Outlines of CH-5

- Simplex Method
- 2. Dual Linear Programming
- 3. Transportation (Only minimization case: excluding loop formation)
- 4. Assignment Model (Only minimization case)

The ways of Converting Inequalities into Equalities in Forms

Types of Constraints	Additional Variables used in Subjective Equations	Additional Variables and Coefficients used in the Objective Equations			
		Max	Min		
Less than or Equal to (≤)	Slack variables are used i.e. S, for 1 st equation, S ₂ for 2 nd equation and so and so.	0	0		
Greater than or Equal to (≥)	Surplus variables are used i.e. $-S_1 + A_1$ for 1^{st} equation, $-S_2 + A_2$ for 2^{nd} equations and so on.	0 for slack –M for artificial	0 for slack + M for artificial		
Equal to (=)	Artificial variables are used i.e. A_1 for 1^{st} equation A_2 for 2^{nd} equation are so on.	-M	+M		

Example-1

Consider the following LPP,

Maximize:
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to the constraints,

$$x_1 + x_2 + x_3 \le 9$$

 $2x_1 + 3x_2 + 5x_3 \le 30$
 $2x_1 - x_2 - x_3 \le 8$
and $x_1, x_2, x_3 \ge 0$

Solution: Inequalities of the subjective equations can be converted into equality in form adding slack variables such as:

Maximize (Z) = $3x_1 + 2x_2 + 5x_3 + 0S_1 + 0S_2 + 0S_3$ Subjective to the constraints:

$$x_1 + x_2 + X_3 + S_1 + 0S_2 + 0S_3 = 9$$

 $2x_1 + 3x_2 + 5x_3 + 0S_1 + S_2 + 0S_3 = 30$
 $2x_1 - x_2 - x_3 + 0S_1 + 0S_2 + S_3 = 8$

	C_{j}		3	2	5	0	0	0	Ratio Column
	B.V.	Const.	X ₁	x ₂	X ₃	S ₁	S ₂	S ₃	
0	S ₁	9	1	1	1	1	0	0	9/1 = 9
0	S ₂	30	2	3	5	0	1	0	30/5 = 6 ←
0	S ₃	8	2	-1	-1	0	0	1	8/-1= -8
	Z _j	0	0	0	0	0	0	0	
	Z _j –C _j	_	-3	-2	-5 ↑	0	0	0	

New
$$R_2 \rightarrow \frac{\text{Old } R_2}{5}$$
; New $R_1 \rightarrow \text{Old } R_1$ – New R_2 , New $R_3 \rightarrow \text{Old } R_3$ + New R_2

	C_j		3	2	5	0	0	0	Ratio Column
	B.V.	Const	X ₁	X ₂	X ₃	S ₁	S ₂	S ₃	Ratio Column
0	S ₁	3	3/5	2/5	0	1	-1/5	0	5 ←
5	Х3	6	2/5	3/5	1	0	1/5	0	15
0	S ₃	14	12/5	-2/5	0	0	1/5	1	5.833
	Z _j	30	2	3	5	0	1	0	
	Z _j –C _j	_	-1↑	1	0	0	1	0	

$$R_1 \rightarrow \frac{5}{3} R_1$$
; $R_2 \rightarrow R_2 - \frac{2}{5} R_1$; $R_3 \rightarrow R_3 - \frac{12}{5} R_1$

	C_j		3	2	5	0	0	0	
	B.V.	Const	X ₁	x ₂	X ₃	S ₁	S ₂	S ₃	Ratio Column
3	X ₁	5	1	2/3	0	5/3	-1/3	0	
5	X ₃	4	0 2/5-2/5*1	11/25	1	-2/3	1/3	0	
0	S ₃	2	0	-34/25	0	-4	1	1	
	Z _j	35	3	21/5	5	5/3	2/3	0	
	Z _j -C _j -		0	11/5	0	5/3	2/3	0	

Since, all the values of $Z_j - C_j$ are in positive $(Z_j - C_j \ge 0)$. It means solution is optimal and required answers for the variables are:

 $M_{2x}(Z) = 35$; $x_1 = 5$; $x_3 = 4$ and $S_3 = 2$ and rest of the variables are zero.

www.studynotesnepal.com

Example 2 _____

Solve the following problem by simplex method

Minimize (Z) =
$$3x_1 + 2x_2$$

Subject to the constraints

$$2x_1 + 4x_2 \ge 10$$

$$4x_1 + 2x_2 \ge 10$$

$$x_2 \ge 4$$

and $x_1, x_2 \ge 0$

Solution

Inequalities of the subjective equations can be changed into equalities in forms adding surplus variables to the constraint signs of greater than and equal to (\geq) .

Minimize (Z) =
$$3x_1 + 2x_2 + 0S_1 + MA_1 + 0S_2 + MA_2 + 0S_3 + MA_3$$

Subject to the constraints

$$2x_1 + 4x_2 - S_1 + A_1 + 0S_2 + 0A_2 + 0S_3 + 0A_3 = 10$$

 $4x_1 + 2x_2 + 0S_1 + 0A_1 - S_2 + A_2 + 0S_3 + 0A_3 = 10$
 $0x_1 + x_2 + 0S_1 + 0A_1 + 0S_2 + 0A_2 - S_3 + A_3 = 4$

$C_{j} \rightarrow$	 		3	2	0	M	0	M	0	M	- Ratio Column
\downarrow	B.V.	Const.	X 1	X 2	S ₁	A ₁	S ₂	A ₂	S ₃	A ₃	TRALIO GOIUIIIII
M	A ₁	10	2	4	-1	1	0	0	0	0	10/4 = 2.5←
M	A ₂	10	4	2	0	0	-1	1	0	0	10/2 = 5
M	A ₃	4	0	1	0	0	0	0	-1	1	4/1=4
	Zj	24m	6m	7m	-m	m	-m	m	-m	m	
	Z _j -C _j	-	6m – 3	7m – 2↑	-M	0	-m	0	-m	0	

$$R_1 \to \frac{R_1}{4}$$
, $R_2 \to R_2 - 2R_1$; $R_3 \to R_3 - R_2$

$C_j \rightarrow$			3	2	0	M	0	M	0	M	Ratio Column
1	B.V.	Const.	X 1	X 2	S ₁	A ₁	S ₂	A ₂	S ₃	A ₃	
2	X 2	3/2	5/2	1	-1/4	1/4	0	0	0	0	5
M	A ₂	5	3	0	1/2	-1/2	_1	1	0	0	5/3←
M	A ₃	3/2	-1/2	0	1/4	-1/4	0	0	_1	1	-3
	Zj	$\frac{13m}{2} + 5$	$\frac{5m}{2} + 1$	2	$\frac{3m}{4} - \frac{1}{2}$	$\frac{-3m}{4} + \frac{1}{2}$	-m	m	-m	m	
	Z _j C _j	-	$\frac{5m}{2}-2\uparrow$	0	$\frac{3m}{4} - \frac{1}{2}$	$\frac{-7m}{4} + \frac{1}{2}$	-m	0	-m	0	

$$R_2 \rightarrow \frac{R_2}{3}$$
; $R_1 \rightarrow R_1 - \frac{1}{2} R_2$; $R_3 \rightarrow R_3 + \frac{1}{2} R_2$

$C_j \rightarrow$			3	2	0	M	0	M	0	M	Ratio Column
\downarrow	B.V.	Const.	X 1	X 2	S ₁	A 1	S ₂	A ₂	S ₃	A ₃	
2	X 2	5/3	0	1	-1/3	1/3	1/6	-1/6	0	0	-5
3	X 1	5/3	1	0	1/6	-1/6	-1/3	1/3	0	0	10
M	A_3	7/3	0	0	1/3	-1/3	-1/6	1/6	-1	1	7←
	Zj	$\frac{7m}{3} + \frac{4}{3}$	3	2	$\frac{m}{3} - \frac{1}{6}$	$\frac{m}{3} + \frac{1}{6}$	$\frac{-m}{6} - \frac{2}{3}$	$\frac{\text{m}}{6} + \frac{2}{3}$	-m	m	
	Z _j C _j	-	0	0	$\frac{m}{3} - \frac{1}{6} \uparrow$	$\frac{-2m}{3} + \frac{1}{6}$	$\frac{-m}{6} - \frac{2}{3}$	$\frac{-5m}{6} + \frac{2}{3}$	-m	0	

$$R_3 \rightarrow 3R_3$$
; $R_1 \rightarrow R_1 + \frac{1}{3}R_3$, $R_2 \rightarrow R_2 - \frac{1}{6}R_3$

Simplex Table 4

$C_j \rightarrow$			3	2	0	M	0	M	0	M	Ratio Column
\downarrow	B.V.	Const.	X 1	X 2	S ₁	A ₁	S ₂	A ₂	S ₃	A ₃	
2	X 2	4	0	1	0	0	0	0	-1	1	
3	X 1	1/2	1	0	0	0	-1/4	1/4	1/2	-1/2	
0	S ₁	7	0	0	1	-1	-1/2	1/2	-3	3	
	Z _j	9.5	3	2	0	0	$\frac{-3}{4}$	3/4	<u>-1</u> 4	1/4	
	Z _j –C _j	-	0	0	0	-m	$-\frac{3}{4}$	$-m + \frac{3}{4}$	$-\frac{1}{4}$	$-m + \frac{1}{4}$	

Since, all the values of $Z_j - C_j$ are in zero or negative (i.e. $Z_j - C_j \le 0$). It means optimum feasible solutions has been obtained. The required answers for the variables are:

$$z_j = 9.5$$
, $X_2 = 4$, $x_1 = \frac{1}{2}$ and $S_1 = 7$

Dual Linear Programming

Write the dual of the following LPP:

	Primal Equations		Dual Equations (Solution)
i.	Maximize (Z) = $4X_1 + 3X_2$	i.	Minimize (Z) = $12 y_1 + 4y_2 + 21y_3$
	Subject to the linear constraints		Subject to the linear constraints
	$2X_1 + 3X_2 \le 12$		$2y_1 + 2y_2 + 3y_3 \ge 4$
	$2X_1 + X_2 \leq 4$		$3y_1 + y_2 + 7y_3 \ge 3$
	$3X_1 + 7X_2 \le 21$		$y_1, y_2, y_3 \ge 0$
	$X_1, X_2 \ge 0$		
ii.	Minimize (Z) = $4X_1 + 5X_2$	ii.	Maximize (Z) = $2y_1 + 6y_2 + 15y_3$
	Subject to the constraints		Subject to the constraints
	$X_1 + X_2 \ge 2$		y_1 + $2y_2$ + $3y_3 \le 4$
	$2X_1 + X_2 \ge 6$		$y_1 + y_2 + 5y_3 \le 5$
	$3X_1 + 5X_2 \ge 15$		$y_1, y_2, y_3 \ge 0$
	$X_1, X_2 \ge 0$		
iii.	Maximize (Z) = $2X_1 + 3X_2$	iii.	$Max(Z) = 2x_1 + 3x_2$
	Subject to linear constraints		Subject to
	$X_1 + X_2 \le 5$		$x_1 + x_2 \le 5$
	$2X_1 + 3X_1 \ge 6$		$-2x_1 - 3x_2 \le -6$
	$X_1, X_2 \ge 0$		Now,
			Min (Z) = $5y_1 - 6y_2$
			Subject to
			$y_1 - 2y_2 \ge 2$
			$y_1 - 3y_2 \ge 3$
			$y_1, y_2 \ge 0$

Transportation Problem

Example 1

Find the optimal transportation schedule from following with the objective of minimizing the cost. [T.U. 2058]

Factory	Quantity requirements per day in kg.	Ware house	Quantity available per day in kg.
Р	450	Х	350
Q	500	Y	400
R	200	Z	400

Cost of transportation per kg is given in the following table.

From	To factory							
FIOIII	Р	Q	R					
Warehouse X	10	20	20					
Warehouse Y	40	60	40					
Warehouse Z	10	16	24					

Step 1. Getting an initial basic feasible solution by VAM

	To	F)	(Q		₹	Available	Cost Dit	ference	
From									1	II	Ri
Х			350		Χ		Х	350	←		R ₁ = 0
		10	Х	20		20		350	10	_	N1 - 0
Υ			100		100		200	400	0	0	R ₂ = 30
1		40		60		40	Х	400	U	U	N2 - 30
Z					400			400	6	6	R ₃ = - 14
		10	χ	16	Χ	24	Χ	400			1/3 14
Required		45	450		500		00	1150			
Cost difference I		()	4	4		4		•		
		3	0	44	4 ↑	1	6				
	Kj	K ₁ =	= 10	K ₂ =	= 30	K ₃ :	= 10				

Step 2: Initial transportation cost = $10 \times 350 + 40 \times 100 + 60 \times 100 + 40 \times 200 + 16 \times 400 = \text{Rs.}$ 27900

Step 3. Test of degeneracy

No. of occupied cells = No. of rows + No. of columns -1

or,
$$5 = 3 + 3 - 1$$

or,
$$5 = 5$$

It is the case of non degeneracy.

Step 4. Calculation of values of occupied cells.

$$C_{ij} = R_i + K_j$$

Assuming $R_1 = 0$, we generate other values for row and column using the above relation.

For cel	1 (1, 1)
For cel	1(1, 1)

$$C_{11} = R_1 + K_1$$

$$10 = 0 + K_1$$

$$10 = 0 + K_1$$
 : $K_1 = 10$

For cell (2, 1)
$$C_{21} = R_2 + K_1$$
 $40 = R_2 + 10$ \therefore $R_2 = 30$

$$C_{21} = R_2 + K_1$$

$$40 = R_2 + 10$$

$$\therefore R_2 = 30$$

$$C_{22} = R_2 + K_2$$

For cell (2, 2)
$$C_{22} = R_2 + K_2$$
 $60 = 30 + K_2$ \therefore $K_2 = 30$

$$\therefore K_2 = 30$$

For cell (2, 3)
$$C_{23} = R_2 + K_3$$
 $40 = 30 + K_3$ \therefore $K_3 = 10$

$$C_{23} = R_2 + K_3$$

$$40 = 30 + K_3$$

$$\therefore K_3 = 10$$

For cell (3, 2)
$$C_{32} = R_3 + K_2$$
 $16 = R_3 + 30$ $\therefore R_3 = -14$

$$C_{32} = R_3 + K_2$$

$$16 = R_3 + 30$$

$$\therefore R_3 = -14$$

Step 5. Calculation of values unoccupied cells or further improvement test.

$$\Delta_{ij} = C_{ij} - R_i - K_j$$

$$\Delta_{13} = C_{13} - R_1 - K_3 = 20 - 0 - 10 = 10$$

$$\Delta_{31} = C_{31} - R_3 - K_1 = 10 + 14 - 10 = 14$$

$$\Delta_{33} = C_{33} - R_3 - K_3 = 24 + 14 - 10 = 28$$

 \therefore Since, above calculated total cost of Rs. 27,900 is not optimal because Δ_{12} is in negative. Loop path should be formulated to minimize above cost.

Example 2

Determine the minimum transportation cost from the following matrix.

[T.U. 2061]

	Stores						
Warehouse	P ₁	P ₂	P ₃	P ₄	Supply		
		Cost per unit					
W_1	45	60	45	30	70		
W_2	35	15	35	35	60		
W_3	30	25	45	55	90		
					220		
Demand	60	40	60	20	180		

Solution

The given transportation problem is unbalanced as supply exceeds demand by 220-180 = 40 units. So, we need to create a dummy store for supplying excess units. The unit transportation cost will be taken as Rs. 0. The balanced transportation will be as follows:

Step 1. Getting an initial basic feasible solution by VAM.

						Sto	res						. Row cost difference			
Warehouse)	P)1	F) 2	F)3	P	4	D	n	Supply	IVOV	1		
		-	•	-		-		-	т	1	۲					IV
١٨/.		χ		χ		10		20		40		70 30	\	15	15	\leftarrow
W_1			45		60		45		30		0	10	30			15
١٨/.		χ		40		20		χ		χ		60 20	15	←	0	0
W_2			35		15		35	•	35		0		:	20		
١٨/.		60		χ		30		χ		χ		90 30	25	5	\leftarrow	10
W ₃			30		25		45	*	55		0		:		15	
Demand		6	0	4	Ð	60 4	0 10	2	Ð	41)	220				
		Ę	5	1	0	1	0	5	·)	0						
Column cost		Ę	5	1	0	1	0	5)	-						
difference		Ę	5	-	-	1	0	5)	_						
	IV	-	-		_	1	0	5)	_						

Step 2.

Initial transportation cost =
$$10 \times 45 + 20 \times 30 + 40 \times 0 + 40 \times 15 + 20 \times 35 + 60 \times 30 + 30 \times 45$$

= $450 + 600 + 0 + 600 + 700 + 1800 + 1350 = \text{Rs.} 5500$

Step 3. Test of degeneracy

Since, number of occupied cells = No. of rows + No. of columns -1

$$7 = 3 + 5 - 1$$

This is the case of non-degeneracy.

Step 4. Testing the optimality condition

Step 4.1 Calculation of row values and column values for occupied cells using the relation.

$$C_{ij} = R_i + K_j$$

Let's assume $R_1 = 0$ as it has many occupied cells.

$$C_{13} = R_1 + K_3 \Rightarrow 45 = 0 + K_3 \Rightarrow K_3 = 45$$

$$C_{14} = R_1 + K_4 \Rightarrow 30 = 0 + K_4 \Rightarrow K_4 = 30$$

$$C_{15} = R_1 + K_5 \Rightarrow 0 = 0 + K_5 \Rightarrow K_5 = 0$$

$$C_{23} = R_2 + K_3 \Rightarrow 35 = R_2 + 45 \Rightarrow R_2 = -10$$

$$C_{33} = R_3 + K_3 \Rightarrow 45 = R_3 + 45 \Rightarrow R_3 = 0$$

$$C_{31} = R_3 + K_1 \Rightarrow 30 = 0 + K_1 \Rightarrow K_1 = 30$$

$$C_{22} = R_2 + K_2 \Rightarrow 15 = -10 + K_2 \Rightarrow K_2 = 25$$

Step 4.2 Calculation of improvement indices for unoccupied cells by using the relation,

$$\Delta_{ij} = C_{ij} - (R_i + K_j)$$
Here, $\Delta_{11} = C_{11} - (R_1 + K_1) = 45 - (0 + 30) = 15$

$$\Delta_{12} = C_{12} - (R_1 + K_2) = 60 - (0 + 25) = 35$$

$$\Delta_{21} = C_{21} - (R_2 + K_1) = 35 - (-10 + 30) = 15$$

$$\Delta_{24} = C_{24} - (R_2 + K_4) = 35 - (-10 + 45) = 0$$

$$\Delta_{25} = C_{25} - (R_2 + K_5) = 0 - (-10 + 0) = 10$$

$$\Delta_{32} = C_{32} - (R_3 + K_2) = 25 - (0 + 25) = 0$$

$$\Delta_{34} = C_{34} - (R_3 + K_4) = 55 - (0 + 30) = 25$$

$$\Delta_{35} = C_{35} - (R_3 + K_5) = 0 - (0 + 0) = 0$$

Since, $\Delta'ij's > 0$, the optimal solution has been obtained.

i.e.
$$X_{13} = 10$$
, $X_{14} = 20$, $X_{15} = 40$, $X_{22} = 40$, $X_{23} = 20$, $X_{31} = 60$, $X_{33} = 30$ and minimum transportation cost = Rs. 5500

Assignment

Example 1 ______

The ABC Company has three jobs to be done on three machines. Each job must be done on one and only one machine. The cost of each job on each machine is given in the following table.

Cost information					
Jobs X Y Z					
А	4	6	8		
В	2	3	4		
С	4	8	5		

Give the job assignments, which will minimize cost.

[T.U. 2059]

Solution

Step 1: Subtract the lowest element of each row from all the elements of corresponding row.

i.e.
$$R_1 \rightarrow R_1 - 4$$
 $R_2 \rightarrow R_2 - 2$ $R_3 \rightarrow R_3 - 4$

$$R_2 \rightarrow R_2 - 2$$

$$R_3 \rightarrow R_3 - 4$$

Jobs	Machines					
3005	Х	Υ	Z			
Α	0	2	4			
В	0	1	2			
С	0	4	1			

Step 2: Subtract the smallest elements of each column from all the elements of corresponding column.

i.e., $C_2 \rightarrow C_2 - 1$ $C_3 \rightarrow C_3 - 1$

Jobs	Machines				
Jobs	M ₁	M ₂	M ₃		
А	0	1	3		
В	0	0	1		
С	0	3	0		

Step 3: Minimum numbers of lines to cover all zeros are three which is equal to number of rows. Therefore we need not further processing. The optimal solution has been obtained and presented as below:

Jobs		Machines	
3005	M ₁	M ₂	M ₃
А	0	1	3
В	X	Ō	1
С	X	3	0

Step 4: The minimum cost is:

Job	Machine	Assignment Cost
A	M ₁	Rs 4
В	M ₂	Rs 3
C M ₃		<u>Rs 5</u>
Minimum assig	Rs 12	

Example 2 _____

Four children in a household were assigned three different household chores to be done. The children are motivated to get pocket money for the job. Assign the jobs to the children in such a way that their pocket money income is maximum.

[T.U. 2062]

Children	Clean the house	Wash clothes	Cook dinner
Ram	1	4	5
Laxman	2	3	3
Bharat	3	3	3
Shatrughan	5	1	2

Solution

Step 1: First of all, we should make square matrix to given non square matrix for solution. Therefore, we introduce dummy column to convert 4×4 square matrix.

	Jobs					
Children	Clean house	Wash clothes	Cook dinner	Dummy		
Ram	1	4	5	0		
Laxman	2	3	3	0		
Bharat	3	3	3	0		
Shatrughan	5	1	2	0		

Step 2: Subtract all elements of initial matrix from the largest element 5 to convert the given maximization problem to minimization problem.

Children	Clean house	Wash clothes	Cook dinner	Dummy
Ram	4	1	0	5
Laxman	3	2	2	5
Bharat	2	2	2	5
Shatrughan	0	4	3	5

Step 3: Subtracting the smallest elements of each row from all element of corresponding row.

i.e.
$$R_2 \rightarrow R_2 - 2$$
, $R_3 \rightarrow R_3 - 2$,

Children	Clean house	Wash clothes	Cook dinner	Dummy
Ram	4	1	0	5
Laxman	1	0	0	3
Bharat	0	0	0	3
Shatrughan	0	4	3	5

Step 4: Subtracting the smallest elements of each column from all the elements of corresponding column.

i.e.
$$C_4 \rightarrow C_4 - 3$$

Children	Clean house	Wash clothes	Cook dinner	Dummy
Ram	4	1	0	2
Laxman	1	0	0	0
Bharat	0	0	0	0
Shatrughan	0	4	3	2

Step 5: Here, there is at least one zero for each row and column. Now, we have to cross zeros. Minimum number of lines to cover all zeros is equal to number of rows. Therefore, the optimal solution has been obtained.

Children	Clean House	Wash clothes	Cook dinner	Dummy
Ram	4	1	0	2
Laxman	1	X	X	0
Bharat	Ж	Ō	X	Ж
Shatrughan	O	4	3	2

Step 6: Optimal Assignment

Children	Job	Income
Ram	Cook dinner	5
Laxman	D	0
Bharat	Wash the cloth	3
Shatrughan	Clean the house	5
	Total Income	Rs. 13