CSE 604 Artificial Intelligence

Chapter 3: Solving Problems by Searching

Adapted from slides available in Russell & Norvig's textbook webpage

Dr. Ahmedul Kabir

Remember the Vacuum-cleaner world?

• Percepts: location and contents, e.g., [A, Dirty]

• Actions: Left, Right, Suck

Vacuum world state space graph

State space: Set of all reachable states. In state space graph, nodes/vertices = states, links/edges = actions

Formulation of a Problem

- A Problem is defined by the following items:
 - Set of states the agent can be in, with a designated initial state
 - Set of actions available to the agent
 - Transition model describing what each action does (maps a <state, action> pair to a state)
 - Goal test which determines if a given state is a goal state
 - A path cost function that assigns a numeric cost to each path

Vacuum world state space graph

- states? binary dirt and robot location. Any state can be initial state
- actions? Left, Right, Suck
- Transition model? As seen in the state space graph
- goal test? no dirt at all locations
- path cost? 1 per action

Example: The 8-puzzle

- states?
- actions?
- goal test?
- path cost?

Example: The 8-puzzle

- states? locations of tiles
- actions? move blank left, right, up, down
- goal test? = goal state (given)
- path cost? 1 per move

Example: The 8-puzzle

Partial state space graph

Example: Romania

Search strategies

- A search strategy is defined by picking the order of node expansion
- Strategies are evaluated along the following dimensions:
 - completeness: does it always find a solution if one exists?
 - time complexity: number of nodes generated
 - space complexity: maximum number of nodes in memory
 - optimality: does it always find a least-cost solution?
- Time and space complexity are measured in terms of
 - *b:* maximum branching factor of the search tree
 - d: depth of the least-cost solution
 - *m*: maximum depth of the state space (may be ∞)

Uninformed search strategies

- Uninformed search strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search

Basic concept

- Frontier (or fringe): The set of all leaf nodes available for expansion at any given point
- The basics of each algorithm:
 - Start from initial node
 - Expand adjacent nodes and put them in the frontier
 - Choose the next node from the frontier for expansion
 - Repeat until goal is found, or some ending criteria is met
- The algorithms differ in the way they choose the next node from the frontier

- Expand shallowest unexpanded node
- Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- Expand shallowest unexpanded node
- Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- Expand shallowest unexpanded node
- Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

- Expand shallowest unexpanded node
- Implementation:
 - frontier is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

• Complete? Yes (if b is finite)

- <u>Time?</u> $1+b+b^2+b^3+...+b^d = O(b^d)$
- Space? $O(b^d)$ (keeps every node in memory)
- Optimal? Yes (if cost = 1 per step)
- Space is the bigger problem (more than time)

Uniform-cost search

- Expand least-cost unexpanded node
- Implementation:
 - *frontier* = queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- Complete? Yes, if step cost $\geq \varepsilon$
- <u>Time?</u> # of nodes with $g \le \cos t$ of optimal solution, $O(b^{ceiling(C^*/\varepsilon)})$ where C^* is the cost of the optimal solution
- Space? # of nodes with $g \le \text{cost of optimal solution}$, $O(b^{\text{ceiling}(C^*/\epsilon)})$
- Optimal? Yes nodes expanded in increasing order of g(n)

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

- Expand deepest unexpanded node
- Implementation:
 - frontier = LIFO stack, i.e., put successors at front

Properties of depth-first search

- Complete? No: fails in infinite-depth spaces, spaces with loops
 - Modify to avoid repeated states along path
 - → complete in finite spaces
- Time? $O(b^m)$: terrible if m is much larger than d
 - but if solutions are dense, may be much faster than breadth-first
- Space? O(bm), i.e., linear space!
- Optimal? No

Depth-limited search

= depth-first search with depth limit *l*, i.e., nodes at depth *l* have no successors

- Complete? No
- <u>Time?</u> $O(b^l)$
- <u>Space?</u> *O(bl)*
- Optimal? No

= depth-limited search on repeat!Limit / is increased at each iteration until goal is found

```
function Iterative-Deepening-Search( problem) returns a solution, or failure  \begin{array}{c} \text{inputs: } problem, \text{ a problem} \\ \text{for } depth \leftarrow \text{ 0 to } \infty \text{ do} \\ result \leftarrow \text{Depth-Limited-Search(} problem, depth) \\ \text{if } result \neq \text{cutoff then return } result \end{array}
```

Limit = 0

Properties of iterative deepening search

• Complete? Yes

• Time?
$$(d+1)b^0 + db^1 + (d-1)b^2 + \dots + b^d = O(b^d)$$

• <u>Space?</u> *O(bd)*

• Optimal? Yes, if step cost = 1

Summary of algorithms

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete? Time Space Optimal?	$\operatorname{Yes}^a O(b^d) \ O(b^d) \ \operatorname{Yes}^c$	$\operatorname{Yes}^{a,b}$ $O(b^{1+\lfloor C^*/\epsilon \rfloor})$ $O(b^{1+\lfloor C^*/\epsilon \rfloor})$ Yes	No $O(b^m)$ $O(bm)$ No	No $O(b^\ell)$ $O(b\ell)$ No	$\operatorname{Yes}^a O(b^d)$ $O(bd)$ Yes^c