MA3101

Analysis III

Autumn 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Contents

1	\mathbf{Euc}	elidean spaces	1
	1.1	\mathbb{R}^n as a vector space	1
		\mathbb{R}^n as a metric space	
	1.3	Continuous mans	9

1 Euclidean spaces

1.1 \mathbb{R}^n as a vector space

We are familiar with the vector space \mathbb{R}^n , with the standard inner product

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1 + \dots + x_n y_n.$$

The standard norm is defined as

$$\|\boldsymbol{x} - \boldsymbol{y}\|^2 = \langle \boldsymbol{x} - \boldsymbol{y}, \boldsymbol{x} - \boldsymbol{y} \rangle = \sum_{k=1}^n (x_i - y_i)^2.$$

Exercise 1.1. What are all possible inner products on \mathbb{R}^n ?

Solution. Note that an inner product is a bilinear, symmetric map such that $\langle \boldsymbol{x}, \boldsymbol{x} \rangle \geq 0$, and $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$ if and only if $\boldsymbol{x} = \boldsymbol{0}$. Thus, an product map on \mathbb{R}^n is completely and uniquely determined by the values $\langle \boldsymbol{e}_i, \boldsymbol{e}_j \rangle = a_{ij}$. Let A be the $n \times n$ matrix with entries a_{ij} . Note that A is a real symmetric matrix with positive entries. Now,

$$\langle \boldsymbol{x}, \boldsymbol{e}_{j} \rangle = x_{1}a_{1j} + \dots + x_{n}a_{nj} = \boldsymbol{x}^{\top}\boldsymbol{a}_{j},$$

where a_j is the j^{th} column of A. Thus,

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \boldsymbol{x}^{\top} \boldsymbol{a}_1 y_1 + \dots + \boldsymbol{x}^{\top} \boldsymbol{a}_n y_n = \boldsymbol{x}^{\top} A \boldsymbol{y}.$$

Furthermore, any choice of real symmetric A with positive entries produces an inner product.

MA3101: Analysis III

Theorem 1.1 (Cauchy-Schwarz). Given two vectors $v, w \in \mathbb{R}^n$, we have

$$|\langle \boldsymbol{v}, \boldsymbol{w} \rangle| \leq ||\boldsymbol{v}|| ||\boldsymbol{w}||.$$

Proof. This is trivial when w = 0. When $w \neq 0$, set $\lambda = \langle v, w \rangle / ||w||^2$. Thus,

$$0 \le \|\boldsymbol{v} - \lambda \boldsymbol{w}\|^2 = \|\boldsymbol{v}\|^2 - 2\lambda \langle \boldsymbol{v}, \boldsymbol{w} \rangle + \lambda^2 \|\boldsymbol{w}\|^2.$$

Simplifying,

$$0 \le \|\boldsymbol{v}\|^2 - \frac{|\langle \boldsymbol{v}, \boldsymbol{w} \rangle|^2}{\|\boldsymbol{w}\|^2}.$$

This gives the desired result. Clearly, equality holds if and only if $\boldsymbol{v} = \lambda \boldsymbol{w}$.

Theorem 1.2 (Triangle inequality). Given two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we have

$$\|v + w\| \le \|v\| + \|w\|.$$

Proof. Write

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 = \|\boldsymbol{v}\|^2 + 2\langle \boldsymbol{v}, \boldsymbol{w} \rangle + \|\boldsymbol{w}\|^2 \le \|\boldsymbol{v}\|^2 + 2|\langle \boldsymbol{v}, \boldsymbol{w} \rangle| + \|\boldsymbol{w}\|^2.$$

Applying Cauchy-Schwarz gives

$$\|\boldsymbol{v} + \boldsymbol{w}\|^2 \le (\|\boldsymbol{v}\| + \|\boldsymbol{w}\|)^2.$$

Equality holds if and only if $\mathbf{v} = \lambda \mathbf{w}$ for $\lambda \geq 0$.

1.2 \mathbb{R}^n as a metric space

Our previous observations allow us to define the standard metric on \mathbb{R}^n , seen as a point set.

$$d(\boldsymbol{x}, \boldsymbol{y}) = \|\boldsymbol{x} - \boldsymbol{y}\|.$$

Definition 1.1. For any $\delta > 0$, the set

$$B_{\delta}(\boldsymbol{x}) = \{ \boldsymbol{y} \in \mathbb{R}^n : d(\boldsymbol{x}, \boldsymbol{y}) < \delta \}$$

is called the open ball centred at $x \in \mathbb{R}^n$ with radius δ . This is also called the δ neighbourhood of x.

Definition 1.2. A set U is open in \mathbb{R}^n if for every $\boldsymbol{x} \in U$, there exists an open ball $B_{\delta}(\boldsymbol{x}) \subset U$.

Remark. Every open ball in \mathbb{R}^n is open.

Remark. Both \emptyset and \mathbb{R}^n are open.

MA3101: Analysis III

Definition 1.3. A set F is closed in \mathbb{R}^n if its complement $\mathbb{R}^n \setminus F$ is open in \mathbb{R}^n .

Remark. Both \emptyset and \mathbb{R}^n are closed.

Remark. Finite sets in \mathbb{R}^n are closed.

Theorem 1.3. Unions and finite intersections of open sets are open.

Corollary 1.3.1. Intersections and finite unions of closed sets are closed.

Definition 1.4. An interior point x of a set $S \subseteq \mathbb{R}^n$ is such that there is a neighbourhood of x contained within S.

Definition 1.5. An exterior point x of a set $S \subseteq \mathbb{R}^n$ is an interior point of the complement $\mathbb{R}^n \setminus S$.

Definition 1.6. A boundary point of a set is neither an interior point, nor an exterior point.

Definition 1.7. A limit point x of a set $S \subseteq \mathbb{R}^n$ is such that every neighbourhood of x contains a point from S.

Definition 1.8. The closure of a set $S \subseteq \mathbb{R}^n$ is the union of S and its limit points.

Remark. The closure of a set is the smallest closed set containing it.

1.3 Continuous maps

Definition 1.9. A map $f: X \to Y$ is continuous if the pre-image of every open set from Y is open in X.

Lemma 1.4. A map $f: X \to Y$ is continuous if the pre-image of every closed set from Y is closed in X.

MA3101: Analysis III

Theorem 1.5. The projection maps $\pi_i : \mathbb{R}^n \to \mathbb{R}$, $\mathbf{x} \mapsto x_i$ are continuous.

Proof. Let $U \subseteq \mathbb{R}$ be open; we claim that $\pi_i^{-1}(U)$ is open. Pick $\mathbf{x} \in \pi_i^{-1}(U)$, and note that $\pi_i(\mathbf{x}) = x_i \in U$. Thus, there exists $\delta > 0$ such that $(x_i - \delta, x_i + \delta) \subset U$. Now examine $B_{\delta}(\mathbf{x})$; for any point \mathbf{y} within this open ball, we have $d(\mathbf{x}, \mathbf{y}) < \delta$ hence

$$|x_i - y_i|^2 \le \sum_{k=1}^n (x_k - y_k)^2 = d(\boldsymbol{x}, \boldsymbol{y})^2 < \delta^2.$$

In other words, $\pi_i(\mathbf{y}) = y_i \in (x_i - \delta, x_i + \delta)$, hence $\pi_i B_{\delta}(\mathbf{x}) \subseteq (x_i - \delta, x_i + \delta) \subset U$. Thus, given arbitrary $\mathbf{x} \in \pi_i^{-1}(U)$, we have found an open ball $B_{\delta}(\mathbf{x}) \subset \pi_i^{-1}(U)$.

Lemma 1.6. Finite sums, products, and compositions of continuous functions are continuous.

Theorem 1.7. All polynomial functions of the coordinates in \mathbb{R}^n are continuous.

Example. The unit sphere $S^{n-1} \subset \mathbb{R}^n$ is closed. It is by definition the pre-image of the singleton closed set $\{1\}$ under the continuous map

$$\boldsymbol{x} \mapsto x_1^2 + \dots + x_n^2$$
.