Task 3

Explanation about task 3

In this task we chose two different data:

1) Data about the 20 years of Olympic history(athletes): their age, height and weight for almost 27,000 athletes

the link for this data is

https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results

2) Data about the population of the cities in India (population of men, population of women, men who graduated, women who graduated for almost 500 different cities in India

the link for this data is

https://www.kaggle.com/zed9941/top-500-indian-cities

these two data are from Kaggle website and there are real as many data scientists and machine learning developer take this data to use it in their work

we use every Random variable in this data, take samples, take their average and each time we increase the size of the sample until the mean you compute is independent from the sample size

we also include the excel data sheets in our submission and we include the table of the number of samples, the mean of them and the plots which explain the results in this report

Data about the 20 years of Olympic history(athletes)

Number of sample	average of age	average of height	average of weight
200	27.33163265	178.7831325	76.10542169
400	26.52432432	175.2069173	74.74914676
600	25.85424354	176.3673469	72.84451902
800	25.72027027	175.0793388	71.20343137
1000	25.47435897	175.8503937	71.79335072
2000	25.34032512	175.8928571	71.6120801
4000	25.12734975	175.1595711	70.97222222
6000	25.2383629	175.2569809	71.03729456
8000	25.33596215	175.3727668	71.08134824
10000	25.39120395	175.2568819	70.86644147
12000	25.39523102	175.1957311	70.78490627
14000	25.41817502	175.3400329	70.9071356
16000	25.43783077	175.4330414	70.99428295

for **age variable**, we recommended to take a sample size **more than or equal 22000** because it's obvious that the mean started to be constant from that size

for **weight variable**, we recommended to take a sample size **more than or equal**10000 because it's obvious that the mean started to be constant from that size

for **height variable**, we recommended to take a sample size **more than or equal**10000 because it's obvious that the mean started to be constant from that size

so, as a result: while increasing the sample size the mean will be orbit around a specific value until we reach a constant value for the mean which don't depend on the sample size

Data about the population of the cities in India

Average Female_gradua	Average male_gradua	Average population_fe	Average population_male	number of samples
49668.3	65703.4	422560.6	467738	10
33282	43040.96667	260961.2667	286739.7667	30
24821.1	33301.72	201037.94	220414.32	50
21062.1	28454.58571	171184.7286	187602.0143	70
26391.48889	35911.77778	207372.4667	227922.9222	90
25557.90909	35184.88182	199955.5818	219693.0455	110
26897.34615	36433.5	204096.9923	222286.2615	130
31744.87333	42270.37333	227356.3133	249553.0533	150
29899.39412	39907.08235	217084.4353	238262.5059	170
34793.64737	46104.81579	251481.1263	277606.0526	190
33750.66667	44872.73333	243346.5905	268621.6905	210
33928.51304	45082.43043	244897.8348	269901.213	230
32607.292	43444.132	236741.708	260717.16	250
31543.94815	41999.66667	229531.6	253127.1778	270
33025.84828	43583.2069	238211.0724	262345.0517	290
31962.58065	42188.75161	232851.5774	255959.1613	310
30976.20909	40942.49091	227006.5879	249505.0818	330
30710.76	40565.88857	225573.0657	247780.7086	350
29911.69189	39536.98919	219407.2459	240860.1676	370
30327.29487	40128.13077	221207.8154	242803.6256	390
29779.01707	39432.29024	217797.3585	238945.9268	410
29033.44651	38473.43256	213250.3372	233848.3023	430
28705.24	38088.6	214255.1356	235774.9111	450
28441.22128	37606.27021	212541.5574	233376.8574	470
28486.79513	37715.56187	213765.5842	234346.789	494

for **population male variable**, we recommended to take a sample size **more than or equal 430** because it's obvious that the mean started to be constant from that size

for **population female variable**, we recommended to take a sample size **more than or equal 430** because it's obvious that the mean started to be constant from that size

for **male graduate's variable**, we recommended to take a sample size **more than or equal 450** because it's obvious that the mean started to be constant from that size

for **female graduate's variable**, we recommended to take a sample size **more than or equal 450** because it's obvious that the mean started to be constant from that size

so, **as a result**: increasing the sample lead to a different value of mean until a specific number of sample (which depend on the variable) where the mean is independent from the sample size