四川大学期中考试试卷

(2012-2013 学年第二学期) 科目: 微积分(I)-2

适用专业年级:四川大学数学一类 2012 级各专业本科生

题号		Accorded Accorded Accorded		D	Ц	Ē.	Fi	总分
得分								

考试须知

四川大学学生参加学校组织或由学校承办的各级各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》.有考试违纪作弊行为的,一律按照《四川大学学生考试违纪作弊处罚条例》进行处理.

四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、《四川大学考场规则》和《四川大学监考人员职责》 有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理.

得分	
评卷人	

一、填空题(每小题3分,共15分)

1. 点 P(1,1,1) 到平面 $\pi:3x+4y+5z-6=0$ 的距离 d=___.

2. 设空间直线 $L: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{1}$,则 L 绕 z 轴旋转一周所成的曲面方程为

3. 已知函数 f(u) 可微,且满足 f'(4) = 2,则函数 $z = f(xy^2)$ 在点 (1,2) 处的全微分

$$dz\big|_{(1,2)} = \underline{\hspace{1cm}}.$$

4. 函数 $u = \ln(1 + x^2 + y^2 + 2z^2)$, 向量 $\vec{n} = (1,2,2)$, 则方向导数

$$\frac{\partial u}{\partial \vec{n}}\Big|_{(1,1,1)} = \underline{\hspace{1cm}}$$

5. 设函数 z = f(x, y) 在点 (0,0) 处的偏导数为 $f'_x(0,0) = 1$, $f'_v(0,0) = 1$, 则曲线

$$\begin{cases} z = f(x,y) \\ y = 0 \end{cases}$$
 在点 $(0,0,f(0,0))$ 的切向量为______.

得 分	
评卷人	

二、选择题(每小题3分,共15分)

1. 设函数
$$u = x^2 e^{x^2 y^2} \cos x y^3$$
,则 $\frac{\partial u}{\partial x}\Big|_{(1,0)} = ($)

(A) 1

(B)2

(C) 3

(D) 4

2. 二元函数 f(x,y) 在点 (0,0) 处可微的一个充分条件是(

(A)
$$\lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)] = 0$$

(B)
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0$$

(C)
$$\lim_{x\to 0} \frac{f(x,0) - f(0,0)}{x} = 0$$

(D)
$$\lim_{x\to 0} [f'_x(x,0) - f'_x(0,0)] = 0 \perp \lim_{y\to 0} [f'_y(0,y) - f'_y(0,0)] = 0$$

3. 二重积分
$$\int_0^1 dy \int_{\sqrt{y}}^1 \frac{\cos x}{x} dx = ($$
)

$$(A) \sin 1 - \cos 1$$

(B)
$$\sin 1 - \cos 1 + 1$$
 (C) $\sin 1 + \cos 1$

(C)
$$\sin 1 + \cos 1$$

(D)
$$\sin 1 + \cos 1 - 1$$

4. 已知
$$\overrightarrow{AB} = (1,0,0)$$
, $\overrightarrow{AC} = (1,2,2)$, 则 $\angle BAC$ 平分线上的单位向量为 ()

(A)
$$\frac{1}{\sqrt{6}}$$
 (2,1,1)

(C)
$$\frac{1}{\sqrt{11}}$$
 (3,1,1) (D) (3,1,1)

5. 若 (2x + ay)dx + 3xdy 是某函数的全微分,则 a = (

三、计算题 (每小题 8 分, 共 24 分)

得分	
评卷人	

1. 求极限
$$\lim_{(x,y)\to(0,0)} \frac{xy-\sin(xy)}{y^3\tan^3 x}$$
.

得分	
评卷人	

2. 设 $z = f(xy, e^{xy})$, 其中 f 具有连续的二阶偏导数, 求 $\frac{\partial z}{\partial x}, \frac{\partial^2 z}{\partial x^2}$.

得分	
评卷人	

3. 设积分区域 $D = \{(x,y) | x^2 + y^2 \le 1, x \ge 0\}$, 计算二重积分

$$\iint\limits_{D} \frac{1+xy}{1+x^2+y^2} dxdy.$$

四、解答题(每小题8分,共32分)

得分	1. 求曲线 $\begin{cases} x^2 - z = 0 \\ x + y + 4 = 0 \end{cases}$ 上点 (1,-5,1) 处的法平面与
评卷人	(x+y+4=0

直 线

$$\begin{cases} 4x - 3y - 2z = 0 \\ x - y - z + 1 = 0 \end{cases}$$
 之间的夹角.

得分	
评卷人	

2. 求曲面 $z = 2x^2 + y^2$ 与平面 4x + 2y - z = 0 平行的切平面方程.

得分		
评卷人	-	3

3. 设 x = x(y), z = z(y) 是由方程组 $\begin{cases} F(y-x,y-z) = 0 \\ G(xy,\frac{z}{y}) = 0 \end{cases}$ 所确定的隐

函数,其中二元函数 F 和 G 都具有连续的偏导数,求 $\frac{dx}{dy}$.

得分	
评卷人	

4. 在 椭 球 面 $2x^2 + 2y^2 + z^2 = 1$ 上 求 一 点 , 使 函 数 $f(x,y,z) = x^2 + y^2 + z^2$ 在该点沿方向 l = (1,-1,0) 的方向导数最大.

五、证明题 (每小题 7分, 共 14分)

得分	
评卷人	

1. 已知 $\frac{x}{z} = \varphi(\frac{y}{z})$, 其中 φ 为可微函数,则 $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = z$.

得分	
评卷人	

2. 设u(x,y) 在平面闭区域D上具有二阶连续偏导数,且满足

$$\frac{\partial^2 u}{\partial x \partial y} \neq 0 \ \text{及} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \ , \ \text{则} \ u(x,y) \ \text{的最值都在} \ D \ \text{的边界上取得}.$$