EXERCICE 1A.1

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 3 \times 2^n$

- **a.** Calculer u_1 ; u_2 et u_3 .
- **b.** Exprimer u_{n+1} en fonction de n.
- **c.** Démontrer que (u_n) est une suite géométrique dont on précisera le premier terme u_0 et la raison.

EXERCICE 1A.2

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = -3\left(\frac{1}{2}\right)^n$

- **a.** Calculer u_1 ; u_2 et u_3 .
- **b.** Exprimer u_{n+1} en fonction de n.
- **c.** Démontrer que (u_n) est une suite géométrique dont on précisera le premier terme u_0 et la raison.

EXERCICE 1A.3

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = -5 \times (-1)^n$

- **a.** Calculer u₁; u₂ et u₃.
- **b.** Exprimer u_{n+1} en fonction de n.
- **c.** Démontrer que (u_n) est une suite géométrique dont on précisera le premier terme u_0 et la raison.

EXERCICE 1A.4

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = n^2$

(u_n) est-elle une suite géométrique ?

EXERCICE 1A.5

On considère la suite (u_n) définie pour tout entier naturel n par $u_n = 7^n$

(u_n) est-elle une suite géométrique ?

EXERCICE 1A.6

On considère la suite (u_n) définie pour tout entier naturel n par u_n = $3 \times \left(\frac{-5}{2}\right)^n$

(u_n) est-elle une suite géométrique?

Dans tous les exercices qui suivent, (u_n) est une suite géomtrique de raison q.

On rappelle la formule : $[u_n = u_0, q^n]$

EXERCICE 1A.7

- **a.** On donne $u_0 = -1$ et q = 2.
 - \rightarrow Calculer \mathbf{u}_7 .
- **b.** On donne $u_0 = 7$ et $q = \frac{1}{2}$.
 - \rightarrow Calculer u_5 .
- **c.** On donne $u_0 = 243$ et $q = \frac{-1}{3}$.
 - → Calculer u₅.

EXERCICE 1A.8

- **a.** On donne $u_3 = 2$ et q = 3.
 - \rightarrow Calculer u_{δ} .
- **b.** On donne $u_5 = 2$ et q = -5.
 - \rightarrow Calculer u_{0} .
- **c.** On donne $u_3 = 0.01$ et q = -10.
 - → Calculer u₇.
- **d.** On donne $u_8 = 512$ et q = 2.
 - → Calculer u₃.
- **e.** On donne $u_2 = \frac{3}{4}$ et $q = \frac{2}{3}$.
 - → Calculer u₅.

EXERCICE 1A.9

- **a.** On donne $u_2 = 17$ et $u_3 = 51$
 - \rightarrow Calculer q puis u_5 .
- **b.** On donne $u_1 = 7$ et $u_3 = 112$
 - \rightarrow Calculer q puis u_6 .
- **c.** On donne $u_7 = 11$ et $u_{10} = 3773$
 - \rightarrow Calculer q puis u_{12} .
- **d.** On donne $u_5 = 41$ et $u_9 = 25 625$
 - \rightarrow Calculer q puis u_{10} .
- **e.** On donne $u_4 = 256$ et $u_{15} = 0,125$
 - \rightarrow Calculer q puis u_{l8} .

EXERCICE 1A.10

- **a.** Soit (u_n) est la suite géométrique :
 - de premier terme $u_0 = -3$
 - de raison q = 2.
 - \rightarrow Calculer $u_0 + u_1 + ... + u_{10}$.
- **b.** Soit (u_n) est la suite géométrique :
 - de premier terme $u_1 = 64$
 - de raison q = 0.5.
 - \rightarrow Calculer $u_1 + ... + u_{12}$.
- **c.** Soit (u_n) est la suite géométrique :
 - de premier terme $u_5 = 5$
 - de raison q = 0.9.
 - \rightarrow Calculer $u_5 + u_6 + ... + u_{20}$.

EXERCICE 1A.11

Un nageur s'apprête à traverser la manche, soit une distance de 21 km.

Pendant de la première heure, il parcourt 2,1 km. Mais à cause de la fatigue, à chaque heure il ne nage que 90% de la distance nagée pendant l'heure précédente.

- **1. a.** Déterminer un suite géométrique u_n de premier terme $u_1 = 2,1$ dont chaque terme correspond à la distance nagée pendant la $n^{\text{ème}}$ heure.
 - **b.** Déterminer u₂, u₅ et u₁₀.
- 2. Quelle est la distance parcourue...
 - **a.** ... en 10 heures ?
 - **b.** ... en 20 heures ?
 - **c.** ... en 100 heures ?