MATH 232 Section 3.6 pre-lecture comments

Lecture Outline

Matrices with special forms come up frequently in applications and are used when solving linear systems.

For instance, suppose a matrix has the form

$$A = \begin{bmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{bmatrix}$$

$$\forall = \text{anything (inc(, 0))}$$

$$\text{upper triangular matrix}$$

then the problem Ax = b can be solved very easily using back-substitution.

All matrices in this section are square!

New terminology

- 1. main diagonal
- 2. diagonal matrix
- 3. triangular matrix (upper triangular and lower triangular)
- 4. symmetric matrix and skew-symmetric matrix

Diagonal

The main diagonal of a square matrix consists of the entries a_{ii} . A diagonal matrix is one where $a_{ij} = 0$ if $i \neq j$

Properties All sums and products of diagonal matrices are diagonal.

Examples
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
 $B = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$
 $A = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/4 \end{bmatrix}$

Property If no diagonal element is zero then a diagonal matrix is invertible.

Example

(* means any number, including 0)

Triangular matrices come in two types:

Definition

A matrix $U = (u_{ij})$ is upper triangular if entries $u_{ij} = 0$ for i > j. A matrix $L = (l_{ij})$ is lower triangular if entries $l_{ij} = 0$ for i < j.

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}$$

$$U = \begin{bmatrix} -1 & 0 & 0 \\ 1.5 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Properties

- 1) Sums and products of upper triangular matrices are upper triangular.
- 2) Sums and products of lower triangular matrices are lower triangular.
- 3) If the diagonal entries of U are all non-zero then U is invertible (similarly for L).

Symmetric

A is **symmetric** if
$$A^T = A$$

A is anti-symmetric if
$$A^{T} = -A$$

Property: If A is symmetric and invertible then A^{-1} is symmetric. (Why?) if $A^T = A$

$$(A^{-1})^T = (A^T)^{-1} = A^{-1} \longrightarrow (A^{-1})^T = A^{-1}$$

$$A^T is symmetric$$

Remark: We will be interested later in matrices of the form A^TA and AA^{T} . Both of these are symmetric matrices.

$$A^{T} = A$$

$$A^{T} = -A$$

$$A^{T} = -A$$

$$A = 0 \text{ mtx}$$

Identify the following matrices by structure:

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & -1 \\ 3 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 3 \\ -2 & 1 & 0 \\ -3 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 3 \\ -2 & 1 & 0 \\ -3 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

MATH 232 Section 4.1 pre-lecture comments

Lecture Outline

We will learn how to compute **determinants** for general $n \times n$ matrices. This section gives the definition of determinants in terms of its *cofactor expansions*.

Important: *A* is invertible if and only if $det(A) \neq 0$.

All matrices in this chapter are square matrices.

New terminology

- 1. determinant
- 2. minor
- 3. cofactor

Recall the inverse of the 2×2 matrix. Given

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{then} \quad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

In particular, A has an inverse if and only if $\frac{1}{ab-bc}$ $\frac{1}{4}$. O

This quantity is called the determinant. (2×2 mtx)

Determinant of a
$$2 \times 2$$
 matrix
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc.$$
Identificant

Is there a similar "number test" for 3×3 or larger matrices?

Determinant of a 3×3 matrix

Paij & ith row jth column

If
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

then det(A) is the following:

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

$$a_{11}$$
 a_{12} a_{13} a_{11} a_{12}
 a_{21} a_{22} a_{23} a_{21} a_{22}
 a_{31} a_{32} a_{33} a_{31} a_{32}

Ex:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & -1 \\ 0 & -1 \end{bmatrix} = -8$$

Note: This idea only works for 2×2 and 3×3 , not 4×4 or larger!

4x4 has 24 terms

There is another way to express the determinant, in terms of *smaller-sized determinants*:

$$\det(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{31} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{31} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{31} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{31} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{31} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{31} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} +$$

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$det(A) = 1 \begin{vmatrix} 2 & -1 \\ 0 & -1 \end{vmatrix} - 2 \begin{vmatrix} -1 & -1 \\ 1 & -1 \end{vmatrix} + 1 \begin{vmatrix} -1 & 2 \\ 1 & 0 \end{vmatrix}$$

$$= -8$$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 0 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

$$\det(A) = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 0 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

Definition: Minor (4.1.4) For any $n \times n$ matrix M_{ij} is the determinant of the submatrix formed by deleting i—th row and j—th column of A. This determinant is called the (i,j)-minor of A or M_{ij} .