Extremums d'une fonction

I) Définitions (rappels de seconde : voir la fiche de cours correspondante)

Soit f une fonction définie sur un ensemble D inclus dans P_r m et M deux réels.

- M est le maximum de f sur D si et seulement si $f(x) \leq M$ pour tout x de D, et s'il existe un réel α dans D tel que $f(\alpha) = M$.
- m est le minimum de f sur D si et seulement si $f(x) \ge m$ pour tout x de D, et s'il existe un réel α dans D tel que $f(\alpha) = m$.
- On appelle extremum de f sur D son maximum ou son minimum (s'il existe).
- Si m ou M est un extremum de f sur un intervalle I ouvert inclus dans D, on dit que m ou M est un extremum local de f sur D

Exemples

La figure ci-dessus est la représentation graphique d'une fonction f définie sur l'intervalle D = [-0,5;4,5]

Sur D, f admet un minimum $m = f(-0.5) \approx -5.13$ et un maximum $M = f(4.5) \approx 11.1$

Sur I =] 0 ; 4 [intervalle ouvert contenu dans D, f admet un minimum local a = f(3) = 1 et un maximum local A = f(1) = 5

2°)

La figure ci-dessus est la représentation graphique d'une fonction f définie sur l'ensemble $D =] -\infty$; $2 [\cup] 2 ; + \infty [$ Sur D, f admet ni minimum, ni maximum.

II) Extremums et dérivée

Propriété:

Si une fonction f, dérivable sur un intervalle I, admet un extremum en α sur I et si α n'est pas une borne de I alors $f'(\alpha) = 0$

Démonstration:

Supposons que f admette un maximum en α , α n'étant pas une borne de I.

Il existe un intervalle ouvert J inclus dans I autour de α tel que $f(\alpha)$ soit le maximum de f sur J.

Pour h assez voisin de 0, $\alpha + h \in J$ et donc $f(\alpha + h) \leq f(\alpha)$

Alors pour
$$h > 0$$
 $\frac{f(\alpha + h) - f(\alpha)}{h} \le 0$ et pour $h < 0$ $\frac{f(\alpha + h) - f(\alpha)}{h} \ge 0$

La fonction f est dérivable sur I $\frac{f(\alpha+h)-f(\alpha)}{h}$ admet une limite $f'(\alpha)$ quand h tend vers 0 et les rapports $\frac{f(\alpha+h)-f(\alpha)}{h}$ étant aussi bien positifs que négatifs $f'(\alpha)$ ne peut être que 0.

Démonstration analogue pour un minimum.

Attention:

La réciproque de cette propriété est fausse : de $f'(\alpha)=0$ on ne peut pas déduire que f admet un extremum en α . (Voir exemple ci-dessous)

Exemple:

La fonction $f(x) = x^3$ définie et dérivable sur \mathbb{R} est strictement croissante sur \mathbb{R} et pourtant $f'(x) = 3x^2$ s'annule en x = 0 sans que la fonction ait d'extremum en ce point.

En revanche:

si f s'annule en changeant de signe en un réel α , α n'étant pas une borne de I, alors f admet un extremum local en α puisque f est :

- Soit croissante avant α et décroissante après (maximum local en α)
- Soit décroissante avant α et croissante après (minimum local en α)

Exemples:

1) Soit la fonction f définie sur I = [-0.5; 4.5] par $f(x) = x^3 - 6x^2 + 9x + 1$. f est dérivable sur I (fonction polynôme) dont la représentation graphique est :

Graphiquement on conjecture que f admet un maximum en x=1 et un minimum en x=3 (ces points n'étant pas des bornes de l'intervalle de définition).

Montrons que la dérivée f' s'annule en x = 1 et en x = 3

On a
$$f'(x) = 3x^2 - 12x + 9$$

$$f'(1) = 3 - 12 + 9 = 0$$
 et $f'(3) = 27 - 36 + 9 = 0$

La propriété est bien vérifiée.

2) Exemple montrant la nécessité de l'hypothèse « a n'est pas une borne de l'intervalle I »

Soit la fonction f définie sur I = [0; 3] par $f(x) = (x-2)^3$.

f est dérivable sur I (fonction polynôme)

dont la représentation graphique est :

f admet un minimum en 0 et un maximum en 3 qui sont les bornes d' l'intervalle de définition.

On a
$$f(x) = x^3 - 6x^2 + 12x - 8$$
 donc $f'(x) = 3x^2 - 12x + 12$

Donc f'(0) = 12 et f'(3) = 3 ces deux valeurs ne sont pas nulles.

3) Exemple montrant que la réciproque est fausse

En reprenant l'exemple précédent on peut calculer $f'(2) = 3 \times 4 - 12 \times 2 + 12 = 0$ et pourtant x = 2 n'est pas un extremum de f

4) En lisant un tableau de variation

Soit f une fonction définie et dérivable sur I = [-4; 6] dont on donne ci-dessous le tableau de variation.

La lecture de ce tableau nous permet d'affirmer :

- Que f admet sur I un maximum en x = -4 et un minimum en x = 0
- Que sur] -1; 3 [f admet un maximum local en x=2 et un minimum en x=0 et que par conséquence f'(0)=0 et f'(2)=0
- En outre on peut affirmer que $f(x) \ge 0$ sur [0; 2] et $f'(x) \le 0$ sur [-4; 0] et sur [2; 6].

III) Etude d'une fonction

Soit la fonction f définie sur l'intervalle I = [-4; 3] par $f(x) = \frac{x^4}{4} + \frac{x^3}{3} - \frac{5x^2}{2} + 3x - 2$ On appelle (C) la courbe représentative de f

- a) Expliquer pourquoi f est dérivable sur I
- b) Calculer '(x), f' désignant la dérivée de f
- c) Montrer que $f'(x) = (x-1)^2(x+3)$ pour tout x de I
- d) En déduire le signe de f'(x) sur I et dresser le tableau de variation de f
- e) La fonction f admet-elle des extremums sur I ? En quels points ?
- f) La fonction f admet-elle un extremum local en x = 1?
- g) Donner une équation des tangentes à (C) aux points d'abscisses x = -3; x = 0 et x = 1
- h) Représenter (C) et les trois tangentes de la question précédente (On prendra comme unités graphiques 3cm sur l'axe des abscisses et 0,5 cm sur l'axe des ordonnées.

Solution:

a) f est une fonction polynôme dérivable sur $\mathbb R$ donc sur $\mathbb I$ inclus dans $\mathbb R$

$$f'(x) = 4\frac{x^3}{4} + 3\frac{x^2}{3} - 5\frac{2x}{2} + 3 = x^3 + x^2 - 5x + 3$$

On développe $(x-1)^2(x+3) = (x^2 - 2x + 1)(x+3) = x^3 + 3x^2 - 2x^2 - 6x + x + 3$

$$= x^3 + x^2 - 5x + 3 = f'(x)$$

On va donc étudier le signe de $(x-1)^2(x+3)$ sur I

x	-4		- 3		1		3
Signe de $(x-1)^2$		+		+	ф	+	
Signe de $(x + 3)$		_	ф	+		+	
Signe de $f'(x)$		_	ф	+	ф	+	

Dressons le tableau de variations de f:

x	-4		-3		1		3
Signe de $f'(x)$		_	0	+	0	+	
Variations de <i>f</i>	$-\frac{34}{3}$			<i></i>	$-\frac{11}{12}$	<i></i>	55 4

- e) La fonction f admet un minimum en x=-3 et un maximum en x=3; pour le minimum comme ce n'est pas une borne de l'intervalle de définition f'(-3)=0 mais pour le maximum comme c'est une borne de l'intervalle de définition : $f'(3) \neq 0$
- f) Non f n'admet pas d'extremum en x=1 pourtant f'(1)=0 mais f' ne change pas de signe en x=1
- g) En x=-3 f'(-3)=0 donc la tangente a pour équation $y=-\frac{89}{4}$ elle est horizontale En x=0 f'(0)=3 et f(0)=-2 donc comme la tangente a pour équation y=f'(0)(x-0)+f(0) son équation est y=3x-2

En x = 1 f'(1) = 0 donc la tangente a pour équation $y = -\frac{11}{12}$ elle est horizontale.

h) Courbes

