SICP 1-13 exercise

Cyril Sadovnik

October 2016

1 Exercise

Prove that Fib(n) is the closest integer to $\frac{\phi^n}{\sqrt{5}}$, where $\phi=\frac{1+\sqrt{5}}{2}$. Hint: let $\psi=\frac{1-\sqrt{5}}{2}$. Use induction and the defenition of the Fibonacci numbers to prove that $Fib(n)=\frac{\phi^n-\psi^n}{\sqrt{5}}$.

2 Solutioin

So we need to prove that Fib(n) is the closest integer to $\frac{\phi^n}{\sqrt{5}}$ by proving that $Fib(n) = \frac{\phi^n - \psi^n}{\sqrt{5}}$ using induction.

2.1 Base step

Let's check the formula for n = 1:

$$Fib(1) = \frac{\phi^1 - \psi^1}{\sqrt{5}}$$

$$1 = \frac{\phi^1 - \psi^1}{\sqrt{5}}$$

$$1 = \frac{\frac{1+\sqrt{5}}{2} - \frac{1-\sqrt{5}}{2}}{\sqrt{5}}$$

$$1 = \frac{\frac{1+\sqrt{5}-1+\sqrt{5}}{2}}{\sqrt{5}}$$

$$1 = \frac{\frac{2\sqrt{5}}{2}}{\sqrt{5}}$$

$$1 = \frac{\sqrt{5}}{\sqrt{5}}$$

$$1 = 1$$

2.2 Induction step

Assuming it works for n = k and n = k - 1, it must work for n = k + 1 also:

$$Fib(k+1) = \frac{\phi^{k+1} - \psi^{k+1}}{\sqrt{5}}$$

By defenition of Fib: Fib(k+1) = Fib(k-1) + Fib(k), so

$$Fib(k+1) = \frac{\phi^{k-1} - \psi^{k-1}}{\sqrt{5}} + \frac{\phi^k - \psi^k}{\sqrt{5}}$$

Let's evaluate the right part of this equation and see what we got.

$$\begin{split} \frac{\phi^{k-1} - \psi^{k-1}}{\sqrt{5}} + \frac{\phi^k - \psi^k}{\sqrt{5}} &= \\ \frac{\phi^{k-1} - \psi^{k-1} + \phi^k - \psi^k}{\sqrt{5}} &= \\ \frac{\phi^{k-1} + \phi^k - \psi^k - \psi^{k-1}}{\sqrt{5}} &= \dots \end{split}$$

Now let's stop for a sec and consider this property of ϕ and ψ :

$$\phi = \frac{1}{\phi} + 1$$

Same is true for ψ .

$$\begin{split} \frac{\phi^{k+1}(\phi^{-2}+\phi^{-1})-\psi^{k+1}(\psi^{-2}+\psi^{-1}))}{\sqrt{5}} &= \\ \frac{\phi^{k+1}\phi^{-1}(\phi^{-1}+1)-\psi^{k+1}\psi^{-1}(\psi^{-1}+1))}{\sqrt{5}} &= \\ \frac{\phi^{k+1}\phi^{-1}(\phi^{-1}+1)-\psi^{k+1}\psi^{-1}(\psi^{-1}+1))}{\sqrt{5}} &= \\ \frac{\phi^{k+1}\phi^{-1}(\frac{1}{\phi}+1)-\psi^{k+1}\psi^{-1}(\frac{1}{\psi}+1))}{\sqrt{5}} &= \end{split}$$

Here comes the fun part. Using the property mentioned above we can now reduce expressions in the brackets:

$$\frac{\phi^{k+1}\phi^{-1}(\phi) - \psi^{k+1}\psi^{-1}(\psi)}{\sqrt{5}} = \frac{\phi^{k+1}\phi^{-1}(\phi) - \psi^{k+1}\psi^{-1}(\psi)}{\sqrt{5}} = \frac{\phi^{k+1} - \psi^{k+1}}{\sqrt{5}}$$

Original hypothesis proof 2.3

Now we can go back to the original hypothesis: Fib(n) is the closest integer to

Now we can go back to the original n, possess $\frac{\phi^n}{\sqrt{5}}$, where $\phi = \frac{1+\sqrt{5}}{2}$. $\frac{\phi^n}{\sqrt{5}}$ differs from $\frac{\phi^n-\psi^n}{\sqrt{5}}$ by $\frac{\psi^n}{\sqrt{5}}$ and always an integer for $n\in N$ so the prof is a matter of proving that $-1/2<\frac{\psi^n}{\sqrt{5}}<1/2$ where $n\in N$.

Let's just analyze $\frac{\psi^n}{\sqrt{5}}$:

It's a descending function and it's maximum value on N (including 0) is approximately 0.4472135955, at x = 0.

quod erat demonstrandum