

PROJEKT WYKONAWCZY KONSTRUKCJI

DWUPODPOROWA KONSTRUKCJA GRUNTOWA POD MODUŁY FOTOWOLTAICZNE

Lokalizacja Polska – do wysokości 300 m n.p.m.						
	1 i 2 strefa obciążenia śniegiem wg PN-EN 1991-1-3					
	1 strefa obciążenia wiatrem wg PN-EN 1991-1-4					
	Kategoria terenu II					
	Obszary z niską roślinnością, taką jak trawa, oraz pojedynczymi przeszkodami (drzewa, budynki) oddalonymi od siebie na odległość nie mniejszą niż 20 ich wysokości					
Zleceniodawca	ULAMEX Zbigniew Zientek					
	Zawada 144					
	97-200 Tomaszów Mazowiecki					
	SPECJALNOŚĆ KONSTRUKCYJNO-BUDOWLANA					
Projektant	mgr inż. Paweł Kowalski					
	uprawnienia bud. nr ewid. SLK/7224/PBKb/17					
Data	30 stycznia 2023					

SPIS TREŚCI

CZĘŚĆ	OPISOWA	3
1		3
2	Przedmiot opracowania	3
3	Materialy	3
4	Geotechniczne warunki i sposób posadowienia	3
5	Zestawienie obciążeń	4
CZĘŚĆ	OBLICZENIOWA	5
Poz.		5
Poz.	. 2 Słup górny (ponad gruntem) wysoki	6
Poz.		8
Poz.	. 4 Stężenie poprzeczne	9
Poz.	. 5 Stężenie podłużne	10
Poz.	. 7 Rygiel	11
Poz.		13
CZĘŚĆ	CRYSUNKOWA	
U1	Układ poprzeczny, elementy złączne	
U2	Pozycje: 1, 2, 3 – słupy	
U3	Pozycje: 4, 5, 6 – stężenia, łącznik	
U4	Pozycje: 71, 72, 73 – rygle	
U5	Pozvcie 81, 82 – płatwie	

CZĘŚĆ OPISOWA

1 Podstawa formalna

- PN-EN 1990 Podstawy projektowania konstrukcji
- PN-EN 1991 Oddziaływania na konstrukcje
- PN-EN 1993 Projektowanie konstrukcji stalowych

2 Przedmiot opracowania

- Konstrukcja wsporcza to wolnostojąca wiata jednospadowa o kącie spadku połaci z regulacją od 20° do 30°
- Kategoria projektowego okresu użytkowania S3 (od 15 do 30 lat)
- Mnożnik KFI do współczynników częściowych = 0,9 klasa niezawodności RC1 na podstawie klasy konsekwencji CC1 (małe lub nieznaczne konsekwencje społeczne, ekonomiczne i środowiskowe)
- Konstrukcje wykonać i montować zgodnie z PN-EN 1090 klasa EXC2 oraz dołączoną instrukcją montażu konstrukcji.

3 Materialy

Stal konstrukcyjna (profilowa) gatunku S350GD z powłoką Magnelis ®

4 Geotechniczne warunki i sposób posadowienia

- Kategoria geotechniczna obiektu budowlanego zgodnie z projektem budowlanym
- Posadowienie bezpośrednie wbijanie słupów w grunt na głębokość według próbnych obciążeń
- Wartości obliczeniowe nośności na wyciąganie ustalone zgodnie z PN-EN 1997-1 nie powinny przekraczać maksymalnych reakcji obliczeniowych pokazanych poniżej

Rysunek 1: Reakcje obliczeniowe w kierunku pionowym

5 Zestawienie obciążeń

Ciężar własny konstrukcji uwzględniono automatycznie w programie obliczeniowym. (Przypadek: Nr 1)

Tabela 1: Obciążenia stałe (Przypadek: Nr 2)

Opis	Wartość [kN/m²]
Instalacja fotowoltaiczna	0,13
Razem =	0,13

Tabela 2: Obciążenie zmienne śniegiem (Przypadek: Nr 3)

Obciążenie śniegiem gruntu (2 strefa)	s _k = 0,9 kN/m ²
Współczynnik ekspozycji (teren wystawiony na działanie wiatru)	C _e = 0,8
Współczynnik termiczny	C _t = 1,0
Współczynnik kształtu dachu (α = 30°)	μ ₁ = 0,80
Obciążenie śniegiem równomiernie rozłożone na powierzchni dachu	s ₁ = 0,58 kN/m ²

Tabela 3: Obciążenie zmienne wiatrem (Przypadek: Nr 4, 6 parcie ALBO Nr 5, 7 ssanie)

Wartość podstawowa ba	v _{b,o} = 22 m/s					
Współczynnik kierunkow	c _{dir} = 0,8					
Współczynnik sezonowy	1			c _{season} = 1,0		
Bazowa prędkość wiatru	I			v _b = 17,6 m/s		
Wysokość odniesienia n	ad poziomem gruntu			z = h = 3,0 m		
Współczynnik ekspozycj	i (kategoria terenu 2)			c _e (z) = 1,72		
Średnie (bazowe) ciśnie	nie prędkości			$q_b = 0,19 \text{ kN/m}^2$		
Szczytowe ciśnienie prę	dkości			$q_p(z) = 0.33 \text{ kN/m}^2$		
Współczynnik konstrukc	yjny			c _s c _d = 1,0		
Globalny wsp	półczynnik siły	Obciążer	nie wiatrem	Pow. odniesienia		
(wiata jednospadowa α :	= 30°, współczynnik blokow	wania φ = 0)				
c _{f-} = -1,8	Cf+ = 1,2	F _{w-} = -32,73 kN	F _{w+} = 21,82 kN	A _{ref} = 55,1 m ²		
Cf- = -1,8	$c_{f-} = -1.8$ $c_{f+} = 1.2$ -0.95 kN/m 0.63 kN/m					
Cf- = -1,8	II = 2,7					
c _{f-} = -1,8	$c_{f-} = -1.8$ $c_{f+} = 1.2$ -0.38 kN/m 0.25 kN/m					
c _{f-} = -1,8	IV = 0,32					
c _{f-} = -1,8	c _{f+} = 1,2	-0,07 kN/m	0,04 kN/m	V = 0,11		

Oddziaływania termiczne przyjęto jako podniesienie lub obniżenie temperatury o 20°C. (Przypadek: Nr 8 ALBO Nr 9)

CZĘŚĆ OBLICZENIOWA

Rysunek 2: Przyjęty schemat statyczny

```
Wariant: 10/1 (1+2+3x0,2 (Częsta))
Nr
       Mnoż. Opis
1(St) 1,0
           Ciężar własny (F)
2(St)
      1,0
             Stałe
3(Wa)
     0,2
             Śnieg
Wariant: 11/2 (1+2+5x0,2 (Częsta))
Nr
       Mnoż. Opis
1(St) 1,0
           Ciężar własny (F)
2(St) 1,0
           Stałe
5(Wa)
      0,2
             Ssanie wiatru Y+
Wariant: 12/3 (1+2+7x0,2 (Częsta))
Nr
       Mnoż. Opis
1(St) 1,0 Ciężar własny (F)
2(St) 1,0
           Stałe
7 (Wa)
      0,2
             Ssanie wiatru Y-
```

Poz. 1 Słup dolny (w gruncie)

```
OBIEKT: Słup (Cg75x45x15x3)
Od węzła: 8 do węzła: 9 (L= 0,5 m)
Przekrój nr: 1 (Cg75x45x15x3)
Materiał: S350GD (f=350/420)
(m0=1,0 m1=1,0 m2=1,25)
Granica plastyczności fy = 350 MPa
Odległość między przekrojami< 0,5 m
UGIECIE WSPORNIKA (z wariantów: 10,11,12)
```

```
f = 2,742 \text{ mm} < 3,333 \text{ mm} (2L/300)
KLASA PRZEKROJU: 1
CECHY GEOMETRYCZNE PRZEKROJU
  Pole przek.poprz. (A) = 5,04 cm2
  Pola na ścinanie (Avy) = 0,0 cm2
  Pola na ścinanie (Avz) = 0,0 cm2
  Wsk.na zginanie (Wcy) = 11,46 cm3 (Wcz) = 4,656 cm3
  Wsk.na zginanie (Wty) = 11,46 \text{ cm} 3 \text{ (Wtz)} = 7,76 \text{ cm} 3
NOŚNOŚCI OBLICZENIOWE PRZEKROJU
  Na rozciąganie (NRt) = 123,5 kN
      (Osłab.przekroju otworami/mimośrodem= 30 %)
 Na ściskanie (NRc) = 176,4 kN
                (VRy) = 0,0 kN
  Na ścinanie
  Na ścinanie (VRz) = 0,0 \text{ kN}
 Na zginanie (MRy) = 4,01 \text{ kNm}
                (MRz) = 1,629 \text{ kNm}
 Na zginanie
OBCIAŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  Nrr:
  1*1,0 + 2*1,0 + 5*1,35 + 8*0,81
  Rozciąg. (Nt) = 5,972 \text{ kN}
  Ścinanie (Vz) = 0,1094 \text{ kN} Ścinanie (Vy) = 0,006045 \text{ kN}
  Zginanie (My) = 0,9508 kNm Zginanie (Mz) = 0,002712 kNm
Warianty i siły dla minimalnych naprężeń
  1*1,04 + 2*1,04 + 7*1,35 + 8*0,81
  Ściskanie (Nc) = 5,502 kN
  Ścinanie (Vz) = 0,663 \text{ kN} Ścinanie (Vy) = 0,008654 \text{ kN}
  Zginanie (My) = 1,406 \text{ kNm} Zginanie (Mz) = 0,008226 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  My/MRy+Mz/MRz=0,36 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,39 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta (Loy) = 0,5 \text{ m} (Loz) = 0,5 \text{ m}
  Wsp.dł.wyboczen. (miy) = 2,47
                                     (miz) = 1,49
  Smukłość pręta
                     (1 y) = 42,3
                                     (1 z) = 46,22
  Wsp.wyboczeniowy (fiy) = 0,7808 (fiz) = 0,7432
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 0,5 m
  Wsp.zwichrzenia (fiL) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  My/(fiL*MRy)+Mz/MRz=0,44 < 1
  Nc/(fi*NRc) = 0,04 < 1
     Wsp.beta by= 1
                            bz = 1
     Poprawki Dy= 0,0
                            Dz=0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,48 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,49 < 1
```

Poz. 2 Słup górny (ponad gruntem) wysoki

```
OBIEKT: Słup (Cg82x50x18x2)
Od węzła: 22 do węzła: 60 (L= 2,393 m)
Przekrój nr: 2 (Cg82x50x18x2)
Materiał: S350GD (f=350/420)
(m0=1,0 m1=1,0 m2=1,25)
Granica plastyczności fy = 350 MPa
Odległość między przekrojami< 0,5 m
```

```
UGIECIE WSPORNIKA (z wariantów: 10,11,12)
  f = 4,92 \text{ mm} < 15,95 \text{ mm} (2L/300)
KLASA PRZEKROJU: 4
  Brak usztywnień poprzecznych
CECHY GEOMETRYCZNE PRZEKROJU
  Pole przek.poprz. (A) = 4 \text{ cm}2
  Pola na ścinanie (Avy) = 0,0 cm2
  Pola na ścinanie (Avz) = 0,0 cm2
  Wsk.na zginanie (Wcy) = 10,46 \text{ cm} 3 \text{ (Wcz)} = 4,72 \text{ cm} 3
  Wsk.na zginanie (Wty) = 10,46 \text{ cm} 3 \text{ (Wtz)} = 7,394 \text{ cm} 3
NOŚNOŚCI OBLICZENIOWE PRZEKROJU
  Na ściskanie (NRc) = 134,2 kN
      Wsp.reduk.nośności przek.(psiC) = 0,9588
                 (VRy) = 0,0 kN
  Na ścinanie
  Na ścinanie (VRz) = 0,0 \text{ kN}
  Na zginanie (MRy) = 3,661 \text{ kNm}
  Na zginanie
                  (MRz) = 1,652 \text{ kNm}
OBCIĄŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  1*1,0 + 2*1,0 + 5*1,35 + 9*0,81
  Ściskanie (Nc) = 0,4333 kN
  Ścinanie (Vz) = 0,5372 \text{ kN}
                               Ścinanie (Vy) = 0,001887 \text{ kN}
  Zginanie (My) = 1,012 \text{ kNm} Zginanie (Mz) = 0,003554 \text{ kNm}
Warianty i siły dla minimalnych naprężeń
  1*1,04 + 2*1,04 + 3*0,68 + 5*1,35 + 9*0,81
  Ściskanie (Nc) = 3,178 kN
  Ścinanie (Vz) = 0,5373 \text{ kN} Ścinanie (Vy) = 0,001683 \text{ kN}
  Zginanie (My) = 1,012 \text{ kNm} Zginanie (Mz) = 0,00317 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  My/MRy+Mz/MRz=0,28 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,3 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta (Loy) = 1,893 \text{ m} (Loz) = 1,893 \text{ m}
  Wsp.dł.wyboczen. (miy) = 2,1
                                      (miz) = 2,11
  Smukłość pręta (1 y) = 121,4 (1 z) = 210,5
  Wsp.wyboczeniowy (fiy) = 0,256
                                      (fiz) = 0,09685
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 1,89 m
  Wsp.zwichrzenia (fiL) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  My/(fiL*MRy)+Mz/MRz=0,35 < 1
  Nc/(fi*NRc) = 0.24 < 1
     Wsp.beta by= 1
     Poprawki Dy= 0,01
                             Dz = 0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,45 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,59 < 1
```

Poz. 2.1 Połączenie słup-rygiel

```
Wariant: 16/7 (1+2+3x0,5+6 (Połączenie))
Nr
       Mnoż. Opis
1(St) 1,0
          Ciężar własny (F)
2(St) 1,0
          Stałe
3(Wa) 0,5
            Śniea
6(Wa) 1,0 Parcie wiatru Y-
```

Kategoria A

Połączenie typu dociskowego

Poz. 3 Słup górny (ponad gruntem) niski

```
OBIEKT: Słup (Cg82x50x18x2)
   Od węzła: 24 do węzła: 58 (L= 0,45 m)
   Przekrój nr: 2 (Cg82x50x18x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 UGIĘCIE WSPORNIKA (z wariantów: 10,11,12)
   f= 3,85 \text{ mm} < 6,33 \text{ mm} (2L/300)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 4 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 10,46 \text{ cm} 3 \text{ (Wcz)} = 4,72 \text{ cm} 3
   Wsk.na zginanie (Wty) = 10,46 \text{ cm} 3 \text{ (Wtz)} = 7,394 \text{ cm} 3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
   Na rozciąganie (NRt) = 98 kN
        (Osłab.przekroju otworami/mimośrodem= 30 %)
   Na ściskanie
                   (NRc) = 134,2 \text{ kN}
       Wsp.reduk.nośności przek.(psiC) = 0,9588
                  (VRy) = 0,0 kN
   Na ścinanie
   Na ścinanie
                  (VRz) = 0,0 kN
   Na zginanie
                  (MRy) = 3,661 \text{ kNm}
```

```
Na zginanie
                  (MRz) = 1,652 \text{ kNm}
OBCIAŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  Nrr:
  1*1,0 + 2*1,0 + 5*1,35 + 8*0,81
  Rozciag. (Nt) = 5,971 \text{ kN}
  Ścinanie (Vz) = 6,134 \text{ kN}
                             Ścinanie (Vy) = 0,01108 \text{ kN}
  Zginanie (My) = 0,9202 \text{ kNm} Zginanie (Mz) = 0,001655 \text{ kNm}
Warianty i siły dla minimalnych naprężeń
  1*1,04 + 2*1,04 + 3*0,68 + 7*1,35 + 9*0,81
  Ściskanie (Nc) = 8,196 kN
  Ścinanie (Vz) = 5,839 \text{ kN} Ścinanie (Vy) = 0,0145 \text{ kN}
  Zginanie (My) = 1,055 \text{ kNm} Zginanie (Mz) = 0,006515 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  Nt/NRt+My/MRy+Mz/MRz=0,31 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,35 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta (Loy) = 0,45 \text{ m} (Loz) = 0,45 \text{ m}
  Wsp.dł.wyboczen. (miy) = 1,03
                                     (miz) = 3
  Smukłość preta
                   (1_y) = 14,16
                                    (1 z) = 71,14
  Wsp.wyboczeniowy (fiy) = 0,9806 (fiz) = 0,5294
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 0,45 m
  Wsp.zwichrzenia
                    (fil) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,38 < 1
  Nc/(fi*NRc) = 0,12 < 1
     Wsp.beta by= 1
                            bz= 1
     Poprawki Dy= 0,0
                            Dz = 0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,43 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,48 < 1
```

Poz. 4 Stężenie poprzeczne

```
OBIEKT: Belka (Lg60x2)
   Od węzła: 63 do węzła: 54 (L= 2,588 m)
   Przekrój nr: 4 (Lg60x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 STRZAŁKA UGIĘCIA (z wariantów: 10,11,12)
   f=2,945 \text{ mm} < 12,94 \text{ mm} (L/200)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 2,31 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 3,228 \text{ cm} 3 \text{ (Wcz)} = 1,512 \text{ cm} 3
   Wsk.na zginanie (Wty) = 3,228 cm3 (Wtz) = 1,591 cm3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
   Na rozciąganie (NRt) = 56,59 kN
        (Osłab.przekroju otworami/mimośrodem= 30 %)
                  (NRc) = 20,5 kN
   Na ściskanie
       Wsp.reduk.nośności przek.(psiC) = 0,2536
```

```
Na ścinanie
                  (VRy) = 0,0 kN
  Na ścinanie (VRz) = 0,0 \text{ kN}
 Na zginanie (MRy) = 1,13 \text{ kNm}
  Na zginanie
                  (MRz) = 0,5293 \text{ kNm}
OBCIĄŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  Nrr:
  1*1,04 + 2*1,04 + 5*1,35 + 9*0,81
  Rozciag. (Nt) = 6,301 \text{ kN}
  Ścinanie (Vz) = 0,005371 \text{ kN }Ścinanie (Vy) = 0,005371 \text{ kN}
  Zginanie (My) = 0,009323 \text{ kNmZginanie} (Mz) = 0,009323 \text{ kNm}
Warianty i siły dla minimalnych naprężeń
  1*1,04 + 2*1,04 + 4*1,35 + 8*0,81
  Ściskanie (Nc) = 4,202 kN
  Ścinanie (Vz) = 0,005371 \text{ kN Ścinanie} (Vy) = 0,005371 \text{ kN}
  Zginanie (My) = 0,009323 \text{ kNmZginanie} (Mz) = 0,009323 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  Nt/NRt+My/MRy+Mz/MRz=0,14 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,23 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta (Loy) = 2,588 \text{ m} (Loz) = 2,588 \text{ m}
  Wsp.dł.wyboczen. (miy) = 1
                                     (miz) = 1
  Smukłość pręta
                     (1_y) = 106,3 (1_z) = 220,2
  Wsp.wyboczeniowy (fiy) = 0,6021 (fiz) = 0,2606
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 2,58 m
  Wsp.zwichrzenia (fiL) = 0.8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,14 < 1
  Nc/(fi*NRc) = 0,79 < 1
     Wsp.beta by= 1
                            bz= 1
                             Dz = 0,0
     Poprawki Dy= 0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,37 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,81 < 1
```

Poz. 5 Stężenie podłużne

```
OBIEKT: Belka (Lg70x2)
   Od węzła: 62 do węzła: 66 (L= 3,447 m)
   Przekrój nr: 6 (Lg70x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 STRZAŁKA UGIĘCIA (z wariantów: 10,11,12)
   f=5,712 \text{ mm} < 17,23 \text{ mm} (L/200)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 2,71 \text{ cm}2
   Wsk.na zginanie (Wcy) = 4,425 \text{ cm} 3 \text{ (Wcz)} = 2,094 \text{ cm} 3
   Wsk.na zginanie (Wty) = 4,425 \text{ cm} 3 \text{ (Wtz)} = 2,188 \text{ cm} 3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
   Na rozciąganie (NRt) = 66,39 kN
        (Osłab.przekroju otworami/mimośrodem= 30 %)
   Na ściskanie (NRc) = 18,79 kN
```

```
Wsp.reduk.nośności przek.(psiC) = 0,1981
 Na zginanie (MRy) = 1,549 \text{ kNm}
 Na zginanie
                (MRz) = 0,733 \text{ kNm}
OBCIĄŻENIA OBLICZENIOWE
Warianty i siły dla maksymalnych naprężeń
  1*1,22 + 2*1,22 + 7*0,81 + 9*0,81
  Rozciąg. (Nt) = 0,01468 \text{ kN}
  Ścinanie (Vz) = 0,01755 \text{ kN} Ścinanie (Vy) = 0,01755 \text{ kN}
  Zginanie (My) = 0,01993 kNm Zginanie (Mz) = 0,01993 kNm
Warianty i siły dla minimalnych naprężeń
  1*1,22 + 2*1,22 + 6*0,81 + 8*0,81
  Ściskanie (Nc) = 0,01443 kN
  Ścinanie (Vz) = 0,01755 \text{ kN} Ścinanie (Vy) = 0,01755 \text{ kN}
  Zginanie (My) = 0,01993 kNm Zginanie (Mz) = 0,01993 kNm
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  Nt/NRt+My/MRy+Mz/MRz=0.04 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,04 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta
                   (Loy) = 3,447 \text{ m} (Loz) = 3,447 \text{ m}
  Wsp.dł.wyboczen. (miy) = 1
                                   (miz) = 1
                    (1 y) = 121,2 (1 z) = 249,8
  Smukłość pręta
  Wsp.wyboczeniowy (fiy) = 0,5981 (fiz) = 0,2595
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 3,44 m
  Wsp.zwichrzenia
                    (fiL) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,04 < 1
  Nc/(fi*NRc) = 0 < 1
     Wsp.beta by= 1
                            bz=1
     Poprawki Dy= 0,0
                           Dz=0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,04 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,05 < 1
```

Poz. 7 Rygiel

Poz. 7.1 Przesło

```
OBIEKT: Belka (Cg110x50x15x2)
   Od węzła: 2 do węzła: 4 (L= 2,887 m)
   Przekrój nr: 3 (Cg110x50x15x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 STRZAŁKA UGIĘCIA (z wariantów: 10,11,12)
   f=5,715 \text{ mm} < 14,44 \text{ mm} (L/200)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 4,44 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 15,18 cm3 (Wcz) = 4,41 cm3
   Wsk.na zginanie (Wty) = 15,18 cm3 (Wtz) = 9,074 cm3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
```

```
Na rozciąganie (NRt) = 108,8 kN
       (Osłab.przekroju otworami/mimośrodem= 30 %)
   Na ściskanie
                 (NRc) = 104,2 \text{ kN}
       Wsp.reduk.nośności przek.(psiC) = 0,6708
                 (VRy) = 0,0 kN
   Na ścinanie
                 (VRz) = 0,0 kN
   Na ścinanie
   Na zginanie
                  (MRy) = 5,314 \text{ kNm}
   Na zginanie
                  (MRz) = 1,543 \text{ kNm}
 OBCIĄŻENIA OBLICZENIOWE
 Warianty i siły dla maksymalnych naprężeń
   Nrr:
   1*1,04 + 2*1,04 + 3*0,68 + 6*1,35 + 9*0,81
   Rozciag. (Nt) = 5,754 \text{ kN}
   Ścinanie (Vz) = 7,444 \text{ kN}
                                Ścinanie (Vy) = 0,0697 \text{ kN}
   Zginanie (My) = 3,734 \text{ kNm} Zginanie (Mz) = 0,03884 \text{ kNm}
 Warianty i siły dla minimalnych naprężeń
   1*1,0 + 2*1,0 + 7*1,35 + 9*0,81
   Ściskanie (Nc) = 6,042 kN
   Ścinanie (Vz) = 6,634 \text{ kN} Ścinanie (Vy) = 0,02245 \text{ kN}
   Zginanie (My) = 2,89 \text{ kNm}
                                Zginanie (Mz) = 0,01432 \text{ kNm}
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
   Nt/NRt+My/MRy+Mz/MRz=0,78 < 1
   Nc/NRc+My/MRy+Mz/MRz=0,73 < 1
 STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
   Dł.oblicz.pręta (Loy) = 2,887 \text{ m} (Loz) = 2,887 \text{ m}
   Wsp.dł.wyboczen. (miy) = 0,6
                                      (miz) = 0,27
   Smukłość pręta (1 y) = 39,94
                                     (1 z) = 42,64
   Wsp.wyboczeniowy (fiy) = 0.8671 (fiz) = 0.8483
 STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
   Długość zwichrzenia (Lo) = 2,88 m
                     (fil) = 0,8
   Wsp.zwichrzenia
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
   Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,96 < 1
   Nc/(fi*NRc) = 0,07 < 1
      Wsp.beta by= 1
                              bz = 0,4
      Poprawki Dy= 0,0
                            Dz=0,0
   Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,89 < 1
   Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,89 < 1
Poz. 7.2
            Wspornik
OBIEKT: Belka (Cg110x50x15x2)
   Od węzła: 4 do węzła: 12 (L= 1,207 m)
   Przekrój nr: 3 (Cg110x50x15x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 UGIĘCIE WSPORNIKA (z wariantów: 10,11,12)
   f = 7,742 \text{ mm} < 12,07 \text{ mm} (2L/200)
 KLASA PRZEKROJU: 4
   Brak usztywnień poprzecznych
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 4,44 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
```

```
Wsk.na zginanie (Wcy) = 15,18 cm3 (Wcz) = 4,41 cm3
  Wsk.na zginanie (Wty) = 15,18 cm3 (Wtz) = 9,074 cm3
NOŚNOŚCI OBLICZENIOWE PRZEKROJU
  Na ściskanie (NRc) = 104,2 kN
      Wsp.reduk.nośności przek.(psiC) = 0,6708
 Na ścinanie (VRy) = 0,0 kN
  Na ścinanie
               (VRz) = 0,0 kN
 Na zginanie (MRy) = 5,314 \text{ kNm}
               (MRz) = 1,543 \text{ kNm}
 Na zginanie
OBCIĄŻENIA OBLICZENIOWE
  Nrr:
  1*1,04 + 2*1,04 + 3*0,68 + 6*1,35 + 9*0,81
  Ściskanie (Nc) = 0,5208 kN
                             Ścinanie (Vy)= 0,07057 kN
  Ścinanie (Vz) = 3,113 \text{ kN}
  Zginanie (My) = 3,734 \text{ kNm} Zginanie (Mz) = 0,03882 \text{ kNm}
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
  My/MRy+Mz/MRz=0.73 < 1
  Nc/NRc+My/MRy+Mz/MRz=0,73 < 1
STATECZNOŚĆ OGÓLNA ELEMENTU - WYBOCZENIE
  Dł.oblicz.pręta
                   (Loy) = 1,207 \text{ m} (Loz) = 1,207 \text{ m}
  Wsp.dł.wyboczen. (miy) = 2,05
                                    (miz) = 1,42
                                   (1 z) = 93,76
  Smukłość pręta
                    (1 y) = 57,06
  Wsp.wyboczeniowy (fiy) = 0,7383 (fiz) = 0,4744
STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
  Długość zwichrzenia (Lo) = 1,2 m
  Wsp.zwichrzenia
                    (fiL) = 0,8
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
  My/(fiL*MRy)+Mz/MRz=0,9 < 1
  Nc/(fi*NRc) = 0,01 < 1
     Wsp.beta by= 1
                           bz= 1
                          Dz= 0,0
     Poprawki Dy= 0,0
  Nc/(fiy*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dy= 0,91 < 1
  Nc/(fiz*NRc)+by*My/(fiL*MRy)+bz*Mz/MRz+Dz=0,91 < 1
```

Poz. 8 Płatew

Poz. 8.1 Przesło

```
OBIEKT: Rygiel (Cg110x50x15x2)
   Od węzła: 3 do węzła: 18 (L= 2,6 m)
   Przekrój nr: 5 (Cg110x50x15x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 STRZAŁKA UGIĘCIA (z wariantów: 10,11,12)
   f=5,423 \text{ mm} < 13 \text{ mm} (L/200)
 KLASA PRZEKROJU: 1(4)
 CECHY GEOMETRYCZNE PRZEKROJU
   Pole przek.poprz. (A) = 4,44 \text{ cm}2
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 15,18 cm3 (Wcz) = 4,41 cm3
   Wsk.na zginanie (Wty) = 15,18 cm3(Wtz) = 9,074 cm3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
   Na rozciąganie (NRt) = 108,8 kN
```

```
(Osłab.przekroju otworami/mimośrodem= 30 %)
   Na ścinanie (VRy) = 0,0 kN
   Na ścinanie (VRz) = 0,0 \text{ kN}
   Na zginanie
                  (MRy) = 5,314 \text{ kNm}
                  (MRz) = 1,543 \text{ kNm}
   Na zginanie
 OBCIĄŻENIA OBLICZENIOWE
   Nrr:
   1*1,04 + 2*1,04 + 3*1,35 + 6*0,81 + 9*0,81
   Rozciag. (Nt) = 0,004415 \text{ kN}
   Ścinanie (Vz) = 2,536 \text{ kN}
                                Ścinanie (Vy) = 0,8137 \text{ kN}
   Zginanie (My) = 1,648 \text{ kNm} Zginanie (Mz) = 0,3669 \text{ kNm}
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
   Nt/NRt+My/MRy+Mz/MRz=0,55 < 1
   Nc/NRc+My/MRy+Mz/MRz=0,55 < 1
 STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
   Długość zwichrzenia (Lo) = 2,6 m
   Wsp.zwichrzenia
                     (fil) = 0,5
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
   Nt/NRt+My/(fiL*MRy)+Mz/MRz=0,86 < 1
Poz. 8.2
             Wspornik
OBIEKT: Rygiel (Cg110x50x15x2)
   Od węzła: 18 do węzła: 37 (L= 1,3 m)
   Przekrój nr: 5 (Cg110x50x15x2)
   Material: S350GD (f=350/420)
   (m0=1, 0 m1=1, 0 m2=1, 25)
 Granica plastyczności fy = 350 MPa
   Odległość między przekrojami< 0,5 m
 UGIĘCIE WSPORNIKA (z wariantów: 10,11,12)
   f= 6,2 \text{ mm} < 13 \text{ mm} (2L/200)
 KLASA PRZEKROJU: 1(4)
 CECHY GEOMETRYCZNE PRZEKROJU
   Pola na ścinanie (Avy) = 0,0 cm2
   Pola na ścinanie (Avz) = 0,0 cm2
   Wsk.na zginanie (Wcy) = 15,18 cm3 (Wcz) = 4,41 cm3
   Wsk.na zginanie (Wty) = 15,18 cm3 (Wtz) = 9,074 cm3
 NOŚNOŚCI OBLICZENIOWE PRZEKROJU
                 (VRy) = 0,0 kN
   Na ścinanie
                 (VRz) = 0,0 kN
  Na ścinanie
  Na zginanie (MRy) = 5,314 \text{ kNm}
   Na zginanie
                   (MRz) = 1,543 \text{ kNm}
 OBCIĄŻENIA OBLICZENIOWE
 Warianty i siły dla maksymalnych naprężeń
   1*1,04 + 2*1,04 + 3*1,35 + 6*0,81
   Ścinanie (Vz) = 2,536 \text{ kN} Ścinanie (Vy) = 0,8135 \text{ kN}
   Zginanie (My) = 1,648 \text{ kNm} Zginanie (Mz) = 0,5288 \text{ kNm}
 Warianty i siły dla minimalnych naprężeń
   1*1,0 + 2*1,0 + 7*1,35
   Ścinanie (Vz) = 2,576 \text{ kN} Ścinanie (Vy) = 0,1342 \text{ kN}
   Zginanie (My) = 1,674 \text{ kNm} Zginanie (Mz) = 0,08722 \text{ kNm}
 STOPIEŃ WYKORZYSTANIA NOŚNOŚCI PRZEKROJU
   My/MRy+Mz/MRz=0,65 < 1
   Nc/NRc+My/MRy+Mz/MRz=0,65 < 1
 STATECZNOŚĆ OGÓLNA ELEMENTU - ZWICHRZENIE
```

Dwupodporowa konstrukcja gruntowa pod moduły fotowoltaiczne

```
Długość zwichrzenia (Lo)= 1,3 m
Wsp.zwichrzenia (fiL)= 0,5
STOPIEŃ WYKORZYSTANIA NOŚNOŚCI ELEMENTU
My/(fiL*MRy)+Mz/MRz= 0,96 < 1
```

mgr inż. Paweł Kowalski

30 stycznia 2023

* NUMER POZYCJI ORAZ ROZSTAW RAM ZALEŻY OD WYMIARÓW I UKŁADU MODUŁÓW I JEST POKAZANY W INSTRUKCJI MONTAŻU KONSTRUKCJI 1x M12

1 x Sruba M12 x 35 -8.8 S.1

DIN-933-TZN Mom. dokr. 80 Nm

1 x Nakretka M12 -8 S.2

DIN-6923

2 x Podkladka D13 S.3 DIN-9021

Rewizja	Rewizja					
- 2023.01.30) - Pierwsze v	vydanie				
				NSTRUKCJI		
Dwup	odporowa ko	nstrukcja gru	ntowa po	d moduły fotowo	Itaiczne	
Adres	Polska – do	wysokości 3	300 m n.p.	m.		
				g PN-EN 1991-1	1-3	
	1 strefa obo	iążenia wiati	em wg Pl	N-EN 1991-1-4		
	SPECJALNO	SĆ KONSTI	RUKCYJN	IO-BUDOWLAN	A	
Projektant	mgr inż. Pa	weł Kowalsk	i			
	uprawnienia	a bud. nr ewi	d. SLK/72	24/PBKb/17		
Data	2023.01	Format	A3	Skala	1:10	
	•	•	•	•		
l Uk	UKŁAD POPRZECZNY,					
	•					
l E	LEMEI	NTY Z	ŁACZ	ZNE	U1	

Rewizja	Rewizja				
- 2023.01.30) - Pierwsze w	vydanie			
	PROJEK	T WYKONAV	VCZY KONS	TRUKCJI	
Dwup	odporowa kor	nstrukcja grur	ntowa pod mo	oduły fotowoli	taiczne
Adres	Polska – do	wysokości 30	00 m n.p.m.		
	1 i 2 strefa d	obciążenia śn	iegiem wg Pl	N-EN 1991-1-	-3
	1 strefa obc	iążenia wiatre	em wg PN-EN	N 1991-1-4	
	SPECJALNO	ŚĆ KONSTR	UKCYJNO-B	UDOWLANA	l
Projektant		weł Kowalski a bud. nr ewid		DDVh/47	
	<u> </u>	1			
Data	2023.01	Format	A3	Skala	1:10
POZYCJE: 1, 2, 3 SŁUPY					U2

		KT WYKON		NSTRUKCJI	14. *
Adres	Polska – d 1 i 2 strefa	o wysokośc obciążenia	i 300 m n.p. śniegiem w	d moduły fotov .m. g PN-EN 1991 N-EN 1991-1-4	-1-3
	SPECJALN	OŚĆ KONS	TRUKCYJN	IO-BUDOWLA	NA
Projektant	mgr inż. Paweł Kowalski uprawnienia bud. nr ewid. SLK/7224/PBKb/17				
Data	2023.01	Format	A3	Skala	1:10
5	POZ` STĘŻE	YCJE: NIA, ł	• •		U3

Rewizja - 2023.01.30	Rewizja - 2023.01.30 - Pierwsze wydanie					
Dwup				ONSTRUKCJI od moduły fotowo	Itaiczne	
Adres	Adres Polska – do wysokości 300 m n.p.m. 1 i 2 strefa obciążenia śniegiem wg PN-EN 1991-1-3 1 strefa obciążenia wiatrem wg PN-EN 1991-1-4				l-3	
	SPECJALNO	OŚĆ KONST	TRUKCYJ	NO-BUDOWLAN	A	
Projektant	ojektant mgr inż. Paweł Kowalski uprawnienia bud. nr ewid. SLK/7224/PBKb/17					
Data	2023.01	Format	A3	Skala	1:10	
POZYCJE: 71, 72, 73 RYGLE					U4	

Rewizja - 2023.01.30 - Pierwsze wydanie						
Dwupo	PROJEKT WYKONAWCZY KONSTRUKCJI Dwupodporowa konstrukcja gruntowa pod moduły fotowoltaiczne					
Adres	Adres Polska – do wysokości 300 m n.p.m. 1 i 2 strefa obciążenia śniegiem wg PN-EN 1991-1-3 1 strefa obciążenia wiatrem wg PN-EN 1991-1-4					
	SPECJALNO	ŚĆ KONSTR	UKCYJNO-B	UDOWLANA	ı	
Projektant	rojektant mgr inż. Paweł Kowalski uprawnienia bud. nr ewid. SLK/7224/PBKb/17					
Data	Data 2023.01 Format A3 Skala 1:10					
POZYCJE: 81, 82 PŁATWIE					U5	