

STRUCTURES AND PROPERTIES OF THE REFRACTORY SILICIDES Ti₅ Si₃ AND TiSi₂ AND Ti-Si-(AI) EUTECTIC ALLOYS

- Introduction
- Constitution of the binary phase diagram TiSi
- ◆ Intermetallic compounds Ti₅Si₃ and TiSi₂
 - ♦ Lattice structures, binding energies
 - ♦ Microstructures
 - optical and TEM images
 - Physical properties
 - thermal expansion coefficient $\alpha(T)$
 - elastic moduli E, G, K
 - Mechanical properties
 - flow stress
 - fracture toughness
 - creep properties
 - Applications

- .
- temperatur-dependent

- Φ Hypoeutectic and directionally solidified eutectic α-Ti-Ti₅Si₃ alloy
 - ♦ Microstructures
 - optical and SEM images
 - Physical properties
 - thermal expansion coefficient α (T)
 - Young's moduli E (T)
 - Mechanical properties
 - yield stress
 - fracture toughness
- Conclusions

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate of mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 18 MAR 2004		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
Structures and Properties of the Refractory Silicides Ti5Si3 and TiSand Related Ti-Si-(Al) Eutectic Alloys				5b. GRANT NUMBER		
and Kelated 11-51-((AI) Editeth Anoys		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)			5d. PROJECT NUMBER			
					5e. TASK NUMBER	
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Max-Planck Institute, Germany					8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
13. SUPPLEMENTARY NO See also ADM0016	otes 72., The original do	cument contains col	or images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON			
a. REPORT NATO/unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	21	ALSI UNSIBLE FERSUN	

Report Documentation Page

Form Approved OMB No. 0704-0188

Equilibrium phase diagram of the binary Ti-Si system

Ti₅Si₃ Crystal structures of the intermetallic and compounds.

TiSi₂

complex hexagonal D8₈ lattice parameters

a = 0.514 nm

c = 0.744 nm

N = 16 per unit cell

orthorhombic C 54 lattice parameters

a = 0.8267 nm

b = 0.4800 nm

c = 0.855 nm

N = 24 per unit cell

	binding energy (kJ/mole)	melting temperature (K)	Vickers' hardness (load : 1kp) (HV1)
Ti ₅ Si ₃	- 1095 ± 40	2403	970 ± 20
TiSi ₂	- 687,5 ± 25	1753	870 ± 15

Relation between binding energy, melting temperature and Vickers' hardness

Ti₅Si₃ TiSi₂

Optical micrographs of as compacted compounds

TiSi₂

TEM bright field images illustrating the dislocation structures in the as compacted samples

Ti₅Si₃ TiSi₂

TEM bright field images of creep deformed samples tested at 1000 °C, strain rate $\dot{\epsilon} = 10^{-7} \text{s}^{-1}$

	bulk modulus K(GPa)	Young's modulus E(GPa)	shear modulus G(GPa)
Ti ₅ Si ₃	110 ± 5	156 ± 8	61 ± 3
TiSi ₂	125 ± 8	256 ± 10	103 ± 5

Elastic moduli K, E, G of Ti₅Si₃ and TiSi₂ at room temperature

Temperature dependence of the thermal expansion coefficients of the monolithic Ti₅Si₃ and TiSi₂ compounds

Young's moduli of the monolithic Ti₅Si₃ and TiSi₂ compounds as function of temperature

Yield stress vs. test temperature of the monolithic intermetallic Ti₅Si₃ and TiSi₂ compounds

Stress intensity factors of the intermetallic Ti₅Si₃ and TiSi₂ compounds as function of test temperature

Ti₅Si₃

TiSi,

Stress exponent n derived from the slope of the log $\dot{\epsilon}$ vs. log. σ plot

activation energies of Ti₅Si₃ and TiSi₂

Powder metallurgically processed air foil of TiSi₂ tested in a combustion chamber at 1400 °C for 100 h

(a)

longitudinal section (b)

cross section (c)

Optical micrograph of the hypoeutectic Ti-7,5Si-Al1 illustrating primary solidified α -Ti solid solution grains (white areas) and fine grained eutectic (a). SEM micrographs showing the fibre structure of an unidirectionally solidified eutectic Ti-Ti $_5$ Si $_3$ composite in longitudinal (b) and cross section (c)

Temperature dependence of thermal expansion coefficients of Ti₅Si₃, the hypoeutectic Ti-Si7.5-Al1 alloy and the unidirectionally solidified eutectic Ti-Ti₅Si₃ composite

Young's moduli of the monolithic Ti₅Si₃ compound and of the hypoeutectic Ti-Si7.5-Al1 and the unidirectionally solidified eutectic Ti-Ti₅Si₃ alloy as function of the test temperature

Yield stress as function of temperature of the hypoeutectic Ti-Si7.5-Al1 alloy and the unidirectionally solidified eutectic Ti-Ti₅Si₃ composite.

In comparison the yield stress curve of the Ti₅Si₃ compound is plotted in the diagram.

Stress intensity factors as function of temperature of the hypoeutectic Ti-Si7.5-Al1 alloys and of the directionally solidified Ti-Ti $_5$ Si $_3$ composite in comparison to the Ti $_5$ Si $_3$ compound

Summary and Outlook

- ❖ Innovative refractory titanium silicides Ti₅Si₃ and TiSi₂ exhibit extraordinary physical and mechanical properties and show great potential applications as high-temperature light-weight materials for turbine air foils, heat shield tiles for combustion chambers and missile nozzles.
- ♦ The superior oxidation resistance is due to the formation of very stable SiO₂ surface layers
- ♦ The high elastic stiffness and hardness of these silicide compounds are caused by the strong covalent bonding of s-p and d-p electron interactions of the Si-Si and S-Ti atoms.
- ♦ The prominent high temperature strength, creep resistant and the restricted room temperature ductility are of intrinsic nature. The complex superlattice possess sessile superdislocations of large Burgers' vector of high energy.
- → For improving the ductility and toughness of silicides micro- and macro alloying have been performed. Alpha titanium Ti₅Si₃ composites exhibit improved room temperature ductility and combine the advantages of high flow stresses and elevated temperature strength.
- \diamond Hypoeutectic and directionally solidified eutectic α -Ti / Ti₅Si₃ composites show considerable potential applications for axial compressor blades and outlet valves in internal combustion engines.