

Система оптимизации распределения наблюдателей между источниками сигналов

Автор: Ирина Александровна Лень, 471 группа Научный руководитель: д.ф.-м.н., профессор О. Н. Граничин Рецензент: к.ф-м.н., ст. науч. сотрудник ИПМАШ Д. С. Шалымов

Санкт-Петербургский государственный университет Кафедра системного программирования

25 мая 2019г.

Введение

Целью работы является разработка прототипа программного комплекса для автоматизации процесса распределения наблюдателей между источниками сигналов.

Для достижения цели были сформулированы следующие задачи:

- Расширить существующую модель распределения сенсоров и целей
- Разработать прототип системы, включающий в себя возможность визуализации задачи и настройки параметров для ее расчета
- Сравнить распределение источников сигналов в существующей и новой моделях
- Провести нагрузочное тестирование для алгоритма на основе линейных матричных неравенств (LMI) и полного перебора (Brute Force)

 $x_t^i \in \mathbb{R}^p, i \in M = \{1,2,\ldots,m\}$ — состояние i-ой цели $s_t^j \in \mathbb{R}^d, j \in N = \{1,2,\ldots,n\}$ — состояния j-го сенсора $y_t^{i,j} \in \mathbb{R}^q, i \in M, j \in N$ — данные сенсора j о наблюдаемой траектории i-ой цели

$$y_t^{i,j} = \varphi(s_t^j, x_t^i) + v_t^{i,j},$$

 $arphi: \mathbb{R}^p imes \mathbb{R}^d o \mathbb{R}^q$ — функция, отражающая измерения сенсором j цели i $\{v_t^{i,j}\}$ — независимые помехи в измерениях с нулевым матожиданием $t=1,2,3\dots$

Проблемы централизованного подхода

- Коммуникация
- Размерность решаемой задачи
- Задержка информации
- Как поступать, если датчик не ответил?

Система оптимизации распределения на

 Φ_t^i — объем пересечения доверительных эллипсоидов для i-ой цели S_t^i — множество сенсоров, которое следит за i-ой целью $|\cdot|$ — мощность множества (количество элементов) α — коэффициент регуляризации (стоимость коммуникации между сенсорами)

$$F_t = \sum_{i=1}^m \Phi_t^i + \alpha \sum_{i=1}^m |S_t^i| o \min$$

 Φ_t' — объем пересечения доверительных эллипсоидов для i-ой цели S_t' — множество сенсоров, которое следит за i-ой целью

 T_t^j — множество целей, за которым следит j-й сенсор

 $|\cdot|$ — мощность множества (количество элементов)

lpha — коэффициент регуляризации (стоимость коммуникации между сенсорами)

 β — коэффициент регуляризации (ограниченность ресурсов сенсоров)

$$F_t = \sum_{i=1}^m \Phi_t^i + \alpha \sum_{i=1}^m |S_t^i| + \beta \sum_{j=1}^n |T_t^j| \to \min$$

Доверительный эллипсоид

Множество пересечения будем аппроксимировать эллипсоидом \mathcal{E}^i :

$$\mathcal{E}^i \supseteq \bigcap_{j=1}^n \mathcal{E}^{i,j}$$

Прототип системы

Прототип системы: формат отчета

Прототип системы: параметры визуализации

(a) все настройки отключены

(b) отображение доверительных эллипсоидов

(c) отображение доверительных эллипсоидов и целей у границы

$$\varphi(\mathbf{s}_t^j, \mathbf{x}_t^i) = \begin{bmatrix} \psi(\mathbf{s}_t^j, \mathbf{x}_t^i) \\ \rho(\mathbf{s}_t^j, \mathbf{x}_t^i) \end{bmatrix},$$

где $\psi(s_t^j, x_t^i)$ — угол между направлением от сенсора на север и направлением на цель $\rho(s_t^j, x_t^i)$ — расстояние от сенсора до цели

При
$$\alpha = 0.5, \beta = 0$$

$$G_t = \begin{pmatrix} 0.42 & 0.42 & 0.00 & 0.09 & 0.00 & 0.24 \\ 0.26 & 0.51 & 0.00 & 0.00 & 0.00 & 0.33 \\ 0.00 & 0.67 & 0.00 & 0.00 & 0.00 & 0.35 \\ 0.00 & 0.31 & 0.00 & 0.00 & 0.04 & 0.68 \end{pmatrix}$$

При
$$\alpha=0.5, \beta=0.5$$

$$G_t = \begin{pmatrix} 0.55 & 0.93 & 0.00 & 0.74 & 0.00 & 0.00 \\ 0.00 & 0.32 & 0.00 & 0.88 & 0.00 & 0.65 \\ 0.00 & 0.00 & 0.83 & 0.00 & 0.46 & 0.00 \\ 0.99 & 0.69 & 0.00 & 0.00 & 0.00 & 0.34 \end{pmatrix}$$

Процессор Intel Core i5-7300HQ 2.50GHz, ОЗУ 16 ГБ $\alpha=1,\beta=1$

Сенсоры	Цели	LMI, c	Полный перебор, с
2	3	1,6	0,1
5	6	3,0	>1200
8	8	6,9	-
16	16	39,1	-
25	25	197,2	-
30	30	346,7	-
35	35	532,0	-
40	40	913,7	-
45	45	1577,5	-
50	50	2329,9	-

Заключение

В ходе выпускной квалификационной работы были получены следующие результаты:

- Расширена существующая модель с помощью регуляризующего коэффициента, отвечающим за количество сенсоров, следящим за каждой целью
- Реализован прототип системы оптимизации распределения наблюдателей между источниками сигналов на Python3 с применением библиотеки сухру и пакета сухорт для решения задач полуопределенного программирования
- Расширенная модель более сбалансированное относительно существующей модели распределение целей между сенсорами
- Нагрузочное тестирование показало, что алгоритм на основе линейных матричных неравенств решает оптимизационную задачу эффективнее, чем метод полного перебора с ростом количества наблюдателей и источников сигналов