智能体与逻辑链阈值

政府违规信息智能核查系统

判定与输出规范 (v1)

1. 总体目标

为"严苛智能体(Strict Agent)"与"宽松智能体(Lenient Agent)"建立统一的判定逻辑、证据等级体系与输出格式,使两者在不同容忍度下协同工作、互不冲突。

2. 核心概念

2.1智能体类型

智能体	判定阈值	目标	特点
宽松智能体 (Lenient)	E1 及以上(有直接矛盾 证据)	高精度、低误报	"疑罪从无",不报线索,仅 确凿违规
严苛智能体 (Strict)	E0 及以上(存在可疑线索)	高召回、早发现	"召回优先",线索级也可上 报

2.2 冲突类型

- 1. 状态矛盾 (Binary Contradiction) 两条互斥事实并存。
- 2. 流程/资格矛盾 (Process/Eligibility) 缺失前置条件或资质冲突。
- 3. 数值/会计不一致 (Quantitative) 数值或财务逻辑不符。
- 4. 时间/因果矛盾 (Temporal/Causal) 时间顺序反常。
- 5. **聚合/网络异常 (Aggregate/Network)** 聚合或宏观统计偏离常识。

2.3 证据等级

等级	名称	定义	示例
EO	线索 (Cue)	异常迹象,尚无可追溯 证据	登记缺失、流程异常
E1	直接矛盾 (Direct Conflict)	至少一对互斥事实,可 追溯	死亡后仍发养老金
E2	多源印证 (Corroborated Conflict)	两个以上独立数据源印证	民政+社保+税务同证 实
E3	高确信 (High Confidence)	多月重复、时序正确、 无例外	多期重复违规且无修正 记录

3. 判定逻辑

宽松智能体

• 阈值:E1

• 达到 E1+ → confirmed

• 未达 E1 → no-conclusion (附调查摘要)

严苛智能体

• 阈值:EO

• 达到 E0 → suspected

• 达到 E1+ → confirmed

• 必须附"人工复核建议"或"下一步取证路径"

4. 搜索与预算策略

• Join 深度上限: 4

• 数据源上限:6

• 执行时间限制:60 秒

• 扫描行数上限: 2,000,000

• 终止条件:

。 达到阈值立即停止;

。 超出预算仍未达阈值 → 返回"调查覆盖声明(search_summary)"并结束。

5. 统一输出格式(JSON Schema)

```
{
 "verdict": "no-conclusion | suspected | confirmed",
 "evidence_level": "E0 | E1 | E2 | E3",
 "conflict_type": "binary | process | quantitative | temporal | aggregate",
 "risk_score": 0.0,
 "evidence_chain": [
  {"source": "string", "entity_key": "string", "fact": "string", "time": "string"}
 ],
 "search_summary": {
  "sources_scanned": 0,
  "joins_attempted": ["A → B on key"],
  "coverage_gaps": ["string"],
  "dq_flags": ["string"],
  "runtime_budget": {"elapsed_sec": 0, "row_scanned": 0, "limit_hit": false}
 },
 "next_actions": ["string"],
 "explanations": "string",
 "child_cases": [ {"...嵌套个体案件..."} ]
}
```

6. 示例案例

案例一:状态矛盾(死亡仍领养老金)

• 冲突类型: Binary Contradiction

• 证据等级:E2

• 宽松体输出: confirmed (E2)

• 严苛体输出: confirmed (E3)

• 解释:民政与社保系统均显示互斥事实,多期重复。

案例二:流程矛盾(发放但无登记)

• 冲突类型: Process

• 证据等级:E0

• **宽松体输出**: no-conclusion (附 coverage 声明)

• **严苛体输出**: suspected (E0) (附复核建议)

• 解释:缺登记记录但可能跨区或延迟入库。

案例三:聚合异常(虚拟地址集群低参保)

• 冲突类型:Aggregate

• 证据等级: E0 集群线索 + E1 个体矛盾

• **宽松体输出**:集群 no-conclusion (EO) ,个体 confirmed (E1)

• 严苛体输出:集群 suspected (E0) + 嵌套 child_cases[E1]

解释:多企业共享虚拟地址、社保人数异常,个别企业高开票零参保。

7. 指标与评估

指标	宽松体	严苛体
主要目标	Precision	Recall
容错	高精度、可放弃	高召回、可冗余
输出要求	证据链完整	复核建议明确
适用场景	最终核查、通报	初筛、预警

8. 落地建议

• 配置化阈值: operating_point = {lenient: E1, strict: E0}

统一日志格式: 记录 prompt → plan → sql → error → fix → evidence_level

• 图谱化证据链:节点=事实,边=关联,支持溯源展示

• **UI 展示**:卡片式输出 | verdict + badge(evidence_level) + explanation + next_actions

9. 总结

宽松智能体:只判"实锤" → 未达E1即不结论。

严苛智能体:线索即上报 → 从E0开始报疑似。

两者共享统一证据等级体系与输出格式,区别仅在阈值与话术。