

Soutenance projet 02 –Data Science

Analyse des données de systèmes éducatifs

Etudiante Mentor Evaluateur Date : Bouchra MEKHALDI : Souhail TOUMDI :Ahmed BOULMANE

ate :31/01/22

Problématique

- ACADEMY est une start-up de la EdTech
- •Il fournit du contenu de formation
- •Niveau lycée et université
- •Volonté d'expansion à l'international

- >quels sont les **pays** avec un fort potentiel de clients pour les services ?
- ➤ Pour chacun de ces pays, quelle sera **l'évolution** de ce potentiel de clients ?
- ➤ Dans quels pays l'entreprise doit-elle opérer en **priorité**?

Processus de l'étude

Présenter les données

Description des jeux de données

Le portail "EdStatsAll IndicatorQuery" de la Banque mondiale répertorie 4000 indicateurs internationaux décrivant l'accès à l'éducation, l'obtention de diplômes et des informations relatives aux professeurs, aux dépenses liées à l'éducation.

Contenues dans 5 Datasets.

→ Pour en savoir plus :

http://datatopics.worldbank.org/education/

→ Site de la Banque Mondiale de données :

http://datatopics.worldbank.org/education/

EdStatsData

Des séries temporelles des indicateurs pour tous les pays de 1970 et 2100

Taille:886930 lignes et 70 colonnes

Variables qualitatives: 4 variables

Variables quantitatives: 66 variables

Valeurs manquante: 86,1% (variables quantitatives)

Doublon:0

EdStatsCountry

Informations sur les pays : région, monnaie, Système de commerce..

Taille:241 lignes et, 32 colonnes

Variables qualitatives: 28

Variables quantitatives: 3

Valeurs manquante: 30,5%

Doublon:0

EdStatsSeries

Les informations sur les indicateurs: définitions, année d'apparition, méthode..

Taille: 3665 lignes (codes) et 21 colonnes

Variables qualitatives:15

Variables quantitatives:6

Valeurs manquante: 71,7%

Doublon:0

EdStatsCountry-Series

Informations sur les source des données contenues dans EdStatsData pour les indicateur population

Taille:613 lignes et 4 colonnes

Variables qualitatives:3

Variables quantitatives:1

Valeurs manquante: 25%

Doublon:0

EdStatsFootNote

Des informations complémentaire sur les indicateurs de chaque pays : leurs source ,méthode de calcul (juste 1558 indicateurs)

Taille:643638 lignes et 4 colonnes

Variables qualitatives:5

Variables quantitatives:1

Valeurs manquante: 20%

Doublon:0

EdStats Data

les données utiles

- Plage Temporelle?
- Indicateurs pertinents?
- Variables utiles?

Approche méthodologique

Sélectionner la variable qualitative **Indicator_Code** à partir de la Table EdStatsSeries. Appliquer les **filtres** sur la DataEdStats puis récupérer et sauvegarder le jeu de donnée nettoyé et prêt pour l'analyse

Filtrer et nettoyer de la Variable qualitative **Country_Name** à partir de la Table EdStatsCountry.

Nettoyage des variables quantitatives (**Années**)

Filtrage et nettoyage de la variable Country_Name

Nettoyage de DF

```
df_data=data.copy()
df_data =data.drop(columns=df_data.loc[:,'1970':'1999'])
df_data=df_data.drop(columns=df_data.loc[:,'2017':'Unnamed: 69'])
df_data.drop(['Indicator Name',], axis=1, inplace=True)
df_data.head()
```

Fusionner les DFs

Suppression des régions

```
df_data.dropna(subset=['Currency Unit'],inplace=True)
df_data.head()
```


Identifier les indicateurs exploitables

numérique

IT.NET.USER.P2 Accès à internet

Économique

NY.GNP.PCAP.PP.CD Revenus par habitant

démographique

SP.POP.1524.TO.UN
Population des 15-24 ans

SP.POP.TOTL

Population total

Éducatif

SE.SEC.ENRR

Taux de scolarisation secondaire

SE.TER.ENRRS

Taux de scolarisation tertiaire

Répartition des données après filtrage des indicateurs


```
# Fonction qui permet de renseigner la derniere années ou la valeurs est non null :
def annee_valeur(row):
   if row.first_valid_index() is None:
        return None
   else:
        return (row.first_valid_index(),row[row.first_valid_index()])
```

Data Visualisation pour la DF pour chaque indicateur

Calcul du score

Création de DF

```
: # création d'un tableau pivo pour les pays

pays_final = df_final.pivot_table(index= 'Country Name', columns="Indicator Code")['Dernière Valeur Non Null']

pays_final=pays_final.rename_axis('Country Name').reset_index()#la colonne country_name devient colonne et non index
pays final.head()
```

Indicator Code	Country Name	IT.NET.USER.P2	NY.GNP.PCAP.PP.CD	SE.SEC.ENRR	SE.TER.ENRR	SP.POP.1524.TO.UN	SP.POP.TOTL
0	Afghanistan	10.595726	1900.0	55.644409	8.662800	7252785.0	34656032.0
1	Albania	66.363445	11670.0	95.765488	58.109951	556269.0	2876101.0

```
def Score(x,p,pas): # fonction pour le calcule d percentile
    q=[]
    for i in range (1,pas+1):
        q += [i/pas] # choix de pourcentage
    quantiles = df_score.quantile(q)
    for j in range (1,pas+1):
        if x<=quantiles[p][j/pas]:
        return j</pre>
```

Fonction pour calculer le score

Fonction pour remplissage du table

```
# Remplissage du table
df_score=pays_final.copy()
for j in range (1,7): # choix des colonnes
    nom =df_score.columns[j]
    df_score['scor',df_score.columns[j]]=df_score[nom].apply(Score, args=(nom,50),) # le score associé pour chaque indicateur
df_score.head()
```

```
# fonction pour calculr le score final
coef=[1,1,1,1,1,1] # list pour des coefficients aattribué pour chaque indinateur: coef[0]est le poids attribué pour le 1er indic

def calcul_score (df,coef):
    n=len(coef)
    s=0 # pour calculer la somme
    for i in range (1,n+1):
        s += df.iloc[:,i]*coef[i-1] # la somme des produits
    score= s/sum(coef) # calcul des moyens
    return round(score,2)
```

Calcul de score finale

Classement des 30 premiers pays

Score d'attractivité par région et par groupe de revenus

Les 10 pays les plus attractifs

	Pays	Region	Income Group	Score_tot
Place				
1	United States	North America	High income: OECD	44.83
2	United Kingdom	Europe & Central Asia	High income: OECD	44.00
3	Japan	East Asia & Pacific	High income: OECD	44.00
4	Germany	Europe & Central Asia	High income: OECD	43.67
5	Spain	Europe & Central Asia	High income: OECD	43.50
6	France	Europe & Central Asia	High income: OECD	43.33
7	Korea, Rep.	East Asia & Pacific	High income: OECD	43.17
8	Australia	East Asia & Pacific	High income: OECD	43.17
9	Russian Federation	Europe & Central Asia	High income: nonOECD	42.83
10	Netherlands	Europe & Central Asia	High income: OECD	41.50

recommandation des pays en fonction des indicateurs

Indicateur économique

	Pays	Score_tot	Place
	United States	45.29	1
	Japan	44.00	2
	United Kingdom	43.86	3
	Germany	43.86	4
	France	43.43	5
	Australia	43.43	6
/	Spain	43.29	7
′	Korea, Rep.	43.00	8
	Netherlands	42.14	9
	Saudi Arabia	41.71	10

Indicateur population entre 15 et 24 ans

Pays	Score_tot	Place
United States	45.57	1
Japan	44.29	2
United Kingdom	43.86	3
Germany	43.57	4
Russian Federation	43.43	5
France	43.14	6
Korea, Rep.	42.86	7
Spain	42.43	8
Turkey	42.14	9
Australia	41.71	10

Indicateur de taux de scolarisation

Pays	Score_tot P	lace
Spain	44.88	1
Australia	44.75	-2
United States	43.88	3
United Kingdom	43.50	4
France	43.00	5
Korea, Rep.	43.00	6
Russian Federation	43.00	7
Germany	42.88	8
Netherlands	42.88	9
Japan	42.75	10

l'évolution de potentiel de clients

```
# Fonction pour filtrer et melt le DF
def df_melt (df,ind):
    df=df[df['Indicator Name'].isin(ind)]
    df_evol=df.drop(columns=['Country Code','Indicator Name', 'Indicator Code'])
    df_evol=df_evol.set_index('Country Name').T #Transposer le df
    df_evol= df_evol.rename_axis('Year').reset_index()# renomer la premiere colonne
    df_evol= df_evol.melt('Year', var_name='Country', value_name='vals')
    return df_evol
```

	Year	Country	vals
0	2000	Australia	25640.0
1	2001	Australia	26660.0
2	2002	Australia	27940.0
3	2003	Australia	28890.0
4	2004	Australia	30450.0
165	2012	United States	52850.0
166	2013	United States	54000.0
167	2014	United States	56160.0
168	2015	United States	57900.0
169	2016	United States	58700.0

C----

170 rows x 3 columns

```
# fonction pour tracer les graphes d'evolution
def evolution_indic(df,ind_name):
    #Year= ['2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '201
    year_palette = ["red","yellow","green","orange","blue","pink","cyan","purple","black","Peru"]
    figsize=(30,15)
    g=sns.factorplot(x="Year", y="vals", hue='Country', data=df, height=15,ci=None, palette= year_palette)
    g.fig.suptitle("L'indicateur : "+ ind_name , fontsize= 20)
    g.fig.set_size_inches(20, 10)
    g.set_xlabels('Année', fontsize= 20)
    g.set_ylabels(ind_name, fontsize= 20)
```


Conclusion

- Le pays dont l'entreprise doit-elle opérer en priorité c'est l'USA
- Le jeu des données contient tous les pays du monde mais beaucoup de données manquantes pour comparer
- Jeu de données plus récent, plus de données éducatives
- Manque d'informations sur la société Academy Stratégie d'entreprise : langue, marché cible, proximité géographique d'implantation

Merci!