LAB CASE: PHASE 1

a) What attributes are needed to implement this dictionary?

As we decided to use a doubly linked list to implement the dictionary in this phase, and we are not interested in keeping track of the size, the only attributes will be:

```
DNode header;
DNode trailer;
```

- b) Implement the following operations that can be done in the dictionary

 Done in the corresponding file
- c) Calculate the complexity of the methods of the dictionary structure

isEmpty
$$\rightarrow$$
 T(n) = 1 \in O(1) toString \rightarrow T(n) = 3 + 2n \in O(n)

addFirst \rightarrow T(n) = 7 \in O(1) addLast \rightarrow T(n) = 7 \in O(1)

add(Queue queue) \rightarrow T(n) = (2 + complexity of add(String newWord)) n \in O(n³) add(String newWord) \rightarrow T(n) = 4n + ((n-1)(4+complexity of addLast)) n \in O(n²) search \rightarrow T(n) = 3n + 1 \in O(n) show \rightarrow T(n) = 4n + 3 \in O(n)

getTop \rightarrow T(n) = $13n^2 + 9$ \in O(n²) getLow \rightarrow T(n) = $13n^2 + 9$ \in O(n²)

^{*} The complexity study of all methods corresponds to the complexity study of its worst case.