

Zynq Architecture

Zynq Vivado 2015.2 Version

© Copyright 2015 Xilinx

Objectives

After completing this module, you will be able to:

- Identify the basic building blocks of the Zynq™ architecture processing system (PS)
- Describe the usage of the Cortex-A9 processor memory space
- Connect the PS to the programmable logic (PL) through the AXI ports
- Generate clocking sources for the PL peripherals
- List the various AXI-based system architectural models
- Name the five AXI channels
- Describe the operation of the AXI streaming protocol

Outline

- > Zynq All Programmable SoC (AP SoC)
- **➤** Zynq AP SoC Processing System (PS)
- **▶** Processor Peripherals
- **➤** Clock, Reset, and Debug Features
- **▶** AXI Interfaces
- **➤** Summary

The PS and the PL

➤ The Zynq-7000 AP SoC architecture consists of two major sections

- PS: Processing system
 - Dual ARM Cortex-A9 processor based
 - Multiple peripherals
 - · Hard silicon core
- PL: Programmable logic
 - Shares the same 7 series programmable logic as
 - ArtixTM-based devices: Z-7010, Z-7015, and Z-7020 (high-range I/O banks only)
 - Kintex[™]-based devices: Z-7030, Z-7035, Z-7045, and Z-7100 (mix of high-range and high-performance I/O banks)

> This section focuses on the PS

Zynq-7000 Family Highlights

➤ Complete ARM®-based processing system

- Application Processor Unit (APU)
 - Dual ARM Cortex[™]-A9 processors
 - Caches and support blocks
- Fully integrated memory controllers
- I/O peripherals

Tightly integrated programmable logic

- Used to extend the processing system
- Scalable density and performance

> Flexible array of I/O

- Wide range of external multi-standard I/O
- High-performance integrated serial transceivers
- Analog-to-digital converter inputs

Zynq-7000 AP SoC Block Diagram

Outline

- **➤** Zynq All Programmable SoC (AP SoC)
- > Zynq AP SoC Processing System (PS)
- **▶** Processor Peripherals
- **➤** Clock, Reset, and Debug Features
- **▶** AXI Interfaces
- **>** Summary

ARM Processor Architecture

ARM Cortex-A9 processor implements the ARMv7-A architecture

- ARMv7 is the ARM Instruction Set Architecture (ISA)
- ARMv7-A: Application set that includes support for a Memory Management Unit (MMU)
- ARMv7-R: Real-time set that includes support for a Memory Protection Unit (MPU)
- ARMv7-M: Microcontroller set that is the smallest set

The ARMv7 ISA includes the following types of instructions (for backwards compatibility)

- Thumb instructions: 16 bits; Thumb-2 instructions: 32 bits
- NEON: ARM's Single Instruction Multiple Data (SIMD) instructions

> ARM Advanced Microcontroller Bus Architecture (AMBA®) protocol

- AXI3: Third-generation ARM interface
- AXI4: Adding to the existing AXI definition (extended bursts, subsets)

Cortex is the new family of processors

ARM family is older generation; Cortex is current; MMUs in Cortex processors and MPUs in ARM

ARM Cortex-A9 Processor Power

- Dual-core processor cluster
- ▶ 2.5 DMIP/MHz per processor
- > Harvard architecture
- > Self-contained 32KB L1 caches for instructions and data
- > External memory based 512KB L2 cache
- Automatic cache coherency between processor cores
- ▶ 1GHz operation (fastest speed grade)

ARM Cortex-A9 Processor Micro-Architecture

- Instruction pipeline supports out-oforder instruction issue and completion
- Register renaming to enable execution speculation
- Non-blocking memory system with load-store forwarding
- ➤ Fast loop mode in instruction pre-fetch to lower power consumption

ARM Cortex-A9 Processor Micro-Architecture

> Variable length, out-of-order, eight-stage, super-scalar instruction pipeline

- Advanced pre-fetch with parallel branch pipeline enabling early branch prediction and resolution
- Multi-issued into
 - · Primary data processing pipeline
 - · Secondary full data processing pipeline
 - Load-store pipeline
 - Compute engine (FPU/NEON) pipeline

Speculative execution

- Supports virtual renaming of ARM physical registers to remove pipeline stalls due to data dependencies
- Increased processor utilization and hiding of memory latencies
- Increased performance by hardware unrolling of code loops
- Reduced interrupt latency via speculative entry to Interrupt Service Routine (ISR)

Processing System Interconnect (1)

➤ Programmable logic to memory

- Two ports to DDR
- One port to OCM SRAM

➤ Central interconnect

 Enables other interconnects to communicate

▶ Peripheral master

 USB, GigE, SDIO connects to DDR and PL via the central interconnect

> Peripheral slave

CPU, DMA, and PL access to IOP peripherals

Processing System Interconnect (2)

Processing system master

- Two ports from the processing system to programmable logic
- Connects the CPU block to common peripherals through the central interconnect

▶ Processing system slave

Two ports from programmable logic to the processing system

Memory Map

- > The Cortex-A9 processor uses 32-bit addressing
- ➤ All PS peripherals and PL peripherals are memory mapped to the Cortex-A9 processor cores
- ➤ All slave PL peripherals will be located between 4000_0000 and 7FFF_FFFF (connected to GP0) and 8000_0000 and BFFF_FFFF (connected to GP1)

FFFC_0000 to FFFF_FFFF	ОСМ
FD00_0000 to FFFB_FFFF	Reserved
FC00_0000 to FCFF_FFFF	Quad SPI linear address
F8F0_3000 to FBFF_FFFF	Reserved
F890_0000 to F8F0_2FFF	CPU Private registers
F801_0000 to F88F_FFFF	Reserved
F800_1000 to F880_FFFF	PS System registers,
F800_0C00 to F800_0FFF	Reserved
F800_0000 to F800_0BFF	SLCR Registers
E600_0000 to F7FF_FFFF	Reserved
E100_0000 to E5FF_FFFF	SMC Memory
E030_0000 to E0FF_FFFF	Reserved
E000_0000 to E02F_FFFF	IO Peripherals
C000_0000 to DFFF_FFFF	Reserved
8000_0000 to BFFF_FFFF	PL (MAXI _GP1)
4000_0000 to 7FFF_FFFF	PL (MAXI_GP0)
0010_0000 to 3FFF_FFFF	DDR (address not filtered by SCU)
0004_0000 to 000F_FFFF	DDR (address filtered by SCU)
0000_0000 to 0003_FFFF	ОСМ

Zynq AP SoC Memory Resources

- **▶** On-chip memory (OCM)
 - RAM
 - Boot ROM
- **▶** DDRx dynamic memory controller
 - Supports LPDDR2, DDR2, DDR3
- > Flash/static, memory controller
 - Supports SRAM, QSPI, NAND/NOR FLASH

PS Boots First

- > CPU0 boots from OCM ROM; CPU1 goes into a sleep state
- ➤ On-chip boot loader in OCM ROM (Stage 0 boot)
- > Processor loads First Stage Boot Loader (FSBL) from external flash memory
 - NOR
 - NAND
 - Quad-SPI
 - SD Card
 - Load from JTAG; not a memory device—used for development/debug only
- Boot source selected via package bootstrapping pins
- Optional secure boot mode allows the loading of encrypted software from the flash boot memory

Configuring the PL

- > The programmable logic is configured after the PS boots
- > Performed by application software accessing the hardware device configuration unit
 - Bitstream image transferred
 - 100-MHz, 32-bit PCAP stream interface
 - Decryption/authentication hardware option for encrypted bitstreams
 - In secure boot mode, this option can be used for software memory load
 - Built-in DMA allows simultaneous PL configuration and OS memory loading

Outline

- **➤** Zynq All Programmable SoC (AP SoC)
- **➤** Zynq AP SoC Processing System (PS)
- > Processor Peripherals
- **➤** Clock, Reset, and Debug Features
- **▶** AXI Interfaces
- **➤** Summary

Input/Output Peripherals

- > Two GigE
- > Two USB
- > Two SPI
- > Two SD/SDIO
- > Two CAN
- > Two I2C
- > Two UART
- > Four 32-bit GPIOs
- > Static memories
 - NAND, NOR/SRAM, Quad SPI
- > Trace ports

Multiplexed I/O (MIO)

> External interface to PS I/O peripheral ports

- 54 dedicated package pins available
- Software configurable
 - Automatically added to bootloader by tools
- Not available for all peripheral ports
 - Some ports can only use EMIO

Extended Multiplexed I/O (EMIO)

Extended interface to PS I/O peripheral ports

- EMIO: Peripheral port to programmable logic
- Alternative to using MIO
- Mandatory for some peripheral ports
- Facilitates
 - Connection to peripheral in programmable logic
 - Use of general I/O pins to supplement MIO pin usage
 - Alleviates competition for MIO pin usage

PS-PL Interfaces

▶ AXI high-performance slave ports (HP0-HP3)

- Configurable 32-bit or 64-bit data width
- Access to OCM and DDR only
- Conversion to processing system clock domain
- AXI FIFO Interface (AFI) are FIFOs (1KB) to smooth large data transfers

▶ AXI general-purpose ports (GP0-GP1)

- Two masters from PS to PL
- Two slaves from PL to PS
- 32-bit data width
- Conversation and sync to processing system clock domain

PS-PL Interfaces

- One 64-bit accelerator coherence port (ACP) AXI slave interface to CPU memory
- DMA, interrupts, events signals
 - Processor event bus for signaling event information to the CPU
 - PL peripheral IP interrupts to the PS general interrupt controller (GIC)
 - Four DMA channel RDY/ACK signals
- Extended multiplexed I/O (EMIO) allows PS peripheral ports access to PL logic and device I/O pins
- > Clock and resets
 - Four PS clock outputs to the PL with enable control
 - Four PS reset outputs to the PL
- Configuration and miscellaneous

Outline

- **➤** Zynq All Programmable SoC (AP SoC)
- **➤** Zynq AP SoC Processing System (PS)
- **▶** Processor Peripherals
- > Clock, Reset, and Debug Features
- **▶** AXI Interfaces
- **>** Summary

PL Clocking Sources

> PS clocks

- PS clock source from external package pin
- PS has three PLLs for clock generation
- PS has four clock ports to PL

> The PL has 7 series clocking resources

- PL has a different clock source domain compared to the PS
- The clock to PL can be sourced from external clock capable pins
- Can use one of the four PS clocks as source
- Synchronizing the clock between PL and PS is taken care of by the architecture of the PS
- PL cannot supply clock source to PS

Clocking the PL

PL Fabric Clock	Control Register	Mux Ctrl Field	Mux Ctrl Field	Divider 0 Ctrl Field	Divider 1 Ctrl Field	
PL Fabric 0	FPGA0_CLK_CTRL	SRCSEL, 4	SRCSEL, 5	DIVISOR 0, 13:8	DIVISOR 1, 25:20	—► FCLKCLK0
PL Fabric 1	FPGA1_CLK_CTRL	SRCSEL, 4	SRCSEL, 5	DIVISOR 0, 13:8	DIVISOR 1, 25:20	─► FCLKCLK1
PL Fabric 2	FPGA2_CLK_CTRL	SRCSEL, 4	SRCSEL, 5	DIVISOR 0, 13:8	DIVISOR 1, 25:20	→ FCLKCLK2
PL Fabric 3	FPGA3_CLK_CTRL	SRCSEL, 4	SRCSEL, 5	DIVISOR 0, 13:8	DIVISOR 1, 25:20	→ FCLKCLK3

Clock Generation (Using Zynq Tab)

- The Clock Generator allows configuration of PLL components for both the PS and PL
 - One input reference clock
- Access GUI by clicking the Clock Generation Block, or select from Navigator
- Configure the PS Peripheral Clock in the Zynq tab
 - PS uses a dedicated PLL clock
 - PS I/O peripherals use the I/O PLL clock and ARM PLL
- Clock to PL is disabled if PS clocking is present

IP Integrator – Advanced Clocking in Zynq

- Basic Clocking allows selection of desired frequency
 - Tools will auto calculate nearest achievable frequency
- Advanced clocking allows access to clock multiply and divide values for various PLLs in the Zynq PS
- Provides more control for user

Zynq Resets

> Internal resets

- Power-on reset (POR)
- Watchdog resets from the three watchdog timers
- Secure violation reset

> PS resets

External reset: PS_SRST_B

- Warm reset: SRSTB

> PL resets

- Four reset outputs from PS to PL
- FCLK_RESET[3:0]

Outline

- **➤** Zynq All Programmable SoC (AP SoC)
- **➤** Zynq AP SoC Processing System (PS)
- **▶** Processor Peripherals
- **➤** Clock, Reset, and Debug Features
- > AXI Interfaces
- **>** Summary

AXI is Part of ARM's AMBA

Older Performance Newer

AMBA: <u>A</u>dvanced <u>M</u>icrocontroller <u>B</u>us <u>A</u>rchitecture AXI: <u>A</u>dvanced <u>E</u>xtensible <u>I</u>nterface

AXI is Part of AMBA

Basic AXI Signaling – 5 Channels

- 1. Read Address Channel
- 2. Read Data Channel

- 3. Write Address Channel
- 4. Write Data Channel
- 5. Write Response Channel

Read address channel

The AXI Interface—AXI4-Lite

- > No burst
- ▶ Data width 32 or 64 only
 - Xilinx IP only supports 32-bits
- **▶** Very small footprint
- Bridging to AXI4 handled automatically by AXI_Interconnect (if needed)

The AXI Interface—AXI4

- Sometimes called "Full AXI" or Memory Mapped"
 - Not ARM-sanctioned names
- > Single address multiple data
 - Burst up to 256 data beats
- > Data Width parameterizable
 - 1024 bits

The AXI Interface—AXI4-Stream

- ➤ No address channel, no read and write, always just master to slave
 - Effectively an AXI4 "write data" channel
- > Unlimited burst length
 - AXI4 max 256
 - AXI4-Lite does not burst
- Virtually same signaling as AXI Data Channels
 - Protocol allows merging, packing, width conversion
 - Supports sparse, continuous, aligned, unaligned streams

AXI4-Stream Transfer

Streaming Applications

May not have packets

- E.g. Digital up converter
 - · No concept of address
 - Free-running data (in this case)
 - In this situation, AXI4-Stream would optimize to a very simple interface

➤ May have packets

- E.g. PCle
 - Their packets may contain different information
 - · Typically bridge logic of some sort is needed

Outline

- **➤** Zynq All Programmable SoC (AP SoC)
- **➤** Zynq AP SoC Processing System (PS)
- **▶** Processor Peripherals
- **➤** Clock, Reset, and Debug Features
- **▶** AXI Interfaces
- **>** Summary

Summary

- ➤ The Zynq-7000 processing platform is a system on a chip (SoC) processor with embedded programmable logic
- > The processing system (PS) is the hard silicon dual core consisting of
 - APU and list components
 - Two Cortex-A9 processors
 - NEON co-processor
 - General interrupt controller (GIC)
 - · General and watchdog timers
 - I/O peripherals
 - External memory interfaces

Summary

- > The programmable logic (PL) consists of 7 series devices
- AXI is an interface providing high performance through point-to-point connection
- > AXI has separate, independent read and write interfaces implemented with channels
- The AXI4 interface offers improvements over AXI3 and defines
 - Full AXI memory mapped
 - AXII ite.
 - AXI Stream
- > Tightly coupled AXI ports interface the PL and PS for maximum performance
- > The PS boots from a selection of external memory devices
- > The PL is configured by and after the PS boots
- The PS provides clocking resources to the PL
- The PL may not provide clocking to the PS