Lab 4

Conie O'Malley

2025-02-09

Table of contents

1	Part	1: Primary Data Wrangling Verbs in dplyr and tidyr	3
	1.1	Deliverable 1: Call the iris dataset, and then use the group_by() function to	
		group the iris data by the variable Species, and then use the summarize() func-	
		tion using (avg = mean(Sepal.Width)) in the argument, and then, arrange by	
		average by using the arrange() function with avg in the argument	4
	1.2	Deliverable 2: Randomly select a fraction of 0.5 rows from the iris dataset	9
	1.3	Deliverable 3: Summarize the Data in the iris dataset	12
	1.4	Deliverable 3: Identify Christmas Flights	17
	1.5	Deliverable 4: Use the mutate()	22
	1.6	Deliverable 5: Use the pipe operator to create an object called delays which 1.	
		Groups flights by destination; 2. Summarizes and computes distance, average	
		delay, and number of flights; and 3. Filter to remove noisy points and Honolulu	
		airport	25
2	Part	2: Handling Missing Values with dplyr	26
	2.1	Deliverable 6: Practicing group_by	26
3	Part	3: Practicing Data Wrangling on Real Text Mining Projects	27
	3.1	Deliverable 7: Tokenize the impeachtidy dataset using the unnest_tokens()	
		function on the "TEXT" variable/column to separate the text, so that it has	
		one token per row and store that output in a new object called impeach_words.	28
	3.2	Deliverable 8: Apply the built-in stopwords dictionary to our impeach_words	
		dataset using the anti_join() function. Use the pipe capabilities %>% of the	
		tidyverse	29
	3.3	Deliverable 9: Count the most frequently occurring words in the dataset	30
	3.4	Deliverable 10: Visualize this count using the ggplot2 package. Create a bar-	
		chart of all the words occurring more than 600 times in the dataset (you could	

```
3.5 Deliverable 11: Combining all the steps using the pipe capabilities of dplyr.
  3.6 Deliverable 12: Group by speaker then explore the object and visualize the results. 34
  3.7 Deliverable 13: Exploring .txt files using tm package . . . . . . . . . . . . . . .
                                                                       36
  36
  3.9 Deliverable 15: Create a Document Term Matrix (DTM) of the igfbali corpus.
                                                                       37
  3.10 Deliverable 16: Exploring the Document Term Matrix (DTM) . . . . . . . . .
                                                                       37
  3.11 Deliverable 17: Finding Word Associations in the DTM . . . . . . . . . . . . . . .
                                                                      41
4 Part 4: Introduction to Data Wrangling in Python
                                                                      48
  4.1 Deliverable 19: Tokenization, Stemming, and Lemmatization of the Reuters
      48
  4.2 Deliverable 20: Conducting a Basic Parts of Speech Tagging of the Reuters
      49
  4.3 Deliverable 21: Full Text Processing Pipeline for the Reuters Corpus . . . . .
packages <- c("rvest", "tm", "readr", "tm.plugin.mail", "Rcrawler", "RSelenium", "xml2", "tid
             "tidytext", "nycflights13")
for (i in packages){
  if (!require(i, character.only = TRUE)) {
   renv::install(i)
 }
 library(i, character.only = TRUE)
Loading required package: rvest
Loading required package: tm
Warning: package 'tm' was built under R version 4.3.3
Loading required package: NLP
Warning: package 'NLP' was built under R version 4.3.3
Loading required package: readr
```

Attaching package: 'readr'

```
The following object is masked from 'package:rvest':
     guess_encoding
Loading required package: tm.plugin.mail
Warning: package 'tm.plugin.mail' was built under R version 4.3.3
Loading required package: Rcrawler
Loading required package: RSelenium
Loading required package: xml2
Loading required package: tidyverse
Warning: package 'lubridate' was built under R version 4.3.3
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --

      v dplyr
      1.1.4
      v purrr
      1.0.2

      v forcats
      1.0.0
      v stringr
      1.5.1

      v ggplot2
      3.5.1
      v tibble
      3.2.1

      v lubridate
      1.9.4
      v tidyr
      1.3.1

                                         1.0.2
-- Conflicts ----- tidyverse_conflicts() --
x ggplot2::annotate() masks NLP::annotate()
x dplyr::filter()
                              masks stats::filter()
x readr::guess_encoding() masks rvest::guess_encoding()
x dplyr::lag()
                              masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
Loading required package: tidytext
Loading required package: nycflights13
library(dplyr)
library(ggplot2)
```

1 Part 1: Primary Data Wrangling Verbs in dplyr and tidyr

dplyr::as_tibble(iris) # Convert data frame to tibble

```
# A tibble: 150 x 5
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          <dbl>
                       <dbl>
                                    <dbl>
                                                 <dbl> <fct>
1
            5.1
                         3.5
                                       1.4
                                                   0.2 setosa
            4.9
2
                         3
                                       1.4
                                                   0.2 setosa
3
            4.7
                         3.2
                                       1.3
                                                   0.2 setosa
4
            4.6
                         3.1
                                       1.5
                                                   0.2 setosa
5
                                       1.4
            5
                         3.6
                                                   0.2 setosa
6
            5.4
                         3.9
                                       1.7
                                                   0.4 setosa
7
            4.6
                         3.4
                                       1.4
                                                   0.3 setosa
8
                         3.4
                                       1.5
                                                   0.2 setosa
            5
9
            4.4
                         2.9
                                       1.4
                                                   0.2 setosa
10
            4.9
                         3.1
                                       1.5
                                                   0.1 setosa
# i 140 more rows
```

```
dplyr::glimpse(iris) # view data description
```

```
Rows: 150

Columns: 5

$ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.~

$ Sepal.Width <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.~

$ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.~

$ Petal.Width <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.~

$ Species <fct> setosa, setos
```

1.1 Deliverable 1: Call the iris dataset, and then use the group_by() function to group the iris data by the variable Species, and then use the summarize() function using (avg = mean(Sepal.Width)) in the argument, and then, arrange by average by using the arrange() function with avg in the argument.

```
iris %>%
  dplyr::group_by(Species) %>% # group by species
  dplyr::summarise(avg = mean(Sepal.Width)) %>% # calculate mean by sepal width
  dplyr::arrange(avg) # arrange by average
```

```
# A tibble: 3 x 2
   Species avg
   <fct> <dbl>
1 versicolor 2.77
2 virginica 2.97
3 setosa 3.43
```

dplyr::filter(iris, Sepal.Length >7) # filter rows where sepal length is greater than 7

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	7.1	3.0	5.9	2.1	virginica
2	7.6	3.0	6.6	2.1	virginica
3	7.3	2.9	6.3	1.8	virginica
4	7.2	3.6	6.1	2.5	virginica
5	7.7	3.8	6.7	2.2	virginica
6	7.7	2.6	6.9	2.3	virginica
7	7.7	2.8	6.7	2.0	virginica
8	7.2	3.2	6.0	1.8	virginica
9	7.2	3.0	5.8	1.6	virginica
10	7.4	2.8	6.1	1.9	virginica
11	7.9	3.8	6.4	2.0	virginica
12	7.7	3.0	6.1	2.3	virginica

dplyr::distinct(iris) # view distinct values in iris

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa

16	5.7	4.4	1.5	0.4	setosa
17	5.4	3.9	1.3	0.4	setosa
18	5.1	3.5	1.4	0.3	setosa
19	5.7	3.8	1.7	0.3	setosa
20	5.1	3.8	1.5	0.3	setosa
21	5.4	3.4	1.7	0.2	setosa
22	5.1	3.7	1.5	0.4	setosa
23	4.6	3.6	1.0	0.2	setosa
24	5.1	3.3	1.7	0.5	setosa
25	4.8	3.4	1.9	0.2	setosa
26	5.0	3.0	1.6	0.2	setosa
27	5.0	3.4	1.6	0.4	setosa
28	5.2	3.5	1.5	0.2	setosa
29	5.2	3.4	1.4	0.2	setosa
30	4.7	3.2	1.6	0.2	setosa
31	4.8	3.1	1.6	0.2	setosa
32	5.4	3.4	1.5	0.4	setosa
33	5.2	4.1	1.5	0.1	setosa
34	5.5	4.2	1.4	0.2	setosa
35	4.9	3.1	1.5	0.2	setosa
36	5.0	3.2	1.2	0.2	setosa
37	5.5	3.5	1.3	0.2	setosa
38	4.9	3.6	1.4	0.1	setosa
39	4.4	3.0	1.3	0.2	setosa
40	5.1	3.4	1.5	0.2	setosa
41	5.0	3.5	1.3	0.3	setosa
42	4.5	2.3	1.3	0.3	setosa
43	4.4	3.2	1.3	0.2	setosa
44	5.0	3.5	1.6	0.6	setosa
45	5.1	3.8	1.9	0.4	setosa
46	4.8	3.0	1.4	0.3	setosa
47	5.1	3.8	1.6	0.2	setosa
48	4.6	3.2	1.4	0.2	setosa
49	5.3	3.7	1.5	0.2	setosa
50	5.0	3.3	1.4	0.2	setosa
51	7.0	3.2	4.7		rsicolor
52	6.4	3.2	4.5		rsicolor
53	6.9	3.1	4.9		rsicolor
54	5.5	2.3	4.0		rsicolor
55	6.5	2.8	4.6		rsicolor
56	5.7	2.8	4.5		rsicolor
57	6.3	3.3	4.7		rsicolor
58	4.9	2.4	3.3	1.0 ve	rsicolor

59	6.6	2.9	4.6	1.3 versicolor
60	5.2	2.7	3.9	1.4 versicolor
61	5.0	2.0	3.5	1.0 versicolor
62	5.9	3.0	4.2	1.5 versicolor
63	6.0	2.2	4.0	1.0 versicolor
64	6.1	2.9	4.7	1.4 versicolor
65	5.6	2.9	3.6	1.3 versicolor
66	6.7	3.1	4.4	1.4 versicolor
67	5.6	3.0	4.5	1.5 versicolor
68	5.8	2.7	4.1	1.0 versicolor
69	6.2	2.2	4.5	1.5 versicolor
70	5.6	2.5	3.9	1.1 versicolor
71	5.9	3.2	4.8	1.8 versicolor
72	6.1	2.8	4.0	1.3 versicolor
73	6.3	2.5	4.9	1.5 versicolor
74	6.1	2.8	4.7	1.2 versicolor
75	6.4	2.9	4.3	1.3 versicolor
76	6.6	3.0	4.4	1.4 versicolor
77	6.8	2.8	4.8	1.4 versicolor
78	6.7	3.0	5.0	1.7 versicolor
79	6.0	2.9	4.5	1.5 versicolor
80	5.7	2.6	3.5	1.0 versicolor
81	5.5	2.4	3.8	1.1 versicolor
82	5.5	2.4	3.7	1.0 versicolor
83	5.8	2.7	3.9	1.2 versicolor
84	6.0	2.7	5.1	1.6 versicolor
85	5.4	3.0	4.5	1.5 versicolor
86	6.0	3.4	4.5	1.6 versicolor
87	6.7	3.1	4.7	1.5 versicolor
88	6.3	2.3	4.4	1.3 versicolor
89	5.6	3.0	4.1	1.3 versicolor
90	5.5	2.5	4.0	1.3 versicolor
91	5.5	2.6	4.4	1.2 versicolor
92	6.1	3.0	4.6	1.4 versicolor
93	5.8	2.6	4.0	1.2 versicolor
94	5.0	2.3	3.3	1.0 versicolor
95	5.6	2.7	4.2	1.3 versicolor
96	5.7	3.0	4.2	1.2 versicolor
97	5.7	2.9	4.2	1.3 versicolor
98	6.2	2.9	4.3	1.3 versicolor
99	5.1	2.5	3.0	1.1 versicolor
100	5.7	2.8	4.1	1.3 versicolor
101	6.3	3.3	6.0	2.5 virginica
				v_r_6u

102	5.8	2.7	5.1	1.9	virginica
103	7.1	3.0	5.9	2.1	virginica
104	6.3	2.9	5.6	1.8	virginica
105	6.5	3.0	5.8	2.2	virginica
106	7.6	3.0	6.6	2.1	virginica
107	4.9	2.5	4.5	1.7	virginica
108	7.3	2.9	6.3	1.8	virginica
109	6.7	2.5	5.8	1.8	virginica
110	7.2	3.6	6.1	2.5	virginica
111	6.5	3.2	5.1	2.0	virginica
112	6.4	2.7	5.3	1.9	virginica
113	6.8	3.0	5.5	2.1	virginica
114	5.7	2.5	5.0	2.0	virginica
115	5.8	2.8	5.1	2.4	virginica
116	6.4	3.2	5.3	2.3	virginica
117	6.5	3.0	5.5	1.8	virginica
118	7.7	3.8	6.7	2.2	virginica
119	7.7	2.6	6.9	2.3	virginica
120	6.0	2.2	5.0	1.5	virginica
121	6.9	3.2	5.7	2.3	virginica
122	5.6	2.8	4.9	2.0	virginica
123	7.7	2.8	6.7	2.0	virginica
124	6.3	2.7	4.9	1.8	virginica
125	6.7	3.3	5.7	2.1	virginica
126	7.2	3.2	6.0	1.8	virginica
127	6.2	2.8	4.8	1.8	virginica
128	6.1	3.0	4.9	1.8	virginica
129	6.4	2.8	5.6	2.1	virginica
130	7.2	3.0	5.8	1.6	virginica
131	7.4	2.8	6.1	1.9	virginica
132	7.9	3.8	6.4	2.0	virginica
133	6.4	2.8	5.6	2.2	virginica
134	6.3	2.8	5.1	1.5	virginica
135	6.1	2.6	5.6	1.4	virginica
136	7.7	3.0	6.1	2.3	virginica
137	6.3	3.4	5.6	2.4	virginica
138	6.4	3.1	5.5	1.8	virginica
139	6.0	3.0	4.8	1.8	virginica
140	6.9	3.1	5.4	2.1	virginica
141	6.7	3.1	5.6	2.4	virginica
142	6.9	3.1	5.1	2.3	virginica
143	6.8	3.2	5.9	2.3	virginica
144	6.7	3.3	5.7	2.5	virginica

145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

1.2 Deliverable 2: Randomly select a fraction of 0.5 rows from the iris dataset

dplyr::sample_frac(iris, 0.5, replace = TRUE) # sample half of the data with replacement

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.2	4.1	1.5	0.1	setosa
2	6.7	3.1	4.4	1.4	versicolor
3	6.8	3.2	5.9	2.3	virginica
4	6.5	3.0	5.5	1.8	virginica
5	6.3	2.3	4.4	1.3	versicolor
6	7.3	2.9	6.3	1.8	virginica
7	5.5	2.4	3.8	1.1	versicolor
8	6.5	3.2	5.1	2.0	virginica
9	5.1	3.8	1.6	0.2	setosa
10	5.5	3.5	1.3	0.2	setosa
11	5.1	3.3	1.7	0.5	setosa
12	5.5	2.4	3.7	1.0	versicolor
13	5.8	2.7	4.1	1.0	versicolor
14	5.2	3.4	1.4	0.2	setosa
15	6.4	2.7	5.3	1.9	virginica
16	6.8	2.8	4.8	1.4	versicolor
17	5.4	3.4	1.7	0.2	setosa
18	7.1	3.0	5.9	2.1	virginica
19	6.3	2.3	4.4	1.3	versicolor
20	5.1	3.7	1.5	0.4	setosa
21	5.4	3.4	1.7	0.2	setosa
22	6.3	2.7	4.9	1.8	virginica
23	5.7	2.5	5.0	2.0	virginica
24	6.7	3.1	5.6	2.4	virginica
25	7.2	3.0	5.8	1.6	virginica
26	6.3	2.9	5.6	1.8	virginica
27	7.6	3.0	6.6	2.1	virginica
28	6.3	3.3	6.0	2.5	virginica
29	5.0	2.0	3.5	1.0	versicolor

20	ΕΛ	2 /	1 7	0.0	aa+aaa
30	5.4	3.4	1.7	0.2	setosa
31	4.3	3.0	1.1	0.1	setosa
32	6.7	3.3	5.7	2.5	virginica
33	7.2	3.0	5.8	1.6	virginica
34	6.9	3.1	5.4	2.1	virginica
35	6.7	2.5	5.8	1.8	virginica
36	6.1	3.0	4.6		versicolor
37	7.0	3.2	4.7		versicolor
38	5.2	3.4	1.4	0.2	setosa
39	4.6	3.2	1.4	0.2	setosa
40	5.0	3.2	1.2	0.2	setosa
41	5.1	3.5	1.4	0.2	setosa
42	5.7	2.8	4.1	1.3	versicolor
43	5.1	3.5	1.4	0.2	setosa
44	6.2	2.9	4.3	1.3	versicolor
45	6.0	2.2	5.0	1.5	virginica
46	5.4	3.7	1.5	0.2	setosa
47	5.1	3.5	1.4	0.3	setosa
48	6.7	3.3	5.7	2.1	virginica
49	7.7	2.6	6.9	2.3	virginica
50	4.3	3.0	1.1	0.1	setosa
51	5.8	2.7	3.9	1.2	versicolor
52	5.8	2.6	4.0	1.2	versicolor
53	5.7	2.9	4.2	1.3	versicolor
54	5.7	2.8	4.5	1.3	versicolor
55	6.1	3.0	4.6	1.4	versicolor
56	5.5	2.6	4.4	1.2	versicolor
57	5.0	3.2	1.2	0.2	setosa
58	5.5	2.4	3.8	1.1	versicolor
59	5.7	2.5	5.0	2.0	virginica
60	6.2	2.2	4.5	1.5	versicolor
61	5.7	3.8	1.7	0.3	setosa
62	4.7	3.2	1.6	0.2	setosa
63	5.7	4.4	1.5	0.4	setosa
64	5.5	2.6	4.4	1.2	versicolor
65	6.3	2.8	5.1	1.5	virginica
66	5.0	3.4	1.5	0.2	setosa
67	5.2	3.5	1.5	0.2	setosa
68	4.8	3.4	1.6	0.2	setosa
69	5.8	2.6	4.0	1.2	versicolor
70	4.9	2.4	3.3	1.0	versicolor
71	4.6	3.4	1.4	0.3	setosa
72	4.4	2.9	1.4	0.2	setosa

```
73
             5.1
                          3.7
                                         1.5
                                                      0.4
                                                               setosa
74
             5.4
                          3.7
                                         1.5
                                                      0.2
                                                               setosa
75
             5.4
                                         1.5
                          3.4
                                                      0.4
                                                               setosa
```

dplyr::sample_n(iris, 20, replace = TRUE) # sample 20 random rows of data

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
                                                            Species
            5.7
                          3.0
                                        4.2
1
                                                     1.2 versicolor
            4.9
2
                          3.1
                                        1.5
                                                     0.1
                                                             setosa
3
            7.7
                          3.8
                                        6.7
                                                     2.2
                                                         virginica
4
            6.9
                          3.1
                                        5.4
                                                     2.1
                                                          virginica
            7.2
                          3.2
5
                                        6.0
                                                     1.8
                                                         virginica
6
            5.4
                          3.4
                                        1.7
                                                     0.2
                                                             setosa
7
            6.9
                          3.1
                                        5.4
                                                     2.1
                                                          virginica
8
            6.5
                          3.0
                                        5.8
                                                     2.2
                                                         virginica
9
            4.7
                          3.2
                                        1.6
                                                     0.2
                                                             setosa
10
            6.7
                          3.3
                                        5.7
                                                     2.5 virginica
11
            6.5
                          3.2
                                        5.1
                                                     2.0
                                                          virginica
12
            5.4
                          3.4
                                        1.7
                                                     0.2
                                                             setosa
13
            4.9
                          3.1
                                        1.5
                                                     0.2
                                                             setosa
14
            5.7
                          2.8
                                        4.5
                                                     1.3 versicolor
15
            5.5
                          2.4
                                        3.8
                                                     1.1 versicolor
16
            5.7
                          2.6
                                        3.5
                                                     1.0 versicolor
17
            6.4
                          2.7
                                        5.3
                                                     1.9 virginica
18
            6.3
                          2.5
                                        4.9
                                                     1.5 versicolor
19
             4.8
                          3.4
                                        1.9
                                                     0.2
                                                             setosa
20
            7.1
                          3.0
                                        5.9
                                                     2.1 virginica
```

dplyr::slice(iris, 20:25) # slice rows from index 20 to 25

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1
           5.1
                       3.8
                                     1.5
                                                 0.3
                                                      setosa
2
           5.4
                       3.4
                                     1.7
                                                 0.2
                                                      setosa
           5.1
                       3.7
3
                                     1.5
                                                 0.4
                                                      setosa
4
           4.6
                       3.6
                                                 0.2 setosa
                                     1.0
5
           5.1
                       3.3
                                     1.7
                                                  0.5
                                                      setosa
6
           4.8
                       3.4
                                     1.9
                                                  0.2 setosa
```

dplyr::top_n(storms, 20, wind) # get top 20 storms with highest wind speed

```
# A tibble: 24 x 13
  name
           year month
                        day hour
                                    lat long status
                                                        category wind pressure
  <chr>
          <dbl> <dbl> <dbl> <fct>
                                                           <dbl> <int>
                                                                          <int>
 1 Allen
                    8
                          5
                               12
                                   15.9 -70.5 hurricane
                                                                            932
           1980
                                                               5
                                                                   155
                               12 21
2 Allen
           1980
                    8
                          7
                                        -84.8 hurricane
                                                               5
                                                                   155
                                                                            910
3 Allen
           1980
                                   21.8 -86.4 hurricane
                                                                            899
                    8
                          7
                               18
                                                               5
                                                                   165
4 Allen
         1980
                    8
                                0 22.2 -87.9 hurricane
                                                               5
                                                                   155
                                                                            920
5 Allen
           1980
                    8
                          9
                                6 25
                                        -94.2 hurricane
                                                               5
                                                                   155
                                                                            909
6 Gilbert 1988
                                0 19.7 -83.8 hurricane
                                                                   160
                                                                            888
                    9
                         14
                                                               5
7 Gilbert 1988
                    9
                         14
                                6 19.9 -85.3 hurricane
                                                               5
                                                                   155
                                                                            889
                               18 16.9 -83.1 hurricane
                                                                            905
8 Mitch
           1998
                   10
                         26
                                                               5
                                                                   155
9 Mitch
                         27
                                0 17.2 -83.8 hurricane
                                                               5
           1998
                   10
                                                                   155
                                                                            910
10 Rita
           2005
                    9
                         22
                                3 24.7 -87.3 hurricane
                                                               5
                                                                   155
                                                                            895
# i 14 more rows
# i 2 more variables: tropicalstorm_force_diameter <int>,
   hurricane_force_diameter <int>
```

1.3 Deliverable 3: Summarize the Data in the iris dataset

```
dplyr::summarize(iris, avg = mean(Petal.Length)) # calculate average petal length
    avg
1 3.758
dplyr::mutate_each(iris, funs = mean) #
Warning: `mutate_each()` was deprecated in dplyr 0.7.0.
i Please use `across()` instead.
Warning: There was 1 warning in `mutate()`.
i In argument: `Species = (function (x, ...) ...`.
Caused by warning in `mean.default()`:
! argument is not numeric or logical: returning NA
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1
        5.843333
                    3.057333
                                     3.758
                                              1.199333
                                                            NΑ
2
        5.843333
                    3.057333
                                     3.758
                                              1.199333
                                                            NA
3
                                     3.758
        5.843333
                    3.057333
                                              1.199333
                                                            NA
4
        5.843333
                    3.057333
                                     3.758
                                              1.199333
                                                            NA
```

5	5.843333	3.057333	3.758	1.199333	NA
6	5.843333	3.057333	3.758	1.199333	NA
7	5.843333	3.057333	3.758	1.199333	NA
8	5.843333	3.057333	3.758	1.199333	NA
9	5.843333	3.057333	3.758	1.199333	NA
10	5.843333	3.057333	3.758	1.199333	NA
11	5.843333	3.057333	3.758	1.199333	NA
12	5.843333	3.057333	3.758	1.199333	NA
13	5.843333	3.057333	3.758	1.199333	NA
14	5.843333	3.057333	3.758	1.199333	NA
15	5.843333	3.057333	3.758	1.199333	NA
16	5.843333	3.057333	3.758	1.199333	NA
17	5.843333	3.057333	3.758	1.199333	NA
18	5.843333	3.057333	3.758	1.199333	NA
19	5.843333	3.057333	3.758	1.199333	NA
20	5.843333	3.057333	3.758	1.199333	NA
21	5.843333	3.057333	3.758	1.199333	NA
22	5.843333	3.057333	3.758	1.199333	NA
23	5.843333	3.057333	3.758	1.199333	NA
24	5.843333	3.057333	3.758	1.199333	NA
25	5.843333	3.057333	3.758	1.199333	NA
26	5.843333	3.057333	3.758	1.199333	NA
27	5.843333	3.057333	3.758	1.199333	NA
28	5.843333	3.057333	3.758	1.199333	NA
29	5.843333	3.057333	3.758	1.199333	NA
30	5.843333	3.057333	3.758	1.199333	NA
31	5.843333	3.057333	3.758	1.199333	NA
32	5.843333	3.057333	3.758	1.199333	NA
33	5.843333	3.057333	3.758	1.199333	NA
34	5.843333	3.057333	3.758	1.199333	NA
35	5.843333	3.057333	3.758	1.199333	NA
36	5.843333	3.057333	3.758	1.199333	NA
37	5.843333	3.057333	3.758	1.199333	NA
38	5.843333	3.057333	3.758	1.199333	NA
39	5.843333	3.057333	3.758	1.199333	NA
40	5.843333	3.057333	3.758	1.199333	NA
41	5.843333	3.057333	3.758	1.199333	NA
42	5.843333	3.057333	3.758	1.199333	NA
43	5.843333	3.057333	3.758	1.199333	NA
44	5.843333	3.057333	3.758	1.199333	NA
45	5.843333	3.057333	3.758	1.199333	NA
46	5.843333	3.057333	3.758	1.199333	NA
47	5.843333	3.057333	3.758	1.199333	NA

48	5.843333	3.057333	3.758	1.199333	NA
49	5.843333	3.057333	3.758	1.199333	NA
50	5.843333	3.057333	3.758	1.199333	NA
51	5.843333	3.057333	3.758	1.199333	NA
52	5.843333	3.057333	3.758	1.199333	NA
53	5.843333	3.057333	3.758	1.199333	NA
54	5.843333	3.057333	3.758	1.199333	NA
55	5.843333	3.057333	3.758	1.199333	NA
56	5.843333	3.057333	3.758	1.199333	NA
57	5.843333	3.057333	3.758	1.199333	NA
58	5.843333	3.057333	3.758	1.199333	NA
59	5.843333	3.057333	3.758	1.199333	NA
60	5.843333	3.057333	3.758	1.199333	NA
61	5.843333	3.057333	3.758	1.199333	NA
62	5.843333	3.057333	3.758	1.199333	NA
63	5.843333	3.057333	3.758	1.199333	NA
64	5.843333	3.057333	3.758	1.199333	NA
65	5.843333	3.057333	3.758	1.199333	NA
66	5.843333	3.057333	3.758	1.199333	NA
67	5.843333	3.057333	3.758	1.199333	NA
68	5.843333	3.057333	3.758	1.199333	NA
69	5.843333	3.057333	3.758	1.199333	NA
70	5.843333	3.057333	3.758	1.199333	NA
71	5.843333	3.057333	3.758	1.199333	NA
72	5.843333	3.057333	3.758	1.199333	NA
73	5.843333	3.057333	3.758	1.199333	NA
74	5.843333	3.057333	3.758	1.199333	NA
75	5.843333	3.057333	3.758	1.199333	NA
76	5.843333	3.057333	3.758	1.199333	NA
77	5.843333	3.057333	3.758	1.199333	NA
78	5.843333	3.057333	3.758	1.199333	NA
79	5.843333	3.057333	3.758	1.199333	NA
80	5.843333	3.057333	3.758	1.199333	NA
81	5.843333	3.057333	3.758	1.199333	NA
82	5.843333	3.057333	3.758	1.199333	NA
83	5.843333	3.057333	3.758	1.199333	NA
84	5.843333	3.057333	3.758	1.199333	NA
85	5.843333	3.057333	3.758	1.199333	NA
86	5.843333	3.057333	3.758	1.199333	NA
87	5.843333	3.057333	3.758	1.199333	NA
88	5.843333	3.057333	3.758	1.199333	NA
89	5.843333	3.057333	3.758	1.199333	NA
90	5.843333	3.057333	3.758	1.199333	NA

91	5.843333	3.057333	3.758	1.199333	NA
92	5.843333	3.057333	3.758	1.199333	NA
93	5.843333	3.057333	3.758	1.199333	NA
94	5.843333	3.057333	3.758	1.199333	NA
95	5.843333	3.057333	3.758	1.199333	NA
96	5.843333	3.057333	3.758	1.199333	NA
97	5.843333	3.057333	3.758	1.199333	NA
98	5.843333	3.057333	3.758	1.199333	NA
99	5.843333	3.057333	3.758	1.199333	NA
100	5.843333	3.057333	3.758	1.199333	NA
101	5.843333	3.057333	3.758	1.199333	NA
102	5.843333	3.057333	3.758	1.199333	NA
103	5.843333	3.057333	3.758	1.199333	NA
104	5.843333	3.057333	3.758	1.199333	NA
105	5.843333	3.057333	3.758	1.199333	NA
106	5.843333	3.057333	3.758	1.199333	NA
107	5.843333	3.057333	3.758	1.199333	NA
108	5.843333	3.057333	3.758	1.199333	NA
109	5.843333	3.057333	3.758	1.199333	NA
110	5.843333	3.057333	3.758	1.199333	NA
111	5.843333	3.057333	3.758	1.199333	NA
112	5.843333	3.057333	3.758	1.199333	NA
113	5.843333	3.057333	3.758	1.199333	NA
114	5.843333	3.057333	3.758	1.199333	NA
115	5.843333	3.057333	3.758	1.199333	NA
116	5.843333	3.057333	3.758	1.199333	NA
117	5.843333	3.057333	3.758	1.199333	NA
118	5.843333	3.057333	3.758	1.199333	NA
119	5.843333	3.057333	3.758	1.199333	NA
120	5.843333	3.057333	3.758	1.199333	NA
121	5.843333	3.057333	3.758	1.199333	NA
122	5.843333	3.057333	3.758	1.199333	NA
123	5.843333	3.057333	3.758	1.199333	NA
124	5.843333	3.057333	3.758	1.199333	NA
125	5.843333	3.057333	3.758	1.199333	NA
126	5.843333	3.057333	3.758	1.199333	NA
127	5.843333	3.057333	3.758	1.199333	NA
128	5.843333	3.057333	3.758	1.199333	NA
129	5.843333	3.057333	3.758	1.199333	NA
130	5.843333	3.057333	3.758	1.199333	NA
131	5.843333	3.057333	3.758	1.199333	NA
132	5.843333	3.057333	3.758	1.199333	NA
133	5.843333	3.057333	3.758	1.199333	NA

134	5.843333	3.057333	3.758	1.199333	NA
135	5.843333	3.057333	3.758	1.199333	NA
136	5.843333	3.057333	3.758	1.199333	NA
137	5.843333	3.057333	3.758	1.199333	NA
138	5.843333	3.057333	3.758	1.199333	NA
139	5.843333	3.057333	3.758	1.199333	NA
140	5.843333	3.057333	3.758	1.199333	NA
141	5.843333	3.057333	3.758	1.199333	NA
142	5.843333	3.057333	3.758	1.199333	NA
143	5.843333	3.057333	3.758	1.199333	NA
144	5.843333	3.057333	3.758	1.199333	NA
145	5.843333	3.057333	3.758	1.199333	NA
146	5.843333	3.057333	3.758	1.199333	NA
147	5.843333	3.057333	3.758	1.199333	NA
148	5.843333	3.057333	3.758	1.199333	NA
149	5.843333	3.057333	3.758	1.199333	NA
150	5.843333	3.057333	3.758	1.199333	NA

dplyr::count(iris, Species, wt = Sepal.Length) # count species based on sepal length

Species n setosa 250.3

2 versicolor 296.8

3 virginica 329.4

nycflights13::flights

i 336,766 more rows

A tibble: 336,776 x 19

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	1	517	515	2	830	819
2	2013	1	1	533	529	4	850	830
3	2013	1	1	542	540	2	923	850
4	2013	1	1	544	545	-1	1004	1022
5	2013	1	1	554	600	-6	812	837
6	2013	1	1	554	558	-4	740	728
7	2013	1	1	555	600	-5	913	854
8	2013	1	1	557	600	-3	709	723
9	2013	1	1	557	600	-3	838	846
10	2013	1	1	558	600	-2	753	745

- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

dplyr::filter(flights, month == 6, day == 19) # filter flights from June 19

A tibble: 985 x 19

	year	month	day	dep_time	sched_dep_time	<pre>dep_delay</pre>	arr_time	<pre>sched_arr_time</pre>
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	6	19	7	2359	8	355	345
2	2013	6	19	455	500	-5	639	640
3	2013	6	19	535	540	-5	800	807
4	2013	6	19	540	545	-5	920	922
5	2013	6	19	541	540	1	837	840
6	2013	6	19	544	548	-4	900	857
7	2013	6	19	548	545	3	833	819
8	2013	6	19	552	600	-8	732	712
9	2013	6	19	553	600	-7	653	725
10	2013	6	19	553	600	-7	708	725

- # i 975 more rows
- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

jan1 <- dplyr::filter(flights, month == 1, day ==1) # filter flights for January 1st</pre>

1.4 Deliverable 3: Identify Christmas Flights

(dec25 <- dplyr::filter(flights, month == 12, day == 25)) # filter for Christmas flights

A tibble: 719 x 19

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time <dbl> <int> <int> <int> <int> <int> <int> <int> 1 2013 12 25 456 500 649 651 2 2013 12 25 524 515 9 805 814 3 2013 12 25 542 540 2 832 850 4 2013 12 25 546 550 -4 1022 1027 5 2013 12 25 556 600 -4 730 745 6 2013 12 25 557 600 -3 743 752

```
2013
                   25
                           557
                                           600
                                                       -3
                                                                818
                                                                                831
7
            12
   2013
                   25
                           559
                                                                855
8
            12
                                           600
                                                       -1
                                                                                856
9 2013
            12
                   25
                           559
                                           600
                                                       -1
                                                                849
                                                                                855
10 2013
            12
                   25
                           600
                                           600
                                                        0
                                                                850
                                                                                846
```

- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

```
dplyr::count(dec25) -> dec25_flights # count number of Christmas flights
```

There were 719 flights that departed on December 25th.

```
#dplyr::filter(flights, month = 1)
dplyr::filter(flights, month == 1)
```

A tibble: 27,004 x 19

	year	${\tt month}$	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	1	517	515	2	830	819
2	2013	1	1	533	529	4	850	830
3	2013	1	1	542	540	2	923	850
4	2013	1	1	544	545	-1	1004	1022
5	2013	1	1	554	600	-6	812	837
6	2013	1	1	554	558	-4	740	728
7	2013	1	1	555	600	-5	913	854
8	2013	1	1	557	600	-3	709	723
9	2013	1	1	557	600	-3	838	846
10	2013	1	1	558	600	-2	753	745

[#] i 26,994 more rows

- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

The error occurs with the use of a single '=' sign, which tells R that you want to assign month the value of 1, which cannot be done in this case with the filter function where you are trying to identify month values of 1 (January). The correct operator for equality is '=='.

```
dplyr::filter(flights, month == 11 | month == 12) # filter for flights in November or December
```

[#] i 709 more rows

```
# A tibble: 55,403 x 19
```

	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	11	1	5	2359	6	352	345
2	2013	11	1	35	2250	105	123	2356
3	2013	11	1	455	500	-5	641	651
4	2013	11	1	539	545	-6	856	827
5	2013	11	1	542	545	-3	831	855
6	2013	11	1	549	600	-11	912	923
7	2013	11	1	550	600	-10	705	659
8	2013	11	1	554	600	-6	659	701
9	2013	11	1	554	600	-6	826	827
10	2013	11	1	554	600	-6	749	751

i 55,393 more rows

- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

```
count(dplyr::filter(flights, month == 11 | month == 12)) -> nov_dec_flights # count number or
```

There were 55403 flights that departed in November or December.

```
nov_dec <- dplyr::filter(flights, month %in% c(11,12)) # filter for flights in November or De
if (nov_dec_flights == count(nov_dec)){ # use if statement to check if the outputs are equivalent
print("These flights are the same!")
}</pre>
```

[1] "These flights are the same!"

```
dplyr::arrange(flights, year, month, day) # sort by year, month, and day
```

A tibble: 336,776 x 19

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time <dbl> <int> <int> <int> <int> <int> <int> <int> 1 2013 1 2 830 1 517 515 819 2 2013 1 1 533 529 4 850 830 3 2013 1 542 2 923 850 1 540 4 2013 1 1 544 545 -1 1004 1022 5 2013 554 837 1 600 -6 812 6 2013 1 554 558 -4 740 728

7	2013	1	1	555	600	-5	913	854
8	2013	1	1	557	600	-3	709	723
9	2013	1	1	557	600	-3	838	846
10	2013	1	1	558	600	-2	753	745

- # i 336,766 more rows
- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

dplyr::arrange(flights, desc(arr_delay)) # sort by arrival delay in descending order

A tibble: 336,776 x 19

	year	${\tt month}$	day	${\tt dep_time}$	$sched_dep_time$	${\tt dep_delay}$	${\tt arr_time}$	sched_arr_time
	<int $>$	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	9	641	900	1301	1242	1530
2	2013	6	15	1432	1935	1137	1607	2120
3	2013	1	10	1121	1635	1126	1239	1810
4	2013	9	20	1139	1845	1014	1457	2210
5	2013	7	22	845	1600	1005	1044	1815
6	2013	4	10	1100	1900	960	1342	2211
7	2013	3	17	2321	810	911	135	1020
8	2013	7	22	2257	759	898	121	1026
9	2013	12	5	756	1700	896	1058	2020
10	2013	5	3	1133	2055	878	1250	2215

- # i 336,766 more rows
- # i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
- # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
- # hour <dbl>, minute <dbl>, time_hour <dttm>

dplyr::select(flights, year, month, day) # select only the year, month, and day columns

A tibble: 336,776 x 3

```
8 2013 1 1
9 2013 1 1
10 2013 1 1
# i 336,766 more rows
```

dplyr::select(flights, year:day) # select from the year column to the day column

```
# A tibble: 336,776 x 3
    year month
                 day
   <int> <int> <int>
1 2013
             1
                   1
2
   2013
                   1
             1
3 2013
             1
                   1
   2013
             1
5 2013
                   1
             1
6 2013
             1
                   1
7 2013
             1
                   1
8 2013
             1
                   1
9 2013
             1
                   1
10 2013
             1
                   1
# i 336,766 more rows
```

dplyr::select(flights, -(year:day)) # remove the year, month, and day columns

A tibble: 336,776 x 16

dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier <dbl> <dbl> <chr> <int> <int> <int> <int> 11 UA 20 UA 33 AA -1 -18 B6 -6 -25 DL -4 12 UA -5 19 B6 -3 -14 EV -3 -8 B6 -2 8 AA

[#] i 336,766 more rows

[#] i 9 more variables: flight <int>, tailnum <chr>, origin <chr>, dest <chr>,

[#] air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

A tibble: 336,776 x 19

	year	month	day	dep_time	sched_dep_time	<pre>dep_delay</pre>	arr_time	sched_arr_time
	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<int></int>	<int></int>
1	2013	1	1	517	515	2	830	819
2	2013	1	1	533	529	4	850	830
3	2013	1	1	542	540	2	923	850
4	2013	1	1	544	545	-1	1004	1022
5	2013	1	1	554	600	-6	812	837
6	2013	1	1	554	558	-4	740	728
7	2013	1	1	555	600	-5	913	854
8	2013	1	1	557	600	-3	709	723
9	2013	1	1	557	600	-3	838	846
10	2013	1	1	558	600	-2	753	745

[#] i 336,766 more rows

1.5 Deliverable 4: Use the mutate()

```
flights_sml <- dplyr::select(flights, year:day, tidyselect::ends_with("delay"),distance, air
dplyr::mutate(flights_sml, gain = arr_delay - dep_delay, speed = distance/air_time*60) # add</pre>
```

A tibble: 336,776 x 9

	year	${\tt month}$	day	<pre>dep_delay</pre>	arr_delay	${\tt distance}$	$\verb"air_time"$	gain	speed
	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	2013	1	1	2	11	1400	227	9	370.
2	2013	1	1	4	20	1416	227	16	374.
3	2013	1	1	2	33	1089	160	31	408.
4	2013	1	1	-1	-18	1576	183	-17	517.
5	2013	1	1	-6	-25	762	116	-19	394.
6	2013	1	1	-4	12	719	150	16	288.
7	2013	1	1	-5	19	1065	158	24	404.
8	2013	1	1	-3	-14	229	53	-11	259.
9	2013	1	1	-3	-8	944	140	-5	405.
10	2013	1	1	-2	8	733	138	10	319.
# i	336,	766 moi	re rows	3					

[#] i 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,

[#] tail_num <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,

[#] hour <dbl>, minute <dbl>, time_hour <dttm>

```
dplyr::mutate(flights_sml, gain = arr_delay - dep_delay, hours = air_time/60, gain_per_hour
# A tibble: 336,776 x 10
                day dep_delay arr_delay distance air_time gain hours
   year month
  <int> <int> <int>
                        <dbl>
                                  <dbl>
                                           <dbl>
                                                    <dbl> <dbl> <dbl>
 1 2013
                                            1400
                                                              9 3.78
            1
                  1
                            2
                                     11
                                                      227
2 2013
            1
                            4
                                     20
                                                      227
                                                            16 3.78
                  1
                                            1416
3 2013
                            2
                                     33
                                                            31 2.67
            1
                  1
                                            1089
                                                      160
4 2013
                                    -18
                                            1576
                                                      183
                                                          -17 3.05
                  1
                           -1
5 2013
            1
                  1
                           -6
                                    -25
                                             762
                                                     116 -19 1.93
6 2013
            1
                  1
                           -4
                                     12
                                             719
                                                     150
                                                            16 2.5
7 2013
            1
                 1
                           -5
                                    19
                                            1065
                                                     158
                                                          24 2.63
8 2013
                           -3
                                             229
                                                      53 -11 0.883
            1
                  1
                                    -14
9 2013
            1
                  1
                           -3
                                     -8
                                             944
                                                      140 -5 2.33
10 2013
            1
                  1
                           -2
                                      8
                                             733
                                                      138
                                                             10 2.3
# i 336,766 more rows
# i 1 more variable: gain_per_hour <dbl>
dplyr::transmute(flights, gain = arr_delay - dep_delay, hours = air_time/60, gain_per_hour =
# A tibble: 336,776 x 3
   gain hours gain_per_hour
   <dbl> <dbl>
                      <dbl>
     9 3.78
                       2.38
 1
 2
     16 3.78
                       4.23
 3
     31 2.67
                      11.6
    -17 3.05
                      -5.57
5
    -19 1.93
                      -9.83
    16 2.5
                      6.4
6
7
     24 2.63
                       9.11
    -11 0.883
8
                     -12.5
9
     -5 2.33
                      -2.14
10
     10 2.3
                       4.35
# i 336,766 more rows
dplyr::summarize(flights, delay = mean(dep_delay, na.rm=TRUE)) # calculate the average depar
# A tibble: 1 x 1
 delay
  <dbl>
1 12.6
```

```
`summarise()` has grouped output by 'year', 'month'. You can override using the
`.groups` argument.
# A tibble: 365 x 4
# Groups: year, month [12]
   year month
              day delay
   <int> <int> <int> <dbl>
 1 2013
           1
                1 11.5
 2 2013
           1
                  2 13.9
 3 2013
            1
                3 11.0
 4 2013
           1
                4 8.95
           1 5 5.73
1 6 7.15
 5 2013
 6 2013
                7 5.42
           1
 7 2013
 8 2013
           1
                8 2.55
           1
                9 2.28
 9 2013
10 2013
            1
                10 2.84
# i 355 more rows
by_dest <- dplyr::group_by(flights, dest)</pre>
delay <- dplyr::summarize(by_dest, count=n(), dist=mean(distance, na.rm=TRUE),</pre>
        delay=mean(arr_delay, na.rm=TRUE)) # calculate average distance and delay by destine
delay <- filter(delay, count >20, dest != "HNL") # remove Honolulu and flights with less that
ggplot2::ggplot(data = delay, mapping = aes(x=dist, y=delay))+
  geom_point(aes(size=count), alpha = 1/3)+
  geom_smooth(se=FALSE) +
  theme_minimal() +
  labs(title="Average Delay by Distance", x="Distance (miles)",
  y="Delay (minutes)") # plot average delay by distance
```

by_day <- dplyr::group_by(flights, year, month, day) # assign flights to days

dplyr::summarize(by_day, delay = mean(dep_delay, na.rm=TRUE)) # calculate delay by day

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

1.6 Deliverable 5: Use the pipe operator to create an object called delays which 1. Groups flights by destination; 2. Summarizes and computes distance, average delay, and number of flights; and 3. Filter to remove noisy points and Honolulu airport.

```
delays <- flights %>%  # create delays object
   dplyr::group_by(dest) %>%
   dplyr::summarize(count=n(), dist=mean(distance, na.rm=TRUE), delay=mean(arr_delay, na.rm=Trdplyr::filter(count > 20, dest != "HNL")

daily <- dplyr::group_by(flights, year, month, day)
   (per_day <- dplyr::summarize(daily, flights=n()))

`summarise()` has grouped output by 'year', 'month'. You can override using the
`.groups` argument.

# A tibble: 365 x 4

# Groups: year, month [12]
    year month day flights
   <int> <int< <int> <in
```

```
1 2013
                  842
        1
            1
2 2013
         1
             2
                  943
3 2013
             3
         1
                  914
4 2013
         1
            4
                  915
            5
5 2013
        1
                  720
             6
6 2013
         1
                  832
             7
7 2013
        1
                  933
8 2013
                  899
9 2013
         1
                  902
10 2013
             10
                  932
# i 355 more rows
```

```
daily %>%
  dplyr::ungroup() %>%
  dplyr::summarize(flights=n()) # count the number of total flights

# A tibble: 1 x 1
  flights
     <int>
1 336776
```

2 Part 2: Handling Missing Values with dplyr

2.1 Deliverable 6: Practicing group_by

```
flights %>%
  dplyr::group_by(year, month, day) %>% # group by date
 dplyr::summarize(mean=mean(dep_delay)) # calculate mean departure delay
`summarise()` has grouped output by 'year', 'month'. You can override using the
`.groups` argument.
# A tibble: 365 x 4
# Groups:
           year, month [12]
   year month
                day mean
  <int> <int> <int> <dbl>
 1 2013
            1
                  1
                       NA
2 2013
            1
                  2
                       NA
```

```
5 2013
                5 NA
            1
            1 6 NA
1 7 NA
6 2013
7 2013
          1
8 2013
            1
                8 NA
9 2013
           1
                9 NA
10 2013 1
                10
                      NA
# i 355 more rows
flights %>%
  dplyr::group_by(year, month, day) %>%
 dplyr::summarize(mean=mean(dep_delay, na.rm=TRUE)) # calculate departure delay after remov
`summarise()` has grouped output by 'year', 'month'. You can override using the
`.groups` argument.
# A tibble: 365 x 4
# Groups: year, month [12]
   year month
              day mean
   <int> <int> <int> <dbl>
1 2013
                1 11.5
          1
           1 2 13.9
2 2013
3 2013 1 3 11.0
4 2013 1 4 8.95
5 2013 1 5 5.73
6 2013 1 6 7.15
            1 7 5.42
1 8 2.55
7 2013
8 2013
               9 2.28
9 2013
            1
10 2013
            1
                10 2.84
# i 355 more rows
```

3 Part 3: Practicing Data Wrangling on Real Text Mining Projects

```
impeachtidy <- readr::read_tsv("/Users/coniecakes/Library/CloudStorage/OneDrive-Personal/001</pre>
```

Rows: 10987 Columns: 5

3 2013 1

1

4 2013

NA

NA

```
-- Column specification ------

Delimiter: "\t"

chr (4): SPEAKER, MAIN SPEAKER, ROLE, TEXT

date (1): HEARING

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

3.1 Deliverable 7: Tokenize the impeachtidy dataset using the unnest_tokens() function on the "TEXT" variable/column to separate the text, so that it has one token per row and store that output in a new object called impeach_words.

```
impeach_words <- impeachtidy %>%
  tidytext::unnest_tokens(word,TEXT) # tokenize the "TEXT" column into individual words
impeach_words
```

```
# A tibble: 376,436 x 5
  HEARING
              SPEAKER
                          `MAIN SPEAKER` ROLE
                                                  word
              <chr>
                         <chr>
                                                  <chr>
  <date>
                                         <chr>
1 2019-11-20 Adam Schiff D-Schiff
                                         Democrat your
2 2019-11-20 Adam Schiff D-Schiff
                                         Democrat interest
3 2019-11-20 Adam Schiff D-Schiff
                                         Democrat in
4 2019-11-20 Adam Schiff D-Schiff
                                         Democrat being
5 2019-11-20 Adam Schiff D-Schiff
                                         Democrat here
6 2019-11-20 Adam Schiff D-Schiff
                                         Democrat in
7 2019-11-20 Adam Schiff D-Schiff
                                         Democrat turn
8 2019-11-20 Adam Schiff D-Schiff
                                         Democrat we
9 2019-11-20 Adam Schiff D-Schiff
                                         Democrat ask
10 2019-11-20 Adam Schiff D-Schiff
                                         Democrat for
# i 376,426 more rows
```

```
data(stop_words) # load stop words data
head(stop_words) # view first and last few rows of stop words data
```

```
2 a's SMART
3 able SMART
4 about SMART
5 above SMART
6 according SMART
```

tail(stop_words)

```
# A tibble: 6 x 2
 word
           lexicon
  <chr>
           <chr>>
1 you
           onix
2 young
           onix
3 younger
           onix
4 youngest onix
5 your
           onix
6 yours
           onix
```

3.2 Deliverable 8: Apply the built-in stopwords dictionary to our impeach_words dataset using the anti_join() function. Use the pipe capabilities %>% of the tidyverse.

```
impeach_clean <- impeach_words %>%
   dplyr::anti_join(stop_words) # remove stop words from the "word" column
```

Joining with `by = join_by(word)`

$impeach_clean$

```
# A tibble: 133,884 x 5
              SPEAKER
  HEARING
                          `MAIN SPEAKER` ROLE
                                                  word
   <date>
              <chr>
                          <chr>
                                         <chr>
                                                  <chr>
1 2019-11-20 Adam Schiff D-Schiff
                                         Democrat respect
2 2019-11-20 Adam Schiff D-Schiff
                                         Democrat proceed
3 2019-11-20 Adam Schiff D-Schiff
                                         Democrat hearing
4 2019-11-20 Adam Schiff D-Schiff
                                         Democrat intention
5 2019-11-20 Adam Schiff D-Schiff
                                         Democrat committee
6 2019-11-20 Adam Schiff D-Schiff
                                         Democrat proceed
```

```
7 2019-11-20 Adam Schiff D-Schiff
8 2019-11-20 Adam Schiff D-Schiff
9 2019-11-20 Adam Schiff D-Schiff
10 2019-11-20 Adam Schiff D-Schiff
11 Democrat 11
12 Democrat steps
133,874 more rows
```

3.3 Deliverable 9: Count the most frequently occurring words in the dataset.

```
impeach_clean %>%
  dplyr::count(word, sort = TRUE) # count occurrences of each word and sort by frequency
# A tibble: 9,176 x 2
  word
                  n
              <int>
  <chr>
1 president
               5049
2 ukraine
               1872
3 ambassador 1802
4 trump
               1632
5 call
               1210
6 zelensky
               1130
7 correct
               1096
8 meeting
                889
9 time
                805
10 sondland
                795
# i 9,166 more rows
```

```
top_10 <- head(impeach_clean, 10)</pre>
```

The top 10 words in order are: c(18220, 18220, 18220, 18220, 18220, 18220, 18220, 18220, 18220, 18220, 18220, c("Adam Schiff", "Adam Schiff", "D-Schiff", "D

3.4 Deliverable 10: Visualize this count using the ggplot2 package. Create a barchart of all the words occurring more than 600 times in the dataset (you could adjust that by changing the filter() parameter).

```
impeach_clean %>%
  dplyr::count(word, sort = TRUE) %>%
  dplyr::filter(n>600) %>%
  dplyr::mutate(word=reorder(word,n)) %>%
  ggplot2::ggplot(aes(word,n)) +
  ggplot2::geom_col() +
  ggplot2::xlab(NULL) +
  ggplot2::coord_flip() +
  ggplot2::theme_minimal()
```


3.5 Deliverable 11: Combinining all the steps using the pipe capabilities of dplyr.

impeachtidy <- readr::read_tsv("/Users/coniecakes/Library/CloudStorage/OneDrive-Personal/001</pre>

Rows: 10987 Columns: 5

```
-- Column specification -----
Delimiter: "\t"
chr (4): SPEAKER, MAIN SPEAKER, ROLE, TEXT
date (1): HEARING
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
impeach_words <- impeachtidy %>%
  tidytext::unnest_tokens(word,TEXT) %>%
  dplyr::anti_join(stop_words) # tokenize words and remove stop words
Joining with `by = join_by(word)`
impeach_clean <- impeach_words %>%
  dplyr::anti_join(stop_words) # remove stop words again
Joining with `by = join_by(word)`
impeach_clean %>% # visualize the words used in the impeachment
  dplyr::count(word, sort = TRUE) %>%
  dplyr::filter(n>600) %>%
  dplyr::mutate(word=reorder(word,n)) %>%
  ggplot2::ggplot(aes(word,n)) +
  ggplot2::geom_col() +
  ggplot2::xlab(NULL) +
  ggplot2::coord_flip() +
  ggplot2::theme_minimal()
```



```
impeach_words <- impeachtidy %>%
  tidytext::unnest_tokens(word,TEXT) %>%
  dplyr::count(SPEAKER, word, sort=TRUE) %>%
  dplyr::ungroup()
impeach_words # count the impeach words by speaker and word
```

```
# A tibble: 64,655 x 3
  SPEAKER
                  word
                            n
   <chr>
                  <chr> <int>
 1 Daniel Goldman the
                         1890
2 Adam Schiff
                         1831
3 Stephen Castor the
                         1823
4 Daniel Goldman that
                         1603
5 Devin Nunes
                  the
                         1219
6 Daniel Goldman to
                         1202
7 Daniel Goldman you
                         1127
8 Daniel Goldman and
                         1043
9 Adam Schiff
                  to
                         1008
10 Adam Schiff
                  that
                          862
# i 64,645 more rows
```

3.6 Deliverable 12: Group by speaker then explore the object and visualize the results.

```
total_impeach <- impeach_words %>%
  dplyr::group_by(SPEAKER) %>%
  dplyr::summarize(total=sum(n)) %>%
  dplyr::arrange(desc(total)) # count words by speaker
total_impeach
```

```
# A tibble: 75 x 2
  SPEAKER total
  <chr>
                 <int>
1 Daniel Goldman 35478
2 Adam Schiff
                  30222
3 Stephen Castor 29646
4 Devin Nunes
                19602
5 Kurt Volker 13404
6 Fiona Hill 13245
7 Doug Collins 13197
8 Gordon Sondland 12558
9 Bill Taylor 11998
10 M. Yovanovitch 11513
# i 65 more rows
```

```
total_impeach %>%
  ggplot2::ggplot(aes(SPEAKER,total)) +
  ggplot2::geom_col() +
  ggplot2::xlab(NULL) +
  ggplot2::ylab(NULL) +
  ggplot2::coord_flip() # visualize word count by speaker totals
```



```
total_impeach %>%
  ggplot2::ggplot(aes(SPEAKER,total)) +
  ggplot2::geom_col() +
  ggplot2::xlab(NULL) +
  ggplot2::ylab(NULL) # view without flipping the coordinates
```


3.7 Deliverable 13: Exploring .txt files using tm package

[1] "SimpleCorpus" "Corpus"

igfbali

```
<<SimpleCorpus>>
```

Metadata: corpus specific: 1, document level (indexed): 0

Content: documents: 63

3.8 Deliverable 14: Pre-processing the igfbali corpus

```
igfbali <- tm::tm_map(igfbali, removeWords, stopwords("english")) # remove stopwords
more.stop.words <- c("transcript", "transcripts") # add more stop words
igfbali <- tm::tm_map(igfbali, removeWords, more.stop.words) # remove more stop words
tm::tm_map(igfbali, stemDocument) # stem document

<<SimpleCorpus>>
Metadata: corpus specific: 1, document level (indexed): 0
Content: documents: 63
```

Content: documents: 63

3.9 Deliverable 15: Create a Document Term Matrix (DTM) of the igfbali corpus.

```
dtm <- tm::DocumentTermMatrix(igfbali) # create a document term matrix</pre>
```

3.10 Deliverable 16: Exploring the Document Term Matrix (DTM)

tm::findFreqTerms(dtm, 500) # find terms with frequency greater than or equal to 500

[5] "around" "back" "big" "can" [9] "come" "countries" "data" "different [13] "even" "first" "give" "going"	
[13] "even" "first" "give" "going"	
	t"
[47]	
[17] "good" "governance" "government" "i'm"	
[21] "igf" "important" "information" "internet	, 11
[25] "issues" "just" "kind" "know"	
[29] "know," "last" "like" "look"	
[33] "lot" "make" "many" "may"	
[37] "maybe" "much" "need" "new"	
[41] "now" "one" "part" "people"	
[45] "point" "policy" "question" "really"	
[49] "right" "say" "see" "something	g"
[53] "take" "talk" "talking" "technica	1"
[57] "terms" "thank" "that" "that's"	
[61] "the" "there" "they" "thing"	

```
"think"
                                    "this"
[65] "things"
                                                     "time"
[69] "two"
                    "use"
                                    "way"
                                                     "will"
                                    "world"
[73] "work"
                    "working"
                                                     "you"
[77] "access"
                    "but"
                                    "community"
                                                     "content"
[81] "freedom"
                    "get"
                                    "human"
                                                    "it's"
                    "online"
                                                    "want"
[85] "local"
                                    "rights"
                    11 11
                                    11 11
[89] "{oops/}"
[93] " "
```

tm::inspect(tm::removeSparseTerms(dtm, sparse=0.4)) # remove sparse terms and inspect the DT

<<DocumentTermMatrix (documents: 63, terms: 627)>>

Non-/sparse entries: 32051/7450

Sparsity : 19% Maximal term length: 17

Weighting : term frequency (tf)

Sample :

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNET
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNE
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNE
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNE
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNET
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNE
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt

- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNE
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNET
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNE
- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

Docs

10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNET

- 12 ICANN OPEN FORUM.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 17 SECURITY_LEGAL_AND_OTHER_FRAMEWORKS_SPAM_HACKCYBERCRIME.txt
- 2 145 Nusa Dua Hall 1.txt
- 21 WS 15 CYBERCRIME TREATY.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 31 WS 49 Breaking Down Silos in National and International Cooperation on Cyber Security as
- 59 WS 234 DANGERS OF INTERNET ECONOMY FROM IRRESPONSIBLE SCALE.txt

3.11 Deliverable 17: Finding Word Associations in the DTM

tm::findAssocs(dtm, "activists", 0.8) # find words associated with "activists" with a min td:

\$activists

moral coalitions. hackers, tunisia. 0.83 0.82 0.82 0.80

tm::findAssocs(dtm, "cybersecurity", 0.8) # find words associated with "cybersecurity" with

\$cybersecurity

terrorism	bleeds	increasing,	nation's
0.94	0.91	0.91	0.91
combating	cybersecurity,	norm,	cybercrime,
0.90	0.88	0.87	0.83
chris,	infrastructures	spam,	malicious
0.83	0.83	0.82	0.82
spam	spamming	"spam"	'04
0.81	0.81	0.81	0.81
'05,	'06,	'06.	'17,
0.81	0.81	0.81	0.81
'990s	(beep)	(beep)	(security):
0.81	0.81	0.81	0.81
1770-something	1770-something,	2016	2016?
0.81	0.81	0.81	0.81
247	5:00,	>>k.	abcs
0.81	0.81	0.81	0.81
accede	accomplish,	acdc,	acm,
0.81	0.81	0.81	0.81
acronym	adamant	adopt.	adopt

0.81	0.81	0.81	0.81
agency;	agencies'	affiliates,	advertisements,
0.81	0.81	0.81	0.81
answered?	analyzed,	analytics,	ain't
0.81	0.81	0.81	0.81
antispam	anti-spam	anti-phishing	anti-abuse
0.81	0.81	0.81	0.81
article.	arises?	apcert,	anyone
0.81	0.81	0.81	0.81
assist,	assault	aspects?	aspects;
0.81	0.81	0.81	0.81
authenticating	auscert	audience	attuned
0.81	0.81	0.81	0.81
batnet	backs.	back:	avail
0.81	0.81	0.81	0.81
botnet-like	botnet,	body?	beep
0.81	0.81	0.81	0.81
boyer	box,	boundaries,	botnets,
0.81	0.81	0.81	0.81
building	brian	branding.	boyer:
0.81	0.81	0.81	0.81
caller	c-level	buttons	burst
0.81	0.81	0.81	0.81
certs?	capability.	canspam.	calling,
0.81	0.81	0.81	0.81
charities.	characteristic	chance.	chair's
0.81	0.81	0.81	0.81
citizen networks	circus	chris	chris?
0.81	0.81	0.81	0.81
clogging	click,	clean.	classified
0.81	0.81	0.81	0.81
commercials	closes	closer,	closed.
0.81	0.81	0.81	0.81
complete?	communities	commonwealth.	commercial
0.81	0.81	0.81	0.81
congratulations,	conflating	computer	components.
0.81	0.81	0.81	0.81
counterparts	cooperate	contents.	construed
0.81	0.81	0.81	0.81
crimes	country;	counterterrorism.	counterterrorism,
0.81	0.81	0.81	0.81
cybercapacity	cyberattacks	cured.	cure.
0.81	0.81	0.81	0.81

cybercrime-related	cybercrime;	cybercrime	cyberevent
0.81	0.81	0.81	0.81
cyberlaw.	cyberthreats,	dangerous,	daniel
0.81	0.81	0.81	0.81
debated,	deeds	defenses	define
0.81	0.81	0.81	0.81
degradation	destroying	diplomat,	discern
0.81	0.81	0.81	0.81
discussion.	dismissed	disposal.	disservice,
0.81	0.81	0.81	0.81
dominican	donations,	done	doorstep
0.81	0.81	0.81	0.81
doorstep.	dors	driver.	drops,
0.81	0.81	0.81	0.81
drove	drunk.	earlier	educated.
0.81	0.81	0.81	0.81
employer	enabler.	enablers.	enentire
0.81	0.81	0.81	0.81
enforcement;	enriched,	enrichment	enter,
0.81	0.81	0.81	0.81
eu-funded	european	ex-colleagues	except,
0.81	0.81	0.81	0.81
executive	expressions,	extra-territorial	faso hassan.
0.81	0.81	0.81	0.81
fernando,	fierce	fighting.	fines
0.81	0.81	0.81	0.81
fining	firs,	floated	florida
0.81	0.81	0.81	0.81
follow	four	frameworks:	frameworks:
0.81	0.81	0.81	0.81
fraud?	ftc,	gain,	gambling,
0.81	0.81	0.81	0.81
getting,	gideon	gideon,	give.
0.81	0.81	0.81	0.81
glove.	government	grass-root	grass-roots
0.81	0.81	0.81	0.81
gsa,	hacking-related	hacks,	haming
0.81	0.81	0.81	0.81
handed,	hands-	harmonization,	headphones
0.81	0.81	0.81	0.81
hijack	idea	ills	impinges
0.81	0.81	0.81	0.81
implement.	inconvenience.	increasing	ineffective

0.81	0.81	0.81	0.81
infect	infection	infections	infections.
0.81	0.81	0.81	0.81
infections?	infects	innovation-based	instructor
0.81	0.81	0.81	0.81
integration.	internationally	internationals.	interoperable,
0.81	0.81	0.81	0.81
interrelated,	investigating,	irritating	jammed,
0.81	0.81	0.81	0.81
jay	jayantha?	jobs?	johnson
0.81	0.81	0.81	0.81
johnson.	jpcert	judiciary,	jurists,
0.81	0.81	0.81	0.81
karen,	keshted	labeled,	last
0.81	0.81	0.81	0.81
law-based	leapfrog	legislator	legislators.
0.81	0.81	0.81	0.81
lepris,	liaisons	litany	maawg
0.81	0.81	0.81	0.81
maawg,	maawg.	maawg	${\tt mail.}$
0.81	0.81	0.81	0.81
mailbox,	mailboxes	makarim,	makarim:
0.81	0.81	0.81	0.81
malware,	${\tt malware}$.	married	mayu fumo,
0.81	0.81	0.81	0.81
merged	messaging.	mexico's	mic).
0.81	0.81	0.81	0.81
microphones,	misconduct,	mismatch	mobiles,
0.81	0.81	0.81	0.81
moderately	month.	montreal,	mood
0.81	0.81	0.81	0.81
motivation.	mpasa,	mulberry,	mulberry.
0.81	0.81	0.81	0.81
mulberry:	must	national-level	natris,
0.81	0.81	0.81	0.81
natris:	ncic	nefarious	netterlands
0.81	0.81	0.81	0.81
non-south	nonsolicited	nonstate	normal," one
0.81	0.81	0.81	0.81
note	notifying	nuisance	nuisance.
0.81	0.81	0.81	0.81
oddly	offenses,	offenses.	omnibus
0.81	0.81	0.81	0.81

one?	onwards	onwards,	openshut,
0.81	0.81	0.81	0.81
opt-	opted	osc,	outfits
0.81	0.81	0.81	0.81
outlining	overlap,	overwhelmed	painter
0.81	0.81	0.81	0.81
painter.	painter:	panel	partners
0.81	0.81	0.81	0.81
pass.	pcs	perspective?	perspective
0.81	0.81	0.81	0.81
pillar.	pipes,	plaintiffs.	policymakers.
0.81	0.81	0.81	0.81
possible?	postgraduate	preference	presenters,
0.81	0.81	0.81	0.81
pretended		privacy-sensitive	profitable,
0.81	0.81	0.81	0.81
promote.	promoting	promotion,	promptly
0.81	0.81	0.81	0.81
pronounced	pronounced,	propaganda	proportion,
0.81	0.81	0.81	0.81
proportions,	prpt	psace	put
0.81	0.81	0.81	0.81
python's	quantity	question	raising?
0.81	0.81	0.81	0.81
rater,	realisation	receiver	receptive
0.81	0.81	0.81	0.81
reduction.	reevaluate	regarded	regarding
0.81	0.81	0.81	0.81
regardless,	region.	remember?	remit.
0.81	0.81	0.81	0.81
remote	reorganisation	requiring,	resnick.
0.81	0.81	0.81	0.81
resources?	revolutionary	rican	router,
0.81	0.81	0.81	0.81
routes.	sadowski.	saturate,	schedules
0.81	0.81	0.81	0.81
scheme.	segueing	self-aid	self-governance
0.81	0.81	0.81	0.81
self-regulation,	senders	servers	shalt
0.81	0.81	0.81	0.81
sharing?	significantly.	siphoned	sketch
0.81	0.81	0.81	0.81
socialize	spam.	spam?	spamed,

0.81	0.81	0.81	0.81
spammer	spammers	spamming,	spam
0.81	0.81	0.81	0.81
speak	spear-phishing	spear-phishing,	specialists,
0.81	0.81	0.81	0.81
standards-based	stated,	statutory	stopped,
0.81	0.81	0.81	0.81
streamlined	subjects,	subject	succeed,
0.81	0.81	0.81	0.81
sufficient.	summaries	surprising,	tailor-made
0.81	0.81	0.81	0.81
takeaway,	takedowns	talks.	targeted.
0.81	0.81	0.81	0.81
tasks.	technology-based	teed	territory.
0.81	0.81	0.81	0.81
terrorists,	theft,	therefore	thou
0.81	0.81	0.81	0.81
thought-	tiarma.	tighten	tong
0.81	0.81	0.81	0.81
toolkit,	top	tout	tradition,
0.81	0.81	0.81	0.81
traditions.	trainings?	transborder	tween.
0.81	0.81	0.81	0.81
ugandan	ult	uncharacteristic	uncontinueed
0.81	0.81	0.81	0.81
undisputed	unidentifying	unsolicited	variety,
0.81	0.81	0.81	0.81
vehicle	vep	waas	wanteded
0.81	0.81	0.81	0.81
wcit.	website	wild	wout
0.81	0.81	0.81	0.81
wout,	wout.	after	system
0.81	0.81	0.81	0.81
efforts,	minimize		
0.80	0.80		

<<DocumentTermMatrix (documents: 63, terms: 3)>>

Non-/sparse entries: 137/52 Sparsity : 28% Maximal term length: 16

Weighting : term frequency (tf)

Sample :

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNET
- 14 INTERNET GOVERNANCE PRINCIPLES.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 33 WS 57 MAKING MULTISTAKEHOLDERISM MORE EQUITABLE AND TRANSPARENT.txt
- 38 WS 357 THE INTERNET AS AN ENGINE FOR GROWTH AND ADVANCEMENT.txt
- 45 WS-297_PROTECTING_JOURNALISTS_BLOGGERS_AND_MEDIA_ACTORS_IN_DIGITAL_AGE.txt
- 6 BUILDING BRIDGES ENHANCING MULTI-STAKEHOLDER COOPERATION FOR GROWTH AND SUSTAINABLE.tx
- 60 WS 300 DEVELOPING A STRATEGIC VISION FOR INTERNET GOVERNANCE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNE
- 14 INTERNET_GOVERNANCE_PRINCIPLES.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 33 WS 57 MAKING MULTISTAKEHOLDERISM MORE EQUITABLE AND TRANSPARENT.txt
- 38 WS 357 THE INTERNET AS AN ENGINE FOR GROWTH AND ADVANCEMENT.txt
- 45 WS-297_PROTECTING_JOURNALISTS_BLOGGERS_AND_MEDIA_ACTORS_IN_DIGITAL_AGE.txt
- 6 BUILDING BRIDGES ENHANCING MULTI-STAKEHOLDER COOPERATION FOR GROWTH AND SUSTAINABLE.tx
- 60 WS 300 DEVELOPING A STRATEGIC VISION FOR INTERNET GOVERNANCE.txt

Docs

- 10 OPENNESS HUMAN RIGHTS FREEDOM OF EXPRESSION AND FREE FLOW OF INFORMATION ON THE INTERNE
- 14 INTERNET_GOVERNANCE_PRINCIPLES.txt
- 15 OPENING CEREMONY AND OPENING SESSION.txt
- 26 WS 44 FREEDOM ONLINE COALITION OPEN FORU1.txt
- 27 WS 44 FREEDOM ONLINE COALITION OPEN FORUM.txt
- 33 WS 57 MAKING MULTISTAKEHOLDERISM MORE EQUITABLE AND TRANSPARENT.txt
- 38 WS 357 THE INTERNET AS AN ENGINE FOR GROWTH AND ADVANCEMENT.txt
- 45 WS-297_PROTECTING_JOURNALISTS_BLOGGERS_AND_MEDIA_ACTORS_IN_DIGITAL_AGE.txt
- 6 BUILDING BRIDGES ENHANCING MULTI-STAKEHOLDER COOPERATION FOR GROWTH AND SUSTAINABLE.tx
- 60 WS 300 DEVELOPING A STRATEGIC VISION FOR INTERNET GOVERNANCE.txt

4 Part 4: Introduction to Data Wrangling in Python

```
import nltk # import nltk
nltk.download('reuters') # download reuters corpus

True

from nltk.corpus import reuters # import reuters corpus
print("Categories:", reuters.categories()) # print categories in reuters corpus

Categories: ['acq', 'alum', 'barley', 'bop', 'carcass', 'castor-oil', 'cocoa', 'coconut', 'corint("Number of documents:", len(reuters.fileids())) # print number of documents in reuters

Number of documents: 10788

import string

doc_id = reuters.fileids(categories="crude")[0] # get a document id from the crude category
doc_text = reuters.raw(doc_id) # get raw text from document

cleaned_text = doc_text.translate(str.maketrans('', '', string.punctuation)) # clean text of
cleaned_text = ' '.join(cleaned_text.split()) # join text
print(cleaned_text)
```

JAPAN TO REVISE LONGTERM ENERGY DEMAND DOWNWARDS The Ministry of International Trade and Ind

4.1 Deliverable 19: Tokenization, Stemming, and Lemmatization of the Reuters Corpus

```
from nltk.tokenize import word_tokenize # import word_tokenize function from nltk.tokenize me
from nltk.corpus import stopwords # import stopwords corpus from nltk.corpus module
nltk.download('punkt_tab')
```

True

```
tokens = word_tokenize(cleaned_text) # tokenize words from above
tokens = [word for word in tokens if word not in stopwords.words('english')] # remove stop w
print(tokens)

['JAPAN', 'TO', 'REVISE', 'LONGTERM', 'ENERGY', 'DEMAND', 'DOWNWARDS', 'The', 'Ministry', 'In
from nltk.stem import PorterStemmer, WordNetLemmatizer # import functions from nltk.stem
stemmer = PorterStemmer() # initiate instance of stemmer
lemmatizer = WordNetLemmatizer() # initiate instance of lemmatizer
stemmed = [stemmer.stem(word) for word in tokens] # stem tokens
lemmatized = [lemmatizer.lemmatize(word) for word in tokens] # lemmatize tokens
print("Stemmed:", stemmed)

Stemmed: ['japan', 'to', 'revis', 'longterm', 'energi', 'demand', 'downward', 'the', 'minist:
print("Lemmatized:", lemmatized)

Lemmatized: ['JAPAN', 'TO', 'REVISE', 'LONGTERM', 'ENERGY', 'DEMAND', 'DOWNWARDS', 'The', 'M
```

4.2 Deliverable 20: Conducting a Basic Parts of Speech Tagging of the Reuters Corpus

```
from nltk import pos_tag # import function
nltk.download('averaged_perceptron_tagger_eng')
```

True

```
tagged_tokens = pos_tag(tokens) # tag parts of speech
print(tagged_tokens) # print pos tagged tokens
```

```
[('JAPAN', 'NNP'), ('TO', 'NNP'), ('REVISE', 'NNP'), ('LONGTERM', 'NNP'), ('ENERGY', 'NNP'),
```

4.3 Deliverable 21: Full Text Processing Pipeline for the Reuters Corpus

```
def preprocess_pipeline(text): # create a data processing pipeline function
   text = text.lower().translate(str.maketrans('', '', string.punctuation))
   text = ' '.join(text.split())
   tokens = word_tokenize(text)
   tokens = [word for word in tokens if word not in stopwords.words('english')]
   lemmatized = [lemmatizer.lemmatize(word) for word in tokens]
   tagged = pos_tag(lemmatized)
   return tagged

doc_text = reuters.raw(reuters.fileids(categories='crude')[0]) # pre process data from reuter
processed = preprocess_pipeline(doc_text)
print(processed)

[('japan', 'NN'), ('revise', 'NN'), ('longterm', 'JJ'), ('energy', 'NN'), ('demand', 'NN'),
```