

PRN:				
I IN IN				

End Semester Examination

May-June 2023

CET3016B - Analysis of Algorithms

Schedule ID: 18758

Faculty/School	Faculty of Engineering & Technology	Term	VI	
Program	Third Year B. Tech	Duration	1 Hours 30 Minutes	
Specialization		Max. Marks	40	

Read the instructions provided for every question properly before attempting the answer.

Section - 1: contain(s) 10 question(s) and each question carries 5 mark(s). You can answer any 8 questions out of 10.

Click Finish only after completion of the Exam.

Section - 1 (8 X 5 Marks) Answer any 8 questions

	-01		The second second			Company of the same of the same of		
1	Solve the recurrence equation with forward substitution method. $T(n) = T(n-1) + n$ with initial condition $T(0) = 0$						COI	Applying
2	Find an optimal solution using knapsack greedy approach where n=3, m=20 (P1, P2, P3)= (30, 21, 18), (w1, w2, w3)=(18,15,10)						COI	Analysing
3/	Distinguish between Dynamic programming and Divide and conquer technique.						CO1,	Analysing
*/ -	Solve the following knapsack problem by using dynamic programming, Capacity of Knapsack is M=6, Weight =(2,3,4), Value (1,2,5)						CO2	Applying
5	Solve the Traveling salesperson problem by using dynamic programming.						CO2	Applying
	0	9	8	8				
	12	0	13	6				
	10	9	0	5	4.0			
	20	15	10	0	49			
		WALCON OF STREET		The second second				

V(1, w) = max (V(1-1, w), V(1-1, w-wcij) +P(1))

~ 	Explain the difference between backtracking and branch and bound strategy.	5 marks	CO3	Applying
*	Describe five advantages of backtracking technique.	5 marks	CO3	Understanding
× ×	What is the control abstraction for least cost search in branch and bound strategy.	5 marks	CO4	Understanding
V9	Explain Cook's Theorem. Explain P and NP class.	5 marks	CO4	Applying
10	Explain pros and cons of parallel algorithms.	5 marks	CO4	Applying

END OF QUESTION PAPER