Data loading

```
In [4]:
             import pandas as pd
          2 age_train=pd.read_csv("age_train.csv",names=["uId", "age_group"])
          3 age_train.tail(10)
Out[4]:
                     uld age_group
         2009990 3512491
                                3
         2009991 3512492
                                2
         2009992 3512493
         2009993 3512494
         2009994 3512495
         2009995 3512496
         2009996 3512497
         2009997 3512498
          2009998 3512499
         2009999 3512500
                                3
             age_test=pd.read_csv("age_test.csv",names=["uId"])
In [5]:
          2 age_test.tail()
Out[5]:
                    uld
          502495 3180767
          502496 3181007
          502497 3181086
          502498 3181099
          502499 3181144
```

In [6]:

user_basic_info=pd.read_csv("user_basic_info.csv",names=["uId", "gender", "city", "prodName","ramCapuser_basic_info.tail(10)

Out[6]:

	uld	gender	city	prodName	ramCapacity	ramLeftRation	romCapacity	romLeftRation	color	fontSize	ct	C
2512490	3512472	0	c00145	p00147	4.0	0.32	64.0	0.55	幻夜 黑	1.00	wifi	China_Te
2512491	3512473	0	c0066	p009	3.0	0.36	64.0	0.66	荣耀 金	1.15	4g	China_Te
2512492	3512474	1	c00145	p00169	3.0	0.52	32.0	0.12	皓月 银	1.15	3g#wifi	China_U
2512493	3512477	0	c00106	p0044	2.0	0.27	16.0	0.24	太空 银	1.00	4g#wifi	China_N
2512494	3512478	0	c00281	p00155	6.0	0.32	64.0	0.46	备件 颜色	1.00	4g#wifi	China_Te
2512495	3512489	0	c00192	p00102	6.0	0.36	128.0	0.74	翡冷 翠	1.00	4g#wifi	China_U
2512496	3512491	0	c007	p00223	3.0	0.35	32.0	0.16	晨曦 金	NaN	NaN	China_Te
2512497	3512492	0	c0038	p0016	6.0	0.33	64.0	0.20	琥珀 金	1.00	4g#wifi	China_U
2512498	3512494	0	c0043	p0016	4.0	0.34	64.0	0.41	海鸥 灰	NaN	4g#wifi	China_N
2512499	3512495	0	c00145	p00141	6.0	0.26	68.0	0.54	银钻 灰	NaN	wifi	China_Te

Out[7]:

	uld	bootTimes	AFuncTimes	BFuncTimes	CFuncTimes	DFuncTimes	EFuncTimes	FFuncSum	GFuncSum
2512490	3512491	5	0.0	0.00	0.00	0.00	0.00	0.0	0
2512491	3512492	24	0.0	0.00	0.07	0.43	0.07	2.0	154683
2512492	3512493	5	0.0	0.00	0.47	0.23	0.00	0.0	3193
2512493	3512494	4	0.0	0.07	1.47	0.00	0.00	0.0	1306
2512494	3512495	0	0.0	0.00	0.00	0.00	0.00	0.0	0
2512495	3512496	37	0.0	0.00	0.17	0.03	0.03	0.0	19431
2512496	3512497	40	0.0	0.00	0.00	0.67	0.07	0.0	947
2512497	3512498	2	0.0	0.00	0.00	0.00	0.00	0.0	0
2512498	3512499	2	0.0	0.17	1.17	6.83	7.83	0.0	512
2512499	3512500	11	1.0	0.00	1.37	3.90	2.87	0.0	0

```
In [8]: 1 user_app_actived=pd.read_csv("user_app_actived.csv",names=["uId", "appId"])
2 user_app_actived.tail(10)
```

Out[8]:

	uld	appld
2512490	3512461	a00102782#a00104275#a00109386#a00109824#a00118
2512491	3512464	a00102720#a00109386#a00145168#a0015685#a001704
2512492	3512466	a00102939#a00109386#a00134746#a00135785#a00150
2512493	3512475	a00109386#a00144187#a00157201#a0021880#a002447
2512494	3512476	a00102448#a00109386#a00144187#a00157058#a00157
2512495	3512477	a00109386#a00121683#a00158614#a00187480#a00225
2512496	3512479	a00109386#a0011894#a00145168#a00149248#a001586
2512497	3512483	a00109386#a00135785#a0017008#a00170432#a001874
2512498	3512484	a00102895#a00109386#a00158614#a00170432#a00212
2512499	3512491	a00109386#a0012409#a00142198#a0014473#a0020705

```
In [9]: 1 app_info=pd.read_csv("app_info.csv",names=["appId", "category"])
2 app_info.tail(10)
```

Out[9]:

	appld	category
188854	a00488097	实用工具
188855	a00488109	便捷生活
188856	a00488109	实用工具
188857	a00488110	便捷生活
188858	a00488111	休闲益智
188859	a00488113	经营策略
188860	a00488114	便捷生活
188861	a00488115	实用工具
188862	a00488119	便捷生活
188863	a00488122	实用工具

In [10]: 1 merged_inner = pd.merge(left=age_train,right=user_basic_info, left_on='uId', right_on='uId')
2 merged_inner.tail()

Out[10]:

	uld	age_group	gender	city	prodName	ramCapacity	ramLeftRation	romCapacity	romLeftRation	color	fontSize	
2009995	3512496	1	0	c00245	p00210	4.0	0.55	64.0	0.33	银色	1.0	4g#w
2009996	3512497	6	0	c00136	p00208	3.0	0.41	32.0	0.76	金色	1.3	Na
2009997	3512498	2	0	c00176	p0045	2.0	0.29	16.0	0.28	银色	NaN	Nε
2009998	3512499	2	0	c00126	p0022	8.0	0.17	128.0	0.84	渐变 蓝	1.0	4g#w
2009999	3512500	3	0	c00229	p00110	4.0	0.29	64.0	0.06	琥珀金	1.0	W

```
user behavior info.head()
In [11]:
Out[11]:
                   uld bootTimes AFuncTimes BFuncTimes CFuncTimes DFuncTimes EFuncTimes FFuncSum GFuncSum
            0 1000001
                             108
                                         0.0
                                                    0.00
                                                                1.00
                                                                            0.07
                                                                                         0.0
                                                                                                   0.0
                                                                                                             3319
              1000002
                             14
                                         0.0
                                                    0.17
                                                                4.93
                                                                            1.23
                                                                                         3.9
                                                                                                   1.0
                                                                                                              245
            2 1000003
                                                    0.00
                                                                7.73
                                                                                         1.7
                                                                                                   0.0
                                                                                                             5987
                             13
                                         1.0
                                                                            3.00
            3 1000004
                              57
                                         0.0
                                                    0.03
                                                                1.37
                                                                            0.63
                                                                                         0.0
                                                                                                   0.0
                                                                                                             7460
            4 1000005
                              0
                                         0.0
                                                    0.00
                                                                0.00
                                                                            0.00
                                                                                         0.0
                                                                                                   0.0
                                                                                                                0
In [12]:
                to predict=pd.merge(left=merged inner,right=user behavior info, left on='uId', right on='uId')
             2 to predict.tail()
Out[12]:
                        uld age group gender
                                                 city prodName ramCapacity ramLeftRation romCapacity romLeftRation color ...
                                                                                                                                   car
            2009995 3512496
                                                                                                                    银色 ... China_Telec
                                    1
                                            0 c00245
                                                         p00210
                                                                        4.0
                                                                                     0.55
                                                                                                 64.0
                                                                                                              0.33
            2009996 3512497
                                    6
                                            0 c00136
                                                                                     0.41
                                                                                                 32.0
                                                                                                              0.76
                                                                                                                    金色 ...
                                                                                                                             China Unic
                                                         p00208
                                                                        3.0
            2009997 3512498
                                    2
                                            0 c00176
                                                         p0045
                                                                        2.0
                                                                                     0.29
                                                                                                 16.0
                                                                                                              0.28
                                                                                                                    银色 ...
                                                                                                                              China Mo
            2009998 3512499
                                    2
                                            0 c00126
                                                          p0022
                                                                        8.0
                                                                                     0.17
                                                                                                128.0
                                                                                                              0.84
                                                                                                                             China Unic
            2009999 3512500
                                    3
                                            0 c00229
                                                         p00110
                                                                        4.0
                                                                                     0.29
                                                                                                 64.0
                                                                                                              0.06
                                                                                                                              China Mo
           5 rows × 22 columns
             1 to predict['carrier'].unique()
In [13]:
Out[13]: array(['China Mobile', 'China Telecom', 'China Unicom', 'othercp'],
                  dtype=object)
In [14]:
             1 to predict.shape
Out[14]: (2010000, 22)
```

```
In [15]: 1 to_predict=to_predict.dropna()
2 to_predict.reset_index()
3 to_predict.shape
Out[15]: (1370640, 22)
```

Feature engineering

Out[16]:

	uld	age_group	gender	city	prodName	ramCapacity	ramLeftRation	romCapacity	romLeftRation	color	 carrier	os	bootTi
0	1000001	4	0	48	50	3.0	0.43	32.0	0.46	70	 0	8.0	
2	1000015	5	1	223	50	3.0	0.34	32.0	0.06	70	 1	8.0	
4	1000023	2	1	288	105	2.0	0.34	16.0	0.06	103	 1	7.0	
5	1000025	4	0	311	52	4.0	0.31	64.0	0.20	65	 1	8.0	
6	1000029	4	0	346	41	6.0	0.20	68.0	0.27	31	 2	9.0	
7	1000035	2	0	234	41	6.0	0.26	68.0	0.64	12	 1	9.0	
9	1000038	3	0	329	10	4.0	0.29	64.0	0.16	42	 0	7.0	
10	1000040	3	0	247	32	6.0	0.20	128.0	0.52	86	 1	9.0	
11	1000044	4	0	323	43	6.0	0.22	137.0	0.30	2	 2	9.0	
12	1000046	3	0	131	106	4.0	0.49	64.0	0.01	7	 0	7.0	
13	1000051	3	1	28	45	6.0	0.27	128.0	0.17	115	 0	8.0	

11 rows × 22 columns

```
In [17]: 1 to_predict.shape
Out[17]: (1370640, 22)
```

```
1 to predict['age group'].value counts()
In [18]:
Out[18]: 3
              406461
              345040
         2
              258685
         5
              214086
              109579
         1
               36789
         Name: age group, dtype: int64
In [66]:
          1 y data=to predict[y label]
           2 X data=to predict[X labels]
          3 # del to predict['age group']
          4 # to predict.tail()
           5 print(X data.shape)
          6 y data.shape
         (1370640, 20)
Out[66]: (1370640,)
          1 from sklearn import preprocessing
In [73]:
           2 X = X data.values #returns a numpy array
          3 min max scaler = preprocessing.MinMaxScaler()
           4 X scaled = min max scaler.fit transform(X)
           5 X scaled
          6  # df = pandas.DataFrame(x scaled)
Out[73]: array([[0.00000000e+00, 1.36363636e-01, 3.96825397e-01, ...,
                 5.00000000e-01, 0.00000000e+00, 7.98260115e-05],
                [1.00000000e+00, 6.33522727e-01, 3.96825397e-01, ...,
                 5.00000000e-01, 0.00000000e+00, 5.26264826e-04],
                [1.00000000e+00, 8.18181818e-01, 8.3333333e-01, ...,
                 5.00000000e-01, 0.00000000e+00, 0.00000000e+00],
                [0.00000000e+00, 4.43181818e-01, 5.39682540e-01, ...,
                 5.00015000e-01, 0.00000000e+00, 4.67339328e-041,
                [0.000000000e+00, 7.95454545e-02, 5.95238095e-01, ...,
                 5.03915000e-01, 0.00000000e+00, 1.23142265e-05],
                [0.00000000e+00, 3.94886364e-01, 8.73015873e-02, ...,
                 5.01435000e-01, 0.00000000e+00, 0.00000000e+00]])
```

```
In [67]: 1 y=y_data.values
2 y

Out[67]: array([4, 5, 2, ..., 1, 2, 3])
```

Model Training

```
In [77]:
          1 from sklearn.naive bayes import GaussianNB
          2 ml_m = GaussianNB()
          3 %time ml_m.fit(X_train, y_train)
            print('Accuracy of GaussianNB classifier on Test Set: {:.4f}'
                  .format(ml_m.score(X_test, y_test)))
             predicted test = ml m.predict(X test)
          8 from sklearn.metrics import classification report
          9 print(classification_report(y_test, predicted_test))
         CPU times: user 566 ms, sys: 262 ms, total: 829 ms
```

Wall time: 891 ms

Accuracy of GaussianNB classifier on Test Set: 0.2412 progration regall flagore gumpert

		precision	recall	fl-score	support
	1	0.04	0.41	0.08	7164
	2	0.28	0.53	0.37	51697
	3	0.35	0.16	0.22	81683
	4	0.38	0.12	0.19	69078
	5	0.29	0.03	0.05	42510
	6	0.28	0.59	0.38	21996
micro	avg	0.24	0.24	0.24	274128
macro	avg	0.27	0.31	0.21	274128
weighted	avg	0.32	0.24	0.22	274128

```
Wall time: 1min 37s
Accuracy of LinearSVC classifier on Test Set: 0.3390
              precision
                            recall f1-score
                                                support
           1
                    0.00
                              0.00
                                         0.00
                                                   7164
           2
                    0.36
                              0.05
                                         0.08
                                                  51697
                    0.34
                              0.80
                                         0.48
                                                  81683
           4
                    0.34
                              0.16
                                         0.22
                                                  69078
                    0.31
                              0.30
                                         0.30
                                                  42510
                    0.42
                              0.06
                                         0.10
                                                  21996
   micro avq
                    0.34
                              0.34
                                         0.34
                                                 274128
   macro avq
                    0.30
                              0.23
                                         0.20
                                                 274128
weighted avg
                    0.34
                              0.34
                                         0.27
                                                 274128
```

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1143: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

'precision', 'predicted', average, warn for)

Prediction for test set and submission

```
In [89]: 1 merged_inner_test = pd.merge(left=age_test,right=user_basic_info, left_on='uId', right_on='uId')
2 to_predict_ontest=pd.merge(left=merged_inner_test,right=user_behavior_info, left_on='uId', right_on='uId', right_on='uId',
```

(502500, 21) (342926, 21)

Out[89]:

	uld	gender	city	prodName	ramCapacity	ramLeftRation	romCapacity	romLeftRation	color	fontSize	 carrier	os	bootTime
1	1000003	0	219	4	8.0	0.35	128.0	0.60	78	1.00000	 0	9.0	1
2	1000004	1	195	22	3.0	0.36	32.0	0.09	18	1.00000	 0	8.0	ŧ
5	1000007	1	310	120	6.0	0.20	137.0	0.50	12	1.00000	 1	9.0	1
6	1000008	1	294	39	6.0	0.36	128.0	0.47	84	1.15000	 1	8.0	
7	1000009	0	332	39	6.0	0.39	64.0	0.23	97	1.15000	 0	8.0	2
9	1000012	0	198	48	4.0	0.31	64.0	0.39	65	1.30001	 0	8.0	ξ
10	1000013	0	131	38	4.0	0.49	64.0	0.48	97	1.00000	 0	8.0	2
11	1000014	1	310	2	6.0	0.49	128.0	0.58	31	1.00000	 0	9.0	11
12	1000016	0	343	89	3.0	0.41	32.0	0.46	99	1.00000	 2	7.0	1
13	1000017	1	293	11	4.0	0.29	64.0	0.04	65	1.15000	 0	8.0	2
15	1000020	0	223	80	4.0	0.38	64.0	0.09	28	1.00000	 2	8.0	1

11 rows × 21 columns

```
test labels=["gender", "city", "prodName", "ramCapacity", "ramLeftRation", "romCapacity", "romLeftRation
In [90]:
             test data=to predict ontest[test labels]
             from sklearn import preprocessing
             test = test data.values #returns a numpy array
             min max scaler = preprocessing.MinMaxScaler()
             test scaled = min max scaler.fit transform(test)
             test scaled
          10
          11
          12 | # test scaled=test
Out[90]: array([[0.00000000e+00, 6.23931624e-01, 3.27868852e-02, ...,
                 3.79937888e-01, 0.00000000e+00, 3.65952114e-04],
                [1.00000000e+00, 5.5555556e-01, 1.80327869e-01, ...,
                 3.78881988e-01, 0.00000000e+00, 4.55988436e-041,
                 [1.00000000e+00, 8.83190883e-01, 9.83606557e-01, ...,
                 3.79670807e-01, 0.00000000e+00, 0.00000000e+00],
                 [0.000000000e+00, 9.37321937e-01, 6.06557377e-01, ...,
                 3.79254658e-01, 5.00000000e-02, 5.80437827e-041,
                [1.000000000e+00, 4.13105413e-01, 1.88524590e-01, ...,
                 3.78881988e-01, 0.00000000e+00, 0.00000000e+00],
                [0.000000000e+00, 3.10541311e-01, 1.80327869e-01, ...,
                 3.80726708e-01, 0.00000000e+00, 8.04397831e-05]])
In [91]:
             predicted = lsvc pri model.predict(test scaled)
           2 predicted
Out[91]: array([5, 2, 5, ..., 5, 5, 2])
           1 print(to predict ontest['uId'].shape)
In [92]:
           2 print(len(predicted))
         (342926,)
         342926
In [93]:
           1 | sub df=pd.DataFrame(to predict ontest['uId']).reset index(drop=True)
           2 sub df['label']=predicted
```

```
In [94]: 1 sub_df.columns=['id','label']
2 sub_df.to_csv("submission.csv",index=False)
3 print("submission.csv is saved sucessfully!")
submission.csv is saved sucessfully!
```

In []: 1