ESS 화재사고 원인조사 결과

2019. 6.

민관합동 ESS 화재사고 원인조사 위원회

1. ESS 화재사고 현황

- ☐ '17.8월 전북 고창의 풍력발전 연계용 ESS화재를 시작으로 '18.5월부터 집중적으로 발생하여 현재까지 총 23건의 화재가 발생*하였다.
 - * ('17.8월) 1건 → ('18.5월) 1건 → (6월) 2건 → (7월) 3건 → (9월) 3건 → (10월) 1건 → (11월) 4건 → (12월) 2건 → ('19.1월) 4건 → (5월) 2건
- 용도별로는 태양광·풍력 연계용 17건, 수요관리용 4건, 주파수 조정용 2건이 발생하였고,
- 충전을 완료하고 방전대기 시간(만충 후 휴지 시간) 중 화재가 14건, 충·방전 중 6건, 설치·시공 중 3건이 발생하였다.
 - * 설치위치(산지 14건, 해안가 4건, 기타 공장 등 5건), 건물형태(조립식패널 15건, 컨테이너 4건, 콘크리트 4건), 운영기간(1년 이하 16건, 1~2년 3건, 2년 이상 4건)

2. 사고조사위 구성 및 운영

- □ 인명피해 방지를 위한 선제적 조치로 다중이용시설 전면 가동 중단과 함께, 과학적이고 객관적인 사고원인 규명을 통한 근본적인 문제해결을 위해 '민관합동 ESS 화재사고 원인조사위원회'를 설치('18.12.27)하고, 약 5개월간 조사활동을 실시하였다.
- 조사위는 전기, 배터리, 화재 등 관련 분야를 망라한 **학계, 연구소,** 시험인증기관*, 소방전문기관, 정부 등 19명의 전문가로 구성하였다.
- * 갤럭시 노트7 배터리 화재조사를 수행한 한국산업기술시험원을 지원센터로 지정 하고 동 전문인력이 조사실무 담당
- 조사위는 매주 1회 정기회의 및 수시회의*, 현장조사·기업면담 등 총 **80회 이상의 회의와 조사**를 통해 사고원인 규명활동을 수행하였다.
- * 정기회의(21회), 수시회의(20회), 워크숍(3회), 기업면담(30회), 제보청취(5회), 기업긴담회(1회) 등

3. 화재사고 원인조사 활동 및 시험실증 결과

가. 조사위원회 활동

- □ 조사위는 23개 화재사고를 만충 후 화재, 충방전중 화재, 설치중 화재 등으로 유형화하고 자료·현장조사, 기업면담 등의 **다각적인** 활동을 통해 원인조사를 실시하였다.
- 소방청 화재현장조사서 등 관련자료^{*} 검토 및 외부전문가와의 논의를 통한 이론적 고찰, 사고현장조사 및 유사사이트 조사, 사고관련 기업 면담조사^{**}, 다양한 제보청취·검토 등 광범위하고도 면밀한 조사활동을 전개하였다.
- * 회재조사보고(전기안전공사), 정밀진단조사(민관TF), 자체현장조사 자료, 기업면담 보고서 등 ** 배터리 3개사. PCS 8개사. 시공 12개사 등 30회
- 또한, 화재사고와 직접 관련된 기업 전체를 대상으로 **원인추정 내용과** 시험실증 계획에 관해 설명하고 의견을 청취하였다.
 - * 배터리. PCS. SI 업체 등 25개 업체 55명 참석('19.3.12. 화학융합시험硏)

나. 사고원인 추정내용

- □ 대부분 화재현장이 전소되어 원인규명에 어려움이 있었으나, 조사위는 자료분석, 기업면담, 현장방문 등을 통해 발견한 증거를 바탕으로, 23개 사고를 유형화하고, 외부 전문가들이 참여하는 심도 있는 토론을 거쳐, 관련 정보를 분석·정리·종합하였다.
- 그리고, 배터리, PCS 제조, ESS 설계·설치·시공 상의 문제점, 사용· 운전상의 전기적·환경적 요인 등 모든 직·간접적인 화재 가능성을 검토하여,
- 배터리 시스템 결함 ❷ 전기적 충격 요인에 대한 보호체계 미흡
- ③ 운용환경관리 미흡 및 설치 부주의 ④ ESS 통합관리체계 부재 등 4가지 요인을 화재 원인으로 추정하였다.

다. 사고원인 규명을 위한 시험·실증

- □ 원인 추정내용을 과학적·객관적으로 입증하기 위해 4개 추정원인에 대한 총 76개 시험실증 항목을 설계하고 시험기관, 전기안전공사, 한전 등 9개 기관*, 약 90명의 인원이 참여하여 ESS 구성품(배터리, PCS) 및 시스템 단위로 시험·실증을 실시하였다.
 - * (배터리, PCS) 한국산업기술시험원, 한국기계전기전자시험硏, 한국화학융합시험硏, 한국건설생활환경시험硏, 한국과학기술연구원, 한국세라믹기술원, 한국전기연구원 (시스템) 한국전기안전공사, 한국전력공사

① 배터리 시스템 결함

- □ (해체 분석) 다수의 사고가 동일공장의 비슷한 시기에 생산된 배터리를 사용한 것이 확인됨에 따라 **배터리 생산과정의 결함**을 확인하기 위한 셀 해체분석을 실시한 결과, 1개社 일부 셀에서 **극판접힘**, 절단불량, 활물질 코팅 불량 등의 제조 결함을 확인하였다.
 - ※ 사고현장의 배터리와 동일 생산공장, 생산시기의 배터리를 수거하여 실시

- 이에, 극판접힘과 절단불량을 모사한 셀을 제작하여 충·방전 반복
 시험을 180회 이상을 수행하였으나, 발화로 이어질 수 있는 셀내부의 단락*은 발생하지 않았다.
- * 단락 : 전기 양단이 접촉(합선 등)되어 과다한 전류가 흐르는 현상

- □ (외부단락) 배터리 안전성을 확인하기 위한 배터리시스템 단락 시험결과, 랙 단락 시험에서 2개社 배터리 보호장치의 **직류접촉기가** 폭발 또는 육착이 발생하였다.
- □ (물성분석 등) 전문가 및 제보 등을 통해 제기된 사항들을 검증하기 위한 셀 구성물질 분석, 셀간 전압과 온도편차를 제어하는 BMS*의 정상작동여부 확인, 배터리의 완전충전 후 추가 충전에 따른 영향 시험에서는 화재발생 가능요소는 발견되지 않았다.
 - * BMS(Battery Management System) : 배터리의 성능과 안전을 제어하는 S/W 및 H/W 통합하여 지칭하는 용어

② 전기충격에 대한 보호체계 미흡

- □ (직류측 단락) 외부 전기충격 등에서 배터리 보호장치 내 복수 부품이 손상되어 단락되는 현상을 모사한 실증시험 결과, 배터리 랙 보호장치 내에 있는 직류접촉기(DC Contactor)가 폭발하고,
- **버스바^{*}가 파손되어 배터리 랙 보호장치의 외함을 타격**하는 2차 단락사고가 발생하여 **동시다발적인 화재가 발생**하였다.
 - * 버스바(Busbar): 구리로 된 기다란 판으로, 일종의 전선 역할을 수행

- □ (PCS 교류측 지락*) 전력변환장치(PCS) 내부의 교류측 필터(리액터)가 탄화된 흔적에 따라 교류측 전기가 외함에 닿는 지락사고를 모사한 결과, 배터리측에 전기충격이 발생하였다.
 - * 지락 : 전로(전선 등)와 대지(접지)간의 절연이 저하되어 전로 또는 기기 외부에 전압·전류가 나타나는 상태
- 동 시험을 반복 수행한 결과 배터리 랙 보호장치 내의 **직류접촉기 절연성능**이 떨어질 경우 **화재가 발생할 가능성**이 확인되었다.
- □ (PCS 부품단락) PCS 내부의 스위칭소자*가 소손되어 PCS 내부의 직류·교류측 양단이 단락되는 고장사고를 가정한 실증 결과, 계통과 배터리측에서 PCS로 유입되는 대전류는 확인되었으나 PCS의 차단기가 작동하여 화재로 이어지지는 않았다.
 - * 스위칭소자 : 교류를 직류로. 직류를 교류로 바꿔주는 전력반도체
- □ (전자파 내성) PCS의 전자파 방출로 배터리시스템의 오작동 여부를 검증하기 위한 시험에서, 다수 제품이 국제기준^{*} 초과하였으나, 이에 대해 배터리 3社 제품이 충분한 내성을 갖고 있는 것을 확인하였다.
 - * CISPR 11 : 산업·과학·의료용기기 전자파 방해 특성

③ 운영환경관리 미흡

□ (수분·분진 시험) 공조기 주변에 용융흔적이 발견된 사례 등을 근거로 수분, 분진, 염수 등의 환경을 배터리 시스템에 모사하여 절연성능 저하 가능성을 시험한 결과, 특정社 배터리에서 모듈 내 절연성능이 저하되면서 화재가 발생하였다.

< 분진 및 염수 시험 >

□ (온도편차시험 등) 벽면, 통로의 온도편차가 배터리 모듈내 온도 편차를 발생시키는 사례(온도편차시험)와 주변지역에 떨어진 낙뢰가 암반으로 된 지표면을 통해 배터리실에 유도되어 배터리 보호장치 등에 영향을 미치는 사례(뇌서지)를 검증한 결과 화재가 유발되지 않았다.

④ 통합관리체계 부재

- □ 사고현장조사, 기업면담조사 및 시험실증과정에서 ESS의 설계와 운영이 배터리·PCS 등 구성품을 하나로 통합하여 시스템 차원 에서 관리·보호가 되지 못하는 사실을 확인하였다.
- O BMS·PMS·EMS간 정보 공유 체계 미비, PCS와 배터리 간 보호 체계 작동순서 부재, PCS 고장수리 후 배터리의 이상 유무 확인 없이 시스템 재가동, 교류와 직류측 지락감지장치 간 충돌 등 여러 현장에서 다수의 통합관리체계 미흡사례를 확인하였다.

4. ESS 화재사고 원인조사 결과

- ① (배터리 보호시스템 미흡) 전기적 위해요인 중, 지락·단락에 의한 전기충격(과전압/과전류)이 배터리 시스템에 유입될 때, 배터리 보호 체계인 랙 퓨즈가 빠르게 단락전류를 차단하지 못하였고,
 - 이로 인해 절연 성능이 저하된 직류접촉기가 폭발하여 배터리 보호장치 내에 버스바와 배터리보호장치의 외함에서 2차 단락 사고가 발생하면서 배터리에서 화재가 발생할 수 있음을 확인하였다.
- ② (운영환경관리 미흡) 산지 및 해안가에 설치된 ESS의 경우, 큰 일교차로 인한 결로와 다량의 먼지 등에 노출되기 쉬운 열악한 환경에서 운영되어,
- 배터리 모듈내에 결로의 생성과 건조가 반복(Dry Band)되면서 먼지가 눌러 붙고 이로 인해 셀과 모듈 외함간 접지부분에서 절연이 파괴되고 화재가 발생할 수 있음을 확인하였다.

- 한편, 일부社의 배터리 모듈*은 냉각팬을 사용하는 구조로 **냉각팬이** 먼지·수분의 이동경로가 될 수 있다.
 - * 분진에 관한 배터리 관리기준은 존재하나 현장에서 지켜지지 못하는 경우가 다수
 - ③ (설치 부주의) 배터리 보관불량, 오결선 등 ESS 설치 부주의시에 화재가 발생할 수 있음을 확인하였다.
 - ④ (통합보호·관리체계 미흡) 제작주체가 다른 EMS·PMS·BMS가 SI 업체 주도로 유기적으로 연계·운영되지 못하는 등,
 - ESS가 하나의 통합된 시스템으로 설계·보호되지 못했던 점이 사고예방, 화재시 전체 시스템으로의 확산 방지 및 원활한 사고 원인 조사 등에 있어서 문제요인임을 확인하였다.
 - ⑤ 일부 배터리셀에서 결함이 발견되었고, 이를 모사한 시험을 했으나 배터리 자체 발화로 이어질 수 있는 셀 내부단락은 발견되지 않았다.
 - 다만, 제조결함이 있는 상황에서 배터리 충방전 범위가 넓고 만충 상태가 지속적으로 유지되는 경우 자체 내부단락으로 인한 화재 발생 가능성이 높아질 수 있다.

참고 ESS 화재사고 현황

순번	지 역	용량 (MWh)	용도	설치지형	건물형태	사고일	운용기간	사고유형
1	전북 고창	1.46	풍력	해안가	컨테이너	17.08.02	-	설치 중 (보관)
2	경북 경산	8.6	주파수	산지	컨테이너	18.05.02	1년 10개월	수리 점검 중
3	전남 영암	14	풍력	산지	조립식 패널	18.06.02	2년 5개월	수리 점검중
4	전남 군산	18.965	태양광	해안가	조립식 패널	18.06.15	6개월	충전 후 휴지 중
5	전남 해남	2.99	태양광	해안가	조립식 패널	18.07.12	7개월	충전 후 휴지 중
6	경남 거창	9.7	풍력	산지	조립식 패널	18.07.21	1년 7개월	충전 후 휴지 중
7	세종	18	수요 관리	공장 지대	조립식 패널	18.07.28	-	설치 중 (시공)
8	충북 영동	5.989	태양광	산지	조립식 패널	18.09.01	8개월	충전 후 휴지 중
9	충남 태안	6	태양광	해안가	조립식 패널	18.09.07	-	설치 중 (시공)
10	제주	0.18	태양광	상업 지역	콘크리트	18.09.14	4년	충전 중
11	경기 용인	17.7	주파수	공장 주변	컨테이너	18.10.18	2년 7개월	수리 점검중
12	경북 영주	3.66	태양광	산지	조립식 패널	18.11.12	9개월	충전 후 휴지 중
13	충남 천안	1.22	태양광	산지	조립식 패널	18.11.12	11개월	충전 후 휴지 중
14	충북 문경	4.16	태양광	산지	조립식 패널	18.11.21	11개월	충전 후 휴지 중
15	경남 거창	1.331	태양광	산지	조립식 패널	18.11.21	7개월	충전 후 휴지 중
16	충북 제천	9.316	수요 관리	산지	조립식 패널	18.12.17	1년	충전 후 휴지 중
17	강원 삼척	2.662	태양광	산지	지하 콘크리트	18.12.22	1년	충전 후 휴지 중
18	경남 양산	3.289	수요 관리	공장 지대	콘크리트	19.01.14	10개월	충전 후 휴지 중
19	전남 완도	5.22	태양광	산지	조립실 패널	19.01.14	1년 2개월	충전 중
20	전북 장수	2.496	태양광	산지	컨테이너	19.01.15	9개월	충전 후 휴지 중
21	울산	46.757	수요 관리	공장 지대	콘크리트	19.01.21	7개월	충전 후 휴지 중
22	경북 칠곡	3.66	태양광	산지	조립식 패널	19.05.04	2년 3개월	충전 후 휴지 중
23	전북 장수	1.027	태양광	산지	조립식 패널	19.05.26	1년	충전 후 방전 중