Timed pushdown automata and branching vector addition systems

Lorenzo Clemente 1 , Sławomir Lasota 1 , Ranko Lazić 2 , and Filip Mazowiecki 3

¹University of Warsaw

 $^2\mbox{University of Warwick}$

 $^3\mbox{University of Oxford}$

LICS 2017 Reykjavik

1. Three models

1. Three models

trPDA

1. Three models

trPDA

time registers x, y, z

1. Three models

time registers x,y,z

1. Three models

time registers x, y, z

Systems of equations

 $X_i \subseteq \mathbb{Z}$

1. Three models

time registers x, y, z

Systems of equations

$$X_{i} \subseteq \mathbb{Z}$$

$$\begin{cases}
X_{1} \supseteq X_{2} \cup X_{3} \\
X_{2} \supseteq X_{1} + X_{3} \\
X_{3} \supseteq \{-1, 1\} \\
\vdots
\end{cases}$$

1. Three models

time registers x, y, z

Systems of equations

 $X_i \subset \mathbb{Z}$

$$\begin{cases} X_1 &\supseteq X_2 \cup X_3 \\ X_2 &\supseteq X_1 + X_3 \\ X_3 &\supseteq \{-1,1\} \\ \vdots \end{cases}$$

1. Three models

time registers x, y, z

Systems of equations

 $X_i \subset \mathbb{Z}$

$$\begin{cases} X_1 &\supseteq X_2 \cup X_3 \\ X_2 &\supseteq X_1 + X_3 \\ X_3 &\supseteq \{-1,1\} \\ \vdots \end{cases}$$

1. Three models

time registers x, y, z

Systems of equations

$$X_{i} \subseteq \mathbb{Z}$$

$$\begin{cases}
X_{1} \supseteq X_{2} \cup X_{3} \\
X_{2} \supseteq X_{1} + X_{3} \\
X_{3} \supseteq \{-1, 1\} \\
\vdots
\end{cases}$$

1. Three models

time registers x,y,z

Systems of equations

$$X_{i} \subseteq \mathbb{Z}$$

$$\begin{cases}
X_{1} \supseteq X_{2} \cup X_{3} \\
X_{2} \supseteq X_{1} + X_{3} \\
X_{3} \supseteq \{-1, 1\} \\
\vdots
\end{cases}$$

- 2. Reductions between models
- 3. Decidability

What is time?

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $(\mathbb{Z},\leq,+1)$

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a,b\}$ (finite in general)

What is time?

$$(\mathbb{Q}, \leq, +1)$$
 or $\underline{(\mathbb{Z}, \leq, +1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

$$L=$$
 "Palindromes such that $\#_a(w)=\#_b(w)$ "

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

$$L=$$
 "Palindromes such that $\#_a(w)=\#_b(w)$ "

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $(\mathbb{Z},\leq,+1)$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

$$L =$$
 "Palindromes such that $\#_a(w) = \#_b(w)$ "

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

$$L=$$
 "Palindromes such that $\#_a(w)=\#_b(w)$ "

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

What is time?

$$(\mathbb{Q}, \leq, +1)$$
 or $(\mathbb{Z}, \leq, +1)$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

L= "Palindromes such that $\#_a(w)=\#_b(w)$ "

(a,3)(b,2)(b,2)(a,3)

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $(\mathbb{Z},\leq,+1)$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

L = "Palindromes such that $\#_a(w) = \#_b(w)$ "

- Non-monotonic time

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $(\mathbb{Z},\leq,+1)$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

$$L=$$
 "Palindromes such that $\#_a(w)=\#_b(w)$ "

- Non-monotonic time
- Only one register (or orbit-finiteness)

What is time?

$$(\mathbb{Q}, \leq, +1)$$
 or $\underline{(\mathbb{Z}, \leq, +1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

$$L=$$
 "Palindromes such that $\#_a(w)=\#_b(w)$ "

Strictly subsumes other models:

- Non-monotonic time

- [Bouajjani, Echahed, Robbana]
- Only one register (or orbit-finiteness) [Abdulla, Atig, Stenman]

Input: trPDA ${\cal A}$

Problem: non-emptiness of $L(\mathcal{A})$

Input: trPDA ${\cal A}$

Problem: non-emptiness of L(A)

(universality, equivalence, etc. undecidable)

```
Input: trPDA {\cal A}
```

Problem: non-emptiness of L(A)

(universality, equivalence, etc. undecidable)

Unrestricted – undecidable [Bojańczyk and Lasota, 2012] (no stack, 3 registers)

Input: trPDA \mathcal{A}

Problem: non-emptiness of L(A)

(universality, equivalence, etc. undecidable)

Unrestricted – undecidable [Bojańczyk and Lasota, 2012]

(no stack, 3 registers)

Restrict to orbit-finite/one register

Input: trPDA ${\cal A}$

Problem: non-emptiness of L(A)

(universality, equivalence, etc. undecidable)

Unrestricted – undecidable [Bojańczyk and Lasota, 2012] (no stack, 3 registers)

Restrict to orbit-finite/one register

Timeless stack – ExpTime-complete

Input: trPDA \mathcal{A}

Problem: non-emptiness of L(A)

(universality, equivalence, etc. undecidable)

Unrestricted – undecidable [Bojańczyk and Lasota, 2012]

(no stack, 3 registers)

Restrict to orbit-finite/one register

Timeless stack – ExpTime-complete

Orbit-finite time stack – in NExpTime [Clemente and Lasota, 2015]

trPDA state of the art

Input: trPDA \mathcal{A}

Problem: non-emptiness of L(A)

(universality, equivalence, etc. undecidable)

Unrestricted – undecidable [Bojańczyk and Lasota, 2012]

(no stack, 3 registers)

Restrict to orbit-finite/one register

Timeless stack – ExpTime-complete

Orbit-finite time stack – in NExpTime [Clemente and Lasota, 2015]

Time stack – this paper

- Push and pop

- Push and pop
- Only ϵ -transitions (no input to test non-emptiness)

- Push and pop
- Only ϵ -transitions (no input to test non-emptiness)

3 time variables:

- Push and pop
- Only ϵ -transitions (no input to test non-emptiness)

3 time variables:

Example constraint:

$$(x = y + 1) \land (y \le z + 1 + 1 + 1) \land (z \le y + 1) \land (x \le z)$$

- Push and pop
- Only ϵ -transitions (no input to test non-emptiness)

3 time variables:

Example constraint:

$$(x=y+1) \ \land \ (y \leq z+1+1+1) \ \land \ (z \leq y+1) \ \land \ (x \leq z)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$x-y \in [1,1] \qquad \qquad y-z \in [1,3] \qquad x-z \in (-\infty,0]$$

- Push and pop
- Only ϵ -transitions (no input to test non-emptiness)

3 time variables:

Example constraint:

Transition: 3 intervals

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

Systems of equations ${\mathcal S}$ using: $\cup,\cap,+$ and $\{1\},\{-1\}$

$$\begin{cases} X_0 \supseteq t_0 \\ \vdots \\ X_n \supseteq t_n \end{cases}$$

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

Systems of equations ${\mathcal S}$ using: $\cup,\cap,+$ and $\{1\},\{-1\}$

$$\begin{cases} X_0 \supseteq t_0 \\ \vdots \\ X_n \supseteq t_n \end{cases}$$

solution $\mu(X_i) \to \mathcal{P}(\mathbb{Z}), \quad \mu(X_i) \supseteq \mu(t_i)$

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

Systems of equations $\mathcal S$ using: $\cup,\cap,+$ and $\{1\},\{-1\}$

$$\begin{cases} X_0 \supseteq t_0 \\ \vdots \\ X_n \supseteq t_n \end{cases}$$

solution $\mu(X_i) \to \mathcal{P}(\mathbb{Z})$, $\mu(X_i) \supseteq \mu(t_i)$

goal: minimal solution of ${\mathcal S}$

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

Systems of equations $\mathcal S$ using: $\cup,\cap,+$ and $\{1\},\{-1\}$

$$\begin{cases} X_0 \supseteq t_0 \\ \vdots \\ X_n \supseteq t_n \end{cases}$$

solution
$$\mu(X_i) \to \mathcal{P}(\mathbb{Z})$$
, $\mu(X_i) \supseteq \mu(t_i)$

goal: minimal solution of ${\mathcal S}$

Example:
$$X_0 \dots X_k$$

$$X_0 \supseteq \{1\} + \{-1\}$$

 $X_{2m} \supseteq X_m + X_m$
 $X_{2m+1} \supseteq X_m + X_m + \{1\}$

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

Systems of equations $\mathcal S$ using: $\cup, \cap, +$ and $\{1\}, \{-1\}$

$$\begin{cases} X_0 \supseteq t_0 \\ \vdots \\ X_n \supseteq t_n \end{cases}$$

solution
$$\mu(X_i) \to \mathcal{P}(\mathbb{Z}), \quad \mu(X_i) \supseteq \mu(t_i)$$

goal: minimal solution of ${\mathcal S}$

Example:
$$X_0 \dots X_k$$

$$X_0 \supseteq \{1\} + \{-1\}$$

 $X_{2m} \supseteq X_m + X_m$
 $X_{2m+1} \supseteq X_m + X_m + \{1\}$

minimal solution: $\mu(X_i) = \{i\}$

TPDA and BVASS

Systems of equations over \mathbb{Z}

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

Systems of equations S using: \cup , \cap , + and $\{1\}$, $\{-1\}$

$$\begin{cases} X_0 \supseteq t_0 \\ \vdots \\ X_n \supseteq t_n \end{cases}$$

solution
$$\mu(X_i) \to \mathcal{P}(\mathbb{Z}), \quad \mu(X_i) \supseteq \mu(t_i)$$

goal: minimal solution of ${\cal S}$

Example:
$$X_0 \dots X_k$$

$$X_0 \supseteq \{1\} + \{-1\}$$

 $X_{2m} \supseteq X_m + X_m$
 $X_{2m+1} \supseteq X_m + X_m + \{1\}$

$$X_m^m + \{1\}$$

$$X_0 \supset X_0 + X_k$$

$$_{m}+X_{m}+\{1$$

minimal solution: $\mu(X_i) = \{i\}$

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

Systems of equations S using: \cup , \cap , + and $\{1\}$, $\{-1\}$

$$\begin{cases} X_0 \supseteq t_0 \\ \vdots \\ X_n \supseteq t_n \end{cases}$$

solution
$$\mu(X_i) \to \mathcal{P}(\mathbb{Z}), \quad \mu(X_i) \supseteq \mu(t_i)$$

goal: minimal solution of ${\mathcal S}$

Example: $X_0 \dots X_k$

$$X_0 \supseteq \{1\} + \{-1\}$$
 $X_{2m} \supseteq X_m + X_m$
 $X_{2m+1} \supseteq X_m + X_m + \{1\}$
 $X_0 \supseteq X_0 + X_k$

minimal solution: $\mu(X_i) = \{i\}$

$$\mu(X_0) = k\mathbb{N}$$

Input: system \mathcal{S} , variable X

Problem: non-emptiness of $\mu(X)$

Input: system S, variable X

Problem: non-emptiness of $\mu(X)$

Unrestricted: undecidable [Jeż and Okhotin, 2010]

Input: system S, variable X

Problem: non-emptiness of $\mu(X)$

Unrestricted: undecidable [Jeż and Okhotin, 2010]

Restricting ∩

Input: system S, variable X

Problem: non-emptiness of $\mu(X)$

Unrestricted: undecidable [Jeż and Okhotin, 2010]

Restricting ∩

No intersections – in PTIME

Input: system \mathcal{S} , variable X

Problem: non-emptiness of $\mu(X)$

Unrestricted: undecidable [Jeż and Okhotin, 2010]

 $\mathsf{Restricting} \ \cap \\$

No intersections – in PTIME

Intersections with $\{0\}$ – NPTIME-complete [Clemente and Lasota, 2015]

Input: system S, variable X

Problem: non-emptiness of $\mu(X)$

Unrestricted: undecidable [Jeż and Okhotin, 2010]

Restricting \cap

No intersections – in PTIME

Intersections with $\{0\}$ – NPTIME-complete [Clemente and Lasota, 2015] (or any bounded intervals)

Input: system \mathcal{S} , variable X

Problem: non-emptiness of $\mu(X)$

Unrestricted: undecidable [Jeż and Okhotin, 2010]

 $\mathsf{Restricting} \ \cap \\$

No intersections – in PTIME

Intersections with $\{0\}$ – NPTIME-complete [Clemente and Lasota, 2015] (or any bounded intervals)

Intersections with $\mathbb N$ and $(-\mathbb N)$ – this paper

Input: system \mathcal{S} , variable X

Problem: non-emptiness of $\mu(X)$

Unrestricted: undecidable [Jeż and Okhotin, 2010]

 $\mathsf{Restricting} \ \cap \\$

No intersections – in PTIME

Intersections with $\{0\}$ – $NPT_{IME}\text{-complete}$ [Clemente and Lasota, 2015] (or any bounded intervals)

Intersections with $\mathbb N$ and $(-\mathbb N)$ – this paper (or any intervals)

Non-emptiness: trPDA $\mathcal{A} \rightarrow \operatorname{system} (\mathcal{S}, X)$

Non-emptiness: trPDA $\mathcal{A} \rightarrow \operatorname{system} (\mathcal{S}, X)$

Previously: [Clemente and Lasota, 2015]

- ${\mathcal A}$ with timeless stack o $({\mathcal S},X)$ with no \cap

Non-emptiness: trPDA $\mathcal{A} \rightarrow \text{system } (\mathcal{S}, X)$

Previously: [Clemente and Lasota, 2015]

- ${\mathcal A}$ with timeless stack o $({\mathcal S},X)$ with no \cap
- $\mathcal A$ with orbit-finite stack o $(\mathcal S,X)$ with \cap $\{0\}$

Non-emptiness: trPDA $\mathcal{A} \rightarrow \operatorname{system} (\mathcal{S}, X)$

Previously: [Clemente and Lasota, 2015]

- ${\mathcal A}$ with timeless stack o $({\mathcal S},X)$ with no \cap
- ${\mathcal A}$ with orbit-finite stack $o ({\mathcal S},X)$ with $\cap \{0\}$

This paper:

- \mathcal{A} with stack \to (\mathcal{S},X) with $\cap \mathbb{N}, \cap (-\mathbb{N})$

 ${\sf trPDA}\ {\cal A}$ with states Q, empty stack acceptance

 ${\sf trPDA}\ {\cal A}$ with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $\mathsf{trPDA}\ \mathcal{A}$ with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t"

trPDA \mathcal{A} with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q\in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t"

Inclusions:

- $X_{p,p}\supseteq\{0\}$, for every p

trPDA \mathcal{A} with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t "

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q}\supseteq X_{p,r}+X_{r,q}$, for all p,q,r

trPDA \mathcal{A} with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t"

- $X_{p,p}\supseteq\{0\}$, for every p
- $X_{p,q}\supseteq X_{p,r}+X_{r,q}$, for all p,q,r

trPDA \mathcal{A} with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t "

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q}\supseteq X_{p,r}+X_{r,q}$, for all p,q,r

trPDA \mathcal{A} with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t "

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q}\supseteq X_{p,r}+X_{r,q}$, for all p,q,r

 $\mathsf{trPDA}\ \mathcal{A}$ with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q\in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t "

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q}\supseteq X_{p,r}+X_{r,q}$, for all p,q,r

 $\mathsf{trPDA}\ \mathcal{A}$ with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q\in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t "

Inclusions:

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q}\supseteq X_{p,r}+X_{r,q}$, for all p,q,r
- $-X_{p,q} \supseteq (I + (X_{r,s} \cap (J+N)) + L) \cap -(K+M)$

 ${\sf trPDA}\ {\cal A}$ with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t "

Inclusions:

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q} \supseteq X_{p,r} + X_{r,q}$, for all p,q,r
- $-X_{p,q} \supseteq (I + (X_{r,s} \cap (J+N)) + L) \cap -(K+M)$

 $\mathsf{trPDA}\ \mathcal{A}$ with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q\in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t"

Inclusions:

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q} \supseteq X_{p,r} + X_{r,q}$, for all p,q,r
- $-X_{p,q} \supseteq (I + (X_{r,s} \cap (J+N)) + L) \cap -(K+M)$

TPDA and BVASS

 ${\sf trPDA}\ {\cal A}$ with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t"

Inclusions:

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q} \supseteq X_{p,r} + X_{r,q}$, for all p,q,r
- $-X_{p,q} \supseteq (I + (X_{r,s} \cap (J+N)) + L) \cap -(K+M)$

Recall 1-VASS

Recall 1-VASS

Recall 1-VASS

Computations are words: $(p,0) \xrightarrow{3} (p,3) \xrightarrow{3} (p,6) \xrightarrow{-6} (q,0)$

Recall 1-VASS

Computations are words: $(p,0) \xrightarrow{3} (p,3) \xrightarrow{3} (p,6) \xrightarrow{-6} (q,0)$

States Q, transitions $T\subseteq Q\times \mathbb{Z}\times Q$, configurations $Q\times \mathbb{N}$

Recall 1-VASS

Computations are words: $(p,0) \xrightarrow{3} (p,3) \xrightarrow{3} (p,6) \xrightarrow{-6} (q,0)$ States Q, transitions $T \subseteq Q \times \mathbb{Z} \times Q$, configurations $Q \times \mathbb{N}$

1-BVASS $^{\pm}$: states Q, transitions $T\subseteq Q^3$, configurations $Q\times\mathbb{N}$

Recall 1-VASS

Computations are words: $(p,0) \xrightarrow{3} (p,3) \xrightarrow{3} (p,6) \xrightarrow{-6} (q,0)$ States Q, transitions $T \subseteq Q \times \mathbb{Z} \times Q$, configurations $Q \times \mathbb{N}$

 1-BVASS^{\pm} : states Q, transitions $T\subseteq Q^3$, configurations $Q\times\mathbb{N}$

Computations are binary trees:

- leaves $(q_0, 1)$

Recall 1-VASS

Computations are words: $(p,0) \xrightarrow{3} (p,3) \xrightarrow{3} (p,6) \xrightarrow{-6} (q,0)$ States Q, transitions $T \subseteq Q \times \mathbb{Z} \times Q$, configurations $Q \times \mathbb{N}$

1-BVASS $^{\pm}$: states Q, transitions $T \subseteq Q^3$, configurations $Q \times \mathbb{N}$

Computations are binary trees:

- leaves $\left(q_0,1\right)$
- inner nodes $(q, q_l, q_r) \in T$

Recall 1-VASS

Computations are words: $(p,0) \xrightarrow{3} (p,3) \xrightarrow{3} (p,6) \xrightarrow{-6} (q,0)$ States Q, transitions $T \subseteq Q \times \mathbb{Z} \times Q$, configurations $Q \times \mathbb{N}$

 $1\text{-BVASS}^\pm\colon$ states Q , transitions $T\subseteq Q^3$, configurations $Q\times\mathbb{N}$

Computations are binary trees:

- leaves $\left(q_0,1\right)$
- inner nodes $(q, q_l, q_r) \in T$

 $n=n_l+n_r \quad \text{if } q\in Q^+$

$$n = n_l - n_r \quad \text{if } q \in Q^-$$

Recall 1-VASS

Computations are words: $(p,0) \xrightarrow{3} (p,3) \xrightarrow{3} (p,6) \xrightarrow{-6} (q,0)$ States Q, transitions $T \subseteq Q \times \mathbb{Z} \times Q$, configurations $Q \times \mathbb{N}$

1-BVASS[±]: states Q, transitions $T \subseteq Q^3$, configurations $Q \times \mathbb{N}$

Computations are binary trees:

1-BVASS

- leaves $(q_0,1)$
- inner nodes

 $(q,q_l,q_r)\in T$

 $n = n_l + n_r \quad \text{if } q \in Q^+$

Input: BVASS \mathcal{B} , configuration (q, n)

Problem: reachability of $\left(q,n\right)$

Input: BVASS \mathcal{B} , configuration (q, n)

Problem: reachability of $\left(q,n\right)$

1-BVASS (no subtraction):

Input: BVASS \mathcal{B} , configuration (q, n)

Problem: reachability of (q, n)

1-BVASS (no subtraction):

Unary encoding – PTIME-complete [Göller et al., 2016]

Input: BVASS \mathcal{B} , configuration (q, n)

Problem: reachability of (q, n)

1-BVASS (no subtraction):

Unary encoding – PTIME-complete [Göller et al., 2016]

Binary encoding – PSPACE-complete [Figueira et al., 2017]

Input: BVASS \mathcal{B} , configuration (q, n)

Problem: reachability of (q, n)

1-BVASS (no subtraction):

Unary encoding – PTIME-complete [Göller et al., 2016]

Binary encoding - PSPACE-complete [Figueira et al., 2017]

In higher dimensions - open

Input: BVASS \mathcal{B} , configuration (q, n)

Problem: reachability of (q, n)

1-BVASS (no subtraction):

Unary encoding – PTIME-complete [Göller et al., 2016]

Binary encoding - PSPACE-complete [Figueira et al., 2017]

In higher dimensions - open

 1-BVASS^{\pm} unary/binary – this paper

Input: BVASS \mathcal{B} , configuration (q, n)

Problem: reachability of (q, n)

1-BVASS (no subtraction):

Unary encoding – PTIME-complete [Göller et al., 2016]

Binary encoding - PSPACE-complete [Figueira et al., 2017]

In higher dimensions - open

 1-BVASS^{\pm} unary/binary – this paper

In higher dimensions – undecidable ($d \ge 6$) [Lazić, 2010]

1-BVASS $^{\pm}$ \mathcal{B} , configuration (q, n)

1-BVASS[±] \mathcal{B} , configuration (q, n)

Lemma

If (q,n) is reachable then there is a computation with all values bounded by $N=poly(n)\cdot exp(|B|).$

1-BVASS[±] \mathcal{B} , configuration (q, n)

Lemma

If (q,n) is reachable then there is a computation with all values bounded by $N=poly(n)\cdot exp(|B|).$

Non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$.

1-BVASS[±] \mathcal{B} , configuration (q, n)

Lemma

If (q,n) is reachable then there is a computation with all values bounded by $N = poly(n) \cdot exp(|B|)$.

Non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$.

So in ExpTime

Three models/problems

Three models/problems

trPDA (non-emptiness)

Three models/problems

 $\begin{array}{c} \text{trPDA} \\ \text{(non-emptiness)} \end{array}$

 ${\displaystyle \begin{array}{c} {\sf Systems} \\ {\sf (non-emptiness)} \end{array}}$

Three models/problems

 $\begin{array}{c} \text{trPDA} \\ \text{(non-emptiness)} \end{array}$

Systems (non-emptiness)

 1-BVASS^{\pm} (reachability)

Three models/problems

Three models/problems

Three models/problems

TPDA and BVASS

Three models/problems

Three models/problems

in $\operatorname{ExpTime}$

Three models/problems

in 2ExpTime

in $\operatorname{ExpTime}$

in $\operatorname{ExpTime}$

Three models/problems

Conclusions

Complexity gaps

Conclusions

- Complexity gaps
- Reachability of BVASS?

Conclusions

- Complexity gaps
- Reachability of BVASS?
- Reachability of n-BVASS $^{\pm}$ for n < 6