Euklids algoritme	Kinesisk rest toarem	Matematisk induksjon	Sannhetstaboll
37 = 5· <u>7</u> + <u>2</u>	X = a, mod m,	1. Sjekkar om P(1) er sann	F G FAG F G FV6
7 = 2 · 3 + <	X = A2 mod m2 X = Ap mod mp	2. SeHer inn P(K)	
1 = 7 - 3 - 2	M = 100, 100, 100	3. Sotter inn P(K+1) : bermlene	1001
1 = 7 - 3 · (37 - 5.7)	$M_1 = M/m_1$ $M_2 = M/m_2$	41. Plusser på leddet for P(K+1); likningen	0 1 0 0 1 1
1 = 16.7 - 3.37	M ₀ = M/ _{mm}	far P(k)	00000
Fermat's lille Teorem	Decoun god (m, me) =) finnes let en cutodis lusuins for à fine x	S. Regner Set ut og sjokker om summen fra punkt 4 er lik summen fra punkt 3	$PQRP\rightarrow Q(PvR)\rightarrow Q$
p=printall os a=heltall	M = 1 ()	$(0+1)\cdot 2^{0}++(n+1)\cdot 2^{n}=n\cdot 2^{n+1}+1$	
P-primtall os a = notall Da er: ap = a (mod p)	M2: 92 = 1 mod m2 for a func you	1. P(0) = (0+1)·2° = 0·2° +1 [=1 Sant	
Huis p=printall as as {1,2,,p-}	Mayn = mod may	2. $P(k) = (k+1) \cdot 2^{k} = k \cdot 2^{k+1} + 1$	
Ducr: ap1 = 1 (mod p)	$A = \alpha_1 \cdot M_1 \cdot y_1 + \alpha_2 \cdot M_2 \cdot y_2 + \dots + \alpha_n \cdot M_n \cdot y_n$	3. $P(k_1) = (k_1) \cdot 2^{k_1} = (k_1) \cdot 2^{k_2} + 1$	000000
Eksempel: Firm a i $2^{50} \equiv a \pmod{7}$	$X \equiv A \mod M$	4. ++ (k+1)·2 ^K = K·2 ^{K+1} +1	
$2^{50} = 2^{13/2} = (2^{13})^{3} 2^{2}$	7 ~ 71 Whos (1)	$+ \dots + (k+1) 2^{K} + (k+2) \cdot 2^{K+1} = k \cdot 2^{K+1} + +(k+2) \cdot 2^{K+1} $	0000
$2^{50} = (2^{9})^{5} \cdot 2^{4} \text{mod } 17 (v; \text{ vet of } 2^{19-1} = 1 \text{ mod } 17)$		$5. = k2^{k_1} + +(k_{12}) \cdot 2^{k_{11}}$	
$2^{50} \equiv (1)^3 \cdot 4 \mp 4 \mod 7$	RSA - Kroptorius	= K2 ^{k+1} +1+ k2 ^{k+1} +4 ^{k+1}	600 000
2 - 0 1 = 1000 1	$h = (p+1) \cdot (p+1)$	= 2k2 ^{k+1} + 4k ^{k+1} + [
Relasjoner	d = gcd (e,n)	$= 2 \cdot (k_{4}) \cdot 2^{k_{4}} + 1$	Kinesisk vost teorem for 2 kanstvenser
Snakkar om velasjohen R	e-d mod n = 1	$= (k+1) \cdot 2^{k+1+1} + 1$	X = a mod m
Reflaksivitet: (a,a) ER for alle a EA	U MOG N T I	$= (k+1) \cdot 2^{k+2} + $	X = b and b
Symetrisk: (ba) = R <=> (a,b) = R	Rask eksponentiering	Ser at surret stempe overens med	Kray: GCD(m,n)=1
Transitiv: (a,b) eR og (b,c) eR med forer (a,c) ER	1605 ³¹¹ mod 2837	Svarat i punkt 3 og har da barist	Det finnes helfoll was v slik at
Ekvivalens relazion: Rer Refleksiv, Sommetrisk	\(\langle \)	at den stemmer for (k+1) on vi	m·n = 0 mod on n·v = mod m
os transitiv	$1605^2 = 2576025 = 970$ wod 2537	anter at Jen stemmer for p(K)	m. u. = 1 mod n n.v. = 0 mod n
Ant: Symmetrish: (a,b) &R as (b,a) &R, sa a = b	$1605^4 = (1605)^2 = 970^2 = 940900 = 2210 \text{mod } 2537$	aller at see etember for play	Vi finner u os v ved a bruke Euklids Algoritme pà
rrefleksiv en relation mor inputing or related	$ 60 ^9 = (60 ^3)^2 = 220^2 \dots$	Surjakt: Junksjon	VI Timber is 05 is the a proble LUNIAS Algorithme pa
til ses selv	For a lose gayer vi si suame i los	En funksion f: A -B er surjektiv huis	Da kon vi finne C
	for orisinale uttrykk	dat for alle y&B, finnes en x&A slik	c = a.n.v + b.m.a
Ordninser	(1683) (1683) (1683) (1683) (1683) (1685) mod 2537	at f(x)=y.V; sier; sie fall at fer en	X = C modure
Partiell Ordninger:	= 1138-784-1090-2210-970-1605 mod 2537	sunjeksjon og på.	- W-12
En binar relasion på mensden Seren	= 3 463 59335 906 768 0000 mod 2537 = 812 mod 2537	En surjektiv funksjon tæffor alt i	Grafer
partiall ordning hvis don at refleksiv, transitiv		verdi ouraget	hode - huer porikk i en srat
05 anti-squametrisk	Binomialkoeffisient	• — • • • • • • • • • • • • • • • • •	Kant - strek enclose to noder
Total ordning	$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!} \text{"in vely k"}$		eral - antall Kanter Koblot til noden
En partiell ordning R pa en mensde 5	$\binom{n}{K} = \binom{n}{k-K}$		
Kalles en total ordains huis det for alle	$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$	Injektiv funksjon	1 so morti
x os y i S er slik at xRy eller yRx.	$\binom{10}{4} = \frac{0!}{(10-4)! \cdot 4!} = \frac{104 \cdot 13 \cdot 56!}{6! \cdot 4!} = \frac{8040}{24} = 2(0)$	En funksjon fiA->Ber injektiv	La Gay H vone to grafer En isometi fra G til H
	$\begin{pmatrix} 0\rangle \\ 1 \end{pmatrix} = \begin{pmatrix} 0\rangle \\ 6 \end{pmatrix}$	his det for alle elementer xog y i A	er en bijektiv funksjon ffra nødene i G til nodene; H
Hasse Diagram	$\begin{pmatrix} H \\ H \end{pmatrix} = \begin{pmatrix} D \\ D \end{pmatrix} + \begin{pmatrix} A \\ D \end{pmatrix}$	er slik at hvis x ≠ y, si er f(x) ≠ f(y).	som er slik at naboene u og v er naboer; G h.b.h.
Ec. 6, c3		Vi sier i se fall at fer en injeksjon	hodenene f(4) as f(v) or nabour; H.
Englo Engl Engl	ln Klusjon - eksklusjon sprinsippet	Og en-til-en.	
	For to mensocri	Injeksion betyr at to forskiellize dementer	Euler Kots
	1AUB) = 1A) +1B - 1ANB	sendes til to forskjellige alementer:	En Eulerkrets er vier vi otertor og slutter i samme
Ď	For the mension		noce. Kronet or at vi ma ha portall grad pa alle
	AUBOU = AH BHOU - LAND - LANCI - BACH + LANDACI		nodene
De Morson's Law	Ala	Komposisjon av relasjonor	
7(A1B) <=>(7A V1B)	Multiplikasjons prinsippet	R: A->B os S:B->C	Eular of:
7(AVB) <=> (1A 17B)	To hendelson med myn muligheter = mun May n: (m) = m! (mm)!	Sammen satt relasion SOR: A-> C	Nar v: stator os sluttar i forskjellise nodar som
	$M \leq N : \binom{N}{N} = \frac{N! \cdot (N-n)!}{N! \cdot (N-n)!}$	sitt vid	besse har oddetall god.
7 (P->Q) <=> P1 7Q		S.R.= {(a,c) (3 b=B)((a,b) eR 1 (b,c) eS)}	
	Due blags prinsippet		
	Vi her k coker og N objekter, da fins	Binar relasjon	
+++++++++++++++++++++++++++++++++++++++	minut en eake som inneholder minut [N/k]	Binox relation pi A ex volations R: A-7A = A×A	
	Objekter.	Eks: Rebsjoner på [3] = {1,2,5}	
	[3400/8] =425, minst low8 hor our 425	[3] = {(1,1),(2,2),(3,3)} ? ? ? ?	

