資料探勘

專案作業三

組員:黃凱祥、吳俊園、賀鈞嗣、吳鈞達

2022年12月

摘要

此次作業使用三種分群法: K-means、階層式分群、DBSCAN來對資料分群,針對 Iris 資料集和自選的身體胖瘦度資料集進行資料預處理,藉由各別資料集中的屬性之間的相關性進行分群,找出規律,並藉由調整參數來增進分群的 purity。

在 Iris 資料集中,主要藉由花萼和花瓣的長寬來分群和判斷, 自選資料集中則有運動習慣、飲食習慣等欄位來分群判斷,最後使 用 scikit-learn 的 purity_score 計算分群資料純度。

第一章、緒論

1.1 動機

透過對課堂上所教授的 K-means、階層式分群、DBSCAN 分群法,先透過較為簡單、範例較多的 Iris 資料集進行實作練習,以了解學習的成果和累積實作之經驗。

完成後,再行自選一資料集身體胖瘦度資料集,用同樣的方法 運算一遍,觀察結果差異。

1.2 目的

在 Iris 資料集中進行分群,主要觀看 K 值(分為幾群)對分群資料的純度,以及資料雜訊、離群值多寡等對分群造成的效應影響。

在身體胖瘦度資料集中,此資料集主要使用問卷調查,提供選項來蒐集身體的 BMI、身材比例等,和其填答者的運動、飲食習慣, 因此會使用最後的身材比例來分群,調整群數 purity 盡可能提高。

第二章、方法

首先引入 pandas、sklearn、numpy、cluster 等函式庫,讀取資料, 在自選資料集中進行資料預處理,將一些問卷填答選項數值化,對 三種使用的分群法分別用不同的 python 程式撰寫和編譯執行(實作中 在同一程式運行,後續的資料分群效益會受影響,可能由於實驗環 境運行速度或其他未知原因)。

程式輸出結果如計算 purity 以及建立一個 PDF 用於儲存階層式 分群的階層樹。

第三章、實驗

3.1 資料集

3.1.1 Iris 資料集

Figure 1 adult train 部分資料

Iris 資料如下:

- (a) 資料筆數:150。
- (b) 資料屬性欄位數:4。
- (c) 資料型態:小數資料、分類型別資料。
- (d) 缺失值:無。

其屬性的資訊為

(a) 花萼長度:單位為 cm。

(b) 花萼寬度:單位為 cm。

(c) 花瓣長度:單位為 cm。

(d) 花瓣長度:單位為 cm。

(e) 花朵分類:山鳶尾、變色鳶尾和維吉尼亞鳶尾。

3.1.2 身體胖瘦資料集

d	A	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S
1	Gender	Age	Height	Weight	family_h	ist FAVC	FCVC	NCP	CAEC	SMOKE	CH2O	SCC	FAF	TUE	CALC	MTRANS	NObeyesda	i	
2	Female	21	1.62	2 64	4 yes	no		2	3 Sometime	es no		2 no		0	1 no	Public_Tra	:Normal_We	ight	
3	Female	21	1.52	2 56	5 yes	no		3	3 Sometime	es yes		3 yes		3	0 Sometime	es Public_Tra	Normal_We	ight	
4	Male	23	1.8	7.	7 yes	no		2	3 Sometime	es no		2 no		2	1 Frequent	ly Public_Tra	: Normal_We	ight	
5	Male	27	1.8	87	7 no	no		3	3 Sometime	es no		2 no		2	0 Frequent	ly Walking	Overweight	Level_I	
6	Male	22	1.78	89.8	3 no	no		2	1 Sometime	es no		2 no		0	0 Sometime	es Public_Tra	Overweight,	_Level_II	
7	Male	29	1.62	53	3 no	yes		2	3 Sometime	es no		2 no		0	0 Sometime	es Automobil	Normal_We	ight	
8	Female	23	1.5	5 55	yes	yes		3	3 Sometime	es no		2 no		1	0 Sometime	es Motorbike	Normal_We	ight	
9	Male	22	1.64	53	3 no	no		2	3 Sometime	es no		2 no		3	0 Sometime	es Public_Tra	:Normal_We	ight	
10	Male	24	1.78	64	4 yes	yes		3	3 Sometime	es no		2 no		1	1 Frequent	ly Public_Tra	:Normal_We	ight	
11	Male	22	1.72	68	3 yes	yes		2	3 Sometime	es no		2 no		1	1 no	Public_Tra	Normal_We	ight	
12	Male	26	1.85	105	yes .	yes		3	3 Frequent	ly no		3 no		2	2 Sometime	es Public_Tra	Obesity_Typ	pe_I	
13	Female	21	1.72	2 80	yes	yes		2	3 Frequent	ly no		2 yes		2	1 Sometime	es Public_Tra	Overweight	_Level_II	
14	Male	22	1.65	5 56	5 no	no		3	3 Sometime	es no		3 no		2	0 Sometime	es Public_Tra	:Normal_We	ight	
15	Male	41	1.8	99	9 no	yes		2	3 Sometime	es no		2 no		2	1 Frequent	ly Automobil	Obesity_Typ	pe_I	
16	Male	23	1.77	60) yes	yes		3	1 Sometime	es no		1 no		1	1 Sometime	es Public_Tra	Normal_We	ight	
17	Female	22	1.7	66	5 yes	no		3	3 Always	no		2 yes		2	1 Sometime	es Public_Tra	Normal_We	ight	
18	Male	27	1.93	102	2 yes	yes		2	1 Sometime	es no		1 no		1	0 Sometime	es Public_Tra	Overweight	_Level_II	
	w 1	200	1.00	770	5			0	1 4 2			0		^	Δ.	A . 1 11	O1 1/2	100	

Figure 2 身體胖瘦部分資料

身體胖瘦資料如下:

(a) 資料筆數:2111。

(b) 資料屬性欄位數:17。

(c) 資料型態:問卷選項資料。

(d) 缺失值:無。

其屬性的資訊為:

(a) 性別:男或女。

- (b) 年齡:歲數。
- (c) 身高:單位(公尺)用於計算 BMI。
- (d) 體重:單位(公斤)。
- (e) 家族病史:是否家族內有人過重。
- (f) 飲食習慣一:是否常吃高熱量食物。
- (g) 飲食習慣二:吃蔬菜的頻率(從不、有時、總是)。
- (h) 飲食習慣三:每天吃幾餐(1、2、3或3以上)。
- (i) 飲食習慣四:正餐之間是否會進食(從不、有時、經常、總是)。
- (j) 抽菸:是或否。
- (k) 喝水習慣:每日飲水量(未滿 1 公升、1 至 2 公升、2 公升以上)。
- (l) 控制熱量:是否每天檢查每日攝取熱量。
- (m) 運動習慣:每周運動天數(從不、1至2天、2至4天、4至5 天)。
- (n) 每日使用科技產品時間:每日小時數(0至2小時、3至5小時、 5小時以上)。
- (o) 飲酒習慣:飲酒頻率(從不、有時、時常、總是)。

(p) 通勤習慣:使用的交通工具(汽車、摩托車、自行車、大眾運輸、步行)。

3.2 前置處理

在Iris資料集中,並未進行預處理,因為資料集十分明確。

在身體胖瘦資料集中,由於許多資料都是問卷資料,因此利用 選項或區間對資料進行正規化處理,使其資料呈現數值化的狀態。

3.3實驗設計

現在 scikit-learn 中已經包含 Iris 資料集,直接引入資料集,分別使用 K-means、階層式分群、DBSCAN 個別分群,調整 n_clusters 參數,也就是分群數量,並且撰寫 purity 函式個別運算純度,其中階層式分群另外使用 matplotlib.pyplot 的繪圖將其階層樹繪製並儲存成 PDF 檔案。

Iris 資料集中,群數設置為 2 或 3 的 purity 都非常好,而自選的身體胖瘦資料集,群數設置為 6 或更高才會有比較好的 purity,可能是由於資料欄位較多,又或者是資料離群值影響較大。

3.4實驗結果

首先將兩種資料集的實驗結果製作成表格。如 Table 1、Table 2 所示。

iris⊄	Kmeans	Hierarchical↔	DBSCAN₽
執行時間(ms)↩	89.9741€	1.0287€³	1.000443
Purity€	0.893₽	0.893€	0.686€3

Table 1 Iris 資料集之三種分群法純度比較

身體胖瘦。	Kmeans₽	Hierarchical←	DBSCAN€	•
執行時間(ms)↩	106.714487€	49.893141₽	18.952847€	4
Purity⋳	0.4978↩	0.3912←3	0.2965∉	4

Table 2 身體胖瘦資料集之三種分群法純度比較

首先將兩種資料集的階層樹輸出如 Figure 3、Figure 4

Figure 3 Iris 資料集階層樹

Figure 4 身體胖瘦資料集之階層樹

第四章、結論

在兩個資料集中, Iris 不需要預處理資料, 純度都能達到 0.8 至 0.9 以上,由於資料集簡單,資料也不複雜,分群表現很好。

而自選的資料集資料比較複雜,經過預處理之後有把 purity 提高,但沒有到特別的好,大致上都落在 0.5 上下,可能資料的差異性不夠明顯,或者要去除一些較無相關的欄位等。

第五章、参考文獻

- [1] Iris. (n.d.). UCIdataset. https://archive.ics.uci.edu/ml/datasets/iris
- [2] Estimation of Obesity Levels Based on Eating Habits and Physical Condition. (n.d.). UCIdataset.

https://archive.ics.uci.edu/ml/datasets/Estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition+

- [3] *K-Means. (n.d.).* Scikit-Learn. https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
- [4] *Clustering-2.3.6. Hierarchical Clustering. (n.d.)*. Scikit-Learn. https://scikit-learn.org/stable/modules/clustering.html
- [5] *DBSCAN.* (n.d.). *Scikit-Learn*. https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html