Inhaltsverzeichnis

Ι	\mathbf{El}	ementare Zahlentheorie		1
1	Seite 28			
	1.1	Aufgabe 1		. 1
	1.2	Aufgabe 2		. 1
	1.3	Aufgabe 3		. 2
	1.4	Aufgabe 4		. 2
	1.5	Aufgabe 5		. 2
	1.6	Aufgabe 6		. 2
2	Seite 33			
	2.1	Aufgabe 3		. 3
	2.2	Aufgabe 4		. 3
T i	itors	aturverzeichnis		6

Teil I

Elementare Zahlentheorie

Aufgaben aus dem Buch: Reinhold Remmert und Peter Ullrich (2008). Elementare Zahlentheorie. Springer. ISBN: 978-3-7643-7730-4.

1 Seite 28

1.1 Aufgabe 1

Seien a,b,c Ziffern aus der Menge $\{0,1,2,\ldots,9\}$ und $a\neq 0$. Zeigen Sie: 13 teilt die natürliche Zahl abcabc (Zifferndarstellung).

Beweis. Es werden die Differenzen betrachtet, wenn sich a, b, c um einen Wert verändern:

$$a = 1 \Rightarrow a = 2 : \triangle 100100$$

$$b = 0 \Rightarrow b = 1 : \triangle 10010$$

$$c = 0 \Rightarrow c = 1 : \triangle 1001$$

Es ist zu sehen 13 | 1001, denn es gilt: $1001 = 13 \cdot 77$. Hieraus folgt: 13 | 10010, 13 | 100100 und damit auch 13 | abcabc.

1.2 Aufgabe 2

Sei n eine natürliche Zahl, n > 1. Beweisen sie: Aus $n \mid (n-1)! + 1$ folgt $n \in \mathbb{P}$.

Beweis. Ist n eine zusammengesetze Zahl n=ab mit a,b>1, dann gilt $a\mid (n-1)!$ und dadurch $a\nmid (n-1)!+1$ weshalb ebenfalls $n\nmid (n-1)!+1$.

TODO: Der restliche Beweis mit dem Satz von Wilson

¹Für n > 4 gilt außerdem: n | (n-1)!. Die gesamte Primzerlegung von n ist in (n-1)! enthalten.

1.3 Aufgabe 3

Sei p_n die n-te Primzahl, d. h. $p_1=2,\,p_2=3$ usw. Zeigen Sie: $p_n\leq 2^{2^{n-1}}$ für alle $n\geq 1$.

Beweis.
$$TODO$$

1.4 Aufgabe 4

Sei p eine Primzahl. Beweisen Sie: p ist ein Teiler von $\binom{p}{v}$ für $1 \le v \le p-1$.

Beweis. Obwohl die Zahlen $\binom{n}{v}$ als Brüche definiert sind, gilt stets:

$$\binom{n}{v} \in \mathbb{N}$$
 für alle $n, v \in \mathbb{N}$.

Dies ist auf die Identität

$$\binom{n-1}{v-1} + \binom{n-1}{v} = \binom{n}{v}$$

zurückzuführen, mit der sich jeder Binomialkoeffizient rekursiv als die Summe natürlicher Zahlen berechnen lässt. Per Definition gilt:

$$\binom{p}{v} := \frac{p(p-1)\cdot\ldots\cdot(p-v+1)}{v!}$$

Die Primzerlegung des Nenners muss vollständig in der des Zählers vorhanden sein. Wegen p > v ist p jedoch niemals Teil dieser Zerlegung und kann im Zähler nicht gekürzt werden. Es folgt: $p \mid \binom{p}{v}$.

1.5 Aufgabe 5

Seien $p \in \mathbb{P}, n \in \mathbb{N}^{\times}$ und $a, b \in \mathbb{Z}$. Zeigen Sie durch Induktion nach n: p ist ein Teiler von $((a+b)^{p^n}-(a^{p^n}+b^{p^n}))$.

Beweis.
$$\Box$$

1.6 Aufgabe 6

Sei $n \ge 2$ eine natürliche Zahl. Zeigen Sie: $n^4 + 4^n$ ist keine Primzahl.

Beweis. \Box

2 Seite 33

2.1 Aufgabe 3

Seien a und b positive natürliche Zahlen mit der Eigenschaft, dass es keine Primzahl gibt, die zugleich a und b teilt. Beweisen sie: Gibt es ein $c \in \mathbb{N}$ mit $ab = c^2$, so existieren $x, y \in \mathbb{N}$ mit $a = x^2$ und $b = y^2$.

Beweis. Es ist c eine beliebige zusammengesetzte Zahl. Dann ist $c^2 = p_1^{2m_1} p_2^{2m_2} \cdot \dots \cdot p_r^{2m_r}$ ihre kanonische Primzerlegung. Man überlege jetzt, wie diese Faktoren zwischen a und b verteilt sein können. Damit keine Primzahl in a oder b gemeinsam vorkommt, müssen die Primpotenzen $p_i^{2m_i}$ vollständig zwischen a und b verteilt sein. Somit sind a, b immer Quadratzahlen:

$$a, b = p_i^{m_i} p_i^{m_i} \qquad i = 1, \dots, r$$

Zum Beispiel:

$$c^{2} = 2^{4}5^{2} = 20^{2}$$
1) $ab = (2^{4})(5^{2}) = 4^{2} \cdot 5^{2}$

$$c^2 = 2^2 3^2 5^2 7^2 = 210^2$$

1)
$$ab = (2^2 3^2 5^2)(7^2) = 30^2 \cdot 7^2$$

2)
$$ab = (2^2 3^2)(5^2 7^2) = 6^2 \cdot 35^2$$

3)
$$ab = (2^2)(3^25^27^2) = 2^2 \cdot 105^2$$

2.2 Aufgabe 4

Es seien a,b natürliche Zahlen, für die gilt: $a\mid b^2,b^2\mid a^3,a^3\mid b^4,b^4\mid a^5,\dots$. Zeigen sie: a=b.

Beweis. Es gibt $v_i \in \mathbb{N}$ mit $b^2 = av_1, a^3 = b^2v_2, b^4 = a^3v_3, a^5 = b^4v_4, \dots$ Es sind

$$a = p_1^{m_1} \cdot p_2^{m_2} \cdot \dots \cdot p_r^{m_r}$$
$$b = p_1^{\mu_1} \cdot p_2^{\mu_2} \cdot \dots \cdot p_r^{\mu_r}$$

die kanonische Primzerlegung von a und b. Für a=b ist die Behauptung offensichtlich richtig. Angenommen $a \neq b$ und es werden zwei Fälle unterschieden:

1) Fall: Es gilt 0 < a < b. Die Zahl a besitzt als Teiler von b^2 einen Primfaktor $p^{\mu-n} := p_i^{\mu_i-n}$ mit $0 < n \le \mu$ und $i = 1, \ldots, r$. Es gilt $p^{\mu-n} \mid b^2$ d.h. $b^2 = p^{\mu-n}v_1$, was äquivalent zu $p^{2\mu} = p^{\mu-n} \cdot p^{\mu+n}$ ist. Wird dieses Schema fortgeführt, entstehen die Gleichungen

$$p^{3\mu-3n} = p^{2\mu} \cdot p^{\mu-3n}$$

$$p^{4\mu} = p^{3\mu-3n} \cdot p^{\mu+3n}$$

$$p^{5\mu-5n} = p^{4\mu} \cdot p^{\mu-5n}$$

$$p^{6\mu} = p^{5\mu-5n} \cdot p^{\mu+5n}$$

$$\vdots$$

$$p^{2k\mu} = p^{(2k-1)\mu-(2k-1)n} \cdot p^{\mu+(2k-1)n}$$

$$p^{(2k+1)\mu-(2k+1)n} = p^{2k\mu} \cdot p^{\mu-(2k+1)n}$$
(*)

mit $k \in \mathbb{N}^{\times}$. Im allgemeinen lässt sich aus (*) die Ungleichung

$$\mu - 2kn - n > 0$$

ableiten. k ist frei wählbar, man setze $k=\mu$ und führt die ursprüngliche Behauptung mit $(1-2n)\mu-n\geq 0$ zum Widerspruch.

2) Fall: Es gilt a > b. Die Zahl a besitzt als Teiler von b^2 einen Primfaktor $p^{\mu+n} := p_i^{\mu_i+n}$ mit $0 < n \le \mu$ und $i = 1, \ldots, r$. Wäre $n > \mu$ gilt $a \nmid b^2$ und es bleibt nichts mehr zu zeigen. Wie zuvor gilt $p^{\mu+n} \mid b^2$, woraus nach demselben Prinzip die Gleichung $p^{2\mu} = p^{\mu+n} \cdot p^{\mu-n}$

und letztendlich

$$p^{2k\mu} = p^{(2k-1)\mu + (2k-1)n} \cdot p^{\mu - (2k-1)n}$$

$$p^{(2k+1)\mu + (2k+1)n} = p^{2k\mu} \cdot p^{\mu + (2k+1)n}$$
(**)

folgt. Aus (**) kann die Ungleichung

$$\mu - 2kn + n \ge 0$$

abgeleitet werden. Man setze $k=2\mu$ und erzeugt mit $(1-4n)\mu+n\geq 0$ auch in diesem Fall einen Widerspruch.

Literaturverzeichnis

Remmert, Reinhold und Peter Ullrich (2008). *Elementare Zahlentheorie*. Springer. ISBN: 978-3-7643-7730-4.