人工智能程序设计

M3 人工智能基础方法 2 数据预处理

张莉

Forms of Data Preprocessing

数据预处理

- 1. 数据清洗
- 2. 数据集成
- 3. 数据变换
- 4. 数据规约之数值规约

人工智能程序设计 数据清洗•DATA CLEANING

缺失值处理

如何处理?

- 删除
- 填充

缺失值填充

固定值

均值,中位数/众数

上下数据

插值函数

最可能的值

缺失值处理—DataFrame

```
quotesdf_nan = pd.read_csv('AXP_NaN.csv', index_col = 'Date')
判断缺失值 df.isnull()
删除缺失行 df.dropna()
填充缺失行 df.fillna()
```

如何用均值填充?

quotesdf_nan.fillna(method='ffill', inplace = True)

异常值处理

如何观察异常值?

- 简单统计
- 绘图
- 基于密度,最近邻和 聚类等方法

如何处理?

- 删除
- 同缺失值处理
- 局部均值(分箱)
- 不处理

工智能程序设计 数据集成•DATA INTEGRATION

数据集成

考虑哪些问题?

- 实体识别
- 冗余属性/记录识别
- 数据值冲突的检测与 处理

```
id id
student_name stu_name
```

```
id id student_name stu_name T1: price days T2: prices 12,17,23,11 12,17,23,11
```

height: 170

Height: 1.7

大型能程序设计 数据变换・DATA TRANSFORMATION

数据变换

把数据变换成适合的形式

常
见
力
方
式规范化
连续属性离散化
特征二值化

数据规范化

解决哪些影响?

- 量纲不同
- 数值范围差异大

规范化常用方法

- 最小-最大规范化
- z-score规范化 (零-均值规范化)
- 小数定标规范化

```
>>> boston = datasets.load boston()
>>> boston.data # (503, 13)
array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
    4.9800e+00], ...., ]])
>>> boston.target
array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, ..., ]])
>>> boston_df = pd.DataFrame(boston.data[:, 4:7])
>>> boston_df.columns = boston.feature_names[4:7]
>>> boston df
      NOX RM AGE
    0.538 6.575 65.2
                              4: NOX - 一氧化氮浓度(每1000万份)nitric oxides concentration (parts)
    0.469 6.421 78.9
                              per 10 million)
    0.469 7.185 61.1
                              5: RM - 平均每居民房数 average number of rooms per dwelling
                              6: AGE - 在1940年之前建成的所有者占用单位的比例proportion of owner-
    0.458 6.998 45.8
                              occupied units built prior to 1940
    0.458 7.147 54.2
                              MEDV - Median value of owner-occupied homes in $1000's
504 0.573 6.794 89.3
```

505 0.573 6.030 80.8

最小-最大规范化

$$x' = \frac{x - min}{\max - min}$$

(df-df.min())/(df.max()-df.min())

问题:

- 若将来的数字超过min和max需重新定义
- 若某个数很大则规范化后值相近且均接近0

	NOX	RM	AGE
0	0.538	6.575	65.2
1	0.469	6.421	78.9
2	0.469	7.185	61.1
3	0.458	6.998	45.8
4	0.458	7.147	54.2
5	0.458	6.430	58.7

	NOX	RM	AGE
0	0.314815	0.577505	0.641607
1	0.172840	0.547998	0.782698
2	0.172840	0.694386	0.599382
3	0.150206	0.658555	0.441813
4	0.150206	0.687105	0.528321
5	0.150206	0.549722	0.574665

最小-最大规范化

from sklearn import preprocessing

```
min_max_scaler = preprocessing.minmax_scale(df) # [0,1]
max_abs_scaler = preprocessing.maxabs_scale(df) # [-1,1]
```


z-score规范化

$$x' = \frac{x - \bar{x}}{\sigma}$$

(df-df.mean())/df.std()

特征:

- 使用最多
- 处理后数据的均值为0,标准差为1

	NOX	RM	AGE
0	0.538	6.575	65.2
1	0.469	6.421	78.9
2	0.469	7.185	61.1
3	0.458	6.998	45.8
4	0.458	7.147	54.2
5	0.458	6.430	58.7

	NOX	RM	AGE
0	-0.144075	0.413263	-0.119895
1	-0.739530	0.194082	0.366803
2	-0.739530	1.281446	-0.265549
3	-0.834458	1.015298	-0.809088
4	-0.834458	1.227362	-0.510674
5	-0.834458	0.206892	-0.350810

z-score规范化

scaler = preprocessing.scale(df)

小数定标规范化

$$x' = \frac{x}{10^{j}}$$

df/10**np.ceil(np.log10(df.abs().max()))

NOX RM AGE 0 0.538 6.575 65.2 1 0.469 6.421 78.9 2 0.469 7.185 61.1 3 0.458 6.998 45.8 4 0.458 7.147 54.2 5 0.458 6.430 58.7				
1 0.469 6.421 78.9 2 0.469 7.185 61.1 3 0.458 6.998 45.8 4 0.458 7.147 54.2		NOX	RM	AGE
2 0.469 7.185 61.1 3 0.458 6.998 45.8 4 0.458 7.147 54.2	9	0.538	6.575	65.2
3 0.458 6.998 45.8 4 0.458 7.147 54.2	1	0.469	6.421	78.9
4 0.458 7.147 54.2	2	0.469	7.185	61.1
	3	0.458	6.998	45.8
5 0.458 6.430 58.7	4	0.458	7.147	54.2
	5_	0.458	6.430	58.7

特征:

- 移动小数点位置,移动位数取决于属性绝对值的最大值
- 常见落在[-1, 1]之间

	NOX	RM	AGE
0	0.538	0.6575	0.652
1	0.469	0.6421	0.789
2	0.469	0.7185	0.611
3	0.458	0.6998	0.458
4	0.458	0.7147	0.542
5	0.458	0.6430	0.587

连续属性离散化

方法:

- 分箱 (binning): 等宽法, 等频法
- 聚类

pd.cut(df.AGE, 5, labels = range(5))
pd.qcut(df.AGE, 5, labels = range(5))

0	65.2
1	78.9
2	61.1
3	45.8
4	54.2
5	58.7

0	3	0	1
1	3	1	2
2	2	2	1
3	2	3	1
1 2 3 4 5	2 2 2 2	4	1 1 1
5	2	5	1

特征二值化binarization

rating	Label
6	1
4	0
7	
7	1
5	0
3 3 9	0
3	0
9	1
4	
6	
7	1
5	0
9	1
9	1
8	1
2	0
2 5	0
3	0
3	

>>> from sklearn.preprocessing import Binarizer

>>> X = boston.target.reshape(-1,1)

>>> Binarizer(threshold = 20.0).fit_transform(X)

大工智能程序设计 数据规约之数值规约·VALUE REDUCTION

数据规约

目的:

 对属性和数值进行规约 获得一个原数据集的小 的多的规约表示,但仍 接近原数据的完整性, 在规约后数据集上挖掘 可产生近乎相同的分析 结果

数据规约

属性规约:向前选择,向后删除,决策树,PCA

数值规约:有参方法(回归法,对数线性模型),无参法(直方图,聚类,抽样)

属性规约—PCA

>>> from sklearn.decomposition import PCA

>>> X = preprocessing.scale(boston.data)

>>> pca = PCA(n_components=5)

>>> pca.fit(X)

>>> pca.explained_variance_ratio_

array([0.47129606, 0.11025193, 0.0955859, 0.06596732, 0.06421661])

数值规约—直方图

表现:

- 用分箱表示数据分布
- 每个桶(称为单桶)代表一个属性-频率对

array([4, 8, 9, 8, 7, 2, 8, 7, 5, 3, 1, 4, 5, 8, 7, 9, 5, 9, 9, 5, 9, 1, 9, 7, 1, 2, 9, 5, 5, 5, 9, 4, 3, 5, 5, 4, 7, 4, 9, 8, 2, 6, 3, 5, 3, 2, 9, 1, 3, 1])

h = np.random.randint(1,10,50)

数值规约—直方图

plt.hist(data, bins=...)

array([4, 8, 9, 8, 7, 2, 8, 7, 5, 3, 1, 4, 5, 8, 7, 9, 5, 9, 9, 5, 9, 1, 9, 7, 1, 2, 9, 5, 5, 5, 9, 4, 3, 5, 5, 4, 7, 4, 9, 8, 2, 6, 3, 5, 3, 2, 9, 1, 3, 1])

数值规约—抽样

抽样

随机抽样:不放回

随机抽样: 放回

聚类抽样

分层抽样

特征列举:

- 不放回随机抽样: <u>从原始数据集</u> <u>D的N个样本中抽取n个样本,每</u> <u>次抽到不同的数据</u>
- 放回随机抽样: <u>从原始数据集D</u> <u>的N个样本中抽取n个样本,抽</u> <u>取后记录它后放回,有可能抽到</u> <u>同样的数据</u>
- 分层抽样:数据集D为划分成互 不相交的部分即层,对每一层进 行简单随机抽样获得最终结果

Sampling Techniques

From: slideplayer.com

随机抽样

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
24	4.8	3.4	1.9	0.2
81	5.5	2.4	3.7	1.0
145	6.7	3.0	5.2	2.3
115	6.4	3.2	5.3	2.3
136	6.3	3.4	5.6	2.4
98	5.1	2.5	3.0	1.1
79	5.7	2.6	3.5	1.0
143	6.8	3.2	5.9	2.3
87	6.3	2.3	4.4	1.3
107	7.3	2.9	6.3	1.8

不放回:

iris_df.sample(n = 10)
iris_df.sample(frac = 0.3)

有放回:

iris_df.sample(n = 10, replace = True)
iris_df.sample(frac = 0.3, replace = True)

分层抽样

- >>> A = iris_df[iris_df.target == 0].sample(frac = 0.3)
- >>> B = iris_df[iris_df.target == 1].sample(frac = 0.2)
- >>> A.append(B)

M3.2 小结

- 01 数据清洗
- 02 数据集成
- 03 数据变换
- 04 数据规约之数值规约

Nanjing University