FEUILLE D'EXERCICES N°1

Différentiabilité sur un espace de HILBERT Différentiabilité de GATEAUX

Démonstrations de cours

Les exercices de cette section **ne seront pas** traités en TD, les corrigés se trouvant dans le polycopié. Les exercices marqués **\$\infty\$** sont exigibles au partiel et à l'examen.

Exercice 1 – Fonctions de classe C^1

Module A1 – Proposition 6

Soit \mathcal{O} un ouvert de \mathcal{X} un espace de HILBERT. Soit $a \in \mathcal{O}$, $\eta > 0$ et $f : \mathcal{O} \to \mathbb{R}$ une fonction différentiable sur $\mathcal{B}(a,\eta)$. Soit $x \in \mathcal{B}(a,\eta)$.

- (a) Justifier que $\forall h \in \mathcal{X}, \quad |df(x) \cdot h df(a) \cdot h| = |\langle \nabla f(x) \nabla f(a), h \rangle|$
- (b) Montrer que $\forall h \in \mathcal{X}, \quad ||h|| = 1 \implies |\langle \nabla f(x) \nabla f(a), h \rangle| \leq ||\nabla f(x) \nabla f(a)||$
- (c) En déduire que $|||df(x) df(a)||| \le ||\nabla f(x) \nabla f(a)||$
- (d) On suppose que ∇f est continue en a. Montrer que df est continue en a.
- (e) Établir que $\forall h \in \mathcal{X}$, $||h|| = 1 \implies |\langle \nabla f(x), h \rangle \langle \nabla f(a), h \rangle| \le |||df(x) df(a)|||$

En appliquant cette relation à $h = \frac{\nabla f(x) - \nabla f(a)}{\|\nabla f(x) - \nabla f(a)\|}$, montrer que

$$\|\nabla f(x) - \nabla f(a)\| \le \||df(x) - df(a)\||$$

(f) On suppose que df est continue en a. En déduire que ∇f est continue en a.

♣ Exercice 2 – Fonctions différentiables et dérivées directionnelles

Module A1 – Proposition 12

Soit \mathcal{O} un ouvert de \mathcal{X} un espace de HILBERT. Soit $f:\mathcal{O}\to\mathbb{R}$ une fonction différentiable en $a\in\mathcal{O}$.

(a) Soit $U \subset \mathbb{R}$ un ouvert contenant 0 tel que $a + tv \in \mathcal{O}$ pour tout $t \in U$. On pose

$$g: \left\{ \begin{array}{ccc} U & \to & \mathbb{R} \\ t & \mapsto & f(a+t\,v) \end{array} \right.$$

Montrer que la fonction g dérivable en 0. Que vaut g'(0)?

(b) Justifier que $f'(a, v) = \langle \nabla f(a), v \rangle$ pour tout $v \in \mathcal{X}$. En déduire que f est différentiable au sens de GATEAUX en a.

Exercices fondamentaux

Exercice 3 – Formes linéaires et bilinéaires Soit \mathcal{X} un espace de HILBERT, muni du produit scalaire $\langle \cdot, \cdot \rangle$. Soit $A \in \mathcal{L}_{c}(\mathcal{X}, \mathcal{X})$ un opérateur linéaire continu borné et $b \in \mathcal{X}$. Montrer que les fonctions suivantes sont différentiables sur \mathcal{X} et calculer leur différentielle. Que vaut leur gradient?

(a)
$$f: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \langle b, x \rangle \end{array} \right.$$

(b)
$$g: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \langle A(x), x \rangle \end{array} \right.$$

Exercice 4 – Norme issue d'un produit scalaire Soit \mathcal{X} un espace de HILBERT, muni du produit scalaire $\langle \cdot, \cdot \rangle$. On note $\|\cdot\|$ la norme découlant du produit scalaire. Soit $A \in \mathcal{L}_c(\mathcal{X}, \mathcal{X})$ un opérateur linéaire continu borné et $b \in \mathcal{X}$. Montrer que les fonctions suivantes sont différentiables sur \mathcal{X} et calculer leur différentielle. Que vaut leur gradient?

(a)
$$f: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \|x\|^2 \end{array} \right.$$
 (b) $g: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \|A(x)\|^2 \end{array} \right.$ (c) $k: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \|A(x) - b\|^2 \end{array} \right.$

Exercice 5 – Somme séparable Soit \mathcal{X} (resp. \mathcal{Y}) un espace de HILBERT, muni d'un produit scalaire noté $\langle \cdot, \cdot \rangle_{\mathcal{X}}$ (resp. $\langle \cdot, \cdot \rangle_{\mathcal{Y}}$), de norme associée notée $\| \cdot \|_{\mathcal{X}}$ (resp. $\| \cdot \|_{\mathcal{Y}}$). Soit $\mathcal{O} \subset \mathcal{X}$ et $\mathcal{O}' \subset \mathcal{Y}$ deux ouverts et $f: \mathcal{O} \to \mathbb{R}$ et $g: \mathcal{O}' \to \mathbb{R}$ deux fonctions. Soit $a \in \mathcal{O}$ et $b \in \mathcal{O}'$. On suppose que f est différentiable en a et que g est différentiable en b.

On considère la fonction suivante $s: \left\{ \begin{array}{ccc} \mathcal{O} \times \mathcal{O}' & \to & \mathbb{R} \\ (x,y) & \mapsto & f(x) + g(y) \end{array} \right.$

(a) Montrer que

$$s(a+h,b+k) = f(a) + g(b) + \langle \nabla f(a),h \rangle_{\mathcal{X}} + \langle \nabla g(a),k \rangle_{\mathcal{Y}} + o(\|h\|_{\mathcal{X}}) + o(\|k\|_{\mathcal{Y}})$$

(b) On munit l'espace produit $\mathcal{X} \times \mathcal{Y}$ du produit scalaire ¹

$$\forall \left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} \right) \in \mathcal{X} \times \mathcal{Y}, \qquad \left\langle \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} \right\rangle_{\mathcal{X} \times \mathcal{Y}} = \langle x, x' \rangle_{\mathcal{X}} + \langle y, y' \rangle_{\mathcal{Y}}$$

La norme qui en découle vérifie

$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \qquad \left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\|_{\mathcal{X} \times \mathcal{Y}}^2 = \|x\|_{\mathcal{X}}^2 + \|y\|_{\mathcal{Y}}^2 \ge \max\left(\|x\|_{\mathcal{X}}^2, \|y\|_{\mathcal{Y}}^2 \right)$$

Montrer que

$$o(\|h\|_{\mathcal{X}}) + o(\|k\|_{\mathcal{Y}}) = o\left(\left\|\binom{h}{k}\right\|_{\mathcal{X} \times \mathcal{Y}}\right)$$

(c) En déduire que s est différentiable en (a,b). Que vaut $\nabla s(a,b)$?

Compléments

* Exercice 6 – Calcul des variations Soit a < b deux réels. On considère $E_{[a;b]}$ l'espace des fonctions $f:[a;b] \to \mathbb{R}$ de classe \mathcal{C}^1 , muni de la norme

$$||f|| = \max_{x \in [a:b]} |f(x)| + \max_{x \in [a:b]} |f'(x)|$$

Soit $\mathcal{L}: \mathbb{R}^3 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 ; on définit la fonctionnelle suivante :

$$\mathcal{F}: \left\{ \begin{array}{ccc} E_{[a;b]} & \to & \mathbb{R} \\ f & \mapsto & \int_a^b \mathcal{L}(x, f(x), f'(x)) dx \end{array} \right.$$

Montrer que \mathcal{F} est différentiable sur $E_{[a;b]}$ et que, pour tous $f, h \in E_{[a;b]}$,

$$d\mathcal{F}(f) \cdot h = \int_{a}^{b} \left(\frac{\partial \mathcal{L}}{\partial y} (x, f(x), f'(x)) h(x) + \frac{\partial \mathcal{L}}{\partial z} (x, f(x), f'(x)) h'(x) \right) dx$$

^{1.} cf. Compléments C2 : Éléments d'analyse hilbertienne