FUNDAMENTOS DE CRIPTOGRAFÍA Y SEGURIDAD INFORMÁTICA

1 - Introducción criptografía y seguridad informática

Definiciones básicas

- Semántica: Según la RAE la palabra "criptografía" proviene del griego "cripto" que significa oculto, y "grafía" que significa escritura: es el arte de escribir con clave secreta y de un modo enigmático.
- Ya dejo de ser un arte, ahora es la ciencia se ocupa del estudio de los métodos para la protección y ocultamiento de la información frente a observadores no autorizados.

Definiciones básicas

- Texto Plano.
- Texto cifrado.
- > Cifrado o encriptación.
- > Descifrar o descifrado.
- Criptoanálisis.
- Criptología = Criptografía + Criptoanálisis.
- Esteganografía:
 - Técnica para esconder mensajes dentro de otro mensaje.
- Seguridad Perfecta.
- Algoritmos y claves.

A: texto original

- Protagonistas del proceso de cifrado:
 - Encriptador: A.
 - Descifrador: B.
 - Atacante: M.
- Datos y útiles:
 - > Texto inicial.
 - Texto cifrado.
 - Algoritmo de cifrado.
 - Algoritmo de descifrado. (depende del de cifrado).

M Texto cifrado: B

Definiciones básicas

Contexto histórico de la criptografía

- Principales motores de la criptografía:
 - Político.
 - Bélico.
 - Económico (quizás el más importante hoy en día).
- Algunos datos históricos:
 - Quizás los primeros métodos criptográficos: los jeroglíficos egipcios (escritura eminentemente pictórica, siglo V a.C.): No pudieron ser descifrados hasta principios del siglo XIX (por el hallazgo de la <u>Piedra</u> <u>de Rosetta</u>).
 - El primer método criptográfico propiamente dicho el <u>Escítalo de los</u>
 <u>Lacedemonios</u> (siglo V a.C., Antigua Grecia).

- Algunos libros con los que se puede ampliar la historia de la criptografía:
 - José Pastor Franco, Miguel Ángel Sarasa López, José Luis Salazar. Riaño, Criptografía digital: fundamentos y aplicaciones.
 - Simon Singh, Los códigos secretos.
 - Simon Singh, The Code Book.

Contexto histórico de la criptografía

Escítalo de los Lacedemonios: transposición de caracteres.

Contexto histórico de la criptografía

Cifradores de Polybios (siglo II a.C., Grecia): Sustitución de caracteres.

Problema propuesto: Estudiar con más detalle en casa el método de cifrado de Polybios y su fortaleza.

	1						r				
	1	2	3	4	5		1	2	3	4	5
1	А	В	С	D	E	1	А	F G	L	Q	V
2.	F	G	Н	1	K	2	В	G	М	R	W
3	L	М	Ν	0	Р	3	С	Н	Ν	S	X
4	Q	R	S	Т	U	4	D	1	0	Т	Y
5	V	W	X	Υ	Z			K			

FIGURA 2. Cifradores de Polybios

Así, el cifrado de la máxima: EX ABUNDANTIA CORDIS OS LOQUITUR con el tablero de la parte izquierda viene dado por:

1553 11124533141133442411 133442142443 3443 3134414524444542

Contexto histórico de la criptografía: Criptografía Clásica

- Métodos de transposición: cambian la posición de los caracteres del mensaje.
- Ejemplo: Escítalo de los Lacedemonios.
- Métodos de sustitución: sustituyen cada carácter del mensaje por otro diferente.
 - Monoalfabético: utilizan un solo alfabeto.
 - Monográmicos: efectúan el cifrado carácter a carácter.
 - > Alfabeto estándar: César.
 - > Alfabetos mixtos: discos de Alberti y De la Porta.
 - Poligrámicos: efectúan el cifrado por grupos de caracteres.
 - Digrámicos: cifrados en grupos de dos caracteres.
 - Trigrámicos: cifrado en grupos de tres caracteres.
 - **>**
 - Poligrámicos: libros de códigos.
 - Polialfabéticos: utilizan varios alfabetos.
 - No periódicos: claves de cifrado no periódicas: El cifrado de Vernam.
 - Periódicos: claves de cifrado periódicas.
 - > Alfabetos lineales: estándar, Vigenère, mixto.
 - Alfabetos progresivos: ENIGMA.

Contexto histórico de la criptografía: Criptografía Moderna

- > 1976 empieza la criptografía moderna.
 - > 1976 nacimiento de la criptografía pública.
 - > 1977 Data Encription Standard (DES).
 - 1978 RSA (Rivest, Shamir y Adleman).
 - 2000 Advanced Encryption Standard (AES, Rijndael).

- Escítalo de los Lacedemonios (siglo V a.C., Antigua Grecia).
- > El emperador César propuso un método sustitución carácter a carácter:
 - Julio César, siglo I a.C.:
 - > Sustitución de caracteres latinos por griegos
 - Utilización sistemática de cifrados, en particular por desplazamiento de las letras
- El único secreto era el desplazamiento, n=3

А	В	С	D	E	F	G	Н	1	L	М	Z	0	Р	Q	R	S	Т	V	X
0	1	2		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	0	1	2
D	Е	F	G	Н	1	L	М	Ν	0	Р	Q	R	S	Т	V	X	А	В	С

A modo de ejemplo, el cifrado de *César* de la conocida sentencia: ALEA IACTA EST viene dado por: DOHD NDFAD HXA. Con todo lo anterior, es sencillo darse cuenta de que el cifrado de *César* podía obtenerse de forma sencilla mediante dos regletas, una fija y otra deslizante, con el mensaje en la fija y el alfabeto en la deslizante.

- Además de la aportación de los griegos y romanos a la criptografía los árabes contribuyeron también de forma significativa:
 - Alrededor de 1300 esta comunidad utilizaba al menos siete métodos de cifrado:
 - > Reemplazar una letras por otras.
 - > Escribir palabras al revés.
 - > Invertir letras alternadas en el texto de un mensaje.
 - Dar a las letras valores numéricos y escribir dichos valores con símbolos.
 - > Reemplazar cada letra con otras dos de tal forma que la suma de los valores numéricos fuese igual al valor de la letra sustituida.
 - Sustituir cada letra con el nombre una persona u objeto (libro de códigos).
 - Sustituir la letras por signos lunares, pájaros, flores, u otros signos inventados.
 - **>**

- Además los árabes fueron los primeros en escribir un tratado sobre criptoanálisis (<u>Yusuf Yaqub ibn Ishaq al-Sabbah Al-Kindi</u>, siglo IX, D.C.):
 - Este matemático árabe, trabajó en la Casa de la Sabiduría de Bagdad, y escribió el libro: Manuscrito sobre el desciframiento de mensajes criptográficos:
 - En este libro se describe un método, basado en el análisis de frecuencias, que permite criptoanalizar todos los cifrados monoalfabéticos.

En 1466 L. B. <u>Alberti</u> adapto el sistema del César en discos giratorios, utilizando alfabetos mixtos:

En 1593 el
 cifrador de L.
 B. Alberti fue
 modificado por
 Giovanni
 Battista della
 Porta:

mensaje: PARIS VAUT BIEN UNE MESSE clave: LOUPL OUPL OUPL OUPL OUPL Criptograma: AOMXD KUKE PCTX JHT WSNIO

En 1595 el francés Blaise de Vigenère sustituyó los discos del cifrador de L. B. Alberti y de Giovanni Battista della Porta por una palabra:

En este cuadro de Vigenère por ejemplo la columna P con la fila L da la A. Es una forma fácil de cifrar mediante este cifrado.

- Para aumentar la fortaleza del cifra B. Vigenère propuso un doble cifrado: cifrar el resultado del primer cifrado con otra clave diferente a la utilizada en el primer cifrado.
- Se puede demostrar que este cifrado resultante tiene por clave la suma de las otras dos claves (ejercicio).
- Este cifrado se creía un cifrado perfecto, hasta que prusiano <u>Friedrich</u>
 <u>Kasiski</u> descubrió un <u>método eficiente de criptoanalizar</u> dicho cifrado (lo haremos en prácticas).
- En 1935 El criptógrafo americano G. S. Vernam que para que este cifrado fuera seguro la clave debería ser del mismo tamaño que el texto a cifrar, y además aleatoria sin ningún tipo de estructura predecible.
 - Problema propuesto; demostrar que el cifrado resultante de dos cifrados consecutivos de Vigenère tiene por clave la suma de las otras dos claves

- En 1854 C. Wheatstone diseño un procedimiento de cifrado de sustitución basado en el cifrado de Polybios: conocido por el cifrado de Playfair (llamado así en honor a su amigo Lord Playfair).
- Por ejemplo si queremos utilizar la clave NORIA, podemos generar la matriz de cifrado siguiente de la derecha, y el cifrado del texto plano:
 - ATAQUECEROHORASX
- es el testo cifrado
 - IUOUTFDFIRQCINXR.
- Ya no es tan fácil como el cifrado Poybios (la matriz cambia en función de la clave).

N O R I A
B C D E F
G H K L M
P Q S T U
V W X Y Z

Problema propuesto: Estudiar con más detalle en casa el método de cifrado de Playfair y su fortaleza.

Imagen extraída de

En 1857 <u>C. Wheatstone</u> diseño mecánicamente el denominado disco de Wheatstone, basándose en la idea del cifrador de discos de <u>L. B.</u> Alberti.

Un hecho muy importante que marcó el desarrollo de este tipo de cifradores fue el paso de dispositivo planos a dispositivos con multitud de discos concéntricos coaxiales:

> Se escribía un mensaje en la generatriz del cilindro de discos y se leía en cualquier otra línea.

Este dispositivo fue creado por <u>T. Jefferson</u> en 1790, y fue utilizado por el ejército americano hasta finales de 1930.

> Por ejemplo 10 discos, y la «clave» o la secuencia de discos, a utilizar es 7,9,5,10,1,6,3,8,2,4 (cada disco

tiene un orden especifico de los caracteres):

		Λ		Λ	
7:	<	R	AFDCE	0	NJQGWTHSPYBXIZULVKM <
9:	<	Ε	NYVUB	М	CQWAOIKZGJXPLTDSRFH <
5:	<	Т	SGJVD	K	CPMNZQWXYIHFRLABEUO <
10:	∢	I	SCZQK	Е	MXYRHPUDNAJFBOWTGV <
1:	∢	R	ZWAX:	G	DLUBVIQHKYPNTCEMOSF <
6:	∢	Е	MKGHI	W	PNYCJBFZDRUSLOQXVAT <
3:	4	S	EQGYX	Р	_OCKBDMAIZVRNTJUWFH <
8:	<	Е	DZUTW	D	CVRJLXKISNFAPMYGHBQ <
2:	<	Υ	OHGVS	F	UWIKPBELNACZDTRXMJQ <
4:	<	А	WORPL	N	DVHGFCUKTEBSXQYIZMJ <

- Finalmente se conectaron eléctricamente los discos, y las conexiones cambiaban con el tiempo en una secuencia predeterminada.
 - Esto llevo a la creación de las diferentes versiones de la famosa máquina **ENIGMA**:
 - La máquina de rotores para cifrar y descifrar que se patentó en 1918 por Arthur Scherbius:

magen extraída de https://nl.wikipedia.org/wiki

La evolución de los métodos clásicos de cifrado

O la máquina de la competencia sueca de B. Hayelim:

HAGELIN M-209 CIPHER MACHINE (GVG / PD)

> El funcionamiento de todos estos dispositivos enigma es mediante

las conocidas máquinas de rotores:

- Entendiendo mejor la máquina ENIGMA:
 - La máquina ENIGMA en Python:
 - https://www.101computing.net/enigma-encoder/
 - Simulación del funcionamiento:
 - https://www.101computing.net/enigma/enigma-M3.html

- Libros gratuitos de criptografía:
 - Criptografía y Seguridad en Computadores. Manuel J. Lucena López
 - <u>Libro de criptografía aplicada: A. J. Menezes; P. C. van Oorschot; S. A. Vanstone (1997). Handbook of Applied Cryptography</u>

- Las diferencias entre la criptografía clásica y moderna es que los algoritmos públicos y lo único que es secreto es la clave.
- La idea de que los algoritmos de cifrado y descifrado deben ser públicos y la clave secreta fue propuesta por A. Kerckoffs, criptógrafo holandés del siglo XIX, y se conoce como
 - > Principio de Kerckoffs.
- La fuerza reside en la clave, y no en el algoritmo que sea secreto, como pasaba en la criptografía clásica.
 - > Es decir los algoritmos criptográficos son públicos.

POSIBLE Tarea de Evaluación Continúa: trabajo de historia de la criptografía.

- La seguridad de los sistemas de información está relacionada con la informática y comunicación en presencia de **adversarios**.
- Sistemas de información:
 - ▶ PC
 - Teléfonos
 - Redes de computadores
 - Cajeros automáticos
 - RFID
 - Puntos de Wireless
 - Dispositivos médicos
 - Email
 - Coches
 - **>**
- Todo es digital hoy en día, o casi todo......
- La seguridad informática se refiere a los objetivos de seguridad o las políticas de seguridad: que se quiere proteger, que actividades o eventos deberían ser prevenidos o detectados.

- Los métodos básicos para obtener la seguridad a través de criptografía pueden agruparse en 4 principales áreas:
 - Cifrado Simétrico
 - Cifrado Asimétrico
 - > Algoritmos de integridad de datos
 - Protocolos de seguridad (engloban a los anteriores)
- El libro del NIST (actualizado) define el término seguridad informática más o menos como:
 - la protección que se otorga a un sistema de información automatizado con el objetivo de alcanzar la preservación de la <u>integridad</u>, <u>disponibilidad</u> y <u>confidencialidad</u> de la información y los recursos del sistema (incluye hardware, software, firmware, información / datos, y telecomunicaciones).
- NIST: National Institute of Standards and Technology

POSIBLE Tarea de Evaluación Continúa: Implantación y organización de Sistema de Gestión de Seguridad de la Información (SGSI):

- LOPD y LSSI.
- Arquitectura de seguridad OSI (servicios de Seguridad X.800).
- ▶ ISO/IEC 27001.
- Auditorías.

Confidencialidad

SEGURIDAD Informática y de las comunicaciones

Integridad

Disponibilidad

Para chequear y testear CIA (Confidentiality Integrity Availability): Auditorías (verificar que se cumplen las normas de seguridad apropiadas).

- Los mecanismos de seguridad o control de seguridad son las componentes técnicas o métodos para asegurar los servicios de seguridad, típicamente dos formas:
 - > Prevención: Mantener la política de seguridad para no ser violada.
 - > Passwords, cifrados, etc.
 - > Detección: Detectar cuando la política de seguridad es violada.
 - > Detección de intrusión en redes, chequeos de virus, etc.
- Quienes son los adversarios:
 - > Puede ser interior/exterior al sistema de información, vendedor, empresas, etc.
 - Un vendedor puede instalar un rootkit en el sistema (es un programa que se ejecuta en un ordenador con medidas para mantener su presencia oculta y para impedir su eliminación).
 - El rootkit más conocido fue desarrollado y diseminado subrepticiamente por Sony en 2005. (https://www.schneier.com/blog/archives/2005/11/sonys drm rootk.html). Y lo más grave que OJO que los virus se pueden aprovechar de esto.
 - Una escucha ilegal de un canal puede manipular las comunicaciones.

- Los servicios de seguridad junto con los mecanismos para alcanzar esos servicios están definidos en el documento de recomendación X.800.
- Esta recomendación forma parte de la <u>Unión Internacional de</u> <u>Telecomunicaciones</u>, aprobaba el 22 de marzo de 1991 en Ginebra, que fue elaborado por el Comité Consultivo Internacional Telegráfico y Telefónico.
- No es una especificación de implementación, sino una descripción de los servicios de seguridad junto con los mecanismos para alanzar estos servicios.
- X.800 define en que capa del Modelo OSI (Open System Interconnection) se deben aplicar los servicios de seguridad junto con los mecanismos o funciones que pueden ser implementados para ofrecer esos servicios.
- > También se hace en este documento una recomendación de la administración de la seguridad.

- En los Servicios de Seguridad, Parte, Actor o Entidad: Puede ser un usuario, proceso, sistema,
- La criptografía puede generar los siguientes servicios para protección en las tecnologías de la información:

Autenticación:

- Asegura que la identidad de un actor, entidad o entidades conectadas a un actor, entidad o entidades sea autentica y verdadera.
- Asegura y corrobora a una entidad que la información proviene de otra entidad es auténtica y verdadera.

Control de acceso:

- Protege a una entidad contra el uso no autorizado de sus recursos.
- > Se puede aplicar a varios tipos de acceso:
 - > uso de medios de comunicación, la lectura, escritura o eliminación de información y la ejecución de procesos, etc.

Confidencialidad:

- Protege a una entidad contra la revelación deliberada o accidental de cualquier conjunto de datos a entidades no autorizadas.
- Cuando el conjunto de datos a proteger se refiere a información propia de un individuo (dirección postal, entorno familiar, cuentas bancarias, actividades personales, etc.) generalmente se suele hablar de privacidad.

Integridad:

- Asegura que los datos almacenados en las computadoras y/o transferidos en una conexión no fueron modificados.
- > Su aplicación es variable: se puede aplicar a un flujo de mensajes, un mensaje solo, o campos seleccionados dentro de un mensaje.
- Asegura que los mensajes son recibidos tal como se enviaron, sin duplicación, inserción, modificación, reorganización, o repeticiones.
- En general, proporciona protección contra toda alteración de mensaje no autorizado.

No repudio:

- Protege contra usuarios que quieran negar falsamente que enviaran o recibieran un mensaje.
- Cuando se envía un mensaje, el receptor puede probar que el emisor de hecho, ha enviado el mensaje (Origen).
- Cuando se recibe un mensaje, el emisor puede demostrar que el receptor de hecho recibió el mensaje (Destino).

> El flujo normal de la información sería:

- Los diferentes esquemas generales de ataques que se pueden se pueden dar en tecnologías de la información son:
 - Interrupción (se destruye la comunicación):

- Los diferentes esquemas generales de ataques que se pueden se pueden dar en tecnologías de la información son (cont.):
 - Intercepción (se viola la confidencialidad):

- Los diferentes esquemas generales de ataques que se pueden se pueden dar en tecnologías de la información son (cont.):
 - Modificación (se viola la integridad):

- Los diferentes esquemas generales de ataques que se pueden se pueden dar en tecnologías de la información son (cont.):
 - > Engaño (se viola la autentificación):

Por otro lado los diversos ataques se pueden clasificar en:

Activos:

- > Interrupción.
- > Intercepción.
- Modificación.
- Engaño (fabrication).
- > Suplantación de identidad.
- Repetición (captura el mensaje y lo reenvía).

Pasivos:

Cuando se actúa directamente en la comunicación en emisor y receptor. Por ejemplo el atacante se limita a grabar el mensaje, a observar tráfico (análisis de tráfico), etc.

Los pilares teóricos de la criptografía

Los pilares teóricos de la criptografía son:

Los pilares teóricos de la criptografía (las claves)

- Los algoritmos criptográficos modernos emplean una gran cantidad de claves, por tanto es difícil romper estos por la fuerza bruta.
- Por poner un ejemplo simple con algoritmo antiguo, el DES utiliza 2⁵⁶ claves, es un número muy grande:
 - Si hiciésemos 1.00.000 de operaciones por segundo romperíamos el DES por la fuerza bruta (con 2⁵⁶ tardaríamos 10²⁴ años). Para hacernos una idea de lo grande que son estos número:
 - \triangleright La probabilidad de ser fulminado por un rayo es 1 entre 2^{33} .
 - \triangleright La probabilidad de que te toque la LOTO es 1 entre 2^{32} .
 - \triangleright La probabilidad de ser fulminado por un rayo y te toque la LOTO en el mismo día es 1 entre 2^{56} .

Esquema de cifrado de clave privada

Criptosistema

- Concepto de criptosistema:
 - Podemos definir un criptosistema como un conjunto de 5 elementos (quintupla) { P, C, K, E_k, D_k}:
 - Un conjunto finito de textos planos asignado a P
 - Un conjunto finito de textos cifrados asignado a C
 - Un conjunto finito de claves a K
 - Una función de cifrado (algoritmo de encriptación): E_k
 - Una función de descifrado (algoritmo de desencriptación): D_k
 - > Para todo elemento x perteneciente a P se verifica que
 - \triangleright D_k(E_k(x))=x (Inyectividad del criptosistema)
 - Esta definición es para un criptosistema simétrico por bloques, para cualquier otro criptosistema la definición es análoga teniendo en cuenta siempre la condición indispensable de inyectividad o función uno a uno:

Imagen extraída de http://commons.wikimedia.org/wiki/File: lnjection.svg

