Mark Scheme Young's Modulus Past Paper Questions

6(a)(i) diagram to show:

Q6 Jan 2002

mass/weight at other end ✓

(long) wire fixed at one end \checkmark

measuring scale ✓

mark on wire, or means to measure extension ✓

 $\max(3)$

[alternative for two vertical wires:

two wires fixed to rigid support ✓

mass/weight at end of one wire ✓

other wire kept taut ✓

spirit level and micrometer or sliding vernier scale ✓]

(ii) measurements:

length of the wire between clamp and mark ✓

diameter of the wire ✓

extension of the wire 🗸

for a known mass ✓

 $\max(3)$

(iii) length measured by metre rule ✓

diameter measured by micrometer ✓

at several positions and mean taken ✓

(known) mass added and extension measured ✓

by noting movement of fixed mark against vernier scale

(or any suitable alternative) ✓

repeat readings for inreasing (or decreasing) load ✓

 $\max(5)$

(iv) graph of mass added/force against extension ✓

gradient gives
$$\frac{F}{e}$$
 or $\frac{m}{e}$

correct use of data in $E = \frac{Fl}{eA}$ where A is cross-sectional area

[if no graph drawn, then $\underline{\text{mean}}$ of readings

and correct use of data to give 2_{max})

max (2)

(13)

(b)(i) for steel (use of $E = \frac{Fl}{eA}$ gives) $e = \frac{Fl}{EA}$

$$e = \frac{125 \times 2}{2.0 \times 10^{11} \times 2.5 \times 10^{-7}}$$
 \checkmark
= 5.0 × 10⁻³ m \checkmark

(ii) extension for brass would be 10×10^{-3} (m) (or twice that of steel) \checkmark end A is lower by 5 mm \checkmark (allow C.E. from (b)(i)) max (3)

- **5**(a)(i) the Young modulus: tensile stress/tensile strain ✓
 - (ii) maximum force or load which can be applied without wire being permanently deformed

 [or point beyond which (when stress removed,) material does not regain original length] ✓ (2)
- (b)(i) graph: suitable scale ✓
 correct points ✓ ✓
 best straight line followed by curve ✓

Q5 June 2002

- (ii) indication of region or range of Hooke's law ✓
- (iii) (use of $E = \frac{Fl}{Ae}$)

values of F and e within range or correct gradient \checkmark

to give
$$E = \frac{6.7}{4 \times 10^{-3}} \times \frac{1.6}{8.0 \times 10^{-8}} \checkmark$$

= 3.3(5) × 10¹⁰ Pa \checkmark (8)

- (c)(i) work done = force × distance \checkmark = average force × extension (= $\frac{1}{2}Fe$) \checkmark [or use work done = area under graph area = $\frac{1}{2}$ base × height]
 - (ii) energy stored = $\frac{6.7 \times 4 \times 10^{-3}}{2}$ = 13.(4) × 10⁻³ J \checkmark (4)

6

- (a) correct plotting of points ✓ ✓
 increasing load graph ✓
 decreasing load graph ✓
 (4)
- (b) (initially) the material/wire obeys Hooke's law
 [or behaves elastically] ✓ Q6 Jan 2003

 up to the limit of proportionality ✓
 (beyond this), elastic limit is reached ✓
 undergoes plastic deformation ✓
 undergoes permanent change ✓
 reference to Hooke's law obeyed as load decreases ✓
- (c) $(E = \frac{Fl}{Ae} \text{ gives } E = \frac{F}{e} \times \frac{l}{A})$ gradient = (e.g.) $\frac{46}{4.2 \times 10^{-3}} \checkmark (= 1.095 \times 10^{4})$ $E = 1.095 \times 10^{4} \times \frac{3}{2.8 \times 10^{-7}} = 1.2 \times 10^{11} \checkmark \text{ Pa} \checkmark (1.17 \times 10^{11} \text{ Pa}) (3)$
- (d) area under the graph at any given point \checkmark (1) (12)

- 5(a)(i) X ✓
 stress (force) ∝ strain (extension) for the whole length ✓ Q5 Jun 2003
 - (ii) Y ✓
 has lower breaking stress (or force/unit area is less) ✓
- (iii) Y ✓ exhibits plastic behaviour ✓
 - (iv) Y ✓
 for given stress, Y has greater extension
 [or greater area under graph] ✓
- (b)(i) (use of $E = \frac{F}{A} \times \frac{l}{e}$ gives)

$$F\left(=\frac{EAe}{l}\right) = \frac{2.0 \times 10^7 \times 0.64 \times 10^{-6} \times 30 \times 10^{-3}}{160 \times 10^{-3}}$$

$$\checkmark \text{ for data into correct equation, } \checkmark \text{ for correct area}$$

$$= 2.4 \text{ N } \checkmark$$
(allow C.E. for incorrect area conversion)

(ii) (use of energy stored = $\frac{1}{2}Fe$ gives) energy = $\frac{2.4 \times 30 \times 10^{-3}}{2}$ = 36×10^{-3} J \checkmark (allow C.E. for value of F from (i)) (5)

5
(a) tensile stress: (stretching) force (applied) per unit <u>cross-sectional</u> area ✓ tensile strain: extension (produced) per unit length ✓ (2)

(b) Hooke's law (or stress ∝ strain) obeyed up to point A ✓
A is limit of proportionality ✓ Q5 Jan 2004
elastic limit between A and region B ✓
region C shows plastic behaviour or wire is ductile ✓
region B to C wire will not regain original length ✓
beyond region C necking occurs (and wire breaks) ✓

- (a) extension proportional to the applied force ✓ Q6 Jun 2004 up to the limit of proportionality

 [or provided the extension is small] ✓ (2)
- (b)(i) $8 \times 9.81 = 78$ (5) N \checkmark (allow C.E. in (ii), (iii) and (iv) for incorrect value)
 - (ii) (use of $E = \frac{F}{A} \frac{l}{e}$ gives) $2.0 \times 10^{11} = \frac{78.5}{2.8 \times 10^{-7}} \times \frac{2.5}{e}$ \checkmark $e = 3.5 \times 10^{-3} \text{ m}$
- (iii) similar calculation \checkmark to give $A_S = 5.6 \times 10^{-7} \text{ m}^2 \checkmark$ [or $A_B = 2A_S \checkmark$ and correct answer \checkmark]
- (iv) (use of energy stored = $\frac{1}{2}Fe$ gives) energy stored = $\frac{1}{2} \times 78.5 \times 3.5 \times 10^{-3}$ = 0.14 J \checkmark (7)
- (c)(i) end A is lower \checkmark (ii) = $\frac{1}{2} 3.5 \times 10^{-3} = 1.8 \times 10^{-3} \,\text{m} \,\checkmark (1.75 \times 10^{-3} \,\text{m})$ (2)

Question 6

- (a) tensile stress: force/tension per unit cross-sectional area or $\frac{F}{A}$ with F and A defined \checkmark tensile strain: extension per unit length or $\frac{e}{l}$ with e and l defined \checkmark the Young modulus: $\frac{\text{tensile stress}}{\text{tensile strain}} \checkmark$ (3)
- (b)(i) $E_{\rm S} = \frac{F_{\rm S}}{A} \frac{l}{e}$ and $E_{\rm B} = \frac{F_{\rm B}}{A} \frac{l}{e}$ whence $\frac{E_{\rm S}}{E_{\rm B}} = \frac{F_{\rm S}}{F_{\rm B}}$ Q6 Jan 2005
 - (ii) $\frac{E_{\rm S}}{E_{\rm B}} = 2 \checkmark$ $\therefore F_{\rm S} = 2 F_{\rm B} \checkmark$

 $F_{\rm S} + F_{\rm B} = 15 \,\text{N}$ \checkmark gives $F_{\rm S} = 10 \,\text{N}$ [or any alternative method]

(iii)
$$\left(E = \frac{F}{A} \frac{l}{e} \text{ gives}\right) \quad e = \left(\frac{F}{A} \frac{l}{E}\right) = \frac{10 \times 1.5}{1.4 \times 10^{-6} \times 2.0 \times 10^{11}} \checkmark$$

= 5.36 × 10⁻⁵ m \checkmark (6)

Ques	stion 5		
(a)		Hooke's law: the extension is proportional to the force applied ✓ up to the limit of proportionality or elastic limit [or for small extensions] ✓	2
(b)	(i)	(use of $E = \frac{F}{A} \frac{l}{e}$ gives) $e_s = \frac{80 \times 0.8}{2.0 \times 10^{11} \times 2.4 \times 10^{-6}} \checkmark$ Q5 Ju $= 1.3 \times 10^{-4} \text{ (m)} \checkmark (1.33 \times 10^{-4} \text{ (m)})$	n 2005
		$e_{b} = \frac{80 \times 1.4}{1.0 \times 10^{11} \times 2.4 \times 10^{-6}} = 4.7 \times 10^{-4} \text{ (m)} \checkmark (4.66 \times 10^{-4} \text{ (m)})$ total extension = 6.0×10^{-4} m \checkmark	7
	(ii)	$m = \rho \times V \checkmark$ $m_s = 7.9 \times 10^3 \times 2.4 \times 10^{-6} \times 0.8 = 15.2 \times 10^{-3} \text{ (kg) } \checkmark$ $m_b = 8.5 \times 10^3 \times 2.4 \times 10^{-6} \times 1.4 = 28.6 \times 10^{-3} \text{ (kg) } \checkmark$ (to give total mass of 44 or 43.8 × 10 ⁻³ kg)	
(c)		(use of $m = \rho A l$ gives) $l = \frac{44 \times 10^{-3}}{8.5 \times 10^{3} \times 2.4 \times 10^{-6}} \checkmark$ = 2.2 m \checkmark (2.16 m) (use of mass = 43.8 × 10 ⁻³ kg gives 2.14 m)	2

Ques	stion 5		
(a)		tensile stress: (normal) force per unit cross-sectional area ✓ tensile strain: ratio of extension to original length ✓	2
(b)	(i)	loading: obeys Hooke's law from A to B ✓ Q5 Jan 2 B is limit of proportionality ✓ beyond/at B elastic limit reached ✓ beyond elastic limit, undergoes plastic deformation ✓	006
		unloading: at C load is removed linear relation between stress and strain ✓ does not return to original length ✓	Max 9
	(ii)	ductile ✓ permanently stretched ✓ [or undergoes plastic deformation or does not break]	Max 9
	(iii)	AD: permanent strain (or extension) ✓	
	(iv)	gradient of the (straight) line AB (or DC) ✓	
	(v)	area under the graph ABC ✓	
(c)		$E = \frac{Fl}{Ae} \checkmark$ $e = \frac{75 \times 3.0}{2.8 \times 10^{-7} \times 2.1 \times 10^{11}} = 3.8(3) \text{ mm} \checkmark$	2
		Total	13

Que	estion 5		
(a)	(i)	the extension produced (by a force) in a wire is directly proportional to the force applied \checkmark applies up to the limit of proportionality \checkmark	
	(ii)	elastic limit: the maximum amount that a material can be stretched (by a force) and still return to its original length (when the force is removed) ✓ [or correct use of permanent deformation]	5
	(iii)	the Young modulus: ratio of tensile stress to tensile strain ✓ unit: Pa or N m ⁻² ✓	
(b)	(i)	length of wire ✓ diameter (of wire) ✓ Q5 Jun 2006	
	(ii)	graph of force vs extension \checkmark reference to gradient \checkmark gradient = $E\frac{A}{l}$ \checkmark [or graph of stress vs strain, with both defined reference to gradient gradient = E] area under the line of F vs e \checkmark [or energy per unit volume = area under graph of stress vs strain]	6
		Total	11

Ques	tion 5		
(a)		correct scales and labelling of axes with units ✓ correct plotting of all points ✓ ✓ increasing load graph ✓ decreasing load graph ✓	5
(b)		(initially) wire obeys Hooke's law (or behaves elastically) ✓ up to limit of proportionality (or to elastic limit) ✓ then undergoes plastic deformation ✓ suffers permanent extension ✓	max 3
(c)	(i)	tensile stress $\left(= \frac{F}{A} \right) = \left(\frac{82}{2.8 \times 10^{-7}} \right) = 2.9(3) \times 10^8 \text{N m}^{-2}/\text{Pa} \checkmark$	
	(ii)	tensile strain $\left(=\frac{e}{I}\right) = \left(\frac{7.6 \times 10^{-3}}{2.5}\right) = 3.0(4) \times 10^{-3} \checkmark$	
	(iii)	$E\left(\frac{\text{tensile stress}}{\text{tensile strain}} = \frac{2.93 \times 10^8}{3.04 \times 10^{-3}}\right) = 9.6(4) \times 10^{10} \text{N m}^{-2}/\text{Pa} \checkmark$ (allow C.E. for values from (i) and (ii))	4
	(iv)	energy $\left(= \frac{1}{2} Fe \right) = \left(\frac{1}{2} \times 82 \times 7.6 \times 10^{-3} \right) = 0.31(1) \text{ J} \checkmark$	
		Total	12

Ques	stion 6		
(a)	(i)	max 5 for (i) from: Q6 Jun 2007	
		(wire can be horizontal or vertical)	
		add a mass to the holder ✓	
		measure extension ✓	
		description of how extension is measured ✓	
		add further masses, measuring extension each time ✓	
		repeat measurements with decreasing masses ✓	
		measure (original) length of wire ✓	max 8
	(ii)	(use of $E = \frac{F}{A} \frac{l}{e}$ to give) graph of	
		(mass/weight/force/tension/load) vs extension ✓	
		(or stress vs strain)	
		definition of quantity on <i>y</i> axis ✓	
		E from correct gradient ✓	
		of straight line ✓	
(b)	(i)	in the equation $E = \frac{F}{A} \frac{l}{e}$, F , l and e are same for both wires \checkmark	
		(rearranging with) correct deduction ✓	4
	(ii)	$2 \times 10^{11} = \frac{F \times 2.5}{1.6 \times 10^{-7} \times 4.8 \times 10^{-3}} \checkmark$	4
		$F = 61 \mathrm{N} \checkmark (61.4 \mathrm{N})$	
		Total	12

Question 5			
(a)	tensile stress: (normal) force per unit cross-sectional area ✓	2	
	tensile strain: extension per unit (original) length ✓		
(b) (i)	tensile stress B graph A: straight line ✓ graph B: straight with smaller gradient ✓ curving at the end ✓ graph A: initially stress ∞ strain (obeying Hooke's law) ✓ wire breaks without significant plastic deformation [or breaks without warning] ✓ graph B: (stress ∞ strain) smaller gradient because E is less ✓ curves at limit of proportionality or elastic limit ✓	max 8	
	showing plastic behaviour ✓ 'necking', then breaks ✓		
(c)	$\left(E = \frac{F}{A} \frac{l}{e}\right) \text{ gives } e\left(=\frac{Fl}{AE}\right) = \frac{10 \times 9.81 \times 1.5}{2.4 \times 10^{-6} \times 2.0 \times 10^{11}} \checkmark$ $= 0.31 \text{ mm} \checkmark$	2	
	Total	12	

Que	stion 6		
(a)		F – applied force l – length	
		A – cross-sectional area e – extension	1
		(all correct ✓)	
(b)	(i)(ii)	stress force P and Q strain extension graph to show:	8
	(iii)	straight line for 1^{st} graph \checkmark straight line for 2^{nd} graph \checkmark graphs to show: 1^{st} graph: two straight coinciding lines \checkmark 2^{nd} graph: Q line smaller gradient than P line \checkmark 1^{st} graph: lines coincide because gradient (of both) = $E \checkmark$ 2^{nd} graph: gradients differ because of different cross-sectional area \checkmark $m = E \frac{A}{l}$ so Q has the smaller gradient \checkmark gradient of Q = $\frac{1}{2}$ gradient of P \checkmark	max 7
(c)		$e_{\rm P}\left(=\frac{Fl}{Ae}\right)=\frac{5\times9.81\times1.8}{2\times10^{-7}\times4.6\times10^{11}}=0.96{\rm (mm)}\checkmark$ for Q wire: area = A/2 and same value for F \checkmark $e_{\rm Q}=1.92{\rm (mm)}$ and total extension = $2.9{\rm mm}\checkmark$ (2.88 mm) [or correct calculation for $e_{\rm Q}$]	3
		Total	11

Question 2		Q2 Jan 20	09
(a)	(i)	vector has direction and a scalar does not ✓	
	(ii)	scalar examples; any two e.g. speed, mass, energy, time, power	
		vector examples; any two e.g. displacement, velocity, acceleration, force or weight	4
		✓✓✓ for 4 correct, ✓✓ for 3 correct, ✓ for 2 correct	
(b)	(i)	horizontal component (= 2.8 cos 35) = 2.3 (kN) (2293.6) ✓	
		vertical component (= 2.8 sin 35) = 1.6 (kN) (1606.0) ✓	
	(ii)	power = force × velocity or $2.3 \mathrm{kN} \times 8.3 \mathrm{m s^{-1}} \checkmark$ (ecf from 2 (b)(i))	5
		= 1.9 × 10 ⁴ (19037 or 19100) ✓ ecf	
		W (or Js^{-1}) \checkmark (or 19W (or kJs^{-1}))	
(c)		(area of cross-section of cable =) $\pi \times (\frac{1}{2} 0.014)^2 \checkmark = 1.5(4) \times 10^{-4} (\text{m}^2) \checkmark$	
		stress (= F/A) = $\frac{2800 \text{N}}{1.54 \times 10^{-4} \text{m}^2}$ (allow ecf here if attempt to calculate area) \checkmark	5
		= 1.8(2) × 10 ⁷ ✓ ecf	
		Pa (or N m ⁻²) ✓	
		Total	14