Lógica informática (2015–16)

Tema 5: Resolución proposicional

José A. Alonso Jiménez Andrés Cordón Franco María J. Hidalgo Doblado

Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla

Tema 5: Resolución proposicional

- 1. Lógica de cláusulas
- 2. Demostraciones por resolución
- 3. Algoritmos de resolución
- 4. Refinamientos de resolución
- 5. Argumentación por resolución

Tema 5: Resolución proposicional

- 1. Lógica de cláusulas
 - Sintaxis de la lógica clausal
 - Semántica de la lógica clausal
 - Equivalencias entre cláusulas y fórmulas
 - Modelos, consistencia y consecuencia entre cláusulas
 - Reducción de consecuencia a inconsistencia de cláusulas
- 2. Demostraciones por resolución
- 3. Algoritmos de resolución
- 4. Refinamientos de resolución

Sintaxis de la lógica clausal

- ► Un átomo es una variable proposicional.
 Variables sobre átomos: p, q, r, ..., p₁, p₂,
- ▶ Un literal es un átomo (p) o la negación de un átomo $(\neg p)$. Variables sobre literales: L, L_1, L_2, \ldots
- ► Una cláusula es un conjunto finito de literales. Variables sobre cláusulas: C, C₁, C₂,
- La cláusula vacía es el conjunto vacío de literales. La cláusula vacía se representa por □.
- ► Conjuntos finitos de cláusulas.

 Variables sobre conjuntos finitos de cláusulas: *S*, *S*₁, *S*₂,

Semántica de la lógica clausal

- ▶ Una interpretación es una aplicación $I : VP \rightarrow \mathbb{B}$.
- ▶ El valor de un literal positivo p en una interpretación I es I(p).
- \triangleright El valor de un literal negativo $\neg p$ en una interpretación I es

$$I(\neg p) = \begin{cases} 1, & \text{si } I(p) = 0; \\ 0, & \text{si } I(p) = 1. \end{cases}$$

▶ El valor de una cláusula C en una interpretación I es

$$I(C) = egin{cases} 1, & ext{si existe un } L \in C ext{ tal que } I(L) = 1; \\ 0, & ext{en caso contrario.} \end{cases}$$

- ► El valor de un conjunto de cláusulas S en una interpretación I es $I(S) = \begin{cases} 1, & \text{si para toda } C \in S, I(C) = 1 \\ 0, & \text{en caso contrario.} \end{cases}$
- ▶ Prop.: En cualquier interpretación I, $I(\Box) = 0$.

Cláusulas y fórmulas

- ► Equivalencias entre cláusulas y fórmulas
 - ▶ Def.: Una cláusula C y una fórmula F son equivalentes si I(C) = I(F) para cualquier interpretación I.
 - ▶ Def.: Un conjunto de cláusulas S y una fórmula F son equivalentes si I(S) = I(F) para cualquier interpretación I.
 - ▶ Def.: Un conjunto de cláusulas S y un conjunto de fórmulas $\{F_1, \ldots, F_n\}$ son equivalentes si, para cualquier interpretación I, I(S) = 1 syss I es un modelo de $\{F_1, \ldots, F_n\}$.
- De cláusulas a fórmulas
 - ▶ Prop.: La cláusula $\{L_1, L_2, \dots, L_n\}$ es equivalente a la fórmula $L_1 \lor L_2 \lor \dots \lor L_n$.
 - ▶ Prop.: El conjunto de cláusulas $\{\{L_{1,1},\ldots,L_{1,n_1}\},\ldots,\{L_{m,1},\ldots,L_{m,n_m}\}\}$ es equivalente a la fórmula $(L_{1,1}\vee\cdots\vee L_{1,n_1})\wedge\cdots\wedge(L_{m,1}\vee\cdots\vee L_{m,n_m})$.

De fórmulas a cláusulas (forma clausal)

- ▶ Def.: Una forma clausal de una fórmula F es un conjunto de cláusulas equivalente a F.
- ▶ Prop.: Si $(L_{1,1} \lor \cdots \lor L_{1,n_1}) \land \cdots \land (L_{m,1} \lor \cdots \lor L_{m,n_m})$ es una forma normal conjuntiva de la fórmula F. Entonces, una forma clausal de F es

$$\{\{L_{1,1},\ldots,L_{1,n_1}\},\ldots,\{L_{m,1},\ldots,L_{m,n_m}\}\}.$$

- ► Ejemplos:
 - ▶ Una forma clausal de $\neg(p \land (q \rightarrow r))$ es $\{\{\neg p, q\}, \{\neg p, \neg r\}\}$.
 - ▶ Una forma clausal de $p \rightarrow q$ es $\{\{\neg p, q\}\}$.
 - ▶ El conjunto $\{\{\neg p, q\}, \{r\}\}$ es una forma clausal de las fórmulas $(p \to q) \land r \ y \ \neg \neg r \land (\neg q \to \neg p)$.
- ▶ Def.: Una forma clausal de un conjunto de fórmulas *S* es un conjunto de cláusulas equivalente a *S*.
- ▶ Prop.: Si $S_1, ..., S_n$ son formas clausales de $F_1, ..., F_n$, entonces $S_1 \cup \cdots \cup S_n$ es una forma clausal de $\{F_1, ..., F_n\}$.

Modelos, consistencia y consecuencia entre cláusulas

- ▶ Def.: Una interpretación I es modelo de un conjunto de cláusulas S si I(S) = 1.
- ▶ Ej.: La interpretación I tal que I(p) = I(q) = 1 es un modelo de $\{\{\neg p, q\}, \{p, \neg q\}\}.$
- Def.: Un conjunto de cláusulas es consistente si tiene modelos e inconsistente, en caso contrario.
- Ejemplos:
 - $\{\{\neg p, q\}, \{p, \neg q\}\}\$ es consistente.
 - $\{\{\neg p, q\}, \{p, \neg q\}, \{p, q\}, \{\neg p, \neg q\}\}\$ es inconsistente.
- ▶ Prop.: Si \square ∈ S, entonces S es inconsistente.
- ▶ Def.: $S \models C$ si para todo modelo I de S, I(C) = 1.

Reducción de consecuencia a inconsistencia de cláusulas

- ▶ Prop: Sean $S_1, ..., S_n$ formas clausales de las fórmulas $F_1, ..., F_n$.
 - ▶ $\{F_1, ..., F_n\}$ es consistente syss $S_1 \cup ... \cup S_n$ es consistente.
 - ▶ Si S es una forma clausal de $\neg G$, entonces son equivalentes
 - 1. $\{F_1, ..., F_n\} \models G$.
 - 2. $\{F_1, \ldots, F_n \neg G\}$ es inconsistente.
 - 3. $S_1 \cup \cdots \cup S_n \cup S$ es inconsistente.
- ▶ Ejemplo: $\{p \to q, q \to r\} \models p \to r \text{ syss}$ $\{\{\neg p, q\}, \{\neg q, r\}, \{p\}, \{\neg r\}\} \text{ es inconsistente.}$

Tema 5: Resolución proposicional

- 1. Lógica de cláusulas
- 2. Demostraciones por resolución Regla de resolución proposicional Demostraciones por resolución
- 3. Algoritmos de resolución
- 4. Refinamientos de resolución
- Argumentación por resolución

Regla de resolución

Reglas habituales:

► Regla de resolución proposicional:

$$\frac{\{p_1,\ldots,r,\ldots,p_m\},\quad \{q_1,\ldots,\neg r,\ldots,q_n\}}{\{p_1,\ldots,p_m,q_1,\ldots,q_n\}}$$

Regla de resolución

▶ Def.: Sean C₁ una cláusula, L un literal de C₁ y C₂ una cláusula que contiene el complementario de L. La resolvente de C₁ y C₂ respecto de L es

$$\operatorname{Res}_{L}(C_{1}, C_{2}) = (C_{1} \setminus \{L\}) \cup (C_{2} \setminus \{L^{c}\})$$

- ► Ejemplos: $\operatorname{Res}_q(\{p,q\}, \{\neg q,r\}) = \{p,r\}$ $\operatorname{Res}_q(\{q,\neg p\}, \{p,\neg q\}) = \{p,\neg p\}$ $\operatorname{Res}_p(\{q,\neg p\}, \{p,\neg q\}) = \{q,\neg q\}$ $\operatorname{Res}_p(\{q,\neg p\}, \{q,p\}) = \{q\}$ $\operatorname{Res}_p(\{p\}, \{\neg p\}) = \Box$
- ▶ Def.: $Res(C_1, C_2)$ es el conjunto de las resolventes entre C_1 y C_2
- ► Ejemplos: $Res(\{\neg p, q\}, \{p, \neg q\}) = \{\{p, \neg p\}, \{q, \neg q\}\}\}$ $Res(\{\neg p, q\}, \{p, q\}) = \{\{q\}\}\}$ $Res(\{\neg p, q\}, \{q, r\}) = \emptyset$
- ▶ Nota: $\square \notin \text{Res}(\{p,q\}, \{\neg p, \neg q\})$

Ejemplo de refutación por resolución

```
Refutación de \{\{p,q\}, \{\neg p,q\}, \{p,\neg q\}, \{\neg p,\neg q\}\}\}:

1 \{p,q\} Hipótesis

2 \{\neg p,q\} Hipótesis

3 \{p,\neg q\} Hipótesis

4 \{\neg p,\neg q\} Hipótesis

5 \{q\} Resolvente de 1 y 2

6 \{\neg q\} Resolvente de 3 y 4

7 \square Resolvente de 5 y 6
```

Ejemplo de grafo de refutación por resolución

▶ Grafo de refutación de $\{\{p,q\}, \{\neg p,q\}, \{p,\neg q\}, \{\neg p,\neg q\}\}$:

Demostraciones por resolución entre cláusulas

Sea S un conjunto de cláusulas.

- La sucesión $(C_1, ..., C_n)$ es una demostración por resolución de la cláusula C a partir de S si $C = C_n$ y para todo $i \in \{1, ..., n\}$ se verifica una de las siguientes condiciones:
 - $ightharpoonup C_i \in S$;
 - ▶ existen j, k < i tales que C_i es una resolvente de C_j y C_k
- ▶ La cláusula C es demostrable por resolución a partir de S si existe una demostración por resolución de C a partir de S. Se representa por $S \vdash_{Res} C$
- ▶ Una refutación por resolución de *S* es una demostración por resolución de la cláusula vacía a partir de *S*.
- ▶ Se dice que S es refutable por resolución si existe una refutación por resolución a partir de S. Se representa por $S \vdash_{Res} \square$

Demostraciones por resolución entre fórmulas

- ▶ Def.: Sean S_1, \ldots, S_n formas clausales de las fórmulas F_1, \ldots, F_n y S una forma clausal de $\neg F$ Una demostración por resolución de F a partir de $\{F_1, \ldots, F_n\}$ es una refutación por resolución de $S_1 \cup \cdots \cup S_n \cup S$.
- ▶ Def.: La fórmula F es demostrable por resolución a partir de $\{F_1, \ldots, F_n\}$ si existe una demostración por resolución de F a partir de $\{F_1, \ldots, F_n\}$. Se representa por $\{F_1, \ldots, F_n\} \vdash_{Res} F$.
- Ejemplo: $\{p \lor q, p \leftrightarrow q\} \vdash_{Res} p \land q$ 1 $\{p,q\}$ Hipótesis

 2 $\{\neg p,q\}$ Hipótesis

 3 $\{p,\neg q\}$ Hipótesis

 4 $\{\neg p,\neg q\}$ Hipótesis

 5 $\{q\}$ Resolvente de 1 y 2

 6 $\{\neg q\}$ Resolvente de 3 y 4

 7 \square Resolvente de 5 y 6

Adecuación y completitud de la resolución

- ▶ Prop.: Si *C* es una resolvente de C_1 y C_2 , entonces $\{C_1, C_2\} \models C$.
- ▶ Prop.: Si \square ∈ S, entonces S es inconsistente.
- ▶ Prop.: Sea *S* un conjunto de cláusulas.
 - ▶ (Adecuación) Si $S \vdash_{Res} \Box$, entonces S es inconsistente.
 - ▶ (Completitud) Si S es inconsistente, entonces $S \vdash_{Res} \square$.
- ▶ Prop.: Sean S un conjunto de fórmulas y F es una fórmula.
 - ▶ (Adecuación) Si $S \vdash_{Res} F$, entonces $S \models F$.
 - ▶ (Completitud) Si $S \models F$, entonces $S \vdash_{Res} F$.
- Nota: Sean C_1 y C_2 las cláusulas $\{p\}$ y $\{p,q\}$, respectivamente. Entonces,
 - ▶ $\{C_1\} \models C_2$.
 - ▶ C_2 no es demostrable por resolución a partir de $\{C_1\}$.
 - ▶ La fórmula de forma clausal C_1 es $F_1 = p$.
 - ▶ La fórmula de forma clausal C_2 es $F_2 = p \lor q$.
 - $\blacktriangleright \{F_1\} \vdash_{Res} F_2.$

Tema 5: Resolución proposicional

- 1. Lógica de cláusulas
- Demostraciones por resolución
- Algoritmos de resolución
 Algoritmo de resolución por saturación
 Algoritmo de saturación con simplificación
- 4. Refinamientos de resolución
- Argumentación por resolución

Algoritmo de de resolución por saturación

▶ Def.: Sea S un conjunto de cláusulas. $Res(S) = S \cup (\bigcup \{Res(C_1, C_2) : C_1, C_2 \in S\}).$

Algoritmo de resolución por saturación

Entrada: Un conjunto finito de cláusulas, S.

Salida: *Consistente*, si *S* es consistente; *Inconsistente*. en caso contrario.

$$S' := \emptyset$$

mientras ($\square \notin S$) y ($S \neq S'$) hacer

$$S' := S$$

$$S := Res(S)$$

fmientras

si (
$$\square \in S$$
) entonces

Devolver Inconsistente

en caso contrario

Devolver Consistente

fsi

▶ Prop.: El algoritmo de resolución por saturación es correcto.

Ejemplo de grafo de resolución por saturación

Grafo de
$$\{\{p,q\},\{\neg p,q\},\{p,\neg q\},\{\neg p,\neg q\}\}$$
:

 $\{1, 2, 3, 4\}$

 $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $\{1, 2, 3, 4\}$ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Algoritmo de saturación con simplificación

- ▶ Prop.: Si $S_1 \subseteq S_2$ y S_2 es consistente, entonces S_1 es consistente.
- Prop.: Una cláusula es una tautología syss contiene un literal y su complementario.
- ▶ Prop.: Sea $C \in S$ una tautología. Entonces S es consistente syss $S \setminus \{C\}$ es consistente.
- ▶ Def.: La cláusula C subsume a la cláusula D si $C \subset D$ (es decir, $C \subseteq D$ y $C \neq D$).
- ▶ Prop.: Si C subsume a D, entonces $C \models D$.
- ▶ Prop.: Sean $C, D \in S$ tales que C subsume a D. Entonces S es consistente syss $S \setminus \{D\}$ es consistente.
- ▶ Def.: El simplificado de un conjunto finito de cláusulas S es el conjunto obtenido de S suprimiendo las tautologías y las cláusulas subsumidas por otras; es decir,

$$Simp(S) = S - \{C \in S : (C \text{ es una tautología}) \text{ ó}$$

 $(existe D \in S \text{ tal que } D \subset C)\}$

Algoritmo de saturación con simplificación

Algoritmo de resolución por saturación con simplificación:

```
Entrada: Un conjunto finito de cláusulas, S.
Salida: Consistente, si S es consistente;
          Inconsistente, en caso contrario.
  S' := \emptyset
  mientras (\square \notin S) y (S \neq S') hacer
    S' := S
     S := Simp(Res(S))
  fmientras
  si (\Box \in S) entonces
     Devolver Inconsistente
  en caso contrario
     Devolver Consistente
  fsi
```

 Prop.: El algoritmo de resolución por saturación con simplificación es correcto.

Grafo de resolución por saturación con simplificación

Resolución de $\{\{p,q\},\{\neg p,q\},\{p,\neg q\},\{\neg p,\neg q\}\}$:

Grafo de resolución por saturación con simplificación

Resolución de $\{\{p\}, \{\neg p, q\}, \{\neg q, \neg r\}\}$:

Tema 5: Resolución proposicional

- Lógica de cláusulas
- Demostraciones por resolución
- 3. Algoritmos de resolución
- 4. Refinamientos de resolución

Resolución positiva Resolución negativa Resolución unitaria

Resolución por entradas

Resolución lineal

Resolución positiva

- ▶ Def.: Un literal positivo es un átomo.
- ▶ Def.: Una cláusula positiva es un conjunto de literales positivos.
- Def.: Una demostración por resolución positiva es una demostración por resolución en la que en cada resolvente interviene una cláusula positiva.
- La cláusula C es demostrable por resolución positiva a partir del conjunto de cláusulas S si existe una demostración por resolución positiva de C a partir de S. Se representa por S ⊢_{ResPos} C.
- ▶ Prop.: Sea *S* un conjunto de cláusulas.
 - ▶ (Adecuación) Si $S \vdash_{ResPos} \Box$, entonces S es inconsistente.
 - ▶ (Completitud) Si S es inconsistente, entonces $S \vdash_{ResPos} \square$.

Grafo de resolución positiva

Resolución negativa

- ▶ Def.: Un literal negativo es la negación de un átomo.
- Def.: Una cláusula negativa es un conjunto de literales negativos.
- Def.: Una demostración por resolución negativa es una demostración por resolución en la que en cada resolvente interviene una cláusula negativa.
- La cláusula C es demostrable por resolución negativa a partir del conjunto de cláusulas S si existe una demostración negativa por resolución de C a partir de S. Se representa por S ⊢_{ResNeg} C.
- ▶ Prop.: Sea *S* un conjunto de cláusulas.
 - ▶ (Adecuación) Si $S \vdash_{ResNeg} \Box$, entonces S es inconsistente.
 - ▶ (Completitud) Si S es inconsistente, entonces $S \vdash_{ResNeg} \Box$.

Resolución unitaria

- ▶ Def.: Una cláusula unitaria es un conjunto formado por un único literal.
- Def.: Una demostración por resolución unitaria es una demostración por resolución en la que en cada resolvente interviene una cláusula unitaria.
- La cláusula C es demostrable por resolución unitaria a partir del conjunto de cláusulas S si existe una demostración por resolución unitaria de C a partir de S. Se representa por S ⊢_{ResUni} C.
- ▶ Prop.: (Adecuación) Sea S un conjunto de cláusulas. Si $S \vdash_{ResUni} \Box$, entonces S es inconsistente.

Resolución unitaria

Resolución unitaria

▶ Existen conjuntos de cláusulas S tales que S es inconsistente y $S \not\vdash_{ResUni} \Box$.

Dem.:
$$S = \{ \{p, q\}, \{\neg p, q\}, \{p, \neg q\}, \{\neg p, \neg q\} \}$$

- Def.: Una cláusula de Horn es un conjunto de literales con un literal positivo como máximo.
- ▶ Ejemplos: $\{p, \neg q, \neg r\}$, $\{p\}$ y $\{\neg p, \neg q\}$ son cláusulas de Horn. $\{p, q, \neg r\}$ y $\{p, r\}$ no son cláusulas de Horn.
- ▶ Prop.: Si S es un conjunto inconsistente de cláusulas de Horn, entonces $S \vdash_{ResUni} \Box$.

Resolución por entradas

- ▶ Def.: Una demostración por resolución por entradas a partir de *S* es una demostración por resolución en la que en cada resolvente interviene una cláusula de *S*.
- La cláusula C es demostrable por resolución por entradas a partir del conjunto de cláusulas S si existe una demostración por resolución por entradas de C a partir de S. Se representa por S ⊢_{ResEnt} C.
- ▶ Prop.: (Adecuación) Sea S un conjunto de cláusulas. Si $S \vdash_{ResEnt} \Box$, entonces S es inconsistente.
- ▶ Existen conjuntos de cláusulas S tales que S es inconsistente y $S \not\vdash_{ResEnt} \square$.

Dem.:
$$S = \{ \{p, q\}, \{\neg p, q\}, \{p, \neg q\}, \{\neg p, \neg q\} \}$$

▶ Prop.: Si S es un conjunto inconsistente de cláusulas de Horn, entonces $S \vdash_{ResEnt} \Box$.

Resolución lineal

- Sea S un conjunto de cláusulas.
 - La sucesión (C_0, C_1, \ldots, C_n) es una resolución lineal a partir de S si se cumplen las siguientes condiciones:
 - 1. $C_0 \in S$;
 - 2. para todo $i \in \{1, ..., n\}$, existe un $B \in S \cup \{C_0, ..., C_{i-1}\}$ tal que $C_i \in Res(C_{i-1}, B)$.

La cláusula C_0 se llama cláusula base, las C_i se llaman cláusulas centrales y las B se llaman cláusulas laterales.

- La cláusula C es deducible por resolución lineal a partir de S si existe una deducción por resolución lineal a partir de S, (C_0, \ldots, C_n) , tal que $C_n = C$. Se representa por $S \vdash_{ResLin} C$.
- ▶ Prop.: Sea *S* un conjunto de cláusulas.
 - ▶ (Adecuación) Si $S \vdash_{ResLin} \Box$, entonces S es inconsistente.
 - ▶ (Completitud) Si S es inconsistente, entonces $S \vdash_{ResLin} \square$.

Resolución lineal

► Ejemplo: Resolución lineal de $\{\{p,q\},\{\neg p,q\},\{p,\neg q\},\{\neg p,\neg q\}\}$ $1 \{p, q\}$ $2 \{\neg p, q\}$ $3 \{p, \neg q\}$ $4 \{\neg p, \neg q\}$ 5 {*q*} 6 {*p*} $7 \{ \neg q \}$ 8 🗆

Tema 5: Resolución proposicional

- Lógica de cláusulas
- Demostraciones por resolución
- 3. Algoritmos de resolución
- 4. Refinamientos de resolución
- 5. Argumentación por resolución Formalización de argumentación por resolución Decisión de argumentación por resolución

Formalización de argumentación por resolución

- ▶ Problema de los animales: Se sabe que
 - 1. Los animales con pelo o que dan leche son mamíferos.
 - 2. Los mamíferos que tienen pezuñas o que rumian son ungulados.
 - 3. Los ungulados de cuello largo son jirafas.
 - 4. Los ungulados con rayas negras son cebras.

Se observa un animal que tiene pelos, pezuñas y rayas negras. Por consiguiente, se concluye que el animal es una cebra.

Formalización:

Decisión de argumentación por resolución

 $\{\neg \text{ tiene pelos, es mamífero}\}\$

 $\{\neg da leche, es mamífero\}$

3 {¬es_mamífero, ¬tiene_pezuñas, es_ungulado}

{¬es_mamífero, ¬rumia, es_ungulado} 5 {¬es_ungulado, ¬tiene_cuello_largo, es_jirafa}

{¬es_ungulado, ¬tiene_rayas_negras, es_cebra} {tiene pelos}

8 {tiene pezuñas} {tiene rayas negras}

10 $\{\neg es cebra\}$

14

15

16

{es cebra}

{es_mamífero}

{¬tiene rayas negras, es cebra}

{¬tiene_pezuñas, es_ungulado} 13

11 12

{es ungulado}

Hipótesis

Resolvente de 1 y 7

Hipótesis

Hipótesis

Hipótesis

Hipótesis

Hipótesis

Hipótesis

Hipótesis

Hipótesis

Hipótesis

Resolvente de 11 y 3 Resolvente de 12 y 8

Resolvente de 13 y 6

Resolvente de 14 y 9 Resolvente de 15 y 10

Bibliografía

- 1. M. Ben–Ari, *Mathematical logic for computer science (2nd ed.)*. (Springer, 2001).
 - Cap. 4: Propositional calculus: resolution and BDDs.
- 2. C.–L. Chang y R.C.–T. Lee *Symbolic Logic and Mechanical Theorem Proving* (Academic Press, 1973).
 - Cap. 5.2: The resolution principle for the proposicional logic.
- 3. N.J. Nilsson *Inteligencia artificial (Una nueva síntesis)* (McGraw–Hill, 2001).
 - Cap. 14: La resolución en el cálculo proposicional.
- 4. E. Paniagua, J.L. Sánchez y F. Martín *Lógica computacional* (Thomson, 2003).
 - Cap. 5.7: El principio de resolución en lógica proposicional.
- U. Schöning Logic for Computer Scientists (Birkäuser, 1989).
 Cap. 1.5: Resolution.