Table 9.
 Input Parameters for Modified van Genuchten Model

Parameter	Variable	Description
Relative Permeability Function		
IRP	11	select van Genuchten relative permeability model
RP(1)	S_{lrk}	residual liquid saturation for relative permeability functions,
		if negative, $S_{lrk} = 0$ for calculating gas relative permeability, absolute value is used for calculating liquid relative permeability
RP(2)	S_{gr}	residual gas saturation
		if negative, $S_{gr} = 0$ for calculating liquid relative permeability, absolute value is used for calculating gas relative permeability
RP(3)	(flag)	if zero, use (14b), if non-zero, use (14c)
RP(4)	η	exponent in (14a), default = $\frac{1}{2}$
RP(5)	$\boldsymbol{\mathcal{E}}_k$	use linear function between $k_{rl}(S_e = 1 - \varepsilon_k)$ and 1.0.
RP(6)	a_{fm}	Constant fracture-matrix interaction reduction factor, in combination with Active Fracture Model (see Section 8)
RP(7)	ζ	exponent in $(10b)$, default = $1/3$
Capillary Pressure Function		
ICP	11	select van Genuchten capillary pressure model
CP(1)	n	parameter related to pore size distribution index (see also $CP(4)$)
CP(2)	1/\alpha	parameter related to gas entry pressure [Pa]
		$USERX(4,N)>0 : 1/\alpha_i = USERX(4,N)$
		$USERX(4,N)<0:1/\alpha_i=USERX(4,N)\cdot CP(2)$
		$CP(2)$ < 0: apply Leverett scaling rule: $1/\alpha_i = 1/\alpha_{ref} \cdot \sqrt{k_{ref}/k_i}$ where: $1/\alpha_{ref} = CP(2) $
		$k_{ref} = PER(NMAT)$
		$W_{ref} = 12K(M211)$ $USERX(1,N) > 0 : k_i = USERX(1,N)$
CP(3)	ε or	$USERX(1,N)<0 : k_i = USERX(1,N) \cdot PER(NMAT)$ $CP(3)=0 : p_{c,max} = 10^{50}, \varepsilon = -1$
	$p_{c,\max}$	$0 < CP(3) < 1$: $\varepsilon = CP(3)$; use linear extension (13b)
	- c,max	$CP(3) \ge 1$: $p_{c,\text{max}} = CP(3)$, $\varepsilon = -1$
		$-1 < CP(3) < 0 : \varepsilon = CP(3) $; use log-linear extension (13c)
CP(4)	m	if zero then $m=1-1/CP(1)$, else $m=CP(4)$ and $n=1/(1-m)$
CP(5)	ω	Zero: Use original van Genuchten curve near full saturation
		Positive: Use cubic spline for $S_t > 1 - \omega$
CP(6)	γ	Negative: Use "linear" interpolation for $S_i > 1 - \omega $ parameter of Active Fracture Model (see Section 8)
CP(7)	S_{lrc}	if zero, then $S_{lrc} = S_{lrk}$
01 (/)	\sim_{lrc}	In Edic, and Sirc - Sirk