Picking an analysis tool: how to recognize the limits of your tools

James (JD) Long

A conference speaker's primary impact isn't teaching...It's getting you excited enough to learn more.

Conf speaking is sales, for ideas.

7:00 AM - Jul 30, 2017

My Only Points

- If you can manipulate data, you're more likely to be useful
- You may need to switch tools to remain useful
- Useful people get through life better

So Who Am I?

What's the most used data analysis tool in the world?

Spreadsheets? Sure!

- Easy to know where to start... just add data
- Simple data structure
- Visual formula creation: click on the numbers you want
- See the numbers change!
- Easily accessible to almost everyone

Excel is Programming

"The purpose of programming is to find a sequence of instructions that will automate performing a specific task or solving a given problem"

Don't let anyone tell you it's not real programming

So What's the Problem?

What Does it Feel Like When You Outgrow Excel?

Image Name	User Name	CPU	Me ▼	Description
EXCEL.EXE *32	jal	29	2,991,560 K	Microsoft Excel

800MB File

This is how you punish future you... or your colleagues

But not just computing performance...

THE WALL STREET JOURNAL.

BUSINESS | CFO JOURNAL

Stop Using Excel, Finance Chiefs Tell Staffs

Ubiquitous spreadsheet software that revolutionized accounting hasn't kept up, CFOs say

2010 Scientific paper redacted

Formula did not include full range...

0	В	С		J	K	L	M				
2				Real GDP growth							
3	0.10		Debt/GDP								
4	Country	Coverage	30 or less	30 to 60	60 to 90	90 or above	30 or less				
26	Lauren I	-	3.7	3.0	3.5	1.7	5.5				
27	Minimum		1.6	0.3	1.3	-1.8	0.8				
28	Maximum		5.4	4.9	10.2	3.6	13.3				
29		VI	i i								
30	US	1946-2009	n.a.	3.4	3.3	-2.0	n.a.				
31	UK	1946-2009	n.a.	2.4	2.5	2.4	n.a.				
32	Sweden	1946-2009	3.6	2.9	2.7	n.a.	6.3				
33	Spain	1946-2009	1.5	3.4	4.2	n.a.	9.9				
34	Portugal	1952-2009	4.8	2.5	0.3	n.a.	7.9				
35	New Zealand	1948-2009	2.5	2.9	3.9	-7.9	2.6				
36	Netherlands	1956-2009	4.1	2.7	1.1	n.a.	6.4				
37	Norway	1947-2009	3.4	5.1	n.a.	n.a.	5.4				
38	Japan	1946-2009	7.0	4.0	1.0	0.7	7.0				
39	Italy	1951-2009	5.4	2.1	1.8	1.0	5.6				
40	Ireland	1948-2009	4.4	4.5	4.0	2.4	2.9				
41	Greece	1970-2009	4.0	0.3	2.7	2.9	13.3				
42	Germany	1946-2009	3.9	0.9	n.a.	n.a.	3.2				
43	France	1949-2009	4.9	2.7	3.0	n.a.	5.2				
44	Finland	1946-2009	3.8	2.4	5.5	n.a.	7.0				
45	Denmark	1950-2009	3.5	1.7	2.4	n.a.	5.6				
46	Canada	1951-2009	1.9	3.6	4.1	n.a.	2.2				
47	Belgium	1947-2009	n.a.	4.2	3.1	2.6	n.a.				
48	Austria	1948-2009	5.2	3.3	-3.8	n.a.	5.7				
49	Australia	1951-2009	3.2	4.9	4.0	n.a.	5.9				
50	100000000000000000000000000000000000000										
51			4.1	2.8	2.8	=AVERAG	E(L30:L44)				

Spreadsheets cannot be "read" linearly...

Each cell must be inspected to see where it's used... and that doesn't always work

Other Excel Pain Points

Creating multiple models within a spreadsheet can be a maintenance nightmare Graphs may not refresh when a new row of data is added to a table

Pivot Tables may gain or lose rows breaking formulas

Alternatives?

Learning a little bit of coding will go a long way...

It's not just for comp sci nerds...

Example of well commented R code

This is the same as what I did in my unstable Excel toy example

```
# create a 250 col x 80000 row matrix of random uniform (0.1) numbers
random_numbers <- matrix( runif(250 * 80000), ncol=250)
#square root of the random numbers
sqrt_random_numbers <- sqrt(random_numbers)</pre>
#mean of each column
column_means <- colMeans(sqrt_random_numbers)</pre>
# create a random index of 80000 values between 1 and 80000 then get the data from sqrt_random_numbers
# from the 4th column and put that all in a vector
resample_index <- sample(1:80000, 80000, replace=T)
## pulls the item from the 4th column of the squared matrix that correspond to the resampled index
resorted_4th_column <- sqrt_random_numbers[ resample_index ,4 ]</pre>
```

Run time: 1.006 seconds

Run it yourself: https://gist.github.com/CerebralMastication/489e0c728dcdca398cebd043b9866669

But JD, I hear that big data is all the hothess right now?

3 Buckets for Data Size

Small Data: Easy to use on your PC

16GB RAM ~ 4 GB Data Medium Data: Fits on a server

My server: 504GB ~ 126GB

EC2:

1952GB ~ 488GB

Big Data: Needs to be spread across multiple servers

500GB+ Data

"Big Data" bucket

90% - can be reduced to "small data" problems through sampling, subsetting, or summarizing

9% - can be reduced to multiple small data problems through chunking and iterating

1% - irreducibly big

If requires many jobs, then stay in R or Python but use a parallel backend: Hadoop or Spark for example.

If summary or reduced data is needed, possibly a column data store like Amazon Redshift easily queryable from R or Python

For irreducibly big data problems special engineering will be needed... these are rare.

Source: Hadley Wickham at RStudio: https://www.rstudio.com/resources/webinars/pipelines-for-data-analysis-in-r/

James (JD) Long jdlong@gmail.com Twitter:@cmastication GitHub:

https://github.com/CerebralMastication/WestPointPresentation