

planetmath.org

Math for the people, by the people.

complete Boolean algebra

Canonical name CompleteBooleanAlgebra

Date of creation 2013-03-22 18:01:09 Last modified on 2013-03-22 18:01:09

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 11

Author CWoo (3771)
Entry type Definition
Classification msc 06E10

Related topic CompleteLattice

Defines κ -complete Boolean algebra

Defines countably complete Boolean algebra

A Boolean algebra A is a *complete Boolean algebra* if for every subset C of A, the arbitrary join and arbitrary meet of C exist.

By de Morgan's laws, it is easy to see that a Boolean algebra is complete iff the arbitrary join of any subset exists iff the arbitrary meet of any subset exists. For a proof of this, see http://planetmath.org/PropertiesOfArbitraryJoinsAndMeetsthis link.

For an example of a complete Boolean algebra, let S be any set. Then the powerset P(S) with the usual set theoretic operations is a complete Boolean algebra.

In a complete Boolean algebra, the infinite distributive and infinite de-Morgan's laws hold:

- $x \wedge \bigvee A = \bigvee (x \wedge A)$ and $x \vee \bigwedge A = \bigwedge (x \vee A)$
- $(\bigvee A)^* = \bigwedge A^*$ and $(\bigwedge A)^* = \bigvee A^*$, where $A^* := \{a^* \mid a \in A\}$.

In the category of complete Boolean algebras, a morphism between two objects is a Boolean algebra homomorphism that preserves arbitrary joins (equivalently, arbitrary meets), and is called a *complete Boolean algebra homomorphism*.

Remark There are infinitely many algebras between Boolean algebras and complete Boolean algebras. Let κ be a cardinal. A Boolean algebra A is said to be κ -complete if for every subset C of A with $|C| \leq \kappa$, $\bigvee C$ (and equivalently $\bigwedge C$) exists. A κ -complete Boolean algebra is usually called a κ -algebra. If $\kappa = \aleph_0$, the first aleph number, then it is called a *countably complete Boolean algebra*.

Any complete Boolean algebra is κ -complete, and any κ -complete is λ -complete for any $\lambda \leq \kappa$. An example of a κ -complete algebra that is not complete, take a set S with $\kappa < |S|$, then the collection $A \subseteq P(S)$ consisting of any subset T such that either $|T| \leq \kappa$ or $|S - T| \leq \kappa$ is κ -complete but not complete.

A Boolean algebra homomorphism f between two κ -algebras A,B is said to be κ -complete if

$$f(\bigvee\{a\mid a\in C\})=\bigvee\{f(a)\mid a\in C\}$$

for any $C \subseteq A$ with $|C| \le \kappa$.