Structural characterization of uORFs using Deep Learning prediction methods

Content

- 1. Locate uORFs
- 2. Statistics on uORFs
- 3. Gene Ontology
- 4. Secondary structure prediction Simple CNN
- 5. Secondary structure prediction AlphaFold
- 6. Simple CNN vs AlphaFold
- 7. Prediction of intrinsic disorder

1. Locate uORFs

- Present in 5' UTR
- Used arabidopsis thaliana dataset
- Three Types (I, II, II)
- ~50% of genes have one or more uORFs
- at 23,000 genes there was 60,000 uORFs
- 90% (Type I) 9.99% (Type II) 0.01% (Type III)

* = stop codon

2. Statistics on uORFs 1/2

• Length of uORFs compared to uORFs found in shuffled sequences

2. Statistics on uORFs 2/2

• Frequencies of amino acid residues in CDS/uORF sorted by physico-chemical properties

3. Gene Ontology

Compared genes with

no uORFs vs. at least one of uORFs

Molecular Function

p < 1e-10

p < 0.01

p < 0.05

p >= 0.05

Cellular Component

Biological Process

4. Secondary structure prediction - Simple CNN 1/3

- Used data from Protein Data Bank (.pdb) files
- ~8000 proteins converted to dssp files
- Dssp files sorted to three state classification: <u>Helix</u>, <u>Sheet</u>, <u>Coil</u>
- Example:

Amino acid sequence	lle	Leu	Leu	Glu	Asp	Pro	
Structure	Н	Н	Н	С	С	S	

4. Secondary structure prediction - Simple CNN 2/3

- One-hot-encoding for all different amino acids (Ile=0b00001, Leu=0b00010, ...)
- Using sliding window to iterate over all sequences during training
- Output class shows predicted class for the central amino acid in the sliding window

4. Secondary structure prediction - Simple CNN 3/3

• Reached an **accuracy of 0.69** in predicting between 3 possible output classes

5. Secondary structure prediction - AlphaFold

- Google Colab (modified to run multiple sequences at one time)
- Returns .pdb file -> Convert to dssp -> Convert to 3 classes (H, S, C)
- Count occurrence of structures

6. Simple CNN vs. AlphaFold

Simple CNN (1000 uORFs)

	Helix	Sheet	Coil
original	0.227	0.098	0.674
random 1	0.230	0.094	0.674
random 2	0.253	0.085	0.660

AlphaFold (200 uORFs)

	Helix	Sheet	Coil
original	0.457	0.032	0.509
random 1	0.448	0.065	0.485
random 2	0.456	0.065	0.478

7. Prediction of intrinsic disorder

Conclusion

- Observed unique properties of uORFs
- Results show uORFs maybe try to avoid defined structures
- Machine learning approaches trained by proteins!
- Further research needed (different species, etc.)