Integrais impróprias

Do tipo 1

Possui assíntota horizontal

Se $\int_a^t f(x) \; dx$ existe para cada número $t \geq a$, então

$$\int_a^\infty f(x) \ dx = \lim_{t o \infty} \int_a^t f(x) \ dx$$

desde que o limite exista (como número). O mesmo caso é verdadeiro se f for definida entre $[-\infty,a]$ (tende ao infinito pela esquerda).

Do tipo 2

Possui assintota vertical

Se f é contínua em [a,b) e descontínua em b, então

$$\int_a^b f(x) \ dx = \lim_{t o b^-} \int_a^t f(x) \ dx$$

O mesmo caso é verdadeiro se f for definida entre (a,b] (descontínuo pela esquerda).

Convergência

Integrais impróprias são chamadas **convergentes** se os limites correspondentes existem ou, senão, **divergentes**.

Teorema de comparação

Suponha f e g, duas funções contínuas com $f(x) \geq g(x) \geq 0$ para $x \geq a$.

- Se $\int_a^\infty f(x) \ dx$ é **convergente**, $\int_a^\infty g(x) \ dx$ também o é;
- Se $\int_a^\infty g(x) \; dx$ é **divergente**, $\int_a^\infty f(x) \; dx$ também o é.