Generative Models

Unsupervised Learning

- 1. Background: Supervised Learning
 - a. Given data (x, y)
 - i. x: data
 - ii. y: label
 - b. Learn a function to map $x \rightarrow y$
 - c. Examples
 - i. classification, regression, object detection, semantic segmentation, image captioning, etc
- 2. Unsupervised Learning
 - a. Given data x
 - b. Learn some underlying hidden structure of the data
 - c. Examples
 - i. clustering, dimensionality reduction, feature learning, density estimation, etc

Generative Models

- 1. Generative models
 - a. Given training data
 - b. Generate new samples from same distribution
 - i. want to learn $p_{model}(x)$ similar to $p_{data}(x)$
 - $p_{data}(x)$ ~ training data distribution
 - ullet $p_{model}(x)$ ~ generated sample distribution
- 2. Density estimation
 - a. 관측된 데이터들의 분포로부터 원래 변수의 확률 분포 특성을 추정하는 것
 - i. 어떤 변수 x의 밀도 (density)를 추정하는 것은 x의 확률 밀도 함수 (probability density function)를 추정하는 것과 동일함

b. For supervised

- i. 미리 확률 밀도 함수를 정해두고 데이터들로부터 모델의 파라미터만 추정하는 방식 (parametric)
- c. For unsupervised
 - i. 어떠한 사전 정보나 지식 없이 순수하게 관측된 데이터만으로 확률 밀도 함수를 추정하는 방식 (non-parametric)
- d. Density estimation is a core problem in unsupervised learning
 - i. generative model addresses density estimation
- e. Type
 - i. explicit density estimation
 - ullet explicitly define and solve for $p_{model}(x)$
 - ii. implicit density estimation
 - learn model that can sample from $p_{model}(x)$ without explicitly defining it

3. Taxonomy

PixelRNN & PixelCNN

- 1. PixelRNN
 - a. Generate image pixels starting from corner
 - b. Dependency on previous pixels modeled using an RNN (LSTM)

c. Drawback

i. sequential generation is slow b/c iteratively go through and add all the pixels

2. PixelCNN

- a. Still generate image pixels starting from corner
- b. Dependency on previous pixels now modeled using a CNN over context region
 - i. train by maximizing the likelihood of training images

c. Advantage

i. training is faster than PixelRNN b/c can parallelize convolutions since context region values known from training images

d. Drawback

i. generation must still proceed sequentially, so still slow

3. Pros & Cons

a. Pros

- i. can explicitly compute likelihood p(x)
- ii. explicit likelihood of training data gives good evaluation metric
- iii. good samples

b. Cons

i. sequential generation is too slow

Variational Autoencoders (VAE)

1. PixelCNN vs. VAE

- a. PixelCNNs define tractable density function, optimize likelihood of training data $p_{ heta}(x)$
- b. VAEs define intractable density function with latent z
 - i. cannot optimize directly, derive and optimize lower bound on likelihood, instead

2. Background: Autoencoder

a. Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

b. Encoder

- i. generate z from x
 - z usually smaller than x b/c dimensionality reduction
 - \circ dimensionality reduction 을 통해 중요한 feature만 z로 선정됨

c. Decoder

- i. reconstruct \hat{x} from z
- d. Process
 - i. Train using L2 loss function

- $\bullet ||x-\hat{x}||^2$
- ii. Throw away decoder
- iii. Use encoder to initialize a supervised model
 - · softmax loss function and fine-tuning

e. Purpose

- i. Autoencoder의 decoder 부분은 encoder를 학습시키는 것이 목적
- ii. 데이터 생성이 목적이 아님
- iii. 데이터를 잘 압축하는 것 (i.e., 데이터의 특징을 잘 추출하는 것, 데이터의 차원을 잘 줄이는 것) 이 목적

3. Variational autoencoder

- a. Purpose
 - i. VAE는 decoder를 학습시키기 위해 encoder를 사용함
 - ii. decoder를 이용하여 데이터를 생성하는 것이 목적
- b. Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from underlying latent representation z
 - i. z is sampled from true prior $p_{ heta^*}(z)$
 - ii. x is sampled from true conditional $p_{ heta^*}(x|z^{(i)})$
- c. Estimate the true parameters $heta^*$ of the generative model
- d. How?
 - i. choose prior p(z) to be simple, e.g., Gaussian
 - ii. conditional $p(x \vert z)$ is complex (generates image), so present with neural network
- e. Overall structure

f. Encoder

- i. 데이터 x를 입력으로 넣어서 데이터의 특징을 추측함
- ii. 이 때, 특징들의 분포는 정규 분포를 따른다고 가정함
- iii. 따라서 아웃풋으로 특징 분포의 μ_i, σ_i 를 리턴함
- iv. 문제점: 분포 내 데이터를 어떻게 뽑아서 사용할까?
 - reparameterization trick 을 사용하여 샘플링함
 - 직접 샘플링: 가우시안 분포에서 직접 샘플링을 하면 역전파가 불가능한
 - \circ reparameterization trick: ϵ 을 N(0, 1)에서 샘플링해서 σ_i 와 곱하고 μ_i 와 더하여 같은 확률 분포에서 값을 샘플링함

g. Decoder

- i. 특징 z를 통해 데이터 x를 복원함 (z를 줬을 때 x가 나올 확률을 maximize 해야함)
- ii. loss function
 - reconstruction error: 복원된 샘플이 얼마나 원본과 유사하도록 만들어줌
 - regularization term: 이상적인 z의 분포와 encoder를 통해 얻은 z의 분포가 유사하도록 만들어줌 (KL-divergence)

4. Pros & Cons

a. Pros

i. principled approach to generative models

ii. allows inference of q(z|x), can be useful feature representation for other tasks

b. Cons

- i. not as good evaluation as PixelRNN or PixelCNN
- ii. samples blurrier and lower quality compared to SOTA (GANs)

Generative Adversarial Networks (GAN)

1. Overview

- a. GANs don't work with any explicit density function
- b. Take game-theoretic approach, instead
 - i. learn to generate from training distribution through 2-player game

2. GANs

- a. Problem
 - i. want to sample from complex, high-dimensional training distribution
- b. Solution
 - i. sample from a simple distribution, e.g., random noise
- c. Training
 - i. Generator network
 - try to fool the discriminator by generating real-looking images
 - ii. Discriminator network
 - try to distinguish between real and fake images

- d. After training
 - i. Use generator network to generate new images
- 3. Pros & Cons
 - a. Pros
 - i. SOTA samples
 - b. Cons
 - i. more unstable to train
 - ii. can't solve inference queries such as p(x), p(z | x)