$12a_{0422} \ (K12a_{0422})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -47u^{38} + 152u^{37} + \dots + 2b + 26, \ 101u^{38} - 320u^{37} + \dots + 4a - 62, \ u^{39} - 5u^{38} + \dots - u + 1 \rangle$$

$$I_2^u = \langle b, \ a^3 - a^2u - a^2 + 2au + 4a - 2u - 3, \ u^2 + u - 1 \rangle$$

$$I_3^u = \langle b + 1, \ a - 2, \ u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 46 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -47u^{38} + 152u^{37} + \dots + 2b + 26, \ 101u^{38} - 320u^{37} + \dots + 4a - 62, \ u^{39} - 5u^{38} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{101}{4}u^{38} + 80u^{37} + \dots - \frac{27}{4}u + \frac{31}{2} \\ \frac{47}{2}u^{38} - 76u^{37} + \dots + \frac{11}{2}u - 13 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -17.2500u^{38} + 54.7500u^{37} + \dots - 3.75000u + 10.7500 \\ \frac{31}{2}u^{38} - \frac{203}{4}u^{37} + \dots + \frac{5}{2}u - \frac{33}{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{38} + \frac{7}{4}u^{37} + \dots - 6u + \frac{5}{4} \\ \frac{3}{4}u^{38} - \frac{5}{2}u^{37} + \dots + \frac{1}{4}u - \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{93}{4}u^{38} - 77u^{37} + \dots + \frac{19}{4}u - \frac{23}{2} \\ -\frac{75}{2}u^{38} + 122u^{37} + \dots - \frac{19}{2}u + 22 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{38} + \frac{3}{4}u^{37} + \dots + \frac{19}{4}u + \frac{1}{4} \\ u^{11} - 7u^{9} + 16u^{7} - 2u^{6} - 13u^{5} + 8u^{4} + 3u^{3} - 6u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-64u^{38} + 210u^{37} + \cdots 6u + \frac{81}{2}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6	$u^{39} + 8u^{38} + \dots + 42u + 1$
c_2, c_5	$u^{39} + 2u^{38} + \dots - 6u + 1$
c_3, c_{10}	$u^{39} + 2u^{38} + \dots - 160u - 64$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$u^{39} - 5u^{38} + \dots - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$y^{39} + 48y^{38} + \dots + 978y - 1$
c_2, c_5	$y^{39} - 8y^{38} + \dots + 42y - 1$
c_3, c_{10}	$y^{39} - 34y^{38} + \dots + 25600y - 4096$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$y^{39} - 55y^{38} + \dots - 9y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.053960 + 0.224778I		
a = 1.61876 + 0.68220I	4.49453 - 5.61479I	8.25857 + 7.26249I
b = -1.163720 + 0.312418I		
u = -1.053960 - 0.224778I		
a = 1.61876 - 0.68220I	4.49453 + 5.61479I	8.25857 - 7.26249I
b = -1.163720 - 0.312418I		
u = 0.862747 + 0.116296I		
a = -0.069535 - 0.131159I	1.42290 + 1.53553I	7.01176 - 4.72842I
b = -0.221452 + 0.784770I		
u = 0.862747 - 0.116296I		
a = -0.069535 + 0.131159I	1.42290 - 1.53553I	7.01176 + 4.72842I
b = -0.221452 - 0.784770I		
u = 1.139060 + 0.026381I		
a = -0.038812 + 0.168804I	8.36476 + 3.13639I	0
b = -0.025448 + 1.175110I		
u = 1.139060 - 0.026381I		
a = -0.038812 - 0.168804I	8.36476 - 3.13639I	0
b = -0.025448 - 1.175110I		
u = -1.151060 + 0.133458I		
a = -1.46113 - 0.36382I	6.34383 - 1.26782I	0
b = 1.226750 - 0.126705I		
u = -1.151060 - 0.133458I		
a = -1.46113 + 0.36382I	6.34383 + 1.26782I	0
b = 1.226750 + 0.126705I		
u = 0.415029 + 0.681141I		
a = -0.293962 - 0.902195I	8.68168 - 1.01341I	8.20452 - 0.45089I
b = -1.43879 - 0.09612I		
u = 0.415029 - 0.681141I		
a = -0.293962 + 0.902195I	8.68168 + 1.01341I	8.20452 + 0.45089I
b = -1.43879 + 0.09612I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.379187 + 0.691000I		
a = 0.296338 + 0.946075I	8.57368 + 5.46017I	7.82438 - 5.30651I
b = 1.43542 + 0.18852I		
u = 0.379187 - 0.691000I		
a = 0.296338 - 0.946075I	8.57368 - 5.46017I	7.82438 + 5.30651I
b = 1.43542 - 0.18852I		
u = -1.160140 + 0.396351I		
a = 1.23807 + 0.87778I	13.3910 - 9.1863I	0
b = -1.52336 + 0.47798I		
u = -1.160140 - 0.396351I		
a = 1.23807 - 0.87778I	13.3910 + 9.1863I	0
b = -1.52336 - 0.47798I		
u = -1.187780 + 0.377695I		
a = -1.21277 - 0.82919I	13.72490 - 2.63237I	0
b = 1.54397 - 0.40480I		
u = -1.187780 - 0.377695I		
a = -1.21277 + 0.82919I	13.72490 + 2.63237I	0
b = 1.54397 + 0.40480I		
u = 0.467926 + 0.375228I		
a = 0.068401 - 0.656383I	1.190300 - 0.320599I	8.01474 - 0.06231I
b = -0.834315 + 0.134239I		
u = 0.467926 - 0.375228I		
a = 0.068401 + 0.656383I	1.190300 + 0.320599I	8.01474 + 0.06231I
b = -0.834315 - 0.134239I		
u = 0.239901 + 0.477819I		
a = -0.049714 + 1.108090I	0.46281 + 3.25190I	3.30026 - 8.26387I
b = 0.899573 + 0.293268I		
u = 0.239901 - 0.477819I		
a = -0.049714 - 1.108090I	0.46281 - 3.25190I	3.30026 + 8.26387I
b = 0.899573 - 0.293268I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.487731		
a = 0.343685	0.740705	13.6330
b = -0.408979		
u = -1.59861		
a = -0.240120	8.08529	0
b = 0.465924		
u = -0.345833 + 0.036532I		
a = 0.12571 + 3.44175I	3.55637 - 2.89653I	-3.84297 + 3.88300I
b = -0.000094 + 0.479895I		
u = -0.345833 - 0.036532I		
a = 0.12571 - 3.44175I	3.55637 + 2.89653I	-3.84297 - 3.88300I
b = -0.000094 - 0.479895I		
u = -1.67511 + 0.02701I		
a = -0.088705 - 0.412032I	10.40850 - 2.06539I	0
b = 0.229021 + 0.890141I		
u = -1.67511 - 0.02701I		
a = -0.088705 + 0.412032I	10.40850 + 2.06539I	0
b = 0.229021 - 0.890141I		
u = 1.73748		
a = -2.04429	11.5719	0
b = 1.35510		
u = 1.74621 + 0.05370I		
a = -1.91054 + 0.23326I	14.5888 + 6.7421I	0
b = 1.42871 + 0.37526I		
u = 1.74621 - 0.05370I		
a = -1.91054 - 0.23326I	14.5888 - 6.7421I	0
b = 1.42871 - 0.37526I		
u = -1.76716 + 0.00715I		
a = -0.013757 - 0.629655I	18.9593 - 3.2843I	0
b = 0.04950 + 1.56385I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.76716 - 0.00715I $a = -0.013757 + 0.629655I$ $b = 0.04950 - 1.56385I$	18.9593 + 3.2843I	0
u = 1.76755 + 0.03169I $a = 1.88452 - 0.11380I$ $b = -1.56905 - 0.21871I$	16.9501 + 1.9651I	0
u = 1.76755 - 0.03169I $a = 1.88452 + 0.11380I$ $b = -1.56905 + 0.21871I$	16.9501 - 1.9651I	0
u = 1.77210 + 0.10705I $a = -1.71021 + 0.26961I$ $b = 1.61742 + 0.71877I$	-15.5908 + 11.3747I	0
u = 1.77210 - 0.10705I $a = -1.71021 - 0.26961I$ $b = 1.61742 - 0.71877I$	-15.5908 - 11.3747I	0
u = -0.042751 + 0.219509I $a = -0.63189 + 2.24770I$ $b = 0.311409 + 0.398108I$	-1.261040 - 0.319837I	-6.08687 + 0.82925I
u = -0.042751 - 0.219509I $a = -0.63189 - 2.24770I$ $b = 0.311409 - 0.398108I$	-1.261040 + 0.319837I	-6.08687 - 0.82925I
u = 1.78078 + 0.09884I $a = 1.71959 - 0.23944I$ $b = -1.67156 - 0.66408I$	-15.0724 + 4.7212I	0
u = 1.78078 - 0.09884I $a = 1.71959 + 0.23944I$ $b = -1.67156 + 0.66408I$	-15.0724 - 4.7212I	0

II.
$$I_2^u = \langle b, \ a^3 - a^2u - a^2 + 2au + 4a - 2u - 3, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -a^2u + a^2 - u \\ 2a^2u - a^2 + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a^2u + u \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $10a^2u 9a^2 + 6au a + 3u 1$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_3,c_{10}	u^6
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
<i>C</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_7, c_8, c_9	$(u^2-u-1)^3$
c_{11}, c_{12}	$(u^2+u-1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_5	$(y^3 - y^2 + 2y - 1)^2$
c_3, c_{10}	y^6
c_7, c_8, c_9 c_{11}, c_{12}	$(y^2 - 3y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 0.922021	-0.126494	0.954070
b = 0		
u = 0.618034		
a = 0.34801 + 2.11500I	4.01109 - 2.82812I	14.0681 + 1.5771I
b = 0		
u = 0.618034		
a = 0.34801 - 2.11500I	4.01109 + 2.82812I	14.0681 - 1.5771I
b = 0		
u = -1.61803		
a = -0.132927 + 0.807858I	11.90680 + 2.82812I	11.55793 - 3.24268I
b = 0		
u = -1.61803		
a = -0.132927 - 0.807858I	11.90680 - 2.82812I	11.55793 + 3.24268I
b = 0		
u = -1.61803		
a = -0.352181	7.76919	-5.20600
b = 0		

III.
$$I_3^u = \langle b+1, a-2, u+1 \rangle$$

(i) Arc colorings

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_4 c_5, c_6, c_7 c_8, c_9, c_{11} c_{12}	u+1		
c_3, c_{10}	u-1		

(v) Riley Polynomials at the component

Crossings		Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	y-1			

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 2.00000	1.64493	6.00000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_4	$(u+1)(u^3 - u^2 + 2u - 1)^2(u^{39} + 8u^{38} + \dots + 42u + 1)$
c_2	$(u+1)(u^3+u^2-1)^2(u^{39}+2u^{38}+\cdots-6u+1)$
c_3, c_{10}	$u^{6}(u-1)(u^{39}+2u^{38}+\cdots-160u-64)$
<i>C</i> ₅	$(u+1)(u^3-u^2+1)^2(u^{39}+2u^{38}+\cdots-6u+1)$
c_6	$(u+1)(u^3+u^2+2u+1)^2(u^{39}+8u^{38}+\cdots+42u+1)$
c_7, c_8, c_9	$(u+1)(u^2-u-1)^3(u^{39}-5u^{38}+\cdots-u+1)$
c_{11}, c_{12}	$(u+1)(u^2+u-1)^3(u^{39}-5u^{38}+\cdots-u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6	$(y-1)(y^3+3y^2+2y-1)^2(y^{39}+48y^{38}+\cdots+978y-1)$
c_2, c_5	$(y-1)(y^3-y^2+2y-1)^2(y^{39}-8y^{38}+\cdots+42y-1)$
c_3, c_{10}	$y^{6}(y-1)(y^{39} - 34y^{38} + \dots + 25600y - 4096)$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$(y-1)(y^2-3y+1)^3(y^{39}-55y^{38}+\cdots-9y-1)$