Ejercicios

- **1.** Hallar $\partial f/\partial x$, $\partial f/\partial y$ si
 - (a) f(x,y) = xy
 - (b) $f(x,y) = e^{xy}$
 - (c) $f(x,y) = x \cos x \cos y$
 - (d) $f(x,y) = (x^2 + y^2) \log(x^2 + y^2)$
- **2.** Evaluar las derivadas parciales $\partial z/\partial x$, $\partial z/\partial y$ de las funciones dadas en los puntos indicados.
 - (a) $z = \sqrt{a^2 x^2 y^2}$; (0, 0), (a/2, a/2)
 - (b) $z = \log \sqrt{1 + xy}$; (1, 2), (0, 0)
 - (c) $z = e^{ax} \cos(bx + y); (2\pi/b, 0)$
- **3.** En cada uno de los casos siguientes, hallar las derivadas parciales $\partial w/\partial x$, $\partial w/\partial y$.
 - (a) $w = xe^{x^2 + y^2}$
 - (b) $w = \frac{x^2 + y^2}{x^2 y^2}$
 - (c) $w = e^{xy} \log(x^2 + y^2)$
 - (d) w = x/y
 - (e) $w = \cos(ye^{xy}) \sin x$
- **4.** Decidir cuál de las funciones siguientes son C^1 si f(0,0) está definida como 0.
 - (a) $f(x,y) = \frac{2xy}{(x^2 + y^2)^2}$
 - (b) $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$
 - (c) $f(x,y) = \frac{x^2y}{x^4 + y^2}$
- **5.** Hallar la ecuación del plano tangente a la superficie $z = x^2 + y^3$ en (3, 1, 10).
- **6.** Sea $f(x,y) = e^{x+y}$. Hallar la ecuación del plano tangente a la gráfica de f en el punto (0, 0).
- 7. Sea $f(x,y) = e^{x-y}$. Hallar la ecuación del plano tangente a la gráfica de f en el punto (1, 1).
- **8.** Para cada una de las funciones del Ejercicio 1, calcular el plano tangente a las gráficas en los puntos indicados.
 - (a) (0,0)
- (c) $(0,\pi)$
- (b) (0,1)
- (d) (0,1)

- **9.** Calcular la matriz de derivadas parciales de las siguientes funciones:
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (x, y)$
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}^3, f(x,y) = (xe^y + \cos y, x, x + e^y)$
 - (c) $f: \mathbb{R}^3 \to \mathbb{R}^2, f(x, y, z) = (x + e^z + y, yx^2)$
 - (d) $f: \mathbb{R}^2 \to \mathbb{R}^3, f(x,y) = (xye^{xy}, x \operatorname{sen} y, 5xy^2)$
- 10. Calcular la matriz de derivadas parciales de
 - (a) $f(x,y) = (e^x, \operatorname{sen} xy)$
 - (b) f(x, y, z) = (x y, y + z)
 - (c) f(x,y) = (x+y, x-y, xy)
 - (d) f(x,y,z) = (x+z, y-5z, x-y)
- **11.** Hallar la ecuación del plano tangente a $f(x, y) = x^2 2xy + 2y^2$ que tiene pendiente 2 en la dirección positiva del eje x y pendiente 4 en la dirección positiva del eje y.
- **12.** Sea $f(x,y) = e^{(2x+3y)}$.
 - (a) Hallar el plano tangente a f en (0, 0).
 - (b) Usar esto para a proximar f(0,1;0) y f(0;0,1).
 - (c) Haciendo uso de una calculadora, hallar los valores exactos de f(0,1;0) y f(0;0,1).
- **13.** ¿Dónde corta al eje z el plano tangente a $z = e^{x-y}$ en (1,1,1)?
- **14.** ¿Por qué las gráficas de $f(x,y) = x^2 + y^2$ y $g(x,y) = -x^2 y^2 + xy^3$ deben llamarse "tangentes" en (0,0)?
- **15.** Sea $f(x,y) = e^{xy}$. Demostrar que $x(\partial f/\partial x) = y(\partial f/\partial y)$.
- **16.** Utilizar la aproximación lineal para aproximar una función adecuada f(x, y) y a partir de ella estimar:
 - (a) $(0.99e^{0.02})^8$
 - (b) $(0.99)^3 + (2.01)^3 6(0.99)(2.01)$
 - (c) $\sqrt{(4.01)^2 + (3.98)^2 + (2.02)^2}$
- **17.** Sea P el plano tangente a la gráfica de $g(x,y) = 8-2x^2-3y^2$ en el punto (1, 2, -6). Sea $f(x,y) = 4-x^2-y^2$. Hallar el punto de la gráfica de f que tiene un plano tangente paralelo a P.