Práctica 1 Usando RSNNS

- Descripción de R.
- Abrir y usar RStudio.
- Manejo sencillo del script para la práctica.

Lenguaje R

- Lenguaje de programación abierto para la computación estadística y el análisis de datos.
- Se puede encontrar en: https://www.r-project.org/about.html
- Contiene multitud de operaciones para el procesado de distintas estructuras de datos, especialmente para matrices.
- Amplio abanico de librerías de herramientas de análisis de datos desarrolladas en este lenguaje.

RStudio

 Entorno de desarrollo para el lenguaje R con consola, desarrollo de scripts, visor de variables y diversas utilidades para facilitar el uso de R.

Se puede encontrar en: <u>https://rstudio.com</u>

4

Preparación de RStudio

Abrir RStudio en Windows

 Desde RStudio, abrir el archivo de la práctica PM2019_Reg.R

 Asegurarse de que los archivos de datos y el script estén en el mismo directorio

Preparación de RStudio

Configurar el directorio de trabajo

Preparación de RStudio

- Instalar los paquetes necesarios:
 - RSNNS
 - Es una adaptación para R del conocido simulador "The Stuttgart Neural Network Simulator" (SNNS)
 - Es un paquete que contiene muchas funciones para usar el simulador
 - https://cran.r-project.org/web/packages/RSNNS/RSNNS.pdf

Ficheros de datos

- El script está preparado para cargar los siguientes ficheros de datos (los nombres y extensiones de los ficheros pueden variar):
 - Train.dat
 - Validacion.dat
 - Test.dat
- Los ficheros de datos deben tener el formato siguiente:
 - ', ' coma para marcar separación entre dos campos (sep=",")
 - '.' punto para marcar el decimal de los números (dec=".")
 - Con cabecera (header=T)
- Pueden usarse otros formatos cambiando los valores de los parámetros dec (separador decimal), sep (separador entre atributos) y header (si tiene cabecera o no). (Si no tenemos cabecera será header = F)
- Si los campos están separados por espacios o tabulador puede usarse read.table() en lugar de read.csv()

Ejecutar el script

- Se puede ejecutar todo el script de una vez
 - Pulsar "Source"

 También se puede ejecutar la parte del código que se desee seleccionándolo y pulsando "Run".

Usar el MLP con RSNNS

El código que ejecuta MLP es:

```
#EJECUCION DEL APRENDIZAJE Y GENERACION DEL MODELO
                                                   # En RSNNS se llama test a nuestro fichero de validación
                                                   model <- mlp(x= trainSet[,-salida],
    #SELECCION DE LOS PARAMETROS
15 topologia
                                               35
                                                                 y= trainSet[, salida],
                     <- c(20)
16 razonAprendizaje <- 0.01</p>
                                                36
                                                                 inputsTest= validSet[,-salida],
                                                                 targetsTest= validSet[, salida],
17
    ciclosMaximos
                     <- 200
18
                                               38
                                                                 size= topologia,
                                               39
                                                                 maxit=ciclosMaximos,
                                               40
                                                                 learnFuncParams=c(razonAprendizaje).
                                               41
                                                                 shufflePatterns = F
                                               42
```

- Los parámetros que hay que modificar son los indicados:
 - topologia: Define las neuronas ocultas del MLP, se define usando una concatenación de valores, indicando el número de neuronas ocultas por cada capa: c(20), c(10,20,15), etc. Si hay solo una capa oculta se puede usar un escalar
 - razonAprendizaje: Define la razón de aprendizaje
 - ciclosMaximos: Define el número máximo de iteraciones del algoritmo de aprendizaje

Usar el MLP con RSNNS

 El modelo completo se guarda en el objeto "model ", incluida la evolución de los errores de entrenamiento y validación.

```
#GRAFICO DE LA EVOLUCION DEL ERROR
plotIterativeError(model)
```

- A la derecha en Rstudio se muestra la evolución del error. La línea roja marca el error de validación y la línea negra representa el error de entrenamiento.
- Se pueden consultar:
 - Errores finales: errors
 - Evolución del MSE: iterativeErrors
 - Salidas de la red: outputs
- El resultado del entrenamiento se guarda al final en ficheros csv.

800

Iteration

200