Team 19: Parallelization of SVD Plan for Parallel Design

•••

Sibi Raja, Matthew Villaroman, Eliel Dushime, Bowen Zhu

Quick Recap

- Singular Value Decomposition: the factorization of a matrix into an equivalent product of 3 smaller matrices
- Main functions in our SVD algorithm: vector/matrix operations, power method, singular value calculation, Gauss-Jordan elimination, back substitution

<u>GeeksforGeeks</u>

```
Dimensions: 5 x 4
[[0.282081, -0.317569, 0.273586, 0.28105, 0.81593],
[0.2935, 0.206195, -0.512016, 0.771919, -0.115422],
[0.328003, 0.565869, 0.712557, 0.168352, -0.190068],
[0.568179, -0.650964, 0.1324, -0.0268382, -0.484942],
[0.635511, 0.335665, -0.37111, -0.544142, 0.222804]]
Sigma:
[[2.18839, 0, 0, 0],
[0, 0.733674, 0, 0],
[0, 0, 0.429775, 0],
[0, 0, 0, 0.267276],
[0, 0, 0, 0]
[[0.435381, 0.597634, -0.508387, -0.441384],
[0.568319, -0.376993, -0.45417, 0.573254],
[0.528335, -0.510377, 0.354684, -0.578425],
[0.456419, 0.490128, 0.6399, 0.376808]]
Original A:
[[0.0365859, 0.428322, 0.443311, 0.271098],
[0.390859, 0.526207, 0.0647482, 0.304231],
[0.385083, 0.138134, 0.249939, 0.744018],
[0.230162, 0.85674, 0.925015, 0.367136],
[0.897961, 0.68661, 0.636644, 0.598605]]
Reconstructed:
[[0.0365859, 0.428322, 0.443311, 0.271098],
[0.390859, 0.526207, 0.0647482, 0.304231],
[0.385083, 0.138134, 0.249939, 0.744018],
[0.230162, 0.85674, 0.925015, 0.367136],
[0.897961, 0.68661, 0.636644, 0.598605]]
```

Profiling - SVD Calculation

Note: the missing dots represent runtime of 0, which is not possible to display in a log-scale

Profiling - Eigendecomposition calculation

Bottleneck

Note: the missing dots represent runtime of 0, which is not possible to display in a log-scale

First dimension

Bottlenecks & Roofline Analysis

- Bottlenecks:
 - Power method function
 - k is the ratio between the largest and smallest eigenvalues
 - Calculate U function
- Operational intensities:
 - Ridge point: 0.44
 - Power method: $(2kM^2 + 2M^2) / (3kM^2 + 2M^2) = 0.67 > 0.44$
 - U: $(8M^3 + 3M^2 + 2M) / (104M^3 + 72M^2 + 24M) = 0.07 < 0.44$
- Conclusions:
 - Power method is compute bound
 - Calculating U is memory bound

$$\pi = f \times n_c \times l_s \times \phi = 33.6 \text{ Gflop/s}$$

 $\beta = 2 \times f_{DDR} \times c \times w = 76.8 \text{ GB/s}$

Proposed Parallel Design

- Based on our analysis, CalculateU and PowerMethod are the main bottlenecks
- Sequential calculation of U:
 - ☐ Memory bandwidth-limited and performs at a very low Flop rate (memory-bound)
 - ☐ Hitting more often DRAM data movements
 - ☐ Minimal use of cache lines and little memory reuse.
 - ☐ Intended Parallel design: Make use of spatial locality and cache blocking to improve this bound.
- Gram-Schmidt implementation (inside Calculate U function):
 - ☐ Many independent vector multiplications
 - ☐ Intended Parallel design: Use of Data-level parallelism to assign calculations to separate threads.
- Sequential Power method (and deflation):
 - Compute-bound, mainly due to the iterative nature of calculating eigenvalue-eigenvector pairs in descending order
 - ☐ Intended Parallel design: Many flavors of the power method on distinct threads to calculate eigenvalues asynchronously
 - ☐ Data-level parallelism: distributing the eigenvalue calculation to threads with the similar instructions.
- Sequential Matrix Operations (GEMM)
 - ☐ Intended Parallel design: Split matrix operations across simultaneous threads

Parallel Code Implementation

•	Parall	el Matrix Operations (i.e. GEMM)
		Distribute the different sub-operations on rows/columns across different threads
		Synchronize after collectively completing the entire operation
		This can speedup the calculation of $U o$ calculating U consists of several matrix operations that can be parallelized
		☐ We will conduct further investigation to ensure this parallelization is worth the overhead
•	Parall	el Gram-Schmidt implementation (inside CalculateU function):
		Independent vector projections can be calculated by separate threads, and the threads will reduce to the final
		resultant vector for normalization
		Synchronization points before completing a new orthogonal vector
•	Parall	el Power method and deflation:
		Inverse power method (smallest eigenvalue) and Shifted inverse power method (nearest eigenvalue to a guess)
		lacktriangle Allows multiple eigenvalues to be calculated simultaneously (descending from the largest, ascending from
		the smallest, guesses near the middle of the ordering)
		Eigenvectors can be calculated by idle threads or threads finished with load-imbalanced power method iterations
		After or during calculation of eigenvalues, we will require thread synchronization to account for all eigenvalues