METHOD OF SETTING THE KNOCK DETECTION SENSOR OF A PISTON ENGINE

BACKGROUND OF THE INVENTION

[0001] The invention relates to a method of setting the knock detection system of a multi-cylinder piston engine into active state, the detection system comprising at least a sensor arranged in connection with each cylinder and a measurement circuit in connection therewith.

[0002] Knocking as a phenomenon is known as such and it is detrimental for both the operation of the engine and the durability of the construction. It is important for unobstructed operation of the engine that the engine runs correctly, for example so that fuel ignition timing is not incorrect.

[0003] It is known in the art to use suitable sensors in connection with cylinders for detecting engine knocking. Acceleration sensors can, among others, be used for this purpose. Acceleration sensors use a piezoresistive crystal that generates voltage on the basis of dynamic mechanical pressure.

[0004] One problem associated with instrumentation of cylinders is, among others, that the properties, effects and operation sensitivity of the sensors and cabling are not quite identical in different units and, further, sensitivity can also change during use. Thus, the reliability of measurement can sometimes be somewhat dubious. Further, calibration of the system has in the past demanded a considerable amount of manual labor.

[0005] It is an aim of the present invention to provide a method of setting the knock detection system in an operation state that minimizes the problems associated with prior art. It is an especial aim of the invention to provide a method of setting the knock detection system into an operation state by means of which the problems caused, for example, by individual differences between the sensors can be minimized.

SUMMARY OF THE INVENTION

In a method embodying the invention for setting the knock detection system of a piston engine, especially one using the otto process, into operation state in connection with a multi-cylinder engine, the detection system comprising a sensor arranged in connection with each cylinder and a measurement circuit in connection therewith, the engine is run at a certain load, the load being less than full load, while the output signal of each sensor is simultaneously set between certain preset limits by adjusting one or more adjustment variables of the measurement circuit. Subsequent to this, the values of the adjustment variables are stored into the detection system. In normal use the engine is run and the stored values for the adjustment variables are used in the knock detection system. Preferably the gain of each measurement circuit is used as adjustment variable. In this case, average data is determined from the output of each sensor, the average data being then compared with the preset setpoint or desired value of the output. The measurement circuit gain of each cylinder is then adjusted so that the value of the determined average data is about the same as the setpoint of the output. The value of the gain for the sensor of the measurement circuit for each cylinder is stored in the detection system.

[0007] In a method embodying the invention, the outputs of the measurement circuits for the several cylinders are preferably set at equal respective levels by adjusting the gain of each measurement circuit for each cylinder at a time.

[0008] The knock detection system is set in connection with startup and/or running under load.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] In the following the invention is described by way of example and with reference to the appended drawings, in which

 $\,$ FIG. 1 is a schematic illustration of a piston engine using a method embodying the invention, and

FIG. 2 is a schematic illustration of the setting procedure of a knock detection system in a method embodying the invention.

DETAILED DESCRIPTION

An engine using a method embodying the invention is [0010] in FIG. 1 referred to with reference number 7. The engine can be an otto engine, known as such. Each cylinder of the engine is provided with an acceleration sensor 8 arranged in connection with the compression volume of the particular cylinder 9. Each sensor 8 generates a signal having a measurement variable that depends on knocking of the engine. The sensor may include a piezoresistive crystal that generates a voltage signal of which the amplitude depends on knocking intensity. Each acceleration sensor is connected to a measurement circuit 11. The measurement circuit comprises means for processing the signal from the acceleration sensor and has at least one output 11.1 connected to other systems for monitoring and controlling the operation of the engine. For clarity of illustration, the several measurement circuits are shown collectively as a single block in FIG. 1, separate from the sensors 8, but they can also be integrated with the sensors 8. The measurement circuit may also be a part of the other engine management systems.

[0011] The procedure for setting or adjusting the knock detection system formed by the sensors 8 is carried out under an engine drive condition where it is quite sure there is no knocking. Preferably, the engine is during this time run at a constant load, whereby the conditions of the combustion and engine operation stay about constant as well. A suitable load is about 50 - 80 % of the engine maximum load. As the engine runs, the sensors emit a signal to the detection system and the amplitude of the signal depends on the magnitude of knocking. In FIG. 2, reference numbers 1 and 2 illustrate the waveforms of exemplary signals from sensors in two cylinders during the method embodying the invention when, it will be recalled, there is no knocking. The gain of the sensor 1 is illustrated in graph 6, and the gain of the sensor 2 is

illustrated in the graph 5. A window 3, 4 is defined for the limits of the signal of the sensor. When the engine is running at a constant load, the gain 6 of the sensor 1 of the first cylinder is set so that the waveform of the signal is within the window 3, 4. After this, the gain 5 of the sensor 2 of the second cylinder is changed so as to place the waveform of this signal also within the window 3, 4. The upper and lower limits of the window 3, 4 are determined empirically and depend on the sensitivity of the sensors.

[0012] The detection system correspondingly checks the signals from the sensors of the other cylinders and sets the gains, or other adjustment variables, of the respective sensors so as to maintain the signal waveforms within the window 3, 4. After this, the output signals of all sensors are on a mutually corresponding level and the engine can be run as the conditions demand. In normal use the knock detection system 10 uses in each sensor the gain determined by means of the above procedure. The knock detection system 10 will detect an abnormal level of engine knock and will also locate the cylinder in which the problem occurs.

[0013] The level of the signal at which knocking occurs is determined empirically depending on the type of engine and the type of sensors. In normal operation at full load, the level of the signal provided by the sensor, adjusted in accordance with the adjustment variable applied by the measurement circuit, may be higher than the level at partial load but will be lower than the knocking level.

[0014] It will be understood that adjustment of the gain of one or more sensors to the value required to maintain the signal waveform within the window 3, 4 may take place in several steps.

[0015] The invention is not limited to the embodiment described here, but a number of modifications thereof can be conceived of within the scope of the appended claims.