

General information

Designation

Diospyros spp. (T)

Typical uses

Fancy articles; inlays; shuttles; turnery; piano keys; finger boards of stringed instruments; bowls.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (tropical)	
Renewable content	100	%

Composition detail (polymers and natural materials)

VV 000	100	%

Price

Price	* 6.7	-	10.8	USD/kg
Price per unit volume	* 6.3e3	-	1.23e4	USD/m^3

Physical properties

Donaity	040		1 1102	ka/m^2
Density	940	-	1.14e3	Kg/III/S

Mechanical properties

mediamodi properties				
Young's modulus	* 6.75	-	7.54	GPa
Yield strength (elastic limit)	* 2.04	-	2.52	MPa
Tensile strength	3.4	-	4.2	MPa
Elongation	* 0.15	-	0.18	% strain
Compressive strength	9.54	-	11.7	MPa
Flexural modulus	6.14	-	6.85	GPa
Flexural strength (modulus of rupture)	* 3.4	-	4.2	MPa
Shear modulus	* 0.698	-	0.96	GPa
Shear strength	* 34.9	-	42.5	MPa
Rolling shear strength	* 1.29	-	3.87	MPa
Bulk modulus	* 3.22	-	3.63	GPa
Poisson's ratio	* 0.02	-	0.04	
Shape factor	5.7			
Hardness - Vickers	6.3	-	7.7	HV
Hardness - Brinell	* 62.1	-	75.9	НВ
Hardness - Janka	6.3	-	7.7	kN

Page 2 of 3

Fatigue strength at 10^7 cycles	* 1.02	-	1.26	MPa
Mechanical loss coefficient (tan delta)	* 0.009	-	0.012	
Differential shrinkage (radial)	0.24	-	0.3	%
Differential shrinkage (tangential)	* 0.44	-	0.54	%
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%
Tangential shrinkage (green to oven-dry)	9.6	-	11.7	%
Volumetric shrinkage (green to oven-dry)	20.8	-	23.1	%
Work to maximum strength	* 16.6	-	20.3	kJ/m^3

Impact & fracture properties

	+ 0 0==			145 40.5
Fracture toughness	* 0.955	-	1.17	MPa.m^0.5

Thermal properties

Glass temperature	77	-	102	$\mathcal C$
Maximum service temperature	120	-	140	\mathcal{C}
Minimum service temperature	* -73	-	-23	$\mathcal C$
Thermal conductivity	* 0.19	-	0.232	W/m.℃
Specific heat capacity	1.66e3	-	1.71e3	J/kg.℃
Thermal expansion coefficient	* 40.6	-	52.7	µstrain/℃

Electrical properties

Electrical resistivity	* 2.1e14	-	7e14	µohm.cm
Dielectric constant (relative permittivity)	* 5.51	-	6.73	
Dissipation factor (dielectric loss tangent)	* 0.083	-	0.101	
Dielectric strength (dielectric breakdown)	* 1	-	2	MV/m

Magnetic properties

Magnetic type	Non-magnetic
---------------	--------------

Optical properties

Critical materials risk

Durability

Water (fresh) Water (salt) Weak acids Strong acids Limited use Limited use Unacceptable
Weak acids Limited use
Strong acids Unacceptable
Weak alkalis Acceptable
Strong alkalis Unacceptable

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* 0.574	-	0.633	kg/kg
Water usage	* 665	-	735	l/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.572	-	0.632	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0429	-	0.0474	kg/kg
Fine machining energy (per unit wt removed)	* 1.44	-	1.6	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.108	-	0.12	kg/kg
Grinding energy (per unit wt removed)	* 2.41	-	2.67	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.181	-	0.2	kg/kg

Recycling and end of life

recording area on a or mo	
Recycle	×
Recycle fraction in current supply	8.55 - 9.45 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 19.8 - 21.3 MJ/kg
Combustion CO2	* 1.69 - 1.78 kg/kg
Landfill	✓
Biodegrade	✓

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	