РОССИЙСКАЯ ФЕДЕРАЦИЯ МОСКОВСКАЯ ОБЛАСТЬ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ ГОРОД ЛОБНЯ

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №7

141730, Московская область г. Лобня, ул. Букинское шоссе, д.19

тел./факс:8(495) 577-15-21 e-mail:sosh7lobnya@inbox.ru

ОКПО 45066752

ОГРН 1025003081839

ИНН/ КПП 5025009734/ 504701001

РАССМОТРЕНО

На заседании педагогического совета Протокол № <u>1</u> от <u>30</u> августа 20 <u>19</u> **УТВЕРЖДЕНО**Директор
Приказ № 6 9 от 30.08 19

РАБОЧАЯ ПРОГРАММА

на 2019 - 2020 учебный год

по физике

для 11 класса

Учитель <u>Черникова Н.В.</u> Квалификационная категория <u>высшая</u>

Пояснительная записка

Рабочие программы по физике в 11 классе разработаны на основании нормативно-правовых документов:

- закон РФ «Об образовании» (ст.9, п.6; ст.32, п.2, пп.7);
- Федеральный компонент государственного образовательного стандарта, утвержденный Приказом Минобразования РФ № 1089 от 05.03.2004;
- примерная программа среднего общего образования по физике, профильный уровень, X-XI классы, рекомендованная Министерством образования и науки РФ. Авторы программы В.А. Орлов, О.Ф. Кабардин, В.А. Коровин и др., Москва. «Дрофа» 2011 г.;
- Федеральный перечень учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2014/2015 учебный год. Утвержден приказом Минобразования РФ
 № 2080 от 24.12.2010 г.

УМК:

Физика 11 класс. Учебник для общеобразовательных учреждений: базовый и профильный уровни. Авторы Г. Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин. Москва «Просвещение». 2014г.

Программа включает следующие разделы: основное содержание с примерным распределением учебных часов по разделам курса, календарнотематическое планирование, требования к уровню подготовки выпускников.

ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ОСНОВНОГО ОБЩЕГО

ОБРАЗОВАНИЯ ПО ФИЗИКЕ

Цели изучения курса:

- общеобразовательные:
- умения самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки цели до получения и оценки результата);
- умения использовать элементы причинно-следственного и структурнофункционального анализа, определять сущностные характеристики изучаемого объекта, развёрнуто обосновывать суждения, давать определения, приводить доказательства;
- умения использовать мультимедийные ресурсы и компьютерные технологии для обработки, передачи, математизации информации, презентации результатов познавательной и практической деятельности;
- умения оценивать и корректировать своё поведение в окружающей среде, выполнять экологические требования в практической деятельности и в повседневной жизни.
 - предметно-ориентированные:
- понимать возрастающую роль науки, усиление взаимосвязи и взаимного влияния науки и техники, превращение науки в непосредственную производительную силу общества; осознавать взаимодействие человека с окружающей средой, возможности и способы охраны природы;
- развивать познавательные интересы и интеллектуальные способности в
 процессе самостоятельного приобретения физических знаний с
 использованием различных источников информации, в том числе
 компьютерных;
- воспитывать убеждённость в позитивной роли физики в жизни современного общества, понимание перспектив развития энергетики, транспорта, средств связи и др.; овладевать умениями применять полученные знания для объяснения разнообразных физических явлений;

 применять полученные знания и умения для безопасного использования веществ и механизмов в быту, сельском хозяйстве и производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

СОДЕРЖАНИЕ ПРОГРАММЫ УЧЕБНОГО ПРЕДМЕТА ФИЗИКА

99 часов, 3 часа в неделю

1.Электродинамика

Электромагнитная индукция (продолжение)

Магнитное поле. Вектор магнитной индукции. Сила Ампера. Сила Лоренца. Магнитные свойства вещества. Электромагнитная индукция. Закон электромагнитной индукции. Самоиндукция. Индуктивность. Энергия магнитного поля.

Лабораторные работы:

- Лабораторная работа №1: «Наблюдение действие магнитного поля на ток».
- Лабораторная работа №2: «Изучение явления электромагнитной индукции».

Демонстрации:

Взаимодействие параллельных токов

Действие магнитного поля на ток

Устройство и действие амперметра и вольтметра

Устройство и действие громкоговорителя

Отклонение электронного лучка магнитным полем

Электромагнитная индукция

Правило Ленца

Зависимость ЭДС индукции от скорости изменения магнитного потока

Самоиндукция

Зависимость ЭДС самоиндукции от скорости изменения силы цели и от индуктивности проводника

<u>Уметь</u>: решать задачи на расчет характеристик движущегося заряда или проводника с током в магнитном поле, определять направление и величину сил Лоренца и Ампера, объяснять явление электромагнитной индукции и самоиндукции, решать задачи на применение закона электромагнитной индукции, самоиндукции.

Колебания и волны.

Механические колебания. Свободные колебания. Математический маятник. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс. Автоколебания.

Электрические колебания.

Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Емкость и индуктивность в цепи переменного тока. Мощность в цепи переменного тока. Резонанс в электрической цепи.

Производство, передача и потребление электрической энергии. Генерирование электрической энергии. Трансформатор. Передача электрической энергии.

Механические волны. Продольные и поперечные волны. Длина волны. Скорость распространения волны. Звуковые волны. Интерференция воли. Принцип Гюйгенса. Дифракция волн.

<u>Электромагнитные волны.</u> Излучение электромагнитных волн. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

<u>Лабораторная работа №3:</u> «Определение ускорения свободного падения при помощи маятника».

<u>Демонстрации:</u>

Свободные электромагнитные колебания низкой частоты в колебательном контуре.

Зависимость частоты свободных электромагнитных колебаний от электроемкости и индуктивности контура.

Незатухающие электромагнитные колебания в генераторе на транзисторе.

Получение переменного тока при вращении витка в магнитном поле.

Устройство и принцип действия генератора переменного тока (на модели).

Осциллограммы переменною тока

Устройство и принцип действия трансформатора

Передача электрической энергии на расстояние с мощью понижающего и повышающего трансформатора.

Электрический резонанс.

Излучение и прием электромагнитных волн.

Модуляция и детектирование высокочастотных электромагнитных колебаний.

<u>Знать</u>: понятия: свободные и вынужденные колебания; колебательный контур; переменный ток; резонанс, электромагнитная волна, свойства электромагнитных волн.

Практическое применение: генератор переменного тока, схема радиотелефонной связи, телевидение.

<u>Уметь:</u> Измерять силу тока и напряжение в цепях переменного тока. Использовать трансформатор для преобразования токов и напряжений. Определять неизвестный параметр колебательного контура, если известны значение другого его параметра и частота свободных колебаний; рассчитывать частоту свободных колебаний в колебательном контуре с известными параметрами.

Объяснять распространение электромагнитных волн.

Оптика

Световые лучи. Закон преломления света. Призма. Дисперсия света. Формула тонкой линзы. Получение изображения с помощью линзы. Электромагнитные волны. Скорость света и методы ее измерения, Интерференция света. Когерентность. Дифракция света. Дифракционная

решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.

Лабораторные работы

Лабораторная работа №4: «Измерение показателя преломления стекла».

Лабораторная работа №5: «Определение оптической силы и фокусного расстояния собирающей линзы».

Лабораторная работа №6: «Измерение длины световой волны».

Демонстрации:

Законы преломления света

Полное отражение

Получение интерференционных полос

Дифракция света на тонкой нити

Дифракция света на узкой щели

Разложение света в спектр с помощью дифракционной решетки

Поляризация света поляроидами

Применение поляроидов для изучения механических напряжений в деталях конструкций

<u>Знать</u>: понятия: интерференция, дифракция и дисперсия света.

Законы отражения и преломления света,

Практическое применение: полного отражения, интерференции, дифракции и поляризации света.

<u>Уметь</u>: измерять длину световой волны, решать задачи на применение формул, связывающих длину волны с частотой и скоростью, период колебаний с циклической частотой; на применение закона преломления света.

Основы специальной теории относительности.

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.

<u>Знать</u>: понятия: принцип постоянства скорости света в вакууме, связь массы и энергии.

<u>Уметь</u>: определять границы применения законов классической и релятивистской механики.

Квантовая физика

Световые кванты.

Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм.

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.

<u>Лабораторная работа №7:</u> «Наблюдение сплошного и линейчатого спектров».

<u>Демонстрации:</u>

Законы внешнего фотоэффекта

Устройство и действие полупроводникового и вакуумного фотоэлементов

Устройство и действие фотореле на фотоэлементе

Модель опыта Резерфорда

Невидимые излучения в спектре нагретого тела

Свойства инфракрасного излучения.

Свойства ультрафиолетового излучения

Шкала электромагнитных излучений (таблица)

Зависимость плотности потока излучения от расстояния до точечного источника

Законы внешнего фотоэффекта

Устройство и действие полупроводникового и вакуумного фотоэлементов

Устройство и действие фотореле на фотоэлементе.

<u>Знать</u>: Понятия: фотон; фотоэффект; корпускулярно-волновой дуализм; практическое применение: примеры практического применения электромагнитных волн инфракрасного, видимого, ультрафиолетового и рентгеновского диапазонов частот. Законы фотоэффекта: постулаты Бора.

<u>Уметь</u>: объяснять свойства различных видов электромагнитного излучения в зависимости от его длины волны и частоты. Решать задачи на применение формул, связывающих энергию и импульс фотона с частотой соответствующей световой волны. Вычислять красную границу фотоэффекта и энергию фотоэлектронов на основе уравнения Эйнштейна.

Атомная физика

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода Бора. [Модели строения атомного ядра: *протонно-нейтронная модель строения атомного ядра*.] Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Корпускулярное волновой дуализм. Дифракция электронов. Лазеры.

Физика атомного ядра.

Методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада. Протоно-нейтронная модель строения атомного ядра. Энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: частицы и античастицы. Фундаментальные взаимодействия

Демонстрации:

Модель опыта Резерфорда

Наблюдение треков в камере Вильсона

Устройство и действие счетчика ионизирующих частиц

<u>Знать</u>: ядерная модель атома; ядерные реакции, энергия связи; радиоактивный распад; цепная реакция деления; термоядерная реакция; элементарная частица, атомное ядро, закон радиоактивного распада. Практическое применение: устройство и принцип действия фотоэлемента; примеры технического - использования фотоэлементов; принцип спектрального анализа; примеры практических применений спектрального анализа; устройство и принцип действия ядерного реактора.

<u>Уметь</u>: Определять продукты ядерных реакций на основе законов сохранения электрического заряда и массового числа. Рассчитывать энергетический выход ядерной реакции. Определять знак заряда или направление движения элементарных частиц по их трекам на фотографиях.

РЕЗУЛЬТАТЫ ОСНОВЕНИЯ КУРСА

Требования к уровню подготовки выпускников

В результате изучения физики на базовом уровне ученик должен

Знать/понимать

- Смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- Смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

- Смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- Вклад российских и зарубежных ученых, оказавших значительное влияние на развитие физики;

Уметь

- Описывать и объяснять физические явления и свойства тел: движение небесных тел и ИСЗ, свойства газов, жидкостей и твердых тел, электромагнитная индукция, распространение электромагнитных волн, волновые свойства света, излучение и поглощение света атомом, фотоэффект;
- Отличать гипотезы от научных теорий, делать выводы на основе экспериментальных данных, приводить примеры, показывающие, что наблюдения и эксперименты являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов, физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще не известные явления;
- Приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике, различных видов электромагнитных излучений для развития радио- и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- Воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- Обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- Оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- Рационального природопользования и защиты окружающей среды.

Распределение часов по темам 11 класс

№ темы	Тема	Часов	л.р.	к.р.
1	Основы электродинамики	16ч	2	1
	Магнитное поле	7ч		
	Электромагнитная индукция	9ч		
2	Колебания и волны	30ч	1	1
	Механические колебания	7ч		
	Электромагнитные колебания	10ч		
	Механические волны	5ч		
	Электромагнитные волны	8ч		
3	Оптика	24ч	5	1
	Световые волны	16ч		
	Элементы теории относительности	3ч		
	Изучение и спектры	5ч		
4	Квантовая физика	23ч	-	1
	Световые кванты	4ч		
	Атомная физика	3ч		
	Физика атомного ядра	14ч		
	Элементарные частицы	2ч		
5	Повторение	6ч		
	Итого	99		

КАЛЕНДАРНО - ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 11 КЛАСС

с нач. курса В		_		домашне е задание
	I	7	Гласа I. Масичини с мода	e Ħ
1. 1.		<u> </u>	<i>Тлава 1. Магнитное поле</i> ТБ на уроках физики. Магнитное поле.	1
2. 2.				1
3. 3.			Индукция магнитного поля.	2
3. 3. 4. 4.			Сила Ампера.	4
5. 5.			Сила Лоренца. Магнитные свойства вещества.	6
6. 6.				O
0. 0.			Лабораторная работа № 1 «Наблюдение	
7. 7.			действие магнитного поля на ток»	2.5
/. /.		<u> </u>	Решение задач по теме: «Магнитное поле».	3,5
0 1		<u> 1 лава 2</u> 	. Электромагнитная индукция	7
8. 1.			Электромагнитная индукция. Магнитный	7
0 2			поток.	0
9. 2. 10. 3.			Правило Ленца.	8
_			Закон электромагнитной индукции.	
11. 4.			ЭДС индукции в движущихся проводниках.	9
12. 5.			Решение задач по теме: «Закон	10
12			электромагнитной индукции».	1 1
13. 6.			Самоиндукция. Индуктивность. Энергия	11
14. 7.			магнитного поля тока.	
14. 7.			Лабораторная работа № 2 «Изучение	
15 0			явления электромагнитной индукции»	12
15. 8.			Решение задач по теме: «Основы	12
16 0			электродинамики»	
16. 9.			Контрольная работа № 1 «Основы	
		F = a a	электродинамики».	
17 1		1 Лав	а 3. Механические колебания	12
17. 1. 18. 2.			Свободные колебания.	13
18. 2.			Уравнение движения математического	13
10 2			Маятника	13
19. 3.			Уравнение движения пружинного маятника.	1
20. 4.			Гармонические колебания.	14
21. 5.			Решение задач по теме: «Гармонические колебания»	15
22. 6.			Затухающие и вынужденные колебания.	16
			Резонанс.	
23. 7.			Лабораторная работа № 3 «Определение	
			ускорения свободного падения при помощи	
			маятника»	

		Глава 4.	Электромагнитные колебания	
24.	1.		Свободные электромагнитные колебания	17
25.	2.		Аналогия между механическими и	18
			электромагнитными колебаниями.	
26.	3.		Уравнения, описывающие процессы в	19,
			колебательном контуре. Формула Томсона.	20
27.	4.		Переменный электрический ток. Резистор в	21
			цепи переменного тока.	
28.	5.		Конденсатор и катушка индуктивности в	22
			цепи переменного тока. Индуктивное	
			сопротивление в цепи переменного тока.	
29.	6.		Электрический резонанс.	23
30.	7.		Решение задач по теме: «Переменный	24
			электрический ток»	
31.	8.		Автоколебания	25
32.	9.		Генератор переменного тока.	26
			Трансформатор	
33.	10.		Производство, передача и потребление	27,
			электрической энергии	28
			1	
		Гла	ава 5. Механические волны	
34.	1.		Волновые явления. Характеристики волны.	29
35.	2.		Волны в упругих средах. Уравнение	30
			бегущей волны.	
36.	3.		Звуковые волны.	31
37.	4.		Решение задач по теме: «Механические	32
			волны»	
38.	5.		Интерференция механических волн.	33,
			Дифракция и поляризация механических	34
			волн	
		Глава	6. Электромагнитные волны	
39.	1.		Электромагнитное поле. Электромагнитная	35
			волна.	
40.	2.		Экспериментальное обнаружение	36
			электромагнитных волн. Плотность потока	
			электромагнитного излучения.	
41.	3.		Изобретение радио А.С.Поповым.	37
			Принципы радио связи.	
42.	4.		Модуляция и детектирование. Свойства	38,
			электромагнитных волн.	39
43.	5.		Распространение радиоволн. Радиолокация.	40
44.	6.		Телевидение. Развитие средств связи.	41,
				42
45.	7.		Решение задач по теме: «Электромагнитные	43

		волны».	
46.	8.	Контрольная работа № 2 «Колебания и	
		волны».	
		Глава 7. Световые волны	•
47.	1.	Оптика. Скорость света.	44
48.	2.	Принцип Гюйгенса. Законы отражения.	45,
			46
49.	3.	Законы преломления.	47
50.	4.	Полное отражение.	48,
			49
51.	5.	Лабораторная работа № 4 «Измерение	
		показателя преломления стекла»	
52.	6.	Линзы.	50
53.	7	Построение изображений в линзе.	
54.	8	Формула тонкой линзы. Увеличение линзы	51,
			52
55.	9	Лабораторная работа № 5 «Определение	
		оптической силы и фокусного расстояния	
		собирающей линзы»	
56.	10	Дисперсия света.	53
57.	11	Интерференция света. Некоторые	54,
		применения интерференции.	55
58.	12	Дифракция света. Границы применимости	56,
		геометрической оптики	57
59.	13	Дифракционная решетка.	58,
			59
60.	14	Решение задач по теме: «Оптика».	
61.	15.	Лабораторная работа № 6 «Измерение	
		длины световой волны»	
62.	16.	Поперечность световых волн. Поляризация	60
		света.	
		Глава 8. Элементы теории относительности	
63.	1.	Законы электродинамики и принципы	61
		относительности.	
64.	2.	Постулаты теории относительности.	62,
		Основные следствия из постулатов теории	63
		относительности.	
65.	3.	Элементы релятивистской динамики.	64,
			65
	T	Глава 9. Изучение и спектры	1
66.	1.	Виды излучений. Источники света. Спектры	66,
		и спектральный анализ.	67
67.	2.	Шкала электромагнитных излучений.	68

68.	3.	Лабораторная работа № 8 «Наблюдение	
00.		сплошного и линейчатого спектра».	
69.	4.	Решение задач по теме «Оптика».	
70.	5.	Контрольная работа № 3 «Оптика».	
70.	J.	Глава 10. Световые кванты	
71.	1.	Фотоэффект.	69
72.	2.	Применение фотоэффекта.	70
73.	3.	Фотоны. Корпускулярно-волновой дуализм	71
74.	4.	Давление света. Химическое действие света.	72,
/4.	4.	давление света. Химическое деиствие света.	73
		Глава 11. Атомная физика	13
75.	1.	Строение атома. Опыты Резерфорда.	74
76.	2.	Квантовые постулаты Бора. Модель атома	75
70.	2.	водорода по Бору.	75
77.	3.	Лазеры.	76,
7 7 •		лизеры.	77
		Глава 12. Физика атомного ядра	, ,
78.	1.	Строение атомного ядра. Ядерные силы.	78,
, 0.		Обменная модель ядерного взаимодействия	79
79.	2.	Энергия связи атомных ядер.	80,
, , ,		оперты связи атемпым ядер.	81
80.	3.	Радиоактивность	82
81.	4.	Виды радиоактивного излучения	83
82.	5.	Закон радиоактивного распада. Период	84,
0_1		полураспада.	85
83.	6.	Методы наблюдения и регистрации	86
		элементарных частиц.	
84.	7.	Искусственная радиоактивность. Ядерные	87
		реакции.	
85.	8.	Деление ядер урана. Цепные ядерные	88
		реакции.	
86.	9.	Ядерный реактор.	89
87.	10.	Термоядерные реакции. Применение	90,
		ядерной энергии.	91,
			92
88.	11.	Изотопы. Получение радиоактивных	93
		изотопов и их применение.	
89.	12.	Биологическое действие радиоактивных	94
		излучений	
90.	13.	Решение задач по теме: «Квантовая физика»	
91.	14.	Контрольная работа № 4 «Квантовая	
		физика»	
		Глава 13. Элементарные частицы	

92.	1.	Три этапа в развитии физики элементарных	95,		
		частиц. Открытие позитрона. Античастицы	96		
93.	2.	Лептоны. Адроны. Кварки	97,		
			98		
	Повторение				
94.	1.	Электродинамика			
95.	2.	Колебания			
96.	3.	Волны			
97.	4.	Оптика			
98	5.	Квантовая физика			
99	6.	Квантовая физика			
	•	ИТОГО 99 ч			

Литература

- 1. Гомоюнов К.К., Кесамаллы М.Ф., Кесамаллы Ф.П. и др. Толковый словарь школьника по физике: Учеб. пособие для средней школы / под общей ред. К.К. Гомоюнова.- серия «Учебники для вузов. Специальная литература». СПб.: изд-во «Специальная литература», изд-во «Лань», 2014. 384 с.
- 2. Единый государственный экзамен: Физика: Тестовые задания для подг. к Единому гос. Экзамену: 10-11 кл. / Н.Н. Тулькибаева, А.Э. Пушкарев, М.А. Драпкин, Д.В. Климентьев. М.: Просвещение, 2014. 254 с.
- 3. Извозчиков В.А., Слуцкий А.М. Решение задач по физике на компьютере: Кн. для учителя. М.: Просвещение, 2007. 256 с.
- 4. Сборник задач по физике: для 10-11 кл. общобразоват. учрежедний / Сост. Г.Н. Степанова. 9-е изд. М.: Просвещение, 2013. 288 с.
- 5. Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.П. 7-е изд., стереотип. М.: Дрофа, 2013. 192 с.