Exercise 1

Since the times between arrivals of cars independent with mean 3 minutes and finite variance, so the arrival rate of car is $\frac{1}{3}$, and the process rate $\frac{1}{3}$.

Thus $P = \frac{\text{arrival rate}}{\text{process rate}} = \frac{1/5}{1/2} = \frac{2}{5}$

And, the probability of having no vehicles in the toll booth: $P_{no} = 1 - P = \frac{3}{5}$

Thus , the probability having n customers in is $P_n = (P)^n \cdot P_{no} = (-3)^n \times \frac{3}{5}$

When $n \to \infty$, $\lim_{n \to \infty} P_n = \lim_{n \to \infty} \left(\frac{2}{5}\right)^n \times \frac{3}{5} \to 0$

Exercise 2:

Let
$$y$$
 denote the number of tlips required to get the first tail.
 $y \sim \text{GeoC}[-p)$
 $E[x] = \sum_{i=1}^{\infty} E[x|y=i]P(y=i)$
 $= \sum_{i=1}^{\infty} E[x|y=i]P(y=i) + \sum_{i=r+1}^{\infty} E[x|y=i]P(y=i)$
Since $E[x|y=i] \leq i + E[x] + i \leq r$
 $i \neq i > r$

Thus,

$$E[X] = \sum_{i=1}^{r} (i + E[X]) P(y=i) + \sum_{i=re}^{r} r P(y=i)$$

 $= \sum_{i=1}^{r} (i + E[X]) p^{i-1} (1-p) + \sum_{i=re}^{r} r p^{i-1} (1-p)$
 $= (1-p) \sum_{i=1}^{r} p^{i-1} (i + E[X]) + (1-p) \sum_{i=re}^{r} p^{i-1} r$