ТЕОРИЯ ОЦЕНИВАНИЯ

Упражнение 1 (15 баллов). Пусть дана реализация выборки x_1, \ldots, x_n их нормального распределения $\mathcal{N}(\theta, 3)$. Проверьте несмещенность и состоятельность следующих оценок параметра $\theta \in \mathbb{R}$:

- (1) $\hat{\theta}_1(x_1,\ldots,x_n) = 0;$
- $(2) \widehat{\theta}_3(x_1,\ldots,x_n) = 2x_n;$
- (3) $\widehat{\theta}_4(x_1,\ldots,x_n) = 2x_2 x_3;$
- (4) $\widehat{\theta}_5(x_1,\ldots,x_n) = (x_1 + x_2 + \ldots + x_n)/n.$

Посчитайте значения этих оценок на следующих данных (n = 10):

$$-3.19$$
 2.25 4.64 -0.39 -1.44 -1.87 -1.68 0.27 0.43 0.58.

Упражнение 2 (25 баллов). Пусть дана реализация выборки x_1, \ldots, x_n из равномерного распределения на отрезке $[\theta; \theta+1]$. Найдите оценку для неизвестного параметра θ методом моментов и методом максимального правдоподобия. (Тут нужно найти оценки теоретически, ничего реализовывать в Python не нужно.)

Упражнение 3 (25 баллов). Пусть дана реализация выборки x_1, \ldots, x_n из равномерного распределения Unif $[0, \theta]$. Найдите оценки для неизвестного параметра θ методом моментов и методом максимального правдоподобия. Реализуйте эту задачу в Python:

- (1) сгенерируйте θ из равномерного распределения на [25, 50];
- (2) сгенерируйте выборку из Unif $[0, \theta]$ размера n = 10, 100, 1000, 10000, 100000, 1000000;
- (3) найдите значения полученных оценок (и посчитав значения полученных теоретических оценок, и численно с помощью метода fit() из SciPy);
- (4) выведите отклонения полученных оценок от истинного значения параметра θ . Что происходит с ростом n?

Упражнение 4 (35 баллов). Пусть дана реализация выборки x_1, \ldots, x_n их нормального распределения $\mathcal{N}(\theta_1, \theta_2^2)$. Найдите оценки для неизвестных параметров θ_1 и θ_2^2 методом моментов и методом максимального правдоподобия. Реализуйте эту задачу в Python:

- (1) сгенерируйте θ_1 из равномерного распределения на [-5,5], а θ_2^2 из равномерного распределения на [0.5,10];
- (2) сгенерируйте выборку из $\mathcal{N}(\theta_1, \theta_2^2)$ размера n = 10, 100, 1000, 10000, 100000, 1000000;
- (3) найдите значения полученных оценок (и посчитав значения полученных теоретических оценок, и численно с помощью метода fit() из SciPy);
- (4) выведите отклонения полученных оценок от истинного значения параметров θ_1 и θ_2^2 . Что происходит с ростом n?