SỞ GD&ĐT BÌNH PHƯỚC

Ngọc Huyền LB sưu tầm và giới thiệu

Câu 1: Tập nghiệm của bất phương trình $\left(\frac{1}{3}\right)^2 > 9$

là:

A.
$$(-\infty; -2)$$
.

B.
$$(-\infty;2)$$
.

C.
$$(2;+\infty)$$
.

C.
$$(2;+\infty)$$
. D. $(-2;+\infty)$.

Câu 2: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình:

$$x^2 + y^2 + z^2 + 2x - 6y - 6 = 0.$$

Tìm tọa độ tâm I và bán kính R của mặt cầu đó.

A.
$$I(-1;3;0)$$
; $R = 16$. **B.** $I(1;-3;0)$; $R = 16$.

B.
$$I(1;-3;0)$$
; $R=16$.

C.
$$I(-1;3;0)$$
; $R=4$. D. $I(1;-3;0)$; $R=4$.

D.
$$I(1;-3;0); R=4$$

Câu 3: Cho hàm số y = f(x) có $\lim f(x) = 1$ và

 $\lim f(x) = -1$. Khẳng định nào sau đây là đúng?

- A. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng có phương trình x=1 và
- B. Đồ thị hàm số đã cho có đúng một tiệm cận ngang.
- C. Đồ thị hàm số đã cho không có tiệm cận ngang.
- D. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng có phương trình y=1 và y = -1.

Câu 4: Cho hàm số y = f(x) có bảng biến thiên như sau:

x	-∞ 2	4		$+\infty$
y'	+ 0 -	0	+	
у	3	-2		≯ +∞

Khẳng định nào sau đây là đúng?

- **A.** Hàm số đạt cực đại tại x = 4.
- **B.** Hàm số đạt cực đại tại x = -2.
- C. Hàm số đạt cực đại tại x = 2.
- **D.** Hàm số đạt cực đại tại x = 3.

ĐỀ THI THỬ THPT QUỐC GIA NĂM 2018

Môn: Toán

Thời gian làm bài: 90 phút

Câu 5: Biết F(x) là một nguyên hàm của hàm số

$$f(x) = \sin 2x$$
 và $F\left(\frac{\pi}{4}\right) = 1$. Tính $F\left(\frac{\pi}{6}\right)$.

A.
$$F\left(\frac{\pi}{6}\right) = \frac{1}{2}$$
. **B.** $F\left(\frac{\pi}{6}\right) = 0$.

B.
$$F\left(\frac{\pi}{6}\right) = 0$$

C.
$$F\left(\frac{\pi}{6}\right) = \frac{5}{4}$$
. **D.** $F\left(\frac{\pi}{6}\right) = \frac{3}{4}$.

D.
$$F\left(\frac{\pi}{6}\right) = \frac{3}{4}$$
.

Câu 6: Cho hàm số
$$f(x) = \begin{cases} \frac{\sqrt{x+4}-2}{x}, & x > 0 \\ mx+m+\frac{1}{4}, & x \le 0 \end{cases}$$
, m là

tham số. Tìm giá trị của m để hàm số có giới hạn tại x = 0.

A.
$$m = \frac{1}{2}$$
. **B.** $m = 1$. **C.** $m = 0$. **D.** $m = -\frac{1}{2}$.

Câu 7: Có bao nhiều giá trị nguyên của tham số m trên $\begin{bmatrix} -1;5 \end{bmatrix}$ để hàm số $y = \frac{1}{2}x^3 - x^2 + mx + 1$ đồng biến trên khoảng (-∞;+∞)?

Câu 8: Tính tích phân $I = \int_{1}^{5} \frac{dx}{x\sqrt{3x+1}}$ ta được kết

quả $I = a \ln 3 + b \ln 5$. Giá trị $S = a^2 + ab + 3b^2$ là:

D. 5.

Câu 9: Gọi S là diện tích hình phẳng giới hạn bởi đồ thị của hàm số (H): $y = \frac{x-1}{x+1}$ và các trục tọa độ.

Khi đó giá trị của S bằng:

A.
$$2 \ln 2 + 1$$
 ($dvdt$).

B.
$$\ln 2 + 1$$
 (đvdt).

Câu 10: Cho hàm số $y = x^3 - 6x^2 + 9x$ có đồ thi như Hình 1. Đồ thị Hình 2 là của hàm số nào dưới đây?

Hình 1

Hình 2

A.
$$y = |x|^3 + 6|x|^2 + 9|x|$$
. **B.** $y = |x|^3 + 6x^2 + 9|x|$.

C.
$$y = -x^3 + 6x^2 - 9x$$
. D. $y = |x^3 - 6x^2 + 9x|$.

Câu 11: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD, góc giữa SM và mặt phẳng đáy bằng 60°. Độ dài cạnh SA là:

A.
$$\frac{a\sqrt{3}}{2}$$
. **B.** $\frac{a\sqrt{15}}{2}$. **C.** $a\sqrt{3}$. **D.** $a\sqrt{15}$.

Câu 12: Cho số phức z thỏa mãn $|z-3-4i| = \sqrt{5}$. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P = |z+2|^2 - |z-i|^2$. Tính $S = M^2 + m^2.$

A. 1236. **B.** 1258. C. 1256. D. 1233. Câu 13: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. $SA \perp (ABCD)$, SA = x. Xác định x để hai mặt phẳng (SBC) và (SCD) hợp với nhau góc 60°.

A.
$$x = 2a$$
. **B.** $x = a$. **C.** $x = \frac{3a}{2}$. **D.** $x = \frac{a}{2}$

Câu 14: Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng d_1 , d_2 lần lượt có phương trình:

$$d_1: \frac{x-2}{2} = \frac{y-2}{1} = \frac{z-3}{3}, d_2: \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-1}{4}.$$

Mặt phẳng cách đều hai đường thẳng d_1, d_2 có phương trình là:

A.
$$14x-4y-8z+1=0$$
. **B.** $14x-4y-8z+3=0$.

C.
$$14x-4y-8z-3=0$$
. D. $14x-4y-8z-1=0$.

Câu 15: Tìm tập xác định D của hàm số:

$$y = \frac{\sin x}{\tan x - 1}$$
.

A.
$$D = \mathbb{R} \setminus \left\{ m\pi; \frac{\pi}{4} + n\pi; m, n \in \mathbb{Z} \right\}.$$

B.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k2\pi; k \in \mathbb{Z} \right\}.$$

C.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + m\pi; \frac{\pi}{4} + n\pi; m, n \in \mathbb{Z} \right\}.$$

D.
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k\pi; k \in \mathbb{Z} \right\}.$$

Câu 16: Nếu z=i là một nghiệm phức của phương trình $z^2 + az + b = 0$ với $(a, b \in \mathbb{R})$ thì a + bbằng:

B. −1.

C. 1.

Câu 17: Cho tập hợp $X = \{0;1;2;3;4;5;6;7;8;9\}$ Số các tập con của tập X có chứa chữ số 0 là:

B. 1024.

C. 1023.

Câu 18: Cho hàm số $y = \frac{x^3}{2} - ax^2 - 3ax + 4$, với a là

tham số. Để hàm số đạt cực trị tại $x_{\scriptscriptstyle 1}$, $x_{\scriptscriptstyle 2}$ thỏa mãn:

$$\frac{x_1^2 + 2ax_2 + 9a}{a^2} + \frac{a^2}{x_2^2 + 2ax_1 + 9a} = 2$$

thì a thuộc khoảng nào?

A.
$$a \in \left(-5; -\frac{7}{2}\right)$$
. **B.** $a \in \left(-\frac{7}{2}; -3\right)$.

B.
$$a \in \left(-\frac{7}{2}; -3\right)$$

C.
$$a \in (-2; -1)$$
.

C.
$$a \in (-2; -1)$$
. D. $a \in (-3; -\frac{5}{2})$.

Câu 19: Đồ thị sau đây là của hàm số nào?

A.
$$y = -x^3 - 3x^2 - 4$$

A.
$$y = -x^3 - 3x^2 - 4$$
. **B.** $y = -x^3 + 3x^2 - 4$.

C.
$$y = x^3 - 3x^2 - 4$$

C.
$$y = x^3 - 3x^2 - 4$$
. D. $y = x^3 - 3x^2 + 4$.

Câu 20: Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy bằng 2, diện tích tam giác A'BC bằng 3. Tính thể tích của khối lăng trụ.

A.
$$\frac{2\sqrt{5}}{3}$$
. **B.** $\sqrt{2}$. **C.** $2\sqrt{5}$. **D.** $3\sqrt{2}$.

B.
$$\sqrt{2}$$

C.
$$2\sqrt{5}$$
.

D.
$$3\sqrt{2}$$

Câu 21: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y+z-4=0 và đường thẳng

$$d: \frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{3}$$
. Viết phương trình đường

thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thắng d.

A.
$$\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{-3}$$
. **B.** $\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{3}$.

C.
$$\frac{x-1}{5} = \frac{y-1}{1} = \frac{z-1}{-3}$$
. D. $\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{2}$.

Câu 22: Cho khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và SA = 2a. Tính thể tích khối chóp S.ABC.

A.
$$\frac{a^3\sqrt{3}}{3}$$
.

B.
$$\frac{a^3\sqrt{3}}{2}$$
.

C.
$$\frac{a^3\sqrt{3}}{12}$$
.

D.
$$\frac{a^3\sqrt{3}}{6}$$
.

Câu 23: Một học sinh làm bài tích phân $I = \int_{0}^{1} \frac{dx}{1+x^2}$

theo các bước sau:

Bước 1: Đặt $x = \tan t$, suy ra $dx = (1 + \tan^2 t)dt$.

Bước 2: Đổi cận $x = 1 \Rightarrow t = \frac{\pi}{4}$; $x = 0 \Rightarrow t = 0$.

Bước 3:
$$I = \int_{0}^{\frac{\pi}{4}} \frac{1 + \tan^2 t}{1 + \tan^2 t} dt = \int_{0}^{\frac{\pi}{4}} dt = t \Big|_{0}^{\frac{\pi}{4}} = 0 - \frac{\pi}{4} = -\frac{\pi}{4}$$

Các bước làm ở trên, bước nào bị sai?

- **A.** Bước 3.
- **B.** Bước 2.
- C. Không bước nào sai.
- **D.** Bước 1.

Câu 24: Trong không gian với hệ tọa độ *Oxyz*, cho A(1;2;-1), B(2;1;1), C(0;1;2). H(x;y;z) là trực tâm của tam giác (ABC). Giá trị của S = x + y + z là:

- **A.** 4.
- **B.** 6.
- **C.** 5.

Câu 25: Tìm hệ số của số hạng chứa x^{10} trong khai triển biểu thức $\left(3x^3 - \frac{2}{x^2}\right)^5$.

- **A.** 240.
- **B.** −240. **C.** −810.
- **D.** 810.

Câu 26: Cho hàm số $y = x^3 - 3x + 1$. Khẳng định nào sau đây sai?

- A. Hàm số đồng biến trên (1;2).
- **B.** Hàm số đồng biến trên các khoảng $(-\infty;-1)$ và (1;+∞).
 - C. Hàm số nghịch biến trên (-1;2).
 - **D.** Hàm số nghịch biến trên (-1;1).

Câu 27: Cho hàm số $y = x^3 - 3x + 1$ có đồ thị (C).

Tiếp tuyến với (C) tại giao điểm của (C) với trục tung có phương trình là:

- **A.** y = -3x 1.
- **B.** y = 3x 1.
- C. y = 3x + 1.
- **D.** y = -3x + 1.

Câu 28: Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm B(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0và (R): 2x - y + z = 0 là:

- **A.** 4x + 5y 3z 22 = 0.
- **B.** 4x-5y-3z-12=0.
- C. 2x + y 3z 14 = 0.

- **D.** 4x + 5y 3z + 22 = 0.
- Câu 29: Cho mặt cầu (S) có diện tích $4\pi a^2 cm^2$.

Khi đó, thể tích khối cầu (S) là:

- **A.** $\frac{64\pi a^3}{2}cm^3$. **B.** $\frac{\pi a^3}{3}cm^3$.
- C. $\frac{4\pi a^3}{3}cm^3$. D. $\frac{16\pi a^3}{3}cm^3$.

Câu 30: Cho hàm số f(x) liên tục trên \mathbb{R}^+ thỏa

mãn $f'(x) \ge x + \frac{1}{x}$, $\forall x \in \mathbb{R}^+$ và f(1) = 1. Khẳng định nào sau đây là đúng?

- **A.** $f(2) \ge \frac{5}{2} + 2\ln 2$. **B.** $f(2) \ge \frac{5}{2} + \ln 2$.
- C. $f(2) \ge 5$.
- **D.** $f(2) \ge 4$.

Câu 31: Trong không gian với hệ tọa độ *Oxyz*, cho phương trình:

$$x^{2} + y^{2} + z^{2} - 2(m+2)x + 4my - 2mz + 5m^{2} + 9 = 0.$$

Tìm tất cả các giá trị của m để phương trình trên là phương trình của một mặt cầu.

- **A.** m < -5 hoặc m > 1. **B.** -5 < m < 1.
- C. m < -5.
- **D.** m > 1.

Câu 32: Cho 0 < a < 1. Tìm mệnh đề đúng trong các mênh đề sau.

- **A.** Tập giá trị của hàm số $y = a^x$ là \mathbb{R} .
- **B.** Tập xác định của hàm số $y = \log_a x$ là \mathbb{R} .
- **C.** Tập xác định của hàm số $y = a^x$ là $(0; +\infty)$.
- **D.** Tập giá trị của hàm số $y = \log_a x$ là \mathbb{R} .

Câu 33: Trong không gian, cho hình chữ nhật ABCD có AB = 1 và AD = 2. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần S_{tp} của hình trụ đó.

- **A.** $S_{tp} = 4\pi$.
- **B.** $S_{tn} = 2\pi$.
- C. $S_{to} = 10\pi$. D. $S_{to} = 6\pi$.

Câu 34: Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số $f(x) = x + \frac{4}{x}$ trên [1;4] bằng:

- **A.** 20. **B.** $\frac{52}{2}$. **C.** 6. **D.** $\frac{65}{2}$.

Câu 35: Cho hàm số $y = x^4 - 2x^2 - 3$ có đồ thị như hình bên dưới. Với giá trị nào của tham số m thì phương trình $x^4 - 2x^2 - 3 = 2m - 4$ có hai nghiệm phân biệt.

$$\mathbf{A.} \begin{bmatrix} m < 0 \\ m = \frac{1}{2} \end{bmatrix}$$

B.
$$m \le \frac{1}{2}$$
.

C.
$$0 < m < \frac{1}{2}$$
.

$$\mathbf{D.} \begin{bmatrix} m = 0 \\ m > \frac{1}{2} \end{bmatrix}$$

Câu 36: Với giá trị nào của tham số *m* thì phương trình $4^x - m \cdot 2^{x+1} + 2m + 3 = 0$ có hai nghiệm x_1, x_2 thoả mãn $x_1 + x_2 = 4$?

A.
$$m = 8$$
. **B.** $m = \frac{13}{2}$. **C.** $m = \frac{5}{2}$. **D.** $m = 2$.

Câu 37: Trong không gian với hệ trục tọa độ Oxyz,

cho hai đường thẳng
$$(\Delta_1)$$
:
$$\begin{cases} x = -3 + 2t \\ y = 1 - t \\ z = -1 + 4t \end{cases}$$

$$(\Delta_2)$$
: $\frac{x+4}{3} = \frac{y+2}{2} = \frac{z-4}{-1}$. Khẳng định nào sau đây đúng?

- **A.** (Δ_1) cắt và không vuông góc với (Δ_2) .
- **B.** (Δ_1) và (Δ_2) chéo nhau và vuông góc nhau.
- C. (Δ_1) và (Δ_2) song song với nhau.
- **D.** (Δ_1) cắt và vuông góc với (Δ_2) .

Câu 38: Có bao nhiêu số tư nhiên có 3 chữ số đôi một khác nhau.

A. 1000.

B. 720.

C. 729.

Câu 39: Gọi z_0 là nghiệm phức có phần ảo âm của phương trình $z^2 - 6z + 13 = 0$. Tính $|z_0 + 1 - i|$.

A. 25.

B. $\sqrt{13}$. **C.** 5. **D.** 13.

Câu 40: Trong các dãy số sau, dãy số nào không phải là cấp số cộng?

A. 3; 1; -1; -2; -4. **B.**
$$\frac{1}{2}$$
; $\frac{3}{2}$; $\frac{5}{2}$; $\frac{7}{2}$; $\frac{9}{2}$.

D.
$$-8$$
; -6 ; -4 ; -2 ; 0 .

Câu 41: Cho số phức z=6+7i. Số phức liên hợp của z có điểm biểu diễn hình học là:

A. (-6;-7).

C. (6;–7).

D. (-6;7).

Câu 42: Có bao nhiêu số nguyên trên [0;10] nghiệm đúng bất phương trình:

$$\log_2(3x-4) > \log_2(x-1)$$
?

A. 11.

B. 8.

C. 9.

D. 10.

Câu 43: Tìm họ nguyên hàm của hàm số:

$$f(x) = e^{2018x}$$
.

A.
$$\int f(x) dx = e^{2018x} . \ln 2018 + C.$$

B.
$$\int f(x) dx = \frac{1}{2018} e^{2018x} + C.$$

C.
$$\int f(x) dx = 2018.e^{2018x} + C.$$

D.
$$\int f(x) dx = e^{2018x} + C$$
.

Câu 44: Sắp xếp 12 học sinh của lớp 12A gồm có 6 học sinh nam và 6 học sinh nữ vào một bàn dài gồm có hai dãy ghế đối diện nhau (mỗi dãy gồm có 6 chiếc ghế) để thảo luận nhóm. Tính xác suất để hai học sinh ngồi đối diện nhau và canh nhau luôn khác giới.

B. $\frac{9}{5987520}$.

D. $\frac{9}{8316}$.

Câu 45: Với mức tiêu thụ thức ăn của trang trại A không đổi như dự định thì lượng thức ăn dự trữ sẽ đủ dùng cho 100 ngày. Nhưng thực tế, mức tiêu thụ thức ăn tăng thêm 4% mỗi ngày (ngày sau tăng 4% so với ngày trước đó). Hỏi thực tế lượng thức ăn dự trữ đó chỉ đủ dùng cho bao nhiêu ngày?

A. 40.

B. 42.

C. 41.

D. 43.

Câu 46: Cho hàm số y = f(x) liên tục và có đạo hàm trên [0;6]. Đồ thị của hàm số f'(x) trên đoạn [0;6] được cho bởi hình bên dưới. Hỏi hàm số $y = \left[f(x) \right]^2$ có tối đa bao nhiều cực trị.

> y = f'(x)0

A. 3.

B. 6.

C. 7.

D. 4.

Câu 47: Cho tứ diện đều SABC. Gọi I là trung điểm của đoạn AB, M là điểm di động trên đoạn AI. Qua M vẽ mặt phẳng (α) song song với (SIC). Thiết diện tạo bởi (α) với tứ diện *SABC* là:

A. hình bình hành.

B. tam giác cân tại *M*.

C. tam giác đều.

D. hình thoi.

Câu 48: Cho lăng trụ ABC. A'B'C'. Gọi M, N lần lượt là trung điểm của A'B' và CC'. Khi đó CB' song song với:

 $\mathbf{A}.\ (AC'M).$

B. (BC'M).

C. A'N.

D. *AM*.

Câu 49: Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-3) và mặt phẳng (P):2x+2y-z+9=0.

Đường thẳng *d* đi qua *A* và có vecto chỉ phương $\vec{u} = (3;4;-4)$ cắt (P) tại điểm B. Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90°. Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?

A. J(-3;2;7).

B. *K*(3;0;15).

C. H(-2;-1;3). D. I(-1;-2;3).

Câu 50: Cho số thực a > 0. Giả sử hàm số f(x)liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a-x)=1. Tính tích phân $I=\int_{0}^{a}\frac{1}{1+f(x)}dx$?

A.
$$I = \frac{a}{3}$$
. **B.** $I = \frac{a}{2}$. **C.** $I = a$. **D.** $I = \frac{2a}{3}$.