

MATHEMATICS STANDARD LEVEL PAPER 2

Friday 10 May 2013 (morning)

1 hour 30 minutes

	Candidate session number								
)	0								

_			
⊢va	min	ation	code
$L \wedge u$		ation	COGC

2	2	1	3	_	7	3	0	6
---	---	---	---	---	---	---	---	---

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- answer all questions in the boxes provided.
- answer all questions in the answer booklet provided. Fill in your session number • Section B: on the front of the answer booklet, and attach it to this examination paper and your cover sheet using the tag provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the *Mathematics SL* information booklet is required for this paper.
- The maximum mark for this examination paper is [90 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 5]

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$.

- (a) Write down A^{-1} . [2 marks]
- (b) Solve AX = B. [3 marks]

2. INIUXIMUM MUIK. O	2.	[Maximum	mark:	6
----------------------	----	----------	-------	---

The random variable *X* is normally distributed with mean 20 and standard deviation 5.

(a) Find $P(X \le 22.9)$.

[3 marks]

(b) Given that P(X < k) = 0.55, find the value of k.

[3 marks]

 . •
 •
 •

3. [Maximum mark: 6]

The following diagram shows a triangle ABC.

The area of triangle ABC is 80 cm^2 , AB = 18 cm, AC = x cm and $B\hat{A}C = 50^\circ$.

- (a) Find x. [3 marks]
- (b) Find BC. [3 marks]

 	 	 . 	 	
 	 	 . 	 	
 	 	 . .	 	

Line
$$L_1$$
 has equation $\mathbf{r}_1 = \begin{pmatrix} 10 \\ 6 \\ -1 \end{pmatrix} + s \begin{pmatrix} 2 \\ -5 \\ -2 \end{pmatrix}$ and line L_2 has equation $\mathbf{r}_2 = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} + t \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$.

Lines L_1 and L_2 intersect at point A. Find the coordinates of A.

J. Muximum mark. U	5.	[Maximum	mark:	6
--------------------	----	----------	-------	---

The sum of the first three terms of a geometric sequence is 62.755, and the sum of the infinite sequence is 440. Find the common ratio.

6. [*Maximum mark: 7*]

The constant term in the expansion of $\left(\frac{x}{a} + \frac{a^2}{x}\right)^6$, where $a \in \mathbb{Z}$, is 1280. Find a.

• • • • • • • • • • • • • • • • • • • •	 	

7. [Maximum mark: 8]

The following diagram shows a circle with centre O and radius r cm.

Points A and B are on the circumference of the circle and $A\hat{O}B = 1.4$ radians. The point C is on [OA] such that $B\hat{C}O = \frac{\pi}{2}$ radians.

(a) Show that $OC = r \cos 1.4$.

[1 mark]

(b) The area of the shaded region is 25 cm^2 . Find the value of r.

[7 marks]

Do **NOT** write solutions on this page.

SECTION B

Answer all questions in the answer booklet provided. Please start each question on a new page.

8. [Maximum mark: 15]

Consider the points A(5, 2, 1), B(6, 5, 3), and C(7, 6, a+1), where $a \in \mathbb{R}$.

- (a) Find
 - (i) \overrightarrow{AB} ;
 - (ii) \overrightarrow{AC} .

Let α be the angle between \overrightarrow{AB} and \overrightarrow{AC} .

- (b) Find the value of a for which $q = \frac{\pi}{2}$. [4 marks]
- (c) (i) Show that $\cos q = \frac{2a + 14}{\sqrt{14a^2 + 280}}$.
 - (ii) Hence, find the value of a for which a = 1.2. [8 marks]

Do **NOT** write solutions on this page.

9. [Maximum mark: 15]

A bag contains four gold balls and six silver balls.

- (a) Two balls are drawn at random from the bag, with replacement. Let X be the number of gold balls drawn from the bag.
 - (i) Find P(X = 0).
 - (ii) Find P(X = 1).
 - (iii) Hence, find E(X).

[8 marks]

Fourteen balls are drawn from the bag, with replacement.

(b) Find the probability that exactly five of the balls are gold.

[2 marks]

(c) Find the probability that at most five of the balls are gold.

[2 marks]

(d) Given that at most five of the balls are gold, find the probability that exactly five of the balls are gold. Give the answer correct to two decimal places.

[3 marks]

Do **NOT** write solutions on this page.

10. [Maximum mark: 15]

Let $f(x) = e^{\frac{x}{4}}$ and g(x) = mx, where $m \ge 0$, and $-5 \le x \le 5$. Let R be the region enclosed by the y-axis, the graph of f, and the graph of g.

- (a) Let m = 1.
 - (i) Sketch the graphs of f and g on the same axes.
 - (ii) Find the area of R.

[7 marks]

(b) Consider all values of m such that the graphs of f and g intersect. Find the value of m that gives the greatest value for the area of R.

[8 marks]

Please **do not** write on this page.

Answers written on this page will not be marked.

