CHEMISTRY

FEEBACK 2 – TOMO I Y II

¿Cuál de las muestras no son compuestos orgánicos?

RECORDEMOS

La química orgánica o química del carbono es la rama de la química que estudia una numerosa clase de moléculas que contienen carbono, formando enlaces covalentes carbono-carbono y carbono-hidrógeno, también conocidos como compuestos orgánicos. Su riqueza es abrumadora.

Formación de la carbodiamida (UREA), el primer compuesto orgánico producido en un laboratorio

Excepciones de compuestos orgánicos

*CO*₂

C0

 CO_3^{2-}

CNO⁻

CN⁻

Rpta

 $HCN, KHCO_3, CaCO_3, CO_2, KCNO$

[NH4+][NCO-]

Calcular el valor de : Q = P + S + T

P: carbono primario

RECORDEMOS

1 C

Unido a:

Unido a: Unido a:

Solo carbonos para saturados

$$P = 4 S = 3 T = 1$$

Respecto a los alcanos ¿Qué proposiciones son correctas?

- I. Son hidrocarburos saturados.
- II. Tienen hibridación sp^3
- III. Se conocen como parafinas. 🗸
- IV. Tienen isomería geométrica. X

RECORDEMOS

LOS

ALCANOS

Características:

- ✓ También son llamados parafinas.
- ✓ Son compuestos de carbono e hidrógeno que sólo contienen en su molécula enlaces simples.
- √ Se les nombra con la terminación "ano".

Hidrocarburo	Enlaces presentes	Fórmula General	Terminación
Alcano	Todos sencillos Saturados	, C _n H _{2n+2}	ano

Tipo de hibridación	Orbitales que se hibridan	Tipos de enlace Simple, doble, triple	Tipos de hidrocarburos	Geometria	Ángulos de enlace
Sp ³	S, Px, Py, Pz	C-C simple	alcanos	orbital hibrido	109.5°

ISOMERÍA CIS-TRANS

Los grupos de más alta prioridad (número atómico) de cada centro a lados opuestos del doble enlace se les denomina trans y al mismo lado se les denomina cis

Realiza la nomenclatura IUPAC del siguiente hidrocarburo ramificado:

N° de C	Prefijo
1	Met
2	Et
3	Prop'
4	But

	3	Prop'
2 1	4	But
CH ₃ —CH ₂ etil		
1 2 3 4 5		6
$CH_2 = CH - CH = CH$	1	· CH ₃
etil		
CH ₃ —CH ₂		

RECORDEMOS

- ✓ Los alquenos son hidrocarburos que responden a la fórmula C_nH_{2n} . Se nombran utilizando el mismo prefijo que para los alcanos (met-, et-, prop-, but-....) pero cambiando el sufijo -ano por -eno
- ✓ Se toma como cadena principal la más larga que contenga el doble enlace. En caso de tener varios dobles enlaces se toma como cadena principal la que contiene el mayor número de dobles enlaces (aunque no sea la más larga)
- ✓ La numeración comienza por el extremo de la cadena que otorga al doble enlace el localizador más bajo posible. Los dobles enlaces tienen preferencia sobre los sustituyentes

Rpta 3,3-dietilhex-1,4-dieno

Realiza la nomenclatura IUPAC del siguiente compuesto:

RECORDEMOS

¿Qué son los alcoholes?

Son compuestos orgánicos oxigenados que poseen uno o más grupos oxidrilo (-OH) en sus moléculas.

Su fórmula general es: R- OH

Donde R- es un radical alquilo.

Estos compuestos se consideran como derivados de los hidrocarburos debido a la sustitución de un hidrógeno por un grupo oxidrilo (-OH)

CH₃- CH₃ → CH₂OH Etano Etanol

Realiza la nomenclatura IUPAC del siguiente compuesto:

RECORDEMOS

ALDEHIDOS

- Son compuestos orgánicos caracterizados por poseer el grupo funcional –CHO
- Es decir, el grupo carbonilo -C = O está unido a un carbono primario.

Rpta 2-etilhex-2-enal

Determine la atomicidad del siguiente compuesto:

RECORDEMOS

✓ La atomicidad indica el número de átomos en una molécula

Fórmula global:

Atomicidad = 8 + 14 + 1

Rpta 23

Relaciona las siguientes columnas:

- I. $R CH_2OH$ () Alcohol primario
- II. $R CHOH R_1$ (III) Eter
- III. $R O R_1$ (IV) Cetona
- IV. $R CO R_1$ (\square) Alcohol secundario

RECORDEMOS

Función Oxigenada	Grupo Funcional		Fórmula General	
ALCOHOL	OXHIDRILO	-OH (R-OH	
ETER	OXI	-0- (R-0-R	
ALDEHIDO	FORMIL	-CHO	R - CHO	
CETONA	CARBONILO	-co- (R-CO-R	
ÁCIDO CARBOXÍLICO	CARBOXILO	- COOH	R – COOH	
ESTER	CARBALCOXI	- COO -	R-C00-R	

Rpta I,III,IV y II

Indique lo correcto con respecto a :

- A) Tiene 4 átomos de carbono con hibridación ${
 m sp}^2$
- B) Tiene 1 enlaces pi
- C) Su nombre es ácido 4-metil-2-pentenal.
- Tiene un carbono terciario
- E) Su fórmula global es C₆H₁₂O

 $C_6H_{10}O$

RECORDEMOS

Hibridación

Unido a:

3 C

CH

Rpta D

Solo para carbonos

saturados

Para disminuir el dolor originado en la región del tálamo del cerebro se usa el acido acetil salicílico. Algunos países industrializados produce un promedio de 12 000 toneladas de aspirina por año. Determinar la maso molar de dicha molécula. m.A.(uma): C=12 H=1 0=16

RECORDEMOS

El ácido salicílico (o ácido 2-hidroxibenzoico) recibe su nombre de Salix , Este producto sirve como materia prima para la obtención del acido acetilsalicílico, comercialmente conocido como Aspirina.

Fórmula global: C₉H₈O₄

$$\overline{M} = 9(12) + 8(1) + 4(16) = 180$$

Rpta 180 g/mol