Parallel slopes linear regression

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

The previous course

This course assumes knowledge from Introduction to Regression in Python with statsmodels.

From simple regression to multiple regression

Multiple regression is a regression model with more than one explanatory variable.

More explanatory variables can give more insight and better predictions.

The course contents Chapter 1

"Parallel slopes" regression

Chapter 3

- More explanatory variables
- How linear regression works

Chapter 2

- Interactions
- Simpson's Paradox

Chapter 4

- Multiple logistic regression
- The logistic distribution
- How logistic regression works

The fish dataset

mass_g	length_cm	species
242.0	23.2	Bream
5.9	7.5	Perch
200.0	30.0	Pike
40.0	12.9	Roach

- Each row represents a fish
- mass_g is the response variable
- 1 numeric, 1 categorical explanatory variable

One explanatory variable at a time

```
print(mdl_mass_vs_length.params)
```

```
Intercept -536.223947

length_cm 34.899245

dtype: float64
```

- 1 intercept coefficient
- 1 slope coefficient

```
      species[Bream]
      617.828571

      species[Perch]
      382.239286

      species[Pike]
      718.705882

      species[Roach]
      152.050000

      dtype: float64
```

• 1 intercept coefficient for each category

Both variables at the same time

```
length_cm
dtype: float64
```

species[Pike]

species[Roach]

- 1 slope coefficient
- 1 intercept coefficient for each category

-1089.456053

-726.777799

42.568554

Comparing coefficients

```
print(mdl_mass_vs_length.params)
```

```
Intercept -536.223947
length_cm 34.899245
```

```
print(mdl_mass_vs_species.params)
```

```
species[Bream] 617.828571
species[Perch] 382.239286
species[Pike] 718.705882
species[Roach] 152.050000
```

```
print(mdl_mass_vs_both.params)
```

```
species[Bream] -672.241866
species[Perch] -713.292859
species[Pike] -1089.456053
species[Roach] -726.777799
length_cm 42.568554
```

Visualization: 1 numeric explanatory variable

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.regplot(x="length_cm",
            y="mass_g",
            data=fish,
            ci=None)
plt.show()
```


Visualization: 1 categorical explanatory variable

Visualization: both explanatory variables

```
coeffs = mdl_mass_vs_both.params
print(coeffs)
```

```
species[Bream]-672.241866species[Perch]-713.292859species[Pike]-1089.456053species[Roach]-726.777799length_cm42.568554
```

```
ic_bream, ic_perch, ic_pike, ic_roach, sl = coeffs
```

```
plt.axline(xy1=(0, ic_bream), slope=sl, color="blue")
plt.axline(xy1=(0, ic_perch), slope=sl, color="green")
plt.axline(xy1=(0, ic_pike), slope=sl, color="red")
plt.axline(xy1=(0, ic_roach), slope=sl, color="orange")
```


Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Predicting parallel slopes

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

The prediction workflow

```
import pandas as pd
import numpy as np
expl_data_length = pd.DataFrame(
    {"length_cm": np.arange(5, 61, 5)})
print(expl_data_length)
```

```
length_cm
0
             10
            15
3
             20
             25
4
5
             30
             35
6
             40
8
             45
9
             50
10
             55
11
             60
```

The prediction workflow

```
[A, B, C] x [1, 2] ==> [A1, B1, C1, A2, B2, C2]

from itertools import product
product(["A", "B", "C"], [1, 2])

length_cm = np.arange(5, 61, 5)
```

```
length_cm species
                 Bream
                  Roach
2
                  Perch
3
                  Pike
4
                  Bream
5
                  Roach
            10
6
            10
                  Perch
41
            55
                  Roach
42
            55
                  Perch
43
            55
                  Pike
44
                  Bream
45
                  Roach
46
                  Perch
47
                  Pike
            60
```

The prediction workflow

Predict mass_g from length_cm only

```
prediction_data_length = expl_data_length.assign(
    mass_g = mdl_mass_vs_length.predict(expl_data)
)
```

Predict mass_g from both explanatory variables

```
prediction_data_both = expl_data_both.assign(
    mass_g = mdl_mass_vs_both.predict(expl_data)
)
```

```
length_cm
                  mass_q
               -361.7277
           10
               -187.2315
           15
                -12.7353
3
                161.7610
           20
                336.2572
           25
5
                510.7534
           30
    # number of rows: 12
```

Visualizing the predictions

Manually calculating predictions for linear regression

```
coeffs = mdl_mass_vs_length.params
print(coeffs)
intercept, slope = coeffs
explanatory_data = pd.DataFrame(
{"length_cm": np.arange(5, 61, 5)})
prediction_data = explanatory_data.assign(
   mass_g = intercept + slope * explanatory_data
print(prediction_data)
```

```
Intercept -536.223947
length_cm 34.899245
```

```
length_cm
                    mass_g
            5 -361.727721
               -187.231494
2
                -12.735268
3
                161.760959
                336.257185
5
                510.753412
               1208.738318
10
               1383.234545
11
               1557.730771
```

Manually calculating predictions for multiple regression

```
coeffs = mdl_mass_vs_both.params
print(coeffs)
```

```
      species[Bream]
      -672.241866

      species[Perch]
      -713.292859

      species[Pike]
      -1089.456053

      species[Roach]
      -726.777799

      length_cm
      42.568554
```

```
ic_bream, ic_perch, ic_pike, ic_roach, slope = coeffs
```

np.select()

```
conditions = [
      condition_1,
      condition_2,
     # ...
      condition_n
choices = [list_of_choices] # same length as conditions
np.select(conditions, choices)
```

Choosing an intercept with np.select()

```
conditions = [
    explanatory_data["species"] == "Bream",
    explanatory_data["species"] == "Perch",
    explanatory_data["species"] == "Pike",
    explanatory_data["species"] == "Roach"
choices = [ic_bream, ic_perch, ic_pike, ic_roach]
intercept = np.select(conditions, choices)
```

```
[ -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 -726.78 -713.29 -1089.46
 -672.24 \quad -726.78 \quad -713.29 \quad -1089.46
```

print(intercept)

The final prediction step

```
prediction_data = explanatory_data.assign(
    intercept = np.select(conditions, choices),
    mass_g = intercept + slope * explanatory_data["length_cm"])
print(prediction_data)
```

```
length_cm species intercept
                                    mass_q
0
               Bream -672.2419 -459.3991
               Roach -726.7778 -513.9350
               Perch -713.2929
2
                                -500.4501
                Pike -1089.4561 -876.6133
3
           5
               Bream -672.2419 -246.5563
          10
5
               Roach -726.7778 -301.0923
               Perch -713.2929 -287.6073
6
                Pike -1089.4561 -663.7705
          10
               Bream -672.2419
                                 -33.7136
8
. . .
40
          55
               Bream
                     -672.2419
                                 1669.0286
41
          55
               Roach -726.7778
                                 1614.4927
42
               Perch -713.2929
                                 1627.9776
43
          55
                Pike -1089.4561 1251.8144
44
               Bream -672.2419
                                1881.8714
          60
45
          60
               Roach -726.7778
                                 1827.3354
46
          60
               Perch -713.2929 1840.8204
47
                Pike -1089.4561 1464.6572
          60
```

Compare to .predict()

mdl_mass_vs_both.predict(explanatory_data)

```
0
      -459.3991
      -513.9350
      -500.4501
3
      -876.6133
      -246.5563
5
      -301.0923
43
      1251.8144
      1881.8714
44
45
      1827.3354
46
      1840.8204
47
      1464.6572
```

Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Assessing model performance

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

Maarten Van den Broeck Content Developer at DataCamp

Model performance metrics

- Coefficient of determination (R-squared): how well the linear regression line fits the observed values.
 - Larger is better.
- Residual standard error (RSE): the typical size of the residuals.
 - Smaller is better.

Getting the coefficient of determination

print(mdl_mass_vs_length.rsquared)

0.8225689502644215

print(mdl_mass_vs_species.rsquared)

0.25814887709499157

print(mdl_mass_vs_both.rsquared)

0.9200433561156649

Adjusted coefficient of determination

- More explanatory variables increases \mathbb{R}^2 .
- Too many explanatory variables causes overfitting.
- Adjusted coefficient of determination penalizes more explanatory variables.
- $m{\bar{R}}^2 = 1 (1 R^2) rac{n_{obs} 1}{n_{obs} n_{var} 1}$
- ullet Penalty is noticeable when R^2 is small, or n_{var} is large fraction of n_{obs} .
- In statsmodels, it's contained in the rsquared_adj attribute.

Getting the adjusted coefficient of determination

```
print("rsq_length: ", mdl_mass_vs_length.rsquared)
print("rsq_adj_length: ", mdl_mass_vs_length.rsquared_adj)

rsq_length: 0.8225689502644215
rsq_adj_length: 0.8211607673300121
```

```
print("rsq_species: ", mdl_mass_vs_species.rsquared)
print("rsq_adj_species: ", mdl_mass_vs_species.rsquared_adj)
```

```
rsq_species: 0.25814887709499157
rsq_adj_species: 0.24020086605696722
```

```
print("rsq_both: ", mdl_mass_vs_both.rsquared
print("rsq_adj_both: ", mdl_mass_vs_both.rsquared_adj)
```

```
rsq_both: 0.9200433561156649
rsq_adj_both: 0.9174431400543857
```


Getting the residual standard error

```
rse_length = np.sqrt(mdl_mass_vs_length.mse_resid)
print("rse_length: ", rse_length)

rse_length: 152.12092835414788
```

```
rse_species = np.sqrt(mdl_mass_vs_species.mse_resid)
print("rse_species: ", rse_species)
```

```
rse_species: 313.5501156682592
```

```
rse_both = np.sqrt(mdl_mass_vs_both.mse_resid)
print("rse_both: ", rse_both)
```

```
rse_both: 103.35563303966488
```


Let's practice!

INTERMEDIATE REGRESSION WITH STATSMODELS IN PYTHON

