一、选择题

- 1. 存储器管理的主要功能是内存分配、地址映射、内存保护和()。
 - A. 内存扩充 B. 外存扩充 C 内存和外存扩充 D. 地址保护
- 2. 把逻辑地址转变为内存的物理地址的过程称作()
 - A. 编译 B. 连接 C. 运行 D. 重定位
- 3. 物理地址对应的是()。
 - A. 模块中的地址 B. 内存中的地址 C. 外存中的地址 D. 数据的起始地址
- 4. 逻辑地址对应的是()
 - A. 数据的起始地址 B. 内存中的地址 C. 模块中的地址 D. 外存中的地址
- 5. 动态重定位是在()时进行的重定位。
 - A. 程序执行时 B. 开机时 C. 启动时 D. 装入内存时
- 6. 静态重定位是在()时进行的重定位。
 - A. 程序执行时 B. 开机时 C. 启动时 D. 装入内存时
- 7. 在目标程序装入内存时,一次性完成地址修改的方式是()
 - A 静态重定位 B. 动态重定位 C. 静态连接 D. 动态连接
- 8. 下列关于缓冲技术描述正确的是()
 - A. 以空间换取时间的技术
- B. 以时间换取空间的技术
- C. 是为了协调 CPU 与内存之间的速度 D. 是为了提高外设的处理速度
- 9. 可变式分区管理的分配策略中,首次适应算法是按照()顺序排列空闲区。
 - A. 起始地址递减 B. 起始地址任意
 - C. 起始地址递增 D. 分区大小递增
- 10. 可变式分区又称为动态分区,它是在系统运行过程中,()时动态建立的。
 - A. 在作业装入 B. 在作业创建 C. 在作业完成 D. 在作业未装入
- 11. 在可变分区存储管理中,将空闲区按照长度递增的顺序排列的分配算法是()
 - A. 首次适应算法 B. 最佳适应算法 C. 最坏适应算法 D. 循环首次适应算法
- 12. 可重定位分区分配中的碎片是()
 - A. 磁盘的一小部分 B. 外存的一小部分
 - C. 内存中容量小、无法利用的小分区 D. 内存中的小分区
- 13. 在分页存储管理系统中,从页号到物理块号的地址映射是通过()实现的。
 - A. 段表 B. 页表 C. PCB D. JCB
- 14. 请求分页存储管理中,若把页面尺寸增加一倍,在程序顺序执行时,则一般缺页中断次数会()。
 - A. 增加 B. 减少 C. 不变 D. 可能增加也可能减少
- 15. 页表的作用是实现从页号到物理块号的()。
 - A. 逻辑映射 B. 物理映射 C. 地址映射 D. 逻辑地址映射
- 16. 虚拟存储器的基本特征是:虚拟扩充、部分装入、离散分配和()
 - A. 虚拟保护 B. 虚拟装入 C. 一次对换 D. 多次对换
- 17. 虚拟存储管理策略可以()。
 - A. 扩大物理内存容量 B. 扩大物理外存容量
 - C. 扩大逻辑内存容量 D. 扩大逻辑外存容量
- 18. 虚拟存储器受到的限制有外存的容量和()。
- A. 指令中表示地址的字长 B. 内存的容量 C. 硬件的好坏 D. 以上的观点都对
- 19. 在页式存储管理中,每当 CPU 形成一个有效地址时,要查页表,这一工作是由()实现

的。
A. 硬件自动 B. 操作系统 C. 查表程序 D. 存取控制程序
20. 具有虚拟存储功能的管理方法是()
A. 可变分区存储管理 B. 请求分页存储管理
C. 段式存储管理 D. 段页式存储管理
21. 采用()不会产生内部碎片
A. 分页存储管理 B. 分段存储管理 C. 固定分区存储管理 D. 段页式存储管理
22. 最佳适应算法的空闲区是()。
A. 按大小递增顺序排列的 B. 按大小顺序递减排列的
C. 按地址由小到大排列的 D. 按地址由大到小排列的
二、填空题
1. 在采用请求分页式存储管理的系统中,地址变换过程可能会因为 、 和 等
原因而产生中断。
2. 存储管理应实现的功能是: 主存空间的分配与保护、 、主存的共享和 。
3. 某虚拟存储器的用户空间共有 32 个页面,每页 1KB,主存 16KB。假定某时刻系统为用户
的第 $0.1.2.3$ 页分别分配的物理块号分别为 $5.10.4.7$,那么虚地址 0.0000 00的物
理地址是。
4. 在分区分配算法中,首次适应算法倾向于优先利用内存中部分的空闲分区,从
而保留了 部分的大空闲区。
5. 动态重定位是在目标程序执行过程中,在 CPU 访问内存之前,由来完成将指令或
数据的相对地址转换为物理地址的过程。
6. 把主存储器分成大小相等的许多存储块,每个存储块称为一块,与此对应,程
序的逻辑地址也分成大小相同的页,页的大小与块的大小相等。
7. 必须为每个作业建立一张段表,且对每一段都对应有一张页表。
8. 整体对换技术通常以 为单位。
9. 置换算法是在主存中没有时被调用的,它的目的是选出一个被的页面,
如果内存中有足够的
· · · · · · · · · · · · · · · · · · ·
10. 系统中刚刚被淘汰的页面在不久之后又要访问,以致整个页面调度非常频繁,辅存一直
保持忙的状态,而处理机的有效执行速度很慢,多数进程处于阻塞状态,这种情况叫
做。
一 小小吃 电弧
三、判断题
1. 即使在多道程序环境下,用户也能设计用内存物理地址直接访问内存的程序。()
2. 在可变分区存储管理方法中,最佳适应法的效果必定优于首次适应法。 ()
3. 用可变分区法不能完全消除内部碎片。 ()
4. 对于静态重定位方式,作业无法在主存中浮动。 ()
5. 页式存储管理系统不利于共享和保护。 ()
6. 段式存储管理系统有利于共享和保护。 ()
7. 在现代计算机中,计算机程序、通道程序使用的都是逻辑的地址,因此,必须先进行地
址转换才能找到正确的内存地址。 () ()
8. 为了减少内部的碎片,页应越小越好。 ()

- 11. 在页式虚存系统中,为了提高内存利用率,允许用户使用不同大小的页面。()
- 12. 在虚拟存储系统中,操作系统为用户提供了巨大的存储空间。因此,用户地址空间的大小可以不受任何限制。 ()
- 13. 在支持虚拟地址空间的操作系统环境下, CPU 能运行比该计算机主存容量还大的程序。()
- 14. 在页式虚存系统中,驻留集增大,则页故障数肯定会减少。 ()
- 15. 在虚拟页式存储系统中, LRU 置换策略总优于 FIFO 策略。 ()
- 16. 虚拟存储器不是物理上扩大内存空间,而是逻辑上扩充了内存容量。 ()
- 17. 虚拟存储空间实际上就是全部的辅存空间。 ()
- 18. 在请求分页系统中,为了实现请求一页的功能,在页表中必须增加2个数据项,它们是中断位和访问位。

四、解析题

- 1. 存储管理的主要研究内容是什么?
- 2. 什么是地址重定位?有哪几种地址重定位方法。
- 3. 某系统采用页式(Paging)存储管理策略,拥有逻辑空间32页,每页2KB物理空间1MB。
 - (1) 写出逻辑地址格式;
 - (2) 进程的页表有多少项?
- 4. 在一个分区存储管理系统中,按地址从低到高排列的空闲分区的长度分别是: 10KB、4KB、20KB、18KB、7KB、9KB、12KB、15KB。对于下列顺序的段请求: 12KB、10KB、15KB、18KB 分别使用首次适应法和最佳适应法,试说明空间的使用情况。
- 5. 某操作系统采用可变分区分配存储管理方法,系统占用低地址部分的 126KB。用户区大小为 386KB,且用户区起始地址为 126KB,用空闲分区表管理空闲分区。若分配时采用分配空闲区高地址部分的方案,且初始时用户区的 386KB 空间空闲,对下述申请序列;作业 1 申请 80KB,作业 2 申请 56KB,作业 3 申请 120KB,作业 1 完成并释放 80KB,作业 3 完成并释放 120KB,作业 4 申请 156KB,作业 5 申请 80KB。

试用首次适应算法处理上述作业序列,并回答下列问题:

- (1) 画出作业 1、2、3 进入主存后, 主存的分布情况:
- (2) 画出作业 1、3 完成后, 主存的分布情况;
- (3) 画出作业 4、5 进入系统后的内存分布情况。
- 6. 什么是碎片?为解决碎片问题可以采用哪些存储管理技术?每种存储管理技术所需要的硬件和软件支持是什么?
- 7. 请求分页存储管理的主要特点是什么?实现该方案的关键技术是什么?
- 8. 考虑一个由 8 个页面、每页 1024 字节组成的存储空间,把它映射到容量为 32 个物理块的存储器中,试问逻辑地址和物理地址分别是多少位?为什么?
- 9. 假定某页式存储管理系统中,主存为128KB,分成32块,块号为0、1、2、3、…、31;某作业有5块,其页号为0、1、2、3、4,被分别装入主存的3、8、4、6、9块中。有一逻辑地址为[3,70]。试求出相应的物理地址(其中方括号中的第一个元素为页号,第二个元素为页内地址,按十进制计算),并画图说明地址变换过程。
- 10. 在某段式存储管理系统中,有一作业共 4 段,段号分别为 0、1、2、3,段表如下表所示。 试计算逻辑地址[0,45],[1,50],[2,60],[3,90]相应的主存地址。当无法进行地址转换时,应说明产生何种中断(其中方括号中的第一个元素为页号,第二个元素为页内地址,按十进制计算)。

段号	段长	主存起始地址	状态
0	500	1500	0

1	400	2600	0
2	120		1
3	85	380	0

- 11. 试叙述页式系统的地址变换步骤(带快表)。
- 12. 某请求页式存储管理,允许用户编程空间为32个页面(每页1KB),主存为16KB。如有一个用户程序有10页长,且某时刻该用户页面映射表如下表所示。如果程序执行时遇到以下两个虚地址:0AC5H、1AC5H、试计算它们对应的物理地址。

虚页号	物理块号
0	8
1	7
2	4
3	10

13. 某系统采用请求分页存储管理,内存块大小为1024字节,程序字长16位,地址寄存器长18位。有一程序空间的大小是5页,页表如下表所示,试计算程序字0455H、1386H的物理地址。

页号	块号	状态
0	1AH	1
1	16H	1
2		0
3		0
4		0

- 14. 为实现分页式虚拟存储, 页表中至少应含有哪些内容?
- 15. 试给出段页式系统的地址变换过程(带有联想存储器)。
- 16. 一台计算机有 4 个页框,装入时间、上次引用时间和它们的 R(读)与 M(修改)位见下表(时间单位:滴答),请问 FIFO、LRU 和 CLOCK 算法将替换哪一页?

页	装入时间	上次引用时间	R	M
0	126	279	0	0
1	230	260	1	0
2	120	272	1	1
3	160	280		1

- 17. 在一个采用页式虚拟存储管理的系统中,有一用户作业,它依次要访问的字地址序列是: 115,228,120,88,446,102,321,432,260,167,若该作业的第 0 页已经装入主存,现分配给该作业的主存共300字,页的大小为100字,请回答下列问题:
 - (1)按 FIFO 调度算法将产生几次缺页中断,写出依次淘汰的页号序列及缺页中断率。
 - (2) 按 LRU 调度算法将产生几次缺页中断,写出依次淘汰的页号序列及缺页中断率。
- 18. 考虑如下访问序列: 0, 1, 0, 3, 1, 2, 4, 3。驻留集大小为两个页面,分别求出采用 LRU 和 0PT 替换算法控制上述访问串的故障数和页故障率。
- 19. 对下述页面走向: 7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 当内存块数量为 3 时, 试问 LRU、FIFO、OPT 三种置换算法的缺页次数各是多少? (注意,内存块最初都是空的,凡第一次用到的页面都产生一次缺页。)
- 20. 考虑一个 460 字的程序的下述内存访问序列: 10, 11, 104, 170, 73, 309, 185, 245, 246, 434, 458, 364。
 - (1) 假定页面大小为 100 字, 试给出页面走向访问串。例如, 此题前 5 个页面走向访问

串为0,0,1,1,0,.....。

- (2)假定内存中有 200 个字可供程序使用,试问采用 FIFO 置换的缺页次数是多少?
- (3) 若采用 LRU 置换算法,缺页次数是多少?
- (4) 若采用 OPT 置换算法,缺页次数是多少?
- 21. (1)假设某计算机系统 NONAME 共有 4 页物理地址空间(4Frames), 其操作系统的虚拟地址管理采用"最近最少使用"页面置换算法(LRU)。当一进程依次访问下列虚拟地址空间的页面时(又称引用串, ReferenceString), 请计算其缺页(PageDefault)次数:
 - 1,2,3,4,5,3,4,1,6,7,8,7,8,9,7,8,9,5,4,5,4,2
 - (2) LRU 需要一定的硬件支持(如计数器、堆栈等)。假设 NONAME 为每页内存配备了一个标志位(DirtyBit),请设计一种变形的 LRU 算法,并且说明:
 - 1)标志位的初始值; 2)何时修改标志位;
 - 3) 如何选择应换出的页面;
 - 4) 利用此变形的 LRU 算法, 计算对上述引用串的缺页次数。
- 22. 设某作业占有 7 个页面,如果在主存中只允许装入 4 个工作页面(即工作集为 4),作业运行时,实际访问页面的顺序是 1, 2, 3, 6, 4, 7, 3, 2, 1, 4, 7, 5, 6, 5, 2, 1。试用 FIF0 与 LRU 页面调度算法,列出各自的页面淘汰顺序和缺页中断次数,以及最后留驻主存 4 页的顺序(假设开始的 4 个页面已装入主存)。
- 23. 在某请求分页管理系统中,一个作业共 5 页,作业执行时依次访问如下页面: 1,4,3,1,2,5,1,4,2,1,4,5,若分配给该作业的主存块数为 3,分别采用 FIFO、LRU 页面置换算法,试求出缺页中断的次数及缺页率。
- 24. 考虑下面的访问串: 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6。假定有 4、5、6 个 页块,应用下面的页面替换算法,计算会出现多少次缺页中断?(注意: 所给定的页块初 始均为空,因此,首次访问一页时就会发生缺页中断)。
 - (1) LRU(最近最久未使用算法); (2) FIFO(先进先出算法); (3) OPT(最优算法)。
- 25. 某请求分页存储管理系统使用一级页表,假设页表总在主存中。
 - (1)如果一次存储访问需要 200ns,那么访问一个数据需要多长时间?
 - (2) 现在增加一个快表,在命中或失误时均有 20ns 的开销,假设快表的命中率为 85%,那么访问一个数据的时间为多少?
- 26. 对于一个利用快表且页表存于内存的分页系统,假定 CPU 一次访存时间为 lus,访问快表的时间可以忽略不计。
 - (1)如果 85%的地址映射可以直接通过快表完成(即命中率为 85%),那么进程完成一次内存读/写的平均有效时间是多少?
 - (2) 若快表的命中率只有50%,那么进程完成一次内存读/写的平均有效时间是多少?
 - (3)快表命中率对平均有效访问时间有何影响?
- 27. 虚拟存储器的特征是什么?虚拟存储器的容量主要受到哪两方面的限制?

练习题参考答案

一、选择题

1. A	2. D	3. B	4. C	5. A	6. D	7. A	8. A
9. C	10. A	11. B	12. C	13. B	14. B	15. C	16. D
17. C	18. A	19. A	20. B	21. B	22. A		

二、填空题

- 1. 越界,缺页,访问权限错误 2. 主存空间地址重定位,主存的扩充
- 3. 125CH 4. 中、低地址: 高地址。
- 5. 硬件地址映射机构或重定位寄存器
- 6. 分页存储管理 7. 段页式存储管理
- 8. 进程 9. 空闲块,淘汰,空闲块, 置换算法
- 10. 抖动

三、判断题

1. X	2. X	3. √	4. √	5. √	6. √	7. √	8. X	9. X	10. X
11. X	12. X	13. √	14. X	15. X	16. √	17. X	18. X		