

ARTICLE

DOI: 10.1038/s41467-018-05892-0

OPEN

Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

Alexandra L Young to et al.#

The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique—Subtype and Stage Inference (SuStaln)—able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaln identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer's disease, SuStaln uncovers three subtypes, uniquely characterising their temporal complexity. SuStaln provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype ($p = 7.18 \times 10^{-4}$) or temporal stage ($p = 3.96 \times 10^{-5}$). SuStaln offers new promise for enabling disease subtype discovery and precision medicine.

1

Author contributions

A.L.Y., D.C.A., J.D.R. and J.M.S. conceived and designed the experiments and wrote the manuscript. A.L.Y. implemented the programming code and analysed the data. N.P.O. and R.V.M. provided feedback on the experiment design. R.V.M. made the brain images in Figs. 1–4, 6 and Supplementary Figures 13–14. M.B. derived the asymmetry measure for GENFI participants. K.Y. advised on sub-scores of the ADAS related to praxic, spatial and memory domains. Members of the ADNI and GENFI consortia recruited patients and collected and pre-processed data. All authors contributed to reviewing and editing of the report.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-05892-0

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

Alexandra L Young 1,2, Razvan V Marinescu 1,2, Neil P Oxtoby 1,2, Martina Bocchetta, Keir Yong, Nicholas C Firth, David M Cash 1,3, David L Thomas 4,5, Katrina M Dick, Jorge Cardoso 1,3,6, John van Swieten, Barbara Borroni, Daniela Galimberti, Mario Masellis, Maria Carmela Tartaglia, James B Rowe, Caroline Graff, Fabrizio Tagliavini, Giovanni B Frisoni, Robert Laforce Jr 1, Elizabeth Finger, Alexandre de Mendonça, Sandro Sorbi, Jason D Warren, Sebastian Crutch, Nick C Fox, Sebastien Ourselin, Jonathan M Schott, Jonathan D Rohrer, Daniel C Alexander 1,2, The Genetic FTD Initiative (GENFI) & The Alzheimer's Disease Neuroimaging Initiative (ADNI)

Centre for Medical Image Computing, University College London, London WC1E 6BT, UK. ²Department of Computer Science, University College London, London WC1E 6BT, UK. ³Dementia Research Centre, Institute of Neurology, University College London, London WC1N 3BG, UK. ⁴Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, University College London, London WC1N 3BG, UK. ⁵Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London, London WC1N 3BG, UK. ⁶School of Biomedical Engineering and Imaging Sciences, King's College London, London WC2R 2LS, UK. ⁷Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands. ⁸Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy. ⁹Dept. of Physiopathology and Transplantation, University of Milan, Centro Dino Ferrari, 20122 Milan, Italy. ¹⁰Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, via F. Sforza, 35, 20122 Milan, Italy. ¹¹Sunnybrook Health Sciences Centre, University of Toronto, ON M4N 3M5, Canada. ¹²Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Toronto M5T OS8, Canada. ¹³University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 OSZ, UK. ¹⁴Karolinska Institutet, 171 77 Solna, Sweden. ¹⁵Istituto Neurologico Carlo Besta, 20133 Milan, Italy. ¹⁶University Hospitals and University of Geneva, Geneva, Switzerland. ¹⁷Université Laval, Quebec, QC G1V OA6, Canada. ¹⁸University of Western Ontario, London, ON N6A 3K7, Canada. ¹⁹Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal. ²⁰Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50121 Florence, Italy. ²¹IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy. These authors contributed equally: Jonathan M. Schott, Jonathan D. Rohrer, Daniel C. Alexander.

The Genetic FTD Initiative (GENFI)

Christin Andersson²², Silvana Archetti²³, Andrea Arighi¹⁰, Luisa Benussi²⁴, Giuliano Binetti²⁴, Sandra Black²⁵, Maura Cosseddu²⁶, Marie Fallström²⁷, Carlos Ferreira²⁸, Chiara Fenoglio⁹, Morris Freedman²⁹, Giorgio G Fumagalli^{9,10,19}, Stefano Gazzina³⁰, Roberta Ghidoni²⁴, Marina Grisoli³¹, Vesna Jelic³², Lize Jiskoot³³, Ron Keren³⁴, Gemma Lombardi¹⁹, Carolina Maruta³⁵, Lieke Meeter³³, Simon Mead³⁶, Rick van Minkelen³⁷, Benedetta Nacmias¹⁹, Linn Öijerstedt³⁸, Alessandro Padovani³⁹, Jessica Panman³³, Michela Pievani²⁴, Cristina Polito⁴⁰, Enrico Premi⁴¹, Sara Prioni³¹, Rosa Rademakers⁴², Veronica Redaelli³¹, Ekaterina Rogaeva⁴³, Giacomina Rossi³¹, Martin Rossor³, Elio Scarpini^{9,10}, David Tang-Wai³⁴, Hakan Thonberg⁴⁴, Pietro Tiraboschi³⁴ & Ana Verdelho⁴⁵

²²Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Solna, Sweden. ²³Biotechnology Laboratory, Department of Diagnostics, Civic Hospital of Brescia, 25123 Brescia, Italy. ²⁴Istituto di Ricovero e Cura a Carattere Scientifico Istituto Centro San Giovanni di Dio Fatebenefratelli,