

Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Disciplina: Cálculo Numérico Prof.: Luiz C. M. de Aquino

Lista de Exercícios I

- 1. Use o Método da Bisseção para encontrar uma solução aproximada das seguintes equações (considere uma tolerância de 10^{-4}):
 - (a) $(3x)2^x = 1$.
 - (b) $\sin 2x = \ln(x 1)$.
- 2. Considere a função definida por $f(x) = \frac{2x-3}{x-1}$. Há algum problema em aplicar o Método da Bisseção para determinar uma raiz desta função no intervalo [0, 25; 1, 25]? Justifique sua resposta.
- 3. Dado $a \in \mathbb{R}_+^*$ proponha uma maneira de usar o Método da Bisseção para calcular um valor aproximado de \sqrt{a} com tolerância de 10^{-5} . Em seguida, use a sua proposta para calcular o valor aproximado de $\sqrt{2}$.
- 4. Dê exemplo de uma equação que envolva termos do tipo 2^u e sen u e cuja solução seja x=4. Em seguida, determine um intervalo contendo x=4 e considere que o Método da Bisseção será aplicado nesse intervalo. Faça uma estimativa do número de passos do método que serão necessários para obter a precisão de $\varepsilon=10^{-5}$. Execute essa quantidade de passos e compare a solução aproximada com a solução exata da equação.
- 5. Seja a função definida por $f(t) = -\frac{112}{9}t^3 + \frac{536}{9}t^2 \frac{815}{9}t + \frac{400}{9}$. Verifique que $\bar{u} = \frac{5}{4}$ é solução de f(u) = 0. Em seguida, justifique porque não é possível utilizar o Método da Bisseção para determinar uma solução aproximada de \bar{u} .

Gabarito

[1] (a) $x \approx 0,27539$. (b) $x \approx 1,7305$. [2] Sim, pois f é descontínua neste intervalo. Em particular, com dois passos do método obtemos $x_2 = 1$, mas f é descontínua em x = 1. [3] Sugestão: note que \sqrt{a} é a raiz de $x^2 - a = 0$ no intervalo [0; a + 1]. Observação: este exercício admite outras respostas válidas. [4] Sugestão: note que $2^0 = 1$ e sen $\frac{\pi}{2} = 1$. Observação: este exercício admite várias respostas válidas.

[5] De fato, basta verificar que $f\left(\frac{5}{4}\right) = 0$. Não é possível, pois $f'\left(\frac{5}{4}\right) = 0$ e $f''\left(\frac{5}{4}\right) > 0$.