Process Fabrication for μDBS

Daria Nesterovich¹
Salt Lake City, 84112, USA

(Dated: December 19, 2017)

Abstract

The following content outlines the fabrication steps done in the Utah NanoFab Lab to build the μ DBS. The purpose of this lab is to establish working recipes for the process and to keep track of past failures.

1 Design Process Overview

1.1 Design Architecture

The fabrication of the μDBS begins with design in Cadence through the X-FAB XC06 design package. The design is sent to X-FAB Foundry (Erfurt, GE) for fabrication. The chips that are returned must undergo metal plating for the contacts and the bond pads, a parylene coating, dicing, wire bonding, and assembly. The design architecture can be found in Figure A.1

2 General Instructions to Make a Mask

2.1 Lithography

- 1. Use the Heidelberg MicroPG 101
- 2. Click and follow instructions under the photolithography exposure wizard.
- 3. Record Size, Offset, Power (12 mW), Energy Mode (1/1).
- 4. To make a positive mask, **uncheck** inverted.

2.2 Exposure for mask

- 1. AZ developer 1:1
- 2. Develop for $1 \min$, the run under rinse water
- 3. DI rinse hit run

¹daria.nesterovich@utah.edu

Table 3.1: 5" Wafer Thickness Measurements for Five Positions

Wafer Thickness (mm)								
	Trial 1	Trial 2	Trial 3	Trial 4	Mean	SD		
Position 1	0.676	0.652	0.746	0.716	0.698	0.0417		
Position 2	0.677	0.669	0.703	0.698	0.687	0.0163		
Position 3	0.698	0.682	0.682	0.693	0.689	0.00806		
Position 4	0.689	0.685	0.682	0.703	0.690	0.00929		
Position 5	0.678	0.691	0.684	0.691	0.686	0.00627		

Table 3.2: Proximal Length and Width Measurements

Proximal Length and Width Measurements (μm)								
	Chip 1	Chip 2	Chip 3	Chip 4	Chip 5	Mean	SD	Mean + SD
Position A	1488	1490	1488	1490	1490	1489.2	1.10	1490.30
Position B	1490	1492	1489	1488	1494	1490.6	2.41	1493.01
Position C	1490	1489	1490	1488	1489	1489.2	0.84	1490.04
Position D	10221	10224	10222	10218	10220	10221	2.24	10223.24

- 4. Dip for 3.5 min in Cr 14-S chromium etch
- 5. Rinse in DI for 2 min
- 6. Run in spin dryer (put in last spot)

3 Creation of a Chip Tray

Thickness measurements were taken of a 5" wafer using the Mitutoyo Dial Indicator Probe. Results can be found in Table 3.1.

Measurements of 5 Proximal and 5 Distal chips were taken on the Nikon V12A microscope. Results can be found in Table 3.2 and Table 3.3.

Table 3.3: Distal Length and Width Measurements

Distal Length and Width Measurements (μm)								
	Chip 1	Chip 2	Chip 3	Chip 4	Chip 5	Mean	SD	Mean + SD
Position A	1493	1496	1495	1495	1494	1494.6	1.14	1495.74
Position B	1494	1492	1494	1494	1492	1493.2	1.10	1494.30
Position C	1495	1494	1492	1495	1495	1494.2	1.30	1495.50
Position D	10220	10216	10217	10224	10221	10219.6	3.21	10222.81

Table 3.4: Length and Width Measurements for Proximal and Distal Chips

	Pro	1		D	istal		
	Mean	SD	Mean + SD		Mean	SD	Mean + SD
\mathbf{Width}	1489.67	1.63	1491.30	Width	1494	1.25	1495.25
Length	10221	2.24	10223.24	Length	10219.6	3.21	10222.81

Table 3.5: Overall Length and Width Measurements for Proximal and Distal Chips

	Overall Mean	Overall SD	Mean + SD
Width	1491.83	2.63	1494.46
Length	10220.3	2.71	10223.01

Length and width measurements can be found in Table 3.4.

Overall length and width measurements can be found in Table 3.5.

A Appendix 1

Figure A.1: Design Architecture