Page 3 of 9

ber	rmasalahan yang mungkin muncul pada metode gradien adalah sebagai ikut ini, KECUALI:	
0	Gradien tidak terdefinisi pada semua titik	
0	Perhitungan gradien memerlukan komputasi yang lama	
•	Gradien dapat diperoleh pada semua titik	
0	Perhitungan gradien tidak dapat dilakukan pada semua titik	
Ber des	ikut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest cent (Cauchy), KECUALI	*
Ber des	ikut ini adalah yang termasuk ke dalam tahap dalam algoritma <i>steepest</i> cent (Cauchy), KECUALI	*
0	Memeriksa keoptimuman titik pada iterasi ke-i	
Ber des	Memeriksa keoptimuman titik pada iterasi ke-i Menghitung inverse dari vektor gradien	
0 0 0	Memeriksa keoptimuman titik pada iterasi ke-i Menghitung inverse dari vektor gradien Menentukan titik awal secara sembarang	
0 0 0	Memeriksa keoptimuman titik pada iterasi ke-i Menghitung inverse dari vektor gradien	
0 0 0	Memeriksa keoptimuman titik pada iterasi ke-i Menghitung inverse dari vektor gradien Menentukan titik awal secara sembarang	
000	Memeriksa keoptimuman titik pada iterasi ke-i Menghitung inverse dari vektor gradien Menentukan titik awal secara sembarang	

Iterasi metode Newton akan lebih banyak dibandingkan dengan metode steepest	■ B7d
Optimisasi dengan metode gradien pasti menemukan titik optimum global karena merupakan fungsi konveks	
Iterasi dengan algoritma Fletcher-Reeves pasti lebih banyak daripada algoritma steepest descent (Cauchy)	
Optimisasi dengan metode gradien belum tentu menemukan titik optimum global karena merupakan bukan fungsi konveks	
Silahkan gunakan program R untuk mencari titik yang mengoptimumkan fungsi berikut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut menggunakan algoritma Fletcher-Reeves.	
$f(x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Usika digunakan titik awal x=(100,100), akan diperlukan setidaknya 10 iterasi	
Fungsi akan bernilai minimum ketika x=(1,3)	
◯ Jika digunakan titik awal x=(15, 20), akan diperlukan setidaknya 2 iterasi	
Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 2 iterasi	
Back Next Page 4 of 9	
ever submit passwords through Google Forms	
This form was created inside of IPB University Report Abvae	
Google Forms	
HOTS	

t

Silahkan gunakan program R untuk mencari titik yang mengoptimumkan fungsi berikut. Pilih pernyataan yang **SALAH** tentang optimisasi fungsi tersebut menggunakan metode Newton.

$$f(x_1,x_2) = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$$

- Fungsi akan bernilai minimum ketika x=(1,3)
- Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 1 iterasi
- Jika digunakan titik awal x=(100,100), akan diperlukan setidaknya 1 iterasi
- Jika digunakan titik awal x=(15, 20), akan diperlukan setidaknya 5 iterasi

Pilih satu pernyataan yang BENAR tentang optimisasi pada fungsi berikut. *

$$f(x_1,x_2) = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$$

- lterasi metode Newton akan lebih banyak dibandingkan dengan metode steepest descent
- Optimisasi dengan metode gradien pasti menemukan titik optimum global karena merupakan fungsi konveks
- iterasi dengan algoritma Fletcher-Reeves pasti lebih banyak dipada algoritma steepest descent (Cauchy)
- Optimisasi dengan metode gradien belum tentu menemukan titik optimum global karena merupakan bukan fungsi konveks

Silankan gunakan program R untuk mencari titik yang mengoptimumkan fungs berikut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut

Untitled Section Pilih satu pernyataan yang BENAR tentang optimisasi dengan metode Newton di * antara pernyataan-pernyataan berikut ini. dapat digunakan pada optimisasi suatu fungsi peubah ganda menggunakan aproksimasi matriks Hessian iterasi akan bergantung pada learning rate yang digunakan hanya bisa dilakukan pada fungsi dengan satu peubah Silahkan gunakan program R untuk mencari titik yang mengoptimumkan fungsi Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut menggunakan metode steepest descent $f(x_1, x_2) = (1.5 - x_1 + x_1 x_2)^2 + (2.25 - x_1 + x_1 x_2^2)^2 + (2.625 - x_1 + x_1 x_2^3)^2$ Jika digunakan titik awai x=(15, 20), akan diperlukan setidaknya 6 iterasi Fungsi akan bernilai minimum ketika x=(1,3) Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 2 iterasi () Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 11 iterasi

Diketahui fungsi berikut. Pilih satu pernyataan yang **SALAH** terkait optimisasi fungsi tersebut.

$$f(x_1,x_2) = x_1^2 + x_2^2 + 2x_1 + 4$$

- nilai optimum diperoleh ketika x=(-1,0)
- nilai optimum menggunakan metode Newton dapat diperoleh dalam 1 iterasi
- nilai optimum adalah ketika f(x)=3
- nilai optimum diperoleh ketika x=(-1,1)

Pilih satu pernyataan yang BENAR di antara pernyataan-pernyataan berikut ini. *

- metode DFP dan BFGS berbeda dalam hal formula perhitungan rank 1 update untuk hampiran matriks Hessian dari fungsi objektif
- metode DFP menggunakan matriks B untuk menghampiri inverse matriks Hessian dari fungsi objektif
- o konvergensi pada metode BFGS sebaiknya ditentukan dengan batas toleransi yang sebesar-besarnya
- metode DFP dan BFGS menggunakan rank update berordo 1 untuk perhitungan hampiran matriks Hessian dari fungsi objektif

Back

Next

Page 7 of 9

Clear form

Never submit pess words through Goodle Form

his form was created inside of IRB University Separation is

Sila	kut.
	kut. I pernyataan yang SALAH tentang optimisasi fungsi tersebut menggunakan
	ode steepest descent.
f($(x_1, x_2) = (1.5 - x_1 + x_1 x_2)^2 + (2.25 - x_1 + x_1 x_2^2)^2 + (2.625 - x_1 + x_1 x_2^3)^2$
0	Fungsi akan bernilai minimum ketika x=(1,3)
0	Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 11 iterasi
0	Jika digunakan titik awal x=(15, 20), akan diperlukan setidaknya 6 iterasi
0	Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 2 iterasi
beri	hkan gunakan program R untuk mencari titik yang mengoptimumkan fungsi * kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan algoritma Fletcher-Reeves.
f($(x_1, x_2) = (1.5 - x_1 + x_1 x_2)^2 + (2.25 - x_1 + x_1 x_2^2)^2 + (2.625 - x_1 + x_1 x_2^3)^2$
0	Jika digunakan titik awal x=(15, 20), akan diperlukan setidaknya 2 iterasi
0	Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 2 iterasi
0	Fungsi akan bernilai minimum ketika x=(1,3)
0	Jika digunakan titik awal x=(100,100), akan diperlukan setidaknya 10 iterasi
beri mer	hkan gunakan program R untuk mencari titik yang mengoptimumkan fungsi * kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$
beri mer f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton.
beri mer f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$
beri mer f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $(x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 1 iterasi
beri mer	kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $(x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal x=(15, 20), akan diperlukan setidaknya 5 iterasi
f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $(x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal x=(15, 20), akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika x=(1,3)
f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal x=(15, 20), akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika x=(1,3) Jika digunakan titik awal x=(100,100), akan diperlukan setidaknya 1 iterasi
f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $ (x_1,x_2) = (1.5-x_1+x_1x_2)^2 + (2.25-x_1+x_1x_2^2)^2 + (2.625-x_1+x_1x_2^3)^2 $ Jika digunakan titik awal $x=(1,1)$, akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal $x=(1,1)$, akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika $x=(1,3)$ Jika digunakan titik awal $x=(100,100)$, akan diperlukan setidaknya 1 iterasi satu pernyataan yang BENAR tentang optimisasi pada fungsi berikut. *
f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Jika digunakan titik awal \mathbf{x} =(1,1), akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal \mathbf{x} =(15, 20), akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika \mathbf{x} =(1.3) Jika digunakan titik awal \mathbf{x} =(100,100), akan diperlukan setidaknya 1 iterasi satu pernyataan yang BENAR tentang optimisasi pada fungsi berikut. * $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Optimisasi dengan metode gradien pasti menemukan titik optimum global karena
f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Jika digunakan titik awal x=(1,1), akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal x=(15, 20), akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika x=(1,3) Jika digunakan titik awal x=(100,100), akan diperlukan setidaknya 1 iterasi satu pernyataan yang BENAR tentang optimisasi pada fungsi berikut. * $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Optimisasi dengan metode gradien pasti menemukan titik optimum global karena merupakan fungsi konveks
f(kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Jika digunakan titik awal $\mathbf{x}=(1,1)$, akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal $\mathbf{x}=(15,20)$, akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika $\mathbf{x}=(1.3)$ Jika digunakan titik awal $\mathbf{x}=(100,100)$, akan diperlukan setidaknya 1 iterasi satu pernyataan yang BENAR tentang optimisasi pada fungsi berikut. * $x_1,x_2)=(1.5-x_1+x_1x_2)^2+(2.25-x_1+x_1x_2^2)^2+(2.625-x_1+x_1x_2^3)^2$ Optimisasi dengan metode gradien pasti menemukan titik optimum global karena merupakan fungsi konveks Iterasi metode Newton akan lebih banyak dibandingkan dengan metode steepest descent Iterasi dengan algoritma Fletcher-Reeves pasti lebih banyak daripada algoritma
## ## ## ## ## ## ## ## ## ## ## ## ##	kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1, x_2) = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$ Jika digunakan titik awal $\mathbf{x} = (1.1)$, akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal $\mathbf{x} = (1.5, 20)$, akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika $\mathbf{x} = (1.3)$ Jika digunakan titik awal $\mathbf{x} = (100,100)$, akan diperlukan setidaknya 1 iterasi satu pernyataan yang BENAR tentang optimisasi pada fungsi berikut. * $x_1, x_2) = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$ Optimisasi dengan metode gradien pasti menemukan titik optimum global karena merupakan fungsi konveks Iterasi metode Newton akan lebih banyak dibandingkan dengan metode steepest descent (Cauchy) Optimisasi dengan metode gradien belum tentu menemukan titik optimum global
## ## ## ## ## ## ## ## ## ## ## ## ##	kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1, x_2 = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$ Jika digunakan titik awal $x=(1.1)$, akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal $x=(1.5, 20)$, akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika $x=(1.3)$ Jika digunakan titik awal $x=(100.100)$, akan diperlukan setidaknya 1 iterasi satu pernyataan yang BENAR tentang optimisasi pada fungsi berikut. * $x_1, x_2 = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$ Optimisasi dengan metode gradien pasti menemukan titik optimum global karena merupakan fungsi konveks Iterasi metode Newton akan lebih banyak dibandingkan dengan metode steepest descent (Cauchy) Optimisasi dengan metode gradien belum tentu menemukan titik optimum global karena merupakan bukan fungsi konveks
## ## ## ## ## ## ## ## ## ## ## ## ##	kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $ x_1, x_2) = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2 $ Jika digunakan titik awal $x=(1,1)$, akan diperlukan setidaknya 1 iterasi
## ## ## ## ## ## ## ## ## ## ## ## ##	kut. Pilih pernyataan yang SALAH tentang optimisasi fungsi tersebut nggunakan metode Newton. $x_1, x_2) = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$ Jika digunakan titik awal $x=(1,1)$, akan diperlukan setidaknya 1 iterasi Jika digunakan titik awal $x=(15,20)$, akan diperlukan setidaknya 5 iterasi Fungsi akan bernilai minimum ketika $x=(1,3)$ Jika digunakan titik awal $x=(100,100)$, akan diperlukan setidaknya 1 iterasi satu pernyataan yang BENAR tentang optimisasi pada fungsi berikut. * $x_1, x_2) = (1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$ Optimisasi dengan metode gradien pasti menemukan titik optimum global karena merupakan fungsi konveks Iterasi metode Newton akan lebih banyak dibandingkan dengan metode steepest descent (Cauchy) Optimisasi dengan algoritma Fletcher-Reeves pasti lebih banyak daripada algoritma steepest descent (Cauchy) Optimisasi dengan metode gradien belum tentu menemukan titik optimum global karena merupakan bukan fungsi konveks

Untitled Section
Pernyataan berikut yang TIDAK sesuai dengan gradien suatu fungsi:
Gradien dapat berupa skalar
Gradien dapat berupa vektor
Gradien pada suatu titik optimum akan bernilai nol
Gradien yang bernilai negatif menunjukkan fungsi naik monoton
Ciri utama optimisasi metode gradien adalah:
Menggunakan fungsi turunan
Tidak menggunakan fungsi turunan
O Hanya menggunakan fungsi turunan kedua
Menemukan titik optimum dalam satu iterasi
Pernyataan berikut yang TIDAK sesuai dengan pendekatan metode gradien:
Titik awal dapat ditentukan secara sembarang
O Pencarian titik optimum berpindah dari satu titik ke titik lain pada setiap iterasi
O Pendekatan dapat dilakukan dengan memanfaatkan matriks Hessian
Metode gradien menjamin bahwa akan diperoleh titik optimum global

Halaman 8 dari 9

Kembali

Berikutnya

Untitled Section

Pilih satu pernyataan yang BENAR di antara pernyataan-pernyataan berikut ini. *

- o metode DFP dan BFGS berbeda dalam hal formula perhitungan rank 1 update untuk hampiran matriks Hessian dari fungsi objektif
- o konvergensi pada metode BFGS sebaiknya ditentukan dengan batas toleransi yang sebesar-besarnya
- metode DFP dan BFGS menggunakan rank update berordo 1 untuk perhitungan hampiran matriks Hessian dari fungsi objektif
- o metode DFP menggunakan matriks B untuk menghampiri inverse matriks Hessian dari fungsi objektif

Diketahui fungsi berikut. Pilih satu pernyataan yang **SALAH** terkait optimisasi fungsi tersebut.

$$f(x_1,x_2)=x_1^2+x_2^2+2x_1+4$$

- nilai optimum diperoleh ketika x=(-1,1)
- nilai optimum menggunakan metode Newton dapat diperoleh dalam 1 iterasi
- nilai optimum diperoleh ketika x=(-1,0)
- nilai optimum adalah ketika f(x)=3

Kembali

Berikutnya

Halaman 7 dari 9

0	Menentukan arah atau jalur setelah mencapai konvergensi
0	Menentukan titik awal secara sembarang
0	Memeriksa keoptimuman titik pada iterasi ke-i
0	Mengupdate arah agar memenuhi sifat konvergensi kuadrati <mark>k</mark>
Sala	h satu solusi apabila gradien fungsi sulit untuk dihitung adalah: *
0	Mengganti gradien dengan konstanta secara sembarang
0	Menggunakan pendekatan forward finite difference
0	Menggunakan metode Newton
0	Mengganti gradien dengan fungsi sembarang
Beri	kut ini adalah pernyataan benar tentang metode conjugate gradient, KECUALI : *
0	Cenderung jauh lebih lambat mencapai konvergensi dibandingkan algoritma steepest descent
0	Cenderung lebih cepat mencapai konvergensi dibandingkan algoritma steepest descent
0	Bergerak dalam arah konjugat
0	Lebih cepat menemukan titik optimun pada fungsi konveks
	64. 35 (1. o.c.) 1. 17 (1. 17
	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest ent (Cauchy), KECUALI :
	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest
	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest ent (Cauchy), KECUALI :
	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest ent (Cauchy), KECUALI : Menghitung inverse dari vektor gradien
	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest pent (Cauchy), KECUALI : Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i
des O O O	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest pent (Cauchy), KECUALI : Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang
des O O O	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest vent (Cauchy), KECUALI: Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang Memeriksa keoptimuman titik pada iterasi ke-i
des O O O	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest sent (Cauchy), KECUALI: Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang Memeriksa keoptimuman titik pada iterasi ke-i
des O O O	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest sent (Cauchy), KECUALI: Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang Memeriksa keoptimuman titik pada iterasi ke-i hal dasar yang perlu diperhatikan pada metode gradien yaitu:*
des O O O	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest pent (Cauchy), KECUALI: Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang Memeriksa keoptimuman titik pada iterasi ke-i hal dasar yang perlu diperhatikan pada metode gradien yaitu: * Arah dan nilai awal Arah dan banyaknya langkah
Dua Peri	kut ini adalah yang termasuk ke dalam tahap dalam algoritma sfeepest pent (Cauchy), KECUALI: Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang Memeriksa keoptimuman titik pada iterasi ke-i hal dasar yang perlu diperhatikan pada metode gradien yaitu: * Arah dan nilai awal Arah dan panjang langkah Arah dan panjang langkah
Dua O O O Peri	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest pent (Cauchy), KECUALI: Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang Memeriksa keoptimuman titik pada iterasi ke-i hal dasar yang perlu diperhatikan pada metode gradien yaitu: * Arah dan nilai awal Arah dan banyaknya langkah Arah dan panjang langkah Nilai awal dan panjang langkah
Dua O O O Peri	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest pent (Cauchy), KECUALI: Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang Memeriksa keoptimuman titik pada iterasi ke-i hal dasar yang perlu diperhatikan pada metode gradien yaitu: * Arah dan nilai awal Arah dan panjang langkah Nilai awal dan panjang langkah masalahan yang mungkin muncul pada metode gradien adalah sebagai kut ini, KECUALI:
Dua Peri	kut ini adalah yang termasuk ke dalam tahap dalam algoritma steepest ent (Cauchy), KECUALI: Menghitung inverse dari vektor gradien Menentukan arah atau jalur pada iterasi ke-i Menentukan titik awal secara sembarang Memeriksa keoptimuman titik pada iterasi ke-i hal dasar yang perlu diperhatikan pada metode gradien yaitu: * Arah dan nilai awal Arah dan banyaknya langkah Arah dan panjang langkah Nilai awal dan panjang langkah masalahan yang mungkin muncul pada metode gradien adalah sebagai kut ini, KECUALI:

Kembali Berikutnya

Halaman 3 dari 9

Untitled Section

Diketahui fungsi berikut. Jika digunakan titik awal x=(2,1), maka hasil perkalian inverse matriks Hessian dengan evaluasi turunan pertama f(x) pada iterasi ke-1 adalah.

Yang ditanyakan adalah hasil kali inverse(J) dengan df(x)/dx pada saat x=(2,1)

$$f(x_1,x_2)=x_1^2+x_2^2+2x_1+4$$

- (6,2)
- (1,3)
- (-1,0)
- (3,1)

Diketahui fungsi berikut. Jika digunakan titik awal x=(2,1), maka hasil evaluasi turunan pertama f(x) pada iterasi ke-1 adalah

Yang ditanyakan adalah nilai gradien, atau df(x)/dx, ketika dimasukkan nilai x=(2,1)

$$f(x_1,x_2)=x_1^2+x_2^2+2x_1+4$$

- (4,2)
- (2,6)
- (2, 4)
- (6,2)

Kembali

Berikutnya

Halaman 6 dari 9

Officied Section
Pilih satu pernyataan yang SALAH tentang optimisasi dengan metode Newton di * antara pernyataan-pernyataan berikut ini.
dijamin menemukan titik optimum global dari suatu fungsi
memerlukan fungsi turunan ke-2
memerlukan perhitungan matriks Hessian
arah / jalur metode ini cenderung lebih direct dibandingkan metode steepest descent
Pilih satu pernyataan yang SALAH tentang pendekatan quasi-Newton di antara pernyataan-pernyataan berikut ini.
quasi-Newton hanya memerlukan turunan pertama dari fungsi objektif
rank 2 update menjamin matriks B bersifat simetrik dan definit positif
quasi-Newton memerlukan turunan pertama dan kedua dari fungsi objektif
rank 1 update menjamin matriks B bersifat simetrik
Pilih satu pernyataan yang SALAH di antara pernyataan-pernyataan berikut ini. *
metode quasi-Newton dikembangkan untuk mengatasi kendala komputasi vektor gradien
metode BFGS cenderung lebih populer dibandingkan metode DFP
metode quasi-Newton dikembangkan untuk mengatasi kendala komputasi inverse matriks Hessian
pendekatan quasi-Newton menggunakan matriks B yang bersifat definit positif sebagai hampiran inverse matriks Hessian
Pilih satu pernyataan yang SALAH di antara pernyataan-pernyataan berikut ini. *
metode steepest descent cenderung melalui jalur berpola zig-zag untuk mencapai titik optimum
metode Marquardt merupakan kombinasi antara metode Newton dan conjugate gradient
metode Marquardt merupakan kombinasi antara metode Newton dan steepest descent
metode Newton cenderung lebih cepat konvergen ketika nilai awal cukup dekat dari titik optimum

Kembali Berikutnya Halaman 5 dar