WHAT IS CLAIMED:

1. A compound of the formula I:

$$R^{1}$$
 R^{2} X CH_{2} R^{11} R^{12} Y^{2} $(CH_{2})_{m}$ $(CH_{2})_{m}$ $(CH_{2})_{m}$

- 5 or a pharmaceutically acceptable salt, hydrate, solvate or mixture thereof, wherein:
 - (a) each occurrence of m is independently an integer ranging from 0 to 5;
 - (b) each occurrence of n is independently an integer ranging from 3 to 7;
 - (c) X is (CH₂)_z or Ph, wherein z is an integer from 0 to 4 and Ph is a 1,2-, 1,3-, or 1,4 substituted phenyl group;
- 10 (d) each occurrence of R^1 , R^2 , R^{11} , and R^{12} is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkynyl, phenyl, or benzyl, wherein R^1 , R^2 , R^{11} , and R^{12} are not each simultaneously H; and
 - (e) each occurrence of Y^1 and Y^2 is independently (C_1 – C_6)alkyl, OH, COOH, COOR³, SO₃H,

$$\sim O - P - OR^4 \sim O - P - O - P - OR^4 \sim OR$$

(i) Y^1 and Y^2 are not each simultaneously (C_1-C_6) alkyl;

5

(ii) R^3 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,

- (iii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups; and
- (iv) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl.
- 2. The compound of claim 1, wherein each occurrence of Y^1 and Y^2 is independently OH, COOR³, or COOH.
 - 3. The compound of claim 1, wherein m is 0.

- 4. The compound of claim 1, wherein m is 1.
- 5. The compound of claim 1, wherein n is 4.
- 6. The compound of claim 1, wherein n is 5.
- 7. The compound of claim 1, wherein z is 0.
- 5 8. The compound of claim 1, wherein z is 1.
 - 9. The compound of claim 1, wherein Y^1 is (C_1-C_6) alkyl and Y^2 is OH.
 - 10. The compound of claim 1, wherein Y^1 is methyl and Y^2 is OH.
 - 11. A compound of formula II:

II

10

or a pharmaceutically acceptable salt, hydrate, solvate, or mixture thereof, wherein:

- (a) each occurrence of m is independently an integer ranging from 3 to 7;
- (b) each occurrence of n is independently an integer ranging from 0 to 5;
- (c) X is (CH₂)_z or Ph, wherein z is an integer from 0 to 4 and Ph is a 1,2-, 1,3-, or 1,4 substituted phenyl group;
 - (d) each occurrence of Y¹ and Y² independently (C₁-C₆)alkyl, OH, COOH, COOR⁷, SO₃H,

5

(i) R^7 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,

(ii) each occurrence of R^8 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups,

- (iii) each occurrence of R^9 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl;
- (e) R^3 and R^4 are (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl;
- (f) R⁵ and R⁶ are H, halogen, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₆)aryloxy, CN, or NO₂,

 N(R⁵)₂ where R⁵ is H, (C₁-C₄) alkyl, phenyl, or benzyl;
 - (g) C*1 and C*2 represent independent chiral-carbon centers wherein each center may independently be R or S.
 - 12. The compound of claim 11, wherein each occurrence of Y^1 and Y^2 is independently OH, COOR⁷, or COOH.
- 10 13. The compound of claim 11, wherein m is 4.
 - 14. The compound of claim 11, wherein m is 5.
 - 15. The compound of claim 11, wherein X is $(CH_2)_z$ and z is 0.
 - 16. The compound of claim 11, wherein X is $(CH_2)_z$ and z is 1.
- 17. The compound of claim 11, wherein each of Y^1 and Y^2 is C(O)OH or 15 CH₂OH.
 - 18. The compound of claim 11, wherein R^3 and R^4 are each independently (C_1 – C_6) alkyl.
 - 19. The compound of claim 11, wherein R^3 and R^4 are each methyl.
- 20. The compound of claim 11, wherein C*1 is of the stereochemical configuration R or substantially R.
 - 21. The compound of claim 11, wherein C*1 is of the stereochemical configuration S or substantially S.

- 22. The compound of claim 11, wherein C^{*2} is of the stereochemical configuration R or substantially R.
- 23. The compound of claim 11, wherein C^{*2} is of the stereochemical configuration S or substantially S.
- The compound of claim 11, wherein C^{*1} and C^{*2} are of the stereochemical configuration (S^1, S^2) or substantially (S^1, S^2) .
 - 25. The compound of claim 11, wherein C^{*1} and C^{*2} are of the stereochemical configuration (S^1, R^2) or substantially (S^1, R^2) .
- 26. The compound of claim 11, wherein C^{*1} and C^{*2} are of the stereochemical configuration (R^1, R^2) or substantially (R^1, R^2) .
 - 27. The compound of claim 11, wherein C^{*1} and C^{*2} are of the stereochemical configuration (R^1, S^2) or substantially (R^1, S^2) .
 - 28. A compound of the formula III:

$$R^{1}$$
 R^{2} R^{1} R^{2} R^{1} R^{12} R^{11} R^{12} R^{11} R^{12} R^{12}

15

or a pharmaceutically acceptable salt, hydrate, solvate, or mixture thereof, wherein

- each occurrence of R¹, R², R⁶, R⁷, R¹¹, or R¹² is independently hydrogen, (C₁–C₆)alkyl, (C₂–C₆)alkenyl, (C₂–C₆)alkynyl, phenyl, or benzyl;
- (b) each occurrence of n is independently an integer ranging from 1 to 7;
- 20 (c) X is $(CH_2)_z$ or Ph, wherein z is an integer from 0 to 4 and Ph is a 1,2-, 1,3-, or 1,4 substituted phenyl group;
 - (d) each occurrence of m is independently an integer ranging from 0 to 4;

(e) each occurrence of Y^1 and Y^2 is independently (C₁-C₆)alkyl, CH₂OH, C(O)OH, OC(O)R³, C(O)OR³, SO₃H,

wherein:

- (i) R^3 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups;
- (iii) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl; and
- (f) b is 0 or 1 and optionally the ring contains the presence of one or more additional carbon-carbon bonds that when present complete one or more carbon-carbon double bonds such that when b is 0 the maximum number of carbon-carbon bonds is two or when b is 1 the maximum number of carbon-carbon bonds is three.

29. A compound of the formula IV:

$$R^{1}$$
 R^{2} R^{6} R^{7} R^{6} R^{7} R^{6} R^{7} R^{11} R^{12} R^{12}

15

5

or a pharmaceutically acceptable salt, hydrate, solvate, or mixture thereof, wherein

- (a) each occurrence of R^1 , R^2 , R^6 , R^7 , R^{11} , or R^{12} is independently hydrogen, (C₁–C₆)alkyl, (C₂–C₆)alkenyl, (C₂–C₆)alkynyl, phenyl, or benzyl;
- (b) each occurrence of n is independently an integer ranging from 1 to 7;
- 20 (c) X is $(CH_2)_z$ or Ph, wherein z is an integer from 0 to 4 and Ph is a 1,2-, 1,3-, or 1,4 substituted phenyl group;
 - (d) each occurrence of m is independently an integer ranging from 0 to 4;

(e) each occurrence of Y^1 and Y^2 is independently (C₁–C₆)alkyl, CH₂OH, C(O)OH, OC(O)R³, C(O)OR³, SO₃H,

wherein:

- (i) R^3 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups;
- (iii) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkynyl; and
- (f) each occurrence of b is independently 0 or 1 and optionally each of the rings

 independently contains the presence of one or more additional carbon-carbon bonds
 that when present complete one or more carbon-carbon double bonds such that when
 b is 0 the maximum number of carbon-carbon bonds is two or when b is 1 the
 maximum number of carbon-carbon bonds is three.
 - 30. A compound of the formula V:

5

15

$$R^{1} = R^{2} + R^{2$$

or a pharmaceutically acceptable salt, hydrate, solvate, or mixtures thereof, wherein

- (a) each occurrence of R^1 , R^2 , R^6 , R^7 , R^{11} , or R^{12} is independently hydrogen, $(C_1 C_6)$ alkyl, $(C_2 C_6)$ alkenyl, $(C_2 C_6)$ alkynyl, phenyl, or benyl;
- 20 (b) each occurrence of n is independently an integer ranging from 1 to 7;
 - (c) X is $(CH_2)_z$ or Ph, wherein z is an integer from 0 to 4 and Ph is a 1,2-, 1,3-, or 1,4 substituted phenyl group;
 - (d) each occurrence of m is independently an integer ranging from 0 to 4;

(e) each occurrence of Y^1 and Y^2 is independently (C₁–C₆)alkyl, CH₂OH, C(O)OH, OC(O)R³, C(O)OR³, SO₃H,

wherein:

- (i) R^3 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,
- (ii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups;
- (iii) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl; and
- (f) b is 0 or 1 and optionally the ring contains one or more carbon-carbon bonds that
 when present complete one or more carbon-carbon double bonds.

31. A compound of the formula VI:

5

$$R^{1} R^{2b}(H_{2}C)$$
 $Y^{1} (CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$
 $(CH_{2})_{m}$

or a pharmaceutically acceptable salt, hydrate, solvate, or mixture thereof, wherein:

- 15 (a) each occurrence of R^1 , R^2 , R^6 , R^7 , R^{11} , or R^{12} is independently hydrogen, (C_1 – C_6)alkyl, (C_2 – C_6)alkenyl, (C_2 – C_6)alkynyl, phenyl, or benzyl;
 - (b) each occurrence of n is independently an integer ranging from 1 to 7;
 - (c) X is $(CH_2)_z$ or Ph, wherein z is an integer from 0 to 4 and Ph is a 1,2-, 1,3-, or 1,4 substituted phenyl group;
- 20 (d) each occurrence of m is independently an integer ranging from 0 to 4;
 - (e) each occurrence of Y^1 and Y^2 is independently (C₁–C₆)alkyl, CH₂OH, C(O)OH, OC(O)R³, C(O)OR³, SO₃H,

5

(i) R^3 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,

10

(ii) each occurrence of R^4 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, C_1-C_6 alkoxy, or phenyl groups; and

- (iii) each occurrence of R^5 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkynyl; and
- (f) b is 0 or 1 and optionally the ring contains one or more carbon-carbon bonds that when present complete one or more carbon-carbon double bonds.

5 32. A compound of the formula VII:

HO
$$X$$
 Y^1
 Z_m
 Y^2

VII

or a pharmaceutically acceptable salt, hydrate, solvate, or mixture thereof, wherein

- (a) Z is CH₂, CH=CH, or phenyl, where each occurrence of m is independently an integer ranging from 1 to 9, but when Z is phenyl then its associated m is 1;
 - (b) G is $(CH_2)_x$, where x is 1, 2, 3, or 4, $CH_2CH=CHCH_2$, CH=CH, CH_2 —phenyl— CH_2 , or phenyl;
 - (c) each occurrence of Y^1 and Y^2 is independently L, V, $C(R^1)(R^2)$ – $(CH_2)c$ – $C(R^3)(R^4)$ – $(CH_2)n$ –Y, or $C(R^1)(R^2)$ – $(CH_2)c$ –V where c is 1 or 2 and n is an integer ranging from 0 to 4; when G is $(CH_2)_x$, where x is 1, 2, 3, or 4, W^2 is CH_3 ;
 - (d) each occurrence of R^1 or R^2 is independently (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl or when one or both of Y^1 and Y^2 is $C(R^1)(R^2)$ — $(CH_2)c-C(R^3)(R^4)$ — $(CH_2)n-W$, then R^1 and R^2 can both be H to form a methylene group;
- 20 (e) R^3 is H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃;
 - (f) R^4 is OH, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_1-C_6) alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃;
 - (g) L is $C(R^1)(R^2)$ -(CH₂)n-W;
- 25 (h) V is:

(i) each occurrence of W is independently OH, COOH, CHO, COOR⁵, SO₃H,

wherein:

(i) R^5 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,

- (ii) each occurrence of R^6 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, (C_1-C_6) alkoxy, or phenyl groups;
- (iii) each occurrence of R^7 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkynyl; and
- (j) X is $(CH_2)_z$ or Ph, wherein z is an integer from 0 to 4.

33. A compound of the formula VIII:

$$V^{1} G Z_{m}^{Y^{2}}$$

10 VIII

5

or a pharmaceutically acceptable salt, hydrate, solvate, or mixture thereof, wherein

- each occurrence of Z is independently CH₂, CH=CH, or phenyl where each occurrence of m is indpendently an integer ranging from 1 to 9, but when Z is phenyl then m is 1;
- 15 (b) G is (CH₂)_x, CH₂CH=CHCH₂, CH=CH, CH₂-phenyl-CH₂, or phenyl, where x is 1 to 7,
 - (c) W^1 and W^2 are independently L, V, G, $C(R^1)$ (R^2)-(CH_2)c- $C(R^3)$ (R^4)-(CH_2)n-Y, or $C(R^1)(R^2)$ (CH_2)c-V where c is 1 or 2 and n is an integer ranging from 0 to 7; when G is (CH_2)x, where x is 1, 2, 3, or 4, W^1 is CH_3 ;
- 20 (d) each occurrence of R^1 or R^2 is independently -H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl or when one or both of W^1 and W^2 is $C(R^1)(R^2)$ - (CH_2) c- $C(R^3)(R^4)$ - (CH_2) n-Y, then R^1 and R^2 can both be H to form a methylene group;
- (e) R³ is H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃;
 - (f) R⁴ is H, OH, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃;

- (g) L is $C(R^1)(R^2)$ - $(CH_2)n$ -Y;
- (h) V is:

(i) each occurrence of Y¹ and Y² is independently H, CH₃, OH, COOH, CHO, COOR⁵,
 SO₃H,

(i) R^5 is H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alknyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,

5

- (ii) each occurrence of R^6 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, (C_1-C_6) alkoxy, or phenyl groups; and
- (iii) each occurrence of R^7 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl.

10 34. A compound of the formula IX:

IX

or pharmaceutically acceptable salt, hydrate, solvate, or mixture thereof, wherein

- each occurrence of Z is independently CH₂, CH-CH, or phenyl, where each occurrence of m is independently an integer ranging from 1 to 9, but when Z is phenyl then its associated m is 1;
 - (b) G is (CH₂)_x, where x is 1 to 7, CH₂CH=CHCH₂, CH=CH, CH₂-phenyl- CH₂, or phenyl;
- 20 (c) W¹ and W² are independently L, V, C(R¹)(R²)-(CH₂)c-C, or C(R³)(R⁴)-(CH₂)n-Y or C(R¹)(R²)-(CH₂)c-V where c is 1 or 2 and n is an integer from 0 to 4; when G is (CH₂)_x, where x is 1 to 7, W² is CH₃;
- (d) each occurrence of R¹ or R² is independently (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl, and R' and R² can both be H when one or both of W' and W² is C(R')(R²)-(CH₂),,-C(R³)(R⁴)-(CH₂)-Y;

- (e) R³ is H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃;
- (f) R⁴ is OH, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃;
- 5 (g) L is $C(R^1)(R^2)-\{CH_2\}n-Y$;
 - (h) V is:

(i) each occurrence of Y¹ and Y² is independently OH, COOH, CHO, COOR⁵, SO₃H,

- (i) R^5 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C_1-C_6) alkoxy, or phenyl groups,
- (ii) each occurrence of R^6 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl and is unsubstituted or substituted with one or two halo, OH, (C_1-C_6) alkoxy, or phenyl groups; and
- (iii) each occurrence of R^7 is independently H, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, or (C_2-C_6) alkynyl.

35. A compound of structure:

2,2,14,14-Tetramethyl-pentadecane-1,8,15-triol;

8-Hydroxy-2,2,14,14-tetramethyl-pentadecanedioic acid;

2,2,12,12-Tetramethyl-tridecane-1,7,13-triol;

20

15

5

$$HO \longrightarrow OH$$
 OH

7-Hydroxy-2,2,12,12-tetramethyl-tridecanedioic acid;

- 36. A pharmaceutical composition comprising a compound of claim 1, 11, 28,
 29, 30, 31, 32, 33, 34, or 35 and a pharmaceutically acceptable vehicle, excipient, or diluent.
 - 37. A pharmaceutical composition comprising a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35 and further comprising a second therapeutic agent.
- 38. A method for treating or preventing aging, Alzheimer's Disease, cancer, cardiovascular disease, diabetic nephropathy, diabetic retinopathy, a disorder of glucose metabolism, dyslipidemia, dyslipoproteinemia, hypertension, impotence, inflammation, insulin resistance, lipid elimination in bile, obesity, oxysterol elimination in bile, pancreatitis, pancreatitius, Parkinson's disease, a peroxisome proliferator activated receptor-associated disorder, phospholipid elimination in bile, renal disease, septicemia, Syndrome X, thrombotic disorder, modulating C reactive protein, or enhancing bile production in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or proplyleutrally effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 39. A method for treating or preventing a cardiovascular disease in a patient, comprising administering to a patient in need of such treatment or prevention a
 therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
 - 40. A method for treating or preventing a dyslipidemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically, effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 41. A method for treating or preventing a dyslipoproteinemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.

- 42. A method for treating or preventing a disorder of glucose metabolism in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 43. A method for treating or preventing Alzheimer's disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 44. A method for treating or preventing Syndrome X in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
 - 45. A method for treating or preventing septicemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.

15

- 46. A method for treating or preventing a thrombotic disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
 - 47. A method for treating or preventing a peroxisome proliferator activated receptor associated disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 48. A method for treating or preventing obesity in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.

- 49. A method for treating or preventing pancreatitis in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 5 50. A method for treating or preventing hypertension in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 51. A method for treating or preventing renal disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
 - 52. A method for treating or preventing cancer in a patient, comprising administering to a patient in claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 15 53. A method for treating or preventing inflammation in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 54. A method for treating or preventing impotence in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 55. A method for treating or preventing a neurodegenerative disease or disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.

- 56. A method of inhibiting hepatic fatty acid synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 57. A method of inhibiting sterol synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
 - 58. A method of treating or preventing metabolic syndrome disorders in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.

- 59. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by increasing HDL levels, which comprises administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 15 60. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by lowering LDL levels, which comprises administering to such patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35.
- 61. A pharmaceutical composition comprising a compound of claim 1, 11, 28, 29, 30, 31, 32, 33, 34, or 35 and a pharmaceutically acceptable vehicle, excipient, or diluent which is administered in combination with a statin.