Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca http://gianluca.dellavedova.org

28 novembre 2018

Alberi evolutivi

Gianluca Della Vedova Elementi di Bioinformatica

- Change over generations
- Random mutations

Gianluca Della Vedova Elementi di Bioinformatica 2/1

Actual Mutation

Gianluca Della Vedova Elementi di Bioinformatica

Hollywood Mutation

Gianluca Della Vedova

Elementi di Bioinformatica

Individual Evolution

• Cells accumulate mutations throughout the entire life

Gianluca Della Vedova Elementi di Bioinformatica

Character-based evolution

A possible rule

Each character is gained exactly once in the tree.

Gianluca Della Vedova Elementi di Bioinformatica

Perfect Phylogeny Problem

	Α	J	Н	L	V
Scorpion	0	0	0	0	0
Lamprey	0	0	0	0	1
Tuna	0	1	0	0	1
Salamander	0	1	0	1	1
Turtle	1	1	0	1	1
Leopard	1	1	1	1	1

Problem

- Input: a binary matrix M
- Output: a tree explaining M, if it exists

Linear time algorithm (Gusfield, Networks 1991)

- Radix Sort the columns by decreasing number of 1s
- ② Build the tree, inserting the species one at a time

Characters and States

Change of state

- A character c is **gained** \Rightarrow the state of c changes from 0 to 1 in an edge
- A character c is **lost** \Rightarrow the state of c changes from 1 to 0 in an edge (backmutation)

Models of Evolution

Each character *c* is gained **exactly once** in the tree.

- Perfect Phylogeny: No backmutations
- ② Persistent Phylogeny: Each character can be lost at most once in the tree. 012 model
- 3 Dollo parsimony: Unlimited backmutations

Gianluca Della Vedova Elementi di Bioinformatica Gianluca Della Vedova Elementi di Bioinformatica 8/1

Tumors

- A tumor is a mixture of healthy and cancer cells
- A tumor is a mixture of cancer clones

Gianluca Della Vedova

Elementi di Bioinformatica

9/1

11/1

Tumor Evolution

Different clones make different fractions of the tumor

12/1

14/1

16/1

Gianluca Della Vedova

Elementi di Bioinformatica

Elementi di Bioinformatica

10/1

Tumor Evolution

- A sample is a mixture of clones
- For each sample, we have the **frequency** of each mutation
- frequency matrix F

A 0 S_1 0.2 0.6 0.6 0.4 0.2 0.0 S_2 0.0 0.4 1.0 0.0 0.0 0.4

Gianluca Della Vedova

Elementi di Bioinformatica

Tumor Evolution: Compute

Gianluca Della Vedova

Approcci basati su parsimonia.

- Piccola vs grande parsimonia
- Algoritmo di Fitch
- Algoritmo di Sankoff
- Confronto

Approcci basati su distanze.

Gianluca Della Vedova Elementi di Bioinformatica

13/1

Gianluca Della Vedova Elementi di Bioinformatica

Ultrametrica e orologio molecolare.

Alberi e distanze additive.

Gianluca Della Vedova Elementi di Bioinformatica 15/1 Gianluca Della Vedova Elementi di Bioinformatica

Algoritmo per matrice di distanze additive.

UPGMA

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1,C_2) \leftarrow \tfrac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i,j)$
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(\cdot, cdot)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C,C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i,j)$
- $\bullet \ h(C) \leftarrow \frac{1}{2}D(C_1,C_2)$
- $h(C) h(C_1)$ etichetta (C, C_1) ; $h(C) h(C_2)$ etichetta (C, C_2)
- UPGMA produce ultrametrica

Gianluca Della Vedova Elementi di Bioinformatica 17/1

Gianluca Della Vedova Elementi di Bioinformatica 18/1

Neighbor Joining.

$$\hspace{0.1in} \bullet \hspace{0.1in} D(C_1,C_2) \leftarrow \tfrac{1}{|C_1||C_2|} \textstyle \sum_{i \in C_1} \textstyle \sum_{j \in C_2} D(i,j)$$

- $u(C) \leftarrow \frac{1}{\text{num. cluster}-2} \sum_{C_3} D(C, C_3)$
- \bullet All'inizio h=0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(C_1, C_2) u(C_1) u(C_2)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $\frac{1}{2}(D(C_1, C_2) + u(C_1) u(C_2))$ etichetta (C, C_1)
- $\frac{1}{2}(D(C_1, C_2) + u(C_2) u(C_1))$ etichetta (C, C_2)

Gianluca Della Vedova Elementi di Bioinformatica 19/1

Modelli di evoluzione.

- Probabilità di transizione fra stati (A, C, G, T).
- o dipende dal tempo trascorso fra i due eventi
- tasso istantaneo di mutazione
- probabilità di mutazione in una generazione: somma su ogni riga = 1

J. Felsenstein. Theoretical Evolutionary Genetics

Gianluca Della Vedova Elementi di Bioinformatica 20

Modelli di evoluzione: Jukes-Cantor.

- ogni mutazione è equiprobabile
- 1 μ : nessuna mutazione
- $\mu/3$: mutazione

Modelli di evoluzione: Kimura 2 parametri

- Distinzione transizioni ($A \leftrightarrow G, C \leftrightarrow T$), transversioni
- 1 μ: nessuna mutazione
- $\frac{R}{R+1}\mu$: probabilità transizione
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione $A\leftrightarrow C$ o $G\leftrightarrow T$
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione $A \leftrightarrow T$ o $C \leftrightarrow G$
- $R = \frac{R}{R+1}\mu/\left(2\frac{1}{2(R+1)}\mu\right)$: rapporto probabilità di transizioni / probabilità trasversioni

Gianluca Della Vedova Elementi di Bioinformatica

24/1

Gianluca Della Vedova Elementi di Bioinformatica 21/1

Gianluca Della Vedova Elementi di Bioinformatica 22/1

Modelli di evoluzione: General time-reversible

- matrice simmetrica
- o consequenza: alberi senza radice

Massima verosimiglianza.

23/1

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 3.0. https://creativecommons.org/licenses/by-sa/4.0/ Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

- Attribuzione Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.

Gianluca Della Vedova Elementi di Bioinformatica

25/1