Algebraic Properties of the Gaussian Integers

Matt McCarthy

April 2016

Theorem. The Gaussian Integers, denoted $\mathbb{Z}(i)$, form a Euclidean domain.

1 Background

Before we can talk about Euclidean domains, we first need to introduce the definition of a ring.

Definition 1 (Ring). Let R be a nonempty set, and let $+: R^2 \to R$ and $\cdot: R^2 \to R$ be binary operations on R. Then we say R is a ring if all of the following hold.

- 1. The structure (R, +) is an abelian group whose identity we denote as 0.
- 2. For any $a, b, c \in R$, a(bc) = (ab)c (Multiplicative Associativity).
- 3. For any $a, b, c \in R$, a(b+c) = ab + ac (Left Distributivity).
- 4. For any $a, b, c \in R$, (a + b)c = ac + bc (Right Distributivity).

If one says R is a ring, we imply that there exists some addition and some multiplication operators which we denote as a + b and ab respectively.

Definition 2 (Ring with Unity). Let R be a ring. Then R is a ring with unity if there exists a $1 \in R$ such that for any $a \in R$, $a \cdot 1 = 1 \cdot a = a$. If such a 1 exists, we call it the unity.

Definition 3 (Commutative Ring). Let R be a ring. Then we say R is *commutative* if for any $a, b \in R$, ab = ba.

The integers, denoted \mathbb{Z} , are a commutative ring with unity because they satisfy all of the above properties under the usual addition and multiplication. Another helpful definition is that of a subring.

Definition 4 (Subring). Let R be a ring and let S be a nonempty subset of R. Then S is a *subring* of R if $(S, +, \cdot)$ is also a ring.

Furthermore, we have a test which makes it easier to show a subset is a subring.

Proposition 1 (Subring Test). Let R be a ring, and let $S \subseteq R$ be nonempty. Then S is a subring of R if and only if for any $a, b \in S$, a - b and ab are also in S.

Now we need a few more definitions and then we can proceed to proving the theorem. First, we need to define what a zero divisor is.

Definition 5 (Zero Divisor). Let R be a ring and let $a \in R$ be nonzero. We say a is a zero divisor if there exists a nonzero $b \in R$ such that ab = 0.

An example of a zero divisor is 2 in \mathbb{Z}_6 , since $2 \cdot 3 \equiv 0 \mod 6$. An important property of zero divisors is that they cannot be inverted. Thus, if our ring has no zero divisors it is fairly nice; in fact it is nice enough that we name it.

Definition 6 (Integral Domain). Let R be a commutative ring with unity. Then we say R is an *integral domain* if R has no zero-divisors.

We call these structures integral domains, because they behave like the integers. That is there is a unity, multiplication commutes, and we can multiply any nonzero elements together to get another nonzero element.

Next we will define one of the strongest structures in algebra, the field.

Definition 7 (Field). Let \mathbb{F} be a commutative ring with unity. Then \mathbb{F} is a *field*, if for each $a \in \mathbb{F} \setminus \{0\}$, there exists a $a^{-1} \in \mathbb{F}$ such that $aa^{-1} = 1$.

One field that we will use in our proof is the complex numbers, denoted \mathbb{C} . Lastly, we define Euclidean domains.

Definition 8 (Euclidean Domain). Let R be an integral domain. Then we say R is a *Euclidean domain* if there exists a function $d: R \to (\mathbb{Z}^+ \cup \{0\})$ such that

- 1. for any $x, y \in R \setminus \{0\}$, $d(xy) \ge d(x)$,
- 2. and there exist $q, r \in R$ where x = yq + r with r = 0 or d(r) < d(y).

Any such d is called a *measure*.

Essentially, Euclidean domains are rings where the division algorithm works.

2 Solution

To start, we define $\mathbb{Z}(i)$, the Gaussian Integers.

Definition 9 (Gaussian Integers). The Gaussian Integers are

$$\mathbb{Z}(i) = \{a + bi | a, b \in \mathbb{Z}\}.$$

We first need to show that $\mathbb{Z}(i)$ is an integral domain.

Lemma 2. $\mathbb{Z}(i)$ is an integral domain under standard complex addition and multiplication.

Proof. We know that \mathbb{C} is a field, therefore it is a commutative ring with identity and no zero divisors. Thus, it suffices to show that $\mathbb{Z}(i)$ is a subring of \mathbb{C} that contains 1. Since $1,0\in\mathbb{Z},\ 1+0i=1\in\mathbb{Z}(i)$. Thus $\mathbb{Z}(i)$ is nonempty since it contains the unity. We now need to show that for any $z=a+bi, w=c+di\in\mathbb{Z}(i),$ $z-w,zw\in\mathbb{Z}(i)$. We know that z-w=(a-c)+(b-d)i and zw=(ac-bd)+(ad+bc)i. Since \mathbb{Z} is a ring, a-c,b-d,ac-bd, and ad+bc are in \mathbb{Z} by closure. Therefore, $z-w,zw\in\mathbb{Z}(i)$. Thus $\mathbb{Z}(i)$ is a commutative ring with unity that has no zero divisors. Hence, $\mathbb{Z}(i)$ is an integral domain.

Since $\mathbb{Z}(i)$ is an integral domain, we can embed it in what we call the *field of fractions*, otherwise known as $\mathbb{Q}(i)$. We will assume that $\mathbb{Q}(i) = \{a + bi | a, b \in \mathbb{Q}\}$, which is true but requires a significant amount of background to show. The proof of the following theorem hinges upon the previous assumption.

Theorem 3. $\mathbb{Z}(i)$ is a Euclidean domain.

Proof. In order to show that an integral domain is a Euclidean domain, we need to propose a measure. We claim that $d: \mathbb{Z}(i) \to \mathbb{Z}^+ \cup \{0\}$ given by $d(z) = |z|^2$ is such a measure.

To start we need to show that for any $z, w \in \mathbb{Z}(i) \setminus \{0\}$, $d(zw) \ge d(z)$. We know that $d(zw) = |zw|^2$. However, from Euler's formula, we know that |zw| = |z||w|. Therefore, $d(zw) = |z|^2|w|^2$. Furthermore, by Euler's formula, the only element with modulus less than 1 in $\mathbb{Z}(i)$ is 0. Therefore, $d(zw) \ge |z|^2 = d(z)$.

Next, \Box