Lab 7: Character LCD Control

National Chiao Tung University Chun-Jen Tsai 11/18/2016

Lab 7: Character LCD Control

- □ In this lab, you will learn how to use the 1602 character LCD module
 - When you circuit is configured into the FPGA, it will compute the first 25 Fibonacci numbers and store them in SRAM
 - When the computation is done, the LCD display will begin to scroll through the numbers cyclically
 - Then, the user can use the WEST buttons to change the direction of scrolling
- □ You will demo the design to your TA during the lab hours on 11/29

1602 Character LCD Display

 \square There is a 2×16 character LCD display on the board:

Memory Map of the LCD

- □ The LCD device can be treated as a 32-byte memory
 - Each 8-bit cell corresponds to a character on the display
 - Writing an ASCII code to a cell will display the character on the corresponding location on the LCD:

Note: the LCD is slow, you should not update the screen faster than every 0.5 seconds!

□ Character display memory (DD RAM) addresses:

ı	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
1	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F

Character LCD Interface (1/2)

- □ The LCD interface has 8 data wires (DB0 ~ DB7) and 3 control wires (LCD_E, LCD_RS, LCD_RW):
 - LCD_E enable/disable the inputs to the LCD module
 - The rest of the wires are defined depending on the functions:

Function		LCD_RW	Upper Nibble				Lower Nibble				
			DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
Clear Display	0	0	0	0	0	0	0	0	0	1	
Return Cursor Home		0	0	0	0	0	0	0	1	-	
Entry Mode Set		0	0	0	0	0	0	1	I/D	S	
Display On/Off	0	0	0	0	0	0	1	D	С	В	
Cursor and Display Shift	0	0	0	0	0	1	S/C	R/L	-	-	
Function Set	0	0	0	0	1	0	1	0	-	-	
Set CG RAM Address	0	0	0	1	A5	A4	A3	A2	A1	A0	
Set DD RAM Address	0	0	1	A6	A5	A4	A3	A2	A1	A0	
Read Busy Flag and Address		1	BF	A6	A5	A4	A3	A2	A1	A0	
Write Data to CG RAM or DD RAM		0	D7	D6	D5	D4	D3	D2	D1	D0	
Read Data from CG RAM or DD RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	

Character LCD Interface (2/2)

- □ However, the Spartan-3E Starter Board uses the 4-bit operating mode of the LCD device, that is, only DB4~DB7 are connected to the FPGA
 - Execution of a function will need two transmissions, using only LCD E, LCD RS, LCD RW, and DB4~DB7:

Timing Diagrams for Transmission

- ☐ The timing diagram for one transmission in four-bit mode is as follows:
 - Note that execution of a function requires two transmissions

The Sample LCD Module

□ A ISE workspace that contains an LCD module that handle all the timing issues will be provided for you to use; the workspace also has a "Hello, World!" circuit that shows you how to use the LCD module

```
module LCD_module(
   input clk,
   input reset,
   input [127:0] row_A,
   input [127:0] row_B,
   output reg LCD_E,
   output reg LCD_RS, //register select
   output reg LCD_RW, //read / write
   output reg [3:0]LCD_D //data
);
```

Two Phases of the LCD Controller

- □ The LCD controller is composed of two FSMs:
 - The FSM of the initialization phase has 12 states and runs at 23.84 Hz; once the initialization is done, it will trigger the text screen refreshing FSM
 - The text screen refreshing FSM has 68 states and runs at 381.47 Hz; Among the 68 states, 64 states are used to send ASCII codes (4-bit per state) and 4 states are used to set the cursor positions
- ☐ The LCD screen will be refreshed at 5.96 Hz since 381.47Hz / 68 = 5.6 Hz

Lab 7 Sample Package

☐ For this lab, the sample circuit shows the following text on the LCD module:

□ When the WEST button is pressed, the text lines will be flipped

The Fibonacci Numbers

- □ The first two Fibonacci numbers are 0 and 1. Each remaining number is the addition of the previous two numbers.
- □ A short C-model that computes the first 25 Fibonacci numbers is as follows:

```
int fibo[25], idx;

fibo[0] = 0, fibo[1] = 1;
for (idx = 0; idx < 25; idx++)
{
    if (idx >= 2)
        {
        fibo[idx] = fibo[idx-1] + fibo[idx-2];
        }
        printf("Fibo #%02x is %04x.\n", idx+1, fibo[idx]);
}
```

What to Do in Lab7

- □ In Lab 7, it is mandatory for you to do following things:
 - Use a 16-bit SRAM to store the array fibo[25]
 - Once the first 25 Fibonacci numbers are found, the LCD will start to display these numbers as follows:
 - Roughly every 0.7 sec, the LCD scrolls up one number
 - If the WEST button is pressed, the scrolling direction will be reversed (scroll-up becomes scroll-down, and vice versa)
 - Example display: cyclic scroll-up (numbers are in hexadecimal)

References

- □ Chapter 5 of Spartan-3E Starter Kit Board User Guide, UG230 (v1.0).
- □ Xilinx, Using Block RAM in Spartan-3 FPGAs, Xilinx Application Note, XAPP 463 v1.1.2, July 23, 2003.