DATA 1010 In-class exercises Samuel S. Watson 10 October 2018

Problem 1

Consider the random variable 1_E which maps each $\omega \in E$ to 1 and each $\omega \in E^c$ to 0. Find the expected value of 1_E .

Problem 2

The expectation of a random variable need not be finite or even well-defined. Show that the expectation of the random variable which assigns a probability mass of 2^{-n} to the point 2^n (for all $n \ge 1$) is not finite.

Consider a random variable X whose distribution assigns a probability mass of $2^{-|n|-1}$ to each point 2^n for $n \ge 1$ and a probability mass of $2^{-|n|-1}$ to -2^n for each $n \le -1$. Show that $\mathbb{E}[X]$ is not well-defined. (Note: a sum $\sum_{x \in \mathbb{R}} f(x)$ is not defined if $\sum_{x \in \mathbb{R}} f(x) > 0$ and $\sum_{x \in \mathbb{R}} f(x) < 0$ are equal to ∞ and $-\infty$, respectively.)

Problem 3

Shuffle a standard 52-card deck, and let X be the number of consecutive pairs of cards in the deck which are both red. Find E[X].

Write some code to simulate this experiment and confirm that your answer is correct. Hint: store the deck of undrawn cards as a Set, and pop! cards from it as you draw. You can draw a random element from a set S using rand(S).

Problem 4

Show that variance satisfies the properties

$$\begin{cases} Var(aX) = a^2 Var X, & \text{for all random variables } X \text{ and real numbers } a \\ Var(X+Y) = Var(X) + Var(Y), & \text{if } X \text{ and } Y \text{ are independent random variables} \end{cases}$$