Abstract

As DUNE and T2HK ramp up their efforts, it is a good time to examine what the oscillation probabilities actually are. I will develop a framework for neutrino oscillations in matter that leads to simple and precise expressions. These expressions are sufficiently accurate for current, planned, and proposed oscillation experiments. Further improvements to these expressions can be derived via either changing the basis or perturbation theory, or both. While other expressions exist on the market, I will show how these expressions are significantly more precise and as simple. I will explore how Δm_{ee}^2 is modified in matter and how the previous techniques provide a simple and precise expression for this quantity as well. Finally, I will discuss recent results on understanding CP violation in the neutrino sector.

Neutrino Oscillation Probabilities in Matter

Analytic Oscillation Probability Collaborators

Stephen Parke

Hisakazu Minakata

Gabriela Barenboim

Xining Zhang

Christoph Ternes

1604.08167, 1806.01277, 1808.09453, 1902.00517, 1902.07185 github.com/PeterDenton/Nu-Pert

github.com/PeterDenton/Nu-Pert-Compare

Neutrino Oscillation Parameters Status

Six parameters:

- 1. $\theta_{13} = (8.6 \pm 0.1)^{\circ}$
- 2. $\theta_{12} = (33.8 \pm 0.8)^{\circ}$
- 3. $\Delta m_{21}^2 = (7.4 \pm 0.2) \times 10^{-5} \text{ eV}^2$
- 4. $\theta_{23} \sim 45^{\circ} \text{ (octant)}$
- 5. $|\Delta m_{31}^2| = (2.52 \pm 0.03) \times 10^{-3} \text{ eV}^2 \text{ (mass ordering)}$
- 6. $\delta = ???$

NuFIT, 1811.05487

PMNS order allows for easy measurement of θ_{13} and θ_{12} .

 θ_{23} and δ_{CP} require full three-flavor description.

Analytic Oscillation Probabilities in Matter

- ► Solar: $P_{ee} \simeq \sin^2 \theta_{\odot}$ Approx: S. Mikheev, A. Smirnov, Nuovo Cim. C9 (1986) 17-26 Exact: S. Parke, PRL 57 (1986) 2322
- ► Long-baseline: All three flavors

Exact: H. Zaglauer, K. Schwarzer, Z.Phys. C40 (1988) 273

Approx: PBD, H. Minakata, S. Parke, 1604.08167

 ν_e disappearance (nu storm):

$$\Delta \widehat{m^2}_{ee} = \widehat{m^2}_3 - (\widehat{m^2}_1 + \widehat{m^2}_2 - \Delta m_{21}^2 c_{12}^2)$$

PBD, S. Parke, 1808.09453

► Atmospheric?

The Several Billion Dollar Question

What is
$$P(\nu_{\mu} \to \nu_{e})$$
?

$$\begin{split} P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) &= |\mathcal{A}_{\mu e}|^{2} \qquad \mathcal{A}_{\mu e} = \mathcal{A}_{31} + e^{\pm i \Delta_{32}} \mathcal{A}_{21} \\ \mathcal{A}_{31} &= 2s_{13}c_{13}s_{23}\sin\Delta_{31} \\ \mathcal{A}_{21} &= 2s_{12}c_{13}(c_{12}c_{23}e^{i\delta} - s_{12}s_{13}s_{23})\sin\Delta_{21} \\ \Delta_{ij} &= \Delta m^{2}_{ij}L/4E \end{split}$$

The Several Billion Dollar Question

What is $P(\nu_{\mu} \to \nu_{e})$?

$$P(\vec{\nu}_{\mu} \to \vec{\nu}_{e}) = |\mathcal{A}_{\mu e}|^{2} \qquad \mathcal{A}_{\mu e} = \mathcal{A}_{31} + e^{\pm i\Delta_{32}} \mathcal{A}_{21}$$
$$\mathcal{A}_{31} = 2s_{13}c_{13}s_{23}\sin\Delta_{31}$$
$$\mathcal{A}_{21} = 2s_{12}c_{13}(c_{12}c_{23}e^{i\delta} - s_{12}s_{13}s_{23})\sin\Delta_{21}$$

 $\Delta_{ij} = \Delta m^2{}_{ij} L/4E$

...in matter?

Now: NOvA, T2K, MINOS, ... Upcoming: DUNE, T2HK, ...

Second maximum: T2HKK? ESSnuSB? ...

$$\delta = 0.0\pi$$

$$\Delta_{32} = 0.5\pi$$
NO

$$\begin{array}{c|c} - & A_{31} \\ - & A_{21} \end{array} \quad P(\nu_{\mu} \to \nu_{e}) = A_{\mu e} A_{\mu e}^{*}$$

Denton & Parke

$$\delta = 0.0\pi$$

$$\Delta_{32} = 0.5\pi$$
NO
$$-\frac{A_{31}}{A_{21}} P(\nu_{\mu} \to \nu_{e}) = A_{\mu e} A_{\mu e}^{*}$$

$$-\frac{A_{\mu e}}{\bar{A}^{*}} P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = \bar{A}_{\mu e}^{*} \bar{A}_{\mu e}$$

Denton & Parke

Matter Effects Matter

Call Schrödinger equation's eigenvalues m_i^2 and eigenvectors U_i .

$$\mathcal{A}(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i=1}^{3} U_{\alpha i}^* U_{\beta i} e^{-im_i^2 L/2E} \qquad P = |\mathcal{A}|^2$$

In matter ν 's propagate in a new basis that depends on $a \propto \rho E$.

L. Wolfenstein, PRD 17 (1978)

Eigenvalues:
$$m_i^2 \to \widehat{m_i^2}(a)$$

Eigenvectors are given by $\theta_{ij} \to \widehat{\theta}_{ij}(a) \Leftarrow$ Unitarity

Variable Matter Density

We assume ρ is constant. Is this okay?

If ρ varies only "slowly," we can set ρ to the average:

$$\rho(x) \to \bar{\rho} = \frac{1}{L} \int_0^L \rho(x) dx$$

 ρ doesn't vary "too much" when

$$\left|\frac{d\widehat{\theta}}{dt}\right| \ll \left|\frac{\Delta \widehat{m^2}}{2E}\right|$$

True for DUNE?

Variable Matter Density

This is a great approximation at DUNE: \checkmark !

K. Kelly, S. Parke, 1802.06784

Hamiltonian Dynamics

$$H = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & \Delta m_{21}^2 & \\ & \Delta m_{21}^2 & \\ & & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} a & \\ & 0 & \\ & & 0 \end{pmatrix} \end{bmatrix}$$

$$a = 2\sqrt{2}G_F N_e E$$

$$U = \begin{pmatrix} 1 & & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13}e^{-i\delta} \\ & & 1 \\ & -s_{12}e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} & \\ & & 1 \end{pmatrix}$$

Find eigenvalues and eigenvectors:

$$H = \frac{1}{2E}\widehat{U} \begin{pmatrix} 0 & & \\ & \Delta \widehat{m^2}_{21} & \\ & & \Delta \widehat{m^2}_{21} \end{pmatrix} \widehat{U}^{\dagger}$$

Computationally works, but we can do better than a black box ...

Eigenvalues Analytically: The Exact Solution

Solve the cubic characteristic equation.

$$\widehat{m^{2}}_{1} = \frac{A}{3} - \frac{1}{3}\sqrt{A^{2} - 3B}S - \frac{\sqrt{3}}{3}\sqrt{A^{2} - 3B}\sqrt{1 - S^{2}}$$

$$\widehat{m^{2}}_{2} = \frac{A}{3} - \frac{1}{3}\sqrt{A^{2} - 3B}S + \frac{\sqrt{3}}{3}\sqrt{A^{2} - 3B}\sqrt{1 - S^{2}}$$

$$\widehat{m^{2}}_{3} = \frac{A}{3} + \frac{2}{3}\sqrt{A^{2} - 3B}S$$

$$A = \Delta m_{21}^{2} + \Delta m_{31}^{2} + a$$

$$B = \Delta m_{21}^{2}\Delta m_{31}^{2} + a \left[c_{13}^{2}\Delta m_{31}^{2} + (c_{12}^{2}c_{13}^{2} + s_{13}^{2})\Delta m_{21}^{2}\right]$$

$$C = a\Delta m_{21}^{2}\Delta m_{31}^{2}c_{12}^{2}c_{13}^{2}$$

$$S = \cos\left\{\frac{1}{3}\cos^{-1}\left[\frac{2A^{3} - 9AB + 27C}{2(A^{2} - 3B)^{3/2}}\right]\right\}$$

H. Zaglauer, K. Schwarzer, Z.Phys. C40 (1988) 273

Traded one **black box** for another...

We're physicists so ...

Perturbation theory

Alternative Solutions

Perturbative expansion:

- ▶ Small matter potential: $a/\Delta m^2$
 - Y. Li, Y. Wang, Z-z. Xing, 1605.00900
- $ightharpoonup s_{13}, s_{13}^2$

- A. Cervera, et al., hep-ph/0002108
 - H. Minakata, 0910.5545
- K. Asano, H. Minakata, 1103.4387

 $ightharpoonup \Delta m_{21}^2/\Delta m_{31}^2 \sim 0.03$

- J. Arafune, J. Sato, hep-ph/9607437
 - A. Cervera, et al., hep-ph/0002108
 - M. Freund, hep-ph/0103300
- E. Akhmedov, et al., hep-ph/0402175
 - M. Blennow, A. Smirnov, 1306.2903
 - H. Minakata, S. Parke, 1505.01826
- PBD, H. Minakata, S. Parke, 1604.08167

Alternative Solutions: Example

$$P_0 = \sin^2 \theta_{23} \frac{\sin^2 2\theta_{13}}{\hat{C}^2} \sin^2(\hat{\Delta}\hat{C}), \tag{36a}$$

$$P_{\sin\delta} = \frac{1}{2} \alpha \frac{\sin \delta \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23}}{\hat{A}\hat{C}\cos \theta_{13}^2} \sin(\hat{C}\hat{\Delta})$$

$$\times \{\cos(\hat{C}\hat{\Delta}) - \cos((1+\hat{A})\hat{\Delta})\},$$
 (36b)

$$P_{\cos\delta} = \frac{1}{2} \alpha \frac{\cos\delta\cos\theta_{13}\sin2\theta_{12}\sin2\theta_{13}\sin2\theta_{23}}{\hat{A}\hat{C}\cos\theta_{13}^2}\sin(\hat{C}\hat{\Delta})$$

$$\times \{\sin((1+\hat{A})\hat{\Delta}) \mp \sin(\hat{C}\hat{\Delta})\},$$
 (36c)

$$P_{1} = -\alpha \frac{1 - \hat{A}\cos 2\theta_{13}}{\hat{C}^{3}} \sin^{2}\theta_{12}\sin^{2}2\theta_{13}\sin^{2}\theta_{23}\Delta$$

$$\times \sin(2\hat{\Delta}\hat{C}) + \alpha \frac{2\hat{A}(-\hat{A} + \cos 2\theta_{13})}{\hat{C}^{4}}$$

$$\times \sin^{2}\theta_{12}\sin^{2}2\theta_{13}\sin^{2}\theta_{23}\sin^{2}(\hat{\Delta}\hat{C}), \quad (36d)$$

$$P_2 = \alpha \frac{\mp 1 + \hat{C} \pm \hat{A} \cos 2\theta_{13}}{2\hat{C}^2 \hat{A} \cos^2\theta_{13}} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13}$$

$$\times \sin 2\theta_{23} \sin^2(\hat{\Delta}\hat{C}),$$
 (36e)

$$P_3 = \alpha^2 \frac{2\hat{C}\cos^2\theta_{23}\sin^22\theta_{12}}{\hat{A}^2\cos^2\theta_{13}(\mp\hat{A} + \hat{C} \pm \cos 2\theta_{13})}$$
$$\times \sin^2\left(\frac{1}{7}(1 + \hat{A} \mp \hat{C})\Delta\right).$$

(36d)

(36f)

M. Freund, hep-ph/0103300

Peter B. Denton (BNL)

UC Irvine: May 22, 2019 17/54

A Tale of Two Tools

Split the Hamiltonian into:

- ▶ Large, diagonal part (H_0)
- ightharpoonup Small, off-diagonal part (H_1)
- ► Improves precision at zeroth order
- ▶ Naturally leads to using $\Delta m_{ee}^2 \equiv c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2$

H. Nunokawa, S. Parke, R. Zukanovich, hep-ph/0503283

1. Rotations:

- ► A two-flavor rotation only requires solving a quadratic
- ▶ Diagonalize away the big off-diagonal terms
- ► Follows the order of the PMNS matrix

2. Perturbative expansion:

- ▶ Smallness parameter is $|\epsilon'| \le 0.015$
- ightharpoonup Correct eigenvalues $(\widetilde{m^2}_i)$ and eigenvectors $(\widetilde{\theta_{ij}})$
- Eigenvalues already include 1st order corrections at 0th order
- ► Can improve the precision to arbitrary order

"What is Δm_{ee}^2 ?"

$$\Delta m_{ee}^2 = c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2 = \Delta m_{31}^2 - s_{12}^2 \Delta m_{21}^2$$

H. Nunokawa, S. Parke, R. Funchal, hep-ph/0503283

S. Parke, 1601.07464

Additional expressions for $\Delta m_{\mu\mu}^2, \Delta m_{\tau\tau}^2$

Useful definitions:

 ν_e weighted average of atmospheric splittings:

$$m_3^2 - \frac{|U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2}{|U_{e1}|^2 + |U_{e2}|^2}$$

- Measured by reactor experiments with smallest L/E error
- ► Simple form:

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$$

$$\Delta_{ij} = \Delta m^2{}_{ij} L/4E$$

Atmospheric Resonance

- 1. $U_{23}(\theta_{23}, \delta)$ commutes with matter potential
- 2. Largest off-diagonal term: $s_{13}c_{13}\Delta m_{ee}^2$ in the 1-3 position

- Eigenvalues still cross at the solar resonance:
 - ► No perturbation theory there
- Smallness parameter:

 - ► After U_{23} : $s_{13}c_{13} = 0.15$ ► After U_{13} : $s_{12}c_{12}\frac{\Delta m_{21}^2}{\Delta m_{22}^2} = 0.015$

Solar Resonance

- 3. Largest off-diagonal term:
 - $s_{12}c_{12}c_{\widetilde{\theta}_{13}-\theta_{13}}\bar{\Delta m}_{21}^2$ in the 1-2 position \triangleright Largest except for ν 's above the atmospheric resonance
- $|\epsilon'| < 0.015$, zero in vacuum
- ▶ Perturbation theory valid everywhere now
- Rotation order matches PMNS
- ▶ Take vacuum expressions, replace θ_{13} , θ_{12} , and Δm_{ii}^2
- Extremely precise $|\Delta P/P| < 10^{-3}$

Solar Resonance

- 3. Largest off-diagonal term:
 - $s_{12}c_{12}c_{\widetilde{\theta}_{13}-\theta_{13}}\bar{\Delta m}_{21}^2$ in the 1-2 position \triangleright Largest except for ν 's above the atmospheric resonance
- $|\epsilon'| < 0.015$, zero in vacuum
- ▶ Perturbation theory valid everywhere now
- Rotation order matches PMNS
- ▶ Take vacuum expressions, replace θ_{13} , θ_{12} , and Δm_{ii}^2
- Extremely precise $|\Delta P/P| < 10^{-3}$

Expansion Parameter

Matter expression \Rightarrow Vacuum expression

$$\widetilde{P}_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) = P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$$

Same expression, 4 new variables.

 $Matter\ expression \Rightarrow Vacuum\ expression$

$$\widetilde{P}_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) = P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$$

Same expression, 4 new variables.

$$\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m^2}_{ee}}$$

$$\Delta \widetilde{m^2}_{ee} = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

$$\Rightarrow$$

Matter expression \Rightarrow Vacuum expression

$$\widetilde{P}_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) = P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$$
Same expression, 4 new variables.

$$\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m}_{ee}^2}$$
$$\Delta \widetilde{m}_{ee}^2 = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

$$\cos 2\widetilde{\theta}_{12} = \frac{\Delta m_{21}^2 \cos 2\theta_{12} - a_{12}}{\Delta \widetilde{m}^2_{21}}, \qquad a_{12} = (a + \Delta m_{ee}^2 - \Delta \widetilde{m}^2_{ee})/2$$
$$\Delta \widetilde{m}^2_{21} = \Delta m_{21}^2 \sqrt{(\cos 2\theta_{12} - a_{12}/\Delta m_{21}^2)^2 + \cos^2(\widetilde{\theta}_{13} - \theta_{13})\sin^2 2\theta_{12}}$$

Matter expression

 \Rightarrow Vacuum expression

 $\widetilde{P}_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) = P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$ Same expression, 4 new variables.

$$\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m}_{ee}^2}$$
$$\Delta \widetilde{m}_{ee}^2 = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

$$\cos 2\widetilde{\theta}_{12} = \frac{\Delta m_{21}^2 \cos 2\theta_{12} - a_{12}}{\Delta \widetilde{m}^2_{21}}, \qquad a_{12} = (a + \Delta m_{ee}^2 - \Delta \widetilde{m}^2_{ee})/2$$
$$\Delta \widetilde{m}^2_{21} = \Delta m_{21}^2 \sqrt{(\cos 2\theta_{12} - a_{12}/\Delta m_{21}^2)^2 + \cos^2(\widetilde{\theta}_{13} - \theta_{13})\sin^2 2\theta_{12}}$$

$$\Delta \widetilde{m^2}_{31} = \Delta m_{31}^2 + \frac{1}{4}a + \frac{1}{2}(\Delta \widetilde{m^2}_{21} - \Delta m_{21}^2) + \frac{3}{4}(\Delta \widetilde{m^2}_{ee} - \Delta m_{ee}^2)$$

Improve with Perturbation

 $\tilde{\theta}_{13}$

order

 $\tilde{\theta}_{12}$

4. $\gtrsim 2$ orders of magnitude of improvement in precision: $|\Delta P/P| < 10^{-6}$

- Eigenvalues need no correction
- ► Compact form utilizes a

 $\widetilde{m^2}_1 \leftrightarrow \widetilde{m^2}_2$, $\widetilde{\theta}_{12} \leftrightarrow \widetilde{\theta}_{12} \pm \pi/2$ symmetry

$$\widetilde{m^2}_{1,2} - \widetilde{\theta}_{12}$$
 Symmetry

From the shape of $U_{12}(\tilde{\theta}_{12})$, it is clear that the probabilities are invariant under a simultaneous interchange of

$$\widetilde{m^2}_1 \leftrightarrow \widetilde{m^2}_2 \,, \qquad {\rm and} \qquad \widetilde{\widetilde{\theta}}_{12} \to \widetilde{\widetilde{\theta}}_{12} \pm \frac{\pi}{2} \,.$$

Since only even powers of $\widetilde{\theta}_{12}$ trig functions $c_{\widetilde{12}}^2, s_{\widetilde{12}}^2, c_{\widetilde{12}} s_{\widetilde{12}}, \cos(2\widetilde{\theta}_{12}), \sin(2\widetilde{\theta}_{12})$ appear in the probabilities, the sign degeneracy is irrelevant.

More usefully, we can write that the probabilities are invariant under the simultaneous interchange of

$$\widetilde{m^2}_1 \leftrightarrow \widetilde{m^2}_2 \,, \qquad c^2_{\widetilde{12}} \leftrightarrow s^2_{\widetilde{12}} \,, \qquad \text{and} \qquad c_{\widetilde{12}} s_{\widetilde{12}} \to -c_{\widetilde{12}} s_{\widetilde{12}} \,.$$

This interchange constrains the $\sin^2 \Delta_{21}$ term, and the $\sin^2 \Delta_{32}$ term easily follows from the $\sin^2 \Delta_{31}$ term.

General Form of the First Order Coefficients

$$P_{\alpha\beta} = \delta_{\alpha\beta} + 4C_{21}^{\alpha\beta} \sin^2 \Delta_{21} + 4C_{31}^{\alpha\beta} \sin^2 \Delta_{31} + 4C_{32}^{\alpha\beta} \sin^2 \Delta_{32} + 8D^{\alpha\beta} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$$

Can reduce 8 expressions down to 3:

$$(C_{21}^{\alpha\beta})^{(1)} = \epsilon' \Delta m_{ee}^2 \left(\frac{F_1^{\alpha\beta}}{\Delta \widetilde{m}^2_{31}} + \frac{F_2^{\alpha\beta}}{\Delta \widetilde{m}^2_{32}} \right)$$

$$(C_{31}^{\alpha\beta})^{(1)} = \epsilon' \Delta m_{ee}^2 \left(\frac{F_1^{\alpha\beta} + G_1^{\alpha\beta}}{\Delta \widetilde{m}^2_{31}} - \frac{F_2^{\alpha\beta}}{\Delta \widetilde{m}^2_{32}} \right)$$

$$(C_{32}^{\alpha\beta})^{(1)} = \epsilon' \Delta m_{ee}^2 \left(-\frac{F_1^{\alpha\beta}}{\Delta \widetilde{m}^2_{31}} + \frac{F_2^{\alpha\beta} + G_2^{\alpha\beta}}{\Delta \widetilde{m}^2_{32}} \right)$$

$$(D^{\alpha\beta})^{(1)} = \epsilon' \Delta m_{ee}^2 \left(\frac{K_1^{\alpha\beta}}{\Delta \widetilde{m}^2_{31}} - \frac{K_2^{\alpha\beta}}{\Delta \widetilde{m}^2_{32}} \right)$$

 $K_1^{\alpha\beta} = \mp s_{23}c_{23}c_{\widetilde{13}}s_{\widetilde{12}}^2(c_{\widetilde{13}}^2c_{\widetilde{12}}^2 - s_{\widetilde{13}}^2)s_{\delta}, \quad \alpha \neq \beta$

First Order Coefficients

$\nu_{\alpha} \rightarrow \nu_{\beta}$	$F_1^{lphaeta}$
$\nu_e o \nu_e$	$-2c_{\widetilde{13}}^3s_{\widetilde{13}}s_{\widetilde{12}}^3c_{\widetilde{12}}$
$ u_{\mu} ightarrow u_{e} $	$c_{\widetilde{13}}s_{\widetilde{12}}^{2}[s_{\widetilde{13}}s_{\widetilde{12}}c_{\widetilde{12}}(c_{23}^{2}+c_{2\widetilde{13}}s_{23}^{2})\\-s_{23}c_{23}(s_{\widetilde{13}}^{2}s_{\widetilde{12}}^{2}+c_{2\widetilde{13}}c_{\widetilde{12}}^{2})c_{\delta}]$
$ u_{\mu} ightarrow u_{\mu} $	

$\nu_{\alpha} \rightarrow \nu_{\beta}$	$G_1^{lphaeta}$
$\nu_e \rightarrow \nu_e$	$2s_{\widetilde{13}}c_{\widetilde{13}}s_{\widetilde{12}}c_{\widetilde{12}}c_{2\widetilde{13}}$
$\nu_{\mu} \rightarrow \nu_{e}$	$-2s_{\widetilde{13}}c_{\widetilde{13}}s_{\widetilde{12}}(s_{23}^2c_{2\widetilde{13}}c_{\widetilde{12}}-s_{23}c_{23}s_{\widetilde{13}}s_{\widetilde{12}}c_{\delta})$
$ u_{\mu} \rightarrow \nu_{\mu} $	$-2c_{\widetilde{13}}s_{\widetilde{12}}(s_{23}^2s_{\widetilde{13}}c_{\widetilde{12}} + s_{23}c_{23}s_{\widetilde{12}}c_{\delta}) \times (1 - 2c_{\widetilde{13}}^2s_{23}^2)$

Three channels gives them all with unitarity!

Higher Orders

 θ_{23}, δ $\tilde{\theta}_{13}$ $\tilde{\theta}_{12}$ 5. $\gtrsim 2$ more orders of magnitude order/

order

of improvement per order: $|\Delta P/P| < 10^{-9}, \dots$

> MP15 DMP16

Wacuum!

\ Rot.

Matter

Rot.

Precision

DUNE: NO	$\delta = 3\pi/2$	First min	First max
$P(\nu_{\mu} \rightarrow \nu_{e})$		0.0047	0.081
$E ext{ (GeV)}$		1.2	2.2
$\frac{ \Delta P }{P}$	Zeroth	5×10^{-4}	4×10^{-4}
	First	3×10^{-7}	2×10^{-7}
	Second	6×10^{-10}	5×10^{-10}

More Rotations θ_{23}, δ $\tilde{\theta}_{13}$ Instead continue to Wacuum! $\tilde{\theta}_{12}$ Not. ✓ diagonalize large terms 4. 1-3 sector for ν 's Matter 2-3 sector for $\bar{\nu}$'s Rot. $\alpha_{13}|\bar{\alpha}_{23}|$ 5. Then opposite $\nu | \bar{\nu}$ $\alpha_{23}|\bar{\alpha}_{13}|$ order ▶ 2 additional rotations $\equiv 1$ order of perturbation theory **MP15** order

1806.01277

UC Irvine: May 22, 2019 30/54

Peter B. Denton (BNL)

Even More Rotations θ_{23}, δ Required to $\tilde{\theta}_{13}$ 6. 1-2 sector for either $\nu/\bar{\nu}$ Wacuum! $\tilde{\theta}_{12}$ \ Rot. Matter Rot. $\alpha_{13}|\bar{\alpha}_{23}$ $\nu | \bar{\nu}$ ▶ 3 additional rotations $|\alpha_{23}|\bar{\alpha}_{13}|$ $\equiv 2$ orders of pert. th. order $|\alpha_{12}|\bar{\alpha}_{12}|$ MP15 order UC Irvine: May 22, 2019 31/54 Peter B. Denton (BNL) 1806.01277

Rotation Precision Follows the Fibonacci Sequence

Given $H = H_0 + H_1$, perform successive rotations,

Rotation #	0	1	2	3	4	5	6	$7 \cdots$
Size of correction	1	1	2	3	5	8	13	21 · · ·

Necessary conditions:

- 1. H_1 is Hermitian
- 2. H_1 has no diagonal entries
- 3. At least one off-diagonal entry is zero

Each additional rotation is of uniform complexity, perturbation theory is of increasing complexity

Verifying the CPV Term in Matter

The amount of CPV is

 $J\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$

where the Jarlskog is

$$J = 8c_{12}s_{12}c_{13}^2s_{13}c_{23}s_{23}s_{\delta}$$

C. Jarlskog, PRL 55 (1985)

The exact term in matter is known to be

$$\frac{\widehat{J}}{J} = \frac{\Delta m_{21}^2 \Delta m_{31}^2 \Delta m_{32}^2}{\Delta \widehat{m}^2_{21} \Delta \widehat{m}^2_{31} \Delta \widehat{m}^2_{32}}$$

V. Naumov, Int. J. Mod. Phys. 1992

P. Harrison, W. Scott, hep-ph/9912435

Our expression reproduces this order by order in ϵ' for all channels.

CPV in Matter

CPV in matter can be written sans $\cos(\frac{1}{3}\cos^{-1}(\cdots))$ term.

$$\begin{split} \frac{\widehat{J}}{J} &= \frac{\Delta m_{21}^2 \Delta m_{31}^2 \Delta m_{32}^2}{\Delta \widehat{m^2}_{21} \Delta \widehat{m^2}_{31} \Delta \widehat{m^2}_{32}} \\ \left(\Delta \widehat{m^2}_{21} \Delta \widehat{m^2}_{31} \Delta \widehat{m^2}_{32}\right)^2 &= (A^2 - 4B)(B^2 - 4AC) + (2AB - 27C)C \\ A &\equiv \sum_j \widehat{m^2}_j = \Delta m_{31}^2 + \Delta m_{21}^2 + a \\ B &\equiv \sum_{j>k} \widehat{m^2}_j \widehat{m^2}_k = \Delta m_{31}^2 \Delta m_{21}^2 + a(\Delta m_{ee}^2 c_{13}^2 + \Delta m_{21}^2) \\ C &\equiv \prod_i \widehat{m^2}_j = a\Delta m_{31}^2 \Delta m_{21}^2 c_{13}^2 c_{12}^2 \end{split}$$

This is the *only* oscillation quantity in matter that can be written exactly without $\cos(\frac{1}{3}\cos^{-1}(\cdots))!$

CPV in Matter

Thus \widehat{J}^2 is fourth order in matter potential: only two matter corrections are really needed.

CPV in Matter

Thus \widehat{J}^2 is fourth order in matter potential: only two matter corrections are really needed.

CPV in matter can be approximated:

$$\frac{\widehat{J}}{J} \approx \frac{1}{\mathcal{S}_{\rm atm} \mathcal{S}_{\odot}}$$

$$S_{\text{atm}} = \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$
$$S_{\odot} = \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}}$$

PBD, Parke, 1902.07185

See also X. Wang, S. Zhou, 1901.10882

CPV In Matter Approximation Precision

Peter B. Denton (BNL)

1902.07185

UC Irvine: May 22, 2019 37/54

Is DMP the best?

Is DMP the best?

yes

We were not the first to examine this problem.

▶ Madrid: drop $\frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and s_{13} terms; \sim |sum of two amplitudes|²

$$\begin{split} P_{\mu e} &= 4 s_{23}^2 s_{13}^2 c_{13}^2 \left(\frac{\Delta m_{31}^2}{b}\right)^2 \sin^2 \Delta_b + 4 c_{23}^2 s_{12}^2 c_{12}^2 \left(\frac{\Delta m_{21}^2}{a}\right)^2 \sin^2 \Delta_a \\ &+ 8 J_r \frac{\Delta m_{21}^2}{a} \frac{\Delta m_{31}^2}{b} \sin \Delta_a \sin \Delta_b \cos \left(\delta + \Delta_{31}\right) \,, \quad b = a - \Delta m_{31}^2 \\ &\quad \quad \text{A. Cervera, et al., hep-ph/0002108} \end{split}$$

We were not the first to examine this problem.

▶ Madrid: drop $\frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and s_{13} terms; \sim |sum of two amplitudes|²

$$\begin{split} P_{\mu e} &= 4 s_{23}^2 s_{13}^2 c_{13}^2 \left(\frac{\Delta m_{31}^2}{b}\right)^2 \sin^2 \Delta_b + 4 c_{23}^2 s_{12}^2 c_{12}^2 \left(\frac{\Delta m_{21}^2}{a}\right)^2 \sin^2 \Delta_a \\ &+ 8 J_r \frac{\Delta m_{21}^2}{a} \frac{\Delta m_{31}^2}{b} \sin \Delta_a \sin \Delta_b \cos \left(\delta + \Delta_{31}\right) \,, \quad b = a - \Delta m_{31}^2 \\ &\quad \quad \text{A. Cervera, et al., hep-ph/0002108} \end{split}$$

E. Akhmedov, et al., hep-ph/0402175

A. Friedland, C. Lunardini, hep-ph/0606101

H. Nunokawa, S. Parke, J. Valle, 0710.0554

We were not the first to examine this problem.

▶ Madrid: drop $\frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and s_{13} terms; \sim |sum of two amplitudes|²

$$\begin{split} P_{\mu e} &= 4s_{23}^2 s_{13}^2 c_{13}^2 \left(\frac{\Delta m_{31}^2}{b}\right)^2 \sin^2 \Delta_b + 4c_{23}^2 s_{12}^2 c_{12}^2 \left(\frac{\Delta m_{21}^2}{a}\right)^2 \sin^2 \Delta_a \\ &+ 8J_r \frac{\Delta m_{21}^2}{a} \frac{\Delta m_{31}^2}{b} \sin \Delta_a \sin \Delta_b \cos \left(\delta + \Delta_{31}\right) \,, \quad b = a - \Delta m_{31}^2 \\ &\quad \quad \text{A. Cervera, et al., hep-ph/0002108} \\ &\quad \quad \text{E. Akhmedov, et al., hep-ph/0402175} \end{split}$$

A. Friedland, C. Lunardini, hep-ph/0606101

H. Nunokawa, S. Parke, J. Valle, 0710.0554

- ▶ AKT: from mass basis rotated 12 then 23 converted into 13
 - $ightharpoonup \Delta m_{ee}^2$ appears all over the expressions

S. Agarwalla, Y. Kao, T. Takeuchi, 1302.6773

- ▶ AM: Powers of $s_{13}^2 \simeq \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ through the 5/2 order K. Asano, H. Minakata, 1103.4387
- ► Various other expressions

J. Arafune, M. Koike, J. Sato, hep-ph/9703351

M. Freund, hep-ph/0103300

E. Akhmedov, et al., hep-ph/0402175

Others...

Which is best?

- ▶ AM: Powers of $s_{13}^2 \simeq \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ through the 5/2 order K. Asano, H. Minakata, 1103.4387
- ► Various other expressions

J. Arafune, M. Koike, J. Sato, hep-ph/9703351

M. Freund, hep-ph/0103300

E. Akhmedov, et al., hep-ph/0402175

Others...

Which is best? What does "best" mean?

Comparative Precision (L = 1300 km)

Speed \approx Simplicity

Proper Expansions

Parameter x is an expansion parameter iff

$$\lim_{x \to 0} P_{\text{approx}}(x) = P_{\text{exact}}(x = 0)$$

	ϵ	s_{13}	$a/\Delta m_{31}^2$	
Madrid(like)	×	×	×	1
AKT	√	√	✓	
MP	√	×	×	1
DMP	√	√	✓	1
AKS	×	×	×	
MF	√	×	×	1
AJLOS(48)	√	×	×	
AM	X	×	×	

Cervera+, hep-ph/0002108

Agarwalla+, 1302.6773

Minakata, Parke, 1505.01826

PBD+, 1604.08167

Arafune+, hep-ph/9703351

Freund, hep-ph/0103300

 $Akhmedov+, \ {\tt hep-ph/0402175}$

Asano, Minakata, 1103.4387

$$\epsilon \equiv \frac{\Delta m^2_{21}}{\Delta m^2_{ee}}$$

Comparative Review

- ▶ Many expressions in the literature (12 considered)
- ▶ Most are not at the 1% level
- ► Most are not exact in vacuum
- ► Changing the basis to remove level crossings seems best
 - ► AKT, (MP), DMP
 - $ightharpoonup \Delta m_{ee}^2$ naturally appears (regardless of the name)
- ► The order of rotations matters:
 - Constant 23 rotation, then in matter: 13, 12
- ► First order DMP corrections are quite simple

The Effective Δm_{ee}^2 in Matter

$$\Delta m_{ee}^2 = c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2$$

 Δm_{ee}^2 is an important quantity for understanding oscillations:

▶ Optimal expression for MBL reactor experiments

H. Nunokawa, S. Parke, R. Zukanovich, hep-ph/0503283

S. Parke, 1601.07464

▶ Shows up naturally in DMP on long-baseline matter effect

How does Δm_{ee}^2 evolve in matter?

Two-flavor approximation for ν_e disappearance in matter?

Asymptotic Evolution of Δm^2_{ee}

$$\Delta \widehat{m^2}_{ee} = \begin{cases} \widehat{m^2}_3 - \widehat{m^2}_1 & \qquad E \to -\infty \\ \widehat{m^2}_3 - \widehat{m^2}_2 & \qquad E \to +\infty \end{cases}$$

Intermediate Evolution of Δm^2_{ee}

$$\Delta \widehat{m^2}_{ee} = \begin{cases} \widehat{m^2}_3 - \widehat{m^2}_1 & \qquad E \to -\infty \\ \widehat{m^2}_3 - \widehat{m^2}_2 & \qquad E \to +\infty \end{cases}$$

Since
$$\widehat{m}^2_2(E \to -\infty) = \widehat{m}^2_1(E \to +\infty) = \text{constant}$$
, call $m_0^2 \equiv \Delta m_{21}^2 c_{12}^2$

Now we can define

$$\begin{split} \Delta \widehat{m^2}_{ee} &\equiv \widehat{m^2}_3 - \big(\widehat{m^2}_1 + \widehat{m^2}_2 - m_0^2\big) \\ \Delta \widehat{m^2}_{ee} - \Delta m_{ee}^2 &= \big(\widehat{m^2}_3 - m_3^2\big) - \big(\widehat{m^2}_1 - m_1^2\big) - \big(\widehat{m^2}_2 - m_2^2\big) \\ &\quad \text{Easy to see that } \Delta \widehat{m^2}_{ee}(E=0) = \Delta m_{ee}^2 \end{split}$$

Relationship to vacuum expression?

Relationship to Vacuum Expression

In vacuum we can equivalently write:

$$\Delta m_{ee}^2 = \begin{cases} c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2 \\ m_3^2 - (m_1^2 + m_2^2 - m_0^2) \end{cases}$$

Elevate everything to matter equivalent, except m_0^2 which we know we want to be a constant.

$$\Delta \widehat{m^2}_{ee} = \widehat{m^2}_3 - (\widehat{m^2}_1 + \widehat{m^2}_2 - m_0^2)$$
$$\Delta \widehat{m^2}_{EE} = c_{12}^2 \Delta \widehat{m^2}_{31} + s_{12}^2 \Delta \widehat{m^2}_{32}$$

The difference between these similar formulas:

$$\Delta_{Ee} = \widehat{m^2}_1 + c_{\widehat{12}}^2 \Delta \widehat{m^2}_{21} - c_{12}^2 \Delta m_{21}^2$$

$$< 0.3\%$$

A Third Option

Avoid $\cos(\frac{1}{3}\cos^{-1}\cdots)$, use DMP:

$$\Delta \widetilde{m^2}_{ee,\mathrm{DMP}} \equiv \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

Which is best?

What does *best* mean?

Using one $\Delta m^2 \Rightarrow$ using a two-flavor picture:

$$P_{ee} \approx 1 - \sin^2 2\widehat{\theta}_{13} \sin^2 \frac{\Delta \widehat{m}_{ee}^2 L}{4E}$$

 \Rightarrow want the first minimum correct Take exact expression at dP/dL=0 for a given E, then

$$\frac{\Delta \widehat{m^2}_{ee} L}{4E} = \frac{\pi}{2}$$

What does *best* mean?

Using one $\Delta m^2 \Rightarrow$ using a two-flavor picture:

$$P_{ee} \approx 1 - \sin^2 2\widehat{\theta}_{13} \sin^2 \frac{\Delta \widehat{m}_{ee}^2 L}{4E}$$

 \Rightarrow want the first minimum correct Take exact expression at dP/dL=0 for a given E, then

$$\frac{\Delta \widehat{m^2}_{ee} L}{4E} = \frac{\pi}{2}$$

Could do dP/dE = 0 for a given L,

H. Minakata, 1702.03332

but L/E show up together except where a = a(E) appears, and both $\widehat{\theta}_{13}$, $\widehat{\Delta m^2}_{ee}$ are complicated functions of a.

Comparison of Two-Flavor Precision

The $\Delta \widehat{m}^2_{ee}$ expression also leads to a simple rewriting of the eigenvalues.

HM: H. Minakata, 1702.03332 21 term in probability not included

The winner is:
$$\Delta \widehat{m}_{ee}^2 \equiv \widehat{m}_3^2 - (\widehat{m}_1^2 + \widehat{m}_2^2 - m_0^2)$$
!

Precision is better than 0.06%

Depth of Oscillations

The depth of the minimum is well-described by

$$\sin^2 2\widehat{\theta}_{13} \approx \sin^2 2\theta_{13} \left(\frac{\Delta m_{ee}^2}{\Delta \widehat{m}^2_{ee}}\right)^2$$
$$\approx \frac{\sin^2 2\theta_{13}}{(\cos^2 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

Using DMP

Depth of Oscillations

The depth of the minimum is well-described by

$$\sin^2 2\widehat{\theta}_{13} \approx \sin^2 2\theta_{13} \left(\frac{\Delta m_{ee}^2}{\Delta \widehat{m}_{ee}^2}\right)^2$$
$$\approx \frac{\sin^2 2\theta_{13}}{(\cos^2 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$

Using DMP

The disappearance probability in matter is well described by

$$\begin{split} P_{ee} &\approx 1 - \sin^2 2\theta_{13} \left(\frac{\Delta m_{ee}^2}{\Delta \widehat{m}^2_{ee}} \right)^2 \sin^2 \frac{\Delta \widehat{m}^2_{ee} L}{4E} \\ &\Delta \widehat{m}^2_{ee} \equiv \widehat{m}^2_3 - (\widehat{m}^2_1 + \widehat{m}^2_2) \\ &- [m_2^2 - (m_1^2 + m_2^2)] + \Delta m_{ee}^2 \end{split}$$

Peter B. Denton (BNL)

New Physics

DUNE and T2HK will unprecedented capabilities to test the three-neutrino oscillation picture

Extend DMP to new physics progress report:

► Sterile

S. Parke, X. Zhang, 1905.01356

- ► NSI?
- ► Neutrino decay?
- ▶ Decoherence?

Key Points

- ▶ Long-baseline oscillations are fundamentally three-flavor
- ▶ Include 1st order corrections in 0th order eigenvalues (Δm_{ee}^2)
- \blacktriangleright Rotate large terms first \Rightarrow PMNS order, removes level crossings
- ▶ 0th order probabilities: **same structure as vacuum** probabilities
- ▶ 0th order: **accurate** enough for current & future experiments
- ▶ DMP is the most precise while just as simple
- ▶ Exact and approximate CPV in matter are **simpler** than expected
- Same tools can also describe ν_e disappearance in matter: $\Delta \widehat{m}_{ee}^2$

Backups

Neutrino Oscillations in Vacuum: Disappearance

It is easy to calculate the *exact* disappearance expression in vacuum:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4 \sum_{i < j} |U_{\alpha i}|^2 |U_{\alpha j}|^2 \sin^2 \Delta_{ji}$$

For the electron case this expression is simple:

$$\begin{split} P(\nu_e \to \nu_e) &= 1 \\ &- 4c_{12}^2 s_{12}^2 c_{13}^4 \sin^2 \Delta_{21} \\ &- 4c_{12}^2 c_{13}^2 s_{13}^2 \sin^2 \Delta_{31} \\ &- 4s_{12}^2 c_{13}^2 s_{13}^2 \sin^2 \Delta_{32} \end{split}$$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

A Simple Solution

For two-flavor oscillations:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

- Solar: θ_{21} , Δm_{21}^2
- ▶ Reactor: θ_{13} , Δm_{ee}^2

Our Methodology

- Start with $\epsilon = \frac{\Delta m_{21}^2}{\Delta m_{ee}^2} = 0.03$
- ▶ Perform one fixed and two variable rotations: (θ_{23}, δ) , $\tilde{\theta}_{13}$, $\tilde{\theta}_{12}$
- \blacktriangleright Write the probabilities with simple L/E dependence:

$$P(\nu_{\alpha} \to \nu_{\beta}) = \delta_{\alpha\beta} - \sum_{i < j} \Re \left[U_{\alpha i} U_{\beta i}^* U_{\alpha j}^* U_{\beta j} \right] \sin^2 \Delta_{ij}$$
$$+ 8\Im \left[U_{\alpha 1} U_{\beta 2}^* U_{\alpha 2}^* U_{\beta 1} \right] \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21}$$

C. Jarlskog: PRL 55 (1985)

Nonvanishing Wronskian \Rightarrow fewest number of L/E functions Clear that the CPV term is $\mathcal{O}[(L/E)^3]$ not $\mathcal{O}[(L/E)^1]$

Eigenvalues in Matter: Two Rotations are Needed

$$\widetilde{m}_{a}^{2} = a + (s_{13}^{2} + \epsilon s_{12}^{2}) \Delta m_{ee}^{2}, \ \widetilde{m}_{b}^{2} = \epsilon c_{12}^{2} \Delta m_{ee}^{2}, \ \widetilde{m}_{c}^{2} = (c_{13}^{2} + \epsilon s_{12}^{2}) \Delta m_{ee}^{2}$$

Eigenvalues in Matter: Two Rotations are Needed

$$\widetilde{m^2}_{\mp} = \frac{1}{2} \left[(\widetilde{m^2}_a + \widetilde{m^2}_c) \mp \text{sgn}(\Delta m_{ee}^2) \sqrt{(\widetilde{m^2}_c - \widetilde{m^2}_a)^2 + (2s_{13}c_{13}\Delta m_{ee}^2)^2} \right]$$

 $m^2_0 = m^2_b$ Peter B. Denton (BNL)

Eigenvalues in Matter: Two Rotations are Needed

$$\widetilde{m^2}_{\mp} = \frac{1}{2} \left[(\widetilde{m^2}_a + \widetilde{m^2}_c) \mp \operatorname{sgn}(\Delta m_{ee}^2) \sqrt{(\widetilde{m^2}_c - \widetilde{m^2}_a)^2 + (2s_{13}c_{13}\Delta m_{ee}^2)^2} \right]$$

 $m^2_0 = m^2_b$ Peter B. Denton (BNL)

Eigenvalues in Matter: Two Rotations are Needed

$$\widetilde{m^2}_{1,2} = \frac{1}{2} \left[(\widetilde{m^2}_0 + \widetilde{m^2}_-) \mp \sqrt{(\widetilde{m^2}_0 - \widetilde{m^2}_-)^2 + (2\epsilon c_{(\widetilde{\theta}_{13} - \theta_{13})} c_{12} s_{12} \Delta m_{ee}^2)^2} \right]$$

 $m^2_3 = m^2_+$ Peter B. Denton (BNL)

Eigenvalues in Matter: Mass Ordering

$$\widetilde{\overline{m^2}}_1 < \widetilde{m^2}_2 < \widetilde{m^2}_3$$

$$\widetilde{m^2}_3 < \widetilde{m^2}_1 < \widetilde{m^2}_2$$

1 + 2 Rotations

- 1. Perform a constant $U_{23}(\theta_{23}, \delta)$ rotation
 - $ightharpoonup U_{23}$ commutes with the matter potential
 - Resultant Hamiltonian is real
 - 'Expansion parameter' is $c_{13}s_{13} = 0.15$ at this point
- 2. Diagonalize the diagonal and $\mathcal{O}(\epsilon^0)$ off-diagonal terms with $U_{13}(\widetilde{\theta}_{13})$
 - $\qquad \qquad \bullet \widetilde{\theta}_{13}(a=0) = \theta_{13}$
 - Expansion parameter is $c_{12}s_{12}\frac{\Delta m_{21}^2}{\Delta m_{ee}^2}=0.015$

H. Minakata, S. Parke, 1505.01826

- 3. Diagonalize the terms non-zero in vacuum with $U_{12}(\tilde{\theta}_{12})$
 - $\widetilde{\theta}_{12}(a=0) = \theta_{12}$
 - ▶ Expansion parameter is now $\epsilon' = c_{12} s_{12} s_{(\tilde{\theta}_{13} \theta_{13})} \frac{\Delta m_{21}^2}{\Delta m_{ee}^2} < 0.015$
 - $\epsilon'(a=0)=0$

$$\frac{a}{\Delta m_{\rm ee}^2\cos 2\theta_{13}}=0.0$$
 Vacuum
$$2(\frac{\pi}{2}-\phi)$$

Exact Neutrino Oscillations in Matter: Mixing Angles

$$s_{\widehat{12}}^2 = \frac{-\left[(\widehat{m^2}_2)^2 - \alpha \widehat{m^2}_2 + \beta\right] \Delta \widetilde{m^2}_{31}}{\left[(\widehat{m^2}_1)^2 - \alpha \widehat{m^2}_1 + \beta\right] \Delta \widetilde{m^2}_{32} - \left[(\widehat{m^2}_2)^2 - \alpha \widehat{m^2}_2 + \beta\right] \Delta \widetilde{m^2}_{31}}$$

$$s_{\widehat{13}}^2 = \frac{(\widetilde{m^2}_3)^2 - \alpha \widetilde{m^2}_3 + \beta}{\Delta \widetilde{m^2}_{31} \Delta \widetilde{m^2}_{32}}$$

$$s_{\widehat{13}}^2 = \frac{s_{\widehat{13}}^2 F_1^2 + c_{\widehat{13}}^2 F_2^2 + 2c_{\widehat{13}}}{\Delta \widetilde{m^2}_{31} \Delta \widetilde{m^2}_{32}}$$

$$s_{\widehat{23}}^2 = \frac{s_{23}^2 E^2 + c_{23}^2 F^2 + 2c_{23}s_{23}c_{\delta}EF}{E^2 + F^2}$$

 $e^{-i\widehat{\delta}} = \frac{c_{23}^2 s_{23}^2 \left(e^{-i\delta} E^2 - e^{i\delta} F^2\right) + \left(c_{23}^2 - s_{23}^2\right) EF}{\sqrt{\left(s_{23}^2 E^2 + c_{23}^2 F^2 + 2EFc_{23}s_{23}c_{\delta}\right) \left(c_{23}^2 E^2 + s_{23}^2 F^2 - 2EFc_{23}s_{23}c_{\delta}\right)}}$ $\alpha = c_{13}^2 \Delta m_{31}^2 + (c_{12}^2 c_{13}^2 + s_{13}^2) \Delta m_{21}^2, \ \beta = c_{12}^2 c_{13}^2 \Delta m_{21}^2 \Delta m_{31}^2$ $E = c_{13}s_{13} \left| \left(\widehat{m^2}_3 - \Delta m_{21}^2 \right) \Delta m_{31}^2 - s_{12}^2 \left(\widehat{m^2}_3 - \Delta m_{31}^2 \right) \Delta m_{21}^2 \right|$

$$\Delta m_{31}^2 -$$

$$\Delta m_{21}^2$$

 $F = c_{12}s_{12}c_{13}\left(\widehat{m^2}_3 - \Delta m_{31}^2\right)\Delta m_{21}^2$

Eigenvalues: Precision

Hamiltonians

After a constant (θ_{23}, δ) rotation, $2E\tilde{H} =$

After a constant
$$(b_{23}, b)$$
 rotation, $2EH = \int \widetilde{m_{a}^2} s_{13}c_{13}\Delta m_{ee}^2$

After a $U_{13}(\tilde{\theta}_{13})$ rotation, $2E\hat{H}=$

After a $U_{12}(\tilde{\theta}_{12})$ rotation, $2E\check{H} =$

 $\begin{pmatrix} \widetilde{m^{2}}_{a} & s_{13}c_{13}\Delta m_{ee}^{2} \\ & \widetilde{m^{2}}_{b} & \\ s_{12}c_{12}\Delta m_{ee}^{2} & c_{13} & -s_{13} \end{pmatrix} + \epsilon s_{12}c_{12}\Delta m_{ee}^{2} \begin{pmatrix} c_{13} & \\ c_{13} & -s_{13} \\ -s_{13} & \end{pmatrix}$

 $\begin{pmatrix} m^2 - & & \\ & \widetilde{m}^2_0 & \\ & & \widetilde{m}^2 + \end{pmatrix} + \epsilon c_{12} s_{12} \Delta m_{ee}^2 \begin{pmatrix} c_{(\widetilde{\theta}_{13} - \theta_{13})} & & \\ c_{(\widetilde{\theta}_{13} - \theta_{13})} & & s_{(\widetilde{\theta}_{13} - \theta_{13})} \\ & & s_{(\widetilde{\theta}_{13} - \theta_{13})} \end{pmatrix}$

 $\begin{pmatrix} m^2_1 \\ \widetilde{m^2}_2 \\ \widetilde{m^2}_3 \end{pmatrix} + \epsilon s_{\left(\widetilde{\theta}_{13} - \theta_{13}\right)} s_{12} c_{12} \Delta m_{ee}^2 \begin{pmatrix} -s_{\widetilde{12}} \\ c_{\widetilde{12}} \\ -s_{\widetilde{12}} c_{\widetilde{12}} \end{pmatrix}$ B. Denton (BNL) $1604.08167 \qquad \text{UC Irvine: May 22, 2019}$

Perturbative Expansion

Hamiltonian: $\check{H} = \check{H}_0 + \check{H}_1$

$$\check{H}_0 = \frac{1}{2E} \begin{pmatrix} \widetilde{m^2}_1 & & \\ & \widetilde{m^2}_2 & \\ & & \widetilde{m^2}_3 \end{pmatrix}, \quad \check{H}_1 = \epsilon' \frac{\Delta m_{ee}^2}{2E} \begin{pmatrix} & -s_{\widetilde{12}} \\ & c_{\widetilde{12}} \end{pmatrix}$$

Eigenvalues:
$$\widetilde{m}_{i}^{\text{ex}} = \widetilde{m}_{i}^{2} + \widetilde{m}_{i}^{2}^{(1)} + \widetilde{m}_{i}^{2}^{(2)} + \dots$$

$$\widetilde{m}_{i}^{(1)} = 2E(\check{H}_{1})_{ii} = 0$$

$$\widetilde{m^2}_i^{(2)} = \sum_{k \neq i} \frac{[2E(\check{H}_1)_{ik}]^2}{\Delta \widetilde{m^2}_{ik}}$$

Perturbative Expansion: Eigenvectors

Use vacuum expressions with $U \to V$ where

$$V = \widetilde{U}W$$

$$\widetilde{U}$$
 is U with $\theta_{13} \to \widetilde{\theta}_{13}$ and $\theta_{12} \to \widetilde{\theta}_{12}$,

$$W = W_0 + W_1 + W_2 + \dots$$

$$W_0 = 1$$

$$W_{1} = \epsilon' \Delta m_{ee}^{2} \begin{pmatrix} -\frac{s_{12}}{\Delta m^{2}_{31}} \\ \frac{s_{12}}{\Delta m^{2}_{31}} & -\frac{c_{12}}{\Delta m^{2}_{32}} \end{pmatrix}$$

$$W_2 = -\epsilon'^2 \frac{(\Delta m_{ee}^2)^2}{2} \begin{pmatrix} \frac{s_{\widehat{12}}^2}{(\Delta \widehat{m}^2_{31})^2} & -\frac{s_{2\widehat{12}}}{\Delta \widehat{m}^2_{32}\Delta \widehat{m}^2_{21}} \\ \frac{s_{2\widehat{12}}}{\Delta \widehat{m}^2_{31}\Delta \widehat{m}^2_{21}} & \frac{c_{\widehat{12}}^2}{(\Delta \widehat{m}^2_{32})^2} \end{pmatrix}$$

$$\left[\frac{c_{\widehat{12}}^2}{(\widehat{\Delta m^2}_{32})^2} + \frac{s_{\widehat{12}}^2}{(\widehat{\Delta m^2}_{31})^2}\right] \Big)$$

The Two Matter Angles

Zeroth Order Coefficients

$$P_{\alpha\beta} = \delta_{\alpha\beta} + 4C_{21}^{\alpha\beta} \sin^2 \Delta_{21} + 4C_{31}^{\alpha\beta} \sin^2 \Delta_{31} + 4C_{32}^{\alpha\beta} \sin^2 \Delta_{32} + 8D^{\alpha\beta} \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$$

	_		_
$\nu_{\alpha} \rightarrow \nu_{\beta}$	$(C_{21}^{lphaeta})^{(0)}$		
$\nu_e \rightarrow \nu_e$	$-c_{\widetilde{13}}^4s_{\widetilde{12}}^2c_{\widetilde{12}}^2$		
$\nu_{\mu} \rightarrow \nu_{e}$	$c_{\widetilde{13}}^2 s_{\widetilde{12}}^2 c_{\widetilde{12}}^2 (c_{23}^2 - s_{\widetilde{13}}^2 s_{23}^2) + c_{2\widetilde{12}} J_r^m c_{\delta}$		
$ u_{\mu} ightarrow u_{\mu} $	$-(c_{23}^2c_{\widetilde{12}}^2 + s_{23}^2s_{\widetilde{13}}^2s_{\widetilde{12}}^2)(c_{23}^2s_{\widetilde{12}}^2 + s_{23}^2s_{\widetilde{13}}^2c_{\widetilde{12}}^2) -2(c_{23}^2 - s_{\widetilde{13}}^2s_{23}^2)c_{2\widetilde{12}}J_{rr}^mc_{\delta} + (2J_{rr}^mc_{\delta})^2$		
$\nu_{\alpha} \rightarrow \nu_{\beta}$	$(C_{31}^{\alpha\beta})^{(0)}$	$(D^{\alpha\beta})^{(0)}$	
$\nu_e \rightarrow \nu_e$	$-c_{\widetilde{13}}^{2}s_{\widetilde{13}}^{2}c_{\widetilde{12}}^{2}$	0	
$\nu_{\mu} \rightarrow \nu_{e}$	$s_{\widetilde{13}}^2 c_{\widetilde{13}}^2 c_{\widetilde{12}}^2 s_{23}^2 + J_r^m c_{\delta}$	$-J_r^m s_\delta$	
$ u_{\mu} \rightarrow \nu_{\mu} $	$\begin{array}{c} -c_{\widetilde{13}}^2 s_{23}^2 (c_{23}^2 s_{\widetilde{12}}^2 + s_{23}^2 s_{\widetilde{13}}^2 c_{\widetilde{12}}^2) \\ -2 s_{23}^2 J_r^m c_{\delta} \end{array}$	0	

$$J_r^m \equiv s_{\widetilde{12}} c_{\widetilde{12}} s_{\widetilde{13}} c_{\widetilde{13}}^2 s_{23} c_{23}, J_{rr}^m \equiv J_r^m / c_{\widetilde{13}}^2$$

Comparative Precision: At the Peaks

Comparative Precision

Comparative Precision

Use DMP!

At zeroth order: $\Delta_{Ee}^{(0)} = 0$

At first order, only correction is to $\widetilde{\theta}_{12}$,

PBD, S. Parke, X. Zhang, 1806.01277

$$\Delta_{Ee}^{(1)} = t_{\widetilde{13}} s_{12}^2 c_{12}^2 \sin 2\theta_{13} a \frac{(\Delta m_{21}^2)^2}{\Delta \widetilde{m}^2_{32} \Delta \widetilde{m}^2_{31}}$$

At second order eigenvalues are also corrected, $\Delta_{Ee}^{(2)} = \cdots$

Error is quantified with DMP^2 :

- ► First order isn't enough, ...
 - ► Second is
- Exact in vacuum

Angles in Matter

Angles receive corrections at first order:

$$\begin{split} \widetilde{\theta}_{12}^{(1)} &= \epsilon' \Delta m_{ee}^2 s_{\widetilde{12}} c_{\widetilde{12}} \left(\frac{1}{\Delta \widetilde{m^2}_{32}} - \frac{1}{\Delta \widetilde{m^2}_{31}} \right) \\ \widetilde{\theta}_{13}^{(1)} &= -\epsilon' \Delta m_{ee}^2 \frac{s_{\widetilde{13}}}{c_{\widetilde{13}}} \left(\frac{s_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{31}} + \frac{c_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{32}} \right) \\ \widetilde{\theta}_{23}^{(1)} &= \epsilon' \Delta m_{ee}^2 \frac{c_{\delta}}{c_{\widetilde{13}}} \left(\frac{s_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{31}} + \frac{c_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{32}} \right) \\ \widetilde{\delta}^{(1)} &= -\epsilon' \Delta m_{ee}^2 \frac{2c_{2\widetilde{23}}s_{\delta}}{s_{2\widetilde{23}}c_{\widetilde{13}}} \left(\frac{s_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{31}} + \frac{c_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{32}} \right) \end{split}$$

Second order: see paper