DISEÑO DE UN MIRADOR TURÍSTICO APLICANDO LA SEMEJANZA DE TRIÁNGULOS

Propósito: Diseñar una propuesta geométrica de un mirador turístico, aplicando la semejanza de triángulos, para construir soluciones sostenibles que integren el uso de las matemáticas con el desarrollo de la comunidad

Criterios de Evaluación

- Representa un problema contextualizado usando triángulos semejantes con medidas correctas y proporcionales.
- Usa esquemas, etiquetas, proporciones y términos geométricos (ángulos, lados, razón) de forma adecuada para justificar sus procedimientos.
- Calcula con precisión medidas desconocidas en figuras semejantes aplicando estrategias adecuadas (proporción directa, regla de tres, escalas, etc.).
- Sustenta verbalmente o por escrito la semejanza entre triángulos y la validez de sus cálculos, relacionándolos con los teoremas de proporcionalidad

■¿Que se entiende por semejanza?

Identifica cuales son semejantes

 "Si una persona de 1.50 m da una sombra de 2 metros... entonces una persona de 1.80 m dará un asombra de:

- "¿Has notado que cuando el sol brilla, tú y los árboles proyectan una sombra? ¿Qué forma se genera entre tú, la sombra y la luz del sol?"
- "¿Cómo crees que podríamos calcular la altura de algo sin subirnos, usando solo su sombra?"

ANEXO 1

A PETO 1: ¿Qué tan alta es la colina donde queremos construir nuestro mirador?

Contexto:

La municipalidad quiere construir un mirador ecológico en la cima de una colina para que los turistas puedan observar todo el valle. Pero...; nadie ha medido aún la altura de la colina! No hay drones, no hay escalas, y nadie quiere subir cargando una cinta métrica. ¿Cómo podríamos resolverlo?

Preguntas retadoras para ti:

¿Y si pudieras saber la altura solo mirando su sombra?

¿Alguna vez notaste que tu sombra cambia de tamaño? ¿Por qué?

¿Y si usaras una regla o un palo para comparar sombras?

¿Podrías crear un triángulo invisible con la luz del sol?

Tu reto:

- ANEXO 2
- ▲ ◆ RETO 2: ¿Cómo diseñamos una rampa segura y ecológica para subir al mirador?
- Contexto:
- ¡Bien hecho! Ya sabemos la altura de la colina. Pero ahora necesitamos que los visitantes suban sin peligro. Queremos evitar el uso de escaleras empinadas o ascensores eléctricos. La solución: una rampa ecológica construida con madera y materiales reciclados.
- Preguntas retadoras para ti:
- ¿Cómo debe ser la forma de esta rampa para que no sea ni muy empinada ni muy larga?
- ¿Cómo se vería esa rampa si la dibujaras de lado? ¿Se parece a un triángulo?
- ¿Qué medidas necesitas para diseñarla? ¿Altura? ¿Base?
- ¿Qué pasaría si haces mal el cálculo y la rampa queda muy inclinada?
- **6** Tu reto:
- Usa la altura de la colina (del reto anterior) y una base estimada para modelar un triángulo rectángulo que represente tu rampa. Aplica la semejanza o Pitágoras para saber cuánto debe medir exactamente.

☐ ♦ RETO 3: ¿Cuántos escalones ecológicos necesitamos para llegar cómodamente al mirador?

Contexto:

Algunos visitantes prefieren subir por escalones y no por una rampa larga. Queremos diseñar escaleras ecológicas de piedra y madera, seguras, cómodas y respetuosas con el entorno.

Preguntas retadoras para ti:

¿Alguna vez has subido una escalera con escalones muy altos o muy cortos? ¿Cómo te sentiste?

¿Cuál crees que es una altura cómoda para un escalón?

Si ya conoces la altura de la colina y la base de la rampa, ¿puedes dividir ese gran triángulo en pequeños triángulos semejantes?

¿Puedes calcular cuántos escalones necesitas y cuánto debe medir cada uno?

Tu reto:

Calcula la cantidad exacta de escalones y dibuja cómo serían, aplicando la semejanza de triángulos y la proporcionalidad.