DAP SDK Test Framework - Полное Руководство

Асинхронное тестирование, моки и автоматизация тестов

Команда разработки Cellframe

27 октября 2025

Содержание

1	Информация о документе					
		История изменений				
		Авторские права				
	1.3	Лицензия				
2	Час	ть I: Введение 3				
	2.1	1. Обзор				
		2.1.1 1.1 Что такое DAP SDK Test Framework?				
		2.1.2 1.2 Зачем использовать этот фреймворк?				
		2.1.3 1.3 Ключевые возможности				
		2.1.4 1.4 Быстрое сравнение				
		2.1.5 1.5 Целевая аудитория				
		2.1.6 1.6 Предварительные требования				
	2.2	2. Быстрый Старт				
		2.2.1 2.1 Первый тест (5 минут)				
		2.2.2 2.2 Добавление async таймаута (2 минуты) 5				
		2.2.3 2.3 Добавление моков (5 минут)				
	2.3	3. Справочник АРІ				
		2.3.1 3.1 Async Testing API				
		2.3.2 3.2 Mock Framework API				
		2.3.3 3.3 АРІ пользовательских линкер-оберток				
		2.3.4 3.4 Интеграция с CMake				
	2.4	4. Полные примеры				
		2.4.1 4.1 Тест стейт-машины (Пример из реального проекта) 12				
		2.4.2 4.2 Мок c callback				
		2.4.3 4.3 Мок с задержками выполнения				
		2.4.4 4.4 Пользовательская линкер-обертка (Продвинутый уровень) 14				
		2.4.5 4.5 Динамическое поведение мока				
	2.5	5. Глоссарий				
		6. Решение проблем				
		2.6.1 Проблема: Тест зависает				
		2.6.2 Проблема: Высокая загрузка CPU				
		2.6.3 Проблема: Мок не вызывается				
		2.6.4 Проблема: Неправильное возвращаемое значение				
		2 6 5. Проблема: Нестабильные тесты 18				

1 Информация о документе

Версия: 1.0.0

Дата: 27 октября 2025 **Статус:** Production Ready

Язык: Русский

1.1 История изменений

Версия	Дата	Изменения	Автор
1.0.0	2025-10-27	Первая версия полного руководства	Команда Cellframe

1.2 Авторские права

Copyright © 2025 Demlabs. Все права защищены.

Этот документ описывает DAP SDK Test Framework, часть проекта Cellframe Network.

1.3 Лицензия

См. файл LICENSE проекта для условий использования.

2 Часть I: Введение

2.1 1. Обзор

DAP SDK Test Framework - это production-ready инфраструктура тестирования для экосистемы блокчейна Cellframe. Она предоставляет комплексные инструменты для тестирования асинхронных операций, мокирования внешних зависимостей и обеспечения надёжного выполнения тестов на разных платформах.

2.1.1 1.1 4TO TAKOE DAP SDK Test Framework?

Полное решение для тестирования, включающее:

- Async Testing Framework Инструменты для тестирования асинхронных операций с таймаутами
- Mock Framework V4 Мокирование функций без модификации кода
- Auto-Wrapper System Автоматическая конфигурация линкера
- Self-Tests 21 тест, валидирующий надёжность фреймворка

2.1.2 1.2 Зачем использовать этот фреймворк?

Проблема: Тестирование асинхронного кода сложно - Операции завершаются в непредсказуемое время - Сетевые задержки варьируются - Тесты могут зависать бесконечно - Внешние зависимости усложняют тестирование

Решение: Этот фреймворк предоставляет - □ Защиту от зависаний (глобальный + для каждой операции) - □ Эффективное ожидание (polling + condition variables) - □ Изоляцию зависимостей (мокирование) - □ Реалистичную симуляцию (задержки, ошибки) - □ Потокобезопасные операции - □ Кроссплатформенность

2.1.3 1.3 Ключевые возможности

Возможность	Описание	Польза
Global Timeout	alarm + siglongjmp	Предотвращает зависание CI/CD
Condition Polling	Конфигурируемые интервалы	Эффективное ожидание
pthread Helpers	Обёртки для condition variables	Потокобезопасная координация
Mock Framework	На основе линкера (wrap)	Нулевой техдолг
Задержки	Fixed, Range, Variance	Реалистичная симуляция
Callbacks	Inline + Runtime	Динамическое поведение моков
Auto-Wrapper	Bash/PowerShell скрипты	 Автоматическая настройка
Self-Tests	21 комплексный тест	Проверенная надёжность

2.1.4 1.4 Быстрое сравнение

Традиционный подход:

```
// □ Плохо: занятое ожидание, нет таймаута, трата CPU while (!done) {
    usleep(10000); // 10ms сон
}
```

C DAP Test Framework:

```
// ☐ Хорошо: эффективно, защита таймаутом, автоматическое логирование DAP TEST WAIT UNTIL(done == true, 5000, "Should complete");
```

2.1.5 1.5 Целевая аудитория

- Разработчики DAP SDK
- Контрибьюторы Cellframe SDK
- Разработчики VPN Client
- Все, кто тестирует асинхронный С код в экосистеме Cellframe

2.1.6 1.6 Предварительные требования

Необходимые знания: - Программирование на С - Базовое понимание асинхронных операций - Основы CMake - Концепции pthread (для продвинутых возможностей)

Необходимое ПО: - GCC 7+ или Clang 10+ (или MinGW на Windows) - CMake 3.10+ - Библиотека pthread - Linux, macOS, или Windows (частичная поддержка)

2.2 2. Быстрый Старт

Шаг 1: Создайте файл теста

2.2.1 2.1 Первый тест (5 минут)

```
// my_test.c
#include "dap_test.h"
#include "dap common.h"
#define LOG TAG "my test"
int main() {
    dap common init("my test", NULL);
    // Код теста
    int result = 2 + 2;
    dap assert PIF(result == 4, "Math should work");
    log it(L INFO, "✓ Тест пройден!");
    dap common deinit();
    return 0;
Шаг 2: Создайте CMakeLists.txt
add executable(my test my test.c)
target link libraries(my test dap core)
add test(NAME my test COMMAND my test)
Шаг 3: Соберите и запустите
cd build
cmake ...
make my test
./my_test
2.2.2 2.2 Добавление async таймаута (2 минуты)
#include "dap test.h"
#include "dap test async.h"
#include "dap_common.h"
#define LOG TAG "my test"
#define TIMEOUT SEC 30
int main() {
    dap common init("my test", NULL);
    // Добавьте глобальный таймаут
    dap_test_global_timeout_t timeout;
    if (dap test set global timeout(&timeout, TIMEOUT SEC, "My Test")) {
        return 1; // Таймаут сработал
    }
```

```
// Ваши тесты здесь
    dap_test_cancel_global_timeout();
    dap_common_deinit();
    return 0;
}
Обновите CMakeLists.txt:
target_link_libraries(my_test dap_test dap_core pthread)
2.2.3 2.3 Добавление моков (5 минут)
#include "dap test.h"
#include "dap_mock.h"
#include "dap_common.h"
#define LOG TAG "my test"
// Объявите мок
DAP MOCK_DECLARE(external_api_call);
int main() {
    dap_common_init("my_test", NULL);
    dap_mock_init();
    // Настройте мок
    DAP MOCK SET RETURN(external api call, (void*)42);
    // Запустите код, который вызывает external_api_call
    int result = my_code_under_test();
    // Проверьте
    assert(DAP MOCK GET CALL COUNT(external api call) == 1);
    dap mock deinit();
    dap_common_deinit();
    return 0;
}
Обновите CMakeLists.txt:
include(${CMAKE CURRENT SOURCE DIR}/../test-framework/mocks/DAPMockAutoWrap.cmak
target_link_libraries(my_test dap_test dap_core pthread)
# Автогенерация --wrap флагов линкера
dap mock autowrap(my test)
```

2.3 3. Справочник АРІ

2.3.1 3.1 Async Testing API

```
2.3.1.1 Глобальный таймаут
```

```
int dap_test_set_global_timeout(
    dap_test_global_timeout_t *a_timeout,
    uint32 t a timeout sec,
    const char *a test name
);
// Возвращает: О при настройке, 1 если таймаут сработал
void dap test cancel global timeout(void);
2.3.1.2 Опрос условий
bool dap test wait condition(
    dap test condition cb t a condition,
    void *a user data,
    const dap test async config t *a config
);
// Возвращает: true если условие выполнено, false при таймауте
2.3.1.3 pthread хелперы
void dap_test_cond_wait_init(dap_test_cond_wait_ctx_t *a_ctx);
bool dap_test_cond_wait(dap_test_cond_wait_ctx_t *a_ctx, uint32_t a_timeout_ms);
void dap test cond signal(dap test cond wait ctx t *a ctx);
void dap_test_cond_wait_deinit(dap_test_cond_wait_ctx_t *a_ctx);
2.3.1.4 Утилиты времени
uint64_t dap_test_get_time_ms(void); // Монотонное время в мс
void dap test sleep ms(uint32 t a delay ms); // Кроссплатформенный sleep
```

2.3.1.5 Макросы

```
DAP_TEST_WAIT_UNTIL(condition, timeout_ms, msg)
// Быстрое ожидание условия
```

2.3.2 3.2 Mock Framework API

Заголовочный файл: dap mock.h

2.3.2.1 Инициализация фреймворка

```
int dap_mock_init(void);
// Инициализация мок-фреймворка (обязательно перед использованием моков)
// Возвращает: О при успехе

void dap_mock_deinit(void);
// Очистка мок-фреймворка
```

2.3.2.2 Макросы объявления моков Простое объявление (автовключено, возврат 0):

```
DAP MOCK DECLARE(function name);
С конфигурационной структурой:
DAP MOCK DECLARE(function name, {
    .enabled = true,
    .return_value.l = 0xDEADBEEF,
    .delav = {
        .type = DAP_MOCK_DELAY_FIXED,
        .fixed us = 1000
    }
});
Со встроенным callback:
DAP MOCK DECLARE(function name, {.return value.i = 0}, {
    // Тело callback - пользовательская логика для каждого вызова
    if (a arg count >= 1) {
        int arg = (int)(intptr_t)a_args[0];
        return (void*)(intptr_t)(arg * 2); // Удваиваем входное значение
    return (void*)0;
});
Для пользовательской обертки (без авто-генерации):
DAP MOCK DECLARE CUSTOM(function name, {
    .delay = {
        .type = DAP MOCK DELAY VARIANCE,
        .variance = \{.\text{center us} = 100000, .\text{variance us} = 50000\}
});
2.3.2.3 Конфигурационные структуры dap mock config t:
typedef struct dap mock config {
    bool enabled;
                                       // Включить/выключить мок
    dap_mock_return_value_t return_value; // Возвращаемое значение
    dap mock delay t delay;
                                     // Задержка выполнения
} dap mock config t;
// По умолчанию: enabled=true, return=0, без задержки
#define DAP MOCK CONFIG DEFAULT { \
    .enabled = true, \
    .return value = {0}, \
    .delay = {.type = DAP MOCK DELAY NONE} \
}
dap_mock_return_value_t:
typedef union dap mock return value {
    int i;
                 // Для int, bool, малых типов
    long l;
                  // Для указателей (приведение через intptr t)
```

```
uint64_t u64; // Для uint64_t, size_t (64-бит)
    void *ptr; // Для void*, общих указателей char *str; // Для char*, строк
} dap mock return value t;
dap mock delay t:
typedef enum {
    DAP_MOCK_DELAY_NONE, // Без задержки
DAP_MOCK_DELAY_FIXED, // Фиксированная задержка
DAP_MOCK_DELAY_RANGE, // Случайная в [min, max]
DAP_MOCK_DELAY_VARIANCE // Центр ± разброс
} dap mock delay type t;
typedef struct dap mock delay {
    dap mock delay type t type;
    union {
         uint64 t fixed us;
         struct { uint64_t min_us; uint64_t max_us; } range;
         struct { uint64 t center us; uint64 t variance us; } variance;
    };
} dap mock delay t;
2.3.2.4 Макросы управления
DAP MOCK ENABLE(func name)
// Включить мок (перехват вызовов)
DAP MOCK DISABLE(func name)
// Выключить мок (вызов реальной функции)
DAP MOCK RESET(func name)
// Сбросить историю вызовов
DAP MOCK SET RETURN(func name, value)
// Установить возвращаемое значение (приведение через (void*))
DAP MOCK GET CALL COUNT(func name)
// Получить количество вызовов мока
DAP MOCK WAS CALLED(func name)
// Возвращает true если был вызван хотя бы раз
DAP MOCK GET ARG(func name, call idx, arg idx)
// Получить конкретный аргумент из вызова
2.3.2.5 Макросы конфигурации задержек
DAP MOCK SET DELAY FIXED(func name, microseconds)
DAP MOCK SET DELAY MS(func name, milliseconds)
// Установить фиксированную задержку
DAP MOCK SET DELAY RANGE(func name, min us, max us)
```

```
DAP MOCK SET DELAY RANGE MS(func name, min ms, max ms)
// Установить случайную задержку в диапазоне
DAP MOCK SET DELAY VARIANCE(func name, center us, variance us)
DAP_MOCK_SET_DELAY_VARIANCE_MS(func_name, center_ms, variance_ms)
// Установить задержку с разбросом (например, 100мс ± 20мс)
DAP MOCK CLEAR DELAY(func name)
// Убрать задержку
2.3.2.6 Конфигурация callback
DAP MOCK SET CALLBACK(func name, callback func, user data)
// Установить пользовательскую функцию callback
DAP MOCK CLEAR CALLBACK(func name)
// Убрать callback (использовать return value)
// Сигнатура callback:
typedef void* (*dap mock callback t)(
    void **a_args,
    int a arg count,
    void *a user data
);
```

2.3.3 3.3 АРІ пользовательских линкер-оберток

Заголовочный файл: dap mock linker wrapper.h

2.3.3.1 Макрос DAP_MOCK_WRAPPER_CUSTOM Создает пользовательскую линкер-обертку с PARAM синтаксисом:

Возможности: - Автоматически генерирует сигнатуру функции - Автоматически создает массив void* аргументов с правильным приведением типов - Автоматически проверяет, включен ли мок - Автоматически выполняет настроенную задержку - Автоматически записывает вызов - Вызывает реальную функцию при выключенном моке

Пример:

```
DAP_MOCK_WRAPPER_CUSTOM(int, my_function,
          PARAM(const char*, path),
          PARAM(int, flags),
          PARAM(mode_t, mode)
) {
```

```
// Ваша пользовательская логика здесь
if (strcmp(path, "/dev/null") == 0) {
    return -1; // Симуляция ошибки
}
return 0; // Успех
}
```

Макрос PARAM: - Формат: PARAM(type, name) - Автоматически извлекает тип и имя - Правильно обрабатывает приведение к void* - Использует _Generic() для корректного приведения указателей

2.3.3.2 Упрощенные макросы оберток Для распространенных типов возвращаемых значений:

```
DAP_MOCK_WRAPPER_INT(func_name, (params), (args))
DAP_MOCK_WRAPPER_PTR(func_name, (params), (args))
DAP_MOCK_WRAPPER_VOID_FUNC(func_name, (params), (args))
DAP_MOCK_WRAPPER_BOOL(func_name, (params), (args))
DAP_MOCK_WRAPPER_SIZE_T(func_name, (params), (args))
```

2.3.4 3.4 Интеграция с CMake

CMake модуль: mocks/DAPMockAutoWrap.cmake

include(\${CMAKE_SOURCE_DIR}/dap-sdk/test-framework/mocks/DAPMockAutoWrap.cmake)

```
# Автоматическое сканирование исходников и генерация --wrap флагов dap_mock_autowrap(target_name)
```

```
# Альтернатива: явно указать исходные файлы dap mock autowrap(TARGET target name SOURCE file1.c file2.c)
```

Как работает: 1. Сканирует исходные файлы на наличие паттернов DAP_MOCK_DECLARE 2. Извлекает имена функций 3. Добавляет -Wl,--wrap=function_name к флагам линкера 4. Работает с GCC, Clang, MinGW

2.4 4. Полные примеры

2.4.1 4.1 Тест стейт-машины (Пример из реального проекта)

```
Пример из cellframe-srv-vpn-client/tests/unit/test vpn state handlers.c:
#include "dap test.h"
#include "dap_mock.h"
#include "vpn state machine.h"
#include "vpn state handlers internal.h"
#define LOG TAG "test vpn state handlers"
// Объявление моков с простой конфигурацией
DAP_MOCK_DECLARE(dap_net_tun deinit);
DAP MOCK DECLARE(dap chain node client close mt);
DAP MOCK DECLARE(vpn wallet close);
// Мок с конфигурацией возвращаемого значения
DAP MOCK DECLARE(dap chain node client connect mt, {
    .return value.l = 0xDEADBEEF
});
static vpn_sm_t *s_test_sm = NULL;
static void setup test(void) {
    dap mock init();
    s test sm = vpn_sm_init();
    assert(s test sm != NULL);
}
static void teardown test(void) {
    if (s test sm) {
        vpn sm deinit(s test sm);
        s test sm = NULL;
    dap_mock_deinit();
}
void test state disconnected cleanup(void) {
    log it(L INFO, "TECT: state disconnected entry() очистка");
    setup test();
    // Настройка состояния с ресурсами
    s test sm->tun handle = (void*)0x12345678;
    s test sm->wallet = (void*)0xABCDEF00;
    s test sm->node client = (void*)0x22222222;
    // Включение моков
    DAP MOCK ENABLE(dap net tun deinit);
    DAP MOCK ENABLE(vpn wallet close);
    DAP_MOCK_ENABLE(dap_chain_node_client_close_mt);
```

```
// Вызов обработчика состояния
    state disconnected entry(s test sm);
    // Проверка выполнения очистки
    assert(DAP_MOCK_GET_CALL_COUNT(dap_net_tun_deinit) == 1);
    assert(DAP MOCK GET CALL COUNT(vpn wallet close) == 1);
    assert(DAP MOCK GET CALL COUNT(dap chain node client close mt) == 1);
    teardown test();
    log it(L INFO, "□ УCΠEX");
}
int main() {
    dap_common_init("test_vpn_state_handlers", NULL);
    test_state_disconnected_cleanup();
    log it(L INFO, "Все тесты ПРОЙДЕНЫ ∏");
    dap common deinit();
    return 0;
}
2.4.2 4.2 Mok c callback
#include "dap mock.h"
DAP MOCK DECLARE(dap hash fast, {.return value.i = 0}, {
    if (a arg count >= 2) {
        uint8_t *data = (uint8_t*)a_args[0];
        size_t size = (size_t)a_args[1];
        uint32 t hash = 0;
        for (size t i = 0; i < size; i++) {
            hash += data[i];
        return (void*)(intptr t)hash;
    return (void*)0;
});
void test_hash() {
    uint8 t data[] = {1, 2, 3};
    uint32_t hash = dap_hash_fast(data, 3);
    assert(hash == 6); // Callback суммирует байты
}
2.4.3 4.3 Мок с задержками выполнения
Пример из dap-sdk/net/client/test/test http client mocks.h:
```

#include "dap mock.h"

```
// Mok с задержкой variance: симулирует реалистичные колебания сети
// 100мс \pm 50мс = диапазон 50-150мс
#define HTTP CLIENT MOCK CONFIG WITH DELAY ((dap mock config t){ \
    .enabled = true, \
    .delay = { } 
        .type = DAP_MOCK DELAY VARIANCE, \
        .variance = { \
            .center_us = 100000, /* центр 100мс */ \
            .variance us = 50000 /* pa36poc \pm 50mc */ \
        } \
    } \
})
// Объявление мока с симуляцией сетевой задержки
DAP MOCK DECLARE CUSTOM(dap client http request full,
                        HTTP CLIENT MOCK CONFIG WITH DELAY);
// Мок без задержки для операций очистки (мгновенное выполнение)
DAP MOCK DECLARE CUSTOM(dap client http close unsafe, {
    .enabled = true,
    .delay = {.type = DAP MOCK DELAY NONE}
});
2.4.4 4.4 Пользовательская линкер-обертка (Продвинутый уровень)
Пример из test_http_client_mocks.c c использованием DAP_MOCK_WRAPPER_CUSTOM:
#include "dap_mock.h"
#include "dap mock linker wrapper.h"
#include "dap_client http.h"
// Объявление мока (регистрация во фреймворке)
DAP MOCK DECLARE CUSTOM(dap client http request async,
                        HTTP CLIENT MOCK CONFIG WITH DELAY);
// Реализация пользовательской обертки
DAP MOCK WRAPPER CUSTOM(void, dap client http request async,
    PARAM(dap worker t*, a worker),
    PARAM(const char*, a uplink addr),
    PARAM(uint16_t, a_uplink_port),
    PARAM(const char*, a_method),
    PARAM(const char*, a path),
    PARAM(dap client http callback full t, a response callback),
    PARAM(dap client http callback error t, a error callback),
    PARAM(void*, a callbacks arg)
) {
    // Пользовательская логика мока - симуляция асинхронного поведения
    if (g mock http response.should fail && a error callback) {
        a error callback(g mock http response error code, a callbacks arg);
    } else if (a_response_callback) {
        a response callback(
            g_mock_http_response.body,
```

```
g mock http response.body size,
            g mock http response headers,
            a_callbacks_arg,
            g_mock_http_response.status_code
        );
    }
}
CMakeLists.txt:
# Подключение auto-wrap помощника
include(${CMAKE SOURCE DIR}/dap-sdk/test-framework/mocks/DAPMockAutoWrap.cmake)
add executable(test http client
    test http client mocks.c
    test http client mocks.h
    test main.c
)
target_link_libraries(test_http_client
    dap_test # Тест-фреймворк с моками
    dap core
               # Библиотека DAP core
    pthread # Поддержка многопоточности
)
# Автогенерация --wrap флагов линкера сканированием всех исходников
dap mock autowrap(test http client)
2.4.5 4.5 Динамическое поведение мока
// Мок, который меняет поведение на основе счетчика вызовов
// Симулирует нестабильную сеть: ошибка 2 раза, затем успех
DAP MOCK DECLARE(flaky network send, {.return value.i = 0}, {
    int call_count = DAP_MOCK_GET_CALL_COUNT(flaky network send);
    // Ошибка в первых 2 вызовах (симуляция сетевых проблем)
    if (call count < 2) {</pre>
        log_it(L_DEBUG, "Симуляция сетевого сбоя (попытка %d)", call count + 1);
        return (void*)(intptr t)-1; // Код ошибки
    }
    // Успех с 3-го и последующих вызовов
    log it(L DEBUG, "Сетевой вызов успешен");
    return (void*)(intptr t)0; // Код успеха
});
void test retry logic() {
    // Тест функции с повторными попытками при ошибке
    int result = send with retry(data, 3); // Максимум 3 попытки
    // Должен завершиться успешно на 3-й попытке
    assert(result == 0);
```

```
assert(DAP_MOCK_GET_CALL_COUNT(flaky_network_send) == 3);
log_it(L_INFO, "✓ Логика повторных попыток работает корректно");
}
```

2.5 5. Глоссарий

Асинхронная операция - Операция, завершающаяся в непредсказуемое будущее время

Auto-Wrapper - Система авто-генерации флагов линкера - - wrap из исходников

Callback - Указатель на функцию, выполняемую при событии

Condition Polling - Повторная проверка условия до выполнения или таймаута

Condition Variable - pthread примитив для синхронизации потоков

Constructor Attribute - GCC атрибут для запуска функции до main()

Designated Initializers - C99 инициализация: {.field = value}

Global Timeout - Ограничение времени для всего набора тестов через SIGALRM

Linker Wrapping - --wrap=func перенаправляет вызовы в wrap func

Mock - Фальшивая реализация функции для тестирования

Monotonic Clock - Источник времени, не зависящий от системных часов

Poll Interval - Время между проверками условия

pthread - Библиотека POSIX threads

Return Value Union - Объединение для типобезопасных возвратов моков

Self-Test - Тест, проверяющий сам фреймворк тестирования

Thread-Safe - Корректно работает при конкурентном доступе

Timeout - Максимальное время ожидания

Union - С тип, хранящий разные типы в одной памяти

2.6 6. Решение проблем

2.6.1 Проблема: Тест зависает

```
Симптом: Тест выполняется бесконечно Решение: Добавьте глобальный таймаут dap_test_set_global_timeout(&timeout, 30, "Tests");
```

2.6.2 Проблема: Высокая загрузка CPU

Симптом: 100% СРU во время теста

Решение: Увеличьте интервал polling или используйте pthread helpers

```
cfg.poll_interval_ms = 500; // Менее частый polling
```

2.6.3 Проблема: Мок не вызывается

```
Симптом: Выполняется реальная функция Решение: Проверьте флаги линкера make VERBOSE=1 | grep -- "--wrap"
```

2.6.4 Проблема: Неправильное возвращаемое значение

Симптом: Мок возвращает неожиданное значение **Решение:** Используйте правильное поле union

```
.return_value.i = 42  // int
.return_value.l = 0xDEAD  // указатель
.return_value.ptr = ptr  // void*
```

2.6.5 Проблема: Нестабильные тесты

```
Симптом: Иногда проходят, иногда падают Решение: Увеличьте таймаут, добавьте допуск cfg.timeout_ms = 60000; // 60 сек для сети assert(elapsed >= 90 && elapsed <= 150); // \pm 50мс допуск
```