Clustering

COMP4211

Supervised Learning vs Unsupervised Learning

Supervised learning

- The learner is provided with a set of inputs together with the corresponding desired outputs
- Given training set: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N; y_N)$
- Find a general function y = h(x)
- An approximation to a target (true) function y = f(x)
 - h: hypothesis

Unsupervised learning

- training examples as input patterns, with no associated output patterns
- Given training set $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$
- unlabeled training examples
- no teacher

Uses of Unsupervised Learning

find clusters

- in the early stages of an investigation, it may be helpful to perform exploratory data analysis to gain some insight into the nature or structure of the data
- find features or preprocess existing features for the subsequent pattern classification problem (supervised learning)

Example (eigenface)

Uses of Unsupervised Learning...

find the least likely observations from a dataset (outlier detection)

Example (network intrusion detection)

Detect whether someone is trying to hack the network or doing anything else unusual on the network

Example (database cleaning)

want to find out whether someone stored bogus information in a database (typos, etc.), mislabelled digits, ugly digits, bad photographs in an electronic album

Example (fraud detection)

credit cards, telephone bills, medical records

Problem

Given:

- \bullet x_1, x_2, \ldots, x_n
- they fall into k clusters

Determine: the cluster centers (centroids) m_1, m_2, \ldots, m_k

k-Means Clustering

- Make initial guesses for m_1, m_2, \ldots, m_k
 - usually, just randomly choose *k* of the examples
- Use the estimated cluster centers to put the patterns into clusters
 - put x_j into cluster i if $||x_j m_i||$ is the minimum of all the k distances
 - the feature space is partitioned into k clusters
- for i = 1 to k, replace m_i with the mean of all examples for cluster i
- Go back to step 2 until there are no changes in the m_i's

Example

Demo

Distance Measures

- Euclidean distance: $d(\mathbf{x}, \mathbf{z}) = \sqrt{\sum_{i=1}^{n} (x_i z_i)^2}$
- scaled Euclidean distance: $d(\mathbf{x}, \mathbf{z}) = \sqrt{\sum_{i=1}^{n} w_i (x_i z_i)^2}$

• L_1 distance: $d(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^n |x_i - z_i|$

• L_{∞} distance: $d(\mathbf{x}, \mathbf{z}) = \max(|x_i - z_i|)$

Similarity Measures

similarity functions

• gives a large value when two feature vectors are similar

Example

Normalized inner product

$$s(\mathbf{x}_1, \mathbf{x}_2) = \frac{\mathbf{x}_1' \mathbf{x}_2}{\|\mathbf{x}_1\| \cdot \|\mathbf{x}_2\|}$$

- cosine of angle between vectors
- ullet for binary-valued (0/1) features, the normalized inner product gives a relative count of features shared by the two vectors
- a simple variation is the fraction of features shared:

$$s(\mathbf{x}_1, \mathbf{x}_2) = \frac{\mathbf{x}_1' \mathbf{x}_2}{d}$$

Issues

Different initialization means that you may get different clusters each time

- multiple runs
- pick the solution with minimum sum of squared error $\sum_{i=1}^K \sum_{\mathbf{x} \in C_i} \|\mathbf{x} \mathbf{m}_i\|^2$

Implicit assumptions about the shapes of clusters

can get wrong results when clusters have other shapes

Issues...

Data points are assigned to only one cluster (hard assignment)

You have to pick the number of clusters

• in general, clustering result depends on k

Hierarchical Clustering

Hierarchy

ullet clusters o subclusters o subsubclusters $o \cdots$

Why do we need hierarchies?

Example

Biology, library book categorization, web directories

Hierarchical Clustering...

Construct a sequence of partitions of the n samples into c clusters

- a partition into n clusters
 - each cluster contains exactly one sample (level 1)
- next a partition into n-1 clusters (level 2)
- next a partition into n-2 clusters, ... (level 3)
- all the samples form one cluster (level *n*)

A natural representation: tree (dendrogram)

Dendrogram

- Given any two samples x and x', at some level they will be grouped together in the same cluster
- If two samples are in the same cluster at some level $c \rightarrow$ at all higher levels (> c), they remain together
 - e.g. at level 2, x₆ and x₇ group together and they stay together at all subsequent levels

COMP4211

Example: Dendrogram of 39 English Sounds

Hierarchical Clustering

How to perform hierarchical clustering?

Agglomerative (bottom-up)

- start with *n* singleton clusters
- find 2 "nearest" clusters, merge
- re-iterate the process

Divisive (top-down)

- start with all the samples in one cluster
- form the sequence by successively splitting clusters

Agglomerative Hierarchical Clustering

Suppose c is the desired number of final clusters

- initialize: $\hat{c} \leftarrow n, D_i \leftarrow \{\mathbf{x}_i\}, i = 1, \dots, n$
- - find "nearest" clusters D_i and D_j
 - $oldsymbol{0}$ merge D_i and D_j
- return c clusters

How to measure the distance between two clusters?

Example Distance Measures between Clusters D_i , D_j

The distance between clusters can be defined based on the point-to-point or mean-to-mean distances

minimum point-to-point distance

$$d_{min}(D_i,D_j) = \min_{\mathbf{x}_1 \in D_i, \mathbf{x}_2 \in D_j} \|\mathbf{x}_1 - \mathbf{x}_2\|$$

maximum point-to-point distance

$$d_{max}(D_i, D_j) = \max_{\mathbf{x}_1 \in D_i, \mathbf{x}_2 \in D_i} \|\mathbf{x}_1 - \mathbf{x}_2\|$$

average point-to-point distance

$$d_{avg}(D_i, D_j) = \frac{1}{n_i n_j} \sum_{\mathbf{x}_1 \in D_i, \mathbf{x}_2 \in D_i} \|\mathbf{x}_1 - \mathbf{x}_2\|$$

mean-to-mean distance

$$d_{mean}(D_i, D_j) = \|\mathbf{m}_i - \mathbf{m}_j\|$$

Nearest-Neighbor Algorithm

Uses the minimum point-to-point distance

- aka nearest-neighbor clustering algorithm, minimum algorithm Single-linkage algorithm (demo)
 - a variation
 - the algorithm is terminated when the distance between nearest clusters exceeds an arbitrary threshold

Nearest-Neighbor Algorithm...

- merging of D_i and $D_j o$ add an edge between the nearest pair of nodes in D_i and D_j
- tends to produce long, "loose" clusters

Limitation

Sensitive to noise or slight changes in positions of the data points

Example • different result due to addition of a new point

• single-linkage

Farthest-Neighbor Clustering

Uses the maximum point-to-point distance

aka farthest-neighbor clustering algorithm, maximum algorithm

complete-linkage algorithm (demo)

- a variation
- the algorithm is terminated when the distance between nearest clusters exceeds an arbitrary threshold

Farthest-Neighbor Clustering...

- At each iteration, the size (largest diameter) of the partition is increased as little as possible
 - tends to produce very tight clusters
 - problematic if the true clusters are elongated