RABIES - Confound Correction: Guía de parámetros

Tabla de parámetros, opciones, propósito y guía de uso (manual interactivo – fMRI en ratón)

Parámetro	Opciones	¿Para qué sirve?	¿Cómo/cuándo usarlo?
nativespace_analysis	True / False (defecto)	Ejecutar la corrección en el espacio nativo (EPI) para evitar interpolaciones adicionales.	True si deseas preservar resolución original o tu análisis será en espacio nativo. False si trabajarás en atlas o espacio común.
image_scaling	None; global_variance; voxelwise_standardization; grand_mean_scaling (defecto); voxelwise_mean	Escala la intensidad/varianza tras limpiar para hacer comparables sujetos/sesiones; también escala la varianza explicada para QC.	grand_mean_scaling: estándar; convierte a %BOLD (÷ media global ×100). global_variance: multi-sitio/sesión (igualar varianza total). voxelwise_standardization: z-score por voxel (comparaciones voxel-a-voxel, MVPA). voxelwise_mean: %BOLD por voxel manteniendo diferencias relativas de varianza. None: si normalizarás manualmente después.
 scale_variance_voxelwise	True / False (defecto)	Iguala la varianza entre voxels si no usaste un escalado voxel-wise; mantiene la varianza total del 4D (no unidad).	True para comparar mapas entre sujetos sin forzar z-score; deja en False si ya usaste voxelwise_standardization o voxelwise_mean.
detrending_order	linear (defecto); quadratic	Quitar derivas lentas temporales antes de otros pasos.	linear para drifts suaves; quadratic si observas curvaturas/derivas más complejas (sesiones largas bajo anestesia).
conf_list	WM_signal; CSF_signal; vascular_signal; global_signal; mot_6; mot_24; aCompCor_percent; aCompCor_5 (defecto: lista vacía)	Define los regresores a retirar de la señal BOLD mediante regresión OLS (confounds fisiológicos y de movimiento).	WM/CSF/vascular/global: ruido fisiológico global/compartimental. mot_6: movimiento bajo. mot_24: movimiento moderado-alto (derivadas + cuadrados). aCompCor_percent (hasta 50% varianza) /

			aCompCor_5: modelar ruido no medido; usa _percent si el ruido es alto/heterogéneo. Si combinas muchos regresores, evalúa sobreajuste con generate_CR_null.
frame_censoring	Diccionario: FD_censoring true/false; FD_threshold (mm, defecto 0.05); DVARS_censoring true/false; minimum_timepoint (defecto 3)	Scrubbing: crea una máscara temporal (FD/DVARS) para excluir frames con artefactos antes de los demás pasos.	FD_censoring con FD_threshold ≤0.05 mm en datasets sensibles a movimiento (+1 atrás y +2 adelante). DVARS_censoring para outliers de señal global (Z >2.5). Ajusta minimum_timepoint para asegurar DOF; si quedan tDOF desiguales entre sujetos, usa match_number_timepoints.
match_number_timepoints	True / False (defecto)	Igualar el nº final de volúmenes entre escaneos post-censura (controlar tDOF en comparaciones grupales).	True cuando la censura deja duraciones muy desiguales; False si prefieres maximizar muestras por sujeto en pilotos.
TR	auto (defecto) o valor en segundos	Define el TR para filtrado/simulación (lectura desde cabecera si auto).	Usa auto si las cabeceras son correctas; especifica manualmente si el NIfTI no contiene el TR correcto.
highpass /lowpass	Frecuencias en Hz (defecto: None)	Filtrado temporal (pasa-altas/bajas) aplicado tras simular puntos censurados; evita reintroducir confounds.	Banda típica FC roedor: 0.01-0.1 Hz. Si usas highpass≈0.01 Hz, combina conedge_cutoff ≈30 s para evitar ringing.
edge_cutoff	Segundos (defecto 0)	Recorta extremos por artefactos del filtrado (especialmente con high-pass).	Usa ~30 s al inicio y final si highpass ~0.01 Hz; ajusta según la banda y duración del run.
smoothing_filter	Kernel gaussiano en mm (defecto: None)	Suavizado espacial (nilearn.image.smooth_img) para mejorar SNR y compensar pequeñas desalineaciones.	0.3-0.8 mm según resolución; None si análisis laminar/alta resolución.
ica_aroma	Diccionario: apply true/false (defecto false);	Eliminar componentes de movimiento mediante	apply=true si persisten micro-movimientos tras

	dim (0=auto); random_seed	ICA-AROMA adaptado a roedor (se aplica antes del filtrado).	censura; dim=0 para estimación automática; fija random_seed para reproducibilidad.
timeseries_interval	"inicio,fin" o all (defecto)	Recorta la serie temporal antes de la corrección (dummies, estabilización, fases irrelevantes).	Ej.: 40,all para descartar los 40 primeros volúmenes; útil para igualar ventanas entre sujetos.
read_datasink	True / False (defecto)	Leer outputs de preprocesamiento desde datasinks (sin el grafo original), manteniendo la estructura RABIES.	Útil al migrar proyectos o cuando sólo conservas carpetas *_datasink/; exige rutas coherentes.
generate_CR_null	True / False (defecto)	Estimar sobreajuste generando regresores aleatorios (fase-aleatorizados) y comparar varianza explicada vs. regresores reales.	True si combinas muchos regresores (p. ej., mot_24 + aCompCor_percent + global); revisa figuras en plot_CR_overfit/.

Argumentos posicionales

Argumento	Descripción	Notas
preprocess_out	Ruta al directorio de salida del preprocesamiento de RABIES (entrada para confound correction).	Debe contener la estructura que espera RABIES para localizar series EPI preprocesadas.
output_dir	Ruta donde se guardarán los resultados de confound correction.	Se crearán subcarpetas tipo confound_correction_datasink/ con outputs específicos.

Outputs clave de confound correction

Carpeta	Contenido	Uso
cleaned_timeseries/	Series temporales (NIfTI) después de aplicar corrección de confounds.	Entrada para análisis de conectividad/estadísticos.
frame_censoring_mask/	CSV con máscara temporal (frames censurados).	Auditar y reproducir decisiones de scrubbing.
aroma_out/	Salidas de ICA-AROMA (MELODIC + clasificación de componentes).	Verificar qué componentes se clasificaron como movimiento.

plot_CR_overfit/	Figuras con varianza	Evaluar sobreajuste de la
	explicada por regresores reales vs aleatorios.	regresión de confounds.

Fuente principal de parámetros y outputs: **RABIES – Confound Correction •** https://rabies.readthedocs.io/en/latest/confound_correction.html

Outputs de confound correction:

https://rabies.readthedocs.io/en/latest/outputs.html#confound-correction-outputs

RABIES – confound_correction: Ejemplos prácticos de uso

9 ejemplos listos para copiar (CLI nativo y/o Docker) con notas de cuándo usar cada configuración

1) Mínimo (valores por defecto)

```
rabies confound_correction /data/prepro_out /data/conf_out
# Docker equivalente:
docker run --rm -it \
   -v /datos/prepro:/data/prepro_out:ro \
   -v /datos/conf:/data/conf_out \
   ghcr.io/cobralab/rabies:latest \
   confound_correction /data/prepro_out /data/conf_out
```

Cuándo usarlo: Movimiento bajo; primer pase rápido. Aplica grand_mean_scaling por defecto y escribe cleaned_timeseries/, frame_censoring_mask/, etc.

2) Scrubbing estricto (FD + DVARS) + movimiento extendido + DOF parejos

```
rabies confound_correction /data/prepro_out /data/conf_out \
    --conf_list WM_signal CSF_signal mot_24 \
    --frame_censoring
FD_censoring=true, FD_threshold=0.05, DVARS_censoring=true, minimum_timepo int=350 \
    --match number timepoints
```

Cuándo usarlo: Datasets con picos de movimiento; igualas tDOF entre sujetos tras censura.

3) Filtrado banda 0.01-0.1 Hz tras censura (con simulación previa y reaplicación de máscara)

```
rabies confound_correction /data/prepro_out /data/conf_out \
    --highpass 0.01 --lowpass 0.1 --edge_cutoff 30
```

Cuándo usarlo: FC clásica en roedor; si hay censura + filtrado, RABIES simula los timepoints censurados antes de filtrar y reaplica la máscara después; recorta ~ 30 s en bordes con high-pass ≈ 0.01 Hz.

4) ICA-AROMA + low-pass suave + suavizado espacial

```
rabies confound_correction /data/prepro_out /data/conf_out \
    --ica_aroma apply=true,dim=0,random_seed=42 \
    --image_scaling global_variance \
    --lowpass 0.15 --edge_cutoff 20 \
    --smoothing_filter 0.6
```

Cuándo usarlo: Micro-movimientos residuales y/o multi-sitio con varianza heterogénea.

5) Espacio nativo + z-score voxelwise + banda ampliada (0.01-0.2 Hz)

```
rabies confound_correction /data/prepro_out /data/conf_out \
    --nativespace_analysis \
    --image_scaling voxelwise_standardization \
    --highpass 0.01 --lowpass 0.2 --edge_cutoff 30
```

Cuándo usarlo: Preservar resolución/evitar interpolaciones de atlas; comparaciones voxel-a-voxel (MVPA/RSA).

6) Validación de sobreajuste (regresores aleatorios)

```
rabies confound_correction /data/prepro_out /data/conf_out \
    --conf_list WM_signal CSF_signal global_signal mot_6 aCompCor_percent \
    --generate_CR_null \
    --highpass 0.01 --lowpass 0.1 --edge_cutoff 30
```

Cuándo usarlo: Muchos regresores (p. ej., mot_24 + aCompCor); revisa plot_CR_overfit/para confirmar que no estás sobreajustando.

7) Homogeneizar varianza voxelwise (sin forzar unidad) + grand-mean

```
rabies confound_correction /data/prepro_out /data/conf_out \
    --scale_variance_voxelwise \
    --image scaling grand mean scaling
```

Cuándo usarlo: Igualar varianza por voxel manteniendo la varianza total del 4D; compatible con grand-mean.

8) Recorte temporal previo + detrend quadratic + TR manual + %BOLD por voxel

```
rabies confound_correction /data/prepro_out /data/conf_out \
   --timeseries_interval 40,all \
   --detrending_order quadratic \
   --TR 0.8 \
   --image_scaling voxelwise_mean
```

Cuándo usarlo: Descartar dummies/inestabilidad inicial; runs con derivas curvas; fija TR si el NIfTI no lo reporta correctamente.

9) Leer desde datasinks existentes

```
rabies confound_correction /data/prepro_out /data/conf_out \
    --read_datasink \
    --highpass 0.01 --lowpass 0.2 --edge cutoff 30
```

Cuándo usarlo: Cuando sólo conservas carpetas *_datasink/ del preprocesamiento y quieres lanzar confound correction sin el grafo Nipype completo.

Fuentes principales (RABIES):

- Confound Correction: https://rabies.readthedocs.io/en/latest/confound correction.html
- Outputs (confound correction): https://rabies.readthedocs.io/en/latest/outputs.html#confound-correction-outputs
- Running the software (CLI): https://rabies.readthedocs.io/en/latest/running_the_software.html