

指導教授: 石百達、蔡芸琤 組員: 林依蓁、賴奕辰、鄒峻安

最佳投資組合 理財機器人

市面上ETF百百種, 該如何挑選?

利用機器人自動配置

32組別 >1000支ETF

涵蓋股票、債券及各種地區和類別

資料時間 2017/1-2019/1

前5名

最佳的候選人

成果展示

績效圖

網頁平台

- ETF Investment Profolio -

Group Changed Weight (2019-01)					
	•	ETF Group	Last Month Weight (%)	This Month Weight (%)	Changed Weight (%)
	1	Technology Equity ETF List (75)	23,026	23,849	0.823
	2	Industrials Equity ETF (37)	21,913	19,093	-2.82
	3	Developed Markets ETF List 1 (100)	15,907	18,788	2.881
	4	Energy Equity ETF List (80)	19,679	20,503	0.374
	5	Healthcare Equity ETF List (49)	19,475	18,217	-1.258

配置方式

最佳配置的流程圖

最適配置想法

1.找出每組最好的前5名ETF做為該組的代表。

最適配置想法

2.以小組為單位,取最優秀的前五組作為最後的投資組合。

最適配置想法

3.計算投資組合的各組最適的配置比例。

評量指標 Riskiness R

定

義

$$Ee^{-g/R(g)} = 1.$$

<範例 >

設資產 3 個月報酬率: x_1, x_2, x_3 。 $\frac{1}{3} \sum_{i=1}^{3} e^{-x_i/R} = 1 \Rightarrow 我們可以求 R 值$

性質:

R值越小代表資產越佳。

目標: 找尋相同報酬下, 風險指標最小的投資組合。

程式運算

利用 **Python** Fsolve()求解

計算Riskiness R


```
def f1(x,arr returns):
    arr returns = arr returns
    return np.mean( np.exp(-1*arr returns/x) ) - 1
                                                 Riskiness R公式
def get riskiness r(guess , arr returns):
    while (guess<10**(2)):
        risk2 = fsolve(f1, guess, arr returns)
        if (risk2 != guess) and (f1(risk2,arr_returns)<0.1):</pre>
            break
        guess = guess*10
                                                    疊代計算
    return risk2
                                                   Riskiness R
```

最適配置的等式關係

利用文獻中最佳資產權重配置下的等式關係,求得最佳權重。 等式亦適用於良好性質的風險指標。

$$\frac{R_i(\alpha^*)}{\sum_{i=1}^n \alpha_i^* R_i(\alpha^*)} = \frac{E(z_i) - r_f}{E(\alpha^* \cdot \tilde{\mathbf{z}}) - r_f}. \qquad \mathcal{B}_i^{R^{AS}}(\alpha) = \frac{E\left[\exp\left(-\frac{\alpha \cdot \tilde{\mathbf{z}}}{R(\alpha)}\right)\tilde{z}_i\right]}{E\left[\exp\left(-\frac{\alpha \cdot \tilde{\mathbf{z}}}{R(\alpha)}\right)\alpha \cdot \tilde{\mathbf{z}}\right]},$$

N個未知數→N條方程式

計算最佳的權重


```
def penalty(w):
   if min(w)<0 or max(w)>1:
                                                                懲罰項
       return 100000
   else:
       return 0
                                                            限制條件:
def bestweight(w,all return):
                                                            1.0<權重<1
   r = []
   r.append(penalty(w)+np.abs(sum(w)-1)*1000)
                                                            2. 權重總和=1
   for i in range(len(w)-1):
       v = np.abs( risk(w[i]*(all return.iloc[:,i]))/ sumrisk(w,all return)
           - (np.mean(all return.iloc[:,i])-rfrate)/(portretmean(w,all return)-rfrate) ) \
           + np.abs( risk(w[i+1]*(all_return.iloc[:,i+1]))/ sumrisk(w,all_return) \
           - (np.mean(all return.iloc[:,i+1])-rfrate)/(portretmean(w,all return)-rfrate))
       r.append(v)
   print('權重:',w,'誤差值:',v+penalty(w)+np.abs(sum(w)-1))
                                                              A=0, B=0 \rightarrow A^2+B^2=0
   return r
```


未來展望

目標: 投組調整自動化

