Analysis of the ML-Based Screening Models and their Features

Types of Machine Learning Models Used

- ★ Logistic Regression
- **★** Random Forest
- **★** XGBoost
- ★ Explainable Boost

What shows a model's effectiveness: Sensitivity, specificity, precision, negative predictive value, accuracy, ROC curve, etc.

https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/

Classification vs. Regression

Classification:

- Mapping function from input to get output
- Discrete class labels
- Data needs to have labels first
- Can have both discrete and real-valued variables

Regression:

- Estimating the mapping function
- Quantitative value
- Prediction based on "features"

https://www.springboard.com/blog/data-science/regression-vs-classification/

Logistic Regression

Uses the relationship between binary outcome and predictor variables for binary classification

Maximum likelihood

Multivariate logistic regression

- tests to see if a variable's effect on the prediction is significant
- model coefficients

Limitation(s): better for basic relationships

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569817/ https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/

https://www.spiceworks.com/tech/artificial-intelligence/articles/what-is-logistic-regression/

Random Forest

Model that maximizes the prediction of multiple decision trees

Factors: Node size, number of trees, number of features

More prominent features = better predictions from trees

Bootstrapping and Aggregating

Limitation(s): time, amount of resources, difficult to comprehend

 $\frac{https://www.ibm.com/topics/random-forest\#:\sim:text=Random\%20forest\%20is\%20a\%}{20commonly,both\%20classification\%20and\%20regression\%20problems.}$

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957986/

Random Forest Simplified

https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2d

XGBoost

A collection of gradient boosted decision trees Boosting - each tree is improved from the next by using the residual errors from the previous

- Lower the loss function of each tree

SHAP values = evaluating the features that promote the prediction

- Greater the value, the better the feature

Better for 'non-linear' data

Limitation(s): prone to overfitting, needs structured data, limited to loss data

https://www.nvidia.com/en-us/glossary/xgboost/

Explainable Boosting Machine

Glassbox tree-based model best for human interpretation

Uses gradient boosting and combines a number of decision trees (similar to XGBoost)

Generates "human-readable" results + provides 'explanations' for the predictions

Tests one feature at a time

Limitation(s): only explains the outer surface, not clear

https://towardsdatascience.com/the-explainable-boosting-machine-f24152509ebb

CHATGPT Opinion

Explainable Boosting Machine is the best.

- Good balance between predictive performance and interpretability

Random Forest is a close runner-up.

GROUPS 1-6

- 1: 3 yrs 2.5 yrs
- 2: 3 yrs 2 yrs
- 3: 3 yrs 1.5 yrs
- 4: 3 yrs 1 yr
- 5: 3 yrs 6 months
- 6: 3 yrs Date of Diagnosis

Common Features (in both models)

- ★ Platelet mean volume
- ★ Single live birth
- ★ Carbon dioxide
- **★** Glucose
- **★** Lymphocytes
- ★ Body Height
- ★ Glomerular Filtration Rate
- ★ Influenza
- ★ Cytopathology
- ★ Transvaginal echography
- ★ Leiomyoma
- ★ Measles virus

Mean Platelet Volume

Leading feature - found in groups L1 - L5, X1, X3, X4

Measurement of the average size of blood platelets

Higher MPV = bigger platelets = faster platelet circulation = inflammation

Endometriosis is a chronic, inflammatory disease.

Glucose in Serum/Urine/Blood

Serum - L1, X1

- Low = inflammation
- High = risk for Type 1 diabetes, connected to higher insulin levels and endo

Urine - L3, X3

- High = sign of type 1 diabetes

Blood - L5

- Low glucose levels = higher insulin levels (??)
 - Oxidative stress can worsen the condition

Carbon Dioxide/Oxygen in Blood

Carbon Dioxide

- Arterial cord: higher level indicates a higher hydrogen concentration (L1, x1)
 - Symptom: pH of arterial cord blood (L1, X1)
 - Study shows that CO2 could potentially reduce adhesion
- Venous cord*

Oxygen

- Arterial cord: insufficient amount = hypoxia
 - Study shows a correlation with endometriosis
- Venous cord: insufficient amounts can lead to abnormal SvO2 (L2, x2)

Glomerular Filtration Rate

Was at first positive in the first groups but then switched to negative as more time progressed (within the later groups)

Glomerular Filtration Rate < 1.73 m² = chronic kidney disease

- Lower risk for women with endometriosis?
 - Can be used to determine if the kidneys can be preserved during surgery for ureteral endometriosis
- Higher risk for women with endometrial cancer

Questions to explore further...

- Is there a way to interconnect all of these symptoms to endometriosis?
- Why are features more prominent in one model than the other?
- If one model deems a factor as positive and the other deems it as negative, which one do we go with?
- If a feature goes from positive to negative, how do we attest it?