	About the Midterm (1). Minimization problems in E" (§7.1 through §7.3) (a). first & second-order necessary conditions for a local minimum. (constrained/uncombinion definition of relative (local) minimum, global minimum, strict global minimum feasible direction d is a vector \overrightarrow{d} at \overrightarrow{x} if $\overrightarrow{\exists} \overrightarrow{a} > 0$ s.t. $\overrightarrow{x} + \overrightarrow{a} \overrightarrow{d} \in \Omega \ \forall d$, $0 \leq d \leq \overrightarrow{d}$
	Pap I: First order necessary conditions: (constrained) Let Ω be a subset of E^n and let $f \in C'$ be a function on Ω . If \vec{x}^* is a relative minimum point of f over Ω , then for any $\vec{d} \in E'$ that is a feasible direction at \vec{x}^* , we have $\vec{\nabla} f(\vec{x}^*) \vec{d} \geq 0$
	Cor: (Unconstrained case). Let Ω be a sobset of E^n , let $f \in C'$ be a function on Ω . If x^* is a relative minimum of point of f over Ω and if \tilde{x}^* is an interior point of Ω , then $\nabla f(\tilde{x}^*) = \tilde{\delta}$.
	Prop: Second-order necessary conditions: (constrained) Let Ω be a subset of E'' and lef $f \in C^2$ be a function on Ω If χ^* is a relative minimum point of f over Ω , then for any $d' \in E''$ that is a feasible direction at χ^* we have
	i). $\forall f(\vec{x}^*) \vec{d} \geq 0$ ii) if $\forall f(\vec{x}^*) \vec{d} = 0$, then $\vec{d} \neq f(\vec{x}^*) \vec{d} \geq 0$ Prop 2. (Second-order necessary conditions -unconstrained (ase)
强化些得到	Let \vec{x}^* be an interior point of the set Ω , and suppose \vec{x}^* is a relative minimum point over Ω of the function $f \in C^2$. Then i). $\nabla f(\vec{x}^*) = \vec{0}$ ii) for all \vec{d} , \vec{d} $\vec{\nabla}^2 f(\vec{x}^*) \vec{d} \geq 0$ $f(\vec{x}^*) = \vec{0}$
	Cb). sufficient condition for a local minimum Prop 3: Csecond-order sufficient conditions—unconstrained case) Let $f \in C^2$ be a function defined on a region in which the point \widetilde{X}^* is an interior print. Sps the in addition that "

(i). \$\f(\overline{x}^*)=\varphi\$

(ii). F(ス*) is positive definite

 $(F(x))=\overline{\partial}^2 f(x)$. the Hessian) then \overline{x}^* is a strict relative minimum point of f.

(2) minimization problems in a subset 52 of En.
(ca) first-order necessary for a local minimum.
(done).

(3). convex functions (§ 7.4-7.5)

(a). definition of convexity A function of defined on a convex set Ω is said to be convex if $\forall \vec{x}_1, \vec{x}_2 \in \Omega$, and every α , $0 = \alpha \leq 1$, s.t. $f(\alpha \vec{x}_1 + (1 - \alpha)\vec{x}_2) \leq \alpha f(\vec{x}_1) + (1 - \alpha) f(\vec{x}_2)$ If, $\forall \alpha$, $0 < \alpha < 1$, and $\vec{x}_1 \neq \vec{x}_2$ s.t. $f(\alpha \vec{x}_1 + (1 - \alpha)\vec{x}_2) = \alpha f(\vec{x}_1) + (1 - \alpha) f(\vec{x}_2)$ then f is said to be strictly convex.

* concare: f is concare if -f is comex.

· combinations of convex functions.

Proposition 1: Let f_1 and f_2 be cornex functions, # on the cornex set Ω . then the function f_1+f_2 is cornex on Ω .

Proposition 2: f convex on SI then of isconvex on Si for any of >0.

Proposition 3: Let f be convex on a convex set Ω . The set $[c=f\widetilde{X}:\widetilde{X}\in\Omega]$, $f(\widetilde{X})\geq C$ is convex for every real number C.

Note that 40 Algorithm A: is mapping defined on a space X that assigns to every point \$\overline{\chi} \in X \a subset of X. e.g. Xxxx = A(Xx). is called a solution set. Descent: [CX be a solution set. Let A be an abgorithm on X, a continuous real-valued function Z on X is said to be a descent function for Γ and \overline{A} if it satisfies

i) if $\overline{x} \notin \Gamma$ and $\overline{y} \in \overline{A}(\overline{x})$, then $Z(\overline{y}) \leqslant Z(\overline{x})$ ii) if $\overline{x} \in \Gamma$ and $\overline{y} \in \overline{A}(\overline{x})$, then $Z(\overline{y}) \leqslant Z(\overline{x})$ Note again that the algorithm A (mapping) is not point-to point mapping of X, it's point-to-set mapping of X. For example, $\chi_0 = 100$, $A(x) = \overline{L} - \frac{|x|}{2}$, $\frac{|x|}{2}$, might have 100,50,25,12,-or 100, -40,20, -5, -. 100, 10, -1, 1/16, about "closed mappings": A paint-to-set mapping A from X to T is said to be closed at 3 ex if 1). 死→ x, x∈X i). 7-y, ReA(X) i) ii) => iii). yeAcx) The point-toset map I is said to be closed on X if it's closed at each each point of m.X.

(5). Iterative methods for minimizing functions of a single variable (38.2) ca. Newton's method Sps f with single variable x to be minimized Sps a point xx where a measurement is made to evaluate the 3 minhers f(xx), f'(xx), f"(xx). construct a quadratic function of which at xx agrees with f up to second derivatives. $g(x) = f(x_k) + f'(x_k)(x - x_k) + \frac{1}{2}f'(x_k)(x - x_k)$ $0 = q'(x) = f'(x_k) + f''(x_k)(x_{k+1} - x_k)$ Hen $\chi_{k+1} = \chi_k - \frac{f'(\chi_k)}{f'(\chi_{k+1})}$ Let $g(\chi) = f'(\chi_k)$ we get $\chi_{kH} = \chi_k - \frac{g(\chi_k)}{g'(\chi_k)}$, at least · prop (convergence of newton's method) order two convergence. To solve g(x)=0, assume g is C', π^* solves $g(x^*)=0$, $g^2(x^*)\neq 0$, then if x_0 is close enough to x^* , the sequence $x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)}$ comerges to x^* . Cb. more general idea of "curve fitting" methods:

Approximate of near xk by (Germal minimization plan) $g(x) = f(x_k) + f'(x_k)(x_k - x_k) + \frac{1}{2}(x_k - x_k) + \frac{1}{2}(x_k - x_k)$ (don't need to know 2nd derivative) $q'(x) = f'(x_k) - (x - x_k) f'(x_k) - f'(x_{k-1})$ is f'(Xx) if xx-xx+small The equation g'(x)=0implies that $\chi_{k+1} = \chi_k - \frac{f'(\chi_k) \cdot (\chi_k - \chi_{k-1})}{f'(\chi_k) - f'(\chi_{k-1})}$ f(xk) -f(xk-1)

(6). The method of steepest descent (§ 3.6 and parts of § 8.4) (a), definition of the method of steepest descent.

 $\nabla f(\vec{x})$: n-dim row vector define $g(\vec{x}) = \nabla f(\vec{x})^{T}$ column vector write $g(\vec{x}_{k}) = \nabla f(\vec{x}_{k})^{T} = g_{k}$

The method of steepest descent is defined by iterative algorithm: $\overrightarrow{\chi}_{kH} = \overrightarrow{\chi}_k - \chi_k \overrightarrow{g}_k$ where, $\chi_k = \chi_k - \chi_k \overrightarrow{g}_k$ where, $\chi_k = \chi_k = \chi_k$

in formal terms.

the Algorithm $\overrightarrow{A}: \overrightarrow{E}' \to \overrightarrow{E}'$ which gives $\overrightarrow{X}_{k+1} \in \overrightarrow{A}(\overrightarrow{X}_k)$ can be decomposed in the form $\overrightarrow{A} = \overrightarrow{S} \cdot \overrightarrow{G}$ where $\overrightarrow{G}: \overrightarrow{E}' \to \overrightarrow{E}''$ is defined by $\overrightarrow{G}(\overrightarrow{X}) = (\overrightarrow{X}, -\overrightarrow{g}(\overrightarrow{X}))$ giving the initial pt & direction of a line search.

This is followed by the line search $\overrightarrow{S}: \overrightarrow{E}'' \to \overrightarrow{E}''$ where $\overrightarrow{S}(\overrightarrow{X}, \overrightarrow{d}) = \{\overrightarrow{y}: \overrightarrow{y} = \overrightarrow{X} + d\overrightarrow{d} \cdot \text{for some } \overrightarrow{A} \geq 0,$ $f(\overrightarrow{y}) = \min f(\overrightarrow{X} + d\overrightarrow{d})\}$

	·	
(b).	了 by is closed if マケ(ズ) もう) 一下 is closed	
ABO BIAN N		·····
	define \$\times is solution sets where \$\times f(x) = 0.	
	Hen Z(R)=f(R) is a descent function for A since of (R))≠5]
	$\lim_{0 \leq \alpha < \infty} f(\vec{x} - \alpha \vec{g}(\vec{x})) < f(\vec{x})$	
	I mus by GCI, it I'lk is bad, then it have limit p	ts and
	each of them is a solution.	
(Quadratic rase)	
-	Sps $f(x) = \pm x \sqrt{x} - x \sqrt{5}$ where $\sqrt{3}$ is positive definite symmetric matrix, => all eigenvalues positive, assume $0 < a = 3$	n×n }<2…≤}=
	Symmetre musik, = , an eigenvision por , assume or a	TIZIZ ZIN FI
	=> f is strictly comex	e)
	the unique minimum pt of can be found directly by setting	the
	gradient to 0, as x x satisfying	
	$Q \overrightarrow{x}^* = \overrightarrow{b}$	
_	Moreover, introducing	
	に(オ)=」(オーラ*) Q(マーマ*)	
	he have	
	$E(\vec{x}) = f(\vec{x}) + \pm \alpha^{*T} Q (\vec{x}) \vec{x}^*$	
	(we consider minimizing E(X) instead of f(X), b/c it's simple	er).
***************************************	(we consider minimizing $E(\vec{x})$ instead of $f(\vec{x})$, b/c it's simple the gradient of (both f and E) is given by	and the second section of the section of the second section of the secti
	g(x) = Qx - b	
Billion and the second	Thus the steepest descent test can be expressed as	
	$\chi_{k+1} = \chi_k - \alpha_k \alpha_k$	
	where $g_k = Q \vec{x}_k - \vec{b}$, α minimizes $f(\vec{x}_k - dg_k)$	•
	explicitly, f(xx-dge)= (xx-dge) (xx-dge)-(TE- XPDE
	grand by differentiating wint. (1)	
	$Q_{k} = \frac{\vec{g}_{k} \cdot \vec{g}_{k}}{\vec{g}_{k}} \text{(found by differentiating w.r.t. a)}$	
	So method of steepest descent is in form of	
	$\overrightarrow{X_{k+1}} = \overrightarrow{X_k} - \left(\frac{\overrightarrow{g_k} \overrightarrow{g_k}}{\overrightarrow{g_k}}\right) \cdot \overrightarrow{g_k}$ where $\overrightarrow{g_k} = Q_{\overrightarrow{X_k}}$.	- b
	(gk & gk)	
0,		

$$E(\overline{\chi_{k+1}}) = \left\{ 1 - \frac{(\overline{g_k} g_k)^2}{(\overline{g_k} Q_k)(\overline{g_k})} \right\} E(\overline{\chi_k})$$

Q positive definite symmetric nxn matrix

For any 3, we have

$$\frac{(\vec{x}^{T}\vec{x})^{2}}{(\vec{x}^{T}\vec{Q}^{T}\vec{Q}^{T}\vec{X})} > \frac{4\alpha A}{(\alpha+A)^{2}}$$

Thm: (Steepost descent-quadratic case) VacE?, the method of steepost doscent comerges to the

unique minimum pt \vec{x}^* of f. Furthermore, with $E(\vec{x}) = \pm (\vec{x} - \vec{x})^T Q(\vec{x} - \vec{x}^*)$

YStepk,

E(XX+) = (A-a) E(XX)

we define $r = \frac{A}{a}$ be a conditional number

S.t. E(XKH) < (T-1) E(XK)

r≈1 good r>1 bad

minimize = = TOR-BTR

(7).	Conjugate directions and conjugate gradients motheds (§ 9.1~9.3)
	definition: Given a symmetric matrix Q, 2 vectors di and de are soid to be Q-orthogonal, or conjugate with respect to Q if
	(if $Q = 0$, 2 vectors are conjugate while if $Q = I$, conjugacy is equivalent to the usual notion of orthogonality.)
	Prop: If a is positive definite and the set of nonzero vectors do. The are a - orthogonal, then these vectors are L.I.
cb.	Conjugate directions method.
	Conjugate directions theorem. Let $ d_i _{i=0}^{n-1}$ be a set of nonzero Q-orthogonal vectors $\forall \mathbf{E} \ X_0 \in E^n$ the sequence $ X_R $ is generated according to $X_{k+1} = X_k + \mathcal{O}_k dk$ $k \ge 0$
	Let di) i=0 be a set of nonzero &-orthogonal vectors HE XOEE" the sequence XII is accorded a correling to
	XkH = Xk + dk dk k≥0
	with $d_k = -\frac{g_k}{d_k} \frac{d_k}{d_k}$
_	and $\overline{q_k} = Q \overline{x_k} - \overline{b}$
	cornerges to the unique solution, \mathbf{x}^* , of $Q\mathbf{x} = \mathbf{b}$ after n steps. that is $\mathbf{x}_n = \mathbf{x}^*$.
CC).	Corjugate gradient method
	idea: like conjugate direction method, except that the direction de, de,, are determined to iteratively:
· · · · · · · · · · · · · · · · · ·	di, de,, are determined to iteratively:
	deth is found by taking $g_{k+1} = \nabla f(x_{k+1})^T$ and correcting it' to make it Q-orthogonal to dk.

Conjugate gradient algorithm:

Stanting at
$$\forall \vec{x}_0 \in E^n$$
, defined $\vec{d}_0 = -\vec{g}_0 = \vec{b} - Q\vec{x}_0$

and $\vec{x}_{KH} = \vec{x}_K + Q_K d_K$
 $\vec{d}_K = -\vec{g}_{KH} + \vec{g}_K d_K$

where $g = Q_{\overrightarrow{x}} - \overrightarrow{b}$

(d). Convergence properties of conjugate directions methods (including the conjugate grandient method).

Both the conjugate gradient & conjugate chrections methods are guaranteeds to converge to the actual minimizer in at most n steps, for quadratic minimization problems in E". (much better than the method of steepest descent).