CSI323: Algorithms University of Botswana Lecturer: T.Z. Nkgau

August 17, 2022 Problem Set 0

Problems

1. A music promoter wishes to arrange a tour for one of their music bands in Botswana. The driving distance between places they want to visit is given in the following table.

	Gaborone	Francistown	Molepolole	Maun	Selebi-Phikwe	Serowe	Kanye	Mahalapye	Palapye
Gaborone									
Francistown	435 km								
Molepolole	$55 \mathrm{km}$	484km							
Maun	$856 \mathrm{km}$	$491 \mathrm{km}$							
Selebi-Phikwe	$402 \mathrm{km}$	$146 \mathrm{km}$	454 km						
Serowe	315 km	211km	319km	$700 \mathrm{km}$	$177 \mathrm{km}$				
Kanye	93km		84km	$874 \mathrm{km}$		$406 \mathrm{km}$			
Mahalapye	203 km	$245 \mathrm{km}$	$254 \mathrm{km}$		$201 \mathrm{km}$	113km	293 km		
Palapye	275 km	171km	327 km	591km	138km	$50 \mathrm{km}$	362 km	82km	
Lobatse	$74 \mathrm{km}$	$510 \mathrm{km}$	$121 \mathrm{km}$	924 km	$476 \mathrm{km}$	$386 \mathrm{km}$	$50 \mathrm{km}$	$283 \mathrm{km}$	344 km
Jwaneng	161km	592km	151km	797km	560km	472 km	$80 \mathrm{km}$	$364 \mathrm{km}$	433km
Orapa	$526 \mathrm{km}$	$235 \mathrm{km}$	$542 \mathrm{km}$	$402 \mathrm{km}$	388km	217 km	$626 \mathrm{km}$	333km	$261 \mathrm{km}$

- (a) Draw a graph representation of the information in the table. You may number your locations.
- (b) Find a tour starting at Gaborone using the nearest neighbor algorithm.
- (c) Explain why using the brute force algorithm is futile.
- (d) A complete graph is a graph in which all possible edges are present. Give an example of a graph (not complete) in which the nearest algorithm can not create a complete tour, even though a tour exists.
- 2. Write an algorithm (in pseudocode) that will return the index of the last occurrence of largest element in the array A[0:n-1].
- 3. Write an algorithm that reverses the array A[0:n-1].
- 4. Write an algorithm whose input is an array A[0:n-1]. Each array element is either 0 or 1. Your algorithm should rearrange the array so that all of the 0s precede all of the 1s.
- 5. Write a RAM program to compute the function f(n) = n! for n > 0.
- 6. Write a RAM program to compute the maximum of two positive integers.
- 7. Write a RAM program to sort three positive integers.