图论作业 (第五周)

PB20000113 孔浩宇

October 13, 2022

Ch3

3.

Proof.

- (1) $\delta(G) = \nu(G) 1$, G 为完全图, $\kappa(G) = \nu(G) 1 = \delta(G)$, 成立.
- (2) $\delta(G) = \nu(G) 2$.
 - (a) 任意取 $S \subseteq V, |S| = \nu(G) 3, 则$

$$\forall p \in G - S, \ d(p) \ge \nu(G) - 2 > \nu(G) - 3 \ \Rightarrow \ \exists \ q \in G - S, pq \in E(G - S).$$

$$\mathbb{P} \kappa(G) \ge \nu(G) - 2.$$

(b)
$$\delta(G) = \nu(G) - 2 \implies \exists p \in G, d(p) = \nu(G) - 2. \text{ ID} S = \{v | pv \in E(G)\}.$$

记
$$q = V(G) - S - p$$
, $G - S = G[\{p,q\}] \xrightarrow{pq \notin E(G)} G - S$ 不连通.

综合 (a)(b), 可得 $\kappa(G) = \nu(G) - 2 = \delta(G)$. 综合 (1)(2), 即证.

7.

Proof.

- (1) l = n. 即 l = m = n, 取 $G = K_{n+1}$ 即可.
- (2) l < n. 取 n+1 阶完全图 K_1, K_2 , 取 K_1 中 l 个顶点记为 X, K_2 中 m 个顶点记为 Y.
 - (a) 取 Y + l 个顶点与 X 中顶点——连线,Y 中剩余 m l 个顶点与 X 中顶点任意连接.
 - (b) $\exists E = \{pq | p \in X, q \in Y\}, G = K_1 + K_2 + E.$

$$\begin{cases} l < n \Rightarrow \exists w \in G, d(w) = n \Rightarrow \delta(G) \leq n \\ & \Rightarrow \delta(G) = n. \end{cases}$$

$$\begin{cases} \{pq \mid p \in E(K_1) - X, \ q \in E(K_2)\} = \Phi \Rightarrow G - X \text{ #} \text{ £} \text{ £} \text{ £} \end{cases}$$

$$\begin{cases} \{pq \mid p \in E(K_1), \ q \in E(K_2), pq \notin E\} = \Phi \Rightarrow G - E \text{ #} \text{ £} \text{ £} \end{cases}$$

$$\Rightarrow \kappa'(G) = m$$

即证此时 G 满足要求.

即证.

11.

Proof. 由 G 连通且不是块, 可得 $|G| \ge 3$. 对 |G| 进行归纳.

(1) |G|=3. 如图,仅有一种情况,此时顶点导出子图 $G[\{u,v\}]$ 与 $G[\{w,v\}]$ 满足要求.

- (2) 假设 |G| = n 时成立,考虑 |G| = n + 1. 由 G 连通且不是块,可得 G 至少有一个割顶,记为 v. 由 v 为割顶可得 G v 不连通,则 G v 中至少有两个连通片,记为 G_1, G_2 .
 - (a) G_1, G_2 均不含割顶. 即 $\kappa(G_1), \kappa(G_2) \geq 2$. 记 $V[G_1] \cup \{v\} = V_1, \ V[G_2] \cup \{v\} = V_2$.

$$\begin{cases} \kappa(G[V_1]) &= \kappa(G_1) \geq 2 \\ &\Rightarrow G[V_1], G[V_2]$$
为块,且每个仅含 G 的一个割顶.
$$\kappa(G[V_2]) &= \kappa(G_2) \geq 2 \end{cases}$$

此时命题成立.

(b) 若存在一个连通片 G_1 中含有割顶.

1° 由 $|G_1| < |G - v| = n$,可得 G_1 中至少有两个块,每个块仅含一个 G_1 割顶. 2° 记 G_1 的割顶为 u, $G_1 - u$ 不连通可得 G - u 不连通,即 G_1 的割顶也是 G 的割顶. 此时 G 中至少有两个块,每个块仅含 G 的一个割顶.

即证 |G| = n + 1 时命题成立. 综上, $\forall |G| \ge 3$, 原命题均成立.

16.

Proof. 假设存在图 G, G 的顶点度数均为偶数, 且 G 中有桥, 不妨设为 pq=e.

- (0) e 为图 G 的桥 \Leftrightarrow 存在 V(G) 的一个划分 $V(G) = U \cup W, \ U \cap W = \Phi, \ U, W \neq \Phi,$ 使得 $\forall \ u \in U, w \in W,$ e 在每一条从 u 到 v 的轨道上.
- (1) 先证明 p,q 不在同一个划分里. 不妨设 $p,q\in U$. $\forall w\in W,\ p\ \exists\ q\ \text{ohhill} \ \text{hill} \ p,q\ \text{constant} \ p,w\ \text{clinhill} \ W_{qw}\ \text{不含}\ pq,\ \text{矛盾}.$ 即证 p,q 在不同的划分中,不妨记 $p\in U,\ q\in W$.
- (2) 再证明 $\{uw | u \in U, w \in W, uw \neq e\} = \Phi$. 显然成立.

$$\sum_{v \in U} \deg_{G[U]}(v) = \deg_G(p) - 1 + \sum_{v \in U, v \neq q} \deg_G(v)$$
为奇数,矛盾.

假设不成立,即证若图 G 的顶点度数均为偶数,则 G 中没有桥.