109學年度大學部專題競賽

Department of Computer Science, National Tsing Hua University

Optimizing Deep Learning Workloads on Kubernetes

Mencher Chiang 江岷錡

Motivation

- ML / DL become increasingly popular workload
- Resource-Intensive workloads and Expensive GPUs
- We need to reduce the computational costs by
- 1. Maximize Resource Utilization
- 2. Minimize Resource Consumption of Each Workload
- Build a MLSys that optmizes the ML Workloads

Apart from model training, a true ML workload is a ML Pipeline:

Three main workloads: Model Developing / Training / Inference

Proposed Methodology

Based on Kubernetes, the microservice system for containerized application Cloud Native for DevOps, Easy to scale and portable, Extensible and well Supported

Model Developing

Kubeshare

Low Resource Consumption and Sporadic jobs

Goal

Less Waiting Time

cause SLA violation and delay

- ✓ Avoid Resource Waste
- ✓ Still Keep Sufficient Performance

Technique

Consolidating GPU on multiple Notebook instances by employing Kubeshare

Model Training

Enhanced Dragon

Goal

- ✓ Improve Resource Utilization
- ✓ Reduce Training Time

Technique

Distributed Training
Gang-scheduling with Locality Awareness
Priority Scheduling

Model Inference

Goal

- **✓** Guarantee Service Quality
- ✓ Lower Response Time

Technique

Kubernetes HPA + Istio + Prometheus Priority Scheduling and dynamically scaling

Experimental Result

developing workloads

Overall Performance: Reduced 2.39x total execution time with same workload

The number of active users Our Default + Scaling(6) Default + Scaling(2) Default (+ Kubeshare)

Inference Job: Nearly No SLA Violation

Training: Reduced 3.26x Total Execution Time