

STAT011 Statistical Methods I

Lecture 19 Inference for Two Proportions

Lu Chen Swarthmore College 4/4/2019

Review

- ▶ Motivation example: an analysis of many statistical analyses
- Data
- ightharpoonup Bernoulli distribution $X \sim Bernoulli(p)$
- Sampling distribution of a sample proportion $\hat{p} \stackrel{approx.}{\sim} N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$
- ▶ Inference for a population proportion
 - p is unknown...
 - Large sample C.I. for a population proportion $\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
 - Large sample *z* test for a population proportion $z = \frac{\hat{p} p_0}{\sqrt{\frac{p_0(1 p_0)}{n}}} \stackrel{approx.}{\sim} N(0, 1)$
- Examples

Outline

- Motivation example
- ▶ Two-proportion problem
- Large sample confidence interval for a difference in proportions
- Large sample significance test for a difference in proportions
- Examples

Election polls

Hillary Clinton

45.9%

National Polling Average

Donald J. Trump

42.8%

- ▶ 11/8/2016 NY Times
- http://www.nytimes.com/interactive/2016/us/elections/polls.html

Election polls

Polls	Dates	Type, Respondents	Clinton	Trump	Margin
YouGov/Economist	11/4 - 11/7	Online3,669	45	41	Clinton +4
IBD/TIPP NEW	11/4 - 11/7	Live Phone1,107	41	43	Trump +2
Insights West NEW	11/4 - 11/7	Online940	45	41	Clinton +4
Bloomberg/Selzer	11/4 - 11/6	Live Phone799	46	43	Clinton +3
Lucid/The Times-Picayune	11/4 - 11/6	Online931	45	40	Clinton +5

- ▶ 376 total polls from January 4th to November 7th
- A total of 1,001,325 subjects
 - 471,126 (47.1%) for Clinton
 - 414,797 (41.4%) for Trump
- ▶ "Polls conducted more recently and polls with a larger sample size are given greater weight in computing the averages" NY Times

Popular vote

presidential results

key

 $306 \operatorname{trump}$

clinton 232

_

46.4% votes 62,984,825

270 electoral votes to win

48.5% votes 65,853,516

2/16/2017 CNN

Popular vote versus 376 polls

	Total	Clinton	Trump
Popular vote	128,838,341	65,853,516 (48.5%)	62,984,825 (46.4%)
376 polls	1,001,325	471,126 (47.1%)	414,797 (41.4%)

The Atlantic

Clinton is ahead in the popular vote totals, meaning that polls showing her ahead by a few points in head-to-head matchups with Trump were wrong in magnitude, but not directionality.

Polls?

Polls?

Is this the official death of political polling?

1 day ago

Popular vote versus 376 polls

	Total	Clinton	Trump
Popular vote	128,838,341	65,853,516 (48.5%)	62,984,825 (46.4%)
376 polls	1,001,325	471,126 (47.1%)	414,797 (41.4%)

- ▶ Polls from conservative media had similar results.
- ▶ Polls from Trump Camp had similar results.
- ▶ Why did ALL these polls over-estiamte the difference between the two?

Possible reasons

- Weighting: weights were chosen by pollers and usually not reported
- ▶ "Shy Trump" effect
- ▶ Low-response rate (< 15%): introduces more errors and self-selection bias
- Data-collection methods sampling biasonline
 - live telephone

interactive voice response

Did we all believe Clinton would win because of bad data, or did we ignore bad data because we believed Clinton would win?

How different polls work

NY Times polling notes

Online Polls

Most online polls are based on panels of self-selected respondents. Internet access is not yet evenly distributed across socioeconomic and demographic groups.

▶ Live Telephone Polls

• An interviewer asks questions of a respondent by telephone. . . . about half of U.S. households do not have a landline.

▶ Interactive Voice Response Polls (I.V.R.)

■ I.V.R. employ an automated, recorded voice to call respondents ... Most I.V.R. polls call only landlines.

Number of polls by polling methods and results

	Online	Live Phone	I.V.R.
Clinton led	188	126	27
Trump led or even	8	14	13
Total	196	140	40

- Is there a relationship between results and polling method? Do the three polling methods have different results?
- Conditional distribution
 Proportion of Clinton led conditional on polling method
 Proportion of Trump led or even conditional on polling method

```
head(polls, 3) # look at the first 3 rows of the polls data
##
        Result Method
## 1 Clinton led Online
## 2 Clinton led Online
## 3 Clinton led Online
table.polls <- table(polls); table.polls
##
                   Method
## Result Online Live Phone I.V.R.
## Clinton led 188 126
                                        27
    Trump led or even 8 14 13
##
prop.table(table.polls, margin = 2) ## Conditional distribution by columns
##
                   Met.hod
## Result
                        Online Live Phone I.V.R.
    Clinton led 0.95918367 0.90000000 0.67500000
##
##
    Trump led or even 0.04081633 0.10000000 0.32500000
```

```
library(ggplot2)
theme_update(text=element_text(size=16))
ggplot(polls,aes(Method, fill=Result))+geom_bar()
```



```
gp <- ggplot(polls,aes(Method, fill=Result))
gp+geom_bar(position="dodge") # side by side
gp+geom_bar(position="fill") # conditional proportions</pre>
```


	Online	Live Phone	I.V.R.
Clinton led	188	126	27
Trump led or even	8	14	13
Total	196	140	40
Conditional proportions of Clinton led	0.959	0.900	0.675

- Are the proportions of Clinton-led the same for different polling methods?
 - Let's do pairwise comparisons today. In the next lecture, we will learn the method for testing whether three or more proportions are the same.
- Inference for two proportions p_1 and p_2 :
 - Confidence interval for $p_1 p_2$
 - Significance test $H_0: p_1 = p_2$

Inference for two proportions

$$\hat{p}_1 \stackrel{approx.}{\sim} N\left(p_1, \sqrt{\frac{p_1(1-p_1)}{n_1}}\right) \text{ and } \hat{p}_2 \stackrel{approx.}{\sim} N\left(p_2, \sqrt{\frac{p_2(1-p_2)}{n_2}}\right)$$

- ▶ Estimate for $p_1 p_2$: $\hat{p}_1 \hat{p}_2 = \frac{X_1}{n_1} \frac{X_2}{n_2}$
- Mean of $\hat{p}_1 \hat{p}_2 : p_1 p_2$
- SD of $\hat{p}_1 \hat{p}_2$: $\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
- Distribution of $\hat{p}_1 \hat{p}_2$

$$(\hat{p}_1 - \hat{p}_2) \stackrel{approx.}{\sim} N\left(p_1 - p_2, \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}\right)$$

Two-proportion vs. one-proportion problems

	One-proportion	Two-proportion
Data	Binary	Binary vs. binary
Parameter of interest	p	p_1, p_2
Estimate	$\hat{p} = \frac{X}{n}$	$\hat{p}_1 - \hat{p}_2 = \frac{X_1}{n_1} - \frac{X_2}{n_2}$
Mean	p	$p_1 - p_2$
SD	$\sqrt{\frac{p(1-p)}{n}}$	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
Distribution	$\hat{p} \stackrel{approx.}{\sim} N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$	$(\hat{p}_1 - \hat{p}_2) \stackrel{approx.}{\sim} N\left(p_1 - p_2, \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}\right)$

Inference for two proportions

Since p_1 and p_2 are unknown,

▶ For confidence interval,

$$SE_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

For testing $H_0: p_1 = p_2$, denote \hat{p} as the pooled estimator for $p = p_1 = p_2$.

$$SE_{\hat{p}_1 - \hat{p}_2} = \sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

where
$$\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$$

Large sample CI for difference in proportions

Choose two independent SRSs of size n_1 and n_2 from a large population having proportions p_1 and p_2 of successes. The estimate of the difference in the population proportions is $D = \hat{p}_1 - \hat{p}_2$. The **standard error of** D is

$$SE_D = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

and the **margin of error** for confidence level C is $m = z^* SE_D$, where the critical value z^* is the value for the standard Normal density curve with area C between $-z^*$ and z^* . An **approximate level C confidence interval for p_1 - p_2** is

$$D \pm m = \hat{p}_1 - \hat{p}_2 \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

for number of successes/failures in each sample being at least 10.

Large sample test for difference in proportions

To test the hypothesis $H_0: p_1 = p_2$, compute the *z* statistic

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

where the **pooled estimator** of p_1 and p_2 is $\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$. In terms of a standard Normal random variable Z, the approximate P-value for a test of H_0 against

$$H_a: p_1 > p_2 \text{ is } P(Z \ge z)$$

 $H_a: p_1 < p_2 \text{ is } P(Z \le z)$
 $H_a: p_1 \ne p_2 \text{ is } 2P(Z \ge |z|)$

As a general rule, we will use the z test when the number of successes and the number of failures in each of the samples are at least 5.

	Online	Live Phone	I.V.R.
Clinton led	188	126	27
Trump led or even	8	14	13
Total	196	140	40
Conditional proportions of Clinton led	0.959	0.900	0.675

$$\hat{p}_1 = 0.959, n_1 = 196, \hat{p}_2 = 0.900, n_2 = 140$$

▶ 95% confidence interval for $p_1 - p_2$:

$$(0.959 - 0.900) \pm 1.96\sqrt{\frac{0.959 \times (1 - 0.959)}{196} + \frac{0.9 \times (1 - 0.9)}{140}} = 0.059 \pm 0.057$$

We are 95% confident that the true difference in proportion of Clintion led between the two methods (online vs live phone) is between 0.002 and 0.116.

	Online	Live Phone	I.V.R.
Clinton led	188	126	27
Trump led or even	8	14	13
Total	196	140	40
Conditional proportions of Clinton led	0.959	0.900	0.675

- $\hat{p}_1 = 0.959, n_1 = 196, \hat{p}_2 = 0.900, n_2 = 140$
- Level 0.05 test for $H_0: p_1 = p_2$ vs. $H_a: p_1 \neq p_2$: $\hat{p} = \frac{188 + 126}{196 + 140} = 0.935 \text{ and } z = \frac{(0.959 - 0.900) - 0}{\sqrt{0.935 \times (1 - 0.935) \times (\frac{1}{196} + \frac{1}{140})}} = 2.16$
- ▶ P = 0.031 < 0.05, 2*(1-pnorm(2.16)). We reject H_0 at level 0.05. There is significant difference in proportion of Clintion led between the two methods (online vs live phone).

R function

```
prop.test(x = c(188, 126), n = c(196, 140), correct = FALSE) # Online vs. Live Phone
##
##
    2-sample test for equality of proportions without continuity
##
    correction
##
## data: c(188, 126) out of c(196, 140)
## X-squared = 4.6749, df = 1, p-value = 0.03061
## alternative hypothesis: two.sided
  95 percent confidence interval:
  0.002290546 0.116076801
## sample estimates:
##
      prop 1 prop 2
## 0.9591837 0.9000000
> 95% CI: [0.002, 0.116]
• 0.05 test: z = \sqrt{4.67} = 2.16 and P = 0.031 < 0.05
```

Note here the "X-squared" value is the square of the z statistic; the former is always positive while z could be positive or negative.

R function

```
prop.test(x = c(188, 27), n = c(196, 40), correct = FALSE) # Online vs. I.V.R.
##
##
    2-sample test for equality of proportions without continuity
##
    correction
##
## data: c(188, 27) out of c(196, 40)
## X-squared = 33.095, df = 1, p-value = 8.774e-09
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.1364159 0.4319515
## sample estimates:
##
      prop 1 prop 2
## 0.9591837 0.6750000
▶ 95% CI: [0.136, 0.432] does not contain 0.
• 0.05 test: z = \sqrt{33.1} = 5.75 and P = 8.8 \times 10^{-9} < 0.05
```

R function

```
prop.test(x = c(126, 27), n = c(140, 40), correct = FALSE) # Live Phone vs. I.V.R.
##
##
    2-sample test for equality of proportions without continuity
##
    correction
##
## data: c(126, 27) out of c(140, 40)
## X-squared = 12.353, df = 1, p-value = 0.0004403
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.07158061 0.37841939
## sample estimates:
## prop 1 prop 2
## 0.900 0.675
• 95% CI: [0.072, 0.378]
• 0.05 test: z = \sqrt{12.35} = 3.51 and P = 0.0004 < 0.05
```

Three comparisons

	Online vs LivePhone	Online vs I.V.R.	LivePhone vs I.V.R.
Difference	0.059	0.284	0.225
Confidence interval	[0.002, 0.116]	[0.136, 0.432]	[0.072, 0.378]
Test P-value	0.031	8.8×10^{-9}	0.0004

▶ The three polling methods are significantly different from each other. Online and I.V.R. have the largest difference.

Summary

- Motivation example
- ▶ Two-proportion problem
- Large sample confidence interval for a difference in proportions

$$\hat{p}_1 - \hat{p}_2 \pm z^* SE_D$$
 where $SE_D = \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$

Large sample significance test for a difference in proportions

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\text{SE}_{Dp}}$$
 where $\text{SE}_{Dp} = \sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ and $\hat{p} = \frac{X_1 + X_2}{n_1 + n_2}$

Examples

Midterm 2

- ▶ Tuesday 4/16 during class time
 - Review class on Thursday 4/11
 - Practice problems available on Friday 4/12
- ▶ Homework 9
 - Covers Lecture 18, 19 and 20
 - Due on Friday 4/12 11:59 pm
 - Solutions available on Saturday 4/13
- ▶ There will be office hours on Thursday 4/11 2:40 pm 3:40 pm