Задание к лабораторным работам 5,6,7 по курсу "Методы вычислений" ИУ7, 5 курс, 2011 г.

Часть 2. Безусловная минимизация функций двух переменных. Прямые методы.

Написать программы нахождения минимума, реализующие следующие методы:

- 1. метод минимизации по правильному симплексу;
- 2. метод минимизации по деформируемому симплексу (Нелдера-Мида);
- 3. метод случайного поиска (в любой модификации по выбору студента).

Для квадратичной функции (табл. 1) найти точку минимума по теоретической формуле. Вычислить значение функции в этой точке. Результаты привести в отчете.

Найти точку минимума квадратичной функции с использованием указанных выше методов. В качестве стартовой точки для первой функции взять точку (x_1^0, x_2^0) из табл. 1.

Найти минимум квадратичной функции, используя возможности Optimization Toolbox Matlab.

Для функции, заданной в таблице 2, с помощью созданных программ найти локальный минимум, ближайший к стартовой точке (3,3).

Поскольку вторая функция может содержать точки разрыва и иметь другие особенности, ее необходимо доопределить в \mathbb{R}^2 так, чтобы избежать вычислительных проблем в окрестности особенностей и обеспечить поиск именно требуемого локального минимума.

Найти минимум доопределенной функции, используя возможности Optimization Toolbox Matlab.

Критерий окончания выбрать так, чтобы координаты вычисленного приближения к точки минимума функции содержали три верные значащие цифры.

К защите по каждому методу представляется отчет, содержащий результаты расчетов. В программной реализации на Matlab необходимо предусмотреть построение графиков функций в виде семейства линий уровня минимизируемых функций и траекторий движения к минимуму для каждого метода.

Для функции из табл. 2 следует предъявить график исходной функции и график доопределенной функции, используемой для поиска минимума.

По результатам вычислений для рассматриваемых функции составить таблицу, содержащую для каждого разработанного метода и для стандартного метода из Optimization Toolbox количество вычислений функции, полученное приближение к точке минимума и значение функции в этой точке. При программировании следует избегать лишних вызовов функции! Провести анализ таблицы и сделать выводы об эффективности и трудоемкости алгоритмов.

Полные файлы с текстами программ предъявляются при защите работ, их распечатка не требуется.

Таблица 1

N вар.	$f(x_1, x_2)$	$x^0 = [x_1^0, x_2^0]$
1.	$11x_1^2 + 3x_2^2 + 2x_1x_2 - 2\sqrt{10}x_1 + 6\sqrt{10}x_2 - 22$	$[\sqrt{10}; 0]$
2.	$10x_1^2 + 7x_2^2 - 4x_1x_2 - 20\sqrt{5}x_1 + 4\sqrt{5}x_2 - 16$	$[0; -\sqrt{5}]$
3.	$5x_1^2 + 8x_2^2 - 4x_1x_2 + 16\sqrt{5}x_1 + 8\sqrt{5}x_2 - 44$	$[0; -\sqrt{5}]$
4.	$8x_1^2 + 5x_2^2 - 4x_1x_2 + 8\sqrt{5}x_1 + 16\sqrt{5}x_2 - 64$	$[-\sqrt{5};0]$
5.	$7x_1^2 + 4x_2^2 + 4x_1x_2 + 6\sqrt{5}x_1 - 12\sqrt{5}x_2 + 51$	$[0; -\sqrt{5}]$
6.	$3x_1^2 + 6x_2^2 - 4x_1x_2 + 8\sqrt{5}x_1 + 4\sqrt{5}x_2 + 36$	$[-\sqrt{5};0]$
7.	$6x_1^2 + 3x_2^2 - 4x_1x_2 + 4\sqrt{5}x_1 + 8\sqrt{5}x_2 + 22$	[-2;1]
8.	$4x_1x_2 - 2x_1^2 - 5x_2^2 + 4\sqrt{5}x_1 - 4\sqrt{5}x_2 - 4$	[1;1]
9.	$5x_1^2 + 2x_2^2 + 4x_1x_2 + 4\sqrt{5}x_1 + 4\sqrt{5}x_2 - 14$	[1; -1]
10.	$6x_1x_2 + 11x_1^2 + 3x_2^2 - 2\sqrt{10}x_1 + 6\sqrt{10}x_2 - 22$	$[\sqrt{10};0]$
11.	$-4x_1x_2 + 10x_1^2 + 7x_2^2 - 20\sqrt{5}x_1 + 4\sqrt{5}x_2 - 16$	$[0;\sqrt{5}]$
12.	$-4x_1x_2 + 5x_1^2 + 8x_2^2 + 16\sqrt{5}x_1 + 8\sqrt{5}x_2 - 44$	$[0; -\sqrt{5}]$
13.	$-4x_1x_2 + 8x_1^2 + 5x_2^2 + 8\sqrt{5}x_1 + 16\sqrt{5}x_2 + 64$	$[-\sqrt{5};0]$
14.	$4x_1x_2 + 7x_1^2 + 4x_2^2 + 6\sqrt{5}x_1 - 12\sqrt{5}x_2 + 51$	$[0;\sqrt{5}]$
15.	$-4x_1x_2 + 3x_1^2 + 6x_2^2 + 8\sqrt{5}x_1 + 4\sqrt{5}x_2 + 36$	$[-\sqrt{5};0]$
16.	$-4x_1x_2 + 6x_1^2 + 3x_2^2 + 4\sqrt{5}x_1 + 8\sqrt{5}x_2 + 22$	[-2;1]
17.	$-2x_1^2 - 5x_2^2 + 4x_1x_2 + 4\sqrt{5}(x_1 - x_2) - 4$	[1;1]
18.	$4x_1x_2 + 5x_1^2 + 2x_2^2 + 4\sqrt{5}(x_1 + x_2) - 14$	[1; 1]
19.	$11x_1^2 + 3x_2^2 + 6x_1x_2 - 2\sqrt{10}(x_1 - 3x_2) - 22$	$[1;\underline{-1}]$
20.	$10x_1^2 - +7x_2^2 - 4x_1x_2 - 4\sqrt{5}(5x_1 - x_2) - 16$	$[\sqrt{10};0]$
21.	$5x_1^2 + 8x_2^2 - 4x_1x_2 + 8\sqrt{5}(2x_1 - x_2) - 44$	$[0; -\sqrt{5}]$
22.	$8x_1^2 + 5x_2^2 - 4x_1x_2 + 8\sqrt{5}(x_1 + 2x_2) + 64$	$[0; -\sqrt{5}]$
23.	$11x_2^2 + 3x_1^2 + 2x_2x_1 - 2\sqrt{10}x_2 + 6\sqrt{10}x_1 - 22$	$[0; \sqrt{10}]$
24.	$10x_2^2 + 7x_1^2 - 4x_2x_1 - 20\sqrt{5}x_2 + 4\sqrt{5}x_1 - 16$	$[-\sqrt{5};0]$
25.	$5x_2^2 + 8x_1^2 - 4x_2x_1 + 16\sqrt{5}x_2 + 8\sqrt{5}x_1 - 44$	$[-\sqrt{5};0]$
26.	$8x_2^2 + 5x_1^2 - 4x_2x_1 + 8\sqrt{5}x_2 + 16\sqrt{5}x_1 - 64$	$[0; -\sqrt{5}]$
27.	$7x_2^2 + 4x_1^2 + 4x_2x_1 + 6\sqrt{5}x_2 - 12\sqrt{5}x_1 + 51$	$[-\sqrt{5},0]$
28.	$3x_2^2 + 6x_1^2 - 4x_2x_1 + 8\sqrt{5}x_2 + 4\sqrt{5}x_1 + 36$	$[-\sqrt{5};0]$
29.	$6x_2^2 + 3x_1^2 - 4x_2x_1 + 4\sqrt{5}x_2 + 8\sqrt{5}x_1 + 22$	[1; -2]
30.	$4x_2x_1 - 2x_2^2 - 5x_1^2 + 4\sqrt{5}x_2 - 4\sqrt{5}x_1 - 4$	[1;1]

Таблица 2

Таблица 2		
№ вар.	$f(x_1, x_2)$	
1.	$x_1^4 + x_2^4 - (x_1 + x_2)^2 + x_2 + \frac{1}{x_1} + \frac{4}{x_2}$	
2.	$x_1^2 - x_1x_2 + 2x_2^2 + \frac{1}{x_1} + \frac{2}{x_2^2}$	
3.	$\frac{2}{x_1^3} - x_2 + \frac{1}{x_2} + x_2^2 + 3x_1x_2$	
4.	$\int_{1}^{1} tg^{2} \left(\frac{x_{1}^{2} + x_{2}^{2}}{100} \right) - 3x_{1}x_{2} + x_{1}^{2} + x_{2}^{2}$	
5.	$\log_{10}^2(x_1x_2) - x_1x_2 + x_1^2 + x_2^4$	
6.	$\frac{1}{\sin((x_1+x_2)/10)} + x_1^2 + x_1x_2 + 3x_2^2$ $x_1^2 + x_2 + \frac{2}{x_1x_2} - 3\arctan(2x_1) + 3x_2$ $10 + 3x_2^2 + x_2^2 + x_1x_2 + 3x_2$	
7.	$x_1^2 + x_2 + \frac{2}{x_1 x_2} - 3 \arctan(2x_1) + 3x_2$	
8.	$\frac{10}{\cos\left(\frac{x_1x_2}{10}\right)} + 3x_1^2 + x_2^2 + x_1 + 2x_1x_2$	
9.	$\cot^2(0.1x_1x_2) + x_1^3 + x_2^2 - x_1 + 2x_2$	
10.	$\log_{10}^2(-1.0+x_2) + \frac{1}{x_1} + x_2x_1^2 + 2x_2^3 + 4x_1$	
11.	$\log_{10}^{2}(-1.0+x_{2}) + \frac{1}{x_{1}} + x_{2}x_{1}^{2} + 2x_{2}^{3} + 4x_{1}$ $tg^{2}\left(\frac{x_{1}^{2} + x_{2}^{2}}{100}\right) + 2x_{1} - 3x_{2} + x_{1}x_{2}$	
12.	$\sqrt{x_1} + \frac{1}{x_2} + x_1 x_2 + x_2^3 + x_2 \log_{10}^2(x_1)$	
13.	$\frac{1}{x_1 x_2} + \log_{10}^2(x_1^2 + 10x_2^2) + x_1$	
14.	$x_2^3 + 2x_2x_1 + \frac{1}{\sqrt{x_1x_2}}$	
15.	$\frac{1}{x_2^3 + 2x_2x_1 + \frac{1}{\sqrt{x_1x_2}}} \left[tg\left(\frac{1}{5}\sqrt{x_1 + x_2}\right) + \frac{1}{x_1^2 + x_2^2 - 1} + x_1^4 + x_2^2 + \ln^2(x_1) \right]$	
16.	$\sqrt{x_1} + \frac{1}{x_2} + \log_{10}(1 + x_1x_2) + x_2 + 4x_1 + \log_{10}^2(x_1)$	
17.	$\sqrt{x_1} + \frac{1}{x_2} + \log_{10}(1 + x_1 x_2) + x_2 + 4x_1 + \log_{10}^2(x_1)$ $\frac{1}{x_1} + \sqrt{x_2} + x_1 \arctan\left(\frac{1}{x_2}\right)$	
18.	$\sqrt{x_1+1}+(x_1+2)x_2^2+\frac{1}{x_2}$	
19.	$\sqrt{x_1 + 1} + (x_1 + 2)x_2^2 + \frac{1}{x_2}$ $\ln(1 + x_1 x_2) + \frac{1}{x} + \frac{4}{x_2^2} + x_1$	
20.	$tg^{2}(0.01x_{1}^{2} + 0.02x_{2}^{2}) + \frac{1}{x_{1}} + (x_{1} - 1)^{2} - \sqrt{x_{2}}$	
21.	$(x_1 + x_2 - 1)\ln(x_1 + x_2) + 10x_1 + x_1^2x_2^2$	
22.	$\frac{1}{\sqrt{49-x_1^2-x_2^2}} + x_1 - x_2$	
23.	$\ln^2(31-x_1^2-x_2^2)+2x_1^2+2x_1x_2+x_2^2$	
24.	$tg^{2}(1+0.01x_{1}x_{2}) + \frac{1}{\sqrt{x_{1}x_{2}}} + 2x_{2} + x_{1}$	
25.	$\ln(2+x_1+x_2^2) + \sqrt{x_1} + \frac{2}{1+x_1+0.1x_2^2}$	
26.	$\frac{2}{x_1} + \frac{1}{x_2^2} + 3x_1 + x_2^4 \ln(1+x)$ $\frac{2}{x_2^3} + \frac{x_2}{x_1} + x_1^2$	
27.	$\frac{2}{x_2^3} + \frac{x_2}{x_1} + x_1^2$	
28.	$\cot^2(0.1(x_1^2+x_2)) + \frac{(x-1)^2}{x_2} + x_2^2$	
29.	$\sqrt{70 - x_1^2 - 2x_2^2 + 4x_1^2 + x_2^4 + x_1}$	
30.	$\frac{1}{2+2x_1^2+x_2^2} + \frac{x_2}{x_1^2} + 4\frac{x_1}{x_2} + x_1x_2$	