Topology I

Ji, Yong-hyeon

December 11, 2024

We cover the following topics in this note.

- Topology and Topological Space
- Open Set
- Continuous Mapping
- Distance Function and Metric Space
- Continuity of Function

Topology

Definition. Let S be a non-empty set. A **topology**^a on S is a subset

$$\mathcal{T} \subseteq 2^S = \{U : U \subseteq S\}$$

that satisfies the axioms:

- (O1) S and \emptyset are elements of \mathcal{T} : $S \in \mathcal{T}$ and $\emptyset \in \mathcal{T}$.
- $(O2)^b$ The union of an arbitrary collection in \mathcal{T} is an element of \mathcal{T} :

$$\{U_{\alpha}\}_{\alpha\in\Lambda}\subseteq\mathcal{T}\implies\bigcup_{\alpha\in\Lambda}U_{\alpha}\in\mathcal{T}.$$

 $(O3)^c$ The intersection of any finite collection in \mathcal{T} is an element of \mathcal{T} :

$$\{U_i\}_{i=1}^n \subseteq \mathcal{T} \implies \bigcap_{i=1}^n U_i \in \mathcal{T}.$$

Remark. By mathematical induction, we have

O3
$$\iff$$
 $[\{U_1, U_2\} \subseteq \mathcal{T} \Rightarrow U_1 \cap U_2 \in \mathcal{T}].$

Topological Space

Definition. Let $S \neq \emptyset$ be a set. Let \mathcal{T} be a topology on S. Then the ordered pair (S, \mathcal{T}) is called a **topological space**.

Open Set (Topology)

Definition. Let (S, \mathcal{T}) be a topological space. $U \subseteq S$ is an **open set**, or **open** (in S) iff $U \in \mathcal{T}$.

Remark. A subset $\mathcal{T} \subseteq 2^S$ is a topology on S if and only if

- (i) \emptyset and S are open;
- (ii) Let $\{U_{\alpha}\}_{{\alpha}\in\Lambda}\subseteq \mathcal{T}$. Then $\bigcup_{{\alpha}\in\Lambda}U_{\alpha}$ is open.
- (iii) Let $\{U_i\}_{i=1}^n \subseteq \mathcal{T}$. Then $\bigcap_{i=1}^n U_i$ is open.

[&]quot;The word "topology" comes from the Greek roots "topos" meaning "place" and "logos" meaning "study".

 $[^]b\mathcal{T}$ is closed under arbitrary unions

 $^{^{}c}\mathcal{T}$ is closed under *finite* intersection

Continuous Mapping by Open Sets

Definition. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topological spaces. Let $f: X \to Y$ be a mapping from X to Y.

(1) (Continuous Everywhere) The mapping f is **continuous on** X if and only if

$$U_Y \in \mathcal{T}_Y \implies f^{-1}[U_Y] \in \mathcal{T}_X,$$

where $f^{-1}[U_Y] = \{x \in X : f(x) \in U_Y\}$ is the preimage of U_Y under f.

Note (Preparation for **Example 1**). Let $S \neq \emptyset$ be a set, and let $\{A_{\alpha}\}_{{\alpha} \in \Lambda} \subseteq S$. Then

$$S \setminus \bigcup_{\alpha \in \Lambda} A_{\alpha} = S \setminus \{x \in S : \exists \alpha \in \Lambda \text{ s.t. } x \in A_{\alpha}\} = \{x \in S : \neg [\exists \alpha \in \Lambda \text{ s.t. } x \in A_{\alpha}]\}$$
$$= \{x \in S : \forall \alpha \in \Lambda, \ x \notin A_{\alpha}\}$$
$$= \{x \in S : \forall \alpha \in \Lambda, \ x \in S \setminus A_{\alpha}\}$$
$$= \bigcap_{\alpha \in \Lambda} (S \setminus A_{\alpha}).$$

$$\begin{split} S \setminus \bigcap_{\alpha \in \Lambda} A_{\alpha} &= S \setminus \{x \in S : \forall \alpha \in \Lambda, \ x \in A_{\alpha}\} = \big\{x \in S : \neg [\forall \alpha \in \Lambda, \ x \in A_{\alpha}]\big\} \\ &= \big\{x \in S : \exists \alpha \in \Lambda \text{ s.t. } x \notin A_{\alpha}\big\} \\ &= \big\{x \in S : \exists \alpha \in \Lambda \text{ s.t. } x \in S \setminus A_{\alpha}\big\} \\ &= \bigcup_{\alpha \in \Lambda} (S \setminus A_{\alpha}). \end{split}$$

Note (Preparation for **Example 1**).

- (1) A Subset of a Finite Set is Finite.
- (2) The Intersection of Finite Sets is Finite.

Example 1 (Cofinite Topology). Let $S \neq \emptyset$ be a set. Define the cofinite topology $\mathcal{T}_C \subseteq 2^S$ by

$$\mathcal{T}_C := \left\{ U \subseteq S : S \setminus U \text{ is finite} \right\} \cup \{\emptyset\}$$
$$= \left\{ U \subseteq S : U = \emptyset \text{ or } S \setminus U \text{ is finite} \right\}.$$

In other words, U is open in the cofinite topology if U is the empty, or if the complement $S \setminus U$ is a finite set. We claim that \mathcal{T}_C be a topology on S:

- (O1) By definition, $\emptyset \in \mathcal{T}_C$. For U = S, the complement $S \setminus S = \emptyset$, which is finite, so $S \in \mathcal{T}_C$. Hence, both \emptyset and S are elements of \mathcal{T}_C .
- (O2) Let $\{U_{\alpha}\}_{{\alpha}\in\Lambda}\subseteq\mathcal{T}_{C}$.
 - (Case 1) If $U_{\alpha} = \emptyset$ for all $\alpha \in \Lambda$, then $\bigcup_{\alpha \in \Lambda} U_{\alpha} = \emptyset \in \mathcal{T}_{C}$.
 - (Case 2) Suppose that there exists $\alpha_0 \in \Lambda$ such that $U_{\alpha_0} \neq \emptyset$. Then

$$S \setminus \bigcup_{\alpha \in \Lambda} U_{\alpha} = \bigcap_{\alpha \in \Lambda} (S \setminus U_{\alpha}) \subseteq S \setminus U_{\alpha_0}.$$

Since $S \setminus U_{\alpha_0}$ is finite, $S \setminus \bigcup_{\alpha \in \Lambda} U_{\alpha}$ if finite, so $\bigcup_{\alpha \in \Lambda} U_{\alpha} \in \mathcal{T}_C$.

- (O3) Let $U_1 \in \mathcal{T}_C$ and $U_2 \in \mathcal{T}_C$.
 - (Case 1) If $U_1 = \emptyset$ or $U_2 = \emptyset$, then $U_1 \cap U_2 = \emptyset \in \mathcal{T}_C$.
 - (Case 2) Suppose that $U_1 \neq \emptyset$ and $U_2 \neq \emptyset$. Then $S \setminus U_1$ and $S \setminus U_2$ are finite. By the De Morgan law, we have

$$S \setminus (U_1 \cap U_2) = (S \setminus U_1) \cup (S \setminus U_2),$$

which is a finite set. Thus, $U_1 \cap U_2 \in \mathcal{T}_C$.

Example 2 (Discrete Topology). Let $S \neq \emptyset$ be a set, and let $\mathcal{T} = 2^S$ be the power set of S. Then \mathcal{T} is called the **discrete topology** on S and $(S, \mathcal{T}) = (S, 2^S)$ the **discrete (topological) space** on S.

Example 3 (Indiscrete Topology). Let $S \neq \emptyset$ be a set, and let $\mathcal{T} = \{S, \emptyset\}$. Then \mathcal{T} is called the **indiscrete topology** on S and $(S, \mathcal{T}) = (S, \{S, \emptyset\})$ the **indiscrete (topological) space** on S.

Note.

- (1) Discrete Topology is Finest Topology.
- (2) Indiscrete Topology is Coarsest Topology.

Coarser Topology and Finer Topology

Definition. Let $S \neq \emptyset$ be a set. Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on S.

- (1) \mathcal{T}_1 is said to be **coarser** than \mathcal{T}_2 if $\mathcal{T}_1 \subseteq \mathcal{T}_2$.
- (2) \mathcal{T}_1 is said to be **finer** than \mathcal{T}_2 if $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

Distance Function

Definition. Let *S* be a set. The function $d: S \times S \to \mathbb{R}$ is called a **distance function** (or **metric**) if it satisfies the following properties:

$$(i)^a \ \forall x, y \in S, \ d(x, y) \ge 0 \quad \text{and} \quad d(x, y) = 0 \Leftrightarrow x = y.$$

$$(\mathrm{ii})^b \ \forall x,y \in S, \ d(x,y) = d(y,x).$$

(iii)^c
$$\forall x, y, z \in S, d(x, z) \le d(x, y) + d(y, z).$$

The pair (S, d) is called a **metric space**.

Remark.

Example 4.

• Let $S = \mathbb{R}$, the set of real numbers. Define the function $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by

$$d(x,y) = |x - y|$$

for $x, y \in \mathbb{R}$.

• Let $S = \mathbb{R}^n$, the *n*-dimensional Euclidean space. Define the function $d : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by

$$d(\mathbf{x}, \mathbf{y}) = \left\| \mathbf{x} - \mathbf{y} \right\| = \sqrt{\sum_{i=0}^{n-1} \left| x_i - y_i \right|^2},$$

where $\mathbf{x} = (x_0, x_1, \dots x_{n-1})$ and $\mathbf{y} = (y_0, \dots, y_{n-1})$ are vectors in \mathbb{R}^n .

^aNon-negativity and Zero only for identical points

^bSymmetry

^cTriangle inequality

Neighborhood

Definition. Let (S, d) be a metric space, where S is a set and $d: S \times S \to \mathbb{R}$ is a metric. For $x \in S$ and $\varepsilon > 0$, the ε -neighborhood of x, denoted by $\mathcal{N}_{\varepsilon}(x)$, is defined as

$$\mathcal{N}_{\varepsilon}(x) := \left\{ y \in S : d(x, y) < \varepsilon \right\}.$$

Remark.

Open Set (Metric Space)

Definition. Let (S, d) be a metric space, where S is a set and $d : S \times S \to \mathbb{R}$ is a metric. Let $U \subseteq S$. Then U is an **open set** in S (as metric space) if and only if it is a neighborhood of each of its elements, i.e.,

$$U$$
 is open in $S \stackrel{\text{def}}{\Longleftrightarrow} \forall p \in U$, $\exists \varepsilon > 0$ such that $\mathcal{N}_{\varepsilon}(p) \subseteq U$.

Remark.

Exercise (Metric Topology). Let (S, d) be a metric space, where S is a set and $d: S \times S \to \mathbb{R}$ is a metric. Consider the set τ of all open sets of S:

$$\tau := \{ U \subseteq S : U \text{ is open in } S \}$$
$$= \{ U \subseteq S : \forall p \in U, \exists \varepsilon > 0 \text{ such that } \mathcal{N}_{\varepsilon}(p) \subseteq U \}.$$

We claim that τ is the topology on the metric space (S, d):

- (O1)
- (O2)
- (O3)

Note (Convergence of Sequences). A sequence $\{a_n\}_{n=1}^{\infty} (\subseteq \mathbb{R})$ is **converge** to $L \in \mathbb{R}$ if and only if

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \left[n \ge N \implies |a_n - L| < \varepsilon \right]$$
 $\iff \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \left[n \ge N \implies d(a_n, L) < \varepsilon \right]$
 $\iff \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ such that } \left[n \ge N \implies a_n \in \mathcal{N}_{\varepsilon}(L) \right]$

Continuity of Functions

Definition. Let $S \subseteq$ be a non-empty subset of \mathbb{R} . Let $f : S \to \mathbb{R}$ be a real-valued function, and let $a \in S$. We say that f is **continuous at** a if and only if

$$\lim_{x \to a} f(x) = f(a).$$

That is,

$$\forall \varepsilon > 0, \ \exists \delta > 0 \quad \text{such that} \quad |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon.$$

If *f* is continuous on every point of *S*, then *f* is called a **continuous function on** *S*.

Remark.

$$\forall \varepsilon > 0, \ \exists \delta > 0 \quad \text{such that} \quad |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

$$\iff \forall \varepsilon > 0, \ \exists \delta > 0 \quad \text{such that} \quad x \in \mathcal{N}_{\delta}(a) \implies f(x) \in \mathcal{N}_{\varepsilon}(f(a))$$

$$\iff \forall \varepsilon > 0, \ \exists \delta > 0 \quad \text{such that} \quad f(x) \in f[\mathcal{N}_{\delta}(a)] \implies f(x) \in \mathcal{N}_{\varepsilon}(f(a)) \quad \because f[\mathcal{N}_{\delta}(a)] = \{f(x) : x \in \mathcal{N}_{\delta}(a)\}$$

$$\iff \forall \varepsilon > 0, \ \exists \delta > 0 \quad \text{such that} \quad f[\mathcal{N}_{\delta}(a)] \subseteq \mathcal{N}_{\varepsilon}(f(a)).$$

Remark. f is discontinuous at a if and only if

$$\exists \varepsilon > 0$$
 such that $\forall \delta > 0$, $|x - \alpha| < \delta$ but $|f(x) - f(a)| \ge \varepsilon$ $\iff \exists \varepsilon > 0$ such that $\forall \delta > 0$, $\mathcal{N}_{\varepsilon} (f(a)) \subset f [\mathcal{N}_{\delta}(a)]$.

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 8. 위상수학 (a) 위상공간의 정의." YouTube Video, 41:25. Published September 27, 2019. URL: https://www.youtube.com/watch?v=q8BtXIFzo2Q.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 9. 위상수학(b) 해석학개론과 거리위상" YouTube Video, 33:43. Published September 29, 2019. URL: https://www.youtube.com/watch?v=uJ0Gw7Yxk7c&t=242s.