$$\int_{\partial D} f(z)dz = 2\pi i \sum_{z_k} \operatorname{Res}_{z=z_k} f(z).$$

Przykład 1.

$$J = \int_{0}^{2\pi} \frac{dx}{1 - 2a\cos(x) + a^2}, \quad 0 < a < 1.$$

Niech $z = e^{ix}$, $dz = ie^{ix}dx$.

$$1 - 2a\cos(x) + a^2 = \frac{1}{z}\left(z - az^2 - a + a^2z\right) = \frac{1}{z}(1 - az)(z - a).$$

$$J = \int_{0}^{2\pi} \frac{z dx}{(1 - az)(z - a)} = \int_{\partial K(0, 1)} \frac{z}{(1 - az)(z - a)} \frac{1}{i} \frac{dz}{z} = \frac{1}{i} \int_{\partial K(0, 1)} \frac{dz}{(1 - az)(z - a)},$$

ale

$$\int_{\partial K(0,1)} \frac{dz}{(1-az)(z-a)} = 2\pi i \mathop{\rm Res}_{z=a} f(z).$$

Zauważmy, że (z-a)f(z) jest regularne w z=a, bo wynosi $\frac{1}{1-az}.$ Zatem

$$\operatorname{Res}_{z=a} f(z) = \lim_{z \to a} \frac{z - a}{(z - a)(1 - az)} = \lim_{z \to a} \frac{1}{(1 - az)} = \frac{1}{1 - a^2}.$$

Wychodzi

$$J = \frac{1}{i} 2\pi i \frac{1}{1 - a^2} = \frac{2\pi}{1 - a^2}.$$

Czyli jest ładnie i słodko

Wiemy, że jeżeli f ma biegun stopnia $n \le z = z_k$, to

$$\lim_{z \to z_k} (z - z_k)^n f(z)$$

będzie wiekością skończoną, bo $f(z)=\sum_{n=0}^\infty a_n(z-z_k)^n+\frac{a_{-1}}{(z-z_k)}+\ldots+\frac{a_{-n}}{(z-z_k)^n}$

Pytanie 1. Jak zachowuje się funkcja gdy z_0 jest punktem istotnie osobliwym?

Przykład 2. Weźmy

$$f(z) = e^{\frac{1}{z}}.$$

Wtedy

$$f(z) = \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n \frac{1}{n!}.$$

Zbadamy

$$\lim_{z \to 0} f(z).$$

$$\lim_{r\to 0} f\left(re^{i\varphi}\right) = \lim_{r\to 0} e^{\frac{1}{re^{i\varphi}}} = \lim_{r\to 0} e^{\frac{1}{r}\cdot e^{-i\varphi}} = \lim_{r\to 0} e^{\frac{1}{r}(\cos\varphi - i\sin\varphi)} = \lim_{r\to 0} e^{-i\cdot\frac{1}{r}\sin\varphi} \cdot e^{\frac{1}{r}\cos\varphi}.$$

A to dla $\cos \varphi > 0$ idzie do $+\infty$, dla $\cos \varphi < 0$ idzie do 0, a dla $\cos \varphi = 0$ nie wiadomo. Stąd wiadomo, że granica nie istnieje.

Przykład 3.

$$J = \int_{-\infty}^{+\infty} R(x)dx,$$

 $gdzie R : \mathbb{R} \to \mathbb{R} \ takie, \dot{z}e$

1. R(z) nie ma biegunów na osi rzeczywistej

2.
$$z \cdot R(z) \xrightarrow[|z| \to +\infty]{} 0$$

np.

$$J = \int_{-\infty}^{+\infty} \frac{dx}{(x^2 + 1)^3}.$$

Obszar - półokrąg o promieniu r. Policzmy

$$\int_{r}^{r} R(x)dx.$$

Weźmy funkcję R(z) i policzmy

$$\int\limits_{\partial D} R(z)dz = \int\limits_{-r}^{r} R(x)dx + \int\limits_{C_r} R(z)dz = 2\pi i \sum \mathop{\rm Res}_{z_k \in D} f(z).$$

Jeżeli pokażemy, że

$$\lim_{r \to \infty} \int_{C_r} R(z) dz \to 0$$

to będzie z głowy.

$$\int_{C_r} R(z)dz = \int_{0}^{\pi} re^{i\varphi} R(re^{i\varphi})d\varphi = J_1,$$

ale

$$|J_1| \leq \max_{0 \leq \varphi \leq \pi} |rR(re^{i\varphi})| \pi \to 0,$$

bo założyliśmy, że $zR(z) \underset{|z| \to +\infty}{\longrightarrow} 0.$

Przykład 4. Transformata Legendre'a geometrycznie niech np. $f(x) = x^2$.

 $Wiemy, \dot{z}e$

$$p = \frac{\partial f}{\partial x} = 2x, \quad x = \frac{p}{2}$$

$$p = \frac{f(x) - \psi(p)}{x}$$

$$px = f(x) - px$$

$$\psi(p) = \left(\frac{p}{2}\right)^2 - p\left(\frac{p}{2}\right)$$

$$y = px - \frac{p^2}{4}.$$

I ogólnie

$$f(x) \to p = \frac{\partial f}{\partial x}(x) \to x(p) = \left(\frac{\partial f}{\partial x}\right)^{-1}(p).$$

Więc

$$\psi(p) = f(x(p)) - px(p).$$

Przykład 5. Funkcja $L(q, \dot{q})$.

$$p = \frac{\partial L}{\partial \dot{q}} \implies (\dot{q}) = \left(\frac{\partial L}{\partial \dot{q}}\right)^{-1}(p).$$

Teraz szukamy $\psi(p)$, ale ψ to jest H.

$$H(q, p) = L(q, \dot{q}) - p \cdot \dot{q}.$$

Przykład 6.

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0 \implies \frac{\partial L}{\partial q} = \dot{p}.$$

Jeżeli $\psi(p) = f(x(p)) - px(p)$, to

$$d\psi(p) = \left(\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} - x(p) - p\frac{\partial x}{\partial p}\right) dp,$$

ale $\frac{\partial f}{\partial x} = p$, czyli

$$d\psi(p) = -x(p)dp.$$

Ale zazwyczaj jest tak

$$d\psi(p) = \frac{\partial \psi}{\partial p} dp.$$

czyli powinno być

$$-x(p) = \frac{\partial \psi}{\partial p}.$$

Wracając do przykładu 4, mamy $\psi(p) = -\frac{p^2}{4} \implies -x(p) = -\frac{p}{2} \implies p = 2x$. Ale

$$\psi(p) = f(x) - px \implies f(x) = \frac{-(2x)^2}{4} + 2xx = -x^2 + 2x^2 = x^2.$$

Przykład 7. Mamy gaz i funkcję stanu U(V,N,S). Możemy zrobić z niej jednoformę

$$dU = \frac{\partial U}{\partial V}dV + \frac{\partial U}{\partial N}dN + \frac{\partial U}{\partial S}dS.$$

Albo nawet dd

$$ddU = \left(\frac{\partial}{\partial S} \left(\frac{\partial U}{\partial V}\right) - \frac{\partial}{\partial V} \left(\frac{\partial U}{\partial S}\right)\right) ds \wedge dv = 0.$$

Można jeszcze dalej, zupgradować którąś pochodną na zmienną niezależną. Niech $\frac{\partial U}{\partial S} = T$. Dostajemy nową funkcję (energia swobodna Helmholtza) $F(V, N, T) = U - T \cdot S$.

$$\frac{\partial U}{\partial V} = -p, \quad H(p,N,S) = U + pV.$$

I później wychodzi

$$-\frac{\partial P}{\partial S} - \frac{\partial T}{\partial V} = 0.$$