2IA05 Functional Programming

Introduction

This is a summary for the course 2IA05: Functional Programming on the University of Technology Eindhoven. It was taught during semester 2A 2012.

General comments and notation

1.1 Proof by Induction

The Induction Hypothesis is assumed during a proof by Induction and does not necessarily have to be written down.

1.2 Finite lists

The set $\mathcal{L}_n(A)$ are all (finite) lists, with element type A, of length $n, n \geq 0$. Examples/definitions:

```
\begin{array}{lcl} \mathcal{L}_0(A) & = & \{[]\} \\ \mathcal{L}_{n+1}(A) & = & \{a \triangleright s \mid a \in A \land s \in \mathcal{L}_n(A)\} \\ \mathcal{L}_*(A) & = & (\biguplus n : n \ge 0 : \mathcal{L}_n(A)) \end{array}
```

Functions

2.1 "Map": •

The function `map", denoted as ullet, is the function that applies a function f on each element of a list, with a function $f:A\to B$. It is specified as:

$$(f \bullet) : \mathcal{L}_*(A) \to \mathcal{L}_*(B)$$

with

$$(\forall i : 0 \le i < n : (f \bullet s) \cdot i = f \cdot (s \cdot i))$$

for $s \in \mathcal{L}_*(A)$, with #s = n and $\#(f \bullet s) = \#s$. Let's now derive the \bullet -function.

TODO: put the following on the right spot

$$f \bullet [] = []$$

The definition follows from the type of the •-function.

Base

For $a \in A, s \in \mathcal{L}_n(A)$, we have the following base case i=0;

$$\begin{array}{ll} & (f \bullet (a \triangleright s)) \cdot 0 & \mathsf{specification} \bullet \\ = & f \cdot ((a \triangleright s) \cdot 0) & \mathsf{property} \, \triangleright \\ = & f \cdot a & \mathsf{\triangleright-trick} \\ = & (f \cdot a \, \triangleright ?) \cdot 0 \end{array}$$

Chapter 2 Functions

Induction Step

For
$$i:0 \le i < n;$$

$$(f \bullet (a \triangleright s)) \cdot (i+1) \qquad \text{specification} \bullet$$

$$= f \cdot ((a \triangleright s) \cdot (i+1)) \qquad \text{property} \triangleright$$

$$= f \cdot (s \cdot i) \qquad \text{specification} \bullet, \text{I.H}$$

$$= (f \bullet s) \cdot i \qquad \triangleright \text{-trick}$$

$$= (? \triangleright f \bullet s) \cdot (i+1)$$

Result

To get the final result, we can combine the two derived results and fill in the ``Don't cares" (?):

$$\begin{array}{ll} \text{specification } f \bullet & \text{Combination} \\ \Leftarrow & (\forall i: 0 \leq i < n+1: \\ & (f \bullet (a \triangleright s)) \cdot i = \\ & (f \cdot a \triangleright f \bullet s) \cdot i) \\ \Leftarrow & f \bullet (a \triangleright s) = (f \cdot a) \triangleright f \bullet s \end{array}$$
 Leibniz (extensionality

Thus, the definition of ``•" is:

$$f \bullet [] = []$$

 $f \bullet (a \triangleright s) = f \cdot a \triangleright f \bullet s$

Lemma's Used

$$\begin{array}{rcl} (a \triangleright s) \cdot 0 & = & a \\ (a \triangleright s) \cdot (i+1) & = & s \cdot i, i \geq 0 \end{array}$$

2.2 "Reverse": rev

The function rev reverses the order of all elements in a list. The type of rev is

Chapter 2 Functions

$$\mathcal{L}_n(A) \to \mathcal{L}_n(a) \qquad n \ge 0$$

with specification

$$(\forall i: 0 \le i \le n: rev \cdot s \cdot i = s \cdot (n-i))$$

for all $s \in \mathcal{L}_{n+1}(A)$.

We can now derive the definition of rev, by using Induction. From the type of rev it follows that:

$$rev \cdot [] = []$$

Base

$$rev \cdot (a \triangleright s) \cdot n$$
 specification rev

$$= (a \triangleright s) \cdot 0$$
 property \triangleright

$$= a \qquad \qquad \triangleright \text{-trick}$$

$$= [a] \cdot 0 \qquad \text{property } ++ ; \text{assume} + t = n$$

$$= (t + [a]) \cdot n$$

As we start counting at 0, this is correct.

Step

For $s \in \mathcal{L}_N(A)$ and $a \in A$.

$$rev \cdot (a \triangleright s) \cdot i$$
 specification rev

$$= (a \triangleright s) \cdot (n-i)$$
 assume $i < n$, property \triangleright

$$= s \cdot (n-1-i)$$
 Ind. Hypothesis, specification rev

$$= rev \cdot s \cdot i$$
 $textrmproperty ++$

Chapter 2 Functions

 $= (rev \cdot s ++?) \cdot i$

Result

We can now combine the results from the Complete Induction derivation to form the definition of rev:

$$\begin{array}{lll} rev \cdot [] & = & [] \\ rev \cdot (a \triangleright s) & = & rev \cdot s ++ [a] \\ rev \cdot s & = & s \cdot n \triangleright rev \cdot (s \lceil n) \end{array}$$

This solution runs in $O(n^2)$ time complexity. This can be improved by using a general function that has an accumulator list in which the answer is built. See Section

Generalisation by Abstraction

3.1 "Reverse" *grev*

The function grev is a generalized version of function rev (as defined in Section). It uses an extra parameter $t \in \mathcal{L}_n(A)$ in which the result list is built. We specify grev as follows:

$$grev \cdot t \cdot s = rev \cdot + t$$

Use:

$$rev \cdot s = grev \cdot [] \cdot s$$

Base case

$$grev \cdot t \cdot []$$
 specification $grev$
 $= rev \cdot [] + t$ property rev
 $= [] + t$ property $+ t$
 $= t$

Induction step

$$grev \cdot t \cdot (a \triangleright s)$$
 specification $grev$
= $rev \cdot (a \triangleright s) + t$ property rev
=

Divide and Conquer