

Upgrade

Chapter 2.0: Logistic Regression with Math.

In the previous story we talked about **Linear Regression** for solving regression problems in machine learning, This story we will talk about Logistic Regression for classification problems.

You may be wondering why the name says regression if it is a classification algorithm, well, It uses the regression inside to be the classification algorithm.

Classification: Separates the data from one to another.

This story we talk about $\bf binary\ classification\ (\ 0\ or\ 1)$ Here target variable is either 0 or 1

Goal is to find that green straight line (which separates the data at best)

so we use regression for drawing the line, makes sense right?

Lets take a random dataset and see how it works,

if we observe the *right* picture we have our independent variable (X) and dependent variable(y) so this is the graph we should consider for the classification problem

Given X or (Set of x values) we need to predict whether it's 0 or 1 (Yes/No).

If we apply Linear regression for above data we get something like this,

Given X value 6 we can say y is 0.7 (close to 1), that's cool but wait, What if I give negative X value or greater X value??? The output is this

We only accept the values between 0 and 1 (We don't accept other values) to make a decision (Yes/No)

so how do we proceed further?

There is an awesome function called $\bf Sigmoid$ or $\bf Logistic$ function , we use to get the values between 0 and 1

This function squashes the value (any value) and gives the value between 0 and 1

How??? and what is 'e'???

this is how the value is always between 0 and 1.

2.71828 = Positive value

2.71828 =
$$\frac{1}{Positive \ value}$$
 = Value between (0 and 1)

$$\frac{1}{1 + Positive \ value}$$
or
$$\frac{1}{1 + Positive \ value}$$

Sigmoid Function

So far we know that we first apply the linear equation and apply Sigmoid function for the result so we get the value which is between 0 and 1.

The hypothesis for *Linear regression* is $h(X) = \theta 0 + \theta 1 * X$

The hypothesis for this algorithm is

$$\frac{1}{-(\theta 0 + \theta 1^*X)}$$

1 + e

Logistic function for Logistic regression.

How does it work??

1. First we calculate the **Logit function**, what the heck is that??

$logit = \theta 0 + \theta 1*X$ (hypothesis of linear regression)

2. We apply the above Sigmoid function (Logistic function) to logit.

3 we calculate the error , Cost function (Maximum log-Likelihood)

Cost function for linear regression is

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cost function

here it does not work as h(x) hypothesis gives non convex function for $J(\theta 0, \theta 1)$ so we are not guaranteed that we reach best minimum.

We take log(hypothesis) to calculate the cost function

Logistic regression cost function

$$\begin{split} J(\theta) &= \frac{1}{m} \sum_{i=1}^m \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)}) \\ &= -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))] \\ P(y=I \mid x; \theta) &= h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} \end{split}$$
 Taken from Prof. Andrew Ng.'s Coursera ML course

If it does not make sense, let me make it sense to you

usually error is what?? (predicted — actual)**2 right??

```
so if predicted = 1 and actual= 1
error = 0
so if predicted = 1 and actual= 0
error = 1
so if predicted = 0 and actual= 1
error = 1
so if predicted = 0 and actual= 0
error = 0

Note: predicted can be 0.5 and so on... also
So every time we get the error between 0 and 1 which is not useful.
```

just take a look at this picture and observe something..

From Left picture

If actual y = 1 and predicted = 0 the cost goes to infinity and If actual y = 1 and predicted = 1 the cost goes to minimum.

If actual y = 0 and predicted = 1 the cost goes to infinity and If actual y = 0 and predicted = 0 the cost goes to minimum.

From Right picture

if we apply *log* to *hypothesis* (*predicted*) we get some values (cost) which is useful to estimate the overall error.

Here is the final picture.

Logistic regression cost function
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)}) \qquad \qquad \text{If actual y=1}$$

$$= -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$

$$0 \quad \text{If actual y=0}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$
 Note: $y = 0$ or 1 always

that's it. based on the actual **y** values we calculate different functions.

4. Next step is to apply **Gradient descent** to change the θ values in our hypothesis (I already covered check this <u>link</u>).

That's it We are done!

we got the Logistic regression ready, we can now predict new data with the model we just built.

Predicting new data, remember?? we give new X values we get the predicted y values how does it work ??

Bam!!!!

we get the probability score(s).

So That's it for this story, In the next story I will code this algorithm from scratch and also using Tensorflow and scikitlearn.

See ya!

WRITTEN BY

Madhu Sanjeevi (Mady)

Follow

Writes about Technology (AI, ML, DL) | Writes about Human Mind and Computer Mind. interested in ||Programming || Science || Psychology || NeuroScience || Math

Deep Math Machine learning.ai

Following 🗸

This is all about machine learning and deep learning (Topics cover Math,Theory and Programming)

See responses (1)

More From Medium

Also tagged Classification

Gini Index vs Information Entropy

Also tagged Logistic Regression

Would I embarrass myself if I went on Netflix's Nailed It?

Related reads

Introduction to Logistic Regression

Ayush Pant in Towards Data Science Jan 22 · 5 min read

424

