











Gabriel Lima Jacinto, Lucas Yuki Imamura, Mateus Grellert, Cristina Meinhardt Universidade Federal de Santa Catarina

#### Structure

| Introduction                   | Algorithms                                                                       | Methodology                                                                  | Results                                                   | Conclusion                             |
|--------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------|
| Context<br>The Problem<br>Goal | Multiple Linear Regression Decision Tree Random Forest Support Vector Regression | Evaluation Metrics Scaling Feature Extraction Training flow Model Deployment | Tp <sub>H</sub> L Tp <sub>L</sub> H IINT Sim. v Inf. time | Best & Worst Algorithm<br>Future Works |









## Context















# Algorithms

# Methodology

# Results

Conclusion

## The Problem



- More corner cases must be considered during the electrical characterization
- Machine learning can assist digital design in many levels









Results Introduction Algorithms Methodology Conclusion Goal Regression Task! **CMOS INVERTER** SUPERVISED ALGORITHMS **TARGETS CIRCUIT** Vdd **PREDICTION MACHINE LEARNING**  $Tp_{l}H$ **MODELS** Vin Vout SIMULATION DATA

Multiple Linear Regression

Support Vector Regression

**Decision Trees** 

Random Forest









(temperature, voltage,

process variability...)







 $Tp_{\mu}L$ 

**Energy** 









Conclusion

# Multiple Linear Regression (MLR)



$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$









# Support Vector Regression



$$\hat{y} = w^T x + b$$









**Algorithms** 

#### **Decision Tree**

Introduction



Methodology









#### Random Forest











### Training Flow - Overview

#### I. Simulation











#### Feature Extraction

1000 Monte Carlo transient simulations of 20ns with step of 0.1ns in HSPICE

#### <u>Features</u>

NMOS Vth0

PMOS Vth0 (threshold voltage)

Temperature (-25, 0, 50, 75, 100°C)

Voltage (0.6, 0.7, 0.8, 0.9V)

Width PMOS (70, 140, 280, 350, 420nm)

Width NMOS (70, 140nm)

Length (20, 32, 40nm)



#### **Targets**

High-Low Propagation (Tp\_L) Low-High Propagation (TP, H) Energy









Conclusion

# Data processing (Scaling)

$$x' = rac{x - \min(x)}{\max(x) - \min(x)}$$
 MIN-MAX Scaler









### Algorithms (Cross Validation)

#### Values & Best Hyperparameters

DT - Max Depth: 1, 5, 10, 25, 50 RF - Max Depth: 1, 5, 10, 25, 50

RF - **N Estimators**: 5, 25, 50, 100, 150

|                   | DT - Max Depth | RF - Max Depth | RF - N Estimators |
|-------------------|----------------|----------------|-------------------|
| Tp <sub>H</sub> L | 5              | 5              | 25                |
| Tp <sub>L</sub> H | 10             | 10             | 150               |
| Energy            | 10             | 10             | 150               |

50% Training Set

25% Validation Set

> 25% Test Set









Algorithms

Methodology

$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2}$$

Root Mean Square Error (RMSE)

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y}_{i})^{2}}$$

Coefficient of Determination (R<sup>2</sup>)





Conclusion





#### Training Flow











#### Model Deployment













Algorithms Introduction Methodology **Results** Conclusion

## **Tp<sub>H</sub>L** Prediction

















# Tp, H Prediction











Introduction Algorithms Methodology Conclusion **Results** 

#### **Energy Prediction**

















Single Hspice electrical simulation = 0.069 s

$$DT = 0.0006 s (115 \times)$$

$$RF = 0.0432 s (1.59 \times)$$







Algorithms

Introduction

Results

Conclusion

Best Algorithm

**Random Forest** 

Worst Algorithm

**Multiple Linear Regression** 









Methodology

#### Possible Applications

Foundries can adopt ML to cell characterization and make available the machine learning model trained, protecting the private data of the device models.

#### **Future Works**

Basic gates from a standard cell library

Investigate Neural Networks architectures

Evaluate the dependencies between the ML models and the technology node, considering FinFET devices







#### gabriellimajacinto@gmail.com











### Exploring Machine Learning for Electrical Behavior **Prediction:**

#### The CMOS Inverter Case Study

Gabriel Lima Jacinto, Lucas Yuki Imamura, Mateus Grellert, Cristina Meinhardt Universidade Federal de Santa Catarina

#### **Appendix**

#### Pearson Correlation Coefficients

