Datenbanksysteme 2, 9. Übung Transaktionsmanagement

Aufgabe 9.1: Serialisierbarkeit und Konfliktserialisierbarkeit

Betrachten Sie die folgenden Ausführungen S_1 , S_2 und S_3 der beiden Transaktionen T_1 und T_2 :

200	M	secialisin	1006		
S ₁		S ₂		S ₃	
T ₁	T ₂	T ₁	T ₂	T_1	T ₂
R(a)		R(a)		R(a)	
a:=a-10			R(b)	a:=a-10	
W(a)		a:=a-10		,	R(b)
R(b)			b:=b*1.2	W(a)	
b:=b+10		W(a)			b:=b*1.2
W(b)			W(b)	R(b)	
	R(b)	R(b) / /			W(b)
	b:=b*1.2		R(c)	b:=b+10 /	
	W(b)	b:=b+10			R(c)
	R(c)		c:=c+20	W(b)	
	c:=c+20	W(b)			c:=c+20
	W(c)		W(c)		W(c)

Für welche der 3 Schedules treffen die Begriffe seriell, serialisierbar oder nicht serialisierbar zu? Gehen Sie davon aus, dass alle Datenwerte mit 0 initialisiert sind. Welche sind konfliktserialisierbar? Begründen Sie Ihre Entscheidung.

Aufgabe 9.2: Konfliktserialisierbarkeit

Betrachten Sie die beiden folgenden Schedules:

- $R_1(X)$; $R_3(X)$; $W_1(X)$; $R_2(X)$; $W_3(X)$
- R₃(X); R₂(X); W₃(X); R₁(X); W₁(X)
- a) Schreiben Sie zu beiden Schedules die Konfliktpaare auf.
- b) Zeichnen Sie zu beiden Schedules den Abhängigkeitsgraphen.
- c) Falls ein Schedule konfliktserialisierbar ist, überführen Sie ihn durch konfliktäquivalente Umformungen in einen seriellen Schedule.

Aufgabe 9.3: Rücksetzbarkeit von Schedules

Betrachten Sie die Schedules aus Aufgabe 9.1 in Bezug auf Rücksetzbarkeit und kaskadierende Abbrüche. Untersuchen Sie dabei auch die Varianten, dass T_1 einen Commit direkt nach der letzten Operation der Transaktion absetzt, T_2 aber nicht, und umgekehrt.

Untersuchen Sie für alle 9 Schedules, ob sie rücksetzbar sind und ob kaskadierende Abbrüche auftreten könnten. Begründen Sie Ihre Antworten jeweils.

3)	S ₁		S ₂		S ₃	
	T ₁	T ₂	T ₁	T ₂	T ₁	T ₂
	R(a)		R(a)		R(a)	
	a:=a-10			R(b)	a:=a-10	
	W(a)		a:=a-10			R(b)
	R(b)			b:=b*1.2	W(a)	0
	b:=b+10		W(a)			b:=b*1.2 baib
	W(b)		11(a)	W(b)	R(b)	()
	VV(D)	R(b)	R(b)	(V)		W(b)
		b:=b*1.2	IX(D)	D(a)	b:=b+10	VV(D)
			b.=b.10	R(c)	DD+10	D(a)
		W(b)	b:=b+10		14//->	R(c)
		R(c)	1444	c:=c+20	W(b)	
	-	c:=c+20	W(b)			c:=c+20
		W(c)		W(c)		W(c)
	So ohne Con	nmît	Sy ohne Ce	Jimma	liepst heim	Tourablin
					co- einer	arden
	- Wenn Tz alog	rebooder vial	- Wenn Th a	ogeboodner vial		
	passiet nicht	1	passiet nich	17	>) rich selv	ar T
	- Falls In about	Swan	- Falls To abo	~ /200/m		
	wid muss	7, 5, 6	wid muss	J. 51.60		
	=> Custon diecen		-7 (Ac., ly 1:	rde Abbridne		
	-> oursum mich	or reperiona	-> corsum and co	vor 48 perave		
	Sy mit Commit	Vagy /7	So mit Commi	Fran (1		
	- ci in set buc		=n(c)+ cids	z lav		
	Samil Commit a	ach to	Sa mit Commi	1 Vacy 15		
	- nicvi cuchsel	42 5001	- ci en setubu	с		