ECE/CS/ME 539 - Fall 2024 — Activity 13

- 1. Assume that we have some data $x_1, \ldots, x_n \in \mathbb{R}$. Our goal is to find a constant b such that $\sum_i (x_i b)^2$ is minimized.
 - (a) Find an analytic solution for the optimal value of b.
 - (b) How does this problem and its solution relate to the normal distribution?
 - (c) What if we change the loss from $\sum_{i}(x_i-b)^2$ to $\sum_{i}|x_i-b|$? Can you find the optimal solution for b?
- 2. Prove that the affine functions that can be expressed by $\mathbf{x}^{\top}\mathbf{w} + b$ are equivalent to linear functions on $(\mathbf{x}, 1)$.
- 3. Recall that one of the conditions for the linear regression problem to be solvable was that the design matrix $\mathbf{X}^{\top}\mathbf{X}$ has full rank.
 - (a) What happens if this is not the case?
 - (b) How could you fix it? What happens if you add a small amount of coordinate-wise independent Gaussian noise to all entries of \mathbf{X} ?
 - (c) What is the expected value of the design matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ in this case?