Building a Theremin

J. Wainwright

Department of Physics and Astronomy University of Birmingham

24th Feb 2012

Introduction Basic Concept Components Used

Outline

Summary

Testing

Introduction

Basic Concept

Components Used

Testing

Task

- As part of 2nd year Physics labs we had to choose a project to implement over a period of 11 weeks.
- We had to work in teams of 2 students
- The project which I chose was to "Build a Theremin"

Introduction Basic Concept Components Used Testing Summary

Implementation

First steps included;

- Research
- Complex circuits in commercial theremin
- First ideas
- Concept designs
- Started from scratch
- Modular design to allow testing separately
- Ordering parts

YiotsiH

- Developed by Leon Termen, known in Europe as Leon Theremin.
- Invented in October 1920.

technology.

- By product of proximity sensor development.
- Shown to Lenin who dismissed it's usefulness but enjoyed the sound.
- Toured Europe to showcase the height of Russian

Introduction Basic Concept Components Used Testing Summary

Basic Concept

 One of the only instruments you don't touch to play.

- Use two hands to interact with the
- instrument;
- One hand to control pitch.
- One hand to control volume.
- The signals are produced by voltage control oscillators (VCOs).

Basic Theory

The electronics for each hand;

• Involves 2 VCOs

waves.

- 1 as a control, remains fixed.
- 1 is varied by the user
- L signals added and subtracted by a mixer circuit to produce final signal.

Introduction Basic Concept Components Used Testing Summary

Signal Generator

- As proof of concept, use a signal generator to output sinusoidal waveform.
- Send this wave through control method then to
- speaker to test.

 Can vary between sinusoidal, triangle and square
- Test mixer when using two signals from the

generator.

Parallel Plate Capacitor

- User acts as a grounded plate of parallel plate
- capacitor.

 Moving closer decreases the capacitance.
- When further away, the capacitance increases.
- Can make rough estimate of capacitance from the

following capacitor equation;

Introduction Basic Concept Components Used Testing Summary

Capacitor Equation

$$C = \frac{k \epsilon_0 A}{b}$$

where

- k = relative permeability of the dielectric material between the plates, in this case air =1,
- $\epsilon_0 = \text{permittivity of free space} = 8.854 \times 10^{-12} \text{Fm}^{-1}$,
- $\mathsf{A} = \mathsf{area}$ of the plates,
- $d = \text{separation of the plates, in this case the distance from the plate to the user's hand.$

G55 Timer Chip

- The 555 timer IC outputs a square wave with frequency depending on the input voltage.
- Can be used as a VCO, changing the resistances
 changes the input voltage voltage divider theorem.
- Characteristics of produced wave controlled by the equations;

Frequency,
$$f = \frac{1}{\ln(2)C(R_1 + R_2)}$$

Low time, $\tau_l = \ln(2)R_2C$
High time, $\tau_h = \ln(2)(R_1 + R_2)C$

Introduction Basic Concept Components Used Testing Summary

High Frequency

Low Frequency

Summary **Testing** Components Used Basic Concept Introduction

Mixer Circuit

• Takes 2 input signals and outputs both the addition The SA612A mixer chip is used for the mixer circuit.

Contains internal oscillator, but not used for this

and subtraction of them.

Bnits9T Summary Components Used Basic Concept Introduction

Mixer Signal

Low Pass Filter

Components Used

low-frequency signals but reduces the amplitude of Low pass filter - electronic filter that passes

signals with frequencies higher than the cutoff frequency.

Use to remove the high frequency

Testing

Summary

• Resistors components; Consists of simple cheap

oscillations in waveform

Basic Concept

Introduction

- When arranged in the right way will • Op-amp Capacitor
- plocked. give large control over frequencies

Progress

Introduction Basic Concept Components Used Summary

Progress

Introduction Basic Concept Components Used Testing Summary

Progress

Introduction Basic Concept Components Used Testing Summary

Progress

Introduction Basic Concept Components Used Testing Summary

Summary

- Building a theremin in 11 weeks from scratch.
- Using commonly available components and

resources.

- Outlook
- Testing to improve quality and performance.
- Reduce size and power requirements for commercialisation.