



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| (51) International Patent Classification 6 :<br><br>C12N 15/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  | A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (11) International Publication Number: <b>WO 98/06836</b>        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (43) International Publication Date: 19 February 1998 (19.02.98) |
| (21) International Application Number: PCT/US97/14450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  | (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). |                                                                  |
| (22) International Filing Date: 15 August 1997 (15.08.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  | Published<br><i>Without international search report and to be republished upon receipt of that report.</i>                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |
| (30) Priority Data:<br>08/699,092 16 August 1996 (16.08.96) US                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |
| (71) Applicant: GENENCOR INTERNATIONAL, INC. [US/US];<br>4 Cambridge Place, 1870 South Winton Road, Rochester,<br>NY 14618 (US).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |
| (72) Inventors: GERRITSE, Gijsbert; Kruisbespad 2, NL-<br>Heerjansdam (NL). QUAX, Wilhelmus, J.; Jan van<br>Galenlaan 8, NL-2253 VB Voorschoten (NL).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |
| (74) Agent: GLAISTER, Debra, J.; Genencor International, Inc.,<br>925 Page Mill Road, Palo Alto, CA 94304-1013 (US).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |
| (54) Title: EXPRESSION SYSTEM FOR ALTERED EXPRESSION LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |
| <p><b>Regulation model for lipase in <i>P. alcaligenes</i></b></p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |
| (57) Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |
| <p>A new expression system is provided which comprises component(s) of a lipase regulation cascade. The lipase regulation cascade as disclosed herein includes a kinase, a DNA binding regulator, a polymerase, a promoter, an upstream activating sequence, and secretion factors. Plasmids and transformed cells are also provided as well as methods of transforming host cells using the plasmids. Further, there is provided a kinase that can regulate the expression of a protein, a DNA binding regulator that can regulate the expression of a protein, a <i>Pseudomonas alcaligenes</i> polymerase, a <i>Pseudomonas alcaligenes</i> sigma 54 promoter, a <i>Pseudomonas alcaligenes</i> upstream activating sequence, the <i>Pseudomonas alcaligenes</i> secretion factors XcpP, XcpQ, XcpR, XcpS, XcpT, XcpU, XcpV, XcpW, XcpX, XcpY, XcpZ and the xcp regulators OrfV, OrfX.</p> |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |

**FOR THE PURPOSES OF INFORMATION ONLY**

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    |                          |    |                                       |    |                                           |    |                          |
|----|--------------------------|----|---------------------------------------|----|-------------------------------------------|----|--------------------------|
| AL | Albania                  | ES | Spain                                 | LS | Lesotho                                   | SI | Slovenia                 |
| AM | Armenia                  | FI | Finland                               | LT | Lithuania                                 | SK | Slovakia                 |
| AT | Austria                  | FR | France                                | LU | Luxembourg                                | SN | Senegal                  |
| AU | Australia                | GA | Gabon                                 | LV | Latvia                                    | SZ | Swaziland                |
| AZ | Azerbaijan               | GB | United Kingdom                        | MC | Monaco                                    | TD | Chad                     |
| BA | Bosnia and Herzegovina   | GE | Georgia                               | MD | Republic of Moldova                       | TG | Togo                     |
| BB | Barbados                 | GH | Ghana                                 | MG | Madagascar                                | TJ | Tajikistan               |
| BE | Belgium                  | GN | Guinea                                | MK | The former Yugoslav Republic of Macedonia | TM | Turkmenistan             |
| BF | Burkina Faso             | GR | Greece                                | ML | Mali                                      | TR | Turkey                   |
| BG | Bulgaria                 | HU | Hungary                               | MN | Mongolia                                  | TT | Trinidad and Tobago      |
| BJ | Benin                    | IE | Ireland                               | MR | Mauritania                                | UA | Ukraine                  |
| BR | Brazil                   | IL | Israel                                | MW | Malawi                                    | UG | Uganda                   |
| BY | Belarus                  | IS | Iceland                               | MX | Mexico                                    | US | United States of America |
| CA | Canada                   | IT | Italy                                 | NE | Niger                                     | UZ | Uzbekistan               |
| CF | Central African Republic | JP | Japan                                 | NL | Netherlands                               | VN | Viet Nam                 |
| CG | Congo                    | KE | Kenya                                 | NO | Norway                                    | YU | Yugoslavia               |
| CH | Switzerland              | KG | Kyrgyzstan                            | NZ | New Zealand                               | ZW | Zimbabwe                 |
| CI | Côte d'Ivoire            | KP | Democratic People's Republic of Korea | PL | Poland                                    |    |                          |
| CM | Cameroon                 | KR | Republic of Korea                     | PT | Portugal                                  |    |                          |
| CN | China                    | KZ | Kazakhstan                            | RO | Romania                                   |    |                          |
| CU | Cuba                     | LC | Saint Lucia                           | RU | Russian Federation                        |    |                          |
| CZ | Czech Republic           | LI | Liechtenstein                         | SD | Sudan                                     |    |                          |
| DE | Germany                  | LK | Sri Lanka                             | SE | Sweden                                    |    |                          |
| DK | Denmark                  | LR | Liberia                               | SG | Singapore                                 |    |                          |

## EXPRESSION SYSTEM FOR ALTERED EXPRESSION LEVELS

5

### Related Applications

This application is a continuation-in-part application of United States Serial Number 08/699,092 filed August 16, 1996, hereby incorporated by reference in its entirety.

10

### Field of the Invention

The present invention relates to the discovery of the lipase regulation cascade of *Pseudomonas alcaligenes*. Specifically, the present invention provides the nucleic acid and amino acid sequences of various components of the lipase regulation cascade which may be used in expression methods and systems designed for the production of heterologous proteins.

### Background of the Invention

The isolation and identification of a microorganism that can naturally secrete a product of potential industrial production is one of, if not the most, vital steps in the process of fermentation biotechnology. The ability to secrete the protein of interest usually leads to easier downstream processing. The next critical stage is the mutagenesis of a naturally occurring strain to a hyper-producing strain. Over a number of years, scientists have developed screening strategies from which a number of exo-protein producing bacteria have been isolated. Following isolation, a large number of rounds of mutagenesis can be used to continuously select higher producing strains. However, classical strain improvement cannot be used indefinitely to further increase production levels. Therefore, a more direct method of characterization and molecular genetic manipulation is needed to achieve higher production levels.

Several patents and publications have claimed or described a lipase modulator gene (WO 94/02617; EP 331,376; Nakanishi et al. (1991) Lipases-Struct. Mech. Genet. Eng. GBF Monographs 16:263-266). However, later research has shown that the product of the gene, now called *lif*, is concerned with folding of the lipase rather than regulating the expression of the lipase. A review of various lipase expression systems that use the *lif* gene product can be found in Jaeger et al. (1994) FEMS Microbiol. Rev. 15:29-63.

Another publication discusses the sigma 54 promoter and the types of genes that have been described to be under control of this type of promoter. Morrett and Segovia (1993) *J. Bacter.* 175:6067-6074.

The search has continued for an expression system that can efficiently express a heterologous protein, particularly a lipase in *Pseudomonas*, in particular *Pseudomonas alcaligenes*. *Pseudomonas* expression of lipase is very difficult and often is at lower levels than industry would like to see.

The present invention solves the problem of low levels of expression of proteins in *Pseudomonas* as well as other microbial hosts.

10

#### Summary of the Invention

The present invention relates to the discovery of a *Pseudomonas* lipase regulation cascade and provides individual components of the regulation cascade that can be used in expression systems for the production and secretion of proteins in host cells. The regulation cascade comprises, surprisingly, a two-component part that includes a kinase and a DNA binding regulator. The two components work in concert with a promoter and an upstream binding sequence to efficiently express a protein. The regulation cascade also comprises secretion factors that can be used in host cells to enhance the secretion of produced proteins.

20 The present invention provides nucleic acid and amino acid sequences for the various components of the *Pseudomonas alcaligenes* lipase regulation cascade. The present invention also provides new, efficient expression systems, i.e., expression vectors, and host cells that can be used to express proteins at increased levels. The new expression systems allow for increased expression of a protein

25 whose gene is functionally linked to components of the expression system, i.e., components of the lipase regulation cascade. A hyper-producing strain can thus be developed and used in a commercial setting.

In one embodiment of the invention, an isolated nucleic acid encoding a kinase that can regulate the expression of a protein, preferably a lipase, is provided.

30 The nucleic acid encoding a kinase is preferably derived from a Gram-negative bacteria such as a pseudomonad, preferably from *Pseudomonas alcaligenes* and is most preferably *lipQ*. Further, nucleic acid encoding the kinase preferably has the sequence as shown in Figures 1A-1B (SEQ ID NO: 1) and/or has at least 50% homology with that sequence. The kinase protein is also provided and it is

35 preferably derived from a bacteria, preferably from a Gram-negative bacteria such as a pseudomonad, most preferably, the kinase is from *Pseudomonas alcaligenes*. In a preferred embodiment, the kinase is LipQ. The kinase preferably has the

sequence shown in Figures 1A-1B, (SEQ ID NO: 2) and/or has at least 50% homology with that sequence.

In another embodiment, the present invention provides a nucleic acid encoding a kinase that can regulate the expression of a lipase in *Pseudomonas alcaligenes*. In another embodiment, the present invention provides a kinase capable of regulating the expression of a lipase in *Pseudomonas alcaligenes*.

In a further embodiment of the invention, an isolated nucleic acid encoding a DNA binding regulator that can regulate the expression of a protein, preferably a lipase, is provided. The DNA binding regulator nucleic acid is preferably *lipR*.

10 Further, it preferably has the sequence as shown in Figures 2A-2B (SEQ ID NO: 3) and/or has at least 50% homology with that sequence. The DNA binding regulator protein is also provided and it is preferably LipR. The DNA binding regulator preferably has the sequence shown in Figures 2A-2B (SEQ ID NO: 4) and/or has at least 50% homology with that sequence. Preferably, the DNA binding 15 regulator is from bacteria. More preferably, the DNA binding regulator is from a Gram-negative bacteria such as a pseudomonad. Most preferably, the DNA binding regulator is from *Pseudomonas alcaligenes*.

20 In yet a further embodiment, the present invention provides an isolated nucleic acid that encodes a DNA binding regulator that can regulate the expression of a lipase in *Pseudomonas alcaligenes*. In another embodiment, the present invention provides the DNA binding regulator itself.

25 In yet another embodiment of the invention, nucleic acid encoding a portion of a polymerase that can regulate the expression of a protein, preferably a lipase, is provided. The polymerase nucleic acid is preferable *orfZ*. Further, it preferably has the sequence as shown in Figure 9A-9B (SEQ ID NO: 36) and/or has at least 75% homology with that sequence. A portion of the polymerase protein is also provided and it is preferable *OrfZ*. The polymerase protein preferable has the sequence shown in Figure 9A-9B (SEQ ID NO: 37) and/or at least 75% homology with the sequence. Preferably, the polymerase is from Gram-negative bacteria such as 30 pseudomonad. Most preferably, the polymerase is from *Pseudomonas alcaligenes*.

In another embodiment, the kinase, the DNA binding regulator and a portion of the polymerase are present in one nucleic acid. In another embodiment, the kinase, the DNA binding regulator and the polymerase have the nucleic acid sequence shown in Figures 4A-4G (SEQ ID NO: 28).

35 In another embodiment of the invention, an isolated nucleic acid encoding a *Pseudomonas alcaligenes* sigma 54 promoter is provided.

In a further embodiment of the invention, an isolated nucleic acid encoding a *Pseudomonas alcaligenes* upstream activating sequence is provided. The upstream

activating sequence is preferably UAS. Further, it preferably has the sequence as shown in SEQ ID NO: 5 and/or has at least 50% homology with that sequence. Preferably, the upstream activating sequence is from bacteria. More preferably, the upstream activating sequence is from a Gram-negative bacteria such as a pseudomonad. Most preferably, the upstream activating sequence is from *Pseudomonas alcaligenes*.

In yet another embodiment of the invention, isolated nucleic acids encoding secretion factors are provided. The secretion factors are preferably XcpP, XcpQ, OrfV, OrfX, XcpR, XcpS, XcpT, XcpU, XcpV, XcpW, XcpX, XcpY, XcpZ and another protein, OrfY, having the C-terminal amino acid sequence shown in SEQ ID NO: 35. Further, they preferably have the nucleic acid sequence as shown in SEQ ID NOS: 12, 14, 30, 16, 6, 8, 10, 18, 20, 22, 24, 26, 32 and 34, respectively, and/or have at least 90% homology with those sequence. The secretion factor proteins are also provided and preferably have the amino acid sequences shown in SEQ ID NOS: 13, 15, 31, 17, 7, 9, 11, 19, 21, 23, 25, 27, 33 and 35, respectively, and/or have at least 90% homology with that sequence. Preferably, the secretion factors are from bacteria. More preferably, the secretion factors are from a Gram-negative bacteria such as a pseudomonad. Most preferably, the secretion factors are from *Pseudomonas alcaligenes*.

In a further embodiment, the genes encoding the secretion factors XcpP, XcpQ, OrfV, OrfX, XcpR, XcpS, XcpT, XcpU, XcpV, XcpW, XcpY, XcpX and OrfY are present in one nucleic acid having the DNA sequence shown in Figures 3AA-3BB (SEQ ID NO: 29). Both *xcp* gene clusters *xcpP-Q* and *xcpR-Z* are oriented divergently with in between *OrfV* and *OrfX* as shown in Figure 8.

Another embodiment of the invention includes an isolated nucleic acid encoding a *Pseudomonas alcaligenes lux*-box binding element and *orfV*-box binding elements that can regulate expression of a protein.

Yet another embodiment provides nucleic acids that can hybridize to the nucleic acids shown in SEQ ID NOS: 1, 3, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34 and 36 under high stringency conditions.

In a further embodiment, there is provided an expression system comprising a gene encoding a protein functionally linked to nucleic acids encoding a kinase, a DNA binding regulator, a polymerase, a promoter and an upstream activating sequence. The expression system can also include secretion factors, and their regulatory regions. Preferably, the regulating elements and the secretion factors are from bacteria. More preferably, the regulating elements and the secretion factors are from a Gram-negative bacteria such as a pseudomonad. Most

preferably, the regulating elements and the secretion factors are from *Pseudomonas alcaligenes*.

Another embodiment provides an expression system that can regulate the expression of a lipase in *Pseudomonas alcaligenes*.

5 In another embodiment of the invention, replicating plasmids and integrating plasmids containing the expression system or a nucleic acid encoding one or more of the secretion factors are provided.

Also provided are methods of transforming a host cell with a plasmid that contains the expression system and/or a nucleic acid encoding one or more 10 secretion factors as well as transformed host cells containing the expression system and/or a nucleic acid encoding one or more secretion factors. A host cell is transformed by introducing the plasmid to the host cell under appropriate conditions. Preferably, the host cell is electroporated to allow the plasmid to enter the host cell. Preferably, the host cell is bacteria. More preferably, the host cell is a Gram-negative bacteria such as a pseudomonad. Most preferably, the host cell is *Pseudomonas alcaligenes*.

#### Brief Description of the Drawings

Figures 1A-1B show the DNA (SEQ ID NO: 1) and amino acid sequences 20 (SEQ ID NO: 2) of LipQ from *Pseudomonas alcaligenes*.

Figures 2A-2B show the DNA (SEQ ID NO: 3) and amino acid sequences (SEQ ID NO: 4) of LipR from *Pseudomonas alcaligenes*.

Figures 3AA-3BB show the DNA sequence (SEQ ID NO: 29) of 17.612 bp from the insert on cosmid #600 containing the secretion factors XcpQ, XcpP, OrfV, 25 OrfX, XcpR, XcpS, XcpT, XcpU, XcpV, XcpW, XcpX, XcpY, XcpZ and a part of an other protein OrfY from *Pseudomonas alcaligenes*. The predicted amino acid sequences of the open reading frames (SEQ ID NO: 13, 15, 31, 17, 7, 9, 11, 19, 21, 23, 25, 27, 33 and 35, respectively) are shown in one-letter code below the DNA sequence. Likewise, the terminator sequences are shown as two bolded convergent 30 arrows and the binding elements for regulator, OrfV (orfV-boxes) are shown as a bolded boarded line.

Figures 4A-4G show the DNA sequence (SEQ ID NO: 28) of the overlapping 4.377 bp fragment of cosmids #71, #201, #505, #726 that includes the open reading frames of LipQ, Lip R and a part of OrfZ from *Pseudomonas alcaligenes*. 35 The predicted amino acid sequence of the open reading frames (SEQ ID NO: 2, 4 and 37, respectively) are shown in one-letter code below the DNA sequence. Likewise, the terminator sequence is shown as two bolded convergent arrows, th

binding element for auto-inducers (*lux-box*) and the binding elements for OrfV (*orfV-boxes*) are shown as a bolded bordered line.

Figure 5 shows the effect on lipase production of cosmid #505 at 10 liter scale. A threefold higher yield of lipase after fermentation was observed.

5 Figure 6 shows production plasmid stability in production strain Ps1084 and Ps1084 + cosmid #600 as determined by neomycin resistance.

Figure 7 shows the theoretical scheme for the action of LipQ, LipR, the sigma 54 promoter and the upstream activating sequence on the DNA strand encoding LipA. The small rectangle on the DNA strand below the D-domain of LipR  
10 is the upstream activating sequence (UAS).

Figure 8 shows the orientation of the xcp-genes from *Pseudomonas alcaligenes* on the map of cosmid #600 as extracted from SEQ ID NO: 29.

Figure 9A-9B shows the DNA (SEQ ID NO: 36) and amino acid sequence (SEQ ID NO: 37) of OrfZ from *Pseudomonas alcaligenes*.

15 Figure 10 shows the proposed model for the regulation cascade of the lipase from *Pseudomonas alcaligenes*.

#### Detailed Description of the Invention

In order to further improve lipase expression in *Pseudomonas alcaligenes*, a  
20 pragmatic search for limiting factors was initiated. A cosmid library from the wild-type *P.alcaligenes* genome was used as a donor of DNA fragments to be introduced into a multicopy *P. alcaligenes* lipase production strain. In total, 485 cosmids were transformed, followed by screening of cosmids containing *P.alcaligenes* strains with respect to their lipase production activity. Twenty cosmid strains were selected,  
25 each of which showed a significant enhancement of lipase expression as judged from various liquid and plate tests. The corresponding cosmids were also tested in a single copy lipase strain and some of them were found to give a threefold increase of lipase expression. The four best cosmids were found to share an overlapping fragment of 5.6 kb. The lipase stimulating activity was localized on a  
30 4.5kb fragment.

The present invention relates to the identification of a pseudomonas alcaligenes lipase regulation cascade, which contain multiple components associated with the expression of lipase. As used herein, the term "regulation cascade" relates to the entire complex of individual components identified herein, such as kinase, dna binding regulator, polymerase, uas, lux-box, orfv-boxes, secretions factors and their regulatory regions. Components of the regulation cascade can be used alone or in combination with other components to modulate the expression of proteins in host cells. In a preferred embodiment, the host cell is

a gram-negative host. In another embodiment, the host cell is a pseudomonad. In another preferred embodiment, the host cell is *pseudomonas alcaligenes*.

Preferred desired proteins for expression include enzymes such as esterases; hydrolases including proteases, cellulases, amylases, carbohydrases, and lipases; isomerases such as racemases, epimerases, tautomerases, or mutases; transferases, kinases and phosphatases. The proteins may be therapeutically significant, such as growth factors, cytokines, ligands, receptors and inhibitors, as well as vaccines and antibodies. The proteins may be commercially important, such as proteases, carbohydrases such as amylases and glucoamylases, cellulases, oxidases and lipases. The gene encoding the protein of interest may be a naturally occurring gene, a mutated gene or a synthetic gene.

The 4.5 kb fragment was sequenced and found to encode the LipQ, LipR and polymerase proteins (Figures 4A-4G). While not intending to be bound by theory, it is believed that these proteins are involved in the regulation of the sigma 54 promoter in front of the lipase (LipA) and lipase modulator (LipB) gene region (see Figure 7). These sigma 54 promoters characteristically have an upstream enhancer region, herein the upstream activating sequence or UAS, which is regulated by proteins. Regulation can be achieved by either a two-component system, such as NtrB-NtrC, or by a one-component system, for example NifA, in which the protein is in close association with the substrate (reviewed by Morett and Segovia, supra).

According to the present invention, expression of a protein can be regulated when a kinase and a DNA binding regulator, which are provided in trans, interact with a promoter and/or an upstream activating sequence which are functionally linked to a gene encoding the protein of interest. Preferably, the expression of the protein is increased.

A "kinase" is an enzyme that can catalyze the transfer of phosphate to either itself or another protein. The kinase of the present invention is preferably LipQ, a kinase that can regulate the expression of a lipase. A LipQ has been isolated from *Pseudomonas alcaligenes*. As such, the kinase preferably is encoded by a nucleic acid having the DNA sequence shown in Figures 1A-1B (SEQ ID NO: 1) and has the amino acid sequence shown in Figures 1A-1B (SEQ ID NO: 2). A kinase can act alone or as part of an expression system to regulate the expression of the protein. In some cases, the absence of this kinase will cause the expression of the protein to be decreased or eliminated.

A "DNA binding regulator" is a proteinaceous substance which physically interacts with DNA and, in doing so, influences the expression of genes close to the binding position. The DNA binding regulator is preferably LipR, a DNA binding

regulator that can regulate the expression of a lipase. A LipR has been isolated from *Pseudomonas alcaligenes*. As such, the DNA binding regulator preferably is encoded by a nucleic acid having the DNA sequence shown in Figures 2A-2B (SEQ ID NO: 3) and has the amino acid sequence shown in Figures 2A-2B (SEQ ID NO: 4). A DNA binding regulator can act alone or as part of an expression system to regulate the expression of the protein. A DNA binding regulator of the present invention can be used alone or in combination with a kinase. The present invention encompasses variants of the DNA binding regulator disclosed herein that are capable of autophosphorylation. Such variants can lead to a constitutively higher expression of the target protein. In some cases, the absence of this DNA binding regulator will cause the expression of the protein to be decreased or eliminated.

10 As used herein "polymerase" refers to an enzyme that elongates DNA or RNA to obtain larger strands of either DNA or RNA, respectively. It is one of the most crucial factors in the production of proteins, such as lipase. In a preferred embodiment, the polymerase is OrfZ. Thus, in a preferred embodiment, the polymerase preferably is encoded by a nucleic acid having the DNA sequence shown in Figure 9A-9B (SEQ ID NO: 36) and has the amino acid sequence shown in Figure 9A-9B (SEQ ID NO: 37). The polymerase may play a role in modifying the expression of the desired protein.

20 Promoters are DNA elements that can promote the expression of a protein. A "sigma 54 promoter" is a bacterial promoter and is a member of a class of sigma factors with a size of approximately 54 Kda. These sigma factors are also known as RpoN proteins. Sigma 54 promoters and their functions are discussed in Morrett and Segovia (1993) *J. Bacter.* 175:6067-6074. Preferably, the promoter is a 25 *Pseudomonas alcaligenes* sigma 54 promoter. Most preferably, the sigma 54 promoter is the lipase promoter of *P. alcaligenes* (SEQ ID NO: 5) (WO 94/02617). According to the present invention, the sigma 54 promoter has an upstream activating sequence.

An "upstream activating sequence" is a binding position for a positively-30 acting DNA binding regulator. As indicated by its name, the upstream activating sequence is upstream of the transcription start site and is a nucleic acid. The upstream activating sequence is preferably UAS, an upstream activating sequence that can regulate the expression of a lipase, and is preferably derived from *Pseudomonas alcaligenes*. An upstream activating sequence can act alone or as 35 part of an expression system to regulate the expression of the protein. In some cases, the absence of this upstream activating sequence will cause the expression of the protein to be decreased or eliminated. Preferably, the upstream activating sequence is the consensus: TGT(N)<sub>11</sub>ACA . In the *Pseudomonas alcaligenes*

lipase gene sequence, on specific region around -200 bp from the ATG start codon fits this consensus: TGTtcccctcggttaACA (SEQ ID NO: 5) (WO 94/02617).

A secretion factor is a protein that aids in secreting another protein from a cell. Preferably, the secretion factor is a member of the Xcp protein family and acts in concert with other members of the Xcp protein family. A genomic fragment encoding genes *xcpQ*, *xcpP*, *orfV*, *orfX*, *xcpR*, *xcpS*, *xcpT*, *xcpU*, *xcpV*, *xcpW*, *xcpX*, *xcpY*, *xcpZ* and the C-terminal part of protein OrfY has been isolated from *Pseudomonas alcaligenes*. As such, the secretion factors preferably are encoded by a nucleic acid having the DNA sequence shown in Figures 3AA-3BB (SEQ ID NO: 29). Specifically and more preferably, the XcpP secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 12 and has the amino acid sequence shown in SEQ ID NO: 13; the XcpQ secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 14 and has the amino acid sequence shown in SEQ ID NO: 15; the OrfV protein is encoded by the DNA sequence shown in SEQ ID NO: 30 and has the amino acid sequence shown in SEQ ID NO: 31; the OrfX protein is encoded by the DNA sequence shown in SEQ ID NO: 16 and has the amino acid sequence shown in SEQ ID NO: 17; the XcpR secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 6 and has the amino acid sequence shown in SEQ ID NO: 7; the XcpS secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 8 and has the amino acid sequence shown in SEQ ID NO: 9; the XcpT secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 10 and has the amino acid sequence shown in SEQ ID NO: 11; the XcpU secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 18 and has the amino acid sequence shown in SEQ ID NO: 19; the XcpV secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 20 and has the amino acid sequence shown in SEQ ID NO: 21; the XcpW secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 22 and has the amino acid sequence shown in SEQ ID NO: 23; the XcpX secretion factor is encoded by the DNA sequence shown in SEQ ID NO: 24 and has the amino acid sequence SEQ ID NO: 25; the secretion factor XcpY is encoded by the DNA sequence shown in SEQ ID NO: 26 and has the amino acid sequence shown in SEQ ID NO: 27; the secretion factor XcpZ is encoded by the DNA sequence shown in SEQ ID NO: 32 and has the amino acid sequence shown in SEQ ID NO: 33; a part of protein OrfY is encoded by the DNA sequence shown in SEQ ID NO: 34 and has the amino acid sequence shown in SEQ ID NO: 35.

Upstream of the *lipQ* gene, a promoter region has been identified. Within this promoter region, a *lux*-box can be recognized, see SEQ ID NO: 28. This *lux*-box shows significant homology to the binding site for *luxR* type regulators.

which are known to be under control of autoinducer (Latifi et al. (1995) Molec. Microb. 17(2):333-323). This *lux*-box probably represents a linkage between the autoinducer system, LipR and lipase regulation. As such, another embodiment of the invention includes a nucleic acid encoding a *lux*-box element.

5       Upstream of the *xcpP~Q*, *xcpR~Z* gene clusters, the *orfX*, the *orfV* genes (SEQ ID NO: 29) and upstream of the *orfZ* gene (SEQ ID NO: 28) regulatory regions are present. A box can be recognized in the promoter region having the consensus sequence ANAANAANAANAA. These boxes are referred to as *orfV*-binding elements, because OrfV shows homology with the well-known *Escherichia coli* regulator MalT. Based upon OrfV homology with the known regulator MalT, OrfV may be a regulator. These *orfV*-boxes can control the expression of the Xcp-proteins, OrfX as well as OrfV itself. Similarly, the expression of the polymerase OrfZ may be controlled by the *orfV*-boxes, as shown in Figure 10. As such, in another embodiment, the invention provides a nucleic acid encoding an *orfV*-box element.

10     Commonly, when describing proteins and the genes that encode them, the term for the gene is not capitalized and is in italics, i.e., *lipQ*. The term for the protein is generally in normal letters and the first letter is capitalized, i.e., LipQ.

15     The kinase, DNA binding regulator, promoter and upstream activating sequence will sometimes be referred to as "the regulating elements" for ease of discussion. The preferred regulating elements are LipQ, LipR, the *Pseudomonas alcaligenes* polymerase, the *Pseudomonas alcaligenes* sigma 54 promoter and *Pseudomonas alcaligenes* UAS, and can regulate the expression of a lipase in *Pseudomonas alcaligenes* as defined herein. The kinase, the DNA binding regulator and polymerase are proteins, and the promoter and the upstream activating sequence are nucleic acids. In transformed cells, DNA encoding the kinase and DNA binding regulator were multiplied using a plasmid which led in turn to a higher production of the kinase and DNA binding regulator. The increased production of the kinase and DNA binding regulator resulted in higher transcription from the sigma 54 promoter which provides higher expression of the protein of interest.

20     The kinase and DNA binding regulator of the present invention represent a two-component regulatory system. Preferably, the two components are LipQ and LipR and can regulate the expression of a lipase in *Pseudomonas alcaligenes* as defined herein. Although other two-component regulatory systems are known, a low degree of homology exists between individual pieces of those systems and the amino acid sequence shown in SEQ ID NOS: 2 and 4.

Embodiments of the invention include a kinase or a DNA binding regulator encoded by a nucleic acid having at least 50% homology with the DNA sequences shown in SEQ ID NOS: 1 or 3, respectively. Preferably, the homology is at least 70%, more preferably at least 90% and most preferably at least 95%.

- 5       Also provided are embodiments in which a secretion factor encoded by a nucleic acid having at least 90% homology with the DNA sequence shown in SEQ ID NOS: 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34. Preferably, the homology is at least 95%, more preferably at least 98%. Homology can be determined by lining up the claimed amino acid or DNA sequence with another  
10      sequence and determining how many of the amino acids or nucleotides match up as a percentage of the total. Homology can also be determined using one of the sequence analysis software programs that are commercially available, for example, the TFastA Data Searching Program available in the Sequence Analysis Software Package Version 6.0 (Genetic Computer Group, University of Wisconsin  
15      Biotechnology Center, Madison, Wisconsin 53705).

One can screen for homologous sequences using hybridization as described herein or using PCR with degenerate primers. Chen and Suttle (1995) Biotechniques 18(4):609-610, 612.

- Also, in several embodiments of the invention, there are provided nucleic acids that can hybridize with the DNA shown in Figures 1A-1B, 2A-2B, 3AA-3BB and 9, SEQ ID NOS: 1, 3, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30, 32, 34, 36, respectively, under stringent conditions. Stringent hybridization conditions include stringent hybridization and washing conditions as is known to one of ordinary skill in the art. Hybridization and appropriate stringent conditions are described in  
20      Sambrook et al. 1989 Molecular Cloning 2d ed., Cold Spring Harbor Laboratory  
25      Press, New York.

- "Bacteria" include microorganisms of the class Schizomycetes. Bacteria can be either Gram-negative or Gram-positive. Gram-negative bacteria include members of the genera *Escherichia*, *Hemophilus*, *Klebsiella*, *Proteus*,  
30      *Pseudomonas*, *Salmonella*, *Shigella*, *Vibrio*, *Acinetobacter*, and *Serratia*. Gram-positive bacteria include members of the genera *Bacillus*, *Clostridium*,  
35      *Staphylococcus*, *Streptomyces*, *Lactobacillus* and *Lactococcus*.  
Gram-negative bacteria can be pseudomonads which are strains that are members of the genus *Pseudomonas*. Examples include *Pseudomonas aeruginosa*, *Pseudomonas cepacia*, *Pseudomonas glumae*, *Pseudomonas stutzeri*, *Pseudomonas fragi*, *Pseudomonas alcaligenes* and *Pseudomonas mendocina*. A preferred pseudomonad is *Pseudomonas alcaligenes*. *Pseudomonas alcaligenes* is also sometimes referred to as *Pseudomonas pseudoalcaligenes*.

Lipases within the scope of the present invention include those encoded by LipA, which is generally found in close association with a modulating gene known as LipB, LipH, LipX or Lif. Lif from *Pseudomonas alcaligenes* is the subject of patent application WO 93/02617 as discussed above. LipA genes can be found in a variety of species of bacteria such as *Pseudomonas aeruginosa*, *Pseudomonas stutzeri*, *Pseudomonas alcaligenes*, *Pseudomonas cepacia*, *Pseudomonas glumae*, *Pseudomonas fragi*, *Pseudomonas mendocina*, *Acinetobacter calcoaceticus* and *Serratia marcescans*.

Another embodiment of the invention provides an expression system that can regulate the expression of a protein, preferably a lipase. The expression system includes a kinase, a DNA binding regulator, a polymerase, a sigma 54 promoter and an upstream activating sequence. The expression system can also include secretion factors.

An expression system includes one or more proteins and/or nucleic acids which, when acting together, can increase the expression of a protein in a host cell. The expression system can be encoded on one or more plasmids and may or may not be on the same plasmid as the gene encoding the protein of interest.

The phrase "functionally linked" or "functionally coupled" means that the regulating elements (DNA or protein) interact physically in order to exert their function. This can be a protein/protein, DNA/protein or a DNA/DNA interaction. For example, the DNA binding regulator interacts with the promoter but genes encoding them may be at different sites on the chromosome. As such, the genes encoding the elements can be on different plasmids from each other and from the gene encoding the protein of interest and still work together to regulate expression of the protein.

A plasmid is a nucleic acid molecule which is smaller than the chromosome and can replicate independently of the mechanisms used for chromosomal replication. Typically, a plasmid is a circular DNA molecule. Plasmids can be inserted into host cells where they can replicate and make more copies of the plasmid; hence, replicating plasmid. Some plasmids, called integrating plasmids, can insert the plasmid DNA into the chromosome of the host cell. The plasmid DNA is thus integrated into the chromosome of the host cell. When this happens, the plasmid no longer replicates autonomously but instead replicates in synchrony with the chromosome into which it has been inserted. Thus, whereas a nonintegrated plasmid may be present at several dozen copies per chromosome and replicate independently of the chromosome, the integrated plasmid is present at one copy per chromosome and can replicate only when the chromosome does so.

One embodiment of the invention is directed to a method of transforming a host cell with a plasmid that includes the nucleic acid encoding the expression system. A host cell is a cell into which a plasmid of the present invention can be inserted through, for example, transformation. The host cell is preferably a bacteria.

- 5 In one embodiment, the host cell is preferably a Gram-negative bacteria. In another preferred embodiment, the host cell is a pseudomonad. Preferably, the host cell is *Pseudomonas alcaligenes* and the regulating elements of the expression system are from *Pseudomonas alcaligenes*. The same host cell can be transformed with a further plasmid that includes a nucleic acid that encodes one or more secretion factors. Preferably, the secretion factors are from *Pseudomonas alcaligenes*.

A transformed host cell is a host cell into which one or more plasmids have been inserted. Transformation can take place by first making the host cell competent to receive the plasmid. The naked DNA is then added directly to the cells and some of the cells take it up and replicate or integrate it. One way of

- 15 making the cells competent to receive the plasmid is by electroporation as described in the Examples below. Another method that is useful for construction and transferring of cosmid libraries is triparental mating. Kelly-Wintenberg and Montie (1989) J. Bacteriol. 171(11):6357-62.

- 20 Lipases produced according to the present invention can be used in a number of applications. Lipases can be used in detergents and other cleaning formulations as well as a number of industrial processes.

**Experimental****Materials and Methods****Bacterial Strains**

All bacterial strains were propagated with 2xTY as a liquid or solid medium, unless otherwise stated, and are listed in Table 1. For *P. alcaligenes* strains, the medium was supplemented with the appropriate antibiotics: neomycin (10mg/l), tetracycline (5 mg/l) and chloramphenicol (3 mg/l); and for transformed *Escherichia coli*, ampicillin was added at 100 mg/l. For cosmid containing *Escherichia coli* strains, the medium was supplemented with tetracycline (10 mg/l). *P. alcaligenes* and *E. coli* were grown at 37°C, aerobically.

**Table 1. Bacterial strains used.** Tet<sup>R</sup>, tetracycline resistant; Neo<sup>R</sup>, neomycin resistant; Cap<sup>R</sup>, chloramphenicol resistant; *lip*, lipase.

| Strain                  | Relevant Characteristics                                          | Strain                  | Relevant Characteristics                                                                                                                |
|-------------------------|-------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <i>P. alcaligenes</i> : |                                                                   | <i>P. alcaligenes</i> : |                                                                                                                                         |
| Ps #1                   | Cosmid #1 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup>   | Lip34                   | Neo <sup>R</sup> , <i>lip</i> <sup>+</sup>                                                                                              |
| Ps #26                  | Cosmid #26 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup>  | Ps537                   | <i>lip</i> <sup>+</sup> (cured from production plasmid p24lipo1)                                                                        |
| Ps #27                  | Cosmid #27 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup>  | Ps824                   | <i>lip</i> <sup>-</sup> (Lip34 cured from production plasmid p24lipo1)                                                                  |
| Ps #57                  | Cosmid #57 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup>  | Ps 1084                 | 2 copies <i>lipQ-R</i> , <i>lip</i> <sup>+</sup> , Neo <sup>R</sup> , Cap <sup>R</sup>                                                  |
| Ps #71                  | Cosmid #71 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup>  | Ps93                    | res <sup>-</sup> , mod <sup>+</sup>                                                                                                     |
| Ps #91                  | Cosmid #91 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup>  | Ps1108                  | Ps93 containing inactivation of LipR in chromosome                                                                                      |
| Ps #131                 | Cosmid #131 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup> |                         |                                                                                                                                         |
| Ps #201                 | Cosmid #201 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup> | <i>E. coli</i> K12:     |                                                                                                                                         |
| Ps #344                 | Cosmid #344 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup> | K802                    | <i>hsdR</i> <sup>+</sup> , <i>hsdM</i> <sup>+</sup> , <i>gal</i> <sup>+</sup> , <i>mef</i> <sup>+</sup> , <i>supE</i>                   |
| Ps #371                 | Cosmid #371 in Ps 824, Tet <sup>R</sup> , <i>lip</i> <sup>-</sup> | WK 6                    | Δ( <i>lac-pro AB</i> ), <i>galE</i> , <i>StrA/Z'</i> , <i>lacI</i> <sup>Q</sup> , zΔm15, <i>proA</i> <sup>+</sup> <i>B</i> <sup>+</sup> |
| Strain                  | R levant Characteristics                                          | Strain                  | R levant Characteristics                                                                                                                |

|         |                                                               |  |  |
|---------|---------------------------------------------------------------|--|--|
| Ps #399 | Cosmid #399 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #401 | Cosmid #401 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #404 | Cosmid #404 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #490 | Cosmid #490 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #505 | Cosmid #505 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #540 | Cosmid #540 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #597 | Cosmid #597 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #600 | Cosmid #600 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #638 | Cosmid #638 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |
| Ps #726 | Cosmid #726 in Ps<br>824, Tet <sup>R</sup> , lip <sup>-</sup> |  |  |

Table 2. Plasmids used.

| Plasmid  | Relevant Characteristics                            | Reference                                |
|----------|-----------------------------------------------------|------------------------------------------|
| pLAFR3   | Cosmid vector derived from pLAFR1, Tet <sup>R</sup> | Staskawics et al. 1987                   |
| p24Lipo1 | lip <sup>+</sup> , neoR                             | equivalent to p24A26<br>(see WO94/02617) |
| pUC19    | lacZ', rop <sup>-</sup>                             | Yanisch-Perron et al. 1985               |

## 5 Extraction of Extra-Chromosomal DNA

Cosmid and plasmid isolations were performed using the QIAprep Spin Plasmid kit, for 1 ml overnight culture, and the QIAfilter Plasmid Midi Kit, for 100 ml culture isolations (both Qiagen), according to the manufacturers instructions. For *Pseudomonas* strains, lysozyme (10 µl/ml) was added to the resuspension mix and incubated for 5 minutes at 37°C to aid cell lysis. Cosmid DNA was eluted from the QIAprep columns with 70°C milliQ water, as recommended by the manufacturer. For cosmid isolations from 100 ml cultures, strains were grown overnight in Luria Bertani (LB) broth and the elution buffer was heated to 50°C.

15 Transformation of *Pseudomonas alcaligenes*

An overnight culture of *P. alcaligenes* was diluted 1:100 in fresh 2xTY medium (with 10 mg/l neomycin) and the culture incubated at 37°C, in an orbital shaker, until it had reached an OD<sub>550</sub> of 0.6-0.8. Following centrifugation (10 minutes at 4000 rpm), the bacterial pellet was washed twice with a half volume SPM medium (276 mM sucrose; 7 mM NaHPO<sub>4</sub> (pH 7.4); 1 mM MgCl<sub>2</sub>). The cells were then resuspended in a 1/100 volume SPM medium. Cosmid DNA and 40 µl cells were mixed together and transferred to a 2 mm gap electroporation cuvette (BTX). The cells were electroporated with 1.4 kV, 25 µF, 200Ω, in the Gene Pulser. The electroporation cuvette was washed out with 1 ml 2xTY medium and the cell mixture transferred to a clean 1.5 ml eppendorf. The transformation mixture was then incubated for 45 minutes at 37°C. After incubation, 100 µl was plated onto 2xTY agar supplemented with tetracycline (5 mg/l) or neomycin (10 mg/l) or both (depending on which *P. alcaligenes* strain is used for electroporation). The transformation of *P. alcaligenes* cells was carried out at room temperature.

15

***Transformation of Escherichia coli***

Transformation of *E.coli* Wk6 cells were performed using electroporation. Transfer of the cosmids to *E.coli* K802 cells was performed by infection according to the suppliers instructions (Promega Corporation).

20

**Example 1**

**Construction of a Cosmid Library from  
*Pseudomonas alcaligenes* DNA in *E. coli***

Chromosomal DNA extracted from *P. alcaligenes* was fractionated and ligated into cosmid pLAFR3 as described in the Materials and Methods section, above. After ligation, the mixture was transferred into *E. coli* as described. Tetracycline resistant colonies were isolated and cosmid DNA was prepared from each of them.

Example 2Transformation of a *P. alcaligenes* Cosmid Library into  
*P. alcaligenes* Overexpressing Lipase

In total, 531 plasmid DNA preparations were isolated from *E. coli* grown  
 5 cosmids. With the aid of electroporation (see Methods, above) these were  
 transformed into strain Lip34, a *P. alcaligenes* strain harboring plasmid p24Lipo1  
 expressing lipase, resulting in 485 cosmid containing *P. alcaligenes* strains. For  
 transformation, methods as described were used.

10

Example 3Selection of Cosmids Stimulating Lipase Expression

In total, 485 cosmids were transformed, followed by screening of cosmid-containing *P. alcaligenes* strains with respect to their lipase production activity.  
 Twenty cosmid strains were selected which showed a significant enhancement of  
 15 lipase expression as judged from various liquid and plate tests (see Table 3). The  
 corresponding cosmids were also tested in a single copy lipase strain and some of  
 them were found to give a threefold increase in lipase expression. The four best  
 cosmids were found to share an overlapping fragment of 5.6 kb. The lipase  
 stimulating activity was localized on a 4.5 kb fragment of cosmid #71, #201, #505,  
 20 #726. Sequence analysis of this fragment revealed two open reading frames which  
 showed homology with two component regulatory systems. (see Figures 4A-4G).  
 We have named the genes *lipQ*, *lipR* and *orfZ*. It should be noted that from the four  
 described cosmid-strains, only strains containing cosmids #71, 505 and 726, which  
 has the completed *OrfZ*, give the highest lipase stimulation in the lactate test  
 25 (second column in table 3) in comparison to the strain containing cosmid #201.

**Table 3.**

| Cosmid # | Medium 380 + Soy Oil | 380 + Lactate | 2xTY+hexadecane |
|----------|----------------------|---------------|-----------------|
| 1        | 35.25                | 19.00         | 13.00           |
| 26       | 35.25                | 14.75         | 9.00            |
| 27       | 26.50                | 18.25         | 10.00           |
| 57       | 35.75                | 9.25          | 7.50            |
| 71       | 40.25                | 27.25         | 16.67           |
| 91       | 22.75                | 23.00         | 18.00           |
| 131      | 41.30                | 11.00         | 3.00            |
| 201      | 39.00                | 18.00         | 10.00           |
| 344      | 32.50                | 11.00         | 8.30            |
| 371      | 25.50                | 13.75         | 15.00           |

| Cosmid # | Medium 380 + Soy Oil | 380 + Lactate | 2xTY+h xadecane |
|----------|----------------------|---------------|-----------------|
| 399      | 23.00                | 27.00         | 9.00            |
| 401      | 26.25                | 11.75         | 3.00            |
| 404      | 23.75                | 21.00         | 7.00            |
| 490      | 27.00                | 13.25         | 16.00           |
| 505      | 63.50                | 28.75         | 15.00           |
| 540      | 50.50                | 17.75         | 4.25            |
| 597      | 47.00                | 25.25         | 25.25           |
| 600      | 32.00                | 17.00         | 19.00           |
| 638      | 34.75                | 8.25          | 11.00           |
| 726      | 36.75                | 25.25         | 21.00           |
| control  | 20.80                | 11.50         | 11.50           |

**Example 4****Evidence for Involvement of LipQ/LipR in Lipase Expression**

5       In order to assess the role of the lipQ/lipR operon, an insertional inactivation of the LipR ORF was constructed in the chromosome of strain PS93. The resulting mutant, Ps1108 showed a significantly reduced halo on tributyrin agar plates as compared to PS93.

10      In a second experiment, the lipase expression plasmid, p24lipo1 was introduced into strain Ps1108. The lipase expression was severely impaired as compared to PS93 harboring p24lipo1.

      This observation suggests the lipQ/lipR operon as the lipase regulatory proteins.

15

**Example 5****Construction and Characterization of a LipQ/LipR****Overexpressing P. alcaligenes Strain**

The 4.5 kb EcoRI-HindIII fragment of one of the four lipase stimulating cosmids (#201) was subcloned onto pLAFR3 and inserted into a *P. alcaligenes* 20 strain with a single lipase gene on the chromosome (Ps537). A threefold higher yield of lipase after a 10 liter fermentation was observed. (See Figure 5.)

Subsequently, the 4.5 EcoRI-HindIII fragment was inserted onto the lipase expression plasmid p24lipo1. A higher lipase expression was observed as could be concluded from halo size on tributyrin plates. During growth in a shake flask, 25 plasmid instability was observed. In order to overcome this instability, the fragment was also integrated into the chromosome resulting in a strain with 2 lipQ/lipR gene copies into the chromosome (strain Ps1084). Insertion of the lipase expression

plasmid p24Lipo1 in this strain resulted in higher lipase expression on the plate, but a plasmid instability during fermentation.

### Example 6

5

#### Effect of Cosmid #600 on Production

##### Plasmid Stability in Ps1084

Previously, a *P. alcaligenes* strain had been developed in which a second copy of *lipQ-R* had been integrated into the chromosome. When a lipase production plasmid (plasmid p24Lipo1) was introduced at high copy number (20) into Ps1084 and the strain fermented (10 liters), plasmid instability was observed. A shake-flask experiment was developed to model the situation in the fermenter. To monitor production plasmid stability and cosmid stability of transformed Ps1084, a week long shake-flask experiment was set up. After overnight growth in 10 ml 2xTY broth (supplemented with the required amount of neomycin and tetracycline), 1 ml of transformed culture was used to inoculate 100 ml fermentation medium 380 plus 200 µl soy oil, in shake-flasks. The inoculated shake flasks were incubated for 24 hours at 37°C in an orbital shaker. One ml of 24 hour old culture was then used to inoculate successive shake-flasks. Throughout the duration of the experiment, daily samples were taken. The presence of a neomycin marker on the lipase production plasmid was used to monitor plasmid stability. The integrated *lipQ-R* strain with the high copy lipase production plasmid (Ps1084) was transformed with cosmid #600 to see whether plasmid stability was improved.

Figure 6 is a graphical representation of production plasmid stability in the transformed and untransformed Ps1084 (in duplicate). After 3-4 days, plasmid instability was detected in Ps1084, observed as the 80% drop in neomycin resistant colonies. Through out the week long experiment, cosmid #600 transformed Ps1084 maintained a high degree of neomycin resistance, suggesting that cosmid #600 stabilized the production plasmid.

30

### Example 7

#### Characterization of Cosmid #600

Cosmid #600, gave a positive signal when PCR was carried out using *xcpR* primers based on peptides from *xcpR* derived from *Pseudomonas aeruginosa*. The DNA sequence from cosmid #600 was digested with *EcoRV* and the resulting fragment mixture and purified fragments were ligated with *SmaI*-digested-pUC19 (Appligene) using the Rapid DNA Ligation kit (Boehringer Mannheim). *E. coli* cells were then electroporated. Transformants were selected on 2xTY plates containing ampicillin (100 mg/l), X-Gal (Boehringer Mannheim; 40 mg/l) and IPTG (Gibco BRL;

1 mM). Transformants containing the recombinant plasmid were identified as white colonies and single colonies were streaked on to fresh 2xTY agar plates (with ampicillin) for purity.

Sequencing of PCR products, cosmid #600 DNA and subclones of cosmid 5 #600 (see above) was achieved by the Dye deoxy termination method, using the ABI PRISM™ Dye Termination Cycle Sequencing Ready Reaction kit with AmpliTaq® DNA Polymerase, FS (Perkin Elmer) in conjunction with the Applied Biosystems 373A sequencer.

Sequencing of cosmid #600 was initiated with the primers used in the PCR 10 to detect *xcpR*. In accordance with the restriction map of cosmid #600 (Figure 8), an EcoRV restriction site was identified in the nucleic acid sequence of the PCR product. Sequence analysis revealed that the 609 bp amplification product could be translated to a putative amino acid sequence with 89% homology with *P. aeruginosa* and 73% with *P. putida* XcpR protein (amino acid residues 59-262), 15 verifying that the *xcpR* gene had been identified by PCR.

Figures 8 show the map of cosmid #600. By doing a PCR reaction with digested DNA, we were able to deduce the location of *xcpR* on the insert. The position of the *xcpR* gene suggests that the complete Xcp operon is present in cosmid #600.

20 To date 17,612 nucleotides, encompassing *xcpP*, *xcpQ*, *orfV*, *orfX*, *xcpR*, *xcpS*, *xcpT*, *xcpU*, *xcpV*, *xcpW*, *xcpX*, *xcpY*, *xcpZ* and part of protein OrfY have been sequenced (Figures 3AA-3BB, SEQ ID NO: 29).

While the invention has been described in connection with specific 25 embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features hereinbefore set forth, and as follows in the scope of the appended claims.

## SEQUENCE LISTING

## (1) GENERAL INFORMATION

- (i) APPLICANT: Gerritse, Gijbert  
Quax, Wilhelmus J.
- (ii) TITLE OF THE INVENTION: EXPRESSION SYSTEM FOR ALTERED  
EXPRESSION LEVELS

(iii) NUMBER OF SEQUENCES: 37

## (iv) CORRESPONDENCE ADDRESS:

- (A) ADDRESSEE: Genencor International  
(B) STREET: 925 Page Mill Road  
(C) CITY: Palo Alto  
(D) STATE: CA  
(E) COUNTRY: USA  
(F) ZIP: 94304-1013

## (v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette  
(B) COMPUTER: IBM Compatible  
(C) OPERATING SYSTEM: DOS  
(D) SOFTWARE: FastSEQ for Windows Version 2.0

## (vi) CURRENT APPLICATION DATA:

- (A) APPLICATION NUMBER:  
(B) FILING DATE:

## (vii) PRIOR APPLICATION DATA:

- (A) APPLICATION NUMBER: 08/699,092  
(B) FILING DATE: 16-AUG-1996

## (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Glaister, Debra J  
(B) REGISTRATION NUMBER: 33,888  
(C) REFERENCE/DOCKET NUMBER: GC361-2

## (ix) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: 650-846-7620  
(B) TELEFAX: 650-845-6504

## (2) INFORMATION FOR SEQ ID NO:1:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1029 base pairs  
(B) TYPE: nucleic acid  
(C) STRANDEDNESS: single  
(D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

|             |            |             |             |             |            |     |
|-------------|------------|-------------|-------------|-------------|------------|-----|
| ATGGGGCGTAT | GTTCGCTGGC | CAAGGACCCAG | GAAGTGCTGA  | TGTGGAACCG  | CGCCATGGAG | 60  |
| GAACTCACCG  | GCATCAGCGC | GCAGCAGGTG  | GTCCGCTCGC  | GCCTGCTCAG  | CCTGGAGCAC | 120 |
| CCCTGGCGCG  | AGCTGCTGCA | GGACTTCATC  | GCCCAGGACG  | AGGAGCACCT  | GCACAAGCAG | 180 |
| CACCTGCAAC  | TGGACGGCGA | GGTGCCTCTGG | CTAACACCTGC | ACAAGGGCGGC | CATCGACGAA | 240 |
| CCGCTGGCGC  | CGGGCAACAG | CGGCCTGGTG  | CTGCTGGTCG  | AGGACGTCAC  | CGAGACCCGC | 300 |

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| GTCGCTGGAA  | ACCAAGCTGGT | GCACCTCGGAG | CGTCTGGCCA  | GCATCGGCCG  | CCTGGCCGCC  | 360  |
| GGGGTGGCCC  | ACGAGATCGG  | CAATCGGGTC  | ACCGGCATCG  | CCTGCCCTGGC | GCAGAACCTG  | 420  |
| CGCGAGGAGC  | GCGAGGGCGA  | CGAGGAGCTC  | GGCGAGATCA  | GCAACCAGAT  | CCTCGACCAG  | 480  |
| ACCAAGCGCA  | TCTCGCGCAT  | CGTCAGTCG   | CTGATGAAC   | TCGCCCCACGC | CGGCCAGCAG  | 540  |
| CAGCGCGCCG  | AATACCCGGT  | GAGCTGGCC   | GAAGTGGCGC  | AGGACGCCAT  | CGGCCCTGCTG | 600  |
| TCGCTGAACC  | GCCATGGCAC  | CGAAGTGCAG  | TTCTACAACC  | TGTGCGATCC  | CGAGCACCTG  | 660  |
| GCCAAGGGCG  | ACCCCGAGCG  | CCTGGCCCAAG | GTGCTGATCA  | ACCTGCTGTC  | CAACGCCCGC  | 720  |
| GATGCCTCGC  | CGGGCGGGCG  | TGCCATCGC   | GTGCGTAGCG  | AGGCGCAGGA  | GCAGAGCGTG  | 780  |
| GTGCTGATCG  | TCGAGGACGA  | GGGCACGGGC  | ATTCCGCAGG  | CGATCATGGA  | CGGCCCTGTT  | 840  |
| GAACCCCTCT  | TCACCCACCAA | GGACCCCCGGC | AAAGGGCACCG | TTTGGGGCT   | CGCGCTGGTC  | 900  |
| TATTCGATCG  | TGGAAGAGCA  | TTATGGGCAG  | ATCACCATCG  | ACAGCCCCGGC | CGATCCCGAG  | 960  |
| CACCAAGCGCG | GAACCCCGTTT | CCCGGTGACC  | CTGCCCGCGCT | ATGTCGAAGC  | GACGTCCACA  | 1020 |
| GGCACCTGAA  |             |             |             |             |             | 1029 |

**(2) INFORMATION FOR SEQ ID NO:2:**

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 342 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Gly | Val | Cys | Ser | Leu | Ala | Lys | Asp | Gln | Glu | Val | Leu | Met | Trp | Asn |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     | 15  |     |     |
| Arg | Ala | Met | Glu | Glu | Leu | Thr | Gly | Ile | Ser | Ala | Gln | Gln | Val | Val | Gly |
|     |     |     |     |     |     | 20  |     |     | 25  |     |     |     | 30  |     |     |
| Ser | Arg | Leu | Leu | Ser | Leu | Glu | His | Pro | Trp | Arg | Glu | Leu | Leu | Gln | Asp |
|     |     |     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |     |
| Phe | Ile | Ala | Gln | Asp | Glu | Glu | His | Leu | His | Lys | Gln | His | Leu | Gln | Leu |
|     |     |     |     |     |     | 50  |     |     | 55  |     |     |     | 60  |     |     |
| Asp | Gly | Glu | Val | Arg | Trp | Leu | Asn | Leu | His | Lys | Ala | Ala | Ile | Asp | Glu |
|     |     |     |     |     |     | 65  |     |     | 70  |     |     |     | 75  |     | 80  |
| Pro | Leu | Ala | Pro | Gly | Asn | Ser | Gly | Leu | Val | Leu | Leu | Val | Glu | Asp | Val |
|     |     |     |     |     |     | 85  |     |     |     | 90  |     |     |     | 95  |     |
| Thr | Glu | Thr | Arg | Val | Leu | Glu | Asp | Gln | Leu | Val | His | Ser | Glu | Arg | Leu |
|     |     |     |     |     |     | 100 |     |     |     | 105 |     |     |     | 110 |     |
| Ala | Ser | Ile | Gly | Arg | Leu | Ala | Ala | Gly | Val | Ala | His | Glu | Ile | Gly | Asn |
|     |     |     |     |     |     | 115 |     |     | 120 |     |     |     | 125 |     |     |
| Pro | Val | Thr | Gly | Ile | Ala | Cys | Leu | Ala | Gln | Asn | Leu | Arg | Glu | Glu | Arg |
|     |     |     |     |     |     | 130 |     |     | 135 |     |     |     | 140 |     |     |
| Glu | Gly | Asp | Glu | Glu | Leu | Gly | Glu | Ile | Ser | Asn | Gln | Ile | Leu | Asp | Gln |
|     |     |     |     |     |     | 145 |     |     | 150 |     |     |     | 155 |     | 160 |
| Thr | Lys | Arg | Ile | Ser | Arg | Ile | Val | Gln | Ser | Leu | Met | Asn | Phe | Ala | His |
|     |     |     |     |     |     | 165 |     |     |     | 170 |     |     |     | 175 |     |
| Ala | Gly | Gln | Gln | Gln | Arg | Ala | Glu | Tyr | Pro | Val | Ser | Leu | Ala | Glu | Val |
|     |     |     |     |     |     | 180 |     |     |     | 185 |     |     |     | 190 |     |
| Ala | Gln | Asp | Ala | Ile | Gly | Leu | Leu | Ser | Leu | Asn | Arg | His | Gly | Thr | Glu |
|     |     |     |     |     |     | 195 |     |     | 200 |     |     |     | 205 |     |     |
| Val | Gln | Phe | Tyr | Asn | Leu | Cys | Asp | Pro | Glu | His | Leu | Ala | Lys | Gly | Asp |
|     |     |     |     |     |     | 210 |     |     | 215 |     |     |     | 220 |     |     |
| Pro | Gln | Arg | Leu | Ala | Gln | Val | Leu | Ile | Asn | Leu | Leu | Ser | Asn | Ala | Arg |
|     |     |     |     |     |     | 225 |     |     | 230 |     |     |     | 235 |     | 240 |
| Asp | Ala | Ser | Pro | Ala | Gly | Gly | Ala | Ile | Arg | Val | Arg | Ser | Glu | Ala | Glu |
|     |     |     |     |     |     | 245 |     |     |     | 250 |     |     |     | 255 |     |
| Glu | Gln | Ser | Val | Val | Leu | Ile | Val | Glu | Asp | Glu | Gly | Thr | Gly | Ile | Pro |
|     |     |     |     |     |     | 260 |     |     |     | 265 |     |     |     | 270 |     |

Gln Ala Ile Met Asp Arg Leu Ph Glu Pro Phe Phe Thr Thr Lys Asp  
 275 280 285  
 Pro Gly Lys Gly Thr Gly Leu Gly Leu Ala Leu Val Tyr Ser Ile Val  
 290 295 300  
 Glu Glu His Tyr Gly Gln Ile Thr Ile Asp Ser Pro Ala Asp Pro Glu  
 305 310 315 320  
 His Gln Arg Gly Thr Arg Phe Arg Val Thr Leu Pro Arg Tyr Val Glu  
 325 330 335  
 Ala Thr Ser Thr Ala Thr  
 340

## (2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1416 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

|             |             |             |              |            |             |      |
|-------------|-------------|-------------|--------------|------------|-------------|------|
| ATGCCGCATA  | TCCTCATCGT  | CGAACAGCAA  | ACCATCATCC   | GCTCCGCCCT | GCGCCGCCCTG | 60   |
| CTGGAACGCA  | ACCAAGTACCA | GGTCAGCGAG  | GCCGGTTCCG   | TTCAGGAGGC | CCAGGAGCGC  | 120  |
| TACAGCATT   | CGACCTTCGA  | CCTGGTGTC   | AGCGAACCTGC  | GCCTGCCCGG | CGCCCCCGGC  | 180  |
| ACCGAGCTGA  | TCAAGCTGGC  | CGACGGCACCC | CCGGTACTGA   | TCATGACCAG | CTATGCCAGC  | 240  |
| CTGGGCTCGG  | CGGTGGACTC  | GATGAAGATG  | GGCGCCGTGG   | ACTACATCGC | CAAGCCCTTC  | 300  |
| GATCACGACG  | AGATGCTCCA  | GGCCGTGGCG  | CGTATCCTGC   | GCGATCACCA | GGAGGCCAAG  | 360  |
| CCCAACCCGC  | CAAGCGAGGC  | GCCCAGCAAG  | TCCGCCGGCA   | AGGGCAACGG | CGCCACCGCC  | 420  |
| GAGGGCGAGA  | TCGGCATCAT  | CGGCTCTGC   | GCCGCCATGC   | AGGACCTTA  | CGGCAAGATC  | 480  |
| CCCAAGGTG   | CTCCCACCGA  | TTCCAACGTA  | CTGATCCAGG   | GGCAGTCCGG | CACCGGCAAG  | 540  |
| GAGCTGGTGC  | CGCGTGCCTG  | GCACAACCTC  | TCGCGTCCGG   | CCAAGGCACC | GCTGATCTCG  | 600  |
| GTGAACGTGCG | CGGGCATTCC  | CGAGACCTTG  | ATCGAGTCCC   | AACGTTCGG  | CCACGAGAAA  | 660  |
| GGTGCCTTCA  | CCGGCGCCAG  | CGCCGGCCGC  | GCCGGCCTGG   | TGAAAGCGGC | CGACGGCGGC  | 720  |
| ACCCCTGTTCC | TCGACGAGAT  | CGCGAGCTG   | CCGCTGGAGG   | CGCAGGCCCG | CCTGCTGCGC  | 780  |
| GTGCTGCAGG  | AGGGCGAGAT  | CCGTCGGTGC  | GGCTCGGTGC   | AGTCACAGAA | GGTCGATGTA  | 840  |
| CGCCCTGATCG | CCGCTACCCA  | CCGCGACCTC  | AAAGACGCTGG  | CCAAGACCGG | CCAGTTCGCC  | 900  |
| GAGGACCTCT  | ACTACCGCCT  | GCACGTCATC  | GCCCTCAAGC   | TGCCGCCACT | GCGCGAGCGC  | 960  |
| GGCGCCGACG  | TCAACGAGAT  | CGCCCGCGCC  | TTCCTCGTCC   | GCCAGTGCCA | GCGCATGGGC  | 1020 |
| CGCGAGGACC  | TGGCCTTCGC  | TCAGGATGCC  | GAGCAGGCCA   | TCCGCCACTA | CCCCTGGCCG  | 1080 |
| GGCAACGTGC  | GCGAGCTGGA  | GAATGCCATC  | GAGCGCGCGG   | TGATCCTCTG | CGAGGGCGCG  | 1140 |
| GAATTTCCG   | CCGAGCTGCT  | GGGCATCGAC  | ATCGAGCTGG   | ACGACCTGGA | GGACGGCGAC  | 1200 |
| TTCGGCGAAC  | AGCCACAGCA  | GACCGCGGCC  | AAACCAACGAAC | CGACCGAGGA | CCTGTCGCTG  | 1260 |
| GAGGACTACT  | TCCAGCACTT  | CGTACTGGAG  | CACCAAGGATC  | ACATGACCGA | GACCGAACTG  | 1320 |
| GCGCGCAAGC  | TGGCCTACAG  | CCGCAAGTGC  | CTGTGGGAGC   | GCCGTCAGCG | CCTGGGCATT  | 1380 |
| CCGCGGGCGCA | AGTCGGGGCGC | GGCGACCGGC  | TCCTGA       |            |             | 1416 |

## (2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 471 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Pro His Ile Leu Ile Val Glu Asp Glu Thr Ile Ile Arg Ser Ala

|                                                                 |     |     |     |
|-----------------------------------------------------------------|-----|-----|-----|
| 1                                                               | 5   | 10  | 15  |
| Leu Arg Arg Leu Leu Glu Arg Asn Gln Tyr Gln Val Ser Glu Ala Gly |     |     |     |
| 20                                                              | 25  | 30  |     |
| Ser Val Gln Glu Ala Gln Glu Arg Tyr Ser Ile Pro Thr Phe Asp Leu |     |     |     |
| 35                                                              | 40  | 45  |     |
| Val Val Ser Asp Leu Arg Leu Pro Gly Ala Pro Gly Thr Glu Leu Ile |     |     |     |
| 50                                                              | 55  | 60  |     |
| Lys Leu Ala Asp Gly Thr Pro Val Leu Ile Met Thr Ser Tyr Ala Ser |     |     |     |
| 65                                                              | 70  | 75  | 80  |
| Leu Arg Ser Ala Val Asp Ser Met Lys Met Gly Ala Val Asp Tyr Ile |     |     |     |
| 85                                                              | 90  | 95  |     |
| Ala Lys Pro Phe Asp His Asp Glu Met Leu Gln Ala Val Ala Arg Ile |     |     |     |
| 100                                                             | 105 | 110 |     |
| Leu Arg Asp His Gln Glu Ala Lys Arg Asn Pro Pro Ser Glu Ala Pro |     |     |     |
| 115                                                             | 120 | 125 |     |
| Ser Lys Ser Ala Gly Lys Gly Asn Gly Ala Thr Ala Glu Gly Glu Ile |     |     |     |
| 130                                                             | 135 | 140 |     |
| Gly Ile Ile Gly Ser Cys Ala Ala Met Gln Asp Leu Tyr Gly Lys Ile |     |     |     |
| 145                                                             | 150 | 155 | 160 |
| Arg Lys Val Ala Pro Thr Asp Ser Asn Val Leu Ile Gln Gly Glu Ser |     |     |     |
| 165                                                             | 170 | 175 |     |
| Gly Thr Gly Lys Glu Leu Val Ala Arg Ala Leu His Asn Leu Ser Arg |     |     |     |
| 180                                                             | 185 | 190 |     |
| Arg Ala Lys Ala Pro Leu Ile Ser Val Asn Cys Ala Ala Ile Pro Glu |     |     |     |
| 195                                                             | 200 | 205 |     |
| Thr Leu Ile Glu Ser Glu Leu Phe Gly His Glu Lys Gly Ala Phe Thr |     |     |     |
| 210                                                             | 215 | 220 |     |
| Gly Ala Ser Ala Gly Arg Ala Gly Leu Val Glu Ala Ala Asp Gly Gly |     |     |     |
| 225                                                             | 230 | 235 | 240 |
| Thr Leu Phe Leu Asp Glu Ile Gly Glu Leu Pro Leu Glu Ala Gln Ala |     |     |     |
| 245                                                             | 250 | 255 |     |
| Arg Leu Leu Arg Val Leu Gln Glu Gly Glu Ile Arg Arg Val Gly Ser |     |     |     |
| 260                                                             | 265 | 270 |     |
| Val Gln Ser Gln Lys Val Asp Val Arg Leu Ile Ala Ala Thr His Arg |     |     |     |
| 275                                                             | 280 | 285 |     |
| Asp Leu Lys Thr Leu Ala Lys Thr Gly Gln Phe Arg Glu Asp Leu Tyr |     |     |     |
| 290                                                             | 295 | 300 |     |
| Tyr Arg Leu His Val Ile Ala Leu Lys Leu Pro Pro Leu Arg Glu Arg |     |     |     |
| 305                                                             | 310 | 315 | 320 |
| Gly Ala Asp Val Asn Glu Ile Ala Arg Ala Phe Leu Val Arg Gln Cys |     |     |     |
| 325                                                             | 330 | 335 |     |
| Gln Arg Met Gly Arg Glu Asp Leu Arg Phe Ala Gln Asp Ala Glu Gln |     |     |     |
| 340                                                             | 345 | 350 |     |
| Ala Ile Arg His Tyr Pro Trp Pro Gly Asn Val Arg Glu Leu Glu Asn |     |     |     |
| 355                                                             | 360 | 365 |     |
| Ala Ile Glu Arg Ala Val Ile Leu Cys Glu Gly Ala Glu Ile Ser Ala |     |     |     |
| 370                                                             | 375 | 380 |     |
| Glu Leu Leu Gly Ile Asp Ile Glu Leu Asp Asp Leu Glu Asp Gly Asp |     |     |     |
| 385                                                             | 390 | 395 | 400 |
| Phe Gly Glu Gln Pro Gln Gln Thr Ala Ala Asn His Glu Pro Thr Glu |     |     |     |
| 405                                                             | 410 | 415 |     |
| Asp Leu Ser Leu Glu Asp Tyr Phe Gln His Phe Val Leu Glu His Gln |     |     |     |
| 420                                                             | 425 | 430 |     |
| Asp His Met Thr Glu Thr Glu Leu Ala Arg Lys Leu Gly Ile Ser Arg |     |     |     |
| 435                                                             | 440 | 445 |     |
| Lys Cys Leu Trp Glu Arg Arg Gln Arg Leu Gly Ile Pro Arg Arg Lys |     |     |     |
| 450                                                             | 455 | 460 |     |
| Ser Gly Ala Ala Thr Gly Ser                                     |     |     |     |
| 465                                                             | 470 |     |     |

## (2) INFORMATION FOR SEQ ID NO:5:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GCCTGGAGGA TTACCAAGTC

19

## (2) INFORMATION FOR SEQ ID NO:6:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1512 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| ATGTCCACCG  | ATACCCACGC  | CGCCCTGACG  | GCTCCCGCAA  | GCCCCGCCCTT | GCGCCCGCTG  | 60   |
| CCCTTCGCCT  | TCGCCAAACG  | CCACGGCGTG  | CTGCTGCGCG  | AGCCCTTCGG  | CCAGGTCCAG  | 120  |
| CTGCAGGTGC  | GCCGCGGTGC  | CAGCCCTGGCC | GCCGTGCAGG  | AGGCCAGCG   | CTTCGCCGGC  | 180  |
| CGCGTGCCTGC | CGCTGCACTG  | GCTGGAGCCC  | GAGGCCCTTCG | AGCAGGAGCT  | GGCCCTGGCC  | 240  |
| TACCAGCGCG  | ACTCCTCCGA  | GGTGGCGCAG  | ATGGCCGAGG  | GCATGGGTGC  | CGAACATTGAC | 300  |
| CTAGCCAGCC  | TGGCCGAACT  | CACTCCCGAA  | TCCGGCGACC  | TGCTGGAGCA  | GGAAGATGAC  | 360  |
| GCGCCGATCA  | TCCGCGCTGAT | CAACGCCATC  | CTCAGCGAGG  | CGATCAAGGC  | CGGCGCCTCC  | 420  |
| GACATCCACC  | TGGAAACCTT  | CGAGAAACGC  | CTGGTGGTGC  | GCTTCGCGT   | CGACGGCATC  | 480  |
| CTCCCGAAG   | TGATCGAAC   | GCGCCGCGAG  | CTGGCGGCGC  | TGCTGGTCTC  | GCGGGTCAAG  | 540  |
| GTCATGGCGC  | GCCTGGACAT  | CGCCGAGAAG  | CGCGTACCGC  | AGGACGGCCG  | TATTTCGCTC  | 600  |
| AAGGTCGGCG  | GTCGCGAGGT  | GGATATCCGC  | GTCTCCACCC  | TGCCGTCCGC  | CAACGGCGAG  | 660  |
| CGGGTGGTGC  | TGCGTCTGCT  | CGACAAGCAG  | GCCGGGCGCC  | TGTCGCTCAC  | GCATCTGGC   | 720  |
| ATGAGCGAGC  | GCGACCGCCG  | CCTGCTCGAC  | GACAACCTGC  | GCAAGCCGCA  | CGGCATCATC  | 780  |
| CTAGTCACCG  | GCCCCACCGG  | CTCGGGCAAG  | ACCACCAACC  | TGTACGCCGG  | CCTGGTCACC  | 840  |
| CTCAACGACC  | GCTCGCGCAA  | TATCCTCACG  | GTGGAAGACC  | CGATCGAGTA  | CTACCTGGAA  | 900  |
| GGCATCGGCC  | AGACCCAGGT  | CAACCCCGGG  | GTGGACATGA  | CCTTCGCCCG  | CGGCCTGC    | 960  |
| GCCATCCTGC  | GCCAGGACCC  | GGACGTGGTG  | ATGGTCGGCG  | AGATCCGCGA  | CCAGGAGACC  | 1020 |
| GCCGACATCG  | CCGTGCAGGC  | CTCGCTCAC   | GGCCACCTGG  | TGCTCTCAC   | CCTGCACACC  | 1080 |
| AACAGCGCCG  | TCGGCGCCGT  | CACCCGCTG   | GTGGACATGG  | GCCTCGAGCC  | CTTCCTGCTG  | 1140 |
| TCGTCGTC    | TGCTCGGC    | GCTGGCCAG   | CGCTCTGGTC  | GCCTGCTCTG  | CGTGCAC     | 1200 |
| CGCGAGGC    | GCCCCGCTGA  | CGCGGCCGAG  | TGCGGCC     | TGCGGCC     | CCCGCACAGC  | 1260 |
| CAGCCCCG    | TCTACCACGC  | CAAGGGCTGC  | CCGGAGTGC   | ACCAGCAGGG  | CTACCGCGGC  | 1320 |
| CGTACTGGCA  | TCTACGAGCT  | GGTGATCTTC  | GACGACCAGA  | TGCGCAC     | GGTGCACAAC  | 1380 |
| GGCGCCGGTG  | AGCAGGAGCT  | GATTGCCAC   | GCCCGCAGCC  | TCGGCCCGAG  | CATCCGCGAC  | 1440 |
| GATGGCCGGC  | GCAAGGTGCT  | GGAAAGGGTG  | ACCAGCCTGG  | AAGAAGTGT   | GCGCGTGACC  | 1500 |
| CGGGAAAGACT | GA          |             |             |             |             | 1512 |

## (2) INFORMATION FOR SEQ ID NO:7:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 503 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single

## (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Ser Thr Asp Thr His Ala Ala Leu Thr Ala Pro Ala Ser Pro Ala  
 1 5 10 15  
 Leu Arg Pro Leu Pro Phe Ala Phe Ala Lys Arg His Gly Val Leu Leu  
 20 25 30  
 Arg Glu Pro Phe Gly Gln Val Gln Leu Gln Val Arg Arg Gly Ala Ser  
 35 40 45  
 Leu Ala Ala Val Gln Glu Ala Gln Arg Phe Ala Gly Arg Val Leu Pro  
 50 55 60  
 Leu His Trp Leu Glu Pro Glu Ala Phe Glu Gln Glu Leu Ala Leu Ala  
 65 70 75 80  
 Tyr Gln Arg Asp Ser Ser Glu Val Arg Gln Met Ala Glu Gly Met Gly  
 85 90 95  
 Ala Glu Leu Asp Leu Ala Ser Leu Ala Glu Leu Thr Pro Glu Ser Gly  
 100 105 110  
 Asp Leu Leu Glu Gln Glu Asp Asp Ala Pro Ile Ile Arg Leu Ile Asn  
 115 120 125  
 Ala Ile Leu Ser Glu Ala Ile Lys Ala Gly Ala Ser Asp Ile His Leu  
 130 135 140  
 Glu Thr Phe Glu Lys Arg Leu Val Val Arg Phe Arg Val Asp Gly Ile  
 145 150 155 160  
 Leu Arg Glu Val Ile Glu Pro Arg Arg Glu Leu Ala Ala Leu Leu Val  
 165 170 175  
 Ser Arg Val Lys Val Met Ala Arg Leu Asp Ile Ala Glu Lys Arg Val  
 180 185 190  
 Pro Gln Asp Gly Arg Ile Ser Leu Lys Val Gly Gly Arg Glu Val Asp  
 195 200 205  
 Ile Arg Val Ser Thr Leu Pro Ser Ala Asn Gly Glu Arg Val Val Leu  
 210 215 220  
 Arg Leu Leu Asp Lys Gln Ala Gly Arg Leu Ser Leu Thr His Leu Gly  
 225 230 235 240  
 Met Ser Glu Arg Asp Arg Arg Leu Leu Asp Asp Asn Leu Arg Lys Pro  
 245 250 255  
 His Gly Ile Ile Leu Val Thr Gly Pro Thr Gly Ser Gly Lys Thr Thr  
 260 265 270  
 Thr Leu Tyr Ala Gly Leu Val Thr Leu Asn Asp Arg Ser Arg Asn Ile  
 275 280 285  
 Leu Thr Val Glu Asp Pro Ile Glu Tyr Tyr Leu Glu Gly Ile Gly Gln  
 290 295 300  
 Thr Gln Val Asn Pro Arg Val Asp Met Thr Phe Ala Arg Gly Leu Arg  
 305 310 315 320  
 Ala Ile Leu Arg Gln Asp Pro Asp Val Val Met Val Gly Glu Ile Arg  
 325 330 335  
 Asp Gln Glu Thr Ala Asp Ile Ala Val Gln Ala Ser Leu Thr Gly His  
 340 345 350  
 Leu Val Leu Ser Thr Leu His Thr Asn Ser Ala Val Gly Ala Val Thr  
 355 360 365  
 Arg Leu Val Asp Met Gly Val Glu Pro Phe Leu Leu Ser Ser Ser Leu  
 370 375 380  
 Leu Gly Val Leu Ala Gln Arg Leu Val Arg Val Leu Cys Val His Cys  
 385 390 395 400  
 Arg Glu Ala Arg Pro Ala Asp Ala Ala Glu Cys Gly Leu Leu Gly Leu  
 405 410 415  
 Asp Pro His Ser Gln Pro Leu Ile Tyr His Ala Lys Gly Cys Pro Glu  
 420 425 430  
 Cys His Gln Gln Gly Tyr Arg Gly Arg Thr Gly Ile Tyr Glu Leu Val

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 435                                                             | 440 | 445 |
| Ile Phe Asp Asp Gln Met Arg Thr Leu Val His Asn Gly Ala Gly Glu |     |     |
| 450                                                             | 455 | 460 |
| Gln Glu Leu Ile Arg His Ala Arg Ser Leu Gly Pro Ser Ile Arg Asp |     |     |
| 465                                                             | 470 | 475 |
| Asp Gly Arg Arg Lys Val Leu Glu Gly Val Thr Ser Leu Glu Glu Val |     |     |
| 485                                                             | 490 | 495 |
| Leu Arg Val Thr Arg Glu Asp                                     |     |     |
| 500                                                             |     |     |

## (2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1215 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

|             |             |             |            |             |             |      |
|-------------|-------------|-------------|------------|-------------|-------------|------|
| ATGGCCGCCT  | TCGAATAACAT | CGCCCTGGAT  | GCCAGGGGCC | GCCAGCAGAA  | GGCCGTGCTG  | 60   |
| GAGGGCGACA  | GCGCCCGCCA  | GGTGCAGCCAG | CTGCTGCGCG | ACAAAACAGTT | CTCCCGCTG   | 120  |
| CAGGTCTGAGC | CGGTACAGCG  | CAGGGAGCG   | GCCCAGGCTG | GTGGCTTCAG  | CCTGCGCCGT  | 180  |
| GGCCTGTCGG  | CGCGCGACCT  | GGCGCTGGTC  | ACCCGTCAGC | TGGCGACCCCT | GATCGCGGCC  | 240  |
| GCGCTGCCCA  | TGGAGGAAGC  | GCTGCGGCC   | GCCCAGGCGC | AGTCGCGCCA  | GCCCGCCATC  | 300  |
| CAGTCGATGC  | TGTTGGCGGT  | GCGCGCCAAAG | GTGCTCGAGG | GCCACAGCCT  | GGCCAAGGCC  | 360  |
| CTGGCCCTCCT | ACCCGGCGGC  | CTTCCCCGAG  | CTGTACCGCG | CCACGGTGGC  | GGCCGGCGAG  | 420  |
| CATGCGGGGC  | ACCTGGCGCC  | GGTGCTGGAG  | CAGCTGGCCG | ACTACACCGA  | GCAGCGCCAG  | 480  |
| CAGTCGCGGC  | AGAACGATCCA | GATGGCGCTG  | CTCTACCCGG | TGATCCTGAT  | GCTCGCTTCG  | 540  |
| CTGGGCATCG  | TGGTTTTCT   | GCTCGGCTAC  | GTGGTGGCGG | ATGTGGTGGC  | GCTGTTCGTC  | 600  |
| GACTCCGGGC  | AGACCCCTGCC | GGCGCTGACC  | CGCGGGCTGA | TTTCCTCAG   | CGAGCTGGTC  | 660  |
| AAGTCCCTGGG | GGCCCTGGC   | CATCGTCTG   | GCGGTGCTCG | GCGTGCTCGC  | CTTCGCGCGC  | 720  |
| GCCTTGGCACA | GGGAGGATCT  | GCGCCGGCGC  | TGGCATGCC  | TCCCTGCTGCC | CGTGGCGCTG  | 780  |
| GTCGGTGGGC  | TGATCGCCGC  | CACCGAGACG  | GCACGCTTCG | CCTCGACCCCT | GGCCATCCTG  | 840  |
| GTGCGCAGCG  | GGGTGCCACT  | GGTGGAGGCC  | CTGCCATCG  | GCGCCGAGGT  | GGTGTCCAAC  | 900  |
| CTGATCATCC  | GCAGCGACGT  | GGCCAACGCC  | ACCCAGCGCG | TGCGCGAGGG  | CGGCAGCCTG  | 960  |
| TCGCGCGCGC  | TGGAAGCCAG  | CCGGCAGTTT  | CCGGCGATGA | TGCTGCACAT  | GATGCCAGC   | 1020 |
| GGCGAGCGTT  | CCGGCGAGCT  | GGACCAGATG  | CTGGCGCGCA | CGGCGCGCAA  | CCAGGAAAAC  | 1080 |
| GACCTGGCGG  | CCACCATCGG  | CCTGCTGGTG  | GGGCTGTTCG | AGCCGTTCAT  | GCTGGTATTTC | 1140 |
| ATGGGGCGCG  | TGGTGTGGGT  | GATCGTGTG   | GCCATCCTGC | TGCGGATTCT  | TTCTCTGAAC  | 1200 |
| CAACTGGTGG  | GTGTA       |             |            |             |             | 1215 |

## (2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 404 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

|                                                                 |    |    |    |
|-----------------------------------------------------------------|----|----|----|
| Met Ala Ala Phe Glu Tyr Ile Ala Leu Asp Ala Arg Gly Arg Gln Gln |    |    |    |
| 1                                                               | 5  | 10 | 15 |
| Lys Gly Val Leu Glu Gly Asp Ser Ala Arg Gln Val Arg Gln Leu Leu |    |    |    |
| 20                                                              | 25 | 30 |    |
| Arg Asp Lys Gln Leu Ser Pro Leu Gln Val Glu Pro Val Gln Arg Arg |    |    |    |

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 35                                                              | 40  | 45  |
| Glu Gln Ala Glu Ala Gly Gly Phe Ser Leu Arg Arg Gly Leu Ser Ala |     |     |
| 50                                                              | 55  | 60  |
| Arg Asp Leu Ala Leu Val Thr Arg Gln Leu Ala Thr Leu Ile Gly Ala |     |     |
| 65                                                              | 70  | 75  |
| Ala Leu Pro Ile Glu Glu Ala Leu Arg Ala Ala Ala Gln Ser Arg     |     | 80  |
| 85                                                              | 90  | 95  |
| Gln Pro Arg Ile Gln Ser Met Leu Leu Ala Val Arg Ala Lys Val Leu |     |     |
| 100                                                             | 105 | 110 |
| Glu Gly His Ser Leu Ala Lys Ala Leu Ala Ser Tyr Pro Ala Ala Phe |     |     |
| 115                                                             | 120 | 125 |
| Pro Glu Leu Tyr Arg Ala Thr Val Ala Ala Gly Glu His Ala Gly His |     |     |
| 130                                                             | 135 | 140 |
| Leu Ala Pro Val Leu Glu Gln Leu Ala Asp Tyr Thr Glu Gln Arg Gln |     |     |
| 145                                                             | 150 | 155 |
| Gln Ser Arg Gln Lys Ile Gln Met Ala Leu Leu Tyr Pro Val Ile Leu |     | 160 |
| 165                                                             | 170 | 175 |
| Met Leu Ala Ser Leu Gly Ile Val Gly Phe Leu Leu Gly Tyr Val Val |     |     |
| 180                                                             | 185 | 190 |
| Pro Asp Val Val Arg Val Phe Val Asp Ser Gly Gln Thr Leu Pro Ala |     |     |
| 195                                                             | 200 | 205 |
| Leu Thr Arg Gly Leu Ile Phe Leu Ser Glu Leu Val Lys Ser Trp Gly |     |     |
| 210                                                             | 215 | 220 |
| Ala Leu Ala Ile Val Leu Ala Val Leu Gly Val Leu Ala Phe Arg Arg |     |     |
| 225                                                             | 230 | 235 |
| Ala Leu Arg Ser Glu Asp Leu Arg Arg Arg Trp His Ala Phe Leu Leu |     | 240 |
| 245                                                             | 250 | 255 |
| Arg Val Pro Leu Val Gly Gly Leu Ile Ala Ala Thr Glu Thr Ala Arg |     |     |
| 260                                                             | 265 | 270 |
| Phe Ala Ser Thr Leu Ala Ile Leu Val Arg Ser Gly Val Pro Leu Val |     |     |
| 275                                                             | 280 | 285 |
| Glu Ala Leu Ala Ile Gly Ala Glu Val Val Ser Asn Leu Ile Ile Arg |     |     |
| 290                                                             | 295 | 300 |
| Ser Asp Val Ala Asn Ala Thr Gln Arg Val Arg Glu Gly Gly Ser Leu |     |     |
| 305                                                             | 310 | 315 |
| Ser Arg Ala Leu Glu Ala Ser Arg Gln Phe Pro Pro Met Met Leu His |     | 320 |
| 325                                                             | 330 | 335 |
| Met Ile Ala Ser Gly Glu Arg Ser Gly Glu Leu Asp Gln Met Leu Ala |     |     |
| 340                                                             | 345 | 350 |
| Arg Thr Ala Arg Asn Gln Glu Asn Asp Leu Ala Ala Thr Ile Gly Leu |     |     |
| 355                                                             | 360 | 365 |
| Leu Val Gly Leu Phe Glu Pro Phe Met Leu Val Phe Met Gly Ala Val |     |     |
| 370                                                             | 375 | 380 |
| Val Leu Val Ile Val Leu Ala Ile Leu Leu Pro Ile Leu Ser Leu Asn |     |     |
| 385                                                             | 390 | 395 |
|                                                                 |     | 400 |
| Gln Leu Val Gly                                                 |     |     |

## (2) INFORMATION FOR SEQ ID NO:10:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 423 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ATGTACAAAC AGAAAAGGCTT CACGCTGATC GAAATCATGG TGGTGTTGGT CATCCTCGGC

|            |            |            |            |            |            |     |
|------------|------------|------------|------------|------------|------------|-----|
| ATTCTCGCTG | CCCTGGTGGT | GCCGCAGGTG | ATGGCCCC   | CGGACCAGGC | CAACGTCACC | 120 |
| GCGGCCAGA  | ACGACATCGG | CGCCATCGG  | GCCCCGCTGG | ACATGTACAA | GCTGGACAAC | 180 |
| CAGAACTACC | CGAGCACCCA | GCAGGGCCTG | GAGGCCCTGG | TGAAGAAACC | CACCGGCACG | 240 |
| CGGGCGCGA  | AGAACTGGAA | CGCCGAGGGC | TACCTGAAGA | AGCTGCCGGT | CGACCCCTGG | 300 |
| GGCAACCAGT | ACCTGTACCT | GTGCGCGGGC | ACCCCGGGCA | AGATCGACCT | GTATTGCTG  | 360 |
| GGCGCCGACG | GCCAGGAAGG | CGGCGAGGGG | ACCGACGCCG | ACATCGGCAA | CTGGGATCTC | 420 |
| TGA        |            |            |            |            |            | 423 |

## (2) INFORMATION FOR SEQ ID NO:11:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 140 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Tyr | Lys | Gln | Lys | Gly | Phe | Thr | Leu | Ile | Glu | Ile | Met | Val | Val | Val |
| 1   |     |     |     |     |     |     |     | 5   |     | 10  |     |     | 15  |     |     |
| Val | Ile | Leu | Gly | Ile | Leu | Ala | Ala | Leu | Val | Val | Pro | Gln | Val | Met | Gly |
|     |     |     |     |     |     |     |     | 20  |     | 25  |     |     | 30  |     |     |
| Arg | Pro | Asp | Gln | Ala | Lys | Val | Thr | Ala | Ala | Gln | Asn | Asp | Ile | Arg | Ala |
|     |     |     |     |     |     |     |     | 35  |     | 40  |     |     | 45  |     |     |
| Ile | Gly | Ala | Ala | Leu | Asp | Met | Tyr | Lys | Leu | Asp | Asn | Gln | Asn | Tyr | Pro |
|     |     |     |     |     |     |     |     | 50  |     | 55  |     |     | 60  |     |     |
| Ser | Thr | Gln | Gln | Gly | Leu | Glu | Ala | Leu | Val | Lys | Lys | Pro | Thr | Gly | Thr |
|     |     |     |     |     |     |     |     | 65  |     | 70  |     |     | 75  |     | 80  |
| Pro | Ala | Ala | Lys | Asn | Trp | Asn | Ala | Glu | Gly | Tyr | Leu | Lys | Lys | Leu | Pro |
|     |     |     |     |     |     |     |     | 85  |     | 90  |     |     | 95  |     |     |
| Val | Asp | Pro | Trp | Gly | Asn | Gln | Tyr | Leu | Tyr | Leu | Ser | Pro | Gly | Thr | Arg |
|     |     |     |     |     |     |     |     | 100 |     | 105 |     |     | 110 |     |     |
| Gly | Lys | Ile | Asp | Leu | Tyr | Ser | Leu | Gly | Ala | Asp | Gly | Gln | Glu | Gly | Gly |
|     |     |     |     |     |     |     |     | 115 |     | 120 |     |     | 125 |     |     |
| Glu | Gly | Thr | Asp | Ala | Asp | Ile | Gly | Asn | Trp | Asp | Leu |     |     |     |     |
|     |     |     |     |     |     |     |     | 130 |     | 135 |     |     | 140 |     |     |

## (2) INFORMATION FOR SEQ ID NO:12:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 642 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

|             |            |             |             |            |            |     |
|-------------|------------|-------------|-------------|------------|------------|-----|
| TTGAGTAGCA  | CCCGCACCCG | CCTGCCGCC   | TGGCTGCAGC  | GCCACGGCGT | GACCGGCCTC | 60  |
| TGCCCTGCTCG | TGGTGTGCT  | CATCACCCCTC | AGCCTGAGCA  | AGCAGAGCAT | CGACTTCCTT | 120 |
| CGCCCTGCTGC | GCAGCGAGGC | CGCGCCACCG  | CCCGCCCCAG  | AGAGCATCGC | CGAGCGCCAG | 180 |
| CCGCTGTCCA  | TCCAGCGCCT | GCAGCATCTG  | TTCGGCACGC  | CCGCGGCCAG | GCCGCGCGGC | 240 |
| GACCAGGCCG  | CCCCCGCCAC | CCGGCAGCAG  | ATGACCCCTGC | TGGCCAGCTT | CGTCAACCCG | 300 |
| GACGCCAACG  | GCTCCACGGC | GATCATCCAG  | GTGCGCCGGCG | ACAAACCCAA | GCGCATCGCC | 360 |
| GTGGGCGAAT  | CGGTCAACGT | CAGCACCCGC  | CTGCAGGCCG  | TCTATCAGGA | CCACGTGGTG | 420 |
| CTCGACCGCG  | GCGCGTCTGA | GGAGAGCCCTG | CGCTTCCCCG  | CCGTGCGCCA | GCCCTCTCTG | 480 |
| ACGCCCCCCT  | ACTCGGCGCT | GGAGCCCACC  | GCCAGCCAAC  | TGGAACAGCT | GCAGGACGAA | 540 |
| GACGTCCAGG  | CCCTGCAGGA | GCGCATCCAG  | ACCCTTCAAC  | AACGCATCGA | AGGCGGCGAC | 600 |

ATCCCGCAGC CCGAAATACC GGAAGCCGAA GACAGCCCAT GA

642

## (2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 213 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

```

Met Ser Ser Thr Arg Thr Arg Leu Pro Ala Trp Leu Gln Arg His Gly
 1           5           10          15
Val Thr Gly Leu Cys Leu Leu Val Val Leu Leu Ile Thr Leu Ser Leu
 20          25          30
Ser Lys Gln Ser Ile Asp Phe Leu Arg Leu Leu Arg Ser Glu Ala Ala
 35          40          45
Pro Pro Pro Ala Pro Glu Ser Ile Ala Glu Arg Gln Pro Leu Ser Ile
 50          55          60
Gln Arg Leu Gln His Leu Phe Gly Thr Pro Ala Ala Arg Pro Arg Gly
 65          70          75          80
Asp Gln Ala Ala Pro Ala Thr Arg Gln Gln Met Thr Leu Leu Ala Ser
 85          90          95
Phe Val Asn Pro Asp Ala Lys Arg Ser Thr Ala Ile Ile Gln Val Ala
100         105         110
Gly Asp Lys Pro Lys Arg Ile Ala Val Gly Glu Ser Val Asn Val Ser
115         120         125
Thr Arg Leu Gln Ala Val Tyr Gln Asp His Val Val Leu Asp Arg Gly
130         135         140
Gly Val Glu Glu Ser Leu Arg Phe Pro Ala Val Arg Gln Pro Ser Leu
145         150         155         160
Thr Pro Ala Tyr Ser Ala Leu Glu Pro Thr Ala Ser Gln Leu Glu Gln
165         170         175
Leu Gln Asp Glu Asp Val Gln Ala Leu Gln Glu Arg Ile Gln Thr Leu
180         185         190
Gln Gln Arg Met Glu Gly Gly Asp Ile Pro Gln Pro Glu Ile Pro Glu
195         200         205
Ala Glu Asp Ser Pro
 210

```

## (2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1950 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

```

ATGATCGACT CCAGAATTCC GCCGCACAAA CGCCTGCCCT TCGCCCTGCT GCTGGCCCG 60
AGCTGCCTCG CGGCCCGCT GCGCTCGTC CATGCCGCG AGCCGGTGGC GGTGAGCCAG 120
GGCGCCGAGA CCTGGACCAT CAACATGAAG GACGCCGATA TCCGCGACTT CATCGACCA 180
GTGGCGCAGA TCTCTGGCGA GACCTTCGTC GTCGATCCGC GGGTCAAGGG CCAGGTCACG 240
GTGATCTCCA AGACCCCCGCT GGGCCTCGAG GAGGTCTACC AGCTGTTCTT TTGGTGATG 300
AGCACCCATG GCTTCAGCGT GCTGGCACAG GGCGACCAGG CGCGCATCGT GCCGGTCACC 360

```

|             |             |             |             |             |             |
|-------------|-------------|-------------|-------------|-------------|-------------|
| GAGGGCGCGTA | GCGGCGGCCAA | CAGCAGCCGC  | AGCGCCCGGG  | ACGATGTGCA  | GACCGAGCTG  |
| ATCCAGGTGC  | AGCACACCTC  | GGTCAACGAA  | CTGATCCCCG  | TGATCCGCC   | GCTGGTGCCG  |
| CAGAACGGCC  | ACCTGGCGGC  | GGTCCCCGCC  | TCCAACGCC   | TGATCATCAG  | CGACCGCCGG  |
| GCNAATATCG  | AACGCATCCG  | CGAACTGATC  | GCCGAGCTCG  | ATGCCCAAGGG | CGGGGGCGAC  |
| TACAACGTGA  | TCAACCTGCA  | GCATGCCCTGG | GTACTGGAGC  | CCGCCGAGGC  | ACTGAACAAC  |
| GGGGTGTATGC | GCAACGAGAA  | AAACAGGCC   | GGCACCCGGG  | TGATTGCCGA  | CGCCCGCACC  |
| AACCGCTCTGA | TCCTCCCTCGG | CCCGCCGCC   | GCCCCGCCAGC | GCCTGGCCAA  | CCTGGCCCAC  |
| TCGCTGGACA  | TCCCCAGCAC  | CCGTTGCC    | AATGCCCGGG  | TAATTGCGCT  | ACGCCACAGC  |
| GACGCCAAGA  | GCCTGGCCGA  | GACCCCTGGC  | GACATCTCCG  | AGGGGTTGAA  | GACCGGGAG   |
| GGTGGTGGCG  | AAGCCGCCAG  | CAGCAAGCCG  | CAGAACATCC  | TGATCCGCGC  | CGACCGAGAGC |
| CTCAATGCC   | TGGTCCCTGCT | GGCCGATCCG  | GACACCGTGG  | CGACCCCTCGA | GGAAATCGTG  |
| CGCAACCTCG  | ACGTGCCGCG  | CGCCCAGGTG  | ATGGTCCGAGG | CGGCCATCGT  | GGAAATCTCC  |
| GGGGACATCA  | GCGACGCCCT  | CGGCGTGAG   | TGGGCGGTGG  | ATGCCCGGG   | CGGCCACCGGC |
| GGCCTGGCG   | GGGTCAACTT  | CGGCAATACC  | GGGCTATCGG  | TGGGCACCGT  | GCTCAAGGCC  |
| ATCCAGAACG  | AGGAAATCCC  | CGATGACCTG  | ACCCCTGCCGG | ACGGCGCCAT  | CATCGGCATC  |
| GGCACCGAGA  | ACTTCGGCGC  | GCTGATCACT  | GCCCTCTCTG  | CCAACAGCAA  | GAGCAACCTG  |
| CTGTCCACGC  | CCAGCCTGCT  | GACCCCTGAC  | AACCAGGAGG  | CGGAAATCCT  | GGTGGGGCAG  |
| AACGTGCC    | TCCAGACCGG  | CTCCCTACACC | ACCGACGCC   | CGGGGGCGAA  | CAACCCCTTC  |
| ACCACCATG   | AGGGCGAGGA  | CATCGGCGTG  | ACCCCTCAAGG | TCACCCCGCA  | CATCAACGAC  |
| GGGCCACCC   | TGCGCCTGG   | AGTGGAGCAG  | GAGATCTCCT  | CCATGCC     | CAGCCCCGGG  |
| GTCAATGCC   | AGGGCGTGG   | CCTGGTGACC  | AACAAGCGCT  | CGATCAAGAG  | CGTGTACCTG  |
| GCCGACGACG  | GCCAGGTCA   | AGTGGCTGGG  | GGGCTGATCC  | AGGACGACGT  | CACCACCA    |
| GACTCCAAGG  | TGCCGCTGCT  | GGGTGACATC  | CCGCTGATCG  | GGGGGCTGTT  | CCGCTCGACC  |
| AAGGACACCC  | ACGTCAAGCG  | CAACCTGATG  | GTGTTCCCTGC | GGCCGACCAT  | CGTCCCGCAG  |
| CGCGCCGGCA  | TGGCCGCGCT  | GTGGGGCAAG  | AAGTACAGCC  | ACATCAGCGT  | GCTGGGTGCC  |
| GACGAGGATG  | GCCACAGCG   | CCTGGCGGGC  | AGCGCCGAGC  | CCCTGTTCGA  | CAAACCCGGC  |
| GCCGGTGCCG  | TGGACCTGCG  | CGACCACTG   |             |             | 1950        |

(2) INFORMATION FOR SEQ ID NO:15:

**(i) SEQUENCE CHARACTERISTICS:**

- (A) LENGTH: 649 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

```

Met Ile Asp Ser Arg Ile Pro Pro His Lys Arg Leu Pro Leu Ala Leu
      1           5           10          15
Leu Leu Ala Ala Ser Cys Leu Ala Ala Pro Leu Pro Leu Val His Ala
      20          25          30
Ala Glu Pro Val Ala Val Ser Gln Gly Ala Glu Thr Trp Thr Ile Asn
      35          40          45
Met Lys Asp Ala Asp Ile Arg Asp Phe Ile Asp Gln Val Ala Gln Ile
      50          55          60
Ser Gly Glu Thr Phe Val Val Asp Pro Arg Val Lys Gly Gln Val Thr
      65          70          75          80
Val Ile Ser Lys Thr Pro Leu Gly Leu Glu Glu Val Tyr Gln Leu Phe
      85          90          95
Leu Ser Val Met Ser Thr His Gly Phe Ser Val Leu Ala Gln Gly Asp
      100         105         110
Gln Ala Arg Ile Val Pro Val Thr Glu Ala Arg Ser Gly Ala Asn Ser
      115         120         125
Ser Arg Ser Ala Pro Asp Asp Val Gln Thr Glu Leu Ile Gln Val Gln
      130         135         140
His Thr S r Val Asn Glu Leu Ile Pro Leu Ile Arg Pro Leu Val Pro
      145         150         155         160

```

Gln Asn Gly His Leu Ala Ala Val Ala Ala Ser Asn Ala Leu Ile Ile  
                  165                 170                 175  
 Ser Asp Arg Arg Ala Asn Ile Glu Arg Ile Arg Glu Leu Ile Ala Glu  
                  180                 185                 190  
 Leu Asp Ala Gin Gly Gly Asp Tyr Asn Val Ile Asn Leu Gln His  
                  195                 200                 205  
 Ala Trp Val Leu Asp Ala Ala Glu Ala Leu Asn Asn Ala Val Met Arg  
                  210                 215                 220  
 Asn Glu Lys Asn Ser Ala Gly Thr Arg Val Ile Ala Asp Ala Arg Thr  
                  225                 230                 235                 240  
 Asn Arg Leu Ile Leu Leu Gly Pro Pro Ala Ala Arg Gln Arg Leu Ala  
                  245                 250                 255  
 Asn Leu Ala Arg Ser Leu Asp Ile Pro Ser Thr Arg Ser Ala Asn Ala  
                  260                 265                 270  
 Arg Val Ile Arg Leu Arg His Ser Asp Ala Lys Ser Leu Ala Glu Thr  
                  275                 280                 285  
 Leu Gly Asp Ile Ser Glu Gly Leu Lys Thr Ala Glu Gly Gly Glu  
                  290                 295                 300  
 Ala Ala Ser Ser Lys Pro Gln Asn Ile Leu Ile Arg Ala Asp Glu Ser  
                  305                 310                 315                 320  
 Leu Asn Ala Leu Val Leu Leu Ala Asp Pro Asp Thr Val Ala Thr Leu  
                  325                 330                 335  
 Glu Glu Ile Val Arg Asn Leu Asp Val Pro Arg Ala Gln Val Met Val  
                  340                 345                 350  
 Glu Ala Ala Ile Val Glu Ile Ser Gly Asp Ile Ser Asp Ala Leu Gly  
                  355                 360                 365  
 Val Gln Trp Ala Val Asp Ala Arg Gly Gly Thr Gly Gly Leu Gly Gly  
                  370                 375                 380  
 Val Asn Phe Gly Asn Thr Gly Leu Ser Val Gly Thr Val Leu Lys Ala  
                  385                 390                 395                 400  
 Ile Gln Asn Glu Glu Ile Pro Asp Asp Leu Thr Leu Pro Asp Gly Ala  
                  405                 410                 415  
 Ile Ile Gly Ile Gly Thr Glu Asn Phe Gly Ala Leu Ile Thr Ala Leu  
                  420                 425                 430  
 Ser Ala Asn Ser Lys Ser Asn Leu Leu Ser Thr Pro Ser Leu Leu Thr  
                  435                 440                 445  
 Leu Asp Asn Gln Glu Ala Glu Ile Leu Val Gly Gln Asn Val Pro Phe  
                  450                 455                 460  
 Gln Thr Gly Ser Tyr Thr Thr Asp Ala Ser Gly Ala Asn Asn Pro Phe  
                  465                 470                 475                 480  
 Thr Thr Ile Glu Arg Glu Asp Ile Gly Val Thr Leu Lys Val Thr Pro  
                  485                 490                 495  
 His Ile Asn Asp Gly Ala Thr Leu Arg Leu Glu Val Glu Gln Glu Ile  
                  500                 505                 510  
 Ser Ser Ile Ala Pro Ser Ala Gly Val Asn Ala Gln Ala Val Asp Leu  
                  515                 520                 525  
 Val Thr Asn Lys Arg Ser Ile Lys Ser Val Ile Leu Ala Asp Asp Gly  
                  530                 535                 540  
 Gln Val Ile Val Leu Gly Gly Leu Ile Gln Asp Asp Val Thr Ser Thr  
                  545                 550                 555                 560  
 Asp Ser Lys Val Pro Leu Leu Gly Asp Ile Pro Leu Ile Gly Arg Leu  
                  565                 570                 575  
 Phe Arg Ser Thr Lys Asp Thr His Val Lys Arg Asn Leu Met Val Phe  
                  580                 585                 590  
 Leu Arg Pro Thr Ile Val Arg Asp Arg Ala Gly Met Ala Ala Leu Ser  
                  595                 600                 605  
 Gly Lys Lys Tyr Ser Asp Ile Ser Val Leu Gly Ala Asp Glu Asp Gly  
                  610                 615                 620  
 His Ser Ser Leu Pro Gly Ser Ala Glu Arg Leu Phe Asp Lys Pro Gly

|                                     |     |     |     |
|-------------------------------------|-----|-----|-----|
| 625                                 | 630 | 635 | 640 |
| Ala Gly Ala Val Asp Leu Arg Asp Gln |     |     |     |
| 645                                 |     |     |     |

## (2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2742 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| ATGTCTGTTT  | GGGTCACCGT  | GCCGGGCTTG  | GTCAAGTTCG  | GCACCCCTGGG | CATCTATGCC  | 60   |
| GCCCTGATCA  | CGCTCGCCCT  | TGAGCCGAC   | GTGCTGTTCA  | AGAACAAACCT | GTTCGACGTC  | 120  |
| GACAACCTGC  | CCGGCGGCCAA | CGCCAGCATC  | ACCTGTGATG  | CCCGCAGCCA  | GGTGGCGCGT  | 180  |
| ACCGAGGACG  | GCACCTGTAA  | CATCCTCGCC  | AACCCGGCCG  | AGGGCTCGGT  | GTACCGCCGC  | 240  |
| TTCGGGCGCA  | ACGTCGACCC  | CAGCGTGACC  | CATGGCGAGA  | CCGAGGCCGA  | CACCCCTGCTC | 300  |
| AGTCCCATACT | CGCGGGAGGT  | GAGTAACGTG  | CTGATGGCGC  | GTGGCGAGTT  | CAAGCCGGCG  | 360  |
| CCCAGCCTCA  | ACTTCATCGC  | CGCCTCCTGG  | ATCCAGTTCA  | TGGTGCATGA  | CTGGGTCGAA  | 420  |
| CACGGCCCCA  | ACGCCGAAGC  | CAACCCGATC  | CAGGTGCCGC  | TGCCGGCTGG  | CGACGCGCTC  | 480  |
| GGCTCCGGCA  | GCCTGTCCGT  | GGCGCGCACC  | CAGCCCGACC  | CGACCCGTAC  | CCCGGCCGAG  | 540  |
| GCCGGCAAGC  | CGGCCAACCTA | CCGCAACAC   | AACACCCACT  | GGTGGGATGG  | CTCGCAGTTG  | 600  |
| TATGGCAGCA  | GCAAGGACAT  | CAACGACAAG  | GTGCGCGCCT  | TGGAGGGTGG  | CAAGCTGAAG  | 660  |
| ATCAATCCCC  | ACGGTACCCCT | GGCGACCGAG  | TTCTCTAGCG  | GCAAGCCGAT  | CACCCGGCTTC | 720  |
| AACGAGAACT  | GGTGGGTTGG  | CCTGAGCATG  | CTGCACCAAGC | TGTTCACTAA  | GGAGCACAAC  | 780  |
| GCCATCGCGG  | CGATGCTCCA  | GCAGAAGTAC  | CCGGACAAAGG | ACGACCAAGTG | GCTGTACGAC  | 840  |
| CATGGCGGCC  | TGGTCAACTC  | CCGGCTGATG  | GCCAAAGATCC | ACACCGTGGG  | ATGGACCCCCG | 900  |
| GCGGTGATCG  | CCAAACCCGGT | CACCGAACGC  | GCCATGTATG  | CCAACTGGTG  | GGGCTGCTG   | 960  |
| GGTTCCGGTC  | CGGAGCGTGA  | CAAGTACCAAG | GAAGAGGCCG  | GCATGCTGCA  | GGAGGACCTG  | 1020 |
| GCCAGCTCCA  | ACTCTTCG    | CCTGGCATT   | CTCGGCATCG  | ACGGCAGCCA  | GGCCGGCAGT  | 1080 |
| TCGGCCATCG  | ACCATGCCCT  | GGCCGGCATC  | GTGGCTCGA   | CCAACCCGAA  | CAACTACGGC  | 1140 |
| GTGCCCTACA  | CCCTGACCGA  | GGAGTTCGTC  | GCGGTCTACC  | GCATGCACCC  | GCTGATGCGC  | 1200 |
| GACAAGGTG   | ATGTCTACGA  | CATCGGCTCG  | AAACATCATCG | GGCGCAGCGT  | GGCGCTG     | 1260 |
| GAGACCCCGG  | ATGCCGACGC  | CGAGGAGCTG  | CTGGCGGACG  | AGAACATCCGA | GGGCTGTG    | 1320 |
| TACTCCCTCG  | GCATCACCAA  | CCCCGGCTCG  | CTGACCCCTCA | ACAACCTACCC | GAACCTTCCTG | 1380 |
| CGCAACCTGT  | CCATGCCGCT  | GGTCCGCAAC  | ATCGACCTGG  | CGACCATCGA  | CCTGCTGTG   | 1440 |
| GACCGGGGAGC | GGGGGGTGCC  | GGCTCAACAC  | GAGTTCCGCC  | GCGAGATCGG  | CCTCAACCCG  | 1500 |
| ATCACCAAGT  | TGGAGGACCT  | GACCCACCGAC | CCGGCCACCC  | TGGCCAACCT  | CAAGCGCATC  | 1560 |
| TACGGCAACG  | ACATCGAGAA  | GATTGACACC  | CTGGTCGGCA  | TGCTGGCCGA  | GACCGTGC    | 1620 |
| CCGGACCGCT  | TCGCCTTCGG  | CGAGACGGCC  | TTCCAGATCT  | TCATCATGAA  | CGCCTCGCG   | 1680 |
| CGCCTGATGA  | CGGACCGCTT  | CTATACCAAG  | GACTACCGCC  | CGGAGATCTA  | CACCGCCGAG  | 1740 |
| GGCCTGGCCT  | GGGTCGAGAA  | CACCAACCATG | GTGACGTC    | TCAAACGCCA  | CAATCCGCAG  | 1800 |
| CTGGTCAACA  | GCCTGGTTGG  | CGTGGAAAAC  | GCCTTCAAAC  | CCTGGGGCCT  | GAACATCCCG  | 1860 |
| GCGGACTACG  | AGAGCTGGCC  | GGGCAAGGCC  | AAGCAGGACA  | ACCTGTGGGT  | CAACGGCGCC  | 1920 |
| NTGCGCACCC  | AGTACGCCGC  | AGGCCAGCTG  | CCGGCCATTG  | CGCCGGTGG   | CGTGGCG     | 1980 |
| CTGATCAGTT  | CGGTGCTGTG  | GAAGAAGGTG  | CAGACCAANT  | CCGACGTGGC  | GCCGGCGCG   | 2040 |
| TACGAGAAGG  | CCATGCACCC  | GCATGGCGTG  | ATGCCAAGG   | TCAAGTTCAC  | CGCCGTGCG   | 2100 |
| GGGCACCCCT  | ACACCGGCCT  | GTTCAGGGT   | GGCGACAGCG  | GCCTGCTGCG  | CCTGTCGGT   | 2160 |
| GCCGGCGACC  | CGGCAACCAA  | CGGCTTCCAG  | CCGGGTCTGG  | CGTGGAAAGGC | CTTGGTGCAC  | 2220 |
| GGCAAGCCGT  | CGCAGAACGT  | CTCCGGCTC   | TACACCCCTGA | GGGGCAGGG   | CAGCAACAC   | 2280 |
| AACTCTTCG   | CCAACGAGCT  | GTGCGAGTT   | GTCTGCG     | AGACCAACGA  | TACCTGGC    | 2340 |
| ACCACGCTGC  | TGTTCTCGCT  | GGTCAGGCTC  | AAGCCGACCT  | TGCTGCG     | GGAGGACATG  | 2400 |
| GCCGAAGTGA  | CCCAGACCGG  | CCAGGCCGTG  | ACTTCGGTCA  | AGGCGCCGAC  | CGAGATCTAC  | 2460 |
| TTCGTGCCA   | AGCCGGAGCT  | GGCGAGGCTG  | TTCTCCAGTG  | GGCGCATGA   | CTTCCGCAGC  | 2520 |
| GACCTGACGA  | GCCTCACCGC  | CGGCACCAAG  | CTGTACGACG  | TCTACGCTAC  | CTCGATGGAG  | 2580 |
| ATCAAGACCT  | CGATCCTGCC  | GTGACCAAT   | CGTAGCTACG  | CCCAGCAACG  | GCGCAACAGC  | 2640 |

|                                                                   |      |
|-------------------------------------------------------------------|------|
| GCGGTGAAGA TCGGCGAGAT GGAGCTGACC TCGCCGTTCA TCGCCTCGGC CTTCGCCGAC | 2700 |
| AACGGGGTGT TCTTCAAGCA CCAGCGTCAC GAAGACAAAT AA                    | 2742 |

## (2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 913 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

```

Met Ser Val Trp Val Thr Trp Pro Gly Leu Val Lys Phe Gly Thr Leu
 1           5           10          15
Gly Ile Tyr Ala Gly Leu Ile Thr Leu Ala Leu Glu Arg Asp Val Leu
 20          25          30
Phe Lys Asn Asn Leu Phe Asp Val Asp Asn Leu Pro Ala Ala Asn Ala
 35          40          45
Ser Ile Thr Cys Asp Ala Arg Ser Gln Val Ala Arg Thr Glu Asp Gly
 50          55          60
Thr Cys Asn Ile Leu Ala Asn Pro Ala Glu Gly Ser Val Tyr Arg Arg
 65          70          75          80
Phe Gly Arg Asn Val Asp Pro Ser Val Thr His Gly Glu Thr Glu Ala
 85          90          95
Asp Thr Leu Leu Ser Pro Asn Pro Arg Glu Val Ser Asn Val Leu Met
100         105         110
Ala Arg Gly Glu Phe Lys Pro Ala Pro Ser Leu Asn Phe Ile Ala Ala
115         120         125
Ser Trp Ile Gln Phe Met Val His Asp Trp Val Glu His Gly Pro Asn
130         135         140
Ala Glu Ala Asn Pro Ile Gln Val Pro Leu Pro Ala Gly Asp Ala Leu
145         150         155         160
Gly Ser Gly Ser Leu Ser Val Arg Arg Thr Gln Pro Asp Pro Thr Arg
165         170         175
Thr Pro Ala Glu Ala Gly Lys Pro Ala Thr Tyr Arg Asn His Asn Thr
180         185         190
His Trp Trp Asp Gly Ser Gln Leu Tyr Gly Ser Ser Lys Asp Ile Asn
195         200         205
Asp Lys Val Arg Ala Phe Glu Gly Lys Leu Lys Ile Asn Pro Asp
210         215         220
Gly Thr Leu Pro Thr Glu Phe Leu Ser Gly Lys Pro Ile Thr Gly Phe
225         230         235         240
Asn Glu Asn Trp Trp Val Gly Leu Ser Met Leu His Gln Leu Phe Thr
245         250         255
Lys Glu His Asn Ala Ile Ala Ala Met Leu Gln Gln Lys Tyr Pro Asp
260         265         270
Lys Asp Asp Gln Trp Leu Tyr Asp His Ala Arg Leu Val Asn Ser Ala
275         280         285
Leu Met Ala Lys Ile His Thr Val Glu Trp Thr Pro Ala Val Ile Ala
290         295         300
Asn Pro Val Thr Glu Arg Ala Met Tyr Ala Asn Trp Trp Gly Leu Leu
305         310         315         320
Gly Ser Gly Pro Glu Arg Asp Lys Tyr Gln Glu Ala Arg Met Leu
325         330         335
Gln Glu Asp Leu Ala Ser Ser Asn Ser Phe Val Leu Arg Ile Leu Gly
340         345         350
Ile Asp Gly Ser Gln Ala Gly Ser Ser Ala Ile Asp His Ala Leu Ala

```

| 355                                             | 360                 | 365 |
|-------------------------------------------------|---------------------|-----|
| Gly Ile Val Gly Ser Thr Asn Pro Asn Asn Tyr     | Gly Val Pro Tyr Thr |     |
| 370                                             | 375                 | 380 |
| Leu Thr Glu Glu Phe Val Ala Val Tyr Arg Met His | Pro Leu Met Arg     |     |
| 385                                             | 390                 | 395 |
| Asp Lys Val Asp Val Tyr Asp Ile Gly Ser Asn Ile | Ile Ala Arg Ser     |     |
| 405                                             | 410                 | 415 |
| Val Pro Leu Gln Glu Thr Arg Asp Ala Asp Ala Glu | Glu Leu Leu Ala     |     |
| 420                                             | 425                 | 430 |
| Asp Glu Asn Pro Glu Arg Leu Trp Tyr Ser Phe Gly | Ile Thr Asn Pro     |     |
| 435                                             | 440                 | 445 |
| Gly Ser Leu Thr Leu Asn Asn Tyr Pro Asn Phe Leu | Arg Asn Leu Ser     |     |
| 450                                             | 455                 | 460 |
| Met Pro Leu Val Gly Asn Ile Asp Leu Ala Thr Ile | Asp Val Leu Cys     |     |
| 465                                             | 470                 | 475 |
| Asp Arg Glu Arg Gly Val Pro Arg Tyr Asn Glu Phe | Arg Arg Glu Ile     |     |
| 485                                             | 490                 | 495 |
| Gly Leu Asn Pro Ile Thr Lys Leu Glu Asp Leu Thr | Thr Asp Pro Ala     |     |
| 500                                             | 505                 | 510 |
| Thr Leu Ala Asn Leu Lys Arg Ile Tyr Gly Asn Asp | Ile Glu Lys Ile     |     |
| 515                                             | 520                 | 525 |
| Asp Thr Leu Val Gly Met Leu Ala Glu Thr Val Arg | Pro Asp Gly Phe     |     |
| 530                                             | 535                 | 540 |
| Ala Phe Gly Glu Thr Ala Phe Gln Ile Phe Ile Met | Asn Ala Ser Arg     |     |
| 545                                             | 550                 | 555 |
| Arg Leu Met Thr Asp Arg Phe Tyr Thr Lys Asp Tyr | Arg Pro Glu Ile     |     |
| 565                                             | 570                 | 575 |
| Tyr Thr Ala Glu Gly Leu Ala Trp Val Glu Asn Thr | Thr Met Val Asp     |     |
| 580                                             | 585                 | 590 |
| Val Leu Lys Arg His Asn Pro Gln Leu Val Asn Ser | Leu Val Gly Val     |     |
| 595                                             | 600                 | 605 |
| Glu Asn Ala Phe Lys Pro Trp Gly Leu Asn Ile Pro | Ala Asp Tyr Glu     |     |
| 610                                             | 615                 | 620 |
| Ser Trp Pro Gly Lys Ala Lys Gln Asp Asn Leu Trp | Val Asn Gly Ala     |     |
| 625                                             | 630                 | 635 |
| Xaa Arg Thr Gln Tyr Ala Ala Gly Gln Leu Pro Ala | Ile Pro Pro Val     |     |
| 645                                             | 650                 | 655 |
| Asp Val Gly Gly Leu Ile Ser Ser Val Leu Trp Lys | Lys Val Gln Thr     |     |
| 660                                             | 665                 | 670 |
| Xaa Ser Asp Val Ala Pro Ala Gly Tyr Glu Lys Ala | Met His Pro His     |     |
| 675                                             | 680                 | 685 |
| Gly Val Met Ala Lys Val Lys Phe Thr Ala Val Pro | Gly His Pro Tyr     |     |
| 690                                             | 695                 | 700 |
| Thr Gly Leu Phe Gln Gly Ala Asp Ser Gly Leu Leu | Arg Leu Ser Val     |     |
| 705                                             | 710                 | 715 |
| Ala Gly Asp Pro Ala Thr Asn Gly Phe Gln Pro Gly | Leu Ala Trp Lys     |     |
| 725                                             | 730                 | 735 |
| Ala Phe Val Asp Gly Lys Pro Ser Gln Asn Val Ser | Ala Leu Tyr Thr     |     |
| 740                                             | 745                 | 750 |
| Leu Ser Gly Gln Gly Ser Asn His Asn Phe Phe Ala | Asn Glu Leu Ser     |     |
| 755                                             | 760                 | 765 |
| Gln Phe Val Leu Pro Glu Thr Asn Asp Thr Leu Gly | Thr Thr Leu Leu     |     |
| 770                                             | 775                 | 780 |
| Phe Ser Leu Val Ser Leu Lys Pro Thr Leu Leu Arg | Val Asp Asp Met     |     |
| 785                                             | 790                 | 795 |
| Ala Glu Val Thr Gln Thr Gly Gln Ala Val Thr Ser | Val Lys Ala Pro     |     |
| 805                                             | 810                 | 815 |
| Thr Gln Ile Tyr Phe Val Pro Lys Pro Glu Leu Arg | Ser Leu Phe Ser     |     |
| 820                                             | 825                 | 830 |

S r Ala Ala His Asp Phe Arg Ser Asp Leu Thr Ser Leu Thr Ala Gly  
 835 840 845  
 Thr Lys Leu Tyr Asp Val Tyr Ala Thr Ser Met Glu Ile Lys Thr Ser  
 850 855 860  
 Ile Leu Pro Ser Thr Asn Arg Ser Tyr Ala Gln Gln Arg Arg Asn Ser  
 865 870 875 880  
 Ala Val Lys Ile Gly Glu Met Glu Leu Thr Ser Pro Phe Ile Ala Ser  
 885 890 895  
 Ala Phe Gly Asp Asn Gly Val Phe Phe Lys His Gln Arg His Glu Asp  
 900 905 910  
 Lys

## (2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 525 base pairs  
 (B) TYPE: nucleic acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

|             |             |            |            |             |            |     |
|-------------|-------------|------------|------------|-------------|------------|-----|
| ATGCAGCGGG  | GGCGCGGTTT  | CACTCTGATC | GAGCTGCTGG | TGGTGCTGGT  | GCTGCTGGC  | 60  |
| GTGCTCACCG  | GCCTCGCCGT  | GCTCGGCAGC | GGGATCGCCA | GCAGCCCCGC  | GCGCAAGCTG | 120 |
| GCGGACGAGG  | CCGAGCGCCT  | GCAGTCGCTG | CTGCGGGTGC | TGCTCGACGA  | GGCGGTGCTG | 180 |
| GACAACCGCG  | AGTATGGCGT  | ACGCTTCGAC | GCCCCGAGCT | ACCGGGTGCCT | GCGCTTCGAG | 240 |
| CCGGCGCACCG | CGCGCTGGGA  | GCGCTCGAC  | GAGCGCGTGC | ACGAGCTGCC  | GGAGTGGCTC | 300 |
| GAGCTGGAGA  | TGGAGGTCGA  | CGAGCAGAGT | GTGCGGCTGC | CCGCGGCCCCG | TGGCGAGCAG | 360 |
| GACAAAGCCG  | CGGCGCAAGGC | GCCACAGCTG | CTGCTGCTCT | CCAGTGGCGA  | GCTGACCCCC | 420 |
| TTCGCCCTG   | GCCTGTCCGC  | CGGGCGGGAG | CGCGGCGCGC | CGGTGCTGAC  | GCTGGCCAGC | 480 |
| GACGGCTTCC  | CCGAGCCCCA  | GCTGCAGCAG | GAAAAGTCCC | GATGA       |            | 525 |

## (2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:  
 (A) LENGTH: 174 amino acids  
 (B) TYPE: amino acid  
 (C) STRANDEDNESS: single  
 (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Gln | Arg | Gly | Arg | Gly | Phe | Thr | Leu | Ile | Glu | Leu | Leu | Val | Val | Leu |
| 1   |     |     |     |     |     |     |     | 5   |     | 10  |     |     |     |     | 15  |
| Val | Leu | Leu | Gly | Val | Leu | Thr | Gly | Leu | Ala | Val | Leu | Gly | Ser | Gly | Ile |
|     |     |     |     |     |     |     |     | 20  |     | 25  |     |     |     |     | 30  |
| Ala | Ser | Ser | Pro | Ala | Arg | Lys | Leu | Ala | Asp | Glu | Ala | Glu | Arg | Leu | Gln |
|     |     |     |     |     |     |     |     | 35  |     | 40  |     |     |     |     | 45  |
| Ser | Leu | Leu | Arg | Val | Leu | Leu | Asp | Glu | Ala | Val | Leu | Asp | Asn | Arg | Glu |
|     |     |     |     |     |     |     |     | 50  |     | 55  |     |     |     |     | 60  |
| Tyr | Gly | Val | Arg | Phe | Asp | Ala | Arg | Ser | Tyr | Arg | Val | Leu | Arg | Phe | Glu |
| 65  |     |     |     |     |     |     |     |     | 70  |     | 75  |     |     |     | 80  |
| Pro | Arg | Thr | Ala | Arg | Trp | Glu | Pro | Leu | Asp | Glu | Arg | Val | His | Glu | Leu |
|     |     |     |     |     |     |     |     | 85  |     | 90  |     |     |     |     | 95  |
| Pro | Glu | Trp | Leu | Glu | Leu | Glu | Ile | Glu | Val | Asp | Glu | Gln | Ser | Val | Gly |
|     |     |     |     |     |     |     |     | 100 |     | 105 |     |     |     |     | 110 |
| Leu | Pro | Ala | Ala | Arg | Gly | Glu | Gln | Asp | Lys | Ala | Ala | Lys | Ala | Pro |     |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 115 | 120 | 125 |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Gln | Leu | Leu | Leu | Leu | Ser | Ser | Gly | Glu | Leu | Thr | Pro | Phe | Ala | Leu | Arg |
| 130 |     |     |     |     |     |     | 135 |     |     |     |     | 140 |     |     |     |
| Leu | Ser | Ala | Gly | Arg | Glu | Arg | Gly | Ala | Pro | Val | Leu | Thr | Leu | Ala | Ser |
| 145 |     |     |     |     |     |     | 150 |     |     |     | 155 |     |     | 160 |     |
| Asp | Gly | Phe | Ala | Glu | Pro | Glu | Leu | Gln | Gln | Glu | Lys | Ser | Arg |     |     |
|     |     |     |     |     |     |     | 165 |     |     | 170 |     |     |     |     |     |

## (2) INFORMATION FOR SEQ ID NO:20:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 390 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

|            |            |            |            |            |             |     |
|------------|------------|------------|------------|------------|-------------|-----|
| ATGAAGCGCG | CCCGCGGCTT | CACCTGCTC  | GAGGTGCTGG | TGGCCCTGGC | GATCTTCGCC  | 60  |
| GTGGTCGCCG | CCAGCGTGCT | CAGCGCCAGC | GCTCGCTCGC | TGAAGACCGC | CGCGCGCCCTG | 120 |
| GAGGACAAGA | CCTTCGCCAC | CTGGCTGGCG | GACAACCGCC | TGCAGGAGCT | GCAGCTGGCC  | 180 |
| GACGTGCCGC | CGGGCGAGGG | CCGCGAGCAG | GGCGAGGAGA | GCTACGCCGG | GCGGCCTGG   | 240 |
| CTGTGGCAGA | GCGAGGTGCA | GGCCACCAGC | GAGCCGGAGA | TGCTGCGTGT | CACCGTACGG  | 300 |
| GTGGCGCTGC | GGCCGGAGCG | CGGGCTGCAG | GGCAAGATCG | AAGACCATGC | CCTGGTGACC  | 360 |
| CTGAGTGGCT | CGAGCCATGA |            |            |            |             | 390 |

## (2) INFORMATION FOR SEQ ID NO:21:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 129 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Lys | Arg | Gly | Arg | Gly | Phe | Thr | Leu | Leu | Glu | Val | Leu | Val | Ala | Leu |
| 1   |     |     |     |     |     | 5   |     |     |     | 10  |     |     | 15  |     |     |
| Ala | Ile | Phe | Ala | Val | Val | Ala | Ala | Ser | Val | Leu | Ser | Ala | Ser | Ala | Arg |
|     |     |     |     |     |     |     | 20  |     |     | 25  |     |     | 30  |     |     |
| Ser | Leu | Lys | Thr | Ala | Ala | Arg | Leu | Glu | Asp | Lys | Thr | Phe | Ala | Thr | Trp |
|     |     |     |     |     |     |     | 35  |     |     | 40  |     |     | 45  |     |     |
| Leu | Ala | Asp | Asn | Arg | Leu | Gln | Glu | Leu | Gln | Leu | Ala | Asp | Val | Pro | Pro |
|     |     |     |     |     |     | 50  |     |     | 55  |     |     | 60  |     |     |     |
| Gly | Glu | Gly | Arg | Glu | Gln | Gly | Glu | Glu | Ser | Tyr | Ala | Gly | Arg | Arg | Trp |
|     |     |     |     |     |     | 65  |     |     | 70  |     |     | 75  |     |     | 80  |
| Leu | Trp | Gln | Ser | Glu | Val | Gln | Ala | Thr | Ser | Glu | Pro | Glu | Met | Leu | Arg |
|     |     |     |     |     |     | 85  |     |     | 90  |     |     | 95  |     |     |     |
| Val | Thr | Val | Arg | Val | Ala | Leu | Arg | Pro | Glu | Arg | Gly | Leu | Gln | Gly | Lys |
|     |     |     |     |     |     | 100 |     |     | 105 |     |     | 110 |     |     |     |
| Ile | Glu | Asp | His | Ala | Leu | Val | Thr | Leu | Ser | Gly | Phe | Val | Gly | Val | Glu |
|     |     |     |     |     |     | 115 |     |     | 120 |     |     | 125 |     |     |     |
| Pro |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

## (2) INFORMATION FOR SEQ ID NO:22:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 684 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

|             |             |            |             |             |            |     |
|-------------|-------------|------------|-------------|-------------|------------|-----|
| ATGAGGCCAGC | GCGGCTTCAC  | CCTGCTGGAA | GTGCTGATCG  | CCATCGCCAT  | CTTCGCCCTG | 60  |
| CTGGCCATGG  | CCACCTACCG  | CATGCTCGAC | AGCGTGTGCG  | AGACCGATCG  | TGGCCAGCGC | 120 |
| CAGCAGGAGC  | AGCGTCTGCG  | CGAGCTGACG | CGGGCCATGG  | CAGCTTTCGA  | ACGCGACCTG | 180 |
| CTGCAGGTGC  | GCCTGCGTCC  | GGTGCGCGAC | CCGCTGGCG   | ACCTGCTGCC  | AGCCCTGCGC | 240 |
| GGCAGCAGTG  | GCGCGACAC   | CCAGCTGGAG | TTCACCCGCA  | CGGGCTGGCG  | CAACCCGCTC | 300 |
| GGCCAGCCGC  | GCCCCACCCCT | ACAGCGGGTG | CGCTGGCAGC  | TCGAAGGCAGA | GCGCTGGCAG | 360 |
| CGCGCTTACT  | GGACGGTGCT  | GGACCAGGCC | CAGGACAGCC  | AGCCGCGGGGT | GCAGCAGGCG | 420 |
| CTGGATGGCG  | TGGCCCGCTT  | CGACTTGCAC | TTTCTCGACC  | AGGAGGGGCG  | CTGGCTGCG  | 480 |
| GACTGGCCGC  | CGCCCAACAG  | TGCTGCCGAC | GAGGCCCTGA  | CCCAGCTGCC  | GCGTGCCGTC | 540 |
| GAGCTGGTCC  | TGGAGCACCG  | CCATTACGGT | GAAC TGCGCC | GTCTCTGGCG  | CTTGCCCCAG | 600 |
| ATGCCGCAGC  | AGGAACAGAT  | CACGCCGCC  | GGGGCGAGC   | AGGGCGGTGA  | GCTGCTGCCG | 660 |
| GAAGAGCCGG  | AGCCCCAGGC  | ATGA       |             |             |            | 684 |

## (2) INFORMATION FOR SEQ ID NO:23:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 227 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Arg | Gln | Arg | Gly | Phe | Thr | Leu | Leu | Glu | Val | Leu | Ile | Ala | Ile | Ala |
| 1   |     |     |     |     |     |     | 5   |     | 10  |     |     | 15  |     |     |     |
| Ile | Phe | Ala | Leu | Leu | Ala | Met | Ala | Thr | Tyr | Arg | Met | Leu | Asp | Ser | Val |
|     |     |     |     |     |     |     |     | 20  |     | 25  |     | 30  |     |     |     |
| Leu | Gln | Thr | Asp | Arg | Gly | Gln | Arg | Gln | Gln | Glu | Gln | Arg | Leu | Arg | Glu |
|     |     |     |     |     |     |     |     | 35  |     | 40  |     | 45  |     |     |     |
| Leu | Thr | Arg | Ala | Met | Ala | Ala | Phe | Glu | Arg | Asp | Leu | Leu | Gln | Val | Arg |
|     |     |     |     |     |     |     |     | 50  |     | 55  |     | 60  |     |     |     |
| Leu | Arg | Pro | Val | Arg | Asp | Pro | Leu | Gly | Asp | Leu | Leu | Pro | Ala | Leu | Arg |
|     |     |     |     |     |     |     |     | 65  |     | 70  |     | 75  |     | 80  |     |
| Gly | Ser | Ser | Gly | Arg | Asp | Thr | Gln | Leu | Glu | Phe | Thr | Arg | Ser | Gly | Trp |
|     |     |     |     |     |     |     |     | 85  |     | 90  |     | 95  |     |     |     |
| Arg | Asn | Pro | Leu | Gly | Gln | Pro | Arg | Ala | Thr | Leu | Gln | Arg | Val | Arg | Trp |
|     |     |     |     |     |     |     |     | 100 |     | 105 |     | 110 |     |     |     |
| Gln | Leu | Glu | Gly | Glu | Arg | Trp | Gln | Arg | Ala | Tyr | Trp | Thr | Val | Leu | Asp |
|     |     |     |     |     |     |     |     | 115 |     | 120 |     | 125 |     |     |     |
| Gln | Ala | Gln | Asp | Ser | Gln | Pro | Arg | Val | Gln | Gln | Ala | Leu | Asp | Gly | Val |
|     |     |     |     |     |     |     |     | 130 |     | 135 |     | 140 |     |     |     |
| Arg | Arg | Phe | Asp | Leu | Arg | Phe | Leu | Asp | Gln | Glu | Gly | Arg | Trp | Leu | Gln |
|     |     |     |     |     |     |     |     | 145 |     | 150 |     | 155 |     | 160 |     |
| Asp | Trp | Pro | Pro | Ala | Asn | Ser | Ala | Ala | Asp | Glu | Ala | Leu | Thr | Gln | Leu |
|     |     |     |     |     |     |     |     | 165 |     | 170 |     | 175 |     |     |     |
| Pro | Arg | Ala | Val | Glu | Leu | Val | Val | Glu | His | Arg | His | Tyr | Gly | Glu | Leu |
|     |     |     |     |     |     |     |     | 180 |     | 185 |     | 190 |     |     |     |
| Arg | Arg | Leu | Trp | Arg | Leu | Pro | Glu | Met | Pro | Gln | Gln | Glu | Gln | Ile | Thr |
|     |     |     |     |     |     |     |     | 195 |     | 200 |     | 205 |     |     |     |
| Pro | Pro | Gly | Gly | Glu | Gln | Gly | Gly | Glu | Leu | Leu | Pro | Glu | Glu | Pro | Glu |

210  
Pro Glu Ala  
225

215

220

(2) INFORMATION FOR SEQ ID NO:24:

**(i) SEQUENCE CHARACTERISTICS:**

- (A) LENGTH: 954 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

|             |             |            |             |             |             |     |
|-------------|-------------|------------|-------------|-------------|-------------|-----|
| ATGAGCCGGC  | AGCCGGCGT   | GGCACTGATC | ACCGTGTGTC  | TGGTGGTGGC  | GCTGGTGACC  | 60  |
| GTGGTCTGCG  | CGGCCCTGCT  | GCTGCGCCAG | CAGCTGGCCA  | TCCGCAGCAC  | CGGCAACCAG  | 120 |
| CTGCTGGTGC  | GCCAGGGCC   | GTACTACGCC | GAAGGGGGCG  | AGCTGCTGGC  | CAAGGCCCCG  | 180 |
| CTGCGTCGCG  | ACCTGGCCGC  | CGACCAGGTC | GATCATCCCC  | GCGAGCCCTG  | GGCCAAACCC  | 240 |
| GGCCTGCGCT  | TCCCCCTGGA  | TGAGGGCGGC | GAGCTGGGCC  | TGCGCATCGA  | GGACCTGGCC  | 300 |
| GGACGTTCA   | ACCTCAACAG  | CCTGGCCGCC | GGTGGTGAGG  | CCGGTGAATT  | GGCGCTGCTG  | 360 |
| CGCCTGCGGC  | GCCTGCTGCA  | GCTGCTGCA  | CTGACCCCCG  | CCTATGCCGA  | GCGCCTGCA   | 420 |
| GACTGGCTCG  | ACGGCGATCA  | GGAGGCCAGC | GGCATGGCCC  | GCGCCGAGGA  | TGACCAAGTAC | 480 |
| CTGCTGCAAGA | AACCCGCCCTA | CCGTACCGGC | CCCGGGCGCA  | TTGCGCAGGT  | GTCGGAGCTG  | 540 |
| CGCCTGCTGC  | TGGGCATGAG  | CGAGGCCGAC | TACCCCCCGCC | TGGCCCCCTT  | CGTCAGGCC   | 600 |
| CTGCCGAGCC  | AGGTGAGCT   | GAACATCAAC | ACCGCCAGCG  | CCCTGGTGCT  | GGCTTGCCTG  | 660 |
| GGCGAGGGCA  | TNCCCCGAGGC | GGTGCTCGAG | GCGCCCATCG  | ANGGTCGCGG  | CCGCAGCGGC  | 720 |
| TATCGCGAGC  | CCGGCTGCCCT | CGTCCAGCAN | CTTGGCCAGCT | ACGGCGTCAG  | CCCGCAGGGG  | 780 |
| CTGGGCATCG  | CCAGGCCAGTA | TTTCCGTGTC | ACCACCCGAGG | TGCTGCTGGG  | TGAGCGGGCC  | 840 |
| CAGGTGCTGG  | CCAGTTATCT  | GCAACGTGGT | AATGATGGGC  | GCGTCCGCGCT | GATGGCCGCC  | 900 |
| GATCTGGGGC  | AGGAGGGCCT  | GGCGCCCCCA | CCCGTCCAGG  | AGTCCGAGAA  | ATGA        | 954 |

**(2) INFORMATION FOR SEQ ID NO:25:**

**(i) SEQUENCE CHARACTERISTICS:**

- (A) LENGTH: 317 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

(xi). SEQUENCE DESCRIPTION: SEQ ID NO:25:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ser | Arg | Gln | Arg | Gly | Val | Ala | Leu | Ile | Thr | Val | Leu | Leu | Val | Val |
| 1   |     |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |
| Ala | Leu | Val | Thr | Val | Val | Cys | Ala | Ala | Leu | Leu | Leu | Arg | Gln | Gln | Leu |
|     |     |     |     |     |     |     | 20  |     |     | 25  |     |     |     |     | 30  |
| Ala | Ile | Arg | Ser | Thr | Gly | Asn | Gln | Leu | Leu | Val | Arg | Gln | Ala | Gln | Tyr |
|     |     |     |     |     |     |     | 35  |     |     | 40  |     |     |     |     | 45  |
| Tyr | Ala | Glu | Gly | Gly | Glu | Leu | Leu | Ala | Lys | Ala | Leu | Leu | Arg | Arg | Asp |
|     |     |     |     |     |     |     | 50  |     |     | 55  |     |     |     |     | 60  |
| Leu | Ala | Ala | Asp | Gln | Val | Asp | His | Pro | Gly | Glu | Pro | Trp | Ala | Asn | Pro |
|     |     |     |     |     |     |     | 65  |     |     | 70  |     |     |     |     | 80  |
| Gly | Leu | Arg | Phe | Pro | Leu | Asp | Glu | Gly | Gly | Glu | Leu | Arg | Leu | Arg | Ile |
|     |     |     |     |     |     |     | 85  |     |     | 90  |     |     |     |     | 95  |
| Glu | Asp | Leu | Ala | Gly | Arg | Phe | Asn | Leu | Asn | Ser | Leu | Ala | Ala | Gly | Gly |
|     |     |     |     |     |     |     | 100 |     |     | 105 |     |     |     |     | 110 |
| Glu | Ala | Gly | Glu | Leu | Ala | Leu | Leu | Arg | Leu | Arg | Arg | Leu | Leu | Gln | Leu |
|     |     |     |     |     |     |     | 115 |     |     | 120 |     |     |     |     | 125 |

Leu Gln Leu Thr Pro Ala Tyr Ala Glu Arg Leu Gln Asp Trp Leu Asp  
 130 135 140  
 Gly Asp Gln Glu Ala S r Gly Met Ala Gly Ala Glu Asp Asp Gln Tyr  
 145 150 155 160  
 Leu Leu Gln Lys Pro Pro Tyr Arg Thr Gly Pro Gly Arg Ile Ala Glu  
 165 170 175  
 Val Ser Glu Leu Arg Leu Leu Leu Gly Met Ser Glu Ala Asp Tyr Arg  
 180 185 190  
 Arg Leu Ala Pro Phe Val Ser Ala Leu Pro Ser Gln Val Glu Leu Asn  
 195 200 205  
 Ile Asn Thr Ala Ser Ala Leu Val Leu Ala Cys Leu Gly Glu Gly Xaa  
 210 215 220  
 Pro Glu Ala Val Leu Glu Ala Ala Ile Xaa Gly Arg Gly Arg Ser Gly  
 225 230 235 240  
 Tyr Arg Glu Pro Ala Ala Phe Val Gln Xaa Leu Ala Ser Tyr Gly Val  
 245 250 255  
 Ser Pro Gln Gly Leu Gly Ile Ala Ser Gln Tyr Phe Arg Val Thr Thr  
 260 265 270  
 Glu Val Leu Leu Gly Glu Arg Arg Gln Val Leu Ala Ser Tyr Leu Gln  
 275 280 285  
 Arg Gly Asn Asp Gly Arg Val Arg Leu Met Ala Arg Asp Leu Gly Gln  
 290 295 300  
 Glu Gly Leu Ala Pro Pro Pro Val Glu Glu Ser Glu Lys  
 305 310 315

## (2) INFORMATION FOR SEQ ID NO:26:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1146 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

|            |             |             |             |             |            |      |
|------------|-------------|-------------|-------------|-------------|------------|------|
| ATGAGTCTGC | TCACCCCTGTT | TCTGCCGCC   | CAGGCCCTGCA | CCGAGGGCGAG | CGCCGACATG | 60   |
| CCGGTGTGGT | GCGTCGAGAG  | CGACAGCTGC  | CGTCAGCTGC  | CCTTCGCCGA  | GGCCTTGCCG | 120  |
| GCCGACGCCG | GGGTCTGGCG  | CTTGGTGCCTG | CCGGTGGAGG  | CGGTGACCAAC | CTGTGTCGTG | 180  |
| CAGTTGCCGA | CCACCAAGGC  | ACGCTGGCTG  | GCCAAGGCC   | TGCCGTTCCG  | CGTCGAGGAG | 240  |
| CTGCTGGCCG | AGGAGGTGGA  | GCAGTTTAC   | CTGTGCGTGC  | GTAGCGCGCT  | GGTCGATGGT | 300  |
| CGTCATCGTC | TTCATGCCCT  | GCGCCGCGAG  | TGGCTGGCCG  | GCTGGCTGGC  | GCTGTGCGGC | 360  |
| GAGCGGCCGC | CGCAGTGGAT  | CGAGGTGGAC  | GCCCACCTGT  | TGCCGGAGGA  | GGGTAGCCAG | 420  |
| CTGCTCTGCC | TGGCGAGCG   | CTGGTTGCTC  | GGCGGGTCGG  | CGAGGGCGCG  | CCTGGCCCTG | 480  |
| CGTGGCGAGG | ACTGGCCGCA  | GCTGGCGCG   | CTCTGTCGC   | CGCCCCGGCA  | AGCCTATGTG | 540  |
| CCGCCCCGGC | AGGGCGCGCC  | GCGGGCGTC   | GAGGCTGCC   | AGACGCTGGA  | GCAGCCGTGG | 600  |
| CTCTGGCTGG | CCGCGCAGAA  | GTCCGGCTGC  | AACCTGGCCC  | AGGGGCCCTT  | CGCCCGTCGC | 660  |
| GAGCCTTCCG | GCCAGTGGCA  | GCGCTGGCG   | CGCGCTGGCG  | GGCTGCTCGG  | TCTCTGGCTG | 720  |
| GTGCTGCAKT | GGGGCTTCAA  | CCTTGCCCAN  | GGCTGGCAGC  | TGCAGCGCGA  | GGGTGAACGC | 780  |
| TATGCCGTGG | CCAAACGAGGC | GCTGTATCGC  | GAGCTGTTCC  | CCGAGGATCG  | CAAGGTGATC | 840  |
| AACCTGGCTG | CGCAGTTCGA  | CCAGCACCTG  | GCCGAGGCGG  | CTGGGAGCGG  | CCAGAGCCAG | 900  |
| TTGCTGGCCC | TGCTCGATCA  | GGCCGCCCGC  | GCCATCGCGC  | AAGGGGGGGC  | GCAGGTGCAG | 960  |
| GTGGATCAGC | TCGACTTCAA  | CGCCCGAGCGT | GGCGACCTGG  | CCTTCAACCT  | GGGTGCCAGC | 1020 |
| GACTTCGCCG | CGCTGGAAAG  | CCTGCCGGCG  | CGCCTGCAGG  | AGGCCGGCCT  | GGCGGTGGAC | 1080 |
| ATGGGCTCGG | CGAGCCGCGA  | GGACAACCGC  | GTCAGTGCAC  | GCCTGGTGAT  | CGGGGGTAAC | 1140 |
| GGATGA     |             |             |             |             |            | 1146 |

## (2) INFORMATION FOR SEQ ID NO:27:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 381 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Ser | Leu | Leu | Thr | Leu | Phe | Leu | Pro | Pro | Gln | Ala | Cys | Thr | Glu | Ala |
| 1   |     |     |     |     |     |     |     | 10  |     |     |     |     |     | 15  |     |
| Ser | Ala | Asp | Met | Pro | Val | Trp | Cys | Val | Glu | Ser | Asp | Ser | Cys | Arg | Gln |
|     |     |     |     |     |     |     |     | 20  |     |     |     | 25  |     | 30  |     |
| Leu | Pro | Phe | Ala | Glu | Ala | Leu | Pro | Ala | Asp | Ala | Arg | Val | Trp | Arg | Leu |
|     |     |     |     |     |     |     |     | 35  |     |     | 40  |     | 45  |     |     |
| Val | Leu | Pro | Val | Glu | Ala | Val | Thr | Thr | Cys | Val | Val | Gln | Leu | Pro | Thr |
|     |     |     |     |     |     |     |     | 50  |     |     | 55  |     | 60  |     |     |
| Thr | Lys | Ala | Arg | Trp | Leu | Ala | Lys | Ala | Leu | Pro | Phe | Ala | Val | Glu | Glu |
|     |     |     |     |     |     |     |     | 65  |     |     | 70  |     | 75  |     | 80  |
| Leu | Leu | Ala | Glu | Glu | Val | Glu | Gln | Phe | His | Leu | Cys | Val | Gly | Ser | Ala |
|     |     |     |     |     |     |     |     | 85  |     |     | 90  |     | 95  |     |     |
| Leu | Val | Asp | Gly | Arg | His | Arg | Val | His | Ala | Leu | Arg | Arg | Glu | Trp | Leu |
|     |     |     |     |     |     |     |     | 100 |     |     | 105 |     | 110 |     |     |
| Ala | Gly | Trp | Leu | Ala | Leu | Cys | Gly | Glu | Arg | Pro | Pro | Gln | Trp | Ile | Glu |
|     |     |     |     |     |     |     |     | 115 |     |     | 120 |     | 125 |     |     |
| Val | Asp | Ala | Asp | Leu | Leu | Pro | Glu | Glu | Gly | Ser | Gln | Leu | Leu | Cys | Leu |
|     |     |     |     |     |     |     |     | 130 |     |     | 135 |     | 140 |     |     |
| Gly | Glu | Arg | Trp | Leu | Leu | Gly | Gly | Ser | Gly | Glu | Ala | Arg | Leu | Ala | Leu |
|     |     |     |     |     |     |     |     | 145 |     |     | 150 |     | 155 |     | 160 |
| Arg | Gly | Glu | Asp | Trp | Pro | Gln | Leu | Ala | Ala | Leu | Cys | Pro | Pro | Pro | Arg |
|     |     |     |     |     |     |     |     | 165 |     |     | 170 |     | 175 |     |     |
| Gln | Ala | Tyr | Val | Pro | Pro | Gly | Gln | Ala | Ala | Pro | Pro | Gly | Val | Glu | Ala |
|     |     |     |     |     |     |     |     | 180 |     |     | 185 |     | 190 |     |     |
| Cys | Gln | Thr | Leu | Glu | Gln | Pro | Trp | Leu | Trp | Leu | Ala | Ala | Gln | Lys | Ser |
|     |     |     |     |     |     |     |     | 195 |     |     | 200 |     | 205 |     |     |
| Gly | Cys | Asn | Leu | Ala | Gln | Gly | Pro | Phe | Ala | Arg | Arg | Glu | Pro | Ser | Gly |
|     |     |     |     |     |     |     |     | 210 |     |     | 215 |     | 220 |     |     |
| Gln | Trp | Gln | Arg | Trp | Arg | Pro | Leu | Ala | Gly | Leu | Leu | Gly | Leu | Trp | Leu |
|     |     |     |     |     |     |     |     | 225 |     |     | 230 |     | 235 |     | 240 |
| Val | Leu | Xaa | Trp | Gly | Phe | Asn | Leu | Ala | Xaa | Gly | Trp | Gln | Leu | Gln | Arg |
|     |     |     |     |     |     |     |     | 245 |     |     | 250 |     | 255 |     |     |
| Glu | Gly | Glu | Arg | Tyr | Ala | Val | Ala | Asn | Glu | Ala | Leu | Tyr | Arg | Glu | Leu |
|     |     |     |     |     |     |     |     | 260 |     |     | 265 |     | 270 |     |     |
| Phe | Pro | Glu | Asp | Arg | Lys | Val | Ile | Asn | Leu | Arg | Ala | Gln | Phe | Asp | Gln |
|     |     |     |     |     |     |     |     | 275 |     |     | 280 |     | 285 |     |     |
| His | Leu | Ala | Glu | Ala | Ala | Gly | Ser | Gly | Gln | Ser | Gln | Leu | Leu | Ala | Leu |
|     |     |     |     |     |     |     |     | 290 |     |     | 295 |     | 300 |     |     |
| Leu | Asp | Gln | Ala | Ala | Ala | Ile | Gly | Glu | Gly | Gly | Ala | Gln | Val | Gln |     |
|     |     |     |     |     |     |     |     | 305 |     |     | 310 |     | 315 |     | 320 |
| Val | Asp | Gln | Leu | Asp | Phe | Asn | Ala | Gln | Arg | Gly | Asp | Leu | Ala | Phe | Asn |
|     |     |     |     |     |     |     |     | 325 |     |     | 330 |     | 335 |     |     |
| Leu | Arg | Ala | Ser | Asp | Phe | Ala | Ala | Leu | Glu | Ser | Leu | Arg | Ala | Arg | Leu |
|     |     |     |     |     |     |     |     | 340 |     |     | 345 |     | 350 |     |     |
| Gln | Glu | Ala | Gly | Leu | Ala | Val | Asp | Met | Gly | Ser | Ala | Ser | Arg | Glu | Asp |
|     |     |     |     |     |     |     |     | 355 |     |     | 360 |     | 365 |     |     |
| Asn | Gly | Val | Ser | Ala | Arg | Leu | Val | Ile | Gly | Gly | Asn | Gly |     |     |     |
|     |     |     |     |     |     |     |     | 370 |     |     | 375 |     | 380 |     |     |

## (2) INFORMATION FOR SEQ ID NO:28:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4377 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| GAATTGCCCG  | CCGAGCTGGC  | CAAGCCGCTG  | GGCGCGGTGA  | CCGCACAGAA  | GGAAGTGGAG  | 60   |
| CGTGCCCTGC  | CGCACCTGCA  | CCTGCCCTTC  | GACGAGCGCC  | GTCCCCTACGC | CCTGCCGCCGT | 120  |
| CTGCGCCACC  | GCATCGAGGC  | CAATCTCTCC  | GGCCTGATGG  | CCCCCAGCGT  | GGCCCAGGAC  | 180  |
| ATGGTGAAA   | CCTTCCTGCC  | CTACAAGGCC  | GGCAGCGAGG  | CCTATGTCA   | CGAAGACATC  | 240  |
| CACTTCATCG  | AGAGTCGCCT  | GGAGGATTAC  | CAGTCGCGCC  | TCACCGGCCT  | GGCCGCCGAG  | 300  |
| CTCGACGCCG  | TGCGCCGCTT  | CCACCGCCAG  | ACCCCTGCAGG | AACTGCCGAT  | GGCGTATGT   | 360  |
| TCGCTGGCCA  | AGGACCAAGGA | AGTGCTGATG  | TGGAACCGCG  | CCATGGAGGA  | ACTCACCGGC  | 420  |
| ATCAGCCGCG  | AGCAGGTGGT  | CGGCTCGCGC  | CTGCTCAGCC  | TGGAGCACCC  | CTGGCCGAG   | 480  |
| CTGCTGCCAG  | ACTTCATCGC  | CCAGGACCGAG | GAGCACCTGC  | ACAAGCAGCA  | CCTGCAACTG  | 540  |
| GACGGCGAGG  | TGCGCTGGCT  | CAACCTGCAC  | AAGGCGGCCA  | TCGACGAACC  | GCTGGCCCG   | 600  |
| GGCAACAGCG  | GCCTGGTGC   | GCTGGTCAGG  | GACGTCACCG  | AGACCCCGGT  | GCTGGAAGAC  | 660  |
| CAGCTGGTGC  | ACTCCGAGCG  | TCTGGCCAGC  | ATCGCCGCC   | TGGCCGCCGG  | GGTGGCCAC   | 720  |
| GAGATCGGCA  | ATCCGGTCAC  | CGGCATCGCC  | TGCCTGGCGC  | AGAACCTGCG  | CGAGGAGCGC  | 780  |
| GAGGGCGACG  | AGGAGCTCGG  | CGAGATCAGC  | AACCAGATCC  | TCGACCAGAC  | CAAGGCATC   | 840  |
| TCGCGCATCG  | TCCAGTCGCT  | GATGAACTTC  | CCCCACGCCG  | GCCAGCAGCA  | GGCGCCCGAA  | 900  |
| TACCCGGTGA  | GCCTGGCCGA  | ACTGGCGAG   | GACGCCATCG  | CCCTGCTGTC  | GCTGAACCGC  | 960  |
| CATGGCACCG  | AAAGTCAGTT  | CTACAACCTG  | TGCGATCCCG  | AGCACCTGCG  | CAAGGGCGAC  | 1020 |
| CCGCACCGCC  | TGGCCCGAGGT | GCTGATCAAC  | CTGCTGTCCA  | ACGCCCGCGA  | TGCCTCGCCG  | 1080 |
| GCCCCGGGTG  | CCATCCCGGT  | GCGTAGCGAG  | GCCGAGGAGC  | AGAGCGTGGT  | GCTGATCGTC  | 1140 |
| GAGGACGAGG  | GCACGGGCAT  | TCCCGAGGCG  | ATCATGGACC  | GCCTGTTCGA  | ACCCCTCTTC  | 1200 |
| ACCACCAAGG  | ACCCCGGCAA  | GGGCACCGGT  | TTGGGGCTCG  | CGCTGGTCTA  | TTCGATCGTG  | 1260 |
| GAAGAGCATT  | ATGGGCAGAT  | CACCATCGAC  | AGCCCGCCCG  | ATCCCGAGCA  | CCAGGCAGGA  | 1320 |
| ACCCGTTTCC  | GGGTGACCCCT | GCCGCGCTAT  | GTCGAAGCGA  | CGTCCACAGC  | GACCTGAGTA  | 1380 |
| GTGACCTAGA  | ACCGCCGAGG  | GGCCACAAGC  | CCGGCGGATT  | CGGAGACCGT  | CGAGAGAAC   | 1440 |
| CAATGCCGCA  | TATCCTCATC  | GTCGAAGACG  | AAACCATCAT  | CCGCTCCGCC  | CTGCGCCGCC  | 1500 |
| TGCTGGAACG  | CAACCAAGTAC | CAGGTCAGCG  | AGGCCGGTT   | GGTTCAAGGAG | GCCCAGGAGC  | 1560 |
| GCTACAGCAT  | TCCGACCTTC  | GACCTGGTGG  | TCAGCGACCT  | GGCCTGCC    | GGCGCCCCCG  | 1620 |
| GCACCGAGCT  | GATCAAGCTG  | GGCGACGGCA  | CCCCGGTACT  | GATCATGACC  | AGCTATGCCA  | 1680 |
| GCCTGCCGCTC | GGCGGTGGAC  | TGCGATGAGA  | TGGGCGCGGT  | GGACTACATC  | GCCAAGCCCT  | 1740 |
| TCGATCACGA  | CGAGATGCTC  | CAGGCCGTGG  | CGCGTATCCT  | GCGCGATCAC  | CAGGAGGCCA  | 1800 |
| AGCGCAACCC  | GCCAAGCGAG  | GCGCCCAGCA  | AGTCCGCCCG  | CAAGGGCAAC  | GGCGCCACCG  | 1860 |
| CCGAGGGCGA  | GATCGGCATC  | ATCGGCTCT   | GGCGCCGCAT  | GGAGGACCTT  | TACGGCAAGA  | 1920 |
| TCCGCAAGGT  | CGCTCCCACC  | GATTCCAACG  | TACTGATCCA  | GGGCGAGTCC  | GGCACCGGCA  | 1980 |
| AGGAGCTGGT  | CGCGCGTGC   | CTGCACAAAC  | TCTCGCGTCG  | GGCGCAAGGCA | CCGCTGATCT  | 2040 |
| CCGTGAACGT  | CGCGGCCATC  | CCCGAGACCC  | TGATCGAGTC  | CGAACGTGTC  | GGCCACGAGA  | 2100 |
| AAGGTGCCCT  | CACCGCCGCC  | AGCGCCGCC   | GGCGCCGCCT  | GGTCGAAGCG  | GGCGACGGCG  | 2160 |
| GCACCCCTGTT | CCTCGACGAG  | ATCGGGCGAGC | TGCGCTGGA   | GGCGCAGGGCC | GGCCTGCTGC  | 2220 |
| CCGTGCTGCA  | GGAGGGCGAG  | ATCCGTCGGG  | TGGCGCTCGGT | GCAGTCACAG  | AAGGTGATG   | 2280 |
| TACGCTGAT   | CGCCGCTACC  | CACCGCGACC  | TCAAGACGCT  | GGCGCAAGACC | GGCCAGTTCC  | 2340 |
| CGGAGGACCT  | CTACTACCGC  | CTGCACGTCA  | TGCGCTCTAA  | GCTGCCGCCA  | CTGCGCGAGC  | 2400 |
| GGGGCGCCGA  | CGTCAACGAG  | ATCGCCCCGCG | CCTTCCTCGT  | CCGCCAGTGC  | CAGCGCATGG  | 2460 |
| GGCGCGAGGA  | CCTCGCGCTTC | GTCAGGATG   | CCGAGCAGGC  | GATCCGCCAC  | TACCCCTGGC  | 2520 |
| CGGGCAACGT  | GCGCGAGCTG  | GAGAATGCCA  | TCGAGCGCGC  | GGTGATCTC   | TGGGAGGGCG  | 2580 |
| CGGAAATTTC  | CGCGCGAGCTG | CTGGGCATCG  | ACATCGAGCT  | GGACGACCTG  | GAGGACGGCG  | 2640 |
| ACTTCGGCGA  | ACAGCCACAG  | CAGACCGCGG  | CCAACCAAGA  | ACCGACCGAG  | GACCTGTCGC  | 2700 |
| TGGAGGACTA  | CTTCCAGCAC  | TTCGTACTGG  | AGCACCAGGA  | TCACATGACC  | GAGACCGAAC  | 2760 |
| TGGCGCGCAA  | GCTCGGCATC  | AGCCGCAAGT  | GCCTGTGGGA  | GGCGCGTCAG  | GGCCTGGGCA  | 2820 |
| TTCCGCGGCG  | CAAGTCGGGC  | GGGGCGACCG  | GCTCCTGAAC  | GGGACGAACG  | GTGACAGGCC  | 2880 |
| TCGCCGAAA   | AGGTTCCGCG  | CCTGTTACCC  | CGCACAAATA  | TCGCGTAACA  | AAAGCCGGGT  | 2940 |

|                        |                        |                        |      |
|------------------------|------------------------|------------------------|------|
| TCATCGGTAA CGGGAACCCG  | CTTTTTCT GCCCGCCGCC    | CGCACCAAAA AATCATAACT  | 3000 |
| CATTGAAAAA CAAGGAATTA  | CAAAAACCTGG CACGGCTTCT | GCTTTATCTC TGGCACACA   | 3060 |
| ACAATAACAA CGCTCGAAC   | CTCAACAATA AAAACAATAC  | AGAACGACTC CAGCACACA   | 3120 |
| AAAACAACAA CGCGGAGGC   | CAGCTAATG ATTCTTTTGG   | AGAGGATTTG CCCTTGGGT   | 3180 |
| TCCCCCACA ACCAGGCCA    | GAACACAAA AACTGCACTA   | AAGCAGCGCC TGCACGGTT   | 3240 |
| GGGTCATGGA ATGATCAAG   | CAGCATCAGC ATCCAAAGCA  | ATCCGTTGC TCCTGGTACC   | 3300 |
| CGATTGGGC TACCTGAAAC   | GGGCCTACAA CAAAACAAC   | AGGCCCCGAC AATAATAAAA  | 3360 |
| ACAAAGCAGC CACCTATTT   | GGGGGAGCT TCGGCTCCC    | CAGTAGCTTC ACCCCACCTC  | 3420 |
| GGGTTCCCCA GCCTGCCCTT  | TCCACCATCC CCCCTCCCGA  | TGCTAGAATC CGCGCCAATC  | 3480 |
| CTGCGCGAT CTGCAATTGT   | GGCGCCTAT TCCTGCAAAC   | AGTGCATCCC ATGCTGAAAA  | 3540 |
| AGCTGTTCAA GTCGTTTCGT  | TCACCTCTCA AGCGCCAAGC  | ACGGCCCCGC AGCACGCCGG  | 3600 |
| AAGTTCTCGG CCCCGGCCAG  | CATTOCCCTGC AACGCAGCCA | GTTCAAGCCGC AATGCGGTAA | 3660 |
| ACGTGGTGGG CGCGCTGCCAG | AACGGCGGCT ACCAGGCCA   | TCTGGTCGGC GGCTGCGTAC  | 3720 |
| GGCACCTGCT GATCGCGGTG  | CAGCCCAAGG ACTTCGACGT  | GGCCACCCAGC GCCACCCCCG | 3780 |
| ACGAGGTGGG GGGCGAGTTT  | CGCAACGCCG GGGTGATCGG  | CCGGCGCTTC AAGCTGGCGC  | 3840 |
| ATGTGCAATT CGGCCGCGAG  | ATCATCGAGG TGGCGACCTT  | CCACAGCAAC CACCCGCAGG  | 3900 |
| GGGACGCCGA GGAAGACAGC  | CACCGAGTCGG CCCGTAACGA | GAGCGGGCCG ATCCGCGCG   | 3960 |
| ACAACGTCTA CGGCAGTCAG  | GAGAGCGATG CCCAGCGCCG  | CGACTTCACC ATCAACGCC   | 4020 |
| TGTACTTCGA CGTCAGCGGC  | GAGCGCGTGC TGGACTATGC  | CCACGGCGTG CACGACATCC  | 4080 |
| GCAACCGCCT GATCCGCTG   | ATCGGCCGACC CCGAGCAGCG | CTACCTGGAA GACCCGGTAC  | 4140 |
| GCATGCTGCG CGCGCTACGC  | TTCCGGGCCA AGCTGGACTT  | CGACATCGAG AAACACAGCG  | 4200 |
| CCGCGCCGAT CGGCCGCTG   | GCGCCGATGC TGCGCGACAT  | CCCTGCGCG CGCCCTGTTCG  | 4260 |
| ACGAGGTGCT CAAGCTGTT   | CTCGCCGGCT ACGGCGAGCG  | CACCTTCGAA CTGCTGCTCG  | 4320 |
| AGTACGACCT GTTCGCCCCG  | CTGTTCCCGG CCAGCGCCCG  | CGCCCTGGAG CGCGATC     | 4377 |

## (2) INFORMATION FOR SEQ ID NO:29:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 17612 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

|                       |                        |                        |      |
|-----------------------|------------------------|------------------------|------|
| GATCTCGAGG GCGTCGGCTT | CGACACCTG GCGGTGCGCG   | CCGGTCAGCA TCGCACGCCG  | 60   |
| GAGGGCGAGC            | ATGGCGAGGC CATGTTCCCT  | ACCTCCAGCT ATGTGTTCCG  | 120  |
| GACGCCGCG             | CGCGCTTCGC CGCGAGCAG   | CCGGGCAACG TCTACTCCG   | 180  |
| CCGACCGTGC            | CGCGCTTCGA GGAGCGCATC  | GCCGCCCTGG AAGGCGCCGA  | 240  |
| GCCACCGCCT            | CGGGCATGGC CGCCATCCGT  | GCCATCGTC TGAGCCTGTG   | 300  |
| GACCATGTGC            | TGGTGTGCGC CAGCGTGTTC  | GGCTCGACCA TCAGCCTGTT  | 360  |
| CTCAAGCGCT            | TGGGCATCGA GGTGGACTAC  | CCGCGCTGG CCGATCTGGA   | 420  |
| GCAGCCCTCA            | AGCCCCAACAC CAAGCTGCTG | TTCTGCGAAT CGCCGTCAA   | 480  |
| GAGCTGGTGG            | ACATAGGCAGC CCTGGCCAG  | ATCGCCCACG CCCGCGGCCG  | 540  |
| GTGGACAACT            | GTTCTGCAC CCCGGCCCTG   | CAGCAGCGCG TGGCGCTGGG  | 600  |
| GTCATGCCATT           | CGCGCAGCAA GTTCATCGAT  | GGCCAGGGCC GCGGCCTGGG  | 660  |
| GCGGGCGCC             | GTGCGCAGAT GGAGCAGGTG  | GTGGCTTCC TGCGCACCCG   | 720  |
| CTCAGCCCGT            | TCAACGCTG GATGTTCC     | AAGGGCTGG AGACCCCTGCG  | 780  |
| CAGGCGCAGA            | GGCCAGCGC CCTGGAAC     | GCCCCTGGT TGGAGACCCA   | 840  |
| GACAGGGTCT            | ACTATGCCG CCTGCCAGC    | CACCCGCAGC ACAGAGCTGGC | 900  |
| CAGAGTGCCT            | TGGCGCGGT GCTGAGCTTC   | GAGGTCAAGG GCGGCAAGGA  | 960  |
| CGTTTCATCG            | ATGCCACCCG GGTGATCTCC  | ATCACCAACCA ACCTGGCGA  | 1020 |
| ACCATCGCCC            | ATCCGGCGAC CACCTCCAC   | GGTCGTCTGT CGCCGCAGGA  | 1080 |
| GCCGGTATCC            | GGACACAACCT GGTGCGTGT  | GCCGTGGGCC TGGAGACGT   | 1140 |
| AAGGCCGACC            | TGGCCCGTGG CCTGGCCCG   | CTCTGAGGAC GGGGGCCCCC  | 1200 |
| CGAAGGGCAG            | GGGCGGGGGC TTGCGGGGG   | CCTTTGCGCG ATCAGCAGCT  | 1260 |
| AAACGTCTA             | CCCCAGGAGC TACCCCATGA  | ACCTCATCCT TTTCTGATC   | 1320 |
| TTGCGGGCTG            | GATCGCCGGC AAGTTGCTGC  | GTGGTGGCGG CTTCGGGCTG  | 1380 |

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| TGGTGGTGGG  | CATA GTGGGC | GCGGTGATCG  | GCGGCCACCT  | GTTCAGCTAC  | CTGGGCGTGT  | 1440 |
| CCGCCCGGTGG | TGGGCTGATC  | GGCTCGCTGG  | TGACCGCGGT  | GATCGGTGCC  | CTGGTCTCTGC | 1500 |
| TGTTCATCGT  | CGGCCTGATC  | AAGAAGGGCC  | AGTAGCGCTG  | GCGGGAACCC  | GTCCCCGCGC  | 1560 |
| CCATCACTGG  | TCGCGCAGGT  | CCACGGCAC   | GGCGCCGGGT  | TTGTGCGAAC  | GGCGCTCGGC  | 1620 |
| GCTGCCCGC   | AGGCTGCTGT  | GGCCATCCTC  | GTGCGCACCC  | AGCACGCTA   | TGTCGCTGTA  | 1680 |
| CTTCTTGCCC  | GACAGCGCGG  | CCATGCCCGC  | GCGGTGCGGG  | ACGATGGTCG  | GGCGCAGGAA  | 1740 |
| CACCATCAGG  | TTGCGCTTGA  | CGTGGGTGTC  | CTTGGTCGAG  | CGAACACAGC  | GGCCGATCATG | 1800 |
| CGGGATGTCA  | CCCAGCAGCG  | GCACCTTGA   | GTGCGTCTG   | GTGACGTCGT  | CCTGGATCATG | 1860 |
| CCCTCCCAGC  | ACTATGACCT  | GGCCGTGTC   | GGCCAGGATC  | ACGCTCTTGA  | TCGAGCGCTT  | 1920 |
| GTTGGTCACC  | AGGTCCACCG  | CCTGGGCATT  | GACCCCGGCG  | CTGGGGGCCA  | TGGAGGAGAT  | 1980 |
| CTCCCTGCTCC | ACTTCCAGGC  | GCAGGGTGGC  | GCGTCGTTG   | ATGTGCGGGG  | TGACCTTGAG  | 2040 |
| GGTCACGCCG  | ATGTCCTCGC  | GCTCAATGGT  | GGTGAAGGGG  | TTGTTGCCC   | CCGAGGCCTC  | 2100 |
| GGTGGTGTAG  | GAGCCGGTCT  | GGAAAGGCAC  | GTTCTGCCCG  | ACCAGGATT   | CCGCCTCCTG  | 2160 |
| GTTGTCCAGG  | GTCAGCAGGC  | TGGGCGTGG   | CAGCAGGTTG  | CTCTTGCTGT  | TGGCAGAGAG  | 2220 |
| GGCAGTGATC  | AGCGCGCCGA  | AGTTCTCGGT  | GGCGATGCCG  | ATGATGGCCG  | CGTCCGGCAG  | 2280 |
| GGTCAGGTCA  | TGGGGGATTT  | CCTCGTTCTG  | GATGCCCTTG  | AGCACGGTGC  | CCACCGATAG  | 2340 |
| CCCGGTATTG  | CCGAAGTTGA  | CCCCGCCAG   | GCCGCCGGTG  | CCGCCGGGGG  | CATCCACCGC  | 2400 |
| CCACTGCACG  | CGAGGGCGT   | CGCTGATGTC  | CCCAGAGATT  | TCCACGATGG  | CCGCCTCGAC  | 2460 |
| CATCACCTGG  | GGCGCGGGCA  | CGTCGAGGTT  | GOGCACGATT  | TCCTCGAGGG  | TCGCCACGGT  | 2520 |
| GTCCGGATCG  | GCCAGCAGGA  | CCAGGGCATT  | GAGGCTCTCG  | TCGGGCCGGG  | TCAAGGATGTT | 2580 |
| CTGCGGCTTG  | CTGCTGGCGG  | CTTCGCCACC  | ACCCCTCCGCG | GTCTTCAACC  | CCTCGGAGAT  | 2640 |
| GTCGCCCAGG  | GTCTCGGCCA  | GGCTCTTGGC  | GTGCGTGTGG  | CGTAGGCGAA  | TTACCCGGCGC | 2700 |
| ATTGGCCGAA  | CGGGTGTGCG  | GGATGTCCAG  | CGAGCGGGCC  | AGGTTGGCCA  | GGCGCTGGCG  | 2760 |
| GGCGGCCGGC  | GGGGCGAGGA  | GGATCAGGCG  | GTTGGTGCCTG | GGCTGGCAA   | TCACCCGGGT  | 2820 |
| GCGGGCGCTG  | TTTTTCTCGT  | TGCGCATCAC  | CGCGTTGTT   | AGTGCCTCGG  | CGCGTCCAG   | 2880 |
| TACCCAGGCA  | TGCTGCAAGGT | TGATCACGTT  | GTAGTCGCCG  | CCGCCCTGGG  | CATCGAGCTC  | 2940 |
| GGCGATCAGT  | TGCGGGATGC  | GTTCGATATT  | NGCCCGGGCG  | TCGCTGATGA  | TCAGCGCGTT  | 3000 |
| GGAGGGCGCG  | ACCGCCGCCA  | GGTGGCGTT   | CTGCGGCCACC | AGCGGGCGGA  | TCAGCGGGAT  | 3060 |
| CAGTCGTTG   | ACCGAGGTGT  | GCTGCACCTG  | GATCAGCTCG  | GTCTGCACAT  | CGTCCGGCGC  | 3120 |
| GCTGCGGCTG  | CTGTTGGCGC  | CGCTACGCGC  | CTCGGTGACC  | GGCACCGATGC | GGCCTGGTC   | 3180 |
| GCCCTGTGCC  | AGCACGCTGA  | AGCCATGGGT  | GCTCATCACC  | GAAAGGAACA  | GCTGGTAGAC  | 3240 |
| CTCCCTCGAGG | CCCAGCGGGG  | TCTTGGAGAT  | CACCGTGACC  | TGGCCCTTGA  | CCCGCGGATC  | 3300 |
| GACGACGAAG  | GTCTCGCCAG  | AGATCTGCGC  | CACCTGGTCG  | ATGAAGTCGC  | GGATATCGGC  | 3360 |
| GTCCTTCATG  | TTGATGGTCC  | AGGTCTCGGC  | GCCCTGGCTC  | ACCGCCACCG  | GTCGCGCGC   | 3420 |
| ATGGACGAGC  | GGCAGCGGGG  | CGCGAGGCA   | GCTCGCGGCC  | AGCAGCAGGG  | CGAGGGCGAG  | 3480 |
| GCGTTTGTC   | GGCGGAATTG  | TGGAGTCGAT  | CATGGGCTGT  | CTTCGGCTTC  | CGGTATTTCG  | 3540 |
| GGCTGCCGGA  | TGTCGCCGCC  | TTCCATGCGT  | TGTTGAAGGG  | TCTGGATGCG  | CTCCCTGCAGG | 3600 |
| CCCTGGACGT  | CTTCGTCCTG  | CAGCTGTTCC  | AGTTGGCTGG  | CGGTGGGCTC  | CAGCGCCGAG  | 3660 |
| TAGGCCCCG   | TCAGAGAGGG  | CTGGCGCACG  | GGGGGAAAGC  | GCAGGCTCTC  | CTCGACGCCG  | 3720 |
| CCCGGGTCCA  | GCACCACTGT  | GTCCCTGATAG | ACGGCCTGCA  | GGGGGGTGT   | GACGTTGACC  | 3780 |
| GATTGCCCA   | CGCGCATGCC  | CTTGGGTTTG  | TCGCCGGCGA  | CCTGGATGAT  | CGCGTGGAG   | 3840 |
| CCCTGGCGT   | CGGGGTTGAC  | GAAGCTGGCC  | AGCAGGGTCA  | TCTGCTGCCG  | GGTGGCGGGG  | 3900 |
| GCGGCCCTGGT | CGCCGCGCGG  | CCTGGCCGCG  | GGCGTGCCGA  | ACAGATGCTG  | CAGGCGCTGG  | 3960 |
| ATGGACAGCG  | GCTGGCGCTC  | GGCGATGCTC  | TCTGGGGCGG  | GGGGTGGCGC  | GGCCTCGCTG  | 4020 |
| CCGAGCAGGC  | GAAGGAAGTC  | GATGCTCTGC  | TTGCTCAGGC  | TGAGGGTGT   | GAGCAGCACC  | 4080 |
| ACGAGCAGGC  | AGAGGCCGGT  | ACGCGCTGTC  | CGCTGCAAGCC | AGGCGGGCAG  | GGGGGTGCGG  | 4140 |
| GTGCTACTCA  | AGGCATGGTT  | CCCCCGGTGT  | TCTTCTTATT  | CTGTGCGGAC  | GCTCTGCTCG  | 4200 |
| GCGTCTGCCA  | ATCCGGCCCC  | TACTCTGCGG  | GGCGCAGGCA  | CCTTAACGCA  | AGTCTCTGT   | 4260 |
| CCATGGCGCA  | CCTGCTTCGT  | CTATCTGCGC  | GCTGGCGCAC  | TGTCCGCCG   | TGCCGGAAGC  | 4320 |
| GTGAAACATT  | TGCAAACATT  | CGCGAACGA   | GTCGCTATCA  | TGGCCCCCAC  | GCGCTTCCCC  | 4380 |
| TTCAACAATA  | GCAATAAGCC  | AGACGGATTA  | CCGCATGGGA  | AGATCGCAAG  | CCGCCTGCCG  | 4440 |
| CGGCTCCCGT  | GGGGTTTGC   | CGCGCGGAGC  | TGCTGGAGCT  | GCTCTGCCG   | TGCGAGCAGT  | 4500 |
| TTCCCTGTAC  | CCTGCTGCTG  | GGCCCCGCCG  | GTCGGGCAA   | GTGACCCCTG  | CTGGCCCACT  | 4560 |
| GGCAGGCCAG  | CCGGCCCTTC  | GGCAGTGTGG  | TGCACTATCC  | ACTGCAAGGG  | CGTGACAACG  | 4620 |
| AGCCGGTACG  | CTTCTTCCGC  | CACCTGGCCG  | AAAGCATCCG  | CGCCCAAGGTC | GAGGACTTCG  | 4680 |
| ACCTGTCTG   | GTTAACCCCC  | TTCGCGCCG   | AGATGCACCA  | GGCGCCCGAG  | GTGCTGGCG   | 4740 |
| AGTACCTGGC  | CGACGCCCTC  | AATGCACTG   | AGAGCCGCT   | CTACCTGTC   | CTCGACGACT  | 4800 |
| TCCAGTGCAT  | CGGGCAGCCG  | ATCATCTCG   | ACGTGCTCTC  | GGCCATGTC   | GAACGCCCTGG | 4860 |
| CGGGCAACAC  | CGGGTCATT   | CTGTCCGGGC  | GCAACCATCC  | GGGGTTCTCC  | CTCAGCGGCC  | 4920 |

|             |             |             |             |             |             |      |
|-------------|-------------|-------------|-------------|-------------|-------------|------|
| TGAAACTGGA  | CAACAAGCTG  | CTGTGCATCG  | ACCAGCACGA  | CATGCGCTG   | TCGCCAGTGC  | 4980 |
| AGATCCAACA  | CCTCAATGCC  | TACCTGGCG   | GTCGGAGCT   | CAGCCCGGCC  | TATGTCGGCA  | 5040 |
| GCCTGATGGC  | CATGACCGAG  | GGCTGGATGG  | TCGGGGTGAA  | GATGGCCCTG  | ATGGCCCAGT  | 5100 |
| CGCGCTTCGG  | CACCGAGGCC  | CTGCAGCGCT  | TCGGTGGCGG  | CCATCCGGAG  | ATAGTCGACT  | 5160 |
| ACTTCGGCCA  | TGTGGTGCTG  | AAGAACGCTGT | CGCCGCAGCT  | GCACGACTTC  | CTGTTGTGCA  | 5220 |
| GCGCGATCTT  | CGAGCGCTTC  | GACGGCGAGC  | TATGCGACCG  | GGTGTGGAT   | CGCAGCGGTT  | 5280 |
| CGGCCCCGCTG | GCTGGAGGAC  | CTGGCCGCCG  | GCGAGCTGTT  | CATGCTGCCG  | GTGGACGAGT  | 5340 |
| ATCCCCGCTG  | CTACCGCTAC  | CACGCCCTGT  | TGCACGATT   | CCTCGCCCGG  | CGCCCTGGCCG | 5400 |
| TGCACAAAGCC | ACAGGAAGTG  | GCGCAACTGC  | ACCGCGGGC   | GGCCCTGGCG  | CTGCAGCAGC  | 5460 |
| GTGGCGACCT  | GGAGCTGGCC  | CTGCAGCATG  | CCCAGCGCAG  | TGGCGACCGC  | GCCTTGTTC   | 5520 |
| AAAGCATGCT  | GGGGCGAGGC  | TGCAGACAT   | GGGTGCGCAG  | CGGTCACTTC  | GCGGAGGTGC  | 5580 |
| TGAAGTGGCT  | GGAGCCGCTG  | AGCGAGGCCG  | AACTCTGCGN  | GCAGTCGCGC  | CTGCTGGTGC  | 5640 |
| TGATGACCTA  | TGCCCTGACC  | CTGTCGGCGC  | GTTCACCCA   | GGCGCGCTAC  | TGCTTGGACG  | 5700 |
| AACTGGTGGC  | GCGCTGCACC  | GGTCAGCCGG  | GCCTGGAGGA  | GCGCACCCCG  | CAGCTGCTGG  | 5760 |
| CGCTCAACCT  | GGAGCTGTT   | CAGCACGACC  | TGGCCTTCGA  | CCCCGGCCAG  | CGCTGGTCCG  | 5820 |
| ACCTGCTGGC  | CGCGGGGCGTC | GCCTCGGACA  | TCCGTGCCCT  | GGCGCTGAGC  | ATCCTCGCCT  | 5880 |
| ATCACCAACCT | GATGCAACGG  | CGCCTGGAGC  | AGTCGATCCA  | GCTGGCGCTG  | GAGGCCAAGG  | 5940 |
| CGCTGCTGGC  | CAGCACCGGC  | CAGCTGTTCC  | TGGAGAGCTA  | CGCCGACCTG  | ATCATCGCCC  | 6000 |
| TGTGCAACCG  | CAACGCCGGG  | CGCGCCACCA  | GCGCCGCCAA  | GGACGTCGTC  | CTGGATTACC  | 6060 |
| AGCGCACCGA  | GCGCTCCCTCG | CGGGCCTGGG  | TCAACCGTGC  | CACCGCCATG  | GTGGTGGCGC  | 6120 |
| TGTACGAGCA  | GAACCAAGCTG | GGCGCCGGCCC | AGCAGCTGTC  | CGAGGACCTG  | ATGGCCATGG  | 6180 |
| TCACGTCGTC  | CTCGGCCACC  | GAGACCATCG  | CCACCGTGC   | CATCACCCCTG | TCGCGCCCTGC | 6240 |
| TCCACCGGGC  | CCAGTCCCAG  | GGCGCGGCCA  | CGCGCCCTGCT | GGAGCAGCTG  | TCGCGCATCC  | 6300 |
| TGCAACTGCGC | CAACTACGCG  | CGCTTCGCA   | GCCAGGCCG   | GCAGGAGAGC  | ATGCGCCAGG  | 6360 |
| CCTATCTCGA  | CGGGCGCCCC  | CGGGCGCTCG  | ACGCACTGGC  | CAAACGCCCG  | GGTATCGAGG  | 6420 |
| AGCGCTCTGGC | CGCCGGGGGAG | TGGGAGAGGG  | TGCGGCCCTA  | TGAAGAGTGC  | TGGGAAACGCT | 6480 |
| ACGGCCTGGC  | CGCCCGTGTAC | TGGCTGGTGA  | TGCGCGGGCGC | CCAGCCGCCG  | CCCTGCGCGCA | 6540 |
| TCCTCAAGGT  | GCTGGCCCGAG | GCGNTGNAGA  | ACAGCGAGAT  | GAAGGCCCCG  | GCGCTGGTGG  | 6600 |
| TGGAGGCCAA  | CGCTGCTGGT  | CGAAGGCC    | CGCAGCTGGG  | GGCGGACGAG  | CAGGACAGGG  | 6660 |
| CCCTGCTGGC  | GCTGGTCGAC  | CGCTTCGGCA  | TGTCACCAT   | CAACCGCTCG  | GTATTGACG   | 6720 |
| AGGCGCCCGG  | CTTCGCGGAC  | CGGGTGTTCG  | GCCTGCTGG   | CTCGGGCCGG  | CTGCGAGGCC  | 6780 |
| CGGAGGCCATA | TCGCGAGGCC  | TATGCGACT   | TCCTCCAGGG  | CACAGGCCAG  | GCGCCGCCGG  | 6840 |
| CGCTCCTGTC  | CGAGTCGCTG  | AAACAGCTTA  | CCGACAAGGA  | GGCGGCGATC  | TTCGCCCTGCC | 6900 |
| TGCTCAGGGG  | GCTGTCAAC   | AGCGAGATCA  | CGGCCAGCAC  | CGGCATCGCC  | CTGTCACCA   | 6960 |
| CCAAGTGGCA  | CCTGAAGAAC  | ATCTACTCGA  | AGCTGAGCCT  | CTCCGGCCGT  | ACCGAAGCCA  | 7020 |
| TCCTCGCCAT  | GCAGGCCCGC  | AACGGATAAT  | GCGCCATGCC  | CCTCCCCGGG  | GAGGGGGGAG  | 7080 |
| GGGCGCCGCG  | AACGCTTAA   | TCTCCCCGCT  | GCGGAAAAG   | CCGCGAACGA  | ACCCCATTTAG | 7140 |
| TACAAGAAGA  | AAATCGGGAGA | TATCGCCATG  | TCTGTTTGGG  | TCACGTTGCC  | GGGCTTGGTC  | 7200 |
| AAAGTTCGGCA | CCCTGGGCAT  | CTATGCGGC   | CTGATCACCC  | TCGGCCTTGA  | GCGCGACGTC  | 7260 |
| CTGTTCAAGA  | ACAACCTGTT  | CGACGTCGAC  | AACTGCCCCG  | CGGCAACGC   | CAGCATCACC  | 7320 |
| TGTATGCC    | GCAGCCAGGT  | GGCGCGTACC  | GAGGACGGCA  | CCTGTAACAT  | CCTCGCCAAC  | 7380 |
| CCGGCCGAGG  | GCTCGGTGTA  | CCGCGCTTTC  | GGGCGCAACG  | TCGACCCAG   | CGTGACCCAT  | 7440 |
| GGCGAGACCG  | AGGCCGACAC  | CCTGCTCAGT  | CCCAATCCCG  | GGGAGGTGAG  | TAACGTGCTG  | 7500 |
| ATGGCGCTG   | GGAGGTTCAA  | GGCGGCCCGC  | AGCCTCAACT  | TCATCGCCG   | CTCCCTGGATC | 7560 |
| CAGTTCATGG  | TGCATGACTG  | GGTCGAACAC  | GGCCCCAACG  | CCGAAGCCA   | CCCGATCCAG  | 7620 |
| GTGCGCTGTC  | CGGCTGGCGA  | CCGCGCTGGC  | TCCGGCAGCC  | TGTCTGGCG   | CCGCACCCAG  | 7680 |
| CCCGACCCGA  | CCCGTACCCC  | GGCGGAGGCC  | GGCAAGCCGG  | CCACCTACCG  | CAACCACAAC  | 7740 |
| ACCCACTGGT  | GGGATGGCTC  | CGAGTTGTAT  | GGCAGCAGCA  | AGGACATCAA  | CGACAAGGTG  | 7800 |
| CGCGCTTTCG  | AGGGTGGCAA  | GCTGAAGATC  | AAATCCGACG  | GTACCCGTC   | GACCGAGTTC  | 7860 |
| CTCAGCGGCA  | AGCCGATCAC  | CGGCTTCAC   | GAGAACGCTG  | GGGTTGGCT   | GAGCATGCTG  | 7920 |
| CACCAAGCTGT | TCACTAAGGA  | GCACAAACGCC | ATCGCGGCCA  | TGCTCCAGCA  | GAAGTACCCG  | 7980 |
| GACAAGGACG  | ACCAGTGGCT  | GTACGACCAT  | GGCGCGCTGG  | TCAACTCCGC  | GCTGATGGCC  | 8040 |
| AAGATCCACA  | CCGTGGAATG  | GACCCGGCG   | GTGATGCCA   | ACCCGGTCAC  | CGAACCGGCC  | 8100 |
| ATGTATGCCA  | ACTGGTGGGG  | CCTGCTGGGT  | TCCGGTCCGG  | AGCGTGACAA  | GTACCAAGGAA | 8160 |
| GAGGCGCGCA  | TGCTGCAGGA  | GGACCTGGCC  | AGCTCCAAC   | CCTTCGTCCT  | GCGCATTCTC  | 8220 |
| GGCATCGACG  | GCAGCCAGGC  | CGGCAGTTCG  | GCCATCGACC  | ATGCCCTGGC  | CGGCATCGTC  | 8280 |
| GGCTCGACCA  | ACCCGAACAA  | CTACGGCGTG  | CCCTACACCC  | TGACCGAGGA  | GTTCGTCGCG  | 8340 |
| GTCTACCGCA  | TGCAACCCGCT | GATGCGCGAC  | AAGGTCGATG  | TCTACGACAT  | CGGCTCGAAC  | 8400 |
| ATCATCGCGC  | GCAGCGTGCC  | GCTGCAGGAG  | ACCCGGCATG  | CCGACGCCGA  | GGAGCTGCTG  | 8460 |

|             |             |             |             |             |             |       |
|-------------|-------------|-------------|-------------|-------------|-------------|-------|
| GCGGACGAGA  | ATCCCGAGCG  | CCTGTGGTAC  | TCCCTCGGCA  | TCACCAAACCC | GGGCTCGCTG  | 8520  |
| ACCCCTAACAA | ACTACCGAA   | CTTCCCTGCGC | AACCTGTCCA  | TGCCGCTGGT  | CGGCAACATC  | 8580  |
| GACCTGGCGA  | CCATCGACGT  | GCTGTGTGAC  | CGCGAGCGCG  | GGGTGCGCGC  | CTACAACGAG  | 8640  |
| TTCCGCGCG   | AGATCGGCCT  | CAACCCGATC  | ACCAAGTTGG  | AGGACCTGAC  | CACCGACCCG  | 8700  |
| GCCACCCCTGG | CCAAACCTCAA | GCGCATCTAC  | GGCAACGACA  | TGGAGAAAGAT | TGACACCCCTG | 8760  |
| GTCGGCATGC  | TGGCGAGAC   | CGTGCCTCG   | GACGGCTTCG  | CCTTCGGCGA  | GACGGCCCTTC | 8820  |
| CAGATCTTCA  | TCATGAACGC  | CTCGCGGCCG  | CTGATGACCG  | ACCGCTTCTA  | TACCAAGGAC  | 8880  |
| TACCGCCCCG  | AGATCTACAC  | CGCGAGGGC   | CTGGCCTGGG  | TGGAGAAACAC | CACCATGGTC  | 8940  |
| GACGTGCTCA  | AACGCCACAA  | TCCGCAGCTG  | GTCAACAGCC  | TGGTTGGCGT  | GGAAAACGCC  | 9000  |
| TTCAAACCT   | GGGGCTGAA   | CATCCCAGGC  | GAATACCGAGA | GCTGGCGGGG  | CAAGGGCAAG  | 9060  |
| CAGGACAACC  | TGTGGGTCAA  | CGGCGCCNTG  | CGCACCCAGT  | ACGCGCGAGG  | CCAGCTGCCG  | 9120  |
| GCCATTCCCG  | CGGTGGACGT  | CGGCGGCCCTG | ATCAGTTCGG  | TGCTGTGGAA  | GAAGGTGCGAG | 9180  |
| ACCAANTCCG  | ACGTGGCGCC  | GGCCGGCTAC  | GAGAAGGCCA  | TGCACCCGCA  | TGGCGTGATG  | 9240  |
| GCCAAGGTCA  | AGTTCACCGC  | CGTGCCTGGG  | CACCCCTACA  | CCGGCCTGTT  | CCAGGGTGCC  | 9300  |
| GACAGCGGCC  | TGCTGCGCT   | GTGCGTGGCC  | GGCGACCCGG  | CAACCAACGG  | CTTCCAGCCG  | 9360  |
| GGTCTGGCGT  | GGAAAGGCTT  | CGTGCACGGC  | AAGCGTCGC   | AGAACGTCTC  | CGCGCTCTAC  | 9420  |
| ACCCCTGAGCG | GGCAGGGCAG  | CAACCCACAC  | TTCTTCGCCA  | ACGAGCTGTC  | GCAGTTGTC   | 9480  |
| CTGCCGGAGA  | CCAACGATAC  | CCTGGGCACC  | ACGCTGCTGT  | TCTCGCTGGT  | CAGECTCAAG  | 9540  |
| CCGACCTTGC  | TGCGCGTGG   | CGACATGGCC  | GAAGTGACCC  | AGACCGGCCA  | GGCCGTGACT  | 9600  |
| TCGGTCAAGG  | CGCCGACGCA  | GATCTACTTC  | GTGCCAAGC   | GGGAGCTGG   | CAGCCTGTT   | 9660  |
| TCCAGTGCAG  | CGCATGACTT  | CGCGAGCGAC  | CTGACGAGCC  | TCACCGCCCG  | CACCAAGCTG  | 9720  |
| TACGACGTCT  | ACGCTACCTC  | GATGGAGATC  | AAGACCTCGA  | TCCTGCGCTC  | GACCAATCGT  | 9780  |
| AGCTACGCCC  | AGCAACGGCG  | CAACAGCGCG  | GTGAAGATCG  | GCGAGATGGA  | GCTGACCTCG  | 9840  |
| CCGTTCATCG  | CCTCGGCCCT  | CGGCGACAA   | GGGGTGTCT   | TCAAGCACCA  | GCGTCACGAA  | 9900  |
| GACAAATAAG  | GGTCATCCCT  | TGCTGAACAG  | CCCCGGCCCG  | TGCCGGGGCT  | TTTTTGTGCA  | 9960  |
| CGCCCTACGT  | CCATCACACT  | TCTGCGCCAG  | GCTGTGCTGC  | CGCCTGCAA   | ATCGGCACTG  | 10020 |
| CAGTTTTGTC  | GCAAATCCGT  | TAACCTGGCG  | CCTCGGCCAT  | GCCATAAAA   | CAACAAGAAC  | 10080 |
| AAACAGCAAGA | TGGATCTTCT  | GTTCGGGGAA  | CGCATCCGCC  | CATGTCCACC  | GATACCCACG  | 10140 |
| CCGCCCTGAC  | GGCTCCCGCA  | AGCCCCGCT   | TGCGCCCGCT  | GCCCTTCGCC  | TTCGCCAAC   | 10200 |
| GCCACGGCGT  | GCTGCTGCCG  | GAGCCCTTCG  | GCCAGGTCCA  | GTCGCAGGTG  | CGCCGCGGTG  | 10260 |
| CCAGCCTGGC  | CGCCGTGCCG  | GAGGCCCGAG  | GTTTCGCCGG  | CCCGCGTGC   | CCGCTGCACT  | 10320 |
| GGCTGGAGCC  | CGAGGCCCTTC | GAGCAGGAGC  | TGGCCCTGGC  | CTACCCAGCC  | GACTCCCTCG  | 10380 |
| AGGTGCGGCA  | GATGGCCGAG  | GGCATGGGTG  | CGGAACCTGA  | CCTAGCCAGC  | CTGGCCGAAC  | 10440 |
| TCACTCCCCA  | ATCCGGCGAC  | CTGCTGGAC   | AGGAAGATGA  | CGCGCCGATC  | ATCCGCGCTGA | 10500 |
| TCAACGCCAT  | CCTCAGCGAG  | GCGATCAAG   | CCGGCGCCTC  | CGACATCCAC  | CTGGAAACCT  | 10560 |
| TCGAGAACG   | CCTGGTGGTG  | CGCTTTCGCG  | TCGACGGCAT  | CCTCCCGCGA  | GTGATCGAAC  | 10620 |
| CGCGCCCGA   | GCTGGCGGGCG | CTGCTGGTCT  | CGCGGGTCAA  | GTCATGGCG   | CGCCTGGACA  | 10680 |
| TCGCCCAGAA  | GCGCGTACCG  | CAGGACGGCC  | GTATTCGCT   | CAAGGTCGGC  | GGTCGCGAGG  | 10740 |
| TGGATATCCG  | CGTCTCCACC  | CTGCGCTCG   | CCAACGGCGA  | GCGGGTGGTG  | CTGCGTCTGC  | 10800 |
| TCGACAAGCA  | GGCGGGCGC   | CTGCGCTCA   | CGCATCTGGG  | CATGAGCGAG  | CGCGACCGCC  | 10860 |
| GCCTGCTCGA  | CGACAACCTG  | CGCAAGCCG   | ACGGCATCAT  | CCTAGTCACC  | GGCCCCACCG  | 10920 |
| GCTGGGCAGA  | GACCAACACC  | CTGTACGCCG  | GCCTGGTCAC  | CCTCAACGAC  | CGCTCGCGCA  | 10980 |
| ATATCCTCAC  | GGTGAAGAC   | CGGATCGAGT  | ACTACCTGGA  | AGGCATCGGC  | CAGACCCAGG  | 11040 |
| TCAACCCCCG  | GGTGGACATG  | ACCTTCGCCC  | GCGGCCTGCC  | CGCCATCCTG  | CGCCAGGACC  | 11100 |
| CGGACGTGGT  | GATGGTCGGC  | GAGATCCCG   | ACCAAGGAGAC | CGCCGACATC  | GCGGTGCAGG  | 11160 |
| CCTCGCTCAC  | CGGGCACCTG  | GTGCTCTCCA  | CCCTGCACAC  | CAACAGCGCC  | GTCGGCGCCG  | 11220 |
| TCACCCCCCT  | GGTCGACATG  | GGCGTCGAGC  | CCTTCCTGCT  | GTCGTGCTCC  | CTGCTCGCG   | 11280 |
| TGCTGGCCCA  | GGCGCTGGTG  | CGCGTCTCT   | GCGTGCACTG  | CCCGCGAGGGG | CGCCCCGGCTG | 11340 |
| ACCGGGCCGA  | GTGCGGCCCTG | CTCGGCCCTG  | ACCCGCACAG  | CCAGCCCCCTG | ATCTACCAAG  | 11400 |
| CCAAGGGCTG  | CCCCGAGTGC  | CACCAGCAGG  | GCTACCGCGG  | CCGTACTGGC  | ATCTACGAGC  | 11460 |
| TGGTGATCTT  | CGACGACCA   | ATGCCAACCC  | TGGTGACAA   | CGGCGCCGGT  | GAGCAGGAGC  | 11520 |
| TGATTGCCA   | CGCCCGCAGC  | CTCGGCCGA   | GCATCCGCGA  | CGATGGCCGG  | CGCAAGGTGC  | 11580 |
| TGGAAGGGT   | GACCAACCTG  | GAAGAAGTGT  | TGCGCGTGAC  | CGGGGAAGAC  | TGATGGCCGC  | 11640 |
| CTTCGAATAC  | ATCCGCGCTG  | ATGCCAGGG   | CGGCCAGCAG  | AAGGGCGTGC  | TGGAGGGCGA  | 11700 |
| CAGCGCCCGC  | CAGGTGCGCC  | ACCTGCTGCG  | CGACAAACAG  | TTGTCGCGGC  | TGCAGGTCGA  | 11760 |
| GCCGGTACAG  | CGCAGGGAGC  | AGGGCGAGGC  | TGGTGGCTTC  | AGCCTGCC    | GTGGCCTGTC  | 11820 |
| GGCGCGCGAC  | CTGGCGCTGG  | TCACCCGTC   | GCTGGCGACC  | CTGATCGGG   | CCCGCGTGC   | 11880 |
| CATCGAGGAA  | GCGCTGCCG   | CCGCGCCCG   | CGAGTCGCGC  | CAGCCGCGCA  | TCCAGTCGAT  | 11940 |
| GCTGTTGGCG  | GTGCGCGCCA  | AGGTGCTCGA  | GGGCCACAGC  | CTGGCCAAGG  | CCCTGGCCCTC | 12000 |

|             |             |             |             |            |             |       |
|-------------|-------------|-------------|-------------|------------|-------------|-------|
| CTACCCGGCG  | GCCTTCCCCG  | ACCTGTACCG  | CGCCACGGTG  | GCGGCCGGCG | AGCATGCGGG  | 12060 |
| GCACCTGGCG  | CCGGTGTGG   | AGCAGCTGGC  | CGACTACACC  | GAGCAGCGCC | AGCAGTCGCG  | 12120 |
| GCAGAAAGATC | CAGATGGCGC  | TGCTCTACCC  | GGTGATCCTG  | ATGCTCGCTT | CGCTGGGCAT  | 12180 |
| CGTCGGTTTT  | CTGCTCGGCT  | ACGTGGTGCC  | GGATGTGGTG  | CGGGTGTTCG | TGACTCCGG   | 12240 |
| GCAGACCCCTG | CCGGCCCTGA  | CCCGCGGGCT  | GATTITTCCTC | AGCGAGCTGG | TCAAGTCCCG  | 12300 |
| GGGCGCCCTG  | GCCATCGTCC  | TGGCGGTGCT  | CGCGTGTGTC  | GCCTTTCGCC | GCGCCCTGCC  | 12360 |
| CAGCGAGGAT  | CTGCGCCATGC | TCTCCTGCTG  | CGCGTGCCTG  | TGGTCGGTGG | 12420       |       |
| GCTGATGCC   | CCCACCGAGA  | CGGCACGCTT  | CGCCCTCGACC | CTGGCCATCC | TGGTGCGCAG  | 12480 |
| CGGCGTGCCA  | CTGCTGGAGG  | CGCTGGCCAT  | CGGGCGCGAG  | GTGGTGTCCA | ACCTGATCAT  | 12540 |
| CCGCAGCGAC  | GTGGCCAACG  | CCACCCAGCG  | CGTGCCTGAG  | GGCGGCAGCC | TGTCGCGCGC  | 12600 |
| GCTGGAAGCC  | AGCCCGAGT   | TTCCGCGAT   | GATGCTGCAC  | ATGATGCCA  | GCAGCGAGCG  | 12660 |
| TTCCGCGAG   | CTGGACCGAGA | TGCTGGCGCG  | CACCGCGCGC  | AACCAGGAAA | ACGACCTGGC  | 12720 |
| GGCCACCATC  | GGCCTGCTGG  | TGGGGCTGTT  | CGAGCCGTTG  | ATGCTGGTAT | TCATGGGCC   | 12780 |
| GGTGGTGCTG  | GTGATCGTGC  | TGGCCATCCT  | GCTCCGGAATT | CTTCTCTGA  | ACCAACTGGT  | 12840 |
| GGGTTGATAG  | CGATGTACAA  | ACAGAAAGGC  | TTCACCGCTGA | TCGAAATCAT | GGTGGTGGTG  | 12900 |
| GTCATCCTCG  | GCATTCTCG   | TGCCCTGGTG  | GTGCCGCGAGG | TGATGGGCCG | CCCCGACCAAG | 12960 |
| GCCAAGGTCA  | CGCGCGCGCA  | GAACGACATC  | CGCGCCATCG  | GCGCCCGCCT | GGACATGTAC  | 13020 |
| AAGCTGGACA  | ACCAAGAACTA | CCCGAGCAC   | CAGCAGGGCC  | TGGAGGCCCT | GGTGAAGAAA  | 13080 |
| CCCACCGGCA  | CGCGCGCGGC  | GAAGAACTGG  | AACGCCGAGG  | GCTACCTGAA | GAACCTGCCG  | 13140 |
| GTCGACCCCT  | GGGGCAACCA  | GTACCTGTAC  | CTGTCGGCGG  | GCACCCGCGG | CAAGATCGAC  | 13200 |
| CTGTATTCGC  | TGGCGCCCGA  | CGGCCAGGAA  | GGCGGCGAGG  | GGACCGACGC | CGACATCGGC  | 13260 |
| AACTGGGATC  | TCTGACTCGC  | AATGCAGCGG  | GGGCGCGGTT  | TCACTCTGAT | CGAGCTGCTG  | 13320 |
| GTGGTGCTGG  | TGCTGCTGGG  | CGTGCTCACC  | GGCCTCGCCG  | TGCTCGGCAG | CGGGATGCC   | 13380 |
| AGCAGCCCCG  | CGCGCAAGCT  | GGCGGACGAG  | GGCGAGCGCC  | TGCACTGCT  | GCTGCCGGTG  | 13440 |
| CTGCTCGACG  | AGGCCGTGCT  | GGACAAACGC  | GAGTATGGCG  | TACGCTTCGA | CGCCCCGAGC  | 13500 |
| TACCGGGTGC  | TGCCTTCGA   | GCCGCGCACG  | GGCGCTGGG   | AGCCGCTCGA | CGAGCCGCG   | 13560 |
| CACGAGCTGC  | CGGAGTGGCT  | CGAGCTGGAG  | ATCGAGGTGCG | ACGAGCAGAG | TGTCGGGCTG  | 13620 |
| CCCAGCGCCC  | GTGGCGAGCA  | GGACAAAGCC  | GGGGCAAGG   | CGCCACAGCT | GCTGCTGCTC  | 13680 |
| TCCAGTGGCG  | AGCTGACCCC  | CTTCGCCCCG  | CGCCTGTCCG  | CGGGCCGCGA | GGCGGGCGCG  | 13740 |
| CCGGTGTGA   | CGCTGGCCAG  | CGACGGCTTC  | GGCGAGGCCG  | AGCTGCAGCA | GGAAAAGTCC  | 13800 |
| CGATGAAGCG  | CGGCCGCGGC  | TTCACCTGTC  | TCCAGGTGCT  | GGTGGCCCTG | GCGATCTTCG  | 13860 |
| CCGTGGTCGC  | CGCCAGCGTG  | CTCAGCGCCA  | GGCCTCGCTC  | GCTGAAGACC | GGCGCCGGCC  | 13920 |
| TGGAGGACAA  | GACCTTCGCC  | ACCTGGCTGG  | GGGACAACCG  | CCTGCAGGAG | CTGCAGCTGG  | 13980 |
| CCGACGTGCC  | GGCGGGCGAG  | GGCGCGAGC   | AGGGCGAGGA  | GAGCTACGCC | GGGGCGGCC   | 14040 |
| GGCTGTGGCA  | GAGCGAGGTG  | CAGGCCACCA  | GGCAGCCGG   | GATGCTGCGT | GTCACCGTAC  | 14100 |
| GGGTGGCGCT  | GGGGCGGGAG  | CGCGGGCTGC  | AGGGCAAGAT  | CGAACGACAT | GCCCTGGTGA  | 14160 |
| CCCTGAGTGG  | CTTCGTCGGG  | GTGAGCCAT   | GAGGCAGCGC  | GGCTTCACCC | TGCTGGAAGT  | 14220 |
| GCTGATGCC   | ATGCCATCT   | TCGCCCTGCT  | GGCCATGGCC  | ACCTACCGCA | TGCTCGACAG  | 14280 |
| CGTCTGCGAG  | ACCGATCGT   | GCCAGCGCCA  | GCAGGAGCG   | CGTCTGCG   | AGCTGACGCG  | 14340 |
| GGCCATGGCA  | GCTTTCGAAC  | GCGACCTGCT  | GCAGGTGCGC  | CTGCGTCGG  | TGCGCGACCC  | 14400 |
| GCTGGCGAC   | CTGCTGCCAG  | CCCTGCGCGG  | CAGCAGTGGC  | CGCGACACCC | AGCTGGAGTT  | 14460 |
| CACCCGAGC   | GGCTGGCGCA  | ACCCGCTCGG  | CCAGCGCGC   | GCCACCCAT  | AGCGGGTGC   | 14520 |
| CTGGCAGCTC  | GAAGCGAGC   | GCTGGCAGCG  | CGCTTACTGG  | ACGGTGTGG  | ACCAGGCCA   | 14580 |
| GGACAGCCAG  | CGCGGGGTGC  | AGCAGGCCT   | GGATGGCGT   | CGCCGTTCTG | ACTTGCCTT   | 14640 |
| TCTCGACCA   | GAGGGGGCGCT | GGCTGCAGGA  | CTGGCGCGCG  | GCCAACAGTG | CTGCCGACGA  | 14700 |
| GGCCCTGACC  | CAGCTGCGC   | GTGCCGTGCA  | GCTGGTCGTC  | GAGCACCGCC | ATTACGGTGA  | 14760 |
| ACTGCGCCGT  | CTCTGGCGCT  | TGCCCAGAT   | GGCCGAGCAG  | GAACAGATCA | CGCCGCCCCG  | 14820 |
| GGCGAGCAG   | GGCGGTGAGC  | TGCTGCGCGA  | AGAGCCGGAG  | CCCGAGGCAT | GAGCCGGCAG  | 14880 |
| CGCGGGCTGG  | CACTGATCAC  | CGTGCTGCTG  | GTGGTGGCGC  | TGGTGACCGT | GGTCTGCGCG  | 14940 |
| GCCCTGCTGC  | TGCGCCAGCA  | GCTGGCCATC  | CGCAGCACCG  | GCAACCAGCT | GCTGGTGC    | 15000 |
| CAGGCCAGT   | ACTACGCGA   | AGGCAGCGAG  | CTGCTGGCCA  | AGGCCCTGCT | GGTCTGCGAC  | 15060 |
| CTGGCCGCGC  | ACCAGGTGCA  | TCATCCCGGC  | GAGCCCTGGG  | CCAACCCCGG | CCTGCGCTTC  | 15120 |
| CCCCGGATG   | AGGGCGCGA   | GCTGCGCTG   | CGCATCGAGG  | ACCTGGCCGG | ACGTTTCAAC  | 15180 |
| CTCAACAGCC  | TGGCGCCGGG  | TGGTGAGGCC  | GGTGAGTTGG  | CGCTGCTGCG | CCTGCGGCC   | 15240 |
| CTGCTGCGAGC | TGCTGCGAGCT | GACCCCGGCC  | TATGCCGAGC  | GCCTGCAGGA | CTGGCTCGAC  | 15300 |
| GGCGATCAGG  | AGGCCAGCGG  | CATGGCGCGC  | GGCGAGGATG  | ACCACTACCT | TGCTGAGAAA  | 15360 |
| CCGCCCTACC  | GTACCGGGCC  | CGGGCGCATT  | GGCGAGGTGT  | CGGAGCTGCG | CCTGCTGCTG  | 15420 |
| GGCATGAGCG  | AGGCCGACTA  | CCGCCGCGCTG | GCCCCCTTCG  | TCAGCGCCCT | GGCGAGGCCAG | 15480 |
| GTCGAGCTGA  | ACATCAACAC  | CGCCAGCGCC  | CTGGTGTGG   | CTTGCGCTGG | CGAGGGCATN  | 15540 |

|            |             |             |             |             |             |       |
|------------|-------------|-------------|-------------|-------------|-------------|-------|
| CCCGAGGCGG | TGCTCGAGGC  | CGCCATCGAN  | GGTCGCGGCC  | GCAGCGGCTA  | TCGCGAGCCC  | 15600 |
| GCTGCCTTCG | TCCAGCANCT  | TGCCAGCTAC  | GGCGTCAGCC  | CCGAGGGGT   | GGGCATCGCC  | 15660 |
| AGCCAGTATT | TCCGTGTCA   | CACCGAGGTG  | CTGCTGGGTG  | ACCGGCGCA   | GGTGCTGGCC  | 15720 |
| AGTTATCTGC | AACTGGTAA   | TGATGGGCGC  | GTCCGCCTGA  | TGGCGCGCA   | TCTGGGGCAG  | 15780 |
| GAGGGCTGG  | CGCCCCCAC   | CGTCGAGGAG  | TCCGAGAAAT  | GAGTCCTGCTC | ACCCCTGTTTC | 15840 |
| TGCCGCCCA  | GGCCTGCACC  | GAGGCAGAGCG | CCGACATGCC  | GGTGTGGTGC  | GTCGAGAGCG  | 15900 |
| ACAGCTGCCG | TCAGCTGCC   | TCGCGAGGAG  | CCTTGCAGGC  | CGACGCGGG   | GTCTGGCGCT  | 15960 |
| TGGTGTGCC  | GGTGGAGGCG  | GTGACCACCT  | GTGCTGTGCA  | GTGCGGAC    | ACCAAGGCAC  | 16020 |
| GCTGGCTGGC | CAAGGCCCTG  | CGGTTGCGCG  | TCGAGGAGCT  | GCTGGCGAG   | GAGGTGGAGC  | 16080 |
| AGTTTCACCT | GTGCGTGGT   | AGCGCGCTGG  | TCGATGGTGC  | TCATCGTGT   | CATGCCCTGC  | 16140 |
| GCCGCGAGTG | GCTGGCCGGC  | TGGCTGGCGC  | TGTGCGGCGA  | CGGGCGGCCG  | CAGTGGATCG  | 16200 |
| ACGTGGACGC | CGACCTGTTG  | CGGGAGGAGG  | GTAGCCAGCT  | GCTCTGCCTG  | GGCGAGCGCT  | 16260 |
| GGTTGCTCGG | CGGGTGGGGC  | GAGGCAGGCC  | TGGCCCTGCG  | TGGCGAGGAC  | TGGCCGCAGC  | 16320 |
| TGGCGCGCT  | CTGTCGCGCC  | CCCGGGCAAG  | CCTATGTGCC  | CCCCGGGCAG  | CGGGCGCCCG  | 16380 |
| CGGGCGTCAA | GGCCTGCCAG  | ACCGTGGAGC  | AGCCGTGGCT  | CTGGCTGGCC  | GGCGAGAAGT  | 16440 |
| CGGGCTGCAA | CCTGGCCCG   | GGGCGCTTTCG | CCCGTCGCGA  | CCCTTCGCGC  | CAGTGGCAGC  | 16500 |
| GCTGGCGGCC | GCTGGCGGGG  | CTGCTCGTC   | TCTGGCTGGT  | GCTGCAKTGG  | GGCTTCAACCC | 16560 |
| TTGCCCANGG | CTGGCAGCTG  | CAGCGCGAGG  | GTGAACGCTA  | TGCGCTGGCC  | AACGAGGCGC  | 16620 |
| TGTATCGCGA | GCTGTTCCCC  | GAGGATCGCA  | AGGTGATCAA  | CCTGCGTGGC  | CAGTTGACCC  | 16680 |
| AGCACCTGGC | CGAGGGGGCT  | GGGAGCGGCC  | AGAGCCAGTT  | GCTGGCCCTG  | CTCGATCAGG  | 16740 |
| CGCGCGCGGC | CATCGCGAA   | GGGGGGGCC   | AGGTGCAAGGT | GGATCAGCTC  | GACTTCAACCG | 16800 |
| CCCAGCGTGG | CGACCTGGCC  | TTCAACCTGC  | GTGCCAGCGA  | CTTGGCCGGG  | CTGGAAAGCC  | 16860 |
| TGCGGGCGCG | CTTGCAGGAG  | GGCGGCCTGG  | CGGTGGACAT  | GGGCTCGGGG  | AGCCGCGAGG  | 16920 |
| ACAACGGCGT | CAGTGGCGCC  | CTGGTGTATCG | GGGGTAACGG  | ATGAACGGCC  | TGCTCATGCA  | 16980 |
| ATGGCAAGCG | CGCCTGGCGC  | AGAACCTTT   | GATGCTGCC   | TGGCAGGGCC  | TGCCGCCACG  | 17040 |
| CGACCGGCTG | GCCCTGGGCC  | TGCTCGTC    | CTTCCTGTTG  | CTGGTGTGTC  | TGTACCTGTT  | 17100 |
| GCTGTGGCGG | CCGGTCAGCC  | AGAACCTGGA  | GGGGCGGCC   | GGCTTCCTGC  | AGCAGCAGCG  | 17160 |
| TACGCTGCAC | GCCTACCTGC  | AGGAGCATGC  | ACCGCAGGTG  | GGGGCAOGGC  | AGGTGCGACC  | 17220 |
| CCAGGCCAGT | ATCGAGCCTG  | CGCGCTGCA   | GGGGTTGGTG  | ACCGCCAGTG  | CCGCCAGCCA  | 17280 |
| GGGGCTGAAT | GTGCGAGCGTC | TGGACAACCA  | GGGTGATGGT  | GGCCTGCAGG  | TGAGCCTGCA  | 17340 |
| GGCGGTGAG  | TTCGCCCGTC  | TGCTGCAGTG  | GCTGGTGAGC  | CTGCAGGAGC  | AGGGCGTGCG  | 17400 |
| CGTCGAAGAG | GGCGGTCTGG  | AACGTGCCGA  | CAAGGGGCTG  | GTGAGCAGCC  | GCCTGCTGCT  | 17460 |
| GGGTGCGCGT | TGAGCCCCGC  | TGCACCAAGG  | GAGTGCCTCG  | GCACTCGCGC  | GGAGCATCTG  | 17520 |
| GAAAACCCGT | CCGCGAAGAA  | AAATTCAAGC  | AGGTGTTGA   | CTTAGCTATG  | ACCTCTNCGT  | 17580 |
| CAATTGCGCG | CCTCGCANGC  | TAACGGCTGG  | AT          |             |             | 17612 |

## (2) INFORMATION FOR SEQ ID NO:30:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2634 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

|            |            |            |             |            |             |     |
|------------|------------|------------|-------------|------------|-------------|-----|
| ATGGAAGATC | GCAAGCCGCC | TGCCGCGGCT | CCCGTGGGT   | TTGCGCGCGC | GGACCTGCTG  | 60  |
| GAGCTGCTCT | GGCGCTGCA  | GCAGTTTCCC | CTGACCCCTGC | TGCTGGCGCC | CGCCCCCTTCC | 120 |
| GGCAAGTCGA | CCCTGCTGGC | CCAGTGGCAG | GCCAGCCGGC  | CCTTCGGCAG | TGTGGTGCAC  | 180 |
| TATCCACTGC | AGGCGCGTGA | CAACGAGCCG | GTACGTTCT   | TCCGCCACCT | GGCCGAAAGC  | 240 |
| ATCCGCGCCC | AGGTGAGGGA | CTTCGACCTG | TCCTGGTTCA  | ACCCCTCGC  | CGCCCGAGATG | 300 |
| CACCAAGCGC | CCGAGGTGCT | CGGCGAGTAC | CTGGCCGACG  | CCCTCAATCG | CATCCAGAGC  | 360 |
| CGCCTCTAAC | TGGTCTCGA  | CGACTTCCAG | TGCATGGCC   | AGCCGATCAT | CCTCCACGTG  | 420 |
| CTCTCGGCCA | TGCTCGAACG | CCTGGCGGGC | AACACCCGGG  | TCATTCTGTC | CGGGCGCAAC  | 480 |
| CATCCGGGT  | TCTCCCTCAG | CCGCCTGAAA | CTGACAAACA  | AGCTGCTGTG | CATCGACCAAG | 540 |
| CACGACATGC | GCCTGTCGCC | AGTGCAGATC | CAACACCTCA  | ATGCCTACCT | GGGCGGTCCC  | 600 |
| GAGCTCAGCC | CGGCCTATGT | CGGCAGCCTG | ATGCCATGA   | CCGAGGGCTG | GATGGTCGGG  | 660 |
| GTGAAGATGG | CCCTGATGGC | CCATGCCGC  | TTCGGCACCG  | AGGCCCTGCA | GCGCTTCGGT  | 720 |

|             |             |             |            |             |             |      |
|-------------|-------------|-------------|------------|-------------|-------------|------|
| GGCGGCCATC  | CGGAGATACT  | CGACTACTTC  | GGCCATGTGG | TGCTGAAGAA  | GCTGTCGCCG  | 780  |
| CAGCTGCACG  | ACTTCCCTGTT | GTGCAGCGCG  | ATCTTCGAGC | GCTTCGACGG  | CGAGCTATGC  | 840  |
| GACCGGGTGC  | TGGATCGCAG  | CGGTTGGCC   | CTGCTGCTGG | AGGACCTGGC  | CGCGCGCGAG  | 900  |
| CTGTTCATGC  | TGCCGGTGGA  | CGAGTATCCC  | GGCTGCTACC | GCTACCACGC  | CCTGTTGCAC  | 960  |
| GATTTCCTCG  | CCCGGGCGCT  | GGCGTGCAC   | AAGCCACAGG | AAAGTGGCCCA | ACTGCACCGG  | 1020 |
| CGGGCGGCC   | TGGCGCTGCA  | GCAGCGTGGC  | GACCTGGAGC | TGGCCCTGCA  | GCATGCCAG   | 1080 |
| CGCAGTGGCG  | ACCGCGCGTT  | GTTCCCAAAGC | ATGCTGGGCG | AGGCCTGCCA  | GCAATGGGTG  | 1140 |
| CGCAGCGGTC  | ACTTCGCCGA  | GGTGCTGAAG  | TGGCTGGAGC | CGCTGACCGA  | GGCGGAACTC  | 1200 |
| TGCGNGCAGT  | CGCGCCCTGCT | GGTGCCTGATG | ACCTATGCC  | TGACCCCTGTC | GGCGCGTTTC  | 1260 |
| CACCAAGGCC  | GCTACTGCTT  | GGACGAACG   | GTGGCGCGCT | GCACCCGTCA  | GCCCCGCCCTG | 1320 |
| GAGGAGCCGA  | CCCGCCAGCT  | GCTGGCCCTC  | AACCTGGAGC | TGTTCCACCA  | CGACCTGGCC  | 1380 |
| TTCGACCCCCG | GCCAGCGCTG  | CTCCGACCTG  | CTGGCCGCGG | GCGTGCCTC   | GGACATCCGT  | 1440 |
| GCCCTGGCGC  | TGAGCATCCT  | CGCCATACAC  | CACCTGATGC | ACGGCCCCCT  | GGAGCAGTCG  | 1500 |
| ATCCAGCTGG  | CGCTGGAGGC  | CAAGGCCCTG  | CTGGCCAGCA | CGGGCCAGCT  | TGTCCTGGAG  | 1560 |
| AGCTACGCCG  | ACCTGATCAT  | CGCCCTGTGC  | AACCGCAACG | CGGGGCCGCG  | CACCAGCGCG  | 1620 |
| CGCAAGGACG  | TCTGCCTGGA  | TTACCAAGCGC | ACCGAGCGCT | CCTCGCCCGC  | CTGGGTCAAC  | 1680 |
| CGTGCCACCG  | CCATGGTGGT  | GGCGCTGTAC  | GAGCAGAAC  | AGCTGGCCGC  | CGCCCAGCAG  | 1740 |
| CTGTGCGAGG  | ACCTGATGGC  | CATGGTCACG  | TGTCCTCGG  | CCACCGAGAC  | CATCGCCACC  | 1800 |
| GTGCACATCA  | CCCTGTGCGG  | CCTGCTCCAC  | CGGCGCCAGT | CCCAGGGCCG  | CGCCACGCGC  | 1860 |
| CTGCTGGAGC  | AGCTGTGCGG  | CATCCGTCAA  | CTGGGCAACT | ACGCCCCCTT  | CGCAGGCCAG  | 1920 |
| GCGGCCAGG   | AGAGCATGCG  | CCAGGCCAT   | CTCGACGGGC | GCCCCGGCGC  | GCTCGACGCA  | 1980 |
| CTGGCCCAAC  | GCCTGGGTAT  | CGAGGAGCGC  | CTGGCCGCGG | GGGAGTGGGA  | GAGGGTGCAG  | 2040 |
| CCCTATGAAG  | AGTGCTGGGA  | ACGCTACGGC  | CTGGCCGCGG | TGTACTGGCT  | GGTGATGCGC  | 2100 |
| GGCGCCCAGC  | CGCGCGCCTG  | CCGCATCCTC  | AAGGTGCTGG | CGCAGGCCNT  | GNAGAACAGC  | 2160 |
| GAGATGAAGG  | CCCGTGCCT   | GGTGGTGGAG  | GCCAACCTGC | TGGTGTGAA   | CGCCCCGCAG  | 2220 |
| CTGGGGCGG   | ACGAGCAGGA  | CAGGGCCCTG  | CTGGCGCTGG | TCGAGCGCTT  | CGGCATCGTC  | 2280 |
| AAACATCAACC | GCTCGGTATT  | CGACGAGCG   | CCCGGCTTCG | CCGAGGCCGT  | TGTCGGCCTG  | 2340 |
| CTGCGCTCGG  | GCCGGCTGCA  | GGCGCCGGAG  | GCCTATCGCG | AGGCCTATGC  | CGACTTCCTC  | 2400 |
| CAGGGCACAG  | GCCAGGCGCC  | GCCGGCGCTC  | CTGTCCGAGT | CGCTGAAACA  | GCTTACCGAC  | 2460 |
| AAGGAGGCGG  | CGATCTTCGC  | CTGCGCTGTC  | AGGGGGCTGT | CCAACAGCGA  | GATCAGCGCC  | 2520 |
| AGCACCGGCA  | TCGCCCTGTC  | CACCACCAAG  | TGGCACCTGA | AGAACATCTA  | CTCGAAGCTG  | 2580 |
| AGCCTCTCCG  | GGCGTACCGA  | AGCCATCCTC  | GCCATGCAGG | CCCGCAACCG  | ATAA        | 2634 |

## (2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 877 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

```

Met Glu Asp Arg Lys Pro Pro Ala Ala Ala Pro Val Gly Phe Ala Arg
   1          5          10          15
Ala Glu Leu Leu Glu Leu Leu Cys Arg Cys Glu Gln Phe Pro Leu Thr
   20         25          30
Leu Leu Leu Ala Pro Ala Gly Ser Gly Lys Ser Thr Leu Leu Ala Gln
   35         40          45
Trp Gln Ala Ser Arg Pro Phe Gly Ser Val Val His Tyr Pro Leu Gln
   50         55          60
Ala Arg Asp Asn Glu Pro Val Arg Phe Phe Arg His Leu Ala Glu Ser
   65         70         75          80
Ile Arg Ala Gln Val Glu Asp Phe Asp Leu Ser Trp Phe Asn Pro Phe
   85         90         95
Ala Ala Glu Met His Gln Ala Pro Glu Val Leu Gly Glu Tyr Leu Ala
  100        105        110
Asp Ala Leu Asn Arg Ile Glu Ser Arg Leu Tyr Leu Val Leu Asp Asp

```

|                                                                 |     |     |
|-----------------------------------------------------------------|-----|-----|
| 115                                                             | 120 | 125 |
| Phe Gln Cys Ile Gly Gln Pro Ile Ile Leu Asp Val Leu Ser Ala Met |     |     |
| 130                                                             | 135 | 140 |
| Leu Glu Arg Leu Ala Gly Asn Thr Arg Val Ile Leu Ser Gly Arg Asn |     |     |
| 145                                                             | 150 | 155 |
| His Pro Gly Phe Ser Leu Ser Arg Leu Lys Leu Asp Asn Lys Leu Leu |     | 160 |
| 165                                                             | 170 | 175 |
| Cys Ile Asp Gln His Asp Met Arg Leu Ser Pro Val Gln Ile Gln His |     |     |
| 180                                                             | 185 | 190 |
| Leu Asn Ala Tyr Leu Gly Gly Pro Glu Leu Ser Pro Ala Tyr Val Gly |     |     |
| 195                                                             | 200 | 205 |
| Ser Leu Met Ala Met Thr Glu Gly Trp Met Val Gly Val Lys Met Ala |     |     |
| 210                                                             | 215 | 220 |
| Leu Met Ala His Ala Arg Phe Gly Thr Glu Ala Leu Gln Arg Phe Gly |     |     |
| 225                                                             | 230 | 235 |
| Gly Gly His Pro Glu Ile Val Asp Tyr Phe Gly His Val Val Leu Lys |     | 240 |
| 245                                                             | 250 | 255 |
| Lys Leu Ser Pro Gln Leu His Asp Phe Leu Leu Cys Ser Ala Ile Phe |     |     |
| 260                                                             | 265 | 270 |
| Glu Arg Phe Asp Gly Glu Leu Cys Asp Arg Val Leu Asp Arg Ser Gly |     |     |
| 275                                                             | 280 | 285 |
| Ser Ala Leu Leu Leu Glu Asp Leu Ala Ala Arg Glu Leu Phe Met Leu |     |     |
| 290                                                             | 295 | 300 |
| Pro Val Asp Glu Tyr Pro Gly Cys Tyr Arg Tyr His Ala Leu Leu His |     |     |
| 305                                                             | 310 | 315 |
| Asp Phe Leu Ala Arg Arg Leu Ala Val His Lys Pro Gln Glu Val Ala |     | 320 |
| 325                                                             | 330 | 335 |
| Gln Leu His Arg Arg Ala Ala Leu Ala Leu Gln Gln Arg Gly Asp Leu |     |     |
| 340                                                             | 345 | 350 |
| Glu Leu Ala Leu Gln His Ala Gln Arg Ser Gly Asp Arg Ala Leu Phe |     |     |
| 355                                                             | 360 | 365 |
| Gln Ser Met Leu Gly Glu Ala Cys Glu Gln Trp Val Arg Ser Gly His |     |     |
| 370                                                             | 375 | 380 |
| Phe Ala Glu Val Leu Lys Trp Leu Glu Pro Leu Ser Glu Ala Glu Leu |     |     |
| 385                                                             | 390 | 395 |
| Cys Xaa Gln Ser Arg Leu Leu Val Leu Met Thr Tyr Ala Leu Thr Leu |     |     |
| 405                                                             | 410 | 415 |
| Ser Arg Arg Phe His Gln Ala Arg Tyr Cys Leu Asp Glu Leu Val Ala |     |     |
| 420                                                             | 425 | 430 |
| Arg Cys Thr Gly Gln Pro Gly Leu Glu Glu Pro Thr Arg Gln Leu Leu |     |     |
| 435                                                             | 440 | 445 |
| Ala Leu Asn Leu Glu Leu Phe Gln His Asp Leu Ala Phe Asp Pro Gly |     |     |
| 450                                                             | 455 | 460 |
| Gln Arg Trp Ser Asp Leu Leu Ala Ala Gly Val Ala Ser Asp Ile Arg |     |     |
| 465                                                             | 470 | 475 |
| Ala Leu Ala Leu Ser Ile Leu Ala Tyr His His Leu Met His Gly Arg |     | 480 |
| 485                                                             | 490 | 495 |
| Leu Glu Gln Ser Ile Gln Leu Ala Leu Glu Ala Lys Ala Leu Leu Ala |     |     |
| 500                                                             | 505 | 510 |
| Ser Thr Gly Gln Leu Phe Leu Glu Ser Tyr Ala Asp Leu Ile Ile Ala |     |     |
| 515                                                             | 520 | 525 |
| Leu Cys Asn Arg Asn Ala Gly Arg Ala Thr Ser Ala Arg Lys Asp Val |     |     |
| 530                                                             | 535 | 540 |
| Cys Leu Asp Tyr Gln Arg Thr Glu Arg Ser Ser Pro Ala Trp Val Asn |     |     |
| 545                                                             | 550 | 555 |
| Arg Ala Thr Ala Met Val Val Ala Leu Tyr Glu Gln Asn Gln Leu Ala |     | 560 |
| 565                                                             | 570 | 575 |
| Ala Ala Gln Gln Leu Cys Glu Asp Leu Met Ala Met Val Thr Ser Ser |     |     |
| 580                                                             | 585 | 590 |

Ser Ala Thr Glu Thr Ile Ala Thr Val His Ile Thr Leu Ser Arg Leu  
       595                    600                    605  
 Leu His Arg Arg Gln Ser Gln Gly Arg Ala Thr Arg Leu Leu Glu Gln  
       610                    615                    620  
 Leu Ser Arg Ile Leu Gln Leu Gly Asn Tyr Ala Arg Phe Ala Ser Gln  
       625                    630                    635                    640  
 Ala Ala Gln Glu Ser Met Arg Gln Ala Tyr Leu Asp Gly Arg Pro Ala  
       645                    650                    655  
 Ala Leu Asp Ala Leu Ala Gln Arg Leu Gly Ile Glu Glu Arg Leu Ala  
       660                    665                    670  
 Ala Gly Glu Trp Glu Arg Val Arg Pro Tyr Glu Glu Cys Trp Glu Arg  
       675                    680                    685  
 Tyr Gly Leu Ala Ala Val Tyr Trp Leu Val Met Arg Gly Ala Gln Pro  
       690                    695                    700  
 Arg Ala Cys Arg Ile Leu Lys Val Leu Ala Gln Ala Xaa Xaa Asn Ser  
       705                    710                    715                    720  
 Glu Met Lys Ala Arg Ala Leu Val Val Glu Ala Asn Leu Leu Val Leu  
       725                    730                    735  
 Asn Ala Pro Gln Leu Gly Ala Asp Glu Gln Asp Arg Ala Leu Leu Ala  
       740                    745                    750  
 Leu Val Glu Arg Phe Gly Ile Val Asn Ile Asn Arg Ser Val Phe Asp  
       755                    760                    765  
 Glu Ala Pro Gly Phe Ala Glu Ala Val Phe Gly Leu Leu Arg Ser Gly  
       770                    775                    780  
 Arg Leu Gln Ala Pro Glu Ala Tyr Arg Glu Ala Tyr Ala Asp Phe Leu  
       785                    790                    795                    800  
 Gln Gly Thr Gly Gln Ala Pro Pro Ala Leu Leu Ser Glu Ser Leu Lys  
       805                    810                    815  
 Gln Leu Thr Asp Lys Glu Ala Ala Ile Phe Ala Cys Leu Leu Arg Gly  
       820                    825                    830  
 Leu Ser Asn Ser Glu Ile Ser Ala Ser Thr Gly Ile Ala Leu Ser Thr  
       835                    840                    845  
 Thr Lys Trp His Leu Lys Asn Ile Tyr Ser Lys Leu Ser Leu Ser Gly  
       850                    855                    860  
 Arg Thr Glu Ala Ile Leu Ala Met Gln Ala Arg Asn Gly  
       865                    870                    875

## (2) INFORMATION FOR SEQ ID NO:32:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

|             |            |            |              |            |            |     |
|-------------|------------|------------|--------------|------------|------------|-----|
| ATGAACGGCC  | TGCTCATGCA | ATGGCAAGCG | CGCCTGGCGC   | AGAACCCTTT | GATGCTGCGC | 60  |
| TGGCAGGGCC  | TGCCGCCACG | CGACCGGCTG | GCCCTGGGCC   | TGCTCGCTGC | CTTCCTGTTG | 120 |
| CTGGTGCTGC  | TGTACCTGTT | GCTGTGGCGG | CCGGTCAGCC   | AGAACCTGGA | GCGGGCGCGC | 180 |
| GGCTTCCCTGC | AGCAGCAGCG | TACGCTGCAC | GCCTACCTGC   | AGGAGCATGC | ACCCGAGGTG | 240 |
| CGGGCACGGC  | AGGTGCGACC | GCAGGCCAGT | ATCGAGCCTG   | CCGCGCTGCA | GGGGTTGGTG | 300 |
| ACCGCCAGTG  | CCGCCAGCCA | GGGGCTGAAT | GTGGAGCGTC   | TGGACAACCA | GGGTGATGGT | 360 |
| GGCCTGCAGG  | TGAGCCTGCA | GCCGGTCGAG | TTCCGCCCCTGC | TGCTGCAGTG | GCTGGTGAGC | 420 |
| CTGCAGGAGC  | AGGGCGTGCG | CGTCGAAGAG | GCCCCGTCTGG  | AACGTGCCGA | CAAGGGGCTG | 480 |
| GTGAGCAGCC  | GCCTGCTGCT | CGGTGCCGGT | TGA          |            |            | 513 |

## (2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 170 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

```

Met Asn Gly Leu Leu Met Gln Trp Gln Ala Arg Leu Ala Gln Asn Pro
1           5           10          15
Leu Met Leu Arg Trp Gln Gly Leu Pro Pro Arg Asp Arg Leu Ala Leu
20          25          30
Gly Leu Leu Ala Ala Phe Leu Leu Val Leu Leu Tyr Leu Leu Leu
35          40          45
Trp Arg Pro Val Ser Gln Asn Leu Glu Arg Ala Arg Gly Phe Leu Gln
50          55          60
Gln Gln Arg Thr Leu His Ala Tyr Leu Gln Glu His Ala Pro Gln Val
65          70          75          80
Arg Ala Arg Gln Val Ala Pro Gln Ala Ser Ile Glu Pro Ala Ala Leu
85          90          95
Gln Gly Leu Val Thr Ala Ser Ala Ala Ser Gln Gly Leu Asn Val Glu
100         105         110
Arg Leu Asp Asn Gln Gly Asp Gly Gly Leu Gln Val Ser Leu Gln Pro
115         120         125
Val Glu Phe Ala Arg Leu Leu Gln Trp Leu Val Ser Leu Gln Glu Gln
130         135         140
Gly Val Arg Val Glu Glu Ala Gly Leu Glu Arg Ala Asp Lys Gly Leu
145         150         155         160
Val Ser Ser Arg Leu Leu Leu Arg Ala Gly
165         170

```

## (2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1176 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

|            |             |             |             |             |             |     |
|------------|-------------|-------------|-------------|-------------|-------------|-----|
| GATCTCGAGG | CCGTCGGCTT  | CGACACCCCTG | GCGGTGCGCG  | CCGGTCAGCA  | TCGCACGCCG  | 60  |
| GAGGGCGAGC | ATGGCGAGGC  | CATGTTCTC   | ACCTCCAGCT  | ATGTGTTCCG  | CAGGCCGCC   | 120 |
| GACGCCGCG  | CCGCCCTTCG  | CGCGGAGCAG  | CGGGCAACG   | TCTACTCGCG  | CTACACCAAC  | 180 |
| CCGACCGTGC | GGCCCTTCGA  | GGAGCGCATC  | GCGGCCCTGG  | AAGGCGCCGA  | GCAGGCGGTG  | 240 |
| GCCACCGCCT | CCCCATGGC   | CGCCATCCTG  | GCCATCGTCA  | TGAGCCTGTG  | CAGGCCGGC   | 300 |
| GACCATGTGC | TGGTGTGCG   | CAGCGTGTTC  | GGCTCGACCA  | TCAGCCTGTT  | CGAGAAAGTAC | 360 |
| CTCAAGCGCT | TGGGCATCGA  | GGTGGACTAC  | CCGGCGCTGG  | CCGATCTGGA  | CGCCTGGCAG  | 420 |
| GCAGCCTTCA | ACCCCCAACAC | CAAGCTGCTG  | TTCTGCGAAT  | CGCCGTCCAA  | CCC GTGGCC  | 480 |
| GAGCTGGTGG | ACATAGGCGC  | CCTGGCCGAG  | ATCGCCCACG  | CCCGCGGCCG  | CCTGCTGGCG  | 540 |
| GTGGACAAC  | TCTTCTGCAC  | CCCGGCCCTG  | CAGCAGCCGC  | TGGCGCTGGG  | CGCCGATATG  | 600 |
| GTCATGCATT | CGGCGACCAA  | GTTCATCGAT  | GGCCAGGGCC  | CGGGCCTGGG  | CGGGCGTGGTG | 660 |
| GCCGGGCC   | GTGCGCAGAT  | GGAGCAGGTG  | GTGGGCTTCC  | TGCGCACCGC  | CGGGCGGACCC | 720 |
| CTCAGCCCCG | TCAACGCGCTG | GATGTTCTC   | AAAGGGCCTGG | AGACCCCTGCC | TATCCGCATG  | 780 |
| CAGGCGCAGA | GGCCGAGCGC  | CCTGGAACGTG | GCCCCGCTGGT | TGGAGACCCA  | GCCGGGCATC  | 840 |
| GACAGGGTCT | ACTATGCCGG  | CCTGCCCAGC  | CACCCGCAGC  | ACGAGCTGCC  | CAAGCGGCAG  | 900 |

|                                                                     |      |
|---------------------------------------------------------------------|------|
| CAGAGTGCCT TCGGCGGGT GCTGAGCTTC GAGGTCAAGG GCGGCAAGGA GGCGGCCTGG    | 960  |
| CGTTTCATCG ATGCCACCCG GGTGATCTCC ATCACCAACCA ACCTGGGCGA TACCAAGAGCC | 1020 |
| ACCATCGCCC ATCCGGCGAC CACCTCCCAC GGTCGTCTGT CGCCGCAGGA GCGCGCCAGC   | 1080 |
| GCGGTATCC GCGACAACCT GGTGCGTGTC GCCGTGGCC TGGAAGACGT GGTGACCTC      | 1140 |
| AAGGCCGACC TGCCCCGTGG CCTGGCCGCG CTCTGA                             | 1176 |

## (2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 392 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

|                                                                 |  |
|-----------------------------------------------------------------|--|
| Tyr Asp Leu Glu Gly Val Gly Phe Asp Thr Leu Ala Val Arg Ala Gly |  |
| 1 5 10 15                                                       |  |
| Gln His Arg Thr Pro Glu Gly Glu His Gly Glu Ala Met Phe Leu Thr |  |
| 20 25 30                                                        |  |
| Ser Ser Tyr Val Phe Arg Ser Ala Ala Asp Ala Ala Arg Phe Ala     |  |
| 35 40 45                                                        |  |
| Gly Glu Gln Pro Gly Asn Val Tyr Ser Arg Tyr Thr Asn Pro Thr Val |  |
| 50 55 60                                                        |  |
| Arg Ala Phe Glu Glu Arg Ile Ala Ala Leu Glu Gly Ala Glu Gln Ala |  |
| 65 70 75 80                                                     |  |
| Val Ala Thr Ala Ser Gly Met Ala Ala Ile Leu Ala Ile Val Met Ser |  |
| 85 90 95                                                        |  |
| Leu Cys Ser Ala Gly Asp His Val Leu Val Ser Arg Ser Val Phe Gly |  |
| 100 105 110                                                     |  |
| Ser Thr Ile Ser Leu Phe Glu Lys Tyr Leu Lys Arg Phe Gly Ile Glu |  |
| 115 120 125                                                     |  |
| Val Asp Tyr Pro Pro Leu Ala Asp Leu Asp Ala Trp Gln Ala Ala Phe |  |
| 130 135 140                                                     |  |
| Lys Pro Asn Thr Lys Leu Leu Phe Val Glu Ser Pro Ser Asn Pro Leu |  |
| 145 150 155 160                                                 |  |
| Ala Glu Leu Val Asp Ile Gly Ala Leu Ala Glu Ile Ala His Ala Arg |  |
| 165 170 175                                                     |  |
| Gly Ala Leu Ala Val Asp Asn Cys Phe Cys Thr Pro Ala Leu Gln     |  |
| 180 185 190                                                     |  |
| Gln Pro Leu Ala Leu Gly Ala Asp Met Val Met His Ser Ala Thr Lys |  |
| 195 200 205                                                     |  |
| Phe Ile Asp Gly Gln Gly Arg Gly Leu Gly Gly Val Val Ala Gly Arg |  |
| 210 215 220                                                     |  |
| Arg Ala Gln Met Glu Gln Val Val Gly Phe Leu Arg Thr Ala Gly Pro |  |
| 225 230 235 240                                                 |  |
| Thr Leu Ser Pro Phe Asn Ala Trp Met Phe Leu Lys Gly Leu Glu Thr |  |
| 245 250 255                                                     |  |
| Leu Arg Ile Arg Met Gln Ala Gln Ser Ala Ser Ala Leu Glu Leu Ala |  |
| 260 265 270                                                     |  |
| Arg Trp Leu Glu Thr Gln Pro Gly Ile Asp Arg Val Tyr Tyr Ala Gly |  |
| 275 280 285                                                     |  |
| Leu Pro Ser His Pro Gln His Glu Leu Ala Lys Arg Gln Gln Ser Ala |  |
| 290 295 300                                                     |  |
| Phe Gly Ala Val Leu Ser Phe Glu Val Lys Gly Gly Lys Glu Ala Ala |  |
| 305 310 315 320                                                 |  |
| Trp Arg Phe Ile Asp Ala Thr Arg Val Ile Ser Ile Thr Thr Asn Leu |  |
| 325 330 335                                                     |  |

Gly Asp Thr Lys Thr Thr Ile Ala His Pro Ala Thr Thr Ser His Gly  
 340 345 350  
 Arg Leu Ser Pro Gln Glu Arg Ala Ser Ala Gly Ile Arg Asp Asn Leu  
 355 360 365  
 Val Arg Val Ala Val Gly Leu Glu Asp Val Val Asp Leu Lys Ala Asp  
 370 375 380  
 Leu Ala Arg Gly Leu Ala Ala Leu  
 385 390

## (2) INFORMATION FOR SEQ ID NO:36:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 847 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

|            |            |             |            |             |            |     |
|------------|------------|-------------|------------|-------------|------------|-----|
| ATGCTGAAAA | AGCTGTTCAA | GTCGTTTGT   | TCACCCCTCA | AGCGCCAAGC  | ACGCCCGCG  | 60  |
| AGCACGCCGG | AAGTTCTCGG | CCCGCGCCAG  | CATTCCCTGC | AACGCAGCCA  | GTTCAGCCGC | 120 |
| AATGCGGTAA | ACGTGGTGA  | GCGCCTGCAG  | AACGCCGGCT | ACCAGGCCTA  | TCTGGTCGGC | 180 |
| GGCTGCGTAC | GCGACCTGCT | GATCGGCGTG  | CAGCCCAAGG | ACTTCGACGT  | GGCCACCAGC | 240 |
| GCCACCCCCG | AGCAGGTGCG | GGCCGAGTTT  | CGCAACGCC  | GGGTGATCGG  | CCGCCGCTTC | 300 |
| AAGCTGGCGC | ATGTGCATT  | CGGCCGCGAG  | ATCATCGAGG | TGGCGACCTT  | CCACAGCAAC | 360 |
| CACCCGCAGG | GCGACGACGA | GGAAGACAGC  | CACCACTCGG | CCCGTAACGA  | GAGCGGGCGC | 420 |
| ATCCTGCGCG | ACAACGTCTA | CGGCAGTCAG  | GAGAGCGAT  | CCCAGGCCG   | CGACTTCACC | 480 |
| ATCAACGCC  | TGTACTTCGA | CGTCAGCGC   | GAGCGCGTGC | TGGACATGC   | CCACGGCGTG | 540 |
| CACGACATCC | GCAACCGCCT | GATCCGCGCTG | ATCGCGACC  | CCGAGCAGCG  | CTACCTGGAA | 600 |
| GACCCGGTAC | GCATGCTGCG | CGCCGTACCG  | TTCCGGGCCA | AGCTGGACTT  | CGACATCGAG | 660 |
| AAACACACCG | CCGCGCCGAT | CCGCCGCGCTG | GCGCCGATGC | TGCGCGACAT  | CCCTGCCGCG | 720 |
| CGCGTGTTCG | ACGAGGTGCT | CAAGCTGTT   | CTCGCCGGCT | ACGCGAGCG   | CACCTTCGAA | 780 |
| CTGCTGCTCG | AGTACGACCT | GTTCGCCCCG  | CTGTTCCCGG | CCAGCGCCCCG | CGCCCTGGAG | 840 |
| CGCGATC    |            |             |            |             |            | 847 |

## (2) INFORMATION FOR SEQ ID NO:37:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 282 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Leu | Lys | Lys | Leu | Phe | Lys | Ser | Phe | Arg | Ser | Pro | Leu | Lys | Arg | Gln |
| 1   |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |     |     |
| Ala | Arg | Pro | Arg | Ser | Thr | Pro | Glu | Val | Leu | Gly | Pro | Arg | Gln | His | Ser |
|     |     |     |     |     | 20  |     |     | 25  |     |     |     | 30  |     |     |     |
| Leu | Gln | Arg | Ser | Gln | Phe | Ser | Arg | Asn | Ala | Val | Asn | Val | Val | Glu | Arg |
|     |     |     |     |     | 35  |     |     | 40  |     |     |     | 45  |     |     |     |
| Leu | Gln | Asn | Ala | Gly | Tyr | Gln | Ala | Tyr | Leu | Val | Gly | Gly | Cys | Val | Arg |
|     |     |     |     |     | 50  |     |     | 55  |     |     |     | 60  |     |     |     |
| Asp | Leu | Leu | Ile | Gly | Val | Gln | Pro | Lys | Asp | Phe | Asp | Val | Ala | Thr | Ser |
|     |     |     |     |     | 65  |     |     | 70  |     |     |     | 75  |     |     | 80  |
| Ala | Thr | Pro | Glu | Gln | Val | Arg | Ala | Glu | Phe | Arg | Asn | Ala | Arg | Val | Ile |
|     |     |     |     |     | 85  |     |     | 90  |     |     |     | 95  |     |     |     |

Gly Arg Arg Phe Lys Leu Ala His Val His Phe Gly Arg Glu Ile Ile  
100 105 110  
Glu Val Ala Thr Phe His Ser Asn His Pro Gln Gly Asp Asp Glu Glu  
115 120 125  
Asp Ser His Gln Ser Ala Arg Asn Glu Ser Gly Arg Ile Leu Arg Asp  
130 135 140  
Asn Val Tyr Gly Ser Gln Glu Ser Asp Ala Gln Arg Arg Asp Phe Thr  
145 150 155 160  
Ile Asn Ala Leu Tyr Phe Asp Val Ser Gly Glu Arg Val Leu Asp Tyr  
165 170 175  
Ala His Gly Val His Asp Ile Arg Asn Arg Leu Ile Arg Leu Ile Gly  
180 185 190  
Asp Pro Glu Gln Arg Tyr Leu Glu Asp Pro Val Arg Met Leu Arg Ala  
195 200 205  
Val Arg Phe Ala Ala Lys Leu Asp Phe Asp Ile Glu Lys His Ser Ala  
210 215 220  
Ala Pro Ile Arg Arg Leu Ala Pro Met Leu Arg Asp Ile Pro Ala Ala  
225 230 235 240  
Arg Leu Phe Asp Glu Val Leu Lys Leu Phe Leu Ala Gly Tyr Ala Glu  
245 250 255  
Arg Thr Phe Glu Leu Leu Glu Tyr Asp Leu Phe Ala Pro Leu Phe  
260 265 270  
Pro Ala Ser Ala Arg Ala Leu Glu Arg Asp  
275 280

**What Is Claimed:**

1. An isolated nucleic acid encoding a kinase from a *Pseudomonad* that can regulate the expression of a lipase.
2. The nucleic acid of Claim 1, wherein the kinase is LipQ.
3. The nucleic acid of Claim 1, having the sequence as shown in SEQ ID NO:1.
4. A purified kinase encoded by a nucleic acid of Claims 1-3.
5. An isolated nucleic acid encoding a DNA binding regulator from a *Pseudomonad* that can regulate the expression of a lipase.
6. The nucleic acid of Claim 6, wherein the DNA binding regulator is LipR.
7. The nucleic acid of Claim 6 having the DNA sequence as shown in SEQ ID NO:3.
8. A purified DNA binding regulator encoded by the nucleic acid of Claims 5-7.
9. An isolated nucleic acid encoding a *Pseudomonas alcaligenes* upstream activating sequence having the DNA sequence as shown in SEQ ID NO:5.
10. An isolated nucleic acid encoding a *Pseudomonas alcaligenes* sigma 54 promoter that can regulate expression of a lipase.
11. A purified *Pseudomonas alcaligenes* sigma 54 promoter that can regulate expression of a lipase.
12. An isolated nucleic acid encoding a *Pseudomonas alcaligenes* secretion factor selected from the group consisting of XcpP, XcpQ, Orf V, OrfX, XcpR, XcpS, XcpT, XcpU, XcpV, XcpW, XcpX, XcpY, XcpZ and OrfY.

13. The nucleic acid of Claim 12 wherein said nucleic acid has a sequence selected from the group consisting of SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 30, SEQ ID NO: 16, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 32 and SEQ ID NO: 34.

14. An expression vector comprising nucleic acids encoding a kinase, a DNA binding regulator, a promoter and an upstream activating sequence.

15. The expression vector of Claim 14, wherein the kinase is LipQ, the DNA binding regulator is LipR, the promoter is a sigma 54 promoter from a Pseudomonad, and the upstream activating sequence is UAS.

16. The expression vector of Claim 14, wherein the nucleic acid encoding the kinase has the sequence shown in SEQ ID NO:1.

17. The expression vector of Claim 14, wherein the nucleic acid encoding the DNA binding regulator has the sequence shown in SEQ ID NO:3.

18. The expression vector of Claim 14, wherein the nucleic acid encoding the upstream activating sequence has the sequence shown in SEQ ID NO:5.

19. The expression vector of Claim 14, further comprising a secretion factor.

20. The expression vector of Claim 19, wherein the secretion factor is selected from the group consisting of XcpP, XcpQ, Orf V, OrfX, XcpR, XcpS, XcpT, XcpU, XcpV, XcpW, XcpX, XcpY, XcpZ and OrfY.

21. A plasmid containing the expression vector of Claim 14.

22. A method of transforming a host cell comprising adding a plasmid containing the expression vector of Claim 14 to host cells under appropriate conditions.

23. The method of Claim 22, wherein the host cells are bacteria.
24. A method of transforming a host cell comprising adding a plasmid containing the expression vector of Claim 19 to host cells under appropriate conditions.
25. The method of Claim 24, wherein the host cells are bacteria.
26. A transformed host cell containing the expression vector of Claim 14.
27. The transformed host cell of Claim 26, wherein the host cell is a bacteria.
28. The transformed host cell of Claim 27, wherein the bacteria is a Pseudomonad.
29. The expression vector of Claim 14 further comprising nucleic acid encoding a protein.
30. The expression vector of Claim 29, wherein the protein is an enzyme.
31. The expression vector of Claim 30, wherein the enzyme is a lipase.
32. An isolated nucleic acid encoding a *Pseudomonas alcaligenes lux-box* binding element.
33. An isolated nucleic acid encoding an *orfV*-box binding element.

1/46

ATGGGCGATGTTGCTGGCCAAGGACCAAGGAAGTGCCTGATGTCGAACCGGCCATGGAGGAACCTCACCGGCATE 75  
 Met Glu Val Cys Ser Leu Ala Lys Asp Gln Glu Val Leu Met Trp Asn Arg Ala Met Glu Glu Leu Thr Gly Ile  
lipQ

AGCGCGCACCGAGTGGTEGGCTGGCCCTGCTCACCTGGAGCACCCCTGGCCGAGCTGCTGCAGGACTTCATE 150  
 Ser Ala Gln Gln Val Val Gly Ser Arg Leu Leu Ser Leu Glu His Pro Trp Arg Glu Leu Leu Gln Asp Phe Ile  
lipQ

GCCCAGGACGAGGACCACTGCACAAGCAGCACCTGCAACTGGACGGCGAGGTGGCTGGCTAACCTGCACAAAG 225  
 Ala Gln Asp Glu Glu His Leu His Lys Gln His Leu Asp Glu Glu Val Arg Trp Leu Asn Leu His Lys  
lipQ

GCAGCCATGGAGACCGCTGGCGGGCGAACACCGCCCTGGTGTGCTGGAGAGTCACCGAGACCCCG 300  
 Ala Ala Ile Asp Glu Pro Leu Ala Pro Glu Asn Ser Gly Leu Val Leu Leu Val Glu Asp Val Thr Glu Thr Arg  
lipQ

GTGCTGGAAGACCAAGCTGGTCACTGGAGCCTGGCCAGCATGGCCGGCTGGCCGGCGGGTGCGCCCAACGAG 375  
 Val Leu Glu Asp Gln Leu Val Val His Ser Glu Arg Leu Ala Ser Ile Glu Arg Leu Ala Ala Glu Val Ala His Glu  
lipQ

ATGGGCAATCCGGTCAACCGCATECCCTGGCGAGAACCTGGCGAGGAGCGAGGGCGACCGAGGAGCT 450  
 Ile Glu Asp Pro Val Thr Glu Ile Asp Cys Leu Ala Gln Asp Leu Arg Glu Glu Asp Glu Glu Leu  
lipQ

GGCGAGATCAAGCAACCAAGATECTGGACCAAGCAAGCAGATCTGGCGCATECTCCAGTCGTGAACTGGCC 525  
 Gly Glu Ile Ser Asn Gln Ile Leu Asp Gln Thr Lys Arg Ile Ser Arg Ile Val Gln Ser Leu Met Asn Phe Ala  
lipQ

CAEGCCGGCCAGCAGCAGCGCGCGAATAACCCGCTGAGECTGGCCGAAGTGCGCGAGGAGCCATGGCCCTGCTG 600  
 His Ala Gly Gln Gln Gln Arg Ala Glu Tyr Pro Val Ser Leu Ala Glu Val Ala Gln Asp Ala Ile Gly Leu Leu  
lipQ

TCGCTGAACCGCCATGGCAACCGAAGTGCAGTTACAACCTGTGCGATCCCAGCAGCACCTGGCCAGGGCGACCCG 675  
 Ser Leu Asn Arg His Glu Thr Glu Val Gln Phe Tyr Asn Leu Cys Asp Pro Glu His Leu Ala Lys Gly Asp Pro  
lipQ

FIGURE 1A

2/46

CAGCCCCCTGGCCCAGGTGCTGATEAACCTGCTGCTCAACGCCCGCATGCCCTGGCCGGGGTCCCATCCGC → 750  
Gln Arg Leu Ala Gln Val Leu Ile Asn Leu Leu Ser Asn Ala Arg Asp Ala Ser Pro Ala Gly Gly Ala Ile Arg  
lipQ

GTGCCGTAGCGAGGCCGAGGAGCAGACCTGGTGCTGATECTCGAGGAEGAGGCCACGGGCATTCGGCAGGGCATE → 825  
Val Arg Ser Gln Ala Glu Glu Gln Ser Val Val Leu Ile Val Glu Asp Glu Gly Thr Gly Ile Pro Gln Ala Ile  
lipQ

ATGGACCCCTGTTGAAACCTTCTTCACCACCAAGGACCCGGCAAGGGCACCGGTTGGGGCTCGCCCTGGTC → 900  
Met Asp Arg Leu Phe Glu Pro Phe Phe Thr Thr Lys Asp Pro Gly Lys Glu Thr Gly Leu Gly Leu Ala Leu Val  
lipQ

TATTCGATCGTGGAAAGAGCATTATGGGAGATAACCACATGACACGCCGGGGATCCCGAGCACACGCCGGGAACC → 975  
Tyr Ser Ile Val Glu Glu His Tyr Gly Gin Ile Thr Ile Asp Ser Pro Ala Asp Pro Glu His Gin Arg Gly Thr  
lipQ

CGTTTCCCGCTGACCCCTGCCGGGGCTATGTCGAAGCGACGTCACACGGCACETGA → 1029  
Arg Phe Arg Val Thr Leu Pro Arg Tyr Val Glu Ala Thr Ser Thr Ala Thr  
lipQ

FIGURE 1B

3146

ATGCCCTATCCTCATGTCGAAGACGAAACCATCCGTCCGCCTGGGGCGCTGCTGGAAEGCAACAG  
 75  
 Met Pro His Ile Leu Ile Val Glu Asp Glu Thr Ile Ile Arg Ser Ala Leu Arg Arg Leu Leu Glu Arg Asn Glu  
 —lipR—  
 TACCAAGGTCAAGGAGGECGGTTCGGTCAAGGAGGCCAGGACCGTACAGCATTECGACCTTGACCTGGTGGTC  
 150  
 Tyr Gin Val Ser Glu Ala Gly Ser Val Gln Glu Ala Gln Glu Arg Tyr Ser Ile Pro Thr Phe Asp Leu Val Val  
 —lipR—  
 AGCAGACCTGGCGCTGCCCGGCGCGCGACCCGAGCTGATCAAGCTGGCCGACGGCACCCCCGTTACTGATCATG  
 225  
 Ser Asp Leu Arg Leu Pro Gly Ala Pro Glu Thr Glu Leu Ile Lys Leu Ala Asp Glu Thr Pro Val Leu Ile Met  
 —lipR—  
 ACCAGCTATGCCAGGCTGGCGCTGGCGGTGGACTCGATGAAGATGGGCGCGTGGACTACATGCCAAGCCCTTC  
 300  
 Thr Ser Tyr Ala Ser Leu Arg Ser Asp Val Asp Ser Met Lys Met Gly Ala Val Asp Tyr Ile Ala Lys Pro Phe  
 —lipR—  
 GATCACGAGAGATGETCCAGGCCGTGGCGCTATGGCGATCACCGAGGCCAAGGCCAACCCGCCAACG  
 375  
 Asp His Asp Glu Met Leu Gln Ala Val Ala Arg Ile Leu Arg Asp His Gln Glu Ala Lys Asn Pro Pro Ser  
 —lipR—  
 GAGGGGCCAGCAAGTCGCGCGCAAGGGCA=GGGGCCAGGGCGGAGATGGGATEATGGCTCTGC  
 450  
 Glu Ala Pro Ser Lys Ser Ala Glu Lys Glu Asn Glu Ala Thr Ala Glu Glu Glu Ile Glu Ile Ile Glu Ser Cys  
 —lipR—  
 GCGGCCATGAGGACCTTACGGCAAGATCGCAAGGTGGCTCCACCGATTCACGTACTGATCCAGGGCGAG  
 525  
 Ala Ala Met Gln Asp Leu Tyr Gly Lys Ile Arg Lys Val Ala Pro Thr Asp Ser Asn Val Leu Ile Gln Gly Glu  
 —lipR—  
 TCGGGCACCGCAAGGAGCTGGTGGCGTGGCTGCACAACCTCTGGCTGGCCCAAGGCACCGCTGATCTGC  
 600  
 Ser Gly Thr Gly Lys Glu Leu Val Ala Arg Ala Leu His Asn Leu Ser Arg Arg Ala Lys Ala Pro Leu Ile Ser  
 —lipR—  
 GTGAACTGGCGGGCATTGGAGACCTGATEGAGTCGAACGTGTTGGCCACGAGAAAGGTGGCTTACCGGC  
 675  
 Val Asn Cys Ala Ala Ile Pro Glu Thr Leu Ile Glu Ser Glu Leu Phe Glu His Glu Lys Gly Ala Phe Thr Gly  
 —lipR—

FIGURE 2A

4/46

750

GCGAGCCGGGCGCCGGCTGGTCAAGCGCCGACGGGGCACCTGTTCTCGACGAGATEGGGAGCTG  
Ala Ser Ala Gly Arg Ala Gly Leu Val Glu Ala Ala Asp Gly Gly Thr Leu Phe Leu Asp Glu Ile Gly Glu Leu  
lipR

825

CCGCTGGAGGCCAGGCCGGCTGCTGCCGCTGCTCAGGAGGGCGAGATCCGTCGGTCGGCTGGTCAAGTC  
Pro Leu Glu Ala Gln Ala Arg Leu Leu Arg Val Leu Gln Glu Gly Glu Ile Arg Arg Val Gly Ser Val Gln Ser  
lipR

900

CAGAACCTCGATGTACGCCGTGATECCCCCTACCCACCGCGACCTCAAGAEGCTGGCCAAGACGGCCAGTTCGGC  
Gin Lys Val Asp Val Arg Leu Ile Ala Ala Thr His Arg Asp Leu Lys Thr Leu Ala Lys Thr Gly Gln Phe Arg  
lipR

975

GAGGACCTCTACTACCGCCGTGCACGTCACTGCGCTCAAGCTGCCGCACTGCGCGAGCGCCGCGACGTCAC  
Glu Asp Leu Tyr Tyr Arg Leu His Val Ile Ala Leu Lys Leu Pro Pro Leu Arg Glu Arg Gly Ala Asp Val Asn  
lipR

1050

GAGATCGCCCGCGCTCTGTCGCCAGTGCAGCGCATGGCCCGCGAGGACCTGCCGCTTCGCTCAGGATGCC  
Glu Ile Ala Arg Ala Phe Leu Val Arg Gln Cys Gin Arg Met Gly Arg Glu Asp Leu Arg Phe Ala Gln Asp Ala  
lipR

1125

GACGAGGCGATCCGCACTACCCCTGCCCGGGCAACGTCGCGAGCTGGAGAAATGCCGATGAGCGCGCGTGATC  
Glu Glu Asp Ile Arg His Tyr Pro Trp Pro Gln Asn Val Arg Glu Leu Glu Asn Ala Ile Glu Arg Ala Val Ile  
lipR

1200

CTCTGCCAGGGCGCCGAATTTCGGCGAGCTGCGCATCGACATCGACGACCTGGAGGACCGACGAC  
Leu Cys Glu Glu Ala Glu Ile Ser Ala Glu Leu Leu Gly Ile Asp Ile Glu Leu Asp Asp Leu Glu Asp Gly Asp  
lipR

1275

TTCGGCGACAGCCACAGCAGACCCCCGCCAACACACGAACTGGCGACGGAGCTGTCGTGGAGGACTACTTCAG  
Phe Gly Glu Gln Pro Gln Gln Thr Ala Ala Asn His Glu Pro Thr Glu Asp Leu Ser Leu Glu Asp Tyr Phe Gln  
lipR

1350

CACTTCGTACTGGAGCACCGGATCACATGACCGAGACCGAACCTGGCGCGCAAGCTGGCATCAGCCGCAAGTGC  
His Phe Val Leu Glu His Gln Asp His Met Thr Glu Thr Glu Leu Ala Arg Lys Leu Gly Ile Ser Arg Lys Cys  
lipR

1416

CTCTGGGAGGCCGTAGCGCTGGCATTCGGCGGGCAAGTCGGGGGGGACCGGCTCTGA  
Leu Trp Glu Arg Arg Gln Arg Leu Glu Ile Pro Arg Arg Lys Ser Gly Ala Ala Thr Gly Ser  
lipR

FIGURE 2B

5/46

GATCTCGAGGGGCTCGCCTTCGACACCCCTGGGGTGCACGCCGGTCAAGCATGCCACGCCGGAGGGCGAGC → 70  
 CTAGAGCTCCCGAGCGAAAGCTGTGGGAACCGAACGCCGGAGCTGAGCTGCACGCCCTCCGCTCG  
D L E G V S F D T L A V R A G S H R T P E S E  
OMY

ATGGGGAGGECATTTCTCACCTCCAGCTATGTGTTCCGGACGCCGCCAGCGCCGCCGCTTCGC → 140  
 TACCGCTCCGGTACAAGGAGTGAGGTGATAACACAAGGCTCGCGCGCTGCGBGCCGCGAAGCG  
H G E A M F L T S S Y V F R S A A D A A A R F A  
OMY

CGCGGAGGAGCCGGCAACGCTACTCGCGCTACACCAACCCGACCGTGCACGCCCTTCGAGGAGGCGATC → 210  
 GCCGCTCGCCCGTTGCAGATGAGCGCGATGTGGTTGGGCTGGCACCGCGGGAAAGCTCTCGTAG  
G E O P G N V Y S R Y T V P T V R A F E E R I  
OMY

CGCGCCCTCGAAGGCCCGAGCAGGGCTGGCACCCGCTGGCATGGCGCCATCGCGCGATCGCGATCGCA → 280  
 CGCGGGGACCTTCCCGCGCTCGCCACCGCTGGCGAGGCCGCTACCGCGCTGGCACCGCGGGTAGGACCGTAGCGT  
A A L E S A E Q A V A T A S S M A A I I I I  
OMY

TGAGGCTCTGAGCGCGCGGACCATGTCGCTGCTGCGCGACCGCTGTCGCGCTGAGGATCGAGCTGTT → 350  
 ACTGGACACGCTGGCGCGCTGCTACACGACACAGCGCTGGCACAAACCGGAGCTGGTGGGAGAA  
H S L C S A G D H V L I S P S V F D S T I S L F  
OMY

CGAGAAAGTACCTTAAGCGCTTGGCATCGAGGTGGACTACCCGCGCTGGCGCGATCGCGCGCTGGCGAG → 420  
 GCTCTTCATGGAGTTGGCGAGCCGTAGCTTACCGTGAAGGCGCGACCGCGCTGAGGCTGGCGCGCTGGCGAG  
E K Y L K R F S I E V S Y P P L A D - E A W C  
OMY

GCAGCCCTCAACCCAAACACCAAGCTGCTGCTGCAATGCCGCTCCAAACCGCTGGCGCGAGCTGGCG → 490  
 CGCTGGAAAGTGGGTTGTGGTTCGACGACAAGCAGCTAGCGGGAGGGTGGCAACCGGCTGGACCC  
A A F K P N T K L L F V E S P S N P L A E L V  
OMY

ACATAGGGCGCTGGCGAGATEGCCACGCCGGGGGGGCGCTGCTGGGGTGGACAACTGCTTETGCAC → 560  
 TGATCCCGGACGGCTAACGGGCTAACGGGTCGGGGCGCCGGGAGACCCGACCTSTTGACCGAACGCTG  
D I G A L A E I A H A R G A L L A V D N C F C T  
OMY

CGGGCCCTCGAGCGCGCTGGCGCTGGCGCGATATGGCTATGCAATTGGCGACCAAGTTGATCGAT → 630  
 GGGCGGGGACGCTGTCGGCGACCGEGACCCGGCTATACCAAGTAEGTAAGCCGCTGGTTAACGCTA  
P A L D O P L A L G A D M V M M S A T K F I D  
OMY

3AA

6/46

G C C C A G G G C C C G G E C T G G G C G G E G T G G T G      3 G G G C C C G T S C S C A G A T G G A G C A G G T G G T C G G C T T E C C C G G C T C C G G C C G G A C C C C E G E A C C E C C G G C C G G C A C G G T C T A C C T C G T C C A C C A G C C G A A G G      70

G O G R G L S G V V A G R R A O M E O V V G F  
 ORF

T G G C G A C C G G C C G G C C G A C C C T C A G E C C G T T C A A C G C C T G G A T G T T C C T C A A G G G C T G G A G A C C C T G G G      770

A C C G T G G G G G C C G G C T G G G A G T C G G G C A A G T T G E G G A C C T A C A A G G A G T T C C C G G A C C T T G G A C C C

L R T A G P T L S P F N A W M F L K G L E T L R  
 ORF

T A T C E G C A T G C A G G C C G C A G A G C C C A G E G C C C T G G A A C T G G C C C G C T G G T T G G A G A C C C A G C C G G G C A T C      840

A T A G G G T A C G T C G G G T E T C G G G T E B C G G G A C C T T G A C C G G G C G A C C A A C C T C T G G G T C G G G C G T A G

I R M O A O S A S A L E L A R W L E T O P G :  
 ORF

G A C A G G G T C T A C T A T G C C S S C T G C C C A G C C A C C C G C A G C A C G A S E T G G C C A A G G G G C A C C A G A G T G C C T      910

C T G T C C E A G A T G A T A C G G G G G A C G G G T C G G T G G G C G T E G T G C T G A C C G G T T C S E E G T G T G T C A C G G A

D R V V Y A T G L P S H P D O H E L A K R C D S A  
 ORF

T C G G C G G G T G C T G A G C T T C A G G T C A A G G G G G C A A G G A G G G G G C T G G G T T T C A T C G A T G C C A C C C      980

A G C C G E G C C A C C G A C T C G A A G T C C A G T T C C C G C C T T C C G C C G G A C C G C A A A G T A G C T A C G G T G G G C

F G A V L S F E V X G G K E A A W R F I D A T P  
 ORF

G G T G A T C T E C A T C A C C A C C A A C C T G G G C G A T A C C A A G A C C A C C A T G C C C A T C C G G G C A C C A C C T C C C A C      1050

C C A C T A G A G G T A G T T G G T G G A C C E G T A T G G T T E T G G T G G T A S E G G G T A S G G S S C T T S T T S A B S S T S

V I S I T T V L G D T K T T I A H P A T T S +  
 ORF

G G T C G T C T G C C C C G G A G G A G G C G C C A G C C C C G G T A T C C G G G A C A A C C T G G T G C C C C S T G G G C C      1120

C C A G C A G A C A G C G G C S T C T T G G C G G G T C G G G C C A T A G G C S C T G T G G A C C A C G C A C A G G G G C A C C C G G

G R L S P O E R A S A G I R D N L V R V A V G  
 ORF

T G G A A G A C G T G G T C G A C C T C A A G G C C G A C C T G G G C C G T G G C C C G G C T C T G A G G A C G G G G G C C C C C      1190

A C C T T C T G C A C C A G E T G G A G T T C C G G C T G G A C C G G G C A C C G G A C C C G G G C G G A G A C T C C T C G C C C C C G G G G

L E D V V D L K A D L A R G L A A L  
 ORF

G T T C C T G C C G G A A G G G C A G G G G G G G G G C T T G G G G G G G C C T T T G G G G G A T C A G G A G E T A G T C T T G G G G  
 C A A G G A C G G G C G T T C C C G T C C C G G G C C C G G A A C G G C C S C C G G A A A C G G G C T A G T C G T G A T C A G A A C C C C

3AB

7146

AAACGTCTAGCCCAGGAGCTACCCCATGAACCTCATCCTTCTGATCATEGGCCCGTTGCCCGTG  
 TTTGCAGGATCGGGTCTCCATGGGGTACTTGGAGTAGGAAAGGACTAGTACCCCGGCAACGGCGAC → 1330

GATCGCCGGCAAGTTGCTGCTGGTGGCGGTTCCGGCTGATEGGCAACCTGGTGGCTGGCATAGTGGC  
 CTAGCCCGCTTCACCGACCCACCEGGAAAGECCGACTAAGCCGGTGGACCAACCECGTATEACCG → 1400

CGGGTGAETGGCGCCACCTTTCACTACCTGGCGTGCTGGCGGTGATCGGCTGGCTGG → 1470

CGCCACTAGCCCGGCTGGACAAGTCGATGGACCGCAGGGCGCCACCACCCGACTAAGCCGAGCGACC

TGACCCCGGTGATCGTCCCCCTGGCTCTGCTGTTATCGTEGGCTGATCAAGAACGGCCAGTAGCGCTG  
 AETGGCGCCACTAGCCACGGGACCAAGGACGACAAGTAGCAGCCGGACTAGTTCTCCGGGTGATCGCGAC → 1540

GCAGGGACGCCCTCCCGCCCATCACTGGTCCGGCGAGGTCACGGCAACGGCGCCGGGTTTTCGAACA  
 CGCCCTGGGGCAAGGGCGGCGGTAGTGAACCGCCGGTCCGGTGGCGGCGGCGGAAACAGCTTGT → 1610

← →      0 O R L D V A G A G P X Q F -  
XbaO

GGCGCTGGCGCTGCCGGCGAGGTGCTGTGGCATCTCTCGGCAACCGACGCGATGCTGGCTGTA  
 CGCGAGCGCGACGGCGCTCGACGCAACCGCGTAGGAGCAAGCGTGGCGTGCAGTACAGCGACAT → 1680

R E A S G P L S S H C D E D A G L V S I C S X  
XbaO

CTTCCTGCCGACAGCGCGGCGATGCCCGCGCGTGGCGGACGATGGTGGCGGCGAGGAAACCGATGAGG  
 GAAGAACGGGCTGCGCGCGGCGTACGGCGCGCGAGCGCTGCTACCGCCCGCTCTTGTGGTGGTGG → 1750

K K G S L A A M G A R D R V I T P R L F S M I  
XbaO

TTGGCGCTGACGTGGGTGCTTGGTGGAGCGGAAACAGCCGGCGATCAAGGGGATGTCACCCGAGCG  
 AACGGCGAACTGCAACCCACAGGAACCGCTGCGCTTGTGGCGCCGCTAGTCGCCCTACAGTGGTGGTGG → 1820

N R K V H T D K T S R F L R G I L P I D G L L P  
XbaO

GCACCTTGGAGTCGGTGGTGGTGGACGCTGGATCAGCCCTCCAGCACTATGACCTGGCGCTCG  
 CGTGGAAACCTGAGCACGACCACTGCACCCAGGACCTAGTCGGGAGGGTGTGATACTGGACCCGAGCG → 1890

V K S D T S T V D D O I L G G L V I V S G D D  
XbaO

GGCCAGGATCACCGCTCTGATCGAGCGCTTGTGGTCAACAGGTCCACCGCCCTGGCATTGACCCCGCG  
 CCGGTCTAGTGGGAGAGAACTAGCTGGCAACAAACCGAGTGGTCCAGGTGGCGGACCGTAACCGGGCGG → 1960

A L I V S K I S R K N T V L G V A D A N V G A  
XbaO

3 AC

8/46

CTGGGGCCGATGGAGAGATCTCTGCCTCCACCTCCAGGGCCTGGCGCCGGTGTGATGTCGGG  
 GACCCCCGGTACCTCTCTAGAGGACGGAGGTGAAGGTCCGCTCCACCCGGGGCAGCAACTACACGCCCC 2030

S P A I S S I E O E V E L R L T A G D N I H P T  
XcpQ

TGACCTTGAGGGTACGGCGAATGCCCTGGCTCAATGCTGGTGAAGGGTTGTTCCCCCGAGGCGTC 2100

ACTGGAACCTCCAGTGGGCTACAGGAGCCGAGTTACCACTTCCCAACAAGCGGGGCTCCGGAG  
 V K L T V G I D E R E I T T F P N N A G S A D  
XcpQ

GGTGGTCTAGGAGCCGCTCTGAAAGGACGTTCTGCCGACCAGGATTCCGCCCTCTGGTTGTCAGG 2170

CCACCATCCCTGGCCAGACCTTCCGTGCAAGACGGGCTGGTCTAAAGGGGGAGGACCAACAGGTCC  
 T T Y S G T Q F P V N Q G V L I E A E O N O L  
XcpQ

GTCAGCAGGCTGGCGTAGACAGCAGGTGCTTGTGTTGGCAGAGAGGGAGTSAATCAGGGCGCCGA 2240

CAGTCGTCCGACCCGACCTCTCGTCCAACGAGAACGACAACCGTCTCCCGTCACTAGTGGCGGGCT  
 T L L S P T S L L N S K S N A S L A T I L A G F  
XcpQ

ACTTCTCGGTGCTGATGCCGATGATGGCGCCGTCGGGAGGGTCAGGTCACTGGGATTCTCTG 2310

TCAAGAGCCACGCTTACCGCTACTACCGGGAGGGCGTCCAGTECAGTAGCCCTAAAGGAGCAASAC  
 N E T G I G I I A G D P L T L D O P : E E N D  
XcpQ

GATGGCCTTGAGCACGGTGGCACCGATAGCCGGTATTGCGGAAGTTGACCCCGAGGGGGGGGGGGGG 2380

CTACCGGAACCTGCCAACGGTGGCTATCGGGCATAACGGCTCAACTGGGCGGCTCCAC  
 I A K L V T G V S L G T N G F N V G G L S S T  
XcpQ

CGGGGGCGGCGATCCACCCCGCACTGCACGGCGAGGGCGCTGATGTCGGGAGATTGGCGATGG 2450

GGCGGGGGCGGTAGGTGGCGGGTGAAGTGGGCTCCCCAGCGACTACAGGGGCTCTAAAGGTGCTACC  
 G G R A D V A W O V G L A D S I D G S I E V I A  
XcpQ

CGCCCTCGACCATCACCTGGCGGGCACGTCGAGGTGCGCACGATTCTCGAGGGTCGCCACGGT 2520

GGCGGGAGCTGGTACTGGACCCGGCGCCGTGCACTCAACGGCTGCTAAAGGAGCTCCAGCGGTGCCA  
 A E V M V O A R P V D L N R V I E E L T A V T  
XcpQ

GTCCGGATEGGCCAGCAGGACCAAGGGEATTGAGGCTCTGGTGGCCGGATCAGGATGTTGCGGGCTG 2590

CAGGGCTAGCCGGTGTCTGGTCCCCTAACTCCGAGGACGAGCCGGCTAGTCTACAGACGCGGAAC  
 D P D A L L V L A N L S E D A R I L I N O P K  
XcpQ

3AD

9/46

CTGCTGGGGTTCGCCACCAACCCCTCCGCCTTCAAACCCCTCGGAGATGTGCCCCAGGGTCTCGGCCA → 2600  
 GACGAACCCCCGAACCGGTGGTGGGAGGGCCAGAAGTTGGGAGCCCTACAGCGGTCCAGAGCCGGT  
 S S A A E G G G E A T K L G E S I O G L T E A L  
 XcpQ

GGCTCTTGGCCTCGCTGTGGCTAGGCCATTACCCGGCATGGCCGAACGGGTCTGGGATGTCCAG → 2730  
 CGGAGAACCGCAGCACCCGATCCGTTAACGGCGTAACCGGTTGCCACGACCCCTACAGGTC

S K A D S H R L R I V R A N A S R T S P I D L  
 XcpQ

CGAGCGGGCAGGTTGGCCAGGEGETGGCGGGGGGGGGGGGGGGAGGGAGGATEAGGGCTTGGTGGG → 2800  
 GCTCGCCCGTCAAACGGTCCGGACCCGGCCGGCCGGGCTCTCTAGTCCGCAACACGCG

S R A L N A L R O R A A P P G L L I L R N T R  
 XcpQ

GGCTGGCAATCACCCGGTGGCGGCGTGTGTTCTCGTTGCCATCACGGTTGTTAGTCCGCTCG → 2870  
 CGCAGGGCTAGTGGGCGAACGGCGGACAAAAAGCGAACCGCTAGTGGCGAACAACTACCGGAC

A D A I V R - T G A S N K E N P M V A N N - A E Z  
 XcpQ

CGGCCTCCAGTACCCAGGATGCTGAGGTTATCACGGTTGAGCTGGCCGCGCCGCGCTGGGATEGAGGCT → 2940  
 GCGCGAGGTCACTGGGCGTACGACGCTAACAGTGCACATCACGGCGGGCGGACCCCTAGCTCGAG

A D L Y W A H O L N I V N Y D G G C S A D L E  
 XcpQ

GGGGATCAGTTEGGGATGGCTTGATATTNGCCCGGCGCTGATGATCACGGCGCTGGGCGCTGGGCGCGCG → 3010  
 CGCTAGTCAAACGGCTACGCAAGETATAANCGGCGGCGGACTACTAGTGGGCGAACGCGGCGGCG

A I L E R I R E I N A R R D S I I L A N E A Z  
 XcpQ

ACGGGCCGAGGGCTTGTGGGACCCAGGGCGGATCACGGGATCAGTTGGTGGGAGGCT → 3080  
 TGGCGGGGGTCCACCGCAAGAEGCCGTGGTCGCCCCCTAGTGGCGCTAGTCAGCAAGCAACTGGCTCCACA

V A A L H G N D P V L P R I L P I L E N V S T H  
 XcpQ

GCTGCACCTGGATCAGCTGGCTGCAACATCGTCCGGCGCTGGGCTGTTGGCGCGCTACGGCG → 3150  
 CGACGTGGACCTAGTCGAGCCAGACGTGAGCAGGCCGGCGAEGCGACGACAACCGCGGCGATGCGCG

D V O I L E T O V D O P A S R S S N A G S R A  
 XcpQ

CTGGGTGACGGGACGGATGGCGCCCTGGTCCCCTGTGCCAGCACGGTGAAGCCATGGGTGCTCATCAC → 3220  
 GAGCCACTGGCCGTGCTACGGCGGACCGGGACACGGTGTGCGACTTCGGTACCCACGGAGTAGTGS

E T V P V I R A O D G O A L V S F G H T S M /  
 XcpQ

3AE

10/46

GAAAGGAACAGCTGGTASACCTCTCGAGGCCAGGGGGCTTGAGATCACCGTGAACCTGGCCCTG → 3290  
 CTTTCCTTGTGACCATCTGGAGGAGCTGGGGCTGGCCCCAGAACCTCTAGTGGCACTGGACCGGAACCT

S L F L O Y V E E L G L P T K S I V T V D G K V  
XcpO

CCCAGGGATCGACGACGAAGGTCTGCCAGAGATCTGCCAACCTGGCTGATGAAGTCGGATAATCGGC → 3360  
 GGGECECTAGCTGCTGCTCCAGAGEGGTCTAGACCGSGTGGACCAGCTACTTCAGGECCTATAGCCG

R P D V V F T E G S I O A V O D I F D R I D A  
XcpO

GTCCTTCATGTTGATGGTCAGGTCTGGCCCTGGCTACCGCCACCCGCTGGGGCATGGACGAGC → 3430  
 CAGGAAGTACAACCTACCAAGGTCCAGAGCCGGGGGACGTGGCGGTGGCCGAGCCCGCTACCTGCTCG

D K M N I T T E A G D S V A V P E A A H V L  
XcpO

GGCAGGGGGGGGGAGGCAGCTGGGGCCAGCAGCAGGCGAGGGGAGGGGTTTGTGGGGGGAAATTG → 3500  
 CGCTGGCCCCGGCGCTCGCTGGGGCCGGCTGTECCCGCTGGGGTCCGAAACACGGGGCGCTTAAG

P L P A A L C S A A L L C A L P L R K H D P ! R  
XcpO

TGGAGTCGATEATGGGCTGTTGGGTTGGGTATTGGGCTGGGGATGTCGCGCTTCATGGCT → 3570  
 ACCTCAAGCTAGTACCCGACAGAAGCCGAAGCCATAAAGCCCCACCGCTACAGGCGGAAAGGTACGCA

S D I M  
XcpO

P S C E A E P I E P O P I D S S E M P  
XcpP

TGTTGAAGGGCTGGATGGGCTCTGCAGGGCTGGACGCTGGCTCTGCAGCTGGGCTGGGCTGG → 3640  
 ACAACTTCCAGACCTACCGAGGACGTGGGACCTGCAGAACGACGCTGAAAGGCTAACCGGAC

D O L T O I E E O L A O V D E D O L B E - B E A  
XcpP

CGGTGGGCTCAGCGCCGATAGAGGGCTGGCGACGGGGGGAGGCTGGCTGGGCTGGGCTGG → 3710  
 CCCACCCGAGSTGGGGCTATCGGGCGAGCTCTCCGACCCGCTGGGGGCTGGCTGGGAGAG

T P E L A S Y A P T L S P O R V A P P R L E E  
XcpP

CTCGACGCCGGCGGGTGAACCAAGTGGCTCTGATAGACGGCTGGAGGGGGCTGACGTTGAC → 3780  
 GAGCTGGGGGGGGCCACCTGGTGGTGCACAGGACTATCTGGGAGTGGGGCCACGACTGCAACTGG

E V G S R D L V V H D O Y V A D O L R T S V N Y  
XcpP

GATTGCCCCACGGGGATGCGCTGGGTTGTCGGGGGGACCTGGATGATGGCCGGCTGGAGGCGCTGG → 3850  
 CTAAGCCCCGTGCGCTACCGAACCCAAACAGGGGGCGTGGACCTACTAGGGCACCTGGGAACCGCA

S E G V A I P K P K D O G A V O I I A T S P R M A D  
XcpP

3AF

11/46

CGGGGTTGAAGAAGCTGGCCAGCAGGGTCAT...GCTCGGGGTGGCGGGGGCGGCCTGGTCCCCCGCGCG  
 3920  
 GCCCCAACTCTTGGACCGSTGTCCCAGTAGACGACGGCCACCGCCCCGGGACCTAGCGGGCGCGCG  
  
P N V F S A L L T M O O R T A P A A O D G R P  
XcpP

CCTGGGCGCGGGCTGCGGAGACAGATGGCTGCAGGGCTGGATGGACACGGGCTGGCGCTGGCGATGCTC  
 3990  
 GGACCGGGCGCCGACGGCTGTCTACCGACGTCGGCACCTACCTSTCGCGACCGCGAGCGCTACCGAG  
  
R A A P T G F L H O L R O I S L P O R E A I S  
XcpP

TCTGGGGGGGGGTGGCGGGCTEGCTGGCGAGCAAGGGAAAGGAAGTCGATGCTCTGCTTGTCTAGGC  
 4060  
 AGACCCCCCGCCACCCGCGGAGCGACGGCTGGCTGGCTTCCCTCAGCTACGAGAAGAACGAGTCCG  
  
E P A P P P A A E S R L L R L F D I S O K S L S  
XcpP

TGAGGGTGTGAGCAGCACACAGGAGCAGGAGGGCGTACGGCGTGGCGCTGAGCCAGGGCGAG  
 4130  
 ACTECCACTACTEGTGTSGTGTCTGGCTGGCTGGCGCTGGCGCTGGCGCTGGCGCTGGCGCTGGCG  
  
L T I L L V I L L C L G T V S H R O L W A P L  
XcpP

GCGGGTGGGGTGTACTCAAGGCATGGTCCCCGGTGTCTTATTGTGGCGCTGGCGCTGGCGCTGGCG  
 4200  
 CGGCCACGGCCACGATGAGTTCGGTACCAAGGGGGCCACAAGAAGATAAGACACGGCTGGAGAGAGC  
  
R T R T S S -  
XcpP

GCGTETGGCAATCCGGCCGACTCTGGGGCGCAAGGCAACCTAACGCAAGTGCTGGCGCTGGCG  
 4270  
 CGCAGAGCGTTAGGGCGGCGATGAGACGGCGCGTGGATTGGCTGGAGGAGATGACGGCGCTGGCG  
  
CCTGCTTCGTTATCTGGCGCTGGCGCACTGTGGCGCGCTGGCGAGCTGGAAAGCTGGAAATTTGGAAATTT  
 4340  
GGACGAAGCAGATAGACCGCGACCCGGCTGACAGGGCGGACGGCGCTGGCACTTTGAAAGCTTGGAA

CGGCGAAACGAGTCGCTATCATGGCCCCACGGCGTCCCGTCAACAAATAGCAATAAGCCAGCGGATTA  
 4410  
 CGCGCTTGGCTAGCGATAGTAGCCGGGTGGCGAGGGCAAGTTGGTTATGGCTGGCGCTGGCG  
  
M E D R K P P A A A P V G F A R A E L L E L  
ON

3AG

12/46

GCTCTGCCGCTGCAGCACTTCCCTGACCC . GCTGCTGGCGCCGCCGGTTCCGGCAACTCGAECCTG  
 CGAGACGGGAGCCTCGTCAAAGGGACTGGGACGACGACCCGGGGCAAGGGCGTTCAGCTGGGAC + 4550  
 L C R C E O F P L T L L A P A G S G K S T L  
ORF  
 CTGGCCCAGTGGCAGGCCAGCCGGCCCTTGGGAGTGTGGTGAATATCCACTGCAGGCCGCTGACAACG  
 GACCCGGTCACCGTCCGGTGGCCGGGAAGCCGTACACCCAEGTGTAGGTGAEGTCCGGCACTGTTGC + 4620  
 L A D W O A S R P F G S V V H Y P L O A R D N  
ORF  
 AGCCGGTACGCTTCTCCGCCACCTGGCCGAAGCATCGEGCCAGGTGGAGGACTTCGACCTGTCTG  
 TCGGCCATCGAAGAAGGGGTGGACCGGCTTCTGAGGCGGGTCCAGCTCTGAAGGCTGGACAGGAC + 4690  
 E P V R F F R H L A E S I R A O V E D F D L S W  
ORF  
 GTTCAACCCCTTGCGGCCAGAGATGCAACAGGCAGGGTGTCTGGCGAGTACCTGGCCGACGCCCTC  
 CAACTGGGGAAGCGCCGCTCTACGTGGTCCGGCGGCTCACAGAGCCGCTATGGACCGCTCGGGAG + 4760  
 F N P F A A E M H O A P E V L G E Y L A D A L  
ORF  
 AATCGCATCGAGAGGCCCTCTACCTCGCTCGACGACTTCAGTGCATGGCCAGCGATCCTCG  
 TTAGCGTAGCTCTGGCGAGATGGAGCAGGAGCTGCTGAAGGTCACTGAGCCGGTGGCTAGTAGGAGC + 4830  
 N R I E S R L Y L V L D D F O C I G O P I I L  
ORF  
 AEGTGCTCTGGCCATGCTGAACGCCCTGGGGCAACACCCGGTCATTCTGCTGGGCGAACCATCG  
 TGCAAGAGAGCCGCTACGAGCTTGCGGACCGCCGTTGTGCGCCGAGTAAGACAGGCCGCTGGTAGG + 4900  
 D V L S A M L E R L A G N T R V I L S G P N H P  
ORF  
 GGGGTTCTCGCCGCTGAAACTGGACAAACAAGCTGCTGTGCATCGACCGACGACATGGCGCTG  
 CCCAAAGGGAGCTGGCGACTTTGACCTGTTGACGACACGTAAGCTGGTCGTGCTACGGCGGAC + 4970  
 G F S L S R L K L D N K L L C I D O H D M R L  
ORF  
 TCGCCAGTGCAGATECCAACACCTCAATGGCTACCTGGGGGTCCCCGAGCTCAGCCCGCTATGTCGGCA  
 AGCGGTACGTAGGTTGGAGTTACGGATGGACCCGCCAGGGCTCGAGTCGGGGGATAACGGCGT + 5040  
 S P V C I O H L N A Y L G G P E L S P A Y V G  
ORF  
 GCCTGATGCCATGACCGAGGGCTGGATGGTGGGGTGAAAGATGGCCCTGATGCCCATGGCGCTTGG  
 CGGACTACCGTACTGGCTCCGACCTACCAAGCCCCACTTACCGGGACTACCGGGTACGCCGAAGCC + 5110  
 S L M A M T E G W M V G V K M A L M A H A R F G  
ORF

3AH

13/46

CAECGGAGGCCCTGCAGGGCTTCGGTGGCGG . TCCGGAGATAGTCGACTACTTCGGCCATGTTGGTGETG → 5180  
 GTGGCTCAGGGACGTGGCAAGCCACGGCGGTAGCCCTCTATCACTGATGAAGCCGGTACACCACAC  
 T E A L O R F G G G H P E I V D Y F G H V V L  
OMV

AAGAAGCTGTGCCCCAGCTGCACGGACTTCTGTTCTGCAGCGCGATCTCGAGCCCTTGAGCGCAGC → 5250  
 TTCTTCGACAGCGGEGTCGACGTGCTGAAGGACAACACGTCGGEGTAGAAGCTCGCGAAGCTGGCGCTCG  
 K K L S P O L H D F L L C S A I F E R F D G E  
OMV

TATGCCACCCGGTGTGGATCGCAGCGGTTGGCCCTGCTGCTGGAGGACCTGGCCGCCGCGAGCTGTT → 5320  
 ATACGCTGGCCACGGACCTAGCGTCGCCAACGCCGGGACGACGACCTCTGGACCGGGCGCGCTGACAA  
 L C D R V L D R S G S A L L L E D L A A R E L F  
OMV

CATGCTGCCGGTGGACGAGTATCCCGGTGTACCGCTTACGCGCCCTGGCGATTTCTGCGCGCG → 5390  
 GTACGACGGCCACCTGCTCATAGGGCGACGATGGCGATGGCGACAACTGCTAAAGGAGCGCGCG  
 M L P V D E Y P G C Y R Y H A L L H D F L A P  
OMV

CGCCCTGGCCGTGACAAAGCCACAGGAAGTGGCGCACTGCACGGCGGGCGCCCTGGCGCTGAGCGC → 5460  
 GCGGACCCGGCACSTGTTGGTGTCTTCACCGCTTGAEGTGGCGCCGGGACGGCGCTGGCG  
 R L A V H K P O E V A O L H R R A A L C D  
OMV

GTGGCGACCTGGAGCTGGCCCTGCAAGCATGCCAGCGCACTGGCGAGTGGCGACCGGGCGTTGGCGATGCT → 5530  
 CACCGCTGGACCTCGACCGGGACGCTACGGCGCTGACCGCTGGCGACAAAGGCTGGCG  
 R G D L E L A L O H A O R S S O R A L F C S M L  
OMV

GGGCGAGGGCTGGAGCAATGGGTGGCGAGCGCGTCACTTGGCGAGGTGCTGAAGTGGCGTGGCGCGCG → 5600  
 CCCGCTCCGGACGCTGGTACCCACGGCGTGCCTAGTGAAGGGCTCCACGACTTACCGACCTGGCGAC  
 G E A C E D W V R S G H F A E V L K W L E P L  
OMV

AGCGAGGGAACTCTGGNGCAGTGGCGCTGCTGGTGTGATGACCTATGCCCTGACCTGGCGCGCG → 5670  
 TEGETCCGGCTTGAGAEGCGNECTEAGGGCGGACGACGACTACTGGATACGGGACTGGACAGCGCG  
 S E A E L C P O S R L L V L M T Y A L T L S R  
OMV

GTTCCACCAAGGGGGCTACTGCTTGACGAACTGGTGGCGCGTGCACGGTCAGCCGGCGTGGAGGA → 5740  
 CAAAGGTGGTCCGGCGATGACGAACCTGCTTACCCACCGGGCGACGGTGGCCAGTGGCGACCTGGCG  
 R F H Q A R V C L D E L V A R C T G O P G L E E  
OMV

3AI

14/46

S C C G A C E C C G C C A G C T G C T G G C A C T C A A C C T G L A G C T G T T C C A G C A C G A C C T G G C C T T C G A C C C C C G G C A G → 5810  
 E C G G T G G G G G G T C G A C G A C C G G A G G T T C G A C C T G A C A A G G G T E S T C G A C C G G A A G C T S G G G C C G G T C  
 P T R O L L A L N L E L F S H D L A F D P G O  
 ↓ M V  
 C C G T G G T C C G A C C T G C T G G C C C G G G C T C G C C T C G G A C A T C C G T S C C C T G G C G T G A G E A T C T C G C C T → 5880  
 G C G A C C A G G C T G G A C G A C C G G C C E C G C A G C G G A G C C T G T A G G C A C G G A C C G G A C T C G T A G G A G C G G A  
 R W S D O L L A A G V A S D I R A L A L S I L A  
 ↓ M V  
 A T C A C C A C C T G A T G C A C G G C C C T G G A G E A G T C G A T C C A G E T G G G C T G G A G G C C A A G G G C T G C T G G C → 5950  
 T A G T G G T G G A C T A C G T G C C G G C G G A C C T C G T C A G E T A G G T G A C C G G A C C T C C G G T C C G G A C C A C C G  
 Y M H L M H G R L E O S I D L A L E A K A L L A  
 ↓ M V  
 C A G C A C E G G C C A G C T G T J C C T G G A G A G E T A C G C C G A C C T G A T C A T C G C C T G T G C A A C C G C A A C C G C E G G G → 6020  
 G T C G T G G C C G G T G A C A A G G A C C T C T C G A T G C C G C T G G A C T A G T A G G G G A C A C G T T G C G G T C C G G C C  
 S T G C L F L E S Y A D L ! I A L C N R N A S  
 ↓ M V  
 C G G C C E A C C A G C S E G G S C A A G G A C C T C T C C T G G A T T A C C A G E G E A C C G A G G C T C T C S C C S G G T G G S → 6090  
 G C G E G G T G G T C S C S C G E G T T C T G C A G A E G G A C C T A T G G T G C G C T G G T C S C S A G G A G C C C C G G A C C  
 R A T S A R K D V C L D V G R T E R S S P A +  
 ↓ M V  
 T C A A C C E G T G C C A C C G C C A T G G T G G G C G T G T A C G A G E A G A A C C A G G C T G G C C S C C S C C A G C A S S T S → 6160  
 A G T T G G C A C G G T S S C G G T A C C A C C A C C G G A C A T G C T G T T G G T G A C C G G C C S C G G S S T S T E G A A A C  
 V N R A T A M V V A L Y E D N S L A A A C S L I  
 ↓ M V  
 C G A G G A C C T G A T G G C C A T S S T C A C G T G T C T C G G C C A C C G G A G A C C T G E C C A C C T S C A A T C A C C S T S → 6230  
 G C T C C T G G A C T A C C G G T A C C A G T G C A G E A G G A G C C G G T G G C T T G T A G C G G T G G C A C G T T A G T G G G A C  
 E D L M A M V T S S S A T E T I A T V H I T L  
 ↓ M V  
 T C G E G G C C T G E T C C A C C G G C C A G T C C C A G G G C C G G C C A C G G C C T G C T G G A G E A G E T G T S G G G C A T C C → 6300  
 A G C G E G G A C G A G G T G G C C G G G T C A G G G T C C C G G C G G T G G C G G G A C C T C S T C G A C A G E G G C G T A G G  
 S R L L H R R O S O G R A T R L L E O L S R :  
 ↓ M V  
 T C C A A C T G G G C A A C T A C G C C C G T T C G C C A G C C A G G G G G E C A G G A G A G C A T G C C C A G G C C T A T C T C G A → 6370  
 A C G T T G A C C C G T T G A T G C G G G E G A A G E G G G T C G G T C C S E G G C G T C T C G T A C G G G C T C C S G A T A G A G E T  
 L O L G N Y A R F A S O A A D E S M R O A Y L D  
 ↓ M V

3. A Y

15/46

CGGGCGCCCGGCGCTCGACGCACTGGC...AEGCCTGGTATCGAGGAGCGCTGGCGCGGGAG → 6440  
 GCGGCGGGCGCGCGAGCTCGGTGACCGGGTTGGGACCCATAGCTCTCGCGGACCGCGGGCGCGCGCTC  
 GRPAALDALADRLSIEERLAAAGE  
ORF  
 TCGGAGAGGGTGCGGCCCTTGAAAGACTGCTGGAACCGTACGGCTGGCCCGCTGTACTGGCTGGTA → 6510  
 ACCCTCTCCACGGGGATACTTCACGACCCCTGGATGGGACCCGGCGGACATGACCGACCACT  
 WERVVRPYEECWERYGLAAVYWLV  
ORF  
 TCGGGGGGGCCAGCCGGCGCCCTGGCCCATCCTCAAGGTGCTGGCGAGGGNTGNAGAACACCGAGAT → 6580  
 ACGGGGGGGGTGGCGCGGGACGGCTAGGAGTTEACGACCCGGCTGGNACNTTGTGCGCTCTA  
 MRGAOPRACRILKVLADA??NSE?  
ORF  
 GAAGGCCCCGTGCGCTGGTGGTGGAGGCCAACCTGCTGCTGAAECCCCCGCAGCTGGGGCGGACGAG → 6650  
 CTTCCGGCACCGACCCACCTCCGGTTGGAGGACCAAGGACTTGGGGGGCTCGACCCCGCTGCGT  
 KARALVVEANLLEVLNAPOLGADE  
ORF  
 CAGGACAGGGCCCTGCTGGCGCTGGTCAGCGCTTCGGCATCGTAAACATCAACCGCTGGTATTGACG → 6720  
 GTCCTGTCGGGGGACGACCCCGACCAGCTCGAGGACCCGCTAGCTGAGTTGGGAGCCATAAGCTGC  
 ODRALLALVERFSIVNINRSVFB  
ORF  
 AGGGCCCCGGCTCGCCGAGGGGGTGTGGCCCTGCTGCGCTGGGGCGCTGGAGGCCCCGGAGGGCTA → 6790  
 TCCGGGGCCGAAAGGGCTGGCCACAAGGGAGGACGGACCGCGAGGCCCCGACGTTGGGGGGAT  
 EAPSGFAEAVFSLL?SGRLDAPED  
ORF  
 TCGGGAGGCCATGGCGACTTCTCCAGGGCACAGGGCGGGCGCTGGCTGCTGGGGCTGCTGGCGCTGCGT → 6860  
 AGCGCTCCGGATAAGGGTGAAGGAGGTTGGTGTGGTGGGGGGCGAGGACGGCTCGACCGAC  
 REAYADFLLOGTGOAPPALLS  
ORF  
 AACAGCTTACCGACAAGGGAGGGGGGATTTGGCTGGCTGCTGAGGGGGCTGCTGGAAACAGCGAGATCA → 6930  
 TTGTCGAATGGCTGTTCTGGGGTAGAAGCGGACGGAGCTGGGGACAGGTTGTCGCTGCTAGT  
 KOLTDKEAAIAFACLLRGLSNSE!  
ORF  
 CGGECAGCACGGCATGGCTGGTCCACCAAGTGGCACCTGAAGAACATCTACTCGAAGCTGAGCT → 7000  
 CGGGTGTGGCTGGGAGGGACAGGTGGTGGTCAACGGTGGACTTGTAGATGAGCTTCACTCGA  
 SASTGIALSTTKWHLKNIYSKLSL  
ORF

3 AK

16/46

CTGGGGGGTACCGAACCCATCTCGCCATGCCAGGCCCCAACGGATAATGCCCATGCCCTCCCGGG  
 → 7070  
 GAGGGCCCGATGGCTTCGGTAGGGACGGTACGTCCGGGCTTGCCTATTAGGGTACGGGAGGGCGCC  
  
 S G R T E A I L A M Q A R N G      →  
 ↓  
 Onx

GAGGGGGGAGGGGGCGCCGAAACTGCTTAATCTCCCGTCCGGAAAAGCCGGAACGAAACCCATTAG  
 → 7140  
 CTCCCCCTCCCCGGCGGTGACGAATTAGAGGGGGACGGCTTTGGCGTTGGGTAAATC  
  
 ←      ↓  
  
 TACAAGAAGAAATGGGAGATATGCCCATGTCGTTGGTCACGTGCCGGCTTGGCAAGTCGGCA  
 → 7210  
 ATGTTCTTCTTACGGCCCTATAGCGGTACAGACAAACCAAGTGCACCGGCGGAACCAAGTCAAGCCG  
  
 H S V W V T W P G L V K F G  
 ↓  
 Onx

CCTGGGGATCTATGCCCGCTGATCACGCTGGCTTGAGCGCGACCTGCTGTTCAAGAACACCTTT  
 → 7280  
 GGGACCECTAGATACGGCCGACTAGTGGAGCGGAACCTGGCTGACGACAAGTCTTGGACAA  
  
 T L G I Y A G L I T L A L E R D V L F K N N L F  
 ↓  
 Onx

CGACGTCGACAAACCTGCCCGGGCCAACGGCACATCACCTGTGATGCCGGAGGTGGCGCGTACCG  
 → 7350  
 GCTGAGCTGTTGGACGGCGCGGGTGGGGCTGAGTGGACACTACGGGGCTGGTCCACGGCGATGG  
  
 D V D N L P A A N A S I T C D A R S O Y A R T  
 ↓  
 Onx

GAGGACGGCACCTGAAACATCTGCCAACCCGGGGAGGGCTGGGTACGGCCGTTGGCGCGAACG  
 → 7420  
 CTCTGCCGTGGACATTGAGGAGGGTGGCGCGCTCCGAGCCACATGGCGCGAACGGCGCGTGG  
  
 E D G T C N I L A N P A E G S V Y P R F G R Y  
 ↓  
 Onx

TCGACCCCGACCTGACCCATGGCGAGAACGGAGGGCACACCCCTGCTAGTCCCACATGGCGCGAGGTSAS  
 → 7490  
 AGCTGGGCTGCACTGGGTACCGCTCTGGCTCCGGTGTGGAGAGTCAGGGTTAGGGCGCCCTCCACTC  
  
 V D P S V T H G E T E A D T L L S P N P R E V S  
 ↓  
 Onx

TAACGTGCTGATGGCGCGTGGCGACTTCAGGGCGCCAGGCTCAACTTCATGCCCGCTCTGGATC  
 → 7560  
 ATTGCACGACTACCGCGCACCGCTCAAGTGGCGGGCTGGAGTTGAAGTAGGGCGAGGACCTAG

N V L M A R G E F K P A P S L N F I A A S W I  
 ↓  
 Onx

CAGTTCATGGTCATGACTGGGTGAAACACGGCCCCAACGGCGAACGGCAACCGATCAGGTGCCGTSC  
 → 7630  
 GTCAAAGTACCAAGTACTGACCCAGCTTGTGCGGCTTGGCTAGGTCCACGGCGACG

O F M V H D W V E H G P N A E A N P I O V P L  
 ↓  
 Onx

3AL

17/46

CGGCTGGCGACGGEGETEGCTCCGGCAAGC...CGCTGCACCCAGCCCCACCCGTACCCC  
 → 7700  
 GCGGACCGCTGCACGGCGTGGGACAGGCACCGCGCGTGGCTGGGCTGGGATGGG  
 P A G D A L G S S L S V R R T O P O P T R T P  
 ← OMX

GCGCGAGGCCGAAAGCCGCCACCTACCGCAACCCACACACCCACTGGTGCGATGGCTGGCGATTGAT  
 → 7770  
 CGGCTCCGGCGTTCGGCGGTGGATGGCGTTGGTGTGTGGGTGACCCACCTACCGAGCGTCAACATA  
 A E A G K P A T Y R N H N T H W W D G S O L Y  
 ← OMX

GGCAGCAGCAAGGACATCAACGACAAGGTGCGCCCTTCGAGGGTGGCAAGCTGAAGATCAATCCCACCG  
 → 7840  
 CCGTEGTEGTTCTGTAGTTCTGTTCACCGCGGAAGCTCCACCGTTEGACTTCTAGTTAGGGCTGC  
 G S S K D I N D K V R A F E G G K L K I V P D  
 ← OMX

GTACCCCTGGCGACCGAGTCTCTAGCGGCAAGCCGATCACCGCGTCAACGAGAAGCTGGTGCGTTGGCT  
 → 7910  
 CATGGGACGGCTGGCTCAAGGAGTCGCGGTGGCTAGTGCGGAAAGTTGCTTGTGACCAACCGAACCGA  
 G T L P T E F - S G K P I T G F N E N W W V S -  
 ← OMX

GAGCATGCTGACCCAGCTTCACTAAGGAGCACAAACCGATCGCGCGATGCTGACCCAGAAGCTGGCG  
 → 7980  
 CTCGTACGACCTGGCTGACAACTGATTCTCTGTGTTGGGTAGCGCCCTACGAGGTCTTGTGGCG  
 S M L H D L F T K E H N A I A A M L D C V P  
 ← OMX

GACAAGGACCGACCGAGTGGCTACCGACCATGGCGCGTGGCTAACCTGGCGCTGATGGCGGAAAGATGGCG  
 → 8050  
 CTGTTCTCTGGCTGGCTACCGACATGETGGTACGGCGGAGCTGGAGGGCGGAACTACCGGGTTGAGGT  
 D K D G D W - Y O H A R L V N S A L M A K I -  
 ← OMX

CCTGGAAATGGACCCCGCGCGTGGATGGCCAACCGCGTACCGAACCGCGCATGATGGCGCGCGTGGCG  
 → 8120  
 GGCACCTTACCTGGGCGCCACTAGCGGTTGGCGGACTGGCTTGGCGGTACATACGGTTGACCGACCG  
 T V E W T P A V I A N P V T E R A M Y A N W W G  
 ← OMX

CCTGCTGGGTTGGGTCCGGAGGTGACAAGTACCAAGGAGGAAGGGCGCATGCTGGAGGGACCTGGCG  
 → 8190  
 GGACGACCCAAAGGCEAGGCCCTGGCACTGTTCTGGTCTTCTCCGGGTACGACGTCCTGGACCG  
 L L G S G P E R D K Y Q E E A R M L O E D L A  
 ← OMX

AGCTCCAACCTCTGGTCTGGCATTEGGCATGGCACTGGCAACCCAGGCGGAGTTCGGCCATGGCA  
 → 8260  
 TCGAGGTTGAGGAAGCAGGACGGTAAGAGCCCTAGCTGGCGTGGCGGTCAACCGGGTAGCTGG

S S N S F V L R I L G I D G S O A G S S A I D  
 ← OMX

3AM

18/46

ATGCCCTGGCGGCATCGTGGCTEGACCAAACGAACAAACTACGGGTGCCCTACACCCTGACCGAGGA → 8330  
 TACGGGACGGCGGTAGCAGCGGAGCTGGTYGGGETTGTGATGCCGCACGGGATSTGGGACTGGCTCT  
 H A L A G I V G S T N P N N Y G V P Y T L T E E  
OMX  
 GTTCGTCGCGGTCTACCCCATGCAACCGCTGATGCCGCACAGGTGATGTCACGACATEGGGTGAAAC → 8400  
 CAAGCAGCGCAGATGGCGTACGTGGCGACTACGCGETGTTCAAGCTACAGATGCTGTAGCCGAGCTTG  
 F V A V Y R M H P L M R O K V D V Y D I G S N  
OMX  
 ATCATCGCGCGAGCGCTGCCCTGCAGAGAACCGCCATGCCGACGCCGAGGAGCTGTTGGCGGACGAGA → 8470  
 TAGTAGGGCGCGTCGCAAGCGACGTCTCGGCGETACGGCTGGGCTCTCGACGACCGCCTGCTCT  
 I I A R S V P L O E T R D A D A E E L L A D E  
OMX  
 ATCCCCAGCGCTGTGGTACTCTTCGGCATACCAACCCGGCTGCTGACCCCTCAACAACTACCCGAA → 8540  
 TAGGGCTCGCGACACCATGAGAACCGCTAGTGGTGGGGCGAGCGACTGGAGTTGTTGATGGGCTT  
 N P E R L W Y S F G I T N P G S L T L N N Y P N  
OMX  
 CTTCCCTCGCAACCTGTCATGCCGCTGGTCGGCAACATGACCTGGCACCATGACGTGCTGTGTC → 8610  
 GAAGGACGGCTGGACAGGTACGGCGACCGCCGTTGAGCTGGACCCCTGGTAGCTGACGACACACTG  
 F L R N L S M P L V G N I D L A T I D V L C S  
OMX  
 CGCGAGCGGGGTGCGCGCGTACAACGAGTTCGGCGGAGATCGGCTCAACCCGATCACCAAGTTGG → 8680  
 GCGCTCGCGCCCCACGGCGCGATGTTGCTEAAGCGGGCGCTGAGCTGGAGTTGGAGCTGGCGAGCTGGCGAGCG  
 R E R S V P F Y N E F R R E I G L N P I T K  
OMX  
 AGGACCTGAECAACGACCCCGACCCCGACCCCTGGCAACCTCAAGCGCATCTACGGCAACGACATCGAGAAAGT → 8750  
 TCCTGGACTGGTGGCTGGGGCGCTGGGACCCGTTGGAGTTGCTGCGCTAGATGCCGTTGCTGAGCTGGCGAGCTGGCGAGCG  
 E D L T T D P A T L A N L K R I Y G N D I E K I  
OMX  
 TGACACCCCTGGTGGCATGCTGGCGAGACCCGTGGCTGGAGCGCTTGGCTTGGCGAGACGGCGT → 8820  
 ACTGTGGGACCGCGTACGACCCGCTGGCACGGAGGCTGGCGAAGCGGAAGCCGCTCTGGCGAGCG  
 D T L V G M L A E T V R P D G F A F G E T A F  
OMX  
 CAGATCTTCAATGAACTCGCGGGCGCTGATGACCGACCGCTCTATACCAAGGACTACCGCCCG → 8890  
 CTCTAGAAAGTAGTACTTGGAGCGCCGGACTACTGGCTGGCGAGATATGGTTCTGATGGCGGGCG  
 O I F I M N A S R R L M T D R F Y T K D Y R P  
OMX

3AN

19/46

AGATCTACACCCGGGAGGGCCTGGCTGGG. TAAACACCAACCATGGCGACGCTCTAAACGCCACAA → 8960  
TCTAGATGTGCGGGTCCCCGACCGGACGGAGCTTGTGTTGGTACCAAGCTGCACGGAGTTGCGGTGTT

E I Y T A E S L A M V E N T T M V D V L Y P H N  
OMX

TCCGCAGCTGCTAACAGCTGGTGGCGTGGAAAAGCCCTCAAACCTGGGGCTGAACTGGGGCGG → 9030  
ASGGCTGGACCAAGCTTCGGACCAACCGCACCTTGGAAAGTTGGGACCCCCGGACTTGTAGGGCGG

P O L V N S L V G V E N A F K P W G L V I P A  
OMX

GACTACGAGAGCTGGCGGGCAAGGCCAAGCAGGACAACCTGTGGGTCAACGGGCCNTGCGCACCCAGT → 9100  
CTGATGCTCTGACCGGGCCGTTGGTGTGTTGGACACCCAGTTGGCGGGAGACGGCTGGGTCA

D V E S W P G K A K C D N L W V N G A ? P T D  
OMX

ACGCCGCGAGCTGGCGGATTGGCGGCTGGCGGCTGGACGCTGGCGGCTGATGAGTGGCTGCTGGAA → 9170  
TGCGGGCTGGCTGGACGGCGGCTAAAGGCGGCGACCTGAGGCGGCGGAGCTAGTCAGGCAACGAGGCGG

Y A A G C L P A I P P I C V G G L I S E + L W K  
OMX

GAAGGTGAGACCAANTGGACGTGGCGGCGGCGCTACGAGAAGGCCATGGCACGGCGGATGGCGTGGAT → 9240  
CTTECACGCTGGCTAGGGCTGACCGCGGCGGCGGCGATGATGTTGGCTGGCTGGCGTGGCGACTAC

K V G T + S C V A P A G Y E K A M H P + S V M  
OMX

GCGAAGGTCAAGTTCACCGCGCTGGCGGGGACGGCGCTACACCGGGCTTTCAGGGCTGGCGGCGC → 9310  
CGGTTCGAGCTGGCGGCGCTGGCGGCGCTGGCGGCGCTGGCGGCGACAGGGCGGCGGCGGCGGCG

A K V X F T A V P G H P V T G L F G S A D S S  
OMX

TGCTGGCGCTGGCTGGCGGCGGCGACCGCGGCTGGCGGCGCTGGCGGCGCTGGCGGCGCTGGCGGCG → 9380  
ACGACCGCGACAGGCGACGGCGGCGCTGGCGGCGCTGGCGGCGACAGGGCGGCGGCGGCGGCGGCG

L L R L S V A G D P A T N G F O P G L A A K A F  
OMX

CGTCGACGGCAAGCCGCTGCAGAACGTCCTGGCGCTCTACACCCCTGAGGGGGAGGGCACCAACCAAC → 9450  
GEAGCTGGCTGGCGAGCTTGCAGAGGCGCGAGATGTGGGACTGGCGGCGCTGGCGGCGCTGGCGGCG

V D G K P S O N V S A L Y T L S G G S S V H N  
OMX

TTCTTCGCAACGGAGCTGTCGAGTTCGCTGGCGAGACCAACGATACCCCTGGGACCCACGGCTGCTGT → 9520  
AAGAAGCGGTTGGCGACACGCTCAAGCAGGAGGGACGGCGCTGGCTGGCTATGGGACCCGCTGGCGGACGACA

F F A N E L S O F V L P E T N O T L G T T L L  
OMX

3 AO

20/46

3AP

21/46

GGCTCCCGAAACCCCCCGCTTGGCCCCGCTGCCCTTGCCAAACGCCACSSGTGCTGCTGCGC  
 CCCAGGGCGTTGGGGCGGAACGGGGGAGCGGAAGGGAAAGGGGTTGGTGGTGGGAGGG  
A P A S P A L R P L P F A F A K R H G V L - P  
XcpR  
 → 10220

GAGCCCTTGCGGAGGTCAGCTCAAGGTGCCTCCCGCGTGCAGCTGGCCGGTGCAGGAGGGCG  
 CTCGGGAAGCGGCTCCAGGTGACGTCCACGCGGCGCACGGTEGGACCGGCGCACGGTCTCGGGTGC  
E P F G O V O L O V R R G A S L A A V D E A J  
XcpR  
 → 10290

CCTTCGGCCGGCCGGTGTGCGCTGCACTGGCTGGAGCCCGAGGCTTGAGCAGGGCTGGCCCTGGC  
 CGAAGGCGCGCGCAEGACGGCGACGTGACCGAACCTCGGCTCGGAAGCTCGTCTCGACCGGCG  
R F A G R V L P L H W L E P E A F E D E L A E  
XcpR  
 → 10360

CTACCGCGGACTCTTGAGGTGGGGAGATGGGGAGGCGATGGGTGCGAACCTGAGCTAGCGAGC  
 GATGGTGGCGCTGAGGAGGCTCAEGCGCTTACGGCTGGGAGCTAACGCGCTGAGCTGGATGGCG  
Y D R D S S E V R D M A E D M S A E L C - A S  
XcpR  
 → 10430

CTGGCCGAACTCACTCCGAAATCCGGCGACCTGCTGGAGGAAAGATGAGCGCGGATGAGCTGGCG  
 GACCGGCTTGAGTGAGGGCTTAGGGCGCTGGACGACCTGCTTACTGCGGGCTAGTGGCGGACT  
L A E L T P E S G D L L E D E D G A P I I P -  
XcpR  
 → 10500

TCAACGCCATCTCAGGGAGGGATCAAGGGGGCGCTTGACATCCACCTGGAAACCTGGAAAG  
 AGTTGGCGTAGGGAGTCGCTGGCTAGTTGGCGGGAGGCTGAGCTGGACCTTGGAAAGCTGGCG  
I N A I - S E A I K A G A E C D I H L E T F E - P  
XcpR  
 → 10570

CCTGGTGCTGGCTTGGCTGACGGCATCTGGCGAAGTGATGAGCGCGGCGGCGGCGGCG  
 GGACCAACACGGCAAAGGGAGCTGGCGTAGGGAGGCGCTTCACTAGCTGGCGGGCGCTGGACCGCG  
L V V R F R V D G I L R E V I E P R R E L A A  
XcpR  
 → 10640

CTGGCTGGCTGGGGGTCAAGGTATGGCGCGCTGGACATGGCGAGAAAGCGCGTACCGCGAGGCG  
 GACGACGAGGGCCAGTTCCAGTACCGCGGCGACCTGAGCGCTTGGCGGCGATGGCGCTGGCG  
L L V S R V K V M A R L D I A E K R V P D G  
XcpR  
 → 10710

GTATTTGGCTCAAGGTGGGGTGGAGGTGGATATGGCGCTGGACCTGGCGAGGCGGCG  
 CATAAAGGGAGTTCCAGGGCGGCTGGACCTATAGGGCGAGGGAGGGCGGCG  
R I S L K V G G R E Y S I R V S T L P S A N G E  
XcpR  
 → 10780

3AQ

22/46

3-AR

23/46

CCCGGAGTCCACCAAGCAGGGCTACCGGGGCGTACTGGCATCTACGAGCTGGTGTCTTGACGGACAG → 11480  
 GGGCCTCAAGGTGGTEGTCCCGATGGCCCGGCATGACCGTAGATGCTGACCACTAGAAGCTGTC  
 P E C H O D O S Y R G R T G I Y E L V I F D O O  
XcpR

ATGGCAGCCCTGGTGCACAAACGGGGGGTGAGCAGGGAGCTGATTCGCCACGCCGGAGGCTCGGCCGA → 11550  
 TAAGCGTGGACACACGTGTTCCGGGGCACTCGTCCTGACTAAGCGGTGCGGGGCTGGAGCGGGCT  
 M R T L V H N G A G E D E L I R H A R S L G P  
XcpR

GCATCCGGACATGGCCGGCGAAGGTCTGGAAAGGGGTGACCAGCTGGAAAGAAGTSTTGCGCGTGAC → 11620  
 CCTAGGGCGCTGCTACCGCCCGTCCACGACCTTCCCCACTGSGTGGACCTTCTTACAACGGGCACTG  
 S I R D O G R R K V L E G V T S L E E V L R V T  
XcpR

CCCGGAAAGAETGATGGCCGCTTCGAATACTACATEGCCCTGGATGCCAGGGGCCGCAAGAACGGGCTGC → 11690  
 GGCCCTTCTGACTACCGCCGAAAGCTTATGTAAGGGGACCTACGGTCCCCGGCGTGTCTTGGGAAAG  
 R E D  
XcpR

M A A F E Y I A L D A R G R O D K S /  
XcpS

TGGAGGGCGACAGGGCCCGAGGTGGCCAGCTGCTGGCGACAAACACTTGTGGCGCTGGGTTGAAAGTGG → 11760  
 ACCTCCCCGTGCGGGCGCTCACGGCGCTGACGACGCGCTTGTCAACAGCGGCGACGCGCGCT  
 L E G G S A R O V R O L L R D K O L S P - S / E  
XcpS

GCCGGTACGGCGAGGGAGCAAGGCCAGGGCTGGTGGCTTCAGGCTGGCGCTGGCGCTGGCGCTGGCG → 11830  
 CGGCCATGCGCTCCCTGCGGCTGGACCAAGGAACTGGACGCCGCGGACCGGCGACGCGCGCTGGCG  
 P V G P R E B A E A G G F S L R R S L S A R D  
XcpS

CTGGGGCTGGTACCCGTCAGCTGGCGACCCCTGATGGCGCCGCGCTGGCCATGGAGGAAAGCGCTGGCG → 11900  
 GACGGCGACAGTGGCACTGACCGCTGGGAATGCGCGGGCGACGGGTAGCTCTTGGCGACGCGCG  
 L A L V T R O L A T L I G A A L P I E E A L R  
XcpS

CGGGCGCCGCGCTGGCGACGGCGCTGGCGCGCTGGCGCGCTGGCGCGCTGGCGCGCTGGCGCGCTGGCG → 11970  
 GGGGGCGGGCGCTGGCGCGCTGGCGCGCTGGCGCGCTGGCGCGCTGGCGCGCTGGCGCGCTGGCGCG  
 A A A A O S R O P R I O S M L L A V R A K V L E  
XcpS

GGGCCACAGGCTGGCAAGGGCGCTGGCGCTTACCCGGCGCCCTTCCCGAGCTGTACCGGGCGACGGCG → 12040  
 CGGGGTGCGAGCCGGTCCGGACGGAGATGGCGCGCGGGAGCTGGACATGGCGCGGTGGCGAC  
 G H S L A K A L A S Y P A A F P E L Y R A T V  
XcpS

3AS

24/46

CGGGCCGGCGAGCATGGGGCACTGGCGCAGTGGAGCAGCTGGCCGACTACACCGAGCAGCGCC → 12110  
 CGCCGGGGCTCGTAEGCCCCGTGGACCGCGGCCAEGAACTCGAACCGGCTGATGTTGCTCGCGG  
 A A G E H A G H L A P V L E O L A D Y T E O R  
XcpS

AGCAGTCGGCGAGAAGATCCAGATGGCGCTCTCTACCCCGTGAETCTGATGCTGGCTTGCATGGCAT → 12180  
 TCGTCAGCGCGTCTCTAGGTCTACCGCGAEGAGATGGGCACTAGGACTAEGAGCGAAGGGACCCGTA  
 D O S R O K I O M A L L Y P V I L M L A S L G I  
XcpS

CGTCGGTTCTGCTCGGCTACGTGGTCCGGATGTGGTGGGGTCTCGTGAETCCGGCAGACCCCTG → 12250  
 GCAGCCAAAAGACGAGCGGATGCACCCAGGCTACACCAACCCCCACAAGCAGCTGAGGCCCCGCTGGGAC  
 V G F L L G Y V V P D V V R V F V D S G O T L  
XcpS

CCGGGCGCTGACCCGGGGCTGATTTCCTCACCGAGCTGGTCAAGTCTGGGGCGCCCTGGCCTATCGTCC → 12320  
 GGCGCGCACTGGCGCCGACTAAAAGGAGTCGACCACTTCAGGACCCGGGACCCGCTAGCAGG  
 P A L T R G L I F L S E L V K S W G A L A I Y  
XcpS

TGGEGGTGCTCGCGGTGCTCGCTCTTCGGCGCGCTTGGCGAGGGATCTGGCGCGCGCTGGCCTATCGC → 12390  
 ACAGGCCACGGAGCGCACGAGCGAAAGGGCGGGAAACGGGTGGCTCTAGACGGCGCGCGACCCGAG  
 L A V L C V L A F R R A L R S E D L P P P N H A  
XcpS

CTTCCCTGCTGGCGGTGCGCGCTGGTGGCTGATCGCCCGCCACCGAGACGGCACGCTGGCGCTGGCG → 12460  
 GAAGGGACGGACGGCACGGCGACGGCAACGGCACCCGACTAGCGGGCGGTGGCTCTGCCCTGCGAACGGCGCTGS  
 F L L R V P - V G G L I A A T E T A R F A S T  
XcpS

CTGGCCCATCCCTGGCGAGCGGGGTGGCACTGGTGGCGCTGGCGCTGGCGCTGGCGCGAGGTGGTGGTGGCG → 12530  
 GACGGTAGGACCAAGCGCTGGCGACGGCTGGCGACCCGACTGGCGACCGGTAGCCGGCGCTCCACACAGGT  
 L A I L V R S G V P L V E A L A I G A E V V S  
XcpS

ACCTGATCATCGCAGCGACGTGGCAACGCCACCGAGCGCTGGCGAGGGGGGAGCCCTGCGCCGCG → 12600  
 TGGACTAGTAGGGCTGCTGCACGGTGGGTGGCTGGCGACGGCTGGCGCTGGAGACGGCGCG  
 N L I I R S O V A N A T O R V R E G G S L S R A  
XcpS

CCTGGAAAGCCAGCGGGCAATTTCGGCGATGATGCTGCACATGATGCCAGCGGAGCTTCCGGCGAG → 12670  
 CGACCTTEGGTCGGCGCTAAAGGGGGCTACTACGACGTGTACTAGGGTGGCGCTCGCAAGGGCGCTC  
 L E A S R C F P P M H M I A S G E R S G E  
XcpS

3AT

25/46

CTGGACCAGATGCAGGGCGCAEGGGCGC      CAGGAAACGACCTGGCGGCACCCATEGGCTGCTGG  
 GACCTGGTCAAGACCGCGCTGGCTGGCTGGCTGGACCGGGGTGGTAGCCGGACGACC      1240

L D O M L A R T A R N D E N D L A A T I G L L  
XcpS

TGGGGCTGTTGAGCCGGTCATGGTATTCACTGGGGCGGGTGGTCTGGTATCGTGTGCTGGCCATCCT      12810

ACCCCGACAAGCTGGCAAGTACGACCATATAAGTACCCCGGCCACACGACCACTAGCACGACCGGTAGGA

V G L F E P F H L V F M G A V V L V I V L A I L  
XcpS

GCTGCCGATTCTTCTCTGAACCAACTGGTGGTTGATGCCATGTACAAACAGAAAGGCTCACGCTGA      12880

CGACGGTAAGAAAGAGACTGGTGGACCAACTATCGCTACATGTTGCTTCCGAAGTGGACT

M Y K O K S F T L  
XcpT

L P I L S L N O L V G  
XcpS

TCGAAATCATGGTGGTGGTCACTCTGGCATTCTCGCTGGCTGGCTGGCGGAGGTGATGGCGC      12950

AGCTTTAGTACCAACCAACCAAGTAGGAGCCGTAAGAGCGACGGGACCAACCGCGCTGCACTACCGCGC

I E I M V V V V I L G I L A A L V V P C I M S P  
XcpT

CCGGGACCAAGGCAAGGTCAACGGGGGEAGAACGACATEGGCGCCGGCGCTGGACATGTAC      13020

GGGCCTGGTCCGGTTCAGTGGCGGGGTCTTGTGCTGAGGGCGGGTACGGCGGCGGCGGCGGCGCTGACATG

P D O A K V T A A O N D I R A I G A A L D \* V  
XcpT

AAAGCTGGACAAACGAACTACCGAGCACCCAGGAGGGCTGGAGGGCCCTGGTGAAAGAAACGGCGA  
 TTGGACCTGTTGGTCTGTGATGGGTCTGGGTCTGGACETGGGGACACTTCTTGGCGGCGGCGGCGGCG  
13090

K L D N O N Y P S T O D G L E A L V K K P T S  
XcpT

CCGGGGGCGAAGAACCTGGAAACGGGGAGGGCTACCTGAAGAACCTGGGGCTGACCCCGGGCGGCG  
 GGGGGGGCGGCTCTTGACCTGGGTCCCGATGGACTTCTTGACGGCGACCTGGGGACCCGGGTTGG  
13160

T P A A K N W N A E G Y L K K L P V D P W G N O  
XcpT

GTACCTGTACCTGTGGCCGGCAACCCGGGCAAGATEGACCTGTATTGGCTGGGGCGCGACGGCAGGAA  
 CATGGACATGGACAGGGGGCTGGGGCGCTTCTAGCTGGACATAAGCGACCCGGGCGGCGGCG  
13230

Y L Y L S P G T R G K I D L Y S L G A D G O E  
XcpT

GGGGGGGAGGGGACGGACGGCGACATGGCAACTGGGATCTCTGACTCCAAATGGACGGGGCGGG  
 CGGGCGCTCCCTGGCTGGGGTGTAGGGTGGACCTAGAGACTGAGCGTTACGTGGCGGCG  
13300

G G E G T D A D I G N W O L .      M O R G R S  
XcpU

3AU

26/46

TCACTCTGATEGAGCTGCTGGTGGTGGCAG + 1350  
 AGTGAGACTAGCTGACGCCAACACGACCGACGGACCCGACAGAGTGGCCGGAGGGACAGAGCCGTC  
 F T L I E L L V V L V L L S V L T G L A V L G S  
 XcpV  
 CGGGATCGCCAGCCCCCGCGCAAGCTGGCGGACGAGGCCGAGCCCTGCAGTCGTCTGCCTGCGCTG + 13480  
 GCCCTAGCGGTCTGGGCGCGCTGACCCCTGCTCCGCTEGCGGACGTAGCGACGCCAC  
 G I A S S P A R K L A D E A E R L O S L L R V  
 XcpV  
 CTGCTEGACGAGGGGGTGTGGACAACCCGAGTATGGCTTACGTTGACGCCGGAGCTACCCGGTCC + 13510  
 GACCGAGCTCTCCCCACGACCTGTTGGCCCTCATACCGATGCGAAGCTGGGGCCTCGATGGCCCACG  
 L L D E A V L O N R E Y G V R F D A R S Y R V  
 XcpV  
 TGCGCTTCGACCGGGCACGGCGCGCTGGAGCCGCTCGACGAGCGCTGCACGAGCTGCCGAGCT + 13580  
 ACGCGAACTCGCGCGTGGCGACCTCGCGAGCTCTCGCGCACGTCTGACGCCCTCACCGA  
 L R F E P R T A R W E P L D E R V H E L P E W L  
 XcpV  
 CGAGCTGGACATGAGGTGCGACGAGCAGAGTGTCTGGCTGCCGCCGCCGTTGGCGAGGACAAACCG + 13650  
 GCTCGACCTCTAGCTCCAGCTGCTGCTCACAGCCGACGGGGGGGGGACCGCTCTGTTGG  
 E L E I E V D E O S V G L P A A R G E G D K A  
 XcpV  
 GCGGCCAAGGGCCACAGCTGCTGCTCTCGAGTGGCGAGCTGACCCCTTGCGCTGCCGCTGG + 13720  
 CGCCGGTCTCGCGTCTGACGAGGAGAGGTCAACGCTGACTGGGGAAAGCGGGAGGCGCTGGCG  
 A A K A P O L L L S S G E L T P E L D . S  
 XcpV  
 CGGGCCGCGACGGCGCGCCGGTGTGACGCTGGCGACGGCTTGCGCGAGGCGCTCGACGCG + 13790  
 CGCCGGCGCTCGCGCGCGCAEGACTGCGACCCGCTCGCTGGGAAGCGGGCTGGCGCTGAGCTG  
 A G R E R G A P V L T L A S D G F A E P E L D D  
 XcpV  
 GGAAAAGTCCTGATGAAGCGCGCCGGCTTACCTCTCGAGGTGCTGGTGGCCCTGGCGATTTG + 13860  
 CCTTTTCAGGGCTAETTGGCGCGGGCGGAAGTGGACGAGCTCACGACCAACGGGACCGCTAGAAC  
 E K S R  
 XcpV  
 M K R G R G F T L L E V L V A L A I F  
 XcpV  
 CCGTGGTGGCGCCAGCGTCTCGAGGCCAGCGCTCGCTGGCTGAAGACCGCCGGCGCTGGAGGACAA + 13930  
 GGCACCAAGCGCGGCTGGCACGAGTCGGGTGCGAGGAGGAGGACTTCTGGGGGGCGGGACCTCTGTT  
 A V V A A S V L S A S A R S L K T A A R L E D K  
 XcpV

3 AV

27/46

GACCTTCGCCACCTGGCTGGCGACAACCCCTGCAAGGAGCTGCAGCTGGCCGACGTGCCGCCGGAG → 14000  
 CTGGAAGGGTGGACCGACCGCTGTTGGCGACGCTCTCGACGTCACCGCTGCCACGGCGCTC  
 T F A T W L A D N R L O E L O L A D V P P S E  
 XcpV

GCGCGGAGGAGGGCGAGGGAGCTAEGCGGCGGCGCTGGCTSTGGCAAGAGEGAGGTGAGGCCACCA → 14070  
 CGCGCGCTCTCGCTCTCTEGATGGGCCCCCGCGACCGTCTEGCTCACGCTCGCTCGCTGGCT  
 G R E O G E E S Y A G R R W L W O S E V O A T  
 XcpV

GCGAGCCGGAGATGCTGGTGTACCGTGCGGCTGGCCGAGCGCGGGCTGAGGGCAAGAT → 14140  
 CGCTGGCCCTAACGACCGACAGTGGCATGCCACCGEGACGCGGCGCTCGEGGCCGACGTCCCCTCTA  
 S E P E M L R V T V R V A L R P E R G L O G K I  
 XcpV

CGAAGACCATGGTACCCCTGAGTGCTTCTCGGGTGCAGECATGAGGAGGGCTTCACCC → 14210  
 GCTCTGGTACGGGACCACTGGACTCACTGAAGGACCCCCAGCTGGTACTCTCGGCCGAAGTGGG

M P O R G F T  
 XcpV

E D H A L Y T L S G F V G V E P  
 XcpV

TGCTGGAAGTGCTGATECCATGCCATTTGCCCTGCTGGCATGGCACCTACCGCATCTGGACAS → 14280  
 ACCACCTCACGACTAGCGTAGCGGTAGAAGCGGACGACCGGTACCGGTGGATGGCACGAGCTG

L L E V L I A I A I F A L L A M A T Y R M I D S  
 XcpV

CGTGCTGAGACCGATCTGGCAAGCGGAGCTGGAGGAGCAGCGTCTGGCGACCTGAGCGGCGCT → 14350  
 CGACGGAGCTGGCTAGCAACGGTGGGGTCTGGCTCTGGAGACGCGCTGAGCTGGCGACGAGCTG

V L C T D = G O R O O E O R L R E - T S A \* I  
 XcpV

CCTTCTGAAACCGACCTGCGAGGTGGCGCTGGCTGGGTGCGCGAACCCGCTGGCGACCTGGCGAG → 14420  
 CGAAAGCTGGCTGGACGACGTCACGGGAGCGAGGCAAGGGCTGGCGACCCGCTGGACGACGGT

A F E R D L L O V R L R P V R D P L G D L L P  
 XcpV

CCTGCGCGCGAGCACTGGCGCGACCCAGCTGGAGTTCAACCGCAGCGGCTGGCGACCCGCTGG → 14490  
 GGGACGGCGCGCTGTCACGGGCGTGTGGGTGACCTCAAGTGGCGCTGGCGACCCGCTGGCGAGCC

A L R S S S G R D T O L E F T R S S W R N P L S  
 XcpV

CCAGCCGCGCCACCCACAGGGGTGGCGCTGGCACCTCGAAGGCGAGCGCTGGCGACCCGCTTACTGG → 14560  
 GGTGGGGCGCGGTGGGATGTEGCCCCACGGCGACCGCTGAGCTCCGCTGGCGACCGTGGCGAATGACG

O P R A T - O R V R W O L E G E R W O R A Y W  
 XcpV

3AW

28/46

ACGGTGCTGGACCAAGGCCAAGAACACCEAGK → GGGTGCAGCAGGGCGCTGGATGGCGTGCGCCCTTCG  
 TGCCACGACCTGCTCCGGTCTGTGGTCGGCGCCACGCTCGCGACTACCGCACCGCGGAAGC → 14600  
 T V L D A D S O P R V O O A L D G V R R F  
 XcpW

ATTTGGCTTTCGACCAAGGGGGCGCTGGCTGCAGGACTGGCCGCCGGCAACAGTGCCTGGCGACGA → 14700  
 TGAACCGGAAAGAGCTGGTCTCCCGCGACCGCTCTGACCGCGGGCCGGTGTCAAGACGGCTGCT

D L R F L D O E G R W L O D W P P A N S A A D E  
 XcpW

GGCCTGACCCAGCTGCGCGTGCCTGAGCTGGCTGCGAGCACGCCATTACGGTGAACTGCGCGT → 14770  
 CGGGGACTGGTCTGACGGCGACGGCAGCTGACCAAGCAGCTGTGGCGGTAAATGCCACTTGACCGCGCA

A L T O L P R A V E L V V E H R H Y G E L R R  
 XcpW

CTCTGGCGCTTCCCCAGATGCCGAGAACAGATCAEGCCGCCGGGGGAGCAGGCGGTGAGC → 14840  
 GAGACCGCGAACGGCTCTACGGCGTCGTCTTCTAGTSGGGGGCCCGCGTGTGGCGGACTCG

L V R L P E - M P O O E O I T P P G G E C G G E  
 XcpW

TGCTGGCGGAAGGCGGGGACCCGGAGGCACTGAGCCGGCAGCSCGGCGTGGCACTGATCACCGTGTGAGC → 14910  
 ACAGACGGCTTCTGGCTCGGGCTCGTACTGGCCGTCSCGGCGACCGTGAATGTGGCACGACGAC

L L P E E P E P E A  
 XcpW

M S R D R S V A L I T V L S  
 XcpX

GTGGTGGCCCTGGTGGCTGGCTGGCTGGCGGGCCCTGGCTGGCGCCAGCAGCTGGCCATGCCAGCGG → 14980  
 CACCAACGGGACCACTGGCACCAAGACGGCGGGGACGACCGACGGCGCTGCGGCGTGGCGTGGCG

V V A L V T V V C A A L L L R D Q L A I R S T  
 XcpX

GCAACCAGCTCTGGTGGCCAGGGCCAGTACTACGGCGAAGGGGGAGGTGCTGGCAAGGGCCCTGCT → 15050  
 CGTTGGTGAEGACCAEGCGGTCGGGTCTATGATGGCGCTTCCGGCGTCGACGACGGTTGGCGAEGA

G N O L L V R O A O Y Y A E E G G E L L A K A L L  
 XcpX

GCGTGGCGACCTGGCGCCGACCAAGGTGATCATCCGGCGAGCCCTGGGCCAACCCGGCCCTGGCGTTC → 15120  
 CGCAGCGCTGGACCGGGGCTGGTCAAGCTAGTAGGGCCGTCGGGACCCGGTGGGGCCGGACGGGAAG

R R D L A A D O V D H P G E P W A N P S L R F  
 XcpX

CCTCTGGATGAGGGGGGGGAGGTGEGCTGGCGATCGAGGACCTGGCCGGACGTTCAACCTCAACAGCC → 15190  
 GGGGACCTACTCGCGCGCTGACGGCGACGGCTGGTCAAGCTAGTAGGGCCGTCGGGACCCGGTGGGGCCGGACGGGAAG

P L D E G G E L R L R I E D L A G R F N L N S  
 XcpX

3AX

29146

TGGCCCCGGTGGTGAGGCCGCTGAGTTGGCCTGCTGCCCTGCGGCCCTGCTGCAAGTCGTGCAAGCT  
 ACEGGCGGCCACCACTCCGGCACTCAACCCGACGCCGACGCCGACGCCGACGACGTCACGGACGTCGA  
 L A A G G E A G E L A L L R L R R L L O L L O L  
 XcpX → 15260

GACCECCGGCTATGCCGAGGCCCTGCAGGACTGGCTCGACGGCGATCAGGAGGCCAGCGCATGGCCG  
 CTGGGGCCGGATAACGGCTCCCGGACGTCTGACCGAGCTGCCGCTAGTCCTCGGTGCCCTAACGGCC  
 T P A Y A E R L O D W L D G D O E A S G M A G  
 XcpX → 15330

CGCGAGGATGACCACTACCTGCTGCAGAAACCGCCCTACCGTACCGGCCCGGGCGCATGGCGAGGTGT  
 CGGCTCTACTGGTCATGGACGACGTCTTGGGGATGGCATGGCCGGGGCGCTAEGGCTCCACA  
 A E D D O Y L L O K P P Y R T G P G R I A E V  
 XcpX → 15400

CGGAGCTGGCCTCTGCTGGCATGAGCGAGGCCACTACCGCCCTGGCCCCCTTCCTGAGCGCCCT  
 GCCTCGACGCCGACGACGCCGACTCGCTCCGGTGTATGGCGGCCGACCGGGGAAAGCAGTCGCGGA  
 S E L R L L I G M S E A D Y R P L A P F Y S A I  
 XcpX → 15470

CGCGAGCCAGGTGAGCTGAAACATCAACACCGCCAGGCCCTGGCTGGCTGGCGAGGGCATN  
 CGGCTCGGTCAGCTCGACTTGAGTTGTGGGGCTCGGGACCACGACCGAACGGACCCCTCCCTAN  
 P S D V E L N I N T A S A L V L A C L S E S ?  
 XcpX → 15540

CCCGAGGCCGTCTGAGGCCCATCGANGTCGGGGCCAGCGGTATCGGAGGCCGCTGGCTGGCGAGGG  
 GGGCTCGGCCACGAGCTCCGGGTAGCTCCAGCGCCCGCTGGATAGGCCCTGGCGACSGAACG  
 P E A V L E A A I ? G R S R S G Y R F P A A F  
 XcpX → 15610

TCCAGCANCTTCCAGCTACGGCGTCACCCCGCAAGGGCTGGCATGCCAGCCAGTATTTCGGTGTAC  
 AGGTCTGNGAACGGTCATGCCAGTCGGCGTCCCGACCCGTAGCGGTGGCTATAAGGCACAGTG  
 V O ? L A S Y G V S P O G L G I A S Q Y F R V T  
 XcpX → 15680

CACCGAGGTGCTGCTGGGTGAGGGCGCCAGGTGCTGGCCAGTTATCTCAACGTGGTAATGATGGCG  
 GTGGCTCCACGACGACCACTCGCCGGTCCACGAACGGTCAATAGACGTTGCACCACTACTACCGGG  
 T E V L L G E R R O V L A S Y L O R G N D G R  
 XcpX → 15750

GTCCGGCTGATGGGGGGCATCTGGGGCAGGAGGCCCTGGCGCCCCACCCGTGAGGAGTCGGAGAAAT  
 CAGGGGGACTACCGCGCGTAGACCCCGTCTCCCGACCGGGGGTGGCAGCTCTCAGGCTCTTA  
 V R L M A R D L G O E G L A P P P V E E S E K  
 XcpX → 15820

3AY

30/46

5AGTCTGCTCACCTGTTCTCGCCCCAG → TGCACCGAGGGAGCCGACATGCCGTGTGCTGC  
 CTCAGACGAGTGCGACAAAGCAGGGGTCGGACGTGGCTCCGCTCGGGCTGTAACCCCACACACG → 15L  
 S L L T L F L P P O A C T E A S A D M P V W C  
 XcpY

GTCGAGAGGAGACAGCTGCCGTCACTGCCCCCTGGCGAGGCTTGCCTGGGGACGGCGGCTGCGCT → 15960  
 CAGCTCTEGCTGTGCTGACGGCASTCGAEGGGAAGCGGTCCGGAACGGCCGGCTGGCGGCCAGACGGGA  
 V E S D S C R O L P F A E A L P A D A R V W R  
 XcpY

TGGTGCCTGCCGGTGGAGGGCGTGACCACTGTGTGCTGCAGTTGCCAACCAACGGCACGCTGGCTGGC → 16030  
 ACCACAGACGGCACCTCCGGCACTGGGACACACACAGCTAACGGCTGGGGTCCGGACCCACCG  
 L V L P V E A V T T C V V O L P T T K A R W L A  
 XcpY

CAAGCCCCCTCCGGTTCGCCCTGAGGAGCTGCTGGCGAGGAGGTGGAGCAAGTTAACCTTCCGGTGG  
 GTTCCGGGACGGCAAGGGGAGCTCCCTGAGGACCGGCGCTCTCCACCTCGTCAAAGTGGACACGGCAAGCA → 16100  
 K A L P F A V E E L L A E E V E O F H L C V S  
 XcpY

AGECCGGCTGGCTGGATGGTCTCATGGTGTCTGGCCCTGCCGGCGAGTGGCTGGCCGGCTGGCTGGCG  
 TCGCCGGACCAAGCTACCAGCACTAGGACAACTACGGGACGGCGCTAACGGACCCGGGACCGCGCG → 16170

S A L V O G P H R V H A L R R E W L A G W L A  
 XcpY

TGTGGGGGAGCCGCCGGCTGGATEGAGGTGGAAAGCCGACCTGGCCGGAGGGAGGGTAAACCGC → 16240  
 AACACGCCGCTGGCGGGCGCTCACCTAGCTAACCTGGGCTGGAAACGGGCTGGCCGGCTGGCGCG  
 L C G E R P P C W I E V D A D L L P E E S S L  
 XcpY

CCTCTGGCTSSCGAGGEGCTGGCTGGCGGGCTGGCGAGGGCGCGCTGGCCCTGGCTGGCGAGGAG  
 CGAGACGGACCCGCTGGGACCAACGAGGCGCCAGCCGGCTCCCGCGGGAAACGGGACGGACCGCGCTGG → 16310  
 L C L G E R W L L G G S S G E A R L A L R G E D  
 XcpY

TGCCCGCAGCTGGCGGGCGCTGTCCGGCCGGCAAGCCATGTGCCGGGGGGAGGGCGGGCGCGCG → 16380  
 ACAGGGCGTCAGCGCCGGAGACAGGGCGGGGGCGTGGATAACAGGGGGGGCGTGGCCGGCGCG  
 W P O L A A L C P P P R O A Y V P P G O A A P  
 XcpY

CGGGCGCTGAGGCGCTGCCAGACGCTGGAGGAGCCGCTGGCTGGCTGGCTGGCCGGCGAGAAAGTGGCGTGCAG → 16450  
 GCGGGCAAGCTGGGAEGGCTGGACCTGGCAACGGAGACGGACCCGGCGCGTGGCCGGCGCG  
 P G V E A C O T L E O P W L W L A A O K S G C N  
 XcpY

3AZ

31/46

CCTGGCCCAGGGCCCTTGCCTGGCTGGCA. TTCCGGCCAGTGGCAGGCCCTGGCGCCGCTGGCGGG  
 GGACCEGGGTCCCCGAAAGCAGGCCAGGCTCGGAAGGCCGCTACCCCTCGACCCGCCGCGACCEGCCCC  
 L A O G P F A R R E P S G O W O R W R P L A G  
 XcpY  
 CTGCTCGGTCTGGCTGGTGTGCAKTGGGGCTTCACCTTGCCCANGGCTGGCAGCTGCAGCGAGG  
 GACGAGCCAGAGACCACGACGTHACCCGAAGTTGGAACGGGTCCTGACCGTGCACGTGGCGCTCC  
 L L G L W L V L ? W G F N L A ? G W O L O R E  
 XcpY  
 GTGAACGCTATGCCGTGGCCAACGAGGGCGTGTATGCCGAGCTGTTCCCGAGGATCGAAAGGTGATCAA  
 CACTTGCGATAACGGCACCGGTTGCTCCGGCACATAGCGCTCGACAAGGGGCTCTAGCGTTCACTAGTT  
 G E R Y A V A N E A L Y R E L F P E D R K V I N  
 XcpY  
 CCTGCGTSCGGAGTTGACCEAGCACCTGGCGAGGEGGCTGGGACCGGGCAGAGCCAGTTGCTGGCCCTG  
 GGACCCACGGTCAAGETGGTGTGGACGGCTCCGGCACCTGGGGTCTGGTCAACGACCCGGAC  
 L R A C F D O H L A E A A G S G O S O - L A S  
 XcpY  
 CTCGATCAGGEECCGGCGGCCATGGCGAAGGGGGGGCGAGGTGCGAGGTTGATCACTGACTTCACCG  
 GAGCTAGTCCGGCGGCCGCGCTAGCCGTTCCCCCCCCTCGTCAAGTCACCTGACSTGAGTTGS  
 L D O A A A A A I G E S G A D O V O V D B L D F N  
 XcpY  
 CCCAGCGTGGCGACCTGGCTTCAACCTGCGTCCAGCGACTTCGGCGCGTGGAAAGCTGGCGCGCG  
 GGGTGGCAACCGTGGACGGAAAGTTGGACCGACGGCTCGAACGCGCGEGACCTTGGACGCGCGCG  
 A O R G D O L A F N L R A S D F A A L E S - R A P  
 XcpY  
 CCTGCAGGAGGEEGGCCCTGGCGTGGACATGGCTGGCGAGGCCGAGGACAACGGCTTASTGGCG  
 GGACGTCCTGGCGCGACGCCACCTGTACCCGAGGCCCTGGCGCTCTGTTGGCGCASTCAACGGCG  
 L O E A G L A V D M G S A S R E D N G V S A R  
 XcpY  
 CTGGTGTGATGGGGTAACGGATGAACGGCTGCTCATGCAATGGCAAGGGCGCTGGGCGAGAACCTT  
 GACCACTAGCCCCCATGGCTACTTGGGGACGGAGTACGTTACCGTTGGCGEGGGACCGCGTGGAA  
 L V I S G G N G .  
 XcpY  
 M N G L L M O W O A R L A O N P E  
 XcpZ  
 GATGCTGGCGTGGAGGGCTGGCGCCACGGCAAGGGCTGGCGCTGGCGCTGGCGCTGGCGCTGGCG  
 CTACGACCCGAACTGGTCCCCGACGGGGCTGGCGCTGGCGSACCGGGACCGGGACGCGACGGAGGA  
 M L R W O G L P P R D R L A L C L A A F L L  
 XcpZ

3BA

32/46

CTGGTGTGTTGTAACCTGTTGTCGGCGGC 3TCAGCCAGAACCTGGACCGGGCGCGCGCTTCTGC → 17150  
 GACCAACGACGACATGGACAAACGACACCGCCGGCCAGTEGTTCTTGACCTCGCCCC3CGCGCCGAAGGACG  
 L V L L Y L L W R P V S O N L E R A R G F L  
XcpZ

AGCAGCAGCGTACGCTGCACGCCACTCTGCACGGAGCATGCACCCAGGTGGCGGCACGGCAGGTGCGACC → 17220  
 TCGTCGTCGATGCGACGTCGGATGGACGTCCTGTAACCTGGCGTCCACGCCCGTGCCTCAGCGTGG  
 Q Q O R T L H A Y L O E H A P O V R A R O V A P  
XcpZ

GCAGGCCAGTATCGAGCCCTGCCGEGCTGCAGGGGTTGGTGACCGCCAGTGCCTGCCAGCCAGGGGCTGAAT → 17290  
 CGTCCGGTCATAGCTGGACGGCGCAGTCCCCAACCAACTGGGGTCACGGGGTCGGTCCCCGACTTA  
 Q A S I E P A A L O G L V T A S A A S O G L N  
XcpZ

GTCGAGCGCTGGACAAACCGGTATGGTGGCTGCAGGTGAGCCCTGCAGCCGGTCAAGGTTGCGAGTTGCGCGTC → 17360  
 CAGETCGAGACCTGTTGGTCCACTACCAACGGAGTCACCTGGACGTCGGCACCTAACGGGGCAG  
 V E R L D N \* O G O G G L O V S L O P V E F A R  
XcpZ

TGCTGCAGTGGCTGGTGAGCCCTGCAGGAGCAGGGCGTGCCTCGAAGAGGCCGGTCTGAAACGTGCGA → 17430  
 ACGAEGTCACCCACCAACTGGAGCTCTEGTCCCACGCGCAGCTTCCTGGCCAGAACCTTCAEGGCG  
 L L O W L V S L O E O G V R V E E A G L E R A D  
XcpZ

CAAGGGGCTGGTGAGCAGCCCTGCTGCTGCGTGCCTGGAGCCCGGTGCACCAACGGAGTGCCTGCG → 17500  
 GTTCCCCGACCACTCGTCGGCGGACGAGCACGCCAACCTGGGCCACGTGGTCCGCTAACGCAAC  
 K G L V S S R L L R A G  
XcpZ

GCACTCGCCGGAGCCTGGAAAACCGTCCCGAAGAAAAATTCAAGCAGGTGTTGACTTACCTATG → 17570  
 CGTGAGCGCCCTCTAGACCTTTGGCGAGGCGTTCTTTAAGTTCGTCCACAACGAAATCGATAAC  
 ←————→  
 ACCTCTNCGTCAATTGGCGCCCTGCANCGTAACGGCTGGAT → 17612  
 TGGAGANGCAGTTAACGGCGGGAGCGTNCGATTGGCGACCTA

3BB

33146

GAATTCCCCCGGAGCTGCCAAGCCGCTGGGGCGGTGACCGCACAGAAAGGAAGTGGCAGCGTGCCTGC  
 CTTAACGGCGGGCTCGACCGGTTGGGGACCCCGGCCACTGGCSTGCTTCTTCACTCGACGGGAAG  
 GCGACCTCGACCTGCCCTCGACGGCCCGTCCCCTACGCCCTGCCCGCTCGCCGCGACCGCGATCGGAGGC  
 CGCTGGACGTGGACGGGAAGCTGCTCGCCGGCAGGGATGEGGGAEGCCGGCAGAEGCGCTGGCGTAGCTCGG  
 CAATCTCTCGGCCCTGATGGGCCCCAGCGTGGCCCAGGACATGGTGGAAAACCTTCTGCCCTACAAGGCC  
 GTTAGAGAGGCCGACTAECGGGGTGCACCGGCTCTGACCACTTGGAAGGACGGGATGTTCCGG  
 GGCAGCGAGGCCATGTCAGCGAACACATCCACTTCATCGAGAGTCGCCCTGGAGGGATTACCACTCGGCC  
 CGCTCGCTCGGATAACAGTCGCTTGTAGGTGAAGTAGCTTCAGCGGACCTCTTAATGGTCAGCGCG  
 TCACCGGCTGGCGCCGAGCTCGACGGCTGGCGCGCTTGACCGGCCAGACCGCTGCAGGAAGTGGCGAT  
 AGTGGCGGACCGCGCTCGAGCTGCACGCGCCGAAAGTGGCGCTGGACGCTGGCGCT  
 GGGCGTATGTTGCTGGCAAGGACCAGGAAGTGTGATGGAACCGCGCCATGGAGGAAGCTGCCCG  
 CCCGCATACAAGCGACCGGTTCTGGCTTCAGGACTACACCTTGGCGCGTACCTTGTAGTCGGCG  
 G V C S L A K D O E V L M W N R A M E E L T S  
 ATCACCGCCAGCGAGGTGGCTGGCTGGCCCTGCTAACCGCTGGACGCCCTGGCGGAGCCTGCGCG  
 TAGTGGCGCTGCTTGACCGAGCGGGACGAGCTGGACCTGGGGACCGCGGAGCAGCGCG  
 I S A O O V V G S R L L S L E H P W R E - - -  
 ACTTCATCGCCCAAGGACGGAGGAGCACCTGCCACAAGCGACCGCTGAACTGGACGCCGAGGCTGGCG  
 TGAAGTACGGGTCTGCTCTGGAGCTGTTGGACGTTGCTGGACGTTGACCTGCCGCTCCACGGACCGA  
 D F I A O D E E H L H K D O H L O L D G E V R W L  
 CAACCTGCAAAAGCCGGCATCGACGAACCGCTGGCGCCGGCAACAGCGCCCTGGTGTGCTGGCGAG  
 GTTGGACGTGTTCCCGGTAGCTGCTTGGCAACGGGGCGTGTGCGECGGACCCAGCAGCGACCGCT  
 N L H K A A I D E P L A P G N S G L V L L V E  
 GACGTCAACGAGACCCGGTGTGGAAAGACCACTGGTGACTCCGAGCGCTGGCGACCGATGGCGCG  
 CTGCAAGTGGCTCTGGCGACCGACCTTGTGCGACCACTGAGGCTGCGAGACCGCGTGTAGCCGGCG

4A

34/46

TGGCCCCGGGTTGGCCACGGAGATCGGCA → TGGTACCGGATCCTGCCTGGCCAGAACCTGCG → 770  
 ACGGGCGGGCCCACCGGGTCTAGCGGTAGGCCAGTGCGACGGACEGGCTTGGACSC

L A A G V A H E I G N P Y T G I A C L A O N L R  
LpQ

CGAGGAGCGGAGGGCGACGAGGAGETGGCCAGATCAGAACAGATCTGACCCAGAACCAAGGGATC → 840  
 GCTCTCGGCTCCCGCTCTCGACCCGCTCTAGTCGTTGGCTAGGAGCTGGCTGGTCCGGTAG

E E R E G D E E L G E I S N O ! L D O T K R !  
LpQ

TCGGCATCGCCAGTCGCTGATGAACCTGGCCACGGGGCCAGCAGCGEGGCGAATACCCGTGA → 910  
 AGCGCGTAGCGAGTCAGCGACTATTGAAGGGGTGGCCGGTCTGCTGCGCGGETATGGCCACT

S R I V O S L M N F A H A G O O O R A E Y P V  
LpQ

GCCTGGCCGAAGTGGCGCAGGACGGCATEGGCTGCTGCTGAAACGGCATGGCACCGAAGTGGCTT → 980  
 CGGACCGGCTCAACGGCTCTGGTAGCGGACGACGGACTTGGCGTACCGTGGCTCACTGCA

S L A E V A D O A I G L L S L N R H G T E V O F  
LpQ

CTACAACCTGTGCGATCCCGAGCACCTGGCAAGGGGAAAGGGCGAGGGCTGGCCAGGTGCTGATGAC → 1050  
 GATGTTGGACACGCTAGGGCTGGACGGTTCCCGCTGGCGTGGGACGGCTGGCTGGCTGCGTCA

Y N L C O P E H L A K G D P O R L A C V L : N  
LpQ

CTGCTGTCCAACGCCCGCATGCTGGCCGGGGGTGGCTGGCTGGTGGTGGGAGGGCGAGGAGG → 1120  
 GAEGACAGGTTGGGCGTACGGAGGGCGGCGGCGGACGGTGGGCGACGGCTGGCTGGCTGGCTGG

L L S N A R S A S P A G G A I R V P E E A E E  
LpQ

AGAGCGTGGTGTGATGCTGGAGGAGGGACGGGATGGCGATGGCGATGGGCGATGGGCGATGGGCG → 1190  
 TCTGGCACCGACTAGGACGCTGGCTGGCTGGCTGGGCGTGGGCGACGGCTGGCTGGCTGGCTGG

O S V V L I V E D E G T G I P O A I M D R L F E  
LpQ

ACCCCTTTCACCAACCAAGGACCCGGCAAGGGCACCGTTGGGGCTGGCTGGCTATTGATGCTG → 1260  
 TGGGAAGAAGTGGTGGTCTGGGCGGTGGCTGGGCGAAACGGGAGGGCGACGATAAGCTGGCAC

P F F T T K D P G K G T G L G L A L V Y S I V  
LpQ

GAAGACGATTATGGCGAGATCACCACTGACAGCGGGCGGATCGGACGACGGCGGAACCGCTTGC → 1330  
 CTTCTGGTAATAACCGCTAGGGTAGCTGGTAGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCAAAAGG

E E H Y G O : T I O S P A D P E H O R G T R F  
LpQ

4B

35/46

SGGTGACCCGTGGCGCTATGTEGAAGCGAC...CCACAGCGACCTGACTAGTGACCTAGAACCGCGAGG 1400  
 CGCACTGGGACCCGCGATAACAGCTTGGCTGCCAGGTGTEGCTGGACTCATCACTGGATTTGGCGGCTCC  
 R V T L P R Y V E A T S T A T  
 LpR

GGCACAAAGCCCCGGGATTGGAGACCGTCAGAGAGAACACAATGCCCATATCCTCATESTCGAAGAGG 1470  
 CGGGTGTTCGGGCGCCTAAGCCTTGGAGCTCTTGTGTACGGCGTATAGGAGTAGCAGCTTCG  
 M P H I L I V E D  
 LpR

AAACCATCATCCGCTCCGCCCTGGCGCCCTGCTGGAACGCAACCAAGTACCCAGGTACGGAGGCGGTTC 1540  
 TTGGTAGTAGGGAGGGCGGACGGCGGACGACCTTGGCTGGTCAAGGCTGGACGCTGGCTGGACGCCAAG  
 E T I I R S A L R R L E R N O Y Q V S E A G S  
 LpR

GGTCAAGGAGGCCAGGAGCGCTACAGCATCCGACCTTGGACCTGGTGGTCAAGGACCTGGCGCTGCC 1610  
 CCAAGTCCTCGGGTCCCTGGATGTCGTAAGGCTGGAACCTGGACCACAGTCGCTGGACGCCGACGGS  
 Y D E A Q E R Y S I P T F C L V V S D L R L P  
 LpR

GGECCCCCGGACCGAGCTGATCAAGCTGGCGACGGCACCCCGTACTGATCATGACCAGETATGCCA 1680  
 CGCGGGGGGGCGTGGCTGGACTAGTTCGACCGGCTGGCGTGGECATGACTAGTACTGGCTGATACGCT  
 G A P G T E L I K L A D G T P V L I M T S Y A  
 LpR

GCTGCGCTGGCGGTGGACTCGATGAAGATGGGGGGGTGGACTACATGCCAAGCCCTGGATCACGA 1750  
 CGGACGCGAGCCGCCACCTGAGCTACTTGTACCCGGCCACCTGATGTAGCGGTGGGAAGCTAGTGT  
 S L R S A V D S M K M G A V D Y I A K P F D H D  
 LpR

CGAGATGCTCCAGGCGGTGGCGCTATCTGGCGATCACAGGAGGCCAAGGCAACCCGCCAACGCG 1820  
 GCTTACGAGGTCCGGCAACGGCGATAGGACGGCTAGTGGTCTGGCTGGGTGGCGGTGGCGTGGCTC  
 E H L O A V A R I L R D H O E A K R N P P S E  
 LpR

GCGCCCAGCAAGTCCGGCGCAAGGGCAACGGCGCCACCGCGAGGGGAGATGGCATCACGGCTCT 1890  
 CGCGGGTGTTCAGGGGGCGTCCCGTGGGGGTGGCGCTCCGGCTAGGGTAGTGGCGAGGA  
 A P S K S A G K G N G A T A E G E I G I I G S  
 LpR

GCGCCGCCATGGCAGGACCTTACGGCAAGATCGCAAGGTGGCTCCACCGATTCAACGTACTGATCA 1960  
 CGGGGGGTACGTCTGGAAATGCCGTTAGGGTCCAGGGAGGCTGGCTAAGGTTGATGACTAGGT  
 C A A M O D L Y G K I R K V A P T D S N V L I O  
 LpR

4C

36146

GGGCGAGTCGGCACCGCAAGGAGCTGGT...CGTGCCTGCACAACTCTGGCTCGGCCAAGGCA → 2030  
 CCCGTCAAGGCCGTGGCGGTTCTCGACCAGCGCCACGGCAGCTGTGAGAGEGCAGCGCGGTTCGT  
 G E S G T G K E L V A R A L H N L S R R A K A  
LpR

CCCGTGATCTCGTGAACTCGCGGCCATCCCCGAGACCTGATCGACTCGAACGTGTTGGCCACGACA → 2100  
 CGCGACTAGAGCCACTTGACCGCGEGGTAGGGCTCTGGACTAGCTAGGCTTGACAAGCCGTGCTT  
 P L I S V N C A A I P E T L I E S E L F G H E  
LpR

AAGGTGCCTCACCGGCCAGCGCCGGCGCCGGCTGGTGAAGCGBEEGACGGCGGACCCGTGTT → 2170  
 TTCCACGGAAGTGGCGEGGTGGCGGCGGCGGACCGCTTCCCGGCTGCCCCCGTGGACAA  
 K G A F T G A S A G R A G L V E A A D G G T L F  
LpR

CCTCGACCGAGATCGCGAGCTCGCGAGCTGGAGGCCAGGCCCGCTCGCGCTGCTGAGGAGGGCGAG → 2240  
 GGAGCTGCTTACCGCTCGACGGCACTCCGGTCCGGCGGACGACGEGCACGACGCTTCCGCTC  
 L D E : G E L P L E A O A R L L R V L D E G E  
LpR

ATCCGTGGCTCGCTCGTGCAGTCACAGAACGTCATGTACGCGCTGATGCCGCTACCCACCGCAAC → 2310  
 TAGGCAAGCCAGCGAGCACGTEAGTGTCTCCAGCTACATGCGGACTAGCGCGATGGTSSCGCTGG  
 I R R V G S V O S O K V O V R L I A A T H R D  
LpR

TCAAGACGCTGGCAAGACCGCCAGTCCGEGAGGACCTCTACTACCGCTCGACGTCATGCCCTCAA → 2380  
 AGTTCTCGACCGCTCGCCGCTCAAGGCGCTCTGGAGATGATGGCGAACTGCGAGTACCGGGAGTT  
 L K T L A K T S O F R E D L Y V R L H V I A L K  
LpR

GCTGGCGCACTCGCGAGCGGGGCCACGTCACAGAGATCGCCCGCTCGCGCTGCGCTGCGCTGCG → 2450  
 CGACGGCGCTGACGEGCTCGCCGGCTGCAAGTTGCTCTAGCGGGCGGAAAGGACGACCGCGTCACG  
 L P P L R E R G A D V N E I A R A F L V R O C  
LpR

CAGCGCATGGCGCGAGGACCTGGCTTGGCTCAGGATGCCGAGCAGGGATCGCCACTACCCCTGGC → 2520  
 GTGGCGTACCCGGCGCTCTGGACCGCGAGCGAGCTACGGCTCGTCCGCTAGGGCGTGAATGGGACCG  
 Q R M G R E D L R F A O D A E O A I R H Y P W  
LpR

CGGGCAACGTGGCGAGCTGGAGAATGCCATCGAGCGCCGGTGAATCTCTGGAGGGCGGAAATTG → 2590  
 CGCCGTTGCAACCGCTGACCTCTACGGTAGCTCGCCGCGCACTAGGAGACCGTCCCGCCCTTAAAG  
 P G N V R E L E N A I E R A V I L C E G A E I S  
LpR

4D

37146

46

38146

AGCAGGGCTGCACTGGTGGGTATGGAA → TCAAGGCCAGCATCACCATCCAAACCAATCCGTTGC  
 TTEGTCGGGGACGTGACCAACCCAGTACCTACTAGTCCGTCGTAGTCGTAGGTTCTGTTAAGCAAACG 3290  
  
 TCCTGGTACCGATTGGGCTACCTGAAACGGGCTACAACAAAAAACAGGGCCGACAATAATAAA  
 AGGACCATGGGCTAAACCCGATGGACTTGGCCGGATGTTGTTTGTGTCGGGGGTGTTATTATTT 3360  
  
  
  
 ACAAAACGACGACCTATTGGGGGGGAGCTTGGCTCCCCAGTAGETTCACCCCACCTCGCGTCCCCA → 3430  
 TGTTTCGTGCGTGGATAAACCCCCCTEGAAGCCAGGGGTCTGAAGTGGGGTGGAGCGAAGGGGT  
  
  
  
 GCCTGCCTTTCCACCATCCCCCTTCCCGATGCTAGAATCCGCGCAATECTCGCGCGATGTCGAATTST 3500  
 EGGAACGGAAAAGGTGGTAGGGGAAGGGCTACGATCTTAGGCGGTTAGGACCCCGTAGACGTTAACAA  
  
  
 GGCGGCCTATTGCAAAACAGTGCATCCCCATGCTGAAAAAGCTTCAAGTGTGTTGTTGACCTGCA → 3570  
 CGGGCGGATAAGGACGTTGTCACGTAGGGTACGACTTTTCGACAAAGTCAGCAAAGCAAGTGGAGAGT  
  
  
  
 AGGCCAAGCAACCCCCCGCAGCACGCCGGAAAGTCTGGGCCCCCGCCAGCATGGCTGCAACCGCCA 3640  
 TCGGGGTTCTGCGGGGGCTGCTGGGGCTTCAGAGGCCGGCGCGGCTGTAGGGACGTTGGCTGCT  
  
  
  
 K R Q A P P R S T P E V L G P P D H S . C F S S 3  
  
  
  
 GTTCAGCCCAATGGGTAAACGTTGGTGAGCGCTGAGAACGCCGGCTACCAAGGCTTGTGGCTGCTGCG 3710  
 CAAGTCGGCTTAAGCCATTGACCCACCTCGCGGACGTTGGCTGGCGATGGTGGGATAGGCAAGCG  
  
  
  
 F S R N A V N V V E R L O N A G Y D A T L S 3  
  
  
  
 GGCTGCGTACGCCACCTGCTGATGGCGTGCAGCCCAAGGACTTCAAGCTGGCCACCAAGCGCCACCCCCG 3780  
 CCGACGCATGCGCTGGACGACTAGCCGECAGTCGGGTTCTGAAGCTGCACCCGGTGGTGGCGTGGCG  
  
  
  
 G C V R D L L I G V O P K D F D V A T S A T P 3  
  
  
  
 ACCAGGTGGGGCCGAGTTGCAACGCCGGGTGATGGCCGCGCTTCAGGCTGGCGCATGTCATTT 3850  
 TCGTCCACGCCCGGCTAAAGCGTTGCGGGGCAACTAGCGGGCGCGAGTTGCAACGCCGATACAGTAA  
  
  
  
 E O V R A E F P N A R Y I G R P F K L A H V H F

4 F

39/46

CGGCGCGAGATCATCGAGGTGGCGACCTTCACAGCAACCACCCGCAGGGCGAEGACGGAGGAAGAACCG  
 → 3920  
 GCGCGCGCTCTAGCTCACCGCTGGAGGTGCTGGTGGCGTCCCCTGCTGCTCTCTGCTCG  
  
G R E I I E V A T F H S N H P O G D D E E D S  
Orz
  
 CACCAAGTCGGCCCGTAACGAGACGGGGCGATCCTGGCGGACAAACGTCAAGGCAGTCAGGAGACCGATG  
 → 3990  
 GTGGTCAGCCGGGCAATTGCTCTCGCCCGCTAGGACGCCGTTGCAAGATGCCGTCAGTCTCTCGCTAC  
  
H D S A R N E S G R I L R D N V Y G S D E S D  
Orz
  
 CCCAGCGCCGGAATTCAACCGCCCTGACTTCGACGTCAAGCGGAGCGCGTGCTGGACTATGCC  
 → 4060  
 GGGTEGGGGCGCTGAAGTGGTAGTTGGGGACATGAAGCTGCAGTCGCCCTCGCCACGACCTGATAACG  
  
A D R R D F T I N A L Y F D V S G E R V L D Y A  
Orz
  
 CCACGGCGTGCACGACAJCCGAACCGCCCTGATCCGCGTGAEGCGGACCCCCGAGCAGCGTACCTGGAA  
 → 4130  
 GGTGCGCAGTGTGTACCGCTGGCGACTAGGGGGACTAGCGCGCTGGGCTCGCGCGATGGACCTT  
  
H G V H D I R N R L I R L I G O P E D R Y L E  
Orz
  
 GACCCGGTACGGATGCTGGCGCCGTCGCTTCGCGGCAAGCTGGACTTCGACATCGAGAAACACAGCG  
 → 4200  
 CTGGGGCATGGTACGACCGCGGGCATGCGAAGCGCGGTTGACCTGAAGCTGTAGCTCTTGTGCG  
  
D P V R M L R A V R F A A K L D F D I E K H S  
Orz
  
 CGCGCGCGATECGCCGCGTGGCGCGATGCTGGCGGACATCCCTGCGCGCGCTGCGACCGAGGTGCT  
 → 4270  
 GGCACGGCTAGCGCGGACCGCGGCTACGACCGCGTGTAGGGACGGCGCGACAAAGCTGTCCACGA  
  
A A P I R R L A P M L R D I P A A R L F D E V L  
Orz
  
 CAAGCTGTTCTCGCCGGTACGCCGAGCGCACCTTCGAACTGCTGCTCGAGTACGACCTGTTGCGCCCG  
 → 4340  
 GTTCGACAAGGAGCGGGCGATCGCGCTCGCGTGGAACTTGAACGACGAGCTCATGCTGGACAAAGCGGGCG  
  
K L F L A G Y A E R T F E L L L E Y D L F A P  
Orz
  
 CTGTTCCCGGCCAGCGCCCGCGCCCTGGAGCGCGATC  
 → 4377  
 GACAAGGGCCGCGTGGCGCGGGACCTCGCCCTAG

L F P A S A R A L E R O

45

40/46



FIGURE 5

41/146



FIGURE 6

42146

figure 7



43/46



Figure 8

44/46

ATGCTGAAAAGCTGTTCAAGTCGTTG . CACCTCTCAAGCGCCAAGCAACGGCCCCGGAGCACGGGG  
 TACGACTTTTGACAAGTTCAAGCAAAGCAACTGGAGAGTTCGGGTCTGTGGGGGTCTGTGGGCC 70

M L K K L F K S F R S P L K R Q A R P R S T P  
 ORF

AAGTTCTCGCCCGGCCAACATTCCCTGCAACGCAGCCAGTTCAAGCCGAATGEGGTAAACCTGGTCCA  
 TTCAAGAGCCGGGCGCGGCTAAGGGACGTTGCGTGGTCAAGTCGGCTACGCCATTGACCACT 140

E V L G P R O H S L O R S O F S R N A V N V V E  
 ORF

GCGCCTGCAGAACGCCGGCTACCAGGCCATCTGGTCGGCGGTGGTACGCCACCTGCTGATEGGCGTG  
 CGCGGACGTTGGGGCCGATGGTCCGGATAGACCACGCCGACGCATGGCTGGACGACTAGCCGAC 210

R L O N A G Y D A Y L V G G C V R D L L I G V  
 ORF

CAGCCCCAAGGACTTCGAETGGCCACCAAGCGCCACCCCCGAGCAGGTGGGGCCGAGTTGCAACGCC  
 GTGGGTTCTGAAGCTGCACTGGTGGTGGGTGGGGCTCTCCACGCCGGCTAAAGCGTTGGGG 280

O P K D F D V A T S A T P E O V R A E F R N A  
 ORF

GGGTGATCGGCGGCCCTCAAGCTGGCGCATGTCATTCGGCCGGAGATCATCGAGGTGGCGACCTT  
 CCCACTAGCCGGCGGCGAACGTTGCACTGGTACACGTAAGCCGGCTCTAGTAGCTCCACCGCTGGAA 350

R V I G R R F K L A H V H F G R E I I E V A T F  
 ORF

CCACAGCAACCACCGCAGGGGACGGACGGAGAACAGCCACCTGGCCCCGTAACGAGAGCGGGCC  
 GGTGCTCTGGTGGGCTCCGCTGCTCTCTGCTGGTGGTCAAGCCGGGATTGCTCTGGCCCG 420

H S N H P O G D D E E D S H O S A R N E S G R  
 ORF

ATCCCTGCGGACAACTGCTACGGCACTGGAGAGCGATGCCAGCGCCGACTTCACCATCAACGCC  
 TAGGACCGCGTGTGCAAGATGCCGTAGCTCTCGCTACGGGTGGCGCTGAAGTGGTAGTTGGGG 490

I L R D N V Y G S D E S D A O R R D F T I N A  
 ORF

TGACTTCTGACGTCAAGCGCGAGCGCGTGTGACTATGCCACGGCGTGACCGACATCGCAACGCC  
 ACATGAAGCTGCACTGCGCGCTCGCGCACGACCTGATAACGGGTGGCCACGTGCTGTAAGCGTTGGGG 560

L Y F D V S G E R V L D Y A H G V H D I R N R L  
 ORF

GATCCGCCCTGATEGGCGACCCCCGAGCACCGCTACCTGGAAAGACCCGGTAACCGCATGCTGGCGCCCTACGC  
 CTAGGGCGACTAGCCGCTGGGGCTGTCGGCATGGACCTCTGGGCACTGGCTACGACGGCGGGCATGEG 630

I R L I G D P E O R Y L E D P V R H L R A V R  
 ORF

Fig. 9A

45146

TTCCGGCCAAGCTGGACTTCGACATL... SAAACACAGCCCCGGCGATCCGCCCTGGGCCGATG.  
AAGCGGCGGTTCGACCTGAAGCTGTAGCTTTGTCTGGCGGGCTAGGCAGGGACCGGGCTACG  
F A A K L D F D I E K H S A A P I R R L A P H  
ORZ

TGCGCGACATCCCCTGCCGCGCGCTGTTGACGGAGGTGCTCAAGCTGTTCTCGCCGGCTACGCCGAGCG  
ACGCCCTGTAGGGACGGCGCGGGACAAGCTGCTCCACGAGTTCCACAAGGAGGGCGATGCCGCTCGC  
L R D I P A A R L F D E V L K L F L A G Y A E R  
ORZ

CACCTTCAAACGTGCTCGAGTACGACCTGTTGCCCGCTGTTCCCGCCAGCGCCGCCCTGGAG  
GTGGAAGCTTGACGACGGAGCTATGCTGGACAAGGGGGCGACAAGGGCCGGTGGCGGGGACCTC  
T F E L L E Y D L F A P L F P A S A R A L E  
ORZ

CGCGATC  
→ 847  
GCGCTAG

R D  
ORZ

Fig. 9B

46146



**Figure 10 : Regulation model for lipase in *P. alcaligenes***