10 Théorème d'Hadamard-Lévy

Leçons 203, 204, 214, 215, 220

Ref: [Bernis & Bernis]

On montre dans ce développement un résultat proche du théorème d'inversion globale : on relaxe l'hypothèse d'injectivité faite dans celui-ci, et on demande en contrepartie que la fonction considérée soit propre. La preuve du théorème est compliquée dans le cas de f de classe C^1 , et on fait l'hypothèse simplificatrice de classe C^2 , qui permet d'avoir les hypothèses nécessaires au théorème de Cauchy-Lipschitz.

Théorème 1 On se donne une fonction $f \in C^2(\mathbb{R}^n, \mathbb{R}^n)$. Il y a équivalence entre

- (i) f est un C^1 -difféomorphisme de \mathbb{R}^n sur \mathbb{R}^n ,
- (ii) pour tout $x \in \mathbb{R}^n$, df_x est inversible, et f est propre ¹.

Démonstration.

Étape 1. Sens direct.

On commence par le sens le plus simple. Puisque f est un C^1 -difféomorphisme, on a $f^{-1} \circ f = \mathrm{Id}_{\mathbb{R}^n}$, et donc par dérivation on chaîne, on a pour $x \in \mathbb{R}^n$

$$df_{f(x)}^{-1} \circ df_x = \mathrm{Id}_{\mathbb{R}^n}$$
.

Donc df_x est inversible à gauche, et comme on est en dimension finie, on en déduit que df_x est inversible, et que son inverse est $df_{f(x)}^{-1}$.

On fixe maintenant r > 0. L'image réciproque de la boule fermée $\overline{B(0,r)}$ est l'image directe par f^{-1} de cette même boule. Comme f^{-1} est continue, cette image est compacte, donc fermée bornée, disons incluse dans $\overline{B(0,R)}$, pour R > 0. Ainsi, si ||x|| > R, ||f(x)|| > r. Donc f est propre.

Étape 2. Un candidat pour l'inverse.

On suppose que f est nulle en 0 (quitte à la changer par f - f(0)). On fixe un intervalle ouvert I contenant 0 et 1, et $s: I \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ une application de classe C^1 par rapport à la première variable. On souhaite 2 avoir pour tout $(t, x) \in I \times \mathbb{R}^n$

$$f \circ s(t, x) = tx.$$

On dérive cette relation par rapport à la première variable : on a

$$df_{s(t,x)} \circ \partial_t s(t,x) = x.$$

Donc, comme la différentielle de f est inversible en tout point, on a la relation souhaitée si et seulement si pour tout $(t,x) \in \mathbb{R}^n$

$$\begin{cases} \partial_t s(t,x) = (df_{s(t,x)})^{-1}(x) \\ f \circ s(0,x) = 0 \end{cases}$$

C'est dire que s convient si et seulement si $s(\cdot,x)$ est solution sur I, pour $x \in \mathbb{R}^n$, du problème de Cauchy

$$\begin{cases} \frac{dy}{dt} = (df_y)^{-1}(x) \\ y(0) = 0 \end{cases}$$

Étape 3. Existence de l'inverse à droite.

On pose ainsi

$$F: \left| \begin{array}{ccc} \mathbb{R}^n \times \mathbb{R}^n & \longrightarrow & \mathbb{R}^n \\ (x,y) & \longmapsto & (df_y)^{-1}(x) \end{array} \right.$$

Cette application est de classe C^1 , comme composée des fonctions de classe C^1 suivantes :

- les projections sur la première et deuxième coordonnée (applications linéaires),
- $-y \longmapsto df_y$, qui est de classe C^1 puisque f est C^2 ,
- 1. À savoir que ||f(x)|| tend vers l'infini si ||x|| tend vers l'infini.
- 2. En fait, l'important n'est pas que cela fonctionne sur tout I, mais sur un intervalle contenant 0 et 1.

- l'inversion dans $GL_n(\mathbb{R})$
- $-(A,x) \longmapsto A(x)$ quand A est linéaire (application bilinéaire)

En particulier, $F(x, \cdot)$ est de classe C^1 pour tout x, donc le problème de Cauchy admet une unique solution maximale (Cauchy-Lipschitz) $s(\cdot, x)$ sur I. On note $(t^-(x), t^+(x))$ l'intervalle sur lequel $s(\cdot, x)$ est défini. On sait que celui-ci contient 0, on veut montrer qu'il contient aussi 1. Supposons donc par l'absurde que $t^+(x_0)$ est inférieur à 1, pour un certain $x_0 \in \mathbb{R}^n$. D'après le principe de sortie de tout compact, $s(t, x_0)$ tend donc vers l'infini (en norme) quand t tend vers $t^+(x_0)$. Comme f est propre, c'est donc aussi le cas de $f \circ s(t, x_0)$. Mais cette quantité vaut tx_0 , c'est absurde puisque

$$||tx_0|| \underset{t \to t^+(x_0)}{\longrightarrow} t^+(x_0) ||x_0|| < +\infty.$$

Donc $t^+(x_0) > 1$. Ainsi, l'application $s(1, \cdot)$ est définie sur \mathbb{R}^n , et d'après le raisonnement effectué, est un inverse à droite de f.

Étape 4. Conclusion par connexité et inversion locale.

D'après le théorème de Cauchy-Lipschitz à paramètres ([Benzoni-Gavage] Th 5.15), l'application s est de classe C^1 sur $[0,1] \times \mathbb{R}^n$, donc $s_1 := s(1,\cdot)$ est de classe C^1 sur \mathbb{R}^n . De plus, comme $f \circ s = \mathrm{Id}_{\mathbb{R}^n}$, f est nécessairement surjective, et s_1 injective. Il reste donc à montrer que f est injective. Pour cela, on montre que s_1 est surjective. On raisonne par connexité, en montrant que $s_1(\mathbb{R}^n)$ est ouvert et fermé dans \mathbb{R}^n .

- On se donne une suite $(x_n)_n$ d'éléments de \mathbb{R}^n telle que $s_1(x_n)$ converge vers un certain $y \in \mathbb{R}^n$. Alors la suite x_n converge vers f(y), par continuité de f et parce que s_1 est un inverse à droite de f. Comme s_1 est continue, on en déduit que $s_1(x_n)$ converge vers $s_1 \circ f(y)$. Donc, par unicité de la limite, $y = s_1(f(y)) \in s_1(\mathbb{R}^n)$. Donc $s_1(\mathbb{R}^n)$ est fermé.
- Soit $y = s_1(x) \in s_1(\mathbb{R}^n)$. On veut exhiber un voisinage ouvert de y inclus dans $s_1(\mathbb{R}^n)$. En différenciant au point x la relation $f \circ s_1 = \mathrm{Id}_{\mathbb{R}^n}$, on obtient

$$df_{s_1(x)} \circ ds_{1x} = \mathrm{Id}_{\mathbb{R}^n}$$
.

Par le raisonnement effectué à l'étape 1, ds_{1x} est inversible. D'après le théorème d'inversion locale, il existe donc un voisinage U autour de x dans \mathbb{R}^n et un voisinage V de $y = s_1(x)$ dans \mathbb{R}^n tel que s_1 réalise un difféomorphisme entre U et V. En particulier, V est un ouvert inclus dans $s_1(\mathbb{R}^n)$ contenant y. Donc $s_1(\mathbb{R}^n)$ est ouvert.

Finalement $s_1(\mathbb{R}^n)$ est ouvert et fermé, non vide, donc égal à \mathbb{R}^n , ce qui montre que s_1 est surjective. Ainsi, s_1 est bijective, et en composant par s_1^{-1} à droite dans l'égalité

$$f \circ s_1 = \mathrm{Id}_{\mathbb{R}_n}$$

on obtient $f = s_1^{-1}$. Donc f est bijective, d'inverse s_1 , qui est bien de classe C^1 .

Remarque. Le raisonnement présenté ici est le même que dans [Bernis & Bernis], aux détails près de la preuve d'ouverture de $s_1(\mathbb{R}^n)$ et de la bijectivité de f, que je trouve un poil plus simples de cette manière.