

CHAPTER – 2 POLYNOMIAL EXPRESSIONS

A polynomial expression S(x) in one variable x is an algebraic expression in x term as

$$S(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + ax + a_0$$

Where a_n, a_{n-1}, \dots, a_0 are constant and real numbers and a_n is not equal to zero.

Some Important points to Note:

S.no	Points
1	a_n , a_{n-1} , a_{n-2} , a_1 , a_0 are called the coefficients for x^n , x^{n-1} , x^1 , x^0
2	n is called the degree of the polynomial
3	when a_n , a_{n-1} , a_{n-2} , a_1 , a_0 all are zero, it is called zero polynomial
4	A constant polynomial is the polynomial with zero degree, it is a constant value polynomial
5	A polynomial of one item is called monomial, two items binomial and three items as trinomial
6	A polynomial of one degree is called linear polynomial, two degree as quadratic polynomial and degree three as cubic polynomial

Important Concepts on Polynomial:

Concept	Description		
Zero's or roots of the polynomial	It is a solution to the polynomial equation $S(x)=0$ i.e. a number "a" is said to be a zero of a polynomial if $S(a)=0$. If we draw the graph of $S(x)=0$, the values where the curve cuts the X-axis are called Zeroes of the polynomial		
Remainder Theorem's	If $p(x)$ is an polynomial of degree greater than or equal to 1 and $p(x)$ is divided by the expression (x-a),then the remainder will be $p(a)$		
Factor's Theorem's	If x-a is a factor of polynomial $p(x)$ then $p(a)=0$ or if $p(a)=0$, x-a is the factor the polynomial $p(x)$		

Geometric Meaning of the Zeroes of the Polynomial:

Let's us assume

Y = p(x) where p(x) is the polynomial of any form.

Now we can plot the equation y=p(x) on the Cartesian plane by taking various values of x and y obtained by purring the values. The plot or graph obtained can be of any shapes.

The zeroes of the polynomial are the points where the graph meet x axis in the Cartesian plane. If the graph does not meet x axis, then the polynomial does not have any zero's.

Let us take some useful polynomial and shapes obtained on the Cartesian plane

y=ax2+bx+c

where

b2-4ac < 0 and a≠0 a > 0

Parabola

It does not intersect the x-axis

It has no zero's

Quadratic polynomial

Example

 $y=x^2-2x+6$

y=ax2+bx+c

where

b2-4ac < 0 and a≠0 a < 0

Parabola

It does not intersect the x-axis

It has no zero's

Quadratic polynomial

Example

 $y = -x^2 - 2x - 6$

y=ax3 +bx2+cx+d

where a≠0

It can be of any

shape

$$a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \cdots + ax$$

Where a_n ≠0

at the most n times degree

It will cut the x-axis Polynomial of n

Relation between coefficient and zeros of the polynomial:

S.no	Type of Polynomial	General form	Zero's	Relationship between Zero's and coefficients
1	Linear polynomial	ax+b ,a≠0	1	$k = \frac{-constant\ term}{Coefficent\ of\ x}$
2	Quadratic	ax²+bx+c, a≠0	2	$k_1 + k_2 = -\frac{Coefficent\ of\ x}{Coefficent\ of\ x^2}$ $k_1 k_2 = \frac{Contant\ term}{Coefficent\ of\ x^2}$
3	Cubic	ax³+bx²+cx+d, a≠0	3	$= -\frac{Coefficent\ of\ x^2}{Coefficent\ of\ x^3}$
				$\begin{aligned} k_1 k_2 k_3 &= -\frac{Contant\ term}{Coefficent\ of\ x^{32}} \\ k_1 k_2 + k_2 k_3 + k_1 k_3 \\ &= \frac{Coefficent\ of\ x}{Coefficent\ of\ x^2} \end{aligned}$

Formation of polynomial when the zeroes are given:

Type of polynomial	Zero's	Polynomial Formed
Linear	k=a	(x-a)
Quadratic	k₁=a and k₂=b	(x-a)(x-b) Or x²-(a+b)x +ab Or x²-(Sum of the zero's)x +product of the zero's
Cubic	k ₁ =a ,k ₂ =b and k ₃ =c	(x-a)(x-b)(x-c)

Division algorithm for polynomial:

Let's p(x) and q(x) are any two polynomial with $q(x)\neq 0$, then we can find polynomial s(x) and r(x) such that

$$P(x) = s(x) q(x) + r(x)$$

Where r(x) can be zero or degree of r(x) < degree of g(x)

Dividend = Quotient × Divisor + Remainder