## Bias Complexity TradeOff

Unit 5

In Chapter 2 we saw that unless one is careful, the training data can mislead the learner, and result in overfitting. To overcome this problem, we restricted the search space to some hypothesis class  $\mathcal{H}$ . Such a hypothesis class can be viewed as reflecting some prior knowledge that the learner has about the task – a belief that one of the members of the class  $\mathcal{H}$  is a low-error model for the task. For example, in our papayas taste problem, on the basis of our previous experience with other fruits, we may assume that some rectangle in the color-hardness plane predicts (at least approximately) the papaya's tastiness.

Is such prior knowledge really necessary for the success of learning? Maybe there exists some kind of universal learner, that is, a learner who has no prior knowledge about a certain task and is ready to be challenged by any task? Let us elaborate on this point. A specific learning task is defined by an unknown distribution  $\mathcal{D}$  over  $\mathcal{X} \times \mathcal{Y}$ , where the goal of the learner is to find a predictor  $h: \mathcal{X} \to \mathcal{Y}$ , whose risk,  $L_{\mathcal{D}}(h)$ , is small enough. The question is therefore whether there exist a learning algorithm A and a training set size m, such that for every distribution  $\mathcal{D}$ , if A receives m i.i.d. examples from  $\mathcal{D}$ , there is a high chance it outputs a predictor h that has a low risk.



# FREE LUNCH

No such thing.

### No free Lunch Theorem

 The No Free Lunch Theorem, often abbreviated as NFL or NFLT, is a theoretical finding that suggests all optimization algorithms perform equally well when their performance is averaged over all possible objective functions.

|            | Algorithm 1 | Algorithm 2 | Algorithm 3 | Algorithm 4 | Algorithm 5 | Algorithm 6   | Algorithm 7 | Algorithm 8 | *** |
|------------|-------------|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-----|
| Problem 1  | 78.90158096 | 38.18696053 | 83.9788141  | 3.128185533 | 93.71767489 | 3.612131384   | 38.02555482 | 46.02033283 | *** |
| Problem 2  | 63.63661246 | 51.21726878 | 6.915100117 | 92.46504485 | 20.63056606 | 90.15194724   | 6.628150576 | 88.92628997 | *** |
| Problem 3  | 5.467817525 | 78.82129795 | 19.01963224 | 16.18471759 | 59.57316925 | 26.61430506   | 41.45446652 | 62.38540108 | *** |
| Problem 4  | 40.96337067 | 55.59045049 | 25.47959077 | 77.75563723 | 90.98183523 | 42.23275523   | 92.4381591  | 80.17316672 |     |
| Problem 5  | 17.32640301 | 80.17604054 | 48.01380213 | 9.378352179 | 13.25844413 | 66.24497877   | 17.39991202 | 46.86218446 | *** |
| Problem 6  | 2.90117365  | 14.18732284 | 88.12091607 | 28.32526953 | 88.17950692 | 43.16349405   | 78.48956349 | 76.09121009 | *** |
| Problem 7  | 74.22339559 | 71.35440724 | 46.26625983 | 69.9710712  | 66.9510279  | 68.97533166   | 14.29350951 | 56.8139594  |     |
| Problem 8  | 69.06790479 | 89.53420767 | 17.7105817  | 71.3419208  | 48.8622438  | 3.348772613   | 70.81053152 | 3.855765825 | *** |
| Problem 9  | 19.94675498 | 3.137513385 | 10.68373549 | 4.011603637 | 49.49135388 | 37.92530089   | 99.49914362 | 54.10622766 |     |
| Problem 10 | 7,510870987 | 58.55534993 | 57.60647147 | 80.17271882 | 80.41639739 | 25.77488384   | 55.59960103 | 94.67596268 | *** |
| Problem 11 | 98.30840803 | 40.16271408 | 15.063453   | 80.71102508 | 67.38435353 | 2.092705478   | 54.93369837 | 34.34560747 | 100 |
| Problem 12 | 56.35291015 | 99.47783881 | 73.23060569 | 79.11112105 | 58.89165367 | 51.21548188   | 72.3854659  | 54.63516655 | *** |
| Problem 13 | 42.95441914 | 5.055088383 | 20.45995021 | 60.02150262 | 2.129162205 | 0.03549031414 | 90.26590811 | 1.821852475 | *** |
| Problem 14 | 44.26664262 | 55.68963431 | 33.72502344 | 56.30721179 | 88.24480947 | 42.89040502   | 29.76489645 | 6.234549423 |     |
| Problem 15 | 91.00330356 | 24.51201295 | 90.63002494 | 53.41813975 | 93.87696033 | 28.00711639   | 23.69333881 | 40.15298867 | *** |
| •••        | ***         | ***         | ***         | ***         |             | ***           | ***         | ***         | *** |
| Average    | 100         | 100         | 100         | 100         | 100         | 100           | 100         | 100         |     |

We now turn to the central question posed above: If we are interested solely in the generalization performance, are there any reasons to prefer one classifier or learning algorithm over another? If we make no prior assumptions about the nature of the classification task, can we expect any classification method to be superior or inferior overall? Can we even find an algorithm that is overall superior to (or inferior to) random guessing?

As summarized in the No Free Lunch Theorem, the answer to these and several related questions is no: on the criterion of generalization performance, there are no context- or problem-independent reasons to favor one learning or classification method over another. The apparent superiority of one algorithm or set of algorithms is due to the nature of the problems investigated and the distribution of data. It is an appreciation of the No Free Lunch Theorem that allows us, when confronting practical pattern recognition problems, to focus on the aspects that matter most—prior information, data distribution, amount of training data and cost or reward functions. The Theorem also justifies a scepticism about studies that purport to demonstrate the overall superiority of a particular learning or recognition algorithm.

#### Example 1: No Free Lunch for binary data

Consider input vectors consisting of three binary features, and a particular target function  $F(\mathbf{x})$ , as given in the table. Suppose (deterministic) learning algorithm 1 assumes every pattern is in category  $\omega_1$  unless trained otherwise, and algorithm 2 assumes every pattern is in  $\omega_2$  unless trained otherwise. Thus when trained with

n=3 points in  $\mathcal{D}$ , each algorithm returns a single hypothesis,  $h_1$  and  $h_2$ , respectively. In this case the expected errors on the off-training set data are  $\mathcal{E}_1(E|F,\mathcal{D})=0.4$  and  $\mathcal{E}_2(E|F,\mathcal{D})=0.6$ .

|              | x   | F  | $h_1$ | $h_2$ |
|--------------|-----|----|-------|-------|
|              | 000 | 1  | 1     | 1     |
| $\mathcal D$ | 001 | -1 | -1    | -1    |
|              | 010 | 1  | 1     | 1     |
|              | 011 | -1 | 1     | -1    |
|              | 100 | 1  | 1     | -1    |
|              | 101 | -1 | 1     | -1    |
|              | 110 | 1  | 1     | -1    |
|              | 111 | 1  | 1     | -1    |

### \*Ugly Duckling Theorem

While the No Free Lunch Theorem shows that in the absence of assumptions we should not prefer any learning or classification algorithm over another, an analogous theorem addresses features and patterns. Roughly speaking, the Ugly Duckling Theorem states that in the absence of assumptions there is no privileged or "best" feature representation, and that even the notion of similarity between patterns depends implicitly on assumptions which may or may not be correct.

**Theorem 9.2 (Ugly Duckling)** Given that we use a finite set of predicates that enables us to distinguish any two patterns under consideration, the number of predicates shared by any two such patterns is constant and independent of the choice of those patterns. Furthermore, if pattern similarity is based on the total number of predicates shared by two patterns, then any two patterns are "equally similar." \*

#### **Error Decomposition**

To answer this question we decompose the error of an  $ERM_{\mathcal{H}}$  predictor into two components as follows. Let  $h_S$  be an  $ERM_{\mathcal{H}}$  hypothesis. Then, we can write

$$L_{\mathcal{D}}(h_S) = \epsilon_{\text{app}} + \epsilon_{\text{est}}$$
 where :  $\epsilon_{\text{app}} = \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$ ,  $\epsilon_{\text{est}} = L_{\mathcal{D}}(h_S) - \epsilon_{\text{app}}$ . (5.7)

The Approximation Error – the minimum risk achievable by a predictor in the hypothesis class. This term measures how much risk we have because we restrict ourselves to a specific class, namely, how much *inductive bias* we have. The approximation error does not depend on the sample size and is determined by the hypothesis class chosen. Enlarging the hypothesis class can decrease the approximation error.

Under the realizability assumption, the approximation error is zero. In the agnostic case, however, the approximation error can be large.<sup>1</sup>

## Effect of hypothesis class size

As the hypothesis class size increases...

Approximation error decreases because:

taking min over larger set

Estimation error increases because:

harder to estimate something more complex

### Estimation error analogy



Scenario 1: ask few people around

Is your name Joe?



Scenario 2: email all of Stanford

Is your name Joe?



people = hypotheses, questions = examples

 The Estimation Error – the difference between the approximation error and the error achieved by the ERM predictor. The estimation error results because the empirical risk (i.e., training error) is only an estimate of the true risk, and so the predictor minimizing the empirical risk is only an estimate of the predictor minimizing the true risk.

The quality of this estimation depends on the training set size and on the size, or complexity, of the hypothesis class. As we have shown, for a finite hypothesis class,  $\epsilon_{\text{est}}$  increases (logarithmically) with  $|\mathcal{H}|$  and decreases with m. We can think of the size of  $\mathcal{H}$  as a measure of its complexity. In future chapters we will define other complexity measures of hypothesis classes.

# Thanks!!!