Тема 3. Задача о потоке минимальной стоимости

3.7. Первая фаза метода потенциалов

Для построения начального базисного потока $\{x,U_{\scriptscriptstyle \rm B}\}$ поступаем следующим образом. К сети $S=\{I,U\}$ добавляем искусственный узел n+1 с интенсивностью

$$a_{n+1} = \sum_{i \in I} a_i = 0$$

Отметим, что условие

$$\sum_{i \in I} a_i = 0$$

является необходимым условием для существования потока на сети $S = \{I, U\}$.

Ко множеству дуг U добавим n искусственных дуг вида:

(i, n+1), если i — источник или нейтральный узел $(a_i \ge 0)$, $i \in I$; (n+1, i), если i — сток $(a_i < 0)$, $i \in I$.

$$\sum_{(i,j)\in U_{\mathbf{u}}} x_{ij} \to \min$$

$$\sum_{j\in I_{i}^{+}(\bar{U})} x_{ij} - \sum_{j\in I_{i}^{-}(\bar{U})} x_{ji} = a_{i}, \ i \in \bar{I}$$

$$x_{ij} \geq 0, \ (i,j) \in \bar{U}.$$

$$(2.17)$$

Задача (2.17) и есть задача первой фазы.

Для задачи первой фазы начальный базисный поток уже построен. Целевая функция

ограничена снизу:

$$\sum_{(i,j)\in U_{\mathbf{u}}} x_{ij} \ge 0$$

Следовательно, задача первой фазы имеет решение. Это решение можно найти методом потенциалов.

Пусть $x^* = \{x_{ij}^*, (i,j) \in U \cup U_{\tt u}\}$ оптимальный базисный поток для задачи первой фазы с базисом $U_{\tt B}^* \subset U \cup U_{\tt u}$. Проанализируем полученное решение.

- 1. Если $x_{ij}^* \not\equiv 0, (i,j) \in U_{\text{u}}$, то исходная задача не имеет решения.
- 2. Пусть $x_{ij}^* \equiv 0, (i,j) \in U_{_{\! \! B}}$, и базисное множество дуг $U_{_{\! \! B}}^*$ содержит единственную искусственную дугу. Удалив эту дугу из $U_{_{\! \! B}}^*$, получим базисное множество $U_{_{\! \! B}}$ и соответствующий базисный поток $x=\{x_{ij}^*,(i,j)\in U\}$ для исходной сети. Процесс решения задачи (2.2) продолжаем стандартным методом потенциалов (вторая фаза), исходя из построенного начального базисного потока.
- 3. Пусть $x_{ij}^* \equiv 0$, $(i,j) \in U_{\scriptscriptstyle \rm u}$, но базисное множество дуг $U_{\scriptscriptstyle \rm B}$ содержит более одной искусственной дуги. Тогда среди небазисных дуг $(i,j) \in U \setminus U_{\scriptscriptstyle \rm B}^*$ всегда найдется такая дуга (i_*,j_*) , что цикл, построенный из базисных дуг $U_{\scriptscriptstyle \rm B}$ и дуги (i_*,j_*) содержит две искусственных дуги (предполагается, что сеть $S=\{I,U\}$ связная). Одну из этих искусственных дуг выводим из множества базисных дуг и вместо нее вводим дугу (i_*,j_*) . Через конечное число шагов получаем базис, содержащий только одну искусственную дугу, т. е. приходим к случаю 2).

Важное свойство. Если все интенсивности $a_i, i \in I$ — целые числа, и стоимости потоков ограничены снизу, то среди оптимальных потоков существует целочисленный поток.