- **31.7.** Korzystać z następującej własności wektorów na płaszczyźnie (uzasadnić ją):
- Jeśli $\vec{u} \perp \vec{v}$, $||\vec{u}|| = ||\vec{v}||$ oraz $\vec{u} = (a, b)$, to $\vec{v} = (b, -a)$ lub $\vec{v} = (-b, a)$. Sugeruje ona, że zadanie ma dwa rozwiązania.
- **31.8.** Zapisać funkcję w postaci $f(x) = x^{1/2} + x^{-1/2}$ i obliczyć pochodną ze wzoru na pochodną funkcji potęgowej. Zauważyć, że $\lim_{x\to +\infty} (f(x)-\sqrt{x})=0$. Jaką własność geometryczną wykresu funkcji f(x) opisuje ta równość?
- **32.1.** Oznaczyć przez x prędkość statku, przez y prędkość wody, a przez d odległość z Wrocławia do Szczecina. Zapisać odpowiednie równania i nie wyznaczając niewiadomych, odpowiedzieć tylko na postawione pytanie.
- **32.2.** Sprowadzić wszystkie logarytmy do tej samej podstawy 2 lub 8 i skorzystać z definicji ciągu geometrycznego.
- **32.3.** Narysować przekrój pionowy wanny z leżącą na dnie belką. Ponieważ średnica belki jest połową promienia wanny, w jej przekroju pionowym pojawiają się trójkąty równoboczne.
- **32.4.** Zarówno v(x), jak i w(x) muszą mieć dwa różne pierwiastki rzeczywiste. To daje dziedzinę dla parametru m. Obliczyć pierwiastki x_1 , x_2 wielomianu w(x). Jeśli wierzchołek paraboli o równaniu y=v(x) leży pomiędzy x_1 i x_2 oraz $v(x_1)$ i $v(x_2)$ są dodatnie, to wymagany warunek jest spełniony.
- **32.5.** Rozważyć następujące zdarzenia: C wylosowano co najmniej dwie kule białe, D z urny B wylosowano kulę białą, E_i z urny A wylosowano i kul białych, i = 0, 1, 2, 3, 4. Wówczas C' = $E_0 \cup D' \cap E_1$. Skorzystać z niezależności zdarzeń D, E_i , rozłączności zdarzeń E_0 , $D' \cap E_1$ oraz ze schematu Bernoulliego.
- **32.6.** Wyznaczyć dziedzinę równania. Pomnożyć obie strony przez $\cos x$ i po zastosowaniu wzorów $\sin 2x = 2 \sin x \cos x$ oraz $\cos 2x = 1 2 \sin^2 x$ rozłożyć wyrażenie na czynniki, wyłączając przed nawias czynnik $(\sin x \cos x)$.