

Year 11 Mathematics-Specialist Test 6 - 2017

This test is Resource Free It contains 13 questions worth 65 marks in total

Time Allowed: 60 minutes

Question 1 5 marks

Use Proof by Exhaustion to prove p^2 is only a multiple of three if p is a multiple of 3.

Identifies 2 cases: multiple of 3 or not multiple of 3 – 1 mark

If
$$p = 3n$$
,

$$p^2 = (3n)^2 = 9n^2 = 3(3n^2)$$
 which is a multiple of 3

If
$$p = 3n + 1$$
,

$$p^2 = (3n+1)^2 = 9n^2 + 6n + 1$$
 which is not a multiple of 3

If
$$p = 3n + 2$$
,

$$p^2 = (3n+2)^2 = 9n^2 + 12n + 4$$
 which is not a multiple of 3

$$\therefore p^2$$
 is only a multiple of 3 if p is a multiple of 3

Question 2 1 mark

If m is divisible by six and n is divisible by 15, then which of the following statements might be false?

- a) $m \times n$ is divisible by 90
- b) $m \times n$ is divisible by 30
- c) $m \times n$ is divisible by 15
- d) m+n is divisible by 3
- e) m + n is divisible by 15

Question 3 5 marks

Prove by induction that $7^n - 4$ is divisible by 3 for all $n \in \mathbb{N}$.

- Step 1: When n = 1, 7 4 = 3: the statement is true for n = 1.
- Step 2 : Assume it is true when n = k. $ie. 7^k - 4$ is divisible by 3 for $k \in \mathbb{N}, 7^k - 4 = 3m, m \in \mathbb{N}$

Step 3: Prove true when n = k + 1.

$$7^{k+1} - 4 = 7^k \cdot 7 - 4$$

= $7(3m+4) - 4$
= $21m + 28 - 4$
= $21m + 24$
= $3(7m+8)$ which is a multiple of 3.

Step 4: The statement is true for n = k + 1 if it is true for n = k, and as it is true for n = 1, by the principles of mathematical induction $7^n - 4$ is divisible by 3, $n \in \mathbb{N}$

Consider the statement "If n is odd, then $n^2 - 1$ is divisible by eight".

a) Show using 3 examples it might be true.

Substitutes 3 odd numbers into statement ✓

b) Prove the statement to be true.

If
$$n$$
 is odd, $n = 2m + 1$, $m \in \mathbb{N}$

$$n^{2} - 1 = (2m + 1)^{2}$$

$$= 4m^{2} + 4m + 1 - 1$$

$$= 4m^{2} + 4m$$

$$= 4m(m + 1)$$

States that of m & m+1 must be even and can be written as 2p, so 4m(m+1) = 8pq which is a multiple of $8 \checkmark$

Let $n \in \mathbb{Z}$. Consider the statement "If n^3 is even, then n is even."

a) Write the contrapositive of this statement.

If *n* is odd, the n^3 is odd. \checkmark

b) Prove the contrapositive.

If
$$n$$
 is odd, $n = 2m + 1, m \in \mathbb{Z}$ \checkmark

$$n^3 = (2m + 1)^3$$

$$= 8m^3 + 12m^2 + 6m + 1$$

$$= 2(4m^3 + 6m^2 + 3m) + 1 \checkmark \checkmark$$

$$n^3 \text{ is odd.}$$

c) Hence, prove by contradiction that $\sqrt[3]{6}$ is irrational.

Assume $\sqrt[3]{6}$ is rational.

 \checkmark

 $\sqrt[3]{6}$ can be written as $\frac{a}{b}$, $a,b \in \mathbb{Z}, b \neq 0 \& a \& b$ are coprime

 \checkmark

$$\sqrt[3]{6} = \frac{a}{b}$$

$$6 = \frac{a^3}{b^3} \Longrightarrow 6b^3 = a^3$$

 a^3 is a multiple of 6 and therefore even, ie $a=2k,c\in\mathbb{Z}$

$$(2k)^3 = 8k^3 = 6b^3$$

$$4k^3 = 3b^3$$

 $3b^3$ is even as $4k^3$ is even.

If $3b^3$ is even, b^3 is even and therefore b is even.

√

We see that a and b are both even, which contradicts our original assumption that a and b are coprime. \checkmark

Thus $\sqrt[3]{6}$ is irrational.

Question 6 2, 4 - 6 marks

a) Prove that $0.15\overline{537}$ is rational.

b) Prove that 3.6 is rational by first expressing it as an infinite sum.

$$3.\dot{6} = 3 + 0.6 + 0.06 + 0.006 + ...$$

Identifies infinite + $\frac{6}{1000}$... \checkmark sum

Identifies
$$a \& \frac{r}{6}$$

$$\frac{6}{10} + \frac{6}{100} + \frac{6}{1000} \dots \text{ is a geometric series with } a = \frac{6}{10} \text{ and } r = \frac{1}{10}$$

$$S_{\infty} = \frac{a}{1-r}$$

$$= \frac{6}{10} \div \frac{9}{10}$$
Determines S_{∞}

$$= \frac{2}{3}$$

$$3.\dot{6} = 3 + \frac{2}{3}$$

$$= \frac{11}{3}$$
Calculates
$$\checkmark \text{ correct fraction}$$

Question 7 1,1, 2 - 4 marks

Given z = -11 + 7i state

a) Re(z)

b) Im(z)

-11

- 7
- c) Evaluate $1+i+i^6-i^{11}+i^{16}+i^5$.

$$1+i+i^{2}-i^{3}+1+i$$

$$=1+i-1+i+1+i$$

$$=1+3i$$

Question 8 1, 1, 2, 1 - 5 marks

Given that z = 4 + 3i, express in the form a + bi.

a) \overline{z}

b) $z + \overline{z}$

4 - 3i

4 + 3i + 4 - 3i = 8

c) $z\overline{z}$

$$(4+3i)(4-3i)$$

$$=16-9i^{2} \qquad \checkmark$$

$$=25 \qquad \checkmark$$

d) $\frac{1}{z}$ $\frac{1}{4-3i} \times \frac{(4+3i)}{(4+3i)}$ $= \frac{4+3i}{25}$ $= \frac{4}{25} + \frac{3}{25}i$

or (0.16 + 0.12i)

Find the complex number, w, formed when z = 3 - 5i is rotated on the Argand diagram by

- a) 180° clockwise
 - -3 + 5i

- b) 270° anticlockwise
 - -5 3*i*

Question 10 1, 1, 2, 2 - 6 marks

Consider the Argand diagram shown.

a) State the complex number represented by z.

-4 + 3i

- b) Show and label on the diagram the location of \bar{z}
- c) Show how to determine the value of the following expressions on the diagram given.State the value of each.

ii) $z + \overline{z}$

-8

iv) $z-\overline{z}$

6i

Question 11 1,3, 3 - 7 marks

a) Solve for
$$x$$
 if $x^2 = -81$

$$x = \pm \sqrt{-1 \times 81}$$

$$= \pm 9i$$

b) Find the values of x and y in w = x + yi if:

i)
$$w\overline{w} = 13 \text{ and } w + \overline{w} = -6.$$

 $(x + yi) + (x - yi) = -6$
 $2x = -6$
 $x = -3$
 $(x + yi)(x - yi) = 13$
 $x^2 - y^2i^2 = 13$
 $y = \pm 2$

ii)
$$5w-7\overline{w} = 14 + 24i$$

 $5(x+yi)-7(x-yi) = 14 + 24i$ \checkmark
 $-2x = 14$
 $x = -7$ \checkmark
 $5y+7y=24$
 $y=2$ \checkmark

Question 12 4 marks

If one of the solutions to the equation $z^2 + bz + c = 0$ is -6 + i, find the values of b and c.

Otheretifies both
$$4c^2 - i$$
 or $4c^2 - i$ or $4c^2 - i$

a) Find the four roots of $f(x) = (4x^2 + 9)(x^2 - 6x + 34)$, giving your answers in the form x = a + bi, where a and b are real.

$$4x^{2} = -9$$
 or $x^{2} - 6x + 34 = 0$
 $x^{2} = -\frac{9}{4}$ $(x-3)^{2} + 25 = 0$
 $x = \pm \frac{3}{2}i$ $x - 3 = \pm 5i$
 $x = 3 \pm 5i$

b) Show these four roots on a single Argand diagram.

