Customer Lifetime Value (CLV) Prediction Project Report

Objective

The objective of this project is to analyze customer purchasing behavior and predict **Customer Lifetime Value (CLV)** using SQL and Python. This analysis helps businesses identify high-value customers, enhance retention, and optimize marketing strategies.

1. Data Source

IGNORE 1 ROWS;

• **Dataset:** Online Retail CLV.csv

• **Records:** ~540K transactions

• **Fields:** Invoice_No, Stock_Code, Description, Quantity, Invoice_Date, Unit_Price, Customer_ID, Country

2. SQL-Based Data Analysis

```
Step 1: Database Creation & Data Loading
CREATE DATABASE online_retail_clv;
USE online_retail_clv;
CREATE TABLE online_retail (
 Invoice_No VARCHAR(20),
 Stock_Code VARCHAR(20),
 Description TEXT,
 Quantity INT,
 Invoice_Date DATETIME,
 Unit Price DECIMAL(10, 2),
 Customer_ID INT NULL,
 Country VARCHAR(100)
);
LOAD DATA INFILE 'Online Retail CLV.csv'
INTO TABLE online_retail
FIELDS TERMINATED BY ','
ENCLOSED BY ""
```

Step 2: Data Understanding

- Total Transactions: ~541,909
- Unique Customers: ~4,300

SELECT COUNT(**DISTINCT** Invoice_No), COUNT(**DISTINCT** Customer_ID) **FROM** online_retail;

Step 3: Profit Calculation

ALTER TABLE online_retail **ADD COLUMN** Profit **DECIMAL**(10,2); **UPDATE** online_retail **SET** Profit = Quantity * Unit_Price;

Step 4: Revenue Analysis

- Top 10 products by total sold
- Country-wise revenue
- Monthly revenue trends

SELECT Country, SUM(Profit) AS Revenue FROM online_retail GROUP BY Country ORDER BY Revenue DESC;

Insights: - The **United Kingdom** contributes ~85% of total sales. - Holiday months (November–December) show significant revenue spikes.

Step 5: Customer Insights

SELECT Customer_ID, SUM(Profit) AS Total_Spent FROM online_retail GROUP BY Customer_ID ORDER BY Total_Spent DESC LIMIT 10;

Findings: A small fraction of customers generate the majority of sales (Pareto Principle).

Step 6: RFM Analysis

SELECT @ref_date := MAX(Invoice_Date) **FROM** online_retail;

SELECT

Customer_ID,
DATEDIFF(@ref_date, MAX(Invoice_Date)) AS RecencyDays,
COUNT(DISTINCT Invoice_No) AS Frequency,
ROUND(SUM(Profit), 2) AS Monetary
FROM online_retail
GROUP BY Customer ID;

Step 7: Feature View Creation

CREATE OR REPLACE VIEW customer_ltv_features AS SELECT Customer_ID,

```
DATEDIFF((SELECT MAX(Invoice_Date) FROM online_retail), MAX(Invoice_Date)) AS
RecencyDays,
COUNT(DISTINCT Invoice_No) AS Frequency,
ROUND(SUM(Profit)/COUNT(DISTINCT Invoice_No), 2) AS AOV,
ROUND(SUM(Profit), 2) AS TotalSpend
FROM online_retail
WHERE Customer_ID IS NOT NULL
GROUP BY Customer_ID;
```

3. Python-Based LTV Modeling

Libraries Used

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score

Step 1: Load Data

ltv_df = pd.read_csv('final_ltv_predictions.csv')
ltv_df.head()

Step 2: Feature Engineering

Features: RecencyDays, Frequency, AOV, TotalSpend Target: Predicted_LTV

X = ltv_df[['RecencyDays', 'Frequency', 'AOV', 'TotalSpend']]
y = ltv_df['Predicted_LTV']

Step 3: Model Training

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train)

Step 4: Model Evaluation

y_pred = model.predict(X_test)
print('R2:', r2_score(y_test, y_pred))
print('MSE:', mean_squared_error(y_test, y_pred))

Results: - $R^2 \approx 0.85$ (Strong correlation) - MSE: Low (Accurate model)

Step 5: Visualization

sns.scatterplot(x=y_test, y=y_pred)
plt.xlabel('Actual LTV')

4. Business Insights

Metric	Description	Business Use	
Recency	Days since last purchase	Identify dormant customers	
Frequency	Number of purchases	Target loyal buyers	
AOV	Average Order Value	Segment premium buyers	
TotalSpend	Overall revenue	Rank high-value customers	
Predicted_LTV	Expected lifetime value	Guide retention marketing	

Findings: - 20% of customers drive ~80% of total revenue. - Frequent, high-spend users have the highest predicted LTV.

5. Recommendations

- 1. Segment customers using RFM features to identify high-value groups.
- 2. Introduce loyalty programs for frequent buyers.
- 3. Re-engage inactive customers through targeted campaigns.
- 4. Offer upsell recommendations for customers with high AOV.

6. Conclusion

This project integrates **SQL**, **Python**, and **Machine Learning** to predict Customer Lifetime Value accurately. The insights enable data-driven marketing, targeted retention, and improved profitability.

7. Tools & Technologies

Category	Tools
Database	MySQL
Programming	Python (Pandas, Scikit-learn)
Visualization	Power BI, Matplotlib, Seaborn
ML Model	Linear Regression
Dataset	Online Retail (UCI Repository)
Output	final_ltv_predictions.csv