

Mechanics of Materials II: Thin-Walled Pressure Vessels and Torsion

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 19 Learning Outcome

 Investigate stresses on inclined planes for the case of pure shear due to torsion

Circular Bar Torsion

2D Pure Shear

Circular Bar Torsion

Mohr's Circle

J

Circular Bar Torsion

2D Pure Shear

Chalk is strong in compression and weak in tension.

Maximum tensile stresses occur on a plane at an angle of 45°.

Therefore, chalk should break on 45° helical surface.

This is typical for any brittle material subject to torsion.

