NABIL SOFT

دورة: 2019

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: الرياضيات المدة: 03 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

 $u_{n+1} = \frac{1}{5}u_n + \frac{4}{5}$, n acc denoted as $u_0 = 13$: $u_0 = 13$:

. $u_n > 1$ ، n برهن بالتراجع أنه: من أجل كل عدد طبيعي (أ (1

ب) أدرس اتجاه تغير المتتالية (u_n) واستنتج أنها متقاربة.

. $v_n = \ln(u_n - 1)$: ب \mathbb{N} ب المتتالية العددية المعرفة على \mathbb{N} ب المتتالية العددية المعرفة على أثبت أنّ المتتالية (v_n) حسابية يطلب تعيين أساسها وحدها الأول.

. $\lim_{n\to +\infty}u_n$ غندئذ من أجل كل عدد طبيعي $u_n=1+\frac{12}{5^n}$ ، من أجل كل عدد طبيعي v_n واحسب عندئذ v_n

 $(u_0-1)(u_1-1)\times...\times(u_n-1)=\left(\frac{12}{5^{\frac{n}{2}}}\right)^{n+1}$ ، من أجل كل عدد طبيعي (4 من أجّل كل عدد طبيعي (4

التمرين الثاني: (04 نقاط)

يحتوي كيس على خمس كريات حمراء منها أربع كريات تحمل الرقم 1 وكرية واحدة تحمل الرقم 2 وسبع كريات خضراء منها أربع كريات تحمل الرقم 1 وثلاث كريات تحمل الرقم 2 (كل الكريات متماثلة لا نفرق بينها عند اللمس). نسحب عشوائيا كريتين من الكيس في آن واحد ونعتبر الحادثتين A و B حيث: A: " سحب كريتين من نفس اللون " A: " سحب كريتين تحملان نفس الرقم " .

A بيّن أنّ احتمال الحادثة A هو A هو $P(A) = \frac{31}{66}$ واحسب احتمال الحادثة $P(A) = \frac{31}{66}$

2) علما أنّ الكريتين المسحوبتين من نفس اللون، ما احتمال أن تحملا نفس الرقم؟

3) ليكن X المتغير العشوائي الذي يرفق بكل عملية سحب عدد الكريات الحمراء المتبقية في الكيس. عرف قانون الاحتمال للمتغير العشوائي X واحسب أمله الرياضياتي E(X)

التمرين الثالث: (05 نقاط)

 $(z-i)(z^2-4z+5)=0$ المعادلة ذات المجهول z التالية: \mathbb{C} المركبة \mathbb{C} المعادلة ذات المجهول المعادلة دات المعادلة ذات المجهول المعادلة المعادلة دات المعادلة ذات المعادلة دات المعاد

NABIL SOFT

اختبار في مادة : الرياضيات// الشعبة: علوم تجريبية// بكالوريا 2019

B ، A النقط ، $\left(0;\overrightarrow{u},\overrightarrow{v}\right)$ ، النقط المتعامد والمتجانس $\left(0;\overrightarrow{u},\overrightarrow{v}\right)$ ، النقط .II و C و C التي لاحقاتها C و C على الترتيب.

. ABC على الشكل الأسي، ثم استنتج طبيعة المثلث (1 على ا

$$f(z) = \frac{i z - 1 - 2i}{2z - 4 - 2i}$$
 من أجل كل عدد مركب z يختلف عن $z + i$ نضع (2

 $|f(z)| = \frac{1}{2}$ التي تحقق: z التي تحقق: M من المستوي ذات اللاحقة z التي تحقق: (E) عين المجموعة (ب) بيّن أن العدد (E) حقيقي موجب.

. $\frac{\pi}{2}$ نعتبر الدوران r الذي مركزه C الذي مركزه (3

أ) عيّن لاحقة D صورة B بالدوران r وبيّن أنّ النقط D ، D و D في استقامية.

ب) استنتج أنّ D هي صورة النقطة A بتحويل نقطي بسيط يطلب تحديد طبيعته وعناصره .

التمرين الرابع: (07 نقاط)

. $f(x) = \frac{1}{x-2} + \ln x$: باكة العددية المعرفة على $f(x) = \frac{1}{x-2} + \ln x$ باكة العددية المعرفة على $f(x) = \frac{1}{x-2} + \ln x$

. $(O; \overrightarrow{i}, \overrightarrow{j})$ سنجامد والمتجامد والمستوي المنسوب إلى المعلم المتعامد (C_f)

ا احسب f(x) ا $\lim_{x \to 0} f(x)$ و $\lim_{x \to 0} f(x)$ ا $\lim_{x \to 0} f(x)$ النتائج بیانیا. $\lim_{x \to 0} f(x)$ احسب (ب) احسب (ب)

ادرس اتجاه تغیّر الدّالة f علی $]2;+\infty[$ وشکِّل جدول تغیّراتها.

(٦) المنحنى البياني للدّالة اللّوغاريتمية النّيبيرية "In" في المعلم السابق (Γ

أ) احسب $\lim_{x\to +\infty} (f(x) - \ln x)$ ثم فسِّر النَّتيجة بيانيا.

. (Γ) ادرس وضعية المنحنى (C_f) بالنِّسبة إلى المنحنى (Γ

 (C_f) ارسم بعناية المنحنى (Γ) ثمَّ المنحنى (Φ

. الدّالة المعرفة على المجال $= \int_3^x \ln(t) dt$ بـ: $[3;+\infty[$ بـ الدّالة المعرفة على المجال $= 3;+\infty[$ بـ الدّالة المعرفة على المجال $= 3;+\infty[$

. x باستعمال المكاملة بالتّجزئة، عيّن عبارة H(x) بدلالة

ب) احسب \mathcal{A} مساحة الحيِّز المستوي المحدَّد بالمنحنى (C_f) وحامل محور الفواصل x=3 والمستقيمين ذوي المعادلتين: x=4 و x=3

. g(x) = f(-2x): ب $]-\infty;-1[\cup]-1;0[$ بالدّالة المعرَّفة على g (6

دون حساب عبارة g(x) حدّد اتجاه تغیّر الداله g علی مجموعة تعریفها.

انتهى الموضوع الأول

اختبار في مادة : الرياضيات// الشعبة: علوم تجريبية// بكالوريا 2019

الموضوع الثانى

التمرين الأوّل: (04 نقاط)

يحتوي صندوق على 10 كريات لا نفرق بينها عند اللّمس منها كريتان تحملان الرقم 0 وثلاث تحمل الرقم1 والكريات الأخرى تحمل الرقم 2. نسحب عشوائياً وفي آنِ واحدٍ ثلاث كريات من الصندوق.

ليكن X المتغيّر العشوائي الذي يرفق بكل سحب، جداء الأرقام المسجّلة على الكريات المسحوبة.

- E(X) عرّف قانون الاحتمال للمتغير العشوائي Xثم احسب أمله الرياضياتي (1
- $\frac{7}{24}$ بيّن أنّ احتمال الحصول على ثلاث كريات كل منها تحمل رقماً زوجياً هو $\frac{7}{24}$.
 - 3) نسحب الآن من الصندوق كريتين على التوالي دون إرجاع.

ما احتمال الحصول على كريتين تحملان رقمين مجموعهما فردي علما أن جداءهما زوجي؟

التمرين الثاني: (04 نقاط)

. $f(x) = \sqrt{x+2} + 4$ بالدّالة المعرّفة على المجال $f(x) = \sqrt{x+2} + 4$

- 1) أ) بيّن أنّ الدالة f متزايدة تماما على المجال [7; 4].
- $f(x) \in [4; 7]$ فإنّ [4; 7] فإن x من المجال عدد حقيقي x من المجال عدد حقيقي
- $f(x)-x=\frac{-x^2+9x-14}{x-4+\sqrt{x+2}}$ وَإِنّ [4;7] فإنّ x عدد حقيقي x من المجال عدد عقيقي (2) عدد حقيقي والمجال عدد عقيقي عدد عقيقي المجال عدد عقيقي والمجال المجال الم

f(x)-x>0 قَانٌ [4;7] فإنّ عدد حقيقي x من المجال عدد كل عدد عند من أجل كل عدد المجال

- $u_{n+1}=f(u_n)$ ، $u_n=4$ عدد طبيعي ، المتتالية العددية المعرّفة ب $u_0=4$: $u_0=4$
 - - ب) استنتج اتجاه تغيّر المتتالية (u_n) ثمّ بيّن أنّها متقارية.
 - $.7 u_{n+1} < \frac{1}{4}(7 u_n)$ n عدد طبیعي (4) غدد من أجّل كلّ عدد عدد البيعي n
- (u_n) باستنتج أنّه: من أجل كلّ عدد طبيعي n عدد طبيعي n عدد طبيعي باستنتج أنّه: من أجل كلّ عدد طبيعي

التمرين الثالث: (05 نقاط)

(O; u, v) المستوي المركب منسوب إلى المعلم المتعامد والمتجانس

نعتبر النّقط A ، B و C التي لاحقاتها C و B ، A و نعتبر النّقط B ، A على التّرتيب حيث:

$$z_{C} = -2z_{A}$$
 g $z_{B} = \overline{z_{A}}$ $z_{A} = \sqrt{2} + i\sqrt{6}$

. المتب العدد المركب z_A على الشكل الأسي (1

.
$$\left(\frac{z_A}{2\sqrt{2}}\right)^{2019} + \left(\frac{z_B}{2\sqrt{2}}\right)^{2019}$$
 عبا احسب العدد

NABIL SOFT

اختبار في مادة : الرياضيات// الشعبة: علوم تجريبية// بكالوريا 2019

- Z_D الانسحاب الذي يحوِّل A إلى A عيّن Z_D لاحقة النّقطة D صورة D بالانسحاب D استنتج طبيعة الرّباعي D .
 - اكتب العدد المركب $z_C z_A$ على الشكل الأسي.
 - عددا حقيقياً. $\left(\frac{-6\sqrt{2}}{z_{c}-z_{A}}\right)^{n}$ عددا حقيقياً. $\left(\frac{4}{z_{c}-z_{A}}\right)^{n}$
 - . C نقطة كيفيّة من المستوي لاحقتها z حيث z تختلف عن z وتختلف عن z لتكن z نقطة كيفيّة من المستوي لاحقتها z عيّن z عيّن z مجموعة النّقط z التي من أجلها يكون z عددا حقيقيا موجبا تماما.

التمرين الرابع: (07 نقاط)

المستوي منسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j})$. تُؤخذ وحدة الطول \mathbb{R} كما يلي: g و g المعرّفتين على \mathbb{R} كما يلي:

$$f(x) = e^{x} - \frac{1}{2}ex^{2}$$
 $g(x) = e^{x} - ex$

- 1) أ) ادرس اتجاه تغير الدالة g.
- ب) استنتج اشارة g(x) حسب قيم x الحقيقية.
 - . f ادرس اتجاه تغیّر الداله (2
- . f احسب كلاً من $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ ؛ ثمّ شكّل جدول تغيّرات الدالة (3
 - \mathbb{R} ادرس الوضع النسبي للمنحنيين للمنحنيين (\mathcal{C}_{f}) على (4
- $(e^2-2e\approx 2$ ريُعطى $(O;\vec{i},\vec{j})$ ارسم على المجال $(O;\vec{i},\vec{j})$ المنحنيين (\mathcal{C}_g) و (\mathcal{C}_g) في نفس المعلم $(O;\vec{i},\vec{j})$ ارسم على المجال $(O;\vec{i},\vec{j})$
 - (\mathcal{C}_g) و (\mathcal{C}_f) احسب بالسنتمتر المربّع، مساحة الحيّز المستوي المحدّد بالمنحنيين (6
- لا الدالة المعرّفة على المجال [-2; 2] كما يلي: $h(x) = \frac{1}{2}ex^2 e^{|x|}$ و ليكن $h(x) = \frac{1}{2}ex^2 e^{|x|}$ المعلم السابق.
 - أ) بيّن أنّ h دالة زوجية.
- ب) من أجل $x \in [0; 2]$ انطلاقا من h(x) + f(x) ثم استنتج كيفية رسم $x \in [0; 2]$ ثم ارسمه.