Entraînement au calcul de dérivées : corrigé bloc 4.

1°) Soit $x \in \mathbb{R}$. Pour $k \in \mathbb{N}$, $\frac{\pi}{2} + k\pi > 0$ donc :

$$x^5 = \frac{\pi}{2} + k\pi \Longleftrightarrow x = \sqrt[5]{\frac{\pi}{2} + k\pi}$$

Pour $k \in \mathbb{N}^*$, $\frac{\pi}{2} - k\pi < 0$ donc :

$$x^5 = \frac{\pi}{2} - k\pi \Longleftrightarrow x = -\sqrt[5]{-\frac{\pi}{2} + k\pi}$$

Le domaine de définition de
$$f_1$$
, qui est aussi le domaine de dérivabilité de f_1 , est donc : $\mathbb{R} \setminus \left(\left\{ \sqrt[5]{\frac{\pi}{2} + k\pi} / k \in \mathbb{N} \right\} \cup \left\{ -\sqrt[5]{-\frac{\pi}{2} + k\pi} / k \in \mathbb{N}^* \right\} \right)$

Pour tout x dans cet ensemble

$$f_1'(x) = 5x^4 (1 + \tan^2(x^5))$$

$$(ou \frac{5x^4}{\cos^2(x^5)}).$$

Attention, $\tan^2(x^5)$ n'a rien voir avec $\tan(x^{10})$, cela désigne $(\tan(x^5))^2$...

 2°) f_2 est définie et dérivable sur $\mathbb{R}\setminus\{-1\}$, et pour tout x dans cet ensemble,

$$f_2'(x) = \frac{1 \times (x+1) - x \times 1}{(x+1)^2} \frac{1}{1 + \left(\frac{x}{x+1}\right)^2}$$

$$= \frac{1}{(x+1)^2} \frac{1}{1 + \frac{x^2}{(x+1)^2}}$$

$$= \frac{1}{(x+1)^2} \frac{1}{\frac{(1+x)^2 + x^2}{(x+1)^2}}$$

$$= \left[\frac{1}{2x^2 + 2x + 1}\right]$$

Vous constaterez que l'expression $\frac{1}{2x^2+2x+1}$ existe pour x=-1: on n'en déduit pas pour autant que f_2 est dérivable en -1, puisque f_2 n'est même pas définie en -1!!

3°) f_3 est définie et dérivable sur \mathbb{R}^* , et pour tout x dans \mathbb{R}^* ,

$$f_3'(x) = \left(1 - \frac{2x}{x^4}\right)\sin\frac{1}{x} + \left(x + \frac{1}{x^2}\right)\left(-\frac{1}{x^2}\right)\cos\frac{1}{x}$$
$$= \left[\left(1 - \frac{2}{x^3}\right)\sin\frac{1}{x} - \left(\frac{1}{x} + \frac{1}{x^4}\right)\cos\frac{1}{x}\right]$$

Il est intéressant de connaître la dérivée de $x\mapsto \frac{1}{x^2}$: c'est $x\mapsto \frac{2}{x^3}$.

Cela se trouve très vite en écrivant $\frac{1}{x^2}$ sous la forme x^{-2} , ce qui se dérive en $-2x^{-3}$...

 $\mathbf{4}^{\circ}$) f_4 est clairement définie sur \mathbb{R}_+ .

 $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}_+^* ainsi que $x \mapsto x$, donc par produit, f_4 est dérivable sur \mathbb{R}_+^* , et pour tout $x \in \mathbb{R}_+^*$,

$$f_4'(x) = x \frac{1}{2\sqrt{x}} + 1 \times \sqrt{x} = \boxed{\frac{3}{2}\sqrt{x}}$$

On le trouve encore plus vite en écrivant que $x\sqrt{x}=x^{\frac{3}{2}}$ se qui se dérive en $\frac{3}{2}x^{\frac{3}{2}-1}...$

Prouvons à part la dérivabilité en 0 (remarque : évaluer l'expression valable sur \mathbb{R}_+^* est tout sauf une preuve!!) : pour tout x > 0,

$$\frac{f_4(x) - f_4(0)}{x - 0} = \sqrt{x} \xrightarrow[x \to 0]{} 0$$

Donc f_4 est dérivable en 0 et $f'_4(0) = 0$.

5°) Pour tout $x \in \mathbb{R}_+$, \sqrt{x} existe et est réel donc $f_5(x) = 10^{\sqrt{x}}$ existe, et c'est $\exp(\sqrt{x}\ln(10))$. $x \mapsto \sqrt{x}\ln(10)$ est dérivable sur \mathbb{R}_+^* , donc par composition avec exp qui est dérivable sur \mathbb{R}_+^* .

Pour tout $x \in \mathbb{R}_+^*$,

$$f_5'(x) = \boxed{\frac{\ln(10)}{2\sqrt{x}} \exp\left(\sqrt{x}\ln(10)\right)}$$