Solving and Estimating an Incomplete Information Entry Game

Carlos Enrique Lezama Jacinto

Instituto Tecnológico Autónomo de México

clezamaj@itam.mx

1 Setup

Suppose there are two firms, A and B, that simultaneously decide whether to enter in the market $m \in \{1, ..., M\}$ or not. If firm $i \in \{A, B\}$ decides to enter, its profits are given by

$$\Pi_{i,m} = X_{i,m}\beta - D_{j,m}\alpha + \nu_m + u_{i,m}, \quad \forall i, j \in \{A, B\}, i \neq j$$

where $X_{i,m}$ is an observable characteristic of firm i that boosts profits in market m, $D_{j,m} \in \{0,1\}$ is j's decision of entering the market, ν_m is a market fixed effect, and $u_{i,m}$ captures unobserved idiosyncratic shocks to profits.

On the other hand, if firm i decides not to enter market m, its profits are zero.

Notice that $u_{i,m}$ is observed by i but not by its opponent j. Consequently, the firms are playing an incomplete information entry game described below.

		Firm B		
		Enter	Do not enter	
Firm A	Enter	$(\Pi_{A,m},\Pi_{B,m})$	$(X_{A,m}\beta + \nu_m + u_{A,m}, 0)$	
	Do not enter	$(0, X_{B,m}\beta + \nu_m + u_{B,m})$	(0,0)	

Thus, the expected profits of firm A if it decides to enter market m are

$$E(\Pi_{A,m}) = (D_{A,m}) (p(D_{B,m} = 1) (X_{A,m}\beta - \alpha + \nu_m + u_{A,m}) + (1 - p(D_{B,m} = 1)) (X_{A,m}\beta - \alpha + u_{A,m}) + (1 - D_{A,m}) \cdot 0$$

2 Lezama

where, $\forall i, j \in \{A, B\}, i \neq j$, the condition for firm i to enter the market in terms of its expected profits is defined as follows:

$$D_{i,m} = \mathbf{1} \left(p(D_{j,m} = 1) \left(X_{i,m} \beta - \alpha + \nu_m + u_{i,m} \right) + \left(1 - p(D_{j,m} = 1) \right) \left(X_{i,m} \beta + \nu_m + u_{i,m} \right) > 0 \right).$$

Namely, the probability that firm A enters market m is

$$p(D_{A,m} = 1) = p(X_{A,m}\beta - \alpha p(D_{B,m} = 1) + \nu_m + u_{A,m} > 0)$$

= $p(u_{A,m} > -(X_{A,m}\beta - \alpha p(D_{B,m} = 1) + \nu_m))$
= $\Phi(X_{A,m}\beta - \alpha p(D_{B,m} = 1) + \nu_m)$

where $\Phi = \mathcal{N}(0,1)$. Recall that we assume $u_{i,m} \sim \mathcal{N}(0,1), \forall i, j \in \{A, B\}, i \neq j$. Similarly,

$$p(D_{B,m} = 1) = \Phi(X_{B,m}\beta - \alpha p(D_{A,m} = 1) + \nu_m).$$

Henceforth, let $p_{i,m} = p(D_{i,m} = 1)$.

2 Simulations

We propose the following parametrization to simulate our model:

$$\alpha = 2$$

$$\beta = 0.2$$

$$X_{A,m} \sim \mathcal{U}(0,1)$$

$$X_{B,m} \sim \mathcal{U}(0.1, 1.4)$$

$$\nu_m = 0.9 \times \mathbf{1} \{ m \le 100 \}$$

$$u_{A,m}, u_{B,m} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

With this setup, we obtain the following entry probabilities for markets 1, 101, 201, 301, and 401.

m	$p_{A,m}$	$p_{B,m}$
1	0.6019	0.4001
101	0.3172	0.2766
201	0.3375	0.2805
301	0.3812	0.2503

m	$p_{A,m}$	$p_{B,m}$
401	0.2590	0.3362

Thus, firm A enters 165 markets while firm B enters 179. However, recall that Bayesian Nash equilibrium allows for ex-post regret where profits are negative succeeding the decision of entry. In our case, firm A regrets 41 times while B regrets 48—24.85% and 26.82%, respectively.

3 Maximum Likelihood

In pursuit of our estimation objectives for $\theta = (\alpha, \beta, \gamma)$ such that γ appears in $\nu_m := \gamma \times \mathbf{1}\{m \leq 100\}$ —i.e., we also want to estimate a common market fixed effect for the first 100 markets—we define our log-likelihood function as shown below.

$$\log \mathcal{L}_{m}(\theta \mid \cdot) = \sum_{m=1}^{M} \left[D_{A,m} D_{B,m} \log(p_{A,m} p_{B,m}) + D_{A,m} (1 - D_{B,m}) \log(p_{A,m} (1 - p_{B,m})) + (1 - D_{A,m}) D_{B,m} \log((1 - p_{A,m}) p_{B,m}) + (1 - D_{A,m}) (1 - D_{B,m}) \log((1 - p_{A,m}) (1 - p_{B,m})) \right]$$

The maximum likelihood estimates, as well as their standard errors, are shown in the following table.

Parameter	Estimate	SE
$\frac{\alpha}{\beta}$	2.0347 0.1915 0.7421	0.1813 0.0470 0.1865

4 GMM

With the generalized method of moments (GMM), we may want to consider up to the fourth moment to ensure over-identification. This way, we can describe an algorithm that performs GMM estimation as follows:

- 1. Compute $\theta^{(0)} = \arg\min_{\theta} \bar{q}(\theta)' \bar{q}(\theta)$
- 2. Compute the heteroskedasticity and auto-correlation consistent matrix $\hat{\Omega}\left(\theta^{(0)}\right)$ like the one proposed by Newey & West (1987)
- 3. Compute $\theta^{(0)} = \arg\min_{\theta} \bar{g}(\theta)' \left[\hat{\Omega} \left(\theta^{(0)} \right) \right]^{-1} \bar{g}(\theta)$

4 Lezama

- 4. If $\|\theta^{(0)}-\theta^{(1)}\|<$ tol, stop. Else, $\theta^{(0)}=\theta^{(1)}$ and repeat from 2 5. Define $\hat{\theta}=\theta^{(1)}$

References

Newey, Whitney K. & West, Kenneth D. 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55(3). 703-708. http://www.jstor.org/stable/1913610.