Ein paar Keksprobleme

Contents

0.1	Approximation of π	with cooked Spaghet	ti						
0.1	Approximation of n	with cooked bpagnet	/UI	 	 	 	 	 	

0.1 Approximation of π with cooked Spaghetti

Consider a square with edges of length $L \in \mathbb{R}_{\geq 0}$. If we now consider cooked spaghetti of length $\ell \leq L$ and throw this cooked spaghetti into the square. Assume this can be modeled as a random walk of length ℓ from one endpoint of the spaghetti.

Can we approximate π by the average number of intersections a spaghetti has with the square.

PROOF: For more than 100 steps, the probability distribution for the random walk to end at a specific point is a function of the distance to the origin. This is given by a Raylight distribution

$$P(r) = \frac{2r}{N} e^{-r^2/N}$$
 (0.1.1)

here the step length was 1.

Assuming now that this step length is ℓ , we get

$$P(r) = \frac{2r}{N\ell} e^{\frac{-r^2}{N\ell}}$$

$$(0.1.2)$$

Keksprobleme (None) Hash: (None)