데이터 불러오기

```
import pandas as pd
from datetime import datetime, timedelta
data = pd.read_csv("E:/dataset.csv",parse_dates = ['날짜'],encoding = 'cp949')
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 610 entries, 0 to 609
Data columns (total 20 columns):
                 610 non-null datetime64[ns]
방역수칙
                   596 non-null object
확진자수
                   570 non-null float64
전주 대비 확진자수증감률
                         610 non-null float64
전일 대비 확진자수증감률
                         570 non-null float64
감염지수
                   560 non-null float64
폐업수
                  549 non-null float64
전주 대비 폐업증감률
                       610 non-null float64
카드매출액
                    518 non-null float64
전일 대비 매출증감률
                       610 non-null object
전주 대비 매출증감률
                       610 non-null object
18시 전 카드매출액
                      518 non-null float64
18시 후 카드매출액
                     518 non-null float64
카드매출건수
                     518 non-null float64
유동인구
                   518 non-null float64
이동거리
                   518 non-null float64
백신도입전후
                     362 non-null float64
Unnamed: 17
               0 non-null float64
Unnamed: 18
               0 non-null float64
키워드
                  0 non-null float64
dtypes: datetime64[ns](1), float64(16), object(3)
memory usage: 95.4+ KB
```

데이터 정규화

```
import numpy as np
from sklearn.preprocessing import StandardScaler

in [5]:
ss = StandardScaler()
```

감염지표

```
In [6]: df_corona = data[['확진자수','감염지수']][:518]
In [7]: df_corona = pd.DataFrame(ss.fit_transform(df_corona))
In [8]: df_corona.head()
```

Out[8]

```
0
                           1
         0 -0.894051 1.582144
         1 -0.886599 1.582144
           -0.931311 1.582144
           -0.879147 1.582144
           -0.923859 1.582144
          df_corona.columns = ['확진자수','감염지수']
          # 날짜 결합
          df_corona['날짜'] = data['날짜']
In [11]:
         df_corona.head()
            확진자수 감염지수
                                   날짜
         0 -0.894051 1.582144 2020-03-01
         1 -0.886599 1.582144 2020-03-02
         2 -0.931311 1.582144 2020-03-03
         3 -0.879147 1.582144 2020-03-04
           -0.923859 1.582144 2020-03-05
```

소상공인 지표

```
df_biz = data[['폐업수','카드매출액','카드매출건수']][:518]
         df_biz = pd.DataFrame(ss.fit_transform(df_biz))
         df_biz.head()
Out[13]:
                          1
                                   2
         0 -1.278597 -2.393347 -2.325570
          3.088007 -0.681780 -0.356203
           0.479637 -0.641508 -0.404988
           0.151176 -0.842868 -0.585614
           0.209140 -0.722052 -0.457359
In [14]:
         df_biz.columns = ['폐업수','카드매출액','카드매출건수']
         df_biz.head()
             폐업수 카드매출액 카드매출건수
Out[14]:
```

-2.393347

-2.325570

0 -1.278597

	폐업수	카드매출액	카드매출건수
1	3.088007	-0.681780	-0.356203
2	0.479637	-0.641508	-0.404988
3	0.151176	-0.842868	-0.585614
4	0.209140	-0.722052	-0.457359

```
df_biz['날짜'] = data['날짜'][:518]
df_biz.tail()
```

```
Out[15]:
                 폐업수 카드매출액 카드매출건수
                                                     날짜
          513
              3.493753
                          0.586793
                                       0.286545 2021-07-27
          514 -0.235249
                          0.365296
                                      0.228376 2021-07-28
          515
              0.325067
                          0.465977
                                      0.248219 2021-07-29
          516
              0.189818
                          1.090195
                                      0.605825 2021-07-30
          517 -0.872851
                         -0.178378
                                      -0.347440 2021-07-31
```

인구이동량 지표

```
df_move = data[['유동인구','이동거리']][:518]
df_move = pd.DataFrame(ss.fit_transform(df_move))
df_move.head()
                  1
0 -2.723383 -3.201881
1 -0.691159 -1.476383
2 -0.674272 -1.563565
3 -0.839437 -1.588589
 -0.695795 -1.416220
df_move.columns = ['유동인구','이동거리']
df_move.head()
```

Out[18]: 유동인구 이동거리

- 0 -2.723383 -3.201881
- **1** -0.691159 -1.476383
- **2** -0.674272 -1.563565
- -0.839437 -1.588589
- -0.695795 -1.416220

```
In [19]: | df_move['날짜'] = data['날짜'][:518] | df_move.tail()
```

```
    Out [19]:
    유동인구
    이동거리
    날짜

    513
    -0.005923
    -0.374328
    2021-07-27

    514
    0.176837
    0.075075
    2021-07-28

    515
    0.156095
    0.231357
    2021-07-29

    516
    0.260614
    1.025854
    2021-07-30

    517
    -1.004317
    -0.363758
    2021-07-31
```

18시 전후 매출지표

```
df_night = data[['18시 전 카드매출액','18시 후 카드매출액']][:518]
          df_night = pd.DataFrame(ss.fit_transform(df_night))
          df_night.head()
                  0
                           1
         0 -2.478114 -1.699428
         1 -0.652763 -0.584551
         2 -0.712197 -0.350267
           -0.882073 -0.604725
         4 -0.833886 -0.327805
In [22]:
          df_night.columns = ['18시 전 카드매출액','18시 후 카드매출액']
          df_night.head()
            18시 전 카드매출액 18시 후 카드매출액
         0
                   -2.478114
                                    -1.699428
         1
                   -0.652763
                                    -0.584551
         2
                   -0.712197
                                    -0.350267
         3
                   -0.882073
                                    -0.604725
         4
                   -0.833886
                                    -0.327805
In [23]:
          df_night['날짜'] = data['날짜'][:518]
          df_night.tail()
              18시 전 카드매출액 18시 후 카드매출액
                                                    날짜
         513
                      1.126413
                                      -0.651064 2021-07-27
                      0.880587
         514
                                      -0.800215 2021-07-28
```

-0.679313 2021-07-29

0.948100

515

	18시 전 카드매출액	18시 후 카드매출액	날짜
516	1.512189	-0.012820	2021-07-30
517	0.134811	-0.802718	2021-07-31

시각화

```
In [24]:
         import matplotlib as mpl
         import matplotlib.pylab as plt
         # 한글깨짐 방지
         from matplotlib import font_manager, rc
         font_name = font_manager.FontProperties(fname="C:/Windows/Fonts/malgun.ttf").get_name
         rc('font', family=font_name)
         # 마이너스 수식깨짐 방지
         import matplotlib
         matplotlib.rcParams['axes.unicode_minus'] = False
In [25]:
         matplotlib.rc('xtick', labelsize=20)
         matplotlib.rc('ytick', labelsize=20)
         font= {'family' : font_name,
                 'size' : 20}
         matplotlib.rc('font', **font)
         paramter = {'font.size': 20}
```

감염지표

확진자수 그래프

```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['확진자수'].rolling(14).mean(),label='확진자수'
plt.title("확진자수 그래프")
plt.legend()
```

C:\ProgramData\Anaconda3\lib\site-packages\pandas\plotting_converter.py:129: Future\and rning: Using an implicitly registered datetime converter for a matplotlib plotting met hod. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters.

```
To register the converters:

>>> from pandas.plotting import register_matplotlib_converters
>>> register_matplotlib_converters()
warnings.warn(msg, FutureWarning)

Out[26]: <matplotlib.legend.Legend at 0xb0a980bfd0>
```

확진자수 그래프

감염재생산지수 그래프

```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['감염지수'].rolling(14).mean(),label='감염재생신
plt.title("감염재생산지수 그래프")
plt.legend()
```

Out[27]: <matplotlib.legend.Legend at OxbOaaac2588>

확진자수, 감염재생산지수 그래프

```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['확진자수'].rolling(14).mean(),label='확진자수'
plt.plot(df_corona['날짜'], df_corona['감염지수'].rolling(14).mean(),label='감염재생신
plt.title("확진자수 & 감염재생산지수 그래프")
plt.legend()
```

Out[28]: <matplotlib.legend.Legend at 0xb0aa8c1d30>

확진자수 & 감염재생산지수 그래프

감염지표(확진자수 + 감염재생산지수)

```
ln [29]: df_corona['감염지표'] = (df_corona['확진자수'] + df_corona['감염지수']) / 2 df_corona.head()
```

Out[29]:		확진자수	감염지수	날짜	감염지표
	0	-0.894051	1.582144	2020-03-01	0.344047
	1	-0.886599	1.582144	2020-03-02	0.347773
	2	-0.931311	1.582144	2020-03-03	0.325416
	3	-0.879147	1.582144	2020-03-04	0.351499
	1	_n 923859	1 5821//	2020-03-05	0.3291/12

```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['감염지표'].rolling(14).mean(),label='감염지표'
plt.title("감염지표 그래프")
plt.legend()
```

Out[30]: <matplotlib.legend.Legend at OxbOaaf558dO>

감염지표 그래프

소상공인지표

```
plt.figure(figsize=(15,7))
plt.plot(df_biz['날짜'], df_biz['폐업수'].rolling(14).mean(),label='폐업수', color='o
plt.title("폐업수 그래프")
plt.legend()
```

Out[31]: <matplotlib.legend.Legend at 0xb0abf1c6d8>


```
plt.figure(figsize=(15,7))
plt.plot(df_biz['날짜'], df_biz['카드매출액'].rolling(14).mean(),label='카드매출액',
plt.title("카드매출액 그래프")
plt.legend()
```

Out[32]: <matplotlib.legend.Legend at 0xb0abd1beb8>

카드매출액 그래프


```
plt.figure(figsize=(15,7))
plt.plot(df_biz['날짜'], df_biz['카드매출건수'].rolling(14).mean(),label='카드매출건수
plt.title("카드매출건수 그래프")
plt.legend()
```

Out[33]: <matplotlib.legend.Legend at 0xb0ac338198>


```
plt.figure(figsize=(15,7))
plt.plot(df_biz['날짜'], df_biz['폐업수'].rolling(14).mean(),label='폐업수', color='r
plt.plot(df_biz['날짜'], df_biz['카드매출액'].rolling(14).mean(),label='카드매출액',
plt.plot(df_biz['날짜'], df_biz['카드매출건수'].rolling(14).mean(),label='카드매출건수
plt.title("폐업수 & 카드매출액 & 카드매출건수 그래프")
plt.legend()
```

Out[34]: <matplotlib.legend.Legend at OxbOac176f98>

폐업수 & 카드매출액 & 카드매출건수 그래프

매출지표(카드매출액 + 카드매출건수)

```
ln [35]: df_biz['매출지표'] = (df_biz['카드매출액'] + df_biz['카드매출건수'])/2 df_biz.head()
```

Out[35]:		폐업수	카드매출액	카드매출건수	날짜	매출지표
	0	-1.278597	-2.393347	-2.325570	2020-03-01	-2.359458
	1	3.088007	-0.681780	-0.356203	2020-03-02	-0.518991
	2	0.479637	-0.641508	-0.404988	2020-03-03	-0.523248
	3	0.151176	-0.842868	-0.585614	2020-03-04	-0.714241
	4	0.209140	-0.722052	-0.457359	2020-03-05	-0.589706

```
plt.figure(figsize=(15,7))
plt.plot(df_biz['날짜'], df_biz['폐업수'].rolling(14).mean(),label='폐업수', color='o
plt.plot(df_biz['날짜'], df_biz['카드매출액'].rolling(14).mean(),label='카드매출액',
plt.title("폐업수 & 카드매출액 그래프")
plt.legend()
```

Out[36]: <matplotlib.legend.Legend at 0xb0ac7a1f98>

폐업수 & 카드매출액 그래프


```
plt.figure(figsize=(15,7))
plt.plot(df_biz['날짜'], df_biz['폐업수'].rolling(14).mean(),label='폐업수', color='o
plt.plot(df_biz['날짜'], df_biz['카드매출건수'].rolling(14).mean(),label='카드매출건석
plt.title("폐업수 & 카드매출건수 그래프")
plt.legend()
```

Out[37]: <matplotlib.legend.Legend at OxbOac564daO>


```
plt.figure(figsize=(15,7))
plt.plot(df_biz['날짜'], df_biz['폐업수'].rolling(14).mean(),label='폐업수', color='o
plt.plot(df_biz['날짜'], df_biz['매출지표'].rolling(14).mean(),label='매출지표(매출액
plt.title("폐업수 & 매출지표(매출액+매출건수) 그래프")
plt.legend()
```

Out[38]: <matplotlib.legend.Legend at 0xb0acb4bd68>

폐업수 & 매출지표(매출액+매출건수) 그래프

인구이동량 지표

```
plt.figure(figsize=(15,7))
plt.plot(df_move['날짜'], df_move['유동인구'].rolling(14).mean(),label='유동인구', co
plt.title("유동인구 그래프")
plt.legend()
```

Out[39]: <matplotlib.legend.Legend at OxbOacdbf3c8>


```
plt.figure(figsize=(15,7))
plt.plot(df_move['날짜'], df_move['이동거리'].rolling(14).mean(),label='이동거리', co
plt.title("이동거리 그래프")
plt.legend()
```

Out[40]: <matplotlib.legend.Legend at 0xb0acdc4320>

이동거리 그래프

이동거리, 확진자수 그래프

```
plt.figure(figsize=(15,7))
plt.plot(df_move['날짜'], df_move['유동인구'].rolling(14).mean(),label='유동인구', co
plt.plot(df_corona['날짜'], df_corona['확진자수'].rolling(14).mean(),label='확진자수'
plt.title("유동인구 & 확진자수 그래프")
plt.legend()
```

Out[41]: <matplotlib.legend.Legend at 0xb0acbf02b0>


```
plt.figure(figsize=(15,7))
plt.plot(df_move['날짜'], df_move['이동거리'].rolling(14).mean(),label='이동거리', co
plt.plot(df_corona['날짜'], df_corona['확진자수'].rolling(14).mean(),label='확진자수'
plt.title("이동거리 & 확진자수 그래프")
plt.legend()
```

Out[42]: <matplotlib.legend.Legend at OxbOad3dbc18>

이동거리 & 확진자수 그래프


```
ln [43]: df_move['이동량 지표'] = (df_move['유동인구'] + df_move['이동거리']) / 2
```

In [44]: df_move.head()

Out[44]:		유동인구	이동거리	날짜	이동량 지표
	0	-2.723383	-3.201881	2020-03-01	-2.962632
	1	-0.691159	-1.476383	2020-03-02	-1.083771
	2	-0.674272	-1.563565	2020-03-03	-1.118918
	3	-0.839437	-1.588589	2020-03-04	-1.214013

-0.695795 -1.416220 2020-03-05

이동량 지표 = 유동인구 + 이동거리

```
plt.figure(figsize=(15,7))
plt.plot(df_move['날짜'], df_move['이동량 지표'].rolling(14).mean(),label='이동량 지표
plt.plot(df_corona['날짜'], df_corona['확진자수'].rolling(14).mean(),label='확진자수'
plt.title("확진자수 & 이동량 지표(유동인구 + 이동거리)")
plt.legend()
```

-1.056008

Out[45]: <matplotlib.legend.Legend at OxbOad1e1cf8>

확진자수 & 이동량 지표(유동인구 + 이동거리)

지표 종합

```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['감염지표'].rolling(14).mean(),label='감염지표'
plt.plot(df_biz['날짜'], df_biz['매출지표'].rolling(14).mean(),label='매출지표',color
plt.plot(df_move['날짜'], df_move['이동량 지표'].rolling(14).mean(),label='이동량 지표
plt.title("감염지표 & 매출지표 & 이동량 지표")
plt.legend()
plt.show()
```



```
In [47]: df_roll = df_corona['감염지표'].rolling(14).mean()
In [48]: df_roll = pd.DataFrame(df_roll)
df_roll
```

0ut [48]: **감염지표 0** NaN

감염지표

NaN

1

'	ivaiv
2	NaN
3	NaN
4	NaN
5	NaN
6	NaN
7	NaN
8	NaN
9	NaN
10	NaN
11	NaN
12	NaN
13	-0.235807
14	-0.334450
15	-0.432028
16	-0.529340
17	-0.627184
18	-0.721834
19	-0.818081
20	-0.916724
21	-0.909823
22	-0.907180
23	-0.907997
24	-0.901095
25	-0.892597
26	-0.883035
27	-0.871343
28	-0.840532
29	-0.811850
•••	
488	0.449061
489	0.503306
490	0.565944
491	0.632841
492	0.741524
493	0.837431
Oownlo	ads/정규화

	감염지표
494	0.916304
495	0.998372
496	1.086028
497	1.152014
498	1.216403
499	1.294099
500	1.351568
501	1.418885
502	1.480080
503	1.550058
504	1.569909
505	1.579647
506	1.575545
507	1.552014
508	1.546315
509	1.524647
510	1.509367
511	1.474279
512	1.438127
513	1.402506
514	1.382589
515	1.342444
516	1.301501
517	1.269873

518 rows × 1 columns

```
df_roll['날짜'] = df_corona['날짜']
df_roll.head()
```

```
      Out [49]:
      감염지표
      날짜

      0
      NaN
      2020-03-01

      1
      NaN
      2020-03-02

      2
      NaN
      2020-03-03

      3
      NaN
      2020-03-04

      4
      NaN
      2020-03-05
```

```
In [50]: df_roll.tail()
```

```
      Dut [50]:
       감염지표
      날짜

      513
      1.402506
      2021-07-27

      514
      1.382589
      2021-07-28

      515
      1.342444
      2021-07-29

      516
      1.301501
      2021-07-30

      517
      1.269873
      2021-07-31

      In [83]:
      df_roll.sort_values(by='감염지표', ascending=False).head()

      Dut [83]:
      감염지표
      날짜

      505
      1.579647
      2021-07-19
```

```
    300 t [83]:
    감염지표
    날짜

    505
    1.579647
    2021-07-19

    506
    1.575545
    2021-07-20

    504
    1.569909
    2021-07-18

    507
    1.552014
    2021-07-21

    503
    1.550058
    2021-07-17
```

```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['감염지표'].rolling(14).mean(),label='감염지표'
plt.plot(df_biz['날짜'], df_biz['매출지표'].rolling(14).mean(),label='라울지표', colo
plt.title("감염지표 & 매출지표 그래프")
plt.text(pd.to_datetime(df_roll['날짜'][505]),df_roll['감염지표'][505], s='2021-07-19
plt.text(pd.to_datetime(df_roll['날짜'][174]),df_roll['감염지표'][174], s='2020-08-22
plt.text(pd.to_datetime(df_roll['날짜'][302]),df_roll['감염지표'][302], s='2020-12-28
plt.text(pd.to_datetime(df_roll['날짜'][83]),df_roll['감염지표'][83], s='2020-05-23',
plt.legend()
```

Out[52]: <matplotlib.legend.Legend at OxbOad9c4cc0>


```
plt.figure(figsize=(15,7))
plt.plot(df_biz['날짜'], df_biz['매출지표'].rolling(14).mean(),label='매출지표', colo
plt.plot(df_move['날짜'], df_move['이동량 지표'].rolling(14).mean(),label='이동량 지표
```

```
plt.title("매출지표 & 이동량 지표 그래프")
plt.legend()
```

```
Out[53]: <matplotlib.legend.Legend at 0xb0adc57eb8>
```



```
bizmove = (df_biz['매출지표'] + df_move['이동량 지표'])/2
bizmove = bizmove.rolling(14).mean()
bizmove = pd.DataFrame(bizmove, columns = ['이동매출'])
bizmove['날짜'] = df_corona['날짜']
bizmove.sort_values(by='이동매출',ascending=True).head()
```

```
    Out [82]:
    이동매출
    날짜

    312
    -1.564888
    2021-01-07

    319
    -1.522137
    2021-01-14

    318
    -1.521758
    2021-01-13

    317
    -1.520161
    2021-01-12

    316
    -1.493751
    2021-01-11
```

```
plt.figure(figsize=(15,10))
plt.plot(df_corona['날짜'], bizmove['이동매출'],label='매출지표+인구이동량', color='g
plt.plot(df_corona['날짜'], df_corona['감염지표'].rolling(14).mean(),label='감염지표'
plt.plot(df_corona['날짜'], df_biz['폐업수'].rolling(14).mean(),label='레업수', color
plt.text(pd.to_datetime(df_roll['날짜'][505]),df_roll['감염지표'][505], s='2021-07-19
plt.text(pd.to_datetime(df_roll['날짜'][174]),df_roll['감염지표'][174], s='2020-08-22
plt.text(pd.to_datetime(df_roll['날짜'][302]),df_roll['감염지표'][302], s='2020-12-28
plt.text(pd.to_datetime(df_roll['날짜'][83]),df_roll['감염지표'][83], s='2020-05-23',
plt.text(pd.to_datetime(bizmove['날짜'][312]),bizmove['이동매출'][312], s='2021-01-07
plt.text(pd.to_datetime(bizmove['날짜'][192]),bizmove['이동매출'][192], s='2020-09-09
plt.title("폐업수 & 매출지표+인구이동량 & 감염지표 그래프")
plt.legend()
```

Out[75]: <matplotlib.legend.Legend at OxbOaf937ccO>

폐업수 & 매출지표+인구이동량 & 감염지표 그래프

18시 전후 카드매출액

```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_night['18시 전 카드매출액'].rolling(14).mean(),label='
plt.plot(df_corona['날짜'], df_night['18시 후 카드매출액'].rolling(14).mean(),label='
plt.title("18시 전후 카드매출액")
plt.legend()
```

Out[77]: <matplotlib.legend.Legend at OxbOafa22d30>


```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['확진자수'].rolling(14).mean(),label='확진자수'
plt.plot(df_corona['날짜'], df_night['18시 전 카드매출액'].rolling(14).mean(),label='
plt.plot(df_corona['날짜'], df_night['18시 후 카드매출액'].rolling(14).mean(),label='
plt.title("18시 전후 카드매출액")
plt.legend()
```

Out[78]: <matplotlib.legend.Legend at OxbOafa825c0>


```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['감염지표'].rolling(14).mean(),label='감염지표'
plt.plot(df_corona['날짜'], df_night['18시 전 카드매출액'].rolling(14).mean(),label='
plt.plot(df_corona['날짜'], df_night['18시 후 카드매출액'].rolling(14).mean(),label='
plt.title("확진자수& 18시 전후 카드매출액")
plt.legend()
```

Out[79]: <matplotlib.legend.Legend at OxbOaff6b630>


```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['감염지표'].rolling(14).mean(),label='감염지표'
plt.plot(df_corona['날짜'], df_biz['폐업수'].rolling(14).mean(),label='폐업수', color
plt.title("폐업수 & 감염지표")
plt.legend()
```

Out[80]: <matplotlib.legend.Legend at 0xb0affe8b38>

폐업수 & 감염지표


```
plt.figure(figsize=(15,7))
plt.plot(df_corona['날짜'], df_corona['확진자수'].rolling(14).mean(),label='확진자수'
plt.plot(df_corona['날짜'], df_biz['폐업수'].rolling(14).mean(),label='폐업수', color
plt.title("확진자수 & 폐업수")
plt.legend()
```

Out[81]: <matplotlib.legend.Legend at 0xb0b043a7f0>

