

Estimation of latent and sensible heat flux through similarity theory in semi-arid conditions

Belén Martí^{3,1}, Daniel Martínez-Villagrasa¹, Jeremy Price², Joan Cuxart¹
FIRST LIAISE CONFERENCE AND DETERMINING EVAPOTRANSPIRATION CROSSCUT WORKSHOP

Lleida 27-29 March 2023

1 Universitat de les Illes Balears, Palma, Spain

2 UKMO, Cardington, United Kingdom

3 CNRM, CNRS/Météo-France, Toulouse, France

Context

- Turbulent fluxes and flux-gradient relationships
- Estimated fluxes through Monin Obukhov Similarity Theory (MOST)
- Measurements in complex terrain near the ground
- Comparison of estimated and observed fluxes for two databases

ECUIB and Els Plans: H and LE

Conclusions

Objectives

- Evaluate if MOST relationships in moderately complex terrain are suitable to estimate turbulent fluxes near the ground.
- Characterize the behaviour of the stability functions of sensible and latent heat flux and suggest a suitable expression.
- Show the relationship of the stability functions of sensible and latent heat flux, are they equal?

$$Lw = \frac{\phi_q}{\phi_h}$$

Flux-gradient relationships

Databases: ECUIB and Els Plans

11-14UTC

ECUIB: 22 months (2020-2021)

Els Plans: 13 months

Els Plans

VWC and LE flux at ECUIB and Els Plans

Sensible heat flux

$$\begin{split} \bar{\theta}(z_{\theta_2}) - \bar{\theta}(z_{\theta_1}) = & \frac{H}{\rho C_p \kappa} \left[\ln(z_{\theta_2}/z_{\theta_1}) - \Psi_h \left(z_{\theta_2}/L \right) + \Psi_h \left(z_{\theta_1}/L \right) \right], \\ & \text{Businger (1971) functions} \end{split}$$

Discussion of the results is made through relative error

$$\Delta \chi / \chi \equiv (\chi(z/L) - \chi(EC)) / \chi(EC)$$

- $\chi(z/L) \equiv$ estimated value ; $\chi(EC) \equiv$ observed value
- We set two thresholds: 20% and 50% of relative error

Tested at the ALEX campaign, estimation of H in daytime needs a new function when both solar radiation and soil water content are large (Marti et al. 2022, BLM)

Sensible heat flux

 Function of sensible heat flux stratifies by both water content of the ground and Bowen ratio

Latent heat flux

$$\bar{q}(z_{q_2}) - \bar{q}(z_{q_1}) = \frac{LE}{\rho L_v \kappa} \left[\ln(z_{q_2}/z_{q_1}) - \Psi_q(z_{q_2}/L) + \Psi_q(z_{q_1}/L) \right],$$

- Function of humidity stratifies by bowen ratio
- No one line can represent all variability

Lewis number

Conclusions

- For H: the Businger line describes well most cases, those with Bo<1 need a new function.
- For LE: New functions dependant on Bo are necessary. The larger the Bo is the farther from Businger they are. Between databases, ECUIB functions provide reasonable results for Els Plans.

- The functions for temperature and humidity can be used within a 50% accuracy
- The Lewis number increases with the Bowen ratio and separates from the Lw=1 starting at Bo>1, coinciding with the use of new different functions for H and LE

Acknowledgements

- FPI-CAIB (FPI/2165/2018) grant of the Vicepresidència i Conselleria d'Innovació, Recerca i Turisme del Govern de les Illes Balears and the Fons Social Europeu.
- ERA NET PLUS NEWA (PCIN-2014-016-C07-01 and PCIN-2016-091)
- Grants of the Spanish Government CGL2015-65627-C3-1-R (that includes Regional Funds FEDER)
- This work has been partially sponsored by the Comunitat Autonoma de les Illes Balears through the Direcció General de Política Universitaria i Recerca with funds from the Tourist Stay Tax Law ITS 2017-006 (PRD2018/67)
- This work is part of the research project RTI2018-098693-B-C31 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe.

I INNOVACIO,
B RECERCA I TURISME

/ DIRECCIÓ GENERAL

Fons Social Europeu

- G CONSELLERIA
- O FONS EUROPEUS.
- I UNIVERSITAT I CULTURA
- B DIRECCIÓ GENERAL
- POLÍTICA UNIVERSITÀRIA I RECERCA

FEDER
Fondo Europeo de Desarrollo Regional

Una manera de hacer Europa

Ona manera de nacer Europ

Thank you for your attention

Graphic: Högstrom (1996)

Similarity theory

- Similarity theory fluxes: can be determined by a vertical gradient using the universal functions $\phi_{\rm m}$, $\phi_{\rm h}$, $\phi_{\rm q}$ that depend on a stability parameter
- Universal functions have been fitted in several experimental campaigns, a lot of uncertainty remains in the estimations.
- Universal functions were developed using instrumented towers of over 30 m in flat terrain

Stability parameter: z/L

Obukhov's Length

$$L = -\frac{u_*^3}{\kappa \frac{g}{\overline{\theta}} \overline{w' \theta'}}$$

$$\phi_m^2 = \phi_h = \alpha (1 - \beta z/L)^{-1/4};$$
 for $z/L < 0$
 $\phi_m = \phi_h = \alpha (1 + \beta z/L);$ for $z/L > 0$,

16

Observed turbulent fluxes

$$Rn + H + LE + G = Imb$$

Parametrization of the fluxes is included in forecast models

$$\frac{\partial \bar{\theta}}{\partial t} = \cdots - \frac{\partial \overline{\omega' \theta'}}{\partial z}$$

$$\overline{\omega'\theta'} = -k\frac{\partial\overline{\theta}}{\partial z}$$

term of the energy equation	balance	error in %	energy in W m ⁻²
latent heat flux	LE	5-20	20-50
(carefully correcte	ed)		
sensible heat flux	Н	10-20	15-30
net radiation	Rn	10-20	50-100
ground heat flux	G	50	25

Table: Foken (2008)