

SECURITY RISKS

SCENARIO: DENIAL OF SERVICE..?

SCENARIO: DDOS

WHAT IS A BOTNET

"A network of computers infected by malware that are under the control of a single attacking party, known as the "bot-herder". Each individual machine under the control of the bot-herder is known as a bot. From one central point, the attacking party can command every computer on its botnet to simultaneously carry out a coordinated criminal action"

-Palo Alto Networks

HOW A BOT IS BEING RECRUITED AND ORGANIZED

- 1. Device is infected
- 2. Device registers with server and become a part of the botnet
- 3. ... (wait for command)
- 4. Profit???

BOTNET LIFECYCLE

- 1. Initial Infection
 - Search for vulnerable machines
- 2. Secondary Injection
 - Installation of the actual bot and persistence
- 3. Connection
 - Bot connects with the C&C server or P2P network
- 4. Malicious Command and Control
 - Bot-master broadcasts commands to initiate activity
- 5. Maintenance of Bots
 - Keep bots alive and updated

Command and Control Server

Peer to Peer

BOTNET STRUCTURES

COMMAND AND CONTROL (C2) STRUCTURE

- All bots connect to one or more command and control servers
 - The IP address of the server the bot should connect to is in the malware
- Fast and direct communication to bots
 - Direct communication as servers and bots are connected directly
 - Usually used communication protocols: IRC, HTTP, TOR
- If a C2 server is being moved, bots that connect to it are gone
 - The centralized structure means the servers and the master can be located and taken down

PEER TO PEER NETWORK (P2P) - THE ABSOLUTE BASICS

- Decentralized
- Partitions tasks or workloads between peers
- Peers make a portion of their resources, like CPU or storage, directly available to other network participants, without central coordination
- Requests are propagated through the network until it is fulfilled, or the request dies
- Peers are both suppliers and consumers of resources
 - In purely decentralized architectures, each peer behaves exactly the same
 - This means they are both a client and a server on the network

P2P BOTNET STRUCTURE

- Joining to P2P network
 - Connects to a list of pre-defined peers (bootstrapping)
 - Vulnerability: If the list is obtained by defenders, those peers could be shut down, and the bot would then be isolated
 - Connects to existing peers (dynamic)
 - When a bot A infects a host B, A passes its own peer list to this newly infected host B
- Newer botnets have partially decentralized (hybrid decentralized) structure with some bots promoted as Super peer, or called Node.
 - More scalable
 - Less traffic
 - Communication efficiency
- If a node is removed...
 - Can connect to other peer, which may connect to anther node, so it can stay in the network
 - Or the Herder could promote a new node

P2P BOTNET STRUCTURE (CONT)

- Command propagation methods using P2P protocols such as:
 - Pull mechanism
 - Generate a file with a pre-determined name
 - Bots request for the file or check for new commands on the P2P network periodically
 - Active propagation from the perspective of bots that request for commands or files
 - Push mechanism
 - Bots wait for commands to come then they will forward commands to other bots
 - Harder to detect since no periodic requests are sent
 - Passive propagation from the perspective of bots that wait for files or commands
- No central command structure means commands are typically encrypted when deployed

	C2	P2P
Servers	Clients and servers are distinct devices	Clients and servers are the same
Speed	Direct message to client	Data will propagate to all nodes eventually
Resilience	Take down a server, and those bots are gone	Take down a node, and its connections are likely still in the network

P2P VS C&C

WHY WOULD SOMEONE DEPLOY ONE

- Highly distributed infrastructure of devices
- Self-propagating data collection
- What attacks can a botnet do?
 - Denial of service attacks
 - Ad fraud through fake websites
 - Email spam
 - Brute force website logins
 - Crypto mining
- Their own profit

- Mirai, C2, 600,000 infected
- 3ve, C2, infected 1,000,000+ infected
- Necurs, P2P, Infected 9,000,000+ infected
- GoldBrute, C2, 1,500,000+ infected
- Fritzfrog, P2P, breached 500+ infected

HOW DOES IT GET INTO THE WILD

- Unpatched or poorly made software
 - Public facing computers with open ports
 - Scan those ports for known vulnerabilities
 - May remember from 347 last semester we did this!
 - https://www.cvedetails.com/vulnerability-list/
 - Devices using default passwords
 - Check out shodan to see a scary site!
- Malicious software
 - Trojans
 - Modified programs

ANALYZING REAL WORLD BOTNET

- Mirai
- 3ve
- MethBot
- GoldBrute
- MegaD

C2 Botnets

- Fritzfrog
- Necurs
- StormWorm
- Gnutella
- DDG

P2P Botnets

BOTNET ANALYSIS - MIRAI (INTRO)

- A specific piece of malware designed for IOT devices
- Responsible for attacks against:
 - Krebs on Security
 - OVH
- Scans the internet for vulnerable IOT devices
- Infected over 600,000 devices
- It is self-propagating
- Used centralized C&C Servers

BOTNET ANALYSIS - MIRAI (BROKEN DOWN)

- Bot
 - Malware that infects the device
 - Propagate the infection
 - Attack targets
- Command and Control server
 - Centralized management interface
- Loader
 - Facilitates dissementation of executables
- Report server
 - Database with details about all bots in the network

ANALYSIS - MIRAI (STEPS)

MIRAI STEP 0

- Scans random IP addresses
- Specifically targets:
 - TCP/23
 - TCP/2323
- Deliberatly avoids some IP addresses
 - USPS
 - US DOD
 - GE
 - HP
 - •

MIRAI STEP 1 - PROPAGATION

- Engages in a brute force attack
- Uses a list of hard coded credentials
 - admin/admin
 - admin/password
 - support/support
 - ...
 - mother/fu**er
- https://github.com/danielmiessler/SecLists/blob/master/Passwords/Malware/mirai-botnet.txt

MIRAI STEP 2 - VULNERABLE DEVICE FOUND

Upon gaining a shell the bot will report the findings

MIRAI STEP 3 & 4 -BOTMASTER MONITORING & ACTION

- Via the C&C server the botmaster will:
 - Check new target victims
 - Botnet's current status via the report server
- Communication done through TOR
- Decide which devices to infect
- Tells loader to infect a device

MIRAI STEP 5 - INFECTION

- Loader machine logs into target device
- Instructs device to download and execute specific binary for the device
 - Done through wget or ftp
- As soon as the malware is executed:
 - Block Telnet
 - Block SSH
 - Kills other infections
- Now communicates back to C&C to receive commands
 - Hardcoded domain in the binary
 - cnc.changeme.com

MIRAI STEP 6 & 7 - ACTION

- Botmaster instructs bots to attack a target via the C&C server
- The bots attack the target via some protocol:
 - Generic Routing Encapsulation (GRE)
 - TCP
 - HTTP flooding
 - •

MIRAI FOOTPRINTS

- Almost all stages of infection leave a footprint...
 - Sequential testing of specific credential on specific ports
 - Sending reports that generate distinctive patterns
 - Downloading a specific type of binary
 - Exchanging keep-alive message
 - Receiving commands in a specific structure
 - Very predictable attack traffic

FRITZFROG (2020) INTRO

- First reported this P2P botnet in January 2020 by Guardicore
- Aggressive
 - Actively breaching SSH servers and brute forcing logings
- Hard to detect
 - Fileless
 - Generic executable names: `ifconfig`, `nginx`
 - Communication encrypted with AES, Diffie Hellman key exchange
- Efficient and Up-to-date
 - Novel P2P implementation
 - Well decentralized
 - Exchange databases of targets and breached machines constantly
- Distributed Monero mining

FRITZFROG DETECTION & MITIGATION

- Guardicore script:
 - https://github.com/guardicore/labs_campaigns/blob/master/FritzFrog/detect_fritzfrog.sh
- Fileless processes named:
 - nginx
 - ifconfig
 - libexec
 - php-fpm
- Port 1234 is listening
- SSH Key:
 - ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDJYZIsncBTFc
- List of IP addresses:
 - Known to be sources
 - Known machines in the network

- Immediate device quarantine
- Kill any of the fileless processes
- Block all traffic on ports:
 - 1234 (used for P2P communication)
 - 5555 (cryptominer)
- Block all traffic to xmrpool.eu
- Clear SSH keys
- Change passwords

BOTNET DETECTION - POTENTIAL INDICATORS OF

COMPROMISE

- Anomaly-based
 - Network-based
 - NetFlow analyzer
 - Host-based
- Signature-based
 - Ntop + Snort
- DNS-based
 - Wireshark + Capinfos
- Mining-based
 - Botminer

WHEN CAN THE GOOD GUYS DO?

- Index poisoning
- Honey pot
- C&C takedown

INDEX POISONING -P2P

- Originally devised to prevent "illegal distribution of content" in P2P networks
- Insert massive numbers of false records into the index system
 - A peer receives the false record and may not be able to find the resource
- If the offence can introduce enough false records they can "poison" the system by overwhelming the system to retrieve information from nodes they own, or non-existant nodes
- Why does it work?
 - A lack of central coordination for what's real
- Does it always work?
 - No, there's already mitigations authenticate the record injection

C&C TAKEDOWN

- If we can cut the communication, then the bots are dead
- Using some detection technique, we can find the command and control server
- Multiple methods to shut-down the control
 - Block the IP on the network
 - Take the server down
 - Domain takedowns
 - If you're creative, DDOS the C&C server 😅
- How does it work?
 - If the bots cannot communicate, they cannot perform actions
- Does it always work?
 - No, depending on how the C2 is architected it may be innefective without mass coordination
 - May be multiple C2 servers
 - If domain based, can move the C2 servers around easily

HONEY POTS

- A computer or system intended to mimic likely targets
- Used to detect attacks or deflect them from targets
 - Don't look for attacks, bait them with a target!
- How does it work?
 - •Setup a system that looks like a real target
 - Don't run security updates
 - Leave ports open
 - Leave services on
 - Weak passwords
 - Tricks bots into infecting the device

- Once the device is infected:
 - The owner of the system can monitor traffic
 - Track changes on the VM
 - Decompile binaries and see how it works
- Does it always work?
 - No, techniques have been published to detect honeypots and avoid them
 - Honeypot Hunter (2004)

DEMO

- https://github.com/Bitwise-01/Loki
- https://github.com/malwaredllc/byob

SOURCES & SOME INTERESTING READINGS

- IEEE:
 - DDoS in the IoT: Mirai and Other Botnets
 - The Mirai botnet and the IoT Zombie Armies
 - Analysis of Mirai malicious software
 - On Security Threats of Botnets to Cyber Systems
 - Botnet and P2P Botnet Detection Strategies: A Review
- University of Central Florida:
 - Peer-to-Peer Botnets
 - http://www.eecs.ucf.edu/~czou/research/P2PBotnets-bookChapter.pdf
- Mirai source code:
 - https://github.com/jgamblin/Mirai-Source-Code
- https://www.paloaltonetworks.com/cyberpedia/what-is-botnet
- https://www.crowdstrike.com/epp-101/botnets/
- https://www.kaspersky.com/resource-center/threats/botnet-attacks

- Usenix:
 - Understanding the Mirai Botnet
- https://www.sentinelone.com/blog/what-is-a-botnet-and-why-are-theydangerous/
- https://www.securitymagazine.com/articles/93898-tackling-the-challenges-of-detecting-p2p-botnets
- https://www.imperva.com/blog/malware-analysis-mirai-ddos-botnet/
- https://www.f-secure.com/v-descs/articles/botnet.shtml
- Guardicore:
 - https://www.youtube.com/watch?v=RUO9sSZde84
 - https://www.guardicore.com/2020/08/fritzfrog-p2p-botnet-infects-ssh-servers/
 - https://github.com/guardicore/labs_campaigns/tree/master/FritzFrog