Chapter 5

Using Jupyter Notebook

Working with styles

Loading Stacked Bar Graph

```
In [3]: # %Load https://matplotlib.org/ downloads/a35b828c62f6d56bd84f2ca8d6670a5e/bar
        _stacked.pv
        # This command did not load the graph but only the code, I had to re-run for i
        t to display the graph
        ==========
        Stacked Bar Graph
        _____
        This is an example of creating a stacked bar plot with error bars
        using `~matplotlib.pyplot.bar`. Note the parameters *yerr* used for
        error bars, and *bottom* to stack the women's bars on top of the men's
        bars.
        .....
        import numpy as np
        import matplotlib.pyplot as plt
        N = 5
        menMeans = (20, 35, 30, 35, 27)
        womenMeans = (25, 32, 34, 20, 25)
        menStd = (2, 3, 4, 1, 2)
        womenStd = (3, 5, 2, 3, 3)
        ind = np.arange(N) # the x locations for the groups
                         # the width of the bars: can also be len(x) sequence
        width = 0.35
        p1 = plt.bar(ind, menMeans, width, yerr=menStd)
        p2 = plt.bar(ind, womenMeans, width,
                     bottom=menMeans, yerr=womenStd)
        plt.ylabel('Scores')
        plt.title('Scores by group and gender')
        plt.xticks(ind, ('G1', 'G2', 'G3', 'G4', 'G5'))
        plt.yticks(np.arange(0, 81, 10))
        plt.legend((p1[0], p2[0]), ('Men', 'Women'))
        plt.show()
```


Displaying an image from the web


```
In [5]: # Importing image in pdf format
    from IPython.display import set_matplotlib_formats
    set_matplotlib_formats('pdf', 'svg')
    from IPython.display import Image
    Embed = Image('https://si.wsj.net/public/resources/images/B3-DM077_RIGHTS_M_20
    190319163907.jpg')
    Embed
```

Out[5]:

Chapter 6

Uploading, Streaming, and Sampling Data

Uploading small amounts of data into memory

```
In [1]: with open("Colors.txt", 'r') as open_file:
            print('Colors.txt content:\n' + open_file.read())
        Colors.txt content:
        Color
                Value
        Red
                1
        Orange 2
        Yellow
                3
        Green
        Blue
                5
        Purple 6
        Black
                7
        White
                8
```

Streaming large amounts of data into memory

```
In [2]: with open("Colors.txt", 'r') as open_file:
            for observation in open_file:
                print('Reading Data: ' + observation)
        Reading Data: Color
                                Value
        Reading Data: Red
                                 1
        Reading Data: Orange
        Reading Data: Yellow
                                 3
        Reading Data: Green
                                 4
        Reading Data: Blue
        Reading Data: Purple
        Reading Data: Black
                                 7
        Reading Data: White
                                 8
```

Generating variations on image data

```
In [3]: import matplotlib.pyplot as plt
import matplotlib.image as img
%matplotlib inline

image = img.imread("Colorblk.jpg")
print(image.shape)
print(image.size)
plt.imshow(image)
plt.show()
(100, 100, 3)
```

30000

Sampling data in different ways

Reading Line: 0 Content: Color Value

Reading Line: 2 Content: Orange 2

Reading Line: 4 Content: Green 4

Reading Line: 6 Content: Purple 6

Reading Line: 8 Content: White 8

Accessing Data in Structured Flat-File Form

Reading from a text file

```
In [6]:
        import pandas as pd
        color_table = pd.io.parsers.read_table("Colors.txt")
        print(color_table)
            Color Value
        0
              Red
        1 Orange
                       2
        2 Yellow
                       3
            Green
                       4
                       5
        4
             Blue
        5 Purple
                       6
                       7
            Black
            White
```

Reading CSV delimited format

```
In [7]: import pandas as pd
titanic = pd.io.parsers.read_csv("Titanic.csv")
X = titanic[['age']]
print(X)
```

	200
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	age 29.0000 0.9167 2.0000 30.0000 25.0000 48.0000 39.0000 71.0000 47.0000 26.0000 24.0000 24.0000 26.0000 32.0000 32.0000 37.0000 47.0000 47.0000 26.0000 27.0000
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1299 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303	14.0000 22.0000 22.0000 9999.0000 9999.0000 32.5000 38.0000 51.0000 18.0000 47.0000 9999.0000 9999.0000 28.5000 21.0000 27.0000 9999.0000 36.0000 27.0000 45.5000 9999.0000

```
1304
                 14.5000
         1305 9999.0000
         1306
                 26.5000
         1307
                 27.0000
         1308
                 29.0000
         [1309 rows x 1 columns]
In [8]: | X = titanic[['age']].values
         print(X)
         [[29.
          [ 0.91670001]
          [ 2.
          . . .
          [26.5
          [27.
                      ]
                       ]]
          [29.
```

Reading Excel and other Microsoft Office files

	Angla (Dagnass)	Cina	Cocino	Tangont
0	Angle (Degrees)	Sine	Cosine	Tangent
0 1	138.550574	0.661959		-0.883153
2	305.535745	-0.813753	0.581211	-1.400100
3	280.518695 216.363795	-0.983195 -0.592910	0.182556	-5.385709
3 4			-0.805269	0.736289
	36.389247	0.593268	0.805005	0.736974
5	31.474311	0.522116	0.852874	0.612184
6	120.121669	0.864962	-0.501838	-1.723588
7	293.947055	-0.913921	0.405892	-2.251634
8	179.882632	0.002048	-0.999998	-0.002048
9	120.927562	0.857818	-0.513954	-1.669056
10	71.349485	0.947487	0.319795	2.962796
11	241.971082	-0.882711	-0.469917	1.878439
12	297.208817	-0.889346	0.457235	-1.945053
13	142.004551	0.615599	-0.788060	-0.781158
14	173.770696	0.108508	-0.994096	-0.109152
15	229.232002	-0.757360	-0.652998	1.159820
16	67.926976	0.926706	0.375788	2.466033
17	261.866575	-0.989941	-0.141479	6.997102
18	59.185450	0.858830	0.512261	1.676547
19	98.029275	0.990197	-0.139679	-7.089086
20	9.336088	0.162225	0.986754	0.164403
21	90.746371	0.999915	-0.013026	-76.761483
22	217.798087	-0.612881	-0.790175	0.775626
23	58.616049	0.853697	0.520771	1.639295
24	197.196367	-0.295647	-0.955297	0.309482
25	331.194892	-0.481832	0.876264	-0.549871
26	6.509875	0.113374	0.993552	0.114110
27	266.390707	-0.998017	-0.062952	15.853513
28	230.323819	-0.769665	-0.638448	1.205525
29	314.224257	-0.716615	0.697469	-1.027452
• •	•••			
42	324.080564		0.809843	-0.724396
43	140.893727	0.630761		-0.812860
44	128.226889		-0.618777	-1.269547
45				7.882680
46	303.112455		0.546284	-1.533268
47		0.261780	-0.965127	-0.271239
48	218.829827			0.804878
49	28.649593	0.479452	0.877568	0.546341
50	349.336296		0.982730	-0.188296
51	84.889713	0.996025	0.089073	11.182105
52	197.935862	-0.307952	-0.951402	0.323683
53	303.049380	-0.838201	0.545362	-1.536963
54	183.737235	-0.065181	-0.997873	0.065320
55	346.153919	-0.239314	0.970942	-0.246477
56		-0.626913	-0.779089	0.804674
57		-0.898557		2.047498
58	115.600771	0.901827		-2.087089
59		0.809974		-1.381111
60		-0.343567		0.365836
61	337.860807		0.926271	-0.406855
62		0.204889		-0.209330
63		-0.812000	0.583657	-1.391229
64	162.656078	0.298107		-0.312306
65	219.007899		-0.777059	0.810012
66	222.830465	-0.679831	-0.733368	0.926998

```
67 324.199562 -0.584964 0.811059 -0.721234
68 187.948172 -0.138277 -0.990394 0.139619
69 270.678249 -0.999930 0.011837 -84.472139
70 270.779159 -0.999908 0.013598 -73.530885
71 200.213513 -0.345520 -0.938412 0.368196
```

Sending Data in Unstructured File Form

[72 rows x 4 columns]

data type: <class 'numpy.ndarray'>, shape: (90, 90)

```
In [12]: image2 = image[5:70,0:70]
    plt.imshow(image2, cmap=cm.gray)
    plt.show()
```

```
10 -
20 -
30 -
40 -
50 -
60 -
0 10 20 30 40 50 60
```

data type: <class 'numpy.ndarray'>, shape: (30, 30)

data type: <class 'numpy.ndarray'>, shape: (900,)

Managing Data from Relational Databases

```
In [15]: from sqlalchemy import create_engine
  engine = create_engine('sqlite:///:memory:')
```

Accessing Data from the Web

```
Number String Boolean
0 1 First True
1 2 Second False
2 3 Third True
3 4 Fourth False
```

```
In [ ]:
```