The multiplicites of zeros of $\zeta(s)$ and its values over short intervals

Aleksandar Ivić

Serbian Academy of Arts and Sciences, Belgrade

A. A. Karatsuba's 80th Birthday Conference in Number Theory and Applications

22-27.05.2015, Moscow, Russia

Professor A.A. Karatsuba (1937 – 2008), photo from Oberwolfach (1993), taken by Yoichi Motohashi

Let $r=m(\rho)$ ($\geqslant 1$) denote the multiplicity of the complex zero $\rho=\beta+i\gamma$ of the Riemann zeta-function $\zeta(s)$. A zero ρ is simple if $\underline{m(\rho)}=1$. One may assume $\frac{1}{2}\leqslant \beta<1, \gamma>0$ since $\zeta(s)\neq 0$ for $\Re s\geqslant 1$, $\overline{\zeta(s)}=\zeta(\overline{s})$ and $\zeta(s)=\chi(s)\zeta(1-s),\ \chi(s)=\frac{\Gamma(\frac{1}{2}(1-s))}{\Gamma(\frac{1}{2}s)}\pi^{s-1/2}$ (the functional equation).

Let $r=m(\rho)$ ($\geqslant 1$) denote the multiplicity of the complex zero $\rho=\beta+i\gamma$ of the Riemann zeta-function $\zeta(s)$. A zero ρ is simple if $\underline{m(\rho)}=1$. One may assume $\frac{1}{2}\leqslant \beta<1, \gamma>0$ since $\zeta(s)\neq 0$ for $\Re s\geqslant 1$, $\overline{\zeta(s)}=\zeta(\overline{s})$ and $\zeta(s)=\chi(s)\zeta(1-s)$, $\chi(s)=\frac{\Gamma(\frac{1}{2}(1-s))}{\Gamma(\frac{1}{6}s)}\pi^{s-1/2}$ (the functional equation).

This means that $\zeta(\rho) = \zeta'(\rho) = \ldots = \zeta^{(r-1)}(\rho) = 0$, but $\zeta^{(r)}(\rho) \neq 0$. It implies that $\zeta(s+\rho)s^{-r}$ is regular in a neighborhood of the point s=0.

Let $r=m(\rho)$ ($\geqslant 1$) denote the multiplicity of the complex zero $\rho=\beta+i\gamma$ of the Riemann zeta-function $\zeta(s)$. A zero ρ is simple if $\underline{m(\rho)}=1$. One may assume $\frac{1}{2}\leqslant \beta<1, \gamma>0$ since $\zeta(s)\neq 0$ for $\Re s\geqslant 1$, $\overline{\zeta(s)}=\zeta(\overline{s})$ and $\zeta(s)=\chi(s)\zeta(1-s)$, $\chi(s)=\frac{\Gamma(\frac{1}{2}(1-s))}{\Gamma(\frac{1}{2}s)}\pi^{s-1/2}$ (the functional equation).

This means that $\zeta(\rho) = \zeta'(\rho) = \ldots = \zeta^{(r-1)}(\rho) = 0$, but $\zeta^{(r)}(\rho) \neq 0$. It implies that $\zeta(s+\rho)s^{-r}$ is regular in a neighborhood of the point s=0.

A very strong conjecture is that all the zeros ρ are simple, and this is true for all known zeros. The conjecture seems to be independent of the famous, yet unproved Riemann Hypothesis (RH), that $\Re \rho = 1/2$ ($\forall \rho$).

Let $r=m(\rho)$ ($\geqslant 1$) denote the multiplicity of the complex zero $\rho=\beta+i\gamma$ of the Riemann zeta-function $\zeta(s)$. A zero ρ is simple if $\underline{m(\rho)}=1$. One may assume $\frac{1}{2}\leqslant \beta<1, \gamma>0$ since $\zeta(s)\neq 0$ for $\Re s\geqslant 1$, $\overline{\zeta(s)}=\zeta(\overline{s})$ and $\zeta(s)=\chi(s)\zeta(1-s)$, $\chi(s)=\frac{\Gamma(\frac{1}{2}(1-s))}{\Gamma(\frac{1}{2}s)}\pi^{s-1/2}$ (the functional equation).

This means that $\zeta(\rho) = \zeta'(\rho) = \ldots = \zeta^{(r-1)}(\rho) = 0$, but $\zeta^{(r)}(\rho) \neq 0$. It implies that $\zeta(s+\rho)s^{-r}$ is regular in a neighborhood of the point s=0.

A very strong conjecture is that all the zeros ρ are simple, and this is true for all known zeros. The conjecture seems to be independent of the famous, yet unproved Riemann Hypothesis (RH), that $\Re \rho = 1/2 \ (\forall \rho)$.

Namely the simplicity of zeros and the RH seem to be two statements independent of one another. Both could be **true**, or **false**, or **one true** and the **other one false**.

$$m(\rho) \ll 1 \qquad (\forall \rho),$$

meaning that all multiplicities are bounded by some constant, and

$$m(\rho) \ll 1 \qquad (\forall \rho),$$

meaning that all multiplicities are bounded by some constant, and

$$m(\rho)$$
 is unbounded as $|\gamma| \to \infty$.

$$m(\rho) \ll 1 \quad (\forall \rho),$$

meaning that all multiplicities are bounded by some constant, and

$$m(\rho)$$
 is unbounded as $|\gamma| \to \infty$.

He also says that the universality of $\zeta(s)$ (S.M. Voronin, 1975) should include the last conjecture, but that all these "are merely surmises".

$$N_j(T) \leqslant C_1 N(T) e^{-C_j}$$
 $(j \geqslant 1; C, C_1 > 0; T \geqslant T_0 > 0).$

$$N_j(T) \leqslant C_1 N(T) e^{-Cj}$$
 $(j \geqslant 1; C, C_1 > 0; T \geqslant T_0 > 0).$

N(T) denotes the number of complex zeros ρ of $\zeta(s)$ with $0 < \Im \rho \leqslant T$ (multiplicities counted), while $N_j(T)$ denotes those zeros counted by N(T) whose multiplicities are j, where j is not necessarily fixed.

$$N_j(T) \leqslant C_1 N(T) e^{-Cj}$$
 $(j \geqslant 1; C, C_1 > 0; T \geqslant T_0 > 0).$

N(T) denotes the number of complex zeros ρ of $\zeta(s)$ with $0 < \Im \rho \leqslant T$ (multiplicities counted), while $N_j(T)$ denotes those zeros counted by N(T) whose multiplicities are j, where j is not necessarily fixed.

M. Korolev (2006) obtained explicit numerical values for the constants C, C_1 .

$$N_j(T) \leqslant C_1 N(T) e^{-Cj}$$
 $(j \geqslant 1; C, C_1 > 0; T \geqslant T_0 > 0).$

N(T) denotes the number of complex zeros ρ of $\zeta(s)$ with $0 < \Im \rho \leqslant T$ (multiplicities counted), while $N_j(T)$ denotes those zeros counted by N(T) whose multiplicities are j, where j is not necessarily fixed.

M. Korolev (2006) obtained explicit numerical values for the constants C, C_1 .

It seems plausible that, for any given $j \geqslant 2$, almost all zeros are simple, namely

$$N_j(T) = o(N(T)) \qquad (T \to \infty).$$

It follows when $j \to \infty$, but, in general, this is not known yet.

Namely D.R. Heath-Brown (1979) showed unconditionally, by modifying A. Selberg's classical zero-detection method (1942), that

Namely D.R. Heath-Brown (1979) showed unconditionally, by modifying A. Selberg's classical zero-detection method (1942), that

$$N_1(T) \gg N(T)$$
.

Namely D.R. Heath-Brown (1979) showed unconditionally, by modifying A. Selberg's classical zero-detection method (1942), that

$$N_1(T) \gg N(T)$$
.

The value of the \gg constant is at least 0.34. In fact, his proof shows that

$$N_s(T) \gg N(T)$$
.

Namely D.R. Heath-Brown (1979) showed unconditionally, by modifying A. Selberg's classical zero-detection method (1942), that

$$N_1(T) \gg N(T)$$
.

The value of the \gg constant is at least 0.34. In fact, his proof shows that

$$N_s(T) \gg N(T)$$
.

Selberg was the first to show that a positive proportion of zeros lies on the critical line $\Re s = \frac{1}{2}$.

Namely D.R. Heath-Brown (1979) showed unconditionally, by modifying A. Selberg's classical zero-detection method (1942), that

$$N_1(T) \gg N(T)$$
.

The value of the \gg constant is at least 0.34. In fact, his proof shows that

$$N_s(T) \gg N(T)$$
.

Selberg was the first to show that a positive proportion of zeros lies on the critical line $\Re s = \frac{1}{2}$.

Here $N_s(T)$ denotes the number of simple zeta-zeros of the form $\rho = 1/2 + i\gamma$, which are counted by N(T).

There is a connection between multiplicities of zeta-zeros and the integral of $\zeta(s)$ over "very short intervals", namely lower bounds of the form (1)

$$\int_{\delta}^{2\delta} |\zeta(\beta+i\gamma+i\alpha)|^k d\alpha \geqslant \ell = \ell(\gamma,\delta,k) \quad (0<\delta<\frac{1}{4},k\in\mathbb{N},\gamma\geqslant\gamma_0>0).$$

There is a connection between multiplicities of zeta-zeros and the integral of $\zeta(s)$ over "very short intervals", namely lower bounds of the form $(1)_{2s}$

$$\int_{\delta}^{2\delta} |\zeta(\beta+i\gamma+i\alpha)|^k d\alpha \geqslant \ell = \ell(\gamma,\delta,k) \quad (0<\delta<\frac{1}{4},k\in\mathbb{N},\gamma\geqslant\gamma_0>0).$$

For fixed β such that $\beta \geqslant \frac{1}{2}$, let \mathcal{D} be the rectangle with vertices

$$^{1}/_{4}-eta\pm i\log^{2}\gamma,\ 2\pm i\log^{2}\gamma,\ \zeta(
ho)=0,\
ho=eta+i\gamma\ (\gamma\geqslant\gamma_{0}>0),$$

There is a connection between multiplicities of zeta-zeros and the integral of $\zeta(s)$ over "very short intervals", namely lower bounds of the form $\begin{pmatrix} 1 \end{pmatrix}_{2s}$

$$\int_{\delta}^{2\delta} |\zeta(\beta+i\gamma+i\alpha)|^k d\alpha \geqslant \ell = \ell(\gamma,\delta,k) \quad (0<\delta<\frac{1}{4},k\in\mathbb{N},\gamma\geqslant\gamma_0>0).$$

For fixed β such that $\beta \geqslant \frac{1}{2}$, let \mathcal{D} be the rectangle with vertices

$$^{1}/_{4}-\beta\pm i\log^{2}\gamma$$
, $2\pm i\log^{2}\gamma$, $\zeta(\rho)=0$, $\rho=\beta+i\gamma$ ($\gamma\geqslant\gamma_{0}>0$),

and let α be a parameter for which $0 < \alpha \le 1$. By the residue theorem

There is a connection between multiplicities of zeta-zeros and the integral of $\zeta(s)$ over "very short intervals", namely lower bounds of the form $(1)_{2s}$

$$\int_{\delta}^{2\delta} |\zeta(\beta+i\gamma+i\alpha)|^k d\alpha \geqslant \ell = \ell(\gamma,\delta,k) \quad (0<\delta<\frac{1}{4},k\in\mathbb{N},\gamma\geqslant\gamma_0>0).$$

For fixed β such that $\beta \geqslant \frac{1}{2}$, let \mathcal{D} be the rectangle with vertices

$$^{1}/_{4}-\beta\pm i\log^{2}\gamma,\ 2\pm i\log^{2}\gamma,\ \zeta(\rho)=0,\ \rho=\beta+i\gamma\ (\gamma\geqslant\gamma_{0}>0),$$

and let α be a parameter for which $0 < \alpha \leqslant 1$. By the residue theorem

$$\frac{\zeta(\beta+i\gamma+i\alpha)}{(i\alpha)^r} = \frac{1}{2\pi i} \int_{\mathcal{D}} \Gamma(s-i\alpha) \frac{\zeta(s+\rho)}{s^r} \, \mathrm{d}s.$$

There is a connection between multiplicities of zeta-zeros and the integral of $\zeta(s)$ over "very short intervals", namely lower bounds of the form (1)

$$\int_{\delta}^{2\delta} |\zeta(\beta+i\gamma+i\alpha)|^k d\alpha \geqslant \ell = \ell(\gamma,\delta,k) \quad (0<\delta<\frac{1}{4},k\in\mathbb{N},\gamma\geqslant\gamma_0>0).$$

For fixed β such that $\beta \geqslant \frac{1}{2}$, let \mathcal{D} be the rectangle with vertices

$$^{1}/_{4}-eta\pm i\log^{2}\gamma,\; 2\pm i\log^{2}\gamma,\; \zeta(
ho)=0,\;
ho=eta+i\gamma\; (\gamma\geqslant\gamma_{0}>0),$$

and let α be a parameter for which $0 < \alpha \leqslant 1$. By the residue theorem

$$\frac{\zeta(\beta+i\gamma+i\alpha)}{(i\alpha)^r}=\frac{1}{2\pi i}\int_{\mathcal{D}}\Gamma(s-i\alpha)\frac{\zeta(s+\rho)}{s^r}\,\mathrm{d}s.$$

Key fact: Since ρ is a zero of $\zeta(s)$ of multiplicity r, then the function $\zeta(s+\rho)s^{-r}$ is regular at s=0. Its only pole in \mathcal{D} is $s=i\alpha$.

$$\zeta(\beta+i\gamma+i\alpha)\ll\alpha^r\left(\gamma(\beta-\frac{1}{4})^{-r}+2^{-r}\right)\ll\alpha^r\gamma(\beta-\frac{1}{4})^{-r}.$$

$$\zeta(\beta+i\gamma+i\alpha)\ll \alpha^r\left(\gamma(\beta-\frac{1}{4})^{-r}+2^{-r}\right)\ll \alpha^r\gamma(\beta-\frac{1}{4})^{-r}.$$

Integrating over α from δ to $2\delta,$ and taking logarithms we obtain

$$\zeta(\beta+i\gamma+i\alpha)\ll \alpha^r\left(\gamma(\beta-\frac{1}{4})^{-r}+2^{-r}\right)\ll \alpha^r\gamma(\beta-\frac{1}{4})^{-r}.$$

Integrating over α from δ to 2δ , and taking logarithms we obtain THEOREM 1. If $\beta \geqslant \frac{1}{2}$, $\gamma > \gamma_0 > 0$, $0 < \delta < 1/8$, $k \in \mathbb{N}$, then with the notation introduced above we have

(2)
$$m(\beta + i\gamma) = r \leqslant \frac{1}{\log\left(\frac{1}{8\delta}\right)} \left(\log \gamma - \frac{1}{k}\log \ell + O(1)\right) + O(1).$$

$$\zeta(\beta+i\gamma+i\alpha)\ll \alpha^r\left(\gamma(\beta-\frac{1}{4})^{-r}+2^{-r}\right)\ll \alpha^r\gamma(\beta-\frac{1}{4})^{-r}.$$

Integrating over α from δ to 2δ , and taking logarithms we obtain THEOREM 1. If $\beta \geqslant \frac{1}{2}$, $\gamma > \gamma_0 > 0$, $0 < \delta < 1/8$, $k \in \mathbb{N}$, then with the notation introduced above we have

(2)
$$m(\beta + i\gamma) = r \leqslant \frac{1}{\log\left(\frac{1}{8\delta}\right)} \left(\log \gamma - \frac{1}{k}\log \ell + O(1)\right) + O(1).$$

We would like to let $\delta \rightarrow 0+$ in (2) and obtain

(3)
$$m(\beta + i\gamma) = o(\log \gamma) \quad (\beta \geqslant \frac{1}{2}, \ \gamma \to \infty),$$

which is not yet known **unconditionally** in the **general case**, namely for the whole range $\frac{1}{2} \leq \beta < 1$.

$$\zeta(\beta+i\gamma+i\alpha)\ll \alpha^r\left(\gamma(\beta-\frac{1}{4})^{-r}+2^{-r}\right)\ll \alpha^r\gamma(\beta-\frac{1}{4})^{-r}.$$

Integrating over α from δ to 2δ , and taking logarithms we obtain THEOREM 1. If $\beta \geqslant \frac{1}{2}$, $\gamma > \gamma_0 > 0$, $0 < \delta < 1/8$, $k \in \mathbb{N}$, then with the notation introduced above we have

(2)
$$m(\beta + i\gamma) = r \leqslant \frac{1}{\log\left(\frac{1}{8\delta}\right)} \left(\log \gamma - \frac{1}{k}\log \ell + O(1)\right) + O(1).$$

We would like to let $\delta \to 0+$ in (2) and obtain

(3)
$$m(\beta + i\gamma) = o(\log \gamma) \qquad (\beta \geqslant \frac{1}{2}, \ \gamma \to \infty),$$

which is not yet known unconditionally in the general case, namely for the whole range $\frac{1}{2}\leqslant\beta<1.$

Obtaining (3) from (2) (or in any other way!) seems very difficult.

It is well known that RH implies

$$\zeta(\frac{1}{2}+it) \ll \exp\left(C\frac{\log t}{\log\log t}\right) \qquad (C>0).$$

It is well known that RH implies

$$\zeta(\frac{1}{2}+it) \ll \exp\left(C\frac{\log t}{\log\log t}\right)$$
 $(C>0).$

Thus the RH implies the LH. It is not known whether the converse is true!

It is well known that RH implies

$$\zeta(\frac{1}{2}+it) \ll \exp\left(C\frac{\log t}{\log\log t}\right)$$
 $(C>0).$

Thus the RH implies the LH. It is not known whether the converse is true! On the RH one has a small improvement of (3), namely

(4)
$$m(\beta + i\gamma) \ll \frac{\log \gamma}{\log \log \gamma}.$$

It is well known that RH implies

$$\zeta(\frac{1}{2}+it) \ll \exp\left(C\frac{\log t}{\log\log t}\right) \qquad (C>0).$$

Thus the RH implies the LH. It is not known whether the converse is true! On the RH one has a small improvement of (3), namely

(4)
$$m(\beta + i\gamma) \ll \frac{\log \gamma}{\log \log \gamma}.$$

H.L. Montgomery (1977) proved (on RH) that at least 2/3 of the zeros ρ are simple, while H.M. Bui and D.R. Heath-Brown (2013) improved (also on RH) the constant 2/3 to $19/27 = 0.\overline{703}$.

The classical Riemann-von Mangoldt formula says that

$$N(T) = \frac{T}{2\pi} \log \left(\frac{T}{2\pi} \right) - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T} \right).$$

The classical Riemann-von Mangoldt formula says that

$$N(T) = \frac{T}{2\pi} \log \left(\frac{T}{2\pi} \right) - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T} \right).$$

Here N(T) is the number of zeta zeros with $0 < \gamma \le T$ and we have $S(T) = \frac{1}{\pi} \arg \zeta(\frac{1}{2} + iT)$. This function regulates the **finer behavior** of $\zeta(s)$. The term O(1/T) is a smooth function of T.

The classical Riemann-von Mangoldt formula says that

$$N(T) = \frac{T}{2\pi} \log \left(\frac{T}{2\pi} \right) - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T} \right).$$

Here N(T) is the number of zeta zeros with $0 < \gamma \le T$ and we have $S(T) = \frac{1}{\pi} \arg \zeta(\frac{1}{2} + iT)$. This function regulates the **finer behavior** of $\zeta(s)$. The term O(1/T) is a smooth function of T.

If T is the ordinate of a zeta-zero, then one defines S(T)=S(T+0). Here $\arg\zeta(\frac{1}{2}+iT)$ is obtained by continuous variation along the segments joining the points $2,2+iT,\frac{1}{2}+iT$, starting with the value 0.

The classical Riemann-von Mangoldt formula says that

$$N(T) = rac{T}{2\pi} \log \left(rac{T}{2\pi}
ight) - rac{T}{2\pi} + rac{7}{8} + S(T) + O\left(rac{1}{T}
ight).$$

Here N(T) is the number of zeta zeros with $0 < \gamma \le T$ and we have $S(T) = \frac{1}{\pi} \arg \zeta(\frac{1}{2} + iT)$. This function regulates the **finer behavior** of $\zeta(s)$. The term O(1/T) is a smooth function of T.

If T is the ordinate of a zeta-zero, then one defines S(T)=S(T+0). Here $\arg\zeta(\frac{1}{2}+iT)$ is obtained by continuous variation along the segments joining the points $2,2+iT,\frac{1}{2}+iT$, starting with the value 0.

One has the bounds

$$S(T) \ll \log T$$
, $S(T) = o(\log T)$ (LH), $S(T) \ll \frac{\log T}{\log \log T}$ (RH).

Using the trivial inequality

$$m(\beta + i\gamma) \leqslant N(\gamma + H) - N(\gamma - H) \qquad (0 < H \leqslant 1)$$

we obtain

Using the trivial inequality

$$m(\beta + i\gamma) \leqslant N(\gamma + H) - N(\gamma - H) \qquad (0 < H \leqslant 1)$$

we obtain

$$m(\beta + i\gamma) \ll \log \gamma$$
,

$$m(\beta + i\gamma) = o(\log \gamma)$$
 (LH),

$$m(\beta + i\gamma) \ll \frac{\log \gamma}{\log \log \gamma}$$
 (RH).

Using the trivial inequality

$$m(\beta + i\gamma) \leqslant N(\gamma + H) - N(\gamma - H) \qquad (0 < H \leqslant 1)$$

we obtain

$$m(\beta + i\gamma) \ll \log \gamma$$
,

$$m(\beta + i\gamma) = o(\log \gamma)$$
 (LH),

$$m(\beta + i\gamma) \ll \frac{\log \gamma}{\log \log \gamma}$$
 (RH).

Recall that the bound $m(\beta + i\gamma) \ll \log \gamma$ has **not been improved yet** in the whole range $\frac{1}{2} \leqslant \beta < 1$.

$$S(T) = \Omega_{\pm} \left(\left(rac{\log T}{\log \log T}
ight)^{1/3}
ight), \quad S(T) = \Omega_{\pm} \left(\left(rac{\log T}{\log \log T}
ight)^{1/2}
ight) \quad ext{(RH)},$$

but all known values of S(T) satisfy $|S(T)| \le 4$ (J.W. Bober-G.A. Hiary, 2016).

$$S(T) = \Omega_{\pm} \left(\left(rac{\log T}{\log \log T}
ight)^{1/3}
ight), \quad S(T) = \Omega_{\pm} \left(\left(rac{\log T}{\log \log T}
ight)^{1/2}
ight) \quad ext{(RH)},$$

but all known values of S(T) satisfy $|S(T)| \le 4$ (J.W. Bober-G.A. Hiary, 2016).

Key problem by this approach: estimation of S(T + H) - S(T).

$$S(T) = \Omega_{\pm} \left(\left(rac{\log T}{\log \log T}
ight)^{1/3}
ight), \quad S(T) = \Omega_{\pm} \left(\left(rac{\log T}{\log \log T}
ight)^{1/2}
ight) \quad ext{(RH)},$$

but all known values of S(T) satisfy $|S(T)| \le 4$ (J.W. Bober-G.A. Hiary, 2016).

Key problem by this approach: estimation of S(T + H) - S(T).

Here as usual $f(x) = \Omega_{\pm}(g(x))$ means that

$$\limsup_{x\to\infty} f(x)/g(x) > 0, \quad \liminf_{x\to\infty} f(x)/g(x) < 0,$$

and g(x) > 0 for $x \ge x_0 > 0$.

$$S(T) = \Omega_{\pm} \left(\left(\frac{\log T}{\log \log T} \right)^{1/3} \right), \quad S(T) = \Omega_{\pm} \left(\left(\frac{\log T}{\log \log T} \right)^{1/2} \right) \quad \text{(RH)},$$

but all known values of S(T) satisfy $|S(T)| \le 4$ (J.W. Bober-G.A. Hiary, 2016).

Key problem by this approach: estimation of S(T + H) - S(T).

Here as usual $f(x) = \Omega_{\pm}(g(x))$ means that

$$\limsup_{x\to\infty} f(x)/g(x) > 0, \quad \liminf_{x\to\infty} f(x)/g(x) < 0,$$

and g(x) > 0 for $x \geqslant x_0 > 0$.

The Ω -results are due to H.L. Montgomery (1977) and K.-M. Tsang (1986), respectively.

A function closely related to the integral over short intervals is

$$F(T, \Delta) := \max_{t \in [T, T+\Delta]} |\zeta(\frac{1}{2} + it)| \qquad (0 < \Delta \leqslant 1),$$

where Δ may depend on T.

A function closely related to the integral over short intervals is

$$F(T, \Delta) := \max_{t \in [T, T+\Delta]} |\zeta(\frac{1}{2} + it)| \qquad (0 < \Delta \leqslant 1),$$

where Δ may depend on T.

The quantity $F(T, \Delta)$ was introduced and studied by A.A. Karatsuba (2001), who made the following **conjectures**.

A function closely related to the integral over short intervals is

$$F(T, \Delta) := \max_{t \in [T, T+\Delta]} |\zeta(\frac{1}{2} + it)| \qquad (0 < \Delta \leqslant 1),$$

where Δ may depend on T.

The quantity $F(T, \Delta)$ was introduced and studied by A.A. Karatsuba (2001), who made the following **conjectures**.

Conjecture 1. There exists a positive function $\Delta = \Delta(T) \to 0$ as $T \to \infty$ such that, for some constant A > 0,

$$F(T,\Delta) \geqslant T^{-A}$$
.

Conjecture 3. Conjecture 1 is valid for $\Delta = (\log T)^{-1}$.

Conjecture 3. **Conjecture 1** is valid for $\Delta = (\log T)^{-1}$.

These conjectures have not been proved unconditionally yet. Clearly Conjecture 3 implies Conjecture 2, which in turn implies Conjecture 1.

Conjecture 3. Conjecture 1 is valid for $\Delta = (\log T)^{-1}$.

These conjectures have not been proved unconditionally yet. Clearly Conjecture 3 implies Conjecture 2, which in turn implies Conjecture 1.

M. Garaev (2002) proved that the RH implies Conjecture 3, while A.A. Karatsuba (2001) himself showed unconditionally that

$$F(T, \Delta) \geqslant e^{A \log \Delta \log T}$$
 $(0 < \Delta \leqslant 1/(\log T)).$

Conjecture 3. **Conjecture 1** is valid for $\Delta = (\log T)^{-1}$.

These conjectures have not been proved unconditionally yet. Clearly Conjecture 3 implies Conjecture 2, which in turn implies Conjecture 1.

M. Garaev (2002) proved that the RH implies Conjecture 3, while A.A. Karatsuba (2001) himself showed unconditionally that

$$F(T, \Delta) \geqslant e^{A \log \Delta \log T}$$
 $(0 < \Delta \leqslant 1/(\log T)).$

Shao-Ji Feng (2004) proved that the LH implies Conjecture 1 with an arbitrary constant A > 0. Other relevant works are due to M.E. Changa, B. Kerr and M.A. Korolev.

(5)
$$m(\frac{1}{2}+i\gamma) = o(\log \gamma) \quad (\gamma \to \infty).$$

(5)
$$m(\frac{1}{2}+i\gamma) = o(\log \gamma) \quad (\gamma \to \infty).$$

This shows again that the LH implies $m(\frac{1}{2} + i\gamma) = o(\log \gamma)$.

(5)
$$m(\frac{1}{2}+i\gamma) = o(\log \gamma) \quad (\gamma \to \infty).$$

This shows again that the LH implies $m(\frac{1}{2} + i\gamma) = o(\log \gamma)$.

Open questions: does (5) imply the LH or Conjecture 1?

(5)
$$m(\frac{1}{2} + i\gamma) = o(\log \gamma) \qquad (\gamma \to \infty).$$

This shows again that the LH implies $m(\frac{1}{2} + i\gamma) = o(\log \gamma)$.

Open questions: does (5) imply the LH or Conjecture 1?

The connection between $F(T, \Delta)$ and integrals over short intervals is easy:

$$\int_{\delta}^{2\delta} |\zeta(\tfrac{1}{2}+i\gamma+i\alpha)|^k \,\mathrm{d}\alpha \ = \ \int_{0}^{\delta} |\zeta(\tfrac{1}{2}+i\gamma+i\delta+ix)|^k \,\mathrm{d}x \ \leqslant \ \delta F^k(\gamma+\delta,\delta),$$

where $k, \gamma > 0$.

(5)
$$m(\frac{1}{2} + i\gamma) = o(\log \gamma) \qquad (\gamma \to \infty).$$

This shows again that the LH implies $m(\frac{1}{2} + i\gamma) = o(\log \gamma)$.

Open questions: does (5) imply the LH or Conjecture 1?

The connection between $F(T, \Delta)$ and integrals over short intervals is easy:

$$\int_{\delta}^{2\delta} |\zeta(\tfrac{1}{2}+i\gamma+i\alpha)|^k \,\mathrm{d}\alpha \ = \ \int_{0}^{\delta} |\zeta(\tfrac{1}{2}+i\gamma+i\delta+ix)|^k \,\mathrm{d}x \ \leqslant \ \delta F^k(\gamma+\delta,\delta),$$

where $k, \gamma > 0$.

Thus the Karatsuba conjectures have less stringent counterparts involving the above integral.

THEOREM 3. For $k > 0, \frac{1}{2} \leqslant \sigma \leqslant 1, 0 < \delta \leqslant \frac{1}{2}, T \geqslant T_0 > 0$ and a suitable constant C > 0 we have

$$\int_{T-\delta}^{T+\delta} |\zeta(\sigma+it)|^k dt \geqslant 2\delta T^{-Ck\log(e/\delta)}.$$

THEOREM 3. For $k > 0, \frac{1}{2} \le \sigma \le 1, 0 < \delta \le \frac{1}{2}, T \ge T_0 > 0$ and a suitable constant C > 0 we have

$$\int_{T-\delta}^{T+\delta} |\zeta(\sigma+it)|^k dt \geqslant 2\delta T^{-Ck\log(e/\delta)}.$$

The starting point for the proof is the classical formula

$$\log \zeta(s) = \sum_{|t-\gamma| \leqslant 1} \log(s-
ho) + O(\log t),$$

THEOREM 3. For $k > 0, \frac{1}{2} \le \sigma \le 1, 0 < \delta \le \frac{1}{2}, T \ge T_0 > 0$ and a suitable constant C > 0 we have

$$\int_{T-\delta}^{T+\delta} |\zeta(\sigma+it)|^k dt \geqslant 2\delta T^{-Ck\log(e/\delta)}.$$

The starting point for the proof is the classical formula

$$\log \zeta(s) = \sum_{|t-\gamma| \leqslant 1} \log(s-
ho) + O(\log t),$$

which is valid unconditionally for

$$-1 \leqslant \sigma \leqslant 2, s \neq \rho, -\pi < \Im \log(s - \rho) \leqslant \pi,$$

where $\rho = \beta + i\gamma$ denotes complex zeros of $\zeta(s)$.

$$\log \left\{ \frac{1}{b-a} \int_{a}^{b} f(t) dt \right\} \geqslant \frac{1}{b-a} \int_{a}^{b} \log f(t) dt$$

for $a < b, f(t) \in L[a, b]$ and f(t) > 0 in [a, b].

$$\log \left\{ \frac{1}{b-a} \int_a^b f(t) dt \right\} \geqslant \frac{1}{b-a} \int_a^b \log f(t) dt$$

for $a < b, f(t) \in L[a, b]$ and f(t) > 0 in [a, b].

The integral

$$\int_{T-\delta}^{T+\delta} \sum_{|t-\gamma|\leqslant 1} \log|t-\gamma| \,\mathrm{d}t$$

$$\log\left\{\frac{1}{b-a}\int_{a}^{b}f(t)\,\mathrm{d}t\right\}\geqslant\frac{1}{b-a}\int_{a}^{b}\log f(t)\,\mathrm{d}t$$

for $a < b, f(t) \in L[a, b]$ and f(t) > 0 in [a, b].

The integral

$$\int_{T-\delta}^{T+\delta} \sum_{|t-\gamma|\leqslant 1} \log|t-\gamma| \,\mathrm{d}t$$

is split into portions where $\sum_{|t-\gamma|\leqslant \delta} \log|t-\gamma|$ and $\sum_{\delta<|t-\gamma|\leqslant 1} \log|t-\gamma|$,

$$\log \left\{ \frac{1}{b-a} \int_{a}^{b} f(t) dt \right\} \geqslant \frac{1}{b-a} \int_{a}^{b} \log f(t) dt$$

for $a < b, f(t) \in L[a, b]$ and f(t) > 0 in [a, b].

The integral

$$\int_{T-\delta}^{T+\delta} \sum_{|t-\gamma|\leqslant 1} \log|t-\gamma| \,\mathrm{d}t$$

is split into portions where $\sum_{|t-\gamma|\leqslant \delta} \log|t-\gamma|$ and $\sum_{\delta<|t-\gamma|\leqslant 1} \log|t-\gamma|$,

and each portion is estimated separately.

$$m(\beta + i\gamma) \leqslant C + \frac{13.35\beta}{3(1-\beta)\log 6 + \beta\log 2} (1-\beta)^{3/2}\log \gamma + \frac{7(3-2\beta) + \varepsilon}{9(1-\beta)\log 6 + 3\beta\log 2}\log\log \gamma.$$

$$m(\beta + i\gamma) \leqslant C + \frac{13.35\beta}{3(1-\beta)\log 6 + \beta\log 2} (1-\beta)^{3/2}\log \gamma + \frac{7(3-2\beta)+\varepsilon}{9(1-\beta)\log 6 + 3\beta\log 2}\log\log \gamma.$$

This result is relevant when β is close to unity, in which case the RH fails.

$$m(\beta + i\gamma) \leqslant C + \frac{13.35\beta}{3(1-\beta)\log 6 + \beta\log 2} (1-\beta)^{3/2}\log \gamma$$

+
$$\frac{7(3-2\beta) + \varepsilon}{9(1-\beta)\log 6 + 3\beta\log 2}\log\log \gamma.$$

This result is relevant when β is close to unity, in which case the RH fails. Corollary 1. For $5/6 \le \beta < 1$ and $\gamma \ge \gamma_1$, we have

$$m(\beta + i\gamma) \leq 4 \log \log \gamma + 20(1-\beta)^{3/2} \log \gamma.$$

$$m(\beta + i\gamma) \leqslant C + \frac{13.35\beta}{3(1-\beta)\log 6 + \beta\log 2} (1-\beta)^{3/2}\log \gamma + \frac{7(3-2\beta) + \varepsilon}{9(1-\beta)\log 6 + 3\beta\log 2}\log\log \gamma.$$

This result is relevant when β is close to unity, in which case the RH fails. Corollary 1. For $5/6 \le \beta < 1$ and $\gamma \ge \gamma_1$, we have

$$m(\beta + i\gamma) \leqslant 4 \log \log \gamma + 20(1-\beta)^{3/2} \log \gamma.$$

Corollary 2. If $m(\beta + i\gamma) \geqslant 8 \log \log \gamma$ for $5/6 \leqslant \beta < 1$ and $\gamma \geqslant \gamma_2$, then

$$\beta \leqslant 1 - \left(\frac{m(\beta + i\gamma)}{40\log\gamma}\right)^{2/3}.$$

Starting point of proof: Let $\beta \geqslant 5/6$, $r = m(\beta + i\gamma)$ and \mathcal{E} be the rectangle with vertices $-2(1-\beta) \pm 2i\log^2\gamma$, $1 \pm 2i\log^2\gamma$. If X, with $0 < X \ll \gamma^C$, is a parameter which will be suitably chosen, then by the residue theorem we obtain

$$\frac{\zeta(1-\beta+\rho)}{(1-\beta)^r} \ = \ \frac{1}{2\pi i} \int_{\mathcal{E}} X^{s-1+\beta} \Gamma(s-1+\beta) \frac{\zeta(s+\rho)}{s^r} \, \mathrm{d}s \quad (\rho=\beta+i\gamma).$$

Starting point of proof: Let $\beta \geqslant 5/6$, $r = m(\beta + i\gamma)$ and $\mathcal E$ be the rectangle with vertices $-2(1-\beta) \pm 2i\log^2\gamma$, $1 \pm 2i\log^2\gamma$. If X, with $0 < X \ll \gamma^C$, is a parameter which will be suitably chosen, then by the residue theorem we obtain

$$\frac{\zeta(1-\beta+\rho)}{(1-\beta)^r} \; = \; \frac{1}{2\pi i} \int_{\mathcal{E}} X^{s-1+\beta} \Gamma(s-1+\beta) \frac{\zeta(s+\rho)}{s^r} \, \mathrm{d}s \quad (\rho=\beta+i\gamma).$$

To bound the zeta-factor we shall use the explicit inequality

$$|\zeta(\sigma+it)| \leqslant At^{B(1-\sigma)^{3/2}}\log^{2/3}t \qquad (t\geqslant 3, \quad \frac{1}{2}\leqslant \sigma\leqslant 1).$$

Starting point of proof: Let $\beta \geqslant 5/6$, $r = m(\beta + i\gamma)$ and $\mathcal E$ be the rectangle with vertices $-2(1-\beta) \pm 2i\log^2\gamma$, $1 \pm 2i\log^2\gamma$. If X, with $0 < X \ll \gamma^C$, is a parameter which will be suitably chosen, then by the residue theorem we obtain

$$\frac{\zeta(1-\beta+\rho)}{(1-\beta)^r} \; = \; \frac{1}{2\pi i} \int_{\mathcal{E}} X^{s-1+\beta} \Gamma(s-1+\beta) \frac{\zeta(s+\rho)}{s^r} \, \mathrm{d}s \quad (\rho=\beta+i\gamma).$$

To bound the zeta-factor we shall use the explicit inequality

$$|\zeta(\sigma+it)| \leqslant At^{B(1-\sigma)^{3/2}}\log^{2/3}t \qquad (t\geqslant 3, \quad \frac{1}{2}\leqslant \sigma\leqslant 1).$$

The currently best known values A = 76.2, B = 4.45, are due to K. Ford (2002). They are obtained by an elaboration of the method of I.M. Vinogradov.

Starting point of proof: Let $\beta \geqslant 5/6$, $r = m(\beta + i\gamma)$ and $\mathcal E$ be the rectangle with vertices $-2(1-\beta) \pm 2i\log^2\gamma$, $1 \pm 2i\log^2\gamma$. If X, with $0 < X \ll \gamma^C$, is a parameter which will be suitably chosen, then by the residue theorem we obtain

$$\frac{\zeta(1-\beta+\rho)}{(1-\beta)^r} \; = \; \frac{1}{2\pi i} \int_{\mathcal{E}} X^{s-1+\beta} \Gamma(s-1+\beta) \frac{\zeta(s+\rho)}{s^r} \, \mathrm{d}s \quad (\rho=\beta+i\gamma).$$

To bound the zeta-factor we shall use the explicit inequality

$$|\zeta(\sigma+it)| \leqslant At^{B(1-\sigma)^{3/2}}\log^{2/3}t \qquad (t\geqslant 3, \quad \frac{1}{2}\leqslant \sigma\leqslant 1).$$

The currently best known values A = 76.2, B = 4.45, are due to K. Ford (2002). They are obtained by an elaboration of the method of I.M. Vinogradov.

To bound $\zeta(1+i\gamma)$ we also use another consequence of Vinogradov's method (zero-free region for $\zeta(s)$):

$$\zeta(1+it) \gg (\log|t|)^{-2/3} (\log\log|t|)^{-1/3}.$$

Thank you for your attention!