

Principal Component Analysis

Karl Pearson, Father of Mathematical Statistics(1857 – 1936)

- Invented PCA in 1901.
- Rediscovered it multiple times in many fields like Principal Axis theorem in mechanics.

What is PCA?

- PCA stands for **Principal component analysis**.
- Unsupervised learning algorithm.
- Method for figuring out how to represent a complex collection of data into a less complex way.

Principal Component Analysis

Flattening a dataset with lot of dimensions into 2 or 3 dimensions

- It is a technique to emphasize variation and bring out strong patterns in a dataset.
- It is often used to make data easy to explore and visualise.

It is a dimensionality reduction method.

Lets look at the dimensions:

 Other dimensions cannot be drawn

- It is reducing the dimensions/Features in a data.
- Through this, we can visualise and plot a data easily.

INSAID

Why PCA?

- It helps visualize high-dimensional data.
- It **reduces noise** and finally makes other algorithms to work better.

Principal Component Analysis

It helps in removing noise in the data.

Everybody loves to watch movies, Right?

International School of AI & Data Science

Lets Consider data from a movie rating system

- Here the movie ratings from different users are **instances**, and the various movies are **features**.

	X 1	X 2	Х 3	X 4
Y 1	100	98	80	70
Y 2	0	20	40	60
Y 3	140	100	120	80
Y 4	330	450	480	520

If we consider the first column(Movie 1):

	X 1	X 2	Х 3	X 4
Y 1	100	98	80	70
Y 2	0	20	40	60
Y 3	140	100	120	80
Y 4	330	450	480	520

After plotting our graph would look like this:

1 – Dimensional(1 D) = Number Line

Lets consider two columns(Movie1 & Movie2):

After plotting our graph would look like:

2 - D(Normal Graph)

Movie 2

Movie 1

Principal component Axis

- This shows
 Movie 1 and
 Movie 2 are
 correlated.
- The dots are spread out along a diagonal line

