BỘ GIÁO DỤC VÀ ĐÀO TẠO

ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẮNG NĂM 2004

ĐỀ CHÍNH THỰC

Môn: TOÁN, Khối D

(Đáp án - thang điểm có 4 trang)

Câu	Ý	Nội dung	Điểm
I			2,0
	1	Khảo sát hàm số (1,0 điểm)	
		$m = 2 \Rightarrow y = x^3 - 6x^2 + 9x + 1$.	
		a) Tập xác định: R.	
		b) Sự biến thiên:	
		$y' = 3x^2 - 12x + 9 = 3(x^2 - 4x + 3); y' = 0 \Leftrightarrow x = 1, x = 3.$	0,25
		$y_{CD} = y(1) = 5$, $y_{CT} = y(3) = 1$. $y'' = 6x - 12 = 0 \Leftrightarrow x = 2 \Rightarrow y = 3$. Dồ thị hàm	
		số lỗi trên khoảng $(-\infty; 2)$, lõm trên khoảng $(2; +\infty)$ và có điểm uốn là	
		U(2;3).	0,25
		Bảng biến thiên: $x \mid -\infty$ 1 3 $+\infty$	
		y' + 0 - 0 +	
		y	
			0,25
		c) Đồ thị:	
		Đồ thị hàm số cắt trục Oy tại điểm (0; 1).	
		4 / ! \	
		3-/	
		2	
		O 1 2 3 4 -	
		-2+	0,25
	2	Tìm m để điểm uốn của đồ thị hàm số(1,0 điểm)	
		$y = x^3 - 3mx^2 + 9x + 1$ (1); $y' = 3x^2 - 6mx + 9$; $y'' = 6x - 6m$.	0.25
		$y''=0 \Leftrightarrow x=m \Rightarrow y=-2m^3+9m+1.$ y'' đổi dấu từ âm sang dương khi đi qua $x=m$, nên điểm uốn của đồ thị hàm số	0,25
		y doi dau tu' am sang duong kni di qua $x = m$, nen diem don cua do tni nam so (1) là $I(m; -2m^3 + 9m + 1)$.	0,25
		I thuộc đường thẳng $y = x + 1 \Leftrightarrow -2m^3 + 9m + 1 = m + 1$	0,25
		$\Leftrightarrow 2m(4 - m^2) = 0 \Leftrightarrow m = 0 \text{ hoặc } m = \pm 2.$	0,25
<u> </u>	i .	·	- ,

II			2,0
	1	Giải phương trình (1,0 điểm)	
		$(2\cos x - 1)(2\sin x + \cos x) = \sin 2x - \sin x$	
		$\Leftrightarrow (2\cos x - 1)(\sin x + \cos x) = 0.$	0,25
		• $2\cos x - 1 = 0 \Leftrightarrow \cos x = \frac{1}{2} \Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi, \ k \in \mathbb{Z}$.	0,25
		• $\sin x + \cos x = 0 \Leftrightarrow \tan x = -1 \Leftrightarrow x = -\frac{\pi}{4} + k\pi, \ k \in \mathbb{Z}$.	0,25
		Vậy phương trình có nghiệm là: $x = \pm \frac{\pi}{3} + k2\pi$ và $x = -\frac{\pi}{4} + k\pi$, $k \in \mathbb{Z}$.	0,25
	2	Tìm m để hệ phương trình có nghiệm (1.0 điểm)	
		$\begin{array}{ l l l l l l l l l l l l l l l l l l l$	0,25
		$\Leftrightarrow \begin{cases} u+v=1 \\ uv=m \end{cases} \Leftrightarrow u, v \text{ là hai nghiệm của phương trình: } t^2-t+m=0 \ (**).$	0,25
		Hệ đã cho có nghiệm $(x; y) \Leftrightarrow H$ ệ $(*)$ có nghiệm $u \ge 0, v \ge 0 \Leftrightarrow Phương trình (**) có hai nghiệm t không âm.$	0,25
		$\int \Delta = 1 - 4m \ge 0$	
		$\Leftrightarrow \begin{cases} S = 1 \ge 0 & \Leftrightarrow 0 \le m \le \frac{1}{4}. \end{cases}$	
		$P = m \ge 0$	0,25
III			3,0
	1	Tính toạ độ trọng tâm G của tam giác ABC và tìm m (1,0 điểm)	
		Trọng tâm G của tam giác ABC có tọa độ:	
		$x_G = \frac{x_A + x_B + x_C}{3} = 1$; $y_G = \frac{y_A + y_B + y_C}{3} = \frac{m}{3}$. Vây G(1; $\frac{m}{3}$).	0,25
		Tam giác ABC vuông góc tại $G \Leftrightarrow \overrightarrow{GA}.\overrightarrow{GB} = 0$.	0,25
		$\overrightarrow{GA}(-2; -\frac{m}{3}), \overrightarrow{GB}(3; -\frac{m}{3}).$	
		$GA(-2, -\frac{\pi}{3}), GB(3, -\frac{\pi}{3}).$	0,25
		$\overrightarrow{GA}.\overrightarrow{GB} = 0 \Leftrightarrow -6 + \frac{m^2}{9} = 0 \Leftrightarrow m = \pm 3\sqrt{6}.$	0,25
	2	Tính khoảng cách giữa B_1C và $AC_1,$ (1,0 điểm)	
		a) Từ giả thiết suy ra:	
		$C_1(0; 1; b), \overline{B_1C} = (a; 1; -b)$	
		$\overrightarrow{AC_1} = (-a; 1; b), \overrightarrow{AB_1} = (-2a; 0; b)$	
		A ₁ (Ga; 0; 0) (C(0; 1; 0) y	
		A (a; 0; 0)	0,25

		$d(B_1C, AC_1) = \frac{\left \left[\overrightarrow{B_1C}, \overrightarrow{AC_1} \right] \overrightarrow{AB_1} \right }{\left \left[\overrightarrow{B_1C}, \overrightarrow{AC_1} \right] \right } = \frac{ab}{\sqrt{a^2 + b^2}}.$	
		$\left \begin{bmatrix} B_1C, AC_1 \end{bmatrix} \right \sqrt{a^2 + b^2}$	0,25
		b) Áp dụng bất đẳng thức Côsi, ta có:	
		$d(B_1C; AC_1) = \frac{ab}{\sqrt{a^2 + b^2}} \le \frac{ab}{\sqrt{2ab}} = \frac{1}{\sqrt{2}} \sqrt{ab} \le \frac{1}{\sqrt{2}} \frac{a+b}{2} = \sqrt{2}.$	0,25
		Dấu "=" xảy ra khi và chỉ khi $a = b = 2$.	
	2	Vậy khoảng cách giữa B_1C và AC_1 lớn nhất bằng $\sqrt{2}$ khi $a = b = 2$.	0,25
	3	Viết phương trình mặt cầu (1,0 điểm)	
		$I(x; y; z)$ là tâm mặt cầu cần tìm \iff $I \in (P)$ và $IA = IB = IC$. Ta có: $IA^2 = (x - 2)^2 + y^2 + (z - 1)^2$; $IB^2 = (x - 1)^2 + y^2 + z^2$;	
		$IC^{2} = (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}.$	0,25
		Suy ra hệ phương trình:	
		x + y + z - 2 = 0 $x + y + z = 2$	
		$\begin{cases} x + y + z - 2 = 0 \\ IA^2 = IB^2 \\ IB^2 = IC^2 \end{cases} \Leftrightarrow \begin{cases} x + y + z = 2 \\ x + z = 2 \\ y + z = 1 \end{cases}$	
		$\begin{vmatrix} \mathbf{I}\mathbf{R}^2 - \mathbf{I}\mathbf{C}^2 & \mathbf{V} + \mathbf{Z} = 1 \end{vmatrix}$	
		$\Leftrightarrow x = z = 1; y = 0.$	0,25
		$R = IA = 1 \Rightarrow Phương trình mặt cầu là (x-1)^2 + y^2 + (z-1)^2 = 1.$	0,25
IV		$K = IX = I \implies I \text{ fluoring trial in in the cautal } (X = I) + y + (Z = I) = I.$	0,25 2,0
1 4	1	Tính tích phân (1,0 điểm)	
		$I = \int_{2}^{3} \ln(x^{2} - x) dx \cdot D \check{a} t \begin{cases} u = \ln(x^{2} - x) \\ dv = dx \end{cases} \Rightarrow \begin{cases} du = \frac{2x - 1}{x^{2} - x} dx \\ v = x \end{cases}.$	0,25
		$I = x \ln(x^{2} - x) \Big _{2}^{3} - \int_{2}^{3} \frac{2x - 1}{x - 1} dx = 3 \ln 6 - 2 \ln 2 - \int_{2}^{3} \left(2 + \frac{1}{x - 1}\right) dx$	0,25
		$= 3 \ln 6 - 2 \ln 2 - \left(2x + \ln x - 1 \right) \Big _{2}^{3}.$	0,25
		$I = 3\ln 6 - 2\ln 2 - 2 - \ln 2 = 3\ln 3 - 2.$	0,25
	2	Tìm số hạng không chứa x (1,0 điểm)	
		Ta có: $\left(\sqrt[3]{x} + \frac{1}{\sqrt[4]{x}}\right)^7 = \sum_{k=0}^7 C_7^k \left(\sqrt[3]{x}\right)^{7-k} \left(\frac{1}{\sqrt[4]{x}}\right)^k$	0,25
		$= \sum_{k=0}^{7} C_7^k x^{\frac{7-k}{3}} x^{\frac{-k}{4}} = \sum_{k=0}^{7} C_7^k x^{\frac{28-7k}{12}} .$	0,25
		Số hạng không chứa x là số hạng tương ứng với $k \ (k \in \mathbb{Z}, \ 0 \le k \le 7)$ thoả mãn:	
		$\frac{28-7k}{12} = 0 \iff k = 4.$	
			0,25
		Số hạng không chứa x cần tìm là $C_7^4 = 35$.	0,25

V	Chứng minh phương trình có nghiệm duy nhất	1,0
	$x^5 - x^2 - 2x - 1 = 0 (1) .$	
	$(1) \Leftrightarrow x^5 = (x+1)^2 \ge 0 \Rightarrow x \ge 0 \Rightarrow (x+1)^2 \ge 1 \Rightarrow x^5 \ge 1 \Rightarrow x \ge 1.$	0,25
	Với $x \ge 1$: Xét hàm số $f(x) = x^5 - x^2 - 2x - 1$. Khi đó $f(x)$ là hàm số liên tục	
	với mọi x ≥ 1.	
	Ta có:	
	f(1) = -3 < 0, $f(2) = 23 > 0$. Suy ra $f(x) = 0$ có nghiệm thuộc (1; 2). (2)	0,25
	$f'(x) = 5x^4 - 2x - 2 = (2x^4 - 2x) + (2x^4 - 2) + x^4$.	
	$=2x(x^3-1)+2(x^4-1)+x^4>0, \ \forall x\geq 1.$	0,25
	Suy ra $f(x)$ đồng biến trên [1; $+\infty$) (3).	
	Từ (1), (2), (3) suy ra phương trình đã cho có đúng một nghiệm.	0,25