DEDEKIND'S TRANSPOSITION PRINCIPLE

AND

PERMUTING SUBGROUPS & EQUIVALENCE RELATIONS

AND (MAYBE, BUT PROBABLY NOT)

ISOTOPIC ALGEBRAS WITH NONISOMORPHIC CONGRUENCE LATTICES

William DeMeo

williamdemeo@gmail.com

University of South Carolina

Zassenhaus Conference at WCU Asheville, NC

May 24-26, 2013

These slides and other resources are available at http://williamdemeo.wordpress.com

- Let *H*, *K* be subgroups of a group *G*.
- Recall the set

$$HK = \{hk \mid h \in H, k \in K\}$$

is a group if and only if $HK = KH = \langle U, H \rangle$.

- Let *H*, *K* be subgroups of a group *G*.
- Recall the set

$$HK = \{hk \mid h \in H, k \in K\}$$

is a group if and only if $HK = KH = \langle U, H \rangle$.

• Let $H_0 = H \cap K$ and define

$$\llbracket H_0, H \rrbracket := \{ X \mid H_0 \leqslant X \leqslant H \},$$

- Let *H*, *K* be subgroups of a group *G*.
- Recall the set

$$H$$
 $H_0 = H \cap K$

$$HK = \{hk \mid h \in H, k \in K\}$$

is a group if and only if $HK = KH = \langle U, H \rangle$.

• Let $H_0 = H \cap K$ and define

$$[\![H_0,H]\!] := \{X \mid H_0 \leqslant X \leqslant H\},$$

$$\llbracket K, \langle H, K \rangle \rrbracket := \{ X \mid K \leqslant X \leqslant \langle H, K \rangle \}.$$

Recall the set

$$H$$
 $H_0 = H \cap K$

$$HK = \{hk \mid h \in H, k \in K\}$$

is a group if and only if $HK = KH = \langle U, H \rangle$.

• Let $H_0 = H \cap K$ and define

$$[\![H_0,H]\!] := \{X \mid H_0 \leqslant X \leqslant H\},$$

$$\llbracket K, \langle H, K \rangle \rrbracket := \{ X \mid K \leqslant X \leqslant \langle H, K \rangle \}.$$

Define

$$[\![H_0,H]\!]^K := \{X \in [\![H_0,H]\!] \mid XK = KX\}.$$

- Let H, K be subgroups of a group G.
- Recall the set

$$H = H \cap K$$

$$HK = \{ hk \mid h \in H, k \in K \}$$

is a group if and only if $HK = KH = \langle U, H \rangle$.

• Let $H_0 = H \cap K$ and define

$$\llbracket H_0, H \rrbracket := \{ X \mid H_0 \leqslant X \leqslant H \},$$

$$\llbracket K, \langle H, K \rangle \rrbracket := \{ X \mid K \leqslant X \leqslant \langle H, K \rangle \}.$$

Define

$$[\![H_0,H]\!]^K := \{X \in [\![H_0,H]\!] \mid XK = KX\}.$$

LEMMA

If
$$HK = KH$$
, then $\llbracket K, HK \rrbracket \cong \llbracket H_0, H \rrbracket^K \leqslant \llbracket H_0, H \rrbracket$.

EXAMPLE

• The group S_4 has permuting subgroups $H \cong D_8$ and $K \cong C_3$. (neither one normalizes the other)

EXAMPLE

• The group S_4 has permuting subgroups $H\cong D_8$ and $K\cong C_3$. (neither one normalizes the other)

• Only four subgroups of H permute with K

EXAMPLE

• The group S_4 has permuting subgroups $H\cong D_8$ and $K\cong C_3$. (neither one normalizes the other)

• Only four subgroups of H permute with K, including

$$H \cap A_4 \cong C_2 \times C_2, \qquad H \cap S_3 \cong C_2.$$

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let
$$\mathbf{L} = \langle L, \wedge, \vee \rangle$$
 be a lattice with $a \in L$.

Let φ_a and ψ_a be the "perspectivity maps"

$$\varphi_a(x) = x \wedge a$$
 and $\psi_a(x) = x \vee a$

For
$$x, y \in L$$
, let $[\![x, y]\!]_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let $L = \langle L, \wedge, \vee \rangle$ be a lattice with $a \in L$.

Let φ_a and ψ_a be the "perspectivity maps"

$$\varphi_a(x) = x \wedge a$$
 and $\psi_a(x) = x \vee a$

For $x, y \in L$, let $[\![x, y]\!]_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

THEOREM (DEDEKIND'S TRANSPOSITION PRINCIPLE)

L is modular iff for all $a,b \in L$ the maps φ_a and ψ_b are inverse lattice isomorphisms of $[\![a \wedge b,a]\!]$ and $[\![b,a \vee b]\!]$.

FOR LATTICES OF EQUIVALENCE RELATIONS

Let X be a set and let Eq X be the lattice of equivalence relations on X.

Given $\alpha, \beta \in \text{Eq} X$, define the *composition* of α and β to be the binary relation

$$\alpha \circ \beta = \{(x, y) \in X^2 \mid (\exists z \in X) \ x \ \alpha \ z \ \beta \ y\}.$$

For a sublattice $L \leqslant \text{Eq} X$, with $\eta, \theta \in L$, define

$$[\![\eta,\theta]\!]_L = \{\gamma \in L \mid \eta \leqslant \gamma \leqslant \theta\},\$$

FOR LATTICES OF EQUIVALENCE RELATIONS

Let X be a set and let Eq X be the lattice of equivalence relations on X.

Given $\alpha, \beta \in \text{Eq} X$, define the *composition* of α and β to be the binary relation

$$\alpha \circ \beta = \{(x, y) \in X^2 \mid (\exists z \in X) \ x \ \alpha \ z \ \beta \ y\}.$$

For a sublattice $L \leqslant \text{Eq} X$, with $\eta, \theta \in L$, define

$$\llbracket \eta, \theta \rrbracket_L = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \},\$$

$$[\![\eta,\theta]\!]_L^\beta=\{\gamma\in L\mid \eta\leqslant\gamma\leqslant\theta \text{ and }\gamma\circ\beta=\beta\circ\gamma\},$$

i.e., the relations in $[\![\eta,\theta]\!]_L$ that permute with $\beta.$

FOR LATTICES OF EQUIVALENCE RELATIONS

Let X be a set and let Eq X be the lattice of equivalence relations on X.

Given $\alpha, \beta \in \text{Eq} X$, define the *composition* of α and β to be the binary relation

$$\alpha \circ \beta = \{(x, y) \in X^2 \mid (\exists z \in X) \ x \ \alpha \ z \ \beta \ y\}.$$

For a sublattice $L \leq \text{Eq} X$, with $\eta, \theta \in L$, define

$$[\![\eta,\theta]\!]_L = \{\gamma \in L \mid \eta \leqslant \gamma \leqslant \theta\},\$$

$$\llbracket \eta, \theta \rrbracket_L^\beta = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \text{ and } \gamma \circ \beta = \beta \circ \gamma \},$$

i.e., the relations in $[\![\eta,\theta]\!]_L$ that permute with β .

LEMMA

Suppose α and β are permuting relations in $L \leqslant \text{Eq } X$.

Then
$$[\![\beta,\alpha\vee\beta]\!]_L\cong [\![\alpha\wedge\beta,\alpha]\!]_L^\beta\leqslant [\![\alpha\wedge\beta,\alpha]\!]_L$$
.

FOR LATTICES OF EQUIVALENCE RELATIONS

Let X be a set and let Eq X be the lattice of equivalence relations on X.

Given $\alpha, \beta \in \text{Eq} X$, define the *composition* of α and β to be the binary relation

$$\alpha \circ \beta = \{(x, y) \in X^2 \mid (\exists z \in X) \ x \ \alpha \ z \ \beta \ y\}.$$

For a sublattice $L \leq \text{Eq} X$, with $\eta, \theta \in L$, define

$$[\![\eta,\theta]\!]_L = \{\gamma \in L \mid \eta \leqslant \gamma \leqslant \theta\},\$$

$$[\![\eta,\theta]\!]_L^\beta=\{\gamma\in L\mid \eta\leqslant\gamma\leqslant\theta \text{ and }\gamma\circ\beta=\beta\circ\gamma\},$$

i.e., the relations in $[\![\eta,\theta]\!]_L$ that permute with β .

LEMMA

Suppose α and β are permuting relations in $L \leqslant \text{Eq } X$.

Then
$$[\![\beta,\alpha\vee\beta]\!]_L\cong [\![\alpha\wedge\beta,\alpha]\!]_L^\beta\leqslant [\![\alpha\wedge\beta,\alpha]\!]_L$$
.

Question: Does this generalize the subgroup lattice lemma?

ANSWER

Yes!

ANSWER

Yes!

<insert G-set stuff here>

ANSWER

Yes!

<insert G-set stuff here>

LEMMA

In $\operatorname{Con}\langle G\backslash H,\bar{G}\rangle$, two congruences θ_{K_1} and θ_{K_2} permute if and only if the corresponding subgroups K_1 and K_2 permute.

Recall that $HK = \langle H, K \rangle$ if and only if HK = KH.

Recall that $HK = \langle H, K \rangle$ if and only if HK = KH.

Question 1. Is it true that

 $HKH = \langle H, K \rangle$ if and only if HKH = KHK?

Recall that $HK = \langle H, K \rangle$ if and only if HK = KH.

Question 1. Is it true that

 $HKH = \langle H, K \rangle$ if and only if HKH = KHK?

What about

 $HKHK = \langle H, K \rangle$ if and only if HKHK = KHKH?

Recall that $HK = \langle H, K \rangle$ if and only if HK = KH.

Question 1. Is it true that

$$HKH = \langle H, K \rangle$$
 if and only if $HKH = KHK$?

What about

$$HKHK = \langle H, K \rangle$$
 if and only if $HKHK = KHKH$?

$$H \circ^n K = \langle H, K \rangle$$
 if and only if $H \circ^n K = K \circ^n H$?

Denote by $H \circ^n K$ the *n*-fold composition of H and K.

$$H \circ^{1} K = H,$$

$$H \circ^{2} K = HK,$$

$$H \circ^{3} K = HKH,$$

$$H \circ^{4} K = HKHK,$$

$$\vdots$$

$$H \circ^{n} K = H \circ^{2} K \circ^{n-1} H.$$

We say H and K are n-permuting if $H \circ^n K = K \circ^n H$.

Denote by $H \circ^n K$ the *n*-fold composition of H and K.

$$H \circ^{1} K = H,$$

 $H \circ^{2} K = HK,$
 $H \circ^{3} K = HKH,$
 $H \circ^{4} K = HKHK,$
 \vdots
 $H \circ^{n} K = H \circ^{2} K \circ^{n-1} H.$

We say H and K are n-permuting if $H \circ^n K = K \circ^n H$.

Question 2. Is the following true?

If H and K are n-permuting, then interval $\llbracket K, \langle H, K \rangle \rrbracket$ is isomorphic to the lattice of subgroups in $\llbracket H_0, H \rrbracket$ that n-permute with K.

CONNECTION WITH EQUIVALENCE RELATIONS

Let $\mathbf{A} = \langle H \backslash G, \overline{G} \rangle$ be the algebra with

- universe: the right cosets $H \setminus G = \{Hx \mid x \in G\}$
- operations: $\bar{G} = \{g^{\mathbf{A}} : g \in G\}$, where $g^{\mathbf{A}}(Hx) = Hxg$.

CONNECTION WITH EQUIVALENCE RELATIONS

Let $\mathbf{A} = \langle H \backslash G, \bar{G} \rangle$ be the algebra with

- universe: the right cosets $H \setminus G = \{Hx \mid x \in G\}$
- operations: $\bar{G} = \{g^A : g \in G\}$, where $g^A(Hx) = Hxg$.

LEMMA

The subgroups K_1 and K_2 are n-permuting if and only if their corresponding congruences θ_{K_1} and θ_{K_2} are n-permuting. That is,

$$K_1 \circ^n K_2 = K_2 \circ^n K_1 \iff \theta_{K_1} \circ^n \theta_{K_2} = \theta_{K_2} \circ^n \theta_{K_1}.$$

ANSWER TO QUESTION 1.

LEMMA

For $\alpha, \beta \in \text{Eq} X$, and for every even integer n > 1, TFAE:

- (I) $\alpha \circ^n \beta = \alpha \vee \beta$
- (II) $\alpha \circ^n \beta = \beta \circ^n \alpha$
- (III) $\alpha \circ^n \beta \subseteq \beta \circ^n \alpha$

LEMMA

For $\alpha, \beta \in \operatorname{Eq} X$, and for every even integer n > 1, TFAE:

(I)
$$\alpha \circ^n \beta = \alpha \vee \beta$$

(II)
$$\alpha \circ^n \beta = \beta \circ^n \alpha$$

(III)
$$\alpha \circ^n \beta \subseteq \beta \circ^n \alpha$$

For
$$n=3$$
,

$$\alpha\circ\beta\circ\alpha=\beta\circ\alpha\circ\beta\quad\Longrightarrow\quad\alpha\circ\beta\circ\alpha=\alpha\vee\beta$$

but the converse is false.

LEMMA

For $\alpha, \beta \in \text{Eq} X$, and for every even integer n > 1, TFAE:

- (I) $\alpha \circ^n \beta = \alpha \vee \beta$
- (II) $\alpha \circ^n \beta = \beta \circ^n \alpha$
- (III) $\alpha \circ^n \beta \subseteq \beta \circ^n \alpha$

For
$$n = 3$$
,

$$\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta \quad \Longrightarrow \quad \alpha \circ \beta \circ \alpha = \alpha \vee \beta$$

but the converse is false.

COROLLARY

For $H, K \leq G$, and for every even integer n > 1, TFAE:

- (I) $H \circ^n K = \langle H, K \rangle$
- $(II) H \circ^n K = K \circ^n H$
- (III) $H \circ^n K \subseteq K \circ^n H$

LEMMA

For $\alpha, \beta \in \text{Eq } X$, and for every even integer n > 1, TFAE:

- (I) $\alpha \circ^n \beta = \alpha \vee \beta$
- (II) $\alpha \circ^n \beta = \beta \circ^n \alpha$
- (III) $\alpha \circ^n \beta \subseteq \beta \circ^n \alpha$

For n=3,

$$\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta \quad \Longrightarrow \quad \alpha \circ \beta \circ \alpha = \alpha \vee \beta$$

but the converse is false.

COROLLARY

For $H, K \leq G$, and for every even integer n > 1, TFAE:

- (I) $H \circ^n K = \langle H, K \rangle$
- (II) $H \circ^n K = K \circ^n H$ (III) $H \circ^n K \subseteq K \circ^n H$

For n = 3,

$$HKH = KHK \implies HKH = \langle H, K \rangle$$

but the converse is false.

LEMMA

For $\alpha, \beta \in \text{Eq} X$, and for every even integer n > 1, TFAE:

- (I) $\alpha \circ^n \beta = \alpha \vee \beta$
- (II) $\alpha \circ^n \beta = \beta \circ^n \alpha$
- (III) $\alpha \circ^n \beta \subseteq \beta \circ^n \alpha$

For n = 3,

$$\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta \implies \alpha \circ \beta \circ \alpha = \alpha \vee \beta$$

but the converse is false.

COROLLARY

For $H, K \leq G$, and for every even integer n > 1, TFAE:

- $(I) H \circ^n K = \langle H, K \rangle$
- $(II) H \circ^n K = K \circ^n H$
- (III) $H \circ^n K \subseteq K \circ^n H$

For n=3,

$$HKH = KHK \implies HKH = \langle H, K \rangle$$

but the converse is false.

Question 1. What are conditions on G under which the converse is true?

case n = 5

Question 1. Is it true that

$$H \circ^5 K = \langle H, K \rangle$$
 if and only if $H \circ^5 K = K \circ^5 H$?

CASE
$$n=5$$

Question 1. Is it true that

$$H \circ^5 K = \langle H, K \rangle$$
 if and only if $H \circ^5 K = K \circ^5 H$?

Answer. No.

Example. Let
$$G = (C_3 \times C_3) : C_4$$
.

This is a group of order 36 with generators f_1, f_2, f_3, f_4 .

Let
$$H=\langle f_1 \rangle \cong C_2$$
, and $K=\langle f_1 \cdot f_3 \cdot f_4^2, f_2 \cdot f_4^2 \rangle \cong C_4$. Then,

- $H \cap K = 1$
- $\langle H,K \rangle = K \circ^5 H$ has order 36 so it is the whole group.
- The set $H \circ^5 K$ has size 34, so does not generate $\langle H, K \rangle$.
- H covers 1.

ANSWER TO QUESTION 2.

No.

In general, it is not true that if H and K are n-permuting, then the interval $\llbracket K, \langle H, K \rangle \rrbracket$ is isomorphic to the lattice of those subgroups in $\llbracket H_0, H \rrbracket$ that n-permute with K.

No.

In general, it is not true that if H and K are n-permuting, then the interval $\llbracket K, \langle H, K \rangle \rrbracket$ is isomorphic to the lattice of those subgroups in $\llbracket H_0, H \rrbracket$ that n-permute with K.

Example. The group A_5 has subgroups $H \cong D_{10}$, and $K \cong C_2$ such that

$$H \circ^4 K = K \circ^4 H = A_5,$$

but the map

$$[\![K,A_5]\!]\ni J\mapsto J\cap H\in[\![1,H]\!]$$

is not one-to-one.

REVISED QUESTION 2.

Question 2.'

What are conditions on the group G so that

if H, K are n-permuting subgroups of G, then

$$\llbracket K, \langle H, K \rangle \rrbracket \cong \llbracket H_0, H \rrbracket^{K \circ^n} \leqslant \llbracket H_0, H \rrbracket ?$$

<ADVERTISEMENT>

Workshop on Computational Universal Algebra

Friday, October 4, 2013

University of Louisville, KY

universalalgebra.wordpress.com

ISOTOPY BASIC DEFINITIONS

Let A, B, C be algebras of the same type.

A and B are *isotopic over* C, denoted A \sim_C B, if there is an isomorphism

$$\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\longrightarrow} \mathbf{B} \times \mathbf{C}$$
 that leaves the second coordinate fixed

i.e.
$$\varphi(a,c)=(b,c)$$
 for some $b\in B$.

ISOTOPY BASIC DEFINITIONS

Let A, B, C be algebras of the same type.

A and B are *isotopic over* C, denoted A \sim_C B, if there is an isomorphism

$$\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\longrightarrow} \mathbf{B} \times \mathbf{C} \quad \text{ that leaves the second coordinate fixed}$$
 i.e. $\varphi(a,c) = (b,c) \ \text{ for some } b \in \mathcal{B}.$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C. It is easy to verify that \sim is an equivalence relation.

ISOTOPY BASIC DEFINITIONS

Let A, B, C be algebras of the same type.

A and B are *isotopic over* C, denoted A \sim_C B, if there is an isomorphism

$$\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\longrightarrow} \mathbf{B} \times \mathbf{C} \quad \text{ that leaves the second coordinate fixed}$$
 i.e. $\varphi(a,c) = (b,c) \ \text{ for some } b \in \mathcal{B}.$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C.

If $A\sim_C B$ and $Con(A\times C)$ happens to be modular, then we write $A\sim_C^{mod} B$ and say that A and B are *modular isotopic over* C.

Lemma. If $A \sim_C^{mod} B$ then $\operatorname{Con} A \cong \operatorname{Con} B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Lemma. If $A \sim_C^{mod} B$ then $Con A \cong Con B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A \sim B$ implies $\operatorname{Con} A \cong \operatorname{Con} B$?

Lemma. If $A \sim_C^{mod} B$ then $Con A \cong Con B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies $\operatorname{Con} A\cong\operatorname{Con} B$?

No!

The perspectivity map, which is so useful when ${\rm Con}(A\times C)$ is modular, can fail *miserably* in the non-modular case...

Lemma. If $A \sim_C^{\text{mod}} B$ then $\text{Con } A \cong \text{Con } B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies $\operatorname{Con} A\cong\operatorname{Con} B$?

No!

The perspectivity map, which is so useful when $Con(A \times C)$ is modular, can fail *miserably* in the non-modular case... even when $A \cong B!$

Lemma. If $A \sim_C^{\text{mod}} B$ then $\text{Con } A \cong \text{Con } B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies $\operatorname{Con} A\cong\operatorname{Con} B$?

No!

The perspectivity map, which is so useful when $Con(A \times C)$ is modular, can fail *miserably* in the non-modular case... *even when* $A \cong B!$

But this only shows that the same argument doesn't work...

IN WHICH $\mathbf{A} \sim \mathbf{B}$ and $\mathrm{Con}\,\mathbf{A} \ncong \mathrm{Con}\,\mathbf{B}$

$\begin{array}{l} EXAMPLES \\ \text{in which } A \sim B \text{ and } \text{Con } A \ncong \text{Con } B \end{array}$

For any group G, let $\mathrm{Sub}(G)$ denote the lattice of subgroups of G.

$\begin{array}{l} EXAMPLES \\ \text{In which } \mathbf{A} \sim \mathbf{B} \text{ and } \mathrm{Con} \, \mathbf{A} \ncong \mathrm{Con} \, \mathbf{B} \end{array}$

For any group G, let Sub(G) denote the lattice of subgroups of G. Let S be any group and let D denote the *diagonal subgroup* of $S \times S$,

$$D = \{(x, x) \mid x \in S\}$$

EXAMPLES IN WHICH $A \sim B$ and $Con A \ncong Con B$

For any group G, let Sub(G) denote the lattice of subgroups of G.

Let S be any group and let D denote the diagonal subgroup of $S \times S$,

$$D = \{(x, x) \mid x \in S\}$$

The interval $[\![D,S\times S]\!]\leqslant \operatorname{Sub}(S\times S)$ is described by the following

LEMMA

The filter above the diagonal subgroup of $S \times S$ is isomorphic to the lattice of normal subgroups of S.

$\begin{array}{l} EXAMPLES \\ \text{In which } \mathbf{A} \sim \mathbf{B} \text{ and } \mathrm{Con} \, \mathbf{A} \ncong \mathrm{Con} \, \mathbf{B} \end{array}$

Let S be a group, and let $G = S_1 \times S_2$, where $S_1 \cong S_2 \cong S$.

Let
$$D=\{(x_1,x_2)\in G\mid x_1=x_2\},\quad T_1=S_1\times\langle 1\rangle,\quad T_2=\langle 1\rangle\times S_2.$$

IN WHICH $\mathbf{A} \sim \mathbf{B}$ and $\mathbf{Con} \mathbf{A} \ncong \mathbf{Con} \mathbf{B}$

Let S be a group, and let $G = S_1 \times S_2$, where $S_1 \cong S_2 \cong S$.

Let
$$D = \{(x_1, x_2) \in G \mid x_1 = x_2\}, \quad T_1 = S_1 \times \langle 1 \rangle, \quad T_2 = \langle 1 \rangle \times S_2.$$

Let $A = \langle G/T_1, G^A \rangle =$ the algebra with universe the left cosets of T_1 in G, and basic operations the left multiplications by elements of G.

For each $g \in G$ the operation $g^{\mathbf{A}} \in G^{\mathbf{A}}$ is defined by

$$g^{\mathbf{A}}(xT_1)=(gx)T_1 \qquad (xT_1\in G/T_1).$$

Define the algebra $\mathbf{C} = \langle G/T_2, G^{\mathbf{C}} \rangle$ similarly.

IN WHICH $\mathbf{A} \sim \mathbf{B}$ and $\operatorname{\mathsf{Con}} \mathbf{A} \ncong \operatorname{\mathsf{Con}} \mathbf{B}$

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

IN WHICH $\mathbf{A} \sim \mathbf{B}$ and $\mathrm{Con}\,\mathbf{A} \ncong \mathrm{Con}\,\mathbf{B}$

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g=(g_1,g_2)\in G$, for each $(x_1,x_2)D\in G/D$, define

$$g^{\mathbf{B}}((x_1,x_2)D)=(g_2x_1,g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

IN WHICH $\mathbf{A} \sim \mathbf{B}$ and $\mathrm{Con}\,\mathbf{A} \ncong \mathrm{Con}\,\mathbf{B}$

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1,x_2)D)=(g_2x_1,g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi \subseteq (A \times C) \times (B \times C)$ that associates to each ordered pair

$$((x_1,x_2)T_1,(y_1,y_2)T_2) \in A \times C$$

the pair

$$((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$$

IN WHICH $\mathbf{A} \sim \mathbf{B}$ and $\mathrm{Con}\,\mathbf{A} \ncong \mathrm{Con}\,\mathbf{B}$

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1,x_2)D)=(g_2x_1,g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi\subseteq (A\times C)\times (B\times C)$ that associates to each ordered pair

$$((x_1,x_2)T_1,(y_1,y_2)T_2) \in A \times C$$

the pair

$$((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$$

It is easy to verify that this relation is a function, and in fact

$$\varphi \colon \mathbf{A} \times \mathbf{C} \to \mathbf{B} \times \mathbf{C}$$
 is an isomorphism.

IN WHICH $\mathbf{A} \sim \mathbf{B}$ and $\mathrm{Con}\,\mathbf{A} \ncong \mathrm{Con}\,\mathbf{B}$

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1,x_2)D)=(g_2x_1,g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi \subseteq (A \times C) \times (B \times C)$ that associates to each ordered pair

$$((x_1,x_2)T_1,(y_1,y_2)T_2) \in A \times C$$

the pair

$$((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$$

It is easy to verify that this relation is a function, and in fact

$$\varphi \colon \mathbf{A} \times \mathbf{C} \to \mathbf{B} \times \mathbf{C}$$
 is an isomorphism.

Since φ leaves second coordinates fixed, $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$.

Compare $\operatorname{\mathsf{Con}} A$ and $\operatorname{\mathsf{Con}} B.$

Compare Con A and Con B.

 $\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G)$, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.

Compare Con A and Con B.

 $\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G)$, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.

 $\operatorname{Con} \mathbf{B}$ is isomorphic to the lattice of normal subgroups of S.

Compare Con A and Con B.

$$\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G)$$
, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.

 $\operatorname{Con} \mathbf{B}$ is isomorphic to the lattice of normal subgroups of S.

$$\operatorname{Con} \mathbf{B} \cong \operatorname{NSub}(S) \leqslant \operatorname{Sub}(S) \cong \operatorname{Con} \mathbf{A}$$

So, if *S* is any *non-Dedekind* group, $\operatorname{Con} \mathbf{B} \ncong \operatorname{Con} \mathbf{A}$.

Compare Con A and Con B.

$$\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G)$$
, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.

 $\operatorname{Con} \mathbf{B}$ is isomorphic to the lattice of normal subgroups of S.

$$\operatorname{Con} \mathbf{B} \cong \operatorname{NSub}(S) \leqslant \operatorname{Sub}(S) \cong \operatorname{Con} \mathbf{A}$$

So, if *S* is any *non-Dedekind* group, Con **B** \ncong Con **A**.

If S is a nonabelian simple group, then $\operatorname{Con} \mathbf{B} \cong \mathbf{2}$, while $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$ can be arbitrarily large.

ANSWER

- For groups $H \leqslant G$, the algebra $\mathbf{A} = \langle G \backslash H, \overline{G} \rangle$ has
 - universe: the right cosets $H \setminus G = \{Hx \mid x \in G\}$
 - operations: $\bar{G} = \{g^{\mathbf{A}} : g \in G\}$, where $g^{\mathbf{A}}(Hx) = Hxg$.

ANSWER

- For groups $H \leqslant G$, the algebra $\mathbf{A} = \langle G \backslash H, \overline{G} \rangle$ has
 - universe: the right cosets $H \setminus G = \{Hx \mid x \in G\}$
 - operations: $\bar{G} = \{g^{\mathbf{A}} : g \in G\}$, where $g^{\mathbf{A}}(Hx) = Hxg$.
- A standard result is $\operatorname{Con} \mathbf{A} \cong \llbracket H, G \rrbracket$.

The isomorphism $\llbracket H,G \rrbracket \ni K \mapsto \theta_K \in \operatorname{Con} \mathbf{A}$ is given by

$$\theta_K = \{ (Hx, Hy) \mid xy^{-1} \in K \}.$$

The inverse isomorphism $\operatorname{Con} \mathbf{A} \ni \theta \mapsto K_{\theta} \in \llbracket H, G \rrbracket$ is

$$K_{\theta} = \{ g \in G \mid (H, Hg) \in \theta \}.$$

ANSWER

- For groups $H \leqslant G$, the algebra $\mathbf{A} = \langle G \backslash H, \overline{G} \rangle$ has
 - universe: the right cosets $H \setminus G = \{Hx \mid x \in G\}$
 - operations: $\bar{G} = \{g^{\mathbf{A}} : g \in G\}$, where $g^{\mathbf{A}}(Hx) = Hxg$.
- A standard result is $\operatorname{Con} \mathbf{A} \cong \llbracket H, G \rrbracket$.

The isomorphism $\llbracket H,G \rrbracket \ni K \mapsto \theta_K \in \operatorname{Con} \mathbf{A}$ is given by

$$\theta_K = \{ (Hx, Hy) \mid xy^{-1} \in K \}.$$

The inverse isomorphism $\operatorname{Con} \mathbf{A} \ni \theta \mapsto K_{\theta} \in \llbracket H, G \rrbracket$ is

$$K_{\theta} = \{ g \in G \mid (H, Hg) \in \theta \}.$$

 So every lattice property of congruence lattices is also a lattice property of (intervals of) subgroup lattices. Moreover, it's easy to prove:

LEMMA

In $\operatorname{Con}\langle G \backslash H, \bar{G} \rangle$, two congruences θ_{K_1} and θ_{K_2} permute if and only if the corresponding subgroups K_1 and K_2 permute.