

COS10004 Computer Systems

Lecture 1.6 Combinational Circuits - The Half Adder

CRICOS provider 00111D

Dr Chris McCarthy

COMBINATIONAL CIRCUIT

- A combinational circuit is a connected arrangement of logic gates with the set of inputs and outputs.
- > A combinational circuit can be described by a truth table showing the binary relationship between *n* input variables and *m* output variables.
- > Two examples: half adder, full adder
- > These circuits serve as basic building blocks for the construction of more complicated arithmetic circuits.

BINARY ADDITION

> We need 1-bit adders...

30/7/20

HALF-ADDER

- > The most basic arithmetic circuit is the addition of two binary digits.
- > A combinational circuit that performs the arithmetic addition of two bits is called a half-adder.
- It consists of two inputs and two outputs:
 - Two inputs get summed
 - Two outputs: sum and carry bits
- It is necessary to have two output bits because the sum 1
 + 1 is binary 10, which has two digits.

A half-adder

The plus-circle (modulo addition of 1-bit values) means XOR, the dot means AND

COS10004 Computer Systems

Half-adder

FULL-ADDER

- > A full-adder is a combination circuit that forms the arithmetic sum of three input bits.
- > It consists of three inputs and two outputs.
- > Two of the inputs represent the two bits to be added.
- > The third input represents the carry from the previous lower significant position.
- > One of the outputs will be the carry into the next higher significant position, i.e. into the next full adder.
 - Of course two output bits are necessary because the arithmetic sum of three binary digits ranges from 0 to 3, and 2 and 3 need two bits.

A full adder

	Ci	X	Y	S			Co		
a	0	0	0	0	$S = X \oplus Y$		0	<u> </u>	
b	0	0	1	1			0	$Co = X \bullet Y$	$V \bullet V$
c	0	1	0	1	$\int S - X$	$\bigcup I$	0	$CO = X \times I$	
d	0	1	1	0	J		1	J	
e	1	0	0	1)		0	Co = X + Y	
f	1	0	1	0	$> S = X \oplus Y$	1	$Y \perp V$		
g	1	1	0	0	$\int S - X \oplus I$		1		. т 1
h	1	1	1	1	J		1])	

8

A full adder

> We could make this from two half-adders:

Time to Imagine

- > A full-adder is a combination circuit that forms the arithmetic sum of three input bits.
- Suppose we added a second full adder (A2) to the output of the first adder (A1), and connected the Ci pin of A2 to Co of A1?
- > Wouldn't we be able to add two 2-bit numbers?

- > A 3rd adder?
- > A 4th....

Multi bit addition - combine 8 adders with carry to get 8-bit addition (of two 8-bit numbers).

In the Lab...

- Play with Gates (in a "sim") and construct truth tables.
- > Design a half adder
- I made some video tutorials that might also help:
 - Logisim introduction: https://youtu.be/fwPw28O5ORI
 - Half-adder tutorial: https://youtu.be/BpvIMgb40U4
 - Full-adder tutorial: https://youtu.be/1qLAk0AsH40

Summary of Week 1

- > Computer Systems:
 - We're building a computer up conceptually!
 - Get your Pi and hardware
 - Check Canvas regularly
- Information and bits
- > Digital Circuit Design:
 - Gates, Half-Adders and Full-Adders
- Next week: more complex circuits and Flip Flops (memory)!

