CHAPTER-10 VECTOR ALGEBRA

Excercise 10.4

Q5. Find λ and μ if $(2\hat{i}+6\hat{j}+27\hat{k})\times(\hat{i}+\lambda\hat{j}+\mu\hat{k})=\mathbf{0}$ Solution:

Let
$$\mathbf{A} = \begin{pmatrix} 2 \\ 6 \\ 27 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 \\ \lambda \\ \mu \end{pmatrix}$ (1)

(2)

The cross product or vector product of \mathbf{A}, \mathbf{B} is defined as

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} \begin{vmatrix} \mathbf{A}_{23} & \mathbf{B}_{23} \\ \mathbf{A}_{31} & \mathbf{B}_{31} \\ \mathbf{A}_{12} & \mathbf{B}_{12} \end{vmatrix} \end{pmatrix} \tag{3}$$

Hence

$$\begin{vmatrix} \mathbf{A}_{23} & \mathbf{B}_{23} \end{vmatrix} = \begin{vmatrix} 6 & \lambda \\ 27 & \mu \end{vmatrix} = 6\mu - 27\lambda \tag{4}$$

$$\begin{vmatrix} \mathbf{A}_{31} & \mathbf{B}_{31} \end{vmatrix} = \begin{vmatrix} 27 & \mu \\ 2 & 1 \end{vmatrix} = 27 - 2\mu \tag{5}$$

$$\begin{vmatrix} \mathbf{A}_{12} & \mathbf{B}_{12} \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 6 & \lambda \end{vmatrix} = 2\lambda - 6 \tag{6}$$

Substituting the values

$$\mathbf{A} \times \mathbf{B} = \begin{pmatrix} 6\mu - 27\lambda \\ 27 - 2\mu \\ 2\lambda - 6 \end{pmatrix} \tag{7}$$

Now we know

$$\mathbf{A} \times \mathbf{B} = \mathbf{0} \tag{8}$$

So,

$$\begin{pmatrix}
6\mu - 27\lambda \\
27 - 2\mu \\
2\lambda - 6
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix}
\tag{9}$$

So we have three equations.

$$2\mu = 27\tag{10}$$

$$2\lambda = 6 \tag{11}$$

$$6\mu - 27\lambda = 0\tag{12}$$

The above equations can be represented in matrix form as

$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 6 & -27 \end{pmatrix} \begin{pmatrix} \mu \\ \lambda \end{pmatrix} = \begin{pmatrix} 27 \\ 6 \\ 0 \end{pmatrix} \tag{13}$$

The augmented matrix is given as

$$\begin{pmatrix}
2 & 0 & 27 \\
0 & 2 & 6 \\
6 & -27 & 0
\end{pmatrix}$$
(14)

Applying sequence of row operations

$$\stackrel{R_3 \to R_3 - 3R_1}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 27 \\ 0 & 2 & 6 \\ 0 & -27 & -81 \end{pmatrix}$$
(15)

$$\stackrel{R_3 \to R_3 + \frac{27}{2}R_2}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 27 \\ 0 & 2 & 6 \\ 0 & 0 & 0 \end{pmatrix}$$
(16)

From here we conclude that

$$2\mu = 27\tag{17}$$

$$\mu = 13.5 \tag{18}$$

$$2\lambda = 6 \tag{19}$$

$$\lambda = 3 \tag{20}$$

Hence, the values are $\lambda = 3$ and $\mu = 13.5$