Pág. 1/5	Nome	Número	

COMPUTAÇÃO GRÁFICA E INTERFACES

FCT/UNL - Ano letivo 2016/2017 Teste 2A - 2016.12.12

Responda no próprio enunciado, que entregará. Em caso de engano, e se o espaço para as respostas não for suficiente, poderá usar o verso das folhas desde que feitas as devidas referências.

Não desagrafe as folhas! A prova, com duração de 2H, é sem consulta!

1. (3.5 valores)

Assinale com V (Verdadeiro) ou F (Falso) as afirmações abaixo. Cada resposta errada desconta 50% da sua cotação.

Na projeção axonométrica, o paralelismo das linhas é preservado.	
Na projeção perspetiva, o paralelismo das linhas não é preservado em caso algum.	
Numa projeção axonométrica com ambos os parâmetros não nulos, os ângulos nunca são preservados.	
Na projeção perspetiva o número de pontos de fuga está relacionado com a posição do centro de projeção.	
A projeção que melhor se adequa ao foto-realismo é a projeção axonométrica.	
A função lookAt() devolve uma matriz que inclui uma translação e uma rotação.	
A função lookAt() permite especificar uma matriz de projeção axonométrica arbitrária.	
A matriz devolvida pela função lookAt() permite converter pontos de coordenadas da câmara para	
coordenadas do mundo.	
Todos os problemas de <i>aliasing</i> podem ser minorados por um aumento da resolução do dispositivo.	
O antialiasing por filtragem posterior permite aumentar a nitidez da imagem, aumentando o contraste.	
O algoritmo de recorte de Sutherland-Hodgeman pode ser generalizado para janelas não retangulares,	
desde que convexas.	
Num grafo de cena, se trocarmos a ordem dos ramos do grafo, a cena produzida não é alterada.	
Num grafo de cena otimizado, podemos dispensar o uso da pilha de transformações e manter apenas a	
matriz de transformação corrente.	
Num grafo de cena, a ordem das transformações encontradas num mesmo ramo é irrelevante para o	
resultado final, pois elas serão sempre efetuadas pela ordem T.R.S	

2. (2.5 valores)

Considere o modelo de reflexão ambiente e reflexão difusa estudado nas aulas, I_{rgb} = I_a K_a + I_p K_d . cos θ , avaliado num ponto arbitrário da superfície dum objeto. Assinale com V (Verdadeiro) ou F (Falso) as afirmações abaixo. Cada resposta errada desconta 50% da sua cotação.

A luz refletida na direção do observador depende da orientação da superfície em relação ao observador.	
A luz refletida na direção do observador depende da orientação da superfície em relação à fonte de luz.	
I _a é um valor escalar.	
I _p é um vetor.	
I _p está associado a uma fonte de luz particular.	
I _a está associado a uma fonte de luz particular.	
K _d representa a cor do objeto, quando iluminado por uma luz branca, para a reflexão difusa.	
Para várias fontes de luz repete-se o segundo termo, mas mudando o valor de K _d .	
A reflexão difusa é máxima quando a luz incide perpendicularmente à superfície.	

3. (3 valores)

Considere que numa aplicação 3D pretende oferecer ao utilizador a possibilidade de especificar um volume de visão e tipo de projeção o mais semelhante possível aos obtidos por uma câmara fotográfica comum.

- a) De entre as funções estudadas nas aulas para a definição do volume de visão:
 - 1. frustum(left, right, bottom, top, near, far)
 - 2.perspective(fovy, aspect, near, far)
 - 3.ortho(left, right, bottom, top, near, far),

b) Como sabe, qualquer das funções referidas em a) produzem uma matriz capaz de transformar o volume de visão em causa num volume dito canónico, pré-definido, e que se estende de -1 a 1 em cada um dos 3 eixos. Qual a importância dessa transformação na implementação do pipeline gráfico 3D?

c) A função lookAt(eye, at, up) estudada nas aulas permite estabelecer uma relação entre o referencial da câmara e o referencial do mundo (WC). Considere que a matriz devolvida por aquela função é designada aqui por M. Preencha os espaços em branco para tornar válidas as igualdades abaixo.

$$\mathbf{M}$$
 . _____= [0 1 0]^T

4. (5 valores)

São dados os polígonos P=[A, B, C, D, E, F, G, H] e Q=[1, 2, 3, 4], sendo este último considerado a janela de recorte, com as respetivas coordenadas indicadas na figura.

0 p	olígono P v			Número e Sutherland-Hodgeman, para o qual se Ton		
a)	estipulou a seguinte ordem: Clip Left -> Clip Bottom -> Clip Right -> Clip Top. a) Indique os polígonos resultantes de cada uma das fases de recorte:					
,						
	Clip Lef	ı:				
	Clip Bot	tom:				
	Clip Rig	ht:				
	Clip Top):				
b)	Quantas ar	estas possui o po	lígono final recortado?			
		que, em vez de s tmo de Cohen-Su		s arestas a ser recortadas pela janela Q		
c) d)	Preencha a tabela seguinte com a decisão do algoritmo para os segmentos de reta indicados (aceitação/rejeição trivial ou interseção com reta limite da janela), bem como o número total de interseções de cada segmento com as retas limites da janela de recorte e a indicação da primeira interseção com essas mesmas retas limite efetivamente determinada pelo algoritmo. Admita que os bits são atribuídos da esquerda para a direita, usando a mesma ordem que a definida na alínea a), ou seja, Left, Bottom, Right, Top, sendo essa mesma ordem a da progressão do algoritmo.					
,	Aresta	Decisão	Número total de interseções com as retas limite da janela de recorte	Equação da reta correspondente à determinação efetiva da 1ª interseção		
	AB		,			
	BC					
	CD					
	DE EF					
	FG					
	GH					
	HA					
e)	L	gura, a área que s	eria preenchida por aplicação do algori	tmo FILL AREA ao polígono inicial P!		
f)	Quantas entradas não vazias teria a tabela de arestas (TA)? Justifique indicando os índices de cada uma dessas entradas, bem como as arestas nelas constantes. Nota : para identificar uma entrada poderá indicar o seu índice recorrendo à ordenada dum ponto (p.ex. y_B):					
		. / 1 . 1 . 17				
g)	Apresente o conteúdo da Tabela de Arestas Ativas (TAA), imediatamente antes do preenchimento da linha de varrimento corrente, para cada uma das seguintes linhas de varrimento:					
y ₃ :			y _D :			
y _H :			y _c :			

5. (3 valores)

Nas duas figuras seguintes, cada quadrícula representa um pixel num sistema gráfico em tons de cinzento. A cor branca, do fundo, é representada pelo valor 255, enquanto a cor preta, a qual será usada para desenhar as primitivas, é representada pelo valor 0.

1/32	4/32	1/32
4/32	12/32	4/32
1/32	4/32	1/32

- a) Pinte, na figura do lado esquerdo, as quadrículas correspondentes aos pixels que resultariam da aplicação do algoritmo do Ponto Médio ao segmento de reta cujas extremidades são os pixels (2,2) e (13,5).
- b) Ao resultado obtido em a) aplicou-se um filtro (apresentado no lado direito da mesma figura) para suavizar os efeitos provocados pelo *aliasing*. Qual a cor final do pixel de coordenadas (3,3) após a aplicação do referido filtro? Apresente a sua solução indicando os cálculos necessários, mas sem os efetuar.

c) Veria algum inconveniente na aplicação do método referido em b) para suavizar texto? Justifique a sua resposta!

d) Explique, com detalhe, como aplicaria o filtro nas margens da imagem.

6. (3.0 valores)

O seguinte programa WebGL já se encontra otimizado em termos de operações Push e Pop.

Pág. 5/5 Nome	Número
1. multTranslate([10,0,0])	14. P2()
2. multScale([2,2,1])	15. PopMatrix()
3. PushMatrix()	16. multRotY(35°)
4. multRotY(40°)	17. multScale([3,2,2])
5. multScale ([2,1,2])	18. multRotX(25°)
6. PushMatrix()	19. PushMatrix()
7. multTranslate ([0,1,0])	20. multRotZ(10°)
8. multRotZ(5°)	21. P3()
9. multRotX(30°)	22. PopMatrix()
10. P1()	23. multScale([3,1,0.5])
11. PopMatrix ()	24. multTranslate(2,0,0])
12. multRotX(-30°)	25. P4()
13. multRotZ(20°)	

a) Desenhe o grafo de cena correspondente ao programa apresentado, sem proceder a qualquer possível simplificação:

b) Se, num determinado sistema apenas fosse permitida a criação de nós de transformação compostos, com a seguinte ordem fixa de transformações elementares T.Rz.Ry.Rx.S, aqui designados por super-nós. Qual seria o número mínimo de nós que seriam necessários para desenhar a cena correspondente ao código apresentado?

Assinale no grafo os ramos que, pela disponibilização dos *super-nós*, veriam o número de nós usados ser reduzido.