CZ4041/CE4041: Machine Learning

Week 9: Ensemble Learning

Nerd Joke Time

- What does one support vector say to another support vector?
- I feel so marginalized.

Necessary Conditions

- Two necessary conditions for an ensemble classifier to perform better than a single classifier:
 - 1. The base classifiers are independent of each other
 - In practice, this condition can be relaxed that the base classifiers can be slightly correlated
 - 2. The base classifiers should do better than a classifier that performs random guessing (e.g., for binary classification, accuracy should be better than 0.5)

Question 1

Question 1

- Suppose there are 3 base classifiers, each classifier has error rate, $\varepsilon = 0.65$ or accuracy acc = 0.35
- Consider to combine the 3 base classifiers to make a prediction on a test instance using a majority vote
- Therefore, probability that the ensemble classifier makes a wrong prediction is:

$$\sum_{i=2}^{3} {3 \choose i} \varepsilon^{i} (1 - \varepsilon)^{3-i} = 3 \times 0.65^{2} \times 0.35 + 1 \times 0.65^{3} \times 1 = 0.71825$$

The Binomial Distribution

- This is the general expression for the binomial distribution.
- We perform N experiments. In each experiment, the probability of observing a negative outcome is ε. What is the probability for observing exactly M negative outcomes?

$$P(N,M) = \binom{N}{M} \varepsilon^{M} (1 - \varepsilon)^{N-M}$$

Applying That Formula ...

- Suppose there are N (odd) independent base classifiers, each of which has the same error rate ε
 - Therefore, probability that the ensemble classifier makes a wrong prediction is:

Another Application

• Alternatively, let p be the probability that a single classifier makes the correct decision. The probability that the ensemble of 2n + 1 base classifier makes the correct decision is $P_c(2n + 1)$

$$P_c(2n+1) = \sum_{m=n+1}^{2n+1} {n \choose m} p^m (1-p)^{2n+1-m}$$

Question 1 (cont.)

- It can be proved that, with an odd number N
 - If p > 0.5 then $P_c(N)$ is monotonically increasing in N, and $P(N) \to 1$ as $N \to \infty$
 - If p = 0.5 then $P_c(N) = 0.5$ for all N
 - If p < 0.5 then $P_c(N)$ is monotonically decreasing in N, and $P(N) \rightarrow 0$ as $N \rightarrow \infty$
- Detailed proof can be found in the paper "Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance, 1997"

Detailed Proof

• This section is not required for the final exam.

Preparing for the Proof

- We only consider cases with odd number of base classifiers.
- We have two odd numbers, 2n 1 and 2n + 1, where n is a non-negative integer.
- $P_C(m)$ is the probability that the ensemble of m base classifiers makes a correct decision.

Proof Sketch

- Very easy conceptually, though a bit tedious.
- Using the recurrence $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$, we can relate $P_C(2n+1)$ to $P_C(2n)$
- Similarly, we can relate $P_C(2n)$ to $P_C(2n-1)$
- We want to show P(2n+1) P(2n-1) > 0 if and only if p > 0.5

Preliminary

- $\binom{n}{n+1} = 0$ (you can't choose n+1 items from n items!)
- $\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1}$ (recurrence from n items to n-1 items)
 - Intuitively, to choose m items from n items, we can single out one item A. If we decide not to choose A, then we need to choose m items from the remaining n-1 items.
 - If we decide to choose A, then we will choose only m-1 items from the remaining n-1 items.
 - We add up the two possibilities.

Preliminary

$$\binom{n}{m} = \frac{n!}{(n-m)! \ m!}$$

$$\binom{n-1}{m} + \binom{n-1}{m-1} = \frac{(n-1)!}{(n-1-m)! \ m!} + \frac{(n-1)!}{(n-m)!(m-1)!}$$

$$= \frac{(n-1)!}{(n-1-m)! \ (m-1)!} \left(\frac{1}{m} + \frac{1}{n-m}\right)$$

$$= \frac{(n-1)!}{(n-1-m)! \ (m-1)!} \left(\frac{n}{m(n-m)}\right)$$

$$= \frac{n!}{(n-m)! \ m!} = \binom{n}{m}$$

First, we try to relate $P_C(2n + 1)$ and $P_C(2n)$

$$\begin{split} &P_C(2n+1)\\ &= \sum_{m=n+1}^{2n+1} p^m (1-p)^{2n+1-m} \binom{2n+1}{m} \\ &= \sum_{m=n+1}^{2n+1} p^m (1-p)^{2n+1-m} \left[\binom{2n}{m} + \binom{2n}{m-1} \right] \text{ We saw this just now} \\ &= (1-p) \sum_{m=n+1}^{2n+1} p^m (1-p)^{2n-m} \binom{2n}{m} \quad \text{In this term, we have } \binom{2n}{2n+1} = 0 \\ &+ p \sum_{m=n+1}^{2n+1} p^{m-1} (1-p)^{2n-(m-1)} \binom{2n}{m-1} \end{split}$$

$$\begin{split} P_C(2n+1) &= (1-p) \sum_{m=n+1}^{2n} p^m (1-p)^{2n-m} \binom{2n}{m} \text{ Notice the change of the upper limit} \\ &+ p \sum_{k=n}^{2n} p^k (1-p)^{2n-k} \binom{2n}{k} \text{ Change of variable:} \\ &\quad k = m-1 \\ \text{When } m = n+1, k = n \end{split}$$

$$\text{since } \binom{2n}{2n+1} = 0$$

$$= (1-p+p) \sum_{k=n+1}^{2n} p^k (1-p)^{2n-k} \binom{2n}{k} \\ &\quad + p^{n+1} (1-p)^n \binom{2n}{n} \\ &\quad = P_C(2n) + p^{n+1} (1-p)^n \binom{2n}{n}, \end{split}$$

 $P_C(2n)$: An ensemble of 2n base classifiers makes the correct decision iff n + 1 base classifiers are correct

Next, we try to relate $P_C(2n)$ and $P_C(2n-1)$

$$\begin{split} & P_C(2n) \\ & = \sum_{m=n+1}^{2n} p^m (1-p)^{2n-m} \binom{2n}{m} \\ & = \sum_{m=n+1}^{2n} p^m (1-p)^{2n-m} \left[\binom{2n-1}{m} + \binom{2n-1}{m-1} \right] \quad \text{Same trick} \\ & = (1-p) \sum_{m=n+1}^{2n} p^m (1-p)^{2n-m-1} \binom{2n-1}{m} \quad \text{Here we have } \binom{2n-1}{2n} \\ & + p \sum_{m=n+1}^{2n} p^{m-1} (1-p)^{2n-m} \binom{2n-1}{m-1} \end{split}$$

$$P_{C}(2n) = (1-p) \sum_{m=n+1}^{2n-1} p^{m} (1-p)^{2n-1-m} \binom{2n-1}{m} \quad \text{Change of the upper limit}$$

$$+ p \sum_{k=n}^{2n-1} p^{k} (1-p)^{2n-1-k} \binom{2n-1}{k} \quad \text{Change of variable:}$$

$$k = m-1$$

$$\operatorname{since} \binom{2n-1}{2n} = 0$$

$$= (1-p+p) \sum_{k=n}^{2n-1} p^{k} (1-p)^{2n-1-k} \binom{2n-1}{k}$$

$$- (1-p)p^{n} (1-p)^{n-1} \binom{2n-1}{n}$$

$$= P_{C}(2n-1) - p^{n} (1-p)^{n} \binom{2n-1}{n}.$$

Putting things together, we can relate $P_C(2n+1)$ and $P_C(2n-1)$

$$P_{C}(2n+1) - P_{C}(2n-1) = p^{n}(1-p)^{n} \binom{2n-1}{n} (2p-1).$$

$$Proof: \text{ From Theorem 1,}$$

$$P_{C}(2n+1) - P_{C}(2n-1)$$

$$= p^{n+1}(1-p)^{n} \binom{2n}{n} - p^{n}(1-p)^{n} \binom{2n-1}{n}$$

$$= p^{n}(1-p)^{n} \left\{ p \left[\binom{2n-1}{n} + \binom{2n-1}{n-1} \right] \right\}$$

$$- \binom{2n-1}{n} \right\}$$

$$= p^{n}(1-p)^{n} \left[(p-1) \binom{2n-1}{n} + p \binom{2n-1}{n-1} \right]$$

$$= p^{n}(1-p)^{n} \binom{2n-1}{n} (p-1+p)$$

$$\text{since } \binom{2n-1}{n-1} = \binom{2n-1}{n}$$

$$= p^{n}(1-p)^{n} \binom{2n-1}{n} (2p-1).$$

$$P_C(2n+1) - P_C(2n-1) = p^n(1-p)^n \binom{2n-1}{n} (2p-1).$$
Always positive

When
$$p > 0.5, 2p - 1 > 0$$

Therefore, $P_C(2n + 1) > P_C(2n - 1)$

The more base classifiers, the merrier.

KEEP CALM AND CARRY ON

保持冷静继续前进

சாந்தமாய் இரு. நிதானமாய் செயல்படு.

BERTENANG DAN TERUSKAN

Question 2

• Suppose we have trained 5 base binary classifiers: f1, f2, f3, f4 and f5. Their predictions on a validation dataset are shown in Table 1, where the last column denotes the ground-truth class labels. Which base classifiers would you choose to construct an ensemble learner?

ID	f_1	f_2	f_3	f_4	f_5	Ground Truth
P1	+	+	-	-	+	+
P2	+	+	-	+	-	+
P3	-	-	+	+	-	+
P4	-	-	+	-	+	+
P5	-	-	+	+	-	-
P6	-	-	-	+	+	+
P7	+	+	+	+	-	+
P8	-	+	+	-	+	-
P9	+	+	-	+	+	+
P10	-	-	-	+	-	-

Question 2

ID	f_1	f_2	f_3	f_4	f_5	Ground Truth
P1	+	+	-	-	+	+
P2	+	+	-	+	-	+
P3	-	-	+	+	-	+
P4	-	-	+	-	+	+
P5	-	-	+	+	-	-
P6	-	-	-	+	+	+
P7	+	+	+	+	-	+
P8	-	+	+	-	+	-
P9	+	+	-	+	+	+
P10	-	-	-	+	-	-
ACC:	0.7	0.6	0.4	0.60	0.60	

- Almost perfectly correlated.
- On this dataset, f_1 strictly better than f_2

ID	f_1	f_2	f_3	f_4	f_5	Ground Truth
P1	+	+	-	-	+	+
P2	+	+	-	+	-	+
P3	-	-	+	+	-	+
P4	-	-	+	-	+	+
P5	-	-	+	+	-	-
P6	-	-	-	+	+	+
P7	+	+	+	+	-	+
P8	-	+	+	-	+	-
P9	+	+	-	+	+	+
P10	-	-	-	+	-	-
ACC:	0.7	0.6	0.4	0.60	0.60	
		X	X			