

Fachbereich Mathematik

Navier-Stokes-Gleichungen

Vorlesung von Dr. Patrick Tolksdorf im Sommersemester 2017

 $\label{thm:continuous} \mbox{In $L^{\!\!A}\!T_{\!\!E}\!X$ gesetzt von Fabian Gabel} \\ \mbox{Fehlermeldungen an $\tt gabel@mathematik.tu-darmstadt.de}$

Inhaltsverzeichnis

1	Analytische Halbgruppen und gebrochene Potenzen	2
	1.1 Analytische Halbgruppen	2
	1.2 Gebrochene Potenzen	5
2	Die Stokes-Gleichungen auf ${\bf L}_\sigma^2$	8
	2.1 Der Stokes-Operator auf L^2_{σ}	8
	2.2 Wie man den Druck erhält	11
3	Die Ungleichung von Gagliardo-Nirenberg	16
4	Der Stokes-Operator auf L^p_σ	18

Kapitel 1

Analytische Halbgruppen und gebrochene Potenzen

In diesem Kapitel geht es darum, für eine möglichst große Klasse von abgeschlossenen Operatoren $A \colon \mathrm{D}(A) \subset X \to X$, wobei X ein Banachraum über $\mathbb C$ ist, die Ausdrücke e^{tA} und A^{α} , $\alpha > 0$, $\alpha \in \mathbb R$ zu definieren und ihre Eigenschaften zu untersuchen. Hauptgedanke ist hier, dass man für bestimmte holomorphe Funktionen f die Cauchysche Integralformel

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\lambda)}{\lambda - z} \,d\lambda$$

als Definition für f(A) nimmt, indem man $(\lambda-z)^{-1}$ durch $(\lambda-A)^{-1}$ ersetzt.

Sei $I \subset \mathbb{R}$ ein Intervall, X ein Banachraum und $f \colon I \to X$ stetig. Ist I kompakt, so konvergieren die Riemann-Summen $\sum_k l(\Delta_k) f(\xi_k)$, wobei $(\Delta_k)_k$ eine endliche Partition von I bildet, $\xi_k \in \Delta_k$ und $l(\Delta_k)$ die Länge von Δ_k bezeichnet, gegen ein eindeutiges Element $x \in X$. Definiere

$$\int_I f(t) \, \mathrm{d}t \coloneqq x.$$

Ist I nicht kompakt und $t \mapsto \|f(t)\|_X$ uneigentlich Riemann-integrierbar, so existiert für alle kompakten Intervalle I_k mit $I_k \subset I_{k+1} \subset I$ und $\bigcup_k I_k = I$ der eindeutige Grenzwert

$$\lim_{k\to\infty}\int_{I_k}f(t)dt=:\int_If(t)\,\mathrm{d}t\in X$$

In allen Fällen gilt

$$\| \int_{I} f(t) dt \|_{X} \le \int_{I} \| f(t) \|_{X} dt.$$

Ist $\Gamma \subset \mathbb{C}$ eine Kurve mit stückweise stetig differenzierbarer C^1 -Parametrisierung $\gamma \colon I \to \mathbb{C}, I \subset \mathbb{R}$ Interval, $f \colon \Gamma \to X$ stetig, sodass $t \mapsto \|\gamma'(t)f(\gamma(t))\|_X$ (uneigentlich) Riemann-integrierbar ist, definiere

$$\int_{\Gamma} f(z) dz := \int_{I} \gamma'(t) f(\gamma(t)) dt.$$

1.1 Analytische Halbgruppen

Im Folgenden bezeichnet X immer einen Banachraum über \mathbb{C} .

Definition 1.1. Sei $A: D(A) \subset X \to X$ abgeschlossen und $\omega \in [0, \pi)$. A heist sektoriell von Winkel ω , falls $\sigma(A) \subset \overline{S_{\omega}}$, wobei

$$\mathbf{S}_{\omega} := \begin{cases} (0, \infty), & \omega = 0\\ \{z \in \mathbb{C} \setminus \{0\} \colon |\arg(z)| < \omega\}, & \omega \neq 0 \end{cases}$$

und für alle $\pi \in (\omega, \pi)$ ein $C_{\theta} > 0$ existiert, sodass für alle $\lambda \in \mathbb{C} \setminus \overline{S_{\phi}}$ gilt, dass

$$\|\lambda(\lambda - A)^{-1}\|_{\mathcal{L}(X)} \le C_{\theta}.$$

Notation 1.2. Für R > 0 und $\theta \in (0, \pi)$ bezeichne mit $\gamma_{R,\theta}$ die kanonische Parametrisierung der Kurve, welche durch $\partial(S_{\theta} \cup B(0, R))$ gegeben ist. Weiterhin bezeichne γ_1 die Parametrisierung des Geradenstücks in der oberen Halbebene, γ_3 in der unteren und γ_2 des Kreisbogens.

Beobachtung 1.3. Ist A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2}), \theta \in (\omega, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \theta}$, so ist

$$t \mapsto \|\gamma'_{R,\theta}(t)e^{z\gamma_{R,\theta}(t)} (\gamma_{R,\theta}(t) - A)^{-1}\|_{\mathcal{L}(X)}$$

uneigentlich Riemann integrierbar: Wegen Symmetrie und Holomorphie der Resolvente auf $\mathbb{C}\backslash \overline{S_{\omega}}$ genügt es Integrierbarkeit auf γ_1 nachzuweisen. Aus der Sektorialität von A folgt zunächst

$$\int_{R}^{\infty} \| e^{i\theta} e^{-zte^{i\theta}} \left(te^{i\theta} - A \right)^{-1} \|_{\mathcal{L}(X)} dt \le C_{\theta} \int_{R}^{\infty} e^{-t\operatorname{Re}(ze^{i\theta})} t^{-1} dt.$$

Dieses Integral ist endlich, da

$$|\arg(ze^{i\theta})| \le |\arg(z)| + \theta < \frac{\pi}{2} - \theta + \theta = \frac{\pi}{2}$$

und damit Re $ze^{i\theta} < 0$ folgt.

Definition 1.4. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \omega}$. Wähle R > 0 und $\theta \in (\omega, \frac{\pi}{2} - |\arg(z)|)$. Definiere

$$e^{zA} := \frac{1}{2\pi i} \int_{\gamma_{R,\theta}} e^{z\lambda} (\lambda - A)^{-1} d\lambda$$

und $e^{-0A} := I$. Die Familie $(e^{zA})_{z \in S_{\frac{\pi}{2} - \omega \cup \{0\}}}$ wird beschränkte analytische Halbgruppe genannt und falls A dicht definiert ist, wird -A Erzeuger/Generator von $(e^{-zA})_{z \in S_{\frac{\pi}{2} - \omega \cup \{0\}}}$ genannt.

Lemma 1.5. Die Definition von e^{-zA} is unabhängig von der Wahl von R und θ .

Beweis. Übung.
$$\Box$$

Proposition 1.6. Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to X$ stetig und uneigentlich Riemann integrierbar, Y ein Banachraum, $T \in \mathcal{L}(X,Y)$ und $A: D(A) \subset X \to Y$ abgeschlossen.

(i) Dann ist $Tf: I \to Y$ stetig und uneigentlich Riemann integrierbar und es gilt

$$T \int_{I} f(t) dt = \int_{I} T f(t) dt.$$

(ii) Falls $f(t) \in D(A)$ für alle $t \in I$ gilt und $Af: I \to Y$ stetig und uneigentlich Riemann-integrierbar ist, dann ist $\int_I f(t) dt \in D(A)$ und es gilt

$$A \int_{I} f(t) dt = \int_{I} A f(t) dt.$$

Beweis. Übung. \Box

Satz 1.7. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$. Dann ist für alle $z \in S_{\frac{\pi}{2} - \omega}$ der Operator e^{-zA} in $\mathcal{L}(X)$ und erfüllt

- (i) Für alle $0 \le \phi < \frac{\pi}{2} \omega$ ist $(e^{-zA})_{z \in S_{\phi}}$ gleichmäßig beschränkt.
- (ii) $z \mapsto e^{-zA}$ ist analytisch in $S_{\frac{\pi}{2}-\omega}$.
- (iii) Für alle $z, w \in S_{\frac{\pi}{2} \omega}$ gilt $e^{-(z+w)A} = e^{-zA}e^{-\omega A}$.
- (iv) Ist A zusätzlich dicht definiert, so ist für alle $0 \le \phi < \frac{\pi}{2} \omega$ die Abbildung

$$S_{\phi} \cup \{0\} \ni z \mapsto e^{-zA} \in \mathcal{L}(X)$$

 $stark\ stetig\ in\ z=0,\ d.h.\ f\"ur\ alle\ x\in X\ gilt$

$$\lim_{\substack{z \to 0 \\ z \in \mathcal{S}_{\phi}}} \|\mathbf{e}^{-zA}x - x\|_X = 0.$$

Beweis. (i) Wähle R > 0 und $\theta \in (0, \omega)$, sodass $|\arg(ze^{\pm i\theta})| \le \phi + \theta < \frac{\pi}{2}$ für alle $z \in S_{\theta}$. Mit Beobachtung 1.3 folgt für $j \in \{1, 3\}$

$$\begin{split} \| \int_{\gamma_j} \mathrm{e}^{z\lambda} (\lambda - A)^{-1} \, \mathrm{d}\lambda \|_{\mathcal{L}(X)} &\leq C \int_R^\infty \mathrm{e}^{t \operatorname{Re}(z \mathrm{e}^{\pm i\theta})} t^{-1} \, \mathrm{d}t \leq C \int_R^\infty \mathrm{e}^{-t|z| \cos(\theta + \phi)} t^{-1} \, \mathrm{d}t \\ &= C \int_{R|z|}^\infty \mathrm{e}^{-t \cos(\phi + \theta)} t^{-1} \, \mathrm{d}t. \end{split}$$

Nach Lemma 1.5 hängt der Wert dieses Interals nicht von der Wahl von R ab. Im Folgenden wähle daher $R = \frac{1}{|z|}$. Mit dieser Wahl gilt nun für das Kurvenintegral entlang γ_2

$$\|\int_{\gamma_2} e^{z\lambda} (\lambda - A)^{-1} d\lambda\|_{\mathcal{L}(X)} \le C \int_{\theta}^{2\pi - \theta} \frac{1}{|z|} |e^{\frac{z}{|z|}} e^{i\varphi}| |z| d\varphi \le C2\pi e,$$

da $|e^z| \le e^{|z|}$. Folglich ist $e^{-zA} \in \mathcal{L}(X)$ und $(e^{-zA})_{z \in S_\phi}$ ist gleichmäßig beschränkt.

(ii) Wie in Beobachtung 1.3 zeigt man erst, dass $\lambda \mapsto \lambda e^{-z\lambda}(\lambda - A)^{-1}$ absolut integrierbar auf $\gamma_{\theta,R}$ ist. Außerdem ist für $z \in S_{\phi}$ und $h \in \mathbb{C} \setminus \{0\}$ mit $z + h \in S_{\phi}$, wobei ϕ wie in (i) gewählt sei,

$$\left[\frac{1}{h}\left(e^{-(z+h)\lambda}-e^{-z\lambda}\right)-(-\lambda e^{-z\lambda})\right](\lambda-A)^{-1}=\left[\frac{1}{h\lambda}\left(e^{-h\lambda}-1\right)+1\right]\lambda e^{-z\lambda}(\lambda-A)^{-1}$$

auf jedem kompakten Teilweg von $\gamma_{\theta,R}$ gleichmäßig konvergent (mit Grenzwert 0), da $e^{-z\lambda}$ holomorph und damit insbesondere stetig komplex differenzierbar ist. Weiter gilt

$$\begin{aligned} \left| \frac{1}{h\lambda} (\mathbf{e}^{-h\lambda} - 1) + 1 \right| &= \left| \sum_{k=2}^{\infty} \frac{(-h\lambda)^{n-1}}{n!} \right| \le \sum_{n=2}^{\infty} \frac{(|h| |\lambda|)^{n-1}}{n!} \\ &\le \sum_{n=2}^{\infty} \frac{(c|z| |\lambda|)^{n-1}}{n!} = \frac{1}{c|z| |\lambda|} (\mathbf{e}^{c|z| |\lambda|} - 1) - 1, \end{aligned}$$

woraus wiederum

$$\left(\frac{1}{c|z||\lambda|} (e^{c|z||\lambda|} - 1) - 1\right) |\lambda e^{-z\lambda}| ||(\lambda - A)^{-1}||
\stackrel{(i)}{\leq} \left(\frac{1}{c|z||\lambda|} (e^{c|z||\lambda|} - 1) - 1\right) |\lambda| e^{-|z|\cos(\phi + \theta)|\lambda|} |\frac{C}{|\lambda|}.$$

Wähle nun $c < \cos(\phi + \theta)$. Daraus folgt die uniforme Integrierbarkeit für |h| klein, was wiederum

$$\frac{1}{h} \left(e^{-(z+h)A} - e^{-zA} \right) \to \frac{1}{2\pi i} \int_{\gamma_{B,a}} \lambda e^{-z\lambda} (\lambda - A)^{-1} d\lambda, \quad \text{für } h \to 0$$

impliziert.

(iii) Sei $x \in X, x' \in X'$. Dann gilt mit $R_w < R_z$ und $\theta_w < \theta_z$:

$$\langle \mathbf{e}^{-zA} \mathbf{e}^{-wA} x, x' \rangle = \frac{1}{2\pi i} \langle \int_{\gamma_{R_z,\theta_z}} \mathbf{e}^{-z\lambda} (\lambda - A)^{-1} \mathbf{e}^{-wA} x \, \mathrm{d}\lambda, x' \rangle$$

$$= \frac{1}{2\pi i} \int_{\gamma_{R_z,\theta_z}} \mathbf{e}^{-z\lambda} \langle (\lambda - A)^{-1} \mathbf{e}^{-wA} x, x' \rangle \, \mathrm{d}\lambda$$

$$= \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu} \langle (\lambda - A)^{-1} (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\lambda - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$- \frac{1}{(2\pi i)^2} \int_{\gamma_{R_z,\theta_z}} \int_{\gamma_{R_w,\theta_w}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_w,\theta_w}} \int_{\gamma_{R_z,\theta_z}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_w,\theta_w}} \int_{\gamma_{R_z,\theta_z}} \frac{\mathbf{e}^{-z\lambda} \mathbf{e}^{-w\mu}}{\mu - \lambda} \langle (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= -\frac{1}{(2\pi i)^2} \int_{\gamma_{R_w,\theta_w}} \int_{\gamma_{R_z,\theta_z}} \frac{\mathbf{e}^{-(z+w)\lambda}}{\mu - \lambda} \langle (\mu - A)^{-1} x, x' \rangle \, \mathrm{d}\mu \, \mathrm{d}\lambda$$

$$= \langle \mathbf{e}^{-(z+w)A} x, x' \rangle.$$

Hahn-Banach liefert sodann $e^{-zA}e^{-wA}x = e^{-(z+w)A}x$ für alle $x \in X$.

Bemerkung 1.8. Um Resultate von skalarwertigen Integralen auf banachraumwertige zu übertragen, ist es üblich mit Funktionalen zu testen, dann das skalarwertige Resultat zu benutzen und am Ende Hahn-Banach anzuwenden.

Satz 1.9. Sei A sektoriell von Winkel $\omega \in [0, \frac{\pi}{2})$ und $z \in S_{\frac{\pi}{2} - \omega}$. Dann ist $Rg(e^{-zA}) \subset D(A)$ (Glättungseigenschaft) und falls $x \in D(A)$ gilt $Ae^{-zA}x = e^{-zA}Ax$. Weiterhin existiert C > 0, sodass $\sup_{t>0} \|tAe^{-tA}\|_{\mathcal{L}(X)} \leq C$.

1.2 Gebrochene Potenzen

In diesem Abschnitt definieren und untersuchen wir gebrochene Potenzen A^{α} .

Proposition 1.10. Sei A sektoriell von Winkel $\omega \in [0, \pi)$ und $0 \in \rho(A)$. Dann existiert ein R > 0, sodass für alle $\theta \in (\omega, \pi)$ ein C > 0 existiert, sodass $B_R(0) \subset \rho(A)$ und für alle $\lambda \in \mathbb{C} \setminus \overline{S_{\theta}} \cup B_R(0)$

$$||(1+|\lambda|)(\lambda-A)^{-1}||_{\mathcal{L}(X)} \le C$$

gilt.

Beweis. Übung. \Box

Notation 1.11. Seien a > 0 und $\theta \in (0, \pi)$. Dann definieren wir $\Gamma_{a,\theta} := \Gamma_1 - \Gamma_2$, wobei

$$\Gamma_1 \colon [0, \infty) \to \mathbb{C}, t \mapsto a + t e^{i\theta} \quad \text{und} \quad \Gamma_2 \colon [0, \infty) \to \mathbb{C}, t \mapsto a + t e^{-i\theta}.$$

Definition 1.12. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Sei $\theta \in (\omega, \pi)$ und 0 < a < R, mit R > 0 aus Proposition 1.10. Definiere für $\alpha > 0$

$$A^{-\alpha} := \frac{1}{2\pi i} \int_{\Gamma_{a,\theta}} \lambda^{-\alpha} (\lambda - A)^{-1} \, \mathrm{d}\lambda.$$

Proposition 1.13. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Dann ist für $\alpha > 0$ die Definition vo $A^{-\alpha}$ unabhängig von a und $A^{-\alpha} \in \mathcal{L}(X)$ und falls $\alpha \in \mathbb{N}$, so stimmt $A^{-\alpha}$ mit der α -ten Potenz von A^{-1} überein.

Beweis. Übung. \Box

Satz 1.14. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Weiterhin sei $n \in \mathbb{N}_0$ und $\alpha \in (0, n+1) \setminus \mathbb{N}$. Dann gilt

$$A^{-\alpha} = \frac{1}{\pi} \frac{n!}{\prod_{i=1}^{n} (i-\alpha)} \sin(\alpha \pi) \int_{0}^{\infty} t^{n-\alpha} (t+A)^{-(n+1)} dt.$$

Beweis. n-fache partielle Integration liefert

$$A^{-\alpha} = \frac{1}{2\pi i} \int_{\Gamma_{a,\theta}} \lambda^{-\alpha} (\lambda - A)^{-1} d\lambda$$
$$= \frac{1}{2\pi i} \frac{n!}{\prod_{i=1}^{n} (i - \alpha)} \int_{\Gamma_{a,\theta}} \lambda^{n-\alpha} (\lambda - A)^{-(n+1)} d\lambda$$

und mit der Definition von $\Gamma_{a,\theta}$ gilt

$$= \frac{1}{2\pi i} \frac{n!}{\prod_{i=1}^{n} (i-\alpha)} \left[\int_{0}^{\infty} e^{i\theta} (te^{i\theta} + a)^{n-\alpha} (te^{i\theta} + a - A)^{-(n+1)} dt - \int_{0}^{\infty} e^{-i\theta} (te^{-i\theta} + a)^{n-\alpha} (te^{-i\theta} + a - A)^{-(n+1)} dt \right],$$

woraus mit majorisierter Konvergenz dann

$$\xrightarrow{a \to 0} \frac{1}{2\pi i} \frac{n!}{\prod_{i=1}^{n} (i - \alpha)} \left[\int_{0}^{\infty} e^{i\theta} |t|^{n-\alpha} e^{i(n-\alpha)\theta} (te^{i\theta} - A)^{-(n+1)} dt - \int_{0}^{\infty} e^{-i\theta} |t|^{n-\alpha} e^{-i(n-\alpha)\theta} (te^{-i\theta} - A)^{-(n+1)} dt \right],$$

folgt und mit nochmaliger Anwendung des Satzes von der majorisierten Konvergenz schließlich

$$\stackrel{\theta \to \pi}{\longrightarrow} \frac{1}{2\pi i} \frac{n!}{\prod_{i=1}^{n} (i-\alpha)} \left[e^{-i(n-\alpha)\pi} - e^{i(n-\alpha)\pi} \right] \int_{0}^{\infty} t^{n-\alpha} (-t-A)^{n+1} dt.$$

Satz 1.15. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Dann erfüllen die Operatoren $(A^{-\alpha})_{\alpha \geq 0}$, wobei $A^{-0} := I$, das Halbgruppengesetz $A^{-\alpha-\beta} = A^{-\alpha}A^{-\beta}$, $\alpha, \beta \geq 0$. Ist A dicht definiert, so ist die Abbildung

$$[0,\pi)\ni\alpha\to A^{-\alpha}$$

stark stetiq.

Beweis. Übung. \Box

Korollar 1.16. Die Identität in Satz 1.14 gilt sogar für alle $\alpha \in (0, n + 1)$, indem man für $\alpha \in \mathbb{N}$ beide Seiten stetig fortsetzt.

Proposition 1.17. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Dann ist $A^{-\alpha}$ für alle $\alpha > 0$ injektiv.

Beweis. Sei $n \in \mathbb{N}$ mit $n > \alpha$. Satz 1.15 liefert nun $A^{-n} = A^{-(n-\alpha)}A^{-\alpha}$. Nach Proposition 1.13 ist $A^{-n} = (A^{-1})^n$ und es folgt $A^n A^{-(n-\alpha)}A^{-\alpha} = I$. Damit ist $A^{-\alpha}$ injektiv.

Definition 1.18. Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Für $\alpha > 0$ definiere

$$A^{\alpha} := (A^{-\alpha})^{-1}$$

mit $D(A^{\alpha}) := Rg(A^{-\alpha}).$

Satz 1.19. Sei A sektoriell von Winkel $\omega \in (0,\pi)$ und $0 \in \rho(A)$. Dann gilt für alle $\alpha, \beta \in \mathbb{R}$

$$A^{\alpha}A^{\beta}x = A^{\alpha+\beta}x$$
, für alle $x \in D(A^{\gamma})$,

wobei $\gamma = \max\{\alpha, \beta, \alpha + \beta\}.$

Beweis. Der Beweis folgt aus Kombination von Satz 1.15 und Definition 1.18. Zum Beispiel git für $\alpha, \beta \geq 0$

$$A^{\alpha}A^{\beta}x = A^{\alpha}A^{\beta}(A^{-(\alpha+\beta)}A^{\alpha+\beta})x = A^{\alpha}A^{\beta}(A^{-\beta}A^{-\alpha}A^{\alpha+\beta})x = A^{\alpha+\beta}x.$$

Satz 1.20 (Momentenungleichung). Sei A sektoriell von Winkel $\omega \in (0, \pi)$ und $0 \in \rho(A)$. Für alle $\alpha < \beta < \gamma$ existiert $C = C(\alpha, \beta, \gamma)$, sodass

$$||A^{\alpha}x||_X \le C||A^{\alpha}x||_{Y^{-\alpha}}^{\frac{\gamma-\beta}{\gamma-\alpha}} ||A^{\gamma}x||_{Y^{-\alpha}}^{\frac{\beta-\alpha}{\gamma-\alpha}}, \quad \text{für alle } x \in D(A^{\gamma}).$$

Beweis. Sei erst $\alpha_0 > \beta_0 > 0$ und $n \in \mathbb{N}$ mit $\alpha + 0 \in (n, n+1]$. Dann gilt insbesondere $\beta_0 \in (0, n+1)$. Angenommen es gelten die Ungleichungen

(1)
$$||s^{n-\beta_0}(s+A)^{-(n+1)}x_0||_X \le Cs^{\alpha_0-\beta_0-1}||A^{-\alpha_0}x||_X$$

(2)
$$||s^{n-\beta_0}(s+A)^{-(n+1)}x_0||_X \le Cs^{-\beta_0-1}||x_0||_X$$

für alle $s < 0, x_0 \in X$. Sei $\tau > 0$ beliebig. Dann folgt mit Satz 1.14 und Korollar ??

Kapitel 2

Die Stokes-Gleichungen auf L^2_{σ}

In diesem Kapitel untersuchen wir Lösungen der (instationären) Stokes-Gleichungen

$$\begin{cases} \partial_t u - \Delta u + \nabla p &= 0, \quad x \in \Omega, t > 0 \\ \operatorname{div} u &= 0, x \in \Omega, t > 0 \\ u(0) &= a, \quad x \in \Omega \\ u &= 0, \quad x \in \partial \Omega, t > 0, \end{cases}$$

wobe
i $a\in\mathrm{L}^2(\Omega,\mathbb{C}^d),\,d\geq 2$ und "div(a)=0"gelten soll.

2.1 Der Stokes-Operator auf L^2_{σ}

Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ und 1 . Definiere

$$\mathrm{C}_{0,\sigma}^{\infty}(\Omega) \coloneqq \{ \varphi \in \mathrm{C}_{c}^{\infty}(\Omega,\mathbb{C}^{d}) \colon \mathrm{div}\,(\varphi) = 0 \}.$$

Weiterhin sei

$$\mathrm{L}^p_\sigma(\Omega) \coloneqq \overline{\mathrm{C}^\infty_{c,\sigma}(\Omega)}^{\mathrm{L}^p} \quad \mathrm{mit} \| \cdot \|_{\mathrm{L}^p_\sigma} = \| \cdot \|_{\mathrm{L}^p}$$

und

$$W^{1,p}_{0,\sigma} \coloneqq \overline{\mathbb{C}^\infty_{c,\sigma}(\Omega)}^{W^{1,p}} \quad \mathrm{mit} \|\cdot\|_{W^{1,p}_{0,\sigma}} \coloneqq \|\cdot\|_{W^{1,p}}.$$

Im Falle p=2 schreibt man auch $\mathrm{H}^1_{0,\sigma}(\Omega)$ für $\mathrm{W}^{1,2}_{0,\sigma}(\Omega)$. Um den Stokes-Operator zu definieren, definiere folgende Sesquilinearform

$$a \colon \mathrm{H}^1_{0,\sigma}(\Omega) \times \mathrm{H}^1_{0,\sigma}(\Omega) \to \mathbb{C}, \quad (u,v) \mapsto \int_{\Omega} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x = \sum_{i,j=1}^d \int_{\Omega} \partial_i u_j \partial_i \overline{v_j} \, \mathrm{d}x$$

Definition 2.1. Der Stokes-Operator A auf $L^2_{\sigma}(\Omega)$ ist gegeben durch

$$D(A) := \left\{ u \in H^1_{0,\sigma}(\Omega) \colon \exists! \colon f \in L^2_{\sigma}(\Omega) \forall v \in H^1_{0,\sigma}(\Omega) \colon a(u,v) = \int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x \right\},$$
$$Au := f,$$

wobei f und u durch D(A) gegeben sind.

Proposition 2.2. Der Stokes-Operator auf $L^2_{\sigma}(\Omega)$ ist abgeschlossen und dicht definiert.

Beweis. Zur Abgeschlossenheit: Sei $u_n \in D(A)$ mit $u_n \to u$ in $L^2_{\sigma}(\Omega)$ und $f_n := Au_n \to f$ in $L^2_{\sigma}(\Omega)$. Dann

$$\|\nabla(u_n - u_m)\|_{L^2}^2 = a(u_n - u_m, u_n - u_m) = \int_{\Omega} (f_n - f_m) \overline{(u_n - u_m)} \, \mathrm{d}x \overset{\text{H\"older}}{\to} 0, \quad \text{f\"ur } u, m \to \infty.$$

Folglich ist $(u_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in $\mathrm{H}^1_{0,\sigma}(\Omega)$ und damit $u\in\mathrm{H}^1_{0,\sigma}(\Omega)$. Hiermit ergibt sich

$$a(u,v) = \lim_{n \to \infty} a(u_n,v) = \lim_{n \to \infty} \int_{\Omega} f_n \overline{v} \, \mathrm{d}x = \int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x,$$

für alle $v \in H^1_{0,\sigma}(\Omega)$.

Zur Dichtheit: Für $u \in C^{\infty}_{c,0}(\Omega), v \in H^1_{0,\sigma}(\Omega)$ gilt

$$a(u,v) = -\int_{\Omega} \Delta u \cdot \overline{v} \, \mathrm{d}x.$$

Aus dem Satz von Schwartz folgt $\Delta u \in C^{\infty}_{c,\sigma}(\Omega)$ und damit $C^{\infty}_{c,\sigma}(\Omega) \subset D(A)$..

Lemma (Lax-Milgram). Sei H ein Hilbertraum über C und $b: H \times H \to \mathbb{C}$ eine Sesquilinear-form, die stetig und koerziv ist, d.h., es existieren $\alpha, C > 0$, sodass

$$|b(u,v)| \le C||u||_H||v||_H$$
, für alle $u, v \in H$,
 $|b(u,v)| \ge \alpha ||u||_H^2$, für alle $u \in H$.

Dann existiert für jedes $F \in H^*$ ein eindeutiges $u \in H$ mit

$$b(u,v) = F[v], \quad \text{für alle } v \in H.$$

Proposition 2.3. Sei A der Stokes-Operator auf $L^2_{\sigma}(\Omega)$, wobei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ ein beschränktes Gebiet ist. Dann ist $0 \in \rho(A)$.

Beweis. Für $f \in L^2_{\sigma}(\Omega)$ ist $v \mapsto \int_{\Omega} f \cdot \overline{v} \, dx \in H^1_{0,\sigma}(\Omega)^*$ (Antidualraum). Weiterhin ist

$$a: \mathrm{H}^1_{0,\sigma}(\Omega) \times \mathrm{H}^1_{0,\sigma}(\Omega) \to \mathrm{C}, (u,v) \mapsto \int_{\Omega} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x$$

stetig. Außerdem folgt mit der Poincaré Ungleichung

$$|a(u,u)| = \|\nabla u\|_{\mathbf{L}^2}^2 \ge \frac{1}{2} \|\nabla u\|_{\mathbf{L}^2}^2 + \frac{1}{2c^2} \|u\|_{\mathbf{L}^2}^2$$

und damit die Koerzivität von a. Das Lemma von Lax-Milgram liefert sodann, dass genau ein $u \in H^1_{0,\sigma}(\Omega)$ mit $a(u,v) = \int_{\Omega} f \cdot \overline{v} \, dx$ für alle $v \in H^1_{0,\sigma}(\Omega)$ existiert. Daraus folgt schließlich $u \in D(A)$ mit Au = f und $0 \in \rho(A)$.

Lemma 2.4. Seien $\theta, \phi \in [0, \pi)$ mit $\theta + \phi < \pi$. Dann existiert $C = C(\phi, \theta) > 0$, sodass für alle $w \in S_{\theta}, z \in S_{\phi}$ gilt

$$|w| + |z| \le c|w + z|.$$

Beweis. Übung.

Proposition 2.5. Sei $\Omega \subset \mathbb{R}^d, d \geq 2$, offen und A der Stokes Operator auf $L^2_{\sigma}(\Omega)$. Dann gilt $\sigma(A) \subset [0, \infty)$ und für alle $\theta \in (0, \pi]$ existiert C > 0, sodass

$$\|\lambda(\lambda-A)^{-1}\|_{\mathcal{L}(\mathrm{L}^2_\sigma(\Omega))} \leq C, \quad \text{für alle } \lambda \in \mathbb{C} \setminus \overline{\mathrm{S}}_{\theta}$$

und

$$\||\lambda|^{\frac{1}{2}}\nabla(\lambda-A)^{-1}\|_{\mathcal{L}(L^2_{\sigma},L^2)} \leq C$$
, für alle $\lambda \in \mathbb{C} \setminus \overline{S}_{\theta}$.

Beweis. Für $\lambda \in \mathbb{C} \setminus \overline{S}_{\theta}$ definiere

$$a_{\lambda} \colon \mathrm{H}^{1}_{0,\sigma}(\Omega) \times \mathrm{H}^{1}_{0,\sigma}(\Omega) \to \mathrm{C}, \quad (u,v) \mapsto \lambda \int_{\Omega} u \cdot \overline{v} - \int_{\Omega} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x,$$

dann ist a_{λ} stetig. Für die Koerzivität beobachten wir, dass

$$|a_{\lambda}(u,u)| = \Big|\underbrace{-\lambda \int_{\Omega} |u|^2 \, \mathrm{d}x}_{\mathrm{S}_{\pi-\theta}} + \underbrace{\int_{\Omega} |\nabla u|^2 \, \mathrm{d}x}_{\in \mathrm{S}_0} \Big| \ge \frac{1}{C} \left(|\lambda| \int_{\Omega} |u|^2 \, \mathrm{d}x + \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \right)$$

gilt, woraus mittels Lemma von Lax-Milgram $\lambda \in \rho(A)$ folgt.

Um die Abschätzungen nachzuweisen, teste mit Lösung!

Sei $f \in L^2_{\sigma}(\Omega)$ und $u \in D(A)$ mit $(\lambda - A)u = f$. Teste mit u:

$$\lambda \int_{\Omega} |u|^2 \, \mathrm{d}x - \int_{\Omega} |\nabla u|^2 = \int_{\Omega} f \cdot \overline{u}.$$

Nehme Betrag und nutze obige Ungleichung, dann folgt

$$\frac{1}{C}|\lambda|\|u\|_{\mathrm{L}^{2}(\Omega)}^{2} \leq \frac{1}{C}\left(|\lambda|\int_{\Omega}|u|^{2}\,\mathrm{d}x + \int_{\Omega}|\nabla u|^{2}\right) \leq \|f\|_{\mathrm{L}^{2}(\Omega)}\|u\|_{\mathrm{L}^{2}(\Omega)}$$

und folglich die Resolventenabschätzung. Weiterhin gilt mit Young's Ungleichung

$$\frac{1}{C} \left(|\lambda| \int_{\Omega} |u|^2 \, \mathrm{d}x + \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \right) \le \frac{1}{2\varepsilon} ||f||_{\mathrm{L}^2(\Omega)}^2 + \frac{\varepsilon}{2} ||u||_{\mathrm{L}^2(\Omega)}.$$

Wähle $\varepsilon = \frac{2|\lambda|}{C}$, dann gilt

$$\frac{1}{C} \int_{\Omega} |\nabla u|^2 \, \mathrm{d}x \le \frac{C}{4|\lambda|} ||f||_{\mathrm{L}^2(\Omega)}^2,$$

und damit auch die Gradientenabschätzung.

Satz 2.6. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ offen und A sei der Stokes-Operator auf $L^2_{\sigma}(\Omega)$. Dann erzeugt -A eine beschränkte analytische Halbgruppe $(e^{-tA})_{t\geq 0}$. Diese wird als Stokes-Halbgruppe bezeichnet. Weiterhin ist für jedes t > 0, $Rg(e^{-tA}) \subset H^1_{0,\sigma}(\Omega)$ und es existiert C > 0, sodass für alle t > 0 und $a \in L^2_{\sigma}(\Omega)$ gilt:

$$\|\nabla e^{-tA}a\|_{L^2(\Omega)} \le Ct^{\frac{1}{2}} \|a\|_{L^2_{\sigma}(\Omega)}$$

Beweis. Übung. \Box

2.2 Wie man den Druck erhält

Zuerst führen wir ein nützliches Handwerkszeug, den sogenannten Bogowskiĭ-Operator ein. Hierzu definieren wir für $1 und ein beschränktes Gebiet <math>\Omega \subset \mathbb{R}^d$ den Raum

$$L_0^p(\Omega) := \left\{ f \in L^p(\Omega) \colon \frac{1}{|\Omega|} \int_{\Omega} f \, \mathrm{d}x =: \int_{\Omega} f \, \mathrm{d}x =: f_{\Omega} = 0 \right\}$$

der mittelwertfreien L^p -Funktionen.

Wegen $\int_{\Omega} \operatorname{div}(u) dx = 0$ für alle $u \in W_0^{1,p}(\Omega,\mathbb{C}^d)$ ist es notwendig, dass die rechte Seite f der folgenden Gleichung in $L_0^p(\Omega)$ liegt. Betrachte das Problem

$$\operatorname{div}(u) = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{auf } \partial\Omega.$$

Ist Ω ein beschränktes Lipschitz-Gebiet, wo wurde ein Lösungsoperator (Bogowskiĭ-Operator) für diese Gleichung konstruiert.

Satz 2.7. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$, ein beschranktes Lipschitz-Gebiet, dann existiert ein Operator B, sodass für jedes 1 gilt:

B:
$$L_0^p(\Omega) \to W_0^{1,p}(\Omega, \mathbb{C}^d), \quad B \in \mathcal{L}(L_0^p(\Omega), W_0^{1,p}(\Omega, \mathbb{C}^d))$$

div (Bf) = f, für alle $f \in L_0^p(\Omega)$.

Beweis. Siehe z.B. Galdi, "An introduction to the Mathematical Theory of the Navier-Stokes Equations", Seiten 161-172.

Für $u \in L^p(\Omega)$ definiere $\nabla u \in W^{-1,p}(\Omega, \mathbb{C}^d)$ durch

$$\langle v, \nabla u \rangle_{W_0^{1,p'}(\Omega), W^{-1,p}(\Omega)} = -\int_{\Omega} u \cdot \overline{\operatorname{div}(v)}, \quad \text{für alle } v \in W_0^{1,p'}(\Omega, \mathbb{C}^d),$$

wobei $\frac{1}{p} + \frac{1}{p'} = 1$.

Lemma 2.8. Sei $\Omega \subset \mathbb{R}^d, d \geq 2$, ein beschränktes Lipschitz-Gebiet und 1 . Dann existiert <math>C > 0, sodass für alle $u \in L^p(\Omega)$

$$||u - u_{\Omega}||_{\mathcal{L}^{p}(\Omega)} \le ||\nabla u||_{\mathcal{W}^{-1,p}(\Omega)}$$

gilt.

Beweis. Sei B
 der Bogowskiĭ-Operator aus Satz 2.7 $f \in \mathcal{L}^{p'}(\Omega)$ wobe
i $\frac{1}{p} + \frac{1}{p'} = 1$. Dann gilt

$$\begin{split} \left| \int_{\Omega} (u - u_{\Omega}) \, \overline{f} \, \mathrm{d}x \right| &= \left| \int_{\Omega} (u - u_{\Omega}) \, (\overline{f - f_{\Omega}}) \, \mathrm{d}x \right| = \left| \int_{\Omega} u \, (\overline{f - f_{\Omega}}) \, \mathrm{d}x \right| \\ &= \left| \int_{\Omega} u \, \mathrm{div} \left(\mathrm{B}(\overline{f - f_{\Omega}}) \right) \, \mathrm{d}x \right| \leq \|\nabla u\|_{\mathrm{W}^{-1,p}(\Omega)} \, \|\mathrm{B}(\overline{f - f_{\Omega}})\|_{\mathrm{W}_{0}^{1,p'}(\Omega)} \\ &\stackrel{\mathrm{Satz 2.7}}{\leq} C \, \|\nabla u\|_{\mathrm{W}^{-1,p}(\Omega)} \, \|f - f_{\Omega}\|_{\mathrm{L}^{p'}(\Omega)} \leq C \, \|\nabla u\|_{\mathrm{W}^{-1,p}(\Omega)} \, \|f\|_{\mathrm{L}^{p'}(\Omega)}, \end{split}$$

wobei im letzten Schritt ausgenutzt wurde, dass Ω beschränkt ist. Daraus folgt nun die Behauptung.

Lemma 2.9. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ ein beschränktes Lipschitz-Gebiet und $1 . Dann existiert für jedes Teilgebiet <math>\Omega_0 \subset \Omega$ mit $\Omega_0 \neq \emptyset$ ein C > 0, sodass für alle $u \in L^p(\Omega)$ mit $u_{\Omega_0} = 0$ gilt

$$||u||_{\mathcal{L}^p(\Omega)} \le C ||\nabla u||_{\mathcal{W}^{-1,p}(\Omega)}.$$

Beweis. Angenommen die Aussage wäre falsch. Dannn existiert für jedes $n \in \mathbb{N}$ ein $u_n \in L^p(\Omega)$ mit $(u_n)_{\Omega} = 0$ und

(*)
$$||u_n||_{L^p(\Omega)} > n||\nabla u_n||_{W^{-1,p}(\Omega)}$$

Sei ohne Einschränkung $||u_n||_{L^p(\Omega)} = 1$. Da $(u_n)_{n \in \mathbb{N}} \subset L^p(\Omega)$ beschränkt und $L^p(\Omega)$ reflexif ist besitzt $(u_n)_{n \in \mathbb{N}}$ eine schwach konvergente Teilfolge. Bezeichne diese Teilfolge ohne Einschränkung wieder mit $(u_n)_{n \in \mathbb{N}}$. Dann existiert ein $u \in L^p(\Omega)$ mit $\lim_{n \to \infty} \int_{\Omega} u_n \overline{v} \, dx = \int_{\Omega} u \overline{v} \, dx$ für alle $v \in L^{p'}(\Omega)$. Hieraus folgt, dass

(**)
$$\int_{\Omega_0} u \, \mathrm{d}x = \int_{\Omega} u \chi_{\Omega_0} \, \mathrm{d}x = \lim_{n \to \infty} \int_{\Omega} u_n \chi_{\Omega_0} \, \mathrm{d}x = 0.$$

Mit (*) folgt $\|\nabla u_n\|_{\mathrm{W}^{-1,p}(\Omega)} < \frac{1}{n} \to 0$ für $n \to \infty$. Weiterhin folgt für $v \in \mathrm{C}^\infty_\mathrm{c}(\Omega,\mathbb{C}^d)$

$$\Big| \int_{\Omega} u \, \overline{\operatorname{div}(v)} \, \mathrm{d}x \Big| = \lim_{n \to \infty} \Big| \int_{\Omega} u_n \overline{\operatorname{div}(v)} \, \mathrm{d}x \Big| \le \lim_{n \to \infty} \Big| \langle v, \nabla u_n \rangle_{\mathrm{W}_{0}^{1,p'}, \mathrm{W}^{-1,p}(\Omega)} \Big|$$

Folglich ist u schwach differenzierbar mit $\nabla u = 0$ und damit konstant. Mit (**) folgt hieraus u = 0. Aus Lemma 2.8 ergibt sich

$$1 = \|u_n\|_{\mathrm{L}^p(\Omega)} \le C \left[\int_{\Omega} f_{\Omega} u_n \, \mathrm{d}x + \|\nabla u_n\|_{\mathrm{W}^{-1,p}(\Omega)} \right] \to 0, \quad \text{für } n \to \infty.$$

Das folgende Lemma ist die Rechtfertigung dafür, die Stokes/Navier-Stokes-Gleichungen erst auf $L^p_{\sigma}(\Omega)$ zu lösen und liefert den zugehörigen Druck.

Hierzu definieren wir

$$f \in \mathrm{W}^{-1,p}_{\mathrm{loc}}(\Omega,\mathbb{C}^d) \iff f \in \mathrm{W}^{-1,p}(\Omega,\mathbb{C}^d)$$
f. a. beschränkten Teilgebiete $\Omega_0 \subset \Omega$ mit $\overline{\Omega}_0 \subset \Omega$

Lemma 2.10. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$, ein Gebiet und $\Omega_0 \subset \Omega$ ein beschränktes Teilgebiet mit $\overline{\Omega}_0 \subset \Omega$ und $\Omega_0 \neq \emptyset$. Weiterhin sei $1 und <math>f \in W^{-1,p}_{loc}(\Omega, \mathbb{C}^d)$ mit

$$\langle v,f\rangle_{\mathrm{W}_0^{1,p'}(\Omega),\mathrm{W}_{\mathrm{loc}}^{-1,p}(\Omega)}=0\quad \text{für alle }v\in\mathrm{C}_{\mathrm{c},\sigma}^\infty(\Omega).$$

Dann existiert ein eindeutiges $\pi \in L^p_{loc}(\Omega)$ mit

$$\nabla \pi = f$$

im Sinne von Distributionen und $\int_{\Omega_0} \pi \, dx = 0$.

Beweis. Wir beweisen erst folgende Aussage: Für jedes beschränkte Lipschitz-Teilgebiet $\Omega_1 \subset \Omega$ mit $\overline{\Omega}_0 \subset \Omega_1$ und $\overline{\Omega}_1 \subset \Omega$ existiert ein eindeutiges $\pi \in L^p(\Omega_1)$ mit $\nabla \pi = f$ im Sinne von Distributionen und $\int_{\Omega_0} \pi \, dx = 0$:

Sei Ω_2 ein weiteres beschränktes Lipschitzgebiet mit $\overline{\Omega}_1\subset\Omega_2,\overline{\Omega}_2\subset\Omega$ mit

$$\Omega_2 := (\Omega \cap \mathbf{B}(x_0, r)) \setminus \bigcup_{k=1}^N \mathbf{B}(x_n, \varepsilon)$$

so folgt aus $f \in W^{-1,p}_{loc}(\Omega, \mathbb{C}^d)$, dass $f \in W^{-1,p}(\Omega_2, \mathbb{C}^d)$. Da Ω_2 beschränkt ist, existiert (Übung) ein $F \in L^p(\Omega_2, \mathbb{C}^{d \times d})$ mit $f = \operatorname{div}(F)$, wobei

$$\operatorname{div} F = \sum_{i=1}^{d} \begin{pmatrix} \partial_{i} F_{i1} \\ \vdots \\ \partial_{i} F_{id} \end{pmatrix}.$$

Sei $\rho \in C_c^{\infty}(B(0,1))$ mit $\int_{B(0,1)} \rho \, dx = 1$, $\rho(x) = \rho(-x)$ und definiere für $0 < \varepsilon < \mathrm{dist}(\Omega_1, \partial \Omega_2)$

$$\rho_{\varepsilon}(x) \coloneqq \varepsilon^{-d} \rho\left(\frac{x}{\varepsilon}\right)$$

und

$$F^{\varepsilon} := \rho_{\varepsilon} * F$$

wobei F durch Null auf \mathbb{R}^d fortgesetzt wurde. Aus AnaIV wissen wir, dass F^{ε} glatt ist. Im Folgenden wollen wir zeigen, dass

$$\operatorname{div} F^{\varepsilon} = \nabla U_{\varepsilon} \quad \text{in } \Omega_1$$

für ein $U_{\varepsilon} \in C^{\infty}(\overline{\Omega}_1)$ gilt.

Sei $\gamma \colon [0,1] \to \overline{\Omega}_1$ ein stückweise stetig differenzierbarer Weg mit $\gamma(0) = \gamma(1)$. Aus Ana III wissen wir: div (F^{ε}) ist ein Gradientenfeld, falls für alle diese Wege gilt

$$\int_0^1 (\operatorname{div}(F^{\varepsilon}))(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t = 0.$$

Definiere

$$V_{\gamma,\varepsilon}(x) := \int_0^1 \rho_{\varepsilon}(x - \gamma(t)) \gamma'(t) dt$$
, für alle $x \in \Omega_2$.

Dann gilt $V_{\gamma,\varepsilon} \in \mathrm{C}^\infty_\mathrm{c}(\Omega_2,\mathbb{R}^d)$. Weiterhin gilt für alle $x \in \Omega_2$

$$\operatorname{div}(V_{\gamma,\varepsilon}(x)) = \int_0^1 \sum_{j=1}^d (\partial_j \rho_{\varepsilon})(x - \gamma(t)) \gamma_j'(t) \, \mathrm{d}t = -\int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \rho_{\varepsilon}(x - \gamma(t)) \, \mathrm{d}t$$
$$= \rho_{\varepsilon}(x - \gamma(0)) - \rho_{\varepsilon}(x - \gamma(1)) = 0.$$

Daraus folgt $V_{\gamma,\varepsilon} \in C^{\infty}_{c,\sigma}(\Omega_2)$ und weiter

$$\int_{0}^{1} (\operatorname{div}(F^{\varepsilon}))(\gamma(t)) \cdot \gamma'(t) dt = \int_{0}^{1} \int_{\Omega_{2}} \sum_{i,j=1}^{d} (\partial_{i} \rho_{\varepsilon}(\gamma(t) - x) \gamma'_{j}(t) dt \, F_{ij}(x) dx$$

$$= -\int_{\Omega_{2}} \int_{0}^{1} \sum_{i,j=1}^{d} \partial_{i} (\rho_{\varepsilon}(\gamma(t) - x)) \gamma'_{j}(t) dt \, F_{ij}(x) dx$$

$$= -\int_{\Omega_{2}} \sum_{i,j=1}^{d} \partial_{i} \int_{0}^{1} \rho_{\varepsilon}(x - \gamma(t)) \gamma'_{j}(t) dt \, F_{ij}(x) dx$$

$$= \langle V_{\gamma,\varepsilon}, \operatorname{div} F \rangle_{W_{0}^{1,p'}(\Omega_{2}), W^{-1,p}(\Omega_{2})}$$

$$= 0.$$

Hieraus ergibt sich dass ein $U_{\varepsilon} \in C^{\infty}(\overline{\Omega}_{1})$ existiert mit $\nabla U_{\varepsilon} = \text{div}(F^{\varepsilon})$, welches eindeutig bis auf eine additive Konstante ist. Wähle diese Konstante derart, dass $\int_{\Omega_{0}} u_{\varepsilon} dx = 0$. Lemma 2.9 liefert nun

$$||U_{\varepsilon}||_{L^{p}(\Omega_{1})} \leq C||\nabla U_{\varepsilon}||_{W^{-1,p}(\Omega_{1},\mathbb{C}^{d})} = C||\operatorname{div}(\mathcal{F}^{\varepsilon})||_{W^{-1,p}(\Omega_{1},\mathbb{C}^{d})}$$

$$= C \sup_{\substack{v \in C_{c}^{\infty}(\Omega_{1},\mathbb{C}^{d}) \\ ||v||_{W^{1,p'} \leq 1}}} \left| \sum_{j=1}^{d} \langle F_{ij}^{\varepsilon}, \nabla v_{j} \rangle_{L^{p}(\Omega_{2}),L^{p'}(\Omega_{2})} \right|$$

$$\leq C||F^{\varepsilon}||_{L^{p}(\Omega_{1})}$$

Mit demselben Argument zeigt man, dass für $0 < \eta < \varepsilon$ gilt

$$||u_{\varepsilon} - u_{\eta}||_{L^{p}(\Omega_{1})} \le C||F^{\varepsilon} - F^{\eta}||_{L^{p}(\Omega_{1})}.$$

Aus Ana IV weiß man, dass $F^{\varepsilon} \to F$ in $L^{p}(\Omega_{1}, \mathbb{C}^{d \times d})$, für $\varepsilon \to 0$ gilt, woraus mittels obiger Abschätzung folgt, dass $(U_{\varepsilon})_{\varepsilon}$ ein Cauchy-Netz in $L^{p}(\Omega_{1})$ ist. Daher existiert ein $U \in L^{p}(\Omega_{1})$ mit $\int_{\Omega_{0}} u \, dx = 0$, $||u_{\varepsilon} - u||_{L^{p}(\Omega_{1})} \to 0$ für $\varepsilon \to 0$ und

$$\begin{split} \langle v, \nabla U \rangle_{\mathbf{W}_{0}^{1,p'}(\Omega_{1}),\mathbf{W}^{-1,p}(\Omega_{1})} &= -\int_{\Omega_{1}} U \, \overline{\operatorname{div} v} \, \mathrm{d}x = -\lim_{\varepsilon \to 0} \int_{\Omega_{1}} U_{\varepsilon} \, \overline{\operatorname{div} v} \, \mathrm{d}x \\ &= \lim_{\varepsilon \to 0} \langle v, \nabla U_{\varepsilon} \rangle_{\mathbf{W}_{0}^{1,p'}(\Omega_{1}),\mathbf{W}^{-1,p}(\Omega_{1})} = \lim_{\varepsilon \to 0} \langle v, \operatorname{div} \, (F^{\varepsilon}) \rangle_{\mathbf{W}_{0}^{1,p'}(\Omega_{1}),\mathbf{W}^{-1,p}(\Omega_{1})} \\ &= \langle v, \operatorname{div} \, (F) \rangle_{\mathbf{W}_{0}^{1,p'}(\Omega_{1}),\mathbf{W}^{-1,p}(\Omega_{1})}. \end{split}$$

Also gilt $\nabla U = \operatorname{div} F$ in $W^{-1,p}(\Omega_1, \mathbb{C}^d)$.

Schöpfe Ω nun durch beschränkte Lipschitzgebiete Ω_n aus, mit $\overline{\Omega}_0 \subset \Omega_1$ und $\overline{\Omega}_n \subset \Omega_{n+1}, n \in \mathbb{N}$. Auf jedem Ω_n erhält man ein eindeutiges $\pi_n \in L^p(\Omega_n)$ mit $\nabla \pi_n = f$ und $\int_{\Omega_0} \pi_n \, \mathrm{d}x = 0$. Aus der Eindeutigkeit folgt $\pi_n = \pi_{n-1}$ auf Ω_{n-1} . Also existiert ein $\pi \in L^p_{loc}(\Omega)$ mit $\nabla \pi = f$ und $\int_{\Omega_0} \pi \, \mathrm{d}x = 0$.

Eine Anwendung für Lemma 2.10 sieht wie folgt aus: Sei A der Stokes-Operator auf $L^2_{\sigma}(\Omega)$ und $(e^{-tA})_{t\geq 0}$ die Stokes-Halbgruppe. Für $a\in L^2_{\sigma}(\Omega)$, t>0 gilt dann:

$$\frac{\mathrm{d}}{\mathrm{d}t} \underbrace{\mathrm{e}^{-tA} a}_{=:u(t)} = -A \underbrace{\mathrm{e}^{-tA} a}_{=:u(t)}.$$

Mit der Definition des Stokes-Operators folgt einerseits

$$\int_{\Omega} u'(t)\overline{v} \, \mathrm{d}x + \int_{\Omega} \nabla u(t)\overline{\nabla v} \, \mathrm{d}x = 0, \quad \text{für alle } v \in \mathrm{H}^1_{0,\sigma}(\Omega).$$

Andererseits ist für jedes t > 0

$$v \mapsto \int_{\Omega} u'(t)\overline{v} \,dx + \int_{\Omega} \nabla u(t)\overline{\nabla v} \,dx \in W^{-1,2}(\Omega, \mathbb{C}^d)$$

und mit Lemma 2.10 folgt daher, dass $\pi(t) \in \mathrm{L}^2_{\mathrm{loc}}(\Omega)$ existiert mit

$$\int_{\Omega} u'(t)\overline{v} \,dx + \int_{\Omega} \nabla u(t)\overline{\nabla v} \,dx = -\int_{\Omega} \pi(t)\overline{\operatorname{div}(v)} \,dx$$

und für alle $v \in C_c^{\infty}(\Omega, \mathbb{C}^d)$. D.h. u und π lösen im Sinne von Distributionen die Stokes-Gleichung:

$$u'(t) = -\Delta u(t) + \nabla \pi(t) = 0 \quad \text{in } \Omega,$$

$$\operatorname{div}(u(t)) = 0 \quad \text{in } \Omega,$$

$$u(0) = a \quad \text{in } \Omega,$$

$$u(t) = 0 \quad \text{auf } \partial \Omega.$$

Satz 2.11 (Helmholtz-Zerlegung). Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$ ein Gebiet und

$$G(\Omega) := \{ f \in L^2(\Omega, \mathbb{C}^d) : \text{ es existiert } \pi \in L^2_{loc}(\Omega) \text{ mit } \nabla \pi = f \}.$$

Dann gilt $L^2_{\sigma}(\Omega)^{\perp} = G(\Omega)$. Insbesondere existiert für jedes $f \in L^2(\Omega, \mathbb{C}^d)$ eine eindeutige Zerlequng

$$f = f_0 + \nabla \pi$$

mit $f_0 \in L^2_{\sigma}(\Omega)$ und $\nabla \pi \in G(\Omega)$. Weiterhin gilt

$$||f_0||_{L^2(\Omega)} \le ||f||_{L^2(\Omega)} \quad und \quad ||\nabla \pi||_{L^2(\Omega)} \le ||f||_{L^2(\Omega)}.$$

Die orthogonale Projektion

$$\mathbb{P} \colon L^2(\Omega, \mathbb{C}^d) \to L^2(\Omega, \mathbb{C}^d), \quad f \to f_0,$$

wird als Helmholtz-Projektion und obige Zerlegung als Helmholtz-Zerlegung bezeichnet.

Beweis. Es genügt $L^2_{\sigma}(\Omega)^{\perp}=G(\Omega)$ zu zeigen. Die restlichen Aussagen folgen dann aus der Funktionalanalysis.

Sei $\nabla \pi \in G(\Omega)$ und $\varphi \in C^{\infty}_{c,\gamma}(\Omega)$. Dann gilt

$$\int_{\Omega} \varphi \cdot \overline{\nabla \pi} \, \mathrm{d}x = -\int_{\Omega} \operatorname{div} \varphi \, \overline{\pi} \, \mathrm{d}x = 0.$$

Ein Dichtheitsargument liefert $\nabla \pi \in L^2_{\sigma}(\Omega)^{\perp}$.

Nun sei $f \in L^2_{\sigma}(\Omega)^{\perp}$. Dann gilt

$$\int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x \in \mathrm{W}^{-1,2}(\Omega, \mathbb{C}^d), \quad \text{für alle } v \in \mathrm{L}^2_{\sigma}(\Omega).$$

Die Hölder-Ungleichung liefert nun, dass

$$v \mapsto \int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x \in \mathrm{W}^{-1,2}(\Omega, \mathbb{C}^d).$$

Mit Lemma 2.10 folgt sodann die Existenz von $\pi \in L^2_{loc}(\Omega)$ mit $\nabla \pi = f$ im Sinne von Distributionen, d.h.

$$\int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x = -\int_{\Omega} \pi \cdot \overline{\mathrm{div} \, v} \, \mathrm{d}x, \quad \text{für alle } v \in \mathrm{C}_{c}^{\infty}(\Omega, \mathbb{C}^{d}).$$

Daraus folgt $\nabla \pi \in G(\Omega)$.

Kapitel 3

Die Ungleichung von Gagliardo-Nirenberg

Notation 3.1. Sei $-\infty < \frac{1}{p} \le 1$. Fall $0 \le \frac{1}{p} \le 1$, dann definiere

$$\|\cdot\|_{X_{\frac{1}{p}}}\coloneqq\|\cdot\|_{\mathrm{L}^p}$$

und falls $-\infty < \frac{1}{p} < 0$ sei $\alpha \in [0,1)$ und $k \in \mathbb{N}_0$ derart, dass $-\frac{d}{p} = k + \alpha$. Definiere

$$\|\cdot\|_{X^{\frac{1}{p}}} := \begin{cases} \|\nabla^k \cdot\|_{L^{\infty}}, & \alpha = 0, \\ [\nabla^k \cdot]_{\alpha}, & \alpha = 0, \end{cases}$$

wobei $[\,\cdot\,]_{\alpha}$ die Hölder-Halbnorm zum Exponenten α bezeichne.

Hauptsatz 3.2 (Gagliardo-Nirenberg). Seien $1 \le q, r < \infty, d \ge 2$ und $j, m \in \mathbb{N}_0$ mit $0 \le j \le m$. Weiterhin sei

$$\begin{cases} \frac{j}{m} \leq \alpha \leq 1, & \textit{falls } m - j - \frac{d}{r} \not \in \mathbb{N}_0 \\ \frac{j}{m} \leq \alpha < 1, & \textit{falls } m - j - \frac{d}{r} \in \mathbb{N}_0. \end{cases}$$

und

$$\frac{1}{p} := \frac{j}{d} + \alpha \left(\frac{1}{r} - \frac{m}{d} \right) + (1 - \alpha) \frac{1}{q}.$$

 $\textit{Dann ist } \tfrac{1}{p} \leq 1 \textit{ und es existiert eine Konstante}$

$$C = C(d, m, j, q, r, \alpha) > 0,$$

sodass für alle $u \in C_c^m(\mathbb{R}^d)$ gilt

$$\|\nabla^j u\|_{X_{\frac{1}{p}}} \le C \|\nabla^m u\|_{\mathbf{L}^r}^{\alpha} \|u\|_{\mathbf{L}^q}^{1-\alpha}.$$

Für den Beweis benötigen wir einige Vorbetrachtungen.

Lemma 3.3. Sei $r > d \ge 2$. Dann existiert C = C(d, r) > 0, sodass für alle $u \in C_c^1(\mathbb{R}^d)$ und $x, y \in \mathbb{R}^d$ gilt

$$\frac{|u(x) - u(y)|}{|x - y|^{1 - \frac{d}{r}}} < C \, \|\nabla u\|_{\mathbf{L}^r}.$$

Das folgende Lemma reduziert den Beweis von Haupsatz 3.2 auf wenige Spezialfälle.

Lemma 3.4. a) Angenommen die Ungleichung in Haupsatz 3.2 gelte für $\alpha = \frac{j}{m}$ mit j = 1 und m = 2, dann gilt die Ungleichung auch für $\alpha = \frac{j}{m}$ und jedes $0 \le j < m$.

- b) Angenommen die Ungleichung in Haupsatz 3.2 gelte für $\alpha = 1$, j = 0 und m = 1 (wobei $d \neq r$), dann gilt die Ungleichung auch für $\alpha = 1$ und jedes $0 \leq j < m$ varausgesetzt $m j \frac{d}{r} \notin \mathbb{N}_0$.
- c) Für alle $-\infty < \lambda \le \mu \le \nu \le 1$ existiert $C = C(\lambda, \mu, \nu) > 0$, sodass für alle $f \in X_{\nu} \cap X_{\lambda}$ die sogennante Interpolationsungleichung

$$||f||_{X_{\mu}} \le C ||f||_{X_{\lambda}}^{\frac{\nu-\mu}{\nu-\lambda}} ||f||_{X_{\mu}}^{\frac{\mu-\lambda}{\nu-\lambda}}$$

gilt. Insbesondere ist $f \in X_{\mu}$.

d) Angenommen die Ungleichung in Haupsatz 3.2 gelte für $\alpha=\frac{j}{m}$ und $\alpha=1$, dann gilt diese auch für jedes $\frac{j}{m}\leq\alpha\leq1$.

Beweis. Übung.

Nun sind wir in der Lage Haupsatz 3.2 zu beweisen.

Beweis von Haupsatz 3.2. \Box

Kapitel 4

Der Stokes-Operator auf L^p_{σ}

In diesem Kapitel eben wir einen Überblick über die L^p -Theorie der Helmholtz-Zerlegung und des Stokes-Operators.

Sei $\Omega \subset \mathbb{R}^d, d \geq 2$ offen, 1 und

$$G_p(\Omega) := \{ f \in L^p(\Omega, \mathbb{C}^d) : \text{ es ex. } \pi \in L^p_{loc}(\Omega) \text{ mit } \nabla \pi = f \}.$$

Wir sagen, dass auf Ω die Helmoltz-Zerlegung existiert, falls

$$L^p(\Omega; \mathbb{C}^d) = L^p_{\sigma}(\Omega) \oplus G_p(\Omega)$$

im Sinne einer algebraischen Summenzerlegung gilt.

Als nächstes betrachten wir folgendes Neumann-Problem (NP):

Gegeben sei $u \in L^p(\Omega; \mathbb{C}^d)$. Finde eine bis auf Konstanten eindeutige Funktion π in $L^p_{loc}(\Omega)$ mit $\nabla \pi \in L^p(\Omega; \mathbb{C}^d)$, sodass

$$\int_{\Omega} \nabla \pi \cdot \overline{f} \, \mathrm{d}x = \int_{\Omega} u \cdot \overline{f} \, \mathrm{d}x, \quad \text{für alle } f \in \mathcal{G}_{p'}(\Omega),$$

wobei $\frac{1}{p} + \frac{1}{p'} = 1$.

Formal gilt: Schreibt man $f = \nabla \phi$, wobei $\phi \in \mathrm{L}^{p'}_{\mathrm{loc}}(\Omega)$, so folgt durch partielle Integration

$$\begin{split} -\int_{\Omega} \Delta \pi \cdot \overline{\phi} \, \mathrm{d}x &= -\int_{\partial \Omega} n \cdot \nabla \pi \overline{\phi} \, \mathrm{d}s + \int_{\Omega} \nabla \pi \cdot \overline{\nabla \phi} \, \mathrm{d}x \\ &= -\int_{\partial \Omega} n \cdot \nabla \pi \overline{\phi} \, \mathrm{d}s + \int_{\Omega} u \cdot \overline{\nabla \phi} \, \mathrm{d}x \\ &= -\int_{\partial \Omega} n \cdot [u - \nabla \pi] \overline{\phi} \, \mathrm{d}x - \int_{\Omega} \mathrm{div} \, (u) \overline{\phi} \, \mathrm{d}x, \end{split}$$

d.h. ϕ löst (formal) das Neumann-Problem

$$\begin{cases} -\Delta \pi = \operatorname{div}(u) & \text{in } \Omega \\ n \cdot \nabla \pi = n \cdot u & \text{auf } \partial \Omega. \end{cases}$$

Hier bezeichnet n den äußeren Einheitsnormalenvektor von Ω .

Satz 4.1. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$, offen und 1 . Dann existiert genau dann die Helmholtz- $Zerlegung auf <math>L^p(\Omega; \mathbb{C}^d)$, wenn (NP) für alle $u \in L^p(\Omega; \mathbb{C}^d)$ lösbar ist. Beweis. " \Rightarrow ": Sei $u \in L^p(\Omega; \mathbb{C}^d)$. Dann existiert eine eindeutige Zerlegung

$$u = u_0 + \nabla \pi \text{ mit } u_0 \in L^p_{\sigma}(\Omega), \nabla \pi \in G_p(\Omega).$$

Weiterhin gilt für $f \in G_{p'}(\Omega)$

$$\int_{\Omega} \nabla \pi \cdot \overline{f} = \int_{\Omega} u \cdot \overline{f} \, \mathrm{d}x - \int_{\Omega} u_0 \overline{f} \, \mathrm{d}x = \int_{\Omega} u \cdot \overline{f} \, \mathrm{d}x,$$

da $f = \nabla \phi$ für ein $\phi \in L^{p'}_{loc}(\Omega)$ und $\phi_n \to u_0$ in L^p für eine Folge $(\phi_n)_{n \in \mathbb{N}} \subset C^{\infty}_{c,\sigma}(\Omega)$.

Eindeutigkeit folgt aus der Rückrichtung des Beweises, denn existiert ein weiteres ϑ mit $\nabla \vartheta \in G_p(\Omega)$, das (NP) löst, liefert dies eine weitere Zerlegung von u, die nach Eindeutigkeit der Helmoltz-Zerlegung $\nabla(\vartheta - \pi) = 0$ impliziert.

" \Leftarrow ": Sei $u \in L^p(\Omega; \mathbb{C}^d)$. Dann existiert $\pi \in L^p_{loc}(\Omega)$ mit $\nabla \pi \in L^p(\Omega; \mathbb{C}^d)$, sodass

(*)
$$\int_{\Omega} \nabla \pi \cdot \overline{f} \, \mathrm{d}x = \int_{\Omega} u \cdot \overline{f} \, \mathrm{d}x, \quad \text{für alle } f \in G_{p'}(\Omega).$$

Definiere $u_0 := u - \nabla \pi$. Zeige nun $u_0 \in L^p_{\sigma}(\Omega)$: Aus (*) folgt zunächst $u_0 \in G_{p'}(\Omega)^{\perp}$. Gilt nun auch noch

$$(**) L^p_{\sigma}(\Omega) \subset G_{p'}(\Omega)$$

so folgt die Behauptung aus nochmaliger Bildung des Annihilators, also

$$u_0 \in \mathcal{G}_{p'}(\Omega)^{\perp} \subset (\mathcal{L}^p_{\sigma}(\Omega)^{\perp})^{\perp} = \mathcal{L}^p_{\sigma}(\Omega).$$

Weise also (**) nach. Für $v\in \mathrm{L}^p_\sigma(\Omega)^\perp$ gilt per definitionem $v\in \mathrm{L}^{p'}(\Omega;\mathbb{C}^d)$ und

$$\int_{\Omega} v \cdot \overline{w} \, \mathrm{d}x = 0, \quad \text{für alle } w \in \mathrm{L}^p_{\sigma}(\Omega).$$

Dann liefert Lemma ??, dass ein $\phi \in L^{p'}_{loc}(\Omega)$ existiert mit

$$\int_{\Omega} v \cdot \overline{\varphi} \, \mathrm{d}x = -\int_{\Omega} \phi \, \overline{\mathrm{div}(\varphi)} \, \mathrm{d}x, \quad \text{für alle } \varphi \in \mathrm{C}_{c}^{\infty}(\Omega; \mathbb{C}^{d}).$$

Da $v \in L^{p'}(\Omega; \mathbb{C}^d)$, folgt $\nabla \phi \in L^{p'}(\Omega; \mathbb{C}^d)$ und $v = \nabla \phi$. Hieraus ergibt sich $v \in G_{p'}(\Omega)$, womit die Inklusion $L^p_{\sigma}(\Omega)^{\perp} \subset G_{p'}(\Omega)$ bewiesen wäre.

Es bleibt die Eindeutigkeit der Zerlegung $u=u_0+\nabla\pi$ zu zeigen. Angenommen

$$u_0 + \nabla \pi = \tilde{u}_0 + \nabla \tilde{\pi}, \quad \text{für } u_0, \tilde{u}_0 \in L^p_{\sigma}(\Omega) \text{ und } \nabla \pi, \nabla \tilde{\pi} \in G_p(\Omega).$$

Dies ist äquivalent dazu, dass

$$v \coloneqq u_0 - \tilde{u}_0 = \nabla(\tilde{\pi} - \pi) =: \phi.$$

Wegen $L^p_{\sigma}(\Omega) \subset G_{p'}(\Omega)^{\perp}$ folgt

$$\int_{\Omega} \nabla \phi \cdot \overline{f} \, \mathrm{d}x = 0, \quad \text{für alle } f \in \mathrm{G}_{p'}(\Omega).$$

Die Eindeutige Lösbarkeit (bis auf Addition von Konstanten) von (NP) liefert $\nabla \phi = 0$.

Satz ?? wird benutzt um die Existenz der Helmholtz-Zerlegung auf $L^p(\Omega; \mathbb{C}^d)$ zu beweisen. Auf beschränkten Lipschitz-Gebieten wurde z.B. folgendes Resultat durch Fabes, Mendez und Mitrea im Jahr 1998 bewiesen.

Hauptsatz 4.2. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 3$, ein beschränktes Lipschitz-Gebiet. Dann existiert $\varepsilon = \varepsilon(\Omega, d) > 0$, sodass für alle $\frac{3}{2} - \varepsilon die Helmholtz-Zerlegung auf <math>L^p(\Omega; \mathbb{C}^d)$ existiert. Weiterhin ist die Projektion

$$\mathbb{P} \colon \mathrm{L}^p(\Omega; \mathbb{C}^d) \to \mathrm{L}^p(\Omega; \mathbb{C}^d)$$

stetig.

Bemerkung 4.3. • Im Falle d=2 gilt Hauptsatz 4.2 für $\frac{4}{3}-\varepsilon .$

- Das Intervall $\frac{3}{2} \varepsilon in Haupsatz 4.2 ist scharf, d.h., für jedes <math>p \in (1, \infty) \setminus [\frac{3}{2}, 3]$ existiert ein bescrhänktes Lipschitz-Gebiet Ω , sodass die Helmholtz-Zerlegung auf $L^p(\Omega; \mathbb{C}^d)$ nicht existiert.
- Ist Ω beschränkt mit $C^1 Rand$ oder konvex, so gilt Hauptsatz 4.2 für 1 .
- Es existierten unbeschränkte C^{∞} -Gebiete, sodass die Helmholtz-Zerlegung für p genügend groß (aber auch für p genügend nah bei 1) nicht existiert.

Proposition 4.4. Sei $\Omega \subset \mathbb{R}^d$, $d \geq 2$, ein beschränktes Gebiet und $1 derart, dass die Helmholtz-Zerlegung auf <math>L^p(\Omega; \mathbb{C}^d)$ existiert und die zugehörige Projektion \mathbb{P}_p mit Bild $L_p^{\sigma}(\Omega)$ beschränkt ist. Dann existiert die Helmholtz-Zerlegung auf $L^{p'}(\Omega; \mathbb{C}^d)$, wobei $\frac{1}{p} + \frac{1}{p'} = 1$, die zugehörige Projektion $\mathbb{P}_{p'}$ mit Bild $L_{\sigma}^{p'}(\Omega)$ ist beschränkt, es gilt $(\mathbb{P}_p)' = \mathbb{P}_{p'}$ in dem Sinne, dass der Adjungierte von \mathbb{P}_p kanonisch als Operator auf $L^{p'}(\Omega; \mathbb{C}^d)$ aufgefasst wird. Weiterhin gilt $(L_{\sigma}^p(\Omega))' \simeq L_{\sigma}^{p'}(\Omega)$.

Beweis. Wir wissen, dass aus der Beschränktheit von \mathbb{P}_p auch die Beschränktheit von $(\mathbb{P}_p)'$ folgt. Ist \mathbb{P}_p eine Projektion, so ist insbesondere $(\mathbb{P}_p)'$ eine Projektion. Sei nun $\mathbb{P}_{p'}$ die kanonische Identifizierung von $(\mathbb{P}_p)'$ auf $L^{p'}(\Omega; \mathbb{C}^d)$. Seien $\varphi \in C_{c,\sigma}^{\infty}(\Omega)$, $f \in C_c^{\infty}(\Omega; \mathbb{C}^d)$. Dann gilt

$$\int_{\Omega} \mathbb{P}_{p'} \, \varphi \cdot \overline{f} = \int_{\Omega} \varphi \cdot \overline{\mathbb{P}_p \, f} \, \mathrm{d}x,$$

nach Definition der dualen Abbildung,

$$= \int_{\Omega} \varphi \cdot \overline{\mathbb{P}_2 f} \, \mathrm{d}x,$$

da Ω beschränkt und die Helmholtz-Zerlegung eindeutig ist und schließlich

$$= \int_{\Omega} \varphi \cdot \overline{f} \, \mathrm{d}x,$$

da \mathbb{P}_2 selbstadjungiert ist. Hieraus ergibt sich $\mathbb{P}_{p'}\varphi = \varphi$. Da $C_{c,\sigma}^{\infty}(\Omega)$ dicht liegt in $L_{\sigma}^{p'}(\Omega)$ $\mathbb{P}_{p'}$ beschränkt ist und zudem als Projektion ein abgeschlossenes Bild besitzt, folgt

$$L^{p'}_{\sigma}(\Omega) \subset Rg(\mathbb{P}_{p'}).$$

Da per constructionem $L^{p'}_{\sigma}(\Omega)$ abgeschlossen ist, gilt

$$\mathrm{Rg}(\mathbb{P}_{p'})\subset \mathrm{L}^{p'}_{\sigma}(\Omega)\quad \text{genau dann, wenn}\quad \mathrm{L}^{p'}_{\sigma}(\Omega)^{\perp}\subset \mathrm{Rg}(\mathbb{P}_{p'})^{\perp}.$$

Zeige nun die rechte Seite der Äquivalenz für die noch ausstehende Inklusion. Sei $f \in L^{p'}_{\sigma}(\Omega)^{\perp}$. Dann gilt

$$\int_{\Omega} f \cdot \overline{v} \, \mathrm{d}x = 0, \quad \text{für alle } v \in \mathrm{L}^{p'}_{\sigma}(\Omega)$$

und $f \in L^p(\Omega; \mathbb{C}^d)$. Mit Lemma ?? folgt nun die Existenz eines $\phi \in L^p_{loc}(\Omega)$ mit

$$\int_{\Omega} f \cdot \overline{v} = - \int_{\Omega} \varphi \ \overline{\operatorname{div} (v)} \, \mathrm{d}x \quad \text{für alle } v \in \mathrm{C}^{\infty}_{c}(\Omega; \mathbb{C}^{d}),$$

woraus sich $\nabla\varphi=f\in\mathrm{L}^p(\Omega;\mathbb{C}^d)$ ergibt. Nun gilt für $g\in\mathrm{L}^{p'}(\Omega;\mathbb{C}^d)$

$$\int_{\Omega} \nabla \phi \cdot \overline{\mathbb{P}_{p'} g} \, \mathrm{d}x = \int_{\Omega} \mathbb{P}_p \, \nabla \phi \cdot \overline{g} \, \mathrm{d}x = 0,$$

da $\nabla \phi \in \mathcal{G}_p(\Omega) = \ker(\mathbb{P}_p)$. Daraus folgt $f \in \mathrm{Rg}(\mathbb{P}_{p'})^{\perp}$ und folglich gilt

$$\operatorname{Rg}(\mathbb{P}_{p'})^{\perp} = \operatorname{L}_{\sigma}^{p'}(\Omega).$$