Ce cours est ouvert à la consultation mais ne doit pas être imprimé pour des raisons d'économie de papier

CHAPITRE 3

ENTIERS NATURELS ET ARITHMETIQUE

83

I ENSEMBLE DES ENTIERS NATURELS

Définition:

L'ensemble des entiers naturels est un ensemble totalement ordonné (≤), non vide, qui de plus vérifie les propriétés suivantes:

1.Toute partie non vide de N admet un plus petit élément

2. Toute partie non vide et majorée admet un plus grand élément.

3.N n'admet pas de plus grand élément.

84

Les opérations dans N

Nous connaissons deux lois de composition interne dans N, l'addition et la multiplication.

L'addition et la multiplication sont commutatives, associatives.

L'addition admet un élément neutre 0.

La multiplication admet un élément neutre 1.

La multiplication est distributive par rapport à l'addition.

85

II RECURRENCE

Propriété :

Soit A une partie de N contenant 0 telle que :

 \forall n ∈ N, n ∈ A \Longrightarrow n + 1 ∈ A **Alors** A = N

Dém: par l'absurde. Soit $B=N \setminus A \dots$

Cette propriété nous amène à présenter le raisonnement par récurrence.

86

Principe de récurrence:

Soit P(n) un prédicat défini sur N. Si $P(n_0)$ est une proposition vraie, $n_0 \in N$. Si $\forall n \ge n_0$ $P(n) \Rightarrow P(n+1)$ est vraie

Alors P(n) est vraie pour tout $n \ge n_0$

Exemples:

1. Montrer:

Pour $x \in R$, $x \neq 1$; $n \in N$

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$

2. Démontrer , n∈N

$$\sum_{k=1}^{k=n} kk! = (n+1)! -1$$

88

Formule du binôme de Newton Un peu de dénombrement (TD)

Aprés avoir défini C_n^p , nombre de parties de E à p éléments ou nombre de combinaison de n éléments pris p à p.

$$C_n^p = \frac{n!}{p!(n-p)!}$$

Montrer par récurrence sur N que $(1+x)^n = \sum_{p=0}^{p=n} C_n^p x^p$

Plus généralement :

$$(a+b)^n = \sum_{n=0}^n C_n^p a^{n-p} b^p$$

89

On en déduit le card(P(E))

Card(P(E)) est le nombre de sous-ensembles de E. $Or \ C^p_n$ est le nombre de sous-ensembles de E ayant p éléments, lorsque E admet n éléments.

Donc $\sum_{n}^{\infty} C_{n}^{p}$ est le cardinal de P(E) et pour x=1

$$\sum_{n=0}^{n} C_n^p = 2^p$$

90

Définition:

Une propriété P(n) telle que :

 $P(n) \Rightarrow P(n+1)$ pour tout $n \ge n_0$, s'appelle une propriété héréditaire à partir de $\mathbf{n_0}$.

91

III ARITHMETIQUE DES ENTIERS III1. Division euclidienne dans N:

Théorème:

 $\forall~(a,b){\in}~N{\times}N^*, \exists~un~couple~unique~(q,r)~d'entiers~naturels~t.q:$ $a=bq+r, 0{\leq}~r{\,\succeq}~b$

Définition:

Effectuer la division euclidienne de a par b, c'est déterminer les entiers q et r.

92

Remarque:

♣ a est le **dividende**, **b** est le **diviseur**

♣ q est le **quotient**, **r** est le **reste**.

 \bot Lorsque r=0, b divise a et on le note : $b \mid a$

 $\clubsuit(a, b) \in N \times N^*$, $b \mid a \Leftrightarrow \exists k \in N \ t.q \ a = k.b$

Exemples:

1. Effectuer la division euclidienne de 184 par 7. $184 = 7 \times 26 + 2$

q = 26 et r = 2.

2. $8 \mid 184$, en effet : $184 = 8 \times 23$

 $q = 23 \ et \ r = 0$

. . .

III2. PGCD de deux entiers naturels

Tout d'abord remarquons que 1 divise tout entier.

Soient a et b deux entiers naturels non nuls.

Définition 1:

d est un diviseur commun de a et b si d est à la fois un diviseur de a et de b.

Soit E l'ensemble des diviseurs communs de a et h

 $+E \neq \emptyset$, en effet $1 \in E$.

♣ De plus, a et b majorent tout élément de E 95

Définition2:

D'après les propriétés de N, E est non vide et majoré donc admet un plus grand élément appelé le pgcd(a, b).

pgcd(a, b) | a et pgcd(a, b) | b et pgcd(a, b) est le plus grand entier qui vérifie cette propriété.

96

III3. Théorème de Bezout

Définition:

Les deux entiers naturels a et b sont premiers entre eux si pgcd(a, b) = 1, nous pouvons alors énoncer

Théorème de Bezout :

Les deux propositions sont équivalentes:

a et b sont premiers entre eux $\exists (u, v) \in \mathbb{Z}^2 t.q$ a.u+b.v = 1

97

Démonstration d'une implication:

 $\exists (u, v) \in \mathbb{Z}^2 t.q \quad a.u+b.v = 1 \Rightarrow a \text{ et } b \text{ sont}$ premiers entre eux

Soit d un diviseur commun à a et b, alors d divise a.u et b.v et aussi a.u + b.v, or a.u +b.v = 1 D'où d divise 1, donc d = 1

a et b sont premiers entre eux

98

III4. Recherche pratique du pgcd

Faisons d'abord deux remarques préliminaires:

 $\blacktriangleleft a = b.q (b|a) \Rightarrow pgcd(a, b) = b$

D'où une recherche algorithmique du pgcd appelé

Algorithme d'Euclide

Algorithme d'Euclide

Le but est donc de rechercher le pgcd(a, b), a et b entiers naturels différents de 0.

écrivons les divisions euclidiennes successives:

$$a = bq_l + r_l \quad 0 <= r_l < b$$

$$b = r_1 q_2 + r_2$$
 $0 <= r_2 < r_1$

$$r_1 = r_2 q_3 + r_3$$
 $0 <= r_3 < r_2$

$$r_{n-1} = r_n q_{n+1} + r_{n+1}$$
 $0 <= r_{n+1} < r_n$

100

Les restes successifs forment une suite d'entiers positifs strictement décroissante, donc on parvient nécessairement à un reste nul, soit r_{n+1} . Il suffit alors de remonter: $pgcd(a, b) = pgcd(b, r_1) \dots = pgcd(r_{n-1}, r_n) = r_n$

Remarque:

Dans cette présentation le nombre d'étapes est de n+1. il est nécessairement majoré par b, donc fini!

101

Ecriture de l'algorithme:

fonction pgcd (a, b :entiers) : entier

var q, r :entiers début

- evut
- $r \leftarrow b$ $tant que r \neq 0$
- **∔** début
- +q = E(a/b)
- + q = L(a/b) + r = a b.q
- $a \leftarrow b$
- $b \leftarrow r$
- **∔** fin de tant que

Retourner (a)

fin

102

Remarque:

- Les entiers a et b sont des entiers non nuls, d'après la définition du pgcd.
- **↓**Si a et b sont tels que a<b, la première boucle de l'algorithme nous ramène à échanger a et b et dans ce cas là, on retrouve la recherche du pgcd(a, b) avec a≥b.

103

Recherche du pgcd de 1764 et 3465

l=a	$l=a_2$	$27 = q_3$
$63 = r_2$	$0=r_3$	
		$1764 = b$ $1701 = r_1$

Pgcd(3465, 1764) = 63

Définition 1:

Soient a et b deux entiers naturels non nuls.

III5. PPCM de deux entiers naturels

 $m \in N^*$ est un multiple de $a \Leftrightarrow \exists k \in N / m = k.a$ **Définition 2:**

 $m \in N^*$ est un multiple commun à a et b $\Leftrightarrow m$ est un multiple de a et un multiple de b $\Leftrightarrow \exists k_1 \in N \land \exists k_2 \in N / m = k_1. a \land m = k_2. b$

Définition 3:

Considérons $M_{a\,b}$ le sous-ensemble de N^* des multiples communs à a et b. Cet ensemble est non vide puisque le produit a.b est un multiple commun donc appartient à M_{ab} .

Donc M_{ab} est une partie de N^* , non vide .

Elle admet un plus petit élément

le plus petit commun multiple de a et b

Notation: ppcm(a, b)

106

III6. Nombres entiers naturels premiers

Remarque:

- ♣ Un entier naturel n non nul a au plus n diviseurs.
- **♣**Tout entier naturel est un diviseur de 0.
- ♣1 admet un seul diviseur, lui-même.

Définition:

Un entier naturel est premier lorsqu'il admet **exactement deux diviseurs.**

107

Remarques et exemples:

- ⁴Tout entier strictement supérieur à 1 est donc premier lorsqu'il n'admet comme diviseurs que lui-même et 1.
- #7 est premier puisqu'il n'admet que 2 diviseurs, lui-même et 1.
- ♣12 n'est pas premier, voici l'ensemble de ses diviseurs : {1, 2, 3, 4, 6, 12}

108

THEOREME FONDAMENTAL DE L'ARITHMETIQUE

Soit n un entier naturel différent de 0 et de 1.

Alors soit n est premier, soit n se décompose en un produit fini de nombres premiers.

En d'autres termes:

 $n \in N, n \neq 0 \ et \ n \neq 1$

alors n est premier ou $\exists p_1, p_2, ...p_k$ des entiers naturels premiers tq $n = \prod_{i=1}^{i=k} p_i^{a_i}$ avec $k \in N^*$ et $a_i \in N^*$

109

III7. Ensemble des entiers relatifs

L'ensemble des entiers relatifs notés Z est muni de deux opérations + et × qui sont

- **♣** Associatives
- **♣** Commutatives
- **♣**Z admet un élément neutre pour chacune (0 et 1)
- **♣**Tout entier relatif z admet un opposé -z

110

III7.1. Division euclidienne dans Z

 $\forall (a, b) \in Z \times Z^*$. $\exists un couple unique (q, r) \in Z^2 t.q$

a = b.q + r, $0 \le r < b/$

q est le quotient, r est le reste.

Si r = 0, b divise a et on note $\mathbf{b}|\mathbf{a}$.

Remarque:

Les notions définis dans l'ensemble des entiers naturels, peuvent être étendues à l'ensemble des entiers relatifs, notamment:

- **♣**nombres premiers entre eux
- **≰**théorème de Bezout
- +pgcd
- **≠***ppcm*
- **↓**nombres premiers (4 diviseurs au lieu de 2)

112

III7.2. Congruences dans Z

La notion de congruence sera abordé plus largement dans le chapitre des relations. En voici simplement une définition.

Définition 1:

Soient z et z ' deux entiers relatifs, soit $n \in N$ z et z ' sont congrus modulo n ou z est congru à z ' modulo n \iff

z-z ' est divisible par n

113

Autre définition et remarque:

Définition 2 et notation :

 $\forall \, (z,z') \! \in Z^2, z \equiv z'(n) \! \Longleftrightarrow \exists \, k \! \in Z \, t.q \, z \! - \! z' \! = \! k.n$

Remarque:

Lorsque 0 < z' < n, l'écriture z = z' + k.n montre que

z' est le reste de la division euclidienne de z par l'entier naturel n.

114

116

Remarque:

On étudiera les congruences dans le chapitre IV, notamment pour n=2 et n=3

115

EXERCICE

(travail personnel à rendre suivant les indications données en cours)

Déterminer le pgcd des couples d'entiers suivants :

- **>** *a*=406 *et b*=696
- $a=1540 \ et \ b=693$
- *> a*=462 *et b*=264
- En effectuant l'algorithme d'Euclide présenté sous forme de tableau

CHAPITRE 4

LES RELATIONS

I PRODUIT CARTESIEN

I1. Produit cartésien de deux ensembles:

Soient E et F deux ensembles donnés, le produit cartésien de E et de F (ou produit de E par F) est l'ensemble des couples (x, y) où x est élément de E et y élément de F. $E \times F = \{(x, y) \text{tels que } x \in E \text{ et } y \in F\}$

118

Remarques:

≰x et y sont les composantes du couple

 $\downarrow (x, y) = (x', y') \Leftrightarrow x = x' \text{ et } y = y'$

Lorsque E = F le produit s'appelle carré cartésien de E, noté E ★E ou E²

119

12. Généralisation:

Le concept de produit cartésien peut être généralisé à un nombre fini d'ensembles.

$$\begin{split} & Soient\ E_1, E_2, E_n\ ,\ E_1 \times E_2 \times ... \times E_n\ sera\ l'ensemble\ suivant: \\ & E_1 \times E_2 \times \times E_n = \left\{ \left(x_1, x_2,, x_n\right)\ tels\ que\ x_1 \in\ E_1, x_2 \in E_2,, x_n \in E_n \right\} \\ & Soit\ E,\ E^n\ sera\ l'ensemble\ suivant: \\ & E^n = \left\{ \left(x_1, x_2,, x_n\right)\ tels\ que\ x_1 \in\ E, x_2 \in E\ ,...., x_n \in E\ \right\} \\ & \left(x_1, x_2,, x_n\right)\ est\ appelé\ un\ n-uplet \end{split}$$

120

Le produit cartésien n'est pas commutatif.

 $A \times B \neq B \times A$

Le produit cartésien n'est pas associatif.

 $(A \times B) \times C \neq A \times (B \times C)$

121

Exemples:

 $A = \{x, y, z\}; B = \{1, 2\}$ $A = \{x, y, z\}; B = \{1, 2\}; C = \{\alpha\}$

122

Exercices

A et B deux ensembles donnés Montrer que :

$$A \times B = \phi \iff A = \phi \vee B = \phi$$

Que peut-on conclure au sujet d'ensembles A et B si:

$$(A \times B) \cap (B \times A) \neq \emptyset$$

II RELATIONS

II1. Relation et prédicat:

Définition 1:

Soient E et F deux ensembles et $E \times F$ leur produit cartésien. Une relation sur $E \times F$ est un prédicat défini sur $E \times F$.

> $\forall x \in E, \forall y \in F$ $x \text{ est en relation avec } y \text{ par } R \Leftrightarrow xRy$ $\Leftrightarrow R(x, y)$

> > 124

Quelques relations connues

dans R

<; >; ≤; ≥; =; ≠;

Dans Z

≡; / ;

Dans P(E)

_

125

II2. Relation et graphe:

Définition 2:

Le graphe de la relation R est le sous-ensemble correspondant G de E×F.

La relation R est définie à l'aide de son graphe G

$$G = \{(x, y) \in E \times F \text{ t.q } x R y\}$$

126

Exemple 1

Soit E et F deux parties de R.

E=[a, b]; F=[c, d]

Voici une représentation cartésienne de $E \times F$

Soit G_R = $E \times F$, comment définir cette relation à l'aide d'un prédicat?

127

Exemple 2

A={1, 2, 3, 4, 5, 6} B={2, 6, 8, 9}

$$\begin{split} G_R &= \{ (1,2), (1,6), (1,8), (1,9), (2,2), (2,6), (2,8), \\ (3,6), (3,9), (4,8), (6,6) \} \end{split}$$

Comment définir cette relation à l'aide d'un prédicat?

128

Exemple 3

Soit E un ensemble donné.

On appelle identité de E et on note I_E ou I_E la relation binaire définie sur E par:

$$\forall (x, y) \in E^2, x 1_E y \Leftrightarrow x = y$$

Comment définir cette relation à l'aide de son graphe, noté $\Delta_{\scriptscriptstyle F}$?

On en conclut le résultat suivant

Soit R une relation définie sur $E \times F$, E et F deux ensemble s donnés. Soit G_R son graph e;

$$\forall (x, y) \in E \times F, x R y \iff (x, y) \in G_R$$

130

Remarque et définition:

≰E et F sont deux ensembles donnés.

L'ensemble des relations définies sur $E \times F$ est l'ensemble des parties de $E \times F$, soit $P(E \times F)$

♣ Soit E un ensemble.

Une relation binaire définie sur E est une relation définie sur $E \times E$

131

III PROPRIETES DES RELATIONS

R est une relation définie sur $E \times E$ ou relation binaire définie sur E

1. R est réflexive $\forall x \in E, x R x$

2. R est antiréflexive $\forall x \in E, x\overline{R}x$

132

3. R est symétrique

 $\forall (x, y) \in E^2, xRy \Rightarrow yRx$ remarque:

 $\Leftrightarrow \forall (x, y) \in E^2, xRy \Leftrightarrow yRx$

4. R est antisymétrique

 $\forall (x, y) \in E^2, [xRy \land yRx] \Rightarrow x = y$

133

5. R est transitive

 $\forall (x, y, z) \in E^3, [xRy \land yRz] \Rightarrow xRz$

6. R est circulaire

 $\forall (x, y, z) \in E^3, [xRy \land yRz] \Rightarrow zRx$

134

EXERCICES

(travail personnel à rendre suivant les indications données en cours)

- $1. \quad La \ relation \ divise \ sur \ Z \ est \ r\'eflexive.$
- 2. La relation < sur R est antiréflexive.
- Soit la re lation bin aire S définie sur Z par:
 ∀(x,y)∈ Z², xSy ⇔ x + y est impa ir
 Montrer qu e S est an tiréflexiv e

CHAPITRE V

RELATIONS D' EQUIVALENCE RELATIONS D'ORDRE APPLICATIONS

136

I RELATIONS D' EQUIVALENCE

I.1 Définition et exemples:

Définition 1:

Une relation R définie sur E est une relation d'équivalence sur E si R est à la fois réflexive, symétrique et transitive.

137

<u>I.2 Classes d'équivalence modulo R, Ensemble</u> <u>quotient:</u>

Définition 2:

R est une relation d'équivalence définie sur E, et $x \in E$. On appelle classe d'équivalence de x (modulo R) et on note \overline{x} l'ensemble suivant:

$$\overline{x} = \{ y \in E \ tq \ x \ R \ y \}$$

138

EXEMPLES:

1. Sur n'importe quel ensemble E, la relation

d'égalité, I_E est une relation d'équivalence et $\overline{x} = \{x\}$

 Soit n ∈ N*, la congruence modulo n est une relation d'équivalence : Cas particulier la congruence modulo 2.

3. Etude de la relation définie sur R par :

$$\forall (x, y) \in R^2, x R y \Leftrightarrow x^2 = y^2$$

139

Théorème 1:

Soit R une relation d'équivalence définie sur E. On a:

$$\forall (x, y) \in E^2, \ \bullet \overline{x} = \overline{y} \Leftrightarrow xRy$$
$$\bullet \overline{x} \neq \overline{y} \Rightarrow \overline{x} \cap \overline{y} = \phi$$

Preuve:

1. x R y et soit $t \in \overline{X} \Rightarrow t \in \overline{y}$ et réciproquement.

2. par contraposition.

140

Théorème 2:

R est une relation d'équivalence définie sur E, alors:

1. $\forall x \in E, x \in \bar{x} \ d'où \ x \neq \phi$

2. Une classe d'équivalence est un élément de P(E).

Remarques:

1. Deux classes d'équivalence sont :

Soit disjointes $\overline{x} \cap \overline{y} = \emptyset$ Soit confondues $\overline{x} = \overline{y}$

2. D'après le théorème précédent, $\overline{x} \neq \emptyset$

Définition 3:

L'ensemble des classes d'équivalence modulo R est appelé ensemble quotient de E par R

et est noté E/R

$$E/R = \{c \in P(E) \ tq \ \exists \ x \in E \ tq \ \overline{x} = c\}$$

Remarque:

$$E/_{R} \subset P(E) \Leftrightarrow E/_{R} \in P(P(E))$$

EXEMPLES:

Déterminer l'ensemble quotient suivant:

$$E/I_{E}$$

$$E/I_{E} = \{\{x\}, x \in E\}$$
Considérons à nouveau la congruence modulo

$$\begin{array}{cc}
2. & Z_{R_2} = Z_{2Z} = \{\overline{0}, \overline{1}\} \\
Alors & \end{array}$$

144

<u>EXERCICES</u> (travail personnel à rendre suivant les indications données en cours)

 $\forall (x,y) \in R^2, xTy \Leftrightarrow \cos(x) = \cos(y)$ Montrer que a)T est une relation d'équivalence

b)Quels sont ces classes d'équivalence?

145

II RELATIONS D'ORDRE SUR E

II1. Définition, exemples:

Définition:

Soit R une relation binaire définie sur E. On dit que R est une relation d'ordre sur E si R est réflexive, antisymétrique, transitive.

146

Notation:

Une relation d'ordre sera notée par un signe spécifique soit par: « ≺ »

On pourra lire: « $x \prec y$ »

« x est dominé par y »

Exemple

Sur N, Z, Q, R les relations classiques, $\leq \geq$ sont des relations d'ordre.

Les relations < et > ne sont pas des relations d'ordre car elles ne sont pas réflexives.

148

EXERCICE

(travail personnel à rendre suivant les indications données en cours)

Soit E un ensemble donné et soit P(E). La relation définie sur P(E) par:

$$\forall (A,B) \in (P(E))^2, A R B \Leftrightarrow A \subset B$$

Montrer que l'inclusion est une relation d'ordre sur

149

EXERCICE

(travail personnel à rendre suivant les indications données en cours)

Considérons la relation « divise » sur N

 $\forall (a,b) \in \mathbb{N}^2$, $a \mid b \Leftrightarrow (\exists k \in \mathbb{N} \text{ tq } b = ka)$

Cette relation | est une relation d'ordre sur N.

150

II2. Ordre total, ordre partiel

Définition:

Une relation d'ordre, \prec sur un ensemble E est appelée **ordre total** si pour tous éléments x et y de E, x et y sont comparables.

$$\forall (x, y) \in E^2, x \prec y \lor y \prec x$$

Les relations précédemment évoquées \leq ou \geq sont des ordres totaux.

151

Définition:

Une relation, d'ordre \prec sur un ensemble E qui n'est pas une relation d'ordre total est une relation d'ordre partiel.

En prenant la négation de la proposition précédente:

$$\exists (x,y) \in E^2 \text{ tq } \overline{x \prec y} \land \overline{y \prec x}$$

x et y sont alors 2 éléments non comparables.

152

Exemple

1. Considérons la structure ordonnée (P(E), ⊂) où E est un ensemble non vide et possède au moins 2 éléments. Alors

$$\exists (\{e_1\}, \{e_2\}) \in P(E)^2 \text{ tq}$$
$$\{e_1\} \not\subset \{e_2\} \land \{e_2\} \not\subset \{e_1\}$$

II3. Eléments remarquables d'une partie d'un ensemble ordonné.

II3.1 Majorants, minorants d'une partie X

 \underline{de} (E, \prec)

Définition:

 $\big(E, \prec\big)$ est une structure ordonnée, X est une partie de E, a un élément de E est un majorant de X si

$$\forall x \in X, x \prec a$$

156

158

Définition:

 (E, \prec) est une structure ordonnée, X est une partie de E b un élément de E est un minorant de X si

$$\forall x \in X, b \prec x$$

Exemple 1

Soient

 $E = \{e_1, e_2, e_3\}$ et $A = \{e_1, e_2\}$ $P(A) = \{ \phi, \{e_1\}, \{e_2\}, A \}$

On munit P(E) de la relation \subset .

 $(P(E), \subset)$ est un ensemble ordonné.

 ϕ est un minorant de P(A).

A est un majorant de P(A).

E est un majorant de P(A)

EXERCICE (travail personnel à rendre suivant les indications données en cours)

Soit

 (R, \leq) et $B = \left\{ \frac{1}{n}, n \in N * \right\}$

0 est un minorant de B.

1 est un majorant de B.

en effet $\forall x \in B \ 0 \le x \le 1$

157

II3.2 Plus grand élément, plus petit élément d'un ensemble (ou d'une partie) ordonné(e).

Soit E un ensemble ordonné par \prec et soit X une partie de E. Définition :

 $M \in E$, M est le plus grand élément de X si :

 $M \in X \land \forall x \in X, x \prec M$

En d'autres termes:

M est un élément de X et M est un majorant de X.

Exemples:

On reprend les exemples précédents. A-t-on un plus grand élément?

Remarque et notation :

Par définition du plus grand élément, lorsqu'il existe celui-ci est unique et se note max(X) (maximum)

Preuve: par l'absurde, soient M_1 et M_2 etc...

Définition:

Soit E un ensemble ordonné par \prec et soit X une partie de E.

 $m \in E$, m est le plus petit élément de X si :

$$m \in X \land \forall x \in X, m \prec x$$

En d'autres termes:

m est un élément de X et m est un minorant de X.

160

Remarque et notation:

Par définition du plus petit élément, lorsqu'il existe celui-ci est unique et se note min(X) (minimum)

Preuve: par l'absurde, soient m_1 et m_2 etc...

161

Exercices:

- 1. (R, \leq) $X_1 = [a, b]; X_2 =]a, b[$
- $2. \quad (N, \leq) \quad X = N$
- 3. $(R, \leq) X = \{(-1)^k, k \in \mathbb{Z} \}$
- 4. Soit (X, |) où $X = \{2,4,6,8,10,28,50\}$

Déterminer min(X), max(X), s'ils existent

162

<u>II3.3 Borne supérieure d'une partie majorée.</u> <u>Borne inférieure d'une partie minorée.</u>

Définitions et notations :

Soit E un ensemble ordonné par \prec et soit X une partie de F

1. $Major(X) = \{a \in E \text{ tq } \forall x \in X, x \prec a\}$

Major(X) est l'ensemble des majorants de X. De plus X est une partie **majorée de E si Major**(X) $\neq \emptyset$

163

<u>2.</u>

 $Minor(X) = \{b \in E \text{ tq } \forall x \in X, b \prec x\}$

Minor(X) est l'ensemble des minorants de X. De plus

X est une partie **minorée de E si Minor** $(X) \neq \emptyset$

164

Définitions:

 Soit X une partie majorée de (E, ≺). Considérons l'ensemble des majorants de X. Si Major(X) admet un plus petit élément alors il s'appelle la borne supérieure de X et il est unique.

 $\underline{Notation}$: $Sup_E(X) = min(Major(X))$

 $Sup_E(X)$ est le plus petit des majorants de X.

<u>2.</u>

Soit X une partie minorée de (E, \prec) . Considérons l'ensemble des minorants de X. Si Minor(X) admet un plus grand élément alors il s'appelle la borne inférieure de X et il est unique.

<u>Notation</u>: $Inf_E(X) = max(Minor(X))$

 $Inf_E(X)$ est le plus grand des minorants de X.

166

Proposition 1:

Soit X une partie de (E, \prec) .Les propositions suivantes sont équivalentes:

- 1. X admet un plus grand élément.
- 2. X admet une borne supérieure et $Sup_E(X) \in X$

Preuve:

167

Proposition 2:

Soit X une partie de (E, \prec) .Les propositions suivantes sont équivalentes:

- 1. X admet un plus petit élément.
- 2. X admet une borne inférieure et $Inf_E(X) \in X$

Preuve:

168

Exemples 1 et 2

- 1. Dans (R, \leq) $\inf_{R}([a,b]); \inf_{R}(]a,b[)$ $\sup_{R}([a,b]); \sup_{R}(]a,b[)$
- 2. $Dans(P(E), \subset)$ Que peut-on dire de $sup_{P(E)}(\{X, Y\})$? $inf_{P(E)}(\{X, Y\})$? Où X et Y sont éléments de P(E).

169

EXERCICE

(travail personnel à rendre suivant les indications données en cours)

1. Dans (R, \leq) Soit $X = \{1/n + (-1)^n, n \in \mathbb{N}^*\}$ $\sup_R(X)$ et $\inf_R(X)$

170

Diagramme de Hasse

Le diagramme de Hasse de (E, \prec) est une représentation graphique qui contient toutes les informations concernant la relation d'ordre représentée: $\forall (x,y) \in E^2$,

 $x \prec y$ si partant du sommet x on peut atteindre le sommet y en montant le long des arêtes .

•Y-a-t-il un plus petit élément dans E?

•Y-a-t-il un plus grand élément dans E? •Soit $X = \{1,2,4,5,7\}$, déterminer s'ils existent

 ${\blacktriangleright}min(X), max(X)$

 \succ Major(X), Minor(X)

 $\succ inf_E(X), sup_E(X)$

174

Exercice:

• Enumérer les éléments de D*70.

ullet Faire le diagramme de Hasse de (Dst_{70} , /) .

• Quel est le minimum de ($D*_{70}$, /) ?

ullet Quel est le maximum de ($D*_{70}$, /) ?

• *Soit X*={5,7,35}

Déterminer s'ils existent

 \triangleright *Min*(*X*), *max*(*X*)

ightharpoonup Major(X), Minor(X) puis $inf_E(X)$, $sup_E(X)$