Bachelorthesis

Nachvollziehbarkeit von Nutzerinteraktion und Anwendungsverhalten am Beispiel JavaScript-basierter Webapplikationen

An der Fachhochschule Dortmund im Fachbereich Informatik Studiengang Software- und Systemtechnik, Vertiefung Softwaretechnik erstellte Bachelorthesis zur Erlangung des akademischen Grades Bachelor of Science

von Marvin Kienitz geb. am 26.04.1996 Matr.-Nr. 7097533

Betreuer:

Prof. Dr. Sven Jörges Dipl. Inf. Stephan Müller

Dortmund, 9. Oktober 2020

Kurzfassung

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, conque eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitior diam. Donec felis erat, conque non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci diqnissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada portitor diam. Donec felis erat, conque non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Inhaltsverzeichnis

1	\mathbf{Ein}	leitung	1				
	1.1	Motivation	1				
	1.2	Problemstellung	1				
	1.3	Zielsetzung	2				
		1.3.1 Abgrenzung	2				
	1.4	Vorgehensweise	3				
	1.5	Open Knowledge GmbH	3				
2	Instandhaltung und Support						
	2.1	Phase in Softwareprojekten	5				
	2.2	Nachvollziehbarkeit	5				
	2.3	Maintenance bei Webapplikationen	6				
3	Methoden und Praktiken						
	3.1	Fehlerberichte	7				
	3.2	Logging	7				
	3.3	Metriken	7				
	3.4	Tracing	7				
4	Beispielhafte Integration						
	4.1	Konzept	9				
	4.2	Implementierung	9				
	4.3	Demonstration	9				
5	Abschluss 11						
	5.1	Fazit	11				
	5.2	Ausblick	11				
Ei	\mathbf{dess}	tattliche Erklärung	12				
A 1	bkiir	zungsverzeichnis	14				
	A bhildungsverzeichnis						
Δ	กกปล	HINGSVARZAICHNIS	1.5				

In halts verzeichn is

Tabellenverzeichnis	16
Quellcodeverzeichnis	16
Literaturverzeichnis	17

1 Einleitung

1.1 Motivation

In der Welt der Systeme mit Benutzerinteraktionen gibt es stets die Hürde, dass "im Feld" unvorhergesehene Probleme auftreten. Diese Systeme können bspw. Graphical User Interfaces (GUI) sein. Donald Norman [Nor89] argumentierte bereits 1989, dass bei komplexen Aufgaben und Umgebungen das Unerwartete erwartet werden muss. Nutzerfeedback ist notwendig um diese Situation aufzuklären und beheben zu können [RC99].

Bei Webapplikationen ist dieses Problem noch prägnanter, denn hier sind..

- ..die Systeme selber meist um ein Vielfaches komplexer [Gin02],
- ..die Umgebungen komplex und unterschiedlich,
- ..die Nutzer eher unwissend, wie das System funktioniert [RC99] und
- ..die Nutzer stehen meist nicht im direkten Kontakt mit den Stakeholdern [CMPP08].
 Stakeholder sind im Rahmen dieser Arbeit die Betreiber und Entwickler einer Webapplikation.

1.2 Problemstellung

Aufgrund dieser Bedingungen werden bei Webprojekten Probleme im Feld erwartet. Zur Behebung dieser Mängel benötigen die Stakeholder Informationen. Für Nutzer gibt es daher oftmals Formulare um diese Auffälligkeiten zu melden (Beispiel siehe rechts). Die Einbindung solcher Formulare ist zeit- und kostengünstig, kann aber nur erfolgreich sein, wenn die Nutzer verständliches und informatives Feedback geben können und wollen.

Bettenburg $et~al~[\mathrm{BJS^{+}08}]$ fanden bei Fehlerberichten eine Dissonanz zwischen dem was Entwickler als hilfreich empfanden und dem was Nutzer ihnen als Bericht lieferten. Eine besser zugeschnittene Lösung ist anzustreben.

Abb. 1.1: Formular aus der Instagram [Ins20] Android App

1.3 Zielsetzung

Ziel dieser Arbeit ist es, eine Möglichkeit zu schaffen, dass die Stakeholder die Interaktionen eines Nutzers und das Verhalten einer Webapplikation nachvollziehen können.

Folgende Fragen sollen im Zuge der Ausarbeitung für den Leser beantwortet werden:

- 1. Was bedeutet Nachvollziehbarkeit?
- 2. Warum ist Nachvollziehbarkeit wichtig?
- 3. Wie kann eine gute Nachvollziehbarkeit erreicht werden?
 - a) Was wird hierzu benötigt?
 - b) Wie kann Nutzerverhalten nachvollzogen werden?
 - c) Wie können Fehler nachgestellt werden?
- 4. Wie ist eine Webapplikation zu erweitern um dies zu erreichen? (Hierbei sollen Projekte von Open Knowledge untersucht werden.)
 - a) Was für Technologien helfen hierbei?
 - b) Was sind die Auswirkungen für den Nutzer?
 - i. Wird die Leistung der Webapplikation beeinträchtigt?
 - ii. Wie wird mit seinen Daten umgegangen (Stichwort DSGVO)?

1.3.1 Abgrenzung

Bei der Betrachtung von Webapplikationen, sollen nun jene betrachtet werden, die dynamisch mit JavaScript erzeugt werden - auch Single-Page-Applications (SPAs) genannt.

Bei der Implementierung soll ein Proof-of-Concept (PoC) bzw. eine Demonstration der vorgestellten Methoden und Konzepte erstellt werden. Eine allgemeingültige Lösung übersteigt den Rahmen der Bachelorarbeit und ist nicht anzustreben.

Im Zuge der Implementierung der Erweiterung, soll beleuchtet werden, welche Daten erhoben werden und wie mit diesen umgegangen wird. Eine Analyse der Datenverarbeitung in Hinblick auf vollste Konformität mit der DSGVO wird jedoch nicht Bestandteil sein.

1.4 Vorgehensweise

Zunächst soll die Arbeit dem Leser vermitteln, wie die genaue Ausgangssituation ist und welche besonderen Hürden es bei der Betreibung von Webapplikationen in Bezug auf das Themengebiet gibt. Sie soll aufzeigen, welche Folgen eine bessere Nachvollziehbarkeit bei der Betreibung einer Webapplikation besitzt und warum diese erstrebenswert ist.

Durch das gewonnene Verständnis über die Ausgangssituation, sollen nun Methoden aufzeigt werden, wie man eine Nachvollziehbarkeit erreichen kann. Methoden wie Fehlerberichte, Logging, Metriken, Tracing und ggf. andere sollen betrachtet werden.

Auf Basis des detaillierten Verständnisses der Problemstellung und der Methoden soll nun die Erstellung eines PoC Fokus sein. Das PoC soll auf Basis bestehender Webapplikation der Open Knowledge GmbH erfolgen. Sie soll als Ziel haben, die Nachvollziehbarkeit zu erhöhen.

Als letztes soll ein Fazit erstellt werden. Darin enthalten ist ein Ausblick, welcher beschreibt, wie das Themengebiet und die erstellte Software voranschreiten könnten.

1.5 Open Knowledge GmbH

Die Bachelorarbeit wird unter anderem im Rahmen einer Werkstudententätigkeit innerhalb der Open Knowledge GmbH erstellt. Der Standortleiter des Standortes Essen, Dipl. Inf. Stephan Müller, übernimmt die Zweitbetreuung.

Die Open Knowledge GmbH ist ein brancheneutrales mittelständisches Dienstleistungsunternehmen mit dem Ziel bei der Analyse, Planung und Durchführung von Softwareprojekten zu unterstützen. Das Unternehmen wurde im Jahr 2000 in Oldenburg, dem Hauptsitz des Unternehmens, gegründet und beschäftigt heute 74 Mitarbeiter. Mitte 2017 wurde der zweite Standort in Essen eröffnet an dem aktuell 13 Mitarbeiter angestellt sind.

Die Mitarbeiter von Open Knowledge übernehmen in Kundenprojekten Aufgaben bei der Analyse über die Projektziele und der aktuellen Ausgangssituationen, der Konzeption der geplanten Software, sowie der anschließenden Implementierung. Die erstellten Softwarelösungen stellen Individuallösungen dar und werden den Bedürfnissen der einzelnen Kunden entsprechend konzipiert und implementiert. Technisch liegt die Spezialisierung bei der Mobile- und bei der Java Enterprise Entwicklung, bei der stets moderne Technologien und Konzepte verwendet werden. Aufgrund der großen Expertise in den Bereichen Technologien und Konzepte sind sowohl die Geschäftsführer als auch diverse Mitarbeiter der Open Knowledge GmbH als Redner auf Fachmessen wie der Javaland oder Autoren in Fachzeitschriften wie dem Java Magazin vertreten. [Bec19]

2 Instandhaltung und Support

2.1 Phase in Softwareprojekten

In vielen Modellen über den Lebenszyklus einer Software gibt es eine Phase, in der Instandhaltung und Support den Alltag bestimmen, sie wird oftmals "Maintenance" bezeichnet [Gin02] [MT88]. Sie ist nach Zelkowitz et al [ZSG79] für rund zwei Drittel der Entwicklungskosten verantwortlich, begründet durch exponentielle Steigung [Bec99].

Es werden immer bessere Methoden entwickelt, um Probleme in Software - oder auch Bugs zu verringern. Jedoch erhöht sich zugleich die Komplexität von Software, was zur Ursache

Abb. 2.1: Lebenszyklus einer Software TODO: Replace with own diagram

hat, dass es mehr Nährboden für Bugs gibt [HL02]. De-facto sind Bugs ein unvermeidbarer Bestandteil einer Software und müssen daher erwartet und gehandhabt werden [Jr.95].

Wenn nun ein Bug auffällt, sei es durch einen Nutzer oder auch zufällig einem Stakeholder, muss entschieden werden, ob dieser zu beheben ist. Wenn eine Behebung angestrebt wird, benötigt der Stakeholder meistens Rahmeninformationen [cite] um den Bugggf. zu reproduzieren und die Situation nachzuvollziehen. Desto mehr Verständnis der Stakeholder über das Problem erhält, desto schneller und präziser kann er die Ursache aufdecken. Die Ermöglichung der schnellen Verständnis über ein Problem, wird in dieser Arbeit Nachvollziehbarkeit genannt.

2.2 Nachvollziehbarkeit

Sie beschäftigt sich mit der Informationserfassung und -aufbereitung, um das Verhalten eines Systems und die Interaktionen der Nutzer verstehen zu können.

2.3 Maintenance bei Webapplikationen

Hier sollen die Besonderen Hürden bei Webapplikationen hervorgehoben werden (ungeschulte Nutzer, indirekte Kommunikation, etc.)

3 Methoden und Praktiken

In diesem Kapitel soll beschrieben werden, wie eine Nachvollziehbarkeit in Softwareprojekten erreicht werden kann. Spezielle Methoden und Praktiken sollen vorgestellt und beleuchtet werden.

- 3.1 Fehlerberichte
- 3.2 Logging
- 3.3 Metriken
- 3.4 Tracing

4 Beispielhafte Integration

4.1 Konzept

Hier soll die grobe Architektur geplant werden, welche Komponente es gibt und wie diese kommunizieren sollen.

4.2 Implementierung

Auf Basis des Konzeptes soll nun eine Implementierung erfolgen.

4.3 Demonstration

Nachdem nun eine Implementierung steht, soll die Erweiterung auf nicht-technische Weise veranschaulicht werden. Hier soll dargestellt werden, wie die Nachvollziehbarkeit nun verbessert worden ist.

5 Abschluss

5.1 Fazit

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.2 Ausblick

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, conque eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und
ohne die Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stel-
len, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften
entnommen wurden, sind als solche kenntlich gemacht. Die Arbeit ist in gleicher oder
ähnlicher Form oder auszugsweise im Rahmen einer anderen Prüfung noch nicht vorge-
legt worden.

Dortmund, am	
	(Unterschrift)

Abkürzungs- und Erklärungsverzeichnis

DSGVO Datenschutz Grundverordnung

GUI Graphical-User-Interface, Grafische Benutzeroberfläche

PoC Proof-of-Concept

SPA Single Page Application

Stakeholder In dieser Arbeit werden Betreiber und Entwickler einer Webapplikation so zusammengefasst

Abbildungsverzeichnis

1.1	Formular aus der Instagram [Ins20] Android App	
2.1	Lebenszyklus einer Software TODO: Replace with own diagram	[

Tabellenverzeichnis

Quellcodeverzeichnis

Literaturverzeichnis

- [Bec99] Kapitel 5. In: Beck, Kent: Extreme programming explained: embrace change. addison-wesley professional, 1999, S. 21
- [Bec19] Becker, Vincent: Vorstellung und Demonstration des Frameworks zur Überprüfung der Akzeptanzkriterien von User Stories einer RESTful API. 2019
- [BJS⁺08] Bettenburg, Nicolas; Just, Sascha; Schröter, Adrian; Weiss, Cathrin; Premraj, Rahul; Zimmermann, Thomas: What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, 2008. ISBN 0-7695-0262-8, S. 308-318
- [CMPP08] Costabile, Maria F.; Mussio, Piero; Provenza, Loredana P.; Piccinno, Antonio: End users as unwitting software developers. In: *Proceedings of the* 4th international workshop on End-user software engineering, 2008, S. 6–10
- [Gin02] GINIGE, Athula: Web Engineering: Managing the Complexity of Web Systems Development. In: Proceedings of the 14th international conference on Software engineering and knowledge engineering, 2002, S. 721–729
- [HL02] HANGAL, Sudheendra.; LAM, Monica S.: Tracking down software bugs using automatic anomaly detection. In: *Proceedings of the 24th International Conference on Software Engineering. ICSE 2002* IEEE, 2002, S. 291–301
- [Ins20] Instagram App Screenshot. https://www.instagram.com/, 2020
- [Jr.95] Kapitel 2. In: Jr., Frederick P. B.: The mythical man-month: essays on software engineering. Pearson Education, 1995
- [MT88] Mantel, Marilyn M.; Teorey, Toby J.: Cost/benefit analysis for incorporating human factors in the software lifecycle. In: Communications of the ACM 31 (1988), Nr. 4, S. 428–439
- [Nor89] NORMAN, Donald A.: The "Problem" of Automation: Inappropriate Feedback and Interaction, Not "Overautomation". In: ICS Report 8904 (1989)

- [RC99] Renaud, K.; Cooper, R.: An error reporting and feedback component for component-based transaction processing systems. In: *Proceedings User Interfaces to Data Intensive Systems*, 1999. ISBN 0-7695-0262-8, S. 141-150
- [ZSG79] In: Zelkowitz, Marvin V.; Shaw, Alan C.; Gannon, John D.: *Principles of Software Engineering and Design*. Prentice Hall Professional Technical Reference, 1979. ISBN 978-0-13-710202-0