

ACM ICPC je opäť tu!

Lokálne kolo programátorskej súťaže na STU v rámci

CTU Open Contest

27. - 28. 10. 2017

Pošli registračný e-mail na

acm.icpc@fiit.stuba.sk

do stredy 25. 10. 2017 do 18.00 hod.

Viac informácii na:

www.fiit.stuba.sk/acm

Vyhľadávanie

2

zimný semester 2017/2018

Vyhľadávanie

Vstup:

- Postupnosť: a₁, a₂, a₃...a_n
 k(a_i) označíme kľúč k_i prvku a_i
- Hľadaný kľúč x
- Čo sú kľúče?

 Definičný obor D reťazce, reálne čísla, dvojice celých čísel, ...
- Relácia = (rovnosti) relácia ekvivalencie nad D
- Usporiadanie kľúčov < (binárna relácia nad D)
 Lineárne usporiadaná množina K (total ordering)
 Pre k₁, k₂ ∈ D budeme písať, že k₁ ≤ k₂ akk k₁ < k₂ alebo k₁ = k₂.

Výstup:

 Index res ∈ {1,2,...,n} takého prvku, že k(a_{res}) = x, alebo 0 ak taký prvok neexistuje.

Lineárne vyhľadávanie

- O vstupnej postupnosti kľúčov nemám žiadne znalosti
- Algoritmus: Prehľadám postupne všetky prvky
- Čo ma zaujíma: Počet vykonaných operácií
- Vstup: postupnosť N čísel, hľadám x=33
 - hľadám y=42

- Počet vykonaných operácií:
 - najlepší prípad: O(1), najhorší prípad O(n), priemerne (n)

Lineárne vyhľadávanie – zdrojový kód

Vyhľadanie podľa čísla

```
int hladaj(int *data, int n, int kluc)
{
    int i;
    for (i = 0; i < n; i++)
        if (data[i] == kluc)
            return i;
    return -1;
}</pre>
```

Vyhľadanie podľa mena

```
struct Osoba
    char *meno;
    int vek;
};
int hladaj(struct Osoba *data, int n, char *kluc)
    int i:
    for (i = 0; i < n; i++)
        if (!strcmp(data[i].meno, kluc))
            return i;
    return -1;
```

Existuje lepší algoritmus pre tento problém?

- Nie ak o postupnosti kľúčov naozaj nič ďalšie neviem
- Uvažujme teraz, že by sme vstupnú postupnosť mali vzostupne usporiadanú – dodatočná informácia je usporiadanie
- Hľadám y=42

- Skontrolovaním jedného prvku môžem vylúčiť z ďalšieho hľadania celý interval prvkov
 - Najlepší prípad?
 kratší z intervalov vľavo alebo vpravo
 - Najhorší prípad?
 dlhší z intervalov vľavo alebo vpravo

Princíp rýchlejšieho vyhľadávania

- Nejaká informácia navyše o vstupe, napr. usporiadanie
- Skontrolovaním jedného prvku môžem vylúčiť z ďalšieho hľadania celý interval prvkov
 - Najlepší prípad? kratší z intervalov vľavo alebo vpravo
 - Najhorší prípad? dlhší z intervalov vľavo alebo vpravo
- Čo keď nechcem riskovať lepší-horší prípad?
- Metóda pólenia intervalu (binárne vyhľadávanie)
 - Vždy skontrolujem prvok v strede intervalu, v ktorom hľadaný kľúč ešte môže byť
 - Ak som našiel hľadaný kľúč, končím, inak pokračujem v zostávajúcej polovici intervalu
 - Koľko bude porovnaní?

Analýza zložitosti binárneho vyhľadávania

- Algoritmus: skontrolujem prvok v strede intervalu,
 v ktorom hľadaný kľúč ešte môže byť
 - Ak som našiel hľadaný kľúč, končím, inak pokračujem v zostávajúcej polovici intervalu

Príklad (hľadám 4):

- Koľko bude porovnaní?
 - Najlepší prípad: 0(1)
 - Najhorší prípad?
 keď sa hľadaný kľúč v postupnosti nenachádza
 - Koľko razy môžem skrátiť interval na polovicu, až kým nedostanem posledný prvok, ktorý to teoreticky môže byť?
 O(log n)

Porovnanie O(n) vs O(log n)

- Lineárne vyhľadávanie
 - N prvkov = N operácie
 - 2N prvkov = 2N operácií
- Binárne vyhľadávanie
 - N prvkov = log N operácií
 - 2N prvkov = (log N) + 1 operácií

N	log N
10	4
1000	10
1 000 000	20
2 000 000 000	32

Existuje ešte rýchlejší algoritmus pre tento problém?

- Nie ak o postupnosti kľúčov naozaj nič ďalšie neviem
- Uvažujme teraz, že by sme pre vstupnú postupnosť mali ešte nejakú dodatočnú informáciu
 - Aká by to mohla byť?
- Distribúcia hodnôt kľúčov
 - Predstava o tom, koľko hodnôt ktorého kľúča sa môže v postupnosti nachádzať.
 - Príklad z nedávnej praxe: telefónny zoznam – počet priezvisk podľa začiatočného písmena

Interpolačné vyhľadávanie

- Predpokladajme rovnomernú distribúciu hodnôt kľúčov
- Na intervale <x₀,x₁> nadobúdajú hodnoty <y₀,y₁>
- Hľadám kľúč y, ako určím čo najpravdepodobnejší výskyt – index x, taký, že k(a_x) je blízko y?

$$\frac{y - y_0}{y_1 - y_0} = \frac{x - x_0}{x_1 - x_0}$$

$$x = x_0 + \frac{(y - y_0) \cdot (x_1 - x_0)}{y_1 - y_0}$$

- Výpočtová zložitosť pre postupnosť s n prvkami
 - O(log log n) krokov

Niektoré ďalšie vyhľadávacie algoritmy

- Ternárne vyhľadávania
- Vyhľadávanie podľa Zlatého rezu
- Exponenciálne vyhľadávanie
- Preskakovacie vyhľadávanie

Nová požiadavka – dynamická množina

- Doteraz sme vyhľadávali v postupnosti, ktorú sme dostali celú na vstupe a ďalej sme ju nemenili
- Čo keby sme chceli postupnosť upravovať?
 - Uvažujme register osôb
 - Pridávať prvky (narodenie dieťaťa)
 - Vyhľadávať prvky (osoba podľa rodného čísla)
 - Odstrániť prvky (úmrtie)
- ADT: dynamická množina

ADT – (Dynamická) množina

- abstraktný údajový typ množina
 - počet prvkov v údajoch typu množina sa často mení
 - najčastejšie operácie:
 insert vložiť/pridať prvok do množiny
 search vyhľadať prvok v množine
 delete odstrániť prvok z množiny
- Nazývame aj slovník (dictionary)
- Napr: tabuľka symbolov v prekladačoch

Tabuľka

- skupina metód, ako implementovať slovník
- bežne aj synonymum pre slovník, najmä ak uvažujeme aj jeho implementáciu
- ale spravidla pomenovanie implementujúceho vektora
- určuje štruktúru pre jednotlivé údaje, ktorá združuje/asociuje hodnotu s kľúčom
- V pamäti sa údaje uchovávajú ako dvojica kľúč – hodnota = položka, prvok tabuľky
- K hodnote sa pristupuje pomocou kľúča kľúč položku jednoznačne určuje

Slovník / Tabuľka – signatúra

Slovník / Tabuľka – axiómy

 Opisujú vlastnosti – význam (sémantiku) operácií prostredníctvom ekvivalencie výrazov

Pre všetky k, $k_1, k_2 \in K$ ĽÚČ, $e \in E$ LEMENT, $t \in T$ ABUĽKA platí:

```
insert(k<sub>1</sub>,e<sub>1</sub>, insert(k<sub>2</sub>,e<sub>2</sub>,t)) =
  if(iseq(k<sub>1</sub>, k<sub>2</sub>))
    then insert(k<sub>1</sub>,e<sub>1</sub>,t)
    else insert(k<sub>2</sub>,e<sub>2</sub>,insert(k<sub>1</sub>,e<sub>1</sub>,t))
```

Slovník / Tabuľka – axiómy (2)

■ Pre všetky k, $k_1, k_2 \in KĽÚČ$, $e \in ELEMENT$, $t \in TABUĽKA platí$:

```
search(k, create) = false
search(k_1, insert(k_2, e, t)) =
  if(iseq(k_1, k_2))
           then true
           else search(k₁, t)
read(k, create) = error elem
read(k_1, insert(k_2,e,t)) =
 if(iseq(k_1, k_2))
   then e
   else read(k₁, t)
```

Slovník / Tabuľka – axiómy (3)

■ Pre všetky k, $k_1, k_2 \in KĽÚČ$, $e \in ELEMENT$, $t \in TABUĽKA platí$:

```
delete(k, create) = create
delete(k<sub>1</sub>, insert(k<sub>2</sub>,e,t)) =
  if(iseq(k<sub>1</sub>, k<sub>2</sub>))
    then delete(k<sub>1</sub>, t)
  else insert(k<sub>2</sub>,e,delete(k<sub>1</sub>, t))
```


Dynamická množina poľom

- Implementácia poľom vektorom
- Pridanie/odstránenie jedného prvku do usporiadanej postupnosti vyžaduje (v najhoršom prípade) posunutie všetkých prvkov
- Teda vieme spravit' dátovú štruktúru, podporujúcu operácie:
 - Pridanie prvku X vyžaduje O(N) operácií, kde N je počet prvkov v postupnosti
 - Vyhľadanie prvku X vyžaduje O(log N) operácií, využijeme binárne vyhľadávanie
 - Odstránenie prvku X vyžaduje O(N) operácií, kde N je počet prvkov v postupnosti

Dynamická množina spájaným zoznamom

- Implementácia spájaným zoznamom
- Pridanie/odstránenie jedného prvku do usporiadanej postupnosti vyžaduje (v najhoršom prípade) prehľadanie všetkých prvkov
- Teda vieme spravit' dátovú štruktúru, podporujúcu operácie:
 - Pridanie prvku X vyžaduje O(N) operácií, kde N je počet prvkov v postupnosti
 - Vyhľadanie prvku X vyžaduje O(N) operácií
 - Odstránenie prvku X vyžaduje O(N) operácií, kde N je počet prvkov v postupnosti

Existuje rýchlejší algoritmus pre pridávanie?

- Vyhľadávanie dokážeme v O(log N)
- Dokážeme prvky aj pridávať v O(log N) pri zachovaní času pre vyhľadávanie O(log N)?
- Spomeňme si na základný princíp rýchlejšieho
 (aj binárneho) vyhľadávania v usporiadanej postupnosti:

Skontrolovaním jedného prvku môžem vylúčiť z ďalšieho hľadania celý interval prvkov

 Takéto "rozhodovanie" vieme vhodne reprezentovat' rozhodovacím stromom...

Binárny vyhľadávací strom

- Každý vrchol má hodnotu a (najviac) dvoch nasledovníkov:
 - Ľavého kde je menšia hodnota
 - Pravého kde je väčšia hodnota
- Tá istá množina prvkov môže byť v binárnom vyhľadávacom strome rozlične umiestnená vo vrcholoch
 - Dôležité však je, aby bola splnená podmienka usporiadania hodnôt:
 - ľavý nasledovník každého vrcholu má menšiu hodnotu, pravý väčšiu

Binárny vyhľadávací strom (2)

Rôzna štruktúra stromu, rovnaké prvky, ktorý je lepší? :)

24

Strom - Definícia (teória grafov)

Strom – Súvislý neorientovaný graf bez cyklov

Graf G = (V, E)

V – množina vrcholov

E – množina hrán (dvojíc vrcholov)

Neorientovaný graf – hrany nemajú orientáciu (smer)

Súvislý graf – po hranách je možné prejsť z ľubovoľného vrcholu do ľubovoľného iného vrcholu v grafe

Cyklus – taký prechod po hranách, že začneme v nejakom vrchole, prejdeme po aspoň jednej hrane a skončíme v počiatočnom vrchole

Zakoreňený strom

- Strom, v ktorom je význačný vrchol koreň (root)
- Uvažujme vrchol u, ktorý leží na ceste z koreňa do v u nazývame predchodca (ancestor) v, resp. v je nasledovník (descendant) u
- List koncový vrchol (ktorý nemá nasledovníkov)
 - Ostatné vrcholy sú vnútorné
- Zvyčajne sa uvažuje orientácia hrán zhora dole (od koreňa k listom)

Zakoreňený strom (2) – príklad HTML

- Rodič (parent) najbližší-priamy predchodca vrcholu
- Dieťa / potomok (child) priamy nasledovník vrcholu
- Súrodenci (siblings) vrcholy s rovnakým rodičom

Nasledovník / predchodca je aj nepriamy:

(Zakoreňený) strom - hĺbka, výška

HÍbka vrcholu – počet hrán od koreňa stromu k danému vrcholu Výška vrcholu – dĺžka najdlhšej cesty z daného vrcholu k listu (koncovému vrcholu)

Výška stromu – výška jeho koreňa

Strom – rekurzívna definícia

- Jeden vrchol je strom tento vrchol je zároveň koreň tohto stromu
- Nech V je vrchol a S₁,S₂,...,S_n sú stromy s koreňmi V₁,V₂,..., V_n potom nový strom môžeme zostrojiť tak, že vrchol V urobíme PREDCHODCOM vrcholov V₁,V₂,...,V_n.
 V tomto novom strome je: vrchol V koreň a S₁,S₂,...,S_n sú jeho podstromy a vrcholy V₁,V₂,...,V_n sú NASLEDOVNÍCI vrcholu V.

ADT Strom - Formálna špecifikácia operácií

- **EMPTY** vytvorenie prázdneho stromu
- EMPTY_N nekonečná rodina operácií.
 - **EMPTY**_i(**a**, **S**₁, **S**₂, ..., **S**_i) vytvorí nový vrchol V s hodnotou a, ktorý má i nasledovníkov sú to korene stromov S₁, ..., S_i
- KOREŇ Nájdenie koreňa stromu
- PREDCHODCA Nájdenie predchodcu daného vrcholu
- LNASLEDOVNIK Nájdenie najľavejšieho nasledovníka
- PSUSED Nájdenie vrcholu, ktorý má rovnakého predchodcu ale v usporiadaní stromu je vpravo za daným vrcholom.
- HODNOTA Získanie Ohodnotenia vrcholu

Strom - Reprezentácia poľom

- Index do pol'a = číslo vrcholu
- Hodnota prvku poľa = ukazovateľ na rodiča

Strom - Reprezentácia spájaným zoznamom

Každý vrchol má spájaný zoznam priamych nasledovníkov

Rôzne typy stromov (terminologicky)

Strom (príroda)

- Strom (teória grafov)
 - Súvislý neorientovaný graf bez cyklov
 - Zakoreňený strom
- Strom (abstraktná dátová štruktúra)
 - Reprezentácia hierarchických vzťahov
- Strom (teória množín)
 - Čiastočne usporiadaná množina (keď nie je nutné, aby sa dali porovnať všetky dvojice prvkov)

Binárny strom

- Strom, v ktorom každý vrchol má najviac dvoch priamych nasledovníkov (potomkovia)
- Potomkovia sa označujú ako ĽAVÝ a PRAVÝ
- Rekurzívna definícia:
 - Jeden vrchol je binárny strom a súčasne koreň.
 - Ak u je vrchol a T₁ a T₂ sú stromy s koreňmi v₁ a v₂, tak usporiadaná trojica (T₁, u, T₂) je binárny strom, ak v₁ je ľavý potomok koreňa u a v₂ je jeho pravý potomok.

Binárny strom - Operácie

- CREATE: vytvorenie prázdneho binárneho stromu
- MAKE: vytvorenie binárneho stromu z dvoch už existujúcich binárnych stromov a hodnoty
- LCHILD: vrátenie ľavého podstromu
- DATA: vrátenie hodnoty koreňa v danom binárnom strome
- RCHILD: vrátenie pravého podstromu
- ISEMPTY: test na prázdnosť

Binárny strom – Formálna špecifikácia

```
CREATE() \rightarrow bintree
MAKE(item,bintree,item) → bintree
LCHILD(bintree) → bintree
DATA(bintree) \rightarrow item
RCHILD(bintree) → bintree
ISEMPTY(bintree) \rightarrow boolean
Pre všetky p,r \in bintree, i \in item plati:
ISEMPTY(CREATE) = true
ISEMPTY(MAKE(p,i,r)) = false
LCHILD(MAKE(p,i,r)) = p
LCHILD(CREATE) = error
DATA(MAKE(p,i,r) = i
DATA(CREATE) = error
RCHILD(MAKE(p,i,r)) = r
RCHILD(CREATE) = error
```

Binárny strom - Výpočet výšky stromu

Výšku (height) stromu je možné vypočítať rekurzívne:

$$výška(T) = \begin{cases} -1 & ak \ podstrom \ T \ je \ prázdny \\ \\ 1 + max(výška(T_L), výška(T_R)) & ak \ podstrom \ T \ nie \ je \ prázdny \end{cases}$$

Binárny strom s výškou 3

Prehľadávanie binárnych stromov

Tri základné algoritmy:

- pre-order poradie prehľadávania:
 koreň → ľavý podstrom → pravý podstrom
- in-order poradie prehľadávania
 ľavý podstrom → koreň → pravý podstrom
- post-order poradie prehľadávania:
 ľavý podstrom → pravý podstrom → koreň

Prehľadávanie binárnych stromov (pseudokód)

```
PREORDER(T): if T <> nil then
  OUTPUT(DATA(T))
  PREORDER(LCHILD(T))
  PREORDER(RCHILD(T))
INORDER(T): if T <> nil then
  INORDER(LCHILD(T))
  OUTPUT(DATA(T))
  INORDER(RCHILD(T))
POSTORDER(T) if T <> nil then
  POSTORDER (LCHILD(T))
  POSTORDER (RCHILD(T))
  OUTPUT(DATA(T))
```

Prehľadávanie binárnych stromov (ukážka)

Preorder: 11,73,27,96,88,52,45,67,33,65,8,36

Inorder: 27,96,73,88,11,45,33,67,65,52,36,8

Postorder: 96,27,88,73,33,65,67,45,36,8,52,11

Prehľadávanie po úrovniach (level-order)

- Začína sa koreňom, postupne sa prechádzajú vrcholy po úrovniach (najskôr všetky vrcholy 1. úrovne, potom všetky vrcholy 2. úrovne, atď.)
- Pri prehľadávaní je možné využiť rad(front):
 - Prvý krok: do radu sa vloží koreň
 - Opakuje sa, kým nie je rad prázdny: vyberie sa prvok z radu, zistia sa jeho potomkovia a (pokiaľ existujú) vložia sa do radu

Reprezentácia aritmetických výrazov

- Základné využitie binárnych stromov v informatike
- Operátor je vnútorný vrchol a jeho potomkom môže byť:
 - Podstrom predstavujúci ďalší výraz
 - Operand

Prehľadávanie stromu aritmetického výrazu

- Pre-order prechádzanie stromu poskytne prefixový zápis výrazu
- Post-order prechádzanie stromu poskytne postfixový zápis výrazu
- In-order prechádzanie stromu poskytne infixový zápis výrazu (bez zátvoriek)

Preorder(Prefix): - + a / * b c d e

Inorder(Infix): a + b * c / d - e

Postorder(Postfix): a b c * d / + e -

$$a + b*c/d - e$$

Eulerov t'ah (Euler tour)

- Predchádzajúce spôsoby prechádzali binárny strom vždy tak, že každý vrchol navštívili iba raz.
- Uvažujme prehľadávanie, ktoré prejde každú hranu raz (v každom smere)
- Každý vrchol, ktorý má potomkov sa prechádza vždy tri krát:
 - pri prechode od rodiča
 - pri prechode od ľavého potomka
 - pri prechode od pravého potomka

Eulerov ťah v binárnom strome (pseudokód)

```
eulerTour(t):
if t ≠ null
  if t is a leaf node
    visit t
  else
    visit t;
    eulerTour(t.left);
    visit t;
    eulerTour(t.right);
    visit t;
```


Eulerov ťah: + * a * - d - e - * + / b / c / +

Úplne uzátvorkovaný výraz

- Upravený algoritmus pre Eulerov ťah
- Vstup: matematický výraz reprezentovaný binárnym stromom

- Pri prechode operandu sa vloží do výstupu operand
- Pri prechode operátora sa vloží do výstupu:
 - Ľavá zátvorka (pri prechode od rodiča
 - Pravá zátvorka) pri prechode z pravého potomka
 - Operátor pri prechode z ľavého potomka
- Výstup takto upraveného algoritmu:

$$((a*(d-e))+(b/c))$$

Binárny vyhľadávací strom (BVS)

- BVS je binárny strom
- BVS môže byť prázdny
- Ak BVS nie je prázdny, tak spĺňa tieto podmienky:
 - každý prvok má kľúč a všetky kľúče sú rôzne,
 - všetky kľúče v ľavom podstrome sú menšie ako kľúč v koreni stromu
 - všetky kľúče v pravom podstrome sú väčšie ako kľúč v koreni stromu,
 - ľavý aj pravý podstrom sú tiež BVS.

Binárny vyhľadávací strom - Operácie

- Implementácia ADT Dynamická množina
 - create vytvor prázdny strom
 - insert vložiť/pridať prvok do stromu
 - search vyhľadať prvok v strome
 - delete odstrániť prvok zo stromu

Binárny vyhľadávací strom - intuitívna implemenetácia

- insert(x) vložiť prvok X do stromu
 - Najskôr sa pokúsim X vyhľadať, a potom vložím na miesto kde by mal byť (ale nebol)

search(x) – vyhľadaj prvok X v strome

- I. Začnem v koreni ... vrchol v
- 2. Porovnám kľúč X s hodnotou vo v
- 3. Ak je rovný, našiel som.
- 4. Inak, presuniem sa do príslušného potomka, nastavím ho ako nový v, choď na 2.

Binárny vyhľadávací strom - search (pseudokód)

Rekurzívna verzia

bintree **TREE-SEARCH**(T,k):

if k<DATA(T) then return TREE-SEARCH(LCHILD(T),k) else return TREE-SEARCH(RCHILD(T),k)

Iteratívna verzia

bintree **ITERATIVE-TREE-SEARCH**(T,k):

```
while T <> nil and k<>DATA(T) do
if k<DATA(T) then T \leftarrow LCHILD(T)
else T \leftarrowRCHILD(T)
```

return T

Analýza zložitosti – search

- Závisí od hĺbky h O(h)
 - Najhorší prípad O(n) nájdenie uzla 6

 Priemerný a zároveň najlepší prípad O(log n) nájdenie uzla 6

Binárny vyhľadávací strom - insert (pseudokód)

TREE-INSERT(T,n):

$$Y \leftarrow nil; X \leftarrow ROOT(T)$$

while X <> nil do

if DATA(n) < DATA(X) then
$$X \leftarrow LCHILD(X)$$

else
$$X \leftarrow RCHILD(X)$$

 $PARENT(n) \leftarrow Y$

If
$$Y = nil$$
 then $ROOT(T) \leftarrow n$

else if DATA(n) < DATA(Y) then LCHILD(Y)
$$\leftarrow$$
 n

else
$$RCHILD(Y) \leftarrow n$$

Analýza zložitosti – insert

- Musíme nájsť miesto, kde môžeme prvok vložiť –
 časová zložitosť závisí od hĺbky stromu O(h)
 - Najhorší prípad O(n): zoradená postupnosť vytvárame nevyvážený strom – rýchle zväčšovanie hĺbky stromu Napr. I, 2, 3, 4, 5, 6

Analýza zložitosti - insert (2)

Priemerný prípad O(log n): náhodná postupnosť – vytvárame väčšinou "dobre" vyvážený strom – pomalé zväčšovanie hĺbky stromu Napr. 3, 5, 6, 2, 4, I

Binárny vyhľadávací strom - delete

- Môžu nastať tri prípady
 - I. vrchol na odstránenie nemá žiadny podstrom: jednoduché odstránenie vrcholu, napr. odstránenie 63

Binárny vyhľadávací strom - delete (2)

2. vrchol na odstránenie má jeden podstrom: odstránenie vrcholu, prepojenie koreňa jeho podstromu s jeho rodičom, napr. odstránenie 65

Binárny vyhľadávací strom - delete (3)

3. vrchol V na odstránenie má dva podstromy:

- nájsť za neho náhradu Y (najmenší väčší prvok successor: najľavejší z jeho pravého podstromu),
- skopírovať kľúč z Y do V, odstrániť zo stromu vrchol Y a (ak existuje) prepojiť jediné dieťa Y s rodičom Y
- (náhrada môže byť aj najväčší menší prvok predecessor)

Napr. odstránenie 45 (náhrada bude 49)

Binárny vyhľadávací strom – delete (pseudokód)

```
bintree TREE-DELETE(T,v):
  if LCHILD(v) = nil or RCHILD(v) = nil then Y \leftarrow v
       else Y \leftarrow TREE-SUCCESSOR(v)
  if LCHILD(Y) \leq nil then X \leftarrow LCHILD(Y)
       else X \leftarrow RCHILD(Y)
  if X <> nil
       then PARENT(X) \leftarrow PARENT(Y)
  if PARENT(Y) = nil then ROOT(T) \leftarrow X
       else if Y = LCHILD(PARENT(Y))
              then LCHILD(PARENT(Y)) \leftarrow X
              else RCHILD(PARENT(Y)) \leftarrowX
  if Y <> v
       then DATA(v) \leftarrow DATA(Y)
return Y
```

Analýza zložitosti – delete

- Musíme nájsť vrchol, ktorý chceme odstrániť a vrchol, ktorý sa stane náhradou – časová zložitosť závisí od hĺbky stromu – O(h)
- Odstraňovanie vrcholov spôsobuje nevyváženosť stromu, pretože vždy vyberáme ako náhradu nasledovníka – počet v pravom podstrome sa znižuje, počet v ľavom podstrome zostáva rovnaký
- preto najhorší prípad má zložitosť O(n), ináč v priemere je to O(log n)
- Napr. po odstránení vrcholov 49, 63, 65, 87, 65

Binárny vyhľadávací strom - Ďalšie operácie

- BVS je NIELEN implementácia ADT Dynamická množina
- Navyše máme binárna reláciu usporiadania < kľúčov
- Ďalšie operácie BVS:
 - min / max vyhľadať najmenší / najväčší prvok
 - successor vyhľadať najbližší väčší prvok
 - predecessor vyhľadať najbližší menší prvok

Binárny vyhľadávací strom - min / max (pseudokód)

bintree **TREE-MINIMUM**(T): while LCHILD(T) <> nil do $T \leftarrow LCHILD(T)$ return T

bintree **TREE-MAXIMUM**(T): while RCHILD(T) <> nil do $T \leftarrow RCHILD(T)$ return T

Binárny vyhľadávací strom - successor (pseudokód)

```
bintree TREE-SUCCESSOR(T):
  if RCHILD(T) <> nil
      then return TREE-MINIMUM(RCHILD(T))
  S \leftarrow PARENT(T)
  while S <> nil and T = RCHILD(S) do
      T←S
      S \leftarrow PARENT(T)
  return S
```

Triedenie binárnych vyhľadávacím stromom

- Štruktúra vrcholov v BVS umožňuje skonštruovať jednoduchý algoritmus usporadúvania tzv. Treesort
- In-order prehľadávanie usporiadaný výpis obsahu BVS
 - Zložitosť O(n), kde n je počet prvkov v strome
- Máme teda porovnávací algoritmus, ktorý dokáže usporiadať n čísel na vstupe rýchlejšie ako O(n log n)?
 - Nie, pretože vytvorenie BVS trvá O(n log n)
 - Všimnime si, že štruktúra prvkov v BVS je "ekvivalentná" samotnému problému usporiadania, pretože keď už máme BVS, tak dokážeme výsledné poradie získať v O(n)

Implementácia v jazyku C (ukážka)

Dve štruktúry: strom, prvok stromu (vrchol)

```
struct Strom
    int pocet;
    struct Vrchol *koren;
};
struct Vrchol
    int hodnota;
    struct Vrchol *lavy, *pravy;
};
struct Strom *strom vytvor()
    struct Strom *s = (struct Strom *)malloc(sizeof(struct Strom));
    s->pocet = 0;
    s->koren = NULL;
    return s;
```

Implementácia v jazyku C (testovanie)

- Ako si rýchlo otestujem moju implementáciu?
 - Vložím tam náhodné čísla a vypíšem ich (mali by byť usporiadané – Treesort)

```
int main(void)
{
    struct Strom *s = strom_vytvor();
    int i;
    for (i = 0; i < 50; i++)
        strom_pridaj(s, rand()%1000);
    strom_vypis(s);
    return 0;
}</pre>
```

Efektivita vykonania operácií BVS

- Zložitosť operácií nad BVS lineárne závisí od hĺbky stromu – O(h)
- Operácie pracujú lepšie keď je strom "vyvážený"
- Najlepšie, aby bol takýto (tzv. úplný binárny strom)

Halda (heap)

- Využíva špeciálny typ binárneho stromu
 - Tzv. úplný binárny strom (complete binary tree)
 - Na každej úrovni je úplne naplnený, okrem možno poslednej úrovne (rozdiel oproti plnému binárnemu stromu)
- Halda poskytuje len obmedzené operácie
 - insert (pridat' prvok), delete (odstrániť prvok)
 - getmax (vyhľadať najväčší prvok)
- Implementácia pomocou BVS:
 - insert / delete O(n), getmax O(1)
- Cieľ je vyváženejšia zložitosť:
 - insert / delete / getmax O(log n)

ADT Prioritný rad / front (Priority queue)

- Množina prvkov, ktorým je pridelená priorita (kľúč) je ich možné podľa priority porovnávať.
- Prvky je možné vkladať v akomkoľvek poradí s rôznou prioritou avšak, pri výbere sa vyberá vždy len prvok s najvyššou prioritou.

Operácie:

- insert(S,x) vloženie prvku x do množiny S
- maximum(S) vrátenie prvku s najväčším kľúčom
- removeMax(S) odstránenie prvku s najväčším kľúčom

Implementácia pomocou spájaného zoznamu

- insert pridávanie prvkov na začiatok zoznamu
 - · O(1)
- maximum / removeMax nájdenie prvku s najväčšou prioritou, ten sa vymaže
 - O(n)

Implementácia pomocou binárnej haldy

 Binárna halda je úplný binárny strom, pre ktorý platí, že hodnota kľúča vo vrchole je väčšia alebo rovná hodnotám kľúčov jeho nasledovníkov

Vlastnosti binárnej haldy

- Binárna halda má voľnejšie pravidlá usporiadania kľúčov (umiestnenie prvkov) ako binárny vyhľadávací strom
- Nemusí platiť, že ľavý podstrom obsahuje prvky s nižšími hodnotami kľúčov ako pravý podstrom!
- Platí tzv. haldová vlastnosť:

```
kľúč(PARENT(i)) ≥ kľúč(i)
pre všetky vrcholy i okrem koreňa
```

Dôsledok: koreň stromu (binárnej haldy) má vždy najväčšiu hodnotu kľúča (≥ ako ostatné vrcholy).

Binárna halda - Implementácia vektorom

- Koreň stromu na 1. pozícii heap[1]
- Nasledovníky vrchola zapísaného na i-tej pozícii vektora sú (ak existujú):
 - left(i) = 2*i
 - right(i) = 2*i + 1
 - parent(i) = |i/2|
- heap[i..j], kde i>=1, je binárna halda práve vtedy, ak každý prvok nie je menší ako jeho nasledovníky.

- Operácia maximum prvok heap[1]
 - O(1)

Binárna halda - Operácia insert

- I. Vytvorí sa nový vrchol na najnižšej úrovni, označme v
- 2. Ak je v koreň stromu (haldy), končíme.
- 3. Ak kľúč(\mathbf{v}) \leq kľúč(parent(\mathbf{v})), končíme.
- Inak (ak kľúč(v) > kľúč(parent(v))), vymeníme vrchol v so svojím rodičom, a pokračujeme na krok 2 pre v ← parent(v)

(Ak je kľúč vrchola v väčší ako kľúč nového rodiča, vymení sa aj s ním, ... opakujeme, kým nie je strom opäť haldou – spĺňa haldovú vlastnosť)

Binárna halda - Vykonanie insert(40)

Vloženie na najnižšiu úroveň

Binárna halda - Vykonanie insert(40)

Prvá výmena s rodičom (22)

Binárna halda - Vykonanie insert(40)

Druhá výmena s rodičom (26)

- Hotovo obnovená haldová vlastnosť
 - v každom vrchole platí kľúč(PARENT(i)) ≥ kľúč(i)

Binárna halda - Insert (pseudokód)

```
Heap-INSERT(heap, key):
  heap-size (heap) = heap-size(heap) + 1
  i = heap-size (heap)
  while i > 1 and heap[PARENT(i)] < key
    do heap[i] = heap[PARENT(i)]
        i = PARENT(i)
  heap[i] = key</pre>
```

Zložitosť?

- O(log n), kde n je počet prvkov v halde
- Pretože: úplný binárny strom s n prvkami má hĺbku O(log n)

Odstránenie najväčšieho prvku z binárnej haldy

- Odstránime koreň haldy.
- Odstránime najpravejší vrchol na najnižšej úrovni (jeho kľúč označme P) a hodnotu P zapíšeme do koreňa
 - Mohli sme porušiť haldovú vlastnosť!
- Obnovíme haldovú vlastnosť smerom dole
 - I. Ak P je list, končíme.
 - Označme Q najväčšiu z hodnôt priamych potomkov P
 Ak Q ≤ P, teda v potomkoch nie sú väčšie kľúče, končíme.
 - 3. Inak (ak Q > P) vymeníme vrchol P s vrcholom Q, pokračujeme na krok 1 pre nižšie umiestnený vrchol P.

- Odstránime koreň haldy
- Odstránime najpravejší vrchol na najnižšej úrovni (jeho kľúč označme P) a hodnotu P zapíšeme do koreňa

Označme Q najväčšiu z hodnôt priamych potomkov P

- Označme Q najväčšiu z hodnôt priamych potomkov P
- Ak Q > P vymeníme vrchol P s vrcholom Q

Označme Q najväčšiu z hodnôt priamych potomkov P

- Označme Q najväčšiu z hodnôt priamych potomkov P
- Ak Q > P vymeníme vrchol P s vrcholom Q

Označme Q najväčšiu z hodnôt priamych potomkov P

- Označme Q najväčšiu z hodnôt priamych potomkov P
- Ak Q > P vymeníme vrchol P s vrcholom Q
- Ak P je list, končíme.

Binárna halda – extractMax (pseudokód)

```
Heap-EXTRACT-MAX(heap)
  if heap-size(heap) < 1</pre>
     then error
  max = heap[1]
  heap[1] = heap[heap-size(heap)]
  heap-size(heap) = heap-size(heap)-1
  HEAPIFY(heap, 1)
  return max
```

Binárna halda – heapify (pseudokód)

```
HEAPIFY(heap, i)
  lavy = left(i)
  pravy = right(i)
  if lavy <= heap-size(heap) and heap[lavy] > heap[i]
      then largest = lavy
      else largest = i
  if pravy <= heap-size(heap) and heap[pravy] > heap[largest]
      then largest = pravy
  if largest <> i
      then exchange (heap[i], heap[largest])
             HEAPIFY(heap, largest)
```

Zložitosť?

• O(log n), kde n je počet prvkov v halde

Binárna halda – vytvorenie haldy

- z vektora heap[1..n], kde n=length(heap)
- všetky prvky v podvektore heap[(|n/2|+1..n] sú listy a teda aj 1-prvkové haldy
- Pseudokód:

```
BUILD-HEAP(heap):
  heap-size(heap) = length(heap)
 for i = |length[heap] / 2| downto 1
     do HEAPIFY(heap, i)
```

- Zložitosť?
 - Vo výške h je najviac $\frac{n}{2^{h+1}}$ vrcholov, heapify haldy výšky h trvá O(h) $T_{\text{BUILD-HEAP}}(n) = \sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}\right) = O(2n) = O(n)$

•
$$T_{\text{BUILD-HEAP}}(n) = \sum_{h=0}^{\lfloor \log n \rfloor} \left\lceil \frac{2}{2^{h+1}} \right\rceil O(h) = O\left(n \sum_{h=0}^{\lfloor \log n \rfloor} \frac{h}{2^h}\right) = O(2n) = O(n)$$

Binárna halda – vytvorenie haldy (ukážka)

Usporadúvanie haldou (Heapsort)

- Pomocou haldy dokážeme spraviť efektívny triediaci algoritmus, tzv. Heapsort
- Postup: Vytvorím haldu a postupne z nej vyberiem všetky prvky

```
■ HEAP-SORT(A):

BUILD-HEAP(A);
for i = length(A) downto 2 do

{ A[1] ↔ A[i];
  heap-size(A) = heap-size(A)-1;
  HEAPIFY(A, 1)
}
```

- Zložitosť?
 - Vytvorenie (O(n)) a n krát vybratie max $(n*O(\log n)) = O(n \log n)$

Vyvážené vyhľadávacie stromy

- Prioritný rad/front (halda) nie je implementácia všeobecnej dynamickej množiny
- Ako vylepšiť všeobecné vyhľadávacie stromy?
 - Obmedziť ich štruktúru, aby sme mohli o nej prehlásiť nejaké vlastnosti – napr. že bude vždy nízka výška stromu
 - Z týchto garancií (na veľkosť výšky) vyplynú efektívne zložitosti operácií nad takýmito stromami
- Na získanie najlepšej zložitosti O(log n) musíme zabezpečiť, aby strom po vykonaní operácií (insert, delete) zostal vyvážený použitie samovyvažovacích stromov ako sú AVL stromy alebo červeno-čierne stromy, ktoré automaticky menia svoju štruktúru tak, aby po týchto operáciách bol rozdiel hĺbok ľavého a pravého podstromu "malý"

Vyvážené vyhľadávacie stromy – Prehľad

- Základné vyvažovanie podrobne
 - AVL strom
 - Splay strom
- Ostatné: definícia, insert, vlastnosti
 - B stromy
 - (a,b) stromy: 2,3 a 2,3,4 stromy
 - Červeno-Čierne (Red-Black) stormy
 - Váhovo vyvážené
- Optimálne binárne vyhľadávacie stromy
- A d'alšie:
 - Trie dynamická množina reťazcov
 - Radixový strom, lano, ...

Opakovanie – Problém vyhľadávania

Vstup:

- Postupnosť: a₁, a₂, a₃...a_n
 k(a_i) označíme kľúč k_i prvku a_i
- Hľadaný kľúč x
- Čo sú kľúče?

 Definičný obor D reťazce, reálne čísla, dvojice celých čísel, ...
- Relácia = (rovnosti) relácia ekvivalencie nad D
- Usporiadanie kľúčov < (binárna relácia nad D)
 Lineárne usporiadaná množina K (total ordering)
 Pre k₁, k₂ ∈ D budeme písať, že k₁ ≤ k₂ akk k₁ < k₂ alebo k₁ = k₂.

Výstup:

 Index res ∈ {1,2,...,n} takého prvku, že k(a_{res}) = x, alebo 0 ak taký prvok neexistuje.

Opakovanie – Základné algoritmy

- Čím viac informácií o vstupnej postupnosti mám
 k dispozícii, tým rýchlejší algoritmus dokážem vytvoriť
 - Lineárne vyhľadávanie: O(n)
 - Binárne vyhľadávanie: O(log n)
 - Interpolačné vyhľadávanie: O(log log n)
- Binárne vyhľadávacie stromy
 - Priemerný prípad: O(log n)
 - Najhorší prípad: O(n)
- Niektoré špecializované typy vyhľadávania
 - Prioritný front (vyhľadávam len najprioritnejší prvok): insert / removeMax : O(log n)

Nová operácia: nájdi k-ty prvok v strome

■ Prvé riešenie:

Využiť in-order usporiadanie, zobrať k-ty prvok

Zložitosť O(k)

■ Napr. k=5

■ In-order: 19, 22, 25, 28, **39**, 49, 63, 65, 86, 87

Nová operácia: nájdi k-ty prvok v strome

- Lepšie riešenie: využiť princíp QuickSelect algoritmu pri porovnaní vo vrchole pokračovať len v podstrome, v ktorom sa k-ty prvok nachádza
- Potrebujeme pre každý vrchol x poznať:
 počet prvkov v podstrome strome s koreňom x
- Implementácia ako rozšírenie štandardnej dátovej štruktúry BVS, rozšírime údaje pre vrchol:
 - ľavý, pravý, rodič, **počet** (prvkov v podstrome) tzv. **váha**
 - rekurzívna definícia váhy
 váha(v) = váha(ľavýPodstrom(v)) + váha(pravýPodstrom(v)) + 1
- Hodnoty váha vo vrcholoch upravujeme pri každej operácií ktorá mení štruktúru stromu: zložitosť O(h), kde h je výška stromu

Order statistic tree

- Rozšírenie BVS stromu
- Pre každý vrchol BVS si navyše pamätáme
 počet prvkov v podstrome vrcholu tzv. váhu
- Hodnoty váhy vo vrcholoch upravujeme pri každej operácií ktorá mení štruktúru stromu (insert, delete)
- Rozšírený strom podporuje navyše operácie:
 - select(k) nájdi k-ty najmenší prvok v množine
 - rank(x) nájdi poradie prvku x v usporiadanej postupnosti prvkov stromu
- Zložitosť operácií O(h), kde h je výška stromu

Ako vylepšiť všeobecné vyhľadávacie stromy?

- Obmedziť ich štruktúru, aby sme mohli o nej prehlásiť nejaké vlastnosti – napr. že bude vždy nízka výška stromu
- Z týchto garancií (na veľkosť výšky) vyplynú efektívne zložitosti operácií nad takýmito stromami
- Na získanie optimálnej zložitosti O(log n) musíme zabezpečiť, aby strom po vykonaní každej operácie zostal vyvážený
- Ako zabezpečiť vyváženie stromu?
 - Hodnoty v strome menit' nemôžeme :)
 - Musíme nejako upravovať štruktúru stromu

Rotácia stromu - doprava

- Operácia, ktorá zmení štruktúru ale zachová usporiadanie
- Zmena tvaru stromu zmena výšky stromu
- Rotácia doprava:
 l'avé diet'a sa presunie (doprava hore) na miesto rodiča

- Zmena hĺbky 25(-1), 42(-1), 47(+1), 65(+1), 75(+1)
- In-order poradie (oba stromy): 25, 42, 45, 47, 65, 75

Rotácia stromu - doľava

- Operácia, ktorá zmení štruktúru ale zachová usporiadanie
- Zmena tvaru stromu zmena výšky stromu
- Rotácia dol'ava:
 pravé diet'a sa presunie (dol'ava hore) na miesto rodiča

- Zmena hĺbky 25(+1), 42(+1), 47(-1), 65(-1), 75(-1)
- In-order poradie (oba stromy): 25, 42, 45, 47, 65, 75