Block Diagram

Justifications And Tradeoffs

Parameter	Recommended Range	Reason / Theory	Out-of-Range Effects	Values
N (filter length)	$5 \leq N \leq 32$	Covers autocorrelation span of $w(n)$; low $N = \text{fast}$, high $N = \text{precise}$	N too small \Rightarrow underfitting, poor noise capture; too large \Rightarrow slow, unstable	<i>N</i> = 8
γ (forgetting)	$0.9 \leq \gamma < 1$	Controls memory depth in H_n update: $H_n = \gamma H_{n-1} + \dots$	Low γ loses correlation info; high $\gamma \to 1$ reacts slowly to non-stationarity	$\gamma=0.91$
$\mu = \frac{2}{\lambda_{\text{max}}}$ (step size)	$0.01 \le \mu \le 1$ (typically)	Ensures convergence of LMS update: $\mu < \frac{2}{\lambda_{\max}}$	Too small μ : slow convergence; too large μ : divergence, unstable weights	$\mu=rac{2}{\lambda_{max}}$
ε (reg.)	$10^{-8} \le \epsilon \le 10^{-3}$	Ensures $H^{-1} \succ 0$, avoids singularity	Too low \Rightarrow ill-conditioned inverse; too high \Rightarrow biased direction	$\epsilon = 10^{-6}$
H^{-1} update	Dynamic via Broyden- like rule	Approximates Hessian inverse for Quasi-Newton adaptation	Poor conditioning slows or destabilizes convergence	Broyden-like up- date

Table: Recommended parameter ranges, theory, and the impact of deviation in adaptive filtering.

- Convexity Guarantees Global Minimum: The MSE cost surface is convex, ensuring that gradient-based methods like LMS converge to the global minimum, avoiding local minima.
- **Smoothness Enables Stability:** The differentiable and continuous nature of MSE ensures stable and gradual updates in adaptive filtering.

Pros And Cons

Criterion	LMS + Hessian	NLMS	RLS
Complexity	$\mathcal{O}(N^2)$	$\mathcal{O}(N)$	$\mathcal{O}(N^3)$
Memory	Hessian approx. $(\sim N^2)$	Minimal (∼ N)	High — inv. corr. matrix (\sim N^2)
SNR Gain	High (MSE-optimal path)	Moderate	High (near-optimal est.)

Table: Comparison of LMS + Hessian, NLMS, and RLS algorithms across various metrics.

- LMS with Hessian Preconditioning:
 - Pros:
 - Flexibility in Cost Functions: Allows the use of various cost functions beyond MSE, unlike RLS which is limited to specific forms.
- Partial Suppression with Second-Order Notch Filter:
 - Cons:
 - Increasing filter order improves frequency selectivity but introduces more phase shift, potentially distorting the signal.
 - When tonal frequencies are close (e.g., ±70Hz), some side frequencies may also be retained, reducing suppression effectiveness.

References

- Paulo S. R. Diniz, "Adaptive Filtering: Algorithms and Practical Implementation"
- Machine Learning (EE2802) Logistic Regression Slides
- Sherman-Morrison Formula