AIM: Implementation of Time Series Analysis.

Tool: Jupyter Notebook

Roll No. 412039 ¶

```
In [1]:
import pandas as pd
df = pd.read_csv("Downloads/AirPassengers.csv")

In [2]:
df.head()
```

Out[2]:

Month

	Month	#Passengers
0	1949-01	112
1	1949-02	118
2	1949-03	132
3	1949-04	129
4	1949-05	121

In [4]: ▶

```
df['Month'] = pd.to_datetime(df['Month'], format='%Y-%m')
df.index = df['Month']
del df['Month']
print(df.head())
```

#Passengers

1949-01-01	112
1949-02-01	118
1949-03-01	132
1949-04-01	129
1949-05-01	121

In [19]: ▶

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.lineplot(x='Month', y='#Passengers', data=df)
```

Out[19]:

<AxesSubplot:xlabel='Month', ylabel='#Passengers'>

Stationarity Checking

```
In [20]: ▶
```

```
rolling_mean = df.rolling(7).mean()
rolling_std = df.rolling(7).std()
plt.plot(df, color="blue",label="Original Passenger Data")
plt.plot(rolling_mean, color="red", label="Rolling Mean Passenger Number")
plt.plot(rolling_std, color="black", label = "Rolling Standard Deviation in Passenger Nu
plt.title("Passenger Time Series, Rolling Mean, Standard Deviation")
plt.legend(loc="best")
```

Out[20]:

<matplotlib.legend.Legend at 0x25ca247d430>


```
In [21]:

from statsmodels.tsa.stattools import adfuller
```

```
Values
                                      Metric
0
     0.815369
                            Test Statistics
1
     0.991880
                                     p-value
2
   13.000000
                           No. of lags used
3
  130.000000 Number of observations used
4
   -3.481682
                        critical value (1%)
5
                        critical value (5%)
    -2.884042
6
    -2.578770
                       critical value (10%)
```

Autocorrelation:

if our passenger data has strong autocorrelation, we can assume that high passenger numbers

today eugaget a etrong likelihood that they will be high temorrow as well

```
In [22]:

autocorrelation_lag1 = df['#Passengers'].autocorr(lag=1)
print("One Month Lag: ", autocorrelation_lag1)
```

One Month Lag: 0.9601946480498522

Conclusion: Thus, we have see how the time series analysis is done using adfuller library for Stationarity and to find autocorrelation using autocorr function.