Modeling Relational Event Dynamics with statnet

Carter T. Butts

Contents

The statnet Project
Section 0. Introduction to the Tutorial
Section 1. Dyadic Relational Event Models with rem.dyad: Ordinal Timing
Section 2. Dyadic Relational Event Models with rem.dyad: Exact Timing 61
Section 3. Simulating De Novo Dyadic Relational Event Models
References
Last updated 2022-06-24
This tutorial is a joint product of the Statnet Development Team:
Pavel N. Krivitsky (University of New South Wales)
Martina Morris (University of Washington)
Mark S. Handcock (University of California, Los Angeles)
Carter T. Butts (University of California, Irvine)
David R. Hunter (Penn State University)
Steven M. Goodreau (University of Washington)
Chad Klumb (University of Washington)
Skye Bender de-Moll (Oakland, CA)

The network modeling software demonstrated in this tutorial is authored by Carter Butts (relevent, sna).

The statnet Project

All statnet packages are open-source, written for the R computing environment, and published on CRAN. The source repositories are hosted on GitHub. Our website is statnet.org

- Need help? For general questions and comments, please email the statnet users group at statnet_help@uw.edu. You'll need to join the listserv if you're not already a member. You can do that here: statnet_help listserve.
- Found a bug in our software? Please let us know by filing an issue in the appropriate package GitHub repository, with a reproducible example.
- Want to request new functionality? We welcome suggestions you can make a request by filing an issue on the appropriate package GitHub repository. The chances that this functionality will be developed are substantially improved if the requests are accompanied by some proposed code (we are happy to review pull requests).
- For all other issues, please email us at contact@statnet.org.

Section 0. Introduction to the Tutorial

This workshop and tutorial provide an introduction to statistical modeling of relational event data using statnet software. This online tutorial is also designed for self-study, with example code and self-contained data. The statnet package we will be demonstrating is:

• relevent - modeling and simulation for relational event models

Additional background on the tools, modeling framework, and data used in this tutorial may be found in the references at the bottom of this document.

0.0 Prerequisites

This workshop assumes basic familiarity with \mathbf{R} , experience with network concepts, terminology and data, and familiarity with the general framework for statistical modeling and inference. While previous experience with relational event models (REMs) is not required, some of the topics covered here may be difficult to understand without a strong background in linear and generalized linear models in statistics.

0.1 Software installation

Minimally, you will need to install the latest version of **R** (available here) and the statnet packages relevent, sna and network to run the code presented here (sna will automatically install network when it is installed).

The full set of installation instructions with details can be found on the statnet workshop wiki.

If you have not already downloaded the statnet packages for this workshop, the quickest way to install these (and the other most commonly used packages from the statnet suite), is to open an R session and type:

```
install.packages(c("relevent","sna"))
library(relevent)
```

```
Loading required package: trust
Loading required package: sna
Loading required package: statnet.common
Attaching package: 'statnet.common'
The following objects are masked from 'package:base':
    attr, order
Loading required package: network
'network' 1.17.2 (2022-05-19), part of the Statnet Project
* 'news(package="network")' for changes since last version
* 'citation("network")' for citation information
* 'https://statnet.org' for help, support, and other information
sna: Tools for Social Network Analysis
Version 2.6 created on 2020-10-5.
copyright (c) 2005, Carter T. Butts, University of California-Irvine
For citation information, type citation("sna").
Type help(package="sna") to get started.
Loading required package: coda
relevent: Relational Event Models
Version 1.1 created on 2021-09-20.
copyright (c) 2007, Carter T. Butts, University of California-
```

Irvine

```
For citation information, type citation("relevent").

Type help(package="relevent") to get started.
```

library(sna)

You can check the version number with:

```
packageVersion("relevent")
```

```
[1] '1.1'
```

Throughout, we will set a random seed via set.seed() for commands in tutorial that require simulating random values—this is not necessary, but it ensures that you will get the same results as the online tutorial.

Section 1. Dyadic Relational Event Models with rem.dyad: Ordinal Timing

Dyadic relational event models are intended to capture the behavior of systems in which individual social units (persons, organizations, animals, etc.) direct discrete actions towards other individuals in their environment. Within the relevent package, the rem.dyad function is the primary workhorse for modeling dyadic data. Although less flexible than rem (another relevent tool, not covered in this tutorial), rem.dyad contains many features that make it easier to work with in the dyadic case.

Data for use with rem.dyad consists of dynamic edge lists, each edge being characterized by a sender, a recipient, and an event time. (Currently, self-edges and undirected edges are not supported – this will change in future versions!) Ideally, event times are known exactly; however, under the piecewise constant hazard assumption (per Butts, 2008) the relational event family can still be identified up to a pacing constant so long as the order of events is known. Since the case of ordinal timing is somewhat simpler than that of exact timing, we consider it first.

1.0 Loading the relevent package, and the workshop data

```
library(relevent) #Load the relevent library
load("relevent_workshop.Rdata") #Load the workshop data - may need to change directory!
```

1.1 Getting a look at the WTC Police radio data

The data we will use here comes from the World Trade Center radio communication data set coded by Butts et al. (2007). It consists of radio calls among 37 named communicants belonging to a police unit at the World Trade Center complex on the morning of 9/11/2001. The edgelist is contained in an object called WTCPoliceCalls; printing it should yield output like the following:

WTCPoliceCalls

	number	source	recipient
1	1	16	32
2	2	32	16
3	3	16	32
4	4	16	32
5	5	11	32
6	6	11	32
7	7	11	32
8	8	36	32
9	9	8	32
10	10	8	32
11	11	32	8
12	12	16	32

13	13	8	32
14	14	26	32
15	15	32	26
16	16	26	32
17	17	32	26
18	18	26	32
19	19	32	26
20	20	16	32
21	21	16	32
22	22	27	32
23	23	20	32
24	24	32	20
25	25	20	32
26	26	32	20
27	27	32	16
28	28	16	32
29	29	32	16
30	30	32	16
31	31	16	32
32	32	32	22
33			32
	33	3	
34	34	32	3
35	35	3	32
36	36	32	3
37	37	32	16
38	38	16	32
39	39	32	16
40	40	3	32
41	41	3	32
42	42	32	3
43	43	3	32
44	44	16	3
45	45	16	11
46	46	11	16
47	47	16	11
48	48	11	16
49	49	16	11
50	50	11	16
51	51	24	36
52	52	24	36
53	53	15	32
54	54	32	15
55	55	15	32
56	56	32	15
57	57	15	32
58	58	32	15
59	59	22	32
60	60	32	22
61	61	15	32
62	62	32	15
63	63	15	32
64	64		32 15
		32	
65	65	18	32
66	66	32	18

67	67	18	32
68	68	19	32
69	69	32	19
70	70	19	32
71	71	32	19
72	72	19	32
73	73	16	32
74	74	32	16
75	75	16	32
76	76	32	16
77	77	36	16
78	78	16	36
79	79	36	16
80	80	16	36
81	81	36	16
82	82	16	36
83	83	27	32
84	84	32	16
85	85	16	32
86	86	32	16
87	87	16	32
88	88	32	16
89	89	22	15
90	90		22
		15 22	
91	91		15
92	92	15	22
93	93	22	15
94	94	16	22
95	95	22	16
96	96	16	22
97	97	22	11
98	98	11	22
99	99	36	32
100	100	32	36
101	101	36	32
102	102	32	36
103	103	36	32
104	104	32	36
105	105	27	32
106	106	37	32
107	107	32	37
108	108	37	32
109	109	32	37
110	110	5	32
111	111	32	5
112	112	5	32
113	113	32	5
114	114	31	36
115	115	36	31
116	116	31	36
117	117	36	31
118	118	37	32
119	119	16	32
120	120	32	16

121	121	16	32
122	122	32	16
123	123	29	32
124	124	32	29
125	125	37	14
126	126	29	32
127	127	31	32
128	128	32	37
129	129	16	32
130	130	32	16
131	131	16	32
132	132	32	16
133	133	16	32
134	134	36 16	16
135	135	16	36
136	136 137	36 16	16
137 138	138	16 29	36 32
139	139	2 <i>9</i> 8	35
140	140	32	16
141	141	8	35
142	142	32	16
143	143	16	32
144	144	32	16
145	145	16	32
146	146	22	32
147	147	32	22
148	148	22	32
149	149	32	22
150	150	27	32
151	151	32	27
152	152	27	32
153	153	32	26
154	154	22	32
155	155	32	22
156	156	22	32
157	157	32	22
158	158	22	32
159	159	32	22
160	160	22	32
161	161	32	22
162	162	16	32
163	163	32	16
164	164	16	32
165	165	32	16
166	166	16	32
167	167	16	11
168	168	27	32
169	169	32	16
170	170	16	32
171	171	32	16
172	172	36	32
173	173	32	36
174	174	36	32

175	175	32	36
176	176	16	32
177	177	32	16
178	178	16	32
179	179	32	16
180	180	16	32
181	181	32	16
182	182	16	32
183	183	10	2
184	184	2	10
185	185	10	26
186	186	16	32
187	187	32	16
188	188	16	32
189	189	16	32
190	190	32	16
191	191	32	16
192	192	16	32
193	193	32	16
194	194	16	32
195	195	32	16
196	196	16	32
197	197	32	16
198	198	16	32
199 200	199 200	32 16	16 32
200	200	32	32 16
201	201	22	32
203	202	32	22
204	204	24	32
205	205	32	24
206	206	24	32
207	207	32	24
208	208	16	32
209	209	32	16
210	210	16	32
211	211	32	24
212	212	24	32
213	213	16	32
214	214	30	16
215	215	16	30
216	216	30	16
217	217	16	30
218	218	30	16
219	219	16	30
220	220	32	15
221	221	15	32
222	222	32	15
223	223	15	32
224	224	32	15
225	225	32	15
226	226	15	32
227	227	32	15
228	228	15	32

229	229	32	23
230	230	23	32
231	231	32	23
232	232	23	32
233	233	32	23
234	234	23	32
235	235	32	23
236	236	23	32
237	237	32	23
238	238	23	32
239	239	32	19
240	240	19	32
241	241	32	19
242	242	19	32
243	243	32	18
244	244	15	16
245	245	32	18
246	246	16	32
247	247	32	16
248	248	16	32
249	249	32	16
250	250	15	16
251	251	16	15
252	252	15	16
253	253	16	15
254	254	15	16
255	255	16	15
256	256	25	32
257	257	32	25
258	258	25	32
259	259	32	25
260	260	1	4
261	261	4	1
262		1	4
	262		
263	263	4	1
264	264	1	4
265	265	4	1
266	266	1	4
267	267	4	1
268	268	1	4
269	269	16	32
270	270	32	16
271	271	16	32
272	272	32	16
273	273	16	32
274	274	32	16
275	275	16	32
276	276	18	32
277	277	32	18
278	278	18	32
279	279	32	18
280	280	18	32
281	281	32	18
282	282	18	32

283	283	32	18
284	284	18	32
285	285	32	18
286	286	18	32
287	287	32	18
288	288	18	32
289	289	25	32
290	290	32	16
291	291	16	32
292	292	32	16
293	293	16	32
294	294	32	16
295	295	16	32
296	296	32	16
297	297	16	32
298	298	32	16
299	299	16	32
300	300	32	16
301	301	16	32
302	302	32	16
303	303	22	32
304	304	32	22
305	305	22	32
306	306	25	32
307	307	32	25
308	308	25	32
309	309	22	32
310	310	32	22
311	311	22	32
312	312	32	16
313	313	25	32
314	314	32	25
315	315	25	32
316	316	32	25
317	317	21	32
318	318	32	21
319	319	21	32
320	320	32	21
321	321	21	32
322	322	32	21
323	323	21	32
324	324	25	32
325	325	32	25
326	326	16	36
327	327	36	16
328	328	36	16
329	329	16	36
	329		16
330		36 16	
331	331	16	36
332	332	32	16
333	333	16	32
334	334	31	32
335	335	32	31
336	336	31	32

337	337	32	31
338	338	31	32
339	339	32	31
340	340	32	16
341	341	16	32
342	342	32	16
343	343	16	32
344	344	30	32
345	345	32	30
346	346	30	32
347	347	9	32
348	348	6	32
349	349	22	32
350	350	32	22
351	351	22	32
352	352	32	22
353	353	34	32
354	354	32	34
355	355	34	32
356	356	32	34
357	357	32	22
358	358	22	32
359	359	21	36
360	360	16	21
361	361	16	32
362	362	32	16
363	363	16	32
364	364	32	16
365	365	16	32
366	366	32	22
367	367	22	32
368	368	32	22
369	369	22	32
370	370	33	32
371	371	33	32
372	372	32	16
373	373	32	33
374	374	16	32
375	375	32	16
376	376	16	32
377	377	32	33
378	378	33	32
379	379	16	15
380	380	15	16
381	381	16	15
382	382	15	16
383	383	32	16
384	384	32 16	32
385	385	17	32 32
386	386	32	32 17
387	387	32 16	17
388	388	21	36
389	389	36	21
390	399 390	21	36
350	390	∠1	30

391	391	36	21
392	392	21	36
393	393	36	21
394	394	21	36
395	395	32	16
396	396	16	32
397	397	32	16
398	398	16	32
399	399	16	32
400	400	32	16
401	401	32	16
402	402	16	32
403	403	32	16
404	404	16	32
405	405	32	16
406	406	24	16
407	407	16	24
408	408	24	16
409	409	16	24
410	410	25	32
411	411	32	16
412	412	16	32
413	413	32	16
414	414	16	32
415	415	32	16
416	416	21	32
417	417	32	21
418	418	21	32
419	419	21	30
420	420	32	16
421	421	16	32
422	422	32	16
423	423	16	32
424	424	32	21
425	425	21	32
426	426	32	21
427	427	21	36
428	428	36	21
429	429	21	36
430	430	36	21
431	431	21	36
432	432	36	21
433	433	21	36
434	434	30	32
435	435	32	30
436	436	30	32
437	437	32	30
438	438	30	32
439	439	16	32
440	440	32	16
441	441	16	32
442	442	32	16
443	443	24	16
444	444	16	24

```
445
        445
                  24
                              16
        446
                             24
446
                  16
447
        447
                  24
                              16
448
        448
                  16
                             24
449
        449
                  34
                             32
                  32
450
        450
                             34
451
        451
                  34
                             32
452
        452
                  12
                             34
453
        453
                  16
                              15
                             32
454
        454
                  16
455
        455
                  12
                             32
                  32
                              12
456
        456
457
        457
                  12
                             32
458
        458
                  32
                              12
        459
                  32
                             34
459
460
        460
                  34
                             32
                  29
                             32
        461
461
462
        462
                  32
                              29
                             32
463
        463
                  29
464
        464
                  32
                             29
465
        465
                  29
                             32
        466
                  32
                             29
466
467
        467
                  32
                              16
                             32
468
        468
                  16
469
        469
                  32
                              16
470
        470
                  16
                             32
471
        471
                  32
                              16
472
        472
                  16
                             32
        473
                              16
473
                  28
474
        474
                  16
                              28
475
        475
                  28
                              16
476
        476
                  28
                              16
477
        477
                  16
                              28
        478
478
                  28
                              16
479
        479
                  15
                              16
480
        480
                  32
                              16
481
        481
                  16
                             32
```

Note the form of the data: a matrix with the timing information, source (numbered from 1 to 37), and recipient (again numbered from 1 to 37) for each event (i.e., radio call). It is important to note that the WTC radio data was coded from transcripts that lacked detailed timing information; we do not therefore know precisely when these calls were made. We do, however, know the order in which calls were made, and can use this to fit relational event models with rem.dyad.

Before analyzing the data, it is helpful to consider what it looks like in time aggregated form. The workshop-supplied helper function as.sociomatrix.eventlist is useful for this purpose: it converts an event list into a valued sociomatrix, of the form used by other statnet routines. Let's convert the data to sociomatrix form, and visualize it using the gplot function of the sna package:

```
WTCPoliceNet <- as.sociomatrix.eventlist(WTCPoliceCalls, 37)
gplot(WTCPoliceNet, edge.lwd = WTCPoliceNet^0.75, vertex.col = 2 +
    WTCPoliceIsICR, vertex.cex = 1.25)</pre>
```


In this visualization, we have scaled edge widths by communication volume – clearly, some pairs interact much more than others. Note also that we have colored vertices based on whether or not they occupy an institutionalized coordinative role (ICR), as indicated by the vector WTCPoliceIsICR. Those for whom this vector is TRUE (green) occupy roles within the police organization that would be expected to participate in coordinative activities; other actors were not identified as occupying such roles, based on the transcript data. In the analyses below, we will employ this covariate (as well as various endogenous mechanisms) to model the dynamics of radio communication within the WTC police network.

1.2 A first model: exploring ICR effects

Let's begin by fitting a very simple covariate model, in which the propensity of individuals to send and receive calls depends on whether they occupy institutionalized coordinative roles:

Relational Event Model (Ordinal Likelihood)

summary(wtcfit1)

Estimate Std.Err Z value Pr(>|z|)

```
CovInt.1 2.104464 0.069817 30.142 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Null deviance: 6921.048 on 481 degrees of freedom
Residual deviance: 6193.998 on 480 degrees of freedom
    Chi-square: 727.0499 on 1 degrees of freedom, asymptotic p-value 0
AIC: 6195.998 AICC: 6196.007 BIC: 6200.174
The output gives us the covariate effect, as well as some uncertainty and goodness-of-fit information. The
format is much like the output for a regression model, but coefficients should be interpreted per the relational
event framework. In particular, the ICR role coefficient is the logged multiplier for the hazard of an event
involving an ICR, versus a non-ICR event. (The effect is cumulative: an event in which one actor in an ICR
calls another actor in an ICR gets twice the log increment.) We can see this impact in real terms as follows:
exp(wtcfit1$coef) #Relative hazard for a non-ICR/ICR vs. a non-ICR/non-ICR event
CovInt.1
8.202706
exp(2 * wtcfit1$coef) #Relative hazard for an ICR/ICR vs. a non-ICR/non-ICR event
CovInt.1
67.28438
We have here considered a homogeneous effect of ICR status on sending and receiving; is it worth treating
these effects separately? To do so, we enter the ICR covariate as a sender and receiver covariate (respectively):
wtcfit2 <- rem.dyad(WTCPoliceCalls, n = 37, effects = c("CovSnd",</pre>
   "CovRec"), covar = list(CovSnd = WTCPoliceIsICR, CovRec = WTCPoliceIsICR),
   hessian = TRUE)
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(wtcfit2)
Relational Event Model (Ordinal Likelihood)
         Estimate Std.Err Z value Pr(>|z|)
CovSnd.1 1.979172 0.095745 20.671 < 2.2e-16 ***
CovRec.1 2.225716 0.092862 23.968 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Null deviance: 6921.048 on 481 degrees of freedom
Residual deviance: 6190.175 on 479 degrees of freedom
    Chi-square: 730.8731 on 2 degrees of freedom, asymptotic p-value 0
AIC: 6194.175 AICC: 6194.2 BIC: 6202.527
Does the effect seem to differ? Let's see if fit improves (using the BIC):
```

[1] -2.352663

Model selection criteria are the preferred way to compare models, but one can also use a test of equality on the coefficients:

wtcfit1\$BIC - wtcfit2\$BIC #Model 1 a bit lower - we prefer it

```
wtcfit2$coef #Extract the coefficients
CovSnd.1 CovRec.1
1.979172 2.225716
wtcfit2$cov #Likewise, the posterior covariance matrix
                        [,2]
            [,1]
[1,] 0.009167101 0.000900543
[2,] 0.000900543 0.008623350
# Heuristic Wald test of equality (not Bayesian, but
# whatever)
z <- diff(wtcfit2$coef)/sqrt(sum(diag(wtcfit2$cov)) - 2 * wtcfit2$cov[1,
   2])
z
CovRec.1
1.949747
2 * (1 - pnorm(abs(z))) #Not conventionally significant - not strongly detectable
  CovRec.1
0.05120631
```

There might be some difference between the ICR sender and receiver effects, but it doesn't seem large enough to worry about. For now, we'll just stick with the simpler model (with a uniform effect on total interaction).

1.3 Bringing in endogenous social dynamics

One of the attractions of the relational event framework is its ability to capture endogenous social dynamics. In the following examples, we will examine several kinds of mechanisms that could conceivably impact communication among participants in the WTC police network. In each case, we first fit a candidate model, then compare that model to our best fitting model thus far identified. Where effects result in an improvement (as judged by the BIC), we include them in subsequent models.

To begin, we note that this is radio communication data. Radio communication is governed by strong conversational norms (in particular, radio SOP), which among other things mandate systematic turn-taking reciprocity. We can test for this via the use of participation shifts, particularly the AB-BA shift (a tendency for B to call A, given that A has just called B).

```
Null deviance: 6921.048 on 481 degrees of freedom
Residual deviance: 2619.115 on 479 degrees of freedom
    Chi-square: 4301.933 on 2 degrees of freedom, asymptotic p-value 0
AIC: 2623.115 AICC: 2623.14 BIC: 2631.467
wtcfit1$BIC - wtcfit3$BIC #We prefer model 3 to model 1 - reciprocity is in!
[1] 3568.707
exp(wtcfit3$coef["PSAB-BA"]) #Reciprocating events are >1500 times as likely
PSAB-BA
1520.73
What about other conversational norms? In general, we may expect that the current participants in an
interaction may be likely to initiate the next call, a tendency that can also be captured with P-shift effects.
wtcfit4 <- rem.dyad(WTCPoliceCalls, n = 37, effects = c("CovInt",</pre>
   "PSAB-BA", "PSAB-BY", "PSAB-AY"), covar = list(CovInt = WTCPoliceIsICR),
  hessian = TRUE)
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(wtcfit4) #Seems like the effects are present, but let's test GOF...
Relational Event Model (Ordinal Likelihood)
         Estimate Std.Err Z value Pr(>|z|)
CovInt.1 1.54283 0.11818 13.0549 < 2.2e-16 ***
PSAB-BA 7.49955 0.11418 65.6831 < 2.2e-16 ***
PSAB-BY 1.25941 0.25131 5.0115 5.402e-07 ***
PSAB-AY 0.87215 0.30612 2.8491 0.004384 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Null deviance: 6921.048 on 481 degrees of freedom
Residual deviance: 2595.135 on 477 degrees of freedom
    Chi-square: 4325.913 on 4 degrees of freedom, asymptotic p-value 0
AIC: 2603.135 AICC: 2603.219 BIC: 2619.839
wtcfit3$BIC - wtcfit4$BIC #Yes, definite improvement
[1] 11.62806
P-shift effects are "local," in that they depend only on the prior event. What about effects of recency (from
the point of view of ego) on the tendency to send calls to others?
wtcfit5 <- rem.dyad(WTCPoliceCalls, n = 37, effects = c("CovInt",</pre>
   "PSAB-BA", "PSAB-BY", "PSAB-AY", "RRecSnd", "RSndSnd"), covar = list(CovInt = WTCPoliceIsICR),
  hessian = TRUE)
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
```

Obtaining goodness-of-fit statistics

summary(wtcfit5) #Looks good; note that AB-BA is much smaller than before

Relational Event Model (Ordinal Likelihood)

```
Estimate Std.Err Z value Pr(>|z|)

RRecSnd 2.38496 0.27447 8.6892 < 2.2e-16 ***

RSndSnd 1.34623 0.22307 6.0350 1.590e-09 ***

CovInt.1 1.07058 0.14244 7.5160 5.640e-14 ***

PSAB-BA 4.88714 0.15293 31.9569 < 2.2e-16 ***

PSAB-BY 1.67938 0.26116 6.4304 1.273e-10 ***

PSAB-AY 1.39017 0.31057 4.4762 7.598e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Null deviance: 6921.048 on 481 degrees of freedom

Residual deviance: 2307.413 on 475 degrees of freedom

Chi-square: 4613.635 on 6 degrees of freedom, asymptotic p-value 0

AIC: 2319.413 AICC: 2319.591 BIC: 2344.469

wtcfit4$BIC - wtcfit5$BIC #Substantial improvement
```

[1] 275.3701

Finally, recall what our relational event data looked like when viewed in time-aggregated form. We observed a strongly hub-dominated network, with a few actors doing most of the communication. Could this be explained in part via a preferential attachment mechanism (per de Sola Price and others), in which those having the most air time become the most attractive targets for others to call? We can investigate this by including normalized total degree as a predictor of tendency to receive calls:

```
wtcfit6 <- rem.dyad(WTCPoliceCalls, n = 37, effects = c("CovInt",
    "PSAB-BA", "PSAB-BY", "PSAB-AY", "RRecSnd", "RSndSnd", "NTDegRec"),
    covar = list(CovInt = WTCPoliceIsICR), hessian = TRUE)</pre>
```

Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics

summary(wtcfit6) #PA is drawing from recency, ICR effect, but not P-shifts

Relational Event Model (Ordinal Likelihood)

```
Estimate Std.Err Z value Pr(>|z|)

NTDegRec 3.13454 0.56678 5.5305 3.194e-08 ***

RRecSnd 2.02903 0.28500 7.1194 1.084e-12 ***

RSndSnd 0.87115 0.23846 3.6533 0.0002589 ***

CovInt.1 0.70734 0.16400 4.3129 1.611e-05 ***

PSAB-BA 5.32576 0.18236 29.2042 < 2.2e-16 ***

PSAB-BY 1.86024 0.26321 7.0674 1.579e-12 ***

PSAB-AY 1.64806 0.31092 5.3005 1.155e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Null deviance: 6921.048 on 481 degrees of freedom

Residual deviance: 2276.263 on 474 degrees of freedom

Chi-square: 4644.785 on 7 degrees of freedom, asymptotic p-value 0

AIC: 2290.263 AICC: 2290.5 BIC: 2319.494
```

```
wtcfit5$BIC - wtcfit6$BIC #Model is preferred
```

[1] 24.97434

At this point, we've got a decent quorum of effects, and the deviance reduction is substantial. Of course, we could continue to investigate other mechanisms; see ?rem.dyad for the full range of options.

1.4 Assessing model adequacy

Model adequacy is an important consideration: even given that our model is the best of those we've seen, is it good enough for our purposes? There are many ways to assess model adequacy; here, we focus on the ability of the relational event model to predict the next event in the sequence, given those that have come before. A natural question to ask when assessing the model is to ask when it is "surprised:" when does it encounter observations that are relatively poorly predicted? To investigate this, we can examine the deviance residuals:

```
nullresid <- 2 * \log(37 * 36) #What would be the deviance residual for the null?
hist(wtcfit6$residuals) #Deviance residuals - most well-predicted, some around chance levels abline(v = \text{nullresid}, \text{col} = 2)
```

Histogram of wtcfit6\$residuals


```
mean(wtcfit6$residuals < nullresid) #Beating chance on almost all...

[1] 0.8898129

mean(wtcfit6$residuals < 3) #Upper limit of lower cluster is about 3
```

[1] 0.6839917

We seem to be doing pretty well here. As another way of evaluating the deviance residuals for the ordinal model, it is useful to note that the quantity $\exp(DR/2)$ (where DR is the deviance residual) is a "random

guessing equivalent," or an effective number of events such that a random guess among such events as to which is coming next would be right as often as the model expects to be. We can easily compute this as follows:

```
quantile(exp(wtcfit6$residuals/2)) #'Random guessing equivalent' (ref is 1332)

0% 25% 50% 75% 100%

1.073634 1.268661 1.739723 204.538319 31633.040883
```

Note that there are 1332 possible events, so we are doing much, much better than an uninformative baseline. Likewise, we've come a long way from our initial model:

```
quantile(exp(wtcfit1$residuals/2)) #By comparison, first model much worse!

0% 25% 50% 75% 100%
390.0004 390.0004 390.0004 3199.0582
```

In addition to overall examination of residuals, it can be useful to ask which particular events seem to be sources of surprise:

cbind(WTCPoliceCalls, wtcfit6\$residuals > nullresid) #Which are the more surprising cases?

	numher	source	recinient	wtcfit6\$residuals > nullresid
1	1	16	32	FALSE
2	2	32	16	FALSE
3	3	16	32	FALSE
4	4	16	32	FALSE
5	5	11	32	TRUE
6	6	11	32	FALSE
7	7	11	32	FALSE
8	8	36	32	FALSE
9	9	8	32	FALSE
10	10	8	32	FALSE
11	11	32	8	FALSE
12	12	16	32	FALSE
13	13	8	32	FALSE
14	14	26	32	TRUE
15	15	32	26	FALSE
16	16	26	32	FALSE
17	17	32	26	FALSE
18	18	26	32	FALSE
19	19	32	26	FALSE
20	20	16	32	FALSE
21	21	16	32	FALSE
22	22	27	32	FALSE
23	23	20	32	FALSE
24	24	32	20	FALSE
25	25	20	32	FALSE
26	26	32	20	FALSE
27	27	32	16	FALSE
28	28	16	32	FALSE
29	29	32	16	FALSE
30	30	32	16	FALSE
31	31	16	32	FALSE
32	32	32	22	FALSE
33	33	3	32	TRUE
34	34	32	3	FALSE

35	35	3	32	FALSE
36	36	32	3	FALSE
37	37	32	16	FALSE
38	38	16	32	FALSE
39	39	32	16	FALSE
40	40	3	32	FALSE
41	41	3	32	FALSE
42	42	32	3	FALSE
43	43	3	32	FALSE
44	44	16	3	TRUE
45	45	16	11	FALSE
46	46	11	16	FALSE
47	47	16	11	FALSE
48	48	11	16	FALSE
49	49	16	11	FALSE
50	50	11	16	FALSE
51	51	24	36	TRUE
52	52	24	36	TRUE
53	53	15	32	FALSE
54	54	32	15	FALSE
55	55	15	32	FALSE
56	56	32	15	FALSE
57	57	15	32	FALSE
58	58	32	15	FALSE
59	59	22	32	FALSE
60	60	32	22	FALSE
61	61	15	32	FALSE
62	62	32	15	FALSE
63	63	15	32	FALSE
64	64	32	15	FALSE
65	65	18	32	TRUE
66	66	32	18	FALSE
67	67	18	32	FALSE
68	68	19	32	TRUE
69	69	32	19	FALSE
70	70	19	32	FALSE
71	71	32	19	FALSE
72	72	19	32	FALSE
73	73	16	32	FALSE
74	74	32	16	FALSE
75	75	16	32	FALSE
76	76	32	16	FALSE
77	77	36	16	TRUE
78	78	16	36	FALSE
79	79	36	16	FALSE
80	80	16	36	FALSE
81	81	36	16	FALSE
82	82	16	36	FALSE
83	83	27	32	FALSE
84	84	32	16	FALSE
85	85	16	32	FALSE
86	86	32	16	FALSE
87	87	16	32	FALSE
88	88	32	16	FALSE
50	00	UΔ	10	FALSE

89	89	22	15	TRUE
90	90	15	22	FALSE
91	91	22	15	FALSE
92	92	15	22	FALSE
93	93	22	15	FALSE
94	94	16	22	TRUE
95	95	22	16	FALSE
96	96	16	22	FALSE
97	97	22	11	TRUE
98	98	11	22	FALSE
99	99	36	32	FALSE
100	100	32	36	FALSE
101	101	36	32	FALSE
102	102	32	36	FALSE
103	103	36	32	FALSE
104	104	32	36	FALSE
105	105	27	32	TRUE
106	106	37	32	FALSE
107	107	32	37	FALSE
108	108	37	32	FALSE
109	109	32	37	FALSE
110	110	5	32	TRUE
111	111	32	5	FALSE
112	112	5	32	FALSE
113	113	32	5	FALSE
114	114	31	36	TRUE
115	115	36	31	FALSE
116	116	31	36	FALSE
117	117	36	31	FALSE
118	118	37	32	FALSE
119	119	16	32	FALSE
120	120	32	16	FALSE
121	121	16	32	FALSE
122	122	32	16	FALSE
123	123	29	32	TRUE
124	124	32	29	FALSE
125	125	37	14	TRUE
126	126	29	32	FALSE
127	127	31	32	TRUE
128	128	32	37	FALSE
129	129	16	32	FALSE
130	130	32	16	FALSE
131	131	16	32	FALSE
132	132	32	16	FALSE
133	133	16	32	FALSE
134	134	36	16	TRUE
135	135	16	36	FALSE
136	136	36	16	FALSE
137	137	16	36	FALSE
138	138	29	32	FALSE FALSE
139	139	29 8	35	TRUE
140	140	32	35 16	FALSE
141	140	32 8	35	TRUE
			35 16	
142	142	32	10	FALSE

143	143	16	32	FALSE
144	144	32	16	FALSE
145	145	16	32	FALSE
146	146	22	32	FALSE
147	147	32	22	FALSE
148	148	22	32	FALSE
149	149	32	22	FALSE
150	150	27	32	TRUE
151	151	32	27	FALSE
152	152	27	32	FALSE
153	153	32	26	FALSE
154	154	22	32	FALSE
155	155	32	22	FALSE
156	156	22	32	FALSE
157	157	32	22	FALSE
158	158	22	32	FALSE
159	159	32	22	FALSE
160	160	22	32	FALSE
161	161	32	22	FALSE
162	162	16	32	FALSE
163	163	32	16	FALSE
164	164	16	32	FALSE
165	165	32	16	FALSE
166	166	16	32	FALSE
167	167	16	11	TRUE
168	168	27	32	FALSE
169	169	32	16	FALSE
170	170	16	32	FALSE
171	171	32	16	FALSE
172	172	36	32	TRUE
173	173	32	36	FALSE
174	174	36	32	FALSE
175	175	32	36	FALSE
176	176	16	32	FALSE
177	177	32	16	FALSE
178	178	16	32	FALSE
179	179	32	16	FALSE
180	180	16	32	FALSE
181	181	32	16	FALSE
182	182	16	32	FALSE
183	183	10	2	TRUE
184	184	2	10	FALSE
185	185	10	26	FALSE
186	186	16	32	FALSE
187	187	32	16	FALSE
188	188	16	32	FALSE
189	189	16	32	FALSE
190	190	32	16	FALSE
191	191	32	16	FALSE
192	192	16	32	FALSE
193	193	32	16	FALSE
194	194	16	32	FALSE
195	195	32	16	FALSE
196	196	16	32	FALSE

197	197	32	16	FALSE
198	198	16	32	FALSE
199	199	32	16	FALSE
200	200	16	32	FALSE
201	201	32	16	FALSE
202	202	22	32	FALSE
203	203	32	22	FALSE
204	204	24	32	TRUE
205	205	32	24	FALSE
206	206	24	32	FALSE
207	207	32	24	FALSE
208	208	16	32	FALSE
209	209	32	16	FALSE
210	210	16	32	FALSE
211	211	32	24	FALSE
212	212	24	32	FALSE
213	213	16	32	FALSE
214	214	30	16	TRUE
215	215	16	30	FALSE
216	216	30	16	FALSE
217	217	16	30	FALSE
218	218	30	16	FALSE
219	219	16	30	FALSE
220	220	32	15	TRUE
221	221	15	32	FALSE
222	222	32	15	FALSE
223	223	15	32	FALSE
224	224	32	15	FALSE
225	225	32	15	FALSE
226	226	15	32	FALSE
227	227	32	15	FALSE
228	228	15	32	FALSE
229	229	32	23	FALSE
230	230	23	32	FALSE
231	231	32	23	FALSE
232	232	23	32	FALSE
233	233	32	23	FALSE
234	234	23	32	FALSE
235	235	32	23	FALSE
236	236	23	32	FALSE
237	237	32	23	FALSE
238	238	23	32	FALSE
239	239	32	19	FALSE
240	240	19	32	FALSE
241	241	32	19	FALSE
242	242	19	32	FALSE
243	243	32	18	FALSE
244	244	15	16	TRUE
245	245	32	18	FALSE
246	246	16	32	TRUE
247	247	32	16	FALSE
248	248	16	32	FALSE
249	249	32	16	FALSE
250	250	15	16	TRUE

251	251	16	15	FALSE
252	252	15	16	FALSE
253	253	16	15	FALSE
254	254	15	16	FALSE
255	255	16	15	FALSE
256	256	25	32	TRUE
257	257	32	25	FALSE
258	258	25	32	FALSE
259	259	32	25	FALSE
260	260	1	4	TRUE
261	261	4	1	FALSE
262	262	1	4	FALSE
263	263	4	1	FALSE
264	264	1	4	FALSE
265	265	4	1	FALSE
266	266	1	4	FALSE
267	267	4	1	FALSE
268	268	1	4	FALSE
269	269	16	32	FALSE
270	270	32	16	FALSE
271	271	16	32	FALSE
272	272	32	16	FALSE
273	273	16	32	FALSE
274	274	32	16	FALSE
275	275	16	32	FALSE
276	276	18	32	FALSE
277	277	32	18	FALSE
278	278	18	32	FALSE
279	279	32	18	FALSE
280	280	18	32	FALSE
281	281	32	18	FALSE
282	282	18	32	FALSE
283	283	32	18	FALSE
284	284	18	32	FALSE
285	285	32	18	FALSE
286	286	18	32	FALSE
287	287	32	18	FALSE
288	288	18	32	FALSE
289	289	25	32	FALSE
290	290	32	16	FALSE
291	291	16	32	FALSE
292	292	32	16	FALSE
293	293	16	32	FALSE
294	294	32	16	FALSE
295	295	16	32	FALSE
296	296	32	16	FALSE
297	297	16	32	FALSE
298	298	32	16	FALSE
299	299	16	32	FALSE
300	300	32	16	FALSE
301	301	16	32	FALSE
302	302	32	16	FALSE
303	303	22	32	FALSE
304	304	32	22	FALSE

305	305	22	32	FALSE
306	306	25	32	FALSE
307	307	32	25	FALSE
308	308	25	32	FALSE
309	309	22	32	FALSE
310	310	32	22	FALSE
311	311	22	32	FALSE
312	312	32	16	FALSE
313	313	25	32	FALSE
314	314	32	25	FALSE
315	315	25	32	FALSE
316	316	32	25	FALSE
317	317	21	32	TRUE
318	318	32	21	FALSE
319	319	21	32	FALSE
320	320	32	21	FALSE
321	321	21	32	FALSE
322	322	32	21	FALSE
323	323	21	32	FALSE
324	324	25	32	FALSE
325	325	32	25	FALSE
326	326	16	36	TRUE
327	327	36	16	FALSE
328	328	36	16	FALSE
329	329	16	36	FALSE
330	330	36	16	FALSE
331	331	16	36	FALSE
332	332	32	16	TRUE
333	333	16	32	FALSE
334	334	31	32	FALSE
335	335	32	31	FALSE
336	336	31	32	FALSE
337	337	32	31	FALSE
338	338	31	32	FALSE
339	339	32	31	FALSE
340	340	32	16	FALSE
341	341	16	32	FALSE
342	342	32	16	FALSE
343	343	16	32	FALSE
344	344	30	32	TRUE
345	345	32	30	FALSE
346	346	30	32	FALSE
347	347	9	32	
				TRUE
348	348	6	32	FALSE
349	349	22	32	FALSE
350	350	32	22	FALSE
351	351	22	32	FALSE
352	352	32	22	FALSE
353	353	34	32	TRUE
354	354	32	34	FALSE
355	355	34	32	FALSE
356	356	32	34	FALSE
357	357	32	22	FALSE
358	358	22	32	FALSE

359	359	21	36	TRUE
360	360	16	21	TRUE
361	361	16	32	FALSE
362	362	32	16	FALSE
363	363	16	32	FALSE
364	364	32	16	FALSE
365	365	16	32	FALSE
366	366	32	22	FALSE
367	367	22	32	FALSE
368	368	32	22	FALSE
369	369	22	32	FALSE
370	370	33	32	TRUE
371	371	33	32	FALSE
372	372	32	16	FALSE
373	373	32	33	FALSE
374	374	16	32	FALSE
375	375	32	16	FALSE
376	376	16	32	FALSE
377	377	32	33	FALSE
378	378	33	32	FALSE
379	379	16	15	TRUE
380			16	FALSE
	380	15 16		FALSE
381	381	16	15 16	
382	382	15	16	FALSE
383	383	32	16	FALSE
384	384	16	32	FALSE
385	385	17	32	TRUE
386	386	32	17	FALSE
387	387	16	17	TRUE
388	388	21	36	TRUE
389	389	36	21	FALSE
390	390	21	36	FALSE
391	391	36	21	FALSE
392	392	21	36	FALSE
393	393	36	21	FALSE
394	394	21	36	FALSE
395	395	32	16	FALSE
396	396	16	32	FALSE
397	397	32	16	FALSE
398	398	16	32	FALSE
399	399	16	32	FALSE
400	400	32	16	FALSE
401	401	32	16	FALSE
402	402	16	32	FALSE
403	403	32	16	FALSE
404	404	16	32	FALSE
405	405	32	16	FALSE
406	406	24	16	TRUE
407	407	16	24	FALSE
408	408	24	16	FALSE
409	409	16	24	FALSE
410	410	25	32	FALSE
411	411	32	16	FALSE
412	412	16	32	FALSE

413	413	32	16	FALSE
414	414	16	32	FALSE
415	415	32	16	FALSE
416	416	21	32	TRUE
417	417	32	21	FALSE
418	418	21	32	FALSE
419	419	21	30	TRUE
420	420	32	16	FALSE
421	421	16	32	FALSE
422	422	32	16	FALSE
423	423	16	32	FALSE
424	424	32	21	FALSE
425	425	21	32	FALSE
426	426	32	21	FALSE
427	427	21	36	FALSE
428	428	36	21	FALSE
429	429	21	36	FALSE
430	430	36	21	FALSE
431	431	21	36	FALSE
432			21	FALSE
	432	36		
433	433	21	36	FALSE
434	434	30	32	FALSE
435	435	32	30	FALSE
436	436	30	32	FALSE
437	437	32	30	FALSE
438	438	30	32	FALSE
439	439	16	32	FALSE
440	440	32	16	FALSE
441	441	16	32	FALSE
442	442	32	16	FALSE
443	443	24	16	FALSE
444	444	16	24	FALSE
445	445	24	16	FALSE
446	446	16	24	FALSE
447	447	24	16	FALSE
448	448	16	24	FALSE
449	449	34	32	FALSE
450	450	32	34	FALSE
451	451	34	32	FALSE
452	452	12	34	TRUE
453	453	16	15	TRUE
454	454	16	32	FALSE
455	455	12	32	TRUE
456	456	32	12	FALSE
457	457	12	32	FALSE
458	458	32	12	FALSE
459	459	32	34	FALSE
460	460	34	32	FALSE
461	461	29	32	FALSE
462	462	32	29	FALSE
463	463	29	32	FALSE
464	464	32	29	FALSE
465	465	29	32	FALSE
466	466	32	29	FALSE
100	200	02	20	LALDE

467	467	32	16	FALSE
468	468	16	32	FALSE
469	469	32	16	FALSE
470	470	16	32	FALSE
471	471	32	16	FALSE
472	472	16	32	FALSE
473	473	28	16	TRUE
474	474	16	28	FALSE
475	475	28	16	FALSE
476	476	28	16	FALSE
477	477	16	28	FALSE
478	478	28	16	FALSE
479	479	15	16	FALSE
480	480	32	16	FALSE
481	481	16	32	FALSE

Using as.sociomatrix.eventlist, we can even pull out these events and view them in time-aggregated form. This can give us a better sense of the structural context in which they occur:

```
surprising <- as.sociomatrix.eventlist(WTCPoliceCalls[wtcfit6$residuals >
   nullresid, ], 37)
gplot(surprising) #Plot in network form
```



```
gplot(WTCPoliceNet, edge.col = edgecol, edge.lwd = WTCPoliceNet^0.75,
    vertex.col = 2 + WTCPoliceIsICR)
```


Yet another approach to adequacy assessment is to consider the rank of the observed events in the predicted rate structure: that is, we ask to what extent the events viewed most likely to occur are in fact those that are observed.

hist(wtcfit6\$observed.rank)

Histogram of wtcfit6\$observed.rank

cbind(WTCPoliceCalls, wtcfit6\$observed.rank) #Histogram of ranks	
---	--

	number	source	recipient	${\tt wtcfit6\$observed.rank}$
1	1	16	32	7
2	2	32	16	1
3	3	16	32	1
4	4	16	32	2
5	5	11	32	42
6	6	11	32	6
7	7	11	32	6
8	8	36	32	44
9	9	8	32	45
10	10	8	32	8
11	11	32	8	1
12	12	16	32	2
13	13	8	32	2
14	14	26	32	45
15	15	32	26	1
16	16	26	32	1
17	17	32	26	1
18	18	26	32	1
19	19	32	26	1
20	20	16	32	2
21	21	16	32	2
22	22	27	32	46
23	23	20	32	47

24	24	32	20	1
25	25	20	32	1
26	26	32	20	1
27	27	32	16	6
28	28	16	32	1
29	29	32	16	1
30	30	32	16	5
31	31	16	32	1
32	32	32	22	19
33	33	3	32	49
34	34	32	3	1
35	35	3	32	1
36	36	32	3	1
37	37	32	16	7
38	38	16	32	1
39	39	32	16	1
40	40	3	32	2
41	41	3	32	2
42	42	32	3	1
43	43	3	32	1
44	44	16		276
			3	
45	45	16	11	79
46	46	11	16	1
47	47	16	11	1
48	48	11	16	1
49	49	16	11	1
50	50	11	16	1
51	51	24	36	465
52	52	24	36	128
53	53	15	32	28
54	54	32	15	1
55	55	15	32	1
56	56	32	15	1
57	57	15	32	1
58	58	32	15	1
59	59	22	32	5
60	60	32	22	1
61	61	15	32	2
62	62	32	15	1
63	63	15	32	1
64	64	32	15	1
65	65	18	32	58
66	66	32	18	1
67	67	18	32	1
68	68	19	32	57
69	69	32	19	1
70	70	19	32	1
71	71	32	19	1
72	72	19	32	1
73	73	16	32	13
74	74	32	16	1
7 4 75	7 4 75	32 16	32	1
76 77	76	32	16	1
77	77	36	16	248

78	78	16	36	1
79	79	36	16	1
80	80	16	36	1
81	81	36	16	1
82	82	16	36	1
83	83	27	32	16
84	84	32	16	2
85	85	16	32	1
86	86	32	16	1
87	87	16	32	1
88	88	32	16	1
89	89	22	15	279
90	90	15	22	1
91	91	22	15	1
92	92	15	22	1
93	93	22	15	1
94	94	16	22	434
95	95	22	16	1
96	96	16	22	1
97	97	22	11	29
98	98	11	22	1
99	99	36	32	28
100	100	32	36	1
101	101	36	32	1
102	102	32	36	1
103	103	36	32	1
104	104	32	36	1
105	105	27	32	25
106	106	37	32	62
107	107	32	37	1
108	108	37	32	1
109	109	32	37	1
110	110	5	32	72
111	111	32	5	1
112	112	5	32	1
113	113	32	5	1
114	114	31	36	286
115	115	36	31	1
116	116	31	36	1
117	117	36	31	1
118	118	37	32	3
119	119	16	32	13
120	120	32	16	1
121	121	16	32	1
122	122	32	16	1
123	123	29	32	75
124	124	32	29	1
125	125	37	14	158
126	126	29	32	3
127	127	31	32	66
128	128	32	37	15
129	129	16	32	2
130	130	32	16	1
131	131	16	32	1

132	132	32	16	1
133	133	16	32	1
134	134	36	16	118
135	135	16	36	1
136	136	36	16	1
137	137	16	36	1
138	138	29	32	3
139	139	8	35	789
140	140	32	16	15
141	141	8	35	128
142	142	32	16	15
143	143	16	32	1
144	144	32	16	1
145	145	16	32	1
146	146	22	32	42
147	147	32	22	1
148	148	22	32	1
149	149	32	22	1
150	150	27	32	30
151	151	32	27	1
152	152	27	32	1
153	153	32	26	32
154	154	22	32	3
155	155	32	22	1
156	156	22	32	1
157	157	32	22	1
158	158	22	32	1
159	159	32	22	1
160	160	22	32	1
161	161	32	22	1
162	162	16	32	2
163	163	32	16	1
164	164	16	32	1
165	165	32	16	1
166	166	16	32	1
167	167	16	11	62
168	168	27	32	3
169	169	32	16	2
170	170	32 16	32	1
171		32	16	1
	171			
172 173	172	36	32	28
	173	32	36	1
174	174	36	32	1
175	175	32	36	1
176	176	16	32	2
177	177	32	16	1
178	178	16	32	1
179	179	32	16	1
180	180	16	32	1
181	181	32	16	1
182	182	16	32	1
183	183	10	2	821
184	184	2	10	1
185	185	10	26	60

186	186	16	32	3
187	187	32	16	1
188	188	16	32	1
189	189	16	32	2
190	190	32	16	1
191	191	32	16	12
192	192	16	32	1
193	193	32	16	1
194	194	16	32	1
195	195	32	16	1
196	196	16	32	1
197	197	32	16	1
198	198	16	32	1
199	199	32	16	1
200	200	16	32	1
201	201	32	16	1
202	202	22	32	2
203		32		1
	203		22	
204	204	24	32	72
205	205	32	24	1
206	206	24	32	1
207	207	32	24	1
208	208	16	32	2
209	209	32	16	1
210	210	16	32	1
211	211	32	24	14
212	212	24	32	1
213	213	16	32	2
214	214	30	16	260
215	215	16	30	1
216	216	30	16	1
217	217	16	30	1
218	218	30	16	1
219	219	16	30	1
220	220	32	15	136
221	221	15	32	1
222	222	32	15	1
223	223	15	32	1
224	224	32	15	1
225	225	32	15	16
226	226	15	32	1
227		32	15	
	227			1
228	228	15	32	1
229	229	32	23	50
230	230	23	32	1
231	231	32	23	1
232	232	23	32	1
233	233	32	23	1
234	234	23	32	1
235	235	32	23	1
236	236	23	32	1
237	237	32	23	1
238	238	23	32	1
239	239	32	19	35

240	240	19	32	1
241	241	32	19	1
242	242	19	32	1
243	243	32	18	37
244	244	15	16	265
245	245	32	18	91
246	246	16	32	22
247	247	32	16	1
248	248	16	32	1
249	249	32	16	1
250				121
	250	15	16	
251	251	16	15	1
252	252	15	16	1
253	253	16	15	1
254	254	15	16	1
255	255	16	15	1
256	256	25	32	46
257	257	32	25	1
258	258	25	32	1
259	259	32	25	1
260	260	1	4	981
261	261	4	1	1
262	262	1	4	1
263	263	4	1	1
264	264	1	4	1
265	265	4	1	1
266	266	1	4	1
267	267	4	1	1
268	268	1	4	1
269	269	16	32	22
270	270	32	16	1
271	271	16	32	1
272	272	32	16	1
273	273	16	32	1
274	274	32	16	1
275	275	16	32	1
276	276	18	32	2
277	277	32	18	1
278	278	18	32	1
279	279	32	18	1
280	280	18	32	1
281	281	32	18	1
282	282	18	32	1
283	283	32	18	1
284	284	18	32	1
285	285	32	18	1
286	286	18	32	1
287	287	32	18	1
288	288	18	32	1
289	289	25	32	2
290	290	32	16	17
291	291	16	32	1
292	292	32	16	1
293	293	16	32	1
233	293	10	SZ	1

294	294	32	16	1
295	295	16	32	1
296	296	32	16	1
297	297	16	32	1
298	298	32	16	1
299	299	16	32	1
300	300	32	16	1
301	301	16	32	1
302	302	32	16	1
303	303	22	32	2
304	304	32	22	1
305	305	22	32	1
306	306	25	32	2
307	307	32	25	1
308	308	25	32	1
309	309	22	32	2
310	310	32	22	1
311	311	22	32	1
312	312	32	16	16
313	313	25	32	3
314	314	32	25	1
315	315	25	32	1
316	316	32	25	1
317	317	21	32	78
318	318	32	21	1
319	319	21	32	1
320	320	32	21	1
321	321	21	32	1
322	322	32	21	1
323	323	21	32	1
324	324	25	32	2
325	325	32	25	1
326	326	16	36	142
327	327	36	16	1
328	328	36	16	20
329	329	16	36	1
330	330	36	16	1
331	331	16	36	1
332	332	32	16	47
333	333	16	32	1
334	334	31	32	40
335	335	32	31	1
336	336	31	32	1
337	337	32	31	1
338	338	31	32	1
339	339	32	31	1
340	340	32	16	14
341	341	16	32	1
342	342	32	16	1
343	343	16	32	1
344	344	30	32	79
345	345	32	30	1
346	346	30	32	1
347	347	9	32	75
011	011	3	02	10

348	348	6	32	77
349	349	22	32	2
350	350	32	22	1
351	351	22	32	1
352	352	32	22	1
353	353	34	32	81
354	354	32	34	1
355	355	34	32	1
356	356	32	34	1
357	357	32	22	18
358	358	22	32	1
359	359	21	36	326
360	360	16	21	718
361	361	16	32	2
362	362	32	16	1
363	363	16	32	1
364	364	32	16	1
365	365	16	32	1
366	366	32	22	18
367	367	22	32	1
368	368	32	22	1
369	369	22	32	1
370	370	33	32	83
371	371	33	32	44
372	372	32	16	19
373	373	32	33	17
374	374	16	32	2
375	375	32	16	1
376	376	16	32	1
377	377	32	33	19
378	378	33	32	1
379	379	16	15	133
380	380	15	16	1
381	381	16	15	1
382	382	15	16	1
383	383	32	16	33
384	384	16	32	1
385	385	17	32	87
386	386	32	17	1
387	387	16	17	1078
388	388	21	36	145
389	389	36	21	1
390	390	21	36	1
391	391	36	21	1
392	392	21	36	1
393	393	36	21	1
394	394	21	36	1
395	395	32	16	36
396	396	16	32	1
397	397	32	16	1
398	398	16	32	1
399	399	16	32	2
400	400	32	16	1
401	401	32	16	18

402	402	16	32	1
403	403	32		1
			16	
404	404	16	32	1
405	405	32	16	1
406	406	24	16	268
407	407	16	24	1
408	408	24	16	1
409	409	16	24	1
410	410	25	32	4
411	411	32	16	2
412	412	16	32	1
413	413	32	16	1
414	414	16	32	1
415	415	32	16	1
416	416	21	32	33
417	417	32	21	1
418	418	21	32	1
419	419	21	30	101
420	420	32	16	36
421	421	16	32	1
422	422	32	16	1
423	423	16	32	1
424	424	32	21	18
425	425	21	32	1
426	426	32	21	1
427	427	21	36	27
428	428	36	21	1
429	429	21	36	1
430	430	36	21	1
431	431	21	36	1
432	432	36	21	1
433	433	21	36	1
434	434	30	32	20
435	435	32	30	1
436	436	30	32	1
437	437	32	30	1
438	438	30	32	1
439	439	16	32	2
440	440	32	16	1
441	441	16	32	1
442	442	32	16	1
443		24	16	22
	443			
444	444	16	24	1
445	445	24	16	1
446	446	16	24	1
447	447	24	16	1
448	448	16	24	1
449	449	34	32	4
450	450	32	34	1
451	451	34	32	1
452	452	12	34	794
453	453	16	15	149
454	454	16	32	3
455	455	12	32	91
-50	-00		~ <u>~</u>	01

```
456
       456
                32
                           12
                                                   1
457
       457
                12
                           32
                                                   1
458
       458
                32
                           12
                                                   1
459
       459
                32
                          34
                                                  25
                34
                          32
                                                   1
460
       460
461
       461
                29
                          32
                                                   2
462
       462
                32
                          29
                                                   1
       463
                29
                          32
463
                                                   1
464
       464
                32
                          29
                                                   1
465
       465
                29
                          32
                                                   1
466
       466
                32
                          29
                                                   1
467
       467
                32
                          16
                                                  22
468
       468
                16
                          32
                                                   1
                32
                                                   1
469
       469
                          16
470
       470
                16
                          32
                                                   1
471
       471
                32
                          16
                                                   1
472
       472
                16
                          32
                                                   1
473
       473
                28
                          16
                                                 271
       474
474
                16
                          28
                                                   1
475
       475
                28
                          16
                                                   1
476
       476
                28
                          16
                                                  23
477
       477
                16
                          28
                                                   1
478
       478
                28
                          16
                                                   1
479
       479
                15
                          16
                                                  23
480
       480
                32
                           16
                                                  20
481
       481
                16
                          32
                                                   1
```

```
# Rank on a per-event basis (low is good) Sometimes useful
# to plot the ECDF of the observed ranks....
plot(ecdf(wtcfit6$observed.rank/(37 * 36)), xlab = "Prediction Threshold (Fraction of Possible Events)"
    ylab = "Fraction of Observed Events Covered", main = "Classification Accuracy")
abline(v = c(0.05, 0.1, 0.25), col = 2)
```

Classification Accuracy

Prediction Threshold (Fraction of Possible Events)

As the above indicates, we sometimes (in fact often) manage to get things exactly right: that is, the event predicted most likely to be the next in the sequence is in fact the one that is observed. Examining the match rate is a very strict notion of adequacy, but can be useful for assessing models that are strongly predictive.

wtcfit6\$predicted.match #Exactly correct src/target

	source	recipient
[1,]	FALSE	FALSE
[2,]	TRUE	TRUE
[3,]	TRUE	TRUE
[4,]	FALSE	FALSE
[5,]	FALSE	FALSE
[6,]	FALSE	FALSE
[7,]	FALSE	FALSE
[8,]	FALSE	FALSE
[9,]	FALSE	FALSE
[10,]	FALSE	FALSE
[11,]	TRUE	TRUE
[12,]	FALSE	TRUE
[13,]	FALSE	FALSE
[14,]	FALSE	FALSE
[15,]	TRUE	TRUE
[16,]	TRUE	TRUE
[17,]	TRUE	TRUE
[18,]	TRUE	TRUE
[19,]	TRUE	TRUE
[20,]	FALSE	TRUE

[21,]	FALSE	FALSE
[22,]	FALSE	FALSE
[23,]	FALSE	FALSE
[24,]	TRUE	TRUE
[25,]	TRUE	TRUE
[26,]	TRUE	TRUE
[27,]	FALSE	FALSE
[28,]	TRUE	TRUE
[29,]	TRUE	TRUE
[30,]	FALSE	FALSE
[31,]	TRUE	TRUE
[32,]	TRUE	FALSE
[33,]	FALSE	
[33,]		TRUE
[34,]	TRUE	TRUE
[35,]	TRUE	TRUE
[36,]	TRUE	TRUE
[37,]	FALSE	FALSE
[38,]	TRUE	TRUE
[39,]	TRUE	TRUE
[40,]	FALSE	TRUE
[41,]	FALSE	FALSE
[42,]	TRUE	TRUE
[43,]	TRUE	TRUE
[44,]	FALSE	TRUE
[45,]	FALSE	FALSE
[46,]	TRUE	TRUE
[47,]	TRUE	TRUE
[48,]	TRUE	TRUE
[49,]	TRUE	TRUE
[50,]	TRUE	TRUE
[51,]	FALSE	FALSE
[52,]	FALSE	FALSE
[53,]	FALSE	FALSE
[54,]	TRUE	TRUE
[55,]	TRUE	TRUE
[56,]	TRUE	TRUE
[57,]	TRUE	TRUE
[58,]	TRUE	TRUE
[59,]	FALSE	TRUE
[60,]	TRUE	TRUE
[61,]	FALSE	TRUE
[62,]	TRUE	TRUE
[63,]	TRUE	TRUE
[64,]	TRUE	TRUE
[65,]	FALSE	TRUE
[66,]	TRUE	TRUE
[67,]	TRUE	TRUE
[68,]	FALSE	FALSE
[69,]	TRUE	TRUE
[70,]	TRUE	TRUE
[71,]	TRUE	TRUE
[72,]	TRUE	TRUE
[73,]	FALSE	FALSE
		TRUE
[74,]	TRUE	IRUE

[75,]	TRUE	TRUE
[76,]	TRUE	TRUE
[77,]	FALSE	FALSE
[78,]	TRUE	TRUE
[79,]	TRUE	TRUE
[80,]	TRUE	TRUE
[81,]	TRUE	TRUE
[82,]	TRUE	TRUE
[83,]	FALSE	FALSE
[84,]	TRUE	FALSE
	TRUE	TRUE
[85,]	TRUE	TRUE
[86,]		
[87,]	TRUE	TRUE
[88,]	TRUE	TRUE
[89,]	FALSE	FALSE
[90,]	TRUE	TRUE
[91,]	TRUE	TRUE
[92,]	TRUE	TRUE
[93,]	TRUE	TRUE
[94,]	FALSE	TRUE
[95,]	TRUE	TRUE
[96,]	TRUE	TRUE
[97,]	TRUE	FALSE
[98,]	TRUE	TRUE
[99,]	FALSE	FALSE
[100,]	TRUE	TRUE
[101,]	TRUE	TRUE
[102,]	TRUE	TRUE
[103,]	TRUE	TRUE
[104,]	TRUE	TRUE
[105,]	FALSE	TRUE
[106,]	FALSE	FALSE
[107,]	TRUE	TRUE
[108,]	TRUE	TRUE
[100,]	TRUE	TRUE
[110,]	FALSE	TRUE
[111,]	TRUE	TRUE
[112,]	TRUE	TRUE
[113,]	TRUE	TRUE
[114,]	FALSE	FALSE
[115,]	TRUE	TRUE
[116,]	TRUE	TRUE
[117,]	TRUE	TRUE
[118,]	FALSE	FALSE
[119,]	FALSE	FALSE
[120,]	TRUE	TRUE
[121,]	TRUE	TRUE
[122,]	TRUE	TRUE
[123,]	FALSE	TRUE
[124,]	TRUE	TRUE
[125,]	FALSE	FALSE
[126,]	FALSE	FALSE
[127,]	FALSE	FALSE
[128,]	TRUE	FALSE
-		

[129,]	FALSE	TRUE
[130,]	TRUE	TRUE
[131,]	TRUE	TRUE
[132,]	TRUE	TRUE
[133,]	TRUE	TRUE
[134,]	FALSE	TRUE
[135,]	TRUE	TRUE
[136,]	TRUE	TRUE
[137,]	TRUE	TRUE
[138,]	FALSE	FALSE
[139,]	FALSE	FALSE
[140,]	FALSE	FALSE
[141,]	FALSE	FALSE
[142,]	FALSE	FALSE
[143,]	TRUE	TRUE
[144,]	TRUE TRUE	TRUE
[145,]		TRUE
[146,]	FALSE	FALSE
[147,]	TRUE	TRUE
[148,]	TRUE	TRUE
[149,]	TRUE	TRUE
[150,]	FALSE	TRUE
[151,]	TRUE	TRUE
[152,]	TRUE	TRUE
[153,]	TRUE	FALSE
[154,]	FALSE	TRUE
[155,]	TRUE	TRUE
[156,]	TRUE	TRUE
[157,]	TRUE	TRUE
[158,]	TRUE	TRUE
[159,]	TRUE	TRUE
[160,]	TRUE	TRUE
[161,]	TRUE	TRUE
[162,]	FALSE	TRUE
[163,]	TRUE	TRUE
[164,]	TRUE	TRUE
[165,]	TRUE	TRUE
[166,]	TRUE	TRUE
[167,]	FALSE	FALSE
[168,]	FALSE	FALSE
[169,]	TRUE	FALSE
[170,]	TRUE	TRUE
[171,]	TRUE	TRUE
[172,]	FALSE	TRUE
[173,]	TRUE	TRUE
[174,]	TRUE	TRUE
[175,]	TRUE	TRUE
[176,]	FALSE	TRUE
[177,]	TRUE	TRUE
[178,]	TRUE	TRUE
[179,]	TRUE	TRUE
[180,]	TRUE	TRUE
[181,]	TRUE	TRUE
[182,]	TRUE	TRUE

[183,]	FALSE	FALSE
[184,]	TRUE	TRUE
[185,]	TRUE	FALSE
[186,]	FALSE	FALSE
[187,]	TRUE	TRUE
[188,]	TRUE	TRUE
[189,]	FALSE	FALSE
[190,]	TRUE	TRUE
[191,]	FALSE	FALSE
[192,]	TRUE	TRUE
[193,]	TRUE	TRUE
[194,]	TRUE	TRUE
[195,]	TRUE	TRUE
[196,]	TRUE	TRUE
[197,]	TRUE	TRUE
[198,]	TRUE	TRUE
[199,]	TRUE	TRUE
[200,]	TRUE	TRUE
[201,]	TRUE	TRUE
[202,]	FALSE	TRUE
[203,]	TRUE	TRUE
[204,]	FALSE	TRUE
[205,]	TRUE	TRUE
[206,]	TRUE	TRUE
[207,]	TRUE	TRUE
[208,]	FALSE	TRUE
[209,]	TRUE	TRUE
[210,]	TRUE	TRUE
[211,]	TRUE	FALSE
[212,]	TRUE	TRUE
[213,]	FALSE	FALSE
[214,]	FALSE	TRUE
[215,]	TRUE	TRUE
[216,]	TRUE	TRUE
[217,]	TRUE	TRUE
[218,]	TRUE	TRUE
[219,]	TRUE	TRUE
[220,]	FALSE	FALSE
[221,]	TRUE	TRUE
[222,]	TRUE	TRUE
[223,]	TRUE	TRUE
[224,]	TRUE	TRUE
[225,]	FALSE	FALSE
[226,]	TRUE	TRUE
[227,]	TRUE	TRUE
[228,]	TRUE	TRUE
	TRUE	FALSE
[229,]		
[230,]	TRUE	TRUE
[231,]	TRUE	TRUE
[232,]	TRUE	TRUE
[233,]	TRUE	TRUE
[234,]	TRUE	TRUE
[235,]	TRUE	TRUE
[236,]	TRUE	TRUE

[237,]	TRUE	TRUE
[238,]	TRUE	TRUE
[239,]	TRUE	FALSE
[240,]	TRUE	TRUE
[241,]	TRUE	TRUE
[242,]	TRUE	TRUE
[243,]	TRUE	FALSE
[244,]	FALSE	FALSE
[245,]	FALSE	FALSE
[246,]	FALSE	TRUE
[247,]	TRUE	TRUE
[248,]	TRUE	TRUE
[249,]	TRUE	TRUE
[250,]	FALSE	FALSE
[251,]	TRUE	TRUE
[252,]	TRUE	TRUE
[253,]	TRUE	TRUE
[254,]	TRUE	TRUE
[255,]	TRUE	TRUE
[256,]	FALSE	FALSE
[257,]	TRUE	TRUE
[258,]	TRUE	TRUE
[259,]	TRUE	TRUE
[260,]	FALSE	FALSE
[261,]	TRUE	TRUE
[262,]	TRUE	TRUE
[263,]	TRUE	TRUE
[264,]	TRUE	TRUE
[265,]	TRUE	TRUE
[266,]	TRUE	TRUE
[267,]	TRUE	TRUE
	TRUE	TRUE
[268,]		
[269,]	FALSE	FALSE
[270,]	TRUE	TRUE
[271,]	TRUE	TRUE
[272,]	TRUE	TRUE
[273,]	TRUE	TRUE
[274,]	TRUE	TRUE
[275,]	TRUE	TRUE
[276,]	FALSE	FALSE
[277,]	TRUE	TRUE
[278,]	TRUE	TRUE
[279,]	TRUE	TRUE
[280,]	TRUE	TRUE
[281,]	TRUE	TRUE
[282,]	TRUE	TRUE
[283,]	TRUE	TRUE
[284,]	TRUE	TRUE
[285,]	TRUE	TRUE
[286,]	TRUE	TRUE
[287,]	TRUE	
[200]		TRUE
[288,]	TRUE	TRUE
[289,]	FALSE	FALSE
[290,]	TRUE	FALSE

[291,]	TRUE	TRUE
[292,]	TRUE	TRUE
[293,]	TRUE	TRUE
[294,]	TRUE	TRUE
[295,]	TRUE	TRUE
[296,]	TRUE	TRUE
[297,]	TRUE	TRUE
[298,]	TRUE	TRUE
[299,]	TRUE	TRUE
[300,]	TRUE	TRUE
[301,]	TRUE	TRUE
[302,]	TRUE	TRUE
[303,]	FALSE	TRUE
[304,]	TRUE	TRUE
[305,]	TRUE	TRUE
[306,]	FALSE	FALSE
[307,]	TRUE	TRUE
[308,]	TRUE	TRUE
[309,]	FALSE	FALSE
[310,]	TRUE	TRUE
[311,]	TRUE	TRUE
[312,]	TRUE	FALSE
[313,]	FALSE	TRUE
[314,]	TRUE	TRUE
[315,]	TRUE	TRUE
[316,]	TRUE	TRUE
[317,]	FALSE	TRUE
[318,]	TRUE	TRUE
[319,]	TRUE	TRUE
[320,]	TRUE	TRUE
[321,]	TRUE	TRUE
[322,]	TRUE	TRUE
[323,]	TRUE	TRUE
[324,]	FALSE	FALSE
[325,]	TRUE	TRUE
[326,]	FALSE	FALSE
[327,]	TRUE	TRUE
[328,]	FALSE	FALSE
[329,]	TRUE	TRUE
[330,]	TRUE	TRUE
[331,]	TRUE	TRUE
[332,]	FALSE	TRUE
[333,]	TRUE	TRUE
[334,]	FALSE	FALSE
[335,]	TRUE	TRUE
[336,]	TRUE	TRUE
[337,]	TRUE	TRUE
[338,]	TRUE	TRUE
[339,]	TRUE	TRUE
[340,]	FALSE	FALSE
[341,]	TRUE	TRUE
[342,]	TRUE	TRUE
[343,]	TRUE	TRUE
[344,]	FALSE	FALSE
LO 17, J	בטבייי	11101

[345,]	TRUE	TRUE
[346,]	TRUE	TRUE
[347,]	FALSE	FALSE
[348,]	FALSE	FALSE
[349,]	FALSE	FALSE
[350,]	TRUE	TRUE
[351,]	TRUE	TRUE
[352,]	TRUE	TRUE
[353,]	FALSE	TRUE
[354,]	TRUE	TRUE
[355,]	TRUE	TRUE
[356,]	TRUE	TRUE
[357,]	FALSE	FALSE
[358,]	TRUE	TRUE
[359,]	FALSE	FALSE
[360,]	FALSE	TRUE
[361,]	FALSE	FALSE
[362,]	TRUE	TRUE
[363,]	TRUE	TRUE
[364,]	TRUE	TRUE
[365,]	TRUE	TRUE
[366,]	TRUE	FALSE
[367,]	TRUE	TRUE
[368,]	TRUE	TRUE
[369,]	TRUE	TRUE
[370,]	FALSE	FALSE
[371,]	FALSE	FALSE
[372,]	TRUE	FALSE
[373,]	FALSE	FALSE
[374,]	FALSE	TRUE
[375,]	TRUE	TRUE
[376,]	TRUE	TRUE
[377,]	TRUE	FALSE
[378,]	TRUE	TRUE
	FALSE	
[379,]		FALSE
[380,]	TRUE TRUE	TRUE
[381,]		TRUE
[382,]	TRUE FALSE	TRUE FALSE
[383,] [384,]		
[384,]	TRUE	TRUE
[385,]	FALSE	FALSE
[386,]	TRUE	TRUE
[387,]	FALSE	FALSE
[388,]	FALSE	FALSE
[389,]	TRUE	TRUE
[390,]	TRUE	TRUE
[391,]	TRUE	TRUE
[392,]	TRUE	TRUE
[393,]	TRUE	TRUE
[394,]	TRUE	TRUE
[395,]	FALSE	FALSE
[396,]	TRUE	TRUE
[397,]	TRUE	TRUE
[398,]	TRUE	TRUE

[399,]	FALSE	FALSE
[400,]	TRUE	TRUE
[401,]	FALSE	FALSE
[402,]	TRUE	TRUE
[403,]	TRUE	TRUE
[404,]	TRUE	TRUE
[405,]	TRUE	TRUE
[406,]	FALSE	FALSE
[407,]	TRUE	TRUE
[408,]	TRUE	TRUE
[409,]	TRUE	TRUE
[410,]	FALSE	FALSE
[411,]	TRUE	FALSE
[412,]	TRUE	TRUE
[413,]	TRUE	TRUE
[414,]	TRUE	TRUE
[415,]	TRUE	TRUE
[416,]	FALSE	TRUE
[417,]	TRUE	TRUE
[418,]	TRUE	TRUE
[419,]	FALSE	FALSE
[420,]	FALSE	FALSE
[421,]	TRUE	TRUE
[422,]	TRUE	TRUE
[423,]	TRUE	TRUE
[424,]	TRUE	FALSE
[425,]	TRUE	TRUE
[426,]	TRUE	TRUE
[427,]	TRUE	FALSE
[428,]	TRUE	TRUE
[429,]	TRUE	TRUE
[430,]	TRUE	TRUE
[431,]	TRUE	TRUE
[432,]	TRUE	TRUE
[433,]	TRUE	TRUE
[434,]	FALSE	FALSE
[435,]	TRUE	TRUE
[436,]	TRUE	TRUE
[437,]	TRUE	TRUE
[438,]	TRUE	TRUE
[439,]	FALSE	FALSE
[440,]	TRUE	TRUE
[441,]	TRUE	TRUE
[442,]	TRUE	TRUE
[443,]	FALSE	FALSE
[444,]	TRUE	TRUE
[445,]	TRUE	TRUE
[446,]	TRUE	TRUE
[447,]	TRUE	TRUE
[448,]	TRUE	TRUE
[449,]	FALSE	FALSE
[450,]	TRUE	TRUE
[451,]	TRUE	TRUE
[452,]	FALSE	TRUE
_ ,-		

```
[453,]
        FALSE
                   FALSE
[454,]
        FALSE
                   FALSE
[455,]
                   FALSE
        FALSE
[456,]
         TRUE
                    TRUE
[457,]
         TRUE
                    TRUE
[458,]
         TRUE
                    TRUE
[459,]
        FALSE
                   FALSE
[460,]
         TRUE
                    TRUE
[461,]
        FALSE
                   FALSE
[462,]
         TRUE
                    TRUE
[463,]
         TRUE
                    TRUE
[464,]
         TRUE
                    TRUE
[465,]
         TRUE
                    TRUE
[466,]
         TRUE
                    TRUE
[467,]
                   FALSE
        FALSE
[468,]
         TRUE
                    TRUE
[469,]
                    TRUE
         TRUE
[470,]
         TRUE
                    TRUE
[471,]
                    TRUE
         TRUE
[472,]
         TRUE
                    TRUE
[473,]
        FALSE
                    TRUE
[474,]
         TRUE
                    TRUE
[475,]
         TRUE
                    TRUE
[476,]
        FALSE
                   FALSE
[477,]
         TRUE
                    TRUE
[478,]
         TRUE
                    TRUE
[479,]
        FALSE
                   FALSE
[480,]
                   FALSE
        FALSE
[481,]
         TRUE
                    TRUE
mean(apply(wtcfit6$predicted.match, 1, any)) #Fraction for which something is right
[1] 0.7941788
mean(apply(wtcfit6$predicted.match, 1, all)) #Fraction entirely right
[1] 0.6839917
```

```
source recipient 0.7234927 0.7546778
```

Despite its simplicity, this model seems to fit extremely well. Further improvement is possible, but for many purposes we might view it as an adequate representation of the event dynamics in this WTC police network.

colMeans(wtcfit6\$predicted.match) #Fraction src/target, respectively

1.5 Simulating from the fitted model

In addition to fitting REMs, relevent has tools for simulating from them. These work a bit like the simulate commands in the ergm library, in that they can be used in two modes: we can simulate draws from a fitted rem.dyad model; or we can simulate draws from an *a priori* specified model. For now, let's consider this first case.

The syntax for the rem.dyad simulate method is as follows:

```
simulate(object, nsim = object$m, seed = NULL, coef = NULL, covar = NULL,
    verbose = FALSE, ...)
```

object here is our fitted model object, nsim is the number of events to draw from the model (the length of the event series to simulate), seed is an optional random number seed to specify, coef is a (here optional) coefficient vector, covar is our usual covariate list, and verbose says whether we want to print tracking information. By default, the coefficients used are taken from the fitted model, but specifying coef will allow them to be overridden (a useful tool for performing scenario analyses, as illustrated below). Likewise, the function will by default simulate as many events as were in the original data, but this can be altered by changing nsim. Note that we do have to specify any covariates being used when simulating, both because rem.dyad does not save the input covariates, and because (even if it did) the size of the covariate set in some cases depends on the number of events to be produced.

Let's begin with the most basic use case: simulating a synthetic replicate of our original data, using our final model. For this, we only need pass our model, and the covariates used:

```
set.seed(1331)
simwtc <- simulate(wtcfit6, covar = list(CovInt = WTCPoliceIsICR),</pre>
  verbose = TRUE)
Working on event 25 of 481
Working on event 50 of 481
Working on event 75 of 481
Working on event 100 of 481
Working on event 125 of 481
Working on event 150 of 481
Working on event 175 of 481
Working on event 200 of 481
Working on event 225 of 481
Working on event 250 of 481
Working on event 275 of 481
Working on event 300 of 481
Working on event 325 of 481
Working on event 350 of 481
Working on event 375 of 481
Working on event 400 of 481
Working on event 425 of 481
Working on event 450 of 481
Working on event 475 of 481
```

We now have a simulated event sequence from the wtcfit6 model! Let's see what it looks like:

simwtc

```
[,1] [,2] [,3]
 [1,] 0.0004468037
                            13
 [2,] 0.0004626365
                      13
                            27
 [3,] 0.0004704297
                      27
                            13
 [4,] 0.0004819716
                      13
                            27
 [5,] 0.0004923628
                      27
                            13
 [6,] 0.0005274594
                      13
                            27
 [7,] 0.0005329693
                      27
                            13
 [8,] 0.0005379387
                      13
                            27
 [9,] 0.0005687593
                      27
                            13
[10,] 0.0006085595
                            27
                      13
[11,] 0.0006466945
                      27
                            13
[12,] 0.0006974053
                            27
                      13
[13,] 0.0007084273
                      27
                            13
[14,] 0.0007339463
                      13
                            27
                           13
[15,] 0.0007466829
                      27
```

```
[16,] 0.0007492683
                      13
                           27
[17,] 0.0007884909
                      27
                           13
[18,] 0.0008027625
                      13
                           27
[19,] 0.0008181865
                      27
                           13
[20,] 0.0008316952
                      13
                           27
[21,] 0.0008386959
                      27
                           13
[22,] 0.0008486556
                           27
                      13
[23,] 0.0008972990
                      27
                           13
[24,] 0.0009089347
                      13
                           27
[25,] 0.0009255862
                      27
                           13
[26,] 0.0009356594
                      13
                           27
[27,] 0.0009481628
                      27
                           13
[28,] 0.0009701587
                      13
                           27
[29,] 0.0010908130
                      27
                           13
[30,] 0.0011515702
                           27
                      13
[31,] 0.0011593253
                      27
                           13
[32,] 0.0012039061
                           27
                      13
[33,] 0.0012429317
                      27
                           13
[34,] 0.0012671525
                           27
                      13
[35,] 0.0012826752
                      27
                           13
[36,] 0.0012830963
                      13
                           27
[37,] 0.0012937784
                           13
[38,] 0.0013168737
                           27
                      13
[39,] 0.0013233223
                      27
                           13
[40,] 0.0013545025
                           27
                      13
[41,] 0.0013680706
                      27
                           13
[42,] 0.0014074779
                      13
                           27
[43,] 0.0014247731
                      27
                           13
[44,] 0.0014539612
                           27
                      13
[45,] 0.0015243125
                      27
                           13
[46,] 0.0015514799
                      13
                           27
[47,] 0.0015694444
                      27
                           13
                            7
[48,] 0.0015723405
                      14
[49,] 0.0016150093
                       7
                           14
                            7
[50,] 0.0019005495
                      14
[51,] 0.0019436751
                      14
                             1
[52,] 0.0026720071
                           15
[53,] 0.0027797163
                           27
                      15
[54,] 0.0028284331
                      27
                           13
[55,] 0.0028393703
                           27
                      13
[56,] 0.0028778669
                           13
[57,] 0.0028872745
                      13
                           27
[58,] 0.0029061574
                      27
                           13
[59,] 0.0029642788
                      13
                           27
[60,] 0.0029984275
                      27
                           13
[61,] 0.0030100931
                           27
                      13
[62,] 0.0030511732
                      13
                           10
[63,] 0.0031090736
                      10
                           13
[64,] 0.0032220003
                      13
                           10
[65,] 0.0032321823
                      10
                           13
[66,] 0.0032814063
                      13
                           10
[67,] 0.0032917865
                      10
                           13
[68,] 0.0033707913
                      19
                           13
[69,] 0.0034818291
                      13
                           19
```

```
[70,] 0.0034824391
                       19
                            13
[71,] 0.0034995456
                       13
                            19
[72,] 0.0035038241
                       19
                            13
[73,] 0.0036111921
                       13
                            19
[74,] 0.0036167909
                       19
                            13
[75,] 0.0036274942
                       13
                            19
[76,] 0.0036565874
                            13
                       19
[77,] 0.0037396404
                       13
                            19
[78,] 0.0037581203
                       19
                            13
[79,] 0.0037626679
                            19
                       13
[80,] 0.0038189882
                       19
                            13
[81,] 0.0039261284
                            19
                       13
[82,] 0.0039629404
                       19
                            13
[83,] 0.0040927924
                       13
                            19
[84,] 0.0040931646
                            13
                       19
[85,] 0.0041057193
                       13
                            19
[86,] 0.0041215224
                            13
                       19
[87,] 0.0041289047
                            19
[88,] 0.0041427527
                       19
                            13
[89,] 0.0042120045
                       13
                            32
[90,] 0.0042217457
                       32
                            13
[91,] 0.0042779780
                            32
[92,] 0.0042783679
                            13
                       32
[93.] 0.0042967949
                       13
                            32
[94,] 0.0043393786
                       32
                            13
[95,] 0.0044448128
                       1
                            13
[96,] 0.0047968558
                       27
                            13
[97,] 0.0048509162
                            27
                       13
[98,] 0.0048628311
                       27
                            13
[99,] 0.0049557717
                            27
                       13
[100,] 0.0049983464
                       27
                            13
[101,] 0.0050064196
                       13
                            27
[102,] 0.0050738140
                       27
                            13
[103,] 0.0050807734
                            27
                       13
[104,] 0.0051075827
                       27
                            13
[105,] 0.0051297565
                            27
                       13
[106,] 0.0051722794
                            13
[107,] 0.0052835176
                            27
                       13
[108,] 0.0052870769
                            13
[109,] 0.0053668566
                            27
                       13
[110,] 0.0053920768
                            13
[111,] 0.0053967348
                       13
                            27
[112,] 0.0053997387
                       27
                            13
[113,] 0.0054173571
                       13
                            27
[114,] 0.0054407495
                       27
                            13
[115,] 0.0054851996
                            27
                       13
[116,] 0.0054943310
                       27
                            13
[117,] 0.0055459587
                            27
                       13
[118,] 0.0055745344
                       27
                            13
                            27
[119,] 0.0055822387
                       13
[120,] 0.0055973198
                       22
                            19
[121,] 0.0056548113
                        7
                            16
[122,] 0.0056565772
                        7
                            32
                             7
[123,] 0.0057062067
                       32
```

```
[124,] 0.0058585200
                            32
[125,] 0.0058586059
                            27
                       19
[126,] 0.0060430914
                             8
[127,] 0.0062320149
                      34
                             9
[128,] 0.0064461376
                       9
                            34
[129,] 0.0064966523
                             9
                       34
[130,] 0.0065614688
                            13
[131,] 0.0067258537
                       13
                            20
[132,] 0.0067578971
                       20
                            13
                            20
[133,] 0.0068017018
                       13
[134,] 0.0068169609
                       20
                            13
[135,] 0.0068175603
                            20
                       13
[136,] 0.0068193375
                       20
                            13
[137,] 0.0072490023
                       13
                            36
[138,] 0.0073217099
                       36
                            13
[139,] 0.0073334576
                       8
                            14
[140,] 0.0075354927
                            19
                       37
[141,] 0.0080144305
                       19
                            37
[142,] 0.0081275539
                      37
                            19
[143,] 0.0082557445
                       19
                            34
[144,] 0.0084110183
                       23
                            13
[145,] 0.0084193262
                             3
[146,] 0.0084699743
                       3
                            13
[147,] 0.0084824236
                       13
                             3
[148,] 0.0084888033
                            13
                       3
[149,] 0.0085827016
                       13
                             3
[150,] 0.0086069518
                       3
                            13
[151,] 0.0087828726
                       35
                            34
[152,] 0.0089764370
                       7
                            32
[153,] 0.0091843670
                       36
                            13
[154,] 0.0091999470
                       34
                            13
[155,] 0.0095757076
                       13
                            34
[156,] 0.0095844298
                            13
[157,] 0.0096696495
                       13
                            34
[158,] 0.0097051639
                            13
[159,] 0.0097855855
                       12
                            25
[160,] 0.0098027304
                            12
[161,] 0.0098266242
                       36
                            13
[162,] 0.0099684114
                       13
                            36
[163,] 0.0100833282
                       36
                            13
[164,] 0.0101338236
                            36
                       13
[165,] 0.0101348208
                       36
                            13
[166,] 0.0101359436
                       13
                            36
[167,] 0.0101362160
                       36
                            13
[168,] 0.0102493013
                       34
                            13
[169,] 0.0103154482
                            34
                       13
[170,] 0.0103373270
                       34
                            13
[171,] 0.0103487979
                       13
                            34
[172,] 0.0103762911
                       34
                            14
[173,] 0.0103797891
                       14
                            34
[174,] 0.0104068093
                       34
                            14
                       22
[175,] 0.0104986921
                             9
[176,] 0.0105404012
                       9
                             5
[177,] 0.0105561170
                       32
                             6
```

[178,]	0.0111850679	6	32
[179,]	0.0112744069	32	6
[180,]	0.0114502292	6	32
[181,]	0.0115323191	17	32
[182,]	0.0115771734	32	17
[183,]	0.0116771704	17	32
-			
[184,]	0.0117025022	8	21
[185,]	0.0118103739	21	8
[186,]	0.0118195300	36	27
[187,]	0.0118529142	36	13
[188,]	0.0119964117	13	34
[189,]	0.0119970428	34	13
[190,]	0.0121343062	25	18
[191,]	0.0121393506	18	12
[192,]	0.0121894876	11	12
[193,]	0.0123057281	7	32
[194,]	0.0125862617	32	14
-		14	32
[195,]	0.0125951288		
[196,]	0.0126633957	6	20
[197,]	0.0128275415	25	18
[198,]	0.0132555835	9	6
[199,]	0.0132829885	3	13
[200,]	0.0134291758	13	3
[201,]	0.0134839210	36	13
[202,]	0.0135437201	17	32
[203,]	0.0136436819	14	13
[204,]	0.0138417769	13	14
[205,]	0.0138438397	14	13
	0.0139496944	13	14
[206,]			
[207,]	0.0139804066	14	13
[208,]	0.0139867062	13	3
[209,]	0.0140538515	3	13
[210,]	0.0140623483	14	13
[211,]	0.0144145036	13	14
[212,]	0.0144300544	14	13
[213,]	0.0144495355	13	14
[214,]	0.0144640063	14	13
[215,]	0.0145017638	13	14
[216,]	0.0145029027	14	13
[217,]	0.0145118854	13	14
[218,]	0.0145119762	14	13
[219,]	0.0145319720	13	14
[220,]	0.0145356619	14	13
[221,]	0.0145938272	13	14
[222,]	0.0145953873	14	13
[223,]	0.0146065457	13	14
[224,]	0.0146465378	14	13
[225,]	0.0146650777	13	14
[226,]	0.0147036105	14	13
[227,]	0.0147131933	13	14
[228,]	0.0147587748	14	7
[229,]	0.0147680605	7	14
[230,]	0.0150733687	14	7
[231,]	0.0151593320	7	14

[232,]	0.0151611674	14	7
[233,]	0.0153084712	7	14
[234,]	0.0154132771	14	7
[235,]	0.0154630741	7	14
[236,]	0.0154683185	1/1	7
-		14	
[237,]	0.0158290609	7	21
[238,]	0.0159298269	3	13
[239,]	0.0162762023	13	3
[240,]	0.0163345305	36	27
[241,]	0.0164640819	27	17
-			
[242,]	0.0165578216	17	27
[243,]	0.0166365518	34	32
[244,]	0.0167307895	8	9
[245,]	0.0169132338	12	14
[246,]	0.0169183259	14	12
[247,]	0.0170049871	14	32
[248,]	0.0170257977	32	14
[249,]	0.0171313075	14	32
[250,]	0.0172037723	32	14
-			
[251,]	0.0172433546	14	32
[252,]	0.0172553841	32	14
[253,]	0.0172588572	14	32
[254,]	0.0173394824	32	14
[255,]	0.0174859588	14	32
[256,]	0.0176055546	32	14
[257,]	0.0176171234	14	32
[258,]	0.0176355326	32	14
	0.0176363899	14	5
[259,]			
[260,]	0.0178551296	30	25
[261,]	0.0179038912	24	3
[262,]	0.0179614156	3	13
[263,]	0.0179934458	13	3
[264,]	0.0180305524	3	13
[265,]	0.0180429788	13	3
[266,]	0.0181813951	3	13
[267,]	0.0184782074	13	3
[268,]	0.0184845219	3	13
			_
[269,]	0.0184972893	13	3
[270,]	0.0184988343	3	13
[271,]	0.0185055797	5	3
[272,]	0.0187918664	3	5
[273,]	0.0189023340	5	3
[274,]	0.0192145298	10	13
[275,]	0.0192505078	13	10
[276,]	0.0192688123	10	13
[277,]	0.0194784659	13	10
[278,]	0.0194887014	10	13
[279,]	0.0195002548	13	10
[280,]	0.0195378845	24	19
[281,]	0.0195719229	19	24
[282,]	0.0197782835	24	19
[283,]	0.0199081357	19	24
[284,]	0.0199500457	24	19
[285,]	0.0200982578	19	24

[286,]	0.0201604806	24	19
[287,]	0.0201623866	29	16
[288,]			
-	0.0207869219	24	30
[289,]	0.0210273775	17	32
[290,]	0.0210622046	32	17
[291,]	0.0210828130	17	32
[292,]	0.0210952752	32	17
[293,]	0.0211329695	17	32
[294,]	0.0212798052	33	13
[295,]	0.0213271700	23	8
[296,]	0.0217965511	8	23
			13
[297,]	0.0218333401	35	
[298,]	0.0219790111	13	35
[299,]	0.0220608649	35	13
[300,]	0.0220865274	13	35
[301,]	0.0221579945	35	13
[302,]	0.0221665006	13	35
[303,]	0.0221694719	35	13
[304,]	0.0222068245	13	35
[305,]	0.0222089425	35	13
[306,]	0.0222403088	2	29
[307,]	0.0234768598	3	26
-			
[308,]	0.0235433074	26	3
[309,]	0.0235718927	30	25
[310,]	0.0235745023	25	30
[311,]	0.0236604695	36	33
[312,]	0.0236673593	12	32
[313,]	0.0237699169	20	13
[314,]	0.0238429667	13	6
[315,]	0.0238765856	6	13
[316,]	0.0239138126	13	6
[317,]	0.0239983877	6	13
[318,]	0.0240305884	13	6
[319,]	0.0240332773	6	13
[320,]	0.0240570425	13	6
	0.0240370423	6	13
[321,]			
[322,]	0.0243157765	13	6
[323,]	0.0243718037	6	13
[324,]	0.0245154928	13	6
[325,]	0.0245407958	6	13
[326,]	0.0245484017	36	13
[327,]	0.0246745495	15	11
[328,]	0.0248602998	11	15
[329,]	0.0248914984	15	11
[330,]	0.0249525295	36	13
[331,]	0.0249679162	13	36
[332,]	0.0249824877	36	13
[333,]	0.0250038325	13	36
[334,]	0.0250310501	21	28
[335,]	0.0252419834	8	20
[336,]	0.0256013720	23	6
[337,]	0.0256986523	23	37
[338,]	0.0258426251	17	27
[339,]	0.0259476944	27	17

[340,]	0.0259488282	17	27
[341,]	0.0264904744	12	13
[342,]	0.0265228257	13	12
[343,]	0.0265818520	12	13
[344,]	0.0266614725	3	29
[345,]	0.0267612812	37	14
[346,]	0.0268845215	14	37
[347,]	0.0268879343	37	14
[348,]	0.0269286884	14	37
[349,]	0.0269360921	17	8
[350,]	0.0278964242	8	17
		17	
[351,]	0.0280965550	_	8
[352,]	0.0281559822	8	17
[353,]	0.0285466952	7	30
[354,]	0.0285679607	35	13
[355,]	0.0285992632	13	35
[356,]	0.0286171657	12	13
[357,]	0.0290322387	13	12
[358,]	0.0291357700	12	13
[359,]	0.0292442398	13	12
[360,]	0.0293683434	12	13
[361,]	0.0294945773	31	14
[362,]	0.0297095344	14	31
[363,]	0.0298376213	10	13
[364,]	0.0300455572	13	10
[365,]	0.0301098837	10	13
[366,]	0.0301205439	13	17
[367,]	0.0302045183	6	8
		8	6
[368,]	0.0303019986		
[369,]	0.0303115659	6	8
[370,]	0.0303131470	12	13
[371,]	0.0304611049	29	3
[372,]	0.0305443415	3	29
[373,]	0.0306824337	18	19
[374,]	0.0307545726	7	32
[375,]	0.0308680302	34	12
[376,]	0.0309930084	12	34
			12
[377,]	0.0310660590	34	
[378,]	0.0311366402	11	15
[379,]	0.0312986374	15	11
[380,]	0.0313265824	11	15
[381,]	0.0315919583	18	33
[382,]	0.0316031844	25	35
[383,]	0.0317072850	12	14
[384,]	0.0317276851	14	12
[385,]	0.0317654391	37	14
[386,]	0.0317947398	14	37
[387,]	0.0318287335	37	14
[388,]	0.0318921579	14	37
[389,]	0.0318968843	37	14
[390,]	0.0319175497	14	37
[391,]	0.0319322077	37	14
[392,]	0.0320606525	14	37
[393,]	0.0320616003	37	14

[394,]	0.0321529897	14	37
[395,]	0.0321957564	37	14
[396,]	0.0321971256	14	37
[397,]	0.0322595744	37	14
[398,]	0.0323020836	14	37
[399,]	0.0323578709	14	37
[400,]	0.0324794103	37	14
[401,]	0.0326005557	14	37
[402,]	0.0326094890	37	14
[403,]	0.0326346505	10	13
[404,]	0.0326597593	13	10
[405,]	0.0329174360	10	13
[406,]	0.0329720093	13	10
[407,]	0.0329972551	10	13
[408,]	0.0330169603	13	10
[409,]	0.0330238512	10	13
[410,]	0.0330583756	13	10
[411,]	0.0330733820	10	13
[412,]	0.0331370859	8	32
[413,]	0.0331711939	18	19
[414,]	0.0332798044	25	5
[415,]	0.0333958345	5	25
[416,]	0.0334240531	20	3
[417,]	0.0337391377	20	31
[418,]	0.0338543561	20	33
[419,]	0.0338626343	37	14
[420,]	0.0338645847	14	37
[421,]	0.0339029649	35	18
[421,]	0.0339428986	25	6
[423,]		25	5
	0.0341417510		
[424,]	0.0341505481	10	13
[425,]	0.0343134147	13	10
[426,]	0.0343159159	10	13
[427,]	0.0343269222	13	10
[428,]	0.0343773847	10	11
[429,]	0.0344291065	11	10
[430,]	0.0345942633	9	23
[431,]	0.0346363482	27	17
[432,]	0.0348390638	17	13
[433,]	0.0350104540	13	17
[434,]	0.0350182481	17	13
[435,]	0.0350464416	3	16
[436,]	0.0351329717	36	13
[437,]	0.0353440306	13	36
[438,]			13
-	0.0353784161	36	
[439,]	0.0354021733	13	36
[440,]	0.0354351543	36	13
[441,]	0.0354445556	13	36
[442,]	0.0355089797	36	13
[443,]	0.0356242282	13	36
[444,]	0.0357127140	36	13
[445,]	0.0357545637	13	36
[446,]	0.0357551721	36	13
[447,]	0.0358335781	13	36

```
[448,] 0.0358677486
                        36
                             13
                             32
[449,] 0.0358935560
                        7
[450,] 0.0359377202
                        32
                              7
[451,] 0.0361369654
                        7
                             14
[452,] 0.0363378537
                        36
                             13
[453,] 0.0365084886
                        13
                             36
[454,] 0.0365349292
                         9
                             28
[455,] 0.0370824937
                        12
                             14
[456,] 0.0373067522
                        14
                             12
[457,] 0.0373914736
                        12
                             14
[458,] 0.0374009077
                        14
                             12
[459,] 0.0374550551
                        12
                             14
[460,] 0.0375279317
                        14
                             12
[461,] 0.0376051262
                        12
                             14
[462,] 0.0376379543
                        14
                             12
[463,] 0.0376565397
                        12
                             13
[464,] 0.0377124981
                        33
                             13
[465,] 0.0377720269
                             33
                        13
[466,] 0.0378468068
                        33
                             13
[467,] 0.0383414810
                        13
                             33
[468,] 0.0384142692
                        33
                             13
[469,] 0.0385017871
                             33
                        10
[470,] 0.0387486634
                              7
                        13
[471,] 0.0390431414
                        32
                             20
[472,] 0.0391026534
                        20
                             32
[473,] 0.0392090664
                        32
                             20
[474,] 0.0392492569
                        20
                             32
[475,] 0.0393944110
                        32
                             20
[476,] 0.0394789064
                        20
                             32
[477,] 0.0395283224
                        32
                             20
[478,] 0.0396423750
                        32
                             23
[479,] 0.0399125590
                        23
                             32
[480,] 0.0399974886
                        20
                             32
[481,] 0.0400171775
                         1
                             13
attr(,"n")
[1] 37
```

As we can see, we now have an event list that looks just like our original data (but that is synthetic). Such synthetic replicates can be used for many purposes, including exploratory simulation, model adequacy checking, and aiding in model interpretation. For instance, let's perform a very small simulation study to look at the relationship between occupying an ICR and betweenness, and probe the role of the AB-BA P-shift term in impacting that relationship. We'll do this by simulating data first from our ICR-only model, then our final model, and lastly a version of the final model with the P-shift term zeroed out. This is called an in silico "knock-out" experiment, and can be useful for understanding the role that specific effects play in generating aggregate outcomes.

```
set.seed(1331)
reps <- 6  #Number of replicate series to take
kocoef <- wtcfit6$coef  #Knock-out coefs
kocoef["PSAB-BA"] <- 0
ICRBetCor <- matrix(nrow = reps, ncol = 3)
for (i in 1:reps) {
   print(i)
   simwtc <- simulate(wtcfit1, covar = list(CovInt = WTCPoliceIsICR))  #ICR only
   ICRBetCor[i, 1] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,</pre>
```

```
37)), WTCPoliceIsICR)
   simwtc <- simulate(wtcfit6, covar = list(CovInt = WTCPoliceIsICR))</pre>
   ICRBetCor[i, 2] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,</pre>
      37)), WTCPoliceIsICR)
   simwtc <- simulate(wtcfit6, covar = list(CovInt = WTCPoliceIsICR),</pre>
      coef = kocoef) #Knockout
   ICRBetCor[i, 3] <- cor(betweenness(as.sociomatrix.eventlist(simwtc,</pre>
      37)), WTCPoliceIsICR)
}
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
boxplot(ICRBetCor, names = c("ICROnly", "Full", "NoABBA"))
abline(h = cor(betweenness(as.sociomatrix.eventlist(WTCPoliceCalls,
   37)), WTCPoliceIsICR), col = 2)
```


We can see here that (perhaps unsurprisingly) the ICR-only model overstates the relationship between occupying an ICR and having high betweenness; our full model does much better, generally producing realizations that cover the observed data (though, with only a few replicates, you may find that it sometimes doesn't!). What happens when we "turn off" the AB-BA shift? It turns out that this greatly increases the relative betweenness of ICRs, telling us that the AB-BA shifts are helping to play a role in keeping ICRs from inappropriately dominating the network. Why should turn taking matter here? The short answer is

that turn-taking effects create opportunities for non-ICR responders to gain airtime, and end up as emergent coordinators. Taking out the AB-BA effect reduces emergent coordination, which in turn increases the relative centrality of the few individuals in institutionalized coordinative roles.

Section 2. Dyadic Relational Event Models with rem.dyad: Exact Timing

In the previous section, we considered dyadic relational event models in the case for which only ordinal timing information is available. We now proceed to the case of exact timing, in which we know the time at which each event occurs (relative to the onset of observation, which is treated as time 0).

2.0 The McFarland classroom data

For this section, we will make use of data collected by Dan McFarland (and published in Bender-deMoll and McFarland, 2006) on interaction among students and instructors within a high school classroom. (Note that the data employed here has been slightly modified from the original for illustrative purposes, in that small timing adjustments have been made to separate closely spaced events; those interested in using it for purposes other than practice are directed to the above paper in the Journal of Social Structure.) To see the event data itself, we may print it as follows:

head(Class)

	StartTime	FromId	ToId
1	0.135	14	12
2	0.270	12	14
3	0.405	18	12
4	0.540	12	18
5	0.675	1	12
6	0.810	12	1
+	ail(Class)		

tail(Class)

	StartTime	FromId	ToId
687	50.426	1	3
688	50.547	3	1
689	50.668	6	17
690	50.789	6	17
691	50.910	17	6
692	50.920	NA	NA

As before, we have three columns: the event time, the event source (numbered from 1 to 20), and the event target (again, numbered 1 to 20). In this case, event time is given in increments of minutes from onset of observation. Note that the last row of the event list contains the time at which observation was terminated; it (and only it!) is allowed to contain NAs, since it has no meaning except to set the period during which events could have occurred. Where exact timing is used, the final entry in the edgelist is always interpreted in this way, and any source/target information on this row is ignored.

In addition to the Class edgelist, we also observe the covariates ClassIsTeacher (an indicator for instructor role) and ClassIsFemale (an indicator for gender). Visualizing the data in time-aggregate form gives us the following:

```
ClassNet <- as.sociomatrix.eventlist(Class, 20)
gplot(ClassNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
   ClassIsTeacher, vertex.cex = 2, edge.lwd = ClassNet^0.75)</pre>
```


A dynamic visualization for this data is also available in the above-cited paper, and is well worth examining! (The ndtv package in statnet can be used to produce visualizations of this kind.)

2.1 Modeling with covariates

We begin our investigation of classroom dynamics with a trivial intercept model, containing only a vector of 1s (ClassIntercept) as a sending effect:

```
classfit1 <- rem.dyad(Class, n = 20, effects = c("CovSnd"), covar = list(CovSnd = ClassIntercept),
    ordinal = FALSE, hessian = TRUE)

Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(classfit1)

Relational Event Model (Temporal Likelihood)</pre>
```

```
Estimate Std.Err Z value Pr(>|z|)

CovSnd.1 -3.332287 0.038042 -87.596 < 2.2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Null deviance: 5987.221 on 691 degrees of freedom

Residual deviance: 5987.221 on 691 degrees of freedom

Chi-square: -7.003109e-11 on 0 degrees of freedom, asymptotic p-value 1
```

```
AIC: 5989.221 AICC: 5989.227 BIC: 5993.759
```

Note that we must tell rem.dyad that we do not want to discard timing information (ordinal=FALSE). The model does not fit any better than the null because it is equivalent to the null model (but you must supply your own intercept, regardless!). As one would expect from first principles, this is really just an exponential waiting time model, calibrated to the observed communication rate:

```
(classfit1$m - 1)/max(Class[, 1]) #Events per minute (on average)
```

[1] 13.57031

```
20 * 19 * exp(classfit1$coef) #Predicted events per minute (matches well!)
```

CovSnd.1 13.57031

To make things more interesting, let's add effects for role and gender:

```
classfit2 <- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec"),
    covar = list(CovSnd = cbind(ClassIntercept, ClassIsTeacher,
        ClassIsFemale), CovRec = cbind(ClassIsTeacher, ClassIsFemale)),
    ordinal = FALSE, hessian = TRUE)</pre>
```

Prepping edgelist.

Checking/prepping covariates.

Computing preliminary statistics

Fitting model

Obtaining goodness-of-fit statistics

```
summary(classfit2)
```

Relational Event Model (Temporal Likelihood)

```
Estimate
                    Std.Err Z value Pr(>|z|)
CovSnd.1 -3.834231 0.078842 -48.6319 < 2e-16 ***
CovSnd.2 1.672565 0.091679 18.2437 < 2e-16 ***
CovSnd.3 0.123898 0.094931
                            1.3051 0.19185
CovRec.1 0.373733 0.127028
                             2.9421 0.00326 **
CovRec.2 0.165735 0.080896
                             2.0487 0.04049 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Null deviance: 5987.221 on 691 degrees of freedom
Residual deviance: 5652.318 on 687 degrees of freedom
   Chi-square: 334.9034 on 4 degrees of freedom, asymptotic p-value 0
AIC: 5662.318 AICC: 5662.405 BIC: 5685.008
classfit1$BIC - classfit2$BIC #Model is preferred
```

[1] 308.7508

Note that covariate effects correspond to the order in which they were specified within the covar argument. It doesn't look here like gender affects propensity to send; given this, we might wonder whether dropping it gives us a better model.

```
classfit3 <- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec"),
    covar = list(CovSnd = cbind(ClassIntercept, ClassIsTeacher),
        CovRec = cbind(ClassIsTeacher, ClassIsFemale)), ordinal = FALSE,
    hessian = TRUE)</pre>
```

Prepping edgelist.

```
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(classfit3)
Relational Event Model (Temporal Likelihood)
          Estimate Std.Err Z value Pr(>|z|)
CovSnd.1 -3.775225 0.063622 -59.3379 < 2.2e-16 ***
CovSnd.2 1.615761 0.079933 20.2139 < 2.2e-16 ***
CovRec.1 0.371753 0.127019 2.9267 0.003425 **
CovRec.2 0.161156 0.080815 1.9941 0.046138 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Null deviance: 5987.221 on 691 degrees of freedom
Residual deviance: 5654.016 on 688 degrees of freedom
    Chi-square: 333.2049 on 3 degrees of freedom, asymptotic p-value 0
AIC: 5662.016 AICC: 5662.074 BIC: 5680.169
classfit2$BIC - classfit3$BIC #Reduced model is indeed preferred
[1] 4.839661
2.2 Endogenous social dynamics
The above model is still relatively poor, in the sense that the reduction in deviance is unimpressive. What
else might explain classroom communication? Recency effects would seem to be a reasonable bet:
classfit4 <- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec",</pre>
```

```
classfit4 <- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec",
    "RRecSnd", "RSndSnd"), covar = list(CovSnd = cbind(ClassIntercept,
    ClassIsTeacher), CovRec = cbind(ClassIsTeacher, ClassIsFemale)),
    ordinal = FALSE, hessian = TRUE)</pre>
```

Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(classfit4)

Relational Event Model (Temporal Likelihood)

```
Estimate Std.Err Z value Pr(>|z|)

RRecSnd 4.153291 0.119900 34.6397 < 2.2e-16 ***

RSndSnd -1.399517 0.133149 -10.5109 < 2.2e-16 ***

CovSnd.1 -4.467620 0.075244 -59.3749 < 2.2e-16 ***

CovSnd.2 1.448491 0.080958 17.8919 < 2.2e-16 ***

CovRec.1 -1.364383 0.139346 -9.7913 < 2.2e-16 ***

CovRec.2 0.270105 0.083327 3.2415 0.001189 **

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Null deviance: 5987.221 on 691 degrees of freedom

Residual deviance: 4522.646 on 686 degrees of freedom

Chi-square: 1464.575 on 5 degrees of freedom, asymptotic p-value 0
```

```
AIC: 4534.646 AICC: 4534.769 BIC: 4561.875
classfit3$BIC - classfit4$BIC #Enhanced model is preferred
```

[1] 1118.294

This certainly helps, but we may suspect that more structure is present. Although a classroom is not as structured as a radio channel, we might reasonably expect to see at least modest adherence to conversational norms such as turn-taking. Moreover, sequential address and "hand-offs" might also be expected to occur more frequently here than would be expected by chance. To examine these possibilities, we incorporate the appropriate P-shift effects into our cumulative model:

```
classfit5 <- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec",
    "RRecSnd", "RSndSnd", "PSAB-BA", "PSAB-AY", "PSAB-BY"), covar = list(CovSnd = cbind(ClassIntercept,
    ClassIsTeacher), CovRec = cbind(ClassIsTeacher, ClassIsFemale)),
    ordinal = FALSE, hessian = TRUE)

Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(classfit5)</pre>
```

Relational Event Model (Temporal Likelihood)

```
Estimate
                   Std.Err Z value Pr(>|z|)
RRecSnd
         RSndSnd -0.986714 0.144667 -6.8206 9.068e-12 ***
CovSnd.1 -5.003427 0.090609 -55.2203 < 2.2e-16 ***
CovSnd.2 1.253884 0.085160 14.7239 < 2.2e-16 ***
CovRec.1 -0.722692 0.141951
                          -5.0912 3.559e-07 ***
CovRec.2 0.047961 0.081325
                            0.5898
                                     0.5554
PSAB-BA 4.622108 0.137600 33.5909 < 2.2e-16 ***
PSAB-BY
         1.677543 0.164932 10.1711 < 2.2e-16 ***
PSAB-AY
        2.869969 0.103113 27.8334 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Null deviance: 5987.221 on 691 degrees of freedom
Residual deviance: 2803.315 on 683 degrees of freedom
   Chi-square: 3183.906 on 8 degrees of freedom, asymptotic p-value 0
AIC: 2821.315 AICC: 2821.58 BIC: 2862.158
classfit4$BIC - classfit5$BIC #Enhanced model is again preferred
```

[1] 1699.716

Note that, while P-shift effects are certainly present, including them has led the remaining gender effect to fall out. This suggests the possibility that what seemed at first to be a difference in communication receipt tendency by gender was in fact a result of social dynamics (perhaps stemming from the fact that the instructors are male, with their inherent tendency to communicate more often amplified by local conversational norms). Does dropping gender now result in improved model fit? Let's check.

```
classfit6 <- rem.dyad(Class, n = 20, effects = c("CovSnd", "CovRec",
    "RRecSnd", "RSndSnd", "PSAB-BA", "PSAB-AY", "PSAB-BY"), covar = list(CovSnd = cbind(ClassIntercept,
    ClassIsTeacher), CovRec = ClassIsTeacher), ordinal = FALSE,
    hessian = TRUE)</pre>
```

```
Prepping edgelist.
Checking/prepping covariates.
Computing preliminary statistics
Fitting model
Obtaining goodness-of-fit statistics
summary(classfit6)

Relational Event Model (Temporal Likelihood)

Estimate Std.Err Z value Pr(>|z|)
```

```
RRecSnd
         2.430694 0.155292 15.6524 < 2.2e-16 ***
RSndSnd -0.984647 0.144654 -6.8069 9.972e-12 ***
CovSnd.1 -4.983905 0.084196 -59.1944 < 2.2e-16 ***
CovSnd.2 1.257296 0.084966
                             14.7976 < 2.2e-16 ***
CovRec.1 -0.745128 0.136612
                             -5.4543 4.915e-08 ***
PSAB-BA
        4.623687 0.137503
                             33.6261 < 2.2e-16 ***
PSAB-BY
         1.677815 0.164940
                             10.1723 < 2.2e-16 ***
PSAB-AY
         2.870503 0.103103 27.8411 < 2.2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Null deviance: 5987.221 on 691 degrees of freedom
Residual deviance: 2803.662 on 684 degrees of freedom
   Chi-square: 3183.558 on 7 degrees of freedom, asymptotic p-value 0
AIC: 2819.662 AICC: 2819.874 BIC: 2855.968
classfit5$AICC - classfit6$AICC #Reduced model is indeed preferred
```

[1] 1.705912

At this point, we have a relatively simple model that incorporates some plausible social mechanisms. We could continue to elaborate it, but for instructional purposes we stop our search here.

2.3 Using a fitted model to investigate event timing

One use of a fitted relational event model is to consider the inter-event times predicted to be observed under various scenarios. For this purpose, it is useful to remember that, under the piecewise constant hazard assumption, event waiting times are conditionally exponentially distributed. This allows us to easily work out the consequences of various model effects for social dynamics, at least within the context of a particular scenario.

In interpreting coefficient effects, recall that they act as logged hazard multipliers. For instance:

```
exp(classfit6$coef["PSAB-BA"]) #Response events have apx 100 times the hazard of other events
PSAB-BA
101.8689
```

Remember, however, that the fact that an event has an unusually high hazard does not mean that it will necessarily occur. For instance, while a response of B to a communication from A has a hazard that is (*ceteris paribus*) about 100 times as great as the hazard of a non $B\rightarrow A$ event, there are many more events of the latter type. Here, indeed, there are 379 other events "competing" with the $B\rightarrow A$ response, and thus the chance that the latter will occur next is smaller than it may appear. Both relative rates and combinatorics (i.e., the number of possible ways that an event type may occur) govern the result.

One basic use of the model coefficients is to examine the expected inter-event times under specific scenarios. E.g.:

```
# Mean inter-event time if nothing else going on....
1/(20 * 19 * exp(classfit6$coef["CovSnd.1"]))
CovSnd.1
0.384325
# Mean teacher-student time (again, if nothing else
# happened)
1/(2 * 18 * exp(sum(classfit6$coef[c("CovSnd.1", "CovSnd.2")])))
[1] 1.153833
# Sequential address by teacher w/out prior interaction,
# given a prior teacher-student interaction, and assuming
# nothing else happened
1/(17 * exp(sum(classfit6$coef[c("CovSnd.1", "CovSnd.2", "PSAB-AY")])))
[1] 0.138469
# Teacher responding to a specific student, given an
# immediate event
1/(exp(sum(classfit6$coef[c("CovSnd.1", "CovSnd.2", "PSAB-BA",
"RRecSnd")])))
[1] 0.03587293
# Student responding to a specific teacher, given an
# immediate event
1/(exp(sum(classfit6$coef[c("CovSnd.1", "CovRec.1", "PSAB-BA",
```

[1] 0.2657105

"RRecSnd")])))

Again, the number of ways that an event type can occur and the propensity of such events to occur both matter!

2.4 Assessing model adequacy

Model adequacy assessment in the exact timing case is much like that of the ordinal case. We cannot here use a fixed null residual or guessing equivalent, but can still look at "surprise" based on deviance residuals:

```
# Where is the model 'surprised'? Can't use null residual
# trick, but can see what the distribution looks like
hist(classfit6$residuals) #Deviance residuals - lumpier by far, most smallish
```

Histogram of classfit6\$residuals

The fit here doesn't seem to be as good as it was for the WTC police data. Let's look at classification: mean(apply(classfit6\$predicted.match, 1, all)) #Exactly right about 33%

[1] 0.3299566

mean(apply(classfit6\$predicted.match, 1, any)) #Get one party exactly right 52%

[1] 0.5166425

colMeans(classfit6\$predicted.match) #Better at sender than receiver!

FromId ToId 0.5050651 0.3415340

classfit6\$observed.rank

[1] [19] [37] [55] [73] [91] [109] 1 110 [127] 4 106 1 123 [145] 1 125 [163] [181] 115 1 130 1 115 [199] 1 130 1 133

[217] 2 33 1 98 1 119 1 94 1 51 1 122 [235] 1 117 1 51 1 3 1 131 1 88 [253] 1 119 1 121 1 52 1 128 [271] 1 120 1 128 1 53 [289] 1 113 [307] [325] 9 113 [343] 129 1 368 1 120 1 371 1 110 [361] 1 119 1 123 1 108 1 120 1 118 1 129 [379] 1 103 1 111 [397] 1 97 1 56 1 128 [415] 379 1 369 1 127 1 112 [433] 1 133 1 113 1 52 [451] 1 34 1 138 1 116 [469] 1 55 1 83 [487] 116 1 114 1 114 [505] 1 53 [523] 1 114 1 109 1 112 [541] 1 110 1 119 [559] 1 112 1 121 1 134 1 125 [577] 1 125 123 [595] 111 2 19 1 20 1 112 [613] 1 114 1 132 [631] [649]2 106 1 122 52 1 115 [667] 2 17 13 12 5 10 [685] 8 59 1 142 380

cbind(Class, c(classfit6\$observed.rank, NA))

	${\tt StartTime}$	${\tt FromId}$	ToId	<pre>c(classfit6\$observed.rank,</pre>	NA)
1	0.135	14	12		1
2	0.270	12	14		1
3	0.405	18	12		58
4	0.540	12	18		1
5	0.675	1	12		77
6	0.810	12	1		1
7	0.945	14	17		39
8	1.080	17	14		1
9	1.257	14	1		3
10	1.267	14	2		4
11	1.277	14	3		4
12	1.287	14	4		4
13	1.297	14	5		4
14	1.307	14	6		4
15	1.317	14	7		19
16	1.327	14	8		4
17	1.337	14	9		4
18	1.347	14	10		4
19	1.357	14	11		4
20	1.367	14	12		3
21	1.377	14	13		3
22	1.387	14	15		4
23	1.397	14	16		4
24	1.407	14	17		1

25	1.417	14	18	3
26	1.427	14	19	4
27	1.437	14	20	4
28	1.613	7	1	54
29	1.623	7	2	3
30	1.633	7	3	3
31	1.643	7	4	3
32	1.653	7	5	3
33	1.663	7	6	3
34	1.673	7	8	3
35	1.683	7	9	3
36	1.693	7	10	3
37	1.703	7	11	3
38	1.713	7	12	3
39	1.723	7	13	3
40	1.733	7	14	2
41	1.743	7	15	2
42	1.753	7	16	3
43	1.763	7	17	3
44	1.773	7	18	3
45	1.783	7	19	3
46	1.793	7	20	3
47	1.970	4	12	92
48	2.147	12	4	1
49	2.323	12	10	5
50	2.500	10	12	1
51	2.677	10	4	4
52	2.853	4	10	1
53		4	5	4
	3.030	5	4	1
54	3.207			
55	3.383	5	10	4
56	3.560	10	5	1
57	3.737	5	12	40
58	3.913	12	5	1
59	4.090	7	4	65
60	4.267	7	5	6
61	4.443	7	12	11
62	4.620	7	10	9
63	4.797	14	7	20
64	4.973	14	4	7
65	5.150	14	5	8
66	5.327	14	12	4
67	5.503	14	10	10
68	5.680	16	17	99
69	5.857	17	16	1
70	6.033	16	17	1
71	6.210	17	16	1
72	6.387	7	1	59
73	6.397	7	2	3
74	6.407	7	3	3
75	6.417	7	4	14
76	6.427	7	5	14
77	6.437	7	6	3
78	6.447	7	8	3

79	6.457	7	9	3
80	6.467	7	10	12
81	6.477	7	11	3
82	6.487	7	12	10
83	6.497	7	13	3
84	6.507	7	14	2
85	6.517	7	15	2
86	6.527	7	16	3
87	6.537	7	17	3
88	6.547	7	18	3
89	6.557	7	19	3
90	6.567	7	20	3
91	6.743	17	7	23
92	6.920	7	17	1
93	7.037	7	1	3
94	7.047	7	2	4
95	7.057	7	3	4
96	7.067	7	4	4
97	7.077	7	5	4
98	7.087	7	6	4
99	7.097	7	8	4
100	7.107	7	9	4
101	7.117	7	10	4
102	7.127	7	11	4
103	7.137	7	12	4
104	7.147	7	13	4
105	7.157	7	14	3
106	7.167	7	15	3
107	7.177	7	16	4
108	7.187	7	17	1
109	7.197	7	18	3
110	7.207	7	19	4
111	7.217	7	20	4
112	7.334	10	5	374
113	7.451	5	10	1
114	7.569	4	12	110
115	7.686	12	4	1
116	7.803	7	1	59
117	7.813	7	2	4
118	7.823	7	3	4
119	7.833	7	4	4
120	7.843	7	5	4
121	7.853	7	6	4
122	7.863	7	8	4
123	7.873	7	9	4
124	7.883	7	10	4
125	7.893	7	11	4
126	7.903	7	12	4
127	7.913	7	13	4
128	7.923	7	14	3
129	7.933	7	15	3
130	7.943	7	16	4
131	7.953	7	17	1
132	7.963	7	18	3

133	7.973	7	19	4
134	7.983	7	20	4
135	8.100	18	1	106
136	8.217	1	18	1
137	8.334	20	17	123
138	8.451	17	20	1
139	8.569	7	1	60
140	8.579	7	2	4
141	8.589	7	3	4
142	8.599	7	4	4
143	8.609	7	5	4
144	8.619	7	6	4
145	8.629	7	8	4
146	8.639	7	9	4
147	8.649	7	10	4
148	8.659	7	11	4
149	8.669	7	12	4
150	8.679	7	13	4
151	8.689	7	14	3
152	8.699	7	15	3
153	8.709	7	16	4
154	8.719	7	17	1
155	8.729	7	18	3
156	8.739	7	19	4
157	8.749	7	20	4
158	8.866	4	1	111
159	8.876	4	2	8
160	8.886	4	3	8
161	8.896	4	5	5
162	8.906	4	6	7
163	8.916	4	7	2
164	8.926	4	8	10
165	8.936	4	9	8
166	8.946	4	10	6
167	8.956	4	11	7
168	8.966	4	12	3
169	8.976	4	13	7
170	8.986	4	14	7
171	8.996	4	15	14
172	9.006	4	16	8
173	9.016	4	17	8
174	9.026	4	18	8
175	9.036	4	19	8
176	9.046	4	20	8
177	9.163	16	20	122
178	9.280	20	16	1
179	9.397	9	18	125
180	9.514	18	9	123
181	9.631	20	17	115
182	9.749	17	20	1
183	9.866	13	3	130
184	9.983	3	13	130
185	10.100	14	18	86
186	10.100	18	14	2
100	10.211	10	7.4	2

187	10.334	14	1	10
188	10.451	1	14	1
189	10.569	14	9	29
190	10.686	9	14	1
191	10.803	10	4	47
192	10.920	4	10	1
193	11.037	18	1	115
194	11.154	1	18	1
195	11.271	4	5	110
196	11.389	5	4	1
197	11.506	18	1	48
198	11.623	1	18	1
199	11.740	18	1	1
200	11.857	1	18	1
201	11.974	14	12	61
202	12.091	12	14	1
203	12.209	14	5	36
204	12.326	5	14	1
205	12.443	14	4	- 8
206	12.560	4	14	1
207	12.677	4	12	- 8
208	12.794	12	4	1
209	12.911	11	15	130
210	13.029	15	11	1
211	13.146	11	15	1
212	13.263	15	11	1
213	13.380	8	13	133
214	13.497	13	8	1
215	13.614	20	17	50
216	13.731	17	20	1
217	13.849	14	10	89
218	13.966	10	14	1
219	14.083	7	20	98
220	14.200	20	7	2
221	14.317	7	17	4
222	14.434	17	7	2
223	14.551	7	16	33
224	14.669	16	7	1
225	14.786	1	9	119
226	14.903	9	1	1
227	15.020	13	3	94
228	15.137	3	13	1
229	15.254	11	15	51
230	15.371	15	11	1
231	15.489	12	10	122
232	15.606	10	12	1
233	15.723	10	4	2
234	15.723	4	10	1
234	15.840	4	12	2
236	16.074	12	4	1
236		10	4	50
	16.191 16.309	4	10	1
238 239				117
	16.426	17 16	16	
240	16.543	16	17	1

241	16.660	1	9	51
242	16.777	9	1	1
243	16.894	9	18	3
244	17.011	18	9	1
245	17.129	3	8	131
246	17.246	8	3	1
247	17.363	7	15	88
248	17.480	15	7	1
249	17.597	7	6	27
250	17.714	6	7	1
251	17.831	7	11	32
252	17.949	11	7	1
253	18.066	12	10	74
254	18.183	10	12	1
255	18.300	17	16	53
256	18.417	16	17	1
257	18.534	4	5	119
258	18.651	5	4	1
259	18.769	12	5	121
260	18.886	5	12	1
261	19.003	4	5	52
262	19.120	5	4	1
263	19.237	13	3	52
264	19.354	3	13	1
265	19.471	18	1	91
266	19.589	1	18	1
267	19.706	6	11	128
268	19.823	11	6	1
269	19.940	13	3	54
270	20.057	3	13	1
271	20.037	10	4	92
272	20.174	4	10	1
273	20.291	4	5	2
274	20.526	5	4	1
275	20.520	3	8	94
276	20.760	8	3	1
277	20.760	20	17	92
				1
278	20.994 21.111	17	20	
279		5	10	120
280	21.229	10	5	1
281	21.346	15	6	128
282	21.463	6	15	1
283	21.580	12	5	53
284	21.697	5	12	1
285	21.814	4	5	52
286	21.931	5	4	1
287	22.049	4	12	25
288	22.166	12	4	1
289	22.283	4	5	24
290	22.400	5	4	1
291	22.517	8	13	94
292	22.634	13	8	1
293	22.751	17	16	92
294	22.869	16	17	1

295	22.986	3	8	52
296	23.103	8	3	1
297	23.220	4	12	92
298	23.337	12	4	1
299	23.454	3		52
			8	
300	23.571	8	3	1
301	23.689	5	10	113
302	23.806	10	5	1
303	23.923	7	1	70
304	23.933	7	2	9
305	23.943	7	3	9
306	23.953	7	4	8
307	23.963	7	5	8
308	23.973	7	6	3
309	23.983	7	8	8
310	23.993	7	9	9
311	24.003	7	10	9
312	24.013	7	11	1
313	24.013	7	12	8
314	24.033	7	13	9
315	24.043	7	14	19
316	24.053	7	15	4
317	24.063	7	16	4
318	24.073	7	17	4
319	24.083	7	18	8
320	24.093	7	19	9
321	24.103	7	20	6
322	24.220	14	1	55
323	24.230	14	2	10
324	24.240	14	3	10
325	24.250	14	4	4
326	24.260	14	5	4
327	24.270	14	6	10
328	24.280	14	7	2
329	24.290	14	8	10
330	24.290	14	9	7
331	24.310	14	10	3
332	24.320	14	11	9
333	24.330	14	12	6
334	24.340	14	13	10
335	24.350	14	15	11
336	24.360	14	16	11
337	24.370	14	17	10
338	24.380	14	18	9
339	24.390	14	19	9
340	24.400	14	20	9
341	24.480	10	4	113
342	24.560	4	10	1
343	24.639	8	13	129
344	24.719	13	8	1
345	24.799	18	1	368
346	24.733	1	18	1
347	24.079	12	18	120
348	25.038	18	12	120
040	20.030	10	12	1

349	25.118	3	8	371
350	25.198	8	3	1
351	25.277	20	16	110
352	25.357	16	20	1
353	25.437	20	4	24
354	25.517	4	20	1
355	25.597	14	9	51
356	25.676	9	14	1
357	25.756	14	1	9
358	25.836	1	14	2
359	25.916	14	18	10
360	25.995	18	14	2
361	26.075	10	4	49
362	26.155	4	10	1
363	26.235	1	9	119
364	26.314	9	1	1
365	26.394	4	12	123
366	26.474	12 18	4 1	1 108
367	26.554	10	18	100
368	26.633 26.713	12	10	120
369	26.713	10	12	120
370		9		118
371	26.873		18	110
372 373	26.953 27.032	18 16	9 17	129
374	27.032	17	16	129
375	27.112	17	20	4
376	27.132	20	17	1
377	27.272	3	8	55
378	27.331	8	3	1
379	27.431	20	4	94
380	27.591	7	18	89
381	27.670	18	7	1
382	27.750	7	1	13
383	27.730	1	7	1
384	27.910	7	9	32
385	27.990	9	7	1
386	28.069	8	13	74
387	28.149	13	8	1
388	28.229	13	3	4
389	28.309	3	13	1
390	28.388	16	17	58
391	28.468	17	16	1
392	28.548	12	18	111
393	28.628	18	12	1
394	28.707	17	4	103
395	28.787	9	18	92
396	28.867	18	9	1
397	28.947	18	1	4
398	29.027	1	18	1
399	29.106	10	4	97
400	29.186	4	10	1
401	29.266	18	1	58
402	29.346	1	18	1

403	29.425	13	3	56
404	29.505	3	13	1
405	29.585	6	11	128
406	29.665	11	6	1
407	29.744	6	11	1
408	29.824	11	6	1
409	29.904	14	18	19
410	29.984	18	14	1
411	30.063	14	1	2
412	30.143	1	14	2
413	30.223	14	9	4
414	30.303	9	14	2
415	30.383	17	4	379
416	30.462	4	17	1
417	30.542	15	6	369
418	30.622	6	15	1
419	30.702	12	10	92
	30.702			1
420		10	12	
421	30.861	4	12	127
422	30.941	12	4	1
423	31.021	13	3	52
424	31.100	3	13	1
425	31.180	20	16	112
426	31.260	16	20	1
427	31.340	14	11	79
428	31.420	11	14	1
429	31.499	14	15	32
430	31.579	15	14	1
431	31.659	14	6	30
432	31.739	6	14	1
433	31.818	15	6	72
434	31.898	6	15	1
435	31.978	4	12	53
436	32.058	12	4	1
437	32.137	12	10	2
438	32.217	10	12	1
439	32.297	5	4	133
440	32.377	4	5	1
441	32.457	3	8	92
442	32.536	8	3	1
443	32.616	17	20	113
444	32.696	20	17	1
445	32.776	15	6	52
446	32.855	6	15	1
447	32.935	3	8	53
448	33.015	8	3	1
449	33.095	13	3	54
450	33.174	3	13	1
451	33.254	17	20	54
452	33.334	20	17	1
453	33.414	7	3	73
453 454	33.414	3	3 7	1
454	33.493	3 7	8	31
455 456	33.653	<i>1</i> 8	7	1
400	33.003	0	1	1

457	33.733	7	13	34
458	33.813	13	7	1
459	33.892	16	17	70
460	33.972	17	16	1
461	34.052	5	10	138
462	34.132	10	5	1
463	34.211	6	11	116
464	34.291	11	6	1
465	34.371	1	9	127
466	34.451	9	1	1
467	34.530	6	11	55
468	34.610	11	6	1
469	34.690	11	15	3
470	34.770	15	11	1
471	34.850	15	6	2
472	34.929	6	15	1
473	35.009	20	16	91
474	35.089	16	20	1
475	35.169	11	15	55
476	35.248	15	11	1
477	35.328	5	4	91
478	35.408	4	5	1
479	35.488	14	16	83
480	35.567	16	14	1
481	35.647	14	17	15
482	35.727	17	14	1
483	35.807	14	20	35
484	35.887	20	14	1
485	35.966	5	10	70
486	36.046	10	5	1
487	36.126	16	17	116
488	36.206	17	16	1
489	36.285	12	10	54
490	36.365	10	12	1
491	36.445	20	16	89
492	36.525	16	20	1
493	36.604	10	4	114
494	36.684	4	10	1
495	36.764	4	12	3
496	36.844	12	4	1
497	36.923	17	20	114
498	37.003	20	17	1
499	37.083	7	12	83
500	37.163	12	7	1
501	37.243	7	4	17
502	37.322	4	7	1
503	37.402	7	5	21
504	37.482	5	7	1
505	37.562	7	10	20
506	37.641	10	7	1
507	37.721	14	13	64
508	37.801	13	14	1
509	37.881	14	1	12
510	37.960	1	14	2

511	38.040	14	3	20
512	38.120	3	14	1
513	38.196	4	10	98
514	38.272	10	4	1
515	38.347	10	4	53
516	38.423	4	10	1
517	38.499	11	15	53
518	38.575	15	11	1
519	38.651	14	20	44
520	38.726	20	14	2
521	38.802	14	17	8
522	38.878	17	14	2
523	38.954	14	16	9
524	39.029	16	14	2
525	39.105	5	10	66
526	39.181	10	5	1
527	39.257	13	3	114
528	39.333	3	13	1
529	39.408	17	20	86
530	39.484	20	17	1
531	39.560	6	11	88
532	39.636	11	6	1
533	39.712	4	12	109
534	39.712	12	4	103
535	39.863	9	18	112
536				
537	39.939 40.015	18 7	9 16	1 78
			7	2
538	40.091	16 7		
539	40.166		20	19
540	40.242	20	7	1
541	40.318	7	17	19
542	40.394	17	7	1
543	40.469	6	11	47
544	40.545	11	6	1
545	40.621	1	9	88
546	40.697	9	1	1
547	40.773	5	4	110
548	40.848	4	5	1
549	40.924	15	6	89
550	41.000	6	15	1
551	41.076	3	8	119
552	41.152	8	3	1
553	41.227	7	11	77
554	41.303	11	7	2
555	41.379	7	15	19
556	41.455	15	7	2
557	41.531	7	6	19
558	41.606	6	7	2
559	41.682	18	1	94
560	41.758	1	18	1
561	41.834	1	9	2
562	41.909	9	1	1
563	41.985	12	10	112
564	42.061	4	5	52

565	42.137	5	4	
566	42.213	12	18	12
567	42.288	18	12	
568	42.364	18	1	
569	42.440	1	18	
570	42.516	12	10	13
571	42.592	10	12	
572	42.667	4	12	8
573	42.743	12	4	
574	42.819	20	16	12
575	42.895	16	20	
576	42.971	18	1	5
577	43.046	1	18	
578	43.122	14	4	7
579	43.198	4	14	·
580	43.274	14	10	1
581	43.349	10	14	•
582	43.425	14	5	1
583	43.501	5	14	_
584	43.577	14	12	1
585	43.653	12	14	1
	43.728		10	
586 587		12		
587	43.804	10	12	F
588	43.880	20	16	5
589	43.956	16	20	4.0
590	44.032	4	10	12
591	44.107	16	17	12
592	44.183	17	16	
593	44.259	15	6	g
594	44.335	6	15	
595	44.411	17	20	11
596	44.486	20	17	
597	44.562	7	9	7
598	44.638	9	7	
599	44.714	7	18	1
600	44.789	18	7	
601	44.865	7	1	2
602	44.941	1	7	
603	45.017	16	17	4
604	45.093	17	16	
605	45.168	4	12	8
606	45.244	12	4	
607	45.320	13	3	5
608	45.396	3	13	
609	45.472	20	16	8
610	45.547	16	20	
611	45.623	6	11	11
612	45.699	11	6	
613	45.775	6	11	
614	45.851	11	6	
615	45.926	12	10	8
616	46.002	10	12	
617	46.078	9	18	11
618	46.154	18	9	
010	10.104	10	J	

619	46.229	4	10	132
620	46.305	4	12	2
621	46.381	12	4	1
622	46.457	14	18	80
623	46.533	18	14	1
624	46.608	14	1	14
625	46.684	1	14	2
626	46.760	14	9	19
627	46.836	9	14	2
628	46.912	3	8	72
629	46.987	8	3	1
630	47.063	16	17	89
631	47.139	17	16	1
632	47.215	13	3	53
633	47.291	3	13	1
634	47.366	15	6	54
635	47.442	6	15	1
636	47.518	16	17	54
637	47.594	17	16	1
638	47.669	3	8	89
639	47.745	8	3	1
640	47.821	8	13	3
641	47.897	13	8	1
642	47.973	14	12	45
643	48.048	12	14	2
644	48.124	14	5	8
645	48.200	5	14	2
646	48.276	14	10	8
647	48.352	10	14	2
648	48.427	14	4	10
649	48.503	4	14	2
650	48.579	18	1	106
651	48.655	1	18	1
652	48.731	12	18	122
653	48.806	3	8	52
654	48.882	8	3	1
655	48.958	13	3	91
656	49.034	3	13	1
657	49.109	15	6	53
658	49.185	6	15	1
659	49.261	11	15	115
660	49.337	15	11	1
661	49.413	20	16	53
662	49.488	16	20	1
663	49.564	8	13	91
664	49.640	13	8	1
665	49.761	7	15	47
666	49.701	15	7	2
667	50.003	7	1	2
668	50.003	7	2	17
669	50.013	7	3	17
670	50.023	7 7	3 4	17
671	50.033	7	5	12
672	50.043	7	6	6
012	50.055	,	O	6

```
673
       50.063
                          8
                                                           13
674
       50.073
                     7
                          9
                                                            5
       50.083
                     7
                                                            9
675
                         10
       50.093
                     7
                                                            5
676
                         11
                     7
677
       50.103
                         12
                                                           10
678
       50.113
                     7
                         13
                                                           10
                     7
679
       50.123
                         14
                                                           19
                     7
       50.133
                                                            2
680
                         15
681
       50.143
                     7
                         16
                                                            8
       50.153
                     7
                         17
                                                            7
682
683
                     7
       50.163
                         18
                                                            4
                     7
684
       50.173
                         19
                                                           15
       50.183
685
                     7
                         20
                                                            8
686
       50.304
                     1
                          7
                                                           59
687
       50.426
                     1
                          3
                                                           22
688
       50.547
                     3
                          1
                                                            1
689
       50.668
                     6
                         17
                                                          142
                     6
                                                          380
690
       50.789
                         17
691
       50.910
                   17
                          6
                                                            1
692
       50.920
                   NA
                         NA
                                                           NA
```

It looks like there is some structure in the errors: we aren't able to capture certain kinds of intrusive events. Does looking at the "surprising" events (say, those for which the observed event is not in the top 5% of those predicted) in time-aggregate form help?

```
# Get the surprising events, and display as a network
surprising <- as.sociomatrix.eventlist(Class[classfit6$observed.rank >
    19, ], 20)
gplot(surprising, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
    ClassIsTeacher, vertex.cex = 2)
```


The visualization gives us more of a clue about what we're missing: various side discussions occur that are not well-captured by the current model. This could be due to the fact that things like P-shift effects fail to capture simultaneous side conversations (each of which may have its own set of turn-taking patterns), or to a lack of covariates to capture the enhanced propensity of subgroup members to address each other. Further elaboration could be helpful here. On the other hand, we seem to be doing reasonably well at capturing the main line of discussion within the classroom, particularly vis a vis the instructors. Whether or not this is adequate depends on the purpose to which the model is to be put; as always, adequacy must be considered in light of specific scientific goals.

2.5 Simulating from the fitted model

Simulation from fitted models with exact timing proceeds exactly as in the ordinal timing case: we can use the simulate method for rem.dyad to generate trajectories from the fitted model object.

For instance, to generate a new trajectory from the final classroom model, we would use the code

```
set.seed(1331)
ClassSim <- simulate(classfit6, covar = list(CovSnd = cbind(ClassIntercept,
        ClassIsTeacher), CovRec = ClassIsTeacher))
ClassSim #Examine the resulting trajectory</pre>
```

```
[,1] [,2] [,3]
[1,]
      0.2452372
[2,]
                          7
      0.2648195
[3,]
      0.2823672
                    7
                         18
                         19
[4,]
      0.3090297
                   13
[5,]
      0.3387736
```

```
[6,]
       0.4176939
                    15
                          19
 [7,]
       0.4333086
                    14
                          16
 [8,]
       0.4465340
                     14
                          18
 [9,]
       0.5291581
                           9
                     14
[10,]
       0.6368619
                    14
                          10
[11,]
       0.7403585
                     10
                          14
[12,]
       0.8529512
                    14
                          18
[13,]
       0.8781311
                    14
                          10
[14,]
       0.9604370
                    14
                          12
       0.9896636
                     16
                          14
[15,]
[16,]
       0.9930088
                    14
                          16
[17,]
                     7
                           6
       1.1128288
[18,]
       1.1441737
                           7
                    14
[19,]
       1.1651333
                     14
                           8
[20,]
       1.1939697
                      8
                          14
[21,]
       1.2091901
                    14
                           6
[22,]
       1.2305970
                     14
                          17
[23,]
       1.3323752
                    14
                          10
                    10
[24,]
       1.3605140
                           5
[25,]
       1.4054487
                      5
                          10
[26,]
       1.4482442
                    10
                           5
[27,]
       1.5010568
                    14
                           8
[28,]
       1.5663818
                    14
                          16
[29,]
       1.8808446
                    14
                          13
[30,]
       2.0099539
                     14
                          19
[31,]
       2.0260119
                    14
                          15
[32,]
       2.1178422
                     14
                          18
[33,]
       2.1972077
                    14
                          10
                     7
[34,]
       2.2516703
                          14
[35,]
       2.2757559
                      7
                          18
[36,]
       2.2767436
                     17
                          19
[37,]
       2.3050881
                     17
                          14
       2.3331853
                     7
                          20
[38,]
[39,]
       2.3480431
                      7
                          15
                           7
[40,]
       2.4195393
                    15
[41,]
       2.4486735
                     7
                          15
                      7
[42,]
       2.5661399
                          19
[43,]
       2.6034453
                      7
                          14
       2.6443936
[44,]
                     14
                           7
       2.7902113
                      7
                          14
[45,]
[46,]
       2.8476409
                      7
                           4
[47,]
       2.8892588
                      7
                           3
[48,]
       2.8958807
                          16
                    13
[49,]
       2.9141100
                    16
                          13
[50,]
       3.2577642
                    13
                          16
[51,]
       3.3103058
                    18
                           6
       3.6363654
                    17
[52,]
                          20
[53,]
       3.6689292
                     20
                          17
[54,]
       3.6927953
                    20
                          10
[55,]
       3.7176316
                    10
                          20
[56,]
       3.8541570
                    20
                          10
       3.8883449
                    20
[57,]
                           6
[58,]
       3.9300268
                      6
                          20
[59,]
       4.1380025
                           6
                    20
```

```
[60,]
        4.2587120
                      2
                            6
[61,]
        4.2860588
                      2
                            1
                            9
[62,]
        4.3804901
                     16
[63,]
        4.4430955
                           12
                     16
[64,]
        4.5267698
                     12
                           16
[65,]
        4.5634829
                     16
                           12
[66,]
        4.6236388
                     16
                            8
[67,]
        4.6471144
                      8
                           16
[68,]
        4.7473854
                     10
                           11
        4.7938856
                           10
[69,]
                     11
[70,]
        4.7961302
                      2
                           13
                            2
[71,]
        4.8091500
                     13
[72,]
        4.8247462
                           12
                     14
[73,]
        4.8955373
                     14
                           17
[74,]
        4.9081383
                     14
                            9
[75,]
        4.9153592
                     14
                           17
[76,]
        4.9805986
                     14
                            7
[77,]
        5.0241813
                     14
                            4
[78,]
        5.0613228
                      4
                           14
[79,]
        5.0644384
                     14
                            4
[80,]
        5.2103329
                     14
                            3
[81,]
        5.2849561
                     14
                            4
[82,]
        5.3802349
                     14
                           19
[83,]
        5.4722991
                     14
                            8
[84,]
        5.4730600
                     14
                            4
[85,]
        5.4855860
                      4
                           14
[86,]
        5.5160426
                     14
                            4
[87,]
        5.5235733
                      4
                           14
                      4
[88,]
        5.5503236
                           18
        5.6166152
[89,]
                     14
                           11
[90,]
        5.6329490
                     11
                           14
[91,]
        5.6923629
                     11
                            8
        5.6941925
[92,]
                      8
                           11
[93,]
        5.7328254
                            8
                     11
[94,]
        6.0435956
                     19
                           20
[95,]
        6.1846005
                      3
                           12
[96,]
        6.3465232
                      3
                           10
[97,]
        6.3948629
                     10
                            3
[98,]
        6.4390538
                     11
                           19
                            8
[99,]
        6.5775315
                     11
[100,]
        6.7374124
                     11
                           14
[101,]
        6.7471360
                     14
                           11
[102,]
        6.9234757
                     14
                            2
[103,]
                     14
        6.9320873
                           11
[104,]
        7.0017608
                     14
                            7
[105,]
        7.0218169
                            4
                     14
[106,]
        7.1118122
                     10
                            2
[107,]
        7.2821661
                      2
                           10
[108,]
        7.2954076
                      2
                            5
[109,]
        7.4197045
                      2
                           13
[110,]
        7.5067671
                     19
                           13
[111,]
        7.5148894
                     13
                           19
[112,]
        7.5259201
                     13
                           17
[113,] 7.5536243
                     17
                           13
```

```
[114,] 7.6412278
                    14
                          9
[115,] 7.6970344
                    14
                         11
[116,] 7.7208712
                    14
                          4
[117,]
       7.7972453
                         17
                    14
[118,] 7.8557040
                    14
                         11
[119,] 7.8695206
                    14
                         13
[120,] 7.8987646
                     4
                          8
[121,]
       7.9182257
                         15
                    20
[122,]
       7.9187713
                    20
                         19
[123,] 7.9489062
                    19
                         20
[124,]
       8.1251780
                    20
                         19
[125,]
       8.1252785
                    12
                          1
[126,]
       8.1870581
                     7
                         14
[127,]
       8.2255085
                         13
                     6
[128,]
       8.2850134
                          6
                    13
[129,]
       8.3191157
                    13
                          1
[130,]
       8.3472196
                    13
                         11
[131,]
       8.4147432
                    11
                         13
[132,]
       8.5221297
                         15
                    13
[133,]
       8.5532070
                    15
                         13
[134,]
       8.6038985
                     9
                          2
[135,]
       8.6043392
                     2
                          9
       8.6103288
[136,]
                    15
                         13
[137,]
       9.1065400
                    10
                         11
[138,] 9.1889692
                          9
                    11
                    10
[139,]
       9.1972623
                         20
[140,]
       9.2938692
                    14
                          3
[141,]
       9.4185938
                     3
                         14
[142,]
       9.4677391
                    14
                          3
[143,]
       9.5318032
                    11
                         10
[144,]
       9.6027228
                     8
                          4
[145,]
       9.6083322
                    14
                         10
       9.6510630
                    10
[146,]
                          14
[147,]
       9.6584675
                    14
                         10
[148,]
       9.6731079
                    14
                          3
[149,] 9.7398108
                    14
                         10
[150,] 9.7956136
                          3
[151,] 9.9223679
                    17
                         10
[152,] 9.9842716
                    10
                          17
[153,] 10.2349158
                          2
                     6
[154,] 10.2442451
                     4
                          8
[155,] 10.5105560
                     4
                         14
[156,] 10.5192202
                          4
                    14
[157,] 10.5904550
                    14
                          5
[158,] 10.6502211
                     4
                          8
[159,] 10.7461410
                         17
                    11
[160,] 10.7515991
                    17
                         11
[161,] 10.7688993
                     2
                          6
[162,] 10.8838438
                     2
                         17
[163,] 11.1188273
                    19
                         11
[164,] 11.1589938
                         19
                    11
[165,] 11.1621731
                    12
                          3
[166,] 11.1632288
                     3
                         12
[167,] 11.1641170
                          3
                    12
```

```
[168,] 11.3015630
                     14
                           1
[169,] 11.3321034
                     14
                          11
[170,] 11.3688719
                     11
                          14
[171,] 11.3762782
                     14
                          11
[172,] 11.4384228
                     5
                           3
[173,] 11.4401584
                      3
                           5
[174,] 11.4723941
                      5
                           3
[175,] 11.5888687
                     19
                           4
[176,] 11.6020910
                     19
                          10
[177,] 11.6070507
                     10
                          20
[178,] 11.9241856
                     20
                          10
[179,] 12.0264030
                     20
                          13
[180,] 12.1623650
                     20
                          15
[181,] 12.2223621
                          20
                      6
[182,] 12.2440493
                     20
                           6
[183,] 12.3746770
                     20
                          10
[184,] 12.3943923
                     4
                          14
[185,] 12.4116423
                     14
                           4
[186,] 12.4162427
                          12
                     16
[187,] 12.4301145
                     12
                          16
[188,] 12.5619434
                     16
                          11
[189,] 12.5627711
                     16
                          15
[190,] 12.6720149
                           4
                      9
[191,] 12.6735886
                      9
                          12
[192,] 12.6891810
                      7
                          19
[193,] 12.7220991
                      7
                           9
[194,] 12.8534795
                      7
                           4
[195,] 12.8591847
                      4
                           7
[196,] 12.9332132
                      3
                          18
[197,] 12.9885167
                     13
                          20
[198,] 13.1496426
                     14
                           1
[199,] 13.1568001
                     14
                          11
[200,] 13.2272979
                     14
                           6
[201,] 13.3043678
                     7
                          20
[202,] 13.3308943
                     7
                           6
[203,] 13.3764960
                     7
                           9
[204,] 13.4877359
                           7
[205,] 13.4935416
                      7
                           9
[206,] 13.6490008
                      9
                           7
[207,] 13.7357452
                     7
                           9
[208,] 13.7451055
                          11
                     13
[209,] 13.8765810
                     13
                          17
[210,] 13.8839156
                     18
                           3
                      3
[211,] 14.4086862
                          18
[212,] 14.4922354
                      3
                          19
[213,] 14.5186833
                     19
                           3
[214,] 14.5962353
                           2
                     19
[215,] 14.6480218
                      2
                          19
[216,] 14.6541635
                      2
                           9
[217,] 14.6682621
                           2
                      9
[218,] 14.6687569
                      2
                           9
                     7
                           4
[219,] 14.7126368
[220,] 14.7253559
                      7
                          15
[221,] 14.7994312
                      7
                           9
```

[222,]	14.8052581	7	1
[223,]	14.8206612	7	4
[224,]	14.9569104	7	14
[225,]	14.9714722	7	9
[226,]	15.1169674	7	20
[227,]	15.1287157	7	3
[228,]	15.2600147	19	9
[229,]	15.2657333	9	19
[230,]	15.6325196	19	9
[231,]	15.7465865	19	13
[232,]	15.7480988	13	19
[233,]	15.9444435	13	1
[234,]	16.0255688	1	13
[235,]	16.0931371	9	19
[236,]	16.0985941	19	9
[237,]	16.5888540	3	11
[238,]	16.6231550	11	3
[239,]	16.9295861	11	13
[240,]	17.0471600	17	16
[241,]	17.0910953	17	3
[242,]	17.1266546	3	17
[243,]	17.1827762	5	14
[244,]	17.2051254	5	
[245,]	17.2291613	7	5
[246,]	17.2316348	7	1
[247,]	17.2980657	13	11
[248,]	17.3476952	11	13
_			
[249,]	17.5733305	11	19
[250,]	17.6935952	19	11
[251,]	17.7786883	11	19
[252,]	17.8078964	19	15
[253,]	17.8135194	19	14
[254,]	17.8700523	14	19
[255,]	18.0942507	14	4
[256,]	18.2632841	14	19
[257,]	18.2812178	14	3
[258,]	18.3059446	7	9
[259,]	18.3070388	13	6
[260,]	18.4394049	16	20
[261,]	18.4540614	14	16
[262,]	18.4687117	14	5
[263,]	18.4897639	5	14
[264,]	18.5399921	14	5
[265,]	18.5502284	14	19
[266,]	18.7682225	14	16
[267,]	18.9536949	14	5
[268,]	18.9650179	14	6
[269,]	18.9729763	6	14
[270,]	18.9750813	14	6
[271,]	18.9807737	1	6
[272,]	19.0750653	6	1
[273,]	19.1589048	6	14
	19.1309048		14
[274,]		6	
[275,]	19.2987954	6	11

```
[276,] 19.3287846
                     11
                          20
[277,] 19.4770884
                     11
                           6
[278,] 19.5030839
                     11
                          17
[279,] 19.5129482
                           8
                     11
[280,] 19.5886208
                     15
                           4
[281,] 19.5989402
                      4
                          15
[282,] 19.7559520
                      4
                           9
[283,] 19.8207397
                      4
                          15
[284,] 19.8528424
                     15
                           4
                          12
[285,] 19.9563474
                     15
[286,] 19.9867124
                     12
                          15
[287,] 19.9880540
                     9
                          15
[288,] 20.1749546
                     13
                           9
[289,] 20.2484957
                     13
                           1
[290,] 20.2722347
                     13
                          11
[291,] 20.2909075
                     11
                          13
[292,] 20.3048958
                     13
                          11
[293,] 20.3518038
                     13
                           3
[294,] 20.4587377
                     14
                          15
[295,] 20.4748312
                     8
                           4
[296,] 20.6330859
                      4
                           8
[297,] 20.6587722
                     18
                           4
[298,] 20.7266679
                      4
                          18
[299,] 20.9256894
                     4
                          17
[300,] 20.9439174
                     17
                           4
[301,] 21.1166487
                     14
                           5
[302,] 21.1223181
                     14
                           6
[303,] 21.1269821
                     14
                          11
[304,] 21.1494679
                           6
[305,] 21.1527868
                      6
                          14
[306,] 21.1716312
                     20
                           4
[307,] 21.5400175
                      2
                           5
                           2
[308,] 21.5617747
                      5
[309,] 21.5820643
                          16
                     11
[310,] 21.5830246
                     16
                          11
[311,] 21.6441086
                     19
                          10
[312,] 21.6464329
                          11
[313,] 21.6933296
                     10
                           2
[314,] 21.7285253
                     20
                          11
[315,] 21.7582696
                     11
                          20
[316,] 21.7998642
                     20
                          19
[317,] 21.9374925
                     20
                          18
[318,] 21.9607010
                     20
                          11
[319,] 21.9671142
                     20
                           1
[320,] 21.9844282
                      1
                          20
[321,] 22.0354730
                      7
                           6
                           7
[322,] 22.1758811
                      6
                      7
                           6
[323,] 22.2489652
[324,] 22.3665573
                      7
                           5
[325,] 22.4025380
                     7
                           6
[326,] 22.4088482
                          20
                     19
[327,] 22.4804943
                     10
                          11
[328,] 22.5406789
                     11
                          10
[329,] 22.5627199
                     10
```

```
[330,] 22.6057460
                    10
                          14
[331,] 22.6091426
                    14
                          10
[332,] 22.6341038
                    14
                          12
[333,] 22.6471486
                    14
                           3
[334,] 22.6820063
                     2
                           7
[335,] 22.7124162
                     2
                          16
[336,] 22.8276142
                     7
                          10
[337,] 22.8519107
                     7
                          16
[338,] 22.8864356
                     7
                          17
                     7
                           2
[339,] 22.9235805
[340,] 22.9242318
                     7
                           9
[341,] 23.1397274
                    14
                          10
[342,] 23.1551784
                    14
                           6
                           5
[343,] 23.2385703
[344,] 23.2897788
                     1
                          16
[345,] 23.3228644
                    18
                          20
[346,] 23.3905634
                    20
                          18
[347,] 23.3950810
                    18
                          14
[348,] 23.4083511
                    14
                          18
[349,] 23.4152152
                           3
[350,] 23.7223733
                     3
                           4
[351,] 23.8675070
                           3
[352,] 23.9109710
                     4
                          11
[353,] 24.0927904
                     9
                           5
[354,] 24.0999334
                     5
                           9
[355,] 24.1244272
                     5
                          14
[356,] 24.1409506
                          15
                    14
[357,] 24.3240890
                    14
                          11
[358,] 24.4494694
                          14
[359,] 24.5152849
                    14
                          11
[360,] 24.7184901
                    14
                          19
[361,] 24.7985744
                     8
                          11
[362,] 24.9027805
                    11
                           8
[363,] 25.0739456
                           2
                    14
[364,] 25.1534920
                     2
                          14
[365,] 25.2351461
                     2
                           8
[366,] 25.2433560
                     3
                           4
[367,] 25.3300615
                    11
                           1
[368,] 25.3626113
                     1
                          11
[369,] 25.3696255
                           3
                     1
[370,] 25.3703841
                     1
                          11
[371,] 25.4900025
                     7
                           3
[372,] 25.5203766
                     7
                           2
[373,] 25.5865172
                    17
                          11
[374,] 25.6118047
                    17
                           5
[375,] 25.6712600
                     8
                          11
[376,] 25.7244851
                    11
                           8
[377,] 25.7783775
                    11
                           4
[378,] 25.8277442
                     4
                          12
[379,] 25.9006079
                    12
                           4
[380,] 25.9204849
                     4
                          12
                     5
[381,] 26.1071106
                          20
[382,] 26.1105864
                    17
                           4
[383,] 26.1491487
                     7
```

[384,]	26.1590358	7	6
[385,]	26.1899565	6	1
[386,]	26.2068331	1	6
[387,]	26.2516567	14	18
[388,]	26.2939241	14	2
[389,]	26.2979687	14	6
[390,]	26.3107718	14	8
			11
[391,]	26.3209816	14	
[392,]	26.3994654	11	14 11
[393,]	26.4001341	14	
[394,]	26.4715209	14	13
[395,]	26.5009230	14	12
[396,]	26.5017107	12	14
[397,]	26.5464784	14	12
[398,]	26.5799750	14	18
[399,]	26.6242580	4	17
[400,]	26.7884379	4	9
[401,]	26.8852492	4	11
[402,]	26.8948308	15	14
[403,]	26.9037410	14	15
[404,]	26.9183792	14	9
[405,]	27.2077154	14	8
[406,]	27.2401391	14	11
[407,]	27.2716196	14	15
[408,]	27.2869494	14	20
[409,]	27.2947321	14	1
[410,]	27.3145867	1	14
[411,]	27.3323034	14	1
[412,]	27.3824430	2	7
[413,]	27.3918433	7	17
[414,]	27.4192787	8	16
[415,]	27.4605148	16	8
[416,]	27.4803240	11	16
[417,]	27.6083357	16	17
[418,]	27.6483634	16	9
[419,]	27.6509434	9	16
[420,]	27.6532352	16	9
[421,]	27.7052963	6	15
[422,]	27.7181538	20	5
[423,]	27.8117664	20	16
[424,]	27.8161879	20	10
[424,]	27.9489749		
-		20	6
[426,]	27.9527887	6	20
[427,]	27.9656538	6	3
[428,]	28.0367301	20	10
[429,]	28.0556194	10	20
[430,]	28.1705236	1	17
[431,]	28.1831938	17	1
[432,]	28.3132621	17	19
[433,]	28.4082253	19	17
[434,]	28.4252073	17	19
[435,]	28.4574575	6	7
[436,]	28.4740184	7	6
[437,]	28.5847768	7	2

[438,]	28.6314858	7	16
[439,]	28.6455631	7	15
[440,]	28.6835829	7	5
		_	
[441,]	28.6893573	7	2
[442,]	28.7736725	7	9
[443,]	28.8442967	7	12
[444,]	28.9420232	7	5
[445,]	28.9677329	7	13
[446,]	28.9684016	7	6
[447,]	29.0332366	7	8
[448,]	29.0729869	7	18
[449,]	29.0885583	3	6
[450,]	29.1176373	6	3
[451,]	29.3609658	14	3
[452,]	29.4396326	14	6
[453,]	29.5425672	6	14
[454,]	29.5734727	9	15
[455,]	29.7459300	15	9
[456,]	29.9428882	9	15
[457,]	30.0583443	15	4
[458,]	30.0658484	4	15
[459,]	30.1389912	15	4
[460,]	30.2240237	4	15
[461,]	30.3287143	4	6
[462,]	30.3533487	6	4
[463,]	30.3790072	14	13
[464,]	30.4014991	14	3
_			
[465,]	30.4216776	14	1
[466,]	30.5114485	1	14
[467,]	30.8027570	1	20
[468,]	30.9267666	20	1
[469,]	31.0252790	6	16
[470,]	31.1076660	12	7
[471,]	31.2136179	6	4
[472,]	31.2565079	6	18
[473,]	31.3425495	6	2
[474,]	31.3755728	2	6
[475,]	31.5430522	6	2
[476,]	31.6464642	2	6
[477,]	31.7037192	2	8
[478,]	31.7944204	6	2
[479,]	31.9600930	2	6
[480,]	32.0557958	19	17
[481,]	32.0730092	14	20
[482,]	32.0969157	16	
			2
[483,]	32.2296514	7	12
[484,]	32.2930153	15	17
[485,]	32.3122852	17	15
[486,]	32.4043979	7	14
[487,]	32.4761797	14	7
[488,]	32.4962005	6	4
[489,]	32.5985593	20	18
[490,]	32.6003081	18	20
[491,]	32.6328173	14	6

[492,]	32.6614003	6	11
[493,]	32.7049714	11	6
[494,]	32.7359335	6	11
[495,]	32.7724468	11	6
[496,]	32.7807211	6	11
[497,]	32.8309900	14	1
[498,]	32.9258172	14	8
[499,]	32.9415915	14	7
[500,]	32.9795996	7	14
[501,]	33.0389313	7	4
[502,]	33.0560944	7	8
[503,]	33.0637281	7	15
[504,]	33.1194538	7	20
[505,]	33.2014479	7	2
[506,]	33.2276010	7	9
[507,]	33.2528512	7	13
[508,]	33.3884686	7	5
[509,]	33.4127552	7	1
[510,]	33.4690361	1	7
-			
[511,]	33.5092166	7	1
[512,]	33.5246947	7	16
[513,]	33.5461316	7	20
[514,]	33.5462632	14	7
[515,]	33.5638235	14	13
[516,]	33.5936392	14	19
[517,]	33.5967103	19	11
[518,]	33.5997384	11	19
[519,]	33.6167387	4	7
[520,]	33.6188041	2	7
[521,]	33.7008748	7	2
[522,]	33.8048819	7	1
[523,]	33.8159516	1	7
[524,]	33.8243336	7	1
[525,]	33.8258590	7	3
[526,]	33.8613576	7	2
	33.9526036		4
[527,]		7	
[528,]	33.9871033	7	1
[529,]	33.9965713	7	6
[530,]	34.0474414	11	6
[531,]	34.1840120	6	20
[532,]	34.2327342	20	12
[533,]	34.2845849	17	6
[534,]	34.3218019	6	17
[535,]	34.4210319	16	5
[536,]	34.4392404	5	16
[537,]	34.6412442	5	20
[538,]	34.6707769	20	5
[539,]	34.6808667	3	8
[540,]	34.6928298	13	14
[541,]	34.7119419	14	13
[542,]	34.8117361	14	1
[543,]	34.8259857	14	10
[544,]	34.9669774	15	9
[545,]	34.9828878	9	7

[546,]	35.0237463	7	9
[547,]	35.0540788	7	8
[548,]	35.0965099	7	4
[549,]	35.1386016	7	13
[550,]	35.2203470	7	9
[551,]	35.2440522	7	16
[552,]	35.2899990	7	9
[553,]	35.4144232	7	1
[554,]	35.7228047	7	15
[555,]	35.9513281	19	10
[556,]	35.9872415	10	19
[557,]	36.0310719	10	6
[558,]	36.0743168	6	10
[559,]	36.1376287	10	6
[560,]	36.1451585	6	11
[561,]	36.1503157	11	6
[562,]	36.1541586	6	4
[563,]	36.2547491	5	20
[564,]	36.3573465	12	5
[565,]	36.5288562	5	12
[566,]	36.5394303	7	9
[567,]	36.5524685	9	7
[568,]	36.5757749	7	9
[569,]	36.6115378	7	17
[570,]	36.6135565	7	5
[571,]	36.6423432	11	17
[572,]	36.6445978	9	15
[573,]	36.7032633	15	6
[574,]	36.7057953	6	15
[575,]	36.7655722	15	6
[576,]	36.7988189	15	5
[577,]	37.0673646	13	7
[578,]	37.0807186	7	13
[579,]	37.0813209	7	1
[580,]	37.1054444	7	5
[581,]	37.1184758	14	13
[582,]	37.2678427	7	1
[583,]	37.2959551	7	20
[584,]	37.3676302	4	8
[585,]	37.4023607	8	4
[586,]	37.5068382	4	6
[587,]	37.5070893	16	15
[588,]	37.5127231	15	16
[589,]	37.6102426	15	6
[590,]	37.6523134	6	15
[591,]	37.6834540	7	13
[592,]	37.7863716	2	9
[593,]	37.8187649	9	2
[594,]	37.8916086	7	9
[595,]	37.9512188	7	8
[596,]	37.9978851	7	13
[597,]	38.1545412	14	8
[598,]	38.3169869	3	15
[599,]	38.3435826	15	3

[600,]	38.3961775	3	19
[601,]	38.4507204	19	3
[602,]	38.5616126	19	2
[603,]	38.5672796	19	3
[604,]	38.5778039	3	19
[605,]	38.6003767	14	13
[606,]	38.6034308	14	5
[607,]	38.6234746	14	16
[608,]	38.7537680	14	13
[609,]	38.7694516	14	9
[610,]	38.7846001	8	14
[611,]	38.8139759	14	10
[612,]	38.8545082	10	14
[613,]	38.8855406	3	12
[614,]	38.8970549	12	3
[615,]	38.8984521	7	13
[616,]	39.0301539	7	19
[617,]	39.1841232	2	19
[618,]	39.1901459	19	2
[619,]	39.2848848	19	7
[620,]	39.4800567	7	19
[621,]	39.5655884	7	15
[622,]	39.5744302	12	3
[623,]	39.5890979	12	5
[624,]	39.5988313	12	3
[625,]	39.8598232	11	6
[626,]	39.8980221	12	3
[627,]	40.0774314	17	11
[628,]	40.2292548	4	17
[629,]	40.2486764	4	6
[630,]	40.2913500	4	15
[631,]	40.3511512	15	4
[632,]	40.4005956	4	13
[633,]	40.4153557	13	4
[634,]	40.4344204	2	19
[635,]	40.4469573	12	4
[636,]	40.4762805	12	5
[637,]	40.5126905	3	17
[638,]	40.5120905	17	3
[639,]	40.5358073	17	2
[640,]	40.5954386	9	7
[641,]	40.6046174	7	9
[642,]	40.0040174	7	8
[643,]	41.1042480	8	7
[644,]		7	12
[645,]	41.1303095 41.1318759	7	8
[646,]	41.1318739	8	13
[647,]			8
	41.3158808	13	
[648,]	41.5101403	8	13
[649,]	41.6070875	13	8
[650,]	41.7517214	13	6
[651,]	41.8730501	6 17	13
[652,]	42.0840672	17	3
[653,]	42.4130248	3	1

```
[654,] 42.6918269
                      16
                           17
[655,] 42.7740917
                      17
                           16
[656,] 42.8747921
                      11
                            4
[657,] 42.9345981
                       4
                           11
[658,] 43.0039277
                       5
                           12
[659,] 43.1982366
                       9
                            5
[660.] 43.2059364
                      19
                           17
[661,] 43.2923849
                      17
                           19
[662,] 43.3369606
                      19
                           17
[663,] 43.3499270
                      14
                            1
[664,] 43.5716572
                      14
                           10
[665,] 43.5899311
                            5
                      14
[666,] 43.7440393
                       5
                           14
[667,] 43.8433473
                      14
                           20
[668,] 43.9929849
                      14
                           11
[669,] 44.0049355
                      14
                            4
[670,] 44.1510948
                      14
                            5
[671,] 44.2429583
                       1
                           13
[672,] 44.2577970
                           10
                       1
[673,] 44.4451469
                       1
                            2
[674,] 44.4917046
                       2
                            1
[675,] 44.5411244
                       1
                            2
[676,] 44.5798632
                       1
                           18
[677,] 44.5896300
                      18
                            1
[678,] 44.6074224
                      10
                            6
[679,] 44.6648673
                      10
                            1
[680,] 44.6762521
                       1
                           10
                       7
[681,] 44.7266581
                            2
                       7
[682,] 44.8004509
                           11
[683,] 44.8936062
                      11
                            7
[684,] 44.9190784
                       7
                           11
[685,] 45.1130771
                       7
                            5
                            7
[686,] 45.1782824
                       5
[687,] 45.2121327
                       7
                            5
                       7
                            2
[688,] 45.2140466
[689,] 45.2353393
                       7
                            1
[690,] 45.2422281
                       7
                            6
[691,] 45.3342377
                       7
                           12
[692,] 45.5329383
                       7
                            5
attr(,"n")
[1] 20
```

As we saw in section 1.5, running the **simulate** command on the fitted model object produces a new trajectory of identical length to the original, with the same coefficients. Note that the new trajectory is identical in terms of the number of *realized events* it contains, and it will not in general cover the same *time period*. Some disparity between the two is normal (and, indeed, will happen with probability 1); however, when the total mean time period of the replicate sequences is substantially different from that of the original data, this suggests that the pacing of the model is off.

In section 1.5, we showed how an *in silico* knock-out study could be used to gain insights into model behavior. Another useful strategy can be to simulate trajectories from a fitted model with alternative choices of covariates. For instance, what might we expect if we replaced the teachers in our classroom with students? This anarchic state of affairs can be probed by conditional simulation with a different set of covariates:

```
set.seed(1331)
AnarchSim <- simulate(classfit6, covar = list(CovSnd = cbind(ClassIntercept,
   rep(0, 20)), CovRec = rep(0, 20)))
AnarchSim #Examine the trajectory
             [,1] [,2] [,3]
                          2
  [1,]
       0.2923476
                    10
       0.3138169
  [2,]
                     2
                         10
  [3,]
       0.3510402
                    10
                         11
  [4,] 0.3835927
                    16
                         10
```

[48,] [49,] [50,] [51,] [52,] [53,] [54,] [55,] [56,] [57,] [60,] [61,] [62,] [63,] [64,] [65,] [67,] [70,] [71,] [72,] [73,] [74,] [75,] [76,] [79,] [80,] [81,]	4.3828970 4.4004880 4.7473149 4.8002721 5.1515952 5.1837837 5.2083843 5.2336125 5.3725548 5.4078890 5.4506936 5.6765250 5.8028868 5.8301328 5.9230796 5.9907164 6.0822529 6.1201552 6.1839281 6.2083454 6.3104230 6.3612375 6.3635596 6.3764722 6.3926626 6.4801215 6.5008767 6.5093808 6.6197236 6.7288420 6.7719947 6.7782700 6.9902600 7.1294971	15 18 15 6 14 2 2 12 2 1 2 18 19 19 19 19 2 6 3 18 2 2 16 2 2 16 2 2 16 2 2 16 2 2 16 2 2 2 16 2 2 2 2	18 15 18 7 2 14 12 2 12 11 12 18 19 18 2 2 19 16 6 2 6 6 16 2 2 10 16 16 16 16 16 16 16 16 16 16 16 16 16
		18	
	6.1201552		
		20	
	6.3926626		
			2
	7.1294971 7.2700611	16 16	2 10
[82,] [83,]	7.3857314	10	16
[84,]	7.3871497	16	10
[85,]	7.4055389	10	16
[86,]	7.4659056	10	15
[87,]	7.4745699	15	10
[88,] [89,]	7.5276088 7.5931173	10 5	3
[90,]	7.6173192	5 7	7 5
[91,]	7.7344420	17	7
[92,]	7.7368855	7	17
[93,]	7.7765890	17	7
[94,]	8.0974308	14	11
[95,] [96,]	8.2430388 8.4024232	3 3	18 6
[97,]	8.4627261	3	10
[98,]	8.5094596	8	5
[99,]	8.6521118	8	12
[100,]	8.7905033	12	8
[101,]	8.8102299	12	16

[102,]	9.0012077	16	12
[103,]	9.0185906	12	16
[104,]	9.1225491	12	11
[105,]	9.1571843	11	12
[106,]	9.3197623	18	13
[107,]	9.4919514	13	18
[108,]	9.5060038	13	4
[100,]	9.6355539	13	18
[110,]	9.7350181	10	6
[111,]	9.7425661	6	10
[112,]	9.7545220	6	14
[113,]	9.7835823	14	6
[114,]	9.8766565	12	8
[115,]	9.9864765	8	12
[116,]	10.0228536	12	8
[117,]	10.1605709	12	11
[118,]	10.2659908	11	12
[119,]	10.2862677	11	8
[120,]	10.3230630	18	1
[121,]	10.3425045	16	4
[122,]	10.3430870	16	12
[123,]	10.3727043	12	16
[124,]	10.5623821	16	12
[125,]	10.5624894	10	12
[126,]	10.6277419	10	18
[127,]	10.6907312	15	12
[128,]	10.7539802	12	15
[129,]	10.7890927	12	2
[130,]	10.8201173	12	3
[131,]	10.8885994	3	12
[132,]	10.9998222	12	8
[133,]	11.0466308	12	16
[134,]	11.0947486	14	3
[135,]	11.0951965	3	14
[136,]	11.1014127	14	18
[137,]	11.4259938	18	11
[138,]	11.4991777	4	16
[139,]	11.5106850	3	20
[140,]	11.5998214	18	10
[141,]	11.8147666	10	18
[142,]	11.9101625	18	10
[143,]	12.0030597	4	16
[144,]	12.0763611	4	10
[145,]	12.0799917	4	18
[146,]	12.1311849	18	4
[147,]	12.1456216	18	7
[148,]	12.1590339	7	18
[149,]	12.1390339	18	7
[150,]	12.3513811	7	18
[151,]	12.5627726	4	9
[152,]	12.6246743	9	4
[153,]	12.8824258	11	14
[154,]	12.8920507	6	14
[155,]	13.1055420	14	6

[156,]	13.1348553	6	14
[157,]	13.2410002	6	1
[158,]	13.3166928	5	4
[159,]	13.3782782	3	16
[160,]	13.3837846	16	3
[161,]	13.4015381	20	3
[162,]	13.5026941	3	20
[163,]	13.8862291	19	10
[164,]	13.9253554	10	19
[165,]	13.9286514	10	5
[166,]	13.9295118	5	10
		10	5
[167,]	13.9304198		
[168,]	14.0702082	14	11
[169,]	14.1301796	14	4
[170,]	14.1764226	4	14
[171,]	14.1910475	14	4
[172,]	14.2846297	20	1
[173,]	14.2864105	1	20
[174,]	14.3198832	20	1
[175,]	14.4427156	19	4
[176,]	14.4565313	19	8
	14.4617283		10
[177,]		8	
[178,]	14.7527743	10	8
[179,]	14.8584625	8	19
[180,]	15.0702672	19	15
[181,]	15.1330639	4	14
[182,]	15.1622000	4	19
[183,]	15.2693648	19	4
[184,]	15.2914344	13	14
[185,]	15.3272240	14	13
[186,]	15.3341290	19	3
[187,]	15.3461867	3	19
[188,]	15.4825263	19	14
[189,]	15.4833777	19	2
[190,]	15.6103139	9	19
[191,]	15.6119796	9	12
[192,]	15.6295171	7	10
[193,]	15.6695265	10	7
[194,]	15.9102795	7	13
[195,]	15.9169702	13	7
[196,]	16.0641202	1	16
[197,]	16.1209013	15	19
[198,]	16.2847947	9	3
[199,]	16.2942853	3	9
[200,]	16.4172726	3	7
[201,]	16.5178685	2	14
[202,]	16.5520249	2	18
[203,]	16.6079254	7	3
[204,]	16.8327095	3	7
[205,]	16.8441731	7	3
[206,]	17.0728833	3	7
[207,]	17.2441642	3	16
[208,]	17.2569613	6	13
[209,]	17.3824748	6	14

[210,]	17.3904017	13	6
[211,]	17.8591274	6	13
-		6	9
[212,]	17.9480207		
[213,]	17.9755122	9	6
[214,]	18.0574950	9	7
[215,]	18.1109672	7	9
[216,]	18.1174337	7	13
[217,]	18.1336749	13	7
[218,]	18.1341960	7	13
[219,]	18.1802639	12	9
[220,]	18.1960324	9	12
[221,]	18.3310178	12	9
[222,]	18.3398928	9	12
[223,]	18.3660590	9	7
[224,]	18.5502745	9	11
[225,]	18.5777781	11	9
[226,]	18.8005435	9	10
[227,]	18.8156050	9	5
[228,]	18.9796911	20	9
[229,]	18.9856026	9	20
[230,]	19.3622465	20	9
[231,]	19.4821597	20	6
[232,]	19.4836223	6	20
[233,]	19.6906986	6	7
[234,]	19.7745441	7	6
[235,]	19.8447431	11	9
[236,]	19.8497741	9	11
[237,]	20.3587531	13	1
[238,]	20.3936526	1	13
[239,]	20.7142745	13	1
[240,]	20.8830258	5	1
[241,]	20.9276720	5	7
[242,]	20.9663152	7	5
[243,]	21.0250251	19	10
[244,]	21.0761644	3	4
[245,]	21.1336628	3	5
[246,]	21.1359252	5	3
[247,]	21.2566208	1	20
[248,]	21.2941176	20	1
[249,]	21.5312827	20	8
[250,]	21.6591883	8	20
[251,]	21.7491764	20	8
[252,]	21.7800263	8	12
[253,]	21.7859016	18	2
[254,]	21.9923980	2	12
[255,]	22.2277790	12	2
	22.5365273	2	12
[256,]			
[257,]	22.5633974	12	2
[258,]	22.6113058	13	9
[259,]	22.6126394	14	11
[260,]	22.7569517	2	13
[261,]	22.7723499	20	8
[262,]	22.7970899	8	20
[263,]	22.8360553	20	8
[200,]	22.0000000	20	0

[264,]	22.9347997	20	4
[265,]	22.9444485	4	20
[266,]	23.3083117	20	17
[267,]	23.5411130	17	20
[268,]	23.5581578	20	19
[269,]	23.5682095	19	20
[270,]	23.5723161	19	8
[271,]	23.5785719	15	3
[272,]	23.6733110	3	15
[273,]	23.7594996	3	1
[274,]	23.9044456	3	15
[275,]	23.9308584	3	20
[276,]	23.9632351	20	13
[277,]	24.1162688	20	3
[278,]	24.1431824	20	1
[279,]	24.1559287	20	10
[280,]	24.2183264	2	3
[281,]	24.2288747	3	2
[282,]	24.3900974	2	3
[283,]	24.4835569	2	5
[284,]	24.5043925	5	2
[285,]	24.6128313	5	6
[286,]	24.6441341	6	5
[287,]	24.6455343	20	15
	24.8365782	13	19
[288,]			
[289,]	24.9104558	13	20
[290,]	24.9332760	20	13
[291,]	24.9597418	13	20
[292,]	24.9742885	20	13
[293,]	25.0230139	20	1
[294,]	25.1838857	15	18
[295,]	25.2048109	2	14
[296,]	25.3594422	14	2
[297,]	25.3858380	1	5
[298,]	25.4556166	5	1
[299,]	25.6626715	5	16
[300,]	25.6813944	16	5
[301,]	25.8620912	5	1
[302,]	25.8714207	1	5
[303,]	25.8789697	1	3
[304,]	25.9103893	3	1
[305,]	25.9157802	1	3
[306,]	25.9528417	12	14
[307,]	26.3408947	9	10
[308,]	26.3634775	10	9
[309,]	26.3839404	18	4
[310,]	26.3848417	4	18
[311,]	26.4479034	10	14
[312,]	26.4502289	15	20
[313,]	26.5088135	15	17
[314,]	26.5438637	15	1
[315,]	26.5707329	1	15
	26.6147561	10	9
	26.8250660	9	3
[,11	20.0200000	Э	3

[318,]	26.8505573	9	10
[319,]	26.8572759	9	14
	26.8762539		
[320,]		14	9
[321,]	26.9294912	15	19
[322,]	27.1229950	19	15
[323,]	27.2655738	19	18
[324,]	27.3818236	18	19
[325,]	27.4469673	19	18
[326,]	27.4562683	9	14
[327,]	27.5543539	8	4
[328,]	27.6147748	4	8
	27.6379374	8	4
[329,]			
[330,]	27.6836848	17	15
[331,]	27.6932950	15	17
[332,]	27.7312181	15	2
[333,]	27.7479134	15	17
[334,]	27.8183864	1	16
[335,]	27.8882129	4	5
[336,]	28.0179240	10	19
[337,]	28.0538150	10	12
[338,]	28.0997399	10	5
[339,]		5	10
	28.1525601		
[340,]	28.1535859	10	5
[341,]	28.5548566	13	1
[342,]	28.5709198	1	13
[343,]	28.7196746	1	3
[344,]	28.8084685	13	15
[345,]	28.8425632	12	10
[346,]	28.9169140	10	12
[347,]	28.9215957	6	5
[348,]	28.9580666	6	2
[349,]	28.9650163	4	2
[350,]	29.2835217	2	4
[351,]	29.4319091	4	2
[352,]	29.4769153	4	15
[353,]	29.6630762	16	19
[354,]	29.6701225	19	16
[355,]	29.6950766	19	13
[356,]	29.7266264	8	20
[357,]	29.9811693	8	4
[358,]	30.1749085	4	8
[359,]	30.3042077	8	4
[360,]	30.6135395	4	8
[361,]	30.7648989	10	2
[362,]	30.8647540	2	10
[363,]	31.0413652	6	7
[364,]	31.1729317	7	6
[365,]	31.3340448	11	18
[366,]	31.3429703	6	7
[367,]	31.4502756	19	17
		17	
[368,]	31.4834029		19
[369,]	31.4908001	17	13
[370,]	31.4915844	17	19
[371,]	31.6177319	10	20

[372,]	31.6618316	20	10
[373,]	31.7698939	14	3
[374,]	31.7947628	14	19
[375,]	31.8571037	13	18
[376,]	31.9030162	18	13
[377,]	31.9590203	18	15
[378,]	31.9968510	18	17
[379,]	32.0710023	17	18
[380,]	32.0916161	18	17
[381,]	32.2855277	3	8
[382,]	32.2890891	1	5
[383,]	32.3317549	1	8
[384,]	32.3419710	8	1
[385,]	32.3936127	2	6
[386,]	32.4127757	2	10
[387,]	32.4518540	10	9
[388,]	32.5102836	9	10
[389,]	32.5167872	9 9	13 10
[390,] [391,]	32.5336912 32.5539176	9	13
[392,]	32.6595291	13	9
[393,]	32.6608488	13	14
[394,]	32.7358451	13	19
[395,]	32.7827946	19	3
[396,]	32.7838726	3	19
[397,]	32.8712506	3	14
[398,]	32.9125276	14	3
[399,]	32.9914511	9	11
[400,]	33.1294328	9	10
[401,]	33.2680131	9	17
[402,]	33.2760206	9	19
[403,]	33.2952151	9	1
[404,]	33.3092158	9	10
[405,]	33.8506090	10	16
[406,]	33.8950125	16	10
[407,]	33.9527831	10	16
[408,]	33.9761946	10	14
[409,] [410,]	33.9862128	10 1	10
[411,]	34.0120787 34.0462638	1	10 6
[412,]	34.0979760	18	2
[413,]	34.1143814	3	1
[414,]	34.1527231	6	4
[415,]	34.1891149	4	6
[416,]	34.2093612	8	2
[417,]	34.3148677	8	16
[418,]	34.3515881	8	9
[419,]	34.3541918	9	8
[420,]	34.3565100	8	9
[421,]	34.4095189	14	20
[422,]	34.4219504	2	18
[423,]	34.5129716	2	15
[424,]	34.5178496	2	19
[425,]	34.6439730	2	4

[426,] [427,]	34.6478736 34.6609712	4 4	2 11
[428,]	34.7330393	1	2
[429,]	34.7504841	2	1
[430,]	34.8679105	5	18
[431,]	34.8808934	18	5
[432,]	35.0152877	18	16
[433,]	35.1121269	16	18
[434,]	35.1294240	18	16
[435,]	35.1626873	9	17
[436,]	35.1908011	17	9
[437,]	35.3546903	9	17
[438,]	35.4320712	17	4
[439,]	35.4500504	17	9
[440,]	35.5245910	17	3
[441,]	35.5317252	3	17
[442,]	35.6771926	3	9
[443,]	35.7698788	3	20
[444,]	35.9084439	3	17
[445,]	35.9584064	3	20
[446,]	35.9593700	20	3
[447,]	36.0531370	20	17
[448,]	36.1055607	20	13
[449,]	36.1265833	5	18
[450,]	36.1562300	18	5
[451,]	36.4026318	16	8
[452,]	36.5276642	16	20
[453,]	36.6578454	20	16
[454,]	36.7170953	17	4
[455,] [456,]	36.8870594	4 17	17 4
[457,]	37.0889044 37.2070882	4	6
[458,]	37.2070502	4	17
[459,]	37.2170333	17	4
[460,]	37.3809633	4	17
[461,]	37.4891774	4	9
[462,]	37.5152103	9	4
[463,]	37.5413855	18	16
[464,]	37.5757743	16	13
[465,]	37.6015938	13	16
[466,]	37.7704117	13	20
[467,]	38.2290438	13	10
[468,]	38.3332991	10	13
[469,]	38.4341419	6	17
[470,]	38.5177878	17	7
[471,]	38.7448140	4	13
[472,]	38.7739227	13	4
[473,]	38.8979550	7	17
[474,]	38.9489368	7	16
[475,]	39.0582643	16	7
[476,]	39.1648202	7	16
[477,]	39.2238019	7	15
[478,]	39.3158731	17	6
[479,]	39.5081292	17	7

[480,]	39.5854449	7	13
[481,]	39.5971942	13	20
[482,]	39.6349884	3	12
[483,]	39.7717400	3	20
[484,]	39.8424554	2	20
[485,]	39.8620605	20	2
[486,]	39.9568023	10	9
[487,]	40.1125780	9	10
[488,]	40.1535260	18	10
[489,]	40.2254364	7	6
[490,]	40.2270528	6	7
[491,]	40.2597972	13	7
[492,]	40.3025721	2	1
[493,]	40.3634377	2	20
[494,]	40.3946396	20	2
[495,]	40.4311074	2	20
[496,]	40.4394458	20	2
[497,]	40.4896520	14	10
[498,]	40.6098875	10	18
[499,]	40.6363165	18	10
[500,]	40.7142749	10	18
[501,]	40.8327413	10	4
[502,]	40.8528630	15	7
[503,]	40.8639700	15	4
[504,]	40.9325118	15	20
[505,]	41.0358711	20	15
[506,]	41.0816727	20	4
[507,]	41.1120374	20	5
[508,]	41.2731126	5	20
[509,]	41.3169948	5	14
[510,]	41.3830107	14	5
[511,]	41.4599402	14	12
[512,]	41.4776352	14	4
[513,]	41.5048913	7	15
[514,]	41.5050971	1	3
			16
[515,]	41.5395413	3	
[516,]	41.5767481	3	19
[517,]	41.5818210	15	2
[518,]	41.5849502	2	15
[519,]	41.6022013	15	16
[520,]	41.6066714	2	3
[521,]	41.7871649	3	2
[522,]	41.9381163	2	3
[523,]	41.9568132	3	2
[524,]	41.9727164	2	3
[525,]	41.9749099	2	9
[526,]	42.0202894	9	2
[527,]	42.1749248	9	3
[528,]	42.2159526	3	9
[529,]	42.2295776	9	3
[530,]	42.3254337	5	3
[531,]	42.4226282	5	10
[532,]	42.4675178	14	5
[533,]	42.5327724	11	13

[534,]	42.5699451	13	11
[535,]	42.6715205	8	7
[536,]	42.6898927	7	8
[537,]	42.8974270	7	13
[538,]	42.9323569	13	7
[539,]	42.9427113	6	16
[540,]	42.9547196	5	14
[541,]	43.0041139	5	11
[542,]	43.0990994	11	5
[543,]	43.1255727	16	6
[544,]	43.3890319	4	16
[545,]	43.4001503	4	2
[546,]	43.4953514	2	4
[547,]	43.5397988	2	19
[548,]	43.5956860	19	2
[549,]	43.6700460	2	18
[550,]	43.7900404	18	2
[551,]	43.8252859	18	9
[552,]	43.8832906	9	18
		18	
[553,]	44.0694248		9
[554,]	44.5834657	18	4
[555,]	44.8794815	3	8
[556,]	44.9153291	8	3
[557,]	44.9605086	8	12
[558,]	45.0083699	12	8
[559,]	45.0743488	8	12
[560,]	45.0821859	16	4
[561,]	45.0869696	4	16
[562,]	45.0909540	15	2
[563,]	45.1865309	3	8
		4	6
[564,]	45.2767106		
[565,]	45.4788075	6	4
[566,]	45.4898950	6	7
[567,]	45.5038118	7	6
[568,]	45.5496031	6	7
	45.6028214	6	10
-			
[570,]	45.6054561	6	4
[571,]	45.6586879	18	7
[572,]	45.6609304	15	13
[573,]	45.7025531	15	18
[574,]	45.7051613	18	15
[575,]	45.7672509	15	18
-			
[576,]	45.8018652	15	5
[577,]	46.0776347	5	6
[578,]	46.1069861	6	5
[579,]	46.1078829	5	6
[580,]	46.1488675	10	6
[581,]	46.1689557	19	2
[582,]	46.3701996	8	7
[583,]	46.4069460	8	10
[584,]	46.5028454	16	8
[585,]	46.5361385	8	16
[586,]	46.6440341	8	5
[587,]	46.6442387	20	7
[301,]	TU. U442301	20	'

[588,]	46.6499419	7	20
[589,]	46.7509533	20	7
[590,]	46.7965984	7	20
[591,]	46.8287198	7	8
[592,]	46.9393723	2	1
[593,]	46.9757491	1	2
[594,]	47.0498693	1	16
[595,]	47.1178208	1	5
[596,]	47.1804617	5	1
[597,]	47.4090311	8	19
		17	8
[598,]	47.6156027		
[599,]	47.6424209	8	17
[600,]	47.6963035	17	4
[601,]	47.7538708	4	17
[602,]	47.8676862	4	10
[603,]	47.8744255	4	6
[604,]	47.8830799	6	4
[605,]	47.9065021	6	7
[606,]	47.9101331	6	4
[607,]	47.9484248	4	2
-		_	
[608,]	48.1363401	2	4
[609,]	48.1613946	4	3
[610,]	48.1814661	16	4
			_
[611,]	48.2443519	11	5
[612,]	48.3088535	5	11
[613,]	48.3687629	19	6
[614,]	48.3794947	6	19
[615,]	48.3809271	6	8
[616,]	48.5045082	8	6
[617,]	48.8088029	9	10
[618,]	48.8140227	10	9
[619,]	48.9101525	10	4
[620,]	49.1903396	4	10
[621,]	49.3157943	4	20
[622,]	49.3285007	13	10
[623,]	49.3388370	10	13
[624,]	49.3493566	10	8
	49.3493566	10	
[625,]	49.5349245	10	14
[626,]	49.5700779	14	7
[627,]	49.6858072	14	5
[628,]	49.8165182	7	18
[629,]	49.8385383	7	13
[630,]	49.8803109	7	14
[631,]	49.9557411	14	7
[632,]	50.0061081	7	18
[633,]	50.0248773	18	7
[634,]	50.0442816	14	7
[635,]	50.0569946	8	11
[636,]	50.0870596	8	6
[637,]	50.1237581	9	6
[638,]	50.1350640	6	9
[639,]	50.1473599	6	10
[640,]	50.2098620	12	16
[641,]	50.2294310		
[041,]	00.2294010	16	12

```
[642,] 50.7116804
                      7
                          14
[643,] 51.0497463
                     14
                           7
[644,] 51.0999038
                      6
                           9
[645,] 51.1028667
                      9
                           6
[646,] 51.3223849
                      8
                          16
[647,] 51.3642178
                     16
                           8
[648,] 51.5619668
                      8
                          16
[649,] 51.6603858
                     16
                           8
[650,] 51.8076178
                     16
                           6
[651,] 51.9340250
                      6
                          16
[652,] 52.1514138
                     10
                           6
[653,] 52.4182965
                          20
                     10
[654,] 52.6960139
                     16
                           7
[655,] 52.7797109
                     7
                          16
[656,] 52.8840768
                     15
                          17
[657,] 52.9438589
                     17
                          15
[658,] 53.0163134
                      7
                          16
[659,] 53.2151139
                     17
                          18
[660,] 53.2224524
                          20
                      3
[661,] 53.3074278
                     20
                           3
[662,] 53.3531059
                      3
                          20
[663,] 53.3663636
                     20
                           6
[664,] 53.6461119
                      6
                          20
[665,] 53.6740408
                          17
                     18
[666,] 53.9750758
                     17
                          18
[667,] 54.1708750
                      9
                           2
[668,] 54.3843430
                      9
                          18
[669,] 54.4011703
                      9
                          12
[670,] 54.6074988
                     12
                           9
[671,] 54.7496706
                      5
                          16
[672,] 54.7640188
                      5
                           6
[673,] 54.9591427
                      5
                          20
[674,] 55.0083999
                     20
                           5
[675,] 55.0590682
                          20
                      5
[676,] 55.0983340
                      5
                           9
[677,] 55.1084875
                      9
                           5
[678,] 55.1266379
                           9
[679,] 55.1824950
                      9
                          11
[680,] 55.1972862
                     11
                           9
[681,] 55.2491901
                          15
                      9
[682,] 55.3383389
                      9
                           6
[683,] 55.4784159
                      6
                           9
[684,] 55.5275188
                           6
                      9
[685,] 55.8170333
                      9
                           4
[686,] 55.9022600
                      4
                           9
[687,] 55.9677155
                      4
                           6
                      4
[688,] 55.9696607
                           9
                           6
[689,] 56.0099200
[690,] 56.0191738
                      4
                          16
[691,] 56.1500782
                      4
                          18
[692,] 56.4314021
                     18
                           4
attr(,"n")
[1] 20
```

```
# Plot the network structure of the simulations, and the
# observed data
par(mfrow = c(2, 2), mar = c(2, 2, 2, 2))
gplot(ClassNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
            ClassIsTeacher, vertex.cex = 2, edge.lwd = ClassNet^0.75,
            main = "Observed Network", edge.col = rgb(0, 0, 0, (1 - 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 
                         ClassNet))^3))
SimNet <- as.sociomatrix.eventlist(ClassSim, 20) #Create a network from the fitted sim
gplot(SimNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
            ClassIsTeacher, vertex.cex = 2, edge.lwd = SimNet^0.75, main = "Simulated Network",
             edge.col = rgb(0, 0, 0, (1 - 1/(1 + SimNet))^3)
AnarchNet <- as.sociomatrix.eventlist(AnarchSim, 20) #Create a network from the anarchy sim
gplot(AnarchNet, vertex.col = 4 - 2 * ClassIsFemale, vertex.sides = 3 +
            ClassIsTeacher, vertex.cex = 2, edge.lwd = AnarchNet^0.75,
            main = "Anarchic Network", edge.col = rgb(0, 0, 0, (1 - 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 
                         AnarchNet))^3))
# Plot the valued degree distributions
plot(density(degree(ClassNet), bw = "SJ"), lwd = 3, main = "Degree Distribution")
lines(density(degree(SimNet), bw = "SJ"), lwd = 3, col = 2)
lines(density(degree(AnarchNet), bw = "SJ"), lwd = 3, col = 4)
legend("topright", legend = c("Obs", "Sim", "Anarch"), lwd = 3,
          col = c(1, 2, 4))
```

Observed Network

Simulated Network

Anarchic Network

Comparing the plots, we can see several things. First, we note some limitations of our fitted model: while it does relatively well at ensuring that the teachers are central, enduring that many of the strongest interactions

are student-teacher interactions, creating a network in which strong interactions are localized to a fairly small number of (highly reciprocal) dyads, and reproducing the overall valued degree distribution, it also produces a large "halo" of weak side-interactions among the students that is not seen in the observed network. This suggests the potential for further model improvement.

Turning to our "anarchy in the classroom" model, however, we see that the effect of removing teachers is substantively reasonable. The nodes that were formerly teachers no longer have any particular significance, and are now well-mixed with their peers; likewise, without the teachers to focus attention, the network is as a whole much less centralized. Thus, the model does plausibly produce many of the effects one would expect to see from such a change in group composition. Such scenario-based probes can be a useful tool for assessing model behavior, as well as being of possible substantive interest in and of themselves.

Section 3. Simulating *De Novo* Dyadic Relational Event Models

We have seen how the simulate command can be used to simulate draws from fitted rem.dyad objects, and even how these may be modified by switching coefficients or covariates for particular purposes. What if we want to create a *de novo* simulation? This can also be done, using rem.dyad to create a *model skeleton* that can subsequently be used for simulation.

3.0 Creating a model skeleton

To set up a REM for simulation, we need to create an object that records the system size (i.e., number of vertices), effects involved, and other critical information. When we fit models using 'rem.dyad'', this information was encoded in the model object. In the *de novo* case, we use the same approach - except that we simply omit the data!

To see how this is done, let's consider an example. Let us say that we want to create a model for a 25-node REM with a baseline intercept, an AB-BA P-shift, and a recency effect of sending on future sending (RSndSnd). We then proceed by creating a model just as we would normally, but with NULL where the data should be:

NULL edgelist passed to rem.dyad - creating model skeleton. Checking/prepping covariates.

modskel

```
Relational Event Model
Model skeleton (not fit)
```

Embedded coefficients:

```
RSndSnd CovSnd.1 PSAB-BA
0.0004960916 0.0007342584 -0.0007378757
```

Note that the model is correctly identified as a skeleton, with a reminder that it was not fit to data. It also comes equipped with "default" coefficients, but these are not very useful: if a seed coefficient is not passed, rem.dyad always initializes with perturbed coefficients near zero. If one knows what coefficients one wants to embed in the skeleton, one can set them using the coef.seed argument.

Note that none of the inferential or other arguments to rem.dyad are needed here, since no fitting is done. Perhaps less obviously, we do not need to set the ordinal variable, since all REM simulation is done in continuous time. (The resulting trajectories can, of course, be interpreted ordinally, if the pacing constant used was arbitrary.)

3.1 Simulating from the model skeleton

Simulation from the model skeleton is then performed just as simulation with fitted model objects, except that one needs to pass the number of draws to take (nsim, which was optional before) and coef (unless one already embedded the coefficients one wants in the model object). Be sure to enter your coefficients in the order stored in the skeleton, which may not be the order you initially specified the effects! Let's see how this works, using our example:

```
set.seed(1331)
modsim \leftarrow simulate(modskel, nsim = 100, coef = c(0.25, -1, 4),
   covar = list(CovSnd = ModInt))
head(modsim) #See the trajectory
            [,1] [,2] [,3]
[1,] 0.003446229
                    20
                          2
[2,] 0.004616100
                          6
                     9
[3,] 0.005879407
                    25
                         17
[4,] 0.007751835
                         23
                    10
[5,] 0.009434835
                    9
                         20
[6,] 0.015124865
                    14
                         23
grecip(as.sociomatrix.eventlist(modsim, 25), measure = "edgewise") #Relatively reciprocal
      Mut
0.244444
```

Any number of events may be simulated in this way.

3.2 Simulation with time-varying covariates

Time-varying covariates must, by definition, be specified at each time step. rem.dyad understands several covariate formats (see ?rem.dyad):

- Single covariate, time invariant: For CovSnd, CovRec, or CovInt, a vector or single-column matrix/array. For CovEvent, an n by n matrix or array.
- Multiple covariates, time invariant: For CovSnd, CovRec, or CovInt, a two-dimensional n by p matrix/array whose columns contain the respective covariates. For CovEvent, a p by n by n array, whose first dimension indexes the covariate matrices.
- Single or multiple covariates, time varying: For CovSnd, CovRec, or CovInt, an m by n by p array whose respective dimensions index time (i.e., event number), covariate, and actor. For CovEvent, a m by p by n by n array, whose dimensions are analogous to the previous case.

Thus, in the time-varying case, the dimensions of the covariate object must be consistent with nsim. Let's see a simple example, involving a 10-person group with an initial activity covariate that decays with time. We will simulate for 100 time steps, so need to create a 100 by 1 by 10 matrix to hold the covariate (the *i*th slice containing the covariate values "going into" the *i*th event). When creating the skeleton, it is currently necessary to pass covariates as if they are static, since there are not yet multiple time points; the checks that are performed to ensure that the covariates are legal will object if too many time points are given. (This will probably change in the future.) The time-varying version is then passed to the simulator.

```
set.seed(1331)
# Set up the model
tcovar <- array(sweep(sapply(1:10, rep, 100), 1, 1/1.05^(0:99),
    "*"), dim = c(100, 10, 1))
SndInt <- rep(1, 10)
# Note that, in making the skeleton, we need to pass the
# covariates as if they are static - that's because the
# model doesn't contain time points yet.</pre>
```

NULL edgelist passed to rem.dyad - creating model skeleton. Checking/prepping covariates.

On average, dynamics slow down, as we would expect, and more low-numbered (redder) vertices interact after the initial period.

References

Butts, Carter T. (2008). "A Relational Event Framework for Social Action." Sociological Methodology, 38(1), 155-200.

Butts, Carter T. and Marcum, Christopher S. (2017). "A Relational Event Approach to Modeling Behavioral Dynamics." In Andrew Pilney and Marshall Scott Poole (Eds.), *Group Processes: Data-Driven Computational Approaches*. Springer.

Butts, Carter T.; Petrescu-Prahova, Miruna; and Cross, B. Remy. (2007). "Responder Communication Networks in the World Trade Center Disaster: Implications for Modeling of Communication Within Emergency Settings." *Journal of Mathematical Sociology*, 31(2), 121-147.

Marcum, Christopher S. and Butts, Carter T. (2015). "Constructing and Modifying Sequence Statistics for relevent using informR in R." *Journal of Statistical Software*, 64(5). [https://doi.org/10.18637/jss.v064.i05]

Bender-deMoll, Skye and McFarland, Daniel A. (2006). "The Art and Science of Dynamic Network Visualization." Journal of Social Structure, 7. [https://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/]