TD 6 - Représentations matricielles des endomorphismes

Définition 1 (Applications linéaires)

Soient *E* et *F* deux espaces vectoriels.

Soit $f: E \to F$ une application.

Alors f est **linéaire** si f préserve les combinaisons linéaires:

$$\forall \lambda, \mu \in \mathbb{R}, \ \vec{u}, \vec{v} \in E,$$

$$\underbrace{f\left(\lambda \vec{u} + \mu \vec{v}\right)}_{\text{image de la c.l.}} = \underbrace{\lambda f\left(\vec{u}\right) + \mu f\left(\vec{v}\right)}_{\text{c.l. des images}} \quad (1)$$

Définition 2 (Vocabulaire *morphisme)

Isomorphisme

Une applⁿ linéaire $f: E \rightarrow F$ inversible.

(bijective)

Endomorphisme

Une application linéaire $f: E \rightarrow E$.

(E est **stable** par f)

Automorphisme

Un endomorphisme inversible

Définition 3 (Représentation matricielle d'un endomorphisme)

C'est la matrice (a_{ij}) définie par :

Soit
$$f: E \to E$$
 un endomorphisme de E .
Soit $\mathcal{B} = (\vec{u}_1, \dots \vec{u}_n)$ une base de E .
La matrice de f dans la base \mathcal{B} est notée $\operatorname{Mat}_{\mathcal{B}}(f) \in \mathcal{M}_n(\mathbb{R})$.
C'est la matrice (a_{ij}) définie par :
$$\operatorname{Mat}_{\mathcal{B}}(f) = \left[\begin{array}{c} \uparrow & \uparrow & \uparrow \\ f(\vec{u}_1) f(\vec{u}_2) & \cdots & f(\vec{u}_n) \\ \downarrow & \downarrow & \downarrow \\ \end{pmatrix} \to \vec{u}_n \right]$$

$$\forall j \in [\![1,n]\!], \quad f(\vec{u}_j) = a_{1j}\vec{u}_1 + a_{2j}\vec{u}_2 + \ldots + a_{nj}\vec{u}_n$$

Trouver la matrice d'un endomorphisme

Exercice 1 (*Un endomorphisme de* $\mathbb{R}[X]$ 2, *d'après Edhec* 2011)

► $E = \mathbb{R}_2[X]$, l'espace vectoriel des fonctions polynomiales de degré ≤ 2 , On note:

▶ $\mathcal{B} = (e_0, e_1, e_2)$ la base canonique de E.

(Cette base est formée des polynômes : $e_0 = 1$, $e_1 = x$ et $e_2 = x^2$.)

On considère l'application $f: \begin{cases} E \to \mathbb{R}[X] \\ P \mapsto f(P), \end{cases}$

où la fonction polynomiale f(P) est donnée par : $[f(P)](x) = 2x \cdot P(x) - (x^2 - 1) \cdot P'(x)$.

- a) Montrer que f est une application linéaire.
 - **b)** Expliciter [f(P)](x) pour le polynôme P défini par : $P(x) = a + bx + cx^2$.
 - **c)** En déduire que *f* est un endomorphisme de *E*.
 - **d)** Écrire $(f(e_i))_{i \in [0,2]}$ dans la base \mathcal{B} , et en déduire la matrice A de f dans la base \mathcal{B} .
- a) Vérifier que $\text{Im}(f) = \text{Vect}(e_1, e_0 + e_2)$ et donner la dimension de Im(f).
 - **b)** Déterminer Ker(f) et $Ker(f-2 \cdot Id)$.
- a) Montrer que : $f^3 = 4 \cdot f$. 3.
 - **b)** En déduire, pour $n \in \mathbb{N}$, l'expression de f^{2n+1} en fonction de f.

::

::

Exercice 2 (Un endomorphisme matriciel (d'après EmLyon 2014))

On considère l'espace $\mathcal{M}_2(\mathbb{R})$ des matrices d'ordre 2 à coefficients réels. On définit :

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{et} \quad \mathcal{F} = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}, (a, b, c) \in \mathbb{R}^3 \right\}$$

- **1.** a) Montrer que \mathcal{F} est un espace vectoriel et que (A,B,C) est une base de \mathcal{F} .
 - **b)** Établir que \mathcal{F} est stable par multiplication, c'est à dire : $\forall (M,N) \in \mathcal{F}^2$, $MN \in \mathcal{F}$.
 - c) Montrer que, pour toute matrice M de \mathcal{F} , si M est inversible alors $M^{-1} \in \mathcal{F}$.

Pour toute matrice M de \mathcal{F} , on note : f(M) = TMT.

- **2. a)** Montrer que f est un endomorphisme de \mathcal{F} .
 - **b)** Vérifier que T est inversible et démontrer que f est un automorphisme de \mathcal{F} .

On note F la matrice de f dans la base (A,B,C) de \mathcal{F} .

- **3.** Calculer f(A), f(B), f(C) en fonction de (A,B,C) et en déduire F.
- **4. a)** Montrer que : $(f Id)^2 = 0_{\mathcal{L}(E)}$.
 - **b)** En déduire que l'inverse de f est donné par : $f^{-1} = 2 \cdot \text{Id} f$.
 - c) Déterminer une base et la dimension du sous-espace $E_1 = \text{Ker}(f \text{Id})$. (s-esp. propre.)
- **5.** On note $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ et $H = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.
 - a) Calculer H^2 . En déduire, pour $a \in \mathbb{R}$ et $n \in \mathbb{N}$ la puissance : $(I + a \cdot H)^n$.
 - **b)** Trouver une matrice G de $\mathcal{M}_3(\mathbb{R})$ telle que : $G^3 = F$.
 - **c)** Existe-t-il un endomorphisme g de \mathcal{F} tel que : $g \circ g \circ g = f$?

Exercice 3 (*Polynômes* \times e^{-x})

Soit $n \in \mathbb{N}$, et l'ensemble de fonctions : $F_n = \{f : \mathbb{R} \to \mathbb{R}, \exists P \in \mathbb{R}, f(X) \in \mathbb{R}, f(X) = P(X) \cdot e^{-X}\}$.

- **1.** Montrer que F_n est un espace vectoriel.
- **2.** Montrer que l'application d définie par d(f) = f' est un endomorphisme de F_n .

Pour $k \in [0,n]$, on définit la fonction $m_k : x \mapsto m_k(x) = \frac{x^k}{k!} \cdot e^{-x}$.

- **3.** Montrer que les fonctions $(m_k)_{k \in [0,n]}$ forment une base de F_n . Quelle est la dimension de F_n ?
- **4.** Déterminer la matrice M de l'endomorphisme d dans cette base. Pour une matrice N à préciser, on écrira : $M = -(I_{n+1} N)$.
- **5.** Calculer N^{n+1} . En déduire que la matrice M admet pour inverse la matrice $\left(-\sum_{k=0}^{n}N^{k}\right)$.
- **6.** Trouver une primitive de la fonction m_n . En déduire la valeur de l'intégrale : $I_n = \int_0^{+\infty} \frac{x^n}{n!} \cdot e^{-x} dx$.

Exercice 4 (Produit extérieur)

Une matrice $M \in \mathcal{M}_3(\mathbb{R})$ est dite **antisymétrique** si : ${}^tM = -M$.

On note A_3 l'ensemble des matrices de $\mathcal{M}_3(\mathbb{R})$ qui sont antisymétriques.

1. Montrer que A_3 est un espace vectoriel.

Pour $M, N \in A_3$, on note : $M \wedge N = M \cdot N - N \cdot M$.

(« M extérieur N »)

::

::

::

2. Montrer que pour $M, N \in A_3$, on a : $M \wedge N \in A_3$. Que dire si M = N?

Soient $X = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$, $Y = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}$, $Z = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Soient $a,b,c \in \mathbb{R}$, et A = aX + bY + cZ.

- **3.** Montrer que $\mathcal{B} = (X, Y, Z)$ est une base de A_3 .
- **4.** Montrer que l'application p définie par $p(M) = A \wedge M$ est un endomorphisme de A_3 . S'agit-il d'un automorphisme de A_3 ?
- **5.** Déterminer la matrice de l'endomorphisme p dans la base \mathcal{B} .

Exercice 5 (Accroissement de suites)

Soit $q \in]-1$; 1[, et l'ensemble de suites : $F = \{([an^2 + bn + c] \cdot q^n)_{n \in \mathbb{N}}, \text{ avec } a, b, c \in \mathbb{R}\}.$

1. Montrer que *F* est un espace vectoriel.

On définit trois suites pour $n \in \mathbb{N}$, par : $u_n = q^n$, $v_n = n \cdot q^{n-1}$, $w_n = n(n-1) \cdot q^{n-2}$.

- **2.** Montrer que les suites u, v, w forment une base \mathcal{B} de F.
- **3.** Montrer que l'application d définie par $d((x_n)) = (x_{n+1} x_n)$ est un endomorphisme de F.
- **4.** Déterminer la matrice de l'endomorphisme d dans la base \mathcal{B} .
- **5.** Montrer que d admet pour inverse l'application $r:(x_n)_{n\in\mathbb{N}}\mapsto \left(-\sum_{k=n}^{+\infty}x_k\right)_{n\in\mathbb{N}}$.
- **6.** Déterminer l'expression des endomorphismes d^2 et de r^2 .

2 Avec des valeurs propres

Exercice 6 (Matrice de Fibonacci)

Soit f l'endomorphisme de \mathbb{R}^2 associé à la matrice $F = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$.

- **1.** Montrer que pour une certaine suite (u_n) on a $\forall n \in \mathbb{N}^*$: $F^n = \begin{bmatrix} u_{n+1} & u_n \\ u_n & u_{n-1} \end{bmatrix}$. On précisera :
 - a) l'équation vérifiée pour $n \in \mathbb{N}$ par les termes u_{n+2}, u_{n+1} , et u_n ,
 - **b)** les valeurs de u_n pour $n \in [0,5]$ présentées dans un tableau.
- **2.** En utilisant la relation de récurrence double trouvée à la question **1.a**), écrire la suite (u_n) comme combinaison linéaire de deux suites géométriques (ψ^n) et (φ^n) , où $\psi < \varphi$.
- **3. a)** Montrer que les vecteurs $\begin{pmatrix} 1 \\ \psi \end{pmatrix}$ et $\begin{pmatrix} 1 \\ \varphi \end{pmatrix}$ forment une base de \mathbb{R}^2 .
 - b) Déterminer la matrice de l'endomorphisme f dans cette base.

Page 3 sur 8

Exercice 7 (Suite linéaire récurrente triple)

:suiteLinéaireTriple:

Diagonalisation d'une matrice compagnon

Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 7 & 0 \end{bmatrix}$. On note R le polynôme défini par : $R(X) = X^3 - 7X - 6$.

1. Trouver les racines du polynôme R.

Pour $\lambda \in \mathbb{R}$, on pose : $\vec{u}_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix}$.

- **2. a)** Donner, pour $\lambda \in \mathbb{R}$, l'expression de $f(\vec{u}_{\lambda})$. On fera intervenir $\lambda \cdot \vec{u}_{\lambda}$ et $R(\lambda)$.
 - **b)** En déduire l'expression de : $f(\vec{u}_{-1})$, $f(\vec{u}_{-2})$, et $f(\vec{u}_3)$.
- **3. a)** Montrer que la famille $\mathcal{F} = (\vec{u}_{-1}, \vec{u}_{-2}, \vec{u}_3)$ est une base de \mathbb{R}^3 .
 - **b)** Donner: ightharpoonup la matrice de passage P de la base canonique vers \mathcal{F}
 - ightharpoonup la matrice D de l'endomorphisme f dans la base \mathcal{F} .

Application au terme général d'une suite récurrente

Soit (u_n) la suite définie par : $\forall n \in \mathbb{N}$, $x_{n+3} = 7x_{n+1} + 6x_n$, avec : $x_0 = 10$,

 $x_1 = x_2 = 0.$

Pour $n \in \mathbb{N}$, on pose $\vec{X}_n = \begin{pmatrix} x_n \\ x_{n+1} \\ x_{n+2} \end{pmatrix}$, et $\vec{Y}_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$ le vecteur défini par : $\vec{Y}_n = P^{-1} \cdot \vec{X}_n$.

- **4. a)** Montrer que pour $n \in \mathbb{N}$, on a : $\vec{X}_{n+1} = A \cdot \vec{X}_n$.
 - **b)** Calculer \vec{Y}_{n+1} en termes de \vec{Y}_n .
 - c) En déduire que les suites (a_n) , (b_n) et (c_n) sont géométriques.
- **5. a)** Exprimer \vec{X}_0 , puis vérifier que $a_0 = 15$, $b_0 = -6$, et $c_0 = 1$.
 - **b)** En déduire, pour $n \in \mathbb{N}$, l'expression du terme général x_n . (On écrira \vec{X}_n en termes de \vec{Y}_n .)

Exercice 8 (Couple propre d'un endomorphisme)

Soit E un espace vectoriel, et $f \in \mathcal{L}(E)$ un endomorphisme.

Soient $\lambda \in \mathbb{R}$ et $\vec{u} \in E$, tel que $\vec{u} \neq \vec{0}$.

Le couple (λ, \vec{u}) est dit **propre** pour f si : $f(\vec{u}) = \lambda \cdot \vec{u}$. $(\lambda : \textit{valeur propre}, \vec{u} : \textit{vecteur propre}.)$

- 1. Trouver les couples propres (λ, \vec{u}) dans le cas où f = Id.
- **2.** Soit (λ, \vec{u}) un couple propre de f. Pour $n \in \mathbb{N}$, calculer $f^n(\vec{u})$. (la $n^{\grave{e}me}$ composée $f(...f(\vec{u}))$)
- **3.** Montrer l'équivalence : $[(\lambda, \vec{u})$ couple propre de $f] \iff [\vec{u} \in \text{Ker}(f \lambda \cdot \text{Id})]$.
- **4.** Soient une famille de couples propres de f notée $(\lambda_i, \vec{u}_i)_{i \in [1, n]}$. On suppose que $(\vec{u}_i)_{i \in [1, n]}$ est une base de E. Quelle est la matrice de f dans cette base?

3 Pratique du changement de base

Proposition 4 (Formule de changement de base)

Soit E un espace vectoriel de dimension finie, et soit $f: E \to E$ un endomorphisme de E. Soient \mathcal{B} et \mathcal{B}' deux bases de E. Alors on a

$$\underbrace{\mathrm{Mat}_{\mathcal{B}}(f)}_{\text{ancienne matrice}} = \underbrace{\mathrm{Pas}\,\mathcal{B} \leadsto \mathcal{B}'}_{\text{matrice de passage}} \cdot \underbrace{\mathrm{Mat}_{\mathcal{B}'}(f)}_{\text{nouvelle matrice}} \cdot \underbrace{\mathrm{Pas}\,\mathcal{B}' \leadsto \mathcal{B}}_{=\mathrm{Pas}\,\mathcal{B} \leadsto \mathcal{B}'^{-1}}$$

::

Exercice 9 (*Une étude de commutant*)

Soit f l'endomorphisme de \mathbb{R}^3 défini par : $\forall \vec{X} \in \mathbb{R}^3$, $f(\vec{X}) = A \cdot \vec{X}$, où $A = \begin{bmatrix} 3 & -2 & -2 \\ 3 & -3 & -4 \\ -2 & 3 & 4 \end{bmatrix}$.

- **1.** Montrer que l'on a : $(f \mathrm{Id}_E)^2 \circ (f 2\mathrm{Id}_E) = 0_{\mathcal{L}(E)}$.
- **2.** Trouver les vecteurs $\vec{u}, \vec{w} \in \mathbb{R}^3$ tels que : \rightarrow la 3ème coordonnée de \vec{u} et de \vec{w} est 1.
 - on a: $f(\vec{u}) = \vec{u}$.
 - on a: $f(\vec{w}) = 2 \cdot \vec{w}$.
- **3.** Trouver le vecteur \vec{v} tel que : \rightarrow la $3^{\text{ème}}$ coordonnée de \vec{v} est 0.
 - on a: $f(\vec{v}) = \vec{u} + \vec{v}$.
- **4.** Montrer que la matrice de la famille $\mathcal{F} = (\vec{u}, \vec{v}, \vec{w})$ est : $P = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 1 & -2 \\ 1 & 0 & 1 \end{bmatrix}$.
- **5.** En déduire que \mathcal{F} est une base de \mathbb{R}^3 .
- **6.** Justifier que la matrice de l'endomorphisme f dans la base \mathcal{F} est $T = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

On note C_f l'ensemble des endomorphismes g de \mathbb{R}^3 tels que $f \circ g = g \circ f$.

- 7. Montrer que C_f est un sous-espace vectoriel de $\mathcal{L}(\mathbb{R}^3)$.
- **8.** Soit $g \in \mathcal{L}(\mathbb{R}^3)$, et *B* la matrice de *g* dans la base \mathcal{F} .

 $\text{Montrer l'équivalence}: \quad [g \in \mathcal{C}_f] \Longleftrightarrow [B \cdot T = T \cdot B].$

- **9.** Montrer l'équivalence : $[B \cdot T = T \cdot B] \iff B = \begin{bmatrix} a & b & 0 \\ 0 & a & 0 \\ 0 & 0 & c \end{bmatrix}$, pour $a,b,c \in \mathbb{R}$.
- **10.** En déduire l'égalité de sous-espace vectoriels : $C_f = \text{Vect}(\text{Id}, f, f^2)$.

Exercice 10 (Détermination d'une application linéaire)

1. Montrer, dans chaque cas, qu'il existe une unique application linéaire :

(On donnera la matrice canoniquement associée.)

- **a)** $f: \mathbb{R}^2 \to \mathbb{R}^3$ telle que: $f\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} 2\\1\\0 \end{pmatrix}$ et $f\begin{pmatrix} 2\\1 \end{pmatrix} = \begin{pmatrix} 0\\1\\2 \end{pmatrix}$.
- **b)** $g: \mathbb{R}^3 \to \mathbb{R}^2$ telle que: $f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix}$, $f\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix}$, et $f\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\0 \end{pmatrix}$.
- **2.** Pour quelle(s) valeur(s) de $a \in \mathbb{R}$ existe-t-il $h \in \mathcal{L}(E)$ tel que : $h(\frac{1}{2}) = {3 \choose 3}$,
 - $h(\frac{3}{5}) = (\frac{1}{2}),$
 - $h({}^{2}_{3}) = {}^{a}_{-1}$.

Exercice 11 (Une diagonalisation manuelle)

Soient les matrices $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ et $D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

- **1.** Pour $P = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, avec $a \in \mathbb{R}$, calculer $A \cdot P$ et $P \cdot D$.
- **2.** Montrer que les matrices *A* et *D* sont semblables.
- **3.** Calculer, pour $n \in \mathbb{N}$, l'expression de D^n . En déduire celle de A^n .

::

::

::

Exercice 12 (Être ou ne pas être semblables)

- **1.** Soit $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Montrer que les matrices A et 2A sont semblables. (On pourra chercher une matrice de passage sous la forme : $P = \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}$.)
- **2.** Soit $B = \begin{bmatrix} \cdot & 1 & 1 \\ \cdot & \cdot & 1 \end{bmatrix}$ et $C = B^2$. Montrer que les matrices B et C ne sont pas semblables.
- **3.** Soient les matrices : $D = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 \end{bmatrix}, E = \begin{bmatrix} \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix}$ **a)** Calculer D^2 et E^2 .

 - **b)** En déduire que *D* et *E* ne sont pas semblables.

Puissances de matrices

Proposition 5 (Puissances d'une matrice diagonale)

La puissance n-ième d'une matrice diagonale est la matrice diagonale des puissances n-ièmes.

Exercice 13 (Diagonalisation et puissances)

:diagoPuissances:

Soit f l'endomorphisme de \mathbb{R}^2 associé à la matrice : $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$.

- **1.** Trouver deux vecteurs non-nuls \vec{u}_1 et \vec{u}_2 tels que : $f(\vec{u}_1) = \vec{u}_1$, $f(\vec{u}_2) = 2 \cdot \vec{u}_2.$
- **2.** Montrer que ces deux vecteurs \vec{u}_1, \vec{u}_2 forment une base \mathcal{F} de \mathbb{R}^2 .

On note P la matrice de passage dans cette nouvelle base \mathcal{F} , et D la matrice de f dans \mathcal{F} .

- **3.** Déterminer D, ainsi, que pour $n \in \mathbb{N}$, la puissance D^n .
- **4.** Montrer les relations $A = P \cdot D \cdot P^{-1}$, et $\forall n \in \mathbb{N}$, $A^n = P \cdot D^n \cdot P^{-1}$.
- **5.** En déduire l'expression de f^n pour $n \in \mathbb{N}$.

Proposition 6 (Formule du binôme de Newton)

Soient $A, B \in \mathcal{M}_n(R)$.

On suppose que A et B commutent, c'est-à-dire que AB = BA.

 $(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k \cdot B^{n-k}.$ Alors pour $n \in \mathbb{N}$, on a :

Exercice 14 (Application)

:trigoPuissances:

On s'intéresse à la matrice $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.

- **1.** Pour quelle matrice a-t-on $A = \Delta + N$, avec $\Delta = 2I_3$?
- **2.** Calculer N^3 et en déduire N^k pour $k \ge 3$.
- 3. Vérifier que les conditions d'application de la formule du binôme de Newton sont vérifiées.
- **4.** En déduire l'expression de A^n pour $n \in \mathbb{N}$.

Corrections 5

Corrigé Ex 7 (Suite linéaire récurrente triple)

:suiteLinéaireTriple:

Diagonalisation d'une matrice compagnon

Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 7 & 0 \end{bmatrix}$. On note *R* le polynôme défini par : $R(X) = X^3 - 7X - 6$.

- **1.** *Trouver les racines du polynôme R.* Il s'agit d'un polynôme de degré 3.
 - ▶ **Racine évidente** On remarque que R(-1) = 0, donc -1 est une racine de R.
 - ► **Factorisation par** (X + 1) On cherche a,b,c pour avoir : $R(X) = (X + 1) \cdot (aX^2 + bX + c)$. On trouve la factorisation : $R(X) = (X+1) \cdot (X^2 - X - 6)$.
 - ► Conclusion sur les racines de R Le trinôme $(X^2 X 6)$ admet deux racines : 3 et -2. Ainsi le polynôme R(X) a trois racines. Ce sont : -2, -1, et 3.

Pour $\lambda \in \mathbb{R}$, on pose : $\vec{u}_{\lambda} = \begin{pmatrix} 1 \\ \lambda \\ 12 \end{pmatrix}$.

a) Donner, pour $\lambda \in \mathbb{R}$, l'expression de $f(\vec{u}_{\lambda})$. On fera intervenir $\lambda \cdot \vec{u}_{\lambda}$ et $R(\lambda)$.

On a: $f(\vec{u}_{\lambda}) = A \cdot \vec{u}_{\lambda} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 7 & 0 \end{bmatrix} \cdot \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix} = \begin{pmatrix} \lambda \\ \lambda^2 \\ 6+7\lambda \end{pmatrix} = \lambda \cdot \begin{pmatrix} 1 \\ \lambda \\ \lambda^2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -R(\lambda) \end{pmatrix}.$

Ainsi, on a trouvé : $f(\vec{u}_{\lambda}) = \lambda \cdot \vec{u}_{\lambda} - R(\lambda) \cdot \vec{e}_{3}$.

b) En déduire l'expression de : $f(\vec{u}_{-1})$, $f(\vec{u}_{-2})$, et $f(\vec{u}_3)$.

Pour ces trois valeurs λ , on a : $R(\lambda) = 0$.

Il reste donc: $f(\vec{u}_{-1}) = -\vec{u}_{-1}$, $f(\vec{u}_{-2}) = -2\vec{u}_{-2}$, et $f(\vec{u}_3) = 3\vec{u}_3$.

a) Montrer que la famille $\mathcal{F} = (\vec{u}_{-1}, \vec{u}_{-2}, \vec{u}_3)$ est une base de \mathbb{R}^3 . **3.**

La matrice de la famille $\mathcal{F} = (\vec{u}_{-1}, \vec{u}_{-2}, \vec{u}_3)$ est : $P = \begin{bmatrix} -\frac{1}{1} & -\frac{1}{2} & \frac{1}{3} \\ -\frac{1}{1} & -\frac{1}{2} & \frac{1}{3} \end{bmatrix}$.

On vérifie par le pivot de Gauss que cette matrice est inversible.

La famille \mathcal{F} est donc une base de \mathbb{R}^3 .

- **b)** Donner: ightharpoonup la matrice de passage P de la base canonique vers ${\cal F}$
 - ▶ la matrice D de l'endomorphisme f dans la base \mathcal{F} .
 - ▶ Matrice de passage C'est la matrice donnée ci-dessus.
 - ► **Matrice dans la base** \mathcal{F} On a: $f(\vec{u}_{-1}) = -\vec{u}_{-1}$, $f(\vec{u}_{-2}) = -2\vec{u}_{-2}$, et $f(\vec{u}_3) = 3\vec{u}_3$. Ainsi, on trouve: $D = \operatorname{Mat}_{\mathcal{F}}(f) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

Application au terme général d'une suite récurrente

Soit (u_n) la suite définie par : $\forall n \in \mathbb{N}$, $x_{n+3} = 7x_{n+1} + 6x_n$, avec : $x_0 = 10$,

Pour $n \in \mathbb{N}$, on pose $\vec{X}_n = \begin{pmatrix} x_n \\ x_{n+1} \\ x_{n+2} \end{pmatrix}$, et $\vec{Y}_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$ le vecteur défini par : $\vec{Y}_n = P^{-1} \cdot \vec{X}_n$.

a) Montrer que pour $n \in \mathbb{N}$, on a: $\vec{X}_{n+1} = A \cdot \vec{X}_n$. On calcule: $A \cdot \vec{X}_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & 7 & 0 \end{bmatrix} \cdot \begin{pmatrix} x_n \\ x_{n+1} \\ x_{n+2} \end{pmatrix} = \begin{pmatrix} x_{n+1} \\ 6x_n + 7x_{n+1} \end{pmatrix} = \begin{pmatrix} x_{n+1} \\ x_{n+2} \\ x_{n+3} \end{pmatrix} = \vec{X}_{n+1}$.

b) Calculer \vec{Y}_{n+1} en termes de \vec{Y}_n .

On trouve: $\vec{Y}_{n+1} = P^{-1} \cdot X_{n+1} = P^{-1} \cdot A \cdot X_n = P^{-1} \cdot P \cdot D \cdot P^{-1} \cdot X_n$.

Ainsi: $\vec{Y}_{n+1} = D \cdot Y_n$.

c) En déduire que les suites (a_n) , (b_n) et (c_n) sont géométriques. On développe la relation $\vec{Y}_{n+1} = D \cdot Y_n$. Il vient : $\begin{cases} a_{n+1} = -a_n \\ b_n = -a_n \end{cases}$

$$\begin{cases} a_{n+1} = -a_n \\ b_{n+1} = -2b_n \\ c_{n+1} = 3c_n \end{cases}$$

Les suites *a,b,c* sont donc bien géométriques.

5. a) Exprimer \vec{X}_0 , puis vérifier que $a_0 = 15$, $b_0 = -6$, et $c_0 = 1$.

On a
$$\vec{X}_0 = \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ 0 \end{pmatrix}$$
.

On vérifie que :
$$P \cdot \begin{pmatrix} 15 \\ -6 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ 0 \end{pmatrix} = \vec{X}_0$$
. Ainsi, $\vec{Y}_0 = P^{-1} \cdot \vec{X}_0 = \begin{pmatrix} 15 \\ -6 \\ 1 \end{pmatrix}$.

Les valeurs initiales des suites sont donc bien : $a_0 = 15$, $b_0 = -6$, et $c_0 = 1$.

b) En déduire, pour $n \in \mathbb{N}$, l'expression du terme général x_n . (On écrira \vec{X}_n en termes de \vec{Y}_n .)

Soit $n \in \mathbb{N}$. On a: $\vec{X}_n = P \cdot \vec{Y}_n$. En particulier, il vient : $x_n = a_n + b_n + c_n$.

Or les suites a,b,c sont géométriques. On les exprime par la formule : $u_n = u_0 \cdot q^n$.

Il vient: $x_n = 15 \cdot (-1)^n - 6 \cdot (-2)^n + 3^n$.