(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-143243 (P2000-143243A)

(43)公開日 平成12年5月23日(2000.5.23)

(51) Int.Cl. ⁷		識別記号		FΙ				テーマコート*(参考)
C 0 1 G	31/00			C 0	1 G 31/00			
	33/00				33/00		Α	
	35/00		•		35/00			
	37/00				37/00			
	45/00				45/00			
			審查請求	有	請求項の数5	OL	(全 11 頁)	最終頁に続く

(21)出願番号 特顯平11-194502

(22)出顧日 平成11年7月8日(1999.7.8)

(31) 優先権主張番号 特願平10-247419

(32) 優先日 平成10年9月1日(1998.9.1)

(33)優先権主張国 日本(JP)

(71) 出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72) 発明者 森 透

東京都港区芝五丁目7番1号 日本電気株

式会社内

(72)発明者 川野 勝弥

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100088328

弁理士 金田 暢之 (外2名)

(54) 【発明の名称】 ポロメータ用酸化物薄膜および該酸化物薄膜を用いた赤外線センサ

(57)【要約】

【課題】 非冷却型の赤外線センサに適用される酸化物 ボロメータ材料には、従来TCRも比抵抗も大きい材料、あるいは比抵抗は小さいがTCRも小さい材料が使われているためノイズが小さく温度分解能(NETD) を小さくすることが困難であった。

【解決手段】 酸化バナジウムをVOxと表したときに $1.5 \le x \le 2.0$ を満足し、かつVの一部が他の金属イオンMで置換され、前記Mがクロム(Cr)、アルミニウム (AI)、鉄(Fe)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)、チタン(Ti)のうち少なくとも一種からなる酸化物からなる、ボロメータ用酸化物薄膜。並びに該薄膜を用いたマイクロブリッジ構造を有する赤外線センサ。

【特許請求の範囲】

【請求項1】 ボロメータ用酸化物薄膜であって、該酸化物が、酸化バナジウムをVOxと表したときに $1.5 \le x \le 2.0$ を満足し、かつVO一部が他の金属イオンMで置換され、、前記Mがクロム(Cr)、アルミニウム(A1)、鉄(Fe)、マンガン(Mn)、ニオブ(Nb)、タンタル(Ta)、チタン(Ti)のうち少なくとも一種からなることを特徴とするボロメータ用酸化物薄膜。

1

【請求項2】 請求項1記載のMの置換比率をaとして 該酸化物をV_{1-a} M_a O_x と表記したときに、Mがクロ ム、アルミニウム、鉄、マンガン、ニオブ、タンタルの いずれかであり、 $1.5 \le x \le 2.0$ かつ $0.001 \le a \le 0.1$ であることを特徴とするボロメータ用酸化物薄 膜。

【請求項3】 請求項1記載のMの置換比率をaとして該酸化物をV_{1-a} M_a O_x と表記したときに、Mがチタンであり、x=2.0かつ0.35 $\leq a \leq 0.45$ であることを特徴とするボロメータ用酸化物薄膜。

【請求項4】 請求項1ないし3のいずれか1項に記載の酸化物薄膜をボロメータ薄膜として用いた赤外線センサ。

【請求項5】 請求項4に記載の赤外線センサにおいてマイクロブリッジ構造を有することを特徴とした赤外線センサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はボロメータ用酸化物 薄膜および該酸化物薄膜を用いた温度分解能が小さい非 冷却型赤外線センサに関する。

[0002]

【従来の技術】ボロメータは基板材料から熱的に隔絶された金属あるいは半導体薄膜の抵抗の温度変化を利用するものである。特開平5-206526号公報、米国出願768,801にはボロメータ材料にn型またはp型にドープされた不定形シリコン(a-Si)を用いる技術が、また、米国特許5,300,915にはボロメータ材料にコッケル鉄合金を用いる技術が開示されている。

【0003】ボロメータ材料に要求される特性としては抵抗の温度係数(TCR)、および抵抗値である。一般にボロメータ材料の抵抗値が大きくなるとジョンソンノイズが大きくなるため好ましくない。逆に抵抗値が小さくなるとボロメータ以外の配線抵抗とボロメータ材料の抵抗との差が小さくなるためにやはり好ましくない。そのためボロメータ材料の抵抗値は室温においておおよそ5 k $\Omega\sim100$ k Ω 程度であることが望ましい。いいかえるとボロメータ薄膜の形成可能な厚さを $0.05\sim1~\mu$ mとすると、ボロメータ材料に求められる比抵抗はおよそ 0.025Ω cm $\sim10\Omega$ cmが望ましいと言える。

【0004】次に赤外線センサの温度分解能(NETD) はボロメータ材料のTCRの絶対値に反比例する。した 50 がってTCRの絶対値の大きいボロメータ材料を用いることによってNETDの小さい赤外線センサを得ることができるわけである。しかし公知例にあるようにn型またはp型にドープされた不定形シリコンはTCRが3~3.5%/Kという高い値が得られるが、比抵抗が 1×1 0 3 Ω cm を超えてしまう。

2

【0005】また米国出願768,801に記載はないが、ニッケル鉄合金は比抵抗が40~70μΩcmと非常に小さい値である(金属便覧より)。それ故TCRの絶力値も同程度の比抵抗を持つ他の金属と変わらないと推定され、せいぜい0.5%/Kと思われることからいずれも温度分解能の小さい赤外線センサのためのボロメータ材料にはあまり好ましくない。

[0006]

【発明が解決しようとする課題】上記の課題に対する技術として米国特許5,286,976には酸化バナジウム、酸化チタンをボロメータ材料に採用した赤外線センサが開示されている。該発明には特にボロメータ材料の特性に対する記述はないが、例えば津田惟雄編著:裳華房出版「導電性酸化物」第24頁には酸化バナジウム(V2O3など)、酸化チタン(Ti2O3など)に対する抵抗率の温度変化のグラフが示されている。これらのグラフは薄膜に対するものではないが、類推によって適当な出度を設定することによって適当な比抵抗と大きなTCRを得ることができると考えられる。しかし室温付近においては必ずしも比抵抗およびTCRは適当であるとは言えない。

【0007】また特開平9-257565号公報には氷 点下から100℃以上まで相転移を伴わない酸化バナジ ウムをボロメータ薄膜に適用する技術が開示されている。これによると赤外線センサへの応用はTCRの絶対 値が1%/Kを越えしかも体積変化を伴わないという点でメリットがあるとされている。しかし得られるTCR の絶対値には限界がある。

【0008】導電性を有する酸化物の多くはある温度で相転移を伴った大きいTCRを示す温度領域を、適当な物質を添加することによって室温付近にシフトさせる技術が報告されている。例えば小出らが応用物理第37巻第9号に発表した論文(p815)には、単結晶酸化バナジウム(VO2)に対してチタン(Ti)、ニオブ(Nb)、シリコン(Si)、ゲルマニウム(Ge)、すず(Sn)をドープした場合の転移温度がシフトすることが報告されている。

【0009】またC. B. GreenbergはThin Solid Film (1983) 第73頁においてタングステン、モリブデンをドープしたVO2 薄膜をガラス上にCVD法で作製し、転移温度をドープなしの70 ℃付近から低温にシフトさせることができることを報告している。この文献においては、W 1.4 mol%ドープでは転移温度が約40℃で比抵抗は1.1 Qcm、TCR=-5.5%/Kであ

3

る。またMo 1.8 mol%ドープでは、転移温度は約5 O℃で比抵抗はO.3Ωcm、TCR=-9%/Kにも達 する。これらの材料はある温度での臨界温度サーミスタ や近赤外線スイッチング素子としての応用が報告されて いる。しかしながら酸化バナジウムに他の元素をドー プしたものをボロメータ用酸化物薄膜として応用した場 合、計算上はノイズを小さく、また温度分解能を従来例 よりも小さくすることが予想できるものの報告例はな い。また当該文献におけるWドープおよび Moドープ の酸化バナジウム薄膜の抵抗の温度依存性を測定した結 果には、昇温時と降温時の抵抗に差が見られる。いいか えると抵抗の温度履歴(ヒステリシス)が認められる。こ れは赤外線センサに用いるボロメータ材料としては望ま しい特性とは言えない。

[0010] T.E. Phillips 5 th Materials Resear ch Bulltain(1987)第1113頁において鉄をドープした VO2薄膜をガラス基板上に反応性スパッタ法で形成 し、その電気抵抗、抵抗値からみた相転移温度を調べた 結果を報告している。この文献においての比抵抗は室温 付近 (35°) で $1\sim 10\Omega$ cmである。したがってボロ メータ薄膜としては比抵抗が高く、実際この文献におい ては赤外線センサ用のボロメータ薄膜への適用は示唆さ れていない。

[0011]

4 1

【課題を解決するための手段】本発明は、前記の課題を 解決するためになされたものであり、ボロメータ用酸化 物薄膜であって、該酸化物が、酸化バナジウムをVOx と表したときに1.5≦x≦2.0を満足し、かつVの一 部が他の金属イオンMで置換され、前記Mがクロム(C r)、アルミニウム(AI)、鉄(Fe)、マンガン(Mn)、ニ オブ(Nb)、タンタル(Ta)、チタン(Ti)のうち少なく とも一種からなることを特徴とする。

【0012】また、前記酸化物薄膜をボロメータ薄膜と して用いたマイクロブリッジ構造を有する赤外線センサ である。

[0013]

【発明の実施の形態】以下、本発明の実施の形態につい て説明する。

【0014】本発明のボロメータ用酸化物薄膜は、温度 分解能が小さい非冷却型赤外線センサに適したものであ 40 る。作製方法は次の通りである。

【0015】まず、膜を作製する対象となるもの、たと えばシリコン(Si)のウエハの表面に薄い熱酸化膜を形 成する。次いで、酸化バナジウムおよび前記の金属イオ ンからなる酸化物薄膜をゾルゲル法、またはスパッタ法 で形成する。

【0016】酸化物の組成は、置換比率をaとして該酸 化物をV1-a Ma Ox (Mはクロム、アルミニウム、鉄、マ ンガン、ニオブ、タンタルのうち少なくとも1種)と表 記したときに 1.5 ≤ x ≤ 2.0 かつ 0.001 ≤ a ≤ 0.1、好 50 は (a)のA-A'断面を横から見た図である。図 8 (b)にお

ましくはx=1.5またはx=2.0かつ 0.0025≤a≤0.0 5である。

【0017】酸化バナジウムにおけるバナジウムイオン の価数が4価(x=2)を超えると比抵抗が高くなる(例え ばV2O5)ため、また、価数が3価(x=1.5)を下回る とTCRが大きい温度領域(転移点)が極端に低温になる (例えばVO)ため、いずれも不適当である。実施例にお いては酸化バナジウムにおけるバナジウムの価数が3価 または4価に限定されているが、その中間にあるバナジ ウム酸化物、例えばV3O5, V4O1などのいわゆるマグ ネリ相(組成式 Vn O2n-1) でも有効である。

【0018】酸化バナジウムにおけるバナジウムイオン を他の金属で置換することによって前述の解決すべき課 題を改善する効果が認められる。しかし、バナジウムイ オンを置換する金属の置換量が請求項2ないし請求項3 に示された請求範囲の値より少なければ大きいTCRが 得られる温度領域が室温付近から外れるため、また置換 量が請求項2ないし請求項3で示した範囲を上回ると第 二相が現れることによって抵抗が急激に大きくなる、さ らに酸化物結晶形成温度が高くなるなどの問題点が生じ るためいずれもその改善効果が小さくなる。

【0019】一方請求項2における置換量の下限値の根 拠は、表1におけるMnで0.1%置換した組成の酸化物 薄膜の比抵抗、TCR共に改善されている(比抵抗小、 TCR絶対値大)ことからである。 0.1%という極微量 置換しただけでも改善傾向が見られることから、さらに 少ない量の置換でも比抵抗、TCRの改善は期待できる が、あとに述べる実施例においては0.1%未満の置換 は検討していない。

【0020】酸化物薄膜の厚さは、好ましくは0.05 *30* μ m以上 1μ m以下、より好ましくは 0.1μ m以上 0.5μm以下である。形成した薄膜を拡散炉で酸素気流中 でアニールを行う。アニールは400~450℃で1~ 3時間行うのが好ましい。

【0021】アニールした試料を真空バッチ炉にセット し拡散ポンプで減圧した後に炉内に水素を含む還元性ガ スを導入し還元処理を施す。ガスの組成は例えばアルゴ ン 7 0 %-水素 3 0 %混合ガスであり、処理温度は 3 5 0℃~450℃(チタンで置換した場合のみ450℃~ 550℃)、時間は12~36時間とするのが好まし い。

【0022】上記酸化物薄膜をボロメータ薄膜として用 いて作製した赤外線センサの構造の一例を図8に示し た。ここに示した赤外線センサはマイクロブリッジ構造 を有している。すなわちボロメータ薄膜をシリコン基板 から空隙によって熱的に分離された構造を取り、窒化シ リコン(SiNx)等の梁で支える構造を有している。

【0023】図8に沿ってより詳細に説明する。図8 (a) は赤外線センサの構造を正面から見た図であり、(b) いて、基板2の正面部分の表面を覆いかつ上端部および 下端部のへりに沿ってに突き出した構造となっている土 手16が形成されており、土手16のくぼんだ内側部分 には、くぼみ表面をほぼ覆うように完全反射膜1が形成 されている。

【0024】さらに、完全反射膜1と平行になるように、かつ土手16のへり部分よりも離れた場所に積層膜があり、基板側から順に保護膜3、その外側上端及び下端寄りに電極4、さらに外側にボロメータ薄膜5、保護膜6、赤外吸収膜7の順に積層している。

【0025】これらは、図8(a)に示す梁12及び12、さらに付け根13及び13で土手16につながることで支持されており、基板2、完全反射膜1などとの間は空洞9になっていることで、ボロメータ薄膜5をシリコン基板2から熱的に分離する働きをする。また土手16のへりの突出部分や梁12及び12とボロメータ薄膜5を含む部分の間にはスリット8が存在する。ダイアフラム10は保護膜3および6、ボロメータ薄膜5、赤外吸収膜7からなる積層膜、並びに相対する完全反射膜1、間に存在する空洞9からなる部分を指す。マイクロブリッジ構造とは上記のような構造を指すものである。

【0026】電源は外部より土手16上に設けられた電極配線17より供給され、コンタクト15で分岐して梁12及び12、上の電極配線14を介して電極4につながっている。 図8(b)により赤外線センサの作用を簡単に説明する。赤外線11がセルに当たるとまず赤外線吸収膜7で吸収され、一部透過した赤外線もダイアフラム10の底にある反射膜1で反射され結果として赤外線は赤外線吸収膜7に完全に吸収されることになる。吸収された赤外線は熱を発してダイアフラム10を加熱し、ボロメータ薄膜5の抵抗を変化させる。

[0027]

. .

【実施例】[実施例1]本発明の実施の一形態による酸化物薄膜を以下の方法で作製した。まず、シリコン(Si)のウエハの511面上に熱酸化膜(SiO2)を0.2 μ m 形成し、該熱酸化膜上にV_{1-a} M_a O_x で表される組成からなる酸化物薄膜をゾルゲル法で形成した。該酸化物薄膜の厚さは0.1 μ mとした。形成した酸化物薄膜の一覧を表1に示した。それぞれの酸化物薄膜の作製に用い 40 た前駆体溶液は次のようにして作製した。

【0028】Vの原料としてトリアルコキシバナジル (一般式VO(OR)3、RはC=1~4のアルキル基)を 用いた。バナジウムを置換する金属の原料としてはそれ ぞれの金属酸化物における酸素をアルコキシド、アセチルアセトン、2-エチルヘキサン酸等で置換した形で表 される有機金属酸化物を用いた。

【0029】窒素置換された密閉雰囲気において、有機溶媒に前記トリアルコキシバナジルと有機金属酸化物を表1に示した組成になるように秤取したのちに80℃な

いし120℃のオイルバス中で12時間~24時間還流 させたものを前駆体溶液とした。

【0030】有機溶媒にはC=1~3の低級アルコール、メトキシエタノール、エトキシエタノール、メトキシプロパノール、酢酸メチル、酢酸エチル、酢酸イソプロピル、トルエン、キシレン、ヘキサンの中から少なくとも1種類を選んだ。溶媒を上記の中から複数種選んだときは有機金属酸化物の可溶性、沸点、基板表面との濡れ性が最適になるように選んだ。

【0031】また必要に応じて微量の水、酸、アルカリ等の触媒、エチレングリコール、ヒドロキシプロピルセルロース等の増粘剤、および安定化剤としてアセチルアセトンのような β -ジケトンを用いた。

【0032】前駆体溶液を適当な濃度に希釈したのちにスピンコート法などの手段によって基板上に薄膜を形成した。形成した薄膜を拡散炉で酸素気流中400℃で1時間アニールを行った。次にアニールした試料を真空バッチ炉にセットし拡散ポンプで減圧した後に炉内にアルゴン70%-水素30%混合ガスを導入し400℃~450℃(チタンで置換した場合を除く)の間に保って12時間~36時間還元処理を施した。

【0033】チタンで置換した酸化バナジウムだけはバ ナジウムを置換する量が多いため、他の元素で置換した 組成よりもアルゴン-水素混合ガスの導入量を少なくす る変わりにアニール温度を500℃~550℃とした。 【0034】本実施例においてはゾルゲル法で該ボロメ ータ用酸化物薄膜を形成する方法を記載したがVおよび Vと置換すべき金属からなる合金をターゲットとした、 あるいはVと他の金属または金属酸化物をターゲットと したスパッタ法によって形成しても構わない。 膜を形成したシリコン基板の上に成膜した該ボロメータ 用酸化物薄膜をX線回折法によってその結晶相の同定 を、2端子法によって抵抗(シート抵抗)の温度特性を測 定した。測定による試料同士のバラツキを最小限にする ため、また酸化物薄膜と導線との間のオーミック接触を 確保するため、酸化物薄膜上にスパッタ法で1mm角の 金電極を10mm間隔で2カ所に形成し、その上に導線 を導電ペースト(銀)で固着した。 シート抵抗から比抵 抗を求めるために、作製した酸化物薄膜の厚さを接触探 "針式の表面粗さ計を用いて測定した結果、酸化物薄膜の 厚さは全て $0.1 \sim 0.15 \mu$ mの範囲に収まっていた。 【0035】評価に供した試料の組成式、バナジウムイ オンを置き換えた不純物酸化物の量、基本となる酸化バ ナジウムの結晶相、20℃における比抵抗(シート抵抗/ **膜厚により換算)、およびTCRの値を表1に示した。**

【0036】また代表的な例としてクロム、マンガン、

タンタル、チタンで置換した組成を有する酸化物薄膜の

シート抵抗の温度依存性を図1~図4に、X線回折の測

定結果を図5~図7にそれぞれ示した。

-4-

【0037】本実施例を、表1、図1~図7を用いてさらに詳しく説明する。

【0038】酸化バナジウム (VO_x) のバナジウムイオン $(V^{4+}$ または V^{3+})の一部をクロムイオン (Cr^{3+}) または V^{3+})で置換した場合、骨格となる結晶構造は V_2O_3 のそれと同じであった($\mathbf{図}4$)。

【0039】 Cr^{3+} で10%まで置換した場合、シート抵抗は $17k\sim90k\Omega$ (比抵抗 $0.17\sim0.9\Omega$ cm)と望ましい値を保持しかつTCRの絶対値も2%/Kを越える。さらに15%まで置換すると比抵抗が高くなる一方でTCRの絶対値がさらに小さくなることからこれ以上の置換は望ましくない。それでも比較例に示した酸化バナジウム(特開平9-257565<u>号公報</u>における酸化バナジウム、以下 VO_2 'と略)よりも比抵抗値は高い。

 AI^{3+} で置換した場合も同等な効果が認められることがわかる。比抵抗値は Cr^{3+} で置換した場合よりもさらに低いにも関わらずTCRの絶対値は2%/K以上を保持している。

【0040】次にバナジウムイオンの一部をマンガンイオン (Mn^{3+} または Mn^{4+})で置換した場合、結晶構造は VO_2 , のそれと同一であった (O_2)。

【0041】マンガンイオンの置換量が10%以下ではシート抵抗が $4\sim8k\Omega(0.04\sim0.08\Omega cm)$ 、TCRの絶対値は3%/K、組成によっては4%/Kを越えるほど大きかった。15%置換した組成ではTCRの絶対値が3%/K以下になったが依然VO2 よりも高い値を保持していた。

【0042】なおマンガンイオンで15%置換した組成においてはβ-MnO2のピークが見られた。このことからバナジウムイオンをマンガンイオンで置換する場合、10%を越えると固溶限界を超えて第二相が生成するものといえる。

【0043】なお析出したマンガンは4価の形態である

ので、置換したマンガンイオンは3価ではなく4価である可能性が高いが確証はまだ得られていない。

8

【0044】これらの組成と比較してバナジウムイオンを鉄イオン、タンタルイオン、ニオブイオンおよびチタンイオンで置換した組成においては、比抵抗が高めである。がいずれもボロメータ薄膜としては許容範囲にありしかもTCRの絶対値はほとんどが2%/Kを越えるものであった。

【0045】バナジウムイオンをタンタルイオンおよびニオブイオンで10%以上置換した組成では還元熱処理の温度を他の組成よりも20~50℃高くして結晶構造をV2O3とした。これはVO2'と同一の結晶構造を保持したままでは比抵抗が高くなってボロメータ薄膜としての許容値を超えてしまう恐れがあったためである。タンタルイオンで置換した場合、薄膜のX線回折ピークはCr、Mnと比較するとかなり低いものであり、結晶性が阻害されていることが伺われる(図6)。

【0046】図 $1\sim$ 図4から置換な102 薄膜の抵抗の温度特性は102 一田線において102020 の範囲でほぼ直線を示すのに対しバナジウムイオンを他の元素で置換した酸化物における抵抗の温度特性は、室温よりもやや低い温度(1020202020 で傾きが大きくなっている違いがある。しかしこの程度の差は実用上あまり問題はない。

【0047】[比較例1]他の元素で置換していないVO2'(A)、およびVの価数が本発明の範囲外であるV6O13(B), VO(C)の値も表1に記載した。その中でVO2'は0.1 μ 厚の薄膜での実測値、その他2つはバルク体の文献値である。

30 【0048】表1 作製した酸化物薄膜組成、置換した 元素および置換量、20℃における比抵抗とTCR 【0049】

【表1】

	I	T		1		,	
	試料	組成式	М	8	×	比抵抗	TCR
	No.					(Qcm)	(%/K)
	1	V _{0,896} Cr _{0,005} O _{3/2}	Cr	0.005	1.5	0.90	-3.1
	2	V _{0.98} Cr _{0.02} O _{3/2}	Cr	0.02	1.5	0.37	-2.5
	3	V _{0.8} Cr _{0.1} O _{3/2}	Cr	0.1	1.5	0.17	-2.05
実	4	V _{0.88} Cr _{0.18} O _{3/2}	Cr	0.15	1.5	0.28	-1.98
	5	V _{0.985} AI _{0.005} O _{3/2}	Al	0.005	1.5	0.02	-2.01
龅	6	V _{0.88} AI _{0.02} O _{3/2}	Al	0.02	1.5	0.05	-2.43
	7	V _{6.85} Al _{0.05} O _{3/2}	Al	0.05	1.5	80.0	-2.35
例	8	V _{0.995} Fe _{0.006} O ₂	Fe	0.005	2.0	1.82	-2.14
1	9	V _{0.00} Fe _{0.02} O ₂	Fe	0.02	2.0	0.98	-3.07
	10	V _{0.9} Fe _{0.1} O ₂	Fe	0.1	2.0	0.77	-2.55
	11	V _{0.999} Mn _{0.001} O ₂	Mn	0.001	2.0	0.15	-1.95
	12	V _{0.995} Mn _{0.005} O ₂	Mn	0.005	2.0	0.04	-3.20
	13	V _{0.98} Mn _{0.02} O ₂	Mn	0.02	2.0	0.06	-4.15
	14	V _{0.9} Mn _{0.1} O ₂	Mn	0.1	2.0	80.0	-4.02
	15	V _{0.65} Mn _{0.15} O ₂	Mn	0.15	2.0	0.03	-2.95
	16	V _{0.995} Ta _{0.005} O ₂	Ta	0.005	2.0	0.13	-2.03
	17	V _{0.98} Ta _{0.02} O ₂	Ta	0.02	2.0	0.77	-2.64
	18	V _{0.8} Ta _{6.1} O _{3/2}	Ta	0.1	1.5	1.35	-1.98
	19	V _{0.8} Ta _{0.2} O _{3/2}	Ла	0.2	1.5	6.9	-2.55
	20	V _{0,995} Nb _{0,005} O ₂	Nb	0.005	2.0	0.6	-2.11
	21	V _{0.98} Nb _{0.02} O ₂	Nb	0.02	2.0	1.7	-2.31
	22	V _{0,9} Nb _{0,1} O _{3/2}	Nb	0.1	1.5	5.0	-2.73
	23	V _{0.65} Ti _{0.35} O ₂	Ti	0.35	2.0	0.8	-2.40
	24	V _{0.55} Ti _{0.45} O ₂	Ti	0.45	2.0	1.6	-2.10
比	A	VO ₂ '				0.33	-1.8
較	В	V ₆ O ₁₃				約1000	-1.1
例	С	vo				0.008	~0
1							

[実施例2]上記酸化物薄膜をボロメータ薄膜として用い て、以下の方法で赤外線センサを作成した。読み出し回 路が形成されたSiウェハ2上にWSi等の赤外で反射率 が高い金属をスパッタ法で成膜し、反射膜1とした。反 射膜1上に多結晶シリコン膜等で犠牲層を将来の空洞9 の位置に形成した。犠牲層上にはSiNやSiO2のよう な絶縁膜をプラズマCVD法で成膜し保護膜3とした。 次に熱伝導率の小さい金属、例えばTi等を保護膜3上 にスパッタ法で成膜し、露光・現像・エッチング工程に 40 より電極配線14を形成した。

【0050】このような構造の上に上記酸化物薄膜、例 えば実施例1で示したような酸化物薄膜をゾルゲル法で 作成し、ボロメーター薄膜5とした。ボロメーター薄膜 5の上に保護膜3と同様の方法で保護膜6を形成した。 保護膜6上に反応性スパッタ法などによりTIN等のよ うな赤外吸収膜7を形成した。

【0051】赤外吸収膜7形成した後にスリット8を形 成し、ヒドラジン等により犠牲層をウェットエッチング し空洞9とした。以上の方法によって宙に浮いた構造の 50 ダイアフラム10を形成した。こうして作成したセルを 上から見た図を図8(a)に、断面構造を図8(b)に示し

【0052】このセルが赤外線センサとして作動する原 理は以下の通りである。赤外線11がセルに当たるとま ず赤外線吸収膜7で吸収され、一部透過した赤外線もダ イアフラム10の底にある反射膜1で反射され結果とし て赤外線は赤外線吸収膜7に完全に吸収されることにな る。吸収された赤外線は熱を発してダイアフラム10を 加熱し、ボロメータ薄膜5の抵抗を変化させる。

【0053】前記赤外線センサのセルサイズを50μm 角、シート抵抗を $20k\Omega$ 、1/fノイズK値が 2×10 ⁻¹²としたときの温度分解能NETDは、計算上でボロ メータ薄膜に従来の無添加酸化バナジウムを用いた場合 約0.1℃であったのに対し、本発明の実施例1の表1 における試料13(Mn2%置換)を用いた場合、比抵抗 も従来の無添加パナジウムの約1/5になっているので 1/fノイズも減少し、NETDを0.03℃に下げるこ とができる。

【0054】同一のボロメータ薄膜を用いた場合、セル面積を小さくするとNETDが大きくなる、つまり赤外線センサの温度分解能が悪くなる。しかしながら本発明のボロメータ薄膜を用いた場合、NETDを従来レベルである約0.1℃、あるいはそれ以下を保つことが理論上可能になるわけである。なお上記計算はProceeding of SPIE,1998,pp90-100を参照にして行った。【0055】

【発明の効果】本発明の酸化物をボロメータ薄膜に用いることによって、ボロメータ薄膜を室温付近で $5k\Omega\sim100k\Omega$ という適当な抵抗値にすることが可能である。次に本発明の酸化物薄膜はTCRの絶対値がほぼ2%/K以上、組成によっては4%/Kを超える高い値が得られる。具体的に述べると、不純物酸化物を導入しない酸化バナジウムにおけるTCR(-1.8%/K)よりも高くすることができる。それゆえ赤外線センサのボロメータ薄膜として当該酸化物薄膜を用いた場合、同一セルサイズを仮定すると温度分解能を小さくすることができる。

【図面の簡単な説明】

【図1】本発明のVo.995 Cro.005 O3/2、Vo.98 Cro.02 O3/2、Vo.9 Cro.1 O3/2、Vo.85 Cro.15 O3/2なる組成からなる酸化物薄膜のシート抵抗の温度依存性を示す図である。

【図2】本発明のVo.999Mno.001O2、Vo.995Mn 0.005O2、Vo.98Mno.02O2、Vo.9Mno.1O2、Vo.85 Mno.15O2なる組成からなる酸化物薄膜のシート抵抗の 温度依存性を示す図である。

【図3】本発明のV0.995 Ta0.005 O2、V0.98 Ta0.02 O2、V0.9 Ta0.1 O3/2、V0.8 Ta0.2 O3/2 なる組成からなる酸化物薄膜のシート抵抗の温度依存性を示す図である。

【図4】本発明のVo. 65 Tio. 35 O2、Vo. 55 Tio. 45 O2 なる組成からなる酸化物薄膜のシート抵抗の温度依存性

を示す図である。

【図5】本発明のVo.995 Cro.005 O3/2、Vo.98 Cro.02 O3/2、Vo.9 Cro.1 O3/2、Vo.85 Cro.15 O3/2 なる組成からなる酸化物薄膜のX線回折による測定結果を示す図である。

12

【図6】本発明のVo.999 Mno.001 O2、Vo.995 Mno.005 O2、Vo.98 Mno.02 O2、Vo.9 Mno.1 O2、Vo.85 Mno.15 O2なる組成からなる酸化物薄膜のX線回折による測定結果を示す図である。

10 【図7】本発明のVo.995 Tao.005 O2、Vo.98 Tao.02 O2、Vo.9 Tao.1 O3/2、Vo.8 Tao.2 O3/2 なる組成からなる酸化物薄膜のX線回折による測定結果を示す図である。

【図8】本発明の酸化物からなるボロメータ薄膜を用いた赤外線センサの一例を示す図である。

【符号の説明】

- 1:完全反射膜
- 2:基板
- 3:保護膜
- 20 4:電極
 - 5:ボロメータ薄膜
 - 6:保護膜
 - 7:赤外吸収膜
 - 8:スリット
 - 9:空洞
 - 10:ダイアフラム
 - 11:赤外線
 - 12と12':梁
 - 13と13':梁の付け根
- 30 14:電極配線
 - 15:コンタクト
 - 16:土手
 - 17:電極配線

【図5】

【図1】

【図2】

【図3】

【図4】

【図7】

【図8】

フロントページの続き

(51) Int. Cl. /	識別記号	FI	テーマコード(参考)
C 0 1 G	49/00	C O 1 G 49/00	Α
// G01J	1/02	G O 1 J 1/02	C .

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record .

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.