AB INITIO MODELLING OF PHOTOINDUCED ELECTRON DYNAMICS IN NANOSTRUCTURES

A Thesis

Presented Upon Application for Admission to the Degree of

DOCTOR OF PHILOSOPHY

in the Faculty of Engineering and Physical Sciences

by

Ryan J. McMillan MSci (Hons) 2013

School of Mathematics and Physics Queen's University Belfast Northern Ireland

June 2016

Contents

1	Background and Introduction			2
	1.1	1 Motivation - Solar Technology		2
	1.2	2 2D Materials in Photonics		2
1.3 Increasing Light Absorption in 2D Materials		asing Light Absorption in 2D Materials	2	
2	Theory			3
	2.1	Background Theory		
		2.1.1	Electronic Structure Calculations	3
		2.1.2	Excited State Calculations	3
		2.1.3	Obtaining Optical Properties	3
	2.2	Projec	eted Equations of Motion Method for Composite Materials	3
3	Res	Results		
	3.1 Semiconducting Qua		conducting Quantum Dot-Metal Nanoparticle Hybrid	4
		3.1.1	Describing the System	4
		3.1.2	Energy Absorption Rates	4
		3.1.3	Population Inversion	4
	3.2	3.2 Optical Spectra for MoS_2 Composites		4
		3.2.1	$\operatorname{MoS}_2\operatorname{Monolayer}$	4
		3.2.2	${ m MoS}_2$ / Graphene Monolayers	4
		3.2.3	MoS_2 Bilayer	4
		3.2.4	MoS_2 Monolayer on Gold Surface	4
		3.2.5	MoS_2 Monolayer with Gold Nanoparticles	4
4	Conclusions			

List of Figures

Background and Introduction

1.1 Motivation - Solar Technology

A brief discussion about renewable energy and solar technology in particular. We'll mention the various types of latest generation solar cells with a focus on 2D materials.

1.2 2D Materials in Photonics

Properties of 2D materials that make them useful in photonics with experimental and theoretical results.

1.3 Increasing Light Absorption in 2D Materials

Different methods of increasing light absorption with attention towards plasmonic field enhancement.

Theory

2.1 Background Theory

2.1.1 Electronic Structure Calculations

Brief discussion of various methods for calculating electronic structure, focussing on Kohn-Sham DFT.

2.1.2 Excited State Calculations

Brief discussion of TDDFT, linear response and the (time-dependent) Bethe-Salpeter Equation.

2.1.3 Obtaining Optical Properties

A bit about dielectric functions and absorption spectra and how they are obtained from excited state calculations.

2.2 Projected Equations of Motion Method for Composite Materials

This will include a little about obtaining the polarization from classical electrodynamics. The dipole-dipole model will be presented and the PEOM method will be derived.

Results

Here we use the SQD-MNP system to validate the method as well as providing new results for femtosecond pulse interaction. The method is further verified by performing calculations on various monolayer systems using TDDFT and BSE theory. We'll then go on to model a monolayer of MoS₂ with gold nanoparticles.

3.1 Semiconducting Quantum Dot-Metal Nanoparticle Hybrid

- 3.1.1 Describing the System
- 3.1.2 Energy Absorption Rates
- 3.1.3 Population Inversion
- 3.2 Optical Spectra for MoS₂ Composites
- 3.2.1 MoS₂ Monolayer
- 3.2.2 MoS₂ / Graphene Monolayers
- 3.2.3 MoS₂ Bilayer
- 3.2.4 MoS₂ Monolayer on Gold Surface
- 3.2.5 MoS₂ Monolayer with Gold Nanoparticles

Conclusions

We will have shown that the PEOM method provides a way for modelling the plasmonic field enhancement from gold nanoparticles on a MoS_2 monolayer. Such theoretical calculations have not been performed before.

Bibliography