

Exercise 20D

Q20

Answer:

First, we have to find the area of \triangle ABC and \triangle ACD.

For AACD:

Let
$$a$$
 = 30 cm, b = 40 cm and c = 50 cm
$$s = \left(\frac{a+b+c}{2}\right) = \left(\frac{30+40+50}{2}\right) = \left(\frac{120}{2}\right) = 60 \text{ cm}$$

$$\therefore \text{ Area of triangle ACD} = \sqrt{s(s-a)(s-b)(s-c)} \text{ sq. units}$$

$$= \sqrt{60(60-30)(60-40)(60-50)} \text{ cm}^2$$

$$= \sqrt{60 \times 30 \times 20 \times 10} \text{ cm}^2$$

$$= \sqrt{360000} \text{ cm}^2$$

$$= 600 \text{ cm}^2$$

For AABC:

Let
$$a = 26$$
 cm, $b = 28$ cm and $c = 30$ cm
$$s = \left(\frac{a+b+c}{2}\right) = \left(\frac{26+28+30}{2}\right) = \left(\frac{84}{2}\right) = 42$$
 cm
$$\therefore \text{ Area of triangle ABC} = \sqrt{s(s-a)(s-b(s-c))} \text{ sq. units}$$

$$= \sqrt{42(42-26)(42-28)(42-30)} \text{ cm}^2$$

$$= \sqrt{42\times16\times14\times12} \text{ cm}^2$$

$$= \sqrt{2\times3\times7\times2\times2\times2\times2\times2\times7\times3\times2\times2} \text{ cm}^2$$

$$= (2\times2\times2\times2\times2\times3\times7) \text{ cm}^2$$

$$= 336 \text{ cm}^2$$

 \therefore Area of the given quadrilateral ABCD = Area of \triangle ACD + Area of \triangle ABC = (600 + 336) cm² = 936 cm²

Q21

Answer:

Area of the rectangle = AB
$$\times$$
 BC
= 36 m \times 24 m
= 864 m²

Area of the triangle =
$$\frac{1}{2} \times AD \times FE$$

= $\frac{1}{2} \times BC \times FE$ [since AD = BC]
= $\frac{1}{2} \times 24 \text{ m} \times 15 \text{ m}$
= 12 m ×15 m = 180 m²
 \therefore Area of the shaded region = Area of the rectangle – Area of the triangle
= $(864 - 180) \text{ m}^2$
= 684 m^2

Q22

Answer:

Join points PR and SQ.

These two lines bisect each other at point O.

Here,
$$AB = DC = SQ = 40$$
 cm
 $AD = BC = RP = 25$ cm

Also,
$$OP = OR = \frac{RP}{2} = \frac{25}{2} = 12.5 \text{ cm}$$

From the figure we observe:

Area of $\triangle SPQ$ = Area of $\triangle SRQ$

:. Area of the shaded region = 2
$$\times$$
 (Area of $\triangle SPQ$)
= 2 \times ($\frac{1}{2} \times SQ \times OP$)
= 2 \times ($\frac{1}{2} \times 40$ cm \times 12.5 cm)
= 500 cm²

Q23

Answer:

(i) Area of rectangle ABCD = (10 cm x 18 cm) = 180 cm²

Area of triangle I =
$$\left(\frac{1}{2} \times 6 \times 10\right)$$
 cm² = 30 cm²
Area of triangle II = $\left(\frac{1}{2} \times 8 \times 10\right)$ cm² = 40 cm²
 \therefore Area of the shaded region = {180 - (30 + 40)} cm² = {180 - 70}cm² = 110 cm²

(ii) Area of square ABCD = $(Side)^2 = (20 \text{ cm})^2 = 400 \text{ cm}^2$

Area of triangle I =
$$\left(\frac{1}{2} \times 10 \times 20\right)$$
 cm² = 100 cm²
Area of triangle II = $\left(\frac{1}{2} \times 10 \times 10\right)$ cm² = 50 cm²
Area of triangle III = $\left(\frac{1}{2} \times 10 \times 20\right)$ cm² = 100 cm²
 \therefore Area of the shaded region = {400 - (100 + 50 + 100)} cm² = {400 - 250}cm² = 150 cm²

Q24

Answer:

Let ABCD be the given quadrilateral and let BD be the diagonal such that BD is of the length 24 cm. Let AL ⊥ BD and CM ⊥ BD

Then, AL = 5 cm and CM = 8 cm

Area of the quadrilateral ABCD = (Area of
$$\triangle$$
ABD + Area of \triangle CBD)
$$= \left[\left(\frac{1}{2} \times BD \times AL \right) + \left(\frac{1}{2} \times BD \times CM \right) \right] \text{ sq. units}$$
$$= \left[\left(\frac{1}{2} \times 24 \times 5 \right) + \left(\frac{1}{2} \times 24 \times 8 \right) \right] \text{ cm}^2$$
$$= (60 + 96) \text{ cm}^2 = 156 \text{ cm}^2$$

 \therefore Area of the given quadrilateral = 156 cm

