LASER Primena u medicini

LASER

- ■L light
- ■A amplification by
- ■S stimulated
- **E** emission of
- $\blacksquare R$ radiation
- Pojačanje svetlosti putem stimulisane emisije zračenja

Istorija lasera

- 1917. Albert Einstein otkriva postojanje stimulisane emisije
- 1960. Theodore H. Maiman realizovao je prvi rubinski laser

Svetlosno pojačanje

- Potrebno je uspostaviti inverziju populacije atoma: većina atoma u pobuđenom stanju
- Inverziju nije moguće izvesti u materijalima koji imaju dva stanja (osnovno i pobuđeno)
- Inverzija se postiže u materijalima koji mogu imati bar tri ili najbolje četiri stanja
- Atom usled "upumpavanja" energije prelazi u "superpobuđeno" stanje, gde se zadržava vrlo kratko i prelazi na pobuđeno stanje gde se zadržava duže
- Pri prelasku sa pobuđenog na osnovno stanje emituje foton

Stimulisana emisija fotona

- Novo emitovani foton je iste talasne dužine i iste faze sa fotonom koji je stimulisao pobuđeni atom na emisiju
- Stimulisana emisija stvara monohromatsku i prostorno koherentnu svetlost
- Pojačanje svetlosti se vrši na račun energije koju pumpa "upumpava" u pojačavački medium

Pregled izvora svetlosti

- Nelaserski
 - Termalni inkadescentni
 - Polihromatsko
 - Nekoherentno
 - Električno pražnjenje u gasovima
 - Monohromatsko
 - Nekoherentno
 - LED diode
 - Monohromatsko
 - Nekoherentno

■ Laserski

- Kontinualni (CW)
 - Monohromatsko
 - Koherentno
 - HeNa, Ar⁺, laser diode
- Impulsni
 - Kvazimonohromatsk
 - Koherentno
 - Impulsi od mikro do femtosekunde

Značajne karakteristike lasera

- Monohromatičnost je veoma dobro definisana
- Koherentnost
- Usmerenost
- Ostvarivi ekstremno visoki inteziteti svetlosnog zračenja
- Primer: Ar⁺ laser snage 1W može se fokusirati da stvori tačku od svega 10⁻⁸cm²
 - Svetlosni fluks iznosi 10⁸w/cm² dok je svetlosni fluks kojim sunce u zenitu obasjava zemlju 0.14w/cm² ,a na samoj površini sunca je 10⁴w/cm²

Medicinske primene lasera

- Terapija
- Dijagnostika
- Hirurgija
- Primeri oblasti medicine koje koriste lasere:
 - Oftamologija
 - Neurohirurgija
 - Urologija
 - Otorinolaringologija
 - Dermatologija

Osnovne prednosti lasera

- Omogućuje kontrolisano, jako fokusirano zagrevanje tkiva
- Nema mehaničkog dodira sa tkivom na kom se interveniše
- Intervencija kroz tkivo (koje ima mali koeficijent absorpcije) bez njegovog oštećenja
- Moguća upotreba u endoskopiji
- Ekstremno tanak i čist rez sa vrlo malo krvarenja, brzo zarastanje i mali ožiljci
- Automatska kauterizacija (sprečavanje krvarenja) usled zagrevanja tkiva

Tipovi lasera u medicini

- Ar+ argonski neurohirurgija, oftamologija, ginekologija i dermatologija
- HeNe helijum-neonski dijagnostika
- CO₂ ugljendioksidni opšta hirurgija
- Nd:YAG neodijum itrijum aluminijum garnet laser opšta hirurgija

Kliničke primene

- Kardiovaskularna medicina
 - Uklanjanje naslaga sa zidova krvnih sudova
 - Upotrebljavaju se optička vlakna za precizno usmeravanje svetlosnog snopa na tačno određeno mesto unutar krvnog suda
 - Najbolji rezultati se postižu u koronarnim arterijama
 - Najčešće CO₂ laser

Kliničke primene

- Onkologija
 - Otklanjanje tumora u grudnom košu
 - Bronhoskopija u lokalnoj anesteziji
 - Optičko vlakno dovodi svetlosni zrak na željeno mesto
 - CO₂ i Nd:YAG laseri

Kliničke primene

- Dermatologija
 - Uklanjanje pigmentiranog tkiva
 - Otklanjanje promena ispod epidermisa
 - Argonski snop prolazi kroz epidermis (spoljni sloj kože) sa minimalnom absorpcijom
 - Absorbuje se u kapilarima i rezultuje koagulacijom krvi u kapilarima
 - Otklanjanje tetovaža iako ostaju promene na koži

Kliničke primene

- Gastroenterologija
 - Endoskopska primena Nd:YAG ili Ar⁺ lasera pri operaciji ulkusa (čira)
 - Kritično krvarenje može biti kontrolisano u više od 70% slučajeva
- Ginekologija
 - Intervencije na uterusu
 - Otklanjanje koncentrisanih promena i tumora
 - CO₂ i Nd:YAG laseri

Kliničke primene

- Oftamologija
 - Argonski i kriptonski laseri
 - Intervencije na retini (mrežnjači)
 - Intervencija se obavlja kroz zenicu
- Otorinolaringologija
 - Uklanjanje tumora sa glasnih žica

Karakteristi	ke
Laser type	CW Nd:YAG laser
Output modes	continuous / repeated pulses / single pulse
Output power (CW mode), W	1100
Output power stability, %	±5
Repeated pulse mode, sec	pulse width: 0.0260 interval: 0.0210
Beam delivery	gas cooled optical fiber, SMA905 connector
Aiming beam	532 nm laser module
Control panel	8 programs; monitoring of output power, pulse duration, repetition interval; indication of cumulative energy, applied to tissue; error monitoring
Power consumption, (single phase, 220V ± 10%, 50/60Hz), kVA	≤4
Cooling	self-contained water-air cooling system
Environmental conditions	(1527)°C ambient
Dimensions, mm	920 x 495 x 620
Weight, kg	76

