1. Question 1

		/1
	a. Prod b. Prin c. Prin execut	of the following is/are false? cessor can directly access data from secondary memory. nary memory is used as backup memory. nary memory stores the active instructions and data for the program being ted on the processor. nary memory can store only instructions.
	Hide a	nswer choices
	1.	
		a, b, c
	2.	
		a and b
	3.	
	3.	
		a _
	4.	
		a and d
2.	Questi	on 2
		/ 1
	Progra	am counter:
	Hide a	nswer choices
	1.	
		Counts the total number of instructions present in a program
	2.	
		Points to the next instruction that is to be executed.
	3.	
	0.	

			Points to the current instruction that is being executed
		4.	
			Stores the data of the current instruction that is being executed.
3.	Qu	esti	ion 3
			/ 1
			of the following contains circuitry to carry out operations such as on, multiplication etc?
	Hic	de a	nswer choices
		1.	
			Control Unit
		2.	
			Memory Unit
		3.	
			ALU
		4.	
			Input/Output Unit
4.	Qu	esti	ion 4
			/ 1
	a. T b. H c. P and d. (The Har PAS d su Cha	of the following statements are true? ENIAC computer was built using mechanical relays. vard Mark1 computer was built using mechanical relays. CALINE computer could multiply and divide numbers by repeated addition obtraction. rles Babbage built his automatic computing engine in the 19th century.
		1.	

			a and b
		2.	
			a, b, d
		3.	
			b and c
		4.	
			d and c
5.	Que	esti	ion 5
			/ 1
			of the following generates the necessary signals required to execute an ction in a computer?
	Hid	le a	answer choices
		1.	
			Arithmetic and Logic Unit
		2.	
			Memory Unit
		3.	
			Input/Output Unit
		4.	
			Control Unit
6.	Que	esti	ion 6
			/1

An instruction ADD R1, A is stored at memory location 4004H. R1 is a processor register and A is a memory location with address 400CH. Each instruction is 32-

bit long. What will be the values of PC, IR and MAR during execution of the instruction?

ממוט	answer		haidad
	answei		111111111111111111111111111111111111111
IIIuc	ansveci	•	1101663

	1.	
		PC=4004H; IR= ADD R1, A; MAR 400CH
	2.	
		PC=4008H; IR= ADD; MA= 400CH
	3.	
		PC=4008H; IR=ADD R1, A; MAR= 400CH
	4.	
		None of the above
7.	Questi	on 7
		/ 1
	of 32 k	ler a 1 MB (Megabyte) byte-addressable memory system, with a word size oits. The number of bits in MAR and MDR will be:
	1.	
		23,32
	2.	
		20, 8
	3.	
		23, 32
	4.	
		20, 32
8.	Questi	on 8

	/ 1
	nputer has 2GB (Gigabytes) of byte-addressable memory. The number of ess lines will be 32
	T
	^O True
	F .
	© False
9. Que	tion 9
	/ 1
Whi	n of the following statements are false for Harvard architecture?
Hid	answer choices
-	
	The program and data are stored in separate memory units.
-	
	The program and data are stored in the same memory.
-	
	The processor fetches instructions from program memory and accesses data from data memory.
-	
	The program memory and data memory can be built using different memory technologies.
10. Que	tion 10
	/1

For a 512 X 32 bit memory that contains 512 locations each with 32-bit data, what will be the address (in binary) of the 389th location? (Assume the first location as 0).

Hide a	nswer choices
1.	
	110000100
2.	
	110000101
3.	
	011000100
4.	
	011000101
1. Questi	ion 11
	/1
locatio	der a 32-bit machine where an instruction (SUB R1, LOCA) is stored at on 2004H. LOCA is a memory location whose value is 1024H. The number mory access required to execute this instruction will be?
Hide a	nswer choices
1.	
	4
2.	
	2
3.	
	8

12. Question 12

16

	/ 1
Which	of the following statements are true for Moore's law?
Hide a	answer choices
1.	
	Moore's law predicts that power dissipation will double every 18 months.
2.	
	Moore's law predicts that the number of transistors per chip will double every 18 months
3.	
	Moore's law predicts that the speed of VLSI circuits will double every 18 months
4.	
	None of the above
Quest	ion 1
	/1
1's con (i) Sign (ii) By	der the following statement for representing signed numbers using sign-magnitude, applement, and 2's complement format: n of the number can be identified using MSB. flipping the sign bit we can obtain the number of its opposite sign. of the following is correct?
Hide a	inswer choices
1.	
	Only (i) is true
2.	
	Only (ii) is true
3.	
	Both (i) and (ii) are true

1.

	4.
	Both (i) and (ii) are false
2.	Question 2
	/1
	The decimal number (35.5) base 10 in binary notation is?
	Hide answer choices
	1.
	100011.101
	2.
	100011.1
	3.
	00110101.0101
	4.
	110101.101
3.	Question 3
	/1
	The number (110.101001) base 2 in hexadecimal notation is?
	Hide answer choices
	1.
	6.A4
	2.
	C.A4
	3.
	6.29

	4.	
		C.29
4. Qu	ıesti	ion 4
		/ 1
		dressing mode that adds the displacement and the index register to get the effective s of the operand is called
Hid	de a	nswer choices
	1.	
		Indexed addressing
	2.	
		Base-Indexed addressing
	3.	
		Register Indirect Addressing
	4.	
		Relative addressing
5. Qu	ıesti	ion 5
		/1
len	igth	ers R1 and R2 contain data values 600 and 800 respectively in decimal, and the word of the processor is 4 bytes. The effective address of the memory operand for the tion "LOAD R5,10(R1,R2)" will be 1410 .
	1.	T
		O True
	2.	F
		C False
6. Qu	ıesti	ion 6

Which of the following statements are false for MIPS 32 register set?

- a. Register R0 always contains the value 0.
- b. Any register other than R0 can be used for register indirect addressing.
- c. Any register other than R0 can be used to hold the return address for function calls.
- d. R31 is a special register used as a stack pointer.

Hi

1.	
	a, c and d
2.	
	c and d
3.	
d 4. a and b 7. Question 7 / 1 The MIPS code for A = B+C where B is loaded in register \$S2 and C is loaded in is? Hide answer choices	d
4.	
	a and b
The MI	
is?	PS code for A = B+C where B is loaded in register \$S2 and C is loaded in register \$S5
is? Hide a	PS code for A = B+C where B is loaded in register \$S2 and C is loaded in register \$S3 and C is
is? Hide a	PS code for A = B+C where B is loaded in register \$S2 and C is loaded in register \$S3
is? Hide a	PS code for A = B+C where B is loaded in register \$S2 and C is loaded in register \$S3 and C is
is? Hide a	PS code for A = B+C where B is loaded in register \$S2 and C is loaded in register \$S3 and C is
is? Hide a	PS code for A = B+C where B is loaded in register \$S2 and C is loaded in register \$S3 nswer choices ADD \$S1, \$S2, \$S3
is? Hide a 1.	PS code for A = B+C where B is loaded in register \$S2 and C is loaded in register \$S3 nswer choices ADD \$S1, \$S2, \$S3 ADDI \$S3, \$S2, \$S1

			None of the above			
8.	Qu	esti	on 8			
			/1			
	In MIPS32, to fetch a 32-bit word from memory in a single cycle, the word has to be stored from memory location? Hide answer choices					
		1.				
			0019Н			
		2.				
			001BH			
		3.				
			001AH			
		4.				
			0018H			
9.	Qu	esti	on 9			
			/ 1			
	For the instruction STORE R1,35(R2) what will be the effective address of the memory operand if R2 is 200 (in decimal)?					
	Hide answer choices					
		1.				
			35			
		2.				
			165			
		3.				
			235			

4.	
	200
). Quest	ion 10
	/1
How d	o you represent -10 using 16-bit, 2's complement representation?
	nswer choices
1.	
	1000 0000 0001 0110
2.	
	0000 0000 0000 1010
3.	
	1111 1111 1111 0110
4.	
	0000 0000 0001 0110
Quest	ion 1
`	
	/1
What k	tind of processor is x86?
Hide a	nswer choices
1.	
	RISC
2.	
	CISC
3.	
5.	

	4.
	None of the above
2.	Question 2
	/1
	A processor having a clock cycle time of 5ns will have a clock rate of MHz.
	Hide answer choices
	1.
	200
	2.
	245
	3.
	257
	4.
	303
3.	Question 3
	/1
	Which of the following statements is/are true with respect to Amdahl's law? a. It expresses the law of diminishing returns. b. It expresses the maximum speedup that can be achieved. c. It provides a measure to compare the execution times of two machines. d. All of these
	Hide answer choices
	1.
	a and c
	2.
	b and c

		3.			
			d only		
		4.			
			a and b		
4.	Qι	ıesti	on 4		
			/1		
	tin	ie. W	al execution time of a typical program is made up of 60% of CPU time and 40% of I/O which of the following alternatives is better? Assume that there is no overlap between d I/O operations.		
	Hic	de a	nswer choices		
		1.			
			Increase the CPU speed by 50%.		
		2.			
			Reduce the I/O time by half		
		3.			
			Both alternatives give the same speedup		
		4.			
			None of these		
5.	Qι	ıesti	on 5		
			/1		
	Consider a program with 50 million instructions, a machine requires 25 milliseconds to execute this program. What will be the MIPS rating of the machine?				
	Hid	de a	nswer choices		
		1.			
			20		

		2.	
			200
		3.	
			2000
		4.	
			20000
6.	Que	esti	on 6
			/1
	per	inst	ram is running on a machine that has a total of 1000 instructions, the average cycles cruction for the program are 1.5, and the execution time of the program is 1 μ sec. The stee of the machine is GHz.
	Hid	e a	nswer choices
		1.	
			1.5
		2.	
			2
		3.	
			1
		4.	
			1.75
7.	Que	esti	on 7
			/1
	Sup	pos	e that a machine A executes a program with an average CPI of 3. Consider another

Suppose that a machine A executes a program with an average CPI of 3. Consider another machine B (with the same instruction set and a better compiler) that executes the same program with 10% less instructions and with a CPI of 1.5 at 1.5 GHz. The clock rate of A so that the two machines have the same performance is 3.30, 3.40 GHz.

	True
	2. F
	False
8.	Question 8
	/ 1
	Suppose that a machine X executes a program with an average CPI of 2.5. Consider another machine Y (with the same instruction set and a little better compiler) that executes the same program with 10% fewer instructions and with the CPI of 1.5 at 4GHz. What should be the clock frequency of X so that both the machines have the same performance?
	Hide answer choices
	1.
	7.40GHz
	2.
	7.40MHz
	3. 7.40KHz
	4.
	7.40Hz
9.	Question 9
	/1
	On which of the following does CPI depend on?
	Hide answer choices
	1.
	Instruction Set Architecture
	2.

	CPU organization
3	3.
	Complier
4	1.
	All of these
10. Que:	stion 10
	/1
	sider a program whose instruction count is 1,500, average CPI is 2, and clock cycle tim
is 1 nano	second. Suppose we use a new compiler on the same program for which the new
instr	ruction count is 2,500, and the new CPI is 1.5, which is running on a faster machine wi
a clo	
cycle	e time of 0.5 nanoseconds. The speedup achieved will be?
Hide	e answer choices
1	L. L
	1.66
2	2.
	0.63
3	3.
	1.63
	<u>.</u>
7	None of these
1. Que	stion 1
	/1
Whic	ch of the following statement is/are correct?
Hide	e answer choices
1	L.

		MIPS instructions are 32 bits long.
	2.	
		All instructions are stored in memory with address having the last two bits 00 .
	3.	
		Program Counter is decremented to 4 to point to the next instruction
	4.	
		All of these
2.	Ques	ion 2
		/1
	The co	orrect sequence in Fetch-Execute cycle is:
	Hide	answer choices
	1.	
		Decode, Fetch, Execute
	2.	
		Fetch, Execute, Decode
	3.	
		Fetch, Decode, Execute
	4.	
		None of the above
3.	Ques	ion 3
		/1
	Steps 1 PCor 2 Zout 3 MDI	instruction does the following set of micro-operations refer to: Action ut, MARin, Read, Select4, Add, Zin r, PCin, Yin, WMFC Rout, IRin ut, Yin

	Hide a	nswer choices
	1.	
		ADD R2, R1
	2.	
		ADD R1, R2
	3.	
		MOVE R1, R2
	4.	
		MOVE R2, R1
4.	Quest	ion 4
		/ 1
	The Ins	struction Register (IR)
	Hide a	nswer choices
	1.	
		Holds the memory address of the next instruction
	2.	
		Holds the memory address of the current instruction
	3.	
		Holds the executed or decoded instruction.
	4.	
		Holds the encoded instruction that is currently being executed or decoded.
5.	Quest	ion 5

5 R2out, SelectY, Add, Zin

6 Zout, R1in, End

/ 1

Which	of the following statements are true for vertical micro-instruction encoding?			
Hide answer choices				
1.				
	If there are control signals, every control word stored in control memory (CM) consists of k bits, one bit for every control signal.			
2.				
	Sequential activation of at most one control signal in a single time step.			
3.				
	Low cost of implementation.			
4.				
	None of these			
Question 6				
	/ 1			
Which	of the following statements is/are false?			
Hide	answer choices			
1.				
	Diagonal micro-instructions encoding requires multiple decoders.			
2.				
In vertical micro-instructions encoding, more than one control signals cannube activated at a time				
3.				
	Horizontal micro-instructions encoding has a lower cost of implementation.			
4.				

None of these.

6.

7.	Que	sti	on 7		
			/1		
	Whi	ch o	of the following is true for MIPS32 register bank?		
	Hide	e ai	nswer choices		
	-	1.			
			There is one read port and one write port.		
	2	2.			
			There is one read port and two write ports.		
	3	3.			
			There are two read ports and one write port.		
		1.			
			None of these		
8.	Question 8				
			/1		
	er a single bus system, how many steps will be required to complete the instruction R1,R2				
	Hide answer choices				
	-	1.			
			2		
	-	2.			
			3		
	3	3.			
			4		
	_	1.			

	5
Quest	ion 9
	/1
Which	of the following is not true for a branch instruction in MIPS32?
Hide a	answer choices
1.	
	The branch condition is computed in EX stage.
2.	
	The new PC value is loaded in the MEM stage.
3.	
	The target address is computed in ID stage.
4.	
	The WB stage is not required.
. Quest	ion 10
	/1
Consid	ler a hardwired control unit where each instruction of the machine requires maximun
	ps to complete its execution. If the total number of such instructions are 129, what be the size of step decoder and instruction decoder respectively?
a.	
Hide a	answer choices
1.	
	6x64; 7x128
2.	
	50x1; 129x1
3.	

	64x1, 256x1
	4.
	6x64, 8x256
1. Q	Question 1
	/1
Н	low many address and data lines will be there for a 16M x 32 memory system?
Н	lide answer choices
	1.
	24 and 5
	2.
	20 and 32
	3.
	24 and 32
	4.
	None of the above
2. Q	Question 2
	/1
A	ssume that a $1G \times 1$ DRAM memory cell array is organized as $1M$ rows and $1K$ columns. The umber of address bits required to select a row and a column will be?
Н	lide answer choices
	1.
	20 and 10
	2.
	2. 30 and 1

	220 and 210
	4.
	None of the above
3. C	Question 3
	/1
V	What is the function of the chip select line (CS') in a memory chip?
H	Hide answer choices
	<u> </u>
	1.
	Power supply is applied to the chip when CS' is activated.
	2.
	The data bus is put in the high impedance state when CS' is deactivated.
	3.
	It prevents two or more subsystems from using the memory simultaneou
	4.
	None of the above
4. (Question 4
	/1
V	Which of the following statement(s) is/are true?
H	Hide answer choices
	1.
	In memory, data are stored in the form of 0's and 1's.
	2.
	Memory system stores data and instruction.
	3.
	J.

Every bit of memory has a unique address.
4.
All of these
estion 5
/1
ch of the following are true for Static RAM (SRAM)?
e answer choices
<u>. </u>
Power consumption is higher than Dynamic RAM (DRAM).
2.
Packing density is higher than Dynamic RAM (DRAM).
3.
It is faster than Dynamic RAM (DRAM).
4.
It is non-volatile.
estion 6
/1
ch of the following statement(s) is/are false?
e answer choices
<u>. </u>
<u></u>
In valatile management data is less took on a second of the less took on the less took of the less took on t
In volatile memory data is lost when power is switched off.
In volatile memory data is lost when power is switched off. 2.

			Magnetic tape does not allow random access of data.
		4.	
			None of these.
7.	Qu	esti	on 7
			/1
	Wh	ich	of the following is/are true for virtual memory systems?
	Hic	de a	nswer choices
		1.	
			It increases the size of the program that can be run
		2.	
			It increases the size of the physical memory
		3.	
			It increases the size of the secondary memory
		4.	
			It improves the processor-memory bandwidth
8.	Qu	esti	on 8
			/1
	Wh	at is	s/are false for cache memory?
	Hic	de a	nswer choices
		1.	
			It consumes low power as compared to main memory.
		2.	
			It is a type of non-volatile memory.
		3.	

		It decreases the effective speed of the memory system.
	4.	
		All of these.
9. (Quest	ion 9
		/1
r	The to	tal number of external connections required by an 8 x 8 memory will be 15
	1.	T
		C True
	2.	F
		C False
10. (Quest	ion 10
		/ 1
1	Which	of the following statement is true for writing 1 in SRAM chip?
I	Hide a	nswer choices
	1.	
		The bit line b is set with 1, and bit line b' is set with 0.
	2.	
		The bit line b is set with 0, and bit line b' is set with 1.
	3.	
		The bit line b is set with 1, and bit line b' is set with 1.
	4.	
Questio	n 1	The bit line b is set with 0, and bit line b' is set with 0.

For a Hard disk rotating at a speed of 3600 rpm, Find the value of maximum delay
Hide answer choices
6.31 millisec
8.30 millisec
16.60 millisec
10.00 mmsec
Question 2
/1
/ 1
For a hard disk rotating at a speed of 9500 rpm, Find the value of average delay
For a hard disk rotating at a speed of 9500 rpm, Find the value of average delay Hide answer choices
Hide answer choices
Hide answer choices
Hide answer choices 6.31 millisec
Hide answer choices 6.31 millisec
Hide answer choices 6.31 millisec 4.15 millisec
Hide answer choices 6.31 millisec 4.15 millisec
6.31 millisec 4.15 millisec 3.152 millisec

The smallest unit of data transfer is	
sector track platters Question 4 / 1 The important factors listed are: 1. The time required to move the head to the desired track. 2. Average seek times are in the range 8 – 20 msec. 3. The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	he smallest unit of data transfer is
track platters Question 4 /1 The important factors listed are: 1.The time required to move the head to the desired track. 2.Average seek times are in the range 8 – 20 msec. 3.The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	lide answer choices
track platters Question 4 /1 The important factors listed are: 1.The time required to move the head to the desired track. 2.Average seek times are in the range 8 – 20 msec. 3.The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	
platters Question 4 /1 The important factors listed are: 1.The time required to move the head to the desired track. 2.Average seek times are in the range 8 – 20 msec. 3.The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	ector
platters Question 4 /1 The important factors listed are: 1.The time required to move the head to the desired track. 2.Average seek times are in the range 8 – 20 msec. 3.The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	
Question 4 /1 The important factors listed are: 1. The time required to move the head to the desired track. 2. Average seek times are in the range 8 – 20 msec. 3. The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	rack
Question 4 / 1 The important factors listed are: 1. The time required to move the head to the desired track. 2. Average seek times are in the range 8 – 20 msec. 3. The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	
The important factors listed are: 1.The time required to move the head to the desired track. 2.Average seek times are in the range 8 – 20 msec. 3.The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	platters
The important factors listed are: 1.The time required to move the head to the desired track. 2.Average seek times are in the range 8 – 20 msec. 3.The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	
The important factors listed are: 1. The time required to move the head to the desired track. 2. Average seek times are in the range 8 – 20 msec. 3. The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	Question 4
The important factors listed are: 1. The time required to move the head to the desired track. 2. Average seek times are in the range 8 – 20 msec. 3. The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	/1
 1.The time required to move the head to the desired track. 2.Average seek times are in the range 8 – 20 msec. 3.The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices 	
2. Average seek times are in the range 8 – 20 msec. 3. The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	he important factors listed are:
2. Average seek times are in the range 8 – 20 msec. 3. The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	
3.The total time to transfer a block of data (typically, a sector). Out of these factors which are related to Seek time Hide answer choices	The time required to move the head to the desired track.
Out of these factors which are related to Seek time Hide answer choices	Average seek times are in the range 8 – 20 msec.
Out of these factors which are related to Seek time Hide answer choices	
Hide answer choices	The total time to transfer a block of data (typically, a sector).
Hide answer choices	
Hide answer choices	
	Out of these factors which are related to Seek time
1 only	lide answer choices
1 only	
	. only
1	

2 and 3
. all 1,2,3
. Question 5
/1
The data from a CPU need to be stored in a backup memory. Which is the best possible solution for the same
. Hide answer choices
· · · SRAM
. DRAM
. Hard Disk
. Volatile memory
. Question 6
/1
. To read a bit from a FG transistor the necessary action to be performed is
. Hide answer choices

	Apply a voltage on the control gate
	Apply a voltage on the floating gate
	Apply a voltage on the drain
	Apply a voltage on the source
•	Question 7
•	/1
	/ 1
•	The material in between control gate and floating gate is a
•	Hide answer choices
	Conductor
	semi-conductor
	Insulator
	metal
•	Question 8
•	/1
•	The start and stop bits are characterised for

	Hide answer choices
	synchronous transmission
	asynchronous transmission
	clock driven transmission
•	Question 9
•	/1
	/ -
•	Separate decoders for memory and IO are required in
•	Hide answer choices
	IO mapped interfacing
•	Memory mapped Interfacing
	direct interfacing
	Question 1
	/1
	· · · · · · · · · · · · · · · · · · ·

Several program instructions have to be executed for each data word transferred

	between the I/O device and memory.
•	The above statement corresponds to which mode of data transfer?
•	Hide answer choices
	DMA
•	Programmed I/O
· ·	Fixed I/O interfacing
•	Question 2
•	/1
	Consider a programmed I/O system where 20 instructions are required to be executed for the
· -	
	the
	transfer of each word of data. The cycles-per-instruction (CPI) of the machine is 1.5 and the
	transfer of each word of data. The cycles-per-instruction (CPI) of the machine is 1.5 and the processor clock frequency is 2 GHz. The maximum data transfer rate will be
	transfer of each word of data. The cycles-per-instruction (CPI) of the machine is 1.5 and the processor clock frequency is 2 GHz. The maximum data transfer rate will be million words per second. (Assume 1 million = 10^6) Hide answer choices
	transfer of each word of data. The cycles-per-instruction (CPI) of the machine is 1.5 and the processor clock frequency is 2 GHz. The maximum data transfer rate will be million words per second. (Assume 1 million = 10^6)

. 22.67
87.54
. Question 3
/1
Which of the following statement(s) is/are true for DMA data transfer?
. Hide answer choices
•
Data transfer requires very less CPU intervention.
. Not Suitable for transferring large blocks of data .
No direct data transfer between I/O and memory.
. Question 4
/1
. Which of the following registers needs to be initialized before transfer of any data in DMA
. mode?
Hide answer choices
. Memory Address

	Word Count
	Address of data on disk
	All of the above
•	Question 5
•	/1
	How many total keys are supported by a 4*4 MATRIX KEYBOARD
•	Hide answer choices
•	4
	8
	16
	24
•	Question 6
	/1
	<u> </u>
	If a key is pressed in a a keyboard, the corresponding row and column are
•	Hide answer choices

	grounded
	raised to high voltage
	raised to high impedance
•	Question 7
	/1
•	Suppose that it is required to transfer 20K bytes in interrupt-driven mode of data transfer.
•	Every time an interrupt occurs, it involves the transfer of 64 bytes of data that takes 20
•	microseconds for the processor to service. The time required to transfer 40K bytes of data will
•	be milliseconds? (Assume 1K = 1024)
•	Hide answer choices
•	5.25
	6.25
	12.5
	32.56
•	Question 8

•	Which of the following bus is more cheaper to implement?
•	Hide answer choices
	Parallel Bus
	Serial Bus
	High bus
•	Question 9
	/1
	/ 1
•	The maximum data transfer rates supported by USB 2.0 and USB 3.0 standards are
	respectively:
•	
	respectively:
	respectively: Hide answer choices
	respectively: Hide answer choices 480Mbps and 5Gbps
	respectively: Hide answer choices 480Mbps and 5Gbps 2 Gbps and 10 Gbps

/ 1

/1
•
With Bridge-Based Bus Architectures
Hide answer choices
Intel follows this kind of architecture.
different buses
•
can operate in parallel.
. System includes a lot of buses that are
•
segregated by bridges.
All of these
. Question 1
/ 10
In the non-pipelined version, the execution time of an instruction is equal to
Hide answer choices
the combined delay of all stages

IIIGI	tiplied delay
Que	stion 2
	/1
Con:	sider a 5-stage instruction pipeline with stage delays of 20 nsec, 25 nsec, 35 nsec, 3
and The	22 nsec respectively. The delay of an inter-stage register stage of the pipeline is 2 r
tota	I time required for the execution of 1000 instructions will be microseconds.
Hide	e answer choices
59.1	4 microsec
37.1	4 microsec
220.	19microsec
322.	14 microsec
Que	stion 3
	/1

respectively, and the delay of an inter-stage register stage of 5 nsec. Suppose the pipeline is
. modified by splitting the 1st stage into two simpler stages with delays 10 nsec and 15 nsec, and
. 2nd stage into two simpler stages with delays 15 nsec and 15 nsec. For the execution of 1000
. instructions, the speedup of the new 5-stage pipeline over the previous 3-stage pipeline will be
·
Hide answer choices
1.746
20.08
35.07
. 25.67
Question 4
/1
. Since a new instrucEon is fetched every clock cycle, it is required to
the on each clock.
. Hide answer choices

increment, PC
. decrement,PC
. increment,IP
. DECREMENT,IP
Question 5
/1
Identify the statement related to pipeline hazard
. Hide answer choices
•
operation occurs at full speed
prevent a pipeline from operating at its maximum
possible clock speed.
operation suspends
. Question 6
/1
For the following MIPS32 program segment, how many stall cycles will be required?
•

	1: LW R5, 200(R2)
•	2: ADD R1, R6, R8
•	3: SUB R3, R5, R8
	Hide answer choices
	2
	1
	0
	4
	Question 7
	/1
•	Which of the following data hazards can cause performance degradation in the MIPS32 integer
	pipeline?
•	
•	a. WAR data hazard.
•	b. WAW data hazard.
	c PAW data hazard

•	Hide answer choices
	a
	b
	c
•	Question 8
	/1
•	Consider the MIPS32 pipeline with ideal CPI of 1.5. Assume that 30% of all instructions executed
	are branch, out of which 90% are taken branches. The pipeline speedup for (i) predict taken and
•	(ii) predict not taken approaches to reduce branch penalties will be approximately:
•	
•	a. 3.94, 3.85
•	b. 4.34, 4.29
•	c. 3.85, 4.34
•	d. 3.85, 3.94
•	Hide answer choices

	a
	b
	c
•	d
•	Question 9
•	/1
	7-
•	Which of the following require additional hardware?
•	Hide answer choices
	Bypassing
	Concurrent access
	splitting
•	Question 10
	/1
•	In Bypassing which of the following is not required?
•	
	a) Requires multiplexers to select these additional paths.

•	b) The control unit identifies data dependencies and selects the multiplexers in a
•	suitable way.
•	c) Additional data transfer paths are to be added in the data path.
•	d) Splitting a clock cycle into two halves,
•	Hide answer choices
	a
	b
	c
	d
•	Question 1
	/1
	Loop unrolling requires significantly greater number of registers

F	
F	False
(Question 2
	/1
	Eleating point will require more than one cycles in stage
1	Floating point will require more than one cycles in stage
ł	Hide answer choices
ı	EX
F	FETCH
[DEC
-	Ouartion 2
	Question 3
	/1

	Hide answer choices
•	
	Hazard
	Latency
	delay
	Interval
•	Question 4
	/1
•	S.D F4, 40(R5) is used for
•	Hide answer choices
	Storing from a floating-point register pair:
	Loading into a floating-point register pair
•	Question 5

•	In the floating-point extension of MIPS32, there are floating-point
	registers
	Hide answer choices
	4
	8
	16
·	32
•	Question 6
•	/1
	There is no limit to the number of instructions that can be fetched and issued in every
•	clock cycle.
•	

•	Т
	True
•	F
	False
	Question 7
	/1
•	Suppose the start-up time of vector multiply operation is 12 clock cycles. After start-up, the initiation rate is one per clock cycle. What will be the number of clock cycles required per result for a 64-element vector?
•	Hide answer choices
•	
	2.13
	1.19
	3.21
	7.56
•	Question 8

processor can be considered to be using micro-programming.	
. RISC architecture supposedly execute instructions faster than CISC.	
Question 10	
. /1	
. What is not true about Rapid Execution Engine?	
a) ALUs run at twice the processor frequency.	
b) Basic integer operations execute in 1/2 processor clock tick.	
. c) Provides higher throughput and reduced latency of execution.	
d) Each logical processor has its own set of registers.	
. Hide answer choices	
a	

d	
Question 1	
	/1
Decimal equivale	ent of 11101000 represented in 2's complement format will be
Hide answer choi	ices
Hide answer choi	ices
Hide answer choi	ices
Hide answer choi18	ices
	ices
-18	vices
-18	nices
-18	nices
-18	rices
-18	rices

.

. Largest number that can be represented using 8-bit 1's complement representation will	
be	
. Hide answer choices	
•	
127	
256	
128	
· ·	
212	
•	
Question 3	
•	
/1	
The minimum number of NAND gates required to design half adder is	
. Hide answer choices	

3				
4				
5				
•				
6				
•				
Question 4				
		• •		
-or a Full adder Dela	y for Carry =	/ 1 and Delay for Su	ım =	
For a Full adder Dela	y for Carry =		ım =	
			ım =	
For a Full adder Dela Hide answer choices			ım =	
			ım =	
Hide answer choices			ım =	
Hide answer choices			ım =	
Hide answer choices 2 δ and 2 δ			ım =	
Hide answer choices 2 δ and 2 δ			ım =	
Hide answer choices . 2 δ and 2 δ 2 δ and 3 δ			ım =	
Hide answer choices 2 δ and 2 δ 2 δ and 3 δ .			ım =	
Hide answer choices 2 δ and 2 δ 2 δ and 3 δ 3 δ and 2 δ			ım =	
Hide answer choices 2 δ and 2 δ			ım =	

•	
	/1
•	
	Carry Look Ahead Adder is
	, <u> </u>
•	
	Hide answer choices
	That unswer enotices
	Serial Adder
	Serial Adder
	Parallel Adder
	Spontaneous adder
•	
	Question 6
	/1
	, -
	In a 5-bit carry look-ahead adder, suppose we are adding two numbers A = (1, 0, 1, 1, 0) and
	B =
	(1, 0, 1, 1, 1). The carry generate and carry propagate signals will be:
	(1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

Question 5

Hide answer choices

G = (1, 0, 1, 1, 0) and P = (1, 0, 1, 1, 1)G = (1, 0, 1, 1, 0) and P = (0, 0, 1, 0, 1) G = (1, 0, 1, 1, 0) and P = (0, 0, 0, 0, 1) G = (1, 0, 1, 1, 0) and P = (1, 0, 0, 0, 1)Question 7 Carry Select adder consists of ___-Hide answer choices two parallel adders

Question 8

two serial adders

two selection adders

/1
Suppose we are multiplying (-9) x (12) using Booth's multiplier, where each number is
. represented in 5 bits. What will be the values of A (temporary register), and Q (multiplier) after $\frac{1}{2}$
third step?
. Hide answer choices
00100, 00011
•
01001, 00011
•
00100, 10001
· · · · · · · · · · · · · · · · · · ·
Question 9
/1
For n bit multiplication, number of additions= and shift operations=

n and n				
2n and n				
2n and 2n				
•				
Question 10				
		/1		
Booth's multiplier in	spects three bits o	of the multiplier a	it every step	
Т				
. True				
. False				
. Tuise				
Question 1				
		/1		
Shift left by 1 bit me	ans by	2		

Hide answer choices

Multiply Divide Add Subtract Question 2 /1 The number of significant digits depends on the number of bits in Hide answer choices Mantissa Exponent Question 3 /1 IEEE-754 format supports rounding modes Hide answer choices		Hide answer choices
Add Subtract Question 2 /1 The number of significant digits depends on the number of bits in Hide answer choices Mantissa Exponent Question 3 /1		Multiply
Subtract Question 2 /1 The number of significant digits depends on the number of bits in Hide answer choices Mantissa Exponent Question 3 /1		Divide
Question 2 /1 The number of significant digits depends on the number of bits in Hide answer choices Mantissa Exponent Question 3 /1 IEEE-754 format supports rounding modes		Add
Question 2 /1 The number of significant digits depends on the number of bits in Hide answer choices Mantissa Exponent Question 3 /1 IEEE-754 format supports rounding modes		Subtract
The number of significant digits depends on the number of bits in Hide answer choices Mantissa Exponent Question 3 IEEE-754 format supports rounding modes	•	Question 2
Hide answer choices Mantissa Exponent Question 3 IEEE-754 format supports rounding modes	•	/1
Hide answer choices Mantissa Exponent Question 3 IEEE-754 format supports rounding modes .	•	The number of significant digits depends on the number of bits in
Exponent Question 3 IEEE-754 format supports rounding modes	•	Hide answer choices
. Question 3 . / 1 . IEEE-754 format supports rounding modes .		Mantissa
. /1 . IEEE-754 format supports rounding modes .		Exponent
. IEEE-754 format supports rounding modes .	•	Question 3
	•	/1
	•	IEEE-754 format supports rounding modes
		Hide answer choices

3	
. 4	
5	
6	
Qu	restion 4
	/1
Foi	r multiplying F1 = 270.75 and F2 = -2.375, result will include 2^
Hic	de answer choices
. 8	
9	
7	
•	
Qu	iestion 5
	/1
The	e range of the number depends on the number of bits in
	_
Hic	de answer choices
•	

	Exponent
	Mantissa
•	Question 6
•	/1
•	F = (-1)^s M x 2^E represents a
•	Hide answer choices
•	Floating point number
•	
	Fixed point number
•	Question 7
	/1
•	For addition of 2 numbers, We add thevalues after shifting one of them right for exponent
•	alignment.
	Hide answer choices
	Mantissa
	Exponent

f the process of rounding generates a result that is not in normalized form, then we need to the result. dide answer choices liscard e-normalize	Sign bit	
f the process of rounding generates a result that is not in normalized form, then we need to the result. dide answer choices liscard e-normalize Question 9	Question 8	
f the process of rounding generates a result that is not in normalized form, then we need to the result. dide answer choices liscard e-normalize Question 9		/1
ve need to the result. dide answer choices liscard etain e-normalize Question 9		/1
dide answer choices liscard etain e-normalize Question 9	If the process of	rounding generates a result that is not in normalized form, then
etain e-normalize Question 9	we need to	the result.
etain e-normalize Question 9	Hide answer cho	pices
e-normalize Question 9	discard	
e-normalize Question 9		
Question 9 /1	retain	
/1	re-normalize	
	Question 9	
or subtracting F2 = 234 from F1 = 210.75, Shift the mantissa of F2 position,		/1
	For subtracting	F2 = 234 from F1 = 210.75,Shift the mantissa of F2 position,
lide answer choices	Hide answer cho	pices
ight by 1	right by 1	
eft by 1	left by 1	

right by 2
. left by 2
Question 10
/1
The number of columns in a reservation table represents
. Hide answer choices
evaluation time
generation time
. delay time
Question 1
/1
. Which of the following statement is true in regards to memory?
Hide answer choices
The faster, smaller memory are always closer to processor

	The memory, that is farthest away is the costliest.
	As we move away from the processor, speed increases.
	None of the above
•	Question 2
•	/1
	/ 1
•	Which of the following statements are false?
•	Hide answer choices
	Temporal locality arises because of loops in a program.
	Spatial locality arises because of loops in a program.
	Temporal locality arises because of sequential instruction execution.
	Spatial locality arises because of sequential instruction execution.
•	Question 3
	/1
•	In a two-level cache system, the access times of L1 and L2 caches are 1 and 8 clock cycles respectively. The miss penalty from L2 cache to main memory is 18 clock cycles. The miss rate of L1 cache is twice that of L2. The average memory access time of the cache system is 2 cycles. The miss rates of L1 and L2 caches respectively are?

Hide	answer	choices

•

0.130 and 0.065

.

0.056 and 0.111

•

0.0892 and 0.1784

•

0.1784 and 0.0892

Question 4

/ 1

The memory access time is 1 nsec for a read operation with a hit in cache, 5 nsec for a read operation with a miss in cache, 2 nsec for a write operation with a hit in cache, and 10 nsec for a write operation with a miss in cache. The execution of a sequence of instructions involves 100 instruction fetch operations, 60 memory operand read operations, and 40 memory operand write operations. The cache hit ratio is 0.9. The average memory access time (in nanoseconds) in executing the sequence of instructions is?

Hide answer choices

.

1.26

.

1.68

2.46

•

4.52

.

/1
Assume that a read request takes 50 nsec on a cache miss and 5 nsec on a cache hit. While running a program, it is observed that 80% of the processor's read requests result in a cache hit. The average read access time is 14 nsec
Question 6
/1
A cache memory system with capacity of N words and block size of B words is to be designed. If it is designed as a direct mapped cache, the length of the TAG field is 10 bits. If is designed as a 16-way set associative cache, the length of the TAG field will be how many bits?
Hide answer choices
19
17
16
13
Question 7
/1

•	Hide answer choices
	The implementation of direct mapping technique for cache requires expensive hardware to carry out division.
	The set associative mapping requires associative memory for implementation.
	A main memory block can be placed in any of the sets in set associative mapping.
	None of the above.
•	Question 8
•	/1
•	7. Consider a direct-mapped cache with 64 blocks and a block size of 16 bytes. Byte address 1200 will map to block number 11 of the cache.
	1200 will map to block number 11 of the cache. T
	1200 will map to block number 11 of the cache. T True
	T True F
	T True False
	T True F False Question 9
	T True F False Question 9

By using larger block size By using larger cache size By reducing the cache associativity None of the above Question 10 Consider a two-level memory hierarchy with separate instruction and data caches in level 1, and main memory in level 2. The clock cycle time in 1 ns. The miss penalty is 20 clock cycles for both read and write. 2% of the instructions are not found in I-cache, and 10% of data references not found in D-cache. 25% of the total memory accesses are for data, and cache access time (including hit detection) is 1 clock cycle. The average access time of the memory hierarchy will be which of the following nanoseconds? Hide answer choices 1.76 ns 1.68 ns 1.88 ns 1.86 ns