21.

Let a_n be the number of permutations of n with ordered cycles.

a.

Use the generating function is Set 3 Exercise 13c to find an asymptotic formula for a_n .

Proof. The generating function in question being $\frac{1}{1-\ln\left(\frac{1}{1-x}\right)}$. Note that the singularity here occurs when $\ln\left(\frac{1}{1-x}\right)=1$ i.e when x satisfies: $\frac{1}{1-x}=e \implies e^{-1}=1-x \implies x=1-e^{-1}$. There might be a singularity at x=1 as well, it would require further investigation, but regardless $0<1-\frac{1}{e}<1$ so that $1-\frac{1}{e}$ is the closest singularity to 0. So plugging this into the asymptotic formula, with a test value of $\alpha=1$

$$\lim_{x \to 1 - (1/e)} \frac{\left(x - \left(1 - \left(1/e\right)\right)}{1 - \ln\left(\frac{1}{1 - x}\right)} = \frac{\lim_{x \to 1 - (1/e)} 1}{\lim_{x \to 1 - (1/e)} \frac{1}{1 - x}}$$
$$= \frac{1}{e} = C.$$

Where the second equality follows from L'Hopital's Rule. So that for asymptotic formula we have $C = e^{-1}$, $\alpha = 1$ and $R = \frac{e-1}{e}$, giving us:

$$a_n \sim \frac{Cn^{\alpha - 1}}{R^{n + \alpha}\Gamma(\alpha)} = \frac{e^{-1}n^0}{1(\frac{e - 1}{e})^{n + 1}} = \frac{e^n}{(e - 1)^{n + 1}}.$$

b.

Find an asymptotic formula for the average number of cycles in a permutation of n with ordered cycles.

Proof. Note that the average will be given by:

$$\frac{\text{Total number of permutations with ordered cylces}}{\text{Total number of permutations}} = \frac{a_n}{n!}$$

That is we got the numerator from part (a.) of this problem, and that the total number of permutations of n is always n!, so using the asymptotic result from the above and that

multiplication preserves the asymptotic relation:

$$\frac{a_n}{n!} \sim \frac{e^n}{n!(e-1)^{n+1}}.$$

22.

Find an asymptotic formula for the probability that a permutation of n doesn't have a cycle of length 1, 2, or 3.

Proof. Note that we have the generating function of the number of permutations of n that don't contain 1-cycles as being:

$$e^{\ln\left(\frac{1}{1-x}\right)-x}$$

Following the same reasoning using the exponential formula we get that the generating function for the number of permutations of n that don't contain 1, 2 or 3 cycles is:

$$e^{\ln\left(\frac{1}{1-x}\right)-x-\frac{x^2}{2}-\frac{x^3}{3}} = \frac{e^{-x-\frac{x^2}{2}-\frac{x^3}{3}}}{1-x}.$$

The only singularity is 1 so that we get that:

$$\lim_{x \to 1} \frac{(1-x)e^{-x-\frac{x^2}{2} - \frac{x^3}{3}}}{1-x} = \frac{\lim_{x \to 1} e^{-x-\frac{x^2}{2} - \frac{x^3}{3}}}{\lim_{x \to 1} 1}$$

$$= e^{-1-\frac{1}{2} - \frac{1}{3}}$$

$$= e^{-\frac{3}{2} - \frac{1}{3}}$$

$$= e^{-\frac{11}{6}}.$$

This is our C value in the asymptotic theorem and we have R = 1 and $\alpha = 1$ from the singularity, so that we get the following asymptotic result (with a_n being the total number of permutations of n with no 1, 2, 3 cycles):

The number of permutations of n with no 1,2,3 cycles

The total number of permutations of n $\sim \frac{Cn^{\alpha-1}}{\Gamma(\alpha)R^{n+\alpha}}$ $= e^{-11/6} \frac{n^{1-1}}{\Gamma(1)1^{n+1}}$

So the probability of this is approximately $e^{-11/6} \approx 0.1598$.

23.

We define

1.

The Chebyshev polynomial of the first kind $T_n(y)$ by $\sum_{n=0}^{\infty} T_n(y) x^n = \frac{1-yx}{1-2yx+x^2}$,

Proof. Note that for y = 5/4 we have:

$$\sum_{n=0}^{\infty} T_n(5/4)x^n = \frac{1 - (5/4)x}{1 - (5/2)x + x^2}.$$

Using the quadratic formula we get that the zeros of the denominator polynomial to be $x=2,\frac{1}{2}$. So that the nearest singularity to 0 is 1/2. So that $R=\frac{1}{2}$ and we get the following:

$$\lim_{x \to 1/2} \frac{(x - 1/2)(1 - (5/4)x)}{1 - (5/4)x + x^2} = \lim_{x \to 1/2} \frac{(-5/4)x^2 + (13/8)x - (1/2)}{1 - (5/4)x + x^2}$$

$$= \frac{\lim_{x \to 1/2} (-5/2)x + (13/8)}{\lim_{x \to 1/2} 2x - (5/2)}$$

$$= -\frac{1}{4}.$$

So that we have $\alpha=1$ and $R=\frac{1}{2}$ and $C=-\frac{1}{4}$ in the asymptotic formula, so we get: $T_n(5/4)\sim\frac{Cn^{\alpha-1}}{\Gamma(\alpha)R^{n+\alpha}}=\frac{-1}{4}\frac{n^0}{\Gamma(1)(1/2)^{n+1}}=-\frac{2^{n+1}}{4}=-2^{n-1}$

2.

The Chebyshev Polynomial of the second kind $U_n(y)$ by $\sum_{n=0}^{\infty} U_n(y)x^n = \frac{1}{1-2yx+x^2}$, and

Proof. We start off with $\sum_{n=0}^{\infty} U_n(5/4)x^n = \frac{1}{1-2(5/4)x+x^2} = \frac{1}{1-(5/2)x+x^2}$. Additionally the de-

nominator polynomial is the same as (1.) so that we get singularities of x = 2, 1/2.

$$\lim_{x \to 1/2} \frac{(x - 1/2)}{x^2 - (5/2)x + 1} = \frac{\lim_{x \to 1/2} 1}{\lim_{x \to 1/2} 2x - (5/2)}$$
$$= \frac{1}{-3/2} = \frac{-2}{3}.$$

So that we have $R=\frac{1}{2},\,C=-\frac{2}{3},\alpha=1.$ So that the asymptotic formula gives us:

$$U_n(5/4) \sim \frac{Cn^{\alpha - 1}}{\Gamma(\alpha)R^{n + \alpha}}$$

$$= -\frac{2}{3} \frac{n^{1 - 1}}{\Gamma(1)(1/2)^{n + 1}}$$

$$= -\frac{2^{n + 2}}{3}.$$

3.

The Legendre polynomial $P_n(y)$ by $\sum_{n=0}^{\infty} P_n(y) x^n = \frac{1}{\sqrt{1-2yx+x^2}}$.

Proof. The polynomial in the denominator now has a square root around it, but the singularities remain at $x = 2, \frac{1}{2}$. So evaluating the limit with WolframAlpha we get that:

$$\lim_{x \to \frac{1}{2}} (\frac{1}{2} - x)^{1/2} \frac{1}{(x - 1)^{1/2} (x - 1/2)^{1/2}} = \sqrt{\frac{2}{3}}.$$

So that $C = \sqrt{\frac{2}{3}}$ with $\alpha = 1/2, R = 1/2$ so the asymptotic formula gets us:

$$P_n(5/4) \sim \frac{Cn^{\alpha - 1}}{\Gamma(\alpha)R^{n + \alpha}}$$

$$= \sqrt{\frac{2}{3}} \frac{n^{-1/2}}{\Gamma(1/2)(1/2)^{n + 1/2}}$$

$$= \frac{2^{n+1}}{n^{1/2}\sqrt{3\pi}}.$$

Find asymptotic formulas for $T_n(5/4)$, $U_n(5/4)$, and $P_n(5/4)$.

24.

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a complex valued function with nonnegative real coefficients $a_n \ge 0$. Suppose that a singularity of f with smallest complex magnitude R (this means that R is the radius of convergence of f(z) and that the series $f(z_0)$ diverges for all z_0 with $|z_0| > R$). This exercise will show that R is a singularity of f.

a.

Show that
$$f(z) = \sum_{k=0}^{\infty} \left(\sum_{n=k} {n \choose k} a_n (R/2)^{n-k} \right) \left(z - \frac{R}{2} \right)^k$$
 in some neighborhood of $R/2$.

Proof. We'll show this by using the generalized binomial theorem plus the swapping of two sums:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

$$= \sum_{n=0}^{\infty} a_n \left(z - \frac{R}{2} + \frac{R}{2} \right)^n$$

$$= \sum_{n=0}^{\infty} a_n \sum_{k=0}^{\infty} \binom{n}{k} \left(\frac{R}{2} \right)^{n-k} \left(z - \frac{R}{2} \right)^k$$

$$= \sum_{k=0}^{\infty} \left(z - \frac{R}{2} \right)^k \sum_{n=0}^{\infty} a_n \binom{n}{k} \left(\frac{R}{2} \right)^{n-k}$$

$$= \sum_{k=0}^{\infty} \left(z - \frac{R}{2} \right)^k \sum_{n=k}^{\infty} a_n \binom{n}{k} \left(\frac{R}{2} \right)^{n-k}.$$

Third equality follows from the generalized binomial theorem of series, Fourth equality swaps the two sums (assuming that its convergent in the neighborhood of $\frac{R}{2}$), and the final takes advantage that in the generalized binomial coefficient that if n < k then $\binom{n}{k} = 0$.

b.

Looking for a contradiction, assume that R is not a singularity of f. This means that there's an $\epsilon > 0$ such that the above expression is valid for $R + \epsilon$. Take $R + \epsilon$ in the above expression and prove that

$$f(R + \epsilon) = \sum_{n=0}^{\infty} a_n (R + \epsilon)^n.$$

Why is this a contradiction? Where was the hypothesis that $a_n \geq 0$ used?

Proof. Using the above result we get that:

$$f(R+\epsilon) = \sum_{k=0}^{\infty} \left(R + \epsilon - \frac{R}{2}\right)^k \sum_{n=k}^{\infty} a_n \binom{n}{k} \left(\frac{R}{2}\right)^{n-k}$$

$$= \sum_{k=0}^{\infty} \left(\frac{R}{2} + \epsilon\right)^k \sum_{n=k}^{\infty} a_n \binom{n}{k} \left(\frac{R}{2}\right)^{n-k}$$

$$= \sum_{n=0}^{\infty} a_n \sum_{k=0}^{\infty} \binom{n}{k} \left(\frac{R}{2}\right)^{n-k} \left(\frac{R}{2} + \epsilon\right)^k$$

$$= \sum_{n=0}^{\infty} a_n \left(\frac{R}{2} + \frac{R}{2} + \epsilon\right)^n$$

$$= \sum_{n=0}^{\infty} a_n (R + \epsilon)^n.$$

The first inequality coming from plugging in $\frac{R}{2} + \epsilon$ into the above expression, the third we swap the sums, and then the fourth comes from identifying the binomial theorem for series. Assuming that R isn't a singularity of f, then the above chain is valid. But we have that any $|z_0| > R$ that f diverges for such z_0 's. But note that no matter $\epsilon > 0$ we have that $R + \epsilon > R$ and thus $f(R + \epsilon)$ diverges, a contradiction of the above, since we say that this

The $a_n \geq 0$ comes into play since otherwise it's possible we might have something like a telescoping series, where even though $R + \epsilon > R$ the value of the series could very well be finite such as with a telescoping series.

function is well-defined on \mathbb{C} (i.e not the extended real line, so $f(R+\epsilon)\neq\infty$).