Welcome!

BAYESIAN REGRESSION MODELING WITH RSTANARM

Jake Thompson

Psychometrician, ATLAS, University of Kansas

Overview

- 1. Introduction to Bayesian regression
- 2. Customizing Bayesian regression models
- 3. Evaluating Bayesian regression models
- 4. Presenting and using Bayesian regression models

A review of frequentist regression

- Frequentist regression using ordinary least squares
- The kidiq data

```
kidiq
```

```
# A tibble: 434 x 4
   kid_score mom_hs mom_iq mom_age
      <int> <int> <dbl>
                      <int>
        65
              1 121.
                          27
        98 1 89.4
                      25
        85 1 115.
                      27
        83 1 99.4
                      25
       115 1 92.7
                          27
  ... with 430 more rows
```

Predict child's IQ score from the mother's IQ score

```
lm_model <- lm(kid_score ~ mom_iq, data = kidiq)
summary(lm_model)</pre>
```

```
Call:
lm(formula = kid_score ~ mom_iq, data = kidiq)
Residuals:
   Min
           1Q Median 3Q
                                 Max
-56.753 -12.074 2.217 11.710 47.691
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.79978 5.91741 4.36 1.63e-05 ***
mom_iq
            0.60997 0.05852 10.42 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 18.27 on 432 degrees of freedom
Multiple R-squared: 0.201, Adjusted R-squared: 0.1991
F-statistic: 108.6 on 1 and 432 DF, p-value: < 2.2e-16
```

Examing model coefficients

Use the broom package to focus just on the coefficients

```
library(broom)

tidy(lm_model)
```

```
term estimate std.error statistic p.value
1 (Intercept) 25.7997778 5.91741208 4.359977 1.627847e-05
2 mom_iq 0.6099746 0.05852092 10.423188 7.661950e-23
```

Be cautious about what the p-value actually represents

Comparing Frequentist and Bayesian probabilities

- What's the probability a woman has cancer, given positive mammogram?
 - \circ P(+M | C) = 0.9
 - \circ P(C) = 0.004
 - \circ P(+M) = (0.9 x 0.004) + (0.1 x 0.996) = 0.1
- What is P(C | M+)?
 - 0.036

Spotify data

songs

```
# A tibble: 215 x 7
                 artist_name song_age valence tempo popularity duration_ms
   track_name
                 <chr>
                                <int>
                                        <dbl> <dbl>
                                                                     <int>
   <chr>
                                                         <int>
 1 Crazy In Love Beyoncé
                                 5351
                                        70.1
                                               99.3
                                                            72
                                                                    235933
 2 Naughty Girl Beyoncé
                                 5351
                                        64.3 100.0
                                                            59
                                                                    208600
                 Beyoncé
 3 Baby Boy
                                        77.4
                                 5351
                                              91.0
                                                            57
                                                                    244867
                Beyoncé
 4 Hip Hop Star
                                 5351
                                        96.8
                                             167.
                                                            39
                                                                    222533
 5 Be With You
                 Beyoncé
                                 5351
                                        75.6
                                               74.9
                                                            42
                                                                    260160
 6 Me, Myself a… Beyoncé
                                 5351
                                        55.5
                                               83.6
                                                            54
                                                                    301173
                                        56.2 112.
                 Beyoncé
 7 Yes
                                 5351
                                                            43
                                                                    259093
 8 Signs
                Beyoncé
                                 5351
                                        39.8
                                              74.3
                                                            41
                                                                    298533
 9 Speechless
                Beyoncé
                                         9.92 113.
                                 5351
                                                            41
                                                                    360440
# ... with 206 more rows
```

Let's practice!

BAYESIAN REGRESSION MODELING WITH RSTANARM

Bayesian Linear Regression

BAYESIAN REGRESSION MODELING WITH RSTANARM

Jake Thompson

Psychometrician, ATLAS, University of Kansas

Why use Bayesian methods?

- P-values make inferences about the probability of data, not parameter values
- Posterior distribution: combination of likelihood and prior
 - Sample the posterior distribution
 - Summarize the sample
 - Use the summary to make inferences about parameter values

The rstanarm package

- Interface to the Stan probabilistic programming language
- rstanarm provides high level access to Stan
- Allows for custom model definitions


```
library(rstanarm)
stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq)</pre>
```

```
SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
Gradient evaluation took 0.000408 seconds
1000 transitions using 10 leapfrog steps per transition would take
4.08 seconds.
Adjust your expectations accordingly!
                               (Warmup)
Iteration: 1 / 2000 [ 0%]
                               (Warmup)
Iteration: 200 / 2000 [ 10%]
Iteration: 400 / 2000 [ 20%]
                               (Warmup)
                               (Warmup)
Iteration: 600 / 2000 [ 30%]
                               (Warmup)
Iteration: 800 / 2000 [ 40%]
                               (Warmup)
Iteration: 1000 / 2000 [ 50%]
Iteration: 1001 / 2000 [ 50%]
                                (Sampling)
Iteration: 1200 / 2000 [ 60%]
                               (Sampling)
Iteration: 1400 / 2000 [ 70%]
                                (Sampling)
                                (Sampling)
Iteration: 1600 / 2000 [ 80%]
```

```
Model Info:
              stan_glm
function:
              gaussian [identity]
family:
formula:
              kid_score ~ mom_iq
              sampling
algorithm:
              see help('prior_summary')
priors:
              4000 (posterior sample size)
sample:
observations: 434
predictors: 2
Estimates:
                       sd
                               2.5%
                                       25%
                                              50%
                                                      75%
                                                              97.5%
               mean
(Intercept)
                25.7
                         6.0
                               13.8
                                       21.6
                                               25.7
                                                               37.0
                                                       30.0
                 0.6
                                                               0.7
mom_iq
                         0.1
                                0.5
                                        0.6
                                                0.6
                                                        0.7
                                                               19.5
siqma
                18.3
                         0.6
                                17.1
                                       17.9
                                               18.3
                                                       18.7
mean_PPD
                                84.3
                86.8
                         1.2
                                        85.9
                                               86.8
                                                       87.6
                                                               89.2
log-posterior -1885.4
                        1.2 -1888.5 -1886.0 -1885.1 -1884.5 -1884.0
Diagnostics:
             mcse Rhat n_eff
(Intercept)
             0.1 1.0 4000
mom_iq
             0.0 1.0 4000
siama
             0.0 1.0 3827
```


rstanarm summary: Estimates

```
Estimates:
                    sd
                           2.5%
                                 25%
                                        50%
                                               75%
                                                      97.5%
             mean
(Intercept)
              25.7
                      6.0
                           13.8
                                  21.6
                                         25.7
                                                30.0
                                                       37.0
                      0.1 0.5
                                          0.6
                                                 0.7
               0.6
                                  0.6
                                                       0.7
mom_iq
                      0.6 	 17.1
sigma
              18.3
                                  17.9
                                         18.3
                                                18.7
                                                       19.5
              86.8
                     1.2
                           84.3
                                  85.9
                                         86.8
                                                87.6
                                                       89.2
mean_PPD
log-posterior -1885.4 1.2 -1888.5 -1886.0 -1885.1 -1884.5 -1884.0
```

- sigma: Standard deviation of errors
- mean_PPD: mean of posterior predictive samples
- log-posterior: analogous to a likelihood

rstanarm summary: Diagnostics

```
Diagnostics:
           mcse Rhat n_eff
(Intercept) 0.1 1.0
                     4000
mom_iq
       0.0 1.0 4000
sigma 0.0 1.0 3827
mean_PPD 0.0 1.0 4000
log-posterior 0.0 1.0 1896
For each parameter, mcse is Monte Carlo standard error,
n_eff is a crude measure of effective sample size, and
Rhat is the potential scale reduction factor on split chains
(at convergence Rhat=1).
```

- Rhat: a measure of within chain variance compared to across chain variance
- Values less than 1.1 indicate convergence

Let's practice!

BAYESIAN REGRESSION MODELING WITH RSTANARM

Comparing Bayesian and Frequentist Approaches

BAYESIAN REGRESSION MODELING WITH RSTANARM

Jake Thompson

Psychometrician, ATLAS, University of Kansas

The same parameters!

```
tidy(lm_model)
```

```
term estimate std.error statistic p.value
1 (Intercept) 25.7997778 5.91741208 4.359977 1.627847e-05
2 mom_iq 0.6099746 0.05852092 10.423188 7.661950e-23
```

```
tidy(stan_model)
```

```
term estimate std.error
1 (Intercept) 25.7257965 6.01262625
2 mom_iq 0.6110254 0.05917996
```

Frequentist vs. Bayesian

- Frequentist: parameters are fixed, data is random
- Bayesian: parameters are random, data is fixed
- What's a p-value?
 - Probability of test statistic, given null hypothesis
- So what do Bayesians want?
 - Probability of parameter values, given the observed data

Evaluating Bayesian parameters

- Confidence interval: Probability that a range contains the true value
 - There is a 90% probability that range contains the true value
- Credible interval: Probability that the true value is within a range
 - There is a 90% probability that the true value falls within this range
- Probability of parameter values vs. probability of range boundaries

Creating credible intervals

```
posterior_interval(stan_model)
```

```
5% 95%
(Intercept) 16.1396617 35.6015948
mom_iq 0.5131289 0.7042666
sigma 17.2868651 19.3411104
```

```
posterior_interval(stan_model, prob = 0.95)
```

```
2.5% 97.5%
(Intercept) 14.5472824 37.2505664
mom_iq 0.4963677 0.7215823
sigma 17.1197930 19.5359616
```

```
posterior_interval(stan_model, prob = 0.5)
```

```
25% 75%
(Intercept) 21.7634032 29.6542886
mom_iq 0.5714405 0.6496865
sigma 17.8776965 18.7218373
```

Confidence vs. Credible intervals

```
confint(lm_model, parm = "mom_iq", level = 0.95)
```

```
2.5 % 97.5 % mom_iq 0.4949534 0.7249957
```

```
2.5% 97.5% mom_iq 0.4963677 0.7215823
```

```
posterior <- spread_draws(stan_model, mom_iq)
mean(between(posterior_mom_iq, 0.60, 0.65))</pre>
```

0.31475

Let's practice!

BAYESIAN REGRESSION MODELING WITH RSTANARM

