ET 2060 - Tín hiệu và hệ thống Hệ thống thông tin

TS. Đặng Quang Hiếu

Trường Đại học Bách Khoa Hà Nội Viện Điện tử - Viễn thông

2017-2018

Outline

Hệ thống thông tin và điều chế biên độ

Không gian tín hiệu và hệ thống thông tin số

Khái niệm hệ thống thông tin

- Máy phát máy thu (điểm điểm).
- ▶ Kênh h(t) (fading, Doppler, v.v.) và nhiễu Gauss n(t).
- Signal-to-Noise Ratio (SNR).
- ▶ Ghép tin x(t) vào sóng mang tại phía phát sao cho phù hợp với môi trường truyền dẫn (điều chế modulation).
- ▶ Tách tin $\hat{x}(t)$ ra khỏi sóng mang tại phía thu (giải điều chế demodulation).
- ▶ Độ tin cậy: $\hat{x}(t) \approx x(t)$.

Điều chế / giải điều chế

"Điều chế là quá trình thay đổi các thuộc tính của sóng mang c(t) theo tín hiệu thông tin x(t)."

$$c(t) = A_c \cos(\Omega_c t + \theta_c)$$

- Điều biên (AM)
- ► Điều tần (FM)
- ▶ Điều pha (PM)

Một số ưu điểm khi thực hiện điều chế:

- Dịch dải tần hoạt động của tín hiệu về trung tâm băng tần được cấp phép.
- Cho phép truyền tin khoảng cách xa hơn, khả năng chống nhiễu, chống giao thoa tốt hơn, v.v.
- Phù hợp hơn với từng ứng dụng, từng hoàn cảnh cụ thể.

Khái niệm điều biên (AM) DSB-SC

Phổ của tín hiệu điều biên

$$y(t) = x(t)\cos(\Omega_c t)$$

$$= \frac{1}{2}x(t)[e^{j\Omega_c t} + e^{-j\Omega_c t}]$$

$$\Longrightarrow Y(j\Omega) = \frac{1}{2}[X(j(\Omega - \Omega_c)) + X(j(\Omega + \Omega_c))]$$

Giải điều biên đồng bộ pha (coherent detection)

$$w(t) = y(t)\cos(\Omega_c t) = x(t)\cos^2(\Omega_c t)$$
$$= \frac{1}{2}x(t) + \frac{1}{2}x(t)\cos(2\Omega_c t)$$

Trường hợp không đồng bộ pha sóng mang

$$w(t) = y(t)\cos(\Omega_c t + \theta_2) = x(t)\cos(\Omega_c t + \theta_1)\cos(\Omega_c t + \theta_2)$$

= $\frac{1}{2}x(t)\cos(\theta_2 - \theta_1) + \frac{1}{2}x(t)\cos(2\Omega_c t + \theta_2 + \theta_1)$

Tín hiệu thu được sau khi lọc thông thấp:

$$\hat{x}(t) = x(t)\cos(\theta_2 - \theta_1)$$

Nếu $(\theta_2 - \theta_1)$ thay đổi theo thời gian? \longrightarrow Vòng khóa pha (PLL)

Các phương pháp điều biên khác

$$y(t) = [B + x(t)] \cos(\Omega_c t)$$

Độ sâu điều chế (modulation depth): $h = \frac{\max\{x(t)\}}{B}$

Giải điều chế dùng mạch tách đường bao (envelop detector), ko cần đồng bộ pha nhưng lãng phí công suất phát vào sóng mang.

QAM (Quadrature Amplitude Modulation)

- Chứng minh?
- Vẽ phổ tín hiệu?
- Tăng gấp đôi hiệu quả sử dụng dải tần!

Điều chế biên độ xung (PAM)

$$y(t) = \sum_{n=-\infty}^{\infty} x(nT_s)h(t - nT_s)$$

trong đó,

$$h(t) = \left\{ egin{array}{ll} 1, & 0 < t < T_0 \\ 0, & t \ ext{con lai} \end{array}
ight.$$

và $T_s < \frac{1}{2B}$.

Ghép kênh

- ▶ Ghép kênh phân chia theo tần số (FDM), kết hợp với AM
- ▶ Ghép kênh phân chia theo thời gian (TDM), kết hợp với PAM

Bài tập

Viết chương trình Matlab minh họa điều chế AM trường hợp DSB-SC.

- (a) Vẽ trên miền thời gian các tín hiệu x(t),y(t),w(t) và $\hat{x}(t)$ trong khoảng thời gian [0,1] giây, khi $x(t)=\cos(2\pi\cdot 10t)$, $c(t)=\cos(2\pi\cdot 100t)$
- (b) Vẽ phổ các tín hiệu trên
- (c) Vẽ dạng tín hiệu tại máy thu $\hat{x}(t)$ khi SNR = 10 dB.

Outline

Hệ thống thông tin và điều chế biên độ

Không gian tín hiệu và hệ thống thông tin số

Sơ đồ hệ thống thông tin số

Các khái niệm trong thông tin số

- ▶ Độ rộng băng thông B [hertz]
- ▶ Dung lượng kênh $C = B \log_2(1 + \mathrm{SNR})$
- Tốc độ truyền dữ liệu
 - (i) Tốc độ ký hiệu (symbol / baud rate) R_s
 - (ii) Tốc độ bit (bit rate) $R = R_s \log_2 M$
- Tỉ số năng lượng bit trên nhiễu E_b/N_0 .
- ▶ Tỉ lệ lỗi bit BER

Nguyên lý thông tin số

- ▶ Phát đi dạng sóng $s(t) = s_i(t)$ khi đầu vào là $m = m_i$.
- ▶ Dưới tác động của nhiễu là: r(t) = s(t) + n(t).
- Nếu biết trước $\{P[m_i]\}$ (xác suất phát đi m_i trong tập hữu hạn các giá trị $\{m_0, m_1, \ldots, m_{M-1}\}$) và cho trước các dạng sóng $\{s_0(t), s_1(t), \ldots, s_{M-1}(t)\}$; máy thu có nhiệm vụ xử lý tín hiệu thu được $r(t) \to \hat{m}$ sao xác suất lỗi $P_e = P[\hat{m} \neq m]$ là nhỏ nhất.

Ví dụ về dạng sóng (1)

▶ BPSK: $m \in \{0,1\}$, hoặc $\{-1,1\}$.

$$s(t) = \left\{ egin{array}{ll} s_0(t) = \sqrt{rac{E_b}{T}}\cos(2\pi f_c t), & m=0 \ s_1(t) = -\sqrt{rac{E_b}{T}}\cos(2\pi f_c t), & m=1 \end{array}
ight.$$

▶ 4-ASK:
$$m \in \{0, 1, 2, 3\}$$
, $u[n] \in \{-3d/2, -d/2, d/2, 3d/2\}$
$$s(t) = \sum u[n]g(t - nT)$$

Ví dụ về dạng sóng (2)

QPSK: $m \in \{0, 1, 2, 3\}$ hoặc $\{00, 01, 11, 10\}$,

$$s(t) = \begin{cases} s_0(t) = \sqrt{\frac{E_s}{T}} \cos(2\pi f_c t + \pi/4), & m = 0\\ s_1(t) = \sqrt{\frac{E_s}{T}} \cos(2\pi f_c t + 3\pi/4), & m = 1\\ s_2(t) = \sqrt{\frac{E_s}{T}} \cos(2\pi f_c t + 5\pi/4), & m = 2\\ s_3(t) = \sqrt{\frac{E_s}{T}} \cos(2\pi f_c t + 7\pi/4), & m = 3 \end{cases}$$

Không gian tín hiệu

- ▶ Tập hợp các dạng sóng s(t) (hàm thực / phức) có năng lượng hữu hạn và phép nhân, phép cộng thông thường \rightarrow không gian vector N-chiều
- lackbox + Tích trong (inner product) và toán tử ℓ_2 -norm ightarrow không gian Hilbert
- Hệ cơ sở trực chuẩn $\{\phi_k(t)\}$

$$\int_{-\infty}^{\infty} \phi_k(t) \phi_{\ell}(t) dt = \begin{cases} 1, & k = \ell \\ 0, & k \neq \ell \end{cases}$$

với mọi $0 \le k, \ell \le (N-1)$.

Ví dụ về hệ trực chuẩn

► Tập các xung dịch theo thời gian

$$\phi_k(t) = g(t - k\tau), \quad k = 0, 1, \dots, (N-1)$$

với g(t) là xung có năng lượng đơn vị

$$g(t) = \left\{egin{array}{ll} rac{1}{\sqrt{ au}}, & 0 \leq t \leq au \ 0, & t ext{ còn lại} \end{array}
ight.$$

Tập các xung dịch trên miền tần số, với $k = 0, 1, \dots, (N-1)$.

$$\phi_k(t) = \left\{ egin{array}{ll} \sqrt{rac{2}{T}}\cos(rac{2\pi}{T}kt), & 0 \leq t \leq T \ 0, & t ext{ còn lại} \end{array}
ight.$$

► Hai hàm hình sin lệch pha 90 đô.

Hai nam ninn sin iệch pha 90 độ.
$$\phi_0(t) = \left\{ \begin{array}{ll} \sqrt{\frac{2}{T}}\cos(2\pi f_0 t), & 0 \leq t \leq T \\ 0, & t \text{ còn lại} \end{array} \right.$$

$$\phi_1(t) = \left\{ egin{array}{ll} \sqrt{rac{2}{T}} \sin(2\pi f_0 t), & 0 \leq t \leq T \ 0, & t ext{ còn lại} \end{array}
ight.$$

Chòm sao tín hiệu

Biểu diễn $s_i(t)$ theo cơ sở

$$s_i(t) = \sum_{j=0}^{N-1} s_{ij}\phi_j(t), \quad i = 0, 1, \dots, (M-1)$$

Mỗi dạng sóng $s_i(t)$ được xác định bởi vector:

$$\mathbf{s}_{i} = [s_{i0}, s_{i1}, \dots, s_{i(N-1)}]$$

- ▶ Tập hợp M điểm $\mathbf{s}_i = [s_{i0}, s_{i1}, \dots, s_{i(N-1)}]$ trong không gian N-chiều gọi là chòm sao tín hiệu (signal constellation).
- ▶ Mỗi điểm được gọi là một ký hiệu (symbol) \mathbf{s}_i .
- ► Truyền tín hiệu *M*-mức (*M*-ary signaling)

Ví dụ về chòm sao tín hiệu 64-QAM (N=2,M=64)

Máy thu khi có nhiễu

Tìm điểm s_i trên chòm sao tín hiệu sao cho gần với $[s_0, s_1, \ldots, s_{N-1}]$ nhất. Điều kiện:

- ▶ Dữ liệu đầu vào $\{m_i\}$ phân phối đều
- Nhiễu trắng Gauss n(t) với giá trị trung bình bằng không

Sơ đồ bộ thu phát số

Trên thực tế hay dùng sơ đồ QAM!!!

Mã Gray

Mã hóa luồng bit đầu vào b thành các ký hiệu s sao cho hai ký hiệu cạnh nhau (trên chòm sao) chỉ khác nhau duy nhất 1 bit.

Tạo dạng xung

Xung vuông

$$p(t) = \left\{ egin{array}{ll} \sqrt{rac{1}{T}}, & 0 \leq t \leq T \\ 0, & t \ ext{con lai} \end{array}
ight.$$

- \rightarrow gây ra ISI.
- ► Xung hàm sinc, cos nâng (raised cosine), Gauss. Tự đọc!!!

Matched filter (MF)

- ▶ Tìm h(t) sao cho đầu ra có SNR lớn nhất?
- ► Chứng minh được khi đó h(t) = p(T t).

Hình: Cách tiếp cận khác đối với MF

Bài tập

- 1. Viết chương trình Matlab thực hiện mã Gray
- 2. Viết chương trình minh họa điều chế BPSK, QPSK, 16-QAM
 - (a) Vẽ dạng tín hiệu baseband tại máy phát và máy thu khi có nhiễu / không có nhiễu, với các dạng xung khác nhau
 - (b) Vẽ dạng tín hiệu tại đầu ra bộ matched filter.
 - (c) Khôi phục lại tín hiệu, so sánh với đầu vào.