CM 1606 Computational Mathematics

Relations

Week 2 | Ganesha Thondilege

Learning Outcomes

- Covers LO1 for CM1606
- On completion of this lecture, students are expected to be able to:
 - Recall cartesian product and discuss ordered pairs
 - Identify relations and inverse relations
 - Describe composition of relations
 - Explain types of relations

CONTENT

- Cartesian product Review
- Ordered pairs
- Relations
- Inverse of a Relation
- Composition of Relations
- Types of Relations

Cartesian Product

For any two nonempty sets A and B, the cartesian product is

Denoted as

$$A \times B$$

Defined as

$$A \times B = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

Ex:
$$A = \{a, b\}$$
 and $B = \{1, 2\}$

Ordered Pairs

• For any two sets A and B, set of ordered pairs ρ , from A to B Defined as

$$\rho = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

Note that
$$\{a, b\} = \{b, a\}$$
. But $(a, b) \neq (b, a)$

• Always ρ is a subset of $A \times B$

Ordered Pairs ctd.

A={-1,1,2} and B={1,2,3,4}

$$\rho = \{(-1,1), (1,1), (2,4)\} = \{(a,b) \mid a \in A \text{ and } b \in B \text{ and } b = a^2\}$$

Relations

- A Relation is a set of ordered pairs
- ρ is a relation from A to B is a subset of $A \times B$

$$\rho = \{(-1,1), (1,1), (2,4)\} = \{(a,b) \mid a \in A \text{ and } b \in B \text{ and } b = a^2\}$$

Relation on a set

• For the set A, if P is a relation from A to itself then

$$\rho$$
 is a relation on A and $\rho \subseteq A \times A$

Domain

$$D(\rho) = \{x \mid \exists y, (x, y) \in \rho\}$$

Range

$$R(\rho) = \{ y \mid \exists x, (x, y) \in \rho \}$$

Domain and Range

$$\rho = \{(-1,1), (1,1), (2,4)\}$$

$$D(\rho) = \{-1, 1, 2\}$$

$$R(\rho) = \{1, 4\}$$

Inverse of a Relation

• For the relation ${\cal P}$, inverse relation of ${\cal P}$

Denoted as ρ^{-1}

Defined as

$$\rho^{-1} = \{ (x, y) \mid (y, x) \in \rho \}$$

Ex:
$$\rho = \{(-1,1), (1,1), (2,4)\}$$

Then

$$\rho^{-1} = \{(1,-1),(1,1),(4,2)\}$$

Note that
$$(\rho^{-1})^{-1} = \rho$$

Composition of Relations

• For two relations ho and σ , their composition $\sigma \circ
ho$ is

Defined as

Example

Consider two relations

$$\rho = \{(1, a), (2, b), (3, c), (4, d), (5, g)\} \text{ and}$$

$$\sigma = \{(a, 2), (b, 1), (b, 2), (e, 3), (g, 4)\}$$

Find $\sigma \circ \rho$ and $\rho \circ \sigma$

 $D(\rho) = R(\rho)$

Types of relations

Reflexive relation

For every x in the domain of P, the ordered pair $(x, x) \in P$

Symmetric relation

For every $(x, y) \in \rho$, then $(y, x) \in \rho$

Transitive relation

For every
$$(x, y)$$
 and $(y,z) \in \rho$, then $(x, z) \in \rho$

Equivalence relation

P satisfies all three properties reflexive, symmetric and transitive

Example

Consider the relation $\rho = \{(a,a), (b,b), (c,c), (d,d), (e,e), (f,f), (a,b), (b,a), (b,c), (c,b), (a,c), (c,a), (d,e), (e,d)\}$ Check whether ρ is a

- Reflexive
- Symmetric
- Transitive
- Equivalence relation.
- By considering each element of $D(\rho)$, sketch the graphical representation for the relation and interpret