Neural Machine Translation COMS W4705: Natural Language Processing

Kapil Thadani kapil@cs.columbia.edu

Review: Machine Translation

Review: Machine Translation

Tomorrow I will fly to the conference in Canada

Morgen fliege Ich nach Kanada zur Konferenz

good phrases, good mapping

pair of phrases

- 1. Collect bilingual dataset $\langle S_i, T_i \rangle \in \mathcal{D}$
- 2. Unsupervised phrase-based alignment

ightharpoonup phrase table π large corpus

- 3. Unsupervised n-gram language modeling
 - ightharpoonup language model ψ
- 4. Supervised decoder
 - \triangleright parameters θ

Neural MT

- 1. Collect bilingual dataset $\langle S_i, T_i \rangle \in \mathcal{D}$
- 2. Unsupervised phrase-based alignment
- Unsupervised n-gram language modeling
 language model ψ
- 4. Supervised encoder-decoder framework
 - ightharpoonup parameters heta

- o Encoder-decoder architectures data aligned at sentence level
 - · RNN encoders & decoders
 - · Sequence-to-sequence models
 - LSTMs & GRUs
- Attention mechanism
 - · Dynamic contexts
 - Induced alignments
- o Scaling up
 - · Google NMT
 - · Sub-word units
 - · Sequence-level training reinforcement learning
 - · Multilingual translation
- Transformers
 - · Self-attention
 - Induced structure

- Encoder-decoder architectures
 - · RNN encoders & decoders
 - · Sequence-to-sequence models
 - · LSTMs & GRUs
- o Attention mechanism
 - · Dynamic contexts
 - Induced alignments
- o Scaling up
 - · Google NMT
 - · Sub-word units
 - · Sequence-level training
 - Multilingual translation
- Transformers
 - · Self-attention
 - · Induced structure

- · Repeatedly apply a non-linear transformation to sequential inputs
- · Optionally produce an output from hidden states

- · Repeatedly apply a non-linear transformation to sequential inputs
- · Optionally produce an output from hidden states

- · Typical output layer for multiclass classification
- . Produces scores y such that $\sum_i y_i = 1$ nice to get probability

Output category label z

Deep RNN classifier

Input words x_1, \ldots, x_n

Output category label z

Output category label z

 ${\bf Output} \ \ {\bf category} \ \ {\bf label} \ \ z$

Output representation r

RNN language model

Input words y_1, \ldots, y_k

Output following words y_k, \ldots, y_m

RNN decoder

Input context vector \boldsymbol{c}

Output words y_1, \ldots, y_m

RNN decoder

Input context vector c

Output words y_1, \ldots, y_m

Sequence-to-sequence models

- · Introduced in Sutskever et al. (2014) and Cho et al. (2014)
- Combine a sequence encoder for the source language with a sequence decoder for the target language
 - 1. Encode source language tokens until <EOS> obtained
 - 2. Use final encoder hidden state as context vector
 - 3. Decode target language tokens until <EOS> obtained
- · Use gated units (LSTMs or GRUs) to overcome vanishing gradients
- Beam search decoding through softmax scores

Sequence-to-sequence learning

- Backpropagation through repeated non-linear transformations (sigmoid, tanh) leads to vanishing gradients
 - RNNs cannot easily model long-range dependencies
 - Performance degrades with longer sequences
- LSTM (Hochreiter & Schmidhuber, 1997) adds a memory cell which is only affected by linear interactions
- · Gates with sigmoid activations are used to modulate:
 - o additions from the current input (input gate)
 - o contributions to the next hidden state (output gate)
 - o the amount of memory decayed (forget gate) (Gers et al., 1999)

$$h_t = \tanh(W_{\mathbf{xh}}^{\top} x_t + W_{\mathbf{hh}}^{\top} h_{t-1})$$
 (normal RNN)

$$f_t = \sigma(W_{\mathbf{f}_{\mathbf{x}}}^{\top} x_t + W_{\mathbf{f}_{\mathbf{h}}}^{\top} h_{t-1})$$
$$\mathbf{i}_t = \sigma(W_{\mathbf{i}_{\mathbf{x}}}^{\top} x_t + W_{\mathbf{i}_{\mathbf{h}}}^{\top} h_{t-1})$$

$$\tilde{c}_t = \tanh(W_{\mathbf{xh}}^{\top} x_t + W_{\mathbf{hh}}^{\top} h_{t-1})$$

$$c_t = f_t \odot c_{t-1} + \mathbf{i_t} \odot \tilde{c}_t$$

- · Inspired by LSTM but with no memory cell (Cho et al., 2014) 只有hidden state, 没有一堆c的
- · Gates with sigmoid activations are used to control:
 - o contributions of the previous hidden state to a new state (reset gate)
 - the balance between previous and new states for the next hidden state (update gate)
- Requires fewer parameters but performs similarly to LSTM in practice (Chung et al., 2014)

$$\begin{split} \tilde{h}_t &= \tanh(W_{\!\mathbf{x}\mathbf{h}}^\top x_t + W_{\!\mathbf{h}\mathbf{h}}^\top h_{t-1}) \\ h_t &= \tilde{h}_t \end{split}$$

$$\mathbf{r_t} = \sigma(W_{\mathsf{rx}}^\top x_t + W_{\mathsf{rh}}^\top h_{t-1})$$

$$\begin{split} \tilde{h}_t &= \tanh(W_{\mathbf{xh}}^\top x_t + W_{\mathbf{hh}}^\top (\mathbf{r_t} \odot h_{t-1})) \\ h_t &= \tilde{h}_t \end{split}$$

$$r_t = \sigma(W_{\mathbf{rx}}^{\top} x_t + W_{\mathbf{rh}}^{\top} h_{t-1})$$
$$\mathbf{z_t} = \sigma(W_{\mathbf{zx}}^{\top} x_t + W_{\mathbf{zh}}^{\top} h_{t-1})$$

$$\begin{split} \tilde{h}_t &= \tanh(W_{\mathbf{x}\mathbf{h}}^\top x_t + W_{\mathbf{h}\mathbf{h}}^\top (r_t \odot h_{t-1})) \\ h_t &= \mathbf{z_t} \odot \tilde{h}_t \end{split}$$

$$\begin{split} r_t &= \sigma(W_{\mathbf{rx}}^\top x_t + W_{\mathbf{rh}}^\top h_{t-1}) \\ \mathbf{z_t} &= \sigma(W_{\mathbf{zx}}^\top x_t + W_{\mathbf{zh}}^\top h_{t-1}) \end{split}$$

$$\begin{split} \tilde{h}_t &= \tanh(W_{\mathbf{x}\mathbf{h}}^\top x_t + W_{\mathbf{h}\mathbf{h}}^\top (r_t \odot h_{t-1})) \\ h_t &= (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t \end{split}$$

Sentence embeddings

2-D PCA projections of encoded vectors for sentences

Sutskever et al. (2014)

Sentence embeddings

2-D PCA projections of encoded vectors for sentences

Phrase embeddings

2-D Barnes-Hut projections of encoded vectors for phrases

Cho et al. (2014)

Sequence-to-sequence models

- + First end-to-end neural architecture for machine translation
- + No alignments required, just parallel data
- + Encoders produce meaningful sentence embeddings
- Does not outperform phrase-based MT techniques
- Performance degrades for longer sentences
- Need to reverse the input for better performance

Method	test BLEU score (ntst14)
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59

reverse: encoder是反向的。x1, x2, ..., xn->y1, 如果y1有问题,对很久之前的x1。但反向,xn, xn-1, ..., x1->y1。就比较好。 这也是为什么有些用bi-lstm,结果很好。

Outline

- Encoder-decoder architectures
 - RNN encoders & decoders
 - · Sequence-to-sequence models
 - LSTMs & GRUs
- o Attention mechanism
 - Dynamic contexts
 - Induced alignments
- Scaling up
 - Google NMT
 - · Sub-word units
 - · Sequence-level training
 - Multilingual translation
- Transformers
 - Self-attention
 - · Induced structure

Attention mechanism

- Fixed context vector is a bottleneck for performance in encoder-decoder architectures
- Bahdanau et al. (2015) introduce a dynamic context vector that changes with each decoder timestep
 - o Weighted average over all encoder hidden states
 - Weights ("attention") conditioned on current decoder hidden state
- Allows gradients to flow directly from decoding errors to relevant encoder hidden states, thus robust to vanishing gradients

Induced alignments

Attention weights α_{ij} reveal alignments between source & target words

Bahdanau et al. (2015)

Induced alignments

Attention weights α_{ij} reveal alignments between source & target words

注意到英语法语几乎是对角线

Bahdanau et al. (2015)

Consistent performance as sentence length increases

Bahdanau et al. (2015)

- + Gradients can be backpropagated directly to attended regions, avoiding vanishing gradients with long sequences
- + Attention weights α_{ij} can be visualized to diagnose errors
- + Performance competitive with phrase-based MT

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

- Runtime for inference is $\mathcal{O}(mn)$ instead of $\mathcal{O}(m+n)$ without attention

Outline

- Encoder-decoder architectures
 - RNN encoders & decoders
 - Sequence-to-sequence models
 - LSTMs & GRUs
- o Attention mechanism
 - Dynamic contexts
 - Induced alignments
- Scaling up

case study

- Google NMT
- · Sub-word units
- · Sequence-level training
- Multilingual translation
- Transformers
 - · Self-attention
 - Induced structure

Scaling up

- · Practical translation systems typically rely on phrase-based MT
 - NMT does scale easily to large vocabularies and rare words
 - Slower inference for large neural networks
 - NMT sometimes fails to fully translate all of the input
- Wu et al. (2016) describes a production-grade NMT system evaluated against phrase-based MT for Google Translate

	PBMT	GNMT	Human	Relative
				Improvement
$English \rightarrow Spanish$	4.885	5.428	5.504	87%
$English \to French$	4.932	5.295	5.496	64%
English \rightarrow Chinese	4.035	4.594	4.987	58%
$Spanish \rightarrow English$	4.872	5.187	5.372	63%
$French \rightarrow English$	5.046	5.343	5.404	83%
$\text{Chinese} \to \text{English}$	3.694	4.263	4.636	60%

Scaling up: GNMT具有bottom能这么做--可以parallel,hidden state只能是sequential

· Sequence-to-sequence model with attention (Wu et al., 2016)

Encoder: 8 LSTM layers; bottom layer bidirectional

Decoder: 8 LSTM layers; bottom layer provides attention context

efficient trick

· All layers loaded on separate GPUs

Scaling up: Residual connections

- · Stacked LSTMs with residual connections (He et al., 2015)
 - o Layer inputs added element-wise to outputs
 - o Activations model differences between layer inputs and targets
 - More robust to vanishing gradients in deep architectures

model difference instead of transformation, residual, trick from CV.

Normal deep LSTM

Residual connections

Scaling up: Sub-word units

· Infrequent words replaced with sub-words to reduce vocabulary

- · Various corpus-based techniques to identify sub-words including
 - o WordPieceModel (Schuster & Nakajima, 2012) 日语韩语segmentation
 - o Byte Pair Encoding (Sennrich et al., 2016)
- · Available implementations:
 - o sentencepiece
 - o subword-nmt

Scaling up: Sequence-level training

- NMT models are trained on the word level with cross-entropy loss but evaluated with sequence-level metrics like BLEU, which are non-differentiable
- · Model parameters θ can also be refined against any non-differentiable measure R(x,y) using reinforcement learning

$$\begin{split} \nabla_{\theta} \, \mathbb{E}_{\mathcal{D}} \left[R(x,y) \right] &= \sum_{\langle x,y \rangle \in \mathcal{D}} R(x,y) \cdot \nabla_{\theta} \, p(y|x;\theta) \\ \text{R可以是BLEU, x,y} \\ \text{分别是输入输出} &= \sum_{\langle x,y \rangle \in \mathcal{D}} R(x,y) \cdot \nabla_{\theta} \, p(y|x;\theta) \cdot \frac{p(y|x;\theta)}{p(y|x;\theta)} \\ &= \sum_{\langle x,y \rangle \in \mathcal{D}} R(x,y) \cdot \nabla_{\theta} \log p(y|x;\theta) \cdot p(y|x;\theta) \\ \text{scale gradient with BLEU} &= \mathbb{E}_{\mathcal{D}} \left[R(x,y) \cdot \nabla_{\theta} \log p(y|x;\theta) \right] \end{split}$$

Scaling up: Sequence-level training

- NMT models are trained on the word level with cross-entropy loss but evaluated with sequence-level metrics like BLEU, which are non-differentiable
- · Model parameters θ can also be refined against any non-differentiable measure R(x,y) using reinforcement learning
- · GNMT: improvement in BLEU scores (but not human judgments)

Dataset	Trained with log-likelihood	Refined with RL
$En \rightarrow Fr$	38.95	39.92
$En \rightarrow De$	24.67	24.60

Scaling up: Multilingual MT

- Johnson et al. (2016) proposes a simple change to translate between multiple languages with a single NMT model
 - A token is added to the input sequence to indicate the target language for translation
 - o Vocabulary and parameters are shared across languages

大部分语言都是对应于英语,所以很难有parallel data. 这样A->pivot->B

- + Can improve translation for low-resource languages with little parallel data
- + Enables zero-shot translation for language pairs with no parallel data

Scaling up: Multilingual MT

t-SNE projections of learned representations of 74 sentences and different translations in English, Japanese and Korean

Johnson et al. (2010)

Outline

- Encoder-decoder architectures
 - RNN encoders & decoders
 - · Sequence-to-sequence models
 - LSTMs & GRUs
- o Attention mechanism
 - Dynamic contexts
 - Induced alignments
- Scaling up
 - Google NMT
 - · Sub-word units
 - · Sequence-level training
 - Multilingual translation
- Transformers
 - · Self-attention
 - Induced structure

Notation: Attention

attention很难visualize

· Attend over keys $k_1 \dots k_n$ conditioned on query q

Notation: Attention

· Attend over values $v_1 \dots v_n$ for keys $k_1 \dots k_n$ conditioned on query q

Scaled dot-product attention

 The original additive attention (Bahdanau et al., 2015) is a single-layer feed-forward network over a concatenated query and key.

$$\mathsf{score}(q,k) = u_{\mathbf{qk}}^{\top} \mathsf{tanh}(W_{\mathbf{qk}}^{\top}[q;k])$$

- Scaled dot-product attention (Vaswani et al., 2017) instead uses a simple dot product between the projected query and key (after a linear projection), normalized by the key dimensionality d_k

$$\mathsf{score}(q, k) = \frac{q^{\top} k}{\sqrt{d_k}}$$

where $q = W_{\mathbf{q}}^{\top} q'$ and $k = W_{\mathbf{k}}^{\top} k'$

Note: values are projected separately $v = W_{\mathbf{x}}^{\top} v'$

- The sequential computation of RNNs prevents parallelization for inference and also de-emphasizes long-range dependencies
- Vaswani et al., (2017) introduces a sequence model with recurrent connections replaced by self-attention
 - Hidden states for each input token are produced by attending to the all hidden states around, input sequence using the token as a query
 - Information about word positions must by injected via position
 embeddings in the input
- Recurrent layers are replaced by self-attention layers which can be stacked, each with
 - Scaled dot-product attention
 - o Multiple attention heads, projected down to the input dimensionality
 - Unseen tokens masked out (in the decoder)

RNN encoder

RNN encoder with attention

Deep encoder with self-attention

paralize, no recurrent structure.

Deep encoder with multi-head self-attention (Vaswani et al., 2017)

Self-attention: Long-range dependencies

making more difficult 联系紧密,也合理 phrase

Self-attention: Anaphora resolution

Self-attention: Clause structure

- + No recurrence, so inference can be parallelized
- + Improved runtime and performance on translation + other tasks
- + Scaled dot-product attention is efficient
- + Self-attention layers appear to capture some linguistic structure
- $-\mathcal{O}(n^2)$ comparisons for each layer (unless restricted)
- Positional embeddings are necessary to account for ordering of input

Resources

· OpenNMT provides implementations of NMT models

	OpenNMT-py	OpenNMT-tf
ConvS2S	✓	
DeepSpeech2	✓	
GPT-2		✓
Im2Text	✓	
Listen, Attend and Spell		✓
RNN with attention	✓	✓
Transformer	✓	✓

- + Available for PyTorch and TensorFlow
- + Actively maintained and used