GATE 2023[IN]-36

EE23BTECH11066 - Yakkala Amarnath Karthik

Question:

The impulse response of an LTI system is $h(t) = \delta(t) + 0.5\delta(t-4)$, where $\delta(t)$ is continuous-time unit impulse signal if the input signal $x(t) = \cos\left(\frac{7\pi t}{4}\right)$, the output is (GATE IN 2023)

Solution:

Variable	Description	value
$\delta\left(t\right)$	continuous-time unit impulse signal	1 if t=0;
		0 in other cases
$h\left(t\right)$	impulse response	$\delta\left(t\right) + 0.5\delta\left(t - 4\right)$
x(t)	input signal	$x(t) = \cos\left(\frac{7\pi t}{4}\right)$
$y\left(t\right)$	output signal	x(t)* h(t)
TABLE I		

A TABLE WITH INPUT PARAMETERS

from Table I

$$y(t) = x(t) * h(t)$$

$$= x(t) * (\delta(t) + 0.5\delta(t - 4))$$
(1)
(2)

$$= x(t) + 0.5x(t-4)$$
 (3)

$$= \cos\left(\frac{7\pi t}{4}\right) + 0.5\cos\left(\frac{7\pi (t-4)}{4}\right) \quad (4)$$

$$= \cos\left(\frac{7\pi t}{4}\right) + 0.5\cos\left(\frac{7\pi t}{4} - 7\pi\right) \tag{5}$$

$$=0.5\cos\left(\frac{7\pi t}{4}\right)\tag{6}$$

Fig. 1. Graph showing $\mathbf{x}(t)$ and $\mathbf{y}(t)$

Transform function
$$(H(t)) = \frac{y(t)}{x(t)}$$
 (7)
$$= \frac{0.5 \cos\left(\frac{7\pi t}{4}\right)}{\cos\left(\frac{7\pi t}{4}\right)}$$
 (8)

$$=0.5 \tag{9}$$