TITLE OF PROJECT

MPhil to PhD Transfer Report

AUTHOR's NAME

SUPERVISOR: Professor P Kyriacou

LONDON

October, 2016

Declaration

Declaration that the work you're doing is yours 'except where specifically cited'.

 $For \ person \ number \ 1 \ who's \ really \ important.$

Also for people number 2 cause he's cool...

Acknowledgements

 $Acknowledgement\ number\ 1.$

 $Acknowledgement\ number\ 2\ \dots$

Abstract

This is where your abstract goes.. $\,$

Contents

1	Introduction	1
2	La ecuación de Khokhlov–Zabolotskaya–Kuznetsov	2
3	Conclusiones	3

List of Figures

List of Tables

List of Symbols (draft)

Symbol	Description
S_aO_2	\sao — Arterial oxygen saturation (%). (no)
S_pO_2	\spo — Pulse oximeter oxygen saturation (%). (no)
PO_2	\po — Partial pressure of oxygen $(mmHg)$. (no)
P_aO_2	\pao — Arterial partial pressure of oxygen $(mmHg)$. (no)
P_tO_2	\pto — Tissue oxygen haemoglobin concentration $(mmHg)$. (no)
Hb	\deoxy — Haemoglobin / deoxy-Haemoglobin (gL^{-1}) . (no)
HbO_2	$\setminus oxy$ — Oxyhaemoglobin (gL^{-1}) . (no)
R_{OS}	\Ros — Ratio of ratios. (no)
AC_R	\ACr — AC component of red. (no)
AC_{IR}	\ACir — AC component of infrared. (no)
DC_R	\DCr — DC component of red. (no)
DC_{IR}	\DCir — DC component of infrared. (no)
λ_R	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
λ_{IR}	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
I_0	\Io — Original transmitted light intensity. (no)
I_s	\Is — Transmitted light intensity during systole. (no)
I_d	\Id — Transmitted light intensity during diastole. (no)
[c]	\conc — Concentration $(mmolL^{-1})$. (no)
$\epsilon(\lambda)$	\exco — Extinction coefficient of a given wavelength $(Lmmol^{-1}cm^{-1})$.
	(no)
d	$\oldsymbol{\colored}$ Optical pathlenth (cm) . (no)
op-amps	\opamp — Operational amplifiers. (no)
ZenPPG	\zen — Photoplethysmography instrumentation Unit. (no)
c	\usspeed — Speed of light $(2.99 \times 10^8 ms^{-1})$. (no)

Chapter 1

Introduction

Chapter 2

La ecuación de

Khokhlov-Zabolotskaya-Kuznetsov

$$\left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial y_{1}^{2}}\right)p + \frac{1}{c_{0}^{2}}\frac{\partial^{2}p}{\partial \tau^{2}} - \frac{1}{c_{0}^{2}}\frac{\partial^{2}p}{\partial \tau^{2}} - \frac{2}{c_{0}}\frac{\partial^{2}p}{\partial z_{1}\partial \tau} + \frac{\delta}{c_{0}^{4}}\frac{\partial^{3}p}{\partial \tau^{3}} = -\frac{\beta}{\rho_{0}c_{0}}\frac{\partial^{2}p^{2}}{\partial \tau^{2}},$$

$$-\frac{c_{0}}{2} \times \left[\left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial y_{1}^{2}}\right)p - \frac{2}{c_{0}}\frac{\partial^{2}p}{\partial z_{1}\partial \tau} + \frac{\delta}{c_{0}^{4}}\frac{\partial^{3}p}{\partial \tau^{3}}\right] = -\frac{c_{0}}{2} \times \left[-\frac{\beta}{\rho_{0}c_{0}}\frac{\partial^{2}p^{2}}{\partial \tau^{2}}\right].$$
(2.1)

...

Chapter 3

Conclusiones

I was sick - sick unto death with that long agony... - The Pit and the Pendulum- $Edgar\ Allan\ Poe$

Bibliography