Quantium Project Data Analysis Report

In [41]: from IPython.display import Image
 # Display image
 Image(filename= "OQD LOGO 2.jpg", height=600, width=400)
Out[41]:

Introduction:

This report provides an analysis of customer purchase behavior of a fictional chips company as well as transaction behaviour. Two datasets, **Q_Purchase_Behaviour** and

Q_Transaction_Data, which can be accessed on **Forage**, under the *Quantium data analysis job simulation*, were used for this analysis. This project is a part of an intersnship program hosted by **ONLY QUALITY DATA**

Objective:

The goal of this project is leverage Python to examine and clean transaction and customer data, identify customer segments based on purchasing behaviour, create charts and graphs and derive commercial recommendations from analyses.

Dataset Overview:

Q_Transaction_Data

- 1. DATE: The date of the transaction, represented as a numeric format. Could be converted to an actual date.
- 2. STORE_NBR: The unique identifier for the store where the transaction took place.
- 3. LYLTY_CARD_NBR: The loyalty card number of the customer, representing a unique customer identifier.
- 4. TXN_ID: The unique transaction ID for each purchase.
- 5. PROD_NBR: The unique product number identifying the specific product purchased.
- 6. PROD_NAME: The name of the product purchased, including the product description and pack size.
- 7. PROD_QTY: The quantity of the product purchased in the transaction.
- 8. TOT_SALES: The total sales value in dollars for the specific transaction and product.

Q_Purchase_Behaviour:

1. LIFESTAGE: This column categorizes customers based on their stage in life, such as whether they are singles, couples, or families, and whether they are young, middle-aged, or retired."

- 2. PREMIUM_CUSTOMER: This column indicates the spending category of the customer, which can help understand their purchasing behavior based on whether they are more budget-conscious, mainstream, or premium shoppers.
- 3. LYLTY_CARD_NBR: The loyalty card number of the customer, representing a unique customer identifier.

Data Inspection and Cleaning

```
In [5]:
         #import python libraries
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         #Load Purchase Behaviour Dataset
In [6]:
         customer_df= pd.read_excel("Q_Purchase_Behaviour.xlsx")
         #Load Customer Transactions Dataset
         transactions_df= pd.read_excel("Q_Transaction_Data.xlsx")
         #Display first 5 rows of the customer details df
In [7]:
         customer_df.head()
Out[7]:
           LYLTY_CARD_NBR
                                        LIFESTAGE PREMIUM_CUSTOMER
         0
                            YOUNG SINGLES/COUPLES
                      1000
                                                              Premium
         1
                      1002
                            YOUNG SINGLES/COUPLES
                                                            Mainstream
         2
                                    YOUNG FAMILIES
                      1003
                                                                Budget
         3
                      1004
                             OLDER SINGLES/COUPLES
                                                            Mainstream
         4
                      1005 MIDAGE SINGLES/COUPLES
                                                            Mainstream
         #Display first 5 rows of the transaction df
In [8]:
         transactions_df.head()
```

```
Out[8]:
             DATE STORE NBR LYLTY CARD NBR TXN ID PROD NBR
                                                                    PROD NAME PROD QTY TOT SI
                                                                     Natural Chip
             2018-
                            1
                                          1000
                                                     1
                                                               5
                                                                                         2
                                                                        Compny
             10-17
                                                                      SeaSalt175g
             2019-
                                                                       CCs Nacho
                                          1307
                                                  348
                                                                                         3
                                                               66
             05-14
                                                                     Cheese 175g
                                                                    Smiths Crinkle
             2019-
                                                                                         2
                            1
                                                               61
                                          1343
                                                   383
                                                                        Cut Chips
             05-20
                                                                     Chicken 170g
                                                                      Smiths Chip
             2018-
                                                                          Thinly
                                                                                         5
                            2
                                          2373
                                                  974
             08-17
                                                                  S/Cream&Onion
                                                                           175g
                                                                     Kettle Tortilla
             2018-
                            2
                                                                                         3
                                         2426
                                                  1038
                                                              108
                                                                  ChpsHny&Jlpno
             08-18
                                                                       Chili 150g
          # check for nulls in customer dataset
          customer_df.isnull().sum()
          LYLTY_CARD_NBR
                               a
Out[9]:
                               0
          LIFESTAGE
          PREMIUM CUSTOMER
                               0
          dtype: int64
          # check for nulls in transactions dataset
In [10]:
          transactions_df.isnull().sum()
          DATE
Out[10]:
          STORE NBR
                             0
          LYLTY_CARD_NBR
                             0
          TXN ID
                             0
          PROD NBR
                             0
          PROD NAME
                             0
          PROD QTY
                             0
          TOT_SALES
                             0
          dtype: int64
          # check for info on the transactions dataset
In [11]:
          transactions_df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 264836 entries, 0 to 264835
          Data columns (total 8 columns):
           #
               Column
                                Non-Null Count
                                                  Dtype
               -----
          ---
                                -----
           0
               DATE
                                264836 non-null
                                                  datetime64[ns]
               STORE NBR
                                264836 non-null int64
               LYLTY_CARD_NBR 264836 non-null int64
           2
           3
               TXN ID
                                264836 non-null int64
           4
               PROD NBR
                                264836 non-null int64
           5
               PROD_NAME
                                264836 non-null object
                                264836 non-null int64
               PROD QTY
           7
                                264836 non-null float64
               TOT SALES
          dtypes: datetime64[ns](1), float64(1), int64(5), object(1)
          memory usage: 16.2+ MB
          # preliminary analysis on data
In [12]:
          customer df.describe()
```

Out[12]:		LYLTY_CARD_NBR
	count	7.263700e+04
	mean	1.361859e+05
	std	8.989293e+04
	min	1.000000e+03
	25%	6.620200e+04
	50%	1.340400e+05
	75%	2.033750e+05
	max	2.373711e+06

In [13]: transactions_df.describe()

ıt[13]:		STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALES
	count	264836.00000	2.648360e+05	2.648360e+05	264836.000000	264836.000000	264836.000000
	mean	135.08011	1.355495e+05	1.351583e+05	56.583157	1.907309	7.304200
	std	76.78418	8.057998e+04	7.813303e+04	32.826638	0.643654	3.083226
	min	1.00000	1.000000e+03	1.000000e+00	1.000000	1.000000	1.500000
	25%	70.00000	7.002100e+04	6.760150e+04	28.000000	2.000000	5.400000
	50%	130.00000	1.303575e+05	1.351375e+05	56.000000	2.000000	7.400000
	75%	203.00000	2.030942e+05	2.027012e+05	85.000000	2.000000	9.200000
	max	272.00000	2.373711e+06	2.415841e+06	114.000000	200.000000	650.000000

```
In [14]: row_count = len(customer_df)
#len(customer_df.columns)
print("Number of rows in the customer table: ", row_count)
```

Number of rows in the customer table: 72637

```
In [15]: #sorting the tables according to Total Salses
    transactions_df.sort_values(by='TOT_SALES', ascending=False)
```

						•			
Out[15]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TO'
	69762	2018- 08-19	226	226000	226201	4	Dorito Corn Chp Supreme 380g	200	
	69763	2019- 05-20	226	226000	226210	4	Dorito Corn Chp Supreme 380g	200	
	69496	2018- 08-15	49	49303	45789	14	Smiths Crnkle Chip Orgnl Big Bag 380g	5	
	55558	2019- 05-14	190	190113	190914	14	Smiths Crnkle Chip Orgnl Big Bag 380g	5	
	171815	2018- 08-17	24	24095	20797	14	Smiths Crnkle Chip Orgnl Big Bag 380g	5	
	•••								
	259695	2018- 11-13	41	41089	38002	76	Woolworths Medium Salsa 300g	1	
	259707	2018- 10-18	41	41267	38201	76	Woolworths Medium Salsa 300g	1	
	197005	2018- 08-11	167	167121	168928	76	Woolworths Medium Salsa 300g	1	
	216449	2019- 03-01	264	264032	262778	76	Woolworths Medium Salsa 300g	1	
	150019	2018- 11-01	268	268303	264733	35	Woolworths Mild Salsa 300g	1	

264836 rows × 8 columns

We can observe transactions that can be determined to be outliers

```
In [16]: #removing the rows with outiler. != means not equal to 200
    transactions_df = transactions_df[transactions_df['PROD_QTY'] != 200]
    transactions_df
```

Out[16]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY 1
	0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2
	1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3
	2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2
	3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5
	4	2018- 08-18	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3
	•••							
	264831	2019- 03-09	272	272319	270088	89	Kettle Sweet Chilli And Sour Cream 175g	2
	264832	2018- 08-13	272	272358	270154	74	Tostitos Splash Of Lime 175g	1
	264833	2018- 11-06	272	272379	270187	51	Doritos Mexicana 170g	2
	264834	2018- 12-27	272	272379	270188	42	Doritos Corn Chip Mexican Jalapeno 150g	2
	264835	2018- 09-22	272	272380	270189	74	Tostitos Splash Of Lime 175g	2

264834 rows × 8 columns

In [17]: # verifying changes
 transactions_df.describe()

Out[17]:		STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	TOT_SALE
	count	264834.000000	2.648340e+05	2.648340e+05	264834.000000	264834.000000	264834.00000
	mean	135.079423	1.355488e+05	1.351576e+05	56.583554	1.905813	7.29934
	std	76.784063	8.057990e+04	7.813292e+04	32.826444	0.343436	2.52724
	min	1.000000	1.000000e+03	1.000000e+00	1.000000	1.000000	1.50000
	25%	70.000000	7.002100e+04	6.760050e+04	28.000000	2.000000	5.40000
	50%	130.000000	1.303570e+05	1.351365e+05	56.000000	2.000000	7.40000
	75%	203.000000	2.030940e+05	2.026998e+05	85.000000	2.000000	9.20000
	max	272.000000	2.373711e+06	2.415841e+06	114.000000	5.000000	29.50000

```
In [18]: #merging both tables using the loyalty card number as reference
merged_df = pd.merge(transactions_df, customer_df, on='LYLTY_CARD_NBR')
merged_df
```

Out[18]:		DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY	TO
	0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2	
	1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3	
	2	2018- 11-10	1	1307	346	96	WW Original Stacked Chips 160g	2	
	3	2019- 03-09	1	1307	347	54	CCs Original 175g	1	
	4	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2	
	•••								
	264829	2019- 03-09	272	272319	270088	89	Kettle Sweet Chilli And Sour Cream 175g	2	
	264830	2018- 08-13	272	272358	270154	74	Tostitos Splash Of Lime 175g	1	
	264831	2018- 11-06	272	272379	270187	51	Doritos Mexicana 170g	2	
	264832	2018- 12-27	272	272379	270188	42	Doritos Corn Chip Mexican Jalapeno 150g	2	
	264833	2018- 09-22	272	272380	270189	74	Tostitos Splash Of Lime 175g	2	

264834 rows × 10 columns

After the conversion, STORE_NBR now has the data type *object*, indicating that it is treated as a string in Pandas. This change confirms that STORE_NBR is no longer being interpreted as a numeric type, which is helpful if you want it to be treated as a categorical variable in visualizations and analyses.

Calculating key Measures

```
In [21]: total_sales = transactions_df['TOT_SALES'].sum()
          print ("Total Sales is ", total_sales, "dollars")
          total_Qty = transactions_df['PROD_QTY'].sum()
          print ("Total Quanty sold is ", total_Qty, "units")
          total_members = customer_df['LYLTY_CARD_NBR'].nunique()
          print("Total Members is ", total_members)
          Total Sales is 1933115.0000000002 dollars
          Total Quanty sold is 504724 units
          Total Members is 72637
In [36]: #displaying total sales by category and top 5 products
          total_sales_by_category = merged_df.groupby('PROD_NAME')['TOT_SALES'].sum().reset_i
          top_5_products = total_sales_by_category.sort_values(by='TOT_SALES', ascending=Fals
          top_5_products
                                   PROD_NAME TOT_SALES
Out[36]:
          11
                     Dorito Corn Chp Supreme 380g
                                                  39052.0
               Smiths Crnkle Chip Orgnl Big Bag 380g
          86
                                                  36367.6
          77 Smiths Crinkle Chips Salt & Vinegar 330g
                                                  34804.2
          33
                 Kettle Mozzarella Basil & Pesto 175g
                                                  34457.4
          76
                       Smiths Crinkle Original 330g
                                                  34302.6
In [23]:
          plt.figure(figsize=(12,6))
          sns.barplot(x='PROD_NAME', y='TOT_SALES', data=top_5_products, palette='Blues_d')
          plt.xlabel('Product Category')
          plt.ylabel('Total Sales')
          plt.title('Top 5 Products by Total Sales')
          plt.xticks(rotation=45)
          plt.tight_layout()
          # Show the plot
          plt.show()
```



```
In [24]: # Calculate the value counts for the PREMIUM_CUSTOMER column
premium_customer_counts = customer_df['PREMIUM_CUSTOMER'].value_counts()
premium_customer_counts
```

Out[24]: Mainstream 29245 Budget 24470 Premium 18922

Name: PREMIUM_CUSTOMER, dtype: int64

Relative Sizes of Premium Customer Values


```
In [43]: # Calculate total sales sold by store
    total_sales_by_store = merged_df.groupby('STORE_NBR')['TOT_SALES'].sum().reset_inde

# Sort by total sales and get the top 5 stores
    top_5_stores_by_sales = total_sales_by_store.sort_values(by='TOT_SALES', ascending=top_5_stores_by_sales
```

Out[43]: STORE_NBR TOT_SALES 141 17605.45 226 259 88 16333.25 73 165 15973.75 207 40 15559.50 153 15539.50 237

```
In [27]: # Plotting the bar graph using Seaborn
    plt.figure(figsize=(10, 6))
    sns.barplot(x='STORE_NBR', y='TOT_SALES', data=top_5_stores_by_sales, palette='viri

    plt.xlabel('Store Number')
    plt.ylabel('Total Sales')
    plt.title('Top 5 Stores by Total Sales')
    plt.xticks(rotation=45)
    #plt.tight_layout() # This is added to help with organisation

plt.show()
```

Top 5 Stores by Total Sales


```
In [44]: # Calculate total quantity sold by store
    total_qty_by_store = merged_df.groupby('STORE_NBR')['PROD_QTY'].sum().reset_index()
# Sort by total quantity and get the top 5 stores
    top_5_stores_by_qty = total_qty_by_store.sort_values(by='PROD_QTY', ascending=False
    print(top_5_stores_by_qty)
```

```
STORE_NBR PROD_QTY
141
          226
                   4001
259
           88
                    3718
265
           93
                    3639
          165
73
                    3602
210
           43
                    3519
```

```
In [29]: # Set up the plot size
    plt.figure(figsize=(10, 6))

sns.barplot(y='PROD_QTY', x='STORE_NBR', data=top_5_stores_by_qty, palette='viridis'

# Add a title and labels
    plt.title('Top 5 Stores by Total Quantity Sold')
    plt.xlabel('Total Quantity Sold')
    plt.ylabel('Store Number')

# Ensure optimal layout
    plt.tight_layout()

# Show the plot
    plt.show()
```



```
In [30]: # Calculate total sales over time
    sales_over_time = merged_df.groupby('DATE')['TOT_SALES'].sum().reset_index()

# Plotting the line chart with Seaborn
    plt.figure(figsize=(12,6))
    sns.lineplot(x='DATE', y='TOT_SALES', data=sales_over_time, marker='o')
    plt.xlabel('Date')
    plt.ylabel('Total Sales')
    plt.title('Total Sales Over Time')
    plt.grid(True)
    #plt.tight_layout()

# Show the plot
    plt.show()
```



```
In [31]: # Create 'MONTH_YEAR' column as datetime (using the first day of each month)
    merged_df['MONTH_YEAR'] = merged_df['DATE'].dt.to_period('M').dt.to_timestamp()

# Calculate total sales over time
    new_sales_over_time = merged_df.groupby('MONTH_YEAR')['TOT_SALES'].sum().reset_index
```

```
# Plotting the line chart with Seaborn
plt.figure(figsize=(12,6))
sns.lineplot(x='MONTH_YEAR', y='TOT_SALES', data=new_sales_over_time, marker='o')
plt.xlabel('Date')
plt.ylabel('Total Sales')
plt.title('Total Sales Over Time')
plt.xticks(rotation=45)
plt.grid(True)
plt.tight_layout()

# Show the plot
plt.show()
```


In [46]: new_sales_over_time

Out[46]: MONTH_YEAR TOT_SALES

0	2018-07-01	165275.30
1	2018-08-01	158081.05
2	2018-09-01	160522.00
3	2018-10-01	164415.70
4	2018-11-01	160233.70
5	2018-12-01	167913.40
6	2019-01-01	162642.30
7	2019-02-01	150665.00
8	2019-03-01	166265.20
9	2019-04-01	159845.10
10	2019-05-01	156717.65
11	2019-06-01	160538.60

```
In [48]: # Calculate total sales per Lifestage
    sales_lifestage = merged_df.groupby('LIFESTAGE')['TOT_SALES'].sum().reset_index()
# sort in descending order
    sales_lifestage.sort_values(by='TOT_SALES', ascending= False)
```

Out[48]:		LIFESTAGE	TOT_SALES
	3	OLDER SINGLES/COUPLES	402426.75
	4	RETIREES	366470.90
	2	OLDER FAMILIES	352467.20
	5	YOUNG FAMILIES	316160.10
	6	YOUNG SINGLES/COUPLES	260405.30
	0	MIDAGE SINGLES/COUPLES	184751.30
	1	NEW FAMILIES	50433.45

```
In [34]: plt.figure(figsize=(12,6))
    sns.barplot(x='LIFESTAGE', y='TOT_SALES', data=sales_lifestage, color='mediumpurple
    plt.xlabel('Lifestage')
    plt.ylabel('Total Sales')
    plt.title('Sales By Lifestage')
    plt.xticks(rotation=45)
    plt.tight_layout()
```


Insights and Analysis

1. Key Measures

• **Total Sales**: \$1,933,115

Total Quantity Sold: 504,724 units
 Total Unique Customers: 72,637

2. Top Products by Sales

The five products with the highest sales revenue are:

Product Name	Total Sales (\$)		
Dorito Corn Chip Supreme 380g	39,052		

Product Name	Total Sales (\$)
Smiths Crinkle Chip Original Big Bag 380g	36,367.6
Smiths Crinkle Chips Salt & Vinegar 330g	34,804.2
Kettle Mozzarella Basil & Pesto 175g	34,457.4
Smiths Crinkle Original 330g	34,302.6

3. Customer Count by Spending Category

Customer count per spending category:

Category	Customer Count
Mainstream	29,245
Budget	24,470
Premium	18,922

4. Top Stores by Sales and Quantity

Sales Leaders

Store Number	Total Sales (\$)
Store 226	17,605.45
Store 88	16,333.25
Store 165	15,973.75
Store 40	15,559.50
Store 237	15,539.50

Quantity Leaders

Store Number	Quantity Sold (Units)	
Store 226	4,001	
Store 88	3,718	
Store 93	3,639	
Store 165	3,602	
Store 43	3,519	

5. Monthly Sales Trends:

Sales peaked in December 2018 at 167,913.4, likely due to holiday season demand. A significant drop occurred in February 2019 with \$150,665, which could be attributed to post-

6. Sales Breakdown by Life Stage

Analysis by life stage revealed the following sales breakdown:

Life Stage	Total Sales (\$)
Older Singles/Couples	402,426.75
Retirees	366,470.90
Older Families	352,467.20
Young Families	316,160.10
Young Singles/Couples	260,405.30
Mid-Age Singles/Couples	184,751.30
New Families	50,433.45

Key Insight: Older singles/couples and retirees are the primary contributors to sales, making them key customer segments.

7. Recommendations

Product Focus:

- Increase Inventory of Top-Selling Products:
 - Based on sales data, the top-performing products like **Dorito Corn Chip Supreme**380g, Smiths Crinkle Chip Original Big Bag 380g, and Kettle Mozzarella Basil &
 Pesto 175g contribute significantly to total revenue. To capitalize on this, stores should prioritize stocking these high-demand products. This can help avoid stockouts, ensuring that these popular items remain available to customers, especially during peak shopping times (e.g., holidays or weekends).
 - Actionable Insight: Work with supply chain management to forecast demand more accurately for these products, and increase orders to top-performing stores such as Store 226 and Store 88, where these items have historically sold well.

Targeted Marketing:

- Focus Advertising on Key Customer Segments:
 - The **older singles/couples** and **retirees** are the highest contributors to overall sales, accounting for a significant portion of revenue. These groups likely have more disposable income and may prioritize quality and convenience in their purchases. Tailoring marketing campaigns specifically to these segments can further boost sales.
 - Actionable Insight: Develop targeted digital and traditional advertising campaigns that highlight the health benefits, premium quality, or convenience of the products.
 For instance, ads can be tailored to appeal to older singles/couples who may

- prefer easy-to-prepare snacks or **retirees** who may appreciate traditional or nostalgic snack flavors.
- **Platform Recommendation**: Consider using platforms such as Facebook and television, which tend to reach an older demographic more effectively.

Promotions for Premium Customers:

• Tailor Promotions to "Premium" Customers:

The **Premium** customer segment, although smaller than the mainstream and budget categories, is likely to spend more per transaction. These customers may be attracted to higher-end or niche products, and personalized promotions could encourage repeat purchases and boost average transaction value.

- Actionable Insight: Design exclusive promotions, such as "Buy One, Get One Free" or discount offers, that cater specifically to the preferences of premium customers. For example, offer bundle deals that include higher-value items or limited-edition flavors, appealing to their sense of exclusivity.
- **Loyalty Programs**: Consider enhancing loyalty programs for this segment with rewards for higher spending, such as points-based systems where customers earn rewards for each purchase. This could help retain these high-value customers.

Store-Specific Strategies:

• Allocate More Inventory to High-Performing Stores:

Stores such as **Store 226** and **Store 88** have demonstrated consistently high sales figures and purchase quantities. Ensuring that these stores have adequate inventory of high-demand products will help meet the demand and maximize potential revenue.

- Actionable Insight: Work with store managers to evaluate sales patterns and
 ensure that inventory replenishment is aligned with the demand for these stores.
 This may include setting higher minimum stock levels for best-selling products and
 monitoring trends to adjust inventory accordingly.
- Targeted Promotions in High-Performing Stores:

Given the success of specific stores in both total sales and quantity sold, localized promotions and marketing efforts can be deployed to increase customer engagement. For example, **Store 226** could host in-store events or offer exclusive deals for local customers.

Actionable Insight: Offer limited-time discounts or bundle promotions that are exclusive to high-performing stores to increase foot traffic. Additionally, ensure that store employees are well-trained to promote these deals and engage with customers effectively.

In	[