Evidential Uncertainty Quantification: A Variance-Based Perspective

Ruxiao Duan¹, Brian Caffo^{2,3}, Harrison X. Bai⁴, Haris I. Sair^{3,4}, and Craig Jones^{3,4,5}

³Malone Center for Engineering in Healthcare, ⁴Department of Radiology and Radiological Science, ⁵Department of Computer Science Whiting School of Engineering, School of Public Health, School of Medicine | Johns Hopkins University

Evidential Deep Learning

- Evidential deep learning (EDL)
 - a non-Bayesian approach to estimate aleatoric uncertainty (AU) and epistemic uncertainty (EU) by modeling the evidential prior of target distribution
- Entropy-based classification EDL
 - quantifies total uncertainty as <u>predictive entropy</u>
 - decomposes uncertainty by information theory
- Variance-based classification EDL (ours)
 - quantifies total uncertainty as predictive variance
 - decomposes uncertainty by <u>law of total covariance</u>

Variance-Based Evidential Deep Learning

- Classification problem notations
 - C: number of classes
 - y: target one-hot label vector
 - p: class probability vector
 - α : prior distribution parameters (model prediction)
- Fundamental probability distribution assumptions

Covariance matrix decomposition

$$Cov[\mathbf{y}] \coloneqq \mathbb{E}[(\mathbf{y} - \mathbb{E}[\mathbf{y}])(\mathbf{y} - \mathbb{E}[\mathbf{y}])^{\mathrm{T}}] = Diag(\overline{\mathbf{p}}) - \overline{\mathbf{p}}\overline{\mathbf{p}}^{\mathrm{T}}$$

$$Cov[\mathbf{y}]^{alea} \coloneqq \mathbb{E}[Cov[\mathbf{y}|\mathbf{p}]] = \frac{\alpha_0}{\alpha_0 + 1} \left(Diag(\overline{\mathbf{p}}) - \overline{\mathbf{p}}\overline{\mathbf{p}}^{\mathrm{T}} \right)$$

$$Cov[\mathbf{y}]^{epis} \coloneqq Cov[\mathbb{E}[\mathbf{y}|\mathbf{p}]] = \frac{1}{\alpha_0 + 1} \left(Diag(\overline{\mathbf{p}}) - \overline{\mathbf{p}}\overline{\mathbf{p}}^{\mathrm{T}} \right)$$

$$\alpha_0 \coloneqq \sum_{i=1}^{C} \alpha_i \qquad \overline{\mathbf{p}} \coloneqq \mathbb{E}[\mathbf{p}] = \frac{\alpha}{\alpha_0}$$

Class-level evidential uncertainties

$$U_{i}^{alea} := Cov[\mathbf{y}]_{i,i}^{alea} = \frac{\alpha_{0}}{\alpha_{0} + 1} \overline{\mathbf{p}}_{i} (1 - \overline{\mathbf{p}}_{i})$$

$$U_{i}^{epis} := Cov[\mathbf{y}]_{i,i}^{epis} = \frac{1}{\alpha_{0} + 1} \overline{\mathbf{p}}_{i} (1 - \overline{\mathbf{p}}_{i})$$

Sample-level evidential uncertainties

$$\begin{split} & U^{alea} \coloneqq \sum_{i=1}^C U_i^{alea} = \frac{\alpha_0}{\alpha_0 + 1} \Bigg(1 - \sum_{i=1}^C \overline{\boldsymbol{p}}_i^2 \Bigg) \\ & U^{epis} \coloneqq \sum_{i=1}^C U_i^{epis} = \frac{1}{\alpha_0 + 1} \Bigg(1 - \sum_{i=1}^C \overline{\boldsymbol{p}}_i^2 \Bigg) \end{split}$$

Class correlation matrix

$$Corr[\mathbf{y}] \coloneqq \frac{Cov[\mathbf{y}]}{\sigma(\mathbf{y})\sigma(\mathbf{y})^{T}}$$
$$\sigma(\mathbf{y}) \coloneqq \sqrt{diag(Cov[\mathbf{y}])}$$

Active Domain Adaptation

EDL-based active domain adaptation (ADA) framework DUC with concurrent certainty and uncertainty sampling

- Domain gap reduction: model trained by uncertainties of unlabeled target dataset
- Uncertainty sampling: two-round sampling strategy based on evidential uncertainties
- Certainty sampling: certain samples identified by EU for semi-supervised learning

Experiment Results and Analysis

Sample-level uncertainty quantification

U	Office-Home		Visda-2017	
	w/o CS	w/ CS	w/o CS	w/ CS
Entropy	78.1	79.3	89.3	89.3
Variance	78.2	79.5	89.4	89.5

ADA accuracy (%) *CS: certainty sampling

U	Office-Home		Visda-2017	
	AU	EU	AU	EU
Entropy	83.0	81.7	75.6	73.8
Variance	83.3	82.0	75.3	73.8
			_	

Misclassification detection AUC (%)

Class-level uncertainty quantification

Class uncertainties of Office-Home Clipart

Between-class correlation quantification

Three most correlated class pairs in Office-Home Clipart

- Compared with entropy-based EDL, the variance-based approach
 - achieves equivalent performance on sample-level uncertainty quantification
 - provides class-level evidential uncertainties
 - provides between-class correlations