# DIGITAL SYSTEM DESIGN

Sub Code: CSE\_ 2153

Dr. Rashmi R Assistant Professor MIT, Bengaluru

# Module-2

# **Arithmetic Circuits**

- ☐ In This Module,
- ➤ Why are arithmetic circuits so important
- > Adders
  - ✓ Adding two binary numbers
  - ✓ Adding more than two binary numbers
  - ✓ Circuits Based on Adders
- Multipliers
- > Functions that do not use adders
- > Design of Arithmetic circuits

#### **Motivation: Arithmetic Circuits**

- ☐ Core of every digital circuit
  - ✓ Heart of the digital system
- **□** Determines the performance of the system
  - ✓ Dictates clock rate, speed
  - ✓ If arithmetic circuits are optimized performance will improve
- **□** Opportunities for improvement
  - ✓ Novel algorithms require novel combinations of arithmetic circuits.

## **Addition**

- ☐ Two types
  - Unsigned Addition
  - Signed Addition

# **Addition of Unsigned Numbers**

- The addition of 2 one-bit numbers entails four possible combination
- > Two bits are needed to represent the result of the addition.
- $\triangleright$  The right-most bit *sum*, *s*.
- The left-most bit, which is produced as a carry-out when both bits being added are equal to 1, is called the *carry*, *c*.
- This circuit, which implements the addition of only two bits, half-adder.



(a) The four possible cases

#### Adder

- > It is an example of iterative design.
- Design a 1 bit adder circuit, then expand to n- bit adder
- > Look at-
- ☐ Half adder which is a 2-bit adder
  - Inputs are bits to be added
  - Outputs: result and possible carry
- ☐ Full Adder includes carry in, 3- bit adder

#### **HALF-ADDER**

- ➤ Half-Adder (2,2) Counter
- The *Half Adder* (HA) is the simplest arithmetic block
- ➤ It can add two 1-bit numbers, result is a 2-bit number
- > Can be realized easily

|   |   | Carry | Sum |
|---|---|-------|-----|
| X | y | С     | S   |
| 0 | 0 | 0     | 0   |
| 0 | 1 | 0     | 1   |
| 1 | 0 | 0     | 1   |
| 1 | 1 | 1     | 0   |
|   |   |       |     |

(b) Truth table



$$X = x_4 x_3 x_2 x_1 x_0 \qquad 0 \ 1 \ 1 \ 1 \qquad (15)_{10}$$

$$+ Y = y_4 y_3 y_2 y_1 y_0 \qquad 0 \ 1 \ 0 \ 1 \qquad (10)_{10}$$

$$= 1 \ 1 \ 1 \ 0 \qquad \qquad Generated carries$$

$$S = s_4 s_3 s_2 s_1 s_0 \qquad 1 \ 1 \ 0 \ 0 \ 1 \qquad (25)_{10}$$

An example of addition

#### **FULL-ADDER**

#### ☐ Full-Adder (3,2) Counter

- The Full Adder (FA) is the *essential* arithmetic block
- ➤ It can add three 1-bit numbers, result is a 2-bit number
- > There are many realizations both at gate and transistor level.
- ➤ Since it is used in building many arithmetic operations, the performance of one FA influences the overall performance greatly.

| $c_{i}$ | $x_{i}$ | $y_i$ | $c_{i+1}$ | $s_i$ |
|---------|---------|-------|-----------|-------|
| O       | O       | 0     | 0         | 0     |
| O       | O       | 1     | 0         | 1     |
| O       | 1       | O     | O         | 1     |
| O       | 1       | 1     | 1         | O     |
| 1       | O       | O     | О         | 1     |
| 1       | O       | 1     | 1         | O     |
| 1       | 1       | O     | 1         | O     |
| 1       | 1       | 1     | 1         | 1     |
|         |         |       | I I       | l     |

#### (a) Truth table



| $x_i y_i$ |    |    |    |    |
|-----------|----|----|----|----|
| $c_i$     | 00 | 01 | 11 | 10 |
| O         |    |    | 1  |    |
| 1         |    | 1  | 1  | 1  |
| 1         |    | 1  | 1  | 1  |

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

#### (b) Karnaugh maps



Full-adder

## **Decomposed Full-Adder**

➤ It uses two half-adders to form a full-adder.



# Ripple-Carry Adder

- The operands Ai and Bi are applied as inputs to the adder, it takes time before the output sum, S, is valid. Each full-adder introduces a certain delay before its si and ci+1. Outputs are valid. Delay be denoted as t.
- $\triangleright$  Carry-out from the first stage, c1, arrives at the second stage t after the application of the A and B inputs.
- $\triangleright$  The carry-out from the second stage, c2, arrives at the third stage with a 2t delay.
- The signal cn-1 is valid after a delay of (n-1)t, which means the complete sum is available after a delay of nt. Because of the way the carry signals "ripple" through the full-adder stages, the circuit is called a *ripple-carry adder*.
- The delay incurred to produce the final sum and carry-out in a ripple-carry adder depends on the size of the numbers.

  Ai Bi



#### Cascade of 4-bit adders



 Four Full Adders are Cascaded to implement a 4-bit Ripple-Carry Adder

# **Delay Calculation of Ripple Carry Adders**

- The time requires for generation of sum and carry in Full-Adder is 3 and 2.
  - ➤ If 4-bit ripple carry adder is considered then the total delay will be 9

 $\triangleright$  { time requires to generate c1 = 2

$$c2 = 2$$

$$c3 = 2$$

- $\triangleright$  For c4 and sum s3 is = 3 units }
- ➤ In general, for addition of n-bits time units require is n delay.

# 16-bit adders using 4 bit adder and delay calculation



To generate  $S_{15}$ ,  $C_{15}$  must be available. The generation of  $C_{15}$  depends on the availability of  $C_{14}$ , which must wait for  $C_{13}$  to become available. In the worst case, the CPA can be estimated as follows:

Time taken for carry to propagate through 15 full adders (the delay involved in the path from  $C_0$  to  $C_{15}$ ) = 15 \* 2 $\triangle$  Time taken to generate  $S_{15}$  from  $C_{15} = 3\triangle$ 

#### **Hierarchical 4-Bit Adder**

- > We can easily use hierarchy here
- Design half adder
- > Use in full adder
- > Use full adder in 4-bit adder

#### **ADDITION AND SUBTRACTION**

- ➤ It is a basic operation in computer arithmetic.
- Multiplication and division are based on addition and subtraction.
- Adders / subtractors are desirable not only for <u>speed up</u> fundamental operations, but also for accelerating the multiplication and division which involves massive addition and subtraction.

## **NEGATION**

- Given a number A, the negation operation finds -A, that is the complement number of A.
- If A is a positive number, after negation we have a negative number.

  Conversely, if A is a negative number then negation will result in a positive number.

#### Negation in One's Complement System

| $\mathbf{E}$ | $\mathbf{a_i}$ | $\mathbf{a}'$ |
|--------------|----------------|---------------|
| O            | 0              | o             |
| O            | 1              | 1             |
| 1            | О              | 1             |
| 1            | 1              | 0             |

.

## 1. Negation of One's Complement System

In the 1's complement system we perform a bit-wise NOT function to obtain a negative number of a given number, that is, change 0 to 1 and change 1 to 0. The circuit shown in Figure (a) conducts the negation of an n-bit number in the 1's complement system.

 $\sqrt{}$ 

# Realization by NOT gates



(a) Realizing Negation by NOT Gates

| Ε | $\mathbf{a}_{i}$ | a', |
|---|------------------|-----|
| 0 | 0                | 0   |
| 0 | 1                | 1   |
| 1 | 0                | 1   |
| 1 | 0                | 0   |



(b) Negation by XOR Gates

## 2. Negation in two's Complement System

#### ☐ First method

Find the 1's complement number of it and then increase by 1 using an n-bit half adder.

➤Note that there is no carry-in but a "1" to add on for the LSB position,

7

# 2. Negation in two's Complement System



#### Adder-Subtractor Design: (A+B) OR (A-B) $B_3$ $B_2$ $A_2$ B<sub>1</sub> A<sub>1</sub> B<sub>0</sub> Ao S is low for add, high for subtract Inverts each bit of Bif Sis 1 $C_3$ $C_2$ $C_1$ FA FA FA FA Add 1 to make 2's complement Adder-Subtractor Circuit

#### **Adder and Subtractor Unit**



- When Add/Sub = 0, it performs  $\mathbf{X} + \mathbf{Y}$ .
- When Add/Sub = 1, it performs
- X + Y' + 1
- = X + 2's complement of Y
- $\bullet = X Y$

# Fast Adders-Carry-Lookahead Adder

- ➤In the ripple-carry adder, the carries in different bit positions are generated sequentially.
- That is, Ci+l is dependent on Ci, and Ci cannot be determined unless Ci-1 is known.
- Carry lookahead adder is an adder which can generate all the carries in parallel. No carry propagation is in the *cause of delay*.



(b) Carry-Lookahead Unit

$$P^* = P_0 P_1 \cdots P_{m-1}$$

$$G^* = G_{m-1} + G_{m-2} P_{m-1} + G_{m-3} P_{m-2} P_{m-1} + \cdots$$

$$+ G_1 P_2 P_3 \cdots P_{m-1} + G_0 P_1 P_2 P_3 \cdots P_{m-1}.$$

 $P^* = 1$  if the block can propagate a carry.

 $G^* = 1$  if the block can generate a carry.

.

# Carry look ahead adder

stage. For this reason, the function P<sub>i</sub> is often referred to as carry-propagate function. Using G<sub>i</sub> and P<sub>i</sub>, C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, and C<sub>4</sub> can be expressed as follows:

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 C_1$$

$$C_3 = G_2 + P_2C_2$$

$$C_4 = G_3 + P_3C_3$$

# Carry look ahead adder

$$C_{1} = G_{0} + P_{0}C_{0}$$

$$C_{2} = G_{1} + P_{1}C_{1} = G_{1} + P_{1}(G_{0} + P_{0}C_{0}) = G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0}$$

$$C_{3} = G_{2} + P_{2}C_{2} = G_{2} + P_{2}(G_{1} + P_{1}G_{0} + P_{1}P_{0}C_{0})$$

$$= G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{2}P_{1}P_{0}C_{0}$$

$$C_{4} = G_{3} + P_{3}C_{3} = G_{3} + P_{3}(G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0} + P_{1}P_{1}P_{0}C_{0})$$

$$= G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}C_{0}$$

# Equation..

$$C_4 = G_3 + P_3C_3 = G_3 + P_3 (G_2 + P_2G_1 + P_2P_1 G_0 + P_1P_1P_0C_0)$$

$$= G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$$

This result suggests that C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, and C<sub>4</sub> can be generated directly from C<sub>0</sub>. For this reason, these equations are called carry look-ahead equations, and the hardware that implements these equations is called a 4-stage carry look-ahead circuit (4-CLC). The

# Carry look ahead adder

- ➤ A 4-clc (Carry look ahead Circuit) can be implemented using a two-level AND /OR gate
- Fan in may be constraint
- ➤ If all GiPi are available (i <= i <= 3) then all Ci 's can be generated with I, 1 <= i <= 4 with two gate delays..
- >Output g0p0 are useful to obtain higher order look ahead system.

#### **CLC- basic cell**



### **Arithmetic Overflow**

- The result of addition or subtraction is supposed to fit within the significant bits used to represent the numbers.
- If *n* bits are used to represent signed numbers, then the result must be in the range  $-2^{n-1} to 2^{n-1} 1$ .
- ➤ If the result does not fit in this range, then we say that *arithmetic overflow* has occurred.
- To ensure the correct operation of an arithmetic circuit, it is important to be able to detect the occurrence of overflow.

Figure 5.14 presents the four cases where 2's-complement numbers with magnitudes of 7 and 2 are added. Because we are using four-bit numbers, there are three significant bits  $,b_{2-0}$ .

**Figure 5.14** Examples for determination of overflow.

- When the numbers have opposite signs, there is no overflow.
- ➤But if both numbers have the same sign, the magnitude of the result is 9, which cannot be represented with just three significant bits; therefore, overflow occurs.
- The key to determining whether overflow occurs is the carry-out from the MSB position, called c3 in the figure, and from the sign-bit position, called c4.
- The figure indicates that overflow occurs when these carry-outs have different values, and a correct sum is produced when they have the same value.
- ➤Indeed, this is true in general for both addition and subtraction of 2's-complement numbers.

> The occurrence of overflow is detected by,

Overflow = 
$$c_3\overline{c}_4 + |\overline{c}_3c_4|$$
  
=  $c_3 \oplus c_4$ 

 $\triangleright$  For *n*-bit numbers we have,

Overflow = 
$$c_{n-1} \oplus c_n$$

> So, overflow can be detected with the addition of one XOR gate.

# **Array Multiplier**

- ➤ Multiplication of binary numbers is performed in the same way as in decimal numbers.
- > The multiplicand is multiplied by each bit of the multiplier starting from the least significant bit.
- Each such multiplication forms a partial product.
- > Successive partial products are shifted one position to the left.
- ➤ The final product is obtained from the sum of the partial products.

(a) Multiplication by hand

Multiplicand M
 (11)
 
$$1110$$

 Multiplier Q
 (14)
  $\times 1011$ 

 Partial product 0
  $1110$ 

 Partial product 1
  $10101$ 

 Partial product 2
  $01010$ 

 Product P
 (154)

(b) Multiplication for implementation in hardware



(a) Structure of the circuit



A 4 × 4 multiplier circuit

## **Binary-Coded-Decimal Representation**

| Table 3.3     | Binary-coded decimal digits. |  |  |
|---------------|------------------------------|--|--|
| Decimal digit | BCD code                     |  |  |
| O             | 0000                         |  |  |
| 1             | 0001                         |  |  |
| 2             | 0010                         |  |  |
| 3<br>4        | 0011                         |  |  |
| 4             | 0100                         |  |  |
| 5             | 0101                         |  |  |
| 6             | 0110                         |  |  |
| 7             | 0111                         |  |  |
| 8             | 1000                         |  |  |
| 9             | 1001                         |  |  |

### **BCD Addition**

| Decimal | BCD Sum        |    |    |    | Binary Sum |                |                |                |                |        |
|---------|----------------|----|----|----|------------|----------------|----------------|----------------|----------------|--------|
|         | S <sub>1</sub> | Sz | 54 | Sa | C          | Z <sub>1</sub> | Z <sub>2</sub> | Z <sub>4</sub> | Z <sub>8</sub> | K      |
| 0       | 0              | 0  | 0  | 0  | 0          | 0              | 0              | 0              | 0              | 0      |
| 1       | 1              | 0  | 0  | 0  | 0          | i              | 0              | 0              | ő              | ŏ      |
| 2       | 0              | 1  | 0  | 0  | 0          | Ô              | 1              | 0              | 0              | 0      |
| 3       | ŀ              | 1  | 0  | 0  | 0          | ĺ              | 1              | 0              | ő              | Ö      |
| 4       | 0              | 0  | 1  | 0  | 0          | Ō              | Ô              | 1              | 0              | o<br>0 |
| 5       | 1              | 0  | 1  | 0  | 0          | ĺ              | Õ              | 1              | ő              | ŏ      |
| 6       | 0              | 1  | 1  | 0  | 0          | Ō              | 1              | î              | o              | ŏ      |
| 7       | 1              | 1  | 1  | 0  | 0          | ī              | 1              | 1              | ŏ              | ŏ      |
| 8       | O              | 0  | 0  | 1  | 0          | 0              | Ô              | Ô              | i              | 0      |
| 9       | 1              | 0  | 0  | 1  | 0          | 1              | 0              | 0              | i              | 0      |
| 10      | 0              | 0  | 0  | 0  | 1          | 0              | 1              | 0              | 1              | 0      |
| 11      | 1              | 0  | 0  | 0  | 1          | 1              | 1              | 0              | i              | 0      |
| 12      | 0              | 1  | 0  | Ō  | 1          | 0              | Ô              | 1              | 1              | 0      |
| 13      | 1              | 1  | 0  | 0  | 1          | 1              | ŏ              | 1              | i              | 0      |
| 14      | 0              | 0  | 1  | 0  | 1          | 0              | 1              | 1              | 1              | ŏ      |
| 15      | 1              | 0  | Į. | 0  | 1          | 1              | i              | 1              | 1              | 0      |
| 16      | 0              | 1  | 1  | 0  | 1          | Ô              | ò              | Ô              | 0              | ĭ      |
| 17      | 1              | 1  | 1  | 0  | 1          | ī              | ŏ              | ŏ              | 0              | ï      |
| 18      | 0              | ō  | Ô  | 1  | 1          | 0              | 1              | 0              | 0              | 1      |
| 19      | 1              | 0  | 0  | 1  | 1          | ĭ              | 1              | ő              | 0              | 1      |

| _      | z2, z1 | ı  | 1  | 1  | 1  |
|--------|--------|----|----|----|----|
| z8, z4 |        | 00 | 01 | 11 | 10 |
|        | 00     | 0  | 0  | 0  | 0  |
|        | 01     | 0  | 0  | 0  | 0  |
|        | 11     | 1  | 1  | 1  | 1  |
|        | 10     | 0  | 0  | 1  | 1  |

Correction should be done when the carry k = 1 or when the expression z8z4 + z8z2 evaluates to 1. Therefore the expression for the correction circuit is  $C = K + Z_8Z_4 + Z_8Z_2$ 



$$C = K + Z_8 Z_4 + Z_8 Z_2$$



## Design of Arithmetic Circuits using Verilog

- > Representation of Digital Circuits in Verilog
- > Three styles of modeling:

### 1. Dataflow Modeling:

- ✓ Executes a set of concurrent assignments- Parallel execution.
- ✓ Statements expression

### 2. Behavioral Modeling:

- ✓ Set of sequential assignment statements.
- ✓ **Initial statement** executes only once (similar to dataflow expression)
- ✓ **Always statement** executes multiple number of times

### 3. Structural Modeling:

✓ A larger circuit is defined by writing code that connects simple circuit elements together.

Write the Verilog code to implement a 4-bit adder.

```
module adder4 (carryin, x3, x2, x1, x0, y3, y2, y1, y0, s3, s2, s1, s0, carryout);
       input carryin, x3, x2, x1, x0, y3, y2, y1, y0;
       output s3, s2, s1, s0, carryout;
       fulladd stage0 (carryin, x0, y0, s0, c1);
       fulladd stage1 (c1, x1, y1, s1, c2);
       fulladd stage2 (c2, x2, y2, s2, c3);
       fulladd stage3 (c3, x3, y3, s3, carryout);
endmodule
module fulladd (Cin, x, y, s, Cout);
       input Cin, x, y;
       output s, Cout;
       assign s = x \wedge y \wedge Cin;
       assign Cout = (x \& y) | (x \& Cin) | (y \& Cin);
endmodule
```