Pág. 1/10

PARA:

(Confidencial)

Ref.: S51996-RT-5801-IAS-757

COPIA:

Mariana Duarte Flávia Moreira Costa

	HISTÓRICO DAS REVISÕES							
REV.	V. DATA ELABORADO VERIFICADO APROVADO							
	18/07/2024	DTW	IMS	CFS				
1	PRINCIPAIS MUDANÇAS							
	Primeira Emissão							

TÍTULO: ESTUDO DE CVD DE 1ª EXTREMIDADE DA LINHA IG NO POÇO 7-MRL-230HP-RJS

ÍNDICE

1	INTRO	DDUÇÃO	. 2
	1.1	Objetivo	. 2
		Abreviações	
	1.3	Referências	. 2
2	PREM	IISSAS DE CÁLCULO	. 3
		Hipóteses e Metodologia	
		Dados de Referência	
	2.3	Critério de Aceitação	. 4
3	RESU	ILTADOS	. 5
	3.1	Instalação do MCV	. 5
	3.1.1 A	Alinhamento e verticalização do MCV	. 5
	3.1.2 H	Heave up	. 6
	3.1.3	Toque da linha no solo após conexão	. 6
4	CONC	CLUSÕES	. 7
5		·O	
6	RESU	IMO	<u>.</u> و

(Confidencial)

Ref.: S51996-RT-5801-IAS-757

1 INTRODUÇÃO

1.1 Objetivo

O presente documento tem por objetivo realizar um estudo de CVD de primeira extremidade no poço 7-MRL-230HP-RJS em uma lâmina d'água de 735m, a ser realizada pela embarcação Skandi 300t no campo Marlim, para avaliar a necessidade do uso de boias e/ou peso morto durante o procedimento de modo a verticalizar o MCV e cumprir o critério de heave up.

As análises são realizadas utilizando o programa de elementos finitos para análises de instalação, ORCAFLEX versão 11.3c.

1.2 Abreviações

CVD : Conexão Vertical Direta

MBR : Minimum Bending Radius

MCV : Módulo de Conexão Vertical

TDP : Touch Down Point

te : Toneladas

1.3 Referências

Ref	Documento	Rev	Título
[1]	RL-3534.00-1500-94G-R1N-087	0	DUTO DE GAS LIFT DO POÇO MRL-230 AO FPSO ANITA GARIBALDI – ANÁLISE DE ESFORÇOS EM EQUIP. SUB. (MCV)
[2]	RT-3004	0	CVD de 1ª de Gas Lift para o poço 7-MRL- 230HP-RJS

Pág. 2/10

(Confidencial)

Pág. 3/10

Ref.: S51996-RT-5801-IAS-757

2 PREMISSAS DE CÁLCULO

2.1 Hipóteses e Metodologia

A metodologia utilizada no estudo visa dispor o cabo ligado à manilha do MCV e o flexível de maneira que o MCV e o hub estejam alinhados, com o desvio do MCV em relação à vertical dentro da tolerância especificada, que é condição necessária para a conexão vertical.

Após o MCV ser assentado, o ponto de conexão do flexível com o navio é suspenso, inicialmente 2,5 metros em 2,15 segundos, para assegurar que não há travamento da vértebra. Caso necessário, esse deslocamento pode ser reduzido. Nesse caso o comprimento de flexível usado para verticalizar o MCV é mantido. Essa etapa é para simular um deslocamento vertical do navio logo após o MCV ser assentado no hub.

As seguintes hipóteses foram assumidas:

- A análise realizada é dinâmica, porém não são considerados efeitos de corrente, ondas e vento;
- Apenas boias encontradas a bordo são consideradas como remediação para possíveis problemas na configuração da instalação;
- A distância horizontal entre o ponto de conexão do cabo de sustentação do MCV e o ponto de conexão do flexível com o tensionador foi assumida em 25m;
- O centro de empuxo é considerado na mesma posição do centro de gravidade do MCV;
- A linha é considerada cheia de água;
- Foi considerada a rigidez à flexão nas condições de temperatura e pressão da instalação e anular seco.

2.2 Dados de Referência

Item	Descrição
Estrutura	NOV-101-9101 Rev. C
Vértebra	15762-DWG-BR-102 Rev. 4
Conector	15762-DWG-EF-102 Rev. A
MCV	2184362-14 / SK-130685-17 / OneSubsea
Adaptador	DE-F-05-J-0158 Rev. A
Lâmina d'água	735 m

Pág. 4/10

(Confidencial)

Ref.: S51996-RT-5801-IAS-757

2.3 Critério de Aceitação

Nas configurações estudadas os parâmetros da Tabela 2.1 são avaliados em relação aos limites informados.

Tabela 2.1 - Parâmetros de aceitação da configuração

Parâmetros	Ref	Valor Limite	Unidade
Inclinação do MCV em relação à vertical	[-]	±0,50	graus
Distância mínima do flexível ao solo	[-]	0,50	m
Distância do flange do MCV ao leito marinho	[1]	4,60	m
Raio de travamento da vértebra	[1]	2,69	m
Raio de curvatura mínimo da linha	[1]	2,43	m
Momento fletor máximo na vértebra	[1]	30,00	kN.m
Força cortante máxima na vértebra	[1]	30,00	kN

De acordo com o documento ET-3000.00-1500-951-PMU-001 - revisão F, algumas observações se aplicam:

- (1) No caso de estudos para MCVs de umbilicais, a aprovação da análise depende apenas dos parâmetros descritos acima, não incluindo os esforços (momento/tração/cortante) como critérios de aceitação;
- (2) No caso de linhas de fluxo, os carregamentos devem ser gerados obedecendo o mesmo sistema de referência do relatório de cargas e comparados individualmente em módulo (i.e. tração com tração, cortante com cortante e momento com momento).

Ref.: S51996-RT-5801-IAS-757

3 RESULTADOS

3.1 Instalação do MCV

Para a instalação do MCV com as boias mostradas na Tabela 3.1, os resultados da análise de alinhamento e verticalização do MCV são mostrados no item 3.1.1 e o do heave up no item 3.1.2.

Tabela 3.1 - Posicionamento das boias

Empuxo	Posição em relação ao flange do MCV		
[kg]	[m]		
250 + 100	3		

3.1.1 Alinhamento e verticalização do MCV

Os resultados da configuração que mantém o MCV verticalizado e alinhado são mostrados na Tabela 3.2. A Figura 3.1 apresenta a configuração do CVD de 1ª extremidade.

Tabela 3.2 – Resultados estáticos para alinhamento e verticalização

Distância do flange do MCV ao solo	mínima da Inclinação		MBR Linha	MBR Vértebra	
[m]	[m]	[graus]	[m]	[m]	
4,60	1,03	0,18	5,55	11,67	

Figura 3.1 – Configuração da CVD de 1ª extremidade. Comprimento do ponto no seio da configuração até ao flange do goose neck e comprimento do ponto na altura do flange do goose neck até o seio.

Pág. 6/10

(Confidencial)

Ref.: S51996-RT-5801-IAS-757

3.1.2 Heave up

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é suspenso 2,5 metros em 2,15 segundos, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados são apresentados na Tabela 3.3 e na Tabela 3.4.

Tabela 3.3 - Resultados para análise de heave up

Heave up	MBR Linha	MBR Vértebra	
[m]	[m]	[m]	
2,50	3,16	2,91	

Tabela 3.4 – Esforços no flange do goose neck do MCV da análise do heave up

Momento Fletor	Momento Fletor	Tração	Força Cortante
	[kN.m]	[kN]	[kN]
Máximo	46,00	9,73	3,55
Mínimo	-37,34	-6,69	-20,54

3.1.3 Toque da linha no solo após conexão

Nesse caso o MCV é fixado no hub e o ponto de conexão do flexível com o navio é pago até que a linha toque no solo, mantendo o comprimento de flexível utilizado para verticalizar e alinhar o MCV. Os resultados dos esforços da interface do MCV com o duto são apresentados na

Tabela 3.5.

Tabela 3.5 – Esforços no MCV no momento em que a linha toca no solo

Momento Fletor	Tração	Força Cortante
[kN.m]	[kN]	[kN]
-44,23	6,31	-11,75

Ref.: S51996-RT-5801-IAS-757

4 CONCLUSÕES

A Tabela 4.1 sumariza os resultados da operação de conexão vertical direta de 1ª extremidade.

Conclui-se que é necessário instalar 350kg de empuxo a 3m, do flange, conforme Tabela 3.1, de forma a verticalizar o MCV e cumprir o critério de heave up.

Os esforços calculados deste estudo estão aprovados a partir do ábaco (Figura 4.1)

	Pose	7 MDL 220	LID DIE	
LAN DETROPPAG		7-MRL-230HP-RJS		
BR PETROBRAS	Tipo de MCV			
			-1500-94G-R1N-087	
		17-jul-24		
	TAG (*consultar aba TAGs)	CCB-232		
	Execução	DTW		
	Verificação	IMS		
	Aprovação	CFS		
Caso de carregamento	Esforço	Valor	Status	
CVD 2a - Topo	Tração (Fx) [kN]		APROVADO	
CVD 1a - MCV no Hub com	Tração (Fx) [kN]	9,73		
linha suspensa (Caso 3i -	Força Cortante (Fz) [kN]	3,55	APROVADO	
Flutuadores) A	Momento Fletor (My) [kN.m]	46		
CVD 1a - MCV no Hub com	Tração (Fx) [kN]	-6,69		
linha suspensa (Caso 3i -	Força Cortante (Fz) [kN]	-20,54	APROVADO	
Flutuadores) B	Momento Fletor (My) [kN.m]	-37,34		
CVD 1ª -MCV no Hub	Tração (Fx) [kN]	6,31		
(Caso 3ii - Flutuadores) A	Força Cortante (Fz) [kN]	-11,75	APROVADO	
Momento Fletor (My) [kN.m]		-44,23		
CVD 1ª -MCV no Hub	Tração (Fx) [kN]	6,31		
(Caso 3ii - Flutuadores) B	Força Cortante (Fz) [kN]	-11,75	APROVADO	
	Momento Fletor (My) [kN.m]	-44,23		

Figura 4.1 - Resultados do ábaco / Resultados do momento equivalente

Tabela 4.1 – Tabela de comparação entre os valores encontrados e os limites

Seção	Parâmetros	Valor encontrado	Valor Limite	Unidade	
3.1.1	Inclinação em relação à vertical	0,18	±0,50	graus	
3.1.1	Distância mínima do flexível ao solo	1,03	0,50	m	
3.1.1	Distância do flange do MCV ao leito marinho	4,60	4,60	m	
3.1.2	Raio de curvatura mínimo da linha/vértebra	3,16 / 2,91	2,43 / 2,69	m	

Ref.: S51996-RT-5801-IAS-757

5 ANEXO

Esse anexo apresenta uma contingência para o caso em que o MCV se encontra acoplado no hub, porém não está travado. A ideia é, com o MCV fixo no modelo, pagar linha até que esteja um comprimento lançado no solo e então adicionar boias para a verticalização do MCV sem ação da catenária.

A primeira opção seria acrescentar até 1100kg de empuxo, afastado 5m do flange do MCV para não haver o travamento da vértebra. O raio mínimo na vértebra nessa condição é de 3,65m e o da linha é de 4,16m. O momento fletor obtido nessa condição é de 41,14kN.m no flange. A Figura 5.1 apresenta essa configuração.

Figura 5.1 - Configuração do caso de contingência - 1ª opção

A segunda opção seria acrescentar até 1200kg de empuxo, afastado 7m do flange do MCV para não haver o travamento da vértebra. O raio mínimo na vértebra nessa condição é de 2,98m e o da linha é de 3,29m. O momento fletor obtido nessa condição é de 41,06kN.m no flange. A Figura 5.2 apresenta essa configuração.

Figura 5.2 - Configuração do caso de contingência - 2ª opção

Ref.: S51996-RT-5801-IAS-757

6 RESUMO

CVD de primeira extremidade no poço 7-MRL-230HP-RJS em uma lâmina d'água de 735m.

Tabela 6.1 – Heave Up

Heave up [m]	
2,5	

Figura 6.1 - Configuração de Verticalização

Tabela 6.2 – Configurações de Contingência

Contingência	Empuxo limite	Distância ao flange
	[kg]	[m]
1	1100	5,0
2	1200	7,0

(Confidencial)

Ref.: S51996-RT-5801-IAS-757

Pág. 10/10

FIM DO DOCUMENTO