۳.۲ جلسهی شانزدهم، توابع اسکولمی و اِسْکولِمیزه کردن

فرض کنید که \mathfrak{M} یک L ساختار باشد و A زیرمجموعهای از آن. می دانیم که \mathbb{A} زیرساختار تولیدشده توسط \mathbb{A} مجموعهی متشکل از همهی $t^{\mathfrak{M}}(a_1,\ldots,a_n)$ هاست. این مجموعه، لزوما تولیدشده توسط \mathbb{A} در ساختار نیست؛ برای مثال زیرساخت تولید شده توسط \mathbb{A} در ساختار \mathbb{A} برابر است با \mathbb{A} با این همه، در مثال یادشده، اگر در زبان توابع \mathbb{A} را \mathbb{A} را \mathbb{A} را \mathbb{A} را توابع \mathbb{A} تولیدشده توسط عنصر \mathbb{A} برابر می شد با خود \mathbb{A} برای که مسلما زیرساختی مقدماتی از ساختار یادشده است.

بنا به لمِ تارسکی، اگر $\mathfrak{M}\subseteq\mathfrak{M}$ آنگاه $\mathfrak{M}\prec\mathfrak{M}$ اگروتنهااگر برای هر فرمولِ بدونِ سور $\mathfrak{M}\models\exists x\quad\phi(x,\bar{a})\in L_M$

 $\mathfrak{N} \models \exists x \in M \quad \phi(x, \bar{a}).$

اگر ترمهایی مانند t در زبان داشتیم، چنانکه از

 $\mathfrak{N} \models \exists x \quad \phi(x, \bar{a})$

نتيجه ميشد

$$\mathfrak{N}\models\phi(t(\bar{a}),\bar{a}),$$

آنگاه دو ساختار مورد نظر، لوازم لم تارسکی را می داشتند.

تعریف ۱۶۳ (ویژگی اسکولم): گوئیم در تئوری T توابع اسکولم تعبیه شدهاند ^، هرگاه برای هر فرمولِ $\phi(x, \bar{y})$ ترمِ $\phi(x, \bar{y})$ چنان موجود باشد که

$$T \models \forall \bar{y} \quad (\exists x \quad \phi(x, \bar{y}) \to \phi(t_{\phi}(\bar{y}), \bar{y})).$$

توجه کنید که اگر $|ar{y}|=1$ آنگاه ترم مورد نظر باید یک ثابت باشد؛ یعنی

$$T \models \exists x \phi(x) \to \phi(c_{\phi}).$$

 $^{^{\}wedge}T$ has built-in Skolem functions.

گزاره ۱۶۴: اگر T یک تئوری سازگار در زبانِ L باشد، زبانِ L' شامل L و تئوری T' در آن شامل T چنان موجودند که T' دارای توابع اسکولمی تعبیه شده است.

اثبات. قرار دهید L. او T. و فرض کنید L زبانی باشد که در آن برای هر L فرمول T. و فرض کنید T. و فرض کنید T و اربی باشد که در آن برای هر باشد که در آن برای و باثبات. و باثبات T. و فرض کنید با همه باثبات و باثبات و

$$\forall \bar{y} (\exists x \phi(x, \bar{y}) \to \phi(f_{\phi}(\bar{y}), \bar{y}))$$

که در آن $f_{\phi}(\bar{y})$ ست هری T_{γ} دارای مدل است؛ برای تعبیر تابع T_{γ} کافی است هر T_{γ} تئوری T_{γ} دارای مدل است؛ برای تعبیر تابع T_{γ} کافی است هر از عنصری باز برای می گیریم که از T_{γ} با نمادهای تابعی T_{γ} برای هر T_{γ} برای هر T_{γ} حاصل شده است و فرض می کنیم تئوری از اجتماع T_{γ} با جملات زیر حاصل شده باشد:

$$\forall \bar{y} (\exists x \phi(x, \bar{y}) \to \phi(f_{\phi}(\bar{y}, \bar{y})).$$

برای هر $L_\omega=\bigcup_{i<\omega}L_i$ تئوریِ مورد نظر $T_\omega=\bigcup_{i<\omega}T_i$ در زبانِ $\phi(x,\bar{y})\in L_n$ تئوریِ مورد نظر ماست.

 T_{skolem} اب آن را با میخوانیم و آن را با اسکولمیزهشده T^{-9} میخوانیم و آن را با اسکولمیزه نشان می دهیم.

تمرین ۱۶۶:

- دهید که T_{skolem} سورها را حذف میکند. ۱
- ۲. نشان دهید که به هنگ T_{skolem} همه ی جمله ها دارای معادل عمومیند (معادلی تنها دارای سور عمومی). به طور خاص، این تئوری دارای اصل بندی عمومی است.
- ۳. با استفاده اسکولمیزهسازی، و بدینسان تقلیل منطق مرتبهی اول به منطق گزارهها، اثباتی توپولوژیک برای قضیهی فشردگی ارائه کنید.

فرض کنیم که تئوری T دارای توابع اسکولمی باشد. دیدیم که برای هر مجموعه ی مرتب خطی a_i می توان دنباله ی بازنشناختنی چون $(a_i)_{i\in\omega}$ در مدلی از T یافت. مدل تولیدشده توسط $(a_i)_{i\in\omega}$ ها را با $S_{EM}(a_i|i\in I)$ نشان می دهیم و آن را پوش اسکولمی (یا غلاف اسکولمی) $S_{EM}(a_i|i\in I)$ این دنباله

⁴Skolemization

^{&#}x27;Skolem hull

مىخوانيم. (با توجه به نقش توابع اسكولمي نشان دهيد كه) داريم

$$S_{EM}(a_i|i\in I)\prec\mathfrak{M}$$

و به ویژه

$$S_{EM}(a_i|i\in I)\models T.$$

تمرین ۱۶۷: فرض کنید $f:I\to I$ یک اتومرفیسم ترتیبی باشد. نشان دهید که نگاشت $\hat{f}:S_{EM}(a_i|i\in I)\to S_{EM}(a_i|i\in I)$ با ضابطهی دهید که نگاشت $\hat{f}(t(a_i,\dots,a_{i_n}))=\hat{f}(t(a_{f(i_1)},\dots,a_{f(i_n)}))$