Date: 2024/05/20 ~ 2024/05/26

	Progress	To-do(short term)	Goal(long term)		
김지윤	 Gupta, Kartik, and Thalaiyasingam Ajanthan. "Improved gradient-based adversarial attacks for quantized networks." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36. No. 6. 2022.리뷰 완료 코드 분석 진행중 FP8 BFA 수정 코드 분석 	Osama, Alaa, et al. "Chaotic neural network quantization and its robustness against adversarial attacks." <i>Knowledge-Based Systems</i> 286 (2024): 111319. 리뷰 QNN 정규화 강화 Stochastic Quantization Dropout Activation function	● BNN의 Adversarial Robustness 강화 연구		
박형동	 Reparameterization 리뷰 논문 Intro 퇴고 Reparameterization 리뷰 논문 본문 작성 "Latency-Optimized Design of Data Bus Inversion" 리뷰 RepVGG 실험용 환경 세팅-학습(진행중) 	 Reparameterization 리뷰 논문 본문 작성 Reparameterization 리뷰 논문 본문 퇴고 RepVGG 실험용 환경 세팅-학습 진행 	● BNN 에 majority voter 적용시키기 ● Reparameterization 논문 완성		
여인국	 Reparameterization Table1 작업 - 분류(완료) Reparameterization Intro 퇴고 	● Reparameterization 리뷰 논문 본문 작성 ● Systematic Binary SEC code for in-dram ecc 작성	● Aliasing현상에 효과적인 in dram ecc code 작성 ● Reparameterization 논문 완성		
이수학	● 프롬프트 엔지니어링 기술 분석	 프롬프트 테스트 및 평가 - 기존 기술 위주 테스트 및 평가(CoT, prompt chaining 등) Survey 논문 주제 선정 	 생성형 AI 특성과 한계 분석을 통한 새로운 프롬프트 작성 시도 및 적용 Survey 논문 작성 		
이수현	 tpu에서의 data flow 자세히 이해 systolic array simulator 조사 	● Scale sim ver.2 사용	● 아키텍처 관점에서 DNN accelerators 이해 ○ Survey 논문 작성		
여희주	 양자내성암호의 최적화 구현사례(2022 KpqC 기술 세미나) 정리 "Post-Quantum Lattice-Based Cryptograpy Implementations: A Survey" 리뷰(진행중) 	● Survey 논문 주제 선정 ● "Post-Quantum Lattice-Based Cryptograpy Implementations: A Survey" 리뷰 및 발표 준비	● Survey 논문 작성		
이성현	● pytorch 기본 익히기 ● YOLOv5 code 분석(진행중)	YOLOv5 이용한 자율 주행차의 영상기반 차 간거리 코드 분석	● 영상을 이용한 자율주행 운행		