```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
import math
warnings.filterwarnings("ignore")
pd.set_option('display.max_columns',125)
pd.set_option('display.max_rows',125)
Loading the Dataset
```

```
In [16]:
    df_application_current = pd.read_csv('C:/Users/SAGNICK/TrainityBankLoneEDA/LoanCaseSt
    df_application_current.head()
```

Out[16]:		SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REAL
	0	100002	1	Cash loans	М	N	
	1	100003	0	Cash loans	F	N	
	2	100004	0	Revolving loans	М	Υ	
	3	100006	0	Cash loans	F	N	
	4	100007	0	Cash loans	М	N	

Getting the Dataframe dimensions

```
In [17]: df_application_current.shape
```

Out[17]: (307511, 122)

Basic Info of the Data Frame

```
In [18]:
    df_application_current.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 307511 entries, 0 to 307510

Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR

dtypes: float64(65), int64(41), object(16)

memory usage: 286.2+ MB

Getting the statistical information

```
In [19]: df_application_current.describe()
```

Out[19]: SK_ID_CURR TARGET CNT_CHILDREN AMT_INCOME_TOTAL AMT_CREDIT AMT_ANN

	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANN
count	307511.000000	307511.000000	307511.000000	3.075110e+05	3.075110e+05	307499.00
mean	278180.518577	0.080729	0.417052	1.687979e+05	5.990260e+05	27108.57
std	102790.175348	0.272419	0.722121	2.371231e+05	4.024908e+05	14493.73
min	100002.000000	0.000000	0.000000	2.565000e+04	4.500000e+04	1615.50
25%	189145.500000	0.000000	0.000000	1.125000e+05	2.700000e+05	16524.00
50%	278202.000000	0.000000	0.000000	1.471500e+05	5.135310e+05	24903.00
75%	2671/12 500000	0 000000	1 000000	2 ∪22∪∪∪≂+∪2	Ջ ᲘՋᲠᲜᲘᲘ△±ᲘᲜ	3/1596 00

Getting the column names

```
In [14]:
```

```
column_names=[]
column_names=df_application_current.columns
for cols in column_names:
    print(cols)
```

```
SK_ID_CURR
TARGET
NAME_CONTRACT_TYPE
CODE_GENDER
FLAG_OWN_CAR
FLAG_OWN_REALTY
CNT_CHILDREN
AMT_INCOME_TOTAL
AMT_CREDIT
AMT_ANNUITY
AMT_GOODS_PRICE
NAME_TYPE_SUITE
NAME_INCOME_TYPE
NAME_EDUCATION_TYPE
NAME_FAMILY_STATUS
NAME_HOUSING_TYPE
REGION_POPULATION_RELATIVE
DAYS BIRTH
DAYS_EMPLOYED
DAYS_REGISTRATION
DAYS_ID_PUBLISH
OWN_CAR_AGE
FLAG_MOBIL
FLAG EMP PHONE
FLAG_WORK_PHONE
FLAG_CONT_MOBILE
FLAG_PHONE
FLAG_EMAIL
OCCUPATION_TYPE
CNT_FAM_MEMBERS
REGION_RATING_CLIENT
REGION_RATING_CLIENT_W_CITY
WEEKDAY_APPR_PROCESS_START
HOUR_APPR_PROCESS_START
REG_REGION_NOT_LIVE_REGION
REG_REGION_NOT_WORK_REGION
LIVE_REGION_NOT_WORK_REGION
REG_CITY_NOT_LIVE_CITY
REG_CITY_NOT_WORK_CITY
```

LIVE_CITY_NOT_WORK_CITY

ORGANIZATION_TYPE

EXT_SOURCE_1

EXT_SOURCE_2

EXT_SOURCE_3

APARTMENTS_AVG

BASEMENTAREA_AVG

YEARS BEGINEXPLUATATION AVG

YEARS BUILD AVG

COMMONAREA_AVG

ELEVATORS AVG

ENTRANCES AVG

FLOORSMAX_AVG

FLOORSMIN AVG

LANDAREA AVG

LIVINGAPARTMENTS_AVG

LIVINGAREA_AVG

NONLIVINGAPARTMENTS AVG

NONLIVINGAREA_AVG

APARTMENTS MODE

BASEMENTAREA MODE

YEARS_BEGINEXPLUATATION_MODE

YEARS BUILD MODE

COMMONAREA_MODE

ELEVATORS_MODE

ENTRANCES MODE

FLOORSMAX_MODE

FLOORSMIN_MODE

LANDAREA MODE

LIVINGAPARTMENTS_MODE

LIVINGAREA_MODE

NONLIVINGAPARTMENTS_MODE

NONLIVINGAREA_MODE

APARTMENTS_MEDI

BASEMENTAREA MEDI

YEARS_BEGINEXPLUATATION_MEDI

YEARS_BUILD_MEDI

COMMONAREA_MEDI

ELEVATORS_MEDI

ENTRANCES_MEDI FLOORSMAX_MEDI

FLOORSMIN MEDI

LANDAREA MEDI

LIVINGAPARTMENTS_MEDI

LIVINGAREA_MEDI

NONLIVINGAPARTMENTS_MEDI

NONLIVINGAREA_MEDI

FONDKAPREMONT_MODE

HOUSETYPE_MODE

TOTALAREA_MODE

WALLSMATERIAL MODE

EMERGENCYSTATE MODE

OBS_30_CNT_SOCIAL_CIRCLE

DEF 30 CNT SOCIAL CIRCLE

OBS_60_CNT_SOCIAL_CIRCLE

DEF_60_CNT_SOCIAL_CIRCLE

DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_2

FLAG_DOCUMENT_3

FLAG_DOCUMENT_4

FLAG_DOCUMENT_5

FLAG DOCUMENT 6

```
FLAG_DOCUMENT_7
FLAG_DOCUMENT_8
FLAG_DOCUMENT_9
FLAG_DOCUMENT_10
FLAG_DOCUMENT_11
FLAG_DOCUMENT_12
FLAG_DOCUMENT_13
FLAG_DOCUMENT_14
FLAG DOCUMENT 15
FLAG_DOCUMENT_16
FLAG_DOCUMENT_17
FLAG_DOCUMENT_18
FLAG_DOCUMENT_19
FLAG_DOCUMENT_20
FLAG_DOCUMENT_21
AMT_REQ_CREDIT_BUREAU_HOUR
AMT_REQ_CREDIT_BUREAU_DAY
AMT_REQ_CREDIT_BUREAU_WEEK
AMT_REQ_CREDIT_BUREAU_MON
```

Handling missing values in columns

Creating Copy of the DataFrame

In [22]:
 df_application_current_copy=df_application_current.copy(deep=True)
 df_application_current_copy

Out[22]:		SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN
	0	100002	1	Cash loans	М	N	
	1	100003	0	Cash loans	F	N	
	2	100004	0	Revolving loans	М	Υ	
	3	100006	0	Cash loans	F	N	
	4	100007	0	Cash loans	М	N	
	•••						
	307506	456251	0	Cash loans	М	N	
	307507	456252	0	Cash loans	F	N	
	307508	456253	0	Cash loans	F	N	
	307509	456254	1	Cash loans	F	N	
	307510	456255	0	Cash loans	F	N	

307511 rows × 122 columns

Count missing values column wise

```
In [23]:
          df_application_current_copy.isnull().sum()
Out[23]: SK_ID_CURR
                                                0
                                                0
          TARGET
         NAME_CONTRACT_TYPE
                                                0
         CODE_GENDER
                                                0
                                                0
          FLAG_OWN_CAR
         FLAG_OWN_REALTY
                                                0
          CNT_CHILDREN
                                                0
                                                0
         AMT_INCOME_TOTAL
         AMT_CREDIT
                                                0
                                               12
         AMT_ANNUITY
         AMT_GOODS_PRICE
                                              278
         NAME_TYPE_SUITE
                                             1292
         NAME_INCOME_TYPE
                                                0
         NAME_EDUCATION_TYPE
                                                0
         NAME_FAMILY_STATUS
                                                0
                                                0
         NAME_HOUSING_TYPE
                                                0
          REGION_POPULATION_RELATIVE
                                                0
          DAYS_BIRTH
                                                0
          DAYS_EMPLOYED
```

DAYS_REGISTRATION	0
DAYS_ID_PUBLISH	0
OWN_CAR_AGE	202929
FLAG_MOBIL	0
FLAG_EMP_PHONE	0
FLAG_WORK_PHONE	0
FLAG_CONT_MOBILE	0
FLAG_PHONE	0
FLAG_EMAIL	0
OCCUPATION_TYPE	96391
CNT_FAM_MEMBERS	2
REGION_RATING_CLIENT	0
REGION_RATING_CLIENT_W_CITY	0
WEEKDAY_APPR_PROCESS_START	0
HOUR_APPR_PROCESS_START	0
REG_REGION_NOT_LIVE_REGION REG_REGION_NOT_WORK_REGION	0
LIVE REGION NOT WORK REGION	0
REG CITY NOT LIVE CITY	0
REG_CITY_NOT_WORK_CITY	0
LIVE_CITY_NOT_WORK_CITY	0
ORGANIZATION_TYPE	0
EXT SOURCE 1	173378
EXT SOURCE 2	660
EXT_SOURCE_3	60965
APARTMENTS AVG	156061
BASEMENTAREA_AVG	179943
YEARS_BEGINEXPLUATATION_AVG	150007
YEARS BUILD AVG	204488
COMMONAREA_AVG	214865
ELEVATORS_AVG	163891
ENTRANCES_AVG	154828
FLOORSMAX_AVG	153020
FLOORSMIN_AVG	208642
LANDAREA_AVG	182590
LIVINGAPARTMENTS_AVG	210199
LIVINGAREA_AVG	154350
NONLIVINGAPARTMENTS_AVG	213514
NONLIVINGAREA_AVG	169682
APARTMENTS_MODE	156061
BASEMENTAREA_MODE	179943
YEARS_BEGINEXPLUATATION_MODE YEARS_BUILD_MODE	150007
	204488
COMMONAREA_MODE ELEVATORS MODE	214865 163891
ELEVATORS_MODE ENTRANCES MODE	154828
FLOORSMAX MODE	153020
FLOORSMIN_MODE	208642
LANDAREA_MODE	182590
LIVINGAPARTMENTS_MODE	210199
LIVINGAREA_MODE	154350
NONLIVINGAPARTMENTS_MODE	213514
NONLIVINGAREA MODE	169682
APARTMENTS_MEDI	156061
BASEMENTAREA_MEDI	179943
YEARS_BEGINEXPLUATATION_MEDI	150007
YEARS_BUILD_MEDI	204488
COMMONAREA_MEDI	214865
ELEVATORS_MEDI	163891
ENTRANCES_MEDI	154828
FLOORSMAX_MEDI	153020
FLOORSMIN_MEDI	208642

```
LANDAREA MEDI
                                 182590
LIVINGAPARTMENTS_MEDI
                                 210199
LIVINGAREA_MEDI
                                 154350
NONLIVINGAPARTMENTS_MEDI
                                 213514
NONLIVINGAREA_MEDI
                                 169682
FONDKAPREMONT_MODE
                                 210295
HOUSETYPE_MODE
                                 154297
TOTALAREA MODE
                                 148431
WALLSMATERIAL_MODE
                                 156341
EMERGENCYSTATE MODE
                                 145755
OBS_30_CNT_SOCIAL_CIRCLE
                                   1021
DEF_30_CNT_SOCIAL_CIRCLE
                                   1021
OBS_60_CNT_SOCIAL_CIRCLE
                                   1021
                                   1021
DEF_60_CNT_SOCIAL_CIRCLE
DAYS LAST PHONE CHANGE
                                      1
                                      0
FLAG_DOCUMENT_2
                                      0
FLAG_DOCUMENT_3
                                      0
FLAG DOCUMENT 4
                                      0
FLAG_DOCUMENT_5
                                      0
FLAG DOCUMENT 6
                                      0
FLAG DOCUMENT 7
FLAG_DOCUMENT_8
                                      0
FLAG DOCUMENT 9
                                      0
FLAG_DOCUMENT_10
                                      0
FLAG_DOCUMENT_11
                                      0
                                      0
FLAG DOCUMENT 12
FLAG_DOCUMENT_13
                                      0
FLAG_DOCUMENT_14
                                      0
                                      0
FLAG DOCUMENT 15
                                      0
FLAG_DOCUMENT_16
                                      0
FLAG_DOCUMENT_17
                                      0
FLAG DOCUMENT 18
                                      0
FLAG_DOCUMENT_19
                                      0
FLAG_DOCUMENT_20
FLAG_DOCUMENT_21
                                      0
AMT_REQ_CREDIT_BUREAU_HOUR
                                  41519
AMT_REQ_CREDIT_BUREAU_DAY
                                  41519
AMT_REQ_CREDIT_BUREAU_WEEK
                                  41519
AMT_REQ_CREDIT_BUREAU_MON
                                  41519
AMT_REQ_CREDIT_BUREAU_QRT
                                  41519
AMT REO CREDIT BUREAU YEAR
                                  41519
 rows, cols=df_application_current_copy.shape
 rows
```

Out[24]: 307511

CNT CHILDREN

In [24]:

Calculating Percetage of NA values in each column

7 of 84 26-03-2023, 01:20

0.00

AMT_INCOME_TOTAL	0.00
AMT_CREDIT	0.00
AMT_ANNUITY	0.00
AMT_GOODS_PRICE	0.09
NAME_TYPE_SUITE	0.42
NAME_INCOME_TYPE	0.00
NAME_EDUCATION_TYPE	0.00
NAME_FAMILY_STATUS	0.00
NAME_HOUSING_TYPE REGION_POPULATION_RELATIVE	0.00
DAYS_BIRTH	0.00
DAYS_EMPLOYED	0.00
DAYS_REGISTRATION	0.00
DAYS_ID_PUBLISH	0.00
OWN_CAR_AGE	65.99
FLAG_MOBIL	0.00
FLAG_EMP_PHONE	0.00
FLAG_WORK_PHONE	0.00
FLAG_CONT_MOBILE	0.00
FLAG_PHONE	0.00
FLAG_EMAIL	0.00
OCCUPATION_TYPE	31.35
CNT_FAM_MEMBERS	0.00
REGION_RATING_CLIENT REGION_RATING_CLIENT_W_CITY	0.00
REGION_KAIING_CLIENI_W_CIIY	0.00
WEEKDAY_APPR_PROCESS_START HOUR_APPR_PROCESS_START	0.00 0.00
REG_REGION_NOT_LIVE_REGION	0.00
REG REGION NOT WORK REGION	0.00
LIVE_REGION_NOT_WORK_REGION	0.00
DEC CITY NOT LIVE CITY	0.00
REG_CITY_NOT_LIVE_CITY REG_CITY_NOT_WORK_CITY LIVE_CITY_NOT_WORK_CITY ORGANIZATION_TYPE	0.00
LIVE CITY NOT WORK CITY	0.00
ORGANIZATION_TYPE	0.00
EXT_SOURCE_1	56.38
EXT_SOURCE_2	0.21
EXT_SOURCE_3	19.83
APARTMENTS_AVG	50.75
BASEMENTAREA_AVG	58.52
YEARS_BEGINEXPLUATATION_AVG	48.78
YEARS_BUILD_AVG	66.50
COMMONAREA_AVG	69.87
ELEVATORS_AVG ENTRANCES AVG	53.30
FLOORSMAX_AVG	50.35 49.76
FLOORSMIN AVG	67.85
LANDAREA AVG	59.38
LIVINGAPARTMENTS_AVG	68.35
LIVINGAREA_AVG	50.19
NONLIVINGAPARTMENTS AVG	69.43
NONLIVINGAREA_AVG	55.18
APARTMENTS_MODE	50.75
BASEMENTAREA_MODE	58.52
YEARS_BEGINEXPLUATATION_MODE	48.78
YEARS_BUILD_MODE	66.50
COMMONAREA_MODE	69.87
ELEVATORS_MODE	53.30
ENTRANCES_MODE	50.35
FLOORSMAX_MODE	49.76
FLOORSMIN_MODE	67.85
LANDAREA_MODE	59.38
LIVINGAPARTMENTS_MODE	68.35

```
LIVINGAREA_MODE
                                 50.19
NONLIVINGAPARTMENTS_MODE
                                 69.43
NONLIVINGAREA_MODE
                                 55.18
APARTMENTS_MEDI
                                 50.75
                                 58.52
BASEMENTAREA_MEDI
YEARS_BEGINEXPLUATATION_MEDI
                                 48.78
YEARS_BUILD_MEDI
                                 66.50
COMMONAREA MEDI
                                 69.87
ELEVATORS MEDI
                                 53.30
ENTRANCES_MEDI
                                 50.35
FLOORSMAX_MEDI
                                 49.76
FLOORSMIN MEDI
                                 67.85
LANDAREA_MEDI
                                 59.38
LIVINGAPARTMENTS_MEDI
                                 68.35
LIVINGAREA MEDI
                                 50.19
NONLIVINGAPARTMENTS_MEDI
                                 69.43
NONLIVINGAREA_MEDI
                                 55.18
                                 68.39
FONDKAPREMONT MODE
HOUSETYPE_MODE
                                 50.18
TOTALAREA MODE
                                 48.27
WALLSMATERIAL_MODE
                                 50.84
                                 47.40
EMERGENCYSTATE_MODE
OBS_30_CNT_SOCIAL_CIRCLE
                                  0.33
DEF_30_CNT_SOCIAL_CIRCLE
                                  0.33
OBS_60_CNT_SOCIAL_CIRCLE
                                  0.33
DEF 60 CNT SOCIAL CIRCLE
                                  0.33
DAYS_LAST_PHONE_CHANGE
                                  0.00
FLAG_DOCUMENT_2
                                  0.00
FLAG DOCUMENT 3
                                  0.00
FLAG_DOCUMENT_4
                                  0.00
FLAG_DOCUMENT_5
                                  0.00
FLAG DOCUMENT 6
                                  0.00
FLAG_DOCUMENT_7
                                  0.00
FLAG_DOCUMENT_8
                                  0.00
FLAG_DOCUMENT_9
                                  0.00
FLAG_DOCUMENT_10
                                  0.00
FLAG_DOCUMENT_11
                                  0.00
FLAG_DOCUMENT_12
                                  0.00
FLAG_DOCUMENT_13
                                  0.00
FLAG_DOCUMENT_14
                                  0.00
FLAG DOCUMENT 15
                                  0.00
FLAG DOCUMENT 16
                                  0.00
FLAG DOCUMENT 17
                                  0.00
FLAG_DOCUMENT_18
                                  0.00
FLAG_DOCUMENT_19
                                  0.00
FLAG_DOCUMENT_20
                                  0.00
FLAG_DOCUMENT_21
                                  0.00
AMT_REQ_CREDIT_BUREAU_HOUR
                                 13.50
AMT_REQ_CREDIT_BUREAU_DAY
                                 13.50
AMT_REQ_CREDIT_BUREAU_WEEK
                                 13.50
AMT REQ CREDIT BUREAU MON
                                 13.50
AMT_REQ_CREDIT_BUREAU_QRT
                                 13.50
AMT DEC CDEDTT DIDEALL VEAD
                                 12 60
```

Name of Columns having atleast 50% NA values with Percentage

56.38

```
In [43]: Columns_with_min50_NA_Values=Perc_Of_NA_Columns[Perc_Of_NA_Columns>50]
    Columns_with_min50_NA_Values
Out[43]: OWN_CAR_AGE 65.99
```

APARTMENTS_AVG 50.75

EXT SOURCE 1

```
BASEMENTAREA AVG
                             58.52
YEARS_BUILD_AVG
                             66.50
COMMONAREA_AVG
                             69.87
ELEVATORS AVG
                             53.30
ENTRANCES_AVG
                             50.35
FLOORSMIN_AVG
                             67.85
LANDAREA AVG
                             59.38
LIVINGAPARTMENTS AVG
                             68.35
LIVINGAREA AVG
                             50.19
NONLIVINGAPARTMENTS_AVG
                             69.43
NONLIVINGAREA AVG
                             55.18
APARTMENTS MODE
                             50.75
BASEMENTAREA_MODE
                             58.52
YEARS BUILD MODE
                             66.50
COMMONAREA MODE
                             69.87
ELEVATORS_MODE
                             53.30
ENTRANCES_MODE
                             50.35
FLOORSMIN MODE
                             67.85
LANDAREA_MODE
                             59.38
LIVINGAPARTMENTS MODE
                             68.35
LIVINGAREA MODE
                             50.19
NONLIVINGAPARTMENTS_MODE
                             69.43
NONLIVINGAREA MODE
                             55.18
APARTMENTS_MEDI
                             50.75
BASEMENTAREA_MEDI
                             58.52
YEARS BUILD MEDI
                             66.50
COMMONAREA_MEDI
                             69.87
ELEVATORS_MEDI
                             53.30
ENTRANCES MEDI
                             50.35
FLOORSMIN MEDI
                             67.85
LANDAREA_MEDI
                             59.38
LIVINGAPARTMENTS MEDI
                             68.35
LIVINGAREA_MEDI
                             50.19
NONLIVINGAPARTMENTS_MEDI
                             69.43
NONLIVINGAREA MEDI
                             55.18
FONDKAPREMONT_MODE
                             68.39
HOUSETYPE_MODE
                             50.18
WALLSMATERIAL MODE
                             50.84
dtype: float64
```

Number of Columns having atleast 50% NA values

```
In [44]: len(Columns_with_min50_NA_Values)
```

Out[44]: 41

Drop all the columns with 50% NA values

HOUR_APPR_PROCESS_START

```
In [48]:

df_application_current_copy=df_application_current_copy.drop(Columns_with_min50_NA_Vadf_application_current_copy.shape

Out[48]: (307511, 81)

In [60]:

round(100.0* df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().sum()/len(df_application_current_copy.isnull().
```

10 of 84 26-03-2023, 01:20

0.00

REG_REGION_NOT_LIVE_REGION	0.00
	0.00
	0.00
REG CITY NOT LIVE CITY	0.00
	0.00
LIVE CITY NOT WORK CITY	0.00
ORGANTZATION TYPE	0.00
FLAG DOCUMENT 19	0.00
- · · · · · · · · · · · · · · · · · · ·	0.00
	0.00
	0.00
FLAG DOCUMENT 16	0.00
FLAG_DOCUMENT_10 FLAG_DOCUMENT_14	0.00
FLAG_DOCUMENT_13	0.00
FLAG_DOCUMENT_12	0.00
FLAG_DOCUMENT_11	0.00
FLAG_DOCUMENT_10	0.00
FLAG_DOCUMENT_9 FLAG_DOCUMENT_8	0.00
FLAG_DOCUMENI_8	0.00
FLAG_DOCUMENT_7	0.00
FLAG_DOCUMENT_6	0.00
	0.00
FLAG_DOCUMENT_2	0.00
FLAG_DOCUMENT_3	0.00
FLAG_DOCUMENT_15	0.00
FLAG_DOCUMENT_4	0.00
<u> </u>	0.00
FLAG_DOCUMENT_20	0.00
TARGET	0.00
NAME_CONTRACT_TYPE	0.00
CODE_GENDER	0.00
FLAG_OWN_CAR	0.00
– –	0.00
_	0.00
AMT_INCOME_TOTAL	0.00
AMT_CREDIT	0.00
AMT_ANNUITY	0.00
FLAG_DOCUMENT_21	0.00
NAME_INCOME_TYPE	0.00
CNT_FAM_MEMBERS	0.00
NAME_EDUCATION_TYPE	0.00
NAME_HOUSING_TYPE	0.00
REGION_POPULATION_RELATIVE	0.00
DAYS BIRTH	0.00
DAYS EMPLOYED	0.00
DAYS REGISTRATION	0.00
DAYS ID PUBLISH	0.00
FLAG MOBIL	0.00
FLAG_EMP_PHONE	0.00
FLAG WORK PHONE	0.00
FLAG_CONT_MOBILE	0.00
FLAG_PHONE	0.00
FLAG_EMAIL	0.00
NAME_FAMILY_STATUS	0.00
FLAG_DOCUMENT_5	0.00
AMT GOODS PRICE	0.09
EXT_SOURCE_2	0.21
OBS 60 CNT SOCIAL CIRCLE	0.33
DEF 30 CNT SOCIAL CIRCLE	0.33
OBS_30_CNT_SOCIAL_CIRCLE	0.33
DEF_60_CNT_SOCIAL_CIRCLE	0.33
NAME_TYPE_SUITE	0.42
NAUF LILE 20TIE	0.42

```
AMT_REQ_CREDIT_BUREAU_MON
                                 13.50
AMT_REQ_CREDIT_BUREAU_WEEK
                                 13.50
AMT_REQ_CREDIT_BUREAU_DAY
                                 13.50
AMT_REQ_CREDIT_BUREAU_HOUR
                                 13.50
AMT_REQ_CREDIT_BUREAU_QRT
                                 13.50
AMT_REQ_CREDIT_BUREAU_YEAR
                                 13.50
EXT_SOURCE_3
                                 19.83
OCCUPATION TYPE
                                 31.35
EMERGENCYSTATE MODE
                                 47.40
TOTALAREA_MODE
                                 48.27
YEARS_BEGINEXPLUATATION_MODE
                                 48.78
YEARS BEGINEXPLUATATION MEDI
                                 48.78
YEARS_BEGINEXPLUATATION_AVG
                                 48.78
                                 49.76
FLOORSMAX MODE
FLOORSMAX MEDI
                                 49.76
FLOORSMAX_AVG
                                 49.76
```

Columns which does not have any missing values

```
In [61]:
```

cols_without_missingValues=Perc_Of_NA_Columns[Perc_Of_NA_Columns==0]
print("Number of columns having null value less than 15% :", len(cols_without_missing
print(cols_without_missingValues)

```
Number of columns having null value less than 15% : 58
SK_ID_CURR
                                0.0
TARGET
                                0.0
NAME_CONTRACT_TYPE
                                0.0
CODE_GENDER
                                0.0
FLAG_OWN_CAR
                                0.0
FLAG OWN REALTY
                                0.0
CNT CHILDREN
                                0.0
AMT_INCOME_TOTAL
                                0.0
AMT_CREDIT
                                0.0
AMT_ANNUITY
                                0.0
NAME_INCOME_TYPE
                                0.0
NAME_EDUCATION_TYPE
                                0.0
NAME_FAMILY_STATUS
                                0.0
NAME_HOUSING_TYPE
                                0.0
REGION POPULATION RELATIVE
                                0.0
DAYS_BIRTH
                                0.0
                                0.0
DAYS EMPLOYED
DAYS REGISTRATION
                                0.0
DAYS_ID_PUBLISH
                                0.0
FLAG_MOBIL
                                0.0
FLAG_EMP_PHONE
                                0.0
FLAG_WORK_PHONE
                                0.0
FLAG_CONT_MOBILE
                                0.0
FLAG_PHONE
                                0.0
FLAG_EMAIL
                                0.0
CNT FAM MEMBERS
                                0.0
REGION_RATING_CLIENT
                                0.0
REGION_RATING_CLIENT_W_CITY
                                0.0
WEEKDAY APPR PROCESS START
                                0.0
HOUR_APPR_PROCESS_START
                                0.0
REG_REGION_NOT_LIVE_REGION
                                0.0
REG_REGION_NOT_WORK_REGION
                                0.0
LIVE_REGION_NOT_WORK_REGION
                                0.0
REG_CITY_NOT_LIVE_CITY
                                0.0
REG CITY NOT WORK CITY
                                0.0
LIVE_CITY_NOT_WORK_CITY
                                0.0
ORGANIZATION_TYPE
                                0.0
```

```
DAYS LAST PHONE CHANGE
                                0.0
FLAG DOCUMENT 2
                                0.0
FLAG DOCUMENT 3
                                0.0
FLAG_DOCUMENT_4
                                0.0
FLAG_DOCUMENT_5
                                0.0
FLAG_DOCUMENT_6
                                0.0
FLAG_DOCUMENT_7
                                0.0
FLAG DOCUMENT 8
                                0.0
FLAG DOCUMENT 9
                                0.0
FLAG_DOCUMENT_10
                                0.0
FLAG DOCUMENT 11
                                0.0
FLAG DOCUMENT 12
                                0.0
FLAG_DOCUMENT_13
                                0.0
FLAG DOCUMENT 14
                                0.0
FLAG_DOCUMENT_15
                                0.0
FLAG_DOCUMENT_16
                                0.0
FLAG_DOCUMENT_17
                                0.0
FLAG DOCUMENT 18
                                0.0
FLAG_DOCUMENT_19
                                0.0
FLAG DOCUMENT 20
                                0.0
FLAG DOCUMENT_21
                                0.0
```

Columns having <15% NA values

```
In [63]:
           Perc_Of_NA_Columns=Perc_Of_NA_Columns[Perc_Of_NA_Columns>0]
           Cols with less than 15Perc NA Values = Perc Of NA Columns[Perc Of NA Columns<15]
           print("Number of columns having null value less than 15% :", len(Cols_with_less_than_
           print(Cols_with_less_than_15Perc_NA_Values)
          Number of columns having null value less than 15% : 13
          AMT_GOODS_PRICE
                                           0.09
                                           0.42
          NAME_TYPE_SUITE
          EXT SOURCE 2
                                           0.21
          OBS_30_CNT_SOCIAL_CIRCLE
                                           0.33
          DEF_30_CNT_SOCIAL_CIRCLE
                                           0.33
          OBS_60_CNT_SOCIAL_CIRCLE
                                           0.33
          DEF_60_CNT_SOCIAL_CIRCLE
                                           0.33
          AMT_REQ_CREDIT_BUREAU_HOUR
                                          13.50
          AMT_REQ_CREDIT_BUREAU_DAY
                                          13.50
          AMT_REQ_CREDIT_BUREAU_WEEK
                                          13.50
          AMT_REQ_CREDIT_BUREAU_MON
                                          13.50
          AMT_REQ_CREDIT_BUREAU_QRT
                                          13.50
          AMT_REQ_CREDIT_BUREAU_YEAR
                                          13.50
          dtype: float64
In [67]:
           Cols with less than 15Perc NA Values.index
Out[67]: Index(['AMT_GOODS_PRICE', 'NAME_TYPE_SUITE', 'EXT_SOURCE_2',
                  'OBS_30_CNT_SOCIAL_CIRCLE', 'DEF_30_CNT_SOCIAL_CIRCLE',
                  'OBS_60_CNT_SOCIAL_CIRCLE', 'DEF_60_CNT_SOCIAL_CIRCLE', 'AMT_REQ_CREDIT_BUREAU_HOUR', 'AMT_REQ_CREDIT_BUREAU_DAY',
                  'AMT_REQ_CREDIT_BUREAU_WEEK', 'AMT_REQ_CREDIT_BUREAU_MON',
                  'AMT_REQ_CREDIT_BUREAU_QRT', 'AMT_REQ_CREDIT_BUREAU_YEAR'],
                dtype='object')
```

Understand the insight of missing columns having <15% null values

```
In [69]: df_application_current_copy[Cols_with_less_than_15Perc_NA_Values.index].describe()
```

Out[69]:

	AMT_GOODS_PRICE	EXT_SOURCE_2	OBS_30_CNT_SOCIAL_CIRCLE	DEF_30_CNT_SOCIAL_CIRCLE
count	3.072330e+05	3.068510e+05	306490.000000	306490.000000
mean	5.383962e+05	5.143927e-01	1.422245	0.143421
std	3.694465e+05	1.910602e-01	2.400989	0.446698
min	4.050000e+04	8.173617e-08	0.000000	0.000000
25%	2.385000e+05	3.924574e-01	0.000000	0.000000
50%	4.500000e+05	5.659614e-01	0.000000	0.000000
75%	6.795000e+05	6.636171e-01	2.000000	0.000000
max	4.050000e+06	8.549997e-01	348.000000	34.000000

Identify unique values in the colums having <15% null value

```
In [70]:
          df_application_current_copy[Cols_with_less_than_15Perc_NA_Values.index].nunique().sor
Out[70]: EXT_SOURCE_2
                                        119831
         AMT_GOODS_PRICE
                                          1002
         OBS_30_CNT_SOCIAL_CIRCLE
                                            33
         OBS_60_CNT_SOCIAL_CIRCLE
                                            33
         AMT_REQ_CREDIT_BUREAU_YEAR
                                            25
         AMT_REQ_CREDIT_BUREAU_MON
                                            24
         AMT_REQ_CREDIT_BUREAU_QRT
                                            11
         DEF_30_CNT_SOCIAL_CIRCLE
                                            10
         DEF_60_CNT_SOCIAL_CIRCLE
                                             9
                                             9
         AMT REQ CREDIT BUREAU DAY
         AMT_REQ_CREDIT_BUREAU_WEEK
         NAME_TYPE_SUITE
         AMT_REQ_CREDIT_BUREAU_HOUR
         dtype: int64
```

Imputing NA Values

Impute NA Values for 'AMT_GOODS_PRICE'

```
plt.figure(figsize=(12,4))
sns.boxplot(df_application_current_copy['AMT_GOODS_PRICE'])
plt.show()
```


There are significant number of outliers present in the data. So we have to impute the data

```
In [71]:
          df_application_current_copy['AMT_GOODS_PRICE'].describe()
                   3.072330e+05
Out[71]: count
                   5.383962e+05
         mean
                   3.694465e+05
         std
                   4.050000e+04
         min
         25%
                   2.385000e+05
          50%
                   4.500000e+05
         75%
                   6.795000e+05
                   4.050000e+06
         max
         Name: AMT_GOODS_PRICE, dtype: float64
In [74]:
          print(df_application_current_copy['AMT_GOODS_PRICE'].median())
          print(df_application_current_copy['AMT_GOODS_PRICE'].mean())
         450000.0
         538396.2074288895
```

Mean is higher than median so data should be imputed with median value:45000

Impute NA Values for 'EXT_SOURCE_2'

```
plt.figure(figsize=(12,4))
sns.boxplot(df_application_current_copy['EXT_SOURCE_2'])
plt.show()
```


There is no outliers present.

```
In [76]:
          df_application_current_copy['EXT_SOURCE_2'].describe()
Out[76]: count
                   3.068510e+05
                   5.143927e-01
         mean
         std
                  1.910602e-01
         min
                  8.173617e-08
         25%
                   3.924574e-01
         50%
                   5.659614e-01
         75%
                   6.636171e-01
                  8.549997e-01
         max
         Name: EXT_SOURCE_2, dtype: float64
In [77]:
          print(df_application_current_copy['EXT_SOURCE_2'].median())
          print(df application current copy['EXT SOURCE 2'].mean())
         0.5659614260608526
```

There is no significant diffence observed between mean and median. However data look to be right skewed. So missing values can be imputed with median value: 0.5659614260608526

Impute NA Values for 'NAME_TYPE_SUITE' Categorical Variable

```
In [82]:
          df_application_current_copy['NAME_TYPE_SUITE'].value_counts()
Out[82]: Unaccompanied
                             248526
          Family
                              40149
          Spouse, partner
                              11370
          Children
                               3267
         Other_B
                               1770
         Other_A
                                866
         Group of people
                                271
         Name: NAME_TYPE_SUITE, dtype: int64
```

For categorical vriable the value which should be imputed with maximum in frequency. So the value to be imputed is: Unaccompanied

Impute NA Values for

0.5143926741308463

'OBS_30_CNT_SOCIAL_CIRCLE','DEF_30_CNT_SOCIAL_CIRCLE','OBS_60_CNT_SOCIAL_CIRCLE','DE

Catanorical Variables In [94]: plt.figure(figsize=(12,4)) sns.boxplot(df_application_current_copy['OBS_30_CNT_SOCIAL_CIRCLE']) plt.show() 50 100 150 200 250 300 350 OBS_30_CNT_SOCIAL_CIRCLE In [95]: plt.figure(figsize=(12,4)) sns.boxplot(df_application_current_copy['DEF_30_CNT_SOCIAL_CIRCLE']) plt.show() 25 ò 10 15 20 30 35 DEF_30_CNT_SOCIAL_CIRCLE In [96]: plt.figure(figsize=(12,4)) sns.boxplot(df_application_current_copy['OBS_60_CNT_SOCIAL_CIRCLE'])

17 of 84 26-03-2023, 01:20

plt.show()


```
In [97]: plt.figure(figsize=(12,4))
    sns.boxplot(df_application_current_copy['DEF_60_CNT_SOCIAL_CIRCLE'])
    plt.show()
```



```
In [92]:
    print('OBS_30_CNT_SOCIAL_CIRCLE:', df_application_current_copy['OBS_30_CNT_SOCIAL_CIRCLE:', df_application_current_copy['DEF_30_CNT_SOCIAL_CIRCLE:', df_application_current_copy['OBS_60_CNT_SOCIAL_CIRCLE:', df_application_current_copy['OBS_60_CNT_SOCIAL_CIRCLE:', df_application_current_copy['DEF_60_CNT_SOCIAL_CIRCLE:', df_application_current_copy['DEF_60_CNT_SOCIAL_CIRCLE:']
```

OBS_30_CNT_SOCIAL_CIRCLE: 0.0 DEF_30_CNT_SOCIAL_CIRCLE: 0.0 OBS_60_CNT_SOCIAL_CIRCLE: 0.0 DEF_60_CNT_SOCIAL_CIRCLE: 0.0

For categorical vriable the value which should be imputed with maximum in frequency.

So the value to be imputed are:

OBS_30_CNT_SOCIAL_CIRCLE: 0.0
DEF_30_CNT_SOCIAL_CIRCLE: 0.0
OBS_60_CNT_SOCIAL_CIRCLE: 0.0
DEF_60_CNT_SOCIAL_CIRCLE: 0.0

Since the maximum occurring values for these columns is 0 so all the missing values should be imputed with 0

```
In [98]:
            print('AMT_REQ_CREDIT_BUREAU_MON:', df_application_current_copy['AMT_REQ_CREDIT_BUREA
            print('AMT_REQ_CREDIT_BUREAU_WEEK:', df_application_current_copy['AMT_REQ_CREDIT_BUREAU_WEEK:']
            print('AMT_REQ_CREDIT_BUREAU_DAY:', df_application_current_copy['AMT_REQ_CREDIT_BUREA
           print('AMT_REQ_CREDIT_BUREAU_HOUR:', df_application_current_copy['AMT_REQ_CREDIT_BUREAU_HOUR:']
           print('AMT_REQ_CREDIT_BUREAU_QRT:', df_application_current_copy['AMT_REQ_CREDIT_BUREAU_QRT:')
           print('AMT_REQ_CREDIT_BUREAU_YEAR:', df_application_current_copy['AMT_REQ_CREDIT_BUREAU_YEAR:']
           AMT_REQ_CREDIT_BUREAU_MON: 0.0
           AMT_REQ_CREDIT_BUREAU_WEEK: 0.0
           AMT REQ CREDIT BUREAU DAY: 0.0
           AMT_REQ_CREDIT_BUREAU_HOUR: 0.0
           AMT_REQ_CREDIT_BUREAU_QRT: 0.0
           AMT REQ CREDIT BUREAU YEAR: 0.0
In [101...
            plt.figure(figsize=(12,4))
            sns.boxplot(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_MON'])
           plt.show()
                                             AMT REQ CREDIT BUREAU MON
In [104...
            print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_MON'].value_counts())
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_MON'].describe())
           0.0
                   222233
           1.0
                    33147
           2.0
                     5386
           3.0
                     1991
           4.0
                     1076
           5.0
                      602
           6.0
                      343
           7.0
                      298
           9.0
                      206
                      185
           8.0
           10.0
                      132
           11.0
                      119
           12.0
                       77
           13.0
                       72
                       40
           14.0
                       35
           15.0
           16.0
                       23
           17.0
                       14
                        6
           18.0
           19.0
                        3
           27.0
                        1
```

```
22.0
                        1
                        1
           23.0
           24.0
          Name: AMT_REQ_CREDIT_BUREAU_MON, dtype: int64
                    265992.000000
           count
                         0.267395
          mean
                         0.916002
           std
                         0.000000
          min
           25%
                         0.000000
           50%
                         0.000000
           75%
                         0.000000
                         27.000000
           Name . WAL BEU CBEULL BIIDEVII WUW 4+100 . +103+64
In [102...
            plt.figure(figsize=(12,4))
            sns.boxplot(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_WEEK'])
            plt.show()
                         i
                                   ż
               ò
                                             ż
                                                                  Ś
                                                                            Ġ
                                                                                                ė
                                            AMT_REQ_CREDIT_BUREAU_WEEK
In [105...
            print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_WEEK'].value_counts())
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_WEEK'].describe())
           0.0
                  257456
           1.0
                    8208
           2.0
                     199
           3.0
                      58
          4.0
                      34
           6.0
                      20
                      10
           5.0
                       5
          8.0
                       2
          7.0
          Name: AMT_REQ_CREDIT_BUREAU_WEEK, dtype: int64
                    265992.000000
           count
                         0.034362
          mean
                         0.204685
           std
          min
                         0.000000
           25%
                         0.000000
           50%
                         0.000000
           75%
                         0.000000
           max
                         8.000000
          Name: AMT_REQ_CREDIT_BUREAU_WEEK, dtype: float64
```

```
In [106...
            plt.figure(figsize=(12,4))
            sns.boxplot(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_DAY'])
           plt.show()
                                 ż
               Ò
                                                                    6
                                                                                      8
                                             AMT_REQ_CREDIT_BUREAU_DAY
In [107...
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_DAY'].value_counts())
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_DAY'].describe())
           0.0
                  264503
           1.0
                    1292
           2.0
                     106
           3.0
                      45
          4.0
                      26
          5.0
                       9
                       8
          6.0
          9.0
                       2
          8.0
                       1
          Name: AMT_REQ_CREDIT_BUREAU_DAY, dtype: int64
                    265992.000000
           count
          mean
                         0.007000
           std
                         0.110757
          min
                         0.000000
           25%
                         0.000000
           50%
                         0.000000
           75%
                         0.000000
                         9.000000
          max
          Name: AMT_REQ_CREDIT_BUREAU_DAY, dtype: float64
In [108...
           plt.figure(figsize=(12,4))
           sns.boxplot(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_HOUR'])
            plt.show()
```



```
In [109...
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_HOUR'].value_counts())
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_HOUR'].describe())
          0.0
                  264366
          1.0
                    1560
          2.0
                      56
          3.0
                       9
          4.0
                       1
          Name: AMT_REQ_CREDIT_BUREAU_HOUR, dtype: int64
                    265992.000000
          count
                         0.006402
          mean
                         0.083849
          std
                         0.000000
          min
          25%
                         0.000000
          50%
                         0.000000
          75%
                         0.000000
          max
                         4.000000
          Name: AMT_REQ_CREDIT_BUREAU_HOUR, dtype: float64
In [110...
           plt.figure(figsize=(12,4))
           sns.boxplot(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_QRT'])
```

```
plt.show()
```



```
In [111...
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_QRT'].value_counts())
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_QRT'].describe())
```

```
0.0
         215417
1.0
          33862
2.0
          14412
3.0
           1717
            476
4.0
5.0
             64
6.0
              28
8.0
              7
7.0
              7
19.0
              1
261.0
              1
Name: AMT REQ CREDIT BUREAU QRT, dtype: int64
         265992.000000
count
              0.265474
mean
std
              0.794056
              0.000000
min
25%
              0.000000
50%
              0.000000
75%
              0.000000
max
            261.000000
Name: AMT_REQ_CREDIT_BUREAU_QRT, dtype: float64
```

For column AMT_REQ_CREDIT_BUREAU_MON, AMT_REQ_CREDIT_BUREAU_WEEK, AMT_REQ_CREDIT_BUREAU_DAY, AMT_REQ_CREDIT_BUREAU_HOUR,

AMT_REQ_CREDIT_BUREAU_QRT we have two approaches either exclude missing values or impute the column with value 0 which is present in maximum rows. Hence, the recommended imputation technique is replacing null by the mode which is 0

```
plt.figure(figsize=(12,4))
sns.boxplot(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_YEAR'])
plt.show()
```



```
In [113...
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_YEAR'].value_counts())
           print(df_application_current_copy['AMT_REQ_CREDIT_BUREAU_YEAR'].describe())
          0.0
                   71801
          1.0
                  63405
          2.0
                  50192
          3.0
                  33628
          4.0
                  20714
          5.0
                  12052
          6.0
                   6967
```

```
7.0
         3869
8.0
         2127
9.0
        1096
11.0
12.0
          30
          22
10.0
13.0
          19
           10
14.0
17.0
           7
15.0
           6
18.0
           4
19.0
           4
16.0
           3
           1
25.0
21.0
           1
22.0
           1
20.0
            1
23.0
Name: AMT_REQ_CREDIT_BUREAU_YEAR, dtype: int64
count 265992.000000
             1.899974
mean
std
             1.869295
min
              0.000000
25%
             0.000000
50%
             1.000000
75%
             3.000000
            25.000000
Name - AMT DEC COENTY DIDEALL VEAD 4+400 - floated
```

For the column AMT_REQ_CREDIT_BUREAU_YEAR :Values - 0,1,2,3,4,5 are present in a significant number. Hence, imputing null values can significantly change column statistics and hence, the best approach would be to remove these rows

```
In [115... df_application_current_copy.shape
Out[115... (307511, 81)
```

Identifying Outliers for Numerical columns

For the outlier analysis of numerical columns, we will focus on

AMT_GOODS_PRICE

AMT_INCOME_TOTAL

AMT_CREDIT

AMT_ANNUITY

FLOORSMAX_AVG

Outlier analysis for AMT_GOODS_PRICE

```
In [126...
```

```
#Dividing the amount by 1000 for ease of calculation
plt.figure(figsize=(12,4))
sns.boxplot(df_application_current_copy['AMT_GOODS_PRICE']/1000.0)
plt.show()
# checking column statistics
print((df_application_current_copy['AMT_GOODS_PRICE']/1000.0).describe())

# Maximum value for boxplot
IQR_AMT_GOODS_PRICE = (df_application_current_copy['AMT_GOODS_PRICE']/1000).quantile(Upper_limit_IQR_AMT_GOODS_PRICE = (df_application_current_copy['AMT_GOODS_PRICE']/1000)
print('Upper Limit',Upper_limit_IQR_AMT_GOODS_PRICE)

# percentage of outliers in AMT_GOODS_PRICE
print('Outlier %',round(100.0 * len(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_
```



```
count
         307233.000000
            538.396207
mean
            369.446461
std
min
             40.500000
25%
            238.500000
50%
            450.000000
75%
            679.500000
           4050.000000
Name: AMT_GOODS_PRICE, dtype: float64
Upper Limit 1341.0
Outlier % 4.79
```

Outlier analysis for AMT_INCOME_TOTAL

```
In [127...
```

```
#Dividing the amount by 1000 for ease of calculation
plt.figure(figsize=(12,4))
sns.boxplot(df_application_current_copy['AMT_INCOME_TOTAL']/1000.0)
plt.show()
# checking column statistics
print((df_application_current_copy['AMT_INCOME_TOTAL']/1000.0).describe())

# Maximum value for boxplot
IQR_AMT_INCOME_TOTAL = (df_application_current_copy['AMT_INCOME_TOTAL']/1000).quanti:
Upper_limit_IQR_AMT_INCOME_TOTAL = (df_application_current_copy['AMT_INCOME_TOTAL']/:
print('Upper Limit', Upper_limit_IQR_AMT_INCOME_TOTAL)

# percentage of outliers in AMT_INCOME_TOTAL
print('Outlier %', round(100.0 * len(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_cur
```



```
307511.000000
count
mean
           168.797919
std
            237.123146
            25.650000
min
25%
            112.500000
50%
            147.150000
75%
            202.500000
         117000.000000
Name: AMT_INCOME_TOTAL, dtype: float64
Upper Limit 337.5
Outlier % 4.56
```

Outlier analysis for AMT_CREDIT

```
In [128...
```

```
#Dividing the amount by 1000 for ease of calculation
plt.figure(figsize=(12,4))
sns.boxplot(df_application_current_copy['AMT_CREDIT']/1000.0)
plt.show()
# checking column statistics
print((df_application_current_copy['AMT_CREDIT']/1000.0).describe())

# Maximum value for boxplot
IQR_AMT_CREDIT = (df_application_current_copy['AMT_CREDIT']/1000).quantile(0.75) - (current_limit_IQR_AMT_CREDIT = (df_application_current_copy['AMT_CREDIT']/1000).quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().quantile().qu
```



```
count
         307511.000000
            599.026000
mean
            402.490777
std
min
            45.000000
25%
            270.000000
50%
            513.531000
75%
            808.650000
           4050.000000
Name: AMT_CREDIT, dtype: float64
Upper Limit 1616.625
Outlier % 2.13
```

Outlier analysis for AMT_ANNUITY

```
In [129...
```

```
#Dividing the amount by 1000 for ease of calculation
plt.figure(figsize=(12,4))
sns.boxplot(df_application_current_copy['AMT_ANNUITY']/1000.0)
plt.show()
# checking column statistics
print((df_application_current_copy['AMT_ANNUITY']/1000.0).describe())

# Maximum value for boxplot
IQR_AMT_ANNUITY = (df_application_current_copy['AMT_ANNUITY']/1000).quantile(0.75) -
Upper_limit_IQR_AMT_ANNUITY = (df_application_current_copy['AMT_ANNUITY']/1000).quant
print('Upper Limit', Upper_limit_IQR_AMT_ANNUITY)

# percentage of outliers in AMT_ANNUITY
print('Outlier %', round(100.0 * len(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_application_current_copy[(df_applica
```


count	307499.000000
mean	27.108574
std	14.493737
min	1.615500
25%	16.524000
50%	24.903000
75%	34.596000
max	258.025500
Name:	AMT_ANNUITY, dtype: flo

Name: AMT_ANNUITY, dtype: float64 Upper Limit 61.7039999999999

Outlier % 2.44

Outlier analysis for FLOORSMAX_AVG

```
In [130...
           #Dividing the amount by 1000 for ease of calculation
           plt.figure(figsize=(12,4))
           sns.boxplot(df_application_current_copy['FLOORSMAX_AVG'])
           plt.show()
           # checking column statistics
           print((df application current copy['FLOORSMAX AVG']).describe())
           # Maximum value for boxplot
           IQR_FLOORSMAX_AVG = (df_application_current_copy['FLOORSMAX_AVG']).quantile(0.75) -
           Upper limit IQR FLOORSMAX AVG = (df application current copy['FLOORSMAX AVG']).quant
           print('Upper Limit', Upper_limit_IQR_FLOORSMAX_AVG)
           # percentage of outliers in FLOORSMAX_AVG
           print('Outlier %',round(100.0 * len(df_application_current_copy[(df_application_current_copy])
```



```
count
         154491.000000
              0.226282
mean
              0.144641
std
              0.000000
min
25%
              0.166700
50%
              0.166700
75%
              0.333300
              1.000000
Name: FLOORSMAX_AVG, dtype: float64
```

Outlier % 1.7

Binning of AGE, AMT_INCOME_TOTAL columns

'DAYS BIRTH','DAYS EMPLOYED','DAYS REGISTRATION','DAYS ID PUBLISH','DAYS LAST PHONE CHA columns are having -ve value, which needs to converted to +ve value.

```
In [134...
           df_application_current_copy['DAYS_BIRTH'] = df_application_current_copy['DAYS_BIRTH'
           df_application_current_copy['DAYS_EMPLOYED'] = df_application_current_copy['DAYS_EMPLOYED']
           df_application_current_copy['DAYS_REGISTRATION'] = df_application_current_copy['DAYS_
           df application current copy['DAYS ID PUBLISH'] = df application current copy['DAYS II
           df_application_current_copy['DAYS_LAST_PHONE_CHANGE'] = df_application_current_copy[
```

All the dates are in days so dividing it with 365 to convert to years

```
In [135...
            df_application_current_copy['AGE'] = abs(df_application_current_copy['DAYS_BIRTH']//;
            df_application_current_copy['YEARS_EMPLOYED'] = abs(df_application_current_copy['DAYS
            df_application_current_copy['YEARS_REGISTRATION'] = abs(df_application_current_copy[
            df_application_current_copy['YEARS_ID_PUBLISH'] = abs(df_application_current_copy['D/
            df_application_current_copy['YEARS_LAST_PHONE_CHANGE'] = abs(df_application_current_c
In [136...
            df application current copy.head(5)
Out[136...
             SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALI
           0
                  100002
                               1
                                              Cash loans
                                                                                   Ν
                                                                   Μ
                  100003
           1
                               0
                                              Cash loans
                                                                    F
                                                                                   Ν
           2
                  100004
                                          Revolving loans
                                                                                   Υ
                               0
                                                                   Μ
           3
                  100006
                                              Cash loans
                                                                                   Ν
           4
                  100007
                               0
                                              Cash loans
                                                                                   Ν
                                                                   Μ
          Now
          'DAYS_BIRTH','DAYS_EMPLOYED','DAYS_REGISTRATION','DAYS_ID_PUBLISH','DAYS_LAST_PHONE_CHA
          columns are no more required so dropping these columns
In [143...
            drop_date_cols=['DAYS_BIRTH','DAYS_EMPLOYED','DAYS_REGISTRATION','DAYS_ID_PUBLISH','[
            df_application_current_copy=df_application_current_copy.drop(columns=drop_date_cols,
            df application current copy.shape
Out[143...
           (307511, 81)
In [144...
            df application current copy.head(5)
Out[144...
             SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REAL
           0
                  100002
                               1
                                              Cash loans
                                                                   Μ
                                                                                   Ν
           1
                  100003
                               0
                                              Cash loans
                                                                    F
                                                                                   Ν
           2
                                          Revolving loans
                  100004
                               0
                                                                   M
                                                                                   Υ
           3
                  100006
                               0
                                              Cash loans
                                                                    F
                                                                                   Ν
           4
                  100007
                               0
                                              Cash loans
                                                                   M
                                                                                   Ν
```

Create bins for AGE

```
In [145...
            # 1. AGE column can be binned 0-10,10-20,20-30,30-40, 40-50 and so on
            df_application_current_copy['AGE_GROUP'] = pd.cut(x=df_application_current_copy.AGE,
            df_application_current_copy.head()
Out[145...
              SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALI
           0
                  100002
                               1
                                              Cash loans
                                                                   M
                                                                                    Ν
           1
                  100003
                                              Cash loans
                                                                                    Ν
                  100004
                                          Revolving loans
                                                                   Μ
           3
                  100006
                                              Cash loans
                                                                                    Ν
                  100007
                                              Cash loans
                                                                   Μ
                                                                                    Ν
          Create bins for AMT_INCOME_TOTAL
In [146...
            # 2. AMT_INCOME_TOTAL column can be binned 'Low', 'Average', 'Good', 'Best', 'High',
            df_application_current_copy['AMT_CATEGORY'] = pd.cut(x=df_application_current_copy.AM)
           df_application_current_copy.head()
Out[146...
              SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REAL
           0
                  100002
                               1
                                              Cash loans
                                                                   Μ
                                                                                    Ν
           1
                  100003
                                              Cash loans
                                                                                    Ν
           2
                  100004
                                          Revolving loans
           3
                  100006
                               0
                                              Cash loans
                                                                                    Ν
                  100007
                               0
                                              Cash loans
                                                                   Μ
                                                                                    Ν
In [155...
           df_application_current_copy.shape
```

Checking Data Imbalence

(307511, 83)

Out[155...

In [156...

We can see that there is data imbalance in below columns:-

TARGET - There are very few defaulters(1) compare to non defaulters(0)

NAME_CONTRACT_TYPE - There are very few Revolving loans than Cash loans

NAME_EDUCATION_TYPE - Most of the loans applied by Secondary/Secondary special educated people

NAME_FAMILY_STATUS - Most of the loans applied by Married people.

NAME_HOUSING_TYPE - Most of the application came from Home/appartment owner

```
In [157...
```

```
# Plotting all the FLAG_DOCUMENT columns to check data imbalance
k=0
plt.figure(figsize=(15,15))
for i in range(2,22) :
    k=k+1
    plt.subplot(5, 5,k)
    col_name = 'FLAG_DOCUMENT_'+str(i)
    df_application_current_copy[col_name].value_counts().plot(kind='bar');
    plt.title(col_name)
```


Defaulters - Customers who are having OCCUPATION_TYPE as laborers, Sales Staff, Drivers, Core Staff are most likely to be defaulter

Non defaulters - Customers who are having OCCUPATION_TYPE as laborers, Sales Staff, Managers, Core Staff are most likely to be non-defaulter

Correlation of relevant numerical columns for defaulters and non defaulters

Selecting the correlation Columns

In [195... corr_cols = ['AMT_INCOME_TOTAL','AMT_CREDIT','AMT_ANNUITY','AMT_GOODS_PRICE','AGE','

Corelation of defaulters

In [196...

df_corr_target_1 = target1_df_2[corr_cols]

df_corr_target_1.head()

Out[196... AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT_GOODS_PRICE AGE REGION_RATING_C 0 202500.0 406597.5 24700.5 351000.0 25 112500.0 979992.0 27076.5 702000.0 51 26 40 202500.0 1193580.0 35028.0 855000.0 47 42 135000.0 288873.0 16258.5 238500.0 36 81000.0 252000.0 81 252000.0 14593.5 67

Correlation matrix for target 1

In [198... df_corr_target_1.corr()

Out[198		$\mathbf{AMT_INCOME_TOTAL}$	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	
	AMT_INCOME_TOTAL	1.000000	0.038131	0.046421	0.037583	-0.0
	AMT_CREDIT	0.038131	1.000000	0.752195	0.983103	0.1
	AMT_ANNUITY	0.046421	0.752195	1.000000	0.752699	0.0
	AMT_GOODS_PRICE	0.037583	0.983103	0.752699	1.000000	0.1
	AGE	-0.003154	0.135070	0.014028	0.135603	1.(
	REGION_RATING_CLIENT	-0.021486	-0.059193	-0.073784	-0.066390	-0.(
In [200	<pre>plt.figure(figsize=(sns.heatmap(df_corr_</pre>		not=True)			

Out[200... <AxesSubplot:>

Highly correlate columns for defaulters

AMT_CREDIT and AMT_ANNUITY (0.75)

AMT_CREDIT and AMT_GOODS_PRICE (0.98)

AMT_ANNUITY and AMT_GOODS_PRICE (0.75)

Corelation of Non-defaulters

```
In [201...
    df_corr_target_0 = target0_df_2[corr_cols]
    df_corr_target_0.head()
```

Out[201		AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	AGE	REGION_RATING_CL
	1	270000.0	1293502.5	35698.5	1129500.0	45	
	2	67500.0	135000.0	6750.0	135000.0	52	
	3	135000.0	312682.5	29686.5	297000.0	52	
	4	121500.0	513000.0	21865.5	513000.0	54	
	5	99000.0	490495.5	27517.5	454500.0	46	

Correlation matrix for target 0

In [202... df_corr_target_0.corr()

Out[202... AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT_GOODS_PRICE

	_	_	_	_	_	_	
AMT_INCOME_TOTAL		1.000000	0.342799	0.418953		0.349462	-0.0
AMT_CREDIT		0.342799	1.000000	0.771309		0.987250	0.0
AMT_ANNUITY		0.418953	0.771309	1.000000		0.776686	-0.(
AMT_GOODS_PRICE		0.349462	0.987250	0.776686		1.000000	0.0
AGE		-0.062494	0.047366	-0.012254		0.044552	1.0
REGION_RATING_CLIENT		-0.186573	-0.103337	-0.132128		-0.104382	-0.0

plt.figure(figsize=(10,8))
sns.heatmap(df_corr_target_0.corr(),annot=True)

Out[203... <AxesSubplot:>

Highly corelate columns for non defaulters

AMT_CREDIT and AMT_ANNUITY (0.77)

AMT_CREDIT and AMT_GOODS_PRICE (0.99)

AMT_ANNUITY and AMT_GOODS_PRICE (0.78)

Bivariate analysis on categorical variable

Credit amount of the loan of various categories

Analysis for Defaulters

Analysis

Credit amount of the loans are very low for Revolving loans

There is no credit amount difference between genders, client owning cars or realty.

The Young age group got less amount of loan credited compared to mid age and senior citizen.

Higher income group have more loan amount credited.

Clients having higher external score have more loan amount.

Analysis for Non-Defaulters

```
plt.figure(figsize=(25,40))
k=0
for category in categories:
    k = k+1
    ax = plt.subplot(4,3,k)
    sns.boxplot(x = category, y = 'AMT_CREDIT', data=target0_df_2)
    temp = ax.set_xticklabels(ax.get_xticklabels(), rotation = 45, horizontalalignmer plt.savefig('bivariate_non_defaulters.png')
```


Analysis

Credit amount of the loans are very low for Revolving loans

There is no credit amount differnce between genders, client owning cars or realty.

The mid age group got more amount of loan credited compared to young and senior citizen.

Higher income group have more loan amount credited and lower the lowest.

Clients having higher external score have more loan amount.

Surprisingly the unemployed people have spike in credit amount of loan

The Married people have more loan amount credited.

Previous application Data

Reading the Previous Application in Pandas Dataframe

In [209...

df_application_previous = pd.read_csv('C:/Users/SAGNICK/TrainityBankLoneEDA/LoanCaseS
df_application_previous.head()

Out[209		SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AMT_CRED
	0	2030495	271877	Consumer loans	1730.430	17145.0	1714!
	1	2802425	108129	Cash loans	25188.615	607500.0	67967
	2	2523466	122040	Cash loans	15060.735	112500.0	136444
	3	2819243	176158	Cash loans	47041.335	450000.0	470790
	4	1784265	202054	Cash loans	31924.395	337500.0	40405!

In [210...

df_application_previous.shape

Out[210...

(1670214, 37)

In [211...

df_application_previous.describe()

Out[211...

	SK_ID_PREV	SK_ID_CURR	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DOWN_P
count	1.670214e+06	1.670214e+06	1.297979e+06	1.670214e+06	1.670213e+06	7.743
mean	1.923089e+06	2.783572e+05	1.595512e+04	1.752339e+05	1.961140e+05	6.697
std	5.325980e+05	1.028148e+05	1.478214e+04	2.927798e+05	3.185746e+05	2.092
min	1.000001e+06	1.000010e+05	0.000000e+00	0.000000e+00	0.000000e+00	-9.00

	SK_ID_PREV	SK_ID_CURR	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_DOWN_P				
25%	1.461857e+06	1.893290e+05	6.321780e+03	1.872000e+04	2.416050e+04	0.000				
50%	1.923110e+06	2.787145e+05	1.125000e+04	7.104600e+04	8.054100e+04	1.638				
75%	2 384280e+06	3 675140e+05	2 065842e+04	1 803600e+05	2 164185e+05	7 740				
df_ap	<pre>df_application_previous.info()</pre>									

In [212...

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1670214 entries, 0 to 1670213

Data columns (total 37 columns):

#	Column	Non-Null Count	Dtype
0	SK_ID_PREV	1670214 non-null	int64
1	SK_ID_CURR	1670214 non-null	int64
2	NAME_CONTRACT_TYPE	1670214 non-null	object
3	AMT_ANNUITY	1297979 non-null	float64
4	AMT_APPLICATION	1670214 non-null	float64
5	AMT_CREDIT	1670213 non-null	float64
6	AMT_DOWN_PAYMENT	774370 non-null	float64
7	AMT_GOODS_PRICE	1284699 non-null	float64
8	WEEKDAY_APPR_PROCESS_START	1670214 non-null	object
9	HOUR_APPR_PROCESS_START	1670214 non-null	int64
10	FLAG_LAST_APPL_PER_CONTRACT	1670214 non-null	object
11	NFLAG_LAST_APPL_IN_DAY	1670214 non-null	int64
12	RATE_DOWN_PAYMENT	774370 non-null	float64
13	RATE_INTEREST_PRIMARY	5951 non-null	float64
14	RATE_INTEREST_PRIVILEGED	5951 non-null	float64
15	NAME_CASH_LOAN_PURPOSE	1670214 non-null	object
16	NAME_CONTRACT_STATUS	1670214 non-null	object
17	DAYS_DECISION	1670214 non-null	int64
18	NAME_PAYMENT_TYPE	1670214 non-null	object
19	CODE_REJECT_REASON	1670214 non-null	object
20	NAME_TYPE_SUITE	849809 non-null	object
21	NAME_CLIENT_TYPE	1670214 non-null	object
22	NAME_GOODS_CATEGORY	1670214 non-null	object
23	NAME_PORTFOLIO	1670214 non-null	object
24	NAME_PRODUCT_TYPE	1670214 non-null	object
25	CHANNEL_TYPE	1670214 non-null	object
26	SELLERPLACE_AREA	1670214 non-null	int64
27	NAME_SELLER_INDUSTRY	1670214 non-null	object
28	CNT_PAYMENT	1297984 non-null	float64
29	NAME_YIELD_GROUP	1670214 non-null	object
30	PRODUCT_COMBINATION	1669868 non-null	object
31	DAYS_FIRST_DRAWING	997149 non-null	float64
32	DAYS_FIRST_DUE	997149 non-null	float64
33	DAYS_LAST_DUE_1ST_VERSION	997149 non-null	float64
34	DAYS_LAST_DUE	997149 non-null	float64
35	DAYS_TERMINATION	997149 non-null	float64
36	NFLAG_INSURED_ON_APPROVAL	997149 non-null	float64
		ject(16)	
memor	ry usage: 471.5+ MB		

Creating copy of the dataset

```
In [213...
```

 $\verb|df_application_previous_copy=df_application_previous.copy| (deep=True)|$ df_application_previous_copy

Out[213...

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AM
0	2030495	271877	Consumer loans	1730.430	17145.0	
1	2802425	108129	Cash loans	25188.615	607500.0	
2	2523466	122040	Cash loans	15060.735	112500.0	
3	2819243	176158	Cash loans	47041.335	450000.0	
4	1784265	202054	Cash loans	31924.395	337500.0	
•••						
1670209	2300464	352015	Consumer loans	14704.290	267295.5	
1670210	2357031	334635	Consumer loans	6622.020	87750.0	
1670211	2659632	249544	Consumer loans	11520.855	105237.0	
1670212	2785582	400317	Cash loans	18821.520	180000.0	
1670213	2418762	261212	Cash loans	16431.300	360000.0	

1670214 rows × 37 columns

FLAG_LAST_APPL_PER_CONTRACT

NFLAG_LAST_APPL_IN_DAY

RATE_INTEREST_PRIMARY

NAME CASH LOAN PURPOSE

RATE_INTEREST_PRIVILEGED

RATE_DOWN_PAYMENT

Data Quality Check And Missing Values

```
In [215...
           Perc_Of_NA_Columns_prev=round(df_application_previous_copy.isnull().sum()/len(df_appl
           Perc_Of_NA_Columns_prev
          SK_ID_PREV
                                            0.00
Out[215...
          SK_ID_CURR
                                            0.00
          NAME_CONTRACT_TYPE
                                            0.00
          AMT_ANNUITY
                                           22.29
          AMT_APPLICATION
                                            0.00
          AMT_CREDIT
                                            0.00
          AMT DOWN PAYMENT
                                           53.64
          AMT GOODS PRICE
                                           23.08
          WEEKDAY_APPR_PROCESS_START
                                            0.00
          HOUR APPR PROCESS START
                                            0.00
```

0.00

0.00

53.64

99.64

99.64

0.00

NAME_CONTRACT_STATUS 0.00 DAYS_DECISION 0.00 NAME_PAYMENT_TYPE 0.00 CODE_REJECT_REASON 0.00 NAME_TYPE_SUITE 49.12 NAME_CLIENT_TYPE 0.00 NAME_GOODS_CATEGORY 0.00 NAME_PORTFOLIO 0.00 NAME_PRODUCT_TYPE 0.00 CHANNEL_TYPE 0.00

```
SELLERPLACE_AREA
                                 0.00
NAME_SELLER_INDUSTRY
                                 0.00
CNT_PAYMENT
                                22.29
NAME_YIELD_GROUP
                                 0.00
PRODUCT_COMBINATION
                                 0.02
DAYS_FIRST_DRAWING
                                40.30
DAYS_FIRST_DUE
                                40.30
DAYS_LAST_DUE_1ST_VERSION
                                40.30
DAYS LAST DUE
                                40.30
DAYS_TERMINATION
                                40.30
NFLAG_INSURED_ON_APPROVAL
                                40.30
dtvpe: float64
```

Checking for the columns where NA values are >50%

Dropping the columns where >50% data are NA

```
In [217... df_application_previous_copy=df_application_previous_copy.drop(Columns_with_min50_NA_df_application_previous_copy.shape
```

Out[217... (1670214, 33)

Merging the Application data with witht Previous Application Data on SK_ID_CURR column

```
In [218...
            df_application_current_copy.shape
           (307511, 83)
Out[218...
In [219...
            drop_columns
Out[219...
           ['FLAG CONT MOBILE',
            'FLAG_MOBIL',
            'FLAG_EMP_PHONE',
            'FLAG WORK PHONE',
            'FLAG_PHONE',
            'FLAG_EMAIL',
            'HOUR_APPR_PROCESS_START',
            'WEEKDAY_APPR_PROCESS_START',
            'FLOORSMAX_AVG',
            'EXT SOURCE 2',
            'EXT_SOURCE_3'
            'FLOORSMAX_AVG'
            'FLOORSMAX MODE',
            'FLOORSMAX_MEDI',
            'TOTALAREA_MODE',
            'EMERGENCYSTATE_MODE',
```

```
'REGION_POPULATION_RELATIVE',
'YEARS_BEGINEXPLUATATION_AVG'
'YEARS_BEGINEXPLUATATION_MEDI',
'YEARS_BEGINEXPLUATATION_MODE',
'REG_REGION_NOT_LIVE_REGION',
'REG_REGION_NOT_WORK_REGION'
'LIVE_REGION_NOT_WORK_REGION',
'REG_CITY_NOT_LIVE_CITY',
'REG CITY NOT WORK CITY',
'LIVE_CITY_NOT_WORK_CITY',
'FLAG_DOCUMENT_2',
'FLAG_DOCUMENT_4',
'FLAG_DOCUMENT_5',
'FLAG_DOCUMENT_6',
'FLAG_DOCUMENT_7'
'FLAG_DOCUMENT_8'
'FLAG_DOCUMENT_9'
'FLAG_DOCUMENT_10'
'FLAG_DOCUMENT_11',
'FLAG DOCUMENT 12',
'FLAG_DOCUMENT_13',
'FLAG_DOCUMENT_14',
'FLAG_DOCUMENT_15'
'FLAG_DOCUMENT_16',
'FLAG_DOCUMENT_17',
'FLAG DOCUMENT 18',
'FLAG_DOCUMENT_19',
'FLAG_DOCUMENT_20',
'FLAG DOCUMENT 21'1
```

Dropping all the irrelevant columns from Current data

```
In [220... df_application_current_copy=df_application_current_copy.drop(drop_columns,axis=1) df_application_current_copy.shape

Out[220... (307511, 39)
```

Merging both the datasets

```
In [221...
    combined_df = pd.merge(left =df_application_current_copy, right =df_application_prev:
    combined_df.shape
```

Out[221... (1413701, 71)

Getting the different Types of contract statuses:

```
In [222...
combined_df.NAME_CONTRACT_STATUS.unique()
Out[222... array(['Approved', 'Canceled', 'Refused', 'Unused offer'], dtype=object)
```

Doing analysis on People with Contract Status as Approved

```
In [226...
            combined_approved_df = combined_df[combined_df.NAME_CONTRACT_STATUS == 'Approved']
            print(combined approved df.shape)
            combined_approved_df.head(5)
           (886099, 71)
              SK_ID_CURR TARGET NAME_CONTRACT_TYPE_X CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REA
Out[226...
           0
                  100002
                                1
                                                Cash loans
                                                                      Μ
                                                                                      Ν
           1
                  100003
                               0
                                                Cash loans
                                                                      F
                                                                                      Ν
           2
                                                                      F
                  100003
                               0
                                                Cash loans
                                                                                      Ν
           3
                  100003
                                                Cash loans
                                                                                      Ν
           4
                  100004
                               0
                                            Revolving loans
                                                                                      Υ
                                                                      Μ
          Univariate Analysis for few categorical columns in combined dataframe
In [227...
            combined_categorical_columns = ['NAME_CONTRACT_TYPE_x',
                                     'FLAG_OWN_CAR',
                                     'FLAG_OWN_REALTY',
                                     'CODE_GENDER',
                                     'NAME_EDUCATION_TYPE',
                                     'AMT_CATEGORY',
                                     'AGE_GROUP']
In [271...
            plt.figure(figsize=(30,40))
            for i in combined_categorical_columns:
                k+=1
```

for i in combined_categorical_columns:
 k+=1
 ax=plt.subplot(4,2,k)
 combined_approved_df[i].value_counts(normalize=True).plot.bar()
 plt.title("Approved Status: "+ i)

Univariate Analysis for few numerical columns in combined dataframe

```
In [233...
             combined_numerical_columns= ['AMT_GOODS_PRICE_x',
                                     'YEARS_LAST_PHONE_CHANGE',
                                     'YEARS_ID_PUBLISH',
                                     'AMT_INCOME_TOTAL',
                                     'YEARS_EMPLOYED',
                                     'YEARS_REGISTRATION',
                                     'AGE',
                                     'AMT_CREDIT_x',
                                     'AMT_ANNUITY_x'
In [234...
             for i in combined_numerical_columns:
                 plt.figure(figsize=(20,8))
                 sns.boxplot(combined_approved_df[i])
                 plt.title("Approved Status: "+i)
                                                   Approved Status: AMT_GOODS_PRICE_x
                          0.5
                                     1.0
                                                         2.0
AMT_GOODS_PRICE_X
                                                                                                          4.0
                                                 Approved Status: YEARS_LAST_PHONE_CHANGE
```

YEARS_LAST_PHONE_CHANGE

Bivariate Analysis for few Categorical Variable of combined dataframe

```
In [235...
```

```
# 1. Second Variable : Family Status
plt.figure(figsize=(30,10))
plt.subplot(3,2,2)
sns.countplot(x = "NAME_FAMILY_STATUS", data = combined_approved_df)
plt.title("Approved status v/s Family Status")
plt.show()
# 2. Second Variable : Income Type
plt.figure(figsize=(30,10))
plt.subplot(2,2,1)
sns.countplot(x = "NAME_INCOME_TYPE", data = combined_approved_df)
plt.title("Approved status v/s Income Type")
# 3. Second Variable : Housing type
plt.figure(figsize=(30,8))
plt.subplot(1,2,1)
sns.countplot(x = "NAME_HOUSING_TYPE", data = combined_approved_df)
plt.title("Approved status v/s Housing Type")
plt.show()
```


Insights from the above Bivariant analysis for categorical data is as below:

- 1. Approved status v/s Family Status: People who are married are more likely to get loan approved
- 2. Approved status v/s Income Type: People who are working are more likely to get loan approved compared to students who are least likely to get loan approved
- 3. Approved status v/s Housing_type: People who own House/apartment are more likely to get loan approved then compared to rented appartments/ co-op apartment types

Bivariant analysis for Numerical Data.

```
In [236...
           # 1. Second Variable : CNT CHILDREN
           plt.figure(figsize=(30,7))
           plt.subplot(1,2,1)
           sns.countplot(x = "CNT_CHILDREN", data = combined_approved_df)
           plt.title("Approved status v/s No. pf childrens")
           plt.show()
           # 2. Second Variable : CNT_FAM_MEMBERS
           plt.figure(figsize=(30,7))
           plt.subplot(1,2,1)
           sns.countplot(x = "CNT_FAM_MEMBERS", data = combined_approved_df)
           plt.title("Approved status v/s No. of Family Members")
           plt.show()
           # 3. Second Variable : Age
           plt.figure(figsize=(30,7))
           plt.subplot(1,2,1)
           sns.countplot(x="AGE\_GROUP", data = combined\_approved\_df)
           plt.title("Approved status v/s Age Group")
           plt.show()
```


Approved status v/s Age Group

Inference from the above Bivariant analysis for numerical data is as below:

- 1. Approved status v/s No. of children: People with 0 children are more likely to get loan approved
- 2. Approved status v/s No. of family members: If the number of people in a family is 2 they are more likely to get loan approved.
- 3. Approved status v/s Age: People with age in between 30 -50 years are more likely to get loan approved compared to the people in 20s and 60s

Analysis on People with Contract Status as Refused

```
In [237...
            combined_refused_df = combined_df[combined_df.NAME_CONTRACT_STATUS == 'Refused']
            print(combined_refused_df.shape)
            combined_refused_df.head(5)
           (245390, 71)
Out[237...
               SK_ID_CURR TARGET NAME_CONTRACT_TYPE_x CODE_GENDER FLAG_OWN_CAR FLAG_OWN_RE
           13
                    100006
                                 0
                                                                        F
                                                                                        Ν
                                                  Cash loans
           33
                    100011
                                 0
                                                  Cash loans
                                                                        F
                                                                                        Ν
           79
                                 0
                                                                                        Ν
                   100027
                                                  Cash loans
           84
                    100030
                                 0
                                                  Cash loans
                                                                                        Ν
           85
                    100030
                                 0
                                                                        F
                                                                                        Ν
                                                  Cash loans
```

Univariate Analysis for few categorical columns in combined dataframe

```
plt.figure(figsize=(30,40))
k=0
for i in combined_categorical_columns:
    k+=1
    ax=plt.subplot(4,2,k)
    combined_refused_df[i].value_counts(normalize=True).plot.bar()
    plt.title("Approved Status: "+ i)
```


Univariate Analysis for few numerical columns in combined dataframe

30 YEARS_REGISTRATION 50

60

10

20

Bivariant analysis for Categorical Data for the refused applications

```
plt.figure(figsize=(15,8))
plt.subplot(1,2,1)
sns.countplot(x = "NAME_CONTRACT_TYPE_x", data = combined_refused_df)
plt.title("Non-defaulters with Approved status v/s Loan Contract type")
plt.show()
```


Doing analysis on People with Contract Status as Canceled

In [243...

combined_cancelled_df=combined_df[combined_df.NAME_CONTRACT_STATUS == 'Canceled']
print(combined_cancelled_df.shape)
combined_cancelled_df

(259441, 71)

$\cap \cup + $	T 2 / 1 2
out	Z+J

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE_x	CODE_GENDER	FLAG_OWN_CAR	FLAG_O\
6	100006	0	Cash loans	F	N	
10	100006	0	Cash loans	F	N	
12	100006	0	Cash loans	F	N	
21	100008	0	Cash loans	М	N	
40	100012	0	Revolving loans	М	N	
1413658	456244	0	Cash loans	F	N	

	SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE_x	CODE_GENDER	FLAG_OWN_CAR	FLAG_O\
1413661	456244	0	Cash loans	F	N	
1413663	456244	0	Cash loans	F	N	
1413666	456244	0	Cash loans	F	N	
1413667	456244	0	Cash loans	F	N	

Univariate Analysis for few numerical columns in combined dataframe

```
In [244...
```

```
for i in combined_numerical_columns:
   plt.figure(figsize=(20,8))
   sns.boxplot(combined_cancelled_df[i])
   plt.title("Cancelled Status: "+i)
```


Bivariant analysis for Categorical Data for the Canceled applications

```
plt.figure(figsize=(15,8))
  plt.subplot(1,2,1)
  sns.countplot(x = "NAME_CONTRACT_TYPE_x", data = combined_cancelled_df)
  plt.title("Cancelled v/s Loan Contract type")
  plt.show()
```


Bivariant analysis for Numerical Data for the Cancelled applications

```
# First Variable: Client Rating
# Second Variable: AMT_CREDIT
plt.figure(figsize=(20,10))
plt.subplot(1,2,1)
sns.boxplot(x='REGION_RATING_CLIENT', y='AMT_CREDIT_x', data = combined_cancelled_df]
plt.title("Client Rating v/s Amount Credit")

# First Variable: Client Rating With Respect to City
# Second Variable: AMT_CREDIT
plt.subplot(1,2,2)
sns.boxplot(x='REGION_RATING_CLIENT_W_CITY',y='AMT_CREDIT_x', data = combined_cancel.plt.title("Client Rating WRT City v/s Amount Credit")
plt.show()
```


Doing analysis on People with Contract Status as Un-used offer

Preparing data for people with Unused offer status

In [248...

combined_unused_df = combined_df[combined_df.NAME_CONTRACT_STATUS == 'Unused offer']
print(combined_unused_df.shape)
combined_unused_df

(22771, 71)

Out[248...

	SK_ID_CURR	TARGET	${\bf NAME_CONTRACT_TYPE_x}$	CODE_GENDER	FLAG_OWN_CAR	FLAG_O\
222	100061	0	Cash loans	F	N	
358	100086	0	Cash loans	F	N	
383	100093	0	Cash loans	F	N	
463	100116	0	Cash loans	F	N	
465	100116	0	Cash loans	F	N	
•••						
1413551	456220	0	Cash loans	F	N	
1413581	456230	0	Cash loans	F	Υ	
1413582	456230	0	Cash loans	F	Υ	
1413603	456234	0	Cash loans	М	N	
1413626	456238	0	Cash loans	М	Υ	

22771 rows × 71 columns

Univariate Analysis for few categorical columns in combined dataframe

In [249...

```
for i in combined_categorical_columns:
   plt.figure(figsize=(10,5))
   combined_unused_df[i].value_counts(normalize=True).plot.bar()
   plt.title("Un used offer Status: "+ i)
```


Univariate Analysis for few numerical columns in combined dataframe

```
for i in combined_numerical_columns:
    plt.figure(figsize=(20,8))
    sns.boxplot(combined_unused_df[i])
    plt.title("Unused Status: "+i)
```


Bivariant analysis for Numerical Data for the Unused applications

```
In [251...
    plt.figure(figsize=(20,10))
    plt.subplot(1,2,1)
    sns.boxplot(x='REGION_RATING_CLIENT', y='AMT_CREDIT_x', data = combined_unused_df)
    plt.title("Client Rating v/s Amount Credit")

# First Variable: Client Rating With Respect to City
# Second Variable: AMT_CREDIT
    plt.subplot(1,2,2)
    sns.boxplot(x='REGION_RATING_CLIENT_W_CITY',y='AMT_CREDIT_x', data = combined_unused_plt.title("Client Rating WRT City v/s Amount Credit")
    plt.show()
```


Analysis to understand the relation between NAME_CONTRACT_STATUS AND TARGET

	·· ·· · · · · · · · · · · · · · ·
In []:	