Disease Spread Problem (Relatório)

Nome: Martim Aires de Sousa

Data: 19/12/2023

Descrição do Problema e da Solução

Este projeto trata de um problema no qual se pretende encontrar o maior caminho possível (não circular) num grafo. Ou seja, o maior caminho possível num DAG. Para resolver o problema precisamos de encontrar os caminhos circulares (a evitar) dentro do grafo e, de seguida, calcular o maior número de "saltos" entre vértices.

Assim, foi utilizado o algoritmo DFS que faz uma primeira procura no grafo 'normal', de maneira a obter a ordem dos vértices com maior tempo de fim. Depois, seguindo a ordem dos vértices de maior para menor tempo de fim fazse uma nova procura em profundidade no grafo transposto. Desta forma, conseguimos identificar os componentes fortemente ligados (caminhos circulares). Finalmente, começando a percorrer os vértices e dando prioridade àqueles com menor tempo de fim (os mais distantes do ínicio - source), obtémse o maior caminho que chega a cada vértice (será o maior dos caminhos que chegam a cada um dos seus adjacentes).

Análise Teórica

- Inicialização das tabelas necessárias para resolver o problema (todas de tamanho V (número de vértices)). Logo, O(V).
- Leitura dos E (número de relações inseridas) dados de input e atualização das tabelas que representam o grafo 'normal' e transposto. Logo, O(E).
- Aplicar o algoritmo DFS aos grafos normal e transposto para encontrar os caminhos circulares. Para tornar o algoritmo iterativo, cada vértice e cada aresta são visitados duas vezes (o que não influencia a complexidade). Logo, O(V + E).
- Encontrar o maior caminho (não cíclico), percorrendo todos os vértices e as suas adjacências (conexões). Logo, O(V + E).

Complexidade global da solução: O(V + E).

Disease Spread Problem (Relatório)

Nome: Martim Aires de Sousa

Data: 19/12/2023

Avaliação Experimental dos Resultados

Para verificar a complexidade acima estimada foram geradas 15 instâncias de tamanho crescente, variando em número de pessoas (V), relações entre pessoas (E), quantidade de sub-redes (SubN), mínimo (m) e máximo (M) de pessoas por sub-rede.

V	Е	SubN	m	М	V + E	Time (s)
200000	200000	100000	1	10	400000	0,146
400000	400000	1000	100	1000	800000	0,419
600000	600000	1000	100	1000	1200000	0,647
400000	800000	1000	100	1000	1200000	0,582
800000	800000	100000	1	10	1600000	0,869
600000	1400000	10000	10	100	2000000	0,965
2000000	2000000	10000	100	1000	4000000	2,296
6000000	6000000	10000	100	1000	12000000	7,371
5000000	8000000	10000	100	1000	13000000	7,871
8000000	8000000	1000	1000	10000	16000000	10,174
6000000	12000000	1000	1000	10000	18000000	10,643
8000000	12000000	1000	1000	10000	20000000	12,379
11000000	11000000	10	1000000	10000000	22000000	14,513
12000000	12000000	10	1000000	10000000	24000000	15,134
13000000	13000000	1	10000000	100000000	26000000	17,734

Segundo a análise teórica, apenas o número de pessoas e de relações entre pessoas interessa para a complexidade do problema. Assim, para verificar a complexidade estimada acima vamos colocar o eixo dos XX a variar com V+E e o eixo dos YY a variar com o tempo de execução:

Como podemos verificar pelo gráfico acima, existe uma relação linear entre a complexidade prevista e os tempos de execução registados. Com isto, podemos concluir que a implementação da solução está de acordo com a complexidade prevista.