

Vorlesung: Prof. Dr. Vollmer Übung: Luisa Simmet, Thorsten Kluge

Freitag, 22. Mai 2015

Gruppe 1: 13:00 - 14:30 Gruppe 2: 15:00 - 16:30 Gruppe 3: 17:00 - 18:30 Gebäude 3703 / Raum 224

Logik und formale Systeme 4. Übung (Aussagenlogik)

Aufgabe 1

Gib eine Resolutionswiderlegung der folgenden Klauselmenge an:

$$\{\{p_1,p_2\},\{\neg p_1\},\{p_1,\neg p_3\},\{\neg p_2,\neg p_4\},\{p_3,p_4\}\}.$$

Gehe dabei nach dem Davis-Putnam-Algorithmus vor und verwende als Heuristik für die Auswahl der Variablen die Ordnung $p_1 < p_2 < p_3 < p_4$.

Aufgabe 2

Gegeben sei die Klauselmenge

$$\Gamma := \big\{ \{p_1, p_2, \neg p_3\}, \{\neg p_1, p_4\}, \{\neg p_2, p_3\}, \{p_1, p_4\}, \{p_3, \neg p_4\}, \{\neg p_3\} \big\}.$$

- a) Gib eine Resolutionswiderlegung von Γ an. Gehe dabei nach dem Davis-Putnam-Algorithmus vor und verwende als Heuristik für die Auswahl der Variablen die Ordnung $p_1 < p_2 < p_3 < p_4$.
- b) Eine Klauselmenge Δ heißt minimal unerfüllbar, falls Δ unerfüllbar ist und jede echte Teilmenge $\Delta' \subset \Delta$ erfüllbar ist. Ist obige Klauselmenge Γ minimal unerfüllbar? Begründe Deine Antwort.

Aufgabe 3

Gegeben sei

$$\varphi := (p_1 \vee \neg p_4) \wedge (p_1 \vee p_4) \wedge (p_2 \vee \neg p_3) \wedge (\neg p_2 \vee \neg p_3) \wedge (\neg p_1 \vee p_3).$$

- a) Schreibe φ als Klauselmenge Γ .
- b) Gib eine Resolutionswiderlegung an (ohne DP-Algorithmus).
- c) Gib eine Resolutionswiderlegung an und verwende dabei den DP-Algorithmus. Verwende als Heuristik für die Auswahl der Variablen
 - (i) die Ordnung $p_1 < p_2 < p_3 < p_4$,
 - (ii) die Heuristik h, die aus einer Klauselmenge Γ die aussagenlogische Variable p mit dem kleinsten Wert

$$h(p) = |\{C \in \Gamma \mid p \in C\}| \cdot |\{C \in \Gamma \mid \neg p \in C\}| > 0$$

auswählt. Haben zwei Variablen denselben Wert, so soll diejenige mit dem kleineren Index ausgewählt werden.

Aufgabe 4

Prüfe mit dem DPLL-Algorithmus, ob die Klauselmenge

$$\{\{x_1, x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, \neg x_2\}\}$$

erfüllbar ist. Gib die einzelnen Schritte an. Verwende für die Auswahl der Variablen die Ordnung $x_1 < x_2$.

Aufgabe 5

Welche der folgenden Formelpaare sind erfüllbarkeitsäquivalent bzw. logisch äquivalent?

- a) $\varphi_a := p_1, \quad \psi_a := p_2 \to p_3.$
- b) $\varphi_b := x$, $\psi_b := \neg x$.
- c) $\varphi_c := p \to q$, $\psi_c := \neg q \lor q$.
- d) $\varphi_d := \neg (p \to q), \quad \psi_d := q \land \neg q.$
- e) $\varphi_e := \neg p \lor p$, $\psi_e := \neg (q \to q)$.

Aufgabe 6

Sei $\varphi = p \vee \neg p$. Gib $\Gamma_{\neg \varphi}$ an und beweise durch Resolutionswiderlegung von $\Gamma_{\neg \varphi}$, dass φ eine Tautologie ist.