

Hrishi Constant Kerr Gravity: 1.00000000022741

Net Thrust =
$$(1 - \rho^2) + (\rho^2 - |1\rangle) + (1 - \rho^2) + (\rho^2 - |1\rangle)$$

```
\begin{split} & \text{Net Thrust} = (1 - (1.00000000022741)^2) + \\ & ((1.00000000022741)^2 - |1\rangle) + (1 - \\ & (1.000000000022741)^2) + ((1.000000000022741)^2 - |1\rangle) + \\ & (1 - (1.000000000022741)^2) + ((1.000000000022741)^2 - \\ & |1\rangle) + (1 - (1.000000000022741)^2) + \\ & ((1.000000000022741)^2 - |1\rangle) + (1 - \\ & (1.000000000022741)^2) + ((1.000000000022741)^2 - |1\rangle) + \\ & (1 - (1.000000000022741)^2) + ((1.000000000022741)^2 - |1\rangle) \end{split}
```


So, the net thrust of the ion thrust system is approximately 5.99999999727108.

The net thrust of the ion thrust system is approximately 5.99999999727108 Newtons.

MOSES' ARK

To convert Newtons (N) to kilonewtons (kN), we divide the thrust in Newtons by 1000 (since 1 kN equals 1000 N).

Let's perform the conversion:

Total thrust in kN = $\frac{59,999.99999727108}{1000}$

Total thrust in kN = 59.99999999727108

So, the total thrust generated by all 10,000 ion thrusters is approximately 59.999999727108 kilonewtons (kN).

