Работа 3.05

Формулы Френеля - Теория отражения

О.С. Вавилова Ю.П. Яшин

Цель работы:

Изучить теорию Френеля для отражения и преломления света на границе двух диэлектриков, исследовать энергетические соотношения при отражении и преломлении и проверить изменение поляризации волны.

Задача:

- 1. Получить на опыте зависимость коэффициентов отражения от угла падения для двух случаев поляризации падающей волны (параллельно и перпендикулярно плоскости падения).
- 2. Рассчитать зависимость коэффициентов отражения от угла падения по формулам Френеля и сравнить с опытом.
- 3. Определить угол полной поляризации (угол Брюстера).
- 4. Изучить экспериментально зависимость угла поворота плоскости поляризации при отражении.

Введение

1. Формулы Френеля

Когда свет достигает границы раздела двух сред с разными показателями преломления, он частично проходит во вторую среду и частично возвращается обратно (рис. 1). Направления отраженного и преломленного света описываются известными законами отражения и преломления. Однако эти законы ничего не говорят об интенсивности и поляризации отраженной и преломленной волн. Эта задача решается на основе электромагнитной теории света. Появление отраженной и преломленной волн объясняется тем, что электрическое поле падающей волны "раскачивает" входящие в состав вещества заряженные частицы, которые становятся источником вторичных волн. Френель получил формулы, устанавливающие связь между амплитудами и фазами падающей, отраженной и преломленной волн. Степень поляризации отраженных и преломленных лучей при различных углах падения получается из решения уравнений Максвелла с учетом условий на границе диэлектриков. К числу этих условий принадлежат:

- 1. Равенство тангенциальных составляющих векторов Е и Н по обе стороны границы раздела (с одной стороны нужно брать сумму соответствующих векторов для падающей и отраженной волны, а с другой вектор для преломленной волны).
 - 2. Равенство нормальных составляющих векторов D и B.

Рис. 1. Направления падающей, отраженной и преломленной волн.

Формулы получены для двух предельных случаев поляризации волны, падающей на прозрачную границу:

- а) электрическое поле волны параллельно плоскости падения (рис.2a);
- б) электрическое поле волны перпендикулярно плоскости падения (рис.2б).

На рис.2 изображены вектора S^{naq} , S^{orp} , S^{np} , а также направления колебаний вектора напряженности электрического поля E и вектора напряженности магнитного поля H для этих случаев.

Puc. 2. Схемы расположения волновых векторов и напряженностей в падающей, отраженной и преломленной волнах.

При выводе формул Френеля принято, что $\sin \alpha < n_2/n_1$, то есть не рассматривается полное внутреннее отражение.

Формулы Френеля имеют вид:

$$E_{m||}^{omp} = E_{m||}^{na\partial} \frac{tg(\alpha - \beta)}{tg(\alpha + \beta)}, \tag{1}$$

$$E_{m\perp}^{omp} = -E_{m\perp}^{nao} \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)},$$
(2)

$$E_{m||}^{np} = E_{m||}^{na\partial} \frac{2\sin\beta \cdot \cos\alpha}{\sin(\alpha + \beta) \cdot \cos(\alpha - \beta)},$$
(3)

$$E_{m\perp}^{np} = E_{m\perp}^{nao} \frac{2\sin\beta \cdot \cos\alpha}{\sin(\alpha + \beta)}.$$
 (4)

Используя закон преломления, формулы Френеля можно записать в другом виде:

$$E_{m||}^{omp} = E_{m||}^{nao} \frac{n_2 \cdot \cos \alpha - n_1 \cdot \cos \beta}{n_2 \cdot \cos \alpha + n_1 \cdot \cos \beta},$$
(5)

$$E_{m\perp}^{omp} = -E_{m\perp}^{nao} \frac{n_1 \cdot \cos \alpha - n_2 \cdot \cos \beta}{n_1 \cdot \cos \alpha + n_2 \cdot \cos \beta},$$
(6)

$$E_{m||}^{np} = E_{m||}^{nao} \frac{2n_1 \cdot \cos \alpha}{n_2 \cdot \cos \alpha + n_1 \cdot \cos \beta}, \qquad (7)$$

$$E_{m\perp}^{np} = E_{m\perp}^{na\partial} \frac{2n_1 \cdot \cos \alpha}{n_1 \cdot \cos \alpha + n_2 \cdot \cos \beta}.$$
 (8)

Как видно из формул (1) — (8), амплитуды колебаний в отраженной и преломленной волнах являются вещественными числами. Следовательно фазы отраженной, преломленной и падающей волн либо совпадают, либо отличаются на π .

2. Коэффициент отражения

Коэффициентом отражения называют отношение интенсивности отраженной волны к интенсивности падающей волны:

$$R = \frac{I^{omp}}{I^{nao}} \,. \tag{9}$$

Формулы (1) и (2) свидетельствуют о том, что коэффициент отражения зависит от направления поляризации волны по отношению к плоскости падения.

Так как интенсивность пропорциональна квадрату амплитуды ($I\sim E_m^2$), то из формулы (1) Френеля получаем для коэффициента отражения волны, поляризованной в плоскости падения, выражение:

$$R_{\parallel} = \frac{tg^2(\alpha - \beta)}{tg^2(\alpha + \beta)}.$$
 (10)

Для волны, поляризованной перпендикулярно плоскости падения, формула (2) дает:

$$R_{\perp} = \frac{\sin^2(\alpha - \beta)}{\sin^2(\alpha + \beta)}.$$
 (11)

При нормальном падении света на вещество ($\alpha = 0$) формулы (1) - (8) дают

значение:

$$R_{\perp} = R_{\parallel} = \frac{(n_2 - n_1)^2}{(n_2 + n_1)^2} \,. \tag{12}$$

При падении света под углом $\pi/2$ получаем: $R_{\perp} = R_{II} = 1$.

Рис. 3. Зависимости коэффициентов отражения от угла падения для границы раздела воздух-стекло.

На рис.3 изображены зависимости коэффициента отражения от угла падения для границы раздела воздух-стекло. Обратите внимание, что при некотором угле падения $\alpha_{\scriptscriptstyle E}$, для которого $(\alpha_{\scriptscriptstyle E}+\beta)=\pi/2$, коэффициент $R_{\parallel}=0$. Это условие выполняется при угле падения $\alpha_{\scriptscriptstyle E}$:

$$\alpha_{\rm E} = arctg \, \frac{n_2}{n_1} \,. \tag{13}$$

Обращение в нуль коэффициента отражения R_{\parallel} называется <u>законом Брюстера</u>, а угол $\alpha_{\scriptscriptstyle B}$ – <u>углом Брюстера</u>.

В естественном (неполяризованном) свете все направления колебаний электрического поля равновероятны. Естественный свет можно представить как сумму двух линейно поляризованных волн равной интенсивности, в которых колебания происходят соответственно параллельно и перпендикулярно плоскости падения. Коэффициент отражения естественного света:

$$R_{ecm} = \frac{1}{2} (R_{\perp} + R_{\parallel}). \tag{14}$$

На рис.3 средняя кривая соответствует зависимости коэффициента отражения естественного света ($R_{\text{ест}}$) от угла падения α .

3. Поляризация при отражении и преломлении

I. Рассмотрим прохождение через границу двух диэлектриков неполяризованного (естественного) света. Различие в зависимости R_{\parallel} и R_{\perp} от угла падения приводит к тому, что при наклонном падении отраженный и преломленный свет в общем случае оказывается частично поляризованным. Так как $R_{\perp} > R_{\parallel}$ (рис. 3), то в отраженном свете

преимущество имеет направление электрического поля, перпендикулярное плоскости падения, а в преломленном свете — параллельное плоскости падения. Частично поляризованный свет можно рассматривать как смесь естественного с линейно поляризованным. Для его характеристики вводят понятие степени поляризации Р:

$$P = \frac{I_{\perp} - I_{\parallel}}{I_{\perp} + I_{\parallel}} \,. \tag{15}$$

Для естественного света $I_{\perp} = I_{\parallel}$ и P = 0. Свет, отраженный под углом Брюстера, имеет $I_{II}^{omp} = 0$ и для него P = 1, то есть он полностью поляризован перпендикулярно плоскости падения (рис.4).

Puc.4. Поляризация при отражении и преломлении : $\alpha_{\scriptscriptstyle B} + \beta = \pi/2$.

II. Рассмотрим прохождение через границу линейно поляризованной волны, в которой электрическое поле совершает колебания под произвольным углом δ к плоскости падения. Угол δ называется азимутом колебания падающей волны. Для анализа отражения вектор амплитуды $\mathbf{E}^{\mathbf{na}}$ надо разложить на две компоненты, для которых справедливы формулы Френеля (рис. 5). Очевидно, что:

$$E_{\parallel}^{na\delta} = E^{na\delta} \cdot \cos \delta; \qquad E_{\perp}^{na\delta} = E \cdot \sin \delta.$$
 (16)

Так как каждая из компонент имеет свой коэффициент отражения, то азимут колебания в отраженной волне будет другим (рис. 5).

Puc. 5. Направление колебаний электрического поля в падающей (а) и отраженной (б) волнах.

Так как $R_{\perp} > R_{\parallel}$ для всех углов падения, кроме 0 и $\pi/2$, то $\omega > \delta$. Плоскость колебания линейно поляризованной волны повернулась при отражении на угол:

$$\Psi = \omega - \delta. \tag{17}$$

Из рисунка 5^6 следует, что:

$$tg\omega = \frac{E_{\perp}^{omp}}{E_{\parallel}^{omp}}.$$
 (18)

С учетом (1), (2), (16), (18) получим для азимута отраженной волны:

$$tg\omega = -tg\delta \cdot \frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)}.$$
 (19)

III. Рассмотрим частный случай. Установим азимут колебаний электрического поля в падающей волне $\delta = \pi/4$. Тогда:

$$tg\Psi = tg(\omega - \frac{\pi}{4}) = \frac{1 - tg\omega}{1 + tg\omega}.$$
 (20)

Из (19) и (20) после преобразований следует, что:

$$tg\Psi = -\frac{\cos\alpha \cdot \sqrt{1 - \sin^2\beta}}{\sin\alpha \cdot \sin\beta}.$$
 (21)

Заменяя в (21) $\sin \beta$ по закону преломления, получим для *угла поворота плоскости поляризации при отражении* Ψ выражение:

$$\Psi = arctg \left(\frac{\cos\alpha \cdot \sqrt{n^2 - \sin^2\alpha}}{\sin^2\alpha} \right). \tag{22}$$

Анализируя (22), можно заметить, что при падении света с азимутом колебаний $\delta = \pi/4$ на границу диэлектриков под углом полной поляризации $\alpha_{\scriptscriptstyle B}$, плоскость колебаний поворачивается на угол $\Psi = \pi/4$.

Методика эксперимента

В работе изучается отражение лазерного излучения от поверхности призмы из флинтгласа. Подбирая положение лазера и поляроида, устанавливается определенное направление колебаний электрического поля по отношению к плоскости падения. Экспериментально исследуются зависимости коэффициентов отражения R_{\perp} и R_{\parallel} от угла падения. Экспериментальные зависимости сравниваются с теоретическими, рассчитанными по формулам (10) и (11). Опытные данные позволяют определить угол полной поляризации $\alpha_{\scriptscriptstyle E}$ и рассчитать показатель преломления флинтгласа.

Для более глубокого изучения теории отражения предлагается исследовать изменение направления поляризации при отражении под разными углами. Направление колебаний электрического поля в отраженной волне определяется с помощью поляроида-анализатора. В результате строится экспериментальная зависимость угла поворота ψ от угла падения α . Экспериментальная кривая сравнивается с теоретической, вычисленной

по формуле (22). По экспериментальной зависимости $\Psi(\alpha)$ можно еще раз оценить угол Брюстера и сравнить с результатом, полученным по зависимости коэффициента отражения R_{\parallel} от угла падения.

Экспериментальная установка

Общий вид установки представлен на рис.6. Установка включает в себя лазер, фотоприемник, измерительный прибор, поляризатор, анализатор, пластинку $\lambda/2$, столик с призмой из флинтгласа (n=1.63, преломляющий угол 60°), поворотное радиальное устройство.

Рис. б. Экспериментальная установка.

Поворотное радиальное устройство состоит из треножника, в котором закрепляется штативные стержни, столика с призмой, транспортира со стрелкой. Оно позволяет установить любой угол падения луча на призму и направить отраженный лазерный луч на фотоприемник.

На рис. 7 дана схема установки призмы, транспортира и лазерного луча при угле падения $\alpha = 0$.

Puc. 7. Установка призмы при угле падения $\alpha = 0$.

На рис 7. 1 – затемненная сторона призмы, 2 – столик, 3 – транспортир, 4 – стрелкауказатель, 5 – штативный стержень, 6 – лазерный луч.

Измерения и обработка результатов

Изучение зависимости коэффициентов отражения от угла падения при параллельной и перпендикулярной поляризации

- 1. Включите лазер и прогрейте его в течение 10 минут.
- 2. Поляризатор установите так, чтобы плоскость колебаний электрического поля волны совпадала с плоскостью падения (90° по шкале поляроида). Анализатора перед фотоприемником не должно быть.
- 3. Положение лазера подберите так, чтобы луч распространялся параллельно стержню и проходил через центр столика для призмы. Транспортир установите в положение «нуль».
- 4. Разверните штативный стержень с фотоэлементом, установив его вдоль нулевого деления транспортира. Измерьте начальную интенсивность луча I_o^{\parallel} , поляризованного параллельно плоскости падения, в микроамперах.
- 5. Поместите призму на столик, отражающей поверхностью в центре (рис.7). Падающий луч должен отражаться строго в обратном направлении. Это соответствует углу падения $\alpha = 0$, то есть нормальному падению лазерного излучения на рабочую поверхность призмы. Кроме того, этот луч должен проходить перпендикулярно через ось вращения призмы.
- 6. Поворачивая столик, изменяйте угол падения лазерного луча на призму в пределах от 10° до 85° с шагом 5° . При этом необходимо поворачивать и стержень с фотоприемником, добиваясь каждый раз максимального тока. Для каждого угла падения следует измерять силу фототока ($I^{\rm orp}$), которая пропорциональна интенсивности отраженного света, поляризованного в плоскости падения.
- 7. Вычислите по формуле (9) для каждого угла падения коэффициент отражения R_{\parallel} и постройте график зависимости $R_{\parallel}(\alpha)$.
- 8. Установите перед поляризатором пластинку $\lambda/2$. Поверните поляризатор на 0° по шкале поляроида. Теперь колебания электрического поля в волне происходит перпендикулярно плоскости падения.
 - 9. Измерьте начальную интенсивность I_o^{\perp} , как в п.4.
- 10. Проведите измерения интенсивности отраженного света (I_{\perp}^{omp}) , поляризованного перпендикулярно плоскости падения, как в п. 6.
- 11. Вычислите по формуле (9) для каждого угла падения коэффициент отражения R_{\perp} и постройте график зависимости $R_{\perp}(\alpha)$.
- 12. По экспериментальной зависимости $R_{\parallel}(\alpha)$ определите величину угла Брюстера. Сравните полученное значение с теоретическим.

Исследование изменения направления поляризации при отражении

- 1. Уберите перед поляризатором пластинку $\lambda/2$. Поляризатор установите на 45° по шкале поляроида. Теперь колебания электрического поля в волне происходят под углом 45° к плоскости падения, т. е. азимут колебания падающей волны $\delta = \pi/4$.
- 2. Поворачивая столик с призмой, изменяйте угол падения α от 20° до 80° с шагом 10°. При этом поверните штативный стержень с фотоэлементом, установив его на максимальный фототок.
- 3. Вращая анализатор, установленный в отраженном пучке, найдите для каждого угла падения направление колебаний в отраженной волне (ω). Оно соответствует максимальной интенсивности света, пропускаемого анализатором. Угол поворота

плоскости поляризации при отражении $\psi = \delta - \omega = \pi / 4 - \omega$. Постройте график зависимости $\psi(\alpha)$.

- 4. По формуле (22) рассчитайте значения ψ , соответствующие разным углам падения ($20^{\circ} \div 80^{\circ}$) и постройте теоретическую зависимость $\psi(\alpha)$.
- 5. Сравните экспериментальную и теоретическую зависимости. Определите угол Брюстера $\alpha_{\scriptscriptstyle B}$, зная, что при угле падения, равном $\alpha_{\scriptscriptstyle B}$, плоскость колебаний при отражении поворачивается на $\pi/4$.

Контрольные вопросы

- 1. Запишите формулы Френеля. Какие величины они связывают? Для какого света применимы?
- 2. Что называется коэффициентом отражения? От чего зависит его величина?
- 3. Как рассчитать коэффициент отражения при нормальном падении света на границу двух диэлектриков, а также при произвольном угле падения?
- 4. Какой свет называется естественным? Линейно поляризованным? Частично поляризованным?
 - 5. В чем заключается закон Брюстера?
 - 6. Что такое степень поляризации?
 - 7. Что называется азимутом колебания электрического поля волны?
- 8. Если на границу двух диэлектриков падает под углом Брюстера естественный свет, то каким будет состояние поляризации отраженного света? Преломленного света?
- 9. Почему при отражении линейно поляризованной волны происходит поворот плоскости поляризации?
- 10. Начертите график зависимости коэффициента отражения от угла падения для волны:
 - а) поляризованной в плоскости падения;
 - б) поляризованной перпендикулярно плоскости падения;
 - в) неполяризованной.
- 11. Объясните существование угла полной поляризации, исходя из особенностей излучения атомного диполя.

Литература

- 1. *Ландсберг Г. С.* Оптика / Г. С. Ландсберг. М.: Физматгиз, 2003.— Гл. XVI.
- 2. *Матвеев А. Н.* Оптика / А. Н. Матвеев. М.: Высшая школа,1985. §§ 16, 17, 18.
- 3. Савельев И. В. Курс общей физики / И. В. Савельев. М.: Наука,1989. Т. II. §§ 134, 135.
- 4. *Сивухин Д. В.* Общий курс физики. Оптика / Д. В. Сивухин. М.:Наука, 1980. Т. IV, гл V. §§ 62, 65.
- 5. *Бутиков Е. И.* Оптика / Е. И. Бутиков. С-Пб.: Невский диалект, 2003. Гл. 3.
- 6. Иродов И. Е. Волновые процессы Основные законы / И. Е.
- Иродов. М.: Лаборатория базовых знаний, 2002. Гл. 6. §§6.1, 6.2.