Erasmus School of Economics

MOOC Econometrics

Lecture 1.4 on Simple Regression:

Evaluation

Philip Hans Franses

Erasmus University Rotterdam

Test question

• Prediction interval for y_0 : $(\hat{y}_0 - ks, \hat{y}_0 + ks)$.

Test

Which prediction interval has the highest confidence to contain y_0 : for k = 1 or k = 2?

• Answer: k = 2, as the interval is wider.

Ezafus,

Prediction interval

- Least squares: data $(x_i, y_i), i = 1, 2, ..., n \rightarrow a$ and b
- Regression line: y = a + bx

Residuals: $e_i = y_i - a - bx_i$

Residual standard deviation: $s = \sqrt{s^2} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} e_i^2}$

- Question: Predict outcome of y_0 for new value of x_0 .
- Actual value: $y_0 = \alpha + \beta x_0 + \varepsilon_0$ Point prediction: $\hat{y}_0 = a + bx_0$ Interval for ε_0 : (-ks, ks).
- Prediction interval for y_0 : $(\hat{y}_0 ks, \hat{y}_0 + ks)$

Ezafus,

Lecture 1.4, Slide 2 of 13, Erasmus School of Economics

Assumptions

- A1: Data Generating Process is $y_i = \alpha + \beta x_i + \varepsilon_i$.
- A2: The *n* observations of x_i are fixed numbers.
- A3: The *n* error terms ε_i are random, with $E(\varepsilon_i) = 0$.
- A4: The variance of the *n* errors is fixed, $E(\varepsilon_i^2) = \sigma^2$.
- A5: The errors are uncorrelated, $E(\varepsilon_i \varepsilon_j) = 0$ for all $i \neq j$.
- A6: α and β are unknown, but fixed for all n observations.
- A7: $\varepsilon_1, \dots, \varepsilon_n$ are jointly normally distributed; with A3, A4, A5: $\varepsilon_i \sim NID(0, \sigma^2)$.

Ezafus

Statistical properties of *b*: preliminaries

- Least squares slope estimator: $b = \frac{\sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})}{\sum_{i=1}^{n} (x_i \bar{x})^2}$
- Derive properties of b from those of error terms ε_i (see A1-A7).
- We will show that $b=\beta+\sum_{i=1}^n c_i \varepsilon_i$, where $c_i=rac{x_i-ar{x}}{\sum_{i=1}^n (x_i-ar{x})^2}$ are fixed numbers (see A2)
- Next slide shows steps needed for this result.

Lecture 1.4, Slide 5 of 13, Erasmus School of Economics

The mean of b: unbiased

- $b = \beta + \sum_{i=1}^{n} c_i \varepsilon_i$ with c_i fixed (due to A2).
- $E(b) = E(\beta) + \sum_{i=1}^{n} E(c_i \varepsilon_i)$.
- A6: β fixed, hence $E(\beta) = \beta$.
- c_i fixed, so $E(c_i\varepsilon_i)=c_iE(\varepsilon_i)=0$ (due to A3).
- Hence: $E(b) = \beta + \sum_{i=1}^{n} 0 = \beta$.
- So b is unbiased estimator of slope parameter β .

Lecture 1.4, Slide 7 of 13, Erasmus School of Economics

Derivation of the constants c_i

•
$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (A)

• A1:
$$y_i - \bar{y} = (\alpha + \beta x_i + \varepsilon_i) - (\alpha + \beta \bar{x} + \bar{\varepsilon})$$

= $\beta(x_i - \bar{x}) + (\varepsilon_i - \bar{\varepsilon})$ (B)

$$\bullet \ b \stackrel{(A,B)}{=} \beta + \frac{\sum_{i=1}^{n} (x_i - \bar{x})(\varepsilon_i - \bar{\varepsilon})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (C)

•
$$\sum_{i=1}^{n} (x_i - \bar{x}) \bar{\varepsilon} = \bar{\varepsilon} \sum_{i=1}^{n} (x_i - \bar{x}) = \bar{\varepsilon} (\sum_{i=1}^{n} x_i - n\bar{x})$$
$$= \bar{\varepsilon} (\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i) = 0$$
(D)

•
$$b \stackrel{(\mathsf{C},\mathsf{D})}{=} \beta + \frac{\sum_{i=1}^n (x_i - \bar{x})\varepsilon_i}{\sum_{i=1}^n (x_i - \bar{x})^2} = \beta + \sum_{i=1}^n c_i \varepsilon_i \text{ with } c_i = \frac{x_i - \bar{x}}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Lecture 1.4, Slide 6 of 13, Erasmus School of Economics

Formula for $\sigma_b^2 = \text{var}(b)$

•
$$b = \beta + \sum_{i=1}^{n} c_i \varepsilon_i$$
 with $c_i = \frac{x_i - \bar{x}}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$

•
$$\sigma_b^2 = E((b - E(b))^2) = E((b - \beta)^2)$$

= $E((\sum_{i=1}^n c_i \varepsilon_i)^2) = E(\sum_{i=1}^n \sum_{j=1}^n c_i c_j \varepsilon_i \varepsilon_j)$
 $\stackrel{\text{(A2)}}{=} \sum_{i=1}^n \sum_{j=1}^n c_i c_j E(\varepsilon_i \varepsilon_j)$
 $\stackrel{\text{(A5)}}{=} \sum_{i=1}^n c_i^2 E(\varepsilon_i^2)$
 $\stackrel{\text{(A4)}}{=} \sigma^2 \sum_{i=1}^n c_i^2$
 $\stackrel{\text{(*)}}{=} \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$

• Notes: Step A5:
$$E(\varepsilon_i \varepsilon_i) = 0$$
 for all $i \neq j$

Step (*):
$$\sum_{i=1}^{n} c_i^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{(\sum_{i=1}^{n} (x_i - \bar{x})^2)^2} = \frac{1}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Test on slope parameter β

• Seen before: $b = \beta + \sum_{i=1}^n c_i \varepsilon_i$, $E(b) = \beta$, and $\sigma_b^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$

• A7: ε_i normal, then b normal (see Building Blocks)

- So: $b \sim \mathcal{N}(\beta, \sigma_b^2)$ and $Z = \frac{b-\beta}{\sigma_b} \sim \mathcal{N}(0, 1)$
- Replace unknown σ^2 by $s^2=\frac{1}{n-2}\sum_{i=1}^n e_i^2$, then $s_b^2=\frac{s^2}{\sum_{i=1}^n (x_i-\bar{x})^2}$
- $t_b = \frac{b-\beta}{s_b} \sim t(n-2)$ (compare Building Blocks)
- t-test on H_0 : $\beta=0$ based on $t_b=\frac{b}{s_b}$ Rule-of-thumb for large n: reject H_0 if $t_b<-2$ or $t_b>2$.

Lecture 1.4, Slide 9 of 13, Erasmus School of Economics

Test question

Test

Let measurement scale of the dependent variable y be fixed, and compare two scales for the explanatory factor x: first x is measured in 10 units (recorded value of 5 corresponds to 50 units), and later in 100 units (recorded value of 5 corresponds to 500 units).

Which case gives the widest confidence interval for b?

- Answer: For U units, the value of x changes from $\frac{U}{10}$ to $\frac{U}{100}$, so x becomes 10 times as small.
- As $b = \frac{\sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y})}{\sum_{i=1}^{n} (x_i \bar{x})^2}$, b is multiplied by $\frac{\frac{1}{10}}{\frac{1}{100}} = 10$.
- So b becomes 10 times as large, and same for confidence interval.

Ezafus,

Confidence and prediction intervals

• Approximate 95% confidence interval for *b*: $\frac{b-\beta}{s} \approx N(0,1) \text{ with interval } (-2,2)$

•
$$-2 \leq \frac{b-\beta}{s_b} \leq 2$$
 \rightarrow $b-2s_b \leq \beta \leq b+2s_b$

• Approximate 95% prediction interval for *y* (see before):

$$a + bx - 2s \le y \le a + bx + 2s$$

• Note: $-2s \le \varepsilon \le 2s$ is approximate 95% confidence interval for ε , uncertainty in a and b is neglected here.

-Crafus

Lecture 1.4, Slide 10 of 13, Erasmus School of Economics

Seven assumptions

Assumption	Violation	Lecture
A1: $y_i = \alpha + \beta x_i + \varepsilon_i$	More than one x var.	2
	Choose among x -var.	3
	Binary y_i (0 or 1)	5
A2: x_i fixed	Random x_i	4
A3/A6: $E(\varepsilon_i) = 0$,	Parameter breaks	3
lpha,eta fixed		
A4: Homoskedastic	Heteroskedastic errors	6
A5: Uncorrelated	Correlated errors	6
A7: ε normal	Often not needed	2-6

TRAINING EXERCISE 1.4

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

Lafins

Lecture 1.4, Slide 13 of 13, Erasmus School of Economics