

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: January 3~11, 2011 Test Report S/N: LR500111101D Test Site: LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

APPLICANT

YYQ-LBM-002

Jiwumedia Co., Ltd.

Equipment Class : Ultra Wideband Transmitter (UWB)

Manufacturing Description : Wireless USB mini-card module

Manufacturer : Jiwumedia Co., Ltd.

Model name : LBM-002

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15 Subpart F; ANSI C-63.4-2003

Frequency Range : 3168MHz ~ 4752MHz

Max. Output Power : Max 87.30dBuV - Radiated

Data of issue : January 11, 2011

This test report is issued under the authority of:

The test was supervised by:

Hyun-Chae You, Manager

Il-Shin kim, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	6
3.1 SUMMARY OF TESTS	6
3.2 TECHNICAL CHARACTERISTICS TEST	7
3.2.1 AC CONDUCTED EMISSIONS	7
3.2.2 Operational limitations	8
3.2.3 UWB Bandwidth Measurement	9
3.2.4 Radiated Emissions Measurement	12
3.2.5 Radiated Emissions in GPS Bands Measurement	18
3.2.6 Peak Emissions within a 10MHz Bandwidth Measurement	27
APPENDIX	
APPENDIX TEST EOUIPMENT USED FOR TESTS	29

1. General information's

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Accreditation No. Validity	
NVLAP	U.S.A	200723-0	2011-09-30	ECT accredited Lab.
RRL	KOREA	A KR0049 2011-06-20		EMC accredited Lab.
FCC	U.S.A	610755	2011-04-22	FCC filing
VCCI	JAPAN	R2133, C2307	2011-06-21	VCCI registration
IC	CANADA	IC5799	2012-05-14	IC filing

Ref. No.: LR500111101D

2. Information's about test item

2-1 Client & Manufacturer

Company name : Jiwumedia Co., Ltd.

Address : #366-11, Sangok-dong, Bupyeong-gu, Incheon, korea

Tel / Fax : TEL: 82-2-2029-4811 / FAX: 82-2-2029-4810

2-2 Equipment Under Test (EUT)

Trade name : Wireless USB mini-card module

FCC ID : YYQ-LBM-002

Model name : LBM-002

Serial number : Identical prototype

Date of receipt : December 30, 2010

EUT condition : Pre-production, not damaged

Antenna type : Dipole Antenna

Frequency Range : 3168MHz ~ 4752MHz

RF output power : Max 87.30dBuV - Radiated

Type of Modulation : MB-OFDM

Power Source : 5.0Vdc

2-3 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook PP17L		N/A	DELL
PRINTER STYLUS C65		N/A	EPSON

2-4 Description of Test modes

MODE	SUB-BAND	Frequency (MHZ)
1	1	3432
2	2	3960
3	3	4488
4	1,2,3	3432, 3960, 4488

NOTE: After pre-testing each mode, the combination mode 4 was the worst situation and only the data was presented in the following sections

< Except for "Radiated Emissions in GPS Bands", "UWB Bandwidth Measurement", "Peak Emission Measurement">.

FUT configure mode	Applicable to				Description	
EUT configure mode	RE<1G	RE≥1G	GPS	UB	PE	Frequency (MHZ)
1	-	-	√	√	√	3432
2	-	-	√	√	√	3960
3	-	-	√	√	√	4488
4	√	√	√	√	√	3432, 3960, 4488

Where RE<1G: Radiated Emission below 1GHz RE≥1G: Radiated Emission above 1GHz

UB:UBW Bandwidth PE: Peak Emission

GPS: Radiated Emissions in GPS Bands

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter Limit		Test Condition	Status (note 1)
15.207	AC Conducted Emissions	EN 55022	Line Conducted	NA note3
15.519(a)	Operational Limitations	-		С
15.519(b)	UWB Bandwidth	between 3100MHz to 10,600MHz		С
15.519(c)/ 15.209	Radiated Emissions	Refer to the 3.2.4	Radiated	С
15.519(d)	Radiated Emissions in GPS Bands	19.44dBuV/m at 1M		С
15.519(e)	Peak Emissions within a 50MHz Bandwidth	90.77dBuV/m at 1M		С
15.203	Antenna requirement	-	-	С

<u>Note 1</u>: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The data in this test report are traceable to the national or international standards.

Note 3: This device is only operated by DC

→ Antenna Requirement

The Jiwumedia Co., Ltd.. FCC ID: YYQ-LBM-002 unit complies with the requirement of §15.203. The antenna connector is MICRO COAXIAL CONNECTOR.

The sample was tested according to the following specification:

FCC Parts 15F; ANSI C-63.4-2003

Ref. No.: LR500111101D

3.2 Technical Characteristics Test

3.2.1 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data:

Not Applicable (-This product is operated by DC)

Minimum Standard: FCC Part 15.207(a)/EN 55022

Class B

Frequency Range	quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

^{*} Decreases with the logarithm of the frequency

Ref. No.: LR500111101D

3.2.2 Operational limitations

Measurement Data:

Measurement Data:				
Operation Restriction	Informed the applicant	Not applicabe	User Manual informed	Passed
■ 47 CFR FCC Part 15 Subpart F 15.519(a)				
UWB devices operating under the provisions of this section must				
be hand held, i.e., they are relatively small devices that are				
primarily hand held while being operated and do not employ a				
fixed infrastructure.				
[A transmitter that had been connected to portable device e.g.				
Laptop PCand be considered sufficient to demonstrate not a				
fixed infrastructure application.]				
(1) The radiator shall cease transmission within 10 seconds unless				
it receives an acknowledgement from the associated receiver				
A UWB device operating under the provisions of this section shall				
transmit only when it is sending information to an associated				
receiver. The UWB intentional radiator shall cease transmission				
within 10 seconds unless it receives an acknowledgement from				
the associated receiver that its transmission is being received. An	_		_	_
acknowledgment of reception must continue to be received by				
the UWB intentional radiator at least every 10 seconds or the				
UWB device must cease transmitting.				
[The applicant has been informed of this requirement and instruct				
the caution in user manual.]				
(2) Outdoor mounted antennas				
The use of antennas mounted on outdoor structures, e.g.,				
antennas mounted on the outside of a building or on a telephone				
pole, or any fixed outdoors infrastructure is prohibited. Antennas				
may be mounted only on the hand held UWB device.				
[The applicant has been informed of this requirement.]				
(5) Indoors or Outdoors				
UWB devices operating under the provisions of this section may				
operate indoors or outdoors.				
[The applicant has been informed of this requirement.]				

3.2.3 UWB Bandwidth Measurement

Test Procedure:

- 1. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. The horn receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 3. For maximum emission amplitude, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading and was used to determine the frequency at which the highest radiated emission occurs, fm. Next, the points that are 10dB or more below the highest radiated emission were observed in a search from fm in both the lower and higher frequency direction in the measured frequency EIRP graph, they are denoted as fL and fH, respectively. The UWB bandwidth is the difference between fL and fH.
- 4. The individual UWB bandwidths were measured for each BAND_ID (nb) of the UWB spectrum. Both horizontal and vertical polarizations were taken into account to determine the full UWB BW on the maximized (in azimuth and elevation) signals.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 10 MHz

 $VBW = 10 MHz (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data:

Test mode	Frequency	Test Results	
Test mode	(MHz)	limit	Result
1	3432	between 3100 MHz and 10,600 MHz	Complies
2	3960	between 3100 MHz and 10,600 MHz	Complies
3	4488	between 3100 MHz and 10,600 MHz	Complies
4	3432, 3960, 4488	between 3100 MHz and 10,600 MHz	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth. The UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated fH and the lower boundary is designated fL. The frequency at which the highest radiated emission occurs is designated fM. Center frequency. The center frequency, fc, equals (fH + fL)/2. Fractional bandwidth. The fractional bandwidth equals 2(fH - fL)/(fH + fL). The UWB bandwidth of a UWB system operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

Measurement Data:

Test mode 1

Test mode 2

Test mode 3

Test mode 4

Ref. No.: LR500111101D

3.2.4 Radiated Emissions Measurement

Procedure:

1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable for measured the frequency range below 960 MHz and antenna tower was placed

below 1 meters far away from the turntable for measured the frequency range above 960 MHz

2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of

the highest radiation.

3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find

the maximum emissions field strength of both horizontal and vertical polarization.

4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated

(from 0 degree to 360 degrees) to find the maximum reading.

5. The measurements made over the frequency range from 9 kHz to 960 MHz were maximized using an EMI receiver

with peak detector capabilities. Measurements of the radiated field from 9 kHz to 960 MHz were made with the

measurement antenna located a distance of 3 meters from the EUT. If the emissions level of the EUT in peak mode was

3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the

emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.

6. Measurements above 960 MHz were maximized using a spectrum analyzer with RMS detector capabilities. A

spectrum analyzer was used for the final measurements utilizing an RMS detector at the frequencies with the largest

amplitudes. The prescribed RBW of 1 MHz and VBW of 3 MHz, and a1 msec averaging time were used for these

measurements. Measurements of the radiated field at frequencies above 960 MHz were made with the measurement

antenna located a distance of below 1 meter from the EUT.

7. The spectrum between 9 kHz and 960 MHz contained no intentional radiation and lies below the limits. The spectrum

from 960MHz to18GHz contained intentional UWB signals between 3100 MHz and 10600 MHz and lie below the

limits. No other emissions above 10600 MHz were detected. The maximum frequency tested was 40 GHz.

8. Per 47 CFR, Part 15, Subpart F, §15.521© (§15.209) all digital emissions from the transmitter not intended to be

radiated from the antenna port meet the 15.209 subpart C limits.

9. Additional measurements in the 960 MHz to 40 GHz range were performed to determine the nature of all

unintentional emissions in this span. Conducted antenna port measurement and terminated antenna port measurement

were done in the 960 MHz to 8 GHz range show that all noise peaks have the same frequency and polarization and are

determined to be emission from the digital circuit and are not radiated from the antenna.

The spectrum analyzer is set to:

frequency = 1000MHz ~ 10th carrier harmonic or 40GHz

RBW = 1MHz Span = auto

 $VBW = 3MHz (VBW \ge RBW)$ Sweep = 1 msec averaging time were used for these

Detector function = RMS or Average measurement frequencies

Minimum Standard:

The radiated emissions at or below 960 MHz from a device shall not exceed the emission levels in section 15.209(a) limit below.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

The radiated emissions above 960 MHz from a device shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

Freq. (MHz)	EIRP (dBm)	E- Field (dBμV/m) at 3m	E- Field (dBμV/m) at 1m
960-1610	-75.3	19.9	29.44
1610-1990	-63.3	31.9	41.44
1990-3100	-61.3	33.9	43.44
3100-10600	-41.3	53.9	63.44
10600 above	-61.3	33.9	43.44

Note 1: This may be converted to a peak field strength level at 3 meters using E(dBuV/m) = P(dBm EIRP) + 95.2 dB. Note 2: Above 960MHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m. Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

From 47 CFR Section 15.521(c): Emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in Section 15.209 of this chapter, rather than the limits specified in this subpart, provided it can be clearly demonstrated that those emissions from the UWB device are due solely to emissions from digital circuitry contained within the transmitter and that the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in Section 15.3(k) of this chapter, e.g., emissions from digital circuitry used to control additional functions or capabilities other than the UWB transmission, are subject to the limits contained in Subpart B of Part 15 of this chapter.

The radiated emissions from a device operating under the provisions of this section shall not exceed the emission levels in Section 15.209.

Freq. (MHz)	E- Field (dB	μV/m) at 3m	E- Field (dΒμ	V/m) at 1m	
	Quasi Peak				
216 ~ 960	46.	.00	54.5	54	
960 ~ 1000	54.	.00	63.5	54	
	Peak Average		Peak	Average	
Above 1000	74.00	54.00	83.54	63.54	

Measurement Data: Test Data 4 is worst case (f<1GHz)

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: LBM-002 TEST MODE: UWB mode

Temp Humi : 2 / 36 Tested by: KIM.K.I

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

Measurement Data: Test Data 4 is worst case (f>1GHz)

ANTENNA POLARITY & TEST DISTANCE : HORIZONTAL AT 1M										
Frequency	Reading	Limits	Result	Margin						
[MHz]	[dBuV/m]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]					
3432.00	54.21	-2.67	63.44	51.54	11.90					
3960.00	55.31	-2.67	63.44	52.64	10.80					
4488.00	55.15	-2.67 63.44		52.48	10.96					
-	-	-	-	-	-					

ANTENNA POLARITY & TEST DISTANCE : VERTICAL AT 1M										
Frequency	Reading	Correction Factor	Result	Margin						
[MHz]	[dBuV/m]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]					
3432.00	63.87	87 -2.67 63.44		61.20	2.24					
3960.00	64.21	-2.67	63.44	61.54	1.90					
4488.00	64.12	-2.67	63.44	61.45	1.99					
-	-	-	-	-	-					

NOTE.

- No other emissions were detected at a level greater than 20dB below limit.
- Correction Factor = Antenna + Cable Amp. Gain

Measurement Data: Test Data 4 is worst case (f<1GHz) for digital circuitry

ANTENNA POLARITY & TEST DISTANCE : HORIZONTAL AT 1M										
Frequency	Limits	Result	Margin							
[MHz]	[dBuV/m]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]					
984.00	54.15	-14.31	63.54	39.84	23.70					

ANTENNA POLARITY & TEST DISTANCE : VERTICAL AT 1M									
Frequency	requency Reading Correction Factor Limits Result M								
[MHz]	[dBuV/m] [dB/m]		[dBuV/m]	[dBuV/m]	[dB]				
984.00	53.11	-14.31	63.54	38.80	24.74				

NOTE.

- No other emissions were detected at a level greater than 20dB below limit.
- Correction Factor = Antenna + Cable Amp. Gain
- Measurements made with 1 MHz RBW/3MHz VBW (RMS detector) at 1m distance. 1 msec averaging time were used for these frequencies per bin point measurements. Emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in 47 CFR, Part 15, Subpart C, §15.209.

Measurement Data: Test Data 4 is worst case (f>1GHz) for digital circuitry

	ANTENNA POLARITY & TEST DISTANCE : HORIZONTAL AT 1M												
Гиолионом.	Reading		Correction Factor	Limits		Result		Margin					
Frequency	[dBu	V/m]	dB/m]	[dBuV/m]		[dBuV/m]		[dB]					
[MHz]	PK	AV		PK	AV	PK	AV	PK	AV				
1608.54	68.34	58.32	-9.55	83.54	63.54	58.79	48.77	24.75	14.77				
1656.30	62.64	52.54	-9.55	83.54	63.54	53.09	42.99	30.45	20.55				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				

	ANTENNA POLARITY & TEST DISTANCE : VERTICAL AT 1M												
Frequency [MHz]	Reading [dBuV/m]		lency Correction Factor [dBuV/m]		Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]				
	PK	AV	[dB/m]	PK	AV	PK	AV	PK	AV				
1608.54	63.34	53.38	-9.55	83.54	63.54	53.79	43.83	29.75	19.71				
1656.30	57.25	48.76	-9.55	83.54	63.54	47.70	39.21	35.84	24.33				
-	-	-	-	-	-	-	-	-	-				
-	-	-	-	-	-	-	-	-	-				

NOTE.

- No other emissions were detected at a level greater than 20dB below limit.
- Correction Factor = Antenna + Cable Amp. Gain
- Measurements made with 1 MHz RBW/3MHz VBW (RMS detector) at 1m distance. 1 msec averaging time were used for these frequencies per bin point measurements. Emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in 47 CFR, Part 15, Subpart C, §15.209.

3.2.5 Radiated Emissions in GPS Bands Measurement

Procedure:

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Measurements frequencies were maximized using a spectrum analyzer with RMS detector capabilities. A spectrum analyzer was used for the final measurements utilizing an RMS detector at the frequencies with the largest amplitudes. The prescribed RBW of 10 kHz and VBW of 10 kHz, and a 1 msec averaging time were used for these measurements.
- 6. Per 47 CFR, Part 15, Subpart F, §15.521© (§15.209) all digital emissions from the transmitter not intended to be radiated from the antenna port meet the 15.209 subpart C limits.

The spectrum analyzer is set to:

frequency = $1164 \sim 1240 MHz / 1559 \sim 1610 MHz$

RBW = 10KHz Span = auto

 $VBW = 10KHz (VBW \ge RBW)$ Sweep = 1 msec averaging time were used for these

Detector function = RMS or Average measurement frequencies

Minimum Standard:

In addition to the radiated emission limits specified in the table in paragraph 4.5.1 of this report, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz.

Freq. (MHz)	EIRP (dBm)	E- Field (dBμV/m) at 3m	E- Field (dBμV/m) at 1m
1164-1240	-85.3	9.9	19.44
1559-1610	-85.3	9.9	19.44

Note 1: This may be converted to a peak field strength level at 3 meters using E(dBuV/m) = P(dBm EIRP) + 95.2 dB. Note 2: Above 960MHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m. Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

Measurement Data: 1164-1240MHz for VERTICAL WORST CASE at 1M

Test mode 1 for Conducted antenna port emissions in GPS band

Test mode 1 for Terminated antenna port emissions in GPS band

Test mode 2 for Conducted antenna port emissions in GPS band

Test mode 2 for Terminated antenna port emissions in GPS band

Test mode 3 for Conducted antenna port emissions in GPS band

Test mode 3 for Terminated antenna port emissions in GPS band

Test mode 4 for Conducted antenna port emissions in GPS band

Test mode 4 for Terminated antenna port emissions in GPS band

Measurement Data: 1559-1610MHz for VERTICAL WORST CASE at 1M

Test mode 1 for Conducted antenna port emissions in GPS band

Test mode 1 for Terminated antenna port emissions in GPS band

Test mode 2 for Conducted antenna port emissions in GPS band

Test mode 2 for Terminated antenna port emissions in GPS band

Test mode 3 for Conducted antenna port emissions in GPS band

Test mode 3 for Terminated antenna port emissions in GPS band

Test mode 4 for Conducted antenna port emissions in GPS band

Test mode 4 for Terminated antenna port emissions in GPS band

3.2.6 Peak Emissions within a 10MHz Bandwidth Measurement

Procedure:

- 1. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1 meters far away from the turntable.
- 2. The horn receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 3. For maximum peak emission amplitude, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading and was used to determine the frequency at which the highest radiated emission occurs, fm.
- 4. The individual UWB bandwidths were measured for each BAND_ID (nb) of the UWB spectrum. Both horizontal and vertical polarizations were taken into account to determine the full UWB BW on the maximized (in azimuth and elevation) signals.
- 5. A spectrum analyzer was used for the final measurement utilizing a peak detector at the frequency with the largest amplitude. The prescribed resolution bandwidth of 50 MHz was not supported by the spectrum analyzer. However, when a peak measurement is required, The resolution bandwidth for this measurement was set to 10 MHz, and the measurement was centered on the frequency at which the highest radiated emission occurred, fm. The video bandwidth was 10 MHz.

The spectrum analyzer is set to:

RBW = 10 MHz Span = 600 MHz VBW = 10 MHz Sweep = auto Detector function = peak Trace = max hold

Minimum Standard:

There is a limit on the peak level of the emissions contained within a 10 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, fM. That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, EIRP limit has to be adjusted by the resolution bandwidth ratio of 20log(RBW/50) dB, where RBW is the resolution bandwidth used for the measurement expressed in MHz. In addition, This may be converted to a peak field strength level at 3 meters using E(dBuV/m) = P(dBm EIRP) + 95.2 dB. And Peak emission shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m. Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB]

Peak EIRP limit dBm	Peak EIRP limit dBm	EIRP limit dBm E- Field (dBμV/m) at 3m E- Field (dBμV/m) at 1	
(RB / VB : 50MHz)	(RB / VB: 10MHz)	(RB / VB: 10MHz)	(RB / VB: 10MHz)
0	-13.97	81.23	90.77

Measurement Data:

	ANTENNA POLARITY & TEST DISTANCE : VERTICAL AT 1M											
TEST	Frequency	Reading	Correction Factor	Limits	Result	Margin						
MODE	[MHz]	[dBuV/m]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]						
1	3432.00	89.31	-2.67	90.77	86.64	4.13						
2	3960.00	88.94	-2.67	90.77	86.27	4.50						
3	4488.00	88.78	-2.67	90.77	86.11	4.66						
4	3432.00	89.97	-2.67	90.77	87.30	3.47						

	ANTENNA POLARITY & TEST DISTANCE : HORIZONTAL AT 1M											
TEST	Frequency	Reading	Correction Factor	Limits	Result	Margin						
MODE	[MHz]	[dBuV/m]	[dB/m]	[dBuV/m]	[dBuV/m]	[dB]						
1	3432.00	81.25	-2.67	90.77	78.58	12.19						
2	3960.00	80.34	-2.67	90.77	77.67	13.10						
3	4488.00	80.25	-2.67	90.77	77.58	13.19						
4	3432.00	81.54	-2.67	90.77	78.87	11.90						

NOTE.

- Correction Factor = Antenna + Cable - Amp. Gain

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Next Cal. Date
1	Spectrum Analyzer	FSV-30	100757	R&S	Feb-11
2	Spectrum Analyzer	8563E	3425A02505	НР	Mar-11
3	Spectrum Analyzer	8594E	3710A04074	НР	Oct-11
4	Signal Generator	8648C	3623A02597	НР	Mar-11
5	Signal Generator	83711B	US34490456	НР	Mar-11
6	Attenuator (3dB)	8491A	37822	HP	Oct-11
7	Attenuator (10dB)	8491A	63196	HP	Oct-11
8	EMI Test Receiver	ESCI7	100722	R&S	Jun-11
9	Horn Antenna(18 ~ 40GHz)	SAS-574	154	Schwarzbeck	Nov-12
10	Horn Antenna(18 ~ 40GHz)	SAS-574	155	Schwarzbeck	Nov-12
11	RF Amplifier	8447D	2949A02670	HP	Oct-11
12	RF Amplifier	8449B	3008A02126	НР	Mar-11
13	Test Receiver	ESHS10	828404/009	R&S	Mar-11
14	TRILOG Antenna	VULB 9160	9160-3212	SCHWARZBECK	Apr-11
15	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Apr-11
16	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Apr-11
17	Horn Antenna	3115	00055005	ETS LINDGREN	Mar-11
18	Horn Antenna	BBHA 9120D	9120D122	SCHWARZBECK	Dec-12
19	Dipole Antenna	VHA9103	2116	SCHWARZBECK	Nov-12
20	Dipole Antenna	VHA9103	2117	SCHWARZBECK	Nov-12
21	Dipole Antenna	VHA9105	2261	SCHWARZBECK	Nov-12
22	Dipole Antenna	VHA9105	2262	SCHWARZBECK	Nov-12
23	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Mar-11
24	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-
25	RF Switch	MP59B	6200414971	ANRITSU	-
26	Power Divider	11636A	6243	HP	Oct-11
27	DC Power Supply	6622A	3448A03079	НР	Oct-11
28	Frequency Counter	5342A	2826A12411	HP	Mar-11
29	Power Meter	EPM-441A	GB32481702	HP	Mar-11
30	Power Sensor	8481A	US41030291	HP	Oct-11
31	Audio Analyzer	8903B	3729A18901	НР	Oct-11
32	Modulation Analyzer	8901B	3749A05878	НР	Oct-11
33	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	Oct-11
34	LOOP-ANTENNA	FMZB 1516	151602/94	SCHWARZBECK	Mar-11
35	Stop Watch	HS-3	601Q09R	CASIO	Mar-11
36	LISN	ENV216	100408	R&S	Oct-11
37	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	May-12
38	Attenuator (30dB)	8498A	3318A10929	НР	Jan-12