Computer Vision

Introduction to OpenCV

Cristiano Nunes – CEFET-MG Prof. Flávio Cardeal – CEFET-MG

Abstract

 This lecture introduces a practical overview of OpenCV library by using Python language.

What is OpenCV?

- Open source Computer Vision library;
- Has more than 2500 optimized algorithms;
- Support a lot of different languages:
 - C++, Python, Java, MATLAB;
 - But is written natively in C++;
- Cross form platform:
 - Supports Windows, Linux, Android and Mac OS.

OpenCV applications

- Various applications:
 - Image Processing;
 - Human-Computer Interaction (HCI);
 - Object Identification;
 - Object Recognition;
 - Face Recognition;
 - Motion Tracking;
 - ...and so on.

OpenCV modules

- OpenCV has a modular structure:
 - core contains basic structures and algorithms;
 - imgproc contains the main image processing functions;
 - video motion estimation, feature tracking and foreground extraction;
 - highgui image and video reading and writing functions, and user interface functions;
 - objdetect object detection functions, face and peoples detectors for example.

OpenCV documentation

All documentation are n the following link:

https://docs.opencv.org/master/

Why learn Python?

Some reasons which makes Python so popular:

- Easy to code and read;
- It is Free and Open-Source;
- It is a High-Level Language;
- It is Portable;
- It has large standard library.

Why learn Python?

Projections of future traffic for major programming languages

Future traffic is predicted with an STL model, along with an 80% prediction interval.

Time

Source: Stack Overflow http://stackoverflow.com

Why learn Python?

TIOBE Index

Mar 2019	Mar 2018	Change	Programming Language	Ratings
1	1		Java	14.880%
2	2		С	13.305%
3	4	^	Python	8.262%
4	3	•	C++	8.126%
5	6	^	Visual Basic .NET	6.429%
6	5	•	C#	3.267%
7	8	^	JavaScript	2.426%

Source:

https://www.tiobe.com/tiobe-index/

Installing the packages

- To install the needed packages, use the following command (in Ubuntu):
 - \$ sudo apt-get install python-opency

```
⊗ □ Terminal
> ~$ sudo apt-get install python-opency
```

Checking the Installation

 To check the installation of Python and OpenCV, use the following commands in terminal:

```
$ python
    import cv2
    print(cv2.__version__)
```

```
Terminal

> ~$ python

Python 2.7.12 (default, Nov 12 2018, 14:36:49)

[GCC 5.4.0 20160609] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import cv2

>>> print(cv2.__version__)

2.4.9.1

>>> I
```

Getting the examples

 All examples used in this lecture are available in the following link:

https://github.com/cfgnunes/cv-lab

 Access the link above and download the samples by clicking in the "download" button:

Example 1:

01_reading_image.py

```
import cv2
img = cv2.imread('./images/input.jpg')

cv2.imshow('Input image', img)

cv2.waitKey()
```

Example 2:

02_saving_image.py

```
import cv2
gray_img = cv2.imread('images/input.jpg', cv2.IMREAD_GRAYSCALE)

cv2.imshow('Grayscale', gray_img)

cv2.imwrite('images/output.jpg', gray_img)

cv2.waitKey()
```

Example 3:

03_convert_image_format.py

```
import cv2
img = cv2.imread('images/input.jpg')

cv2.imwrite('images/output.png', img, [cv2.IMWRITE_PNG_COMPRESSION])
```

Example 4:

04_image_scaling.py

```
import cv2
img = cv2.imread('images/input.jpg')
img_scaled = cv2.resize(img, (200, 200))

cv2.imshow('Scaling - Skewed Size', img_scaled)
cv2.waitKey()
```

Example 5:

05_gaussian_filter.py

```
import cv2
img = cv2.imread('images/input.jpg')
cv2.imshow('Input', img)
img_gaussian = cv2.GaussianBlur(img, (17, 17), 0)
cv2.imshow('Gaussian filter', img_gaussian)

cv2.waitKey()
```

Example 6:

```
import cv2
 3
   img = cv2.imread('images/blox.jpg')
   gray = cv2.cvtColor(img, cv2.COLOR BGR2GRAY)
 5
 6
   cv2.imshow("Input image", img)
 8
   corners = cv2.goodFeaturesToTrack(
 9
        gray, maxCorners=30, qualityLevel=0.05, minDistance=25)
10
11
   red color = (0, 0, 255)
12
13
   for item in corners:
14
        x, y = item[0]
15
        cv2.circle(img, (x, y), 3, red color, -1)
16
17
   cv2.imshow("Top 'k' features", img)
18
19
   cv2.waitKey()
20
```

References

OpenCV-Python Tutorials.

https://docs.opencv.org/master/

OpenCV 3.x with Python By Example - Second Edition

https://github.com/PacktPublishing/OpenCV-3-x-with-Python-

By-Example