

Model Development Phase Template

	<u> </u>
Date	21 June 2024
Team ID	TMID739650
Project Title	Startup prophet
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
#RANDOM FOREST MODEL

from sklearn.ensemble import RandomForestClassifier

rf=RandomForestClassifier()

rf.fit(x_bal,y_bal)

rftest=rf.predict(x_test)

rftrain=rf.predict(x_train)

print(confusion_matrix(rftest,y_test))

print(confusion_matrix(rftrain,y_train))

print(classification_report(rftest,y_test))

print(classification_report(rftrain,y_train))
```


#LOGISTIC REGRESSION

from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()
lr.fit(x_bal,y_bal)
y_pred=lr.predict(x_test)

from sklearn.metrics import confusion_matrix,accuracy_score,classification_report
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))

#SUPPORT VECTOR MACHINE

```
from sklearn.svm import SVC
svm=SVC(kernel='rbf',C=2.0,random_state=42)
svm.fit(x_bal,y_bal)
y_predict=svm.predict(x_test)
```

print(confusion_matrix(y_test,y_predict))
print(classification_report(y_test,y_predict))

						F1 Scor e	
Model	C	lassificat	ion Re	port			Confusion Matrix
Random						97%	
г .							
Forest	[[163 7] [7 182]] [[410 12] [17 396]]						
		precision		f1-score	support		enteraxion and
	9	0.96 0.96	0.96	0.96	170 189		[[163 7]
	accuracy			0.96	359		[[103 /]
	macro avg	0.96	0.96	0.96	359		[7 40011
	weighted avg	0.96	0.96	0.96	359		/ 182
		precision	recall	f1-score	support		[[440 40]
	0	0.96	0.97	0.97	422		[[410 12]
	1	0.97	0.96	0.96	413		
	accuracy			0.97	835		[17 396]]
	macro avg	0.97	0.97	0.97	835		[1/ 330]]
	weighted avg	0.97	0.97	0.97	835		Walter Committee
		0.97 0.97	0.97 0.97				[17 396]]

Model Validation and Evaluation Report:

Logistic Regression	[[136 34] [56 133]]	precision	recall	f1-score	support	75%	[[136 34] [56 133]]	
	0	0.71	0.80	0.75	170			
	1	0.80	0.70	0.75	189			
	accuracy			0.75	359			
	macro avg	0.75	0.75	0.75	359			
	weighted avg	0.75	0.75	0.75	359			

SVM	[[135 35] [30 159]]	precision	recall	f1-score	support	82%	[[135 35] [30 159]]	
	0 1	0.82 0.82	0.79 0.84	0.81 0.83	170 189			
	accuracy	0.02	0.04	0.82	359			
	macro avg weighted avg	0.82 0.82	0.82 0.82	0.82 0.82	359 359			