REST 2017

O Introduction PHYSIQUE

* expistate-Newton IVe ov.7C 180' Ce n'est pas Chronobaque

espace $\simeq 1R^3$ trajedove mobile → suit les lors de noutor $m\frac{\partial \vec{\nabla}}{\partial t} = \vec{\Sigma} \vec{\tau}_{orus}$ - temps absder.

- plus de temps - alsolu. - vitesse de la cumbre abodeu. - respons lumbreux cône de lumière ensemble des regons lumihoux pessal par 1 pl

La question - comment encoder les bis physiques (GRAUTIATION) dan Z?
Dons l'espece temps métrique de signature (1,3) (modèle classique -dx²-dz²-dz²+c²dt²)
Noverhage cl'upt Se distingue Peu sa combine
Correspondent a La Combine Correspondent Corresp
(conforme)

Il Voisinages Infinitesimaux
(Z, O_Z) va. complexe
You des fonction } pour U aureit de œute de Z $U \cong \hat{U} \subseteq \mathbb{C}^n$ topologique « holomorphes » $OZ U \cong O\hat{U}$
Sous-variété: -> défini par une ou plusieurs équation (habraghas)
J_ C> Oz fascou d'adoux.
LCZ Sous-equie topologique est défini comme des forctions de j
une f'en L'est localement une classe de Fonction son Z modulo celles qui s'ennulait son L.
of que \mathbb{C}^2 area coord x,y .
x re=0 définiture sour L d'ideal JL = (x)
$x^2 = 0$ définit le même copace top L mois d'idéal $J_L' = \langle x^2 \rangle \subseteq J_L$
= (L, Or) est appelie épaississement de L.
χ at we forther sur L' qui verific $\chi_{\chi\chi}=0$
or a me restriction naturelle L C> L'
Def: Soit Lcy Z sour-var d'ideal J_L le voisin, exparssi de L à loche n don Z noti $L^{(n)}$ of le schéma $(L^{top}, \mathcal{O}_L^{(n)})$ oi $L^{(n)} \to \mathcal{O}_Z \to i_* \mathcal{O}_L^{(n)} \to 0$

The touchion sur L' soit un jet d'odre 12 de forêtie sur L.

I.2 Epaississements de Fibrés vectoriels

E -> X un fibré rectourel

- $O_X(E)$ faiscean des sections locales de $E \to X$ est un faiscean sun Xlocalement remayble à $O_X^{\oplus r}$ (or r = rk(E)) $\longrightarrow O_X$ dit localement libre.
- . Soit $X^{(n)}$ un éponsonant du Xun éponsoissement du E à $X^{(n)}$ not $E^{(n)}$ est un foissement be, libre $E^{(n)}$ tel que $E^{(n)} \otimes E^{(n)} \otimes E^{(n)}$

I.3 ÉPAISSISSEMENT DE FIBRÉ À CONNEXION Lés ga se corse!

Rappel : L'existence d'une connexion ∇ sur un faisceau cohérent F entraı̂ne que F est localement libre. [Malgrange]

Une connexion sur un faisceau <u>rigidifie</u> le faisceau.

Dans notre contexte : Soit ∇ une connexion sur E.

Alors elle définit de manière unique un épaississement E de E!

Ainsi épaissir les fibrés à connexion est un ping-pong entre d'une part l'épaississement de la connexion sur un fibré fixé et d'autre part le choix de l'épaississement du fibré. Il y a des obstruction à chaque cran qu'il faut gérer.

CORRESPONDANCE $\mathbb{Z} \xrightarrow{\mathfrak{L}} \mathbb{P}^{1}$ P' * Or suppose qu'il y a poin de sections → Yz∈Z ∃ Lz section "verticale" passal par z. -> YLCZ section $N_{L/Z} \simeq \Theta(1) \oplus \Theta(1) \oplus \Theta(1)$ done H'(L,NL/Z) = 0 et pour Rodoina L peut se doformen T[L] (space) = HO(L, N4Z) = Cem C: espace qui paramètre les sections S: P'_____Z [KODAIRA]: TSC ~ HO(Ls, NLs/Z) C lisse de dimonstru 2m su C correspondence ersemble clas droites persont par z ESPACE TAUTO LOGIQUE Ensemble des couples (z, s) EZXC | zELs

FIBRÉS L-TRIVIAUX ET CORRESPONDANCE

Ez -> Z est dit L-thud (trivial sur les droits)
8i VSEC, Ezlls est on fibré horible sur le
done H°(Ls, EzILs) × Ls -> Ez|Ls

Alon µ* Ez est taival sur les v'(s) se C donc I! Ec -> C tel que v * Ec = µ* Ez

CONNEXION ASSOCIET

COURBURE

$$\nabla: \mathcal{O}_{\mathcal{C}}(\mathcal{E}_{\mathcal{C}}) \longrightarrow \mathcal{O}_{\mathcal{C}}(\mathcal{E}_{\mathcal{C}})$$

$$v_{*}d\mu: v_{*} \otimes v(\mu^{*}E_{2}) \longrightarrow v_{*} \otimes \mu(\mu^{*}E_{2})$$

$$d\mu \circ d\mu = 0 \qquad v_* d\mu^* \circ v_* d\mu^* = 0$$

$$v_* d\mu^* \circ \nabla = 0$$

$$\nabla^{1}: \Omega_{C}(E_{C}) \longrightarrow \Omega^{2}_{C}(E_{C})$$
 $V_{\mu}(E_{C})$

$$\frac{doc}{\nabla \cdot \nabla \cdot \mathcal{O}_{c}(E_{c})}$$

$$\rightarrow kar(\Omega_{c}^{2} \rightarrow v_{*}\Omega_{\mu}^{2})_{6} E_{c}$$

 $\underbrace{\theta \wedge \theta}$

$$F(\nabla) \in \Omega^2_+(End(Ec))$$

$$\subseteq \Omega^2_+(EndEc)$$

Thm 1 [] (BUCHDAHL - CRASSHAN KINNES)

Il y a agr de cat qui respecte (8), Dualiti, Sections often (plate)

Thm2 []

L'équivalonce du Thm 1 se restaint

Moralement

(Ec, V) ← Ez → Z tomal sur le chaîte

F(V) summer obstantion à la terrestité de Ez à biche 2.

Système bool sur les droite à 1'ordre 2.

Soft EZ - Z [2] trivial, de rkr il est associé à Ec, V de noyen YEC COC(EC)

Or C simplement! $V_{Ec} \simeq C^{\Gamma}$ ornaxe! $V_{Ec} \simeq C^{\Gamma}$ of C associal $C_{C} \hookrightarrow C_{C} \hookrightarrow C_{$

Il nu a con d'autre al shustio

Il n'y a pas d'autres obstructions. Ez est <u>reaiment</u> tous la su Z tout estite.

Idde de la preuve (Buchdah: Anolysis an arelytic spaces & Nov-self-dual 411 hidds) 1985
TRANS. ANS.

 $W \hookrightarrow C \times Z$ or regarde $W^2 \hookrightarrow C \times Z$ cat expaisissement contact simultaneonal tous (es $L^2 \hookrightarrow C \times Z$

υ*Εc ~ μ*Εz =: Ε

 $(y^{(2)})^*$ Ec $(y^{(2)})^*$ Ez 2 épaisement de E

 $(\mathcal{G}_{n})_{k}\Delta$

 $S = (\mathcal{Y})^{*} \nabla - d_{\mu}^{(i)}$

 $\begin{bmatrix} \delta \end{bmatrix} = \begin{bmatrix} E^{(i)} \\ -E^{(i)} \end{bmatrix}$ $\langle \delta \rangle = F(\mathcal{E}^{(i)} + \nabla) - F(\mathcal{E}^{(i)}) = \mathcal{E}^{(i)}$

MOTIVATIONS

Espace de truisteur de van hyperkähliverne $Z \xrightarrow{f} P'$ $Z \simeq_{C^{\infty}} M_* S^2$

de CAMPANA

Xz van. Sympleatique hobromphe

нк

nor compacité de C

3 défamilien «grade»

À la limit: dans Xs

Xz n'est pas / hyperbolique. Compo entière