0.1 复变函数的极限和连续性

定义 0.1

设 E 是复平面上一点集, 如果对每一个 $z \in E$, 按照某一规则有一确定的复数 w 与之对应, 我们就说在 E 上确定了一个**单值复变函数**, 记为 w = f(z) 或 $f: E \to \mathbb{C}.E$ 称为 f 的定义域, 点集 $\{f(z): z \in E\}$ 称为 f 的值域.

如果对于 $z \in E$, 对应的w有几个或无穷多个,则称在E上确定了一个**多值函数**.

瑩 笔记 例如, $w = |z|^2$, $w = z^3 + 1$ 都是确定在整个平面上的单值函数; 而 $w = \sqrt[4]{z}$,w = Argz 则是多值函数. 今后若非特别说明, 我们所讲的函数都是指单值函数.

注 复变函数是定义在平面点集上的,它的值域也是一个平面点集,因此复变函数也称为**映射**,它把一个平面点集 映成另一个平面点集. 与 $z \in E$ 对应的点 w = f(z) 称为 z 在映射 f 下的像点,z 就称为 w 的原像. 点集 {f(z) : $z \in E$ } 也称为 E 在映射 f 下的像,记为 f(E). 如果 $f(E) \subset F$,就说 f 把 E 映入 F,或者说 f 是 E 到 F 中的映射. 如果 f(E) = F,就说 f 把 E 映为 F,或者说 f 是 E 到 F 中的映射.

定理 0.1

设z = x + iy, 用 $u \rightarrow v$ 记w = f(z) 的实部和虚部,则有

$$w = f(z) = u(z) + iv(z) = u(x, y) + iv(x, y).$$

这就是说,一个复变函数等价于两个二元的实变函数 u = u(x, y) 和 v = v(x, y).

拿 笔记 例如 $w = z^2 = (x + iy)^2 = x^2 - y^2 + 2ixy$, 它等价于 $u = x^2 - y^2$ 和 v = 2xy 两个二元函数; 再如 w = |z|, 它等价于 $u = \sqrt{x^2 + y^2}$ 和 v = 0 这两个二元函数.

定义 0.2

设 f 是定义在点集 E 上的一个复变函数, z_0 是 E 的一个极限点,a 是给定的一个复数. 如果对任意的 $\varepsilon > 0$,存在与 ε 有关的 $\delta > 0$,使得当 $z \in E$ 且 $0 < |z - z_0| < \delta$ 时有 $|f(z) - a| < \varepsilon$,就说当 $z \to z_0$ 时 f(z) 有极限 a,记作 $\lim_{z \to z_0} f(z) = a$.

上述极限的定义也可用邻域的语言叙述为: 对于任给的 $\varepsilon > 0$, 存在与 ε 有关的正数 δ , 使得当 $z \in B(z_0, \delta) \cap E$ 且 $z \neq z_0$ 时有 $f(z) \in B(a, \varepsilon)$, 这后一种说法也适用于 $z = \infty$ 的情形.

定理 0.2

设 f 是定义在点集 E 上的一个复变函数, z_0 是 E 的一个极限点,a 是给定的一个复数. $\lim_{z\to z_0}f(z)=a$ 的充分必要条件为

$$\lim_{\substack{x\to x_0\\y\to y_0}}u(x,y)=\alpha,\quad \lim_{\substack{x\to x_0\\y\to y_0}}v(x,y)=\beta.$$

Ŷ 笔记 由此可知,实变函数中有关极限的一些运算法则在复变函数中也成立.

证明 设 $a = \alpha + i\beta_{z_0} = x_0 + iy_0$, f(z) = u(x, y) + iv(x, y), 由下面的不等式

$$|u(x,y) - \alpha| \leq |f(z) - a| \leq |u(x,y) - \alpha| + |v(x,y) - \beta|,$$

$$|v(x,y) - \beta| \le |f(z) - a| \le |u(x,y) - \alpha| + |v(x,y) - \beta|$$

知道, $\lim f(z) = a$ 的充分必要条件为

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x, y) = \alpha, \quad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x, y) = \beta.$$

定义 0.3

我们说 f 在点 $z_0 \in E$ 连续, 如果

$$\lim_{z \to z_0} f(z) = f(z_0).$$

如果 f 在集 E 中每点都连续, 就说 f 在集 E 上连续.

定理 0.3

复变函数 f(z) = u(x, y) + iv(x, y) 在 $z_0 = x_0 + iy_0$ 处连续的充要条件是 u(x, y) 和 v(x, y) 作为二元函数在 (x_0, y_0) 处连续.

证明 由定理 0.2易得.

定义 0.4

f 在 E 上一致连续, 是指对任意 $\varepsilon > 0$, 存在只与 ε 有关的 $\delta > 0$, 对 E 上任意的 z_1, z_2 , 只要 $|z_1 - z_2| < \delta$, 就 有 $|f(z_1) - f(z_2)| < \varepsilon$.

定理 0.4

设 $E \neq \mathbb{C}$ 中的紧集, $f: E \rightarrow \mathbb{C}$ 在 E 上连续, 那么

- (i) f 在 E 上有界;
- (ii) |f| 在 E 上能取得最大值和最小值,即存在 $a,b \in E$,使得对每个 $z \in E$,都有

$$|f(z)| \le |f(a)|, \quad |f(z)| \ge |f(b)|;$$

(iii) f 在 E 上一致连续.

证明 (i)

(ii) 记 $M = \sup\{|f(z)|: z \in E\}$, 于是对每一自然数 n, 必有 $z_n \in E$, 使得

$$M - \frac{1}{n} \leqslant |f(z_n)| \leqslant M. \tag{1}$$

因为 $E \in \mathbb{C}$ 中的紧集, 由 Heine-Borel 定理, E 为有界闭集. 再由 Bolzano-Weierstrass 定理, $\{z_n\}$ 必有极限点, 即有一收敛子列 $\{z_{n_k}\}$, 设其极限为 a, 则 $a \in E$. 把(1)式写成

$$M - \frac{1}{n_k} \leqslant |f(z_{n_k})| \leqslant M,$$

让 $k \to \infty$, 并注意到 f 在 a 处的连续性, 即得 |f(a)| = M.

同理可证, 存在 $b \in E$, 使得 $|f(b)| = \inf\{|f(z)| : z \in E\}$.

(iii)