LECTURE 6

Author

Tom Jeong

January 27, 2025

Contents

1	Useful Facts	2
2	ajoining multiple elements	2
	2.1 examlpes	2

1 Useful Facts

1.
$$L/K$$
, $L = K \leftrightarrows [L:K] = 1$

2.
$$L/K$$
, $\alpha \in L$, $f(x) \in k(x)$, $f(\alpha) = 0$ then f is irreducible $= [k(\alpha) : k] = \partial f$

on number 2 specifically, f is irreducible then $k(\alpha) \cong k(x)/f(x), [k(x)/f(x):k] = \partial f$ $I(\alpha) = \{p \in k(x): p(\alpha) = 0\}, I(\alpha) = \langle m(\alpha) \rangle$

 $m(\alpha) = \text{minimal polynomial of } \alpha \text{ thus irreducible.}$

 $[k(\alpha):k] = \partial m(\alpha)$

$$[k(\alpha):k] = [k(x)/m(x):k] = \partial m(x)$$

So f must be a constant multiple thus f is irreducible.

2 ajoining multiple elements

 $k(\alpha_1, \alpha_2, \dots, \alpha_s)$ where α_i - minimal polynomial m_i , $d_i = \partial m_i$ 3. $[k(\alpha_1, \alpha_2, \dots, \alpha_s) : k] \leq d_1 \cdot d_2 \cdot \dots \cdot d_s$

 $[k(\alpha_1, \alpha_2) : k] = [k(\alpha_1, \alpha_2) : k(\alpha_1)] \cdot [k(\alpha_1) : k] = [k(\alpha_1, \alpha_2) : k(\alpha_1)] \cdot d_1$.. tower theorem want to show that $[k(\alpha_1, \alpha_2) : k] \le d_2$ $d_2 =$ degree of the minimal polynomial $m_2(x)$ of d_2 in k(x). $m_2(x)$ is irreducible in k(x)

 $m_2(x)$ may become reducible in $k(d_1)[x]$ $\bar{m_2}(x)$ is the minimal polynomial of d_2 in $k(d_1)[x]$ we know $\partial \bar{m}_2 \leq d_2$

$$[k(\alpha_1, \alpha_2, \alpha_3) : k] = [k(\alpha_1, \alpha_2, \alpha_3) : k(\alpha_1, \alpha_2)] \cdot [k(\alpha_1, \alpha_2) : k(\alpha_1)] \cdot [k(\alpha_1) : k] \leq d_3 \cdot d_2 \cdot d_1$$

2.1 examlpes

$$[\mathbb{Q}(\sqrt[3]{2},\sqrt{2}):\mathbb{Q}]$$

before that lets see $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$

 $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$

thus, $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$

 $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}] = 3$

 $x^3 - 2$ Eisenstein criteria

thus, $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$

 $\rightarrow [\mathbb{Q}(\sqrt[3]{2},\sqrt{2}):\mathbb{Q}] \leq 6$ now trying to prove that it is equal to 6

tower theorem $[\mathbb{Q}(\sqrt[3]{2},\sqrt{2}):\mathbb{Q}]$ is divisible by 2 and 3

 $\to [\mathbb{Q}(\sqrt[3]{2},\sqrt{2}):\mathbb{Q}] = 6$

$$[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]$$

$$\mathbb{Q}(\sqrt{2},\sqrt{3}) \geq \mathbb{Q}(\sqrt{2}+\sqrt{3})$$
 we show that it is actually equal

$$\frac{1}{\sqrt{2} + \sqrt{3}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{2} + \sqrt{3})(\sqrt{3} - \sqrt{2})} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

$$\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$$

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = \{2,4\}$$

if the answer was 2, $[\mathbb{Q}(\sqrt{3}, \sqrt{2}) : \mathbb{Q}(\sqrt{2})] = 1$ making the fields the equal

Show that x^3-2 is irreducible over $\mathbb{Q}[i]$ x^3-2 is irreducible over $\mathbb{Q}[i] \leftrightarrows [Q[\sqrt[3]{2}]:\mathbb{Q}[i]]=3$

3 squaring a circle