El Nivel de Transporte

Arquitecura de Redes de Ordenadores Arquitectura de Internet

GSYC

Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación

Universidad Rey Juan Carlos

Marzo 2017

©2017 GSyC
Algunos derechos reservados.
Este trabajo se distribuye bajo la licencia
Creative Commons Attribution Share-Alike
disponible en http://creativecommons.org/licenses/by-sa/3.1/es

- Introducción
- 2 Puertos
- Referencias

Introducción

2 Puertos

Referencias

Introducción

- El Nivel de Transporte se encarga de gobernar el acceso múltiple a la red de los diversos procesos de la misma máquina que quieran usarla: En TCP/IP se hace a través de puertos.
- Hay dos protocolos que ofrecen un servicio de nivel de transporte:
 - UDP: no orientado a conexión y no fiable
 - TCP: orientado a conexión y fiable

Puertos

- En una máquina multiproceso, el nivel de transporte debe preocuparse de saber a qué proceso va destinado una unidad de datos de UDP o TCP que acaba de llegar por la red. La dirección IP no es suficiente. Por ello, los procesos utilizan "direcciones de nivel de transporte", denominadas puertos.
- Cada puerto del Nivel de Transporte proporciona a una aplicación un punto de acceso a la red de comunicaciones, con lo que ésta puede dialogar con otra aplicación situada en un puerto de una máquina remota.

Introducción

2 Puertos

Referencias

Puertos

- El Nivel de Transporte TCP/IP:
 - multiplexa las unidades de datos que envían las aplicaciones a través de los puertos, encapsulándolas en unidades de datos de UDP o TCP
 - demultiplexa las unidades de datos de UDP y TCP, pasando los datos a las aplicaciones.
- Los puertos se identifican por un número de 16 bits. Los puertos UDP y TCP se manejan por separado:
 - el puerto 6001 UDP y el puerto 6001 TCP son puertos distintos.

Puertos en la cabecera del nivel de transporte

 Cuando se envía una unidad de datos del nivel de transporte se especifica el puerto de destino y el puerto desde el que se envía.

Transporte: TCP/UDP			Puerto Puerto origen destino	osporte	
		Cabecera IP	Cabecera de trai	sporte	
IP					
Cabecera Etherne		Cabecera IP	Cabecera de trai	psporte	
Ethernet					

GSyC - 2017 El Nivel de Transporte

Ejemplo de comunicaciones en el nivel de transporte

Comunicaciones desde el ordenador A	Protocolo	Dirección IP origen	Puerto origen	Dirección IP destino	Puerto destino
\longleftrightarrow	TCP	11.0.0.100	6001	12.0.0.100	10000
\longleftrightarrow	TCP	11.0.0.100	6002	12.0.0.100	7002
\longleftrightarrow	UDP	11.0.0.100	6003	12.0.0.200	8003
\longleftrightarrow	UDP	11.0.0.100	6004	12.0.0.200	6004
\longleftrightarrow	UDP	11.0.0.100	6001	12.0.0.100	22222

 Una comunicación de nivel de transporte queda completamente identificada con los siguientes parámetros: protocolo, dirección IP origen, puerto origen, dirección IP destino y puerto destino.

Puertos reservados

- Los puertos menores que 1024 (puertos privilegiados) están reservados y asignados universalmente a aplicaciones de red conocidas.
 - En una máquina Unix esta asignación está en el fichero /etc/services:

```
7/tcp
echo
                7/udp
echo
discard
                9/tcp
                                 sink null
discard
                9/udp
                                  sink null
davtime
                13/tcp
daytime
                13/udp
netstat
                15/tcp
ftp-data
                20/tcp
                                 # default ftp data port
                21/tcp
ftp
ssh
                22/tcp
                                  # SSH Remote Login Protocol
                22/udp
ssh
                23/tcp
telnet
                25/tcp
                                 mail
smtp
www
                80/tcp
                                 http
                                          # WorldWideWeb HTTP
                80/udp
                                          # HyperText Transfer Protocol
www
```

GSyC - 2017 El Nivel de Transporte

Modelo de aplicaciones cliente/servidor

- Al arrancar una aplicación que funciona como servidor, ésta se quedará esperando a recibir mensajes de un determinado protocolo de nivel de transporte y en un determinado puerto.
- Al arrancar una aplicación que funciona como cliente, ésta tomará la iniciativa de enviar el primer mensaje a la aplicación servidor utilizando el protocolo de nivel de transporte que está usando la aplicación servidor y enviando los mensajes a la dirección IP y puerto en los que está escuchando la aplicación servidor.
- Es necesario arrancar primero la aplicación que funciona como servidor y posteriormente arrancar la aplicación que funciona como cliente.

1 Introducción

2 Puertos

Referencias

Referencias

 C. M. Kozierok, The TCP/IP guide: A Comprehensive Illustrated Internet Protocols Reference: Cap. 28.
 Disponible on-line:

http://www.tcpipguide.com/free/t IPNetworkAddressTranslationNATProtocol.htm

 J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach (4th ed): Cap. 3 (3.1), Cap. 4 (4.4).

GSyC - 2017 El Nivel de Transporte 14