Web3.0

Course Introduction

Lesson Overview

What we'll discuss during this lesson.

- What is this course about?
- An introduction to Web3.0
 - A brief history of the internet
 - The road to a decentralized internet
- How will you be examined?

Course introduction

What is this course about?

What you'll learn.

- What it's **not** about (although they will be discussed):
 - Blockchain
 - Cryptocurrencies
 - NFTs
- What it **is** about:
 - Why and how our current internet is broken
 - How Web 3.0 can help us fix a lot of the current problems
 - What the future of the internet might looks like
 - How the future internet might impact human life

After completing this course, I hope you...

- Will have an understanding of the problems we face with the current state of the internet, and where they come from.
- Will know how and why various Web 3.0 related technologies may help overcome those problems.
- Are able to identify and explain how and why Web 3.0 could bring benefit to your area of expertise.
- Are convinced about why we need decentralization.
- Are aware of the potential treats of the future internet.

Weekly topics

- Lesson 1: Course introduction & The history of the internet
- Lesson 2: The decentralized web and the semantic web
- Lesson 3: The trusted web
- Lesson 4: The importance of open source
- Lesson 5: The spacial web and the ubiquitous web
- Lesson 6: A web of artificial intelligence
- Lesson 7: Course examination

A Brief History of the Internet

What is a network?

In its most basic form, a network is defined as two or more connected computers.

Network of networks

When connected, multiple stand-alone networks can be part of a larger network.

These smaller networks are commonly called 'subnetworks' and the overlaying network is often referred to as an 'internetwork'

Web 1.0

The 'read' internet

ARPANET

- Developed by the Advanced
 Research Projects Agency
 (funded by the US Department of Defence).
- Primary goals:
 - Enable 'high-speed' sharing of research information across universities
 - Increase the likelihood of information surviving a nuclear attack.

The ARPANET in December 1969

1969 — The beginning of ARPANET

The ARPANET in December 1969

1970 — ARPANET is expanding

1973 — ARPANET goes international

1982 — ARPANET reaches 100 nodes

1984 — ARPANET becomes the internet

1992 — The first 'backbone'

NSFNET T3 Network 1992

1993 — The internet is a global network

Privatization of the internet backbone

Characteristics of Web 1.0

- The majority of participants were consumers of content.
- Personal 'hobby websites' were common, consisting mainly of static webpages.
- It's often referred to as the 'read internet', meaning website visitors could consume information the website builder uploaded, but couldn't interact with the site (e.g. post content).
- The most prominent design features of Web 1.0 were:
 - Static pages
 - Content was served from the filesystem (nowadays we use databases)
 - Website layouts were created using HTML frames and tables
- Web 1.0 also introduced email (SMTP)

Web 1.0 — In Action

"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut.

Publisher

Web 2.0

The 'read/write' internet

Before we move on...

Layers of the internet

Application Layer

The 'application layer' (duh)

Transport Layer

The 'application routing layer'

Internet Layer

The Internet Protocol (IP) Layer

Link Layer

The 'physical layer'

Characteristics of Web 2.0

- Often referred to as the read & write internet
- Where in Web 1.0 visitors were mainly capable of reading information published on servers, in Web 2.0 visitors are able to contribute to the internet.
 - E.g. visitors are able to publish information to servers (e.g. post messages on FaceBook or Hyves (≼)).
- Webpages are interactive due to the introduction of JavaScript.
- Webpages can be updated without the need to refresh the entire page (AJAX).
- Everyone is able to contribute / publish information to the internet, without the having to run a server.

Typical Web 2.0 technologies

- Blogging
- Podcasting
- Social media
- Social networking
- RSS feeds
- Tagging
- Chat

Centralization > 3

Centralization of Web 2.0

On an infrastructure level

- Submarine cables
- Internet Service Providers (ISPs)
- Networking hardware (routers, modems, etc.)
- Consumer products
 - Processors (Intel, AMD)
 - PC operating systems (Windows, MacOS, Linux)
 - Smartphones (Android, iOS)
- Etc.

Centralization of Web 2.0

On an application level

Centralization of Web 2.0 On an application level

Centralization of Web 2.0

On an application level, other examples

- Google
- Netflix
- Spotify
- AirBnb
- iCloud
- Teams
- Twitch

What do we mean with centralization anyway?

Centralized V.S. Decentralized V.S. Distributed

Centralization

Examples

- Geographical centralization
 - Stuff is located in the same geographical area
- Network centralization
 - All interactions flow through a central node.
- Governmental centralization
 - A single entity (organization, person, whatever) has full governance control.

A decentralized network can be centralized on a governmental level

Examples of centralization gone wrong

- Banking
- Cambridge Analytica
- AlleKabels
- Facebook
- The list goes on.....

Examination