1 Lezione del 26-09-24

1.1 Dipolo elettrico

Abbiamo introdotto i componenti circuitali come **dipoli elettrici**. In particolare, diciamo che un dipolo elettrico è un componente, con una certa differenza di potenziale V_{AB} ai suoi capi e una corrente $i_{AB}(t)$ che vi scorre all'interno, tale per cui si può definire una funzione del tipo:

$$V_{AB} = f(i_{AB}(t))$$

Possiamo individuare alcune caratteristiche importanti dei dipoli:

- Linearità: un dipolo si dice lineare se la funzione che lega voltaggio e corrente è lineare. Tutti i dipoli che studieremo sono lineari (resistenze, capacitori, ecc...). Esistono però svariati dipoli che hanno risposte non lineari ai voltaggi/correnti a cui vengono sottoposti (diodi (risposte diverse a direzioni diverse della corrente), amplificatori operazionali, ecc...).
- **Tempo invarianza:** un dipolo si dice tempo invariante quando le sue caratteristiche non variano nel tempo.
- **Memoria:** un dipolo si dice dotato di memoria quando i suoi valori di corrente e tensione attuali dipendono da valori di corrente e tensioni ad un'istante *t* precedente. I dipoli dotati di memoria presentano solitamente *cicli di isteresi*.
- Passività/attività: si dice passivo un dipolo che dissipa potenza, e attivo un dipolo
 che la eroga. Più propriamente, si ha che un dipolo e passivo quando l'energia su
 di esso, presa un riferimento associato, è ≥ 0.

1.2 Resistori

Un resistore è un componente circuitale caratterizzato dalla legge di Ohm ($J = \sigma E$), e quindi formato da un materiale *ohmico* che ha risposta lineare in densità di corrente alle variazioni del campo. Si indica come:

Teorema 1.1: Prima legge di Ohm

Il voltaggio è legato alla corrente, in un resistore, secondo la relazione:

$$V_R(t) = R i_R(t)$$

dove R prende il nome di **resistenza**, misurata in Ohm $[\Omega]$, definita come:

$$R = \frac{V}{i}$$

1.2.1 Resistenza e resistività

Conosciamo la legge di Ohm sui materiali ohmici riportata prima. Da questa legge si ricava:

Teorema 1.2: Seconda legge di Ohm

La resistenza di un filo di lunghezza l e sezione s è data da:

$$R = \rho \frac{l}{s}$$

dove ρ prende il nome di **resistività**, misurata in Ohm per metro $[\Omega \cdot m]$.

Questo significa che la resistenza cresce con il crescere della lunghezza, e diminuisce con il crescere della sezione.

In verità questa non sono le uniche caratteristiche che influenzano la resistenza: un apporto significativo è dato anche dalla **temperatura**, alla quale la resistenza ha proporzionalità quasi lineare, ma che noi ignoreremo.

1.2.2 Conduttanza e conducibilità

Conviene definire altre due unità di misura: l'inverso della resistenza, detta **conduttanza**, che si misura in Siemens $[\Omega^{-1} = S]$, o in **mho** $[\mho = \Omega^{-1}]$:

$$G = \frac{1}{R}$$

e l'inverso della resistività, detta **conducibilità**, che si misura in $[\Omega^{-1} \cdot m^{-1}]$:

$$\sigma = \frac{1}{\rho}$$

I resistori sono inoltre:

- Tempo invarianti (a patto di trascurare la temperatura);
- Senza memoria;
- Passivi (dissipano potenza per effetto Joule). Ciò si può dimostrare calcolando la potenza dalla prima legge di Ohm:

$$p(t) = v_{AB}(t) \cdot i_{AB}(t) = R i_{AB}^{2}(t) \ge 0$$

e calcolando l'energia come integrale:

$$w(t) = \int_{-\infty}^{t} p(t)dt \Rightarrow w(t) > 0$$

1.2.3 Circuiti aperti/chiusi

Le resistenza, sopratutto nei loro casi limite, aiutano a modellizzare varie parti di un circuito:

• Cortocircuito: indicato da una resistenza nulla, ergo:

$$V_{AB}(t) = 0 \Leftrightarrow R = 0$$

Modellizza il filo ideale, ergo ciò che per noi è un ramo.

• Circuito aperto: indicato da una corrente nulla, ergo:

$$i_{AB} = 0 \Leftrightarrow R = +\infty$$

Modellizza interruzioni nel circuito: si può dimostrare che la corrente attraverso un'interruzione in un circuito è nulla sfruttando la prima legge di Kirchoff: una linea chiusa che comprende il nodo finale di un'interruzione avrà un ramo entrante e 0 uscenti, ovvero corrente entrante nulla.

1.2.4 Resistenze in serie

Poniamo di avere una configurazione di resistenze del tipo:

Vogliamo calcolare una resistenza R_{eq} che valga quando la resistenza cumulativa di tutte e n le resistenze. Abbiamo allora che la corrente lungo ogni resistenza i(t) è costante, mentre ogni resistenza contribuisce al potenziale V_{AB} con una certa caduta di potenziale $V_1(t), V_2(t), ..., V_n(T)$. Si applica quindi la prima legge di Ohm:

$$V_{AB} = V_1 t + V_2 t + \ldots + V_n t = R_1 \cdot i(t) + R_2 \cdot i(t) + \ldots + R_n \cdot i(t) = i(t) \cdot (R_1 + R_2 + \ldots + R_n)$$
 quindi, da $V_{AB} = i(t) \ R_{eq}$ si ha:

Teorema 1.3: Resistenze in serie

$$R_{eq} = R_1 + R_2 + \dots + R_n$$

1.2.5 Resistenze in parallelo

Poniamo di avere le resistenze in parallelo invece che in serie:

Vogliamo ancora calcolare una resistenza R_{eq} che valga quando la resistenza cumulativa di tutte e n le resistenze. Qui abbiamo che la differenza di potenziale lungo ogni resistenza V(t) costante. Si applica ancora la prima legge di Ohm:

$$i = i_1(t) + i_2(t) + \ldots + i_n(t) = \frac{V_{AB}(t)}{R_1} + \frac{V_{AB}(t)}{R_2} + \ldots + \frac{V_{AB}(t)}{R_n}$$

conviene raccogliere e passare alle conduttanze:

$$G_{eq} = V_{AB}(t)(G_1 + G_2 + \dots + G_n) = G_{eq} \cdot V_{AB}(t)$$

Ora, se $G = \frac{1}{R}$:

$$R_{eq} = G_{eq}^{-1} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)^{-1}$$

quindi, si ha:

Teorema 1.4: Resistenze in parallelo

$$R_{eq} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}\right)^{-1}$$