Chapter 35: Diffraction

Chapter 35: Diffraction

- 35 -0 Introduction: Diffraction
- 35-1 Diffraction by a Single Slit or Disk
 - Example 35-1: Single-slit diffraction maximum
- 35-2 Intensity in Single-Slit Diffraction Pattern
- 35-3 Diffraction in the Double-Slit Experiment
 - Example 35-4: Diffraction plus interference
- 35-4 Limits of Resolution; Circular Apertures
- 35-7 Diffraction Grating

35 - 0 Introduction: Diffraction

- If light is a wave, a bright spot will appear at the centre of the shadow.
- The experimental observation is strong evidence for the wave theory.

• Diffraction pattern of a circular disk, razor blade and a single slit, each illuminated by a coherent point source of monochromatic light.

 This pattern arises because different points along a slit create wavelets that interfere with each other just as a double slit would.

Copyright © 2009 Pearson Education, Inc.

- First we consider rays that pass straight through the hole.
 - They are all in phase. ⇒ constructive interference
 - A central bright spot on the screen

- Such that the ray from the top of the slit travels exactly one wavelength farther than the ray from the bottom
- The ray from the center will travel one-half wavelength $(\frac{\lambda}{2})$ farther than the ray at the bottom, these two rays will be out of phase \Rightarrow they will cancel out (destructive interference).
- This process occurs such as $sin(\theta) = \frac{\lambda}{D}$
- The light intensity is maximum at $\theta=0^\circ$ and decreases to 0 at $\theta=$ asin $\left(\frac{\lambda}{D}\right)$

- Now, we consider a larger θ such as the top ray travels $\frac{3}{2}\lambda$ farther than the bottom ray.
 - Rays from the bottom third will cancel out in pairs with those in the middle third as they are in phase opposition
 - The top third is not cancelled out then light reaches the screen.

$$\Rightarrow$$
 « constructive » interference at $sin(\theta) = \frac{3\lambda}{2D}$

- we consider a larger θ such as the top ray travels 2λ farther than the bottom ray.
 - Rays cancel out by quarter.
 - → destructive interference

Maxima:
$$\theta = 0$$
 (strong), $\sin(\theta) = \frac{m\lambda}{D}$ with $m = \pm \frac{3}{2}, \pm \frac{5}{2}, ...$

Minima:
$$sin(\theta) = \frac{m\lambda}{D}$$
 with $m = \pm 1, \pm 2, \pm 3, ...$

- Example 35-1: Single-slit diffraction maximum.
 - Light of wavelength 750 nm passes through a slit $1.0 \ 10^{-3} mm$ wide.
 - How wide is the central maximum?
 - (a) in degrees
 - (b) in cm, if a screen is placed a 20 cm away

•
$$\sin(\theta) = \frac{m\lambda}{D}$$

How phase difference is defined in a wave?
 relationship between phase and wavelength

 2π in the angular space is equivalent to λ in the "propagation" space

A fraction of wavelength gives a phase shift of $\delta = \frac{2\pi}{\lambda} * d$

- Light passing through a single slit can be divided into a series of narrower strips;
- each contributes the same amplitude to the total intensity on the screen,
- but the phases differ due to the differing path lengths:

$$\delta = \Delta y \sin(\theta)$$

(optical path difference between one strip to each other)

$$\Delta \beta = \frac{2\pi}{\lambda} \delta = \frac{2\pi}{\lambda} \Delta y \sin(\theta)$$

(phase difference)

• Phasor diagrams give us the intensity as a function of angle.

• Taking the limit as the width becomes infinitesimally small $(\Delta y \rightarrow 0)$ gives the field as a function of angle:

$$E_{\theta} = E_0 \frac{\sin(\frac{\beta}{2})}{\frac{\beta}{2}}$$

With
$$\beta = \frac{2\pi}{\lambda} D \sin(\theta)$$
 and $I_{\theta} = I_{0} \left(\frac{\sin(\frac{\beta}{2})}{\frac{\beta}{2}} \right)^{2}$

Sinc function: $\frac{\sin(x)}{x}$

35-3 Diffraction in the Double-Slit Experiment

• The double-slit experiment also exhibits diffraction effects, as the slits have a finite width. This means the amplitude at an angle θ will be modified by the same factor as in the single-slit experiment:

Young Interference

$$E_{\theta 0} = 2E_0 \qquad \left(\frac{\sin\left(\frac{\beta}{2}\right)}{\frac{\beta}{2}}\right) \qquad \cos\left(\frac{\delta}{2}\right)$$
Diffraction

with
$$\beta = \frac{2\pi}{\lambda} D \sin(\theta)$$
 and $\delta = \frac{2\pi}{\lambda} d \sin(\theta)$

Remark: The intensity is, as usual, proportional to the square of the field.

(a)

T Dolf

35-3 Diffraction in the Double-Slit Experiment

• The diffraction factor (depends on β) appears as an "envelope" modifying the more rapidly varying interference factor (depends on δ)

35-3 Diffraction in the Double-Slit Experiment

- Example 35-4: Diffraction plus interference.
- Show why the central diffraction peak shown, plotted for the case where $d=6D=60\lambda$, contains 11 interference fringes.

- Resolution is the
 - minimal distance between two separate objects at which an optical system can barely distinguish them.
 - Can be expressed in distance or in angle (far objects)
- Resolution is limited by aberrations and by diffraction.
 - Aberrations can be minimized,
 - but diffraction is unavoidable;
 - it is due to the size of the lens compared to the wavelength of the light.

• For a circular aperture of diameter *D*, the central maximum has an angular width:

Remark: 1.22 comes from the 1st Bessel function → solution for a circular aperture

 The Rayleigh criterion states that two images are just resolvable when the center of one peak is over the first minimum of the other.

• Example 35-5: Hubble Space Telescope.

- The Hubble Space Telescope (HST) is a reflecting telescope that was placed in orbit above the Earth's atmosphere
- its resolution would not be limited by turbulence in the atmosphere.
- Its objective diameter is 2.4 m, focal length is 57.6 m
- For visible light, say $\lambda = 550 \ nm$, estimate the improvement in resolution the Hubble offers over Earth-bound telescopes ($\approx half\ arcsec$).

- Example 35-6: Eye resolution.
 - You are in an airplane at an altitude of 10,000 m. If you look down at the ground,
 - estimate the minimum separation s
 between objects that you could
 distinguish.
 - Could you count cars in a parking lot? Consider only diffraction, and assume your pupil is about 3.0 mm in diameter and $\lambda = 550 \ nm$.

35-7 Diffraction Grating

A diffraction grating consists of a large number of equally spaced narrow slits or lines.

A transmission grating has slits, while a reflection grating has lines that reflect light.

Grating equation

$$sin(\theta) = \frac{m\lambda}{d}$$

35-7 Diffraction Grating

The maxima of the diffraction pattern are defined by

$$\sin\theta = \frac{m\lambda}{d}, \qquad m = 0, 1, 2, \cdots$$

diffraction grating, principal maxima

35-7 Diffraction Grating

35-7 Diffraction Grating - Spectrum

35-7 Diffraction Grating – Space

Interferometry for Astronomy

VLT – Very Large Telescope

LIFE – Large interferometer for exoplanets

