УДК 576.895: 421(470.311)

ЛЕСНОЙ КЛЕЩ IXODES RICINUS (IXODIDAE) В ОЧАГАХ ИКСОДОВЫХ КЛЕЩЕВЫХ БОРРЕЛИОЗОВ СЕВЕРО-ЗАПАДА ПОДМОСКОВЬЯ

© Г. С. Кисленко, Ю. С. Коротков

Мониторинговые исследования 1996—2001 гг. выявили на северо-западе Московской обл. природный очаг иксодовых клещевых боррелиозов (ИКБ) со стабильно высокими обилием и зараженностью возбудителями *Ixodes ricinus*: 19.5—38.4 особей на 1 км маршрута и 18.0 ± 1.7 —22.5 ± 1.5 % соответственно. Степень риска заражения болезнью Лайма в «рицинусном» очаге ИКБ в течение всего эпизоотического сезона остается практически неизменной: от 3.5 до 8.2 в отдельные годы, а в среднем — 6.0 инфицированных клещей на 1 км маршрута.

В краткой сводке по заболеваемости населения Российской Федерации болезнью Лайма (БЛ) приведены цифры официальной регистрации этой инфекции в ряде регионов и субъектов Федерации за 1992—1999 гг., но ничего не сказано о ситуации в Подмосковье (Арумова, Воронцова, 2000).

В то же время отдельные сообщения (Алексеев и др., 1993; Буренкова, 1999, 2000; Кисленко, Коротков, 1999; Окулова и др., 2000) указывают на распространение в Московской обл. и прилегающих к ней территориях «рицинусных» и «персулькатусных» очагов иксодовых клещевых боррелиозов (ИКБ), т. е. очагов, переносчиками инфекции в которых являются лесной клещ *Ixodes ricinus* (L.) или таежный клещ *I. persulcatus* Sch. (Коренберг, 1996). Причем известные на сегодня в подмосковных очагах ИКБ 3 вида спирохет — *Borrelia afzelii, B. garinii* и *B. burgdorferi* — (Масузава и др., 2001) патогенны для человека (Васильева, Наумов, 1996).

«Рицинусные» очаги представляют собой источник повышенной эпидемической опасности для населения Москвы и Московской обл. Наши многолетние наблюдения показывают, что леса Подмосковья заметно чаще начинают посещаться людьми со второй половины июля, когда в «персулькатусных» очагах ИКБ степень риска заражения резко сходит на нет, а «рицинусные» очаги, наоборот, продолжают оставаться весьма напряженными.

В этой связи возрастает эпидемиологическое значение природных очагов ИКБ, в которых основным переносчиком возбудителей служит *I. ricinus*. И следовательно, их изучение актуально в Подмосковье даже несмотря на то, что в России «рицинусным» очагам отводится второстепенная роль (Коренберг и др., 1991; Дубинина и др., 1997).

материал и методы

Авторами настоящего сообщения проводятся круглосезонные исследования природных очагов ИКБ северо-запада Подмосковья: с 1996 по 2001 г. таежного и лесолугового «персулькатусных» (Кисленко, Коротков, 1999) и с 1998 по 2001 г. «рицинусного». Кроме того, последний очаг обследовался и осенью 1996, 1997 гг.

Модельные «рицинусный» и таежный «персулькатусный» очаги находятся в лесном массиве зоны симпатрии специфических переносчиков возбудителей ИКБ — лесного и таежного клещей на территории Талдомского р-на Московской обл. (Бабенко, 1956, 1958). При этом «рицинусный» очаг ИКБ расположен в южной части массива, а «персулькатусный» очаг — в северной. Расстояние между ними колеблется от 12 км и более. В первом из них пока не встречен *I. persulcatus*, и во втором чрезвычайно редко встречался *I. ricinus* (см. с. 449).

За период работы в «рицинусном» очаге на 60 одноразовых маршрутах пройдено 108 км, собраны все 2480 учтенных имаго (1996 г. — 31 особь, 1997 г. — 45, 1998 г. — 484, 1999 г. — 344, 2000 г. — 828 и 2001 г. — 748 особей; 1181 самка и 1299 самцов) и взяты 197 из 244 учтенных нимф *I. ricinus*. В сравнительных целях использовали данные обследования 2682 и 2966 имаго *I. persulcatus* из таежного и лесо-лугового «персулькатусных» очагов ИКБ.

Учет активных клещей проводили методом отлова на флаг (и учетчика) на маршрутах. Показатель численности клещей — число особей на 1 км маршрута.

Осмотр флага во время учета клещей осуществляли через каждые 2—3 пары вымеренных шагов. При традиционных интервалах проверок флага на нем обычно остаются особи, прицепившиеся к ткани только на последних метрах пройденного отрезка маршрута. Клещей собирали в бинт (Кисленко, Коротков, 1989) с лежащего на земле флага, так как с поднятого флага клещи часто «осыпаются». С учетом этологических особенностей *I. ricinus* его сборы в природе при таком методе увеличиваются в 1.5—2 раза.

Клещей исследовали на наличие возбудителя путем темнопольной микроскопии витальных препаратов (Ковалевский и др., 1988, 1990). Концентрацию боррелий в препарате выражали числом микробных тел на 100 полей зрения: низкая — до 10.0 спирохет, средняя — 10.1—50.0, высокая — 50.1—250.0 и очень высокая — более 250 спирохет (Ковалевский и др., 1991).

Теплое время года разделили на 2 периода подъема активности *I. ricinus*: весенний (апрель—июль) и осенний (август—ноябрь), в каждом из которых, в свою очередь, выделили период наибольшей активности клещей (НАК), включающий пред-, пиковую и послепиковую декады. Исходя из сезонной динамики активности лесного клеща, эпизоотический сезон ИКБ представили 4 периодами: периодом весенней НАК и весенним периодом (свойственными и «персулькатусным» очагам), периодом осенней НАК и осенним периодом, отражающими на данный момент сезона состояние «рицинусного» очага.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Спустя сорок лет после появления в печати сведений о «талдомской» популяции *I. ricinus* (Бабенко, 1956, 1958) наши исследования совпали во времени не только с количественными, но и качественными изменениями, происходящими в этой популяции в связи со смягчением климата. Так, среднесезонная численность лесного клеща на обследуемой территории в конце XX века, постоянно увеличиваясь: 1998 г. — 19.5; 1999 г. — 22.0; 2000 г. — 34.4 и 2001 г. — 38.4 особей на 1 км маршрута (табл. 1), превысила свои показатели пятидесятых годов в 2—2.5 раза (Бабенко, 1958).

По сравнению с наблюдениями прошлых лет (Бабенко, 1958) сроки весеннего пика активности *I. ricinus* практически не изменились, тогда как сроки осеннего пика сжались до пределов одной декады: 2-я пятидневка II декады—1-я пятидневка III декады мая и I декада сентября, а численное выражение пиков составило: 1998 г. — 37.8 и 26.0; 1999 г. — 40.4 и 25.2; 2000 г. — 55.8 и 57.2 и 2001 г. — 51.2 и 66.0 особей на 1 км маршрута соответственно. То есть два года подряд (1998 и 1999 гг.) весенний максимум численности превышал осенний примерно в 1.5 раза, однако на третий год (2000 г.), когда среднесезонная численность лесного клеща возросла в 1.5 раза, показатели пиков находились на одном уровне, но в следующем сезоне (2001 г.) при таком

Таблица 1 Сезонная динамика численности *Ixodes ricinus* в Талдомском районе Московской области в 1998—2001 гг.

Table 1. Seasonal dynamics of abundance of <i>Ixodes ricinus</i> in the	Taldom	region
of the Moscow Province in 1998–2001		-

Период сезона	Число клещей на 1 км маршрута					
Период сезона	1998 г.	1999 г.	2000 г.	2001 г.		
Апрель		26.5	39.4	40.6		
Май	35.1	40.4	55.8	51.2		
Июнь	17.0	10.7	49.5	33.6		
Июль			38.9	24.3		
Август	17.8		46.5	45.0		
Сентябрь	20.4	23.7	43.2	50.2		
Октябрь	10.2	20.6	16.9	19.3		
Ноябрь	5.0		11.4			
Период весенней НАК	29.1	26.7	47.0	40.3		
Весенний период	26.0	21.9	44.5	31.4		
Период осенней НАК	21.0	23.7	47.7	53.5		
Осенний период	16.0	22.2	29.5	43.7		
Сезон в целом	19.5	22.0	34.4	38.4		

же обилии клещей теперь уже оказался выше в 1.3 раза осенний максимум численности. Кстати, в популяции *I. ricinus* на территории Ленинградской обл. осенний пик численности бывает иногда также выше весеннего (Золотов, 1989; Ковалевский и др., 1993). Вместе с тем, по данным Бабенко (1958), около полувека назад в «талдомской» популяции лесного клеща разница между пиками (1955 и 1956 гг.) достигала 3 и более раз в пользу весеннего, а в отдельные годы (1957 г.) второй пик едва просматривался.

Бабенко (1956) считает, что неустойчивость степени выраженности осенней активности у *I. ricinus* является признаком тенденции к полной ликвидации этого периода активности по мере адаптации лесного клеща к существованию в условиях континентального климата. Однако феномен потепления климата с увеличением количества выпадающих в летнее время осадков, имевший место в последние два десятилетия прошлого столетия (Абакумова и др., 1998), вызвал заметный сдвиг сезонного хода активности имаго *I. ricinus* рассматриваемой популяции в сторону стабилизации двувершинного типа сезонной активности без значительного преобладания весеннего максимума численности над осенним (см.: Бабенко, 1958), что подтверждается нашими данными.

В модельном лесо-луговом «персулькатусном» очаге, кроме основного переносчика возбудителей ИКБ, встречается и лесной клещ, но его доля в отловах с 1985 г. не превышает 0.1 %. Занос в этот очаг *I. ricinus* в состоянии преимущественно сытых нимф осуществляется дроздами-рябинниками (*Turdus pilaris* L.) во время широких послегнездовых кочевок.

Отсутствие клещей *I. ricinus* в таежном «персулькатусном», а *I. persulcatus* в «рицинусном» очагах ИКБ, расположенных в едином лесном массиве, связано в первую очередь с характером осенних кочевок рябинника и других видов дроздов местных популяций. Поскольку основные черемуховые и рябиновые насаждения массива находятся в пределах «рицинусного» очага, осенние перемещения пернатых приобрели одностороннюю направленность. Слетающиеся в южную часть массива во второй половине августа—октябре дрозды не приносят с собою из «персулькатусного» очага преимаго таежного клеща по причине почти полного истощения запаса последних в природе, зато прокармливают в «рицинусном» очаге нимф лесного клеща (Бабенко, 1956), собранных ими в пути или уже на месте.

Домашний скот не посещает обследуемые участки лесного массива, поэтому прокормителями взрослых клещей в этих очагах ИКБ выступают только дикие теплокров-

ные: регулярно встречающиеся обыкновенный еж — Erinaceus europaeus L., заяцбеляк — Lepus timidus L. и редкие здесь обыкновенная лисица — Vulpes vulpes (L.) и лось — Alces alces (L.). А среди хозяев преимаго наряду с мелкими млекопитающими, ежом и зайцем здесь обычны или многочисленны обыкновенная белка (Sciurus vulgaris L.) и около десяти видов птиц экологических групп, собирающих корм в нижних вертикальных ярусах.

Экстенсивность заражения боррелиями (ЭЗБ) имаго *I. ricinus* в противоположность его численности в годы наблюдений оставалась стабильной — 18.0—22.5 %. Однако с увеличением обилия клещей число инфицированных особей на 1 км маршрута, т. е. степень риска заражения БЛ, возросло в 2.3 раза: с 3.5 в 1998 г. до 8.2 в 2001 г. (табл. 1, 2). Как долго продлится эта тенденция, покажет дальнейший мониторинг «рицинусного» очага ИКБ.

По показателям ЭЗБ таежного и лесного клещей природные очаги ИКБ северозапада Московской обл. близки к таковым Кировского р-на Ленинградской обл., представленными двумя «чисто персулькатусными» с 95—99 % и «рицинусным» с 65—
95 % основных переносчиков БЛ (Ковалевский и др., 1993). Так, при обследовании клещей боррелии найдены: в 1996—2001 гг. в Подмосковье у 34.7 ± 0.1 % *I. persulcatus* (n = 5648) и у 21.0 ± 0.8 % *I. ricinus* (n = 2480), а в 1986—1992 гг. в Ленинградской обл. у 33.7 ± 0.9 % *I. persulcatus* (n = 2558) и у 20.9 ± 0.8 % *I. ricinus* (n = 2301) (Ковалевский и др., 1993). Но в лесо-луговом «персулькатусном» и «рицинусном» подмосковных очагах ИКБ оказалась заметно выше численность специфических переносчиков, которая и выделяет эти очаги среди сравниваемых как более напряженные (Кисленко, Коротков, 1999; табл. 1, 2).

Зараженность боррелиями самок (n = 1181) и самцов (п = 1299) *I. ricinus* практически одинаковая — 22.3 ± 1.2 и 19.9 ± 1.1 %. Не выявлено также достоверных различий половой инфицированности лесного клеща как в отдельные годы, так и в весенний или осенний периоды эпизоотического сезона ИКБ.

В «рицинусных» очагах ИКБ северо-запада Подмосковья среднемесячные максимумы численности *I. ricinus* приходятся на май и III декаду августа—II декаду сентября (табл. 1), а максимумы зараженности клещей боррелиями наблюдаются в следующие месяцы, т. е. в июне и октябре, хотя в некоторые годы возможны их смещения: весной на май (1999 г.) и осенью на август (1998 и 2001 гг.) (табл. 2).

Таблица 2 Сезонный ход зараженности боррелиями *Ixodes ricinus* в модельном очаге ИКБ на северо-западе Подмосковья в 1998—2001 гг.

Table 2. Seasonal changes infection of *Ixodes ricinus* with borreliae in a model focus of the tick borne borreliosis in the north-west of the Moscow Province in 1998—2001

Период сезона	Процент клещей с боррелиями				Интенсивность заражения клещей			
	1998 г.	1999 г.	2000 г.	2001 г.	1998 г.	1999 г.	2000 г.	2001 г.
Апрель	,	13.3	25.3	20.0		5.1	2.8	0.9
Май	15.2	24.7	10.4	21.9	3.3	3.9	0.4	3.2
Июнь	17.3	20.8	29.8	27.7	8.3	3.1	4.0	1.6
Июль			21.9	27.2			2.0	2.5
Август	29.3		21.5	20.8	10.1		1.5	2.0
Сентябрь	18.4	20.0	19.7	19.5	2.7	7.7	1.3	2.9
Октябрь	14.3	26.5	28.6	10.3	0.4	6.4	1.6	1.4
Ноябрь	40.0		25.0		2.4		1.1	
Период весенней НАК	16.4 ± 2.7	22.2 ± 3.2	21.3 ± 3.0	22.9 ± 3.4	5.2	4.3	2.6	1.8
Весенний период	15.9 ± 2.4	21.0 ± 3.0	22.8 ± 2.2	24.7 ± 2.6	5.0	4.0	2.5	2.1
Период осенней НАК	21.3 ± 3.1	20.0 ± 4.2	21.4 ± 2.6	21.8 ± 2.6	3.8	7.7	1.5	2.9
Осенний период	19.8 ± 2.5	22.8 ± 3.3	22.2 ± 1.9	19.5 ± 1.8	3.4	7.2	1.4	2.4
Сезон в целом	18.0 ± 1.7	21.8 ± 2.2	22.5 ± 1.5	21.4 ± 1.5	4.1	5.4	1.9	2.3

Таблица 3

Особенности обследования на зараженность боррелиями непрезентативных партий *Ixodes ricinus* в зоне симпатрии таежного и лесного клещей Талдомского района осенью 1996 г.

Table 3. Peculiarities of testing the non-representative samples of *Ixodes ricinus* for the infection with borreliae in a sympatry zone of the taiga and forest ticks in the Taldom region (Moscow Province) in the autumn of 1996

Дата учета		Число клещей Обследовано клещей/% с боррел на 1 км марш-							боррелиями
и сбора клещей		рута	самки	самцы	самки и самцы				
2.09	5.0	2.8	9/33.3	5/0	14/21.4				
25.09	5.0	1.8	6/0	3/0	9/0				
5.10	4.0	1.75	6/50.0	1/0	7/42.9				
13.10	3.5	0.3	1/0	•	1/0				
В целом	17.5	1.8	22/27.2	9/0	$31/19.3 \pm 7.1$				

В изучаемом очаге ранневесенние значения ЭЗБ *I. ricinus* текущего сезона повторяют позднеосенние значения ЭЗБ предыдущего сезона; июнь 1999 г. — 13.3 и октябрь 1998 г. — 14.3 %; апрель 2000 г. — 25.3 и октябрь 1999 г. — 26.5 %; май 2001 г. — 21.9 и ноябрь 2000 г. — 25.0 % (табл. 2). Выявленное нами сходство показателей осенней и весенней ЭЗБ лесного клеща соседних сезонов согласуется с выводами Бабенко (1958) о том, что осенью одного календарного года и весной следующего у *I. ricinus* активизируются особи одной и той же генерации.

Согласно полученным данным (Кисленко, Коротков, 1999; табл. 1—4), в природных очагах ИКБ Подмосковья связь между показателями численности имаго иксодовых клещей и ЭЗБ этих членистоногих не доказана, а цикличность многолетней динамики обилия активных специфических переносчиков возбудителей не зависит от степени инфицированности последних спирохетами.

Алексеев с соавторами (1993) предполагают, что в зонах симпатрии *I. ricinus* и *I. persulcatus* ЭЗБ лесного клеща бывает всегда выше, чем в изолированных «рицинус-

Таблица 4

Флуктуации численности и зараженности боррелиями *Ixodes persulcatus* и *I. ricinus* в моновидовых природных очагах зоны симпатрии специфических переносчиков возбудителей ИКБ в Талдомском районе Московской области 1996—2001 гг.

Table 4. Fluctuations of abundance of *Ixodes persulcatus* and *I. ricinus* ticks and their infection rate with borreliae in monospecies natural foci in zones of sympatry of specific vectors of tick-borne borreliosis agents in the Taldom region (Moscow Province) in 1996—2001

Число особей на 1 км марш-								
Год	рута в период весенней НАК		экстенсивнос	ть заражения	интенсивнос	гь заражения		
	I. persulcatus	I. ricinus	I. persulcatus	I. ricinus	I. persulcatus	I. ricinus		
1996*	19.9	2.8	24.0 ± 2.0	19.3 ± 7.1	21.4	2.4		
1997*	34.8	10.7	15.6 ± 1.6	13.3 ± 5.1	6.4	2.0		
1998	41.4	29.1	25.7 ± 1.9	15.9 ± 2.4	17.5	5.0		
1999	26.9	26.7	20.3 ± 1.8	21.0 ± 3.0	6.0	4.0		
2000	57.1	47.0	32.0 ± 2.5	22.8 ± 2.2	4.9	2.5		
2001	44.7	40.3	35.5 ± 2.5	24.7 ± 2.6	6.4	2.1		
996-2001	37.5 ± 5.4	26.1 ± 6.9	25.5 ± 3.0	19.5 ± 1.7	10.4 ± 2.9	3.0 ± 0.5		

Примечание. * Учет и обследование клещей *I. ricinus* проведены в осенний период сезона.

ных» очагах ИКБ. Так, авторы статьи (Алексеев и др., 1993), обследовав мизерное число *I. ricinus* (n = 4) на фоне небольшой выборки *I. persulcatus* (n = 26), считают нормой для Талдомского р-на Московской обл. 50 % ЭЗБ лесного клеща при 38.5 % ЭЗБ таежного клеща.

Недостоверность таких данных наглядно иллюстрируют в табл. 3 результаты нашего обследования в 1996 г. непрезентативных партий *I. ricinus* в том же Талдомском р-не, но только в осенний период, когда полностью исключается видовая гетерогенность в сборах специфических переносчиков возбудителей ИКБ. Средняя ЭЗБ исследованных в этом году клещей района составляла: *I. ricinus* (n = 31) — 19.3 ± 7.1 и *I. persulcatus* (n = 434) — 24.0 ± 2.0 % (табл. 4). Процент инфицированных особей лесного клеща (n = 83) в «персулькатусных» очагах ИКБ Ленинградской обл. достигал всего 15.7 ± 4.0 против 20.5 в очаге с преобладанием *I. ricinus* (Ковалевский и др., 1993).

Чтобы охарактеризовать ЭЗБ основного переносчика возбудителей в очаге ИКБ, неправомерно исходить из данных обследования единственной (пусть и достоверной) партии клещей, т. е. без учета сезонной динамики зараженности членистоногих боррелиями, поскольку разница результатов исследования клещей, собранных даже в соседних декадах сезона, может оказаться 2—3-кратной. Приводим сведения о подекадной изменчивости ЭЗБ *I. ricinus* в 2000 г.: III декада мая (n = 67) — 10.4 ± 3.7 и I декада июня (n = 50) — 30.0 ± 6.5 %; II декада сентября (n = 100) — 17.0 ± 3.8 и III декада сентября (n = 56) — 30.4 ± 6.1 %. Таким образом, в очаге ИКБ необходимо проводить как минимум подекадные (трехразовые) исследования в период весенней или осенней НАК. Результаты этих исследований близки к результатам полного весеннего или осеннего обследования клещей (табл. 2). Сказанное следует отнести и на счет высоких показателей ЭЗБ *I. ricinus* в Ногинском р-не Московской обл. (n = 88) — 35.2 ± 5.1 % (Алексеев и др., 1993) и Белгородской обл. (n = 30) — 56.7 ± 9.0 % (Арумова, Воронцова, 2000).

Наши исследования в зоне симпатрии специфических переносчиков возбудителей ИКБ Талдомского р-на подтверждают данные Ковалевского и соавторов (1993) о том, что при совместном обитании I. ricinus и I. persulcatus более высокий уровень инфицированности присущ доминирующему виду иксодид. Так, например, на рассматриваемой территории донор боррелий — белка (Humair, Gern, 1998) выкармливает преимаго таежного и личинок лесного клещей в весенне-летнее время года, тогда как нимфы второго вида кормятся на ней до окончания эпизоотического сезона ИКБ (Бабенко, 1956). Более того, осенью обилие этого зверька достигает своего максимума, а активность нимф *I. ricinus* увеличивается втрое (2001 г.; наши данные). При отсутствии корма имеет место массовая зимняя откочевка белки (зимы 1955/56 и 1997/98 гг.; Бабенко, 1958, и наши данные), что сокращает возможности прокормления (и заражения) преимагинальных фаз, прежде всего нимф, теперь уже обоих видов клещей в предстоящем сезоне, а в следующем — способствует нивелированию различий в показателях не только численности (1957 и 1999 гг.; Бабенко, 1958, и наши данные), но и ЭЗБ и интенсивности заражения боррелиями (ИЗБ) их имаго (1999 г.; наши данные). Приводим значения перечисленных показателей весеннего периода 1999 Γ.: I. persulcatus (n = 508) — 26.9, 20.3 \pm 1.8 μ 6.0; I. ricinus (n = 186) — 26.7, 21.0 ± 3.0 и 4.0 соответственно (табл. 4).

Дисперсионный анализ средних многолетних данных, полученных в соседних «рицинусном» и «персулькатусном» очагах Талдомского р-на, показал следующее (табл. 4): численность *I. persulcatus* несколько выше численности *I. ricinus*, но эта разница статистически недостоверна (P=0.22); разница между ЭЗБ двух видов клещей также недостоверна (P=0.11); ИЗБ таежного клеща составила 10.4 ± 2.9 , а лесного клеща — 3.0 ± 0.5 , т. е. различия достоверны (P=0.03). В то же время сравнение показателей по отдельным годам выявило различия не только в ИЗБ (P=0.000; $\chi^2=203.5$), но и в численности (P=0.000; $\chi^2=166.6$) и ЭЗБ (P=0.007; $\chi^2=16.0$) двух специфических переносчиков ИКБ зоны симпатрии в северо-западной части Московской обл. в пользу *I. persulcatus*.

Таблица 5

Соотношение особей с различным содержанием боррелий среди зараженных клещей *Ixodes ricinus*, выявленное в очаге ИКБ на северо-западе Московской области в 1996—2001 гг.

Table 5. Ratio of individuals with different contents of borreliae in infected *Ixodes ricinus* ticks found in the tick-borne borreliosis focus in the north-west of the Moscow Province in 1996–2001

Гол	Число заражен-	Степень инфицированности клещей, %				
ТОД	ных клещей	низкая	средняя	высокая	очень высокая	
1996	6	33.3	66.7			
1997	6	33.3	66.7			
1998	87	69.0	18.4	11.5	1.1	
1999	75	56.0	30.7	12.0	1.3	
2000	186	79.6	18.3	2.1		
2001	160	68.1	30.6	1.3		
1996—2001	520	69.8	25.0	4.8	0.4	

Итоговые показатели ИЗБ лесного клеща в «рицинусном» очаге ИКБ Талдомского р-на в 1996—2001 гг. равнялись: среди обследованных клещей (п = 2480) — 2.9 и среди инфицированных особей (п = 520) — 14.0. Полученные показатели втрое ниже показателей ИЗБ таежного клеща из соседнего «персулькатусного» очага — 9.5 и 38.5.

Среди зараженных клещей *I. ricinus* слабо инфицированные особи встречаются в 2.3 раза чаще, нежели особи с более высоким содержанием боррелий, и составляют 69.8 % (табл. 5), тогда как у *I. persulcatus* они не превышают половины зараженных — 49.9 %, а особей, содержащих свыше 50 спирохет, у первого вида меньше в 3 раза: 5.2 и 16.3 %. Однако в 1999 г. в этих очагах ИКБ наблюдались близкие значения показателей не только численности и ЭЗБ (табл. 4), но и в группах с различной степенью инфицированности боррелиями среди зараженных *I. ricinus* (п = 75) и *I. persulcatus* (п = 103): низкая — 56.0 и 57.3 %; средняя — 30.7 и 27.2 %; высокая — 12.0 и 13.6 % и очень высокая — 1.3 и 1.9 % соответственно.

Максимальное число боррелий у лесного клеща найдено: у самки 1 июня — 411 спирохет и у самца 18 сентября — 274 спирохеты, а у таежного клеща из соседнего «персулькатусного» очага — у самок 4 июня — 696 и 811 спирохет и у самцов в мае — 1311 и 1683 спирохет), т. е. все находки приходятся на период весенней или осенней НАК. Из 27 особей *I. ricinus*, содержащих более 50 боррелий, в апреле обнаружено 3 (11%), в мае — 5 (19%), в июне — 6 (22%), в июле — 1 (4%), в августе — 3 (11%), в сентябре — 6 (22%) и в октябре — 3 (11%), а в период весеннего подъема активности клещей — 15 (56%) и осеннего — 12 (44%).

Корреляционный анализ не выявил наличия стабильных связей между сезонным ходом численности, ЭЗБ и ИЗБ *I. ricinus* как по их многолетним значениям, так и в отдельные годы. Поскольку для «рицинусных» очагов ИКБ Подмосковья не характерны резкие сезонные перепады уровня зараженности переносчика, то количество инфицированных голодных имаго лесного клеща в течение сезона зависит главным образом от их численности (табл. 1, 2).

Что касается нимф *I. ricinus*, то в первые 5 лет работы учтено всего 9 особей: $1996 \, \text{г.} - 1$; $1998 \, \text{г.} - 1$ и $2000 \, \text{г.} - 7$ нимф, причем 8 из них встречены 28 VIII— 1 XI и 1 — 22 V $2000 \, \text{г.}$, а общая численность нимф составила: весной — 0.04 и осенью — 0.13 особи на 1 км маршрута. Из двух нимф, обследованных 5 IX $1998 \, \text{г.}$ и 1 XI $2000 \, \text{г.}$, вторая оказалась зараженной (2 спирохеты).

Иная картина наблюдалась в 2001 г. 235 учтенных нимф *I. ricinus* численно распределились: IV — 5.6, V — 3.7, VI — 2.1, VII — 6.2, VIII — 19.0, IX — 19.4 и

Таблица 6

Средние многолетние показатели напряженности «рицинусного» очага ИКБ в разные периоды эпизоотического сезона на северо-западе Подмосковья, по данным за 1998—2001 гг.

Table 6. Mean long-term indices of the *ricinus* natural focus of the tick-borne borreliosis in different periods of epizootic season in the north-west of the Moscow Province, data of 1998—2001

Период сезона	Число клещей на 1 км марш- рута ЭЗБ клег		ИЗБ к	Число заражен- ных клещей	
		ЭЗБ клещей	обследованные	инфицирован- ные	на 1 км марш- рута
Период весенней НАК	35.8	20.7 ± 1.5	3.5 (3.6)	17.8 (17.4)	7.4
Весенний период	30.9	21.1 ± 1.9	3.4 (3.2)	17.4 (14.9)	6.5
Период осенней НАК	36.5	21.1 ± 0.4	4.0 (3.2)	19.2 (15.0)	7.7
Осенний период	27.8	21.1 ± 0.8	3.6 (2.8)	16.8 (13.4)	5.9
Сезон в целом	28.6	20.9 ± 1.0	3.4 (3.0)	16.8 (14.0)	6.0

Примечание. В скобках приведены показатели, рассчитанные по суммарным данным.

X — 6.0; весенний период — 5.2, осенний — 17.4 и весь сезон — 12.0 особей на 1 км маршрута.

Просматриваются 2 подъема активности: незначительный весенний с пиком в апреле и хорошо выраженный осенний с пиком в августе—сентябре, тогда как в 1954 г. оба подъема активности нимф этой популяции *I. ricinus* были резко выраженными с максимумами численности в июне и августе (Бабенко, 1956).

Как и имаго, нимфы лесного клеща встречались в течение всего теплого времени года, однако их осенняя активность более чем в 3 раза превышала весеннюю. Ощутимое смещение активности нимф *I. ricinus* на осень — следствие происходящего в конце второго тысячелетия смягчения климата (Абакумова и др., 1998).

Зараженность боррелиями нимф *I. ricinus*, обследованных в 2001 г.: июль (n = 4) — 50.0; август (n = 91) — 22.0 \pm 4.3; сентябрь (n = 91) —19.8 \pm 4.2; октябрь (n = 9) —11.1 и осенний период (n = 191) —20.4 \pm 2.9 %. Осеннее и сезонное значения ЭЗБ нимф (n = 191 и 195), равные 20.4 \pm 2.9 и 21.0 \pm 2.9 %, близки к подобным значениям ЭЗБ имаго (n = 481 и 748) данного года — 19.5 \pm 1.8 и 21.4 \pm 1.5 %.

В 2001 г. среди 41 зараженной нимфы *I. ricinus* отмечены только низко- и среднеинфицированные особи: 34 (82.9%) и 7 (17.1%). Нимфы с максимальным числом боррелий встречены в середине сентября (14, 16 и 47 спирохет). Осенние (они же и сезонные) показатели ИЗБ нимф: обследованных (n = 191 и 195) — 1.4 и зараженных (n = 39 и 41) — 6.8. Эти значения ИЗБ нимф где-то в 1.5 раза уступают осенним значениям ИЗБ имаго 2001 г. (n = 481 и 94) — 2.4 и 12.2, но не отличаются от таковых имаго 2000 г. (n = 481 и 107) — 1.4 и 6.4.

ЗАКЛЮЧЕНИЕ

Северо-западной территории Московской обл. присущи «рицинусные» очаги ИКБ со стабильно высокими численностью и зараженностью боррелиями их основного переносчика *I. ricinus*.

Эпизоотический сезон «рицинусных» очагов длится с апреля по октябрь—начало ноября. Степень риска заражения БЛ находится практически на одном уровне в течение всего сезона, а период наибольшего посещения людьми лесов этой части Подмосковья (2-я половина августа—1-я половина сентября) полностью совпадает с периодом осенней НАК (III декада августа—II декада сентября) (табл. 6). Так, опрос

двух грибников 20 IX 2001 г. показал, что один из опрошенных дважды снимал присосавшихся самок в III декаде августа, а на другом — самка *I. ricinus* питалась с 16 по 19 сентября.

За годы работы учетчиком клещей были сняты с себя 2 нимфы лесного клеща через сутки после их присасывания (6 IX 1998 г. и 28 VII 2001 г.). То есть в «рицинусных» очагах ИКБ Московской обл. нимфы *I. ricinus* также нападают на людей и представляют эпидемическую опасность как переносчики возбудителей БЛ.

Список литературы

- Абакумова Г. М., Исаев А. А., Локощенко М. А., Шерстюков Б. Г. Тенденции изменений климата Москвы в конце двадцатого века // Природа Москвы. М., 1998. С. 39—49.
- Алексеев А. Н., Арумова Е. А., Буренкова Л. А., Чунихин С. П. Об особенностях распространения возбудителя болезни Лайма и поведения зараженных им клещей рода Ixodes // Паразитология. 1993. Т. 27, вып. 6. С. 389—397.
- Арумова Е. А., Воронцова Т. В. Клещевой боррелиоз (болезнь Лайма) в России // Дезинфекц. дело. 2000. № 2. С. 12.
- Бабенко Л. В. К вопросу о сезонных явлениях в жизни клещей Ixodes ricinus L. и I. persulcatus P. Sch. // Мед. паразитол. 1956. № 4. С. 346—352.
- Бабенко Л. В. О географической изменчивости сезонного хода активности Ixodes ricinus и Ixodes persulcatus и о причинах многолетнего колебания их численности // Мед. паразитол. 1958. № 6. С. 639—653.
- Буренкова Л. А. Сезонные изменения численности Ixodes ricinus и его зараженности клещевым боррелиозом на севере Калужской области // Тез. докл. VII акарол. совещ. (СПб., 28—30 сентября 1999 г.). СПб., 1999. С. 14—15.
- Буренкова Л. А. Сезонные изменения зараженности клещей Ixodes ricinus возбудителями клещевых боррелиозов на севере Калужской области // Дезинфекц. дело. 2000. № 2. С. 14—16.
- Васильева И. С., Наумов Р. Л. Паразитарная система болезни Лайма, состояние вопроса. Сообщ. І. Возбудители и переносчики // Acarina. 1996. Vol. 4. N 1—2. P. 53—75.
- Дубинина Е. В., Алексеев А. Н., Рипкема С., Чинко М. Мониторинг геновидового разнообразия возбудителей клещевого боррелиоза // Экологический мониторинг паразитов. СПб., 1997. С. 46—47.
- Золотов П. Е. Клещи-переносчики возбудителя клещевого энцефалита // Тр. Ин-та им. Пастера. Л., 1989. Т. 65. С. 31—40.
- Кисленко Г. С., Коротков Ю. С. Сравнительная оценка методов сбора и длительного содержания иксодовых клещей // Мед. паразитол. 1989. № 1. С. 60—62.
- Кисленко Г. С., Коротков Ю. С. Динамика зараженности таежного клеща возбудителем болезни Лайма в двух природных очагах Подмосковья // Тез. докл. VII акарол. совещ. (СПб., 28—30 сентября 1999 г.). СПб., 1999. С. 31.
- Ковалевский Ю. В., Коренберг Э. И., Дауйотас С. В. Оценка различных способов приготовления витальных препаратов для выявления боррелий у иксодовых клещей // Мед. паразитол. 1990. № 1. С. 33—35.
- Ковалевский Ю.В., Коренберг Э.И., Левин М.Л. Сезонная и годовая вариабельность зараженности клещей Ixodes persulcatus и I. ricinus возбудителем болезни Лайма // Проблемы клещевых боррелиозов. М., 1993. С. 137—156.
- Ковалевский Ю. В., Коренберг Э. И., Никиточкин И. Г. Оптимизация способа оценки зараженности и степени индивидуальной инфицированности клещей боррелиями // Мед. паразитол. 1991. № 3. С. 18—21.
- Ковалевский Ю.В., Крючечников В.И., Коренберг Э.И. Сравнительная оценка двух методов индикации боррелий в клещах-переносчиках болезни Лайма // Мед. паразитол. 1988. № 5. С. 75—77.
- Коренберг Э. И. Инфекции группы Лайм-боррелиоза иксодовые клещевые боррелиозы // Мед. паразитол. 1996. № 3. С. 14—18.
- Коренберг Э. И., Кузнецова Р. И., Ковалевский Ю. В., Василенко З. Е., Мебель Б. Д. Основные черты эпидемиологии болезни Лайма на Северо-Западе СССР // Мед. паразитол. 1991. № 3. С. 14—17.
- Масузава Т., Наумов Р. Л., Кудекен М., Харитоненков И. В. Обнаружение Borrelia burgdorferi sensu stricto в Московской области, Россия // Мед. паразитол. 2001. № 2. С. 52.

- Окулова Н. М., Майорова А. Д., Буренкова Л. А., Хитерман И. Эктопаразиты млекопитающих Приокско-Террасного заповедника // Роль кровососущих насекомых и клещей в лесных экосистемах России. В. Новгород, 2000. С. 110—114.
- Humair P.-F., Gern L. Relationship between Borrelia burgdorferi sensu lato species, red squirrels (Sciurus vulgaris) and Ixodes ricinus in enzootic areas in Switzerland // Acta Tropica. 1998. Vol. 69, N 3. P. 213—227.

Институт полиомиелита и вирусных энцефалитов им. М. П. Чумакова РАМН, Москва, 142782

Поступила 15.03.2002

THE FOREST TICK IXODES RICINUS (IXODIDAE) IN FOCI OF TICK-BORNE BORRELIOSES IN THE NORTH-WEST OF MOSCOW PROVINCE

G. S. Kislenko, Yu. S. Korotkov

Key words: Ixodidae, Ixodes ricinus, tick-borne borreliosis, Moscow Province.

SUMMARY

Monitoring studies during 1996—2001 have shown a natural foci of tick-borne borreliosis with high abundance of *Ixodes ricinus* and high infection rate with an agent: 19.5—38.4 tick individuals per 1 km of route, infection rate 18.0 ± 1.7 —22.5 ± 1.5 %. A risk to be infected with the Lyme disease in the *ricinus* focus of the tick-borne borreliosis during the epizootic season did not vary much during the period of study, 3.5—8.2 in different year, mean 6.0 infected ticks per 1 km of route.