Examen de Teoría de Percepción - Primer Parcial

ETSINF, Universitat Politécnica de Valéncia, 11 de mayo de 2020

Apellidos: Díaz-Alejo León Nombre: Stéphane

Profesor: □ Jorge Civera □ Carlos Martínez

Problemas (4 puntos, 90 minutos, con apuntes)

- 1. (1 punto) Calcula el espacio en memoria de las siguientes representaciones:
 - a) Representación global directa de una imagen a 256 niveles de gris con resolución 1536 × 2560 píxeles (0.15 puntos)
 - b) Representación local de una imagen de 150×200 píxeles, usando ventanas de 25×25 píxeles y una rejilla de desplazamiento horizontal y vertical de 2 píxeles sobre una imagen de 128 niveles de gris, usando representación por histograma de cada ventana (0.35 puntos)
 - c) Señal de audio mono de 15 minutos de duración, muestreada a 8KHz y 16 bits (0.2 puntos)
 - d) Conjunto de 500 documentos de 200 palabras máximo cada uno, con un vocabulario de 3500 palabras, representado por $term\ frequency\$ (0.3 puntos)

Solución:

- a) 3932160 bytes = 3840 Kb
- b) 1419264 bytes = 1386 Kb
- c) $14400000 \text{ bytes} \approx 13.7 \text{ Mb}$
- d) 1750000 bytes $\approx 1.67 \text{ Mb}$
- 2. (1.5 puntos) Se dispone de un conjunto de muestras en \mathbb{R}^3 clasificadas en dos clases:

n	1	2	3	4	5	6	7
$\overline{x_1}$	-3	0	-2	2	-1	3	1
x_2	-3	0	-2	2	-1	3	1
x_3	0	-3	-1	-2	3	1	2
c	A	A	A	В	-1 -1 3 B	В	В

Se pide:

- a) Calcula los vectores de proyección PCA del conjunto de muestras (0.5 puntos).
- b) Calcula la proyección de las muestras mediante PCA a \mathbb{R}^2 (0.5 puntos).
- c) Considerando las muestras proyectadas mediante PCA a \mathbb{R}^2 , ¿sería suficiente un clasificador lineal para obtener un error de clasificación igual a cero? Justifica la respuesta (0.5 puntos).

Solución:

a) Para calcular los vectores de proyección PCA primero es necesario obtener la matriz de covarianzas de los datos. En este caso, como $\bar{\mathbf{x}} = (0\ 0\ 0)^t$, la matriz de covarianzas es:

$$\Sigma = \frac{1}{7} \left(\mathbf{x}_1 \cdot \mathbf{x}_1^t + \mathbf{x}_2 \cdot \mathbf{x}_2^t + \mathbf{x}_3 \cdot \mathbf{x}_3^t + \mathbf{x}_4 \cdot \mathbf{x}_4^t + \mathbf{x}_5 \cdot \mathbf{x}_5^t + \mathbf{x}_6 \cdot \mathbf{x}_6^t + \mathbf{x}_7 \cdot \mathbf{x}_7^t \right) = \begin{pmatrix} 4 & 4 & 0 \\ 4 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

Calculamos los valores propios de la matriz de covarianzas

$$\begin{vmatrix} 4-\lambda & 4 & 0\\ 4 & 4-\lambda & 0\\ 0 & 0 & 4-\lambda \end{vmatrix} = 0 \quad \text{donde} \quad \lambda_1 = 8, \quad \lambda_2 = 4 \quad \text{y} \quad \lambda_3 = 0.$$

Los vectores propios asociados son

$$\lambda_1 = 8 \quad \rightarrow \quad w_1 = \left(\frac{\sqrt{2}}{2} \quad \frac{\sqrt{2}}{2} \quad 0\right)^t$$

$$\lambda_2 = 4 \quad \rightarrow \quad w_2 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}^t$$

$$\lambda_3 = 0 \quad \rightarrow \quad w_3 = \begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{pmatrix}^t.$$

Figura 1: Proyección de las muestras mediante PCA a \mathbb{R}^2 .

b) Proyectamos sobre los dos vectores propios de mayor valor propio asociado

n	1	2	3	4	5	6	7
x_1	$-3\sqrt{2}$	0	$-2\sqrt{2}$	$2\sqrt{2}$	$-\sqrt{2}$	$3\sqrt{2}$	$\sqrt{2}$
x_2	0	-3	-1	-2	3	1	2
c	A	\mathbf{A}	\mathbf{A}	В	В	В	В

- c) Como se puede observar en la Figura 1, sí es posible separar las muestras de la clase A de la clase B mediante una frontera lineal.
- 3. (1.5 puntos) Se tiene el siguiente conjunto de datos, cuya representación gráfica se ve en la parte derecha:

$$\mathbf{x}_1 = (0,4)$$
 $\mathbf{x}_6 = (2,2)$ $\mathbf{x}_2 = (1,3)$ $\mathbf{x}_7 = (3,2)$ $\mathbf{x}_3 = (2,3)$ $\mathbf{x}_8 = (1,1)$ $\mathbf{x}_4 = (-1,2)$ $\mathbf{x}_9 = (2,1)$ $\mathbf{x}_5 = (1,2)$ $\mathbf{x}_{10} = (0,0)$

Se pide:

- a) Aplica una iteración del algoritmo de edición de Wilson sobre el conjunto de datos. El orden de recorrido será **ascendente** según el índice. Se debe emplear la distancia L1 y vecino más cercano. En caso de empate de distancias, siempre se elige la clase incorrecta. (0.5 puntos)
- b) Aplica sobre los datos originales el algoritmo de condensado CNN, siguiendo los mismos criterios que en el apartado anterior. Muestra la evolución de los conjuntos S y G en todos los pasos. (0.75 puntos)

c) En este caso, ¿habría sido conveniente aplicar edición antes que condensado? Razona la respuesta. (0.25 puntos)

Solución:

La matriz de distancias entre prototipos es:

$ \mathbf{x}_1 $	\mathbf{x}_1								
\mathbf{x}_2	2	\mathbf{x}_2							
\mathbf{x}_3	3	1	\mathbf{x}_3						
\mathbf{x}_4	3	3	4	\mathbf{x}_4					
\mathbf{x}_5	3	1	2	2	\mathbf{x}_5				
\mathbf{x}_6	4	2	1	3	1	\mathbf{x}_6			
\mathbf{x}_7	5	3	2	4	2	1	\mathbf{x}_7		
\mathbf{x}_8	4	2	3	3	1	2	3	\mathbf{x}_8	
\mathbf{x}_9	5	3	2	4	2	1	2	1	\mathbf{x}_9
\mathbf{x}_{10}	4	4	5	3	3	4	5	2	3

- a) Aplicación de Wilson:
 - $\mathbf{x}_1 \to \mathbf{x}_2$, acierto, X no cambia
 - $\mathbf{x}_2 \to \mathbf{x}_3, \mathbf{x}_5, \text{ error}, X = {\mathbf{x}_1, \mathbf{x}_3 \mathbf{x}_{10}}$
 - $\mathbf{x}_3 \to \mathbf{x}_6$, acierto, X no cambia
 - $\mathbf{x}_4 \to \mathbf{x}_5$, error, $X = {\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_5 \mathbf{x}_{10}}$
 - $\mathbf{x}_5 \to \mathbf{x}_6, \mathbf{x}_8$, empate (error), $X = {\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_6 \mathbf{x}_{10}}$
 - $\mathbf{x}_6 \to \mathbf{x}_3, \mathbf{x}_7, \mathbf{x}_9, \text{ acierto}, X \text{ no cambia}$
 - $\mathbf{x}_7 \to \mathbf{x}_6$, acierto, X no cambia
 - $\mathbf{x}_8 \to \mathbf{x}_9$, error, $X = {\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_9, \mathbf{x}_{10}}$
 - $\mathbf{x}_9 \to \mathbf{x}_6$, acierto, X no cambia
 - $\mathbf{x}_{10} \to \mathbf{x}_9$, error, $X = {\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_9}$
- b) Aplicación de CNN Fase 1: $S = {\mathbf{x}_1}, G = {}$
 - $\mathbf{x}_2 \to \mathbf{x}_1$, acierto, $S = {\mathbf{x}_1}$, $G = {\mathbf{x}_2}$
 - $\mathbf{x}_3 \to \mathbf{x}_1$, error, $S = {\mathbf{x}_1, \mathbf{x}_3}$, $G = {\mathbf{x}_2}$
 - $\mathbf{x}_4 \to \mathbf{x}_1$, acierto, $S = {\mathbf{x}_1, \mathbf{x}_3}$, $G = {\mathbf{x}_2, \mathbf{x}_4}$
 - $\mathbf{x}_5 \to \mathbf{x}_3$, acierto, $S = {\mathbf{x}_1, \mathbf{x}_3}, G = {\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5}$
 - $\mathbf{x}_6 \to \mathbf{x}_3$, acierto, $S = {\mathbf{x}_1, \mathbf{x}_3}$, $G = {\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6}$
 - $\mathbf{x}_7 \to \mathbf{x}_3$, acierto, $S = {\mathbf{x}_1, \mathbf{x}_3}$, $G = {\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7}$
 - $\mathbf{x}_8 \to \mathbf{x}_3$, error, $S = {\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_8}$, $G = {\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7}$
 - $\mathbf{x}_9 \to \mathbf{x}_8$, error, $S = {\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_8, \mathbf{x}_9}$, $G = {\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7}$
 - $\mathbf{x}_{10} \to \mathbf{x}_8$, acierto, $S = {\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_8, \mathbf{x}_9}, G = {\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_{10}}$

Fase 2, iteración 1:

- $\mathbf{x}_2 \to \mathbf{x}_3$, error, $S = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_8, \mathbf{x}_9}, G = {\mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_{10}}$
- $\mathbf{x}_4 \to \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_8, \text{ acierto, } S \neq G \text{ no cambian}$
- $\mathbf{x}_5 \to \mathbf{x}_2, \mathbf{x}_8, \text{ error}, S = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_8, \mathbf{x}_9}, G = {\mathbf{x}_4, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_{10}}$
- $\mathbf{x}_6 \to \mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_9$, acierto, S y G no cambian
- $\mathbf{x}_7 \to \mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_9$, acierto, S y G no cambian
- $\mathbf{x}_{10} \to \mathbf{x}_8$, acierto, S y G no cambian

Fase 2, iteración 2:

- $\mathbf{x}_6 \to \mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_9$, acierto, $S \ y \ G$ no cambian
- $\mathbf{x}_7 \to \mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_9$, acierto, S y G no cambian
- $\mathbf{x}_{10} \to \mathbf{x}_8$, acierto, S y G no cambian

Fase 3, iteración 3:

- $\mathbf{x}_6 \to \mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_9$, acierto, S y G no cambian
- $\mathbf{x}_7 \to \mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_9, \text{ acierto, } S \neq G \text{ no cambian}$
- $\mathbf{x}_{10} \to \mathbf{x}_8$, acierto, S y G no cambian

Resultado final: $S = \{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_8, \mathbf{x}_9 \}, G = \{ \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_{10} \}$

c) En este caso, al no haber "huecos" en las regiones de decisión, el algoritmo de edición previo al condensado tiene el efecto de eliminar los prototipos cercanos a la frontera de decisión, que son los que trata de mantener el algoritmo de condensado; por tanto, al menos con este nivel de vecindad (k = 1, puede que con k > 1 sí hubiese mantenido prototipos cercanos a las fronteras), no es conveniente aplicar edición antes que condensado.