Define the vehicle parameters for the drive cycle sim

Load AMK Motor Data

```
load A2370DD_T80C.mat;
```

Conversion Factors

```
k_RPMToRadPerSec = 2*pi/60;
k_radPerSecToRPM = 60/(2*pi);
k_inchesToMeter = 1/39.37;
k_degreesToRad = pi/180;
k_kphToMeterPerSec = 1/3.6;
k_metersPerSecTokph = 3.6;
k_ampHourToCoulombs = 36000;
k_coulombToampHour = 1/3600;
k_joulesTokWH = 1/3600000;
```

Vehicle Setup

```
k_numberOfMotors = 4;
```

Driver Parameters

```
Driver.k_kp = 10;
Driver.k_ki = 1;
Driver.k_kff = 0.05;
Driver.k_kg = 0;
Driver.k_vnom = k_kphToMeterPerSec * 60;
Driver.k_kaw = 0.1;
Driver.k_tauerr = 0.03;
```

Pedal Mapping

```
PedalMap.k_motorRPMBreakPoints = [0, 16000, 18000]; %rpm
%PedalMap.k_maxTorqueLookupTable = [13.75, 7.50, 0.00] * k_numberOfMotors; %Nm
PedalMap.k_maxTorqueLookupTable = [2, 2, 0.00] * k_numberOfMotors; %Nm
plot(PedalMap.k_motorRPMBreakPoints, PedalMap.k_maxTorqueLookupTable);
title('Total Vehicle Torque vs Single Motor RPM');
xlabel('Motor Speed (RPM)');
ylabel('Torque (Nm)');
```


Brakes

```
Brakes.k_maxBrakeTorque = 2400; %Nm
```

Regen

```
Regen.k_regenEnable = 0;
Regen.k_regenFactorSpeedBreakPoints = [5,10]; %km/h
Regen.k_regenFactorSpeedLookupTable = [0,1];
plot(Regen.k_regenFactorSpeedBreakPoints, Regen.k_regenFactorSpeedLookupTable);
title('Limit of Regen Factor Based on Speed');
xlabel('Vehicle Speed (km/h)');
ylabel('Regen Factor');
```


Tires

```
Tire.k_radius = k_inchesToMeter * 10; %m
Tire.k_rollingRadiusSpeedBreakPoints = [
                                                    70,
                                                                             100]; %km/h
0, 10,
            20,
                    30,
                                    50,
                                            60,
                                                            80,
                                                                     90,
Tire.k_rollingRadiusLookup = [
           0.0105, 0.011, 0.0115, 0.0120, 0.0125, 0.0130, 0.0140, 0.0145, 0.0150];
0, 0.01,
plot(Tire.k rollingRadiusSpeedBreakPoints, Tire.k rollingRadiusLookup);
title('Rolling Resistance Coefficient Based on Speed');
xlabel('Vehicle Speed (km/h)');
ylabel('Rolling Resistance Coefficient');
```


Motors

```
% rows correspond to speed, columns correspond to torque
Motor.k_voltageLineDCLookpupTable = Voltage_Line_RMS*sqrt(2);
Motor.k_voltageLineDCTorqueBreakPoints = k_numberOfMotors * Electromagnetic_Torque(1,:)';
```

Efficiency Table

The efficiency table includes losses for both the inverter and the motor.

Efficiency:	DD5-14-10-xxW-19000
-------------	---------------------

		speed [rpm]							
Current [Arms]	Torque [Nm]	500	1000	2000	3000	4000	6000	10000	
5	1,3	64,37	71,33	73,64	74,70	75,43	76,57	77,00	
10	2,7	58,42	70,48	77,57	80,40	82,01	83,92	85,16	
20	5,4	44,94	60,81	73,35	78,82	81,94	85,43	88,20	
30	7,9	35,59	51,90	67,02	74,26	78,54	83,42	87,58	
40	10,4	29,14	44,78	61,01	69,41	74,57	80,62	85,93	
50	12,5	24,17	38,71	55,22	64,39	70,24	77,30	83,73	
60	14,4	20,41	33,76	50,04	59,65	65,99	73,88	81,33	
70	16,0	17,31	29,40	45,10	54,87	61,55	70,10	78,56	
80	17,4	14,82	25,75	40,67	50,41	57,28	66,34	75,70	
90	18,5	12,81	22,67	36,72	46,30	53,25	62,67	72,77	
100	19,6	11,17	20,05	33,21	42,51	49,44	59,09	69,82	

Variables for a 2D lookup table of the motor efficiency plot. For low speed operation (e.g. below 500 rpm), an efficiency of 0% is used.

Note: The motor will never be travelling less than 500 rpm.

```
Motor.k efficiencyTorqueBreakPoints = k numberOfMotors * [
0, 1.3,
                                                                                2.7,
                                                                                                                                       5.4,
                                                                                                                                                                                            7.9,
                                                                                                                                                                                                                                                 10.4,
                                                                                                                                                                                                                                                                                                       12.5,
                                                                                                                                                                                                                                                                                                                                                             14.4,
                                                                                                                                                                                                                                                                                                                                                                                                                  16.0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        17.4,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               18.5,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    19.6];
Motor.k efficiencyMotorSpeedBreakPoints = k RPMToRadPerSec * [
                                                                                                                                                                                            3000,
0, 500,
                                                                                1000,
                                                                                                                                       2000,
                                                                                                                                                                                                                                                 4000,
                                                                                                                                                                                                                                                                                                       6000,
                                                                                                                                                                                                                                                                                                                                                             10000, 12000,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        15000,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              19000]; %rpm
 [MotorSpeedMesh, TorqueMesh] = meshgrid(Motor.k efficiencyMotorSpeedBreakPoints, Motor.k efficiencyMotor.k efficiencyMotor.
```

Rows correspond to different torque values. Columns correspond to different motor rpm values.

```
Motor.k efficiencyLookupTable = 0.01 * [
0.00,
        0.00,
                0.00,
                        0.00,
                                0.00,
                                        0.00,
                                                0.00,
                                                        0.00,
                                                                0.00,
                                                                         0.00,
                                                                                 0.00;
                       73.64, 74.70, 75.43, 76.57, 77.00, 77.08, 77.56, 78.14;
0.00,
        64.37,
        58.42,
                70.48, 77.57, 80.40, 82.01, 83.92, 85.16, 85.44, 85.97, 86.50;
0.00,
                60.81, 73.35, 78.82, 81.94, 85.43, 88.20, 88.88, 89.71, 90.44;
0.00,
       44.94,
                51.90, 67.02, 74.26, 78.54, 83.42, 87.58, 88.65, 89.84, 90.86;
0.00,
       35.59,
               44.78, 61.01, 69.41, 74.57, 80.62, 85.93, 87.34, 88.86, 90.16;
0.00,
       29.14,
                38.71, 55.22, 64.39, 70.24, 77.30, 83.73, 85.48, 87.37, 88.98;
0.00,
       24.17,
                33.76, 50.04, 59.65, 65.99, 73.88, 81.33, 83.42, 85.66, 87.59;
0.00,
       20.41,
0.00,
       17.31,
                29.40, 45.10, 54.87, 61.55, 70.10, 78.56, 80.97, 83.56, 85.81;
                25.75, 40.67, 50.41, 57.28, 66.34, 75.70, 78.40, 81.34, 83.91;
0.00,
       14.82,
0.00,
       12.81,
                22.67, 36.72, 46.30, 53.25, 62.67, 72.77, 75.75, 79.02, 81.91;
                20.05, 33.21, 42.51, 49.44, 59.09, 69.82, 73.06,
0.00,
       11.17,
                                                                 76.63, 79.83];
contourf(k radPerSecToRPM .* MotorSpeedMesh, TorqueMesh, Motor.k efficiencyLookupTable, ...
    [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, linspace(0.7,0.9,11)], 'ShowText', 'on')
colorbar
```

```
title('Motor Efficiency Map')
xlabel('Motor Speed (RPM)')
ylabel('Torque (Nm)')
```



```
% LossPower = (1/eff - 1)*MechPower
Motor.k_powerLossLookupTable = (1./Motor.k_efficiencyLookupTable - 1).*(TorqueMesh.*MotorSpeedM
% Replace the NaN entries caused by the division by zero from the efficiency table
Motor.k_powerLossLookupTable(isnan(Motor.k_powerLossLookupTable)) = 0;

Motor.k_totalDischargeMotorPowerLookupTable = (TorqueMesh.*MotorSpeedMesh + Motor.k_powerLossLookupTable)
Motor.k_totalChargeMotorPowerLookupTable = (TorqueMesh.*MotorSpeedMesh - Motor.k_powerLossLookupTable)
% Set total charge motor power to 0 where the loss is greater than the regen power
Motor.k_totalChargeMotorPowerLookupTable(Motor.k_totalChargeMotorPowerLookupTable <= 0) = 0;</pre>
```

Gearbox

```
Gearbox.k_gearRatio = 13.1;
Gearbox.k_efficiency = 0.95;
```

Accumulator

Cell Parameters

```
Accumulator.k_cellCapacity = 3.12; %Ah
Accumulator.k_cellCapacityCoulombs = Accumulator.k_cellCapacity; %Ah
Accumulator.k_cellResistance = 0.001 * 18; % ohm
```

```
Accumulator.k_nominalCellVoltage = 3.6; %V
Accumulator.k_maxCellVoltage = 4.2; %V
Accumulator.k_minCellVoltage = 2.5; %V

Accumulator.k_maxCellDischargeCurrent = 20; %A
Accumulator.k_maxCellChargeCurrent = 3; %A

Accumulator.k_cellMass = 0.001 * 46.6; % kg
```

The open circuit voltage curve is based on the following discharge load curve:

Discharge Load Characteristics (US18650VTC6)

The open-circuit voltage for the cell is obtained by approximating a curve above the 0.6A discharge current curve.

```
Accumulator.k_cellSOCBreakPoints = [0, 0.025, 0.085, 0.18, 0.99, 1];
Accumulator.k_cellOpenVoltageLookupTable = [Accumulator.k_minCellVoltage, 2.7, 2.96, 3.4, 4.17, plot((1-Accumulator.k_cellSOCBreakPoints)*Accumulator.k_cellCapacity, Accumulator.k_cellOpenVoltitle('Cell Open Circuit Voltage Curve');
xlabel('Discharge capacity (mAh)');
ylabel('Cell voltage (V)');
ylim([0,4.5])
grid on
```


Accumulator Pack Configuration

```
Accumulator.k_numOfParallelCells = 5;
Accumulator.k_numOfSeriesCells = 126;
```

Accumulator Pack Specs

```
Accumulator.k_packMass = Accumulator.k_cellMass * Accumulator.k_totalNumOfCells;

Accumulator.k_nominalPackVoltage = Accumulator.k_nominalCellVoltage * Accumulator.k_numOfSeriesAccumulator.k_maxPackVoltage = Accumulator.k_maxCellVoltage * Accumulator.k_numOfSeriesCells; % Accumulator.k_minPackVoltage = Accumulator.k_minCellVoltage * Accumulator.k_numOfSeriesCells; % Accumulator.k_packCapacity = Accumulator.k_cellCapacity * Accumulator.k_numOfParallelCells; % Accumulator.k_packCapacityKWhour = Accumulator.k_packCapacity * Accumulator.k_nominalPackVoltage
```

Accumulator.k_totalNumOfCells = Accumulator.k_numOfParallelCells * Accumulator.k_numOfSeriesCel

Accumulator.k_packResistance = (Accumulator.k_cellResistance / Accumulator.k_numOfParallelCellsAccumulator.k_maxPackDischargeCurrent = Accumulator.k_maxCellDischargeCurrent * Accumulator.k_naxPackChargeCurrent = Accumulator.k_maxCellChargeCurrent * Accumulator.k_numOfParallelCellsAccumulator.k_maxPackChargeCurrent = Accumulator.k_maxCellChargeCurrent * Accumulator.k_numOfParallelCellsAccumulator.k_maxPackChargeCurrent = Accumulator.k_maxCellChargeCurrent * Accumulator.k_numOfParallelCellsAccumulator.k_naxCellChargeCurrent * Accumulator.k_numOfParallelCellsAccumulator.k_naxCellChargeCurrent * Accumulator.k_naxCellChargeCurrent * Accu

Accumulator specs based on the cell configurations:

```
fprintf('The total mass of the cells in the pack is: %f kg', Accumulator.k_packMass);
```

The total mass of the cells in the pack is: 29.358000 kg

```
fprintf('The pack capacity is: %f Ah, %f kWh', Accumulator.k_packCapacity, Accumulator.k_packCapacity
```

The pack capacity is: 15.600000 Ah, 7.076160 kWh

```
fprintf('The pack nominal, max, and minimum voltages are: %f V, %f V, %f V respectively', ...

Accumulator.k_nominalPackVoltage, Accumulator.k_maxPackVoltage, Accumulator.k_minPackVoltage
```

The pack nominal, max, and minimum voltages are: 453.600000 V, 529.200000 V, 315.000000 V respectively

```
fprintf('The pack max discharge and charge currents are: %f A, %f A respectively', Accumulator
```

The pack max discharge and charge currents are: 100.000000 A, 15.000000 A respectively

Charge Limit Curve

```
Accumulator.k_chargeLimitSOCBreakPoints = [0.87,0.9];
Accumulator.k_chargeLimitLookuptable = [Accumulator.k_maxPackChargeCurrent, 0]; %A
plot(Accumulator.k_chargeLimitSOCBreakPoints, Accumulator.k_chargeLimitLookuptable);
title('Charging Current Limit Based on SOC');
xlabel('SOC');
ylabel('Pack Charge Limit (A)');
```


Initial Conditions

```
Accumulator.k_initialCellCapacity = Accumulator.k_cellCapacity *1;
Accumulator.k_initialPackVoltage = Accumulator.k_maxPackVoltage;
```

Vehicle Parameters

```
SimVehicle.k_massWithoutAccumulator = 185 + 62; %kg
SimVehicle.k_totalMass = Accumulator.k_packMass + SimVehicle.k_massWithoutAccumulator; % kg
SimVehicle.k_heightOfCenterOfMass = 0.254; %m
SimVehicle.k_distanceCOMtoFrontAxle = 0.7733; %m
SimVehicle.k_distanceCOMtoRearAxle = 0.7517; %m
SimVehicle.k_frontArea = 1.8; %m^2
SimVehicle.k_dragCoefficient = 0.32;
SimVehicle.k_liftCoefficent = 0.1;
SimVehicle.k_maxElectricalPower = 80000; %kW
```