MA 16200: Plane Analytic Geometry and Calculus II

Lecture 29: Introduction to Polar Coordinates

Zachariah Pence

Purdue University

Sections Covered: 12.2 (Part I)

Cartesian Coordinates

Our usual system is called **Cartesian coordinates** (or Rectangular coordinates or Box coordinates). A point in space is described using the ordered pair

where x is the horizontal component and y is the vertical component.

Polar Coordinates (When $r \ge 0$)

In **Polar Coordinates**, a point in space is described using the ordered pair

$$(r,\theta)$$

where r (called the **radial coordinate**) is the distance from the origin (called the **pole**) and θ is angle the ray \overrightarrow{OP} makes with the positive x-axis (called the **polar axis**). Positive angles are measured counterclockwise.

Polar Coordinates (When r < 0)

When r is negative,

$$(r, \theta) \stackrel{\text{def}}{=} (|r|, \theta + \pi)$$

$$(r, \theta) \stackrel{\bullet}{=} (|r|, \theta)$$

$$|r| \qquad \theta \qquad 0$$

$$|r| \qquad 1$$

Problem 1

Plot the points whose polar coordinates are given:

(a)
$$(1, 5\pi/4)$$

(b)
$$(2, 3\pi)$$

(c)
$$(2, -2\pi/3)$$

$$(d) (-3, 3\pi/4)$$

Representations are not Unique

Unlike in Cartesian coordinates, there are multiple ways to describe the same point in space. Why?

In practice, we restrict $r \geq 0$ and $\theta \in (-\pi, \pi]$ to make it unique (although this is not required). This is useful in plotting points,

Z. Pence

not necessarily when plotting curves.

Problem 2

Give two alternative representations for each point:

(a)
$$(1, 5\pi/4)$$
 (b) $(2, 3\pi)$ (c) $(2, -2\pi/3)$ (d) $(-3, 3\pi/4)$

$$Q(1, \frac{27}{4}) = (1, \frac{27}{4} + 2\pi) = (1, \frac{13}{4}\pi) =$$

(b)
$$(2.3\pi) = (2.5\pi) = (2.7\pi)$$

From Cartesian to Polar

How can we convert a point in Cartesian coordinates to Polar?

From Polar to Cartesian

How can we convert a point in Polar coordinates to Cartesian?

$$\frac{x}{r} = \cos \theta$$

$$\frac{x}{r} = \sin \theta$$

$$\frac{x}{r} = \sin \theta$$

$$\frac{x}{r} = \sin \theta$$

Summary of Formulas

Theorem 3 (Converting Coordinates)

A point with polar coordinates (r, θ) has Cartesian coordinates (x, y), where:

$$x = r \cos \theta$$
 $y = r \sin \theta$

A point with Cartesian coordinates (x, y) has polar coordinates (r, θ) , where:

$$r^2 = x^2 + y^2 \quad \tan \theta = \frac{y}{x}$$

Problem 4

Express the point with polar coordinates $P(2, \frac{3\pi}{4})$ in Cartesian coordinates.

$$(\chi, \psi) = (-12, 12)$$

Z. Pence

Problem 5

Express the point with Cartesian coordinates Q(1,-1) in Polar Coordinates.

$$r^{2} = \chi^{2} + y^{2} = |^{2} + (-1)^{2} = 2$$

$$fan \theta = \frac{y}{\chi} = -1$$
Personally, I prefer if $r \ge 0$ and $\theta \in (-iT,iT]$

$$(r, \theta) = (\sqrt{2}, -\frac{\pi}{4})$$

Z. Pence

Problem 6

Express the point with polar coordinates $P(2, \frac{\pi}{3})$ in Cartesian coordinates.

$$\chi = r\cos\theta = 2\cos \frac{\pi}{3} = 2\left(\frac{1}{a}\right) = 1$$

$$(\chi, y) = (1, \sqrt{3})$$

Problem 7

Express the point with Cartesian coordinates $(-4, -4\sqrt{3})$ in Polar Coordinates.

Z. Pence

Functions in Polar Coordinates

We can relate r and θ like in Cartesian, these are called **polar** curves.

	Cartesian	Polar
Explicit	y = f(x)	$r = f(\theta)$
	y = 3x	$r=1+\sin heta$
Implicit	F(x,y)=0	$F(r,\theta)=0$
	$x^2 + y^2 - 1 = 0$	$r \sin \theta = 4$

Problem 8

What curve is represented by the polar equation r = a (where a is a constant)?

$$r=a$$

$$r^{2}=a^{2}$$

$$\chi^{2}+y^{2}=a^{2}$$

Circle centered at the origin with radius las

Problem 9

Find the polar equation for a circle whose center is the (cartesian) point (a, b) and intersects the origin.

Z. Pence

r = 2acus 0 + 2bsin 0

Z. Pence

Example He origin (when the slope is undefined)

Problem 10

What curve is represented by the polar equation $\theta = \theta_0$ (where θ_0 is a constant)?

Cartesian coordinates y = yo x, where (Xo, yo)

To x is a non-zero

point on the line Line with a Slope of tan Do passing through the origin

Problem 11

What curve is represented by the polar equation $r = \theta$?

Polar Curves

Example

Problem 12

What curve is represented by the polar equation $r \sin \theta = 10$?

rsin 0 = 10 Horizontal Line

Problem 13

What curve is represented by the polar equation $r \cos \theta = 5$?

x=5

The vertical Line X=5

x=5

For when the slope is well - defined

Problem 14

Convert the equation for a line y = mx + b into Polar coordinates.

$$r = \frac{2}{3\cos\theta + 4\sin\theta}$$

$$= \frac{2}{4\sin\theta + 3\cos\theta} = \frac{2}{4(\sin\theta + \frac{3}{4}\cos\theta)}$$

$$= \frac{1/2}{\sin\theta - (\frac{3}{4})\cos\theta}$$

$$= \frac{1/2}{\sin\theta - (\frac{3}{4})\cos\theta}$$

$$= \frac{1/2}{\sin\theta - (\frac{3}{4})\cos\theta}$$

$$= \frac{1/2}{\sin\theta - (\frac{3}{4})\cos\theta}$$

Another way: $r = \frac{2}{3\cos\theta + 4\sin\theta}$ $r(3\cos\theta + 4\sin\theta) = 2$

3rcos0 + 4rsln0 = 2

$$3x + 4y = 2$$

 $4y = -3x + 2$
 $y = -\frac{3}{4}x + \frac{3}{4}$

y= -3x + 2

Annuli

Problem 15

Describe the region in space: $1 \le r \le 2$

r=1 r=2

Annulus with inner radius of I and an outer radius of 2

05553

Sectors

Problem 16

Describe the region in space: $\frac{\pi}{6} \le \theta \le \frac{\pi}{3}$, r < 3

Sector of width
$$T - T = T$$

Polar Boxes

Problem 17

Describe the region in space: $1 \le r \le 2$, $0 \le \theta \le \frac{\pi}{4}$

Polar Box
Polar Rectargle of length 1
and "width" of Ty