

Kaggle Multi-Classification Model Competition

Contents

- 1. Introduction to the competition
 - 2. Evaluation metrics
 - 3. Modeling Process

INTRODUCTION

E.D.A

MODEL EVALUATION

- 1. RandomForest
 - 2. XGBoost
 - 3. CatBoost
 - 4. LightGBM
- 5. Final Model Selection

1. Introduction to the competition

k

KAGGLE · PLAYGROUND PREDICTION COMPETITION · 5 DAYS AGO

Late Submission

•••

Multi-Class Prediction of Obesity Risk

Playground Series - Season 4, Episode 2

Topic	Obesity Risk Prediction					
Туре	Playground					
Submission	Simple Competition (CSV file submission)					
Host	Kaggle					
Problem Type	Multiclass classification					
Data Type	Tabular Data					
Evaluation Metric	Accuracy					
Participating Teams	3587 teams					
Duration	24.02.01 ~ 24.02.29, 11:59 PM UTC					

Competition Duration

Predicting individuals' obesity risk levels based on various factors such as diverse lifestyle habits and health data.

Participatnts

4 Persosns

Part. Period

7days (2.23~2.29)

1. Introduction to the competition

Dataset Introduction

- Target: Individuals aged 14 to 61 in the countries of Mexico, Peru, and Colombia
- Content: Estimates of obesity levels reflecting various dietary habits and physical conditions

Training Dataset

Creation: Generated through training of deep learning models based on the original obesity risk dataset
 -> Using the original dataset improves performance

Qty of Data Points: 20,758 Qty of Columns: 18 Original Dataset Qty of Data Points: 2,111 Qty of Columns: 17

Combined Dataset

Qty of Data Points: 22,869
Qty of Columns: 17
(excluding the ID column)

No missing values or duplicate entries.

2. Evaluation metrics

Accuracy

 One of the most basic and intuitive performance evaluation metrics in classification problems.

• Accuracy =
$$\frac{Number\ of\ correct\ predictions}{Total\ number\ of\ cases}$$
 = $\frac{TP+TN}{TP+TN+FP+FN}$

		Actual Correct Label				
		True	False			
Predicted	True	TP (True Positive)	FP (False Positive)			
Label	False	FN (False Negative)	TN (True Negative)			

3. Modeling Process

Part 2 E.D.A

1. Imformation about Features in the data

Numeric Variables

Categorical Variables

ı	Name	Content	Name	Content
i	i d	Index	Gender	Gender
4	Age	age	Family_history_with_overweight	Presence of Obesity in Family
ı	Height	Height (m^2)	FAVC	Preference for Hight-Calorie Foods
•	Weight	Weight(Kg)	CAEC	Habits of Snacking Between Meals
ı	FCVC	Vegetable Consumption Frequency per Day	SMOKE	Smoking Status
ı	NCP	Number of Main Meals per Day	scc	Monitoring Caloric Intake
	CH2O	Amount of Water Conumed per Day	CALC	Frequency of Alcohol Consumption
	FAF	Weekly Frequuncy of Physical Activity	MTRANS	Primary Mode of Transportation
	TUE	Device Usage Time	NObeyesdad	Obesity Level, Target Variable

2. EDA

Boxplot visualization to identify outliers

- Found many outliers in 'Age'
- However, the minimum value is 14 and the maximum is 61, which is in the range within the data description -> considered normal values

2. EDA

Visualizing average BMI by gender

BMI is slightly higher in the female group

Part 2

2. EDA

Visualize Nobeyesdad distribution by gender

- Obesisty_Type_III: Mostly observed in women
- Obesisty_Type_II: observed primarily in men

Part 3 MODEL EVALUATION

Part 3

Key algorithms for machine learning

RandomForest Classifier	001
XGBoost	002
CatBoost	003
LightGBM	004

Part 3

1. Random Forest

Preprocessing: StandScaler, OneHotEncoder >> Hyperparameter tuning >> Ensemble

final score: 0.90028

2174/3587

제목	÷	모델 알고리즘 ⁻	데이터 재가공 후	feature =	교차 검증 😑	하이퍼 파라미터 튜닝 😑	정확도 \Xi
RandomForest 1		RandomForest Classifier	StandardSclaer : 수치형 데이터 표준화, OneHotEncoder : 범주형 데이터	ВМІ	StratifiedKFold(n_s plits=5, shuffle=True, random_state=42) 0.898640994184376		0.898
RandomForest 1-1		RandomForest Classifier	StandardSclaer : 수치형 데이터 표준화, OneHotEncoder : 범주형 데이터	ВМІ	random_state=42),	param_dist ={'n_estimators': 120, 'min_samples_split': 5, 'min_samples_leaf': 1, 'max_depth': None}	0.902
RandomForest 1-2. ensemble		Classifier,	StandardSclaer : 수치형 데이터 표준화, OneHotEncoder : 범주형 데이터	ВМІ		RandomForestClassifier: param_dist ={'n_estimators': 120, 'min_samples_split': 5, 'min_samples_leaf': 1, 'max_depth': None}, GradientBoostingClassifier: param_dist ={n_estimators: 140, min_samples_split: 9, min_samples_leaf: 2, max_depth: 5}	0.905

2. XGBoost

Preprocessing: StandScaler, OneHotEncoder >> Hyperparameter tuning

final score: 0.91076

813/3587

제도	<u>-</u>	모델 알고리즘	÷	데이터 재가공 -	feature –	교차 검증 😑	하이퍼 파라미터 튜닝 😑	정확도 🛨
XGI	Boost 1	XGBoost		StandardScaler: 수치형 데이터 스케일링OneHotEncoder: 범주형 데이터 인코딩	BMI, 연령대(10단위)	0.904552878	{'classifierlearning_rate': 0.1, 'classifiermax_depth': 5, 'classifiern_estimators': 200}	0.906069
XGI	Boost 2	XGBoost		StandardScaler: 수치형 데이터 스케일링OneHotEncoder: 범주형 데이터 인코딩	BMI, 연령대(10단위)	StratifiedKFold(n_sp lits=5, shuffle=True, random_state=42) 0.903589131683677 5	uniform(0.01, 0.6), 'classifiermax_depth': randint(3, 10),	0.908
XGI	Boost3	XGBoost		StandardScaler: 수치형 데이터 스케일링OneHotEncoder: 범주형 데이터 인코딩	ВМІ	StratifiedKFold(n_sp lits=5, shuffle=True, random_state=42) 0.908165794414650 3	pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', XGBClassifier(subsample=0.7, n_estimators=900, max_depth=4, learning_rate=0.03, colsample_bytree=0.5, use_label_encoder=False, eval_metric='mlogloss'))]	0.91076

3. Catboost

Preprocessing: FunctionTranformer >> Hyperparameter tuning

제목	÷	모델 알고리즘 ⁻	데이터 재가공 후	feature engineering	=	교차 검증	÷	하이퍼 파라미터 튜닝 -	정확도	Ŧ
Catboost Model		Catboost	FunctionTransformer(age_roun der:Age반을림/height_rounder: Height반올림/extract_features: BMI구하기/col_rounder:FCVC, NCP,CH2O,FAF,TUE반올림) / .select_dtypes(include=['int64', 'float64']).columns.tolist(): 수치형 데이터 인코딩 / .select_dtypes(include=['object']).columns.tolist() & .remove('NObeyesdad'): 범주형 데이터 인코딩	ВМІ		StratifiedKFold(n_: lits=5, shuffle=True random_state=42)	sp e,	CB = make_pipeline(CatBoostClassifier(**params, cat_features=categorical_columns)) params = {'learning_rate': 0.13762007048684638, 'depth': 5,		

4. LightGBM

Preprocessing: LabelEncoder >> Hyperparameter tuning

final score: 0.91943

480/3587

1	제목 =		모델 알고리즘 ⁻	-	데이터 재가공 😐	-	engineering =	ī	고차 검증 😐	하이퍼 파라미터 튜닝	<u>-</u> :	정확도 😓
2	LightGBM	L	_ightGBM		결측치 제거, 중복값 제거, LabelEncoder() 사용 scale_cols = ['Age','Height', 'Weight','FCVC','NCP','CH2O',' FAF','TUE']for c in scale_cols: X_train[c] = X_train[c].pow(0.5) X_test[c] = X_test[c].pow(0.5)		BMI	it	stratifiedKFold(n_sp s=5,random_state= ,shuffle=True)		(0.91943

5. Final Model Selction

Final Model

LightGBM

Final Model: 0.91943

Ranking: 480 / 3857

Create a New Variable
Activity Score: FAF, TUE, MTRANS
Meal pattern scores: FCNC, NCP, CAEC

Grid, Random, Kfold, etc. Try other methods

Conclusion and Insigths Summary

Data Analysis

- Data is structured and easy to analyze with no missing or duplicate values
- Over-representation of nonsmokers
- Due to the hypothetical nature of the data, the number of meals and frequency of vegetable intake are decimalized, requiring caution against overfitting

Feature Engineering

- Generated BMI: it was the main variable that helped predict, and was the second most important variable after Weight when visualizing variable importance by model
- Encoding nominal variable labels
- Numerical variable root transformation:
 Adjusts data distribution closer to a normal distribution, reduces the impact of extreme values
- Wished there were other variables besides BMI that could have been helpful

Model

- LightGBM: Unlike most
 Gradient Boosting models, the leaf-wise growth strategy reduces the risk of overfitting, which may have contributed to the high accuracy.
- Potential for improvement:
 Performance could be improved with other ensemble combinations, stacking methods, etc.

Thank you!

Team Leader: Jigeon Park

Team member: Suhyeon Kim

Team member: Indong Yang

Team member: Indong Song