Hash Functions

Fan-Hsun Tseng

Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

- Division Method
- Mid-square Method
- Folding Method
- Digital Analysis Method

Division Method

- Representation with % or MOD
- Number of data is n
- Usually use a prime number M, where M < n
 - Collision happens often when M is not a prime number
- Hash address = key % M
- HomeBucket = hash(key)%M

Example

- Six keys: 26, 57, 8, 62, 77, 42
- •M = 13

$$57\%13 = 5$$
; $8\%13 = 8$; $62\%13 = 10$; $26\%13 = 0$; $77\%13 = 12$; $42\%13 = 3$

Mid-square Method

- First phase: key squares as key²
- Retrieve some specific numbers (k numbers)
- For example:
 - Retrieve thousand, hundred, tens, three numbers as hash address
 - key is 5762
 - $\text{key}^2 = 33,200,644$
 - Hash(5762) = 064
 - key = 2642,
 - $\text{key}^2 = 6,980,164$
 - Hash(2642) = 016

Folding Method

- Shift folding
 - Separate the key into several equal size segments
 - If the length of the last segment is less than k, then align to right which implies that pads 0 on the left until length equals to k

- Folding at the boundaries
 - Reverse the segments periodically

Shift Folding

- If N = 12,320,324,111,220, let k = 3, then the segments are
 - N1 = 123, N2 = 203, N3 = 241, N4 = 112, and N5 = 20
- Then align these segments to right and add them as the hash

address, which is 699 112 203 123 241 20 N1 = 123N2 = 203123 N1N3 = 241203 N2N4 = 112N3241 N5 = 20112 N4N5

Folding at the Boundaries

- N = 12,320,324,111,220, let k = 3, then the segments are
 - N1 = 123, N2 = 203, N3 = 241, N4 = 112, and N5 = 20
- Reverse N2 from 203 to 302, also reverse N4 from 112 to 211, then add all segments as hash address, which is 897

Digital Analysis Method

- Suitable for static (fixed) files
 - All (key, data) are known
 - Files are unchanged

• Analyze the distribution on every digit, selects the digits which is uniform

Digital Analysis Method (Cont'd)

• A million number

5	8	1	1	2	1	1
5	8	0	1	1	5	3
5	7	9	3	2	3	7
2	8	3	2	2	3	9
5	8	1	3	3	1	8
5	8	0	4	1	3	2
5	7	9	5	2	5	4
5	7	9	5	3	2	5

Digital Analysis Method (Cont'd)

- Million, ten thousand, hundred digits are not uniform
- Select other digits, then do the MOD calculation

_								_
	5		8	1	1	2	1	1
	5		8	0	1	1	5	3
	5		7	9	3	2	3	7
	2		8	3	2	2	3	9
	5		8	1	3	3	1	8
	5		8	0	4	1	3	2
	5		7	9	5	2	5	4
	5	·	7	9	5	3	2	5

Digital Analysis Method (Cont'd)

• M = 101, then

```
• key 5,811,211 \rightarrow 1111, 1111\%101 = 0
• key 5,801,153 \rightarrow 0153, 0153\%101 = 42
• key 5,795,254 \rightarrow 9554, 9554\%101 = 60
• key 2,832,239 \rightarrow 3239, 3239\%101 = 7
```