

PCTWELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : B29C 47/40, B29B 7/00	A1	(11) Internationale Veröffentlichungsnummer: WO 97/12746 (43) Internationales Veröffentlichungsdatum: 10. April 1997 (10.04.97)
(21) Internationales Aktenzeichen: PCT/EP96/03531 (22) Internationales Anmeldedatum: 9. August 1996 (09.08.96) (30) Prioritätsdaten: ✓195 36 289.6 29. September 1995 (29.09.95) DE (71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): WERNER & PFLEIDERER GMBH [DE/DE]; Theodorstrasse 10, D-70469 Stuttgart (DE). (72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): HEIDEMEYER, Peter [DE/DE]; Thomas-Münzer-Weg 47, D-70437 Stuttgart (DE). HÄRING, Erwin [DE/DE]; Brucknerstrasse 22, D-70159 Stuttgart (DE). MUNZ, Rainer [DE/DE]; Eu- lenhöfe 5, D-71540 Murrhardt (DE). HERTER, Rainer [DE/DE]; Wilhelmstrasse 19, D-71254 Ditzingen (DE). BURKHARDT, Ulrich [DE/DE]; Theobald-Kerner-Strasse 14, D-70732 Stuttgart (DE).	(81) Bestimmungsstaaten: AL, AM, AU, AZ, BB, BG, BR, BY, CA, CN, CZ, EE, GE, HU, IL, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, US, UZ, VN, ARIPO Patent (KE, LS, MW, SD, SZ, UG), europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Veröffentlicht Mit internationalem Recherchenbericht.	

(54) Title: METHOD OF CARRYING OUT CONTINUOUS PREPARATION PROCESSES ON TIGHTLY MESHING EXTRUDERS ROTATING IN THE SAME SENSE

(54) Bezeichnung: VERFAHREN ZUR DURCHFÜHRUNG KONTINUIERLICHER AUFBEREITUNGSPROZESSE AUF GLEICHSINNIG DREHENDEN, DICHTKÄMMENDEN EXTRUDERN

(57) Abstract

The invention concerns a method of carrying out continuous preparation processes on tightly meshing extruders rotating in the same sense, such as double screw and multi-shaft screw-type extruders. The extruder is operated at a screw speed of rotation of at least 800 rpm whilst the so-called "torque density" (M_d/a^3) which can be induced is increased by at least 11 Nm/cm³ and the ratio between the screw outer diameter and screw inner diameter (D_o/D_i) is at least 1.5.

(57) Zusammenfassung

Bei einem Verfahren zur Durchführung von kontinuierlichen Aufbereitungsprozessen auf gleichsinnig drehenden, dichtkämmenden Extrudern, wie Doppelschnecken- und Mehrwellenschneckenextrudern, wird der Extruder mit einer Schneckendrehzahl von mindestens 800 Upm bei gleichzeitiger Erhöhung der einleitbaren sogenannten "Drehmomentdichte" (M_d/a^3) von mindestens 11 Nm/cm³ und einer Volumigkeit (D_s/D_i) von mindestens 1,5 betrieben.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Amenien	GB	Vereiniges Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
AU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumänien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Eestland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

Verfahren zur Durchführung kontinuierlicher Aufbereitungsprozesse auf gleichsinnig drehenden, dichtkämmenden Extrudern

Beschreibung

Die Erfindung betrifft ein Verfahren zur Durchführung kontinuierlicher Aufbereitungsprozesse auf gleichsinnig drehenden, dichtkämmenden Extrudern, wie Doppelschnecken- und Mehrwellenschneckenextrudern.

Gleichsinnig drehende, dichtkämmende Doppelschnecken- und Mehrwellenschneckenextruder werden für kontinuierliche Knetprozesse mit oder ohne Aufschmelzung eingesetzt. Hierbei sind häufig auch kontinuierliche Entgasungs-, Misch- und Expandievorgänge integriert und in einigen Fällen werden die Extruder auch für Reaktionen eingesetzt.

Die verarbeitbaren Produkte umfassen Kunststoffe, Harze, Flüssigkeiten, zähplastische Massen, pulver- und faserförmige Zusatzstoffe sowie Foodmassen. Der Austrag kann beispielsweise über Filter und Formgebungsprozesse, wie Granulierungen oder Profilextrusion, stattfinden.

Es sind Extruder der eingangs genannten Art bekannt, bei denen der Schneckendurchmesser bis zu 340 mm beträgt. Die Durchsätze betragen 5.000 bis 35.000 kg/h bei einem Verhältnis Schneckenaußendurchmesser zu Schneckeninnendurchmesser (D_a/D_i) von 1,18 bis 1,25 bzw. von 1,4 bis 1,6. Das Verhältnis Drehmoment zum Achsabstand³ (M_d/a^3) - die sogenannte "Drehmomentdichte" - weist Werte zwischen 5 und 10 auf. Je nach Größe der Extruder werden Drehzahlen von 200 bis 500 Upm - in Ausnahmefällen auch bis 600 Upm - gefahren.

Die Auslegung der Extruder erfolgt üblicherweise nach dem Prinzip der geometrischen und drehmomentbezogenen Ähnlichkeit. Geometrische Ähnlichkeit besteht, wenn das Verhältnis D_a/D_i konstant ist; drehmomentbezogene Ähnlichkeit besteht, wenn das Verhältnis M_a/a^3 konstant ist.

Ein maßgeblicher Faktor für die Dispergier-, Misch- und Homogenisierungsgüte des verarbeiteten Produktes ist - neben der Schmelztemperatur und der Verweilzeit - die Schergeschwindigkeit im schmelzegefüllten Schneckenkanal.

Für viele Prozesse gilt, daß die Misch-, Dispergier- und Homogenisierungsgüte umso höher ausfällt, je höher die Schergeschwindigkeit ist. Beim heutigen Stand der Extrudertechnik sind bei Standardaufbereitungsprozessen mittlere Schergeschwindigkeiten im Schmelzebereich von 20 bis 150 1/sec und mittlere Produktverweilzeiten im gesamten Schneckenbereich von 15 bis 60 sec üblich.

Bei herkömmlichen Extrudern werden die mittleren Schergeschwindigkeiten durch die Schneckendrehzahl und die durch das Verhältnis D_a/D_i dargestellte, sogenannte "Volumigkeit", nach oben begrenzt. Bei steigenden Schergeschwindigkeiten ergeben sich aber auch höhere spezifische Werte der Energieeinleitung, was zu inakzeptabel hohen Schmelztemperaturen führen kann. Zusammen mit großen mittleren Verweilzeiten des Produktes im Extruder kann dies zu qualitätsmindernden Produktschädigungen führen, und zwar hinsichtlich des thermischen Aufbaus und der Vernetzung.

Der Erfindung liegt die Aufgabe zugrunde, qualitätserhöhende mittlere Schergeschwindigkeitsbereiche bis zu ≥ 1.000 1/sec

bei gleichzeitiger Verkürzung der Einwirkdauer von Temperaturspitzen im Produkt zu realisieren, ohne daß die vorstehend beschriebenen Schwierigkeiten auftreten können.

Die gestellte Aufgabe wird dadurch gelöst, daß der Extruder mit einer Schneckendrehzahl von mindestens 800 Upm bei gleichzeitiger Erhöhung der einleitbaren sogenannten "Drehmomentdichte" (M_d/a^3) von mindestens 11 Nm/cm³ und einer Volumigkeit (D_a/D_i) von mindestens 1,5 betrieben wird.

Bei der erfindungsgemäß gewählten erhöhten Drehmomentdichte (M_d/a^3) von mindestens 11 Nm/cm³ kann der Extruder ohne weiteres mit den hohen Schneckendrehzahlen betrieben werden, ohne daß sich eine unzulässig hohe spezifische Energieeinleitung ergibt. Als weiterer Vorteil ergibt sich ein sehr hoher Produktdurchsatz pro Zeiteinheit.

Zweckmäßigerverweise liegt die Produktverweilzeit im Extruder unter 10 Sekunden.

In weiterer Ausgestaltung der Erfindung wird der Extruder mit einer Schneckendrehzahl von bis zu 3.000 Upm bei gleichzeitiger Erhöhung der einleitbaren sogenannten "Drehmomentdichte" (M_d/a^3) von bis zu 15 Nm/cm³ und einer Volumigkeit (D_a/D_i) gleich größer 1,55 und einer mittleren Produktverweilzeit von kleiner 2 Sekunden betrieben. Hierdurch ergeben sich - durch die dann möglichen hohen Durchsätze - besonders niedrige (mittlere) Produktverweilzeiten im Extruder.

Die sich aus den hohen Schneckendrehzahlen und den hohen Produktdurchsätzen ergebenden niedrigen Produktverweilzeiten

von 1 bis 10 sec vermindern gleichzeitig die Neigung zum thermischen Abbau oder zur Vernetzung der Produkte.

Eine Erhöhung der Schneckendrehzahl ist innerhalb bestimmter Grenzen auch ohne eine Erhöhung der Drehmomentdichte (M_d/a^3) möglich. Durch die bei jedem Verfahren vorhandene maximale Obergrenze der spezifischen Energieeinleitung, die der maximal ertragbaren Schmelzetemperatur (ohne daß Produktschäden auftreten) entspricht, wird jedoch die maximale Schnecken-drehzahl begrenzt.

Durch die erfindungsgemäße Ausgestaltung des Verfahrens der eingangs beschriebenen Art werden weitere Anwendungsbereiche erschlossen.

So kann das erfindungsgemäße Verfahren beispielsweise auch zum kontinuierlichen Vormischen im Feststoff-Förderbereich und zum Mahlen von grobkörnigen Schüttgütern zu Pulver verwendet werden. Es ist aber auch eine Kombination der beiden vorgenannten Prozesse möglich, also ein Homogenisierungsprozeß von Feststoffen, der gegenüber dem Homogenisieren in plastischer Phase deutlich weniger Energie benötigt.

Ein Einsatz des erfindungsgemäßen Verfahrens bei Reaktionsmaschinen ermöglicht darüber hinaus ein effektives Vormischen von Monomeren und Katalysator vor der Reaktion in der Inkubationszeit.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß beispielsweise Pigmente bei der

Masterbatchherstellung wesentlich besser dispergiert werden können.

Nachfolgend wird die Erfindung mittels graphischer
5 Darstellung erläutert. Es zeigt

Fig. 1 "mittlerer spez. Energieeintrag",

10 Fig. 2 "Massendurchsatz und mittlere Produktverweilzeit im Extruder".

Versuche nach dem erfindungsgemäßen Verfahren wurden auf handelsüblichen ZSK-Maschinen (zweiwelliger Schneckenkneter mit gleichsinnig drehenden, dichtkämmenden
15 Schneckenwellen) durchgeführt, wobei der Aufbau der Maschine (Schneckengeometrie, Misch- und Knetelemente) so belassen wurde, wie dieser bisher für den jeweiligen Kunststoffaufbereitungsprozeß mit üblichen Drehzahlen von 200 bis 400 UpM Verwendung fand.

20 Bei den Versuchen wurden Schneckendrehzahlen von weit über 1000 UpM gefahren und dabei überraschend festgestellt, daß bei gleichzeitiger Erhöhung der eingeleiteten Drehmomentdichte auf 11 bis 14 Nm/cm³ keine wesentliche Erhöhung der Massetemperatur eintritt. Selbst bei Erhöhung der Massetemperatur (z. B. PC > 350°C) auf unüblich hohe Schmelztemperatur tritt keine Produktschädigung auf, da durch das erfindungsgemäße Verfahren die Verweilzeiten im Extruder weit unter 10 s liegen.

30 Figur 1 zeigt schematisch den Zusammenhang zwischen der Schneckendrehzahl (Schergeschwindigkeit) und der spezifischen Energieeinleitung für unterschiedliche Drehmomentdichten Md/a³. Unter der Voraussetzung, daß das
35 verfügbare Drehmoment ausgelastet wird, ergeben sich mit

steigender Drehmomentdichte (bei konstanter Drehzahl) höhere Durchsätze. Man erkennt, daß aus einer erhöhten Drehmomentdichte kleinere Energieeinleitungen und damit auch kleinere Schmelztemperaturen resultieren. Andererseits ist zu sehen, daß eine Erhöhung der Schneckendrehzahl zwar generell auch zu einem höheren Massedurchsatz führt, dieser jedoch bei gegebener Drehmomentdichte mit einer erhöhten Energieeinleitung verbunden ist.

10 In Figur 2 ist die Abhängigkeit zwischen Durchsatz und Verweilzeit dargestellt. Hier wird deutlich, daß mit Zunahme des Durchsatzes die Zeit, während der das Material hohen Temperaturen ausgesetzt ist, deutlich reduziert wird.

15 Durchgeführte Versuche haben gezeigt, daß auch eine Massetemperatur, die bisherigen Erfahrungen nach zu einer Qualitätsminderung des Produktes führen mußte, bei genügend kurzer Einwirkdauer qualitätsunschädlich ist.

20 Genügend kurze Verweilzeiten lassen sich jedoch nur durch erhöhte Durchsätze erzielen, die wiederum nur durch eine Erhöhung des möglichen Drehmoments realisierbar ist, da sonst bei gegebener (hoher) Drehzahl die Antriebsleistung der Maschine nicht mehr ausreicht.

25 Aus Figur 1 ist auch ersichtlich, daß auch ohne Erhöhung der Drehmomentdichte eine Drehzahlerhöhung in bestimmten Grenzen möglich ist. Die jedem Verfahren anhängliche maximale Obergrenze der spezifischen Energieeinleitung (e_{specmax}, entspricht der maximal ertragbaren Schmelztemperatur ohne Produktschädigung bei einer vorgegebenen Verweilzeit) begrenzt diese Drehzahl.

Die heute erhältlichen Maschinen weisen in der Regel
35 D_a/D_i-Werte zwischen 1,4 und 1,6 sowie Md/a³-Werte

zwischen 5 und 10 auf. Die Betriebsdrehzahlen betragen je nach Baugröße zwischen 200 und 500 UpM, in Ausnahmefällen auch bis 600 UpM.

5 Der Durchsatz und die Qualität des compoundierten Produktes hängen dabei von der eingesetzten Schneckengeometrie, der Drehzahl und dem maximalen Drehmoment der Maschine ab.

10 Jede Compoundierung hat zum Ziel, ein homogenes Endprodukt - in der Regel unter Einarbeitung von Zuschlagstoffen - zu erzielen. Die Zuschlagstoffe und vorhandene Inhomogenitäten müssen daher in der Maschine dispergiert und distributiv eingemischt werden. Zum Zerteilen von 15 Partikeln sind mehr oder weniger große Schubspannungen erforderlich, die über die umgebende Matrix auf die Partikel übertragen werden müssen. Die Schubspannung τ ergibt sich nach der Gleichung

$$20 \quad \tau = \eta * \dot{\gamma} \quad (1)$$

aus der Viskosität η des Matrixmediums und der dort aufgezwungenen Schergeschwindigkeit $\dot{\gamma}$. Ein maßgeblicher Faktor für die Dispergier-, Misch- und Homogenisierungs-25 Güte des verarbeiteten Produkts ist daher neben der Schmelztemperatur und der Verweilzeit die Schergeschwindigkeit $\dot{\gamma}$ [1/sec] im schmelzegefüllten Schneckenkanal.

30 Betrachtet man diese vereinfacht als mittleren Wert aus dem Quotienten Schneckenumfangsgeschwindigkeit/Gangtiefe, so gilt (100% Füllgrad im Schneckenkanal vorausgesetzt):

$$35 \quad \dot{\gamma} = \frac{V_u}{h} = \frac{D_a * \Pi * n_s}{(D_a - D_I) / 2} \quad (2)$$

oder

$$5 \quad \bar{\dot{Y}} = 2\pi * n_s * \frac{(D_a / D_i)}{(D_a / D_i) - 1}$$

Für viele Prozesse gilt:

Je höher die Schergeschwindigkeit, desto höher ist die
 10 Misch-, Dispergier- und Homogenisierungsgüte. Beim
 heutigen Stand der Extrudertechnik sind bei Standard-
 aufbereitungprozessen mittlere Schergeschwindigkeiten im
 Schmelzebereich von 20 1/s bis 150 1/s und mittlere
 Produktverweilzeiten im gesamten Schneckenbereich von 15
 15 bis 60 s üblich.

Bei herkömmlichen Extrudern werden die mittleren Scher-
 geschwindigkeiten wie aus Gleichung (2) ersichtlich,
 durch die Schneckendrehzahl und die durch D_a/D_i
 20 gekennzeichnete "Volumigkeit" nach oben begrenzt.

Bei steigenden Schergeschwindigkeiten ergeben sich durch
 die Beziehung

$$25 \quad \bar{e}_{spec} = \frac{1}{\rho_s} * \bar{\eta}_{(\dot{Y})} * \bar{\dot{Y}}^2 * \bar{t} \quad (3)$$

bzw.

$$30 \quad \bar{e}_{spec} = \frac{1}{\rho_s} * \bar{\eta}_{(\dot{Y})} * \bar{t} * 4\pi^2 * n_s * \left[\frac{(D_a / D_i)}{(D_a / D_i) - 1} \right]^2$$

35 aber auch höhere Werte der spezifischen Energieein-
 leitung e_{spec} , was wiederum zu unakzeptabel hohen
 Schmelztemperaturen führen kann, da sich die Tempera-
 turerhöhung der Schmelze aus der Gleichung $\Delta T = e_{spec}/C_p$

berechnet (C_p = spez. Wärmekapazität). Zusammen mit großen mittleren Verweilzeiten des Produktes im Extruder kann also eine hohe Schergeschwindigkeit auch zu qualitätsmindernden Produktschädigungen (thermischer Abbau 5 oder Vernetzung) führen.

Mit dem erfindungsgemäßen Verfahren, bei gleichsinnig drehenden Doppelschneckenextrudern mit Schneckendrehzahlen von 600 bis 3000 UpM zusammen mit der Erhöhung 10 der eingeleiteten Drehmomentdichte auf 11 bis 15 Nm/cm³ können qualitätserhöhende mittlere Schergeschwindigkeiten bis zu 1000 1/s bei gleichzeitiger Verkürzung der Einwirkdauer von Temperaturspitzen im Produkt realisiert werden.

15

Verwendete Formelzeichen:

\bar{e}_{spec}	mittlere spezifische Energieeinleitung [kWh/kg]
\bar{t}	mittlere Verweilzeit des Produkts im Extruder [s]
ρ	Schmelzedichte [kg/m^3]
$\bar{\dot{V}}$	mittlere Schergeschwindigkeit [1/sec]
$\bar{\eta}$	mittlere dynamische Viskosität [Pa sec]
D_a	Schneckenaußendurchmesser [mm]
D_i	Schneckeninnendurchmesser [mm]
\bar{h}	Gangtiefe, gemittelt
n_s	Schneckendrehzahl [min^{-1}] ($[\text{s}^{-1}]$)
M_d	Wellendrehmoment, bezogen auf 1 Welle [Nm]
a	Achsabstand der Schneckenwellen [cm]
v_u	Umfangsgeschwindigkeit der Schneckenwellen [m/s]
M_d/a^3	Drehmomentdichte, bezogen auf 1 Welle [Nm/cm^3]
$\bar{\tau}$	Schubspannung [Nm/mm^2]
c_p	spezifische Enthalpie [kJ/kg*K]
\dot{m}	Massendurchsatz [kg/h]
ΔT	Massentemperaturerhöhung [K]

Patentansprüche

1. Verfahren zur Durchführung von kontinuierlichen Aufbereitungsprozessen auf gleichsinnig drehenden, dichtkämmenden Extrudern, wie Doppelschnecken- und Mehrwellenschneckenextrudern, dadurch gekennzeichnet, daß der Extruder mit einer Schneckendrehzahl von mindestens 800 Upm bei gleichzeitiger Erhöhung der einleitbaren sogenannten "Drehmomentdichte" (Md/a^3) von mindestens 11 Nm/cm^3 und einer Volumigkeit (Da/Di) von mindestens 1,5 betrieben wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die mittlere Produktverweilzeit unter 10 Sekunden liegt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Extruder mit einer Schneckendrehzahl von bis zu 3000 Upm bei gleichzeitiger Erhöhung der einleitbaren, sogenannten "Drehmomentdichte" Md/a^3 von bis zu 15 Nm/cm^3 und einer Volumigkeit (Da/Di) gleich größer 1,55 und einer mittleren Produktverweilzeit von kleiner 2 Sekunden betrieben wird.
4. Anwendung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Verfahren zum kontinuierlichen Vermischen im Feststoffförderbereich und/oder zum Mahlen von grobkörnigen Schüttgütern zu Pulver verwendet wird.
5. Anwendung des Verfahrens nach Anspruch 4, dadurch gekennzeichnet, daß Pigmente bei der Masterbatchherstellung eingemischt werden.

This Page Blank (uspto)

mittlerer spezifischer Energieeintrag

Fig. 1

This Page Blank (uspto)

2 / 2

Massendurchsatz

mittlere Produktverweilzeit im Extruder

Fig. 2

This Page Blank (uspto)

INTERNATIONAL SEARCH REPORT

Int. onal Application No
PCT/EP 96/03531

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 B29C47/40 B29B7/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 B29C B29B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE WPI Week 9324 Derwent Publications Ltd., London, GB; AN 93-191034 XP002020575 & JP,A,05 116 140 (MITSUBISHI KASEI POLYTEC CO), 14 May 1993 see abstract	1
A	---	2-5
A	JAPAN PLASTICS, vol. 9, no. 1, January 1975, TOKYO, pages 18-25, XP002020571 FUMIO AIDA: "Investigation of Ultra-High Speed Extruder Based on Entirely New Design Concept" see table 1 see figure 2	1-5
	---	-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

2

Date of the actual completion of the international search	Date of mailing of the international search report
9 December 1996	17.12.96

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authorized officer

Jensen, K

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 96/03531

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO,A,92 17522 (M & G RICERCHE S P A) 15 October 1992 see page 5, line 7 - line 10 see example 1 ---	1-5
A	PLASTICS ENGINEERING, vol. 35, no. 4, April 1979, MANCHESTER, NEW HAMPSHIRE, USA, pages 29-33, XP002020572 GEORGE A. KRUDER & R. E. RIDENOUR: "New concepts spur development of ultra-high-speed extrusion" see tables 1-3 ---	1-5
A	KUNSTSTOFFE, vol. 52, no. 4, April 1962, MUNCHEN DE, pages 213-217, XP002020573 E. BECK : "Betriebsverhalten und Praxisergebnisse von schnelllaufenden Schneckenpressen" see page 213, right-hand column, line 14 - line 20 see figures 4,5 ---	1-5
A	ZEHEV TADMOR &IMRICH KLEIN: "ENGINEERING PRINCIPLES OF PLASTICATING EXTRUSION" 1989 , ROBERT E. KRIEGER PUBLISHING COMPANY , MALABAR, FLORIDA XP002020574 158240 see page 8, line 3 - page 9, line 4 -----	1-5

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 96/03531

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9217522	15-10-92	IT-B-	1245598	29-09-94
		AU-B-	652232	18-08-94
		BR-A-	9204811	27-07-93
		CN-A-	1066449	25-11-92
		EP-A-	0531484	17-03-93
		HU-A-	64989	28-03-94
		US-A-	5338808	16-08-94

This Page Blank (uspto)