LOGICĂ - TEST 1 - 16.10.2019 ora 9:00

Rândul 1

Subjectul 1. Să se arate că $\frac{A \to B, B \to C}{A \to C}$ folosind:

(A-16) N(B-10) - (A-10) 1P.

a) tabele de adevar; b) forme normale.

1P 1P . 1P

Subiectul 2. a) Să se definească noțiunile: relație diagonală, funcție, inversa unei relații, compunerea a două relații (4 definiții)

b) Fie $\rho = (A, B, R)$ o relație. Să se arate că ρ este funcție dacă și numai dacă $1_A \subseteq \rho^{-1} \circ \rho$ și $\rho \circ \rho^{-1} \subseteq 1_B$. def relatici $1_A = 1_B$

Rândul 2

Subjectul 1. Fie $f: A \to B$ o funcție.

a) Să se determine f(X) și $f^{-1}(Y)$, unde $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $B = \{a, b, c, d\}$, $X = \{1, 5, 6\}$, $Y = \{a, b, c\}$ și $\{a, b, c, d\}$, $\{a, b, c, d\}$, $\{a, b, c, d\}$, $\{a, b, c\}$ și $\{a, b, c, d\}$, $\{a, b, d\}$, $\{a, b$

			-	T	6	-1			
·x	1	2	3	4	5	6	7	8	
f(x)	b	С	d	d	а	а	С	d	

b) Să se arate că: $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$ şi $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$ pentru orice $X_1, X_2 \subseteq A$ şi ce $Y_1, Y_2 \subseteq B$.

Subiectul 2. a) Enuntați corema de caracterizare a funcțiilor surjective.

b) Demonstrați caracterizarea prin proprietatea de simplificare.

c) Să se determine toate secțiunile funcției surjective $f: A \to B$, unde $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c\}$ şi orice $Y_1, Y_2 \subseteq B$.

	χ	1	2	3	4	5
Ì	f(x)	С	С	а	Ъ	а

Rândul 3

1. a) Să se definească intersecția, reuniunea, respectiv produsul cartezian al unei familii de mulțimi.

b) Să se arate că $\mathbb{C}(\bigcup_{i \in I} X_i) = \bigcap_{i \in I} \mathbb{C}(X_i)$ şi $\mathbb{C}(\bigcap_{i \in I} X_i) = \bigcup_{i \in I} \mathbb{C}(X_i)$ şi să se precizeze tautologia din logica predicatelor care a fost folosită în demonstrație. 2+ 1 tautly 2p+ 1p tautologa

2. a) Legătura dintre partiții și relații de echivalență (definiții și enunțui teoremei).
b) Fie A = {1,2,3,4,5,6}. Să determine relația corespunzătoare partiției {{2,4,6},{1,5},{3}}. def relective 1 p

3 p

enunt 2p pert > relective > pert

Rândul 4

Subiectul 1. a) Fie $A = \{1, 2, 3, 4, 5, 6\}$, fie relația $\rho = (A, A, R)$, unde $R = \{(1,3), \ (2,1), \ (2,6), \ (3,2), \ (3,3), \ (5,4), \ (6,1), \ (6,4), \ (3,4), \ (6,1)\} \ \text{si submultimile} \ X = \{2,4,6\} \subset A \ \text{since} \ X = \{2,4,6\} \subset$

 $=\{1,2,5\}\subset A$. Să se determine mulțimile $\rho(X)$ și $\rho_{-1}^{-1}(Y)$.

 $\text{că} \ (\rho \cup \rho')(X) = \rho(X) \cup \rho'(X) \ \text{și} \ (\rho \cap \rho')(X) \subseteq \rho(X) \cap \rho'(X); \qquad \text{2.1p +2.5p}$

Subiectul 2. Teorema I de factorizare (en int și demonstrație).

b) Să se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} și si se aplice în cazul funcției f : A \rightarrow B, unde A = {1, 2, 3, 4, 5, 6, 7, 8}, B = {a, b, c, d, e} si se aplice în cazul funcției f : A \rightarrow B, unde A \rightarrow B, u

χ	1	2	3	4	5	6	7	8
f(x)	е	ь	е	С	ь	α	е	С

HERF 10

c) Consider the relations $\sigma_i = (C, D, S_i)$, $i \in \{1, 2\}$ and $\rho = (A, B, S)$. Prove that $(\sigma_1 \cup \sigma_2) \circ \rho \stackrel{\text{def}}{=} (\sigma_1 \circ \rho) \cup (\sigma_2 \circ \rho)$.

Question 2. a) State the definition and the characterization theorem of injective functions. 11+1P

b) Prove the characterization in terms of simplifiability. \Rightarrow 2 \leftarrow 2 \leftarrow c) Find all the retracts of the injective function $f: A \to B$, where $A = \{1, 2, 3, 4\}$, $B = \{a, b, c, d, e\}$ and