Solutions

Research with Computational Biology (ReComBio)

August 26, 2024

Part 1: Introduction to R and the R Syntax

Chapter 3: Data visualization

Load libraries

```
library(ggplot2)
library(maditr)
library(dplyr)
```

Load dataframe

r2_gse62564_GSVA_Metadata <- readRDS("../../ReComBio Scientific/ReComBio Book English/recombio bookdown

Make Variables of Numeric Type

```
r2_gse62564_GSVA_Metadata <- r2_gse62564_GSVA_Metadata %>%
    mutate_at("HALLMARK_HYPOXIA", as.numeric) %>%
    mutate_at("HALLMARK_INFLAMMATORY_RESPONSE", as.numeric) %>%
    mutate_at("ADRN_Norm_vs_Hypo_Up_554.txt", as.numeric) %>%
    mutate_at("ADRN_Norm_vs_Hypo_Down_635.txt", as.numeric)
```

Question 1

Use R plot functions to visualize the correlation between Hallmark Hypoxia and Hallmark Inflammatory Response

Solution: HALLMARK_INFLAMMATORY_RESPONSE vs. HALLMARK_HYPOXIA

Question 2

Use R plot functions to visualize the correlation between Hallmark Hypoxia and Hallmark Inflammatory Response

Solution: HALLMARK_INFLAMMATORY_RESPONSE vs. ADRN_Norm_vs_Hypo_Up_554.txt

```
qplot(HALLMARK_INFLAMMATORY_RESPONSE, ADRN_Norm_vs_Hypo_Up_554.txt,
    data = r2_gse62564_GSVA_Metadata,
    # colour=quantile,
    xlab = "HALLMARK_INFLAMMATORY_RESPONSE",
    ylab = "ADRN_Norm_vs_Hypo_Up_554.txt")
```

Question 3

Use R plot functions to visualize the correlation between Hallmark Hypoxia and Hallmark Inflammatory Response

Solution: HALLMARK_INFLAMMATORY_RESPONSE vs. ADRN_Norm_vs_Hypo_Down_635.txt

```
qplot(HALLMARK_INFLAMMATORY_RESPONSE, ADRN_Norm_vs_Hypo_Down_635.txt,
    data = r2_gse62564_GSVA_Metadata,
    # colour=quantile,
    ylab = "ADRN_Norm_vs_Hypo_Down_635.txt",
    xlab = "HALLMARK_INFLAMMATORY_RESPONSE")
```

Question 4

From the analysis of questions 1-3, choose the correct option:

□ HALLMARK_INFLAMMATORY_RESPONSE and HALLMARK_HYPOXIA have a positive correlation because hypoxia is always beneficial in the tumor microenvironment

☐ HALLMARK_INFLAMMATORY_RESPONSE and ADRN_Norm_vs_Hypo_Up_554.txt have a positive correlation because hypoxia upregulation in this case, is beneficial in the tumor microenvironment
☐ HALLMARK_INFLAMMATORY_RESPONSE and ADRN_Norm_vs_Hypo_Up_554.txt have a positive correlation because hypoxia upregulation has a negative impact on survival
□ HALLMARK_INFLAMMATORY_RESPONSE and ADRN_Norm_vs_Hypo_Down_635.txt have a negative correlation because hypoxia upregulation in this case, is not beneficial in the tumor microenvironment
Question 5
Which gene expression group has worse survival probability?
☐ High HIF1A expression ☐ Low HIF1A expression
Question 6
Which phenotype score group has worse survival probability?
☐ High Hallmark Hypoxia ☐ Low Hallmark Hypoxia

Question 7

Which phenotype score group has worse survival probability?
 ☐ High Hallmark Inflammatory Response ☐ Low Hallmark Inflammatory Response
Question 8
Question o
Plot the survival curve of the MYCN status variable. Which MYCN status has worse survival outcome?
 □ Individuals with MYCN amplification □ Individuals without MYCN amplification □ The MYCN group with unknown MYCN status
Question 9
Plot the survival curve of the INSS stage variable. Which INSS stage has worse survival outcome?
□ INSS Stage I □ INSS Stage II □ INSS Stage III □ INSS Stage IV □ INSS Stage IV

Question 10
Mark TRUE or FALSE.
\Box The higher the age at diagnosis the greater the HIF1A expression difference between HR and non-HR \Box The lower the age at diagnosis the greater the HIF1A expression difference between HR and non-HR
Part 2: Machine Learning
Chapter 1: Classification
P2 Question 1

How can you predict what label a new patient that was sequenced using the UCSC nanopore technology will

have using the logistic regression model constructed in R?

\square I can build a vector to provide as input to R so that the model can use the parameters it calculated to make the prediction
\Box If I have more than 2 patients to predict, I can build a dataframe to input to R
\square It is not possible to know if a patient has high risk neuroblastoma disease without doing a FISH (Fluorescence in situ hybridization) and understanding if the person has MYCN amplification
D2 Question 2
P2 Question 2
How can you know if a model represents a good indicator for the high risk status of a patient?
\square If the model has high accuracy
\Box If the model has medium accuracy
\Box If the model has low accuracy
D2 Question 2
P2 Question 3
Write a command to input information about the predictor variables of a patient into R. To come up with a solution, please discuss the strategy to solve this problem in groups in breakout rooms. Please use 10-15

• Hint: Use notebook "Classification Using a Logistic Regression Model"

min to discuss a solution.

• Please describe a solution in words (human language)

P2 Question 4

Write a command to predict the high risk label for the patient based in the patient's gene expression pattern. To come up with a solution, please discuss the strategy to solve this problem in groups in breakout rooms. Please use 10-15 min to discuss a solution.

- Hint 1: Which chunks in the notebook help to explain a possible solution?
- Hint 2: Look at the functions that can possibly present a solution?
- Please describe the solution in pseudocode (human language + computer language merged)

P2 Question 5

Write a command to predict the high risk label for the patient based in the patient's gene expression pattern. To come up with a solution, please discuss the strategy to solve this problem in groups. Please use 10-15 min to discuss a solution.

- Hint 1: Which data structures can you use to input the data into the R environment? A dataframe? A vector? A character?
- Please present the solution in a command or algorithm (computer language)

Part 3: Terminal
Chapter 1: DNA Sequencing
P3 Question 1
According to Shendure, how many and what are the names of the DNA sequencing technologies?
P3 Question 2
According to Shendure, what is the main clinical application the DNA sequencing technologies?
P3 Question 3
According to Shendure, please identify at least one chemical event in the machanics of DNA sequencing

P3 Question 4

According to Shendure, please identify at least one significant event in history of DNA sequencing.