Extension Problems

Econ 103

Spring 2018

About This Document

Extension problems are designed to give you a deeper understanding of the lecture material and challenge you to apply what you have learned in new settings. Extension problems should only be attempted *after* you have completed the corresponding review problems. As an extra incentive to keep up with the course material, each exam of the semester will contain at least one problem taken *verbatim* from the extension problems. We will circulate solutions to the relevant extension problems the weekend before each exam. You are also welcome to discuss them with the instructor, your RI, and your fellow students at any point.

Lecture #1 – Introduction

- 1. A long time ago, the graduate school at a famous university admitted 4000 of their 8000 male applicants versus 1500 of their 4500 female applicants.
 - (a) Calculate the difference in admission rates between men and women. What does your calculation suggest?
 - (b) To get a better sense of the situation, some researchers broke these data down by area of study. Here is what they found:

	Men		Women	
	# Applicants	# Admitted	# Applicants	# Admitted
Arts	2000	400	3600	900
Sciences	6000	3600	900	600
Totals	8000	4000	4500	1500

Calculate the difference in admissions rates for men and women studying Arts. Do the same for Sciences.

(c) Compare your results from part (a) to part (b). Explain the discrepancy using what you know about observational studies.

Lecture #2 – Summary Statistics I

2. The *mean deviation* is a measure of dispersion that we did not cover in class. It is defined as follows:

$$MD = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

- (a) Explain why this formula averages the absolute value of deviations from the mean rather than the deviations themselves.
- (b) Which would you expect to be more sensitive to outliers: the mean deviation or the variance? Explain.
- 3. Let m be a constant and x_1, \ldots, x_n be an observed dataset.

(a) Show that
$$\sum_{i=1}^{n} (x_i - m)^2 = \sum_{i=1}^{n} x_i^2 - 2m \sum_{i=1}^{n} x_i + nm^2$$
.

(b) Using the preceding part, show that $\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2.$

Lecture #3 – Summary Statistics II

- 4. Consider a dataset x_1, \ldots, x_n . Suppose I multiply each observation by a constant d and then add another constant c, so that x_i is replaced by $c + dx_i$.
 - (a) How does this change the sample mean? Prove your answer.
 - (b) How does this change the sample variance? Prove your answer.
 - (c) How does this change the sample standard deviation? Prove your answer.
 - (d) How does this change the sample z-scores? Prove your answer.

Lecture #4 – Regression I

5. Define the z-scores

$$w_i = \frac{x_i - \bar{x}}{s_x}$$
, and $z_i = \frac{y_i - \bar{y}}{s_y}$.

Show that if we carry out a regression with z_i in place of y_i and w_i in place of x_i , the intercept a^* will be zero while the slope b^* will be r_{xy} , the correlation between x and y.

- 6. This question concerns a phenomenon called *regression to the mean*. Before attempting this problem, read Chapter 17 of *Thinking Fast and Slow* by Kahneman.
 - (a) Lothario, an unscrupulous economics major, runs the following scam. After the first midterm of Econ 103 he seeks out the students who did extremely poorly and offers to sell them "statistics pills." He promises that if they take the pills before the second midterm, their scores will improve. The pills are, in fact, M&Ms and don't actually improve one's performance on statistics exams. The overwhelming majority of Lothario's former customers, however, swear that the pills really work: their scores improved on the second midterm. What's your explanation?
 - (b) Let \hat{y} denote our prediction of y from a linear regression model: $\hat{y} = a + bx$ and let r be the correlation coefficient between x and y. Show that

$$\frac{\hat{y} - \bar{y}}{s_y} = r \left(\frac{x - \bar{x}}{s_x} \right)$$

(c) Using the equation derived in (b), briefly explain "regression to the mean."

No extension problems for Lecture #5

Lecture #6 – Basic Probability II

- 7. You have been entered into a very strange tennis tournament. To get the \$10,000 Grand Prize you must win at least two sets in a row in a three-set series to be played against your Econ 103 professor and Venus Williams alternately: professor-Venus-professor or Venus-professor-Venus according to your choice. Let p be the probability that you win a set against your professor and v be the probability that you win a set against Venus. Naturally p > v since Venus is much better than your professor! Assume that each set is independent.
 - (a) Let W indicate win and L indicate lose, so that the sequence WWW means you win all three sets, WLW means you win the first and third set but lose the middle one, and so on. Which sequences of wins and losses land you the Grand Prize?
 - (b) If you elect to play the middle set against Venus, what is the probability that you win the Grand Prize?
 - (c) If you elect to play the middle set against your professor, what is the probability that you win the Grand prize?
 - (d) To maximize your chance of winning the prize, should you choose to play the middle set against Venus or your professor?

- 8. Rossa and Rodrigo are playing their favorite game: matching pennies. The game proceeds as follows. In each round, both players flip a penny. If the flips match (TT or HH) Rossa gets one point; if the flips do not match (TH or HT) Rodrigo gets one point. The game is best of three rounds: as soon as one of the players reaches two points, the game ends and that player is declared the winner. Since there's a lot of money on the line and graduate students aren't paid particularly well, Rossa secretly alters each of the pennies so that the probability of heads is 2/3 rather than 1/2. In spite of Rossa's cheating, the individual coin flips remain independent.
 - (a) (6 points) Calculate the probability that Rossa will win the first round of this game.
 - (b) Calculate the probability that the game will last for a full three rounds.
 - (c) Calculate the probability that Rodrigo will win the game.
 - (d) Yiwen is walking down the hallway and sees Rodrigo doing his victory dance: clearly Rossa has lost in spite of rigging the game. Given that Rodrigo won, calculate the probability that the game lasted for three rounds.

Lecture #7 – Basic Probability III / Discrete RVs I

- 9. A plane has crashed in one of three possible locations: the mountains (M), the desert (D), or the sea (S). Based on its flight path, experts have calculated the following prior probabilities that the plane is in each location: P(M) = 0.5, P(D) = 0.3 and P(S) = 0.2. If we search the mountains then, given that the plane is actually there, we have a 30% chance of failing to find it. If we search the desert then, given that the plane is actually there, we have a 20% chance of failing to find it. Finally, if we search the sea then, given that the plane is actually there, we have a 90% chance of failing to find it. Naturally if the plane is not in a particular location but we search for it there, we will not find it. You may assume that searches in each location are independent. Let F_M be the event that we fail to find the plane in the mountains. Define F_D and F_S analogously.
 - (a) We started by searching the mountains. We did not find the plane. What is the conditional probability that the plane is nevertheless in the mountains? Explain.
 - (b) After failing to find the plane in the mountains, we searched the desert, and the sea. We did not find the plane in either location. After this more exhaustive search what is the conditional probability that the plane is in the mountains? Explain.

Lecture #8 – Discrete RVs II

- 10. I have an urn that contains two red balls and three blue balls. I offer you the chance to play the following game. You draw one ball at a time from the urn. Draws are made at random and without replacement. You win \$1 for each red ball that you draw, but lose \$1 for each blue ball that you draw. You are allowed to stop the game at any point. Find a strategy that ensures your expected value from playing this game is positive.
- 11. An ancient artifact worth \$100,000 fell out of Indiana Jones's airplane and landed in the Florida Everglades. Unless he finds it within a day, it will sink to the bottom and be lost forever. Dr. Jones can hire one or more helicopters to search the Everglades. Each helicopter charges \$1,000 per day and has a probability of 0.9 of finding the artifact. If Dr. Jones wants to maximize his *expected value*, how many helicopters should he hire?

No extension problems for Lecture #9

Lecture #10 – Discrete RVs IV

- 12. Let X and Y be discrete random variables. Prove that if X and Y are independent, then Cov(X,Y)=0.
- 13. Let X_1 be a random variable denoting the returns of stock 1, and X_2 be a random variable denoting the returns of stock 2. Accordingly let $\mu_1 = E[X_1]$, $\mu_2 = E[X_2]$, $\sigma_1^2 = Var(X_1)$, $\sigma_2^2 = Var(X_2)$ and $\rho = Corr(X_1, X_2)$. A portfolio, Π , is a linear combination of X_1 and X_2 with weights that sum to one, that is $\Pi(\omega) = \omega X_1 + (1 \omega)X_2$, indicating the proportions of stock 1 and stock 2 that an investor holds. In this example, we require $\omega \in [0, 1]$, so that negative weights are not allowed. (This rules out short-selling.)
 - (a) Calculate $E[\Pi(\omega)]$ in terms of ω , μ_1 and μ_2 .
 - (b) What is $Var[\Pi(\omega)]$? (Your answer should be in terms of ρ , σ_1^2 and σ_2^2 .)
 - (c) Using part (d) show that the value of ω that minimizes $Var[\Pi(\omega)]$ is

$$\omega^* = \frac{\sigma_2^2 - \rho \sigma_1 \sigma_2}{\sigma_1^2 + \sigma_2^2 - 2\rho \sigma_1 \sigma_2}$$

In other words, $\Pi(\omega^*)$ is the minimum variance portfolio.

(d) Optional Part: check the second order condition from part (e).

Lecture #10 – Discrete RVs IV

- 14. We say that $X \sim \text{Exponential}(\lambda)$ if X has probability density function $f(x) = \lambda e^{-\lambda x}$ for $x \in [0, +\infty)$, zero otherwise, and $\lambda > 0$. As we see from its PDF, the Exponential RV has a single parameter λ that *must be positive*. In this question you will explore some of the properties of the Exponential(λ) RV.
 - (a) Calculate the CDF.
 - (b) Calculate prob of a certain integral, both analytically and using numerical integration in R.
 - (c) Plot the PDF for some particular values of λ .
 - (d) Simulate and make histograms.
 - (e) Using the simulations, try to guess how the mean is related to λ .
 - (f) Use numerical integration to calculate the mean for particular values of Lambda.
 - (g) Hard part: calculate the mean of an arbitrary Exponential RV. Hint, you will need integration by parts.

Lecture #10 – Discrete RVs IV

- 15. Some practice with quantile functions: calculate some, plot them, understand the relationship to a CDF.
- 16. A more interesting problem involving the normal distribution...