Ch2 Regression

Contents

L	Subsection	
	A.1 Sinple Linear Regression (Advertising Data)	
	A.2 Questions	
	A.3 Regression	
	A.4 Regression Approach 1	
	A.5 Regression Approach 2	
	A.6 Simulation Under perfect case	
	A.7 Multiple Linear Regression (Adv data)	
	A.8 MLR	
	A.9 Pairs()	
	A.10 Last row	
	A.11 Without Newspaper	
	A.12 With only TV and Radio as predictor	
	A.13 The Marketing Questions (3.4)	
	A.14 1 At least one X useful?	
	A.15 2 How good is Model Fit?	
	A.16 3 newspaper? (Confounding Effect)	

A.17 4 All predictors or just a few?
A.18 5 Effect of each medium?
A.19 6 Prediction Accuracy?
A.20 7 Is the relationship linear?
A.21 8 Is there synergy among the advertising media?
A.22 Boston House Price 1978
A.23 Boston Data
A.24 Median Home Value vs predictors
A.25 Inference vs Prediction
A.26 Advertisement
A.27 Housing
A.28 Flexibility and Interpretability trade-off

Textbook: James et al. ISLR 2ed. $\,$

A Subsection

[ToC]

A.1 Sinple Linear Regression (Advertising Data)

```
Advertising.csv from ISLR web site.
```

```
Ad = TV + radio + newspaper (Total Spending)
```


A.2 Questions

- 1. Is there a relationship between advertising budget and sales?
- 2. If so, what is the form of the relationship?
- 3. How strong is the relationship between advertising budget and sales?
- 4. How accurately can we estimate the effect?
- 5. How accurately can we predict future sales?

A.3 Regression

A.4 Regression Approach 1

$$Y = f(X) + \epsilon$$

- Assumes that f() is linear
- Estimate parameters β_0 and β_1 based on

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y})^2$$

• Formula for $\hat{\beta}_1$ and $\hat{\beta}_0$:

$$\hat{\beta}_1 = rs_y/s_x \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

A.5 Regression Approach 2

• Assumes that

$$Y = \beta_0 + \beta_1 X + \epsilon, \qquad \epsilon \sim N(0, \sigma^2)$$

- Estimate parameters β_0 and β_1 with best estimators possible. (unbiased, minimum variance)
- Formula for $\hat{\beta}_1$ and $\hat{\beta}_0$:

$$\hat{\beta}_1 = r s_y / s_x \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Residual standard error: 2.6 on 198 degrees of freedom Multiple R-squared: 0.7529, Adjusted R-squared: 0.7517 F-statistic: 603.4 on 1 and 198 DF, p-value: < 2.2e-16

- is assumption true?
- how off is the estimator?
- how accurate is the prediction?

A.6 Simulation Under perfect case


```
X = rnorm(30, 3, 5)
Y = 4+1.5* X + rnorm(30, 0, 5)
plot(X, Y, xlim=c(-6, 11), ylim=c(-10, 25))
abline(a=4, b=1.5, col="blue", lwd=2)
```

m1 <- lm(Y~X)
abline(m1, col="red")</pre>

A.7 Multiple Linear Regression (Adv data)

Multiple Linear Regression (Adv data)

A.8 MLR

 \bullet Want to guess the next Y as accurate as possible

sales =
$$\beta_0 + \beta_1 \, \text{TV} + \beta_2 \, \text{radio} + \beta_3 \, \text{newspaper} + \epsilon$$
, $\epsilon \sim N(0, \sigma^2)$

• Estimate parameters by minimizing

$$RSS = \sum_{i=1}^{n} (Y_i - \hat{Y})^2$$

• Formula for $\hat{\boldsymbol{\beta}} = (\beta_0, \beta_1, \beta_2, \beta_3)'$:

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X'X})^{-1}\boldsymbol{X'Y}$$

A.9 Pairs()

A.10 Last row


```
Model2 <- lm(sales ~ TV + radio + newspaper)
summary(Model2)</pre>
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.938889 0.311908 9.422 <2e-16 ***

TV 0.045765 0.001395 32.809 <2e-16 ***

radio 0.188530 0.008611 21.893 <2e-16 ***
```

newspaper -0.001037 0.005871 -0.177 0.86

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.686 on 196 degrees of freedom Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956 F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16

A.11 Without Newspaper

```
lm(formula = sales ~ TV + radio)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.92110 0.29449 9.919 <2e-16 ***
TV
  radio 0.18799 0.00804 23.382 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1.681 on 197 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
```

A.12 With only TV and Radio as predictor

It's like fitting plane in 3-d space

A.13 The Marketing Questions (3.4)

- 1. Is there a relationship between advertising sales and budget?
- 2. How strong is the relationship?
- 3. Is it important to advertise in newspaper?
- 4. Is all predictor important, or just a subset?
- 5. Which media contribute to most to the sales? How much?
- 6. How accurately can we predict future sales?
- 7. Is the relationship linear?
- 8. Is there synergy among the advertising media?

A.14 1 At least one X useful?

- In SLR, we only need to test $\beta_1 = 0$.
- Now we have to test $\beta_1 = \beta_2 = \beta_3 = 0$.
- Use *F*-statistic

$$F = \frac{(TSS - RSS)/p}{RSS/(n-p-1)}$$

summary(Model2)

Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16</pre>

• We can test SUBSET of parameters $(\beta_2 = \beta_3 = 0)$ by

$$F = \frac{(RSS_0 - RSS)/q}{RSS/(n - p - 1)}$$

Where RSS_0 is the RSS from the model using $\beta_2 = \beta_3 = 0$, and q is the number of suppressed parameters.

 \bullet Why test as a whole when you can do the t-test individually? (important when p is large)

A.15 2 How good is Model Fit?

• Coefficient of Determination

TSS =
$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$$
, RSS = $\sum_{i=1}^{n} (Y_i - \hat{Y})^2$, $R^2 = 1 - \frac{RSS}{TSS}$

- $R^2 = .89719$ without newspaper
- $R^2 = .8972$ with newspaper
- MSE (RSE in ISLR) estimates σ^2 and represents irreducible error.
- \bullet With p predictors,

$$MSE = \sqrt{\frac{1}{n-p-1}RSS}$$

A.16 3 newspaper? (Confounding Effect)

```
Model3 <- lm(sales ~ newspaper)</pre>
summary(Model3)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
#newspaper 0.05469 0.01658 3.30 0.00115 **
#---
#Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
#Residual standard error: 5.092 on 198 degrees of freedom
#Multiple R-squared: 0.05212, Adjusted R-squared: 0.04733
#F-statistic: 10.89 on 1 and 198 DF, p-value: 0.001148
```

```
plot(newspaper, sales)
abline(Model3, col="red")  # plot reg line from Model3
```

cor(Adv) # correlation matrix of each column

```
# TV radio newspaper sales
# TV 1.00000000 0.05480866 0.05664787 0.7822244
# radio 0.05480866 1.00000000 0.35410375 0.5762226
# newspaper 0.05664787 0.35410375 1.00000000 0.2282990
# sales 0.78222442 0.57622257 0.22829903 1.0000000
```


- Mutiple Reg suggests newspaper has no effect
- In simple regression, newspaper gets credit through radio because of the correlation.
- Many examples of confounding variables (lurking variables) (shark attack vs ice cream sales, num of cavity vs vocabulary score)

A.17 4 All predictors or just a few?

- Have to try out many models, and use some kind of criteria to pick the best
- Mallow's C_p , AIC, BIC, Adjusted \mathbb{R}^2 . (more in Ch6)
- There's 2^p models with p predictors. $2^3 = 8, 2^{10} = 1024, 2^{30} = 1,073,741,824$.
- Forward, Backward, Mixed selection

A.18 5 Effect of each medium?

```
We can construct CI for parameters. For the Advertising data, the 95% CI
```

```
(0.043, 0.049) for TV,
(0.172, 0.206) for radio,
(-0.013, 0.011) for newspaper.
```

A.19 6 Prediction Accuracy?

- We can get $\hat{f}(X)$ using estimated β_i .
- There could be model bias
- $\bullet\,$ Get CI for parameters, and PI for predictions


```
newAdv \leftarrow data.frame(TV=c(50, 60), radio=c(20, 10), newspaper=c(0, 0))
newAdv
  TV radio newspaper
#1 50
         20
#2 60 10
predict(Model2, newdata=newAdv, interval="confidence")
                 lwr
        fit
                          upr
#1 8.997722 8.515752 9.479692
#2 7.570068 7.099337 8.040800
predict(Model2, newdata=newAdv, interval="prediction")
#
                 lwr
        fit
                          upr
#1 8.997722 5.638898 12.35655
#2 7.570068 4.212838 10.92730
```

A.20 7 Is the relationship linear?

If the relationships are linear, then the residual plots should display no pattern. Needs transformation?

A.21 8 Is there synergy among the advertising media?

The standard linear regression model assumes an additive relationship between the predictors and the response. Including an interaction term in the model results in a substantial increase in R^2 , from around 90% to almost 97

A.22 Boston House Price 1978

Boston House Price 1978

A.23 Boston Data

A.24 Median Home Value vs predictors

A.25 Inference vs Prediction

Inference vs Prediction

A.26 Advertisement

• Prediction

Who is more likely to be next customer?

• Inference

Which media contribute to sales?

Which media generate the biggest boost in sales?

How much increase in sales is associated with a given increase in TV advertising?

A.27 Housing

• Prediction
Is THIS house overpriced, or underpriced?

• Inference

What contributes to the value of a house? How can I increase them? If I have X amount of dollars, where should I spend them?

A.28 Flexibility and Interpretability trade-off

