

Camera

Introduction to Computer Graphics Yu-Ting Wu

(Some of this slides are borrowed from Prof. Yung-Yu Chuang)

1

Recap.

- In computer graphics, we generate an image from a virtual 3D world
 - We are going to introduce the virtual camera and its projection used to render the scene

3D virtual world

rendered image

How a Real-world Camera Works

Camera Trail

Put a piece of film in front of an object

Pinhole Camera

Add a barrier to block off most of the rays

- It reduces blurring
- The pinhole is known as the aperture
- The image is inverted

Pinhole Camera (cont.)

Shrink the aperture

Why not make the aperture as small as possible?

- Less light gets through
- Diffraction effect

Pinhole Camera (cont.)

Shrink the aperture

Pinhole Camera (cont.)

\$200~\$700

Camera with Lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- Other points project to a "circle of confusion" in the image Current digital cameras replace the film with a sensor array (CCD or CMOS)

Camera with Lens (cont.)

field of view

24mm

50mm

135mm

Exposure

- Exposure = aperture + shutter speed
 - Aperture of diameter **D** restricts the range of rays (aperture may be on either side of the lens)
 - Shutter speed is the amount of time that light is allowed to pass through the aperture

Exposure

Aperture (in f stop)

Shutter speed (in fraction of a second)

Effect of Shutter Speeds

Slow shutter speed → more light, but more motion blur

Faster shutter speed freezes motion

1/125 1/250 1/500 1/1000

Depth of Field

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus

Depth of Field (cont.)

- Changing the aperture size affects depth of field.
 - A smaller aperture increases the range in which the object is approximately in focus

Effect of Depth of Field

Computer Graphics Camera

- To mimic the real-world functionality of a real-world camera
- In offline (high-quality) graphics, we can simulate all the imaging processes of a camera using ray tracing

Advanced Simulation of Camera Lens

Advanced Simulation of Camera Lens

16 mm fisheye

Computer Graphics Camera

- To mimic the real-world functionality of a real-world camera
- In offline (high-quality) graphics, we can simulate all the imaging processes of a camera using ray tracing
- In interactive or real-time graphics, we usually use a pinhole camera for its simplicity
 - Every object will always be in-focus
 - Depth of field and motion blur are simulated by other rendering techniques

Computer Graphics Camera (cont.)

Camera Properties

- The film is in front of the camera (to avoid up-side-down)
- Basic properties
 - Camera position
 - Viewing direction
 - Camera local frame
 - Field of view
 - Aspect ratio

viewing volume (view frustum)

- Advanced properties
 - Shutter speed
 - Lens system

Camera (View) Transform

- The camera can be at an arbitrary position and have an arbitrary viewing direction in the world space
- This makes the projection difficult in terms of mathematics

- To keep the math of projection simpler, we additionally define a camera (view, eye) space
 - In the camera space, the camera is at the origin (0, 0, 0) and looking at the negative Z-axis

OpenGL itself is not familiar with the concept of a camera

Instead, we simulate one by moving all objects in the

scene in the reverse direction

To do this, we need to define the camera's local frame

- For each object, we transform its world coordinate to the camera coordinate by
 - Moving it with the inverse translation of the camera's position
 - Rotate the object to match the camera's local frame

- Camera's local frame
 - Formed by the view direction (D), right (R), and up (U) vectors of the camera
 - The three axes of the local frame should be orthogonal

- Set camera's local frame
 - However, it is usually difficult for a user to specify an orthogonal basis
 - OpenGL will do it for you (with the <u>Gram-Schmidt process</u>)

- Steps for setting camera's local frame
 - Determine the viewing dir. with the position of the camera and a target point

viewing direction = normalize(cameraPos - targetPos)

- Assume a temporal "up vector"
 - In most cases, we use the up direction (0, 1, 0) in the world frame
- Obtain the right vector by computing the cross product of the up vector and the viewing dir.

camera right = normalize(cross(up, viewing direction))

 Obtain the new up vector by computing the cross product of the viewing dir. and the right vector

camera up = normalize(cross(viewing direction, camera right))

• Camera (view) transformation

 (P_x, P_y, P_z) is the camera's position

right vector
up vector
viewing vector

rotation matrix

translation matrix

Projective Camera Models

Orthographic Projection

- Parallel projection with projectors perpendicular to the projection plane
- Preserve distance and angle
- Often used as front, side, and top views for 3D design

Orthographic Projection (cont.)

- Need to define the viewing volume with its six planes: left, right, top, bottom, near, and far
 - The viewing volume (frustum) is cube-like
- Map the xyz-coordinate to the range [-1, 1]

Orthographic Projection (cont.)

 Let the I, r, t, b, n, f be the boundaries of the left, right, top, bottom, near, and far planes

$$0 < x - l < r - l$$

$$0 \le \frac{x-l}{r-l} \le 1$$

$$0 \le \frac{x-l}{r-l} \le 1 \qquad \longrightarrow \qquad 0 \le 2(\frac{x-l}{r-l}) \le 2$$

$$\longrightarrow$$
 $-1 \le 2(\frac{x-l}{r-l}) - 1 \le 1$ \longrightarrow $-1 \le \frac{2x}{r-l} - \frac{r+l}{r-l} \le 1$

$$1 \le \frac{2v}{r-l} - \frac{r+l}{r-l} \le 1$$

Orthographic Projection (cont.)

- Let the *I*, *r*, *t*, *b*, *n*, *f* be the boundaries of the left, right, top, bottom, near, and far planes
- An orthographic projection matrix can be written as

$$\begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Perspective Projection

- In our real lives, the objects that are farther away appear much smaller
- This effect is called perspective
- A perspective projection tries to mimic the vision of human eyes

- Four components for the perspective projection matrix
 - The aspect ratio of the screen
 - The ratio between the width and the height
 - The vertical field of view
 - The vertical angle of the camera through which we are looking at the world
 - The location of the near Z plane
 - Used to clip objects that are too close to the camera
 - The location of the far Z plane
 - Used to clip objects that are too distant from the camera

- Derivation of the perspective projection matrix
 - The projection plane and the projection window

- Derivation of the perspective projection matrix
 - Determine the height of the projection window as 2
 - The width of the projection window becomes 2 times the aspect ratio (ar)

- Derivation of the perspective projection matrix
 - We can determine the distance from the camera to the projection window based on the field of view (fov)

- Derivation of the perspective projection matrix
 - Assume we want to find the projected coordinate (x_p, y_p) of a 3D point (x, y, z)
 - The y component can be derived as ...

- Derivation of the perspective projection matrix
 - Do the same derivation for the x component
 - Note in the x-direction we have to multiply the aspect ratio ar
 - After that, we can obtain the following equations

$$x_p = \frac{x}{ar \cdot (-z) \cdot \tan(\frac{\alpha}{2})}$$

$$y_p = \frac{y}{-z \cdot \tan(\frac{\alpha}{2})}$$

- Derivation of the perspective projection matrix
 - Fill-in the matrix, based on the following conditions

$$x_p = \frac{x}{ar \cdot (-z) \cdot \tan(\frac{\alpha}{2})} \qquad y_p = \frac{y}{-z \cdot \tan(\frac{\alpha}{2})}$$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ w \end{bmatrix} = \begin{bmatrix} & & & \mathbf{f(x)} & & & \\ & & & \mathbf{f(y)} & & & \\ & & & \mathbf{f(z)} & & & \\ & & & \mathbf{f(w)} & & & \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Derivation of the perspective projection matrix
 - Fill-in the matrix, based on the following conditions

$$x_p = \frac{x}{ar \cdot (-z) \cdot \tan(\frac{\alpha}{2})}$$
 $y_p = \frac{y}{-z \cdot \tan(\frac{\alpha}{2})}$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ w \end{bmatrix} = \begin{bmatrix} \frac{1}{ar \cdot \tan(\frac{\alpha}{2})} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan(\frac{\alpha}{2})} & 0 & 0 \\ & & \mathbf{f(z)} & & \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Derivation of the perspective projection matrix
 - Fill-in the matrix, based on the following conditions
 - Assume the Z function has a shape f(z) = A(-z) + B
 - After perspective division, it becomes

$$f(z) = A - \frac{B}{z}$$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ w \end{bmatrix} = \begin{bmatrix} \frac{1}{ar \cdot \tan(\frac{\alpha}{2})} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan(\frac{\alpha}{2})} & 0 & 0 \\ 0 & 0 & A & B \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Derivation of the perspective projection matrix
 - Fill-in the matrix, based on the following conditions

$$f(-nearZ) = -1 \implies A - \frac{B}{-nearZ} = -1 \implies A = -1 - \frac{B}{nearZ}$$

$$f(-farZ) = 1 \implies A - \frac{B}{-farZ} = 1 \implies A = 1 - \frac{B}{farZ}$$

$$2 = \frac{B}{farZ} - \frac{B}{nearZ}$$

$$\Rightarrow$$
 $B(nearZ - farZ) = 2 \cdot farZ \cdot farZ$

$$B = \frac{2 \cdot farZ \cdot farZ}{nearZ - farZ}$$

$$A = \frac{-nearZ - farZ}{nearZ - farZ}$$

- Derivation of the perspective projection matrix
 - Fill-in the matrix, based on the following conditions

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{ar \cdot \tan(\frac{\alpha}{2})} & 0 & 0 & 0 \\ 0 & \frac{1}{\tan(\frac{\alpha}{2})} & 0 & 0 \\ 0 & 0 & \frac{-nearZ - farZ}{nearZ - farZ} & \frac{2 \cdot farZ \cdot nearZ}{nearZ - farZ} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Camera Models Comparison

Camera Models Comparison (cont.)

The Full Vertex Transform Pipeline

Any Questions?