Why not Linear Regression

Data

*	default [‡]	student [‡]	balance [‡]	income [‡]
1	No	No	729.52650	44361.625
2	No	Yes	817.18041	12106.135
3	No	No	1073.54916	31767.139
4	No	No	529.25060	35704.494

Linear regression cannot be used for more than two categories

Why not Linear Regression

Limitations

Data

*	default [‡]	student [‡]	balance [‡]	income [‡]
1	No	No	729.52650	44361.625
2	No	Yes	817.18041	12106.135
3	No	No	1073.54916	31767.139
4	No	No	529.25060	35704.494

Sigmoid Function

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

Maximum Likelihood Method

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

Model	Method
Linear Regression	OLS (Ordinary Least Squares)
Logistic Regression	Maximum Likelihood method

Data

*	default [‡]	student [‡]	balance [‡]	income ‡
1	No	No	729.52650	44361.625
2	No	Yes	817.18041	12106.135
3	No	No	1073.54916	31767.139
4	No	No	529.25060	35704.494

Linear regression cannot be used for more than two categories

Result

Result summary

```
Coefficients: Estimate Std. Error z value \Pr(>|z|) \beta_0 (Intercept) 0.61486 0.24751 2.484 0.012986 * \beta_1 \text{price} -0.03572 0.01045 -3.417 0.000632 *** Signif. codes: 0 '*** 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

• If β is zero, it means there is no relationship

Ho: There is no relationship between X and Y

Ha: There is some relationship between X and Y

$$H: \beta_1 = 0$$
$$Ha: \beta_1 \neq 0,$$

Limitations

- To disapprove Ho, we calculate Z statistics $\mathbf{Z} = \frac{\beta_1 0}{\mathrm{SE}(\hat{\beta}_1)}$
- We also compute the probability of observing any value equal to |z| or Larger
- We call this probability the p-value
- A small p-value means there is an association between the predictor and the response (typically less than 5% or 1 %)

Key Takeaway

P value should be less than 0.05 (Threshold) to establish relationship

Multiple **Predictors**

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

- Use maximum likelihood to calculate Betas
- Fix the Boundary condition as per business requirements

Confusion matrix

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Linear regression cannot be used for more than two categories

Confusion matrix

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Type 1 Error

Confusion matrix

			ype 2 Er	ror
		True default status		t status
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Confusion matrix

Performance Measures

Performance Measures

		Predicted class		
		- or Null + or Non-null Tot		
True	– or Null	True Neg. (TN)	False Pos. (FP)	Ŋ
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N^*	P*	

I	Name	Definition	Synonyms
]	False Pos. rate	FP/N	Type I error, 1—Specificity
7	True Pos. rate	$\mathrm{TP/P}$	1—Type II error, power, sensitivity, recall
]	Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
]	Neg. Pred. value	TN/N^*	

Performance Measures

ROC

Linear Regression

Test-Train
Split

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

- Training error Performance of model on the previously **seen** data
- Test error Performance of model on the unseen data

Linear Regression

Test-Train
Split

Training Set - $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$

Model is trained

$$y = f(x)$$

Test Set - Previously unseen data (x_0, y_0)

Test MSE - $\operatorname{Ave}(\hat{f}(x_0) - y_0)^2$

Other Linear Regression

Test-Train
Split

Linear Regression

Test-Train Split Techniques

1. Validation set approach

- Random division of data into two parts
- Usual split is 80:20 (Training: Test)
- When to use In case of large number of observations

2. Leave one out cross validation

• Leaving one observation every time from training set

3. K-Fold validation

- Divide the data into k set
- We will keep one testing and K-1 for training

Results

Logistic Regression

```
Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
(Intercept)
                         -3.786667
                                     3.023162 -1.253 0.210369
                                     0.039074 -7.421 1.17e-13 ***
price
                         -0.289955
resid_area
                          0.040238
                                     0.031089
                                                1.294 0.195575
                         -6.689560
                                     3.038370 -2.202 0.027687 *
air qual
                          1.418795
                                     0.333412
                                                4.255 2.09e-05 ***
room num
                         -0.002811
                                     0.007611 -0.369 0.711843
age
                          0.297946
                                     0.072028
                                                4.137 3.53e-05 ***
teachers
                                     0.040039 -5.290 1.22e-07 ***
                         -0.211818
poor prop
                          0.033861
                                     0.245330
                                                0.138 0.890223
airportYES
n hos beds
                         0.176256
                                     0.083340
                                                2.115 0.034439 *
n hot rooms
                         -0.079553
                                     0.056361
                                               -1.412 0.158097
waterbodyLake
                         -0.062983
                                     0.370489 -0.170 0.865011
`waterbodyLake and River` -0.199015
                                     0.361962 -0.550 0.582442
waterbodyRiver
                         0.080375
                                     0.293049
                                                0.274 0.783877
rainfall
                         -0.005667
                                     0.009691 -0.585 0.558725
                         20.411874
                                    27.453336
parks
                                                0.744 0.457172
avg dist
                         -0.427118
                                     0.115154 -3.709 0.000208 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Results

Results

Method	Confusion Matrix	Accuracy
Logistic Regression	pred 0 1 NO 42 16 YES 26 36	65%
LDA	lda.class 0 1 0 44 16 1 24 36	66.6%
KNN (k=3)	testy knn.pred 0 1 0 38 24 1 30 28	55%

Summary

Steps

- Data Collection
- Data Pre-processing
 - Outlier Treatment
 - Missing value imputation
 - Variable transformation
- > Model training
 - Test-Train Split
 - Use template to train
 - Do iterations
 - Compare performance of different methods using test set
- > Select the best model
 - For prediction purposes use model with best accuracy
 - For interpretation purposes look at the coefficient values of parametric models

