

Twierdzenie o dwusiecznej kąta w trójkącie

- Wprowadzenie
- Przeczytaj
- Animacja
- Sprawdź się
- Dla nauczyciela

Jak wiemy, symetralna odcinka jest jedną z jego dwóch osi symetrii. Podobnie dwusieczna jest osią symetrii kąta. Okazuje się, że to nie jedyne związki między tymi obiektami. Rozważmy trójkąt ABC oraz symetralną s boku BC i prostą d zawierającą dwusieczną kąta leżącego naprzeciw tego boku, jak na rysunku.

Dwusieczna i symetralna w trójkącie

Oczywiście proste te przetną się w pewnym punkcie. Mniej oczywistym faktem i niezbyt często przywoływanym w szkole jest to, że ich punkt przecięcia leży na okręgu opisanym na trójkącie ABC. Dowód tej zależności nie jest celem niniejszej lekcji, dlatego go pominiemy, a dociekliwych odeślemy do własności kątów wpisanych opartych na równych łukach i własności symetralnych.

Skoncentrujemy się natomiast na powszechnie znanej, dowodzonej i często wykorzystywanej w szkole własności dwusiecznej, która wyznacza pewne proporcje odcinkowe w trójkącie.

Twoje cele

- Poznasz twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie.
- Udowodnisz twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie, wykorzystując różne narzędzia matematyki.
- Zastosujesz własności dwusiecznych do wyznaczania związków miarowych w trójkątach.
- Zastosujesz poznane zależności w sytuacjach typowych i problemowych.

Przeczytaj

O proporcjach odcinkowych w trójkącie

Rozważmy trójkąt ABC, w którym dwusieczna d kąta wewnętrznego BAC przecięła bok BC w punkcie D, jak na rysunku.

Okazuje się, że długości odcinków BD i CD są związane z długościami boków AB i AC danego trójkąta.

Oznaczmy: $|\sphericalangle BAD| = |\sphericalangle CAD| = \alpha \text{ oraz } |\sphericalangle ADB| = \delta. \text{ Wtedy } |\sphericalangle ADC| = 180^\circ - \delta.$

Z twierdzenia sinusów dla trójkąta ABD mamy:

$$\frac{|BD|}{\sin \alpha} = \frac{|AB|}{\sin \delta}$$
, stąd $\frac{|BD|}{|AB|} = \frac{\sin \alpha}{\sin \delta}$.

Podobnie, z twierdzenia sinusów dla trójkąta ACD mamy:

$$\tfrac{|CD|}{\sin\alpha} = \tfrac{|AC|}{\sin(180°-\delta)}, \text{stąd } \tfrac{|CD|}{|AC|} = \tfrac{\sin\alpha}{\sin(180°-\delta)}.$$

Ale
$$\sin(180^{\circ} - \delta) = \sin \delta$$
. Zatem $\frac{|CD|}{|AC|} = \frac{\sin \alpha}{\sin \delta}$.

Porównując otrzymane wyniki możemy zapisać równość:

$$\frac{|BD|}{|AB|} = \frac{\sin \alpha}{\sin \delta} = \frac{|CD|}{|AC|}$$
, z której wynika, że $\frac{|BD|}{|AB|} = \frac{|CD|}{|AC|}$.

Przeprowadzone rozumowanie jest nie najprostszym dowodem twierdzenia znanego pod krótką nazwą "twierdzenia o dwusiecznej", którego sformułowanie zapisano poniżej.

Twierdzenie: Twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie

W trójkącie dwusieczna kąta wewnętrznego dzieli bok przeciwległy na odcinki proporcjonalne do boków przyległych.

Dowód

Przeprowadzimy teraz dowód korzystając z narzędzi bardziej elementarnych, niż twierdzenie sinusów.

W tym celu, poprowadzimy przez punkt C prostą równoległą do dwusiecznej d i oznaczymy przez E punkt wspólny tej prostej i przedłużenia boku AB, jak na rysunku.

Mamy oczywiście $|\triangleleft BAD| = |\triangleleft AEC|$ oraz $|\triangleleft DAC| = |\triangleleft ACE|$.

Ale $|\sphericalangle BAD|=|\sphericalangle DAC|=\alpha$. Stąd $|\sphericalangle AEC|=|\sphericalangle ACE|=\alpha$ i trójkąt CAE jest trójkątem równoramiennym, w którym |AC|=|AE|.

Z twierdzenia Talesa wynika w szczególności, że $\frac{|BD|}{|AB|} = \frac{|CD|}{|AE|}$, ale |AC| = |AE|, zatem $\frac{|BD|}{|AB|} = \frac{|CD|}{|AC|}$.

Co kończy dowód.

Zapiszemy jeszcze inny dowód tego twierdzenia, odwołujący się do własności pola trójkąta: stosunek pól trójkątów o równych wysokościach równy jest stosunkowi długości podstaw tych trójkątów.

Trójkąty ABD i ACD mają wspólną wysokość poprowadzoną z wierzchołka A, zatem $\frac{P_{ABD}}{P_{ACD}}=\frac{|BD|}{|CD|}$.

Ale
$$P_{ABD} = \frac{1}{2} \cdot |AD| \cdot |AB| \cdot \sin \alpha$$
 oraz $P_{ACD} = \frac{1}{2} \cdot |AD| \cdot |AC| \cdot \sin \alpha$, czyli $\frac{P_{ABD}}{P_{ACD}} = \frac{\frac{1}{2} \cdot |AD| \cdot |AB| \cdot \sin \alpha}{\frac{1}{2} \cdot |AD| \cdot |AC| \cdot \sin \alpha} = \frac{|AB|}{|AC|}$.

Stąd
$$\frac{|BD|}{|CD|}=\frac{P_{ABD}}{P_{ACD}}=\frac{|AB|}{|AC|}$$
, czyli $\frac{|BD|}{|AB|}=\frac{|CD|}{|AC|}$, co było do wykazania.

Przykład 1

W trójkącie ABC mamy dane: |AB|=6, |BC|=9, |AC|=12. Wyznaczymy długości odcinków BD i CD, na jakie podzieliła bok BCdwusieczna kąta BAC.

Oznaczmy
$$|BD| = x$$
, wtedy $|CD| = 9 - x$.

Z twierdzenia o dwusiecznej kąta wewnętrznego wynika, że $\frac{x}{6} = \frac{9-x}{12}$.

Stąd
$$12x = 6 \cdot (9 - x)$$
, zatem $x = 3$ oraz $|BD| = 3$, $|CD| = 6$.

Przykład 2

Rozważmy ten sam trójkąt ABC, w którym |AB|=6, |BC|=9, |AC|=12. Niech D będzie punktem wspólnym dwusiecznej kąta BAC i boku BC. Wyznaczymy długość odcinka AD.

Z twierdzenia cosinusów dla trójkąta ABC mamy w szczególności, że $12^2=9^2+6^2-2\cdot 6\cdot 9\cdot \cos(\sphericalangle ABC)$.

Stąd
$$\cos(\triangleleft ABC) = -\frac{1}{4}$$
.

Korzystając z wyników Przykładu 1 i ponownie z twierdzenia cosinusów, możemy zapisać, że $|AD|^2=3^2+6^2-2\cdot 3\cdot 6\cdot \left(-\frac{1}{4}\right)=54.$

Stąd
$$|AD| = \sqrt{54} = 3\sqrt{6}$$
.

Rozważania podane niżej pokazują, że używanie skrótu myślowego o brzmieniu "twierdzenie o dwusiecznej" może być mylące, bowiem analogiczną proporcję zapiszemy w przypadku dwusiecznej kąta zewnętrznego.

Twierdzenie: Twierdzenie o dwusiecznej kąta zewnętrznego w trójkącie

Przypuśćmy, że w trójkącie ABC dwusieczna kąta zewnętrznego przy wierzchołku A przecina przedłużenie boku BC w punkcie D. Wtedy odcinki BD i CD są proporcjonalne do odcinków AB i AC, czyli

$$\frac{|BD|}{|AB|} = \frac{|CD|}{|AC|}$$

Dowód

Zanim przeprowadzimy dowód, zauważmy, że niezbędne jest zapisanie, że dwusieczna przecina odpowiednie przedłużenie boku, bowiem gdybyśmy rozważyli trójkąt równoramienny ABC, w którym |AB|=|AC|, to wtedy dwusieczna kąta zewnętrznego przy wierzchołku A byłaby równoległa do podstawy BC tego trójkąta.

Przejdźmy teraz do dowodu i oznaczmy przez δ każdy z kątów, na jaki dwusieczna podzieliła kąt zewnętrzny przy wierzchołku A oraz poprowadźmy równoległą do tej dwusiecznej, przechodzącą przez punkt C i przecinającą bok AB w punkcie E, jak na rysunku.

Mamy oczywiście $|\sphericalangle ECA| = |\sphericalangle CAD| = \delta$ oraz $|\sphericalangle CEA| = \delta$.

Stąd trójkąt CAE jest trójkątem równoramiennym, w którym |AC|=|AE|.

Z twierdzenia Talesa wynika w szczególności, że $\frac{|BD|}{|AB|}=\frac{|CD|}{|AE|}$, ale |AC|=|AE|, zatem $\frac{|BD|}{|AB|}=\frac{|CD|}{|AC|}$.

Co kończy dowód.

Słownik

dwusieczna

dwusieczną kąta nazywamy półprostą, której początkiem jest wierzchołek tego kąta i która dzieli ten kąt na dwa równe kąty

Animacja

Polecenie 1

Przeanalizuj przedstawiony dowód twierdzenia o dwusiecznej kąta w trójkącie. Zmodyfikuj ten dowód, wykorzystując dwukrotnie następujący fakt:

Stosunek pól trójkątów o równych wysokościach jest równy stosunkowi długości podstaw tych trójkątów.

Tę własność wykorzystaj dla trójkątów ADC i BDC, prowadząc raz wspólną wysokość tych trójkątów z wierzchołka C, a drugi raz prowadząc równe wysokości tych trójkątów z wierzchołka D.

Film dostępny pod adresem https://zpe.gov.pl/a/D1CcqvO70

Film nawiązujący do treści materiału dotyczącej twierdzenia dwusiecznej kąta w trójkącie.

Polecenie 2

Rozważ trójkąt prostokątny ABC o kątach $|\sphericalangle CAB| = 30^\circ$, $|\sphericalangle CBA| = 60^\circ$ oraz $|\sphericalangle ACB| = 90^\circ$. Poprowadź dwusieczną kąta CAB i wyznacz, podobnie jak w zaprezentowanym w animacji przykładzie, długość odcinka CD, gdzie D jest punktem przecięcia dwusiecznej kąta BAC i przyprostokątnej BC. Następnie oblicz wartości funkcji trygonometrycznych kąta 15° . Postępując analogicznie, oblicz wartości funkcji trygonometrycznych kąta $7^\circ30^\circ$.

Sprawdź się

Pokaż ćwiczenia: (*) (*)

Ćwiczenie 1

W trójkącie ABC, w którym |AB|=14, |AC|=22, odcinki, na jakie dwusieczna kąta wewnętrznego BAC podzieliła bok BC różnią się o 4. Oblicz obwód tego trójkąta.

Ćwiczenie 2

Dany jest trójkat ABC, w którym długości boków są liczbami całkowitymi. Dwusieczna kata zewnętrznego przy wierzchołku B przecięła prostą AC w punkcie D, jak na rysunku. Oblicz długości boków trójkąta, jeżeli: |AB| - |BC| = 2 oraz |AD| = 14.

Ćwiczenie 3

Dwusieczna kąta ostrego w trójkącie prostokątnym ABC podzieliła przyprostokątną w stosunku 5 : 13. Wyznacz sinusy kątów ostrych tego trójkąta.

Ćwiczenie 4

Ćwiczenie 5

W trójkącie ABC o obwodzie 25 odcinki, na jakie dwusieczna kąta wewnętrznego BACpodzieliła bok BC są odpowiednio równe: |BD|=2, |CD|=3. Oblicz długości boków trójkąta.

Ćwiczenie 6

Zaznacz poprawną odpowiedź. Dany jest trójkąt ABC, w którym dwa boki mają odpowiednio długości 9 i 12. Dwusieczna kąta wewnętrznego podzieliła trzeci bok trójkąta na dwa odcinki, z których jeden ma długość równą 10. Trzeci bok tego trójkąta ma długość:

	<u>40</u> 3							
--	----------------	--	--	--	--	--	--	--

	70				
()	10				
()					
	२				
	U				

|--|

$\bigcirc \frac{35}{2}$	
--------------------------	--

Ćwiczenie 7

Zapoznaj się z następującycm twierdzeniem:

Długość odcinka CD dwusiecznej kąta wewnętrznego ACB trójkąta ABC jest równa

$$|CD| = rac{\sqrt{abig[(a+b)^2-c^2ig]}}{a+b}.$$

Ułóż we właściwej kolejności etapy dowodu tego twierdzenia.

Dowód:

Podstawiając teraz obliczoną wcześniej długość odcinka |AD| otrzymujemy: $|CD|^2=b^2+\left(\frac{bc}{a+b}\right)^2-2b\cdot\frac{bc}{a+b}\cdot\frac{b^2+c^2-a^2}{2bc}.$

Wykorzystując wyznaczoną wartość cosinusa możemy zapisać odpowiednią równość dla trójkąta ADC: $\left|CD\right|^2=b^2+\left|AD\right|^2-2b\cdot\left|AD\right|\cdot\frac{b^2+c^2-a^2}{2bc}$.

\$

A korzystając ze wzoru skróconego mnożenia możemy zapisać, że

$$\frac{ab(a^2+b^2-c^2+2ab)}{(a+b)^2} = \frac{ab[(a+b)^2-c^2]}{(a+b)^2}.$$

\$

Pozostaje przekształcić wyrażenie: $b^2 + \left(\frac{bc}{a+b}\right)^2 - 2b \cdot \frac{bc}{a+b} \cdot \frac{b^2 + c^2 - a^2}{2bc}$.

Teraz dwukrotnie skorzystamy z twierdzenia cosinusów.

\$

Redukując wyrazy podobne i wyłączając wspólny czynnik przed nawias dostajemy: $\frac{ab(a^2+b^2-c^2+2ab)}{(a+b)^2}.$

Stąd $|CD|=rac{\sqrt{abig[(a+b)^2-c^2ig]}}{a+b}$, co należało wykazać.

Po doprowadzeniu do wspólnego mianownika otrzymujemy, że

$$\begin{array}{l} b^2 + \left(\frac{bc}{a+b}\right)^2 - 2b \cdot \frac{bc}{a+b} \cdot \frac{b^2 + c^2 - a^2}{2bc} = \\ = \frac{b^2(a+b)^2 + b^2c^2 - b(a+b)(b^2 + c^2 - a^2)}{(a+b)^2}. \end{array}$$

Najpierw dla trójkąta ABC mamy: $a^2=b^2+c^2-2bc\cdot\cos\alpha$, zatem $\cos\alpha=\frac{b^2+c^2-a^2}{2bc}$.

Zacznijmy od zastosowania twierdzenia o dwusiecznej kąta wewnętrznego. Wtedy mamy, że: $\frac{|AD|}{b}=\frac{c-|AD|}{a}$.

Stąd $|AD|=rac{bc}{a+b}.$

Dla nauczyciela

Autor: Henryk Dąbrowski

Przedmiot: Matematyka

Temat: Twierdzenie o dwusiecznej kąta w trójkącie

Grupa docelowa:

III etap edukacyjny, liceum, technikum, zakres rozszerzony

Podstawa programowa:

VIII. Planimetria. Zakres podstawowy.

7) stosuje twierdzenia: Talesa, odwrotne do twierdzenia Talesa, o dwusiecznej kąta oraz o kącie między styczną a cięciwą;

12) przeprowadza dowody geometryczne.

Kształtowane kompetencje kluczowe:

- kompetencje w zakresie rozumienia i tworzenia informacji
- kompetencje matematyczne oraz kompetencje w zakresie nauk przyrodniczych, technologii i inżynierii
- kompetencje cyfrowe

Cele operacyjne:

Uczeń:

- zna pojęcie i stosuje własności dwusiecznej
- zna i stosuje twierdzenie o dwusiecznej kąta wewnętrznego w trójkącie
- przeprowadza dowód twierdzenia o dwusiecznej kąta wewnętrznego trójkącie
- przeprowadza dowód twierdzenia o dwusiecznej kąta zewnętrznego trójkącie
- przeprowadza dowody geometryczne z zastosowaniem twierdzenia o dwusiecznej

Strategie nauczania:

konstruktywizm

Metody i techniki nauczania:

- dyskusja
- rozmowa nauczająca z wykorzystaniem ćwiczeń interaktywnych

Formy pracy:

- praca indywidualna
- praca w grupach
- praca całego zespołu klasowego

Środki dydaktyczne:

 komputery z dostępem do Internetu w takiej liczbie, żeby każda para uczniów miała do dyspozycji komputer; lekcję tę można przeprowadzić, mając do dyspozycji jeden komputer z rzutnikiem multimedialnym

Przebieg lekcji

Faza wstępna:

- 1. Nauczyciel prosi o przypomnienie pojęcia dwusiecznej i jej własności oraz symetralnej i jej własności, szczególnie w kontekście osi symetrii.
- 2. Nauczyciel sygnalizuje, że na lekcji uczniowie dalej będą poznawać własności dwusiecznej i formułuje problem dotyczący punktu wspólnego dwusiecznej i symetralnej boku leżącego naprzeciw danego kąta. Korzystając z przygotowanego wcześniej rysunku (apletu Geogebry) formułuje tezę o położeniu tego punktu na okręgu opisanym na trójkącie i zachęca uczniów, by w domu zastanowili się nad dowodem tej zależności.
- 3. Nauczyciel podaje temat i cele zajęć, uczniowie ustalają kryteria sukcesu.

Faza realizacyjna:

- 1. Nauczyciel prosi o przypomnienie twierdzenia sinusów a następnie formułuje problem dotyczący proporcji między odcinkami wyznaczonymi przez dwusieczną i bokami oraz kątami odpowiednich trójkątów, tak sterując dyskusją, by otrzymać proporcję znaną z twierdzenia o dwusiecznej kąta wewnętrznego.
- 2. Nauczyciel formułuje twierdzenie o dwusiecznej kąta wewnętrznego i prezentuje rysunek, na którym dorysowano odpowiednią prostą równoległą do dwusiecznej. Prosi o zapisanie odpowiednich proporcji prowadzących do tezy twierdzenia.
- 3. Nauczyciel sygnalizuje możliwość przeprowadzenia dowodu odwołującego się do zależności między polem trójkątów o równych wysokościach i długością podstaw i prosi uczniów o jego zredagowanie w razie potrzeby sugeruje wykorzystanie wzoru na pole trójkąta w zależności od sinusa odpowiedniego kąta.
- 4. Uczniowie analizują przykłady w sekcji Przeczytaj prezentujące typowe problemy, w których wykorzystuje się twierdzenie o dwusiecznej kąta wewnętrznego.
- 5. Nauczyciel poleca uczniom obejrzeć animację i prosi o wykonanie dołączonych poleceń.

- 6. Następnie nauczyciel sygnalizuje, że analogiczną proporcję odcinkową można, przy odpowiednich założeniach, zapisać dla dwusiecznej kąta zewnętrznego prezentuje trójkąt równoramienny i formułuje pytanie o położenie dwusiecznej kąta zewnętrznego. Następnie formułuje twierdzenie i prosi wybranych uczniów o przedstawienie dowodu.
- 7. Uczniowie wykonują zaproponowane ćwiczenia interaktywne, wykorzystując umiejętności z różnych działów matematyki.

Faza podsumowująca:

• Nauczyciel prosi wybranych uczniów o przedstawienie najważniejszych elementów, jakie były omawiane w trakcie lekcji.

Praca domowa:

Nauczyciel poleca, aby uczniowie wykonali w domu ćwiczenia interaktywne, które nie zostały wykonane w czasie zajęć oraz przeprowadzili dowód zależności omawianej we wstępie.

Materialy pomocnicze:

Dwusieczne kata

Wskazówki metodyczne:

Animację można zastosować w ramach powtórzenia przed sprawdzianem. Można ją też wykorzystać przy realizacji tematu o okręgu wpisanym w wielokąt.