BM20A8800 Discrete Models and Methods 3op

Exercise 6 / Week 8

- 1. Let's examine the graph on the right. (Note: numbers are edge numbers, not weights.)
- a) Define the adjacency, incidence and degree matrices.
- b) Define the Laplace matrix for the graph.

- 2. Continue working on the graph in problem 1:
- a) In how many ways can we travel from node A to node B using exactly three steps?
- b) In how many ways can we travel from node A to node B using not more than three steps?
- c) If we start from node C, how many exactly 3-step long path options do we have?
- 3. Let's examine the graph on the right. (Note: numbers are edge numbers again, not weights.)
- a) Define the adjacency, incidence and degree matrices.
- b) Define the Laplace matrix for the graph.

4. Can we find a i) Euler path ii) Euler circuit for the following graphs? Present justifications for your answers, a simple "yes/no" is not enough.

a)

b)

c)

- 5. Examine the weighted graph below.
- a) Formulate the adjacency matrix.
- b) Solve shortest paths from node a to every other node using Dijkstra's algorithm in matrix form.

- 6. a) Solve the shortest paths from Clacton to every other city using Dijkstra's algorithm in matrix form. (Hint: adjacency matrix can be found directly from lectures.)
- b) Use PERT and critical path analysis in order to find the minimum time in which the construction project can be completed. Table of tasks and their durations in days & preceding tasks can be found from far right.

Task	Time	Preceding Tasks
Α	6	None
В	9	A, D
C	10	В, І
D	8	None
E	9	В
F	13	I
G	5	C, E, F
Н	9	None
I	6	D, H

Answers/hints for selected problems:

2b: 10

2c: 26

6b: 33 days

Travelling Salesman Problem

