

• Extracción de un dataset

• Determinación de las features

• Formulación de una hipótesis

• Elección de la función de coste

• Optimización del coste

• Evaluación del resultado

1. Extracción de una muestra

1. Extracción de una muestra

Muestra ${\mathcal M}$ (dataset)

Hold-out (reserva)

Training Test $\sim 70\%$

Evaluación de resultados

6. Evaluación del resultado

6. Evaluación del resultado

6. Evaluación del resultado

Regresión univariable

- Muestreo
 - Hold-out
 - Cros-validación
- Hipótesis
 - Regresión lineal (sin offset)
 - Regresión lineal
 - Regresión polinómica
- Función de coste
 - Cuadrática
 - Regularización (regresión de arista)
- Optimización
 - Ecuación normal
 - Gradiente descendente
- Evaluación
 - Bootstrap

Pasos del machine learning

Extracción de un dataset

• Determinación de las features

Formulación de una hipótesis

• Elección de la función de coste

• Optimización del coste

• Evaluación del resultado

5. Optimización del coste

- Problemas de la optimización por Normal Equation
 - El tiempo de cálculo crece con el número de features
 - No es aplicable a todas las funciones de coste
 - A veces no hay solución analítica a la ecuación:

$$\frac{d}{dw}J(h_w(x),y) = 0$$

5. Optimización del coste

Alternativa: Gradient Descent (GD)

$$w^{(t+1)} \leftarrow w^{(t)} - \alpha \frac{d}{dw} J(h_w(x), y)$$

$$w^{(t+1)} \leftarrow w^{(t)} - \alpha \frac{d}{dw} J(w)$$

 α : learning rate

5. Optimización del coste

 $\alpha = 2 \cdot 10^{-4}$: (learning rate) pequeño

5. Optimización del coste

$$\frac{d}{dw}J(w) = \frac{d}{dw}\frac{1}{n}\sum_{i=1}^{n} (wx^{(i)} - y^{(i)})^{2}$$

$$\frac{d}{dw}J(w) = \frac{1}{n} \sum_{i=1}^{n} \frac{d}{dw} (wx^{(i)} - y^{(i)})^{2}$$

$$\frac{d}{dw}J(w) = \frac{1}{n}\sum_{i=1}^{n} 2(wx^{(i)} - y^{(i)})x^{(i)}$$

$$\frac{d^2}{dw^2}J(w) = \frac{2}{n}\sum_{i=1}^n x^{(i)^2}$$
 Positiva (y constante)

5. Optimización del coste

Repetir hasta convergencia

Es decir, hasta alcanzar un mínimo de J(w)

para todos los puntos

5. Optimización del coste

 $\alpha = 2 \cdot 10^{-4}$:(learning rate) pequeño

5. Optimización del coste

 $\alpha = 5 \cdot 10^{-4}$:(learning rate) grande

5. Optimización del coste

 $\alpha = 5 \cdot 10^{-4}$:(learning rate) grande

Stochastic Gradient Descent (SGD) 5. Optimización del coste

- Repetir hasta convergencia
 - Ordenar aleatoriamente los pares $(x^{(i)}, y^{(i)})$

- Para
$$i=1,2,\cdots,n$$
 hacer
$$w^{(t+1)} \leftarrow w^{(t)} - \alpha \ 2(wx^{(i)} - y^{(i)})x^{(i)}$$
 Una época

Aproximación a la derivada de la función de coste Correspondiente a un único punto

Stochastic Gradient Descent (SGD)

5. Optimización del coste

Stochastic Gradient Descent (SGD)

5. Optimización del coste

Batch Gradient Descent (BGD)

5. Optimización del coste

- Repetir hasta convergencia
 - Ordenar aleatoriamente los pares $(x^{(i)}, y^{(i)})$
 - Establecer m tandas de datos de dimensión b
 - Para tanda = $1,2,\cdots,m$ hacer

$$w^{(t+1)} \leftarrow w^{(t)} - \alpha \frac{1}{b} \sum_{i=1}^{b} 2(wx^{(i)} - y^{(i)})x^{(i)}$$

Una época

Aproximación a la derivada de la función de coste Media correspondiente a una tanda de puntos

Batch Gradient Descent (SGD)

5. Optimización del coste

Batch Gradient Descent (SGD)

5. Optimización del coste

Regresión univariable

- Muestreo
 - Hold-out
 - Cros-validación
- Hipótesis
 - Regresión lineal (sin offset)
 - Regresión lineal
 - Regresión polinómica
- Función de coste
 - Cuadrática
 - Regularización (regresión de arista)
- Optimización
 - Ecuación normal
 - Gradiente descendente
- Evaluación
 - Bootstrap

Pasos del machine learning

Extracción de un dataset Determinación de las features Formulación de una hipótesis Regresión lineal Elección de la función de coste Optimización del coste Evaluación del resultado

3. Formulación de hipótesis

La posición de la recta depende de los parámetros W₀ y W₁

Hipótesis
$$h_w(x) = w_0 + w_1 x$$

3. Formulación de hipótesis

$$h_w(x) = w_0 + w_1 x$$

$$x = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(n)} \end{bmatrix} \Longrightarrow \mathbb{X} = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ \vdots & \vdots \\ 1 & x^{(n)} \end{bmatrix}$$

$$w = \begin{bmatrix} w_0 & w_1 \end{bmatrix}; \quad w^T = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

$$h_w(x) = Xw^T$$

4. Elección de la función de coste

Error cuadrático
$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} (h_w(x^{(i)}) - y^{(i)})^2$$
 medio

4. Elección de la función de coste

medio

Error cuadrático
$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} (h_w(x^{(i)}) - y^{(i)})^2$$
 medio

4. Elección de la función de coste

$$J(h_w(x), y) = \frac{1}{n} \sum_{i=1}^{n} (h_w(x^{(i)}) - y^{(i)})^2$$

$$h_w(x) = w_0 + w_1 x$$

$$y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

4. Elección de la función de coste

$$\mathbb{X}w^{T} - y = \begin{bmatrix} w_{0} + w_{1}x^{(1)} \\ w_{0} + w_{1}x^{(2)} \\ \vdots \\ w_{0} + w_{1}x^{(n)} \end{bmatrix} - \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix} = \begin{bmatrix} w_{0} + w_{1}x^{(1)} - y^{(1)} \\ w_{0} + w_{1}x^{(2)} - y^{(2)} \\ \vdots \\ w_{0} + w_{1}x^{(n)} - y^{(n)} \end{bmatrix}$$

$$(XW^T - y)^T (XW^T - y) = \sum_{i=1}^n (w_0 + w_1 x^{(i)} - y^{(i)})^2$$

$$J(h_w(x), y) = \frac{1}{n} (Xw^T - y)^T (Xw^T - y)$$

$$w^* = \arg\min_{w} J(h_w(x), y)$$

$$w^* = \arg\min_{w} \left[\frac{1}{n} (XW^T - y)^T (XW^T - y) \right]$$

$$\frac{\partial}{\partial w_i} J(h_w(x), y) = 0, \forall j$$

$$\nabla$$
: operador nabla

$$abla : operador nabla \\

\nabla J : gradiente$$

$$abla : \int \frac{\partial J}{\partial w_0} \frac{\partial J}{\partial w_1} = 0$$

5. Optimización mediante Normal Equation

$$\nabla J \equiv \begin{bmatrix} \frac{\partial J}{\partial w_0} \\ \frac{\partial J}{\partial w_1} \end{bmatrix}$$

Jacobiano

$$H \equiv \nabla^2 J \equiv \begin{bmatrix} \frac{\partial^2 J}{\partial w_0^2} & \frac{\partial^2 J}{\partial w_0 \partial w_1} \\ \frac{\partial^2 J}{\partial w_1 \partial w_0} & \frac{\partial^2 J}{\partial w_1^2} \end{bmatrix}$$

Hessiano

$$J = \frac{1}{n} (\mathbb{X}w^T - y)^T (\mathbb{X}w^T - y)$$

$$J = \frac{1}{n} [(\mathbb{X}w^T)^T - y^T](\mathbb{X}w^T - y)$$

$$J = \frac{1}{n} (w \mathbb{X}^T - y^T) (\mathbb{X}w^T - y)$$

$$J = \frac{1}{n} (w \mathbb{X}^T \mathbb{X} w^T - w \mathbb{X}^T y - y^T \mathbb{X} w^T + y^T y)$$

$$(1 \times 1) \quad w \mathbb{X}^{T} y = (w \mathbb{X}^{T} y)^{T} = y^{T} (w \mathbb{X}^{T})^{T} = y^{T} \mathbb{X} w^{T} \quad (1 \times 1)$$

$$J = \frac{1}{n} (w \mathbb{X}^{T} \mathbb{X} w^{T} - 2w \mathbb{X}^{T} y + y^{T} y)$$

$$\mathbb{X} = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ \vdots & \vdots \\ 1 & x^{(n)} \end{bmatrix}; y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

$$w = \begin{bmatrix} w_0 & w_1 \end{bmatrix}; \quad w^T = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

$$\mathbb{X}^T \mathbb{X} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \chi^{(1)} & \chi^{(2)} & \cdots & \chi^{(n)} \end{bmatrix} \begin{bmatrix} 1 & \chi^{(1)} \\ 1 & \chi^{(2)} \\ \vdots & \vdots \\ 1 & \chi^{(n)} \end{bmatrix}$$

$$\mathbb{X}^T \mathbb{X} = \begin{bmatrix} 1^2 + 1^2 + \dots + 1^2 & x^{(1)} + x^{(2)} + \dots + x^{(n)} \\ x^{(1)} + x^{(2)} + \dots + x^{(n)} & x^{(1)^2} + x^{(2)^2} + \dots + x^{(n)^2} \end{bmatrix}$$

$$X^{T}X = \begin{bmatrix} \sum_{i=1}^{n} 1^{2} & \sum_{i=1}^{n} x^{(i)} \\ \sum_{i=1}^{n} x^{(i)} & \sum_{i=1}^{n} x^{(i)^{2}} \end{bmatrix}$$

$$\mathbb{X}^{T} \mathbb{X} w^{T} = \begin{bmatrix} \sum_{i=1}^{n} 1^{2} & \sum_{i=1}^{n} \chi^{(i)} \\ \sum_{i=1}^{n} \chi^{(i)} & \sum_{i=1}^{n} \chi^{(i)^{2}} \end{bmatrix} \begin{bmatrix} w_{0} \\ w_{1} \end{bmatrix}$$

$$\mathbb{X}^{T}\mathbb{X}w^{T} = \begin{bmatrix} w_{0} \sum_{i=1}^{n} 1^{2} + w_{1} \sum_{i=1}^{n} x^{(i)} \\ w_{0} \sum_{i=1}^{n} x^{(i)} + w_{1} \sum_{i=1}^{n} x^{(i)^{2}} \end{bmatrix}$$

$$wX^{T}Xw^{T} = [w_{0} \quad w_{1}]X^{T}Xw^{T} = w_{0}w_{0}\sum_{i=1}^{n} 1^{2} + w_{0}w_{1}\sum_{i=1}^{n} x^{(i)} + w_{1}w_{0}\sum_{i=1}^{n} x^{(i)} + w_{1}w_{1}\sum_{i=1}^{n} x^{(i)^{2}}$$

$$w \mathbb{X}^T \mathbb{X} w^T = w_0^2 \sum_{i=1}^n 1^2 + 2w_0 w_1 \sum_{i=1}^n x^{(i)} + w_1^2 \sum_{i=1}^n x^{(i)^2}$$

$$wX^Ty = \begin{bmatrix} w_0 & w_1 \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \chi^{(1)} & \chi^{(2)} & \cdots & \chi^{(n)} \end{bmatrix} y$$

$$wX^Ty = [w_0 + w_1x^{(1)} \quad w_0 + w_1x^{(2)} \quad \cdots \quad w_0 + w_1x^{(n)}]y$$

$$wX^{T}y = (w_{0} + w_{1}x^{(1)})y^{(1)} + (w_{0} + w_{1}x^{(1)})y^{(2)} + \dots + (w_{0} + w_{1}x^{(1)})y^{(n)}$$
$$(w_{0} + w_{1}x^{(1)})y^{(n)}$$

$$wX^{T}y = \sum_{i=1}^{n} (w_{0} + w_{1}x^{(i)})y^{(i)}$$

$$y^T y = \sum_{i=1}^n y^{(i)^2}$$

$$nJ = w_0^2 \sum_{i=1}^{n} 1^2 + 2w_0 w_1 \sum_{i=1}^{n} x^{(i)} + w_1^2 \sum_{i=1}^{n} x^{(i)^2} - 2\sum_{i=1}^{n} (w_0 + w_1 x^{(i)}) y^{(i)} + \sum_{i=1}^{n} y^{(i)^2}$$

$$\frac{\partial J}{\partial w} = \begin{bmatrix} \frac{\partial J}{\partial w_0} \\ \frac{\partial J}{\partial w_1} \end{bmatrix}$$

$$n\left(\frac{\partial J}{\partial w}\right) = \begin{bmatrix} 2w_0 \sum_{i=1}^n 1^2 + 2w_1 \sum_{i=1}^n x^{(i)} - 2\sum_{i=1}^n y^{(i)} \\ 2w_1 \sum_{i=1}^n x^{(i)^2} + 2w_0 \sum_{i=1}^n x^{(i)} - 2\sum_{i=1}^n x^{(i)} y^{(i)} \end{bmatrix}$$

$$\frac{\partial J}{\partial w_0} = \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)})$$

$$\frac{\partial J}{\partial w_1} = \frac{2w_1}{n} \sum_{i=1}^n x^{(i)^2} + \frac{2w_0}{n} \sum_{i=1}^n x^{(i)} - \frac{2}{n} \sum_{i=1}^n x^{(i)} y^{(i)}$$

$$\frac{\partial J}{\partial w_1} = \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)}) x^{(i)}$$

$$\left(\frac{\partial J}{\partial w}\right) = \begin{bmatrix} \frac{\partial J}{\partial w_0} \\ \frac{\partial J}{\partial w_1} \end{bmatrix}$$

$$n\left(\frac{\partial J}{\partial w}\right) = 2 \begin{bmatrix} w_0 \sum_{i=1}^{n} 1^2 + w_1 \sum_{i=1}^{n} x^{(i)} \\ w_1 \sum_{i=1}^{n} x^{(i)^2} + w_0 \sum_{i=1}^{n} x^{(i)} \end{bmatrix} - 2 \begin{bmatrix} \sum_{i=1}^{n} y^{(i)} \\ \sum_{i=1}^{n} x^{(i)} y^{(i)} \end{bmatrix}$$

$$\mathbb{X}^T y = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \chi^{(1)} & \chi^{(2)} & \cdots & \chi^{(n)} \end{bmatrix} \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n y^{(i)} \\ \sum_{i=1}^n \chi^{(i)} y^{(i)} \end{bmatrix}$$

$$n\left(\frac{\partial J}{\partial w}\right) = 2\mathbf{X}^T\mathbf{X}w^T - 2\mathbf{X}^Ty$$

$$\nabla J = \frac{\partial J}{\partial w} = \frac{2}{n} (X^T X w^T - X^T y) = 0$$

$$\nabla J = \frac{2}{n} (X^T X w^T - X^T y)^T$$

$$\nabla J = \frac{2}{n} [(X^T X w^T)^T - (X^T y)^T]$$

$$\nabla J = \frac{2}{n} [w(X^T X)^T - y^T X]$$

$$\nabla J = \frac{2}{n} [w(X^T X)^T - y^T X]$$

$$\nabla J = \frac{2}{n} (wX^T X - y^T X) = 0$$

$$w^* X^T X = y^T X$$

$$w^* = y^T X (X^T X)^{-1}$$

5. Optimización mediante Normal Equation

$$H \equiv \nabla^2 J = \begin{bmatrix} \frac{\partial^2 J}{\partial w_0^2} & \frac{\partial^2 J}{\partial w_0 \partial w_1} \\ \frac{\partial^2 J}{\partial w_1 \partial w_0} & \frac{\partial^2 J}{\partial w_1^2} \end{bmatrix}$$

Condición de convexidad: El Hessiano es una matriz semidefinida positiva

$$z = \begin{bmatrix} z_0 \\ z_1 \end{bmatrix} \in \mathbb{R}^2 \qquad z^T H z \ge 0$$

$$\frac{\partial J}{\partial w_0} = \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)})$$

$$\frac{\partial^2 J}{\partial w_0^2} = \frac{2}{n} \sum_{i=1}^n 1 = 2$$

$$\frac{\partial^2 J}{\partial w_1 \partial w_0} = \frac{2}{n} \sum_{i=1}^n x^{(i)}$$

$$\frac{\partial J}{\partial w_1} = \frac{2}{n} \sum_{i=1}^{n} (w_0 + w_1 x^{(i)} - y^{(i)}) x^{(i)}$$

$$\frac{\partial^2 J}{\partial w_0 \partial w_1} = \frac{2}{n} \sum_{i=1}^n x^{(i)}$$

$$\frac{\partial^2 J}{\partial w_1^2} = \frac{2}{n} \sum_{i=1}^n x^{(i)^2}$$

5. Optimización mediante Normal Equation

$$H \equiv \nabla^2 J = \frac{2}{n} \begin{bmatrix} n & \sum_{i=1}^n x^{(i)} \\ \sum_{i=1}^n x^{(i)} & \sum_{i=1}^n x^{(i)^2} \end{bmatrix} = \frac{2}{n} X^T X$$

Condición de convexidad:

El Hessiano es una matriz semidefinida positiva

$$z = \begin{bmatrix} z_0 \\ z_1 \end{bmatrix} \in \mathbb{R}^2 \qquad z^T H z \ge 0$$

$$z^{T}Hz = \begin{bmatrix} z_{0} & z_{1} \end{bmatrix} \frac{2}{n} \begin{bmatrix} n & \sum_{i=1}^{n} x^{(i)} \\ \sum_{i=1}^{n} x^{(i)} & \sum_{i=1}^{n} x^{(i)^{2}} \end{bmatrix} \begin{bmatrix} z_{0} \\ z_{1} \end{bmatrix}$$

$$z^{T}Hz = \frac{2}{n} \left[z_{0}n + z_{1} \sum_{i=1}^{n} x^{(i)} \quad z_{0} \sum_{i=1}^{n} x^{(i)} + z_{1} \sum_{i=1}^{n} x^{(i)^{2}} \right] \begin{bmatrix} z_{0} \\ z_{1} \end{bmatrix}$$

$$z^{T}Hz = \frac{2}{n} \left(z_{0}^{2}n + z_{0}z_{1} \sum_{i=1}^{n} x^{(i)} + z_{1}z_{0} \sum_{i=1}^{n} x^{(i)} + z_{1}^{2} \sum_{i=1}^{n} x^{(i)^{2}} \right)$$

$$z^{T}Hz = \frac{2}{n} \left(z_{0}^{2} \sum_{i=1}^{n} 1 + 2z_{0}z_{1} \sum_{i=1}^{n} x^{(i)} + z_{1}^{2} \sum_{i=1}^{n} x^{(i)^{2}} \right)$$

$$z^{T}Hz = \frac{2}{n} \left(\sum_{i=1}^{n} z_0^2 + \sum_{i=1}^{n} 2z_0 z_1 x^{(i)} + \sum_{i=1}^{n} z_1^2 x^{(i)^2} \right)$$

$$z^{T}Hz = \frac{2}{n} \sum_{i=1}^{n} \left(z_{0}^{2} + 2z_{0}z_{1}x^{(i)} + z_{1}^{2}x^{(i)^{2}} \right)$$

$$z^{T}Hz = \frac{2}{n} \sum_{i=1}^{n} (z_0 + z_1 x^{(i)})^2$$

$$(z_0 + z_1 x^{(i)})^2 \ge 0, \forall z, x^{(i)} \in \mathbb{R}^2$$

$$z^T H z \ge 0$$

$$w^* = y^T X(X^T X)^{-1} = [1.75 \quad 0.17]$$

5. Optimización mediante Gradient Descent

$$w_0^{(t+1)} \leftarrow w_0^{(t)} - \alpha \frac{\partial J(w)}{\partial w_0}$$
 $w_1^{(t+1)} \leftarrow w_1^{(t)} - \alpha \frac{\partial J(w)}{\partial w_1}$

5. Optimización mediante Gradient Descent

