第十章 微分方与差分方程

(B) 一阶线性非齐次方程

1. 微分方程 (x+y) d $y = x \arctan\left(\frac{y}{x}\right)$ dx 是 (

(A) 可分离变量微分方程

	(C) 齐次方程		(D) 前面三种都不是	
2.	微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} +$	$-\tan\frac{y}{x}$ 的通解是 ().	
	$(\mathbf{A})\sin\frac{y}{x} = \frac{1}{Cx}$	(B) $\sin \frac{y}{x} = x + C$	$(\mathbf{C})\sin\frac{x}{y} = Cx$	$(D) \sin \frac{y}{x} = Cx$
3.	函数 $y = \cos x$ 是下列哪个微分方程的解 ().			
	(A) $y' + y = 0$	(B) $y' + 2y = 0$	(C) $y'' + y = 0$	$(D) y'' + y = \cos x$
4.	. 若函数 $y = e^{-x}$ 是方程 $y'' + ay' - 2y = 0$ 的一个解,则 a 值等于 ().			
	(A) 0	(B) 1	(C) −1	(D) 2
5 .	5. 微分方程 $y'' + 4y = \cos 2x$ 的特解形式为 ().			
	$(A) y = A\cos 2x$		$(B) y = A \sin 2x$	
	$(C) y = A\sin 2x + B\cos 2x$		$(D) y = x(A\sin 2x + B\cos 2x)$	
6.	若函数 $y_1 = e^{2x}$, $y_2 = e^{-x}$ 是二阶常系数齐次线性微分方程 $y'' + py' + qy = 0$ 的两个特解,则 p,q 的值分别等于().			
	(A) -1 , -2	(B) $-1,2$	(C) 1,−2	(D) 1,2
7.	微分方程 <i>y″</i> −2 <i>y′</i> ┤	+2 <i>y</i> = 0 的通解为().	
	(A) $y = e^{-x}(C_1 \cos x + C_2 \sin x)$		(B) $y = e^x (C \cos x + \frac{1}{2}C \sin x)$	
	$(C) y = e^x (C \sin x + \cos x)$		(D) $y = e^x (C_1 \sin x - C_2 \cos x)$	
8.	-	-)=1 , y'(0)=1 的解是	
	(A) $y = \frac{1}{2}(e^x + 1)$	(B) $y = \frac{1}{2}(e^{-x} + 1)$	(C) $y = 2 - e^{-x}$	(D) $y = 2e^{-x} - 1$

- 9. 若函数 $y = \cos \omega x$ 是方程 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} + 9y = 0$ 的解,则 ω 的值等于 ().
 - **(A)** ± 1
- **(B)** ± 2
- **(C)** ± 3
- **(D)** ± 4
- **10**. 微分方程 y'' 5y' + 6y = 0 的通解为().
 - **(A)** $y = C_1 e^{-2x} + C_2 e^{-3x}$
- **(B)** $y = C_1 e^{2x} C_2 e^{3x}$

(C) $y = e^{2x} - e^{3x}$

- **(D)** $y = e^{2x} + e^{3x}$
- 11. 微分方程 $y' \sin x = y \cos x \ln y$ 且满足 $y \Big|_{x=\frac{\pi}{2}} = e$ 的解是 _______.
- **12.** 微分方程 $y''' x^2 y'' x^5 = 1$ 的通解中应含有独立常数个数为_____
- 13. 方程 $y'' = \sin x$ 的通解为 .
- **14.** 方程 $y'' + y = x \cos 2x$ 的特解形式为 .
- **15**. 微分方程 y' = xy'' 的通解为 .
- **16.** 方程 $y'' 2y = e^x$ 的特解形式为______.
- 17. 求微分方程 $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$ 的通解.
- **18.** 求微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} 2y = \mathrm{e}^x + x$ 的通解.
- **19**. 求微分方程 $xy' y = 1 + x^3$ 的通解.
- **20.** 求微分方程 $(y^2-2x^2)dx+2xydy=0$ 满足初始条件 $y\big|_{x=1}=1$ 的特解。
- **21**. 求微分方程 $y'' 3y' + 2y = xe^{2x}$ 的通解.
- **22.** 求微分方程 $xy dx + (x^2 + 1) dy = 0$ 满足初值条件 $y|_{x=0} = 1$ 的特解.
- **23.** 求微分方程 (x^2+3y^2) dx-2xy dy=0 的通解.
- **24.** 求微分方程 $(y^2-6x)y'+2y=0$ 的通解.
- **25.** 求微分方程 $y'' 4y' + 4y = e^{2x}$ 的通解.
- **26.** 求方程 $\frac{dy}{dx} + \frac{y}{x} = \frac{\sin x}{x}$ 的通解.