Chapitre 2

Polynômes du second degré

1/ Généralités sur les polynômes

a) Définition

_ Définition _

On appelle fonction polynôme toute fonction f définie sur $\mathbb R$ par :

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

où a_0, a_1, \ldots, a_n sont des réels donnés.

Exemple: $x \mapsto -x^3 - 5x^2 + 7x - 1$ est un polynôme. $x \mapsto \frac{x^4 - 4}{x^2 + 2}$ n'est pas un polynôme.

b) Propriétés (admises)

Propriété -

- 1/ Soit P le polynôme défini par $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$. P est le polynôme nul $\iff a_0 = a_1 = \dots = a_n = 0$.
- 2/ Soient P et Q les polynômes définis par $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ et $Q(x) = b_p x^p + b_{p-1} x^{p-1} + \dots + b_1 x + b_0$ avec $a_n \neq 0$ et $b_p \neq 0$.

$$P = Q \iff \begin{cases} n = p \\ a_0 = b_0; a_1 = b_1; \cdots a_n = b_n \end{cases}$$

Conséquence : L'écriture d'un polynôme est unique.

Exemple: Si, pour tout $x \in \mathbb{R}$, $ax^3 + bx^2 + cx + d = 2x^3 - x + 2$ alors a = 2, b = 0, c = -1 et d = 1.

c) Degré

Définition

Soit P un polynôme défini par $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ avec $a_n \neq 0$. Le nombre n est appelé degré de P.

Exemple: $x \mapsto -x^3 - 5x^2 + 7x - 1$ est un polynôme de degré 3. $x \mapsto 3x - x^5$ est un polynôme de degré 5.

d) Racines d'une fonction

Définition

Soit f une fonction. On appelle racine de f toute solution de l'équation f(x) = 0.

Exemple: 1 est une racine de $x \mapsto -x^3 - 5x^2 + 7x - 1$. 0 est une racine de $x \mapsto 3x - x^5$.

2/ Polynômes du second degré

Dans tout le paragraphe, P désigne un polynôme défini par $P(x) = ax^2 + bx + c$ avec $a \neq 0$.

a) Forme canonique

Propriété et définition -

Il existe des réels α et β tels que :

Pour tout
$$x \in \mathbb{R}$$
, $P(x) = a((x + \alpha)^2 + \beta)$.

Cette écriture est appelée forme canonique de P.

Remarque : On appelle parfois forme canonique l'écriture de P sous la forme

$$P(x) = a(x + \alpha)^2 + \gamma$$

Démonstration

$$P(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) = a\left(\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right)$$
$$= a\left(\left(x + \frac{b}{2a}\right)^{2} + \frac{-b^{2} + 4ac}{4a^{2}}\right)$$

Exemple : Écrire la forme canonique du polynôme défini par $P(x) = 2x^2 + 4x + 6$.

$$P(x) = 2x^{2} + 4x + 6 = 2(x^{2} + 2x + 3) = 2((x+1)^{2} - 1 + 3) = 2((x+1)^{2} + 2)$$

b) Discriminant

Définition _

On appelle discriminant de P le réel Δ défini par $\Delta = b^2 - 4ac$.

Exemple : Calculer le discriminant du polynôme défini par $P(x) = 2x^2 + 4x + 6$. $\Delta = 4^2 - 4 \times 2 \times 6 = 16 - 48 = -32$.

c) Racines

Propriété

Les racines de P peuvent être déterminée de la façon suivante :

- Si $\Delta < 0$ alors P n'a pas de racine réelle.
- Si $\Delta = 0$ alors P admet une racine réelle : $-\frac{b}{2a}$.
- Si $\Delta > 0$ alors P admet deux racines réelles : $\frac{-b \sqrt{\Delta}}{2a}$ et $\frac{-b + \sqrt{\Delta}}{2a}$.

10 Chapitre 2

Démonstration

$$P(x) = a\left(\left(x + \frac{b}{2a}\right)^2 + \frac{-b^2 + 4ac}{4a^2}\right) = a\left(\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right)$$

$$- \text{Si } \Delta < 0 \text{ alors } \left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2} > 0 \text{ donc pour tout } x, P(x) \neq 0.$$

$$- \text{Si } \Delta = 0 \text{ alors } P(x) = a\left(x + \frac{b}{2a}\right)^2 \text{ donc } P(x) = 0 \Longleftrightarrow x = -\frac{b}{2a}.$$

$$- \text{Si } \Delta > 0 \text{ alors } P(x) = a\left(\left(x + \frac{b}{2a}\right) - \frac{\sqrt{\Delta}}{2a}\right)\left(\left(x + \frac{b}{2a}\right) + \frac{\sqrt{\Delta}}{2a}\right) \text{ donc}$$

$$P(x) = 0 \Longleftrightarrow \left(x + \frac{b}{2a}\right) - \frac{\sqrt{\Delta}}{2a} = 0 \text{ ou } \left(x + \frac{b}{2a}\right) + \frac{\sqrt{\Delta}}{2a} = 0$$

$$\iff x = \frac{-b + \sqrt{\Delta}}{2a} \text{ ou } x = \frac{-b + \sqrt{\Delta}}{2a}$$

Exemple : Déterminer les racines de P et Q définis par

$$P(x) = 2x^2 + 4x + 6$$
 et $Q(x) = -x^2 - 2x + 1$

Pour $P:\Delta=-32<0$ donc P n'a pas de racine. Pour $Q:\Delta=(-2)^2-4\times(-1)\times 1=4+4=8>0$ donc Q admet deux racines :

$$x_1 = \frac{-(-2) - \sqrt{8}}{2 \times (-1)} = \frac{2 - 2\sqrt{2}}{-2} = -1 + \sqrt{2}$$
$$x_2 = \frac{-(-2) + \sqrt{8}}{2 \times (-1)} = \frac{2 + 2\sqrt{2}}{-2} = -1 - \sqrt{2}$$

d) Liens entre coefficients et racines

Propriété -

Si P admet deux racines x_1 et x_2 alors $\begin{cases} r_1 + r_2 = -\frac{b}{a} \\ r_1 r_2 = \frac{c}{a} \end{cases}$

Démonstration

$$x_1 + x_2 = \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a} = \frac{-2b}{2a} = -\frac{b}{a}$$

$$x_1 x_2 = \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a} = \frac{(-b)^2 - \Delta}{4a^2} = \frac{b^2 - b^2 + 4ac}{4a^2} = \frac{4ac}{4a^2} = \frac{c}{a}$$

e) Factorisation

- Si
$$\Delta = 0$$
 alors $P(x) = a \left(x + \frac{b}{2a} \right)^2$

Propriete

Si $\Delta < 0$ alors P ne peut pas être factorisé.

Si $\Delta = 0$ alors $P(x) = a\left(x + \frac{b}{2a}\right)^2$ Si $\Delta > 0$ alors $P(x) = a(x - x_1)(x - x_2)$ où x_1 et x_2 sont les racines de P.

- Démonstration

Le premier résultat s'obtient en remarquant que si P pouvait se factoriser, on aurait deux facteurs du premier degré auquel cas l'équation P(x) = 0 admettrait au moins une solution, ce qui est contradictoire avec le résultat obtenu précédemment. Les deux autres résultats ont été obtenus dans le cours de la démonstration précédente.

Exemple : Factoriser P et Q définis par

$$P(x) = 2x^{2} + 4x + 6$$
 et $Q(x) = -x^{2} - 2x + 1$

Pour $P: \Delta = -32 < 0$ donc P ne peut pas se factoriser.

Pour Q: Les racines sont $-1 + \sqrt{2}$ et $-1 + \sqrt{2}$ donc $P(x) = -(x + 1 - \sqrt{2})(x + 1 + \sqrt{2})$.

f) Signe

Propriété

— Propriete —						
– Si $\Delta < 0$ alors	x	$-\infty$	$+\infty$			
	Signe de $P(x)$	Signe de	\overline{a}			
- Si $\Delta = 0$ alors	x	$-\infty$	$-\frac{b}{2a}$	$+\infty$		
$-$ 51 Δ $=$ 0 alors	Signe de $P(x)$	Signe de	a 0 Signe de	\overline{a}		
- Si $\Delta > 0$ alors						
x	$-\infty$	x_1	x_2	$+\infty$		
Signe de $P(x)$	Signe d	e a = 0 Signe of	de - a = 0 Signe	de a		
où x_1 et x_2 sont les racines de P et $x_1 < x_2$						

- - Si $\Delta = 0$ alors $P(x) = a\left(x + \frac{b}{2a}\right)^2$ qui est du signe de a sauf pour $-\frac{b}{2a}$.
 - Si $\Delta > 0$ alors $P(x) = a(x r_1)(x r_2)$ où r_1 et r_2 sont les racines de P. On peut donc dresser le tableau de signe suivant :

x	$-\infty$		x_1		x_2		$+\infty$
a		Signe de a		Signe de a		Signe de a	
$x-x_1$		_	0	+		+	
$x-x_2$		_		_	0	+	
Signe de $P(x)$		Signe de a	0	Signe de $-a$	0	Signe de a	

Exemple : Déterminer le tableau de signe de P et Q définis par

$$P(x) = 2x^2 + 4x + 6$$
 et $Q(x) = -x^2 - 2x + 1$

Pour $P: \Delta > 0$ donc

x	$-\infty$	$+\infty$
Signe de $P(x)$	+	-

Pour Q: Les racines sont $-1 - \sqrt{2}$ et $-1 + \sqrt{2}$ et de plus -1 < 0 donc

x	$-\infty$		$-1 - \sqrt{2}$		$-1 + \sqrt{2}$		$+\infty$
Signe de $P(x)$		_	0	+	0	_	

g) Représentation graphique

- Propriété -

Soit $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ un repère du plan.

La représentation graphique de P est l'image par la translation de vecteur \overrightarrow{u}

de la parabole représentant la fonction $x\mapsto ax^2$. C'est donc une parabole de sommet $S\left(-\frac{b}{2a};P(-\frac{b}{2a})\right)$.

Illustration:

	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
Factorisation de $P(x)$	$a(x-x_1)(x-x_2)$	$a(x-x_0)^2$	pas de factorisation
Équation $P(x) = 0$	2 solutions x_1 et x_2	une solution x_0	pas de solution
a > 0	$ \begin{array}{c c} & -\frac{b}{2a} \\ \hline x_1 & x_2 \\ \hline & P(-\frac{b}{2a}) \end{array} $	$x_0 = -\frac{b}{2a}$	$P(-\frac{b}{2a})$ $-\frac{b}{2a}$
a < 0	$ \begin{array}{c c} & P(-\frac{b}{2a}) \\ \hline & x_1 & -\frac{b}{2a} & x_2 \end{array} $	$x_0 = -\frac{b}{2a}$	$ \begin{array}{c c} -\frac{b}{2a} \\ \hlineP(-\frac{b}{2a}) \end{array} $