A Logo for Narayanpal

G.V.V. Sharma

Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Kandi, India 502284 gadepall@ee.iith.ac.in

Abstract—This paper determines the parameter pairs (a,b) for the function $f(t) = e^{-at}u(t) + e^{bt}u(-t)$, subject to normalization, such that these pairs correspond to the endpoints of the latus recta of an associated conic. The work derives the conic equation binding the parameters, applies eigen-decomposition, and uses affine transformations to identify the valid (a,b) values. Additionally, a numerical gradient descent method is proposed to determine symmetric truncation points $\theta = (\theta_0, \theta_1)$ such that the areas under f(t) on either side of t=0 are equal. This approach allows for a flexible choice of the truncation window.

1. Question

Given that

$$f(t) = e^{-at}u(t) + e^{bt}u(-t)$$
 (1)

$$u(t) = \begin{cases} 0, & t < 0 \\ \frac{1}{2}, & t = 0 \\ 1, & t > 0 \end{cases}$$
 (2)

$$\int_{-\infty}^{\infty} f(t) = 1 \tag{3}$$

Find the possible values of (a, b) if these are the end points of the latus recta of the associated conic. Plot f(t) for these values of (a, b).

2. Solution

We expand the integral as

$$\int_{-\infty}^{\infty} f(t) = \int_{-\infty}^{0} f(t) + \int_{0}^{\infty} f(t) \tag{4}$$

$$=\int_{-\infty}^{0}e^{bt}+\int_{0}^{\infty}e^{-at}$$
 (5)

$$=\frac{1}{b} + \frac{1}{a} \tag{6}$$

Substituting (??) in (??):

$$\frac{1}{a} + \frac{1}{b} = 1 \tag{7}$$

$$ab - a - b = 0 \tag{8}$$

This is the equation of a conic. If we take a as x and b as y and express this as a conic in standard form, we get

$$g(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{V} \mathbf{x} + 2\mathbf{u}^{\mathrm{T}} \mathbf{x} + f \tag{9}$$

By comparison:

$$\mathbf{V} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \tag{10}$$

$$\mathbf{u} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix} \tag{11}$$

$$f = 0 \tag{12}$$

We eigen-decompose V as

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^{\mathrm{T}} \tag{13}$$

$$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \tag{14}$$

$$\mathbf{D} = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{-1}{2} \end{pmatrix} \tag{15}$$

Convert the conic into a standard conic using affine transformations.

$$\mathbf{y}^{\mathrm{T}} \left(\frac{\mathbf{D}}{f_0} \right) \mathbf{y} = 1 \tag{16}$$

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c} \tag{17}$$

Where

$$f_0 = \mathbf{u}^{\mathrm{T}} \mathbf{V}^{-1} \mathbf{u} - f = 1 \tag{18}$$

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} = \begin{pmatrix} 1\\1 \end{pmatrix} \tag{19}$$

The eigenvalues of **D** are $\lambda_1 = \frac{1}{2}$, $\lambda_2 = -\frac{1}{2}$. Using a reflection matrix and further transformation, we get the hyperbola in standard form:

$$\mathbf{z}^{\mathrm{T}} \left(\frac{\mathbf{D_0}}{f_0} \right) \mathbf{z} = 1 \tag{20}$$

$$j(\mathbf{z}) = \mathbf{z}^{\mathrm{T}} \mathbf{D}_{\mathbf{0}} \mathbf{z} - f_{0} = 0$$
 (21)

$$\mathbf{y} = \mathbf{P}_0 \mathbf{z} \tag{22}$$

Here
$$\mathbf{P}_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $\mathbf{D}_0 = \begin{pmatrix} -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

Now, solve for the endpoints of the latus recta:

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{p}_1 = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \tag{23}$$

$$e = \sqrt{2} \tag{24}$$

$$c = \pm \frac{1}{\sqrt{2}} \tag{25}$$

$$\mathbf{F} = \pm 2\mathbf{e}_2 \tag{26}$$

Equation of latus recta:

$$\mathbf{n}^{\mathrm{T}}\mathbf{x} = \mathbf{n}^{\mathrm{T}}\mathbf{F} \tag{27}$$

$$\equiv \mathbf{x} = \mathbf{h} + k\mathbf{m} \tag{28}$$

$$\mathbf{h} = \begin{pmatrix} 0 \\ \pm 2 \end{pmatrix} \tag{29}$$

$$\mathbf{m} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{30}$$

Let $\hat{\mathbf{z}}$ be the endpoints of the latus recta:

$$k = \pm \sqrt{2} \tag{31}$$

$$\therefore \hat{\mathbf{z}} = \begin{pmatrix} \pm \sqrt{2} \\ \pm 2 \end{pmatrix} \tag{32}$$

Transforming back to the original conic:

$$\hat{\mathbf{x}} = \mathbf{P}(\mathbf{P}_0 \hat{\mathbf{z}}) + \mathbf{c} \tag{33}$$

Which gives:

$$\hat{\mathbf{x}}_1 = \begin{pmatrix} 2 + \sqrt{2} \\ \sqrt{2} \end{pmatrix}$$

$$\hat{\mathbf{x}}_2 = \begin{pmatrix} \sqrt{2} \\ 2 + \sqrt{2} \end{pmatrix}$$

$$\hat{\mathbf{x}}_3 = \begin{pmatrix} 2 - \sqrt{2} \\ -\sqrt{2} \end{pmatrix}$$

$$\hat{\mathbf{x}}_4 = \begin{pmatrix} -\sqrt{2} \\ 2 - \sqrt{2} \end{pmatrix}$$

Only $\hat{\mathbf{x}}_1$ and $\hat{\mathbf{x}}_2$ are valid as negative a or b will not yield a finite f(t).

3. PLots

Fig. 1: Conic Section

Fig. 2: Function f(t) for valid (a, b)

4. Numerical Area Balancing and Gradient Descent

We need to find the endpoints (θ_0, θ_1) and truncate the function f(t), such that the the area under f(t) is symmetric about t = 0. For this, we will use gradient descent so that we get the closest solution to our guess.

Define:

$$A_L(\theta_0) = \int_{\theta_0}^0 e^{bt} \, dt = \frac{1 - e^{b\theta_0}}{b} \tag{34}$$

$$A_R(\theta_1) = \int_0^{\theta_1} e^{-at} dt = \frac{1 - e^{-a\theta_1}}{a}$$
 (35)

We seek $\theta = (\theta_0, \theta_1)$ such that $A_L(\theta_0) = A_R(\theta_1)$. Rearranging:

$$\frac{1 - e^{b\theta_0}}{b} - \frac{1 - e^{-a\theta_1}}{a} = 0 \tag{36}$$

This nonlinear equation cannot be solved analytically in closed form. Thus, we define a cost function:

$$C(\theta) = \left(\frac{1 - e^{b\theta_0}}{b} - \frac{1 - e^{-a\theta_1}}{a}\right)^2$$
 (37)

We minimize this cost using gradient descent:

$$\frac{dC}{d\theta_0} = -\left(\frac{1 - e^{b\theta_0}}{b} - \frac{1 - e^{-a\theta_1}}{a}\right)e^{b\theta_0} \tag{38}$$

$$\frac{dC}{d\theta_1} = -\left(\frac{1 - e^{b\theta_0}}{b} - \frac{1 - e^{-a\theta_1}}{a}\right)e^{-a\theta_1} \tag{39}$$

The update rule becomes:

$$\theta_{n+1} \leftarrow \theta_n - \eta \cdot \nabla C(\theta_n)$$
 (40)

where η is a learning rate.

We initialize θ with a reasonable estimate and iterate until $|C(\theta)| < 10^{-10}$. The resulting θ yields a numerically balanced integral under f(t) on both sides of the origin.

$$\theta_{(0)} = [-2, 3]^{\mathrm{T}} \to \theta_n = [-0.37815999, 3.00038288]^{\mathrm{T}}$$
 (41)

Fig. 3: Truncated Function f(t)