TTK4150

TTK4150 Nonlinear Systems and Control

Martin Brandt

Learning goals:

- * A thorough knowledge of theory and methods for non-linear dynamical systems.
- * Know how to find the invariant sets of nonlinear dynamical systems, and know how to analyze the system behavior around these sets.
- * Know the methods Phase plane analysis, Lyapunov stability analysis, Input-to-state stability analysis, Input-Output stability analysis, Passivity analysis, Lyapunov-based control, Energy-based control, Cascaded control, Passivity-based control, Input-Output linearization, and Backstepping control design.

Contents

1	Seco	ond-order nonlinear time-invariant systems	3				
	1.1	Periodic orbits and limit cycles	3				
2	Fund	damental properties	4				
3	Lyap	Lyapunov stability					
	3.1	Stability of equilibrium points	4				
	3.2	Lyapunov's indirect method	5				
	3.3	Lyapunov's direct method	5				
	3.4	The invariance principle	6				
	3.5	Stability analysis of time-variant systems	7				
4	Input-to-state stability						
	4.1	Input-to-state stability	8				
	4.2	Input-output stability	8				
5	Passivity						
	5.1	Passivity for memoryless functions	9				
	5.2	Passivity for dynamical systems	10				
	5.3	Passivity and Lyapunov stability	10				
6	Nonlinear control						
	6.1	Lyapunov control design	10				
	6.2	Passivity-based control	11				
	6.3	Feedback linearization	11				
		6.3.1 Input-state linearization	11				
		6.3.2 Input-output linearization	11				
	6.4	Adaptive control	12				
	6.5	Backstepping	12				
Α	Line	inear methods					

1 | SECOND-ORDER NONLINEAR TIME-INVARIANT SYSTEMS

We first consider the system

$$\dot{x}_1 = f_1(x_1, x_2)
\dot{x}_2 = f_2(x_1, x_2)$$
(1)

Phase-plane analysis: Determine the system behavior by constructing a phase portrait, i.e. plotting different IVP solutions in the phase space.

Local analysis:

- * Linearize about x*.
- * Find egeinvalues $\lambda(A)$.
- * Classify equilibrium points for $f(x^*) = 0$. If λ is real, them we either get a stable node $(\lambda_2 < \lambda_1 < 0)$, unstable node $(0 < \lambda_2 < \lambda_1)$ or a saddle point $(\lambda_2 < 0 < \lambda_1)$. In the complex case $\lambda_{1,2} = \alpha \pm \beta i$, then we either get a center focus $(\alpha = 0)$, a stable focus $(\alpha < 0)$ or an unstable focus $(\alpha > 0)$.

Topological equivalence: if the real part of the eigenvalues are nonzero, then the local phase-portrait corresponds to the phase portrait of the linearized system.

1.1 | Periodic orbits and limit cycles

Definition Periodic orbit: $\exists T > 0$ s.t. $x(t + T) = x(t) \quad \forall t \ge 0$.

Definition Limit cycle: non-trivial isolated periodic orbit.

Lemma 1 Poincaré-Bendixson criterion:

Let M be a closed bounded subset of the plane s.t.:

* M contains no x^* , or it contains only one x^* with the property that the eigenvalues of the Jacobian matrix at x^* have positive real parts (unstable focus or unstable node).

* Every trajectory starting in M stays in M $\forall t > t_0$.

Then M contains a periodic orbit of the system.

Lemma 2 Bendixson negative criterion:

If on a simply connected region D, $\frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$ is not identically zero and does not change sign, then the system has no periodic orbits lying entirely in D.

Corollary 3 *C* is a periodic orbit $\implies \Sigma_i I = 1$ (sum of indeces of equilibrium points in *C*, where saddle points have index -1 and others have index 1)

2 | FUNDAMENTAL PROPERTIES

Lipschitz: $||f(t, x) - f(t, y)|| \le L||x - y||$

Either locally Lipschitz on D (L varies), Lipschitz in D or globally Lipschitz.

Theorem 4 Local existence and uniqueness:

lf

- * f(t, x) is piecewise continuous in t,
- * f(t, x) is Lipschitz $\forall x, y \in B = \{x \in \mathbb{R}^n | ||x x_0|| \le r\} \forall t \in [t_0, t_1],$

Then there exists a unique solution of the IVP x(t) on $t \in [t_0, t_0 + \delta]$.

3 | LYAPUNOV STABILITY

3.1 | Stability of equilibrium points

Asymptotic stabilization problem: Find $\gamma(t,e)$ s.t. e=0 is an asymptotically stable equilibrium point. Regulation vs. trajectory tracking.

Definition Stability: x = 0 is stable iff $\forall \varepsilon > 0$ $\exists \delta(\varepsilon) > 0$ s.t. $||x(0)|| < \delta \Rightarrow ||x(t)|| < \varepsilon$ $\forall t \ge 0$

Definition Asymptotic stability: x = 0 is (locally) asymptotically stable iff it is stable, and $\exists r > 0$ s.t. $||x(0)|| < r \Rightarrow \lim_{t \to \infty} x(t) = 0$

Definition Region of attraction: $B_r = \{x \in \mathbb{R}^n : ||x|| < r\}$. We denote R_A as the union of all the regions of attraction.

Definition Global asymptotic stability: x = 0 is GAS iff it is stable, and $\lim_{t \to \infty} x(t) = 0 \quad \forall x(0)$

Definition Exponential stability: x = 0 is exponentially stable iff

$$\exists r, k, \lambda > 0 \text{ s.t. } ||x(0)|| < r \Rightarrow ||x(t)|| \le k ||x(0)|| e^{-\lambda t} \quad \forall t \ge 0$$

Definition Global exponential stability: x = 0 is GES iff $\exists k, \lambda > 0$ s.t. $\forall x(0) ||x(t)|| \le k ||x(0)|| e^{-\lambda t}$ $\forall t \ge 0$

Remark It is useful to think in terms of stability + convergence to seperate the different stability properties.

3.2 | Lyapunov's indirect method

Theorem 5 Lyapunov's indirect method:

Let x = 0 be an equilibrium point for

$$\dot{x} = f(x), \quad f: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^n \quad \text{is} \quad C^1$$
 (2)

- **1.** Linearize about x = 0, $\dot{x} = Ax$, where $A = \frac{\partial f}{\partial x}\Big|_{x=0}$.
- **2.** Find the eigenvalues $\lambda_1(A), \ldots, \lambda_n(A)$.
- 3. Categorize the eigenvalues:
- * $\forall i \quad \text{Re}(\lambda_i) < 0 \Rightarrow \text{asymptotically(exponentially) stable}$
- * $\exists i$ Re $(\lambda_i) > 0 \Rightarrow$ unstable
- * $\forall i \quad \text{Re}(\lambda_i) \leq 0 \Rightarrow \text{inconclusive}$

While Lyapunov's indirect method is simple to use, the results are only local and often inconclusive. Let's see if we can do better ey?

3.3 | Lyapunov's direct method

Definition Lyapunov function:

V is a Lyapunov function for x = 0 iff

- * V is C^1
- * V(0) = 0, V(x) > 0 in $\mathbb{D} \setminus \{0\}$
- * $\dot{V}(0) = 0$, $\dot{V}(x) \le 0$ in $\mathbb{D} \setminus \{0\}$

If $\dot{V}(x) < 0$ in $\mathbb{D} \setminus \{0\}$ then V is a strict Lyapunov function for x = 0.

Theorem 6 Lyapunov's stability theorem:

- * If $\exists V(x)$ for x = 0, then x = 0 is stable.
- * If \exists strict V(x) for x = 0, then x = 0 is asymptotically stable.

Theorem 7 Chetaev's instability theorem:

If $\dot{V}(x) > 0$ in a set $U = \{x \in B_r | V(x) > 0\}$, then x = 0 is unstable.

Definition Radially unboundedness: $||x|| \to \infty \implies V(x) \to \infty$

Theorem 8 If \exists strict $V : \mathbb{R}^n \to \mathbb{R}$ for x = 0 and V is radially unbounded, then x = 0 is GAS.

Theorem 9 If there exist a function $V: \mathbb{D} \to \mathbb{R}$ and constants $a, k_1, k_2, k_3 > 0$ s.t.

- * V is C1
- * $k_1 ||x||^a \le V(x) \le k_2 ||x||^a \quad \forall x \in \mathbb{D}$
- * $\dot{V}(x) \le -k_3 ||x||^a \quad \forall x \in \mathbb{D}$

then x = 0 is exponentially stable. If these conditions hold for $\mathbb{D} = \mathbb{R}^n$, then x = 0 is GES.

Remark $\lambda_{min}(P) ||x||^2 \le x^{\top} P x \le \lambda_{max}(P) ||x||^2$

Remark How to deal with indeterminate signs in \dot{V} ?

- * Completion of squares: $x_1x_2 \le \frac{1}{2}(x_1^2 + x_2^2)$
- * Young's inequality: $x_1x_2 \le \epsilon x_1^2 + \frac{1}{4\epsilon}x_2^2$
- * Cauchy-Schwarz' inequality: $|a_1x_1 + a_2x_2 + \dots + a_nx_n| \le \sqrt{\left(a_1^2 + a_2^2 + \dots + a_n^2\right)} ||x||_2$

3.4 | The invariance principle

Definition Invariant set: $x(0) \in M \implies x(t) \in M \quad \forall t \in \mathbb{R}$

Definition Positively invariant set: $x(0) \in M \implies x(t) \in M \quad \forall t \ge 0$

Definition Level set: $\Omega_c = \{x \in \mathbb{R}^n : V(x) \le c\}$

Theorem 10 La Salle's theorem:

If $\exists V : \mathbb{D} \to \mathbb{R}$ s.t.

- * V is C¹
- * $\exists c > 0$ such that $\Omega_c = \{x \in \mathbb{R}^n | V(x) \le c\} \subset \mathbb{D}$ is bounded
- * $\dot{V}(x) \le 0 \quad \forall x \in \Omega_c$

Let $E = \{x \in \Omega_c | \dot{V}(x) = 0\}$. Let M be the largest invariant set contained in E. Then $x(0) \in \Omega_c \Rightarrow x(t) \stackrel{t \to \infty}{\longrightarrow} M$.

Definition Region of attraction:

Let x=0 be an asymptotically stable equilibrium point of the system $\dot{x}=f(x)$, where $f:\mathbb{D}\to\mathbb{R}^n$ is locally Lipschitz and $\mathbb{D}\subset\mathbb{R}^n$ contains the origin. Let $\phi(t,x_0)$ be the solution. Then the region of attraction is

$$R_A = \{x_0 \in \mathbb{D} \mid \phi(t, x_0) \text{ is defined } \forall t \ge 0 \text{ and } \phi(t, x_0) \to 0 \text{ as } t \to \infty\}$$
 (3)

(I.e. all the points with a corresponding solution that converges to the origin).

Remark GAS iff $R_A = \mathbb{R}^n$.

Estimate of R_A : choose the largest set Ω_c in $\mathbb D$ which is bounded, and only the connected component of Ω_c that contains the origin. Then this subset is a subset of R_A .

3.5 | Stability analysis of time-variant systems

We now consider the system $\dot{x} = f(t, x)$.

Definition Stability: $\forall \varepsilon > 0$, $\exists \delta(\varepsilon, t_0) > 0$ s.t. $\|x(t_0)\| < \delta \Rightarrow \|x(t)\| < \varepsilon \quad \forall t \ge t_0 \ge 0$

Definition Uniform stability: stable with $\delta(\varepsilon, t_0) = \delta(\varepsilon)$.

Definition Asymptotic stability: stable and $\exists c(t_0) > 0$ s.t. $||x(t_0)|| < c \Rightarrow x(t) \stackrel{t \to \infty}{\longrightarrow} 0$.

Definition Uniform asymptotic stability: asymptotically stable with $\delta(\varepsilon, t_0) = \delta(\varepsilon)$.

Definition Global uniform asymptotic stability: uniform stability with $\delta(\varepsilon) \xrightarrow{\varepsilon \to \infty} \infty$ and $\forall c > 0 \quad ||x(t_0)|| < c \Rightarrow x(t) \xrightarrow{t \to \infty} 0$ uniformly in t_0 .

Definition Exponential stability: $\exists c, k, \lambda > 0$ s.t. $||x(t)|| \le k ||x(t_0)|| e^{-\lambda(t-t_0)}t \ge t_0 \ge 0 ||x(t_0)|| \le c$. GES if $\forall c$.

Definition A continuous function $\alpha:[0,a)\to [0,\infty)$ is a class \mathcal{K} function iff: $\alpha(0)=0$ and $\alpha(r)$ is strictly increasing, i.e. $\frac{\partial \alpha}{\partial r}>0 \quad \forall r>0$.

Definition If in addition $a \to \infty$ and $\alpha(r) \to \infty$ as $r \to \infty$, then α is a class \mathcal{K}_{∞} function.

Definition A continuous function $\beta:[0,a)\times[0,\infty)\to[0,\infty)$ is a class \mathscr{KL} function if for each fixed s

- * $\beta(r,s)$ is a class $\mathscr K$ function w.r.t. r
- and for each fixed r
- * $\beta(r, s)$ is decreasing w.r.t. s,
- * $\beta(r,s) \to 0$ as $s \to \infty$.

We can now define stability in terms of class ${\mathscr K}$ functions:

 $\textbf{Definition} \quad \text{Uniform stability: } \exists \text{ class } \mathscr{K} \text{ function } \alpha \text{ and } \exists c > 0 \text{ s.t. } \|x(t)\| \leq \alpha \left(\|x(t_0)\|\right) \forall t \geq t_0 \geq 0, \quad \forall \ \|x(t_0)\| < c.$

Definition Uniform asymptotic stability: \exists class $\mathscr{K}\mathscr{L}$ function β and $\exists c > 0$ s.t. $\|x(t)\| \le \beta (\|x(t_0)\|, t - t_0) \forall t \ge t_0 \ge 0$, $\forall \|x(t_0)\| < c$. GUAS if $\forall c$.

Definition V(t, x) is positive definite iff

- V(t,0) = 0
- * $V(t,x) \geq W_1(x)$

 $\forall t \geq 0, W_1(x) > 0$

Definition V(t, x) is decrescent iff

- V(t,0) = 0
- * $V(t,x) \leq W_2(x)$

 $\forall t \geq 0, W_2(x) > 0$

We can summarize the stability theorems for time-varying systems like this:

	Stable	Uniformly stable	UAS	GUAS
V	Pos. def.	Pos. def., decrescent	Pos. def., decrescent.	Pos. def., decrescent, radially unbounded
Ÿ	Neg. semidef.	Neg. semidef.	Neg. def.	Neg. def.
	$\forall x \in \mathbb{D}$	$\forall x \in \mathbb{D}$	$\forall x \in \mathbb{D}$	$\forall x \in \mathbb{R}^n$

Estimate of R_A : $B_r = \{x \in \mathbb{R}^n : ||x|| \le r\} \subset \mathbb{D}, c < \min_{||x||=r} W_1(x) \implies \{x \in B_r : W_2(x) \le c\}$ is a region of attraction, when the origin is UAS.

Lemma 11 Barbalat's lemma:

Let $\dot{f}: \mathbb{R} \to \mathbb{R}$ be uniformly continuous on $[0, \infty)$. If $\lim_{t \to \infty} f(t)$ exists and is finite, then $\dot{f} \to 0$ as $t \to \infty$. Rephrased: if V is lower bounded, $\dot{V} \le 0$ and \ddot{V} is uniformly bounded, then $\dot{V} \to 0$ as $t \to \infty$.

4 | INPUT-TO-STATE STABILITY

4.1 | Input-to-state stability

Now we consider the system $\Sigma : \dot{x} = f(t, x, u)$, where we consider u(t) to be a disturbance/modelling error.

Definition Input-to-state stability (ISS): $\exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K} \text{ s.t. } \|x(t, x_0, u)\| \leq \max \{\beta(\|x(t_0)\|, t - t_0), \gamma(\|u\|_{\infty})\}$

Remark This is really just an extension of GUAS that says that x is bounded the input as well. So naturally if Σ is ISS then it is also 0-GUAS.

```
Definition V: [0, \infty) \times \mathbb{R}^n \to \mathbb{R} is an ISS-LF for Σ iff *V is C^1. ∃\alpha_1, \alpha_2 \in \mathscr{H}_\infty and \rho \in \mathscr{H} s.t. *\alpha_1(\|x\|) \le V(t, x) \le \alpha_2(\|x\|) *\dot{V}(t, x) = \frac{\partial V}{\partial x}f + \frac{\partial V}{\partial t} \le -W_3(x) \quad \|x\| \ge \rho(\|u\|) > 0 where W_3 > 0. It can be shown that \gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho. ∃ISS - LF for \Sigma \to \Sigma is ISS
```

Lemma 12 if f is C^1 and globally Lipschitz in (x, u), then Σ is $0 - GES \Rightarrow \Sigma$ is ISS

Theorem 13 Consider the cascaded system $\Sigma_2 \longrightarrow \Sigma_1$, where $\Sigma_1 : \dot{x}_1 = f_1(t, x_1, x_2)$ and $\Sigma_2 : \dot{x}_2 = f_2(t, x_2)$. If Σ_2 is GUAS and Σ_1 is ISS, then the cascaded system is GUAS.

4.2 | Input-output stability

We consider the system y = Hu.

Definition
$$\mathscr{L}_p^m$$
 space: $u \in \mathscr{L}_p^m$ $1 \le p < \infty \iff \|u\|_{\mathscr{L}_p} = \left(\int_0^\infty \|u(t)\|_{\bar{p}}^p dt\right)^{\frac{1}{p}} < \infty$

Remark This makes \mathcal{L}_2 the space of all continuous, square-integrable functions, for instance.

Definition \mathscr{L}_{pe}^m space: $u \in \mathscr{L}_{pe}^m \Leftrightarrow u_{\tau} \in \mathscr{L}_p^m \quad \forall \tau \in [0, \infty)$, where u_{τ} is the truncated version if u.

```
Definition H: \mathcal{L}_{pe}^{m} \to \mathcal{L}_{pe}^{q} is \mathcal{L}_{p} stable iff

* \exists \alpha \text{ class } \mathcal{K} \quad \alpha: [0, \infty) \to [0, \infty)

* \exists \text{ constant } \beta \geq 0

s.t. \|(Hu)_{\tau}\|_{\mathcal{L}_{p}} \leq \alpha \left(\|u_{\tau}\|_{\mathcal{L}_{p}}\right) + \beta \quad \forall u \in \mathcal{L}_{pe}^{m} \text{ and } \tau \in [0, \infty)
```

Definition Finite-gain \mathcal{L}_p stable: $\exists \gamma, \beta \geq 0$ s.t. $\|(Hu)_{\tau}\|_{\mathcal{L}_p} \leq \gamma \|u_{\tau}\|_{\mathcal{L}_p} + \beta$

Definition Causal system: $(Hu)_{\tau} = (Hu_{\tau})_{\tau}$

The two definitons above hold for non-truncated signals if the systems are causal.

Theorem 14 *Small-gain theorem:*

The feedback interconnection of H_1 and H_2 are finite-gain \mathcal{L}_p stable iff $\gamma_1\gamma_2<1$.

FIGURE 3 Feedback interconnection

5 | PASSIVITY

5.1 | Passivity for memoryless functions

Consider the memoryless function y = h(t, u) $h: [0, \infty) \times \mathbb{R}^p \to \mathbb{R}^p$.

Definition The system is passive if $u^{\top}y \geq 0$ and lossless if $u^{\top}y = 0$. The system is input-strictly passive if $u^{\top}y \geq u^{\top}\varphi(u)$, where $u^{\top}\varphi(u) > 0 \quad \forall u \neq 0$. The system is output-strictly passive if $u^{\top}y \geq y^{\top}\rho(y)$, where $y^{\top}\rho(y) > 0 \quad \forall y \neq 0$.

5.2 | Passivity for dynamical systems

Now we extend this property for dynamical systems: $\Sigma: \dot{x} = f(x, u), y = h(x, u)$ where $f: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ is locally Lipschitz and $h: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^p$ is continuous, and f(0, 0) = 0 and h(0, 0) = 0.

Definition The system Σ is passive iff $u^{\top}y \geq \dot{V} \quad \forall (x, u) \in \mathbb{R}^n \times \mathbb{R}^p$

The system is lossless if $u^{T}y = \dot{V}$.

The system is input-strictly passive if $u^T y \ge \dot{V} + u^T \varphi(u)$, $u^T \varphi(u) > 0 \quad \forall u \ne 0$.

The system is output-strictly passive if $u^T y \ge \dot{V} + y^T \rho(y)$, $y^T \rho(y) > 0 \quad \forall y \ne 0$.

The system is (state-) strictly passive if $u^T y \ge \dot{V} + \psi(x)$, $\psi(x) > 0$.

Remark Passivity really just generalizes the idea that the change of stored energy in the system should be less than the energy supplied to the system.

5.3 | Passivity and Lyapunov stability

Lemma 15 If Σ is passive with a positive definite V(x), then the origin of $f\dot{x} = (x,0)$ is stable.

Lemma 16 If Σ is output-strictly passive with $\rho(y) = \delta(y)$, $\delta < 0$, then Σ is finite-gain \mathcal{L}_2 stable with $\gamma \leq \frac{1}{\delta}$.

Definition Zero state observability: no solution of $\dot{x} = f(x,0)$ can stay identically in $S = \{x \in \mathbb{R}^n | h(x,0) = 0\}$ other than the trivial solution x(t) = 0.

Lemma 17 The origin of $\dot{x} = f(x,0)$ is asymptotically stable if Σ is state-strictly passive, or output-strictly passive and zero state observable. If V(x) is radially unbounded $\dot{x} = f(x,0)$ is GAS.

Theorem 18 If H_1 and H_2 is passive, then the feedback interconnection of H_1 and H_2 is passive with $V = V_1 + V_2$.

Theorem 19 If H_1 and H_2 satisfies $e_i^T y_i \ge \dot{V}_i + \varepsilon_i e_i^T e_i + \delta_i y_i^T y_i i = 1, 2$ and $\varepsilon_1 + \delta_2 > 0$, $\varepsilon_2 + \delta_1 > 0$, then Σ is finite-gain \mathcal{L}_2 stable.

Theorem 20 If H_1 and H_2 are state-strictly passive,

or H_1 and H_2 are output-strictly passive and zero state observable,

or H_1 is state-strictly passive and H_2 is output-strictly passive and zero state observable or opposite,

then Σ is 0-AS. If V_1 and V_2 are radially unbounded then Σ is 0-GAS.

6 | NONLINEAR CONTROL

6.1 | Lyapunov control design

- * Propose a LFC V(t, x), typically as desired energy in system.
- * Choose u = g(t, x) s.t. $\dot{V} < 0$ or $\dot{V} \le 0$ with La Salle / Barbalat.

6.2 | Passivity-based control

Theorem 21 For the LTI system y(s) = h(s)u(s) with Re $(p_i) < 0$, $\forall i$ we have:

- * Passivity $\Leftrightarrow \text{Re}[h(j\omega)] \ge 0 \forall \omega$ (note that if h(s) has an integrator as well and $\text{Re}(z_i) < 0$ this still holds)
- * Input-strict passivity $\Leftrightarrow \text{Re}[h(j\omega)] \ge \delta > 0 \forall \omega$, with $\varphi(u) = \delta u$
- * Output-strict passivity $\Leftrightarrow \exists \varepsilon > 0$ s.t. $\text{Re}[h(j\omega)] \ge \varepsilon |h(j\omega)|^2 \forall \omega$, with $\rho(y) = \varepsilon y$

Remark This says that with non-negative real part the system is passive, with a strictly positive real part it is input-strictly passive and if it is lower bounded by the square of the magnitude it is output-strictly passive.

Remark Note that the previously discussed passivity theorems can be applied for passivity-based control.

Notably that means that if the controller and plant are passive, then the closed-loop system is passive.

Also if the controller is input- and output strictly passive and the plant is passive, then the system is finite gain \mathcal{L}_2 stable. The final passivity theorem can naturally also be applied.

Theorem 22 Consider H_1 with $\dot{x} = f(x, u)$ locally Lipschitz and y = h(x) continuous, both zero in the origin. Also consider H_2 : $\phi(y)$ locally Lipschitz, memoryless and zero in origin.

If H_1 is passive with V > 0, radially unbounded and zero state observable, and H_2 satisfies $y^{\top}\phi(y) > 0$, $y \neq 0$ (passive, but not lossness) then the origin is GAS.

Choice of y: for $\dot{x} = f(x) + G(x)u$, if $\exists LF \ V(x)$ radially unbounded, let $y = \left[\frac{\partial V}{\partial x}G(x)\right]^T$ for the system to be passive. Feedback passivation: choose $u = \alpha(x) + \beta(x)v$, y = h(x) s.t. $\dot{x} = f(x) + G(x)u$ has desired passivity properties $v \mapsto y$.

6.3 | Feedback linearization

6.3.1 | Input-state linearization

Consider $\dot{x} = f(x) + G(x)u$. Find a state transformation z = T(x) and input transformation $u = \alpha(x) + \beta(x)v$ s.t. the new system in z coordinates is linear and controllable. This is rearily possible to do, so we consider input-output linearization instead:

6.3.2 | Input-output linearization

We now consider the system $\dot{x} = f(x) + g(x)u$ y = h(x)

Definition Lie derivative: $L_f h = \frac{\partial h}{\partial x} f$, $L_f^2 h = \frac{\partial L_f h}{\partial x} f$, ... $L_f^i h = L_f \left(L_f^{i-1} h \right)$

Definition The system has relative degree ρ in a region $\mathbb{D}_0 \subset \mathbb{D} \subset \mathbb{R}^n$ if

$$L_g L_f^{i-1} h = 0, \quad 1 \le i \le \rho - 1$$

$$L_g L_f^{\rho - 1} h \ne 0$$

$$\forall x \in \mathbb{D}_0$$

$$(4)$$

Remark (the number of differentiations of y before u appears)

Remark For linear systems we have $\rho = n - m$.

Remark If the relative degree is well defined in the region of interest \mathbb{D} , then the system can be input-output linearized.

Definition Zero dynamics: internal dynamics when output is kept at zero by the input i.e. $\psi = 0$, $\dot{\phi} = f_o(\phi, 0)$.

Definition Minimum-phase system: the zero-dynamics are asymptotically stable.

Input-output linearization:

1. Find the relative degree ρ

2. Write the system in normal form

Let $\psi_1 = y, \psi_2 = \dot{y}, \dots$ The external dynamics are then $\dot{\psi_1} = \psi_2, \dots, \dot{\psi}_{\rho} = L_f^{\rho} h + L_g L_f^{\rho-1} h \cdot u$.

Let
$$\phi_1, \ldots, \phi_{n-\rho}$$
 and $z = T(x) = [\varphi^T \quad \psi^T]^T$.

Choose φ s.t. T is a diffeomorphism, $L_g \varphi_i = 0$ and $\varphi_i(0) = 0$.

If the Jacobian $\frac{\partial T}{\partial x}|_{x_0}$ is nonsingular, then T is a diffeomorphism. Then the internal dynamics are $\dot{\psi} = \dots$

We can then finally write the system in normal form: $\dot{z} = \dots$

3. Choose u to cancel nonlinearities

$$u = \frac{1}{L_g L_f^{\rho - 1} h} \left(-L_f^{\rho} h + v \right) \quad \Longrightarrow \quad \psi_{\rho} = v \tag{5}$$

4. Analyze the zero-dynamics

5. Choose v to solve the control problem

This is a special case of the system $\dot{\varphi} = f_0(\varphi, \psi), \quad \dot{\psi} = A\psi + Bv$.

Lemma 23 If the system is minimum phase and $v = -K\psi$ is chosen s.t. (A - BK) is Hurwitz, then the origin of the system is asymptotically stable.

Lemma 24 If $\dot{\phi} = f_0(\phi, \psi)$ is ISS, then the system is GAS.

For tracking we have $v = -Ke + y_d^{(\rho)}$, but the same results apply, expect ϕ is now only bounded.

6.4 Adaptive control

6.5 | Backstepping

A | LINEAR METHODS

Definition We define the p-norm as:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}, \quad p \in [1, \infty]$$
 (6)

$$||f||_{\mathscr{L}_{p}} = \left(\int_{0}^{\infty} |f(t)|^{p} dt\right)^{\frac{1}{p}}, \quad p \in [1, \infty]$$

$$(7)$$

Theorem 25 Schwarz' inequality:

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$
 (8)

Definition $f: \mathbb{R}^n \to \mathbb{R}^m$, then the Jacobian is defined as:

$$\frac{\partial f}{\partial x} \triangleq \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

$$(9)$$

Which in the scalar case m = 1 is the gradient.