WELCOME TO

Introduction to Clustering

Cluster and Clustering

Cluster: a collection of data objects

Clustering: Grouping a set of data objects into clusters

Clustering is <u>unsupervised classification</u>: no predefined target class are given.

What is clustering used for?

Examples:

- Groups customers to make "small", "medium" and "large" T-Shirts.
- Given a collection of text documents, we want to compare content similarities To check copyrights.

In fact, clustering is one of the most utilized data mining techniques.

Clustering - Ambiguous and Subjective

The following objects and subjects can be divided in more than one way:

Quality of Clustering

The quality of a clustering result depends on <u>similarity measure</u> used and its implementation.

A good clustering method will produce high quality clusters with

- High INTRA class similarity
- Low INTER class similarity

Similarity and Dissimilarity for objects

If p and q are the attribute values for two data objects then d is the similarity accordingly:

Attribute	Dissimilarity	Similarity			
Type					
Discrete	$d = \left\{ egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{ egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$			
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$			
Continuous	d = p-q	$s = -d$, $s = \frac{1}{1+d}$ or $s = 1 - \frac{d-min_d}{max_d-min_d}$			

Data as Distance Matrix

Represents pairwise distance in n objects

- An n by n matrix
- d(i,j): distance or dissimilarity between objects i and j Nonnegative
 - Close to 0: similar

	s 1	s 2	s 3	s 4	
1	0.13	0.72	0.1	0.57	
g 2	0.34	1.58	1.05	1.15	0
g 3	0.43	1.1	0.97	1	
g 4	1.22	0.97	1	0.85	
g 5	-0.89	1.21	1.29	1.08	
g 6	1.1	1.45	1.44	1.12	
g 7	0.83	1.15	1.1	1	430
g 8	0.87	1.32	1.35	1.13	
g 9	-0.33	1.01	1.38	1.21	
g 10	0.10	0.85	1.03	1	
Original Data Matrix					

Distance as Similarity Measure

Lesser the distance, more is the similarity.

Euclidean Distance (Norm 2)
$$L^2 = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Manhattan Distance (Norm 1)
$$L^1 = |x_2 - x_1| + |y_2 - y_1|$$

Document and Cosine Similarity

Each document can be represented as a vector,

Each word can be a component of the vector representing the number of times that term occurs in the document and their dot product represents the similarity between them.

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Two Types of Clustering

Partitional algorithms:

A division of data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset.

Hierarchical algorithms:

Creating a set of nested clusters organized as a hierarchical tree.

Clustering as an optimization problem

<u>Clustering algorithm finds clusters such that it minimize or maximize an objective function.</u>

Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function.

- Global objective function: Typically used in partitional clustering.
- <u>Local objective function</u>: Used by Hierarchical & Density-based clustering algorithms

Desirable Properties of a Clustering Algorithm

<u>Clustering Scalability</u>: In order to handle extensive databases, the clustering algorithm should be scalable.

<u>High Dimensionality</u>: The algorithm should be able to handle high dimensional space.

Flexibility: Algorithm Usability with multiple data kinds.

<u>Dealing with unstructured data</u>: Ability to handle missing values, and noisy or erroneous data.

<u>Interpretability</u>: The clustering outcomes should be interpretable, comprehensible, and usable.

Much obliged.

TECH I.S.

