Emotion Recognition through Voice Analysis using Deep Learning Techniques

BY GROUP 2:

Aninda Bimal Mandal Sagarika Patial Dileep Kumar Kommineni Manoj Kumar Nunna

Agenda

Introduction:

Develop an emotion recognition system using voice analysis.

Primary goals:

Enable the system to recognize and classify the moods and emotions conveyed through a person's speech.

Motivation:

The motivation behind the project lies in the vast potential applications of emotion recognition systems, which can significantly improve human-computer interactions and user experiences across a range of domains. We can ensure that our deep learning models are trained to recognize emotions accurately across different populations and contexts. This is essential for creating a robust and reliable emotion recognition system.

Introduction

The project aims to develop an advanced emotion detection system using deep learning techniques to enhance applications such as voice-based IoT applications. The system aims to accurately identify and classify emotions conveyed through human speech, and it involves collecting and analysing emotional speech data, extracting relevant features, and applying deep learning methods to build a robust and accurate emotion detection model. The system intends to provide improved performance and capabilities, transforming the way voice-based intelligent systems interact with users and understand their emotions.

Purpose of the Project:

- The purpose of this project is to utilize deep learning techniques for emotion recognition in human speech.
- This will enhance the performance and user experience of voice-based applications, including
 healthcare services such as mental health monitoring and remote communication with medical
 professionals.
- By accurately detecting and classifying emotions in a person's speech, this system can help healthcare providers better understand the emotional state of their patients, allowing for more personalized and empathetic care.
- Furthermore, the project aims to demonstrate the potential of machine learning tools such as in the field of medicine, encouraging the adoption of such technologies for improved

Methodology

- Data Collection
- Feature Engineering
- Model Development
- Model Evaluation

Data Collection and Analysis

- RAVDESS dataset
- Preprocessing and feature extraction
- Deep learning techniques: CNNs and RNNs

Model Training and Evaluation

- 8 different models tested
- CNN + LSTM model selected
- Confusion matrices, precision, recall, and F1-score

Model Analysis

- The analysis of the data revealed patterns and features that are associated with different emotions in human speech.
- By training the deep learning model on this data, it was able to identify these patterns and effectively classify speech samples based on the emotions they convey.
- The results demonstrated that the proposed system can accurately detect emotions from speech signals and frequencies

Primary goal

Classify the moods and emotions conveyed through a person's speech.

Count of Emotions

Mel Sectrogram-Female-fear

Confusion Matrix

						-		۵٥.٠		~ · · · /	•				
female_an	gry -	41	4	0	1	1	0	1	0	0	0	0	0	0	0
female_disg	ust -	2	33	1	5	4	0	3	0	0	0	0	0	0	0
female_f	ear -	0	2	40	3	0	0	1	0	0	0	0	0	0	0
female_hap	ру -	0	0	2	34	0	1	1	0	0	0	0	0	0	0
female_neu	tral -	1	1	0	1	60	2	0	0	0	0	0	0	0	0
female_s	sad -	1	9	0	1	8	29	0	0	0	0	0	0	0	0
Actual Labe lemale_surbi male_an	rise -	0	1	2	4	0	0	48	0	0	0	0	0	0	0
male_an	gry -	0	0	0	0	0	0	0	39	6	5	3	0	0	2
⋖ male_disg	ust -	0	1	0	0	0	0	0	1	39	0	2	1	0	0
male_f	ear -	0	0	0	0	0	2	1	4	2	22	4	1	8	4
male_hap	ру -	0	0	0	0	0	0	0	2	4	1	30	3	3	8
male_neu	tral -	0	0	0	0	0	0	0	1	4	0	0	66	5	3
male_s	sad -	0	0	0	0	0	0	0	1	1	0	3	6	38	1
male_surp	ise -	0	0	0	0	0	0	0	0	2	0	6	2	1	34
		female_angry -	female_disgust -	female_fear -	female_happy -	female_neutral -	female_sad -	female_surprise -	male_angry -	male_disgust -	male_fear -	male_happy -	male_neutral -	male_sad -	male_surprise -

Accuracy vs. Epochs

Precision, recall, f1-score, support

	precision	recall	f1-score	support
female_angry	0.91	0.85	0.88	48
female_disgust	0.65	0.69	0.67	48
female_fear	0.89	0.87	0.88	46
female_happy	0.69	0.89	0.78	38
female_neutral	0.82	0.92	0.87	65
female_sad	0.85	0.60	0.71	48
female surprise	0.87	0.87	0.87	55
male_angry	0.81	0.71	0.76	55
male_disgust	0.67	0.89	0.76	44
male fear	0.79	0.46	0.58	48
male_happy	0.62	0.59	0.61	51
male_neutral	0.84	0.84	0.84	79
male_sad	0.69	0.76	0.72	50
male_surprise	0.65	0.76	0.70	45
accuracy			0.77	720
macro avg	0.77	0.76	0.76	720
weighted avg	0.78	0.77	0.76	720

Librosa Waveplot for Aninda's voice

Predicted Probabilities of Uploaded Voice

Conclusion

- Successful development of a speech emotion detection system
- Potential applications in various fields
- Future work: advanced machine learning techniques, expanded dataset

Thank you

