Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering

ME6406 Machine Vision (Fall 2023)

Assignment #3: (ME6406Q Due Wednesday, November 4th, 2023, 23:59pm EDT)

All programs should be written using MATLAB. Solutions must be consolidated into a single pdf file (including all results and an explanation of results) and a **zip file** (including all m-files or mlx-files used for the results). Solutions must be submitted electronically through Canvas. Late solutions will be penalized at a 10% deduction from the homework score and will NOT be accepted 24 hours after the due date. Without a signed honor code, your exams and assignments will NOT be graded.

Problem 1: Camera Model and Calibration

- a) Camera Model. Write a program (Camera Model.m) to transform the 3D world coordinates $(X_w Y_w Z_w)$ of the 20 calibration points (represented by '*' in Fig. 1 and Table 1) to the 2D image coordinates (u_dv_d) using Tsai's camera model Steps 1 to 3, which account for radial lens distortion. Use $[\mathbf{R}_x(135^\circ)]$, $\mathbf{T}=[3\ 3.5\ 7.5]^T$, f=1.3, $k_1=0.01$ to illustrate your solutions, you may assume variables/parameters are in consistent physical units. Determine and show these 20 feature points in the $u_d v_d$ plane. Save the (X_w, Y_w) , (u_u, v_u) and (u_d, v_d) values in camera calibration data.mat for b).
- b) Camera Calibration. Write a program (Camera Calibration.m) to calibrate compute f, [R], T. Given the above data in camera_calibration_data.mat. Compute f, [**R**], **T**, k_1 .

Table 1 Camera calibration points					
X_{w}	-2	-1	0	1	2
Y_{w}	0	0	0	0	0
$Z_{\rm w}$	0	0	0	0	0
X_{w}	3	-2	-1	0	1
$Y_{\rm w}$	0	1	1	1	1
Z_{w}	0	0	0	0	0
$X_{\rm w}$	2	3	-1	-2	-1
$Y_{\rm w}$	1	1	2	2	3
Z_{w}	0	0	0	0	0
X_{w}	-2	-1	-2	-1	-2
$Y_{\rm w}$	3	4	4	5	-2 5
Z_{w}	0	0	0	0	0

Fig. 1 Camera model and calibration

Problem 2: Morphology

a) Let A denote the set shown in Fig. 2(a). Refer to the structuring elements shown (the black dots denote the origin). *Hand-sketch* the result obtained from each of the following morphological operations:

Use the following steps (1. $A \oplus B$, 2. $A \ominus B$, and 3. A⊕B–(A⊖B), and the structure element B in Fig. 2(b) to perform a morphological filtering on the head-CT image A (Fig. 2c). Show the corresponding images obtained from each of the operations.

Suggested MATLAB function: imdilate.m, imerode.m

Fig. 2(b)

Problem 3: Robot Eye-on-Hand Calibration

Figure 3(a) shows the setup for performing an eye-on-hand calibration where a stationary planar calibration board is viewed at 3 different locations by a camera mounted on a robot gripper. Figure 3(b) shows the images in three camera image planes. The transformation matrices from *CW* to *Ci* can be determined by the camera calibration ([**H**ci] where *i*=1, 2, 3). The rigid body transformations of the robot gripper from Stations 1 to 2 and 2 to 3 are given by the robot controller, which are denoted respectively by [**H**g12] and [**H**g23]. Write a MATLAB program to perform an eye-on-hand calibration; use [**H**c1], [**H**c2], and [**H**c3] data in '*robot_hand_eye_data.mat*' to illustrate your solutions:

- 1) Compute ([**R**c12], **T**c12) and ([**R**c23], **T**c23).
- 2) Obtain the equivalent angle-axis representation (n, θ) for each of the rotation matrixes:

- 3) Compute P_{c12} , P_{c23} , P_{g12} and P_{g23} . Check your solutions by computing [\mathbf{R}_{g12}] and [\mathbf{R}_{g23}] using Equations (8) and (10) in [2] and comparing with those given in the data file 'robot hand eye data.mat'.
- 4) Use the procedure in [2] to compute P_{cg} , $[R_{cg}]$ and T_{cg} .

Problem 4: Ellipse-Circle Correspondence

A circle captured by a camera (with focal length f=0.825cm) in the image plane has the following general ellipse equation: $Au^2 + 2Buv + Cv^2 + 2Du + 2Ev + F = 0$. The coefficients are given in file 'coef2023.mat', and the circle radius r = 7.5cm. Determine the following parameters:

- 1) The center of the circle with respect to the camera frame.
- 2) The plane equation (with respect to the camera frame) that contains the circle.
- 3) With no additional information, multiple solutions are possible. Find all valid solutions.

Reference:

- [1] Tsai, R. "A Versatile Camera Calibration Technique for High-accuracy 3D Machine Vision Metrology using Off-the-shelf TV Cameras and Lenses," *IEEE Trans. on Robotics and Automation*, Vol. 3, No.4, pp. 323-344, 1987.
- [2] Tsai, R.Y. and R.K. Lenz, "A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration," *IEEE Trans. on Robotics and Automation*, Vol. 5, No. 3, 1989.
- [3] Qiang Ji, Mauro Costa, Robert Haralick, and Linda Shapiro, "An Integrated Linear Technique for Pose Estimation from Different Features," *International Journal of Pattern Recognition and Artificial Intelligence*, Vol. 13, No. 5, 1999.