Atividade Laboratorial 2.1

Preparação de Soluções e Diluições

Alexandre Reis

 $N^{o}2$

Henrique Dias

Nº12

João Pratas

 $N^{o}14$

No âmbito de

Física e Química A

Realizado a

21 de janeiro de 2015

Agrupamento Vertical de Ourique Escola Básica e Secundária de Ourique

Índice

1 Objetivos				4	
2	Intr	roduçã	no No	5	
	2.1	Conce	eitos Teóricos	5	
		2.1.1	Solução	5	
		2.1.2	Diluição	6	
		2.1.3	Concentração Mássica	6	
		2.1.4	Concentração Molar	6	
		2.1.5	Fator de Diluição	6	
		2.1.6	Massa Molar	6	
		2.1.7	Sais	6	
3	Ma	terial l	${ m Utilizado}$	7	
4	Rea	agentes	5	8	
5	Pro	cedim	ento Experimental	9	
	5.1	Prepa	ração da Solução 1	9	
	5.2	Prepa	ıração da Solução 2	10	
	5.3	Fator	de Diluição entre Soluções	12	
	5.4	Prepa	ração de uma Solução Saturada	12	
	5.5	Resolu	ução do Problema 6	14	
6	Obs	servaçõ	Des	16	
6	6.1	Prepa	ração da Solução 1	16	
	6.2	Prepa	ração da Solução 2	16	
	6.3	Fator	de Diluição entre Soluções	16	
	6.4	Prepa	ração de uma Solução Saturada	16	
7	Tra	tamen	to e Análise de Dados	18	
	7.1	Prepa	ração da Solução 1	18	
		7.1.1	Cálculo da Concentração Mássica	18	
		7.1.2	Número de Moles e Concentração Molar	18	

8	Con	ıclusão		21
		7.3.2	Cálculo do Fator de Diluição	20
		7.3.1	Cálculo da Concentração Molar	20
	7.3	Fator	de Diluição entre Soluções	19
		7.2.1	Cálculo da Massa Necessária	19
	7.2	Prepar	ação da Solução 2	19

Objetivos

Um dos objetivos desta atividade experimental foi descobrir como preparar soluções com **diversos aspetos pré-definidos**, como com uma determinada concentração molar, com um determinado fator de diluição e com uma determinada quantidade de massa.

Figura 1.1: Durante a realização da Atividade Experimental

Outro dos objetivos desta atividade experimental foi **observar o que acontece com uma solução saturada** de Sulfato de Cobre III Penta-Hidratado aquecida quando esta arrefece.

O último objetivo da atividade prático-laboratorial foi melhorar as nossas capacidades de escrever procedimentos.

Introdução

Nesta Atividade Prático-Laboratorial criámos diversas soluções e diluições através das mesmas, além de efetuarmos diversos cálculos de forma a saber algumas das suas características. Características (referentes às soluções) como Concentração Mássica, Concentração Molar e Fator de Diluição e, em relação às substâncias, Massa Molar.

As soluções preparadas foram à base de água destilada e um sal denominado Sulfato de Cobre III Penta-Hidratado. Mais abaixo encontram-se as clarificações de diversos conceitos.

2.1 Conceitos Teóricos

2.1.1 Solução

Uma **solução** consiste numa mistura homogénea de duas ou mais substâncias. As soluções têm dois componentes: o **solvente** e os **solutos**.

Figura 2.1: Uma Solução de Água Destilada e ${\rm CuSO_4.5H_2O}$

O primeiro consiste na substância que se encontra em maior quantidade química na solução ou a substância que se encontra no mesmo estado físico que a solução se, e só se, for a única no mesmo estado físico que a solução. Às restantes substâncias chamamos solutos.

2.1.2 Diluição

Diluição consiste no processo de tornar uma solução mais diluída, ou seja, com um maior teor de solvente líquido que, no nosso caso, é água destilada.

2.1.3 Concentração Mássica

Concentração Mássica de uma solução consiste na massa de soluto existente por um determinado volume da solução. É dado pela seguinte fórmula:

$$C_m = \frac{m_{dosoluto}}{V_{dasoluo}}$$

2.1.4 Concentração Molar

Concentração Molar consiste na quantidade de substância existente por um determinado volume da solução. Pode ser obtido através de uma das seguintes fórmulas:

$$C = \frac{n_{dosoluto}}{V_{dasoluo}} \quad \text{ ou } \quad C = \frac{C_m}{M}$$

2.1.5 Fator de Diluição

O **Fator de Diluição** indica-nos o número de vezes a diluir um determinado volume da solução concentrada para obter a solução diluída. Pode ser obtido de uma das seguintes formas:

$$f = \frac{c_{inicial}}{c_{final}}$$
 ou $f = \frac{V_{final}}{V_{inicial}}$

2.1.6 Massa Molar

A Massa Molar expressa a massa (em gramas) por cada unidade de quantidade química (moles) e é igual à Massa Atómica (ou Molecular) Relativa.

2.1.7 Sais

Sais são compostos químicos iónicos - compostos por iões - constituídos por um catião, o ião positivo, e por um anião, o ião negativo. Estes compostos são formados através de reações químicas que neutralizam a carga da molécula.

Nos sais existe uma ligação magnética entre os catiões e os aniões que os alinha em estruturas cristalinas.

Alguns sais, denominados sais reagentes, reagem com soluções aquosas dando origem a uma separação magnética dos iões, criando soluções excelentemente condutoras elétricas, o que transforma os sais em elétrodos.

Material Utilizado

Os materiais utilizados na realização desta atividade laboratorial foram os seguintes:

- 3 Gobelés
- 1 Espátulas
- 1 Vareta de Vidro
- 1 Garrafa de Esguicho
- 3 Balões Volumétricos (2 de 50 ml e 1 de 100 ml)
- 1 Pipeta
- 1 Pompete
- 1 Balança
- 1 Placa de Aquecimento
- 1 Funil de Vidro
- Água Destilada
- Caneta de Tinta Preta Permanente

Figura 3.1: Alguns dos materiais utilizados

Reagentes

Reagentes são substâncias consumidas no decurso de reações químicas, utilizados durante a realização da Atividade Experimental em questão.

O único reagente utilizado durante a atividade química foi o Sulfato de Cobre III Penta-Hidratado (CuSO $_4.5\mathrm{H}_2\mathrm{O}$).

Figura 4.1: Sulfato de Cobre III Penta-Hidratado

Procedimento Experimental

O Procedimento Experimental da atividade laboratorial realizada divide-se em diversas partes. Partes estas que estão interligadas entre si de forma lógica e sequencial.

5.1 Preparação da Solução 1

Nesta primeira secção está descrito o procedimento experimental do problema identificado por **Problema 1** no procedimento entregue pela docente.

Primeiro Passo Primeiramente foram pesados $3.13~\rm g$ (três treze gramas) de $\rm CuSO_4.5H_2O$ num gobelé utilizando uma balança de precisão.

Primeiro colocámos o gobelé vazio em cima da bal
nça de precisão e então colocámo-la a marcar $0.000~\rm g$ (zero gramas) de forma a pesar a substância. De seguida colocámos CuSO₄.5H₂O até a balança marcar $3.137~\rm g$ (três cento e trinta e sete gramas).

Figura 5.1: Pesar o Sulfato de Cobre III Penta-Hidratado

Segundo Passo Em segundo lugar necessitámos de diluir a massa de reagente pesado. Para o efetuarmos, adicionámos água destilada, utilizando um esguicho de água, e agitámos com uma vareta de vidro.

Terceiro Passo Terceiramente, transferimos a solução preparada no passo dois para um balão volumétrico de 100 ml recorrendo a um funil de vidro.

Quarto Passo De seguida, utilizando o esguicho de água destilada e uma pipeta, perfizemos o volume do balão volumétrico até ao traço de referência.

Figura 5.2: Perfazer o volume do balão com uma pipeta

Quinto Passo Para concluirmos a primeira parte do nosso problema, rolhámos o balão e agitámos a solução de forma a homogeneizá-la.

Também rotulámos a solução com "Solução 1" utilizando uma caneta preta de tinta permanente, cuja tinta apenas é removida com etanol.

De seguida, calculámos¹ a concentração mássica da solução tal como pedido no primeiro problema, bem como o número de moles e concentração molar referentes a esta solução pedidos no **Problema 2**.

5.2 Preparação da Solução 2

De seguida, executámos o **Problema 3**, que consistia na preparação de uma solução de concentração $0.250\,\mathrm{mol/dm^3}$ de Sulfato de Cobre III Penta-Hidratado num volume de $100\,\mathrm{mL}$.

 $^{^1\}mathrm{Todos}$ os cálculos podem ser encontrados no capítulo "Tratamento e Análise de Dados".

Primeiro Passo Através de cálculos (encontrados no capítulo sete), descobrimos a massa de soluto necessária a utilizar como reagente ($m \approx 6.2\,\mathrm{g}$.

Segundo Passo Pesámos assim a massa calculada recorrendo a uma balança de precisão e um gobelé.

Terceiro Passo Dentro do gobelé colocámos uma pequena quantidade de água destilada não ionizada utilizando um esguicho de água e agitámos a solução com uma vareta de vidro de forma a diluí-la.

Figura 5.3: Agitar a solução

 ${\bf Quarto\ Passo}\quad {\rm Recorrendo\ a\ um\ funil\ de\ vidro,\ transferimos\ a\ solução\ para\ um\ balão\ volumétrico\ de\ 100\ mL.}$

Quinto Passo Perfizemos o balão volumétrico até ao traço de referência utilizando uma pipeta de *Pasteur* e um esguicho de água.

Sexto Passo Rolhou-se a solução e agitou-se de forma a homogeneizar a solução. Rotulámos a solução com **Solução 2**.

5.3 Fator de Diluição entre Soluções

Depois avançámos para o **Problema 4** denominado "Concentração molar e fator de diluição" e consistiu na criação de uma nova solução, diluição da primeira solução.

Primeiro Passo Retirámos 25 mL da solução preparada no **Problema 1** com uma pipeta volumétrica e um pompete como ilustra a imagem.

Figura 5.4: Remoção de 25 mL da Solução 1

Segundo Passo De seguida transferimos esses $25~\mathrm{mL}$ de solução para um balão volumétrico de $50~\mathrm{mL}$.

Terceiro Passo Perfizemos então o volume até ao traço de referência da forma já descrita nos problemas anteriores. Rolhámos a solução e agitámos até homogeneizar.

Quarto Passo Finalmente efetuamos os cálculos pedidos. Cálculos estes cujos resultados podem ser visualizados no capítulo sete.

5.4 Preparação de uma Solução Saturada

No problema seguinte, o **Problema 5**, foi-nos pedido para preparar uma solução saturada de ${\rm CuSO_4.5H_2O}$. Para isso efetuámos os seguintes passos.

Primeiro Passo Em primeiro lugar, recolhemos um pouco da **Solução 1** (a solução mais concentrada que preparámos) para um gobelé, utilizando um pompete e uma pipeta volumétrica de 25 mL.

Figura 5.5: Realização do Primeiro Passo

 ${\bf Segundo\ Passo} \quad {\rm De\ seguida,\ adicion\'amos\ um\ pouco\ mais\ de\ CuSO_4.5H_2O\ e\ agit\'amos\ de\ forma a facilitar a dissolução.\ Repetimos\ este\ passo\ at\'e\ a\ solução\ ficar\ saturada.}$

Terceiro Passo Em terceiro lugar recorremos a uma placa de aquecimento de forma a aquecer ligeiramente a solução preparada.

Figura 5.6: Aquecimento da solução

Quarto Passo Finalmente, depois do aquecimento da solução, adicionámos um pouco mais de reagente e colocámos a solução a arrefecer.

Esperámos, então, pelo dia seguinte de forma a registarmos 2 o que acontece depois do arrefecimento da solução.

5.5 Resolução do Problema 6

No último problema, o **Problema 6**, foi-nos pedido para preparamos um procedimento de como preparar uma solução de Ácido Clorídrico com *concentração* 0,1 mol/dm³ e *volume* de 1 dm³. Abaixo encontra-se o procedimento a tomar e os respetivos cálculos³.

Primeiro Passo Em primeiro lugar, dever-se-ia observar o rótulo do produto Ácido Clorídrico de forma a observar algumas das suas informações. Informações estas como:

```
• Fórmula Química: HCl;
```

- Massa Molar: 36.46 g/mol;
- **Densidade:** 1.49 g/cm³;
- Grau de pureza: 37% (também denominado "%(m/m)");
- Símbolos de Segurança: corrosivo;
- Outros: solúvel em água.

Segundo Passo Em primeiro lugar devem-se calçar umas luvas, vestir bata, máscara e óculos de proteção devido à corrosividade do ácido.

Sabendo os dados do Ácido Clorídrico em mãos e as características necessárias da solução final, devemos começar por calcular o número de moles de soluto (ácido clorídrico) necessários.

```
c=0.1\,\mathrm{mol/dm^3} V=1\,\mathrm{dm^3} c=n/V Então: 0.1=n/1\Leftrightarrow n=0.1*1\Leftrightarrow n=0.1\,\mathrm{mol}
```

Terceiro Passo Tendo o número de moles necessários de Ácido Clorídrico, devemos relacionar esta informação com a massa de HCl necessária da seguinte forma:

```
n=m/M M=36.46\,\mathrm{g/mol} 0.1=m/36.46 \Leftrightarrow m=36.46*0.1 \Leftrightarrow m=3.646\,\mathrm{g}
```

Quarto Passo Sabendo a massa de HCl necessária e a relação entre a sua massa e a massa total da solução, podemos calcular a massa total necessária.

$$\%(m/m) = (m_{\rm HCl}/m_{total}) * 100$$
$$37 = (3.646/m_{total}) * 100 \Leftrightarrow 0.37 = 3.646/m_{total} \Leftrightarrow m_{total} \approx 9.9 \,\mathrm{g}$$

 $^{^2{\}rm Todos}$ os registos podem ser encontrados no capítulo "Observações".

 $^{^3}$ Neste problema os cálculos não são colocados num capítulo à parte, pois apenas se relacionam com a proposta de resolução deste problema e não com alguma outra atividade.

Quinto Passo Tendo em conta que estamos a trabalhar com um líquido, é preferível saber a quantidade de volume a remover a não a massa. Para o sabermos, podemos recorrer à densidade e à sua fórmula, assim:

```
\begin{split} p &= m/V \\ p &= 1.49\,\mathrm{g/cm^3} \\ 1.49 &= 9.9/V \Leftrightarrow V = 9.9/1.49 \Leftrightarrow V \approx 6.6\,\mathrm{cm^3} \\ 6.6\,\mathrm{cm^3} &= 6.6\,\mathrm{mL} \end{split}
```

O que quer dizer que necessitamos de 6.6 mililitros da solução inicial de HCl na solução final com concentração $0.1~{\rm mol/dm^3}$.

Sexto Passo Recorrendo então a uma proveta volumétrica e a um conta-gotas medem-se os 6.6 mililitros de HCl.

Sétimo Passo De seguida, colocam-se a quantidade de HCl medida dentro de um balão volumétrico de 1000 mililitros recorrendo a um funil de vidro.

Oitavo Passo Depois, utilizando um esguicho de água destilada e um conta-gotas, enche-se o balão volumétrico até ao traço de referência.

Nono Passo Rolha-se o balão volumétrico e agita-se a solução até ficar homogeneizada. Está então preparada a solução de Ácido Clorídrico pedida.

Observações

Neste capítulo do relatório é possível encontrar os dados registados ao longo da atividade experimental em questão. Está dividido por problemas à semelhança dos restantes capítulos.

6.1 Preparação da Solução 1

O único dado a registar relativamente a esta secção é a massa de Sulfato de Cobre III Penta-Hidratado pesado durante a atividade prática.

$$m_{soluto} = 3.137 \,\mathrm{g}$$

6.2 Preparação da Solução 2

A massa de soluto utilizada na preparação desta solução foi:

$$m_{soluto} = 6.214 \,\mathrm{g}$$

No final da preparação da segunda solução, foi possível verificar que esta caracterizava-se por um tom de azul mais escuro, indicador do fato de ser mais densa do que a **solução 1**.

6.3 Fator de Diluição entre Soluções

Aqui está o quadro pedido, preenchido com os valores calculados no capítulo seguinte.

	V final	V Inicial	F* c/ Volume	F* c/ Concentração
Ī	50 mL	$25 \mathrm{mL}$	2	1

Tabela 6.1: Dados registados do Problema 4

6.4 Preparação de uma Solução Saturada

Depois do arrefecimento da solução saturada preparada, foi possível verificar a cristalização do Sulfato de Cobre III Penta-Hidratado, como pode visualizado na imagem seguinte:

^{*} Fator de Diluição

Figura 6.1: Cristais resultantes da Solução Saturada

Tratamento e Análise de Dados

O presente capítulo conta com todos os cálculos e análises de dados feitos ao longo da atividade experimental mencionados no procedimento experimental.

7.1 Preparação da Solução 1

7.1.1 Cálculo da Concentração Mássica

O único dado calculado neste problema da Atividade Experimental foi a Concentração Mássica da solução preparada. Concentração esta que é dada pela seguinte fórmula:

$$C_m = m/V$$

Sabendo que m corresponde à massa do soluto e V ao volume de toda a solução. Temos então o seguinte procedimento:

$$m = 3.137 \,\mathrm{g}$$

 $V = 100 \,\mathrm{mL} = 100 \,\mathrm{cm}^3$
 $C_m = 3.137/100 \approx 0.0314 \,\mathrm{g/cm}^3$

7.1.2 Número de Moles e Concentração Molar

Ainda relativamente à primeira parte do procedimento experimental, foi necessário calcular o número de moles e a concentração molar.

Quantidade Química Para efetuarmos o cálculo da quantidade química (número de moles), utilizámos a seguinte expressão:

$$M = m/n \Leftrightarrow$$
$$\Leftrightarrow n = m/M$$

Onde M corresponde à massa molar, m à massa e n ao número de moles. Tínhamos também os seguintes dados ao nosso dispor:

$$m = 3.137 \,\mathrm{g}$$
 $A_{\rm r}(\mathrm{Cu}) = 63.55$ $A_{\rm r}(\mathrm{S}) = 32.06$ $A_{\rm r}(\mathrm{O}) = 16.00$

$$A_{\rm r}({\rm H}) = 0.01$$

Calculámos assim a massa molar:

$$M(CuSO_4) = 63.55 + 32.06 + 4 * 16 = 159.61$$

$$M(5H_2O) = 5(2 * 1.01 + 16) = 90.1$$

$$M(CuSO_4.5H_2O) = M(CuSO_4) + M(5H_2O) = 159.61 + 90.1 = 249.71 \text{ g/mol}$$

Finalmente, calculámos a quantidade química:

$$n = 3.137/249.71 \approx 0.01256 \,\mathrm{mol}$$

Concentração Molar De seguida, foi-nos pedida a concentração molar. Para calcular a concentração molar (C), utilizámos a seguinte fórmula:

$$c = n/V$$

Onde n e V correspondem aos dados já mencionados anteriormente, ou seja, número de moles e volume da solução, respetivamente. Então, utilizando os dados já referidos, **efetuámos os seguintes cálculos:**

$$c = 0.01256 \,\mathrm{mol}/100 \,\mathrm{cm}^3 = 1.256 * 10^{-4} \,\mathrm{mol}/\mathrm{cm}^3$$

7.2 Preparação da Solução 2

Para preparamos a solução 2 foi necessário efetuar um conjunto de cálculos de forma a ter dados suficientes para permitirem a preparação da solução. **Dados iniciais:**

- Concentração final: 0.250 mol/dm³;
- Volume final: $100 \,\mathrm{mL} = 100 \,0 \,1 dm^3$;
- Massa Molar de CuSO₄.5H₂O: 249.71 g/mol.

7.2.1 Cálculo da Massa Necessária

Necessitámos saber a massa de Sulfato de Cobre III Penta-Hidratado necessária para preparar a solução. Tendo os dados anteriormente referidos, calculámos, em primeiro lugar, o número de moles:

```
\begin{aligned} \mathbf{c} &= n/V \\ 0.250 &= n/0.1\,\mathrm{dm^3} \Leftrightarrow n = 0.250*0.1 \Leftrightarrow n = 0.025\,\mathrm{mol} \end{aligned}
```

Sabendo a quantidade de moles necessários, relacionámos esse dado com a Massa Molar de forma a obter a massa necessária:

$$M = m/n$$

$$249.71 = m/0.025 \Leftrightarrow m = 249.71 * 0.025 \Leftrightarrow m \approx 6.2 \text{ g}$$

7.3 Fator de Diluição entre Soluções

No decorrer do **Problema 4** foi necessário calcular a Concentração Molar da solução preparada, bem como calcular o Fator de Diluição.

7.3.1 Cálculo da Concentração Molar

Sabendo que a fórmula da concentração molar envolve a quantidade de soluto e o volume da solução, foi necessário calcular o número de moles do soluto.

Visto que o único soluto que esta solução contém é o que estava contido nos 25 mL removidos da solução 1, utilizámos a sua concentração mássica para determinar a massa de soluto que continha

```
C_m(\text{sol1}) = 0.0314 \,\text{g/cm}^3

C_m = m/V

V = 25 \,\text{mL} = 25 \,\text{cm}^3

0.0314 = m/25 \Leftrightarrow m = 0.0314 * 25 \Leftrightarrow m = 0.785 \,\text{g}
```

Sabendo a massa de soluto que a nova solução continha e a Massa Molar de CuSO₄.5H₂O, foi possível saber o número de moles de soluto que a solução continha:

```
\begin{aligned} & \text{M(CuSO}_4.5\text{H}_2\text{O}) = 249.71\,\text{g/mol}. \\ & n = m/M \\ & n = 0.785/249.71 \approx 3.14*10^{-3}\,\text{mol} \end{aligned}
```

Sabendo então o número de moles, foi possível calcular a concentração química final desta solução:

$$c = n/V$$

$$V_f = 50 \,\mathrm{mL} = 50 \,\mathrm{cm}^3$$

$$c_f = 3.14*10^{-3}/50 = 6.28*10^{-5} \,\mathrm{mol} \,\mathrm{cm}^-3$$

7.3.2 Cálculo do Fator de Diluição

De seguida foi necessário calcular o fator de diluição, tanto através dos volumes como das concentrações de forma a saber se tudo havia sido calculado corretamente. **Dados iniciais:**

$$V_f = 50 \,\mathrm{mL}$$
$$V_i = 25 \,\mathrm{mL}$$

Cálculo do fator de diluição através dos volumes:

$$f = V_f/V_i$$
$$f = 50/25 = 2$$

Cálculo do fator de diluição através das concentrações:

$$\begin{split} f &= c_i/c_f \\ c_i &= 3.14*10^{-3}/25 \approx 1.3*10^{-4} \text{ mol cm}^{-3} \\ c_f &= 6.28*10^{-5} \text{ mol cm}^{-3} \\ f &= (1.3*10^{-4})/(6.28*10^{-5}) \approx 2 \end{split}$$

Conclusão

A atividade experimental realizada permitiu-nos consolidar os nossos conhecimentos relativos às soluções e diluições, nomeadamente:

- Como criar soluções com determinadas características (concentração, concentração mássica, etc);
- Como preparar diluições e saber algumas das suas propriedades através do fator de diluição.

Além disto, também aprendemos que os sais são facilmente diluídos em água e que estes podem cristalizar após o aquecimento de uma solução saturada (solução que **não** consegue dissolver mais soluto) que contenha o sal em questão.

Consolidámos também os nossos conhecimentos relativos a diversas fórmulas, como a da Concentração Química, Concentração Mássica, Densidade, Massa Molar, dentro de outras. Com isto, conseguimos aplicar essas fórmulas a contextos reais.

No geral, concluímos que a atividade reforçou os nossos conhecimentos e que correu nas devidas condições e sem erros graves/médios, visto que todos os cálculos coincidiram com o esperado.

Bibliografia

- $[1]\,$ Dantas, Maria da Conceição; Ramalho, Marta Duarte; Jogo de Partículas A
- [2] Info Escola, $Estrutura\ Cristalina$ - $Química.\ http://www.infoescola.com/quimica/estrutura-cristalina/$