Type 1:

1)
$$\frac{dy}{dx} = f(x) \Rightarrow y = \int f(x) dx$$

only function of $x \to directly$ integrale:

only function of $x \to directly$ integrale:

Type 2:

 $\frac{dy}{dx} = f(x,y) \Rightarrow see if they are seperable$
 $f(x,y) = \chi(x) \cdot \gamma(y)$

then:

 $\int \frac{dy}{y(y)} = \int \chi(x) dx \rightarrow lolution$

Type 3:

Non-seperable, but homogeneous.

M(x,y) $dx + N(x,y) dy = 0$

M(x,y) $dx + N(x,y) dy = 0$

M and N are homogeneous functions of same degree:

then:

 $\frac{dy}{dx} = f(x,y) = N(x,y)$
 $\frac{dy}{dx} = f(x,y) = N(x,y)$
 $\frac{dy}{dx} = f(x,y) = N(x,y)$

Type 3:

Non-seperable but homogeneous.

Mand N are homogeneous functions of same degree:

 $\frac{dy}{dx} = f(x,y) = \frac{1}{2} \chi(x,y)$
 $\frac{dy}{dx} = \frac{1}{2} \chi(x,y) = \frac{1}{2} \chi(x,y)$

Make transformation $\frac{dx}{dx} = \frac{1}{2} \chi(x,y)$
 $\frac{dx}{dx} = \frac{1}{2} \chi(x,y) = \frac{1}{2} \chi(x,y)$

Homogeneous D.E \to Seperable form: