Построение и статистический анализ некоторых моделей выбора

Сукманская Ксения Ивановна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н. Голяндина Н.Э. Рецензент: к.ф.-м.н. Некруткин В.В.

Санкт-Петербург 2012г.

Схема двухэтапного выбора:

Первоначальный выбор

из перечня предлагаемых вариантов

некоторое внешнее воздействие

Повторный выбор из того же перечня

Интересует «сила» оказываемого внешнего воздействия, которое может иметь как положительный, так и отрицательный эффект.

Модель двухэтапного опроса: формализация

m — количество продуктов, из них k рекламируемых. Параметры:

- ullet $p_i, \ i=0,\ldots,m-2$ доли продуктов, $(p_{m-1}=1-\sum_{i=0}^{m-2}p_i),$
- ullet p_{ch} вероятность хаотичного выбора,
- ullet p_{adv} вероятность воздействия рекламы на человека,
- $m{p}^{(j)},\ j=0,\dots,k-2$ условные вероятности влияния рекламы продукта под номером $j,\ (p^{(k-1)}=1-\sum_{i=0}^{k-2}p^{(i)}).$

Параметрическое множество:

$$\{\theta=(p_0,\dots,p_{m-2},p_{ch},p_{adv},p^{(0)},\dots,p^{(k-2)})\in\Theta\subset(0,1)^{m+k}\}.$$
 Предполагаем, что истинное значение параметра θ^0 с некоторой окрестностью лежит в Θ .

Модель описывается видом вероятностей: $p_{ij}=p_{ij}(\theta)$ — вероятность выбрать i-тый продукт до рекламы и j-тый — после $(i,j=0,\dots,m-1)$.

Построенные модели:

- Модель с положительным эффектом рекламы одного рекламируемого продукта.[Голяндина Н.Э.];
- Модель с отрицательным эффектом рекламы одного рекламируемого продукта;
- Модель с двумя рекламируемыми продуктами:
 положительный эффект реклам продуктов под номерами «0» и «1»;
- Модель с двумя рекламируемыми продуктами: отрицательный эффект рекламы продукта под номером «0» и положительный эффект рекламы продукта под номером «1».

Модели: примеры

Модель с положительным эффектом рекламы одного рекламируемого продукта.[Голяндина Н.Э.]

$$\begin{array}{lcl} p_{00}(\theta) & = & p_0(p_{adv} + (1-p_{adv})(1-p_{ch} + p_{ch}p_0)), \\ p_{i0}(\theta) & = & p_i(p_{adv} + (1-p_{adv})p_{ch}p_0), \quad i \neq 0, \\ p_{ii}(\theta) & = & p_i(1-p_{adv})(1-p_{ch} + p_{ch}p_i), \quad i \neq 0, \end{array}$$

Модели: примеры

Модель двухэтапного опроса с двумя рекламируемыми продуктами: положительный эффект реклам продуктов под номерами «0» и «1».

Задачи

План исследования модели:

 Построение простых оценок параметров с помощью гладкого отображения и получение вида их ковариационной матрицы;

• Улучшение простых оценок и вид их ковариационной матрицы;

• Сравнение дисперсий простых и улучшенных оценок.

Способ построения простых оценок

 $p_{ij}(heta)$ — вероятность выбора i-го продукта до рекламы и j-го — после.

$$p_{00}(\theta) = p_{0}(p_{adv}p^{(0)} + (1 - p_{adv})(1 - p_{ch} + p_{ch}p_{0})),$$

$$p_{11}(\theta) = p_{1}(p_{adv}(1 - p^{(0)}) + (1 - p_{adv})(1 - p_{ch} + p_{ch}p_{1})),$$

$$p_{i0}(\theta) = p_{i}(p_{adv}p^{(0)} + (1 - p_{adv})p_{ch}p_{j}), \quad i \neq 0,$$

$$p_{i1}(\theta) = p_{i}(p_{adv}(1 - p^{(0)}) + (1 - p_{adv})p_{ch}p_{j}), \quad i \neq 1,$$

$$p_{ij}(\theta) = p_{i}(1 - p_{adv})p_{ch}p_{j}, \quad i \neq j, j \neq 0, 1,$$

$$p_{ij}(\theta) = p_{i}(1 - p_{adv})(1 - p_{ch} + p_{ch}p_{i}), \quad i \neq 0, 1.$$

Способ построения простых оценок

 n_{ij} — количество людей, сменивших предпочтение с i—го продукта на j—й, n — количество опрашиваемых.

$$\begin{array}{lcl} \frac{n_{00}}{n} & = & p_0 \Big(p_{adv} p^{(0)} + (1 - p_{adv}) (1 - p_{ch} + p_{ch} p_0) \Big), \\ \frac{n_{11}}{n} & = & p_1 \Big(p_{adv} (1 - p^{(0)}) + (1 - p_{adv}) (1 - p_{ch} + p_{ch} p_1) \Big), \\ \frac{n_{i0}}{n} & = & p_i \Big(p_{adv} p^{(0)} + (1 - p_{adv}) p_{ch} p_j \Big), \quad i \neq 0, \\ \frac{n_{i1}}{n} & = & p_i \Big(p_{adv} (1 - p^{(0)}) + (1 - p_{adv}) p_{ch} p_j \Big), \quad i \neq 1, \\ \frac{n_{ij}}{n} & = & p_i (1 - p_{adv}) p_{ch} p_j, \quad i \neq j, \ j \neq 0, 1, \\ \frac{n_{ii}}{n} & = & p_i (1 - p_{adv}) (1 - p_{ch} + p_{ch} p_i), \quad i \neq 0, 1. \end{array}$$

Простые оценки

$$\widetilde{ heta}=(\widetilde{p}_i,\ \widetilde{p}_{ch},\ \widetilde{p}_{adv},\ \widetilde{p}^{(0)})$$
 — простые оценки $(i=0,\ldots,m-2)$.

$$\begin{split} \widetilde{p}_{i} &= n_{i\cdot}/n, \ i = 0, \dots m - 2, \\ \widetilde{p}_{ch} &= n \frac{\sum\limits_{\{i, j: i \neq j, \ i, j \neq 0, 1\}} n_{ij}}{\sum\limits_{\{i, j: i \neq j, \ i, j \neq 0, 1\}} (n_{i\cdot}n_{j\cdot})} \cdot \frac{n - (n_{0\cdot} + n_{1\cdot})}{n - (n_{0\cdot} + n_{\cdot1})}, \\ \widetilde{p}_{adv} &= \frac{n_{\cdot 0} + n_{\cdot 1} - (n_{0\cdot} + n_{1\cdot})}{n - (n_{0\cdot} + n_{1\cdot})}, \\ \widetilde{p}^{(0)} &= \frac{n_{\cdot 0} - (1 - \widetilde{p}_{adv})n_{0\cdot}}{n\widetilde{p}_{adv}}, \end{split}$$

где
$$n_{i\cdot} = \sum_{j=0}^{m-1} n_{ij}, \; n_{\cdot j} = \sum_{i=0}^{m-1} n_{ij}$$
 .

Вид ковариационной матрицы простых оценок

ullet Для $\xi_n = (n_{00}/n, \dots, n_{m-1,m-1}/n)^{\mathrm{T}}$ выполнено:

$$\mathcal{L}(\sqrt{n}(\xi_n-z_0)) \stackrel{n\to\infty}{\Longrightarrow} \mathcal{N}(\mathbf{0},\underline{\Sigma}),$$

где
$$z_0 = (p_{00}, \dots, p_{m-1,m-1})^{\mathrm{T}},$$
 $\Sigma = \parallel \delta_{\alpha\beta} p_{\alpha} - p_{\alpha} p_{\beta} \parallel$, где $\alpha, \ \beta = (i,j), \ (i,j=0,\dots,m-1).$

ullet Простые оценки: $\widetilde{ heta}=H(\xi_n)$, $H(z_0)= heta^0$,

H(z) — гладкое отображение на Θ , $\Delta H=\{\partial H_i(z)/\partial z^j\}_{i,j=0}^{m-1}$ тогда [Боровков Л.Л. Гл.5, §5, Т.3В]:

$$\mathcal{L} \big(\sqrt{n} (\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^0) \big) \overset{n \to \infty}{\Longrightarrow} \mathcal{N} (\mathbf{0}, \Sigma_H), \qquad$$
 где $\Sigma_H = \Delta H^{\mathrm{T}}(z_0) \, \Sigma \, \Delta H(z_0).$

Оценки максимального правдоподобия

Пусть $X=(X_1,\dots,X_n)\mapsto (n_1,\dots,n_s)$ — повторная выборка из распределения $P_{\theta^0}.$

Логарифм функции правдоподобия:

$$l(\theta, X) = \sum_{k=1}^{s} n_k \ln p_k(\theta).$$

Предполагаем, что выполнены условия регулярности оценок максимального правдоподобия.

Информационная матрица:

$$I_{ij}(\theta) = \sum_{k=1}^{s} \frac{1}{p_k(\theta)} \frac{\partial p_k(\theta)}{\partial \theta_i} \frac{\partial p_k(\theta)}{\partial \theta_j}, \quad i, j = 1, \dots, r.$$

Определение

Асимптотически эквивалентными оценке максимального правдоподобия (а.э.о.м.п.) будем называть оценки $\hat{\theta}$, для которых выполнено

$$\mathcal{L}(\sqrt{n}(\hat{\theta} - \theta^0)) \Rightarrow \mathcal{N}(\boldsymbol{\theta}, \boldsymbol{I}^{-1}(\theta^0)).$$

Построение оценок а.э.о.м.п.

Одношаговые оценки:

$$\hat{\theta} = \bar{\theta} + \frac{1}{n} I^{-1}(\bar{\theta}) \cdot \dot{l}(\bar{\theta}). \tag{1}$$

Теорема (Закс. Ш., Т.5.5.4.)

Если начальные оценки $\bar{\theta}$ такие, что $n^{1/4}(\bar{\theta}-\theta^0)=o_p(1)$ при $n\to\infty,$ то одношаговые оценки являются а.э.о.м.п.

Простые оценки $\widetilde{ heta}$:

- состоятельные,
- $\mathcal{L}\left(\sqrt{n}(\widetilde{\theta}-\theta^0)\right) \Rightarrow \mathcal{N}\left(\mathbf{0},\Sigma_H\right)$.

Следовательно, в (1) можно взять $\bar{\theta}=\widetilde{\theta}.$

Результаты: сравнения простых и одношаговых оценок

Результаты численного сравнения асимптотических дисперсий простых и одношаговых оценок:

- ullet $\widetilde{p}_0,\,\widetilde{p}_1$ являются а.э.о.м.п.;
- ullet оценка \widetilde{p}_{ch} «плохая», улучшение значительное: в среднем на 60-80%;
- ullet при больших значениях p_{adv} оценки \widetilde{p}_{adv} и $\widetilde{p}^{(0)}$ «хорошие», с дисперсией близкой к минимальной, при малых значениях p_{adv} улучшение составляет pprox 20%.

Реализация метода построения а.э.о.м.п.

Сложности:

- вычисление простых оценок по выборке;
- вычисление информационной матрицы и обратной к ней.

Решение:

 $m{ ilde{ heta}}$ строковое задание формул для вероятностей $p_{ij}(heta)$, начальных оценок $m{ ilde{ heta}}$ и реализация метода с помощью символьных вычислений.

Средства для решения:

- программа $TSC[\mathsf{C}.\mathsf{K}\mathsf{o}\mathsf{k}\mathsf{o}\mathsf{p}\mathsf{u}\mathsf{h},\ \mathsf{A}.\mathsf{Д}\mathsf{e}\mathsf{m}\mathsf{c}\mathsf{k}\mathsf{u}\mathsf{u}]$ предоставляет возможность вычисления простых и одношаговых оценок для базовой модели с одним рекламируемым продуктом;
- модификация программы средствами ООП позволяет добавлять новые модели двухэтапного опроса с целью вычисления оценок параметров.

Применение к реальным данным

Данные: эксперимент двухэтапного опроса с одним рекламируемым продуктом.

категория продукта	\hat{p}_0	\hat{p}_{ch}	\hat{p}_{adv}	n
Подгузники	0.698	0.136	0.040	106
Стир. Порошок	0.137	0.261	0.033	284
Косметика	0.411	0.293	0.078	185

Таблица: Одношаговые оценки по базовой модели: «0» — объединение всех продуктов того же бренда, что и рекламируемый продукт.

категория продукта	\hat{p}_0	\hat{p}_1	\hat{p}_{ch}	\hat{p}_{adv}	$\hat{p}^{(0)}$	n
Подгузники	0.302	0.396	0.144	0.063	0.866	106
Стир. Порошок	0.099	0.039	0.263	0.039	0.699	284
Косметика	0.027	0.384	0.307	0.103	0.884	185

Таблица : Оценки параметров модели с двумя рекламами: «0» — действительно рекламируемый продукт, «1» — объединение остальных того же бренда.

Многоэтапная модель

Считаем, что $p_{ch},\,p_{adv}$ и $p^{(j)},\,j=0,\dots,k-2$ фиксированы. Положим $\theta=(p_0,\dots,p_{m-1}),\,\tau\in(0,1)^m$ — вектор «предпочтений», тогда имеем: $p_{ij}(\theta,\tau)=\theta_i\,\,\pi_{ij}(\tau)$.

Обозначения:

- $m{ heta}(0,1)^m, \sum_{i=0}^{m-1} heta_i^{(n)} = 1,$ распределение долей продуктов перед n-ой рекламой, $m{ heta}^{(1)} = (p_0,\dots,p_{m-1});$
- $au^{(n)} \in (0,1)^m$, $\sum_{i=0}^{m-1} au_i^{(n)} = 1$ «предпочтения» при случайном выборе после n-той рекламы, $au^{(1)} = heta^{(1)}$;
- $\Pi(\tau^{(n)}): p_{ij}(\theta^{(n)}, \tau^{(n)}) = \theta_i^{(n)} \pi_{ij}(\tau^{(n)}).$

Многоэтапная модель задает последовательность распределений $heta^{(n)}$:

$$\theta^{(n+1)} = \theta^{(n)} \Pi(\tau^{(n)}).$$

Многоэтапная модель

Задача:
$$\lim_{n\to\infty} \theta^{(n)} = \theta^*$$
?

Две схемы принятия решения на каждом следующем этапе:

f 0 без корректировки предпочтений: $au^{(n)} = au^{(1)}$.

Тогда θ^* ищем из уравнения:

$$\theta^* = \theta^* \Pi$$
.

 $m{Q}$ с корректировкой предпочтений: $au^{(n)} = heta^{(n)}$.

Тогда θ^* ищем из уравнения:

$$\theta^* = \theta^* \ \Pi(\theta^*).$$

Предельное распределение в многоэтапном опросе: пример

Модель с двумя положительно-рекламируемыми продуктами

без корректировки предпочтений:

$$\theta_i^* = \frac{1}{G} \begin{cases} p_{adv} p^{(0)} + (1-p_{adv}) p_{ch} p_0 & \text{при } i = 0, \\ p_{adv} (1-p^{(0)}) + (1-p_{adv}) p_{ch} p_1 & \text{при } i = 1, \\ (1-p_{adv}) p_{ch} p_i & \text{при } i > 1, \end{cases}$$

где
$$i = 2, \ldots, m - 1, G = p_{adv} + p_{ch}(1 - p_{adv}).$$

Свойства:

- $\partial \theta_j^* / \partial p_{ch} = -p_{adv}(1 p_{adv})(p^{(j)} p_j)/G^2, \ j = 0, 1;$
- $\partial \theta_{j}^{*}/\partial p_{adv} = p_{ch}(p^{(j)} p_{j})/G^{2}, \ j = 0, 1;$
- $\partial \theta_0^* / \partial p^{(0)} = p_{adv} / G > 0$, $\partial \theta_1^* / \partial p^{(0)} = -p_{adv} / G < 0$.
- $m{@}$ с корректировкой предпочтений: $m{\theta}^* = (p^{(0)}, 1 p^{(0)}, 0 \dots, 0).$

Заключение

Основные результаты работы:

- Построены три модификации базовой модели двухэтапного опроса;
- Для каждой модели получены «простые» и а.э.о.м.п. оценки, проведено их сравнение;
- Модифицирована программа для автоматизации вычисления одношаговых оценок, с целью удобства добавления новых моделей.
 С ее помошью сделана обработка реальных данных и проведена интерпретация результатов;
- Исследованы и проинтерпретированы предельные распределения последовательности долей продуктов на рынке, при повторном воздействии рекламы.