Minimum Wages in the UK

Searching for Non-linearities

David Zentler-Munro

Essex, November 2022

Motivation

Introduction Motivation

Model

Workers
Environment - Firm

Environment - Firm Behaviour: Workers Behaviour: Firms

Calibration

Results

Conclusion

Minimum wages are an increasingly popular policy response to low wage growth for low paid workers.

Figure: Minimum wages on the rise

Motivation

Introduction Motivation

Environment -Workers

Environment - Firm Behaviour: Workers Behaviour: Firms

Calibration

Results

Conclusior

- Political logic behind minimum wage (MW) increases in UK seems to be: "introduction of MW doesn't seem to have hit unemployment, so let's put it up some more"
 - This is risky: is it a linear relationship or are there nonlinearities to be wary of?
- ▶ To answer this, we need a model to forecast impacts.
- ▶ Key research questions for model to address:
 - 1. Can it replicate past empirical findings regarding wage, profit and employment impacts of minimum wage?
 - 2. Are there significant nonlinearities in unemployment impacts of minimum wage?

Preview of Results

Introduction

Motivation

Literature

Model Environment

Norkers Environment - Firms Behaviour: Workers Behaviour: Firms

Calibration

Resul

Conclusi

- Theory Contribution. I develop a model that combines search frictions (including on-the-job search) with a production function featuring imperfect substitution between factor inputs.
- ▶ Nonlinear unemployment reaction in model from:
 - 1. Exogenous nonlinearities:
 - Non-uniform distribution of skills.
 - 2. Endogenous nonlinearities:
 - Vacancy creation with Cobb-Douglas matching function
 - Imperfect substitution between factor inputs
- Quantitative Contribution. When calibrated to the UK economy, I find:
 - 1. quantitatively, imperfect substitution between inputs is an important endogenous source of nonlinearities
 - 2. nonlinear unemployment reaction of unskilled workers starts to bite (gently) when minimum wage is around 55-60% of median wage.

Outline

Introduction Motivation

wouvation

Mode

Environme Workers

Environment - Fir Behaviour: Worke

. . . .

Results

Conclusion

- 1 Introduction
- 2 Model
- **3** Calibration
- 4 Results
- **6** Conclusion

Methodology: Related Literature

Introduction

Motivation Literature

Mode

Environment -Workers Environment - Firm Behaviour: Workers Behaviour: Firms

Calibration

Result

Conclusion

1. Search literature on optimum minimum wage.

- Wage posting van den Berg and Ridder (1998): no unemployment effects until minimum wage equals ability level then match is destroyed.
- Wage bargaining Flinn (2006): endogenous vacancy creation means smooth unemployment response until minimum wage equals ability then match is destroyed
- ► Contribution: Introduction of decreasing returns to labour in search framework removes cliff-edge effects. Some precedent: Acemoglu (2001), Bauducco and Janiak (2018).

2. Empirical literature on UK minimum wage.

- Small employment effects, fall in firm profits and limited price effects Leonard et al (2014), Draca and Machin (2011).
- Contribution: Developing a model consistent with (some of) these findings, but also capable of examining future risks.

ntroduction
Motivation

Model Environment -Workers

Vorkers Invironment - Firms Jehaviour: Workers Jehaviour: Firms

Calibratio

Result

Conclusio

Workers.

- Workers differ in observable skill level, which is ex-ante given.
- ▶ Two broad skill types unskilled and skilled (*u* and *s*).
- Within broad skill types workers, workers differ by unobservable ability level.
- ▶ Unobservable ability, indexed by i, of a skilled (unskilled) worker is denoted $x_{s,i}$ ($x_{u,i}$), for i = 1..M
- Ability is distributed exogenously according to the pdf $l_s(x_{s,i})$ ($l_u(x_{u,i})$)
- ▶ Both workers and firms have a common discount factor, β and are risk neutral

ntroduction Motivation

Model

Workers

Environment - Firms
Behaviour: Workers

Calibration

Results

Conclusion

Firms

- ▶ I wish to allow for both capital to labour substitution in production and substitution between skill types.
- Not easy in pure search/match framework.
- ▶ Proposed solution is to have two sectors of production:
 - 1. **Intermediate sector with search frictions**. Intermediate firms hire labour and sell it onto a final good producer think of hiring agencies.
 - One segmented intermediate sector for each skill and ability level of workers.
 - Final good sector that combines labour hired in intermediate sector and capital, with no frictions.
 Capital-skill complementarity as per Krusell et al (2000) -"KORV" production function.

Introduction

Motivation

Model

Environmen

Environment - Firms

Behaviour: Worke

Calibration

Roculte

Conclusion

Introduction

Motivation

Model

Environmer Workers

Environment - Firms Behaviour: Workers

Calibration

D - - - . 1r -

Conclusion

Final Good Firms

- ► Competitive firms which produce using technology shown below.Inputs used:
 - K_{eq} is amount of capital equipment, K_{st} is amount of capital structures
 - U is effective amount of goods purchased from the low skill intermediate sectors, S is total effective labour from high skill intermediate sectors

$$Y = AK_{st}^{\alpha} \left[\mu U^{\sigma} + (1 - \mu)(\lambda K_{eq}^{\rho} + (1 - \lambda)S^{\rho})^{\frac{\sigma}{\rho}}\right]^{\frac{1 - \alpha}{\sigma}}$$
(1)

$$U = \left(\sum_{i=1}^{M} (x_{i,u}y_{i,u})^{\frac{\Psi_{u} - 1}{\Psi_{u}}}\right)^{\frac{\Psi_{u}}{\Psi_{u} - 1}}, S = \left(\sum_{i=1}^{M} (x_{i,s}y_{i,s})^{\frac{\Psi_{s} - 1}{\Psi_{s}}}\right)^{\frac{\Psi_{s}}{\Psi_{s} - 1}}$$
(2)

Introduction

Motivation

Literature

Model Environmen

Environment - Firms Behaviour: Workers

Calibratio

Resul

Conclus

Intermediate Firms

Notation: j will be a vector valued index containing both the broad skill index, $h \in \{u, s\}$, and ability index, $i \in \{1..M\}$, of a worker e.g. $j \equiv (h, i)$.

- ightharpoonup One intermediate sector for each worker type j.
- One intermediate firm for every worker (so density of intermediate firms = density of workers)
- Number of matches given by matching function $M(S_j, V_j)$. $S_j =$ number of effective type j job searchers. $V_j =$ vacancies.
- $\theta_j \equiv V_j/S_j$ denotes labour market tightness
- ▶ Contact rate for type j firms is $q(\theta_j) \equiv M(S_j, V_j)/V_j$, and $(\theta_j q(\theta_j), \chi \theta_j q(\theta_j))$ are the contact rates for unemployed and employed workers respectively.
- ▶ Vacancies determined by free entry: i.e. firms issue a vacancy until expected profit equals vacancy cost.

Introduction Motivation

Model

Workers

Environment - Firms
Behaviour: Workers
Behaviour: Firms

Calibration

Result

Conclusio

Intermediate Firms: Wage Setting

- Assume that firms and unemployed workers engage in Nash bargaining - the minimum wage acts as a constraint to the Nash maximisation.
- When workers gets poached, incumbent and rival bid-up the wage until the value of employing a poached worker equals the value of carrying a vacancy i.e. zero (Postel-Vinay and Robin (2002))
- ▶ Therefore poached workers will get paid their marginal product in final good production.
- Minimum Wage reduces expected profit from employing not-poached worker, and decreases vacancy creation

Motivation
Literature

Model

Workers Environment - Firms Behaviour: Workers

Calibratio

Resul

Conclu

Workers

A worker of a given type j exist in one of three states:

- unemployed, receiving flow income b,with lifetime value function denoted V_j^{ue}
- employed but not poached, receiving the higher of Nash bargained wage w_j^b and the minimum wage m_w , with value function V_j^{np} ;
- employed and poached, receiving wage w_j^p , with value function V_i^p

$$V_j^{ue} = b + \beta [\theta_j q(\theta_j) V_j^{np} + (1 - \theta_j q(\theta_j)) V_j^{u}]$$

$$V_j^{np} = \max(w_j^b, m_w) +$$
(3)

$$\beta \left[\delta_j V_j^{ue} + (1 - \delta_j) \left[\chi \theta_j q(\theta_j) V_j^p + (1 - \chi \theta_j q(\theta_j)) V_j^{np} \right] \right] \tag{4}$$

$$V_i^p = w_i^p + \beta[\delta_i V_i^{ue} + (1 - \delta_i) V_i^p]$$

$$(5)$$

Introduction

Motivation

Model

Environment -Workers Environment - Firm

Behaviour: Firms

Calibration

Docuste

Resuits

Conclusio

Final Good Producers

▶ The firm's profit maximisation problem is:

$$\max_{K_{st}, K_{eq}, h_{i,u}, h_{i,s} \forall i \in 1..M} \Pi = AK_{st}^{\alpha} \left[\mu U^{\sigma} + (1 - \mu)(\lambda K_{eq}^{\rho} + (1 - \lambda)S^{\rho})^{\frac{\sigma}{\rho}}\right]^{\frac{1 - \alpha}{\sigma}} - \sum_{i=1}^{M} p_{i,u} h_{i,u} - \sum_{i=1}^{M} p_{i,s} h_{i,s} - r_{st} K_{st} - r_{eq} K_{eq}$$
(6)

$$U = \left(\sum_{i=1}^{M} (x_{i,u} h_{i,u})^{\frac{\Psi_{u}-1}{\Psi_{u}}}\right)^{\frac{\Psi_{u}}{\Psi_{u}-1}}, S = \left(\sum_{i=1}^{M} (x_{i,s} h_{i,s})^{\frac{\Psi_{s}-1}{\Psi_{s}}}\right)^{\frac{\Psi_{s}}{\Psi_{s}-1}}$$

 Since final good producer is assumed to be competitive, all inputs are chosen to equalise marginal product is with the price of input.

Introduction

Motivation Literature

Model

Workers Environment - Firm Behaviour: Workers

Behaviour: Firms

Cambration

Results

Conclusion

Intermediate Firms

- Exist in one of three states:
 - carrying a vacancy, with firm value denoted by J_i^v ,
 - employing a not-poached worker, J_j^{np} , and
 - employing a poached worker, with value J_i^p .

$$\begin{split} J_{j}^{v} &= -\kappa_{j} + \beta[q(\theta_{j})\{s_{j}^{u}J_{j}^{np} + (1 - s_{j}^{u})J_{j}^{p}\} + (1 - q(\theta_{j}))J_{j}^{v}] \\ J_{j}^{np} &= p_{j} - \max(w_{j}^{b}, m_{w}) + \beta\left[(1 - \delta_{j})\{\chi\theta_{j}q(\theta_{j})J_{j}^{p} + (1 - \chi\theta_{j}q(\theta_{j}))J_{j}^{np}\} + \delta_{j}J_{j}^{v}\right] \\ J_{j}^{p} &= p_{j} - w_{j}^{p} + \beta[(1 - \delta_{j})J_{j}^{p} + \delta_{j}J_{j}^{v}] \end{split}$$

Introduction

Motivation

Model

Workers
Environment - Firms
Behaviour: Workers
Behaviour: Firms

Calibration

Results

Conclusion

Intermediate Firms

- Free entry, so $J_j^v = 0$, and Betrand competition between employers implies $J_i^p = 0$ so $w_i^p = p_j$.
- ▶ From these we get no entry condition:

$$\kappa_j = \beta q(\theta_j) s_j^u \frac{p_j - \max(w_j^b, m_w)}{1 - \beta (1 - \delta_j) (1 - \chi \theta_j q(\theta_j))}$$
(10)

The bargained wage is given below (Φ is the nash bargaining parameter):

$$w_{j}^{b} = \underset{w_{j}^{b}}{\operatorname{argmax}} (V_{j}^{np} - V_{j}^{u})^{\Phi_{j}} (J_{j}^{np})^{1-\Phi_{j}}$$

$$= \Phi_{j} p_{j} + (1 - \Phi_{j}) (V_{j}^{u} (1 - \beta) - \beta (1 - \delta_{j}) \chi \theta_{j} q(\theta_{j}) (V_{j}^{p} - V_{j}^{u})) \quad (11)$$

The Model: Equilibrium

Motivation

Motivation Literature

Model

Environment Workers

Behaviour: Worker Behaviour: Firms

Calibratio

Conclusion

Equilibrium: a sketch

Steady State in Labour Markets

$$\delta_j(1 - e_j^{ue}) = \theta_j q(\theta_j) e_j^{ue} \tag{12}$$

$$(\delta_j + \chi \theta_j q(\theta_j)) e_j^{np} = \theta_j q(\theta_j) e_j^{ue}$$
(13)

- ▶ Solving gives us steady state unemployment and labour market tightness: $e_i^{ue^{ss}}$, θ_i^{ss}
- Intermediate goods market clearing:

$$p_{j}^{s} = \max(w_{j}^{b}, m_{w}) + \frac{\kappa_{j} \left(1 - (\beta(1 - \delta_{j})(1 - \chi \theta_{j}^{ss} q(\theta_{j}^{ss}))) \right)}{\beta q(\theta_{j}^{ss}) s_{j}^{u}}$$
(14)

$$p_j^d = \frac{\partial Y}{\partial h_i(e_i^{ue^{ss}})} \tag{15}$$

The Model: Minimum Wage Impacts

Motivation
Literature

Model

Workers
Environment - Firi
Behaviour: Worke
Behaviour: Firms

Calibration

Results

Conclusion

▶ From equilibrium conditions:

$$\max(w_j^b, m_w) = \frac{\partial Y}{\partial h_j(e_j^{ue^{ss}})} - \frac{\kappa_j \left(1 - (\beta(1 - \delta_j)(1 - \chi \theta_j^{ss} q(\theta_j^{ss})))\right)}{\beta q(\theta_j^{ss}) s_j^u}$$
(16)

- ► So wages = marginal product of labour minus recruitment costs
- ▶ Minimum wage increase implies:
 - intermediate firms to decrease vacancies. CD matching function: probability of filling remaining vacancies increaes reducing recruitment cost.
 - reducing vacancies decreases employment, increasing marginal product of labour.

Calibration Approach

Introductio Motivation

Model Environment

Workers Environment - Firms Behaviour: Workers Behaviour: Firms

Calibration

Results

Conclusion

- Standard(ish) macro story: borrow some parameters from literature, estimate others (by SMM).
- ▶ I focus on estimating parameters for:
 - exogenous distributions of worker ability (log normal), with seperate distributions for unskilled and skilled.
 - ► Empirical Targets: Variance of Log Wages and p90-10 ratios
 - 2. the elasticities of substitution between workers within these two skill classes, ψ_u , ψ_s ,
 - Empirical Targets: Unemployment Rates: levels (2013) and changes (2013-17)
 - 3. recruitment costs κ_u , κ_s
 - ▶ Empirical Targets: Unemployment Rates
 - **4**. the share parameter, μ , in the KORV production function.
 - ▶ Empirical Targets: Graduate Wage Premium

Calibrated Parameters

Introduction

Motivation

Model

Environment Workers

Environment - Firm Behaviour: Workers

Calibration

Results

Conclusion

Table: Estimation Results: Method Comparison

Moment	Model Moment	Empirical Moment	
Median Hourly Wage: Unskilled	10.03	9.5	
Median Hourly Wage: Skilled	15.77	15.71	
Var Log Wages: Unskilled	0.47	0.49	
Var Log Wages: Skilled	0.53	0.57	
p90/50 Wages: Unskilled	2.0	1.92	
p90/50 Wages: Skilled	2.01	1.96	
p50/10 Wages: Unskilled	1.59	1.57	
p50/10 Wages: Skilled	2.1	2.07	
Min Wage Coverage: Unskilled	0.17	0.16	
Min Wage Coverage: Skilled	0.06	0.06	
Unemployment: Unskilled	0.07	0.07	
Unemployment: Skilled	0.03	0.03	
Δ Unemployment Unskilled (2013-17)	0.01	0.0	
Δ Unemployment Skilled (2013-17)	0.0	0.0	

Calibrated Parameters

Introduction

Monvation

Model

Environment

Environment - Firm

Behaviour: Workers Behaviour: Firms

Calibration

Results

Conclusion

Table: Estimated Parameters

Parameter	Description	Value
Ψ_u	Elasticity of substitution between unskilled workers	3.611
Ψ_s	Elasticity of substitution between skilled workers	8.889
μ	Share parameter determining skill premium in KORV production function $\label{eq:continuous}$	0.299
A	Total Factor Productivity	7.581
η_u	Variance parameter of worker ability distribution: unskilled workers	0.343
$\eta_{\scriptscriptstyle S}$	Variance parameter of worker ability distribution: skilled workers	0.419
ϕ_u	Nash Bargaining Parameter for unskilled workers	0.264
ϕ_s	Nash Bargaining Parameter for skilled workers	0.146
κ_u	Hiring cost: unskilled workers	3425.825
K _S	Hiring cost: skilled workers	4116.545

Calibrated Parameters

Introduction

Motivation

Model

Environment Workers

Environment - Firms Behaviour: Workers Behaviour: Firms

Calibration

Results

Conclusion

Table: Calibrated Parameters

Parameter	Description	Source	Value
δ_u	Job destruction rate: unskilled	LFS 2013q4-2014q3	0.011
δ_s	Job destruction rate: skilled	LFS 2013q4-2014q3	0.007
χ_u	Relative search intensity of employed to unemployed: unskilled	LFS 2013q4-2014q3 (ratio of employer change rate to unemployment exit)	0.112
χ_s	Relative search intensity of employed to unemployed: unskilled	LFS 2013q4-2014q3 (ratio of employer change rate to unemployment exit)	0.075
b	Monthly Unemployment benefits (job seekers allowance)	Legislative level 2013-14	313.492
m_w	Hourly minimum wage	Legislative level 2013-14	6.31
σ	Elasticity of substitution between un- skilled and skilled workers	Krusell et al. (2000)	0.401
ρ	Elasticity of substitution between skilled workers and capital equipment	Krusell et al. (2000)	-0.495
α	Capital Structures Parameter	Krusell et al. (2000)	0.117
λ	Input share parameter for capital equipment and skilled labour	Krusell et al. (2000)	0.3
γ	Matching Parameter	Hagedorn and Manovskii (2008)	0.407
β	Monthly discount factor for workers and firms	By assumption	0.996

Out of Sample Performance

Motivation
Literature

Model

Environment Workers

Environment - Firm

Calibration

Doculto.

Conclusion

Model is under-predicting level of mark-ups in economy (OTJ search impacts too stark?)

Table: Non-targeted Macro Moments

Moment	Model Moment	Empirical Moment
Labour Share of GVA ¹	0.76	0.76
Mark-Up Ratio ²	1.06	1.5
Net Capital Stock/GVA ³	1.77	2.6

 $[\]frac{1}{2} \text{ Bank of England, includes self-employed labour income (imputing it as compensation per employee multiplied by number of self-employed)}.$

3 UK National accounts, ONS.

² Empirical moment taken from De Loecker and Eeckhout (2018), model moment is calculated analogously (as described in text).

Results: Matching Reduced Form Evidence

Introduction Motivation

Mode

Environment -Workers Environment - Firms Behaviour: Workers

Calibration

Results

Conclusion

Figure: Model vs Empirical Evidence

- Model hits empirical employment elasticity from UK minimum wage introduction (almost by design), but significantly under predicts impact on wages and firm profits.
- Above finding suggests might be worth introducing firm heterogeneity

Results: Searching for Nonlinearities

ntroduction

Literature

Model

Environment

Environment - Fir

Behaviour: Worker Behaviour: Firms

Calibration

Results

Conclusion

Results: Drivers of Nonlinearities

Introduction

Motivation

Model

Environment

Environment - Fir

Behaviour: Firms

Calibration

Results

Conclusion

Conclusions and Next Steps

Introduction

Motivation

Literature

Model Environment -

Workers
Environment - Firms
Behaviour: Workers
Behaviour: Firms

Calibration

Result

Conclusion

 I develop a model that combines search frictions with a production function featuring several margins of substitution between factor inputs.

- Nonlinear unemployment reaction in model from non-uniform distribution of skills; endogenous vacancy creation, imperfect substitution between factor inputs.
- ▶ When calibrated to the UK economy, we find:
 - 1. quantitatively, imperfect substitution between inputs is an important endogenous source of nonlinearities.
 - 2. nonlinear unemployment reaction of unskilled workers starts to bite (gently) when minimum wage is around 55-60% of median wage.
- Next Steps: Introduce firm heterogeneity? Might help model match both wage, profit and unemployment reaction to minimum wage increases. Also model could address emerging evidence from Germany.