Hoja de fórmulas MÁQUINAS TÉRMICAS

Poder calorífico

Relación entre los poderes caloríficos:

 $PCI = PCS - 597 \times G = PCS - 597(9H + H_2O)$

Siendo:

PCI poder calorífico inferior PCS poder calorífico superior

597 Calor de condensación del agua a O ºC

G Porcentaje en peso del agua formada por la combustión del H_2 más la humedad propia del combustible

Recordando: $G = 9H + H_2O$ \uparrow

9 Son los kilos de agua que se forman al oxidar un kilo de hidrógeno.

H % de hidrógeno contenido en el combustible.

H2O % de humedad del combustible.

Método analítico

Formulas de Dulong

PCS comb. seco $PCS = 8,140 \times C + 34,400 \times (H - O/8) + 2,220 \times S$ PCI comb. seco: $PCI = 8,140 \times C + 29,000 \times (H - O/8) + 2,220 \times S$

PCI comb. húmedo: $PCI = 8,140 \times C + 29,000 \times (H - O/8) + 2,220 \times S - 600 \times H2O$

Formula de Hutte

PCI comb. húmedo $8,100 \times C + 29,000 \times (H - O/8) + 2,500 \times S - 600 \times H2O$

Formula de Asociación de Ing. Alemanes

PCI comb. húmedo $PCI = 8,080 \times C + 29,000 \times (H - O/8) + 2,500 \times S - 600 \times H2O$

C Cantidad centesimal de carbono en peso por kilogramo combustible

H Cantidad centesimal de hidrógeno total en peso por kilogramo de combustible

O Cantidad centesimal de oxígeno en peso por kilogramo combustible

S Cantidad centesimal de azufre en peso por kilogramo combustible

O / 8 Cantidad centesimal de hidrógeno en peso que se encuentra combinado con el oxígeno del mismo combustible dando "agua de combinación"

(H - O/8) Cantidad centesimal de "hidrógeno disponible", en peso realmente disponible para que se oxide con el oxígeno del aire, dando "agua de formación"

Método práctico

CALORIMETRO DE MAHLER Y KROEKER

 $Q = Q_{agua} + Q_{termometro} + Q_{agitador} + Q_{recipiente} + Q_{vaso}$

 $Q = \Delta T(m_{agua} \ cp_{agua} + m_{termometro} \ cp_{termometro} + m_{agitador} + cp_{agitador} + m_{recipiente} \ cp_{recipiente} + m_{vaso} \ cp_{vaso})$

 $Q = (m_{agua} c p_{agua} + E_{aparato}) \Delta T$

Para determinar el poder calorifico:

 $Q = Q_{combustible} + Q_{alambre}$

 $Q_{comb} = Q - Q_{alambre}$

Reemplazo:

 $Q_{comb} = (m_{agua} c p_{agua} + E_{aparato}) \Delta T - m_{alambre} C_{alambre}$

Nos queda:

PCS= $\frac{Q_{combustible}}{G_{combustible}}$

PCI= $PCS - 600(9H + H2O) = PCS - 600 \frac{G_{agua}}{G_{combustible}}$

 G_{agua} representa el peso del total de agua existente = (peso papel humedo - peso papel seco)

G_{combustible} el peso de combustible quemado

Hoja de fórmulas MÁQUINAS TÉRMICAS

Aire mínimo para una combustión perfecta

$$g_{hd} = g_h - \frac{g_{o_2}}{2}$$
 $G_{t~aire} = 11.6g_c + 34.78g_{hd} + 4.35g_s [Kg_{aire}/Kg_{comb.}]$ g_c composición gravimétrica carbono g_h composición gravimétrica hidrógeno g_{o_2} composición gravimétrica oxígeno $V_{R~aire} = 8.89g_c + 26.27g_{hd} + 3.34g_s [m_{aire}^3/Kg_{comb.}]$ $V_{R~aire} = (1 + e)V_{t~aire} [m_{aire}^3/Kg_{comb.}]$

 g_{o_2} composición gravimétrica oxígeno V_R a g_s composición gravimétrica azufre

 $g_S = g_S' g_C$

En la práctica es necesario trabajar con un exceso de aire para que asegurar la combustión perfecta: V_R

Gases de combustón

$$g_h = (3,67g_c + 9g_{hd} + 2g_s) + 3,35(2,67g_c + 8g_{hd} + g_s) + g_w [Kg_{humo}/Kg_{comb}]$$

$$V_h = 1,897g_c + 11,2g_{hd} + 0,7g_s + 3,76(1,867g_c + 5,6g_{hd} + 0,7g_s) + 1,24g_w [m_{humo}^2/Kg_{comb}]$$

Exceso de aire

g_h	(kg de gases húmedos/ kg de combustible)	~! _	$G_S^{\prime\prime}$
e	(coeficiente de exceso de aire)	$g_S' =$	$\overline{g'_C}$
g_S'	(kg gases secos / kg carbono)	$g_i =$	$\mu_i r_i$
$g_S^{\prime\prime}$	(kg gases secos / kmol combustible)		
$\stackrel{\circ}{\mu}$	(masa molecular) (kg/kmol)	$g_{c}^{\prime\prime}=$	$\sum_{i=1}^{n} \mu_i \ r_i$
G_{AT}	(kg de aire teórico / kg de combustible)	03	i=1
g_S	(kg gases secos/ kg de combustible)	$g_{c}' =$	$\sum_{i=1}^{n} \mu_C \ r_{iC}$
g_C	kg de carbono / kg de combustible)		
g_C'	(kg carbono / kmol combustible)	α' -	$\frac{\sum_{i=1}^{n} \mu_i \ r_i}{\sum_{i=1}^{n} \mu_C \ r_{iC}}$
gw	(kg de aire teórico/ kg combustible)	g_S –	$\sum_{i=1}^n \mu_C \ r_{iC}$
r	composición volumentrica		$\sum_{i=1}^{n} \mu_i \ r_i$
	$g_h = 1 + e G_{AT}$	$g_h =$	$\frac{\sum_{i=1}^{n} \mu_i \ r_i}{\sum_{i=1}^{n} \mu_C \ r_{iC}} g_C + g_w$
	$\rho = \frac{g_h - 1}{g_h}$	$g_w =$	$9 g_{he}$
	$e = rac{g_h - 1}{G_{AT}}$	$G_{AT} =$	11,6 g_C + 37,38 g_{hd} + 4,35 g_S
	$g_h = g_s + g_w$		para mi aca gs es del azufre, no gases secos/comb.

Yo copié las formulas, pero los analisis dimensionales no dan en algunos...

Volumen humos combustión imperfecta

Hoja de fórmulas MÁQUINAS TÉRMICAS

Caracteristica de una caldera

 G_r cantidad vapor producido

relacion estequio... 9,7 para gas natural R_e

exceso de aire $\frac{21}{21-O_2}$

velocidad gas

 A_2 yB parametros dependen gas/caldera?

 P_{ab} va en MCA

en combustible sin quemar es la potencia P_C calorifica del carbono, 8140 kcal/kg

es Carbono sin quemar, en las cenizas $^{\infty}C$ **PERDIDAS**

> gases comb $Q = G_g c_{p\ humo} (t_{gas} - t_{aire})$

humedad comb $Q = G_{h2o} \Delta h_{agua}$

 $Q = \frac{G_{escoria}}{G_{combustible}} P_C \%C$ comb sin quemar

hw comb comb $Q = 9 G_{humedad} \Delta h_{agua}$

exceso aire $Q = G_{aire} c_{p \ humo} (t_{gas} - t_{aire})$

Capacidad $Q = G_r \Delta h$

Potencia (HP) $P = \frac{G_{v} (\Delta h)}{543,4(kcal/kg)} = \frac{G_{v} (\Delta h)}{8510(kcal/hp \ h)}$

Aire combustion $A_c = G_c Re \lambda$

Ejercicio dimensionamieto?

 $D = \sqrt{\frac{365,35 \, G_c}{v \, P_{ab}}} \quad (v < 40m/s)$ Diametro tubo gas

Presión abs gas $P_{ab} = P_{atm} + P_{carga} + P_{contra}$

Perdida gases $pg = (T_{gas} - T_{amb}) \left(\frac{A_2}{21 - O_2} + B \right)$

Rendimiento $\eta = 100 - pg$

Calor quemador $Q = \frac{G_v(\Delta H)}{\eta_{caldera} n_{quemadores}}$

Intercambiador (superficies de intercambio)

- S superficie de intercambio
- número de tubos n
- longitud tubos l
- ddiametro tubos
- K coef total de transmisión de calor
- coeficientes peliculares α (humo/vapor/agua)

- $S = n l \pi d$ $Q = S K \Delta T_m$
- $\Delta T_m = \frac{\Delta T_1 \Delta T_2}{ln\left(\frac{\Delta T_1}{\Delta T_2}\right)} \quad K = \frac{1}{\frac{1}{\alpha_1} + \frac{e}{\lambda} + \frac{1}{\alpha_2}}$
- espesor tubo e
- ΔT_m diferencia log de temp
- conductividad térmica tubo