Bool'sche Algebra Benjamin Tröster, HTW Berlin

Bool'sche Algebra

Fahrplan

Recap

Einleitung

Bool'sche Algebra

Schaltalgebra

Mengenalgebra

Notation und Operatorenbindung

Analoge/Digitale Signale

Definition (Signal)

Informationstragende, physikalische Größe, die sich über der Zeit, über dem Ort oder über einer anderen Variablen ändert.

- ► Analoge Signale sind wert- & zeitkontinuierlich
 - Werte kontinuierlich (stetig)
 - ► I.A. alle natürlichen physikalischen Signale & Prozesse
- ▶ Digitale Signale sind wert- & zeitdiskret
 - Diskrete Werte
 - Variablen-Diskretisierung (Abtastung, führt zu diskreten Signalen)
 - Amplituden- bzw. Wert-Diskretisierung (Quantisierung)

Digital vs. Analog

► Analog:

▶ Digital:

$\textbf{Analog} \rightarrow \textbf{Digital}$

Grundlegende Signalverarbeitung: Deterministische Signale

- lackbox Periodische Signale ightarrow deterministisch, Periode gibt fixen Bereich vor
- ► Parameter periodische Signale:
 - ► Periode *T*
 - Frequenz $f = \frac{1}{T}$,
 - ightharpoonup Amplitude S(t)
 - ightharpoonup Phase φ
- ▶ Beispiele:
 - ▶ Sinus: Periode 2π
 - ▶ Phase shift φ (sin \to cos : $\varphi = \frac{3}{2}\pi$)

Bit-Rate vs. Bandbreite: Signalfrequenz

- Ziel: Komposition der Rechteckschwingung durch periodische Funktion
- ▶ Signal besteht aus f, 3f und 5f

$$ightharpoonup \sin(2\pi ft) + \frac{1}{3}\sin(2\pi 3ft) + \frac{1}{5}\sin(2\pi 5ft)$$

- ▶ Signal besteht aus f, 3f, 5f und 7f
 - $ightharpoonup \sin(2\pi ft) + \frac{1}{3}\sin(2\pi 3ft) + \frac{1}{5}\sin(2\pi 5ft) + \frac{1}{7}\sin(2\pi 7ft)$
- ► Rechteckschwingung:

$$s(t) = A \cdot \frac{4}{\pi} \cdot \sum_{k=1,k \text{ ungearde}}^{\infty} \frac{1}{k} \sin(2\pi k f t)$$

Einleitung

- ▶ Letzte Vorlesung: Wie kommen die Bits in den Rechner
- ► Heute: Formale Beschreibung
 - Logik,
 - Aussagenlogik
 - ► Bool'sche Algebra
 - ► Formal: Was ist eine Aussage
 - Aussagenlogik Axiomatisierung nach Peano/Huntington/Lattice
 - ► Basisoperatoren, sekundäre Operatoren

Elementare Logik

Definition (Logik)

Eine **Aussage** (proposition) ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr oder falsch ist.

- ► Handelt es sich um eine Aussage?
 - Wien ist die Hauptstadt von Österreich.
 - ightharpoonup 1 + 5 = 6.
 - ▶ 5 ist kleiner als 3.
 - ▶ Guten Abend!
 - x + 3 = 5

[TT13]

Aussagenlogik

Definition (Aussagenlogik)

Aussagenlogik, als Teilgebiet der Logik, befasst sich mit Aussagen und der Verknüpfung von Aussagen mittels *Junktoren*.

- ► Junktoren sind logische Verknüpfungen
- Klassische Junktoren:
 - ▶ Negation $\neg P$
 - ▶ Implikation/Subjunktion/Konditional $P \Rightarrow Q$
 - ightharpoonup Äquivalenz/Bikonditional/Bisubjunktion $P \Leftrightarrow Q$
 - ► Konjunktion $P \land Q$
 - ▶ Disjunktion $P \lor Q$

[Rau08]

Negation

Definition (Negation)

Sei a beliebige Aussage, so ist die Verneinung oder Negation einer Aussage a genau dann wahr, wenn a falsch ist. Die Verneinung von a wird symbolisch mit a oder $\neg a$ (auch $\overline{a}, !a$) bezeichnet (gelesen "nicht a").

а	$\neg a$
0	1
1	0

Implikation

Definition (Aussagenlogik)

Seien a und b beliebige Aussagen, so ist die WENN-DANN-Verknüpfung oder Implikation $a \Rightarrow b$ (gelesen "Wenn a, dann b") wie folgt definiert:

а	Ь	$a \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

Äquivalenz

Definition (Äquivalenz)

Seien a und b beliebige Aussagen, so ist die GENAU-DANN-Verknüpfung oder Bijunktion $a \Leftrightarrow b$ (gelesen "a genau dann, wenn b") von zwei Aussagen a bzw. b sind durch ihre Wahrheitstabellen folgendermaßen definiert:

а	b	$a \Leftrightarrow b$
0	0	1
0	1	0
1	0	0
1	1	1

Konjunktion

Definition (Konjunktion)

Seien a und b beliebige Aussagen, so ist die UND-Verknüpfung oder Konjunktion von a und b symbolisch mit $a \wedge b$ bezeichnet (gelesen: "a und b"). Die neue Aussage $a \wedge b$ ist genau dann wahr, wenn sowohl a als auch b wahr ist. Ansonsten ist $a \wedge b$ falsch.

а	b	$a \wedge b$
0	0	0
0	1	0
1	0	0
1	1	1

Return to Äquivalenz

Die Äquivalenz kann auch als Kombination zweier Implikationen betrachtet werden:

$$a \Rightarrow b \land a \Leftarrow b$$

Return to Äquivalenz

Die Äquivalenz kann auch als Kombination zweier Implikationen betrachtet werden:

$$a \Rightarrow b \land a \Leftarrow b$$

а	b	$a \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

b	а	$b \Rightarrow a$
0	0	1
0	1	1
1	0	0
1	1	1

$A:a\Rightarrow b$	$B:a \leftarrow b$	$A \wedge B$
0,0 $ ightarrow$ 1	0, $0 o 1$	1
0,1 $ ightarrow$ 1	1,0 o 0	0
1,0 $ ightarrow$ 0	1,0 o 0	0
1,1 ightarrow 1	1,1 $ ightarrow$ 1	1

Disjunktion

Definition (Disjunktion)

Seien a und b beliebige Aussagen, so ist ODER-Verknüpfung oder Disjunktion von a und b symbolisch mit $a \lor b$ bezeichnet (gelesen: "a oder b"). Die neue Aussage $a \lor b$ ist genau dann wahr, wenn mindestens eine der beiden Aussagen a bzw. b wahr ist; sonst ist $a \lor b$ falsch. Die Verknüpfung $a \lor b$ entspricht dem nicht-ausschließenden "oder" der Umgangssprache (denn $a \lor b$ ist auch wahr, wenn sowohl a als auch b wahr ist)!

а	b	$a \lor b$
0	0	0
0	1	1
1	0	1
1	1	1

Algebra

Definition (Algebra)

Als Teilgebiete der Mathematik befasst sich die Algebra mit den Eigenschaften von Rechenoperationen.

Verkürzt aus [Bew07]

Bool'sche Algebra

Definition (BA nach Peano)

Die bool'sche Algebra nach Peano ist als Menge $\mathcal V$ mit Nullelement 0 und Einselement 1 und den zweistelligen Verknüpfungen $\wedge(\cdot)$, $\vee(+)$, sowie der einstelligen Verknüpfung \neg definiert.

- ▶ Definitionsmenge $\mathcal{D}: \{0,1\}^*$, Zielmenge $\mathcal{Z}: \{0,1\}$
- ► Einstellige Verknüpfung: $f: \{0,1\} \rightarrow \{0,1\}$
- ► Zweistellige Verknüpfung: $f: \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$
- ▶ *n*-stelligen Verknüpfung $f: \{0,1\}^n \rightarrow \{0,1\}$
- Gesamtheit wird mit B_n bezeichnet, daraus ergeben sich 2^n Funktionen
- \triangleright B_0 sind die Konstanten 0 und 1

Bool'sche Algebra nach Peano

- 1. Kommutativgesetz (K) $a \wedge b = b \wedge a$ bzw. $a \vee b = b \vee a$
- 2. Assoziativgesetz (A) $(a \land b) \land c = a \land (b \land c)$ bzw. $(a \lor b) \lor c = a \lor (b \lor c)$
- 3. Idempotenzgesetz (I) $a \wedge a = a$ bzw. $a \vee a = a$
- 4. Distributivgesetz (D) $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ bzw. $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$
- 5. Neutralitätsgesetz (N) $a \wedge 1 = a$ bzw. $a \vee 0 = a$
- 6. Extremalgesetz (Ex) $a \wedge 0 = 0$ bzw. $a \vee 1 = 1$
- 7. Involution (In) $\neg(\neg a) = a$
- 8. De Morgansche Gesetz $\neg(a \land b) = \neg a \lor \neg b$ bzw. $\neg(a \lor b) = \neg a \land \neg b$
- 9. Komplementärgesetz/Inverse Element (I) $a \wedge \neg a = 0$ bzw. $a \vee \neg a = 1$
- 10. Dualitätsgesetz $\neg 0 = 1$ bzw. $\neg 1 = 0$
- 11. Absorptionsgesetz $a \lor (a \land b) = a$ bwz. $a \land (a \lor b) = a$

Bool'sche Algebra nach Huntington (Wichtig!)

Definition

Die bool'sche Algebra nach Huntington ist definiert als Menge $\mathcal{V}:\{0,1\}$ mit den Verknüpfungen $\cdot(\wedge),+(\vee)$, sodass $\mathcal{V}\times\mathcal{V}\to\mathcal{V}$, also $\{0,1\}\times\{0,1\}\to\{0,1\}$.

- ► Kommutativgesetze (K): $a \cdot b = b \cdot a$ bzw. a + b = b + a
- Distributivgesetze (D): $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ bzw. $a + (b \cdot c) = (a + b) \cdot (a + c)$
- ▶ Neutrale Elemente (N): $\exists e, n \in \mathcal{V}$ mit $a \cdot e = a$ und a + n = a
- ▶ Inverse Elemente (I): $\forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e

Übernommen von [Bar13] bzw. [Hof20]

▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?

- ▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?
 - $ightharpoonup a \cdot b = b \cdot a$ bzw. a + b = b + a

- ▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?
 - $ightharpoonup a \cdot b = b \cdot a$ bzw. a + b = b + a
- ► Gibt es ein neutrales Element bzgl. ·, +?

- ▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?
 - $ightharpoonup a \cdot b = b \cdot a \text{ bzw. } a + b = b + a$
- ▶ Gibt es ein neutrales Element bzgl. \cdot , +?
 - $ightharpoonup \exists e, n \in \mathcal{V} \text{ mit } a \cdot e = a \text{ und } a + n = a$

- ▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?
 - $ightharpoonup a \cdot b = b \cdot a \text{ bzw. } a + b = b + a$
- ▶ Gibt es ein neutrales Element bzgl. \cdot , +?
 - $ightharpoonup \exists e, n \in \mathcal{V} \text{ mit } a \cdot e = a \text{ und } a + n = a$
- ▶ Gibt es zu jedem Element $e \in \mathbb{R}$ ein inverses Element $i \in \mathbb{R}$

- ▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?
 - $ightharpoonup a \cdot b = b \cdot a \text{ bzw. } a + b = b + a$
- ▶ Gibt es ein neutrales Element bzgl. \cdot , +?
 - $ightharpoonup \exists e, n \in \mathcal{V} \text{ mit } a \cdot e = a \text{ und } a + n = a$
- ▶ Gibt es zu jedem Element $e \in \mathbb{R}$ ein inverses Element $i \in \mathbb{R}$
 - $ightharpoonup \forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e

- ▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?
 - $ightharpoonup a \cdot b = b \cdot a \text{ bzw. } a + b = b + a$
- ▶ Gibt es ein neutrales Element bzgl. \cdot , +?
 - $ightharpoonup \exists e, n \in \mathcal{V} \text{ mit } a \cdot e = a \text{ und } a + n = a$
- ▶ Gibt es zu jedem Element $e \in \mathbb{R}$ ein inverses Element $i \in \mathbb{R}$
 - $ightharpoonup \forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e
- ▶ Gelten die Distributivgesetzein \mathbb{R} bzgl. ·, +?

- ▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?
 - $ightharpoonup a \cdot b = b \cdot a \text{ bzw. } a + b = b + a$
- ▶ Gibt es ein neutrales Element bzgl. \cdot , +?
 - $ightharpoonup \exists e, n \in \mathcal{V} \text{ mit } a \cdot e = a \text{ und } a + n = a$
- ▶ Gibt es zu jedem Element $e \in \mathbb{R}$ ein inverses Element $i \in \mathbb{R}$
 - $\forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e
- ▶ Gelten die Distributivgesetzein \mathbb{R} bzgl. ·, +?
 - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$

- ▶ Gelten die Kommutativgesetze in \mathbb{R} bzgl. ·, +?
 - $ightharpoonup a \cdot b = b \cdot a \text{ bzw. } a + b = b + a$
- ▶ Gibt es ein neutrales Element bzgl. \cdot , +?
 - $ightharpoonup \exists e, n \in \mathcal{V} \text{ mit } a \cdot e = a \text{ und } a + n = a$
- ▶ Gibt es zu jedem Element $e \in \mathbb{R}$ ein inverses Element $i \in \mathbb{R}$
 - $ightharpoonup \forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e
- ▶ Gelten die Distributivgesetzein \mathbb{R} bzgl. ·, +?
 - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$

Bool'sche Algebra als Verband (Lattice)

Definition

Es kann eine bool'sche Algebra mit den Verknüpfungen \land,\lor,\lnot und den Elementen 0,1 als distributiver, komplementärer Verband definiert werden. Zusätzlich ist eine partielle Halbordnung $a \leq b \Leftarrow a = a \land b$ definiert. So haben zwei Elemente ein Supremum und ein Infimum.

- ▶ Kommutativgesetze (K): $a \land b = b \land a$ bzw. $a \lor b = b \lor a$
- ▶ Assoziativgesetz (A) $(a \land b) \land c = a \land (b \land c)$ bzw. $(a \lor b) \lor c = a \lor (b \lor c)$
- ▶ Absorptionsgesetz $a \lor (a \land b) = a$ bwz. $a \land (a \lor b) = a$
- ► Komplementärgesetz/Inverse Element (I) $a \land \neg a = 0$ bzw. $a \lor \neg a = 1$
- ▶ Distributivgesetz (D) $a \land (b \lor c) = (a \land b) \lor (a \land c)$

[Sas99]

Darstellungen & Bool'sche Funktionen

- ► Wahrheitstabelle (s.o.)
- ▶ Via Graph $y = ((0 \land x) \lor (1 \lor x))$

► Formeldarstellung – algebraische Darstellung (s.o)

Schaltalgebra als bool'sche Algebra

▶ \neg , \land und \lor sind Operatoren über der Menge $\{0,1\}$

а	b	$a \wedge b$
0	0	0
0	1	0
1	0	0
1	1	1

а	b	$a \lor b$
0	0	0
0	1	1
1	0	1
1	1	1

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	а	$\neg a$
1 0	0	1
	1	0

Kommutativgesetze, Distributivgesetze, neutrales Element, inverses Element

Mengenalgebra

Definition (Trägermenge)

Eine Trägermenge \mathcal{T} bezeichnet die Menge, die mithilfe einer Menge von Verknüpfungen eine algebraische Struktur bildet.

lacktriangleright Mengenalgebra über einer Trägermenge ${\mathcal T}$

\mathcal{V}	$\mathcal{P}(I)$	Potenzmenge der Trägermenge I
	\cap	Durchschnitt
+	\cup	Vereinigung
n	Ø	leere Menge
e	${\mathcal T}$	Trägermenge
a'	$\mathcal{T} \setminus$	Komplementärmenge

Mengenalgebra

Mengenalgebra

Notation und Operatorenbindung

- Syntactic Sugar (Ableitungen aus Basisverknüpfungen)
 - ▶ $(a \Rightarrow b)$ für $(\neg a \lor b)$ Implikation
 - ▶ $(a \Leftarrow b)$ für $(b \Rightarrow a)$ Inversion der Implikation
 - $ightharpoonup (a \Leftrightarrow b)$ für $(a \Rightarrow b) \land (a \Leftarrow b)$ Äquivalenz
 - ▶ $(a \oplus b) fr \neg (a \Leftrightarrow b \text{Antivalenz oder Exklusiv-ODER/XOR})$
 - $ightharpoonup \neg (a \lor b) NOR$
 - $ightharpoonup \neg (a \land b) NAND$
- Bindung der Operatoren
 - ► ∧ bindet stärker als ∨
 - ▶ ¬ bindet stärker als ∧
- ► Klammerung
 - ► Gleiche Verknüpfungen: linksassoziativ zusammengefasst

Weitere Verknüpfungen

Kommutativgesetze	a ^ b = b ^ a a v b = b v a	(K)
Distributivgesetze	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$	(D)
Neutrale Elemente	a ^ 1 = a a v 0 = a	(N)
Inverse Elemente	a ^ ¬a = 0 a v ¬a = 1	(1)
Assoziativgesetze	a \((b \(c) = (a \(b) \) \(c = a \(b \) \(c) \) a \((b \(c) = (a \(v)) \) \(c = a \(v) \(v) \)	(A)

[Hof20]

Weitere Verknüpfungen

Idempotenzgesetze	a ^ a = a a v a = a	(ID)
Absorptionsgesetze	a v (a ^ b) = a a ^ (a v b) = a	(AB)
Gesetze von DeMorgan	$\neg(a \lor b) = \neg a \land \neg b$ $\neg(a \land b) = \neg a \lor \neg b$	(M)
Auslöschungsgesetze	a \(0 = 0 \) a \(\cdot 1 = 1 \)	(L)
Gesetz der Doppelnegation	¬¬a = a	(DN)

[Hof20]

Wie viele Funktionen gibt es denn?

- ightharpoonup Prinzipiell: Kreuzprodukt der Eingangswerte, da $\mathcal{V} imes \mathcal{V} imes \dots \mathcal{V}$ gilt
- ► Somit ist der Eingangsvektor die Kombination aller möglichen Eingangswerte
- ▶ Einstellige Funktion: $2^2 = 4$, da $\{0,1\} \rightarrow \{0,1\}$ abbilden
- ▶ Zweistellige Funktionen: 2^4 , da $\{0,1\} \times \{0,1\}$ die Eingangswerte darstellen
- ▶ Dreistellige Funktionen: 2^8 , da $\{0,1\} \times \{0,1\} \times \{0,1\}$ die Eingangswerte darstellen
- ▶ Allgemein: $V^n \to V^m$ Anzahl: $(2^m)^{2^n}$

Beispiel

$$Y = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)$$

$$Y = (\neg a \land \neg b) \lor (a \land b)$$

Ausblick nächste Vorlesung

- ► Erfüllbarkeit & Äquivalenz
- De Morgan Regeln
- Universelle Operatoren
- Beweisstrategien & Induktion Strukturelle Induktion
- Dualitätsprinzip
- Normalformen
- ▶ Bitweise logische Operationen, Bit-Maskierung
- Einführung Logikgatter

Quellen I

- Barnett, Janet Heine (2013). "Boolean algebra as an abstract structure: Edward V. Huntington and axiomatization". In: *Convergence*.
- Bewersdorff, Jörg (2007). "Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie, 3". In: Aufl. Vieweg+ Teubner, Wiesbaden (2007, Juli).
- Hoffmann, Dirk W (2020). *Grundlagen der technischen Informatik*. Carl Hanser Verlag GmbH Co KG.
- Rautenberg, Wolfgang (2008). Einführung in die mathematische Logik. Springer.
- Sasao, Tsutomu (1999). "Lattice and Boolean Algebra". In: Switching Theory for Logic Synthesis. Springer, S. 17–34.

Quellen II

Teschl, Gerald und Susanne Teschl (2013). Mathematik für Informatiker: Band 1: Diskrete Mathematik und Lineare Algebra. Springer-Verlag.