Different Types of Bootstraps

Spenser Steele June 19, 2014

Contents

Overall model	1
Parametric Bootstrap	1
Residual Bootstrap	2
Cases Bootstrap	2
Two-Level Semiparametric (CGR) Bootstrap	2
Random Effect Block $(REB/0)$ Bootstrap	2
Random Effect Block $(REB/1)$ Bootstrap	3
Random Effect Block(REB/2) Bootstrap	3

Below are three bootstraps discussed in the paper Resampling Multilevel Models by Rien van der Leeden et al. and A Random Effect Block Bootstrap for Clustered Data by chambers et al..

Overall model

$$y_i = X_i \beta + Z_i b + \epsilon_i$$

$$\epsilon_i \sim (iid) N(0, \sigma_{\epsilon_i}^2)$$

$$b_i \sim (iid) N(0, D)$$

$$Cov(\epsilon_i, b) = 0$$

These are two equations used in the following outlines:

(1)
$$\hat{\theta}_B = \hat{\theta} - B\hat{i}as_B = 2\hat{\theta} - \theta^*_{(.)}$$

(2) $\hat{se}_B = \sqrt{\hat{Var}(\theta^*)}$

Parametric Bootstrap

- 1. Draw J vectors of level-2 residuals from a multivariate normal distribution with mean zero and covariance matrix \hat{D} .
- 2. Draw J vectors ϵ_j^* of sizes n_j containing level-1 residuals from a normal distribution with means zero and covariance matrices $\hat{\sigma}^2 I_{n_j}$.

- 3. Generate the bootstrap sample y_i^* from $y_i^* = X_j \hat{\beta} + Z_j \delta_i^* + \epsilon_i^*$.
- 4. Compute estimates for all parameters of the two-level model.
- 5. Repeat steps 1-4 B times and compute bias-corrected estimates and bootstrap standard errors using formulas 1 and 2.

Residual Bootstrap

- 1. Draw a sample δ_i^* of size J with replacement from the set of estimated level-2 residuals.
- 2. Draw J samples ϵ_{ij}^* of size n_j with replacement from the elements $\hat{\epsilon}_{ij}$.
- 3. Generate the bootstrap samples y_i^* from $y_i^* = X_j \hat{\beta} + Z_j \delta_i^* + \epsilon_i^*$.
- 4. Compute estimates for all parameters of the two-level model.
- 5. Repeat steps 1-4 B times and compute bias-corrected estimates and bootstrap standard errors using formulas 1 and 2.

Cases Bootstrap

- 1. Draw a sample of size J with replacement from the level-2 units(unit numbers)
- 2. For each k, draw a sample of entire cases, with replacement, from the original level-2 unit. This sample has the same size as the original unit from which the cases are drawn. Then, for each k, we have a set of data
- 3. Compute estimates for all parameters of the two-level model
- 4. Repeat steps 1-3 B times and compute bias-corrected estimates and bootstrap standard errors using formulas 1 and 2.

Two-Level Semiparametric (CGR) Bootstrap

- 1. The D EBLUPs \hat{u}_i of the random effects u_i and the corresponding n level-1 residuals $\hat{e}_{ij} = y_{ij} x_{ij}^T \hat{\beta} \hat{u}_i$ are first scaled to ensure that they have empirical variances equal to $\hat{\sigma}_u^2$ and $\hat{\sigma}_e^2$, respectively. The scaled level-2 residuals are $\hat{u}_i^c = \hat{\sigma}_u \hat{u}_i \{D^{-1} \sum_{k=1}^D \hat{u}_k^2\}^{-1/2}$ and the scaled level-1 residuals are $\hat{e}_{ij}^c = \hat{\sigma}_e \hat{e}_{ij} \{n^{-1} \sum_{k=1}^D \sum_{l=1}^{n_k} \hat{e}_{kl}^2\}^{-1/2}$. Both sets of scaled residuals are then centered at zero.
- 2. Sample independently with replacement from \hat{u}^c and \hat{e}^c to get bootstrap samples u^* and e^* of D level-2 residuals and n level-11 residuals, respectively. That is, $u^* = srswr\{\hat{u}^c, D\}$ and $e^* = srswr\{\hat{e}^c, n\}$.
- 3. Simulate bootstrap sample data (y_{ij}^*, x_{ij}) using the model $y_{ij}^* = x_{ij}^T \hat{\beta} + u_i^* + e_{ij}^*$.
- 4. Fit the two-level random effects model (1) to the bootstrap sample data generated in Step (3) to obtain bootstrap parameter estimates $\hat{\theta}^* = (\hat{\beta}^*, \hat{\sigma}_u^{2*}, \hat{\sigma}_e^{2*})$.
- 5. Repeat Steps 2-4 B times to obtain B sets of bootstrap parameter estimates.

Random Effect Block(REB/0) Bootstrap

- 1. Using the marginal residuals: $r_{ij} = y_{ij} x_{ij}^T \hat{\beta}$, j = 1, ..., D, calculate the level-2 average residuals for each of the D groups: $\bar{r}_h = \frac{1}{n_h} \sum_{j=1}^{n_h} r_{hj}$, h = 1, ..., D, and the level-1 residuals within each group h as $r_{hj}^{(1)} = r_{hj} \bar{r}_h$, $j = 1, ..., n_h$.
- 2. Sample independently and with replacement from these two sets of residuals to define bootstrap errors for levels 1 and 2. In particular, level-2 boostrap errors are given by $r^{*(2)} = srswr(\bar{r}^{(2)}, D)$, while level-1 errors in cluster i are given by $r^{*(1)} = srswr(r_{h(i)}^{(1)}, n_i)$, where $h(i) = srswr(\{1, \ldots, D\}, 1)$.

- 3. Simulate bootstrap sample data (y_{ij}^*, x_{ij}) using the model $y_{ij}^* = x_{ij}^T \hat{\beta} + r_i^{*(2)} + r_{ij}^{*(1)}$. 4. Fit the two-level random effects model (1) to the bootstrap sample data generated in Step 3 to obtain bootstrap parameter estimates $\hat{\theta}^* = (\hat{\beta}^*, \hat{\sigma}_u^{2*}, \hat{\sigma}_e^{2*})$.
- 5. Repeat steps 2-4 B times to obtain B sets of bootstrap parameter estimates.

Random Effect Block(REB/1) Bootstrap

Variation 1 of the REB Bootstrap where we use centered and scaled residuals before bootstrapping.

Random Effect Block(REB/2) Bootstrap

Variation 2 of the REB Bootstrap where we apply scaling and bias adjustments after bootstrapping.

- 1. We first modify the REB bootstrap distributions of the logarithms of the variance components estimates so that they are empirically uncorrelated. The steps in this process are as follows:
- Let $(\log \hat{\sigma}_u^{2*})$ and $(\log \hat{\sigma}_e^{2*})$ denote the vectors of B bootstrap values $\hat{\sigma}_u^2$ and $\hat{\sigma}_e^2$, respectively. Define the $B \times 2$ matrices

$$\mathbf{S}^* = [(\log \hat{\sigma}_u^{2*}), (\log \hat{\sigma}_e^{2*})]$$

$$\mathbf{M}^* = [av(\log \hat{\sigma}_u^{*2}) \times 1_B, av(\log \hat{\sigma}_e^{*2}) \times 1_B]$$

$$\mathbf{D}^* = [sd(\log \hat{\sigma}_u^{*2}) \times 1_B, sd(\log \hat{\sigma}_e^{*2}) \times 1_B]$$

Here, av S and sd S denote the average and the standard deviation of the values in the vector S, 1_B denotes a vector of ones of size B, and \times denotes componentwise multiplication.

• Calculate the 2×2 covariance matrix $\mathbf{C}^* = cov(\mathbf{S}^*)$ and put

$$\mathbf{L}^* = \mathbf{M}^* + \{(\mathbf{S}^* - \mathbf{M}^*)\mathbf{C}^{*-1/2}\} \times \mathbf{D}^*.$$

- The modified bootstrap values of $\hat{\sigma}_u^2$ and $\hat{\sigma}_e^2$ are then obtained by exponentiating the elements of \mathbf{L}^* .
- 2. All bootstrap distributions of model parameter estimates (including the modified bootstrap distributions of the estimated variance components) are then centered at the original estimate values, using a mean correction for regression coefficients, that is,

$$(\hat{\beta}_k^{**}) = [\hat{\beta}_k 1_B + (\hat{\beta}_k^*) - av(\hat{\beta}_k^*)],$$

and a ratio correction for variance components.