

Azure Machine Learning & Databricks: friends or foe?

Wenesday, the 1st of june, 2022

Award Categories
Al, Data Platform

First year awarded: 2018

Number of MVP Awards:

4

Speaker: Paul PETON

- Manager Analytics & Data Science @AVANADE Nantes
 - We are hiring
- Microsoft MVP Data Platform & Al since 2018
- Specialised in the industrialisation of ML models on Azure
- Blog: https://methodidacte.org
- LinkedIn: https://www.linkedin.com/in/paul-peton-datascience/
- Twitter : @paulpeton

I can do everything with only one tool

In French:

"touche à tout, bon à rien"

In English:

"all-purpose, no-purpose"

Agenda: the right tool at the right place

- « Ops » for Machine Learning
- DEMO : a taxi story...
- Azure ML + Databricks
- MLOps stack
- Azure ML + Synapse Analytics ?
- #finops : do it cheaper

A definition of « Ops » for Machine Learning

Automatisation

Continuous X

Versioning

Testing

Reproductibilité

Monitoring

"End to End": from raw data to predictive use of the model

Test developments as much as possible: unit tests, non-regression tests, etc.

Deploy versioned developments in a continuous and automated way

Monitor:

- storage / calculation / exposure resources
- serving: response time AND response "quality

React to drifts: data drift, concept drift, etc.

Azure Machine Learning in a few words

- Portal for
 - Citizen Data Scientists
 - no code, autoML, data labelling
 - Data Engineers
 - code + logs
- MLOps tool
 - From dev to production
 - Store, compute, versioning, expose

Azure Databricks in a few words

- Available on the three major public clouds : AWS, Azure, GCP
- Product vision: « unified analytics platform »
- Define the « Lakehouse » approach
- Integrate the Open Source tool MLFlow
- Partnership with the tool dbt

- Open Source languages (Scala, Python, R) and SQL
- Ability to 'scale out' with the power of Spark, a distributed computing engine

A taxi story...

- Yellow Taxi dataset
- Data from 2018 to march 2022
 - Web site
 - Monthly Parquet files
- Stored in a Azure Data Lake gen2
- 252 094 475 rows
- Objective :
 - Load the dataset in memory
 - Train a model of "fare_amount"
 - Register the model
 - Prediction in batch or real-time

First try: notebook in Azure ML

=	Répertoire par défaut > centralizedaml > Data > yellow_taxi_parquet
S Répertoire par défaut	yellow_taxi_parquet Version 1 (latest) V
+ New	Details Consume Explore Models
Author	New version ✓ Congress New Profile Quantum Unregister
■ Notebooks	Samula usaga D
🖧 Automated ML	Sample usage [h
R Designer	<pre># azureml-core of version 1.0.72 or higher is required # azureml-dataprep[pandas] of version 1.1.34 or higher is required</pre>
Assets	from azureml.core import Workspace, Dataset
Data	subscription_id = 'f80606e5-788f-4dc3-a9ea-2eb9a7836082'
∐ Jobs	resource_group = 'rg-centralized-registry'
	workspace_name = 'centralizedaml'
Pipelines	<pre>workspace = Workspace(subscription_id, resource_group, workspace_name)</pre>
☐ Environments	<pre>dataset = Dataset get_by_name(workspace, name='yellow_taxi_parquet')</pre>
Models	dataset.to_pandas_dataframe()
-	
♠ Endpoints	

pandas provides data structures for in-memory analytics

Scale up: the only option?

Instance	vCPU	RAM (GiB)	Temporary storage (GiB)	Pay as you go (\$)
DS1 v2	1	3,5	7	91,98
DS2 v2	2	7	14	183,96
DS3 v2	4	14	28	367,92
DS4 v2	8	28	56	735,84
DS5 v2	16	56	112	1471,68

And what about a compute target?

Define a compute cluster in Azure ML and run code remotely

VM size : Standard_DS3_v2

Maximum number of nodes: 4

Run error

Can't distribute Pandas dataframe

We need a Spark context!

Going to Azure Databricks...

Start a Databricks cluster, authenticate to Azure ML workspace

VM size : Standard_DS3_v2

1 worker and 1 driver node

dataset.to_spark_dataframe()

Should work with Scala 2.11, issue on Scala 2.12

⊕java.lang.NoSuchMethodError: okhttp3.HttpUrl.get(Ljava/lang/String;)Lokhttp3/HttpUrl;

Can't read data from Datastore

Forget about Azure ML Datasets!

... trying to distribute ML training

Try with Scikit-Learn which needs a Numpy Array

Same issue as Pandas dataframe

We need to use Spark libraries

⊕org.apache.spark.SparkException: Job aborted due to stage failure: Task 7 in stage 12.0 failed 4 times, most recent failure: Lost task 7.3 in stage 12.0 (TID 82) (10.139.64.6 executor 0): java.lang.U nsupportedOperationException: org.apache.parquet.column.values.dictionary.PlainValuesDictionary\$PlainDoubleDictionary

MLLib is obsolete

Spark ML could be an option

And what about SynapseML?

Let's see this wonderful library!

Synapse Machine Learning library

SynapseML (previously MMLSpark) is an **open source library** to simplify the creation of scalable machine learning pipelines. SynapseML builds **on Apache Spark and SparkML** to enable new kinds of machine learning, analytics, and model deployment workflows.

SynapseML adds many deep learning and data science tools to the Spark ecosystem, including **seamless integration of Spark Machine Learning pipelines** with :

Open Neural Network Exchange (ONNX)

LightGBM

The Cognitive Services

Vowpal Wabbit

OpenCV.

Install lil	brary						×
Library Sour	ce						
Upload	DBFS/ADLS	PyPI	Maven	CRAN	Workspace		
Repository (pptional	soft.azure:synaps				Search Pa	ackages	
						Cancel	Install

SynapseML requires Scala 2.12, Spark 3.2+, and Python 3.6+.

<u>LightGBM</u> is an open-source, distributed, high-performance gradient boosting (GBDT, GBRT, GBM, or MART) framework. LightGBM is part of Microsoft's <u>DMTK</u> project.

Advantages:

- Composability: can be incorporated into existing SparkML Pipelines
- Performance: 10-30% faster than SparkML
- Functionality: wide array of tunable parameters
- Cross platform: available on Spark, PySpark, and SparklyR

Usages:

- Classifier
- Regressor including quantile regression
- Ranker

ONNX, what's that ?!?

- Open Neural Network Exchange
- ONNX is an open format built to represent Machine Learning models
 - Community project
 - Interoperability
 - Pre-trained models
 - https://github.com/onnx/models

- Converting to ONNX format
 - http://onnx.ai/sklearn-onnx/index.html

Azure Databricks limitations

- MLFlow is too much integrated in the Databricks workspace
 - We don't need a registry per environment
 - Stages of a model can't be inside a workspace
 - We need an external registry
- Serving
 - without monitoring
 - without advanced authentication
 - without configuration fine tuning
 - with DBU cost

Registered Models > dev_model		
dev_model		
Details Serving		
Status: • Pending - Stop		Cluster: mlflow-model-dev_model ②
Model Versions Model Events	Cluster Settings	
Cluster Settings		
Change the configuration of the cluster used in	serving this endpoint.	
Instance Type		
Standard_F4 8.0 GB Memory, 4 Core	25	V

Some conclusions

- At scale or in production, don't use every feature of Azure ML
 - Forget about Datastore and Dataset
 Use Delta format in the Data Lake
 - Just explore data inside notebooks on compute instance
 Don't forget refactoring and packaging of the code
 - Forget about compute cluster
 Can't really distribute the code
 - Don't create an Azure ML workspace per environment
- In a « MLOps stack », Azure ML must be « central »
 - Logs of experiments
 - Model Tracking
 - Model Registry
 - Serving: deploy predictive endpoints

Let's talk about MLOps stack

What do we need to version in MLOps?

Classical development project

{infra as code, app code, CI/CD code} + last data

Machine Learning project

{data, code, model+requirements, container}

MLOps: what we need to version

```
{ (raw / clean) data,
   ML code + tests,
       model + requirements,
           CI/CD code,
               container}
```


ML-Ops.org - principles

created by Dr. Larysa Visen2geriyeva, Anja Kammer, Isabel Bär, Alexander Kniesz, and Michael Plöd (DDD Advisor)

- The three main « pipelines »:
 - Data Engineering Pipeline
 - Machine Learning Pipeline / Workflow
 - Model Serving
- The concept of « registry »:
 - Storage adapted to the type of deliverable
 - Code
 - Binary (pickle, H5, etc.)
 - Docker image
 - etc.
 - Allows versioning of objects
 - Ensures reproducibility

Our version of MLOps Stack template

Pipeline

Registry

Monitoring

Our MLOps Stack on Microsoft Azure

Pipeline

Registry

Monitoring

Code

In a multiple environments context

Production

Pipeline

User Acceptance Tests

Development

Azure ML + Databricks

- 1. Authentication
- 2. MLFlow tracking URI
- 3. Attached compute

How to authenticate with a SPN

```
from azureml.core.authentication import ServicePrincipalAuthentication
tenant_id = '8
service_principal_id = '
subscription_id = 'f
resource_group = 'rg-centralized-registry'
workspace_name = 'centralizedaml'
svc_pr = ServicePrincipalAuthentication(
   tenant_id=tenant_id,
   service_principal_id=service_principal_id,
   service_principal_password=svc_pr_password)
ws = Workspace(
   subscription_id=subscription_id,
   resource_group=resource_group,
   workspace_name=workspace_name,
   auth=svc_pr
print("Found workspace {} at location {}".format(ws.name, ws.location))
```


MLFlow: specify the tracking URI

Databricks: link Azure ML workspace

Use the tracking URI of Azure ML

Tracking URI: Azure ML

experiment_name = 'Yellow_Taxi_fromDBX_experiment'
mlflow.set_experiment(experiment_name)

2022/05/31 11:36:27 INFO mlflow.tracking.fluent: Experiment with name 'Yellow_Taxi_fromDBX_experiment' does not exist. Creating a new experiment.

Out[182]: <Experiment: artifact_location='', experiment_id='d140cd27-08d8-4638-ab62-bf60ca444378', lifecycle_stage='active', name='Yellow_Taxi_fromDBX_experiment', tags={}>

Command took 1.04 seconds -- by paul.peton@live.fr at 31/05/2022, 13:36:27 on cluster-dev

Attach your compute target and manage your platform using Azure Machine Learning

Bring your own compute like an HDInsight cluster, a Virtual Machine, or a Databricks cluster to use as a compute target with your Azure Machine Learning workspace. Learn more

Compute name * ①	•
Subscription *	
Microsoft Azure Sponsorship	~
© Refresh subscriptions Databricks workspace *	
Search or select an Azure Databricks workspace	~
*) Refresh Databricks workspaces	
Databricks access token * (i)	

Launch a Pipeline step on Databricks

```
Répertoire par défaut > centralizedaml > Compute >
Sépertoire par défaut
             from azureml.core.compute import DatabricksCompute
from azureml.pipeline.steps import DatabricksStep
Notebooks
Automated ML
             databricks compute = DatabricksCompute(workspace=ws, name="databricks-prod")
A Designer
             db cluster id = "0530-190209-eievpfbj"
Data
             notebook path = os.getenv("DATABRICKS NOTEBOOK PATH", "/Shared/hello")
A Jobs
H Components
Pipelines
             dbNbStep = DatabricksStep(
Environments

    Models

                    name="DBXNotebookInWS",
Endpoints
                                                                        steps = [dbNbStep]
                    existing cluster id=db cluster id,
 Manage
Compute
                    num workers=4,
                                                                       from azureml.pipeline.core import Pipeline
Datastores
                    notebook path=notebook path,
Linked Services
Data Labeling
                    run name='DBX notebook run',
                                                                       pipeline = Pipeline(workspace = ws, steps = [steps])
                                                                       print('Pipeline is built')
                    compute target=databricks compute,
                                                                        pipeline.validate()
                                                                       print('Pipeline validation complete')
                    allow reuse=False
                                                                       pipeline run = exp.submit(pipeline)
                                                                       print('Pipeline is submitted for execution')
                                                                        pipeline run.wait for completion(show output = False)
```


And what about Synapse Analytics + Azure ML?

Azure Synapse Analytics in a few words

The data toolbox **Unified experience** for data project on Azure

Azure Synapse brings together the best of **SQL** technologies used in data warehousing:

Spark technologies used for big data

Pipelines for data integration and ETL/ELT

deep integration with other Azure services such as Power BI, CosmosDB, and AzureML.

Use ONNX model in Synapse

- Dedicated SQL pool expects a **pre-trained** model
 - only supports **ONNX** format models
 - The scoring data needs to be in the same format as the training data
 - Make sure that the names and data types of the model inputs match the column names and data types of the new prediction data.
- The model is stored in a dedicated SQL pool user table as a **hexadecimal string**.
- Use the T-SQL PREDICT function to score the model

Machine Learning workflow in Synapse Analytics

Linked services: from Synapse to Azure ML

SQL Pool: enrich table with ML model

SQL Pool: Enrich table with existing model

Script: stored procedure

Table for model storage

T-SQL PREDICT function

The main differences

Dedicated to Machine Learning

- By and for Data Scientists
 - Explore on compute instances
 - Simple batch ou real time scenarios
- Guided for the industrialization of their models and pipelines
 - Data versioning (?)
 - Model versioning
 - Web service

Dedicated to Big Data Science

- Work with big volume
- Version data with Delta format
- Use Spark to benefit of "scale out" power

The main differences

Dedicated to Machine Learning

- By and for Data Scientists
 - Explore on compute instances
 - Simple batch ou real time scenarios
- Guided for the industrialization of their models and pipelines
 - Data versioning (?)
 - Model versioning
 - Web service

Dedicated to Data Engineering

- Data preparation : ETL / ELT
- Orchestration
- Dedicated SQL pool for table storage
- Serverless SQL pool for exploration

- Azure Machine Learning
 - Schedule stop on compute instances
 - Use compte cluster only for hyperparameter tuning or autoML
- Azure Databricks
 - Use Spot VM
 - Use Databricks Jobs instead of Databricks interactive clusters
- Azure Synapse Analytics
 - Use serverless SQL Pool to explore files with SQL