

VTN	$= V_{10} + 8\left(\sqrt{2\phi_F} + V_{SB} - \sqrt{2\phi_P}\right) = 1.28 \text{V}$	
Víp	Vro - Y (\sqrt{2p_F + Vs8} - \sqrt{2p_F}) = -1.48 V	
NMOS	VGS-VTN=2,72V>2V=VDS. San Nor Valodo.	
PHOS	VSG + VTP = 1.52 V \(\text{VSD} = 2V \) Sakaran Evone	
ŊD^	= Kn (W), (V65-Vrn-V05)Vos=344MA	
Sp	5= Kp' (\frac{1}{2})p.\frac{1}{2}(Vs6+VIP)^2=58 MA	
/	101 = NDN + NDP = 402 MA	
	R V V C (4 T C	
	$R_{\text{ON}} = \frac{V_{\text{I}} - V_{\text{O}}}{A \cdot 6} = 43.75 \Omega$	