BRAC University MAT-215 Practice Sheet # 7

1. Find the Laplace transformation of each of the following function:

(i)
$$3e^{-2t}$$
 (ii) $4t^3 - e^{-t}$ (iii) $7\sin 2t - 3\cos 2t$ (iv) $(t^2 + 1)^2$ (v) $(4e^{2t} - 2)^3$.

2. Evaluate each of the following:

(i)
$$\Lambda \{t^3 e^{-3t}\}$$
 (ii) $\Lambda \{5 e^{3t} \sin 4t\}$ (iii) $\Lambda \{(t+2)^2 e^t\}$ (iv) $\Lambda \{e^{-t} (3\sinh 2t - 5\cosh 2t)\}$
(v) $\Lambda \{e^{-4t} \cosh 2t\}$ (iv) $\Lambda \{e^{2t} (3\sin 4t - 4\cos 4t)\}$.

3 Determine each of the following:

$$\begin{array}{c} (i) \ \Lambda^{-1} \left\{ \frac{12}{4 - 3s} \right\} & (ii) \ \Lambda^{-1} \left\{ \frac{2s - 5}{s^2 - 9} \right\} & (iii) \ \Lambda^{-1} \left\{ \frac{23s - 15}{s^2 + 8} \right\} & (iv) \ \Lambda^{-1} \left\{ \frac{1}{s^{3/2}} \right\} \\ (v) \ \Lambda^{-1} \left\{ \frac{s + 1}{s^{4/3}} \right\} & (vi) \ \Lambda^{-1} \left\{ \frac{1}{s^4} \right\} & (vii) \ \Lambda^{-1} \left\{ \frac{1}{\sqrt{2s + 3}} \right\}. \end{array}$$

4. Evaluate each of the following using partial fraction:

(i)
$$\Lambda^{-1} \left\{ \frac{6s-4}{s^2-4s+20} \right\}$$
 (ii) $\Lambda^{-1} \left\{ \frac{4s+12}{s^2+8s+16} \right\}$ (iii) $\Lambda^{-1} \left\{ \frac{2s^2-4}{(s+1)(s-2)(s-3)} \right\}$
(iv) $\Lambda^{-1} \left\{ \frac{5s^2-15s-11}{(s+1)(s-2)^3} \right\}$ (v) $\Lambda^{-1} \left\{ \frac{3s+1}{(s^2+1)(s-1)} \right\}$ (vi) $\Lambda^{-1} \left\{ \frac{2s^2-4}{(s+1)(s-2)(s-3)} \right\}$
(vii) $\Lambda^{-1} \left\{ \frac{s^2+2s+3}{(s^2+2s+2)(s^2+2s+5)} \right\}$.

5. Solve the given differential equation:

(i)
$$Y'' - 3Y' + 2Y = 4e^{2t}$$
, $Y(0) = -3$, $Y'(0) = 5$
(ii) $Y'' + 9Y = \cos 2t$, $Y(0) = 1$, $Y(\pi/2) = -1$
(iii) $Y'' + 2Y' + 5Y = e^{-t} \sin t$, $Y(0) = 0$, $Y'(0) = 1$
(iii) $Y''' - 3Y'' + 3Y' - Y = e^{t}t^{2}$, $Y(0) = 0$, $Y'(0) = 0$, $Y''(0) = -2$.

Laplace Transformation of some elementary functions:

	E(1)	$I(\Pi(t)) = C(t)$
	F(t)	$L\{F(t)\} = f(s)$
1.	1	$L\{F(t)\} = f(s)$ $\frac{1}{s}, s>0$
2.	t	$\frac{1}{s^2}$, s>0
3.	<i>t</i> ⁿ n= 0, 1, 2,	$\frac{n!}{s^{n+1}}$, s>0
4.	e ^{at}	$\frac{\frac{n!}{s^{n+1}}}{\frac{1}{s-a}}, s>0$
5.	sinat	$\frac{a}{s^2+a^2}, \ s>0$
6.	cosat	$\frac{s}{s^2+a^2}, \ s>0$
7.	sinhat	$\frac{a}{s^2 - a^2}, s > a $
8.	coshat	$\frac{s}{s^2 - a^2}, s > a $

Inverse Laplace Transformation

	inverse Lapiace Transformation		
	f(s)	$L^{-1}\{f(s)\} = F(t)$	
1.	$\frac{1}{s}$	1	
2.	$\frac{1}{s^2}$	t	
3.	$\frac{1}{s^{n+1}}$, $n = 0,1,2,$	$\frac{t^n}{n!}$	
4.	$\frac{1}{s-a}$	e ^{at}	
5.	$\frac{1}{s^2 + a^2}$	sinat a	
6.	$\frac{s}{s^2 + a^2}$	cosat	
7.	$\frac{1}{s^2 - a^2}$	<u>sinhat</u> a	
8.	$\frac{s}{s^2 + a^2}$	coshat	
9.	$\frac{1}{s^{n+1}}, n > -1$	$\frac{t^n}{(n+1)!}, \qquad n > -1$	