

Title of submission to PLOS journals

Name1 Surname^{1,2,3}, Name2 Surname^{2,3}, Name3 Surname^{2,3,3}, Name4 Surname², Name5 Surname^{2†}, Name6 Surname^{2†}, Name7 Surname^{1,2,3*}, with the Lorem Ipsum Consortium¹

- 1 Affiliation Dept/Program/Center, Institution Name, City, State, Country
- 2 Affiliation Dept/Program/Center, Institution Name, City, State, Country
- 3 Affiliation Dept/Program/Center, Institution Name, City, State, Country
- These authors contributed equally to this work.
- †These authors also contributed equally to this work.
- ¤Current Address: Dept/Program/Center, Institution Name, City, State, Country †Deceased
- ¶Membership list can be found in the Acknowledgments section.
- * correspondingauthor@institute.edu

Abstract

The topology of cortical networks is subject to constant change and the mechanisms involved in these dynamics are strongly influenced by the timing and intensity of neural spiking within these networks. Consequently, the success of a realistic biologically based computational model of synaptic structure and self-organization largely depends on an accurate modeling of neural activity. Experiments have found evidence for a broad distribution of firing rates among cortical neurons and this has been proposed to facilitate stimulus encoding, as well as to promote the presence of strong synapses forming stable subnetworks. These observations suggest that heterogeneity of cortical activity has a specific role rather than just being a qualitative feature without any functional meaning. Building upon on a self-organizing spiking neural network (LIF-SORN), we replaced an intrinsic homeostatic control system used in earlier versions by a mechanism based on the diffusion of a neurotransmitter across the nervous tissue. Diffusive homeostasis was adopted from a paper by Sweeney et al. The main goal of this modification was to allow for the aforementioned broad and heavy tailed distribution of firing rates among the excitatory neural population, which could not be achieved by the formerly used single-cell homeostatic mechanism, binding firing rates of all neurons to a fixed target value. The resulting statistical features of spiking activity were positive with respect to firing rate statistics. Furthermore, we compared both homeostatic mechanisms with respect to features of synaptic network structures emerging throughout the simulation. Apart from the preservation of earlier reported non-random topological features, we found that diffusive homeostasis allowed for the emergence of highly influential neurons with strong outgoing synaptic efficacies. We could relate this feature of synaptic topology to the imposed spatial structure of the neural population by means of an analytic approach to the diffusive homeostatic steady state.

Author summary

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur eget porta erat. Morbi consectetur est vel gravida pretium. Suspendisse ut dui eu ante cursus gravida

PLOS 1/4

non sed sem. Nullam sapien tellus, commodo id velit id, eleifend volutpat quam. Phasellus mauris velit, dapibus finibus elementum vel, pulvinar non tellus. Nunc pellentesque pretium diam, quis maximus dolor faucibus id. Nunc convallis sodales ante, ut ullamcorper est egestas vitae. Nam sit amet enim ultrices, ultrices elit pulvinar, volutpat risus.

Introduction

Lorem ipsum dolor sit [1] amet, consectetur adipiscing elit. Curabitur eget porta erat. Morbi consectetur est vel gravida pretium. Suspendisse ut dui eu ante cursus gravida non sed sem. Nullam Eq (1) sapien tellus, commodo id velit id, eleifend volutpat quam. Phasellus mauris velit, dapibus finibus elementum vel, pulvinar non tellus. Nunc pellentesque pretium diam, quis maximus dolor faucibus id. [2] Nunc convallis sodales ante, ut ullamcorper est egestas vitae. Nam sit amet enim ultrices, ultrices elit pulvinar, volutpat risus.

$$P_{Y} = \underbrace{H(Y_n) - H(Y_n | \mathbf{V}_n^Y)}_{S_Y} + \underbrace{H(Y_n | \mathbf{V}_n^Y) - H(Y_n | \mathbf{V}_n^{X,Y})}_{T_{X \to Y}}, \tag{1}$$

11

13

14

15

19

21

23

Materials and methods

Etiam eget sapien nibh

Nulla mi mi, Fig 1 venenatis sed ipsum varius, volut
pat euismod diam. Proin rutrum vel massa non gravida. Quisque tempor sem et dignissim rutrum. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi at justo vitae nulla elementum commodo eu id massa. In vitae diam ac augue semper tincidunt eu ut eros. Fusce fringilla erat porttitor lectus cursus, S1 Video vel sagittis arcu lobortis. Aliquam in enim semper, aliquam massa id, cursus neque. Praesent faucibus semper libero.

Fig 1. Bold the figure title. Figure caption text here, please use this space for the figure panel descriptions instead of using subfigure commands. A: Lorem ipsum dolor sit amet. B: Consectetur adipiscing elit.

Results

Nulla mi mi, venenatis sed ipsum varius, Table 1 volutpat euismod diam. Proin rutrum vel massa non gravida. Quisque tempor sem et dignissim rutrum. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi at justo vitae nulla elementum commodo eu id massa. In vitae diam ac augue semper tincidunt eu ut eros. Fusce fringilla erat porttitor lectus cursus, vel sagittis arcu lobortis. Aliquam in enim semper, aliquam massa id, cursus neque. Praesent faucibus semper libero.

LOREM and IPSUM nunc blandit a tortor

3rd level heading

Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque. Quisque augue sem, tincidunt sit amet feugiat eget,

PLOS 2/4

Table 1. Table caption Nulla mi mi, venenatis sed ipsum varius, volutpat euismod diam.

Heading1				Heading2			
cell1row1	cell2 row 1	cell3 row 1	cell4 row 1	cell5 row 1	cell6 row 1	cell7 row 1	cell8 row 1
cell1row2	cell2 row 2	cell3 row 2	cell4 row 2	cell5 row 2	cell6 row 2	cell7 row 2	cell8 row 2
cell1row3	cell2 row 3	cell3 row 3	cell4 row 3	cell5 row 3	cell6 row 3	cell7 row 3	cell8 row 3

Table notes Phasellus venenatis, tortor nec vestibulum mattis, massa tortor interdum felis, nec pellentesque metus tortor nec nisl. Ut ornare mauris tellus, vel dapibus arcu suscipit sed.

ullamcorper sed velit. Sed non aliquet felis. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris commodo justo ac dui pretium imperdiet. Sed suscipit iaculis mi at feugiat.

- 1. react
- 2. diffuse free particles
- 3. increment time by dt and go to 1

Sed ac quam id nisi malesuada congue

Nulla mi mi, venenatis sed ipsum varius, volutpat euismod diam. Proin rutrum vel massa non gravida. Quisque tempor sem et dignissim rutrum. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi at justo vitae nulla elementum commodo eu id massa. In vitae diam ac augue semper tincidunt eu ut eros. Fusce fringilla erat porttitor lectus cursus, vel sagittis arcu lobortis. Aliquam in enim semper, aliquam massa id, cursus neque. Praesent faucibus semper libero.

- First bulleted item.
- Second bulleted item.
- Third bulleted item.

Discussion

Nulla mi mi, venenatis sed ipsum varius, Table 1 volutpat euismod diam. Proin rutrum vel massa non gravida. Quisque tempor sem et dignissim rutrum. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi at justo vitae nulla elementum commodo eu id massa. In vitae diam ac augue semper tincidunt eu ut eros. Fusce fringilla erat porttitor lectus cursus, vel sagittis arcu lobortis. Aliquam in enim semper, aliquam massa id, cursus neque. Praesent faucibus semper libero [3].

Conclusion

Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque. Quisque augue sem, tincidunt sit amet feugiat eget, ullamcorper sed velit.

Sed non aliquet felis. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Mauris commodo justo ac dui pretium imperdiet. Sed suscipit iaculis mi at feugiat. Ut neque ipsum, luctus id lacus ut, laoreet scelerisque urna. Phasellus venenatis, tortor nec vestibulum mattis, massa tortor interdum felis, nec pellentesque metus tortor nec nisl.

PLOS 3/4

Ut ornare mauris tellus, vel dapibus arcu suscipit sed. Nam condimentum sem eget mollis euismod. Nullam dui urna, gravida venenatis dui et, tincidunt sodales ex. Nunc est dui, sodales sed mauris nec, auctor sagittis leo. Aliquam tincidunt, ex in facilisis elementum, libero lectus luctus est, non vulputate nisl augue at dolor. For more information, see S1 Appendix.

Supporting information

S1 Fig. Bold the title sentence. Add descriptive text after the title of the item (optional).

67

73

76

S2 Fig. Lorem ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

S1 File. Lorem ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

S1 Video. Lorem ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

S1 Appendix. Lorem ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

S1 Table. Lorem ipsum. Maecenas convallis mauris sit amet sem ultrices gravida. Etiam eget sapien nibh. Sed ac ipsum eget enim egestas ullamcorper nec euismod ligula. Curabitur fringilla pulvinar lectus consectetur pellentesque.

Acknowledgments

Cras egestas velit mauris, eu mollis turpis pellentesque sit amet. Interdum et malesuada fames ac ante ipsum primis in faucibus. Nam id pretium nisi. Sed ac quam id nisi malesuada congue. Sed interdum aliquet augue, at pellentesque quam rhoncus vitae.

References

- 1. Conant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet. 2008 Dec;9(12):938–950.
- 2. Ohno S. Evolution by gene duplication. London: George Alien & Unwin Ltd. Berlin, Heidelberg and New York: Springer-Verlag.; 1970.
- 3. Magwire MM, Bayer F, Webster CL, Cao C, Jiggins FM. Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a Duplication. PLoS Genet. 2011 Oct;7(10):e1002337.

PLOS 4/4