Generalization Error Bounds for Deep Unfolding RNNs (Supplementary Material)

Tanmoy Mukheriee 1.2

Huvnh Van Luong 1,2

Nikos Deligiannis (1)1,2

¹Department of Electronics and Informatics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium ²imec, Kapeldreef 75, B-3001 Leuven, Belgium

PROXIMAL OPERATOR OF REWEIGHTED-RNN

The proximal operator $\phi_{\frac{\lambda_1}{6},\frac{\lambda_2}{6},\hbar}(u)$ is defined as

$$\phi_{\frac{\lambda_1}{c}, \frac{\lambda_2}{c}, \hbar}(u) = \operatorname*{arg\,min}_{v \in \mathbb{R}^h} \left\{ \frac{1}{c} g(v) + \frac{1}{2} ||v - u||_2^2 \right\},\tag{1}$$

where $g(v) = \lambda_1 \mathbf{g}|v| + \lambda_2 \mathbf{g}|v - \hbar|$.

Following the proof in Appendix of [Luong et al., 2021], $\Phi_{\frac{\lambda_1}{c}\mathsf{gl},\frac{\lambda_2}{c}\mathsf{gl},\hbar}(u)$ is given by

$$\Phi_{\frac{\lambda_{1}}{c}g_{l},\frac{\lambda_{2}}{c}g_{l},\hbar}(u) = \begin{cases}
u - \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l}, & \hbar + \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l} < u < \infty \\
\hbar, & \hbar + \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l} \leq u \leq \hbar + \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l} \\
u - \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l}, & \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l} < u < \hbar + \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l} \\
0, & -\frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l} \leq u \leq \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l} \\
u + \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l}, & -\infty < u < -\frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l},
\end{cases} \tag{2}$$

for $\hbar \geq 0$ and

$$\Phi_{\frac{\lambda_{1}}{c}g_{l},\frac{\lambda_{2}}{c}g_{l},\hbar}(u) = \begin{cases}
u - \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l}, & \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l} < u < \infty \\
0, & -\frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l} \leq u \leq \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l} \\
u + \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l}, & \hbar - \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l} < u < -\frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l} \\
\hbar, & \hbar - \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l} \leq u \leq \hbar - \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l} \\
u + \frac{\lambda_{1}}{c}g_{l} + \frac{\lambda_{2}}{c}g_{l}, & -\infty < u < \hbar - \frac{\lambda_{1}}{c}g_{l} - \frac{\lambda_{2}}{c}g_{l}
\end{cases} \tag{3}$$

for $\hbar < 0$.

SUPPORTS FOR RADEMACHER COMPLEXITY CALCULUS

The contraction lemma in Shalev-Shwartz and Ben-David [2014] shows the Rademacher complexity of the composition of a class of functions with ρ -Lipschitz functions.

Proposition 2.1. [Shalev-Shwartz and Ben-David, 2014, Lemma 26.9—Contraction lemma] Let \mathfrak{F} be a set of functions, $\mathfrak{F} = \{f : \mathfrak{X} \mapsto \mathbb{R}\}$, and $\Phi_1, ..., \Phi_m$, ρ -Lipschitz functions, namely, $|\Phi_i(\alpha) - \Phi_i(\beta)| \leq \rho |\alpha - \beta|$ for all $\alpha, \beta \in \mathbb{R}$ for some $\rho > 0$. For any sample set S of m points $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathcal{X}$, let $(\Phi \circ f)(\mathbf{x}_i) = \Phi(f(\mathbf{x}_i))$. Then,

$$\frac{1}{m} \underset{\epsilon \in \{\pm 1\}^m}{\mathbb{E}} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^m \epsilon_i (\Phi \circ f)(\mathbf{x}_i) \right] \le \frac{\rho}{m} \underset{\epsilon \in \{\pm 1\}^m}{\mathbb{E}} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^m \epsilon_i f(\mathbf{x}_i) \right], \tag{4}$$

alternatively, $\Re_S(\boldsymbol{\Phi} \circ \mathfrak{F}) \leq \rho \Re_S(\mathfrak{F})$, where $\boldsymbol{\Phi}$ denotes $\Phi_1(\mathbf{x}_1), ..., \Phi_m(\mathbf{x}_m)$ for S.

Proposition 2.2. [Mohri et al., 2018, Proposition A.1—Hölder's inequality] Let $p, q \ge 1$ be conjugate: $\frac{1}{p} + \frac{1}{q} = 1$. Then, for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$\|\mathbf{x} \cdot \mathbf{y}\|_1 \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q,\tag{5}$$

with the equality when $|y_i| = |x_i|^{p-1}$ for all $i \in [1, n]$.

3 PROOF FOR GENERALIZATION ERROR BOUNDS FOR DEEP UNFOLDING RNNS

Proof. We consider the real-valued family of functions $\mathcal{F}_{d,T}: \mathbb{R}^h \times \mathbb{R}^n \mapsto \mathbb{R}$ for the functions $f_{\mathbf{W},\mathbf{U}}^{(d)}$ to update $\mathbf{h}_T^{(d)}$ in layer d, time step T, defined as

$$\mathcal{F}_{d,T} = \left\{ (\mathbf{h}_{T-1}^{(d)}, \mathbf{x}_T) \mapsto \Phi(\mathbf{w}_d^{\mathrm{T}} f_{\mathcal{W}, \mathcal{U}}^{(d-1)}(\mathbf{h}_{T-1}^{(d)}, \mathbf{x}_T) + \mathbf{u}_d^{\mathrm{T}} \mathbf{x}_T) : \|\mathbf{W}_d\|_{1,\infty} \le \alpha_d, \ \|\mathbf{U}_d\|_{1,\infty} \le \beta_d \right\}, \tag{6}$$

where \mathbf{w}_d , \mathbf{u}_d are the corresponding rows from \mathbf{W}_d , \mathbf{U}_d , respectively, and α_l , β_l , with $1 < l \le d$, are nonnegative hyper-parameters. For the first layer and the first time step, i.e., l = 1, t = 1, the real-valued family of functions, $\mathcal{F}_{1,1} : \mathbb{R}^h \times \mathbb{R}^n \mapsto \mathbb{R}$, for the functions $f_{\mathcal{W}_{\mathcal{U}}}^{(1)}$ is defined by:

$$\mathcal{F}_{1,1} = \left\{ (\mathbf{h}_0, \mathbf{x}_1) \mapsto \Phi(\mathbf{w}_1^{\mathrm{T}} \mathbf{h}_0 + \mathbf{u}_1^{\mathrm{T}} \mathbf{x}_1) : \|\mathbf{W}_1\|_{1,\infty} \le \alpha_1, \ \|\mathbf{U}\|_{1,\infty} \le \beta_1 \right\},\tag{7}$$

where α_1, β_1 are nonnegative hyper-parameters. We denote the input layer as $f_{W,U}^{(0)} = \mathbf{h}_0$ at the first time step. From the definition of Rademacher complexity [Definition 3.1] and the family of functions in (6) and (7), we obtain:

$$m\mathfrak{R}_{S}(\mathfrak{F}_{d,T}) \leq \underset{\boldsymbol{\epsilon} \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\sup_{\substack{\mathbf{w}_{d} \\ \|\mathbf{u}_{d}\|_{1} \leq \alpha_{d} \\ \|\mathbf{u}_{d}\|_{1} \leq \beta_{d}}} \sum_{i=1}^{m} \epsilon_{i} \Phi\left(\mathbf{w}_{d}^{\mathrm{T}} f_{\boldsymbol{\mathcal{W}}, \boldsymbol{\mathcal{U}}}^{(d-1)}(\mathbf{h}_{T-1, i}, \mathbf{x}_{T, i}) + \mathbf{u}_{d}^{\mathrm{T}} \mathbf{x}_{T, i}\right) \right]$$

$$\leq \frac{1}{\lambda} \log \exp\left(\underset{\|\mathbf{w}_{d}\|_{1} \leq \alpha_{d}}{\mathbb{E}} \sup_{\|\mathbf{w}_{d}\|_{1} \leq \alpha_{d} \\ \|\mathbf{u}_{d}\|_{1} \leq \beta_{d}}} \lambda \sum_{i=1}^{m} \epsilon_{i} \left(\mathbf{w}_{d}^{\mathrm{T}} f_{\boldsymbol{\mathcal{W}}, \boldsymbol{\mathcal{U}}}^{(d-1)}(\mathbf{h}_{T-1, i}, \mathbf{x}_{T, i}) + \mathbf{u}_{d}^{\mathrm{T}} \mathbf{x}_{T, i}\right) \right] \right)$$

$$\leq \frac{1}{\lambda} \log \underset{\boldsymbol{\epsilon} \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\underset{\|\mathbf{w}_{d}\|_{1} \leq \alpha_{d} \\ \|\mathbf{u}_{d}\|_{1} \leq \beta_{d}}} \exp\left(\lambda \sum_{i=1}^{m} \epsilon_{i} \left(\mathbf{w}_{d}^{\mathrm{T}} f_{\boldsymbol{\mathcal{W}}, \boldsymbol{\mathcal{U}}}^{(d-1)}(\mathbf{h}_{T-1, i}, \mathbf{x}_{T, i})\right) + \lambda \sum_{i=1}^{m} \epsilon_{i} \mathbf{u}_{d}^{\mathrm{T}} \mathbf{x}_{T, i}\right) \right]$$

$$\leq \frac{1}{\lambda} \log \underset{\boldsymbol{\epsilon} \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\underset{\|\mathbf{w}_{d}\|_{1} \leq \alpha_{d}}{\sup} \exp\left(\lambda \sum_{i=1}^{m} \epsilon_{i} \left(\mathbf{w}_{d}^{\mathrm{T}} f_{\boldsymbol{\mathcal{W}}, \boldsymbol{\mathcal{U}}}^{(d-1)}(\mathbf{h}_{T-1, i}, \mathbf{x}_{T, i})\right) \right) \sup_{\|\mathbf{u}_{d}\|_{1} \leq \beta_{d}} \exp\left(\lambda \sum_{i=1}^{m} \epsilon_{i} \mathbf{u}_{d}^{\mathrm{T}} \mathbf{x}_{T, i}\right) \right],$$

$$(8b)$$

where $\lambda > 0$ is an arbitrary parameter, Eq. (8a) follows Lemma 2.1 for 1-Lipschitz Φ a long with Inequality (20), and (8b) holds by Inequality (17).

For layer $1 \le l \le d$ and time step t, let us denote:

$$\Delta_{\mathbf{h}_{t-1}, \mathbf{x}_{t}}^{(l)} = \sup_{\boldsymbol{\mathcal{W}}, \boldsymbol{\mathcal{U}}} \exp\left(\lambda \Lambda_{l} \sum_{i=1}^{m} \epsilon_{i} \left(\mathbf{w}_{l}^{\mathrm{T}} f_{\boldsymbol{\mathcal{W}}, \boldsymbol{\mathcal{U}}}^{(l-1)} (\mathbf{h}_{t-1, i}, \mathbf{x}_{t, i})\right)\right), \tag{9}$$

$$\Delta_{\mathbf{x}_{t}}^{(l)} = \sup_{\|\mathbf{u}_{t}\|_{1} \le \beta_{l}} \exp\left(\lambda \Lambda_{l} \sum_{i=1}^{m} \epsilon_{i} \left(\mathbf{u}_{l}^{\mathrm{T}} \mathbf{x}_{t,i}\right)\right), \tag{10}$$

where Λ_l is defined as follows: $\Lambda_d=1,$ $\Lambda_l=\prod_{k=l+1}^d\alpha_k$ with $1\leq l\leq d-1,$ and $\Lambda_0=\prod_{k=1}^d\alpha_k.$

Following the Hölder's inequality in (5) in case of p=1 and $q=\infty$ applied to $\mathbf{w}_l^{\mathrm{T}}$ and $f_{\mathcal{W},\mathcal{U}}^{(l-1)}(\mathbf{h}_{t-1,i},\mathbf{x}_{t,i})$ in (9), respectively, we get:

$$\Delta_{\mathbf{h}_{t-1},\mathbf{x}_{t}}^{(d)} \leq \sup_{\substack{\mathbf{W},\mathbf{U} \\ \|\mathbf{W}_{d-1}\|_{1,\infty} \leq \alpha_{d-1} \\ \|\mathbf{U}_{d-1}\|_{1,\infty} \leq \beta_{d-1}}} \exp\left(\lambda \alpha_{d} \left\| \sum_{i=1}^{m} \epsilon_{i} \Phi\left(\mathbf{W}_{d-1} f_{\mathbf{W},\mathbf{U}}^{(d-2)}(\mathbf{h}_{t-1,i},\mathbf{x}_{t,i}) + \mathbf{U}_{d-1}\mathbf{x}_{t,i}\right) \right\|_{\infty} \right) \\
\leq \sup_{\substack{\mathbf{W},\mathbf{U} \\ \|\mathbf{w}_{d-1,k}\|_{1} \leq \alpha_{d-1} \\ \|\mathbf{u}_{d-1,k}\|_{1} \leq \beta_{d-1}}} \exp\left(\lambda \alpha_{d} \max_{k \in \{1,\cdots,h\}} \left| \sum_{i=1}^{m} \epsilon_{i} \Phi\left(\mathbf{w}_{d-1,k}^{T} f_{\mathbf{W},\mathbf{U}}^{(d-2)}(\mathbf{h}_{t-1,i},\mathbf{x}_{t,i}) + \mathbf{u}_{d-1,k}^{T} \mathbf{x}_{t,i}\right) \right| \right) \\
\leq \sup_{\substack{\mathbf{W},\mathbf{U} \\ \|\mathbf{w}_{d-1,k}\|_{1} \leq \alpha_{d-1} \\ \|\mathbf{u}_{d-1,k}\|_{1} \leq \beta_{d-1}}} \exp\left(\lambda \alpha_{d} \left| \sum_{i=1}^{m} \epsilon_{i} \Phi\left(\mathbf{w}_{d-1,k}^{T} f_{\mathbf{W},\mathbf{U}}^{(d-2)}(\mathbf{h}_{t-1,i},\mathbf{x}_{t,i}) + \mathbf{u}_{d-1,k}^{T} \mathbf{x}_{t,i}\right) \right| \right). \tag{11}$$

Similarly, from (10), we obtain:

$$\Delta_{\mathbf{x}_{t}}^{(d)} \leq \sup_{\|\mathbf{u}_{d}\|_{1} \leq \beta_{d}} \exp\left(\lambda \sum_{i=1}^{m} \epsilon_{i} \mathbf{u}_{d}^{\mathrm{T}} \mathbf{x}_{t,i}\right) \leq \exp\left(\lambda \beta_{d} \left\|\sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{t,i}\right\|_{\infty}\right) \leq \exp\left(\lambda \beta_{d} \left\|\sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa}\right\|\right), \tag{12}$$
where $\{\tau, \kappa\} = \underset{t \in \{1, \dots, T\}, j \in \{1, \dots, n\}}{\operatorname{argmax}} \left|\sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{t,i,j}\right|.$

From (8b), (11), and (12), we get:

$$m\mathfrak{R}_S(\mathfrak{F}_{d,T})$$

$$\leq \frac{1}{\lambda} \log \left(\underset{\boldsymbol{\epsilon} \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\underset{\|\mathbf{u}_{d-1,k}\|_{1} \leq \alpha_{d-1}}{\sup} \exp \left(\lambda \alpha_{d} \middle| \sum_{i=1}^{m} \epsilon_{i} \Phi \left(\mathbf{w}_{d-1,k}^{T} f_{\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{U}}}^{(d-2)} (\mathbf{h}_{T-1,i}, \mathbf{x}_{T,i}) + \mathbf{u}_{d-1,k}^{T} \mathbf{x}_{T,i}) \middle| + \lambda \beta_{d} \middle| \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \middle| \right) \right] \right) \\
\leq \frac{1}{\lambda} \log \left(\underset{\|\mathbf{u}_{d-1,k}\|_{1} \leq \alpha_{d-1}}{\mathbb{E}} \sup_{\|\mathbf{u}_{d-1,k}\|_{1} \leq \alpha_{d-1}} \left(\exp \left(\lambda \alpha_{d} \sum_{i=1}^{m} \epsilon_{i} \Phi \left(\mathbf{w}_{d-1,k}^{T} f_{\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{U}}}^{(d-2)} (\mathbf{h}_{T-1,i}, \mathbf{x}_{T,i}) + \mathbf{u}_{d-1,k}^{T} \mathbf{x}_{T,i} \right) + \lambda \beta_{d} \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \right) \\
+ \exp \left(\lambda \alpha_{d} \sum_{i=1}^{m} \epsilon_{i} \Phi \left(\mathbf{w}_{d-1,k}^{T} f_{\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{U}}}^{(d-2)} (\mathbf{h}_{T-1,i}, \mathbf{x}_{T,i}) + \mathbf{u}_{d-1,k}^{T} \mathbf{x}_{T,i} \right) - \lambda \beta_{d} \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \\
+ \exp \left(- \lambda \alpha_{d} \sum_{i=1}^{m} \epsilon_{i} \Phi \left(\mathbf{w}_{d-1,k}^{T} f_{\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{U}}}^{(d-2)} (\mathbf{h}_{T-1,i}, \mathbf{x}_{T,i}) + \mathbf{u}_{d-1,k}^{T} \mathbf{x}_{T,i} \right) + \lambda \beta_{d} \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \\
+ \exp \left(- \lambda \alpha_{d} \sum_{i=1}^{m} \epsilon_{i} \Phi \left(\mathbf{w}_{d-1,k}^{T} f_{\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{U}}}^{(d-2)} (\mathbf{h}_{T-1,i}, \mathbf{x}_{T,i}) + \mathbf{u}_{d-1,k}^{T} \mathbf{x}_{T,i} \right) - \lambda \beta_{d} \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \right) \right] \right)$$

$$\leq \frac{1}{\lambda} \log \left(4 \underset{\boldsymbol{\epsilon} \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\Delta_{\mathbf{h}_{T-1}, \mathbf{x}_{T}}^{(d-1)} \Delta_{\mathbf{x}_{T}}^{(d-1)} \exp \left(\beta_{d} \lambda \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau, i, \kappa} \right) \right] \right) \tag{13a}$$

$$\leq \frac{1}{\lambda} \log \left(4^{d-1} \underset{\boldsymbol{\epsilon} \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\Delta_{\mathbf{h}_{T-1}, \mathbf{x}_{T}}^{(1)} \Delta_{\mathbf{x}_{T}}^{(1)} \exp \left(\lambda \left(\sum_{l=2}^{d} \beta_{l} \Lambda_{l} \right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau, i, \kappa} \right) \right] \right) \tag{13b}$$

$$\leq \frac{1}{\lambda} \log \left(4^{d-1} \underset{\boldsymbol{\epsilon} \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(\lambda \left(\sum_{l=2}^{d} \beta_{l} \Lambda_{l} \right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau, i, \kappa} \right) \sup_{\|\mathbf{w}_{1}\|_{1} \leq \alpha_{1}} \exp \left(\lambda \Lambda_{1} \sum_{i=1}^{m} \epsilon_{i} \left(\mathbf{w}_{1}^{T} \mathbf{h}_{T-1, i} \right) \right) \right) \tag{13c}$$

$$\cdot \sup_{\|\mathbf{u}_{1}\|_{1} \leq \beta_{1}} \exp \left(\lambda \Lambda_{1} \sum_{i=1}^{m} \epsilon_{i} \left(\mathbf{u}_{1}^{T} \mathbf{x}_{T, i} \right) \right) \right] \tag{13c}$$

$$\sup_{\|\mathbf{u}_{1}\|_{1} \leq \beta_{1}} \exp\left(\lambda \Lambda_{1} \sum_{i=1}^{m} \epsilon_{i} \left(\mathbf{u}_{1}^{T} \mathbf{x}_{T,i}\right)\right)\right)$$

$$\leq \frac{1}{\lambda} \log\left(4^{d-1} \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp\left(\lambda \left(\sum_{l=2}^{d} \beta_{l} \Lambda_{l}\right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa}\right) \underset{\|\mathbf{w}_{d}\|_{1} \leq \alpha_{d}}{\sup} \exp\left(\lambda \Lambda_{0} \left\|\sum_{i=1}^{m} \epsilon_{i} \mathbf{h}_{T-1,i}\right\|_{\infty}\right)$$

$$\|\mathbf{w}_{d}\|_{1} \leq \alpha_{d}$$

$$(13c)$$

$$\cdot \exp\left(\lambda \beta_{1} \Lambda_{1} \left\| \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{T,i} \right\|_{\infty} \right) \right) \right]$$

$$\leq \frac{1}{\lambda} \log \left(4^{d} \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp\left(\lambda \left(\sum_{l=1}^{d} \beta_{l} \Lambda_{l} \right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \right]$$

$$\cdot \sup_{\boldsymbol{\mathcal{W}}} \exp\left(\lambda \Lambda_{0} \sum_{l=1}^{m} \epsilon_{i} \Phi\left(\mathbf{w}_{d}^{\mathrm{T}} f_{\boldsymbol{\mathcal{W}},\boldsymbol{\mathcal{U}}}^{(d-1)}(\mathbf{h}_{T-2,i}, \mathbf{x}_{T-1,i}) + \mathbf{u}_{d}^{\mathrm{T}} \mathbf{x}_{T-1,i} \right) \right) \right] , \tag{13e}$$

 $\sup_{\substack{\boldsymbol{\mathcal{W}}, \boldsymbol{\mathcal{U}} \\ \|\mathbf{w}_d\|_1 \leq \alpha_d}} \exp \left(\lambda \Lambda_0 \sum_{i=1}^m \epsilon_i \varPhi \left(\mathbf{w}_d^{\mathrm{T}} f_{\boldsymbol{\mathcal{W}}, \boldsymbol{\mathcal{U}}}^{(d-1)}(\mathbf{h}_{T-2, i}, \mathbf{x}_{T-1, i}) + \mathbf{u}_d^{\mathrm{T}} \mathbf{x}_{T-1, i}) \right) \right) \right) ,$

where (13a) holds by Inequality (17) and (13b) follows by repeating the process from layer d-1 to layer 1 for time step T. Furthermore, (13c) is returned as the beginning of the process for time step T-1 and (13d) follows Inequality (5).

Proceeding by repeating the above procedure in (13e) from time step T-1 to time step 1, we get:

$$m\mathfrak{R}_{S}(\mathcal{F}_{d,T}) \leq \frac{1}{\lambda} \log \left(4^{dT} \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(\lambda \left(\sum_{l=1}^{d} \beta_{l} \Lambda_{l} \right) \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1} \right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \exp \left(\lambda \Lambda_{0}^{T} \left\| \sum_{i=1}^{m} \epsilon_{i} \mathbf{h}_{0} \right\|_{\infty} \right) \right). \tag{14}$$

Let us denote $\mu = \underset{i \in \{1, h\}}{\operatorname{argmax}} \left| \sum_{i=1}^{m} \epsilon_i h_{0,j} \right|$, from (14), we have:

$$m\mathfrak{R}_{S}(\mathcal{F}_{d,T}) \leq \frac{1}{\lambda} \log \left(4^{dT} \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(\lambda \left(\sum_{l=1}^{d} \beta_{l} \Lambda_{l} \right) \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1} \right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \exp \left(\lambda \Lambda_{0}^{T} \sum_{i=1}^{m} \epsilon_{i} \mathbf{h}_{0,\mu} \right) \right] \right)$$

$$\leq \frac{2dT \log 2}{\lambda} + \frac{1}{2\lambda} \log \left(\underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(\lambda \left(\sum_{l=1}^{d} \beta_{l} \Lambda_{l} \right) \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1} \right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \exp \left(\lambda \Lambda_{0}^{T} \sum_{i=1}^{m} \epsilon_{i} \mathbf{h}_{0,\mu} \right) \right] \right)^{2}$$

$$\leq \frac{2dT \log 2}{\lambda} + \frac{1}{2\lambda} \log \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(2\lambda \left(\sum_{l=1}^{d} \beta_{l} \Lambda_{l} \right) \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1} \right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,\kappa} \right) \right] + \frac{1}{2\lambda} \log \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(2\lambda \Lambda_{0}^{T} \sum_{i=1}^{m} \epsilon_{i} \mathbf{h}_{0,\mu} \right) \right]$$

$$\leq \frac{2dT \log 2}{\lambda} + \frac{1}{2\lambda} \log \underset{j=1}{\sum} \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(2\lambda \left(\sum_{l=1}^{d} \beta_{l} \Lambda_{l} \right) \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1} \right) \sum_{i=1}^{m} \epsilon_{i} \mathbf{x}_{\tau,i,j} \right) \right]$$

$$+ \frac{1}{2\lambda} \log \underset{j=1}{\sum} \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(2\lambda \Lambda_{0}^{T} \sum_{i=1}^{m} \epsilon_{i} \mathbf{h}_{0,j} \right) \right]$$

$$\leq \frac{2dT \log 2}{\lambda} + \frac{1}{2\lambda} \log \underset{j=1}{\sum} \underset{\epsilon \in \{\pm 1\}^{m}}{\mathbb{E}} \left[\exp \left(2\lambda \left(\sum_{l=1}^{d} \beta_{l} \Lambda_{l} \right) \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1} \right) \epsilon_{i} \mathbf{x}_{\tau,i,j} \right) \right]$$

$$(15b)$$

$$+ \frac{1}{2\lambda} \log \sum_{j=1}^{h} \prod_{i=1}^{m} \epsilon_{\epsilon} \in \{\pm 1\}^{m} \left[\exp\left(2\lambda A_{0}^{T} \epsilon_{i} \mathbf{h}_{0,j}\right) \right] \\
\leq \frac{2dT \log 2}{\lambda} + \frac{1}{2\lambda} \log \sum_{j=1}^{n} \prod_{i=1}^{m} \left[\frac{1}{2} \exp\left(2\lambda \left(\sum_{l=1}^{d} \beta_{l} A_{l}\right) \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1}\right) \mathbf{x}_{\tau, i, j}\right) + \frac{1}{2} \exp\left(-2\lambda \left(\sum_{l=1}^{d} \beta_{l} A_{l}\right) \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1}\right) \mathbf{x}_{\tau, i, j}\right) \right] \\
+ \frac{1}{2\lambda} \log \sum_{j=1}^{h} \prod_{i=1}^{m} \left[\frac{1}{2} \exp\left(2\lambda A_{0}^{T} \mathbf{h}_{0,j}\right) + \frac{1}{2} \exp\left(-2\lambda A_{0}^{T} \mathbf{h}_{0,j}\right) \right] \\
\leq \frac{2dT \log 2}{\lambda} + \frac{1}{2\lambda} \log \sum_{j=1}^{n} \left[\exp\left(2\lambda^{2} \left(\sum_{l=1}^{d} \beta_{l} A_{l}\right)^{2} \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1}\right)^{2} \sum_{i=1}^{m} x_{\tau, i, j}^{2}\right) \right] + \frac{1}{2\lambda} \log \sum_{j=1}^{h} \left[\exp\left(2\lambda^{2} A_{0}^{2T} \sum_{i=1}^{m} h_{0, j}^{2}\right) \right] \\
\leq \frac{2dT \log 2}{\lambda} + \frac{\log n}{2\lambda} + \lambda \left(\sum_{l=1}^{d} \beta_{l} A_{l}\right)^{2} \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1}\right)^{2} m B_{\mathbf{x}}^{2} + \frac{\log h}{2\lambda} + \lambda A_{0}^{2T} m \|\mathbf{h}_{0}\|_{\infty}^{2} \\
\leq \frac{2dT \log 2 + \log \sqrt{n} + \log \sqrt{h}}{\lambda} + \lambda \left(\sum_{l=1}^{d} \beta_{l} A_{l}\right)^{2} \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1}\right)^{2} m B_{\mathbf{x}}^{2} + A_{0}^{2T} m \|\mathbf{h}_{0}\|_{\infty}^{2} \right), \tag{15d}$$

where (15a) follows Inequality (19), (15b) holds by replacing with $\sum_{j=1}^n$ and $\sum_{j=1}^h$, respectively. In addition, (15c) follows (18) and (15d) is received by the following definition: At time step t, we define $\mathbf{X}_t \in \mathbb{R}^{n \times m}$, a matrix composed of m columns from the m input vectors $\{\mathbf{x}_{t,i}\}_{i=1}^m$; we also define $\|\mathbf{X}_t\|_{2,\infty} = \sqrt{\max_{k \in \{1,\dots,n\}} \sum_{i=1}^m \mathbf{x}_{t,i,k}^2} \leq \sqrt{m}B_{\mathbf{x}}$, representing the maximum of the ℓ_2 -norms of the rows of matrix \mathbf{X}_t , and $\|\mathbf{h}_0\|_{\infty} = \max_j |\mathbf{h}_{0,j}|$.

Choosing
$$\lambda = \sqrt{\frac{2dT \log 2 + \log \sqrt{n} + \log \sqrt{h}}{\left(\sum\limits_{l=1}^d \beta_l \Lambda_l\right)^2 \left(\frac{\Lambda_0^T - 1}{\Lambda_0 - 1}\right)^2 m B_{\mathbf{x}}^2 + \Lambda_0^{2T} m \|\mathbf{h}_0\|_{\infty}^2}}$$
, we achieve the upper bound:

$$\Re_{S}(\mathcal{F}_{d,T}) \leq \sqrt{\frac{2(4dT\log 2 + \log n + \log h)}{m} \left(\left(\sum_{l=1}^{d} \beta_{l} \Lambda_{l}\right)^{2} \left(\frac{\Lambda_{0}^{T} - 1}{\Lambda_{0} - 1}\right)^{2} B_{\mathbf{x}}^{2} + \Lambda_{0}^{2T} \|\mathbf{h}_{0}\|_{\infty}^{2} \right)}.$$
(16)

It can be noted that $\mathfrak{R}_S(\mathfrak{F}_{d,T})$ in (16) is derived for the real-valued functions $\mathfrak{F}_{d,T}$. For the vector-valued functions $\mathfrak{F}_{d,T}:\mathbb{R}^h\times\mathbb{R}^n\mapsto\mathbb{R}^h$ [in Theorem 3.3]we apply the contraction lemma [Lemma 2.1] to a Lipschitz loss to obtain the complexity of such vector-valued functions by means of the complexity of the real-valued functions. Specifically, in Theorem 3.3 under the assumption of the 1-Lipschitz loss function and from Theorem 3.2, Lemma 2.1, we complete the proof.

Supporting inequalities:

(i) If A, B are sets of positive real numbers, then:

$$\sup(AB) = \sup(A) \cdot \sup(B). \tag{17}$$

(ii) Given $x \in \mathbb{R}$, we have:

$$\frac{\exp(x) + \exp(-x)}{2} \le \exp(x^2/2). \tag{18}$$

(iii) Let X and Y be random variables, the Cauchy–Bunyakovsky–Schwarz inequality gives:

$$(\mathbb{E}[XY])^2 \le \mathbb{E}[X^2] \cdot \mathbb{E}[Y^2]. \tag{19}$$

(iv) If ψ is a convex function, the Jensen's inequality gives:

$$\psi(\mathbb{E}[X]) < \mathbb{E}[\psi(X)]. \tag{20}$$

4 EXTENSION OF GENERALIZATION ERROR BOUND FOR CLASSIFICATION

Proof. Let $\mathbf{y} = \mathbf{Y}\mathbf{h}_t^{(d)} \equiv y(\mathbf{h}_t^{(d)})$ be a linear classifier with $\mathbf{Y} \in \mathbb{R}^{c \times h}$. Let \mathbf{Y}_i denote the i^{th} row of \mathbf{Y} . Below, we show that each entry $y_i(\mathbf{h}_t^{(d)})$ is ρ -Lipschitz on its input with $\rho = \min(\max_i \|\mathbf{Y}_i\|_2, \max_i \|\mathbf{Y}_i\|_1)$:

$$\forall \mathbf{h}, \mathbf{h}' \in \mathbb{R}^h, \forall i \in \{1, ..., c\}: \quad |y_i - y_i'| = \left| \mathbf{Y}_i^T \mathbf{h} - \mathbf{Y}_i^T \mathbf{h}' \right| = \left| \mathbf{Y}_i^T (\mathbf{h} - \mathbf{h}') \right|$$
(21)

$$\leq \|\mathbf{Y}_i\|_2 \|\mathbf{h} - \mathbf{h}'\|_2 \tag{22}$$

$$\leq \max_{j \in \{1,\dots,c\}} \|\mathbf{Y}_j\|_2 \|\mathbf{h} - \mathbf{h}'\|_2 \tag{23}$$

In the development above, line 22 was obtained by applying the triangular inequality. Moreover, in line 23, we have identified a unique Lipschitz constant that is valid for all *i*. Alternatively, we can also write that:

$$\forall \mathbf{h}, \mathbf{h}' \in \mathbb{R}^h, \forall i \in \{1, ..., c\} : \quad |y_i - y_i'| \le \|\mathbf{Y}_i\|_1 \|\mathbf{h} - \mathbf{h}'\|_{\infty}$$

$$(24)$$

$$\leq \max_{j \in \{1,\dots,c\}} \|\mathbf{Y}_j\|_1 \|\mathbf{h} - \mathbf{h}'\|_{\infty}$$
(25)

$$\leq \max_{j \in \{1, \dots, c\}} \left\| \mathbf{Y}_j \right\|_1 \left\| \mathbf{h} - \mathbf{h}' \right\|_2 \tag{26}$$

In the development above, line 25 was obtained using Hölder's inequality [see Proposition 2.2] and line 26 was obtained considering that the ℓ_2 norm is an upper bound of the ℓ_∞ norm. Setting $\rho = \min\{\max_i \|\mathbf{Y}_i\|_2, \max_i \|\mathbf{Y}_i\|_1\}$ completes the proof and shows that ρ is a Lipschitz constant for each entry $y_i(\mathbf{h}_t^{(d)})$. To obtain the generalization upper bound proposed in section 4.3 using the ramp loss evaluated on the classification margin $\ell_\gamma(\mathbf{y})$ (which is $\frac{1}{\gamma}$ -Lipschitz), it suffies to apply the contraction lemma twice [see Proposition 2.1], first for the composition with multivariate linear classifier function and secondly with the ℓ_γ loss function, leading to:

$$L_{\mathcal{D},\gamma}(f) - L_{S,\gamma}(f) \le \frac{2\rho}{\gamma} \Re_S(\mathcal{F}_{d,T}) + 4\sqrt{\frac{2\log(4/\delta)}{m}}$$
(27)

References

Huynh Van Luong, Boris Joukovsky, and Nikos Deligiannis. Designing interpretable recurrent neural networks for video reconstruction via deep unfolding. *IEEE Transactions on Image Processing*, 30:4099–4113, 2021.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning, Second edition*. MIT Press, Cambridge, Massachusetts, USA, 2018. ISBN 9780262039406.

Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning: From Theory to Algorithms*. Cambridge University Press, New York, NY, USA, 2014.