T.D. VIII - Intégration

I - Calculs d'intégrales

Exercice 1. (28) Déterminer une primitive des fonctions suivantes :

1.
$$f_1(x) = \frac{x^3 + 5x^2 - 4}{x^2}$$
.

2.
$$f_2(x) = \frac{8x^2}{(x^3+2)^3}$$
.

3.
$$f_3(x) = x\sqrt{1-2x^2}$$
.

4.
$$f_4(x) = (e^x + 1)^3 e^x$$

5.
$$f_5(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

2.
$$f_2(x) = \frac{8x^2}{(x^3+2)^3}$$
.
3. $f_3(x) = x\sqrt{1-2x^2}$.
4. $f_4(x) = (e^x + 1)^3 e^x$.
6. $f_6(x) = \frac{x^2}{\sqrt{5+x^3}}$.
7. $f_7(x) = \frac{\ln(x)}{x}$.
8. $f_8(x) = \frac{\ln^{27}(x)}{x}$.

7.
$$f_7(x) = \frac{\ln(x)}{x}$$

8.
$$f_8(x) = \frac{\ln^{27}(x)}{x}$$

Exercice 2. (Changements de variables, $\mathfrak{A}_{\mathfrak{S}}^{\mathfrak{S}}$) Déterminer une primitive des fonctions suivantes :

1.
$$f_1(x) = \frac{1}{e^x + 1}$$
.
 $\varphi : u \mapsto \ln(u), \frac{1}{u(u+1)} = \frac{a}{u} + \frac{b}{u+1}$.
2. $f_2(x) = \frac{1 - \sqrt{x}}{\sqrt{x}}$.
3. $f_3(x) = \frac{1}{2x \ln(x) + x}$.
 $\varphi : u \mapsto e^u$.
4. $f_4(x) = \frac{x^3}{\sqrt{x^2 + 2}}$.

2.
$$f_2(x) = \frac{1-\sqrt{x}}{\sqrt{x}}$$
. $\varphi: u \mapsto u^2$.

3.
$$f_3(x) = \frac{1}{2x \ln(x) + x}$$
. $\varphi : u \mapsto e^u$.

4.
$$f_4(x) = \frac{x^3}{\sqrt{x^2+2}}$$
. $\varphi: u \mapsto \sqrt{u-2}$.

Exercice 3. (Intégrations par parties, 🚓) Déterminer une primitive des fonctions suivantes:

1.
$$f_1(x) = x e^x$$
.

3.
$$f_3(x) = x^2 \ln(x)$$
.

2.
$$f_2(x) = x^2 e^x$$
.

Exercice 4. (\$\omega\$)

1. Montrer qu'il existe a, b réels tels que

$$\forall x \in [0,1], \frac{x}{(x+1)(x+2)} = \frac{a}{x+1} + \frac{b}{x+2}.$$

2. En déduire la valeur de $\int_0^1 \frac{x}{(x+1)(x+2)} dx$.

Exercice 5. (Fonction bêta) Pour tout $(p,q) \in \mathbb{N}^2$, on note $I_{p,q} = \int_{0}^{1} x^{p} (1-x)^{q} dx.$

1. Pour q non nul, déterminer une relation entre $I_{p,q}$ et $I_{p+1,q-1}$.

2. Exprimer la valeur de $I_{p,q}$ à l'aide de factorielles.

II - Inégalités

Exercice 6. (\mathfrak{S}) Montrer que $\frac{1}{3} \leqslant \int_{0}^{1} \frac{\mathrm{d}t}{1+t+t^{2}} \leqslant 1$.

Exercice 7. (**)

1. Montrer que, pour tout $k \ge 2$,

$$\int_{k-1}^{k} \ln(t) \, \mathrm{d}t \leqslant \ln(k) \leqslant \int_{k}^{k+1} \ln(t) \, \mathrm{d}t.$$

2. En déduire que, pour tout $n \ge 1$,

$$\int_{1}^{n} \ln(t) dt \leqslant \ln(n!) \leqslant \int_{1}^{n} \ln(t) dt + \ln(n).$$

3. En utilisant une primitive de ln, en déduire la limite de la suite de terme général $\frac{\ln(n!)}{n \ln(n)}$.

Exercice 8. (\mathscr{P}) Pour tout $x \in [0,1]$, on pose $f(x) = \int_{-\infty}^{x^2} \frac{\mathrm{d}t}{\ln(t)}$.

1. En utilisant la croissance du logarithme, montrer que la fonction φ est prolongeable par continuité en 0.

2. En utilisant la concavité du logarithme, montrer que

$$\forall x \in]0,1[, \forall t \in]x^2,1[, \frac{2\ln(x)}{x^2-1}(t-1) \le \ln(t) \le t-1.$$

3. Montrer que f est prolongeable par continuité en 1.

4. Montrer que f est dérivable sur]0,1[et calculer sa dérivée.

Exercice 9. Pour tout *n* entier naturel, on pose $I_n = \int_0^1 \ln(1+x^n) dx$.

- **1.** Montrer que, pour tout n entier naturel non nul, $0 \le I_n \le \ln(2)$.
- **2.** Étudier les variations de la suite (I_n) .
- 3. En déduire que la suite (I_n) converge.
- **4.** Montrer que : $\forall x \ge 0, 0 \le \ln(1+x) \le x$.
- 5. En déduire que $\lim_{n\to+\infty}I_n=0$.

Exercice 10. Pour tout n entier naturel non nul, on pose $I_n = \int_0^1 x^n \ln(1+x^2) dx$ et $J_n = \int_0^1 \frac{x^n}{1+x^2} dx$.

- **1. a)** Calculer J_1 .
 - **b)** Montrer que, pour tout n entier naturel non nul, $0 \le J_n \le \frac{1}{n+1}$.
 - c) En déduire que (J_n) converge et déterminer sa limite.
- 2. a) À l'aide d'une intégration par parties, montrer que :

$$\forall n \ge 1, I_n = \frac{\ln(2)}{n+1} - \frac{2}{n+1} J_{n+2}.$$

- **b)** Montrer que la suite (I_n) converge.
- c) Montrer que la suite (nI_n) converge et déterminer sa limite.

III - Intégrales généralisées

Exercice 11. (En comparant l'intégrande avec une fonction de référence, montrer que les intégrales suivantes convergent :

$$\mathbf{1.} \ \int_{-\infty}^{+\infty} \mathrm{e}^{-t^2} \ \mathrm{d}t.$$

$$3. \int_1^{+\infty} \frac{\ln t}{1+t^4} \, \mathrm{d}t.$$

$$2. \int_0^{+\infty} \sqrt{t} e^{-t} dt.$$

4.
$$\int_0^1 \frac{\ln t}{1 + t^4} \, \mathrm{d}t.$$

Exercice 12. (Étudier la convergence et, le cas échéant, calculer les intégrales suivantes :

1.
$$\int_0^1 x \ln^2(x) dx$$
.

2.
$$\int_0^1 \ln^2(t) dt$$
.

3.
$$\int_0^{+\infty} \frac{\mathrm{d}x}{(x+1)(x+2)}.$$
$$\frac{1}{(x+1)(x+2)} = \frac{a}{x+1} + \frac{b}{x+2}.$$

IV - Intégrales classiques

Exercice 13. (Expression intégrale de la factorielle, $\overset{\bullet}{\sim}$) Pour tout n entier naturel, on pose $I_n = \int_0^{+\infty} t^n e^{-t} dt$. Soit $n \in \mathbb{N}$.

- **1.** Calculer I_0 .
- **2.** Montrer que l'intégrale I_n converge.
- **3.** Montrer que $I_{n+1} = (n+1)I_n$.
- **4.** En déduire, pour tout n entier naturel, une expression simple de I_n .

Exercice 14. (Fonction Gamma d'Euler, \mathscr{P}) Pour tout réel x strictement positif, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- **1.** Soit x > 0.
 - a) Pour tout $t \in]0,1]$, rappeler la définition de t^{x-1} .
 - **b)** Déterminer un équivalent, lorsque $t \to 0$ de $t^{x-1} e^{-t}$.
 - c) En déduire que $\int_0^1 t^{x-1} e^{-t} dt$ converge.
 - d) Montrer qu'il existe un réel a tel que

$$\forall t \ge a, t^{x-1} e^{-t} \le e^{-t/2}.$$

- e) En déduire que $\int_a^{+\infty} t^{x-1} e^{-t} dt$ converge.
- **f**) En déduire que la fonction Γ est bien définie.
- **2.** En utilisant une intégration par parties sur le segment $[\varepsilon, M]$ puis en faisant tendre ε vers 0 et M vers $+\infty$, montrer que $\Gamma(x+1) = x\Gamma(x)$.
- **3.** En déduire, pour tout n entier naturel, la valeur de $\Gamma(n+1)$.