fonksiyonlarının karşılarında verilen diferensiyel denklemlerin çözümü olduğunu gösteriniz.

7.
$$y' = 3x^2$$

8.
$$y' = 1/x$$
, $y(1) = 1$

9.
$$y''' = e^{3x}$$

10.
$$y' = 3x^2 - 6x + 1$$
, $y(-2) = 0$

11.
$$y'' = \sin 2x$$
, $y(0) = 2$, $y'(0) = 1/2$

12.
$$y'' = 1$$
, $y(0) = 1$, $y(1) = 2$

13.
$$y^{1v} = 0$$
, $y(-1) = 1$, $y(1) = 1$, $y'(-1) = 0$, $y'(1) = 1$

denklemlerinin çözümünü bulunuz.

0.4 DİFERENSİYEL DENKLEMLERİN OLUŞTURULMASI

Bu kısımda, bir veya daha çok keyfi sabit içeren bir bağıntıdan keyfi sabitlerin yok edilmesiyle bir diferensiyel denklemin nasıl elde edilebileceğini göreceğiz. Önce tek parametreye bağlı olan

$$F(x, y, c) = 0 \tag{1}$$

kapalı fonksiyonunu gözönüne alalım. Burada c parametresi değiştikçe (1) ile tanımlanan fonksiyon xy- düzleminde farklı eğriler verir. İşte tüm bu eğrileri temsil eden diferensiyel denklemi bulabilmek için y nin, x in bir fonksiyonu olduğu gözönüne alınarak (1) in x e göre türevi alınır. O zaman

$$\frac{\partial F}{\partial x}(x, y, c) + \frac{\partial F}{\partial y}(x, y, c)y' = 0$$
 (2)

denklemi bulunur. (2) genel olarak, x,y,y' ve c ye bağlıdır. Bu halde, (1) ile (2) arasında c parametresi yokedilerek

$$f(x, y, y') = 0 \tag{3}$$

şeklinde birinci mertebeden bir diferensiyel denklem elde edilir. Şu halde, (1) eğri kümesinin diferensiyel denklemi (3) tür. Eğer, (2) denklemi c den bağımsız olsaydı (1) in diferensiyel denklemi doğrudan doğruya (2) olacaktı.

1. ÖRNEK:

$$y = ce^{2x}$$

fonksiyonunun diferensiyel denklemini elde ediniz.

 $\mathbf{C\ddot{O}Z\ddot{U}M}$: Verilen fonksiyonun x e göre türevi

$$y' = 2ce^{2x}$$

dir. İki denklem arasında c yokedildiğinde,

$$y' - 2y = 0$$

diferensiyel denklemi bulunur.

2. ÖRNEK:

$$x^2 + y^2 = c^2$$

çemberlerinin diferensiyel denklemini bulunuz.

 $\mathbf{C\ddot{O}Z\ddot{U}M}$: Bu bir kapalı fonksiyon olup, x e göre türevi

$$x + yy' = 0$$

dır. Görüldüğü gibi bu denklem c den bağımsızdır. Öyleyse o, istenen diferensiyel denklemdir.

Şimdi de iki parametreli

$$F(x, y, c_1, c_2) = 0 (4)$$

kapalı fonksiyonunu gözönüne alarak diferensiyel denklemi bulmaya çalışalım. (4) ün x e göre türevi

$$\frac{\partial F}{\partial x}(x, y, c_1, c_2) + \frac{\partial F}{\partial y}(x, y, c_1, c_2)y' = 0$$
 (5)

dır. (4) ve (5) denklemleri arasında genel olarak iki parametreyi yoketmek olası değildir. O nedenle üçüncü bir denkleme gereksinme vardır. Bunun için (5) in tekrar x e göre türevi alınır. O zaman

$$\frac{\partial^2 F}{\partial x^2} + 2 \frac{\partial^2 F}{\partial x \partial y} y' + \frac{\partial^2 F}{\partial y^2} (y')^2 + \frac{\partial F}{\partial y} y'' = 0$$
 (6)

elde edilir. İşte, (4), (5) ve (6) denklemleri arasında $c_1,\,c_2$ parametreleri yokedilerek

$$f(x, y, y', y'') = 0 (7)$$

şeklinde bir denklem bulunur. Görüldüğü gibi (7), ikinci mertebeden bir diferensiyel denklemdir.

3. ÖRNEK:

$$y = c_1 e^x + c_2 \sin x$$

fonksiyonunu çözüm kabul eden diferensiyel denklemi bulunuz.

 $\mathbf{C\ddot{O}Z\ddot{U}M}$: Fonksiyonun x e göre türevi

$$y' = c_1 e^x + c_2 cos x$$

dir. Bu iki denklem arasında c_1 ve c_2 yi yoketmek olası değildir. O nedenle ikinci türeve gereksinme vardır. Bu türev

$$y'' = c_1 e^x - c_2 sinx$$

olup üç denklem arasında c_1 ve c_2 yokedilebilir. Gerçekten, birinci ve üçüncü denklemden

$$c_1 = \frac{y + y''}{2e^x}, \quad c_2 = \frac{y - y''}{2sinx}$$

cözülerek ikincide yerlerine konulduğunda, ikinci mertebeden

$$(sinx - cosx)y'' - 2sinxy' + (sinx + cosx)y = 0$$

diferensiyel denklemi bulunmuş olur.

Nihayet *n* parametreli

$$F(x, y, c_1, ..., c_n) = 0 (8)$$

kapalı fonksiyonunu gözönüne alalım. $c_1, ..., c_n$ parametrelerinin yokedilmesi için n+1 denkleme gereksinme vardır. Bu nedenle (8) in türevini n defa almak gerekir. Bu türevler,

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}y' = 0 \tag{9}$$

$$\frac{\partial^2 F}{\partial x^2} + 2 \frac{\partial^2 F}{\partial x \partial y} y' + \frac{\partial^2 F}{\partial y^2} (y')^2 + \frac{\partial F}{\partial y} y'' = 0$$
 (10)

.....

$$\frac{\partial^n F}{\partial x^n} + \dots + \frac{\partial F}{\partial y} y^{(n)} = 0 \tag{11}$$

dir. (8), (9), (10), ..., (11) denklemleri arasında $c_1, ..., c_n$ parametrelerinin yokedilmesiyle

$$f(x, y, y', ..., y^{(n)}) = 0 (12)$$

diferensiyel denklemi elde edilir.

Yukarıdaki açıklamalar göstermektedir ki n parametreli bir ilkel fonksiyona n. mertebeden bir diferensiyel denklem karşılık gelir. Ancak $c_1, ..., c_n$ parametrelerinin birbirinden bağımsız olması gerekir. Eğer parametreler bağımsız değillerse, bağımlı olanların lineer bileşemi yeni bir parametre ile gösterildikten sonra diferensiyel denklem bulunur. Örneğin,

$$y = c_1 x + c_2 + 3c_3$$

ilkeli her ne kadar üç parametreli gibi görünüyorsa da c_2 ve c_3 birbirinden bağımsız olmadığı için $c_2+3c_3=c_4$ denilerek parametre sayısı azaltılır. Buna göre, yukarıda verilen ilkel gerçekte iki parametreli olup,

$$y = c_1 x + c_4$$

şeklindedir. Bu ilkel fonksiyona karşılık gelen diferensiyel denklem ikinci mertebeden

$$y'' = 0$$

denklemidir.