Definition and Principles

Design of Experiment

Types of Designs

Yi-Ju Li. Ph.D.

High-throughput Sequencing Workshop Department of Biostatistics & Bioinformatics Duke University Medical Center

July 5, 2018

Outline

- Definition and Principles of Design of Experiment (DOE)
- Basic statistics
- Types of experimental designs for basic science research
- Power calculation for sample size
- DOE consideration for RNA-Seq

Definition and Principles

•000000000000000

Definition and Principles

Project planning

Hypothesis; what to be measured; influential factors

Project planning

Hypothesis; what to be measured; influential factors

Experimental studies

Ability to control the source of variability

Project planning

Hypothesis; what to be measured; influential factors

Experimental studies

Ability to control the source of variability

Observational studies

No controls over the source of variability

Basic definition of design of experiment (DOE)

- Experiment: A process that generates data to achieve specific objective
- All data are subject to variation.
- DOE: A systematic method to determine the effect of a factor(s) to the outputs (responses) of the experiment based on predefined questions (e.g., hypothesis, theory, model). An effective experiment can
 - eliminate known sources of bias
 - prevent unknown source of bias
 - obtain data with high accuracy and precision.
- R.A. Fisher pioneered the field of statistical principals of experimental design.

Main elements in EOD

- Formulate research questions and hypothesis.
- Experimental units: The entities that experimental procedures are applied to.
 - Examples: Mice, plants, patients, etc.
 - Need to be representative for the inference to be made.
- Observation units or response variables: Any outcomes or results of the experiment (e.g., gene expression of the RNA-Seq study)
 - Responses are only comparable if they are measured from homogeneous experimental units.

More on main elements

• Factors: Variables to be investigated to determine its effect to the response variable (e.g. treatment effect)

- It should be defined prior to the experiment.
- It can be controlled by experimenter.
- Effect: Changes in the average response between levels of a factor, or between two experimental conditions.
- Covariate: May affect the response but cannot be controlled in an experiment.

More on formulating hypothesis

Establish a study objective from a given scientific question.

- Translate study objective to a testable hypothesis
- Null hypothesis: No measurement differences or factor effects between groups
- Alternative hypothesis: Certain measurement differences or factor effects between groups
 - Mostly it is the goal you want to achieve in your study objective.

Definition and Principles

00000000000000

• Study objective: 'To examine the complications, mortality, cost and discharge status of patients with disease X'

Examples: From study objective to hypothesis

• Study objective: 'To examine the complications, mortality, cost and discharge status of patients with disease X'

Types of Designs

- Examine = estimate rates? or Examine = compare rates?
- There are no comparable groups, so we can't establish a testable hypothesis.

Examples: From study objective to hypothesis

Study objective: 'To examine the complications, mortality, cost and discharge status of patients with disease X'

- Examine = estimate rates? or Examine = compare rates?
- There are no comparable groups, so we can't establish a testable hypothesis.
- **Study objective:** 'To identify differential expression genes between E *Coli* stressed by high and neutral pH level'

Examples: From study objective to hypothesis

• Study objective: 'To examine the complications, mortality, cost and discharge status of patients with disease X'

- Examine = estimate rates? or Examine = compare rates?
- There are no comparable groups, so we can't establish a testable hypothesis.
- 2 Study objective: 'To identify differential expression genes between E Coli stressed by high and neutral pH level' Hypothesis:

Examples: From study objective to hypothesis

Study objective: 'To examine the complications, mortality, cost and discharge status of patients with disease X'

- Examine = estimate rates? or Examine = compare rates?
- There are no comparable groups, so we can't establish a testable hypothesis.
- Study objective: 'To identify differential expression genes between E Coli stressed by high and neutral pH level' Hypothesis:
 - **Null hypothesis:** There is no difference in expression level of 'a gene' between pH conditions; $\mu_1 = \mu_2$, μ for average gene expression level.
 - Alternative hypothesis: There is difference in expression level of 'a gene' between pH conditions; $\mu_1 \neq \mu_2$.

Experiment for this workshop

A two-factor experiment for Cryptococcus neoformans (fungus):

RZ: ribozero rRNA depletion; MA: polyA enrichment; TOT: total RNA

Experiment: RNA-Seq for samples from two Cryptococcus neoformans strains under two growth media

Per working group		
	YPD	TC
H99	3	3
or		
YPD TC		
Mar1d	3	3

working groups		
	YPD	TC
H99	12	12
Mar1d	12	12

Combine all 8

• Study objective?

Experiment: RNA-Seq for samples from two Cryptococcus neoformans strains under two growth media

Per working group		
YPD	TC	
3	3	
or		
YPD TC		
3	3	
	YPD 3 or	

working groups		
	YPD	TC
Н99	12	12
Mar1d	12	12

Combine all 8

- Study objective?
- Null and alternative hypotheses?

Experiment: RNA-Seg for samples from two Cryptococcus neoformans strains under two growth media

Per working group		
	YPD	TC
Н99	3	3
or		
	or	
	YPD	TC
Mar1d		TC 3

working groups		
	YPD	TC
Н99	12	12
Mar1d	12	12

Combine all 8

- Study objective?
- Null and alternative hypotheses?
- Experimental units?

Experiment: RNA-Seq for samples from two Cryptococcus neoformans strains under two growth media

Per working group		
	YPD	TC
H99	3	3
or		
YPD TC		
	YPD	
Mar1d	YPD 3	TC 3

working groups		
	YPD	TC
H99	12	12
Mar1d 12 12		12

Combine all 8

- Study objective?
- Null and alternative hypotheses?
- Experimental units?
- Observation units?

Experiment: RNA-Seg for samples from two Cryptococcus neoformans strains under two growth media

Per working group		
YPD	TC	
3	3	
or		
YPD TC		
3	3	
	YPD 3 or YPD	

working groups		
	YPD	TC
H99	12	12
Mar1d	12	12
•		

Combine all 8

- Study objective?
- Null and alternative hypotheses?
- Experimental units?
- Observation units?
- Factors?

Experiment: RNA-Seg for samples from two Cryptococcus neoformans strains under two growth media

Per working group		
YPD	TC	
3	3	
or		
YPD TC		
3	3	
	YPD 3 or YPD	

working groups		
	YPD	TC
H99	12	12
Mar1d	12	12

Combine all 8

- Study objective?
- Null and alternative hypotheses?
- Experimental units?
- Observation units?
- Factors?
- Covariates?

Experiment: RNA-Seg for samples from two Cryptococcus neoformans strains under two growth media

Per working group		
YPD	TC	
3	3	
or		
YPD		
3	3	
	YPD 3 or YPD	

working groups		
	YPD	TC
H99	12	12
Mar1d	12	12

Combine all 8

- Study objective?
- Null and alternative hypotheses?
- Experimental units?
- Observation units?
- Factors?
- Covariates?

Common problems in experimental design

- Experimental variation may mask the factor effects.
 - For data with larger variation, it is more difficult to detect mean differences between two levels of a factor.
 - Sample size matters.
- Uncontrolled factors may compromise the conclusion
 - **Example:** RNA samples from treatment A were run in one batch (or time 1), and those from treatment B were run in another batch (or time 2).
- When multiple factors are involved and tested, one-factor design will not work.

Principles of DOE

Four commonly considered principles of DOE (Fisher1935).

- **Representativeness:** Can the experimental units sufficiently represent the conclusion to be made?
- Randomization: To avoid unknown or systemic bias
- Replication: To increase the precision of the data
- Error control or blocking: To reduce known bias (e.g. batch effect).

Experiment needs to be comparative.

Representative

Definition and Principles

0000000000000000

"There's a flaw in your experimental design. All the mice are scorpios."

Randomization

Can the following design detect the drug effect?

Randomization

- Each experimental unit should have an equal chance to be assigned to a treatment group or block
- Prevent the introduction of systematic bias into the response of the experiment.
- Allow estimating experimental error.

Replications and Blocking

- Replications: Essential for controlling data variation. Why?
 - Observed data: $(Y_1, Y_2, \cdots, Y_n) \sim N(\mu, \sigma^2)$.
 - μ and σ^2 are unknown population parameters.
 - Estimates: $\hat{\mu} = \bar{Y}$ (sample mean) and $\hat{\sigma^2} = S^2$ (sample variance)
 - Standard error of the mean = $\sqrt{S^2/n}$, which determines the confidence interval (CI) of $\hat{\mu}$.
 - larger n (more replications) → narrower Cl → more precision in mean estimate.

Replications and Blocking

Replications: Essential for controlling data variation. Why?

Types of Designs

- Observed data: $(Y_1, Y_2, \dots, Y_n) \sim N(\mu, \sigma^2)$.
- μ and σ^2 are unknown population parameters.
- Estimates: $\hat{\mu} = \bar{Y}$ (sample mean) and $\hat{\sigma^2} = S^2$ (sample variance)
- Standard error of the mean = $\sqrt{S^2/n}$, which determines the confidence interval (CI) of $\hat{\mu}$.
- larger n (more replications) \rightarrow narrower Cl \rightarrow more precision in mean estimate.

Blocking:

- Include other factors that contribute to the unwanted variation in the design.
- By blocking, we can reduce the source of variation.
- Reduced standard error \rightarrow narrower Cl \rightarrow more precision in mean estimate

Accuracy vs. Precision

A well design experiment should generate high quality data.

• Accuracy:

- Focus on if a method or technique produces measurements that are close to the true values
- Minimise measurement bias
- Microarry vs. RNA-Seq

Precision:

- Emphasize on smaller variation of the data
- Lower variation, higher precision because measurements are closer to the mean

Definition and Principles

Basic Statistics for DOE

Population and Samples

• Population: All possible items, units, or subjects from an experimental or observational condition.

Types of Designs

- Samples: A group of units taken from a population.
- Statistics uses samples to make inferences about the entire population.

Example:

- All cancer patients in the Duke hospital vs. patients consented to participate in a research study.
- Tumor vs. tumor cells extracted for an experiment

Random variable

• Random variable (Y): A variable represents all possible observations (measurements) collected for a study

- Quantitative: continuous measures
- Qualitative: binary, categorical, counts
- Assuming observed continuous data y_i , $i = 1, \dots, n$

$$y_i = \mu + \epsilon_i, i = 1, \cdots, n$$

- μ : unknown population parameter of interest.
- ϵ : random and unobserved variable, $\epsilon_1, \epsilon_2, \cdots, \epsilon_n$ are independent and follow a normal distribution $N(0, \sigma^2)$.
- $Var(\epsilon) = \sigma^2 = Var(Y)$, an unknown population parameter

Illustration

For a random variable Y, y_i is the i^{th} observed value, $i = 1, \dots, n$

Types of Designs

- Sample mean $\bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}$
- Sample variance $S^2 = \frac{\sum_{i=1}^{n} (y_i \bar{y})^2}{n!}$

Example: Assume the true distribution of the height of high school Seniors is a normal distribution

 $N(\mu = 5.5, \sigma^2 = 0.25)$. We randomly survey 100 students for their height.

Average height, $\bar{y} = 5.57$ Sample variance, $S^2 = 0.2495$

Example: height of the high school Seniors

If we survey 20, 100, and 500 students, can we make a good inference for the student height?

- Assume 10,000 random samples from N(5.5, 0.25) as the 'population' of the high school students.
- Randomly draw 20, 100, and 500 values from the population (10,000 data points).

Sample size, <i>n</i>	20	100	500
Sample Mean	5.458	5.509	5.493
Sample Variance	0.297	0.191	0.241

Example: height of the high school Seniors

If we survey 20, 100, and 500 students, can we make a good inference for the student height?

- Assume 10,000 random samples from N(5.5, 0.25) as the 'population' of the high school students.
- Randomly draw 20, 100, and 500 values from the population (10,000 data points).

Sample size, <i>n</i>	20	100	500
Sample Mean	5.458	5.509	5.493
Sample Variance	0.297	0.191	0.241

- Random variation can have a bigger effect on sample estimates in small group. Sample size matters
- Critical for precision of estimates
- Critical for statistical power in hypothesis testing

Statistical power

<u>+</u>			
		Null Hypothesis (H₀)	
		True False	
	Reject	Type I error (α)	Correct inference
Test Decision	(Significant p)	False Positive (FP)	True Positive (TP)
	Fail to reject	Correct inference	Type II error ($oldsymbol{eta}$)
	(Not significant p)	True Negative (TN)	False Negative (FN)

Power =
$$1 - \beta$$

Power and Sample Size

A well-designed study should have sufficient statistical power.

- Determine what test statistics to be used for the hypothesis testing.
- Assume a two-sample t-test, the effect size is

Types of Designs

$$\Delta = \frac{|\mu_0 - \mu_1|}{\sigma}$$

- The sample size is $n = 2 \frac{(Z_{1-\alpha} + Z_{1-\beta})^2}{\Lambda^2}$
- The larger the effect size, the smaller n.

Key elements for power calculation: (1) study design; (2) statistical methods; (3) some ideas of target 'effect size' from literature or pilot study.

Types of Designs

Considerations behind analysis methods

- Experimental or study design.
- Types of the response (dependent) variable:
 - continuous or discrete data; distribution of the data
 - binary or categorical
- Types of predictor variable: continuous vs. categorical
- Any covariates to be adjusted?

Example: The two-factor RNA-Seq experiment in this workshop

- Dependent variable: Gene expression
- Factors: strain, media
- Any covariates?

Definition and Principles

Types of Designs

Completely Randomized Design (CRD)

- Assume homogeneous experimental units.
- Factor considered is 'categorical'. It can be two or multiple levels/groups.

Types of Designs

000000000000

Example: Treatment groups (YPD vs. TC)

- Randomization: Each experimental unit has an equal likely chance to be assigned to a treatment group. Assume t treatment groups and n experimental units per group, totally nt experimental units.
 - **1** Label experimental units 1 to *nt*.
 - Generate a random number for each experimental unit (keep the label and random number paired).
 - Rank the random number, and the first n units go to treatment 1, 2nd set of *n* units go to treatment 2, etc.

Example: Plan to randomly assign two different growth media (YPD and TC) to 10 H99 strain before RNA extraction.

- Designate sample ID number 1 to 10.
- Use a seed number (e.g. 78201281) to generate 10 random numbers (x) between 0 and 1 for each sample.
- Sort x from low to high
- Assign the first 5 to treatment 1 and the rest to treatment 2.

Randomized Using 78201281 Units Trt 5 0.16201 2 0.24756 4 0.35811 6 0.39489 10 0.60694 9 0 63561 8 0.82158 7 0.89661 1 0.89714 3 0.91112

Types of Designs

000000000000

Measurements of variation

- Assume observation units are continuous measurements
- ② *n* samples obtained from each treatment group: Within group variation: $S^2 = \frac{\sum_{i=1}^{n} (y_i \bar{y})^2}{n-1}$
- t treatment groups, n samples per group:
 Between treatment variation:

$$MST = \frac{n\sum_{i}^{t}(\bar{y_{i.}} - \bar{y})^{2}}{t - 1}$$

Within treatment variation:

$$MSE = \frac{\sum_{i}^{t} \sum_{j}^{n} (y_{ij} - \bar{y_{i.}})^{2}}{t(n-1)}$$

Data analysis for CRD

Dependent variable: Gene expression level (y_{ii}) Independent variable: Treatment group (β_i)

Model: $y_{ij} = \mu + \beta_i + \epsilon_{ii}$, $i = 1, \dots, t$ and $j = 1, \dots, n$

Analysis of variance (ANOVA) Table:

Types of Designs

0000000000000

Source	df	Mean SS (MS)	F
Treatment	t-1	MST	MST MSF
Error	t(n-1)	MSE	

$$F = \frac{\text{Variation between treatments}}{\text{Variation within treatment}}$$

following an F distribution with d.f. of (t-1,t(n-1)).

plant <- Plant Growth

one-way ANOVA example: PlantGrowth

```
plant
##
      weight group
## 1
        4.17 ctrl
## 2
        5.58
              ctrl
## 3
        5.18
              ctrl
## 4
        6.11
              ctrl
## 5
        4.50
              ctrl
## 6
        4.61
              ctrl
        5.17
              ctrl
## 8
        4.53
              ctrl
## 9
        5.33
              ctrl
## 10
        5.14
              ctrl
## 11
        4.81
              trt1
## 12
        4.17
              trt1
## 13
        4.41
              trt1
## 14
        3.59
              trt1
## 15
        5.87
             trt1
## 16
        3.83
              trt1
## 17
        6.03
              trt1
## 18
        4.89
              trt1
## 19
        4.32
              trt1
## 20
        4.69
              trt1
## 21
        6.31
              trt2
## 22
        5.12
              trt2
## 23
        5.54
              trt2
## 24
        5.50
              trt2
## 25
        5.37
             trt2
        5.29 trt2
## 26
## 07 4 00 +--+0
```

PlantGrowth dataset in R for plant yield (dried weight of plants) of 30 plants, which were randomized to three treatment groups (control, treatment 1, treatment 2).

CRD Pros and Cons

Pros:

- Easy to randomize experimental units
- Simple statistical analysis: two sample t-test, one-way ANOVA, generalized linear regression if data is not normal distributed (e.g. negative binomial for RNA-Seq read counts)

Types of Designs

0000000000000

- Flexible in terms of number of experimental units per groups (equal or unequal number per group).
- Cons: Can't control the differences between experimental units prior to the randomization.
 - **Example:** If there are more females than males in the study,
 - CRD cannot control the gender effect.
- For CRD, it is better to have homogeneous experimental units or large sample size.

Factorial experiments in CRD

- A factorial experiment includes all possible factor-level combinations in the experiment, for instance, strain-media combinations and their replicates.
- Follow CRD to group samples for different experiment runs (test run)

Generate Random Numbers (RN) 1. Sort RN

2. Assign to different test run

ID	strain	media
1	H99	YPD
2	H99	YPD
3	H99	YPD
4	H99	TC
5	H99	TC
6	H99	TC
1 2 3 4 5 6 7 8	mar1d	YPD
8	mar1d	YPD
9	mar1d	YPD
10	mar1d	TC
11	mar1d	TC
12	mar1d	TC

_		_	
ID	strain	media	RN
1	H99	YPD	0.5541275
2	H99	YPD	0.8646068
2 3	H99	YPD	0.683857
4	H99	TC	0.5571889
5	H99	TC	0.2067781
6	H99	TC	0.1000894
7	mar1d	YPD	0.6786167
8	mar1d	YPD	0.2579896
9	mar1d	YPD	0.4214054
10	mar1d	TC	0.1999451
11	mar1d	TC	0.9374403
12	mar1d	TC	0.1530789

ID	strain	media	RN	Test Run
6	H99	TC	0.1000894	1
12	mar1d	TC	0.1530789	1
10	mar1d	TC	0.1999451	1
5	H99	TC	0.2067781	1
8	mar1d	YPD	0.2579896	1
9	mar1d	YPD	0.4214054	1
1	H99	YPD	0.5541275	2
4	H99	TC	0.5571889	2
7	mar1d	YPD	0.6786167	2
3	H99	YPD	0.683857	2
2	H99	YPD	0.8646068	2
11	mar1d	TC	0.9374403	2

Types of Designs

0000000000000

Randomized Completed Block Design(RCBD)

- Probably most frequently used design
- Goal: Minimize the effect of nuisance factors to the observation units.
- Types of nuisance factors: different technicians, different days(time) of experiment, etc.
- Restrict randomization to homogeneous blocks.
- Block is usually treated as a random effect.

Definition and Principles

- Identify nuisance factor to be used for blocking.
- Sort experimental units into homogeneous batches (blocks). The experimental units within each batch is as uniform as possible.

Types of Designs

0000000000000

- Proceed with CRD within each block: randomly assign treatments to experiments units within each block.
- Model: Factors to considered: blocks (β_i) , treatments (τ_i) . ANOVA model:

$$y_{ijk} = \mu + \beta_i + \tau_j + \epsilon_{ijk},$$

where $i=1,\cdots,b$ for blocks, $j=1,\cdots,t$ for treatments, $k = 1, \dots, k$ for replicates in each treatment-block combination, and $\epsilon_{iik} \sim N(0, \sigma^2)$

Four working group will complete an experiment of 24 samples (6) samples per strain×media combination). Each group will handle 6 samples (3 per media group). We can consider each working group as a homogeneous block.

- Randomly assign 6 samples of the same strain (H99 or mar1d) to each working group (i.e. 6 samples per block).
- Randomly assign two treatments (YPD and TC) to samples handled by each working group (within each block).

Two-way ANOVA example: Stress reduction example

```
stress <- data.frame(stress)
stress
     Treatment
               Age StressReduction
## 1
        mental young
       mental young
       mental young
       ment al
                mid
     mental mid
     mental mid
     mental old
     mental old
     ment al
                old
## 10
      physical young
## 11
      physical young
## 12
      physical young
## 13
      physical
               mid
## 14
      physical mid
      physical mid
## 15
      physical
## 16
               old
## 17
      physical
                old
## 18
      physical
                old
## 19 medical young
## 20
       medical young
## 21
       medical young
       medical
## 23
       medical
               mid
## 24
       medical
               mid
## 25
                old
       medical
```

stress <- read.csv(file = "./data/stress.csv")

27 subjects from three age groups (young, mid, and old ages) were studied for stress reduction by three types of stress reduction treatments (mental, physical, and medical).

```
res <- anova(lm(StressReduction ~ Treatment + Age, data = stress))
res <- data.frame(res)
res

## Df Sum.Sq Mean.Sq F.value Pr..F.
## Treatment 2 18 9.0000000 11 4.882812e-04
## Age 2 162 81.0000000 99 1.0000000e-11
## Residuals 22 18 0.8181818 NA NA
```

In this example, b=3 for age groups, t=3 for treatment groups, and k=3 for repeats within each block-treatment combination.

RCBD Pros and Cons

Pros:

• Good for comparing treatment effect when there is one nuisance factor to worry about.

Types of Designs

0000000000000

- Easy to construct the experiment
- Simple statistical analysis
- Flexible for any numbers of treatments and blocks.

Cons:

- It can only control variability from one nuisance factor.
- Since it requires homogeneous blocks, it is better for a study with a small number of treatments (factor levels) to test.
- It requires the number of experimental units \geq the number of factor-level combinations of interest.

Definition and Principles

RNA-Seq Design

Types of Designs

Designs for RNA-Seg experiment

Reference paper: Auer and Doerge, Genetics, 2010

Statistical Design and Analysis of RNA Sequencing Data

Paul L. Auer and R. W. Doerge¹

Department of Statistics, Purdue University, West Lafayette, Indiana 47907

Manuscript received January 31, 2010 Accepted for publication March 15, 2010

RNA-Seg Experiment

Steps of a RNA-Seq experiment

- RNA is isolated from cells, fragmented at random positions, and copied into complementary DNA (cDNA)
- 2 Fragments meeting a certain specified size (e.g. 200 300 bp) are retained for PCR

- Sequencing
- Sequence alignment to generate sequence reads at each position
- Data: Counts of sequence reads or digital gene expression (DGE)
- Types of reads: junction reads, exonic reads, polyA reads

Sources of variability

- Biological variability
 - Variability between experimental units (samples)
 - Variability between factors of interest (treatment groups)
 - Biological variability is not affected by technical variability.
- Technical variability:

- between sequencing platforms
- between library construction
- between flow cells (different runs)
- between lanes

Flow cells: A glass slide with 1, 2, or 8 separate lanes (Illumina RNA-Seq)

Sampling in RNA-Seq

• **Subject sampling:** Subjects (e.g. organisms or individuals) are ideally drawn from a large population to which the results can be generalized.

- RNA sampling: occurs during the experimental procedure when RNA is isolated from the cell(s).
- Fragment sampling: Only certain fragmented RNAs are retained for amplification. The sequencing reads do not represent 100% of the fragments loaded into a flow cell resulted in fragment sampling.

More on RNA and fragment sampling

Types of Designs

Library concentration $10 \text{nM} = 4 \text{pM} \rightarrow \frac{4}{10^{12}} \times 6.02 \times 10^{23} = 2.408 \times 10^{12}$ total molecules in the library = 0.0013% of molecules to be analyzed. (McIntyre et al. 2011)

Unreplicated data

Outline of experiment:

- mRNA isolated from subjects within different treatment group (T_1, \cdots, T_7) .
- \bullet a ΦX genomic sample is loaded to lane 5 as a control
- ΦX can be used to recalibrate the quality score of sequencing reads from other lane.

Types of Designs

Problems:

- Lack of knowledge about biological variation
- Unable to estimate within treatment variation leading to no basis for inference of between treatment effect.
- Results are specific to the subjects in the study and can't be generalized.

Definition and Principles

Types of Designs

- Exp Design: Seven treatment groups, three biological replicates, and one sample per lane. T_{ii} for i^{th} treatment group and i^{th} replicate. $i = 1, \dots, 7$ and i = 1 - 3.
- Factor of consideration: treatment effect (τ_{ik}) for gene k.

$$(Dependent variable)_{ijk} = \alpha_k + au_{ik} + \epsilon_{ijk}$$

 Problem: Cannot separate treatment effect from technical effect since biological replicates are run in different flow-cells.

Balanced block design

 Objective: To control two sources of technical variation: batch effect and lane effect.

- Multiplexing: All samples are pooled to be run within the same lane.
 - Take the advantage of bar coding of RNA fragments.
 - To keep the same sequence depth, divide the amplification product to run in multiple lanes
 - If (# of lanes) = (# of samples), it produces the same sequence depth as running one sample per lane.
 - Each lane has the same set of samples eliminate the lane effect

How will you randomize samples in your experiment?

RNA-Seq for samples from two Cryptococcus neoformans strains under two growth media

	YPD	TC
Н99	3	3

or

	YPD	TC
Mar1d	3	3

- Each working group has 6 samples, 3 per treatment group
- 2 Four working groups to complete 6 samples per strain×media (24 samples total).
- Another four working groups to repeat the same set of samples.

Balanced Block Design - I (BBD I)

- Three biological replicates per treatment (growth media) $(j=1,\cdots,3)$
- ullet Two growth meadia (YPD and TC) $(i=1,\cdots,2)$
- RNA are bar-coded and pooled
- Divide the pool to six equal subset to run on 6 lanes (six technical replicates, $t=1,\cdots,6$)
- Single flow cell run

BBD vs. Confounded design

Analysis model for BBD I

• Dependent variable: DGE measures, defined by the distribution you assumed for the sequence reads. For example,

Types of Designs

- Auer et al. assumed $y_{ijk} \sim Possion(\mu_{ijk})$.
- DESeq2 uses Negative Binomial model.

 $y_{iik} = \sum_{t} y_{iikt}$, where i for treatment, j for sample, k for gene, and t for the 6 technical replicates

• Factors considered in the GLM: treatment effect (τ_{ik}) since all samples are from a single strain.

(Dependent variable)_{ijk} =
$$\alpha_k + \tau_{ik} + \epsilon_{ijk}$$

- No lane effect was included in this model as they considered lane effects were balanced across treatment groups.
- No batch effect in this case since it is only one flow-cell run.
- Each working group can analyze their own data.

Types of Designs

Balanced block design II (BBD II) - without multiplexing

- A design that can run one sample per lane but also has good randomization of samples within each flow-cell.
- Three biological replicates within seven treatment groups. T_{ij} , where $i=1,\cdots,7$ for treatment groups and $j=1,\cdots,3$ for samples.
- Two block effects: flow cells and lanes.

Analysis for BBD II

- Dependent variable: Same as before, but it is coded to indicate treatment (i), flow-cell (f), lane (l), and gene (k).
- Factors to consider: treatment effect (τ_{ik}) , flow-cell effect (ν_{fk}) , and lane effect (ω_{lk}) .

(Dependent variable)
$$_{ijflk}=lpha_k+ au_{ik}+
u_{fk}+\omega_{lk}+\epsilon_{ijflk}$$

 ϵ_{ijflk} is the error term.

Summary for Balanced block design

- The feature of unique bar-code for RNA fragments in RNA-Seq makes blocking design possible.
- Can control batch and lane effects
- Multiplex design illustrated here requires the number of unique bar-codes equal or greater than the samples in each lane.

Types of Designs

• For Illumina, a total of 12 unique barcodes can be used in one lane. Therefore, 96 samples can be multiplexed in one flow-cell run.

Types of Designs

Performance comparison between designs by simulation studies

 T_{iik} : i for treatment, j for sample, k for technical replicates. A: unreplicated data; B: no biological replicates, two technical replicates (BBD without biological replicates); C: no technical replicates (unblocked design); **D**:BBD with biological and technical replicates.

Definition and Principles

C&D always perform better than A&B. When simulation included lane and/or batch effects, **D** (balanced block design) performed better than **C** (unblocked design).

Summary

- Outline a testable hypothesis.
- Identify factor(s) of interest and nuisance factors to be controlled and then determine the type of experimental design to use.

- Follow the four key principles of DOE. These classical principles still apply to RNA-Seq.
- Statistical model should reflect to the experimental design.
- Sample size should be determined based on power calculation prior to the study.
- Technical variation exists and should be taken into account in RNA-Seq.
 - Lane effect, batch effect
- Multiplexing in NGS allow us to implement randomization and blocking.

References

 Marioni et al. Genome Res. (2008) RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays

- McIntyre et al. BMC Genomics (2011) RNA-seq: technical variability and sampling
- Auer and Doerge Genetics (2010) Statistical Design and Analysis of RNA Sequencing Data
- Planning, Construction, and Statistical Analysis of Comparative Experiments, Francis G. Giesbrecht and Marcia L. Gumpertz (Wiley)