SCRUM Planning Optimization Model (Derived from Entities, Relationships, Goals, Conditions, Decision Variables)

Auto-generated from CSV specifications

August 12, 2025

Contents

1	1. Sets (Entities)	2
2	2. Indices	4
3	3. Goals	5
4	4. Conditions	6
5	5. DecisionVariables	8

1 1. Sets (Entities)

- \mathcal{P} (Project) products/initiatives; attributes: id, name, project_start, project_end, description, budget, status, target_audience, priority.
- \mathcal{T} (Team) Scrum teams; attributes: id, name, team_size, team_start, team_status, location, team_type.
- W (Worker) individual members; attributes: id, name, first_name, email, start_date, status, availability.
- \mathcal{F} (Feature) mid-sized functionality; attributes: id, title, description, status, priority, estimated_effort.
- S (Skill) competencies; attributes: id, label, description, level, certified, category.
- \mathcal{R} (Role) responsibilities; attributes: id, role_name, description, area_of_responsibility.
- \mathcal{PO} (ProductOwner) product leadership; attributes: id, name, email, availability.
- \mathcal{SM} (ScrumMaster) process coach; attributes: id, name, email, experience.
- \mathcal{PB} (ProductBacklog) ordered requirements; attributes: id, created_on, last_updated, number_of_entries, status.
- SP (Sprint) timebox; attributes: id, sprint_number, start_date, end_date, status, achievement_of_goal.
- SPP (SprintPlanning) kickoff; attributes: id, date, duration, moderation, outcome_documentation.
- \mathcal{DS} (DailyScrum) daily; attributes: id, date, time, duration, moderation.
- SR (SprintReview) review; attributes: id, date, duration, feedback_documentation, attendees_count.
- \mathcal{SRE} (SprintRetrospective) retro; attributes: id, date, duration, improvement_actions, team_satisfaction, moderation.
- \mathcal{SBL} (SprintBacklog) selected items/plan; attributes: id, number_of_tasks, last_updated, status, total_effort.
- SG (SprintGoal) objective; attributes: id, objective_description, achievement_status, benefit.
- \bullet \mathcal{E} (Epic) large requirement; attributes: id, title, description, priority, status, estimated_effort.
- \mathcal{US} (UserStory) user-centric requirement; attributes: id, title, description, acceptance_criteria, priority, story_points, status.
- TSK (Task) smallest work unit; attributes: id, title, description, status, effort, type.
- \mathcal{DEV} (DevelopmentSnapshot) increment; attributes: id, version_number, creation_date, test_status, deployment_target, documentation.
- \mathcal{BL} (Blocker) impediment; attributes: id, title, description, severity, status, detected_on, resolved_on.

- \mathcal{SH} (Stakeholder) interested party; attributes: id, name, organization, role, email, area_of_interest, influence_level, relevance_to_feature.
- VEL (Velocity) throughput measure; attributes: id, number_of_sprints_used, avg_story_points, max_velocity, min_velocity, trend.
- \mathcal{REP} (ReleasePlan) planned releases; attributes: id, version, planned_date, included_features, status.
- \mathcal{RM} (Roadmap) long-term view; attributes: id, start_date, end_date, milestones, objectives, versions.
- \mathcal{SCB} (ScrumBoard) task board; attributes: id, board_type, columns, number_of_cards, last_updated.
- \mathcal{FED} (FeatureDocumentation) docs; attributes: id, title, description, creation_date, change_log, linked_requirements, author.

Relationship Incidence (from Relationships.csv). We encode each relationship Rk as a binary incidence matrix over the corresponding sets, respecting cardinalities:

- $\bullet \ R1: \ \texttt{is_assigned_to_project} \ \Rightarrow \ A_{t,p}^{T,P} \in \{0,1\}.$
- $\bullet \ R2: \ \texttt{belongs_to_team} \ \Rightarrow \ A_{w,t}^{W,T} \in \{0,1\}.$
- R3: has_skill $\Rightarrow A_{w,s}^{W,S} \in \{0,1\}.$
- $\bullet \ R4: \ {\tt takes_on_role} \ \Rightarrow \ A_{w,r}^{W,R} \in \{0,1\}.$
- $\bullet \ R5: \ {\tt manages_backlog} \ \Rightarrow \ A^{PO,PB}_{po,pb} \in \{0,1\}.$
- $\bullet \ R6: \ \texttt{is_supported_by} \ \Rightarrow \ A_{t,sm}^{T,SM} \in \{0,1\}.$
- R7: contains_feature $\Rightarrow A_{pb,f}^{PB,F} \in \{0,1\}.$
- $\bullet \ R8: \ \mathtt{contains_epic} \ \Rightarrow \ A^{PB,E}_{pb,e} \in \{0,1\}.$
- $\bullet \ R9: \ {\tt contains_user_story} \ \Rightarrow \ A_{e,u}^{E,US} \in \{0,1\}.$
- $\bullet \ R10: \ \mathtt{consists_of_tasks} \ \Rightarrow \ A_{u,t}^{US,TSK} \in \{0,1\}.$
- $\bullet \ R11: \ \texttt{is_in_sprint_backlog} \ \Rightarrow \ A_{u,sbl}^{US,SBL} \in \{0,1\}.$
- $\bullet \ R12: \ \texttt{belongs_to_sprint} \ \Rightarrow \ A_{sbl,sp}^{SBL,SP} \in \{0,1\}.$
- $R13: \text{pursues_goal} \Rightarrow A_{sp,sg}^{SP,SG} \in \{0,1\}.$
- $R14: \mathtt{contains_tasks} \ \Rightarrow \ A_{scb.t}^{SCB,TSK} \in \{0,1\}.$
- R15: documents_feature \Rightarrow $A_{fd,f}^{FED,F} \in \{0,1\}.$
- $\bullet \ R16: \ \mathtt{is_blocked_by} \ \Rightarrow \ A_{t,b}^{TSK,BL} \in \{0,1\}.$
- R17: participates_in \Rightarrow $A_{sh.sr}^{SH,SR} \in \{0,1\}.$
- R18: moderates_retrospective $\Rightarrow A_{sm,sre}^{SM,SRE} \in \{0,1\}.$

- $\bullet \ R19: \ \mathtt{refers_to_team} \ \Rightarrow \ A_{vel,t}^{VEL,T} \in \{0,1\}.$
- $\bullet \ R20: \ {\tt plans_release} \ \Rightarrow \ A^{REP,F}_{rep,f} \in \{0,1\}.$
- $\bullet \ R21: \ {\tt is_part_of_roadmap} \ \Rightarrow \ A^{REP,RM}_{rep,rm} \in \{0,1\}.$
- $\bullet \ R22: \ {\tt generates_snapshot} \ \Rightarrow \ A_{sp,dev}^{SP,DEV} \in \{0,1\}.$

2 2. Indices

• $p \in \mathcal{P}$, $t \in \mathcal{T}$, $w \in \mathcal{W}$, $f \in \mathcal{F}$, $s \in \mathcal{S}$, $r \in \mathcal{R}$, $po \in \mathcal{PO}$, $sm \in \mathcal{SM}$, $pb \in \mathcal{PB}$, $sp \in \mathcal{SP}$, $spp \in \mathcal{SPP}$, $ds \in \mathcal{DS}$, $sr \in \mathcal{SR}$, $sre \in \mathcal{SRE}$, $sbl \in \mathcal{SBL}$, $sg \in \mathcal{SG}$, $e \in \mathcal{E}$, $u \in \mathcal{US}$, $tsk \in \mathcal{TSK}$, $dev \in \mathcal{DEV}$, $b \in \mathcal{BL}$, $sh \in \mathcal{SH}$, $vel \in \mathcal{VEL}$, $rep \in \mathcal{REP}$, $rm \in \mathcal{RM}$, $scb \in \mathcal{SCB}$, $fd \in \mathcal{FED}$.

Attribute Parameters (examples). For attributes used by goals/conditions we define parameters:

- spoints_u (US.story_points), uprio_u (US.priority), ustatus_u (indicator for status=Ready).
- teffort_{tsk} (TSK.effort), ttype_unplanned_{tsk} $\in \{0, 1\}$, tstatus_{tsk}.
- bsev_b (BL.severity), bcrit_b $\in \{0, 1\}$, bopen_b $\in \{0, 1\}$.
- wavail $_w \in [0,1]$ (WORKER.availability), wstatus $_w$.
- sbl_tot_{sbl} (SBL.total_effort), $sblstatus_{sbl}$.
- vavg_{vel} (VEL.avg_story_points), $\text{vtrend}_{vel}^+ \in \{0, 1\}$.
- sgbenefit_{sq}, sgaligned_{sq} $\in \{0, 1\}$.
- fest_f (FEATURE.estimated_effort), fprio_f, frefined_f $\in \{0, 1\}$.
- pbudget_p (PROJECT.budget).
- repdate_{rep} (REP.planned_date), repapproved_{rep} $\in \{0, 1\}$.
- shrel_{sh} (SH.relevance_to_feature), sratt_{sr} (SR.attendees_count), srquorum $\in \mathbb{Z}_+$.
- spactive_{sp} $\in \{0, 1\}$ (SPRINT.status=Active).

Decision Variables (from Decision Variables.csv). We model the planning choices as:

 $x_{u,sp} \in \{0,1\}$ (DV0) assign_user_story_to_sprint $y_{f,rep} \in \{0,1\}$ (DV1) select_feature_for_release $a_{tsk,w} \in \{0,1\}$ (DV2) assign_task_to_worker $h_{tsk} \in [0, 40]$ (DV3) set_task_effort_hours $n_u^{\text{sprint}} \in \{1, \dots, 99\}$ (DV4) choose_sprint_for_user_story $cap_{sp} \in [0, 200]$ (DV5) decide_team_capacity_story_points $z_b^{\text{res}} \in \{0, 1\}$ (DV6) approve_blocker_resolution $d_{sp}^{\mathrm{start}} \in \{1, \dots, 31\}$ (DV7) schedule_sprint_start_day $r_f^{\text{rank}} \in \{1, \dots, 100\}$ (DV8) prioritize_feature_rank $\beta_p \in [0, 10^6]$ (DV9) budget_allocation_to_project $g_{sp}^{\mathrm{target}} \in [0, 100]$ (DV10) set_sprint_goal_benefit_target $N_{sbl}^{\text{tasks}} \in \{0, \dots, 300\}$ (DV11) decide_number_of_tasks_in_sprintbacklog $i_{sh,sr}^{\mathrm{inv}} \in \{0,1\}$ (DV12) select_stakeholder_for_review

3. Goals 3

We scalarize the multi-objective using weights w_k from Goals.csv. Each goal Gk is shown with its logical intent and mathematical term. The overall objective is:

$$\max \sum_{k:\text{maximize}} w_k \cdot \text{Term}_k - \sum_{k:\text{minimize}} w_k \cdot \text{Term}_k.$$

• G0 maximize_total_story_points (IsSum=True, GoalType=max, Weight=1.0)

Logical: Prefer plans that include higher total story points. Math term:
$$\operatorname{Term}_{G0} = \sum_{u \in \mathcal{US}} \sum_{sp \in \mathcal{SP}} \operatorname{spoints}_u x_{u,sp}$$
.

• G1 minimize_total_task_effort (IsSum=True, GoalType=min, Weight=1.0)

Logical: Reduce total planned task effort.

Math term:
$$\operatorname{Term}_{G1} = \sum_{tsk \in \mathcal{TSK}} h_{tsk}$$
.

• G2 minimize_open_blocker_severity (IsSum=True, GoalType=min, Weight=2.0)

Logical: Reduce impact from open blockers.

Math term:
$$\operatorname{Term}_{G2} = \sum_{b \in \mathcal{BL}} \operatorname{bsev}_b (1 - z_b^{\text{res}}) \operatorname{bopen}_b$$
.

• G3 maximize_team_availability (IsSum=True, GoalType=max, Weight=1.0)

Logical: Prefer allocations to more available workers. Math term:
$$\operatorname{Term}_{G3} = \sum_{tsk \in \mathcal{TSK}} \sum_{w \in \mathcal{W}} \operatorname{wavail}_w a_{tsk,w}$$
.

• G4 minimize_sprint_backlog_total_effort (IsSum=True, GoalType=min, Weight=1.5)

Logical: Keep sprint backlog effort low. Math term:
$$\operatorname{Term}_{G4} = \sum_{sbl \in \mathcal{SBL}} \operatorname{sbl_tot}_{sbl}$$
.

• G5 maximize_velocity_avg_story_points (IsSum=True, GoalType=max, Weight=1.0) Logical: Favor teams/sprints with higher historical velocity.

Math term:
$$\operatorname{Term}_{G5} = \sum_{vel \in \mathcal{VEL}} \operatorname{vavg}_{vel}$$
.

• G6 maximize_sprint_goal_benefit (IsSum=True, GoalType=max, Weight=1.0)

Logical: Increase delivered benefit vs. target.

Math term:
$$\operatorname{Term}_{G6} = \sum_{sp \in \mathcal{SP}} \sum_{sq \in \mathcal{SG}} A_{sp,sg}^{SP,SG} \cdot \min\{\text{sgbenefit}_{sg}, g_{sp}^{\text{target}}\}.$$

• G7 minimize_feature_estimated_effort (IsSum=True, GoalType=min, Weight=1.0)

Logical: Prefer lower-effort features in the plan.

Math term:
$$\operatorname{Term}_{G7} = \sum_{f \in \mathcal{F}} \sum_{rep \in \mathcal{REP}} \operatorname{fest}_f y_{f,rep}.$$

• G8 maximize_feature_priority (IsSum=True, GoalType=max, Weight=0.8)

Logical: Prefer higher-priority features. Math term:
$$\operatorname{Term}_{G8} = \sum_{f \in \mathcal{F}} \sum_{rep \in \mathcal{REP}} \operatorname{fprio}_f y_{f,rep}$$
.

• G9 minimize_project_budget (IsSum=True, GoalType=min, Weight=1.2)

Logical: Minimize allocated budget.

$$\text{Math term: Term}_{G9} = \sum_{p \in \mathcal{P}} \beta_p.$$

• G10 minimize_release_planned_date (IsSum=False, GoalType=min, Weight=0.7)

Logical: Release as early as possible.

Math term:
$$\operatorname{Term}_{G10} = \max_{rep \in \mathcal{REP}} \operatorname{repdate}_{rep} \cdot \left[\sum_{f \in \mathcal{F}} y_{f,rep} \ge 1 \right]$$
 (or $\operatorname{surrogate} \sum_{rep} \operatorname{repdate}_{rep} \sum_{f} y_{f,rep}$).

• G11 maximize_stakeholder_relevance (IsSum=True, GoalType=max, Weight=0.9)

Logical: Invite more relevant stakeholders to reviews. Math term:
$$\operatorname{Term}_{G11} = \sum_{sr \in \mathcal{SR}} \sum_{sh \in \mathcal{SH}} \operatorname{shrel}_{sh} i^{\operatorname{inv}}_{sh,sr}$$
.

4. Conditions 4

Each condition from Conditions.csv is shown with ID, name, logic, and a mathematical constraint. "Must-Match" (CriteriaType = 2) are hard constraints; "Cannot-Match" (= 0) forbidding constraints; "May-Match" (= 1) are soft and can be modeled via penalties or left to goals.

• C0 must_match_user_story_status_ready (IsSum=False, GoalType=min, CriteriaType=2, Weight=1.0)

Logical: Only *Ready* user stories can be selected into sprints.

Constraint: $x_{u,sp} \leq \text{ustatus}_u \quad \forall u \in \mathcal{US}, \forall sp \in \mathcal{SP}.$

• C1 must_match_feature_status_refined (IsSum=False, GoalType=min, CriteriaType=2, Weight=1.0)

Logical: Only *Refined* features can be chosen for a release.

Constraint: $y_{f,rep} \leq \text{frefined}_f \quad \forall f \in \mathcal{F}, \forall rep \in \mathcal{REP}.$

• C2 cannot_match_task_type_unplanned (IsSum=False, GoalType=min, CriteriaType=0, Weight=1.5)

Logical: Unplanned tasks cannot be assigned.

Constraint: $a_{tsk,w} \leq 1 - \text{ttype_unplanned}_{tsk} \quad \forall tsk \in \mathcal{TSK}, \forall w \in \mathcal{W}.$

• C3 must_match_sprint_status_active (IsSum=False, GoalType=min, CriteriaType=2, Weight=1.0)

6

Logical: Assignments only into Active sprints.

Constraint: $x_{u,sp} \leq \text{spactive}_{sp} \quad \forall u, sp.$

• C4 must_match_product_backlog_status_ordered (IsSum=False, GoalType=min, CriteriaType=2, Weight=1.0)

Logical: Only items from an Ordered Product Backlog can be planned.

Constraint: $x_{u,sp} \leq \sum_{pb \in \mathcal{PB}} \text{pb_ordered}_{pb} \Big(\sum_{e \in \mathcal{E}} A_{pb,e}^{PB,E} A_{e,u}^{E,US} \Big)$, with pb_ordered_{pb} $\in \{0,1\}$.

• C5 may_match_worker_availability_high (IsSum=True, GoalType=min, CriteriaType=1, Weight=0.8)

Logical: Prefer workers with availability ≥ 0.8 .

Soft constraint (example): $\sum_{t>l} a_{tsk,w} \max\{0, 0.8 - \text{wavail}_w\} \le \epsilon$.

• C6 must_match_team_type_cross_functional (IsSum=False, GoalType=min, CriteriaType=2, Weight=1.0)

Logical: Only cross-functional teams can receive work.

Constraint (team capacity binding): $\sum_{u} \text{spoints}_{u} x_{u,sp} \leq \sum_{t \in \mathcal{T}} \text{cap}_{sp} \text{ isXFunc}_{t} A_{t,p}^{T,P} \quad \forall sp,$ with isXFunc_t $\in \{0, 1\}$.

• C7 cannot_match_blocker_severity_critical (IsSum=False, GoalType=min, CriteriaType=0, Weight=2.0)

• C8 must_match_sprint_goal_achievement_status_aligned (IsSum=False, GoalType=min, CriteriaType=2, Weight=1.0)

Logical: Only sprints whose goal is aligned may be populated. Constraint: $\sum_{u} x_{u,sp} \leq M \cdot \sum_{sq} A_{sp,sq}^{SP,SG} \operatorname{sgaligned}_{sg} \quad \forall sp.$

• C9 may_match_sprint_review_attendees_sufficient (IsSum=True, GoalType=min, CriteriaType=1, Weight=0.5)

Logical: Prefer reviews with quorum. Soft constraint: $\sum_{s} \max\{0, \operatorname{srquorum} - \operatorname{sratt}_{sr} - \sum_{sh} i_{sh,sr}^{\operatorname{inv}}\} \leq \epsilon.$

• C10 must_match_release_plan_status_approved (IsSum=False, GoalType=min, CriteriaType=2, Weight=1.0)

Logical: Only Approved release plans may contain features.

Constraint: $y_{f,rep} \leq \text{repapproved}_{rep} \quad \forall f, rep.$

• C11 may_match_velocity_trend_positive (IsSum=False, GoalType=min, CriteriaType=1, Weight=0.6)

7

Logical: Prefer teams with increasing velocity.

Soft constraint: $\sum_{vel} (1 - \text{vtrend}_{vel}^+) \le \epsilon$ (or encode via objective G5).

Additional Feasibility (structural) Constraints (from Relationships).

• Story–Sprint consistency: $\sum_{sp} x_{u,sp} \leq 1 \quad \forall u.$

- Story-Task linking: if any task of u is assigned then u must be scheduled: $\sum_{w} a_{tsk,w} \leq \sum_{sp} x_{u,sp} \quad \forall u, \ \forall tsk \ \text{with} \ A_{u,tsk}^{US,TSK} = 1.$
- Release inclusion via plan: $y_{f,rep} \leq A_{rep,f}^{REP,F} \quad \forall f, rep.$
- SprintBacklog linkage: $\sum_{u} A_{u,sbl}^{US,SBL} \leq N_{sbl}^{\text{tasks}} \quad \forall sbl.$
- Capacity limit (illustrative): $\sum_{u} \text{spoints}_{u} x_{u,sp} \leq \text{cap}_{sp} \quad \forall sp.$
- Budget guard: $\sum_{f,rep} \text{fest}_f y_{f,rep} \leq \sum_p \beta_p$.

5 5. DecisionVariables

- **DV0** assign_user_story_to_sprint: Binary, Domain {0,1}, Min 0, Max 1.
- DV1 select_feature_for_release: Binary, Domain {0,1}, Min 0, Max 1.
- DV2 assign_task_to_worker: Binary, Domain {0,1}, Min 0, Max 1.
- DV3 set_task_effort_hours: Real, Domain \mathbb{R}^+ , Min 0, Max 40.
- **DV4 choose_sprint_for_user_story**: Integer, Domain \mathbb{Z}^+ , Min 1, Max 99.
- DV5 decide_team_capacity_story_points: Real, Domain \mathbb{R}^+ , Min 0, Max 200.
- **DV6 approve_blocker_resolution**: Binary, Domain $\{0,1\}$, Min 0, Max 1.
- DV7 schedule_sprint_start_day: Integer, Domain Z, Min 1, Max 31.
- DV8 prioritize_feature_rank: Integer, Domain \mathbb{Z}^+ , Min 1, Max 100.
- **DV9** budget_allocation_to_project: Real, Domain \mathbb{R}^+ , Min 0, Max 1,000,000.
- DV10 set_sprint_goal_benefit_target: Real, Domain \mathbb{R}^+ , Min 0, Max 100.
- DV11 decide_number_of_tasks_in_sprintbacklog: Integer, Domain Z⁺, Min 0, Max 300.
- DV12 select_stakeholder_for_review: Binary, Domain {0,1}, Min 0, Max 1.