ÉCONOMÉTRIE: UGA

2 : MODÈLE DE RÉGRESSION LINÉAIRE ET ESTIMATION PAR MCO

APPLICATION 1

(Cette version: 15 mars 2022)

MICHAL URDANIVIA²

^{1.} Dans ces notes on applique certaines des méthodes et résultats théoriques du cours. Bien que celui-ci puisse être brièvement rappelé. pour plus de détails veuillez vous reporter à celui-ci. Remarquons aussi que les notations utilisées peuvent être différentes par rapport au cours.

^{2.} Contact : michal.wong-urdanivia@univ-grenoble-alpes.fr, Université de Grenoble Alpes, Faculté d'Économie, GAEL.

$\frac{\text{UGA}}{}$	ÉCONOMÉTRIE	M. Urdanivia
	Table des matières	
1.	Projection et moindres carrés	2
2.	Théorème de Frisch-Waugh-Lovell	3
3.	Questions	5
4.	Application empirique	5
Références		5

1. Projection et moindres carrés

On considère un couple $(y_i, \mathbf{x}_i) \in \mathbb{R} \times \mathbb{R}^K$ qui sont des variables aléatoires pour lesquelles on observe un échantillon d'observations i.i.d., $\{(y_i, \mathbf{x}_i); i = 1, \dots, N\}$. Dans tout ce qui suit on suppose que $E[\mathbf{x}_i \mathbf{x}_i']$ et $E[y_i^2]$ sont finis.

Définissons le paramètre de la projection de y_i sur \mathbf{x}_i par,

$$\gamma := \arg\min_{\mathbf{g}} \mathrm{E}\left[(y_i - \mathbf{x}_i'\mathbf{g})^2 \right]$$

où γ vérifie les conditions du premier ordre :

$$\mathrm{E}\left[\mathbf{x}_i(y_i - \mathbf{x}_i'\boldsymbol{\gamma})\right] = 0,$$

et dès lors que $E[\mathbf{x}_i \mathbf{x}_i']$ est de rang plein ce qui revient à l'absence de multicolinéarité des éléments de $\mathbf{x}_i, \, \boldsymbol{\gamma}$ est donnée par l'expression :

$$\gamma = \mathrm{E}[\mathbf{x}_i \mathbf{x}_i']^{-1} \, \mathrm{E}[\mathbf{x}_i y_i].$$

On peut définir le résidu de la projection,

$$e_i = y_i - \mathbf{x}_i' \boldsymbol{\gamma},$$

et obtenir la décomposition de y_i suivante :

$$y_i = \mathbf{x}_i' \boldsymbol{\gamma} + e_i, \quad \mathbf{E}[\mathbf{x}_i e_i] = 0.$$

On remarque que cette décomposition ne nécessite aucune hypothèse de linéarité.

D'une façon similaire on peut définir le paramètre de la projection de y_i sur sur \mathbf{x}_i dans l'échantillon ou estimateur des moindres carrés par,

$$\hat{\gamma} := \arg\min_{\mathbf{g}} \bar{\mathbb{E}} \left[(y_i - \mathbf{x}_i' \mathbf{g})^2 \right].$$

où $\bar{\mathrm{E}}[f(w_i)] = \frac{1}{N} \sum_{i=1}^{N} f(w_i)$ est l'abbreviation de la moyenne empirique de $f(w_i)$ pour les différentes valeurs de w_i dans l'échantillon de N observations.

 $\hat{\gamma}$ vérifie les conditions du premier ordre :

$$\bar{\mathrm{E}}\left[\mathbf{x}_{i}(y_{i}-\mathbf{x}_{i}'\hat{\boldsymbol{\gamma}})\right]=0,$$

et dès lors que $\bar{\mathbb{E}}[\mathbf{x}_i\mathbf{x}_i']$ est de rang plein ce qui revient à l'absence de multicolinéarité des éléments de \mathbf{x}_i dans l'échantillon, $\boldsymbol{\gamma}$ est donnée par l'expression :

$$\hat{\boldsymbol{\gamma}} = \bar{\mathbf{E}}[\mathbf{x}_i \mathbf{x}_i']^{-1} \,\bar{\mathbf{E}}[\mathbf{x}_i y_i].$$

On peut définir,

$$\hat{e}_i = y_i - \mathbf{x}_i' \hat{\boldsymbol{\gamma}},$$

et obtenir la décomposition de y_i suivante :

$$y_i = \mathbf{x}_i' \hat{\boldsymbol{\gamma}} + \hat{e}_i, \quad \bar{\mathbf{E}}[\mathbf{x}_i \hat{e}_i] = 0.$$

2. Théorème de Frisch-Waugh-Lovell

Considérons une partition de \mathbf{x}_i en deux groupes $\mathbf{x}_{1,i}$ et $\mathbf{x}_{2,i}$ de respectivement K_1 et K_2 éléments(on suppose que le régresseur constant appartient à \mathbf{x}_{2i}) et écrivons :

$$y_i = \mathbf{x}'_{1,i} \boldsymbol{\gamma}_1 + \mathbf{x}'_{1,i} \boldsymbol{\gamma}_2 + e_i \tag{2.1}$$

où l'on a décomposé le paramètre de la projection de y_i sur \mathbf{x}_i conformément à la décomposition de \mathbf{x}_i .

Définissons l'opérateur de Frisch-Waugh-Lovell par rapport à un vecteur de variables aléatoires \mathbf{w}_i telle que $\mathbf{E}[\mathbf{w}_i\mathbf{w}_i']$ soit fini, celui qui appliqué à une variable aléatoire v_i telle que $\mathbf{E}[v_i^2]$ soit finie, lui associe le résidu de sa projection sur \mathbf{w}_i que l'on note \tilde{v}_i avec donc :

$$\tilde{v}_i = v_i - \mathbf{w}_i' \boldsymbol{\gamma}_{\mathbf{w}_i}, \quad \boldsymbol{\gamma}_{\mathbf{w}_i} = \arg\min_{\mathbf{g}} E\left[(v_i - \mathbf{w}_i' \mathbf{g})^2 \right]$$

Quand nous appliquons cette opérateur à un vecteur \mathbf{v}_i on notera $\tilde{\mathbf{v}}_i$ le vecteur qui empile les résultats de cette application sur chaque élément de \mathbf{v}_i .

Il est facile de vérifier que cet opérateur est linéaire au sens où pour $y_i = v_i + u_i$ avec $\mathrm{E}[v_i^2] + \mathrm{E}[u_i^2] < \infty$:

$$\tilde{y}_i = \tilde{v}_i + \tilde{u}_i$$
.

Quand nous appliquons cette opérateur sur les termes de (2.1) nous obtenons,

$$\tilde{y}_i = \tilde{\mathbf{x}}'_{1,i} \boldsymbol{\gamma}_1 + \tilde{\mathbf{x}}'_{2,i} \boldsymbol{\gamma}_2 + \tilde{e}_i,$$

ce qui implique que :

$$\tilde{y}_i = \tilde{\mathbf{x}}'_{1,i}\gamma_1 + e_i, \quad \mathbf{E}[\tilde{\mathbf{x}}_{1,i}e_i] = 0. \tag{2.2}$$

La dernière ligne résulte de ce que $\tilde{\mathbf{x}}_{2,i} = 0$ par définition, et de ce que $\tilde{e}_i = e_i$ en raison de l'orthogonalité de e_i et \mathbf{x}_i , $\mathrm{E}[\mathbf{x}_i e_i] = 0$; et de plus comme $\tilde{\mathbf{x}}_{1,i}$ est une combinaison linéaire d'éléments de \mathbf{x}_i nous avons que $\mathrm{E}[\tilde{\mathbf{x}}_{1,i} e_i] = 0$.

La condition $\mathrm{E}[\tilde{\mathbf{x}}_{1,i}e_i]=0$ est une condition du premier ordre dans la projection de \tilde{y}_i sur $\tilde{\mathbf{x}}_{1,i}$. Autrement dit le paramètre $\boldsymbol{\gamma}_1$ peut être obtenu par projection de \tilde{y}_i sur $\tilde{\mathbf{x}}_{1,i}$:

UGA ÉCONOMÉTRIE M. URDANIVIA

$$\gamma_1 := \arg\min_{\mathbf{g}} \mathrm{E}\left[(\tilde{y}_i - \tilde{\mathbf{x}}'_{1,i}\mathbf{g})^2 \right] = \mathrm{E}[\tilde{\mathbf{x}}_{1,i}\tilde{\mathbf{x}}'_{1,i}]^{-1} \, \mathrm{E}[\tilde{\mathbf{x}}_{1,i}\tilde{y}_i]$$

De manière similaire on peut définir l'opérateur de FVL dans l'échantillon par :

$$\check{v}_i = v_i - \mathbf{w}_i' \hat{\boldsymbol{\gamma}}_{\mathbf{w}_i}, \quad \hat{\boldsymbol{\gamma}}_{\mathbf{w}_i} = \arg\min_{\mathbf{g}} \bar{\mathrm{E}} \left[(v_i - \mathbf{w}_i' \mathbf{g})^2 \right],$$

et si nous l'appliquons à :

$$y_i = \mathbf{x}'_{1,i}\hat{\boldsymbol{\gamma}}_1 + \mathbf{x}'_{1,i}\hat{\boldsymbol{\gamma}}_2 + \hat{e}_i$$

on obtient :

$$\check{y}_i = \check{\mathbf{x}}'_{1,i}\hat{\gamma}_1 + \hat{e}_i, \quad \mathbf{E}[\check{\mathbf{x}}_{1,i}\hat{e}_i] = 0.$$
(2.3)

ce qui implique,

$$\hat{\boldsymbol{\gamma}}_1 := \arg\min_{\mathbf{g}} \bar{\mathbf{E}} \left[(\check{y}_i - \check{\mathbf{x}}'_{1,i}\mathbf{g})^2 \right] = \bar{\mathbf{E}} [\check{\mathbf{x}}_{1,i}\check{\mathbf{x}}'_{1,i}]^{-1} \bar{\mathbf{E}} [\check{\mathbf{x}}_{1,i}\check{y}_i]$$

3. Questions

- (1) Montrez que l'estimateur $\hat{\gamma}_1$ obtenu par application du résultat de FVL est convergent pour $\hat{\gamma}_1.$
- (2) Montrer que sa distribution asymptotique est une loi normale.

4. Application empirique

Références