МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное образовательное учреждение высшего образования

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ УНИВЕРСИТЕТСКИЙ КОЛЛЕДЖ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ №2

«Разветвляющиеся процессы обработки данных»

Студента 2 курса, ИСП-208

Каршибаева Жахонгира Направление 09.02.07 – «Информационные системы и программирование»

Руководителн	:
Преподавател	ΙЬ
М.В. Валеев	
Работа защищена	
«	
>>	
٠,٠	
	2022г.

Оглавление

1.Номер первый	•
1.1. Постановка задачи	Ошибка! Закладка не определена.
1.2. Структурные требование	Ошибка! Закладка не определена.
1.3. Описание работы	Ошибка! Закладка не определена.
1.4.1. Использование переменных	Ошибка! Закладка не определена.
1.4.2. Псевдокод программы	Ошибка! Закладка не определена.
1.4.3 Блок-схема алгоритма	Ошибка! Закладка не определена.
1.4.4. Листинг программной реализации	Ошибка! Закладка не определена.
1.4.5. Результаты	Ошибка! Закладка не определена.
1.4.6. Тесты	Ошибка! Закладка не определена.
2.Номер второй	Ошибка! Закладка не определена.
Постановка задачи	Ошибка! Закладка не определена.
2.2. Структурные требование	Ошибка! Закладка не определена.
2.3. Описание работы	Ошибка! Закладка не определена.
2.4.1. Использование переменных	Ошибка! Закладка не определена.
2.4.2. Псевдокод программы	Ошибка! Закладка не определена.
2.4.3. Блок-схема алгоритма	Ошибка! Закладка не определена.
2.4.4. Листинг программной реализации	Ошибка! Закладка не определена.
2.4.5. Результаты	Ошибка! Закладка не определена.
2.4.6. Тесты	Ошибка! Закладка не определена.
3.Номер третий	Ошибка! Закладка не определена.
3.1. Постановка задачи	Ошибка! Закладка не определена.
3.2. Структурные требование	Ошибка! Закладка не определена.
3.3. Описание работы	Ошибка! Закладка не определена.
3.4.1. Использование переменных	Ошибка! Закладка не определена.
3.4.2. Псевдокод программы	Ошибка! Закладка не определена.
3.4.3. Блок-схема алгоритма	Ошибка! Закладка не определена.
3.4.4. Листинг программной реализации	Ошибка! Закладка не определена.
3.4.5. Результаты	Ошибка! Закладка не определена.
3.4.6. Тесты	Ошибка! Закладка не определена.
4.Номер четвертый	Ошибка! Закладка не определена.
4.1. Постановка задачи	Ошибка! Закладка не определена.
4.2. Структурные требование	Ошибка! Закладка не определена.
3.3. Описание работы	Ошибка! Закладка не определена.
4.4.1. Использование переменных	Ошибка! Закладка не определена.
4.4.2. Псевдокод программы	Ошибка! Закладка не определена.
4.4.3. Блок-схема алгоритма	Ошибка! Закладка не определена.

4.4.4. Листинг программной реализации	Ошибка! Закладка не определена.
4.4.5. Результаты	Ошибка! Закладка не определена.
4.4.6. Тест	Ошибка! Закладка не определена.
5.Номер пяты	Ошибка! Закладка не определена.
5.1. Постановка задачи	Ошибка! Закладка не определена.
5.2. Структурные требование	Ошибка! Закладка не определена.
5.3. Описание работы	Ошибка! Закладка не определена.
5.4.1. Использование переменных	Ошибка! Закладка не определена.
5.4.2. Псевдокод программы	Ошибка! Закладка не определена.
5.4.3. Блок-схема алгоритма	Ошибка! Закладка не определена.
5.4.4. Листинг программной реализации	Ошибка! Закладка не определена.
5.4.5. Результаты	Ошибка! Закладка не определена.
5.4.6. Тесты	Ошибка! Закладка не определена.
Список литературы	Ошибка! Закладка не определена.

Найти максимальный и минимальный элементы массива

2. Структурные требовани

Max n>0. Задается как константа

3. Описание работы

3.1 Используемые переменные

і - переменная для цикла

min - минимальное значение массива

тах - максимальное значение

3.2 Псевдокод программы

int a[MAX_N] константа

for (i=0; i<10; i++) заполняем массив через цикл for до MAX_N, а затем присваиваем первой переменной значение мин и макс min =a[0];max=a[0]. Затем пробегаем по массиву и имщем минималное значение, если находим то присваиваем новое значени мин if (a[i] < min) {min=a[i];}; точно так же и с макс. И выводим значения.

3.3 Блок - схема алгоритма


```
3.4 Листинг программной реализации
#include<stdio.h>
#include<conio.h>
int main()
 int MAX N;
 scanf("%d", &MAX N);
 int a[MAX_N];// объявление целочисленного массива а из 10
элементов
 int i, min, max;
// ввод элементов массива с клавиатуры
for (i=0; i<MAX N; i++)
 printf("Введите элемент maccивa %d\n", i);
 scanf("%d", &a[i]);
}
min =a[0];// присваиваем минимальному значению
                                                       значение
первого элемента
тах=а[0];// присваиваем максимальному значению значение
первого элемента
// пробегаем по всем элементам массива
for (i=1; i<MAX_N; i++)
{
// если текущий элемент массива меньше текущего минимума то
присваиваем его значение минимуму
if (a[i]<min)
{
  min=a[i];
}
// если текущий элемент массива больше текущего максимума то
присваиваем его значение максимуму
if (a[i]>max)
  max=a[i];
// выводим значения на экран
printf("Максимальное значение %d\n",max);
printf("Минимальное значение %d\n",min);
return 0; }
```

```
3.5 Результат
Введите элемент массива 1
Введите элемент тассива 2
5
Введите элемент тассива 3
Введите элемент тассива 4
3
Максимальное знафение 6
Минимальное значение 1
```

3.6 Тесты

MAX N = 5

1 = 5	$\max = 78$
2=4	
3 = 78	
4 = 9	$\min = 4$
5 = 64	

1 = 1	max = 79
2=4	
3 = 8	
4 = 79	$\min = 1$
5 = 64	

Переставить местами максимальный и минимальный элементы

2. Структурные требования

Максимальная размерность массива MAX_N задается глобальной константой

Текущая размерность массива n вводится в программе через оператор Ввода

MAX n>0

3. Описание работы

3.1 Использованные переменные i, max, min, P

3.2 Псевдокод программы

Начало. Вводим MAX_N как константу и вводим его, будет количеством. После чего мы заполняем массив через клавиатуру и начинаем проверку массива. присваиваем первой переменной значение мин и макс $\min = a[0]; \max = a[0]$. Затем пробегаем по массиву и имщем минималное значение, если находим то присваиваем новое значени мин if $(a[i] < \min) \{ \min = a[i]; \}$; точно так же и с макс. И выводим значения. После чего присваиваем мин значени P, а макс значение мин. Выводим значени макс и мин. Конец

3.3 Блок схема алгоритма

#include<stdio.h> #include<conio.h> int main() {

```
int MAX N;
 scanf("%d", &MAX N);
 int a[MAX_N];// объявление целочисленного массива а из 10
элементов
 int i, min, max, P;
// ввод элементов массива с клавиатуры
for (i=0; i<MAX N; i++)
 printf("Введите элемент maccивa %d\n", i);
 scanf("%d", &a[i]);
}
min =a[0];// присваиваем минимальному значению
                                                       значение
первого элемента
тах=a[0];// присваиваем максимальному значению
                                                       значение
первого элемента
// пробегаем по всем элементам массива
for (i=1; i<MAX N; i++)
{
// если текущий элемент массива меньше текущего минимума то
присваиваем его значение минимуму
if (a[i]<min){min=a[i];};
```

```
// если текущий элемент массива больше текущего максимума то присваиваем его значение максимуму if (a[i]>max){max=a[i];}; } P=min; //значение мин сохраняем в Р потом нам это понадобится min = max; //значению мин присваеваем значени макс max = P; //значение макс присваеваем P, точнее мин // выводим значения на экран printf("Максимальное значение %d\n",max); printf("Минимальное значение %d\n",min); return 0; }
```

3.5 Результаты

3.6 Тесты

```
4
Введите элемент массива 3
7
Введите элемент массива 4
87
Введите элемент массива 5
98
Введите элемент массива 6
65
Введите элемент массива 7
54
Максимальное знафние 3
Минимальное значение 98
```

Найти количество различных элементов в массиве. Вывести значения неповторяющихся элементов.

2. Структурные требования

Максимальная размерность массива MAX_N задается глобальной константой

Текущая размерность массива n вводится в программе через оператор Ввода n>0

3. Описание работы

3.1 Используемые переменные

M, a, c, n, I, j

3.2 Псевдокод программы

Начало. Объявляем переменные и заполняем массив рандом $M[i] = ((RAND_MAX) / rand())$. Затем пробегаем по массиву в поисках различных. Проверяем массив I на наличие различных элементов. Затем выводим сам массив и количество различных.

3.3 Блок схема

3.4 Листнг программной реализации

```
#include <stdio.h>
#include <time.h>
#include <stdlib.h>

int main()
{
    srand(time(NULL));
    int* M, a, c = 0, n;
    printf("Введите кол-во элементов: \n");
    scanf("%i", &n);
    if (n < 1) printf("Введите число больше 0\n");
    else
    {
```

```
for (int i = 0; i < n; i++)
M[i] = ((RAND_MAX) / rand());
printf(" %i", M[i]);
printf("\n Неповторяющиеся элементы: ");
for (int i = 0; i < n; i++)
a = 1;
for (int j = 0; j < n; j++)
if((M[i] == M[j]) && (i!=j))
a = 0:
if (a == 1)
printf(" %i", M[i]);
c++;
printf("\n Кол-во различных элементов в массиве %i", с);
return 0;
3.5 Результат
v .' .
Введите кол-во элементов:
1511131211
Непо Огоряющиеся элементы:
Кол-во различных элементов в массиве 3
.Program finished with exit code 0
3.6 Тесты
Введите кол-во элементов:
1 1 1 18 1 9 7 1 1 1 1 1 3 820 2 1 16
                              18 9 7 3 820 2 1
 Неповторяющиеся элементы:
 Кол-во различных элементов в массиве 7
```

В одномерном массиве, состоящем из п целых элементов, вычислить: минимальный по модулю элемент массива;

2. Структурные требования

Максимальная размерность массива MAX_N задается глобальной константой

Текущая размерность массива n вводится в программе через оператор Ввода n>0

3. Описание работы

3.1 Использованные переменные i, min, max

3.2 Псевдокод программы int a[MAX_N] константа

for (i=0; i<10; i++) заполняем массив через цикл for до MAX_N, а затем присваиваем первой переменной значение мин и макс min =a[0];max=a[0]. Затем пробегаем по массиву и имщем минималное значение, если находим то присваиваем новое значени мин if $(a[i]<min)\{min=a[i];\}$; точно так же и с макс. И выводим значения.

3.3 Блок схема алгоритма


```
3.4 Листинг программной реализации
#include<stdio.h>
#include<conio.h>
int main()
 int MAX N;
 scanf("%d", &MAX N);
 int a[MAX N];// объявление целочисленного массива а из 10
элементов
 int i, min, max;
// ввод элементов массива с клавиатуры
for (i=0; i<MAX N; i++)
 printf("Введите элемент maccивa %d\n", i);
 scanf("%d", &a[i]);
\min = a[0];// присваиваем минимальному значению значение первого
элемента
\max=a[0];// присваиваем максимальному значению
                                                        значение
первого элемента
// пробегаем по всем элементам массива
for (i=1; i<MAX N; i++)
// если текущий элемент массива меньше текущего минимума то
присваиваем его значение минимуму
if (a[i] < min)
  min=i;
// если текущий элемент массива больше текущего максимума то
присваиваем его значение максимуму
if (a[i]>max)
  \max=a[i];
// выводим значения на экран
printf("Максимальное значение %d\n",max);
printf("Минимальное значение %d\n",min);
return 0;
```

3.5 Результат

```
5
Введите элемент массива 3
7
Введите элемент массива 4
8
Максимальное знафение 8
Минимальное значение 1
```

3.6 Тесты


```
2
Введите элемент массива 8
1
Введите элемент массива 9
5
Максимальное знафине 87
Минимальное значение 9
```

1. Постановка задачи №5

В одномерном массиве, состоящем из п целых элементов, вычислить: сумму модулей элементов массива, расположенных после первого элемента, равного нулю.

2. Структурные требования

Максимальная размерность массива MAX_N задается глобальной константой

Текущая размерность массива n вводится в программе через оператор Ввода $MAX_N>0$

3. Описание работы

3.1 Используемые переменные a, z, i

3.2 Псевдокод крограммы

Начало

Объявляем массив из 5 int a[5]; элементов. Затем заполняем массив (i = 0; i < 5; i++) через цикл после чего при помощи if ищем ноль и плюсуем следующие

3.3 Блок схема алгоритма


```
3.4 Листинг программной реализации
#include <stdio.h>
int main()
 int a[5]; // объявлен массив а из 5 элементов
 int i, z;
// Ввод элементов массива
 for (i = 0; i < 5; i++)
  printf("a[%d] = ", i);
  scanf("%d", &a[i]); // &a[i] - адрес i-го элемента массива
 if (a[i]==0)
{
  z+=fabs(i);
}
// Вывод элементов массива
 for (i = 0; i < 5; i++)
  printf("%d ",a[i]); // пробел в формате печати обязателен
//getchar(); getchar();
 return 0;
}
```

3.5 Результат

```
1 | #include <stdio.h>
+++ |+#include <math.h>
2 | int main()
a[0] = 2
a[1] = 4
a[2] = 0
a[3] = 578
a[4] = 7
2 4 0 578 7
```

3.6 Тесты

```
2 | int main()
a[0] = 5
a[1] = 48
a[2] = 78
a[3] = 5
a[4] = 345
```

Список литературы

- 1. Конова Е.А., Поллак Г.А. Алгоритмы и программы. Язык С++: Учебное пособие. 2-е изд., стер. СПб.: Издательство "Лань", 2017. 384 с.
- 2. Седжвик Роберт. Алгоритмы на C++.: Пер. с англ. М.: ООО "И.Д. Вильямс", 2011. 1056 с.
- 3. Лафоре Р. Объектно-ориентированное программирование в С++. Классика Computer Science. 4-е изд. СПб.: Питер, 2015. 928 с.
- 4. Орлов С.А. Теория и практика языков программирования: Учебник для вузов. Стандарт 3-го поколения. - СПб.: Питер, 2014. - 688 с.
- 5. Павловская Т.А. С/С++. Процедурное и объектноориентированное программирование: Учебник для вузов. Стандарт 3-го поколения. - СПб.: Питер, 2015. - 496 с.
- 6. Павловская Т.А. С#. Программирование на языке высокого уровня: Учебник для вузов. СПб.: Питер, 2014. 432 с.
- 7. Плаксин М.А. Тестирование и отладка программ для профессионалов будущих и настоящих. М.: БИНОМ. Лаборатория знаний, 2013. 167 с.