ΑΠΟΦΑΣΙΣΙΜΕΣ κ ΑΠΟΔΕΚΤΕΣ ΓΛΩΣΣΕΣ www.psounis.gr

ΘΕΩΡΗΜΑ: Έστω $L_1 \leq L_2$ (Υπάρχει αναγωγή από την L_1 στην L_2). Τότε ισχύουν τα εξής:

- Aν η L_2 είναι Turing-Αποφασίσιμη, τότε και η L_1 είναι Turing-Αποφασίσιμη 1.
- Αν η L_1 δεν είναι Turing-Αποφασίσιμη, τότε και η L_2 δεν είναι Turing-Αποφασίσιμη 2.
- Aν η L_2 είναι Turing-Αποδεκτή, τότε και η L_1 είναι Turing-Αποδεκτή
- Aν η L_1 είναι μη Turing-Αποδεκτή, τότε και η L_2 είναι μη Turing-Αποδεκτή

Απόδειξη: Γνωστή μη επιλύσιμη γλώσσα: $L_1 = \{ \langle M, w \rangle | H M με τερματίζει$ με είσοδο w} Αγνωστή μη επιλύσιμη γλώσσα: $L_2 =$ $\{< M, w, q > | H M με είσοδο w$ περνάει από την κατάσταση q} Έστω ότι η γλώσσα L_2 είναι αποφασίσιμη, άρα υπάρχει μια μηχανή Turing που την standard αποφασίζει, εστω Μ2. Κατασκευάζουμε μια μηχανή Turing M₁ που αποφασίζει τη γλώσσα L_1 ως εξής: Η Μ₁ με είσοδο <Μ,w> θέτει Μ'=Μ, w'=w και Περιγραφή του q=τελική κατάσταση του Μ. Έπειτα περνάει την μετασχηματισμού είσοδο <Μ',w',q> στη μηχανή Μ₂ 1. Αν η M₂ απαντήσει NAI, τότε η Μ περνάει από την τελική YES στο ερώτημα του αγνωστού κατάσταση h, με είσοδο w, άρα η Μ τερματίζει με είσοδο w, YES στο ερώτημα του γνωστού θέτουμε τη Μ1 να απαντήσει ΝΑΙ. 2. Αν η Μ₂ απαντήσει ΟΧΙ, τότε η Μ δεν περνάει από την τελική ΝΟ στο ερώτημα του αγνωστού κατάσταση h, με είσοδο w, άρα η Μ δεν τερματίζει με είσοδο w, ΝΟ στο ερώτημα του γνωστού θέτουμε τη Μ1 να απαντήσει ΟΧΙ. Κατασκευάσαμε μια Μ.Τ. που αποφασίζει την standard L₁. Άτοπο. Άρα η L₂ δεν είναι αποφασίσιμη