Foundations of data science

Amit Rana, Bastian Schneider, Gerd Mund, Penelope Mück, Jonathan Lennartz, Annika Tarnowski & Michael Nüsken

0. Exercise sheet Handin as announced on eCampus

fits to 01

Exercise 0.1 (Recall: Random variables).

(8 points)

(i) Consider the course' example: A player has a fair die D resulting in one of $\mathcal{D}:=\{\boxdot,\boxdot,\boxdot,\boxdot,\boxdot,\boxdot,\boxdot\}$ with probability $\frac{1}{6}$ each, ie. $D \stackrel{\text{\tiny de}}{\longleftarrow} \mathcal{D}$ uniformly, and a fair coin $C \stackrel{\text{\tiny de}}{\longleftarrow} \{0,1\}$ uniformly.

Actually, our player is a cheater and the coin merely tells whether he decides to cheat or not. In case the coin comes up heads, say that's encoded 1, he changes the die's outcome to \blacksquare . Denote the variable describing the faked die by F.

(a) Describe F as a function of C and D.

2

Solution. We have (if we identify the die's results with the numbers 1 to 6)

$$F = \begin{cases} D & \text{if } C = 0\\ 6 & \text{else.} \end{cases}$$

 \bigcirc

(b) Note that the pair (C, F) is again a random variable, namely with outputs in $\{0, 1\} \times \mathcal{D}$. Write down a 2×6 -table with its distribution.

Solution. We obtain for all combinations of $C \in \{0,1\}$ and $F \in \{1,2,3,4,5,6\}$ that the probability of prob ((C,F)=(c,f)) takes the values of:

(c, f)	f = 1	2	3	4	5	6
c = 0	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$
1	0	0	0	0	0	$\frac{1}{2}$

 \bigcirc

(c) Prove that (C, F) is not independent.

2

2

Solution. If the variables were independent, it should hold that for all $c \in$ $\{0,1\}, f \in \{1,2,3,4,5,6\}$ we would have

$$\operatorname{prob}\left(C=c\wedge F=f\right)=\operatorname{prob}\left(C=c\right)\cdot\operatorname{prob}\left(F=f\right).$$

Now we can choose one of the many counterexamples:

$$\operatorname{prob}\left(C=1 \wedge F=1\right)=0 \neq \frac{1}{24}=\operatorname{prob}\left(C=1\right) \cdot \operatorname{prob}\left(F=1\right),$$

or just as well

$$\operatorname{prob}\left(C=1 \wedge F=6\right) = \frac{1}{2} \neq \frac{7}{24} = \operatorname{prob}\left(C=1\right) \cdot \operatorname{prob}\left(F=6\right).$$

 \bigcirc

(ii) Consider a continuous random variable U with outcomes in $[0,1]\subset$ \mathbb{R} with uniform density, ie. $U \stackrel{\text{\tiny den}}{\longleftarrow} [0,1]$ with density p(x) = 1 for $x \in [0,1]$ and p(x) = 0 otherwise.

Determine the density of U^2 , ie. a function q such that

$$\operatorname{prob}\left(a < U^2 < b\right) = \int_a^b q(x) \, dx.$$

Solution. A nice way to see this is to consider the function $Q(x) = \text{prob}(U^2 < x)$. As it holds that

$$\int_{a}^{b} q(x) \, \mathrm{d}x = Q(b) - Q(a)$$

we know that Q must be the anti derivative of q. We compute

$$Q(x) = \operatorname{prob}\left(U^2 < x\right) = \begin{cases} 0 & x \leq 0 \\ \operatorname{prob}\left(U < \sqrt{x}\right) = \sqrt{x} & 0 < x \leq 1 \\ \operatorname{prob}\left(U < \sqrt{x}\right) = 1 & \text{else.} \end{cases}$$

Now we can compute

$$q(x) = \text{prob}\left(U^2 < x\right) = \begin{cases} 0 & x \le 0\\ \frac{1}{2}x^{-\frac{1}{2}} & 0 < x \le 1\\ 0 & \text{else}. \end{cases}$$

 \bigcirc

fits to 01

Exercise 0.2 (Maximum of two dice).

(8 points)

Take two independent fair dice $D_i \stackrel{\text{\tiny{\otimes}}}{\leftarrow} \mathcal{D} := \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$ and consider the larger outcome

$$M := \max(D_0, D_1).$$

(i) Compute prob $(M \leq a)$ for $a \in \mathbb{N}_{\leq 6}$.

Solution. We have by definition

2

$$\operatorname{prob}\left(M\leq a\right)=\operatorname{prob}\left(D_0\leq a\wedge D_1\leq a\right),$$

and as the dice are independent

$$\operatorname{prob}(D_0 \le a \land D_1 \le a) = \operatorname{prob}(D_0 \le a) \cdot \operatorname{prob}(D_1 \le a) = \frac{a}{6} \cdot \frac{a}{6} = \frac{a^2}{36}.$$

0

(ii) Compute prob (M = a) for $a \in \mathbb{N}_{\leq 6}$.

2

Solution. As the distribution is discrete (meaning: there are just finitely many outputs for M) we have

$$\operatorname{prob}(M=a) = \operatorname{prob}(M \le a) - \operatorname{prob}(M \le (a-1)),$$

such that we can insert from (i), that

prob
$$(M = a) = \frac{a^2}{36} - \frac{(a-1)^2}{36} = \frac{2a-1}{36}$$
.

 \bigcirc

0

(iii) Compute E(M).

2

Solution. We can now sum up

$$\begin{split} \mathrm{E}(X) &= 1 \cdot \frac{1}{36} + 2 \cdot \frac{3}{36} + 3 \cdot \frac{5}{36} + 4 \cdot \frac{7}{36} + 5 \cdot \frac{9}{36} + 6 \cdot \frac{11}{36} \\ &= \frac{1 + 6 + 15 + 28 + 45 + 66}{36} \\ &= \frac{161}{36} = 4.47 \mathrm{A} . \end{split}$$

(iv) Compute $E(M^2)$ and derive var(M).

Solution. We can similarly sum up

$$\begin{split} \mathrm{E}(X^2) &= 1 \cdot \frac{1}{36} + 4 \cdot \frac{3}{36} + 9 \cdot \frac{5}{36} + 16 \cdot \frac{7}{36} + 25 \cdot \frac{9}{36} + 36 \cdot \frac{11}{36} \\ &= \frac{1 + 12 + 45 + 112 + 225 + 396}{36} \\ &= \frac{791}{36} = 21.97 \mathrm{L} \end{split}$$

and derive the variance

$$\mathrm{var}(X) = \mathrm{E}(X^2) - (\mathrm{E}(X))^2 = \frac{764 \cdot 36 - (161)^2}{(36)^2} = \frac{1583}{1296} = 1.22 \mathrm{L}.$$

 $^{^1}$ Side remark: to indicate how a real number was rounded we append a special symbol. Examples: $\pi=3.141=3.1427=3.14167=3.141591$. The height of the platform shows the size of the left-out part and the direction of the antenna indicates whether actual value is larger or smaller than displayed. We write, say, e=2.727=2.717 as if the shorthand were exact.