1 BLOQUE 2. ASPECTOS CUALITATIVOS DE LA QUÍMICA (tema 3 del libro)

- **Ej. 1** 4> Sabemos que 40 uma es la masa del átomo de calcio. Calcula:
 - a) La masa en gramos de 1átomo de Ca.
 - b) ¿Cuál de las siguientes cantidades tienen mayor número de átomos? 40 g de Ca; 0,20 moles de Ca; 5 · 10²³ átomos de Ca.
- **Sol. 1** a) $m = 6.6 \cdot 10^{-23}$ g; b) 40 g de Ca.
 - **Ej. 2** 5> Si tenemos en cuenta que 56 uma es la masa del átomo de hierro, calcula:
 - a) La masa atómica en gramos de 1átomo de Fe.
 - b) Cuál de las siguientes cantidades tiene mayor número de átomos de Fe: 56 g, 0,20 moles o 5 · 10²³ átomos.
- **Sol. 2** a) $m = 9.3 \cdot 10^{-23}$ g; b) 65 g de Fe.
 - **Ej. 3** 6> Responde a las siguientes cuestiones:

- a) ¿En cuál de las siguientes cantidades de los elementos que se enumeran a continuación existe un mayor número de moles: 100 g de hierro, 100 g de oxígeno molecular, 100 g de cinc o 100 g de níquel?
- b) ¿Y un mayor número de átomos?
- **Sol. 3** a) En los 100 gramos de oxígeno molecular; b) En los 100 gramos de oxígeno molecular.
 - **Ej. 4** 10> Sabiendo que un gas a 1,5 atm y 290 K tiene una densidad de 1,178 g/L, calcula su masa molecular.
- **Sol. 4** $M = 18,7 \, \mathrm{g/mol}$
 - **Ej. 5** 11> Calcula la densidad del metano (CH₄) a 700 mmHg y 75 °C.
- **Sol. 5** $d = 0.52 \,\mathrm{g/L}$
 - S: d = 0.52 g/L

2 BLOQUE 5. QUÍMICA DEL CARBONO (tema 5 del libro)

- **Ej. 6** 7> Formula los siguientes alcanos:
 - a) n-pentano
 - b) 2,3,5-trimetilheptano
 - c) 4-etil-2,6-dimetiloctano
 - d) 4,6-dietil-2,4,8-trimetilnonano
 - e) 4-etil-2,2,5,8-tetrametil-6-propildecano
 - f) 3,7-dietil-5-isopropildecano
- **Ej. 7** 9> Formula los siguientes hidrocarburos insaturados:
 - a) But-1-eno
 - b) Pent-2-eno
 - c) Hexa-2,4-dieno
 - d) 3-butilhexa-1,4-dieno
 - e) But-2-ino
 - f) 3,4-dimetilpent-1-ino
 - g) 3,6-dimetilnona-1,4,7-triino

- h) Pent-1-en-3-ino
- i) Hept-3-en-1,6-diino
- i) 4-etilhexa-1,3-dien-5-ino
- **Ej. 8** 11> Formula los siguientes hidrocarburos cíclicos:
 - a) Etilciclohexano
 - b) Ciclopenteno
 - c) Ciclohexino
 - d) 1,1,4,4-tetrametilciclohexano
 - e) 3-etilciclopenteno
 - f) 2,3-dimetilciclohexeno
 - g) 4-ciclobutilpent-1-ino
 - h) 3-ciclohexil-5-metilhex-2-eno
 - i) Ciclohexa-1,3-dieno
 - j) 3-ciclopentilprop-1-eno
- **Ej. 9** 12> Nombra los siguientes hidrocarburos cíclicos:

f)
$$CH_3 - CH - CH_2 - CH_2 - CH_3$$
 CH_3
 CH_3
 CH_3

g)
$$CH_3-CH-CH=CH_2$$

- **Ej. 10** 13> Formula los siguientes hidrocarburos aromáticos:
 - a) Metilbenceno (tolueno)
 - b) Etenilbenceno
 - c) 1,3-dietilbenceno
 - d) 1-butil-4-isopropilbenceno
 - e) Para-propiltolueno
 - f) 3-fenil-5-metilheptano
 - g) 4-fenilpent-1-eno
 - h) 2,4-difenil-3-metilhexano
- **Ej. 11** 15> Formula los siguientes derivados halogenados:

- a) 2-cloropropano
- b) 1,3-dibromobenceno
- c) 1,1,2,2-tetrafluoretano
- d) 1,4-diclorociclohexano
- e) 4-bromopent-1-ino
- f) 3-flúor-5-metilhex-2-eno
- g) 1,4-dibromo-6-ciclopentiloct-2-eno
- h) 4-yodo-3,5-difenilpent-1-ino
- i) 4-clorobut-1-eno
- j) 1,2-dibromobenceno
- **Ej. 12** 17> Formula los siguientes alcoholes y éteres: 18> Nomb ra los siguientes alcoholes y éteres: es:
 - a) 3-metilpentan-1-ol
 - b) Butano-1,2,3-triol
 - c) 2-fenilpropano-1,3-diol
 - d) Ciclohexanol
 - e) Hexa-3,5-dien-2-ol
 - f) Fenol (Hidroxibenceno)
 - g) 2-etilpentan-1-ol
 - h) Pent-3-en-1-ol
 - i) Etilisopropiléter
 - j) Etenilfeniléter
 - k) Dimetiléter
 - l) Butilciclopentiléter
- **Ej. 13** 18> Nombra los siguientes alcoholes y éteres:
 - a) CH₃OH

b)
$$CH_2OH - CH_2 - CH - CH = CH_2$$

 CH_2
 CH_2
 CH_2

c) CH₃-CHOH-CHBr-CH₂OH

d)
$$CH_3 - CH_2 - CH - CHOH - CH_3$$

$$CH_3$$

e) CH₂=CH-CHOH-CH₂OH

f)
$$CH_3 - CH_2 - CH_2 - O - CH_2 - CH_2 - CH_3$$

g)
$$CH_2 = CH - O - CH - CH_3$$

 CH_3

h) $CH_3 - (CH_2)_3 - CH_2 - O - C = CH$

VER EN EL LIBRO, PÁGINA 135

- **Ej. 14** a) Etanal (acetaldehído)
 - b) Benzaldehído
 - c) 3-metilpentanal
 - d) 2-metilpentanodial
 - e) Propenal
 - f) Hex-2-endial
 - g) 5-ciclohexilpent-3-inal
 - h) 3-metilpent-2-enal
 - i) Hex-2-endial
 - j) Pentan-2-ona
 - k) Hexa-2,4-diona
 - l) 3-clorobutanona
 - m) 1,4-difenilpentan-2-ona
 - n) Hexa-1,5-dien-3-ona
- **Ej. 15** 20> Nombra los siguientes aldehídos y cetonas:

VER EN EL LIBRO, PÁGINA 136

- a) HCHO
- b) CH₃-CH₂-CH₂-CHO
- c) OHC-CH=CH-CHO
- d) $CH_2 = C CH_2 (CH_2)_4 CHO$
- e) OHC-CH=CH-CH₂-CH(CH₃)-CHO
- f) $CH_3 CH CH = CH CHO$ C_6H_5
- g) $CHO-CH_2-C=C-CH_2-CH_2-CHO$
- h) $CH_3-CO-CH_2-CH_3$
- i) CH₃-CH=CH-CH₂-CO-CH₃

- j) $CH_3-CO-CH_2-CH_2-CH_2-CO-CH_3$
- k) $CH_3-CH(CH_3)-CO-CH_2-CH(CH_3)-CH_3$
- l) $CH_2 = CH CO CH = CH CH_3$
- **Ej. 16** 21> Formula los siguientes ácidos y ésteres:
 - a) Ácido etanoico (ácido acético)
 - b) Ácido 3-metilhexanoico
 - c) Ácido 2-fenilpentanodioico
 - d) Ácido tricloroetanoico
 - e) Ácido but-3-enoico
 - f) Ácido hepta-2,4-dienoico
 - g) Ácido pent-2-enodioico
 - h) Ácido benzoico
 - i) Butanoato de metilo
 - j) Propanoato de etilo
 - k) Benzoato de propilo
 - l) Etanoato de octilo
 - m) 3-cloropentanoato de etenilo
 - n) But-3-enoato de isopropilo
- **Ej. 17** 23> Formula los siguientes compuest os con funciones nitrogenadas:
 - a) Isopropilamina
 - b) Pentan-3-amina
 - c) Buta-1,3-diamina
 - d) 3-etilhexan-3-amina
 - e) 3,5-dimetilhexan-1-amina
 - f) Pent-3-en-2-amina
 - g) N-metilfenilamina
 - h) N-ciclopentilbutilamina
 - i) Etanamida
 - j) N-metiletanamida
 - k) 4-fenilpentanamida
 - l) N-etilhex-4-enamida
- **Ej. 18** 24> Nombra los siguientes compuestos nitrogenados:

- a) $\operatorname{CH_3-CH-CH_2-CH_3} \atop | \operatorname{NH_2}$
- b) $CH_3-CH_2-CH_2-NH_2$
- d) $CH_3 CH NH CH = CH_2$ CH_3
- e) CH₃-NH
- f) $CH_3-CH_2-CH_2-CH_2-CH_2-CO-NH_2$
- g) $CH_3-CH=CH-CH_2-CO-NH_2$
- h) CH₃-CH₂-CHBr-CH₂-CO-NH-CH₃
- **Ej. 19** 25> Formula los siguientes compuestos orgánicos:
 - a) 2,2-dimetilpentano
 - b) Hepta-1,5-dieno
 - c) 1-fenilpent-2-ino
 - d) 3-isopropilciclohexeno
 - e) 1-butil-3-metilbenceno
 - f) Butano-1,3-diol
 - g) Butileteniléter
 - h) But-3 enal
 - i) Hex-5-in-2-ona
 - i) Ácido 3-isopropilhexanoico
 - k) Pentanoato de metilo
 - l) 5-meilhexan-2,4-diamina
 - m) N-metiletilamina
 - n) N.N-dietilbutilamina
 - o) Hex-3-enamida
 - p) N-metilbutanamida
- **Ej. 20** 27> Formula y nombra:
 - a) Dos hidrocarburos alifáticos que presenten isomería de cadena.
 - b) Dos aminas con isomería de posición.

- c) Dos compuestos oxigenados con isomería de función.
- **Ej. 21** 28> Escribe y nombra:
 - a) Todos los isómeros de cadena de fórmula C_5H_{12} .
 - b) Cuatro isómeros de función de fórmula C₄H₈₀.
 - c) Tres isómeros de posición de la amina $C_5H_{13}N$.
- **Ej. 22** Dados los siguientes compuestos, formúlalos y justifica cuáles de ellos presentan isomería geométrica y cuáles isomería óptica:
 - a) 2-clorobutano
 - b) Pent-3-en-2-ol
 - c) Pentan-3-amina
 - d) 2-fenilpent-2-eno

2.1 Problemas propuestos

- 2.1.1 Grupos funcionales y series homólogas
- **Ej. 23** 7. Escribe el número de carbonos y el grupo funcional al que corresponden los siguientes compuestos:
 - a) Octano
 - b) Butanamina
 - c) Pentinamida
 - d) Ácido decanoico
 - e) Hexenal
 - f) Propanona
 - g) Butino
 - h) Hepteno
 - i) Metanol
 - j) Dietiléter
- **Ej. 24** 8. Indica si la estructura de cada pareja representa el mismo compuesto o compuestos diferentes, identificando los grupos funcionales presentes:
 - a) CH₃CH₂OCH₃ y CH₃OCH₂CH₃
 - b) CH₃CH₂OCH₃ y CH₃CHOHCH₃

- c) CH₃CH₂CH₂OH y CH₃CHOHCH₃
- **Ej. 25** 9. Contesta a cada uno de los siguientes apartados referidos a compuestos de cadena abierta:
 - a) ¿Qué grupos funcionales pueden tener los compuestos de fórmula molecular C_nH_{2n+2}O?
 - b) ¿Qué compuestos tienen por fórmula molecular C_nH_{2n-2} ?
- **Ej. 26** 10. Nombra y formula los siguientes compuestos orgánicos:
 - a) CH₃-CH₂-COOH
 - b) $CH_3-CH_2-C\equiv CH$
 - c) CH₃-CHOH-CH₂-CH₂-CH₃
 - d) CH₃-CH₂-CO-CH₂-CH₂-CH₃
 - e) C₆H₁₄
 - f) Metil etil éte
 - g) Metanoato de propil
 - h) Dietilamin
 - i) Pentana
 - i) Metilpropen
- Ej. 27 13. Formula las siguientes especies químicas:
 - a) 1-bromo-2,2-diclorobutano
 - b) Trimetilamina
 - c) 2-metilhex-1,5-dien-3-ino
 - d) Butanoato de 2-metilpropilo
 - e) Tolueno (metilbenceno)
 - f) Propanamida
 - g) 2,3-dimetilbut-1-eno
 - h) Ácido 2,3-dimetilpentanodioico
- **Ej. 28** 14. Nombra las siguientes especies químicas:
 - a) $H_2C=CH-CH=CH-CHO$
 - b) H₃C-CO-CO-CH₃
 - c) $H_2C = CH CH = CH CH_2 COOH$
 - d) $H_3C-CH_2-NH-CH_2-CH_3$

- e) $CH \equiv C CH_2 COOH$
- f) $CH_3-CH_2-CH(CH_3)-CONH_2$
- g) $H_3C-C(OH)_2-CH_2-CH_2OH$
- **Ej. 29** 15. Nombra y/o formula los siguientes compuestos:
 - a) CHCl₃
 - b) CH₃-CH₂-CHO
 - c) $CH_3-CH_2-CH_2-CH_2-CO-NH_2$
 - d) $(CH_3)_2$ -CHOH
 - e) 2,2-dimetilbutano
 - f) Para-diaminobenceno
 - g) Ciclohexano
 - h) Etil propil éter
- **Ej. 30** 16. Formula o nombra, según corresponda:
 - a) 1-etil-3-metilbenceno
 - b) 2-metilpropan-2-ol
 - c) 2-metil-propanoato de etilo
 - d) Pent-3-en-1-amina
 - e) ClCH=CH-CH₃
 - f) $CH_3-CH_2-O-CH_2-CH_3$
 - g) $CH_3-CH(CH_3)-CO-CH_2-CH(CH_3)-CH_3$
 - h) $CH_2 = CH CH_2 CO NH CH_3$
- **Ej. 31** 20. Formula o nombra los siguientes compuestos:
 - a) Cromato de cobre(II)
 - b) Hidruro de magnesio
 - c) Hidrogenosulfuro de bario
 - d) Etanamina
 - e) Propan-1,2-diol
 - f) Fe(OH)₂
 - g) H_2SO_3
 - h) N_2O_5

- **Ej. 32** 21. Formula o nombra los siguientes compuestos orgánicos :
 - a) 3-etil-2-metilhexano
 - b) 1-bromopent-2-ino:
 - c) 3-etilhe xano-1,5-diol:
 - d) 3-metilpentan-2,4-diamina
 - e) $CH_2=CH-CH_2-CO-O-CH_3$
 - f) $C_6H_5-O-C_6H_5$
 - g) CH₃-CH₂-CO-NH-CH₂-CH₃
 - h) COOH-CH₂-CH₂-CHBr-COOH

2.1.2 Isomería estructural y espacial

- **Ej. 33** 23. Formula los siguientes compuestos orgánicos:
 - a) But-3-en-2-ona
 - b) Buta-1,3-dien-2-ol
 - c) Dietiléter

¿Cuáles de ellos son isómeros entre sí?

- **Ej. 34** 24. Escribe y nombra cinco isómeros de cadena de fórmula molecular C₆H₁₄.
- **Ej. 35** 25. Escribe y nombra cuatro isómeros de función de fórmula molecular C₄H₈O.

- **Ej. 36** 28. Escribe y nombra todos los isómeros estructurales de fórmula C5H10
- Ej. 37 Formula y nombra:
 - a) Dos isómeros de posición de fórmula C₃H₈O
 - b) Dos isómeros de función de fórmula C₃H₈O
 - c) Dos isómeros geométricos de fórmula C₄H₈
 - d) Un compuesto que tenga dos carbonos quirales (asimétricos) de fórmula C₄H₈BrCl
- **Ej. 38** 31. Un derivado halogenado etilénico que presenta isomería cis-trans está formado en un 22,4% de C, un 2,8% de H y un 74,8% de bromo. Además, a 130 °C y 1 atm de presión, una muestra de 12,9 g ocupa un volumen de 2 L. Halla su fórmula molecular y escribe los posibles isómeros.
- **Sol. 38** C₄H₆Br₂
 - **Ej. 39** 32. Un alcohol monoclorado está formado en un 38,1% de C, un 7,4% de H, un 37,6% de Cl y el resto es oxígeno. Escribe su fórmula semidesarrollada sabiendo que tiene un carbono asimétrico y que su fórmula molecular y su fórmula empírica coinciden.

Sol. 39 ðC3H7OCl

- **Ej. 40** 33. Un hidrocarburo monoinsaturado tiene un 87,8% de carbono. Si su densidad en condiciones normales es 3,66 g/L, determina sus fórmulas empírica y molecular.
- **Sol. 40** Formula empírica: C_3H_5 ; Fórmula molecular: C_6H_{10} .

3 BLOQUE 4. Transformaciones energéticas y espontaneidad (tema 6 del libro)