

(22) International Filing Date:

PA 1999 00091

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:			(11) International Publication Number	: WO 99/49022
C12N 9/16, 15/55, A23K 1/165		A1	(43) International Publication Date:	30 September 1999 (30.09.99)
(21) International Application Number:	PCT/DK	99/001	(81) Designated States: AE, AL, AN	л, AT, AU, AZ, BA, BB, BG,

DK

22 March 1999 (22.03.99)

(30) Priority Data:		
0407/98	23 March 1998 (23.03.98)	DK
PA 1998 00806	19 June 1998 (19.06.98)	DK
PA 1998 01176	18 September 1998 (18 09 98)	DK

(71) Applicant: NOVO NORDISK A/S [DK/DK]; Corporate

22 January 1999 (22.01.99)

(72) Inventor: SVENDSEN, Allan; Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd (DK).

Patents, Novo Allé, DK-2800 Bagsværd (DK).

1) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.

(54) Title: PHYTASE VARIANTS

(57) Abstract

Phytase variants, their preparation and uses, which phytase variants, when aligned according to Fig. 1, are amended as compared to a model phytase in at least one of a number of positions. Preferred model phytases are basidiomycete and ascomycete phytases, such as Peniophora phytase and Aspergillus phytases. Preferred phytase variants exhibits amended activity characteristics, such as improved specific activity and/or improved thermostability.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
\mathbf{BG}	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		23111040410
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Phytase variants

FIELD OF THE INVENTION

This invention relates to variants of phytases, in particular variants of ascomycete phytases and variants of basidiomycete phytases, the corresponding cloned DNA sequences, a method of producing such phytase variants, and the use thereof for a number of industrial applications.

BACKGROUND OF THE INVENTION

Phytic acid or myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate (or for short myo-inositol hexakisphosphate) is the primary source of inositol and the primary storage form of phosphate in plant seeds. Phytin is a mixed potassium, magnesium and calcium salt of inositol.

The phosphate moieties of phytic acid chelates divalent and trivalent cations such as metal ions, i.a. the nutritionally essential ions of calcium, iron, zinc and magnesium as well as the trace minerals manganese, copper and molybdenum.

Phytic acid and its salts, phytates, are often not 20 metabolized, i.e. neither the phosphorous thereof, nor the chelated metal ions are nutritionally available.

Accordingly, food and feed preparations need to be supplemented with inorganic phosphate and often also the nutritionally essential ions such as iron and calcium, must be supplemented.

Still further, the phytate phosphorus passes through the gastrointestinal tract of such animals and is excreted with the manure, resulting in an undesirable phosphate pollution of the environment resulting e.g. in eutrophication of the water 30 environment and extensive growth of algae.

2

Phytic acid or phytates, said terms being, unless otherwise indicated, in the present context used synonymously or at random, are degradable by phytases.

The production of phytases by plants as well as by 5 microorganisms has been reported. Amongst the microorganisms, phytase producing bacteria as well as phytase producing fungiare known.

several descriptions of phytase producing are filamentous fungi belonging to the fungal phylum of Ascomycota 10 (ascomycetes). In particular, there are several references to phytase producing ascomycetes of the Aspergillus genus such as Aspergillus terreus (Yamada et al., 1986, Agric. Biol. Chem. 322:1275-1282). Also, the cloning and expression of the phytase gene from Aspergillus niger var. awamori has been described 15 (Piddington et al., 1993, Gene 133:55-62). EP 0420358 describes the cloning and expression of a phytase of Aspergillus ficuum (niger). EP 0684313 describes the cloning and expression of phytases of the ascomycetes Aspergillus niger, Myceliophthora thermophila, Aspergillus terreus. Still further, some partial 20 sequences of phytases of Aspergillus nidulans, Talaromyces thermophilus, Aspergillus fumigatus and another strain of Aspergillus terreus are given.

The cloning and expression of a phytase of Thermomyces lanuginosus is described in WO 97/35017.

There is a current need for phytases of amended properties or characteristics, e.g. phytases of increased thermostability, altered pH optimum (a high pH optimum being desirable for invitro processing, a low for in-vivo processing in the gastro-intestinal tract), and/or of a higher specific activity.

SUMMARY OF THE INVENTION

In a first aspect, the invention provides phytase variants, the characteristics of which are amended - as compared to a so-called model phytase.

3

Any model phytase, which is of a certain similarity to thirteen herein specifically disclosed model phytases, can be made the model of such variants.

In another aspect, the invention relates to a novel phytase derived from Cladorrhinum foecundissimum.

In still another aspect, the invention provides DNA sequences encoding these phytase variants and this phytase, and methods of their production.

Finally, the invention also relates generally to the use of the phytase and the phytase variants for liberating phosphorous from any phytase substrate, in particular inorganic phosphate from phytate or phytic acid.

BRIEF DESCRIPTION OF THE DRAWINGS

25

In the detailed description of the invention below, 20 reference is made to the drawings, of which

- Fig. 1 is an alignment of thirteen specific phytase sequences (a multiple sequence alignment according to the program PileUp; GapWeight: 3.000; GapLengthWeight: 0.100);
- Fig. 2 this figure shows the amino acid and DNA sequence of a first phytase ("P_involtus-A1") derived from strain CBS 100231 of Paxillus involutus which was deposited on 28.11.97; the expression plasmid pYES 2.0 comprising the full length cDNA sequence was

WO 99/49022

PCT/DK99/00153

4

transformed into E. coli strain DSM 11842 which was deposited on 12.11.97 (see WO 98/28409);

- Fig. 3 this figure shows the amino acid and DNA sequence of
 a second phytase ("P_involtus-A2") derived from
 strain CBS 100231 of Paxillus involutus which was
 deposited on 28.11.97; the expression plasmid pYES
 2.0 comprising the full length cDNA sequence was
 transformed into E. coli strain DSM 11843 which was
 deposited on 12.11.97 (see WO 98/28409);
- Fig. 4 this figure shows the amino acid and DNA sequence of ("T_pubescens") derived phytase from CBS 100232 of Trametes pubescens, which was deposited on 28.11.97; the expression plasmid pYES 15 2.0 comprising the full length cDNA sequence was transformed into E. coli strain DSM 11844 which was deposited on 12.11.97 (see WO 98/28409);
- this figure shows the amino acid and DNA sequence of a phytase ("A_pediades") derived from strain CBS 900.96 of Agrocybe pediades deposited on 04.12.96; the expression plasmid pYES 2.0 comprising the full length cDNA sequence was transformed into E. colistrain DSM 11313 which was deposited on 02.12.96 (see WO 98/28409);
- Fig. 6 this figure shows the amino acid and DNA sequence of a phytase ("P_lycii") derived from strain CBS 686.96 of Peniophora lycii which was deposited on 04.12.96; the expression plasmid pYES 2.0 comprising the full

WO 99/49022

10

PCT/DK99/00153

5

length cDNA sequence was transformed into E. colistrain DSM 11312 which was deposited on 02.12.96 (see WO 98/28409);

this figure equals figure 2 of EP 0684313 and shows the amino acid and DNA sequence of a phytase ("M_thermophila") derived from strain ATCC 48102 (=ATCC 74340) of Myceliophthora thermophila which was re-deposited on 14.03.97;

Fig. 8 this figure shows the amino acid and DNA sequence of a phytase ("A_fumigatus") derived from strain ATCC 13073 of Aspergillus fumigatus (see EP 0897985);

- this figure shows the amino acid ("Conphys") and DNA sequence of an ascomycete consensus phytase (in the present context called "consphyA") (see EP 0897985);
- Fig. 10 this figure shows the amino acid and DNA sequence of

 a phytase ("A_nidulans") derived from strain

 DSM 9743 of Aspergillus nidulans (see EP 0897985);
- Fig. 11 this figure equals figure 8 of EP 0420358 and shows the amino acid and DNA sequence of a phytase ("A_ficuum") derived from Aspergillus ficuum strain NRRL-3135;
- Fig. 12 this figure equals figure 1 of EP 0684313 and shows the amino acid and DNA sequence of a phytase ("A_terreus") derived from strain CBS 220.95 of Aspergillus terreus;

6

- Fig. 13 this figure shows the amino acid and DNA sequence of a phytase ("T_thermo") derived from strain ATCC 20186 (=ATCC 74338) of Talaromyces thermophilus which was redeposited on 14.03.97 (see EP 0897985);
- Fig. 14 this figure equals figure 2 of WO 97/35017 and shows the amino acid and DNA sequence of a phytase ("T_lanuginosa") derived from strain CBS 586.94 of Thermomyces lanuginosus; a plasmid comprising the full length cDNA sequence was transformed into E. coli DH5α (pMWR46) strain B-21527 which was deposited with NRRL on 23.02.96;
- this figure shows the amino acid and DNA sequence of a phytase ("C_foecundissimum") derived from strain CBS 427.97 of Cladorrhinum foecundissimum which was deposited on 23 January 1997; the expression plasmid pYES 2.0 comprising the full length cDNA sequence was transformed into E. coli strain DSM 12742 which was deposited on 17 March 1999;
- Fig. 16 this figure shows an alignment of the phytase C_foecundissimum with the model phytase M_thermophila, using the program GAP gcg (Gap Weight 3.000; Length Weight 0.100); and
 - Fig. 17 shows how the C_foecundissimum phytase can be pasted onto the alignment of Fig. 1.

5

7

DETAILED DISCLOSURE OF THE INVENTION

Phytase

In the present context a phytase is an enzyme which hydrolysis catalyzes the of phytate (myo-inositol 5 hexakisphosphate) to (1) myo-inositol and/or (2) mono-, di-, tri-, tetra- and/or penta-phosphates thereof and (3) inorganic phosphate. In the following, for short, the above compounds are sometimes referred to as IP6, I, IP1, IP2, IP3, IP4, IP5 and P, respectively. This means that by action of a phytase, IP6 is 10 degraded into P + one or more of the components IP5, IP4, IP3, IP2, IP1 and I. Alternatively, myo-inositol carrying in total n phosphate groups attached to positions p, q, r,.. is denoted Ins(p,q,r,..)Pn. For convenience Ins(1,2,3,4,5,6)P6 acid) is abbreviated PA.

According to the Enzyme nomenclature database ExPASy (a 15 repository of information relative to the nomenclature of primarily based enzymes the recommendations on of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) describing each type 20 of characterized enzyme for which an EC (Enzyme Commission) number has been provided), two different types of phytases are known: A so-called 3-phytase (myo-inositol hexaphosphate 3phosphohydrolase, EC 3.1.3.8) and a so-called 6-phytase (myoinositol hexaphosphate 6-phosphohydrolase, EC 3.1.3.26). The 3-25 phytase hydrolyses first the ester bond at the D-3-position, whereas the 6-phytase hydrolyzes first the ester bond at the D-6- or L-6-position.

The expression "phytase" or "polypeptide or enzyme exhibiting phytase activity" is intended to cover any enzyme capable of effecting the liberation of inorganic phosphate or phosphorous from various myo-inositol phosphates. Examples of

8

such myo-inositol phosphates (phytase substrates) are phytic acid and any salt thereof, e.g. sodium phytate or potassium phytate or mixed salts. Also any stereoisomer of the mono-, di-, tri-, tetra- or penta-phosphates of myo-inositol might serve as a phytase substrate. A preferred phytase substrate is phytic acid and salts thereof.

In accordance with the above definition, the phytase activity can be determined using any assay in which one of these substrates is used. In the present context (unless otherwise 10 specified) the phytase activity is determined in the unit of FYT, one FYT being the amount of enzyme that liberates 1 μ mol inorganic ortho-phosphate per min. under the following conditions: pH 5.5; temperature 37°C; substrate: sodium phytate $(C_6H_6O_{24}P_6Na_{12})$ in a concentration of 0.0050 mol/l. A suitable 15 phytase assay is described in the experimental part.

The present invention provides a genetically engineered phytase as described in the appending claims.

A genetically engineered phytase is a non-naturally occurring phytase which is different from a model phytase, e.g. a wild-type phytase. Genetically engineered phytases include, but are not limited to, phytases prepared by site-directed mutagenesis, gene shuffling, random mutagenesis etc.

The invention also provides DNA constructs, vectors, host cells, and methods of producing these genetically engineered phytases and phytase variants, as well as uses thereof.

A phytase variant is a polypeptide or enzyme or a fragment thereof which exhibits phytase activity and which is amended as compared to a model phytase.

Amended means altered by way of one or more amino acid or 30 peptide substitutions, deletions, insertions and/or additions - in each case by, or of, one or more amino acids. Such

9

substitutions, deletions, insertions, additions can be achieved by any method known in the art, e.g. gene shuffling, random mutagenesis, site-directed mutagenesis etc.

The model or parent phytase, from which the phytase 5 variant is derived, can be any phytase, e.g. a wild-type phytase or a derivative, mutant or variant thereof, including allelic and species variants, as well as genetically engineered variants thereof, which e.g. can be prepared by site-directed mutagenesis, random mutagenesis, shuffling etc.

Included in the concept of model phytase is also any hybrid or chimeric phytase, i.e. a phytase which comprises a combination of partial amino acid sequences derived from at least two phytases.

The hybrid phytase may comprise a combination of partial amino acid sequences deriving from at least two ascomycete phytases, at least two basidiomycete phytases or from at least one ascomycete and at least one basidiomycete phytase. These ascomycete and basidiomycete phytases from which a partial amino acid sequence derives may, e.g., be any of those specific phytases referred to herein.

the present context, a hybrid, shuffled, mutagenised, site-directed mutagenised or otherwise genetically engineered phytase derived from ascomycete phytases only is also an ascomycete phytase; and a hybrid, shuffled, random 25 mutagenised, site-directed mutagenised or otherwise genetically engineered phytase derived from model basidiomycete phytases only is also a basidiomycete phytase. Any hybrid derived from at least one ascomycete phytase well as as aţ least one basidiomycete phytase is called a mixed ascomycete/basidiomycete 30 phytase and such phytase is also a model phytase in the present context.

10

Analogously, a hybrid, shuffled, random mutagenised, sitedirected mutagenised or otherwise genetically engineered phytase
derived from one or more Aspergillus phytases is also an
Aspergillus derived phytase; and a hybrid, shuffled, random
mutagenised, site-directed mutagenised or otherwise genetically
engineered phytase derived from any other taxonomic sub-grouping
mentioned herein is also to be designated a phytase derived from
this taxonomic sub-grouping.

Still further, in the present context, "derived from" is intended to indicate a phytase produced or producible by a strain of the organism in question, but also a phytase encoded by a DNA sequence isolated from such strain and produced in a host organism transformed with said DNA sequence. Finally, the term is intended to indicate a phytase which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the phytase in question.

Preferably the model phytase is a phytase which can be aligned as described below to either of the thirteen phytases of Fig. 1 (which are particularly preferred model phytases).

Preferred wild-type model phytases (i.e. neither recombinant, or shuffled or otherwise genetically engineered phytases) have a degree of similarity or homology, preferably identity, to amino acid sequence no. 38-403 (Peniophora numbers) of either of these thirteen phytases of at least 40%, more preferably at least 50%, still more preferably at least 60%, in particular at least 70%, especially at least 80%, and in a most preferred embodiment a degree of similarity of at least 90%.

Preferred recombinant or shuffled or otherwise genetically engineered model phytases have a degree of similarity or homology, preferably identity, to partial sequence no. 38-49, 63-77, 274-291, 281-300 and 389-403 (Peniophora numbers) of

11

either of these thirteen phytases of at least 60%, more preferably at least 70%, still more preferably at least 80%, in particular at least 90%.

In a preferred embodiment the degree of similarity is based on a comparison with the complete amino acid sequence of either of the thirteen phytases.

The degree of similarity or homology, alternatively identity, can be determined using any alignment programme known in the art. A preferred alignment programme is GAP provided in the GCG version 8 program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (see also Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-453). Using GAP with the following settings for polypeptide sequence comparison: GAP weight of 3.000 and GAP lengthweight of 0.100.

Also preferred is a wild-type model phytase which comprises an amino acid sequence encoded by a DNA sequence which hybridizes to a DNA sequence encoding amino acid sequence 38-403 (Peniophora numbers) of any of the DNA sequences encoding the thirteen specific phytase sequences of Fig. 1.

A further preferred model phytase is a genetically engineered phytase, which comprises an amino acid sequence encoded by a DNA sequence which hybridizes to a DNA sequence 25 encoding amino acid sequence 38-49, and to a DNA sequence encoding amino acid sequence 63-77, and to a DNA sequence encoding amino acid sequence 274-291, and to a DNA sequence encoding amino acid sequence 281-300, and to a DNA sequence encoding amino acid sequence 281-300, and to a DNA sequence encoding amino acid sequence 389-403 (Peniophora numbers) of any of the DNA sequences encoding the thirteen specific phytase sequences of Fig. 1.

12

In a preferred embodiment the hybridization is to the complete phytase encoding part of any of the thirteen phytases.

Suitable experimental conditions for determining whether a given DNA or RNA sequence "hybridizes" to a specified nucleotide or oligonucleotide probe involves presoaking of the filter containing the DNA fragments or RNA to examine for hybridization in 5 x SSC (Sodium chloride/Sodium citrate), (J. Sambrook, E.F. Fritsch, and T. Maniatis, 1989, Molecular Cloning, A Laboratory Manual, 2d edition, Cold Spring Harbor, New York) for 10 min, and prehybridization of the filter in a solution of 5 x SSC, 5 x Denhardt's solution (Sambrook et al. 1989), 0.5 % SDS and 100 µg/ml of denatured sonicated salmon sperm DNA (Sambrook et al. 1989), followed by hybridization in the same solution containing a concentration of 10 ng/ml of a random-primed (Feinberg, A. P. 15 and Vogelstein, B. (1983) Anal. Biochem. 132:6-13), 32P-dCTP-labeled (specific activity > 1 x 109 cpm/µg) probe for 12 hours at approximately 45°C.

The filter is then washed twice for 30 minutes in 2 x SSC, 0.5 % SDS at at least 55°C (low stringency), at at least 60°C (medium stringency), at at least 65°C (medium/high stringency), at at least 70°C (high stringency), or at at least 75°C (very high stringency).

Molecules to which the oligonucleotide probe hybridizes under these conditions are detected using an x-ray film.

It should be noted that a certain specific phytase variant need not actually have been prepared from a specific model phytase, for this model phytase to qualify as a "model phytase" in the present context. It is sufficient that the variant exhibits at least one of the herein indicated amendments when it is afterwards compared with the model phytase.

13

The alignment of Fig. 1 is made using the program PileUp (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711), with a GapWeight of 3.000 and a 5 GapLengthWeight of 0.100. When aligning a new model phytase or a new phytase variant all thirteen sequences can be included together with the new phytase (variant) in a multiple alignment, or, alternatively, at least one of the thirteen sequences of Fig. 1 is included together with the new phytase (variant) in an alignment.

A preferred procedure for aligning according to Fig. 1 a new model phytase (or a phytase variant) is as follows: The new model phytase is aligned with that specific sequence of the thirteen sequences of Fig. 1 to which the new model phytase has 15 the highest degree of homology. For calculating the degree of homology, and for making the "alignment according to Fig. 1" of the two sequences, the program GAP referred to below is preferably used. Having aligned the two sequences, the new model phytase (or phytase variant) is added (pasted) to the alignment 20 at Fig. 1 using the result of the first alignment (placing identical and homologous amino acid residues above each other as prescribed by the alignment), following which corresponding positions are now easily identifiable.

Example 7 shows an example of how to add a new model 25 phytase to the alignment of Fig. 1 and deduce corresponding phytase variants thereof.

Other model phytases can be aligned and variants deduced in analogy with Example 7. This is so in particular for the following model phytases: The phytase of Aspergillus niger var.

30 awamori (US patent no. 5,830,733); the Bacillus phytase of WO 98/06858; the soy bean phytase of WO 98/20139; the maize

PCT/DK99/00153

WO 99/49022

14

phytase of WO 98/05785; the Aspergillus phytase of WO 97/38096; the phytases of Monascus anka of WO 98/13480; the phytase from Schwanniomyces occidentalis of EP 0699762 etc.

When comparing a model phytase and a proposed phytase 5 variant using the alignment as described herein, corresponding amino acid positions can be identified, viz. a model position of the model phytase and a variant position of the variant - the corresponding model position and variant position are simply placed one above the other in the alignment. An amendment is 10 said to have occurred in a given position if the model amino acid of the model position and the variant amino acid of the variant position are different. Preferred amendments of these positions manifest themselves as amino acid substitutions, deletions or additions.

Amended in at least one position means amended in one or 15 more positions, i.e. in one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve etc. up to all N positions listed. This definition includes any possible sub-combinations thereof, e.g. any set of two substitutions, any set of three, 20 any set of four, etc. - to any set of (N-1) positions.

In the present context all sequences, whatever the model phytase, and including the thirteen sequences of Fig. 1, are numbered using the numbering corresponding to the phytase P lycii. These "Peniophora numbers" are indicated at Fig. 1, 25 together with the "alignment numbers." The numbering of P lycii starts at M1 and ends at E439.

As explained above, the alignment reveals which positions in various phytase sequences other than P lycii are equivalent or corresponding to the given P. lycii position.

A substitution of amino acids is indicated herein as for 30 instance "3S," which indicates, that at position 3 amino acid S

WO 99/49022

15

PCT/DK99/00153

should be substituted for the "original" or model position 3 amino acid, whichever it is. Thus, the substitution should result in an S in the corresponding variant position. Considering now the alignment at Fig. 1, a substitution like 5 e.g. "3S" is to be interpreted as follows, for the respective phytases shown (the amino acid first indicated is the "original" or model amino acid in "Peniophora position" 3):

P_involtus_A1: F3S (number 3 F substituted by S)

P_involtus_A2: L3S

T_pubescens: M1S

A_pediades: M1S

P_lycii: redundant (already an S)

A_fumigatus: T5S

consphyA: V5S

15 A_nidulans: T5S

A_ficuum_NRRL3135: A5S

A_terreus: A5S

T_thermo: L5S

T_lanuginosa: V11S

M_thermophila: G5S

However, in what follows the above specific substitutions will be designated as follows (always using the Peniophora numbering):

P_involtus A1: F3S

P_involtus A2: L3S

T_pubescens: M3S

A pediades: M3S

P_lycii: redundant (already an S)

A_fumigatus: T3S

consphyA: V3S

16

A_nidulans: T3S

A_ficuum_NRRL3135: A3S

A terreus: A3S

T_thermo: L3S

5 T lanuginosa: V3S

M_thermophila: G3S

Still further, denotations like e.g. "3S,F,G" means that the amino acid in position 3 (Peniophora numbers) of the model 10 phytase in question is substituted with either of S, F or G, i.e. e.g. the designation "3S,F,G" is considered fully equivalent to the designation "3S, 3F, 3G".

A denotation like ()3S means that amino acid S is added to the sequence in question (at a gap in the actual sequence), in a position corresponding to Peniophora number 3 - and vice versa for deletions (S3()).

In case of regions in which the Peniophora phytase sequence has larger deletions than some of the other phytases in Fig. 1, for instance in the region between position 201 and 202 (Peniophora numbers), intermediate positions (amino acid residues in other sequences) are numbered by adding a,b,c,d, etc, in lower-case letters, to the last Peniophora position number, e.g. for the phytase M_thermophila: E201; G201a; P201b; Y201c; S201d; T201e; I201f; G202; D203 etc.

In one of the priority applications of the present application there are two minor position numbering errors: According to the above definitions, the positions referred to in first priority application as 204 and 205 (Peniophora Prs) are wrongly designated; they should have been numbered and 204, respectively. Therefore, 204 has been substituted and 205 by 204 throughout the present application.

17

A preferred phytase variant of the invention comprises an amino acid sequence which comprises, preferably contains, one or more of the following amino acid substitutions:

24C; 27P; 33C; 31Y; 39H,S,Q; 40L,N; 42S,G; 5 43A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y; 44N; 45D,S; 47Y, F; 49P; 51E, A, R; 56P; 58D, K, A; 59G; 61R; 62V, I; 69Q; 75W, F; 78D, S; 79G; 80K,A; 81A,G,Q,E; 82T; 83A,I,K,R,Q; 84I,Y,Q,V; 88I; 90R,A; 102Y; 115N; 116S; 118V,L; 119E; 120L; 122A; 123N,Q,T; 125M,S; 126H,S,V; 127Q,E,N; 128A,S,T; 132F,I,L; 143N; 148V,I; 151A,S; 10 152G; 153D,Y; 154D,Q,S,G; 157V; 158D,A; 159T; 160A,S; 161T,N; 162N; 163W; 170fH; 170gA; 171N; 172P; 173Q,S; 184Q,S,P; 185S; 186A, E, P; 187A; 187aS; 190A, P; 193S; 194S, T; 195T, V, L; 198A, N, V; 200G, V; 201D, E; a deletion of at least one of 201a, 201b, 201c, 201d, 201e, 201f, preferably all; 201eT; 202S,A; 203R,K,S; 15 203aV,T; 204Q,E,S,A,V; 205E; 211L,V; 215A,P; 220L,N; 223H,D; 228N; 232T; 233E; 235Y,L,T; 236Y,N; 237F; 238L,M; 242P,S; 244D; 251eE,Q; 253P; 256D; 260A,H; 246V; 264R,I; 265A,Q; 267D; 270Y, A, L, G; 271D, N; 273D, K; 275F, Y; 278T, H; 280A, P; 283P; 287A,T; 288L,I,F; 292F,Y; 293A,V; 302R,H; 304P,A; 332F; 336S; 20 337T,G,Q,S; 338I; 339V,I; 340P,A; 343A,S,F,I,L; 348Y; 349P; 352K; 360R; 362P; 364W,F; 365V,L,A,S; 366D,S,V; 367A,K; 368K; 369I,L; 370V; 373A,S; 374S,A; 375H; 376M; 383kQ,E; 387P; 393V; 396R; 404A,G; 409R; 411K,T; 412R; 417E,R; 421F,Y; 431E.

In a preferred embodiment this is with the proviso that
the model phytase does not already comprise the above suggested amino acid substitution or addition or deletion at the position indicated. Or, with the proviso that, for each position, the model amino acid is not already the variant amino acid hereby proposed. But these provisos can be said to be in fact already inherent in the above wording, because of the expression "amended."

18

The various preferred phytase variants of claims 16-34 comprises, preferably contains or have, amino acid sequences which comprise or contain one or more of the amino acid substitutions, additions, or deletions listed in the respective 5 claims.

In a preferred embodiment the various phytase variants comprise 1, 2, 3, 4, 5, 6, 7, 8, 9 or even 10 of these substitutions; or a number of substitutions of 10-15, 15-20, 20-30 or even 30-50; eventually up to 60, 70, 80 or 90 substitutions.

In another preferred embodiment, the amino acid sequence of the various phytase variants comprise one or more substitutions of the substitution sub-groupings listed hereinbelow; or combinations of substitutions classified in two or more sub-groupings.

Generally, instead of "comprise," "contain" or "have," the amino acid sequences of preferred variants "consist essentially of" or "consist of" the specific model phytases of fig. 1, as modified by one or more of the substitutions described herein.

In the present context a basidiomycete means a microorganism of the phylum Basidiomycota. This phylum of Basidiomycota is comprised in the fungal kingdom together with e.g. the phylum Ascomycota ("ascomycetes").

Taxonomical questions can be clarified by consulting the 25 references listed below or by consulting a fungal taxonomy database (NIH Data Base (Entrez)) which is available via the Internet on World Wide Web at the following address: http://www3.ncbi.nlm.nih.gov/Taxonomy/tax.html.

For a definition of basidiomycetes, reference is made to 30 either Jülich, 1981, Higher Taxa of Basidiomycetes; Ainsworth & Bisby's (eds.) Dictionary of the Fungi, 1995, Hawksworth, D.L.,

19

P.M. Kirk, B.C. Sutton & D.N. Pegler; or Hansen & Knudsen (Eds.), Nordic Macromycetes, vol. 2 (1992) and 3 (1997). A preferred reference is Hansen & Knudsen.

For a definition of ascomycetes, reference is made to 5 either of Ainsworth & Brisby cited above or Systema Ascomycetum by Eriksson, O.E. & D. L. Hawksworth, Vol. 16, 1998. A preferred reference is Eriksson et al.

Generally, a microorganism which is classified as a basidiomycete/ascomycete in either of the references listed above, including the database, is a basidiomycete/ascomycete in the present context.

Some Aspergillus strains are difficult to classify because they are anamorphous, and therefore they might be classified in Fungi Imperfecti. However, once the teleomorphous counterpart is found, it is re-classified taxonomically. For instance, the teleomorph of A. nidulans is Emericella nidulans (of the family Trichocomaceae, the order Eurotiales, the class Plectomycetes of the phylum Ascomycota). These subgroupings of Ascomycota are preferred, together with the family Lasiosphaeriaceae, the order 20 Sordariales, the class Pyrenomycetes of the phylum Ascomycota.

The wording "ascomycetes" and analogues as used herein includes any strains of Aspergillus, Thermomyces, Myceliophthora, Talaromyces which are anamorphous and thus would be classified in Fungi Imperfecti.

Preferred basidiomycete phytases are those listed in WO 98/28409, in the very beginning of the section headed "Detailed description of the invention".

DNA sequences encoding the thirteen specifically listed model phytases and other model phytases can be prepared according to the teachings of each of the documents listed under the brief description of the drawings.

20

A DNA sequence encoding a model phytase may be isolated from any cell or microorganism producing the phytase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using 5 chromosomal DNA or messenger RNA from the organism that produces the phytase. Then, if the amino acid sequence of the phytase is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify phytase-encoding clones from a genomic library prepared from the organism in question.

10 Alternatively, a labelled oligonucleotide probe containing sequences homologous to a known phytase gene could be used as a probe to identify phytase-encoding clones, using hybridization and washing conditions of lower stringency.

Yet another method for identifying phytaseencoding clones
15 would involve inserting fragments of genomic DNA into an
expression vector, such as a plasmid, transforming phytasenegative bacteria with the resulting genomic DNA library, and
then plating the transformed bacteria onto agar containing a
substrate for phytase thereby allowing clones expressing the
20 phytase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method described by S.L. Beaucage and M.H. Caruthers (1981) or the method described by Matthes et al. (1984). In the phosphoroamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments

21

corresponding to various parts of the entire DNA sequence), in accordance with standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers, for instance as described in US 4,683,202 or R.K. Saiki et al. (1988).

DNA encoding the phytase variants of the present invention can be prepared by methods known in the art, such as Sitedirected Mutagenesis. Once a DNA sequence encoding a model phytase of interest has been isolated, and desirable sites for 10 mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis. specific method, a single-stranded gap of DNA, bridging the 15 phytase-encoding sequence, is created in a vector carrying the phytase-encoding gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in with DNA polymerase I (Klenow fragment) and the construct is ligated 20 using T4 ligase. A specific example of this method is described in Morinaga et al. (1984). US 4,760,025 discloses the introduction of oligonucleotides encoding multiple mutations by performing minor alterations of the cassette. However, an even greater variety of mutations can be introduced at any one time 25 by the Morinaga method because a multitude of oligonucleotides, of various lengths, can be introduced.

Another method of introducing mutations into DNA sequences encoding a desired model phytase is described in Nelson and Long (1989). It involves a 3-step generation of a PCR fragment containing the desired mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR

22

reactions. From the PCR-generated fragment, a DNA fragment carrying the mutation may be isolated by cleavage with restriction endonucleases and reinserted into an expression plasmid.

Yet another method of mutating DNA sequences encoding a model phytase is Random Mutagenesis. Random mutagenesis is suitably performed either as localised or region-specific random mutagenesis in at least three parts of the gene translating to the amino acid sequence shown in question, or within the whole gene.

The random mutagenesis of a DNA sequence encoding a model phytase may be conveniently performed by use of any method known in the art.

In relation to the above, further aspects of the present invention relates to a method for generating a variant of a model phytase, wherein the variant preferably exhibits amended characteristics as described below, the method comprising:

- (a) subjecting a DNA sequence encoding the model phytase to Site-directed Mutagenesis, or the Nelson and Long PCR mutagenesis method or to Random Mutagenesis,
 - (b) expressing the mutated DNA sequence obtained in step(a) in a host cell, and
- (c) screening for host cells expressing a phytase variant which has an altered property relative to the model 25 phytase.

When using Random Mutagenesis, step (a) of the above method of the invention is preferably performed using doped primers.

For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA

23

sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents. The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, 5 scrambling, deletions, and/or insertions.

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues. When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the phytase enzyme by any published technique, using e.g. PCR, LCR or any DNA polymerase and ligase as deemed appropriate.

Preferably, the doping is carried out using "constant random doping", in which the percentage of wild-type and mutation in each position is predefined. Furthermore, the doping may be directed toward a preference for the introduction of certain nucleotides, and thereby a preference for the introduction of one or more specific amino acid residues. The

24

doping may be made, e.g., so as to allow for the introduction of 90% wild type and 10% mutations in each position. An additional consideration in the choice of a doping scheme is based on genetic as well as protein-structural constraints. The doping scheme may be made by using the DOPE program which, inter alia, ensures that introduction of stop codons is avoided.

When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a model phytase is subjected to PCR under conditions that increase the mis10 incorporation of nucleotides (Deshler 1992; Leung et al., Technique, Vol.1, 1989, pp. 11-15).

A mutator strain of E. coli (Fowler et al., Molec. Gen. Genet., 133, 1974, pp. 179-191), S. cereviseae or any other microbial organism may be used for the random mutagenesis of the DNA encoding the model phytase by, e.g., transforming a plasmid containing the parent glycosylase into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may be subsequently transformed into the expression organism.

The DNA sequence to be mutagenized may be conveniently present in a genomic or cDNA library prepared from an organism expressing the model phytase. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenising agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is pre-ferably a cDNA or a genomic DNA sequence.

25

In some cases it may be convenient to amplify the mutated DNA sequence prior to performing the expression step b) or the screening step c). Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.

Subsequent to the incubation with or exposure to the mutagenising agent, the mutated DNA is expressed by culturing a 10 suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the 15 mutagenesis treatment. Examples of suitable host cells are the following: gram positive bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, 20 Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, Streptomyces lividans or Streptomyces murinus; and gramnegative bacteria such as E. coli.

The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.

The random mutagenesis may be advantageously localised to a part of the model phytase in question using Localized random mutagenesis. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties.

WO 99/49022

Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.

26

PCT/DK99/00153

The localized, or region-specific, random mutagenesis is conveniently performed by use of PCR generated mutagenesis techniques as described above or any other suitable technique known in the art. Alternatively, the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g., by insertion into a suitable vector, and said part may be subsequently subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

For region-specific random mutagenesis with a view to amending e.g. the specific activity of a model phytase, codon positions corresponding to the following amino acid residues from the amino acid sequences set forth in Fig. 1 may appropriately be targeted:

Residues: 41-47, 68-80, 83-84, 115-118, 120-126, 128, 149-163, 184-185, 191-193, 198-201e, 202-203, 205, 235-236, 238-239, 242-243, 270-279, 285, 288, 332-343, 364-367, 369-375, 394.

Regions: 41-47, 68-80, 120-128, 149-163, 270-279, 332-343, 364-375.

The random mutagenesis may be carried out by the following steps:

- Select regions of interest for modification in the
 parent enzyme
 - 2. Decide on mutation sites and non-mutated sites in the selected region
- 3. Decide on which kind of mutations should be carried out, e.g. with respect to the desired stability and/or 30 performance of the variant to be constructed
 - 4. Select structurally reasonable mutations

27

- 5. Adjust the residues selected by step 3 with regard to step 4.
- 6. Analyse by use of a suitable dope algorithm the nucleotide distribution.
- 7. If necessary, adjust the wanted residues to genetic code realism, e.g. taking into account constraints resulting from the genetic code, e.g. in order to avoid introduction of stop codons; the skilled person will be aware that some codon combinations cannot be used in practice and will need to be adapted
 - 8. Make primers
 - 9. Perform random mutagenesis by use of the primers
 - 10. Select resulting phytase variants by screening for the desired improved properties.
- Suitable dope algorithms for use in step 6 are well known in the art. One such algorithm is described by Tomandl, D. et al., 1997, Journal of Computer-Aided Molecular Design 11:29-38. Another algorithm is DOPE (Jensen, LJ, Andersen, KV, Svendsen, A, and Kretzschmar, T (1998) Nucleic Acids Research 26:697-702).
- A DNA sequence encoding a model phytase or a phytase variant of the invention can be expressed using an expression vector, a recombinant expression vector, which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

The recombinant expression vector may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, e.g. a plasmid, a bacteriophage or an extra-chromosomal element. Alternatively, the vector may

28

be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. An example of a suitable promoter for directing the transcription of the DNA sequence encoding a phytase variant of the invention, especially in a bacterial host, is the promoter of the lac operon of E.coli. For transcription in a fungal host, examples of useful promoters are those derived from the gene encoding A. oryzae TAKA amylase.

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the phytase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.

The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.

The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, such as the dal genes from B. subtilis or B. licheniformis, or one which confers antibiotic resistance such as ampicillin resistance. Furthermore, the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and sC, or the

29

selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.

The procedures used to ligate the DNA construct of the invention encoding a phytase variant, the promoter, terminator of and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al. (1989)).

The cell of the invention, either comprising a DNA 10 construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of a phytase variant of the invention. The cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in 15 one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous 20 heterologous recombination. Alternatively, the cell be transformed with an expression vector as described above in connection with the different types of host cells.

An isolated DNA molecule or, alternatively, a "cloned DNA sequence" "a DNA construct," "a DNA segment" or "an isolated DNA sequence" refers to a DNA molecule or sequence which can be cloned in accordance with standard cloning procedures used in genetic engineering to relocate the DNA segment from its natural location to a different site where it will be replicated. The term refers generally to a nucleic acid sequence which is essentially free of other nucleic acid sequences, e.g., at least about 20% pure, preferably at least about 40% pure, more

WO 99/49022

30

PCT/DK99/00153

preferably about 60% pure, even more preferably about 80% pure, most preferably about 90% pure, and even most preferably about 95% pure, as determined by agarose gel electrophoresis. The cloning procedures may involve excision and isolation of a 5 desired nucleic acid fragment comprising the nucleic acid sequence encoding the polypeptide, insertion of the fragment into a vector molecule, and incorporation of the recombinant vector into a host cell where multiple copies or clones of the nucleic acid sequence will be replicated. The nucleic acid sequence may be of genomic, cDNA, RNA, semisynthetic, synthetic origin, or any combinations thereof.

The term "vector" is intended to include such terms/objects as "nucleic acid constructs," "DNA constructs," expression vectors" or "recombinant vectors."

The nucleic acid construct comprises a nucleic acid sequence of the present invention operably linked to one or more control sequences capable of directing the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.

"Nucleic acid construct" is defined herein as a nucleic acid molecule, either single or double-stranded, which is isolated from a naturally occurring gene or which has been modified to contain segments of nucleic acid which are combined and juxtaposed in a manner which would not otherwise exist in nature.

The term nucleic acid construct may be synonymous with the term expression cassette when the nucleic acid construct contains all the control sequences required for expression of a coding sequence of the present invention.

The term "coding sequence" as defined herein primarily comprises a sequence which is transcribed into mRNA and

31

translated into a polypeptide of the present invention when placed under the control of the above mentioned control sequences. The boundaries of the coding sequence are generally determined by a translation start codon ATG at the 5'-terminus and a translation stop codon at the 3'-terminus. A coding sequence can include, but is not limited to, DNA, cDNA, and recombinant nucleic acid sequences.

The term "control sequences" is defined herein to include components all which are necessary or advantageous 10 expression of the coding sequence of the nucleic acid sequence. Each control sequence may be native or foreign to the nucleic acid sequence encoding the polypeptide. Such control sequences include, but are not limited to, a leader, a polyadenylation sequence, a propeptide sequence, a promoter, a signal sequence, 15 and a transcription terminator. At a minimum, the control include promoter, and transcriptional sequences a and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences 20 with the coding region of the nucleic acid sequence encoding a polypeptide.

A "host cell" or "recombinant host cell" encompasses any progeny of a parent cell which is not identical to the parent cell due to mutations that occur during replication.

The cell is preferably transformed with a vector comprising a nucleic acid sequence of the invention followed by integration of the vector into the host chromosome.

"Transformation" means introducing a vector comprising a nucleic acid sequence of the present invention into a host cell so that the vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector. Integration is

32

generally considered to be an advantage as the nucleic acid sequence is more likely to be stably maintained in the cell. Integration of the vector into the host chromosome may occur by homologous or non-homologous recombination as described above.

The host cell may be a unicellular microorganism, e.g., a prokaryote, or a non-unicellular microorganism, e.g., a eukaryote. Examples of a eukaryote cell is a mammalian cell, an insect cell, a plant cell or a fungal cell. Useful mammalian cells include Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, COS cells, or any number of other immortalized cell lines available, e.g., from the American Type Culture Collection.

In a preferred embodiment, the host cell is a fungal cell.

Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se.

The present invention also relates to a transgenic plant, plant part, such as a plant seed, or plant cell, which has been transformed with a DNA sequence encoding the phytase of the invention so as to express or produce this enzyme. Also compositions and uses of such plant or plant part are within the scope of the invention, especially its use as feed and food or additives therefore, along the lines of the present use and food/feed claims.

The transgenic plant can be dicotyledonous or monocotyledonous, for short a dicot or a monocot. Of primary interest are such plants which are potential food or feed components and which comprise phytic acid. A normal phytic acid level of feed components is 0.1-100 g/kg, or more usually 0.5-50 g/kg, most usually 0.5-20 g/kg. Examples of monocot plants are grasses, such as meadow grass (blue grass, Poa), forage grass

33

such as festuca, lolium, temperate grass, such as Agrostis, and cereals, e.g. wheat, oats, rye, barley, rice, sorghum and maize (corn).

Examples of dicot plants are legumes, such as lupins, pea, 5 bean and soybean, and cruciferous (family Brassicaceae), such as cauliflower, oil seed rape and the closely related model organism Arabidopsis thaliana.

Such transgenic plant etc. is capable of degrading its own phytic acid, and accordingly the need for adding such enzymes to food or feed comprising such plants is alleviated. Preferably, the plant or plant part, e.g. the seeds, are ground or milled, and possibly also soaked before being added to the food or feed or before the use, e.g. intake, thereof, with a view to adapting the speed of the enzymatic degradation to the actual use.

If desired, the plant produced enzyme can also be recovered from the plant. In certain cases the recovery from the plant is to be preferred with a view to securing a heat stable formulation in a potential subsequent pelleting process.

Examples of plant parts are stem, callus, leaves, root, 20 fruits, seeds, tubers etc. But also any plant tissue is included in this definition.

Any plant cell, whatever the tissue origin, is included in the definition of plant cells above.

Also included within the scope of the invention are the 25 progeny of such plants, plant parts and plant cells.

The skilled man will know how to construct a DNA expression construct for insertion into the plant in question, paying regard i.a. to whether the enzyme should be excreted in a tissue specific way. Of relevance for this evaluation is the stability (pH-stability, degradability by endogenous proteases etc.) of the phytase in the expression compartments of the

34

plant. He will also be able to select appropriate regulatory sequences such as promoter and terminator sequences, and signal or transit sequences if required (Tague et al, Plant, Phys., 86, 506, 1988).

The plant, plant part etc. can be transformed with this DNA construct using any known method. An example of such method is the transformation by a viral or bacterial vector such as bacterial species of the genus Agrobacterium genetically engineered to comprise the gene encoding the phytase of the invention. Also methods of directly introducing the phytase DNA into the plant cell or plant tissue are known in the art, e.g. micro injection and electroporation (Gasser et al, Science, 244, 1293; Potrykus, Bio/Techn. 8, 535, 1990; Shimamoto et al, Nature, 338, 274, 1989).

Following the transformation, the transformants are screened using any method known to the skilled man, following which they are regenerated into whole plants.

These plants etc. as well as their progeny then carry the phytase encoding DNA as a part of their genetic equipment.

In general, reference is made to WO 9114782A and WO 9114772A.

Agrobacterium tumefaciens mediated gene transfer is the method of choice for generating transgenic dicots (for review Hooykas & Schilpercort, 1992. Plant Mol. Biol. 19: 15-38), 25 however it can also be used for transforming monocots. Due to host range limitations it is generally not possible to transform monocots with the help of A. tumefaciens. Here, other methods have to be employed. The method of choice for generating transgenic monocots is particle bombardment (microscopic gold or 30 tungsten particles coated with the transforming DNA) of embryonic calli or developing embryos (Christou, 1992. Plant J.

35

2: 275-281; Shimamoto, 1994. Curr. Opin. Biotechnol. 5: 158-162; Vasil et al., 1992. Bio/Technology 10: 667-674).

Also other systems for the delivery of free DNA into these plants, including viral vectors (Joshi & Joshi, 1991. FEBS Lett. 5 281: 1-8), protoplast transformation via polyethylene glycol or electroporation (for review see Potyrkus, 1991. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 205-225), microinjection of DNA into mesophyll protoplasts (Crossway et al., 1986. Mol. Gen. Genet. 202: 79-85), and macroinjection of DNA into young floral tillers of cereal plants (de la Pena et al., 1987. Nature 325: 274-276) are preferred methods.

In general, the cDNA or gene encoding the phytase variant of the invention is placed in an expression cassette (e.g. Pietrzak et al., 1986. Nucleic Acids Res. 14: 5857-5868) 15 consisting of a suitable promoter active in the target plant and (termination of transcription). a suitable terminator cassette (of course including a suitable selection marker, see below) will be transformed into the plant as such in case of monocots via particle bombardment. In case of dicots the 20 expression cassette is placed first into a suitable vector providing the T-DNA borders and a suitable selection marker which in turn are transformed into Agrobacterium tumefaciens. Dicots will be transformed via the Agrobacterium harbouring the expression cassette and selection marker flanked by T-DNA 25 following standard protocols (e.g. Akama et al., 1992. Plant Cell Reports 12: 7-11). The transfer of T-DNA from Agrobacterium to the Plant cell has been recently reviewed (Zupan & Zambryski, 1995. Plant Physiol. 107: 1041-1047). Vectors for plant transformation via Agrobacterium are commercially available or 30 can be obtained from many labs that construct such vectors (e.g. Deblaere et al., 1985. Nucleic Acids Res. 13: 4777-4788; for

36

review see Klee et al., 1987. Annu. Rev. Plant Physiol. 38: 467-486).

Available plant promoters: Depending on the process under manipulation, organ- and/or cell-specific expression as well as 5 appropriate developmental and environmental control may be required. For instance, it is desirable to express a phytase cDNA in maize endosperm etc. The most commonly used promoter has been the constitutive 35S-CaMV promoter Franck et al., 1980. Cell 21: 285-294). Expression will be more or less 10 throughout the whole plant. This promoter has been used successfully to engineer herbicide- and pathogen-resistant plants (for review see Stitt & Sonnewald, 1995. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 341-368). Organ-specific promoters have been reported for storage sink tissues such as seeds, 15 potato tubers, and fruits (Edwards & Coruzzi, 1990. Annu. Rev. Genet. 24: 275-303), and for metabolic sink tissues such as meristems (Ito et al., 1994. Plant Mol. Biol. 24: 863-878).

The medium used to culture the transformed host cells may be any conventional medium suitable for growing the host cells in question. The expressed phytase may conveniently be secreted into the culture medium and may be recovered therefrom by well-known procedures including separating the cells from the medium by centrifugation or filtration, precipitating proteinaceous com-ponents of the medium by means of a salt such as ammonium sulphate, followed by chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

Preferred host cells are a strain of Fusarium, Hansenula, Trichoderma or Aspergillus, in particular a strain of Fusarium graminearum, Fusarium venenatum, Fusarium cerealis, Fusarium sp. 30 having the identifying characteristic of Fusarium ATCC 20334, as further described in PCT/US/95/07743, Hansenula polymorpha,

37

Trichoderma harzianum or Trichoderma reesei, Aspergillus niger or Aspergillus oryzae.

References for expression in Hansenula polymorpha: Gellissen, G., Piontek, M., Dahlems, U., Jenzelewski, V., 5 Gavagan, J.E., DiCosimo, R., Anton, D.I. & Janowicz, Z.A. (1996) Recombinant Hansenula polymorpha as a biocatalyst: coexpression of the spinach glycolate oxidase (GO) and the S. cerevisiae catalase T (CTT1) gene. Appl. Microbiol. Biotechnol. 46, 46-54.

Some more specific uses of the phytase variants according to the invention appear from PCT/DK97/00568, the last pages of the detailed description of the invention section.

In a preferred embodiment, the phytase variant of the invention is essentially free of other non-phytase polypeptides, e.g., at least about 20% pure, preferably at least about 40% pure, more preferably about 60% pure, even more preferably about 80% pure, most preferably about 90% pure, and even most preferably about 95% pure, as determined by SDS-PAGE. Sometimes such polypeptide is alternatively referred to as a "purified" and/or "isolated" phytase.

A phytase polypeptide which comprises a phytase variant of the invention includes fused polypeptides or cleavable fusion polypeptides in which another polypeptide is fused at the N-terminus or the C-terminus of the polypeptide or fragment thereof. A fused polypeptide is produced by fusing a nucleic acid sequence (or a portion thereof) encoding another polypeptide to a nucleic acid sequence (or a portion thereof) encoding a phytase variant of the present invention. Techniques for producing fusion polypeptides are known in the art, and include, ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fused

38

polypeptide is under control of the same promoter(s) and terminator.

A "feed" and a "food," respectively, means any natural or artificial diet, meal or the like or components of such meals intended or suitable for being eaten, taken in, digested, by an animal and a human being, respectively.

The phytase variant of the invention may exert its effect in vitro or in vivo, i.e. before intake or in the stomach of the individual, respectively. Also a combined action is possible.

A phytase composition according to the invention always comprises at least one phytase of the invention.

Generally, phytase compositions are liquid or dry.

Liquid compositions need not contain anything more than the phytase enzyme, preferably in a highly purified form.

15 Usually, however, a stabilizer such as glycerol, sorbitol or mono propylen glycol is also added. The liquid composition may also comprise other additives, such as salts, sugars, preservatives, pH-adjusting agents, proteins, phytate (a phytase substrate). Typical liquid compositions are aqueous or oil-based slurries. The liquid compositions can be added to a food or feed after an optional pelleting thereof.

Dry compositions may be spray-dried compositions, in which case the composition need not contain anything more than the enzyme in a dry form. Usually, however, dry compositions are so25 called granulates which may readily be mixed with e.g. food or feed components, or more preferably, form a component of a premix. The particle size of the enzyme granulates preferably is compatible with that of the other components of the mixture. This provides a safe and convenient means of incorporating enzymes into e.g. animal feed.

39

Agglomeration granulates are prepared using agglomeration technique in a high shear mixer (e.g. Lödige) during which a filler material and the enzyme are co-agglomerated to form granules. Absorption granulates are prepared by having cores of a carrier material to absorb/be coated by the enzyme.

Typical filler materials are salts such as disodium sulphate. Other fillers are kaolin, talc, magnesium aluminium silicate and cellulose fibres. Optionally, binders such as dextrins are also included in agglomeration granulates.

Typical carrier materials are starch, e.g. in the form of cassava, corn, potato, rice and wheat. Salts may also be used.

Optionally, the granulates are coated with a coating mixture. Such mixture comprises coating agents, preferably hydrophobic coating agents, such as hydrogenated palm oil and beef tallow, and if desired other additives, such as calcium carbonate or kaolin.

Additionally, phytase compositions may contain other substituents such as colouring agents, aroma compounds, stabilizers, vitamins, minerals, other feed or food enhancing enzymes, i.e. enzymes that enhances the nutritional properties of feed/food, etc. This is so in particular for the so-called pre-mixes.

A "food or feed additive" is an essentially pure compound or a multi component composition intended for or suitable for 25 being added to food or feed. In particular it is a substance which by its intended use is becoming a component of a food or feed product or affects any characteristics of a food or feed product. It is composed as indicated for phytase compositions above. A typical additive usually comprises one or more 30 compounds such as vitamins, minerals or feed enhancing enzymes and suitable carriers and/or excipients.

In a preferred embodiment, the phytase compositions of the invention additionally comprises an effective amount of one or more feed enhancing enzymes, in particular feed enhancing enzymes selected from the group consisting of α -galactosidases, 5 β -galactosidases, in particular lactases, other phytases, β glucanases, in particular endo- β -1,4-glucanases and endo- β -1,3(4)-glucanases, cellulases, xylosidases, galactanases, in particular arabinogalactan endo-1, $4-\beta$ -galactosidases and arabinogalactan endo-1,3- β -galactosidases, endoglucanases, 10 particular endo-1,2- β -glucanase, endo-1,3- α -glucanase, and endo- $1,3-\beta$ -glucanase, pectin degrading enzymes, in particular pectinases, pectinesterases, pectin lyases, polygalacturonases, arabinanases, rhamnogalacturonases, rhamnogalacturonan esterases, rhamnogalacturonan- α -rhamnosidase, pectate lyases, 15 and α -galacturonisidases, mannanases, β -mannosidases, mannan acetyl esterases, xylan acetyl esterases, proteases, xylanases, lipolytic arabinoxylanases and lipases, enzymes such as phospholipases and cutinases.

The animal feed additive of the invention is supplemented 20 to the mono-gastric animal before or simultaneously with the diet. Preferably, the animal feed additive of the invention is supplemented to the mono-gastric animal simultaneously with the diet. In a more preferred embodiment, the animal feed additive is added to the diet in the form of a granulate or a stabilized 25 liquid.

An effective amount of phytase in food or feed is from about 10-20.000; preferably from about 10 to 15.000, more preferably from about 10 to 10.000, in particular from about 100 to 5.000, especially from about 100 to about 2.000 FYT/kg feed 30 or food.

41

Examples of other specific uses of the phytase of the invention is in soy processing and in the manufacture of inositol or derivatives thereof.

The invention also relates to a method for reducing 5 phytate levels in animal manure, wherein the animal is fed a feed comprising an effective amount of the phytase of the invention.

Also comprised in this invention is the use of a phytase of the invention during the preparation of food or feed preparations or additives, i.e. the phytase exerts its phytase activity during the manufacture only and is not active in the final food or feed product. This aspect is relevant for instance in dough making and baking.

The invention relates to a phytase variant which, when aligned according to Fig. 1, is amended as compared to a model phytase in at least one of the following positions, using the position numbering corresponding to P_lycii:

24; 27; 31; 33; 39; 40; 41; 42; 43; 44; 45; 46; 47; 49; 51; 56; 58; 59; 61; 62; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79;

20 80; 81; 82; 83; 84; 88; 90; 102; 115; 116; 117; 118; 119; 120; 121; 122; 123; 124; 125; 126; 127; 128; 132; 143; 148; 149; 150;

151; 152; 153; 154; 155; 156; 157; 158; 159; 160; 161; 162; 163;

170f; 170g; 171; 172; 173; 184; 185; 186; 187; 187a; 190; 191;

192; 193; 194; 195; 198; 199; 200; 201; 201a; 201b; 201c; 201d;

25 201e; 201f; 202; 203; 203a; 204; 205; 211; 215; 220; 223; 228;

232; 233; 234; 235; 236; 237; 238; 239; 242; 243; 244; 246;

251e; 253; 256; 260; 264; 265; 267; 270; 271; 272; 273; 274;

275; 276; 277; 278; 279; 280; 283; 285; 287; 288; 292; 293; 302;

304; 332; 333; 334; 335; 336; 337; 338; 339; 340; 341; 342; 343;

30 348; 349; 352; 360; 362; 364; 365; 366; 367; 368; 369; 370; 371;

42

372; 373; 374; 375; 376; 383k; 387; 393; 394; 396; 404; 409; 411; 412; 413; 417; 421; 431.

From these variants we expect amended characteristics, preferably amended activity characteristics. In fact, for 5 several variants such amended characteristics have already been shown (see the experimental part). Like above, "amended" means compared as the to model phytase. "Amended activity characteristics" means amended in at least one phytase activity related respect, such as (non-exclusive list): pH stability, 10 temperature stability, pH profile, temperature profile, specific activity (in particular in relation to pH and temperature), substrate specificity, substrate cleavage pattern, substrate binding, position specificity, the velocity and level of release of phosphate from corn, reaction rate, phytate degradation 15 rate), end level of released phosphate reached.

Preferred amended activity characteristics are amended specific activity, preferably increased, and preferably increased at a pH of 3, 4, 5, or 6; amended pH or temperature profile; and/or amended, preferably increased, thermostability, 20 e.g. of an increased melting temperature as measured using DSC.

Preferred phytase variants are: Phytase variants which, when aligned according to Fig. 1, are amended as compared to a model phytase in at least one of the following positions, using the position numbering corresponding to P_lycii:

- 25 43; 44; 47; 51; 58; 62; 78; 80; 83; 88; 90; 102; 143; 148; 153; 154; 186; 187a; 195; 198; 201e; 204; 205; 211; 215; 220; 242; 244; 251e; 260; 264; 265; 267; 270; 273; 278; 302; 336; 337; 339; 352; 365; 373; 383k; 404; 417.
- The following variants of A_fumigatus constitute a 30 subgroup: Q43L; Q270L; G273D,K; N336S; A205E; Y278H; Q43L+Q270L;

43

Q43L+Q270L+G273D; Q43L+Q270L+G273D+N336S; G273K+A205E; G273K+A205E+Y278H (see EP 0897010).

Generally, variants of the invention can be deduced or identified as follows: Looking at the alignment according to 5 Fig. 1, comparing two sequences, one of which is a model phytase with improved properties, identifying amino acid differences in relevant positions/areas, and transferring (substituting with) from the model to the other phytase sequence the amino acid in a relevant position.

The invention also relates to a process for preparing a phytase variant which includes the above method, and further includes the deducement and synthesis of the corresponding DNA sequence, the transformation of a host cell, the cultivation of the host cell and the recovery of the phytase variant.

Relevant positions/areas include those mentioned below in relation to important phytase activity characteristics such as specific activity, thermostability, pH activity/stability.

The present invention also relates to phytase variants (varied according to a model phytase as defined herein) which are obtainable, preferably obtained, by the process outlined above and which are expected to exhibit an amended characteristic/property, preferably does exhibit such amended characteristic, e.g. an improved specific activity.

At least the basidiomycete model phytases P_lycii and 25 T_pubescens exhibit a high specific activity (as determined using the method of Example 2 herein).

This is an example of a desired property which can be transferred to other phytases, e.g. the other phytases listed in Fig. 1, in particular to the A_pediades and the ascomycete 30 phytases such as A_fumigatus, A-ficuum, consphyA, by a deducement process such as the one mentioned above.

WO 99/49022

44

PCT/DK99/00153

Thus, amended specific activity, in particular an improved specific activity, in particular at low pH and/or high temperature, is expected from variants, which have been amended in relevant areas, viz. (i) in the amino acid residues which point into the active site cleft; or (ii) in the amino acid residues in the close neighbourhood of these active site residues. Preferably, close neighbourhood means within 10Å from the active site residues.

From the pdb file 1IHP (Brookhaven Database entry of 18.03.98 re 1IHP, Structure of Phosphomonoesterase, D.Kostrewa; or as published in Nature Structural Biology, 4, 1997, p. 185-190), active site regions can be identified, using the program INSIGHTII from Molecular Simulations MSI, San Diego, California, and using the subset command, an "active site shell" can be defined comprising those amino acid residues which lie close to the catalytic residues, defined as H59, D339 and R58 in A. ficuum phytase (corresponding to Peniophora numbers H71, D335 and R70, respectively). An "active site shell(10Å)" comprises those residues which lie within 10Å from the above catalytic residues.

The residues within 10Å from H71 and D335 are the following (using Peniophora numbers): 41-47, 68-77, 115-118, 120-126, 128, 149-163, 185, 191-193, 199, 243, 270-271, 273-275, 277-279, 288, 332-343, 364-367, 369-375, 394 ("the active site shell(10Å)").

Preferably, a "substrate binding shell" can also be defined which comprises those residues which are in close proximity to the substrate binding site and which can therefore be expected to be in contact with the substrate.

This information can be deduced as described above, by docking a sugar analogue to phytin into the active site cleft

45

(the residues making up the surface of the active site). If a sugar without any phosphate groups is docked into the active site cleft, e.g. alpha-D-glucose (chair conformation, structure provided by the INSIGHTII program), using a fixed distance as shown below, the residues pointing towards the active site cleft can be extracted using the subset command and using a distance of 10Å from the substrate analogue. Alternatively, the compound inositol-1,4,5-triphosphate (Brookhaven database file 1djx. Inositol-1,4,5-triphosphate) can be docked into the active site cleft. This compound and glucose, however, are more or less superimposable.

The distances in Ångström (Å) are: From oxygen atom in position 6 of the alpha-D-glucose to

atom ND1 of H59: 5.84

15 atom NH2 of R58: 6.77

atom NH2 of R142: 5.09

atom ND2 of N340: 3.00

atom ND1 of H59: 7.76

atom NH2 of R58: 8.58.

(the Peniophora numbers of the above residues are: H71, R70, R155, N336, H71 and R70, respectively).

In this way, the residues in contact with the substrate are identified as follows (Peniophora numbers): 43-44; 70-80; 83-84; 115; 153; 155-156; 184; 191-192; 198-202; 205; 235; 238; 25 242; 270; 272-273; 275-277; 332-336; 338; 369; 371 ("the substrate binding shell(10Å)").

Variants being amended in one or more of (1) the active site shell or (2) the substrate binding shell, are strongly expected to have an amended specific activity. This leads to the following joint grouping of positions (still Peniophora numbers and 10Å shells): 41-47, 68-80, 83-84, 115-118, 120-126, 128,

46

WO 99/49022 PCT/DK99/00153

149-163, 184-185, 191-193, 198-201e, 202-203, 205, 235-236, 238-239, 242-243, 270-279, 285, 288, 332-343, 364-367, 369-375, 394.

Preferably, the active site shell and the substrate binding shell are defined as described above using the basidiomycete model phytases of Fig. 1, the Peniophora phytase being a preferred model. A deducement of corresponding variants of other model phytases is possible using the alignment of Fig. 1.

In a preferred embodiment, a distance of 5Å is used in the subset command, thus defining active site and substrate binding shells of a more limited size, e.g. an active site shell comprising the residues 43-44, 69-74, 117, 125, 155-156, 159, 274, 332-340, 370-374 (5Å from H71 and D335), "active site shell(5Å)".

Generally the active site shell and substrate binding shell regions form the basis for selecting random mutagenesis regions. Examples of preferred random mutagenesis regions are

regions 69-74, 332-340, 370-374, doping to be added (a 5Å approach); and

regions 57-62, 142-146, 337-343, doping to be added (a 10\AA approach).

It is presently contemplated that any amendment in either of these positions will lead to a phytase of amended characteristics, e.g. of an amended specific activity.

The above expression "any amendment in either of the positions" is considered fully equivalent to listing each position and each substitution, e.g. as follows for the above sub-group 41-47:

41A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y;

30 42A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y;
43A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y;

47

44A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; 45A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; 46A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y; 47A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y.

In a preferred embodiment, amended specific activity is expected from the following variants:

43A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y; 45D,S; 47Y,F; 51E,A; 75W,F; 78S,D; 79G; 80K,A; 83I,Q; 84Q,V; 1165; 118V,L; 119E; 120L; 122A; 123N,T; 125S; 126H,S; 127Q,E; 128A,T; 10 151A,S; 152G; 153D,Y; 154Q,D,G; 157V; 158D,A; 159T; 160A,S; 163W; 184Q,S; 186A,E; 198A,N; 200G,V; 161T, N; 162N; 201D; deletions of one or more of 201a, 201b, 201c, 201d, 201e, 201f preferably all; 202S; 205Q,E; 235Y,L; 238L,M; 242P; 270Y,A,L; 271D; 273D,K; 275F,Y; 278T,H; 332F; 336S; 337T,Q; 339V; 340P,A; 15 343A,S; 364W,F; 365V,L; 366D,V; 367K; 368K; 369I,L; 370V; 373S; 374A; 375H; 376M; 393V.

Particularly preferred variants are the following: 78S; 79G; 80A; 83I,Q; 84Q,V; 198A,N; 200G,V; 201D; deletions in one or more of 201a, 201b, 201c, 201d, 201e, 201f - preferably all deletions; 202S; 205Q,E; 235Y,L; 238L,M; 242P, 273D; 275F,Y.

Other particularly preferred variants are the following: 43A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y; in particular 43M,P; 75W,F; 80K; 153D; 184Q,S; 270Y,A; 332F; 369I,L.

The following variants are especially preferred:
25 43L,G,N,V,A,I,T; 78D; 153Y; 154G; 270L; 273D,K. Double and triple variants (43L/270L); (43L/270L/273D); (43L/78D) and (43L/153Y/154G) are also especially preferred. Other preferred variants are 205E; 278H; 336S.

These especially preferred single, double and triple 30 variants are preferably variants of model phytases which can be

aligned to Fig.1, in particular variants of the specific model phytases listed in Fig. 1.

At least consphyA is known to have a high thermostability. Still further, the thermostability of P_lycii is rather high.

- This is an example of a desired property which can be transferred to other phytases, e.g. the other phytases listed in Fig. 1, in particular to the basidiomycete phytases such as P_lycii and A_pediades, by a deducement process such as the one mentioned above.
- Amended thermostability, in particular improved thermostability, is expected on this background from the following variants:

39H,S; 40L,N; 43P; 47Y,F; 49P; 51E,A; 56P; 58D; 61R; 62V; 80K; 83A; 84Y; 172P; 184P; 195T; 198A; 204V; 211L; 223D; 236Y; 242P; 246V; 253P; 264R; 265Q; 280A,P; 283P; 287A; 292F,Y; 293A; 302R; 304P; 337S; 348Y; 387P; 396R; 409R; 411K; 412R; 417E; 421F,Y.

The following variants of amended thermostability are particularly preferred: 39S; 40N; 47Y,F; 51A; 83A; 195T; 204V; 20 211L; 242P; 265A.

Further variants of amended thermostability are the following: 42G; 43T,L,G; 44N; 58K,A; 59G; 62I; 69Q; 75F; 78D; 79G; 80A; 81A,G; 82T; 83K,R; 84I; 88I; 90R,A; 102Y; 115N; 118V; 122A; 123Q,N; 125M,S; 126V,S; 127N,Q; 128S,A; 143N,K; 148V,I; 25 154S; 158D; 170fH; 170gA; 171T,N; 172N; 173W, 184S; 186A; 187A; 187aS; 193S; 195V,L; 198V; 201E; 201eT; 202A, 203aT; 204A; 211V, 215P,A; 220L,N; 223H; 228N; 232T; 322E; 235T; 236N; 242S; 244D; 251eQ,E; 256D; 264I; 260A,H; 265A; 267D; 270G; 271D; 273K,D; 278T,H; 287T; 293V; 302H; 337T,G; 338I; 339V,I; 340A; 352K; 365A,S; 366S; 367A; 369L; 373S,A; 374S; 376M; 383kE,Q; 404G,A; 411T; 417R; 431E.

WO 99/49022

Other concepts of the invention, which can be expected to impart an improved thermostability to a phytase, are as follows - considering the 1IHP structure previously referred to and transferring via an alignment according to Fig. 1 as outlined 5 herein:

49

PCT/DK99/00153

- (A) Introduction of prolin residues in spatial positions where the prolin special dihedral angles are satisfied and the hydrogen bonding network are not hampered and no steric clashes are observed.
- 10 (B) Filling up holes: By substitution for bigger residues in internal cavities an improvement in stability can often be obtained.
 - (C) Cystin bridge: Cystin bridges will often make the proteins more rigid and increase the energy of unfolding.
- Further variants from which amended thermostability is expected according to these concepts of (A) to (C) are: 27P, 31Y, 132F, 132I, 132L, 184P, 186P, 190P, 280P, 343F, 343I, 343L, 349P, 362P and (33C and 24C).

Concept (A): 27P, 184P, 186P, 190P, 349P, 362P.

20 Concept (B): 343F,I,L; 31Y; 132F,I,L; 273F.

Concept (C): 33C/24C.

Amended pH activity or stability, preferably stability, in particular at low pH, in particular improved, is another desired property which can be transferred by aligning according to Fig.

25 l and transferring from models of improved pH profiles to other
phytases - as outlined above.

Other concepts of the invention, which can be expected to impart an improved stability at low pH to a phytase, are as follows - considering the 1IHP structure previously referred to and transferring via an alignment according to Fig. 1 as outlined herein:

50

WO 99/49022 PCT/DK99/00153

- (D) Surface charges: Better distribution at low pH, to avoid cluster of negative or positive, and to avoid too close same charged residues.
- (E) Prevent deamidation: Surface exposed Q or N in close 5 contact to negative charged residues.

Phytase variants having improved pH stability/activity at low pH are expected to be: 39H; 39Q; 80A; 203R; 271N; 51R; 154S; 185S; 194S; 194T; 288L; 288I; 288F; 360R; 173Q,S; 204Q,S; 303K,S; 81Q,E.

Concept (D): 203R, 271N, 51R, 185S, 360R; 173Q,S; 204Q,S; 303K,S; 81Q,E.

Concept (E): 154S; 194S,T; 288L,I,F.

A preferred model phytase for these concepts of (D) and (E) is P lycii.

Experimentally proven to have a lowered pH optimum is: Variant 80A of ascomycete phytases, in particular of A_fumigatus and consphyA.

Especially preferred single, double and triple variants are 43L; (43L/270L) and (43L/270L/273D). These variants have a changed pH profile. They are preferably variants of the specific model phytases listed in Fig. 1.

For all preferred variants listed above:

the stability is preferably amended at high temperature, viz. in the temperature range of 50-100°C, in particular 60-25 90°C, more preferably in the range of 70-90°C;

the activity is preferably amended in a temperature range relevant for the use in the gastro-intestinal system of animals, e.g. 30-40°C, more preferably 32-38°C, most preferably in the range of 35-38°C;

the stability is preferably amended at low pH, viz. in the pH range of pH 1.5-7, preferably 2-6, more preferably 3-5;

WO 99/49022

the activity is preferably amended in the pH range of pH 1.5-5.5, more preferably at pH 2.5-4.5, still more preferably 3-5.

51

PCT/DK99/00153

Tests for amended phytase characteristics, such as those 5 mentioned above, are well known in the art and any such test can be used to compare the performance of the phytase variants with the phytase models.

A preferred test for specific activity is given in Example 2. Preferred tests for pH and temperature activity and stability are given in Example 3. An even more preferred test for thermal stability is the DSC method of Example 4.

WO 98/28409 discloses tests for various other parameters, too, such as position specificity. All the tests of WO 98/28409 are preferred tests.

Generally, of course all these tests can be conducted at desired pH values and temperatures.

In the dependent claims, some preferred phytase variants based on five of the thirteen herein specifically disclosed model phytases are specified.

In an analogous way other preferred variants based on the remaining eight specifically disclosed model phytases can easily be deduced by combining the suggested amendments with each of the corresponding sequences of Fig. 1. These preferred variants are specifically included in the present invention, and they are easily deducemed, viz. the following:

Variants of a model phytase derived from Paxillus, preferably Paxillus involutus, preferably derived from strain CBS 100231, preferably variants of P_involtus-A1, the sequence of which is shown at Fig. 2, said variants comprising at least one of the following amendments:

()24C; T27P; F31Y; I33C; R39H,S,Q; N40L; S42G;

P43A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y; Y44N; S45D; Y47F; A51E,R; A58D;K; Q61R; I62V; F75W; S78D; A80K; T81Q,E,G,A; R83A, I, Q, K; I84Y, Q, V; L88I; K90R, A; F102Y; S115N; D116S; V118L; P119E; F120L; A123N,T,Q; S125M; F126H,S,V; D127Q,E,N; A128T,S; 5 A132F, I, L; I148V; D151A, S; S153D, Y; D154Q, S, G; D158A; S159T; A160S; T161N; ()170fH; ()170gA; S171N; H172P; N173Q,S; P184Q,S; Q185S; T186A, E, P; G187A; ()187aS; T190P, A; D193S; N194S, T; M195T, V, L; A198N, V; G200V; D201E; ()201eT; S202A; D203R, K, S; P203aV,T; Q204E,S,A,V; V205E; V211L; S215A,I; L220N; A223D,H; 10 D233E; F235Y, L, T; N236Y; L237F; V238L, M; A242P, S; M244D; ()251eE,Q; D253P; T256D; P260A,H; E264R,I; A265Q; A267D; G270Y, A, L; D271N; D273K; F275Y; T278H; Y280A, P; E283P; V287A, T; Q288L,I,F; Y292F; V293A; N302R,H; A304P; N336S; L337T,Q,S,G; M 3381; V3391; A340P; S343A,F,I,L; F348Y; R349P; A352K; P360R; 15 R362P; W364F; R365V, L, A, S; T366D, V, S; S367K, A; S368K; L369I; S373A; G374A,S; R375H; ()383kQ,E; T387P; Q396R; G404A; L409R; T411K; L412R; E417R; F421Y.

Variants of a model phytase derived from a species of the genus Paxillus, preferably the species Paxillus involutus, 20 preferably derived from strain CBS 100231, preferably variants of P_involtus-A2, the sequence of which is shown at Fig. 3, said variants comprising at least one of the following amendments: P24C; I27P; F31Y; I33C; R39H,S,Q; N40L; S42G;

P43A,C,D,E,F,G,H,I,K,L,M,N,Q,R,S,T,V,W,Y; Y44N; S45D;
25 Y47F; A51E,R; A58D,K; E61R; I62V; F75W; S78D; A80K; A81Q,E,G;
R83A,I,Q,R,K; I84Y,Q,V; L88I; K90R,A; F102Y; S115N; D116S;
V118L; P119E; F120L; A123N,T,Q; S125M; F126H,S,V; D127Q,E,N;
A128T,S; V132F,I,L; D143N; I148V; D151A,S; S153D,Y; D154Q,S,G;
D158A; A160S; T161N; ()170fH; ()170gA; S171N; R172P; N173Q,S;
30 P184Q,S; Q185S; T186A,E,P; G187A; ()187aS; T190P,A; D193S;
N194S,T; M195T,V,L; A198N,V; G200V; E201D; ()201eT; S202A;

53

D203R,K,S; P203aV,T; Q204E,S,A,V; V205E; S211L,V; S215A,P; L220N; A223D,H; A232T; F235Y,L,T; N236Y; L237F; V238L,M; P242S; M244D; ()251eE,Q; D253P; T256D; P260A,H; E264R,I; A265Q; A267D; G270Y,A,L; D271N; D273K; F275Y; T278H; Y280A,P; A283P; V287A,T; Q288L,I,F; Y292F; I293A,V; N302R,H; A304P; N336S; L337T,Q,S,G; M338I; V339I; 340P,A; A343S,F,I,L; F348Y; R349P; A352K; P360R; R362P; W364F; L365V,A,S; T366D,V,S; S367K,A; S368K; V369I,L; S373A; R375H; ()383kQ,E; T387P; Q396R; G404A; L409R; A411K,T; L412R; E417R; Y421F.

Variants of a model phytase derived from a species of the genus Trametes, preferably the species Trametes pubescens, preferably derived from strain CBS 100232, preferably variants of T_pubescens, the sequence of which is shown at Fig. 4, said variants comprising at least one of the following amendments:

15 R24C; T27P; L31Y; V33C; Q39H,S; S40L,N; S42G;

M43A,C,D,E,F,G,H,I,K,L,N,P,Q,R,S,T,V,W,Y; Y44N; S45D; Y47F; A51E,R; A58D,K; S59G; Q61R; I62V; F75W; S78D; A80K; A81Q,E,G; R83A,I,Q,K; I84Y,Q,V; V88I; K90R,A; L102Y; D115N; V118L; T123N,Q; S125M; S126H,V; E127Q,N; A128T,S; A132F,I,L; 20 D143N; V148I; S151A; S153D,Y; D154Q,S,G; A158D; A160S; N161T; ()170fH; ()170gA; S171N; S172P; N173Q,S; S184Q,P; E185S; A186E, P; G187A; ()187aS; T190P, A; N194S, T; M195T, V, L; A198N, V; G200V; ()201eT; S202A; D203R,K,S; P203aV,T; Q204E,S,A,V; V205E; Q211L,V; P215A; L220N; G223D,H; D233E; Y235L,T; N236Y; L237F; 25 L238M; P242S; E244D; ()251eE,Q; E253P; Q260A,H; D264R,I; A265Q; A267D; A270Y, L, G; D271N; D273K; F275Y; T278H; Y280A, P; V287A, T; Q288L, I, F; Y292F; I293A, V; A302R, H; N304P, A; N336S; Q337T, S, G; M338I; V339I; A340P; S343A, F, I, L; F348Y; N349P; A352K; P360R; R362P; F364W; L365V,A,S; V366D,S; K367A; I369L; A373S; A374S; 30 R375H; ()383kQ,E; Q387P; A396R; G404A; V409R; T411K; L412R; E417R; Y421F.

Variants of a model phytase derived from a species of the genus Aspergillus, preferably the species Aspergillus nidulans, preferably derived from strain DSM 9743, preferably variants of A_nidulans, the sequence of which is shown at Fig. 10, said variants comprising at least one of the following amendments: V24C; A27P; H39S,Q; V40L,N; G42S;

Q43A,C,D,E,F,G,H,I,K,L,M,N,P,R,S,T,V,W,Y; Y44N; S45D; Y47F; S49P; E51A,R; V56P; H58D,K,A; E61R; V62I; S69Q; Y75W,F; E78D,S; S79G; K80A; S81Q,E,A,G; K82T; A83I,Q,K,R; Y84Q,V,I; 10 A90R; D115N; D116S; T118V,L; I119E; F120L; E122A; N123T,Q; M125S; V126H,S; D127Q,E,N; S128A,T; F132I,L; K143N; I148V; S151A; S153D, Y; D154Q, S, G; A158D; S159T; A160S; E161T, N; K162N; F163W; G170fH; S170gA; ()171N; ()172P; K173Q,S; P184Q,S; E185S; I186A, E, P; D187A; G187aS; T190P, A; H193S; S194T; S198A, N, V; 15 E200G, V; N201D, E; D201e(); E201e(), T; R201f() (a deletion of at least one of 201d, 201e, 201f, preferably all); A202S; D203R,K,S; E203aV,T; I204Q,E,S,A,V; I211L,V; P215A; L220N; D223H; K228N; E232T; N233E; I235Y,L,T; Y236N; L237F; M238L; S242P; M246V; E251eQ; A256D; E260A,H; L264R,I; Q270Y,A,L,G; 20 S271D,N; S273D,K; Y275F; G278T,H; A280P; A287T; Q288L,I,F; F292Y; T293A,V; Q302R,H; P304A; N336S; S337T,Q,G; M338I; I339V; S340P,A; F343A,S,I,L; N349P; Q352K; S360R; Q362P; Y364W,F; A365V,L,S; A366D,V,S; S367K,A; W368K; T369I,L; G373S,A; A374S; R375H; A376M; E383kQ; A404G; T411K; L412R; E417R; F421Y; K431E.

- Variants of a model phytase derived from a species of Aspergillus, preferably Aspergillus terreus, preferably derived from strain CBS 220.95, preferably variants of A_terreus, the sequence of which is shown at Fig. 12, said variants comprising at least one of the following amendments:
- 30 G24C; V27P; H39S,Q; K40L,N; G42S;

L43A, C, D, E, F, G, H, I, K, M, N, P, Q, R, S, T, V, W, Y; Y44N; A45D,S; Y47F; S49P; Q51E,A,R; V56P; P58D,K,A; D59G; H61R; I62V; A69Q; S75W,F; H78D,S; S79G; K80A; T81Q,E,A,G; A83I,Q,K,R; Y84Q,V,I; E115N; E116S; T118V,L; P119E; F120L; R122A; N123T,Q; A90R; 5 L125S,H; R126H,S,V; D127Q,E,N; L128A,T,S; F132I,L; H143N; V148I; D152G; A153D,Y; S154D,Q,G; H157V; E158D,A; S159T; E161T,N; K162N; A160S; F163W; H173Q,S; P184Q,S; E185S; G186A, E, P; S187A; A187aS; T190P,A; H193S; L195T, V; S194T; A198N, V; E200G, V; S201D, E; S201d(); T201e(); V201f(); G202S, A; 10 D203R, K, S; D203aV, T; A204Q, E, S, V; V205E; V211L; A215P; L220N; D223H; Q228N; D232T; D233E; V235Y,L,T; N236Y; L237F; M238L; P242S; E244E; T251eE,Q; A260H; T264R,I; Q265A; N267D; L270Y,A,G; K273D; Y275F; H278T; G280A,P; V287A,T; Q288L,I,F; S271D, N; W292F,Y; A293V; Q302H; P304A; N337T,Q,S,G; L338I; V3391; 15 S340P, A; W343A, S, F, I, L; N349P; A352K; S360R; S362P; Y364W, F; A365V,L,S; A366D,V,S; A367K; W368K; T369I,L; A373S; A374S; R375H; A376M; R383kQ,E; P404A,G; K411T; A417E,R; F421Y; A431E.

Variants of a model phytase derived from a species of Talaromyces, preferably the species Talaromyces thermophilus, 20 preferably derived from strain ATCC 20186 or ATCC 74338, preferably variants of T_thermo, the sequence of which is shown at Fig. 13, said variants comprising at least one of the following amendments:

H24C; V27P; H39S,Q; S40L,N; G42S;

Q43A,C,D,E,F,G,H,I,K,L,M,N,P,R,S,T,V,W,Y; Y44N; S45D; F47Y; S49P; A51E,R; V56P; Q58D,K,A; N59G; K61R; I62V; Y75W,F; S78D; S79G; K80A; T81Q,E,A,G; E82T; L83A,I,Q,R,K; Y84Q,V,I; R90A; D116S; T118V,L; P119E; F120L; E122A; N123T,Q; M125S; I126H,S,V; Q127E,N; L128A,T,S; F132I,L; V148I; S151A; S153D,Y; 30 D154Q,S,G; I157V; A158D; S159T; G160A,S; R161T,N; L162N; F163W; S170gA; D171N; K172P; H173Q,S; E184Q,S,P; E185S; G186A,E,P;

56

D187A; T190P,A; T193S; G194S,T; S195T,V,L; V198A,N; E200G,V; S201d(); D201E; S201e(),T; S201f(); G202S,A; H203R, K, S; D203aV,T; A204Q,E,S,V; Q205E; Q211L,V; A215P; I220N,L; H223D; D228N; S232T; D233E; P235Y,L,T; Y236N; M237F; D238L,M; P242S; 5 E244D; ()251eE,Q; A256D; L246V; Q260A,H; Q264R,I; A2650; Q270Y, A, L, G; S271D, N; G273D, K; Y275F; N278T, H; G280A, P; A287T; Q288L,I,F; F292Y; V293A; H302R; P304A; N336S; T337Q,S,G; M338I; T339V,I; S340P,A; A343S,F,I,L; N349P; A352K; S360R; E362P; Y364W, F; S365V, L, A; A366D, V, S; A367K; W368K; T369I, L; G373S, A; 10 G374A,S; R375H; A376M; D383kQ,E; E404A; K411T; R417E; F421Y.

Variants of a model phytase derived from a species of Thermomyces, preferably the species Thermomyces lanuginosus, preferably derived from strain DBS 586.94, preferably variants of T_lanuginosa, the sequence of which is shown at Fig. 14, said variants comprising at least one of the following amendments: K24C; ()27P; ()31Y; ()33C; R39H,S,Q; H40L,N; G42S;

Q43A, C, D, E, F, G, H, I, K, L, M, N, P, R, S, T, V, W, Y; Y44N; S45D; F47Y; S49P; A51E,R; V56P; K58D,A; V62I; S69Q; Y75W,F; A78D,S; H79G; S81Q, E, A, G; E82T; V83A, I, Q, K, R; Y84Q, V, I; K80A; L88I; 20 R90A; F102Y; D115N; N116S; F120L; T118V,L; R119E; E122A; E123N, T, Q; M125S; M126H, S, V; E127Q, N; S128A, T; F132I, L; E143N; V148I; A151S; S153D, Y; A154D, Q, S, G; I157V; A158D; S159T; A160S; E161T, N; F162N; F163W; R170fH; S170gA; K172P; D173Q,S; S184Q,P; E185S; E186A, P; T187A; G187aS; T190P, A; G193S; L194S, T; T195V, L; 25 A198N, V; E200G, V; E201D; A201d(); P201e(), T; D202S, A; P203R, K, S; T203aV; Q204E,S,A,V; P205E; V211L; R215A,P; I220L,N; H223D; E232T; D233E; P235Y,L,T; L236Y,N; M238L; P242S; Q251eE; H256D; Q260H; M264R,I; A265Q; Y270A,L,G; T271D,N; D273K; Y275F; H278T; G280A, P; A283P; S287A; R288L, I, F; F292Y; V293A; G302R, H; P304A; 30 N336S; T337Q,S,G; M338I; T339V,I; G340P,A; S343A,F,I,L; N349P; P360R; T362P; Y364W,F; A365V,L,S; A366D,V,S; S367K,A; W368K;

WO 99/49022

57

PCT/DK99/00153

T369I,L; A373S; A374S; R375H; A376M; E383kQ; R404A,G; R411K,T; K417E,R; F421Y; D431E.

Variants of a model phytase derived from a species of Myceliophthora, preferably the species Myceliophthora thermophila, preferably derived from strain ATCC 48102 or ATCC 74340, preferably variants of M_thermophila, the sequence of which is shown at Fig. 7, said variants comprising at least one of the following amendments:

S24C; F31Y; H39S,Q; F40L,N; G42S;

Q43A,C,D,E,F,G,H,I,K,L,M,N,P,R,S,T,V,W,Y; 10 Y44N; S45D; Y47F; S49P; P51E,A,R; I56P; D58K,A; D59G; E61R; V62I; S69Q; A75W, F; L78D, S; K79G; R80K, A; A81Q, E, G; A82T; S83A, I, Q, K, R; Y84Q, V, I; R90A; D115N; E116S; T118V, L; R119E; T120L; Q122A; Q123N,T; M125S; V126H,S; N127Q,E; S128A,T; F132I,L; K143N; 15 V148I; A151S; Q153D,Y; D154Q,S,G; H158D,A; S159T; A160S; E161T, N; G170fH; S170gA; T171N; F163W; V172P; R173Q, S; P184Q, S; T186A, E, P; G187aS; T190P, A; N193S; D194S, T; L195T, V; E185S; A198N, V; E200G, V; E201D; G201a(); P201b(); Y201c(); S201d(); I201f(); G202S,A; D203R,K,S; D203aV,T; A204Q,E,S,V; T201e(); 20 Q205E; T211L, V; P215A; N223D, H; V220N,L; A232T; D233E; V235Y, L, T; A236Y, N; L237F; M238L; P242S; E244D; A251eE, Q; R256D; E260A,H; R264I; A265Q; Q270Y,A,L,G; S271D,N; K273D; Y275F; Y278T,H; P280A; T287A; Q288L,I,F; F292Y; V293A; ()302R,H; P304A; N336S; D337T,Q,S,G; M338I; M339V,I; G340P,A; G343A,S,F,I,L; 25 D349P; P352K; D360R; E362P; Y364W,F; A365V,L,S; A366D,V,S; S367K,A; W368K; A369I,L; A373S; A374S; R375H; I376M; E383kQ; E387P; G404A; M409R; T411K; L412R; E417R; F421Y; D431E.

This invention also provides a new phytase which has been derived from a strain of Cladorrhinum, viz. C. foecundissimum.

30 Accordingly, the invention also relates to a polypeptide having phytase acitivity and which comprises SEQ ID NO:2 or the mature

58

part (amino acids nos 16-495) thereof; or a polypeptide being at least 70, more preferably 75, 80, 85, 90, 95% homologous thereto; homology meaning similarity, preferably identity, and being determined using the program GAP and the settings as 5 defined hereinabove. And the invention relates to DNA construct which encodes a polypeptide having phytase activity, said DNA construct comprising a DNA molecule which comprises SEQ ID NO:1 or nucleotides nos. 20-70 and 207-1560 thereof; nucleotides nos. 20-70 and 207-1563 thereof; or nucleotides nos. 10 65-70 and 207-1560 thereof; or nucleotides nos. 65-70 and 207-1563 thereof; or a DNA construct or molecule which is at least 70, 75, 80, 85, 90, 95 % homologous to either of these nucleotide sequences; homology meaning similarity, preferably identity, and being determined using computer programs known in 15 the art such as GAP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1996, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal USA of Molecular Biology, 48, 443-453). Using GAP with the following 20 settings for DNA sequence comparison: GAP creation penalty of 5.0 and GAP extension penalty of 0.3. The invention also relates to a DNA construct which hybridizes with any of the above DNA sequences under the conditions mentioned hereinabove.

25 **EXAMPLES**

Example 1

Phytase activity assay (FYT)

Phytase activity can be measured using the following assay:

30 10 μ l diluted enzyme samples (diluted in 0.1 M sodium acetate, 0.01 % Tween20, pH 5.5) are added into 250 μ l 5 mM sodium

59

phytate (Sigma) in 0.1 M sodium acetate, 0.01 % Tween20, pH 5.5 (pH adjusted after dissolving the sodium phytate; the substrate is preheated) and incubated for 30 minutes at 37°C. The reaction is stopped by adding 250 µl 10 % TCA and free phosphate is 5 measured by adding 500 µl 7.3 g FeSO4 in 100 ml molybdate reagent (2.5 g (NH₄)₆Mo₇O₂₄.4H₂O in 8 ml H₂SO₄ diluted to 250 ml). The absorbance at 750 nm is measured on 200 µl samples in 96 well microtiter plates. Substrate and enzyme blanks are included. A phosphate standard curve is also included (0-2 mM phosphate). 1 FYT equals the amount of enzyme that releases 1 µmol phosphate/min at the given conditions.

Example 2

Test for specific activity

The specific activity can be determined as follows:

A highly purified sample of the phytase is used (the purity is checked beforehand on an SDS poly acryl amide gel showing the presence of only one component).

The protein concentration in the phytase sample is determined by amino acid analysis as follows: An aliquot of the phytase sample is hydrolyzed in 6N HCl, 0.1% phenol for 16 h at 110 C in an evacuated glass tube. The resulting amino acids are quantified using an Applied Biosystems 420A amino acid analysis system operated according to the manufacturers instructions.

25 From the amounts of the amino acids the total mass - and thus also the concentration - of protein in the hydrolyzed aliquot can be calculated.

The activity is determined in the units of FYT. One FYT equals the amount of enzyme that liberates 1 micromol inorganic phosphate from phytate (5 mM phytate) per minute at pH 5.5, 37°C; assay described e.g. in example 1.

60

The specific activity is the value of FYT/mg enzyme protein.

Example 3

5 Test for temperature and pH activity and stability

Temperature and pH activity and stability can be determined as follows:

Temperature profiles (i.e. temperature activity relationship) by running the FYT assay of Example 1 at various temperatures (preheating the substrate).

Temperature stability by pre-incubating the phytase in 0.1 M sodium phosphate, pH 5.5 at various temperatures before measuring the residual activity.

The pH-stability by incubating the enzyme at pH 3 (25 mM solium acetate), pH 6 (25 mM MES), pH 7-9 (25 mM Tris-HCl) for 1 hour at 40°C, before measuring the residual activity.

The pH-profiles (i.e. pH activity relationship) by running the assay at the various pH using the same buffer-systems (50 mM, pH re-adjusted when dissolving the substrate).

Example 4

DSC as a preferred test for thermostability

The thermostability or melting temperature, Tm, can be 25 determined as follows:

In DSC the heat consumed to keep a constant temperature increase in the sample-cell is measured relative to a reference cell. A constant heating rate is kept (e.g. 90°C/hour). An endothermal process (heat consuming process - e.g. the unfolding of an enzyme/protein) is observed as an increase in the heat

61

transferred to the cell in order to keep the constant temperature increase.

DSC can be performed using the MC2-apparatus from MicroCal. Cells are equilibrated 20 minutes at 20°C before scanning to 90°C at a scan rate of 90°/h. Samples of e.g. around 2.5 mg/ml phytase in 0.1 M sodium acetate, pH 5.5 are loaded.

Example 5 Phytase variants of amended activity characteristics

Variants of an Aspergillus fumigatus model phytase (a wild type phytase derived from strain ATCC 13073) were prepared as described in EP 98104858.0 (EP-A-0897010), examples 2-3 and 5, and the phytase activity was determined as described in example 7 thereof. pH- and temperature optimum and melting point was determined as described in examples 9 and 10 of EP 98113176.6 (EP-A-0897985).

In Table 1, variants of improved specific activity at pH 5.0 are listed. Table 2 lists variants of improved relative activity at pH 3.0, and Table 3 lists variants of improved thermostability (temperature optimum, e.g. determined by DSC).

Table 1

20

Amended in position	Substitution into	Specific activity at
no.		pH 5.0 (U/mg)
43	43L	83.4
	43N	45.5
	43T	106.9
	431	91.2
	43V	35.0
	43A	27.3
	43G	59.6

43 and 270	43L, 270L	88.7
43 and 270 and 273	43L, 270L, 273D	92.3
43 and 78	43L, 78D	118.5
43 and 153 and 154	43L, 153Y, 154G	193.0
A. fumigatus wild-	-	26.5
type phytase		

Table 2

Amended in position	Substitution into	Relative phytase
no.		activity at pH 3.0
205	205E	41%
273	273K	61%
278	278Н	75%
273 and 205	273K, 205E	65%
273 and 278	273К, 278Н	100%
273 and 205 and 278	273K, 205E, 278H	96%
A. fumigatus wild-		32%
type phytase		

Table 3

Amended in position	Substitution into	Tempera-	Tm (°C)
no.		ture	(DSC)
		optimum	
		(°C)	
43 and 47 and 88 and	43T, 47Y, 88I, 102Y,	60	67
102 and 220 and 242	220L, 242P, 267D		
and 267			
as above plus 51 and	as above plus 51A,	63	
302 and 337 and 373	302н, 337т, 373А,		
and 115	115N		

63

A.	fumigatus	wild-	_	55	62.5
type	e phytase				

Example 6

Further phytase variants of amended activity characteristics

Variants of the ascomycete consensus sequence "conphys" of Fig. 9 were prepared as described in EP 98113176.6 (EP-A-0897985), examples 4-8. Phytase activity, including pH- and temperature optimum, and melting point was determined as described in examples 9 and 10, respectively, thereof.

The tables below list variants of amended activity characteristics, viz.

Table 4 variants of improved specific activity at pH 6.0;

Table 5 variants of amended pH optimum (the pH-optimum indicated is an approximate value, determined as that pH-value (selected from the group consisting of pH 4.0; 4.5; 5.0; 5.5; 6.0; 6.5; and 7;0) at which the maximum phytase activity was obtained);

Table 6 a variant of improved thermostability (expressed by way of the melting point as determined by differential scanning calorimetry (DSC)); and

Table 7 variants of amended thermostability (temperature 20 optimum); a "+" or "-" indicates a positive or a negative, respectively, effect on temperature optimum of up to 1°C; and a "++" and "--" means a positive or a negative, respectively, effect on temperature optimum of between 1 and 3°C.

25 Table 4

Amended	in position	Substitution into	Specific activity at
no.			pH 6.0 (U/mg)
43		43T	130

	43L	205
Conphys		62

Table 5

Amended in position	Substitution into	pH optimum
no.		around
43	43T	6.0
	43L	5.5
	43G	6.5
43 and 44	43L, 44N	6.0
	43T, 44N	5.5
Conphys	_	6.0

Table 6

Amended in posit	ion Substitution into	Tm (°C)
no.		
43	43T	78.9
Conphys		78.1

5 Table 7

Amended in position	Substitution into	Temperature optimum
no.		amendment
51	A	+
58	K	+
220	N	+
195	L	++
201e	T	++
244	D	+
264	I	+
302	Н	+

65

227		
337	Т	++
352	K	+
373	A	++
47	F	
62	I	_
83	K	
90	R	
143	N	
148	V	
186	A	
187a	S	_
198	V	_
204	A	
211	V	
215	P	
251e	Q	
260	A	
265	A	
339	V	
365	A	
383k	E	_
404	G	
417	R	
Conphys	_	0

Table 8

Amended in position	Substitution	Tm (°C) (DSC)	Specific
no.	into		activity at
			pH 5.0 (U/mg)
43 and 51 and 220	51A, 220N,	84.7	105
and 244 and 264 and	244D, 264I,		
302 and 337 and 352	302н, 337т,		
and 373	352K, 373A,		
	43T		
as above plus 80	as above plus	85.7	180
	80A		
Conphys		78.1	30

Example 7

Cloning of a phytase of Cladorrhinum foecundissimum

DNA encoding a phytase from Cladorrhinum foecundissimum CBS 427.97 has been cloned, and the enzyme isolated and purified, essentially as described in WO 98/28409.

Fig. 15 shows the DNA sequence of the HindIII/XbaI cloned PCR product in pA2phy8. The cloned PCR product is amplified from the genomic region encoding Cladorrhinum foecundissimum CBS 427.97 phyA gene. The putative intron is indicated by double underline of the excision-ligation points in accordance with the GT-AG rule (R. Breathnach et al. Proc. Natl. Acad. Sci. USA 75 (1978) pp4853-4857). The restrictions sites used for cloning are underlined.

According to the SignalP V1.1 prediction (Henrik Nielsen, Jacob Engelbrecht, Stren Brunak and Gunnar von Heijne: 5 "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites," Protein Engineering 10, 1-6 (1997)), the signal peptide part of the enzyme corresponds

67

to amino acids nos. 1-15, accordingly the mature enzyme is amino acids nos. 16-495.

The enzyme exhibits a pH optimum around pH 6 with no activity at the low pH (pH 3), but significant activity up until 5 pH 7.5; thus it is a more alkaline phytase as compared to the Aspergillus ficuum phytase.

A temperature optimum around 60°C was found at pH 5.5. Thus, this phytase is more thermostable than the A. ficuum phytase.

10

Example 8

Alignment of a new model phytase according to Fig. 1

The phytase sequence of Cladorrhinum foecundissimum as disclosed in Example 7 is compared with the 13 model phytases of 15 Fig. 1 using GAP version 8 referred to above with a GAP weight of 3.000 and a GAP lengthweight of 0.100. Complete amino acid sequences are compared. The M_thermophila phytase sequence turns up to be the most homologous sequence, showing a degree of similarity to the C. foecundissimum sequence of 70.86%.

Still using the GAP program and the parameters mentioned above, the phytase sequence "C_foecundissimum" is now aligned to the "M-thermophila" phytase - see Fig. 16. The average match is 0.540;, the average mismatch -0.396; quality 445.2; length 505; ratio 0.914; gaps 9; percent similarity 70.860; percent identity 53.878.

In a next step, see Fig. 17, the C_foecundissimum is pasted (or it could simply be written) onto the alignment of Fig. 1 as the bottom row, ensuring that those amino acid residues which according to the alignment at Fig. 16 are identical (indicated by a vertical line) or similar (indicated by one or two dots) are placed above each other. At 5 places along the sequence, the C_foecundissimum sequence comprises

68

"excess" amino acid residues, which the alignment of Fig. 1 does not make room for. At Fig. 17, these excess residues are transferred onto a next row (but they can be included in the multiple alignment and numbered as described previously in the position numbering related paragraphs (using the denotations a, b, c etc.).

Corresponding variants of the phytase of C_foecundissimum are then easily deduced on the basis of Fig. 17. Some examples:

The variants generally designated "80K,A" and "43T" in

C_foecundissimum correspond to "K80A" and "Q43T," respectively.

20 411; 412; 413; 417; 421; 431.

WO 99/49022 PCT/DK99/00153

69

CLAIMS

- 1. A phytase variant which, when aligned according to Fig. 1, is amended as compared to a model phytase in at least one of the following positions, using the position numbering corresponding to P lycii:
- 24; 27; 31; 33; 39; 40; 41; 42; 43; 44; 45; 46; 47; 49; 51; 56; 58; 59; 61; 62; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 80; 81; 82; 83; 84; 88; 90; 102; 115; 116; 117; 118; 119; 120; 121; 122; 123; 124; 125; 126; 127; 128; 132; 143; 148; 149; 150; 151; 152; 153; 154; 155; 156; 157; 158; 159; 160; 161; 162; 163; 170f; 170g; 171; 172; 173; 184; 185; 186; 187; 187a; 190; 191; 192; 193; 194; 195; 198; 199; 200; 201; 201a; 201b; 201c; 201d; 201e; 201f; 202; 203; 203a; 204; 205; 211; 215; 220; 223; 228; 232; 233; 234; 235; 236; 237; 238; 239; 242; 243; 244; 246; 251e; 253; 256; 260; 264; 265; 267; 270; 271; 272; 273; 274; 275; 276; 277; 278; 279; 280; 283; 285; 287; 288; 292; 293; 302; 304; 332; 333; 334; 335; 336; 337; 338; 339; 340; 341; 342; 343; 348; 349; 352; 360; 362; 364; 365; 366; 367; 368; 369; 370; 371; 372; 373; 374; 375; 376; 383k; 387; 393; 394; 396; 404; 409;
- 2. A phytase variant which, when aligned according to Fig. 1, comprises at least one of the following amendments as compared to a model phytase, using the position numbering corresponding to the phytase of P lycii:

24C; 27P; 31Y; 33C; 39H,S,Q; 40L,N; 42S,G; 43A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y; 44N; 45D,S; 47Y,F; 49P; 51E,A,R; 56P; 58D,K,A; 59G; 61R; 62V,I; 69Q; 75W,F; 78D,S; 79G; 80K,A; 81A,G,Q,E; 82T; 83A,I,K,R,Q; 84I,Y,Q,V; 88I; 90R,A; 30 102Y; 115N; 116S; 118V,L; 119E; 120L; 122A; 123N,Q,T; 125M,S; 70

WO 99/49022 PCT/DK99/00153

126H,S,V; 127Q,E,N; 128A,S,T; 132F,I,L; 143N; 148V,I; 151A,S; 152G; 153D,Y; 154D,Q,S,G; 157V; 158D,A; 159T; 160A,S; 161T,N; 162N; 163W; 170fH; 170gA; 171N; 172P; 173Q,S; 184Q,S,P; 185S; 186A,E,P; 187A; 187AS; 190A,P; 193S; 194S,T; 195T,V,L; 198A,N,V; 200G,V; 201D,E; 201a(); 201b(); 201c(); 201d(); 201e(); 201f(); 201eT; 202S,A; 203R,K,S; 203AV,T; 204Q,E,S,A,V; 205E; 211L,V; 215A,P; 220L,N; 223H,D; 228N; 232T; 233E; 235Y,L,T; 236Y,N; 237F; 238L,M; 242P,S; 244D; 246V; 251eE,Q; 253P; 256D; 260A,H; 264R,I; 265A,Q; 267D; 270Y,A,L,G; 271D,N; 273D,K; 275F,Y; 10 278T,H; 280A,P; 283P; 287A,T; 288L,I,F; 292F,Y; 293A,V; 302R,H; 304P,A; 332F; 336S; 337T,G,Q,S; 338I; 339V,I; 340P,A; 343A,S,F,I,L; 348Y; 349P; 352K; 360R; 362P; 364W,F; 365V,L,A,S; 366D,S,V; 367A,K; 368K; 369I,L; 370V; 373A,S; 374S,A; 375H; 376M; 383kQ,E; 387P; 393V; 396R; 404A,G; 409R; 411K,T; 412R; 417E,R; 421F,Y; 431E.

- 3. The phytase variant of any of claims 1 or 2, which is derived from an ascomycete phytase.
- 20 4. The phytase variant of claim 3 which is derived from an Aspergillus phytase.
- The phytase variant of claim 4, wherein the model phytase is a strain of Aspergillus niger, Aspergillus ficuum,
 Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus.
- 6. The phytase variant of claim 5 wherein the model phytase is Aspergillus nidulans DSM 9743; or any of the following 30 strains of Aspergillus terreus: CBS 116.46, DSM 9076, CBS 220.95.

71

7. The phytase variant of claim 6 wherein the model phytase is the Aspergillus nidulans phytase sequence shown in Fig. 10; or the Aspergillus terreus phytase sequence shown in Fig. 12.

5

- 8. The phytase variant of claim 3 wherein the model phytase is a strain of Thermomyces lanuginosus, Talaromyces thermophilus, or Myceliophthora thermophila.
- 10 9. The phytase variant of claim 8 wherein the model phytase is Thermomyces lanuginosus CBS 586.94; or any of the following strains of Talaromyces thermophilus: ATCC 20186, ATCC 74338; or any of the following strains of Myceliophthora thermophila: ATCC 34625, ATCC 74340.

15

10. The phytase variant of claim 9 wherein the model phytase is the Thermomyces lanuginosus phytase sequence shown in Fig.14; or the Talaromyces thermophilus sequence shown in Fig.13; or the Myceliophthora thermophila phytase sequence shown in Fig.7.

20

- 11. The phytase variant of claim 3 wherein the model phytase is an ascomycete consensus phytase sequence.
- 12. The phytase variant of any of claims 1 or 2, which is derived from a basidiomycete phytase.
 - 13. The phytase variant of claim 12, wherein the model phytase is a strain of Paxillus involutus, Trametes pubescens, Agrocybe pediades, or Peniophora lycii.

WO 99/49022

PCT/DK99/00153

14. The phytase variant of claim 13 wherein the model phytase is Trametes pubescens CBS 100232 or Paxillus involutus CBS 100231.

72

- 5 15. The phytase variant of claim 14 wherein the model phytase is the Trametes pubescens phytase sequence of Fig. 4 or either of the Paxillus involutus phytase sequences of Figs. 2 and 3.
- 16. The phytase variant according to any of claims 1 or 2, which comprises at least one of the following amendments: R24C; V27P; H39Q,S; L40N; G42S;

Q43A,C,D,E,F,G,H,I,K,L,M,N,P,R,S,T,V,W,Y; Y44N; A45D,S; F47Y; S49P; A51E,R; V56P; A58D,K; V62I; S69Q; Y75W,F; D78S; S79G; K80A; G81A,Q,E; K82T; K83A,I,R,Q; Y84Q,I,V; E90R,A; D115N;

- 15 D116S; T118V,L; P119E; F120L; E122A; Q123N,T; L125S,M; V126H,S;
 N127Q,E; S128A,T; F132I,L; I148V; S151A; S153D,Y; S154Q,D,G;
 I157V; A158D; S159T: G160A,S; K161T,N; K162N; F163W; R170fH;
 Q171N; G173Q,S; S184P,Q; E185S; A186E,P; S187A; T190P,A; P193S;
 G194S,T; T195V,L; V198A,N; E200G,V; D201E; S201d(); E201e(),T;
- 20 L201f(); preferably all three deletions; A202S; D203R,K,S;
 D203aV,T; V204Q,E,S,A; T211L,V; S215AP; L220N; D223H; T228N;
 T235Y,L; Y236N; L237F; M238L; S242P; I246V; K251eE,Q; H260A;
 I264R; N265Q,A; Q270Y,A,L,G; S271D,N; K273D; Y275F; H278T;
 A280P; T287A; Q288L,I,F; Y292F; A293V; H302R; P304A; N336S;
- 25 G337S,T,Q; I339V; S340P,A; F343A,S,F,I,L; N349P; N360R; T362P; F364W; S365V,L,A; S366D,V; A367K; W368K; T369I,L; A373S: S374A; R375H; L376M; Q383kE; P404A,G; T411K; R417E; F421Y; A431E.
- 17. The phytase variant of claim 16, the model phytase of which is an Aspergillus derived phytase, preferably derived from Aspergillus ficuum or Aspergillus niger.

- 18. The phytase variant of claim 17, the model phytase of which is a phytase derived from either of Aspergillus ficuum (niger) NRRL 3135, Aspergillus niger ATCC 9142, or Aspergillus niger ATCC 74337.
 - 19. The phytase variant of claim 18, the model phytase of which is the Aspergillus ficuum phytase sequence of Fig. 11.
- 10 20. The phytase variant according to any of claims 1 or 2, which phytase variant comprises at least one of the following amendments:
 - A24C; V27P; H39,S,Q; L40N; G42S; Q43C,D,E,F,H,K,M,P,R,S,W,Y; Y44N; S45D; F47Y; S49P; E51A,R; L56P; K58D,A; D59G; I62V; S69Q;
- 15 Y75W,F; S78D; S79G; K80A; S81A,G,Q,E; K82T; K83A,I,Q,R; Y84Q,V,I; V88K; A90R; F102Y; D115N; D116S; T118V,L; P119E; F120L; E122A; Q123N,T; L125S,M; V126H,S; N127Q,E; S128A,T; F132,I,L; S143N; I148V; S151A; S153D,Y; D154Q,S,G; I157V; A158D; S159T; G160A,S; E161T,N; K162N; F163W; G170fH; ()171N; N173Q,S;
- 20 T172P; P184Q,S; E185S; S186A,E,P; E187A; T187aS; T190P,A; G194S,T; V195L,T; K198A,N,V; E200G,V; A201D,E; S201d(); Q201e(),T; L201f(); preferably all three deletions; G202S,A; D203R,K,S; E203aV,T; V204Q,E,S,A; A205E; L211V; A220L,N; H223D; T228N; E232T; D233E; V235Y,L,T; V236Y,N; L237F; M238L; C242P,S;
- 25 T246V; Q251eE,Q; Q256D; H260A; K264R,I; K265Q,A; N267D; Q270Y,A,L,G; S271D,N; G273D,K; Y275F; Y278T,H; A280P; A287T; Q288L,I,F; F292Y; T293A,V; R302H; P304A; F332F; N336S; S337T,G,Q; M338I; V339I; S340P,A; F343A,S,I,L; N349P; E352K; S360R; K362P; Y364W,F; S365V,L,A; A366D,V,S; S367A,K; W368K;
- 30 V369I,L; G373S,A; R375H; A376M; K383kQ,E; D404A,G; K411T; I393V; L412R; K417E,R; W421F,Y; G431E.

WO 99/49022

21. The phytase variant of claim 20, which is derived from an Aspergillus phytase, preferably using a model phytase derived from Aspergillus fumigatus.

74

PCT/DK99/00153

5

The phytase variant of claim 21, the model phytase of which is a phytase derived from either of the following strains of Aspergillus fumigatus: ATCC 13073, ATCC 32722, ATCC 58128, ATCC 26906 or ATCC 32239.

10

- 23. The phytase variant of claim 22, the model phytase of which is the Aspergillus fumigatus phytase sequence of Fig. 8.
- 24. The phytase variant according to any of claims 1 or 2, which phytase variant comprises at least one of the following amendments:

G24C; V27P; H39S,Q; L40N; G42S;

Q43A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y; Y44N; S45D; Y47F; S49P; E51A,R; V56P; D58K,A; D59G; V62I; S69Q; Y75W,F; S78D;

- 20 S79G; K80A; S81A,G,Q,E; K82T; A83I,Q,K,R; Y84,Q,I,V; A90R; D115N; D116S; T118V,L; F119E; P120L; E122A; N123Q,T; M125S; V126H,S; N127Q,E; S128A,T; Y132F,I,L; K143N; I148V; S151A; S153D,Y; D154Q,S,G; I157V; A158D; S159T; A160S; E161T,N; K162N; F163W; G170fH; S170gA; Q171N; H173Q,S; P184Q,S; E185S;
- 25 G186A, E, P; S187A; G187aS; T190P, A; H193S; G194S, T; T195V, L; A198N, V; E200G, V; D201E; S201d(); E201e(), T; L201f(); preferably all three; G202S, A; D203R, K, S; D203aV, T; V204Q, S, A, E; L211V; A215P; L220N; D223H, T228N; E232T; D233E; V235Y, L, T; Y236N; L237F; M238L; P242S; E244D; E251e, Q; A256D; H260A; R264I; Q265A;
- 30 Q270Y,A,L,G; S271D,N; G273D,K; Y275F; Y278T,H; A280P; A287T; Q288L,I,F; F292Y; A293V; R302H; P304A; N336S; S337T,Q,G; M338I;

75

I339V; S340P,A; F343A,S,I,L; N349P; A352K; S360R; E362P; Y364W,F; S365V,L,A; A366D,V,S; S367K,A; W368K; T369I,L; G373S,A; A374S; R375H; A376M; Q383kE; A404G; K411T; E417R; F421Y; A431E.

- 5 25. The phytase variant of claim 24, the model phytase of which is an ascomycete consensus phytase.
 - 26. The phytase variant of claim 25, the model phytase of which is the ascomycetes consensus sequence "conphys" of Fig. 9.
 - 27. The phytase variant according to any of claims 1 or 2, which phytase variant comprises at least one of the following amendments:

V24C; F27P; ()31Y; F33C; D39H,S,Q; S40L,N; A42S,G;

10

- 15 A43C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y; Y44N; T45D,S; Y47F; Q51E,A,R; K58D,A; K61R; I62V; F75W; S78D; A80K; G81A,Q,E; R83A,I,Q,K; I84Y,Q,V; V88I; K90R,A; L102Y; D115N; D116S; V118L; P119E; F120L; L123N,T,Q; S125M; S126H,V; Q127E,N; A128S,T; T132F,I,L; E143N; V148I; S151A; S152G; S153D,Y; N154D,Q,S,G;
- D158A; S159T; A160S; T161N; ()170fH; ()170gA; ()171N; H173Q,S; H172P; S184Q,P; E185S; S186A,E,P; L187A; ()187aS; T190P,A; D193S; A194S,T; M195T,V,L; N198A,V; G200V; S201D,E ()201eT; S202A; D203R,K,S; P203aV,T; Q204E,S,A,V; T205E; I211L,V; P215A; L220N; Q223D,H; A232T; D233E; S235Y,L,T; N236Y; L237F; I238L,M;
- 25 A242P,S; E244D; I246V; ()251eE,Q; N256D; P260A,H; A264R,I; Q265A; E267D; G270Y,A,L; L332F; D271N; D273K; F275Y; T278H; Y280A,P; Y283P; V287A,T; Q288L,I,F; Y292F; I293A,V; E302R,H; P304A; L332F; N336S; Q337T,S,G; M338I; I339V; A340P; S343A,F,I,L; F348Y; N349P; S352K; P360R; R362P; W364F; 30 V365L,A,S; T366D,V,S; S367K,A; R368K; L369I; T370V; S373A;

76

A374S; R375H; S383kQ,E; T387P; A396R; G404A; L409R; T411K; L412R; E417R; Y421F.

- 28. The phytase variant of claim 27, the model phytase of 5 which is a phytase derived from Agrocybe pediades,
 - 29. The phytase variant of claim 27, the model phytase of which is a phytase derived from Agrocybe pediades CBS 900.96.
- The phytase variant of claim 29, the model phytase of 10 30. which is the Agrocybe pediades phytase sequence of Fig. 5.
- The phytase variant according to any of claims 1-2, which 31. phytase variant comprises at least one of the following 15 amendments:
- F24C; V27P; L31Y; I33C; S39H,Q; N4OL; G42S; P43A, C, D, E, F, G, H, I, K, L, M, N, Q, R, S, T, V, W, Y; Y44N; D45S; F47Y; E51A, R; E58D, K, A; T61R; V62I; W75F; S78D; A80K; R81Q, E, G, A; S82T; R83A,I,Q,K; Q84Y,V,I; V88I; K90R,A; A115N; D116S; L118V; 20 P119E;
- F120L; S125M; N123T,Q; H126S,V; Q127E, N; T128A,S; M132F,I,L; G143N; V148I; A151S; D153Y; Q154D,S,G; D158A; S159T; S160A; T161N; ()170fH; ()170gA; S171NG172P; E173Q,S; Q184S,P; E185S; E186A, P; G187A; ()187aS; T190P, A; N193S; M195T, V, L; N198A, V; V200G; D201E; ()201eT; G202S, A; D203R, K, S;
- 25 ()203aV,T; E204Q,S,A,V; S205E; V211L; N215A,P; L220N; A223D,H; S232T; D233E; L235Y,T; T236Y,N; L237F; M238L; P242S; ()251eE,Q; A260H; V264R,I; S265Q,A; E267D; Y270A,L,G; D271N; D273K; F275Y; G278T,H; P280A; A283P; T287A; Q288L,I,F; Y292F; V293A; G302R,H; A304P; N336S; T337Q,S,G; M338I; V339I; P340A; 30 A343S, F, I, L; F348Y;

N349P; A352K;

E360R;

R362P;

W364F;

WO 99/49022

PCT/DK99/00153

77

V365L,A,S; D366V,S; S367K,A; L369I; S373A; G374A,S; ()383kQ,E; E387P; A396R; G404A; V409R; E411K,T; L412R; E417R; Y421F; A431E.

- 32. The phytase variant of claim 31, the model phytase of 5 which is a phytase derived from Peniophora lycii.
 - 33. The phytase variant of claim 32, the model phytase of which is a phytase derived from Peniophora lycii CBS 686.96.
- 10 34. The phytase variant of claim 33, the model phytase of which is the Peniophora lycii phytase sequence of Fig. 6.
 - 35. A phytase polypeptide which comprises a phytase variant according to any of the previous claims.

15

- 36. A DNA construct comprising a DNA sequence encoding a phytase variant according to any one of claims 1-34.
- 37. A recombinant expression vector which comprises a DNA 20 construct according to claim 36.
 - 38. A host cell which is transformed with a DNA construct according to claim 36 or a vector according to claim 37.
- 25 39. A process for preparing a phytase variant, the process comprising culturing the host cell according to claim 38 under conditions permitting the production of the phytase variant, and recovering the phytase from the culture broth.
- 30 40. A feed or food comprising at least one phytase variant of any of claims 1-34.

78

PCT/DK99/00153

41. A process for preparing a feed or food according to claim 40, wherein the at least one phytase variant is added to the food or feed components.

5

WO 99/49022

- 42. A composition comprising at least one phytase variant of any of claims 1-34.
- 43. The composition according to claim 42 suitable for use in 10 food or feed preparations.
 - 44. The composition according to any of claims 42-43 which is an animal feed additive.
- 15 45. A process for reducing phytate levels in animal manure comprising feeding an animal with an effective amount of the feed according to claim 40 or obtainable according to claim 41.
- 46. Use of the phytase variant of any of claims 1-34; or the composition of any of claims 42-43 for liberating phosphorous from a phytase substrate.
- 47. A transgenic plant or plant part which is capable of expressing a phytase variant according to any one of claims 1-25 34.

	Peniophora numbers	1				37
	Alignment numbers	1				50
	P_involtus_A1	ML	FGFVALACLI	SLSEVLATSV	Ď КМТ	APTFPIPESE
5				HLSEVFAASV		
	T_pubescens			FVCYAYARAV		
	A_pediades			VFLQASAYGG		
	P_lycii			L SLMSSLALST		
	A_fumigatus			.SGRVSAAPS		
10				GSTSGTALGP		
•	A_nidulans			SRVSAQAP		
	A_ficuum_NRRL3135			GVTSGLAVPA		
	A terreus			RSTSGTPLGP		
	T thermo			LYVSRNP		
15	T_lanuginosa			TASPAIPPFW		
	M_thermophila			AIASL		
		······	GAMAAMAGET	ALASH	QSESRPCUTP	DEGFQCGTAI
		38				0.7
		51				83 100
20	P_involtus_A1		FPLAEYKA	PPAGCQIN	OWNITORNEA	
	P_involtus_A2			PPAGCEIN		
	T_pubescens			PPASCQIN		
	A pediades			PPKDCKIT		
	P_lycii			PPEGCTVT		
25	A_fumigatus			SKLPKDCRIT		
	consphyA			PDVPDDCRVT		
	A_nidulans			EDVPHGCEVT		
	A_ficuum_NRRL3135			PEVPAGCRVT		
	A_terreus	SHKWGLYAPY	FSLQDESPFP	LDVPEDCHIT	FVQVLARHGA	RSPTHSKTKA
30	T_{thermo}	SHSWGQYSPF	FSLADQSEIS	PDVPQNCKIT	FVQLLSRHGA	RYPTSSKTEL
	T_lanuginosa	ARHWGQYSPF	FSLAEVSEIS	PAVPKGCRVE	FVQVLSRHGA	RYPTAHKSEV
	$M_{thermophila}$	SHFWGQYSPY	FSVPSELD	ASIPDDCEVT	FAQVLSRHGA	RAPTLKRAAS
35		84				133
33	D immelance as	101				150
	P_involtus_A1			FIKSFKYDLG		
	P_involtus_A2			FIKSFTYDLG		
	T_pubescens A_pediades			FVTNYTYSLG		QSSEAGQEAF
40	P_lycii			FLTNYTYTLG		QSSQAGEETF
- 0	A_fumigatus			FLNDFVYKFG		. •
	consphyA		•	FLKTYNYTLG		
	A_nidulans			FLKTYNYTLG		QMVNSGIKFY
	A_ficuum_NRRL3135			FLESYNYTLG		QMVDSGAKFY
45	A terreus			FLKTYNYSLG FLQSYNYSLD		
	T_thermo					
	T_lanuginosa	VARILOPTOR	TATALOGILA	FLKDYRYQLG	YDYL WDECER YDYL WDECER	OMMECCE CEA OMIGINAL
	M_thermophila	AMDITIONIAN	CATCYCDCVE	FIRDIAIAIG	ADRITTETCO (OMMECTVEV
		- TANKLING	omidigFGIE	LUKITATIO	unentriodă (Muandatke, X
50		134				176
		151.				200
	P_involtus_A1		NLPFIRADGS	DRVVDSATNW	TAGFASA	
	P_involtus_A2	ARYSKLVSSD	NLPFIRSDGS	DRVVDTATNW	TAGFASA	SRNATO
						· · · · · · · · · · · · · · · · · · ·

Fig. 1A

WO 99/49022

	T_pubescens	TRYSSLVSAD	ELPFVRASGS	DRVVATANNW	TAGFALA	SSNSIT
	A_pediades	QRYSFLVSKE	NLPFVRASSS	NRVVDSATNW	TEGFSAA	SHHVLN
	P_lycii	TRYSTLFEGG	DVPFVRAAGD	QRVVDSSTNW	TAGFGDA	SGETVL
	A_fumigatus	QRYKAL .ARS	VVPFIRASGS	DRVIASGEKF		DPGA.TNRAA
5	consphyA		IVPFIRASGS			DPGSQPHQAS
	Anidulans		NTPFIRASGS			DHGSKRAT
	A ficuum NRRL3135		IVPFIRSSGS		_	DPRAQPGQSS
	A terreus		INPFVRATDA			DHHANPHOPS
	T_thermo			DRVIASGRLF		DPHSDKHDAP
10	T_lanuginosa					DPRSNKDOAE
	M_thermophila					DRGSTVRPTL
	enermophica	MINAL ARK	SIPP VRIMGQ	DRVVHSAENT	Idatusumu	DRGSIVRPTL
15		100				
10		177				217
	D	201				250
	P_involtus_A1					WLAVAFPSIT
	P_involtus_A2			MCPAAGE		
20	T_pubescens			MCPAAGD		
20	A_pediades			MCPNAGS		
	P_lycii			MCPNEVD		
	A_fumigatus				_	FTALFAPDIR
	consphyA			TCTAFED		
	A_nidulans					FTAIMGPPIR
25	A_ficuum_NRRL3135			TCTVFED		
	A_terreus		SAYNNTLEHS	LCTAFES	STVGDDAVAN	FTAVFAPAIA
	T_thermo		PSYNNTLDTG	SCPVFED	SSGGHDAQEK	FAKQFAPAIL
	T_lanuginosa		TGSNNTLDGL	TCPAAEE	AP.DPTQPAE	FLQVFGPRVL
	M_thermophila	PYDMVVIPET	AGANNTLHND	LCTAFEEGPY	STIGDDAQDT	YLSTFAGPIT
30						
		218				252
		251				300
	P_involtus_Al		NLTDTDAFNL	VSLCAFLTVS	KEKK	s
	P_involtus_A2	AQLNAAAPGA	NLTDADAFNL	VSLCPFMTVS	KEQK	s
35	T_pubescens	ARLNAGAPGA	NLTDTDTYNL	LTLCPFETVA	TERR	s
	A_pediades	NRLNQQAPGA	NITAADVSNL	IPLCAFETIV	KETP	S
	P_lycii	ARLNAAAPSA	NLSDSDALTL	MDMCPFDTLS	SGNA	s
	A_fumigatus	ARAEKHLPGV	TLTDEDVVSL	MDMCSFDTVA	RTSDASQ.	LS
	consphyA	ARLEADLPGV	TLTDEDVVYL	MDMCPFETVA	RTSDATE.	LS
40	A_nidulans	KRLENDLPGI	KLTNENVIYL	MDMCSFDTMA	RTAHGTE.	LS
	A_ficuum_NRRL3135	QRLENDLSGV	TLTDTEVTYL	MDMCSFDTIS	TSTV. DTK.	LS
	A_terreus	QRLEADLPGV		MAMCPFETVS		LS
	A_terreus T_thermo		QLSTDDVVNL		LTDDAHT.	
		EKIKDHLPGV	QLSTDDVVNL DLAVSDVPYL	MAMCPFETVS	LTDDAHT	LS
45	T_thermo	EKIKDHLPGV KKITKHMPGV	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF	MAMCPFETVS MDLCPFETLA MDLCPFDTVG	LTDDAHT. RNHTDT SDPVLFPRQ.	LS
45	T_thermo T_lanuginosa	EKIKDHLPGV KKITKHMPGV	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF	MAMCPFETVS MDLCPFETLA	LTDDAHT. RNHTDT SDPVLFPRQ.	LS
45	T_thermo T_lanuginosa	EKIKDHLPGV KKITKHMPGV	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF	MAMCPFETVS MDLCPFETLA MDLCPFDTVG	LTDDAHT. RNHTDT SDPVLFPRQ.	LSLS AGGGNGRPLS
45	T_thermo T_lanuginosa	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF	MAMCPFETVS MDLCPFETLA MDLCPFDTVG	LTDDAHT. RNHTDT SDPVLFPRQ.	LSLS AGGGNGRPLS
45	T_thermo T_lanuginosa M_thermophila	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253 301	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF NLTDADTVAL	MAMCPFETVS MDLCPFETLA MDLCPFDTVG MDLCPFETVA	LTDDAHT. RNHTDT SDPVLFPRQ. SSSSDPATAD	LSLS AGGGNGRPLS 300 350
45	T_thermo T_lanuginosa M_thermophila P_involtus_A1	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253 301 DFCTLFEGIP	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF NLTDADTVAL GSFEAFAYGG	MAMCPFETVS MDLCPFETLA MDLCPFDTVG MDLCPFETVA DLDKFYGTGY	LTDDAHT. RNHTDT SDPVLFPRQ. SSSSDPATAD GQELGPVQGV	LSLS AGGGNGRPLS 300 350 GYVNELIARL
	T_thermo T_lanuginosa M_thermophila P_involtus_A1 P_involtus_A2	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253 301 DFCTLFEGIP DFCTLFEGIP	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF NLTDADTVAL GSFEAFAYGG GSFEAFAYAG	MAMCPFETVS MDLCPFETLA MDLCPFDTVG MDLCPFETVA DLDKFYGTGY DLDKFYGTGY	LTDDAHT. RNHTDT SDPVLFPRQ. SSSSDPATAD GQELGPVQGV GQALGPVQGV	LSLS AGGGNGRPLS 300 350 GYVNELIARL GYINELLARL
	T_thermo T_lanuginosa M_thermophila P_involtus_A1 P_involtus_A2 T_pubescens	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253 301 DFCTLFEGIP DFCTLFEGIP EFCDIYEELQ	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF NLTDADTVAL GSFEAFAYGG GSFEAFAYAG AE.DAFAYNA	MAMCPFETVS MDLCPFETLA MDLCPFDTVG MDLCPFETVA DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY	LTDDAHT. RNHTDT SDPVLFPRQ. SSSSDPATAD GQELGPVQGV GQALGPVQGV GQPLGPVQGV	LSLS AGGGNGRPLS 300 350 GYVNELIARL GYINELLARL GYINELIARL
	T_thermo T_lanuginosa M_thermophila P_involtus_A1 P_involtus_A2 T_pubescens A_pediades	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253 301 DFCTLFEGIP DFCTLFEGIP EFCDIYEELQ PFCNLFTP	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF NLTDADTVAL GSFEAFAYGG GSFEAFAYAG AE.DAFAYNA EEFAQFEYFG	MAMCPFETUS MDLCPFETLA MDLCPFDTVG MDLCPFETVA DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY	LTDDAHT. RNHTDT SDPVLFPRQ. SSSSDPATAD GQELGPVQGV GQALGPVQGV GQPLGPVQGV GQPLGPVQGV	LSLS AGGGNGRPLS 300 350 GYVNELIARL GYINELLARL GYINELIARL GYINELLARL
	T_thermo T_lanuginosa M_thermophila P_involtus_A1 P_involtus_A2 T_pubescens A_pediades P_lycii	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253 301 DFCTLFEGIP DFCTLFEGIP EFCDIYEELQ PFCNLFTP PFCDLFTA	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF NLTDADTVAL GSFEAFAYGG GSFEAFAYAG AE.DAFAYNA EEFAQFEYFG EEYVSYEYYY	MAMCPFETVS MDLCPFETLA MDLCPFDTVG MDLCPFETVA DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY	LTDDAHT. RNHTDT SDPVLFPRQ. SSSSDPATAD GQELGPVQGV GQALGPVQGV GQPLGPVQGV GQPLGPVQGV GQPLGPVQGV GQPLGPVQGV	LSLS AGGGNGRPLS 300 350 GYVNELIARL GYINELLARL GYINELLARL GYINELLARL GYINELLARL
	T_thermo T_lanuginosa M_thermophila P_involtus_A1 P_involtus_A2 T_pubescens A_pediades P_lycii A_fumigatus	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253 301 DFCTLFEGIP DFCTLFEGIP EFCDIYEELQ PFCNLFTP PFCDLFTA PFCQLFTH	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF NLTDADTVAL GSFEAFAYGG GSFEAFAYAG AE.DAFAYNA EEFAQFEYFG EEYVSYEYYY NEWKKYNYLQ	MAMCPFETVS MDLCPFETLA MDLCPFDTVG MDLCPFETVA DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY SLGKYYGYGA	LTDDAHT. RNHTDT SDPVLFPRQ. SSSSDPATAD GQELGPVQGV GQALGPVQGV GQPLGPVQGV GQPLGPVQGV GNALGPVQGV GNALGPVQGV	LSLS AGGGNGRPLS 300 350 GYVNELIARL GYINELLARL GYINELLARL GYINELLARL GYVNELLARL GYVNELLARL GYVNELLARL
50	T_thermo T_lanuginosa M_thermophila P_involtus_A1 P_involtus_A2 T_pubescens A_pediades P_lycii A_fumigatus	EKIKDHLPGV KKITKHMPGV ARVNANLPGA 253 301 DFCTLFEGIP DFCTLFEGIP EFCDIYEELQ PFCNLFTP PFCDLFTA PFCQLFTH PFCALFTH	QLSTDDVVNL DLAVSDVPYL NLTLEDVPLF NLTDADTVAL GSFEAFAYGG GSFEAFAYAG AE.DAFAYNA EEFAQFEYFG EEYVSYEYYY NEWKKYNYLQ DEWRQYDYLQ	MAMCPFETUS MDLCPFETLA MDLCPFDTVG MDLCPFETVA DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY DLDKFYGTGY SLGKYYGYGA SLGKYYGYGA	LTDDAHT. RNHTDT SDPVLFPRQ. SSSSDPATAD GQELGPVQGV GQALGPVQGV GQPLGPVQGV GQPLGPVQGV GNALGPVQGV GNALGPVQGV GNPLGPAQGI GNPLGPAQGI	LSLS AGGGNGRPLS 300 350 GYVNELIARL GYINELLARL GYINELLARL GYINELLARL GYVNELLARL GYVNELLARL GYVNELLARL GFTNELIARL

Fig. 1B

3/51

```
A_ficuum_NRRL3135 PFCDLFT..H DEWINYDYLQ SLKKYYGHGA GNPLGPTQGV GYANELIARL
            A terreus
                       PFCDLFT..A TEWTQYNYLL SLDKYYGYGG GNPLGPVQGV GWANELMARL
             T_thermo PFCALST..Q EEWQAYDYYQ SLGKYYGNGG GNPLGPAQGV GFVNELIARM
         T_lanuginosa PFCHLFT..A DDWMAYDYYY TLDKYYSHGG GSAFGPSRGV GFVNELIARM
  5
        M_thermophila PFCRLFS..E SEWRAYDYLQ SVGKWYGYGP GNPLGPTQGV GFVNELLARL
                       301
                                                                          349
                       351
                                                                          400
        P_involtus_A1
                       TNS.AVRDNT QTNRTLDASP VTFPLNKTFY ADFSHDNLMV AVFSAMGLFR
        P_involtus_A2
 10
                       THS.AVNDHT QTHRTLDAAP DTFPLNKTMY ADFSHDNLMV AVFSAMGLFR
          T_pubescens
                       TAQ.NVSDHT QTNSTLDSSP ETFPLNRTLY ADFSHDNQMV AIFSAMGLFN
           A_pediades
                       TEM. PVRDNT QTNRTLDSSP LTFPLDRSIY ADLSHDNQMI AIFSAMGLFN
                       TGQ.AVRDET QTNRTLDSDP ATFPLNRTFY ADFSHDNTMV PIFAALGLFN
              P_lycii
          A_fumigatus
                       TRS.PVQDHT STNSTLVSNP ATFPLNATMY VDFSHDNSMV SIFFALGLYN
 15
                       TRS.PVQDHT STNHTLDSNP ATFPLNATLY ADFSHDNSMI SIFFALGLYN
             consphyA
           A nidulans
                      TQS.PVQDNT STNHTLDSNP ATFPLDRKLY ADFSHDNSMI SIFFAMGLYN
    A_ficuum_NRRL3135
                       THS.PVHDDT SSNHTLDSSP ATFPLKSTLY ADFSHDNGII SILFALGLYN
            A terreus
                       TRA. PVHDHT CVNNTLDASP ATFPLNATLY ADFSHDSNLV SIFWALGLYN
             T_thermo THS.PVQDYT TVNHTLDSNP ATFPLNATLY ADFSHDNTMT SIFAALGLYN
 20
         T_lanuginosa
                       TGNLPVKDHT TVNHTLDDNP ETFPLDAVLY ADFSHDNTMT GIFSAMGLYN
                      A.GVPVRDGT STNRTLDGDP RTFPLGRPLY ADFSHDNDMM GVLGALGAYD
        M_thermophila
                       350
                                                              383
 25
                       401
                                                                         450
        P_involtus_A1
                      QPAPLSTSVP NPWR....T WRTSSLVPFS GRMVVERLSC
        P_involtus_A2
                      QSAPLSTSTP DPNR....T WLTSSVVPFS ARMAVERLSC
          T_pubescens QSAPLDPTTP DPAR....T FLVKKIVPFS ARMVVERLDC
           A_pediades QSSPLDPSFP NPKR....T WVTSRLTPFS ARMVTERLLC QRDGTGSGGP
 30
              P_lycii ATA.LDPLKP DENR....L WVDSKLVPFS GHMTVEKLAC ......
         A_fumigatus GTEPLSRTSV ESAKE..LDG YSASWVVPFG ARAYFETMQC
             consphyA GTAPLSTTSV ESIEE..TDG YSASWTVPFG ARAYVEMMQC
          A_nidulans GTQPLSMDSV ESIQE..MDG YAASWTVPFG ARAYFELMQC .....
    A_ficuum_NRRL3135 GTKPLSTTTV ENITQ..TDG FSSAWTVPFA SRLYVEMMQC ......
 35
                      GTAPLSQTSV ESVSQ..TDG YAAAWTVPFA ARAYVEMMQC .....
            A terreus
                      GTAKLSTTEI KSIEE..TDG YSAAWTVPFG GRAYIEMMQC ......
             T_thermo
        T_lanuginosa GTKPLSTSKI QPPTGAAADG YAASWTVPFA ARAYVELLRC ETETSSEEEE
       M_thermophila GVPPLDKTAR RDPEE..LGG YAASWAVPFA ARIYVEKMRC SGGGGGGGG
40
                             384
                                                                         425
                      451
                                                                         500
       P_involtus_A1
                      .....FGT TKVRVLVQDQ VQPLEFCGGD RNGLCTLAKF VESQTFARSD
       P_involtus_A2
                     .....AGT TKVRVLVQDQ VQPLEFCGGD QDGLCALDKF VESQAYARSG
         T_pubescens
                     .....GGA QSVRLLVNDA VQPLAFCGAD TSGVCTLDAF VESQAYARND
45
          A_pediades SRIMRNGNVQ TFVRILVNDA LQPLKFCGGD MDSLCTLEAF VESQKYARED
             P_lycii
                     .....SGK EAVRVLVNDA VQPLEFCGG. VDGVCELSAF VESQTYAREN
         A_fumigatus K..S...EKE PLVRALINDR VVPLHGCDVD KLGRCKLNDF VKGLSWARSG
            consphyA Q..A...EKE PLVRVLVNDR VVPLHGCAVD KLGRCKRDDF VEGLSFARSG
          A_nidulans E.....KKE PLVRVLVNDR VVPLHGCAVD KFGRCTLDDW VEGLNFARSG
50 A_ficuum_NRRL3135 Q..A...EQA PLVRVLVNDR VVPLHGCPVD ALGRCTRDSF VRGLSFARSG
           A_terreus R..A...EKE PLVRVLVNDR VMPLHGCPTD KLGRCKRDAF VAGLSFAQAG
            T_thermo D..D...SDE PVVRVLVNDR VVPLHGCEVD SLGRCKRDDF VRGLSFARQG
        T_lanuginosa E..G...EDE PFVRVLVNDR VVPLHGCRVD RWGRCRRDEW IKGLTFARQG
       M_thermophila E..GRQEKDE EMVRVLVNDR VMTLKGCGAD ERGMCTLERF IESMAFARGN
55
                      426
```

Fig. 1C

439

		501	514
	P_involtus_A1	GAGDFEKCFA	TSA.
	P_involtus_A2	GAGDFEKCLA	TTV.
	T_pubescens	GEGDFEKCFA	т
5	A_pediades	GQGDFEKCFD	
	P_lycii	GQGDFAKCGF	VPSE
	A_fumigatus	GNWGECFS	
	consphyA	GNWAECFA	*
	A_nidulans	GNWKTCFT	L
10	A_ficuum_NRRL3135	GDWAECFA	• • • •
	A_terreus	GNWADCF.	
	$\mathtt{T_thermo}$	GNWEGCYA	ASE.
	${ t T_lanuginosa}$		
	M_thermophila	GKWDLCFA	
15			

Fig. 1D

(2) INFORMATION FOR SEQ ID NO: 25:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1522 base pairs . (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(vi) ORIGINAL SOURCE:(A) ORGANISM: Paxillus involutus(B) STRAIN: CBS 100231	
(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION:581383	
(ix) FEATURE: (A) NAME/KEY: mat peptide	
(B) LOCATION: 1151383	
(ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION:58114	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
GGATCCGAAT TCGGCACTCG TACGGTCCCC CGGTCTACCC TCTGCTCGCC TTGGAAG	57
ATG CTC TTC GGT TTC GTC GCC CTC GCC TGT CTC TTG TCC CTC TCC GAG	105
Met Leu Phe Gly Phe Val Ala Leu Ala Cys Leu Leu Ser Leu Ser Glu -19 -15 -5	
GTC CTT GCG ACC TCC GTG CCC AAG AAC ACA GCG CCG ACC TTC CCC ATT Val Leu Ala Thr Ser Val Pro Lys Asn Thr Ala Pro Thr Phe Pro Ile 1 5 10	153
CCG GAG AGT GAG CAG CGG AAC TGG TCC CCG TAC TCG CCC TAC TTC CCT Pro Glu Ser Glu Gln Arg Asn Trp Ser Pro Tyr Ser Pro Tyr Phe Pro 15 20 25	201
CTT GCC GAG TAC AAG GCT CCT CCG GCG GGC TGC CAG ATC AAC CAG GTC	249
Leu Ala Glu Tyr Lys Ala Pro Pro Ala Gly Cys Gln Ile Asn Gln Val 30 40 45	
AAC ATC ATC CAA AGA CAT GGT GCC CGG TTC CCG ACC TCT GGC GCG ACC	297
Asn Ile Ile Gln Arg His Gly Ala Arg Phe Pro Thr Ser Gly Ala Thr 50 55 60	
ACC CGT ATC AAG GCG GGT TTG ACC AAG TTG CAA GGC GTC CAG AAC TTT Thr Arg Ile Lys Ala Gly Leu Thr Lys Leu Gln Gly Val Gln Asn Phe	345
65 70 75	
ACC GAC GCC AAA TTC AAC TTC ATC AAG TCG TTC AAG TAC GAT CTC GGT Thr Asp Ala Lys Phe Asn Phe Ile Lys Ser Phe Lys Tyr Asp Leu Gly 80 85 90	393
AAC TCG GAC CTC GTT CCG TTC GGT GCA GCA CAG TCC TTC GAC GCT GGT Asn Ser Asp Leu Val Pro Phe Gly Ala Ala Gln Ser Phe Asp Ala Gly 95 100 105	441

Fig. 2A

					CTT Leu				489
					CGT Arg 135				537
					AGT Ser				585
					GGC Gly				633
					GAC Asp				681
					GCA Ala				729
					GCG Ala 215				777
					AAG Lys				825
					GAG Glu			GGC	873
					TAC Tyr				921
					CTC				969
					AAC Asn 295				1017
					TTC				1065
			Val		GCC Ala				1113
					AAC Asn				1161

Fig. 2B

ACG Thr	AGC Ser	TCC Ser	CTC Leu	GTC Val	CCC	TTC Phe	TCC	GGA Glv	CGC	ATG Met	GTC Val	GTG Val	GAA Glu	CGC Arg	CTC Leu		1209
350					355			,	3	360	V				365		
														CAG Gln			1257
	-		3	370		3 -	• • •	,	375	200	vuz	٠	p	380	V.1.2		
														ACG			1305
	110	neu	385	rne	Суз	GTĀ	GIĀ	390	Arg	nea	GTÀ	ren	395	Thr	ren		
														GCG			1353
-La	пуз	400	Val	GIII	ser	GIN	405	Pne	Ala	Arg	ser	410	СТĀ	Ala	СТĀ		
GAC	TTT	GAG	AAG	TGC	TTC	GCG	ACC	TCG	GCG	TGAG	GATO	GA (CGAA	CAAAF	T		1403
qua	Phe 415	GIU	гда	Сўз	Pne	420	Tnr	ser	Ala								
raa <i>r</i>	TTGG	GG I	'ATTT	TATO	G TA	TAAT	TATO	GT6	TGTG	STAG	AACA	ATGG(CT (CGGGG	TCGAT	:	1463
SGT	AAAA	IGC A	AAGG	TTTP	T CG	TCTA	LAAA	AAA A	AAAA	AAA	AAAA	ITAA!	rcc 1	rgcgg	CCGC		1522

(2) INFORMATION FOR SEQ ID NO: 27:

														•	
	(i	(A) L B) T C) S	ENGT YPE:	H: 1 nuc DEDN	642 leic ESS:	aci sin	pai d	rs						
	(ii) MO	LECU	LE T	YPE:	CDN	A								
	(vi	(A) O		ISM:	Pax	illu 0023		volu	tus					
•	(ix		A) N	e: Ame/ Ocat											
	(ix		A) N	AME/			_pep	tide 3							
	(ix		A) N					tide							
	(xi) SE	QUEN	CE D	ESCR:	IPTI:	ON:	SEQ :	ID N	0: 2	7:				
GGA'	rccg	AAT '	TCCA	GTCC	CC A	agct:	AATC	C TC	TGCT	CGCC	TTG	GAAG		CTC Leu	56
									CAC						104
_									AAG Lys 10						152
									CCT Pro						200
									ATT Ile						248
									TCG Ser						296
									GTC Val						344
									TAC Tyr 90						392
									F	ia	3	BA			

CTC Leu	GTG Val	CCA Pro	TTC Phe 100	GGC Gly	GCA Ala	GCA Ala	CAA Gln	TCA Ser 105	TTC Phe	GAT Asp	GCC Ala	GGC Gly	CTG Leu 110	GAG Glu	GTC Val	440
TTC	GCT Ala	CGC Arg 115	TAT Tyr	TCG Ser	AAG Lys	CTC Leu	GTC Val 120	AGC Ser	TCG. Ser	GAC Asp	AAC Asn	CTG Leu 125	CCT Pro	TTC Phe	ATT Ile	488
CGC Arg	TCA Ser 130	GAT Asp	ggt Gly	AGC Ser	GAT QeA	CGT Arg 135	GTA Val	GTC Val	GAC Asp	ACT Thr	GCT Ala 140	ACG Thr	AAC Asn	TGG Trp	ACT Thr	536
GCA Ala 145	GGT Gly	TTT	GCT Ala	TCC Ser	GCG Ala 150	AGC Ser	CGC Arg	AAC Asn	GCG Ala	ATC Ile 155	CAA Gln	CCC	AAG Lys	CTC	GAC Asp 160	584
TTG Leu	ATA Ile	CTT	CCA Pro	CAA Gln 165	ACT Thr	GC	AAT Asn	GAC Asp	ACC Thr 170	CTC Leu	GAG Glu	GAC Asp	AAC Asn	ATG Met 175	TGT Cys	632
CCA Pro	GCT Ala	GCT Ala	GGC Gly 180	GAA Glu	TCC	GAC Asp	CCT Pro	CAG Gln 185	GTC Val	GAT Asp	GCG Ala	TGG	TTG Leu 190	GCG Ala	TCC Ser	680
GCC Ala	TTC Phe	CCA Pro 195	TCT Ser	GTC Val	ACC Thr	GCG Ala	CAG Gln 200	Leu	AAC Asn	GCT	GCA Ala	GCG Ala 205	Pro	GGT Gly	GCC Ala	728
TAA neA	CTC Leu 210		GAC Asp	GCC Ala	GAC Asp	GCC Ala 215	Phe	AAC Asn	CTC	GTC Val	AGC Ser 220	Leu	TGT Cys	Pro	TTC Phe	776
ATG Met 225	Thr	GTT Val	TCG Ser	AAG Lys	GAG Glu 230	Gln	AAG Lys	AGC Ser	GAC Asp	TTC Phe 235	Cys	ACG Thr	TTG Leu	TTC	GAG Glu 240	824
					Phe					Tyr					GAC QEA	872
				Thr					Ala					Gln	GLY	920
			Ile					Ala					Ser		GTG Val	968
		Asn					Arg					Ala			ACG Thr	1016
	Pro					Met					Ser				CTC Leu 320	1064
		GCC Ala			Ser					Phe						1112

Fig. 3B

CTC Leu	AGC Ser	ACG Thr	TCC Ser 340	ACA Thr	CCG Pro	gat Asp	CCG Pro	AAC Asn 345	CGC Arg	ACG Thr	TGG Trp	CTC Leu	ACG Thr 350	AGC Ser	TCT Ser	1160
GTC Val	GTT Val	CCG Pro 355	TTC Phe	TCC Ser	GCG Ala	CGC Arg	ATG Met 360	GCC Ala	GTC Val	GAA Glu	CGC Arg	CTC Leu 365	AGC Ser	TGT Cys	GCT Ala	1208
Gly	ACC Thr 370	ACG Thr	AAG Lys	GTG Val	CGC Arg	GTC Val 375	CTG Leu	GTG Val	CAG Gln	GAC Asp	CAG Gln 380	GTC Val	CAG Gln	CCA Pro	CTC Leu	1256
GAG Glu 385	TTC Phe	TGC Cys	GGC Gly	GGC	GAC Asp 390	CAG Gln	GAT Asp	GGG Gly	TTG Leu	395 Cya TGC	GCG Ala	CTA Leu	GAC Asp	AAG Lys	TTC Phe 400	1304
GTC Val	GAG Glu	AGC Ser	CAG Gln	GCG Ala 405	TAT Tyr	GCA Ala	CGG Arg	AGT Ser	GGT Gly 410	GGC Gly	GCA Ala	GGT Gly	GAC Asp	TTT Phe 415	GAG Glu	1352
DAA Lya	TGT Cys	CTT Leu	GCG Ala 420	ACG Thr	ACG Thr	GTG Val	TGAG	ATGG	GG T	'AATC	TACG	G TG	AAGC	CAGCG	;	1403
GAGA	GCCI	'CT C	AACG	AATG	C AA	AGGA	TAGG	TTC	GAGG	CTT	ACTI	CATC	AA C	CTAT	ATCAT	1463
CATA	.GGAC	'AA G	cccc	CCAA	T AG	CCAG	ACTO	GTC	GTTT	GAC	ATCG	TGTA	TG A	AAAT	AACCC	1523
ACCC	ACGC	AC T	CCGC	TGCC	A CT	ATTC	GCGT	GTA	TCGC	ATA	CTAG	GCGT	TT I	CGCC	CAGTT	1583
GAAC	ATGA	GC C	CATT	CTGT	c co	САСТ	GAAA	מממ	מממ	מממ	ממממ	ידינית	CC T	יכרכה	CCGC	1642

95

GTT ACG AAC TAC ACC TAC AGC TTA GGT CAG GAC AGC CTC GTT GAA CTC Val Thr Asn Tyr Thr Tyr Ser Leu Gly Gln Asp Ser Leu Val Glu Leu

100

11/51

(2)	INFO	RMAT:	ION :	FOR :	SEQ :	ID NO	0: 2	9:								
	(i)	(B (C) LE	ngth Pe: : Rand	: 15: nucl EDNE	36 baeic a SS:	ase ; acid sing	pair	s							
	(ii)	MOL	ECUL	E TY	PE:	CDNA										
	(vi)) OR	GANI	SM:	Tram	etes 0232	pub	esce	ns						
	(ix)	-	TURE .) NA .) LO	ME/K			407									
	(ix)		AN (WE\K		_	pept 1407									
	(ix)			ME/K		-	pept .29	ide:								
	(xi)	SEÇ	QUENC	E DE	SCRI	PTIC	N: 5	SEQ J	D NC	: 29):					
CCNO																
GGMI	CCGA	LAT I	CGCC	CCC	C AT	TCGI	TCC	Y TCI	TAGO	AGC	CGTC	CGCG	CC C	AGGT	CTTC	G 60
					ATG	GCC Ala	TTC	TCA Ser	ATC	TTG	GCC	TCG	CTG	CTC	TTC	G 60
ATA	ACCC(CCC G	GCA	FACT	ATG Met -17	GCC Ala AGG	TTC Phe -15	TCA	ATC Ile	TTG Leu CGT	GCC Ala GCA	TCG Ser -10	CTG Leu ATC	CTC Leu CCG	TTC Phe CTC	
GTG Val	TGT Cys -5 GAC	TAT Tyr	GCA Ala TCC	TAC Tyr GCG	ATG Met -17 GCC Ala	GCC Ala AGG Arg 1	TTC Phe -15 GCT Ala	TCA Ser	ATC Ile CCC Pro	TTG Leu CGT Arg 5	GCC Ala GCA Ala	TCG Ser -10 CAT His	CTG Leu ATC Ile	CTC Leu CCG Pro	TTC Phe CTC Leu 10	111
GTG Val CGC Arg	TGT Cys -5 GAC Asp	TAT Tyr ACC Thr	GCA Ala TCC Ser	TAC Tyr GCG Ala 15	ATG Met -17 GCC Ala TGT Cys	GCC Ala AGG Arg 1 CTA Leu	TTC Phe -15 GCT Ala GAT Asp	TCA Ser GTG Val GTA Val	ATC Ile CCC Pro ACA Thr 20 GCA	TTG Leu CGT Arg CGC Arg	GCC Ala GCA Ala GAT Asp	TCG Ser -10 CAT His GTG Val	CTG Leu ATC Ile CAG Glñ	CTC Leu CCG Pro CAG Gln 25	TTC Phe CTC Leu 10	111 159 207
GTG Val CGC Arg	TGT Cys -5 GAC Asp TCC Ser	TAT Tyr ACC Thr ATG Met	GCA Ala TCC Ser TAC Tyr 30	TAC Tyr GCG Ala 15 TCT Ser	ATG Met -17 GCC Ala TGT Cys CCC Pro	GCC Ala AGG Arg 1 CTA Leu TAT Tyr	TTC Phe -15 GCT Ala GAT Asp TTC Phe	TCA Ser GTG Val GTA Val	ATC Ile CCC Pro ACA Thr 20 GCA Ala	TTG Leu CGT Arg CGC Arg	GCC Ala GCA Ala GAT Asp ACT Thr	TCG Ser -10 CAT His GTG Val TAT Tyr	CTG Leu ATC Ile CAG Gln GTG Val 40 CGT	CTC Leu CCG Pro CAG Gln 25 GCT Ala	TTC Phe CTC Leu 10 AGC Ser CCG Pro	111 159 207
GTG Val CGC Arg TGG Trp	TGT Cys -5 GAC Asp TCC Ser GCG Ala	TAT TYT ACC Thr ATG Met AGT Ser 45	GCA Ala TCC Ser TAC Tyr 30 TGC Cys	TAC Tyr GCG Ala 15 TCT Ser CAG Gln	ATG Met -17 GCC Ala TGT Cys CCC Pro ATC Ile	GCC Ala AGG Arg 1 CTA Leu TAT Tyr AAT Asn	TTC Phe GAT Asp TTC Phe CAG Gln 50 GCA	TCA Ser GTG Val CCG Pro 35 GTC Val	ATC Ile CCC Pro ACA Thr 20 GCA Ala CAC His	TTG Leu CGT Arg CGC Arg GCA Ala ATC Ile CGC	GCC Ala GCA Ala GAT Asp ACT Thr ATC Ile	TCG Ser -10 CAT His GTG Val TAT Tyr CAA Gln 55 CAG	CTG Leu ATC Ile CAG Glñ GTG Val 40 CGT Arg	CTC Leu CCG Pro CAG Gln 25 GCT Ala CAT His	TTC Phe CTC Leu 10 AGC Ser CCG Pro GGT Gly	111 159 207

Fig. 4A

447

105

GGT Gly	GCG Ala	ACT Thr	CAG Gln 110	TCC Ser	TCC Ser	GAA Glu	GCG Ala	GGC Gly 115	CAG Gln	GAG Glu	GCA Ala	TTC Phe	ACG Thr 120	CGG Arg	TAC Tyr	495
TCA Ser	TCC Ser	CTC Leu 125	GTG Val	AGC Ser	GCG Ala	GAC Asp	GAG Glu 130	CTT Leu	CCC Pro	TTC Phe	GTT Val	CGG Arg 135	GCG Ala	TCG Ser	GGC Gly	543
TCA Ser	GAT Asp 140	CGC Arg	GTC Val	GTT Val	GCG Ala	ACT Thr 145	GCC Ala	AAC Asn	AAC Asn	TGG Trp	ACT Thr 150	GCA Ala	GGT Gly	TTC Phe	GCG Ala	591
CTT Leu 155	GCG Ala	AGC Ser	TCA Ser	AAC Asn	AGC Ser 160	ATC Ile	ACG Thr	CCC Pro	GTG Val	CTC Leu 165	TCA Ser	GTC Val	ATC Ile	ATT Ile	TCC Ser 170	639
GAA Glu	GCG Ala	GGC Gly	AAT Asn	GAC Asp 175	ACC Thr	CTC Leu	GAC Asp	GAC Asp	AAC Asn 180	ATG Met	TGC Cys	CCC	GCT Ala	GCA Ala 185	GGC	687
GAT Asp	TCG Ser	GAT Asp	CCC Pro 190	Gln	GTC Val	TAA neA	CAA Gln	TGG Trp 195	Leu	GCG Ala	CAG Gln	TTC	GCA Ala 200	CCG Pro	CCG Pro	735
ATG Met	ACT	GCT Ala 205	CGC	CTC Leu	AAC Asn	GCA Ala	GGC Gly 210	Ala	CCC	GGC Gly	GCG Ala	AAC Asn 215	CTC	ACG Thr	GAC Asp	783
ACG Thr	GAC Asp 220	Thr	TAC Tyr	AAC Asn	CTG	CTC Leu 225	ACG Thr	CTA Leu	TGC Cys	CCG Pro	TTC Phe 230	Glu	ACT	GTA Val	GCC Ala	831
ACC Thr 235	Glu	CGG	CGT Arg	AGT Ser	GAA Glu 240	Phe	TGC	GAC Asp	Ile	TAC Tyr 245	Glu	GAG Glu	CTG Leu	CAG Gln	GCG Ala 250	· 879
GAA Glu	GAC Asp	GCC	TTC Phe	GCG Ala 255	Tyr	TAA :	GCC Ala	GAT Asp	CTC Leu 260	Asp	AAG Lys	Phe	TAC	GGC Gly 265	ACT Thr	927
GGA Gly	TAC	GGC	Gln 270	Pro	Leu	GGA Gly	CCC Pro	GTG Val 275	Gln	GGC Gly	GTC Val	Gly	TAC Tyr 280	Ile	AAC Asn	975
GAG Glu	CTC	Ile 285	Ala	CGC	Leu	ACC Thr	GCG Ala 290	Glr	AAC Asn	GTG Val	TCC Ser	GAC Asp 295	His	ACG	CAG Gln	1023
ACG Thr	AAC Asn 300	Sez	ACA Thr	CTC Leu	GAC Asp	Ser 305	Ser	Pro	GAG Glu	ACG Thr	Phe 310	Pro	CTC Lev	AAC Asn	CGC Arg	1071
ACG Thr 315	Leu	TAC	GCG Ala	GAC Asp	TTC Phe 320	Ser	CAC His	C GAC	C AAC Asn	CAG Gln 325	Met	GTC Val	GCG Ala	ATC Ile	TTC Phe 330	1119
TCG Ser	GCC	ATG	GGT Gly	CTC Leu 335	Phe	AAC Asn	CAG Glr	TCC Ser	GCG Ala	Pro	CTC Leu	Aap GAC	CCG Pro	ACG Thr 345	ACG Thr	1167

Fig. 4B

											ATC Ile					1215
											GGT Gly				_	1263
_											GCG Ala 390				_	1311
											GTC Val					1359
											AAG Lys					1407
TAGI	TCC	GG 1	'GTAC	ATAC	c c	GGGI	laga1	GTA	CTC1	CTA	GACA	CCT	GC A	atgt <i>i</i>	CTTAT	1467
CGA1	TAGE	AA G	AGAC	CCT	G CI	GCT	TGC	CTC	CAAAI	AAA	AAAA	AAA	LAA A	AAAA	AATTCC	1527
TGC	GCC	C														1536

(2)	INFO	RMAI	MOI	FOR	SEQ	ID N	0: 2	1:								
	(i)	(P (E (C	LE S) TY C) ST	E CH NGTH PE: RAND	: 15 nucl EDNE	01 b eic SS:	ase acid sing	pair l	: s							
	(11)	MOI	ECUI	E TY	PE:	CDNA										
	(vi)	(2) OF	L SC RGANI RAIN	SM:	Agro	_	_	liade	:5						
	(ix)	(2	-	: ME/K CATI			.375									
	(1x)	(2		:: ME/F CATI				:ide								
	(ix)	(E: AME/F CATI		_		ide								
	(xi)	SEC	QUENC	CE DE	ESCRI	PTIC	on: 2	SEQ J	D NO): 21	L:					
GGA	rccgi	AAT 1	CACI	Me		er Le			rc GO Le Gl	Ly G						49
TTT Phe -15	TTA Leu	CAG Gln	GCG Ala	AGC Ser	GCA Ala -10	TAC Tyr	GGC	GGC	GTC Val	GTG Val -5	CAG Gln	GCC Ala	ACA Thr	TTC Phe	GTG Val 1	97
									GAC Asp						_	145
									CCT Pro						-	193
									CAT His							241
									GCT Ala							289
									GAC Asp 75							337
									CCG Pro							385

TCA Ser	CAA Gln	GCT Ala 100	GGA Gly	GAG Glu	GAA Glu	ACG Thr	TTT Phe 105	CAA Gln	CGA Arg	TAC Tyr	TCG Ser	TTT Phe 110	CTG Leu	GTG Val	TCC Ser	433
AAA Lys	GAG Glu 115	AAC Asn	TTA Leu	CCT Pro	TTT Phe	GTA Val 120	aga Arg	GCT Ala	TCG Ser	AGT Ser	TCC Ser 125	AAT Asn	CGA Arg	GTC Val	GTC Val	481
GAC Asp 130	TCA Ser	GCT Ala	ACC Thr	AAC Asn	TGG Trp 135	ACG Thr	GAA Glu	GGT Gly	TTT Phe	TCT Ser 140	GCG Ala	GCC Ala	AGT Ser	CAC His	CAC His 145	529
GTC Val	TTG Leu	AAT Asn	CCC Pro	ATT Ile 150	CTC	TTT Phe	GTA Val	ATC Ile	CTC Leu 155	TCA Ser	GAA Glu	AGT Ser	CTC Leu	TAA Asn 160	GAC Asp	577
ACG Thr	CTT Leu	GAC Asp	TAD qeA 261	GCC Ala	ATG Met	TGC Cys	CCT Pro	AAC Asn 170	GCG Ala	GGC Gly	TCC	TCC Ser	GAC Asp 175	CCG Pro	CAG Gln	625
ACT	GGT Gly	ATC Ile 180	Trp	ACC	TCG Ser	ATA Ile	TAC Tyr 185	GGG Gly	ACG Thr	CCT	ATT Ile	GCC Ala 190	AAC Asn	CGA Arg	CTA Leu	673
AAT Asn	CAG Gln 195	CAG Gln	GCT Ala	CCG Pro	GGT Gly	GCA Ala 200	Asn	ATT	ACA Thr	GCT Ala	GCC Ala 205	Asp	GTG Val	TCG Ser	AAC Asn	721
CTT Leu 210	ATA Ile	CCG Pro	CTT Leu	TGC	GCA Ala 215	Phe	GAG Glu	ACG Thr	ATA Ile	GTA Val 220	AAG Lys	GAG GAG	ACG Thr	CCA Pro	AGT Ser 225	769
CCT Pro	TTC	TGT Cys	AAT Asn	TTG Leu 230	Phe	ACC	CCC Pro	GAA Glu	GAG Glu 235	Phe	GCA Ala	CAG Gln	TTT	GAA Glu 240	Tyr	817
TTC Phe	GGT Gly	GAC Asp	CTG Leu 245	Asp	AAG Lys	TTC Phe	TAT	GGG Gly 250	Thr	GGT Gly	TAT	GGA Gly	CAA Gln 255	Pro	TTA Leu	865
GGA Gly	CCT	GTG Val 260	Gln	GGT	GTC Val	GGC	TAC Tyr 265	Ile	TAA :	GAA Glu	CTT Leu	CTT Leu 270	Ala	CGA Arg	CTC	913
ACA Thr	GAA Glu 275	Met	CCA	GTT Val	CGA Arg	GAT Asp 280	Asn	ACC Thr	CAG Gln	ACG	AAC Asn 285	Arg	ACA	CTC Leu	GAC Asp	961
TCT Ser 290	Ser	CCG	CTT Leu	ACA Thr	TTT Phe 295	Pro	CTC Leu	GAC Asp	CGC Arg	Ser 300	Ile	TAC	GCT	GAC Asp	CTC Leu 305	1009
TCG Ser	CAC	GAT Asp	AAC Asn	CAA Gln 310	Met	ATC	GCG Ala	ATA	TTT Phe 315	Ser	GCG	ATG Met	GGI	Leu 320	TTC Phe	1057
AAC Asn	CAG Gln	AGT Ser	TCA Ser 325	Pro	TTG Lev	GAT Asp	CCG Pro	TCC Ser 330	Phe	CCC Pro	AAC ASI	C CCC	AAG Lys 335	Arg	ACT Thr	1105

									AGC Ser						_		1153
									GLY						AGG Arg		1201
									TTT Phe								1249
									GGA Gly 395								1297
		Leu							CAG Gln								1345
								TTT Phe	GAT Asp	TAA	ATAT:	rgc į	AGTA!	rgc t (CA		1395
GTG	AGTAC	SAC 1	CACAC	STGC	AG GO	CCT	STAA	C TC	rtgti	ATTG	TGT:	TCT	GGA 2	ATTC	CTCGG	A	1455
GCG3	ragti	TG :	ragez	AAAA	A A	KAAA	AAAA	A AA	ATTC	CTGC	GGC	CGC					1501

17/51

(2) INFORMATION FOR SEQ ID NO: 23:

(1) SEQUENCE CHARACTERISTICS:

(B) TYI (C) STI	NGTH: 1593 base pair PE: nucleic acid RANDEDNESS: single POLOGY: linear	. ·	
(ii) MOLECULI	E TYPE: cDNA		
	L SOURCE: GANISM: Peniophora : RAIN: CBS 686.96	lycii	
	: ME/KEY: sig_peptide CATION:123212		
	: ME/KEY: mat_peptide CATION:2131439		
• •	:: ME/KEY: CDS CATION:1231439		
	E DESCRIPTION: SEQ	ID NO: 23: ATCTCGCT GAGCGGCCGA CGAGAACCTA	60
		TGTGAAGG CCCCATACCA GCCCTTATCG	120
AT ATG GTT TCT T	CG GCA TTC GCA CCT	TCC ATC CTA CTT AGC TTG ATG Ser Ile Leu Leu Ser Leu Met -20	167
		AGC TTT GTT GCG GCG CAG CTA Ser Phe Val Ala Ala Gln Leu -5	215
		TGG GGG CCT TAC GAT CCC TTC Trp Gly Pro Tyr Asp Pro Phe 15	263
		CCG GAA GGG TGC ACA GTG ACA Pro Glu Gly Cys Thr Val Thr 30	311
		GCG CGT TGG CCC ACA TCC GGC Ala Arg Trp Pro Thr Ser Gly 45	359
		GCG AAG ATA CAA ATG GCG CGA Ala Lys Ile Gln Met Ala Arg 60 65	407

Fig. 6A

TTC Phe	GGC	GTC Val	GCC Ala 85	TAD qea	CTG Leu	CTA Leu	CCG Pro	TTC Phe 90	GGG Gly	GCT Ala	AAC Asn	CAA Gln	TCG Ser 95	CAC	CAA Gln	503
ACC Thr	Gly	ACC Thr 100	GAT Asp	ATG Met	TAT Tyr	ACG Thr	CGC Arg 105	TAC Tyr	AGT Ser	ACA Thr	CTA Leu	TTT Phe 110	GAG Glu	GGC ·	GGG Gly	551
GAT Asp	GTA Val 115	CCC	TTT Phe	GTG Val	CGC Arg	GCG Ala 120	GCT Ala	GGT Gly	GAC Asp	CAA Gln	CGC Arg 125	GTC Val	GTT Val	GAC Asp	TCC Ser	599
TCG Ser 130	ACG Thr	AAC Asn	TGG Trp	ACG Thr	GCA Ala 135	Gly	TTT Phe	GGC Gly	GAT Asp	GCT Ala. 140	TCT	GGC	GAG Glu	ACT Thr	GTT Val 145	647
CTC Leu	CCG Pro	ACG Thr	CTC	CAG Gln 150	GTT Val	GTG Val	CTT Leu	CAA Gln	GAA Glu 155	GAG Glu	GGG	AAC Asn	TGC Cys	ACG Thr 160	CTC	695
TGC Cys	AAT Asn	AAT Asn	ATG Met 165	Суз	CCG Pro	TAA neA	GAA Glu	GTG Val 170	GAT Asp	GGT Gly	GAC Asp	GAA Glu	TCC Ser 175	ACA Thr	ACG Thr	743
TGG	CTG Leu	GGG Gly 180	Val	TTT Phe	GCG Ala	CCG Pro	AAC Asn 185	Ile	ACC	GCG	CGA	Leu 190	Asn	GCT	GCT Ala	791
GCG Ala	CCG Pro 195	Ser	GCC	AAC Asn	CTC Leu	TCA Ser 200	Asp	AGC Ser	GAC Asp	GCG Ala	CTC Leu 205	l Thr	CTC	ATG Met	gat Asp	839
ATG Met 210	Суз	CCG	TTC	GAC Asp	ACT Thr 215	Leu	AGC Ser	TCC Ser	: Gly	AAC Asn 220	Ala	AGC Ser	CCC Pro	TTC	TGT Cys 225	887
GAC Asp	CTA Leu	TTT	ACC	GCG Ala 230	Glu	GAG Glu	TAT Tyr	GTG Val	TCG Ser 235	Tyr	GAC Glu	TAC Tyr	TAC Tyr	TAT	GAC Asp	935
CTC	GAC Asp	AAG Lys	TAC Tyr 245	Tyr	GGC	ACG Thr	GGC Gly	CCC Pro 250	Gly	AAC Asn	GCT Ala	r CTC	GGT Gly 255	PEC	GTC Val	983
CAG Gln	GGC	GTC Val 260	. Gly	TAC	GTC Val	AAT Asn	GAG Glu 265	Lev	G CTI	GCA Ala	Arg	270 270	1 Thr	GJ?	CAA Gln	1031
GCC	GT1 Val 275	. Arg	ASP A	GAG Glu	ACG Thr	CAG Glr 280	Thi	AA S	c CGC	ACC Thi	28	n Yei	Ser	GAO	CCT Pro	1079
GCA Ala 290	Thi	TTC Phe	CCG Pro	CTO Lev	AAC Asr 295	Arg	ACC Thi	TTO	C TAC	GCC Ala 300	AS	C TTO	TCC Ser	CAT His	GAT Asp 305	1127
AAC Asn	: ACC	ATO	GTO Val	CCC Pro	Ile	TTT	C GCC	G GCG	G CTO a Lev 315	ı Gly	CTO	C TT(C AAC e Asi	320	C ACC A Thr	1175

Fig. 6B

								GAG Glu 330								1223
DAA Lys	CTG Leu	GTA Val 340	CCG Pro	TTC Phe	TCT Ser	GGA Gly	CAT His 345	ATG Met	ACG Thr	ĠTC Val	GAG Glu	AAG Lys 350	CTG Leu	GCA Ala	TGT Cys	1271
TCT Ser	GGG Gly 355	AAG Lys	GAG Glu	GCG Ala	GTC Val	AGG Arg 360	GTG Val	CTC Leu	GTG Val	AAC Asn	GAC Asp 365	GCG Ala	GTG Val	CAG Gln	CCG Pro	1319
CTG Leu 370	GAG Glu	TTC Phe	TGC Cys	GGA Gly	GGT Gly 375	GTT Val	GAT Asp	GGG Gly	GTG Val	TGC BY3	GAG Glu	CTT Leu	TCG Ser	GCT Ala	TTC Phe 385	1367
STA Val	GAG Glu	AGC Ser	CAG Gln	ACG Thr 390	TAT Tyr	GCG Ala	CGG Arg	GAG Glu	AAT Asn 395	GGG Gly	CAA Gln	GGC Gly	GAC Asp	TTC Phe 400	GCC Ala	1415
rya	TGC Cys	GGC	TTT Phe 405	GTT Val	CCG Pro	TCG Ser	GAA Glu	TAGO	:GGGA	GA C	CGTC	TATG	C TA	ACACA	AGTAA	1469
TGT	'GTAC	TC T	'ATAG	CACI	G TA	GCTG	TACT	TAC	AAGT	CGT	AGGG	TACG	AT C	GTAC	TTACG	1529
CTCG	TTTA	TT G	ATCC	TTCC	T TI	AAAA	AAAA	AAĄ	AAAA	AAA	AAAA	AAAA	AA A	TTCC	TGCGG	1589
CGC	:															1593

```
dredsedsderecsedseepteerdadsderedsderedsderedddereddatseds
                                                  60
czyddydreddetecerreddeededeteceddredredetecededredrederdrederd
                                                 120
 2daddddac2ddctddcctctdgcddtycdyrtecdsycddycycyddccdctdyd
                                                 180
240
 ttgggggggggaatfitettggtaattatetttetaeeestestestesttsttet
                                                 DOE
360
acttctagaaggacaggataaggataaaggggatacacgattatggcgccctgggtggcgc
                                                 420
 gregagetggatgettgaegeeggtetggeaaaeattttettettetageaeeeaaeeta
gtacttgatagagtgtttcggggtcagggtttgcgctgtgttttaccaatcaccaac
                                                540
tagtgctactactattattgcggctgttgtatgcagccgtgtaccaaaaatgccgcgcat
ctccattgatacttgtagttttgatagatcaatatttgggaggttgcgctgctct
                                                 660
gaaacccctctctcttgctgtacgtaacgtatgtgcacagtatgtcaccgacaaagacga
                                                720
780
attgaagactacatatgcgcaagacgttgacattaacggggtcctgcagccgccgcaggt
tgaaggtgtaatetgeatagegtggaaatgagagggetetgtggggeageeaggaaggtga 1020
gacgaaatgaggaaaggcaccagaagctgttgttctgaagtgcccgtggtcatagctc 1080
Caggattaagtacggatgtcccatgccaagctgctggcttcgaaagcgagtacggagtag 1140
tytecattyttelegaggyatececaatgugttagaeatgeeugaateaauttugueeta 1200
tttttggatttcaactgtttctctcgactgtgctcggtagcgactatgccgcaaggtaca 1260
ctacatgttgtacaataatcatacatcgaccttccgtaggagtgctgaaatacccgacct 1320
ccatttgctgttggttgagatgtacgatttacaaacacgtggagaggtgagccacagcga 1440
raggerrerggalggatterggegrereggalagggeelereregeeelactaleeggg 1500
cegatettgaeatggggetegeaggggtttaagtgeaeaetaeggagtaeggattaeae 1560
agtagtstatgggtggggggggttttgggtggccttgtgtggggctcaccggctgcctgt 1620
tereggggagtettggegggeegattggaeeeaeetaaeeaegggtagtettggeeegge 1880
caniticacacogeceteatettteggagecagteagggaggeagggcaetacteagteagg 1740
tacacacytegggutostegatgetggqtgaeategaggegataetgeatteeaaetaeg 1800
gttggcataggaggtatcctattctagagctgttctacgccggaacgtaacccgggataa 1860
cccgggatategetteeetgagegagegegetgetgaggateatacaacccaacaaccga 1920
ggaatatggcgtcgctcttcgactggttccggaagggggcatctgggtacacatatgcac 2100
ctcttccgcacggcagggatataaaccgggagtgcagtcccaccgatcatgctgagtccg 2160
cccqtctccaqacttcacqqtcqcagagqactaqacqcqcqqqtqaaqatqactqqcctcq 2220
                                    M T G L G
gagtgatggtggtgatggtcgcttcctggcgatcgcctctctgtaagcagcgattccag 2280
 V H V V H V G F L A I A S L
gggtccggtgtgcgttaaaagaaaagctaacgccaccagacaatccgagtcccggccat 2340
                                QSESRPC 26
gcgacaccccagacttgggcttccagtgtggtacggccatttcccacttctggggccagt 2400
 DTPDLGFQCGTAISHFHGQX 46
actogocctacttotocgtgccctcggagctggatgcttcgatccccgacgactgcgagg 2460
 SPYFS.VPSELDASIPDDCEV 66
tgacstttscccaagtecteteeegeeaeggegegagggegeegaegeteaaaegggeeg 2520
 TFAQVLSRHGARAPTLKRAA 86
cgagetacqteqateteateqaeaggateeaeeatggegeeateteetacgggeegget 2580
 SYVDLIDRIHHGAISYGPGY106
acgastteeteassacstatsactacaceetssscsacsacsacsesssacssscs 2640
 EFLRTYDYTLGADELTRTGQ 126
ageageagatggteaactegggeateaagttttacegeegetacegegetetegeeegea 2700
 QQMVHSGIKFYRRYRALARK 146
```

3,0	TCS	ato	:05	ctto	:010	:==	acc	cc	:54	cae	152	ccg	CGC	cgt	CA	ctc	ggc	cgaç	,aac	: 5	2760
•	้ร	T	P	F	v	מ	Ŧ	7	Ġ	0	מ	R	Ť	v	н	S	λ	E	N	E	166
	-	•	•	_	•	••	•	46	•	4		• •	•	-	••	_					
																					2920
20	2466	cag	122	ctt	CAC	tct	:500	:ct	;ct	cgc	=ga		. -22	GEC	CAC	car (ceg	3 556	:450	-	2820
	T	Q	G	E	H	S	λ	L	L	A	D	R	G.	. 5	I	V	R	2	I	L	186
		_																			
																	ac+	~~ 2 /	*22/	-77	2880
20		:במי	ga	Cat	3250	:grc	:AEC	:00	75a	LAC	cgc	-3 3	csc	Caac	-44	Cau	y		-44	-7	2880
	₽	Y		H	V	V	I	P	E.	T	λ	G	A	N	H	I	L	H	N	D	206
			- 2 0			.~~	···			~ + a (320	cat	caa	coa	caa	cac	CCA	102	:a	2940
•			-40	-y-		. <u>.</u> .	940	27,	;	y U	~ ~ ~	~ ~ `	- - -	-23,	יים פר ייים פר	_3_	1	0	ñ	~	226
	بذ	C	T	λ	E	Ξ	E	G	P	I	3	T	<u>.</u>	G	ש	U	•	u	_	•	
= (ctac	cto	ztc	cac	: = = :	:55	aga		cato	-20	cgc		955	CAAC	=g<	CAA	cct	gec	:350	-5	3000
	Y	۲.	5	7	F	D	6	ם	T	T	Ä	R	v	N	λ	N	L	P	G	λ	246
	•	-	~	-	•	•	J	•	-	^	••	••		•	••	_					
																					3050
	caac	:Ct	720	cgad	cgcc	gad	acg	gto	=geq	gct	gat	333	ICCE	ctg			cga	gace	3900	-9	3050
	И	L	T	D	A	D	T	V	λ	L.	H	D	L	C	P	E,	E	T	V	A	266
			_		••	•	•	•		_											
																		~~~		<u> </u>	3120
=		: CC	ctc	CEC	cgad	ccc	id cs	ace	320	325	cac	326	1222	6530	اعمد	caa.	3-3	3,	, :	, –	3120
	S	S	S	S	D	P	A	I	A	D	A	G	G	G	N	G	R	P	بد	2	286
_														ot a	ינדא	cta	cct	cac	πα	<b>.</b> 0	3180
	g C C C	المالة	ceg	ccg	cerç	jeac	ago	gag	3 5 5 1	cga	3 - 3	3-5	, 696	'y	-3-	~	~		, -	Ţ,	306
	P	F	C	R	L	£	S	E.	S	E	W	R	λ	Y	ם	I	14	¥	4	•	200
-	7000	222	71-6	ota	~~~		-~~	*~~	700	caa	ccc	act	2000	acco	320	CCA	999	ggto	:gg	<del>, -</del>	3240
•	, 22	·	3-3	2 C L	-22;	,	בבבי	,;	777	77		<b>.</b> T.		P	<b>~</b>	ັດ	Ğ	v	G	E	326
	3	Τ.	M	Ŧ	G	X	G	2	G	N	F		3	•	•	. •	•	-	٠.		
														•							2200
7	sgta	SE	cga	gct	gete	355	rege	ict	3 <b>3</b> C	<b>-33</b>	ggt		:cgt	gcgo	cga	caa	CZC	cago		ca	3300
	Ū	N	E	- T.	T	À	R	T	À	G	v	P	V	R	D	G	T	S	T	N	346
	•	••	~			4.	•	_		•	•	_									
																		~~~	~~~	-+	3360
2	ccga	CAC	cct	cga	cgga	cgac		3CB(ctt	CCC	gct	cgg	ccs	300	CCC	CCA	cgc	-20,		3360
	R	T	L	D	G	D	P	R	7	F	P	L	G	R	P	L	Y	A	D	Ε	366
_																c+a	coa	caa	cati	22	3420
	age	Ca	cga	Caa	cça	EAC	Jacc	133	5 3 E		-33	-y ı			~3 ~	~	-5-	G	v	D	3420
	S	H	D	N	D	H	H	G	V	I.	G	Y	L	G	•	I	ם	G	٧	-	240
	3000	ct	coa	C22	73.0				cca	ccc	aaa	aσz	aget	caa	caa	gta	cgc	ggc	cago	٥t	3480
_	,		-3 ~	- 44	,	-2-,		3	~~~		- E	-3,	T.	G	<u>.</u>	~	À	À	S	H	406
	r	77	ם	K	T	^	K	x	ט	×	2	-	11	9	•	•		••	•	-	
																					254
	777	:00	tcc	cat	teg	200	caa	rca'	tct.	205	tcg	25	aga	tgc	ggt	gca	252	3626	3626	300	354
•	À	ນ້	70	Ť	1	2	ъ.	Ť	~	v	F.	ĸ	H	R	C	S	G	G	G	G	426
		•	-	•	26	•	••	•	•	•	_	••	•-		_						
				•																~~	3 600
5	cgga	:53	cgg	cgg	cgge	egas	3555	rcg	gca	gga	gaa	33 3	stga	222	gat	335	CAG	350	355	32	3600 446
	G	G	G	G	Ğ	Ē	G	R	0	Ε	K	D	E	E	H	V	R	٧	L	V	446
	_	_	_	_	_	_	_		_												
																	~ 3 F	~~ ~	-30	-	3660
C	gaad	:92	ccg	ggt	gate	gac	gcts	722	55g	gtg	cgg	ca	cça	cga	gag	333	340	2-2.		-	3660 466
	N	a	R	V	H	T	L	K	G	C	G	A	D	E	R	G	H	C	T	L	400
_														-	-22	ata	aca	tct	sta	z٤	3720
	agaz	162	355	CAE	cgaa	1150	SAC	120	355	rge	gag	33.	igaa	caa.		3-3	22-	L		F	3720 486
	E	R	F	I	E	S	H	λ	F	A	R	Ģ	N	G	K	M	ט	14	C	£	700
- 1		. .									~	301	-+	gate	200	aat	202	atal		: a	3780
_ '	اعود	-cg	aça	cgc	CCAC	3900		iga	c cg.	440	aya	44,		3	3 3 3	33-		, ,			487
	λ																				•••
- 1	-	. ~ >				. ~ - ^	7 - •		~~~	225	~22	222	tee	gtt	aga	cta	gcq	222	EECi	44	3840
- '		-ya	-74				,		777°								222	teet	cttl	tt	3900
51	בככפ	122	3cc	rgc	320	3cct	cgc	125	CEC	cgt	CCC	CE	1553	tta				-12,			3960
L 1	ttt	こここ	ttt	tat	ttt	tct	:422	tt	ttc	aca	Çaa	acc	ttt	tati	cgt	CEE	ここと	C C C I	_ (((5504
							zato														3995
	1	_ — —						. 33'				_									

1	AGATTCAACGACGGAGGAATCGCAACCCTAATTGTCGGTATCATGGTGAC M V T	50 3
Sl	TCTGACTTTCCTGCTTTCTGGCGCGCGTATCTGCTTTCTGGGtgagtggctt L T F L L S A A Y L L S G	100 15
101		150 17
151	GTGTCTGCGGCACCTAGTTCTGCTGGCTCCAAGTCCTGCGATACGGTAGA V S A A P S S A G S K S C D T ·V D	200 . 34
201	CCTCGGGTACCAGTGCTCCCCTGCGACTTCTCATCTATGGGGCCAGTACT L G Y Q C S P A T S H L W G Q Y S	250 51
251	CGCCATTCTTTTCGCTCGAGGACGAGCTGTCCGTGTCGAGTAAGCTTCCC P F F S L E D E L S V S S K L P	300 67
301	AAGGATTGCCGGATCACCTTGGTACAGGTGCTATCGCGCCATGGAGCGCG K D C R I T L V Q V L S R H G A R	350 84
351	GTACCCAACCAGCTCCAAGAGCAAAAAGTATAAGAAGCTTGTGACGGCGA Y P T S S K S K K Y K K L V T A I	
401	TCCAGGCCAATGCCACCGACTTCAAGGGCAAGTTTGCCTTTTTGAAGACG Q A N A T D F K G K F A F L K T	450 117
451	TACAACTATACTCTGGGTGCGGATGACCTCACTCCCTTTGGGGAGCAGCA Y N Y T L G A D D L T P F G E Q Q	500 134
501	GCTGGTGAACTCGGGGCATCAAGTTCTACCAGAGGTACAAGGCTCTGGCGC L V N S G I K F Y Q R Y K A L A R	550 151
551	GCAGTGTGGTGCCGTTTATTCGCGCCTCAGGCTCGGACCGGGTTATTGCT S V V P F I R A S G S D R V I A	600 157

601	TCGGGAGAGAAGTTCATCGAGGGGTTCCAGCAGGGGAAGCTGGCTG	650
	S G E K F I E G F Q Q A K L A ·D P	194
		700
651	TGGCGCGACGAACCGCGCCGCTCCCGCGATTAGTGTGATTATTCCCGAGA G A T N R A A P A I S V I I P E S	201
701	GCGAGACGTTCAACAATACGCTGGACCACGGTGTGTGCACGAAGTTTGAG	750
701	ETFNNTLDEGVCTKFE	217
751	GCGAGTCAGCTGGGAGATGAGGTTGCGGCCAATTTCACTGCGCTCTTTGC	800
121	ASQLGDEVAANFTALFA	234
801	ACCCGACATCCGAGCTCGCGCCGAGAAGCATCTTCCTGGCGTGACGCTGA	850
	PDIRARAEKHLPGVTLT	251
851	CAGACGAGGACGTTGTCAGTCTAATGGACATGTGTTCGTTTGA <u>TACGGTA</u>	900
	DEDVVSLHDHCSFDTV	257
901	GCGCGCACCAGCGCAAGTCAGCTGTCACCGTTCTGTCAACTCTTCAC	950
301	ARTSDASQLSPFCQLFT	284
951	TCACAATGAGTGGAAGAAGTACAACTACCTTCAGTCCTTGGGCAAGTACT	1000
	HNEWKKYNYLQSLGKYY	301
1001	ACGGCTACGGCCAGGCAACCCTCTGGGACCGGCTCAGGGGATAGGGTTC	1050
	GYGAGNPLGPA-QGIGF	317
1051	ACCAACGAGCTGATTGCCCGGTTGACTCGTTCGCCAGTGCAGGACCACAC	1100
	TNELIARLTRSPVQDHT	334
1101	CAGCACTAACTCGACTCTAGTCTCCAACCCGGCCACCTTCCCCGTTGAACG	1150
	STNSTLVSNPATFPLNA +	351
1151	CTACCATGTACGTCGACTTTTCACACGACAACAGCATGGTTTCCATCTTC	1200
	THYVDESHDNSHVSIF	357
1201		1250
	FALGLYNGTEPLSRTSV	384

	· · · · · · · · · · · · · · · · · · ·	
1251	GGAAAGCGCCAAGGAATTGGATGGGTATTCTGCATCCTGGGTGGCCTT	1300
	ESAKELDGYSASWVV9F	
	•	
1201		
1307	TCGGCGCGCGAGCCTACTTCGAGACGATGCAATGCAAGTCGGAAAAGGAG	
	G A R A Y F E T M Q C K 'S E K E	417
	•	
1351	CCTCTTGTTCGCGCTTTGATTAATGACCGGGTTGTGCCACTGCATGGCTG	1400
	PLVRALINDRVVPLHGC	434
1401	CGATGTGGACAAGCTGGGGCGATGCAAGCTGAATGACTTTGTCAAGGGAT	1450
	D V D K L G R C K L N D F V K G L	
		42T
1451	TG1GTTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
4 T ~ 4	TGAGTTGGGCCAGATCTGGGGGGAGAGTGCTTTAGTTGAGAT	
	S W.A R S G G N W G E C F S	465
	•	
	•	
720I	GTCATTGTTATGCTATACTCCAATAGACCGTTGCTTAGCCATTCACTTCA	1550
	•	
1551	CTTTGCTCGAACCGCCTGCCG .	1571

WO 99/49022

,		1				50
2.	cerreus 9A-1	MOTI ATUTE	VallfrsTSG	TRICOSC X	haccosyche	~ ~
	cerreus cbs	MGVF7VLLS.	iatLigsTSG	TALGORGN	hsCCTSVD=G	YQCFPELSHk
	niger var. awamori					
	niger T213	MGVsaVLL2.	lYLLagVTSG	lavPasrN	GSTCDTVCQG	YQCFSETSHL
	niger NRRL3135	MGVsaVLLP.	LYLLsgVTSG	lavPasrN	GSSCDTVDQG	YÇCESETSHL
	fumigacus 13073	MVtLtFLLSa	AYLLsgVSAA	25sAG	SKSCDTVDLG	YCCsPATSHL
	fumigatus 32722	MVtLtFLLSa	AYLLsgVSAA	PSsAG	SKSCDTVDlG	YQCsPATSHL
	fumigacus 58128	MVtLtflLSa	AYLLSGVSAA	PSsAG	SKSCDTVD1G	YQCsPATSHL
	fumigatus 26906	MVtLtFLLSa	AYLLSGVSAA	PSsAG	SkSCDTVD1G	YQCsPATSHL
	fumigatus 32239	MGaLtFLLSV	mYLLsqVAGA	PSsGcsagsG	SKACDTVELG	YCCsPGTSHL
	nidulans	MAFFEValsL	YYLLSTVSAQ	AFVVQ	NHSCNTADGG	YQCEPNVSHV
T.	chermophilus	MSLL1LVLSq	GLValyVSIN	PEVD	SHSCNTVEGG	YQCrPEISHs
	chermophila	MVgFlAIaSL		gsE	SRPCDTpDlG	FQCGTAISHE
	•					
	Consensus		GYLLVSAG			
	Conphys	MGV£VVIIS.	LATLEGSTAG	YALGPRGN	SHSCDTVDGG	YQCFPEISHL
						100
		51				ThSKtKAYAA
	cerreus 9A-1		QDESPFPLDV			TDSKEKAYAA
	terreus cbs		QDESPFPLDV			
	niger var. awamori		ANESAISPDV			TESKGKKYSA
	niger T213		ANESVISPOV			TESKGKKYSA
	niger NRRL3135		ANESVISPEV			TDSKGKkYSA TSSKsKkYKk
	fumigatus 13073	WGQYSPFFSL	EDELSVSSKL	PKDCRITLVQ	VLSRHGARYP	
	fumigacus 32722	WGQYSPFFSL	EDELSVSSKL	PKDCRITLVQ	ATCHROWERS	TOSUSUKIUX
	fumigatus 58128		EDELSVSSKL			TSSKsKkYKk
	fumigatus 26906		EDELSVSSKL		VLSRHGARYP	TASKSKKYKK
***************************************	fumigatus 32239	WGQYSPFFSL				TESKSKAYSG
	nidulans		EQESAISeDV		LLSRHGARYP	TSSKEELYSQ
T. M.	thermophilus		ACQSEISPOV pSELDasI			TLKRaaSYvD
44.	thermophila	WGQISPIESV	bastnsa	POUCEVIERQ	AFOWGAT	
	Consensus	WGOYSPYEST.	EDESAISPOV	PODCRVTEVO	VLSRHGARYP	TSSK-KAYSA
	Conphys	WGOYSPYESL	EDESAISPDV	PDDCRVTEVO	VLSREGARYP	TSSKSKAYSA
		101				150
A.	terreus 9A-1	tIAAIQKSAT	afpGKYAFLQ	SYNYSLOSEE	LTPFGrNQLr	DIGaQFYeRY
	terreus cbs	tIAAIQKNAT	aLpGKYAFLK	SYNYSMGSEN	LTPFGENQLG	DIGAQEYRRY
A.	niger var. awamori	LIEEIQQNVT	LFDGKYAFLK	TYNYSLGADD	LTPFGEQELV	NSGIKFYQRY
A.	niger T213		tFDGKYAFLK			NSGIKFYQRY
<u>A.</u>	niger NRRL3135	LIEEIQQNAT	LFDGKYAFLK	TYNYSLGADD		
A.	fumigatus 13073	_	dfkgkfaflk			NSGIKEYQRY
A.	fumigatus 32722		dekckeaelk			NSGIKEYQRY
A.	fumigacus 58128	LVTAIQaNAT	dfkgkfaflk		·	
Α.	fumigacus 26906	TANSPIATVA		TYNYTLGADD		
	funiçacus 32239		eFKGKFAFLE			NSGIKEYQKY
_	nidulans ·	_	SEWGQYAFLE			
T.	chermophilus	LISTIQKTAT	aYKGyYAFLK	DYZYqLGAND	LTPEGENQMI	QLGIKFYnHY
М.	chermophila	LIDringAl	sYg2gYEFLR	TYDYTLGADE	LTREGQQQMV	NSGIKFYRRY
						Nectveven
	Consensus	LIEAIQKNAT	-FKGKYAFLK	TYNYTLGADO	LTPEGENQMV	NOGINEINKI
	Conphys	LIEAIQKVAT	AFKGKYAFIK	TYNYTIGADD	LIBECENCHA	NOCINE INC

Fig. 9A

		151				200
A.	carreus 9A-1	NALTRAINSE	VRATDASRVh	ESAEKFVEGF	GTARGDOENA	DV=92999
<u>A.</u>	terreus cbs		VRAADSSRVh		-	
A.	niger var. awamori	ESLIENTIPE	المساكا فرواد المساحد المساوح			gPgQSSPkId
A.	niger T213	ESLIRNIIPE	IRSSGSSRVI			• • • • • • • • • • • • • • • • • • • •
<u>A.</u>	niger NRRL3135	ESLIRNIVEE				qPgQSSPkId
A.	fumigatus 13073		IRASGSDRVI			
	fumigacus 32722	KALARSVVPF			_ •	.TNRAAPAIs
	fumigatus 58128		IRASGSDRVI		-	
	fumigatus 26906		IRASGSDRVI		- •	
_	fumigatus 32239		IRSSGSDRVI		- •	
	nidulans					
	thermophilus		IRASGSDRVV		-	gQATPVVn
•	thermophila		VRCSGSDRVI		_	
•••	cuermophira	RALARKSIYS	VRTAGGDRVV	USAFALTOGE	KONTENDEGO	EAKLITEACM
	Consensus	23	TTRECCOOUT	3 C 3 TV T T C C T	003:00 00000	DUORCDIT
			IRASGSDRVI		_	_
	Conphys	KALARKIVPF	IRASGSDRVI	ASAEKTIEGF	QSAKLADPGS	QPHQASPVID
						250
ā	terreus 9A-1	201				250
	terreus cbs		NTLEHSICTA			
	· · · · · · · · · · · · · · · · · · ·		NTLEHSICTA			FAPAIAKRLE
	niger var. awamori		NTLDPGTCTV			FAPSIRQRLE
	niger T213		NTLDPGTCTV			FAPSIRQRLE
	niger NRRL3135		NTLDPGTCTV			FVPSIRQRLE
	fumigatus 13073		NTLDHGVCTk	_ -		FAPDIRARAE
	fumigatus 32722		NTLOHGVCTk	_		FAPDIRARAE
	fumigacus 58128	VIIPESETFN	NTLOHGVCTK	FEASQLG	DEVAANFTAL	FAPDIRARAS
	fumigatus 26906	VIIPESETFN	NTLDHGVCTk	· •		FAPDIRARAK
	fumigatus 32239	VIIPESETYN	NTLDHSVCTN	FEASELG	DEVEANFTAL	FAPAIRARIE
	nidulans	VIIPELOGEN	NTLDHSTCVS	FENOErA	DELEANFTAI	MGPPIRKRLE
	thermophilus		NTLDtGSCPV	_	•	FAPAILEKIK
M.	thermophila	VVIPETAGAN	NTLHNDLCTA	FEEgpyStIG	DDAQDTYLST	FAGPITARVN
	Consensus		NTLDHGTCTA			Fapairarle
	Conphys	VIIPEGSGYN	NTLDHGTCTA	FEDSELG	DDVEANFTAL	FAPAIRARLE
		251				. 300
	terreus 9A-1	-	ODVVnLMAMC			DAHTLSPFCD
	cerreus cbs		DOVVILMAMC	PFETVSLTO.		
	niger var. awamori	NOLSGVILID	TEVTYLMDMC	SEDTISEST.		VDTKLSPECD
	niger T213	NOLSGVTLTD	TEVTYLMDMC	SFDTIStST.		VOTKLSPFCD
	niger NRRL3135	NDLSGVTLTD	TEVTYLMDMC	SFDTIStST.		VDTKLSPFCD
	fumigatus 13073	KHLPGVTLTD	EDVVsLMDMC	SFDTVARTS.		DASQLSPFCQ
A.	fumigatus 32722	kHLPGVTLTD	EDVVsLMDMC			DASQLSPFCQ
A.	fumigatus 58128	kHLPGVTLTD	DMCMLeVVGB			DASQLSPFCQ
A.	fumigatus 26906	KHLPGVTLTO	EDVVsLMDMC			DASQLSPFCQ
<u>A.</u>	fumigatus 32239	kHLPGVqLTD				DASELSPECA
	nidulans		ENVIYLMDMC			HGTELSPFCA
T.	thermophilus		SDVpyLMDLC			TDT.LSPFCA
	thermophila		ADTVaLMDLC			NGrpLSPECr
	<u>-</u>		-,			-
	Consensus	ADLPGVTLTD	EDVV-LMDMC	PFETVARTS-		DATELSPFCA
	Conphys		EDVVYLMDMC			DATELSPECA
	<u>-</u> <u>-</u> <u>-</u> -					

		301				350
A. c	terraus 9A-1		NYT.1 ST.DKYY	GYGGGNPLGP	VQGVGWaNEL	
	erreus chs		NYLISLDKYY			IARLTRSPVH
	niger var. awamori	The state of the latest terminal termin				IARLTHSPVH
	niger T213		DYLASLKKYY			IARLTHSPVH
	iger NRRL3135		DYLQSLXXYY		-	TARLTHSPVH
_			NATOSTCKAA			IARLTRSEVO
	fumigatus 13073	Le IHRENKKI	MITOSTOVII	CYCLCURECE	ACCIGENS!	IARLTRSPVQ
	fumigatus 32722	LEIMALWKKI	NYLOSLGKYY	CYCLCURICE	ROCICEPNEL	IARLTRSPVQ
	fumigatus 58128	LETHNEWKKY	NYLOSLGKYY	CYCRCVETCE	ACCIGE CHEL	IARLTRSPVQ
	fumigacus 26906	LETHREWKKI	NYLOSLGKYY	CYCLCURICE	ACCIGETATI	IARLTASPVQ
_	fumigacus 32239	TETHREWERI	DYLOSLGKYY	GIGAGNELGE	ACCICEPNEL	IARLTOSPVO
	nidulans	TELEKEMTÖA	DYLOSLSKYY	GIGAGSTLGE	AQQIGE CNELL	IARMTHSPVQ
	chermophilus	LSTQEEWQAY	DYYQSLGXYY	GUGGGWATGA	MOCVEE-MET	
M. C	thermophila	TEPESEMEAY	DYLQSVGXWY	GIGEGNELGE	TQGVGFVNEL	LECTING VE VII
	Consonana	T 5777 577 614	DVI OCI CZZY	CYCACNOTCO	AQGVGF-NEL	TARLTRSPVO
	Consensus	Lata-Ew-Ox	DILOSLGATI	GIGAGNELGE	ACCICEANET.	LARLTRSPVQ
	Conphys	THARDEMEDA	DATOSTOKAI	GIGAGNELGE	AQGYGFANEL	THE THE !
		351				400
Δ ,	terreus 9A-1		ASPATEPLNA	TIVADESHOS	NLVSTEWALG	LYNGTAPLSq
	terreus cbs	DHICVNNILD	ANPATEPLNA			LYNGTKPLSC
			SNPATEPLNS	TLYADESHON		
	niger var. awamori niger T213	DDTSSNHTLD				
	niger NRRL3135		SSPATEPLNS		GIISILFALG	
	fumigatus 13073	OUISSNAILD	CYCARESTNO	THYTOESHON	SMVSIFFALG	LYNGTEPLSE
	fumigacus 13073	DRISTNSTLV	SNPATEPLNA	THIVDESHON	SMVSIFFALG	LYNGTGPLS
	fumigatus 58128		SNPATEPLNA SNPATEPLNA			
	fumigatus 26906		SNPATEPLNA			LYNGTEPLS:
	fumigatus 32239	DHISTNETLD				LYNGTEPLSq
	nidulans	ONTSTNHTLD				LYNGTQPLSm
	chermophilus		SNPATEPLNA			
	thermophila		GDPTTEPLGT			aYDGVPPLDK
•••	cuermophira	ogisiakito	GDETIFFEGT	FIIMCSIIDI	0.4.0.12.	
	Consensus	DHTSTNHTLD	CNDATEDINA	TLYADESHON	SMISIFFALG	LYNGTAPLST
	Conphys	DHTSTNHTLD		TLYADESHON		LYNGTAPLST
		DHISIMILL				
		401				450
A. (terreus 9A-1	TSVESVSOTO	GYAAAWTVPF	AARAYVEMMQ	c	RAEKEP
	terreus cbs	TTVEDITETD	GYAAAWTVPF	AARAYIEMMQ	C	RAERQP
	niger var. awamori	TTVENTTOTO	GESSAWTVPE	ASRLYVEMMO	C	QAEQE?
	niger T213	TTVENTTOTO	GESSAWTVPE	ASRLYVEMMO	C	QAEQEP
	niger NRRL3135	TTVENTTOTO	GESSAWTVPE	ASRLYVEMMQ	c	QAEQEP
	fumigacus 13073	TSVESAKEID	CYCASWVVDF	GARAYFELMO	C	KSEKEP
	fumigatus 32722	TSVESAKEID	GYSASWVVPF	GARAYFELMO	C	KSEKEP
	fumigatus 58128	TSVESAKEID	CYSASWVVPF	GARAYFETMO	C	352825
	fumigacus 26906	TSVESAKEID	CYSASWVVPE	GARAYFELMO	C	KSEKEP
	fumigatus 32239	TSEESTKESN	GYSASWAVPE	GARAYFELMQ	C	
	nidulans	DSVESTOEMD	CYADOWTVDE	GARAYFELMO	C	
	thermophilus	TETXSTEETO	CVCZZWTVPF	GGRAYIEMMO	C	
	thermophila	TARRONEELG	GYAASWAVPF	AARIYVEKMR	Csggggggg	gegrQEKDEe
	Consensus	TSVESIEETO	GYSASWTVPF	GARAYVEMMO	C	QAEKE?
	Conphys	TSVESTEETD	GYSASWIVEF	GARAYVEMMO	c	Qaekep
	In-T					

		451				500
Α.	cerreus 9A-1	LYRYLYNDRY	MPLHGCPTOK	LGRCKEDAEV	AGLSEAQAGG	NWADCE
A.	terreus cbs		MPLHGCAVDN	•		
	niger var. awamori	LVRVLVNDRV	VPLHGCPIDa	LGRCTEDSEV	rGLSFARSGG	DWAECSA
	niger T213		VFLHGCPIDa			
_	niger NRRL3135	LVRVLVNDRV	VPLHGCPVDa	LGRCT=DSFV	rGLSFARSGG	DWAECEA
	fumigacus 13073	LVRALINDRY	VPLHGCDVDK	LGRCKENDEV	KGLSWARSGG	NWGECES
	fumigacus 32722	LVRALINDRV	VPLHGCDVDK	LGRCKLNDFV	KGLSWARSGG	NWGECES
	fumigatus 58128	LVRALINDRV	VPLHGCDVDK	LGRCKLNDEV	KGLSWARSGG	NWGECES
	fumigatus 26906	LVRALINDRV	VPLHGCDVDK	LGRCKLNDFV	KGLSWARSGG	NWGECFS
		·LVRALINDRV	VPLHGCAVDK	LGRCKLKDEV	KGLSWARSGG	NSEQSES
	nidulans	LVRVLVNDRV	VPLHGCAVDK	FGRCTLDOWV	EGLNEARSGG	NWKTCFTL
T.	thermophilus	VVRVLVNDRV	VFLHGCEVDS	LGRCKEDDEV	rGLSFARcGG	NWEGCYAase
M.	thermophila	MVRVLVNDRV	MTLkGCGADE	rGMCTLErFI	ESMAFARGNG	KWD1CFA
	Consensus	LUBULUMBEU	VPLHGCAVDK	I CECK-DOEN	ECT SENDECS	NWAECFA
	Comphys	LVRVLVNDRV				NWAECEA
		MAYATANDKA	A STITICATOR AD IC	TOWER A	FGTGEWYGGG	MARCEA

	C2-1	
	TATATGAATTCATGGGCGTGTTCGTCGTGCTACTGTCCATTGCCACCTTGTTCGGTTCCA	
1		60
	ATATACTTAAGTACCCGCACAAGCAGCACGATGACAGGTAACGGTGGAACAAGCCAAGGT	
	CATCCGGTACCGCCTTGGGTCCTCGTGGTAATTCTCACTCTTGTGACACTGTTGACGGTG	
61		120
	GTAGGCCATGGCGGAACCCAGGAGCACCATTAAGAGTGAGAACACTGTGACAACTGCCAC CP-2	
	CP-3	
121	GTTACCAATGTTTCCCAGAAATTTCTCACTTGTGGGGTCAATACTCTCCATACTTCTCTT	100
	CAATGGTTACAAAGGGTCTTTAAAGAGTGAACACCCCAGTTATGAGAGGTATGAAGAGAA	180
	TGGAAGACGAATCTGCTATTTCTCCAGACGTTCCAGACGACTGTAGAGTTACTTTCGTTC	
181	********	240
	ACCTTCTGCTTAGACGATAAAGAGGTCTGCAAGGTCTGCTGACATCTCAATGAAAGCAAG	
	CP-4	
	CP-5	
• • •	AAGTTTTGTCTAGACACGGTGCTAGATACCCAACTTCTTCTAAGTCTAAGGCTTACTCTG	
241	,	300
	TTCAAAACAGATCTGTGCCACGATCTATGGGTTGAAGAAGATTCAGATTCCGAATGAGAC	
301	CTTTGATTGAAGCTATTCAAAAGAACGCTACTGCTTTCAAGGGTAAGTACGCTTTCTTGA	360
	GAAACTAACTTCGATAAGTTTTCTTGCGATGACGAAAGTTCCCATTCATGCGAAAGAACT	300
	CP-6	
	CP-7	
361	AGACTTACAACTACACTTTGGGTGCTGACGACTTGACTCCATTCGGTGAAAACCAAATGG	430
101	TCTGAATGTTGATGTGAAACCCACGACTGCTGAACTGAGGTAAGCCACTTTTGGTTTACC	420
	TTAACTCTGGTATTAAGTTCTACAGAAGATACAAGGCTTTGGCTAGAAAGATTGTTCCAT	
121		480
	AATTGAGACCATAATTCAAGATGTCTTCTATGTTCCGAAACCGATCTTTCTAACAAGGTA	
	CP-8	
	C5-3	
	TCATTAGAGCTTCTGGTTCTGACAGAGTTATTGCTTCTGCTGAAAAGTTCATTGAAGGTT	
181	AGTAATCTCGAAGACCAAGACTGTCTCAATAACGAAGACGACTTTTCAAGTAACTTCCAA	-+

30/51

	TCCAATCTGCTAAGTTGGCTGACCCAGGTTCTCAACCACACCAAGCTTCTCCAGTTATTG	
541		
	AGGTTAGACGATTCAACCGACTGGGTCGAAGAGTTGGTGTGGTTCGAAGAGGTCAATAAC	
	CP-10	
	CP-11	
	ACGITATTATTCCAGAAGGaTCcGGTTACAACAACACTTTGGACCACGGTACTTGTACTG	
601	~~~~~~+~~+~~~+~~~+~~~+~~~+~~~+~~~~+~~	660
	TGCAATAATAAGGTCTTCC ŁAGgCCAATGTTGTTGTGAAACCTGGTGCCATGAACATGAC	
	CTTTCGAAGACTCTGAATTGGGTGACGACGTTGAAGCTAACTTCACTGCTTTGTTCGCTC	
661		720
	GAAAGCTTCTGAGACTTAACCCACTGCTGCAACTTCGATTGAAGTGACGAAACAAGCGAG	
	CP-12	
	CAGCTATTAGAGCTAGATTGGAAGCTGACTTGCCAGGTGTTACTTTGACTGAC	
721		780
	GTCGATAATCTCGATCTAACCTTCGACTGAACGGTCCACAATGAAACTGACTG	
	CP-13	
701	TIGITIACTIGATGGACATGTGTCCATTCGAAACTGTTGCTAGAACTTCTGACGCTACTG	
781	,	840
	AACAAATGAACTACCTGTACACGGTAAGCTTTGACAACGATCTTGAAGACTGCGATGAC	
	7.3 mmcmcmcas ====================================	
841	AATTGTCTCCATTCTGTGCTTTGTTCACTCACGACGAATGGAGACAATACGACTACTTGC	000
011	TTAACAGAGGTAAGACACGAAACAAGTGAGTGCTGCTTACCTCTGTTATGCTGATGAACG	900
	CP-14	
	CP-15	
	AATCTTTGGGTAAGTACTACGGTTACGGTGCTGGTAACCCATTGGGTCCAGCTCAAGGTG	
901		960
	TTAGAAACCCATTCATGATGCCAATGCCACGACCATTGGGTAACCCAGGTCGAGTTCCAC	
	TTGGTTTCGCTAACGAATTGATTGCTAGATTGACTAGATCTCCAGTTCAAGACCACACTT	
961		1020
	AACCAAAGCGATTGCTTAACTAACGATCTAACTGATCTAGAGGTCAAGTTCTGGTGTGAA	
	CP-16	
	CP-17	
	CTACTAACCACACTTTGGACTCTAACCCAGCTACTTTCCCATTGAACGCTACTTTGTACG	
1021		1080
	GATGATTGGTGTGAAACCTGAGATTGGGTCGATGAAAGGGTAACTTGCGATGAAACATGC	

Fig. 9F

,*

	CIGACTICICACGACAACTCTAIGATTTCTATTTTCTTCGCTTTGGGTTTGTACAACG										
1081		1140									
	GACTGAAGAGAGTGCTGTTGAGATACTAAAGATAAAAGAAGCGAAACCCAAACATGTTGC										
	C2-18										
	CP-19										
• • • •	GTACTGCTCCATTGTCTACTACTTCTGTTGAATCTATTGAAGAAACTGACGGTTACTCTG										
1141		1200									
	CATGACGAGGTAACAGATGAAGACAACTTAGATAACTTCTTTGACTGCCAATGAGAC										
	·										
	CTTCTTGGACTGTTCCATTCGGTGCTAGAGCTTACGTTGAAATGATGCAATGTCAAGCTG										
1201		1260									
	GAAGAACCTGACAAGGTAAGCCACGATCTCGAATGCAACTTTACTACGTTACAGTTCGAC										
	CP-20										
	CP-21										
	AAAAGGAACCATTGGTTAGAGTTTTGGTTAACGACAGAGTTGTTCCATTGCACGGTTGTG										
1261	**************************************	1320									
	TTTTCCTTGGTAACCAATCTCAAAACCAATTGCTGTCTCAACAAGGTAACGTGCCAACAC										
	CTGTTGACAAGTTGGGTAGATGTAAGAGAGACGACTTCGTTGAAGGTTTGTCTTTCGCTA										
1 7 2 1		1 200									
	GACAACTGTTCAACCCATCTACATTCTCTCTGCTGAAGCAACTTCCAAACAGAAAGCGAT	7390									
	CP-22										
	GATCTGGTGGTAACTGGGCTGAATGTTTCGCT <i>TAA</i> GAATTCATATA										
1381	1426										
	CTAGACCACCATTGACCCGACTTACAAAGCGAATTCTTAAGTATAT										

1	TCTGTAACCGATAGCGGACCGACTAGGCATCGTTGATCCACAATATCTCA	50
51	GACAATGCAACTCAGTCGAATATGAAGGGCTACAGCCAGC	100
101	GGCCGTCTAGGTCGGGCTCCGGGGATGAGGAGGAGCAGGCTCGTGTTCAT	150
151	TTCGGTCATGGCTTTTTTCACGGTCGCTCTTTCGCTTATTACTTGCTAT M A F F T V A L S L Y Y L L S	200 15
201	CGACGTGAGATCTCTACAACACTGTCTGCTTAGTTGAATTGGTACTTAT	250 16
251	CEGEACAGAGTCTCTGCTCAGGCCCCAGTGGTCCAGAATCATTCAT	300 30
301	TACGGCGGACGGTGGATATCAATGCTTCCCCCAATGTCTCTCATGTTTGGG T A D G G Y Q C F P N V S H V W G	350 47
351	GTCAGTACTCGCCGTACTTCTCCATCGAGCAGGAGTCAGCTATCTCTGAG Q Y S P Y F S I E Q E S A I S E	400 63
401	GACGTGCCTCATGGCTGAGGTTACCTTTGTGCAGGTGCTCTCGCGGCA D V P H G C E V T F V Q V L S R H	450 80
451	TGGGGCTAGGTATCCGACAGTCGAAGAGTAAGGCGTACTCGGGGTTGA G A R Y P T E S K S K A Y S G L I	500 9 7
501	TTGAAGCAATCCAGAAGAATGCTACCTCTTTTTGGGGGACAGTATGCTTTT E A I Q K N A T S F W G Q Y A F	550 113
551	CTGGAGAGTTATAACTATACCCTCGGCGCGCGGATGACTTGACTATCTTCGG L E S Y N Y T L G A D D L T I F G +	600 130
601	CGAGAACCAGATGGTTGATTCGGGTGCCAAGTTCTACCGACGGTATAAGA ENQMVDSGAKFYRRYKN	650 147
651	ATCTCGCCAGGAAAATACTCCTTTTATCCGTGCATCAGGGTCTGACCGT L A R K N T P F I R A S G S D R	700 153

Fig. 10A

701	GTCGTTGCGTCTGCGGAGAAGTTCATTAATGGATTTCGCAAGGCTCAGCT V V A S A E K F I N G F R K A Q L	750 180
751	CCACGACCATGGCTCCAAACGTGCTACGCCAGTTGTCAATGTGATTATCC H D H G S K R A T P V V N V I I P	800 197
801	CTGAAATCGATGGGTTTAACAACACCCTGGACCATAGCACGTGCGTATCT E I D G F N N T L D H S T C V S	850 213
851	TTTGAGAATGATGAGCGGGGGGATGAAATTGAAGCCAATTTCACGGCAAT F E N D E R A D E I E A N F T A I	900 230
901	TATGGGACCTCCGATCCGCAAACGTCTGGAAAATGACCTCCCTGGCATCA M G P P I R K R L E N D L P G I K	950 [°] 247
951	AACTTACAAACGAGAATGTAATATTTGATGGATATGTGCTCTTTCGAC L T N E N V I Y L M D M C S F D	1000 263
1001	ACCATGGCGCGCACCGCCCACGGAACCGAGCTGTCTCCCATTTTGTGCCAT T M A R T A H G T E L S P F C A I	
1051	CTTCACTGAAAAGGAGTGGCTGCAGTACGACTACCTTCAATCTCTATCAA F T E K E W L Q Y D Y L Q S L S K	
1101	AGTACTACGGCTACGGTGCCGGAAGCCCCCCTTGGCCCAGCTCAGGGAATT Y Y G Y G A G S P L G P A Q G I	
1151	GGCTTCACCAACGAGCTGATTGCCCGACTAACGCAATCGCCCGTCCAGGA G F T N E L· I A R L T Q S P V Q D	
1201	CAACACAAGCACCACACTCTAGACTCGAACCCAGCCACATTTCCGC N T S T N H T L D S N P A T F P L	
1251	TCGACAGGAAGCTCTACGCCGACTTCTCCCCACGACAATAGCATGATATCG D R K L Y A D F S H D N S M EI S	
1301	ATATTCTTCGCCATGGGTCTGTACAACGGCACCCAGCCGCTGTCAATGGA I F F A M G L Y N G T Q P L S M D	

Fig. 10B

1351	TTCCGTGGAGTCGATCCAGGAGATGGACGGTTACGCGGCGTCTTGGACTG	1400
	SVESIQEMDGYAASWTV	397
1401		
1401	TICCGITIGGTGCGAGGGCTTACTTTGAGCTCATGCAGTGCGAGAAGAAG	
	PFGARAYFELMQCEKK	413
1451	GAGCCGCTTGTGCGGGTATTAGTGAATGATCGCGTTGTTCCTCTTCATGG	1500
	EPLVRVLVNDRVVPLHG	430
	•	
	•	
1501	CTGCGCAGTTGACAAGTTTGGACGGTGCACTTTGGACGATTGGGTAGAGG	1550
	CAVDKFGRCTLDDWVEG	
		77/
	• • • • • •	
1551	GCTTGAATTTTTGCAAGGAGCGGCGGGAACTTGGAAGACTTGTTTTACCCTA	1600
	LNFARSGGNWKTCFTL	463
1601		
TRUT	TARAGGGCGTTTGCTCATTCATAAGTGTTGTGCAGGTATAGGAAGGTTAG	1650
1551	GGAATTAGCTGTTTGGCTTTACTCTTATTAGACCAAGAATGATTTGTTTG	1700
1701	TTCTCAAGGCCTTCTAGCATATCGTCAAGTGGGATAAATCACCTATCCTC	1750
		1,50
	CATGTGTAGGTGAACCCGCTCTTGCATCAACCTCTTGTGTTTCAGAGTAG	
エノコエ	CATGIGIAGGIGAACCCGCIGITGCATCAACCICITGIGITICAGAGTAG	1800
	• • • • •	
1801	TITCACCAAACATATCCTCGTGTCCTCTCTCTGCTCTTCGGTCTCATAT	1850
1851	TACACTGTTCTCTATCTATATCGTCAACAAACTACCACCCAAACACCAA	1900
~~~	ended to a a a a a a a a a a a a a a a a a a	2500
TAGI	ATGTCACACTTTCCAGCACGAAATTTCTTCG 1931	

# 35/51

1	L AT	GGG	CGT	CIC	TGC	TGT	TCT	ACT	TCC	TII	GTA	TCT	CCT	GTC	TGG	AGT	CAC	CTC	CGG	ACTG
	3 M																			
																				_
61	l GC	AGT	CCC	CGC	CTC	GAG	AAA'	TCA	ATC	CAG	TTG	CGA'	TAC	GGT	CGA	TCA	.GGC	GTA	TCA	ATGC
						R					_									
			-1	+1				·												
121	TT	CIC	CGA	GAC	TTC	GCA'	TCT	TTG	GGG	TCA	ATA	CGC	ACC	TI	CIT	CTC	TCI	GGC	AAA	CGAA
18	F	S	E	T	S	· H	L.	W	G	٥	Y	A	P	F	F	S	Ī	A	N	E
					_		_	••	_		-		-	•	-	_		•		
181	·TC	GGIY	CATY	crc	CCC	TGAC	لملئك	300	cec	CCC	ATTC	CAG	(CTY	'AC	بلجاما	CGC	TCA	ريئ	CCTY	CTCC
	S																			
•		·	_	_	•	-	•	•	**	•	•	••	•	•	•	••	_	•		•
241	CG	TCA1	rca/	AGC	300	T'A'		BAC	CGA		TAAC	3000	?A A (	244	LTA(		CGC	ירייי	CATE	DADI
	R																			
<b>J</b> U	•		á	A	44	4	•	1	ט	3	Λ.	G	T.	A	. •	3	A	**	-	E,
301	GAG	CATY	TOAC	27 A C	24 A/	7000	7800	1100	~,~,~	<b>~</b>	200		77.47	~~~	~777~	·~·	244	240	171	CAAC
78						A													s Tul	_
,0		•	4	4	7.20	A	1	1	F	ע	u	v	I	. А	Æ	L	T	1	Ĭ	H
361	TA	1400	WIVIV	·~~	~~1	. ~ ~ ~							~	016	~.	·~	. ~~	244	~~~	1000
_																				COGC
30	Y	3	4.	G	A	D	D	L	T	P	F	G	K	Q	K	L	V	N	S	G
				•																
list	ATTY	14.46														<b>.</b>		~ 4 4904	~~	<b></b>
	ATC																			
770	I	A	¥	Y	Q	H	Y	K	.5	L	T	R	N	I	V	P	F	1	R	\$
1:04		~~~																		
	TOT				xx	<b>GIG</b>	ATT				:A A [	78 B Z	777		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	747		414		
720																			_	ACC
_	S																		S	
_																			_	
	S	G	S	S	R	V	I	A	S	G	K	K	F	I	E	G	F	Q	S	T
541	AAG	G	S	S GAT	R	V	I GCC	A CAG	S	G GGC	K Caa	K TCG	F TCG	I	E AAG	G	F CGAC	Q COTO	s	T
	AAG	G	S	S GAT	R	V	I GCC	A CAG	S	G GGC	K Caa	K TCG	F TCG	I	E AAG	G	F CGAC	Q COTO	s	T
541	AAG	G	S	S GAT	R	V	I GCC	A CAG	S	G GGC	K Caa	K TCG	F TCG	I	E AAG	G	F CGAC	Q COTO	s	T
541 158	AAG K	G L	S AAG K	S CAT D	R CCI P	V COT R	ecc A	A CAG Q	S CCC P	G G G	K Caa Q	K TCG S	r c s	I CCC P	E AAG K	G ATC I	F CGAC D	Q V	s corc V	T ATT I
541	AAG K	G L	S AAG K	S CAT D	R CCI P	V COT R	ecc A	A CAG Q	S CCC P	G G G	K Caa Q	K TCG S	r c s	I CCC P	E AAG K	G ATC I	F CGAC D	Q V	s corc V	T ATT I
541 158 601	AAG K	G L GAG	AAG K GCC	S GAT 'D	R CCI P	V COT R	GCC A	A CAG Q	S CCC P	G	K CAA Q GAC	TCG S	TCG S	I CCC P	E AAG K	G ATC ACI	F CGAC D	Q V	s corc V	T ATT I GAC
541 158 601	AAG K	G L GAG	AAG K GCC	S GAT 'D	R CCI P	V COT R	GCC A	A CAG Q	S CCC P	G	K CAA Q GAC	TCG S	TCG S	I CCC P	E AAG K	G ATC ACI	F CGAC D	COTO V	S GAA	T ATT I GAC
541 158 601	AAG K	G L GAG	AAG K GCC	S GAT 'D	R CCI P	V COT R	GCC A	A CAG Q	S CCC P	G	K CAA Q GAC	TCG S	TCG S	I CCC P	E AAG K	G ATC ACI	F CGAC D	COTO V	S GAA	T ATT I GAC
541 158 601 178	AAGC AGC	GAG:	AAG K GCC A	GAT D AGC S	CCT P TCA S	V COT R TCC S	GCC A AAC N	AAC N	S CCC P ACT T	G G CTC L	K CAA Q GAC D	TCG S CCA P	TCG S GGC. G	I CCC P ACC	AAG K TGC	G ACI	F CCCC	Q V	S QAA AAD	T ATT I GAC D
541 158 601 178	AAGC AGC	GAG:	AAG K GCC A	GAT D AGC S	CCT P TCA S	V COT R TCC S	GCC A AAC N	AAC N	S CCC P ACT T	G G CTC L	K CAA Q GAC D	TCG S CCA P	TCG S GGC. G	I CCC P ACC	AAG K TGC	G ACI	F CCCC	Q V	S QAA AAD	T ATT I GAC D
541 158 601 178	AAGC AGC	GAG:	AAG K GCC A	GAT D AGC S	CCT P TCA S	V COT R TCC S	GCC A AAC N	AAC N	S CCC P ACT T	G G CTC L	K CAA Q GAC D	TCG S CCA P	TCG S GGC. G	I CCC P ACC	AAG K TGC	G ACI	F CCCC	Q V	S QAA AAD	T ATT I GAC D
541 158 601 178	AAGC AGC	GAG:	AAG K GCC A	GAT D AGC S	CCT P TCA S	V COT R TCC S	GCC A AAC N	AAC N	S CCC P ACT T	G G CTC L	K CAA Q GAC D	TCG S CCA P	TCG S GGC. G	I CCC P ACC	AAG K TGC	G ACI	F CCCC	Q V	S QAA AAD	T ATT I GAC D
541 158 601 178 661 198	AAGC S	GAG: E	AAG K GCC A	GAT AGC	CCT P TCA S	V COT R TCC S ACC	GCC A AAC N GTC	AAC N GAA	S CCC P ACT T GCC	G G G CTC L AAT	K CAA Q GAC D	TCG S CCA P	F TCG S GGC. A	I CCC P ACC T	AAG K TGC TTC F	ACI ACI T	F GAC D CCC P	COLUMN TOCK	S QAA E ATT	T ATT I GAC D
541 158 601 178 661 198	AAGC S	GAGGACE	AAG K GCC A	GAT D AGC S GCC A	TCA S GAT	V CGT R TCC S ACC	GCC A AAC N	AAC N GAA	S CCC P ACT GCC A	G G G AAT N	K CAA Q GAC D	TCG S CCA P ACC	F TCG S GGC. GCC. A	I CCC P ACC T	AAAG K TGC TTC	ACI ACI GTC V	F GIG	Q COTO V TOO S	S ROTO V ROAA E ATT I	T ATT I GAC D CGT R
541 158 601 178 661 198	AAGC S	GAGGACE	AAG K GCC A	GAT D AGC S GCC A	TCA S GAT	V CGT R TCC S ACC	GCC A AAC N	AAC N GAA	S CCC P ACT GCC A	G G G AAT N	K CAA Q GAC D	TCG S CCA P ACC	F TCG S GGC. GCC. A	I CCC P ACC T	AAAG K TGC TTC	ACI ACI GTC V	F GIG	Q COTO V TOO S	S ROTO V ROAA E ATT I	T ATT I GAC D CGT R
541 158 601 178 661 198	AAGC S	GAGGACE	AAG K GCC A	GAT D AGC S GCC A	TCA S GAT	V CGT R TCC S ACC	GCC A AAC N	AAC N GAA	S CCC P ACT GCC A	G G G AAT N	K CAA Q GAC D	TCG S CCA P ACC	F TCG S GGC. GCC. A	I CCC P ACC T	AAAG K TGC TTC	ACI ACI GTC V	F GIG	Q COTO V TOO S	S ROTO V ROAA E ATT I	T ATT I GAC D CGT R
541 158 601 178 661 198 721 218	AAGC S CAAG	GAG E GAA E	AAG K GCC A TTGC L	GAT D AGC S GCC A E	CCT P TCA S GAT	CGT R TCC S ACC ET	GCC A  AAC  N  CTG	AAC N GAA E	S CCC P ACT GCC A	GGC G CTC L AAT N	CAA Q GAC D TTC T	TCG S CCA P ACC T	TCG S GGC. A ACAC	I CCC P ACC T	AAAG K TGC TTC ACAG	G ATC ACT GTC V GAA	F GAC D CCCC P	Q COTO V TOO S ACC	S GAA E ATT TAC Y	T ATT I GAC D CGT R
541 158 601 178 661 198 721 218	AAGC S CAAG	GAGA E CGIO R	AAG K GCC A TTGC L	GAT D AGC S GCC A GCC	CCT P TCA S GAT	V CGT R TCC S ACC ET	GCC A  AAC  OTC  L  AAC  AAC	AAC N GAA E	S CCC P ACT T GCC A	G G G G G G G G G G G G G G G G G G G	CAA Q GAC D TTC ACC	ICG S CCA P ACC I	TCG S GGC. A ACAC	I CCC P ACC T BACA	AAAG K TGC TTC ACAC	ACT ACC	F GIG V AAG	CTG	S GAA E ATT TAC Y	T ATT I GAC D CGT R CTC L
541 158 601 178 661 198 721 218	AAGC S CAAG	GAGA E CGIO R	AAG K GCC A TTGC L	GAT D AGC S GCC A GCC	CCT P TCA S GAT	V CGT R TCC S ACC ET	GCC A  AAC  OTC  L  AAC  AAC	AAC N GAA E	S CCC P ACT T GCC A	G G G G G G G G G G G G G G G G G G G	CAA Q GAC D TTC ACC	ICG S CCA P ACC I	TCG S GGC. A ACAC	I CCC P ACC T BACA	AAAG K TGC TTC ACAC	ACT ACC	F GIG V AAG	CTG	S GAA E ATT TAC Y	T ATT I GAC D CGT R CTC L

Fig. 11A

841	TT	CTG	TGA(	CCT	TT	CAC	CCA	TGA	CGA	ATG	GAT	CAAC	CTAC	CGAC	CTAC	ccr	CCAC	TC(	CITO	AAA
258	F	С	D	L	F	T	H	D	E	W	I	·N	Y	D	Y	L	Q	S	L	K
	AA									_								_		
278	K	Y	Y	G	H	G	A	G	N	P	L	G	P	T	Q	G	V	G	Y	A
961	AA	CGAC	CTC	'ATY	iGC(	icei	بريز	RACC	CAC	rtce	3C(2)	الخالا	CAC	'GAT	GAC	ACC	:A(~1	MCC.	AAC	CAC
	N																	•		
1021	AC.	TTC	GAC	TCG	AGC	CCC	GCT	CACC	TTI	CCC	CTC	AAC	TCI	ACI	CTC	TAC	GCC	GAC	TII	TCG
_	T																			
1081	CAT	CGAC	AAC	GGC	ATC	ATC	TC	Pro	CTO	1717	GCI	TT'A	GGT	CTG	TAC	AAC	:GGC	ACT	'AAG	CCG
338	H	D	Ŋ	G	I	I	S	I	L	F	A	Ľ	Ġ	L	Ÿ	N	Ġ	T	K	P
1141	.CTA	TCI	ACC	ACG	ACC	GTG	GAG	A AT	'ATC	ACC	CAG	ACA	GAT	'GGA	TTC	TCG	TCI	GCI	TGG	ACG
	L																			
1201	GIT	CCG	444	GCT	TCG	CGT	باجلد	TAC	CTC	GAG	ATG	ATG	CAG	TGT	CAG	GCG	GAG	CAG	GAG	CCG
378		P				R						M			_	A	_	Q		P
1261	CTG	CTY:	CGT	بالملث	ביצדים	بلملت	ል ልጥ	ሃንልጥ	אהכה	ייינט	GIC	CCC	CTC:	ሮልጥ	GGG	TET	CCG	لملئ	የፖልጥ	بلنك
398		V	R	V	L		N	D	R	V	V	P	L	H	G		P	V	D	Ā
1321	TTG	GGG	AGA'	TGT	ACC	CGG	GAT	AGC	TTT	GTG	AGG	GGG	TTG	AGC	TTT	GCT	AGA	TCT	GGG	GGT
418		G									R		-				R	S	G	G
1381	GAT	TGG	GCG	GAG:	IGI	TTT	GCT	TAG												
ルコロ	n	<b>T.</b>	•	-	_	**	•	_												

Fig. 11B

tctagaacaataacaggtactccctaggtggacacggcaccaacca	gatggegeaegt tacceteaecat racegatttgaec rgtteggagaeat rggetgtgeteet	ggtgccctaaccccttgctcc cgcctggatgaaacctccccg gtcatggtggagggctgattc gaaaggcttatatgaggacgt tcgtcggaaacatctgctgtc	60 120 180 240 300 360 420
MGFLA	I V L S	V A L L F R S	16
gtatgcacccctctacgtccaattctc	rtgggcactgaca	T S G T	480 20
cccgttgggcccccggggcaaacatag	regactgeaacte	agtegateaeggetateaatg	540
PLGPRGKHS		V D H G Y Q C	40
ctttcctgaactctctcataaatgggg	actctacgcgcc	ctacttctccctccaggacga	600
F P E L S H K W G			60
gtctccgtttcctctggacgtcccaga	iggactgtcacat	cacettegtgcaggtgctggc	660
SPFPLDVPE		•	80
ccaccacacacacacaaacccaaccca	-		720
RHGARSPTH	•	AYAATIA	100
ggccatccagaagagtgccactgcgtt	tccgggcaaata	egegtteetgeagteatataa	780
AIQKSATAF	PGKY	AFLQSIN	120
ctactccttggactctgaggagctgad			840
YSLDSEELT	P F G R	NQLRDLG	140
cgcccagttctacgagcgctacaacgc	cctcacccgaca	catcaaccccttcgtccgcgc	900
AQFYERYNA	LTRH	INPFVRA	160
Caccgatgcatcccgcgtccacgaatc			960
TDASRVHES	A E K F	VEGFQTA	180
tcgacaggacgatcatcacgccaatcc			1020
RQDDHHANP			200
ccccgaaggcagccctacaacaacac	gctggagcacag	rectetgeaccgcettegaate	1080
PEGSAYNNT			220
cagcaccgtcggcgacgacgcggtcgc	caacttcaccgc	egtgttegegeeggegatege	1140
STVGDDAVA			240
ccagcgcctggaggccgatcttcccgg	regtgeagetgte	caccgacgacgtggtcaacct	1200
QRLEADLPG			260
gatggccatgtgtccgttcgagacggt	cagootgacoga	egaegegeacaegetgtegee	1260
MAMCPFETV	S L T D	DAHTLSP	280
gttctgcgacctcttcacggccactga	gtggacgcagta	caactacctgctctcgctgga	1320
FCDLFTATE	W T Q Y	N Y L L S L D	300
caagtactacggctacggcggggcaa	tecactaaatee	ggtgcagggggtcggctgggc	1380
K Y Y G Y G G N	P L G P	VQGVGWA	320
gaacgagetgatggegeggetaaegeg	eaceccataes	caccacacctacatcaacaa	1440
NELMARLTR	A P V H	D H T C V N N	340
caccctcgacgcgagtccggccacctt		cacctctacgccgacttctc	1500
T L D A S P A T F	P L N A	T L Y A D F S	360

CCa	cga	cag	Caa	cct	ggt	gtc	gat	ctt	ctg	ggc	gct	<b>9</b> 59	cct	gta	caa	cgg	Cac	cgc	gcc	1560
H	D	S	N	L	V	S	I	F	W	λ	Ţ	G.	L	Y	N	G	T.	λ	P	380
gct	gtc	gca	gac	ctc	cgt	.cga	gag	cgt	ctc	cca	gac	gga	cgg	gta	cgc	cgc	cgc	ctg	gac	1620
L	S	Q	T	S	V	Ē	ัร	v	S	Q	Ť	D						W	T	400
ggt	gcc	gtt	cgc	cgc	tcg	cgc	gta	cgt	cga	gat	gat	gca	gtg	teg	cgc	cga	gaa	gga	gcc	1680
V	P	F	A	λ	R	À	Y	v	Ē	M	й	٥	c	R	Ā	E	K	E	P	420
gct	ggt	gcg	cgt	gct	ggt	caa	cga	ccq	aat	cat	<b>acc</b>	gct	gça	taa	ctg	ccc	tac	gga	caa	1740
	V													Ğ		P	T	D	K	440
gct	ggg	gcg	gtg	caa	aca	GGZ	CGC	ttt	cat	cac	aaa	act	gag	ctt	tqc	gca	ggc	ggg	cgg	1800
	Ğ																	_	Ğ	460
gaa	ctg	gqc	qqa	tto	ttt	cta	ato	tta	aca	ада	aao	ota	gat	aca	tag	qta	qta	cat	atg	1860
N	พั		Ď			3	2		5	-5		<b>5</b>	<b>5</b> – -	-3	<b>J</b>					466
gat	tgc	tcg	gct	cto	raat	cat	tac	cca	caa	tac	ata	tta	cac	cca	tca	act	gcc	ttg	cgc	1920
	cca																			1980
	rcgc				_	_	-													2040
	gag																			2100
agt	agt	ata	cag	racg	raac	tga	aac	aaa	cac	atc	act	tcc	ctc	gct	cct	ctc	ctg	tag	aag	2160
	rctc																			2220
	rcat															gca	ccc	acg	acg	2280
rgt	aca	gga	aaa	ccg	gca	gcg	cca	caa	tcg	tcg	aga	gcc	atc	tgc	ag					2327

1	TTCCACGCTGAAAGCCTGCACTGCCAAGCTGCATGCAGGCTGCTC	
	- TO THE POPULATION OF THE POP	5
51	AACTGCCTGCTTATCTTCATCACCCCCCCCCCCCCCCCC	
	AACTGCCTGCTTATCTTCATCAGACGCAGATACACAACCTGGTCTGTAGA	10
101	TGCACCCATCACCCACCCACCCACCCACCCACCCACCCAC	
	TGCACCCATGACGGACGAACGCACCGCTCTCTTGGCCTCCAGGGACCCGG	15
151	***************************************	
-31	AGGTCGAGGGCGATGAGGTCGCGCCCTCGACGGCCTCCCAGTCCCTGTTG	20
201		
201	CAGTIGAGATCTCGCTGCGAACGTCGACCGCAGATATGGTTGTCTTCGAC	250
25.		
251	GTTTTCTCGCCTTCGAGGAAGAATTGCTGCTGTGACGATGAGTCTGTTGT	300
	MSLLL	300
		-
• • •	•	
301	TGCTGGTGCTGCGGGGTTGGTCGCGTTATAGCALGCCCCCCCCCC	75
	LVLSGGLVALY	
		16
	•	
351	rggtcatattgttttctcataacgttctcataactgaagtGtCtCAAGAA	
	•	
	VSRN	20
401	ATCCGCATGTTGATAGCCACTCTTGCAATACAGTGGAAGGAGGGTATCAG	
	P H V D S H S C N T V E G G Y Q	450
	T T Z R Z C M T V E G G Y Q	36
	-	
451	TGTCGTCCAGAATCTCCCACCTCCCCCCCCCCCCCCCCC	
	TGTCGTCCAGAAATCTCCCACTCCTGGGGGCCAGTATTCTCCCATTCTTCTC	500
	CRPEISHSWGQYSPFFS	53
501	CCTGGC3G3CG3CGCG3G	
	CCTGGCAGACCAGTCGGAGATCTCGCCAGATGTCCCACAGAACTGCAAGA	550
	LADQSEISPDVPQNCKI	70
551	T-30	
	THE TOTAL COLLEGE CALCACTER TACKTACCTACCTACCTACCTCT	600
	TFVQLLSRHGARYPTS	86
501		
307	The second crost of the form of the fo	650
	SKTELYSQLISRIQKTA	103
• • •	•	
151	GACTGCGTACAAAGGCTACTATGCCTTCTTGAAAGACTACAGATACCAGC	700
	TAYKGYYAFLKDYRYQL	120
		±20
	•	
01	TGGGAGCGAACGACGCCCTTTGGGGAAAACCAGATGATCCAGTTG	776
	G A N D L T P F G E N Q M I Q L	750
		136

Fig. 13A

751	GGCATCAAGTITTATAACCATTACAAGAGTCTCGCCAGGAATGCCGTCCC G I K F Y N H Y K S L A R N A V P	800 153
801	ATTCGTTCGTTGCTCCGGGCTCTCATCGGGTCATTGCCTCGGGGAGACTTT F V R C S G S D R V I A S G R L F	850 170
851	TCATCGAAGGTTTCCAGAGCGCCAAAGTGCTGGATCCTCATTCAGACAAG I E G F Q S A K V L D P H S D K	900 186
901	CATGACGCTCCTCCCACGATCAACGTGATCATCGAGGAGGGTCCGTCC	950 203
951	CAATAACACGCTCGACACCGGCAGCTGTCCAGTCTTTGAGGACAGCAGCG N N T L D T G S C P V F E D S S G +	1000 220
1001	GGGGACATGACGCACAGGAAAAGTTCGCAAAGCAATTCGCACCAGCTATC G H D A Q E K F A K Q F A F A I	1050 236
1051	CTGGAAAAGATCAAGGACCATCTTCCCGGCGTGGGACCTGGCCGTGTCGGA L E K I K D H L P G V D L A V S D	1100 253
1101	TGTACCGTACTTGATGGACTTGTGTCCGTTTGAGACCTTGGCTCGCAACC V P Y L M D L C P F E T L A R N H	1150 270
1151	ACACAGACACGCTGTCTCCCGTTCTGCGCTCTTTCCACGCAAGAGGAGTGG	1200 286
1201	CAAGCATATGACTACCAAAGTCTGGGGAAATACTATGGCAATGGCGG Q A Y D Y Y Q S L G K Y Y G N G G	1250 303
1251	GGGTAACCCGTTGGGGCCCAAGGCGTGGGGTTTGTCAACGAGTTGA G N P L G P A Q G V G F V N E L I	1300 320
1301	TTGCTCGCATGACCCATAGCCCTGTCCAGGACTACACCACGGTCAACCAC	1350
1351	ACTOTTGACTOGAATOOGGGGACATTCCCTTTGAACGCGACGCTGTACGC T L D S N P A T F P L N A T L Y A	

Fig. 13B

1401	AGATTTCAGCCACGACAACACAATGACGTCAATTTTCGCGGCCTTGGGCC	1450
	DFSHDNTMTSIFAALGL	370
1451	TGTACAACGGGACCGCGAAGCTGTCCACGACCGAGATCAAGTCCATTGAA Y N G T A K L S T T E I K S I E	1500 386
1501	GAGACGGACGGCTACTCGGCGGCGCGAGC E T D G Y S A A W T V P F G G R A	1550 403
1551	CTATATCGAGATGATGCAGTGTGATGATCGGATGAGCCAGTCGTTCGGG Y I E M M Q C D D S D E P V V R V	1600 420
1601	TGCTGGTCAACGACCGGGTGGTGCCACTGCCATGGCTGCGAGGTGGACTCC L V N D R V V P L H G C E V D S	1650 436
1651	CTGGGGCGATGCAAACGAGACGACTTTGTCAGGGGACTGAGTTTTGCGCG L G R C K R D D F V R G L S F A R	1700 453
1701	ACAGGGTGGGAACTGGGAGGGGTGTTACGCTGCTTCTGAGTAGGTTTATT Q G G N W E G C Y A A S E	1750 466
1751	CAGCGAGTTTCGACCTTTCTATCCTTCAAACACTGCACAAAGACACACTG	1800
1501	CATGAAATGGTAACAGGCCTGGAGCGTTTTAGAAGGAAAAAAGTT	1845

AATTACGGAGTAGTTGCCATTCCATTGATCAACAGTCAACGCCAAGTTTCGTAGTATTTTCCAAACTCCTCCACTGGCGTGCG	06
TTGCGACACGACTGCATGAGAATCGATCGATCGATGGTCGCTCAGGATCATCTGATCTCGGGTTGGATGATCTTTTATG	180
ACCAGEGEGATTGATTTTCAATGCGTTGTTGTTCATCCGATTCATGAACAAGTGGACATTATTATTATTGCTGCACGTGTCCTAAG	270
CTGCAAGTACTATTGAATAGTGCTACCATGATCGACGACCACCACCTCATGGAAGCCCCCCTAGCCGGCAGATCTGGCACA	360
OCCATOCTOCTATAAAAAGACTGCCAAATGCCGAAGACGAAGACGTTCAGCCCGCAGAGAGTGCCAAGAGGCGGGAAATGCAAACGTTCAGCCGCAGAGTGCCGTCATGCCGGGGAAATGCAAAAAAAA	450
TAGGITTGGGGTCCTTCTGGTGCTGCTGCTGCAATTgtacgcattcttctaggaccctaattatagaggtctgttgctgatattctgact	540
OBTICGECATTATTGACGECCTCCCCCATTCCTCCTTTCTGGAGGAGGAGCATCCCAACGTGGACATTGCCCCCCCC	630
TACTCCCCTTCTTCTCCCCGAGGTCTCTCAAATCTCCCCTGCCGTGCCCAAGGGCTGTCGTCGAGTTTGTGCAGGTGCTGTCCT	720
CGCCACGCACCTCCCTACTCCTCACAGAGTCTACGCCCGAGTTGCTTCAAAGGATCCAGGACCTGCCACCGACCG	810
GOCGATTTGCCTTTCTCCGAGACTATCCATCTCGGTGCCGATTTTGACGCGCCTTTGGCGAGGCAGGATGATGGAATCGGCC G D F A F L R D Y A Y H L G A D N L T R F G E E Q M M E S G	006

Fig. 14A

990 ~ **«** S ය ⋖ **~** <u>~</u> ш OFYHRYREQA

CACTTCTTCAACCGCGATTCCAGGATCCCAGGATCCCAGGTCGAACAAGGACCAGGCCAGGCCTGTGATCAACGTGATCATT E F F N R G F Q D A K D R D P R S N K D Q A E P V I N V I I

1260 CTGCAAGTTTTCGGCCCCCCTGTCTTGAAAAGATCACTAAACATGCCGGGTGTGAACCTCACCTTGGAGGATGTCCCGTTGTTCATG Ω. > NLTLED > ວ <u>d</u>. ± × QVFGPRVLKK

1350 CATCTTTGTCCGTTTGACACGCTCCGACCCAGTTCTTTCCCACGCCAGCTCTCTCCCGTTTTGTCACCTTGTTCACGCCCGACCAT

1440 

1530 GTCAACGAGCTGATTGCGCGTATGACGGAAATCTTCCCGTCAAGGACCACAACAAGGACCACAACCACACTCTCGATGACAACCGGAAACT V N E L I A R M T G N L P V K D H T T V N H T L D D N P E T

1620 TICCCGTTGGACGCTGTCCTCTACCCAGACACCACCATGACGCCATCTTTTCCGCAATGGCCCTGTACAACGCCACAC __ Fig. 14B

1800 

1890 

1980 CCACAGGG TGGCCATTGGCATCCCTTTTGATTAGATGCTCATAGACATAGCCCCATGATTCCGAATTGATGTTTTTAGATACAATCA OGGHWDRCF

2070 CTGCGGAAAGGGAAATGATCCAAAAAGCGCCAGTCTAGTATAACTTTGCGAATCCGTTGACTTGTTCAGTCCTTGGTGTCGCATCAACC

2160 AGGCCTGCCACAAGGTCCAATGTTCCCGCTCTACATGGAGTCCGTCGTCGCCCAAGATCATCCACCCCAGCCCAACGAGCTGTTCCGTTG

AGGCTATCTGCCGTGGTTGACCCCGTGCTCACAGTCACA 2200

Fig. 14C

## 45/51

 $\underline{AAGCTT} GGGCAAACTCATCATCTTGATGATTCCACTGTTCAGCTACCTGGCTGCTGCTTCTTCT\underline{GT} GGGTTCATC$ 80 HindIII MLILMIPLFSYLAASL CTTTGCCCCTGTCTCGATGTTAAAATACTAAACATATTTCACCAGACGTGTACTCTCCCCTCAGCCAGTGTCCTGTGACA 160 RVLSPQPVSCD GCCCGGAGCTTGGTTACCAATGCGACCAGCAGACAACGCACACCTGGGGTCAATACTCACCCTTCTTCTCTGTCCCGTCA 240 SPELGYQCDQQTTHTWGQYSPFFSV_PS GAGATCTCCCCTTCCGTTCCTGATGGCTGCCGCCTCACCTTCGCCCAAGTTCTCTCCCGCCACGGCGCCCCGCTTCCCAAC 320 EISPSVPDGCRLTFAQVLSRHGARFPT CCCGGGTAAAGCCGCCGCCATCTCCGCTGTCCTCACCAAAATCAAAACCTCTGCCACCTGGTACGGTTCCGACTTTCAGT 400 PGKAAAISAVLTKISATWYGSDFO TCATCAAGAACTACGACTATGTACTTGGCGTAGACCACCTGACCGCGTTCGGCGAGCAAGAAATGGTCAACTCCGGCATC 480 FIKNYDYVLGVDHLTAFGEQEMVNSGI AAGTTCTACCAGCGCTACTCCTCCTCATCCAGACAGAAGACTCGGATACGCTCCCCTTCGTCCGCGCCTCTGGCCAGGA 560 K F Y Q R Y S S L I Q T E D S D T L P F V R A S G Q E 640 RVIASAENFTTGFYSALSADKNPPSS TACCAAGACCAGAAATGGTCATCATTTCTGAGGAGCCAACAGCCAACAACACCATGCACCACGGCCTCTGTCCTTT 720 LPRPEMVIISEEPTANNTMHHGLCRSF 800 E D S T T G D Q A Q A E F I A A T F P P I T A R L N A CCAAGGTTTCAAAGGCGTCACCCTCTCCAACACCGACGTCCTATCACTAATGGACCTCTGCCCCTTTGACACCGTCGCCT 880 Q G F K G V T L S N T D V L S L M D L C P F D T V A ACCCCTTTCCTCCCTCACCACCACCTCTTCCGTTTCTGGAGGCGGCAAGTTATCCCCCCTTCTGCTCTTTTCACTGCC 960 Y P L S S L T T T S S V S G G G K L S P F C S L F T A AGCGACTGGACAATCTACGATTACCTCCAGTCCCTAGGGAAATACTACGGTTTCGGCCCCGGTAATTCCCTAGCTGCCAC 1040 S D W T I Y D Y L Q S L G K Y Y G F G P G N S L A A T CCAGGGGGTAGGTACGTCAACGAGCTTATCGCCCGCTTGATCCGTGCTCCGTGGTAGATCACACGACGACCAACTCTA 1120 Q G V G Y V N E L I A R L I R A P V V D H T T N S CTCTTGATGGCGACGAAAAAACGTTTCCGTTGAACAGAACGGTGTATGCGGATTTTTCCCATGATAATGATGATGAAT 1200 T L D G D E K T F P L N R T V Y A D F S H D N D M M N

Fig. 15A

## 46/51

ATCCTGACTGCTTTGCGGATATTCGAGCATATCAGTCCGATGGATAACACCACTATCCCGACCAACTATGGCCAGACAGG

I L T A L R I F E H I S P M D N T T I P T N Y G Q T G

AGATGACGGGGTGAAGGAAAGGGATTTGTTCAAGGTTAGTTGGGCGGTGCCCTTTGCTGGGAGGGTGTACTTTGAGAAAA

D D G V K E R D L F K V S W A V P F A G R V Y F E K

TGGTTTGTGATGCGGATGGGGATGGCAAGATTGATAGTGATGAGGGCTCAGAAAGAGTTGGTGAGGATTTTGGTTAATGAT

M V C D A D G D G K I D S D E A Q K E L V R I L V N D

CGGGTGATGAGATTGAATGGGTGTGATGAACAGGGTAGGTGTGGATTGGAGAAGTTTGTGGAGAGTATGGAGTT 1520

R V M R L N G C D A D E Q G R C G L E K F V E S M E F

ARRGGEWEERCFV XbaI

1	MLILMIPLFSYLAAASLRVLSPQPVSCDSPELGYQCDQQTTHTWGQYS	48
1	: :.:::      .    :  :  :         MTGLGVMVVMVGFLAIASLQSESRPCDTPDLGFQCGTAISHFWGQYS	47
49	PFFSVPSEISPSVPDGCRLTFAQVLSRHGARFPTPGKAAAISAVLTKIKT	98
48	:     ::: :  :  :  :	97
99	The state of the s	148
98	:   .::: ::.   .  .    : :        .  .   GAISYGPGYEFLRTYDYTLGADELTRTGQQQMVNSGIKFYRRYRAL	143
149	DSDTLPFVRASGOERVIASAENFTTGFYSALSADKNPPSSLPRP.EMVII	197
144	ARKSIPFVRTAGQDRVVHSAENFTQGFHSALLADRGSTVRPTLPYDMVVI	193
198	SEEPTANNTMHHGLCRSFEDSTTGDQAQAEFIAATFPPITARLNAQG	244
194	PETAGANNTLHNDLCTAFEEGPYSTIGDDAQDTYLSTFAGPITARVNA.N	242
245	FKGVTLSNTDVLSLMDLCPFDTVAYPLSSLTTTSSVSGGK.LSPFCSLF	293
243	LPGANLTDADTVALMDLCPFETVASSSSDPATADAGGGNGRPLSPFCRLF	292
294	TASDWTIYDYLQSLGKYYGFGPGNSLAATQGVGYVNELIARLIRAPVVDH	343
293	:      :  :  :  :  :  :  :   :   :	342
344	TTTNSTLDGDEKTFPLNRTVYADFSHDNDMMNILTALRIFEHISPMDNTT	393
343	TSTNRTLDGDPRTFPLGRPLYADFSHDNDMMGVLGALGAYDGVPPLD	389
394	IPTNYGQTGDDGVKERDLFKVSWAVPFAGRVYFEKMVCDADGDGKIDSD.	442
390	. : : : : .       : :      ::::::::::	433
443	. EAQKELVRILVNDRVMRLNGCDADEQGRCGLEKFVESMEFARRGGEWE	490
434	:. :  :	483
491	ERCFV 495	
484	L.CFA 487	

Peniophora numbers	1				27
Alignment numbers	1				37
P_involtus Al		ECEVALACI I	SLSEVLATSV	ם צאויי	50
P_involtus_A2					
T_pubescens			HLSEVFAASV		•
			FVCYAYARAV		
A_pediades	• • • • • • • • • • • • • • • • • • • •		VFLQASAYGG		•••
P_lycii			SLMSSLALST		_
A_fumigatus			.SGRVSAAPS		_
consphyA			GSTSGTALGP		
A_nidulans			SRVSAQAP		_
A_ficuum_NRRL3135			GVTSGLAVPA	SRNQSSCDTV	DQGYQCFSET
A_terreus	MGFL	AIVLSVALLF	RSTSGTPLGP	RGKHSDCNSV	DHGYQCFPEL
T_thermo	MSLL	LLVLSGGLVA	LYVSRNP	HVDSHSCNTV	EGGYQCRPEI
$ exttt{T_lanuginosa}$	MAGIGLGSFL	VLLLQFSALL	TASPAIPPFW	RKKHPNVD	I
$M_{thermophila}$	MTGL	GVMVVMVGFL	AIASL	QSESRPCDTP	DLGFQCGTAI
${\tt C_foecundissimum}$	ML	ILMIPLFSYL	AAASL	RVLSPSCDSP	ELGYQCDQQT
				QPV	
					•
	38				83
	51				100
P_involtus_A1	QRNWSPYSPY	FPLAEYKA	PPAGCQIN	QVNIIQRHGA	RFPTSGATTR
P_involtus_A2	QRNWSPYSPY	FPLAEYKA	PPAGCEIN	QVNIIQRHGA	RFPTSGAATR
T_pubescens	QQSWSMYSPY	FPAATYVA	PPASCQIN	QVHIIQRHGA	RFPTSGAAKR
A_pediades	QDSWAAYTPY	YPVQAYTP	PPKDCKIT	QVNIIQRHGA	RFPTSGAGTR
P_lycii	TSNWGPYDPF	FPVEPYAA	PPEGCTVT	QVNLIQRHGA	RWPTSGARSR
A_fumigatus	SHLWGQYSPF	<b>FSLEDELSVS</b>	SKLPKDCRIT	LVQVLSRHGA	RYPTSSKSKK
consphyA	SHLWGQYSPY	FSLEDESAIS	PDVPDDCRVT	FVQVLSRHGA	RYPTSSKSKA
A nidulans	SHVWGQYSPY	FSIEQESAIS	EDVPHGCEVT	FVQVLSRHGA	RYPTESKSKA
A_ficuum_NRRL3135	_	<del>-</del>	PEVPAGCRVT		
A terreus			LDVPEDCHIT	7	
T_thermo		_	PDVPQNCKIT		
T_lanuginosa			PAVPKGCRVE		
M_thermophila			ASIPDDCEVT		
	THTWGQYSPF		PSVPDGCRLT		
	84				133
	101				150
P_involtus_A1	IKAGLTKLOG	VONFTDAKEN	FIKSFKYDLG	NSDLVPFGAA	
P_involtus_A2			FIKSFTYDLG		
T_pubescens	_	_	FVTNYTYSLG		
A pediades			FLTNYTYTLG		
P lycii			FLNDFVYKFG		· -
A_fumigatus	-		FLKTYNYTLG		
consphyA			FLKTYNYTLG		
A nidulans			FLESYNYTLG		
A ficuum NRRL3135		-	FLKTYNYSLG		
A_terreus			FLOSYNYSLD		
<del></del>			FLKDYRYQLG		
	_		FLRDYAYHLG		
	_		FLRTYDYTLG		
			FIKNYDYVLG		
	TOUALITYTYL	PWIMIGDDLA	TIMIDIANG	ADURTHE	THANDGIKET
	134				177
	151				176
		MI DETERMED	DDIAMOSMA	ጥክ ሮቹን ሮን	200
P_involtus_A1					
P_involtus_A2	AKISKLVSSD	NLPFIRSDGS	DKVVDTATNW	Tagrasa	SKNAIQ

Fig. 17A

WO 99/49022

PCT/DK99/00153

49/51 T_pubescens TRYSSLVSAD ELPFVRASGS DRVVATANNW TAGFALA....SSNSIT A_pediades QRYSFLVSKE NLPFVRASSS NRVVDSATNW TEGFSAA....SHHVLN P_lycii TRYSTLFEGG DVPFVRAAGD QRVVDSSTNW TAGFGDA.....SGETVL A_fumigatus QRYKAL.ARS VVPFIRASGS DRVIASGEKF IEGFQQAKLA DPGA.TNRAA consphya RRYKAL.ARK IVPFIRASGS DRVIASAEKF IEGFQSAKLA DPGSQPHQAS A_nidulans RRYKNL.ARK NTPFIRASGS DRVVASAEKF INGFRKAQLH DHGS..KRAT A_ficuum_NRRL3135 QRYESL.TRN IVPFIRSSGS SRVIASGKKF IEGFQSTKLK DPRAQPGQSS A terreus ERYNAL. TRH INPFVRATDA SRVHESAEKF VEGFQTARQD DHHANPHQPS T_thermo NHYKSL.ARN AVPFVRCSGS DRVIASGRLF IEGFQSAKVL DPHSDKHDAP T_lanuginosa HRYREQ.ARE IVPFVRAAGS ARVIASAEFF NRGFQDAKDR DPRSNKDQAE RRYRAL.ARK SIPFVRTAGQ DRVVHSAENF TQGFHSALLA DRGSTVRPTL M_thermophila QRYSSLIDSD TLPFVRASGQ ERVIASAENF TTGFYSALSA DKNPPSSLPR QTE 177 217 201 250 P_involtus_A1 PKLNLILPQT G..NDTLEDN MCPAAGD... ...SDPQVNA WLAVAFPSIT P_involtus_A2 PKLDLILPQT G..NDTLEDN MCPAAGE.....SDPQVDA WLASAFPSVT T_pubescens PVLSVIISEA G..NDTLDDN MCPAAGD.....SDPQVNQ WLAQFAPPMT A_pediades PILFVILSES L..NDTLDDA MCPNAGS.....SDPQTGI WTSIYGTPIA P_lycii PTLQVVLQEE G..NCTLCNN MCPNEVD.....GD.ESTT WLGVFAPNIT A_fumigatus PAISVIIPES ETFNNTLDHG VCTKFEA... SQLGDEVAAN FTALFAPDIR consphyA PVIDVIIPEG SGYNNTLDHG TCTAFED... SELGDDVEAN FTALFAPAIR A_nidulans PVVNVIIPEI DGFNNTLDHS TCVSFEN... DERADEIEAN FTAIMGPPIR A_ficuum_NRRL3135 PKIDVVISEA SSSNNTLDPG TCTVFED... SELADTVEAN FTATFVPSIR A_terreus PRVDVAIPEG SAYNNTLEHS LCTAFES... STVGDDAVAN FTAVFAPAIA PTINVIIEEG PSYNNTLDTG SCPVFED... SSGGHDAQEK FAKQFAPAIL T thermo T_lanuginosa PVINVIISEE TGSNNTLDGL TCPAAEE... AP.DPTQPAE FLQVFGPRVL M_thermophila PYDMVVIPET AGANNTLHND LCTAFEEGPY STIGDDAQDT YLSTFAGPIT P.EMVIISEE PTANNTMHHG LCRSFED STTGDQAQAE FIAATFPPIT 218 252 251 300 P_involtus_A1 ARLNAAAPSV NLTDTDAFNL VSLCAFLTVS KEKK...... P_involtus_A2 AQLNAAAPGA NLTDADAFNL VSLCPFMTVS KEQK...... T_pubescens ARLNAGAPGA NLTDTDTYNL LTLCPFETVA TERR......S A_pediades NRLNQQAPGA NITAADVSNL IPLCAFETIV KETP..... S P_lycii ARLNAAAPSA NLSDSDALTL MDMCPFDTLS SGNA...... A fumigatus ARAEKHLPGV TLTDEDVVSL MDMCSFDTVA RTSD..ASQ. .....LS ARLEADLPGV TLTDEDVVYL MDMCPFETVA RTSD..ATE. .....LS consphyA A_nidulans KRLENDLPGI KLTNENVIYL MDMCSFDTMA RTAH..GTE. .....LS A_ficuum_NRRL3135 QRLENDLSGV TLTDTEVTYL MDMCSFDTIS TSTV..DTK. .....LS A_terreus QRLEADLPGV QLSTDDVVNL MAMCPFETVS LTDD..AHT. .....LS EKIKDHLPGV DLAVSDVPYL MDLCPFETLA RNHT..DT.. .....LS T thermo KKITKHMPGV NLTLEDVPLF MDLCPFDTVG SDPVLFPRQ. .....LS T_lanuginosa M_thermophila ARVNANLPGA NLTDADTVAL MDLCPFETVA SSSSDPATAD AGGGNGRPLS ARLNAGFKGV TLSNTDVLSL MDLCPFDTVA YPLSSLTTTS SVSGGGK LS Q 253 300 301 350 P_involtus_A1 DFCTLFEGIP GSFEAFAYGG DLDKFYGTGY GQELGPVQGV GYVNELIARL P_involtus A2 DFCTLFEGIP GSFEAFAYAG DLDKFYGTGY GQALGPVQGV GYINELLARL EFCDIYEELQ AE.DAFAYNA DLDKFYGTGY GQPLGPVQGV GYINELIARL T_pubescens A_pediades PFCNLFT..P EEFAQFEYFG DLDKFYGTGY GQPLGPVQGV GYINELLARL P_lycii PFCDLFT..A EEYVSYEYYY DLDKYYGTGP GNALGPVQGV GYVNELLARL A_fumigatus PFCQLFT..H NEWKKYNYLQ SLGKYYGYGA GNPLGPAQGI GFTNELIARL

Fig. 17B

consphyA	PFCALFTH	DEWRQYDYLQ	SLGKYYGYGA	GNPLGPAQGV	GFANELIARL
A_nidulans		KEWLQYDYLQ			
A_ficuum_NRRL3135		DEWINYDYLQ			
A terreus		TEWTQYNYLL			
T_thermo		EEWQAYDYYQ			
T_lanuginosa		DDWMAYDYYY			
M_thermophila		SEWRAYDYLO			
		SDWTIYDYLQ	•	-	
				OHOMETT 201	CIVILLIAM
	301				349
	351				400
P_involtus_A1	TNS.AVRDNT	QTNRTLDASP	VTFPLNKTFY	ADFSHDNLMV	AVFSAMGLFR
P_involtus_A2	TNS.AVNDNT	QTNRTLDAAP	DTFPLNKTMY	ADFSHDNLMV	AVFSAMGLFR
T pubescens	TAQ.NVSDHT		ETFPLNRTLY		
A pediades	TEM. PVRDNT	QTNRTLDSSP	LTFPLDRSIY	ADLSHDNQMI	AIFSAMGLFN
P lycii	TGQ.AVRDET		ATFPLNRTFY		PIFAALGLEN
A_fumigatus	TRS.PVQDHT	_	ATFPLNATMY		SIFFALGLYN
consphyA	TRS.PVQDHT		ATFPLNATLY		SIFFALGLYN
A nidulans	TQS.PVQDNT		ATFPLDRKLY		SIFFAMGLYN
A_ficuum_NRRL3135	THS.PVHDDT		ATFPLKSTLY		SILFALGLYN
A terreus	TRA. PVHDHT		ATFPLNATLY		SIFWALGLYN
T thermo		TVNHTLDSNP			SIFAALGLYN
T_lanuginosa		TVNHTLDDNP			
M_thermophila	A.GVPVRDGT		RTFPLGRPLY		
ccpntra	I RAPVVDHT				
	I KAP V VDIII	TINSTIDGOD	RIPPIMRIVI	ADF SILDINDINI	NIBIAURIFE
	350			383	
	401	•			450
P_involtus_A1	QPAPLSTSVP	NPWRT	WRTSSLVPFS	GRMVVERLSC	• • • • • • • • • •
P_involtus A2		DPNRT			• • • • • • • • •
T_pubescens		DPART			• • • • • • • • •
A pediades		NPKRT			QRDGTGSGGP
P lycii		DENRL			• • • • • • • • •
A_fumigatus	GTEPLSRTSV	ESAKELDG	YSASWVVPFG	ARAYFETMQC	• • • • • • • • •
consphyA		ESIEETDG			
A nidulans	GTQPLSMDSV				
A_ficuum_NRRL3135	GTKPLSTTTV		FSSAWTVPFA		•••••
A terreus		ESVSQTDG			••••••
T thermo.		KSIEETDG			••••••
T lanuginosa	GTKPLSTSKI				
M_thermophila	<del>_</del>	RDPEELGG			
	HISPMDQTGD		FKVSWAVPFA		DADGDGKIDS
	NTTIP		PRVOWAVEFA	GRV II EIGIVC	DADGDGRIDS
	384				425
	451				500
P_involtus_A1	FGT	TKVRVLVQDQ	VQPLEFCGGD	RNGLCTLAKF	VESQTFARSD
P_involtus_A2	AGT	TKVRVLVQDQ	VQPLEFCGGD	QDGLCALDKF	VESQAYARSG
T_pubescens	GGA	QSVRLLVNDA	VQPLAFCGAD	TSGVCTLDAF	VESQAYARND
A_pediades	SRIMRNGNVQ	TFVRILVNDA	LQPLKFCGGD	MDSLCTLEAF	VESQKYARED
P_lycii	SGK	EAVRVLVNDA	VQPLEFCGG.	VDGVCELSAF	VESQTYAREN
A_fumigatus	KSEKE	PLVRALINDR	VVPLHGCDVD	KLGRCKLNDF	VKGLSWARSG
consphyA	QAEKE	PLVRVLVNDR	VVPLHGCAVD	KLGRCKRDDF	VEGLSFARSG
A_nidulans		PLVRVLVNDR		•	
A_ficuum_NRRL3135		PLVRVLVNDR			
A terreus		PLVRVLVNDR			
••••	DDSDE				
				<del>_</del>	<b></b>

Fig. 17C

T_lanuginosa	EGEDE	PFVRVLVNDR	VVPLHGCRVD	RWGRCRRDEW	IKGLTFAROG
M_thermophila	EGRQEKDE	EMVRVLVNDR	VMTLKGCGAD	ERGMCTLERF	IESMAFARGN
	D EAQK	ELVRILVNDR	VMRLNGCDAD	EQGRCGLEKF	VESMEFARRG
				-	
	426	439			
	501	514			
P_involtus_A1	GAGDFEKCFA	TSA.			
P_involtus_A2			•		
T_pubescens	GEGDFEKCFA	T		•	
A_pediades	GQGDFEKCFD	• • • •			
	GQGDFAKCGF				
A_fumigatus	GNWGECFS	• • • •			
consphyA	GNWAECFA	*			
${ t A_nidulans}$	GNWKTCFT	L			
A_ficuum_NRRL3135	GDWAECFA	• • • •			
A_terreus	GNWADCF.	• • • •			
T_thermo	GNWEGCYA	ASE.			
$ exttt{T_lanuginosa}$	GHWDRCF.	• • • •			
$M_{ t thermophila}$	GKWDLCFA	• • • •			
	GEWEECFV				
	R				

1

### SEQUENCE LISTING

<212> DNA <213> Cladorrhinum foecundissimum 5 <220> <221> intron <222> (71)..(126) <220> 10 <221> CDS <222> (20)..(70) <220> <221> CDS 15 <222> (127)..(1563) <220> <221> sig_peptide <222> (20)..(64) 20 <400> 1 aagcttgggc aaactcatc atg ctc atc ttg atg att cca ctg ttc agc tac 52 Met Leu Ile Leu Met Ile Pro Leu Phe Ser Tyr 1 10 25 ctg gct gct tct ctg tgggttcatc ctttgcccct gtctcgatgt 100 Leu Ala Ala Ser Leu 15 30 taaaatacta aacatatttc accaga cgt gta ctc tcc cct cag cca gtg tcc Arg Val Leu Ser Pro Gln Pro Val Ser 20 25 tgt gac agc ccg gag ctt ggt tac caa tgc gac cag cag aca acg cac 201 35 Cys Asp Ser Pro Glu Leu Gly Tyr Gln Cys Asp Gln Gln Thr Thr His 30 35 40 acc tgg ggt caa tac tca ccc ttc ttc tct gtc ccg tca gag atc tcc 249 Thr Trp Gly Gln Tyr Ser Pro Phe Phe Ser Val Pro Ser Glu Ile Ser 40 45 50 55 cct tcc gtt cct gat ggc tgc cgc ctc acc ttc gcc caa gtt ctc tcc 297 Pro Ser Val Pro Asp Gly Cys Arg Leu Thr Phe Ala Gln Val Leu Ser 60 65 70 45 cgc cac ggc gcc cgc ttc cca acc ccg ggt aaa gcc gcc gcc atc tcc 345 Arg His Gly Ala Arg Phe Pro Thr Pro Gly Lys Ala Ala Ile Ser 75 80 85 90 50 gct gtc ctc acc aaa atc aaa acc tct gcc acc tgg tac ggt tcc gac 393 Ala Val Leu Thr Lys Ile Lys Thr Ser Ala Thr Trp Tyr Gly Ser Asp 95 100 105 ttt cag ttc atc aag aac tac gac tat gta ctt ggc gta gac cac ctg 441 55 Phe Gln Phe Ile Lys Asn Tyr Asp Tyr Val Leu Gly Val Asp His Leu 110 115 120

2

5	acc Thr	gcg Ala	ttc Phe 125	ggc	gag Glu	caa Gln	gaa Glu	atg Met 130	gtc Val	aac Asn	tcc Ser	ggc Gly	atc Ile 135	aag Lys	ttc Phe	tac Tyr	489
	cag Gln	cgc Arg 140	tac Tyr	tcc Ser	tcc Ser	ctc Leu	atc Ile 145	cag Gln	aca Thr	gaa Glu	gac Asp	tcg Ser 150	gat Asp	acg Thr	ctc Leu	ccc Pro	537
10	ttc Phe 155	gtc Val	cgc Arg	gcc Ala	tct Ser	ggc Gly 160	cag Gln	gaa Glu	cgc Arg	gtc Val	atc Ile 165	gcc Ala	tcc Ser	gcc Ala	gag Glu	aac Asn 170	585
15	ttc Phe	acc Thr	acc Thr	ggc Gly	ttc Phe 175	tac Tyr	tcg Ser	gcc Ala	ctc Leu	tca Ser 180	gcc Ala	gac Asp	aag Lys	aac Asn	cct Pro 185	cct Pro	633
20							gaa Glu										681
25	gcc Ala	aac Asn	aac Asn 205	acc Thr	atg Met	cac His	cac His	ggc Gly 210	ctc Leu	tgc Cys	cgc Arg	tcc Ser	ttt Phe 215	gaa Glu	gat Asp	tcc Ser	729
							caa Gln 225									cca Pro	777
30							aac Asn										825
35							tca Ser										873
40							tcc Ser										921
45							ttc Phe										969
							cag Gln 305										1017
50							gcc Ala										1065
55							cgt Arg										1113

3

5	aac Asn	tct Ser	act Thr	ctt Leu 350	gat Asp	ggc	gac Asp	gaa Glu	aaa Lys 355	acg Thr	ttt Phe	ccg Pro	ttg Leu	aac Asn 360	aga Arg	acg Thr	1161
	gtg Val	tat Tyr	gcg Ala 365	gat Asp	ttt Phe	tcc Ser	cat His	gat Asp 370	aat Asn	gat Asp	atg Met	atg Met	aat Asn 375	atc Ile	ctg Leu	act Thr	1209
10	gct Ala	ttg Leu 380	cgg Arg	ata Ile	ttc Phe	gag Glu	cat His 385	atc Ile	agt Ser	ccg Pro	atg Met	gat Asp 390	aac Asn	acc Thr	act Thr	atc Ile	1257
15	ccg Pro 395	acc Thr	aac Asn	tat Tyr	ggc Gly	cag Gln 400	aca Thr	gga Gly	gat Asp	gac Asp	999 Gly 405	gtg Val	aag Lys	gaa Glu	agg Arg	gat Asp 410	1305
20	ttg Leu	ttc Phe	aag Lys	gtt Val	agt Ser 415	tgg Trp	gcg Ala	gtg Val	ccc Pro	ttt Phe 420	gct Ala	GJA aaa	agg Arg	gtg Val	tac Tyr 425	ttt Phe	1353
25	gag Glu	aaa Lys	atg Met	gtt Val 430	tgt Cys	gat Asp	gcg Ala	gat Asp	999 Gly 435	gat Asp	ggc	aag Lys	att Ile	gat Asp 440	agt Ser	gat Asp	1401
	gag Glu	gct Ala	cag Gln 445	aaa Lys	gag Glu	ttg Leu	gtg Val	agg Arg 450	att Ile	ttg Leu	gtt Val	aat Asn	gat Asp 455	cgg Arg	gtg Val	atg Met	1449
30	aga Arg	ttg Leu 460	aat Asn	Gly ggg	tgt Cys	gat Asp	gct Ala 465	gat Asp	gaa Glu	cag Gln	ggt Gly	agg Arg 470	tgt Cys	gga Gly	ttg Leu	gag Glu	1497
35	aag Lys 475	ttt Phe	gtg Val	gag Glu	agt Ser	atg Met 480	gag Glu	ttt Phe	gcg Ala	agg Arg	aga Arg 485	gly ggg	gly ggg	gag Glu	tgg Trp	gag Glu 490	1545
40			tgt Cys		_	tag	ctct	aga									1570
45	<212	> 49 > PR	T	rhin	um f	oecu	ındis	simu	ım								
50	<400 Met 1		Ile	Leu	Met 5	Ile	Pro	Leu	Phe	Ser 10	Tyr	Leu	Ala	Ala	Ala 15	Ser	
	Leu	Arg	Val	Leu 20	Ser	Pro	Gln	Pro	Val 25	Ser	Cys	Asp	Ser	Pro 30	Glu	Leu	
55	Gly	Tyr	Gln 35	Cys	qaA	Gln	Gln	Thr 40	Thr	His	Thr	Trp	Gly 45	Gln	Tyr	Ser	

	Pro	Phe 50		Ser	Val	Pro	Ser 55	Glu	Ile	Ser	Pro	Ser 60	Val	Pro	Asp	Gly
5	Cys 65	Arg	Leu	Thr	Phe	Ala 70	Gln	Val	Leu	Ser	Arg 75	His	Gly	Ala	Arg	Phe 80
10	Pro	Thr	Pro	Gly	Lys 85	Ala	Ala	Ala	Ile	Ser 90	Ala	Val	Leu	Thr	Lys 95	Ile
	Lys	Thr	Ser	Ala 100	Thr	Trp	Tyr	Gly	Ser 105	Asp	Phe	Gln	Phe	Ile 110	Lys	Asn
15	Tyr	Asp	Tyr 115	Val	Leu	Gly	Val	Asp 120	His	Leu	Thr	Ala	Phe 125	Gly	Glu	Gln
	Glu	Met 130	Val	Asn	Ser	Gly	Ile 135	Lys	Phe	Tyr	Gln	Arg 140	Tyr	Ser	Ser	Leu
20	Ile 145	Gln	Thr	Glu	Asp	Ser 150	Asp	Thr	Leu	Pro	Phe 155	Val	Arg	Ala	Ser	Gly 160
25	Gln	Glu	Arg	Val	Ile 165	Ala	Ser	Ala	Glu	Asn 170	Phe	Thr	Thr	Gly	Phe 175	Tyr
				180		Asp			185					190		
30			195			Ser		200					205			
		210				Ser	215					220				
35	225					Ala 230					235					240
40					245	Lys				250					<b>25</b> 5	
				260		Cys			265				_	270		
45			275			Ser		280					285			
	Phe	Cys 290	Ser	Leu	Phe	Thr	Ala 295	Ser	Asp	Trp	Thr	Ile 300	Tyr	Asp	Tyr	Leu
50	305					Tyr 310					315					320
55					325	Gly				330					335	
	Arg	Ala	Pro	Val	Val	Asp	His	Thr	Thr	Thr	Asn	Ser	Thr	Leu	Asp	Gly

5

				340					345					350		
5	Asp	Glu	Lys 355	Thr	Phe	Pro	Leu	Asn 360	Arg	Thr	Val	Tyr	Ala 365	Asp	Phe	Ser
	His	Asp 370	Asn	Asp	Met	Met	Asn 375	Ile	Leu	Thr	Ala	Leu 380	Arg	Ile	Phe	Glu
10	His 385	Ile	Ser	Pro	Met	Asp 390	Asn	Thr	Thr	Ile	Pro 395	Thr	Asn	Tyr	Gly	Gln 400
	Thr	Gly	Asp	Asp	Gly 405	Val	Lys	Glu	Arg	Asp 410	Leu	Phe	Lys	Val	Ser 415	Trp
15	Ala	Val	Pro	Phe 420	Ala	Gly	Arg	Val	Tyr 425	Phe	Glu	Lys	Met	Val 430	Cys	Asp
20	Ala	Asp	Gly 435	Asp	Gly	Lys	Ile	Asp 440	Ser	Asp	Glu	Ala	Gln 445	Lys	Glu	Leu
	Val	Arg 450	Ile	Leu	Val	Asn	Asp 455	Arg	Val	Met	Arg	Leu 460	Asn	Gly	Cys	Asp
25	Ala 465	Asp	Glu	Gln	Gly	Arg 470	Cys	Gly	Leu	Glu	Lys 475	Phe	Val	Glu	Ser	Met 480
	Glu	Phe	Ala	Arg	Arg 485	Gly	Gly	Glu	Trp	Glu 490	Glu	Arg	Cys	Phe	Val 495	

PCT

5618-KaPe

Original (for SUBMISSION	- printed on 22.03.1999	10:06:53 AM

0-1	Form - PCT/RO/134 (EASY) Indications Relating to Deposited Microorganism(s) or Other Biological Material (PCT Rule 13bis)	
0-1-1	Prepared using	PCT-EASY Version 2.83 (updated 01.03.1999)
0-2	International Application No	
0-3	Applicant's or agent's file reference	5618-KaPe
1	The indications made below relate to the deposited microorganism(s) or other biological material referred to in the description on:	
1-1	page	6
1-2	line	18
1-3	Identification of Deposit	
1-3-1	Name of depositary institution	Centraalbureau voor Schimmelcultures
1-3-2	Address of depositary institution	Oosterstraat 1, Postbus 273, NL-3740 AG
		Baarn, Netherlands
1-3-3	Date of deposit	23 January 1997 (23.01.1997)
1-3-4	Accession Number	CBS 427.97
1-4	Additional Indications	NONE
1-5	Designated States for Which Indications are Made	all designated States
1-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	
2	The indications made below relate to the deposited microorganism(s) or other biological material referred to in the description on:	
2-1	page	6
2-2	line	20
2-3	Identification of Deposit	· · · · · · · · · · · · · · · · · · ·
2-3-1	Name of depositary institution	DSMZ-Deutsche Sammlung von
		Mikroorganismen und Zellkulturen GmbH
2-3-2	Address of depositary institution	Mascheroder Weg 1b, D-38124
		Braunschweig, Germany
2-3-3	Date of deposit	17 March 1999 (17.03.1999)
2-3-4	Accession Number	DSMZ 12742
2-4	Additional Indications	NONE
2-5	Designated States for Which Indications are Made	all designated States
2-6	Separate Furnishing of Indications	NONE
	These indications will be submitted to the International Bureau later	

**PCT** 

5618-KaPe

### Original (for SUBMISSION) - printed on 22.03.1999 10:06:53 AM

### FOR RECEIVING OFFICE USE ONLY

0-4	This form was received with the international application: (yes or no)	yes
0-4-1	Authorized officer	Grownstecture
		<b>y</b>
	FOR INT	ERNATIONAL BUREAU USE ONLY
0-5	This form was received by the international Bureau on:	ERNATIONAL BUREAU USE ONLY

### INTERNATIONAL SEARCH REPORT

International application No.

### PCT/DK 99/00153 A. CLASSIFICATION OF SUBJECT MATTER IPC6: C12N 9/16, C12N 15/55, A23K 1/165 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC6: C12N, A23K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SE,DK,FI,NO classes as above Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category* Relevant to claim No. P,X EP 0897010 A2 (F. HOFFMANN-LA ROCHE AG), 1-47 7 February 1999 (07.02.99) P,X EP 0897985 A2 (F. HOFFMANN-LA ROCHE AG), 1-47 24 February 1999 (24.02.99) X WO 9735016 A1 (NOVO NORDISK BIOTECH, INC.), 1-47 25 Sept 1997 (25.09.97), page 10, line 22 - page 11, line 18, claim 11 EP 0420358 A1 (GIST-BROCADES N.V.), 3 April 1991 1-47 (03.04.91), page 10, line 6 - line 14; and the claims Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand "A" the principle or theory underlying the invention to be of particular relevance erlier document but published on or after the international filing date "X" document of particular relevance: the claimed invention cannot be document which may throw doubts on priority claim(s) or which is "L" considered novel or cannot be considered to involve an inventive cited to establish the publication date of another citation or other step when the document is taken alone special reason (as specified) document of particular relevance: the claimed invention cannot be document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combination document published prior to the international filing date but later than being obvious to a person skilled in the art the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 13 -07- 1999 6 July 1999 Name and mailing address of the ISA. Authorized officer **Swedish Patent Office** Box 5055, S-102 42 STOCKHOLM

Carolina Palmcrantz/Els

+46 8 782 25 00

Telephone No.

Facsimile No. +46 8 666 02 86

# INTERNATIONAL SEARCH REPORT

International application No. PCT/DK 99/00153

	99/0	0123
	·	· · · · · · · · · · · · · · · · · · ·
Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim N
WO 9748812 A2 (HER MAJESTY THE QUEEN IN RIGHT CANADA), 24 December 1997 (24.12.97), pag line 7 - line 12	OF e 13,	1-47
WO 9114782 A1 (GIST-BROCADES N.V.), 3 October (03.10.91)	1991	1-47
	WO 9748812 A2 (HER MAJESTY THE QUEEN IN RIGHT CANADA), 24 December 1997 (24.12.97), pag line 7 - line 12  WO 9114782 A1 (GIST-BROCADES N.V.), 3 October	Citation of document, with indication, where appropriate, of the relevant passages  WO 9748812 A2 (HER MAJESTY THE QUEEN IN RIGHT OF CANADA), 24 December 1997 (24.12.97), page 13, line 7 - line 12  WO 9114782 A1 (GIST-BROCADES N.V.), 3 October 1991

# INTERNATIONAL SEARCH REPORT

Information on patent family members

01/06/99

International application No.
PCT/DK 99/00153

P: cited	atent document I in search repor	rt	Publication date		Patent family member(s)		Publication date
P	0897010	A2	07/02/99	AU	5954398	A	01/10/98
				CA	2231948		25/09/98
				JP	10276789		20/10/98
Р	0897985	A2	24/02/99	NO	983364	D	00/00/00
0	9735016	A1	25/09/97	AU	2077197	A	10/10/97
				AU	2539197		10/10/97
				CA	2248980		25/09/97
				EP	0904383		31/03/99
				US	5866118		02/02/99
				WO	9735017		25/09/97
 Р	0420358	A1	03/04/91	AT	180014	 Т	15/05/99
				AU	636673	-	06/05/93
				AU	6501190		28/04/91
				BG	60108		15/10/93
				CA	2042054		28/03/91
				CN	1051058		01/05/91
				DE	420358		12/10/95
				EP	0779037		18/06/97
				ES	2072834		01/08/95
				FI	912530		00/00/00
				HU	215179		28/10/98
				JP	4506007		22/10/92
				LT	1527	A	26/06/95
				LT	3957		27/05/96
				LV	10310	A,B	20/10/94
				NO	303988	•	05/10/98
				PL	167790	В	30/11/95
				PL	168470	В	29/02/96
				PT	95447	A,B	22/05/91
				US	5436156	•	25/07/95
				US	5863533		26/01/99
				WO	9105053		18/04/91
)	9748812	A2	24/12/97	AU	3021697	<u></u> А	07/01/98
				CA	2257101		24/12/97
				EP	0904385		31/03/99
				NO	985804		-
							00/00/00

# BEST AVAILARIE COPY

## INTERNATIONAL SEARCH REPORT

Information on patent family members

01/06/99

International application No.
PCT/DK 99/00153

	atent document d in search report	Publication date		Patent family member(s)	Publication date
WO	9114782 A1	03/10/91	AU	632941 B	14/01/93
			AU	649447 B	26/05/94
			AU	7765691 A	21/10/91
			AU	7776691 A	21/10/91
			CA	2054762 A	24/09/91
			CA	2056396 A	24/09/91
			EP	0449375 A	02/10/91
			EP	0449376 A	02/10/91
			FI	915477 D	00/00/00
			FI	915478 D	00/00/00
			HU	215164 B	28/10/98
			HU	215260 B	30/11/98
			IL	97645 A	18/03/97
			JP	6501838 T	03/03/94
			JP	6502296 T	17/03/94
			PT	97110 A,B	29/11/91
			PT	97111 A	31/12/91
			US	5543576 A	06/08/96
			US	5714474 A	03/02/98
			WO	9114772 A	03/10/91
			US	5593963 A	14/01/97
			US	5770413 A	23/06/98