Escuela 2043 - 5to1ra

BETO

Proyecto Final del Taller de Arduino

Mini robot montacargas que pueda transportar insumos a través de un supermercado de una manera semi-autónoma. El robot estará equipado con varios componentes electrónicos, incluyendo un Arduino para el control, sensores, y motores.

Proyecto

1.1. Descripción General

Buscamos desarrollar un mini robot montacargas que pueda transportar insumos a través de un supermercado de manera semi-autónoma. El robot estará equipado con varios componentes electrónicos, incluyendo un Arduino Uno para el control, una shield v5.0 donde se conectarán todos los sensores, motores CC, controladores, y un módulo bluetooth para poder conectarnos a una aplicación.

El diseño del robot montacargas será compacto y resistente, con la capacidad de transportar carga. El robot tendrá la capacidad de moverse en diferentes direcciones y girar para poder llegar a las diferentes ubicaciones que se le indiquen, en distintos entornos
1.2. Objetivo del proyecto
El objetivo del proyecto será el de poder funcionar en un supermercado en el que habrá distintas góndolas; Se le indicará al robot, mediante la aplicación, a qué parte debe ir.
1.3. Justificación del proyecto
1.3. Justimeación del proyecto
El proyecto busca poder automatizar el trabajo de las personas que acomodan los productos en las góndolas y así ahorrar tiempo, dinero, y ser más eficientes, al destinar ese tiempo en otras tareas.

1.4. ¿A quién beneficia?

Este proyecto de mini robot montacargas beneficiará a los supermercados y tiendas minoristas que buscan mejorar su eficiencia y reducir costos. Al automatizar el proceso de transporte de productos a las góndolas, se reducirá la necesidad de mano de obra humana para realizar esta tarea, lo que puede ahorrar tiempo y dinero a la empresa. Además, puede ayudar a reducir el riesgo de lesiones y accidentes laborales para los empleados que de otro modo tendrían que realizar esta tarea manualmente.

1.5. ¿En qué le cambia la vida? Beneficios esperados

<u>Mejora de la eficiencia</u>: El uso del robot montacargas puede permitir que los trabajadores completen sus tareas de manera más eficiente, ya que el robot puede transportar cargas y moverse de manera autónoma, lo que puede ahorrar tiempo y reducir la fatiga laboral.

<u>Reducción del riesgo de lesiones:</u> Con el robot montacargas, los trabajadores ya no tendrían que levantar y mover cargas pesadas manualmente, lo que puede reducir el riesgo de lesiones y enfermedades laborales. También puede haber menos accidentes laborales en general, ya que el robot puede evitar obstáculos y moverse de manera más segura que los humanos.

<u>Ahorro de costos</u>: Al automatizar el transporte de productos a las góndolas, las empresas pueden reducir los costos de mano de obra y aumentar la eficiencia en general. Esto puede permitirles reducir los precios de los productos para los consumidores o invertir en otras áreas de la empresa.

Mejora de la experiencia del cliente: Al reducir el tiempo que los trabajadores deben dedicar a reponer los productos en las góndolas, pueden concentrarse más en la atención al cliente y mejorar la experiencia general del cliente en la tienda. Esto puede llevar a clientes más satisfechos.

1.6. Proyectos de Referencia (en qué se basaron)

Algunos proyectos en los que nos basamos fueron:

<u>Amazon Robotics</u>: Amazon utiliza una flota de robots para ayudar a gestionar el inventario y preparar los pedidos en sus almacenes. Estos robots están diseñados para moverse de manera autónoma y transportar productos pesados, lo que ha ayudado a mejorar la eficiencia y la velocidad en los procesos de almacenamiento y distribución.

<u>Robotnik Automation</u>: Robotnik Automation es una empresa española que fabrica robots para la industria logística. Sus robots se utilizan en almacenes y centros de distribución para el transporte de productos y la gestión del inventario.

1.7. Potencialidad de escalado / ampliación

Una de las posibles ampliaciones que se podrían realizar en este proyecto:

Una garra para que el robot pueda pasar de semiautomático (no dependa de una persona) a un robot totalmente independiente (pueda sujetar y soltar los elementos)

1.8. MVP (Mínimo producto viable) (Prototipo)

El MVP de este proyecto podría armarse con:

- Arduino Uno: como unidad de control central para el robot.
- *Chasis y ruedas*: para proporcionar la estructura y la movilidad del robot.
- Motores CC: para el movimiento y dirección del robot.
- Sensor RGB: para seguir caminos preestablecidos.
- Aplicación móvil: para cargar el camino.

Con este MVP, se podría probar la funcionalidad básica del robot y evaluar su capacidad para moverse y transportar objetos de manera semi-autónoma. A partir de este prototipo inicial, se podrían realizar mejoras para añadir más características y funcionalidades avanzadas.

1.9. Riesgos - Potenciales imprevistos / Inconvenientes

<u>Riesgos de seguridad</u>: el robot debe ser diseñado con medidas de seguridad adecuadas para prevenir accidentes y lesiones. Los sensores y los algoritmos de control deben ser robustos y precisos para evitar colisiones y asegurar que el robot no dañe a las personas o a otros objetos.

<u>Fallos técnicos</u>: el robot es un sistema complejo que involucra muchos componentes electrónicos y mecánicos. Es importante realizar pruebas rigurosas y mantener el robot de manera adecuada para prevenir fallos técnicos que puedan causar problemas

<u>Problemas de integración:</u> puede haber problemas de integración entre los diferentes componentes del robot, lo que puede afectar su capacidad para funcionar de manera efectiva. Es importante realizar pruebas de integración y asegurar que todos los componentes funcionan correctamente y se comunican de manera efectiva.

<u>Costo y tiempo</u>: el desarrollo de un mini robot montacargas puede ser costoso y llevar tiempo. Es importante que tengamos en cuenta el presupuesto y el tiempo disponible para realizar cada etapa del proyecto

1.10. Restricciones

- Se necesita obligatoriamente un dispositivo móvil, para el uso de la app.
- Se necesitarán adaptar las superficies en las que se trasladara el robot.

1.11. El equipo de proyecto (Roles y Responsabilidades)

- Espinosa Tomas (Codeo Arduino, Armado Físico)
- Chiarotti Juani (Codeo APK, Armado Físico)
- Schmidt Mateo (Visual APK, Armado Físico)

Especificaciones

2.1. Lista de Materiales - Diagrama en Bloques (Vista en grande con Canva)

2.2. Circuito (Fritzing) (Vista en grande con Canva)

2.3. Código (Link al repositorio GitHub)

2.4. DataSheet de Materiales

DataSheet Arduino Uno-

DataSheet Shield v5.0-

DataSheet Módulo Detector de Obstáculos Infrarrojo-

DataSheet Módulo Bluetooth Hc06-

DataSheet L298N-

DataSheet Motores CC c/rueda-

DataSheet TCS3200-

2.5 Objetos 3D (CAD) (Maquetado) (Link a TinkerCAD)

Etapas del proyecto (Tareas y Tiempos)

3.1. WBS (listado básico de tareas)	
 Elección de proyecto Investigación de materiales Compra de materiales Soldadura de motores CC Conexión motores CC al L298N Codeo de motores Prueba de ultrasonido y servomotor Ensamblaje de ultrasonido a servo y este al chasis Resolución de problemas con la Shield Compra de sensor RGB y modulo BT Codeo TCS3200 Ensamblaje de sensores infrarrojos Codeo de sensores infrarrojos Resolución de problemas con los motores Codeo de módulo BT Codeo de la lógica que seguirá el robot Armado de superficie Resolución de problemas Presentacion final 	
3.2. Estimaciones de tiempo (Work / Time) (Registro de tiempos en Sheets) Costos del proyecto 4.1. Materiales (Lista de materiales y compras detalladas en Google Sheets)	_
4.2. Mano de Obra (Hs Hombre)	-

Descarga la APK para controlar el robot "Beto"

El proyecto necesito *180 horas de trabajo.