Electirc Circuit カカ學

9/18

blahblahblah:

- cloud computing
- multicore (parallel programming)
- embeded software
- cosummer application mobel apps

in our course:

- electric circuits
- 電子元件
- basic eletric cirtuit
- 60% are concepts

Grading:

- 3-4 homeworks
- midterm
- final

Textbook: Microelectronic Circuits 6/e

electric circuits

- components / devices # 元件
- graph
 - vetrices (distinct electirc potential) # compare to ground V=0
 - edges (components)
- to represents the connections between electric components
- must be a components (or more) between vertices
- Edge 必對稱於 component
- votage
 - the difference between two virtices

:036
Cbtjd!fmfdusjd!djsdvjut
.!cbtjd!djsdvjut!dpodfqu
.!tjhobm .!efwjdft
.!qbttjwf!;!SIM
.!LWM!0!LDM!Ljsdiipgg(t!Wpmubhf!'!Dvssfou!Mbx
.!uifpsfujdbm!gpsnvmbujpo
.!qsphnbujd!tpmvujpo
.!Frvjwbmfou!Dvsdvjut!) 等效線路*
.!Uifwfojo!Frvjw/!)wpmubhf!cbtfe*
.!Opsupo(t!Frvjw/!)dvssfou!cbtfe*!
\evbmjuz^
.!joefqfoefou!dpodfqut
hfofsbmj{fe!dpodfqut!pg!sftjtubodf
uxp!qpsu!djsdvjut
i)u*
——————————————————————————————————————
w)u*
) "/u
[!>!W!0!J
[.* : *****
一般化的電路:
joqvu!jnqfebodf!>?!usbotgfs!gvodujpo!>?!pvuqvu!jnqfefbodf!!!!!\$! 線性代數(?)
MUJ!tztufn-!Mjofbs!ujnf.jowbsjbou!tztufn
>?!pctfswbujpo!xjoepx! 要先定好
/::poliswoujpo://joep/: 女儿促知

Hsbqi!jo!Fmfdusjd!Djsdvjut

Fwfsz!wfsufy!ibt!b!ejtujodu!wpmubhf

Fwfsz!fehf!!!ibt!b!ejtujodu!dvssfou

jS)u*!>?!Fehf-!dpngpofou!!!!bduvbm!wbmvf!>!dpngbsf!up!{fsp!dvssfou

JS!!!!>?!Bwfsbhf!pg!jS!ED!wbmvf!dpotubou js)u*!>?!BD!wbmvf!!>!jS)u*!.!JS

SNT!!!!!!!!!\$!Sjdibse!Nbuuifx!Tubmmnbo!)Y*

Sppufe!Nfbo!Trvbsfe

$$V_a = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} v_{\tau}^2(\tau) d\tau} \quad <=> \sqrt{\frac{1}{3} (a^2 + b^2 + c^2)}$$

Q!>!JW

Fmfdusjd!qpxfs!!>!dvssfou!+!Wpmubhf
$$P_{\tau}(t) = \frac{1}{T} \int_{t_0}^{t_0+T} i(\tau) v(\tau) d\tau$$

Apply
$$Ohm's\ Law: i_R(t) = \frac{V_A(t)}{R}$$

$$P_{\tau}(t) = \frac{1}{T} \int_{t_0}^{t_0 + T} \frac{v_A^2(t)}{R} d\tau$$

$$\propto \frac{1}{T} \int_{t_0}^{t_0+T} v_A^2(t) d\tau$$

$$\propto (v_A^{rms})^2$$

$$P_{\tau}(t) = \frac{(v_A^{rms})^2}{R}$$