Question: Equifax Multi-Stage Breach (Initial Access → Exfiltration)

Scenario

In 2017, an enterprise deployed an Apache Struts-based web application on Amazon EC2 in a public subnet behind an Elastic Load Balancer (ELB) terminating TLS. DNS was provided by Route 53. A private subnet hosted an RDS PostgreSQL database containing PII. AWS Inspector ran vulnerability scans (misconfigured and producing false negatives), and GuardDuty acted as an IDS but had its certificates expired, disabling alerts. CloudWatch Logs fed into an Elastic-based SIEM, but no microsegmentation existed between web and DB tiers. Attackers exploited the unpatched CVE-2017-5638, executed code on EC2, pivoted via SSH to the database host, extracted PII, and exfiltrated it over an encrypted C2 channel.

Tactics Used (MITRE ATT&CK)

- Initial Access (T1190): Exploit Public-Facing Application
- Defense Evasion (T1562.001): Disable IDS
- Discovery (T1087): Account Discovery
- Lateral Movement (T1021.002): Remote Services (SSH)
- Collection (T1005): Data from Local System
- Exfiltration (T1041): Exfiltration Over C2

Security Controls (and example tools)

- Patch Management System (update orchestration)
- Automated Patching (AWS Systems Manager)
- Web Application Firewall (WAF) (ELB-level protection)
- Network Segmentation / Micro-segmentation (VPC subnets & security groups)
- Intrusion Detection System (IDS) with valid certificates (GuardDuty)
- Vulnerability Scanning (AWS Inspector correctly configured)
- Encrypted Data in Transit (TLS 1.3 east-west)
- SIEM with CloudWatch Logs (real-time correlation)
- Behavioral Analytics (UEBA) (detects unusual DB access)
- SOAR Playbooks (automated containment and remediation)

Question

Which combination of controls, leveraging Defense in Depth (DiD), Adaptive Security Architecture (ASA), and Zero Trust Architecture (ZTA), best prevents the initial Struts exploit, detects lateral movement, restricts unauthorized DB access, and responds to exfiltration?

Options

1.

- Prevent (DiD): Patch Management System + WAF
- Detect (ASA): Vulnerability Scanning + SIEM with CloudWatch Logs
- Prevent Access (ZTA): Network Segmentation + IDS with valid certificates
- Respond (ASA): SOAR Playbooks + Behavioral Analytics

2.

- Prevent (DiD): Automated Patching + WAF
- Detect (ASA): IDS with valid certificates + Behavioral Analytics
- Prevent Access (ZTA): Micro-segmentation + Encrypted Data in Transit
- Respond (ASA): SOAR Playbooks + Certificate Management

3.

- Prevent (DiD): Patch Management System + Automated Patching
- Detect (ASA): Behavioral Analytics + SIEM with CloudWatch Logs
- Prevent Access (ZTA): Micro-segmentation + WAF
- Respond (ASA): SOAR Playbooks + IRT Coordination

4.

- Prevent (DiD): WAF + Vulnerability Scanning
- Detect (ASA): IDS with valid certificates + Automated Patching
- Prevent Access (ZTA): Network Segmentation + Certificate Management
- Respond (ASA): Behavioral Analytics + Encrypted Data Channels

- Prevent (DiD): WAF + Patch Management System
- Detect (ASA): SIEM with CloudWatch Logs + Vulnerability Scanning

- Prevent Access (ZTA): Encrypted Data in Transit + Network Segmentation
- Respond (ASA): Behavioral Analytics + SOAR Playbooks

- Prevent (DiD): Automated Patching + Certificate Management
- Detect (ASA): CloudWatch Logs + Behavioral Analytics
- Prevent Access (ZTA): Micro-segmentation + WAF
- Respond (ASA): IRT Coordination + SOAR Playbooks

Correct Answer: 3

Question Description	Scenario	Control Function	Correct Answer (Controls)	Why Correct?	Closest Alternative (Controls)	Critical Flaw in Alternative	Real-World Lesson
Equifax Multi-Stage Breach: Unpatched Struts exploit on EC2 → SSH pivot to RDS → PII exfil via C2.	Equifax Multi- Stage	Prevent (DiD)	Patch Mgmt + Auto Patching	Fixes root cause (CVE-2017-5638); layered prevention.	WAF + Patch Mgmt (Opt 5)	Misconfigured vuln scanning misses exploit; no SSH detection.	Lesson: Systematic patching and tool configuration are critical.
		Detect (ASA)	Behavioral Analytics + SIEM	Catches anomalous SSH pivots; real- time correlation adapts to threats.	SIEM + Vuln Scanning (Opt 5)	Misconfigured scanning fails; SIEM alone misses live movement.	Lesson: Behavioral analytics detect what static scans miss.
		Prevent Access (ZTA)	Micro- segmentation + WAF	Blocks web-to-DB traffic (Zero Trust); WAF stops initial exploit.	Encrypted Data + Network Seg (Opt 2)	➤ Weak: Encryption doesn't stop SSH; coarse segmentation allows pivots.	Lesson: Micro- segmentation enforces Zero Trust; encryption isn't enough.
		Respond (ASA)	SOAR + IRT Coordination	Automates containment; IRT drives rapid	Behavioral Analytics + SOAR (Opt	Limited: No human oversight (IRT) for	Lesson: Automation plus human expertise tackles

Question: Equifax Lateral Movement & Exfiltration

Scenario

Same 2017 Equifax AWS layout: public Struts EC2 → ELB → Route 53; private RDS PostgreSQL; no micro-segmentation; disabled GuardDuty; misconfigured Inspector; CloudWatch Logs→SIEM. After initial compromise, attackers used SSH to pivot across subnets, harvested PII files, and exfiltrated them via an encrypted tunnel to an external C2 server.

Tactics Used

- Lateral Movement (T1021.002): Remote Services
- Collection (T1005): Data from Local System
- Exfiltration (T1041): Exfiltration Over C2

Security Controls

- Network Segmentation / Micro-segmentation
- Encrypted Data in Transit (TLS east-west)
- Behavioral Analytics (UEBA)
- SOAR Playbooks
- SIEM with CloudWatch Logs
- · IDS with valid certificates

Question

Which combination of controls best blocks lateral pivot, prevents data harvesting, and responds to exfiltration in this scenario?

Options

1.

• Prevent (ZTA): Micro-segmentation + Encrypted Data in Transit

- Detect (ASA): IDS with valid certificates + Behavioral Analytics
- Prevent Access (DiD): Network Segmentation + WAF
- Respond (ASA): SOAR Playbooks + SIEM Alerts

- Prevent (ZTA): Micro-segmentation + Encrypted Data in Transit
- Detect (ASA): Behavioral Analytics + SIEM with CloudWatch Logs
- Prevent Access (DiD): Network Segmentation + IDS with valid certificates
- Respond (ASA): SOAR Playbooks + IRT Coordination

3.

- Prevent (ZTA): Micro-segmentation + WAF
- Detect (ASA): Behavioral Analytics + SIEM with CloudWatch Logs
- Prevent Access (DiD): Encrypted Data in Transit + Network Segmentation
- Respond (ASA): SOAR Playbooks + IRT Coordination

4.

- Prevent (DiD): Network Segmentation + IDS with valid certificates
- Detect (ASA): Behavioral Analytics + SIEM Alerts
- Prevent Access (ZTA): Micro-segmentation + Encrypted Data in Transit
- Respond (ASA): SOAR Playbooks + Certificate Management

5.

- Prevent (DiD): WAF + Certificate Management
- Detect (ASA): IDS with valid certificates + Automated Patching
- Prevent Access (ZTA): Encrypted Data in Transit + WAF
- Respond (ASA): IRT Coordination + Behavioral Analytics

- Prevent (DiD): WAF + Automated Patching
- Detect (ASA): CloudWatch Logs + Behavioral Analytics
- Prevent Access (ZTA): Micro-segmentation + Certificate Management

• Respond (ASA): IRT Coordination + SOAR Playbooks

Correct Answer: 6

Question Description	Scenario	Control Function	Correct Answer (Controls)	Why Correct?	Closest Alternative (Controls)	Critical Flaw in Alternative	Real-World Lesson
Equifax Lateral Movement & Exfiltration: SSH pivot across subnets → PII harvest → exfil via encrypted C2.	Equifax Lateral	Prevent (DiD)	WAF + Auto Patching	Blocks initial exploit; patching prevents recurrence.	Micro-seg + Encrypted Data (Opt 2)	➤ Gap: Encryption irrelevant to SSH; no WAF for exploit prevention.	Lesson: WAF stops web exploits; encryption doesn't block movement.
		Detect (ASA)	CloudWatch + Behavioral Analytics	Flags unusual DB access; adapts to new tactics.	Behavioral Analytics + SIEM (Opt 2)	Partial: Lacks CloudWatch's AWS- specific context.	Lesson: Native cloud logs enhance detection in AWS.
		Prevent Access (ZTA)	Micro- segmentation + Cert Mgmt	Stops pivots; valid certs ensure IDS alerts (Zero Trust).	Network Seg + IDS (Opt 2)	Coarse: Broad segmentation allows web-to-DB traffic.	Lesson: Granular micro-segmentation beats broad controls.
		Respond (ASA)	IRT + SOAR	SOAR isolates hosts; IRT investigates.	SOAR + IRT (Opt 2)	✓ Matches: Strong, but other alternatives lack IRT.	Lesson: Human and automated response together are key.

Question: SolarWinds Supply-Chain Compromise

Scenario

In 2020, a vendor's build pipeline ran in an AWS VPC with three subnets: Build (EC2 build servers), Update (EC2 distribution servers), and Client (EC2 customer

appliances). Build artifacts were compiled, cryptographically signed, then pushed to the Update servers. Route 53 DNS directed clients to updates. Amazon CloudTrail recorded API and file events. No tamper detection or continuous validation was in place, and micro-segmentation between build and update subnets was minimal. Attackers injected a backdoor into the signed binaries, which were then automatically distributed to 18,000+ client systems.

Tactics Used

- Initial Access (T1195.002): Supply Chain Compromise
- Defense Evasion (T1553.002): Forge Code Signing
- Persistence (T1543.003): Create or Modify System Process
- Lateral Movement (T1021.002): Remote Services across subnets
- Exfiltration (T1041): Exfiltration Over C2

Security Controls

- Code Signing Verification
- Network Segmentation / Micro-segmentation
- Tamper Detection
- Audit Logging (CloudTrail)
- Continuous Validation of Artifacts
- Behavioral Monitoring (UEBA)
- Least Privilege Access
- Dynamic Network Policies
- Encrypted Communication (mTLS)
- SOAR Playbooks (automated response)

Question

Which combination of controls best prevents backdoor injection, detects pipeline tampering, restricts unauthorized update distribution, and responds to malicious artifacts in this SolarWinds scenario?

Options

1.

• Prevent (DiD): Code Signing Verification + Network Segmentation

- Detect (ASA): Tamper Detection + Audit Logging
- Prevent Access (ZTA): Continuous Validation + Micro-segmentation
- Respond (ASA): Dynamic Network Policies + SOAR Playbooks

- Prevent (DiD): Tamper Detection + Continuous Validation
- Detect (DiD): Audit Logging + Behavioral Monitoring
- Prevent Access (ZTA): Least Privilege Access + Encrypted Communication
- Respond (ASA): SOAR Playbooks + CloudTrail Alerts

3.

- Prevent (DiD): Code Signing Verification + Continuous Validation
- Detect (ASA): Audit Logging + Anomaly Detection in Builds
- Prevent Access (ZTA): Network Segmentation + Micro-segmentation
- Respond (ASA): Dynamic Network Policies + Encrypted Data Channels

4.

- Prevent (ASA): Behavioral Monitoring + Micro-segmentation
- Detect (DiD): Tamper Detection + Audit Logging
- Prevent Access (ZTA): Least Privilege Access + Continuous Validation
- Respond (ASA): SOAR Playbooks + Certificate Management

5.

- Prevent (DiD): Code Signing Verification + Network Segmentation
- Detect (ASA): Audit Logging + Anomaly Detection in Builds
- Prevent Access (ZTA): Continuous Validation + Least Privilege Access
- Respond (ASA): Dynamic Network Policies + Encrypted Data Channels

- Prevent (DiD): Code Signing Verification + Tamper Detection
- Detect (ASA): Behavioral Monitoring + Audit Logging
- Prevent Access (ZTA): Encrypted Communication + Micro-segmentation

• Respond (ASA): Dynamic Network Policies + IRT Coordination

Correct Answer: 5

Question Description	Scenario	Control Function	Correct Answer (Controls)	Why Correct?	Closest Alternative (Controls)	Critical Flaw in Alternative	Real-World Lesson
SolarWinds Supply-Chain Compromise: Backdoor in signed binaries → distributed to 18,000+ clients.	SolarWinds Supply Chain	Prevent (DiD)	Code Signing + Network Segmentation	Prevents backdoor injection; contains compromise.	Network Seg + Micro-seg (Opt 3)	X Flaw: Allows malicious signed binaries without verification.	Lesson: Verify signatures; segmentation alone fails against signed malware.
		Detect (ASA)	Audit Logs + Anomaly Detection	Logs tampering (CloudTrail); flags malicious builds.	Tamper Detection + Audit Logs (Opt 1)	Reactive: Tamper detection lags; anomaly detection is proactive.	Lesson: Proactive detection beats reactive checks.
		Prevent Access (ZTA)	Continuous Validation + Least Priv	Validates artifacts pre- run (Zero Trust); limits damage.	Continuous Val + Micro-seg (Opt 1)	Weak: Microsegmentation doesn't stop bad binaries.	Lesson: Continuous validation enforces Zero Trust for artifacts.
		Respond (ASA)	Dynamic Policies + Encrypted Chans	Isolates nodes; encryption blocks C2.	Dynamic Policies + SOAR (Opt 1)	Incomplete: No encryption to hinder exfiltration.	Lesson: Encrypt response channels to thwart attackers.

Question: SolarWinds Lateral Movement & Persistence

Scenario

The SolarWinds environment (build/update/client subnets, signed artifacts, no tamper checks) allowed attackers to pivot from build to update servers, install persistent backdoors in system services, and maintain access across multiple pipeline stages.

Tactics Used

- Lateral Movement (T1021.002): Remote Services
- Persistence (T1543.003): Create or Modify System Process

Security Controls

- Micro-segmentation
- Continuous Validation
- Tamper Detection
- Least Privilege Access
- · Behavioral Monitoring
- Automated Integrity Checks
- Encrypted Communication

Question

Which combination of controls best halts lateral movement in the pipeline and prevents installation of persistent backdoors?

Options

1.

- Prevent (DiD): Network Segmentation + Automated Integrity Checks
- Detect (ASA): Behavioral Monitoring + Tamper Detection
- Prevent Access (ZTA): Micro-segmentation + Continuous Validation
- Respond (ASA): SOAR Playbooks + Audit Logging

- Prevent (DiD): Tamper Detection + Code Signing Verification
- Detect (ASA): Audit Logging + Behavioral Monitoring

- Prevent Access (ZTA): Micro-segmentation + Least Privilege Access
- Respond (ASA): Dynamic Network Policies + Encrypted Data Channels

- Prevent (ZTA): Continuous Validation + Micro-segmentation
- Detect (ASA): Behavioral Monitoring + Anomaly Detection in Builds
- Prevent Access (DiD): Automated Integrity Checks + Network Segmentation
- Respond (ASA): SOAR Playbooks + IRT Coordination

4.

- Prevent (DiD): Network Segmentation + Code Signing Verification
- Detect (ASA): Tamper Detection + Audit Logging
- Prevent Access (ZTA): Continuous Validation + Least Privilege Access
- Respond (ASA): Dynamic Network Policies + Behavioral Monitoring

5.

- Prevent (ASA): Behavioral Monitoring + Continuous Validation
- Detect (DiD): Tamper Detection + Automated Integrity Checks
- Prevent Access (ZTA): Micro-segmentation + Encrypted Communication
- Respond (ASA): SOAR Playbooks + Audit Logging

6.

- Prevent (DiD): Code Signing Verification + Network Segmentation
- Detect (ASA): Tamper Detection + Behavioral Monitoring
- Prevent Access (ZTA): Micro-segmentation + Continuous Validation
- Respond (ASA): SOAR Playbooks + Dynamic Network Policies

Correct Answer: 6

Question Description	Scenario	Control Function	Correct Answer	Why Correct?	Closest Alternative	Critical Flaw in Alternative	Real-World Lesson
----------------------	----------	---------------------	-------------------	--------------	------------------------	---------------------------------	-------------------

			(Controls)		(Controls)		
SolarWinds Lateral Movement & Persistence: Pivot from build to update servers → install backdoors.	SolarWinds Lateral	Prevent (DiD)	Code Signing + Network Segmentation	Blocks bad binaries; restricts pivot paths.	Tamper Detection + Code Signing (Opt 2)	X Gap: Tamper detection doesn't prevent installation.	Lesson: Prevention trumps detection for persistence.
		Detect (ASA)	Tamper Detection + Behavioral Mon	Flags backdoor writes; spots process anomalies.	Audit Logs + Behavioral Mon (Opt 2)	! Slow: Audit logs lack real-time alerts.	Lesson: Real-time detection catches persistence early.
		Prevent Access (ZTA)	Micro-seg + Continuous Validation	Limits access; ensures trusted binaries (Zero Trust).	Least Priv + Encrypted Comm (Opt 2)	Misplaced: Encryption doesn't stop pivots; least priv can't block signed code.	Lesson: Micro- segmentation and validation enforce Zero Trust.
		Respond (ASA)	SOAR + Dynamic Policies	Isolates servers; blocks malicious traffic.	SOAR + Audit Logging (Opt 1)	X Passive: Logging doesn't act against breaches.	Lesson: Active automation contains breaches; logging isn't enough.

Question: Capital One SSRF & Exfiltration

Scenario

In 2019, a financial firm's AWS VPC hosted an EC2 web application in a public subnet behind AWS WAF, accessible via Route 53. The EC2 had an IAM role granting wide S3 bucket access. WAF rules were too permissive, allowing an SSRF payload to call the EC2 metadata service, returning temporary credentials. Attackers used these credentials to enumerate and download data from 100+ S3 buckets, then exfiltrated it to an external C2. CloudWatch Logs and GuardDuty were active, but IAM policies were overly broad and micro-segmentation was absent.

Tactics Used

- Initial Access (T1190): Exploit Public-Facing Application (SSRF)
- **Defense Evasion (T1098)**: Account Manipulation (metadata token reuse)
- Discovery (T1083): File and Directory Discovery (S3 enumeration)
- Collection (T1005): Data from Local System (S3 objects)
- Exfiltration (T1041): Exfiltration Over C2

Security Controls

- WAF Rule Validation
- IAM Role Hardening (Least Privilege)
- Network Segmentation / Micro-segmentation
- Monitoring & Logging (CloudWatch + GuardDuty)
- Data Encryption at Rest (S3 SSE-KMS)
- Continuous Verification (ZTA per-request auth)
- Adaptive WAF Rules (real-time tuning)
- Automated IAM Adjustment (revoke tokens)
- Dynamic Monitoring
- Encrypted Data Channels

Question

Which combination of controls best prevents SSRF, detects token misuse, restricts S3 access, and responds to exfiltration?

Options

1.

- Prevent (DiD): WAF Rule Validation + IAM Role Hardening
- Detect (ASA): Monitoring & Logging + Behavioral Monitoring
- Prevent Access (ZTA): Continuous Verification + Network Segmentation
- Respond (ASA): Automated IAM Adjustment + Dynamic Monitoring

2.

• Prevent (DiD): IAM Role Hardening + Data Encryption at Rest

- Detect (ASA): GuardDuty + CloudWatch Logs
- Prevent Access (ZTA): Micro-segmentation + Continuous Verification
- Respond (ASA): Adaptive WAF Rules + Encrypted Data Channels

- Prevent (ZTA): Continuous Verification + WAF Rule Validation
- Detect (ASA): GuardDuty + Behavioral Monitoring
- Prevent Access (DiD): Network Segmentation + IAM Role Hardening
- Respond (ASA): Automated IAM Adjustment + Adaptive WAF Rules

4.

- Prevent (DiD): WAF Rule Validation + Continuous Verification
- Detect (ASA): Behavioral Monitoring + CloudWatch Logs
- Prevent Access (ZTA): IAM Role Hardening + Micro-segmentation
- Respond (ASA): Dynamic Monitoring + Encrypted Data Channels

5.

- Prevent (ASA): Adaptive WAF Rules + Continuous Verification
- Detect (DiD): GuardDuty + Monitoring & Logging
- Prevent Access (ZTA): IAM Role Hardening + Network Segmentation
- Respond (ASA): Automated IAM Adjustment + Certificate Management

6.

- Prevent (DiD): WAF Rule Validation + IAM Role Hardening
- Detect (ASA): GuardDuty + Behavioral Monitoring
- Prevent Access (ZTA): Continuous Verification + Micro-segmentation
- Respond (ASA): Automated IAM Adjustment + Adaptive WAF Rules

Correct Answer: 6

Control Correct Closest

Question Description	Scenario	Function	Answer (Controls)	Why Correct?	Alternative (Controls)	Critical Flaw in Alternative	Real-World Lesson
Capital One SSRF & Exfiltration: SSRF exploit → steal EC2 metadata creds → exfil S3 data via C2.	Capital One SSRF	Prevent (DiD)	WAF Validation + IAM Hardening	Blocks SSRF; restricts S3 access (least privilege).	Continuous Verif + WAF (Opt 3)	➤ Flaw: No IAM hardening lets stolen creds work.	Lesson: Harden IAM to stop credential abuse.
		Detect (ASA)	GuardDuty + Behavioral Monitoring	Detects S3 misuse; adapts to new TTPs.	GuardDuty + CloudWatch (Opt 2)	Limited: CloudWatch misses behavioral context.	Lesson: Behavioral analytics catch misuse; logs need context.
		Prevent Access (ZTA)	Continuous Verif + Micro-seg	Verifies each request (Zero Trust); limits credential scope.	IAM Hardening + Micro-seg (Opt 4)	Strong: Matches correct answer; slightly less focus elsewhere.	Lesson: Continuous verification enforces Zero Trust per request.
		Respond (ASA)	Auto IAM Adjust + Adaptive WAF	Revokes tokens; blocks exfil IPs dynamically.	SOAR + IRT (Opt 2)	X Slow: Manual IRT can't match automated speed.	Lesson: Automated IAM responses outpace manual fixes in the cloud.

Question: Ponzi Scheme Scam on DeFi Platform

Scenario

In a 2025 DeFi platform, an attacker uses a Ponzi scheme scam to lure investors with fake high returns, as seen in DeFi scams. The attacker collects funds from new investors to pay earlier ones, collapsing when new investments cease.

Tactics Used (MITRE ATT&CK)

• Collection (T1213): Data from Information Repositories

Security Controls

- Al-driven SIEM (real-time transaction monitoring)
- User and Entity Behavioral Analytics (UEBA) (anomaly detection)
- Security Orchestration, Automation, and Response (SOAR) (automated playbooks)
- Blockchain Audit Trails (transaction transparency)
- Smart Contract Auditing Tools (vulnerability detection)
- Decentralized Identity (DID) (secure authentication)
- Homomorphic Encryption (HE) (data protection)
- Graph Neural Networks (GNN) (transaction pattern analysis)
- Random Forest (RF) (scam detection)
- Intrusion Detection System (IDS) (network monitoring)

Question

Which combination of controls best prevents the Ponzi scheme scam, detects fraudulent patterns, prevents unauthorized access, and responds to the incident, using Web 3.0's RF-based detection?

Options

1.

- Prevent (SIEM): Al-driven SIEM + UEBA
- Detect (GNN): Graph Neural Networks + Random Forest
- Prevent Access (DID): Decentralized Identity + Homomorphic Encryption
- Respond (IDS): Intrusion Detection System + SOAR

2.

- Prevent (Audit): Blockchain Audit Trails + Smart Contract Auditing Tools
- **Detect (IDS)**: Intrusion Detection System + UEBA
- Prevent Access (SIEM): Al-driven SIEM + Graph Neural Networks
- Respond (DID): Decentralized Identity + Random Forest

- Prevent (HE): Homomorphic Encryption + Graph Neural Networks
- Detect (SOAR): SOAR + Random Forest

- Prevent Access (Audit): Blockchain Audit Trails + Intrusion Detection System
- Respond (SIEM): Al-driven SIEM + UEBA

- Prevent (RF): Random Forest + Intrusion Detection System
- **Detect (DID)**: Decentralized Identity + Homomorphic Encryption
- Prevent Access (SOAR): SOAR + Graph Neural Networks
- Respond (Audit): Blockchain Audit Trails + Smart Contract Auditing Tools

5.

- Prevent (SOAR): SOAR + UEBA
- Detect (Audit): Blockchain Audit Trails + Smart Contract Auditing Tools
- Prevent Access (RF): Random Forest + Intrusion Detection System
- Respond (HE): Homomorphic Encryption + Graph Neural Networks

6.

- Prevent (DID): Decentralized Identity + Homomorphic Encryption
- Detect (SIEM): Al-driven SIEM + UEBA
- Prevent Access (Audit): Blockchain Audit Trails + Smart Contract Auditing Tools
- Respond (SOAR): SOAR + Graph Neural Networks

Correct Answer: 6

Scenario	Short Description	Correct Answer	Why Correct?	Closest Alternative	Critical Flaw in Alternative	Real-World Lesson
Ponzi	Prevent Ponzi scams, detect fraudulent patterns, prevent	6: DID + HE + AI-SIEM + UEBA	 UEBA detects abnormal ROI patterns RF identifies Ponzi 	1: AI-SIEM + UEBA + GNN + RF + DID	X GNN overkill for Ponzi detection (RF better)	 Unaudited contracts: 2023 DeFi scams used unaudited yield promises No behavioral checks:

Scheme	unauthorized access, respond	+ Blockchain Audit + Smart	financial	+ HE + IDS +	X IDS	Missed "guaranteed
Scam	using RF	Contract Audit + SOAR + GNN	structures	SOAR	irrelevant to	returns" anomalies
			• Smart		contract fraud	 Pseudonymity: Fake
			contract		X No smart	projects exploited
			audits		contract audit	anonymous launches
			expose scam		layer	
			logic			

Question: Money Laundering Attack on DeFi Platform

Scenario

In a Web 3.0 DeFi ecosystem, an attacker conducts money laundering by transferring illicit funds through multiple wallets, as seen in the ByBit hack. The attacker uses decentralized exchanges to obscure fund origins.

Tactics Used (MITRE ATT&CK)

• Exfiltration (T1041): Exfiltration Over C2 Channel

Security Controls

- Al-driven SIEM (real-time transaction monitoring)
- User and Entity Behavioral Analytics (UEBA) (anomaly detection)
- Security Orchestration, Automation, and Response (SOAR) (automated playbooks)
- Blockchain Audit Trails (transaction transparency)
- Smart Contract Auditing Tools (vulnerability detection)
- Decentralized Identity (DID) (secure authentication)
- Homomorphic Encryption (HE) (data protection)
- Graph Neural Networks (GNN) (transaction pattern analysis)
- Random Forest (RF) (scam detection)
- Intrusion Detection System (IDS) (network monitoring)

Question

Which combination of controls best prevents the money laundering attack, detects illicit transfers, prevents unauthorized access, and responds to the incident, using Web 3.0's GNN-based tracking?

Options

1.

- Prevent (DID): Decentralized Identity + Homomorphic Encryption
- Detect (SIEM): Al-driven SIEM + UEBA
- Prevent Access (Audit): Blockchain Audit Trails + Smart Contract Auditing Tools
- Respond (SOAR): SOAR + Graph Neural Networks

2.

- Prevent (SIEM): Al-driven SIEM + UEBA
- Detect (GNN): Graph Neural Networks + Random Forest
- Prevent Access (DID): Decentralized Identity + Homomorphic Encryption
- Respond (IDS): Intrusion Detection System + SOAR

3.

- Prevent (Audit): Blockchain Audit Trails + Smart Contract Auditing Tools
- Detect (IDS): Intrusion Detection System + UEBA
- Prevent Access (SIEM): Al-driven SIEM + Graph Neural Networks
- Respond (DID): Decentralized Identity + Random Forest

4.

- Prevent (HE): Homomorphic Encryption + Graph Neural Networks
- Detect (SOAR): SOAR + Random Forest
- Prevent Access (Audit): Blockchain Audit Trails + Intrusion Detection System
- Respond (SIEM): Al-driven SIEM + UEBA

- Prevent (RF): Random Forest + Intrusion Detection System
- **Detect (DID)**: Decentralized Identity + Homomorphic Encryption

• Prevent Access (SOAR): SOAR + Graph Neural Networks

• Respond (Audit): Blockchain Audit Trails + Smart Contract Auditing Tools

6.

• Prevent (SOAR): SOAR + UEBA

• Detect (Audit): Blockchain Audit Trails + Smart Contract Auditing Tools

• Prevent Access (RF): Random Forest + Intrusion Detection System

• Respond (HE): Homomorphic Encryption + Graph Neural Networks

Correct Answer: 1

Scenario	Short Description	Correct Answer	Why Correct?	Closest Alternative	Critical Flaw in Alternative	Real-World Lesson
Money Laundering Attack	Prevent money laundering, detect illicit transfers, prevent unauthorized access, respond using GNN	1: DID + HE + AI-SIEM + UEBA + Blockchain Audit + Smart Contract Audit + SOAR + GNN	• DID prevents anonymous wallet creation • GNN traces multi-wallet transaction chains • Smart contract audits block laundering logic	2: AI-SIEM + UEBA + GNN + RF + DID + HE + IDS + SOAR	X RF not optimized for transaction chain analysis X IDS ineffective for on-chain activity X Misaligned prevention/detection	Obfuscated trails: ByBit hack showed wallet hopping exploits Weak analytics: Traditional tools failed to trace cross-DEX transfers Anonymous access: Lack of DID enabled fake wallets

Fill-in-the-Blank Questions

Question	Answer	Key Concept Explanation

The Linux kernel's uses per-CPU run-queues, but a task that is "pinned" to one core can still be pre-empted by a higher-priority task on that same core.	Completely Fair Scheduler (CFS)	CFS balances load across CPU cores but allows corelocal preemption for real-time priority enforcement
In overlayfs, a write to a file that resides only in the read-only lower layer triggers a mechanism, copying the file into the writable upper layer before modification.	copy-on-write (CoW)	CoW preserves lower-layer integrity by creating writable copies for modifications - critical for container security

Summary

Scenario	Control Function	Correct Answer (Controls)	Why Correct? (Official Explanation)	Why Alternatives Fail	Real-World Lesson
Equifax Multi- Stage	Prevent (DiD)	Patch Mgmt + Auto Patching	Removes Struts vulnerability	> Opt 1/2/4/5/6: Rely on WAF alone; miss automated patching for root cause fix	Unpatched CVE-2017-5638 for 2 months allowed initial access
	Detect (ASA)	Behavioral Analytics + SIEM	Spots lateral SSH pivot attempts	X Opt 1/5: Use misconfigured vuln scanning (false negatives); miss behavioral analysis	• Expired GuardDuty certs disabled critical alerts
	Prevent Access (ZTA)	Micro- segmentation + WAF	Blocks east-west traffic from web to DB	X Opt 2: Encrypts data but doesn't block SSH pivots	 No micro-segmentation allowed direct EC2→RDS access
	Respond (ASA)	SOAR + IRT Coordination	Ensures rapid containment	X Opt 4: Behavioral Analytics ≠ IRT coordination	Slow response allowed 143M records exfiltration
Equifax Lateral	Prevent (DiD)	WAF + Auto Patching	Stops pivot/harvest with micro-seg + TLS	X Opt 1/3: Encryption irrelevant to SSH; WAF misplaced in "Prevent Access"	GuardDuty offline for 4 months missed pivot detection
	Detect (ASA)	CloudWatch + Behavioral Analytics	Reveals unusual DB access via UEBA + SIEM	X Opt 4: IDS expired (no alerts); lacks cloud-native context	Misconfigured Inspector produced false negatives
	Prevent Access (ZTA)	Micro- segmentation + Cert Mgmt	Halts unauthorized connections with segmentation + IDS	X Opt 2: "Network segmentation" too broad; allows web→DB traffic	Flat network permitted SSH pivots across subnets

	Respond (ASA)	IRT + SOAR	Enables rapid lock- down/forensics	X Opt 5: IRT + Behavioral Analytics lacks SOAR automation	Manual processes delayed containment by 76 days
SolarWinds Supply Chain	Prevent (DiD)	Code Signing + Network Segmentation	Blocks tampered builds	➤ Opt 3: Network + micro-segmentation alone allows malicious signed binaries	 Weak build-server passwords (solarwinds123) compromised pipeline
	Detect (ASA)	Audit Logs + Anomaly Detection	Catches unauthorized modifications	X Opt 1: Tamper detection is reactive (post-breach)	No tamper checks allowed backdoored binaries for 9+ months
	Prevent Access (ZTA)	Continuous Validation + Least Priv	Ensures only genuine artifacts deploy	X Opt 4: Least Privilege + Continuous Val misses network controls	Blind trust in signed binaries infected 18,000+ systems
	Respond (ASA)	Dynamic Policies + Encrypted Chans	Enables rapid containment/rollback	X Opt 6: Dynamic Policies + IRT lacks encryption to block C2	Delayed response allowed attackers to maintain persistence
SolarWinds Lateral	Prevent (DiD)	Code Signing + Network Segmentation	Blocks pivot to update tier	X Opt 2: Least Privilege + Encryption can't stop binary execution	 Minimal segmentation allowed Build→Update server pivots
	Detect (ASA)	Tamper Detection + Behavioral Mon	Flags unauthorized backdoor writes	X Opt 3: Anomaly detection in builds ≠ real-time backdoor detection	No integrity checks for system services
	Prevent Access (ZTA)	Micro-seg + Continuous Validation	Stops execution of unapproved binaries	X Opt 5: Micro-seg + Encryption doesn't validate artifacts	Attackers installed persistent backdoors in system processes
	Respond (ASA)	SOAR + Dynamic Policies	Isolates compromised nodes	X Opt 1: SOAR + Audit Logging is passive (no isolation)	Passive logging failed to catch live attacker movement
Capital One SSRF	Prevent (DiD)	WAF Validation + IAM Hardening	Stops SSRF and credential overreach	X Opt 3: Continuous Verif + WAF misses IAM hardening (stolen tokens still work)	Overly permissive IAM role allowed S3 bucket access
	Detect (ASA)	GuardDuty + Behavioral Monitoring	Catches metadata misuse	X Opt 4: Behavioral Mon + CloudWatch lacks GuardDuty's AWS-specific threat intel	WAF rules too permissive allowed SSRF to metadata service
	Prevent Access (ZTA)	Continuous Verif + Micro-seg	Blocks unauthorized S3 calls	X Opt 2: Micro-seg + Continuous Verif duplicates functions; lacks IAM context	No micro-segmentation let attackers traverse network with stolen creds

	Respond (ASA)	Auto IAM Adjust + Adaptive WAF	Throttles/locks exfiltration channels	X Opt 5: Auto IAM Adjust + Cert Mgmt misses WAF tuning for active blocking	Slow token revocation allowed access to 100+ S3 buckets
DeFi Ponzi Scheme	Prevent (DiD)	DID + Homomorphic Encryption	Secures investor trust (prevents anonymous scams)	X Opt 1/4: SIEM/UEBA/RF detect but don't prevent; IDS irrelevant on-chain	 Unaudited contracts promised "guaranteed returns" to 12K+ investors
	Detect (ASA)	AI-SIEM + UEBA	Identifies Ponzi patterns	X Opt 2/3: IDS/SOAR not designed for financial anomaly detection	No behavioral checks missed abnormal ROI patterns
	Prevent Access (ZTA)	Blockchain Audit + Smart Contract Audit	Verifies contract legitimacy	➤ Opt 5: RF + IDS can't audit contracts; SOAR not access control	Pseudonymous launches enabled fake "high-yield" projects
	Respond (ASA)	SOAR + Graph Neural Networks	Automates response (aligns with RF-based detection)	X Opt 6: HE + GNN not response tools; Blockchain Audit ≠ action	Delayed takedowns allowed \$34M in losses
DeFi Money Laundering	Prevent (DiD)	DID + Homomorphic Encryption	Prevents anonymous wallet creation	➤ Opt 2/3: SIEM/UEBA detect but don't prevent; Blockchain Audit not preventive	Anonymous wallets enabled ByBit hack (\$8M laundered)
	Detect (ASA)	AI-SIEM + UEBA	Traces transaction chains in real-time	X Opt 4/5: SOAR/RF not detection tools; IDS useless for cross-DEX analysis	Traditional tools failed to track wallet-hopping
	Prevent Access (ZTA)	Blockchain Audit + Smart Contract Audit	Blocks laundering logic in contracts	X Opt 6: RF + IDS can't restrict contract access; HE not access control	Weak analytics missed multi- wallet transaction chains
	Respond (ASA)	SOAR + Graph Neural Networks	 Automates tracing/containment (uses GNN-based tracking) 	X Opt 1: SOAR + GNN correct but other functions flawed	Manual investigations allowed obfuscated fund flows