

John C. Hart

Department of Computer Science

University of Illinois at Urbana Champaign

Databases

- OLAP OnLine Analytical Processing
- Data Cube multidimensional spreadsheet (hypercube if > 3 dim.)
- Dimension database key
- Measure database values
- Cell element of the data cube holding specific value(s) for each of the dimensions

Sales database:

<date, product, location, amount> (8/7/15, coffee, Seattle, \$4) (8/8/15, tea, Beijing, \$3) (8/5/15, espresso, Rome, \$5)

...

Data Aggregation

- Quantitative: sum, mean, median, minimum, maximum
- Count: converts ordinal or nominal data into quantitative data
- Binning: discretizes quantitative data into ordinal or nominal data

Data Aggregation

- Quantitative: sum, mean, median, minimum, maximum
- Count: converts ordinal or nominal data into quantitative data
- Binning: discretizes
 quantitative data into
 ordinal or nominal data

Data Aggregation

- Quantitative: sum, mean, median, minimum, maximum
- Count: converts ordinal or nominal data into quantitative data
- Binning: discretizes
 quantitative data into
 ordinal or nominal data

Histogram

A histogram is a count over buckets of the data values, not the data keys.

Data Cubes

Stolte et al., Multiscale Visualization Using Data Cubes, Proc. Infovis 2002

OLAP ⇔ Infovis

Cube Op	Description	Infovis Op
Slicing	Reduce dimensionality by selecting a singe attribute value along one of the dimensions	Filter value
Dicing	Focus on a subcube spanning a range of values across one or more dimensions of the cube	Filter range, zoom plot area
Roll-Up	Reduces dimensionality by projecting cube along one of its axes using a summary op	Aggregation
Drill Down	Increases dimensionality by expanding summaries into values, or subdivides dimensions into finer details	Zoom fields, details on demand, (disaggegation)
Pivot	Rotates cube to display a different face comparing different dimensions	Field selection

Worlds within Worlds

- Each glyph is itself a plot
- E.g. a table of tables
- Different scales for major axis and minor axis for both horizontal and vertical axes
- Can work in 3-D or even deeper nesting (worlds within worlds within worlds), but less effectively

Tableau layout of World Bank Indicator Data

Organizing Axes

Stolte et al., Polaris..., IEEE TVCG 8(1), 2002

Concatenation

- Multiple views of data
- Quarter + Product
- Quarter + Month

	Q1	Q2	Q3	Q4	Cof.	Esp.	Tea
Sales						nake se	nse
	Q1	Q2	Q3	Q4	J FOMES	Mot mak	e sense

Product

- View of data by combination
- Quarter x Product
- Quarter x Month

Nesting

- Limit to combinations in database
- Quarter / Product
- Quarter / Month

Organizing Axes

Stolte et al., Polaris..., IEEE TVCG 8(1), 2002

Concatenation

- Multiple views of data
- Quarter + Product
- Quarter + Month

Product

does not nake sense

- View of data by combination
- Quarter x Product
- Quarter x Month

Nesting

- Limit to combinations in database
- Quarter / Product
- Quarter / Month

Q1		Q2			Q3			Q4			
Cof.	Esp.	Tea	Cof.	Esp.	Tea	Cof.	Esp.	Tea	Cof.	Esp.	Tea
Q1		Q2			Q3			Q4			
J FNA	J FWAV J JA SOND										

Stolte et al., Polaris..., IEEE TVCG 8(1), 2002

Concatenation

- Multiple views of data
- Quarter + Product
- Quarter + Month

Product

- View of data by combination
- Quarter x Product
- Quarter x Month

Nesting

- Limit to combinations in database
- Quarter / Product
- Quarter / Month

Q1		Q2			Q3			Q4			
Cof. Esp.		Cof.	Esp.	Tea	Cot	f	Теа	Cof.	Esp.	Tea	
Q1		Q2			Q3			Q4			
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec