Report on Homework 2

CS420, Machine Learning, Shikui Tu, Summer 2018 Zelin Ye 515030910468

1 PCA algorithm

When it comes to principal component, the most common used approach is principal component analysis (PCA) algorithm. Thus, I can use the original PCA algorithm to extract the first principal component of the dataset. The computational details can refer to Alg. 1.

Algorithm 1: Original PCA

Input: The dataset X, a $n \times N$ matrix **Output:** The first principal component w

- 1 Conduct normalization for X, and make sure the mean of X is 0;
- 2 Find the covariance matrix of X, denoted by C:

$$C = XX^T$$
;

- 3 Calculate the eigenvalues λ and eigenvectors V of X;
- 4 Choose the maximal eigenvalue λ_m and corresponding eigenvector v_m ;
- 5 Calculate the first principal component:

$$w = v_m^T X;$$

ϵ return w;

The above algorithm (PCA) is a classical and commonly used method to solve principal components, which has the following characteristics.

Pros:

- 1. PCA has simple logic and is easy to implement;
- 2. The orthogonality among principal components chosen by PCA can eliminate the interaction between original data components;
- 3. PCA belongs to unsupervised learning, and it is not restricted by sample labels.

Cons:

- 1. PCA treats all samples, namely the collection of eigenvectors, as a whole and neglects the category attributes. Nevertheless, the projection direction it neglects might contain some important separability information;
- 2. PCA would be time-consuming when encountering large amount of data;
- 3. The actual meanings of principal components extracted by PCA are a little bit ad-hoc and hard to explain.

The original PCA might have good performance when handling linear data, but it would encounter difficulties under non-linear data. In non-linear cases, a variant of PCA called KPCA (kernel principal components analysis) shows its strength.

The innovation of KPCA is that it introduces a non-linear mapping function $\phi(x)$, mapping the data from original space to high-dimensional space. Besides, the deduction of KPCA takes advantage of the

theorem that each vector in the space could be expressed linearly by all the samples in the space. The details of KPCA can refer to Alg. 2.

Algorithm 2: KPCA

Input: The dataset X, a $n \times N$ matrix; kernel function $\phi(x)$

Output: The first principal component w

- 1 Conduct normalization for X, and make sure the mean of X is 0;
- 2 Calculate kernel matrix K:

$$K = X^T X$$
.

where
$$X = [\phi(x_1), ..., \phi(x_N)];$$

3 Find the covariance matrix of X, denoted by C:

$$C = XX^T$$
;

- 4 Calculate the eigenvalues λ and eigenvectors U of K;
- 5 Choose the maximal eigenvalue λ_m and calculate corresponding eigenvector u_m ;
- 6 Calculate the corresponding eigenvectors v_m of covariance matrix C by u_m :

$$v_m = \frac{1}{\|X^T u_m\|} X^T u_m$$

$$= \frac{1}{\sqrt{u_m^T X X^T u_m}} X^T u_m$$

$$= \frac{1}{\sqrt{u_m^T (\lambda_m u_m)}} X^T u_m$$

$$= \frac{1}{\sqrt{\lambda_m}} X^T u_m;$$

7 Calculate the first principal component:

$$w = v_m^T X;$$

8 return w;

KPCA is a ingenious extension of PCA, and is also widely used (e.g. dimension reduction, clustering). The pros and cons of KPCA are as follows.

Pros:

- 1. Basically, KPCA owns almost all of the advantages of PCA;
- 2. KPCA has a stronger universality, which could find out the non-linear information contained in dataset;
- 3. KPCA uses simple kernel functions (e.g. polynomial kernel function) to realize complex non-linear transform;

Cons:

- 1. The logic and implementation of KPCA is a little bit complicated;
- 2. The dimension of kernel matrix K is $N \times N$ (N is the number of samples). It might take quantities of time to process K when handling large scale of samples;

- 3. Different choices of kernel functions and parameters would affect the result to a certain extent, which makes this algorithm more tricky.
- 4. Same as PCA, the actual meanings of principal components extracted by KPCA are also inexplicable.

2 Factor Analysis (FA)

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

$$= \frac{G(x|Ay + \mu, \Sigma_e)G(y|0, \Sigma_y)}{p(x)}$$

$$= \frac{G(x|Ay + \mu, \Sigma_e)G(y|0, \Sigma_y)}{G(x|\mu + \mu_e, AA^T\Sigma_y + \Sigma_e)}$$

where μ_e denotes the mean value of e, generally considered to be 0.

3 Independent Component Analysis (ICA)

ICA aims to decompose the source signal into independent parts. If the source signals are non-Gaussian, the decomposition is unique, or there would be a variety of such decompositions.

Suppose the source signal s consists of two components, conforming to multi-valued normal distribution, namely $s \sim N(0, I)$. Obviously, the probability density function of s is centered on the mean 0, and the projection plane is an ellipse.

Meanwhile, we have x = As, where x denotes the actual signals received while A represents a mixing matrix. Then x is also Gaussian, with a mean of 0 and a covariance of $E[xx^T] = E[Ass^TA^T] = AA^T$.

Let C be a orthogonal matrix, and A' = AR. If A is replaced by A', then we can get x' = A's. It is easy to find that x' also conforms to normal distribution, with a mean of 0 and a covariance of $E[x'(x')^T] = E[A'ss^T(A')^T] = E[ACss^T(AC)^T] = ACC^TA^T = AA^T$.

Apparently, x and x' conform to the same distribution with different mixing matrices. Then we cannot determine the mixing matrix or the source signals from the received signals. Nevertheless, if x is non-Gaussian (e.g. Uniform Distribution), such case would be effectively avoided. Therefore, maximizing non-Gaussianity should be used as a principle for ICA estimation.

4 Causal Discovery Algorithms

4.1 Problem Description

Generally speaking, the housing price are affected by many factors, such as the number of rooms, crime rate, pupil-teacher ratio and etc. There also exist some causalities among those factors. It is beneficial for further mastering the housing market if one can figure out these causalities. However, such causalities are often difficult to determine intuitively, it is thus necessary to conduct causal discovery on these factors.

I consider the features in the Boston Housing dataset as factors, then utilize these features and corresponding values for causal discovery. The dataset is available at the UCI Repository [1], whose details can refer to Appendix A.1.

4.2 Approach

Taking the data type of features and the scale of samples into account, I apply *Kernel-based Conditional Independence Test* (KCI-test) [2] to casual discovery, which performs well when the conditioning set is large and the sample size is not very large.

Basically, conditional independence test for continuous variables is rather challenging due to the curse of dimensionality. KCI-test constructs an appropriate test statistic and deriving its asymptotic distribution under the null hypothesis of conditional independence.

Suppose the centralized kernel matrix of sample X and its eigenvalues are K_X and λ_X respectively. The unconditional independence testing method is similar to HSIC [3]. Under the null hypothesis that X and Y are statistically independent, the statistic is defined as:

$$T_{UI} \triangleq \frac{1}{n} Tr(K_X K_Y)$$
$$= \frac{1}{n^2} \sum_{i,j=1}^n \lambda_{x,i} \lambda_{y,j} z_{ij}^2$$

where z_{ij}^2 denotes the χ_1^2 -distributed variables.

Analogously, under the null hypothesis that X and Y are conditionally independent given Z, the statistic for conditional independence testing is defined as:

$$T_{CI} \triangleq \frac{1}{n} Tr(K_{X|Z} K_{Y|Z})$$
$$= \frac{1}{n} \sum_{k=1}^{n^2} \lambda_k z_k^2$$

where $K_{X|Z}=R_ZK_XR_Z$, $K_{Y|Z}=R_ZK_YR_Z$, $R_Z=\epsilon(K_Z+\epsilon I)^{-1}$ and ϵ is a hyperparameter.

Finally, after the *p-value* is calculated according to the above formulae, KCI-test approximates the null distribution with a Gamma distribution or just generates it by Monte Carlo simulation.

The main purpose of this application is to figure out the causalities among the features in Boston Housing dataset. Therefore, I use KCI-test to test the dependence and conditional independence among features. Then I construct the DAG of casualities based on PC algorithm [4]. The whole process could be summed up as $PC_{KCI-test}$ algorithm.

4.3 Experiments

Initially, I conduct unconditional independence testing on every two features. With the significance level as 0.001, the results of unconditional independence testing are shown in Tab. 1.

Table 1: The *p-values* of unconditional independence testing

p id id	1	2	3	4	5	6	7	8	9	10	11	12
1	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.000	0.000
6	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
7	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
11	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

According to the above table, only a small parts of the features have unconditional independence (rough parts in the table). That is, most features may have causalities with others. However, it is impossible to specify causalities based on current results.

Therefore, I carry out conditional independence testing. I also choose the significance level as 0.001, and the corresponding results can refer to Tab. 2.

Table 2: The results of conditional independence testing (Since the number of results is excessive, I only count the numbers here and not specify the results).

Condition (Feature) id z	The Number of Independent Features under z	Radio of Independent Features		
1	96	0.67		
2	11	0.08		
3	55	0.38		
4	15	0.10		
5	121	0.84		
6	112	0.78		
7	59	0.41		
8	79	0.55		
9	104	0.72		
10	8	0.06		
11	117	0.81		
12	112	0.78		

It is easy to find out that the cases of conditional independence among these features are quite different. Most of the features are independent under 2th, 4th, 10th conditions (features), whereas the results are opposite under 5th, 11th, 12th conditions.

Ultimately, I exploit the above results to execute PC algorithm. Although each one could argue about the ground truth for the causalities of these features, I approve of the criterion proposed by the author of KCI-test: one algorithm is promising if it finds links between number of rooms (RM) and median value of houses (MED) and between non-retail business (IND) and nitric oxides concentration (NOX). The final result of PC algorithm can refer to Fig. 1, which is quite similar to that in [2].

Figure 1: The final result of PC algorithm.

It is doubtless that this result meets the criterion perfectly. Besides, the $PC_{KCI-test}$ algorithm also finds out some other causalities that make sense (e.g. nitric oxides concentration (NOX) and distances to five Boston centres (DIS). Nevertheless, I think this algorithm still omits some causalities that meet our common sense, such as DIS and TAX, IND and TAX, which could be discovered by $PC_{CI_{PERM}}$ algorithm according to the results in [2]. In the meantime, $PC_{KCI-test}$ also ignores the causalities of two features (ZN and PTRATIO).

In conclusion, the KCI-test is a concise and efficient algorithm for independence testing, especially for continuous variables. The experiments on Boston Housing dataset indicates that KCI-test could achieve satisfactory results in practical applications.

5 Causal Tree Reconstruction

pass

A Appendix

A.1 Details of the Boston Housing Dataset

The Boston Housing Dataset consists of 506 samples, each has 12 features, namely the factors that affect housing price. The values of all features are positive real numbers. Table 3 shows a detailed description of these features.

Table 3: Details of the features in Boston Housing dataset

Identifier	Feature Names	Description				
1	CRIM	per capita crime rate by town				
2	ZN	proportion of residential land zoned for lots over 25,000.000 sq.ft.				
3	INDUS	proportion of non-retail business acres per town				
4	NOX	nitric oxides concentration (parts per 10.0 million)				
5	RM	average number of rooms per dwelling				
6	AGE	proportion of owner-occupied units built prior to 1940.000				
7	DIS	weighted distances to five Boston employment centres				
8	TAX	full-value property-tax rate per \$10,000.0				
9	PTRATIO	pupil-teacher ratio by town				
10.000	В	1000(Bk - 0.63)2 where Bk is the proportion of blacks by town				
11	LSTAT	lower status of the population				
12	MEDV	Median value of owner-occupied homes in \$1000's				

References

- [1] A. Asuncion and D. Newman, "Uci machine learning repository," 2007.
- [2] K. Zhang, J. Peters, D. Janzing, and B. Schölkopf, "Kernel-based conditional independence test and application in causal discovery," *arXiv preprint arXiv:1202.3775*, 2012.
- [3] A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. J. Smola, "A kernel statistical test of independence," in *Advances in neural information processing systems*, pp. 585–592, 2008.
- [4] P. Spirtes and C. Glymour, "An algorithm for fast recovery of sparse causal graphs," *Social science computer review*, vol. 9, no. 1, pp. 62–72, 1991.