World of Transformer

Karol Kaczmarek

Adam Mickiewicz University Poznań

> Applica.ai Warsaw

> > 2019

Transformer [1]

- ▶ June 2017
- encoder-decoder model
- dispensing with recurrence and convolutions entirely
- attention mechanism (MultiHeadAttention)
- positional encoding

Architecture

Multi-head attention

GPT-2 [4]

- ► February 2019
- based on Transformer [1] (GPT-1)
- ▶ Byte Pair Encoding (BPE) [2] on the byte level
 - <UNK> occurs 26 times in 40 billion bytes
- use custom regex text splitter
- trained on 40GB of text collected from the Internet (WebText)
 - it's not Common Crawl (quality issues)
 - ► OpenWebText as an alternative
- GELU Gaussian Error Linear Unit [3]

Models

Name	Parameters	Layers	d_{model}
Base	117M	12	768
Medium	345M	24	1024
Large	762M	36	1280
XL	1542M	48	1600

GELU - Gaussian Error Linear Unit [3]

Comparing different levels of BPE

	BPE based on bytes	BPE based on characters
1	'I like cats.'	'I like cats.'
2	'I', ' like', 'cats', '.'	'I', 'like', 'cats', '.'
3	['0x49'],	_
	['0x20', '0x6c', '0x69',	
	'0x6b', '0x65'],	
	['0x20', '0x63', '0x61',	
	'0x74', '0x73'],	
	['0x2e']	
4	'I', 'Ġlike', 'Ġcats', '.'	_
5	'l', 'Ġli@@', 'ke',	'I', 'li@@', 'ke'
	'Ġca@@', 'ts', '.'	'ca@@', 'ts', '.'

Comparing different levels of BPE

	BPE based on bytes	BPE based on characters
1	'Zażółć gęślą jaźń.'	'Zażółć gęślą jaźń.'
2		'Zażółć', 'gęślą', 'jaźń', '.'
4	'ZażóÅĤÄĩ', 'ĠgÄĻÅĽlÄh',	_
	'ĠjaźÅH', '.'	
5	'Z@@' 'a@@' 'Å@@' '½@@"	'Z@@' 'a@@' 'ż@@'
	'ó@@' 'ÅĤ@@' 'Äĩ'	'ó@@' 'ł@@' 'ć'
	'Ġg@@' 'Ä@@' 'Ļ@@' 'Å@@'	'g@@' 'ę@@' 'ś@@'
	'L'@@' 'l@@' 'Ä@@' 'h'	'l@@' 'ą' 'j@@'
	'Ġja@@' 'Å@@' 'º@@' 'Å@@'	'a@@' 'ź@@' 'ń' '.'
	'H ['] '.'	

BERT [5]

► BERT – Bidirectional Encoder Representations from Transformers = bidirectional Transformers

BERT input representation

- ► [CLS] the special classification embedding
- ► [SEP] the sentences separator, sentence pairs are packed together into a single sequence
- segment embeddings

Masked Language Model (MLM)

- masking some percentage of the input tokens at random
- predicting only those masked tokens ([MASK])
- mask 15% of all
- masking procedure:
 - ▶ 80% of the time replace the word with the [MASK] token
 - ► my dog is hairy → my dog is [MASK]
 - ▶ 10% of the time replace the word with a random word
 - ► my dog is hairy → my dog is apple
 - ▶ 10% of the time keep the word unchanged
 - ► my dog is hairy → my dog is hairy

PyTorch

- ► PyTorch 1.2 support Transformer architecture:
 - nn.Transformer
 - nn.TransformerEncoder
 - nn.TransformerEncoderLayer
 - nn.TransformerDecoder
 - nn.TransformerDecoderLayer
 - nn.MultiheadAttention
- ► PyTorch 1.3 current version

Evolved Transformer [7]

- ► January/February 2019
- $ightharpoonup 7,30 \cdot 10^{115}$ possible models
 - ▶ use fraction of data (WMT'14 En-De)
 - aggressive early stopping (allows models that are consistently performing well to train for more steps)
- Depth-wise separable convolutions (Xception[6])
- Gated Linear Units
- Swish activation

Evolved Transformer Encoder

Evolved Transformer Decoder

Score

XLM [8]

- ► January 2019
- created by Facebook
- based on BERT
- use text streams of an arbitrary number of sentences instead of pairs of sentences
- no next sentence prediction
- ► 12 layers (BERT 24 layers)

XLM

XLM

Mode	I Score	CoLA	SS	T2	MF	RPC	STS-E	3	QQP
							87.6/86.5		
XLM	82.8	62.9	95.	6	90.7/87.1		88.8/88.2		73.2/89.8
	MNLI_m	MNLI_r	nm	QI	NLI	RTE	WNLI	AX	:
		85.9		92.7 70.1		-			
	89.1	88.5	88.5		.0 76.0		71.9 44.		7

TransformerXL [9]

- ▶ June 2019
- Vanilla Transformer Language Models
 - ► limited by a fixed-length context
 - ignore all contextual information from previous segments (information never flow over segments)
- ▶ TransformerXL
 - ► "Recurrence" mechanism
 - Relative Positional Encoding

Score

Vanilla Transformer:

TransformerXL:

TransformerXL

- "Recurrence" mechanism
 - use fixed, cached segment (for each layer) from the previous segment
 - use stop-gradient for caching
 - different segments have the same positional encoding (an old segment is represented as [0, 1, 2, 3] and a new segment is processed as [0, 1, 2, 3, 0, 1, 2, 3] – for the two segments)
- Relative Positional Encoding
 - encode relative positional information in the cached segment
 - add content-dependent positional bias

Score

Method	enwiki8	text8	One Billion Word
Previous best	1.06	1.13	23.7
TransformerXL	0.99	1.08	21.8

Method	WikiText-103	PTB
Previous best	20.5	55.5
TransformerXL	18.4	54.5

Megatron-LM [10]

- September 2019
- created by Nvidia
- support BERT and GPT-2 models training with the memory optimization
- ▶ use Wikipedia (without Wikitext-103 articles), CC-stories, RealNews, OpenWebtext – 174 GB of text
- used 512 GPUs (Nvidia V100 32GB, trained over 9,2 days with 12 ZettaFLOPs)
- ▶ 480460 USD (\sim 34 USD per hour one DGX-2) to train the GPT-2 model

Parallelism

Speedup obtained for the 1.2 billion parameters model:

# of GPUs	1	2	4	8
Speedup	1.0	1.64	2.34	2.98

Hybrid Model and Data Parallelism:

Score

Model	Wikitext-103	LAMBADA
	Perplexity ↓	Accuracy ↑
355M	19,31	45,16
2,5B	12,76	61,73
8,3B	10,81	66,51
SOTA	16,43	63,24

XLNet [11]

- ▶ June 2019
- ▶ BERT + TransformerXL
- ► Permutation Language Modelling
- ➤ 245000 USD to train the XLNet model (to beat BERT on NLP tasks)

autoregressive and autoencoding language modelling

- autoregressive (AR) language modelling (classical)
 - estimate the probability distribution of a text corpus
 - trained to encode a uni-directional context (either forward or backward)
 - ▶ is not effective at modelling deep bidirectional contexts
 - downstream tasks often require bidirectional context information
- autoencoding (AE) language modelling (like BERT)
 - aims to reconstruct the original data from corrupted input ([MASK] token – masked language model)
 - density estimation is not part of the objective

Permutation Language Modelling

BERT vs XLNet

- ► Sentence: [New, York, is, a, city]
- ► Select the two tokens: [New, York]
- ► Maximize: *log p*(New York | is a city)

Model	First prediction	Second prediction
	$log p(New \mid is a city)$	
XLNet	$log p(New \mid is a city)$	$\log p(\text{York} \mid \text{New}, \text{ is a city})$

Score

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI
Single-task sir	igle models on de	ev							
BERT	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-
Single-task sin	igle models on te	est							
BERT	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1
Multi-task ens	embles on test (f	rom leade	rboard a	s of June	19, 2019)			
ALICE*	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8
XLNet*	90.2/89.7 [†]	98.6^{\dagger}	90.3 [†]	86.3	96.8^{\dagger}	93.0	67.8	91.6	90.4

RoBERTa – **R**obustly **o**ptimized **BERT a**pproach [12]

- ▶ July 2019
- created by Facebook
- based on BERT
- ▶ more data (over 160GB) + more steps + larger batches (8K)
- no next sentence prediction
- dynamic masking instead of static
- ► larger byte level byte pair encoding vocabulary (50K units)
- ▶ used 1024 GPUs (Nvidia V100 32GB, trained over one day)
- ► 104448 USD (~34 USD per hour one DGX-2) to train the RoBERTa model

Score

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of .	July 25,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

StructBERT (ALICE – Alibaba) [13]

- August 2019
- base on BERT
- Word Structural Objective ability to reconstruct the right order of certain number of intentionally shuffled word token
- Sentence Structural Objective extend the sentence prediction task by predicting both the next sentence and the previous sentence
- used 64 GPUs (Nvidia V100, trained over 38 hours/7 days)
- \blacktriangleright 8208-10336 USD (\sim 27-34 USD per hour) to train base model and 36288-45696 USD to train huge model

Word Structural Objective

Sentence Structural Objective

Score (old)

	Rank	: Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI	AX
	1	GLUE Human Baselines	GLUE Human Baselines	♂	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9	-
+	2	王玮	ALICE large (Alibaba DAMO NLP)		82.9	61.6	95.2	91.1/87.7	89.6/88.6	74.0/90.4	87.9	87.4	95.4	80.9	65.1	40.7
+	3	Microsoft D365 AI & MSR A	IMT-DNNv2 (BigBird)	ď	82.9	62.5	95.6	91.1/88.2	89.5/88.8	72.7/89.6	86.7	86.0	94.9	81.4	65.1	40.3
-	4	Jason Phang	BERT on STILTs	ď	82.0	62.1	94.3	90.2/86.6	88.7/88.3	71.9/89.4	86.4	85.6	92.7	80.1	65.1	28.3
			GPT on STILTS	Z	76.9	47.2	93.1	87.7/83.7	85.3/84.8	70.1/88.1	80.7	80.6	-	69.1	65.1	29.4
+	5	Jacob Devlin	BERT: 24-layers, 16-heads, 1024-hi	ď	80.5	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7	85.9	92.7	70.1	65.1	39.6
	6	Neil Houlsby	BERT + Single-task Adapters	ď	80.2	59.2	94.3	88.7/84.3	87.3/86.1	71.5/89.4	85.4	85.0	92.4	71.6	65.1	9.2
	7	Alec Radford	Singletask Pretrain Transformer	ď	72.8	45.4	91.3	82.3/75.7	82.0/80.0	70.3/88.5	82.1	81.4	-	56.0	53.4	29.8
+	8	Samuel Bowman	BiLSTM+ELMo+Attn	Z	70.5	36.0	90.4	84.9/77.9	75.1/73.3	64.8/84.7	76.4	76.1	-	56.8	65.1	26.5
	9	GLUE Baselines	BiLSTM+ELMo+Attn	ď	70.0	33.6	90.4	84.4/78.0	74.2/72.3	63.1/84.3	74.1	74.5	79.8	58.9	65.1	21.7
			BiLSTM+ELMo	ď	67.7	32.1	89.3	84.7/78.0	70.3/67.8	61.1/82.6	67.2	67.9	75.5	57.4	65.1	21.3

Score

System	CoLA	SST-2	MRPC	STS-B	QQP	MNLI	QNLI	RTE	WNLI	AX	Average
	8.5k	67k	3.5k	5.7k	363k	392k	108k	2.5k	634		
Human Baseline	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	
BERTLarge	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5
BERT on STILTs	62.1	94.3	90.2/86.6	88.7/88.3	71.9/89.4	86.4/85.6	92.7	80.1	65.1	28.3	82.0
StructBERTBase	57.2	94.7	89.9/86.1	88.5/87.6	72.0/89.6	85.5/84.6	92.6	76.9	65.1	39.0	80.9
StructBERTLarge	65.3	95.2	92.0/89.3	90.3/89.4	74.1/90.5	88.0/87.7	95.7	83.1	65.1	43.6	83.9
StructBERTLarge ensemble	68.6	95.2	92.5/90.1	91.1/90.6	74.4/90.7	88.2/87.9	95.7	83.1	65.1	43.9	84.5
XLNet ensemble	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2/89.8	98.6	86.3	90.4	47.5	88.4
RoBERTa ensemble	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8/90.2	98.9	88.2	89.0	48.7	88.5
Adv-RoBERTa ensemble	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1/90.7	98.8	88.7	89.0	50.1	88.8
StructBERTRoBERTa ensemble	69.2	97.1	93.6/91.5	92.8/92.4	74.4/90.7	90.7/90.3	99.2	87.3	89.7	47.8	89.0

ALBERT – A Lite BERT [14]

- October 2019
- base on BERT
- factorized embedding parameterization (decomposing into two smaller matrices)
- use sentence-order prediction (SOP)
- cross-layer parameters sharing
 - share only attention parameters
 - share only FNN parameters
 - share attention and FNN parameters

NSP – next sentence prediction SOP – sentence-order prediction

	Intr	insic Ta	sks		Downstream Tasks										
SP tasks	MLM	NSP	SOP	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg						
None	54.9	52.4	53.3	88.6/81.5	78.1/75.3	81.5	89.9	61.7	79.0						
NSP	54.5	90.5	52.0	88.4/81.5	77.2/74.6	81.6	91.1	62.3	79.2						
SOP	54.0	78.9	86.5	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1						

BERT vs ALBERT

1270M

12M

18M

60M

235M

xlarge

base

large

xlarge xxlarge

ALBERT

86.4/78.1

89.3/82.3

90.6/83.9

92.5/86.1

94.1/88.3

	Mod	el	Para	meters	Lay	yers	Hidden	ı Eı	mbe	dding	Param	ete	r-sharii	ng
-		base	1	08M	1	2	768		768		False			
	BERT	large	3	34M	2	4	1024		1024		False			
	xla		12	1270M		4	2048		2048		False			
		base	1	12M		2	768	1		8	True			
	ALBERT	large	1	18M		4	1024		12	8		Tr	ue	
	ALBERT	xlarge	60M		2	4	2048	1:		8	True			
		xxlarge	2	35M	1	2	4096		12	8		Tr	ue	
	Model	Parame	eters	SQuAD	1.1	SQ	uAD2.0	MN	LI	SST-2	RACI	Εļ	Avg	Speedup
	base	1081	M	90.4/83	3.2	80	.4/77.6	84.	5	92.8	68.2		82.3	17.7x
BERT	large	3341			85.5 85		.0/82.2	86.	6	93.0	73.9		85.2	3.8x

75.5/72.6

80.0/77.1

82.3/79.4

86.1/83.1

88.1/85.1

81.6

81.6

83.5

86.4

88.0

90.7

90.3

91.7

92.4

95.2

54.3

64.0

68.5

74.8

82.3

76.6

80.1

82.4

85.5

88.7

1.0

21.1x

6.5x

2.4x

1.2x

Score

Models	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single	models on	dev								
BERT-large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet-large	89.8	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa-large	90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-	-
ALBERT (1M)	90.4	95.2	92.0	88.1	96.8	90.2	68.7	92.7	-	-
ALBERT (1.5M)	90.8	95.3	92.2	89.2	96.9	90.9	71.4	93.0	-	-
Ensembles on test	(from lead	lerboard	as of Sep	ot. 16, 2	019)					
ALICE	88.2	95.7	90.7	83.5	95.2	92.6	69.2	91.1	80.8	87.0
MT-DNN	87.9	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5
Adv-RoBERTa	91.1	98.8	90.3	88.7	96.8	93.1	68.0	92.4	89.0	88.8
ALBERT	91.3	99.2	90.5	89.2	97.1	93.4	69.1	92.5	91.8	89.4

Other models

- ► TinyBERT [15]
 - ► September 2019
 - transfer the knowledge of a large teacher network to a small student network
 - 7,5 smaller, 9,4 faster, 28% parameters of BERT
- ► CTRL Conditional Transformer Language [16]
 - ► September 2019
 - use 140GB of text from a wide variety of domains
 - ► large vocabulary of roughly 250k tokens
 - control codes (to generate task-specific data)
 - trained 2 weeks

T5 – Text-to-Text Transfer Transformer [17]

- October 2019
- treat every NLP problem as a "text-to-text" problem (taking text as input and producing new text as output)
- based on Transformer (encoder and decoder)
- ▶ used "Colossal Clean Crawled Corpus" (called C4) about 750 GB of text (this is only extracted text from April 2019)
- for fine-tuning use all of the task as a single task by concatenating all of the datasets (with the special processing into input and output form)
- ► trained on 1024 TPU v3 (TPU v2 costs ~768 USD per hour)

Idea

Pre-training

Score (GLUE)

	Ra	ank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m MNL	l-mm	QNLI	RTE	WNLI	AX
		1	T5 Team - Google	Т5	ď	89.7	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0	91.7	96.7	92.5	93.2	53.1
	:	2	ALBERT-Team Google Languag	eALBERT (Ensemble)	ď	89.4	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3	91.0	99.2	89.2	91.8	50.2
+	;	3	王玮	ALICE v2 large ensemble (Alibaba DAMO NLP)	ď	89.0	69.2	97.1	93.6/91.5	92.7/92.3	74.4/90.7	90.7	90.2	99.2	87.3	89.7	47.8
	-	4	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)	ď	88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1	90.7	98.8	88.7	89.0	50.1
	į	5	Facebook AI	RoBERTa	ď	88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	98.9	88.2	89.0	48.7
	(6	XLNet Team	XLNet-Large (ensemble)	ď	88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2	89.8	98.6	86.3	90.4	47.5
+		7	Microsoft D365 AI & MSR AI	MT-DNN-ensemble	ď	87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8
	- 1	8	GLUE Human Baselines	GLUE Human Baselines	ď	87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9	

	ALBERT	T5-Small	T5-Base	T5-Targe	T5-3B	T5-11B
Score	89,4	77,4	82,7	86,4	88,5	89,7

Score (SuperGLUE)

Rank	Name	Model	URL	Score	BoolQ	СВ	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-g	AX-b
1	SuperGLUE Human Baselines	SuperGLUE Human Baselines	ď	89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	99.3/99.7	76.6
2	T5 Team - Google	T5	ď	88.9	91.0	93.0/96.4	94.8	88.2/62.3	93.3/92.5	92.5	76.1	93.8	92.7/91.9	65.6
3	Facebook Al	RoBERTa	ď	84.6	87.1	90.5/95.2	90.6	84.4/52.5	90.6/90.0	88.2	69.9	89.0	91.0/78.1	57.9
4	IBM Research AI	BERT-mtl		73.5	84.8	89.6/94.0	73.8	73.2/30.5	74.6/74.0	84.1	66.2	61.0	97.8/57.3	29.6
5	SuperGLUE Baselines	BERT++	Z	71.5	79.0	84.8/90.4	73.8	70.0/24.1	72.0/71.3	79.0	69.6	64.4	99.4/51.4	38.0
		BERT	ď	69.0	77.4	75.7/83.6	70.6	70.0/24.1	72.0/71.3	71.7	69.6	64.4	97.8/51.7	23.0
		Most Frequent Class	Z	47.1	62.3	21.7/48.4	50.0	61.1/0.3	33.4/32.5	50.3	50.0	65.1	100.0/50.0	0.0
		CBoW	Z	44.5	62.2	49.0/71.2	51.6	0.0/0.5	14.0/13.6	49.7	53.1	65.1	100.0/50.0	-0.4
		Outside Best	Z		80.4		84.4	70.4/24.5	74.8/73.0	82.7	-			
-	Stanford Hazy Research	Snorkel [SuperGLUE v1.9]	ď			88.6/93.2	76.2	76.4/36.3		78.9	72.1	72.6		47.6

References I

- [1] A. Vaswani and et al., "Attention is all you need," 2017.
- [2] R. Sennrich, B. Haddow, and A. Birch, "Neural machine translation of rare words with subword units," 2016.
- [3] D. Hendrycks and K. Gimpel, "Gaussian error linear units (gelus)," 2016.
- [4] A. Radford, J. Wu, and et al, "Language models are unsupervised multitask learners," 2019.
- [5] J. Devlin and et al., "Bert: Pre-training of deep bidirectional transformers for language understanding," 2018.
- [6] F. Chollet, "Xception: Deep learning with depthwise separable convolutions," 2016.
- [7] D. So, C. Liang, and Q. Le, "The evolved transformer," 2019.
- [8] A. C. Guillaume Lample, "Cross-lingual language model pretraining," 2019.
- Z. Dai, Z. Yang, and et al., "Transformer-XL: Language modeling with longer-term dependency," 2019.
- [10] M. Shoeybi, M. Patwary, R. Puri, and et al., "Megatron-lm: Training multi-billion parameter language models using model parallelism," 2019.
- [11] Z. Yang, Z. Dai, and et al., "XInet: Generalized autoregressive pretraining for language understanding," 2019.
- [12] Y. Liu and et al., "Roberta: A robustly optimized bert pretraining approach," 2019.
- [13] W. Wang and et al., "Structbert: Incorporating language structures into pre-training for deep language understanding," 2019.
- [14] Z. Lan and et al., "Albert: A lite bert for self-supervised learning of language representations," 2019.
- [15] X. Jiao and et al., "Tinybert: Distilling bert for natural language understanding," 2019.
- [16] N. S. Keskar and et al., "Ctrl a conditional transformer language model for controllable generation," 2019.
- [17] C. Raffel and et al. "Exploring the limits of transfer learning with a unified text-to-text transformer" 2019

References II