

Matroids and combinatorial optimization

Combinatoria 2022/2023

Lorenzo Gregoris (1867373)

January 10, 2024

Table of Contents

1 Introduction

- ► Introduction
- Indipendence systems and matroids
- Maximization and minimization problems
- Greedy algorithms

Combinatorial optimization

1 Introduction

Many combinatorial optimization problems can be formulated as follows:

- a set system (E, \mathcal{F}) , i.e. a finite set E and some $\mathcal{F} \subseteq 2^E$;
- a cost function $c: \mathcal{F} \mapsto \mathbb{R}$;

Find an element of \mathcal{F} whose cost is minimum or maximum.

We will introduce **independence systems** and **matroids** and show that many combinatorial optimization problems can be described in this context. The main reason why matroids are important is that a **simple greedy algorithm can be used for optimization over matroids**.

Table of Contents

2 Indipendence systems and matroids

- Introduction
- ► Indipendence systems and matroids
- Maximization and minimization problems
- Greedy algorithms

Definition (Indipendence system)

A set system (E, \mathcal{F}) is an **indipendence system** if and only if:

- $(M1) \emptyset \in \mathcal{F}$;
- (M2) if $X \subseteq Y$, $Y \in \mathcal{F}$ then $X \in \mathcal{F}$.

Definition (Indipendence system)

A set system (E, \mathcal{F}) is an **indipendence system** if and only if:

- $(M1) \emptyset \in \mathcal{F}$;
- (M2) if $X \subseteq Y$, $Y \in \mathcal{F}$ then $X \in \mathcal{F}$.

The elements of \mathcal{F} are called *independent*, the elements of $2^E \setminus \mathcal{F}$ dependent. Maximal independent sets are called **bases**. For $X \subseteq E$, the maximal independent subsets of X are called bases of X.

Consider any finite subset E of a vector space V. We can define an independence system by choosing $\mathcal{F}=\{Y\in 2^E: Y \text{ are linearly independent }\}$. This set system clearly satisfies (M1) (there is no way to obatin $\vec{0}$ from a linear combination of an empty set of vectors) and (M2). Keeping in mind this example, we introduce some definitions.

Definition (Rank)

Let (E, \mathcal{F}) be an independence system. For $X \subseteq E$ we define the rank of X by:

$$r(X) := \max\{|Y| : Y \subseteq X, Y \in \mathcal{F}\}.$$

The rank of a finite collection of vectors X is just the size of any basis for X. Does this hold for any indipendence system? No.

Consider the indipendence set system (E, \mathcal{F}) where $E = \{1, 2, 3\}$ and $\mathcal{F} = \{\emptyset, \{1, 2\}, \{1\}, \{2\}, \{3\}\}$

We have two basis for *E* with different cardinality!

This suggests that subsets of linearly indipendent vectors have another property, in addition to (M1) and (M2). This is the *augmentation property*: Given two finite subsets of linearly indipendent vectors X and Y such that |X| < |Y|, we can find some vectors of Y to add to X such that they have the same rank.

Definition (Matroid)

An indipendence system is a matroid if and only if:

• (M3) if $X, Y \in \mathcal{F}$, |X| < |Y| then $\exists y \in Y \setminus X$ such that $X \cup \{y\} \in \mathcal{F}$.

Introduced in a paper called "On the Abstract Properties of Linear Dependence" by Hassler Whitney in 1935.

Equivalent axiom

2 Indipendence systems and matroids

This new axiom captures the propriety we were looking for:

Theorem

 $(M3) \iff$ For each $X \subseteq E$, all bases of X have the same cardinality.

This new axiom captures the propriety we were looking for:

Theorem

 $(M3) \iff$ For each $X \subseteq E$, all bases of X have the same cardinality.

Proof

 \implies Suppose a subset $X \subseteq E$ has two bases of different size $|B_1| > |B_2|$, we can add elements of the bigger base to the small and still be an indipendent set, but B_2 was choosen to be maximal.

Equivalent axiom

2 Indipendence systems and matroids

This new axiom captures the propriety we were looking for:

Theorem

 $(M3) \iff$ For each $X \subseteq E$, all bases of X have the same cardinality.

Proof

 \implies Suppose a subset $X \subseteq E$ has two bases of different size $|B_1| > |B_2|$, we can add elements of the bigger base to the small and still be an indipendent set, but B_2 was choosen to be maximal.

 \longleftarrow Let $X, Y \in \mathcal{F}$ such that |X| > |Y|. This means Y can't be a basis for $Y \cup X$. This means there must be an $x \in X \setminus Y$ such that $Y \cup \{x\} \in \mathcal{F}$. \square

2 Indipendence systems and matroids

Given a set of bases we can construct the remaining indipendent sets by adding all of their subsets.

2 Indipendence systems and matroids

Given a set of bases we can construct the remaining indipendent sets by adding all of their subsets.

Given a set of bases, when they generate a matroid?

2 Indipendence systems and matroids

Given a set of bases we can construct the remaining indipendent sets by adding all of their subsets.

Given a set of bases, when they generate a matroid?

Theorem (Bases characterization)

Let *E* be a finite set and $\mathcal{B} \subseteq 2^E$. \mathcal{B} is the set of bases of some matroid (E, \mathcal{F}) if and only if:

- $(B1) \mathcal{B} \neq \emptyset$.
- (B2) For any $A, B \in \mathcal{B}$ and $a \in A \setminus B$ there exists $b \in B \setminus A$ such that $(A \setminus \{a\}) \cup \{b\} \in \mathcal{B}$.

2 Indipendence systems and matroids

Given a set of bases we can construct the remaining indipendent sets by adding all of their subsets.

Given a set of bases, when they generate a matroid?

Theorem (Bases characterization)

Let E be a finite set and $\mathcal{B} \subseteq 2^E$. \mathcal{B} is the set of bases of some matroid (E, \mathcal{F}) if and only if:

- $(B1) \mathcal{B} \neq \emptyset$.
- (B2) For any $A, B \in \mathcal{B}$ and $a \in A \setminus B$ there exists $b \in B \setminus A$ such that $(A \setminus \{a\}) \cup \{b\} \in \mathcal{B}$.

(B2) is called the base exchange property.

Proof \Longrightarrow The set of bases of a matroid satisfies (B1) by (M1), and (B2): the set $A \setminus \{a\}$ is still indipendent for (M2), so by (M3) we can find an element in $B \setminus A$ to create a new basis.

← Combinatorial Optimization. Theory and Algorithms (Bernhard Korte, Jens Vygen), theorem 13.9, page 337.

Properties of the rank function

2 Indipendence systems and matroids

Theorem

Let $\mathcal M$ be a matroid on a finite set E. The rank function r of $\mathcal M$ has the following properties:

- (R1) $0 \le r(X) \le |X|$ for all $X \subseteq E$.
- (R2) If $X \subseteq Y \subseteq E$ then $r(X) \le r(Y)$.
- (R3) For every $X, Y \subseteq E$ $r(X \cup Y) + r(X \cap Y \le r(X) + r(Y)$.

Properties of the rank function

2 Indipendence systems and matroids

Theorem

Let $\mathcal M$ be a matroid on a finite set E. The rank function r of $\mathcal M$ has the following properties:

- (R1) $0 \le r(X) \le |X|$ for all $X \subseteq E$.
- (R2) If $X \subseteq Y \subseteq E$ then $r(X) \le r(Y)$.
- (R3) For every $X, Y \subseteq E$ $r(X \cup Y) + r(X \cap Y \le r(X) + r(Y)$.

Proof (R1) and (R2) follow from the definition, they are satisfied in any indipendence system.

Rank characterization

2 Indipendence systems and matroids

Given a finite set E and a function $r: 2^E \mapsto \mathbb{N}$, we can define a matroid in the following way:

$$\mathcal{F}:=\{F\subseteq E\ :\ r(F)=|F|\}$$

Corollary

Let E be a finite set. A function $r: 2^E \mapsto \mathbb{N}$ is the rank function of a matroid on E if and only if r satisfies properties (R1), (R2) and (R3).

Proof Combinatorial Optimization. Theory and Algorithms (Bernhard Korte, Jens Vygen), Page 338. \Box

Rank quotient

2 Indipendence systems and matroids

We introduce another definition of rank of subsets for indipendent set system, the size of the smallest base contained:

Definition (Lower rank)

Let (E, \mathcal{F}) be an independence system. For $X \subseteq E$ we define the lower rank by:

$$\rho(X) := \min\{|Y| : Y \subseteq X, Y \in \mathcal{F} \text{ and } Y \cup \{x\} \notin \mathcal{F} \ \forall x \in X \setminus Y\}.$$

Rank quotient

2 Indipendence systems and matroids

We introduce another definition of rank of subsets for indipendent set system, the size of the smallest base contained:

Definition (Lower rank)

Let (E, \mathcal{F}) be an independence system. For $X \subseteq E$ we define the lower rank by:

$$\rho(X) := \min\{|Y| : Y \subseteq X, Y \in \mathcal{F} \text{ and } Y \cup \{x\} \notin \mathcal{F} \ \forall x \in X \setminus Y\}.$$

Definition (Rank quotient)

The rank quotient of (E, \mathcal{F}) is defined by:

$$q(E, \mathcal{F}) := \min_{X \subseteq E} \frac{\rho(X)}{r(X)}$$

Proprieties of rank quotient

2 Indipendence systems and matroids

It follows from the definition that $q(E,\mathcal{F}) \leq 1$, and an indipendence system is a matroid if and only if $q(E,\mathcal{F}) = 1$, since this is equivalent to the statment that every bases for any $X \subseteq E$ has the same cardinality.

$$(E,\mathcal{F})$$
 is a Matroid $\iff q(E,\mathcal{F})=1$

Table of Contents

3 Maximization and minimization problems

- Introduction
- Indipendence systems and matroids
- ► Maximization and minimization problems
- Greedy algorithms

Maximization and minimization problems for IS

3 Maximization and minimization problems

Definition (Maximization problem)

Istance: A set system (E, \mathcal{F}) and a cost function $c: E \mapsto \mathbb{R}$.

Task: Find $X \in \mathcal{F}$ such that $c(X) := \sum_{e \in X} c(e)$ is maximum.

Maximization and minimization problems for IS

3 Maximization and minimization problems

Definition (Maximization problem)

Istance: A set system (E, \mathcal{F}) and a cost function $c: E \mapsto \mathbb{R}$. Task: Find $X \in \mathcal{F}$ such that $c(X) := \sum_{e \in X} c(e)$ is maximum.

Definition (Minimization problem)

Istance: A set system (E, \mathcal{F}) and a cost function $c : E \mapsto \mathbb{R}$. *Task*: Find a basis B such that $c(B) := \sum_{e \in B} c(e)$ is minimum.

Note: $c(\emptyset) = 0$.

There is a natural duality between minimization and maximization problems on indipendence systems: finding a minimum cost basis B in (E, \mathcal{F}) is the same as finding the maximum cost complement $E \setminus B$. This suggests the following definition:

There is a natural duality between minimization and maximization problems on indipendence systems: finding a minimum cost basis B in (E,\mathcal{F}) is the same as finding the maximum cost complement $E\setminus B$. This suggests the following definition:

Definition (Dual IS)

Let (E, \mathcal{F}) be an indipendence system. We define its **dual** (E, \mathcal{F}^*) so that the bases in \mathcal{F}^* are exactly the complements of the bases of \mathcal{F} .

There is a natural duality between minimization and maximization problems on indipendence systems: finding a minimum cost basis B in (E, \mathcal{F}) is the same as finding the maximum cost complement $E \setminus B$. This suggests the following definition:

Definition (Dual IS)

Let (E, \mathcal{F}) be an indipendence system. We define its **dual** (E, \mathcal{F}^*) so that the bases in \mathcal{F}^* are exactly the complements of the bases of \mathcal{F} .

It's clear that $(E, \mathcal{F}^{**}) = (E, \mathcal{F})$.

So which sets are in \mathcal{F}^* ?

So which sets are in \mathcal{F}^* ? Every subset of the dual basis \mathcal{B}^* , this means:

$$\mathcal{F}^* = \{ F \subseteq E : \exists B \in \mathcal{B} \text{ s.t. } B \cap F = \emptyset \}$$

Properties of the dual

3 Maximization and minimization problems

Theorem

Let (E, \mathcal{F}) be an indipendence system, (E, \mathcal{F}^*) its dual, and let r and r^* be the corresponding rank functions.

- 1. (E, \mathcal{F}) is a matroid if and only if (E, \mathcal{F}^*) is a matroid.
- **2.** If (E, \mathcal{F}) is a matroid, then $r^*(E) = |F| + r(E \setminus F) r(E)$ for $F \subseteq E$.

Proof We only give a proof of 2. The idea to prove 1. is via the rank function characterization: verify that r^* satisfies (R1), (R2) and (R3).

Proof We only give a proof of 2. The idea to prove 1. is via the rank function characterization: verify that r^* satisfies (R1), (R2) and (R3). Let (E, \mathcal{F}) be a matroid with bases \mathcal{B} and (E, \mathcal{F}^*) its dual.

$$r^*(F) = \max_{I \subseteq F, I \in \mathcal{F}^*} |I|$$

$$r^*(F) = \max_{I \subseteq F, I \in \mathcal{F}^*} |I|$$
$$= \max_{B \in \mathcal{B}} |F \cap (E \setminus B)|$$

$$r^{*}(F) = \max_{I \subseteq F, I \in \mathcal{F}^{*}} |I|$$
$$= \max_{B \in \mathcal{B}} |F \cap (E \setminus B)|$$
$$= \max_{B \in \mathcal{B}} |F \setminus B|$$

$$\begin{split} r^*(F) &= \max_{I \subseteq F, \, I \in \mathcal{F}^*} |I| \\ &= \max_{B \in \mathcal{B}} |F \cap (E \setminus B)| \\ &= \max_{B \in \mathcal{B}} |F \setminus B| \\ &= |F| - \min_{B \in \mathcal{B}} |F \cap B| \end{split}$$

$$\begin{split} r^*(F) &= \max_{I \subseteq F, I \in \mathcal{F}^*} |I| \\ &= \max_{B \in \mathcal{B}} |F \cap (E \setminus B)| \\ &= \max_{B \in \mathcal{B}} |F \setminus B| \\ &= |F| - \min_{B \in \mathcal{B}} |F \cap B| \\ &= |F| - |B| + \max_{B \in \mathcal{B}} |(E \setminus F) \cap B| \\ &= |F| - r(E) + r(E \setminus F) \end{split}$$

Examples

3 Maximization and minimization problems

• Maximum weight stable set problem: given a graph G and weights $c:V(G)\mapsto \mathbb{R}$, find a stable set $X\subseteq V(G)$ of maximum weight. Here E=V(G) and $\mathcal{F}=\{F\subseteq E: F \text{ is stable in } G\}$.

Examples

3 Maximization and minimization problems

- Maximum weight stable set problem: given a graph G and weights $c:V(G)\mapsto \mathbb{R}$, find a stable set $X\subseteq V(G)$ of maximum weight. Here E=V(G) and $\mathcal{F}=\{F\subseteq E:F \text{ is stable in }G\}$.
- TSP: given a complete undirected graph G and weights $c: E(G) \mapsto \mathbb{R}^+$, find a minimum weight Hamiltonian circuit in G. Here $\mathcal{F} = \{F \subseteq E: F \text{ is a subset of edges in an Hamiltonian circuit in } G\}$.

Examples

3 Maximization and minimization problems

- Maximum weight stable set problem: given a graph G and weights $c:V(G)\mapsto \mathbb{R}$, find a stable set $X\subseteq V(G)$ of maximum weight. Here E=V(G) and $\mathcal{F}=\{F\subseteq E: F \text{ is stable in } G\}$.
- TSP: given a complete undirected graph G and weights $c: E(G) \mapsto \mathbb{R}^+$, find a minimum weight Hamiltonian circuit in G. Here $\mathcal{F} = \{F \subseteq E: F \text{ is a subset of edges in an Hamiltonian circuit in } G\}$.
- MST: given a connected undirected graph G and weights $c: E(G) \mapsto \mathbb{R}$, find a minimum weight spanning tree in G. Here E = E(G) and the elements of \mathcal{F} are the edge sets of the forests in G.

The first two problems are NP-hard, while the last one is in P. The indipendence sytems of the first two problems are not matroids, while the last one is! This isn't a coincidence, we will show that simple (polynomial) algorithms solve optimization problems on matroids.

The IS of MST is a matroid

3 Maximization and minimization problems

Proposition

The set system (E, \mathcal{F}) , where E is the set of edges of some undirected graph G and $\mathcal{F} := \{F \subseteq E : (V(G), F) \text{ is a forest } \}$ is a matroid.

The IS of MST is a matroid

3 Maximization and minimization problems

Proposition

The set system (E, \mathcal{F}) , where E is the set of edges of some undirected graph G and $\mathcal{F} := \{F \subseteq E : (V(G), F) \text{ is a forest } \}$ is a matroid.

Proof It is obvious that is an independence sytem, it remains to show that (M3) holds. We will prove its contrapositive.

The IS of MST is a matroid

3 Maximization and minimization problems

Proposition

The set system (E, \mathcal{F}) , where E is the set of edges of some undirected graph G and $\mathcal{F} := \{F \subseteq E : (V(G), F) \text{ is a forest } \}$ is a matroid.

Proof It is obvious that is an independence sytem, it remains to show that (M3) holds. We will prove its contrapositive.Let $X,Y\in\mathcal{F}$, and suppose $Y\cup\{x\}\notin\mathcal{F}$ for all $x\in X\setminus Y$. We show $|X|\leq |Y|$. For each $x=\{u,v\}\in X$, u and v are in the same connected component of (V(G),Y). Hence each connected component $Z\subseteq (V(G),X)$ is a subset of a connected component of (V(G),Y). So the number of connected component p of the forest (V(G),X) is greater or equal to the number q of connected components of the forest (V(G),Y). But $|V(G)|-|X|=p\geq q=|V(G)|-|Y|$, implying $|X|\leq |Y|$. \square

Table of Contents

4 Greedy algorithms

- Introduction
- Indipendence systems and matroids
- Maximization and minimization problems
- ► Greedy algorithms

Again, let (E,\mathcal{F}) be an independence system and $c:E\mapsto\mathbb{R}^+$ (non-negative weights). We consider the **Maximization problem** for (E,\mathcal{F},c) and formulate two "greedy" algorithms.

Again, let (E, \mathcal{F}) be an independence system and $c: E \mapsto \mathbb{R}^+$ (non-negative weights). We consider the **Maximization problem** for (E, \mathcal{F}, c) and formulate two "greedy" algorithms.

The first one, called **Best-In** builds the solution choosing at each step the best possible element.

Again, let (E, \mathcal{F}) be an independence system and $c: E \mapsto \mathbb{R}^+$ (non-negative weights). We consider the **Maximization problem** for (E, \mathcal{F}, c) and formulate two "greedy" algorithms.

The first one, called **Best-In** builds the solution choosing at each step the best possible element.

The second, called **Worst-Out** at each step removes the worst element, until a feasible solution is atteined.

Again, let (E, \mathcal{F}) be an independence system and $c: E \mapsto \mathbb{R}^+$ (non-negative weights). We consider the **Maximization problem** for (E, \mathcal{F}, c) and formulate two "greedy" algorithms.

The first one, called **Best-In** builds the solution choosing at each step the best possible element.

The second, called **Worst-Out** at each step removes the worst element, until a feasible solution is atteined.

They boath employ the use of an oracle to decide if a given subset $X \subseteq E$ is feasible.

The best-in greedy algorithm for maximization

4 Greedy algorithms

Best-In-Greedy algorithm

Input: An independence system (E, \mathcal{F}) , given by an independence oracle, weights $c: E \mapsto \mathbb{R}^+$.

Output: A set $F \in \mathcal{F}$.

- 1. Sort E such that $c(e_1) \geq c(e_2) \geq \cdots \geq c(e_n)$.
- **2.** Set $F \leftarrow \emptyset$.
- **3.** For i = 1 to n do:

If
$$F \cup \{e_i\} \in \mathcal{F}$$
 then set $F \leftarrow F \cup \{e_i\}$

The best-in greedy algorithm for maximization

4 Greedy algorithms

Best-In-Greedy algorithm

Input: An independence system (E, \mathcal{F}) , given by an independence oracle, weights $c: E \mapsto \mathbb{R}^+$.

Output: A set $F \in \mathcal{F}$.

- 1. Sort E such that $c(e_1) \geq c(e_2) \geq \cdots \geq c(e_n)$.
- **2.** Set $F \leftarrow \emptyset$.
- 3. For i = 1 to n do: If $F \cup \{e_i\} \in \mathcal{F}$ then set $F \leftarrow F \cup \{e_i\}$

The output F of Best-In-Greedy algorithm will be a basis for E.

The worst-out greedy algorithm for maximitation 4 Greedy algorithms

The second algorithm requires a more complicated oracle. Given a set $F \subseteq E$, this oracle decides whether F contains a basis. Let us call such an oracle a basis-superset oracle.

Worst-out-Greedy algorithm

Input: An independence system (E, \mathcal{F}) , given by a basis-superset oracle, weights $c: E \mapsto \mathbb{R}^+$.

Output: A basis $F \in \mathcal{F}$.

- 1. Sort E such that $c(e_1) \leq c(e_2) \leq \cdots \leq c(e_n)$.
- **2.** Set $F \leftarrow E$.
- **3.** For i = 1 to n do:

If $F \setminus \{e_i\}$ contains a basis **then** set $F \leftarrow F \setminus \{e_i\}$

Greedy algorithms for minimization

4 Greedy algorithms

One can analogously formulate both greedy algorithms for the Minimization problem.

Greedy algorithms for minimization

4 Greedy algorithms

One can analogously formulate both greedy algorithms for the Minimization problem. It is easy to see that the Best-In for the Maximization problem for (E,\mathcal{F},c) corresponds to Worst-Out for the Minimization problem for (E,\mathcal{F}^*,c) : adding an element to F in Best-In corresponds to removing an element from F in Worst-out.

Greedy algorithms for minimization

4 Greedy algorithms

One can analogously formulate both greedy algorithms for the Minimization problem. It is easy to see that the Best-In for the Maximization problem for (E, \mathcal{F}, c) corresponds to Worst-Out for the Minimization problem for (E, \mathcal{F}^*, c) : adding an element to F in Best-In corresponds to removing an element from F in Worst-out. This is the dual relationship discussed before.

Quality of the solution

4 Greedy algorithms

Theorem (Jenkyns 1976, Korte and Hausmann 1978)

Let (E, \mathcal{F}) be an independence system. For $c: E \mapsto \mathbb{R}^+$ we denote by $G(E, \mathcal{F}, c)$ the cost of some solution found by the Best-In-Greedy for the Minimization problem, and by $OPT(E, \mathcal{F}, c)$ the cost of an optimum solution. Then

$$q(E,\mathcal{F}) \leq rac{c(G)}{c(OPT)} \leq 1$$

for all $c: E \mapsto \mathbb{R}^+$. There is a cost function where the lower bound is attained.

Quality of the solution

4 Greedy algorithms

Theorem (Jenkyns 1976, Korte and Hausmann 1978)

Let (E, \mathcal{F}) be an independence system. For $c: E \mapsto \mathbb{R}^+$ we denote by $G(E, \mathcal{F}, c)$ the cost of some solution found by the Best-In-Greedy for the Minimization problem, and by $OPT(E, \mathcal{F}, c)$ the cost of an optimum solution. Then

$$q(E,\mathcal{F}) \leq rac{c(G)}{c(OPT)} \leq 1$$

for all $c: E \mapsto \mathbb{R}^+$. There is a cost function where the lower bound is attained.

Proof Let $E = \{e_1, \dots, e_n\}$ and $c(e_1) \ge c(e_2) \ge \dots \ge c(e_n)$. Let G_n be the solution found by Best-In-Greedy, while O_n is an optimum solution.

We define $E_j:=\{e_1,\ldots,e_j\}$, $G_j:=G_n\cap E_j$ and $O_j:=O_n\cap E_j$. Set $d_n:=c(e_n)$ and $d_j:=c(e_j)-c(e_{j+1})$ for $j=1,\ldots,n-1$. Since $O_j\subseteq O_n$, $O_j\in \mathcal{F}$ by (M2). We have $|O_j|\leq r(E_j)$.

We define $E_j:=\{e_1,\ldots,e_j\}$, $G_j:=G_n\cap E_j$ and $O_j:=O_n\cap E_j$. Set $d_n:=c(e_n)$ and $d_j:=c(e_j)-c(e_{j+1})$ for $j=1,\ldots,n-1$. Since $O_j\subseteq O_n$, $O_j\in \mathcal{F}$ by (M2). We have $|O_j|\leq r(E_j)$. Since G_j is a basis for E_j , we have $|G_j|\geq \rho(E_j)$. With these two inequalities we conclude that

We define $E_j:=\{e_1,\ldots,e_j\}$, $G_j:=G_n\cap E_j$ and $O_j:=O_n\cap E_j$. Set $d_n:=c(e_n)$ and $d_j:=c(e_j)-c(e_{j+1})$ for $j=1,\ldots,n-1$. Since $O_j\subseteq O_n$, $O_j\in \mathcal{F}$ by (M2). We have $|O_j|\leq r(E_j)$. Since G_j is a basis for E_j , we have $|G_j|\geq \rho(E_j)$. With these two inequalities we conclude that

$$egin{aligned} c(G_n) &= \sum_{j=1}^n (|G_j| - |G_{j-1}|) c(e_j) \ &= \sum_{j=1}^n |G_j| d_j \ &\geq \sum_{j=1}^n
ho(E_j) d_j \end{aligned}$$

$$egin{aligned} & \geq q(E,\mathcal{F}) \sum_{j=1}^{n} r(E_{j}) d_{j} \ & \geq q(E,\mathcal{F}) \sum_{j=1}^{n} |O_{j}| d_{j} \ & = q(E,\mathcal{F}) \sum_{j=1}^{n} (|O_{j}| - |O_{j-1}|) c(e_{j}) \ & = q(E,\mathcal{F}) c(O_{n}) \end{aligned}$$

this proves the inequality.

We now prove that the lower bound is tight. Choose $F \subseteq E$ and bases B_1, B_2 of F such that $\frac{|B_1|}{|B_2|} = q(E, \mathcal{F})$, define the cost function:

$$c(e) := egin{cases} 1 ext{ for } e \in F \ 0 ext{ for } e \in E \setminus F \end{cases}$$

If we sort e_1, \ldots, e_n such that $B_1 = \{e_1, \ldots e_{|B_1|}\}$ the algorithm will find B_1 as a solution, and the lower bound is attained. \square

Theorem (Rado 1957, Edmonds 1971)

An independence system (E,\mathcal{F}) is a matroid if and only if the BEST-IN-GREEDY finds an optimum solution for the MAXIMIZATION PROBLEM for (E,\mathcal{F},c) for all cost functions $c:E\mapsto\mathbb{R}^+.$

This is one of the rare cases where we can define a structure by its algorithmic behaviour.

Quality of the solution for the minimization problem 4 Greedy algorithms

Theorem

Korte and Monma 1979 Let (E,\mathcal{F}) be an independence system. For $c:E\mapsto\mathbb{R}^+$ let $G(E,\mathcal{F},c)$ denote a solution found by Worst-Out-Greedy for the Minimization problem. Then

$$1 \leq rac{G(E,\mathcal{F},c)}{OPT(E,\mathcal{F},c)} \leq \max_{F \subseteq E} rac{|F| -
ho^*(F)}{|F| - r^*(F)}$$

for all $c: E \mapsto \mathbb{R}^+$, where ρ^* and r^* are the rank functions of the dual indipendence system (E, \mathcal{F}^*) . There is a cost function where the upper bound is attained.

Proof We use the same notation as in the previous proof. At each step, the partial solution will is $(E \setminus E_j) \cup G_j$, by construction contains a basis of E. Its complement $E_j \setminus G_j$, like G_j in Best-In-Greedy is a basis for E_j in the dual \mathcal{F}^* , thus:

$$|E_j|-|G_J|\geq \rho^*(E_j)$$

Likewise, the complement of the solution $E_j \setminus O_j$ is indipendent in \mathcal{F}^* , thus:

$$|E_J|-|O_J|\leq r^*(E_j)$$

We now use the same trick to compute the cost of the solution G_n :

$$egin{aligned} c(G_n) &= \sum_{j=1}^n (|G_j| - |G_{j-1}|) c(e_j) \ &= \sum_{j=1}^n |G_j| d_j \ &\leq \sum_{j=1}^n |E_j| -
ho^*(E_j) d_j \end{aligned}$$

$$egin{aligned} &= \sum_{j=1}^{n} \left(|E_{j}| -
ho^{*}(E_{j})
ight) rac{|E_{j}| - r^{*}(E_{j})}{|E_{j}| - r^{*}(E_{j})} d_{j} \ &\leq \max_{F \subseteq E} rac{|F| -
ho^{*}(F)}{|F| - r^{*}(F)} \sum_{j=1}^{n} |O_{j}| d_{j} \ &= \max_{F \subseteq E} rac{|F| -
ho^{*}(F)}{|F| - r^{*}(F)} \sum_{j=1}^{n} (|O_{j}| - |O_{j-1}|) c(e_{j}) \ &= \max_{F \subseteq E} rac{|F| -
ho^{*}(F)}{|F| - r^{*}(F)} c(O_{n}) \end{aligned}$$

To prove that the upper bound is tight we can use the same strategy as in the Edmons-Rado theorem. \Box

We have shown that using **Best-In-Greedy for maximization problems** on matroids will always find the best solution, likewise **Worst-Out-Greedy for minimization problems**.

We have shown that using **Best-In-Greedy for maximization problems** on matroids will always find the best solution, likewise **Worst-Out-Greedy for minimization problems**. If we apply the **Worst-Out-Greedy** to the maximization problem or the **Best-In-Greedy** to the minimization problems, **there is no positive lower/finite upper bound for** $\frac{G}{OPT}$.

We have shown that using **Best-In-Greedy for maximization problems** on matroids will always find the best solution, likewise **Worst-Out-Greedy for minimization problems**. If we apply the **Worst-Out-Greedy** to the maximization problem or the **Best-In-Greedy** to the minimization problems, **there is no positive lower/finite upper bound for** $\frac{G}{OPT}$. To see this try finding a minimal vertex cover of maximum weight or a maximal stable set of minimum weight in this simple graph:

1 2 M >> 2

• — • — •

However in the case of matroids, it does not matter whether we use the Best-In-Greedy or the Worst-Out-Greedy: since all bases have the same cardinality, the minimization problem for (E, \mathcal{F}, c) is equivalent to the maximization problem for (E, \mathcal{F}, c') , where

$$c'(e) := M - c(e) \quad \forall e \in E$$
 $M := 1 + \max\{c(e) : e \in E\}$

Therefore

Corollary

Kruskal's algorithm solves the MST problem optimally.

Matroids and combinatorial optimization Thank you for listening!