Synthesis of Rutile-Related Oxides, LiMMoO₆ (M = Nb, Ta), and Their Proton Derivatives. Intercalation Chemistry of Novel Bronsted Acids, HMMoO₆· H_2O^{\dagger}

N. S. P. Bhuvanesh and J. Gopalakrishnan*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India Received February 15, 1995[®]

Rutile-related oxides of the formula LiMMoO₆ for M = Nb or Ta have been synthesized for the first time (a = 4.685(3), c = 9.25(1) Å for M = Nb and a = 4.674(1), c = 9.23(1) Å for M = Ta). These oxides undergo topochemical proton exchange in dilute HNO₃, yielding layered HMMoO₆·H₂O that retain the rutile-like MMoO₆ slabs (a = 4.690(9), c = 26.75(8) Å for M = Nb and a = 4.687(1), c = 26.71(1) Å for M = Ta). The monohydrates undergo stepwise dehydration, yielding hemihydrates and anhydrous HMMoO₆. HMMoO₆·H₂O are strong Bronsted acids, intercalating a wide variety of organic bases, including pyridine (pK_a = 5.3), aniline (pK_a = 4.6), and pyrrole (pK_a = 0.4).

Introduction

 $LiMWO_6$ (M = Nb, Ta) crystallize in a novel trirutile structure^{1,2} (space group $P\overline{4}2_1m$) where the lithium ions are ordered in layers perpendicular to the c axis. Accordingly, these materials readily exchange lithium ions with protons in aqueous acid, yielding new layered oxides,3,4 HMWO6nH2O, which exhibit strong Bronsted acidity.3,5,6 Surprisingly, the corresponding molybdenum compounds have not been reported. In view of the interesting properties exhibited by this class of materials (ion exchange, 3,4 luminescence, nonlinear optical response,⁷ and ionic conductivity⁸), we considered it important to synthesize the molybdenum analogs of LiMWO₆. We have been able to synthesize the molybdenum compounds, LiMMoO₆, by a new synthetic procedure, which involves solid state reaction of constituent oxides with Li₂CO₃ at 580-600 °C, followed by quenching the products in air. We have also synthesized the protonated derivatives of LiMMoO₆ by ion exchange and investigated their Bronsted acidity by intercalation of several organic bases. Our results, which are reported in this paper, reveal that the protonated derivatives, HMMoO6 H2O, are among the strongest solid Bronsted acids known with a layered structure, intercalating a wide variety of organic bases, including the weak ones, such as pyridine (p $K_a = 5.3$), aniline (p $K_a =$ 4.6), and pyrrole (p $K_a = 0.4$).

Experimental Section

We investigated the formation of LiMMoO₆ by reacting Li₂CO₃, M_2O_5 (M=Nb, Ta), and MoO₃ at various temperatures under different conditions. After several attempts, we found that single-phase LiM-

- * Author to whom correspondence should be addressed.
- [†] Contribution No. 1096 from the Solid State and Structural Chemistry Unit.
- [⊗] Abstract published in Advance ACS Abstracts, June 15, 1995.
- (1) (a) Viebahn, W.; Rüdorff, W.; Kornelson, H. Z. Naturforsch. 1967, 22B, 1218. (b) Blasse, G.; de Pauw, A. D. M. J. Inorg. Nucl. Chem. 1970. 32, 3960.
- (2) Fourquet, J. L.; Le Bail, A.; Gillet, P. A. Mater. Res. Bull. 1988, 23, 1163.
- (3) Bhat, V.; Gopalakrishnan, J. Solid State Ionics 1988, 26, 25.
- (4) Kumada, N.; Horiuchi, O.; Muto, F.; Kinomura, N. Mater. Res. Bull. 1988, 23, 209.
- (5) Kinomura, N.; Amano, S.; Kumada, N. Solid State lonics 1990, 37, 317.
- (6) Kinomura, N.; Kumada, N. Solid State Ionics 1992, 51, 1.
- (7) Wiegel, M.; Emond, M. H. J.; de Bruin, T. H. M.; Blasse, G. Chem. Mater. 1994, 6, 973.
- (8) (a) Ohtsuka, H.; Yamaji, A.; Okada, T. Solid State Ionics 1984, 14, 283. (b) Ohtsuka, H.; Okada, T. Solid State Ionics 1986, 20, 141.

 MoO_6 , isostructural with LiMWO₆, were formed under the following conditions: solid state reaction (at 580 °C for M = Nb and 600 °C for M = Ta) for 24 h with one intermittent grinding followed by quenching the products in air.

Proton exchange of LiMMoO₆ was carried out by treating 1 g portions of the parent oxides in 100 mL aliquots of 2 M HNO₃ at room temperature with stirring. Lithium exchange, monitored by flame photometry, revealed that the exchange was $\sim 98\%$ complete at the end of 1 day and nearly 100% complete after 2 days. After exchange, the products were washed and dried in a desiccator over anhydrous CaCl₂.

Intercalation of n-alkylamines in HMMoO₆·H₂O (M = Nb, Ta) was carried out by refluxing the solid with a 10% solution of the amine in n-heptane. Intercalation of weak organic bases with pK_a ranging from 5.3 to 0.4 was carried out either by direct reaction of the host solid with neat bases (aniline, pyridine, 4-methylaniline, 3-methylaniline, and pyrrole) at room temperature or by refluxing the host with a 10% solution of the base (4-nitroaniline and 3-nitroaniline) in ethanol.

LiMMoO₆ and their derivatives were characterized by powder X-ray diffraction (XRD), energy dispersive X-ray emission (EDX) analysis, and thermogravimetric (TG) analysis as described elsewhere. Infrared (IR) spectra of powdered samples dispersed in KBr disks were recorded with a Bio-Rad SKC-3200 FTIR spectrometer. Lattice parameters were derived from least-squares refinement of the powder XRD data using the PROSZKI program that includes LAZY PULVERIX. 10

Results and Discussion

Synthesis and Characterization of LiMMoO₆ (M = Nb, **Ta).** It has been reported 1b,2 that LiMWO₆ (M = Nb, Ta) exists in two modifications, a low-temperature trirutile modification, which is stable up to ~ 800 °C, and a rhombohedral LiNbO₃ type phase, stable above this temperature. The molybdenum analogs of the trirutile LiMWO₆ have not been reported so far. Since the trirutile-LiNbO₃ transformation for LiMWO₆ is irreversible, the trirutile structure for LiMWO₆ is most likely metastable, existing only at lower temperatures (≤ 800 °C). Accordingly, we anticipated that the trirutile structure for the molybdenum analogs would also be metastable. We therefore investigated the formation of molybdenum analogs by reaction of the constituent oxides and Li₂CO₃ at various temperatures <800 °C, followed by quenching or slow cooling. We found that single-phase trirutile materials corresponding to the composition LiMMoO₆ (M = Nb, Ta) could be stabilized by the

⁽⁹⁾ Gopalakrishnan, J.; Bhuvanesh, N. S. P.; Raju, A. R. Chem. Mater. 1994, 6, 373.

⁽¹⁰⁾ Lasocha, W.; Lewinski, K. J. Appl. Crystallogr. 1994, 27, 437.

Figure 1. X-ray powder diffraction patterns of (a) LiNbMoO₆ and (b) LiTaMoO₆. Asterisks in (b) denote reflections due to LiTaO₃ impurity.

Table 1. X-ray Powder Diffraction Data for LiNbMoO₆ and LiTaMoO₆

	M = Nb			M = Ta				
h k l	d_{obs} (Å)	d _{cal} (Å)	I_{obs}	$I_{\mathrm{cal}}{}^{a}$	dobs (Å)	d _{cal} (Å)	$I_{ m obs}$	$I_{\rm cal}^a$
0 0 1	9.56	9.25	19	66	9.40	9.23	35	67
1 0 1	4.171	4.179	4	19				
1 1 0	3.320	3.312	100	100	3.302	3.305	100	100
102	3.273	3.291	33	55	3.273	3.283	52	58
1 1 1	3.137	3.118	10	16	3.116	3.111	20	18
103	2.578	2.576	66	63	2.571	2.568	69	70
200	2.344	2.343	10	13	2.335	2.337	14	18
2 0 1					2.265	2.265	8	6
1 1 3	2.259	2.257	10	10	2.251	2.251	8	6
2 1 0	2.103	2.095	4	3	2.090	2.090	2	2
2 1 2	1.907	1.908	10	20	1.901	1.904	15	21
0 0 5	1.838	1.850	4	4	1.843	1.845	4	4
2 1 3	1.737	1.733	43	58	1.729	1.729	46	57
2 2 0	1.663	1.656	15	18	1.653	1.653	13	17
1 1 5	1.608	1.615	7	11	1.610	1.611	9	12
006	1.543	1.542	6	5	1.542	1.537	6	5
3 1 01		1.482		12		1.478		13
}	1.486		8		1.479		10	
3 0 2		1.480		4		1.476		4
1061					1.460		1	
}					1.462		3	
3 1 1)						1.459		3
2 0 5	1.447	1.452	6	8	1.447	1.448	6	8
1 1 6)		1.398		17	1.397	1.397	8	10
}	1.397		16					
3 0 3		1.393		19	1.390	1.390	11	16
a = 4.685(3), c = 9.25(1) Å			a = 4.674(1), c = 9.23(1) Å					

^a Calculated by the LAZY PULVERIX program using the positional parameters² of LiNbWO₆.

reaction at 580 °C for M = Nb and at 600 °C for M = Ta, followed by quenching the products in air. Reaction at temperatures higher than 610 °C for M = Nb yields multiphasic materials consisting mainly of LiNbO₃ and LiNb₃O₈ type phases.

XRD patterns of LiMMoO₆ (Figure 1) are indexable (Table 1) on tetragonal cells with a = 4.685(3), c = 9.25(1) Å for M = Nb and a = 4.674(1), c = 9.23(1) Å for M = Ta. Both the patterns and the unit cell parameters are closely similar to those of the corresponding trirutile LiMWO₆ phases³ (a = 4.681(6), c = 9.28(1) Å for M = Nb and a = 4.669(3), c = 9.301(6) Å for M = Ta). We see in LiMMoO₆ a small increase in the a parameter and a decrease in the c parameter. There is an overall decrease in the cell volume of LiMMoO₆ as compared to the volume of LiMWO₆, which is consistent with the ionic radii of Mo(VI) and W(VI) (0.59 and 0.60 Å respectively). LiNbWO₆ crystallizes in a tetragonal structure,² space group P42₁m, where Li, Nb, and W atoms are ordered in layers perpendicular to the c direction. There is a 10% disorder between Nb and W atoms in this structure.² In an attempt to show that LiMMoO₆ are

Figure 2. EDX spectra of (a) LiTaMoO₆ and (b) HTaMoO₆·H₂O.

isostructural with LiMWO₆, we calculated the XRD intensities of LiTaMoO₆ using the position parameters² of LiNbWO₆, for various distributions of cations. A satisfactory agreement between the observed and calculated intensities is obtained for a model where Li atoms are ordered at 2c (0, $\frac{1}{2}$, 0.420) sites and Mo and Ta are randomly distributed at 2c (0, $\frac{1}{2}$, 0.0901; $0, \frac{1}{2}, 0.7305$) sites in the space group $P42_1m$. A similar calculation of the intensities for LiNbMoO6 could not distinguish between ordered and disordered models, because the mean atomic scattering factors of both Mo and Nb are similar. From powder XRD data, we therefore believe that both LiNbMoO₆ and LiTaMoO₆ are grossly isostructural with the corresponding tungsten analogs, although the exact details of ordering of M/Mo and M/W atoms in the two sets of oxides is most likely dependent on the synthesis conditions.

Synthesis and Characterization of Layered HMMoO₆nH₂O. Since LiMWO₆ undergo proton exchange^{3,4} in aqueous acids to give layered HMWO₆nH₂O, we expected that LiMMoO₆ also would undergo a similar exchange, forming layered HMMo-O₆•nH₂O. Indeed, we could readily prepare hydrated HMMoO₆ by treating LiMMoO₆ with 2 M HNO₃ for 2 days at room temperature. We examined the ion-exchanged product of the tantalum compound by EDX analysis to establish the composition. The results (Figure 2) show that the Ta:Mo ratio remains 1:1 in the protonated material as in the parent LiTaMoO₆, indicating that only lithium ions are exchanged during the acid treatment. TG analyses (Figure 3) show that the protonated phases are monohydrates, HMMoO6*H2O, losing the water of hydration and forming anhydrous HMMoO₆ at ~230 °C. TG data indiate the formation of a hemihydrate around 120 °C, but it is difficult to isolate it because of its tendency to rehydrate easily. XRD patterns (Figure 4) show that the monohydrates (Table 2) and the anhydrous phases crystallize in tetragonal structures (Table 3), derived from the parent LiMMoO₆. While the a parameter (\sim 4.69 Å) of HMMoO₆·H₂O remains nearly the same as that of the parent LiMMoO₆, the value of the cparameter (\sim 26.7 Å) indicates not only an expansion of the lattice due to hydration but also a doubling as well in this direction. On dehydration, the c parameter decreases by ~ 5.5 Å in HMMoO₆, but the lattice doubling remains. More interestingly, the proton exchange is accompanied by a transforma-

Figure 3. Thermogravimetric (TG) curves of (a) HNbMoO₆·H₂O and (b) HTaMoO₆·H₂O. In the inset are shown TG curves of intercalation compounds of HNbMoO₆·H₂O with (a) *n*-butylamine, (b) *n*-hexylamine, and (c) aniline. TG curves (inset) were recorded at a heating rate of 2 °C/min in a flowing oxygen atmosphere.

Figure 4. X-ray powder diffraction patterns of (a) $HNbMoO_6H_2O$, (b) $HNbMoO_6$, (c) $HTaMoO_6H_2O$, and (d) $HTaMoO_6$. Asterisks in (c) and (d) denote reflections due to $LiTaO_3$ impurity present in the parent $LiTaMoO_6$ preparation.

tion of the lattice from primitive to body-centered tetragonal, as revealed by the XRD patterns of HMMoO₆·H₂O (Figure 4; Table 2). These structural changes most likely indicate a displacement of the adjacent MMoO₆ slabs by the translation (a+b)/2, in the protonated phases. A similar structural change occurs in the tungsten analogs of HMMoO₆ as well as in HCa₂-Nb₃O₁₀ during their formation by ion exchange.^{3,11} A schematic representation of the idealized structures of LiMMoO₆, HMMoO₆·H₂O, and anhydrous HMMoO₆ is shown in Figure 5. The presence of characteristic absorption bands¹² of H₃O⁺ at 3375, 1620, and 1105 cm⁻¹ in the IR spectrum of HNbMoO₆·H₂O suggests that the intercalated water in HMMoO₆·H₂O most likely exists as H₃O⁺. Accordingly, the monohydrates should be formulated as H₃OMMoO₆, similar to the corresponding ammonium derivatives, ¹³ NH₄MMoO₆.

Table 2. X-ray Powder Diffraction Data for HNbMoO₆•H₂O

<u> </u>			
h k l	dobs (Å)	$d_{\mathrm{cal}}(\mathring{\mathrm{A}})$	$I_{ m obs}$
0 0 2	13.09	13.37	100
0 0 4	6.697	6.689	3
1 1 0	3.326	3.316	26
1 1 2	3.226	3.218	9
1 0 7	2.959	2.962	16
109	2.518	2.510	9
2 0 0	2.356	2.345	4 2
2 0 2	2.320	2.309	2
2 1 1)		2.091	
}	2.099		2
1 1 10)		2.082	
0 0 14	1.897	1.910	2
1 1 12)		1.850	
}	1.845		3
2 1 7 J		1.838	
2 1 9	1.719	1.713	3
1 0 15 γ		1.667	
}	1.664		5
220]		1.658	
1 1 16)		1.492	
}	1.489		5
1 0 17)		1.492	
	a = 4.690(9), c =	: 26.75(8) Å	

Table 3. Composition and Lattice Parameters of LiMMoO₆, HMMoO₆·H₂O, and Anhydrous HMMoO₆ (M = Nb, Ta)

-	lattice pa	ırams (Å)
compn	а	С
LiNbMoO ₆	4.685(3)	9.25(1)
LiTaMoO ₆	4.674(1)	9.23(1)
HNbMoO ₆ ·H ₂ O	4.690(9)	26.75(8)
HNbMoO ₆	4.694(5)	21.34(2)
HTaMoO ₆ •H ₂ O	4.687(1)	26.71(1)
HTaMoO ₆	4.672(1)	21.04(1)

Bronsted Acidity of HMMoO₆·H₂O. It is known^{3,5,6} that HMWO₆ (M = Nb, Ta) and their hydrates are strong Bronsted acids, intercalating a wide variety of organic bases. We anticipated that the analogous HMMoO₆ would also be strong Bronsted acids. Accordingly, we investigated the Bronsted acidity of the molybdenum compounds by intercalating several organic bases in HNbMoO₆·H₂O. n-Alkylamines, for instance, react readily with HNbMoO₆·H₂O, forming intercalation compounds with large expansions of the c axis (Figure 6; Table 4). TG analysis shows that the water of hydration is retained in the intercalation compounds. The amine contents, determined by the weight losses in TG experiments (Figure 3 inset), are \sim 0.5 mol/mol of the host solid (Table 4). Similar results have been reported⁵ for the n-alkylamine intercalation compounds of HTaWO₆·0.5H₂O.

A plot of the c parameter of the n-alkylamine intercalation compounds of HNbMoO₆·H₂O with the number (n) of carbon atoms in the amine (Figure 7) shows a linear relation that fits into the equation c=1.96n+13.17 Å. Assuming that the alkyl chains are in the all-trans conformation, a slope of 1.96 Å indicates a bilayer arrangement of the alkyl chains.¹⁴ The chains are inclined at an angle $\alpha=50.5^{\circ}$, $\sin^{-1}(1.96/2\times1.27)$, with respect to the inorganic layer surface. The intercept of 13.17 Å is slightly larger than the basal spacing (12.20 Å) of the ammonium derivative ¹³ NH₄NbMoO₆. A direct comparison of the intercept with the basal spacing of the ammonium

⁽¹¹⁾ Jacobson, A. J.; Lewandowski, J. T.; Johnson, J. W. J. Less-Common Met. 1986, 116, 137.

^{(12) (}a) Gillard, R. D.; Wilkinson, G. J. Chem. Soc. 1964, 1640. (b) Nakamoto, K. Infrared Spectra of Inorganic and Coordination Compounds, 3rd ed.; Wiley: New York, 1978; p 119.

⁽¹³⁾ NH₄NbMoO₆ was prepared by treating HNbMoO₆·H₂O with molten NH₄NO₃ at 180 °C for 3 days, followed by washing with distilled water and drying the solid over anhydrous CaCl₂. It crystallizes in a tetragonal structure (a = 4.69(3), c = 12.20(4) Å) related to the host.

^{(14) (}a) Jacobson, A. J.; Johnson, J. W.; Lewandowski, J. T. Mater. Res. Bull. 1987, 22, 45. (b) Cao, G.; Mallouk, T. E. Inorg. Chem. 1991, 30, 1434.

Figure 5. Schematic representation of the structures of (a) rutile-type LiMMoO₆, (b) HMMoO₆ $^{\circ}$ H₂O, and (c) HMMoO₆ (M = Nb, Ta).

Figure 6. X-ray powder diffraction patterns of typical intercalation compounds of HNbMoO₆·H₂O with (a) n-butylamine, (b) n-hexylamine, (c) pyridine, (d) aniline, and (e) pyrrole.

derivative is however inappropriate, because the *n*-alkylamine intercalation compounds retain the water of hydration of the host, while the ammonium derivative is anhydrous. All the n-alkylamine intercalation compounds of HNbMoO₆·H₂O undergo partial dehydration on drying around 100 °C in a vacuum oven (pressure $\sim 10^{-1}$ Torr), resulting in a decrease in the basal spacing (e.g., c decreases from 24.5 to 22.1 Å, 27.1 to 24.5 Å, and 36.5 to 33.8 Å, respectively, for n-hexyl-, n-heptyl-, and *n*-dodecylamine intercalates). The decrease ($\sim 2.5 \text{ Å}$) corresponds approximately to the diameter of a water molecule¹⁵ (2.8 \dot{A}). It is therefore likely that, in the *n*-alkylamine intercalation compounds of HNbMoO6•H2O, the water molecules separate the *n*-alkylamines from the inorganic host layer. ¹⁶ Significantly, the intercalates rehydrate on exposure to atmosphere with concomitant increase in the c parameter to its original value.

(15) Beneke, K.; Lagaly, G. Inorg. Chem. 1987, 26, 2537.

Table 4. Composition and Lattice Parameters of Intercalation Compounds of HMMoO₆·H₂O (M = Nb, Ta) with n-Alkylamines

	intercalated	lattice params (Å)		
n-alkylamine	amine content ^a	a c		
n-butylamine	0.47	4.70	20.9	
n-pentylamine	0.54	4.70	23.0	
n-hexylamine	0.51	4.70	24.5	
n-heptylamine	0.48	4.72	27.1	
n-octylamine	0.53	4.72	29.4	
<i>n</i> -nonylamine	0.53	4.71	30.9	
n-decylamine	0.57	4.73	32.8	
n-dodecylamine	0.61	4.71	36.5	
n-hexylamine ^b	0.51	4.69	24.2	

^a Denotes number of formula units of amine intercalated per formula unit of HMMoO₆H₂O. ^b The host in this case is HTaMoO₆·H₂O. In all other cases, the host is HNbMoO₆•H₂O.

Figure 7. Plot of c parameter versus number of carbon atoms in the n-alkylamine intercalation compounds of HNbMoO₆·H₂O.

The acid-base intercalation reaction between HNbMoO₆·H₂O and n-alkylamines is incomplete, as revealed by the intercalated amine content; only about 0.5 mol of amine is intercalated by 1 mol of the host (Table 4). The guest:host ratio of ~ 0.5 suggests two different possibilities: (1) the intercalation compounds are stage 2 derivatives (i.e., the guest molecules intercalate at all the acid sites between alternate layers) or (2) the guest molecules intercalate uniformly between all the layers, making use of approximately half the acid sites in every layer. Formation of stage 2 intercalates appears unlikely on the basis of geometric (steric) considerations: the cross-sectional area¹⁷ of an *n*-alkyl chain in the *all-trans* conformation is \sim 19.3 Å², whereas the area per acid site in HNbMoO₆·H₂O is \sim 11 Å².

⁽¹⁶⁾ This was suggested by one of the reviewers of this paper.

Table 5. Composition and Lattice Parameters of Intercalation Compounds of HMMoO₆·H₂O (M = Nb, Ta) with Weak Organic Bases

guest	pK_a	guest:host ratio	ca (Å)	$\Delta c^b (\mathring{ m A})$
pyridine	5.3	0.20	15.6	4.9
aniline	4.6	0.20	17.6	6.9
4-methylaniline	5.1	0.40	20.2	9.5
3-methylaniline	4.7	0.38	20.9	10.2
4-nitroaniline	1.0	0.26	19.7	9.0
3-nitroaniline	2.5	0.15	21.8	11.1
pyrrole	0.4	0.25	15.5	4.8
pyridine ^c	5.3	0.20	15.2	5.2
pyrrole ^c	0.4	0.33	15.5	4.8

^a The a parameter of the intercalates is \sim 4.70 Å in all cases. ^b The lattice expansion is given with respect to anhydrous HNbMoO₆/HTaMoO₆. ^c The host in these cases is HTaMoO₆·H₂O. In all other cases, the host is HNbMoO₆·H₂O.

Therefore, intercalating n-alkylamines at all the acid sites in a layer of HNbMoO₆·H₂O is sterically impossible, ruling out stage 2 intercalation. If, on the other hand, we assume that intercalation occurs uniformly between every layer, the limiting guest: host ratio expected on the basis of geometric considerations is 11.0:19.3 = 0.57. The experimentally found guest:host ratios of the n-alkylamine intercalation compounds (Table 4) are therefore consistent with the uniform intercalation model.

The high-density of acid sites (11 Å² per site) in HNbMo- O_6 ·H₂O is comparable to the exchange site densities¹⁸ of brittle micas (12 Å²) and KNiAsO₄ (10.8 Å²). Brittle micas do not undergo ready exchange with organic cations, but KNiAsO₄ does undergo¹⁸ exchange with alkylammonium ions to an extent of about 60%.

We have investigated the intercalation of several weak organic bases such as pyridine, aniline, and pyrrole in HNbMoO₆·H₂O. From the TG data (Table 5), we see that the guest:host ratio in all the cases is \sim 0.2–0.4, indicating incomplete reaction. The expansion (Table 5) of the lattice in the c direction with respect to anhydrous HNbMoO₆ ranges from \sim 5.0 to \sim 11.0 Å, depending on the dimension as well as the quantity of the base intercalated. Typically, lattice expansions of \sim 5.0 Å in the case of pyridine and \sim 6.9 Å in the case of aniline are consistent with a perpendicular orientation of these organic bases in the interlayer space. Similar lattice expansions have been reported for VOPO₄-pyridine¹⁹ (5.5 Å) and MoO₃-aniline²⁰ (6.7 Å) intercalates. The IR spectrum of the aniline intercalate (Figure

Figure 8. Infrared spectrum of (C₆H₅NH₃)_{0.3}H_{0.7}NbMoO₆·H₂O.

8) shows a sharp absorption band at 1490 cm⁻¹, indicating the formation of anilinium ions²¹ due to the acid—base interaction with protons of HNbMoO₆·H₂O. The pyridine intercalate also behaves similarly, showing an absorption band at 1535 cm⁻¹, which is characteristic of the pyridinium ion.^{6,19}

Intercalation of a few typical organic bases (n-alkylamines and pyridine) in HTaMoO₆·H₂O reveals that the Bronsted acidity of this oxide is similar to that of HNbMoO₆·H₂O (Tables 4 and 5). More interestingly, both HNbMoO₆·H₂O and HTaMoO₆·H₂O react with pyrrole ($pK_a = 0.4$), forming intercalation compounds of composition (pyrrole)_pHMMoO₆·H₂O (p = 0.25 for M = Nb and p = 0.33 for M = Ta) (Table 5). The p parameter increases by p4.80 Å in both pyrrole intercalates; the lattice expansion is of the same order as the expansions of polypyrrole-intercalated FeOCl (5.23 Å)²² and fluorohectorite (4.55 Å).²³ HTaWO₆·0.5H₂O has been reported⁶ to intercalate weak bases such as quinoxaline ($pK_a = 0.56$) and pyrazine ($pK_a = 0.65$) but does not intercalate pyrrole. We therefore believe that both HNbMoO₆·H₂O and HTaMoO₆·H₂O are among the strongest solid Bronsted acids consisting of metal—oxygen octahedra.^{6.14a,24}

Acknowledgment. We thank Professor C. N. R. Rao for valuable encouragement and support. Our thanks are also due to Mr. A. R. Raju, Materials Research Center of this institute, for recording the EDX spectra and the Department of Science and Technology, Government of India, for financial support. N.S.P.B. thanks the Council of Scientific and Industrial Research, New Delhi, for the award of a senior research fellowship.

IC950171I

1986, *540*, 198.

⁽¹⁷⁾ Choy, J. H.; Noh, D. Y.; Park, J. C.; Chang, S. H.; Delmas, C.; Hagenmuller, P. Mater. Res. Bull. 1988, 23, 73.

⁽¹⁸⁾ Beneke, K.; Lagaly, G. Clay Miner. 1982, 17, 175.

⁽¹⁹⁾ Johnson, J. W.; Jacobson, A. J.; Brody, J. F.; Rich, S. M. Inorg. Chem. 1982, 21, 3820.

⁽²⁰⁾ Bissessur, R.; De Groot, D. C.; Schindler, J. L.; Kannewurf, C. R.; Kanatzidis, M. G. J. Chem. Soc., Chem. Commun. 1993, 687.

⁽²¹⁾ Bein, T.; Enzel, P. Synth. Met. 1989, 29, E163.

⁽²²⁾ Kanatzidis, M. G.; Tonge, L. M.; Marks, T. J.; Marcy, H. O.; Kannewurf, C. R. J. Am. Chem. Soc. 1987, 109, 3797.

⁽²³⁾ Mehrotra, V.; Gianellis, E. P. Solid State Ionics 1992, 51, 115.
(24) (a) Rebbah, H.; Borel, M. M.; Raveau, B. Mater. Res. Bull. 1980, 15, 317. (b) Nedjar, R.; Borel, M. M.; Raveau, B. Z. Anorg. Allg. Chem.