# Survival Analysis Session 3: Incomplete Observations

Jonas Schöley





j.schoeley@uni-rostock.de

## **Recap: Survival Identities**

In survival analysis we consider the random variable "X: Time until event" x = 0.1 weeks, 2.3 weeks...

We express our knowledge about the distribution of *X* in any of these functions. Knowing any single function we can derive all other via the **Survival Identities**.

**f(x): Density function**The relative likelihood of experiencing the event around time *x*.

$$F(x) = \int_0^x f(x) dx$$

**F(x): Distribution function** *aka Cumulative function*The probability of experiencing the event until time *x*.

$$\mathsf{F}(x) = \mathsf{P}(X {\le} x)$$

$$S(x) = \int_{x} \int f(x) dx \quad h(x) = S'(x)/S(x)$$

### S(x): Survival function

The probability of *not* experiencing the event until time *x*.

$$S(x) = P(X>x)$$

### h(x): Hazard function

The instantaneous rate of new events at time *x* among those who did not experience the event yet.

$$h(x) = \lim_{h \to 0} P(x \le X < x + h | X \ge x) / h$$

$$H(x) = {}_{0}\int^{x} h(x) dx$$

$$H(x) = -\log S(x)$$



$$S(x) = \exp(-H(x))$$

### What Does Survival Data Look Like?







Which distribution most likely corresponds to the data?



Which distribution most likely corresponds to the data?

→ Maximum Likelihood Estimation

### Which distribution most likely corresponds to the data?

#### → Maximum Likelihood Estimation

#### **Maximum Likelihood Estimation**

We fit a model  $f_{\theta}$  to the data  $\mathbf{x}$  by choosing model parameters  $\mathbf{\theta}$  which maximize the **likelihood function** L, i.e. which make the observed data most probable.

Product over all observations

Probability density given parameters  $oldsymbol{ heta}$ 

$$L(\theta|\mathbf{x}) = \prod_{i} f_{\theta}(x_{i})$$
 Single observed survival time

In practice we often maximize the **log-likelihood** for convenience:

$$\log L(\boldsymbol{\theta}|\boldsymbol{x}) = \log \prod_{i} f_{\boldsymbol{\theta}}(x_{i}) = \sum_{i} \log f_{\boldsymbol{\theta}}(x_{i})$$

### Which distribution most likely corresponds to the data?

→ Maximum Likelihood Estimation

#### **Maximum Likelihood Estimation**

We fit a model  $f_{\theta}$  to the data x by choosing model parameters  $\theta$  which maximize the **likelihood function** L, i.e. which make the observed data most probable.

Product over all observations

Probability density given parameters  $\boldsymbol{\theta}$   $L(\boldsymbol{\theta}|\boldsymbol{x}) = \prod_{i} f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i})$  Single observed survival time

In practice we often maximize the **log-likelihood** for convenience:

 $\log L(\boldsymbol{\theta}|\boldsymbol{x}) = \log \prod_{i} f_{\theta}(x_{i}) = \sum_{i} \log f_{\theta}(x_{i})$ 



→ data **x** 



### Which distribution most likely corresponds to the data?

→ Maximum Likelihood Estimation

#### **Maximum Likelihood Estimation**

We fit a model  $f_{\theta}$  to the data x by choosing model parameters  $\theta$  which maximize the **likelihood function** L, i.e. which make the observed data most probable.

Product over all observations

Probability density given parameters  $\boldsymbol{\theta}$   $L(\boldsymbol{\theta}|\boldsymbol{x}) = \prod_{i} f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i})$  Single observed survival time

 $\log L(\boldsymbol{\theta}|\boldsymbol{x}) = \log \prod_{i} f_{\theta}(x_{i}) = \sum_{i} \log f_{\theta}(x_{i})$ 

#### You need:

- → data x
- $\rightarrow$  a probability density  $f_{\theta}$  ("the model") parameterized by...



### Which distribution most likely corresponds to the data?

→ Maximum Likelihood Estimation

#### **Maximum Likelihood Estimation**

We fit a model  $f_{\theta}$  to the data x by choosing model parameters  $\theta$  which maximize the **likelihood function** L, i.e. which make the observed data most probable.

Product over all observations

Probability density given parameters 
$$\boldsymbol{\theta}$$

$$L(\boldsymbol{\theta}|\boldsymbol{x}) = \prod_{i} f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i})$$
 Single observed survival time

In practice we often maximize the **log-likelihood** for convenience:  $| \mathbf{a} \cdot \mathbf{c} \cdot$ 

 $\log L(\boldsymbol{\theta}|\boldsymbol{x}) = \log \prod_{i} f_{\boldsymbol{\theta}}(x_{i}) = \sum_{i} \log f_{\boldsymbol{\theta}}(x_{i})$ 

#### You need:

- → data **x**
- $\rightarrow$  a probability density  $f_{\theta}$  ("the model") parameterized by...
- → ...a set of parameters **0**

































# Which distribution most likely corresponds to the data?

→ Maximum Likelihood Estimation



### Which distribution most likely corresponds to the data?

### → Maximum Likelihood Estimation



### Censoring

But what if some people did not experience the event during the observation time?

→ Censored observations

### Which distribution most likely corresponds to the data?

### → Maximum Likelihood Estimation



### Which distribution most likely corresponds to the data?

#### → Maximum Likelihood Estimation



### Materials for this lecture

github.com/jschoeley/survival\_analysis-ur-ss22

Jonas Schöley



@jschoeley



0000-0002-3340-8518



j.schoeley@uni-rostock.de