1 Algorithms for coloring circle graphs

WARNING: intervals h_1 , h_2 overlap if $h_1 \cap h_2 \neq \emptyset$ $h_1 \not\subseteq h_2$ and $h_2 \not\subseteq h_1$.

We look at the class of circle graphs as the class of overlap graphs of intervals on a line. Without loss of generality, we only consider the interval models containing open intervals in which no two intervals share an endpoint.

For any such family of intervals F and any point c on a line, we set $F^-(c) := \{(a,b) \in F | b < c\}$, $F^0(c) := \{(a,b) | a < c < b\}$, $F^+(c) := \{(a,b) | c < a\}$. If $\omega(F) = 2$, for all $(a,b) \in F$, we have that $F^0(a) \setminus F^0(b)$ and $F^0(b) \setminus F^0(a)$ only contain nested intervals. Otherwise, if we had two overlapping intervals $h_1, h_2 \in F^0(a) \setminus F^0(b)$, we would have $h_1, h_2, (a,b)$ forming a triangle.

Lemma 1. Let F be the interval model of a circle graph. Suppose that $\omega(F) = 2$ and that for no two $h_1, h_2 \in F$, there exists $h_3 \in F$ with $h_3 \in h_1 \cap h_2$. Then, there exists a 3-coloring of F such that for all $(a,b) \in F$, the intervals in $F^0(a) \setminus F^0(b)$ have the same color.

Proof. By way of contradiction, suppose that the statement is incorrect and let $F = \{h_i\}_{i=1}^n = \{(a_i,b_i)\}_{i=1}^n$ be the counterexample to this lemma with the least cardinality. Clearly, G(F) is connected. Let $(a_1,b_1),\ldots,(a_t,b_t)$, with $a_1 < \ldots < a_t$, be the intervals of F which are not contained in any other intervals. Notice that we have $F^0(a_1) = F^-(a_1) = \emptyset$. Suppose that $|F^0(b_1)| \le 1$. By the minimality of F, we get that the interval model $F' := F \setminus \{h_1\}$ is 3-colorable. It is clear that coloring h_1 with a different color from h_2 , we obtain a coloring for F. Which contradicts the fact that F is a counterexample to this lemma. Therefore, we conclude that $|F^0(b_1)| \ge 2$ and $t \ge 2$.

By the connectedness of G(F), we have $h_i \cap h_{i+1} \neq \emptyset$ for all $i \in \{1, \ldots, t-1\}$. Let us show that for all $i \in \{1, \ldots, t-1\}$ we have $F^-(b_i) = \emptyset$ or $F^+(a_{i+1}) = \emptyset$. Suppose that this does not hold for some $1 \leq i \leq t-1$. Let $F_1 = F \setminus F^+(a_{i+1})$ and $F_2 = F \setminus F^-(b_i)$.

We claim that $F_1 \cap F_2 = \{h_i, h_{i+1}\}$. Indeed, $h_j \in F_1 \cap F_2$, iff $a_j \leq a_{i+1}$ and $b_j \geq b_{i+1}$. Clearly h_i and h_{i+1} have this property. Now, suppose that there exists $h_j \in F_1 \cap F_2$ such that $a_j < a_{i+1}$ and $b_j > b_{i+1}$. We cannot have $a_j < a_i$, because otherwise $h_i \subseteq h_j$. Similarly, we cannot have $b_j > b_{i+1}$, because otherwise, we would have $h_{i+1} \subseteq h_j$. Therefore we have $a_i < a_j$ and $b_j < b_{i+1}$. The only remaining case is that of $a_i < a_j < a_{i+1}$ and $b_i < b_j < b_{i+1}$. But if this is the case, $\{h_i, h_j, h_{i+1}\}$ would form a triangle, which contradicts our assumptions.

In view of the minimality of F, there exist 3-colorings f_1 , f_2 of F_1 and F_2 as required by the statement of this lemma with colors 1, 2 and 3 (here we use our assumption that F^- (b_i) and F^+ (a_{i+1}) are non-empty and thus F_1 and F_2 are strictly smaller than F). Since h_1 and h_2 overlap, they have different colors both in f_1 and f_2 , therefore, we can assume without loss of generality that f_1 (h_i) = f_2 (h_i) = 1 and f_1 (h_{i+1}) = f_2 (h_{i+1}) = 2. Let

$$f(h) = \begin{cases} f_1(h) & \text{if } h \in F_1, \\ f_2(h) & \text{if } h \in F_2. \end{cases}$$

I am assuming opennes

I guess that the remarkable result is the 3coloring part

if G(F) was not connected, at least one of its connected components would countervene to the lemma and we would have a smaller counterexample

That would imply that i = 1 or i = t for all $i \in \{1, ..., t\}$ and so $t \le 2$

We verify that f is a coloring of F. Let $h' = (a', b') \in F$, $h'' = (a'', b'') \in F$ with a' < a'' < b' < b''. If $\{h', h''\} \subseteq F_1$ or $\{h', h''\} \subseteq F_2$, then $f(h') \neq f(h'')$. If $h' \in F^-(b_i)$ and $h'' \in F^+(a_{i+1})$ then, by assumption we have $h', h'' \nsubseteq (a_{i+1}, b_i)$, and so we must have $a' < a_{i+1} < a'' < b' < b_i < b''$. Since f_2 is a coloring, we have $f(h'') = f_2(h'') = f_2(h_{i+1}) = 2$. Since h' overlaps with h_{i+1} and $h', h_{i+1} \in F_1$, then $f(h') \neq 2 = f(h'')$. Similarly, we can verify that for all $(a,b) \in F$ all intervals in $F^0(b) \setminus F^0(a)$ have the same color. Thus f is a 3-coloring of F, which contradicts our choice of F. Thus, we have that $F^-(b_i) = \emptyset$ and $F^+(a_{i+1}) = \emptyset$ for all $i \in \{1, \ldots, t-1\}$.

and $F^{+}(a_{i+1}) = \emptyset$ for all $i \in \{1, ..., t-1\}$. We have $|F^{+}(a_2)| \ge |F^{0}(b_1)| \ge 2$, and, since $F^{-}(b_1) = \emptyset$, we have $F^{0}(a_2) = \{h_1\}$.

If $F^0(b_2) = \emptyset$, i.e. t = 2, then h_2 only overlaps with h_1 . A coloring h_2 with the color of the elements of $F^0(b_1) \setminus \{h_2\}$, we obtain a 3-coloring of F with the conditions required by the present lemma, which is a contradiction.

If $F^0(b_2) \neq \emptyset$ and $t \geq 3$, we obtain (since $h_1 \in F^-(b_2)$) theat $F^+(a_3) = \emptyset$ and thus t = 3 and $F^0(b_2) = \{h_3\}$. Consider $F \setminus h_2$. Since F is minimal, we find that there exists a coloring f of $F \setminus \{h_2\}$ which follows the requirement of the present lemma. Let $h'_2 = (a'_2, b'_2)$ be the longest interval of $F^0(b_1) \setminus \{h_2\}$ (which exists since $|F^0(b_1)| \geq 2$). This way h'_2 contains all the intervals in $F^0(b_1)$. Now, assume that $f(h_1) = 1$ and $f(h'_2) = 2$. If $f(h_3) \neq 2$, then we have a coloring of F with the properties required by the present lemma. Which yields a contradiction. If $f(h_3) = 2$, then h_3 and h'_2 do not overlap. Thus $h_3 \in F^+(b'_2)$. By assumption, all intervals of $F^0(b'_2)$ are colored with the same color $\gamma \in \{1,3\}$. By recoloring all elements of $F^+(b'_2)$ of color 2 to color $\delta \in \{1,3\} \setminus \gamma$ and all elements of $F^+(b'_2)$ of color δ with color 2, we obtain a new coloring f' of $F \setminus \{h_2\}$. Since $h_3 \in F^+(b'_2)$, we get $f'(h'_2) = 2$ and $f'(h_3) \neq 2$. By coloring h_2 with color 2, we obtain a coloring of F with the properties required by the present lemma.

For each pair of overlapping intervals $h_1, h_2 \in F$, let $p(h_1, h_2) = h_1 \cap h_2$. We denote by P(F) the family of such intersections. Let $P^0(F) \subseteq P(F)$ be the inclusion-wise maximal family of P(F).

Lemma 2. Let F be a family of intervals with $\omega(F) = 2$. Then, the intervals of $P^{0}(F)$ do not intersect.

Proof. Let $p_1 = h_1 \cap h_2 \in P^0(F)$ and $p_2 = h_3 \cap h_4 \in P^0(F)$. Therefore, $(p_1 \cap p_2) = (a_4, b_1)$. So $a_1 < a_2 < a_4 < b_1 < b_3 < b_4$. If $b_2 < b_4$, then h_1, h_2, h_4 pairwise overlap. Thus we have a triangle, which is a contradiction. Thus $b_4 < b_2$. By a symmetric argument we get $a_1 < a_3$. But then $p_2 = (a_4, b_3) \subseteq (a_2, b_1) = p_1$ which contradicts the maximality of p_2 .

Theorem 3. Let F be a family of intervals with $\omega(F) = 2$. $\chi(F) \leq 5$.

Proof. We construct the desired coloring by induction on k. Let k=1. Let F_1 be the subset of intervals of F that do not lie in the intersection of overlapping intervals of F. By Lemma 1, there exists a coloring f_1 of F_1 with colors $\{1,2,3\}$ such that for every $(a,b) \in F_1$, the intervals of the family $F_1^0(b) \setminus F^0(a)$ are

So far we proved that the colorings f_1 and f_2 can be fused into one coloring f.

We can do this by introducing a trick like $(d, d_s + 1)$. This time it should be just h_i added to F_2

Now that we have this why do we go on?

We essentially flip 2 and δ , if there was no conflict before, there is no conflict now

since h'_2 and h_3 do not overlap

this is because $F^0(a_2) =$ $\{h_1\}$ and $F^0(b_2) =$ $\{h_3\}$

Possibly $h_3 = h_2$

k is the number of "layers"

colored with the same color. By Lemma 2, the intervals of the family $P^0(F_1)$ do not overlap. By definition of F_1 , each interval in $F \setminus F_1$ is contained in some (maximal) intersection $p \in P^0(F_1)$. Consider that the following construction has been done for k-1 with $k \geq 2$. We want the following properties to be true

- 1. The intervals in $F' := \bigcup_{i=1}^{k-1} F_i$ (where the F_i s might not be disjoint) are colored with colors $\{1, \ldots, 5\}$.
- 2. The intervals in $F \setminus F'$ do not overlap with intervals in $\bigcup_{i=1}^{k-2} F_i \setminus F_{k-1}$.
- 3. All intervals in $F \setminus F'$ are contained in some interval $p \in P^0(F^{k-1})$.
- 4. For each $p = (c, d) \in P^0(F_{k-1})$ either only one color is used to color all intervals in $F_{k-1}^0(c) \setminus F_{k-1}^0(d)$, and no more than two colors are used to colors intervals of $F_{k-1}^0(d) \setminus F_{k-1}^0(d)$ or viceversa.

Let us show how to carry out the k-th step of this construction. If $F \setminus F' = \emptyset$, then we are done and we have the desired coloring. Consider any interval $p = (c, d) \in P^0(F_{k-1})$, which contains at least one interval of $F \setminus F'$. Let

$$\begin{split} F_{k-1}^{0}\left(c\right) \backslash F_{k-1}^{0}\left(d\right) &= \left\{h_{j}\right\}_{j=1}^{t} = \left\{\left(c_{j}, d_{j}\right)\right\}_{j=1}^{t} \\ F_{k-1}^{0}\left(d\right) \backslash F_{k-1}^{0}\left(c\right) &= \left\{h_{j}\right\}_{j=t+1}^{s} = \left\{\left(c_{j}, d_{j}\right)\right\}_{j=t+1}^{s}, \end{split}$$

and $p = (c_s, d_s) \cap (c_t, d_t) = (c_s, d_t)$. As already noted, each family consists of nested intervals. Without loss of generality, suppose that $\gamma_1 \in \{1, 3\}$ is the color used to color the intervals h_{t+1}, \ldots, h_s and let γ_2, γ_3 be the colors used to color $\{h_1, \ldots, h_t\}$.

Let I_p be the set of intervals in F contained in p, the intervals h_{t+1}, \ldots, h_s and the interval $(d, d_s + 1)$. Let $F_{k,p}$ be the set of intervals in I_p which are not contained in the overlap of any two intervals in I_p .

Let us show that the intervals from $I_p \setminus F_{k,p}$ do not overlap with any of the intervals of $F' \setminus \{h_{t+1}, \ldots, h_s\}$. By condition 2 of our induction hypothesis, intervals from $F' \setminus \{h_{t+1}, \ldots, h_s\}$ that can overlap with elements in $I_p \setminus F_{k,p}$ are only intervals in $\{h_1, \ldots, h_t\}$. Let $(a_1, b_1) \in I_p$ be an interval contained in the overlapping of $(a_2, b_2), (a_3, b_3) \in I_p$ and thus overlapping with some $h_j = (c_j, d_j)$ for $1 \le j \le t-1$. Then $a_i > c_s$ for all $i \in \{1, 2, 3\}$. We also get $c_j < c_s, a_1 < d_j < b_1$. Hence $h_j, (a_2, b_2)$ and (a_3, b_3) pairwise overlap. Which is a contradiction.

If p contains at least one interval, then $F_{k,p}\setminus (h_{t+1},\ldots,h_s)\cup \{(d,d_s+1)\}\neq\emptyset$. By Lemma 1 (replacing $F^0(b)\setminus F^0(a)$ with $F^0(a)\setminus F^0(b)$), we can color $F_{k,p}$ with colors from $\{1,2,3,4,5\}\setminus \{\gamma_2,\gamma_3\}$ such that for each $(a,b)\in F_{k,p}$, the interval from $F_{k,p}^0(a)\setminus F_{k,p}^0(b)$ have the same color. At the same time, since $\{h_{t+1},\ldots,h_s\}=F_{k,p}^0(d)\setminus F^0(d_s+1)$ we can assume that h_{t+1},\ldots,h_s is colored with (only) γ_1 .

Let us denote $F'_{k,p} = F_{k,p} \setminus \{(d, d_s + 1)\}$. It is easy to see that the coloring of $F'_{k,p}$ is compatible with that of F'. Carrying out similar constructions for

Aren't they? No. As we will see later we will have the intervals h_{t+1}, \ldots, h_s which are in F' but also in $F_{p,k}$.

Otherwise $\omega(F) \geq 3$

For k = 1, this is Lemma 2

 $\begin{cases} \text{by condition} \\ 3 \end{cases}$

 $\begin{array}{c} \text{otherwise} \\ \omega\left(F\right) \geq 3 \end{array}$

Could also be only γ_2

The following levels can only overlap with $\{h_{t+1}, \ldots, h_s\}$

This is true for intervals overlapping with p, but what about intervals overlapping with d? The only intervals in I_p overlapping with $(d, d_s + 1)$ are h_{t+1},\ldots,h_s which are also in $F_{k,p}$

Actually $F^0(d_s + 1)$ is empty, but we want to apply the statement of Lemma 1 rigorously. This is why we introduce the segment $(d, d_s + 1)$ in the first place.

each $p \in P^0(F_{k-1})$ containing at least one uncolord interval of F, let $F_k := \bigcup_{p \in P^0(F_{k-1})} F'_{k,p}$.

One can check that the induction hypotheses hold for k. Also, the number

One can check that the induction hypotheses hold for k. Also, the number of uncolored vertices strictly decreseas at each step. Therefore the coloring will be completed in a finite number of iterations.