

TRAIN SYSTEM

Railway Reservation System Functionalities

INTRODUCTION TO DATABASE

ABSTRACT

This ER (Entity Relationship) diagram represents the model of Railway reservation system entity. The entity relationship diagram of railway reservation system shows all the visual instrument of database tables and the relation between seats availability. Train schedule, ticket, passenger etc.

Nusrat Alam Chaiti 18-37417-1

Tamzid Ahmed 18-37503-1

Course Teacher: RIFAT TASNIM ANANNYA

\\ INDEX //

Topic Name	Page
Scenario	2
ER Diagram	3
Normalization	4
Table Creation	6
Sub Query	11
Joining	15
Constraint	19

SCENARIO:

This ER (Entity Relationship) diagram represents the model of Railway reservation systementity. The entity relationship diagram of railway reservation system shows all the visual instrument of database tables and the relation between seats availability. Train schedule, ticket, passenger etc. It used structure data and to define the relationships between structure data groups of railway reservation system functionalities. The main entities of railway reservation system and passenger, train schedule, train, route, ticket.

Railways Reservation, System entities and their attributes:

1. Passenger: P_ID, P_name, Address, AGE, Phone_No

2. Train Schedule: Schedule_ID, Departure_Date, Departure_time,

Avaiable_Seat,Booked_Seat

3. Train : T_ID, T_NAME, T_TYPE

4.Route : Route_ID, Start_Point, End_Point

5. Ticket : T_NO, T_PRICE

ENTITY RELATIONSHIP DIAGRAM

NORMALIZATION

Buys:

1NF: no multivalued attribute

2NF: table1:p_name,p_id,address,age,phone_no

Table2:ticket_no,ticket_price

3NF: table1: p_name,p_id,address,age,phone_no

Table2:ticket_no,ticket_price,p_id

Tables are given below:

Table1: p_name,p_id,address,age,phone_no

Table2: ticket_no,ticket_price,p_id

BOOK

1NF:no multivalued attributes

2NF: table1: p_name,p_id,address,age,phone_no

Table2: schedule_id,departure_date,departure_time,available seat,booked seat

3NF: table 1: : p_name,p_id,address,age,phone_no

Table2: schedule_id,departure_date,departure_time,available seat,booked seat,p_id

Tables are given below:

table 1: p_name,p_id,address,age,phone_no

Table2: schedule_id,departure_date,departure_time,available seat,booked seat,p_id

HAS

1NF:no multivalued atribute

2NF: table1: schedule_id,departure_date,departure_time,available_seat,booked_seat

Table2:t_id,t_name,t_type

3NF: table1: schedule_id,departure_date,departure_time,available_seat,booked_seat

Table2:t_id,t_name,t_type,schedule_id

Tables are given below:

table1: schedule_id,departure_date,departure_time,available seat,booked seat

Table2:t_id,t_name,t_type,schedule_id

HAS

1NF: no multivalued attribute

2NF: table1 :t_id,t_name,t_type

Table2: route_id,start_point,end_point

3NF: table1:t_id,t_name,t_type

Table2: route_id,start_point,end_point,t_id

Tables are given below:

table1:t_id,t_name,t_type

Table2: route_id,start_point,end_point,t_id

Final tables are given below:

Table1: p_name,p_id,address,age,phone_no

Table2: ticket_no,ticket_price,p_id

Table3: schedule_id,departure_date,departure_time,available seat,booked seat,p_id

Table4:t_id,t_name,t_type,schedule_id

Table5: route_id,start_point,end_point,t_id

TABLE CREATION

```
CREATE TABLE PASSANGER
P_ID number(10) NOT NULL,
```

P_NAME varchar2(20),

AGE number(3),

Passenger:

Phone No number(12),

Address varchar2(100),

Primary key(P_ID)

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
PASSENGER	<u>P_ID</u>	Number	-	10	0	1	-	-	-
	P_NAME	Varchar2	20	-	-	-	/	-	-
	AGE	Number	-	3	0	-	/	-	-
	PHONE_NO	Number	-	12	0	-	/	-	-
	<u>ADDRESS</u>	Varchar2	100	-	-	-	/	-	-
								1	- 5

P_ID	P_NAME	AGE	PHONE_NO	ADDRESS
1	Tamzid	20	18999	Malibag
2	Chaiti	18	18956	Mirpur
3	Nusrat	12	18953	Mirpur
4	Fahim	60	189378	Kuril

Train Schedule:

```
CREATE TABLE TRAIN_SCHEDULE
```

STATUS_ID number(10) NOT NULL,

Departure_Date date(5),

Departure_Time number(2), Avaiable_seat number(3), Booked_Seat number(3),

P_ID NUMBER(10) NOT NULL,

P_ID

Number

Primary key(Status_ID),

Foreign Key(P_ID) References Passenger(P_ID)

Table Column Data Type Length Precision Scale Primary Key Nullable Default Comment 0 TRAIN SCHEDULE STATUS_ID 10 Number 7 / DEPARTURE_DATE Date DEPARTURE_TIME Varchar2 10 AVAILABLE_SEAT Number 3 0 -3 0 BOOKED_SEAT Number

10

0

1 - 6

STATUS_ID	DEPARTURE_DATE	DEPARTURE_TIME	AVAILABLE_SEAT	BOOKED_SEAT	P_ID
1	18-NOV-18	9:00	300	200	1
2	18-NOV-18	11:00	200	300	2
3	19-NOV-18	9:00	400	100	3
4	19-NOV-18	11:00	100	400	4

```
Train:
```

```
CREATE TABLE TRAIN
(
T_ID number(10) NOT NULL,

T_NAME VARCHAR2(20),

T_TYPE VARCHAR2(10),

STATUS_ID NUMBER(10) NOT NULL,

PRIMARY KEY(T_ID),

FOREIGN KEY(STATUS_ID) REFERENCES TRAIN_SCHEDULE (STATUS_ID)
)
```

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
TRAIN	<u>T_ID</u>	Number	-	10	0	1	-	-	-
	T_NAME	Varchar2	20	-	-	-	/	-	-
	T_TYPE	Varchar2	10	-	-	-	/	-	-
	STATUS_ID	Number	-	10	0	-	-	-	-
								1	I - 4

T_ID	T_NAME	T_TYPE	STATUS_ID
1	JAYANTI	1ST CLASS	1
2	SUBORNO	1ST CLASS	2
3	HEMONTO	2ND CLASS	3
4	BORNO	2ND CLASS	4

```
ROUTE:
```

```
CREATE TABLE ROUTE
(
ROUTE_ID number(10) NOT NULL,

START_POINT VARCHAR2(20),

END_POINT VARCHAR2(10),

T_ID NUMBER(10) NOT NULL,

PRIMARY KEY(ROUTE_ID),

FOREIGN KEY(T_ID) REFERENCES TRAIN (T_ID)
)
```

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
ROUTE	ROUTE_ID	Number	-	10	0	1	-	-	=
	START_POINT	Varchar2	20	-	-	-	/	-	-
	END_POINT	Varchar2	10	-	-	-	~	-	-
	T_ID	Number	-	10	0	-	-	-	-
								1	- 4

ROUTE_ID	START_POINT	END_POINT	T_ID
1	KAMLAPUR	SYLHET	1
2	SYLHET	KAMLAPUR	2
3	RAJSHAHI	KAMLAPUR	3
4	KAMLAPUR	RAJSHAHI	4

TICKET:

```
CREATE TABLE TICKET
(
TICKET_NO number(10) NOT NULL,
TICKET PRICE NUMBER(5) NOT NULL,
P_ID NUMBER(10) NOT NULL,
PRIMARY KEY(TICKET_NO),
Foreign Key(P_ID) References Passenger(P_ID)
)
```

Table	Column	Data Type	Length	Precision	Scale	Primary Key	Nullable	Default	Comment
TICKET	TICKET_NO	Number	-	10	0	1	-	-	-
	TICKET_PRICE	Number	-	5	0	-	-	-	-
	P_ID	Number	-	10	0	-	-	-	-
								1	- 3

TICKET_NO	TICKET_PRICE	P_ID
1	1500	1
2	1500	2
3	800	3
4	800	4

SUB-QUERY

1. Write a query to display P_NAME where age is less than the person whose address is kuril.

2. Write a query to display available seat and booked seat where departure date is after '18-nov-18'.

3. WRITE A QUERY TO DISPLAY PNAME AND PHONE NO WHERE P_ID IS EQUAL TO THE PERSON WHOSE AGE IS GREATER THAN 20.

4.WRITE A QUERY TO DISPLAY ALL INFORMATION OF TRAIN WHERE TRAIN TYPE IS EQUAL TO THE NAME OF THE TRAIN WHICH IS BORNO OR HEMONTO.

JOINING

Equi Join:

1.WRITE A QUERY TO DISPLAY THE TRAIN NAME, TRAIN STATUS_ID, AND DEPARTURE TIME FOR ALL TRAIN.

CSV Export

2.CREATE A QUERY TO DISPLAY THE START POINT, END POINT, TRAIN ID, TRAIN NAME FOR ALL ROUTES WHERE TRAIN NAME IS 'BORNO'.

Self Join:

3.CREATE A QUERY TO DISPLAY THE TICKET NO AND TICKET PRICE OF ANY PASSENGER WHOSE TICKET PRICE IS LESS THAN 1500.

Non Equi Join:

4. Display all information of train schedule table where available seat is larger than booked seat

CONSTRAINT

FOREIGN KEY, PRIMARY AND NOT NULL CONSTRAINT:

TRAIN SCHEDULE:

```
Home > SQL > SQL Commands

② Autocommit Display 10000 ▼

CREATE TABLE TRAIN_SCHEDULE
(
(
STATUS_ID number(10) NOT NULL,
Departure_Date date(5),
Departure_Time number(2),
Avaiable_seat number(3),
Booked_Seat number(3),
P_ID NUMBER(10) NOT NULL,
Primary key(Status_ID),
Foreign Key(P_ID) References Passenger(P_ID)
)
```

TRAIN:

```
Home > SQL > SQL Commands

✓ Autocommit Display 10000 ▼

CREATE TABLE TRAIN
(
T_ID number(10) NOT NULL,
T_NAME VARCHAR2(20),
T_TYPE VARCHAR2(10),
STATUS_ID NUMBER(10) NOT NULL,
PRIMARY KEY(T_ID),
FOREIGN KEY(STATUS_ID) REFERENCES TRAIN_SCHEDULE (STATUS_ID)
)
```

TICKET:

```
Home > SQL > SQL Commands

Autocommit Display 10000 
Autocommit Display 10000 
CREATE TABLE TICKET
(
TICKET_NO number(10) NOT NULL,
TICKET PRICE NUMBER(5) NOT NULL,
P_ID NUMBER(10) NOT NULL,
PRIMARY KEY(TICKET_NO),
Foreign Key(P_ID) References Passenger(P_ID)
)
```

ROUTE:

```
Home > SQL > SQL Commands

Autocommit Display 10000 

CREATE TABLE ROUTE

(

ROUTE_ID number(10) NOT NULL,
START_POINT VARCHAR2(20),
END_POINT VARCHAR2(20),
T_ID NUMBER(10) NOT NULL,
PRIMARY KEY(ROUTE_ID),
FOREIGN KEY(T_ID) REFERENCES TRAIN (T_ID)

}
```

CHECK CONSTRAINT:

ENABLE CONSTRAINT:

