2023 秋季学期数理统计期中考试

命题人: 整理人: Aut

1. (10 分) 设 X_1, X_2, \ldots, X_n 是来自 $N(\mu, \sigma^2)$ 的简单随机样本, Y_1, Y_2, \ldots, Y_m 是来自 $N(\mu_2, \sigma^2)$ 的简单随机样本, 两样本独立.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2,$$

$$\bar{Y} = \frac{1}{m} \sum_{i=1}^{m} Y_i, \quad S_2^2 = \frac{1}{m-1} \sum_{i=1}^{m} (Y_i - \bar{Y})^2.$$

那么以下结论正确的是:(

$$(1)\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1); \qquad (2)\sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(n);$$

$$(3)\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t(n-1); \qquad (4)\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim t(n);$$

$$(5)\bar{X} - \bar{Y} \sim N(0, 2\sigma^2); \qquad (6)\bar{X} - \mu \sim N\left(0, \frac{\sigma^2}{n}\right);$$

$$(7)\frac{\sum_{i=1}^{n}(X_{i}-\mu)^{2}}{\sum_{i=1}^{m}(Y_{i}-\mu_{2})^{2}} \sim F(n-1,m-1); \qquad (8)\frac{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}{\sum_{i=1}^{m}(Y_{i}-\bar{Y})^{2}} \sim F(n,m).$$

2. (20 分) 设 X_1, \ldots, X_n 为来自总体方差为 σ^2 的分布族的简单随机样本,证明 S_n^2 是 σ^2 的无偏估计,并且 $S_n^2 \xrightarrow{a.s.} \sigma^2$.

3. 设 $X_1, ..., X_n$ 为来自如下分布的简单随机样本:

$$f(x; \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left\{-\frac{(\ln x)^2}{2\sigma^2}\right\}, \quad x > 0$$

- (1) (5 分) 求 σ^2 的矩估计 $\hat{\sigma}_{1n}^2$.
- (2) (10 分) 求 σ^2 的极大似然估计 $\hat{\sigma}_{2n}^2$.
- (3) (5分) 证明 $\hat{\sigma}_{2n}^2 \xrightarrow{a.s.} \sigma^2$.

4. (1) (5分) 设 $X_1, ..., X_n$ 为来自 $U(0, \theta)$ 的简单随机样本. 求 $X_{(n)}$ 的密度函数.

- (2) (10 分) 证明: $\frac{n+2}{n}(X_{(n)})^2$ 是 θ^2 的一个 UE.
- (3) (5分) 求 θ^2 的 UMVUE.

5. 设 X_1, \ldots, X_n 为来自 $N(1, \sigma^2)$ 的简单随机样本.

- (1) (10 分) 求 σ^2 的 C-R 下界.
- (2) (10 分) 证明: $\sum_{i=1}^{n} (X_i 1)^2 / n$ 是 σ^2 的 UE, 并且是 UMVUE.

6. $(10\,
m 分)$ 设有来自总体 $N(\mu,0.5^2)$ 的容量为 n 的独立同分布样本. 当 n 至少多大时, μ 的置信水平为 0.95 的置信区间长度不大于 0.5? (附: $u_{0.05}=1.65,\,u_{0.025}=1.96$)