Gradient Descent Optimisation of a Bi-Variate Function

Sohan Arun

dept. Computer Science Blekinge Institute of Technology Karlskrona, Sweden soar24@student.bth.se

Abstract—This study examines how gradient descent navigates the surface of a two-variable function to reach its local minimum. Through the derivation of exact closed-form gradients, a Pythonbased gradient-descent algorithm is implemented, starting at random point (1.0,1.0) with a learning rate of 0.1. The optimizer converges in only 71 iterations to the point $(x^{\star},y^{\star})=(-1.088162,0.544077)$, yielding $f(x^{\star},y^{\star})=-2.280710$. Convergence behaviour is analysed, the impact of learning-rate and tolerance selection is examined, and the optimization trajectory is showcased via a three-dimensional surface plot.

Index Terms—Gradient descent, non-linear optimisation, Python

I. PROBLEM FORMULATION

The study addresses the optimisation of the two-variable function

$$f(x,y) = x^2 + y^2 + x(y+2) + \cos(3x), \tag{1}$$

with the following four objectives:

- 1) Derive analytic expressions for the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
- 2) Implement a straightforward gradient-descent algorithm that uses these derivatives to iteratively update the pair (x,y) toward a stationary point.
- 3) Demonstrate convergence to the global minimum, reporting both its coordinates (x^*, y^*) and the corresponding function value $f(x^*, y^*)$.
- 4) Visualise the optimisation trajectory on the surface of f(x, y).

II. ANALYTIC DERIVATION OF THE GRADIENT

The first-order partial derivatives of the objective function in (1) are

$$\frac{\partial f}{\partial x} = 2x + y + 2 - 3\sin(3x),\tag{2}$$

$$\frac{\partial f}{\partial y} = x + 2y. \tag{3}$$

Each expression was confirmed symbolically using SymPy.

III. GRADIENT DESCENT IMPLEMENTATION

The analytic gradients from (2)–(3) drive the gradient-descent routine. The algorithm appears in Algorithm III-A, followed by hyper-parameters and stopping criterion.

A. Pseudocode

Require: initial point (x_0, y_0) , step size η , tolerance ε , maximum iterations K_{\max}

Ensure: final iterate (x_K, y_K) and trajectory $\{(x_k, y_k)\}_{k=0}^K$

1: **Initialisation:**
$$x \leftarrow x_0, \ y \leftarrow y_0, \ k \leftarrow 0$$

2: for
$$k=0$$
 to $K_{\max}-1$ do

3: compute gradient
$$(\partial f/\partial x, \partial f/\partial y)$$
 at (x, y)

4:
$$(x', y') \leftarrow (x, y) - \eta \nabla f(x, y)$$

5:
$$\Delta \leftarrow \|(x', y') - (x, y)\|_2$$

6: if
$$\Delta < \varepsilon$$
 then

9:
$$x \leftarrow x', \ y \leftarrow y'$$

11: **return**
$$(x,y)$$
 and trajectory

B. Hyper-Parameters and Stopping Criterion

The following hyper-parameters are specified:

- Step size: $\eta = 0.1$
- Tolerance: $\varepsilon = 10^{-6}$
- Initial point: $(x_0, y_0) = (1, 1)$
- Maximum iterations: $K_{\rm max} = 1000$

Convergence is declared when $||(x_{k+1}, y_{k+1}) - (x_k, y_k)||_2 < \varepsilon$.

IV. RESULTS

Experiments were conducted with a fixed initial guess and iteration budget:

$$(x_0, y_0) = (1, 1), \quad K_{\text{max}} = 1000.$$

The learning rate η and the tolerance ε were systematically varied.

TABLE I
GRADIENT DESCENT HYPERPARAMETERS AND OUTCOMES

LR	tol	Conv.	\mathbf{x}^*	\mathbf{y}^*	$\mathbf{f}(\mathbf{x}^*, \mathbf{y}^*)$
0.10	10^{-6}	71	-1.088162	0.544077	-2.280710
0.05	10^{-6}	145	0.605942	-0.302963	1.242733
0.01	10^{-6}	628	0.605924	-0.302916	1.242733
0.01	10^{-3}	201	0.577581	-0.248220	1.245768

The optimisation trajectory obtained with $\eta=0.10$ and $\varepsilon=10^{-6}$ (convergence in 71 iterations) is shown in Figure 1.

Fig. 1. Gradient descent path on the surface of f(x, y).

V. DISCUSSION

Table I reveals two clear trends: sensitivity to η and dependence on $\varepsilon.$

- Learning rate η . $\eta=0.10$ reaches the global minimiser in 71 iterations. Smaller η (0.05 or 0.01) more than doubles the iterations and becomes trapped in local basins, never reaching $f^*<0$.
- Tolerance ε . For $\eta=0.01$, relaxing ε from 10^{-6} to 10^{-3} cuts iterations from 628 to 201 but slightly degrades the final objective.

A balance of large η and small ε is required for both speed and precision. Adaptive or momentum-based updates could improve robustness in this non-convex landscape.

VI. CONCLUSION

Convergence to the global minimum of f(x,y) is achievable using plain gradient descent when η is sufficiently large and ε sufficiently small. A setting of $\eta=0.10,\,\varepsilon=10^{-6}$ converged in 71 iterations to $(x^\star,y^\star)=(-1.088162,0.544077)$ with $f^\star=-2.280710$.