)1-11-2
	CS M146 PS4
1	(h+*(x), B+*) = argmin = w+(n)e - Yn B+ h+(xn)
a)	$T(B_t) = (aBt - a^{-Bt}) + a^{-Bt}$
	27(B=) . BB+ 5
	$\frac{\partial J(\beta_t)}{\partial \beta_t} = (e^{\beta_t} + e^{-\beta_t}) \epsilon_t - e^{-\beta_t} = 0$
	$(e^{6t} + e^{-6t}) + = e^{-6t}$
	$\frac{e^{\beta t} + e^{-\beta t}}{e^{-\beta t}} = \frac{1}{\xi_t}$ $e^{2\beta t} + 1 = \frac{1}{\xi_t}$
	$\frac{2\beta_{+}}{2\beta_{+}}$, $\frac{1}{1}$
	$2\beta_{+} = \log\left(\frac{1}{\epsilon_{+}} - 1\right)$
	$ \begin{bmatrix} \beta_{+} = \frac{1}{2} \log \left(\frac{1 - \epsilon_{+}}{\epsilon_{+}} \right) \end{bmatrix} $
	[V+ - 2(0) (E+ 1]
11	eTerror ent in the state of the
b)	·Training set is linearly separable
	· hard-margin linear support vector machine (noslack)
	With this setup, we would produce a linear separator that
	correctly classifies all of the data points. Thus, there would
	be no error $\rightarrow E_1 = 0$. This means that as $E_+ \rightarrow 0$, $B_+ \rightarrow \infty$.
	Therefore, in the first boosting iteration $B_i = \infty$.

2. a)	$k=3$ $x_1=1$ $x_2=2$ $x_3=5$ $x_4=7$
	We would get the optimal clustering by doing the following:
	· C1 = {X1, X2 } · C2 = {X3 } · C3 = {X4 }
	This iresults on the following centraids:
	$N_1 = \frac{1-2}{2} = \frac{3}{2}$ $N_2 = 5$ $N_3 = 7$
	And the objective can be found by doing:
	$0bj = (1-\frac{3}{2})^2 + (2-\frac{3}{2})^2 + 0^2 + 0^2$
	$= \left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} = \frac{1}{2}$
	= 0.5
	[N; = 1.5 Nz = 5 Ns = 7 Objective = 0.5]
6)	Lloyd's algorithm organizes data points into clustors, then
Ku gaza	reassingns Nx according to the average of the data pumts
	in each of the clusters. Let's say that we initialize
	Lloyd's algorithm with the following:
	, C, = { X, } · Cz = { X2 } · C3 = { X3, X4}
	The state of the s
	2 loyd is algorithm would now compute the centroids using
	the average of the data points according to our instruction.
	The last cluster has a different set of zpoints. This means
	the algorithm should terminate at a local minima.
	$N_1 = 1$ $N_2 = 2$ $N_3 = \frac{5+7}{2} = 6$
	$0b_{ij} = 0^{2} + 0^{2} + (5-6)^{2} + (7-6)^{2} = 2$
	Based on these calculations, we see that the assignment
	of A(x,)=1, A(x2)=2, A(x3)=3, A(x4)=3 gives us
	a suboptimal solution when compared to the solution
	in part A. The objective in part A is 0.5 as compared
	to the objective of 2 in part B.

3. a)
$$\int_{N} (\theta) = \sum_{K,n}^{\infty} \gamma_{nK} \log_{N} W_{K} + \sum_{K} \sum_{K} \gamma_{nK} \log_{N} N(x_{n} | N_{K}, Z_{K})$$

$$\nabla_{N} \int_{N} (\theta) = \frac{\partial_{N} (\theta)}{\partial N_{K}} \sum_{K}^{\infty} \gamma_{nK} \log_{N} \left(\frac{-(x_{n} - N_{j})^{2}}{2r^{2}} \right)$$

$$= \frac{\partial_{N} (\theta)}{\partial N_{K}} \sum_{K}^{\infty} \gamma_{nK} \left[\left(\frac{-(x_{n} - N_{j})^{2}}{2\sigma^{2}} \right) - \log_{N} \left(\frac{1}{\sigma - (2n)} \right) \right]$$

$$= \sum_{N} \gamma_{nj} \left[\frac{2\sigma^{2}(2(x_{n} - N_{j}))}{(2\sigma^{2})^{2}} \right]$$

$$= \sum_{N} \gamma_{nj} \frac{(x_{n} - N_{j})}{\sigma^{2}}$$

$$= \sum_{N} \gamma_{nj} \frac{(x_{n} - N_{j})}{\Sigma_{j}}$$

$$= \sum_{N} \gamma_{nj} \frac{(x_{n} - N_{j})}{\Sigma_{j}}$$

$$= \sum_{N} \gamma_{nj} \frac{(x_{n} - N_{j})}{\Sigma_{j}}$$

b) Set the above solution (the gradient) to zero

$$\sum_{n} \gamma_{nj} \frac{(x_n - N_j)}{z_j} = 0$$

$$\sum_{n} \mathcal{T}_{nj} X_{n} - \mathcal{N}_{j} \sum_{n} \mathcal{T}_{nj} = 0$$

$$N_j \sum_n \gamma_{nj} = \sum_n \gamma_{nj} \chi_n$$

$$N_{j} = \frac{\sum_{n} \mathcal{T}_{n_{j}} \chi_{n}}{\sum_{n} \mathcal{T}_{n_{j}}}$$

$$U_{j} = \frac{1}{\sum_{n} \mathcal{T}_{n_{j}}} \sum_{n} \mathcal{T}_{n_{j}} \chi_{n}$$

c) $W_j = \frac{\sum_n \gamma_{nj}}{\sum_i \sum_n \gamma_{nj}} N_j = \frac{\sum_n \gamma_{nj} \chi_n}{\sum_n \gamma_{nj}}$ Z) En Dnj = 0,2 + 0.2 + 0.8 + 0.9 + 0.9 + 0.8 + 0.8 + 0.2 + 0.1 + 0.1 = 5 $W_1 = \frac{5n7n_1}{5} = \frac{0.2 + 0.2 + 0.8 + 0.9 + 0.9}{5} = \frac{3}{5} = 0.6$ $W_2 = \frac{\sum_{n} \overline{y}_{n2}}{5} = \frac{0.8 + 0.8 + 0.2 + 0.1 + 0.1}{5} = \frac{2}{5} = 0.4$ $U_1 = \frac{\sum_{n} g_{ni} \chi_n}{\sum_{n} g_{ni}} = \frac{(0.2.5) + (0.2.15) + (0.8.25) + (0.4.30) + (0.4.40)}{\sum_{n} g_{ni}} = \frac{29}{29}$ $N_2 = \frac{\sum_{n} 7_{n2} \times n}{\sum_{n} 7_{n2} \times n} = \frac{(0.8.5) \cdot (0.8.15) \cdot (0.2.25) \cdot (0.1.30) \cdot (0.1.40)}{2.8 \cdot 0.8 \cdot 0.2 \cdot 0.1.0} = 14$ W, = 0.6 W2 = 0.4 N. = 29 Nz = 14

4.1 A)

Average Face:

The average face is shown above. It still vaguely resembles a human face looking forward, but a lot of the features are quite blurred. We can see a clear image of the eyes, nose, and mouth but there are little to no details. Because the details all get blurred together, the eyes and mouth look very dark and eerie. Overall though, the average face looks quite good and representative of a human face.

4.1 B)

These images all have some distinct features that make them easy to recognize and differentiate from each other. Some of the features that are easy to discern include skin tone and facial hair. These images were probably chosen as the top eigenfaces because their distinct features make them stand out from the blur of the rest of the dataset.

4.1 C)

us a few different things. First, using smaller values of I (lower dimensions) is hard because most faces deduce to looking quite similar. As we increase the dimensions, we observe more distinct features that make it difficult to recognize the same people just because of a different facial expression. However, higher dimensions also show that faces start to look similar. For instance, we see there is more resemblance to the original as we increase the value for I. From

this little experiment we see that choosing an appropriate dimension is vital as it allows us to use a correct amount of principal components for accurate classifications.

Code for 4.1 A B C)

```
### ====== TODO : START ====== ###
# part 1: explore LFW data set
# part 1a
X, y = get lfw data()
num = 12
show image(X[0])
show image(X[1])
show_image(X[2])
xAverage = np.mean(X, axis = 0)
show_image(xAverage)
# part 1b
U, mu = PCA(X)
plot gallery([vec to image(U[:,i]) for i in range(num)])
# part 1c
num_components = [1, 10, 50, 100, 500, 1288]
print("Originals")
plot gallery(X[:num], title = f'First 12 images (original-dimension)')
for 1 in num_components:
 print(f'l={1}')
 Z, Ul = apply PCA from Eig(X, U, 1, mu)
 new = reconstruct from PCA(Z, Ul, mu)
 plot gallery(new[:num], title=f'First 12 images ({1}-dimension)')
### ====== TODO : END ====== ###
```

4.2 A)

It would be a bad idea to minimize over μ , c, and k. This is because we could set k=n such that n is the number of data points we have. This would cause $\mu_i=x_i$ as each point would just be assigned to its own cluster. We would then see that our objective (J) would become 0. As a result, $c^{(i)}=i$. After all of this, we can see that this defeats the purpose of computing the centers of each cluster to derive an approximate classification for the dataset. After all, our goal was to group data points based on their similar features in order to produce a predictive model.

For Cluster Class:

```
def centroid(self):
   Compute centroid of this cluster.
   Returns
       centroid -- Point, centroid of cluster
   ### ======= TODO : START ======= ###
   # part 2b: implement
   # set the centroid label to any value (e.g. the most common label in this cluster)
   1 = []
   attr = np.array([p.attrs for p in self.points])
   numPoints = len(self.points)
   pos = np.sum(attr, axis = 0) / numPoints
   for p in self.points:
     1.append(p.label)
   clusterLabel, num = stats.mode(1)
   centroid = Point('C', clusterLabel[0], pos)
   return centroid
   ### ====== TODO : END ====== ###
def medoid(self) :
   Compute medoid of this cluster, that is, the point in this cluster
   that is closest to all other points in this cluster.
      medoid -- Point, medoid of this cluster
   ### ====== TODO : START ====== ###
   # part 2b: implement
   dist = {}
   for p in self.points:
     dist[p] = []
     for o in self.points:
       if o != p:
         dist[p].append(p.distance(o))
   for k, v in dist.items():
     avg = np.mean(v)
     dist[k] = avg
   medoid = min(dist, key = dist.get)
   return medoid
   ### ====== TODO : END ====== ###
```

For ClusterSet class:

```
def centroids(self):
   Return centroids of each cluster in this cluster set.
   Returns
       centroids -- list of Points, centroids of each cluster in this cluster set
   ### ====== TODO : START ====== ###
   # part 2b: implement
   centroids = []
   for cluster in self.members:
       centroids.append(cluster.centroid())
   return centroids
   ### ====== TODO : END ====== ###
def medoids(self) :
   Return medoids of each cluster in this cluster set.
   Returns
       medoids -- list of Points, medoids of each cluster in this cluster set
   ### ====== TODO : START ====== ###
   # part 2b: implement
   medoids = []
   for cluster in self.members:
       medoids.append(cluster.medoid())
   return medoids
   ### ====== TODO : END ====== ###
```

```
def random_init(points, k) :
   Randomly select k unique elements from points to be initial cluster centers.
   Parameters
   -----
       points -- list of Points, dataset k -- int, number of clusters
   Returns
      initial_points -- list of k Points, initial cluster centers
   ### ====== TODO : START ====== ###
   # part 2c: implement (hint: use np.random.choice)
   return np.random.choice(points, size = k, replace = False)
   ### ====== TODO : END ====== ###
def kMeans(points, k, init='random', plot=False) :
    Cluster points into k clusters using variations of k-means algorithm.
    Parameters
    -----
        points -- list of Points, dataset
        k -- int, number of clusters
        average -- method of ClusterSet
                   determines how to calculate average of points in cluster
                   allowable: ClusterSet.centroids, ClusterSet.medoids
        init
                -- string, method of initialization
                   allowable:
                       'cheat' -- use cheat_init to initialize clusters
                       'random' -- use random_init to initialize clusters
               -- bool, True to plot clusters with corresponding averages
        plot
                        for each iteration of algorithm
    Returns
        k_clusters -- ClusterSet, k clusters
    ### ====== TODO : START ====== ###
    # part 2c: implement
    # Hints:
    # (1) On each iteration, keep track of the new cluster assignments
           in a separate data structure. Then use these assignments to create
            a new ClusterSet object and update the centroids.
       (2) Repeat until the clustering no longer changes.
       (3) To plot, use plot_clusters(...).
    return kAverages(points, k, ClusterSet.centroids, init = init, plot = plot)
```

====== TODO : END ======

```
def kAverages(points, k, average, init = 'random', plot = True):
   kClusters = ClusterSet()
if init == 'random':
        MU = random_init(points, k)
    elif init == 'cheat':
        MU = cheat_init(points)
   x = 1
   while True:
     clusters = {}
     for m in MU:
        clusters[m] = Cluster([])
     for p in points:
       dist = [p.distance(m) for m in MU]
       index = np.argmin(dist)
        mu2 = MU[index]
        clusters[mu2].points.append(p)
      newCluster = ClusterSet()
      for m, c in clusters.items():
       newCluster.add(c)
      if (kClusters.equivalent(newCluster)) and len(kClusters.members) > 0:
        if average != ClusterSet.centroids:
          name = "K-Medoids"
        else:
          name = "K-Means"
        break
      MU = average(newCluster)
      kClusters = newCluster
     if plot:
       if average != ClusterSet.centroids:
          plot_clusters(newCluster, f"K-Medoids [K=\{k\}, init=\{init\}] at i=\{x\}", average)
        else:
          plot_clusters(newCluster, f"K-Means [K={k}, init={init}] at i={x}", average)
     x += 1
   return kClusters
```


K-means was able to successfully classify the toy dataset a total of four iterations using random initialization. In reality it only needs three iterations, but an extra fourth iteration is run just to check if there are any changes to the clusters. There were no changes, so it stopped after the fourth iteration. As the iterations progress, we observe how the centroid for each cluster actually moves to the actual center of each cluster.

Just like in part D, we see that K-Medoids takes a total of four iterations to successfully classify the dataset. K-Medoids and K-Means happened to take the same number of iterations for this dataset. (There is still the same case with the extra fourth iteration for K-Medoids that was explained earlier). Although the same final results were achieved, the clusters were formed quite differently with the two approaches. For example, the centroids start at different locations before making their way to the actual center of the cluster.

```
### ======= TODO : START ====== ###
# part 2e: implement
return kAverages(points, k, ClusterSet.medoids, init = init, plot = plot)
### ======= TODO : END ======= ###
```


When we use cheat_init, both the K-Medoids and K-Means algorithm are able to get the same result with the centroids at the actual center of the clusters in just 2 iterations. This is considerably fewer iterations than without using cheat_init as we can cut the number of iterations in half.

Main Code for 4.2 D-F

```
### ======== TODO : START ======= ###
# part 2d-2f: cluster toy dataset
np.random.seed(1234)
N = 20
toy_dataset = generate_points_2d(N)
kMeans(toy_dataset, 3, init = 'random', plot = True)
kMedoids(toy_dataset, 3, init = 'random', plot = True)
kMeans(toy_dataset, 3, init = 'cheat', plot = True)
kMedoids(toy_dataset, 3, init = 'cheat', plot = True)
### ======== TODO : END ======== ###
```

cheat_init code

```
### ====== TODO : START ====== ###
# part 2f: implement
labels = set()
groups = {}
clusters = []
for p in points:
 labels.add(p.label)
for 1 in labels:
 groups[1] = []
for p in points:
 groups[p.label].append(p)
for k, v in groups.items():
   cluster = Cluster(v)
   clusters.append(cluster)
initial_points = [cluster.medoid() for cluster in clusters]
return initial points
### ====== TODO : END ====== ###
```

```
average min max
kMeans 0.6175 0.55 0.775
kMedoids 0.6325 0.575 0.725
```

K-Means demonstrated a greater max than K-Medoids, but K-Means had a smaller average and min than K-Medoids. There are very slight differences between the values of the two approaches, likely due to the sensitivity that K-Means displays to outliers. In terms of runtime, it seems that K-Medoids is quicker as most of its runs finish within only two iterations and the slowest was 5 iterations. On the other hand, the number of iterations it took K-Means to finish ranged anywhere from less than 5 to over 12.

```
# part 3a: cluster faces
kMeanScores = []
kMedoidScores = []
np.random.seed(1234)
X1, y1 = util.limit_pics(X, y, [4, 6, 13, 16], 40)
points = build_face_image_points(X1, y1)

for i in range(10):
    mean = kMeans(points, 4, init = 'random')
    kMeanScores.append(mean.score())
    medoid = kMedoids(points, 4, init = 'random')
    kMedoidScores.append(medoid.score())

print('\t average min\t max')
print(f'kMeans\t {round(sum(kMeanScores) / len(kMeanScores), 4)}\t {round(min(kMeanScores), 4)}\t {round(max(kMeanScores), 4)}')
print(f'kMedoids {round(sum(kMedoidScores) / len(kMedoidScores), 4)}\t {round(min(kMedoidScores), 4)}\t {round(max(kMedoidScores), 4)}')
```

4.3 B)

Simply put, this graph (see below) shows us that K-Medoids consistently performs better than K-Means with more principal components used. The plot for K-Medoids shows that there is a dramatic increase in clustering score as the number of components increases from 0 to 5. There is also another significant increase in the clustering score as the number of components increases from 10 to 15. Once K-Medoids reached 15 components, the growth levels off as it has approached a clustering score of nearly 1. K-Medoids might have better performance than K-Means because it uses an actual data point from the cluster while K-Means does not.

As the number of components increases, the clustering score of K-Means doesn't improve as dramatically as we saw with K-Medoids. There's a more gradual increase in clustering score as more components are added, and there is eventually a plateau at a clustering score of 0.85 from 35-40 components. Overall, we learn that increasing the number of components can increase the clustering score for both K-Medoids and K-Means as we can generalize similarities between data points better.

```
# part 3b: explore effect of lower-dimensional representations on clustering performance
kMeanScores = []
kMedoidScores = []
                                                                        Clustering Score vs. # of Components
np.random.seed(1234)
                                                           0.90
U, mu = PCA(X)
                                                                     K-Medoids
                                                                     K-Means
                                                           0.85
X1, y1 = util.limit_pics(X, y, [4, 13], 40)
                                                           0.80
components = np.arange(1, 42, K)
                                                        Clustering Score
                                                           0.75
for i in components:
                                                           0.70
  Z, Ul = apply PCA from Eig(X1, U, i, mu)
  X_rec = reconstruct from PCA(Z, Ul, mu)
                                                           0.65
  points = build_face_image_points(X_rec, y1)
                                                           0.60
  meanResult = kMeans(points, K, init = 'cheat')
  medoidResult = kMedoids(points, K, init = 'cheat')
                                                           0.55
  kMeanScores.append(meanResult.score())
                                                           0.50
  kMedoidScores.append(medoidResult.score())
                                                                            10
                                                                                                   30
                                                                                  # of Components
plt.figure()
plt.plot(components, kMedoidScores, label = 'K-Medoids')
plt.plot(components, kMeanScores, label = 'K-Means')
plt.ylabel("Clustering Score")
plt.xlabel("# of Components")
plt.title("Clustering Score vs. # of Components")
plt.legend()
plt.show()
```

4.3 C)

In order to find a pair that could discriminate very well and a pair that it finds very difficult, I used two for-loops to iterate through all the combinations of the pairings. To do this, I used K-Medoids with cheat initialization enabled (we saw previously that this yields the best results in the fewest iterations). In every iteration, I build a subset of 40 pictures for each individual and then build a new set of points. Finally, I compute the score of K-Medoid for that given pair and keep track of the pairs that are doing well and the ones that are not.

```
# part 3c: determine ``most discriminative'' and ``least discriminative'' pairs of images
np.random.seed(1234)
classes = set(y)
currMax = 0
maxPair = [0, 0]
currMin = 999999999999999
minPair = [0, 0]
for i in range(len(classes)):
 for j in range(len(classes)):
   if i != j:
     X1, y1 = util.limit_pics(X, y, [i, j], 40)
     points = build_face_image_points(X1, y1)
     cluster = kMedoids(points, 2, init = 'cheat')
      s = cluster.score()
     if s < currMin:
       minPair = [i,j]
        currMin = s
      elif s > currMax:
       maxPair = [i,j]
        currMax = s
print(minPair)
print(maxPair)
plot representative images(X, y, minPair)
plot representative images(X, y, maxPair)
```

Pair that it can discriminate well:

This pair is probably easier for the algorithm to discriminate between because these two individuals look very different. They have different skin tones, different nose shapes, different-looking mouths, and different-shaped eyes. Visually, almost everything about them is different.

Pair that it can't discriminate well:

This pair is probably difficult for the algorithm to discriminate between because these two individuals look very similar. They have the same skin tone, similar noses, and similar eye shapes. They share a lot of the same features, so it is understandable that the algorithm would have a hard time with these two.

→ PCA and k-means

▼ Setting up

```
.....
            : Yi-Chieh Wu, Sriram Sankararaman
Author
# numpy and scipy libraries
import numpy as np
from scipy import stats
# matplotlib libraries
import matplotlib.pyplot as plt
import collections
# To add your own Drive Run this cell.
from google.colab import drive
drive.mount('/content/gdrive')
     Mounted at /content/gdrive
import sys
# Change the path below to the path where your folder locates
# where you have util.py
### ====== TODO : START ====== ###
sys.path.append('/content/gdrive/My Drive/Colab Notebooks/pset4')
### ====== TODO : START ====== ###
import util
from util import *
```

Point, Cluster and Set of Clusters classes

```
def __init__(self, name, label, attrs) :
      A data point.
      Attributes
      ______
          name -- string, name
          label -- string, label
          attrs -- string, features
      self.name = name
      self.label = label
      self.attrs = attrs
   # utilities
   def distance(self, other) :
      Return Euclidean distance of this point with other point.
      Parameters
          other -- Point, point to which we are measuring distance
      Returns
          dist -- float, Euclidean distance
      # Euclidean distance metric
      return np.linalg.norm(self.attrs-other.attrs)
   def __str__(self) :
      Return string representation.
      return "%s : (%s, %s)" % (self.name, str(self.attrs), self.label)
class Cluster(object) :
   def __init__(self, points) :
      A cluster (set of points).
      Attributes
```

```
points -- list of Points, cluster elements
   self.points = points
def __str__(self) :
   Return string representation.
   .....
   s = ""
   for point in self.points :
       s += str(point)
   return s
# utilities
#-----
def purity(self) :
   Compute cluster purity.
   Returns
   ______
                 -- int, number of points in this cluster
       num correct -- int, number of points in this cluster
                        with label equal to most common label in cluster
   .....
   labels = []
   for p in self.points :
       labels.append(p.label)
   cluster label, count = stats.mode(labels)
   return len(labels), np.float64(count)
def centroid(self) :
   Compute centroid of this cluster.
   Returns
       centroid -- Point, centroid of cluster
   .. .. ..
   ### ======= TODO : START ====== ###
   # part 2b: implement
   # set the centroid label to any value (e.g. the most common label in this cluster)
   1 = []
   attr = np.array([p.attrs for p in self.points])
   numPoints = len(self.points)
```

```
pos = np.sum(attr, axis = 0) / numPoints
    for p in self.points:
      1.append(p.label)
    clusterLabel, num = stats.mode(1)
    centroid = Point('C', clusterLabel[0], pos)
    return centroid
    ### ====== TODO : END ====== ###
def medoid(self) :
    Compute medoid of this cluster, that is, the point in this cluster
    that is closest to all other points in this cluster.
   Returns
       medoid -- Point, medoid of this cluster
    ### ====== TODO : START ====== ###
    # part 2b: implement
    dist = \{\}
    for p in self.points:
     dist[p] = []
     for o in self.points:
        if o != p:
         dist[p].append(p.distance(o))
    for k, v in dist.items():
      avg = np.mean(v)
      dist[k] = avg
   medoid = min(dist, key = dist.get)
    return medoid
    ### ====== TODO : END ====== ###
def equivalent(self, other) :
   Determine whether this cluster is equivalent to other cluster.
    Two clusters are equivalent if they contain the same set of points
    (not the same actual Point objects but the same geometric locations).
    Parameters
        other -- Cluster, cluster to which we are comparing this cluster
    Returns
```

```
flag -- bool, True if both clusters are equivalent or False otherwise
      if len(self.points) != len(other.points) :
          return False
      matched = []
      for point1 in self.points :
          for point2 in other.points :
              if point1.distance(point2) == 0 and point2 not in matched :
                 matched.append(point2)
      return len(matched) == len(self.points)
class ClusterSet(object):
   def __init__(self) :
      A cluster set (set of clusters).
      Parameters
          members -- list of Clusters, clusters that make up this set
      self.members = []
   # utilities
   def centroids(self) :
      Return centroids of each cluster in this cluster set.
      Returns
          centroids -- list of Points, centroids of each cluster in this cluster set
       .....
      ### ====== TODO : START ====== ###
      # part 2b: implement
      centroids = []
      for cluster in self.members:
          centroids.append(cluster.centroid())
      return centroids
      ### ====== TODO : END ====== ###
```

```
def medoids(self) :
    Return medoids of each cluster in this cluster set.
   Returns
       medoids -- list of Points, medoids of each cluster in this cluster set
    ### ======= TODO : START ====== ###
    # part 2b: implement
   medoids = []
    for cluster in self.members:
       medoids.append(cluster.medoid())
   return medoids
    ### ====== TODO : END ====== ###
def score(self) :
   Compute average purity across clusters in this cluster set.
    Returns
        score -- float, average purity
   total correct = 0
    total = 0
    for c in self.members :
        n, n_correct = c.purity()
       total += n
        total_correct += n_correct
    return total_correct / float(total)
def equivalent(self, other) :
   Determine whether this cluster set is equivalent to other cluster set.
    Two cluster sets are equivalent if they contain the same set of clusters
    (as computed by Cluster.equivalent(...)).
    Parameters
        other -- ClusterSet, cluster set to which we are comparing this cluster set
   Returns
        flag -- bool, True if both cluster sets are equivalent or False otherwise
```

```
if len(self.members) != len(other.members):
      return False
   matched = []
   for cluster1 in self.members :
      for cluster2 in other.members :
          if cluster1.equivalent(cluster2) and cluster2 not in matched:
             matched.append(cluster2)
   return len(matched) == len(self.members)
#-----
# manipulation
def add(self, cluster):
   Add cluster to this cluster set (only if it does not already exist).
   If the cluster is already in this cluster set, raise a ValueError.
   Parameters
   -----
      cluster -- Cluster, cluster to add
   if cluster in self.members :
      raise ValueError
   self.members.append(cluster)
```

▼ k-means and k-medoids algorithms

```
initial_points -- list of k Points, initial cluster centers
   ### ====== TODO : START ====== ###
   # part 2c: implement (hint: use np.random.choice)
   return np.random.choice(points, size = k, replace = False)
   ### ====== TODO : END ====== ###
def cheat init(points) :
   Initialize clusters by cheating!
   Details
   - Let k be number of unique labels in dataset.
   - Group points into k clusters based on label (i.e. class) information.
   - Return medoid of each cluster as initial centers.
   Parameters
    ______
       points
                    -- list of Points, dataset
   Returns
       initial points -- list of k Points, initial cluster centers
   ### ======= TODO : START ======= ###
   # part 2f: implement
   labels = set()
   groups = {}
   clusters = []
   for p in points:
     labels.add(p.label)
   for 1 in labels:
     groups[1] = []
   for p in points:
     groups[p.label].append(p)
   for k, v in groups.items():
       cluster = Cluster(v)
       clusters.append(cluster)
   initial points = [cluster.medoid() for cluster in clusters]
   return initial points
   ### ====== TODO : END ====== ###
def kAverages(points, k, average, init = 'random', plot = True):
   kClusters = ClusterSet()
   if init == 'random':
       MU = random init(points, k)
   elif init == 'cheat':
       MU = cheat init(points)
```

```
x = 1
   while True:
      clusters = {}
      for m in MU:
        clusters[m] = Cluster([])
      for p in points:
        dist = [p.distance(m) for m in MU]
        index = np.argmin(dist)
       mu2 = MU[index]
        clusters[mu2].points.append(p)
      newCluster = ClusterSet()
      for m, c in clusters.items():
       newCluster.add(c)
      if (kClusters.equivalent(newCluster)) and len(kClusters.members) > 0:
        if average != ClusterSet.centroids:
          name = "K-Medoids"
        else:
          name = "K-Means"
        break
     MU = average(newCluster)
      kClusters = newCluster
      if plot:
        if average != ClusterSet.centroids:
          plot_clusters(newCluster, f"K-Medoids [K={k}, init={init}] at i={x}", average)
        else:
          plot_clusters(newCluster, f"K-Means [K={k}, init={init}] at i={x}", average)
      x += 1
   return kClusters
def kMeans(points, k, init='random', plot=False) :
   Cluster points into k clusters using variations of k-means algorithm.
   Parameters
    ______
        points -- list of Points, dataset
               -- int, number of clusters
        average -- method of ClusterSet
                   determines how to calculate average of points in cluster
                   allowable: ClusterSet.centroids, ClusterSet.medoids
        init
                -- string, method of initialization
                   allowable:
                       'cheat' -- use cheat_init to initialize clusters
                       'random' -- use random_init to initialize clusters
                -- hool. True to plot clusters with corresponding averages
```

```
Returns
       k_clusters -- ClusterSet, k clusters
   ### ======= TODO : START ======= ###
   # part 2c: implement
   # Hints:
       (1) On each iteration, keep track of the new cluster assignments
           in a separate data structure. Then use these assignments to create
   #
           a new ClusterSet object and update the centroids.
       (2) Repeat until the clustering no longer changes.
       (3) To plot, use plot_clusters(...).
   return kAverages(points, k, ClusterSet.centroids, init = init, plot = plot)
   ### ====== TODO : END ====== ###
def kMedoids(points, k, init='random', plot=False) :
   Cluster points in k clusters using k-medoids clustering.
   See kMeans(...).
   ### ====== TODO : START ====== ###
   # part 2e: implement
   return kAverages(points, k, ClusterSet.medoids, init = init, plot = plot)
   ### ====== TODO : END ====== ###
```

→ Utilities

```
point -- list of Points, dataset (one point for each image)
   n,d = X.shape
   images = collections.defaultdict(list) # key = class, val = list of images with this clas
   for i in range(n) :
        images[y[i]].append(X[i,:])
   points = []
   for face in images :
        count = 0
       for im in images[face] :
            points.append(Point(str(face) + '_' + str(count), face, im))
            count += 1
   return points
def plot_clusters(clusters, title, average) :
   Plot clusters along with average points of each cluster.
   Parameters
       clusters -- ClusterSet, clusters to plot
                 -- string, plot title
       title
        average -- method of ClusterSet
                    determines how to calculate average of points in cluster
                    allowable: ClusterSet.centroids, ClusterSet.medoids
    .....
   plt.figure()
   np.random.seed(20)
   label = 0
   colors = {}
   centroids = average(clusters)
   for c in centroids :
        coord = c.attrs
        plt.plot(coord[0],coord[1], 'ok', markersize=12)
   for cluster in clusters.members :
        label += 1
        colors[label] = np.random.rand(3,)
        for point in cluster.points :
            coord = point.attrs
            plt.plot(coord[0], coord[1], 'o', color=colors[label])
   plt.title(title)
   plt.show()
def generate points 2d(N, seed=1234) :
```

.....

Generate toy dataset of 3 clusters each with N points.

```
Parameters
. - - - - - - - - - - - - - - - - -
        -- int, number of points to generate per cluster
    seed -- random seed
Returns
    points -- list of Points, dataset
np.random.seed(seed)
mu = [[0,0.5], [1,1], [2,0.5]]
sigma = [[0.1,0.1], [0.25,0.25], [0.15,0.15]]
label = 0
points = []
for m,s in zip(mu, sigma) :
    label += 1
    for i in range(N) :
        x = random sample 2d(m, s)
        points.append(Point(str(label)+' '+str(i), label, x))
return points
```

Main function

```
# main
def main() :
  ### ====== TODO : START ====== ###
  # part 1: explore LFW data set
  # part 1a
  X, y = get_lfw_data()
  num = 12
  show_image(X[0])
  show image(X[1])
  show_image(X[2])
  xAverage = np.mean(X, axis = 0)
  show_image(xAverage)
  # part 1b
  U, mu = PCA(X)
  plot_gallery([vec_to_image(U[:,i]) for i in range(num)])
```

```
# part 1c
num components = [1, 10, 50, 100, 500, 1288]
print("Originals")
plot gallery(X[:num], title = f'First 12 images (original-dimension)')
for 1 in num components:
  print(f'l={1}')
 Z, Ul = apply PCA from Eig(X, U, 1, mu)
  new = reconstruct_from_PCA(Z, Ul, mu)
  plot gallery(new[:num], title=f'First 12 images ({1}-dimension)')
### ====== TODO : END ====== ###
### ====== TODO : START ====== ###
# part 2d-2f: cluster toy dataset
np.random.seed(1234)
N = 20
toy_dataset = generate_points_2d(N)
kMeans(toy dataset, 3, init = 'random', plot = True)
kMedoids(toy dataset, 3, init = 'random', plot = True)
kMeans(toy_dataset, 3, init = 'cheat', plot = True)
kMedoids(toy dataset, 3, init = 'cheat', plot = True)
### ====== TODO : END ====== ###
### ====== TODO : START ====== ###
# part 3a: cluster faces
kMeanScores = []
kMedoidScores = []
np.random.seed(1234)
X1, y1 = util.limit pics(X, y, [4, 6, 13, 16], 40)
points = build_face_image_points(X1, y1)
for i in range(10):
 mean = kMeans(points, 4, init = 'random')
  kMeanScores.append(mean.score())
 medoid = kMedoids(points, 4, init = 'random')
  kMedoidScores.append(medoid.score())
print('\t average min\t max')
print(f'kMeans\t {round(sum(kMeanScores) / len(kMeanScores), 4)}\t {round(min(kMeanScores)
print(f'kMedoids {round(sum(kMedoidScores) / len(kMedoidScores), 4)}\t {round(min(kMedoid
# part 3b: explore effect of lower-dimensional representations on clustering performance
kMeanScores = []
kMedoidScores = []
np.random.seed(1234)
U, mu = PCA(X)
K = 2
```

```
X1, y1 = util.limit pics(X, y, [4, 13], 40)
components = np.arange(1, 42, K)
for i in components:
  Z, Ul = apply_PCA_from_Eig(X1, U, i, mu)
 X \text{ rec} = \text{reconstruct from PCA}(Z, Ul, mu)
  points = build_face_image_points(X_rec, y1)
 meanResult = kMeans(points, K, init = 'cheat')
 medoidResult = kMedoids(points, K, init = 'cheat')
  kMeanScores.append(meanResult.score())
  kMedoidScores.append(medoidResult.score())
plt.figure()
plt.plot(components, kMedoidScores, label = 'K-Medoids')
plt.plot(components, kMeanScores, label = 'K-Means')
plt.ylabel("Clustering Score")
plt.xlabel("# of Components")
plt.title("Clustering Score vs. # of Components")
plt.legend()
plt.show()
# part 3c: determine ``most discriminative'' and ``least discriminative'' pairs of images
np.random.seed(1234)
classes = set(v)
currMax = 0
maxPair = [0, 0]
minPair = [0, 0]
for i in range(len(classes)):
  for j in range(len(classes)):
   if i != j:
      X1, y1 = util.limit_pics(X, y, [i, j], 40)
      points = build face image points(X1, y1)
      cluster = kMedoids(points, 2, init = 'cheat')
      s = cluster.score()
      if s < currMin:
       minPair = [i,j]
        currMin = s
      elif s > currMax:
        maxPair = [i,j]
        currMax = s
print(minPair)
print(maxPair)
plot representative images(X, y, minPair)
plot representative images(X, y, maxPair)
### ====== TODO : END ====== ###
```

₽