AstroStatistics and Cosmology Homework

Jacopo Tissino

2020-10-23

Contents

Exercises 1–3 and 7 are in Jupyter notebooks in the folder astrostat_homework. They can be most easily accessed through the following links:

- 1. https://nbviewer.jupyter.org/github/jacopok/notes/blob/master/ap_third_semester/astrostat_homework/exercises_123.ipynb
- 2. https://nbviewer.jupyter.org/github/jacopok/notes/blob/master/ap_third_semester/astrostat_homework/exercise_7.ipynb.

Exercise 4

After being given a probability distribution $\mathbb{P}(x)$, we define the *characteristic function* ϕ as its Fourier transform, which can also be expressed as the expectation value of $\exp(-i\vec{k}\cdot\vec{x})$:

$$\phi(\vec{k}) = \int d^n x \exp\left(-i\vec{k} \cdot \vec{x}\right) \mathbb{P}(x) = \mathbb{E}\left[\exp\left(-i\vec{k} \cdot \vec{x}\right)\right]. \tag{0.1}$$

Claim 0.1. A multivariate normal distribution

$$\mathcal{N}(\vec{x}|\vec{\mu},C) = \frac{1}{(2\pi)^{n/2}\sqrt{\det C}} \exp\left(-\frac{1}{2}\vec{y}^{\top}C^{-1}\vec{y}\right)\Big|_{\vec{y}=\vec{x}-\vec{\mu}},\tag{0.2}$$

has a characteristic function equal to

$$\phi(\vec{k}) = \exp\left(-i\vec{\mu}\cdot\vec{k} - \frac{1}{2}\vec{k}^{\top}C\vec{k}\right). \tag{0.3}$$

Proof: completing the square. The integral we need to compute is given, absorbing the normalization into a factor *N*, by

$$\phi(\vec{k}) = N \int d^n x \, \exp\left(-i\vec{k} \cdot \vec{x} - \frac{1}{2} \vec{y}^\top C^{-1} \vec{y}\right) \bigg|_{\vec{y} = \vec{x} - \vec{\mu}} \,. \tag{0.4}$$

The only integrals we really know how to do are Gaussian ones, so we want to rewrite the argument of the exponential so that it is a quadratic form. The manipulation goes as follows, considering the opposite of the argument the exponential in order to have less minus signs and defining the symmetric matrix $V = C^{-1}$:

$$i\vec{k} \cdot \vec{x} + \frac{1}{2}\vec{y}^{\top}V\vec{y} = i\vec{k} \cdot \vec{x} + \frac{1}{2}\vec{x}^{\top}V\vec{x} - \vec{x}^{\top}V\vec{\mu} + \frac{1}{2}\vec{\mu}^{\top}V\vec{\mu}$$

$$= \frac{1}{2}\vec{x}^{\top}V\vec{x} + \vec{x}^{\top}\left(i\vec{k} - V\vec{\mu}\right) + \frac{1}{2}\vec{\mu}^{\top}V\vec{\mu}$$

$$= \underbrace{\frac{1}{2}\left(\vec{x} + V^{-1}(i\vec{k} - V\vec{\mu})\right)^{\top}V\left(\vec{x} + V^{-1}(i\vec{k} - V\vec{\mu})\right)}_{(1)} + \underbrace{\frac{1}{2}\left(i\vec{k} - V\vec{\mu}\right)^{\top}V^{-1}\left(i\vec{k} - V\vec{\mu}\right) + \frac{1}{2}\vec{\mu}^{\top}V\vec{\mu}}_{(2)},$$

$$(0.5)$$

which we can now integrate, since it is now a quadratic form in terms of a shifted variable, $\vec{x} + \vec{p}$, where the constant (with respect to \vec{x}) vector \vec{p} is given by $V^{-1}(i\vec{k} - V\vec{\mu})$.

Now, shifting the integral from one in $d^n x$ to one in $d^n (x + p)$ does not change the measure, since the Jacobian of a shift is the identity. Then, we have

$$\phi(\vec{k}) = N \int d^n(x+p) \exp\left(-(1) - (2)\right)$$
(0.12)

$$= N\sqrt{\frac{(2\pi)^n}{\det V}}\exp\left(-2\right) \tag{0.13}$$

$$= \underbrace{\frac{1}{\sqrt{\det V \det C}}}_{=1} \exp\left(-2\right), \tag{0.14}$$

since the determinant of the inverse is the inverse of the determinant.

Now, we only need to simplify (2):

$$=\frac{1}{2}\vec{k}^{\top}C\vec{k}+i\vec{\mu}^{\top}\vec{k}\,,\tag{0.16}$$

$$\frac{1}{2} \left(\vec{x} + A^{-1} \vec{b} \right)^{\top} A \left(\vec{x} + A^{-1} \vec{b} \right) - \frac{1}{2} \vec{b}^{\top} A^{-1} \vec{b} = \tag{0.8}$$

$$= \frac{1}{2} \left[\vec{x}^{\top} A \vec{x} + \vec{x}^{\top} A A^{-1} \vec{b} + \left(A^{-1} \vec{b} \right)^{\top} A \vec{x} + \left(A^{-1} \vec{b} \right)^{\top} A A^{-1} \vec{b} - \vec{b}^{\top} A^{-1} \vec{b} \right]$$
(0.9)

$$= \frac{1}{2} \left[\vec{x}^{\top} A \vec{x} + \vec{x}^{\top} \vec{b} + \vec{b}^{\top} (A^{-1})^{\top} A \vec{x} + \vec{b}^{\top} (A^{-1})^{\top} \vec{b} - \vec{b}^{\top} A^{-1} \vec{b} \right]$$
(0.10)

$$= \frac{1}{2}\vec{x}^{\top}A\vec{x} + \vec{b}^{\top}\vec{x}, \tag{0.11}$$

which we used with $\vec{b} = i\vec{k} - V\vec{\mu}$.

¹ In the last step we applied the matrix square completion formula: for a symmetric matrix A and vectors \vec{x} , \vec{b} we have

inserting which into the exponent yields the desired result.

Proof: by diagonalization. We now follow a different approach: the covariance matrix C is symmetric, so we will always be able to find an orthogonal matrix O (satisfying $O^{\top} = O^{-1}$) such that $C = O^{\top}DO$, where D is diagonal. We will then also have $V = C^{-1} = O^{\top}D^{-1}O$. Let us denote the eigenvalues of D as λ_i , and the eigenvalues of D^{-1} as $d_i = \lambda_i^{-1}$.

Defining $\vec{z} = O\vec{x}$, $\vec{m} = O\vec{\mu}$, $\vec{u} = O\vec{k}$ the negative of the argument of the integral becomes:

$$i\vec{k} \cdot \vec{x} + \frac{1}{2} (\vec{x} - \vec{\mu})^{\top} C^{-1} (\vec{x} - \vec{\mu}) = i\vec{u} \cdot \vec{z} + \frac{1}{2} (\vec{z} - \vec{m})^{\top} D^{-1} (\vec{z} - \vec{m})$$
(0.17)

$$= i\vec{u} \cdot \vec{z} + \frac{1}{2} \sum_{i} d_{i} (z_{i} - m_{i})^{2}$$
 (0.18)

$$= \sum_{i} \left[iu_{i}z_{i} + \frac{d_{i}}{2} \left(z_{i}^{2} + m_{i}^{2} - 2m_{i}z_{i} \right) \right]$$
 (0.19)

$$= \sum_{i} \left[z_i^2 \frac{d_i}{2} + z_i (iu_i - m_i d_i) + \frac{d_i}{2} m_i^2 \right]. \tag{0.20}$$

With this, and since by $\det O = 1$ we have $d^n z = d^n x$, we can decompose our Gaussian integral into a product of Gaussian integrals:

$$\phi(\vec{k}) = N \int d^n x \exp\left(-i\vec{k} \cdot \vec{x} - \frac{1}{2}(\vec{x} - \vec{\mu})^{\top} C^{-1}(\vec{x} - \vec{\mu})\right)$$
(0.21)

$$= N \int d^{n}z \exp\left(-\sum_{i} \left[z_{i}^{2} \frac{d_{i}}{2} + z_{i}(iu_{i} - m_{i}d_{i}) + \frac{d_{i}}{2}m_{i}^{2}\right]\right)$$
(0.22)

$$= N \prod_{i} \int dz_{i} \exp\left(-z_{i}^{2} \frac{d_{i}}{2} - z_{i} (iu_{i} - m_{i}d_{i}) - \frac{d_{i}}{2} m_{i}^{2}\right)$$
(0.23)

$$= N \prod_{i} \sqrt{\frac{2\pi}{d_{i}}} \exp\left(\frac{(iu_{i} - m_{i}d_{i})^{2}}{2d_{i}} - \frac{d_{i}m_{i}^{2}}{2}\right)$$
(0.24)

$$= \frac{1}{\sqrt{\det C \det V}} \prod_{i} \exp\left(\frac{-u_i^2 + m_i^2 d_i^2 - 2iu_i m_i d_i}{2d_i} - \frac{d_i m_i^2}{2}\right)$$
(0.25)

$$= \exp\left(\sum_{i} \left[-\frac{u_i^2}{2d_i} - iu_i m_i \right] \right) \tag{0.26}$$

$$= \exp\left(-\frac{1}{2}\vec{u}^{\top}C\vec{u} - i\vec{u}\cdot\vec{m}\right) \tag{0.27}$$

$$= \exp\left(-\frac{1}{2}\vec{k}^{\top}C\vec{k} - i\vec{k}\cdot\vec{\mu}\right),\tag{0.28}$$

where we have used the expression for the single-variable Gaussian integral:

$$\int dz \exp\left(-az^2 + bz + c\right) = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{4a} + c\right), \tag{0.29}$$

which comes from the one-variable completion of the square:

$$-az^{2} + bz + c = -a\left(z - \frac{b}{2a}\right)^{2} + \frac{b^{2}}{4a} + c.$$
 (0.30)

Also, we used the fact that orthogonal transformation do not change fully-contracted objects, such as scalar products or bilinear forms.

Exercise 5

We can calculate the moments of a distribution through its characteristic function:

$$\mathbb{E}\left[x_{\alpha}^{n_{\alpha}}\dots x_{\beta}^{n_{\beta}}\right] = \left.\frac{\partial^{n_{\alpha}\dots n_{\beta}}\phi(\vec{k})}{\partial(-ik_{\alpha})^{n_{\alpha}}\dots\partial(-ik_{\beta})^{n_{\beta}}}\right|_{\vec{k}=0}.$$
(0.31)

In the multivariate Gaussian case we can then calculate the mean (component by component) as

$$\mathbb{E}(x_{\alpha}) = \left. \frac{\partial \phi(\vec{k})}{\partial (-ik_{\alpha})} \right|_{\vec{k} = 0} \tag{0.32}$$

$$= \frac{\partial}{\partial (-ik_{\alpha})} \Big|_{\vec{k}=0} \exp\left(-\frac{1}{2}\vec{k}^{\top}C\vec{k} - i\vec{k} \cdot \vec{\mu}\right)$$
 (0.33)

$$= \left[-i \sum_{\beta} k_{\beta} C_{\beta\alpha} + \mu_{\alpha} \right] \exp \left(-\frac{1}{2} \vec{k}^{\top} C \vec{k} - i \vec{k} \cdot \vec{\mu} \right) \bigg|_{\vec{k}=0}$$
 (0.34)

$$=\mu_{\alpha}\,,\tag{0.35}$$

where we used the fact that the differentiation of a symmetric bilinear form is as follows:

$$\frac{\partial}{\partial k_{\alpha}} \left(\sum_{\beta \gamma} k_{\beta} k_{\gamma} C_{\beta \gamma} \right) = 2 \sum_{\beta \gamma} \delta_{\beta \alpha} k_{\gamma} C_{\beta \gamma} = 2 \sum_{\gamma} k_{\gamma} C_{\alpha \gamma}. \tag{0.36}$$

The covariance matrix can be computed by linearity as

$$\widetilde{C}_{\alpha\beta} = \mathbb{E}\left[\left(x_{\alpha} - \mathbb{E}(x_{\alpha})\right)\left(x_{\beta} - \mathbb{E}(x_{\beta})\right)\right] = \mathbb{E}\left[x_{\alpha}x_{\beta}\right] - \mu_{\alpha}\mu_{\beta}, \tag{0.37}$$

the first term of which reads as follows:

$$\mathbb{E}[x_{\alpha}x_{\beta}] = \left. \frac{\partial^2 \phi(\vec{k})}{\partial (-ik_{\beta})\partial (-ik_{\alpha})} \right|_{\vec{k}=0} \tag{0.38}$$

$$= \frac{\partial}{\partial (-ik_{\beta})} \bigg|_{\vec{k}=0} \bigg| -i\sum_{\beta} k_{\beta} C_{\beta\alpha} + \mu_{\alpha} \bigg| \exp \left(-\frac{1}{2} \vec{k}^{\top} C \vec{k} - i \vec{k} \cdot \vec{\mu} \right)$$
 (0.39)

$$=C_{\alpha\beta}+\mu_{\alpha}\mu_{\beta}\,,\tag{0.40}$$

therefore, as expected, $\widetilde{C}_{\alpha\beta}$ is indeed $C_{\alpha\beta}$.

Exercise 6

Claim 0.2. The characteristic function of a multivariate Gaussian is, up to normalization, a multivariate Gaussian.

Proof. The characteristic function is the exponential of (minus)

$$\frac{1}{2}\vec{k}^{\top}C\vec{k} + i\vec{k} \cdot \vec{\mu} = \frac{1}{2} \left(\vec{k} + iC^{-1}\vec{\mu} \right)^{\top} C \left(\vec{k} + iC^{-1}\vec{\mu} \right) + \frac{1}{2}\vec{\mu}^{\top}C^{-1}\vec{\mu} , \qquad (0.41)$$

which means that the characteristic function is in the form

$$\phi(\vec{k}) = \text{const} \times \exp\left(-\frac{1}{2}(\vec{k} - \vec{m})^{\top}C(\vec{k} - \vec{m})\right), \tag{0.42}$$

a multivariate normal with mean $\vec{m} = -iC^{-1}\vec{\mu}$ and covariance matrix C^{-1} , the inverse of the covariance matrix of the corresponding MVN.