A 3×3 Hill cipher hides not only single-letter but also two-letter frequency information.

Easily broken with a known plantext attack

CT = MJ-K., K: lxl. J=1,...,1.

assume (mj. cj) are known.

$$\begin{pmatrix} C_1 \\ -C_2 \\ \vdots \\ -M_1 \\ -M_2 \end{pmatrix}$$

If M has an Thverse M, then k = MC.

 $K = M^{-1} \cdot \begin{pmatrix} 1 & 2 \\ 12 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 8 & 5 \end{pmatrix}$ (verify it).

Poly alphabetic Ciphers

Vigenère cipher $m \in \mathbb{Z}_{26}$, $k \in \mathbb{Z}_{26}$, where $n \in \mathbb{Z}_{26}$, $C = \mathbb{Z}_{26}$, $C = \mathbb{Z}_{26}$, $C = \mathbb{Z}_{26}$, $C = \mathbb{Z}_{26}$, defined by $C_1 = m_1 + k_{C_1 \mod n}$, and $c_2 = m_2 + k_{C_1 \mod n}$, $c_3 = m_4 + k_{C_1 \mod n}$, $c_4 = k_6 + k_1 + k_2 + k_{C_1 \mod n}$. $c_5 = m_1 + k_{C_1 \mod n}$, $c_5 = m_1 + k_{C_1 \mod n}$, $c_6 = m_1 + k_{C_1 \mod n}$.

 $G_{\kappa}: \ell=15-N=3.$ $m_0 m_1 m_2 m_3 m_4 m_5 \cdots m_{15}.$ $t_0 t_1 t_2 t_0 t_1 t_2 \cdots m_{15}.$ $D(C_1 t) \stackrel{d}{=} m$ $\overline{m}_1 = C_1 - t_{(1 \text{ mod } n)} \text{ mod } 26.$

determine the length of the keyword, followed by Troquency.

Vernam cipher , where ci, mi, ki e 1/2 $C_i = mi \oplus k_i$ m-B o One-time pad. $M \in \mathbb{Z}_2^n$, $K \in \mathbb{Z}_2^n$. $C \in \mathbb{Z}_2^n$. c= E(m, k) = m⊕ k. D(c,k) = cok. Def. (Perfect Secrocy) Ym., mz plantext. $\in \mathbb{Z}_z^n$.

C: ciphertext Pr (M=m) C=c) = Pr (M=mz (C=c) n lits = 1/2" Shannon theory $m_1 \oplus k = C_1$ $m_2 \oplus k = C_2$ $\rightarrow C_1 \oplus C_2 = (m_1 \oplus k) \oplus (m_2 \oplus k) = m_1 \oplus m_2$ fundamental difficulties in bits in Supplying truely random keys of a large number. 2. key distribution & protection.