EMBEDDED SYSTEMS

LAB PROJECT

COE17B010

Group Details

- o Group number: 8
- o Group members:
 - 1. COE17B010
 - 2. COE17B036
 - 3. COE17B047
 - 4. CED17I001
 - 5. CED17I046

Project Title

Create a DAC using R-2R Ladder for Piano using Switch and Resistance for 8 bit.

Diagram

Components Used

- Arduino Uno R3
- Buttons
- Multimeter
- Potentiometer
- Piezo speaker
- 10kΩ resistors 8
- 1kΩ resistors 24
- 500Ω resistor 1
- 1 Red LED

Pin Configurations

Pin Name	Pin Type	Connection	
8	DIGITAL INPUT	BUTTON 0	
9	DIGITAL INPUT	BUTTON 1	
4	DIGITAL INPUT	BUTTON 2	
2	DIGITAL INPUT	BUTTON 3	
3	DIGITAL INPUT	BUTTON 4	
5	DIGITAL INPUT	BUTTON 5	
6	DIGITAL INPUT	BUTTON 6	
7	DIGITAL INPUT	BUTTON 7	
10	DIGITAL OUTPUT	Terminal 2 Potentiometer	
13	DIGITAL OUTPUT	R-2R Ladder BitPosition 1	
12	DIGITAL OUTPUT	R-2R Ladder BitPosition 2	
11	DIGITAL OUTPUT	R-2R Ladder BitPosition 3	
A0	ANALOG INPUT	R-2R Ladder Output	

A1	DIGITAL OUTPUT	R-2R Ladder BitPosition 4
A2	DIGITAL OUTPUT	R-2R Ladder BitPosition 5
А3	DIGITAL OUTPUT	R-2R Ladder BitPosition 6
A4	DIGITAL OUTPUT	R-2R Ladder BitPosition 7
A5	DIGITAL OUTPUT	R-2R Ladder BitPosition 8

Group Contributions

Arduino Connections:

Button configuration setting: COE17B010, COE17B047

Integration of Modules: CED17I001R2R ladder: COE17B036, CED17I046

Arduino Code:

o Setup: CED17I001

Button click checking: COE17B036

o Frequency generation using DAC: COE17B010, COE17B047, CED17I046

• COE17B010

- Worked on button to pin connections (VCC, GND, OUTPUT from Button)
- Worked on deciding which pins to use for DIGITAL INPUT from 8 buttons and assigned those pins as DIGITAL INPUT
- Worked on Arduino Code for Frequency Generation for piano keys from ANALOG OUTPUT from DAC
- Worked on Arduino Code for Amplitude generation in Sine Wave for generation of the actual ANALOG OUTPUT to Piezo

COE17B036

- Constructed R-2R Ladder Design for 8-bits in TinkerCAD using RESISTORS and WIRE CONNECTORS
- Connection of Multimeter and LED in the R-2R Ladder.
- Worked on Arduino Code for checking which buttons are clicked by reading corresponding pins and recognizing which are high and sending corresponding frequency signals to Arduino.
- Convert the frequency into an 8 bit binary number and set the resistor-port to a corresponding HIGH value.

• COE17B047

 Worked on sending the signal of pushbuttons to Arduino pin connections (VCC, GND, taking output signal from push buttons when pressed and feeding the input to Arduino)

- Worked on Arduino code for sending binary input values (corresponding frequencies of piano notes) from Arduino to corresponding R-2R Ladder resistors in the circuit.
- Worked on deciding which pins to use for DIGITAL INPUT from 8 pushbuttons along with their configurations and the Arduino pin connections for resistors in R-2R ladder.
- Calculated the frequencies of 8 different piano notes and worked on changing the output volume from the piezo speaker using a potentiometer and verifying the correctness of output voltage using a multimeter.

CED17I001

- Integration of different modules(R-2R Ladder, PushButton and Arduino).
- Worked on WIRE CONNECTORS between Buttons to Arduino, Arduino to R-2R Ladder, Arduino to Piezo (Connections between all major modules)
- Worked on setting up the completed circuits and assigning proper code to Arduino and simulating it using TINKERCAD
- Worked on Initialising frequency values and other parameters in Arduino Code

• CED17I046

- Constructed R-2R Ladder Design for 8-bits in TinkerCAD using RESISTORS and WIRE CONNECTORS with LED Indicator and Multimeter for Validation of frequency
- Checking and Setting Frequency for 8 Basic notes in music for the generation of Sine Wave to get through DAC R-2R Ladder
- Worked in Arduino Code for reading ANALOG OUTPUT Pin from R-2R Ladder to corresponding Arduino Port
- Worked in Arduino Code for giving ANALOG OUTPUT from Arduino to Piezo to play the specific frequency

Code Logic

1. Setup

a. Initialise all required pins as INPUT or OUTPUT and set initial values for frequencies in binary

2. Button Click Checking

- a. Check Button Click and detect which button is clicked by checking input from respective digital pins
- b. If digital input is HIGH Clicked in that instance

3. Frequency generation using DAC

- a. Read Corresponding Binary value of frequency for the button and input the values to DAC 8 bits input
- b. DAC R-2R Ladder circuit converts this digital value to analog
- c. Capture the analog output from DAC and multiply 2 to get actual piano note frequency

d.	Use tone() function to send output to Piezo to play specific frequency sound