Zero Knowledge Proofs (ZKP) and Secure Multiparty Computation (MPC)

Zero Knowledge Proofs (ZKP) and Secure Multiparty Computation (MPC)

	7	5		9				6
	2	3		8			4	
8					3			1
5			7		2			
	4		8		6		2	
			9		1			3
9			4					7
	6			7		5	8	
7				1		3	9	

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9

1	7	5	2	9	4	8	3	6
6	2	3	1	8	7	9	4	5
8	9	4	5	6	3	2	7	1
5	1	9	7	3	2	4	6	8
3	4	7	8	5	6	1	2	9
2	8	6	9	4	1	7	5	3
9	3	8	4	2	5	6	1	7
4	6	1	3	7	9	5	8	2
7	5	2	6	1	8	3	9	4

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9

Do I just...
give the answer away?
No! ZKP!

Alice

Can you solve this sudoku?

	7	5		9				6
	2	3		8			4	
8					3			1
5			7		2			
	4		8		6		2	
			9		1			3
9			4					7
	6			7		5	8	
7				1		3	9	

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9

No - it's unsolvable, you're messing with me!

Definitions of a Zero Knowledge Proof

witness w(or unbounded computational power)

- Soundness: if the statement is false, Dani rejects, even if Alice cheats
- Zero Knowledge: Dani learns nothing other than the fact that the statement is true
 We formalize this via the existence of a simulator:

```
\forall PPT D^*, \exists PPT S s.t. VIEW(D^*) \equiv S(x)
```

Goals:

- completeness
- soundness
- ZK

Alice

								-
	7	5		9				6
	2	3		8			4	
8					3			1
5			7		2			
	4		8		6		2	
			9		1			3
9			4					7
	6			7		5	8	
7				1		3	9	

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9

Goals:

- completeness
- soundness

- ZK

Alice

random permutation:

1	7	5	2	9	4	8	3	6	$1 \rightarrow 2$
6	2	3	1	8	7	9	4	5	$2 \rightarrow 6$
3	9	4	5	6	3	2	7	1	$3 \rightarrow 5$
5	1	9	7	3	2	4	6	8	4 → 9
3	4	7	8	5	6	1	2	9	5 → 1
2	8	6	9	4	1	7	5	3	6 → 7
9	3	8	4	2	5	6	1	7	7 → 8
4	6	1	3	7	9	5	8	2	8 -> 4
7	5	2	6	1	8	3	9	4	9 -> 3

2	8	1	6	3	9	4	5	7
7	6	5	2	4	8	3	9	1
4	3	9	1	7	5	6	8	2
1	2	3	8	5	6	9	7	4
5	9	8	4	1	7	2	6	3
6	4	7	3	9	2	8	1	6
3	5	4	9	6	1	7	2	8
9	7	2	5	8	3	1	4	6
8	1	6	7	2	4	5	3	9

if the original sudoku was "valid", so is the new one!

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9

Goals:

- √ completeness
- √ soundness

Alice

2	8	1	6	3	9	4	5	7
7	6	5	2	4	8	3	9	1
4	3	9	1	7	5	6	8	2
1	2	3	8	5	6	9	7	4
5	9	8	4	1	7	2	6	3
6	4	7	3	9	2	8	1	6
3	5	4	9	6	1	7	2	8
9	7	2	5	8	3	1	4	6
8	1	6	7	2	4	5	3	9

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9
- "initial conditions": a permutation on 1, ..., 9 maps the original black numbers to the ones here

If Alice could fool Dani, she could solve the sudoku!

Q: what does Dani check?

Goals:

- √ completeness
- √ soundness
- X ZK

Alice

	-						-	
2	8	1	6	3	9	4	5	7
7	6	5	2	4	8	3	9	1
4	3	9	1	7	5	6	8	2
1	2	3	8	5	6	9	7	4
5	9	8	4	1	7	2	6	3
6	4	7	3	9	2	8	1	6
3	5	4	9	6	1	7	2	8
9	7	2	5	8	3	1	4	6
8	1	6	7	2	4	5	3	9

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9

Q: do we get ZK?

A: no! If there existed a simulator that could emulate Dani's view, it could also solve the sudoku.

- "initial conditions": a permutation on 1, ..., 9 maps the original black numbers to the ones here

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9
- initial conditions

Q: what would the simulator do?

Q: do we get soundness?

I didn't learn anything!

Dani

... but if Alice
cheated, she might
get away with it
with prob $\leq 27/28$.

Constraints:

- row contains 1-9
- column contains 1-9
- sub-square contains 1-9
- initial conditions

Open constraint i!

Q: what would the simulator do?

Q: how likely is Alice to get away with it?

Solution: repeat k times, s.t (27/28)^k is small enough.

Proof of Sudoku Solvability... online

Goals: - completeness - soundness Alice Dani Open constraint i!

Tool: Commitments

Properties:

- Hiding: reveals nothing about what's inside, without 🥕
- Binding: can only be opened to one thing Each property can be...
- Perfect (unbreakable even with unlimited resources), or
- Computational (reliant on the hardness of some problem)

Q: how might we build this thing?

Proof of Sudoku Solvability... online

Framework for a ZKP

n constraints on the committed stuff:

- one reveals nothing
- if all of them hold, the statement is true

repeat k times, s.t $(n-1/n)^k$ is small enough.

Back to Reality!

In practice, we want to prove things like...

- Identity, or possession of credentials
- Correct computation
- Generally: knowledge/existence of w s.t. R(x, w) = 1

How do we do this?

• Sudoku is NP-complete - we can trinefficient a sudoku!

Zero Knowledge Proofs (ZKP) and Secure Multiparty Computation (MPC)

Secure Multi-Party Computation (MPC): A First Example

$$x_A \in [1,...,10]$$

we could ask someone to help us...
but there is no-one we both trust!

 $f(x_A, x_B) = \begin{cases} 1 & \text{if } x_A = x_B \\ 0 & \text{otherwise} \end{cases}$

Dani

$$x_D \in [1,...,10]$$

We want privacy: if $x_A \neq x_D$, that is all they learn

Q: can you think of an easy way to do this?

Secure Multi-Party Computation (MPC)

We want:

- correctness
- t-privacy: the
 combined views of t
 or fewer participants
 reveal nothing other
 than y

Secure Multi-Party Computation (MPC)

We want:

- correctness
- t-privacy: the
 combined views of t
 or fewer participants
 reveal nothing other
 than y

ZKP from MPC: Attempt 1

Goals:

- completeness
- soundness
- ZK

Run MPC for $f(w, \cdot) = R(x, w)!$

	Communication Complexity	Tools
Reduce to Sudoku (or something)	poly(k, R)	lightweight (commitments)
Run 2PC	$O(k \mid R \mid)$	heavyweight (i.e. "public key" operations)

MPC from Lightweight Tools

Workarounds:

- More participants ... we can get t-privacy for $t < \frac{n}{2}$ using only lightweight tools e.g.: n = 3, t = 1
- Correlated randomness

ZKP from MPC: Attempt 2

 χ

Framework for a ZKP

n constraints on the committed stuff:

- one reveals nothing
- if all of them hold, the statement is true

ZKP from MPC: Attempt 2

MPC for $f(w, \cdot, \cdot) = R(x, w)$

n constraints on the committed stuff:

- one reveals nothing
- if all of them hold, the statement is true

ZKP from MPC: Attempt 2

Goals: - completeness - soundness \mathcal{W} MPC for $f(w, \cdot, \cdot) = R(x, w)$

party i did not cheat, and output is 1

n constraints on the committed stuff:

- one reveals nothing
- if all of them hold, the statement is true

Completeness... follows from MPC correctness

Open(),) -> party is choices Open(→, →) → messages $Open(N, \sim) \rightarrow messages$

- one reveals nothing
- if all of them hold, the statement is true

Soundness...

- 1-privacy

/ perfect correctness — / if all of them hold, the statement is true

To convince Dani, Alice must cheat on behalf of at least one party.

Q: are we there yet?

small enough.

ZK...

MPC for $f(w, \cdot, \cdot) = R(x, w)$

- 1-privacy

Open(),) -> party is choices

Open(→, →) → messages $Open(N, \sim) \rightarrow messages$

party i did not cheat, and output is 1

n constraints on the committed stuff:

- one reveals nothing
- ✓ perfect correctness ✓ if all of them hold, the statement is true

s.t $(2/3)^k$ is small enough.

ZK...

Goals: √ completeness √ soundness \mathcal{W}

- MPC for $f(w, \cdot, \cdot) = R(x, w)$
 - 1-privacy

Open(),) -> party is choices

Open(→, →) → messages

 $Open(N, \sim) \rightarrow messages$

party i did not cheat, and output is 1

n constraints on the committed stuff:

- one reveals nothing
- ✓ perfect correctness ✓ if all of them hold, the statement is true

s.t $(2/3)^k$ is small enough.

Tool: Secret Sharing

privacy: w_B , w_C alone look random together, they determine w

MPC for $f(w_B, w_C, \cdot) = R(x, w_B + w_C)$

n constraints on the committed stuff:

- ✓ 1-privacy ✓ one reveals nothing
- / perfect correctness / if all of them hold, the statement is true

Q: what does the simulator do?

repeat k times, s.t (2/3)^k is small enough.

ZKP from MPC: Summary

 $\bullet \bullet \bullet$

ZKP from MPC

	Communication Complexity	Tools
Reduce to Sudoku (or something)	poly(k, R)	lightweight (commitments)
Run MPC	$O(k \mid R \mid)$	heavyweight (i.e. "public key" operations)
Run MPC in the Head	O(k VIEW) = O(k R)	

ZKP from MPC

	Communication Complexity	Tools
Reduce to Sudoku (or something)	poly(k, R)	lightweight (commitments)
Run MPC	O(k R)	heavyweight (i.e. "public key" operations)
Run MPC in the Head	O(k VIEW) = O(k R)	lightweight (commitments)