22- A eta B puntuen arteko erresistentziaren balioa kalkulatu. (R_{AB} =1,3 Ω)

- 23-R1//R2=1 k Ω eta R1=2·R2 izanik R1 eta R2ren balioak kalkulatu.
- 24- A eta B puntuen arteko erresistentziaren balioa kalkulatu. (R_{AB} =25 Ω)

25- A eta B puntuen arteko erresistentziaren balioa kalkulatu. (R_{AB} =15 Ω)

26- Zirkuitu elementu bakoitzarentzat korronte, tentsio eta potentzia kalkulatu.

27- Mailen metodoaz zirkuitua ebatzi eta lortu A eta B puntuen arteko potentzial diferentzia. $(V_{AB}=-2,74\ V)$

28- Kalkulatu I_1 , I_2 , I_3 eta V_{AB} gainezarmena aplikatuz. (I_1 =0,4 A; I_2 =0,35 A; I_3 =0,05 A; V_{AB} =2 V)

29- Mailen metodoa aplikatuz kalkulatu erresistentzia bakoitzean I eta V. (I_{R1} =4,45 mA; I_{R2} =4,54 mA; I_{R3} =-0,09 mA; I_{R4} =4,45 mA; V_{R1} =4,45 V; V_{R2} =9,08 V; V_{R3} = 0,9 V; V_{R4} =4,45 V)

- 30- Zirkuitu berarentzat A eta B puntuen arteko Thevenin baliokidea. (Vth=9,09 V, Rth=909 Ω)
- 31- Zirkuitu berarentzat A eta B puntuen arteko Norton baliokidea. (I_N =10 mA, Rth=909 Ω)

32- Irudiko zirkuituarentzat kalkulatu I_1 , I_2 , I_3 eta V_{AB} . (I_1 =-1,5 mA; I_2 =-5,16 mA; I_3 =3,67 mA eta V_{AB} = V_{R2} =7,33V)

33- Zirkuitu berarentzat erresistentzia guztietan korronte eta tentsioa. (I_{R1} =-1,5 mA; I_{R2} =3,67 mA; I_{R3} =-1,5 mA; I_{R4} =3,67 mA; V_{R1} =-1,5 V; V_{R2} =7,33 V; V_{R3} =-4,5 V; V_{R4} =14,67 V)

34- Kalkulatu adar bakoitzetik korrontea, hala nola tentsioa harilan eta kondentsadorean.

35- Kalkulatu adar bakoitzetik korrontea, hala nola tentsioa harilan eta kondentsadorean.

36- Kalkulatu korronte eta tentsioak zirkuituaren bi egoera posibleetarako, suposatuta baseko asetasuneko korronteko balioa lortzen dela eta asetasuneko V_{CE} =0,2 V dela. O eta I puntuetako tentsioak konparatuz, zer ondorioztatzen da?

37- Kalkulatu korronte eta tentsioak zirkuituaren lau egoera posibleetarako, suposatuta bi trantsistoreetan baseko asetasuneko korronteko balioa lortzen dela eta asetasuneko $V_{CE}=0,2\ V$ dela. A eta B puntuetako tentsioa O puntukoarekin konparatuz, zer ondorioztatzen da

