Mixture Models and Expectation-Maximization (EM)

Prof. Nicholas Zabaras University of Notre Dame Notre Dame, IN, USA

Email: <u>nzabaras@gmail.com</u>
URL: <u>http://www.zabaras.com/</u>

November 1, 2017

Contents

- ☐ Gaussian Mixtures Revisited
- Mixtures of Bernoulli distributions
- MAP estimation
- Bayesian Linear Regression
- □ <u>Variational Inference</u>, <u>Incremental EM</u>
- ☐ Fitting with Missing Data

Note: Other topics related to EM can be found on this more extensive set of lecture notes.

- Bishop CM, <u>Pattern Recognition and Machine Learning</u>, Springer, 2006 (Chapter 8)
- Murphy, K., <u>Machine Learning: A Probabilistic Perspective</u> (Chapter 11)
- M. Jordan, An Introduction to Graphical Models, unpublished (Chapters 9 and 10)

Gaussian Mixtures Revisited

Gaussian Mixtures Revisited

We will maximize the log of the joint distribution of latent and observed variables (complete data log likelihood), averaged with respect to the posterior distribution $p(\mathbf{Z}|\mathbf{X})$ of the latent variables $\langle \ln p(\mathbf{X}, \mathbf{Z}|\theta) \rangle - \text{i.e. replace } \mathbf{z}_{nk}$ with the $\gamma(\mathbf{z}_{nk})$ (E step of the EM algorithm)

$$\gamma(z_{nk}) = \mathbb{E}[z_{nk}]$$
 (responsibilities)

■ This will give us the M step of the EM algorithm: Maximize

$$\langle \ln p(\boldsymbol{X}, \boldsymbol{Z} | \theta) \rangle = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \{ \ln \pi_k + \ln \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \}$$

Gaussian Mixtures Revisited

Our original problem was to maximize the complete-data log likelihood:

$$\ln p\left(\boldsymbol{X}, \boldsymbol{Z} \middle| \theta\right) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_{k} + \ln \mathcal{N}\left(\boldsymbol{x}_{n} \middle| \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}\right) \right\}$$

We change the problem statement by maximizing the log of the joint distribution of latent and observed variables, averaged with respect to the posterior distribution $p(\mathbf{Z}|\mathbf{X})$ of the latent variables $<\ln p(\mathbf{X},\mathbf{Z}|\theta)>$ – i.e. replace z_{nk} with the $\gamma(z_{nk})$

$$\langle \ln p(\mathbf{X}, \mathbf{Z} | \theta) \rangle = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \{ \ln \pi_k + \ln \mathcal{N}(\mathbf{X} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \}$$

where

$$\gamma(z_{nk}) = \mathbb{E}[z_{nk}]$$
 (responsibilities)

Gaussian Mixtures Revisited: Summary

- Assume that for each x_n we are given the discrete variable (latent assignment variables) z_n
- Complete-data log-likelihood and expectation

$$p\left(\boldsymbol{X}, \boldsymbol{Z} \middle| \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi} \right) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{nk}} \mathcal{N}\left(\boldsymbol{x}_{n} \middle| \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \right)^{z_{nk}}$$

$$\ln p\left(\boldsymbol{X}, \boldsymbol{Z} \middle| \boldsymbol{\theta} \right) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_{k} + \ln \mathcal{N}\left(\boldsymbol{x}_{n} \middle| \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \right) \right\}$$

$$Q\left(\boldsymbol{\theta}\right) = \mathbb{E}_{\boldsymbol{Z}} \left[\ln p\left(\boldsymbol{X}, \boldsymbol{Z} \middle| \boldsymbol{\theta} \right) \right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_{k} + \ln \mathcal{N}\left(\boldsymbol{x}_{n} \middle| \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \right) \right\}$$

Gaussian Mixtures Revisited: Summary

- This leads to the EM algorithm for Gaussian mixtures discussed earlier.
- Choose initial values for μ^{old} , Σ^{old} and π^{old} , and use these to evaluate the responsibilities (E step).
- Keep the responsibilities fixed and maximize

$$Q(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{Z}} \left[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) \right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_{k} + \ln \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \right\}$$

with respect to μ_k , Σ_k and π_k (M step).

This leads to closed form solutions for μ^{new} , Σ^{new} and π^{new} identical <u>as</u> <u>before</u> (see proof of one of these next):

$$N_{k} = \sum_{n} \gamma(z_{nk}), \boldsymbol{\mu}_{k}^{new} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \boldsymbol{x}_{n}}{N_{k}}, \boldsymbol{\Sigma}_{k}^{new} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{T}}{N_{k}}, \boldsymbol{\pi}_{k}^{new} = \frac{N_{k}}{N}$$

Gaussian Mixtures Revisited: Summary

$$Q(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{Z}} \left[\ln p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) \right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_k + \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

We can write the rhs as follows:

$$-\frac{1}{2}\sum_{n=1}^{N}\sum_{k=1}^{K}\gamma(z_{nk})(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k})^{T}\boldsymbol{\Sigma}_{k}^{-1}(\boldsymbol{x}_{n}-\boldsymbol{\mu}_{k})+const$$

Where the constant are terms independent of μ_k. Taking derivative wrt μ_k:

$$-\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{\Sigma}_{k}^{-1}(\boldsymbol{\mu}_{k} - \boldsymbol{x}_{n}) = 0 \Rightarrow \boldsymbol{\mu}_{k} \sum_{n=1}^{N} \gamma(z_{nk}) = \sum_{n=1}^{N} \gamma(z_{nk}) \boldsymbol{x}_{n} \Rightarrow \boldsymbol{\mu}_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \boldsymbol{x}_{n}}{N_{k}}$$

 \square Similarly, one can derive expressions for Σ^{new} and π^{new} .

EM Algorithm Vs. K-Means Algorithm

- K-Means does hard (unique) assignment of each point to a class. EM makes soft assignments based on posterior probabilities (responsibilities).
- ☐ K-Means is a certain limit of EM for Gaussian mixtures.
- Consider a Gaussian model with $\mathcal{N}(x \mid \mu_k, \Sigma_k) = \frac{1}{(2\pi\varepsilon)^{D/2}} \exp\left\{-\frac{1}{2\varepsilon} \|x \mu_k\|^2\right\}$ for all k (same ε)
- □ For a fixed ε and K-Gaussian mixture and assuming all $\pi_j \neq 0$, the responsibilities are:

s are:
$$\gamma(z_{nk}) = \frac{\exp\left\{-\left\|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}\right\|^{2} / 2\varepsilon\right\} \pi_{k}}{\sum_{j} \exp\left\{-\left\|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{j}\right\|^{2} / 2\varepsilon\right\} \pi_{j}}$$

Consider: $\mathcal{E} \to 0$. Note that in this case and regardless of the $\pi_j \neq 0$ $\gamma(z_{nk}) \to r_{nk}$, where $r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_j \|x_n - \mu_j\|^2 \\ 0 & \text{otherwise} \end{cases}$ i.e. each data point is closest mean.

EM Algorithm Vs. K-Means Algorithm

 \square The EM re-estimation equation for the μ_k becomes in this case:

$$\mu_{k} = \frac{1}{\sum_{n} \gamma(z_{nk})} \sum_{n=1}^{N} \gamma(z_{nk}) x_{n} \to \frac{\sum_{n=1}^{N} r_{nk} x_{n}}{\sum_{n=1}^{N} r_{nk}}$$

- ☐ The mixing coefficients π_k are equal to the fraction of data points assigned to cluster k.
- \square The expected complete-data log-likelihood for $\varepsilon \to 0$ becomes:

$$Q(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{Z}} \left[\ln p \left(\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi} \right) \right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma(z_{nk}) \left\{ \ln \pi_{k} + \ln \mathcal{N} \left(\boldsymbol{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} \right) \right\}$$

$$\rightarrow -\frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \left\| \boldsymbol{x}_{n} - \boldsymbol{\mu}_{k} \right\|^{2} + \text{constant}$$

 $lue{}$ Thus maximizing $Q(oldsymbol{ heta})$ is equivalent to $\underline{\mathsf{mimimizing}}\, \mathsf{J}\, \underline{\mathsf{in}}\, \mathsf{K-means}$

Mixture of Discrete Binary Variables

□ Consider *D* binary variables x_i , i=1,...,D each governed by a Bernoulli distribution with parameter μ_i (x_i independent given μ):

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{D} \mu_{k}^{x_{k}} (1 - \mu_{k})^{1 - x_{k}},$$

$$\mathbf{x} = \{x_{1}, ..., x_{D}\}^{T}, \boldsymbol{\mu} = \{\mu_{1}, ..., \mu_{D}\}^{T}$$

The mean and covariance of this distribution are:

$$\mathbb{E}[x] = \mu, \operatorname{cov}[x] = \operatorname{diag}\{\mu_i(1-\mu_i)\}$$

Consider a mixture of these Bernoulli distributions

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\pi}) = \sum_{k=1}^{K} \pi_{k} p(\mathbf{x}|\boldsymbol{\mu}_{k}), \quad \text{where} \quad p(\mathbf{x}|\boldsymbol{\mu}_{k}) = \prod_{i=1}^{D} \mu_{ki}^{x_{i}} (1 - \mu_{ki})^{1 - x_{i}},$$

$$\boldsymbol{\pi} = \{\pi_{1}, ..., \pi_{K}\}^{T}, \, \boldsymbol{\mu} = \{\boldsymbol{\mu}_{1}, ..., \boldsymbol{\mu}_{K}\}^{T}$$

- Lazarsfeld, P. F. and N. W. Henry (1968). <u>Latent Structure Analysis</u>. Houghton Mifflin.
- McLachlan, G. J. and D. Peel (2000). <u>Finite Mixture Models</u>. Wiley.

$$p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\pi}) = \sum_{k=1}^{K} \pi_{k} p(\mathbf{x}|\boldsymbol{\mu}_{k}), \quad \text{where} \quad p(\mathbf{x}|\boldsymbol{\mu}_{k}) = \prod_{i=1}^{D} \mu_{ki}^{x_{i}} (1 - \mu_{ki})^{1 - x_{i}},$$

$$\boldsymbol{\pi} = \{\pi_{1}, ..., \pi_{K}\}^{T}, \, \boldsymbol{\mu} = \{\boldsymbol{\mu}_{1}, ..., \boldsymbol{\mu}_{K}\}^{T}$$

For <u>any mixture distribution</u> of the form $p(x) = \sum_{k=1}^{\infty} \pi_k p(x|k)$ with mean and covariance of $p(\mathbf{x}|k)$ being μ_k and Σ_k , respectively, the mean and covariance of this mixture distribution are given as:

$$\mathbb{E}[\mathbf{x}] = \sum_{k=1}^{K} \pi_{k} \boldsymbol{\mu}_{k}$$

$$\operatorname{cov}[\mathbf{x}] = \sum_{k=1}^{K} p(z=k) \mathbb{E}[\mathbf{x}/z=k],$$

$$\operatorname{cov}[\mathbf{x}] = \sum_{k=1}^{K} p(z=k) \mathbb{E}[\mathbf{x}\mathbf{x}^{T}/z=k] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^{T}$$

$$\operatorname{cov}[\mathbf{x}] = \mathbb{E}[\mathbf{x}\mathbf{x}^{T}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^{T} = \sum_{k=1}^{K} \pi_{k} \mathbb{E}_{k}[\mathbf{x}\mathbf{x}^{T}] - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^{T}$$

$$= \sum_{k=1}^{K} \pi_{k} \left\{ \boldsymbol{\Sigma}_{k} + \boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{T} \right\} - \mathbb{E}[\mathbf{x}] \mathbb{E}[\mathbf{x}]^{T}$$

☐ The joint distribution is not factorized. The mixture distribution captures correlations between variables unlike the single product of Bernoullis model.

Example: Mixture of Bernoullis and MLE

- We fit a mixture of Bernoullis to the MNIST handwritten digit data set using K = 10 and visualize the centroids (MLE of cluster means). The numbers on the top are MLE of the mixing weights.
- This discovers some digit classes, but it creates multiple clusters for some digits and no clusters for others. The reasons for this include:
 - The model is very simple (no notion of shape or a stroke).
 - Some digits exhibit a degree of visual variety (e.g. 7's with and without the cross bar).
 - We need K≥10 clusters for this data.
 - Using a large K, we create multiple versions of the same digit. One can use model selection to prevent this.
 - The likelihood function is not convex, so we may be stuck in a local optimum.
- One must be cautious trying to interpret any clusters that are discovered by the method.
- Using informative priors can help.

0.12 0.14 0.12 0.06 0.13

0.07 0.05 0.15 0.07 0.09

<u>mixBerMnistEM</u> from <u>Kevin Murphys' PMTK</u>

If we are given a data set $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ then the log likelihood function for this model is given by

$$\ln p(\boldsymbol{X}|\boldsymbol{\mu},\boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k p(\boldsymbol{x}_n|\boldsymbol{\mu}_k) \right\}$$

- Note the summation inside the log. The MLE again does not have a closed solution.
- To derive the EM algorithm, we introduce a latent variable \mathbf{z} associated with each instance of \mathbf{x} . $\mathbf{z} = (z_1, \dots, z_K)^T$ is a binary K-dimensional variable having a single component equal to 1, with all other components equal to 0:

$$p(\mathbf{x}_n|\mathbf{z},\boldsymbol{\mu}) = \prod_{k=1}^{K} p(\mathbf{x}|\boldsymbol{\mu}_k)^{z_k}$$

The prior for the latent variables is:

$$p(z|\boldsymbol{\pi}) = \prod_{k=1}^{K} \pi_k^{z_k}$$

The complete-data log-likelihood is:

$$\ln p\left(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\mu}, \boldsymbol{\pi}\right) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \ln \pi_{k} \right\}$$

$$+\sum_{i=1}^{D} [x_{ni} \ln \mu_{ki} + (1-x_{ni}) \ln (1-\mu_{ki})]$$
, where: $X = \{x_n\}, Z = \{z_n\}$

□ Take the expectation of the complete-data log likelihood with respect to the posterior distribution of the latent variables:

$$\mathbb{E}_{\mathbf{Z}}\left[\ln p\left(\mathbf{X},\mathbf{Z}|\boldsymbol{\mu},\boldsymbol{\pi}\right)\right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left\{\ln \pi_{k} + \sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1-x_{ni}) \ln(1-\mu_{ki})\right]\right\}, \text{ where } : \gamma_{nk} = \mathbb{E}\left[z_{nk}\right]$$

 $\gamma(z_{nk})$ is the posterior probability, or responsibility, of component k given data point \mathbf{x}_{n} .

☐ E-Step: Compute the Responsibilities using Bayes' rule

$$\gamma_{nk} = \mathbb{E}\left[z_{nk}\right] = \frac{\sum_{z_n} z_{nk} \prod_{k'} \left(\pi_{k'} p(\boldsymbol{x}_n \mid \boldsymbol{\mu}_{k'})\right)^{z_{nk'}}}{\sum_{z_n} \prod_{j} \left(\pi_{j} p(\boldsymbol{x}_n \mid \boldsymbol{\mu}_{j})\right)^{z_{nj}}} = \frac{\pi_{k} p(\boldsymbol{x}_n \mid \boldsymbol{\mu}_{k})}{\sum_{j=1}^{K} \pi_{j} p(\boldsymbol{x}_n \mid \boldsymbol{\mu}_{j})}$$

Considering the sum in n,

$$\mathbb{E}_{\mathbf{Z}}\left[\ln p\left(\mathbf{X},\mathbf{Z} | \boldsymbol{\mu},\boldsymbol{\pi}\right)\right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left\{\ln \pi_{k} + \sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1-x_{ni}) \ln(1-\mu_{ki})\right]\right\}$$

we note that the responsibilities come through the following terms:

$$N_k = \sum_{n=1}^N \gamma_{nk}$$
, $\overline{x}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$

 \square N_k is the effective number of data points associated with component k.

- \square M step: Maximize the expected complete-data log likelihood with respect to the parameters μ_k and π .
- If we set the derivative of

$$\mathbb{E}_{\mathbf{Z}}\left[\ln p\left(\mathbf{X},\mathbf{Z} | \boldsymbol{\mu},\boldsymbol{\pi}\right)\right] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left\{\ln \pi_{k} + \sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1-x_{ni}) \ln(1-\mu_{ki})\right]\right\}$$

with respect to μ_{ki} equal to zero and rearrange the terms, we obtain

$$\frac{\partial}{\partial \mu_{ki}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln(1 - \mu_{ki}) \right] = 0 \Rightarrow \sum_{n=1}^{N} \gamma_{nk} \left(\frac{x_{ni}}{\mu_{ki}} - \frac{1 - x_{ni}}{1 - \mu_{ki}} \right) = 0 \Rightarrow$$

$$\sum_{n=1}^{N} \frac{x_{ni} \gamma_{nk} - \mu_{ki} \gamma_{nk}}{\mu_{ki} \left(1 - \mu_{ki}\right)} = 0 \Rightarrow \sum_{n=1}^{N} x_{ni} \gamma_{nk} = \mu_{ki} \sum_{n=1}^{N} \gamma_{nk} \Rightarrow \qquad \mu_{k} = \overline{x}_{k} \equiv \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma_{nk} x_{n}$$

☐ The mean of component k is equal to a weighted mean of the data. The weighting coefficients are given by the responsibilities that component k takes for data points.

- For the maximization with respect to π_k , we enforce the constraint $\sum_k \pi_k = 1$.
- ☐ As for the mixture of Gaussians, we then obtain

$$\pi_k = \frac{N_k}{N}$$

☐ The mixing coefficient for component k is given by the effective fraction of points in the data set explained by that component.

Degenerate Case: Initialization

Note that the following holds for the mixture of Bernoulli distributions:

$$\mathbb{E}\left[x\right] = \sum_{k=1}^{K} \pi_k \boldsymbol{\mu}_k = \sum_{k=1}^{K} \pi_k \frac{1}{N_k} \sum_{n=1}^{N} \gamma(z_{nk}) \boldsymbol{x}_n = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n \sum_{k=1}^{K} \gamma(z_{nk}) = \overline{\boldsymbol{x}}$$

If we initialize the means by setting them to a common value $\mu_k = \widehat{\mu}, k = 1, ..., K$, then:

$$\gamma_{nk} = \frac{\pi_k p(\mathbf{x}_n \mid \boldsymbol{\mu}_k)}{\sum_{j=1}^K \pi_j p(\mathbf{x}_n \mid \boldsymbol{\mu}_j)} = \frac{\pi_k}{\sum_{j=1}^K \pi_j} = \pi_k \text{ (independent of } n)$$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk} x_n = \pi_k \frac{1}{N_k} N \overline{x} = \overline{x}$$

- i.e. all means converge to the MLE estimate and will never be updated.
- ☐ This is a degenerate case that needs to be avoided with proper initialization.

- In contrast to the mixture of Gaussians, there are no singularities when the likelihood function goes to infinity.
- This can be seen by noting that the likelihood function is bounded above. Indeed:

$$0 \le p(\mathbf{x}_n \mid \boldsymbol{\mu}_k) \le 1, 0 \le \pi_k \le 1, \sum_{k} \pi_k = 1$$

☐ Then note that the max value of $lnp(X|\mu,\pi)$ is zero.

$$\ln p(\boldsymbol{X}|\boldsymbol{\mu},\boldsymbol{\pi}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k p(\boldsymbol{x}_n|\boldsymbol{\mu}_k) \right\}$$

- ☐ The likelihood function can go to zero max value 1
 - These singularities would not be found provided that EM is not initialized to a pathological starting point.
 - Recall that the EM algorithm always increases the value of the likelihood function until a local maximum is found.

Example: Modeling of Handwritten Digits

- We illustrate the Bernoulli mixture with modeling of handwritten digits.
- We convert the digit images to binary vectors by setting all elements whose values exceed 0.5 to 1 and the remaining elements to 0.
- We fit N = 600 digits, comprising the digits '2', '3', and '4', with a mixture of K = 3 Bernoulli distributions. We run 10 iterations of EM.
- The mixing coefficients were initialized to $\pi_k = 1/K$, and the parameters μ_{kj} were set to random values chosen uniformly in the range (0.25, 0.75) and then normalized to satisfy the constraint

$$\sum_{j} \mu_{kj} = 1$$

Example: Modeling of Handwritten Digits

☐ A mixture of 3 Bernoulli distributions is able to find the 3 clusters in the data corresponding to the different digits.

- MatLab Code
- On the top: examples from the data after converting the pixel values from grey scale to binary using a threshold of 0.5.
- $lue{}$ On the bottom: the first three images show the parameters μ_{ki} for each of the three components in the mixture model.
- On the bottom, last image: we fit the data set using a single multivariate Bernoulli distribution with MLE. This amounts to averaging the counts in each pixel.

Mixture of Bernoulli Distributions: Summary

Bernoulli distributions over binary data vectors

$$p\left(\boldsymbol{x}|\boldsymbol{\mu}\right) = \prod_{k=1}^{D} \mu_{k}^{x_{k}} \left(1 - \mu_{k}\right)^{1 - x_{k}}$$

- Mixture of Bernoullis can model variable correlations
- Bernoulli is member of the exponential family
 - > The model is log-linear but the mixture is not. The complete-data log-likelihood however is.
- Simple EM algorithm to find MLE parameters
 - ightharpoonup E-Step: Compute responsibilities $\gamma(z_{nk}) \propto \pi_k p(x_n | \mu_k)$
 - M-Step: Update parameters

$$\pi_k = \sum_n \gamma(z_k) / N, \, \boldsymbol{\mu}_k = \sum_{n=1}^N \gamma(z_k) \boldsymbol{x}_n / (N \pi_k)$$

Mixture of Bernoulli Distributions: Extensions

- The conjugate prior for the parameters of a Bernoulli distribution is given by the beta distribution.
 - Recall that a beta prior is equivalent to introducing additional effective observations of x.
- We can introduce priors into the Bernoulli mixture model, and use EM to maximize the posterior probability distributions.
- Can extend the analysis of Bernoulli mixtures to multinomial binary variables having M > 2 states by making use of the discrete distribution

$$p(\boldsymbol{x} \mid \boldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{x_k}$$

■ We can then introduce Dirichlet prior $p(\pi|\alpha)$ and Beta priors $p(\mu_k|a_k,b_k)$.

The E-Step remains the same and in the M-step we need to maximize the following:

$$\mathcal{L}\left(\theta, \theta^{old}\right) + \ln p(\theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left\{ \ln \pi_{k} + \sum_{i=1}^{D} \left[x_{ni} \ln \mu_{ki} + (1 - x_{ni}) \ln(1 - \mu_{ki}) \right] \right\} + \sum_{j=1}^{K} \sum_{i'=1}^{D} \left(\left(a_{j} - 1 \right) \ln \mu_{ji'} + \left(b_{j} - 1 \right) \ln \left(1 - \mu_{ji'} \right) \right) + \sum_{l=1}^{K} \left(\alpha_{l} - 1 \right) \ln \pi_{l}$$

Maximizing wrt to
$$\mu_{ki}$$
 gives: $\mu_{ki} = \frac{N_k \bar{x}_{ki} + a_k - 1}{N_k + a_k - 1 + b_k - 1}, \ \bar{x}_{ki} = \frac{1}{N_k} \sum_{n=1}^{N} \gamma_{nk} x_{ni}$

Maximization wrt to π_k using a Lagrange multiplier for $\sum_i \pi_i = 1$ gives:

$$\pi_k = \frac{N_k + \alpha_k - 1}{N + \alpha_0 - K}$$

□ The overfitting of MLE may be severe. This can be addressed by performing MAP estimation. The new auxiliary function is the expected complete data log-likelihood plus the log prior:

$$\boldsymbol{\mathscr{L}} \;\; \boldsymbol{\theta}, \boldsymbol{\theta}^{old} \;\; = \left[\sum_{i} \sum_{k} \gamma_{ik} \log \pi_{ik} + \sum_{i} \sum_{k} \gamma_{ik} \log p \;\; \boldsymbol{x}_{i} \, | \, \boldsymbol{\theta}_{k} \;\; \right] + \log p \;\; \pi \;\; + \sum_{k} \log p \;\; \boldsymbol{\theta}_{k}$$

- ☐ The E step is unchanged, but the M step needs to be modified.
- For the prior on the mixture weights, it is natural to use a Dirichlet prior, $\pi \sim \text{Dir}(\alpha)$, since this is conjugate to the categorical distribution. The MAP estimate is given by

$$\pi_k = \frac{N_k + \alpha_k - 1}{N + \sum \alpha_k - K}$$

 \Box For a uniform prior, $\alpha_k = 1$, this reduces to MLE.

- The prior on θ_k , $p(\theta_k)$, depends on the form of the class conditional densities. We discuss the case of GMMs below.
- For simplicity, let us consider a conjugate prior of the form

$$p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \mathcal{N}\mathcal{I}W(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k | \mathbf{m}_0, \kappa_0, \nu_0, \boldsymbol{S}_0)$$

Using the results from an earlier lecture on Bayesian inference for Gaussian models, the MAP estimate is given by

$$\widehat{\boldsymbol{\mu}}_{k} = \frac{\kappa_{0}\boldsymbol{m}_{0} + N_{k}\overline{\boldsymbol{x}}_{k}}{N_{k} + \kappa_{0}}, N_{k} = \sum_{i} \gamma_{ik}, \overline{\boldsymbol{x}}_{k} = \frac{\sum_{i} \gamma_{ik}\boldsymbol{x}_{i}}{N_{k}}$$

$$\widehat{\boldsymbol{\Sigma}}_{k} = \frac{\boldsymbol{S}_{0} + \boldsymbol{S}_{k} + \frac{\kappa_{0}N_{k}}{\kappa_{0} + N_{k}}(\overline{\boldsymbol{x}}_{k} - \boldsymbol{m}_{0})(\overline{\boldsymbol{x}}_{k} - \boldsymbol{m}_{0})^{T}}{\nu_{0} + N_{k} + D + 2}, \boldsymbol{S}_{k} = \sum_{i=1}^{N} \gamma_{ik}(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}}_{k})(\boldsymbol{x}_{i} - \overline{\boldsymbol{x}}_{k})^{T}$$

- We now illustrate the benefits of using MAP estimation instead of ML estimation in the context of GMMs. We apply EM to some synthetic data in D dimensions, using either ML or MAP estimation.
- We count the trial as a failure if there are numerical issues involving singular matrices. For each dimensionality, we conduct 5 random trials. The results are illustrated next using N = 100.

- For D large, ML estimation crashes, whereas MAP works.
- When using MAP estimation, we need to specify the hyper-parameters. We can set $\kappa_0 = 0$, so that the μ_k are unregularized, since the numerical problems only arise from Σ_k . In this case, the MAP estimates simplify to

$$\widehat{\boldsymbol{\mu}}_k = \overline{\boldsymbol{x}}_k, \ \widehat{\boldsymbol{\Sigma}}_k = \frac{\boldsymbol{S}_0 + \boldsymbol{S}_k}{v_0 + N_k + D + 2}$$

☐ Using the pooled variance s_j for each dimension j, we set:

$$S_0 = \frac{1}{K^{1/D}} diag(s_1^2, ..., s_D^2), s_j = \frac{1}{N} \sum_{i=1}^{N} (x_{ij} - x_j)^2$$

- Fraley, C. and A. Raftery (2002). Modelbased clustering, discriminant analysis, and density estimation. J. of the Am. Stat. Assoc. (97), 611–631 (see pp. 163)
- \square With the $1/K^{1/D}$ term, the volume of each ellipsoid is then given by

$$\left| \boldsymbol{S}_0 \right| = \frac{1}{K} \left| diag\left(\boldsymbol{s}_1^2, ..., \boldsymbol{s}_D^2 \right) \right|$$

The parameter v_0 controls how strongly we believe this prior. The weakest proper prior we can use, is to set $v_0 = D + 2$.

Other Applications of EM

Recall <u>Bayesian Linear Regression</u>:

$$p(\boldsymbol{t}|\boldsymbol{w},\boldsymbol{\beta},\boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(t_{n};\boldsymbol{w}^{T}\boldsymbol{\phi}(\boldsymbol{x}_{n}),\boldsymbol{\beta}^{-1}) \qquad \text{Likelihood}$$

$$p(\boldsymbol{w}|\alpha) = \mathcal{N}(\boldsymbol{w};\alpha^{-1}\boldsymbol{I}) \qquad \qquad \text{Prior}$$

$$p(\boldsymbol{t}|\alpha,\boldsymbol{\beta},\boldsymbol{X}) = \int p(\boldsymbol{t}|\boldsymbol{w},\boldsymbol{\beta})p(\boldsymbol{w}/\alpha)d\boldsymbol{w} \qquad \text{Marginal Likelihood}$$

- Our goal is to maximize the evidence function $p(t|\alpha, \beta)$ with respect to α and β .
- Because w is marginalized out, we can regard it as a latent variable, and hence we can optimize this marginal likelihood function using EM.
- \square E step: compute the posterior distribution of **w** given the current setting of the parameters α and β and then use this to find the expected complete-data log likelihood.
- \square M step: maximize this quantity with respect to α and β .

We have already derived the posterior distribution of w given by

$$p(w|t) = \mathcal{N}(w; m_N, S_N),$$

 $m_N = S_N(S_0^{-1}m_0 + \beta\Phi^Tt)$ $S_N^{-1} = S_0^{-1} + \beta\Phi^T\Phi$, $S_0^{-1} = \alpha^{-1}I$

■ The complete-data log likelihood function is then given by

In $p(t, w|\alpha, \beta) = Inp(t/w, \beta) + Inp(w|\alpha)$ where:

$$p(t|\mathbf{w},\beta,\mathbf{X}) = \prod_{n=1}^{\infty} \mathcal{N}(t_n; \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1})$$
$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}; \alpha^{-1}\mathbf{I})$$

Taking the expectation wrt the posterior of w gives:

$$\mathbb{E}\left[\ln p\left(\boldsymbol{t},\boldsymbol{w}|\alpha,\beta\right)\right] = \frac{M}{2}\ln\left(\frac{\alpha}{2\pi}\right) - \frac{\alpha}{2}\mathbb{E}\left[\boldsymbol{w}^{T}\boldsymbol{w}\right] + \frac{N}{2}\ln\left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2}\sum_{n=1}^{N}\mathbb{E}\left[\left(t_{n}-\boldsymbol{w}^{T}\boldsymbol{\phi}_{n}\right)^{2}\right]$$

□ M Step: Setting the derivatives wrt to α and β zero and using $\mathbb{E}[\mathbf{w}^T\mathbf{w}] = \mathbf{m}_N^T\mathbf{m}_N + Tr[\mathbf{S}_N]$ and $\mathbb{E}[(t_n - \mathbf{w}^T\phi_n)^2] = (t_n - \mathbf{m}_N^T\phi_n)^2 + Tr[\phi_n\phi_n^T\mathbf{S}_N]$ we obtain:

$$\alpha^{-1} = \frac{1}{M} \left(\boldsymbol{m}_{N}^{T} \boldsymbol{m}_{N} + Tr[\boldsymbol{S}_{N}] \right), \quad \beta^{-1} = \frac{1}{N} \left(\left\| \boldsymbol{t} - \boldsymbol{\Phi} \boldsymbol{m}_{N} \right\| + Tr[\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{S}_{N}] \right)$$

The re-estimation eqs

$$\alpha^{-1} = \frac{1}{M} \left(\boldsymbol{m}_{N}^{T} \boldsymbol{m}_{N} + Tr(\boldsymbol{S}_{N}) \right), \quad \beta^{-1} = \frac{1}{N} \left(\left\| \boldsymbol{t} - \boldsymbol{\Phi} \boldsymbol{m}_{N} \right\| + Tr[\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{S}_{N}] \right)$$

seem slightly different from the corresponding result

$$\alpha = \frac{\gamma}{\boldsymbol{m}_{N}^{T} \boldsymbol{m}_{N}}, \quad \gamma = \sum_{i} \frac{\lambda_{i}}{\alpha + \lambda_{i}}$$

derived by direct evaluation of the evidence function.

 \square Each involve inversion (or eigen decomposition) of an $M \times M$ matrix and hence have comparable computational cost per iteration.

The two approaches of determining α converge to the same result (assuming they find the same local maximum of the evidence function). This can be verified by noting that the quantity γ is defined by

$$\gamma = M - \alpha \sum_{i} \frac{1}{\alpha + \lambda_{i}} = M - \alpha Tr[S_{N}]$$

$$S_{N}^{-1} = S_{0}^{-1} + \beta \Phi^{T} \Phi, \quad S_{0}^{-1} = \alpha^{-1} I$$

$$\beta \Phi^{T} \Phi u_{i} = \lambda_{i} u_{i}$$

At a stationary point of the evidence function, the re-estimation equation γ

 $\alpha = \frac{\gamma}{\boldsymbol{m}_N^T \boldsymbol{m}_N}$

will be self-consistently satisfied and hence we can substitute for γ to give:

$$\alpha \boldsymbol{m}_{N}^{T} \boldsymbol{m}_{N} = \gamma = M - \alpha Tr[\boldsymbol{S}_{N}]$$

□ Solving for α we obtain $\alpha^{-1} = \frac{1}{M} (m_N^T m_N + Tr[S_N])$

The EM Algorithm Revisited

- Let X be the observed variables, Z denote all latent variables and θ the set of all parameters.
- Our goal is as before to maximize the likelihood:

$$p(X/\theta) = \int p(X, Z \mid \theta) dZ$$

- lacksquare We assume that $p(\boldsymbol{X}, \boldsymbol{Z} \,|\, \boldsymbol{\tilde{\boldsymbol{\theta}}})$ is easier to compute than $p(\boldsymbol{X} \,|\, \boldsymbol{\theta})$.
- ☐ Introduce an arbitrary distribution q(**Z**) over the latent variables. One can then show:

$$\ln p(\boldsymbol{X}/\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q||p|)$$

where:

$$\mathcal{L}(q,\boldsymbol{\theta}) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z}/\boldsymbol{\theta})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$KL(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}/X,\boldsymbol{\theta})}{q(\mathbf{Z})} \right\} d\mathbf{Z}, KL(q||p) \ge 0, KL(q||p) = 0 \text{ if } q(\mathbf{Z}) = p(\mathbf{Z}|X,\boldsymbol{\theta})$$

For the proof of the identity shown earlier, note that:

$$\mathcal{L}(q, \boldsymbol{\theta}) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z}/\boldsymbol{\theta})}{q(\mathbf{Z})} \right\} d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \ln \left(p(\mathbf{X}, \mathbf{Z}/\boldsymbol{\theta}) \right) d\mathbf{Z} - \int q(\mathbf{Z}) \ln q(\mathbf{Z}) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \left[\ln \left(p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) \right) + \ln p(\mathbf{X}/\boldsymbol{\theta}) \right] d\mathbf{Z} - \int q(\mathbf{Z}) \ln q(\mathbf{Z}) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \ln \left(p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta}) \right) d\mathbf{Z} + \ln p(\mathbf{X}/\boldsymbol{\theta}) - \int q(\mathbf{Z}) \ln q(\mathbf{Z}) d\mathbf{Z}$$

$$= \int q(\mathbf{Z}) \ln \left(\frac{p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right) d\mathbf{Z} + \ln p(\mathbf{X}/\boldsymbol{\theta}) = \ln p(\mathbf{X}/\boldsymbol{\theta}) - KL(q \parallel p)$$

Lower Bound on Model Evidence $p(X|\theta)$

KL(q||p) is Kullback-Leibler distance between q and the posterior p(Z|X,q)

$$KL(q||p) = -\int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{Z}/X,\boldsymbol{\theta})}{q(\mathbf{Z})} \right\} d\mathbf{Z}, KL(q||p) \ge 0, KL(q||p) = 0 \text{ if } q(\mathbf{Z}) = p(\mathbf{Z}|X,\boldsymbol{\theta})$$

From

$$\ln p(X/\theta) = \mathcal{L}(q,\theta) + KL(q||p|)$$

it follows that $\mathcal{L}(q, \theta)$ is a lower bound of Inp(X|q):

$$\ln p(X/\theta) = \mathcal{L}(q,\theta) + KL(q||p|) \ge \mathcal{L}(q,\theta)$$

 \square Maximizing $\mathcal{L}(q,\theta)$ over $q(\mathbf{Z})$ would give the true posterior but this is not computationally tractable.

Variational Lower Bound

Approximate $\ln p(X \mid \theta)$ with its lower bound $\mathcal{L}(q, \theta)$ Make $\mathcal{L}(q, \theta)$ as big as possible or equivalently make $KL(q \mid\mid p)$ as small as possible

Work instead

with $\mathcal{L}(q, \boldsymbol{\theta})$

■ Maximizing $\mathcal{L}(q, \theta)$ over a free form q would give the true posterior but this is not computationally tractable

$$q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \theta)$$

☐ The EM algorithm is a two-stage iterative optimization technique for finding maximum likelihood solutions. We can use the decomposition

$$\ln p(\boldsymbol{X}/\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q||p|)$$

to define the EM algorithm and to demonstrate that it does indeed maximize the log likelihood.

- \Box Suppose that the current value of the parameter vector is θ^{old} .
- In the E step, the lower bound $\mathcal{L}(q, \theta^{old})$ is maximized with respect to $q(\mathbf{Z})$ while holding θ^{old} fixed.
- The solution to this maximization problem is easily seen by noting that the value of $\ln p(\mathbf{X}|\theta^{old})$ does not depend on $q(\mathbf{Z})$ and so the largest value of $\mathcal{L}(q, \theta^{old})$ will occur when the KL divergence vanishes, i.e. when $\mathrm{KL}(q||p) = 0$

 $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \, \theta^{old}).$

In this case, the lower bound will equal the log likelihood.

The lower bound then becomes:

$$\mathcal{L}(q, \boldsymbol{\theta}) = \sum_{z} \underbrace{p(\boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{\theta}_{old})}_{play \ the \ role \ of \ responsibilities} \ln \left\{ \frac{p(\boldsymbol{X}, \boldsymbol{Z} \mid \boldsymbol{\theta})}{p(\boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{\theta}_{old})} \right\}$$

 \Box This as a function of θ is the expected complete-data log likelihood up to an additive constant.

- In the subsequent M step, the distribution $q(\mathbf{Z})$ is held fixed and $\mathcal{L}(q, \boldsymbol{\theta})$ is maximized with respect to θ to give some new value θ^{new} .
- This causes \mathcal{L} to increase (unless it is already at a maximum), which will cause the corresponding log likelihood function to increase.
- Because q is determined using the old parameter values rather than the new values and is held fixed during the M step, it will not equal the new posterior distribution $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{new}})$,

and hence there will be a nonzero

KL divergence.

The increase in the log likelihood function is therefore greater than the increase in the lower bound, as shown.

- ☐ We can show that the maximization in the M step is that of the expected value of the complete data log likelihood.
- Indeed, if we substitute $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X},\theta)$ in the lower bound $\mathcal{L}(q,\theta) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X},\mathbf{Z}/\theta)}{q(\mathbf{Z})} \right\} d\mathbf{Z}$

we see that the lower bound after the E step becomes

$$\mathcal{L}(q, \boldsymbol{\theta}) = \int q(\mathbf{Z}) \ln \left\{ \frac{p(\mathbf{X}, \mathbf{Z}/\boldsymbol{\theta})}{q(\mathbf{Z})} \right\} d\mathbf{Z} = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old})} d\mathbf{Z}$$

$$= \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) d\mathbf{Z} - \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}^{old})$$

$$= Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) + const$$

where the constant is the entropy of q and therefore independent of θ .

 \square $\mathcal{Q}(\mathbf{q}, \mathbf{q}^{\text{old}})$ is the expectation of the complete data log likelihood wrt posterior of the latent variables.

☐ Thus in the M step, we maximize the expectation of the complete-data log likelihood, as we saw earlier in the case of mixtures of Gaussians.

$$\mathcal{L}(q, \boldsymbol{\theta}) = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) d\mathbf{Z} - \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}^{old})$$
$$= Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) + const$$

- □ Note that the variable **6** over which we are optimizing appears only inside the logarithm.
- □ If $p(\mathbf{Z}, \mathbf{X}|\boldsymbol{\theta})$ is from the exponential family, then the log cancels the exponential leading to an M step that will be simpler than the maximization of $p(\mathbf{X}|\boldsymbol{\theta})$.

E-Step

lacksquare E-step: Maximizes $\mathcal{L}(q, heta)$ w.r.t. q for fixed heta

$$\mathcal{L}(q,\boldsymbol{\theta}) = \ln p(\boldsymbol{X} \mid \boldsymbol{\theta}) - KL(q(\boldsymbol{Z}) \parallel p(\boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{\theta}))$$

At every step, the EM algorithm increases this lower bound on the log probability on the data (log-likelihood function)

M-Step

- The M-step, maximizes $\mathcal{L}(q,\theta)$ w.r.t. θ while q is kept fixed (function of θ^{old}). $\mathcal{L}(q,\theta) = \int q(\mathbf{Z}) \ln p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta}) d\mathbf{Z} \int q(\mathbf{Z}) \ln q(\mathbf{Z}) d\mathbf{Z}$
- The $\ln p(X|\theta_{new})$ goes up at least as much as \mathcal{L} (q, θ^{new}) creating $\mathit{KL}(q||p)$.
- \square \mathcal{L} maximized for $\theta = \arg \max_{\theta} \int q(\mathbf{Z}) \ln p(\mathbf{X}, \mathbf{Z} | \theta) d\mathbf{Z}$

EM in the Space of Parameters

- Can view the EM algorithm in the space of parameters.
- The red curve is the incomplete data log likelihood function whose value we wish to maximize.
- We start with some initial parameter value θ^(old), and in the first E step we evaluate the posterior distribution over latent variables, which gives rise to a lower bound £(q, θ^(old)) whose value equals the log likelihood at θ^(old) as shown by the blue curve.

<u>emLogLikelihoodMax</u> from <u>PMTK</u>

EM in the Space of Parameters

- Note that the bound $\mathcal{L}(q,\theta)$ with $q(\mathbf{Z})=p(\mathbf{Z}|\mathbf{X},\theta^{(\text{old})})$ is tangent to the log likelihood $lnp(\mathbf{X}|\theta)$ at $\theta^{(\text{old})}$ i.e. that both curves have the same gradient.
- This is obvious after noting that KL(allp) is at its minimum (i.e. 0)

when $q(\mathbf{Z})=p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^{(\text{old})})$.

This means that:

$$\frac{\partial}{\partial \theta} KL(q \parallel p) = 0$$

since $p(\mathbf{Z}|\mathbf{X},\theta)$ depends on θ .

From $\mathcal{L}(q,\theta) = \ln p(X \mid \theta) - KL(q \mid\mid p)$ we conclude that:

$$\frac{\partial}{\partial \theta} \mathcal{L}(q, \boldsymbol{\theta}^{(old)}) = \frac{\partial}{\partial \theta} \ln p(\boldsymbol{X} \mid \boldsymbol{\theta}^{(old)})$$

EM in the Space of Parameters

- ☐ The lower bound $\mathcal{L}(q,\theta)$ is a convex function having a unique maximum (for mixture components from the exponential family).
- The subsequent E step then constructs a bound £(q,θ^(new)) that is tangential at θ^(new) as shown by the green curve.

EM in General: Parameter Space Representation

- \Box E-Step resets bound $\mathcal{L}(q,\theta)$ on $\ln p(X|\theta)$ at $\theta=\theta^{\text{old}}$, it is
 - ightharpoonup Tight at $\theta = \theta^{\text{old}}$,
 - \triangleright Tangetial at $\theta = \theta^{\text{old}}$,
 - \triangleright Convex (easy) in θ for exponential family mixture components

EM In General

- Consider an i.i.d. data set, **X** that comprises of N data points $\{x_n\}$. **Z** comprises N corresponding latent variables $\{z_n\}$, n = 1, ..., N.
- From the independence assumption, we have

$$p(\boldsymbol{X},\boldsymbol{Z}) = \prod_{n} p(\boldsymbol{x}_{n},\boldsymbol{z}_{n})$$

and, by marginalizing over $\{z_n\}$ we have

$$p(\boldsymbol{X}) = \prod_{n} p(\boldsymbol{x}_n)$$

☐ Using the sum and product rules, we see that the posterior probability that is evaluated in the E step takes the form

$$p(\boldsymbol{Z}/\boldsymbol{X},\boldsymbol{\theta}) = \frac{p(\boldsymbol{X},\boldsymbol{Z}\mid\boldsymbol{\theta})}{\sum_{\boldsymbol{Z}} p(\boldsymbol{X},\boldsymbol{Z}\mid\boldsymbol{\theta})} = \frac{\prod_{n=1}^{N} p(\boldsymbol{x}_{n},\boldsymbol{z}_{n}\mid\boldsymbol{\theta})}{\sum_{\boldsymbol{Z}} \prod_{n=1}^{N} p(\boldsymbol{x}_{n},\boldsymbol{z}_{n}\mid\boldsymbol{\theta})} = \prod_{n=1}^{N} p(\boldsymbol{z}_{n}\mid\boldsymbol{x}_{n},\boldsymbol{\theta})$$

EM In General

$$p(\mathbf{Z}/\mathbf{X},\theta) = \prod_{n=1}^{N} p(\mathbf{z}_n \mid \mathbf{x}_n, \theta)$$

- ☐ Thus the posterior distribution of the latent variables also factorizes with respect to n.
- □ For the Gaussian mixture model: the responsibility that each of the mixture components takes for a particular \mathbf{x}_n depends only on the value of \mathbf{x}_n and on θ , not on the values of the other data points.
- We have seen that both the E and the M steps of the EM algorithm are increasing the value of a well-defined bound on the log likelihood function and that the complete EM cycle will change the model parameters in such a way as to cause the log likelihood to increase (unless it is already at a maximum, in which case the parameters remain unchanged).

Using EM to Maximize $p(\theta|X)$

- We can also use the EM algorithm to maximize the posterior distribution p(θ|X) for models in which we have introduced a prior p(θ) over the parameters.
- □ Note that as a function of θ , we have $p(\theta|X) = p(\theta,X)/p(X)$ and so

$$\ln p(\theta|X) = \ln p(\theta,X) - \ln p(X)$$

lacksquare Making use of the decomposition $\ln p(X/\theta) = \mathcal{L}(q,\theta) + \mathit{KL}(q\|p)$

In
$$p(\theta|\mathbf{X}) = \mathcal{L}(q, \theta) + KL(q||p) + Inp(\theta) - In p(\mathbf{X})$$

 $\geq \mathcal{L}(q, \theta) + Inp(\theta) - In p(\mathbf{X})$

where $\ln p(X)$ is a constant.

We can again optimize the right-hand side alternately with respect to q and \(\theta\).

Using EM to Maximize p(θ|X)

$$\ln p(\theta|X) = \mathcal{L}(q, \theta) + KL(q||p) + \ln p(\theta) - \ln p(X)$$

$$\geq \mathcal{L}(q, \theta) + \ln p(\theta) - \ln p(X)$$

$$\mathcal{L}(q, \boldsymbol{\theta}) = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) d\mathbf{Z} - \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old}) \ln p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}^{old})$$
$$= Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{old}) + const$$

- Since q appears only in $\mathcal{L}(q, \Theta)$, optimization with respect to q gives rise to the same E step equations as for the standard EM.
- The M-step equations are modified through the introduction of the prior In p(θ), which requires only a small modification to the standard MLE M-step equations.

Generalizations of the EM Algorithm

Incremental EM Algorithm

- Consider e.g. for the case of a Gaussian mixture performing an update for data point m in which the old and new values of the responsibilities are denoted $\gamma^{\text{old}}(z_{\text{mk}})$ and $\gamma^{\text{new}}(z_{\text{mk}})$.

 $\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \boldsymbol{x}_{n}, \quad N_{k} = \sum_{n=1}^{N} \gamma(z_{nk})$

from which we obtain (see proof next)

$$\boldsymbol{\mu}_{k}^{new} = \boldsymbol{\mu}_{k}^{old} + \left(\frac{\boldsymbol{\gamma}^{new}(\boldsymbol{z}_{mk}) - \boldsymbol{\gamma}^{old}(\boldsymbol{z}_{mk})}{N_{k}^{new}}\right) (\boldsymbol{x}_{m} - \boldsymbol{\mu}_{k}^{old})$$

$$N_{k}^{new} = N_{k}^{old} + \boldsymbol{\gamma}^{new}(\boldsymbol{z}_{mk}) - \boldsymbol{\gamma}^{old}(\boldsymbol{z}_{mk})$$

☐ The results for the mixing coefficients and covariances are:

$$\begin{split} & \boldsymbol{\pi}_{k}^{new} = \boldsymbol{\pi}_{k}^{old} - \frac{\boldsymbol{\gamma}^{old}\left(\boldsymbol{z}_{mk}\right)}{N} + \frac{\boldsymbol{\gamma}^{new}\left(\boldsymbol{z}_{mk}\right)}{N} \\ & \boldsymbol{\Sigma}_{k}^{new} = \boldsymbol{\Sigma}_{k}^{old} - \frac{\boldsymbol{\gamma}^{old}\left(\boldsymbol{z}_{mk}\right)}{N_{k}^{new}} \Big(\Big(\boldsymbol{x}_{m} - \boldsymbol{\mu}_{k}^{old}\Big) \Big(\boldsymbol{x}_{m} - \boldsymbol{\mu}_{k}^{old}\Big)^{T} - \boldsymbol{\Sigma}_{k}^{old} \Big) + \frac{\boldsymbol{\gamma}^{new}\left(\boldsymbol{z}_{mk}\right)}{N_{k}^{new}} \Big(\Big(\boldsymbol{x}_{m} - \boldsymbol{\mu}_{k}^{new}\Big)^{T} - \boldsymbol{\Sigma}_{k}^{old} \Big) \end{split}$$

Incremental EM Algorithm

Start with $N_k^{old} = \sum_n \gamma^{old}(z_{nk})$ and obtain N_k^{new} by updating $\gamma^{new}(z_{mk})$ of the data point \mathbf{x}_m :

$$N_k^{new} = \sum_{n \neq m} \gamma^{old}(z_{nk}) + \gamma^{new}(z_{mk}) = N_k^{old} - \gamma^{old}(z_{mk}) + \gamma^{new}(z_{mk})$$

Similarly start with $\mu_k^{old} = \frac{1}{N_k} \sum_{n=1}^N \gamma^{old}(z_{nk}) x_n$ and obtain μ_k^{new} by updating the responsibilities $\gamma^{new}(z_{mk})$ of the data point \mathbf{x}_m :

$$\begin{split} \boldsymbol{\mu}_{k}^{new} &= \frac{1}{N_{k}^{new}} \left(\sum_{n \neq m}^{N} \boldsymbol{\gamma}^{old} \left(\boldsymbol{z}_{nk} \right) \boldsymbol{x}_{n} + \boldsymbol{\gamma}^{new} \left(\boldsymbol{z}_{mk} \right) \boldsymbol{x}_{m} \right) = \frac{1}{N_{k}^{new}} \left(\sum_{n}^{N} \boldsymbol{\gamma}^{old} \left(\boldsymbol{z}_{nk} \right) \boldsymbol{x}_{n} - \boldsymbol{\gamma}^{old} \left(\boldsymbol{z}_{mk} \right) \boldsymbol{x}_{m} + \boldsymbol{\gamma}^{new} \left(\boldsymbol{z}_{mk} \right) \boldsymbol{x}_{m} \right) \\ &= \frac{1}{N_{k}^{new}} \left(N_{k}^{old} \boldsymbol{\mu}_{k}^{old} - \boldsymbol{\gamma}^{old} \left(\boldsymbol{z}_{mk} \right) \boldsymbol{x}_{m} + \boldsymbol{\gamma}^{new} \left(\boldsymbol{z}_{mk} \right) \boldsymbol{x}_{m} \right) \\ &= \frac{1}{N_{k}^{new}} \left(\left(N_{k}^{new} - \boldsymbol{\gamma}^{new} \left(\boldsymbol{z}_{mk} \right) + \boldsymbol{\gamma}^{old} \left(\boldsymbol{z}_{mk} \right) \right) \boldsymbol{\mu}_{k}^{old} - \boldsymbol{\gamma}^{old} \left(\boldsymbol{z}_{mk} \right) \boldsymbol{x}_{m} + \boldsymbol{\gamma}^{new} \left(\boldsymbol{z}_{mk} \right) \boldsymbol{x}_{m} \right) \\ &= \boldsymbol{\mu}_{k}^{old} + \left(\frac{\boldsymbol{\gamma}^{new} \left(\boldsymbol{z}_{mk} \right) - \boldsymbol{\gamma}^{old} \left(\boldsymbol{z}_{mk} \right)}{N_{k}^{new}} \right) \left(\boldsymbol{x}_{m} - \boldsymbol{\mu}_{k}^{old} \right) \end{split}$$

Incremental EM Algorithm

- ☐ Thus both the E step and the M step take fixed time that is independent of the total number of data points.
- Because the parameters are revised after each data point, rather than waiting until after the whole data set is processed, this incremental version can converge faster than the batch version.
- Each E or M step in this incremental algorithm is increasing the value of $\mathcal{L}(q, \theta)$ and, as we have shown above, if the algorithm converges to a local (or global) maximum of $\mathcal{L}(q, \theta)$, this will correspond to a local (or global) maximum of the log likelihood function ln p($\mathbf{X}|\mathbf{\theta}$).

EM For Missing Data Problems

We want to fit a joint density model by MLE but we have holes in our data matrix due to missing data (NaNs). Let $O_{ij} = 1$ if component j of data case i is observed, and let $O_{ij} = 0$ otherwise. Let \mathbf{X}_v be the visible data, and \mathbf{X}_h be the missing (hidden) data:

$$X_{v} = \{x_{ij} : O_{ij} = 1\}, X_{h} = \{x_{ij} : O_{ij} = 0\}$$

Our goal is to compute

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(\boldsymbol{X}_{v} | \boldsymbol{\theta}, \boldsymbol{O})$$

Under the missing at random assumption, we have

$$p(X_{v} | \boldsymbol{\theta}, \boldsymbol{O}) = \prod_{i=1}^{N} p(x_{iv} | \boldsymbol{\theta})$$

Here \mathbf{x}_{iv} is a vector created from row i and the columns $\{j: O_{ij} = 1\}$.

Hence the log-likelihood has the form

$$\log p(\boldsymbol{X}_{v} | \boldsymbol{\theta}, \boldsymbol{O}) = \sum_{i} \log p(\boldsymbol{x}_{iv} | \boldsymbol{\theta}), where : p(\boldsymbol{x}_{iv} | \boldsymbol{\theta}) = \sum_{\boldsymbol{x}_{ih}} p(\boldsymbol{x}_{iv}, \boldsymbol{x}_{ih} | \boldsymbol{\theta})$$

We finally obtain our familiar form of LVMs:

$$\log p(\boldsymbol{X}_{v} | \boldsymbol{\theta}, \boldsymbol{O}) = \sum_{i} \log \sum_{\boldsymbol{x}_{ih}} p(\boldsymbol{x}_{iv}, \boldsymbol{x}_{ih} | \boldsymbol{\theta})$$

- We want to fit an MVN by MLE based on those rows of the data matrix that are fully observed. If there are no such rows, we can use some ad-hoc imputation procedures, and then compute an initial MLE.
- E step: Once we have θ^{t-1} , we can compute the expected complete data log likelihood at iteration t as follows:

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{t-1}) = \mathbb{E}\left[\sum_{i=1}^{N} \log \mathcal{N}(\boldsymbol{x}_{i} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) | \mathcal{D}, \boldsymbol{\theta}^{t-1}\right] =$$

$$= -\frac{N}{2} \log |2\pi\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i} \mathbb{E}\left[(\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{i} - \boldsymbol{\mu})\right]$$

$$= -\frac{N}{2} \log |\boldsymbol{\Sigma}| - \frac{ND}{2} \log(2\pi) - \frac{1}{2} tr(\boldsymbol{\Sigma}^{-1} \mathbb{E}[S(\boldsymbol{\mu})])$$

where:

$$\mathbb{E}[S(\boldsymbol{\mu})] = \sum_{i} \mathbb{E}[(\boldsymbol{x}_{i} - \boldsymbol{\mu})(\boldsymbol{x}_{i} - \boldsymbol{\mu})^{T}] = \sum_{i} (\mathbb{E}[\boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}] + \boldsymbol{\mu}\boldsymbol{\mu}^{T} - 2\boldsymbol{\mu}\mathbb{E}[\boldsymbol{x}_{i}]^{T})$$

- To simplify the notation, we drop the conditioning of the expectation on \mathcal{D} and $\boldsymbol{\theta}^{t-1}$. We need to compute to expected sufficient statistics.
- We use the results for the conditionals of a MVN from an earlier lecture.

$$\boldsymbol{x}_{ih} \mid \boldsymbol{x}_{iv}, \theta \sim \mathcal{N}(\boldsymbol{m}_{i}, \boldsymbol{V}_{i})$$

$$oldsymbol{m}_i = oldsymbol{\mu}_h + oldsymbol{\Sigma}_{hv} oldsymbol{\Sigma}_{vv}^{-1} ig(oldsymbol{x}_{iv} - oldsymbol{\mu}_v ig), oldsymbol{V}_i = oldsymbol{\Sigma}_{hh} - oldsymbol{\Sigma}_{hv} oldsymbol{\Sigma}_{vh}^{-1} oldsymbol{\Sigma}_{vh}$$

Hence the expected sufficient statistics are

$$\mathbb{E}[\boldsymbol{x}_{i}] = (\mathbb{E}[\boldsymbol{x}_{ih}]; \boldsymbol{x}_{iv}) = (\boldsymbol{m}_{i}; \boldsymbol{x}_{iv}), \mathbb{E}[\boldsymbol{x}_{i}\boldsymbol{x}_{i}^{T}] = \mathbb{E}[\begin{pmatrix} \boldsymbol{x}_{ih} \\ \boldsymbol{x}_{iv} \end{pmatrix} (\boldsymbol{x}_{ih} \quad \boldsymbol{x}_{iv})] = \begin{pmatrix} \mathbb{E}[\boldsymbol{x}_{ih}\boldsymbol{x}_{ih}^{T}] & \mathbb{E}[\boldsymbol{x}_{ih}]\boldsymbol{x}_{iv}^{T} \\ \boldsymbol{x}_{iv}\mathbb{E}[\boldsymbol{x}_{ih}]^{T} & \boldsymbol{x}_{iv}\boldsymbol{x}_{iv}^{T} \end{pmatrix}$$

$$\mathbb{E}[\boldsymbol{x}_{ih}\boldsymbol{x}_{ih}^{T}] = \mathbb{E}[\boldsymbol{x}_{ih}]\mathbb{E}[\boldsymbol{x}_{ih}]^{T} + \boldsymbol{V}_{i} = \boldsymbol{m}_{i}\boldsymbol{m}_{i}^{T} + \boldsymbol{V}_{i}$$

- □ To simplify the notation we assume that the unobserved variables come before the observed variables in the node ordering.
- M-Step: By solving $\nabla Q(\theta, \theta^{(t-1)}) = 0$, we can show that the M step is equivalent to plugging the ESS into the MLE equations:

$$\mu^{t} = \frac{1}{N} \sum_{i} \mathbb{E}[x_{i}], \Sigma^{t} = \frac{1}{N} \sum_{i} \mathbb{E}[x_{i} x_{i}^{T}] - \mu^{t} (\mu^{t})^{T}$$

- EM is *not* equivalent to simply replacing variables by their expectations and plugging into the standard MLE formula; that ignores the posterior variance and results in incorrect estimates.

 Instead we must compute the expectation of the sufficient statistics and plug that into the usual equation for the MLE.
- We can now easily modify the algorithm to perform MAP estimation.

- Consider the imputation problem with N = 100 10-dim data cases, with 50% missing data. We fit the parameters using EM. Call the resulting parameters $\hat{\theta}$. We make predictions as $\mathbb{E}[x_{ih}|x_{iv},\hat{\theta}]$
- The results obtained using the learned parameters are as good as with the true parameters. Performance improves with more data, or with less missing data.
- One can also fit a mixture of Gaussians in the presence of partially observed data vectors x_i.

