Numerical Differentiation

We assume that we can compute a function f, but that we have no information about how to compute f'. We want ways of estimating f'(x), given what we know about f.

Reminder: definition of differentiation:

$$\frac{df}{dx}=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$
 For second derivatives, we have the definition:

$$\frac{d^2f}{dx^2} = \lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$

First Derivative

We can use this formula, by taking Δx equal to some small value h, to get the following approximation,

• known as the Forward Difference $(D_+(h))$:

$$f'(x) \approx D_+(h) = \frac{f(x+h) - f(x)}{h}$$

• Alternatively we could use the interval on the other side of x, to get the Backward Difference $(D_{-}(h))$:

$$f'(x) \approx D_-(h) = \frac{f(x) - f(x - h)}{h}$$

ullet A more symmetric form, the Central Difference $(D_0(h))$, uses intervals on either

$$f'(x) \approx D_0(h) = \frac{f(x+h) - f(x-h)}{2h}$$

All of these give (different) approximations to f'(x).

Second Derivative

The simplest way is to get a symmetrical equation about x by using both the forward and backward differences to estimate $f'(x+\Delta x)$ and f'(x) respectively:

$$f''(x) \approx \frac{D_{+}(h) - D_{-}(h)}{h} = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Error Estimation in Differentiation I

We shall see that the error involved in using these differences is a form of truncation error (R_T) :

$$R_T = D_+(h) - f'(x)$$

$$=\frac{1}{h}(f(x+h)-f(x))-f'(x)$$

Using Taylor's Theorem: $f(x+h) = f(x) + f'(x)h + f''(x)h^2/2! + f^{(3)}(x)h^3/3! + \cdots$:

$$R_T = \frac{1}{\hbar} (f'(x)h + f''(x)h^2/2! + f'''(x)h^3/3! + \cdots) - f'(x)$$

$$= \frac{1}{\hbar} f'(x)h + \frac{1}{\hbar} (f''(x)h^2/2! + f'''(x)h^3/3! + \cdots)) - f'(x)$$

$$= f''(x)h/2! + f'''(x)h^2/3! + \cdots$$

Using the Mean Value Theorem, for some ξ within h of x:

$$R_T = \frac{f''(\xi) \cdot h}{2}$$

Error Estimation in Differentiation II

We don't know the value of either f'' or ξ , but we can say that the error is order h:

$$R_T$$
 for $D_+(h)$ is $O(h)$

so the error is proportional to the step size — as one might naively expect. For $D_{-}(h)$ we get a similar result for the truncation error — also O(h).

Exercise: differentiation I

Limit of the Difference Quotient. Consider the function $f(x) = e^x$.

• compute f'(1) using the sequence of approximation for the derivative:

$$D_k = \frac{f(x + h_k) - f(x)}{h_k}$$

$$\text{ with } h_k=10^{-k}, \quad k\geq 1$$

② for which value k do you have the best precision (knowing $e^1 = 2.71828182845905$). Why?

Exercise: differentiation II

- 1 xls/Lect13.xls
- lacktriangledark Best precision at k=8. When h_k is too small, f(1) and $f(1+h_k)$ are very close together. The difference $f(1+h_k)-f(1)$ can exhibit the problem of loss of significance due to the substraction of quantities that are nearly equal.

Central Difference

- \bullet we have looked at approximating f'(x) with the backward $D_-(h)$ and forward difference $D_+(h)$.
- Now we just check out the approximation with the central difference:

$$f'(x) \simeq D_0(h) = \frac{f(x+h) - f(x-h)}{2h}$$

Richardson extrapolation

Error analysis of Central Difference I

We consider the error in the Central Difference estimate $(D_0(h))$ of f'(x):

$$D_0(h) = \frac{f(x+h) - f(x-h)}{2h}$$

We apply Taylor's Theorem,

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)h^2}{2!} + \frac{f'''(x)h^3}{3!} + \frac{f^{(4)}(x)h^4}{4!} + \cdots \quad (A)$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)h^2}{2!} - \frac{f'''(x)h^3}{3!} + \frac{f^{(4)}(x)h^4}{4!} + \cdots \quad (B)$$

$$(A) - (B) = 2f'(x)h + 2\frac{f'''(x)h^3}{3!} + 2\frac{f^{(5)}(x)h^5}{5!} + \cdots$$

$$\frac{(A) - (B)}{2h} = f'(x) + \frac{f'''(x)h^2}{3!} + \frac{f^{(5)}(x)h^4}{5!} + \cdots$$

Error analysis of Central Difference II

We see that the difference can be written as

$$D_0(h) = f'(x) + \frac{f''(x)}{6}h^2 + \frac{f^{(4)}(x)}{24} + \cdots$$

or alternatively, as

$$D_0(h) = f'(x) + b_1 h^2 + b_2 h^4 + \cdots$$

where be know how to compute b_1 , b_2 , etc.

We see that the error $R_T = D_0(h) - f'(x)$ is $O(h^2)$.

Remark. Remember: for D_- and D_+ , the error is O(h).

Error analysis of Central Difference III

Example.

Let try again the example:

$$f(x) = e^x \qquad f'(x) = e^x$$

We evaluate $f'(1) = e^1 \approx 2.71828...$ with

$$D_0(h) = \frac{f(1+h) - f(1-h)}{2h}$$

for $h = 10^{-k}, \quad k \ge 1.$

Numerical values: xls/Lect13.xls

Rounding Error in Difference Equations I

- When presenting the iterative techniques for root-finding, we ignored rounding errors, and paid no attention to the potential error problems with performing subtraction. This did not matter for such techniques because:
 - the techniques are self-correcting, and tend to cancel out the accumulation of rounding errors
 - ② the iterative equation $x_{n+1} = x_n c_n$ where c_n is some form of *correction* factor has a subtraction which is safe because we are subtracting a small quantity (c_n) from a large one (e.g. for Newton-Raphson, $c_n = \frac{f(x)}{f(x)}$).

Rounding Error in Difference Equations II

• However, when using a difference equation like

$$D_0(h) = \frac{f(x+h) - f(x-h)}{2h}$$

we seek a situation where h is small compared to everything else, in order to get a good approximation to the derivative. This means that x+h and x-h are very similar in magnitude, and this means that for most f (well-behaved) that f(x+h) will be very close to f(x-h). So we have the worst possible case for subtraction: the difference between two large quantities whose values are very similar.

 We cannot re-arrange the equation to get rid of the subtraction, as this difference is inherent in what it means to compute an approximation to a derivative (differentiation uses the concept of difference in a deeply intrinsic way).

Rounding Error in Difference Equations III

- \bullet We see now that the total error in using $D_0(h)$ to estimate f'(x) has two components
 - \bullet the truncation error R_T which we have already calculated,
 - 2 and a function calculation error R_{XF} which we now examine.
- When calculating $D_0(h)$, we are not using totally accurate computations of f, but instead we actually compute an approximation \tilde{f} , to get

$$\bar{D}_0(h) = \frac{\bar{f}(x+h) - \bar{f}(x-h)}{2h}$$

• We shall assume that the error in computing f near to x is bounded in magnitude by ϵ :

$$|\bar{f}(x) - f(x)| \le \epsilon$$

Rounding Error in Difference Equations IV

• The calculation error is then given as

$$R_{XF} = D_{0}(h) - D_{0}(h)$$

$$= \frac{\bar{f}(x+h) - \bar{f}(x-h)}{2h} - \frac{f(x+h) - f(x-h)}{2h}$$

$$= \frac{\bar{f}(x+h) - \bar{f}(x-h) - (f(x+h) - f(x-h))}{2h}$$

$$= \frac{\bar{f}(x+h) - f(x+h) - (\bar{f}(x-h) - f(x-h))}{2h}$$

$$|R_{XF}| \leq \frac{|\bar{f}(x+h) - f(x+h)| + |\bar{f}(x-h) - f(x-h)|}{2h}$$

$$\leq \frac{\epsilon + \epsilon}{2h}$$

$$\leq \frac{\epsilon}{h}$$

So we see that R_{XF} is proportional to 1/h, so as h shrinks, this error grows, unlike R_T which shrinks quadratically as h does.

Rounding Error in Difference Equations V

• We see that the total error R is bounded by $|R_T| + |R_{XF}|$, which expands out to

$$|R| \le \left| \frac{f'''(\xi)}{6} h^2 \right| + \left| \frac{\epsilon}{h} \right|$$

So we see that to minimise the overall error we need to find the value of $h=h_{opt}$ which minimises the following expression:

$$\frac{f'''(\xi)}{6}h^2 + \frac{\epsilon}{h}$$

Unfortunately, we do not know $f^{\prime\prime\prime}$ or ξ !

Many techniques exist to get a good estimate of h_{opt} , most of which estimate f''' numerically somehow. These are complex and not discussed here.

Richardson Extrapolation I

• The trick is to compute $D_0(h)$ for 2 different values of h, and combine the results in some appropriate manner, as guided by our knowledge of the error behaviour.

In this case we have already established that

$$D_0(h) = \frac{f(x+h) - f(x-h)}{2h} = f'(x) + b_1 h^2 + O(h^4)$$

We now consider using twice the value of h:

$$D_0(2h) = \frac{f(x+2h) - f(x-2h)}{4h} = f'(x) + b_1 4h^2 + O(h^4)$$

We can subtract these to get:

$$D_0(2h) - D_0(h) = 3b_1h^2 + O(h^4)$$

We divide across by 3 to get:

$$\frac{D_0(2h) - D_0(h)}{3} = b_1 h^2 + O(h^4)$$

Richardson Extrapolation II

The righthand side of this equation is simply $D_0(h) - f'(x)$, so we can substitute to get

$$\frac{D_0(2h) - D_0(h)}{3} = D_0(h) - f'(x) + O(h^4)$$

This re-arranges (carefully) to obtain

$$f'(x) = D_0(h) + \frac{D_0(h) - D_0(2h)}{3} + O(h^4)$$
$$= \frac{4D_0(h) - D_0(2h)}{3} + O(h^4)$$

Richardson Extrapolation III

- It is an estimate for f'(x) whose truncation error is $\mathcal{O}(h^4)$, and so is an improvement over D_0 used alone.
- This technique of using calculations with different h values to get a better estimate is known as Richardson Extrapolation.

Richardson's Extrapolation.

Suppose that we have the two approximations $\mathcal{D}_0(h)$ and $\mathcal{D}_0(2h)$ for f'(x), then an improved approximation has the form:

$$f'(x) = \frac{4D_0(h) - D_0(2h)}{3} + O(h^4)$$

Summary

Approximation for numerical differentiation:

Approximation for $f'(x)$	Error
Forward/backward difference D_+, D	O(h)
Central difference D_0	$O(h^2)$
Richardson Extrapolation	$O(h^4)$

• Considering the total error (approximation error + calculation error):

$$|R| \le \left| \frac{f'''(\xi)}{6} h^2 \right| + \left| \frac{\epsilon}{h} \right|$$

remember that h should not be chosen too small.

Solving Differential Equations Numerically

Definition.

The Initial value Problem deals with finding the solution y(x) of

$$y' = f(x, y)$$
 with the initial condition $y(x_0) = y_0$

- It is a 1st order differential equations (D.E.s).
- Alternative ways of writing y' = f(x, y) are:

$$y'(x) = f(x,y)$$

$$y'(x) = f(x,y)$$

$$\frac{dy(x)}{dx} = f(x,y)$$

Working Example

• We shall take the following D.E. as an example:

$$f(x,y) = y$$

or
$$y' = y$$
 (or $y'(x) = y(x)$).

• This has an infinite number of solutions:

$$y(x) = C \cdot e^x \qquad \forall C \in \mathbb{R}$$

- We can single out one solution by supplying an initial condition $y(x_0) = y_0$.
- ullet So, in our example, if we say that y(0)=1, then we find that C=1 and out solution is

$$y = e^x$$

Working Example

The dashed lines show the many solutions for different values of \mathcal{C} . The solid line shows the solution singled out by the initial condition that y(0)=1.

The Lipschitz Condition I

We can give a condition that determines when the initial condition is sufficient to ensure a unique solution, known as the Lipschitz Condition.

Lipschitz Condition:

For $a \le x \le b$, for all $-\infty < y, y^* < \infty$, if there is an L such that

$$|f(x,y) - f(x,y^*)| \le L|y - y^*|$$

Then the solution to y' = f(x, y) is unique, given an initial condition.

- L is often referred to as the Lipschitz Constant.
- A useful estimate for L is to take $\left|\frac{\partial f}{\partial y}\right| \leq L$, for x in (a,b).

The Lipschitz Condition II

Example.

given our example of y' = y = f(x, y), then we can see do we get a suitable L.

$$\frac{\partial f}{\partial y} = \frac{\partial(y)}{\partial(y)}$$
$$= 1$$

So we shall try L=1

$$|f(x,y) - f(x,y^*)| = |y - y^*|$$

 $\leq 1 \cdot |y - y^*|$

So we see that we satisfy the Lipschitz Condition with a Constant L=1.

Numerically solving y' = f(x, y)

- ullet We assume we are trying to find values of y for x ranging over the interval [a,b].
- We start with the one point where we have the exact answer, namely the initial condition $y_0 = y(x_0)$.
- We generate a series of x-points from $a=x_0$ to b, separated by a small step-interval h:

$$x_0 = a$$

$$\begin{vmatrix} x_i &= a + i \cdot h \\ h &= \frac{b - a}{N} \end{vmatrix}$$

$$x_N = b$$

• we want to compute $\{y_i\}$, the approximations to $\{y(x_i)\}$, the true values.

Euler's Method

• The technique works by using applying f at the current point (x_n, y_n) to get an estimate of y' at that point.

Euler's Method.

This is then used to compute y_{n+1} as follows:

$$y_{n+1} = y_n + h \cdot f(x_n, y_n)$$

This technique for solving D.E.'s is known as Euler's Method.

 \bullet It is simple, slow and inaccurate, with experimentation showing that the error is O(h).

Euler's Method

Example.

In our example, we have

$$y' = y$$
 $f(x,y) = y$ $y_{n+1} = y_n + h \cdot y_n$

At each point after x_0 , we accumulate an error, because we are using the slope at x_n to estimate y_{n+1} , which assumes that the slope doesn't change over interval $[x_n, x_{n+1}]$.

Truncation Errors I

Definitions.

- The error introduced at each step is called the Local Truncation Error.
- The error introduced at any given point, as a result of accumulating all the local truncation errors up to that point, is called the Global Truncation Error.

In the diagram above, the local truncation error is $y(x_{n+1}) - y_{n+1}$.

Truncation Errors II

We can estimate the local truncation error $y(x_{n+1}) - y_{n+1}$, by assuming the value y_n for x_n is exact as follows: as follows:

$$y(x_{n+1}) = y(x_n + h)$$

Using Taylor Expansion about $x = x_n$

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(\xi)$$

Assuming y_n is exact $(y_n = y(x_n))$, so $y'(x_n) = f(x_n, y_n)$

$$y(x_{n+1}) = y_n + hf(x_n, y_n) + \frac{h^2}{2}y''(\xi)$$

Now looking at y_{n+1} by definition of the Euler method:

$$y_{n+1} = y_n + hf(x_n, y_n)$$

We subtract the two results:

$$y(x_{n+1}) - y_{n+1} = -\frac{h^2}{2}y''(\xi)$$

Truncation Errors III

So

$$y(x_{n+1}) - y_{n+1} \propto O(h^2)$$

- We saw that the local truncation error for Euler's Method is $O(h^2)$.
- By integration (accumulation of error when starting from x_0), we see that global error is O(h).

As a general principle, we find that if the Local Truncation Error is $O(h^{p+1})$, then the Global Truncation Error is $O(h^p)$.

Introduction

Considering the problem of solving differential equations with one initial condition, we learnt about:

- Lipschitz Condition (unicity of the solution)
- finding numerically the solution : Euler method

Today is about how to improve the Euler's algorithm:

- Heun's method
- and more generally Runge-Kutta's techniques.

Improved Differentiation Techniques I

We can improve on Euler's technique to get better estimates for y_{n+1} . The idea is to use the equation y'=f(x,y) to estimate the slope at x_{n+1} as well, and then average these two slopes to get a better result.

Improved Differentiation Techniques II

• Using the slope $y'(x_n, y_n) = f(x_n, y_n)$ at x_n , the Euler approximation is:

$$(A) \qquad \frac{y_{n+1} - y_n}{h} \simeq f(x_n, y_n)$$

• Considering the slope $y'(x_{n+1},y_{n+1})=f(x_{n+1},y_{n+1})$ at x_{n+1} , we can propose this new approximation:

(B)
$$\frac{y_{n+1} - y_n}{h} \simeq f(x_{n+1}, y_{n+1})$$

- ullet The trouble is: we dont know y_{n+1} in f (because this is what we are looking for!).
- So instead we use $y_{n+1}^{(e)}$ the Euler's approximation of y_{n+1} :

(B)
$$\frac{y_{n+1}-y_n}{h} \simeq f(x_{n+1}, y_{n+1}^{(e)})$$

Improved Differentiation Techniques III

So considering the two approximations of $\frac{y_{n+1}-y_n}{h}$ with expressions (A) and (B), we get a better approximation by averaging (ie. by computing A+B/2):

$$\frac{y_{n+1} - y_n}{h} \simeq \frac{1}{2} \cdot \left(f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(e)}) \right)$$

Heun's Method.

The approximation:

$$y_{n+1} = y_n + \frac{h}{2} \cdot \left(f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(e)}) \right)$$

= $y_n + \frac{h}{2} \cdot \left(f(x_n, y_n) + f(x_{n+1}, y_n + h \cdot f(x_n, y_n)) \right)$

is known as Heun's Method.

It can be shown to have a global truncation error that is $O(h^2)$. The cost of this improvement in error behaviour is that we evaluate f twice on each h-step.

Runge-Kutta Techniques I

- We can repeat the Heun's approach by considering the approximations of slopes in the interval $[x_n; x_{n+1}]$.
- This leads to a large class of improved differentiation techniques which evaluate f
 many times at each h-step, in order to get better error performance.
- This class of techniques is referred to collectively as Runge-Kutta techniques, of which Heun's Method is the simplest example.
- ullet The classical Runge-Kutta technique evaluates f four times to get a method with global truncation error of $O(h^4)$.

Runge-Kutta Techniques II

Runge-Kutta's technique using 4 approximations.

It is computed using approximations of the slope at x_n, x_{n+1} and also two approximations at mid interval $x_n + \frac{h}{2}$:

$$\frac{y_{n+1} - y_n}{h} = \frac{1}{6} (f_1 + 2 \cdot f_2 + 2 \cdot f_3 + f_4)$$

with

$$f_1 = f\left(x_n, y_n\right)$$

$$f_2 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f_1\right)$$

$$f_3 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}f_2\right)$$

$$f_4 = f\left(x_{n+1}, y_n + h \cdot f_3\right)$$

It can be shown that the global truncation error is $\mathcal{O}(h^4)$.