Mathematical Statistics I

Chapter 5: Limit theorems

Jesse Wheeler

Outline

1. Convergence Concepts

2. Test Section

Convergence Concepts

Introduction

- This material comes primarily from Rice (2007, Chapter 5), but will be supplemented with material from Casella and Berger (2024, Chapter 5).
- In this chapter, we are interested in the convergence of sequences of random variables.
- In particular, we are interested in the convergence of the sample mean, $\bar{X}_n=(X_1+X_2+\ldots+X_n)/n$, as the number of samples n grows.
- Because \bar{X}_n is itself a random variable, we have to carefully define what it means for the convergence of a random variable.
- In this class, we are mainly concerned with three types of convergence.

Introduction II

 Because convergence of random variables is a tricky topic, we will treat them in varying amounts of detail.

Convergence in Probability

• The first type of convergence is one of the weaker types, and is usually easy(ish) to verify.

Definition: Convergence in Probability

A sequence of random variables X_1, X_2, \ldots converges in probability to a random variable X if, for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$$

or, equivalently,

$$\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1.$$

Convergence in Probability II

- We often use the shorthand $X_n \stackrel{P}{\to} X$ to denote " X_n converges in probability to X as n goes to infinity".
- Note that the X_i in the definition above do not need to be independent and identically distributed.
- The distribution of X_n changes as the subscript changes, and each of the convergence concepts we will discuss will describe different ways in which the distribution of X_n converges to some limiting distribution as the subscript becomes large.
- A special case is when the limiting random variable X is a constant.

Convergence in Probability III

Example: The (Weak) Law of Large Numbers

Let X_1,X_2,\ldots be iid random variables with $E[X_i]=\mu$ and $\mathrm{Var}(X_i)=\sigma^2$. Define $\bar{X}_n=(1/n)\sum_{i=1}^n X_i$. Then $\bar{X}_n\overset{P}{\to}\mu$.

Test Section

Test Frame

References and Acknowledgements

Casella G, Berger R (2024). *Statistical inference*. Chapman and Hall/CRC.

Rice JA (2007). *Mathematical statistics and data analysis*, volume 371. 3 edition. Thomson/Brooks/Cole Belmont, CA.

- Compiled on October 20, 2025 using R version 4.5.1.
- Licensed under the Creative Commons Attribution NonCommercial license. Please share and remix
 non-commercially, mentioning its origin.

References and Acknowledgements II

 We acknowledge students and instructors for previous versions of this course / slides.