What is Cluster Analysis?

- · Finding groups of objects
 - such that the objects in a group will be similar to one another and
 - dissimilar from the objects in other groups

Applications

Cluster Analysis I

- · Numerous!!
 - https://en.wikipedia.org/wiki/Cluster_analysis#Applications
- Any problem where you would like to find groups of items/ objects
- · Cluster movies to create genres
- · Cluster news articles to find trends/themes
- · Cluster credit card users to find anomalies
- etc...

Solution Format

- · Clustering is NP-hard, but we can use heuristics
- A solution would be an assignment for each data point to a cluster. Say we have 10 data points and 3 clusters:

 $0\,0\,0\,1\,1\,1\,2\,2\,2\,0$

- · How can we measure the goodness of a solution?
 - To keep it simple, let's just consider intra-cluster distance
 - Each cluster i has a mean point, called the centroid μ_{i}

Tools

- In order to cluster, we need to define intra- and intercluster distances
 - We will need either similarity or dissimilarity measures
 - · -1*similarity can be used as dissimilarity
- We talked about a few such measures previously
 - Euclidean distance, cosine distance, correlation
 - (which are similarity and which are dissimilarity?)

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are.
 - Higher when objects are more alike.
- Dissimilarity (Distance)
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

- Nominal
 - E.g. province attribute of an address with values: {BC, AB, ON, QC, ...}
 Order not important.
 - Dissimilarity
 d=0 if p=q
 d=1 if p≠q

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

- · Continuous (or Interval)
 - · E.g. weight attribute of a product
 - Dissimilarity d(p,q) = |p-q| / (max-min)

Euclidean Distance

 When all the attributes are continuous we can use the Euclidean Distance

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Where n is the number of dimensions (attributes) and p_k and q_k are, respectively, the k^{th} attributes (components) or data objects p and q.

- Attribute scaling is necessary, if scales differ
 - E.g. weight, salary have different scales

Similarity/Dissimilarity for Simple Attributes

p and q are the attribute values for two data objects.

- Ordinal
 - E.g. quality attribute of a product with values: {poor, fair, OK, good, wonderful}

Order is important, but exact difference between values is undefined or not important.

- Map the values of the attribute to successive integers {poor=0, fair=1, OK=2, good=3, wonderful=4}
- Dissimilarity
 d(p,q) = |p q| / (max min)
 e.g. d(wonderful, fair) = |4-1| / (4-0) = .75

Combining Dissimilarities

- Sometimes attributes are of many different types, but an overall similarity/dissimilarity is needed.
- For the k-th attribute, compute a dissimilarity d_k in the range [0,1]. Then,

dissimilarity(
$$P,Q$$
) = $\frac{\sum_{k=1}^{n} d_k}{m}$

Minkowski Distance

 Minkowski Distance is a generalization of Euclidean Distance

$$dist = \sqrt[n]{\sum_{k=1}^{n} |p_k - q_k|^r}$$

Where r is a parameter, n is the number of dimensions (attributes) and p_k and q_k are, respectively, the kth attributes (components) or data objects \mathbf{p} and \mathbf{q} .

Examples

- r = 1. City block (Manhattan, taxicab, L₁ norm) distance.
- r = 2. Euclidean distance
- $r \to \infty$. "supremum" (L_{max} norm, L_{\infty} norm) distance.
 - This is the maximum difference between any component of the vectors

Similarity Between Binary Vectors

- Common situation is that objects, p and q, have only binary attributes
- · Compute similarities using the following quantities

 M_{01} = the number of attributes where **p** was 0 and **q** was 1

 M_{10} = the number of attributes where **p** was 1 and **q** was 0

 M_{00} = the number of attributes where **p** was 0 and **q** was 0

 M_{11} = the number of attributes where **p** was 1 and **q** was 1

Simple Matching and Jaccard Coefficients

SMC = number of matches / number of attributes
=
$$(M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

J = number of M_{11} matches / number of not-both-zero attributes values = $(M_{11}) / (M_{01} + M_{10} + M_{11})$

Cosine Similarity

If D₁ and D₂ are two document vectors, then

$$\cos(D_1, D_2) = (D_1 \cdot D_2) / ||D_1||.||D_2||,$$

where ullet indicates vector dot product and $\|\ D\ \|$ is the length of vector D.

Example:

$$cos(D_1, D_2) =$$
 $(4*3 + 3*5) / (sqrt(4^2 + 3^2) * sqrt(3^2 + 5^2 + 1^2))$
=.91

TID	W1	W2	W3	W4	W5
D1	4	3	0	0	0
D2	3	5	0	1	0
D3	0	2	0	0	0
D4	0	0	3	0	0
D5	0	0	0	0	0

If cosine similarity is 1, the angle between D_1 and D_2 is 0° , and D_1 and D_2 are the same except for the magnitude.

If the cosine similarity is 0, then the angle between D_1 and D_2 is 90°, and they don't share any terms (words).

SMC versus Jaccard: Example

 $\mathbf{p} = 10000000000$ $\mathbf{q} = 0000001001$

 $M_{01} = 2$ (the number of attributes where p was 0 and q was 1)

 $M_{10} = 1$ (the number of attributes where p was 1 and q was 0)

 $M_{00} = 7$ (the number of attributes where p was 0 and q was 0) $M_{11} = 0$ (the number of attributes where p was 1 and q was 1)

SMC = $(M_{11} + M_{00})/(M_{01} + M_{10} + M_{11} + M_{00}) = (0+7)/(2+1+0+7) = 0.7$

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11}) = 0 / (2 + 1 + 0) = 0$$

TYPES OF CLUSTERS IN PRACTICE

Administrivia

- · No class for the rest of the week
 - Reading break
- · Assignment 3 is out tomorrow
 - TWO implementation questions
- Mid-term project reports due today
- Project presentations start Nov 23
 - two weeks from tomorrow!!

What is Cluster Analysis?

- · Finding groups of objects
 - such that the objects in a group will be similar to one another and
 - dissimilar from the objects in other groups

Solution Format

- · Clustering is NP-hard, but we can use heuristics
- A solution would be an assignment for each data point to a cluster. Say we have 10 data points and 3 clusters:

0001112220

- · How can we measure the goodness of a solution?
 - To keep it simple, let's just consider intra-cluster distance
 - Each cluster i has a mean point, called the centroid μ_i

Types of Clusters: Center-Based

- · Center-based
 - An object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
 - The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster

Types of Clusters: Density-Based

- Density-based
 - A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - Any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

6 density-based clusters

ALGORITHMS

K-means Clustering

- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- Basic algorithm is very simple
- Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: until The centroids don't change

K-means Clustering – Details

- Initial centroids may be chosen randomly.
 - Clusters produced vary from one run to another.
 - Rerun several times and pick the clustering with the smallest SSE (see next slide).
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, etc.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'

How to choose K?

- · As K grows, SSE will fall.
 - How low can SSE be?
 - For what setting of K will you have that SSE?
- · So how to choose K?
- Try different K, looking at the change in the average distance to centroid, as K increases.
- Average falls rapidly until "right" K, then changes little.
 - looks like an "elbow" in the graph

Example

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest centroid
 - To get SSE, we square these errors and sum them up.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} [dist(\mu_i, x)]^2$$

x is a data point in cluster C_i and μ_i is the centroid for cluster C_i

Limitations of K-means

- K-means has problems when (the real) clusters are of
 - Differing Sizes
 - Differing Densities
 - Non-globular shapes

Limitations of K-means: Differing Sizes

Limitations of K-means: Differing Density

Limitations of K-means: Non-globular Shapes

Overcoming K-means Limitations

One solution is to use many clusters.
Find parts of clusters.
Apply merge strategy (merge clusters that would cause the least increase in SSE)

Overcoming K-means Limitations

Overcoming K-means Limitations

Importance of Choosing Initial Centroids

Starting with two initial centroids in one cluster of each pair of clusters

Problems with Selecting Initial Points

- The ideal would be to choose initial centroids, one from each true cluster. However, this is very difficult.
- If there are K 'real' clusters, then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - E.g. If clusters are the same size, *n*, then

• For example, if K = 10, then *probability* = $10!/10^{10} = 0.00036$

Bisecting K-means

Straightforward extension of the basic K-means algorithm. Simple idea:

To obtain K clusters, split the set of points into two clusters, select one of these clusters to split, and so on, until K clusters

Algorithm (Parameters: K, num_trials)

Initialize -> one cluster consisting of all points. k=1 while k < K

Choose and remove a cluster from the list of clusters.

(biggest cluster or the cluster with the worst quality)

//Perform several "trial" bisections of the chosen cluster.

for *i* = 1 **to** num_trials **do**

Bisect the selected cluster using basic K-means (i.e. 2-means).

Record SSE for this bisection

end for

Select the two-clustering trial with the lowest total SSE.

Add these two clusters to the list of clusters.

k = k+1

end for

Importance of Choosing Initial Centroids

Starting with some pairs of clusters having three initial centroids, while other have only one.

Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Bisecting K-means
 - Not as susceptible to initialization issues

Bisecting K-means Example

