Linear Algebra

Changyou Chen

Department of Computer Science and Engineering Universitpy at Buffalo, SUNY changyou@buffalo.edu

Feburary 5, 2019

Course Plan (tentative)

- Week 2: mathematics, machine learning basics; Tensorflow/Pytorch tutorial.
- Week 3: FNN and BP.
- Week 4: regularization and optimization.
- Week 5-6: CNN.
- Week 7-9: RNN (including one-week break).
- Week 10-12: deep generative models.
- Week 13-14: deep reinforcement learning.
- Week 15: project presentation.

Preface

- Not a comprehensive survey of all of linear algebra.
- Focused on the subset most relevant to deep learning.

Scalar

- A scalar is a single number.
- Integers, real numbers, rational numbers, etc.
- Usually denote it with lower-case character of italic font:

 $a, n, x \cdots$

Vectors

A vector is a 1-D array of numbers:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- Can be real, binary, integer, etc.
- Usually denote it with lower-case character of bold font.
- **•** Example notation for type and size: \mathbb{R}^n , \mathbb{Z}^m :
 - ▶ $\mathbf{x} \in \mathbb{R}^n$: \mathbf{x} is a *n*-dimensional vector of real values.
 - ▶ $\mathbf{x} \in \mathbb{Z}^m$: \mathbf{x} is a *m*-dimensional vector of integer values.

Matrices

A matrix is a 2-D array of numbers:

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix}$$

- Usually denote it with upper-case character of bold font.
- **3** Example notation for type and size: $\mathbf{A} \in \mathbb{R}^{m \times n}$:
 - ▶ $\mathbf{A} \in \mathbb{R}^{m \times n}$: **A** is a $m \times n$ matrix of real values.

Tensors

- A tensor is an array of numbers, that may have
 - zero dimensions → a scalar.
 - ▶ one dimensions → a vector.
 - ▶ two dimensions → a matrix.
 - ▶ three dimensions → a cubic.
 - or more dimensions.

Matrix Transpose

$$\begin{aligned} & (\textbf{A}^T)_{ij} = \textbf{A}_{ji} \\ \textbf{A} &= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} \rightarrow \textbf{A}^T = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \end{bmatrix} \end{aligned}$$

Transpose rule: $(\mathbf{A} \mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$

Matrix (Dot) Product

$$\mathbf{C} = \mathbf{A} \, \mathbf{B} \quad \Rightarrow \quad C_{ij} = \sum_{k} A_{ik} B_{kj}$$

Matrix Hadamard product

Also called element-wise product.

$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \quad \Rightarrow \quad C_{ij} = A_{ij}B_{ij}$$

- Also generalize to tensor element-wise product.
- Usually seen in deep learning.

Identity Matrix

• A squared matrix, denoted as I_n , where n represents the size (sometimes ignored).

$$\textbf{I}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- $\bullet \ \forall \, \mathbf{x} \in \mathbb{R}^n, \mathbf{I}_n \, \mathbf{x} = \mathbf{x}.$
- $\bullet \ \forall \ \mathbf{X} \in \mathbb{R}^{n \times m}, \mathbf{I}_n \ \mathbf{X} = \mathbf{X}.$

Linear Systems of Equations

$$\mathbf{A} \mathbf{x} = \mathbf{b}$$
 expands to (Matlab format) $\mathbf{A}_{1:} \mathbf{x} = b_1$ $\mathbf{A}_{2:} \mathbf{x} = b_2$ \vdots $\mathbf{A}_{m:} \mathbf{x} = b_m$

Solving Systems of Equations

Span of a set of vectors $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$

How large space the vectors can represent.

- **1** A linear system of equations, $\mathbf{A} \mathbf{x} = \mathbf{b} = \sum_{i} \mathbf{A}_{:,i} x_{i}$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$, can have:
 - ▶ no solution: the span of $\{\mathbf{A}_{:,1}, \dots, \mathbf{A}_{:,n}\}$ is less than m.
 - ▶ many solutions: the span of $\{\mathbf{A}_{:,1}, \dots, \mathbf{A}_{:,n}\}$ is larger than m.
 - exactly one solution: the span of $\{\mathbf{A}_{:,1},\cdots,\mathbf{A}_{:,n}\}$ is equal to m.
 - meaning multiplication by the matrix is an invertible function.

Matrix Inversion

Matrix inversion:

$$A^{-1} A = I_n$$

2 Solving a system using an inversion:

$$\mathbf{A} \mathbf{x} = \mathbf{b}$$

$$\mathbf{A}^{-1} \mathbf{A} \mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$$

$$\mathbf{I}_{n} \mathbf{x} = \mathbf{x} = \mathbf{A}^{-1} \mathbf{b}$$

Numerically unstable, but useful for abstract analysis.

Invertibility

- Matrix cannot be inverted if
 - more rows than columns.
 - more columns than rows.
 - same number of rows and columns but with redundant rows / columns (linearly dependent, low rank).

Norms

- The norm of a vector is a functions f that measure how "large" a vector is.
- Similar to a distance between zero and the point represented by the vector.
 - $f(\mathbf{x}) = 0 \Rightarrow \mathbf{x} = 0.$
 - ► $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ (the triangle inequality).
 - $\forall \alpha \in \mathbb{R}, f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x}).$

Norms

• L^p norm

$$\|\mathbf{x}\|_{p} = \left(\sum_{i} |x_{i}|^{p}\right)^{1/p}$$

- Most popular norm: L^2 norm, p = 2.
- L^1 norm, p = 1, $|| \mathbf{x} ||_1 = \sum_i |x_i|$.
- Max norm: infinite p: $\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$.

Special Matrices and Vectors

Unit vector:

$$\|\mathbf{x}\|_2 = 1$$

Symmetric matrix:

$$\mathbf{A} = \mathbf{A}^T$$

Orthogonal matrix:

$$\mathbf{A}^T \mathbf{A} = \mathbf{A} \mathbf{A}^T = \mathbf{I}$$
 $\mathbf{A}^{-1} = \mathbf{A}^T$

Eigendecomposition

Eigenvector and eigenvalue of A:

$$\mathbf{A} \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

- v_i is an eigenvector of A.
- \triangleright λ_i is the corresponding eigenvalue.
- 2 Eigendecomposition of a matrix:

$$\mathbf{A} = \mathbf{V} \operatorname{diag}(\lambda) \mathbf{V}^{-1}$$

Severy real symmetric matrix has a real, orthogonal eigendecomposition:

Effect of Eigenvalues

$$\mathbf{A} = \mathbf{V} \operatorname{diag}(\lambda) \mathbf{V}^{-1}$$

Singular Value Decomposition

- Similar to eigendecomposition.
- More general; matrix need not be square.

$$A = UDV^T$$

• **U**, **V** are orthogonal matrices; **D** is a diagonal matrix.

Moore-Penrose Pseudoinverse

$$\mathbf{x} = \mathbf{A}^+ \mathbf{y}$$

- If the equation $\mathbf{A} \mathbf{x} = \mathbf{y}$ has:
 - exactly one solution: this is the same as the inverse.
 - ▶ no solution: this gives us the solution with the smallest error: $\mathbf{A}^+ \triangleq \arg\min_{\mathbf{A}} \|\mathbf{A}\mathbf{x} \mathbf{y}\|_2$.
 - many solutions: this gives us the solution with the smallest norm of x.

Computing the Pseudoinverse

• The SVD allows the computation of the pseudoinverse:

$$\mathbf{A} = \mathbf{V} \mathbf{D} \mathbf{U}^T \Rightarrow \mathbf{A}^+ = \mathbf{V} \mathbf{D}^+ \mathbf{U}^T$$

▶ **D**⁺ contains the reciprocal of non-zero entries of **D**.

Trace

$$\label{eq:Tr} {\sf Tr}({\bf A}\,{\bf B}\,{\bf C}) = {\sf Tr}({\bf C}\,{\bf A}\,{\bf B}) = {\sf Tr}({\bf B}\,{\bf C}\,{\bf A}) \quad \text{(rotation invariant)}$$

Derivative

1 The derivative of a matrix $\mathbf{A} \in \mathbb{R}^{n_1 \times n_2}$ w.r.t. a matrix $\mathbf{B} \in \mathbb{R}^{m_1 \times m_2}$ is a tensor **Z** of size $n_1 \times n_2 \times m_1 \times m_2$, with elements

$$\mathbf{Z}_{ijk\ell} = rac{\mathrm{d}\,\mathbf{A}_{ij}}{\mathrm{d}\,\mathbf{B}_{k\ell}}$$

- If **A** is a scalar, **B** is a vector of size m, $\frac{d \mathbf{A}}{d \mathbf{B}}$ is a vector of size m.
- ▶ If **A** is a scalar, **B** is a matrix of size $m_1 \times m_2$, $\frac{d\mathbf{A}}{d\mathbf{B}}$ is a matrix of size $m_1 \times m_2$.
- In deep learning, we usually face with the problem of calculating derivatives of an objective function (a scalar) w.r.t. a matrix/vector.