55 EJERCICIOS DE VECTORES

1. a) Representar en el mismo plano los vectores:

$$\vec{a} = (3,1)$$
 $\vec{b} = (-1,5)$ $\vec{c} = (2,-4)$ $\vec{d} = (-3,-1)$ $\vec{i} = (1,0)$ $\vec{j} = (0,1)$ $\vec{e} = (3,0)$ $\vec{f} = (0,-5)$

b) Escribir las coordenadas de los vectores fijos de la figura adjunta (puede hacerse en este cuaderno):

- 2. a) Dibujar dos vectores de origen común, igual módulo, y que formen un ángulo de 135º. Expresarlos analíticamente.
 - **b)** Dibujar dos vectores que tengan el origen común y los sentidos opuestos. Expresarlos analíticamente. ¿Qué ángulo forman dichos vectores?
- 3. Dado el paralelogramo de la figura¹:

- a) Indicar, analítica y gráficamente, un vector equipolente $con\overrightarrow{CD}$; ídem $con\overrightarrow{AD}$ (puede hacerse en este cuaderno)
- **b)** Indicar, analítica y gráficamente, un vector opuesto a \overrightarrow{CD} ; ídem con \overrightarrow{AD} (puede hacerse en este cuaderno)

Recordar que, por convenio, los vértices de un polígono se designan con letras mayúsculas, en orden alfabético (A, B, C, D...), y en sentido levógiro i.e. antihorario.

Texto bajo licencia Creative Commons: se permite su utilización didáctica así como su reproducción impresa o digital siempre y cuando se respete la mención de su autoría, y sea sin ánimo de lucro. En otros casos se requiere el permiso del autor (alfonsogonzalopez@yahoo.es)

Operaciones con vectores:

4. Dados los vectores libres \vec{a} y \vec{b} de la figura, calcular gráfica –cada apartado en ejes distintos– y analíticamente (en función de la base ortonormal de V^2):

c) 3
$$\vec{a}$$

d)
$$\vec{a} + 2\vec{b}$$

e)
$$2\vec{a} - 3\vec{b}$$

- 5. a) Determinar, analíticamente, si los puntos A(3,1), B(5,2) y C(1,0) están alineados.
 - **b)** Ídem para A(1,1), B(3,4) y C(4,6) (Nota: un dibujo puede ser útil)
 - c) Hallar k para que los puntos A(1,7), B(-3,4) y C(k,5) estén alineados. (Soluc: Sí; NO; k=-5/3)
- **6.** Considerar el segmento de extremos A(-2,1) y B(5,4). Hallar:
 - **a)** El punto medio M [Sol: M(3/2,5/2)]
 - **b)** Los dos puntos P y Q que lo dividen en tres partes iguales. [Soluc: P(1/3,2) y Q(8/3,3)]
- 7. Hallar las coordenadas del punto P que divide al segmento de extremos A(3,4) y B(0,-2) en dos partes tales que $\overrightarrow{BP}=2\overrightarrow{PA}$ [Soluc: P(2,2)]
- 8. a) De los vectores \vec{a} y \vec{b} conocemos $|\vec{a}| = 2$, $|\vec{b}| = 5$ y el ángulo que forman, $\alpha = 60^{\circ}$. Hallar $|\vec{a} + \vec{b}|$ y $|\vec{a} \vec{b}|$ (Soluc: $\sqrt{39}$ y $\sqrt{19}$, respectivamente)
 - **b**) De los vectores \vec{a} y \vec{b} conocemos $\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = 5$, $|\vec{b}| = \sqrt{19}$ y \vec{a} $\vec{b} = 30^{\circ}$. Hallar $|\vec{a}|$ (Soluc: $g = \sqrt{\frac{57}{2}}$)
- **9.** Dos fuerzas $\vec{F_1}$ y $\vec{F_2}$ de intensidades 20 N y 30 N actúan sobre el mismo cuerpo y forman entre ellas un ángulo de 60°. Hacer un dibujo. ¿Cuántos N tiene la resultante \vec{R} ? (Soluc: 43,6 N)

Combinación lineal de vectores:

- **10.** Expresar $\vec{a} = (9,5) \vec{y} = (-5,7)$ como combinación lineal de $\vec{x} = (1,3) \vec{e} = (3,-2)$, analítica y gráficamente. (Soluc: $\vec{a} = 3\vec{x} + 2\vec{y}$; $\vec{b} = \vec{x} 2\vec{y}$)
- 11. Dados los vectores libres de la figura:

- **b)** Obtener \vec{c} como combinación lineal de \vec{a} y \vec{b}
- **c)** Comprobar gráficamente la combinación lineal anterior.

$$\left(\text{Soluc}: \overrightarrow{c} = 2 \overrightarrow{a} - \frac{1}{2} \overrightarrow{b}\right)$$

- **12.** Dados los vectores $\overrightarrow{u} = (3,4)$ y $\overrightarrow{v} = (-2,3)$, se pide:
 - a) Razonar que pueden ser base de V^2 .
 - **b)** Obtener analíticamente las coordenadas de $\overrightarrow{w} = (-12,1)$ en la base anterior. $(Sol: \overrightarrow{w} = -2\overrightarrow{u} + 3\overrightarrow{v})$
 - c) Explicar gráficamente la situación.
- **13.** Expresar los vectores \vec{a} y \vec{b} de la figura como combinación lineal de \vec{x} e \vec{y} :

$$\begin{cases}
Soluc: \overrightarrow{a} = \overrightarrow{x} - \frac{3}{2} \overrightarrow{y}; \\
\overrightarrow{b} = \frac{12}{5} \overrightarrow{x} - \frac{13}{10} \overrightarrow{y}
\end{cases}$$

- **14.** Definir base de \mathcal{V}^2 , combinación lineal y coordenadas de un vector referidas a una base. Explicar estos conceptos mediante la base formada por $\{\overrightarrow{u} = (2,1); \overrightarrow{v} = (-1,3)\}$ y el vector $\overrightarrow{w} = (4,9)$, analítica y gráficamente. (Soluc: $\overrightarrow{w} = 3\overrightarrow{u} + 2\overrightarrow{v}$)
- a) ¿Los vectores \vec{x} e \vec{y} de la figura pueden ser base de \mathcal{V}^2 ? Razonar la respuesta.
- **b)** Expresar \vec{u} como combinación lineal de \vec{x} e \vec{y} (Sol: u = 3x 2y)
- c) Comprobar gráficamente lo anterior.

Módulo de un vector:

16. a) Calcular el módulo de los siguientes vectores, y dibujarlos (los siete primeros en los mismos ejes):

- **b)** Calcular el valor de **m** para que el vector $\vec{u} = \left(\frac{1}{2}, m\right)$ sea unitario. Razonar gráficamente por qué se (Soluc: $m = \pm \frac{\sqrt{3}}{2}$) obtienen dos soluciones.
- c) Ídem para $\overrightarrow{v} = \left(\frac{\sqrt{2}}{2}, m\right)$

- (Soluc: $m = \pm \frac{\sqrt{2}}{3}$)
- 17. a) Dado $\vec{u} = (6,8)$ hallar los dos vectores unitarios que tienen la dirección de \vec{u} Razonar gráficamente la situación.
 - **b)** Ídem para $\overrightarrow{u} = (4,-7)$
 - c) Ídem para $\overrightarrow{u} = (\sqrt{2}, -\sqrt{2})$
- 18. a) Para cada uno de los siguientes vectores, obtener uno unitario y con la misma dirección:

$$\stackrel{\rightarrow}{a} = (3,-4)$$

$$\vec{b} = (1,1)$$

$$\vec{a} = (3,-4)$$
 $\vec{b} = (1,1)$ $\vec{c} = (12,5)$

$$\vec{d} = (6, -3)$$

- **b)** Hallar el vector \overrightarrow{v} de módulo 5 que sea paralelo al $\overrightarrow{a} = (36,-27)$
- 19. Dibujar los siguientes pares de puntos y hallar su distancia:

a)
$$P(1,2) y Q(5,-1)$$
 b) $P(6,3) y Q(-2,-3)$ c) $P(2,1) y Q(2,5)$ d) $A(-1,3) y B(5,3)$

e) A(5,3) y el origen **f)** P(1,5) y Q(5,2) (Soluc: a) 5; b) 10; c) 4; d) 6; e)
$$\sqrt{34}$$
; f) 5)

Producto escalar:

20. a) Dados $\vec{u} = (5,0)$ y $\vec{v} = (2,2)$ se pide: i) Dibujarlos ii) Calcular su producto escalar de dos formas posibles, y comprobar que coincide el resultado.

b) Ídem con
$$\vec{u} = (1,1) \ y \ \vec{v} = (-2,0)$$

- **c)** Ídem con $\overrightarrow{u} = (2,1)$ y $\overrightarrow{v} = (-2,4)$
- 21. a) Dada la figura adjunta, hallar $\overrightarrow{OA} \cdot \overrightarrow{OB}$ aplicando la definición de producto escalar. (Soluc: -2)

- b) Hallar las coordenadas de A y B (no valen decimales).
- c) Hallar $\overrightarrow{OA} \cdot \overrightarrow{OB}$ mediante la expresión analítica del producto escalar, y comprobar que se obtiene lo mismo que en el apartado a.
- 22. a) Considerar el hexágono regular de la figura derecha, de lado 2. Hallar $\vec{u} \cdot \vec{v}$ de dos formas. (Soluc: 2)

b) Hallar $\vec{a} \cdot \vec{b}$ en la figura izquierda, analíticamente. Hallar también analíticamente el ángulo que forman los dos vectores.

23. Dados $\vec{a} = (-3,1)$, $\vec{b} = (2,3)$, $\vec{c} = (1,0)$ y $\vec{d} = (5,-2)$, calcular:

d)
$$\vec{p} \cdot \vec{c}$$

e)
$$\overrightarrow{b} \cdot \overrightarrow{d}$$

f)
$$\overrightarrow{c} \cdot \overrightarrow{d}$$

h)
$$2 \left(\overrightarrow{d} \cdot \overrightarrow{c} \right)$$

$$\mathbf{j}$$
) $\left(\stackrel{\rightarrow}{\mathbf{a}}+\stackrel{\rightarrow}{\mathbf{b}}\right)$ $\stackrel{\rightarrow}{\cdot}$ \mathbf{d} de dos formas

$$\mathbf{k}) \left(\stackrel{\rightarrow}{\mathbf{b}} \cdot \stackrel{\rightarrow}{\mathbf{d}} \right) \stackrel{\rightarrow}{\mathbf{a}}$$

I)
$$\overrightarrow{b} (\overrightarrow{d} \cdot \overrightarrow{a})$$

m) $\vec{a} \cdot \vec{c} - \vec{a} \cdot \vec{d}$ de dos formas

n)
$$(\overrightarrow{a} + \overrightarrow{b})^2$$
 de dos formas

o)
$$(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b})$$
 de dos formas

(Sol: a) -3; b) -3; c) -17; d) 2; e) 4; f) 5; g) 10; h) 10; i) -3; j) -13; k) (-12,4); l) (-34, -51); m) 14; n) 17; o) -3)

24. TEORÍA: Indicar, razonadamente, si el resultado de las siguientes operaciones es un escalar o un vector:

a)
$$\begin{pmatrix} \overrightarrow{a} \cdot \overrightarrow{b} \end{pmatrix} \begin{pmatrix} \overrightarrow{c} \cdot \overrightarrow{d} \end{pmatrix}$$

b)
$$\overrightarrow{a} \left(\overrightarrow{b} + \overrightarrow{c} - \overrightarrow{d} \right)$$
 c) $\overrightarrow{a} \left(\overrightarrow{b} \cdot \overrightarrow{c} \right) \overrightarrow{d}$

c)
$$\overrightarrow{a} (\overrightarrow{b} \cdot \overrightarrow{c}) \overrightarrow{c}$$

(Soluc: escalar, en los tres casos)

25. Un triángulo ABC es tal que $|\overrightarrow{AB}| = 5$, $|\overrightarrow{BC}| = 7$ y $|\overrightarrow{B}| = 120^\circ$. Calcular $|\overrightarrow{BA}| = |\overrightarrow{BC}|$ y su superficie.

26. Sea un triángulo equilátero ABC de lado 6. Hallar:

b)
$$\vec{CA} \cdot \vec{CB}$$

c)
$$\overrightarrow{BA} \cdot \overrightarrow{CB}$$

d)
$$\overrightarrow{AB} \cdot \overrightarrow{CB}$$

e)
$$\overrightarrow{AC} \cdot \overrightarrow{BA}$$

f)
$$\overrightarrow{AA} \cdot \overrightarrow{AC}$$

(Aviso: Para considerar el producto escalar gráficamente, previamente los dos vectores han de tener origen común, para lo cual en ciertos casos habrá que trasladar uno de ellos).

(Soluc: a) 18; b) 18; c) -18; d) 18; e) -18; f) 0)

27. En el paralelogramo de la figura, hallar \overrightarrow{AB} \overrightarrow{AD} \overrightarrow{V} \overrightarrow{AB} \overrightarrow{AC} (Soluc: 5\sqrt{3}; 16,34)

- **28.** Hallar **x** de modo que el producto escalar de los vectores $\vec{a} = (3,-5)$ y $\vec{b} = (x,2)$ sea igual a 8 (Soluc: x=6)
- **29.** Hallar las componentes de un vector $\vec{\mathbf{u}}$ cuyo módulo es $2\sqrt{17}$ y que es ortogonal al vector $\vec{\mathbf{v}} = (4,1)$. (Soluc: $\vec{u}_1 = (2,-8)$ y $\vec{u}_2 = (-2,8)$) Hacer un dibujo explicativo de la situación.
- 30. Hallar las componentes de un vector cuyo producto escalar por sí mismo es 20 y cuyo producto escalar (Soluc: (38/13,-44/13) y (-2,4)) por el vector (3,2) es 2.
- * 31. Resolver el problema 8 analíticamente, y comprobar que se obtiene el mismo resultado.
 - **32.** Considerar los puntos A(1,2) y B(4,6). Hallar el punto C(x,y) tal que el segmento \overline{AB} sea \bot al segmento $\overline{\mathsf{AC}}$ y de la misma longitud. Hallar el área del triángulo $\overline{\mathsf{ABC}}$.

Ángulo de dos vectores:

33. Calcular el ángulo formado por los siguientes pares de vectores, y dibujarlos (cada apartado en diferentes

$$\rightarrow$$
 a) u = (2,1) y v = (1,3)

a)
$$u = (2,1)$$
 $y = (1,3)$ (Soluc: 45°) $x = (-5,12)$ $y = (8,-6)$ (Soluc: 135°) $y = (2,1)$ $y = (1,3)$ (Soluc: 30°) $y = (2,1)$ $y = (-9,3)$ (Soluc: 135°)

b)
$$\overrightarrow{u} = (\sqrt{3}, 1) \ \overrightarrow{y} \ \overrightarrow{v} = (1, \sqrt{3})$$

f)
$$u = (2,1) y v = (-9,3)$$

c)
$$\overrightarrow{a} = (3\sqrt{2}, \sqrt{6})$$
 y $\overrightarrow{b} = (-3\sqrt{2}, \sqrt{6})$ (Soluc: 120°) $\overrightarrow{a} = (4,3)$ y $\overrightarrow{v} = (1,7)$ (Soluc: 45°)

g)
$$\overrightarrow{u} = (4,3) \ \overrightarrow{v} = (1,7)$$

- **d)** u = (4,1) v = (-2,8)
- (Soluc: 90°)
- **34.** Dados los vectores u = (3, -4) y v = (5, 6), calcular:
 - a) El ángulo que forman. (Soluc: ≅ 103º19')
 - **b)** Un vector en la dirección y sentido de u que sea unitario. (Soluc: (3/5, -4/5))
 - c) Un vector en la dirección y sentido de $\stackrel{\rightarrow}{u}$ de módulo 15. (Soluc: (9,-12))
 - d) ¿Son \overrightarrow{u} y \overrightarrow{v} ortogonales? En caso contrario, buscar un vector cualquiera ortogonal a \overrightarrow{u}
- **35.** ¿Qué ángulo forman los vectores **unitarios** \vec{a} y \vec{b} en los siguientes casos?:

a)
$$\overrightarrow{a} \cdot \overrightarrow{b} = 1$$

a)
$$\vec{a} \cdot \vec{b} = 1$$
 b) $\vec{a} \cdot \vec{b} = \frac{\sqrt{3}}{2}$ **c)** $\vec{a} \cdot \vec{b} = -\frac{1}{2}$ **d)** $\vec{a} \cdot \vec{b} = \frac{\sqrt{2}}{2}$

c)
$$\vec{a} \cdot \vec{b} = -\frac{1}{2}$$

d)
$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{\sqrt{2}}{2}$$

(Soluc: a) 0°; b) 30°; c) 120°; d) 45°)

36. Comprobar que los vectores $\vec{u}=(8,15)$ y $\vec{v}=(30,-16)$ constituyen una base ortogonal. Comprobar que los vectores $\overrightarrow{u}/|\overrightarrow{u}|$ y $\overrightarrow{v}/|\overrightarrow{v}|$ forman una base ortonormal.

Problemas con parámetros:

NOTA: En los ejercicios 37 a 51 se recomienda hacer un dibujo previo de la situación

- 37. Calcular \mathbf{x} e \mathbf{y} en $\mathbf{a} = (-x,4)$, $\mathbf{b} = (-1,5)$ y $\mathbf{c} = (3,y)$, si se sabe que $\mathbf{a} \perp \mathbf{b}$ y $\mathbf{c} \perp \mathbf{b}$. Comprobar el resultado gráficamente.
- 38. Obtener tres vectores cualesquiera perpendiculares a (-1,-3), siendo al menos uno de ellos unitario. Explicar gráficamente el resultado.
- **39.** Hallar el valor de **m** para que $\vec{u} = \left(\frac{1}{2}, m\right) y \vec{v} = \left(\frac{\sqrt{2}}{2}, 1\right)$ sean ortogonales. Interpretar el resultado gráficamente. (Soluc: $-\sqrt{2}/4$)
- **40.** Dados $\vec{x} = (2, -3)$ e $\vec{y} = (a, 4)$, calcular **a** para que: **a)** $\vec{x} \overset{\rightarrow}{/y}$ **b)** $\vec{x} \overset{\rightarrow}{\perp} \vec{y}$ (Sol: a) a=-8/3; b) a=6)
- \rightarrow 41. Hallar un vector v que tenga módulo 3 y que forme un ángulo de 90° con $\stackrel{\rightarrow}{a}$ = (3,4) (Aviso: puede haber (Soluc: $\overrightarrow{v}_1 = (12 / 5, -9 / 5) \ \overrightarrow{v}_2 = -\overrightarrow{v}_1$) dos soluciones). Explicar gráficamente la situación.
- **42.** Dados $\overrightarrow{u} = (3,1)$, $\overrightarrow{v} = (a,-1/2)$ y $\overrightarrow{w} = (-3,2)$, se pide:

- a) Hallar a para que \overrightarrow{v} sea unitario. Comprobar gráficamente el resultado. (Sol: $a = \pm \sqrt{3}/2$)
- **b)** Hallar **a** para que \overrightarrow{u} y \overrightarrow{v} sean //. Justificar gráficamente la solución obtenida. (Sol: a=-3/2)
- c) Hallar a para que \overrightarrow{v} y \overrightarrow{w} sean \bot . Justificar gráficamente la solución obtenida. (Sol: a=-1/3)
- **d)** Hallar un vector \perp a $\stackrel{\rightarrow}{u}$ y unitario. (Sol : $\left(-\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$ o su opuesto)
- e) Hallar el ángulo que forman u y w (Sol: ≅ 127° 52' 30")
- **43.** a) Calcular las componentes de un vector \overrightarrow{u} de módulo 2 y tal que \overrightarrow{i} \overrightarrow{u} = 30° (Aviso: puede haber dos soluciones) $\left(\overrightarrow{Soluc} : \overrightarrow{u}_1 = (\sqrt{3}, 1) \ y \ \overrightarrow{u}_2 = (\sqrt{3}, -1) \right)$
 - soluciones) $(Soluc : \vec{u}_1 = (\sqrt{3}, 1) \ y \ \vec{u}_2 = (\sqrt{3}, -1))$ **b)** Ídem con $|\vec{u}| = 3\sqrt{2} \ y \ \vec{i} \ \vec{u} = 45^{\circ}$ $(Soluc : \vec{u}_1 = (3, 3) \ y \ \vec{u}_2 = (3, -3))$
- **44.** Calcular **a** con la condición de que $\overrightarrow{u} = (a,1)$ forme 60° con $\overrightarrow{v} = (1,1)$ (Aviso: puede haber dos soluciones, por lo que se recomienda hacer un dibujo) $\left(\begin{array}{c} \text{Soluc} : \sqrt{3} 2 \end{array} \right)$
- **45.** Hallar el valor de **x** para que el vector (x,1) forme 45° con el vector (1,2) (Aviso: puede haber dos soluciones) (Soluc: $x_1=3$ y $x_2=-1/3$)
- **46.** Dados los vectores u = (2,-1) y v = (a,3), calcular **a** de modo que:
 - a) \overrightarrow{u} y v sean ortogonales (Soluc: a=3/2)
 - **b)** \overrightarrow{u} y \overrightarrow{v} formen 60° $\left(\text{Soluc : } a = \frac{24 + 15\sqrt{3}}{11} \right)$
 - **c)** \overrightarrow{u} y \overrightarrow{v} tengan la misma dirección (Soluc: a=-6)
- **47.** Dados los vectores $\overrightarrow{a} = (1,-1)$ y $\overrightarrow{b} = (2,m)$, hallar **m** de forma que:
 - a) \overrightarrow{a} y \overrightarrow{b} sean ortogonales. (Soluc: m=2)
 - **b)** $\stackrel{\rightarrow}{a}_{y}\stackrel{\rightarrow}{b}$ tengan la misma dirección. (Soluc: m=-2)
 - c) \overrightarrow{b} sea unitario. (Soluc: \mathcal{I} soluc.)
 - **d)** \overrightarrow{a} y \overrightarrow{b} formen 45° (Soluc: m=0)
- 48. Dados a = (3, -4) y b = (5, x), hallar **x** para que:
 - a) ambos vectores sean perpendiculares (Soluc: x=15/4)
 - **b)** ambos vectores formen 30° (Soluc: $x_1 = -2, 1$; $x_2 = -41,50$)
 - c) tengan la misma dirección (Soluc: x=-20/3)
- **49.** Dados $\vec{u} = (2,1) \ y \ \vec{v} = (a,-3)$, se pide:
 - a) Hallar a para que sean //. Justificar gráficamente la solución obtenida. (Soluc: a=-6)
 - b) Hallar a para que sean ⊥. Justificar gráficamente la solución obtenida. (Soluc: a=3/2)
 - c) Hallar a para que formen 45°. Justificar gráficamente la solución obtenida. (Soluc: a=9)
 - **d)** Hallar un vector \perp a $\overset{\rightarrow}{\mathsf{u}}$ de módulo 5 (Soluc: $(-\sqrt{5}, 2\sqrt{5})$ o su opuesto)
- **50.** Dados $\vec{u} = (3,-4)$ y $\vec{v} = (a,2)$, se pide:
 - **a)** Hallar **a** tal que $\overset{\rightarrow}{\mathbf{u}} \cdot \mathbf{v} = 4$ (Soluc: a=4)

- b) ¿Qué ángulo formarán u y v en el caso anterior? (Soluc: ≅ 79° 41′ 43″)
- c) Hallar a tal que \overrightarrow{u} // \overrightarrow{v} . Explicar gráficamente la situación. (Soluc: a=-3/2)
- d) Hallar un vector \perp a $\stackrel{\rightarrow}{u}$ y de módulo 10. Explicar gráficamente la situación. (Soluc: (8,6), o su opuesto)
- **51.** Considerar los vectores $\vec{u} = (b, -\sqrt{3})$ y $\vec{v} = \left(-\frac{1}{2}, a\right)$
 - a) Hallar a y b para que \vec{v} sea unitario y ambos vectores sean \perp y estén en el semiplano inferior.

(Soluc: $a = -\sqrt{3/2}$; b = 3)

- b) Comprobar gráficamente el resultado:
- c) Si b=0, ¿podrían ser // para algún valor de a?

(Soluc: NO)

Área de un triángulo:

- **52.** Hallar los ángulos del triángulo de vértices A(-2,2), B(5,3) y C(2,15). Hallar también su área. (Soluc: $A \cong 64^{\circ}$ 46'; $B \cong 84^{\circ}$ 6'; $C \cong 31^{\circ}$ 8'; $S_{ABC} = 43,5$ u^2)
- 53. Dado el triángulo de vértices A(1,1), B(5,4) y C(-5,9), se pide:
 - a) Dibujarlo.
 - b) Demostrar que es rectángulo en A
- $\left(Soluc: \overrightarrow{AB} \cdot \overrightarrow{AC} = 0\right)$

c) Hallar su área.

- (Soluc: $S_{ABC}=25 u^2$)
- **54. a)** Dibujar el triángulo de vértices A(1,-2), B(3,-1) y C(2,1) y hallar su área. (Soluc: $S_{ABC}=2,5 u^2$)
 - **b)** Ídem con A(3,8), B(-11,3) y C(-8,-2) (Soluc: S_{ABC} =42,5 u^2)
 - c) Ídem con A(4,-1), B(2,1) y C(0,2) (Soluc: $S_{ABC}=1 u^2$)
- **55. TEORÍA**: a) Dado el vector $\overrightarrow{u} = (3, -4)$, hallar razonadamente otro vector con la misma dirección pero de módulo 2. Hacer un dibujo explicativo.
 - **b)** Dados $\overrightarrow{u} = (-1,2)$, $\overrightarrow{v} = (2,-3)$ y $\overrightarrow{w} = \left(\frac{1}{2},4\right)$, hallar $(\overrightarrow{u} \cdot \overrightarrow{v})\overrightarrow{w}$
 - c) ¿Son ortonormales $\vec{a} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ y $\vec{b} = \left(-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}\right)$? ¿Y ortogonales?
 - d) ¿Qué indica el signo del producto escalar? Indicar ejemplos.
 - e) Demostrar que el vector $(\vec{b} \cdot \vec{c})\vec{a} (\vec{a} \cdot \vec{c})\vec{b}$ es perpendicular al vector \vec{c}
 - f) ¿Pueden ser paralelos los vectores (2,a) y (0,5)?
 - g) ¿Puede ser un unitario el vector (2,a)? (Razonarlo no analíticamente)