Curso: Métodos Numéricos II Professor: Creto Augusto Vidal Semestre: 2021.1 Aula # 19

1. Objetivo: Continuar a apresentar a família de métodos de potência e sua utilidade.

2. Método da Potência (continuação)

Nesta seção, vamos apresentar os últimos dois métodos de potência: 1) Potência Regular, 2) Potência Inversa, 3) Potência com deslocamento.

Entendendo as condições para que o método da Potência Regular funcione, é fácil entender as condições para que os outros métodos funcionem. Assim, é bom revisar a Aula#18..

2.1 Método da Potência Inverso.

Dada a matriz **A**, este método determina seu autovalor com menor valor absoluto diferente de zero.

Se você entender o desenvolvimento apresentado na Aula#18, verá que este método é uma pequena modificação do método da Potência Regular.

2.1.1 Discussões preliminares

Se ordenarmos o espectro da matriz A em ordem decrescente em valor absoluto temos:

$$(1) |\lambda_1| > |\lambda_2| \ge \cdots |\lambda_i| \cdots > |\lambda_n| > 0.$$

O método da potência inverso acha o par $(\lambda_n, \mathbf{x}_n)$.

Note na equação (1) que o autovalor desejado é diferente dos demais, isto é, a multiplicidade algébrica de λ_n é igual a 1. Para que o método funcione, isso tem que ser verdade para a matriz **A**. Se isso não for o caso, o método vai falhar.

Vamos escrever a relação entre qualquer autovalor λ_i e seu autovetor correspondente \mathbf{x}_i , isto é,

(2)
$$\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$$
.

Na equação (1) assumimos que **A** não tem nenhum autovalor nulo, e, portanto, tem uma inversa, \mathbf{A}^{-1} .

Vamos multiplicar os dois lados da equação (2) por A^{-1} e dividir os dois lados por λ_i . Assim, obtemos

(3)
$$\frac{1}{\lambda_i} \underbrace{\mathbf{A}^{-1} \mathbf{A}}_{\mathbf{I}} \mathbf{x}_i = \frac{\lambda_i}{\lambda_i} \mathbf{A}^{-1} \mathbf{x}_i \Longrightarrow \mathbf{A}^{-1} \mathbf{x}_i = \frac{1}{\lambda_i} \mathbf{x}_i \Longrightarrow \mathbf{A}^{-1} \mathbf{x}_i = \bar{\lambda}_i \mathbf{x}_i.$$

As operações sobre a equação (2) para obter a equação (3) não modificaram o autovetor \mathbf{x}_i que agora também é o autovetor da matriz \mathbf{A}^{-1} correspondente ao autovalor $\bar{\lambda}_i$ que é o inverso do autovalor λ_i da matriz \mathbf{A} . Assim, podemos concluir que

(4) Se **A** tem uma inversa
$$\mathbf{A}^{-1}$$
, então $(\lambda_i, \mathbf{x}_i)$ de $\mathbf{A} \Longrightarrow \left(\frac{1}{\lambda_i}, \mathbf{x}_i\right)$ de \mathbf{A}^{-1} .

Pela equação (4), podemos concluir que o espectro de A está relacionado ao espectro de A^{-1} da seguinte forma

$$\lambda(\mathbf{A}) = \{\lambda_{1}, \lambda_{2}, \cdots \lambda_{i}, \cdots \lambda_{n}\}
\lambda(\mathbf{A}^{-1}) = \{\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \cdots \frac{1}{\lambda_{i}}, \cdots, \frac{1}{\lambda_{n}}\}
\uparrow \uparrow \cdots \uparrow \cdots \uparrow
\mathbf{x}(\mathbf{A}) = \mathbf{x}(\mathbf{A}^{-1}) = \{\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots \mathbf{x}_{i}, \cdots \mathbf{x}_{n}\}$$

Assumindo que os autovalores do espectro $\lambda(\mathbf{A})$ na equação (5) estejam em ordem decrescente de seus valores absolutos, podemos concluir que o espectro $\lambda(\mathbf{A}^{-1})$ está em ordem crescente de seus valores absolutos. Assim, $\frac{1}{\lambda_n}$ é o autovalor dominante de \mathbf{A}^{-1} .

Portanto, se aplicarmos o método da Potência Regular sobre A⁻¹, encontraremos seu autovalor dominante e seu autovetor correspondente, isto é,

(6)
$$(\bar{\lambda}_{dominante}, \bar{\mathbf{x}}_{dominante}) \equiv (\frac{1}{\lambda_n}, \mathbf{x}_n)$$

2.1.2 Cálculo do par $(\lambda_n, \mathbf{x}_n)$

Há duas maneiras alternativas de proceder:

1) Usando o método (subrotina, subprograma etc.) da Potência Regular

$$(\bar{\lambda}_{dominante}, \bar{\mathbf{x}}_{dominante}) \leftarrow \text{potenciaRegular}(\mathbf{A}, \mathbf{v}, \text{eps}); \text{ ou}$$

2) Usando o método da Potência Inverso construído a partir de pequenas modificações do método da potência regular.

Alternativa 1: Algoritmo 2.1a Potência Inverso

potenciaInverso1(\mathbf{A} , \mathbf{v}_0 , ε)				
Input	:	Matriz A , vetor inicial \mathbf{v}_0 , tolerância ε		
Output	:	Autovalor, λ_n e Autovetor correspondente, \mathbf{x}_n		
Step 1	:	$A^{-1} \leftarrow \text{calculaInversa}(A)$		
Step 2	:	$(\bar{\lambda}_{dominante}, \bar{\mathbf{x}}_{dominante}) \leftarrow \text{potenciaRegular}(\mathbf{A}^{-1}, \mathbf{v}_0, \varepsilon)$		
Step 3	:	$\lambda_n \leftarrow \frac{1}{\bar{\lambda}_{dominante}}$		
Step 4	:	$\mathbf{x}_n \leftarrow \mathbf{\bar{x}}_{dominante}$		
Step 5	:	Imprimir ou retornar resposta $(\lambda_n, \mathbf{x}_n)$		

Alternativa 2: Algoritmo 2.1b Potência Inverso

potenciaInverso2(\mathbf{A} , \mathbf{v}_0 , ε)		
Input	:	Matriz A , vetor inicial \mathbf{v}_0 , tolerância ε
Output	:	Autovalor, λ_n e Autovetor correspondente, \mathbf{x}_n

Step 1	•	// Receber a matriz A , o vetor inicial, \mathbf{v}_0 , e a tolerância, ε
Step 2	:	// Calcular a decomposição LU de A : (L , U) ← decompLU(A)
Step 3	••	// Inicializar o autovalor, $\bar{\lambda}_1$: $(\bar{\lambda}_1)_{Novo} \leftarrow 0$
Step 4	•	// Copiar o vetor, \mathbf{v}_0 para $(\mathbf{v}_k)_{Novo}$: $(\mathbf{v}_k)_{Novo} \leftarrow \mathbf{v}_0$
Step 5		// Copiar $(\bar{\lambda}_1)_{Novo}$ para $(\bar{\lambda}_1)_{Velho}$: $(\bar{\lambda}_1)_{Velho} \leftarrow (\bar{\lambda}_1)_{Novo}$
Step 6	••	// Copiar $(\mathbf{v}_k)_{Novo}$ para $(\mathbf{v}_k)_{Velho}$: $(\mathbf{v}_k)_{Velho} \leftarrow (\mathbf{v}_k)_{Novo}$
Step 7	••	// Normalizar $(\mathbf{v}_k)_{Velho}$: $(\mathbf{x}_1)_{Velho} \leftarrow \frac{(\mathbf{v}_k)_{Velho}}{\ (\mathbf{v}_k)_{Velho}\ } = \frac{(\mathbf{v}_k)_{Velho}}{\sqrt{((\mathbf{v}_k)_{Velho})^{\mathrm{T}}(\mathbf{v}_k)_{Velho}}}$
Step 8	••	// Calcular $(\mathbf{v}_k)_{Novo}$ não normalizado: $(\mathbf{v}_k)_{Novo} \leftarrow \text{solverLU}(\mathbf{A}, (\mathbf{x}_1)_{Velho})$
Step 9		// Calcular a nova estimativa de $\bar{\lambda}_1$: $(\bar{\lambda}_1)_{Novo} \leftarrow (\mathbf{x}_1)_{Velho}^{T} (\mathbf{v}_k)_{Novo}$
Step 10	•	// Verificar convergência de $\bar{\lambda}_1$: Se $\left \frac{(\bar{\lambda}_1)_{Novo} - (\bar{\lambda}_1)_{Velho}}{(\bar{\lambda}_1)_{Novo}} \right > \varepsilon$, voltar para Step 5
Step 11	:	// Calcular λ_n : $\lambda_n \leftarrow \frac{1}{(\overline{\lambda}_1)_{Novo}}$
Step 12	:	// Copiar $(\mathbf{x}_1)_{Velho}$ em \mathbf{x}_n : $\mathbf{x}_n \leftarrow (\mathbf{x}_1)_{Velho}$
Step 13	:	// Retornar ou imprimir o output: Imprimir ou retornar resposta $(\lambda_n, \mathbf{x}_n)$

Os steps 1 a 4 são passos de inicialização.

Os steps 5 a 10 representa um Loop do tipo Do...While(condição)

Os steps 11 a 13 são a finalização do algoritmo, imprimindo o resultado ou retornando o resultado.

Nota: O Step 8 é quivale a
$$(\mathbf{v}_k)_{Novo} \leftarrow \mathbf{A}^{-1}(\mathbf{x}_1)_{Velho}$$

2.2 Método da Potência com deslocamento.

Dada a matriz A, este método determina o autovalor que estiver mais próximo de um número real μ dado pelo usuário.

2.2.1 Discussões preliminares

Se ordenarmos o espectro da matriz **A** em ordem decrescente em valor absoluto temos:

$$(7) \quad |\lambda_1|>|\lambda_2|\geq \cdots \geq |\lambda_{i-1}|>|\lambda_i|>|\lambda_{i+1}|\cdots >|\lambda_n|>0.$$

O método da potência com deslocamento acha o par $(\lambda_i, \mathbf{x}_i)$ correspondente ao λ_i que estiver mais próximo de μ e seja diferente de seus vizinhos.

Note na equação (7) que o **autovalor desejado é diferente dos demais**, isto é, a **multiplicidade algébrica de** λ_i **é igual a 1**. Para que o método funcione, isso tem que ser verdade para a matriz **A**. Se isso não for o caso, o método vai falhar.

Vamos escrever a relação entre o autovalor λ_i e seu autovetor correspondente \mathbf{x}_i , isto é,

(8)
$$\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$$
.

Agora vamos subtrair o vetor $\mu \mathbf{x}_i$ dos dois lados da equação (8) e vamos por o vetor \mathbf{x}_i em evidência. Lembre-se que, no lado esquerdo, vamos usar o artificio de multiplicar o vetor \mathbf{x}_i pela matriz identidade \mathbf{I} , isto é,

(9)
$$[\mathbf{A} - \mu \mathbf{I}] \mathbf{x}_i = (\lambda_i - \mu) \mathbf{x}_i \equiv \widehat{\mathbf{A}} \mathbf{x}_i = \widehat{\lambda}_i \mathbf{x}_i$$
, onde $\widehat{\mathbf{A}} = [\mathbf{A} - \mu \mathbf{I}]$ e $\widehat{\lambda}_i = (\lambda_i - \mu)$.

Note que:

- 1) se aplicarmos o método da Potência Regular sobre a matriz $\widehat{\bf A}$, vamos encontrar o autovalor dominante $\widehat{\lambda}$, e isso significa que $|\lambda_i \mu|$ é o maior possível, e não é isso que queremos.
- 2) Por sua vez, se aplicarmos o método da Potência Inverso sobre a matriz $\widehat{\mathbf{A}}$, vamos encontrar o autovalor $\widehat{\lambda}$ de menor valor absoluto, e isso significa que $|\lambda_i \mu|$ é o menor possível, e isso é justamente o que queremos.

As operações sobre a equação (8) para obter a equação (9) não modificaram o autovetor \mathbf{x}_i que agora também é o autovetor da matriz $\hat{\mathbf{A}}$ correspondente ao autovalor $\hat{\lambda} = \lambda_i - \mu$. Assim, o autovalor λ_i da matriz \mathbf{A} é simplesmente $\lambda_i = \hat{\lambda} + \mu$.

2.2.2 Cálculo do par $(\lambda_i, \mathbf{x}_i)$ mais próximo de μ

Algoritmo 2.2 Potência com deslocamento

potenciaComDeslocamento($\mathbf{A}, \mathbf{v}_0, \varepsilon, \mu$)				
Input	:	Matriz A , vetor inicial \mathbf{v}_0 , tolerância ε , deslocamento μ		
Output	:	Autovalor, λ_i próximo de μ e Autovetor correspondente, \mathbf{x}_i		
Step 1	:	$\widehat{\mathbf{A}} \leftarrow \mathbf{A} - \mu \mathbf{I}$		
Step 2	:	$(\hat{\lambda}, \hat{\mathbf{x}}) \leftarrow \text{potenciaInverso}(\hat{\mathbf{A}}, \mathbf{v}_0, \varepsilon)$		
Step 3	:	$\lambda_i \leftarrow \hat{\lambda} + \mu$		
Step 4	:	$\mathbf{x}_i \leftarrow \hat{\mathbf{x}}$		
Step 5	:	Imprimir ou retornar resposta $(\lambda_i, \mathbf{x}_i)$		

Tarefa #12:

Implemente os Algoritmos 2.1b e 2.2 e utilize-os, junto com o algoritmo de potência regular, para achar todos os autovalores e os autovetores correspondentes de cada uma das seguintes matrizes.

$$\mathbf{A_1} = \begin{bmatrix} 5 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

$$\mathbf{A_2} = \begin{bmatrix} -14 & 1 & -2 \\ 1 & -1 & 1 \\ -2 & 1 & -11 \end{bmatrix}$$

$$\mathbf{A_3} = \begin{bmatrix} 40 & 8 & 4 & 2 & 1 \\ 8 & 30 & 12 & 6 & 2 \\ 4 & 12 & 20 & 1 & 2 \\ 2 & 6 & 1 & 25 & 4 \\ 1 & 2 & 2 & 4 & 5 \end{bmatrix}$$