Natural Language Understanding

Lecture 10: Introduction to Unsupervised Part-of-Speech Tagging

Frank Keller

School of Informatics University of Edinburgh keller@inf.ed.ac.uk

Based on slides by Sharon Goldwater

February 27, 2017

- 1 Unsupervised Part-of-Speech Tagging
- 2 Background
 - Hidden Markov Models
 - Expectation Maximization
- Bayesian HMM
 - Bayesian Estimation
 - Dirichlet Distribution
 - Bayesianizing the HMM
 - Evaluation

Reading: Goldwater and Griffiths (2007).

Background: Jurafsky and Martin (2009: Ch. 6.1-6.4).

Part-of-Speech Tagging

Task: take a sentence, assign each word a label indicating its syntactic category (part of speech).

Example:

```
NNP
           NNP
                     RB
                           RB
                                           VB7
                                                  RB
                                                       VB
Campbell
           Soup
                           surprisingly
                                           does
                                                  n't
                                                       have
                     not
DT
     NNS
             TO
                  VB
                             IN
                                  DT
                                       NN
     plans
             to
                  advertise
                             in
                                  the
                                       magazine
any
```

Uses Penn Treebank PoS tag set.

Penn Treebank PoS Tagset

DT Determiner

IN Preposition or subord. conjunction

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

RB Adverb

TO to

VB Verb, base form

VBZ Verb, 3rd person singular present

 Total of 36 tags, plus punctuation. English-specific.

Unsupervised Part-of-Speech Tagging

Current PoS taggers are highly accurate (97% accuracy on Penn Treebank). But they require *manually labelled* training data, which for many major language is not available. Examples:

Language	Speakers
Punjabi	109M
Vietnamese	69M
Polish	40M
Oriya	32M
Malay	37M
Azerbaijani	20M
Haitian	7.7M

[From: Das and Petrov, ACL 2011 talk.]

We need models that do not require annotated trainingd data: unsupervised PoS tagging.

All the unsupervised tagging models we will discuss are based on Hidden Markov Models (HMMs).

The parameters of the HMM are $\theta = (\tau, \omega)$. They define:

- τ : the probability distribution over tag-tag transitions;
- ω : the probability distribution over word-tag outputs.

The parameters are sets of *multinomial distributions*. For tag types $t = 1 \dots T$ and word types $w = 1 \dots W$:

- $\omega = \omega^{(1)} \dots \omega^{(T)}$: the output distributions for each tag;
- $\tau = \tau^{(1)} \dots \tau^{(T)}$: the transition distributions for each tag;
- $\omega^{(t)} = \omega_1^{(t)} \dots \omega_W^{(t)}$: the output distribution from tag t;
- $\tau^{(t)} = \tau_1^{(t)} \dots \tau_T^{(t)}$: the transition distribution from tag t.

Goal of this lecture: introduce clever ways of estimating ω and τ .

Example: $\omega^{(\mathrm{NN})}$ is the output distribution for tag NN:

```
w
John
Mary
running
jumping
```

Example: $\omega^{(\mathrm{NN})}$ is the output distribution for tag NN:

$\omega_{\it w}^{(\tt NN)}$	W
0.1	John
0.0	Mary
0.2	running
0.0	jumping

Example: $\omega^{(\mathrm{NN})}$ is the output distribution for tag NN:

$\omega_{\it w}^{(\tt NN)}$	W
0.1	John
0.0	Mary
0.2	running
0.0	jumping

Key idea: define priors over the multinomials that are suitable for NLP tasks.

Notation

Another way to write the model, often used in statistics and machine learning:

- $t_i | t_{i-1} = t \sim \mathsf{Multinomial}(\tau^{(t)})$
- $w_i|t_i = t \sim \mathsf{Multinomial}(\omega^{(t)})$

This is read as: "Given that $t_{i-1} = t$, the value of t_i is drawn from a multinomial distribution with parameters $\tau^{(t)}$."

Inference for HMMs

For *inference* (i.e., decoding, applying the model at test time), we need to know θ and then we can compute $P(\mathbf{t}, \mathbf{w})$:

$$P(\mathbf{t}, \mathbf{w}) = \prod_{i=1}^{n} P(t_i|t_{i-1})P(w_i|t_i) = \prod_{i=1}^{n} \tau_{t_i}^{(t_{i-1})} \omega_{w_i}^{(t_i)}$$

With this, can compute $P(\mathbf{w})$, i.e., a language model:

$$P(\mathbf{w}) = \sum_{\mathbf{t}} P(\mathbf{t}, \mathbf{w})$$

And also $P(\mathbf{t}|\mathbf{w})$, i.e., a PoS tagger:

$$P(\mathbf{t}|\mathbf{w}) = \frac{P(\mathbf{t}, \mathbf{w})}{P(\mathbf{w})}$$

Parameter Estimation for HMMs

For *estimation* (i.e., training the model, determining its parameters), we need a procedure to set θ based on data.

For this, we can rely on Bayes Rule:

posterior likelihood prior
$$P(\theta \mid \mathbf{w}) = \frac{P(\mathbf{w} \mid \theta)P(\theta)}{P(\mathbf{w})} \leftarrow \text{evidence}$$
$$\approx P(\mathbf{w} \mid \theta)P(\theta)$$

Maximum Likelihood Estimation

Choose the θ that makes the data most probable:

$$\hat{\theta} = \operatorname*{argmax}_{\theta} P(\mathbf{w}|\theta)$$

Basically, we ignore the prior. In most cases, this is equivalent to assuming a uniform prior.

In supervised systems, the *relative frequency estimate* is equivalent to the maximum likelihood estimate. In the case of HMMs:

$$\tau_{t'}^{(t)} = \frac{n_{(t,t')}}{n_{(t)}} \qquad \omega_w^{(t)} = \frac{n_{(t,w)}}{n_{(t)}}$$

where $n_{(e)}$ is the number of times e occurs in the training data.

Maximum Likelihood Estimation

In unsupervised systems, can often use the expectation maximization (EM) algorithm to estimate θ :

- *E-step*: use current estimate of θ to compute expected counts of hidden events (here, $n_{(t,t')}$, $n_{(t,w)}$).
- *M-step:* recompute θ using expected counts.

Examples: forward-backward algorithm for HMMs, inside-outside algorithm for PCFGs, k-means clustering.

Maximum Likelihood Estimation

Estimation Maximization sometimes works well:

- word alignments for machine translation;
- anaphora and coreference.

But it often fails:

- probabilistic context-free grammars: highly sensitive to initialization; F-scores reported are generally low;
- for HMMs, even very small amounts of training data have been show to work better than EM;
- similar picture for many other tasks.

Bayesian Estimation

We said: to train our model, we need to estimate θ from the data. But is this really true?

- for language modeling, we estimate $P(w_{n+1}|\theta)$, but what we actually need is $P(w_{n+1}|\mathbf{w})$;
- for PoS tagging, we estimate $P(\mathbf{t}|\theta, \mathbf{w})$, but we actually need is $P(\mathbf{t}|\mathbf{w})$.

Bayesian Estimation

We said: to train our model, we need to estimate θ from the data. But is this really true?

- for language modeling, we estimate $P(w_{n+1}|\theta)$, but what we actually need is $P(w_{n+1}|\mathbf{w})$;
- for PoS tagging, we estimate $P(\mathbf{t}|\theta, \mathbf{w})$, but we actually need is $P(\mathbf{t}|\mathbf{w})$.

So we are not actually interested in the value of θ . We could simply do this:

$$P(w_{n+1}|\mathbf{w}) = \int_{\Lambda} P(w_{n+1}|\theta)P(\theta|\mathbf{w})d\theta \qquad (1)$$

$$P(\mathbf{t}|\mathbf{w}) = \int_{\Lambda} P(\mathbf{t}|\mathbf{w}, \theta) P(\theta|\mathbf{w}) d\theta \tag{2}$$

We don't estimate θ , we integrate it out.

This approach is called *Bayesian integration*.

Integrating over θ gives us an *average* over all possible parameters values. Advantages:

- accounts for uncertainty as to the exact value of θ ;
- models the shape of the distribution over θ ;
- increases robustness: there may be a range of good values of θ ;
- we can use priors favoring sparse solutions (more on this later).

Example: we want to predict: will spinner result be "a" or not?

- Parameter θ indicates spinner result: $P(\theta = a) = .45$, $P(\theta = b) = .35$, $P(\theta = c) = .2$;
- define t = 1: result is "a", t = 0: result is not "a";
- make a prediction about one random variable (t) based on the value of another random variable (θ) .

Example: we want to predict: will spinner result be "a" or not?

- Parameter θ indicates spinner result: $P(\theta = a) = .45$, $P(\theta = b) = .35$, $P(\theta = c) = .2$;
- define t = 1: result is "a", t = 0: result is not "a";
- make a prediction about one random variable (t) based on the value of another random variable (θ) .

Maximum likelihood approach: choose most probable θ :

$$\hat{\theta} = a$$
, and $P(t = 1|\hat{\theta}) = 1$, so we predict $t = 1$.

Example: we want to predict: will spinner result be "a" or not?

- Parameter θ indicates spinner result: $P(\theta = a) = .45$, $P(\theta = b) = .35$, $P(\theta = c) = .2$;
- define t = 1: result is "a", t = 0: result is not "a";
- make a prediction about one random variable (t) based on the value of another random variable (θ) .

Maximum likelihood approach: choose most probable θ : $\hat{\theta} = a$, and $P(t = 1|\hat{\theta}) = 1$, so we predict t = 1.

Bayesian approach: average over θ :

$$P(t=1) = \sum_{\theta} P(t=1|\theta)P(\theta) = 1(.45) + 0(.35) + 0(0.2) = .45$$
, so we predict $t=0$.

Dirichlet Distribution

Choosing the right prior can make integration easier.

This is where the *Dirichlet distribution* comes in. A *K*-dimensional Dirichlet with parameters $\alpha = \alpha_1 \dots \alpha_K$ is defined as:

$$P(\theta) = \frac{1}{Z} \prod_{j=1}^{K} \theta_j^{\alpha_j - 1}$$

We usually only use symmetric Dirichlets, where $\alpha_1 \dots \alpha_K$ are all equal to β . We write Dirichlet(β) to mean Dirichlet(β, \dots, β).

Dirichlet Distribution

A 2-dimensional symmetric Dirichlet(β) prior over $\theta = (\theta_1, \theta_2)$:

 $\beta > 1$: prefer uniform distributions

 $\beta = 1$: no preference

 β < 1: prefer sparse (skewed) distributions

Bayesianizing the HMM

To Bayesianize the HMM, we augment with it with symmetric Dirichlet priors:

$$t_i|t_{i-1} = t, \tau^{(t)} \sim \text{Multinomial}(\tau^{(t)})$$

 $w_i|t_i = t, \omega^{(t)} \sim \text{Multinomial}(\omega^{(t)})$
 $\tau^{(t)}|\alpha \sim \text{Dirichlet}(\alpha)$
 $\omega^{(t)}|\beta \sim \text{Dirichlet}(\beta)$

To simplify things, we will present a bigram version of the Bayesian HMM; Goldwater and Griffiths (2007) use trigrams.

Dirichlet Distribution

If we integrate out the parameters $\theta = (\tau, \omega)$, we get:

$$P(t_{n+1}|\mathbf{t},\alpha) = \frac{n_{(t_n,t_{n+1})} + \alpha}{n_{(t_n)} + T\alpha}$$

$$P(w_{n+1}|t_{n+1},\mathbf{t},\mathbf{w},\beta) = \frac{n_{(t_{n+1},w_{n+1})} + \beta}{n_{(t_{n+1})} + W_{t_{n+1}}\beta}$$

with T possible tags and W_t possible words with tag t.

We can use these distributions to find $P(\mathbf{t}|\mathbf{w})$ using an estimation method called *Gibbs sampling*.

Evaluation

Goldwater and Griffiths (2007) evaluate the BHMM in a standard experimental set-up for unsupervised PoS tagging (Merialdo 1994):

use a dictionary that lists possible tags for each word:

run: NN, VB, VBN

- the dictionary is actually derived from WSJ corpus;
- train and test on the unlabeled corpus (24,000 words of WSJ):

53.6% of word tokens have multiple possible tags. Average number of tags per token = 2.3.

Bayesian Estimation Dirichlet Distribution Bayesianizing the HMM Evaluation

Evaluation

Goldwater and Griffiths (2007) evaluate tagging accuracy against the gold-standard WSJ tags and compare to:

- HMM with maximum-likelihood estimation using EM (MLHMM);
- Conditional Random Field with contrastive estimation (CRF/CE).

They also experiment with reducing/eliminating dictionary information.

Results

MLHMM	74.7
BHMM ($\alpha=1$, $\beta=1$)	83.9
BHMM (best: $\alpha = .003$, $\beta = 1$)	86.8
CRF/CE (best)	90.1

- Integrating over parameters is useful in itself, even with uninformative priors ($\alpha = \beta = 1$);
- better priors can help even more, though do not reach the state of the art.

Bayesian Estimation Dirichlet Distribution Bayesianizing the HMM Evaluation

Evaluation: Syntactic Clustering

Syntactic clustering: input are the words only, no dictionary is used:

- collapse 45 treebank tags onto smaller set of 17;
- hyperparameters (α, β) are inferred automatically using Metropolis-Hastings sampler;
- standard accuracy measure requires labeled classes, so measure accuracy using best matching of classes.

Results

MLHMM: 35% acc.

- MLHMM groups instances of the same lexical item together;
- BHMM clusters are more coherent, more variable in size.

Results

BHMM transition matrix is sparse, MLHMM is not.

Summary

- Unsupervised PoS tagging is useful to build lexica and taggers for new language or domains;
- maximum likelihood HMM with EM performs poorly;
- Bayesian HMM with Gibbs sampling can be used instead;
- the Bayesian HMM improves performance by averaging out uncertainty;
- it also allows us to use priors that favor sparse solutions as they occur in language data.

Recent work on unsupervised tagging uses *HMMs with logistic regression* and *HMMs with word embeddings:* next lecture.

Bayesian Estimation Dirichlet Distribution Bayesianizing the HMM Evaluation

References

- Goldwater, Sharon and Thomas L. Griffiths. 2007. A fully Bayesian approach to unsupervised part-of-speech tagging. In *Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics*. Prague, pages 744–751.
- Jurafsky, Daniel and James H. Martin. 2009. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. Pearson Education, Upper Saddle River, NJ, 2 edition.
- Merialdo, Bernardo. 1994. Tagging English text with a probabilistic model. *Computational Linguistics* 20(2):155–171.