→ thesis method-1

Machine Learning Based Unbalance Detection of a Rotating Shaft Using Vibration Data

Approach 1: Convolutional Neural Network on Raw Sensor Data

```
import pandas as pd
import numpy as np
import tensorflow as tf
import scipy as sc
import zipfile
from matplotlib import pyplot as plt
from matplotlib.colors import LogNorm
```

Reading Measurement Data and Preprocessing

```
use_reference_models = True
import os

pwd
     'C:\\Users\\IITJMU'

model_path = 'reference'

import pandas as pd
data0D = pd.read_csv("0D.csv")
data0D
```

	V_in	Measured_RPM	Vibration_1	Vibration_2	Vibration_3
0	0.0	28.610235	0.000000	0.000000	0.000000
1	0.0	28.610235	0.000000	0.000000	0.000000
2	0.0	28.610235	0.000000	0.000000	0.000000
3	0.0	28.610235	0.000000	0.000000	0.000000
4	0.0	28.610235	0.000000	0.000000	0.000000
26423290	2.0	643.383380	0.001339	0.000769	0.003015
26423291	2.0	643.383380	0.001261	0.000952	0.003138
26423292	2.0	643.383380	0.000966	0.000895	0.003057
26423293	2.0	643.383380	0.000976	0.000744	0.002798
26423294	2.0	643.383380	0.000740	0.000880	0.002686

26423295 rows × 5 columns

```
data0E = pd.read_csv('0E.csv')
data1D = pd.read_csv('1D.csv')
data1E = pd.read_csv('1E.csv')
data2D = pd.read_csv('2D.csv')
data2E = pd.read_csv('2E.csv')
data3D = pd.read_csv('3D.csv')
data3E = pd.read_csv('3E.csv')
data4D = pd.read_csv('4D.csv')
data4E = pd.read_csv('4E.csv')
```

data4E

	V_in	Measured_RPM	Vibration_1	Vibration_2	Vibration_3				
0	0.0	28.610235	0.000000	0.000000	0.000000				
1	0.0	28.610235	0.000000	0.000000	0.000000				
2	0.0	28.610235	0.000000	0.000000	0.000000				
3	0.0	28.610235	0.000000	0.000000	0.000000				
4	0.0	28.610235	0.000000	0.000000	0.000000				
6914042	4.0	1080.458200	0.002939	-0.003955	0.002704				
6914043	4.0	1080.458200	-0.000345	0.002913	0.000757				
6914044	4.0	1080.458200	-0.003408	0.002537	-0.001725				
<pre>skip = 50000 data0D = data0D.iloc[skip:,:] data1D = data1D.iloc[skip:,:] data2D = data2D.iloc[skip:,:] data3D = data3D.iloc[skip:,:] data4D = data4D.iloc[skip:,:] data4E = data4D.iloc[skip:,:] data6E = data6E.iloc[skip:,:] data1E = data1E.iloc[skip:,:] data2E = data2E.iloc[skip:,:] data3E = data3E.iloc[skip:,:] data4E = data4E.iloc[skip:,:]</pre>									

At the moment only the first vibration sensor Vibration_1 is used for the analysis. All four data streams may need to be included in the future.

```
labels = {'no_unbalance':0, 'unbalance':1}
sensor = 'Vibration_1'
samples\_per\_second = 4096
seconds\_per\_analysis = 1.0
window = int(samples_per_second*seconds_per_analysis)
def get_features(data, label):
    n = int(np.floor(len(data)/window))
    data = data[:int(n)*window]
    X = data.values.reshape((n, window))
    y = np.ones(n)*labels[label]
    return X,y
X0,y0 = get_features(data0D[sensor], "no_unbalance")
X1,y1 = get_features(data1D[sensor], "unbalance")
X2,y2 = get_features(data2D[sensor], "unbalance")
X3,y3 = get_features(data3D[sensor], "unbalance")
X4,y4 = get_features(data4D[sensor], "unbalance")
X=np.concatenate([X0, X1, X2, X3, X4])
y=np.concatenate([y0, y1, y2, y3, y4])
X0_val, y0_val = get_features(data0E[sensor], "no_unbalance")
X1_val, y1_val = get_features(data1E[sensor], "unbalance")
X2_val, y2_val = get_features(data2E[sensor], "unbalance")
X3_val, y3_val = get_features(data3E[sensor], "unbalance")
X4_val, y4_val = get_features(data4E[sensor], "unbalance")
X_val=np.concatenate([X0_val, X1_val, X2_val, X3_val, X4_val])
y\_val=np.concatenate([y0\_val, y1\_val, y2\_val, y3\_val, y4\_val])
```

Now the dataset for training X contains 32142 samples with 4096 values each as well as the associated label information y with 32142 labels (one label per sample). The dataset for validating the trained model X_val contains 8420 samples plus the labels y_val accordingly.

```
print(X.shape, y.shape, X_val.shape, y_val.shape)
(32166, 4096) (32166,) (8359, 4096) (8359,)
```

▼ Train-Test-Split

The dataset for training (X,y) is splitted into two subsets (X_train,y_train) and (X_test,y_test).

```
from sklearn.model_selection import train_test_split
train_test_ratio = 0.9
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 1-train_test_ratio, random_state = 0)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
```

Convolutional Neural Net (CNN)

▼ Test with Different Layer Numbers

```
from tensorflow.keras.models import Sequential, load_model, Model
from \ tensorflow. keras. layers \ import \ Batch Normalization, Leaky ReLU, Dense, Dropout
from tensorflow.keras.layers import Input,Conv1D,MaxPooling1D,Flatten,ReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.regularizers import 11_12
weight_for_0 = len(y)/(2*len(y[y==0]))
weight_for_1 = len(y)/(2*len(y[y==1]))
class_weight = {0: weight_for_0, 1: weight_for_1}
def train_models(n_conv_layers):
    #n_conv_layers = 3 # [1,2,3,4]
    n_dense_units = 128
    dropout_rate = 0.0
    use_batch_normalization = True # [True, False]
    filter_size = 9 # [5,7,9]
    learning_rate = 0.0001
    n_epochs = 100 # [50,100,200]
    X_in = Input(shape=(X_train.shape[1],1))
    x = X_in
    for j in range(n_conv_layers):
        print(j)
        x = Conv1D(filters=(j+1)*10,
                   kernel_size=filter_size,
                   strides=1.
                   activation='linear',
                   kernel_initializer='he_uniform')(x)
        \hbox{if use\_batch\_normalization:}\\
            x = BatchNormalization()(x)
        x = LeakyReLU(alpha=0.05)(x)
        x = MaxPooling1D(pool_size=5, strides=2)(x)
    x = Flatten()(x)
    x = Dense(units = n_dense_units, activation='linear')(x)
    x = Dropout(rate=dropout_rate)(x)
    X_{out} = Dense(units = 1, activation = 'sigmoid')(x)
    classifier = Model(X_in, X_out)
    classifier.summary()
    best model filepath = f"{model path}/cnn {n conv layers} layers.h5"
    checkpoint = ModelCheckpoint(best_model_filepath, monitor='val_loss',
                                 verbose=1, save_best_only=True, mode='min')
    classifier.compile(optimizer = Adam(lr=learning_rate), loss = 'binary_crossentropy',
                       metrics = ['accuracy'])
    classifier.fit(X_train, y_train, epochs = n_epochs, batch_size = 64,
                   validation_data=(X_test, y_test), callbacks=[checkpoint],
                   class_weight=class_weight)
    classifier = load_model(best_model_filepath)
    score = classifier.evaluate(X_val, y_val)
if not use_reference_models:
    for i in range(1,5):
       train models(i)
```

▼ Evaluation

```
X_val_1 = X_val[:len(y0_val),:,:]
X_val_2 = X_val[len(y0_val):len(y0_val)+len(y1_val),:,:]
X_val_3 = X_val[len(y0_val)+len(y1_val):len(y0_val)+len(y1_val)+
```

```
len(y2_val),:,:]
X_{val_4} = X_{val[len(y0_val)+len(y1_val)+len(y2_val):len(y0_val)+len(y2_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_va
                           len(y1_val)+len(y2_val)+len(y3_val),:,:]
X_{val_5} = X_{val[len(y0_val)+len(y1_val)+len(y2_val)+len(y3_val):len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_val)+len(y0_va
                           len(y1\_val) + len(y2\_val) + len(y3\_val) + len(y4\_val),:,:]
accuracies = []
accuracies_all = []
for layer_n in range(1,5):
       filepath = f"{model_path}/cnn_{layer_n}_layers.h5"
       model_i = load_model(filepath)
      val_acc_1 = model_i.evaluate(X_val_1, y0_val)[1]
       val_acc_2 = model_i.evaluate(X_val_2, y1_val)[1]
       val acc_3 = model_i.evaluate(X_val_3, y2_val)[1]
      val_acc_4 = model_i.evaluate(X_val_4, y3_val)[1]
       val_acc_5 = model_i.evaluate(X_val_5, y4_val)[1]
      val_acc_all = model_i.evaluate(X_val, y_val)[1]
       accuracies_layer_i = [val_acc_1, val_acc_2, val_acc_3, val_acc_4, val_acc_5]
      accuracies.append(accuracies_layer_i)
      accuracies_all.append(val_acc_all)
accuracies = np.arrav(accuracies)
accuracies_all = np.array(accuracies_all)
         53/53 [===============] - 3s 6ms/step - loss: 0.7369 - accuracy: 0.7443
         53/53 [================================== ] - 0s 5ms/step - loss: 0.0497 - accuracy: 0.9815
         53/53 [========================] - 1s 9ms/step - loss: 0.0589 - accuracy: 0.9832
         53/53 [================= ] - 0s 8ms/step - loss: 0.0249 - accuracy: 0.9916
         53/53 [================ ] - 0s 8ms/step - loss: 1.0724e-07 - accuracy: 1.0000
         262/262 [============= ] - 3s 10ms/step - loss: 0.0981 - accuracy: 0.9806
         accuracies_all
         array([0.93551862, 0.90872115, 0.98061967, 0.97631294])
fig=plt.figure(figsize=(12,8))
ax1=plt.subplot(111, title = "Unbalance Classification Trained with all Unbalances")
unbalances = np.array([0, 4.59e-5, 6.07e-5,7.55e-5,1.521e-4])
ax1.plot(1e6*unbalances, accuracies[0,:], label=f"1 conv. layer, mean: \{100.0*accuracies\_all[0]:.1f\}\%", marker="+", ls="--"\}
ax1.plot(1e6*unbalances, accuracies[1,:], label=f"2 conv. layers, mean: \{100.0*accuracies\_all[1]:.1f\}\%", marker="+", ls="--")
ax1.plot(1e6*unbalances, accuracies[2,:], label=f"3 conv. layers, mean: \{100.0*accuracies\_all[2]:.1f\}\%", marker="+", ls="--")
ax1.plot(1e6*unbalances, accuracies[3,:], label=f"4 conv. layers, mean: {100.0*accuracies_all[3]:.1f}%", marker="+", ls="--")
plt.ylabel("Accuracy on Evaluation Dataset")
plt.xlabel("Unbalance Factor [mm g]")
plt.legend(bbox_to_anchor=(1.04,1), loc="upper left")
plt.ylim([0.45, 1.05])
plt.grid(True)
plt.tight_layout()
plt.show()
```


▼ Rotation Speed Dependent Evaluation

```
from tensorflow.keras.models import load_model
model1 = load_model(f"{model_path}/cnn_1_layers.h5")
model2 = load_model(f"{model_path}/cnn_2_layers.h5")
model3 = load_model(f"{model_path}/cnn_3_layers.h5")
model4 = load_model(f"{model_path}/cnn_4_layers.h5")
def v2rpm(v):
    return 212*v + 209
from scipy.stats import mode
# 3s ramp up
fade_in = np.arange(0.0, 4.0, 4.0/(3*4096))
# complete voltage sweep
measurement_cycle = np.repeat(np.arange(4.0, 8.2, 0.1), 4096*20.0)
# measurement: start-up + 2 voltage sweeps
measurement = np.concatenate([fade_in, np.tile(measurement_cycle,3)])
# select the data as actually used
measurement1 = measurement[50000:]
measurement1 = measurement1[:int(len(measurement1)/4096)*4096].reshape(-1,4096)
voltages_measurement = mode(measurement1, axis=1)[0]
voltages_used = np.concatenate([voltages_measurement[:len(X_val_1)],
                                voltages_measurement[:len(X_val_2)],
                                voltages measurement[:len(X val 3)],
                                voltages_measurement[:len(X_val_4)],
                                voltages_measurement[:len(X_val_5)]])
rpms_used = v2rpm(voltages_used)
     C:\Users\IITJMU\AppData\Local\Temp\ipykernel_7636\1398942425.py:14: FutureWarning: Unlike other reduction functions (e.g. `skew`, `
       voltages_measurement = mode(measurement1, axis=1)[0]
rpm_borders = np.arange(1050, 1975, 25)
errors_per_rpm_range1 = []
errors_per_rpm_range2 = []
errors_per_rpm_range3 = []
errors_per_rpm_range4 = []
for i in range(len(rpm_borders)-1):
    eval_inds = np.where((rpms_used>rpm_borders[i])&(rpms_used<rpm_borders[i+1]))[0]</pre>
    errors per rpm range1.append(
        1-np.mean(np.abs(np.int32(model1.predict(X_val[eval\_inds])>0.5).reshape(-1)-y\_val[eval\_inds])))
    errors_per_rpm_range2.append(
        1-np.mean(np.abs(np.int32(model2.predict(X_val[eval_inds])>0.5).reshape(-1)-y_val[eval_inds])))
    errors_per_rpm_range3.append(
        1-np.mean(np.abs(np.int32(model3.predict(X_val[eval_inds])>0.5).reshape(-1)-y_val[eval_inds])))
    errors per rpm range4.append(
        1-np.mean(np.abs(np.int32(model4.predict(X_val[eval_inds])>0.5).reshape(-1)-y_val[eval_inds])))
```

```
6/6 [======] - 0s 8ms/step
   6/6 [======] - 0s 9ms/step
   6/6 [=======] - 0s 16ms/step
   13/13 [============ ] - 0s 9ms/step
   13/13 [=========== ] - 0s 10ms/step
   13/13 [=======] - 0s 12ms/step
   7/7 [======] - 0s 5ms/step
   7/7 [=======] - 0s 7ms/step
   7/7 [======] - 0s 9ms/step
   7/7 [======= ] - 0s 11ms/step
   7/7 [======] - 0s 5ms/sten
   7/7 [======= 1 - 0s 7ms/step
   7/7 [=======] - 0s 9ms/step
   7/7 [======= ] - 0s 11ms/step
   7/7 [======] - 0s 6ms/step
   7/7 [======] - 0s 7ms/step
   7/7 [=======] - 0s 11ms/step
   7/7 [======] - 0s 5ms/step
   7/7 [======] - 0s 7ms/step
7/7 [======] - 0s 10ms/step
   7/7 [=======] - 0s 11ms/step
   7/7 [=======] - 0s 5ms/step
   7/7 [======] - 0s 7ms/step
   7/7 [=======] - 0s 10ms/step
   7/7 [======] - 0s 11ms/step
   13/13 [======] - 0s 5ms/step
   13/13 [============ ] - 0s 8ms/step
   13/13 [============ ] - 0s 10ms/step
   13/13 [=========== ] - 0s 13ms/step
   7/7 [============= ] - 0s 5ms/step
7/7 [======== ] - 0s 7ms/step
   7/7 [=======] - 0s 9ms/step
   7/7 [=======] - 0s 11ms/step
   7/7 [======] - 0s 5ms/step
   7/7 [=======] - 0s 7ms/step
   7/7 [=======] - 0s 9ms/step
   7/7 [======== ] - 0s 11ms/step
   7/7 [======] - 0s 5ms/step
   7/7 [======= ] - 0s 7ms/sten
   7/7 [======= ] - 0s 11ms/step
   7/7 [=======] - 0s 5ms/step
   7/7 [======= ] - 0s 7ms/step
   7/7 [======] - 0s 9ms/step
   7/7 [======= ] - 0s 11ms/step
   13/13 [=========== ] - 0s 5ms/step
   13/13 [=======] - 0s 7ms/step
   13/13 [=========== ] - Os 10ms/step
   13/13 [============ ] - Os 12ms/step
   7/7 [======= ] - 0s 5ms/step
   7/7 [=======] - 0s 7ms/step
   7/7 [======= ] - 0s 10ms/step
   7/7 [=======] - 0s 12ms/step
   7/7 [======] - 0s 5ms/step
   7/7 [======== ] - 0s 7ms/step
fig=plt.figure(figsize=(12,8))
ax1=plt.subplot(111, title = "Rotation Speed Dependent Evaluation")
ax1.plot(np.array(rpm_borders[:-1])+25, errors_per_rpm_range1, marker="+", ls="--", label="1 conv. layer")
ax1.plot(np.array(rpm_borders[:-1])+25, errors_per_rpm_range2, marker="+", ls="--", label="2 conv. layers") ax1.plot(np.array(rpm_borders[:-1])+25, errors_per_rpm_range3, marker="+", ls="--", label="3 conv. layers")
ax1.plot(np.array(rpm_borders[:-1])+25, errors_per_rpm_range4, marker="+", ls="--", label="4 conv. layers")
plt.ylabel("Accuracy on Evaluation Dataset")
plt.xlabel("Rotation Speed [rpm]")
plt.legend(bbox_to_anchor=(1.04,1), loc="upper left")
plt.ylim([0.45, 1.05])
plt.grid(True)
plt.show()
```


Pairwise Unbalance Training and Evaluation

```
X_{dev} = [X0, X1, X2, X3, X4]
y_{dev} = [y0, y1, y2, y3, y4]
X_val_separated = [X_val_1, X_val_2, X_val_3, X_val_4, X_val_5]
y_val_separated = [y0_val, y1_val, y2_val, y3_val, y4_val]
for n_conv_layers in range(1,5):
    for dataset_i in range(4):
        X_dev_i = np.concatenate([X_dev[0], X_dev[dataset_i+1]])
        y_dev_i = np.concatenate([y_dev[0], y_dev[dataset_i+1]])
        X_{val_i} = np.concatenate([X_{val_separated[0]}, X_{val_separated[dataset_i+1]])
        y\_val\_i = np.concatenate([y\_val\_separated[0], y\_val\_separated[dataset\_i+1]])
        train_test_ratio = 0.9
        X_train_i, X_test_i, y_train_i, y_test_i = train_test_split(
            X_dev_i,y_dev_i, test_size = 1-train_test_ratio, random_state = 0)
        X_train_i = np.reshape(X_train_i, (X_train_i.shape[0], X_train_i.shape[1], 1))
        X_test_i = np.reshape(X_test_i, (X_test_i.shape[0], X_test_i.shape[1], 1))
        if not use_reference_models:
            weight_for_0 = len(y_dev_i)/(2*len(y_dev_i[y_dev_i==0]))
            \label{eq:weight_for_1} weight\_for_1 = len(y\_dev\_i)/(2*len(y\_dev\_i[y\_dev\_i==1]))
            class_weight = {0: weight_for_0, 1: weight_for_1}
            n_{dense\_units} = 128
            dropout_rate = 0.0
            use_batch_normalization = True # [True, False]
            filter_size = 9 # [5,7,9]
            learning_rate = 0.0001
            n_epochs = 100 # [50,100,200]
            X_in = Input(shape=(X_train.shape[1],1))
            x = X_in
            for j in range(n_conv_layers):
                print(j)
                x = Conv1D(filters=(j+1)*10,
                            kernel_size=filter_size,
                            strides=1.
                            activation='linear',
                            kernel_initializer='he_uniform')(x)
                if use_batch_normalization:
                    x = BatchNormalization()(x)
                x = LeakyReLU(alpha=0.05)(x)
                x = MaxPooling1D(pool_size=5, strides=2)(x)
            x = Flatten()(x)
            x = Dense(units = n_dense_units, activation='linear')(x)
            x = ReLU()(x)
            x = Dropout(rate=dropout_rate)(x)
            X_out = Dense(units = 1, activation = 'sigmoid')(x)
            classifier = Model(X_in, X_out)
            best_model_filepath = f"{model_path}/cnn_{n_conv_layers}_layers_dataset_pair_{dataset_i}.h5"
            checkpoint = ModelCheckpoint(best_model_filepath, monitor='val_loss',
                                          verbose=1, save_best_only=True, mode='min')
```

```
classifier.compile(optimizer = Adam(lr=learning_rate), loss = 'binary_crossentropy',
                  metrics = ['accuracy'])
       classifier.summary()
       classifier.fit(X_train_i, y_train_i, epochs = n_epochs, batch_size = 128,
              validation_data=(X_test_i, y_test_i), callbacks=[checkpoint],
                class_weight=class_weight)
    best_model_filepath = f"{model_path}/cnn_{n_conv_layers}_layers_dataset_pair_{dataset_i}.h5"
    classifier = load_model(best_model_filepath)
     train_acc = classifier.evaluate(X_train_i, y_train_i)
    val_acc = classifier.evaluate(X_val_i, y_val_i)
    print(f"Layers: {layer_n}, dataset pair {dataset_i}")
    print(train_acc)
    print(val_acc)
   Layers: 4, dataset pair 0
   [0.07540404796600342, 0.9675414562225342]
   [1.3558255434036255, 0.8118456602096558]
   Layers: 4, dataset pair 1
   [0.15350987017154694, 0.9344785809516907]
   [0.998137891292572, 0.6370170712471008]
   Layers: 4, dataset pair 2
   \hbox{\tt [0.17882083356380463, 0.9203004837036133]}
   [0.8464228510856628, 0.6777378916740417]
   Layers: 4, dataset pair 3
   [0.06612363457679749, 0.9858388900756836]
   [0.025488944724202156, 0.9949178099632263]
   Layers: 4, dataset pair 0
   [0.032745297998189926, 0.9952520728111267]
   [2.8528213500976562, 0.749626100063324]
   Layers: 4, dataset pair 1
   [0.03537148982286453, 0.9918853640556335]
   [3.244418144226074, 0.60527104139328]
   105/105 [=============] - 1s 8ms/step - loss: 0.5635 - accuracy: 0.8196
   Layers: 4, dataset pair 2
   [0.08616558462381363, 0.9596753120422363]
   [0.5634729266166687, 0.8195691108703613]
  Layers: 4, dataset pair 3
   [0.017239928245544434, 0.9987047910690308]
   [0.023241624236106873, 0.9955157041549683]
   Layers: 4, dataset pair 0
   [0.009891502559185028, 0.998273491859436]
   [4.623722076416016, 0.7283876538276672]
   362/362 [=================== ] - 6s 15ms/step - loss: 0.0194 - accuracy: 0.9942
   Layers: 4, dataset pair 1
   [0.01937815546989441, 0.9942161440849304]
   [6.682938098907471, 0.5810123085975647]
   Layers: 4, dataset pair 2
   [0.012512973509728909, 0.9951645135879517]
   [1.0235258340835571, 0.8129862546920776]
  Layers: 4, dataset pair 3
accuracies_single = []
for layer_n in range(1,5):
  accuracies_layer_i = []
  for dataset_i in range(4):
    X_val_i = np.concatenate([X_val_separated[0], X_val_separated[dataset_i+1]])
    y\_val\_i = np.concatenate([y\_val\_separated[0], y\_val\_separated[dataset\_i+1]])
    filepath = f"{model_path}/cnn_{layer_n}_layers_dataset_pair_{dataset_i}.h5"
    model_i = load_model(filepath)
    accuracies_layer_i.append(model_i.evaluate(X_val_i, y_val_i)[1])
  accuracies_single.append(accuracies_layer_i)
accuracies_single = np.array(accuracies_single)
```

```
105/105 [================== - 1s 6ms/step - loss: 0.9981 - accuracy: 0.6370
   105/105 [============] - 1s 5ms/step - loss: 0.8464 - accuracy: 0.6777
   105/105 [==============] - 1s 5ms/step - loss: 0.0255 - accuracy: 0.9949
   105/105 [============] - 1s 7ms/step - loss: 0.5635 - accuracy: 0.8196
   105/105 [===========] - 1s 7ms/step - loss: 0.0232 - accuracy: 0.9955
   105/105 [================ ] - 1s 10ms/step - loss: 4.6237 - accuracy: 0.7284
   105/105 [================= ] - 1s 10ms/step - loss: 1.0235 - accuracy: 0.8130
   105/105 [============= ] - 2s 13ms/step - loss: 0.0042 - accuracy: 0.9982
   105/105 [============== ] - 2s 12ms/step - loss: 3.4709 - accuracy: 0.7712
   105/105 [============] - 2s 12ms/step - loss: 0.0059 - accuracy: 0.9982
np.mean(accuracies_single, axis=1)
   array([0.78037961, 0.79249549, 0.78014812, 0.77707924])
fig=plt.figure(figsize=(12,8))
ax1=plt.subplot(111, title = "Pairwise Unbalance Classification")
unbalances = np.array([0, 4.59e-5, 6.07e-5, 7.55e-5, 1.521e-4])
ax1.plot(1e6*unbalances[1:], accuracies_single[0,:],
      label=f"1\ hidden \quad FClayer,\ mean:\ \{100.0*np.mean(accuracies\_single[0,:]):.1f\}\%",\ marker="+",\ ls="--")
ax1.plot(1e6*unbalances[1:], accuracies_single[1,:],
      label=f"2 hidden FClayers, mean: {100.0*np.mean(accuracies single[1,:]):.1f}%", marker="+", ls="--")
ax1.plot(1e6*unbalances[1:], accuracies_single[2,:],
      label=f"3 hidden FClayers, mean: {100.0*np.mean(accuracies_single[2,:]):.1f}%", marker="+", ls="--")
ax1.plot(1e6*unbalances[1:], accuracies_single[3,:],
      label=f"4\ hidden \ FClayers,\ mean: \ \{100.0*np.mean(accuracies\_single[3,:]):.1f\}\%",\ marker="+",\ ls="--")
```


plt.ylabel("Accuracy on Evaluation Dataset")
plt.xlabel("Unbalance Factor [mm g]")

plt.ylim([0.45, 1.05])
plt.grid(True)
plt.tight_layout()

plt.legend(bbox_to_anchor=(1.04,1), loc="upper left")

▼ Plotting all Experiments

```
fig=plt.figure(figsize=(15,5))
ax1=plt.subplot(132, title = "Unbalance Classification Trained\nwith all Unbalances")
unbalances = np.array([0, 4.59e-5, 6.07e-5, 7.55e-5, 1.521e-4])
ax1.plot(1e6*unbalances, accuracies[0,:],
          label=f"1\ conv.\ layer,\ mean:\ \{100.0*np.mean(accuracies[0,:]):.1f\}\%",\ marker="+",\ ls="--")
ax1.plot(1e6*unbalances, accuracies[1,:],
          label=f"2 conv. layers, mean: \{100.0*np.mean(accuracies[1,:]):.1f\}\%", marker="+", ls="--")
ax1.plot(1e6*unbalances, accuracies[2,:],
          label=f"3\ conv.\ layers,\ mean:\ \{100.0*np.mean(accuracies[2,:]):.1f\}\%",\ marker="+",\ ls="--")
ax1.plot(1e6*unbalances, accuracies[3,:],
          label=f"4 conv. layers, mean: {100.0*np.mean(accuracies[3,:]):.1f}%", marker="+", ls="--")
plt.ylabel("Accuracy on Evaluation Dataset")
plt.xlabel("Unbalance Factor [mm g]")
plt.ylim([0.45, 1.05])
plt.legend(loc="lower right")
ax1.text(-20, 1.05,"(b)", fontsize=12)
ax2=plt.subplot(131, title = "Pairwise Unbalance Classification")
ax2.plot(1e6*unbalances[1:], accuracies_single[0,:],
          label=f"1\ conv.\ layer,\ mean:\ \{100.0*np.mean(accuracies\_single[0,:]):.1f\}\%",\ marker="+",\ ls="--")
ax2.plot(1e6*unbalances[1:], accuracies_single[1,:],
          label=f"2\ conv.\ layers,\ mean:\ \{100.0*np.mean(accuracies\_single[1,:]):.1f\}\%",\ marker="+",\ ls="--")
ax2.plot(1e6*unbalances[1:], accuracies_single[2,:],
          label=f"3 conv. layers, mean: {100.0*np.mean(accuracies_single[2,:]):.1f}%", marker="+", ls="--")
ax2.plot(1e6*unbalances[1:], accuracies_single[3,:],
          label=f"4\ conv.\ layers,\ mean:\ \{100.0*np.mean(accuracies\_single[3,:]):.1f\}\%",\ marker="+",\ ls="--")
plt.ylabel("Accuracy on Evaluation Dataset")
plt.xlabel("Unbalance Factor [mm g]")
plt.ylim([0.45, 1.05])
plt.legend()
ax2.text(33, 1.05, "(a)", fontsize=12)
ax3 = plt.subplot(133, title="Unbalance Classification Trained with all\nUnbalances: Rotation Speed Dependency")
ax3.plot(np.array(rpm_borders[:-1])+25, errors_per_rpm_range1,
          label=f"1 conv. layer, mean: {100.0*np.mean(accuracies[0,:]):.1f}%", marker="+", ls="--")
ax3.plot(np.array(rpm_borders[:-1])+25, errors_per_rpm_range2,
          label=f"2\ conv.\ layers,\ mean:\ \{100.0*np.mean(accuracies[1,:]):.1f\}\%",\ marker="+",\ ls="--")
ax3.plot(np.array(rpm_borders[:-1])+25, errors_per_rpm_range3,
          label=f"3\ conv.\ layers,\ mean:\ \{100.0*np.mean(accuracies[2,:]):.1f\}\%",\ marker="+",\ ls="--")
ax3.plot(np.array(rpm_borders[:-1])+25, errors_per_rpm_range4,
          label=f"4 conv. layers, mean: {100.0*np.mean(accuracies[3,:]):.1f}%", marker="+", ls="--")
plt.ylabel("Accuracy on Evaluation Dataset")
plt.xlabel("Rotation Speed [RPM]")
plt.ylim([0.45, 1.05])
plt.legend(loc="lower right")
ax3.text(960, 1.05, "(c)", fontsize=12)
plt.tight_layout()
plt.show()
                                             Unbalance Classification Trained with all Unbalances
              Pairwise Unbalance Classification
            1 conv. layer, mean: 78.0%
2 conv. layers, mean: 79.2%
3 conv. layers, mean: 78.0%
4 conv. layers, mean: 77.7%
                                      1.0
```