# Hand Tube Bender Manual



Swagelok

## Contents

| Introduction 4                             |
|--------------------------------------------|
| Bender Components                          |
| Tube Preparation                           |
| Bender Setup 6                             |
| Making Bends 8                             |
| Springback10                               |
| Determining Changes in Plane and Direction |
| Vise Clamp Block                           |
| Adjustment (Gain) Calculations 13          |
| Offset Bend Formula                        |
| Preparation for Accurate Bends             |
| Tubing Installation                        |
| Conversions                                |
| Decimal Equivalents 20                     |

#### Introduction

Swagelok hand tube benders provide consistent, highquality bends in tubing made of stainless steel, copper, steel, aluminum, and a variety of other materials.

This handbook will assist you in tube preparation and proper use of the bender. We recommend reading this handbook in its entirety BEFORE using the bender.

#### **Bender Components**





#### **Tube Preparation**

It is important to use high-quality, annealed tubing and quality cutting tools. Proper deburring of both the inside diameter (ID) and outside diameter (OD) is required to remove all metal chips and burrs.



**Tube Cutter** 



**Tube Sawing Guide** 



Tube Deburring Tool

Prior to making bends, it is necessary to mark the tubing. First make a reference mark on the end of the tubing to indicate where layout measurements begin. Next, make a measurement mark to indicate where the tube should be aligned in the bender. Always make this mark a full 360° around the tubing.



Swing the short handle up so it is above the bender die. Lower the tube latch. Place the tubing in the bender groove, and press the tube latch forward just enough to hold the tubing. This will prevent movement of the tubing during its initial positioning, yet still allow for additional tubing alignment.



Carefully lower the short handle until the roll dies rest gently on the tubing. Keep the link straight and parallel to the long handle to prevent premature bending.



Next, align the zero on the roll support with the zero on the bender die. Then, align the measurement mark under one of the markings on the roll support (see table below).

| Angle | Reference<br>Mark           | Mark |
|-------|-----------------------------|------|
| 45°   | either side of roll support | 45   |
| 90°   | to left of roll support     | Г    |
| 90    | to right of roll support    | R    |



Push the tube latch firmly over the tubing to secure the tubing in the bender die.

#### **Making Bends**

#### Bends 90° or Less



After properly positioning the tubing in the bender, slowly push the short handle down until the "0" on the roll support reaches the desired degree mark on the bender die.



After completing the bend, swing the short handle up and away from the bender die. Unlatch the tubing and carefully remove it from the bender groove. Avoid scratching or marring the tubing during removal, since this could adversely affect sealing surfaces.

#### Bends Greater than 90°

The right angle design of the Swagelok tube bender offers maximum leverage when making bends. The bender's unique design lets you continue using right angle leverage for bends greater than 90°.





Then swing the short handle up counterclockwise until it is slightly above the perpendicular position in relation to the long handle. Retighten the short handle. Now you will have continual right angle leverage for the rest of the bend.



Continue the bend until the "0" on the roll support reaches the desired degree mark on the bender die.

## **Springback**



All tubing will exhibit springback after a bend is completed. Softer tubing, such as copper, will have less springback than harder tubing, such as stainless steel. Experience will help you predict the amount of springback. Expect to allow 1 to 3° compensation, depending on tubing material and hardness.

# Determining Changes in Plane and Direction



For bends in the opposite direction of the previous bend, align the end of the tubing with the raised short handle. For bends in the same direction as the previous bend.

align the end of the tubing parallel with the long handle.

## **Vise Clamp Block**



The Swagelok tube bender features a vise clamp block which allows you to clamp the bender in a vise. This feature is especially helpful when bending tubing of a hard material or heavy wall thickness.

#### **Adjustment (Gain) Calculations**

When determining tube bend locations, adjustment factors must be considered to achieve proper layout.



#### Sharp Bend



Adjustment (gain) is the difference in the length of tubing used in a radiused bend compared to the length of tubing required in a sharp bend, when measured from P1 to P2. See Figure above.

The distance around a radiused bend is always less than a sharp bend.



The adjustment factor is determined by the radius of the tube bender and the number of degrees of the bend.

### **Bend Adjustment**



### **Fractional Adjustment Calculations**

|               | Tube OD, in. |       |       |      |      |  |
|---------------|--------------|-------|-------|------|------|--|
|               | 1/2          | 3/8   | 5/16  | 1/4  | 1/4  |  |
|               | Bend Radius  |       |       |      |      |  |
| Bend<br>Angle | 1 1/2        | 15/16 | 15/16 | 9/16 | 3/4  |  |
| 90°           | 5/8          | 13/32 | 13/32 | 1/4  | 5/16 |  |
| 85°           | 1/2          | 11/32 | 11/32 | 3/16 | 1/4  |  |
| 80°           | 7/16         | 9/32  | 9/32  | 5/32 | 7/32 |  |
| 75°           | 11/32        | 7/32  | 7/32  | 1/8  | 3/16 |  |
| 70°           | 9/32         | 11/64 | 11/64 | 3/32 | 1/8  |  |
| 65°           | 7/32         | 1/8   | 1/8   | 5/64 | 3/32 |  |
| 60°           | 5/32         | 3/32  | 3/32  | 1/16 | 5/64 |  |
| 55°           | 1/8          | 5/64  | 5/64  | 3/64 | 1/16 |  |
| 50°           | 3/32         | 1/16  | 1/16  | 1/32 | 3/64 |  |
| 45°           | 1/16         | 1/32  | 1/32  | 1/32 | 1/32 |  |

#### **Metric Adjustment Calculations**

|               | Tube OD, mm |      |      |      |
|---------------|-------------|------|------|------|
|               | 12          | 10   | 8    | 6    |
| B             | Bend Radius |      |      |      |
| Bend<br>Angle | 38          | 24   | 24   | 15   |
| 90°           | 16.5        | 10.5 | 10.5 | 6.5  |
| 85°           | 13.5        | 8.5  | 8.5  | 5.0  |
| 80°           | 11.0        | 7.0  | 7.0  | 4.0  |
| 75°           | 8.5         | 5.5  | 5.5  | 3.5  |
| 70°           | 7.0         | 4.5  | 4.5  | 2.5  |
| 65°           | 5.5         | 3.5  | 3.5  | 2.0  |
| 60°           | 4.0         | 2.5  | 2.5  | 1.5  |
| 55°           | 3.0         | 2.0  | 2.0  | 1.0  |
| 50°           | 2.5         | 1.5  | 1.5  | 1.0  |
| 45°           | 1.5         | 1.0  | 1.0  | 0.50 |

Adjustments on angles of less than 45° are minimal.

#### Offset Bend Formula



When offset exists, determine the length of offset (L) before calculating for the adjustment from the tube bend. To determine the length of offset, select the offset angle (E). Then, multiply the offset dimension (O) by the offset bend allowance.

#### Angle Offset Bend E Allowance

| 22 1/2° | 2.613 | ×        | Offset (0) | = | Length of Offset (L) |
|---------|-------|----------|------------|---|----------------------|
| 30°     | 2.00  | ×        |            | = |                      |
| 45°     | 1.414 | ×        |            | = |                      |
| 60°     | 1.154 | $\times$ |            | = |                      |

An offset bend calculation chart has been provided in  $30^\circ$ ,  $45^\circ$ , and  $60^\circ$  offset angles. For offset dimensions (O) greater than 4 in., use the Offset Bend Formula to determine the length of the offset (L).

| Dimensions |        |       |        |            |        |  |
|------------|--------|-------|--------|------------|--------|--|
| 30° C      | Offset | 45° C | Offset | 60° Offset |        |  |
| (O)        | (L)    | (0)   | (L)    | (0)        | (L)    |  |
| 1          | 2      | 1     | 1 7/16 | 1          | 1 3/16 |  |
| 1 1/4      | 2 1/2  | 1 1/4 | 1 3/4  | 1 1/4      | 1 7/16 |  |
| 1 1/2      | 3      | 1 1/2 | 2 1/8  | 1 1/2      | 1 3/4  |  |
| 1 3/4      | 3 1/2  | 1 3/4 | 2 1/2  | 1 3/4      | 2      |  |
| 2          | 4      | 2     | 2 3/4  | 2          | 2 5/16 |  |
| 2 1/4      | 4 1/2  | 2 1/4 | 3 3/16 | 2 1/4      | 2 9/16 |  |
| 2 1/2      | 5      | 2 1/2 | 3 9/16 | 2 1/2      | 2 7/8  |  |
| 2 3/4      | 5 1/2  | 2 3/4 | 3 7/8  | 2 3/4      | 3 3/16 |  |
| 3          | 6      | 3     | 4 1/4  | 3          | 3 1/2  |  |
| 3 1/4      | 6 1/2  | 3 1/4 | 4 5/8  | 3 1/4      | 3 3/4  |  |
| 3 1/2      | 7      | 3 1/2 | 5      | 3 1/2      | 4      |  |
| 3 3/4      | 7 1/2  | 3 3/4 | 5 5/16 | 3 3/4      | 4 5/16 |  |
| 4          | 8      | 4     | 5 9/16 | 4          | 4 5/8  |  |

### **Preparation for Accurate Bends**



## To achieve configurations, mark the tubing as follows:

P1 = 3 in.

**P2** = P1 + 2.5 in. - 1/4 in. adjustment = 5.25 in.

**P3** = P2 + 3 in.  $- \frac{1}{4}$  in. adjustment = 8 in.

90° adjustment = 1/4 in.

45° adjustment = 1/32 in.

#### **Tubing Installation**

Properly selected tubing, combined with quality Swagelok tube fittings, can provide leak-tight systems.

When installing fittings near tube bends, there must be a sufficient length of straight tubing to allow the tube to be bottomed in the Swagelok tube fitting:



- R Radius of tubing bend as required or minimum allowed for specified wall thickness and tube size as recommended by tubing manufacturer
- L Straight tube length required from end of tube to beginning of bend
- Tube outside diameter

| Fractional, in. |         |  |  |  |
|-----------------|---------|--|--|--|
| T<br>Tube OD    | L       |  |  |  |
| 1/16            | 1/2     |  |  |  |
| 1/8             | 23/32   |  |  |  |
| 3/16            | 3/4     |  |  |  |
| 1/4             | 13/16   |  |  |  |
| 5/16            | 7/8     |  |  |  |
| 3/8             | 15/16   |  |  |  |
| 1/2             | 1 3/16  |  |  |  |
| 5/8             | 1 1/4   |  |  |  |
| 3/4             | 1 1/4   |  |  |  |
| 7/8             | 1 5/16  |  |  |  |
| 1               | 1 1/2   |  |  |  |
| 1 1/4           | 2       |  |  |  |
| 1 1/2           | 2 13/32 |  |  |  |
| 2               | 3 1/4   |  |  |  |

| Metric, mm   |    |  |  |  |
|--------------|----|--|--|--|
| T<br>Tube OD | L  |  |  |  |
| 3            | 19 |  |  |  |
| 6            | 21 |  |  |  |
| 8            | 23 |  |  |  |
| 10           | 25 |  |  |  |
| 12           | 31 |  |  |  |
| 14           |    |  |  |  |
| 15           | 32 |  |  |  |
| 16           | 32 |  |  |  |
| 18           |    |  |  |  |
| 20           | 34 |  |  |  |
| 22           | 34 |  |  |  |
| 25           | 40 |  |  |  |
| 28           | 53 |  |  |  |
| 30           | 52 |  |  |  |
| 32           | 54 |  |  |  |
| 38           | 63 |  |  |  |
| 50           | 80 |  |  |  |

#### Reliability

For maximum assurance of reliable performance, use Swagelok tube fittings assembled in accordance with catalog instructions, and use properly selected and handled high-quality tubing.

#### **Conversions**

| Dimer | Dimensions |  |  |  |  |
|-------|------------|--|--|--|--|
| in. = | = mm       |  |  |  |  |
| 1/16  | 1.59       |  |  |  |  |
| 1/8   | 3.18       |  |  |  |  |
| 3/16  | 4.76       |  |  |  |  |
| 1/4   | 6.35       |  |  |  |  |
| 5/16  | 7.94       |  |  |  |  |
| 3/8   | 9.53       |  |  |  |  |
| 7/16  | 11.11      |  |  |  |  |
| 1/2   | 12.70      |  |  |  |  |
| 9/16  | 14.29      |  |  |  |  |
| 5/8   | 15.88      |  |  |  |  |
| 11/16 | 17.46      |  |  |  |  |
| 3/4   | 19.05      |  |  |  |  |
| 13/16 | 20.64      |  |  |  |  |
| 7/8   | 22.23      |  |  |  |  |
| 15/16 | 23.81      |  |  |  |  |
| 1     | 25.40      |  |  |  |  |
| 1 1/4 | 31.75      |  |  |  |  |
| 1 1/2 | 38.10      |  |  |  |  |
| 2     | 50.80      |  |  |  |  |

| Dimensions |       |  |  |  |
|------------|-------|--|--|--|
| mm =       | = in. |  |  |  |
| 1          | 0.039 |  |  |  |
| 2          | 0.079 |  |  |  |
| 3          | 0.118 |  |  |  |
| 4          | 0.157 |  |  |  |
| 5          | 0.197 |  |  |  |
| 6          | 0.236 |  |  |  |
| 7          | 0.276 |  |  |  |
| 8          | 0.315 |  |  |  |
| 9          | 0.354 |  |  |  |
| 10         | 0.394 |  |  |  |
| 11         | 0.433 |  |  |  |
| 12         | 0.472 |  |  |  |
| 13         | 0.512 |  |  |  |
| 14         | 0.551 |  |  |  |
| 15         | 0.590 |  |  |  |
| 16         | 0.630 |  |  |  |
| 17         | 0.669 |  |  |  |
| 18         | 0.709 |  |  |  |
| 19         | 0.748 |  |  |  |
| 20         | 0.787 |  |  |  |
| 21         | 0.827 |  |  |  |
| 22         | 0.866 |  |  |  |
| 23         | 0.905 |  |  |  |
| 24         | 0.944 |  |  |  |
| 25         | 0.984 |  |  |  |
| 25.4       | 1     |  |  |  |

## **Decimal Equivalents**

| Dimensions |           |       |         |  |  |  |
|------------|-----------|-------|---------|--|--|--|
| in. =      | = decimal | in. = | decimal |  |  |  |
| 1/64       | 0.01563   | 33/64 | 0.51563 |  |  |  |
| 1/32       | 0.03125   | 17/32 | 0.53125 |  |  |  |
| 3/64       | 0.04688   | 35/64 | 0.54688 |  |  |  |
| 1/16       | 0.0625    | 9/16  | 0.5625  |  |  |  |
| 5/64       | 0.07813   | 37/64 | 0.57813 |  |  |  |
| 3/32       | 0.09375   | 19/32 | 0.59375 |  |  |  |
| 7/64       | 0.10938   | 39/64 | 0.60938 |  |  |  |
| 1/8        | 0.125     | 5/8   | 0.625   |  |  |  |
| 9/64       | 0.14063   | 41/64 | 0.64063 |  |  |  |
| 5/32       | 0.15625   | 21/32 | 0.65625 |  |  |  |
| 11/64      | 0.17188   | 43/64 | 0.67188 |  |  |  |
| 3/16       | 0.1875    | 11/16 | 0.6875  |  |  |  |
| 13/64      | 0.20313   | 45/64 | 0.70313 |  |  |  |
| 7/32       | 0.21875   | 23/32 | 0.71875 |  |  |  |
| 15/64      | 0.23438   | 47/64 | 0.73438 |  |  |  |
| 1/4        | 0.250     | 3/4   | 0.750   |  |  |  |
| 17/64      | 0.26563   | 49/64 | 0.76563 |  |  |  |
| 9/32       | 0.28125   | 25/32 | 0.78125 |  |  |  |
| 19/64      | 0.29688   | 51/64 | 0.79688 |  |  |  |
| 5/16       | 0.3125    | 13/16 | 0.8125  |  |  |  |
| 21/64      | 0.32813   | 53/64 | 0.82813 |  |  |  |
| 11/32      | 0.34375   | 27/32 | 0.84375 |  |  |  |
| 23/64      | 0.35938   | 55/64 | 0.85938 |  |  |  |
| 3/8        | 0.375     | 7/8   | 0.875   |  |  |  |
| 25/64      | 0.39063   | 54/64 | 0.89063 |  |  |  |
| 13/32      | 0.40625   | 29/32 | 0.90625 |  |  |  |
| 27/64      | 0.42188   | 59/64 | 0.92188 |  |  |  |
| 7/16       | 0.4375    | 15/16 | 0.9375  |  |  |  |
| 29/64      | 0.45313   | 61/64 | 0.95313 |  |  |  |
| 15/32      | 0.46875   | 31/32 | 0.96875 |  |  |  |
| 31/64      | 0.48438   | 63/64 | 0.98438 |  |  |  |
| 1/2        | 0.500     | 1     | 1.00000 |  |  |  |