

MATERIA: Comunicaciones

NIVEL: Cuarto

DEPARTAMENTO INGENIERIA EN SISTEMAS DE INFORMACION

COMUNICACIONES

GUIA DE TRABAJOS PRACTICOS

AÑO 2021

TRABAJO PRÁCTICO Nº 6

MATERIA: Comunicaciones

NIVEL: Cuarto

Tratamiento de los errores en las redes de datos.

- 1. Indicar las principales causas de errores en las redes de datos.
- 2. Que políticas se emplean para el tratamiento de los errores en las redes de datos.
- 3. Como incide la corrección de errores en la calidad de servicios de las redes.
- 4. En una red de transmisión de datos se reciben 20 bits erróneos en 200.000 bits totales. Cuál es el BER?
- 5. La medición anterior se ha realizado sobre una LAN-ETHERNET. ¿Qué comportamiento puede esperarse de dicha red ?
- 6. Dado el siguiente mensaje a transmitir [M(x)] y teniendo como polinomio generador $G(x) = x^4 + x + 1$. Aplicar el método para detección de errores CRC determinando la información a transmitir.

M(x) = 10110101101

Repetir el procedimiento del lado del receptor. Extraer conclusiones.

- 7. Cite por lo menos cuatro protocolos que emplean para la detección de errores el CRC.
- 8. Cite por lo menos cuatro protocolos que emplean para la detección de errores el método de suma de verificación.
- 9. Cuando se emplean códigos correctores de errores, cite ejemplos.
- 10. Como se manifiesta el error en la redes de datos y como se mide?

Que es un Error en Teleinformatica?

Es toda alteración que hace que un MM recibido no sea una réplica del MM transmitido.

TIPOS DE ERRORES

Errores aislados o simples.

Errores en ráfagas.

Errores agrupados.

TIPOS DE ERRORES

Errores aislados: afectan a 1 solo bit c/vez y son independientes entre si.

Errores en ráfagas: afectan a varios bits consecutivos y ocurren en periódos indeterminados de tiempo.

Errores agrupados: ocurren en tandas sucesivas de cierta duración y que afectan a varios bits no necesariamente

PRINCIPALES CAUSAS DE ERRORES

POLITICAS P/ EL TRATAMIENTO DE ERRORES

- Ruido.
- Atenuación.
- Distorción.
- AB insuficiente.
- -T>C

- DETECCION
- CORRECCION

CALIDAD DE SERVICIO

BER = bits erróneos Rx / bits transmitidos

Ej: Red LAN $\Rightarrow 10^{-9}$; Red Telef $\Rightarrow 10^{-6}$

S/N (dB) \Rightarrow Normalmente para señales analógicas.

DETECCION Y CORRECCION DE ERRORES

Métodos de detección y corrección de errores

DETECCION- CONTROL DE PARIDAD - VCR

Paridad par e impar

ejemplos

Según cantidad de UNOS

Paridad par será 0, carácter resultante	0	01101101100
Paridad impar será 1, carácter resultante	1	01101101100

DETECCION- CONTROL DE PARIDAD- LCR

Ejemplo de control de paridad longitudinal paridad par

	Dato 1	Dato 2	Dato 3	Dato 4	Dato 5
Bit nº 1	1	1	0	1	О
Bit nº 2	1	1	0	1	1
Bit nº 3	1	1	0	1	О
Bit nº 4	О	О	0	0	1
Bit nº 5	0	0	0	1	О
Bit nº 6	1	0	1	1	1
Bit nº 7	0	0	1	1	0
Bit de paridad vertical	О	1	0	О	1

DETECCION- CONTROL DE PARIDAD- CICLICA

Prueba de paridad cíclica

Carácter transmitido: 010101 Generación de la paridad cíclica

1er Bit Paridad: 1ro, 3ro, 5to Bit

2do Bit Paridad: 2do, 4to, 6to Bit

DETECCION- CODIGOS POLINOMIALES

ALGORITMO: M(x) = 01001000100101

- 1. Polinomio: M(x) de grado n
- 2. Polinomio generador : G(x) de grado r
- 3. Polinomio auxiliar : X^r grado r (igual grado que G(x)
- 4. $M(x) \cdot X^r / G(x) = C(x) y R(x)$
- 5. T(x) = M(x) y R(x)

Lado Receptor:

- 1. M(x) y R(x) / G(x)
- 2. Si $R(x) = 0 \Rightarrow$ Se recibió sin Errores.

CORRECCIÓN

CORRECCION- RETRANSMISION

1RO DETECCIÓN (PARIDAD, CRC U OTROS METODOS)

2DO CORRECCIÓN ⇒ EL RECEPTOR SOLICITA AL TX LA RETRANSMION DEL MENSAJE, TANTAS VECES SEAN NECESARIAS HASTA QUE LO RECIBA S/ERRORES. PROBLEMA: el canal estaría permanentemente ocupado. Para Tx MM en claro.

CORRECCION- FEC (Corrección hacia Adelante)

1RO DETECCIÓN (PARIDAD, CRC U OTROS METODOS)

2DO CORRECCIÓN ⇒ Entre dos o más Estaciones.

Doble envío del Mensaje en Tiempo Diferido (*Diversidad en Tiempo*), o sea se envía DOS veces el MM en distintos intervalos de tiempo. El Rx tiene dos oportunidades de recibir correctamente el MM.

Problema: la redundancia en la Tx, se paga con un delay.

CORRECCION- ARQ (Req.Automático de Rep.)

1RO DETECCIÓN (PARIDAD, CRC U OTROS METODOS)

2DO CORRECCIÓN ⇒ Entre dos Estaciones.

Consiste en la repetición de bloques de datos, en forma similar a la retransmisión, excepto que este proceso se realiza hasta 32 veces, pasado ese número el equipo se resetea y se pierde la información. Problema: la redundancia en la Tx, se paga con un delay.

CORRECCION- CODIGOS AUTOC. - HAMMING

- d H ⇒ Es el número de bits en los que difieren dos secuencias. Comparar dos sec. bits de igual peso.
- d_{H min} ⇒ Es la menor distancia H en un código determinado.

Código 1

000 $d_{H min} = 3$

D2 C1

Código 2

000 011

110 101 $d_{H min} = 2$

D1 C0

CORRECCION- CODIGOS AUTOC. - HAMMING

Distancias de Hamming

tomadas para la secuencia correspondiente al símbolo B

Conjunto	Representa	Secuencia binaria	Distancia de Hamming
S ₁	В	0100001	-
S ₂	С	1100001	1
S_3	D	0010001	2 -
S ₄	E	1010001	3
S ₅	U	1010101	4

Detección y corrección de errores

en función del valor de H

Distancia de	Errores		
Hamming	Detección	Corrección	
1	no	no	
2	uno	no	
 3	dos	uno	
4	tres	uno	

UNIDAD TEMATICA NRO 6 - RESPUESTAS

- 1. Causas de Errores
 - Ruido.
 - Atenuación.
 - Distorción.
 - AB insuficiente.
 - T > C
- 2.
- DETECCION
- CORRECCION
- **3.** Cuanto mayor es la CORRECCION de errores detectados, más alta es la calidad de los servicos de las redes. Se mide en BER o S/N.

BER: Red LAN
$$\Rightarrow 10^{-9}$$
; Red Telef $\Rightarrow 10^{-6}$

4. BER = bits erróneos Rx / bits totales transmitidos

BER=
$$20/200.000 = 10^{-4}$$

- 5. La Red tiene una alta tasa de errores (10^{-4}) , se puede esperar una pérdida de paquetes de datos importante.
- 6. $M(x)=10110101101 \Rightarrow$

- M(x) =
$$x^{10} + 0x^9 + x^8 + x^7 + 0x^6 + x^5 + 0x^4 + x^3 + x^2 + 0x^1 + 1$$

$$-G(x) = x^4 + x^1 + 1 \Rightarrow 10011$$

- Auxiliar = x^4
- $M(x).X^r/G(x) = C(x) y R(x)$
- -10110101101 0000 / 10011 = C(x) v R(x)
- T(x) = M(x) y R(x)

M(x) Auxiliar

G(x)

Comprobación lado del Receptor:

- M(x) y R(x) / G(x)

Si $R(x) = todos ceros \Rightarrow Se recibio SIN ERRORES$

7. Los siguientes protocolos:

- a. PPP (Protocolo Punto a Punto): se emplea a nivel de capa de enlace (capa 2).
- b. ETHERNET: (Es un standard que se emplea en las redes LAN, para definir caracteristicas de cableado, señalización, formato de tramas, etc).
- c. HDLC(Control de Enlace de Alto Nivel): es un protocolo de comunicaciones en la capa de enlace.
- d. FRAME RELAY: es una tecnica de transmisión de comunicaciones mediante la conmutación de paquetes, permitiendo la Tx de tamaños variados de tramas de datos y de voz).
- f. **MPLS:** (Multiprotocolo de conmutacion de paquetes): es una tecnica de TX de comunicaciones de paquetes de distintos tamaños y de de facilidades.

8. Los siguientes protocolos:

- a. **TCP:** Protocolo de capa de transporte en el modelo capas OSI.
- b. **IP:** protocolo de INTERNET.
- c. **PDU**: protocolo de de Unidad de Datos: se utiliza para el armado de la informacion del cabezal de un paquete, en el modelo capas OSI.
- d. **ICMP** (Protocolo de control de mensajes en internet): Es utilizado para enviar mensajes de error e información operativa indicando, por ejemplo, que un host no puede ser localizado o que un servicio que se ha solicitado no está disponible.

- **9.** Se utilizan en tranmisiones muy particulares donde No se puede aplicar el metodo de retransmision del paquete dañado. Se emplea en transmisiones donde la información va ENCRIPTADA y no en CLARO. Ej: la información que se cursa entre terminales bancarias.
- **10.** Se manifiesta por la pérdida de paquetes. Se mide en porcentajes de paquetes perdidos en un determinado tiempo, lo podemos medir a traves del BER, o sea la tasa de bit error.