Introduction au nombre π et au radian

Le nombre π

Le nombre π est défini comme le rapport constant entre la circonférence C et le diamètre d d'un cercle :

$$\pi = \frac{C}{d}$$

Quel que soit le cercle, ce rapport est toujours égal à π , une constante approximativement égale à 3.14159.

As-tu compris?

Si la circonférence d'un cercle est de 31.4, quel est son diamètre ?

Le cercle trigonométrique

Dans le cercle trigonométrique, le rayon est égal à 1. La circonférence de ce cercle est donc :

$$C=2\pi\cdot r=2\pi$$

Cela signifie qu'un tour complet autour du cercle correspond à une longueur d'arc de $2\pi.$

As-tu compris?

Quelle est la longueur d'arc correspondant à un demi-tour dans le cercle trigonométrique ?

Le radian

Le radian est une unité de mesure des angles. Un angle de 2π radians correspond à un tour complet du cercle, soit 360° . Ainsi, nous avons :

$$360^\circ=2\pi\ \mathrm{radians}$$

Il y a donc une correspondance directe entre la longueur d'arc et l'angle qui intercepte cet arc mesuré en radians (voir exercices plus loin).

On peut convertir des degrés en radians grâce à la règle de trois etablie par la relation suivante :

$$180^{\circ} = \pi \text{ radians}$$

As-tu compris?

Combien de radians correspondent à 57° ?

Angles remarquables

Voici un tableau des conversions pour les angles remarquables :

Degrés (°)	Radians (rad)
0°	0
30°	$\frac{\pi}{6}$
45°	$\frac{\pi}{4}$
60°	$\frac{\pi}{3}$
90°	$\frac{\pi}{2}$
180°	π
360°	2π

As-tu compris?

Convertir 120° en radians.

Exercices

- 1. Convertir les angles suivants en radians : $145^{\circ}, 270^{\circ}, 15^{\circ}$.
- 2. Convertir les angles suivants en degrés : $\frac{\pi}{2}$, $\frac{5\pi}{6}$, $\frac{7\pi}{4}$.
- 3. Sur un cercle de rayon 2, calculez la longueur d'arc correspondant à un angle de $\frac{\pi}{3}$.
- 4. Sur un cercle trigonométrique, tracez un angle de $\frac{3\pi}{4}$. Quelle est sa mesure en degrés ?
- 5. Sur un cercle de rayon 3, calculez la longueur d'arc correspondant à un angle de 120° .
- 6. Trace un cercle trigonométrique et place tous les angles égaux à $k\cdot \frac{\pi}{6}$ pour $k\in\{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6\}.$