Chapter 3.8 Learning Using Bayes Rule

Jim Albert and Monika Hu

Chapter 3 Conditional Probability

Introduction

- ▶ Probabilities are conditional in that one's opinion about an event is dependent on our current state of knowledge.
- ▶ As we gain new information, our probabilities can change.
- Bayes' rule provides a mechanism for changing our probabilities when we obtain new data.

Blood test example

- ➤ You are given a blood test for a rare disease. The proportion of people who currently have this disease is 0.1.
- The blood test comes back with two results: positive, which is some indication that you may have the disease, or negative.
- ▶ It is possible that the test will give the wrong result. If you have the disease, it will give a negative reading with probability 0.2. Likewise, it will give a false positive result with probability 0.2.
- Suppose that you have a blood test and the result is positive. Should you be concerned that you have the disease?

Two alternatives

- ► There are two possible alternatives: you have the disease, or you don't have the disease.
- ▶ Before you have a blood test, you assign probabilities to "have disease" and "don't have disease" that reflect the plausibility of these two models.
- ➤ You assign the event "have disease" a probability of 0.1 By the complement property, this implies that the event "don't have disease" has a probability of 1- 0.1 = 0.9.

Data

- ► The new information that one obtains to learn about the different models is called data.
- ▶ Here the data is the result of the blood test. Here the two possible data results are a positive result (+) or a negative result (-).
- ▶ If one "has the disease," the probability of a + observation is 0.8 and the probability of a - observation is 0.2. One writes

$$P(+ | \text{disease}) = 0.8, P(- | \text{disease}) = 0.2.$$

Likewise, if you don't have the disease

$$P(+ \mid \text{no disease}) = 0.2, P(- \mid \text{no disease}) = 0.8.$$

Probability of interest

Suppose you take the blood test and the result is positive (+) − what is the chance you really have the disease?

$$P(\text{disease} \mid +).$$

- Here the focus is on the so-called inverse probability the probability of having the disease given a positive blood test result.
- We describe the computation of this inverse probability using two methods.

Method 1: Using a tree diagram

- ▶ A person either has or does not have the disease, and given the person's disease state, he or she either gets a positive or negative test result.
- One represents the outcomes by a tree diagram where the first set of branches corresponds to the disease states and the second set of branches corresponds to the blood test results.

The tree diagram

Computation

By the definition of conditional probability,

$$P(\text{disease} \mid +) = \frac{P(\text{disease} \cap +)}{P(+)}.$$

▶ One finds the numerator $P(\text{disease} \cap +)$ by use of the multiplication rule:

$$P(\text{disease} \cap +) = P(\text{disease})P(+ | \text{disease})$$

= 0.1 × 0.8 = 0.08.

▶ In the tree diagram, one is multiplying probabilities along the disease/+ branch to find this probability.

Computation

- ▶ To find the denominator P(+), note that there are two ways of getting a positive blood test result.
- ► These two outcomes are the disease/+ and no disease/+ branches of the tree. One finds the probability of each outcome, and then sum the outcome probabilities:

$$P(+) = P(\text{disease} \cap +) + P(\text{no disease} \cap +)$$

= $P(\text{disease})P(+ | \text{disease}) + P(\text{no disease})P(+ | \text{no disease})$
= $0.1 \times 0.8 + 0.9 \times 0.2$
= 0.26 .

► So the probability of having the disease, given a positive blood test result is

$$P(\text{disease} \mid +) = \frac{P(\text{disease} \cap +)}{P(+)} = \frac{0.08}{0.26} = 0.31.$$

➤ Suppose there are 1000 people in the community – one places "1000' in the lower right corner of the table.

		+	_	TOTAL
Disease	Have disease			
status	Don't have disease			
TOTAL				1000

▶ One knows that the chance of getting the disease is 10% – so one expects 10% of the 1000 = 100 people to have the disease and the remaining 900 people to be disease-free.

		+	_	TOTAL
Disease	Have disease			100
status	Don't have disease			900
TOTAL				1000

- ightharpoonup One knows the test will err with probability 0.2. So if 100 people have the disease, one expects 20% of 100 = 20 to have a negative test result and 80 will have a positive result
- Likewise, if 900 people are disease-free, then 20% of 900 = 180 will have an incorrect positive result and the remaining 720 will have a negative result

		+	_	TOTAL
Disease	Have disease	80	20	100
status	Don't have disease	180	720	900
TOTAL				1000

- Now one is ready to compute the probability of interest $P(\text{disease} \mid +)$ from the table of counts.
- ▶ Restrict attention to the + column of the table there are 260 people had a positive test result. Of these 260, 80 actually had the disease, so

$$P(\text{disease} \mid +) = \frac{80}{260} = 0.31.$$

Comments

- ► Initially you had a small probability of 0.10 of having the disease
- ► The new probability of having the disease (0.31) is larger than the initial probability since a positive blood test was observed
- ▶ Note that since the new probability is under 0.5, it is still unlikely you have the disease