Lógica Computacional

Aula Teórica 5: Dedução Natural em Lógica Proposicional

Ricardo Gonçalves

Departamento de Informática

28 de setembro de 2023

Sistema dedutivo

Objectivo

Determinar a validade de raciocínios ou de fórmulas:

- manipulação sintáctica dos símbolos que ocorrem nas fórmulas
- sem recorrer à semântica

Sistema Dedutivo

É um conjunto de regras

- são chamadas regras de inferência
- permitam inferir novas fórmulas a partir de outras fórmulas
- regras sem hipóteses dizem-se axiomas

Provas

Prova formal ou derivação

Dado um sistema dedutivo, uma prova formal ou derivação de uma fórmula φ a partir de um conjunto de fórmulas Γ é uma sequência finita de fórmulas de F_P tal que:

- ullet o último elemento da sequência é arphi
- cada elemento da sequência é:
 - ullet um elemento de Γ ou
 - obtido de anteriores usando uma das regras de inferência

Notação

Sendo Γ um conjunto de hipóteses e φ uma conclusão a provar,

$$\Gamma \vdash \varphi$$

indica que a partir de Γ se consegue construir uma prova para $\varphi.$

Propriedades

Terminologia

- Se $\Gamma \vdash \varphi$ então φ diz-se consequência de Γ ;
- Se $\emptyset \vdash \varphi$ então φ diz-se teorema do sistema dedutivo escreve-se $\vdash \varphi$

Correção de Sistema Dedutivo

Só permite provar de tautologias e consequências semânticas

- Se $\vdash \varphi$ então $\models \varphi$
- Se $\{\varphi_1,\ldots,\varphi_n\} \vdash \varphi$ então $\{\varphi_1,\ldots,\varphi_n\} \models \varphi$

Completude de Sistema Dedutivo

Permite provar todas as tautologias e consequências semânticas

- Se $\models \varphi$ então $\vdash \varphi$
- Se $\{\varphi_1, \dots, \varphi_n\} \models \varphi$ então $\{\varphi_1, \dots, \varphi_n\} \vdash \varphi$

Dedução Natural: a ideia

Provas como árvores etiquetadas

- Uma prova ou inferência é apresentada em árvore:
 - árvores de derivação
- Cada árvore é construída a partir de árvores singulares (folhas)
- Novo nível da árvore obtido aplicando uma regra de inferência.
- As etiquetas dos nós da árvore são fórmulas.
 - As fórmulas nas folhas são as hipóteses, e têm associadas marcas (números inteiros);
 - A hipóteses distintas devem-se associar marcas distintas;
 - A fórmula na raíz é a conclusão da prova. Diz-se que a árvore é uma derivação dessa fórmula.

Dedução Natural para Lógica Proposicional

Regras do sistema ${\cal N}$

- Os conectivos \neg , \wedge , \vee , \rightarrow têm regras associadas para:
 - Eliminação
 - Introdução

Marcas

A cada hipótese/folha é associada uma marca (número natural)

- fórmulas diferentes têm marcas diferentes
- hipótese fechada: a sua marca é usada numa regra da árvore
- há quatro regras que fecham hipóteses:
 - Regra do absurdo
 - Introdução da negação
 - Introdução da implicação
- Eliminação da disjunção
- hipótese diz-se aberta se não está fechada

Dedução Natural para Lógica Proposicional

Consequência no sistema ${\mathcal N}$

Uma fórmula φ é consequência em $\mathcal N$ de um conjunto Γ de fórmulas, denotado $\Gamma \vdash_{\mathcal N} \varphi$, se existe árvore de derivação tal que:

- ullet A raíz da árvore é arphi
- ullet todas as hipóteses abertas da árvore estão contidas em Γ

Quando for claro, podemos omitir $\mathcal N$ e escrever apenas \vdash

Teoremas no sistema ${\mathcal N}$

Se $\emptyset \vdash \varphi$ então escrevemos apenas $\vdash \varphi$ e dizemos que φ é teorema do sistema $\mathcal{N}.$

Regras simples

As regras

- Introdução e Eliminação da conjunção
- Eliminação da implicação
- Introdução da disjunção
- Eliminação da negação

não manipulam as marcas, pelo que, por isso, as podemos considerar mais simples.

Conectivo ∧

Para concluir $\varphi \wedge \psi$ é preciso ter provado cada um deles

Regra da Introdução da Conjunção

$$\frac{\mathcal{D}_1 \quad \mathcal{D}_2}{\varphi \quad \psi} \quad (\wedge_I)$$

Conectivo ∧

Se já provámos $\varphi \wedge \psi$ podemos concluir qualquer um deles

Regra da Eliminação da Conjunção

$$egin{array}{cccc} \mathcal{D} & \mathcal{D} & & & \mathcal{D} \\ \hline arphi \wedge \psi & (\wedge_{E_d}) & & & \dfrac{arphi \wedge \psi}{\psi} & (\wedge_{E_{oldsymbol{arphi}}} & & & \end{array}$$

Podemos já provar que $\{\varphi_1 \land \varphi_2\} \vdash \varphi_2 \land \varphi_1$

$$\frac{(\varphi_1 \wedge \varphi_2)^1}{\varphi_2} (\wedge_{E_e}) \quad \frac{(\varphi_1 \wedge \varphi_2)^1}{\varphi_1} (\wedge_{E_d})$$

$$\frac{\varphi_2 \wedge \varphi_1}{\varphi_2 \wedge \varphi_1} (\wedge_I)$$

Conectivo \rightarrow

Se já provámos φ e $\varphi \to \psi$, podemos concluir ψ

Regra da Eliminação da Implicação

$$\frac{\mathcal{D}_1}{\varphi} \quad \frac{\mathcal{D}_2}{\varphi \to \psi} \quad (\to_E)$$

Podemos provar que $\{(\varphi_1 \land \varphi_2), \ (\varphi_2 \to \varphi_3)\} \vdash \varphi_3$

$$\frac{(\varphi_1 \wedge \varphi_2)^1}{\varphi_2} \xrightarrow{(\wedge_{E_e})} (\varphi_2 \to \varphi_3)^2} (\to_E)$$

Conectivo V

Se já provámos φ (ou ψ), podemos concluir $\varphi \lor \psi$

Regras da Introdução da Disjunção

$$\frac{\varphi}{\varphi \vee \psi} (\vee_{I_d}) \qquad \frac{\psi}{\varphi \vee \psi} (\vee_{I_e})$$

Podemos provar que $\{\varphi_1 \land \varphi_2\} \vdash \varphi_1 \lor \varphi_2$

$$\frac{(\varphi_1 \wedge \varphi_2)^1}{\varphi_1}_{(\wedge_{E_d})} (\wedge_{E_d})$$

Conectivo ¬

Se conseguimos derivar uma fórmula φ e a sua negação $\neg \varphi$ então é porque temos um absurdo \bot .

Regra da Eliminação da Negação

$$\begin{array}{c|c} \mathcal{D}_1 & \mathcal{D}_2 \\ \hline \varphi & \neg \varphi \\ \hline & \bot \end{array} (\neg_E)$$

Podemos provar que $\{\varphi_1, (\varphi_1 \to \varphi_2), \neg \varphi_2\} \vdash \bot$

$$\frac{\varphi_1^1 \qquad (\varphi_1 \to \varphi_2)^2}{\varphi_2} \xrightarrow{(\to_E)} \qquad \neg \varphi_2^3}_{\perp} (\neg_E)$$

Regras de ${\cal N}$

Nota

As regras até agora apresentadas não mencionam as marcas. Só as regras restantes mencionam as marcas:

- Eliminação da disjunção
- Introdução da implicação
- Regra do absurdo
- Introdução da negação

Conectivo V

Para concluir ψ a partir de $\varphi_1 \vee \varphi_2$, temos que raciocinar por casos: obter ψ quer no caso φ_1 , quer no caso φ_2

Regra da Eliminação da Disjunção

$$\begin{array}{ccc}
 & [\varphi_1]^m & [\varphi_2]^n \\
\mathcal{D}_1 & \mathcal{D}_2 & \mathcal{D}_3 \\
\varphi_1 \lor \varphi_2 & \psi & \psi \\
\hline
\psi & & \psi
\end{array}$$
 (\lor_E, m, n)

As marcas m e n da justificação da regra:

- m (resp. n) é marca de uma ou mais hipóteses φ_1 (resp. φ_2) que estavam abertas na árvore \mathcal{D}_2 (resp. \mathcal{D}_3)
- 2 é uma marca nova, i.e., que não ocorre na árvore.

Depois da aplicar a regra, $[\varphi_1]^m$ e $[\varphi_2]^n$ ficam fechadas.

Em \mathcal{D}_2 só podemos fechar φ_1 e em \mathcal{D}_3 só podemos fechar φ_2 .

Provar que
$$\{(\varphi_1 \vee \varphi_2), \ (\varphi_1 \to \varphi_3), \ (\varphi_2 \to \varphi_3)\} \vdash \varphi_3$$

$$\frac{(\varphi_1 \vee \varphi_2)^1}{\varphi_3} \quad \frac{(\varphi_1)^{\mathscr{Y}} \quad (\varphi_1 \to \varphi_3)^3}{\varphi_3} \xrightarrow{(\to_E)} \quad \frac{(\varphi_2)^{\mathscr{Y}} \quad (\varphi_2 \to \varphi_3)^5}{\varphi_3} \xrightarrow{(\vee_{E,2,4})} (\to_E)$$

Atenção: Exemplo que não é derivação

$$\frac{(\varphi_1)^{\mathscr{Y}} \quad (\varphi_2)^{\mathscr{Y}}}{\varphi_1 \wedge \varphi_2} \stackrel{(\wedge_I)}{} \quad \frac{(\varphi_1)^{\mathscr{Y}} \quad (\varphi_2)^{\mathscr{Y}}}{\varphi_1 \wedge \varphi_2} \stackrel{(\vee_I)}{} \quad \frac{(\varphi_1)^{\mathscr{Y}} \quad (\varphi_2)^{\mathscr{Y}}}{\varphi_1 \wedge \varphi_2} \stackrel{(\vee_I)}{} \quad \frac{(\varphi_1)^{\mathscr{Y}} \quad (\varphi_2)^{\mathscr{Y}}}{\varphi_1 \wedge \varphi_2} \stackrel{(\varphi_1)}{} \quad (\varphi_1)^{\mathscr{Y}} \stackrel{(\varphi_1)}{} \qquad (\varphi_1)^{\mathscr{Y}} \stackrel{(\varphi_1)}{}$$

Provaria que $\{\varphi_1 \lor \varphi_2\} \vdash \varphi_1 \land \varphi_2$

 Mas , a regra $ee_{E,2,3}$ fechou uma hipótese em \mathcal{D}_2 que não era $arphi_1$

Logo esta árvore não é uma derivação válida no sistema \mathcal{N} .

Conectivo →

Se, fixando φ como hipótese (eventualmente), conseguirmos derivar ψ , então provámos que $\varphi \to \psi$

Regra da Introdução da Implicação

$$\begin{array}{c}
[\varphi]^m \\
\mathcal{D} \\
\frac{\psi}{\varphi \to \psi} \ (\to_{I,m})
\end{array}$$

A marca m associada à justificação da regra \rightarrow_{Lm} :

- $oldsymbol{0}$ é marca de uma ou mais hipóteses φ que estavam abertas; ou
- 2 é uma marca nova, i.e., que não ocorre na árvore.

Depois da aplicar a regra, a hipótese $[\varphi]^m$ fica fechada.

Provar que $\{(\varphi_1 \lor \varphi_2) \to \varphi_3\} \vdash \varphi_1 \to \varphi_3$

$$\frac{\varphi_{1}^{\checkmark}}{\varphi_{1}\vee\varphi_{2}}^{(\vee_{I_{d}})} \qquad (\varphi_{1}\vee\varphi_{2})\to\varphi_{3}^{2}}_{\varphi_{3}} \xrightarrow{\varphi_{3}} (\to_{I},1)$$

Provar que $\{\varphi_2\} \vdash (\varphi_1 \rightarrow \varphi_2)$

$$\frac{(\varphi_2)^1}{\varphi_1 \to \varphi_2} (\to_{I,2})$$

Aplicação de \to_I menciona hipótese φ_1 (com marca 2) que não ocorre na árvore.

Conectivo ⊥

Se (eventualmente) se considera por hipótese $\neg \varphi$ e se deriva (eventualmente recorrendo a outras hipóteses) o absurdo, a hipótese (se usada) era falsa, e provou-se φ .

Regra do absurdo

A marca m associada à justificação da regra:

- $oldsymbol{0}$ é marca de uma ou mais hipóteses $\neg \varphi$ que estavam abertas; ou
- 2 é uma marca nova, i.e., que não ocorre na árvore.

Depois da aplicar a regra, a hipótese $[\neg \varphi]^m$ fica fechada.

Conectivo \bot

Provar que $\{\neg\neg\varphi\} \vdash \varphi$

$$\frac{\neg \varphi^{\gamma} \quad \neg \neg \varphi^{2}}{\frac{\bot}{\varphi} (\bot, 1)} (\neg_{E})$$

Provar que $\vdash (\bot \rightarrow \varphi)$

$$\frac{\perp^{\cancel{1}}}{\varphi} (\bot, 2)$$

$$\perp \to \varphi \qquad (\to_1)$$

Aplicação de $\perp,2$ menciona hipótese $\neg \varphi$ (com marca 2) que não ocorre na árvore.

Não há hipóteses abertas, logo $\bot \to \varphi$ é teorema de \mathcal{N} .

Conectivo ¬

Se se considera por hipótese φ e se deriva (eventualmente recorrendo a outras hipóteses) o absurdo, a hipótese era falsa, e provámos a negação da fórmula, isto é, $\neg \varphi$.

Regra da introdução da negação

$$\begin{array}{c}
[\varphi]^m \\
\mathcal{D} \\
\underline{\qquad} \\
\neg \varphi
\end{array} (\neg_I, m)$$

A marca m associada à justificação da regra:

 $oldsymbol{0}$ é marca de uma ou mais hipóteses φ que estavam abertas

Depois da aplicar a regra, a hipótese $[\varphi]^m$ fica fechada.

Conectivo ¬

Provar que $\{\varphi\} \vdash \neg \neg \varphi$

$$\frac{\varphi^1 \qquad \neg \varphi^{\cancel{2}}}{\perp \qquad \qquad (\neg_E)}$$

Correcção e Completude de ${\cal N}$

Teorema da Correção e Completude da Dedução Natural

Dada uma fórmula $\varphi \in F_P$ e conjunto de fórmulas $\Gamma \subseteq F_P$, então:

$$\Gamma \vdash_{\mathcal{N}} \varphi$$
 se e só se $\Gamma \models \varphi$

Como usar a Correção do Sistema \mathcal{N} ?

Ao provarmos que $\Gamma \vdash_{\mathcal{N}} \varphi$, construindo uma árvore de derivação, a Correção do Sistema \mathcal{N} permite concluir que $\Gamma \models \varphi$.

Exemplo

Como provar que $\{\neg p \to q\} \models \neg q \to p$ usando o Sistema \mathcal{N} ? Provando primeiro que $\{\neg p \to q\} \mid_{\mathcal{N}} \neg q \to p$:

$$\frac{\neg p \to q^1 \qquad \neg p^{\cancel{2}}}{q} \xrightarrow{(\to_E)} \qquad \neg q^{\cancel{2}} \\ \frac{\square}{\cancel{p}} (\bot, 2) \\ \frac{\square}{\cancel{p}} (\to_I, 3)$$

Pela Correção do Sistema ${\mathcal N}$, podemos concluir que:

$$\{\neg p \to q\} \models \neg q \to p$$

Mais um exemplo

Provar que $\models p \lor \neg p$ usando o Sistema \mathcal{N} ?

$$\frac{\frac{p^{\gamma}}{p \vee \neg p} (\vee_{I_d})}{\frac{\bot}{\neg p} (\neg_{I}, 1)} (\neg_{E})$$

$$\frac{\frac{\bot}{\neg p} (\neg_{I}, 1)}{\frac{p \vee \neg p} (\vee_{I_e})} (\vee_{I_e})$$

$$\frac{\bot}{p \vee \neg p} (\bot, 2)$$

Pela Correção do Sistema \mathcal{N} , podemos concluir que $\models p \vee \neg p$

Exercícios

Prove, usando o Sistema \mathcal{N} , que:

•
$$\{\varphi \lor \psi, (\varphi \to \delta), (\psi \to \delta)\} \models \delta$$

$$\bullet \vdash (\psi \to \gamma) \to ((\varphi \land \psi) \to \gamma)$$

$$\bullet \models \varphi \lor (\varphi \to \psi)$$

•
$$\{\neg \varphi \land \neg \psi\} \models \neg (\varphi \lor \psi)$$