

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE ENGENHARIAS E COMPUTAÇÃO - DEC ENGENHARIA QUÍMICA

Prova Avaliativa P2 CET 1011 Engenharia Auxiliada por Computador

Professor: Prof.Dr.E.R.Edwards

Nome	Data:	
Número	Nota:	

1 Introdução

O armazenamento e o transporte de fluidos são aspectos fundamentais em qualquer processo industrial, pois estão diretamente relacionados ao controle de inventário, à segurança operacional e à integridade dos produtos transportados. Nesse contexto, o Engenheiro Químico deve ser capaz de projetar tanques de armazenamento adequados para o transporte seguro desses produtos, considerando parâmetros como geometria, capacidade volumétrica e controle de vazão.

Em um tanque cilíndrico com comprimento (L) e base circular de área $A=\pi R^2$, o volume pode ser determinado por:

$$V_{\text{tanque circular}} = \pi R^2 L \tag{1}$$

Quando o tanque é inclinado de forma que o comprimento L fique posicionado na horizontal, o volume armazenado passa a depender da altura do fluido h(t), de modo que:

$$V_{\text{tanque inclinado}} = A(h(t)) \cdot L$$
 (2)

O projeto de um tanque com duas entradas superiores e uma saída inferior, com base circular, já foi desenvolvido no Projeto P2. As expressões matemáticas que descrevem a variação da altura h(t) em função do volume, bem como o modelo computacional correspondente, já foram apresentadas anteriormente e estão disponíveis no repositório GitHub, na pasta **CET990** – **Instrumentação e Controle de Qualidade**.

As aulas de referência são:

- CET990_volume_1_deducao_da_area_molhada_tanque.ipynb
- CET990_volume_2_tanque_inclinado_calculos.ipynb
- CET990_volume_3_Calculo_tanque_transporte.ipynb

O repositório pode ser acessado em:

https://github.com/Edwards1969/site-aulas-uesc/tree/main/CET990/AULAS

1.1 Descrição do Projeto no SolidWorks

A Figura 1 mostra um tanque de armazenamento de fluidos montado sobre um caminhão (caminhão-tanque). Este tipo de veículo é amplamente utilizado para o transporte de fluidos como água, petróleo, gasolina, querosene e diesel em diversos ambientes industriais e urbanos. O tanque encontra-se na posição horizontal e apresenta uma seção transversal em forma de elipse. Para determinar o volume de fluido armazenado, é necessário conhecer a relação matemática que descreve a altura do fluido no tanque, h(t), e a respectiva área molhada A(h(t)).

Figura 1: Caminhão tanque para transporte de fluidos (gerado por IA).

Construa no SolidWorks um tanque semelhante ao apresentado (baseado no projeto da P2), alterando a geometria da seção transversal para uma elipse, em vez de um círculo. As dimensões principais estão apresentadas na Tabela 1. Caso alguma medida não esteja especificada, o projetista poderá ajustá-la desde que as proporções geométricas e o volume total do tanque sejam mantidos.

TT 1 1 TO - ~		. 1	, 1	1	1	1 // 1
Tabela 1: Dimensões	princii	nais do	tanque de	e transporte	de (comblistivel

Parâmetro	Símbolo	Valor (m)
Comprimento total do tanque	L	8,0
Largura máxima (diâmetro maior da elipse)	D_{\max}	2,5
Altura máxima (diâmetro menor da elipse)	D_{\min}	2,0
Diâmetro das entradas superiores	$D_{ m in}$	0,4
Distância entre centros das entradas superiores	d_{in}	1,2
Diâmetro da saída inferior	$D_{ m out}$	0,3
Altura da saída em relação à base inferior	$h_{ m out}$	0,15
Inclinação longitudinal aproximada do tanque	θ	5°

Figura 2: Desenho técnico do tanque elíptico horizontal.

1.2 Descrição dos Cálculos

Os cálculos podem ser realizados em ambiente computacional, utilizando células de Markdown e código no Google Colab ou VSCode. O objetivo é encontrar a expressão matemática que descreve a área molhada da elipse em função da altura h(t) e, a partir dela, determinar o volume total do tanque:

$$V_{\text{tanque elíptico}} = A(h(t)) \cdot L$$
 (3)

Como referência, utilize o exemplo de cálculo apresentado no arquivo: CET990_volume_1_deducao_da_area_molhada_tanque.ipynb disponível no repositório GitHub.

1.3 Atividade Computacional – Programação em Python

Desenvolva um programa em **Python** que permita calcular a altura do fluido h(t) em função do volume do tanque elíptico. O programa deve:

- 1. Definir os parâmetros geométricos do tanque $(D_{\text{max}}, D_{\text{min}}, L)$;
- 2. Calcular a área molhada A(h(t)) da elipse para diferentes valores de h(t);
- 3. Determinar o volume acumulado $V = A(h(t)) \cdot L$;
- 4. Gerar um gráfico mostrando a variação de V em função de h(t);
- 5. Permitir a entrada de novos valores de h(t) pelo usuário e retornar o volume correspondente.

Desafio adicional: implemente um controle simples de esvaziamento do tanque, simulando a variação temporal da altura h(t) conforme o fluido é drenado.

Boa Prova!!!