

Wydział Mechaniczno-Energetyczny

Kierunek studiów: **Odnawialne Źródła Energii** Specjalność: **Przemysłowe Instalacje OZE**

POMPY i UKŁADY POMPOWE Dobór pompy

Grzegorz Wyborski

Prowadzący: Dr inż. Artur Machalski

Wrocław 2022

Spis treści

1	Wst	pep	2			
2	Tabele Wynikowo-pomiarowe					
3	Prz	ykładowe obliczenia	4			
4	Wykresy					
5	5 Wnioski					
\mathbf{S}_{1}^{2}	pis	rysunków				
	1	Tabela przedstawiająca ocenę doboru danej pompy.	3			
	2	Tabela przedstawiająca punkty pracy danych pomp oraz jak daleko od założonego punktu pracy się znajdują na wykresie w linii prostej.	3			
	3	Krzywe pracy dla pompy NHVE-65-250/1. Przecięcie stanowi rzeczywisty punkt pracy, natomiast czarny punkt oznacza punkt pracy dla, którego pompa była	ა			
		dobierana. Dla tych danych wejściowych ta pompa jest za mała	5			
	4	Krzywe pracy dla pompy NHVE-80-250/1. Przecięcie stanowi rzeczywisty punkt				
		pracy, natomiast czarny punkt oznacza punkt pracy dla, którego pompa była dobierana. Dla tych danych wejściowych ta pompa jest przewymiarowana	6			
	5	Krzywe pracy dla pompy NHVE-125-400/A. Przecięcie stanowi rzeczywisty punkt	Ĭ			
		pracy, natomiast czarny punkt oznacza punkt pracy dla, którego pompa była do-				
		bierana. Dla tych danych wejściowych ta pompa jest znacząco za mała	7			

1 Wstęp

Przedmiotem zadania projektowego było przeprowadzenie procedury doboru pompy dla parametrów wejściowych $Q_d=147\frac{m^3}{h}, H_{d_d}=91m, H_{g_d}=2m$. Należało dobrać 3 pompy, jedną jak najdokładniej, drugą przewymiarowaną i trzecią niedowymiarowaną. Pompy były dobierane z katalogu firmy Hydro-Vacuum z grupy pomp jednostopniowych odśrodkowych do wody niezanieczyszczonej o oznaczeniu NHVe.

Do dokładniejszego określenia charakterystyk pompy oraz punktów pracy użyłem programów napisanych w językach C++, oraz Python, które przyjmowały punkty z krzywych z katalogów i wyznaczały równanie tych krzywych.

Ocena doboru została przeprowadzona na podstawie trzech parametrów. Dokładności doboru, czyli tego, w jakiej odległości leżał rzeczywisty punkt pracy od założonego, a jego wagą było 0.8. Sprawności w założonym punkcie pracy o wadze 0.6 oraz mocy na metr sześcienny przepływu w założonym punkcie pracy o wadze 0.3.

2 Tabele Wynikowo-pomiarowe

	NHVE-65-250/1	NHVE-80-250/1	NHVE-125-400/A	Waga
Dokładność doboru	2.78103	0.640363	0.270566	0.8
Sprawność dal założonego punktu pracy	0.797404	0.73339	0.636738	0.6
Moc na metr sześcienny przepływu	3.35685	2.60177	3.68914	0.3
Ocena doboru	0.716592	0.674971	0.655709	

Rysunek 1: Tabela przedstawiająca ocenę doboru danej pompy.

	NHVE-65-250/1	NHVE-80-250/1	NHVE-125-400/A	Zakładany punkt pracy
Н	88.2363	103.198	63.5523	91
Q	144.7	156.75	122.249	147
Dystans	3.596	15.616	36.959	0.000

Rysunek 2: Tabela przedstawiająca punkty pracy danych pomp oraz jak daleko od założonego punktu pracy się znajdują na wykresie w linii prostej.

3 Przykładowe obliczenia

Wyliczenie mocy hydraulicznej

$$P_h = Q \cdot H \cdot \rho_{H_2O} \cdot g$$

$$P_h = 0.1 \frac{m^3}{h} \cdot 101.3 m \cdot 997 \frac{kg}{m^3} \cdot 9.81 \frac{m}{s^2} = 27.5498 \frac{kg \cdot m^2}{s^3.3600}$$
(1)

Wyliczenie mocy sprawności

$$\eta = \frac{P}{P_h}$$

$$\eta = \frac{22422.2W}{9362.88W} = 0.417571$$
(2)

Wyliczenie mocy na metr sześcienny przepływu

$$e = \frac{P}{Q} \tag{3}$$

$$e = \frac{\frac{22195.6W}{1000}}{32.8001\frac{m^3}{h}} = 0.676693\frac{kW \cdot H}{m^3}$$

Wyliczenie współczynnika R

$$R = \frac{H_d - H_g}{Q^2}$$

$$R = \frac{91m - 2m}{147^2 \frac{m^3}{b}} = 0.004118654$$
(4)

Wyliczenie równania pompy

$$dHu(Q) = H_g + RQ^2$$

$$dHu(Q) = 2 + 0.004118654Q^2$$
(5)

Wyliczenie dokładności doboru

$$w_1 = \frac{10}{\sqrt{(|Q_{p.pracy} - Q_d|)^2 + (|H_{p.pracy} - H_{d_d}|)^2}}$$
 (6)

Wyliczenie sprawności w założonym punkcie pracy

$$w_2 = \frac{Q_d \cdot H \cdot \rho_{H_2O} \cdot g}{P(Q_d)} \tag{7}$$

Wyliczenie mocy na metr sześcienny w założonym punkcie pracy

$$w_3 = \frac{P(Q_d)}{Q_d} \tag{8}$$

Ocena wyboru

$$\sum_{n=1}^{\infty} w_n \cdot i_n \tag{9}$$

4 Wykresy

Rysunek 3: Krzywe pracy dla pompy NHVE-65-250/1. Przecięcie stanowi rzeczywisty punkt pracy, natomiast czarny punkt oznacza punkt pracy dla, którego pompa była dobierana. Dla tych danych wejściowych ta pompa jest za mała.

Rysunek 4: Krzywe pracy dla pompy NHVE-80-250/1. Przecięcie stanowi rzeczywisty punkt pracy, natomiast czarny punkt oznacza punkt pracy dla, którego pompa była dobierana. Dla tych danych wejściowych ta pompa jest przewymiarowana.

Rysunek 5: Krzywe pracy dla pompy NHVE-125-400/A. Przecięcie stanowi rzeczywisty punkt pracy, natomiast czarny punkt oznacza punkt pracy dla, którego pompa była dobierana. Dla tych danych wejściowych ta pompa jest znacząco za mała.

5 Wnioski

Dla zadanych wag i parametrów najlepiej pasuje pompa NHVE-65-250/1, co wynika zarówno z wykresu, jak i z oceny doboru. Problemem może być, że rzeczywisty punkt pracy znajduję się poniżej zakładanego.

Kolejna dobierana pompa to NHVE-80-250/1, jest przewymiarowana, jednak nieznacznie. Należy przeprowadzić procedurę doboru dla pompy o oznaczeniu NHVE-80-250/2, czyli tego samego model, ale o zmniejszonym wirniku.

Ostatnia dobierana pompa to NHVE-125-400/A. Ten model jest znacząco niedowymiarowany i nie nadaje się do danego zastosowania. Już na wykresie przedstawiającym pola pracy było widać, że żadna pompa Pracująca na prędkości obrotowej $1500\frac{obr.}{min}$ nie pozwoli uzyskać zakładanych parametrów.