Econometrics I - Simple hypothesis testing

Ryan T. Godwin

University of Manitoba

$$H_0: \beta_j = \beta_{j,0}$$

$$H_A: \beta_j \neq \beta_{j,0}$$

The decision to "reject" or "fail to reject" H_0 may begin by the researcher *subjectively* deciding on a *significance level* and then doing one or more of the following:

- ► Calculating a (*p*-value) and comparing it to the significance level.
- ▶ Seeing whether or not $\beta_{j,0}$ is contained in a confidence interval.
- ▶ Calculating a test statistic and seeing if it exceeds a critical value.

We need an estimator for the $standard\ error\ of\ the\ estimator$ being used to assess the hypothesis.

For example, the t-test statistic for testing:

$$H_0: \beta_j = 0$$
$$H_A: \beta_j \neq 0$$

is:

$$t = \frac{b_j}{\hat{s.e.}(b_j)}$$

We need this quantity $\hat{s.e.}(b_j)$, which is called the *estimated standard* error.

Estimating σ^2

Know a lot about estimating β . Another parameter in the model: σ^2 – the variance of each ϵ_i . We need to estimate σ^2 so that we can get an estimate for the covariance matrix of the LS estimator: $V(b) = \sigma^2 (X'X)^{-1}$.

Let's derive an estimator for σ^2 . Begin by noting that

$$\sigma^{2} = \operatorname{var}(\epsilon_{i}) = \operatorname{E}\left[\left(\epsilon_{i} - \operatorname{E}(\epsilon_{i})\right)^{2}\right] = \operatorname{E}\left(\epsilon_{i}^{2}\right),$$

due to assumption A.3.

The sample counterpart to this population parameter (σ^2) is the sample average of the "residuals":

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n e_i^2 = \frac{1}{n} \mathbf{e}' \mathbf{e},$$

which is the method of moments, and the maximum likelihood estimator. However, there is a distortion in this estimator of σ^2 . Although the mean of the e_i 's is zero (if there is an intercept in the model), not all of e_i 's are independent of each other: only (n-k) of them are.

We should consider what properties $\hat{\sigma}^2$ has as an estimator of σ^2 , before we use it. Is this a *good* estimator? What properties of the LS estimator did we evaluate? We will write e'e in terms of only ϵ (which we have made assumptions about), and then derive its expected value:

$$e = (y - \widehat{y}) = (y - Xb) = y - X(X'X)^{-1}X'y = My$$

where

$$M = I_n - X(X'X)^{-1}X'$$
; idempotent, and $MX = \mathbf{0}$

So,

$$e = My = M(X\beta + \epsilon) = M\epsilon$$

and

$$e'e = (M\epsilon)'(M\epsilon) = \epsilon' M\epsilon$$
 ; a scalar

From this, it can be shown that:

$$E(\mathbf{e}'\mathbf{e}) = E\left[\mathbf{\epsilon}' M \mathbf{\epsilon}\right] = E\left[\operatorname{tr}\left(\mathbf{\epsilon}' M \mathbf{\epsilon}\right)\right] = E\left[\operatorname{tr}\left(M \mathbf{\epsilon} \mathbf{\epsilon}'\right)\right]$$
$$= \operatorname{tr}\left[M E\left(\mathbf{\epsilon} \mathbf{\epsilon}'\right)\right] = \operatorname{tr}\left[M \sigma^{2} I_{n}\right] = \sigma^{2} \operatorname{tr}(M)$$
$$= \sigma^{2}(n - k)$$

We won't cover the trace operator (tr), we will not discuss why $\operatorname{tr}(M) = \sigma^2(n-k)$. However, you need to be aware that an important step in considering whether an estimator should be used is to examine its *bias*, and in the case of $\hat{\sigma}^2$:

$$E\left[\hat{\sigma}^2\right] = E\left[\frac{1}{n}e'e\right] = \frac{1}{n}(n-k)\sigma^2 < \sigma^2$$

The method of moments and maximum likelihood estimator, $\hat{\sigma}^2$, is biased.

It is easy to convert this biased estimator to an *unbiased* one:

$$s^2 = \frac{1}{(n-k)}e'e$$

Some notes:

- (n-k) is the "degrees of freedom" number of independent sources of information in the n residuals (the e_i 's).
- We can use s as an estimator of σ , but it is a biased estimator. Even though it is biased, s is typically used in practice as the bias is small.
- ► s is called the "standard error of the regression", or the "standard error of estimate".
- \triangleright s^2 is a statistic. It has its own sampling distribution, etc.

Let's see one immediate application of s^2 and s. Recall the sampling distribution for the LS estimator, b:

$$\boldsymbol{b} \sim N\left[\boldsymbol{\beta}, \sigma^2 \left(X'X\right)^{-1}\right]$$

So, the variance of the i^{th} LS estimator is the i^{th} diagonal of the covariance matrix of \boldsymbol{b} : var $(b_i) = \sigma^2 \left[(X'X)^{-1} \right]_{ii}$, but σ^2 is unobservable. If we want to report the variability associated with b_i as an estimator of $\boldsymbol{\beta}_i$, we need to use an estimator of σ^2 . The estimated variance of the i^{th} LS estimator is then:

$$\widehat{\operatorname{var}(b_i)} = s^2 \left[\left(X'X \right)^{-1} \right]_{ii}$$

The square-root of the above is called the "standard error" of b_i . This quantity will be very important when it comes to constructing interval estimates of our regression coefficients, and when we construct tests of hypotheses about these coefficients.

Standard errors in R.

Start by setting the random seed and sample size, and then generate some data:

```
1 set.seed(7010)
2 n <- 10
3 x <- rnorm(n)
4 y <- rnorm(n)</pre>
```

Estimate and summarize a model:

R is reporting the standard errors of b_1 and b_2 as 0.3734 and 0.6348 respectively. We will see one way how statistical packages can calculate these numbers. Start by getting the estimate s^2 :

```
s2 <- sum(mod$residuals ^ 2) / (n - 2)
```

Note that k=2 above. If we take the square root, we get the "residual standard error" reported in the R output above:

- sqrt(s2)
- 1 [1] 1.178469

Next we will calculate the $V(\boldsymbol{b})$ matrix. Start by arranging the x data into a matrix (and take a look at the X matrix):

```
1 X <- matrix(c(rep(1, n), x), n, 2)
2 X
```

```
[,1]
                  [,2]
1
   [1,]
          1 -0.2214732
2
   [2,]
      1 0.6051370
3
  [3,] 1 0.7208573
  [4,] 1 -0.2230900
5
  [5,]
       1 -0.2662395
6
  [6,]
       1 -1.0890823
  [7,]
       1 -0.5655553
8
       1 0.5330395
  [8,]
   [9,] 1 0.6225352
10
  [10,]
       1 -0.4755066
```

The $s^2(X'X)^{-1}$ matrix is then:

```
1 s2 * solve(t(X) %*% X)
```

```
[,1] [,2]
2 [1,] 0.13939930 0.01448197
3 [2,] 0.01448197 0.40297318
```

I have used the solve() function to find the inverse. Taking the square root of any of the diagonal elements gives the standard error reported in the summary() output above:

```
sqrt(s2 * solve(t(X) %*% X))[1, 1]
```

```
1 [1] 0.3733622
```