

FCC SAR

TEST REPORT

of

GSM Phone

Model Name:

T510G

Trade Name:

TINNO

Report No.:

SZ10080009S01

FCC ID.:

XD6T510G

prepared for

SHENZHEN TINNO MOBILE TECHNOLOGY CO.,LTD.

4/F., H-3 Building, OCT Eastern Industrial Park, NO.1 XiangShan East Road., Nan Shan District, Shenzhen, P.R.China.

pidrepared by

Shenzhen Morlab Communications Technology Co., Ltd.

Morlab Laboratory

3/F, Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055 P. R. China

Tel: +86 755 86130398 Fax: +86 755 86130218

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant, it shall not be reproduced except in full, without the written approval of Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory. Any objections should be raised to us within thirty workdays since the date of issue.

Contents

1. GENERAL INFORMATION
1.1. Notes
1.2. Organization item
1.3. Conclusion
2. TESTING LABORATORY4
2.1. Identification of the Responsible Testing Laboratory
2.2. Identification of the Responsible Testing Location
2.3. Accreditation Certificate
2.4. List of Test Equipments
3. TECHNICAL INFORMATION4
3.1. Identification of Applicant5
3.2. Identification of Manufacturer5
3.3. Equipment Under Test (EUT)5
3.3.1. Photographs of the EUT6
3.3.2. Identification of all used EUTs6
4. TEST RESULTS6
4.1. Applied Reference Documents6
4.2. Test Environment/Conditions
4.3. Operational Conditions During Test
4.3.1. Informations On The Testing
4.3.2. The Measurement System
4.3.3. Uncertainty Assessment 14
4.4. MEASUREMENT PROCEDURES
4.4.1. Procedures Used To Establish Test Signal
4.5. Items used in the Test Results List
4.6. Test Results List
ANNEX A ACCREDITATION CERTIFICATE22
ANNEX B PHOTOGRAPHS OF THE EUT24
ANNEX C GRAPH TEST RESULTS27

General Information

1.1. Notes

The test results of this test report relate exclusively to the information specified in section 3.3. Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the identification. The test report may only be reproduced or published in full. Reproduction or publications of extracts from the test report requires the prior written approval of Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory. The test report shall be invalid without all the signatures of testing the Project Manager, the Deputy Project Manager and the Test Lab Manager. Any objections must be raised to Morlab within 30 days since the date when the report is received. It will not be taken into consideration beyond this limit.

1.2. Organization item

Report No.:

SZ10080009S01

Date of Issue:

Sep 10, 2010

Date of Tests:

Sep 1, 2010 - Sep 1, 2010

Responsible for Accreditation:

Shu Luan

Project Manager:

Li Lei

Deputy Project Manager:

Samuel Peng

1.3. Conclusion

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory has verified that all tests as listed in the section 4.11 of this report haven been performed succ essfully with the tested equipment.

Samuel Peng

rannel. Ptr

Tested by

(Responsible for the Test Report)

Certification

Li Lei Reviewed by

(Verification of the Test Report)

Shu Luan

Approved by

(Responsible Test Lab Manager)

2. Testing Laboratory

2.1. Identification of the Responsible Testing Laboratory

Company Name: Shenzhen Morlab Communications Technology Co., Ltd.

Department: Morlab Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

Responsible Test Lab Manager: Mr. Shu Luan
Telephone: +86 755 86130268
Facsimile: +86 755 86130218

2.2. Identification of the Responsible Testing Location

Name: Shenzhen Morlab Communications Technology Co., Ltd.

Morlab Laboratory

Address: 3/F, Electronic Testing Building, Shahe Road, Nanshan

District, Shenzhen, 518055 P. R. China

2.3. Accreditation Certificate

Accredited Testing Laboratory: No. CNAS L3572 (see 0)

2.4. List of Test Equipments

No.	Instrument	Туре	Cal. Date	Cal. Due
1	PC	Dell (Pentium IV 2.4GHz,		
1	rc	SN:X10-23533)		
2	Network	Rohde&Schwarz (CMU200,	2009-9-26	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2	Emulator	SN:105894)	2009-9-20	1 year
3	Voltmeter	Keithley (2000, SN:1000572)	2009-9-24	1year
4	Crystlasticas	Rohde&Schwarz (SML_03,	2009-9-24	1year
4	Synthetizer	SN:101868)	2009-9-24	
5	Amplifier	Nucl udes (ALB216, SN:10800)	2009-9-24	1year
6	Power Meter	Rohde&Schwarz (NRVD, SN:101066)	2009-9-24	1year
7	Probe	Antennessa (SN:SN_3708_EP80)	2009-9-24	1year
8	Phantom	Antennessa (SN:SN_36_08_SAM62)	2009-9-24	1year
9	Liquid	Antennessa (Last Calibration:21 08 08)	2010-8-21	1year

3. Technical Information

Note: the following data is based on the information by the applicant.

3.1. Identification of Applicant

Company Name: SHENZHEN TINNO MOBILE TECHNOLOGY CO.,LTD.

Address: 4/F., H-3 Building, OCT Eastern Industrial Park, NO.1 XiangShan

East Road., Nan Shan District, Shenzhen, P.R.China.

3.2. Identification of Manufacturer

Company Name: SHENZHEN TINNO MOBILE TECHNOLOGY CO.,LTD.

Address: 4/F., H-3 Building, OCT Eastern Industrial Park, NO.1 XiangShan

East Road., Nan Shan District, Shenzhen, P.R.China.

3.3. Equipment Under Test (EUT)

Brand Name: TINNO
Type Name: TINNO
Marking Name: T510G
Hardware Version: V1.0
Software Version: V0.21

Frequency Bands: GSM 850MHz (channel 128:824.20MHz, channel 190:836.59MHz,

channel 251:848.29MHz)

PCS 1900MHz (channel 512:1850.19MHz, channel 661:1880.00MHz,

channel 810:1909.80MHz)

Modulation Mode: GMSK
Antenna type: Build inside

Development Stage: Identical prototype

Battery Model: E500

Battery specification: 1000mAh 3.7V Development Stage Identical prototype

Multislot Class GPRS: Multislot Class 12: EDGE:(n.a)

GPRS Operation Mode Class B

3.3.1. Photographs of the EUT

Please see for photographs of the EUT.

3.3.2. Identification of all used EUTs

The EUT Identity consists of numerical and letter characters (see the table below), the first five numerical characters indicates the Type of the EUT defined by Morlab, the next letter character indicates the test sample, and the following two numerical characters indicates the software version of the test sample.

EUT Identity	Hardware Version	Software Version
1#	V1.0	V0.21

4. Test Results

4.1. Applied Reference Documents

Leading reference documents for testing:

No.	Identity	Document Title
1	47 CFR § 2. 1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
2	FCC OET	Evaluating Compliance with FCC Guidelines for Human
	Bulletin 65	Exposure to Radiofrequency Electromagnetic Fields
	(Edition 97-01),	
	Supplement C	
	(Edition 01-01)	
3	ANSI C95.1-1999	IEEE Standard for Safety Levels with Respect to Human
		Exposure to Radio Frequency Electromagnetic Fields, 3kHz to
		300 GHz
4	IEEE 1528-2003	Recommended Practice for Determining the Peak Spatial-Average
		Specific Absorption Rate(SAR) in the Human Body Due to
		Wireless Communications Devices: Experimental Techniques.

4.2. Test Environment/Conditions

Normal Temperature (NT): 20 ... 25 °C Relative Humidity: 30 ... 75 %

Air Pressure: 980 ... 1020 hPa
Details of Power Supply: 220V/50Hz AC

Extreme Temperature: Low Temperature (LT) = -10° C

High Temperature (HT) = 55° C

Extreme Voltage of the EUT: Normal Voltage (NV) = 3.70V

Low Voltage (LV) = 3.60VHigh Voltage (HV) = 4.20V

Test frequency: GSM 850MHz

PCS 1900MHz

Operation mode: Call established

Power Level: GSM 850 MHz Maximum output power(level 5)

PCS 1900 MHz Maximum output power(level 0)

During SAR test, EUT is in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) is allocated to 128, 190 and 251 respectively in the case of GSM 850 MHz, or to 512, 661 and 810 respectively in the case of PCS 1900 MHz, The EUT, The EUT is commanded to operate at maximum transmitting power.

The EUT shall use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link is used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the handset by at least 35 dB.

4.3. Operational Conditions During Test

4.3.1. Informations On The Testing

The mobile phone antenna and battery are those specified by the manufacturer. The battery is fully charged before each measurement. The output power and frequency are controlled using a base station simulator. The mobile phone is set to transmit at its highest output peak power level.

The mobile phone is test in the "cheek" and "tilted" positions on the left and right sides of the phantom. The mobile phone is placed with the vertical centre line of the body of the mobile phone and the horizontal line crossing the centre of the earpiece in a plane parallel to the sagittal plane of the phantom.

Description of the "cheek" position:

The mobile phone is well placed in the reference plane and the earpiece is in contact with the ear. Then the mobile phone is moved until any point on the front side get in contact with the cheek of the phantom or until contact with the ear is lost.

Description of the "tilted" position:

The mobile phone is well placed in the "cheek" position as described above. Then the mobile phone is moved outward away from the month by an angle of 15 degrees or until contact with the ear lost.

Remark: Please refer to Appendix B for the test setup photos.

4.4. Body-worn Configurations

The body-worn configurations shall be tested with the supplied accessories (belt-clips, holsters, etc.) attached to the device in normal use configuration.

The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm(taking into account of the IEEE 1528 and the place of the antenna)

For body-worn and other configurations a flat phantom shall be used which is comprised of material with electrical properties similar to the corresponding tissues.

SAR Measurement Points in Area Scan

4.5. Measurement procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors can not directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

4.6. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

4.7. SAR Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.8. Probe

For the measurements the Specific Dosimetric E-Field Probe SSE5 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 5 mm

- Distance between probe tip and sensor center: 2.5mm

- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.25 dB

- Calibration range: 835to 2500MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line:1ess than 30°

Probe calibration is realized, in compliance with CENELEC EN 50361 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 50361 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4\left(P_{fw} - P_{bw}\right)}{ab\delta} \cos^2\left(\pi \frac{y}{a}\right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

1 = Skin depth Keithley configuration:

Rate = Medium; Filter =ON; RDGS=10; FILTER TYPE =MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$
 (N=1,2,3)

where DCP is the diode compression point in mV.

4.8.1. Uncertainty Assessment

The following table includes the uncertainty table of the IEEE 1528. The values are determined by Antennessa.

UNCERTAINTY EVALUATION FOR HANDSET SAR TEST

a	b	c	d	e=f(d,k)	f	g	h=	i=	k
							c*f/e	c*g/e	
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci	1g Ui	10g Ui	V
		(+-	Dist.			(10g)	(+-%)	(+-%)	i
		%)							
Measurement System	T			Т	T	Т	Т	Т	
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	
Axial Isotropy	E.2.2	2.5	R				1.02	1.02	
Hemispherical Isotropy	E.2.2	4.0	R				1.63	1.63	
Boundary effect	E.2.3	1.0	R		1	1	0.58	0.58	
Linearity	E.2.4	5.0	R		1	1	2.89	2.89	
System detection limits	E.2.5	1.0	R		1	1	0.58	0.58	
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	
Reponse Time	E.2.7	3.0	R		1	1	1.73	1.73	
Integration Time	E.2.8	2.0	R		1	1	1.15	1.15	
RF ambient Conditions	E.6.1	3.0	R		1	1	1.73	1.73	
Probe positioner Mechanical	E.6.2	2.0	R		1	1	1.15	1.15	
Tolerance									
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R		1	1	0.03	0.03	
Extrapolation, interpolation and	E.5.2	5.0	R		1	1	2.89	2.89	
integration Algoritms for Max.									
SAR Evaluation									
Test sample Related									
Test sample positioning	E.4.2.1	0.03	N	1	1	1	0.03	0.03	N
									-
									1
Device Holder Uncertainty	E.4.1.1	5.00	N	1	1	1	5.00	5.00	
Output power Variation - SAR	6.6.2	3.45	R		1	1	1.99	1.99	
drift measurement									
Phantom and Tissue Parameters	S								

SAR Evaluation

Dipole

Report No.: SZ10080009S01

E.3.1	0.05	R		1	1	0.03	0.03	
E.3.2	2.12	R		0.64	0.43	0.78	0.53	
2.0		-				0	0.23	
E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	M
								!
E.3.2	3.76	R		0.6	0.49	1.30	1.06	
E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
	<u> </u>	<u> </u>						
<u> </u>	<u> </u>	RSS	<u> </u>	<u> </u>		11.13	10.62	
		k				21.70	20.71	
<u></u>	<u></u>							
TELL DE	CEODA.	ANCE	OHEON					ļ
	1	1		Τ.	<u> </u>	T 1.	Τ,	
b	c	a	$e=I(a,\kappa)$	Î	g			k
Sec	Tol	Proh	Div	Ci (1g)	Ci			V
Sec.			Div.	CI (Ig)			_	i
	,	Dist.			(105)	(1 /0)	(1 /0)	1
<u> </u>	, , ,		<u> </u>					
E.2.1	7.0	N	1	1	1	7.00	7.00	
E.2.2	2.5	R				1.02	1.02	
E.2.2	4.0	R				1.63	1.63	
E.2.3	1.0	R		1	1	0.58	0.58	
E.2.4	5.0	R		1	1	2.89	2.89	
E.2.5	1.0	R		1	1	0.58	0.58	
E.2.6	0.02	N	1	1	1	0.02	0.02	<u> </u>
E.2.7	3.0	R		1	1	1.73	1.73	
E.2.8	2.0	R		1	1	1.15	1.15	
E.6.1	3.0	R		1	1	1.73	1.73	
E.6.2	2.0	R		1	1	1.15	1.15	
<u> </u>	<u> </u>		<u> </u>	 	<u> </u>	<u> </u>		\square
E.6.3	0.05	R		1	1	0.03	0.03	
E 5 2	5.0	R		1	1	2.89	2.89	
2.0.2						2.07	2.09	
	E.3.2 E.3.3 E.3.3 E.3.3 E.3.3 FEM PEI b Sec. E.2.1 E.2.2 E.2.2 E.2.2 E.2.3 E.2.4 E.2.5 E.2.6 E.2.7 E.2.8 E.6.1	E.3.2 2.12 E.3.3 5.00 E.3.2 3.76 E.3.3 10.00 TEM PERFORM b c Sec. Tol (+- %) E.2.1 7.0 E.2.2 2.5 E.2.2 4.0 E.2.3 1.0 E.2.4 5.0 E.2.5 1.0 E.2.6 0.02 E.2.7 3.0 E.2.8 2.0 E.6.1 3.0 E.6.2 2.0 E.6.3 0.05	E.3.2 2.12 R E.3.3 5.00 N E.3.2 3.76 R E.3.3 10.00 N RSS RSS R REM PERFORMANCE b c d Sec. Tol Prob. (+- Prob. P	E.3.2 2.12 R E.3.3 5.00 N 1 E.3.2 3.76 R E.3.3 10.00 N 1 RSS k REM PERFORMANCE CHECK b c d e= f(d,k) Sec. Tol Prob. Div. (+- Dist. %) E.2.1 7.0 N 1 E.2.2 2.5 R E.2.2 4.0 R E.2.3 1.0 R E.2.4 5.0 R E.2.4 5.0 R E.2.5 1.0 R E.2.6 0.02 N 1 E.2.7 3.0 R E.2.8 2.0 R E.6.1 3.0 R E.6.2 2.0 R E.6.3 0.05 R	E.3.2 2.12 R 0.64 E.3.3 5.00 N 1 0.64 E.3.2 3.76 R 0.6 E.3.3 10.00 N 1 0.6 RSS	E.3.2 2.12 R 0.64 0.43 E.3.3 5.00 N 1 0.64 0.43 E.3.3 10.00 N 1 0.6 0.49 E.3.3 10.00 N 1 0.6 0.49 RSS	E.3.2 2.12 R 0.64 0.43 0.78 E.3.3 5.00 N 1 0.64 0.43 3.20 E.3.2 3.76 R 0.6 0.6 0.49 1.30 E.3.3 10.00 N 1 0.6 0.49 6.00 RSS 111.13 21.70 FEM PERFORMANCE CHECK b c d e=f(d,k) f g h=c*f/e Sec. Tol Prob. Div. Ci (1g) Ci 1g Ui (10g) (+-%) E.2.1 7.0 N 1 1 1 7.00 E.2.2 2.5 R 10.02 R 1 1 0.58 E.2.3 1.0 R 1 1 0.58 E.2.4 5.0 R 1 1 0.58 E.2.5 1.0 R 1 1 0.58 E.2.6 0.02 N 1 1 1 1 0.05 E.2.7 3.0 R 1 1 1 0.05 E.2.8 2.0 R 1 1 1 1.73 E.2.8 2.0 R 1 1 1 1.73 E.6.1 3.0 R 1 1 1 1.73 E.6.2 2.0 R 1 1 1 1.75 E.6.3 0.05 R 1 1 1 1.15	E.3.2 2.12 R 0.64 0.43 0.78 0.53 E.3.3 5.00 N 1 0.64 0.43 3.20 2.15 E.3.2 3.76 R 0.6 0.49 1.30 1.06 E.3.3 10.00 N 1 0.6 0.49 6.00 4.90 RSS 111.13 10.62 21.70 20.71 TEM PERFORMANCE CHECK b c d e=f(d,k) f g h= c*f(e c*g/e c

Dipole axis to liquid Distance	8,E.4.2	1.00	N		1	1	0.58	0.58	N
									-
									1
Input power and SAR drift	8,6.6.2	3.45	R		1	1	1.99	1.99	
measurement									
Phantom and Tissue Parameters	,								
Phantom Uncertainty (Shape and	E.3.1	0.05	R		1	1	0.03	0.03	
thickness tolerances)									
Liquid conductivity - deviation	E.3.2	2.12	R		0.64	0.43	0.78	0.53	
from target value									
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	M
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	3.76	R		0.6	0.49	1.30	1.06	
from target value									
Liquid permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
measurement uncertainty									
Combined Standard Uncertainty			RSS				9.96	9.39	
Expanded Uncertainty			k				19.42	18.30	
(95% Confidence interval)									

4.8.2. Equipments and results of validation testing

Equipments:

name	Type and specification
Signal generator	E4433B
Directional coupler	450MHz-3GHz
Amplifier	3W 502(10-2500MHz)
Reference dipole	SN 36/08 DIPF 101

Results:

Frequency	835MHz	1900MHz
Target value (1g)	10.8 W/Kg(body)	39.7 W/Kg
250 mW input power	2.753 W/Kg (head)	9.888 W/Kg (head)
250 mW input power	2.774 W/Kg (body)	9.922 W/Kg (body)
Toot value (1g)	11.012 W/Kg (head)	39.552 W/Kg (head)
Test value (1g)	11.096 W/Kg (body)	39.6880 W/Kg (body)

Note:Please refer to check the system performance data, the first 132-143 page. 250 mW input power

4.8.3. Dielectric Performance

The measured 1-gram averaged SAR values of the device against the head and the body are provided in Tables 1 and 2 respectively. The humidity and ambient temperature of test facility were 54% ~60% and 23.0 °C ~23.8°C respectively. The SAM head phantom (SN 0381 SH) were full of the head tissue simulating liquid. The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm (taking into account of the IEEE 1528 and the place of the antenna). A base station simulator was used to control the device during the SAR measurement. The phone was supplied with full-charged battery for each measurement.

For head measurement, the device was tested at the lowest, middle and highest frequencies in the transmit band.

Table 1: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 23.0~23.8°C, humidity: 54~60%.							
/	Frequency	Permittivity ε	Conductivity σ (S/m)				
Target value	835 MHZ	41.5	0.90				
Validation value (Sep 1)	835 MHZ	40.669998	0.866612				
Target value	1900 MHZ	40	1.40				
Validation value (Sep 1)	1900 MHZ	39.993999	1.335397				

For body-worn measurements, the device was tested against flat phantom representing the user body. Under measurement phone was put on in the belt holder.

Table 2: Dielectric Performance of Body Tissue Simulating Liquid

Temperature: 23.0~23.8°C, humidity: 54~60%.							
/	Frequency	Permittivity ε	Conductivity σ (S/m)				
Target value	835 MHz	55.0	0.95				
Validation value (Sep 1)	835 MHz	54.116001	0.974596				
Target value	1900 MHz	53.3	1.52				

·			
Validation value 19	00 MHz	51.540001	1.573978
(Sep 1)			

4.8.4. Simulant liquids

Simulant liquids that are used for testing at frequencies of GSM 850MHz and GSM 1900MHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms.

Approximately 20litres are needed for an upright head compared to about 20litres for a horizontal bath phantom.

Ingredients	Frequency Band		Frequen	cy Band
(% by weight)	835]	MHz	1900	MHz
Tissue Type	Head	Body	Head	Body
Water	41.45	52.4	55.36	40.4
Salt(NaCl)	1.45	1.4	0.35	0.5
Sugar	56.0	45.0	30.45	58.0
HEC	1.0	1.0	0.0	1.0
Bactericide	0.1	0.1	0.0	0.1
Triton	0.0	0.0	0.0	0.0
DGBE	0.0	0.0	13.84	0.0
Acticide SPX	0.0	0.0	0.0	0.0
Dielectric Constant	42.45	56.1	41.00	54.0
Conductivity (S/m)	0.91	0.95	1.38	1.45

4.9. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

Device holder

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

4.10. Items used in the Test Results List

Terms in the column "Verdict" for the test results list of the section 4.11:

Verdict	Description
PASS	EUT passed this test case
FAIL	EUT failed this test case
INC.	EUT did not pass and did not fail this test case, therefore the verdict is inconclusive
Decl.	"Declaration": Morlab has received documents from the applicant and/or manufacturer which show conformity to the applied standards for this test case.
N/A	Test case not applicable for the EUT, see the column "Note" for detailed

4.11.Test Results List

Conducted RF Output Power Test Result

Band	Channel	Frequency (MHz)	Measured Output Power dBm
GSM	128	824.2	31.08
850MHz	190	836.6	32.09
830WI1Z	251	848.8	32.54
GSM 1900MHz	512	1850.2	29.17
	661	1880.0	29.81
	810	1909.8	30.25
GPRS	128	824.2	31.11
850MHz	190	836.6	32.11
650MHZ	251	848.8	32.51
CDDC	512	1850.2	29.16
GPRS 1900MHz	661	1880.0	29.8
1 JUUIVIITIZ	810	1909.8	30.05

Summary of Measurement Results (GSM 850MHz Band)

SAR Values (GSM 850MHz Band), Measured against the head.

Temperature: 23.0~23.8°C, humidity: 54~60%.		
Limit of SAD (W/kg)	1 g Average	
Limit of SAR (W/kg)		1.6
	Measurement Result (W/kg)	
Test Case	1 g Average	Power level
	(W/kg)	(dBm)
Left head, Touch cheek, Channel Low	0.914	31.08
Left head, Touch cheek, Channel Middle	0.926	32.09
Left head, Touch cheek, Channel High	0.911	32.54
Left head, Tilt 15 Degree, Channel Low	0.674	31.08
Left head, Tilt 15 Degree, Channel Middle	0.676	32.09
Left head, Tilt 15 Degree, Channel High	0.662	32.54
Right head, Touch cheek, Channel Low	1.118	31.08
Right head, Touch cheek, Channel Middle	1.039	32.09
Right head, Touch cheek, Channel High	1.004	32.54
Right head, Tilt 15 Degree, Channel Low	0.863	31.08
Right head, Tilt 15 Degree, Channel Middle	0.842	32.09

Right head, Tilt 15 Degree, Channel High	0.781	32.54
--	-------	-------

Summary of Measurement Results (GSM 1900MHz Band)

SAR Values (GSM 1900MHz Band), Measured against the head.

Temperature: 23.0~23.8°C, humidity: 54~60%.		
Limit of SAR (W/kg)	1 g Average	
Limit of SAR (W/kg)	1	1.6
	Measurement Result (W/kg)	
Test Case	1 g Average	Power level
	(W/kg)	(dBm)
Left head, Touch cheek, Channel Low	0.737	29.17
Left head, Touch cheek, Channel Middle	0.793	29.81
Left head, Touch cheek, Channel High	0.711	30.25
Left head, Tilt 15 Degree, Channel Low	0.395	29.17
Left head, Tilt 15 Degree, Channel Middle	0.463	29.81
Left head, Tilt 15 Degree, Channel High	0.411	30.25
Right head, Touch cheek, Channel Low	0.763	29.17
Right head, Touch cheek, Channel Middle	0.834	29.81
Right head, Touch cheek, Channel High	0.766	30.25
Right head, Tilt 15 Degree, Channel Low	0.473	29.17
Right head, Tilt 15 Degree, Channel Middle	0.553	29.81
Right head, Tilt 15 Degree, Channel High	0.483	30.25

SAR Values (GSM 850MHz Band), Measured against the body.

Temperature: 23.0~23.8°C, humidity: 54~60%.		
Limit of SAR (W/kg)	1 g Average	
Limit of SAR (W/kg)	1.6	
	Measuremen	t Result (W/kg)
Test Case	1 g Average	Power level
	(W/kg)	(dBm)
Side, Low frequency GPRS mode Back towards the	1.205	31.11
phantom	1.203	31.11
Side, Middle frequency GPRS mode Back towards the	1.181	32.11
phantom	1.101	32.11
Side, High frequency GPRS mode Back towards the	0.836	32.51
phantom	0.050	32.31
Side, Low frequency GPRS mode Keyboard towards	1.027	31.11
the phantom	1.027	31.11
Side, Low frequency GSM mode Back towards the	0.985	31.08

Phantom		
Side, Middle frequency GSM mode Back towards the phantom	1.052	31.08
Side, High frequency GSM mode Back towards the phantom	0.956	32.09
Side, Low frequency GSM mode Back towards the Phantom (with earphone)	0.979	31.08

SAR Values (GSM 1900MHz Band), Measured against the body.

Temperature: 23.0~23.8°C, humidity: 54~60%.		
Limit of CAD (W/Ira)	1 g Average	
Limit of SAR (W/kg)	1.6	
	Measurement Result (W/kg)	
Test Case	1 g Average	Power level
	(W/kg)	(dBm)
Side, Low frequency GPRS mode Back towards the	0.942	29.16
phantom	0.512	27.10
Side, Middle frequency GPRS mode Back towards the	1.047 29.8	
phantom	1.017	27.0
Side, High frequency GPRS mode Back towards the	0.946 30.05	
phantom	0.5 10	30.03
Side, Middle frequency GPRS mode Keyboard towards	0.894	29.8
the phantom	0.071	27.0
Side, Low frequency GSM mode Back towards the	0.634	29.17
Phantom	0.031	27.17
Side, Middle frequency GSM mode Back towards the	0.732	29.81
phantom	0.732	27.01
Side, High frequency GSM mode Back towards the	0.641	30.25
phantom	0.011	30.23
Side, Middle frequency GSM mode Back towards the	0.730	29.81
Phantom (with earphone)	0.750	27.01

Note: 1. The depth of the body tissue was 15.1cm. The distance between the back of the device and the bottom of the flat phantom is 1.5cm(taking into account of the IEEE 1528 and the place of the antenna)

- 2. Bluetooth maximum power is very low, the test is not considered.
- 3. Simultaneous transmitter testing to comply with FCC KDB 648474 File Description.
- 4. Power Output test data, please refer to EMC test report.

Annex A Accreditation Certificate

Annex B Photographs of the EUT

1 EUT Left Head Touch Cheek Position

2 EUT Left Head Tilt15 Position

3 EUT Right Head Touch Cheek Position

4 EUT Right Head Tilt15 Position

5 Side Position

6 With Headphone

Annex C Graph Test Results

	BAND	<u>PARAMETERS</u>
TYPE	<u>GSM850</u>	Measurement 1: Right Head with Cheek device position on Low Channel in GSM mode Measurement 2: Right Head with Cheek device position on Middle Channel in GSM mode Measurement 3: Right Head with Cheek device position on High Channel in GSM mode Measurement 4: Right Head with Tilt device position on Low Channel in GSM mode Measurement 5: Right Head with Tilt device position on Middle Channel in GSM mode Measurement 6: Right Head with Tilt device position on High Channel in GSM mode Measurement 7: Left Head with Cheek device position on Low Channel in GSM mode Measurement 8: Left Head with Cheek device position on Middle Channel in GSM mode Measurement 9: Left Head with Cheek device position on High Channel in GSM mode Measurement 10: Left Head with Tilt device position on Low Channel in GSM mode Measurement 11: Left Head with Tilt device position on Middle Channel in GSM mode Measurement 12: Left Head with Tilt device position on High Channel in GSM mode Measurement 13: Validation Plane with Body device position on Low Channel in GPRS mode Measurement 14: Validation Plane with Body device position on Middle Channel in GPRS mode Measurement 15: Validation Plane with Body device position on High Channel in GPRS mode Measurement 16: Validation Plane with Body device position on Low Channel in GPRS mode Measurement 16: Validation Plane with Body device position on Low Channel in GPRS mode Measurement 16: Validation Plane with Body device position on Low Channel in GPRS mode (back) Measurement 17: Validation Plane with Body device position on Low Channel in GPRS mode Measurement 17: Validation Plane with Body device position on Low Channel in GSM mode Measurement 18: Validation Plane with Body device position on Low Channel in GSM mode Measurement 18: Validation Plane with Body device position on Low Channel in GSM mode Measurement 18: Validation Plane with Body device position on Low Channel in GSM mode Measurement 18: Validation Plane with Body device position on Low Channel in GSM mode Measu

Measurement 19: Right Head with Cheek device position on Low Channel in GSM mode Measurement 20: Right Head with Cheek device position on Middle Channel in GSM mode Measurement 21: Right Head with Cheek device position on High Channel in GSM mode Measurement 22: Right Head with Tilt device position on Low Channel in GSM mode Measurement 23: Right Head with Tilt device position on Middle Channel in GSM mode Measurement 24: Right Head with Tilt device position on High Channel in GSM mode Measurement 25: Left Head with Cheek device position on Low Channel in GSM mode Measurement 26: Left Head with Cheek device position on Middle Channel in GSM mode
High Channel in GSM mode Measurement 31: Validation Plane with Body device
position on Low Channel in GPRS mode
Measurement 32: Validation Plane with Body device
position on Middle Channel in GPRS mode
Measurement 33: Validation Plane with Body device
position on High Channel in GPRS mode
Measurement 34: Validation Plane with Body device
position on Middle Channel in GPRS mode (back)
Measurement 35: Validation Plane with Body device
position on Middle Channel in GSM mode
Measurement 36: Validation Plane with Body device
position on Middle Channel in GSM mode
 (with earphone)

MEASUREMENT 1

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 32 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012
Relative permittivity (real part)	41.790001
Relative permittivity	18.926250

Conductivity (S/m)	0.866612
SAR drift (%)	1.690000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-27.00, Y=-12.00

SAR 10g (W/Kg)	0.754830
SAR 1g (W/Kg)	1.118456

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.1115	0.7936	0.5777	0.4000	0.2894	0.2092
(W/Kg)							

MEASUREMENT 2

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 31 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976	
Relative permittivity (real part)	40.669998	
Relative permittivity	19.120001	

Conductivity (S/m)	0.888655
SAR drift (%)	-1.140000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-25.00, Y=-14.00

SAR 10g (W/Kg)	0.716218	
SAR 1g (W/Kg)	1.039002	

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.0563	0.7902	0.5652	0.4127	0.2984	0.2054
(W/Kg)							

MEASUREMENT 3

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 28 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.799988
Relative permittivity (real part)	41.675999
Relative permittivity	18.967199

Conductivity (S/m)	0.894409
SAR drift (%)	0.480000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-27.00, Y=-15.00

SAR 10g (W/Kg)	0.693554
SAR 1g (W/Kg)	1.003844

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.0346	0.7341	0.5488	0.3789	0.2728	0.1959
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 27 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Tilt		
Band	GSM850		
Channels	Low		
Signal	GSM		

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012		
Relative permittivity (real part)	41.790001		
Relative permittivity	18.926250		

Conductivity (S/m)	0.866612		
SAR drift (%)	-1.650000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-17.00, Y=0.00

SAR 10g (W/Kg)	0.567876		
SAR 1g (W/Kg)	0.863226		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.8995	0.5968	0.4109	0.2774	0.1866	0.1327
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 27 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Tilt		
Band	GSM850		
Channels	Middle		
Signal	GSM		

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976		
Relative permittivity (real part)	40.669998		
Relative permittivity	19.120001		

Conductivity (S/m)	0.888655		
SAR drift (%)	-1.340000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-18.00, Y=-7.00

SAR 10g (W/Kg)	0.556139		
SAR 1g (W/Kg)	0.842124		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.8547	0.6070	0.4204	0.2976	0.2096	0.1487
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 20 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Tilt		
Band	GSM850		
Channels	High		
Signal	GSM		

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.799988
Relative permittivity (real part)	41.675999
Relative permittivity	18.967199

Conductivity (S/m)	0.894409	
SAR drift (%)	-0.370000	
Ambient Temperature:	22.6°C	
Liquid Temperature:	22.3°C	
ConvF:	28.479,25.214,27.196	
Crest factor:	1:8	

Maximum location: X=-17.00, Y=-1.00

SAR 10g (W/Kg)	0.518415
SAR 1g (W/Kg)	0.780992

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.7994	0.5300	0.3561	0.2548	0.1713	0.1204
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 26 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012
Relative permittivity (real part)	41.790001
Relative permittivity	18.926250

Conductivity (S/m)	0.866612
SAR drift (%)	-1.760000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=-18.00, Y=-9.00

SAR 10g (W/Kg)	0.634618
SAR 1g (W/Kg)	0.914341

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.9451	0.6984	0.5057	0.3637	0.2672	0.1879
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 28 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001

Conductivity (S/m)	0.888655	
SAR drift (%)	-1.260000	
Ambient Temperature:	22.6°C	
Liquid Temperature:	22.3°C	
ConvF:	28.479,25.214,27.196	
Crest factor:	1:8	

Maximum location: X=-23.00, Y=-10.00

SAR 10g (W/Kg)	0.641196
SAR 1g (W/Kg)	0.925927

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.9617	0.7180	0.5274	0.3803	0.2740	0.1994
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 25 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.799988
Relative permittivity (real part)	41.675999
Relative permittivity	18.967199

Conductivity (S/m)	0.894409		
SAR drift (%)	-0.860000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-20.00, Y=-9.00

SAR 10g (W/Kg)	0.628395		
SAR 1g (W/Kg)	0.910676		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.9442	0.6952	0.4985	0.3699	0.2613	0.1857
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 26 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012
Relative permittivity (real part)	41.790001
Relative permittivity	18.926250

Conductivity (S/m)	0.866612		
SAR drift (%)	-1.140000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=-11.00, Y=-9.00

SAR 10g (W/Kg)	0.457132		
SAR 1g (W/Kg)	0.673666		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.7008	0.4855	0.3576	0.2502	0.1775	0.1282
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 25 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976
Relative permittivity (real part)	40.669998
Relative permittivity	19.120001

Conductivity (S/m)	0.888655	
SAR drift (%)	0.410000	
Ambient Temperature:	22.6°C	
Liquid Temperature:	22.3°C	
ConvF:	28.479,25.214,27.196	
Crest factor:	1:8	

Maximum location: X=-15.00, Y=-9.00

SAR 10g (W/Kg)	0.462005
SAR 1g (W/Kg)	0.675567

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.7018	0.5029	0.3679	0.2671	0.1881	0.1357
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 24 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Tilt
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.799988
Relative permittivity (real part)	41.675999
Relative permittivity	18.967199

Conductivity (S/m)	0.894409	
SAR drift (%)	-0.390000	
Ambient Temperature:	22.6°C	
Liquid Temperature:	22.3°C	
ConvF:	28.479,25.214,27.196	
Crest factor:	1:8	

Maximum location: X=-16.00, Y=-8.00

SAR 10g (W/Kg)	0.453625	
SAR 1g (W/Kg)	0.662144	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.6940	0.5107	0.3591	0.2543	0.1836	0.1334
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 24 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position	Body	
Band	GSM850	
Channels	Low	
Signal	GPRS	

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012	
Relative permittivity (real part)	54.116001	
Relative permittivity	21.284550	

Conductivity (S/m)	0.974596	
SAR drift (%)	-0.250000	
Ambient Temperature:	22.6°C	
Liquid Temperature:	22.3°C	
ConvF:	28.479,25.214,27.196	
Crest factor:	1:2	

Maximum location: X=7.00, Y=5.00

SAR 10g (W/Kg)	0.880679
SAR 1g (W/Kg)	1.204635

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.4460	1.0333	0.7858	0.5619	0.4141	0.3062
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 22 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position	Body	
Band	GSM850	
Channels	Middle	
Signal	GPRS	

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976
Relative permittivity (real part)	55.709999
Relative permittivity	21.709999

Conductivity (S/m)	1.009033
SAR drift (%)	-1.260000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:2

Maximum location: X=6.00, Y=8.00

SAR 10g (W/Kg)	0.821351
SAR 1g (W/Kg)	1.181319

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.2236	0.8933	0.6366	0.4638	0.3334	0.2441
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 25 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position	Body	
Band	GSM850	
Channels	High	
Signal	GPRS	

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.799988
Relative permittivity (real part)	54.014999
Relative permittivity	21.332850

Conductivity (S/m)	1.005962
SAR drift (%)	-0.310000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:2

Maximum location: X=7.00, Y=7.00

SAR 10g (W/Kg)	0.582276
SAR 1g (W/Kg)	0.836483

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.8632	0.6247	0.4544	0.3197	0.2418	0.1684
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 27 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	GSM850		
Channels	Low		
Signal	GPRS		

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012		
Relative permittivity (real part)	54.116001		
Relative permittivity	21.284550		

Conductivity (S/m)	0.974596		
SAR drift (%)	-3.450000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:2		

Maximum location: X=8.00, Y=0.00

SAR 10g (W/Kg)	0.710080		
SAR 1g (W/Kg)	1.027398		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.0657	0.7725	0.5528	0.3930	0.2876	0.2133
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 6 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	GSM850		
Channels	Low		
Signal	GSM		

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012		
Relative permittivity (real part)	54.116001		
Relative permittivity	21.284550		

Conductivity (S/m)	0.974596		
SAR drift (%)	-1.280000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:8		

Maximum location: X=0.00, Y=8.00

SAR 10g (W/Kg)	0.693930		
SAR 1g (W/Kg)	0.985055		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.0234	0.7285	0.5593	0.3972	0.2915	0.2127
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 22 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt		
Phantom	Validation plane		
Device Position	Body		
Band	GSM850		
Channels	Middle		
Signal	GSM		

B. SAR Measurement Results

Middle Band SAR (Channel 190):

Frequency (MHz)	836.599976
Relative permittivity (real part)	55.709999
Relative permittivity	21.709999

Conductivity (S/m)	1.009033
SAR drift (%)	-1.260000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=6.00, Y=8.00

SAR 10g (W/Kg)	0.675541
SAR 1g (W/Kg)	1.052244

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.2236	0.8933	0.6366	0.4638	0.3334	0.2441
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 25 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 251):

Frequency (MHz)	848.799988
Relative permittivity (real part)	54.014999
Relative permittivity	21.332850

Conductivity (S/m)	1.005962
SAR drift (%)	-0.310000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=7.00, Y=7.00

SAR 10g (W/Kg)	0.541555
SAR 1g (W/Kg)	0.956511

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.8632	0.6247	0.4544	0.3197	0.2418	0.1684
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 6 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM850
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 128):

Frequency (MHz)	824.200012
Relative permittivity (real part)	54.116001
Relative permittivity	21.284550

Conductivity (S/m)	0.974596
SAR drift (%)	-1.280000
Ambient Temperature:	22.6°C
Liquid Temperature:	22.3°C
ConvF:	28.479,25.214,27.196
Crest factor:	1:8

Maximum location: X=0.00, Y=8.00

SAR 10g (W/Kg)	0.691163
SAR 1g (W/Kg)	0.979342

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	1.0234	0.7285	0.5593	0.3972	0.2915	0.2127
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 24 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 512):

Frequency (MHz)	1850.199951		
Relative permittivity (real part)	39.993999		
Relative permittivity	12.991650		

Conductivity (S/m)	1.335397		
SAR drift (%)	-1.000000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	40.625,34.773,38.535		
Crest factor:	1:8		

Maximum location: X=-2.00, Y=-21.00

SAR 10g (W/Kg)	0.344500
SAR 1g (W/Kg)	0.763241

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.0798	0.0484	0.0301	0.0193	0.0117	0.0068
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 25 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000		
Relative permittivity (real part)	38.509998		
Relative permittivity	13.750000		

Conductivity (S/m)	1.436111		
SAR drift (%)	0.400000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	40.625,34.773,38.535		
Crest factor:	1:8		

Maximum location: X=-5.00, Y=-22.00

SAR 10g (W/Kg)	0.472988		
SAR 1g (W/Kg)	0.834851		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1325	0.0823	0.0511	0.0320	0.0181	0.0115
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 28 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 810):

Frequency (MHz)	1909.800049
Relative permittivity (real part)	39.929001
Relative permittivity	13.156500

Conductivity (S/m)	1.395905	
SAR drift (%)	-1.690000	
Ambient Temperature:	22.5°C	
Liquid Temperature:	22.3°C	
ConvF:	40.625,34.773,38.535	
Crest factor:	1:8	

Maximum location: X=-7.00, Y=-24.00

SAR 10g (W/Kg)	0.397554	
SAR 1g (W/Kg)	0.765681	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1744	0.1125	0.0671	0.0409	0.0256	0.0162
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 24 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM1900
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 512):

Frequency (MHz)	1850.199951
Relative permittivity (real part)	39.993999
Relative permittivity	12.991650

Conductivity (S/m)	1.335397
SAR drift (%)	-0.470000
Ambient Temperature:	22.5°C
Liquid Temperature:	22.3°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:8

Maximum location: X=-1.00, Y=-11.00

SAR 10g (W/Kg)	0.256841	
SAR 1g (W/Kg)	0.473209	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1037	0.0616	0.0374	0.0233	0.0143	0.0090
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 24 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000
Relative permittivity (real part)	38.509998
Relative permittivity	13.750000

Conductivity (S/m)	1.436111
SAR drift (%)	0.120000
Ambient Temperature:	22.5°C
Liquid Temperature:	22.3°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:8

Maximum location: X=-1.00, Y=-14.00

SAR 10g (W/Kg)	0.296623
SAR 1g (W/Kg)	0.553163

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1828	0.1084	0.0629	0.0388	0.0229	0.0150
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 22 seconds

A. Experimental conditions.

Phantom File	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Tilt
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 810):

Frequency (MHz)	1909.800049
Relative permittivity (real part)	39.929001
Relative permittivity	13.156500

Conductivity (S/m)	1.395905
SAR drift (%)	1.400000
Ambient Temperature:	22.5°C
Liquid Temperature:	22.3°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:8

Maximum location: X=-1.00, Y=-15.00

SAR 10g (W/Kg)	0.244489
SAR 1g (W/Kg)	0.483492

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2342	0.1394	0.0849	0.0500	0.0307	0.0169
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 25 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Left head
Device Position	Cheek
Band	GSM1900
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 512):

Frequency (MHz)	1850.199951
Relative permittivity (real part)	39.993999
Relative permittivity	12.991650

Conductivity (S/m)	1.335397	
SAR drift (%)	-0.050000	
Ambient Temperature:	22.5°C	
Liquid Temperature:	22.3°C	
ConvF:	40.625,34.773,38.535	
Crest factor:	1:8	

Maximum location: X=-18.00, Y=10.00

SAR 10g (W/Kg)	0.368017
SAR 1g (W/Kg)	0.737634

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1232	0.0794	0.0494	0.0297	0.0375	0.0111
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 27 seconds

A. Experimental conditions.

Phantom File	zinf3.txt		
Phantom	Left head		
Device Position	Cheek		
Band	GSM1900		
Channels	Middle		
Signal	GSM		

B. SAR Measurement Results

Frequency (MHz)	1880.000000		
Relative permittivity (real part)	38.509998		
Relative permittivity	13.750000		

Conductivity (S/m)	1.436111		
SAR drift (%)	-0.960000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	40.625,34.773,38.535		
Crest factor:	1:8		

Maximum location: X=-21.00, Y=10.00

SAR 10g (W/Kg)	0.414378		
SAR 1g (W/Kg)	0.793133		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2189	0.1369	0.0833	0.0498	0.0307	0.0188
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 23 seconds

A. Experimental conditions.

Phantom File	zinf3.txt		
Phantom	Left head		
Device Position	Cheek		
Band	GSM1900		
Channels	High		
Signal	GSM		

B. SAR Measurement Results

Higher Band SAR (Channel 810):

Frequency (MHz)	1909.800049		
Relative permittivity (real part)	39.929001		
Relative permittivity	13.156500		

Conductivity (S/m)	1.395905		
SAR drift (%)	0.900000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	40.625,34.773,38.535		
Crest factor:	1:8		

Maximum location: X=-22.00, Y=10.00

SAR 10g (W/Kg)	0.356202		
SAR 1g (W/Kg)	0.711545		

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2985	0.1844	0.1134	0.0670	0.0400	0.0239
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 22 seconds

A. Experimental conditions.

Phantom File	zinf3.txt		
Phantom	Left head		
Device Position	Tilt		
Band	GSM1900		
Channels	Low		
Signal	GSM		

B. SAR Measurement Results

Lower Band SAR (Channel 512):

Frequency (MHz)	1850.199951
Relative permittivity (real part)	39.993999
Relative permittivity	12.991650

Conductivity (S/m)	1.335397	
SAR drift (%)	-1.580000	
Ambient Temperature:	22.5°C	
Liquid Temperature:	22.3°C	
ConvF:	40.625,34.773,38.535	
Crest factor:	1:8	

Maximum location: X=-11.00, Y=9.00

SAR 10g (W/Kg)	0.215484
SAR 1g (W/Kg)	0.395337

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1436	0.0872	0.0510	0.0314	0.0190	0.0109
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 22 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Left head
Device Position	Tilt
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Frequency (MHz)	1880.000000
Relative permittivity (real part)	38.509998
Relative permittivity	13.750000

Conductivity (S/m)	1.436111
SAR drift (%)	0.740000
Ambient Temperature:	22.5°C
Liquid Temperature:	22.3°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:8

Maximum location: X=-10.00, Y=9.00

SAR 10g (W/Kg)	0.225356
SAR 1g (W/Kg)	0.463404

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.2364	0.1424	0.0845	0.0507	0.0298	0.0177
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 7 minutes 22 seconds

A. Experimental conditions.

Phantom File	zinf3.txt
Phantom	Left head
Device Position	Tilt
Band	GSM1900
Channels	High
Signal	GSM

B. SAR Measurement Results

Higher Band SAR (Channel 810):

Frequency (MHz)	1909.800049
Relative permittivity (real part)	39.929001
Relative permittivity	13.156500

Conductivity (S/m)	1.395905	
SAR drift (%)	-1.350000	
Ambient Temperature:	22.5°C	
Liquid Temperature:	22.3°C	
ConvF:	40.625,34.773,38.535	
Crest factor:	1:8	

Maximum location: X=-11.00, Y=8.00

SAR 10g (W/Kg)	0.211237
SAR 1g (W/Kg)	0.411235

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.3202	0.1911	0.1151	0.0684	0.0417	0.0243
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Low
Signal	GPRS

B. SAR Measurement Results

Lower Band SAR (Channel 512):

Frequency (MHz)	1850.199951		
Relative permittivity (real part)	10.000000		
Relative permittivity	12.000000		

Conductivity (S/m)	1.233467		
SAR drift (%)	-0.070000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	40.625,34.773,38.535		
Crest factor:	1:2		

Maximum location: X=0.00, Y=40.00

SAR 10g (W/Kg)	0.587291
SAR 1g (W/Kg)	0.942151

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.0709	0.0393	0.0220	0.0127	0.0070	0.0046
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	GPRS

B. SAR Measurement Results

Frequency (MHz)	1880.000000		
Relative permittivity (real part)	51.540001		
Relative permittivity	15.070000		

Conductivity (S/m)	1.573978		
SAR drift (%)	0.090000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	40.625,34.773,38.535		
Crest factor:	1:2		

Maximum location: X=0.00, Y=40.00

SAR 10g (W/Kg)	0.525491
SAR 1g (W/Kg)	1.047062

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1253	0.0682	0.0391	0.0223	0.0121	0.0079
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	High
Signal	GPRS

B. SAR Measurement Results

Higher Band SAR (Channel 810):

Frequency (MHz)	1909.800049
Relative permittivity (real part)	10.000000
Relative permittivity	12.000000

Conductivity (S/m)	1.273200		
SAR drift (%)	-0.430000		
Ambient Temperature:	22.5°C		
Liquid Temperature:	22.3°C		
ConvF:	40.625,34.773,38.535		
Crest factor:	1:2		

Maximum location: X=-22.00, Y=25.00

SAR 10g (W/Kg)	0.541442	
SAR 1g (W/Kg)	0.946608	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1544	0.0865	0.0495	0.0286	0.0156	0.0092
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	GPRS

B. SAR Measurement Results

Frequency (MHz)	1880.000000
Relative permittivity (real part)	51.540001
Relative permittivity	15.070000

Conductivity (S/m)	1.573978
SAR drift (%)	0.090000
Ambient Temperature:	22.5°C
Liquid Temperature:	22.3°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:2

Maximum location: X=0.00, Y=40.00

SAR 10g (W/Kg)	0.416643	
SAR 1g (W/Kg)	0.894174	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1253	0.0682	0.0391	0.0223	0.0121	0.0079
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Low
Signal	GSM

B. SAR Measurement Results

Lower Band SAR (Channel 512):

Frequency (MHz)	1850.199951
Relative permittivity (real part)	10.000000
Relative permittivity	12.000000

Conductivity (S/m)	1.233467
SAR drift (%)	-0.070000
Ambient Temperature:	22.5°C
Liquid Temperature:	22.3°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:2

Maximum location: X=0.00, Y=40.00

SAR 10g (W/Kg)	0.327462
SAR 1g (W/Kg)	0.634735

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.0709	0.0393	0.0220	0.0127	0.0070	0.0046
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Frequency (MHz)	1880.000000
Relative permittivity (real part)	51.540001
Relative permittivity	15.070000

Conductivity (S/m)	1.573978
SAR drift (%)	0.090000
Ambient Temperature:	22.5°C
Liquid Temperature:	22.3°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:8

Maximum location: X=0.00, Y=40.00

SAR 10g (W/Kg)	0.364883
SAR 1g (W/Kg)	0.732062

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1253	0.0682	0.0391	0.0223	0.0121	0.0079
(W/Kg)							

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt	
Phantom	Validation plane	
Device Position	Body	
Band	GSM1900	
Channels	High	
Signal	GSM	

B. SAR Measurement Results

Higher Band SAR (Channel 810):

Frequency (MHz)	1909.800049
Relative permittivity (real part)	10.000000
Relative permittivity	12.000000

Conductivity (S/m)	1.273200	
SAR drift (%)	-0.430000	
Ambient Temperature:	22.5°C	
Liquid Temperature:	22.3°C	
ConvF:	40.625,34.773,38.535	
Crest factor:	1:8	

Maximum location: X=-22.00, Y=25.00

SAR 10g (W/Kg)	0.325224
SAR 1g (W/Kg)	0.641247

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1544	0.0865	0.0495	0.0286	0.0156	0.0092
(W/Kg)							

MEASUREMENT 40

Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 1/9/2010

Measurement duration: 9 minutes 7 seconds

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	Middle
Signal	GSM

B. SAR Measurement Results

Middle Band SAR (Channel 661):

Frequency (MHz)	1880.000000	
Relative permittivity (real part)	51.540001	
Relative permittivity	15.070000	

Conductivity (S/m)	1.573978	
SAR drift (%)	0.090000	
Ambient Temperature:	22.5°C	
Liquid Temperature:	22.3°C	
ConvF:	40.625,34.773,38.535	
Crest factor:	1:8	

Maximum location: X=0.00, Y=40.00

SAR 10g (W/Kg)	0.364144	
SAR 1g (W/Kg)	0.730522	

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	0.1253	0.0682	0.0391	0.0223	0.0121	0.0079
(W/Kg)							

System Performance Check Data(835MHz Head)

Type: Phone measurement (Complete)

Date of measurement: 1/9/2010

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM 835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Middle Band SAR:

Frequency (MHz)	835.00000
Relative permittivity (real part)	40.669998
Relative permittivity	18.926250
Conductivity (S/m)	0.866612

SAR drift (%)	-0.050000		
Ambient Temperature:	22.6°C		
Liquid Temperature:	22.3°C		
ConvF:	28.479,25.214,27.196		
Crest factor:	1:1		

Maximum location: X=5.00, Y=1.00

SAR 10g (W/Kg)	1.946643		
SAR 1g (W/Kg)	2.753735		

System Performance Check Data(835MHz Body)

Type: Phone measurement (Complete)

Date of measurement: 1/9/2010

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM 835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Middle Band SAR:

Frequency (MHz)	835.000000	
Relative permittivity (real part)	54.116001	
Relative permittivity	15.070000	
Conductivity (S/m)	0.974596	

SAR drift (%)	-0.140000
Ambient Temperature:	23.5°C
Liquid Temperature:	22.8°C
ConvF:	28.559,25.681,27.588
Crest factor:	1:1

SAR 10g (W/Kg)	1.71663
SAR 1g (W/Kg)	2.774634

System Performance Check Data(1900MHz Head)

Type: Phone measurement (Complete)

Date of measurement: 1/9/2010

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	
Signal	CW

B. SAR Measurement Results

Lower Band SAR:

Frequency (MHz)	1900.000000
Relative permittivity (real part)	39.481223
Relative permittivity	12.991650
Conductivity (S/m)	1.395758

SAR drift (%)	0.570000
Ambient Temperature:	23.5°C
Liquid Temperature:	22.8°C
ConvF:	40.136,34.843,38.721
Crest factor:	1:1

Maximum location: X=7.00, Y=8.00

SAR 10g (W/Kg)	5.978466
SAR 1g (W/Kg)	9.888446

System Performance Check Data(1900MHz Body)

Type: Phone measurement (Complete)

Date of measurement: 1/9/2010

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

A. Experimental conditions.

Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Device Position	Body
Band	GSM1900
Channels	
Signal	CW

B. SAR Measurement Results

Lower Band SAR:

Frequency (MHz)	1900.000000
Relative permittivity (real part)	51.540001
Relative permittivity (imaginary	12.991650
part)	

Conductivity (S/m)	1.573978
SAR drift (%)	0.570000
Ambient Temperature:	23.5°C
Liquid Temperature:	22.8°C
ConvF:	40.625,34.773,38.535
Crest factor:	1:1

SAR 10g (W/Kg)	5.746644
SAR 1g (W/Kg)	9.922524

