

Quantifying the Gain in Weak-to-Strong Generalization

Neurips 2024 Moses Charikar, Chirag Pabbaraju, Kirankumar Shiragur

Overview

Main Question: weak-to-strong model > weak model?

Intuition: Gain in weak-to-strong generalization \approx Misfit between the weak and strong model

Problem Setup

- Data domain: \mathbb{R}^d
- Ground-truth representation function $h^* : \mathbb{R}^d \to \mathbb{R}^{d^*}$
- Target finetuning task: $f^* \circ h^*$
- Strong model $f_s \circ h_s$
 - Function class of the representation function $\mathcal{H}_s: \mathbb{R}^d \to \mathbb{R}^{d_s}$
 - Function class: $\mathcal{F}_s : \mathbb{R}^{d_s} \to \mathbb{R}$; assume that \mathcal{F}_s is a *convex* set.
- Weak model $f_w \circ h_w$
 - Function class of the representation function $\mathcal{H}_w: \mathbb{R}^d o \mathbb{R}^{d_w}$
- Distance between functions in \mathcal{P} : $d_{\mathcal{P}}(f,g) = \mathbb{E}_{x \sim \mathcal{P}}(f(x) g(x))^2$

W2S Generalization under Realizability

Theorem 1 (Realizability)

Let $f_w \circ h_w$ be the function learnt by the weak model for some arbitrary function $f_w : \mathbb{R}^{d_w} \in \mathbb{R}$. Define an weak-to-strong model f_{sw} as

$$f_{sw} = \arg\min_{f \in \mathcal{F}_s} d_{\mathcal{P}}(f \circ h_s, f_w \circ h_w).$$

Assume that there exists $f_s \in \mathcal{F}_s$ such that $f_s \circ h_s = f^* \circ h^*$ (realizable). Then, we have

$$d_{\mathcal{P}}(f_{sw} \circ h_s, f^* \circ h^*) \leq d_{\mathcal{P}}(f_w \circ h_w, f^* \circ h^*) - d_{\mathcal{P}}(f_{sw} \circ h_s, f_w \circ h_w).$$

Meaning of Theorem 1: W2S model improves weak model by an amount equal to the *misfit*. **Proof sketch.** $V_s := \{ f \circ h_s : f \in \mathcal{F}_s \}$ is also a convex set.

- A: $d_{\mathcal{P}}(f_{sw} \circ h_s, f^* \circ h^*)$: first term
- B: $d_{\mathcal{P}}(f_{sw} \circ h_s, f_w \circ h_w)$: third term
- C: $d_{\mathcal{P}}(f_w \circ h_w, f^* \circ h^*)$: second term

Pythagorean theorem onto a convex set: $C \ge A + B$

W2S Generalization under Non-Realizability

Theorem 2 (Non-Realizability and Finite Samples)

For a convex set of functions \mathcal{F}_s , define f_s as

$$f_s = \operatorname*{arg\,min}_{f \in \mathcal{F}_s} d_{\mathcal{P}}(f \circ h_s, f^* \circ h^*),$$

and $\epsilon := d_{\mathcal{P}}(f_s, h_s, f^*, h^*)$ (Non-realizability). Suppose we obtain n i.i.d. samples from the weak model; $\{(x_i, y_i)\}_{i=1}^n$, where $x_i \sim \mathcal{P}$ and $y_i = f_w \circ h_w(x_i)$. Define \hat{f}_{sw} as

$$\hat{f}_{sw} = \operatorname*{arg\,min}_{f \in \mathcal{F}_s} \frac{1}{n} \sum_{i=1}^n (f \circ h_s(x_i) - y_i)^2. \quad \text{(Finite Sample)}$$

Assume that the range of f^* , f_w and all functions in \mathcal{F} is absolutely bounded. Then,we have that with probability at least $1-\delta$,

$$d_{\mathcal{P}}(\hat{f}_{sw} \circ h_s, f^* \circ h^*) \le d_{\mathcal{P}}(f_w \circ h_w, f^* \circ h^*) - d_{\mathcal{P}}(\hat{f}_{sw} \circ h_s, f_w \circ h_w)$$

$$+ O(\sqrt{\epsilon}) + O\left(\frac{\mathcal{C}_{\mathcal{F}_s}}{n}\right)^{1/4} + O\left(\frac{\log(1/\delta)}{n}\right)^{1/4},$$

where $\mathcal{C}_{\mathcal{F}_s}$ is the complexity of the function class \mathcal{F}_s .

Proof of Theorem 2

Goal: $F + O(\cdot) \ge G + I$

- $F: d_{\mathcal{P}}(f_w \circ h_w, f^* \circ h^*)$: second term
- $G: d_{\mathcal{P}}(\hat{f}_{sw} \circ h_s, f^* \circ h^*)$: first term
- $I: d_{\mathcal{P}}(\hat{f}_{sw} \circ h_s, f_w \circ h_w)$: third term

Proof sketch.

- $F: \sqrt{C} \le \sqrt{D} + \sqrt{F} \to \text{Triangle inequality}$
- $G: \sqrt{G} \le \sqrt{E} + \sqrt{H} \to \text{Triangle inequality}$

■
$$I: I \leq B + O\left(\sqrt{\frac{C_{\mathcal{F}_s}}{n}}\right) + O\left(\sqrt{\frac{\log(1/\delta)}{n}}\right) \to \text{Lemma } 4$$

- \blacksquare C, D, E, H, B
 - $\blacksquare \ D = \epsilon$
 - $C > A + B \rightarrow \text{Theorem } 1$
 - $I > H + B \rightarrow$ Theorem 1
 - $\sqrt{E} \le \sqrt{A} + \sqrt{D} \rightarrow$ Triangle inequality

Synthetic Experiment

Experimental Setup

- Target data representation $h^*: \mathbb{R}^8 \to \mathbb{R}^{16}$; randomly initialized **5-layer** MLP with ReLU activations, with input dimension 8 and hidden layer dimension 16.
- Function space of strong(weak) model $\mathcal{F}_s : \mathbb{R}^{16} \to \mathbb{R}$: the class of <u>linear functions</u>
- Data distribution $\mathcal{P} = \mathcal{N}(0, \sigma^2 \mathbf{I}), \sigma = 500.$

Representation Learning

- Pretraining: Obtain representation via training
 - 1. Randomly sample T finetuning tasks $f^{(1)} \dots, f^{(t)} \in \mathcal{F}_s$.
 - 2. Generate data $\{x_j^{(t)}, y_j^{(t)}\}_{j=1}^{N_r}$, where $x_j^{(t)} \sim \mathcal{P}$ and $y_j^{(t)} = f^{(t)} \circ h^*(x_j^{(t)})$.
 - 3. Obtain h_w , h_s as

$$h_k = \underset{h \in \mathcal{H}_k}{\arg\min} \frac{1}{TN_r} \sum_{t=1}^T \sum_{j=1}^{N_r} (f^{(t)} \circ h(x_j^{(t)}) - y_j^{(t)})^2, \quad (T = 10, N_r = 2000)$$

where \mathcal{H}_w and \mathcal{H}_s be the classes of **2-layer** and **8-layer** neural networks, respectively.

4. Realizable setting: $h_s = h^*$.

Synthetic Experiment

- <u>Perturbations</u>: Obtain representation via direct perturbations
 - h_w , h_s : perturb every parameter in h^* by independent noise $\mathcal{N}(0, \sigma_w^2)$, $\mathcal{N}(0, \sigma_s^2)$.
 - $\sigma_s < \sigma_w$: h_s is closer approximation of h^* than h_w .

Weak Model Finetuning: Fixed h_w and h_s , find f_w

- 1. Randomly sample M new finetuning tasks $f^{(1)}, \ldots, f^{(M)} \in \mathcal{F}_s$.
- 2. Generate data $\{x_j^{(i)}, y_j^{(i)}\}_{j=1}^{N_f}$, where $x_j^{(i)} \sim \mathcal{P}$ and $y_j^{(i)} = f^{(i)} \circ h^*(x_j^{(i)})$.
- 3. Obtain weak model $f_w^{(i)}$ as

$$f_w^{(i)} = \underset{f \in \mathcal{F}_s}{\arg\min} \frac{1}{N_f} \sum_{j=1}^{N_f} (f \circ h_w(x_j^{(i)}) - y_j^{(i)})^2, \quad (M = 100, N_f = 2000)$$

Weak-to-Strong Supervision: Train strong model from weakly labeled data

- 1. For each $i \in [M]$, generate data $\{\tilde{x}_j^{(i)}, \tilde{y}_j^{(i)}\}_{j=1}^{N_f}$, where $\tilde{x}_j^{(i)} \sim \mathcal{P}$ and $\tilde{y}_j^{(i)} = f_w^{(i)} \circ h_w(\tilde{x}_j^{(i)})$.
- 2. Obtain weak-to-strong model as

$$f_{sw}^{(i)} = \arg\min_{f \in \mathcal{F}_s} \frac{1}{N_f} \sum_{j=1}^{N_f} (f \circ h_s(\tilde{x}_j^{(i)}) - \tilde{y}_j^{(i)})^2$$

Synthetic Experiment

Evaluation

- $d_{\mathcal{P}}(f_{sw}^{(i)} \circ h_s, f^{(i)} \circ h^*)$: error of the weak-to-strong model on the true finetuning task
- $d_{\mathcal{P}}(f_w^{(i)} \circ h_w, f^{(i)} \circ h^*)$: error of the weak model on the true finetuning task
- $d_{\mathcal{P}}(f_{sw}^{(i)} \circ h_s, f_w^{(i)} \circ h_w)$: misfit error of the w2s model on the weakly label data

Results

- (a) Realizable (pretraining).
- (b) Non-realizable (pretraining).
- (c) Non-realizable (perturbation).

x-axis: $d_{\mathcal{P}}(f_{sw}^{(i)} \circ h_s, f_w^{(i)} \circ h_w)$, y-axis: $d_{\mathcal{P}}(f_w^{(i)} \circ h_w, f_w^{(i)} \circ h^*) - d_{\mathcal{P}}(f_{sw}^{(i)} \circ h_s, f_w^{(i)} \circ h^*)$

Gain of the weak-to-strong supervision \approx misfit error of the weak-to-strong model!

Real Experiments

Experimental Setup

- Three regression datasets: ESOL, FreeSolv and Liplop from MolBERT[1].
- Strong representation h_s : Pretrained BERT (hidden dimension 768, 12 layers, 12 attention heads) on GuacaMol dataset.
- Weak representation h_w : Transformers with 2 layers and 2 attention heads with hidden dimension $\{8, 12, 16, 32, 48, 64, 96\}$.

Results

Gain of the weak-to-strong supervision \approx misfit error of the weak-to-strong model!

Real Experiments

Hidden dimension	Weak error - Misfit	True error of weakly-supervised strong model
96	0.8969 ± 0.0327	1.0713 ± 0.0489
48	0.9731 ± 0.0707	1.1293 ± 0.0418
24	1.0331 ± 0.0449	1.1204 ± 0.0261
64	1.0619 ± 0.0441	1.1436 ± 0.0124
32	1.0624 ± 0.0527	1.1302 ± 0.0220
16	1.1456 ± 0.0276	1.1950 ± 0.0484
12	1.1499 ± 0.0177	1.1869 ± 0.0297
8	1.1958 ± 0.0194	1.2396 ± 0.0310

Strong-to-Weak Generalization

- (a) Non-realizable (pretraining).
 h*: 5-layer MLP, h_w: 8-layer MLP, h_s: 2-layer MLP.
- (b) Non-realizable (perturbation). $h_w = h^* + \mathcal{N}(0, 0.01^2), h_s = h^* + \mathcal{N}(0, 0.05^2). h^*$ is 5-layer MLP.
- erturbation). (c) Non-realizable (pretraining). 1^2), $h_s = h^*$ h^* : 5-layer MLP, h_w : 2-layer MLP, 5-layer MLP. h_s : 8-layer MLP. T = 5, $N_r = 250$.
- Reverse the weak and strong models \rightarrow flipped figures in (a) and (b).
- Low sample regime \rightarrow weak model learns a better representation \rightarrow flipped figure in (c).

Summary

Goal: Quantify the gain of the weak-to-strong model

Theorem 1 and Theorem 2

■ Gain of the weak-to-strong supervision \geq misfit error of the weak-to-strong model

Synthetic Experiment

- Representation function: h^* : 5 Layer, h_w : 2 layer, h_s : 8 layer MLP
- Function space \mathcal{F}_s : set of linear function
- Three stages of experiment
 - 1. Representation learning: pretraining (true target), perturbations
 - 2. Weak model finetuning (true target)
 - 3. Weak-to-strong supervision (weakly labeled target)

Real Experiment

- Real Dataset: ESOL, FreeSolv and Lipop
- Model: Pretrained MolBERT (strong model), 2 layer transformer (weak model)
- Result: Gain of the weak-to-strong supervision ≈ misfit error of the weak-to-strong model
- Swapped h_w and h_s or low sample regime \rightarrow flipped figures

References

[1] B. Fabian, T. Edlich, H. Gaspar, M. Segler, J. Meyers, M. Fiscato, and M. Ahmed, "Molecular representation learning with language models and domain-relevant auxiliary tasks," *arXiv preprint arXiv:2011.13230*, 2020.