Assignment #1

Elliot Smith 8/26/2018

Problem 1

Part i

f(x) is the pdf of any of the x_i , and since they are *iid*, they all follow one pdf.

The joint pdf is: $f_{X_1,...,X_n}(x_1,...,x_n) = f(x_1) \times ... \times f(x_n)$ because they are iid.

Since you can multiply the right-hand side in any order, this implies symmetry in regards to the left-hand side.

As a result, $X_1, ..., X_n$ are exchangeable.

Part ii

$$p(y_1, ..., y_n) = \int p(y_1, ..., y_n | \theta) p(\theta) d(\theta)$$

$$= \int \left(\prod_{i=1}^n p(y_i | \theta) \right) p(\theta) d(\theta))$$

$$= \int \left(\prod_{i=1}^n p(y_{\pi_i} | \theta) \right) p(\theta) d(\theta))$$

$$= \int p(y_{\pi_1, ..., y_{\pi_n}} | \theta) p(\theta) d(\theta)$$

$$= p(y_{\pi_1, ..., y_{\pi_n}})$$

Problem 2

Part a

Prior Density: $p(\theta) = 1$

Sampling Distribution: $p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$

Posterior Density: $p(\theta|y) \propto p(y|\theta)p(\theta) = \binom{n}{y}\theta^y(1-\theta)^{n-y}$ Posterior Distribution: $\theta|y \sim Beta(y+1,(n-y)+1)$

$$\binom{n}{y} \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma((y+1)+(n-y+1))} = \binom{n}{y} \frac{\Gamma(y+1)\Gamma(n-y+1)}{\Gamma(n+2)}$$

$$= \frac{n!}{y!(n-y)!} \frac{y!(n-y)!}{(n+1)!}$$

$$= \frac{n!}{(n+1)!}$$

$$= \frac{1}{n+1}$$

Part b

Prior Distribution: $\theta \sim Beta(\alpha, \beta)$

Sampling Distribution: $y|\theta \sim Binomial(n,\theta)$

Posterior Density:

$$p(\theta|y) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y} \times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
$$= \binom{n}{y} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{y+\alpha-1} (1-\theta)^{n-y+\beta-1}$$
$$\propto Beta(y+\alpha, (n-y)+\beta)$$

Posterior Mean:

$$\frac{y+\alpha}{\alpha+\beta+n} = \frac{y}{n} + \lambda \left(\frac{\alpha}{\alpha+\beta} - \frac{y}{n}\right)$$

$$\frac{y+\alpha}{\alpha+\beta+n} - \frac{y}{n} = \lambda \left(\frac{\alpha}{\alpha+\beta} - \frac{y}{n}\right)$$

$$\frac{ny+n\alpha-\alpha y - \beta y - ny}{(\alpha+\beta+n)n} = \lambda \left(\frac{n\alpha-\alpha y - \beta y}{(\alpha+\beta)n}\right)$$

$$\lambda = \frac{\alpha+\beta}{\alpha+\beta+n}$$

Since λ will always be between 0 and 1 the Posterior Mean will act as a weighted average between our Prior Mean, $\frac{y}{n}$, and the data.

Part c

Posterior Density: $\theta|y \sim Beta(y + \alpha, (n - y) + \beta)$

Prior Variance ($\alpha = 1, \beta = 1$): $\frac{1}{12}$ Posterior Variance ($\alpha = 1, \beta = 1$):

$$\frac{(y+1)(n-y+1)}{(n+2)^2(n+3)} = \frac{ny-y^2+y+n-y+1}{(n^2+4n+4)(n+3)}$$
$$= \frac{ny-y^2+y+n-y+1}{n^3+3n^2+4n^2+12n+4n+12}$$
$$= \frac{-y^2+ny+n+1}{n^3+7n^2+16n+12}$$

Now, we can deduce that smaller values of n will maximize this quantity; since $n \ge y$, we will set n = y = 1.

Posterior Variance (n = y = 1):
$$\frac{-y^2 + ny + n + 1}{n^3 + 7n^2 + 16n + 12} = \frac{2}{36} = \frac{1}{18}$$

Thus, the Posterior Variance, which we just minimized, is always less than the Prior Variance of $\frac{1}{12}$.

Part d

- n = y = 1
- $\alpha = 1$
- $\beta = 10$

Prior Variance: $\frac{(1)(10)}{(11)^2(12)} = \frac{10}{1452} = 0.0069$ Posterior Variance: $\frac{(2)(10)}{(12)^2(13)} = \frac{20}{1872} = 0.0107$

Problem 3

Part a