^T\mathbf{X}$ diferem substancialmente em ordem de magnitude.

Para cada um dos problemas, há soluções propostas.

Veremos inicialmente o problema de ordem de magnitude.

Transformação de correlação

Ao utilizarmos a transformação de correlação, obtemos que todos os elementos de $\mathbf{X}^T\mathbf{X}$ variam entre 1 e -1.

Isto acarreta menos problemas de arredondamento para inverter $\mathbf{X}^T\mathbf{X}$.

Falta de comparabilidade entre coeficientes

Em geral, não podemos compara os coeficientes de regressão entre si, dado que não estão nas mesmas unidades.

Exemplo:

$$\hat{Y} = 200 + 20000X_1 + 0.2X_2$$

Pode-se pensar que apenas X_1 é relevante no modelo.

Mas suponha que:

Y: dólares

 X_1 : milhares de dólares

*X*₂: centavos de dólares

Falta de comparabilidade entre coeficientes

O efeito na resposta média do aumento de 1000 dólares em X_1 (1 unidade de aumento, X_1 está em milhares) quando X_2 é constante, é de 20000 dólares.

O efeito na resposta média do aumento de 1000 dólares em X_2 (100000 unidades de aumento, X_2 está em centavos) quando X_1 é constante, é de 20000 dólares.

Transformação de correlação evita este tipo de comparação equivocada.

Transformação de correlação

Padronização usual:

$$\frac{Y_i - \bar{Y}}{s_Y}$$

$$\frac{X_{ik} - \bar{X}_k}{S_k}$$
, $k = 1, 2, \dots, p - 1$

em que:

$$s_Y = \sqrt{\frac{\sum_i (Y_i - \bar{Y})^2}{n - 1}}$$

$$s_k = \sqrt{\frac{\sum_i (X_{ik} - \bar{X}_k)^2}{n-1}}, \quad k = 1, 2, \dots, p-1$$

Transformação de correlação

A transformação de correlação é uma função das variáveis padronizadas:

$$Y_i^* = \frac{1}{\sqrt{n-1}} \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$$

$$X_{ik}^* = \frac{1}{\sqrt{n-1}} \left(\frac{X_{ik} - \bar{X}_k}{s_k} \right), \quad k = 1, 2, \dots, p-1$$

$$Y_i^* = \beta_1^* X_{i1}^* + \dots + \beta_{p-1}^* X_{i,p-1}^* + \varepsilon_i^*$$

Relação com modelo de regressão múltipla usual:

$$\beta_k = \left(\frac{s_Y}{s_k}\right)\beta_k^*, \quad k = 1, 2, \dots, p-1$$

$$\beta_0 = \bar{Y} - \beta_1 \bar{X}_1 - \dots - \beta_{p-1} \bar{X}_{p-1}$$

$$\mathbf{X}_{n \times p-1}^{*} = \begin{pmatrix} X_{11}^{*} & X_{12}^{*} & \dots & X_{1,p-1}^{*} \\ X_{21}^{*} & X_{22}^{*} & \dots & X_{2,p-1}^{*} \\ \vdots & \vdots & \vdots & \vdots \\ X_{n1}^{*} & X_{n2}^{*} & \dots & X_{n,p-1}^{*} \end{pmatrix}$$

Seja a matriz de correlação de X:

$$r_{XXp-1\times p-1} = \begin{pmatrix} 1 & r_{12} & \dots & r_{1,p-1} \\ r_{21} & 1 & \dots & r_{2,p-1} \\ \vdots & \vdots & \vdots & \vdots \\ r_{p-1,1} & r_{p-1,2} & \dots & 1 \end{pmatrix}$$

em que r_{jk} é o coeficiente de correlação entre X_j e X_k .

$$\sum X_{ij}^* X_{ik}^* = \sum \left[\frac{1}{\sqrt{n-1}} \left(\frac{X_{ij} - \bar{X}_j}{s_j} \right) \right] \frac{1}{\sqrt{n-1}} \left(\frac{X_{ik} - \bar{X}_k}{s_k} \right)$$

$$= \frac{1}{n-1} \frac{\sum (X_{ij} - \bar{X}_j)(X_{ik} - \bar{X}_k)}{s_j s_k}$$

$$= \frac{\sum (X_{ij} - \bar{X}_j)(X_{ik} - \bar{X}_k)}{\sqrt{\sum (X_{ij} - \bar{X}_j)^2 \sum (X_{ik} - \bar{X}_k)^2}}$$

$$= r_{jk}$$

Portanto, temos que:

$$\mathbf{X}^{*T}\mathbf{X}^* = r_{XX} .$$

De maneira similar:

$$\mathbf{X}^{*T}\mathbf{Y}_{p-1\times 1}^* = r_{YX}$$

em que r_{YX} é o vetor de correlações entre \mathbf{Y} e cada coluna de \mathbf{X} .

Equações normais:

$$\mathbf{X}^{*T}\mathbf{X}^*\hat{\boldsymbol{\beta}}^* = \mathbf{X}^{*T}\mathbf{Y}$$

Estimador de mínimos quadrados:

$$\hat{\boldsymbol{\beta}}^* = (\mathbf{X}^{*T}\mathbf{X}^*)^{-1}\mathbf{X}^{*T}\mathbf{Y}$$

Equivalentemente:

$$\hat{\boldsymbol{\beta}}^* = r_{XX}^{-1} r_{YX} .$$

Exemplo

Exemplo

```
library(QuantPsyc)
lm.beta
```

```
## function (MOD)
## {
## b <- summary(MOD)$coef[-1, 1]
## sx <- sapply(MOD$model[-1], sd)
## sy <- sapply(MOD$model[1], sd)
## beta <- b * sx/sy
## return(beta)
## }
## <environment: namespace:QuantPsyc>
```


Exemplo

lm.beta(lm1)

```
## mcs homeless
## 0.2691888 -0.1234776
```

Uma mudança de 1 desvio-padrão em mas tem mais do que o dobro de impacto de uma mudança de 1 desvio-padrão em homeless.

Y: vendas

 X_1 : população

 X_2 : renda per capita

```
dados <- read.table("./dados/CH07TA05.txt")
colnames(dados) <- c("Y","X1","X2")
dados</pre>
```

```
## Y X1 X2

## 1 174.4 68.5 16.7

## 2 164.4 45.2 16.8

## 3 244.2 91.3 18.2

## 4 154.6 47.8 16.3

## 5 181.6 46.9 17.3

## 6 207.5 66.1 18.2

## 7 152.8 49.5 15.9

## 8 163.2 52.0 17.2

## 9 145.4 48.9 16.6
```

Modelo usual, sem padronização:

```
modelo <- lm(Y ~ X1+X2,data=dados)
summary(modelo)$coefficients</pre>
```

```
## (Intercept) -68.85707 60.0169532 -1.147294 2.662817e-01
## X1 1.45456 0.2117817 6.868201 2.001691e-06
## X2 9.36550 4.0639581 2.304527 3.332136e-02
```


Modelo padronizado:

```
dadosPadrao <- as.data.frame(scale(dados)/sqrt(dim(dados)[1]-1))
modeloPadrao <- lm(Y ~ X1+X2-1,data=dadosPadrao)
summary(modeloPadrao)$coefficients</pre>
```

```
## Estimate Std. Error t value Pr(>|t|)
## X1 0.7483670 0.106055 7.056406 1.025522e-06
## X2 0.2511039 0.106055 2.367676 2.866468e-02
```


Ou, diretamente, pelo comando:

lm.beta(modelo)

```
## X1 X2
## 0.7483670 0.2511039
```

Note que o comando apenas libera as estimativas (sem erro-padrão, testes, etc...)

Leitura

- · Applied Linear Statistical Models: Seções 7.1-7.5.
- Draper & Smith Applied Regression Analysis: Capítulo 6.
- Weisberg Applied Linear Regression: Seções 6.1-6.3
- Faraway Linear Models with R: Seções 3.1 e 3.2.

