Calcul des probabilités.

1- Définitions.

<u>Définitions 1.</u> On appelle *expérience aléatoire*, toute expérience dont le résultat ne peut être prévu, c - à - d, une expérience, qui répétée plusieurs fois dans des conditions apparemment identiques, peut conduire à des résultats différents.

Définition 2. L'ensemble de tous les résultats possibles d'une expérience aléatoire s'appelle *espace fondamental* ou *univers des possibles*. Cet ensemble est noté par Ω .

<u>Définition 3.</u> Un *événement* est un résultat d'une expérience aléatoire. Donc il est une partie de Ω .

Toute partie de Ω réduite à un seul élément est appelée *événement élémentaire*.

Un *événement composé* est une partie de Ω contenant plusieurs éléments. Il peut donc se réaliser de plusieurs manières.

1.1- Opérations sur les événements.

Le tableau suivant résume les principales opérations sur les événements

Langage ensembliste.	Traduction en vocabulaire de probabilité
L'ensemble des résultats Ω .	Ω espace fondamental.
$\omega \in \Omega$.	Ω un cas possible, une éventualité.
Singleton $\{\omega\}\subset\Omega$.	Evénement élémentaire.
$A \subset \Omega$.	Evénement composé.
L'ensemble $\Omega \subset \Omega$.	Evénement certain, il est toujours réalisé.
L'ensemble Ø.	Evénement impossible, il n'est jamais réalisé.
$B = \overline{A} = C_{\Omega}^{A}$.	B événement contraire de A .
$C = A \cap B.$	L'événement A et B, qui est réalisé ssi A et B sont simultanément réalisés.
$D = A \cup B.$	L'événement A ou B, qui est réalisé ssi l'un au moins des événements A et B soit réalisé.
$\Omega = A \cup B \text{ et } \emptyset = A \cap B.$	
$\Sigma Z - A \cup D \in \mathcal{U} - A \cap D$.	A ou B est certain et A et B est impossible. A et B forment un système complet.
\emptyset .= $A \cap B$.	A et B sont incompatibles.

Remarque. Deux événements contraires sont incompatibles, mais la réciproque est fausse.

2- Probabilités sur un univers fini.

<u>**Définition 4.**</u> Soit $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$ un univers fini non vide. On appelle *probabilité* définie sur Ω , toute application P de $\mathcal{P}(\Omega)$ dans [0, 1], vérifiant les axiomes suivants

1-
$$P(\Omega) = 1$$
.

- 2- Si A et B sont deux événement incompatibles, alors $P(A \cup B) = P(A) + P(B)$.
- 3- Si $A_1, A_2, \ldots, A_n, \ldots$ une série dénombrable d'événements deux à deux incompatibles,

alors
$$P\left(\bigcup_{i=1}^{+\infty} A_i\right) = \sum_{i=1}^{+\infty} P(A_i)$$
. $(\sigma - additive)$

Dans ce cas, le couple $(\Omega, \mathcal{P}(\Omega))$ est appelé un *espace probabilisable* et le triplet $(\Omega, \mathcal{P}(\Omega), P)$ est appelé espace probabilisé fini.

2.1- Propriétés des probabilités.

Propriété 1. Pour tout *A* dans $\mathcal{P}(\Omega)$, on a $P(\overline{A}) = 1 - P(A)$.

Démonstration.

En effet, comme A et \overline{A} sont des événements incompatibles, donc

$$1 = P(\Omega) = P(A \cup \overline{A}) = P(A) + P(\overline{A}) \Leftrightarrow P(\overline{A}) = 1 - P(A)$$
.

Théorème (Propriété 2). $\forall A, B \in \mathcal{P}(\Omega), P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Démonstration.

On sait que $A \cup B = (A \cap \overline{B}) \cup B$ avec $(A \cap \overline{B})$ et B sont deux événements incompatibles. Alors,

(1) $P(A \cup B) = P(A \cap \overline{B}) + P(B)$. D'autre part, on a $(A \cap \overline{B}) \cup (A \cap B) = A$ et $(A \cap \overline{B}) \cap (A \cap B) = \emptyset$, alors on peut écrire

$$P(A \cap \overline{B}) + P(A \cap B) = P(A)$$
.

D'où

(2)
$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$
.

De (1) ,et (2) on obtient le résultat voulu.

Propriété 3. $A \subset B \Rightarrow P(A) \leq P(B)$.

Démonstration.

Comme $A \subset \overline{B}$ alors on peut écrire que $B = A \cup (\overline{A} \cap B)$.

Mais $\emptyset = A \cap (\overline{A} \cap B)$, par conséquent $P(B) = P(A) + P(A \cap B) \ge P(A)$.

3- Probabilité uniforme.

Soit $\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\}$ un univers fini. On définie sur l'espace probabilisable $(\Omega, \mathcal{P}(\Omega))$ une probabilité P, en posant $P(\{\omega_i\}) = p_i$ tel que $\forall i = \overline{1, n} \ 0 \le p_i \le 1$ et $\sum_{i=1}^{n} p_i = 1$.

<u>Définition 5.</u> P est appelée **probabilité uniforme** si $\forall i = \overline{1,n}$ $p_i = \frac{1}{n}$. Dans ce cas les $\{\omega_i\}$ sont équiprobables.

Généralement, dans le cas d'une probabilité uniforme, on utilise la règle suivante :

Pour tout A dans
$$\mathcal{G}(\Omega)$$
, $P(A) = \frac{Card A}{Card \Omega}$.

4- Probabilité conditionnelle.

<u>Définition 6</u> Soient $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé fini et A un événement tel que P(A) > 0. L'application P_A définie de $\mathcal{P}(\Omega)$ dans [0, 1] par : $P_A(B) = P(A \cap B) / P(A)$, est appelée *probabilité conditionnelle*.

 $P_A(B)$ peut être écrit P(B/A) et on dit « la probabilité de B sachant A ».

4.1-Propriétés.

1- Pour tout A et B dans $\mathcal{P}(\Omega)$, tel que P(A). P(B) > 0, on a

$$P(A \cap B) = P(B / A) \cdot P(A) = P(A / B) \cdot P(B).$$

2- Pour tout A et B dans $\mathcal{P}(\Omega)$, tel que $A \subset B \Rightarrow P(B/A) = 1$.

4.2- Evénement indépendants.

On dit que A et B sont *indépendants* par rapport à la probabilité P si et seulement si $P(A \cap B) = P(A)$. P(B).

Remarques.

1- Si A et B sont indépendants alors

$$P(A) > 0$$
 on a $P(B / A) = P(B)$.

$$P(B) > 0$$
 on a $P(A / B) = P(A)$.

2- A et B sont indépendants \Leftrightarrow A et \overline{B} sont indépendants.

 $\Leftrightarrow \overline{A}$ et B sont indépendants.

 $\Leftrightarrow \overline{A}$ et \overline{B} sont indépendants.

4.3- Théorème de Bayes.

Soient $(\Omega, \mathcal{P}(\Omega), P)$ un espace probabilisé fini et E, A_1, A_2, \ldots, A_n (n + 1) événements, tel que P(E) > 0 et $\{A_1, A_2, \ldots, A_n\}$ forme un système complet, c - a - d

- 1) P(E) > 0 et $P(A_i) > 0$ pour tout *i*.
- 2) Les A_i sont 2 à 2 incompatibles.

$$2) \bigcup_{i=1}^{n} A_i = \Omega.$$

Alors, on a pour tout
$$k = \overline{1, n}$$

$$P(A_k / E) = \frac{P(E / A_k)P(A_k)}{\sum_{i=1}^{n} P(E / A_i)P(A_i)}.$$

Comme les A_i sont 2 à 2 incompatibles, alors on peut écrire $\sum_{i=1}^n P(E/A_i)P(A_i) = P(E) \ .$

Cette relation est appelée probabilité totale.