Package 'ogrdbstats'

November 3, 2024

Type Package

Statistics

```
Version 0.5.2
URL https://github.com/airr-community/ogrdbstats
BugReports https://github.com/airr-community/ogrdbstats/issues
Description Multiple tools are now available for inferring the personalised
      germ line set from an adaptive immune receptor repertoire.
      Output from these tools is converted to
      a single format and supplemented with rich data such as usage and
      characterisation of 'novel' germ line alleles. This data can be
      particularly useful when considering the validity of novel inferences. Use
      of the analysis provided is described in <doi:10.3389/fimmu.2019.00435>.
License CC BY-SA 4.0
Encoding UTF-8
Depends R (>= 2.10)
Imports dplyr (>= 0.8.3), ggplot2 (>= 3.2.1), magrittr, tigger (>=
      0.4.0), alakazam (>= 0.3.0), stringr (>= 1.4.0), data.table,
      gridExtra (>= 2.3), tidyr (>= 1.0.0), stringdist (>= 0.9.5.2),
      RColorBrewer (>= 1.1-2), Biostrings (>= 2.52.0), argparser (>=
      0.4), ComplexHeatmap, bookdown, scales,
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 7.2.3
LazyData true
NeedsCompilation no
Author William Lees [aut, cre] (<a href="https://orcid.org/0000-0001-9834-6840">https://orcid.org/0000-0001-9834-6840</a>)
Maintainer William Lees <william@lees.org.uk>
Repository CRAN
```

Date/Publication 2024-11-03 06:10:02 UTC

Title Analysis of Adaptive Immune Receptor Repertoire Germ Line

2 example_rep

Contents

	example_rep	2
	generate_ogrdb_report	3
	genotype_statistics_cmd	4
	make_barplot_grobs	5
	make_haplo_grobs	6
	make_novel_base_grobs	7
	read_input_files	8
	write_genotype_file	9
	write_plot_file	10
Index		12

example_rep

Example repertoire data

Description

A small example of the analytical datasets created by ogrdbstats from repertoires and reference sets. The dataset can be created by running the example shown for the function read_input_data(). The dataset is created from example files provided with the package. The repertoire data is taken from Rubelt et al. 2016, <doi: 10.1038/ncomms11112>

Usage

example_rep

Format

'example_rep' - a named list containing the following elements:

ref_genes named list of IMGT-gapped reference genes

inferred_seqs named list of IMGT-gapped inferred (novel) sequences.

input_sequences data frame with one row per annotated read, with CHANGEO-style column names. The column SEG_CAl genotype_db named list of gene sequences referenced in the annotated reads (both reference and novel sequences) data used for haplotype analysis, showing allelic ratios calculated with various potential haplotyping genes

genotype data frame containing information provided in the OGRDB genotype csv file

calculated_NC a boolean that is TRUE if mutation counts were calculated by this library, FALSE if they were read from the

Source

<doi: 10.1038/ncomms11112>

generate_ogrdb_report Generate OGRDB reports from specified files.

Description

This creates the genotype report (suffixed _ogrdb_report.csv) and the plot file (suffixed _ogrdb_plos.pdf). Both are created in the directory holding the annotated read file, and the file names are prefixed by the name of the annotated read file.

Usage

```
generate_ogrdb_report(
  ref_filename,
  inferred_filename,
  species,
  filename,
  chain,
  hap_gene,
  segment,
  chain_type,
  plot_unmutated,
  all_inferred = FALSE,
  format = "pdf"
)
```

Arguments

ref_filename	Name of file containing IMGT-aligned reference genes in FASTA format		
inferred_filename			
	Name of file containing sequences of inferred novel alleles, or '-' if none		
species	Species name used in field 3 of the IMGT germline header with spaces omitted, if the reference file is from IMGT. Otherwise $\lq\lq$		
filename	Name of file containing annotated reads in AIRR, CHANGEO or IgDiscover format. The format is detected automatically		
chain	one of IGHV, IGKV, IGLV, IGHD, IGHJ, IGKJ, IGLJ, TRAV, TRAJ, TRBV, TRBD, TRBJ, TRGV, TRGJ, TRDV, TRDD, TRDJ		
hap_gene	The haplotyping columns will be completed based on the usage of the two most frequent alleles of this gene. If NA, the column will be blank		
segment	one of V, D, J		
chain_type	one of H, L		
plot_unmutated	Plot base composition using only unmutated sequences (V-chains only)		
all_inferred	Treat all alleles as novel		
format	The format for the plot file ('pdf', 'html' or 'none')		

Value

None

Examples

genotype_statistics_cmd

Collect parameters from the command line and use them to create a report and CSV file

Description

Collect parameters from the command line and use them to create a report and CSV file

Usage

```
genotype_statistics_cmd(args = NULL)
```

Arguments

args

A string vector containing the command line arguments. If NULL, will take them from the command line

Value

Nothing

```
# Prepare files for example
reference_set = system.file("extdata/ref_gapped.fasta", package = "ogrdbstats")
inferred_set = system.file("extdata/novel_gapped.fasta", package = "ogrdbstats")
repertoire = system.file("extdata/ogrdbstats_example_repertoire.tsv", package = "ogrdbstats")
file.copy(repertoire, tempdir())
```

make_barplot_grobs 5

make_barplot_grobs

Create a barplot for each allele, showing number of reads distributed by mutation count

Description

Create a barplot for each allele, showing number of reads distributed by mutation count

Usage

```
make_barplot_grobs(
   input_sequences,
   genotype_db,
   inferred_seqs,
   genotype,
   segment,
   calculated_NC
)
```

Arguments

```
input_sequences
```

the input_sequences data frame

genotype_db named list of gene sequences in the personalised genotype

inferred_seqs named list of novel gene sequences genotype data frame created by calc_genotype

 $\text{segment} \qquad \quad \text{one of V, D, J}$

calculated_NC a boolean, TRUE if mutation counts had to be calculated, FALSE otherwise

6 make_haplo_grobs

Value

list of grobs

Examples

make_haplo_grobs

Create haplotyping plots

Description

Create haplotyping plots

Usage

```
make_haplo_grobs(segment, haplo_details)
```

Arguments

```
\text{segment} \qquad \quad \text{one of $V$, $D$, $J$}
```

Value

named list containing the following elements:

```
a_allele_plot plot showing allele usage for each potential haplotyping gene haplo_grobs differential plot of allele usage for each usable haplotyping gene
```

```
haplo_grobs = make_haplo_grobs('V', example_rep$haplo_details)
```

Description

Create plots showing base usage at selected locations in sequences based on novel alleles

Usage

```
make_novel_base_grobs(inferred_seqs, input_sequences, segment, all_inferred)
```

Arguments

```
inferred_seqs named list of novel gene sequences
input_sequences
the input_sequences data frame
segment one of V, D, J

all_inferred true if user has requested all alleles in reference set plotted - will suppress some warnings
```

Value

named list containing the following elements:

```
cdr3_dist
whole
end
conc
distribution plots
whole-length usage plots
end
distribution plots
whole-length usage plots
end usage plots
distribution plots
distribution plots
end consensus composition plots
triplet
distribution plots
end triplet usage plots
```

8 read_input_files

read_input_files

Read input files into memory

Description

Read input files into memory

Usage

```
read_input_files(
  ref_filename,
  inferred_filename,
  species,
  filename,
  chain,
  hap_gene,
  segment,
  chain_type,
  all_inferred
)
```

Arguments

ref_filename Name of file containing IMGT-aligned reference genes in FASTA format inferred_filename

Name of file containing sequences of inferred novel alleles, or '-' if none

species Species name used in field 3 of the IMGT germline header with spaces omitted,

if the reference file is from IMGT. Otherwise "

filename Name of file containing annotated reads in AIRR, CHANGEO or IgDiscover

format. The format is detected automatically

chain one of IGHV, IGKV, IGLV, IGHD, IGHJ, IGKJ, IGLJ, TRAV, TRAj, TRBV,

TRBD, TRBJ, TRGV, TRGj, TRDV, TRDD, TRDJ

hap_gene The haplotyping columns will be completed based on the usage of the two most

frequent alleles of this gene. If NA, the column will be blank

 $\begin{array}{ll} \text{segment} & \text{one of } V,\, D,\, J \\ \\ \text{chain_type} & \text{one of } H,\, L \end{array}$

all_inferred Treat all alleles as novel

Value

A named list containing the following elements:

ref_genes named list of IMGT-gapped reference genes

inferred_seqs named list of IMGT-gapped inferred (novel) sequences.

write_genotype_file 9

input_sequences genotype_db haplo_details genotype calculated_NC data frame with one row per annotated read, with CHANGEO-style column names One key point: the columnamed list of gene sequences referenced in the annotated reads (both reference and novel sequences) data used for haplotype analysis, showing allelic ratios calculated with various potential haplotyping genes

data frame containing information provided in the OGRDB genotype csv file

a boolean that is TRUE if mutation counts were calculated by this library, FALSE if they were read from the

Examples

write_genotype_file

Write the genotype file required by OGRDB

Description

Write the genotype file required by OGRDB

Usage

```
write_genotype_file(filename, segment, chain_type, genotype)
```

Arguments

filename name of file to create (csv)

 $\begin{array}{ll} \text{segment} & & \text{one of V, D, J} \\ \text{chain_type} & & \text{one of H, L} \end{array}$

genotype genotype data frame

Value

None

```
genotype_file = tempfile("ogrdb_genotype")
write_genotype_file(genotype_file, 'V', 'H', example_rep$genotype)
file.remove(genotype_file)
```

10 write_plot_file

write_plot_file

Create the OGRDB style plot file

Description

Create the OGRDB style plot file

Usage

```
write_plot_file(
   filename,
   input_sequences,
   cdr3_dist_grobs,
   end_composition_grobs,
   cons_composition_grobs,
   whole_composition_grobs,
   triplet_composition_grobs,
   barplot_grobs,
   a_allele_plot,
   haplo_grobs,
   message,
   format
)
```

Arguments

```
filename
                 name of file to create (pdf)
input_sequences
                 the input_sequences data frame
cdr3_dist_grobs
                 cdr3 length distribution grobs created by make_novel_base_grob
end_composition_grobs
                 end composition grobs created by make_novel_base_grobs
cons_composition_grobs
                 consensus composition grobs created by make_novel_base_grobs
whole_composition_grobs
                 whole composition grobs created by make_novel_base_grobs
triplet_composition_grobs
                 triplet composition grobs created by make_novel_base_grobs
                 barplot grobs created by make_barplot_grons
barplot_grobs
                 a_allele_plot grob created by make_haplo_grobs
a_allele_plot
haplo_grobs
                 haplo_grobs created by make_haplo_grobs
                 text message to display at end of report
message
format
                 Format of report ('pdf', 'html' or 'none')
```

write_plot_file 11

Value

None

```
plot_file = tempfile(pattern = 'ogrdb_plots')
base_grobs = make_novel_base_grobs(
                 example_rep$inferred_seqs,
                 example_rep$input_sequences,
                 FALSE
barplot_grobs = make_barplot_grobs(
                      example_rep$input_sequences,
                      example_rep$genotype_db,
                      example_rep$inferred_seqs,
                      example_rep$genotype,
                      '۷',
                      example_rep$calculated_NC
haplo_grobs = make_haplo_grobs('V', example_rep$haplo_details)
write_plot_file(
   plot_file,
    example_rep$input_sequences,
   base_grobs$cdr3_dist,
   base_grobs$end,
   base_grobs$conc,
   base_grobs$whole,
   base_grobs$triplet,
   barplot_grobs,
   haplo_grobs$aplot,
    haplo_grobs$haplo,
    "Notes on this analysis",
    'none'
)
file.remove(plot_file)
```

Index