



# Modélisation d'un projet routier

UB03 : quartier de la gare de Compiègne



## Situation initiale



Structure des flux supérieur à 50 VP/h source: matrice OD + openstreetmap

- Forte demande de transit entre le centre et la rue de Clermont.
- Une demande vers la gare nécessitant un croisement avec la demande de transit.



- Des congestions présentes mais non systématiques au niveau du carrefour central.
- Un retard moyen de 5 min/km.
- Temps de parcours moyen de 300 sec.

#### cheminement piéton

- Congestion au niveau des zones d'attente des passages piétons.
- Conflits d'usages sur certains passages au niveau de la gare.

# Outil pour l'étude

#### données d'entrées :

- matrice OD
- géométrie openstreetmap

#### fonctionnalités :

- cartes de densité
- retard / km
- temps de parcours moyen
- test de sensibilité





# Aménagement projet

Aménagement à l'horizon 2025 : Dénivellation du virage de la rue de Clermont vers le pont Louis XV

#### Hypothèses:

- Faisabilité de l'aménagement
- Pas d'augmentation de la fréquence TC
- Demande similaire en structure et en quantité

#### Grands principes de cet aménagement

- Faciliter le trafic de transit clermont-centre
- Augmenter la surface accessible au cheminement piéton
- Eviter l'installation de feux



géométrie du nouvel aménagement

### Résultats de la simulation

#### Principaux enseignements

- Pas de congestion au niveau de l'aménagement en lui-même.
- Densité qui augmente aux abords de l'aménagement ( gare et rue de Clermont ).
- Un retard par km divisé par six.
- Absence d'attroupement piéton suite à la suppression des feux mais les conflits d'usages au niveau de la gare sont toujours présents.

#### Test de sensibilité de la simulation:

| % demande initial VP    | 100 | 105 | 110 | 120 | 130 |
|-------------------------|-----|-----|-----|-----|-----|
| retard moyen ( sec/km ) | 30  | 40  | 45  | 60  | 1   |
| temps de parcours (sec) | 100 | 110 | 125 | 130 | 1   |

L'aménagement peut accueillir 10 % de VP en plus sans problème et jusqu'à 20 % sans d'autres aménagements , au-delà les conflits piéton / VP sont trop importants.





Analyses des scénarios



## Conclusion





- L'aménagement permet d'améliorer la situation et peut absorber une augmentation de la demande.
- Problématique de faisabilité.
- L'aménagement ne répond pas à la problématique des conflits d'usage entre piétons et VP notamment au niveau de la gare.

#### Piste d'amélioration de l'aménagement

 Aménagement piéton au niveau de la gare et du passage souterrain vers Margny pour limiter les conflits d'usages.

#### Pistes d'amélioration de la simulation

- Effet " arrivé de train" à modéliser, arrivée par vague des piétons au niveau du connecteur de la gare.
- Ajout du rond-point de la rue de Clermont dans le périmètre d'étude

| Question                                              | Notation de formation proposée par Aimsun à l'UTC (UB03) |                   |                  |  |  |
|-------------------------------------------------------|----------------------------------------------------------|-------------------|------------------|--|--|
| Le temps alloué au cours                              |                                                          |                   |                  |  |  |
| (2heures) était :                                     | Insuffisant                                              | Suffisant         | Important        |  |  |
| Le cours de modélisation (20 mai<br>2022) était:      | Pas très utiles                                          | Assez utiles      | Très utiles      |  |  |
| Le temps alloué au projet<br>(2*2heures) était:       | Insuffisant                                              | Suffisant         | Important        |  |  |
| Le temps nécessaire pour réalisé<br>le projet était : | Faible (4h)                                              | Moyen (6h)        | Important (8h)   |  |  |
| Prise en main du logiciel                             | Facile                                                   | Moyen             | Difficile        |  |  |
| Planification d'un aménagement projet                 | Facile                                                   | Moyen             | Difficile        |  |  |
| Analyse des résultats                                 | Facile                                                   | Moyen             | Difficile        |  |  |
| Modélisation des piétons                              | Pas très<br>intéressant                                  | Assez intéressant | Très intéressant |  |  |

intéressant