Всем общий!

Имя входного файла: b.in
Имя выходного файла: b.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Всем общий, жигиттер!

Очень ленивый человек

Правило известное каждому - если уж с кем-то здороваться, то здороваться и со всеми остальными рядом, неважно, знакомы они вам или нет. Порой бывает и такое, что не совсем хочется проходить 30 человек разом - в такие моменты и приходит на помощь заветная фраза: "Всем общий!". Но и ей надо пользоваться аккуратно - люди бывают разные и могут воспринять это как неуважение (из-за чего потом очень сильно на вас обидятся). Новые Хазики слишком озадачены такими запутанными правилами, так что вам, как их добрейшему наставнику, придется им все детально объяснить.

Вы решили обучить m Новых Хазиков этому мастерству. Для этого вы попросили n Особенных Хазиков (не Новых) стать в ряд. Особенные Хазики (совсем как обычные люди) могут обидеться если с ними не поздороваются лично. Особенный Хазик с индексом i обижается если $a_i=1$ и воспринимает это нормально если $a_i=0$. Для каждого Нового Хазика вы проделываете следующие операции. Вы выбираете двух Особенных Хазиков и просите их поменяться местами. После чего вы впускаете в класс очередного Нового Хазика. Новый Хазик должен поздороваться со всеми со всеми Особенными Хазиками по порядку, начиная с первого. При этом Новый Хазик не должен терять времени зря, так что он должен сказать "Всем общий!" как только это станет возможно, а именно когда среди Особенных Хазиков с которыми он еще не поздоровался не останется ни одного обидчивого. Чтобы проверить, все ли правильно они усвоили, вы должны написать программу, которая зная сколько было Особенных Хазиков в классе и все обмены местами, для каждого Нового Хазика выведет количество людей, с которыми он должен поздороваться, прежде чем сказать "Всем общий!".

Формат входных данных

В первой строке даны два числа $n, m \ (1 \leqslant n, m \leqslant 10^5)$ - количество Особенных Хазиков в кабинете и количество заходящих Новых Хазиков соответственно. В следующей строке находятся n элементов массива $a \ (0 \leqslant a_i \leqslant 1)$. Далее, в следующих m строках даны по два числа - v_i и $u_i \ (1 \leqslant v_i, u_i \leqslant n)$, позиции, Особенные Хазики на которых меняются прежде чем в класс войдет Новый Хазик с индексом i.

Формат выходных данных

Выведите m строк, по одной на каждый обмен местами, минимальное количество Особенных Хазиков с которыми обязательно должен поздороваться Новый Хазик с номером i. Напоминаем, что Новые Хазики начинают здороваться со всеми Особенными Хазиками по порядку, начиная с первого.

Примеры

b.in	b.out
6 6	6
1 0 0 1 0 0	4
6 1	4
6 3	4
1 5	6
5 6	3
6 4	
6 2	
6 6	6
0 1 0 0 0 1	6
2 3	6
4 2	6
4 4	6
5 2	6
5 1	
2 4	

Замечание

Решения, корректно работающие для $n\leqslant 10^3$ получат 50 баллов