

SEQUENCE LISTING

<110> Habener, Joel
Zulewski, Hendrik
Abraham, Elizabeth
Vallejo, Mario

<120> STEM CELLS OF THE ISLETS OF LANGERHANS AND THEIR USE

<130> 17633/1230

<140> US 09/731,261
<141> 2000-12-06

<150> US 60/169,082
<151> 1999-12-06

<150> US 60/215,109
<151> 2000-06-28

<150> US 60/239,880
<151> 2000-10-06

<160> 55

<170> PatentIn version 3.1

<210> 1
<211> 4854
<212> DNA
<213> Homo sapiens

<400> 1
atggagggct gcatggggga ggagtcgtt cagatgtggg agctcaatcg gcgcctggag 60
gcctacctgg gccgggtcaa ggcgctggag gagcagaatg agctgctcag cgccggactc 120
ggggggctcc ggcgacaatc cgcggacacc tcctggcggg cgcattgccga cgacgagctg 180
gcggccctgc gtgcgctcgt tgaccaacgc tggcgggaga agcacgcggc cgaggtggcg 240
cgcgacaacc tggctgaaga gctggagggc gtggcaggcc gatgcgagca gctgcggctg 300
gcccgggagc ggacgacgga ggaggttagcc cgcaaccggc gcggcgtcga ggcagagaaa 360
tgcgcccggg cctggctgag tagccagggg gcagagctgg agcgcgagct agaggctcta 420
cgcgtggcgc acgaggagga ggcgcgtcggt ctgaacgcgc aggctgcctg tgccccccgc 480
ctgcccggc cgccccggcc tcccgcccg gccccggagg tagaggagct ggcaaggcga 540
ctgggcgagg cgtggcgcgg ggcagtgcgc ggctaccagg agcgcgtggc acacatggag 600
acgtcgctgg accagacccg cgagcgcctg gcccggcgg tgcagggtgc ccgcgaggc 660
cgccctggagc tgcagcagct ccaggctgag cgcggaggcc tcctggagcg cagggcagcg 720
ttggaacaga gttggaggg ccgctggcag gagcggctgc gggctactga aaagttccag 780
ctggctgtgg aggccctgga gcaggagaaa cagggcctac agagccagat cgctcaggc 840
ctggaaggc ggcagcagct ggcgcaccc aagatgtccc tcagcctgga ggtggccacg 900
tacaggaccc tcctggaggc tgagaactcc cggctgcaaa caccctggcgg tggctccaag 960

acttcctca gcttcagga cccaaatgt gagctgcaat tccctaggac cccagaggc 1020
cggcgcttg gatcttgc cccagtcctg agcccaactt ccctcccctc acccttgcct 1080
gctacccttg agacacctgt gccagcctt cttagaacc aagaattcct ccaggcccgt 1140
acccctacct tggccagcac ccccatcccc cccacacctc aggacccctc tcctgctgta 1200
gatcagaga tcagagccca ggatgctcct ctctctctgc tccagacaca gggtgggagg 1260
aaacaggctc cagagccct gcgggctgaa gccagggtgg ccattcctgc cagcgtcctg 1320
cctggaccag aggagcctgg gggccagcgg caagaggcca gtacaggcca gtccccagag 1380
gaccatgcct cttggcacc acccctcagc cctgaccact ccagtttaga ggctaaggat 1440
ggagaatccg gtgggtctag agtggcagc atatgccag gggaaaggta agggcaaatc 1500
tgggggttgg tagagaaaaga aacagccata gagggcaaag tggttaagcag cttgcagcag 1560
gaaatatggg aagaagagga tctaaacagg aaggaaatcc aggactccca gttcccttg 1620
aaaaaaagaaa ccctgaagtc tctggagag gagattcaag agtcaactgaa gactctggaa 1680
aaccagagcc atgagacact agaaaggag aatcaagaat gtccgaggc tttagaagaa 1740
gacttagaaa cactaaaaag tctagaaaag gaaaataaaa gagctattaa aggatgtgga 1800
gttagtgaga cctctagaaa aagaggctgt aggcaactt agcctacagg aaaagaggac 1860
acacagacat tgcaatccct gcaaaaggag aatcaagaac taatgaaatc tcttgaaggt 1920
aatctagaga catttttatt tccaggaacg gaaaatcaag aattagtaag ttctctgcaa 1980
gagaacttag agtcattgac agctctggaa aaggagaatc aagagccact gagatctcca 2040
gaagtagggg atgaggaggc actgagacct ctgacaaagg agaatcagga acccctgagg 2100
tctcttgaag atgagaacaa agaggcctt agatctctag aaaaagagaa ccaggagcca 2160
ctgaagactc tagaagaaga ggaccagagt attgtgagac ctctagaaac agagaatcac 2220
aaatcaactga ggtctttaga agaacaggac caagagacat tgagaactct tgaaaaagag 2280
actcaacagc gacggaggc tctagggaa caggatcaga tgacattaag acccccagaa 2340
aaagtggatc tagaaccact gaagtctctt gaccaggaga tagcttagacc tcttggaaat 2400
gagaatcaag agttcttaaa gtcactcaaa gaagagagcg tagaggcagt aaaatctta 2460
gaaacagaga tcctagaatc actgaagtct gcgggacaag agaacctgga aacactgaaa 2520
tctccagaaa ctaagcacc actgtggact ccagaagaaa taaataaatc agggggcaat 2580
gaatccctta gaaaaggaaa ttcaagaacc actggagtct gtggaagtga accaagagac 2640
attcagactc ctggaagagg agaatcagga atcattgaga tctctggag catggaacct 2700
ggagaatttg agatctccag aggatagac aaggaaagtc aaaggaatct ggaagaggaa 2760
gagaacctgg gaaagggaga gtaccaagag tcactgaggt ctctggagga ggagggacag 2820
gagctgccgc agtctgcaga tgtgcagagg tgggaagata cggtggagaa ggaccaagaa 2880

ctggctcagg aaagccctcc tgggatggct ggagtggaaa ataaggatga ggcagagctg	2940
aatctaaggg agcaggatgg cttcaactggg aaggaggagg tggtagagca gggagagctg	3000
aatgccacag aggaggtctg gttcccaggc gaggggcacc cagagaaccc tgagccaaa	3060
gagcagagag gcctgggtga gggagccagt gtgaaggagag gggctgaggg cctccaggac	3120
cctgaagggc aatcacaaca ggtggggacc ccaggccctcc aggctccccca ggggctgcca	3180
gaggcgtatag agcccccttgtt ggaagatgtat gtggcccccag ggggtgacca agcctccccca	3240
gaggtcatgt tggggtcaga gcctgcccattt ggtgagtctg ctgcgggagc tgagccaggc	3300
ctggggcagg ggggtggagg gctgggggac ccaggccatc tgaccaggaa agaggtatg	3360
gaaccacccc tggaaagagga gagttggag gcaaagaggg ttcaaggctt ggaaggccct	3420
agaaaggacc tagaggaggc aggtggtctg gggacagagt tctccgagct gcctgggaag	3480
agcagagacc cttgggagcc tcccaggag ggttagggagg agtcagaggc tgaggccccc	3540
aggggagcag aggaggcggtt ccctgcttag accctgggccc acactggaa tgatccccct	3600
tcaccttggc ctctgggttc agaggaagct gaggaggatg taccaccagt gctggcttcc	3660
cccagcccaa cgtacacccc gatcctggaa gatgccccctg ggctccagcc tcaggctgaa	3720
gggagtcagg aggctagctg ggggggtgcag gggagggctg aagctggaa agtagagagc	3780
gagcaggagg agttgggttc tggggagatc cccgagggccc tccaggagga aggggaggag	3840
agcagagaag agagcgagga ggatgagctc gggagaccc ttccagactc cactccccctg	3900
ggcttctacc tcaggtcccc cacctcccc aggtggaccc cactggagag cagaggccac	3960
cccctcaagg agactggaaa ggagggctgg gatcctgttg tcctggcttc cgagggcctt	4020
gaggaacctt cagaaaagga ggagggggag gagggagaag aggagtgtgg ccgtactct	4080
gacctgtcag aagaatttga ggacctgggg actgaggcac ctttcttcc tggggccctt	4140
ggggaggtgg cagaacctct gggccagggtg ccccaagctgc tactggatcc tgcagcctgg	4200
gatcgagatg gggagtctga tgggttgca gatgaggaag aaagtggggaa ggagggagag	4260
gaggatcagg aggagggggag ggagccaggg gctgggcggt gggggccagg gtcttctgtt	4320
ggcagcctcc aggcccttag tagctccctag agagggaaat tcctggagtc tgattctgtta	4380
agtgtcagcg tccccctggaa tgacagcttggagggatg tggctgggtgc ccccaagact	4440
gccctggaaa cggagtccca ggacagtgtctg gaccccttgc gctcagagga agagtctgac	4500
cctgtttccct tggagagggaa ggacaaagtc cctggccctc tagagatccc cagtggatg	4560
gaggatgcag gcccaggggc agacatcatt ggtgttaatg gccagggtcc caacttggag	4620
gggaagtcaac agcatgtaaa tgggggagta atgaacgggc tggagcagtc tgaggaaagt	4680
ggggcaagga atgcgctagt ctctgaggga gaccgaggga gccccttca ggaggaggag	4740
gggagtgcctc tgaagaggtc ttcggcagggtc gctcctgttc acctggccca gggtcagttc	4800

ctgaagttca ctcagaggga aggagataga gagtcctggt cctcagggga ggac 4854

<210> 2

<211> 1618

<212> PRT

<213> Homo sapiens

<400> 2

Met Glu Gly Cys Met Gly Glu Glu Ser Phe Gln Met Trp Glu Leu Asn
1 5 10 15

Arg Arg Leu Glu Ala Tyr Leu Gly Arg Val Lys Ala Leu Glu Glu Gln
20 25 30

Asn Glu Leu Leu Ser Ala Gly Leu Gly Gly Leu Arg Arg Gln Ser Ala
35 40 45

Asp Thr Ser Trp Arg Ala His Ala Asp Asp Glu Leu Ala Ala Leu Arg
50 55 60

Ala Leu Val Asp Gln Arg Trp Arg Glu Lys His Ala Ala Glu Val Ala
65 70 75 80

Arg Asp Asn Leu Ala Glu Glu Leu Glu Gly Val Ala Gly Arg Cys Glu
85 90 95

Gln Leu Arg Leu Ala Arg Glu Arg Thr Thr Glu Glu Val Ala Arg Asn
100 105 110

Arg Arg Ala Val Glu Ala Glu Lys Cys Ala Arg Ala Trp Leu Ser Ser
115 120 125

Gln Gly Ala Glu Leu Glu Arg Glu Leu Glu Ala Leu Arg Val Ala His
130 135 140

Glu Glu Glu Arg Val Gly Leu Asn Ala Gln Ala Ala Cys Ala Pro Arg
145 150 155 160

Leu Pro Ala Pro Pro Arg Pro Pro Ala Pro Ala Pro Glu Val Glu Glu
165 170 175

Leu Ala Arg Arg Leu Gly Glu Ala Trp Arg Gly Ala Val Arg Gly Tyr
180 185 190

Gln Glu Arg Val Ala His Met Glu Thr Ser Leu Asp Gln Thr Arg Glu
195 200 205

Arg Leu Ala Arg Ala Val Gln Gly Ala Arg Glu Val Arg Leu Glu Leu
Page 4

210

215

220

Gln Gln Leu Gln Ala Glu Arg Gly Gly Leu Leu Glu Arg Arg Ala Ala
225 230 235 240

Leu Glu Gln Arg Leu Glu Gly Arg Trp Gln Glu Arg Leu Arg Ala Thr
245 250 255

Glu Lys Phe Gln Leu Ala Val Glu Ala Leu Glu Gln Glu Lys Gln Gly
260 265 270

Leu Gln Ser Gln Ile Ala Gln Val Leu Glu Gly Arg Gln Gln Leu Ala
275 280 285

His Leu Lys Met Ser Leu Ser Leu Glu Val Ala Thr Tyr Arg Thr Leu
290 295 300

Leu Glu Ala Glu Asn Ser Arg Leu Gln Thr Pro Gly Gly Ser Lys
305 310 315 320

Thr Ser Leu Ser Phe Gln Asp Pro Lys Leu Glu Leu Gln Phe Pro Arg
325 330 335

Thr Pro Glu Gly Arg Arg Leu Gly Ser Leu Leu Pro Val Leu Ser Pro
340 345 350

Thr Ser Leu Pro Ser Pro Leu Pro Ala Thr Leu Glu Thr Pro Val Pro
355 360 365

Ala Phe Leu Lys Asn Gln Glu Phe Leu Gln Ala Arg Thr Pro Thr Leu
370 375 380

Ala Ser Thr Pro Ile Pro Pro Thr Pro Gln Ala Pro Ser Pro Ala Val
385 390 395 400

Asp Ala Glu Ile Arg Ala Gln Asp Ala Pro Leu Ser Leu Leu Gln Thr
405 410 415

Gln Gly Gly Arg Lys Gln Ala Pro Glu Pro Leu Arg Ala Glu Ala Arg
420 425 430

Val Ala Ile Pro Ala Ser Val Leu Pro Gly Pro Glu Glu Pro Gly Gly
435 440 445

Gln Arg Gln Glu Ala Ser Thr Gly Gln Ser Pro Glu Asp His Ala Ser
450 455 460

Leu Ala Pro Pro Leu Ser Pro Asp His Ser Ser Leu Glu Ala Lys Asp
Page 5

465

470

475

480

Gly Glu Ser Gly Gly Ser Arg Val Phe Ser Ile Cys Arg Gly Glu Gly
485 490 495

Glu Gly Gln Ile Trp Gly Leu Val Glu Lys Glu Thr Ala Ile Glu Gly
500 505 510

Lys Val Val Ser Ser Leu Gln Gln Glu Ile Trp Glu Glu Glu Asp Leu
515 520 525

Asn Arg Lys Glu Ile Gln Asp Ser Gln Val Pro Leu Glu Lys Glu Thr
530 535 540

Leu Lys Ser Leu Gly Glu Glu Ile Gln Glu Ser Leu Lys Thr Leu Glu
545 550 555 560

Asn Gln Ser His Glu Thr Leu Glu Arg Glu Asn Gln Glu Cys Pro Arg
565 570 575

Ser Leu Glu Glu Asp Leu Glu Thr Leu Lys Ser Leu Glu Lys Glu Asn
580 585 590

Lys Arg Ala Ile Lys Gly Cys Gly Gly Ser Glu Thr Ser Arg Lys Arg
595 600 605

Gly Cys Arg Gln Leu Lys Pro Thr Gly Lys Glu Asp Thr Gln Thr Leu
610 615 620

Gln Ser Leu Gln Lys Glu Asn Gln Glu Leu Met Lys Ser Leu Glu Gly
625 630 635 640

Asn Leu Glu Thr Phe Leu Phe Pro Gly Thr Glu Asn Gln Glu Leu Val
645 650 655

Ser Ser Leu Gln Glu Asn Leu Glu Ser Leu Thr Ala Leu Glu Lys Glu
660 665 670

Asn Gln Glu Pro Leu Arg Ser Pro Glu Val Gly Asp Glu Glu Ala Leu
675 680 685

Arg Pro Leu Thr Lys Glu Asn Gln Glu Pro Leu Arg Ser Leu Glu Asp
690 695 700

Glu Asn Lys Glu Ala Phe Arg Ser Leu Glu Lys Glu Asn Gln Glu Pro
705 710 715 720

Leu Lys Thr Leu Glu Glu Glu Asp Gln Ser Ile Val Arg Pro Leu Glu
Page 6

725

730

735

Thr Glu Asn His Lys Ser Leu Arg Ser Leu Glu Glu Gln Asp Gln Glu
740 745 750

Thr Leu Arg Thr Leu Glu Lys Glu Thr Gln Gln Arg Arg Arg Ser Leu
755 760 765

Gly Glu Gln Asp Gln Met Thr Leu Arg Pro Pro Glu Lys Val Asp Leu
770 775 780

Glu Pro Leu Lys Ser Leu Asp Gln Glu Ile Ala Arg Pro Leu Glu Asn
785 790 795 800

Glu Asn Gln Glu Phe Leu Lys Ser Leu Lys Glu Glu Ser Val Glu Ala
805 810 815

Val Lys Ser Leu Glu Thr Glu Ile Leu Glu Ser Leu Lys Ser Ala Gly
820 825 830

Gln Glu Asn Leu Glu Thr Leu Lys Ser Pro Glu Thr Gln Ala Pro Leu
835 840 845

Trp Thr Pro Glu Glu Ile Asn Lys Ser Gly Gly Asn Glu Ser Ser Arg
850 855 860

Lys Gly Asn Ser Arg Thr Thr Gly Val Cys Gly Ser Glu Pro Arg Asp
865 870 875 880

Ile Gln Thr Pro Gly Arg Gly Glu Ser Gly Ile Ile Glu Ile Ser Gly
885 890 895

Ser Met Glu Pro Gly Glu Phe Glu Ile Ser Arg Gly Val Asp Lys Glu
900 905 910

Ser Gln Arg Asn Leu Glu Glu Glu Asn Leu Gly Lys Gly Glu Tyr
915 920 925

Gln Glu Ser Leu Arg Ser Leu Glu Glu Gly Gln Glu Leu Pro Gln
930 935 940

Ser Ala Asp Val Gln Arg Trp Glu Asp Thr Val Glu Lys Asp Gln Glu
945 950 955 960

Leu Ala Gln Glu Ser Pro Pro Gly Met Ala Gly Val Glu Asn Lys Asp
965 970 975

Glu Ala Glu Leu Asn Leu Arg Glu Gln Asp Gly Phe Thr Gly Lys Glu
Page 7

980

985

990

Glu Val Val Glu Gln Gly Glu Leu Asn Ala Thr Glu Glu Val Trp Phe
995 1000 1005

Pro Gly Glu Gly His Pro Glu Asn Pro Glu Pro Lys Glu Gln Arg
1010 1015 1020

Gly Leu Val Glu Gly Ala Ser Val Lys Gly Gly Ala Glu Gly Leu
1025 1030 1035

Gln Asp Pro Glu Gly Gln Ser Gln Gln Val Gly Thr Pro Gly Leu
1040 1045 1050

Gln Ala Pro Gln Gly Leu Pro Glu Ala Ile Glu Pro Leu Val Glu
1055 1060 1065

Asp Asp Val Ala Pro Gly Gly Asp Gln Ala Ser Pro Glu Val Met
1070 1075 1080

Leu Gly Ser Glu Pro Ala Met Gly Glu Ser Ala Ala Gly Ala Glu
1085 1090 1095

Pro Gly Leu Gly Gln Gly Val Gly Gly Leu Gly Asp Pro Gly His
1100 1105 1110

Leu Thr Arg Glu Glu Val Met Glu Pro Pro Leu Glu Glu Glu Ser
1115 1120 1125

Leu Glu Ala Lys Arg Val Gln Gly Leu Glu Gly Pro Arg Lys Asp
1130 1135 1140

Leu Glu Glu Ala Gly Gly Leu Gly Thr Glu Phe Ser Glu Leu Pro
1145 1150 1155

Gly Lys Ser Arg Asp Pro Trp Glu Pro Pro Arg Glu Gly Arg Glu
1160 1165 1170

Glu Ser Glu Ala Glu Ala Pro Arg Gly Ala Glu Glu Ala Phe Pro
1175 1180 1185

Ala Glu Thr Leu Gly His Thr Gly Ser Asp Ala Pro Ser Pro Trp
1190 1195 1200

Pro Leu Gly Ser Glu Glu Ala Glu Glu Asp Val Pro Pro Val Leu
1205 1210 1215

Val Ser Pro Ser Pro Thr Tyr Thr Pro Ile Leu Glu Asp Ala Pro
Page 8

1220 1225 1230
Gly Leu Gln Pro Gln Ala Glu Gly Ser Gln Glu Ala Ser Trp Gly
1235 1240 1245

Val Gln Gly Arg Ala Glu Ala Gly Lys Val Glu Ser Glu Gln Glu
1250 1255 1260

Glu Leu Gly Ser Gly Glu Ile Pro Glu Gly Leu Gln Glu Glu Gly
1265 1270 1275

Glu Glu Ser Arg Glu Glu Ser Glu Glu Asp Glu Leu Gly Glu Thr
1280 1285 1290

Leu Pro Asp Ser Thr Pro Leu Gly Phe Tyr Leu Arg Ser Pro Thr
1295 1300 1305

Ser Pro Arg Trp Thr Pro Leu Glu Ser Arg Gly His Pro Leu Lys
1310 1315 1320

Glu Thr Gly Lys Glu Gly Trp Asp Pro Ala Val Leu Ala Ser Glu
1325 1330 1335

Gly Leu Glu Glu Pro Ser Glu Lys Glu Glu Gly Glu Glu Gly Glu
1340 1345 1350

Glu Glu Cys Gly Arg Asp Ser Asp Leu Ser Glu Glu Phe Glu Asp
1355 1360 1365

Leu Gly Thr Glu Ala Pro Phe Leu Pro Gly Val Pro Gly Glu Val
1370 1375 1380

Ala Glu Pro Leu Gly Gln Val Pro Gln Leu Leu Leu Asp Pro Ala
1385 1390 1395

Ala Trp Asp Arg Asp Gly Glu Ser Asp Gly Phe Ala Asp Glu Glu
1400 1405 1410

Glu Ser Gly Glu Glu Gly Glu Glu Asp Gln Glu Glu Gly Arg Glu
1415 1420 1425

Pro Gly Ala Gly Arg Trp Gly Pro Gly Ser Ser Val Gly Ser Leu
1430 1435 1440

Gln Ala Leu Ser Ser Ser Gln Arg Gly Glu Phe Leu Glu Ser Asp
1445 1450 1455

Ser Val Ser Val Ser Val Pro Trp Asp Asp Ser Leu Arg Gly Ala

1460 1465 1470
Val Ala Gly Ala Pro Lys Thr Ala Leu Glu Thr Glu Ser Gln Asp
1475 1480 1485

Ser Ala Glu Pro Ser Gly Ser Glu Glu Glu Ser Asp Pro Val Ser
1490 1495 1500

Leu Glu Arg Glu Asp Lys Val Pro Gly Pro Leu Glu Ile Pro Ser
1505 1510 1515

Gly Met Glu Asp Ala Gly Pro Gly Ala Asp Ile Ile Gly Val Asn
1520 1525 1530

Gly Gln Gly Pro Asn Leu Glu Gly Lys Ser Gln His Val Asn Gly
1535 1540 1545

Gly Val Met Asn Gly Leu Glu Gln Ser Glu Glu Ser Gly Ala Arg
1550 1555 1560

Asn Ala Leu Val Ser Glu Gly Asp Arg Gly Ser Pro Phe Gln Glu
1565 1570 1575

Glu Glu Gly Ser Ala Leu Lys Arg Ser Ser Ala Gly Ala Pro Val
1580 1585 1590

His Leu Gly Gln Gly Gln Phe Leu Lys Phe Thr Gln Arg Glu Gly
1595 1600 1605

Asp Arg Glu Ser Trp Ser Ser Gly Glu Asp
1610 1615

<210> 3
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 3
gcggggcggt gcgtgactac

20

<210> 4
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 4

aggcaagggg gaagagaagg atgt

24

<210> 5
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 5
aagctgaagc cgaatttcct tgggataccca gagga

35

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 6
acagccagta cttcaagacc

20

<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 7
ctgtgtcagc acgcacgtta

20

<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 8
tggattccac accaggcatt gaccatgccca

30

<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 9
cagcggttggaa gagtccaaat

20

<210> 10

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 10
ttaaactcct gtggggttgg

20

<210> 11
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 11
aaaccagcag cggatctcag tggtgtggaa cgatgat

37

<210> 12
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 12
atcaactggag cagggaaagt

19

<210> 13
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 13
gctactacgt ttcttatct

19

<210> 14
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 14
gcgtggaaaa gccagtggg

19

<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 15
agaggggaaat tcctggag 18

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 16
ctgaggacca ggactctcta 20

<210> 17
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 17
tatgaacggg ctggagcagt ctgaggaaag t 31

<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 18
cttttcgcgc gcccagcatt 20

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 19
gattttcctg tccctcgagc 20

<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence .

<220>
<223> Primer

<400> 20

aaccatgagg aggaaatcag tacgctgagg

30

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 21
atctggactc caggcgtgcc

20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 22
agcaatgaat tccttggcag

20

<210> 23
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 23
cacgatgaat ttgagagaca tgctgaaggg

30

<210> 24
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 24
agaacagcac gtacacagcc

20

<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 25
cctccgaaga aacagcaaga

20

<210> 26

<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 26
tctcccttca cagcagaact aacacacggg

30

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 27
gcagtcctgc catcaatgtg

20

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 28
gttggctgtg aataccacct

20

<210> 29
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 29
ctggagagct gcatgggctc acaactgagg

30

<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 30
gactttccag cagtcccata

20

<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence

<220> 31
<223> Primer
gtttacttcc tgcagggAAC 20

<210> 32
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 32
ttgcactgga gaaggattac gtggcgTTCT A 31

<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 33
tgaaggcGAG aaggTgttCC 20

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 34
ttcgagatac aggCAGATAT 20

<210> 35
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 35
agttagactt ttatgtcctg ccttgctca 30

<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 36

cttcaggctg caccaagtgt	20
<210> 37	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 37	
gttgaccata gtcaggctgg	20
<210> 38	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 38	
gtcagatgtg aagatggcca cagacccaga	30
<210> 39	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 39	
gcatcaaatg tcagccctgg	20
<210> 40	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 40	
caacgctgac atggaattcc	20
<210> 41	
<211> 30	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Primer	
<400> 41	
tcgaggtctc atggatcata cagaatcagg	30
<210> 42	

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 42
caatgtgaga tgtctccagc

20

<210> 43
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 43
ccttgtagat tgcaggcaga

20

<210> 44
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 44
ggactcccat ccagtgtctc cagaagtgtat

30

<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 45
gagtagcagc tcagactgcc

20

<210> 46
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 46
gttagacctct gggagctcct

20

<210> 47
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 47
cgcagcactc agactacgtg cacctctgca 30

<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 48
gcagctgctc aactaatcac 20

<210> 49
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 49
tcagcagcac aagtcccact 20

<210> 50
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 50
acgggcattc ttattagtca gattattggt 30

<210> 51
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 51
aggcttcttc tacaca 16

<210> 52
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 52

caggctgcct gcacca

16

<210> 53
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 53
aggcagagga cctgca

16

<210> 54
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> Primer

<400> 54

Cys Phe Ile Ala Trp Leu Val Lys Gly Arg
1 5 10

<210> 55
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 55
gggtggtgag ggttgaggtt tgtg

24