load the required libraries
import pandas as pd

give path to your dataset(csv) file
df·=·pd.read_csv(r'/iris.csv')

print(df)

	sepal.length	sepal.width	petal.length	petal.width	variety
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

[150 rows x 5 columns]

df.isnull()

	sepal.length	sepal.width	petal.length	petal.width	variety	11+
0	False	False	False	False	False	
1	False	False	False	False	False	
2	False	False	False	False	False	
3	False	False	False	False	False	
4	False	False	False	False	False	
145	False	False	False	False	False	
146	False	False	False	False	False	
147	False	False	False	False	False	
148	False	False	False	False	False	
149	False	False	False	False	False	
4 = 0						

150 rows × 5 columns

df.isnull().any()

sepal.length False

```
sepal.width False
   petal.length False
              False
    petal.width
                 False
   variety
   dtype: bool
# count Column wise missing value using isnull()
df.isnull().sum()
    sepal.length
    sepal.width
                 0
   petal.length
    petal.width
                 0
                 0
   variety
    dtype: int64
# count row wise missing value using isnull()
df.isnull().sum(axis=1)
    0
         0
    1
         (-)
    2
    3
         0
         0
    145
         0
    146
         0
   147
         0
   148
         0
   149
   Length: 150, dtype: int64
# count Not a Number Values
df.isna().sum()
    sepal.length
    sepal.width
                 (-)
   petal.length
                0
    petal.width
                 0
    variety
                 0
    dtype: int64
# count of missing values of a specific column
df.variety.isnull().sum()
    0
# groupby count of missing values of a column
df.groupby(['sepal.length'])['sepal.width'].apply(lambda x: ]
    sepal.length
    4.3
```

```
4.4
       0
4.5
       0
4.6
       0
4.7
       0
4.8
4.9
       0
5.0
       0
5.1
5.2
       0
5.3
       0
5.4
5.5
       0
5.6
       0
5.7
       0
5.8
       0
5.9
       0
6.0
       0
6.1
       0
6.2
       0
6.3
       0
6.4
       0
6.5
       0
6.6
       0
6.7
       0
6.8
       0
6.9
       0
7.0
7.1
       0
7.2
       0
7.3
7.4
       0
7.6
       0
7.7
7.9
```

Name: sepal.width, dtype: int64

To check the datatype of each column df.dtypes

```
sepal.length float64
sepal.width float64
petal.length float64
petal.width float64
variety object
dtype: object
```

To change the datatype (data type of petal.lengthchanged to
df['petal.length'] = df['petal.length'].astype("int")
df.dtypes

```
sepal.length float64
sepal.width float64
petal.length int64
petal.width float64
variety object
dtype: object
```

data normalization
from sklearn import preprocessing, datasets

iris = datasets.load_iris()

load iris dataset into DataFrame Object df
df = pd.DataFrame(iris.data, columns=iris.feature names)

print first 5 values of dataframe
df.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

x = df[['sepal length (cm)']].values.astype(float)

Create a minimum and maximum processor object
min_max_scaler = preprocessing.MinMaxScaler()

Create an object to transform the data to fit minmax proces
x_scaled = min_max_scaler.fit_transform(x)

Run the normalizer on the dataframe
df normalized = pd.DataFrame(x scaled)

print(df_normalized)

0 0.222222 1 0.166667 2 0.111111 3 0.083333 4 0.194444

```
146 0.555556
   147 0.611111
   148 0.527778
   149 0.444444
   [150 rows \times 1 columns]
# iris dataset used for label encoding
df = pd.read csv(r'/iris.csv')
from sklearn import preprocessing
# Observe the unique values for the variety column(of flowers
df['variety'].unique()
   array(['Setosa', 'Versicolor', 'Virginica'], dtype=object)
# define label encoder object knows how to understand word la
label encoder = preprocessing.LabelEncoder()
# Encode labels in column 'variety'.
df['variety']= label_encoder.fit_transform(df['variety'])
# Observe the "label encoded" unique values for the variety
df['variety'].unique()
   array([0, 1, 2])
```

✓ 0s completed at 19:24