Карта регистров блока пространственной обработки

Д. В. Днепров, С. П. Ипполитов, И. В. Корогодин, Е.Н. Болденков МЭИ, УИЦ СРТТ

6 мая 2016 г. (16:06)

Содержание

1	Соглашения о терминологии и обозначениях							
2	Регі	истры блока пространственной обработки	4					
	2.1	Карта регистров блока пространственной обработки	4					
	2.2	Управляющие регистры	4					
		2.2.1 CRPA_ID (0x00)	4					
		2.2.2 CRPA_PARAMS (0x04)	5					
		2.2.3 CRPA_CONTROL (0x08)	5					
		2.2.4 CRPA_STATUS (0x0A)	6					
	2.3	Регистры блоков помехоподавления	6					
	2.4	Регистры блоков фокусировки	6					
	2.5	Регистры блока расцёта коррендимонной матрины	7					

1 Соглашения о терминологии и обозначениях

В дальнейшем описании будем руководствоваться следующими принципами.

При описании алгоритмов функционирования устройств помимо математических формул будет испольльзоваться синтаксис языков C, Matlab, Verilog.

Красным цветом отмечено описание нереализованных функций, зеленым - те места документа, которые требуют доработки (чаще всего требуется словесное описание заменить таблицей).

CRPA_BASE - базовый адрес регистровой памяти, относительно которого заданы смещения карты памяти Все регистры являются 32-разрядными.

Управление доступом:

ro – только чтение

wo - только запись

rw - чтение/запись

2 Регистры блока пространственной обработки

2.1 Карта регистров блока пространственной обработки

	Смещение	Смещение Название Описание		Раздел							
				(ссылка)							
	Управляющие регистры										
	0x00 (0x00)	CRPA_ID	Идентификатор блока пространственной обработки	2.2.1							
	0×04 (0×01)	CRPA_PARAMS	Параметры блока пространственной обработки	2.2.2							
	0×08 (0×02)	Управление блоком пространственной обработки	2.2.3								
	0x0A (0x03) CRPA_STATUS Статус блока пространственной обра- ботки										
	Регистры блоков помехоподавления										
	0×400 (0×100)	0x400 (0x100) CRPA_NF_0 Регистры помехоподавителя 0		2.3							
	0x800 (0x200) CRPA_NF_1 Регистры помехоподавителя 1		2.3								
\mathcal{L}	0×2400 (0×900)	CRPA_NF_8	Регистры помехоподавителя 7	2.3							
	Резерв										
	Регистры блоков фокусировки										
	0×4000 (0×1000)	CRPA_BF_0	Регистры блока фокусировки 0	2.4							
	0×4080 (0×1020)	CRPA_BF_1	Регистры блока фокусировки 0	2.4							
	0×4600 (0×1180)	CRPA_BF_11	Регистры блока фокусировки 0	2.4							
		Регистры блока расчёта ко	рреляционной матрицы								
	0×5000 (0×1400)	· / =									
\bigcirc			ной матрицы								

2.2 Управляющие регистры

2.2.1 CRPA ID (0x00)

Register 2.1: Идентификатор влока пространственной обработки CRPA ID (0x00)

ID (ro) Идентификация начала блока регистров управления импульсом прерывания. **reserved (ro)** Зарезервированные биты.

2.2.2 CRPA PARAMS (0x04)

Register 2.2: Регистр параметров блока пространственной обработки CRPA PARAMS (0x04)

	Restrued		AUM B	Ç.	AUM A	Ŷ	ME CHA	\$	AR TO	NE)	
3:	1 16	15	12	11	8	7	4	3	C)	
	0×0000		0×0		0×0		0×0		0×0	П	о сбросу

NF_TIME (ro) Количество отводов по времени в пространственно-временном фильтре помехоподавления.

NF_CHAN (ro) Количество пространственных входов в пространственно-временном фильтре помехоподавителя.

NUM NF (ro) Количество блоков пространственно-временных подавителей.

NUM_BF (ro) Количество блоков фокусировки.

Reserved Зарезервированные биты.

2.2.3 CRPA CONTROL (0x08)

Register 2.3: РЕГИСТР УПРАВЛЕНИЯ БЛОКОМ ПРОСТРАНСТВЕННОЙ ОБРАБОТКИ CRPA CONTROL (0x08)

CRPA_Rst (w) Сигнал программного сброса блока пространственной обработки. Для сброса надо записать "1", а потом записать "0".

CRPA_SYNC (rw) Тип синхронизации запуска: 0 — асинхронный запуск, 1 — внутренняя синхронизация, 2 — внешняя синхронизация.

CRPA CM START (w) Флаг запуска блока накопления корреляционной матрицы.

CRPA_NF_START (w) Флаг обновления коэффициентов пространственно-временных фильтров помехоподавления

CRPA BF START (w) Флаг обновления коэффициентов блоков фокусировки.

CRPA_CM_STAT (rw) Количество накапливаемых отсчётов в блоке расчёта корреляционной матрицы.

Флаг CRPA_SYNC определяет момент запуска блока накопления корреляционной матрицы и обновления коэффициентов. При CRPA_SYNC=0 запуск осуществляется *в момент записи* "1" в биты CRPA_CM_START, CRPA_NF_START и CRPA_BF_START. При CRPA_SYNC=1 запуск осуществ-

ляется по внутреннему сигналу синхронизации, возникающему раз в 1 мс после записи "1" в биты CRPA_CM_START, CRPA_NF_START и CRPA_BF_START. При CRPA_SYNC=2 запуск осуществляется по внешнему сигналу синхронизации.

2.2.4 CRPA STATUS (0x0A)

Register 2.4: РЕГИСТР СТАТУСТА БЛОКА ПРОСТРАНСТВЕННОЙ ОБРАБОТКИ CRPA STATUS (0x0C)

CRPA_CM_READY (r) Флаг готовности результата накопления корреляционной матрицы.

Reserved Зарезервированные биты

2.3 Регистры блоков помехоподавления

Смещения указаны относительно начального адреса блока помехоподавления CRPA_NF_x (см. разд. 2).

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF_TIME — количества отводов по времени и NF CHAN — количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

При записи новых коэффициентов в по данным адресам происходит запись в теневые регистры. Новые значения коэффициентов начинают использоваться после сигнала обновления CRPA_NF_START, см. разд. 2.2.3.

Смещение	Название	Описание	Примечание					
0×00 (0×00)	CRPA_NF_K_0_0	Коэффициент для 0 входа и 0						
		отвода по времени						
0×04 (0×01)	0x04 (0x01)							
	отвода по времени							
0xXX (0xYY)	CRPA_NF_K_I_J	Коэффициент для I входа и J от-	смещение $4 imes (I\cdot$					
		вода по времени	$NF_TIME + J)$					
0×7C	CRPA_NF_K_7_3	Коэффициент для 7 входа и 3	при $NF_TIME =$					
		отвода по времени	4					

2.4 Регистры блоков фокусировки

Смещения указаны относительно начального адреса блока фокусировки CRPA_BF_x (см. разд. 2).

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF_TIME — количества отводов по времени и NF CHAN — количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

	Вектор задержанных сигналов Ү														
[`NCHANNELS*(LENGTH+								+1)*A	DC_D	WIDT	H - 1	: 0]			
	Отводы adc3 Отводы adc2			2	Отводы adc1 От				Отвод	юды adc0					
z ⁻³ z ⁻² z ⁻¹ z ⁻⁰ z ⁻³ z ⁻² z ⁻¹ z ⁻⁰ z							z -3	z -2	z ⁻¹	Z -0	z -3	z -2	Z ⁻¹	Z ⁻⁰	
MSE	MSB (старший бит)										(мл	адши	й бит)	LSB	

Рис. 1. Вектор задержанных отсчётов входных сигналов

Рис. 2. Структура корреляционной матрицы

При записи новых коэффициентов в по данным адресам происходит запись в теневые регистры. Новые значения коэффициентов начинают использоваться после сигнала обновления CRPA_BF_START, см. разд. 2.2.3.

Смещение	Название	Описание	Примечание
0x00 (0x00)	CRPA_BF_K_0	Коэффициент для 0 входа	
0×04 (0×01)	CRPA_BF_K_0	Коэффициент для 1 входа	
0×20 (0×08)	CRPA_NF_K_7	Коэффициент для 7 входа	

2.5 Регистры блока расчёта корреляционной матрицы

Для вычисления коэффициентов фильтров пространственного подавления помех рассчитывается матрица корреляционных коэффициентов.

Для расчёта матрицы формируется вектор задержанных отсчётов входного сигнала, имеющий вид, приведённый на рис. 1.

Далее рассчитывается матрица коэффициентов. Матрица имеет нижний треугольный вид. Структура матрицы приведена на рис. 2.

Смещения указаны относительно начального адреса блока расчёта корреляционной матрицы CRPA_CM (см. разд. 2), равного 0x5000.

Расположение коэффициентов зависит от параметров реализованного фильтра (см. 2.2.2): NF_TIME — количества отводов по времени и NF_CHAN — количества входов блока помехоподавления.

Каждый коэффициент представляет собой действительное целое число со знаком.

Смещение	Название	Описание	Примечание
0x00 (0x00)	CRPA_CM_R_0_0	Элемент матрицы 0, 0	
0x04 (0x01)	CRPA_CM_R_1_0	Элемент матрицы 1, 0	
0x08 (0x02)	CRPA_CM_R_1_1	Элемент матрицы 1, 1	
0xXX (0xYY)	CRPA_CM_R_I_J	Элемент матрицы I, J	
0x83C (0x20F)	CRPA_CM_R_31_31	Элемент матрицы 31, 31	при $NF_TIME = 4$,
			$NF_CHAN = 8$

Список литературы