Word Completion

Thomas Graf

Stony Brook University lin120@thomasgraf.net

LIN 220, Spring 2019 Lecture 2

Word completion: a simple problem(?)

- When you write something on your phone, it automatically suggests words while you're typing them.
- Seems easy, but it's fairly intricate.

Key Insights/Skills

- transition probabilities with n-grams
- "More than 1, but less than 5."
- efficient data structures: tries/prefix trees

Attempt 1: simple lookup

 To make suggestions for completions, we only need an English/German/...dictionary.

```
# load English dictionary from nltk package
from nltk.corpus import words
# and see if "test" is in the list
test" in words.words()
>>> True
```

Given word w, the set of possible completions for w consists of all listed words that start with w:

```
\label{eq:completions} \begin{aligned} \mathsf{completions}(\mathbf{w}) &= \{\mathbf{w'} \mid \mathbf{w'} \text{ is a word of English, and} \\ &\quad \mathbf{w'} \text{ starts with } \mathbf{w} \} \end{aligned}
```

Attempt 1 [cont.]

1

► completions(w) is easily computed in Python.

def completions(word, wordlist):

>>> {"testing", "testingly"}

```
"""Return set of all known completions for word."""

return {comp for comp in wordlist

if comp.startswith(word)}

completions("testing", words.words())
```

Is this a good solution?

Pro Contra

```
completions("test", words.words())

"test", "testa", "testable", "testacean", ...}
```

Is this a good solution?

Pro	Contra
simple	

```
completions("test", words.words())

"test", "testa", "testable", "testacean", ...}
```

Is this a good solution?

Pro	Contra
simple	too many completions

```
completions("test", words.words())

; "test", "testa", "testable", "testacean", ...}
```

Is this a good solution?

Pro	Contra
simple	too many completions
	unlikely completions

```
completions("test", words.words())

; "test", "testa", "testable", "testacean", ...}
```

Improving attempt 1

► We can limit the number of suggestions, if we use a **list** instead of a **set**.

- But this still includes unlikely completions like testa.
- We need probabilities!

Probability = frequency (?)

- We only want to show the most likely completions.
- But what is most likely?
- ▶ Naive proposal: the most frequent word!

Probability = frequency (?)

- We only want to show the most likely completions.
- But what is most likely?
- ▶ Naive proposal: the most frequent word!

Um, but how do we figure out what is most common?

How to find common words

- ► Task: determine which words are common
- Solution:
 - Collect sufficiently large sample of texts
 - 2 For each word (type), count how often it occurs in the entire sample (= its number of tokens).
 - 3 Calculate the **frequency** of the word in the sample:

$$freq(\textit{word}, \textit{sample}) = \frac{\text{number of tokens of } \textit{word}}{\text{word length of whole } \textit{sample}}$$

Types vs tokens

We have to distinguish **word types** (a, the, Mary, red, ...) from their **word tokens**, which are the instances of a specific word type. For instance, the type "word" has 4 tokens in this box.

How to find common words

- ► Task: determine which words are common
- Solution:
 - Collect sufficiently large sample of texts
 - 2 For each word (**type**), count how often it occurs in the entire sample (= its number of **tokens**).
 - 3 Calculate the **frequency** of the word in the sample:

$$freq(word, sample) = \frac{number of tokens of word}{word length of whole sample}$$

Types vs tokens

We have to distinguish **word types** (a, the, Mary, red, ...) from their **word tokens**, which are the instances of a specific word type. For instance, the type "word" has 4 tokens in this box.

How to find common words

- ► Task: determine which words are common
- Solution:
 - Collect sufficiently large sample of texts
 - 2 For each word (**type**), count how often it occurs in the entire sample (= its number of **tokens**).
 - 3 Calculate the **frequency** of the word in the sample:

$$freq(word, sample) = \frac{number of tokens of word}{word length of whole sample}$$

Types vs tokens

We have to distinguish **word types** (a, the, Mary, red, ...) from their **word tokens**, which are the instances of a specific **word** type. For instance, the type "word" has 4 tokens in this box.

Sample: 1000 words long

Words: be, bed, bee, bell

Type be bed bee bell Tokens 13 2 0 3

$$freq(be) = \frac{13}{1000} = 1.3\%$$
 $freq(bee) = \frac{0}{1000} = 0.0\%$

$$treq(bee) = \frac{0}{1000} = 0.0\%$$

$${\sf freq}({\sf bed}) = \frac{{\color{red}2}}{1000} = 0.2\% \qquad {\sf freq}({\sf bell}) = \frac{{\color{red}3}}{1000} = 0.3\%$$

$$freq(bell) = \frac{3}{1000} = 0.3\%$$

Sample: 1000 words long

Words: be, bed, bee, bell

freq(be) =
$$\frac{13}{1000}$$
 = 1.3% freq(bee) = $\frac{0}{1000}$ = 0.0% freq(bed) = $\frac{2}{1000}$ = 0.2% freq(bell) = $\frac{3}{1000}$ = 0.3%

Ordered completions for be:

Sample: 1000 words long

Words: be, bed, bee, bell

freq(be) =
$$\frac{13}{1000}$$
 = 1.3% freq(bee) = $\frac{0}{1000}$ = 0.0% freq(bed) = $\frac{2}{1000}$ = 0.2% freq(bell) = $\frac{3}{1000}$ = 0.3%

7 1000

Ordered completions for be: be

Sample: 1000 words long

Words: be, bed, bee, bell

freq(be) =
$$\frac{13}{1000}$$
 = 1.3% freq(bee) = $\frac{0}{1000}$ = 0.0%

freq(bed) =
$$\frac{2}{1000}$$
 = 0.2% freq(bell) = $\frac{3}{1000}$ = 0.3%

Ordered completions for be: be, bell

Sample: 1000 words long

Words: be, bed, bee, bell

freq(be) =
$$\frac{13}{1000}$$
 = 1.3% freq(bee) = $\frac{0}{1000}$ = 0.0% freq(bed) = $\frac{2}{1000}$ = 0.2% freq(bell) = $\frac{3}{1000}$ = 0.3%

Ordered completions for be: be, bell, bed

Sample: 1000 words long

Words: be, bed, bee, bell

freq(be) =
$$\frac{13}{1000}$$
 = 1.3% freq(bee) = $\frac{0}{1000}$ = 0.0% freq(bed) = $\frac{2}{1000}$ = 0.2% freq(bell) = $\frac{3}{1000}$ = 0.3%

Ordered completions for be: be, bell, bed, bee

Types of corpora

Corpus = large, structured collections of texts mono-/multilingual just one language, or many? annotated not just text, but additional annotations (e.g. tags for part of speech, syntax trees)

Some common corpora in Python's NLTK

```
Brown 1 million words, tagged, 500 samples across 15 genres (fiction, news paper, ...)

Gutenberg 1.8 million words, 18 classic texts of fiction
```

Penn 40k words, tagged and parsed

Reuters 1.3 million words, news documents

Switchboard 36 phone calls, fully transcribed and parsed

Wordlist 960k words (no repetitions) and 20k affixes for 8 languages

Getting probabilities from the corpus

```
from nltk.corpus import brown
from collections import Counter

# load Brown corpus as sequence of words
brown_text = brown.words()
# total number of words = length of text
total = len(brown_text)
# calculate counts
brown_counts = Counter(brown_text)
# convert counts to frequencies
for word in brown_counts:
brown_counts[word] = brown_counts[word]/total
```

Alright, we have frequencies for each word. Now what?

Ordering completions by frequency

► For a good user experience, completions should appear in descending order of probability.

```
completions("test", words.words(), brown_counts)
>>> ["test", "testimony", "tested", "testing", ...]
```

Summary for revised attempt 1

- Needed resources: corpus
- Compute frequencies for all words in corpus
- 3 Look up possible completions for user input
- 4 Sort completions by their frequency

Great, we're done, right?! Not quite...

Probability \neq word frequency

► The probability of a word isn't fixed, it varies by **context**.

Example			
	tested	testing	testimony
I have	hi	low	mid
I have been	hi	hi	low
I have the	low	low	hi

► The frequency of words is not enough, we need frequencies of sequences of words ⇒ n-grams

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

Example

String

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

Example

String

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

Example

String

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

Example

String

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

Example
String
John and Marie are not Bill and Sue

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the

n-gram a contiguous sequence of n words

n	Name	Example	
1	unigram	John	
2	bigram	John to	
3	trigram	John to be	
4	4-gram	John to be in	
5	5-gram	John to be in the	

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

- String
 when buffalo buffalo buffalo buffalo buffalo
- Bigram token list

Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

- String
 when buffalo buffalo buffalo buffalo buffalo
- Bigram token list when buffallo.
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

- String
 when buffalo buffalo buffalo buffalo buffalo buffalo
- Bigram token list when buffallo, buffalo buffalo,
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

- String
 when buffalo buffalo buffalo buffalo buffalo
- Bigram token list when buffallo, buffalo buffalo, buffalo buffalo,
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

- String
 when buffalo buffalo buffalo buffalo buffalo
- ▶ Bigram token list when buffalo, buffalo buffalo, buffalo buffalo, buffalo, buffalo, buffalo, buffalo, buffalo,
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

- String
 when buffalo buffalo buffalo buffalo buffalo
- Bigram token list when buffallo, buffalo buffalo, buffalo buffalo, buffalo, buffalo, buffalo,
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

- String
 when buffalo buffalo buffalo buffalo buffalo
- ➤ Bigram token list when buffallo, buffalo buffalo, buffalo buffalo, buffalo buffalo, buffalo buffalo buffalo
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

- String
 when buffalo buffalo buffalo buffalo buffalo
- ➤ Bigram token list when buffallo, buffalo buffalo, buffalo buffalo, buffalo buffalo, buffalo buffalo buffalo
- Bigram counts and frequencies
 - 1 when buffalo: $1 \Rightarrow \frac{1}{6} = 16.7\%$
 - 2 buffalo buffalo: $5 \Rightarrow \frac{5}{6} = 83.3\%$

- Needed resources: corpus
- Convert corpus to list of n-gram tokens
- Compute frequencies for all n-grams
- 4 Look up possible completions for user input
- **5** Look at previous n-1 words.
- 6 Sort completions by n-gram probability

Example

Trigram frequencies

bus is late	30%	train is late	15%
bus is lovely	25%	train is lovely	8%
bus is lazy	10%	train is lazy	2%

Input
I will text you if the train is I

Sorted completions

- Needed resources: corpus
- Convert corpus to list of n-gram tokens
- 3 Compute frequencies for all n-grams
- 4 Look up possible completions for user input
- **5** Look at previous n-1 words.
- 6 Sort completions by n-gram probability

Example

Trigram frequencies

bus is late	30%	train is late	15%
bus is lovely	25%	train is lovely	8%
bus is lazy	10%	train is lazy	2%

Input
I will text you if the train is I

Sorted completions late

- Needed resources: corpus
- Convert corpus to list of n-gram tokens
- 3 Compute frequencies for all n-grams
- 4 Look up possible completions for user input
- **5** Look at previous n-1 words.
- 6 Sort completions by n-gram probability

Example

Trigram frequencies

bus is late	30%	train is late	15%
bus is lovely	25%	train is lovely	8%
bus is lazy	10%	train is lazy	2%

Input
I will text you if the train is I

Sorted completions late, lovely

- Needed resources: corpus
- Convert corpus to list of n-gram tokens
- 3 Compute frequencies for all n-grams
- 4 Look up possible completions for user input
- **5** Look at previous n-1 words.
- 6 Sort completions by n-gram probability

Example

Trigram frequencies

bus is late	30%	train is late	15%
bus is lovely	25%	train is lovely	8%
bus is lazy	10%	train is lazy	2%

Input
I will text you if the train is I

Sorted completions late, lovely, lazy

How it is done: The easy generalization step

```
def bigrams(text):
    """Convert text to list of bigram tokens."""
    return [text[n:n+2] for n in range(len(text) - 1)]

brown.words()[:5]

>>> ["The", "Fulton", "County", "Grand", "Jury"]

bigrams(brown.words())[:3]

>>> [["The", "Fulton"], ["Fulton", "County"],

["County", "Grand"]]
```

```
brown_bigrams = bigrams(brown.words())

total = len(brown_bigrams)

brown_bicounts = Counter(brown_bigrams)

for bigram in brown_bicounts:

brown_bicounts[bigram] = brown_bicounts[bigram]/total
```

How it is done: The trickier part

```
def bigram_completions(word, previous_word, counts):
2
             # set of all compatible bigrams
             comps = [comp for comp in counts
3
                      if comp[:-1] == previous_word and
4
                         comp[-1].startswith(word)]
5
             # sort the bigram completions
6
             ordered_ngrams = sorted(comps,
                                      key=lambda x: counts[x],
8
                                      reverse=True)
9
             # only keep last word of each bigram
10
             return [ngram[-1] for ngram in ordered_ngrams]
11
```

Linguistic evaluation

We now use the local context to choose word completions.

The n-Gram Hypothesis

One can reliably predict the next word based on the **preceding** n-1 words.

► The n-gram hypothesis is **not quite true**, though.

Context matters a lot

Words do not exist in a vacuum.

Example

The word *hypothyroidism* is rarely heard or seen, unless you're an endocrinologist.

► Word choices depend greatly on genre, target audience, age of the speaker, and so on.

Common fixes

- Use frequencies from the appropriate genre
 (BUT: must be able to reliably determine genre first)
- Learn directly from the use case (e.g. analyze all text messages on phone)

Long-distance dependencies in language

Word choice can be influenced by words that are very far away.

Subject-verb agreement

- ▶ The key to the cabinet **is** on the table.
- ► The keys to the cabinets **are** on the table.
- ► The key to the cabinets **is**/are on the table.
- ► The keys to the cabinet **is/are** on the table.
- ▶ Psycholinguistic observation: humans get those "wrong" too
- Potential fix: larger n-grams

How long can n-grams be?

- It is tempting to move to longer and longer n-grams in order to handle long-distance dependencies.
- But this has two problems:
 data sparsity longer n-grams require too much data storage needs longer n-grams require lots of storage
- ▶ Data sparsity is much more severe than storage needs.

Sparse data: A simple calculation

Words	bigrams	trigrams	5-grams	6-grams
10	100	1000	10,000	100,000
100	10,000	1,000,000	10,000,000,000	1,000,000,000,000
10,000	10^{8}	${f 10}^{12}$	10^{20}	10^{24}
25,000	6.3×10^{8}	$1.6 imes 10^{13}$	9.7×10^{21}	2.4×10^{26}

Some comparison values

- $\begin{array}{ccc} 4.3\times 10^{17} & \text{number of seconds since the Big Bang} \\ 5\times 10^{22} & \text{number of stars in observable universe} \\ & 10^{24} & \text{milliliters of water in the Earth's oceans} \\ 8.8\times 10^{26} & \text{diameter of observable universe, in meters} \\ & 10^{80} & \text{number of atoms in observable universe} \end{array}$
- ► Conclusion: with large n, most n-grams are never encountered in a corpus ⇒ frequency 0

Things get worse: A more realistic estimate

- ► The Linux dictionary american-english-insane has 650,000 entries.
- ► This makes the numbers much worse. Can you guess how many 5-grams there are then?

Things get worse: A more realistic estimate

- ► The Linux dictionary american-english-insane has 650,000 entries.
- ► This makes the numbers much worse. Can you guess how many 5-grams there are then?

116 octillion $\approx 10^{29}$

Things get worse: A more realistic estimate

- ► The Linux dictionary american-english-insane has 650,000 entries.
- ► This makes the numbers much worse. Can you guess how many 5-grams there are then?

116 octillion $\approx 10^{29}$

 10^{29} is larger than the number of shotglasses it takes to drain the Earth's oceans over 2000 times.

Trick 1: Stemming and lemmatization

- Removing inflectional markers reduces number of words
- Two solutions:
 - stemming is quick and dirty
 - lemmatization is accurate but complex

stemming cut off word ends that look like inflection

Example

- ▶ cats ⇒ cat
- ▶ tasks ⇒ task (noun and verb)
- ▶ asking ⇒ ask
- ▶ meeting ⇒ meet (noun and verb)
- ▶ staging ⇒ stag

Trick 1: Stemming and lemmatization [cont.]

lemmatization stemming with context information

Example

- ightharpoonup cats \Rightarrow cat
- ▶ tasks ⇒ task (noun and verb)
- ▶ asking ⇒ ask
- ▶ meeting ⇒ meet (only verb)
- ▶ staging ⇒ stag/stage

Evaluation

- Stemming/lemmatization reduces the number of words.
- \blacktriangleright But we still have at least 10,000 words and thus 10^{20} 5-grams.

Trick 2: POS tagging

- Every word has a part of speech (POS).
- ▶ If we know the POS of a word, we can use that for estimating probabilities.

Example

- User input: an
- Preceding words: to
- Completions: an (Det), annoint (V)
- Suggestion: to annoint
- ▶ **Reasoning:** even though *to an* is more common than *to annoint*, *to V* is more common than *to Det*.

Trick 3: Statistics

- ▶ Backoff Method If an n-gram has frequency 0, use the frequency of the corresponding (n-1)-gram.
- ► Good-Turing Smoothing Change frequency from 0 to a very low value while lowering high frequency values.

Evaluation

- ► These tricks solve the issue of n-grams with 0% frequency.
- But they do not solve the basic problem that large n-gram models are incredibly data hungry.

Another problem: Storage

- ► While storage space is increasing with each year, you don't want to waste GB on storing n-gram frequencies.
- ▶ We want a storage solution that is
 - compact,
 - easy to expand,
 - fast to search.

List search is a much studied problem.

Simplest Algorithm: Linear Search

- ▶ Start at beginning of list.
- ▶ Move from left to right until the wanted item has been found.
- ▶ If no match is found before end of list, item is not in list.

List search is a much studied problem.

Simplest Algorithm: Linear Search

- ► Start at beginning of list.
- ▶ Move from left to right until the wanted item has been found.
- ▶ If no match is found before end of list, item is not in list.

List search is a much studied problem.

Simplest Algorithm: Linear Search

- ► Start at beginning of list.
- ▶ Move from left to right until the wanted item has been found.
- ▶ If no match is found before end of list, item is not in list.

List search is a much studied problem.

Simplest Algorithm: Linear Search

- ▶ Start at beginning of list.
- ▶ Move from left to right until the wanted item has been found.
- ▶ If no match is found before end of list, item is not in list.

List search is a much studied problem.

Simplest Algorithm: Linear Search

- ▶ Start at beginning of list.
- ▶ Move from left to right until the wanted item has been found.
- ▶ If no match is found before end of list, item is not in list.

List search is a much studied problem.

Simplest Algorithm: Linear Search

- ▶ Start at beginning of list.
- ▶ Move from left to right until the wanted item has been found.
- ▶ If no match is found before end of list, item is not in list.

Evaluating linear search

- Two criteria for evaluating algorithms: correctness and efficiency
- An algorithm is correct if and only if it is both sound and complete.
 - sound algorithm only returns correct solutions complete algorithm can find all correct solutions
- Linear search is correct.
 - ▶ if item is not in list, linear search will not claim otherwise
 - ▶ if item is in list, linear search will find it
- But it is also slow.
 - ightharpoonup In a list with n items, it may take n steps to find item.
 - And we have tons of n-grams!

Improving on lists: Prefix trees/Tries

Prefix Trees: The Basic Idea

Exploit the fact that many items share a common start

Searching through a prefix tree

Query: Is word w in our dictionary? **Algorithm:** follow branches that spell w; do we finish in accepting (= blue) node?

Example

1 Query: bit Search Path: b-i-t, blue ⇒ accept

2 Query: al

Search Path: al, red \Rightarrow reject

Query: bits

Search Path: b-i-t, stuck ⇒ reject

Prefix tree for n-grams

► A prefix tree for a list of n-grams works exactly the same way, except that each arc is **labeled with a word** instead.

fixme: draw a nice picture here

Excursus: It's the software, stupid!

- We usually think of technological progress in terms of faster hardware, more memory, and so on.
- ► A good algorithm trumps hardware improvements.

Example

- ▶ Even the fastest current gen processor will take a long time to do linear search on a list with 18 quintillion items.
- ▶ With prefix trees it is almost instantaneous (and incremental!).
- They are also more memory efficient, as long as your items have lots of overlap.
- ▶ **BUT:** They are harder to implement.

Yet another problem: bad input

▶ What if a user makes a mistake?

Input	Intended?
trian	train, trying, Brian,
your	your, you're
@rdvark	aardvark

► This requires a spellchecker. But more on that next time. . .

Summary

A good word completion model needs lots of components:

- corpora from various genres
- n-grams for limited context information
- sophisticated statistics to deal with sparse data
- a fast and compact data structure for storage
- extensions:
 - stemming/lemmatizer
 - POS tagging
 - spell checker
 - efficient storage

We have barely scratched the surface of any of those.

New concepts

- corpora (common words, what types there are)
- n-grams (word = unigram)
- ▶ types VS tokens
- data sparsity
- smoothing and backoff
- stemming, lemmatization
- POS tagging

New Python concepts