Teoretická část zkoušky ze Statistiky II, 18.12.2014

- Úkol 1.: Nechť $X_1, ..., X_n$ je náhodný výběr z $N(\mu, \sigma^2)$. Pomocí distribuční funkce rozložení N(0,1) vyjádřete pravděpodobnost, že výběrový průměr překročí hodnotu k.
- **Úkol 2.:** Nechť X_1 , X_2 , X_3 , X_4 je náhodný výběr z Rs(0,b), kde parametr b > 0 neznáme. Určete konstantu c tak, aby statistika $T = X_1 + X_2/2 + X_3/3 + cX_4$ byla nestranným odhadem parametru b.
- **Úkol 3.:** Nechť $X_1, ..., X_{400}$ je náhodný výběr z $N(\mu,0,01)$. Je známo, že výběrový průměr se realizoval hodnotou 0,01. Na hladině významnosti 0,05 testujte hypotézu H_0 : $\mu = 0$ proti pravostranné alternativě H_1 : $\mu > 0$ pomocí p-hodnoty.
- **Úkol 4.:** Dvourozměrný náhodný výběr $(X_1, Y_1), ..., (X_{20}, Y_{20})$ pochází z dvourozměrného normálního rozložení. Výběrový koeficient korelace se realizoval hodnotou $r_{12} = 0,4$. Na hladině významnosti 0,05 testujte hypotézu o nezávislosti náhodných veličin X, Y proti pravostranné alternativě. Výsledek interpretujte.
- **Úkol 5.:** Jsou dány čtyři nezávislé náhodné výběry postupně z rozložení $N(\mu_1, \sigma^2)$, $N(\mu_2, \sigma^2)$, $N(\mu_3, \sigma^2)$, $N(\mu_4, \sigma^2)$, přičemž každý z nich má rozsah 6. Na hladině významnosti 0,05 testujte hypotézu o shodě středních hodnot, je-li známo, že skupinový součet čtverců je 46,5 a reziduální 67,5.

Praktická část zkoušky ze Statistiky II, 18.12.2014

Příklad 1.: (15 bodů) Výkon 18 gymnastek byl ohodnocen stanovením jejich pořadí od nejlepši (pořadí 1) po nejslabší (pořadí 18). V hodnocené skupině bylo 11 žákyň trenérky A a 7 žákyň trenérky B. V tabulce je uvedeno pořadí žákyň obou trenérek:

A 1 4 5 7 8 10 11 13 14 16 17 B 2 3 6 9 12 15 18

Na hladině významnosti 0.05 testujte hypotézu, že výukové metody obou trenérek jsou stejně účinné proti oboustranné alternativě.

Příklad 2.: (15 bodů) Náhodně bylo vybráno třicet vozidel stejné kategorie. U nich byl zjišťován: výkon (veličina X₁, v kW), maximální rychlost (veličina X₂, v km/hod.), spotřeba (veličina X3, v 1/100 km) a cena (veličina Y, v tisících Kč). Předpokládáme, že cena závisí na výkonu, maximální rychlosti a spotřebě lineárně.

Máte k dispozici výstupní tabulku vícenásobné lineární regrese ze systému STATISTICA:

N=30	Výsledky regrese se závislou proměnnou : Y (Tabulka1) R= ,90483644 R2= ,81872899 Upravené R2= ,79781310 F(3,26)=39,144 p<,00000 Směrod. chyba odhadu : 62,812					
	b*	Sm.chyba z b*	b	Sm.chyba z b	t(26)	p-hodn.
Abs.člen			116,7074	198,4404	0,58812	0,561524
X1	0,833407	0,215908	4,8601	1,2591	3,86002	0,000673
X2	0,328018	0,200519	2,2255	1,3605	1,63584	0,113923
X3	-0,356197	0,126022	-55,2524	19,5483	-2,82646	0,008930

- a) Napište regresní rovnici vyjadřující závislost ceny na výkonu, maximální rychlosti a spotřebě.
- b) Z kolika procent je variabilita ceny vysvětlena tímto lineárním regresním modelem?
- c) Je na hladině významnosti 0,05 dostačující model konstanty? Rozhodnutí zdůvodněte.
- d) Na kterých regresorech cena nezávisí na hladině významnosti 0,05? Rozhodnutí zdůvodněte.

Příklad 3.: (15 bodů) 30 náhodně vybraných absolventů určité vysoké školy bylo dotázáno. zda pracují v řídicí funkci a zda absolvovali školu s vyznamenáním. Ze 14 respondentů, kteří prospěli s vyznamenáním, 8 pracuje v řídicí funkci a ze 16 respondentů, kteří pouze prospěli, pracují 3 v řídicí funkci. Na asymptotické hladině významnosti 0,05 testujte hypotézu, že práce v řídicí funkci a způsob ukončení dané vysoké školy jsou nezávislé.

a) Sestavte kontingenční tabulku;

b) ověřte splnění podmínek dobré aproximace;

c) vypočtěte realizaci testové statistiky;

d) stanovte kritický obor a na dané hladině významnosti rozhodněte o nulové hypotéze.

Příklad 4.: (15 bodů) Jsou dány dva nezávislé náhodné výběry o rozsazích n₁ = 12, n₂ = 10, první pochází z rozložení $N(\mu_1, \sigma_1^2)$, druhý z rozložení $N(\mu_2, \sigma_2^2)$, kde parametry μ_1, μ_2, σ_1^2 . σ_2^2 neznáme. Byly vypočteny realizace výběrových průměrů: $m_1 = 0,4832$, $m_2 = 0,5769$ a výběrových rozptylů: $s_1^2 = 2,3516$, $s_2^2 = 2,1268$.

a) Na hladině významnosti 0,1 testujte hypotézu, že neznámé rozptyly σ₁² a σ₂² jsou shodné

proti oboustranné alternativě. Test proved'te pomocí intervalu spolehlivosti.

b) Na hladině významnosti 0,1 testujte hypotézu, že neznámé střední hodnoty μ₁ a μ₂ jsou shodné proti oboustranné alternativě. Test proved'te pomocí kritického oboru.

Celkové hodnocení: (90, 100] ... A, (80, 90] ... B, (70, 80] ... C, (60, 70] ... D, (50, 60] ... E, [0, 50] ... F