

Teacher: Yanjie Li

Assignment Number: 1

Course: Linear Algebra in Control Theory Disclosure date: April 24, 2025

Problem 1

Show that the function that takes $((x_1, x_2), (y_1, y_2)) \in \mathbb{R}^2 \times \mathbb{R}^2$ to $|x_1y_1| + |x_2y_2|$ is not an inner product on \mathbb{R}^2 .

Problem 2

Suppose V is a real inner product space, show that:

- a) the inner product $\langle u+v, u-v \rangle = ||u||^2 ||v||^2$ for every $u, v \in V$.
- b) if $u, v \in V$ have the same norm, then u + v is orthogonal to u v.
- c) use part(b) to show that the diagonals of a rhombus are perpendicular to each other.

Problem 3

Suppose $u, v \in V$, prove that the inner product $\langle u, v \rangle = 0$ if and only if $||u|| \leq ||u + av||$ for all $a \in F$.

Problem 4

Suppose $u, v \in V$, prove that ||au + bv|| = ||bu + av|| for all $a, b \in R$ if and only if ||u|| = ||v||.

Problem 5

Suppose $u, v \in V$, ||u|| = ||v|| = 1 and $\langle u, v \rangle = 1$, prove that u = v.

Problem 6

Find vectors $u, v \in \mathbb{R}^2$ such that u is a scalar multiple of (1,3), v is orthogonal to (1,3), and (1,2) = u + v.

Problem 7

Prove that $(x_1 + \cdots + x_n)^2 \leq n(x_1^2 + \cdots + x_n^2)$ for all positive integers n and all real numbers $x_1, ..., x_n$.

Problem 8

Suppose V is a real inner product space, prove that

$$\langle u, v \rangle = \frac{\|u + v\|^2 - \|u - v\|^2}{4}$$

for all $u, v \in V$.

Pay Attention

- a) Mark your class number, name and student number on the homework.
- b) Please hand in your homework to your TA before class next Wednesday (April 30).