On higher regulators of Picard modular surfaces

Linli Shi

University of Connecticut

UC San Diego Number Theory Seminar November 20, 2024

Table of Contents

- Introduction
 - Riemann ζ -function
 - Dedekind ζ -functions
 - BSD conjecture
 - Beilinson's conjectures
- 2 Key definitions
 - Algebraic groups
 - Shimura varieties
 - Automorphic motives
- The Main Result
 - Connection to L-values
 - Hodge vanishing on the boundary
 - Motivic vanishing on the boundary

Table of Contents

- Introduction
 - Riemann ζ -function
 - Dedekind ζ -functions
 - BSD conjecture
 - Beilinson's conjectures
- 2 Key definitions
 - Algebraic groups
 - Shimura varieties
 - Automorphic motives
- 3 The Main Result
 - Connection to L-values
 - Hodge vanishing on the boundary
 - Motivic vanishing on the boundary

Euler's calculations

In the 1700s, Euler made the following famous computations:

•

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6},$$

•

$$1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}.$$

Notice similar exponents.

Euler's calculations

Definition

Bernoulli numbers $B_k \in \mathbb{Q}$ are given by the expansion

$$\frac{t}{e^t - 1} = \sum_{k \ge 0} B_k \frac{t^k}{k!} = 1 - \frac{1}{2}t + \frac{1}{6} \cdot \frac{t^2}{2} - \frac{1}{30} \cdot \frac{t^4}{4!} + \cdots$$

Euler showed the following formula:

$$1 + \frac{1}{2^{2m}} + \frac{1}{3^{2m}} + \frac{1}{4^{2m}} + \dots = \frac{(2\pi)^{2m} |B_{2m}|}{2(2m)!}, \quad \text{for } m \in \mathbb{Z}^+.$$

Examples

•
$$(m=1)$$
 $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{(2\pi)^2}{2 \cdot 2} \cdot \frac{1}{6} = \frac{\pi^2}{6}$

•
$$(m=2)$$
 $1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \cdots = \frac{(2\pi)^4}{2 \cdot 4!} \cdot \frac{1}{30} = \frac{\pi^4}{90}$

Riemann ζ -function

In 1859, Riemann introduced the ζ -function of a complex variable: if $s \in \mathbb{C}$,

- $\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s}$ for Re(s) > 1.
- (Euler product): $\zeta(s) = \prod_{p} \frac{1}{1 \frac{1}{p^s}} \text{ for } \operatorname{Re}(s) > 1.$
- It has meromorphic continuation to \mathbb{C} .
- It has a (simple) pole only at s = 1.
- (Functional eqn): $\Lambda(s) = \Lambda(1-s)$ for $\Lambda(s) := \pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}) \zeta(s)$. Call $\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2})$ a Γ -factor.

Dedekind ζ -function

Dedekind (1879) generalized $\zeta(s)$ to an arbitrary number field F.

- $\zeta_F(s) := \sum_{\mathcal{I}} \frac{1}{|\mathcal{O}_F/\mathcal{I}|^s}$, for $\operatorname{Re}(s) > 1$, where \mathcal{I} runs over the non-zero ideals of O_F , so $\zeta_{\mathbb{Q}}(s) = \zeta(s)$.
- (Euler product): $\zeta_F(s) = \prod_{\wp} \frac{1}{1 \frac{1}{|\mathcal{O}_F/\wp|^5}} \text{ for } \mathrm{Re}(s) > 1,$ where \wp runs over the non-zero prime ideals of \mathcal{O}_F .
- $\zeta_F(s)$ has meromorphic continuation to \mathbb{C} .
- $\zeta_F(s)$ has a (simple) pole only at s=1.
- (Functional eqn): $\Lambda_F(s) = \Lambda_F(1-s)$ for $\Lambda_F(s) := |d_F|^{\frac{s}{2}} (\pi^{-\frac{s}{2}} \Gamma(\frac{s}{2}))^{r_1} ((2\pi)^{-s} \Gamma(s))^{r_2} \zeta_F(s)$.

Class number formula

The residue of $\zeta_F(s)$ at s=1 is related to global arithmetic invariants of F by the class number formula:

$$\operatorname{Res}_{s=1}\zeta_{F}(s) = \frac{2^{r_{1}}(2\pi)^{r_{2}}}{|d_{F}|^{\frac{1}{2}}\omega(F)}h(F)R(F) =_{\overline{\mathbb{Q}}^{\times}} (2\pi)^{r_{2}}R(F).$$

- d_F: discriminant of F
- $\omega(F)$: the number of roots of unity in F
- h(F): class number of F
- \bullet R(F): covolume of Dirichlet regulator map

$$r_{Dir}: O_F^{\times} \to \mathbb{R}^{r_1+r_2},$$

$$\begin{aligned} &\dim \mathrm{Im}(r_{Dir}) = r_1 + r_2 - 1. \\ &\text{e.g. } F = \mathbb{Q}(\sqrt{2}), \ O_F^{\times}/\{\pm 1\} = (1+\sqrt{2})^{\mathbb{Z}}, \\ &r_{Dir}(1+\sqrt{2}) = (\log(1+\sqrt{2})), -\log(1+\sqrt{2})), \\ &R(F) = \log(1+\sqrt{2}) \end{aligned}$$

BSD conjecture

- For an elliptic curve E over \mathbb{Q} , we can define its L-function L(E,s) and regulator R(E) similarly.
- Birch and Swinnerton-Dyer conjecture predicts that

$$\frac{L^{(r)}(E,1)}{r!} =_{\mathbb{Q}^{\times}} \Omega(E)R(E),$$

where

- $r = \operatorname{ord}_{s=1} L(E, s)$, so $\frac{L^{(r)}(E, s)}{r!}$ is lead. coeff. of L(E, s) at s = 1.
- $\Omega(E)$: the period of E

e.g.
$$E: y^2 = x^3 - 2$$
, $r = 1$, $E(\mathbb{Q})/E(\mathbb{Q})_{tor} = \langle P \rangle = \langle (3,5) \rangle$
 $\Omega(E) \approx 2.16368$, $R(E) = \hat{h}(P) \approx 1.34957$
 $\Omega(E)R(E) \approx 2.92003$, $L'(E,1) \approx 2.92005$,
 $L'(E,1) = \Omega(E)R(E)$

In the 1980s, Beilinson made a deep conjecture about special values of motivic L-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over \mathbb{Q} , $i \geq 0$ and $n \in \mathbb{Z}$ satisfying 2n > i. Replace ingredients of class number formula:

- $O_F^{\times} \leadsto \operatorname{H}_M^{i+1}(X, \mathbb{Q}(n))$ (Motivic cohomology)
 - If 2n = i + 1, then $H_{M_i}^{i+1}(X, \mathbb{Q}(n)) \cong CH^n(X)_{\mathbb{Q}}$.
 - If n=1, i=0, then $\mathrm{H}^{i+1}_M(X,\mathbb{Q}(n))=\mathrm{H}^1_M(X,\mathbb{Q}(1))\cong \mathbb{Q}(X)^{\times}$.

In the 1980s, Beilinson made a deep conjecture about special values of motivic L-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over \mathbb{Q} , $i \geq 0$ and $n \in \mathbb{Z}$ satisfying 2n > i. Replace ingredients of class number formula:

- $O_F^{\times} \leadsto \operatorname{H}_M^{i+1}(X, \mathbb{Q}(n))$ (Motivic cohomology)
 - If 2n = i + 1, then $H_{M_i}^{i+1}(X, \mathbb{Q}(n)) \cong CH^n(X)_{\mathbb{Q}}$.
 - If n=1, i=0, then $H^{i+1}_M(X,\mathbb{Q}(n))=H^1_M(X,\mathbb{Q}(1))\cong \mathbb{Q}(X)^{\times}$.
- $\mathbb{R}^{r_1+r_2} \rightsquigarrow \mathrm{H}^{i+1}_H(X,\mathbb{R}(n))$ (Absolute Hodge cohomology)

In the 1980s, Beilinson made a deep conjecture about special values of motivic L-functions generalizing the classical analytic class number formula.

Let X be a smooth projective variety over \mathbb{Q} , $i \geq 0$ and $n \in \mathbb{Z}$ satisfying 2n > i. Replace ingredients of class number formula:

- $O_F^{\times} \leadsto \operatorname{H}_M^{i+1}(X, \mathbb{Q}(n))$ (Motivic cohomology)
 - If 2n = i + 1, then $H_{M}^{i+1}(X, \mathbb{Q}(n)) \cong CH^{n}(X)_{\mathbb{Q}}$.
 - If n=1, i=0, then $H^{i+1}_M(X, \mathbb{Q}(n)) = H^1_M(X, \mathbb{Q}(1)) \cong \mathbb{Q}(X)^{\times}$.
- $\mathbb{R}^{r_1+r_2} \rightsquigarrow \mathrm{H}^{i+1}_H(X,\mathbb{R}(n))$ (Absolute Hodge cohomology)
- $r_{Dir} \rightsquigarrow r_H$

$$r_H: \mathrm{H}^{i+1}_M(X,\mathbb{Q}(n)) o \mathrm{H}^{i+1}_H(X,\mathbb{R}(n))$$
 (Beilinson's higher regulator)

- $M = h^i(X)(n)$: a pure motive associated to X and n. w = i 2n: its weight, so 2n > i implies w < 0.
- $\zeta_F(s) \rightsquigarrow L(M,s)$ (Motivic *L*-function),
 - For $Re(s) > \frac{w}{2} + 1$, L(M, s) is convergent Euler product.
 - A meromorphic cont. and functional equation of L(M, s) relating s and w + 1 s is conjectured, mainly still open.
 - $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of L(M, s).

- $M = h^i(X)(n)$: a pure motive associated to X and n. w = i - 2n: its weight, so 2n > i implies w < 0.
- $\zeta_F(s) \rightsquigarrow L(M,s)$ (Motivic L-function),
 - For $Re(s) > \frac{w}{2} + 1$, L(M, s) is convergent Euler product.
 - A meromorphic cont. and functional equation of L(M, s)relating s and w+1-s is conjectured, mainly still open.
 - $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of L(M, s).
- Critical points vs. Non-critical points Let $\Gamma_{\infty}(M,s)$ be associated Gamma factor of L(M,s). Call $n \in \mathbb{Z}$ critical for L(M, s) if it is not a pole of $\Gamma_{\infty}(M, s)$ or $\Gamma_{\infty}(M, w+1-s)$. Otherwise, $n \in \mathbb{Z}$ is called **non-critical**.

- $M = h^i(X)(n)$: a pure motive associated to X and n. w = i 2n: its weight, so 2n > i implies w < 0.
- $\zeta_F(s) \rightsquigarrow L(M,s)$ (Motivic *L*-function),
 - For $Re(s) > \frac{w}{2} + 1$, L(M, s) is convergent Euler product.
 - A meromorphic cont. and functional equation of L(M, s) relating s and w+1-s is conjectured, mainly still open.
 - $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of L(M, s).
- Critical points vs. Non-critical points Let $\Gamma_{\infty}(M,s)$ be associated Gamma factor of L(M,s). Call $n \in \mathbb{Z}$ critical for L(M,s) if it is not a pole of $\Gamma_{\infty}(M,s)$ or $\Gamma_{\infty}(M,w+1-s)$. Otherwise, $n \in \mathbb{Z}$ is called **non-critical**.
 - For $\zeta(s)$, w=0, $\Gamma_{\infty}(\mathbb{Q},s)=\pi^{-s/2}\Gamma(s/2)$, critical points are positive even integers and negative odd integers. Non-critical points are positive odd integers and non-positive even integers.

- $M = h^i(X)(n)$: a pure motive associated to X and n. w = i 2n: its weight, so 2n > i implies w < 0.
- $\zeta_F(s) \rightsquigarrow L(M,s)$ (Motivic *L*-function),
 - For $Re(s) > \frac{w}{2} + 1$, L(M, s) is convergent Euler product.
 - A meromorphic cont. and functional equation of L(M, s) relating s and w+1-s is conjectured, mainly still open.
 - $w < 0 \Rightarrow w \le -1$, so $0 \ge \frac{w+1}{2}$: center of L(M, s).
- Critical points vs. Non-critical points Let $\Gamma_{\infty}(M,s)$ be associated Gamma factor of L(M,s). Call $n \in \mathbb{Z}$ critical for L(M,s) if it is not a pole of $\Gamma_{\infty}(M,s)$ or $\Gamma_{\infty}(M,w+1-s)$. Otherwise, $n \in \mathbb{Z}$ is called **non-critical**.
 - For $\zeta(s)$, w=0, $\Gamma_{\infty}(\mathbb{Q},s)=\pi^{-s/2}\Gamma(s/2)$, critical points are positive even integers and negative odd integers. Non-critical points are positive odd integers and non-positive even integers.
 - For L(E, s), w = 1, $\Gamma_{\infty}(E, s) = 2(2\pi)^{-s}\Gamma(s)$, critical point is s = 1. Non-critical points are integers not equal to 1.

• If s = 0 is *critical* for M, Deligne conjectured that

$$L(M,0) \in c^+(M)\mathbb{Q}^{\times}$$

where $c^+(M)$ is Deligne period.

e.g. If
$$M = \mathbb{Q}(2m)$$
 for $m \in \mathbb{Z}_{>0}$, then $L(M, s) = \zeta(s + 2m)$ and $c^+(M) = (2\pi i)^{2m}$: Euler's $\zeta(2m)$ -formula.

• If s = 0 is non-critical for M and $2n \ge i + 3$, then $w = i - 2n \le -3$ and $\frac{w}{2} + 1 \le -\frac{1}{2} < 0$, so L(M, 0) makes sense as an Euler product. Beilinson conjectured that

$$\wedge^{\mathsf{top}} r_{H}(H_{M}^{i+1}(X, \mathbb{Q}(n))) =_{\mathbb{Q}^{\times}} L(M, 0) \mathcal{D}(M),$$

where $\mathcal{D}(M)$ is the Deligne rational structure.

e.g. If
$$M = \mathbb{Q}(3)$$
, $L(M,s) = \zeta(s+3)$, so $L(M,0) = \zeta(3)$, $r_H = 2r_B$, where $r_B : K_5(\mathbb{Z}) \to \mathbb{R}$ is a Borel regulator.

Table of Contents

- - Riemann ζ-function
 - Dedekind ζ-functions
 - BSD conjecture
 - Beilinson's conjectures
- Key definitions
 - Algebraic groups
 - Shimura varieties
 - Automorphic motives
- - Connection to L-values
 - Hodge vanishing on the boundary
 - Motivic vanishing on the boundary

The setup

Notations

- Let E be an imaginary quadratic field of discriminant -D, and let $x \mapsto \bar{x}$ be the nontrivial Galois automorphism of E over \mathbb{Q} .
- Let \mathcal{O} be the ring of integers of E.
- Fix an identification of $E \otimes_{\mathbb{Q}} \mathbb{R}$ with \mathbb{C} s.t. the imaginary part of $\delta := \sqrt{-D}$ is positive.

The group G = GU(2,1)

Definition

Let $J \in GL_3(E)$ be the Hermitian matrix

$$J = \begin{pmatrix} 0 & 0 & \frac{1}{\delta} \\ 0 & 1 & 0 \\ -\frac{1}{\delta} & 0 & 0 \end{pmatrix}, \quad \text{where } \delta = \sqrt{-D},$$

and let $G = \mathrm{GU}(2,1)$ be the group scheme over $\mathbb Z$ such that for $\mathbb Z$ -algebras R, we have for units $\mu \in R^\times$,

$$G(R) = \{(g, \mu) \in \operatorname{GL}_3(\mathcal{O} \otimes_{\mathbb{Z}} R) \times R^{\times} | {}^t \bar{g} J g = \mu J \}.$$

Let H be the group scheme over \mathbb{Z} such that for \mathbb{Z} -algebras R,

$$H(R) = \{(g, z) \in \operatorname{GL}_2(R) \times (\mathcal{O} \otimes_{\mathbb{Z}} R)^{\times} | \det(g) = z\overline{z} \}.$$

Modular curves

Definition

Let $\mathcal{H}=\{ au=x+iy|x\in\mathbb{R},y\in\mathbb{R}_{>0}\}$ be the upper half plane. Let $\Gamma=\mathrm{SL}_2(\mathbb{Z})$, acting on \mathcal{H} by

$$\tau \mapsto \frac{a\tau + b}{c\tau + d}.$$

The modular curve Y(1) is defined as

$$Y(1) := \Gamma \backslash \mathcal{H}.$$

It is an affine algebraic curve over Q.

Picard modular surfaces

• Picard modular surfaces are certain 2-dimensional Shimura varieties over E that generalize modular curves over \mathbb{Q} .

- $\mathcal{H} \leadsto \text{complex 2-ball } X \text{ in } \mathbb{C}^2 \left(|z_1|^2 + |z_2|^2 < 1 \right)$
- $\operatorname{SL}_2(\mathbb{Z}) \leadsto \Gamma = \operatorname{\mathsf{GU}}(2,1)(\mathbb{Z})$ (Picard modular group)
- Picard modular surface of level Γ is defined as $\operatorname{Sh}_G(\Gamma) := \Gamma \backslash X$
- Picard modular surfaces are algebraic surfaces over E. (Note E used to define J which appears in the definition of G.)

Charles Émile Picard

Goro Shimura

Galois representations

• For an elliptic curve E/\mathbb{Q} which is defined by the equation $y^2=x^3+ax+b$, where $a,b\in\mathbb{Q}$, for a fixed prime p, its Tate module $T_p(E)$ is defined as

$$T_p(E) = \varprojlim_n E[p^n]$$

where $E[p^n]$ is the p^n -torsion points of E.

- There is a natural action ρ_E of $\operatorname{Gal}(\mathbb{Q}/\mathbb{Q})$ on $T_p(E)$ called the p-adic Galois representation associated to E.
- For a cusp form f with weight 2 and level $\Gamma_0(N)$, can define its Galois representation ρ_f .
- [C. Breuil-B. Conrad-F. Diamond-R. Taylor 1999] To each E/\mathbb{Q} , $\rho_E \cong \rho_f$ for some f of weight 2.
- Galois representations are étale realizations of motives.

Automorphic motives

- For a cusp form f, can construct its Grothendieck motive M(f) by work of Scholl.
- $GL_2 \rightsquigarrow GU(2,1)$

•

$$f \rightsquigarrow \pi = \pi_f \otimes \pi_\infty$$

where π is some "cohomological" irreducible cuspidal automorphic representation of GU(2,1).

 \bullet π can be thought as some kind of Picard modular form.

•

$$M(f) \rightsquigarrow M(\pi_f, V),$$

where the $M(\pi_f, V)$ is a Grothendieck motive associated to π .

Table of Contents

- Introduction
 - Riemann ζ -function
 - Dedekind ζ -functions
 - BSD conjecture
 - Beilinson's conjectures
- 2 Key definitions
 - Algebraic groups
 - Shimura varieties
 - Automorphic motives
- 3 The Main Result
 - Connection to L-values
 - Hodge vanishing on the boundary
 - Motivic vanishing on the boundary

Outline

Beilinson's conjectures

When $2n \geq i+3$ and $\dim_{\mathbb{R}} H^{i+1}_H(X,\mathbb{R}(n))=1$,

$$r_H(H_M^{i+1}(X,\mathbb{Q}(n))) =_{\mathbb{Q}^\times} L(M,0)\mathcal{D}(M)$$
.

Let $S := \operatorname{Sh}_G$, $G = \operatorname{GU}(2,1)$ and $M = \operatorname{Sh}_H$.

- **Step one**: Construct motivic classes c in $\mathrm{H}^3_M(S,V(2))$, where S is the Picard modular surface and V is some non-trivial nice "motivic local system" on it;
- **Step two**: Prove that the classes c lie in a "nice" subspace of $\mathrm{H}^3_M(S,V(2))$;
- **Step three**: Compute image of c under higher regulator r_H and relate to $L(M(\pi_f, V(2)), 0)$.

The L-value result I

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G, if we choose some "cohomological" irreducible cuspidal automorphic representation π of G that appears in $\mathrm{H}^2_{B,!}(S,V(2))$, we get:

$$\mathcal{K}(\pi_f, V(2)) = C \cdot L(M(\pi_f, V(2)), 0) \mathcal{D}(\pi_f, V(2))$$

where $C \in (E(\pi_f) \otimes_{\mathbb{Q}} \mathbb{C})^{\times}$,

- $M(\pi_f, V(2))$ is a motive associated to π .
- $\mathcal{K}(\pi_f, V(2))$: 1-dim $E(\pi_f)$ -subspace of a certain rank one $E(\pi_f) \otimes_{\mathbb{Q}} \mathbb{R}$ -module generated by $r_{\mathsf{H}}(c)$, c is the constructed motivic class in $\mathrm{H}^3_M(S, V(2))$.
- $\mathcal{D}(\pi_f, V(2))$: another 1-dim $E(\pi_f)$ -subspace of the same $E(\pi_f) \otimes_{\mathbb{Q}} \mathbb{R}$ -module, called the Deligne $E(\pi_f)$ -structure.

The *L*-value result II

Remark

- This result gives evidence towards Beilinson's conjectures.
- Constant C should be in $E(\pi_f)^{\times}$ but we have not proven it.
- $\mathcal{K}(\pi_f,V(2))=C\cdot L(M(\pi_f,V(2)),0)\mathcal{D}(\pi_f,V(2)),\ C\neq 0,\ L(M(\pi_f,V(2)),0)\neq 0$ and $\mathcal{D}(\pi_f,V(2))\neq \{0\}$, so we proved the motivic class c that generates the left side is non-trivial, which answers a question raised in [D. Loeffler-C. Skinner-S. Zerbes 2022]. In their paper, they assume the class c is non-trivial and use it to construct an Euler system for $\mathrm{GU}(2,1)$ based on the nontriviality.

The *L*-value result II

Remark

- This result gives evidence towards Beilinson's conjectures.
- Constant C should be in $E(\pi_f)^{\times}$ but we have not proven it.
- $\mathcal{K}(\pi_f, V(2)) = C \cdot L(M(\pi_f, V(2)), 0)\mathcal{D}(\pi_f, V(2)), \ C \neq 0,$ $L(M(\pi_f, V(2)), 0) \neq 0$ and $\mathcal{D}(\pi_f, V(2)) \neq \{0\}$, so we proved the motivic class c that generates the left side is non-trivial, which answers a question raised in [D. Loeffler-C. Skinner-S. Zerbes 2022]. In their paper, they assume the class c is non-trivial and use it to construct an Euler system for GU(2,1) based on the nontriviality.
- If V is trivial, similar results were obtained in [A. Pollack-S. Shah 2018].
- Similar relations with non-trivial coefficients were obtained in [G. Kings 1998] and [F. Lemma 2017].

The construction of motivic classes

• Starting point: [Beilinson 83] The Eisenstein symbol:

$$B_n \xrightarrow{Eis_M^n} \mathrm{H}^1_M(\mathrm{Sh}_{\mathrm{GL}_2}, \mathrm{Sym}^n V_2(1)),$$

where ${\rm Sh_{GL_2}}$ is a modular curve. It can be seen as incarnation of real analytic Eisenstein series in the motivic world.

• Define the following two maps:

$$\iota: H \hookrightarrow G, \quad \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z\right) \mapsto \left(\begin{pmatrix} a & 0 & b \\ 0 & z & 0 \\ c & 0 & d \end{pmatrix}, z\overline{z}\right)$$

and

$$p: H woheadrightarrow \operatorname{GL}_2, \quad \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, z\right) \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

• The maps $\iota: H \hookrightarrow G$ and $p: H \twoheadrightarrow \operatorname{GL}_2$ of algebraic groups will induce the following morphisms of Shimura varieties:

$$p: M = \operatorname{Sh}_H \to \operatorname{Sh}_{\operatorname{GL}_2}, \ \iota: M = \operatorname{Sh}_H \to S = \operatorname{Sh}_G.$$

The construction II

$$\mathcal{B}_n \xrightarrow{Eis^n_M} \mathrm{H}^1_M(\mathrm{Sh_{GL_2}}, \mathrm{Sym}^n V_2(1)) \xrightarrow{\rho^*} \mathrm{H}^1_M(M, W(1)) \xrightarrow{\ \iota_* \ } \mathrm{H}^3_M(S, V(2))$$

$$\phi_f \longmapsto \operatorname{Eis}^n_M(\phi_f) \longmapsto p^* \operatorname{Eis}^n_M(\phi_f) \longmapsto c = \iota_* p^* \operatorname{Eis}^n_M(\phi_f)$$

The construction of motivic classes

The construction II

$$\mathcal{B}_n \xrightarrow{Eis^n_M} \mathrm{H}^1_M(\mathrm{Sh_{GL_2}}, \mathrm{Sym}^n V_2(1)) \xrightarrow{\rho^*} \mathrm{H}^1_M(M, W(1)) \xrightarrow{\iota_*} \mathrm{H}^3_M(S, V(2))$$

$$\phi_f \longmapsto \operatorname{Eis}_M^n(\phi_f) \longmapsto p^* \operatorname{Eis}_M^n(\phi_f) \longmapsto c = \iota_* p^* \operatorname{Eis}_M^n(\phi_f)$$

Remark

- The construction is due to [D. Loeffler-C. Skinner-S. Zerbes 2022].
- When $V = \mathbb{Q}$, [A. Pollack-S. Shah 2018] gave an essentially similar construction of motivic classes.

The Hodge result

Notations

- $\mathcal{E}is^n_M := \iota_* \circ p^* \circ Eis^n_M$
- $\mathcal{E}is_H^n := r_H(\mathcal{E}is_M^n)$
- $\mathrm{H}^2_{B,!}(S,V(2)) := \mathrm{Im}(\mathrm{H}^2_{B,c}(S,V(2)) \to \mathrm{H}^2_B(S,V(2)))$

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G, the map $\mathcal{E}is^n_H:\mathcal{B}_{n,\mathbb{R}}\to \mathrm{H}^3_H(S,V(2))$ factors through the inclusion

$$\operatorname{\mathsf{Ext}}^1_{\operatorname{MHS}^+_{\mathbb{R}}}(\mathbf{1},\operatorname{H}^2_{\mathcal{B},!}(S,V(2))) \hookrightarrow \operatorname{H}^3_{\mathcal{H}}(S,V(2)),$$

where $\mathrm{MHS}^+_{\mathbb{R}}$ is the abelian category of mixed \mathbb{R} -Hodge structures and $\mathbf{1}$ denotes trivial Hodge structure, i.e., the unit of $\mathrm{MHS}^+_{\mathbb{R}}$.

Remarks on Theorem

Theorem (S. 2024)

For suitable non-trivial algebraic representations V of G, the map $\mathcal{E}is^n_H:\mathcal{B}_{n,\mathbb{R}}\to \mathrm{H}^3_H(S,V(2))$ factors through the inclusion

$$\mathsf{Ext}^1_{\mathrm{MHS}^+_{\mathbb{R}}}(\mathbf{1},\mathrm{H}^2_{\mathcal{B},!}(S,V(2))) \hookrightarrow \mathrm{H}^3_{\mathcal{H}}(S,V(2)),$$

where $\mathrm{MHS}_{\mathbb{R}}^+$ is the abelian category of mixed \mathbb{R} -Hodge structures and $\mathbf{1}$ denotes trivial Hodge structure, i.e., the unit of $\mathrm{MHS}_{\mathbb{R}}^+$.

Remark

- The proof uses a lot of Hodge theoretical computations.
- The Hodge theoretical vanishing on the boundary result for Eisenstein classes is also obtained in [G. Kings 1998] for Hilbert modular surfaces and in [F. Lemma 2015] for Siegel 3-folds. Our method is similar to theirs.

The motivic result

Theorem (S. 2024)

For suitable non-trivial alg. representations V of G, the motivic map $\mathcal{E}is^n_M:\mathcal{B}_n\to \mathrm{H}^3_M(S,V(2))$ factors through the inclusion

$$\mathrm{H}^3_M(\mathrm{Gr}_0\mathrm{M}_{\mathrm{gm}}(S,V),\mathbb{Q}(2))\hookrightarrow \mathrm{H}^3_M(S,V(2)).$$

Remark

- $\mathrm{H}^3_M(\mathrm{Gr}_0\mathrm{M}_{\mathrm{gm}}(S,V),\mathbb{Q}(2))$ is the motivic incarnation for $\mathrm{Ext}^1_{\mathrm{MHS}^+_\mathbb{R}}(\mathbf{1},\mathrm{H}^2_{B,!}(S,V(2))).$
- G. Kings asked in 1998 whether we can prove the vanishing on the boundary for Eisenstein classes in the motivic world.
- My result is the first about vanishing on the boundary for Eisenstein classes in the motivic world.

Thank you!