CS 480

Introduction to Artificial Intelligence

September 8, 2022

Announcements / Reminders

- Please follow the Week 03 To Do List instructions
- Quiz #01 will be posted on Friday
 - a separate announcement will be sent to you to let you know that it is available
 - you will have a week or more to complete it
- Written Assignment #01 will be posted this week
- Midterm Exam (consider fixed):
 - October 13th, 2022 during (Thursday) lecture time

Plan for Today

Data Structures: Review [OPTIONAL MATERIAL]

Binary Search Tree

(Binary) Tree Traversals

- Tree Traversal: a process to visit all nodes in a tree is called a tree traversal. Typically used to find a key or process all or some keys.
- Traversal always starts at the root of the tree

Binary Tree Traversal involves three "visits":

- The node is visited (the root)
- The node's left child is traversed
- The node's right child is traversed

Binary Tree Traversal

Node's left child traverse

Node's right child traverse

Binary Tree Traversals

The sequence in which those three "visits" are executed determins what kind of traversal it is. Typical traversals:

- Pre-order Traversal (Node, Left Child, Right Child)
- In-order Traversal (Left Child, Node, Right Child)
- Post-order Traversal (Left Child, Right Child, Node)

Level-order (Level-by-level | left-to-right)

Binary Tree Traversals

- Pre-order Traversal (Node, Left Child, Right Child)
 - See parent first, then look at left and right branches
- In-order Traversal (Left Child, Node, Right Child)
 - See left branch first, then look at the parent, and finally look at the right branch
- Post-order Traversal (Left Child, Right Child, Node)
 - Look at left and right branches first, and then see parent

Nodes traversed so far: A

Nodes traversed so far: A B

Nodes traversed so far: A B D

Nodes traversed so far: A B D

Nodes traversed so far: A B D E

Nodes traversed so far: A B D E

Nodes traversed so far: A B D E

Nodes traversed so far: A B D E C

Nodes traversed so far: A B D E C F

Nodes traversed so far: A B D E C F

Nodes traversed so far: A B D E C F G

Nodes traversed so far: A B D E C F G

Nodes traversed so far: A B D E C F G

Nodes traversed so far:

Nodes traversed so far:

Nodes traversed so far: D

Nodes traversed so far: D B

Nodes traversed so far: D B E

Nodes traversed so far: D B E

Nodes traversed so far: D B E A

Nodes traversed so far: D B E A

Nodes traversed so far: D B E A F

Nodes traversed so far: D B E A F C

Nodes traversed so far: D B E A F C G

Nodes traversed so far: D B E A F C G

Nodes traversed so far: D B E A F C G

If we had BST with numerical keys -> sorted order!

In-order traversal: D/1 B/2 E/4 A/6 F/7 C/8 G/9

Post-order (Left, Right, Node)

Nodes traversed so far:

Nodes traversed so far:

Nodes traversed so far: D

Nodes traversed so far: D

Nodes traversed so far: D E

Nodes traversed so far: D E B

Nodes traversed so far: D E B

Nodes traversed so far: D E B

Nodes traversed so far: D E B F

Nodes traversed so far: D E B F

Nodes traversed so far: D E B F G

Nodes traversed so far: D E B F G C

Nodes traversed so far: D E B F G C A

Nodes traversed so far: A

Nodes traversed so far: A B

Nodes traversed so far: A B C

Nodes traversed so far: A B C D

Nodes traversed so far: A B C D E

Nodes traversed so far: A B C D E F

Nodes traversed so far: A B C D E F G

Depth First vs Breadth (Width) First

Depth First Traversals:

- Pre-order Traversal (Node, Left Child, Right Child)
- In-order Traversal (Left Child, Node, Right Child)
- Post-order Traversal (Left Child, Right Child, Node)

Breadth (Width) First

Level-order (Level-by-level | left-to-right)

Binary Tree: Recursive Structure

Traversals: Algorithms

Pre-order Traversal (recursive)

```
void preOrder(Node node) {
  if (node != null) {
      System.out.print(node.getKey());
      preOrder(node.getLeftChild());
      preOrder(node.getRightChild());
    } else {
    return;
  }
}
```

In-Order Traversal (recursive)

```
void inOrder(Node node) {
  if (node != null) {
    inOrder(node.getLeftChild());
    System.out.print(node.getKey());
    inOrder(node.getRightChild());
  } else {
    return;
  }
}
```

Post-order Traversal (recursive)

```
void postOrder(Node node) {
  if (node != null) {
    postOrder(node.getLeftChild());
    postOrder(node.getRightChild());
    System.out.print(node.getKey());
  } else {
    return;
  }
}
```

Level-order Traversal

```
void levelOrder(Node node) {
  if (node != null) {
    queue.add(node);
    while(queue.isEmpty() == null)
        current = queue.dequeue();
        System.out.println(current);
        queue.enqueue(current children)
    }
}
```

Traversals: Data Structure Use

- Pre-order Traversal
- In-order Traversal
- Post-order Traversal

Level-order (Level-bylevel | left-to-right)

Graph = Vertices + Edges

Graph: G = (V, E)

Graph: G = (V, E)

Graph: G = (V, E)

Graph: Edges

Graph: Vertex Adjacency

Graph: Vertex Degree / Valency

Graph: A Path

Graph: Path Length

Graph: A Cycle

Connected vs. Non-Connected

Connected Graph

Connected graph:

 a graph is said to be connected if there exist at least one path from every vertex to every other vertex

Non-Connected Graph

Non-connected graph:

- a graph is non-connected if there exist at least one vertex such there there is no path to it from all the other vertices (vertex e in this example)
- vertex e is not "reachable"

Graph: Order

Graph: Size

A Complete Graph

Representation: Adjacency Matrix

Graph G

A graph $G = \{V, E\}$:

- N = |V| vertices / nodes, and
- |E| edges

Adjacency Matrix for Graph G

	а	b	С	d	е	f
а	0	1	0	1	0	1
b	1	0	1	0	1	0
С	0	1	0	0	0	1
d	1	0	0	0	0	0
е	0	1	0	0	0	0
f	1	0	1	0	0	0

Adjacency matrix for graph G:

- a 2D N x N array with:
 - 1s indicating an edge / connection between two vertices
 - Os where there is no edge / connection between vertices

Representation: Incidence Matrix

Graph G

A graph $G = \{V, E\}$:

- N = |V| vertices / nodes, and
- |E| edges

Incidence Matrix for Graph G

	{a,b}	{a,d}	{a,f}	{b,c}	{b,e}	{c,f}
а	1	1	1	0	0	0
b	1	0	0	1	1	0
С	0	0	0	1	0	1
d	0	1	0	0	0	0
е	0	0	0	0	1	0
f	0	0	1	0	0	1

Incidence matrix for graph G:

- a 2D N x N array with:
 - 1s indicating that an edge i is incident on vertex j
 - Os otherwise

Representation: Adjacency List

Graph G

A graph $G = \{V, E\}$:

- N = |V| vertices / nodes, and
- |E| edges

Adjacency List for Graph G

Vertex	List containg adjacent vertices
а	$b \rightarrow d \rightarrow f$
b	$a \rightarrow c \rightarrow e$
С	$b \rightarrow f$
d	а
е	b
f	$a \rightarrow c$

Adjacency list for graph G:

- an array (or a list) of lists, where:
 - each individual list corresponds to a single vertex i and includes all vertices adjacent to i
 - → indicates a link in a list

Non-Weighted vs. Weighted

Non-weighted Graph

Weighted Graph

Weighted graph:

- a graph (sometimes called a network) is in which a number (weight) is assigned to each edge is considered to be weighted
- $G = \{V, E, w\}$

Non-Weighted vs. Weighted

Non-weighted Graph

Weighted Graph

Weighted graph:

 weights can represent for costs, lengths or capacities, depending on the context / problem

Non-Weighted vs. Weighted

Non-weighted Graph

Weighted Graph

Weighted graph examples:

- maps (distances)
- sea shipping routes (cost)
- computer networks (throughput)
- airline route map (distances)
- Your CS MSc course plan (difficulty level)

Weighted Graph: Adjacency Matrix

Weighted Graph G

A graph $G = \{V, E, w\}$:

- N = |V| vertices / nodes, and
- |E| edges
- |E| weights

Adjacency Matrix for Graph G

	а	b	С	d	е	f
а	0	6	0	3	0	2
b	6	0	1	0	5	0
С	0	1	0	0	0	5
d	3	0	0	0	0	0
е	0	5	0	0	0	0
f	2	0	5	0	0	0

Adjacency matrix for graph G:

- a 2D $N \times N$ array with:
 - weights indicating an edge / connection between two vertices
 - Os where there is no edge / connection between vertices

Undirected vs. Directed Graph

Undirected Graph

Undirected graph:

- a graph in which edges DO NOT have orientations / directions is called an undirected graph
- edge {b, e} is the same as {e, b}

Directed Graph

Directed graph:

- a graph in which edges have orientations / directions is called a directed graph (or digraph)
- edge {b, e} is NOT the same as {e, b}

Undirected vs. Directed Graph

Undirected Graph

Undirected graph:

 the degree of a vertex is the number of edges that are incident to it (degree of vertex c: 2)

Directed Graph

Directed graph:

- the in-degree of a vertex is the number of edges that are "entering" it (in-degree of vertex c: 1)
- the out-degree of a vertex is the number of edges that are "leaving" it (out-degree

of vertex c: 2)

Undirected vs. Directed Graph

Undirected Graph

Undirected graph examples:

- two-way streets
- US interstate system
- computer networks
- Facebook friends
- academic paper collaborators

Directed Graph

Directed graph examples:

- one-way streets
- social media followers
- computer networks / World Wide Web
- airline route map
- emergency exit routes

Directed Weighted Graph

Directed Weighted Graph G

A graph $G = \{V, E, w\}$:

- N = |V| vertices / nodes, and
- |E| edges
- |E| weights

Adjacency Matrix for Graph G

	а	b	С	d	е	f
а	0	0	0	0	0	0
b	6	0	0	0	8	0
С	0	1	0	0	0	5
d	3	0	0	0	0	0
е	0	5	0	0	0	0
f	2	0	4	0	0	0

Adjacency matrix for graph G:

- a 2D $N \times N$ array with:
 - weights indicating an edge / connection between two vertices
 - Os where there is no edge / connection between vertices

Graphs vs. Trees: Key Differences

A tree:

- is a graph where all vertices / nodes are connected to the root
- is a graph without any cycles (a tree is an acyclic graph)

A graph:

- a graph can be non-connected (some vertices are not "reachable")
- a graph can have one or more cycle
- a graph does not have to be directed

Graphs: Traversals / Searches

Key difference between Tree and Graph Traversal:

Graphs: need to keep track of all visited vertices / nodes

Purpose:

- Finding a vertex / node
- Traversing the graph

Types:

- Depth First Traversal / Search
- Breadth First Traversal / Search

Graph Traversals: Algorithms

General Depth-First Traversal (iterative)

```
dfs(Graph G, vertex v) //v start point
  initialize stack S
  S.push(v)
  mark v as visited
  while (S is not empty)
  m = S.pop()
  for all m's adjacent vertices k
      if k is not visited
            S.push(k)
            mark k as visited
      end
  end
  end
end
```

Applications:

- Problems that require backtracking
- Path finding
- Solving puzzles with a single solution
- Detecting cycles in a graph

General Breadth-First Traversal (iterative)

Applications:

- Nearest neighbor finding (for example in peer-to-peer networks or social networks)
- Web crawling / indexing
- Broadcasting information over a network

Graph G

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex

Already Visited Vertices

None

Adjacency List for Current Vertex

Vertex Stack (Top to Bottom)

Empty

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, push it on the stack

Rule 2: If no unvisited vertices (adjacent to current), pop(), current vertex = top()/peek()

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex

Already Visited Vertices

a

Adjacency List for Current Vertex

a $b \rightarrow d \rightarrow f$

Vertex Stack (Top to Bottom)

a

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, push it on the stack

Rule 2: If no unvisited vertices (adjacent to current), pop(), current vertex = top()/peek()

Rule 3: If Rules 1/2 impossible, you are done

a

Graph G

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex b

Already Visited Vertices

a, b

Adjacency List for Current Vertex

b $a \rightarrow c \rightarrow e$

Vertex Stack (Top to Bottom)

b, a

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, push it on the stack

Rule 2: If no unvisited vertices (adjacent to current), pop(), current vertex = top()/peek()

a, b, c

Graph G

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex c

Already Visited Vertices

Adjacency List for Current Vertex $c \qquad b \rightarrow f$

Vertex Stack (Top to Bottom)
c, b, a

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex f

Already Visited Vertices
a, b, c, f

Adjacency List for Current Vertex

f a → c [All adjacent visited]

Vertex Stack (Top to Bottom)

f, c, b, a [pop() and backtrack]

Graph G

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex c

Already Visited Vertices

a, b, c, f

Adjacency List for Current Vertex

 $c \mid b \rightarrow f$

[All adjacent visited]

Vertex Stack (Top to Bottom)

c, b, a

[pop() and backtrack]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, push it on the stack

Rule 2: If no unvisited vertices (adjacent to current), pop(), current vertex = top()/peek()

Graph G

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex b

Already Visited Vertices

a, b, c, f

Adjacency List for Current Vertex

b $a \rightarrow c \rightarrow e$

Vertex Stack (Top to Bottom)

b, a

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, push it on the stack

Rule 2: If no unvisited vertices (adjacent to current), pop(), current vertex = top()/peek()

Graph G

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex e

Already Visited Vertices

a, b, c, f, e

Adjacency List for Current Vertex

e b

[All adjacent visited]

Vertex Stack (Top to Bottom)

e, b, a

[pop() and backtrack]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, push it on the stack

Rule 2: If no unvisited vertices (adjacent to current), pop(), current vertex = top()/peek()

Graph G

Already visited vertex

Not visited yet vertex

Depth First Traversal For G

Current Vertex b

Already Visited Vertices

a, b, c, f, e

Adjacency List for Current Vertex

b $a \rightarrow c \rightarrow e$ [All adjacent visited]

Vertex Stack (Top to Bottom)

b, a [pop() and backtrack]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, push it on the stack

Rule 2: If no unvisited vertices (adjacent to current), pop(), current vertex = top()/peek()

Depth First Traversal For G

Current Vertex a

Already Visited Vertices

a, b, c, f, e

Vertex Stack (Top to Bottom)

Depth First Traversal For G

Current Vertex d

Already Visited Vertices

a, b, c, f, e, d

Adjacency List for Current Vertex
d a [All adjacent visited]

Vertex Stack (Top to Bottom)
d, a [pop() and backtrack]

Depth First Traversal For G

Current Vertex a

Already Visited Vertices

a, b, c, f, b, e

Adjacency List for Current Vertex $a \quad b \to d \to f \quad \text{[All adjacent visited]}$

Vertex Stack (Top to Bottom)

a [pop() and Done!]

Depth First Traversal For G

Current Vertex

Already Visited Vertices

a, b, c, f, b, e

Adjacency List for Current Vertex

Vertex Stack (Top to Bottom)

Graph G

Already visited vertex

Not visited yet vertex

Breadth First Traversal For G

Current Vertex

Already Visited Vertices

None

Adjacency List for Current Vertex

Vertex Queue (Front to Rear)

Empty

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited vertices (adjacent to

current), current vertex = dequeue()

Already visited vertex

Not visited yet vertex

Breadth First Traversal For G

Current Vertex a

Already Visited Vertices

a

Adjacency List for Current Vertex

a $b \rightarrow d \rightarrow f$

Vertex Queue (Front to Rear)

Empty

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Breadth First Traversal For G

Current Vertex a

Already Visited Vertices
a, b

Adjacency List for Current Vertex $a \quad b \rightarrow d \rightarrow f$

Vertex Queue (Front to Rear)

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

a, b, d

Not visited yet vertex

Breadth First Traversal For G

Current Vertex a

Already Visited Vertices

Adjacency List for Current Vertex $a \quad b \to d \to f$

Vertex Queue (Front to Rear)
b, d

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Breadth First Traversal For G

Current Vertex a

Already Visited Vertices a, b, d, f

Adjacency List for Current Vertex $a \quad b \rightarrow d \rightarrow f \qquad \text{[All visited now!]}$

Vertex Queue (Front to Rear)
b, d, f [dequeue()]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Graph G

Already visited vertex

Not visited yet vertex

Breadth First Traversal For G

Current Vertex b

Already Visited Vertices a, b, d, f

Vertex Queue (Front to Rear)
d, f

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Graph G

Already visited vertex

Not visited yet vertex

Breadth First Traversal For G

Current Vertex b

Already Visited Vertices a, b, d, f, c

Vertex Queue (Front to Rear)
d, f, c

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Graph G

Breadth First Traversal For G

Current Vertex b

Already Visited Vertices a, b, d, f, c, e

Vertex Queue (Front to Rear)
d, f, c, e [dequeue()]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Breadth First Traversal For G

Current Vertex d

Already Visited Vertices

a, b, d, f, c, e

Adjacency List for Current Vertex
d a [All visited now!]

Vertex Queue (Front to Rear)

f, c, e [dequeue()]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Breadth First Traversal For G

Current Vertex f

Already Visited Vertices a, b, d, f, c, e

Vertex Queue (Front to Rear)

c, e [dequeue()]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Graph G

Breadth-First Traversal For G

Current Vertex c

Already Visited Vertices

a, b, d, f, c, e

Adjacency List for Current Vertex $c \quad b \rightarrow f \qquad \text{[All visited now!]}$

Vertex Queue (Front to Rear)
e [dequeue()]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Graph G

Breadth First Traversal For G

Current Vertex e

Already Visited Vertices a, b, d, f, c, e

Adjacency List for Current Vertex

e b [All visited now!]

Vertex Queue (Front to Rear)

[empty - Done!]

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Breadth First Traversal For G

Current Vertex

Already Visited Vertices

a, b, d, f, c, e

Adjacency List for Current Vertex

Vertex Queue (Front to Rear)

Rule 1: Visit next unvisited vertex adjacent to current vertex, mark it, add to the queue

Rule 2: If no unvisited (adjacent to current)

vertices, current vertex = dequeue()

Graph Traversals: Time Complexity

General Depth-First Traversal (iterative)

```
dfs(Graph G, vertex v) //v start point
  initialize stack S
  S.push(v)
  mark v as visited
  while (S is not empty)
    m = S.pop()
    for all (m, k) edges
        if k is not visited
            S.push(k)
            mark k as visited
        end
    end
  end
end
```

General Breadth-First Traversal (iterative)

Sequence of exploration (BFS):

```
v1 + (edges incident on v1) + v2 + (edges incident on v2) + ... + vn + (edges incident on vn)

[v1 + v2 + ... + vn] + [(edges incident on v1) + (edges incident on v2) + ... + (edges incident on vn)]

which is:

[V] + at most 2* [E] (each vertex is visited once, each edge is visited at most twice)
```

Big-O notation (assuming adjacency list representation):

$$O(|V| + |E|)$$