Pràctiques de Matemàtica Discreta: Introducció a la teoria de grafs

Sessió 3: camins, connexió i grafs eulerians

Camins

Connexió

Grafs eulerians

Definició de camí

Un **camí** (de longitud *n*) en un graf és una seqüència ordenada

$$V_0 e_1 V_1 e_2 \dots e_n V_n$$

tal que

- a) v_0, v_1, \ldots, v_n són vèrtexs del graf,
- **b)** e_1, e_2, \ldots, e_n són arestes del graf,
- c) v_{i-1} i v_i són els extrems de e_i per a tot $i=1,2,\ldots,n$.

Direm que v_0 és el *vèrtex inicial* i que v_n és el *vèrtex final* del camí.

<u>Nota</u>: Si el graf és simple, aleshores qualsevol camí en ell està determinat per la seqüència de vèrtexs i, per tant, podem omitir les arestes: $v_0 v_1 \dots v_n$.

Camins especials

- Un camí és tancat si els vèrtexs inicial i final coincideixen.
- Un camí és simple si no conté arestes repetides.

Ejemplo:

- (i) $v_1 e_1 v_1 e_3 v_3 e_4 v_2 e_5 v_3 e_3 v_1$ és un camí tancat. No és un camí simple perque hi ha arestes repetides (e_3) .
- (ii) $v_2 e_4 v_3 e_3 v_1$ és un camí simple amb v_2 com a vèrtex inicial i v_1 com a vèrtex final.

1 Camins

2 Connexió

Grafs eulerians

Connexió

Vèrtexs connectats

Dos **vèrtexs** u i v d'un graf G es diu que estan **connectats** si existeix un camí del graf que té a u com a vèrtex inicial i a v com a vèrtex final.

Grafs connexos i components connexos

- Un graf G és connex si dos vèrtexs qualssevol del graf estan connectats. És a dir, un graf és connex si, donats dos vèrtexs qualssevol del graf, sempre existeix un camí entre ells.
- Donat un vèrtex qualsevol v, el subgraf determinat per tots els vèrtexs que estan connectats amb v i les arestes que incideixen en ells és un graf connex. Tots els (sub)grafs obtinguts d'aquesta manera s'anomenen components connexos del graf.

Exemples

- G_1 és un graf connex (ja que cada vèrtex de G_1 està connectat amb tots els demés).
- G_2 no és connex. Té 2 compoments connexos: una d'elles és el graf format pels vèrtexs a, b i c i les arestes incidents amb ells, i l'altra és el format pels vèrtexs d, e i f yi les arestes incidents.

Camins

2 Connexió

Grafs eulerians

Camins i grafs eulerians

Definició

- Un camí en un graf es diu que és un camí eulerià si és simple (és a dir, no repeteix arestes) i conté a totes les arestes del graf.
- Un graf és **eulerià** si conté un camí eulerià tancat.

OBSERVACIÓ: El problema dels "ponts de Königsberg", expressat en aquests termes, consisteix en decidir si el graf associat és eulerià.

El següent teorema, degut a L. Euler, proporciona una caracterització dels grafs eulerians i, per tant, dóna una resposta (en particular) al problema dels "ponts de Königsberg".

Existència d'un camí eulerià tancat

Teorema d'Euler (part 1)

Siga *G* un graf connex. *G* és un graf eulerià si i només si tots els seus vèrtexs tenen grau parell.

Exemple:

El graf del problema dels ponts de Königsberg **no** és eulerià (els graus dels seus vèrtexs apareixen en el dibuix).

Exemple:

Aplicant el Teorema d'Euler es dedueix que aquest graf és eulerià, ja que tots els vèrtexs tenen grau parell).

Construcció d'un camí eulerià tancat

De la demostració del Teorema d'Euler es dedueix un mètode senzill per construir un camí eulerià tancat en un graf eulerià (Algorisme de Hierholzer):

- Triem qualsevol vèrtex i considerem um camí tancat qualsevol que comence i acabe per este vèrtex.
- Si el camí anterior conté a totes les arestes del graf, aleshores ja tenim un camí eulerià tancat. En cas contrari, considerem el subgraf que s'obté d'eliminar les arestes ja recorregudes i els vèrterxs no incidents amb cap de les arestes que queden.
- 3 El subgraf obtingut tindrà, almenys, un vèrtex en comú amb el camí ja recorregut. Començant per un d'estos vèrtexs tornem a recórrer un camí simple tancat. Inserim després el camí en el que ja teniem.
- Repetim els passos anteriors fins que no queden arestes.

Existència d'un camí eulerià no tancat

Podem fer-nos una pregunta un poc més general que la de decidir si un graf es eulerià o no:

Existeix un camí eulerià (no necessàriament tancat) en el graf?

La segona part del Teorema d'Euler dóna resposta també a aquesta pregunta:

Teorema d'Euler (part 2)

Siga *G* un graf connex que no és eulerià. *G* conté un camí eulerià no tancat si i només si *G* té exactament dos vértexs de grau senar. A més a més, qualsevol camí eulerià no tancat té els seus extrems en aquets vèrtexs.

Exemple

El següent graf no és eulerià, encara que sí que conté un camí eulerià no tancat (per la segona part del Teorema d'Euler).

Construcció d'un camí eulerià no tancat

Si un graf connex té exactament 2 vèrtexs de grau senar, com podem construir un camí eulerià no tancat?

- Afegim una nova aresta (fictícia) que uneix els dos vèrtexs de grau senar.
- El nou graf és eulerià (ja que tots els seus vèrtexs tenen grau parell) i, per tant, podem trobar un camí eulerià tancat (en el nou graf) aplicant l'algorisme de Hierholzer.
- 3 Representem el camí eulerià tancat obtingut "en forma circular".
- Eliminem l'aresta fictícia que havíem afegit, de manera que el camí resultant és un camí eulerià (no tancat) del graf original.