

Genomic Prediction: Applications in R

FA21 ANSCI 610

Genomic selection is a form of marker-assisted selection in which genetic markers covering the whole genome are used so that all quantitative trait loci (QTL) are in linkage disequilibrium with at least one marker

Linkage Disequilibrium (LD)

M is more often associated with Q than m is associated with Q

The marker genotype is associated with the phenotype if Q/q has an effect on the phenotype

The *r*² is generally the preferred measure of LD for biallelic markers, which is the squared correlation of alleles at 2 *loci*.

$$r^{2} = \frac{D^{2}}{f(A_{1})f(A_{2})f(B_{1})f(B_{2})}$$

Where $D=f(A_1B_1)-f(A_1)f(B_1)$, and $f(A_1B_1)$, $f(A_1),f(B_1),f(A_2)f(B_2)$ are the observed frequencies of haplotype A_1B_1 and of alleles A_1 , A_2 , B_1 , and B_2 , respectively.

Marker A

Marker B B1

B1 B2

Frequency 0.5

A1	A2	Frequency
0.4	0.1	0.5
0.1	0.4	0.5
0.5	0.5	

$$D = 0.15$$

$$r^2 = \frac{0.15^2}{0.5 \times 0.5 \times 0.5 \times 0.5}$$

$$r^2 = 0.36$$

PIC IMPROVES BIRTH WEIGHT & PRE-WEAN SURVIVABILITY

Trend: genetic improvement in birth weight and pre-wean survivability (PIC Genetic Nucleus)

Box 2 | Genomic selection

Selection candidates

Prediction equation

Genomic breeding value = $W_1X_1 + W_2X_2 + W_3X_3.....$

Selected breeders

The general model for the prediction equation can be written as:

$$y_i = \mu + \sum_{j=1}^p x_{ij} + e_i$$

Where: y_i is the (pseudo) phenotype of individual i μ is the overall mean x_{ij} is the genotype of individual i at locus j p is the number of markers loci e_i is the residual term

Challenges:

- Imputation
- ❖ Low → High resolution chip (Cost Reduction)
- ☐ Curse of dimensionality (n << p)
- Possible solutions:

Variable Selection

PCA

Bayesian Inference (e.g. Bayesian Alphabet)

Linear Mixed Models (e.g. GBLUP and single step GBLUP)

Other relevant questions:

- ☐ Which (Pseudo) phenotype to use?
- Raw phenotype
- Adjusted phenotype
- **EBV**
- Deregressed EBV
- Daughter Yield Deviation (DYD) or Progeny Yield Deviation (PYD)
- ☐ How to validate the prediction ability?
- Cross-validation (e.g. k-fold CV, LOOCV, k-fold with random repetitions)
- Forward validation

Other relevant questions:

- ☐ How to measure the prediction ability?
- Pearson Correlation
- Mean squared error
- Bias metrics
- AUC and other classification metrics
- ☐ Which prediction method to use?
- Bayesian regression models (e.g. Bayesian LASSO, BayesA, Bayes C, etc.)
- Genomic relationship based models (e.g. GBLUP, ss-GBLUP)
- Semi-parametric methods (e.g. Reproducing Kernel Hilbert Space regressions)
- Machine Learning, Deep Learning

SOFTWARES

- ☐ Fortran 90/95 programs
- * ASREML https://www.vsni.co.uk/software/asreml/
- BLUPF90 http://nce.ads.uga.edu/wiki/doku.php
- ♦ DMU https://mbg.au.dk/en/
- **GS3** http://genoweb.toulouse.inra.fr/~alegarra/gs3_folder/
- **WOMBAT** http://didgeridoo.une.edu.au/km/wombat.php
- □ R packages
- ❖ BGLR
- Gaston
- MCMCglmm
- rrBLUP
- Sommer

Genetics. 2014 Oct; 198(2): 483-495.

Published online 2014 Jul 9. doi: 10.1534/genetics.114.164442

PMCID: PMC4196607 PMID: 25009151

Genome-Wide Regression and Prediction with the BGLR Statistical Package

Paulino Pérez*,1 and Gustavo de los Campos†

Figure 1 Prior densities of regression coefficients implemented in BGLR (all densities in the figure have null mean and unit variance).

Table 1 Prior densities available for regression coefficients in the BGLR package

Model (prior density)	Hyperparameters	Treatment in BGLR ^a
Flat (FIXED)	Mean (μ_{β}) Variance (σ_{β}^2)	$\mu_{\beta} = 0$ $\sigma_{\beta}^2 = 1 \times 1^{10}$
Gaussian (BRR)	Mean (μ_{β}) Variance (σ_{β}^2)	$\mu_{\beta} = 0$ $\sigma_{\beta}^{2} \sim \chi^{-2}$
Scaled-t (BayesA)	Degrees of freedom (df_{β}) Scale (S_{β})	User specified (default value, 5) $S_B \sim Gamma$
Double exponential (BL)	λ^2	λ fixed, user specified, or $\lambda^2 \sim Gamma$, or $\lambda/max \sim Beta^b$
Gaussian mixture (BayesC)	π (prop. of nonnull effects)	$\pi \sim$ Beta
	$df_{oldsymbol{eta}}$	User specified (default value, 5)
	S_{β}	$S_{\beta} \sim Gamma$
Scaled-t mixture (BayesB)	π (prop. of nonnull effects)	$\pi \sim$ Beta
	$df_{oldsymbol{eta}}$	User specified (default value, 5)
	Sβ	$S_{\beta} \sim Gamma$

^{*}Further details are given in the supporting information (Section A of File S1).

^b This approach is further discussed in de los Campos et al. (2009b).

Change Language

