Otheralyid hinear model = X; B + F; i = 1,..., n (observations) yi & k ontcome values (DV) Xi & vector of k IVs/ predictors * Kx / vector of unknown parameters 2i : Zero-mean otochastic disturbances (enon)

Ei independent across observations, constant variance σ^2 , $\sim N$ $N(0,\sigma^2) - 8 to chastice componer$ $2i N(\mu,\sigma^2) Vi \sim N(\mu,\sigma^2)$

2) systematic component

Covariates X; combine linearly with coeldicients to form [linear predictor]— $\eta_i = X_i B$

 $\chi_{o}\beta_{o}\beta_{i}\chi_{i}\beta_{i} + \chi_{2}\beta_{2}\beta_{-}... + \chi_{n}\beta_{n}\beta_{n} = y_{i}$

"linear' regression because systematic component is additive (3) link function

[XiB= 7i] is a function

ble mean parameter [mi]

via a link function,

in the case of the Normal linear model (linear regussion):

$$g(\mu i) = \mu i$$
 = 'Identity
bunction'
 $\mu i = \gamma i$ $f(x) = x$

Generalized Linear Models

- 1. Stochastic component
- 2. suptematic component
- 3. linh bunction
 Stays
 the

Stochastic components
(busides yind N(u, \sigma^2))

and think bunctions
(busides \(\eta_i = g(u_i) = \mu_i\)

vary to create other types
of GLMs.

Stochastic Component

for a given level of XiB, What is the distribution ob Yi?

for men 5'11", what is distribution of weight?

linear regression (general linear model) - Stochastic Component is the normal/ Gaussian distribution

Other distributions:

- "exponential barnily"
 - beta
 - binomial
 - Dirichelet
 - Parito
 - Poisson
 - Bernonlli
 - Exponential

NOT exponential?

- unibour
- Students t

Link bunctions could be: any n

could be: any monotonic, differentiable function

in practice: g(µ;) bunctions are used it inverse eink is easy to calculate

> Link: $g(\mu_i) = \eta_i$ inverse link: $\mu_i = g^{-1}(\eta_i)$

and, g^{-1} maps $X_i B = \eta_i \in \mathbb{R}$ into set of admissible values bot M_i

"Canonical links"

Poisson model -> log link

Binomial -> provit

Complementary

Logistic Regussion

1. Sto chastic component

Binary ontcome variable y∈ €0,13

Bernoneli distribution $P(y|\pi) = \pi^{y}(1-\pi)^{-y}$

$$\eta = \psi(\pi) = \log \left(\frac{\pi}{1-\pi}\right) = \log \sigma$$

$$\pi = \psi^{-1}(\eta) = \frac{1}{1+e^{-\eta}}$$

$$\pi = \frac{1}{1 + e^{-\eta}} - logistic function$$
"logit link"

Bernonlli

 $\chi_1, \dots \chi_n$ iid rand vars, Bernonuri P(n) = p:

$$V = \sum_{k=1}^{n} X_k \sim B(n,p)$$

Binomial

