Beginning linear mixed effects models

Data: flipped classrooms?

Data set has 375 rows (one per student), and the following variables:

- professor: which professor taught the class (1 -- 15)
- style: which teaching style the professor used (no flip, some flip, fully flipped)
- score: the student's score on the final exam.

Visualizing the data

Interpretation

$$Score_{ij} = \beta_0 + \beta_1 \text{SomeFlipped}_i + \beta_2 \text{FullyFlipped}_i + u_i + \varepsilon_{ij}$$

$$arepsilon_{ij} \overset{iid}{\sim} N(0,\sigma_arepsilon^2) ~~ u_i \overset{iid}{\sim} N(0,\sigma_u^2)$$

$$\widehat{\beta}_0 = 77.66$$
, $\widehat{\beta}_1 = 11.07$, $\widehat{\beta}_2 = 2.81$

$$\widehat{\sigma}_{arepsilon}^{2}=4.25, \quad \widehat{\sigma}_{u}^{2}=21.37$$

How do I interpret
$$\widehat{eta}_1=11.07$$
 and $\widehat{eta}_2=2.81$?

We expect that, on average, scores in some-flipped classes are 11.07 points higher than for no-flipped classes.

We expect that, on average, scores in fully-flipped classes are 2.81 points higher than for no-flipped classes.

Interpretation

$$Score_{ij} = \beta_0 + \beta_1 \text{SomeFlipped}_i + \beta_2 \text{FullyFlipped}_i + u_i + \varepsilon_{ij}$$

$$arepsilon_{ij} \overset{iid}{\sim} N(0,\sigma_arepsilon^2) ~~ u_i \overset{iid}{\sim} N(0,\sigma_u^2)$$

$$\widehat{eta}_0=77.66$$
, $\widehat{eta}_1=11.07$, $\widehat{eta}_2=2.81$

$$\widehat{\sigma}_{arepsilon}^{2}=4.25, \quad \widehat{\sigma}_{u}^{2}=21.37$$

How do l'interpret $\widehat{\sigma}_u^2 = 21.37$?

Interpretation

$$Score_{ij} = \beta_0 + \beta_1 \text{SomeFlipped}_i + \beta_2 \text{FullyFlipped}_i + u_i + \varepsilon_{ij}$$

$$arepsilon_{ij} \overset{iid}{\sim} N(0,\sigma_arepsilon^2) ~~ u_i \overset{iid}{\sim} N(0,\sigma_u^2)$$

$$\widehat{eta}_0=77.66, \quad \widehat{eta}_1=11.07, \quad \widehat{eta}_2=2.81$$

$$\widehat{\sigma}_{arepsilon}^{2}=4.25, \quad \widehat{\sigma}_{u}^{2}=21.37$$

How do I interpret $\widehat{\sigma}_{arepsilon}^2=4.25$?

Intra-class correlation

 $\sigma_{arepsilon}^2$ is large relative to σ_u^2

 $\sigma_{arepsilon}^2$ is small relative to σ_u^2

- lacktriangle Observations within a group are *more correlated* when σ_{ε}^2 is small relative to σ_{u}^2
- Intra-class correlation:

$$ho_{group} = rac{\sigma_u^2}{\sigma_u^2 + \sigma_arepsilon^2} = rac{ ext{between group variance}}{ ext{total variance}}$$

Intra-class correlation

$$Score_{ij} = \beta_0 + \beta_1 \text{SomeFlipped}_i + \beta_2 \text{FullyFlipped}_i + u_i + \varepsilon_{ij}$$

$$arepsilon_{ij} \overset{iid}{\sim} N(0,\sigma_arepsilon^2) ~~ u_i \overset{iid}{\sim} N(0,\sigma_u^2)$$

$$\widehat{\beta}_0=77.66, \quad \widehat{\beta}_1=11.07, \quad \widehat{\beta}_2=2.81$$

$$oldsymbol{\hat{\sigma}}_{arepsilon}^2=4.25, \quad \widehat{\sigma}_u^2=21.37$$

$$\hat{
ho}_{group} = rac{21.37}{21.37 + 4.25} = 0.83$$

So 83% of the variation in student's scores can be explained by differences in average scores from class to class (after accounting for teaching style). That's huge!

Class activity

https://sta214-s23.github.io/class_activities/ca_lecture_30.html

Class activity

Interpret the estimate fixed effect coefficients $\widehat{\beta}_0$ and $\widehat{\beta}_1$.

Class activity

Calculate and interpret the estimated intra-class correlation.