∨ <u>탐색적 데이터 분석(EDA)</u>

- ▼ 탐색적 데이터 분석(Exploratory Data Analysis)란?
 - 수집한 데이터가 들어왔을 때, 이를 다양한 각도에서 관찰하고 이해하는 과정
 - 데이터를 분석하기 전에 그래프나 통계적인 방법으로 자료를 직관적으로 바라보는 과정

- ∨ 필요한 이유
 - 데이터의 분포 및 값을 검토함으로써 데이터가 표현하는 현상을 더 잘 이해하고, 데이터에 대한 잠재적인 문제를 발견할 수 있음
 - 이를 통해, 본격적인 분석에 들어가기에 앞서 데이터의 수집을 결정할 수 있음
 - 다양한 각도에서 살펴보는 과정을 통해 문제 정의 단계에서 미쳐 발생하지 못했을 다양한 패턴을 발견하고, 이를 바탕으로 기존의 가설을 수정하거나 새로운 가설을 세울 수 있음

EDA의 목적

- 데이터이해
 - 데이터의 구조, 변수 유형, 변수 간의 관계를 파악한다.
- 이상치 및 오류 탐지
 - 데이터 중 이상치나 오류가 있는지 확인하여 데이터의 정제를 돕는다.
- 패턴 발견
 - 변수 간의 상관 관계나 패턴을 발견하여 가설을 수립하고 향후 분석 방향을 설정한다.
- 중요 변수 식별
 - 분석에 중요한 변수를 식별하고, 불필요하거나 중복되는 변수를 제거한다.

- 1 #https://velog.jo/@alajnau331/%ED%83%90%EC%83%89%EC%A0%81-%EB%8D%B0%EC%9D%B4%ED%84%B0-%EB%B6%84%EC%84%9DEDA%EC%9D%B4%EB%9E%80
- 2 import pandas as pd
- 3 doc = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/ML/DataSet/covid.csv",encoding='utf-8-sig')
- 1 #데이터 일부 확인하기 (head, tail)
- 2 doc.head()

37.767072 -75.632346

→		FIPS	Admin2	Province_State	Country_Region	Last_Update	Lat	Long_	Confirmed	Deaths	Recovered	Activo
	0	45001.0	Abbeville	South Carolina	US	2020-03-31 23:43:56	34.223334	-82.461707	4	0	0	4
	1	22001.0	Acadia	Louisiana	US	2020-03-31 23:43:56	30.295065	-92.414197	39	1	0	31

2020-03-31

23.43.56

US

1 doc.tail()

2 51001.0 Accomack

Virginia

\Rightarrow		FIPS	Admin2	Province_State	Country_Region	Last_Update	Lat	Long_	Confirmed	Deaths	Recovered	Active
	2468	82604.0	NaN	Wales	United Kingdom	2020-03-31 23:43:56	52.1307	-3.7837	0	174	0	0
	2469	NaN	NaN	NaN	Nauru	2020-03-31 23:43:56	-0.5228	166.9315	0	0	0	0
	2470	NaN	NaN	Niue	New Zealand	2020-03-31 23:43:56	-19.0544	-169.8672	0	0	0	0
	1											>

0

^{1 #}데이터 정보 확인하기 (shape, info)

² doc.shape

```
3 (2473, 12)
```

1 doc.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2473 entries, 0 to 2472
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	FIPS	2127 non-null	float64
1	Admin2	2172 non-null	object
2	Province_State	2289 non-null	object
3	Country_Region	2473 non-null	object
4	Last_Update	2473 non-null	object
5	Lat	2468 non-null	float64
6	Long_	2468 non-null	float64
7	Confirmed	2473 non-null	int64
8	Deaths	2473 non-null	int64
9	Recovered	2473 non-null	int64
10	Active	2473 non-null	int64
11	Combined_Key	2473 non-null	object
dtype	es: float64(3),	int64(4), object	(5)
memoi	y usage: 232.0+	KB	

1 #데이터의 개별 속성값 확인하기

2 doc.columns

1 doc.describe()

	FIPS	Lat	Long_	Confirmed	Deaths	Recovered	Active
count	2127.000000	2468.000000	2468.000000	2473.000000	2473.000000	2473.000000	2473.000000
mean	30087.061119	35.227913	-75.185225	347.735544	18.485645	71.979782	261.462192
std	15675.506681	12.218402	48.372531	3953.486140	337.414333	1458.372755	2801.888341
min	1001.000000	-71.949900	-175.198200	0.000000	0.000000	0.000000	0.000000
25%	18046.000000	33.066412	-94.628178	2.000000	0.000000	0.000000	2.000000
50%	29027.000000	37.451976	-85.997208	6.000000	0.000000	0.000000	6.000000
75%	45024.000000	41.403494	-78.868965	31.000000	1.000000	0.000000	29.000000
max	99999.000000	71.706900	178.065000	105792.000000	12428.000000	63153.000000	77635.000000

8

^{1 #}속성 간 관계 분석

^{2 #}속성 간 상관관계는 corr을 통해 확인할 수 있다. 이때 디폴트는 피어슨 상관계수이다. 피어슨 상관계수는 선형 상관 관계를 조사하며,

^{3 #+1}에 가까울수록 양의 선형 관계

^{4 #-1}에 가까울수록 음의 선형 관계

^{5 #0}에 가까울수록 상관관계가 없음을 의미한다.

^{6 #}최신 pandas에서는 corr()이 자동으로 문자컬럼을 제외해주지 않기 때문에 numeric_only=True를 추가해야 한다.

⁷ doc.corr(numeric_only=True)

^{9 #}confirmed, deaths, recovered, active 간의 상관관계가 유의미하다는 것을 확인할 수 있다.

6	-	_
-	⇒	$\overline{}$

	FIPS	Lat	Long_	Confirmed	Deaths	Recovered	Active
FIPS	1.000000	0.165694	0.168710	0.003070	0.078914	NaN	0.003141
Lat	0.165694	1.000000	-0.484033	0.029011	0.024006	-0.004022	0.036768
Long_	0.168710	-0.484033	1.000000	0.140944	0.096434	0.138355	0.118332
Confirmed	0.003070	0.029011	0.140944	1.000000	0.843065	0.713796	0.936223
Deaths	0.078914	0.024006	0.096434	0.843065	1.000000	0.533003	0.800872
Recovered	NaN	-0.004022	0.138355	0.713796	0.533003	1.000000	0.427627
Active	0.003141	0.036768	0.118332	0.936223	0.800872	0.427627	1.000000

∨ <<<참조자료 사이트>>>

- 1.AI 훈련용 빅데이터 2026년 고갈…문제점과 대책은
- 2."학습 데이터 부족" AI개발에 닥친 난관... 차세대 모델 개발 지연
- 3.AI 데이터 고갈 위기-"2년 후 AI 성장 멈출 수도"...데이터 절벽 '경고'
- 4.<u>Undersampling과 Oversampling이란?</u>

^{1 #}데이터 시각화

^{2 %}matplotlib inline

³ import matplotlib.pyplot as plt

⁴ import seaborn as sns

⁵ plt.figure(figsize=(5,5))

^{6 #}sns.heatmap(data = doc.corr(), annot=True, fmt = '.2f', linewidths=0.5, cmap='Blues') #https://www.inflearn.com/community/questions/1069301/

- 5.불균형 데이터(imbalanced data) 처리를 위한 샘플링 기법
- 6.샘플링 편향이라는 문제
- 7.<u>데이터 품질(Data Quality)이란?</u>
- 8.데이터에 제값 매기는 데이터 품질 관리
- 9.<u>과대적합(overfitting) 및 과소적합(underfitting) 개념(+Early Stopping)</u>
- 10.EDA(Exploratory Data Analysis) 탐색적 데이터 분석
- 11 타새저 데이티 브서/EDA Evaloratory Data Analysis) 이라? 데이티 샤이어스이 피스 O스 이해하기