Version: 19/DEC/2024

Executive Summary

Brief

- # Analysis: Initial analysis performed in Excel: manual review, data transformations, derived variables, cross-tabulations, tables, charts. Analysis is automated in Python, adding machine learning models for anomaly detection and prediction.
- # Results: A disparity in promotion rates has been observed for specific categories, for example, men are promoted less frequently than women at the highest performance levels.
- # **Recommendations:** Review and standardize performance evaluation criteria. Establish a baseline for promotion rate and deviations between specific category and group categories.

Hypothesis / problem statement

The main challenge is identifying if and where gender disparities exist.

Data description

- Employee Roster: employee details, hire date, job level, job function, region, gender, and age.
- Mid-Year Outcomes: Includes performance ratings and promotion decisions.
- Employees (10k) and Performance (8k) were merged, resulting in 8k records master dataset.

Assumptions about the data

- It is assumed that the provided values are correct, and that data source validation is not required.
- It is assumed that the current sample represents the entire population.
- It is assumed that the existence of any inequalities by gender within data is unknown in advance.

Methods

The following methods have been used to conduct the analysis:

- Transformations: recode variables.
- Calculations: counts, averages, ratios, and cross-tabulations.
- Visualization: a dashboard in Excel and static charts in Python.
- Advanced: anomaly detection.
- Advanced: predictive model.
- Advanced: clustering.

Version: 19/DEC/2024

Analysis

- Prepared and screened data contains around 3800 records.
- Dataset has been analyzed focusing on possible inequalities by promotion rate and gender.
- Dataset contains multiple variables and categories, resulting in multiple statistical outputs to review.

Results

- Analysis identified the differences in gender distribution by job function. For example, there are ~90% of men in Engineers.
- The differences in the promotions and gender are not significant overall, however some differences appear when looking deeper.
- Group size impacts the probability: smaller group, less promotions.
- There are fewer promoted men at top performance rank (5).
- The developed analytical frame is suitable for a subsequent in-depth analysis using Excel dashboard to review smart charts, and Python for statistical outputs and advanced analysis..

Recommendations

- Review and standardize performance evaluation criteria.
- Establish a baseline for promotion rate and allowed deviations.
- Smaller groups tend to have larger differences from the overall group statistics, and therefore must be reviewed with more careful consideration.
- Include additional data upon review with the client to strengthen the analysis.
- Move data collection, merging, and processing, to SQL.
- Use advanced analytics to validate findings.

Appendix: Source Code

Data analysis assets are available in repository https://github.com/aleurb/empl_perf/.

Appendix: Dashboard

Fig. 1. Comparison of US1 and US4 distributions of (%employees, %promoted, and %masculine), Job Function, and Type (I, T)

		% employees		F	Promoted, %		Masculine, %		
region	job_function	T	Т	- 1		Т	1	T	
■ US1	CXI		8.9%	3.6%	4.8%	3.5 %	19.3%	2 1	.8%
	Engineering		14.1%	8.6%	4.8%	<u>4.4%</u>	79.5%	88	3.2%
	G&A		6.5%	3.1% 🗸	<u></u>	3.3 %	18.6%	V 22	.8%
	Product		6.5%	3.5%	3.1%	4.3 %	= 65.3%	^ 76	.1%
	S&O		9.3%	4.9%	4.1%	<u>4.1%</u>	43.6 %		.0%
	Sales		7.4%	4.1%	4.7%	<u>4.9%</u>	= 51.9%	- 61	.1%
US1 Total			52.8%	27.7%	4.5%	4.2%	49.9%	— 61	.4%
■ US4	CXI		2.0%	1.0%	2.6%	2.5%	17.9%	V 22	.5%
	Engineering		3.3%	2.2%	1.5%	2.3%	80.9%	88	.6%
	G&A		1.5%	0.8%	6.9%	<u>6.1%</u>	31.0%	V 27	.3%
	Product		1.2%	0.8%	2.0%	3.2 %	— 61.2%	~ 71	.0%
	S&O		2.3%	1.1%	4.4%	8.9%	45.6%	= 55	.6%
	Sales		2.2%	1.1%	3.4%	2.2%	54.0%	V 40	.0%
US4 Total			12.4%	7.1%	3.2%	3.9%	= 51.9%	= 57	.1%
Grand Total			65.2%	34.8% 🗸	4.3%	4.1%	= 50.3%	— 60	.6%