

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

DATE MAILED: 08/30/2005

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
09/909,896	07/23/2001	Oscar Agazzi	1875.1100001	9207	
26111 7:	590 08/30/2005		EXAM	EXAMINER	
STERNE, KESSLER, GOLDSTEIN & FOX PLLC			NGUYEN, TOAN D		
1100 NEW YORK AVENUE, N.W. WASHINGTON, DC 20005			ART UNIT	PAPER NUMBER	
	,		2665		

Please find below and/or attached an Office communication concerning this application or proceeding.

		Application No.	Applicant(s)	_			
		09/909,896	AGAZZI ET AL.				
	Office Action Summary	Examiner	Art Unit	_			
		Toan D. Nguyen	2665				
Period f	The MAILING DATE of this communication apor Reply	opears on the cover sheet with th	e correspondence address				
THE - Extended - If th - If NO - Fail Any	MORTENED STATUTORY PERIOD FOR REP MAILING DATE OF THIS COMMUNICATION ensions of time may be available under the provisions of 37 CFR 1 r SIX (6) MONTHS from the mailing date of this communication. e period for reply specified above is less than thirty (30) days, a re o period for reply is specified above, the maximum statutory period ure to reply within the set or extended period for reply will, by statu reply received by the Office later than three months after the mail ned patent term adjustment. See 37 CFR 1.704(b).	.136(a). In no event, however, may a reply b ply within the statutory minimum of thirty (30) d will apply and will expire SIX (6) MONTHS tte, cause the application to become ABAND	e timely filed days will be considered timely. rom the mailing date of this communication. DNED (35 U.S.C. § 133).				
Status			.				
1)[\]	Responsive to communication(s) filed on 01.	<u>July 2005</u> .					
2a)⊠	This action is FINAL . 2b) ☐ Th	is action is non-final.	·				
3)□	Since this application is in condition for allowance except for formal matters, prosecution as to the ments is closed in accordance with the practice under <i>Ex parte Quayle</i> , 1935 C.D. 11, 453 O.G. 213.						
Disposit	ion of Claims						
5)	Claim(s) <u>1-51</u> is/are pending in the application 4a) Of the above claim(s) is/are withdrest Claim(s) is/are allowed. Claim(s) <u>1-51</u> is/are rejected. Claim(s) is/are objected to. Claim(s) are subject to restriction and/	awn from consideration.					
Applicat	ion Papers						
10)⊠	The specification is objected to by the Examination The drawing(s) filed on 23 July 2001 is/are: a Applicant may not request that any objection to the Replacement drawing sheet(s) including the correct The oath or declaration is objected to by the Examination is objected.	a) \square accepted or b) \square objected or b objected or abeyance. ction is required if the drawing(s) is	See 37 CFR 1.85(a). objected to. See 37 CFR 1.121(d).				
Priority (under 35 U.S.C. § 119						
a)	Acknowledgment is made of a claim for foreig All b) Some * c) None of: 1. Certified copies of the priority documer 2. Certified copies of the priority documer 3. Copies of the certified copies of the priority application from the International Burea See the attached detailed Office action for a list	nts have been received. nts have been received in Applic onty documents have been rece au (PCT Rule 17.2(a)).	cation No vived in this National Stage				
Attachmen	• •						
2) 🔲 Notic 3) 🔯 Infor	ce of References Cited (PTO-892) the of Draftsperson's Patent Drawing Review (PTO-948) mation Disclosure Statement(s) (PTO-1449 or PTO/SB/08 or No(s)/Mail Date <u>7/26/05</u> .	4) Interview Summ Paper No(s)/Ma 5) Notice of Inform 6) Other:					

Application/Control Number: 09/909,896 Page 2

Art Unit: 2665

DETAILED ACTION

Claim Rejections - 35 USC § 103

- 1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 2. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
- 3. Claims 1-42 are rejected under 35 U.S.C. 103(a) as being unpatentable over Azadet et al (EP 1006697) in view of Winter et al (Electrical Signal Processing Techniques In Long-Haul, Fiber-Optic Systems, AT&T Bell Laboratories).

For claim 1, Azadet et al disclose parallel signal processing for equalization on fibre channels, comprising the steps of:

3) generating N sampling signals having a first frequency that is lower than the symbol rate (page 2 lines 30-35), the N sampling signals shifted in phase relative to one another (figure 2, page 3, lines 25-27 and figure 3, page 3 lines 32-36);

4) controlling N analog-to-digital converter ("ADC") paths with the N sampling signals to sample the electrical signal at the phases, so as to produce samples (figure 3, page 3 lines 37-38);

- 5) performing one or more M-path parallel digital processes on the samples, wherein M=kN, and k is an integer or a number in the form of 1/s, where s is an integer (page 3 line 57 to page 4 line 7); and
- 6) generating a digital signal representation of the data signal from the samples (page 3 line 57 to page 4 line 7).

Azadet et al disclose an electrical signal having a symbol rate (figure 1, page 3 lines 23-25). However, Azadet et al do not expressly disclose:

- 1) receiving an optical data signals;
- 2) converting the optical data signal to an electrical signal. In an analogous art, Winter et al disclose:
 - 1) receiving an optical data signals (figure 1, page 305.3.1, col. 2 line 12);
- 2) converting the optical signal to an electrical signal (page 305.3.1, col. 2 lines12-13 and page 305.3.2, col. 1 lines 6-7).

One skilled in the art would have recognized receiving an optical data signals to use the teachings of Winter et al in the system of Azadet et al.

Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use the receiving an optical data signals as taught by Winter et al in Azadet et al's system with the motivation being to mitigate the effect of intersymbol interference in long-haul, fiber-optic systems (Abstract lines

1-3).

For claim 2, Azadet et al disclose wherein step (5) comprises performing an equalization process on the samples (figure 4, reference 500, page 3 lines 57-58).

Page 4

For claim 3, Azadet et al disclose wherein step (5) further comprises the step of performing Viterbi equalization (figure 6, reference 650) on the digital electrical signal (page 4 line 2).

For claim 4, Azadet et al disclose wherein step (5) further comprises performing a feed-forward equalization process on the samples (figure 5, reference 510) (page 4 line 16).

For claim 5, Azadet et al disclose wherein step (5) further comprises performing a decision feedback equalization process on the samples (page 4, line 20).

For claim 6, Azadet et al disclose wherein step (5) further comprises performing Viterbi equalization (figure 6, reference 650) and feed-forward equalization process (figure 5, reference 510) on the samples (page 2, lines 40-42).

For claim 7, Azadet et al disclose wherein step (5) further comprises performing Viterbi equalization (figure 6, reference 650) and decision feedback equalization processes on the samples (page 2, lines 40-42).

For claim 8, Azadet et al disclose wherein step (5) further comprises performing one or more of the following types of equalization processes on the samples:

Viterbi equalization (figure 6, reference 650);

feed-forward equalization (figure 5, reference 510); and decision feedback equalization (page 2, lines 40-42).

For claim 9, Azadet et al disclose parallel signal processing for equalization on fibre channels, comprising the steps of:

an analog-to-digital converter ("ADC") array of N ADC paths, wherein N is an integer greater than 1, each ADC path including an ADC path input (figure 1, reference 130) coupled to an output of the optical-to electrical converter (page 3 lines 27-28); and an M-path digital signal processor (figure 1, reference 140) coupled to the ADC array, where M=kN and k is an integer or a number in the form of 1/s, where s is an

However, Azadet et al do not expressly disclose:

integer (figure 1, reference 130) (page 3 lines 27-29).

a receiver input;

an optical-to-electrical converter coupled to the receive input. In an analogous art, Winter et al disclose: a receive input (figure 1, page 305.3.1, col. 2 line 12); an optical-to-electrical converter coupled to the receive input (page 305.3.1, col. 2 lines 12-13 and page 305.3.2, col. 1 lines 6-7).

One skilled in the art would have recognized an input to use the teachings of Winter et al in the system of Azadet et al. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use the input as taught by Winter et al in Azadet et al's system with the motivation being to mitigate the effect of intersymbol interference in long-haul, fiber-optic systems (Abstract lines 1-3).

For claim 10, Azadet et al disclose wherein the digital signal processor includes an equalizer (figure 4, reference 500, page 3 lines 57-58).

Art Unit: 2665

For claim 11, Azadet et al disclose wherein the equalizer comprises a Viterbi equalizer (figure 6, reference 650) (page 4 lines 1-2).

For claim 12, Azadet et al disclose the equalizer comprises a feed forward equalizer (figure 5, reference 510) (page 4 line 16).

For claim 13, Azadet et al disclose the equalizer comprises a decision feedback equalizer (page 4, line 20).

For claim 14, Azadet et al disclose wherein the equalizer comprises a Viterbi equalizer (figure 6, reference 650) and a feed-forward equalizer (figure 5, reference 510) (page 2 lines 40-42).

For claim 15, Azadet et al disclose wherein the equalizer comprises a Viterbi equalizer (figure 6, reference 650) and a decision feedback equalizer (page 2, lines 40-42).

For claim 16, Azadet et al disclose wherein the equalizer comprises a feedforward equalizer (figure 5, reference 510) and a decision feedback equalizer (page 2, lines 40-42).

For claim 17, Azadet et al disclose wherein the equalizer comprises one or more of the following types of equalization on the digital electric signal:

- a Viterbi equalizer (figure 6, reference 650);
- a feed-forward equalizer (figure 5, reference 510); and
- a decision feedback equalizer (page 2, lines 40-42).

For claim 18, Azadet et al disclose parallel signal processing for equalization on fibre channels, comprising the steps of:

Art Unit: 2665

means for generating N sampling signals having a first frequency that is lower than the symbol rate (page 2 lines 30-35), the N sampling signals shifted in phase relative to one another (figure 2, page 3, lines 25-27 and figure 3, page 3 lines 32-36);

means for controlling N analog-to-digital converter ("ADC") paths with the N sampling signals to sample the electrical signal at the phases, so as to produce samples (figure 3, page 3 lines 37-38);

means for performing one or more M-path parallel digital processes on the samples, wherein M=kN, and k is an integer or a number in the form of 1/s, where s is an integer (page 3 line 57 to page 4 line 7); and

means for generating a digital signal representation of the data signal from the samples (page 3 line 57 to page 4 line 7).

Azadet et al disclose an electrical signal having a symbol rate (figure 1, page 3 lines 23-25). However, Azadet et al do not expressly disclose:

means for receiving an optical data signals;

means for converting the optical data signal to an electrical signal.

In an analogous art, Winter et al disclose:

means receiving an optical data signals (figure 1, page 305.3.1, col. 2 line 12);

means for converting the optical data signal to an electrical signal (page 305.3.1, col. 2 lines12-13, and page 305.3.2, col.1 lines 6-7).

One skilled in the art would have recognized means for receiving an optical data signals to use the teachings of Winter et al in the system of Azadet et al. Therefore, it

Art Unit: 2665

would have been obvious to one of ordinary skill in the art at the time of the invention to use the means for receiving an optical data signals as taught by Winter et al in Azadet et al's system with the motivation being to mitigate the effect of intersymbol interference in long-haul, fiber-optic systems (Abstract lines 1-3).

For claim 19, Azadet et al disclose wherein the means for performing digital processes on the samples include means for equalizing the digital electrical signal (figure 4, reference 500, page 3 lines 57-58).

For claim 20, Azadet et al disclose wherein the means for equalizing samples comprise means for performing Viterbi equalization process (figure 6, reference 650) on the samples (page 4 line 2).

For claim 21, Azadet et al disclose wherein the means for equalizing the samples comprise means for performing a feed-forward equalization process (figure 5, reference 510) on the samples (page 4 line 16).

For claim 22, Azadet et al disclose wherein the means for equalizing the samples comprise means for performing decision feedback equalization process on the samples (page 4, line 20).

For claim 23, Azadet et al disclose wherein the means for equalizing the samples comprise means for performing Viterbi equalization (figure 6, reference 650) and feed-forward equalization processes on the samples (figure 5, reference 510) (page 2 lines 40-42).

Art Unit: 2665

For claim 24, Azadet et al disclose wherein the means for equalizing the samples comprise means for performing Viterbi equalization (figure 6, reference 650) and decision feedback equalization processes on the samples (page 2, lines 40-42).

For claim 25, Azadet et al disclose wherein step (1) comprises receiving the optical data signal from a multimode optical fiber (Abstract, page 1 col. 2 lines 1-4) and step (5) comprises equalizing multimode dispersion from the multimode optical fiber (Abstract).

For claims 26-30, Azadet et al do not expressly disclose wherein step (1) comprises receiving the optical data signal from a single mode optical fiber and step (5) comprises equalizing chromatic and/or waveguide dispersion from the single mode optical fiber. In an analogous art, Winter et al disclose wherein step (1) comprises receiving the optical data signal from a single mode optical fiber (figure 1, page 305.3.1, col. 2 line 12) and step (5) comprises equalizing chromatic and/or waveguide dispersion from the single mode optical fiber (figure 7, page 305.3.6 col. 1 lines 28-29).

Azadet et al disclose wherein step (1) comprises receiving the optical data signal from a multimode optical fiber (figure 3, col. 3 lines 32-58) and Winter et al in view of Azadet et al disclose step (5) comprises equalizing chromatic and/or waveguide dispersion from the multimode optical fiber (figure 7, page 305.3.6 col. 1 lines 28-29 as set forth in claim 27); wherein step (1) comprises receiving the optical data signal from a single mode optical fiber (figure 1, page 305.3.1 col. 2 line 12) and step (5) comprises equalizing polarization mode dispersion from the single mode optical fiber (figure 7, page 305.3.6 col. 2 lines 28-31 as set forth in claim 28); wherein step (1) comprises

receiving the optical data signal from a single mode optical fiber (figure 1, page 305.3.1 col. 2 line 12) and step (5) comprises equalizing dispersion induced in the single mode optical fiber by laser chirping (page 305.3.2, col. 2 lines 10-14 as set forth in claim 29); wherein step (1) comprises receiving the optical data signal from a transmitter that lacks external modulators (figure 1, page 305.3.1, col. 2 lines 3-5 and col. 2 line 12) and step (5) comprises equalizing excess dispersion induced by laser chirping (page 305.3.2, col. 2 lines 10-14 as set forth in claim 30).

One skilled in the art would have recognized receiving the optical data signal from a single mode optical fiber to use the teachings of Winter et al in the system of Azadet et al. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use receiving the optical data signal from a single mode optical fiber as taught by Winter et al in Azadet et al's system with the motivation being to convert the optical signal, s₀ (t), to an electrical signal (page 305.3.1 lines 12-14).

For claim 31, Azadet et al disclose wherein the input is coupled to a multimode optical fiber and the equalizer equalizes multimode dispersion from the multimode optical fiber (Abstract).

For claims 32-36, Azadet et al do not expressly disclose wherein the input is coupled to a single mode optical fiber and said equalizer equalizes chromatic and/or waveguide dispersion from the single mode optical fiber. In an analogous art, Winter et al disclose wherein said input is coupled to a single mode optical fiber (figure 1, page 305.3.1, col. 2 line 12) and said equalizer equalizes chromatic and/or waveguide dispersion from the single mode optical fiber (figure 7, page 305.3.6 col. 1 lines 28-29).

Azadet et al disclose wherein the input is coupled to a multimode optical fiber (figure 3, col. 3 lines 32-58) and Winter et al in view of Azadet et al disclose the equalizer equalizes chromatic and/or waveguide dispersion from the multimode optical fiber (figure 7, page 305.3.6 col. 1 lines 28-29 as set forth in claim 33); Azadet et al disclose wherein the input is coupled to a multimode optical fiber (figure 3, col. 3 lines 32-58) and Winter et al in view of Azadet et al disclose the equalizer equalizes polarization mode dispersion from the single mode optical fiber (figure 7, page 305.3.6 col. 2 lines 28-31 as set forth in claim 34); wherein the input is coupled to a single mode optical fiber (figure 1, page 305.3.1, col. 2 line 12) and the equalizer equalizes dispersion induced in the single mode optical fiber by laser chirping (page 305.3.2, col. 2 lines 10-14 as set forth in claim 35); wherein the input receives the optical data signal from a transmitter that lacks external modulators (figure 1, page 305.3.1, col. 2 lines 3-5 and col. 2 line 12) and the equalizer equalizer equalizes excess dispersion induced by laser chirping (page 305.3.2, col. 2 lines 10-14 as set forth in claim 36).

One skilled in the art would have recognized the input is coupled to a single mode optical fiber and said equalizer equalizes chromatic and/or waveguide dispersion from the single mode optical fiber to use the teachings of Winter et al in the system of Azadet et al. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use the input is coupled to a single mode optical fiber and said equalizer equalizes chromatic and/or waveguide dispersion from the single mode optical fiber as taught by Winter et al in Azadet et al's system with the motivation being

Art Unit: 2665

0005

to convert the optical signal, s_0 (t), to an electrical signal (figure 1, page 305.3.1 lines 12-14).

For claim 37, Azadet et al disclose wherein the means for receiving an optical signal is coupled to a multimode optical fiber (figure 3, col. 3 lines 32-58) and the means for equalizing comprises means for equalizing multimode dispersion from the multimode optical fiber (Abstract).

For claims 38-42, Azadet et al do not expressly disclose wherein the means for receiving an optical signal is coupled to a single mode optical fiber and the means for equalizing comprising means for equalizing chromatic and/or waveguide dispersion from the single mode optical fiber. Winter et al disclose wherein the means for receiving an optical signal is coupled to a single mode optical fiber (figure 1, page 305.3.1, col. 2 line 12) and the means for equalizing comprising means for equalizing chromatic and/or waveguide dispersion from the single mode optical fiber (figure 7, page 305.3.6 col. 1 lines 28-29).

Azadet et al disclose is coupled to a multimode optical fiber (figure 3, col. 3 lines 32-58) and Winter et al in view of Azadet et al disclose wherein the means for receiving an optical signal (figure 1, page 305.3.1, col. 2 line 12) and the means for equalizing comprises means for equalizing chromatic and/or waveguide dispersion in the multimode optical fiber (figure 7, page 305.3.6 col. 1 lines 28-29 as set forth in claim 39); Azadet et al disclose is coupled to a multimode optical fiber (figure 3, col. 3 lines 32-58) and Winter et al in view of Azadet et al disclose wherein the means for receiving an optical signal (figure 1, page 305.3.1, col. 2 line 12) and the means for equalizing

comprises means for equalizing comprises means for equalizing polarization mode dispersion from the single mode optical fiber (figure 7, page 305.3.6 col. 2 lines 28-31 as set forth in claim 40); wherein the means for receiving an optical data signal is coupled to a single mode optical fiber (figure 1, page 305.3.1 col. 2 line 12) and the means for equalizing comprises means for equalizing dispersion induced in the single mode optical fiber by laser chirping (page 305.3.2, col. 2 lines 10-14 as set forth in claim 41); wherein the means for receiving the optical data signal from a transmitter that lacks external modulators (figure 1, page 305.3.1, col. 2 lines 3-5 and col. 2 line 12), and the means for equalizing comprises means for equalizing excess dispersion induced by laser chirping (page 305.3.2, col. 2 lines 10-14 as set forth in claim 42).

Page 13

One skilled in the art would have recognized the means for receiving the optical data signal from a single mode optical fiber to use the teachings of Winter et al in the system of Azadet et al. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention to use receiving the optical data signal from a single mode optical fiber as taught by Winter et al in Azadet et al's system with the motivation being to convert the optical signal, s₀ (t), to an electrical signal (page 305.3.1 lines 12-14).

4. Claims 43-51 are rejected under 35 U.S.C. 103(a) as being unpatentable over Azadet et al (EP 1006697) in view of Winter et al (Electrical Signal Processing Techniques In Long-Haul, Fiber-Optic Systems, AT&T Bell Laboratories) further in view of John A.C. Bingham (Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come, IEEE Communication Magazine, May 1990).

For claims 43-51, Azadet et al in view of Winter et al do not expressly disclose wherein step (5) comprises decoding a convolutional code. In an analogous art, John A.C. Bingham discloses wherein step (5) comprises decoding a convolutional code (page 12, col. 2 lines 42-45).

Page 14

John A.C. Bingham discloses wherein step (5) comprises decoding a trellis code (page 12, col. 2 line 14 as set forth in claim 44); wherein step (5) comprises decoding a block code (page 12, col. 2 lines 43-45 as set forth in claim 45); wherein the digital signals processor comprises a convolutional decoder (page 12, col. 2 lines 42-45 as set forth in claim 46); wherein the digital signals processor comprises a trellis decoder (page 12, col. 2 line 14 as set forth in claim 47); wherein the digital signals processor comprises a block decoder (page 12, col. 2 lines 42-45 as set forth in claim 48); wherein the means for performing digital process on the samples comprises means for decoding a convolutional code (page 12, col. 2 lines 42-45 as set forth in claim 49); wherein the means for performing digital processes on the samples comprises means for decoding a trellis code (page 12, col. 2 line 14 as set forth in claim 50); wherein the means for decoding a block decoder (page 12, col. 2 lines 42-45 as set forth in claim 51).

One skilled in the art would have recognized decoding a convolutional code to use the teachings of John A.C. Bingham in the system of Azadet et al. Therefore, it would have been obvious to one of ordinary skill in the art at the time of the invention, to use the decoding a convolutional code as taught by John A.C. Bingham in Azadet et al's system with the motivation being desired that all of the data on one symbol (block) be

Application/Control Number: 09/909,896 Page 15

Art Unit: 2665

decoded in the same period and from only the signals received within that block (page 12, col. 2 lines 43-45).

Response to Arguments

5. Applicant's arguments filed 7/01/05 have been fully considered but they are not persuasive.

The applicant argues with respect to claims 1, 9 and 18 that the references do not teach or suggest, alone or in combination with one another, the combination of features recited in amended claims 1, 9 and 18, as amended. The examiner disagrees. Applicant's attention to Azadet et al. patent at page 3, lines 25-27 and page 3 lines 32-36 (figures 2 and 3) where Azadet et al. clearly teach means for generating N sampling signals having a first frequency that is lower than the symbol rate, the N sampling signals shifted in phase relative to one another. Azadet et al. teach at page 3 lines 37-38 (figure 3) means for controlling N analog-to-digital converter ("ADC") paths with the N sampling signals to sample the electrical signal at the phases, so as to produce samples. Azadet et al. teach at page 3 line 57 to page 4 line 7 means for performing one or more M-path parallel digital processes on the samples, wherein M=kN, and k is an integer or a number in the form of 1/s, where s is an integer; and at page 3 line 57 to page 4 line 7 means for generating a digital signal representation of the data signal from the samples. Azadet et al. further teach at page 30lines 23-25 (figure 1) means for an electrical signal having a symbol rate. Therefore, Azadet et al. and Winter et al. references do teach all limitations recited in claims 1, 9 and 18.

Application/Control Number: 09/909,896 Page 16

Art Unit: 2665

Furthermore, the examiner retained the rejection of claims 2-8, 10-17 and 19-51 from the last Office action (01/04/05).

Conclusion

6. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

7. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Toan D. Nguyen whose telephone number is 571-272-3153. The examiner can normally be reached on M-F (7:00AM-4:30PM).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mr. Huy Vu can be reached on 571-272-3155. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Art Unit: 2665

Page 17

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

TN

MAN U. FHAN PRIMARY EXAMINER