Tabăra de pregătire a lotului național de informatică

Botoşani, 30 aprilie – 7 mai 2012

Baraj 2

Problema equicover (Autor Adrian Panaete)

Un poligon care se poate descompune in triunghiuri echilaterale de latura 1 are laturile de lungimi numere naturale. Orice unghi poate fi de 120° (in vârful respectiv se lipesc 2 triunghiuri) sau de 60°(in vârful respectiv avem exact un triunghi).

Se poate observa că formele posibile de poligoane pot fi doar următoarele:

- Triunghi echilateral (3 unghiuri de 60°)
- Paralelogram (doua unghiuri opuse de 60° celelalte doua opuse de 120°)
- Romb (forma particulara a paralelogramului)
- Trapez isoscel (unghiurile de la baza mica de 60° si cele de la baza mare de 120°)
- Pentagon (un unghi de 30 de grade si celelalte patru de 120°)
- Hexagon (cu toate unghiurile de 120°)

Vom analiza inițial hexagonul si vom observa ulterior ca de fapt celelalte cazuri sunt situații degenerate ale hexagonului.

Sa notam cele 6 laturi cu a,b,c,d,e,f unde a = latura minima. Daca prelungim laturile din doua in doua se va obține un triunghi echilateral de latura L=a+b+c=c+d+e=e+f+a.

Deducem ca a+b=d+e; b+c=e+f; c+d=f+a. In plus deoarece orice triunghi echilateral de latura naturala L se descompune in exact L² triunghiuri de latura 1 se poate calcula imediat numărul de triunghiuri din hexagon cu formula $n=L^2-a^2-c^2-e^2$ deoarece hexagonul se obține eliminând din triunghiul de latura L trei triunghiuri echilaterale de laturi a,c si respectiv e (cele 3 triunghiuri colorate in alb in a doua figura).

Pentru a fi siguri ca nu exista riscul sa repetam aceeași soluție fixăm următoarele condiții (fără a reduce din generalitatea problemei):

- a este latura de lungime minima
- $-c < \epsilon$

Odată impuse aceste condiții, vom introduce următoarele notații: a=x≥0

Tabăra de pregătire a lotului național de informatică

Botoşani, 30 aprilie – 7 mai 2012

Baraj 2

 $d-a=y\geq 0$

 $c-a=z\geq 0$

 $e-c=t\geq 0$

si imediat se pot calcula laturile

a=x

b=x+y+z+t

c=x+z

d=x+z

e=x+z+t

f=x+y+z

L=a+b+c=3x+y+2z+t

Deci pentru n triunghiuri echilaterale soluția va fi exact numărul de soluții naturale ale ecuației:

$$(3x+y+2z+t)^2-x^2-(x+z)^2-(x+z+t)^2=n$$

Care poate fi reformulata astfel

 $6x^2+y^2+2z^2+6xy+8xz+4xt+4yz+2yt+2zt=n$ care este ecuație de gradul 1 in t si se poate scoate t un funcție de valoarea cunoscuta n si de parametrii naturali x,y,z cu formula $t=(n-6x^2-y^2-2z^2-6xy-8xz-4yz)/(4x+2y+2z)$.

Condițiile de existență a soluției sunt:

- 1. $n>6x^2+y^2+2z^2+6xy+8xz+4yz$
- 2. y de aceeași paritate cu n (pentru ca numitorul este par)
- 3. 4x+2y+2z divide $n-6x^2-y^2-2z^2-6xy-8xz-4yz$ /.
- 4. 4x+2y+2z>0.

Obținem următorul algoritm

Pentru $x \ge 0$ si $6x^2 < n + x + 1$

Pentru y>=0 si
$$6x^2+y^2+6xy \le n y++$$

Pentru
$$z \ge 0$$
 si $6x^2+y^2+2z^2+6xy+8xz+4yz< n z++$

Daca se verifica toate condițiile 3. si 4.

Incrementează soluția (numărul de poligoane)

Observație: În funcție de anularea valorilor x,y,z, t se obțin următoarele tipuri de poligoane(eventual poligoane degenerate):

	a=x	b=x+y+z+t	c=x+z	d=x+y	e=x+z+t	f=x+y+z	Poligon
x=y=z=t=0	0	0	0	0	0	0	Punct(degenerat)
x=y=z=0	0	t	0	0	t	0	Segment de lungime
							t (degenerat)
x=y=t=0	0	z	Z	0	Z	Z	Romb de latura z
x=z=t=0	0	у	0	y	0	у	Triunghi ehilateral de
							latura y
y=z=t=0	X	X	X	X	X	X	Hexagon regulat de
							latura x
x=y=0	0	z+t	Z	0	z+t	Z	Paralelogram cu
							laturile z si z+t

Tabăra de pregătire a lotului naţional de informatică

Botoşani, 30 aprilie – 7 mai 2012 Baraj 2

0	0			1	14		Tuonen incomi
x=z=0	0	y+t	0	У	t	У	Trapez isoscel cu
							baza mare y+t, baza
							mica y si laturile
							neparalele y
x=t=0	0	y+z	Z	Y	Z	y+z	Pentagon (simetric)
y=z=0	X	x+t	X	X	x+t	X	Hexagon(simetric)
							Cu doua laturi opuse
							egale mari si celelalte
							4 egale mici
y=t=0	X	x+z	x+z	X	x+z	x+z	Hexagon(simetric)
							Cu doua laturi opuse
							egale mici si celelalte
							4 egale mari
z=t=0	X	x+y	X	x+y	X	x+y	Hexagon(simetric) cu
							laturi egale din doua
							in doua
x=0	0	y+z+t	Z	у	z+t	y+z	Pentagon(asimetric)
y=0	X	x+z+t	x+z	X	x+z+t	x+z	Hexagon cu laturile
							egale din trei in trei
z=0	X	x+y+t	X	x+y	x+z+t	x+y	Hexagon(simetric)
							format din doua
							trapeze isoscele cu
							baza mare comuna
							dar cu baze mici
							diferite
t=0	X	x+y+z	x+z	x+y	x+z	x+y+z	Un alt hexagon
						-	simetric
x,y,z,t≠0							Hexagon asimetric