Train Delay Data v2

Use this file to explore and pre-process the data

✓ Import library's

```
import os
import pandas as pd, numpy as np, copy
import seaborn as sns
import matplotlib.pyplot as plt
from tqdm import tqdm
import tensorflow
# Set the option to display all columns, without the "..." in the middle
pd.set_option('display.max_columns', None)

    Location of files

train_data_dir = 'data/delay data' # Directory where the csv data is stored
def find_csv_filenames(path_to_dir, suffix=".csv"):
    filenames = os.listdir(path_to_dir)
    return [filename for filename in filenames if filename.endswith(suffix)]
def concatenate_csv_files(directory):
    frames = []
    for subdir, dirs, files in os.walk(directory):
        for file in files:
            if file.endswith('.csv'):
                df = pd.read_csv(os.path.join(subdir, file))
                frames.append(df)
    return pd.concat(frames)
# Replace 'your_directory' with the directory you want to search
test data = concatenate csv files(train data dir)
     /var/folders/qx/bgf_wq4d7pxdmbbq4nl3gqg00000gn/T/ipykernel_990/1056983920.py:10: DtypeWarning: Columns (8) have mixed types. Specify dtype option on import or set low_memory=False
```

Encoding Values

df = pd.read_csv(os.path.join(subdir, file))

```
columns_for_binary_encoding = []
columns for one hot encoding = []
columns for label encoding = []
columns_for_target_encoding = []
labels = ['arr at', 'pass at', 'dep at']
encoding dict = {}
for column in test_data.columns:
    if test_data[column].dtype == 'object' and column not in labels:
        if len(test data[column].unique()) == 2:
            columns for binary encoding.append(column)
            encoding_dict[column] = 'Binary Encoding'
        elif len(test_data[column].unique()) > 2 and len(test_data[column].unique()) < 10:</pre>
            columns for one hot encoding.append(column)
            encoding dict[column] = 'One Hot Encoding'
        elif len(test_data[column].unique()) > 11 and len(test_data[column].unique()) < 50:</pre>
            columns for label encoding.append(column)
            encoding dict[column] = 'Label Encoding'
        elif len(test data[column].unique()) > 50:
            columns for target encoding.append(column)
            encoding_dict[column] = 'Target Encoding'
print('Columns for Binary Encoding:', columns_for_binary_encoding)
print('Columns for One Hot Encoding:', columns_for_one_hot_encoding)
print('Columns for Label Encoding:', columns_for_label_encoding)
print('Columns for Target Encoding:', columns_for_target_encoding)
print('Columns for for y:', labels)
print('\n' + '_' * 20 + '\n')
unique_counts = pd.DataFrame.from_records(
    [(col, test data[col].dtype, len(test data[col].unique()), encoding dict.get(col, 'No Encoding')) for col in test data.columns],
    columns=['Column Name', 'Data Type', 'Num Unique Values', 'Encoding']
)
```

unique_counts

```
Columns for Binary Encoding: ['arr_atRemoved', 'pass_atRemoved', 'dep_atRemoved']
Columns for One Hot Encoding: ['dep_wet']
Columns for Label Encoding: ['tpl']
Columns for Target Encoding: ['pta', 'ptd', 'wta', 'wtp', 'wtd', 'arr_et', 'arr_wet', 'pass_et', 'dep_et']
Columns for for y: ['arr_at', 'pass_at', 'dep_at']
```

	Column_Name	Data_Type	Num_Unique_Values	Encoding
0	rid	int64	55552	No Encoding
1	tpl	object	47	Label Encoding
2	pta	object	1152	Target Encoding
3	ptd	object	1131	Target Encoding
4	wta	object	2156	Target Encoding
5	wtp	object	2297	Target Encoding
6	wtd	object	2110	Target Encoding
7	arr_et	object	1024	Target Encoding
8	arr_wet	object	786	Target Encoding
9	arr_atRemoved	object	2	Binary Encoding
10	pass_et	object	1256	Target Encoding
11	pass_wet	float64	1	No Encoding
12	pass_atRemoved	object	2	Binary Encoding
13	dep_et	object	992	Target Encoding
14	dep_wet	object	8	One Hot Encoding
15	dep_atRemoved	object	2	Binary Encoding
16	arr_at	object	1217	No Encoding
17	pass_at	object	1227	No Encoding
18	dep_at	object	1214	No Encoding
19	cr_code	float64	112	No Encoding
20	lr_code	float64	181	No Encoding

Column headers

Code	Description	Notes	Importance
	T : DTT: T : 11 ::6		

Code	Description	Notes	Importance
tpl	TIPLOC (Timing point locations)	Unique station code	
pta	Planned Time of Arrival	24hr Time value	
ptd	Planned Time of Departure	24hr Time value	
wta	Working (staff) Time of Arrival	24hr Time value- with seconds	
wtp	Working Time of Passing	24hr Time value	
wtd	Working Time of Departure	24hr Time value- with seconds	
arr_et	Estimated Arrival Time	24hr Time value	
arr_wet	Working Estimated Time	24hr Time value	
arr_atRemoved	true if actual replaced by estimated	True / False	
pass_et	Estimated Passing Time	24hr Time value	
pass_wet	Working Estimated Time	** 24hr Time value?	
arr_at	True time of arrival	24hr Time value	
pass_atRemoved	true if actual replaced by estimated	True / False	
dep_et	Estimated Departure	24hr Time value	
pass_at	True time of train passing through	24hr Time value	
dep_at	True time of train departure	24hr Time value	
dep_wet	Working Estimated Time	** 24hr Time value?	
dep_atRemoved	true if actual replaced by estimated	True / False	
arr_at	Recorded Actual Time of Arrival	24hr Time value	
pass_at	Actual Passing Time	24hr Time value	
dep_at	Actual Departure Time	24hr Time value	
cr_code	Cancellation Reason Code	Float value	
lr_code	Late Running Reason	Float Value	

Converting string time vales to timestamp

```
def convert_string_to_seconds(str):
   date_time_value = pd.to_datetime(str, format='%H:%M')
   total_seconds = date_time_value.hour * 3600 + date_time_value.minute * 60 + date_time_value.second
   return total seconds
def convert_seconds_to_string(seconds):
   hours = seconds // 3600
   minutes = (seconds % 3600) // 60
   seconds = seconds % 60
   return "{:02d}:{:02d}".format(int(hours), int(minutes), int(seconds))
time= "12:34"
print(f'Orignal Value: {time}')
print(f'Converted Value: {convert_string_to_seconds(time)}')
print(f'Backwards Converted Value: {convert_seconds_to_string(convert_string_to_seconds(time))}')
    Orignal Value: 12:34
    Converted Value: 45240
    Backwards Converted Value: 12:34:00
```

```
def convert_to_seconds(df, col, time_format):
    df[col] = pd.to_datetime(df[col], errors='coerce', format=time_format)
    seconds_since_midnight = df[col].dt.hour * 3600 + df[col].dt.minute * 60 + df[col].dt.second
    return seconds_since_midnight.fillna(-1)

# Define time columns
time_columns = test_data.columns.drop(['lr_code', 'cr_code', 'dep_atRemoved', 'pass_atRemoved', 'arr_atRemoved','tpl','rid','wta','wtd'])
time_columns_with_seconds = test_data[['wta','wtd']]

# Convert time strings to time objects for each column
for col in time_columns:
    test_data[col + '_seconds_since_midnight'] = convert_to_seconds(test_data, col, '%H:%M')
    test_data.drop(col, axis=1, inplace=True)

for col in time_columns_with_seconds:
    test_data[col + '_seconds_since_midnight'] = convert_to_seconds(test_data, col, '%H:%M:%S')
    test_data.drop(col, axis=1, inplace=True)
```

labels = ['arr_at_seconds_since_midnight', 'pass_at_seconds_since_midnight', 'dep_at_seconds_since_midnight']
test_data[labels]

arr_at_seconds_since_midnight pass_at_seconds_since_midnight dep_at_seconds_since_midnight

0	-1.0	-1.0	25140.0
1	-1.0	25380.0	-1.0
2	-1.0	25440.0	-1.0
3	-1.0	25560.0	-1.0
4	-1.0	-1.0	-1.0
27013	3720.0	-1.0	3840.0
27014	-1.0	4680.0	-1.0
27015	-1.0	-1.0	-1.0
27016	-1.0	4740.0	-1.0
27017	4860.0	-1.0	-1.0

1713990 rows × 3 columns

```
import datetime
# Function to convert seconds since midnight to time value
def seconds_to_time(seconds):
    # Calculate hours, minutes, and seconds
    hours = seconds // 3600
    minutes = (seconds % 3600) // 60
    seconds = seconds % 60
    # Create a timedelta object representing the time duration
    time_delta = datetime.timedelta(hours=hours, minutes=minutes, seconds=seconds)
    # Use midnight as a reference point and add the time duration to it
    midnight = datetime.datetime.strptime('00:00:00', '%H:%M:%S').time()
    time_value = (datetime.datetime.combine(datetime.date.today(), midnight) + time_delta).time()
    return time_value
# Example usage
seconds_since_midnight = 23850.0 # Example value
time_value = seconds_to_time(seconds_since_midnight)
print("Time value:", time value)
     Time value: 06:37:30
Encoding the tpl
from sklearn.preprocessing import LabelEncoder
# create the LabelEncoder object
le = LabelEncoder()
# fit the encoder
le.fit(test_data['tpl'])
# create a DataFrame with the original and encoded values
encoding_table = pd.DataFrame({
    'Original Value': le.classes_,
    'Encoded Value': range(len(le.classes_))
})
print(encoding table)
test_data['tpl'] = le.fit_transform(test_data['tpl'])
```

list encoded stations = test data['tpl']

test_data.head(33)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	Original Value BOWJ BROXBRN BRTWOOD BTHNLGR CHDWLHT CHESHNT CHLMSFD CLCHSTR DISS FRSTGT FRSTGTJ GIDEAPK GIDEPKJ GODMAYS HAGHLYJ HAKNYNM HFLPEVL HRLDWOD ILFELEJ ILFORD INGTSTL INGTSTN IPSWEPJ IPSWEJJ IPSWEJJ IPSWHJN		ed Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	IPSWHJIN IPSWICH KELVEDN LIVST MANNGTR MANRPK MRKSTEY MRYLAND NEEDHAM NRCH NRCHTPJ ROMFORD SEVNSIS SHENFLD STFD STWMDGL STWMCK SVNKNGS TROWFLR TROWSEJ TRWSSBJ WARE WITHAME		24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
	rio	l tpl	arr_atRe

40	WILLIAM		40								
	rid	tpl	${\tt arr_atRemoved}$	pass_atRemoved	$dep_atRemoved$	cr_code	lr_code	pta_seconds_since_midnight	ptd_seconds_since_midnight	wtp_seconds_since_midnight	arr_et_s€
0	202009016712165	27	NaN	NaN	False	NaN	NaN	-1.0	25200.0	-1.0	
1	202009016712165	3	NaN	False	NaN	NaN	NaN	-1.0	-1.0	25380.0	
2	202009016712165	0	NaN	False	NaN	NaN	NaN	-1.0	-1.0	25500.0	
3	202009016712165	31	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0	
4	202009016712165	38	NaN	False	NaN	NaN	NaN	-1.0	-1.0	25560.0	
5	202009016712165	10	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0	
6	202009016712165	19	NaN	False	NaN	NaN	NaN	-1 N	-1 N	257 4 0 0	

U	202003010112103	19	INGIN	i disc	INGIN	INGIN	INGIN	1.0	1.0	23170.0
7	202009016712165	29	NaN	False	NaN	NaN	NaN	-1.0	-1.0	25680.0
8	202009016712165	41	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
9	202009016712165	13	NaN	False	NaN	NaN	NaN	-1.0	-1.0	25800.0
10	202009016712165	4	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
11	202009016712165	11	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
12	202009016712165	35	NaN	False	NaN	NaN	NaN	-1.0	-1.0	25920.0
13	202009016712165	17	NaN	False	NaN	NaN	NaN	-1.0	-1.0	26100.0
14	202009016712165	2	NaN	False	NaN	NaN	NaN	-1.0	-1.0	26280.0
15	202009016712165	37	False	NaN	False	NaN	NaN	-1.0	26520.0	-1.0
16	202009016712165	6	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
17	202009016712165	46	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
18	202009016712165	30	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
19	202009016712165	7	False	NaN	False	NaN	NaN	28200.0	28260.0	-1.0
20	202009016712165	28	False	NaN	False	NaN	NaN	28740.0	28740.0	-1.0
21	202009016712165	24	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
22	202009016712165	25	False	NaN	False	NaN	NaN	29460.0	29520.0	-1.0
23	202009016712165	23	NaN	False	NaN	NaN	NaN	-1.0	-1.0	29700.0
24	202009016712165	22	NaN	False	NaN	NaN	NaN	-1.0	-1.0	29760.0
25	202009016712165	40	False	NaN	False	NaN	NaN	30180.0	30180.0	-1.0
26	202009016712165	14	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
27	202009016712165	8	False	NaN	False	NaN	NaN	30900.0	30960.0	-1.0
28	202009016712165	43	NaN	False	NaN	NaN	NaN	-1.0	-1.0	31980.0
29	202009016712165	44	NaN	False	NaN	NaN	NaN	-1.0	-1.0	32040.0
30	202009016712165	34	NaN	False	NaN	NaN	NaN	-1.0	-1.0	-1.0
31	202009016712165	33	False	NaN	NaN	NaN	NaN	32160.0	-1.0	-1.0
32	202009016712168	27	NaN	NaN	False	NaN	NaN	-1.0	27000.0	-1.0

Code Values

Encoding the True / False values

True = 1

False = 0

```
NaN = -1
```

```
for col in columns_for_binary_encoding:
    # Map True to 1, False to 0, and NaN to a specific value (e.g., -1)
    test_data[col] = test_data[col].fillna(-1).astype(float)

test_data[['lr_code', 'cr_code']] = test_data[['lr_code', 'cr_code']].fillna(-1).astype(float)

test_data.sample(5)
```

	rid	tpl	arr_atRemoved	${\tt pass_atRemoved}$	dep_atRemoved	cr_code	lr_code	pta_seconds_since_midnight
19163	202011288006283	19	-1.0	0.0	-1.0	-1.0	-1.0	-1.0
8387	201810097681132	4	-1.0	0.0	-1.0	-1.0	-1.0	-1.0
7256	202211098750553	4	-1.0	0.0	-1.0	-1.0	-1.0	-1.0
11100	201904127628993	10	-1.0	0.0	-1.0	-1.0	-1.0	-1.0
16979	201911197671074	24	-1.0	0.0	-1.0	-1.0	-1.0	-1.0

```
unique_counts = pd.DataFrame.from_records(
    [(col, test_data[col].dtype, len(test_data[col].unique()), encoding_dict.get(col, 'No Encoding')) for col in test_data.columns],
    columns=['Column_Name', 'Data_Type', 'Num_Unique_Values', 'Encoding']
)
```

 ${\tt unique_counts}$

	Column_Name	Data_Type	Num_Unique_Values	Encoding
0	rid	int64	55552	No Encoding
1	tpl	int64	47	Label Encoding
2	arr_atRemoved	float64	2	Binary Encoding
3	pass_atRemoved	float64	2	Binary Encoding
4	dep_atRemoved	float64	2	Binary Encoding
5	cr_code	float64	112	No Encoding
6	lr_code	float64	181	No Encoding
7	pta_seconds_since_midnight	float64	1152	No Encoding
8	ptd_seconds_since_midnight	float64	1131	No Encoding
9	wtp_seconds_since_midnight	float64	1167	No Encoding
10	arr_et_seconds_since_midnight	float64	1024	No Encoding
11	arr_wet_seconds_since_midnight	float64	786	No Encoding
12	pass_et_seconds_since_midnight	float64	1256	No Encoding
13	pass_wet_seconds_since_midnight	float64	1	No Encoding
14	dep_et_seconds_since_midnight	float64	992	No Encoding
15	dep_wet_seconds_since_midnight	float64	8	No Encoding
16	arr_at_seconds_since_midnight	float64	1217	No Encoding
17	pass_at_seconds_since_midnight	float64	1227	No Encoding
18	dep_at_seconds_since_midnight	float64	1214	No Encoding
19	wta_seconds_since_midnight	float64	1074	No Encoding
20	wtd_seconds_since_midnight	float64	1080	No Encoding

Splitting the dataset

For the RNN to work it accepts data in steps. I am using the journey id 'rid' as the value of each journey step. Below shows there is an uneven number of step values, the minority step values will be dropped.

```
# Group by 'rid', calculate the shape of each group, and count the occurrences of each shape
shape_counts = test_data.groupby('rid').apply(lambda x: x.shape).value_counts()

# Sort the Series by the first element of the shape tuple
sorted_shape_counts = shape_counts.sort_index(key=lambda x: x.map(lambda y: y[0]))

# Print the sorted shape counts
for shape, count in sorted_shape_counts.items():
    print(f"Shape: {shape}, Count: {count}")
```

```
Shape: (1, 21), Count: 1
    Shape: (2, 21), Count: 20
    Shape: (3, 21), Count: 61
    Shape: (4, 21), Count: 36
    Shape: (5, 21), Count: 10
    Shape: (6, 21), Count: 504
    Shape: (7, 21), Count: 357
    Shape: (8, 21), Count: 121
    Shape: (9, 21), Count: 428
    Shape: (10, 21), Count: 40
    Shape: (11, 21), Count: 17
    Shape: (12, 21), Count: 34
    Shape: (13, 21), Count: 39
    Shape: (14, 21), Count: 179
    Shape: (15, 21), Count: 93
    Shape: (16, 21), Count: 137
    Shape: (17, 21), Count: 8
    Shape: (18, 21), Count: 15
    Shape: (19, 21), Count: 9
    Shape: (20, 21), Count: 7
    Shape: (21, 21), Count: 11
    Shape: (22, 21), Count: 22
    Shape: (23, 21), Count: 41
    Shape: (24, 21), Count: 49
    Shape: (25, 21), Count: 289
    Shape: (26, 21), Count: 123
    Shape: (27, 21), Count: 12
    Shape: (28, 21), Count: 131
    Shape: (29, 21), Count: 199
    Shape: (30, 21), Count: 373
    Shape: (31, 21), Count: 9576
    Shape: (32, 21), Count: 42459
    Shape: (33, 21), Count: 59
    Shape: (34, 21), Count: 4
    Shape: (35, 21), Count: 88
    /var/folders/gx/bgf wg4d7pxdmbbg4nl3ggg00000gn/T/ipykernel 990/800867603.py:2: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecationWarning.
      shape_counts = test_data.groupby('rid').apply(lambda x: x.shape).value_counts()
# Get the unique 'rid' values
unique rid = test data['rid'].unique()
# Group by 'rid' and filter groups with shape greater than or equal to (32, 21)
filtered_test_data = test_data.groupby('rid').filter(lambda x: x.shape == (32, 21))
filtered_test_data.groupby('rid').apply(lambda x: x.shape).value_counts()
    /var/folders/gx/bgf wg4d7pxdmbbg4nl3ggg00000gn/T/ipykernel 990/4201756548.py:1: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is depre
      filtered test data.groupby('rid').apply(lambda x: x.shape).value counts()
    (32, 21) 42459
    Name: count, dtype: int64
```

```
from sklearn.preprocessing import MinMaxScaler
# Define the proportion of data to allocate to the validation set (e.g., 20%)
validation_proportion = 0.2
# Identify unique journeys based on the 'rid' column
unique journevs = filtered test data['rid'].unique()
# Calculate the number of unique journeys to allocate to the validation set
num_validation_journeys = int(len(unique_journeys) * validation_proportion)
# Select a subset of unique journeys for validation
validation journevs = unique journevs[-num validation journevs:]
# Split the data into train and validation sets based on the selected unique journeys
train_df = filtered_test_data[~filtered_test_data['rid'].isin(validation_journeys)]
validation df = filtered test data[filtered test data['rid'].isin(validation journevs)]
# Drop the 'rid' column from both dataframes
train_df = train_df.drop(columns=['rid'])
validation df = validation df.drop(columns=['rid'])
labels = ['arr at seconds since midnight', 'pass at seconds since midnight', 'dep at seconds since midnight']
# Split the train data into X and y
X_train = train_df.drop(columns=[labels[0]])
v train = train df[labels[0]]
_X_val = validation_df
# Split the validation data into X and y
X val = validation df.drop(columns=[labels[0]])
y val = validation df[labels[0]]
#----- Scaling the values negatively affects the model.. -----
# features_to_scale = time_columns.to_list() + time_columns_with_seconds.columns.to_list()
# features to scale.remove('arr at')
# features to scale = [column + ' seconds since midnight' for column in features to scale]
# # Create the scaler
# scaler = MinMaxScaler(feature range=(0, 1))
# # Replace -1 with NaN
# X train.replace(-1, np.nan, inplace=True)
# X_val.replace(-1, np.nan, inplace=True)
# # Fit on the training data
# scaler.fit(X train[features to scale])
# # Transform both the training and validation data
# X_train[features_to_scale] = scaler.transform(X_train[features_to_scale])
# X train.fillna(-1, inplace=True) # Replace NaNs with -1
# X_val[features_to_scale] = scaler.transform(X_val[features_to_scale])
```

 X_val

	tpl	${\tt arr_atRemoved}$	${\tt pass_atRemoved}$	${\tt dep_atRemoved}$	cr_code	lr_code	<pre>pta_seconds_since_midnight</pre>	ptd_seconds_sin
9110	27	-1.0	-1.0	0.0	-1.0	-1.0	-1.0	
9111	3	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
9112	0	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
9113	38	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
9114	31	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
27013	8	0.0	-1.0	0.0	-1.0	-1.0	3780.0	
27014	43	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
27015	44	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
27016	34	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
27017	33	0.0	-1.0	-1.0	-1.0	-1.0	4920.0	

271712 rows × 19 columns

Developing The Model

RNN

```
num_stations = len(train_df['lr_code'].unique())
num_features = train_df.drop(columns=['arr_at_seconds_since_midnight']).shape[1]
num_samples = train_df.shape[0]

print("Shape of array before reshaping:", train_df.drop(columns=['arr_et_seconds_since_midnight']).values.shape)
print("num_stations:", num_stations)
print("num_features:", num_features)
print("num_samples:", num_samples)

num_val_stations = len(validation_df['lr_code'].unique())
num_val_features = validation_df.drop(columns=['arr_at_seconds_since_midnight']).shape[1]
num_val_samples = validation_df.shape[0]

print("\n\nShape of array before reshaping:", validation_df.drop(columns=['arr_et_seconds_since_midnight']).values.shape)
print("num_stations:", num_val_stations)
print("num_features:", num_val_stations)
print("num_samples:", num_val_samples)
```

```
Shape of array before reshaping: (1086976, 19)
    num stations: 159
    num features: 19
    num samples: 1086976
    Shape of array before reshaping: (271712, 19)
    num stations: 108
    num features: 19
    num_samples: 271712
# Reshape the data
X_train_3d = X_train.values.reshape((-1, 32, X_train.shape[1]))
y train 3d = y train.values.reshape((-1, 32, 1))
X_{val_3d} = X_{val_values.reshape((-1, 32, X_{val.shape[1]))}
y val 3d = y val.values.reshape((-1, 32, 1))
from keras.models import Sequential
from keras.lavers import LSTM. TimeDistributed. Dense
from keras.callbacks import EarlyStopping, TensorBoard
from keras.metrics import MeanSquaredLogarithmicError, MeanAbsolutePercentageError
import tensorflow as tf
import datetime
# Define RMSF
def rmse(y true, y pred):
    return tf.sqrt(tf.reduce mean(tf.square(y pred - y true)))
# Define the LSTM model
model = Sequential()
model.add(LSTM(50, activation='relu', return_sequences=True, input_shape=(32, X_train.shape[1])))
model.add(TimeDistributed(Dense(1)))
model.compile(optimizer='adam', loss='mse', metrics=['mae', rmse, MeanSquaredLogarithmicError(), MeanAbsolutePercentageError()])
# Define early stopping
early stopping = EarlyStopping(monitor='val loss', patience=5)
# Define TensorBoard
time_stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
log_dir = "logs/fit/" + time_stamp
tensorboard callback = TensorBoard(log dir=log dir, histogram freg=1)
model.summary()
# Train the model
model.fit(X_train_3d, y_train_3d, epochs=100, verbose=1, validation_data=(X_val_3d, y_val_3d), callbacks=[early_stopping, tensorboard_callback])
model.save(f'RNN Model {time stamp}.keras')
```

2024-04-25 09:38:05.094060: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compile: /Users/joshuanewton/Library/CloudStorage/OneDrive-UniversityofEastAnglia/Modules/Artificial Intelligence/Assignments/ super().__init__(**kwargs)
Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 32, 50)	14,000
time_distributed (TimeDistributed)	(None, 32, 1)	51

Total params: 14,051 (54.89 KB)
Trainable params: 14,051 (54.89 KB) Non-trainable params: 0 (0.00 B)

Epoch 1/100	B)			
	236	17mc/cten - locc	281701648 0000 - ma	e: 9478.1768 - mean_absolute_percentage_erroi
Epoch 2/100	233	1/1115/5tep - t055.	201791040:0000 - Illa	le. 9470:1700 - mean_absolute_percentage_error
•	16s	15ms/sten - loss:	29075462.0000 - mae	: 3335.2114 - mean_absolute_percentage_error:
Epoch 3/100		255, 5 top 1000.	23073.0210000 mac	555512121
	15s	14ms/step - loss:	21914710.0000 - mae	: 2742.9531 - mean_absolute_percentage_error:
Epoch 4/100				
	15s	14ms/step - loss:	18236650.0000 - mae	: 2468.5701 - mean_absolute_percentage_error:
Epoch 5/100				
	16s	15ms/step - loss:	14661331.0000 - mae	: 2311.2205 - mean_absolute_percentage_error:
Epoch 6/100 1062/1062 ————————————————————————————————————	150	14ms/s+on loss.	10202062 0000 ===	. 1021 0044 man sheelute nercentage error
Epoch 7/100	155	141115/Step - 1055:	10202002.0000 - IIIae	: 1931.9944 - mean_absolute_percentage_error:
	17s	16ms/sten - loss:	7713258.0000 - mae:	1519.1952 - mean_absolute_percentage_error:
Epoch 8/100	1/3	101113/3 CCP C033:	771323010000 mac:	isisiisse mean_absotate_percentage_error:
•	17s	16ms/step - loss:	6578804.5000 - mae:	1220.2916 - mean absolute percentage error:
Epoch 9/100		. ,		
	17s	16ms/step - loss:	5355782.0000 - mae:	984.2577 - mean_absolute_percentage_error: 1
Epoch 10/100				
	15s	14ms/step - loss:	4654697.0000 - mae:	779.4251 - mean_absolute_percentage_error: 2
Epoch 11/100 1062/1062	100	17ms/ston loss	4767260 5000 mag.	751.3188 - mean_absolute_percentage_error: :
Epoch 12/100	135	1/1115/5tep - 1055.	4/0/309.3000 - mae.	731.3166 - mean_absolute_percentage_error.
	195	18ms/sten - loss:	3661168.7500 - mae:	561.9827 - mean absolute percentage error: 3
Epoch 13/100		тошо, этер сообт	300110017300 mac1	30113027 mean_ab30 tate_per centrage_errorr
	16s	15ms/step - loss:	3083715.2500 - mae:	445.0934 - mean_absolute_percentage_error: 2
Epoch 14/100				
	15s	15ms/step - loss:	3273831.2500 - mae:	485.1795 - mean_absolute_percentage_error: 3
Epoch 15/100				
1062/1062 ————————————————————————————————————	1/s	16ms/step - Loss:	2853895.7500 - mae:	336.4337 - mean_absolute_percentage_error: 1
•	15e	1/mc/cten = locc:	25/11072 0000 - mae:	307.1745 - mean absolute percentage error: 2
Epoch 17/100	133	14113/31Cp - 1033.	234107210000 - mac.	307:1743 - mean_absocute_percentage_error: 2
	14s	13ms/step - loss:	2253947.2500 - mae:	296.9044 - mean absolute percentage error: 3
Epoch 18/100		. ,		
1062/1062 —————	15s	14ms/step - loss:	2644528.7500 - mae:	321.8714 - mean_absolute_percentage_error: 2
Epoch 19/100				
The state of the s	15s	14ms/step - loss:	2289504.7500 - mae:	300.9827 - mean_absolute_percentage_error: 1
Epoch 20/100 1062/1062 ————————————————————————————————————	216	10mc/cton 1000	2100565 7500	306.9738 - mean absolute percentage error: 1
Epoch 21/100	218	191112/216h - 1022:	21000001/Jub - Mae:	500.9750 - mean_absolute_percentage_error: 1
•	17s	16ms/sten - loss:	1745455.2500 - mae:	219.4247 - mean absolute percentage error: 2
	_, _	20o, 5 cop co551	1, 15 15512500 maci	


```
An exception has occurred, use %tb to see the full traceback.
    SystemExit: Stop right there!
    /Users/joshuanewton/Library/CloudStorage/OneDrive-UniversityofEastAnglia/Modules/Artificial Intelligence/Assignments/
      warn("To exit: use 'exit', 'quit', or Ctrl-D.", stacklevel=1)
# Use the below to load the model instead of training again..
# from tensorflow.keras.models import load model
# from tensorflow.keras import backend as K
# # Define the custom RMSE function
# def rmse(v true. v pred):
      return K.sgrt(K.mean(K.sguare(y pred - y true)))
# # Load the model
# model = load model('RNN Model.keras', custom objects={'rmse': rmse})
from sklearn.metrics import mean squared error
from math import sqrt
# Make predictions
y_pred = model.predict(X_val_3d)
# Replace values between -100 and 100 with -1
y \text{ pred} = \text{np.where}((y \text{ pred} > -100) \& (y \text{ pred} < 100), -1, y \text{ pred})
_X_val['my_prediction_since_midnight'] = y_pred.flatten()
_X_val['arr_at'] = _X_val['arr_at_seconds_since_midnight'].apply(convert_seconds_to_string)
_X_val['my_prediction'] = _X_val['my_prediction_since_midnight'].apply(convert_seconds_to_string)
_X_val_filtered = _X_val[_X_val['arr_at_seconds_since_midnight'] != -1].copy()
# Calculate the score of the predictions
mse_score = mean_squared_error(_X_val_filtered['arr_at_seconds_since_midnight'], _X_val_filtered['my_prediction_since_midnight'])
# Calculate RMSE
rmse_score = sqrt(mse_score)
print(f"Prediction MSE score: {mse_score}")
print(f"Prediction RMSE score: {rmse_score}")
print(f"Prediction RMSE score in seconds: {convert seconds to string(rmse score)}")
# Calculate the difference in time between the 'arr_at' and 'my_prediction' columns
_X_val_filtered.loc[:, 'time_difference'] = abs(_X_val_filtered['arr_at_seconds_since_midnight'] - _X_val_filtered['my_prediction_since_midnight'])
# Convert 'time_difference' to HH:MM:SS format
_X_val_filtered.loc[:, 'time_difference'] = _X_val_filtered['time_difference'].apply(convert_seconds_to_string)
_X_val_filtered[['arr_at_seconds_since_midnight', 'my_prediction_since_midnight', 'arr_at', 'my_prediction', 'time_difference']]
```

	arr_at_seconds_since_midnight	my_prediction_since_midnight	arr_at	my_prediction	time_difference
9129	67440.0	67510.789062	18:44:00	18:45:10	00:01:10
9130	68040.0	68186.421875	18:54:00	18:56:26	00:02:26
9132	68760.0	68894.117188	19:06:00	19:08:14	00:02:14
9137	70140.0	69934.726562	19:29:00	19:25:34	00:03:25
9141	71340.0	71757.664062	19:49:00	19:55:57	00:06:57
27006	1620.0	706.702148	00:27:00	00:11:46	00:15:13
27008	2220.0	2573.316406	00:37:00	00:42:53	00:05:53
27011	3000.0	3078.495117	00:50:00	00:51:18	00:01:18
27013	3720.0	3781.103027	01:02:00	01:03:01	00:01:01
27017	4860.0	4895.019043	01:21:00	01:21:35	00:00:35

58492 rows × 5 columns

MLP

X_train

```
NameError
Cell In[1], line 1
----> 1 X_train

NameError: name 'X_train' is not defined

from keras.models import Sequential
from keras.layers import Dense
from keras.callbacks import EarlyStopping

# Define the model
model = Sequential()
model.add(Dense(32, input_dim=X_train.shape[1], activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='linear'))

# Compile the model
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mean_absolute_error', 'mean_squared_error'])
```

2024-04-24 10:11:32.183118: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical oper To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.

/Users/joshuanewton/Library/CloudStorage/OneDrive-UniversityofEastAnglia/Modules/Artificial Intelligence/Assignments/Assignment 02/Chat_bot/.venv/lib/python3.11/site-packages/kerasuper(). init (activity regularizer=activity regularizer. **kwargs)

Define the early stopping criteria
early_stopping = EarlyStopping(monitor='val_loss', patience=5)

Fit the model (assuming you have training and validation data defined)
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=100, callbacks=[early_stopping])
model.save('MLP Model.keras')

Evaluate the model
loss = model.evaluate(X_test, y_test)
print('Test loss:', loss)

Epoch 1/100

```
690/690 -
                            2s 2ms/step - loss: 106773280.0000 - mean_absolute_error: 3880.6829 - mean_squared_error: 106773280.0000 - val_loss: 8124206.0000 - val_mean_absolute_error
Epoch 2/100
690/690
                            - 1s 2ms/step - loss: 8974206.0000 - mean absolute error: 513.1395 - mean squared error: 8974206.0000 - val loss: 4720593.0000 - val mean absolute error
Epoch 3/100
690/690 -
                           - 1s 1ms/step - loss: 5071497.0000 - mean absolute error: 340.0338 - mean squared error: 5071497.0000 - val loss: 4869332.0000 - val mean absolute error
Epoch 4/100
690/690 -
                            - 1s 1ms/step - loss: 6484090.0000 - mean absolute error: 336.0281 - mean squared error: 6484090.0000 - val loss: 4163950.5000 - val mean absolute error
Epoch 5/100
690/690 -
                            - 1s 1ms/step - loss: 6462429.0000 - mean absolute error: 327.1425 - mean squared error: 6462429.0000 - val loss: 4283006.5000 - val mean absolute error
Epoch 6/100
                            - 1s 1ms/step - loss: 4189777.2500 - mean absolute error: 276.3677 - mean squared error: 4189777.2500 - val loss: 3847919.7500 - val mean absolute error
690/690 -
Epoch 7/100
690/690
                            - 1s 1ms/step - loss: 5504645.5000 - mean absolute error: 276.4265 - mean squared error: 5504645.5000 - val loss: 3808758.0000 - val mean absolute error
Epoch 8/100
690/690 -
                           – 1s 1ms/step – loss: 5703067.0000 – mean_absolute_error: 345.7055 – mean_squared_error: 5703067.0000 – val_loss: 3802681.0000 – val_mean_absolute_error
Epoch 9/100
690/690
                            - 1s 1ms/step - loss: 6623099.5000 - mean absolute error: 326.4132 - mean squared error: 6623099.5000 - val loss: 4007859.5000 - val mean absolute error
Epoch 10/100
                            - 1s 1ms/step - loss: 3609464.5000 - mean absolute error: 270.9659 - mean squared error: 3609464.5000 - val loss: 3743166.5000 - val mean absolute error
690/690 -
Epoch 11/100
690/690 -
                            - 1s 1ms/step - loss: 5642946.0000 - mean absolute error: 329.8374 - mean squared error: 5642946.0000 - val loss: 3722035.2500 - val mean absolute error
Epoch 12/100
690/690
                            · 1s 1ms/step - loss: 3827563.7500 - mean absolute error: 281.3314 - mean squared error: 3827563.7500 - val loss: 3721890.2500 - val mean absolute error
Epoch 13/100
690/690 -
                            - 1s 957us/step - loss: 4076675.2500 - mean absolute error: 246.8627 - mean squared error: 4076675.2500 - val loss: 4222328.5000 - val mean absolute err
Epoch 14/100
                            - 1s 1ms/step - loss: 3766420.2500 - mean absolute error: 322.1334 - mean squared error: 3766420.2500 - val loss: 3694875.7500 - val mean absolute error
690/690 -
Epoch 15/100
690/690 -
                            - 1s 1ms/step - loss: 5517638.5000 - mean_absolute_error: 309.6285 - mean_squared_error: 5517638.5000 - val_loss: 3538413.7500 - val_mean_absolute_error
Epoch 16/100
690/690 -
                            - 1s 1ms/step - loss: 2727532.5000 - mean absolute error: 235.2153 - mean squared error: 2727532.5000 - val loss: 3586469.7500 - val mean absolute error
Epoch 17/100
690/690
                                                              - mean_absolute_error: 231.2191 - mean_squared_error: 3413464.5000 - val_loss: 3806154.0000 - val_mean_absolute_error
                            - 1s 1ms/step - loss: 3413464.5000
Epoch 18/100
690/690 -
                            - 1s 1ms/step - loss: 5648635.5000 - mean absolute error: 276.9623 - mean squared error: 5648635.5000 - val loss: 3981994.2500 - val mean absolute error
Epoch 19/100
690/690 -
                            - 1s 1ms/step - loss: 4799237.0000 - mean_absolute_error: 322.9114 - mean_squared_error: 4799237.0000 - val_loss: 3848264.5000 - val_mean_absolute_error
Epoch 20/100
690/690 -
                            - 1s 1ms/step - loss: 4739511.0000 - mean_absolute_error: 302.5638 - mean_squared_error: 4739511.0000 - val_loss: 3431392.2500 - val_mean_absolute_error
Epoch 21/100
690/690 -
                            - 1s 1ms/step - loss: 4818973.5000 - mean absolute error: 293.7706 - mean squared error: 4818973.5000 - val loss: 3624541.5000 - val mean absolute error
```

```
Epoch 22/100
690/690 -
                          — 1s 1ms/step - loss: 3617766.5000 - mean absolute error: 276.5949 - mean squared error: 3617766.5000 - val loss: 4049440.7500 - val mean absolute error
Epoch 23/100
690/690
                           - 1s 1ms/step - loss: 4634426.5000 - mean_absolute_error: 301.6610 - mean_squared_error: 4634426.5000 - val_loss: 3374576.2500 - val_mean_absolute_error
Epoch 24/100
690/690 -
                          — 1s 1ms/step - loss: 3399142.0000 - mean absolute error: 221.6506 - mean squared error: 3399142.0000 - val loss: 3716261.5000 - val mean absolute error
Epoch 25/100
690/690 -
                           - 1s 1ms/step - loss: 3663961.0000 - mean_absolute_error: 266.8208 - mean_squared_error: 3663961.0000 - val_loss: 3239872.7500 - val_mean_absolute_error
Epoch 26/100
690/690 -
                           — 1s 1ms/step - loss: 4369014.5000 - mean absolute error: 265.0534 - mean squared error: 4369014.5000 - val loss: 3780497.7500 - val mean absolute error
Epoch 27/100
690/690 -
                           - 1s 1ms/step - loss: 4395955.0000 - mean_absolute_error: 294.4192 - mean_squared_error: 4395955.0000 - val_loss: 3612268.2500 - val_mean_absolute_error
Epoch 28/100
690/690 -
                            - 1s 1ms/step - loss: 5014749.0000 - mean absolute error: 305.7670 - mean squared error: 5014749.0000 - val loss: 3330054.0000 - val mean absolute error
Epoch 29/100
c00/c00
                            1- 0E0us/stan | loss 2620E12 0000 | man absolute array 200 E41E | man assared array 2620E12 0000 | val loss 2212122 2E00 | val man absolute array
```

preds = model.predict(X test)

Assuming y_test is a pandas Series or DataFrame
df = pd.DataFrame(y test)

Add a new column with the model predictions
df['predictions'] = model.predict(X_test)
df['real_time'] = df['arr_at_seconds_since_midnight'].apply(seconds_to_time)
df['predictions_time'] = df['predictions'].apply(seconds_to_time)

173/173 — **0s** 2ms/step

df

	arr_at_seconds_since_midnight	predictions	real_time	predictions_time
8238	-1.0	1.044594	23:59:59	00:00:01.044594
3690	-1.0	17.069893	23:59:59	00:00:17.069893
6528	-1.0	14.059761	23:59:59	00:00:14.059761
9579	31200.0	31250.390625	08:40:00	08:40:50.390625
7786	-1.0	20.427315	23:59:59	00:00:20.427315
10829	2700.0	2840.061523	00:45:00	00:47:20.061523
14105	-1.0	115.358467	23:59:59	00:01:55.358467
5130	-1.0	6.540596	23:59:59	00:00:06.540596
15974	-1.0	18.718025	23:59:59	00:00:18.718025
19050	-1.0	17.253487	23:59:59	00:00:17.253487

5515 rows × 4 columns

Creating dummy DF with a fake scenario

```
example__single_journey = filtered_test_data[filtered_test_data['rid'] == unique_rid[25]]
example__single_journey = example__single_journey.reset_index(drop=True)
example__single_journey
```

	rid	tpl	arr_atRemoved	pass_atRemoved	dep_atRemoved	cr_code	lr_code	pta_seconds_since_midnight	pt
0	202009018006357	27	-1.0	-1.0	0.0	-1.0	-1.0	-1.0	
1	202009018006357	3	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
2	202009018006357	0	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
3	202009018006357	38	0.0	-1.0	0.0	-1.0	-1.0	-1.0	
4	202009018006357	31	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
5	202009018006357	10	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
6	202009018006357	19	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
7	202009018006357	29	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
8	202009018006357	41	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
9	202009018006357	13	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
10	202009018006357	4	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
11	202009018006357	11	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
12	202009018006357	35	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
13	202009018006357	17	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
14	202009018006357	2	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
15	202009018006357	37	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
16	202009018006357	6	0.0	-1.0	0.0	-1.0	-1.0	79500.0	
17	202009018006357	46	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
18	202009018006357	30	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
19	202009018006357	7	0.0	-1.0	0.0	-1.0	-1.0	80700.0	
20	202009018006357	28	0.0	-1.0	0.0	-1.0	-1.0	81180.0	
21	202009018006357	24	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
22	202009018006357	25	0.0	-1.0	0.0	-1.0	-1.0	81960.0	
23	202009018006357	23	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
24	202009018006357	22	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
25	202009018006357	40	0.0	-1.0	0.0	-1.0	-1.0	82680.0	
26	202009018006357	14	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
27	202009018006357	8	0.0	-1.0	0.0	-1.0	-1.0	83460.0	
28	202009018006357	43	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
29	202009018006357	44	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	
30	202009018006357	34	-1.0	0.0	-1.0	-1.0	-1.0	-1.0	

```
print(
   convert_seconds_to_string(
        (example__single_journey.loc[22, 'ptd_seconds_since_midnight']
        example__single_journey.loc[0, 'ptd_seconds_since_midnight'])
        - (convert_string_to_seconds('12:00'))
    -11:17:00
.....
Cell generated by Data Wrangler.
def clean_data(example__single_journey):
   # Drop column: 'rid'
   example__single_journey = example__single_journey.drop(columns=['rid'])
   cols_to_blank = example__single_journey.columns
   cols_to_blank = cols_to_blank[1:]
   example__single_journey[cols_to_blank] = -1
   return example__single_journey
example__single_journey_clean = clean_data(example__single_journey.copy())
example__single_journey_clean = example__single_journey_clean.reset_index(drop=True)
# example__single_journey_clean
```

```
example__single_journey_clean.at[22, 'arr_atRemoved'] = 0
example single journey clean.at[22. 'pass atRemoved'] = 0
example single journey clean.at[22, 'dep atRemoved'] = 0
example__single_journey_clean.at[22, 'pta_seconds_since_midnight'] = convert_string_to_seconds('12:00')
example single journey_clean.at[22, 'ptd_seconds_since_midnight'] = convert_string_to_seconds('12:09')
example single journey clean.at[22, 'arr et seconds since midnight'] = convert string to seconds('12:00')
example _single_journey_clean.at[22, 'dep_et_seconds_since_midnight'] = convert_string_to_seconds('12:06')
example single journey clean.at[22, 'arr at seconds since midnight'] = convert string to seconds('12:01')
example single journey clean.at[22, 'dep at seconds since midnight'] = convert string to seconds('12:15')
example__single_journey_clean.at[0, 'arr_atRemoved'] = 0
example single journey clean.at[0, 'pass atRemoved'] = 0
example__single_journey_clean.at[0, 'dep_atRemoved'] = 0
example _single_journey_clean.at[0, 'pta seconds_since_midnight'] = convert_string_to_seconds('11:17')
example single journey clean.at[0, 'ptd seconds since midnight'] = convert string to seconds('11:20')
example__single_journey_clean.at[0, 'arr_et_seconds_since_midnight'] = convert_string_to_seconds('11:17')
example single journey clean.at[0. 'dep et seconds since midnight'] = convert string to seconds('11:19')
example single journey clean.at[0, 'arr at seconds since midnight'] = convert string to seconds('11:18')
example single journey_clean.at[0, 'dep_at_seconds_since_midnight'] = convert_string_to_seconds('11:27')
example__single_journey_clean_1 = clean_data(example__single_journey_clean.copy())
example single journey clean 1 = example single journey clean 1.drop(columns=['arr at seconds since midnight'], axis=1)
example__single_journey_clean_1
```