

SCHWEIZERISCHE EIDGENOSSENSCHAFT CONFÉDÉRATION SUISSE CONFEDERAZIONE SVIZZERA

REC'D	1 7 NOV 2003
WIPC	PCT

Bescheinigung

Die beiliegenden Akten stimmen mit den ursprünglichen technischen Unterlagen des auf der nächsten Seite bezeichneten Patentgesuches für die Schweiz und Liechtenstein überein. Die Schweiz und das Fürstentum Liechtenstein bilden ein einheitliches Schutzgebiet. Der Schutz kann deshalb nur für beide Länder gemeinsam beantragt werden.

Attestation

Les documents ci-joints sont conformes aux pièces techniques originales de la demande de brevet pour la Suisse et le Liechtenstein spécifiée à la page suivante. La Suisse et la Principauté de Liechtenstein constituent un territoire unitaire de protection. La protection ne peut donc être revendiquée que pour l'ensemble des deux Etats.

Attestazione

I documenti allegati sono conformi agli atti tecnici originali della domanda di brevetto per la Svizzera e il Liechtenstein specificata nella pagina seguente. La Svizzera e il Principato di Liechtenstein formano un unico territorio di protezione. La protezione può dunque essere rivendicata solamente per l'insieme dei due Stati.

Bern.

1 1. Nov. 2003

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Eidgenössisches Institut für Geistiges Eigentum Institut Fédéral de la Propriété Intellectuelle Istituto Federale della Proprietà Intellettuale

Patentverfahren Administration des brevets Amministrazione dei brevetti Heinz Jenni

Propriete Intellect

Patentgesuch Nr. 2003 0109/03

HINTERLEGUNGSBESCHEINIGUNG (Art. 46 Abs. 5 PatV)

Das Eidgenössische Institut für Geistiges Eigentum bescheinigt den Eingang γ des unten näher bezeichneten schweizerischen Patentgesuches.

Titel:

Knickschutz für dünnwandige Kanäle für Fluide.

Patentbewerber: LSS Life Support Systems AG Rietstrasse 50 8702 Zollikon

Vertreter:

Dr. R.C. Salgo European Patent Attorney Rütistrasse 103 8636 Wald ZH

Anmeldedatum: 27.01.2003

Voraussichtliche Klassen: A61M, F16L

Sitzverlegung:

LSS Life Support Systems AG Flughofstrasse 41 8152 Glattbrugg (Inhaber/in)

reg: 16.09.2003

Erfinder:

Andreas Reinhard

Wendelin Egli

Dirk Schmieding

Anmelder:

LSS Life Support Systems AG

Rietstrasse 50

8702 Zollikon

Knickschutz für dünnwandige

Kanäle für Fluide

Patentanwalt:

Dr. R.C. Salgo

Rütistrasse 103

CH-8636 Wald

Knickschutz für dünnwandige Kanäle für Fluide

Die vorliegende Erfindung betrifft einen Knickschutz für dünnwandige Kanäle für Fluide nach dem Oberbegriff des Pa-5 tentanspruches 1.

- Mit der vorliegenden Erfindung soll verhindert werden, dass dünnwandige Kanäle für Fluide in engen Radien abknicken oder einschnüren und der Durchfluss gehindert oder gar unterbrochen wird.
- 10 Die Lösung der vorliegenden Aufgabe ist wiedergegeben im kennzeichnenden Teil des Hauptanspruches bezüglich ihrer wesentlichen Merkmale und weiterer vorteilhafter Eigenschaften in den weiteren Ansprüchen.
- 15 Es zeigen
 - Fig. 1 einen Querschnitt durch ein ersten Ausführungsbeispiel,
- 20 Fig. 2a, b eine isometrische Darstellung des ersten Ausführungsbeispiels im gestreckten und gebogenen Zustand,
- Fig. 3a, b Längsschnitt durch einen Kanal mit verschiedenen 25 Biegungen,
 - Fig. 4 Querschnitt durch einen Kanal mit starker Biegung und eingelegtem Knickschutz,
- 30 Fig. 5 Eine Frontalansicht einer Knickstelle,
 - Fig. 6-8 verschiedene Enveloppen mit verschiedenen Querschnitten des ersten Ausführungsbeispiels,
- 35 Fig. 9a, b Einen Querschnitt und eine Draufsicht auf ein zweites Ausführungsbeispiel,

- Fig. 10, 11 zwei Varianten der Draufsicht des zweiten Ausführungsbeispiels,
- Fig. 12 einen Querschnitt durch ein drittes Ausführungsbeispiel,
 - Fig. 13a, b Querschnitte durch einen Schlauch mit einem ersten Ausführungsbeispiel,
- 10 Fig. 14a, b Querschnitte durch eine Ader mit einem dritten Ausführungsbeispiel,
 - Fig. 15a, b Querschnitte durch eine Ader mit einem dritten Ausführungsbeispiel in einer Variante.
 - Fig. 1 zeigt einen Querschnitt durch einen erfindungsgemässen Knickschutz 1. Er ist derart geformt, dass beidseitig einer Mittelfläche M je mehrere Rippen 2 vorhanden sind. Zwischen je zwei Rippen 2 entstehen so Rinnen 3.
- 20 Die isometrische Darstellung des Knickschutzes 1 der Fig. 2a zeigt diesen in einer gestreckten, geraden und somit nichtfunktionellen Form. Die Rippen 2 verlaufen parallel zueinander auf der ganzen Länge des Knickschutzes 1. Zwischen den Rippen 2 sind die Rinnen 3 erkennbar.
- 25 Eine gebogene funktionale Form des Knickschutzes 1 zeigt die Fig. 2b. Die Rippen 2 und Rinnen 3 verlaufen auch in dieser Form parallel zueinander. Um die Deformationen des Querschnittes möglichst klein zu halten, ist der Knickschutz 1 aus einem elastischen Material, beispielsweise einem Elastomer, mit einer Härte zwischen Shore 30 und 80 gefertigt.
- Bei einer Biegung des Knickschutzes 1 wird eine Seite immer gedehnt, die gegenüberliegende immer komprimiert. Das Elastomer ist in der Lage diese Deformation zuzulassen, ohne zu knicken und seinen Querschnitt wesentlich zu ändern; das
- 35 heisst, die Rippen 2 und Rinnen 3 bleiben bei Biegung des Knickschutzes 1 bestehen.
 - Die Fig. 3a, b zeigen Längsschnitte eines dünnwandigen Kanals 6 mit verschieden Biegeradien. Im Bereich der Biegung entste-

hen eine Dehnungszone 7 und ihr gegenüberliegend eine Knickstelle 8. In einem stark gebogenen Kanal 6 - wie in Fig. 3b gezeigt -, kann ein Punkt erreicht werden, an dem die Knickstelle 8 so stark gestaucht ist, dass sie die Dehnungszone 7 berührt, womit der Kanal 6 verschliesst.

In der Fig. 4 ist in einen stark gebogenen Kanal 6 ein Knickschutz 1 eingelegt. Die Knickstelle 8 kann nun die Dehnungszone 7 nicht mehr erreichen, und der Kanal 6 bleibt somit für Fluide durchlässig. Um einem Knicken vor und nach dem Knickschutz 1 vorzubeugen, ist es angebracht, die Länge des Knickschutzes in etwa gleich der Länge der Dehnungszone 7 zu wählen.

Die Fig. 5 zeigt einen Schnitt AA der Fig. 3a. Der Querschnitt eines im Wesentlichen runden Kanals 6 ist an der Knickstelle 8 im Wesentlichen linsenförmig. Diese Form entsteht durch das Zusammenspiel von Druck- und Zugkräften in der Kanalbiegung. Die Dehnungszone 7 entsteht durch die Zugkräfte im Aussenradius der Kanalbiegung und wird zur Mittellinie M hingezogen, die Knickstelle 8 durch Druckkräfte im Innenradius und wird gegen die Mittellinie M gedrückt. Der Durchmesser orthogonal zur Mittellinie M wird dadurch vermindert, jener entlang der Mittellinie M vergrössert.

In beiden Richtungen von der Knickstelle 8 weg nimmt der Ka-

nal 6 kontinuierlich seinen ursprünglichen Querschnitt, bei25 spielsweise einen kreisförmigen, wieder an. Im Erfindungsgedanken eingeschlossen ist daher ebenfalls, den Querschnitt
und damit die Enveloppe 4 des Knickschutzes 1 stetig dem
Querschnitt des Kanals 6 angepasst zu variieren, beispielsweise von einer Linsen- zu einer Kreisform.

In den Fig. 6, 7 und 8 sind verschiedene Querschnitte von Knickschutzen 1 mit den entsprechenden Enveloppen 4 dargestellt. Die Enveloppen 4 der Fig. 6 und 7 tragen mit ihrer Linsen- bzw. Rhombusform dem in Fig. 5 beschriebenen Querschnitt an der Knickstelle 8 Rechnung. Selbstverständlich sind auch andere Enveloppen 4 wie in Fig. 8 mit einer beispielsweise dreizähligen Drehsymmetrie erfindungsgemäss. Ganz allgemein können die Enveloppen 4 durch Polygone und/oder Bogensegmente aufgebaut sein, welche durch verbinden benachbar-

ter Rippen 2 entstehen. Dementsprechend ist auch die Form und Anordung der Rippen 2 frei wählbar. Für die Erfindungsidee Wesentliches ist, dass die Rinnen 3 bei gebogenem Knickschutz 1 offen und durchlässig bleiben.

5 Fig. 9a zeigt einen Querschnitt eines zweiten Ausführungsbeispiels eines Knickschutzes 1. Die Rippen 2 und die Rinnen 3 sind verhältnismässig breiter und die Rippen 2 weniger hoch, die Rinnen 3 sinngemäss weniger tief gefertigt.

Die Draufsicht der Fig. 9b zeigt, dass diese Form der Ausfüh10 rung es erlaubt, die Rippen 2 zu unterbrechen und damit Querverbindungen 9 zu schaffen. Die Querverbindungen 9 sind in
doppelter Hinsicht hilfreich. Einerseits werden die Rippen 2
unter starker Biegung weniger auf Druck und Zug belastet, anderseits unterstützen sie einen regelmässigen Durchfluss ei15 nes Fluids, indem sie Rinnen 3 untereinander verbinden und
Verengungen einzelner Rinnen im Bereich einer Biegung umflossen werden können.

Fig. 10 ist eine Variante von Fig. 9b. Die Querverbindungen 10 sind derart angeordnet, dass beide Druchflussrichtungen im 20 Knickschutz im Wesentlichen dieselben Strömungsbedingungen aufweisen.

Fig. 11 zeigt eine weitere Variante. Die Rippen 2, welche sich nicht am Rand des Knickschutzes 1 befinden, sind zu Noppen 11 entartet. An die Stelle der Rinnen 3 und Querverbindungen 10 tritt ein Zwischenraum 12, in welchem ein Fluid die Noppen 11 umströmen kann. Als weitere Variante ist es möglich, die Noppen 11 beispielsweise Mittels Siebdruck an der Innenseite der Kanalwand 9 anzubringen. Mit der selben Technik können selbstverständlich auch Rippen erzeugt werden.

Der Querschnitt durch ein drittes Ausführungsbeispiel ist in der Fig. 12 dargestellt. Die zwei mittleren Rippen sind so geformt, dass sie mindestens ein Kunststoffrohr 13 aufnehmen können. Die Wandstärken des Kunststoffrohrs 13 sind so bemessen, dass die maximalen Druck- und Zugkräfte, die beim Biegen eines Kanals 6 entstehen können, den Querschnitt des Kunststoffrohrs nicht wesentlich zu beeinflussen vermögen. Bei grossen Kräften können auch armierte Kunststoffrohre 13 Verwendung finden. Mit dieser Massnahme kann ein minimaler

Durchfluss-Querschnitt für ein Fluid gewährleistet werden. Besonders geeignet ist das dritte Ausführungsbeispiel zur Übertragung eines Druckes, beispielsweise über eine Flüssigkeitssäule, welche Biegungen aufweist. Durch den Querschnitt des mindestens einen Kunststoffrohres 13 müssen in diesem Fall keine grossen Flüssigkeitsmengen fliessen. Die Funktion besteht darin, dass die Flüssigkeitssäule nicht unterbrochen ist, und der von ihr erzeugte Schweredruck der Höhe der Säule im Wesentlichen proportional ist.

- 10 Die Fig. 13 und 14 zeigen die Funktionsweise des erfindungsgemässen Knickschutzes in dünnwandigen Kanälen 6 wie Schläuchen 14 oder in Geweben eingelassenen Adern 15, welche aus textilen gas- oder flüssigkeitsdichten Materialien aufgebaut sind.
- 15 Fig. 13a zeigt den Knickschutz in einem Kanal 6 oder einem Schlauch 14 an der Knickstelle 8. Der Querschnitt ist im Wesentlichen linsenförmig und ein Fluid kann sich durch die Rinnen 3 bewegen. Die Kanalwand 9 bildet an der Knickstelle 8 im Wesentlichen die Enveloppe 4 und dringt nicht in die Rin-
- 20 nen 3 ein. Sinngemäss bildet der Flächeninhalt der Enveloppe 4 im Wesentlichen die minimale Querschnittfläche welche ein gebogener dünnwandiger Kanal 6 an der Knickstelle 8 mit eingelegtem Knickschutz 1 annehmen kann.
- Der in Fig. 13b dargestellte Querschnitt ist vor oder nach der Knickstelle 8 zu positionieren. Der Querschnitt ist im Wesentlichen kreisförmig und entspricht mit zunehmender Distanz von der Knickstelle 8 dem ursprünglichen Querschnitt des Kanals 6 oder Schlauches 14. Der im Querschnitt linsenförmige Knickschutz 1 ist dadurch etwas deformiert. Pneumatische Flugzeugsitze (CH 1428/02) können beispielsweise von
- 30 sche Flugzeugsitze (CH 1428/02) können beispielsweise von dieser Art des Knickschutzes Gebrauch machen.
 - Die Figuren 14a, b zeigen Querschnitte einer Ader 15 in einem Gewebe 16. Als Knickschutz ist ein drittes Ausführungsbeispiel mit einem einzigen Kunststoffrohr 13 dargestellt. An
- 35 der Knickstelle 8 ist der Querschnitt wie bereits erwähnt im Wesentlichen linsenförmig und die Kanalwand 9 bildet die Enveloppe 4 (Fig. 14a). Das Kunststoffrohr 13 garantiert wie-

10

35

Patentansprüche

- Knickschutz (1) für dünnwandige Kanäle (6) für Fluide, dadurch gekennzeichnet, dass
- er in seiner Längserstreckung mehrere Rippen (2) aufweist wobei der Raum zwischen je zwei benachbarten Rippen (2) eine Rinne (3) bildet,
 - der Querschnitt des Knickschutzes (1) den Querschnitt eines Kanals derart ausfüllt, dass die Kanalwände (9) mindestens an einer Knickstelle (8) auf den Rippen (2) liegen, jedoch nicht in die Rinnen (3) eindringen können,
 - die Rinnen (3) bei gebogenem Knickschutz (1) für Fluide offen und durchlässig bleiben,
- Fluide durch die Rinnen (3) des Knickschutzes (1) zirkulieren und gegebenenfalls Druckkräfte übertragen können.
- 2. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 1, dadurch gekennzeichnet, dass die Rippen (2) in ihrer Längsrichtung unterbrochen und damit die Rinnen (3) mit Querverbindungen (10) gegenseitig verbunden sind.
- 25 3. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 2, dadurch gekennzeichnet, dass die unterbrochenen Rippen (2) als Noppen (11) gestaltet sind und die Rinnen (3) mit den Querverbindungen (10) einen Zwischenraum (12) bilden.
- Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 1, dadurch gekennzeichnet, dass er so geformt ist dass ihm mindestens ein Kunststoffrohr (13) eingelegt werden kann.
 - 5. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 4, dadurch gekennzeichnet, dass das mindestens eine Kunststoffrohr (13) armiert ist.

spricht.

derum einen minimalen Durchfluss-Querschnitt in der Mitte des Knickschutzes 1.

Die Fig. 14b zeigt ebenfalls einen Querschnitt vor und nach der Knickstelle 8. Dieser Querschnitt ist wie jener in Fig. 5 13b im wesentlichen kreisförmig. Da jedoch die Ader 15 in ein Gewebe 16 eingelassen ist, und durch die Verkürzung des Durchmessers D in der Gewebeebene zu D' Spannungen σ [N/m] in das Gewebe eingeleitet werden, ist zur Erreichung des kreisförmigen Querschnittes eine Kraft notwendig. Diese Kraft kann 10 mit einem Überdruck <u>p</u> in der Ader 15 erzeugt werden. Der Überdruck p wird durch Druckbeaufschlagung der Ader oder einfach durch den Schweredruck einer Flüssigkeitssäule erreicht. Auf diese Art und Weise kann der Knickschutz in G-Anzügen (EP 0 983 190) eingesetzt werden, um das Abknicken von flüssigkeitsgefüllten Adern in den Regionen von Hüft-, Knie und Ell-15 bogengelenken zu vermeiden und so zu gewährleisten, dass die Höhe der Flüssigkeitssäule im Wesentlichen dem Höhenunterschied zwischen Hals und Fussgelenken eines Piloten ent-

Die Fig. 15a, b zeigen im Wesentlichen dieselbe Konfiguration 20 wie die Figuren 14a, b. Der Knickschutz 1 ist hier so bemessen, dass er durch Änderungen des Querschnittes nicht verformt wird. Die Breite des Querschnittes entspricht also wa dem Durchmesser D'. Selbstverständlich kann diese Art der Konfiguration auch in einem Kanal 6 oder einem Schlauch 14 25 angewendet werden.

20

bar ist und sich durch einen Druck phervorgerufenen Änderungen des Querschnittes der Ader (15) anpassen kann.

- 13. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide (5) nach Patentanspruch 1, dadurch gekennzeichnet, dass er aus einem elastischen Material besteht.
- 14. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 13, dadurch gekennzeichnet, dass er aus einem Elastomer besteht.
 - 15. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 13 oder 14, dadurch gekennzeichnet, dass das elastische Material eine Härte zwischen Shore 30 und 80 aufweist.
 - 16. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 15, dadurch gekennzeichnet, dass das elastische Material eine Härte zwischen Shore 40 und 60 aufweist.
- 17. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass die Rippen (2) an der Innenseite einer Kanalwand 9 angebracht sind.
- 18. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 3, dadurch gekennzeichnet, dass die Noppen (11) an der Innenseite einer Kanalwand 9 ange30 bracht sind.

10

- 6. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass die Enveloppe (4) im Wesentlichen dem Querschnitt des Kanals 6 an der Knickstelle entspricht.
- 7. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 6, dadurch gekennzeichnet, dass die Enveloppe (4) linsenförmig ist.
- 8. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass die Enveloppe (4) im Wesentlichen auf der ganzen Länge des Knickschutzes (1) dem Querschnitt des Kanals 6 entspricht.
- Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 8, dadurch gekennzeichnet, dass die Enveloppe (4) in der Mitte des Knickschutzes linsenförmig ist und in beide Richtungen kontinuierlich kreisförmiger wird.
- 10. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass sein Querschnitt und die Enveloppe (4) eine mehrzählige Drehsymmetrie aufweisen.
- 11. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide nach Patentanspruch 1, dadurch gekennzeichnet, dass der dünnwandige Kanal (6) ein Schlauch (14) ist und der Knickschutz (1) deformierbar ist und sich Verformungen des Querschnittes des Schlauches anpassen kann.
- 12. Knickschutz (1) für dünnwandige Kanäle (6) für Fluide
 35 nach Patentanspruch 1, dadurch gekennzeichnet, dass der
 dünnwandige Kanal (6) eine in ein Gewebe (16) eingearbeitete Ader (15) ist und der Knickschutz (1) deformier-

Zusammenfassung

Der erfindungsgemässe Knickschutz (1) besteht aus einem elastischen Material. In seiner Längserstreckung verfügt er über mehrere Rippen (2) wobei der Raum zwischen je zwei Rippen (2) eine Rinne (3) bildet. Der Knickschutz (1) wird einem dünnwandigen Kanal eingelegt. Wird dieser Kanal gebogen, verhindert der Knickschutz (1) ein Abknicken und somit ein Abschliessen des Kanals in der Biegung. Ein Fluid kann im Kanal zirkulieren und die Biegung in den Rinnen (3) des Knickschutzes (1) überwinden. Da ein Kanal mit einem runden Querschnitt in einer Biegung eine Linsenform annimmt, ist auch die Enveloppe des Querschnittes des Knickschutzes im Wesentlichen linsenförmig.

15

(Fig. 2b)

PAR-0218

2/6

Fig. 11

PAR-0218

5/6

CH0300734