(12)

FP 0 676 484 B1

# (11)

FUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent: 24.03.1999 Bulletin 1999/12

(51) Int CL6: C23C 16/26, C23C 16/00

- (21) Application number: 95201231.8
- (22) Date of filing: 22.08.1990
- (54) Transparent diamond films and method for making

Durchsichtige Diamantschichten und Verfahren zu ihrer Herstellung

Films de diamant transparents et méthode pour leur fabrication

- (84) Designated Contracting States: AT BE CH DE FR GB LI SE
- (30) Priority: 14.09.1989 US 407179
- (43) Date of publication of application: 11.10.1995 Bulletin 1995/41
- (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 90116058.0 / 0 417 512
- (73) Proprietor: GENERAL ELECTRIC COMPANY Schenectady, NY 12345 (US)
- (72) Inventors:
  - · Anthony, Thomes Richard
  - Schenectedy, New York 12309 (US)
  - · Fleischer, Jemes Fulton Scotie, New York 12302 (US)
- (74) Representative: Szary, Anne Catherine, Dr. et at

London Patent Operation, GE International, Inc., Essex House,

12-13 Essex Street London WC2R 3AA (GB) (56) References cited: EP-A- 0 254 560

DIAMOND FILMS'

EP-A- 0 286 306

- . DIAMOND OPTICS II. DIAMOND OPTICS II. SAN DIEGO, CA, USA, 7-8 AUG, 1989, vol. 1146, ISSN 0277-786X, PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1990, USA, pages 192-200, XP 000109278 X.X.BI ET AL 'OPTICAL TRANSMISSION AND REFLECTION OF FREESTANDING FILAMENT ASSISTED CVD
- DIAMOND OPTICS II, DIAMOND OPTICS II, SAN DIEGO, CA, USA, 7-8 AUG. 1989, vol. 1146, ISSN 0277-786X, PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1990, USA, pages 208-216, XP 000109288 T. OBATA ET AL 'FREE-STANDING DIAMOND FILMS --- PLATES, TUBES, AND
- CURVED DIAPHRAGMS' JOURNAL OF THE AMERICAN CERAMIC SOCIETY, FEB. 1989, USA, vol. 72, no. 2, ISSN 0002-7820, pages 171-191, SPEAR K E
- 'Diemond-ceremic coeting of the future' . DIAMOND OPTICS II, DIAMOND OPTICS II, SAN DIEGO, CA, USA, 7-8 AUG. 1989, vol. 1146, ISSN 0277-786X, PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 1990, USA, peges 144-151, XP 000109281 K.A. SNAIL ET AL 'HEMISPHERICAL TRANSMITTANCEOF SEVERAL FREE STANDING DIAMOND FILMS
- · PATENT ABSTRACTS OF JAPAN vol. 013 no. 145 (C-583) ,10 April 1989 & JP-A-63 307196 (KOBE STEEL LTD) 14 December 1988,

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been liled until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

2

# Description

[0001] The present invention relates to vapor deposted transparent polycrystalline diamond lilms. More particularly, the present invention relates the method of introducing a particular mixture of hydrogen and methane into a heated reaction zone adjacent to a substrate such as molybdenum, to effect polycrystalline diamond film deposition.

[0002] As Isught by Spear, Diamond-Ceramic Cosciing CT The Future, Journal of American Caramics Society, 72(2)171-91 (1989), the growth of single-crystal films of diamond is critical to many electronic and operaductions, but it is a feat that has not been achieved except for homophizatilg prowth on diamond substracts. There is reported by Peter K. Backmann, et al in the May 15, 1989, edition of Chemical and Engineering New, on page 38, that vapor deposited diamond heat sinks have been developed using plasma jet deposition to produce polycrystalline material up to 4 x 6 x 1 millime-

[0003] In Japanese patent 85,141,697, it is reported that free-standing diamond films have been found useful as disphragms for speakers. S. Kawachi et al., Japanese patent 85(00)-127,292, reports that 10 µm (micror) dismond lims have been deposited on a graphite substrate. K. Fujii, et al., Japanese patent 85(00)-186,500 ctaches hat al. 6 Jum (micror) histotrappearent lime can be produced on a substrate using a methane-hydrogen micror.

[004] SPIE vol 1146 Diamond Optics II (1889) pages 192:200 "Optical Transmission and Reltection of Free-standing Filament Assisted CVD diamond Films" discloses room-temperature optical studies on ~10pm res-standing diamond lifms grown on Si (100) substrates by hot-filament-assisted CVD from a methane/ hydrogon midus.

[0005] Although various procedures have been develped to make vapor deposited polycrystalline diamond lilm, it would be desirable to provide glazing materials in the torm of tree-standing polycrystalline transparent diamond lilms having hicknesses of trom 50 to 5000 µm (microns) with lateral dimensions exceeding 10 millimeters.

# Summary of the Invention

[0006] The present invention is based on the discouery that vacor deposited transperent polycystalline dismord lilm can be made at thicknesses greater than 50 µm (microns) by passing particular hydrogen-methane mixture through a tillament heated reaction zone adjacent to a suitable substrate, such as a molydonum substrata, where the hydrogen-methane mixture introducdition to reaction zone has Irom about 1.5 to about 2 vodume percent of methane, based on the total votume of hydrogen and methane. Susd on the total votume of hydrogen and methane. Susd of this dail votumes and adherent polycynstalline dismond tilm having an optical absorbance of 2.1 cm<sup>-1</sup> to 32 cm<sup>-1</sup> can be formed at a growth rate of about 0.4 to 1.0 µm (microns) per hour. Thicknesses of at least 50 µm (microns), and as high as 5000 µm (microns) or more, can be made having lateral dimensions exceeding 25 centimeters.

### Statement of the Invention

[0007] There is provided by the present invention, a 10 continuous free-standing, substantially transparsed, at 10 continuous free-standing, substantially transparsed, at least 50 µm (microns) comprising (A) substantially ventical columnar diamond crystale having an average d-ameter of from about 20 to about 200 µm (microns) and a x11to- orientation perspendicular to the base and up to 10,000 parts per million of chemically combined hydrogen which is sufficient to substantially saturate danging carbon bonds at diamond crystal grain boundaries, carbon dislocations, and carbon vacancies and (B) diamond crystal grain boundaries separating the columnar diamond crystals of (A) where the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal grain boundaries have a 70°-90° orientation to the diamond crystal

[2008] It another aspect of the present invention.

[2008] It another aspect of the present invention.

It there is provided a method of growing a non-advisorm

on a substrate which comprises, passing is hydrogenmelhane mixture through a heated reaction zone at a

semperature of about 600° to about 1000°C and at a

pressure from about 400-3199 Pa (3 to about 24 torn)

which is sufficient to generate active extro-hydrogen

species in the heated reaction zone maintained at a fix
face of the substrate, where the hydrogen-melhane

mixture intorouted into the heated reaction zone has

from 1.5 to about 2 volume percent of methane, based

on the total volume of hydrogen and methane.

[0009] A typical apparatus which can be used to form the transperent polycrystalline diamond film of the present invention is shown by Figure 1. Figure 1 shows a quartz bell jar having a metal flange which rests on a base. Instêd the quartz bell jar, there is shown a support structure for a filament and several adjacent substrate sections.

45 [0010] More particularly, there is shown a quartz belligir at 10 thick can be 50.8-76.2 cm (20°-30°) that also but 10.16-15.24 cm (4°-5°) wide having a metal collar at its base at 11 and a gas intel at the top at 12 mm at

[0011] Inside the quartz bell jar there is shown a supporting stand at 16 for an extension at 17 for holdman 5 several substants structures, such as molybrohoulmat 18 and 19 and a filament at 20. The lilament is secured by a screw at 21 to a metal plug at 22 which passes through a quartz insulating coller at 29 which is supported by an

EP 0 676 484 B1

extension at 24. Electrical contacts are shown from the plug at 25 to a stud at 26 which is insulated from the metal base at 27.

[0012] Reference also is made to Figure 2, showing a top view through an optical microscope of 10 to 200 5 μm (micron) columnar diamond crystals of the polycrystalline diamond tilm of the present invention separated by atomic grain boundaries.

[0013] A further reference to the polycrystalline diamond film of the present invention is shown by Figure 3 10 and Figure 3A. A side view of the polycrystalline diamond film in cross section and a detail at 3A further illustrates the substantially transparent columns of diamond crystals having a <110> orientation perpendicular to the base. Grain boundaries between adjacent diamond crystals having hydrogen atoms saturating dangling carbon bonds are shown at 40 and in detail at 41, where at least 50% of the carbon atoms are believed to be tetrahedrally bonded based on Raman spectroscopy, infrared and X-ray analysis.

[0014] A detailed discussion of Miller Indices describing crystal planes of atoms differentiating between <010>, <110> and <111> orientation is shown on pages 65-69 in Elements of Material Science, Second Edition, 1964, by Lawrence H. VanVlack of Addison-Wisley Publishing Company, Reading, Massachusetts which is incorporated herein by reference.

[0015] A detailed discussion on chemical bonding and structure discussing the hybridization theory and molecular geometry with respect to tetrahedral bonding of carbon atoms with hydrogen is shown by Ernest Griswold, Chemical Bonding and Structure, pages 55-102, 1968, Raytheon Education Company, which is incorporated herein by reterence.

[0016] The following shows that dissociation of hydro- 35 gen and methane on a heated tungsten filament in accordance with the practice of the method of the present invention.

| CH <sub>4</sub> (g)+□=CH <sub>4</sub> (ad)       | (1) |
|--------------------------------------------------|-----|
| CH <sub>4</sub> (ad)=CH <sub>3</sub> (ad)+H (ad) | (2) |
| CH <sub>3</sub> (ad)=CH <sub>2</sub> (ad)+H(ad)  | (3) |
| CH <sub>2</sub> (ad)=CH (ad)+H (ad)              | (4) |
| CH(ad)=C(ad)+H(ad)                               | (5) |
| C(ad)=C(g)+□                                     | (6) |

| CH(ad)=CH(g)+ | (7) |
|---------------|-----|
|               |     |
|               |     |

(8)

(10)

CH\_(ad)=CH2(g)+

□ =vacant surface site (g)=gaseous species (ad)=species absorbed on surface.

[0017] The above mechanism is one possible explanation as to how the transparent diamond film grows on the substrate.

[0018] As described by Ch. Wild et al. in the First Proceedings For International ECS Symposium on Diamond and Diamond-Like Films, Los Angeles, May 7-12, 1989 tor 'Optical and Structural Characterization of CVD Diamond\*, which is incorporated herein by reference, infrared and Raman spectroscopy as well as Xray diffraction have been used to investigate polycrystalline diamond films prepared by the method of the present invention. The absorption spectrum of a 400 µm (micron) thick free-standing diamond wafer established that the film had a hydrogen concentration of about 5000 part per million. Raman spectroscopy was used to establish that the observed polycrystalline film was significantly different from graphite, since it contained a significant level of tetrahydral carbon atoms. X-ray diffraction measurements revealed that the polycrystalline film made in accordance with the practice of the present invention had a preferential allonment of the <110> planes perpendicular to the growth direction and indicated that

the diamond crystal grain boundaries had a 70°-90° orientation to the base [0019] The polycrystalline diamond films made in accordance with the practice of the present invention can be used in a variety of glazing applications as well as heat sinks or semiconductors.

[0020] In order that those skilled in the art will be better able to practice the present invention, the following example is given by way of illustration and not by way of limitation.

#### Example

[0021] A mixture of t.75 volume % of methane and 98.25 volume % of hydrogen, measured under atmospheric conditions, was introduced into a reaction vessel as shown by Figure 1. A pas flow rate of about 400 cubic centimeters per minute was maintained. There was used two 3.2x0.6x22.9 cm (1 1/4" x 1/4" x 9") molybdenum substrates and a 24.1 cm (9 1/2") #218 tungsten lilament having a diameter of 0.76 mm (.030\*). The tungsten filament was maintained at a temperature between about 2020 to 2040°C. A separation of about 7-8 millimeters was maintained between the tilament and the molybdenum substrate during the deposition which lasted approximately 30 days. The substrate temperature was estimated at about 800°C during the deposition period. [0022] At the termination of the 30 day deposition period, the apparatus was allowed to cool to room temperature. Transparent polycrystalline diamond films having thicknesses of about 500 µm (microns) and lateral dimensions equivalent to the substrates separated from the substrate during the cooling period.

5

[0023] The diamond tilms were tound to be of good crystalline quality as shown by Raman spectra having an intense peak at 1332 cm<sup>-1</sup>. The diamond tilms were 25 Patentensprüche also found to have the characteristic two phonon adsorption of material diamond in the range of 1600-2650 cm<sup>-1</sup> by intrared spectroscopy.

[0024] Although the above example is directed to only a tew of the very many variables which can be used in the practice of the method of the present invention to make the polycrystalline diamond tilms, it should be understood that a much broader variety of conditions, apparatus arrangements and materials can be used as set forth in the description preceding this example.

### Claime

- 1. A transparent or substantially transparent polycrys- 40 talline diamond lilm having a thickness of at least about 50 µm (microns).
- 2. A transparent or substantially transparent diamond tilm in accordance with Claim 1, wherein the diamond film has a thickness between about 200 um (microns) and about 500 µm (microns).
- 3. A transparent or substantially transparent diamond film In accordance with Claim 1 or Claim 2 wherein 50 the diamond film comprises substantially vertical columnar diamond crystals having a preterred [110] orientation perpendicular to the base of the film.
- 4. A substantially transparent diamond film in accord- 55 6. ance with any preceding claim having up to 10,000 ppm of chemically combined hydrogen.

- 5. A substantially transparent diamond tilm in accordance with any preceding claim, having diamond grain boundaries separating the columnar diamond crystals where said boundaries have between a 70° to a 90° orientation to the base of the lilm.
- 6. A method of growing a non-adherent substantially transparent polycrystalline diamond tilm on a substrate which comprises passing a hydrogen-methane mixture through a heated zone at a temperature of about 600°C to about 1000°C at a pressure of about 400 to 3199 Pa (3 to about 24 torr) which is sufficient to generate active carbon-hydrogen species in the heated zone maintained at a distance of from about 0.3 to about 1 centimeter on the surface of the substrate, where the hydrogen-methane mixture introduced into the heated zone has from about 1.5 to about 2 volume% of methane based on the total volume of hydrogen and methane.
- 7. A method in accordance with claim 6, where the substrate is a molybdonum substrate.

- 1. Transparenter oder im wesentlichen transparenter polykristalliner Diamantfilm mlt einer Dicke von mindestens etwa 50 µm.
- 2. Transparenter oder im wesentlichen transparenter Diamantfilm gemäß Anspruch 1, worin der Diamantfilm eine Dicke zwischen etwa 200 µm und etwa 500 um hat
- 3. Transparenter oder im wesentlichen transparenter Diamantfilm gemäß Anspruch 1 oder Anspruch 2, worin der Diamantfilm im wesenllichen vertikale säulenförmige Diamantkristalle umfaßt, die eine bevorzugte [110]-Orientierung senkrecht zur Basis des Films haben.
- Im wesentlichen transparenter Diamantfilm gemäß einem vorhergehenden Anspruch, der bis zu 10.000 ppm chemisch kombinierten Wasserstoff aufweist.
- Im wesentlichen transparenter Diamantfilm gemäß einem vorhergehenden Anspruch, der Diamant-Korngrenzen aufweist, die die säulenförmigen Diamantkristalle Irennen, wobei die Grenzen eine Orientlerung zwischen 70° und 90° zur Basis des Films haben.
- Verfahren zum Züchten eines nicht haltenden, im wesentlichen transparenten polykristallinen Diamantfilms auf einem Substrat, umlassend das Hindurchführen einer WasserstoffMethan-Mischung

EP 0 676 484 B1

84 B1

durch eine eshitzte Zone bei einer Temperatur von atwa 600°C bis atwa 1,000°C bei einem Druck von atwa 400 bis 3,199 Rg Jös etwa 24 Tem, was zum Erzeugen aktiver Kohlenstoff-Wasserstoff-Arten in der erhitzten Zone genögt, die in einem Abstand 5 von etwa 0,3 bis etwa 1 cm auf der Oberfläche des Substrates aufrechtenhalten wirk, wobei die in die erhitzte Zone eingelführte Wasserstoff-Mehnan-Mischung von etwa 1,5 bis etwa 2 Vol.-% Melthan, bezogen auf das Gesamtvolumen von Wasserstoff 10 und Mehlan, audweist.

7

 Verfahren nach Anspruch 6, worin das Substrat ein Motybdän-Substrat ist.

Revendications

- Film de diamant polycristallin, transparent ou pratiquement transparent, ayant une épaisseur d'au 20 moins environ 50 um (micromètres).
- Film de diamant transparent ou pratiquement transparent selon la revendication 1, dont l'épaisseur est comprise entre environ 200 µm (micromòtres) et 25 environ 500 µm (micromòtres).
- Film de diamant transparent ou pratiquement transparent selon la revendication 1 ou 2, qui comprend des cristaux de diamant en forme de colonne pratiquement verticale, ayant une orientation [110] préférée perpendiculaire à la base du film.
- Film de diamant pratiquement transparent selon l'une quelconque des revendications précédentes, qui contient jusqu'à 10.000 ppm d'hydrogène chimiquement combiné.
- Film de diamant pratiquement transparent selon l'une quelcorque des revendicalions précédentes, 40 qui présente des joints de grains de diamant séparant les cristaux de diamant en forme de colonne, lesdits joints ayant une orientation faisant un angle de 70° à 90° avec la base du film.
- 6. Procédé pour faire crittre sur un support un film de diamant polyrietalith, prafiquement transparent, non adhérent, qui comprend fétape consistant à fairte traverser par un mélange d'hydroghne et de méthane, à une pression d'anviron 400 à environ 3199 59 Pa (environ 3 à environ 24 torre), une zon chautiée à une température d'environ 600 °C à environ 1000 °C, ce qui est suffisant pour produire des espéces carbons-hydroghe actives dans la zone chautifée qui est maintenue à une distance d'environ 0,3 à 55 environ 1 certifinate de la surface du support, le mélange d'hydroghe ect de méthane introduit dans la zone chautile contenant environ 1,5 à environ 1

% en volume de méthane par rapport au volume total d'hydrogène et de méthane.

 Procédé selon la revendication 6, dans lequel le support est un support en molybdène.

EP 0 676 484 B1



•

EP 0 676 484 B1

FIG. 2





FIG. 3A