Data Science and Artificial Intelligence Probability and Statistics

Introduction to Sampling Distribution

By-Rahul Sir

Lecture No.-04

Topics to be Covered

Topic

Questions based on chi-square Distribution

Chi-square Distribution.

In Gramma Distribution (1, x)

$$f(x) = \frac{\lambda^{x}}{\sqrt{x}} e^{-\lambda x} x^{x-1}$$

$$\chi^2 f(x) = \left(\frac{1}{2}\right)^{1/2} = \frac{x}{2} \chi^{1/2}$$

 $E[X] = \frac{1}{\lambda} = \frac{1}{2} = 0$ = E[X] = degree of Freedom

$$\frac{V(X) - X}{N^2} = \frac{V/2}{N^2} - \frac{1}{2}$$

$$\frac{2}{2}(1) = \sum_{i=1}^{N} \frac{Z_i^2}{2}$$

$$\frac{2}{2} = \frac{1}{2}$$

SVM of n Independent random vær

positive Skenled

Moment generating function
$$T[x|s) = \left(\frac{1}{1-s}\right)^{-\frac{1}{2}} = \left(1-\frac{2}{5}\right)^{-\frac{1}{2}}$$

$$\lambda = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

Moment generating function = (1-21) =

> Chi-square 2 Distribution X(1)

Q1. Write down the pdf of chi-square distribution in each of the following

cases:

(i) 6 degrees of freedom

(ii) 10 degrees of freedom

$$f(x) = \frac{\lambda^{2}}{\lambda^{2}} e^{-\lambda^{2} x} x^{2-1}$$

$$x = \frac{\lambda^{2}}{\lambda^{2}} \lambda = \frac{1}{2}$$

CHi-sepase
$$V=6$$

Dist \rightarrow cumutant

 $f(x) = \left(\frac{1}{2}\right)^{\frac{1}{2}} - \frac{x}{2}$

pregnency

$$\int f(x) = \frac{1}{2} \int_{0}^{3} e^{-\frac{x}{2}} \chi^{2}$$

$$\chi^{2}_{(1)} = \frac{1}{16} e^{-\frac{x}{2}} (\chi^{2})^{2}$$

$$f(\chi) = \frac{1}{16}e^{-\frac{\chi}{2}}(\chi^2)^2$$

$$f(\chi_{z}) = \frac{1}{2} \left(\chi_{z}\right)$$

$$f(z) = \left(\frac{1}{2}\right)^5 - \chi/2 \chi^2/4$$

$$= \left(\frac{1}{2}\right)^5 - \chi/2 \chi^2/4$$

Do Yourself

Q2. Below, in each case, the pdf of chi-square distribution is given. Obtain the

degrees of freedom of each chi-square distribution:

(i)
$$f(\chi^2) = \frac{1}{96} e^{-x^2/2} (\chi^2)^3$$
; $0 < \chi^2 < \infty$

(ii)
$$f(\chi^2) = \frac{1}{2}e^{-x^2/2}$$
; $0 < \chi^2 < \infty$

$$f(x) = \left(\frac{1}{2}\right)^{2} - \frac{x}{2}(x^{2})$$

$$\frac{y}{2}$$

$$df = 8 \vee 7$$

$$df = 1 \vee 7$$

Q3. What are the mean and variance of chi-square distribution with 10 degrees

of freedom?
$$Chi$$
-Square Distribution $V = 10$ degree.

 $MEAN = \frac{1}{\lambda} = \frac{10}{25} = 10$
 $Variance = \frac{1}{\lambda^2} = \frac{1}{2}$

Q4. What are the mean and variance of chi-square distribution with pdf given

below

$$f(\chi^2) = \frac{1}{96} e^{-x^2/2} (\chi^2)^3; \qquad 0 < \chi^2 < \infty$$

$$f(\chi^2) = \frac{1}{96} e^{-\chi^2/2} (\chi^2)^3$$

CHI-Square Distribution
$$\chi_{(1)}^2 = \sum_{i=1}^n z_i^2 = Z = X - M$$

observed.	Frequency	
Right	wrong	Total
Experted 727	7-3	100
Freguency 20	80	100
Prob. 1	4 5	1

27 Right Men 100 SAMPLE

	Right	Whong	
Observed		793	1000
Experted	200	800	low
	15	45	1

D	Observed Frequency	27	73	100
E	Expected	20	80	OD
	Prob.	1 5	45	1
	deviation	+7	-7	

If SAMPle size Increases n=1000

(Di-Ei)2 _ choice Warong $D = (0-E_1)^2 (0_1-E_1)^2 (0_2-E_2)^2 (0_3-E_3)$ lov

E Beenvoulli Trusts P(5)= = P(F)= 4

to Large SAMPle of data n=100 SAMPle.

$$\mathcal{B}(n, \beta) = \beta(n, \frac{1}{5})$$

B/100, 5) is constent or Not

 $B(loo, \frac{1}{5}) \xrightarrow{\text{harge}} N(k, s^2) - N(n|p, n|p_2) = N(loo x \frac{1}{5}, loo x \frac{1}{5} x \frac{1}{5})$ $N(n|p, n|p_2) = N(loo x \frac{1}{5}, loo x \frac{1}{5} x \frac{1}{5})$

N(20,16) is constant If X is consistent N/11, r2) If Zis consistent N(0,1) N(20,16) = X-M = 27-20=77 is consistant N(P,1)

SVM of n Independ N(M, o²) Z²+Z²+-+Zn² = X²

(7) Chique square square considerant

If Z = N(0,1) $N(0,1) = Z^2 \approx \chi^2(1)$

 $\chi^2 = 3.0625$

MA	ble:		Accepted
	Right	Wrong	2
D	207	793	Large.
E	200	800	SAMPle
P	15	4 5	- data
			Chi Egnare
			TEST
			walled

Pw

2) 2011 60% 1 corr
28% 2 car
12% more han
3 car

Mo = Accepted

X = (

Significance.

X=0.7

critical region 12 3

VSE a Significance Level 5%

29 car owners

73 - one car

38 - Two care

o bseved	EXPE	0-E	3(0-E)2
73	0.6x129	0-E,	
38	6 · 28 x128	02-52	
19	0-12 X128	03-E3	
129			

THANK - YOU