

הנדסת תוכנה

Software Engineering

תרגיל 4 להגשה בתכנון וניתוח אלגוריתמים (קורס מס׳ 10120)

מרצים: ד"ר ראובן חוטובלי ד"ר מריה ארטישצ'ב

תאריך הגשה: 3.6.2021 עד השעה 23:00. **העבודה בזוגות**. <u>אין</u> אפשרות של הגשה באיחור. עליכם למלא את הטבלה בקובץ WORD המצורף לתרגיל ולהגיש את הקובץ עם הטבלה בלבד.

התיאור המובא להלן מתייחס לשאלות 1 עד 5 כולל.

נתון גרף **מכוון** $W:E \to \{0,1,2,3,4,5,6,7\}$ עם פונקצית משקל G=(V,E) . כל קשת ב- G=(V,E) צבועה ב**אדום** או ב**כחול**, ונתון קדקוד $S\in V$. לפניך אלגוריתם יעיל אשר מוצא, לכל V=V משקל של מסלול קל ביותר במשקל מ- V=V מבין המסלולים שמכילים V=V קשתות אדומות לכל היותר (ומספר כלשהו של קשתות כחולות).

אלגוריתם

. מסמל את הצבע האדום ו- B מסמל את הצבע הכחול $R: \mathbf{D}$

wI עם פונקצית משקל G'=(V',E') עם חדש הינתן בהינתן בהינתן G=(V,E) עם פונקצית משקל באופן הבא באופן הבא

$$V' = \{(v_1, v_2, v_3, v_4) \mid \forall v \in V\}$$

$$E' = \{ (1) \mid (u \to v) \in E \text{ and } color(u \to v) \text{ is } B \} \cup \{ (2) \mid (u \to v) \in E \land color(u \to v) \text{ is } R \}$$

$$\forall e = (u_i, v_i) \in E' \text{ } w1(e) = w(u, v)$$

<u>: 2 צעד</u>

. S_1 מקדקוד G' על הגרף (3)____ נריץ את האלגוריתם

אורך המסלול הקצר המבוקש שהוא: $v \in V$ לכל בעד 3:

.____(4)___

באלגוריתם הנ״ל חסרים ארבעה ביטויים המסומנים במספרים בין סוגריים עגולים. באלגוריתם הנ״ל חסרים ארבעה ביטויים החסרים מופיעות בשאלות הבאות :

AFEKA אפקה המכללה האקדמית להנדסה בתל־אביב

<u>שאלה 1</u>

: התשובה הנכונה עבור ביטוי (1) לעיל היא

$$(u_1 \rightarrow v_2)$$
 and $(u_2 \rightarrow v_1)$ and $(u_3 \rightarrow v_4)$ and $(u_4 \rightarrow v_3)$.

$$(u_1 \rightarrow v_2)$$
 and $(u_2 \rightarrow v_3)$ and $(u_3 \rightarrow v_4)$ and $(u_4 \rightarrow v_4)$.

$$(u_1 \rightarrow v_2)$$
 and $(u_2 \rightarrow v_3)$ and $(u_3 \rightarrow v_4)$ λ

$$(u_1 \rightarrow v_1)$$
 and $(u_2 \rightarrow v_2)$ and $(u_3 \rightarrow v_3)$ and $(u_4 \rightarrow v_4)$.7

שאלה 2

: התשובה הנכונה עבור ביטוי (2) לעיל היא

$$(u_1 \rightarrow v_2)$$
 and $(u_2 \rightarrow v_1)$ and $(u_3 \rightarrow v_4)$ and $(u_4 \rightarrow v_3)$.

$$(u_1 \rightarrow v_2)$$
 and $(u_2 \rightarrow v_3)$ and $(u_3 \rightarrow v_4)$ and $(u_4 \rightarrow v_4)$.

$$(u_1 \rightarrow v_2)$$
 and $(u_2 \rightarrow v_3)$ and $(u_3 \rightarrow v_4)$.

$$(u_1 \rightarrow v_1)$$
 and $(u_2 \rightarrow v_2)$ and $(u_3 \rightarrow v_3)$ and $(u_4 \rightarrow v_4)$.7

שאלה 3

התשובה הנכונה עבור ביטוי (3) לעיל היא:

ב. דייקסטרה משופר .

Bellman-Ford .x

ד. מיון טופולוגי

<u>שאלה 4</u>

התשובה הנכונה עבור ביטוי (4) לעיל היא:

$$\min_{i=1}^{4} \{d(s_1, v_i)\}$$
 .N

$$d(s_1, v_4)$$
 .

$$d(s_1, v_1)$$
 .

$$\min_{i=1}^{4} \{d(s_i, v_i)\}$$
 .7

<u>שאלה 5</u>

סבוכיות זמן הריצה של האלגוריתם הנתון הינה:

$$O(|V| + |E|)$$
 .א

$$O(|E|\log|V|)$$
 .2.

$$O(|V|^2)$$
 .

$$O(|V||E|)$$
.7

התיאור המובא להלן מתייחס לשאלות 11 -6 (כולל)

.t - ו s ושני קדקודים , ושני על הרי של W של קבוצה G=(V,E) - תת קבוצה , ושני קדקודים , ושני קדקודים , ומון גרף לפניך אלגוריתם יעיל ככל האפשר , המוצא מסלול מ-s ל- t (אם קיים כזה) , המבקר במספר מינימאלי של קדקודים ב-W.

	<u>ריתם</u>	אלגוו
$:$ כאשר G1=($V_1, E_1):$ ה את הגרף	נבנ : <u>1</u>	צעד
$V_1 \leftarrow$	V 1.	.1
$E_1 \leftarrow$	E 1.	.2
=נוקציית המשקל (1) המוגדרת באופן הבא	1 עם נ	. 3
.W כאשר ע ו- עניהם לא שייכים לקבוצה w(u,v)=(2)	1.3.1	
.W אויך לקבוצה ע אור מהקדקודים u שייך לקבוצה $w(u,v)=$	1.3.2	
.W כאשר ע ווי ע פעיכים לקבוצה v ווי ע כאשר $w(u,v)=$	1.3.3	
.G1 על הגרף (5 <u>)</u> את האלגוריתם	: נריץ	2 <u>צעד</u>
אז אין מסלול כזה $\mathrm{d}(t) = \infty$ ו		
. W-צאנו מסלול שעובר במספר מינימאלי של צמתים ב	,	
זר את המסלול מתוך מערך ה-parent שנבנה באלגוריתם , החל מ-t.	נן לשח	נית
ו זה חסרים 5 ביטויים המסומנים במספרים בין סוגריים עגולים.		
: נכונה עבור כל אחד מן הביטויים החסרים מופיעה בשאלות הבאות		התש <u>שאלו</u>
: ה הנכונה עבור ביטוי (1) לעיל היא		
.w:E -)	۸. R	₹
.w:E→{0,1,	2} .=	1
.w:E→	R^+ .:	λ
.w:V→{0,1,	2}	Ť
		<u>שאלו</u>
:ה הנכונה עבור ביטוי (2) לעיל היא		ו
00	א.	
0	ב.	
	ς.	
2	٦.	
	<u>8 ה</u>	שאלו
: ה הנכונה עבור ביטוי (3) לעיל היא	זתשוב	ו
∞	א.	
0	ב.	
1	ډ.	
2	٦.	

<u>שאלה 9</u>

: התשובה הנכונה עבור ביטוי (4) לעיל היא

- ∞ .N
- ۵ .⊐
- ۱ . .
- 2 .7

שאלה 10

: התשובה הנכונה עבור ביטוי (5) לעיל היא

- DFS א.
- DAG-SHORTEST-PATHS .2
 - Bellman-Ford .x
 - . Dijkstra ד.

<u>שאלה 11</u>

הנח שהאלגוריתם הנתון משתמש באלגוריתמים ומבני נתונים יעילים ככל האפשר לצורך פתרון הבעיה הנתונה. לאור זאת סבוכיות זמן הריצה של האלגוריתם הנתון הינה:

- $O(|E|^*|V|)$ א.
- ב. ריבועית כפונקציה של גודל הקלט.
 - .O(|E|*Log|V|) .
 - O(|E|).7

התיאור המובא להלן מתייחס לשאלות 12 עד 13 כולל.

יהי (V,E) גרף לא מכוון וקשיר, ו- $W:V \rightarrow R$ פונקצית משקל על הקודקודים. לפניך אלגוריתם יעיל למציאת עץ פורש T, המביא למינימום את

$$\sum_{\mathbf{v} \in \mathbf{V}} \mathbf{d}_{\mathbf{T}}(\mathbf{v}) \cdot \mathbf{w}(\mathbf{v})$$

T-ב v זו הדרגה של $d_T(v)$.

אלגוריתם

: צעד

נבנה גרף חדש \mathbf{w}' שבו עם פונקצית עם עם עובע אבו עם $\mathbf{G} \mathbf{I} = (\mathbf{V} \mathbf{1}, \mathbf{E} \mathbf{1})$ עם פונקצית משקל הקשתות

$$\forall (u,v) \in E$$
 $w'(u,v) = \underline{\hspace{1cm}} (1)\underline{\hspace{1cm}}$

<u>: 2 צעד</u>

: כדלהלן

: מתקיים T=(V,F) מתקיים

$$w'(T) = \sum_{(u,v)\in F} w'(u,v) = \sum_{(u,v)\in F} [\underline{}(1)\underline{}] = \sum_{v\in V} d_T(v) \cdot w(v)$$

<u>: 3 צעד.</u>

. G1 לכן, נריץ את האלגוריתם על

באלגוריתם הנ"ל חסרים שני ביטויים המסומנים במספרים בין סוגריים עגולים. התשובה הנכונה עבור כל אחד מהביטויים החסרים מופיעים בשאלות הבאות:

שאלה 12

התשובה הנכונה עבור ביטוי (1) לעיל היא:

- w(u) + w(v) .
- w(u) * w(v) .2
- $\min(w(u), w(v))$.
- $\log(w(u)/w(v))$.7.

שאלה 13

התשובה הנכונה עבור ביטוי (2) לעיל היא:

- א. דייקסטרה
 - ב. קרוסקל
- Bellman-Ford .ג
- . DFS או BFS ד.

התיאור המובא להלן מתייחס לשאלות 14 עד 17 כולל.

 $\mathrm{W}\!:\!\mathrm{E}\! o\!R^{\scriptscriptstyle+}\!\cup\!\{0\}$: לא מכוון , שלם ($K_{\scriptscriptstyle n}$) ועם פונקציית משקל הבאה $G\!=\!(V,E)$ נתון גרף והגרף מיוצג על ידי רשימות שכנות.

לפניך אלגוריתם יעיל המוצא תת-קבוצה של קשתות $E' \subset E$ כך שסכום משקלי הקשתות בה . מורכב מ- k רכיבי קשירות לכל היותר G' = (V, E') מינימלי ונוסף לכך

:	0	5	1>	<u> 1</u>	1)	<u>خ</u>	N	1	1

(1) נריץ את האלגוריתם <u>(1)</u> ____(3)___ את <u>(</u>2)___ את (3) .2 צעד 3: החזר את היער שנוצר בצעד

באלגוריתם הנייל חסרים **שלושה** ביטויים המסומנים במספרים בין סוגריים עגולים. התשובות הנכונות עבור כל אחד מהביטויים החסרים מופיעות בשאלות הבאות:

<u>שאלה 14</u>

התשובה הנכונה עבור ביטוי (1) לעיל היא:

- א. למציאת רכיבי קשירות
- T ב. דייקסטרה למציאת עץ המסלולים הקצרים
 - T ג. קרוסקל למציאת עץ פורש מינימלי
 - T למציאת עץ פורש מקסימלי ד.

שאלה 15

: התשובה הנכונה עבור ביטוי (2) לעיל היא

- א. רכיבי קשירות
- ב. עץ המסלולים הקצרים של דייקסטרה
 - T עץ פורש מינימלי ע
 - T עץ פורש מקסימלי.

שאלה 16

: התשובה הנכונה עבור ביטוי (3) לעיל היא

- א. k הקשתות הקלות ביותר בו.
- ב. n-k+1 הקשתות הכבדות ביותר בו.
 - ג. k-1 הקשתות הקלות ביותר בו.
 - ד. k-1 הקשתות הכבדות ביותר בו.

י סבוכיות זמן הריצה של האלגוריתם <u>שאלה 17</u>

- O(|V|+|E|).
- ב. כסיבוכיות זמן הריצה של דיקסטרה
 - ג. כסיבוכיות זמן הריצה של BFS
- ד. כסיבוכיות זמן הריצה של קרוסקל .

בהצלחה!!!!!