Разрешимость, перечислимость, сводимости

Задача 1. Да Нет Пусть L — разрешимый язык алфавите Σ . Верно ли, что разрешим и язык $\{w \in \Sigma^* \mid \text{существует слово } v \in L$, такое что пара слов (w,v) отличается не более, чем в 2017 позициях $\}$ (в частности, длины должны совпадать)?

Задача 2. Да Нет Будет ли *разрешимым* язык $L = \{\langle M \rangle\}$, состоящий из описаний всех МТ со входным алфавитом $\{0,1\}$, которые не принимают хотя бы одно слово, содержащее литерал "1"?

Задача 3. Да Нет Является ли *перечилимым* язык $L = \{\langle M \rangle\}$, состоящий из описаний всех МТ, имеющих входной алфавит $\{0,1\}$, которые принимают только слова, содержащие литерал "1"?

Задача 4. Да Нет Является ли разрешимым язык $L = \{\langle M \rangle\}$, состоящий из описаний всех таких МТ, что $\langle M \rangle \in L \Leftrightarrow \exists \ \text{MT } N$, принимающая тот же язык, что и МТ M, и имеющая хотя бы одно недостижимое состояние.

Задача 5. Да Нет Напомним, что m-полным языком в классе языков $\mathcal C$ называется такой язык $L \in \mathcal C$, что всякий язык из $\mathcal C$ m-сводися к L. Существуют ли m-полные языки в классе разрешимых языков?

Изменится ли ваш ответ, если вместо m-сводимости будет рассматриваться тьюрингова сводимость?

Задача 6. Да Нет Верно ли, что все разрешимые языки m-сводятся друг к другу?

Оценки, рекуррентности, алгоритмы

Задача 7. Дана рекурсивная программа

```
функция f(n) if n>1 печать ("алгоритм") печать ("алгоритм") f(\lfloor \frac{n}{2} \rfloor) f(\lfloor \frac{n}{4} \rfloor) end if
```

Пусть g(n) обозначает число слов "алгоритм", которые напечатает программа.

Задача 7. 1. Найдите Θ -асимптотику g(n) в виде функции от n

Задача 7. 2. Считая n степенью двойки, вычислите g(n) точно.

Задача 8. Да Нет О положительных функциях f, g известно, что f(n) = O(n) и $g(n) = \Omega(n)$. Следует ли из этого, что $f(n) \cdot g(n) = \Omega(n^2)$?

Задача 9. Найдите Θ -асимптотику рекуррентности

$$T(n) = 2018 T(\frac{n}{2017}) + \log(n!).$$

Задача 10. Найдите Θ -асимптотику рекуррентности

$$T(n) = T(n-1) + n\sqrt{n}.$$

Кроме того, в тесте будут задачи на построение конкретных алгортмов на МТ и задачи на анализ конкретных алгоритмов.