Assignment-2

Data Visualization and Pre-processing

Assignment Date	22 September 2022
Student Name	Mr. RAHUL.K
Student Roll Number	142219106071
Maximum Marks	

TASKS:

- 1. Download the dataset
- 2. Load the dataset

- 3. Perform Below Visualizations.
 - Univariate Analysis

• Bi-Variate Analysis

//sr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following '
FutureWarning
<seaborn.axisgrid.JointGrid at 0x7ff5c7c1b310>

• Multivaíiate Analysis

[6] sns.lineplot(data['Age'],data['EstimatedSalary'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the folic FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7ff5caa69690>

4. Perform descriptive statistics on the dataset

D→		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
		427	100		100	227	100		100	1222	0.00	900	75%		
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0

Standard Deviation = 10.49

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.00	10000.0
mean	5000.50	15690940.57	650.53	38.92	5.01	76485.89	1.53	0.71	0.52	100090.24	0.2
std	2886.90	71936.19	96.65	10.49	2.89	62397.41	0.58	0.46	0.50	57510.49	0.4
min	1.00	15565701.00	350.00	18.00	0.00	0.00	1.00	0.00	0.00	11.58	0.0
25%	2500.75	15628528.25	584.00	32.00	3.00	0.00	1.00	0.00	0.00	51002.11	0.0
50%	5000.50	15690738.00	652.00	37.00	5.00	97198.54	1.00	1.00	1.00	100193.92	0.0
75%	7500.25	15753233.75	718.00	44.00	7.00	127644.24	2.00	1.00	1.00	149388.25	0.0
max	10000.00	15815690.00	850.00	92.00	10.00	250898.09	4.00	1.00	1.00	199992.48	1.0

```
/ [32] data.loc[data['EstimatedSalary']>60000]
         RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
        1 15634602 Hargrave 619 France Female 42 2 0.00 1 1 1 1 101348.88 1
             2 15647311
                          Hill
                                   608
                                        Spain Female 41
                                                      1 83807.86
                                                                                               112542.58
     2 3 15619304 Onio 502 France Female 42 8 159660.80
                                                                     3 1
                                                                                       0
                                                                                               113931.57
             4 15701354
                          Boni
                                   699
                                        France Female 39
                                                      1 0.00
                                                                                         0
                                                                                               93826.63
                                                                               0
         5 15737888 Mitchell 850 Spain Female 43 2 125510.82
         9993 15657105 Chukwualuka 726 Spain Male 36 2 0.00
     9994
            9995
                15719294
                         Wood
                                   800
                                        France Female 29
                                                             0.00
                                                                                               167773.55
           9996 15606229 Obijiaku 771 France Male 39 5 0.00
                                                                                      0
     9995
                                                                                               96270.64
                                   516 France Male 35
     9996
            9997 15569892 Johnstone
                                                      10 57369 61
                                                                                               101699 77
     9998 9999 15682355 Sabbatini 772 Germany Male 42 3 75075.31
                                                                            1 0 92888.52 1
```

7039 rows x 14 columns

```
[34] data.info()

<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns): # Column Non-Null Count Dtype RowNumber 10000 non-null int64
CustomerId 10000 non-null int64
Surname 10000 non-null object
CreditScore 10000 non-null int64
Geography 10000 non-null object
Gender 10000 non-null object
Age 10000 non-null int64 0 1 2 3 4 5 6 Tenure 10000 non-null int64
Balance 10000 non-null float64
NumOfProducts 10000 non-null int64
HasCrCard 10000 non-null int64 7 8 9 10 HasCrCard 11 IsActiveMember 10000 non-null int64 12 EstimatedSalary 10000 non-null float64 13 Exited 10000 non-null int64 dtypes: float64(2), int64(9), object(3) memory usage: 1.1+ MB

5. Handle the Missing values.

```
/ [36] data.isnull().sum()
      RowNumber
                    0
      CustomerId
                     0
      Surname
      CreditScore
                     0
                     0
      Geography
      Gender
      Age
                     0
      Tenure
      Balance
      NumOfProducts
      HasCrCard
      IsActiveMember 0
      EstimatedSalary 0
      Exited
      dtype: int64
```

6. Find the outliers and replace the outliers

```
[39] out = data.quantile(q =(0.25,0.75))
        RowNumber CustomerId CreditScore Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 🏋
     0.25 2500.75 15628528.25 584.0 32.0 3.0 0.00 1.0 0.0 0.0 51002.1100 0.0
     0.75 7500.25 15753233.75 718.0 44.0 7.0 127644.24
/ [41] iq = out.loc[0.75]-out.loc[0.25]
             124705.5000
     CustomerId
     CreditScore 134.0000
Age 12.0000
Tenure 4.0000
     4.0000
4.0000
127644.2400
NumOfProducts
HasCrCand
                 1.0000
     HasCrCard 1.0000
IsActiveMember 1.0000
EstimatedSalary 98386.1375
     Exited
                    0.0000
     dtype: float64
// [42] lower = out.loc[0.25]-1.5*iq
         lower
         RowNumber -4.998500e+03
         CustomerId 1.544147e+07
CreditScore 3.830000e+02
                               1.400000e+01
         Age
         Tenure -3.0000000...

Balance -1.914664e+05

NumOfProducts -5.000000e-01

-1.500000e+00
         IsActiveMember -1.500000e+00
         EstimatedSalary -9.657710e+04
                               0.000000e+00
         Exited
         dtype: float64
  [43] upper = out.loc[0.75]+1.5*iq
          upper
          RowNumber
                                  1.499950e+04
          CustomerId
                                   1.594029e+07
          CreditScore
                                 9.190000e+02
                                  6.200000e+01
          Age
          Tenure
                                  1.300000e+01
                                  3.191106e+05
          Balance
          NumOfProducts
                                 3.500000e+00
                                  2.500000e+00
          HasCrCard
          IsActiveMember
                                  2.500000e+00
          EstimatedSalary 2.969675e+05
          Exited
                                    0.000000e+00
          dtype: float64
```

```
data.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWa """Entry point for launching an IPython kernel.

RowNumber 5.000500e+03
CustomerId 1.569094e+07
CreditScore 6.505288e+02
Age 3.892180e+01
```

Age 3.892180e+01
Tenure 5.012800e+00
Balance 7.648589e+04
NumOfProducts 1.530200e+00
HasCrCard 7.055000e-01
IsActiveMember 5.151000e-01
EstimatedSalary 1.000902e+05
Exited 2.037000e-01

dtype: float64

sns.boxplot(data['Tenure'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarni FutureWarning

<matplotlib.axes. subplots.AxesSubplot at 0x7ff5c603a050>

7. Check for Categorical columns and perform encoding.

8. Split the data into dependent and independent valiables.

	RowNumber	CustomerId	Surname
0	1	15634602	Hargrave
1	2	15647311	Hill
2	3	15619304	Onio
3	4	15701354	Boni
4	5	15737888	Mitchell
	222	722	
9995	9996	15606229	Obijiaku
9996	9997	15569892	Johnstone
9997	9998	15584532	Liu
9998	9999	15682355	Sabbatini
9999	10000	15628319	Walker

10000 rows x 3 columns

D)

```
[56] # Independent
     y = data['Exited']
     y
     0
             1
             0
     1
     2
             1
     3
             0
     4
             0
     9995
             0
     9996
             0
     9997
             1
     9998
             1
     9999
             0
     Name: Exited, Length: 10000, dtype: int64
```

9. Scale the independent vaiiables

```
  [58] x= data_main.drop(columns=['Surname'],axis=1)
[59] names = x.columns

√ [60] names
       'EstimatedSalary', 'Exited', 'Geography_France', 'Geography_Germany',
             'Geography Spain'],
            dtype='object')
[61] from sklearn.preprocessing import scale
   x = scale (x)
   array([[-1.73187761, -0.78321342, -0.32622142, ..., 0.99720391,
              -0.57873591, -0.57380915],
              [-1.7315312 , -0.60653412, -0.44003595, ..., -1.00280393,
               -0.57873591, 1.74273971],
              [-1.73118479, -0.99588476, -1.53679418, ..., 0.99720391,
              -0.57873591, -0.57380915],
              [ 1.73118479, -1.47928179, 0.60498839, ..., 0.99720391,
              -0.57873591, -0.57380915],
              [ 1.7315312 , -0.11935577, 1.25683526, ..., -1.00280393,
               1.72790383, -0.57380915],
              [ 1.73187761, -0.87055909, 1.46377078, ..., 0.99720391,
               -0.57873591, -0.57380915]])
[63] x = pd.DataFrame(x,columns=names)
```


10. Split the data into tiaining and testing

COLAB LINK:

https://github.com/IBM-EPBL/IBM-Project-13132-1659511681