Nierówność Bernoulliego: $\forall_{x>-1,n\in\mathbb{N}}(1+x)^n\geq 1+nx$

- 1. Twierdzenie 2.8: Każdy ciąg monotoniczny i ograniczony jest zbieżny.
 - (a) $\{a_n\}$ jest monotoniczny i ograniczony \Longrightarrow (nie \Longleftarrow) $\{a_n\}$ zbieżny
 - (b) Ciąg, który jest zbieżny, nie musi być monotoniczny. Na przykład $a_n = \frac{(-1)^n}{n}$. Ciąg ten jest zbieżny z twierdzenia o trzech ciągach, bo $\forall_{n \in \mathbb{N}} \frac{-1}{n} \leq \frac{(-1)^n}{n} \leq \frac{1}{n} \implies \lim_{n \to \infty} \frac{(-1)^n}{n} = 0$. Ale ciąg ten nie jest monotoniczny, bo $a_1 = -1 < a_2 = \frac{1}{2}, \ a_2 = \frac{1}{2} > a_3 = \frac{1}{3}$
- 2. Granice niewłaściwe
 - (a) Def. Ciąg $\{a_n\}$ jest rozbieżny do $+\infty$ (co zapisujemy $\lim_{n\to\infty}=+\infty$ lub $a_n\to+\infty$) $\iff \forall_{D>0}\exists_{n_0\in\mathbb{N}}\forall_{n>n_0}a_n>D$
 - (b) Def. Ciąg $\{a_n\}$ jest rozbieżny do $-\infty$ (co zapisujemy $\lim_{n\to\infty}=-\infty$ lub $a_n\to-\infty$) $\iff \forall_{D>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}a_n<-D$
 - (c) Przykład:
 - i. $\lim_{n\to\infty} n = \infty$, bo $\forall_{D>0} \exists_{n_0 \in \mathbb{N}, n_0 = \lceil D \rceil} \forall_{n \geq n_0} a_n > D$
- 3. Twierdzenie 2.9 (o dwóch ciągach): Jeśli $\exists_{n_0 \in \mathbb{N}} \forall_{n \geq n_0} a_n \leq b_n$ i $\lim_{n \to \infty} a_n = +\infty$, to $\lim_{n \to \infty} b_n = +\infty$
 - (a) Jeśli $\exists_{n_0 \in \mathbb{N}} \forall_{n > n_0} a_n \leq b_n$ i $\lim_{n \to \infty} b = -\infty$, to $\lim_{n \to \infty} a_n = -\infty$
- 4. Twierdzenie 2.10:
 - (a) Jeśli $\lim_{n\to\infty} a_n = \pm \infty$, to $\lim_{n\to\infty} \frac{1}{a_n} = 0$
 - (b) Jeśli $\lim_{n\to\infty} a_n = +\infty$ i ciąg $\{b_n\}$ jest ograniczony z dołu, to $\lim_{n\to\infty} (a_n + b_n) = +\infty$
 - (c) Jeśli $\lim_{n\to\infty} a_n = -\infty$ i ciąg $\{b_n\}$ jest ograniczony z góry, to $\lim_{n\to\infty} (a_n + b_n) = -\infty$
 - (d) Przykład:
 - i. Niech $\lim_{n\to\infty} a_n = 0$ oraz $\lim_{n\to\infty} b_n = \pm \infty$. Co możemy powiedzieć o zbieżności ciągu $\{a_n b_n\}$?
 - ii. Nic, bo na przykład $a_n = \frac{1}{n} \to 0$, $b_n = n \to \infty$, $a_n b_n = 1 \to 1$, ale dla $a_n = \frac{1}{n^2}$ $a_n b_n \to 0$, lub $a_n = \frac{1}{\sqrt{n}}$, $a_n b_n \to \infty$
 - iii. $[0 \cdot \infty]$ to symbol nieoznaczony
 - iv. Inne symbole nieoznaczone:
 - A. $[\infty \infty]$
 - B. $\left[\frac{0}{0}\right]$
 - C. $\left[\frac{\infty}{\infty}\right]$
 - D. $\left[\infty^0\right]$
 - E. $[0^0]$
 - F. $[1^{\infty}]$
 - v. Ale dla $a \in \mathbb{R}$:
 - A. $[a + \infty] = \infty$
 - B. $[a \cdot \infty] = (\infty \text{ jeśli } a > 0, -\infty \text{ jeśli } a < 0)$
 - C. $\left[\frac{a}{\infty}\right] = 0$ jeśli $a \in \mathbb{R}$
 - (e) Twierdzenie 2.11:
 - i. $|a| < 1 \implies \lim_{n \to \infty} |a|^n = 0$
 - D: 1. przypadek: a = 0. Wtedy $\lim_{n \to \infty} a^n = \lim_{n \to \infty} 0^n = \lim_{n \to \infty} 0 = 0$
 - 2.: $a \neq 0$. Wtedy $\frac{1}{|a|} > 1$ więc istnieje $\delta > 0$ taka, że $\frac{1}{|a|} = 1 + \delta$
 - $\frac{1}{|a|^n} = \left(\frac{1}{|n|}\right)^n = (1+\delta)^n \ge^{nier.Bern} 1 + n\delta \ge n\delta$
 - $\forall_{n \in \mathbb{N}} 0 \le |a|^n \le \frac{1}{n\delta} \implies^{tw.o \, 3 \, ciqgach} \lim_{n \to \infty} |a| = 0 \implies \lim_{n \to \infty} |a^n| = 0 \implies^{uwaga \, 2.1} \lim_{n \to \infty} a^n = 0$
 - ii. $a > 0 \implies \lim_{n \to \infty} \sqrt[n]{a} = 1$
 - D: 1.przypadek: a = 1. Wtedy $\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \sqrt[n]{1} = \lim_{n \to \infty} 1 = 1$
 - : 2. przypadek: a > 1. Wtedy $\forall_{n \in \mathbb{N}} \sqrt[n]{a} > 1$
 - $a = (\sqrt[n]{a})^n = (1 + \sqrt[n]{a} 1)^n \ge^{n.Bern} 1 + n(\sqrt[n]{a} 1)$
 - $\forall_{n \in \mathbb{N}} a \ge 1 + n(\sqrt[n]{a} 1)$
 - $\forall_{n \in \mathbb{N}} \frac{a-1}{n} \ge \sqrt[n]{a} 1$
 - $\forall_{n \in \mathbb{N}} \frac{a-1}{n} + 1 \ge \sqrt[n]{a} \ge 1 \implies \lim_{n \to \infty} \sqrt[n]{a} = 1$

3. przypadek: $a \in (0,1)$. Wtedy $\frac{1}{a} > 1 \implies \frac{przpadek}{a} \lim_{n \to \infty} \sqrt[n]{\frac{1}{a}} = 1$

stąd $1 = \lim_{n \to \infty} \sqrt[n]{\frac{1}{a}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a}}$ oraz $\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \frac{1}{\frac{1}{n\sqrt{a}}} = 1$

iii. $\lim_{n\to\infty} \sqrt[n]{n} = 1$

(f) $\forall_{a,b\in\mathbb{R},n\in\mathbb{N}}(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$

5. Liczba e

- (a) Rozważmy ciąg Eulera $e_n = (1 + \frac{1}{n})^n$. Pokażemy, że $\{e_n\}$ jest rosnący i ograniczony z góry, zatem zbieżny. Liczba eto granica tego ciągu $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2{,}71828$
- (b) Twierdzenie 2.12: Ciąg Eulera jest rosnący i ograniczony z góry, więc zbieżny.

D: Najpierw pokażemy, że $\{e_n\}$ jest rosnący

$$\begin{array}{l} \vdots & \frac{e_{n+1}}{e_n} = \frac{(1+\frac{1}{n+1})^{n+1}}{(1+\frac{1}{n})^n} = \frac{(\frac{n+2}{n+1})^n \cdot (\frac{n+2}{n+1})}{(\frac{n+1}{n})^n} = (\frac{\frac{n+2}{n+1}}{n})^n \cdot \frac{n+2}{n+1} = (\frac{n(n+2)}{(n+1)^2})^n \cdot \frac{n+2}{n+1} = (\frac{n^2+2n+1-1}{n^2+2n+1})^n \cdot \frac{n+2}{n+1} = \\ (1+\frac{-1}{n^2+2n+1})^n \cdot \frac{n+2}{n+1} \geq^{n.Bern} \quad (1-\frac{n}{n^2+2n+1})\frac{n+2}{n+1} = \frac{n^2+2n+1-n}{n^2+2n+1} \cdot \frac{n+2}{n+1} = \frac{(n^2+n+1)(n+2)}{(n+1)\cdot(n+1)} = \\ \frac{n^3+3n^2+3n+2}{n^3+3n^2+3n+1} > 1 \end{array}$$

: Zatem $\forall_{n\in\mathbb{N}}\frac{e_{n+1}}{e_n}>1 \implies e_n>0 \forall_{n\in\mathbb{N}}e_{n+1}>e_n$ czyli $\{e_n\}$ jest rosnący Teraz pokażemy, że $\{e_n\}$ jest ograniczony z góry.

$$\begin{array}{l} : \qquad \qquad e_n = (1+\frac{1}{n})^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} =^{n \geq 2} \ 1 + n \cdot \frac{1}{n} + \sum_{k=2}^n \binom{n}{k} \frac{1}{n^k} = 2 + \sum_{k=2}^n \frac{(n-k+1)(n-k+2) \cdots n}{k! \cdot n^k} < \\ 2 + \sum_{k=2}^n \frac{n^k}{k! \cdot n^k} = 2 + \sum_{k=2}^n \frac{1}{k!} = 2 + \sum_{k=2}^n \frac{1}{1 \cdot 2 \cdots \cdot k} = 2 + \sum_{k=2}^n \frac{1}{2^{k-1}} = 2 + \frac{1}{2} \cdot \frac{1 - (\frac{1}{2})^{n-2}}{1 - \frac{1}{2}} < 2 + 1 = 3 \\ \vdots \qquad \forall_{n \geq 2} e_n > 3 \text{ i } e_1 = 2 \implies \forall_{n \in \mathbb{N}} e_n < 3 \text{, czyli ciąg } \{e_n\} \text{ jest ograniczony z góry} \end{array}$$

- (c) Def. Liczba e to granica ciągu Eulera: $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$
 - i. Pokazaliśmy, że $\forall_{n\in\mathbb{N}}e_n<3\implies e=\lim_{n\to\infty}e_n\leq 3$
 - ii. Pokazaliśmy, że $\{e_n\}$ jest rosnący $\implies \forall_{n\in\mathbb{N}}e_n\geq e_1=2 \implies e=\lim_{n\to\infty}e_n\geq 2$
 - iii. Więc $2 \le e \le 3$
 - iv. Uwaga: to jest przykład na to, że $[1^{\infty}]$ to symbol nieoznaczony, bo $a_n=1+\frac{1}{n}\to 1,\ b_n=n\to\infty\implies a_n^{b_n}=1$ $(1+\frac{1}{n})^n \to e$

A. $a_n = 1 + \frac{1}{n} \to 1$, $b_n = 2n \to \infty \implies a_n^{b_n} = (1 + \frac{1}{n})^{2n} \to 2e$

6. Podciagi

- (a) Def. Niech $\{a_n\}_{n=1}^{\infty}$ będzie ciągiem, zaś n_1, n_2, n_3, \ldots liczbami naturalnymi, takimi, że $n_1 < n_2 < n_3 < \ldots$ Wtedy ciąg $\{a_{n_k}\}_{k=1}^{\infty}$ o wyrazach $a_{n_1}, a_{n_2}, a_{n_3}, \dots$ nazywamy podciągiem ciągu $\{a_n\}_{n=1}^{\infty}$
 - i. Przykład: $a_n = \frac{1}{n}$,wyrazy tego ciągu: $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \dots$

 $b_n = \frac{1}{n^2}$, wyrazy tego ciągu: $1, \frac{1}{4}, \frac{1}{9}, \dots$ Ciąg $\{b_n\}$ to podciąg ciągu $\{a_n\}: b_k = a_{k^2}$ $c_n = \frac{1}{\sqrt{n}}$, wyrazy tego ciągu: $1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \frac{1}{2}, \frac{1}{\sqrt{5}}, \dots$ Ciąg $\{c_n\}$ nie jest podciągiem $\{a_n\}$ (ale $\{a_n\}$ jest podciągiem $\{c_n\}$)

- (b) Twierdzenie 2.13: Każdy podciąg ciągu zbieżnego do g też zbiega do g:
 - i. $\lim_{n\to\infty} a_n = g$ i $\{a_{n_k}\}$ jest podciągiem ciągu $\{a_n\} \implies \lim_{n\to\infty} a_{n_k} = g$
 - ii. Wniosek: Jeśli ciąg $\{a_n\}$ zawiera co najmniej dwa podciągi zbieżne do różnych granic, to nie jest zbieżny
 - iii. Przykład: Ciąg $a_n=(-1)^n$ nie jest zbieżny, bo $\lim_{n\to\infty}(-1)^{2n}=1$ oraz $\lim_{n\to\infty}(-1)^{2n+1}=-1$, oba są podciągami $\{a_n\}$ i są zbieżne do innych granic, więc a_n nie jest zbieżny
 - iv. Przykład: $\lim_{n\to\infty} (\frac{2n+3}{2n+2})^{4n-3} (=[1^{\infty}]) = \lim_{n\to\infty} (1+\frac{1}{2n+2})^{4n-3} = \lim_{m\to\infty} (1+\frac{1}{m})^{2m-7} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{n\to\infty} (1+\frac{1}{m})^7} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{n\to\infty} (1+\frac{1}{m})^7} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{n\to\infty} (1+\frac{1}{m})^7} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{n\to\infty} (1+\frac{1}{m})^m} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m)^2}{\lim_{m\to\infty} (1+\frac{1}{m})^m} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m})^2}{\lim_{m\to\infty} (1+\frac{1}{m})^m} = \frac{(\lim_{m\to\infty} (1+\frac{1}{m})^m})^2}{\lim_{m$ $\frac{e^2}{1} = e^2$
- (c) Twierdzenie 2.14: (Bolzano-Weierstrassa)
 - i. Każdy ciąg ograniczony zawiera podciąg zbieżny.
- (d) Def. Ciąg $\{a_n\}$ jest ciągiem Cauchyego (podstawowym) $\iff \forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n,m>n_0} |a_n a_m| < \epsilon$
- (e) Twierdzenie 2.15 (warunek równoważny zbieżności ciągu)
 - i. Ciąg $\{a_n\}$ jest zbieżny $\iff \{a_n\}$ jest ciągiem Cauchyego
 - $D \Longrightarrow$ Zakładamy, że $\{a_n\}$ jest zbieżny, tzn. $\exists_{g\in\mathbb{R}}\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n\geq n_0}|a_n-g|<\frac{\epsilon}{2}$
 - Pokażemy, że $\{a_n\}$ jest ciągiem Cauchyego, tzn $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n,m>n_0} |a_n a_m| < \epsilon$
 - $|a_n a_m| = |a_n g + (-a_n + g)| \le |a_n g| + |a_m g| <^{n,m \ge n_0} \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$
 - Zatem pokazaliśmy, że $\forall_{\epsilon>0} \exists_{n_1 \in \mathbb{N}, n_1=n_0} \forall_{n,m \geq n_1} |a_n a_m| \leq \epsilon$

 \longleftarrow pomijamy bo długi dowód

- i. Przykład: Ciąg $a_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ nie jest zbieżny, bo nie jest ciągiem Cauchyego.
 - $\neg(\forall_{\epsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{n,m\geq n_0}|a_n-a_m|<\epsilon)$

 - Chcemy pokazać, że $\exists_{\epsilon>0} \forall_{n_0 \in \mathbb{N}} \exists_{n,m \geq n_0} |a_n a_m| \geq \epsilon$ $|a_{2n} a_n| = |1 + \frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n} 1 \frac{1}{2} \frac{1}{3} \dots \frac{1}{n}| = |\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}| = \frac{1}{n+1} + \dots + \frac{1}{2n} \geq \frac{1}{2n} + \dots + \frac{1}{2n} = n \cdot \frac{1}{2n} = \frac{1}{2}$ Zatem pokazaliśmy, że $\exists_{\epsilon>0} \forall_{n_0 \in \mathbb{N}} \exists_{n,m \geq n_0} |a_n a_m| \geq \epsilon$ zachodzi dla $\epsilon = \frac{1}{2}, n = 2n_0, m = n_0$