层次分析法在太阳镜产品质量评价中的应用

一 许学敏

(厦门市产品质量监督检验院)

摘 要:本文运用层次分析法对太阳镜产品质量的影响因素进行分析,得出了太阳镜产品质量控制的重点要素,为太阳镜产品的质量分析提供了科学的理论依据和指导。

关键词: 层次分析法; 太阳镜; 质量控制 **DOI编码:** 10.3969/j.issn.1002-5944.2019.02.099

太阳镜作为人体眼部防护用品,其质量的高低直接影响着使用者的健康。随着人们健康意识的提升,太阳镜的质量越来越受到人们的关注。影响太阳镜产品质量的因素是多方面的,如何确定这些因素以及其相互关系,是太阳镜产品设计和质量管理的关键。本文引入运筹学家 T.L.Satty 提出的层次分析法,将影响太阳镜产品质量的各因素通过分层解析的方式,理清其相互关系,并计算出各影响因素的权重,为质量管理者进行决策提供更为有利、可靠的依据。

1 层次分析法的原理

层次分析法,简称 AHP,是由美国匹兹堡大学教授 T.L.Satty 于 20 世纪 70 年代提出的一种多目标决策分析方法 论 ^[1]。其原理是将与决策有关的因素分解成目标层、准则 层、方案层等若干层次,通过对各因素的计算和比较,得出 不同因素的权重,为决策者选择最优方案提供参考依据 ^[2]。

2 层次分析法的步骤

- (1)建立递阶的层次结构:根据对问题的分析,缕清问题所包含的因素,确定出各个因素之间的关联和隶属关系,按这些因素的共同特性,将它们分为目标层、准则层、方案层等多个层次。
- (2)建立两两判断矩阵:判断矩阵表示针对上一层次的某元素,本层次与它有关的元素之前相对重要性的比较,一般形式如表1所示。

表 1 判断矩阵的一般形式

A	\mathbf{B}_1	B_2	•••••	B_n
B_1	\mathbf{b}_{11}	b_{12}	•••••	b_{1n}
B_2	b_{21}	b_{22}		b_{2n}
	•••••			•••••
B_n	b_{n1}	b_{n2}		$\mathbf{b}_{\mathtt{nn}}$

判断矩阵中的 b_{ij} 一般采用九分制标度法(定义详见表 2)[i3 ,根据资料数据、专家意见或者系统分析人员的经验、经过反复研究后确定。

表 2 九分制标度及其定义

标度 b _{ij}	定义
1	因素 i 与因素 j 同样重要
3	因素 i 比因素 j 稍微重要
5	因素 i 比因素 j 明显重要
7	因素 i 比因素 j 重要得多
9	因素 i 比因素 j 极端重要
2469	因素 i 与因素 j 的重要性的标度值介于上述两个相邻
2,4,6,8	的等级之间
标度值的倒数	因素 i 与因素 j 的反比较: $b_{ii}=1/b_{ii}$

(3) 计算各元素权重:通过对判断矩阵的运算,计算 出本层所有元素对上一层相关元素的权重,再利用单层次 权重的计算结果,进一步综合出对更上一层次元素的权 重。通过权重排序,挑选出最优方案。

3 层次分析法在太阳镜产品质量评价中的应用

(1) 建立评价体系

通过对太阳镜相关标准的研究,总结出影响太阳镜产品质量的性能指标 20 个,将这 20 个性能指标归类为六个方面的因素:外观与结构、透射性能、光学性能、安全性能、耐久性能、力学性能,其层次结构及对应的矩阵如表 3 所示。

(2)建立判断矩阵并计算

通过专家打分的形式,确定各元素之间比较的标度值,建立判断矩阵,利用 YAAHP 软件对矩阵的特征向量 W_i 进行计算并对矩阵进行一致性检验。其中目标层与准则层之间的判断矩阵 A-B 如表 4 所示,准则层与方案层之间的判断矩阵 B-C 如表 5~10 所示。

表 3 太阳镜产品质量评价体系结构

目标层	准则层	方案层
		镜片材料和表面质量 C ₁
	外观与结构 B ₁	镜架外观质量 C ₂
		装配精度和整形要求 C3
		可见光透射比 C ₄
		光透射比相对偏差 C ₅
	透射性能 B2	平均透射比(紫外光谱区)C ₆
		色极限 C ₇
		交通讯号透射比 C ₈
太阳镜	光学性能 B ₃	球镜顶焦度偏差 C,
产品		柱镜顶焦度偏差 С10
/		棱镜度偏差 C ₁₁
质量 A	安全性能 B ₄	抗冲击性能 C ₁₂
		阻燃性 C ₁₃
	耐久性能 B ₅	耐疲劳 C ₁₄
		抗汗腐蚀 C ₁₅
		高温尺寸稳定性 C ₁₆
		抗拉性能 C ₁₇
	 力学性能 B ₆	鼻梁变形 C ₁₈
	刀子注肥 B ₆	镜片夹持力 C ₁₉
		镀层结合力 C ₂₀

表 4 判断矩阵 A-B

Α	B ₁	B_2	B_3	$B_{\scriptscriptstyle{4}}$	B ₅	B ₆	W
B_1	1	0.2	0.2	0.3333	0.25	0.25	0.0395
B_2	5	1	1	4	5	5	0.3429
B_3	5	1	1	4	5	5	0.3429
B_4	3	0.25	0.25	1	0.5	0.5	0.0728
B_{5}	4	0.2	0.2	2	1	1	0.1009
B_6	4	0.2	0.2	2	1	1	0.1009
	λ -6	3674·C B	-0.0583	- 0.1(-	-	砂理 付 /	

表 5 判断矩阵 B₁-C

B ₁	C ₁	C ₂	C ₃	W_1			
C_1	1	5	3	0.637			
C ₂	0.2	1	0.3333	0.1047			
C ₃	0.3333	3	1	0.2583			
	λ max= 3.0385;C.R.= 0.0370 < 0.1(一致性检验通过)						

表 6 判断矩阵 B₂-C

B ₂	C ₄	C ₅	C ₆	C ₇	C ₈	W_2		
C ₄	1	0.25	0.3333	0.3333	3	0.1023		
C ₅	0.3333	0.25	0.3333	0.3333	1	0.0647		
C ₆	4	1	3	3	4	0.4363		
C ₇	3	0.3333	1	1	3	0.1984		
C ₈	3	0.3333	1	1	3	0.1984		
	λ _{max} = 5.2579;C.R.= 0.0576 < 0.1(一致性检验通过)							

表7判断矩阵 B₃-C

B ₃	C ₉	C ₁₀	C ₁₁	W_3			
C ₉	1	1	1	0.3333			
C ₁₀	1	1	1	0.3333			
C_{11} 1 1 0.3333							
λ	λ= 3.0000:C.R.= 0.0000 < 0.1(一致性检验通过)						

表 8 判断矩阵 B₄-C

B ₄	C ₁₂	C ₁₃	W_4				
C ₁₂	1	0.2	0.1667				
C ₁₃	5	1	0.8333				
$\lambda_{\text{max}} = 2.$	λ _{max} = 2.0000;C.R.= 0.0000 < 0.1(一致性检验通过)						

表 9 判断矩阵 B5-C

B ₅	C ₁₄	C ₁₅	C ₁₆	W_5		
C ₁₄	1	3	5	0.637		
C ₁₅	0.3333	1	3	0.2583		
C ₁₆	0.2	0.3333	1	0.1047		
λ _{max} = 3. 0385;C.R.= 0.0370 < 0.1(一致性检验通过)						

表 10 判断矩阵 B。-C

B_6	C ₁₇	C ₁₈	C ₁₉	C ₂₀	W_6			
C ₁₇	1	0.3333	0.5	3	0.1713			
C ₁₈	3	1	1	5	0.4011			
C ₁₉	2	1	1	5	0.3587			
C ₂₀	0.3333	0.2	0.2	1	0.0689			
λ _{max} = 4.0341;C.R.= 0.0128 < 0.1(一致性检验通过)								

利用 YAAHP 软件进一步计算出方案层对目标层的组合权重,并进行排序,即 20 个性能指标对太阳镜产品质量的影响权重从大到小依次为:平均透射比(紫外光谱区)(14.96%)、柱镜顶焦度偏差(11.43%)、球镜顶焦度偏差(11.43%)、交通讯号透射比(6.8%)、色极限(6.8%)、耐疲劳(6.43%)、阻燃性(6.07%)、鼻梁变形(4.05%)、镜片夹持力(3.62%)、可见光透射比(3.51%)、抗汗腐蚀(2.61%)、镜片材料和表面质量(2.51%)、光透射比相对偏差(2.22%)、抗拉性能(1.73%)、抗冲击性能(1.21%)、高温尺寸稳定性(1.06%)、装配精度和整形要求(1.02%)、镀层结合力(0.7%)、镜架外观质量(0.41%)。

(3) 结果分析。

①上述判断矩阵的 C.R. 值均小于 0.1, 说明判断矩阵 具有满意的一致性,可将其特征向量用于对权重的定量描述。②从准则层对目标层的特征向量上看,透射性能和光学性能的权重最大,而安全性能的权重最小,说明太阳镜产品作为眼部防护产品,其透射和光学方面的性能最主要的,这也与产品实际使用功能相符。③从方案层对目标层的权重上看,太阳镜产品紫外光谱区的平均透射比的权重最大,而太阳镜的主要功能是减少紫外光线对眼睛造成的伤害,这与方案层的权重排序完全相符。镜架外观权重最小,说明镜架的外观质量对于太阳镜的质量来说相对重要性较小。

4 结论

本文运用层次分析法原理对影响太阳镜产品质量的各 因素进行分析比较,经过一系列的计算和检验,总结出了 太阳镜产品质量控制的重点因素,为质量分析提供了明确 的数据指导,为太阳镜产品研发、设计和质量控制明确了 重点方向。

参考文献

- [1] 马乐鸣. 层次分析法在航空产品设计质量管理中的应用 [J]. 航空标准化与质量,2009(16):4-9.
- [2] 严朝宁. 层次分析法在模具产品质量监控中的应用研究 [J]. 机械设计与制造工程,2018(06):119-121.
- [3] 周传和. 电力企业绩效评价体系的构建及其实证研究 [D]. 2004.

作者简介

许学敏,硕士,工程师,研究方向:产品质量测试分析。