▼ 离散数学下

- ▼ 关系 Relations
 - 关系及其性质
 - n元关系
 - 关系表示
 - 闭包关系 Closures of Relations
 - 等价关系 Equivalence Relations

离散数学下

关系 Relations

关系及其性质

- 1. 定义:
 - 。二元关系:集合A与B的二元关系R是 $A \times B$ (笛卡尔积)的一个子集;(满足某规律的有序 对的全体);
 - 。 n元关系:集合 $A_1, A_2 \dots, A_n$ 的n元关系是其笛卡尔积 $A_1 \times A_2 \times \dots A_n$ 的一个子集;
 - 。 关系本质上是n元组的集合;
 - 。记号表示:
 - 从A集合到B集合的关系R写作 $R: A \times B$ 者R: A, B;
 - aRb表示(a,b) \in R, 读作a相关于b;
 - 。 补关系(Complementary Relations):

$$R : \equiv \{(a,b)|(a,b)\notin R\} = (A\times B) - R$$

。 逆关系 (Inverse Relations):

$$R^{-1} : \equiv \{(b,a)|(a,b) \in R\}$$

2. 函数 (functions):

 $f: A \rightarrow B \neq A \times B$ 的关系的一种特殊情况;

3. 单一集合的关系:

集合A与A的二元关系R是 $A^2 = A \times A$ 的一个子集,称为集合A的关系;

- 。 同等关系(Identity Relations): $I_A = \{(a,a) | a \in A\}$
- 。 关系计数:
 - 有着n个元素的集合A的关系个数: 2^{n^2} ;

- A到A的函数个数: n^n (增长更快);
- 4. 关系的性质(重要):
 - 。 自反 (Reflexivity) : $\forall a \in A, aRa$
 - 反自反 (Irreflexivity) : R是反自反当且仅当R是自反的;
 - 反自反与"不自反"是不必要不充分的关系;
 - 。 对称(Symmetry): $R=R_{-1}$
 - 反对称 (Antisymmetry) : $\forall a \neq b, (a,b) \in R \rightarrow (b,a) \notin R$
 - 性质: R∩R⁻¹⊆I_A
 - 非对称(Asymmetry): (a,b) $\in R$ $\rightarrow (b,a)$ $ot\in R$
 - 非对称的关系都是反自反的;
 - 。 传递 (Transitivity):
 - $\forall a, b, c, (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$
 - 例: $R = \{(3,4)\}$ 是传递的;
 - 非传递 (Intransitivity): 不传递时即为非传递;
 - 。 自反关系计数:
 - 集合A中有n个元素,有 $2^{n(n-1)}$ 个自反关系
- 5. 联结关系 (Combining Relations):
 - 。交并补差
 - 。 组合关系 (Composition) : $S \circ R$, 读作R和S的组合;
 - 。 关系的幂(Power of Relations): $R^1=R, R^{n+1}=R^n \circ R$
 - 定理: 定义在集合A上的关系R是传递的当且仅当 $\forall n, R^n \subseteq R$

n元关系

- 1. 关系数据库(Relational Databases):即为n元关系R
 - 。主键(primary key):当R中的某一个域有这样的一个n元组能决定这个元组,即元组间在这个域上的值是不相等的,即称其为主键;
 - 。 组合键 (Composite Key) : 主键的笛卡尔积;
 - 。 数据库的内延 (intension) 与外延 (extension) ;
 - 。 操作符:
 - 选择操作符: s_c , 选择满足某条件的关系中的元组;
 - 投射操作符: P_{{ik}}
 - 联结操作符: J(R₁, R₂)
- 2. 数据挖掘关联规则

关系表示

1.0-1矩阵表示: (矩阵运算支持关系运算)

。 $S \circ R = M_R \odot M_S$,其余略

。 用矩阵 M_R 表示R:A imes B,其中 $m_{ij}=1\Leftrightarrow (a_i,b_i)\in R$

自反:要求主对角线全为1;反自反:要求主对角线全为0;对称:要求矩阵是对称矩阵;

■ 反对称: 值为1的元素的对称位置的元素值必须是0;

■ 传递: 矩阵做布尔幂运算后与原矩阵一致;

2. 有向图表示:

自反:所有点都有自接环;反自反:所有点都没有自接环;

对称:两点之间若有边,那一定是双向的;反对称:两点之间若有边,那一定是单项的;

。 注意: 若只有两两成对的点之间有联通, 点对之间无联通, 此时仍是传递;

3. 总结:

关系特征、关系图、关系矩阵

关系特征	关系图特征	关系矩阵特征
自反	每一结点处有一环	对角线元素均为1
反自反	每一结点处有无环	对角线元素均为0
对称	两结点间有相反的 两边同时出现	矩阵为对称矩阵
反对称	两结点间没有相反 的边成对出现	当分量C _{ij} =1(i≐j)时 C _{ji} =0
传递	如果结点 v ₁ , v ₂ 间有 边, v ₂ , v ₃ 间有边, 则 v ₁ , v ₃ 间必有边。	$R^n \subseteq R$

闭包关系 Closures of Relations

- 1. 定义:关系R的P闭包就是包含R且<mark>具有P中一切性质</mark>的关系中的最小的那一个; (对"最小"的理解:关系矩阵中的1的个数最少)
- 2. 分类:
 - - 定理: r(R)是包含R, 具有自反性的最小关系;
 - 推论: R是自反闭包当且仅当R是自反的
 - 。 对称闭包(symmetric closure): 称 $R \cup R^{-1}$ 是R的对称闭包,记为s(R);
 - 定理: $R \neq A$ 上的二元关系,则 $R \cup R^{-1}$ 是对称的且包含R的最小关系;
 - 推论: 当且仅当R是对称闭包时, R具有对称性;
 - 。 传递闭包: 记为t(R)或 R^* , 求法见下:
 - - 空序列表示长度为0的从a到a的路径;

 - 若 R^n 存在从a到a的长度为n的路径,记为 $(a,b) \in R^n$
 - ullet 定理一: R的传递闭包为 $R^\infty=R^1\cup R^2\cup R^3\cup\ldots=\cup_{i=1}^\infty R^i$;
 - 定理二:对于集合A,A=|n|,R为A的一个关系,则 $R^\infty=\cup_{i=1}^nR^i$,求解的时间复杂度为 $O(n^4)$;
 - 求传递闭包的算法: Warshall 算法 (重要):
 - 定义:
 - 内部节点 (interior vertices) : A 到b的路径上经过的中间点 (不含a,b) ;
 - ullet W_k : 矩阵中为1的点 W_{ij}^k 表示从第i个点 (v_i) 到第j个点 (v_j) 所经过的点都是集合 $\{v_1,v_2,\ldots,v_k\}$ 中的点; W_0 即原始的关系矩阵,所有的边都没有内部节点; $W_n=R^*$;
 - 求法: (从递推过程来看,本算法是找能进入 v_k 的点与 v_k 出去能到达的点,再把这些点组合成内部节点为 v_k 的路径并添加进矩阵里;从整体过程来看就是逐个点延路径拓展并取并集)
 - 1. 照抄上一个矩阵 (W_{k-1}) 的1;
 - 2. 找 W_{k-1} 的第k列找到值为1的元素的行数,与 W_{k-1} 的第k行找到值为1的元素的列数逐一组合得到 W_k 中新的坐标为1的点并填入;
 - 时间复杂度: O(n³);
 - 。 反自反是没有闭包关系的;

等价关系 Equivalence Relations

- 1. 定义: A上的二元关系R,如果R自反、对称、传递,则R为等价关系,其中 $(a,b) \in R$,称为a与b等价;
- 2. 集合的划分 (partition) : (切蛋糕)
 - 。 定义: 把集合A划分为若干子集 A_i 满足一下条件时,集合 $P_r(A)=\{A_1,A_2,\ldots,A_n,\ldots\}$ 称为A的划分;
 - $i\neq j$ 时, $A_i\cap A_j=\emptyset$;
 - *A*中的任意元素都能有有对应的一个子集;
 - 所有子集的并为集合*A*;
 - 。 定理1:集合的每个划分内的元素都等价,即若 $aRb\Leftrightarrow a,b$ 属于同一个划分块(block),则R为P决定的一个定义在A上的等价关系;
 - 。 引理1: $a \in A, b \in A$, R为A的等价关系,则 $aRb \Leftrightarrow R(a) = R(b)$
 - 。 定理2: R是定义在A上的等价关系,P是所有不同的关系集合R(A)的集合,则P是A的一个划分,R是由P决定的等价关系;
- 3. 等价类 (eugivalence classes):
 - 。 定义:R为等价关系,a的等价类定义为R(a)或 $[a]_R:=\{b|aRb\}$,即等价于a的所有元素的集合,其中每个元素都被叫做 $[a]_R$ 的代表元;关系R可以看做是一个函数f;
 - 。 划分P包含的所有R的等价类 $\{[a_1],[a_2],[a_3],\ldots,[a_n]\}$ 组成的集合称为商集(quotient set)(或 the partition of A induced by R 或 A modulo R),记为A/R(用有向图表示,每个等价类记为一个连通点集);
 - 。 找等价类的方法: 找不属于A的某一等价类的元素b计算R(b),重复直至A中所有元素都有自己属于的等价类;
 - 。 商集的元素个数称为R的秩;

4. 等价关系的运算:

- 。 若 R_1, R_2 是A上的等价关系,则 $R_1 \cap R_2$ 也是等价关系,称为两个分划的积,使划分更细;
- 。 若 R_1, R_2 是A上的等价关系,则 $R_1 \cup R_2$ 是相容关系(自反、对称),不一定等价;
- 。 若 R_1, R_2 是A上的等价关系,则 $(R_1 \cup R_2)^*$ 也是A上的等价关系,称为两个分划的和,使分划更粗;
- 。平凡分划:集合A的最粗或最细的分划
- 。 等价关系多用关系图判断,用集合的划分研究;