Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum II

,				1	Λ
Ĥ	lol	ha	č.	•	u

Název úlohy: Hallův jev	
Jméno: Vladislav Wohlrath	Obor: FOF FAF FMUZV
Datum měření: 17. 10. 2016	Datum odevzdání:

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. Zjistěte závislost proudu vzorkem na přiloženém napětí při nulové magnetické indukci.
- 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem.
- 3. Výsledky měření zpracujte graficky a vyhodnoť te měrnou vodivost a Hallovu konstantu vzorku.
- 4. Vypočtěte pohyblivost a koncentraci nositelů náboje.

Teoretická část

Hlavním cílem této úlohy je změřit pohyblivost μ a koncentraci n nositelů náboje ve vzorku polovodiče. Měřený polovodič bude vzorek germania typu n, tedy majoritními nositeli náboje jsou elektrony. Pohyblivost a koncentraci elektronů určíme ze změřené měrné vodivosti σ a Hallovy konstanty R_H .

Použitý vzorek je tvaru hranolu s rozměry t, d a l a je opatřený šesti kontakty (viz [1]).

Měrnou vodivost vzorku určíme z naměřené voltampérové charakteristiky. Vzorek zapojíme podle schematu [1] a naměříme závislost I_{12} na U_{34} . Měrnou vodivost určíme z fitu

$$I_{12} = \sigma \frac{td}{l} U_{34} \,. \tag{1}$$

Pro měření Hallovy konstanty vložíme vzorek procházený proudem I_{12} do pole o magnetické indukci B. V důsledku působení magnetického pole na pohybující se elektrony ve vzorku se elektrony odchýlí a mezi kontakty 5 a 6 vznikne tzv. Hallovo napětí U_H . Hallovo konstantu určíme z fitu [1]

$$U_H = R_H \frac{I_{12} \cdot B}{t} \,. \tag{2}$$

Vzhledem k tomu, že kontakty 5 a 6 je obtížné umístit přesně symetricky, naměříme na nich při průchodu proudu vzorkem nenulové napětí i při nulové magnetické indukci. Abychom tento jev eliminovali, změříme napětí při obou polaritách magnetického pole a správnou hodnotu U_H určíme jako

$$|U_H| = |U_{56}^+ - U_{56}^-|/2. (3)$$

Mezi R_H a koncentrací n platí vztah [1]

$$R_H = \frac{r_H}{en} \,, \tag{4}$$

kde e je náboj elektronu a r_H je tzv. rozptylový faktor. V našem případě můžeme uvažovat $r_H = 3\pi/8$. [1] Ze známé R_H a σ můžeme vypočítat tzv. Hallovskou pohyblivost ze vztahu [1]

$$\mu = R_H \sigma \,. \tag{5}$$

Magnetické pole budeme realizovat elektromagnetem.

Výsledky měření

Měření proběhlo při normálním tlaku a pokojové teplotě (přibližně $22\,^{\circ}$ C). Všechny uvedené nejistoty jsou standardní a v zápisu 10(1) znamená číslo v závorce nejistotu v řádu poslední uvedené číslice.

Proud I_{12} jsme měřili digitálním multimetrem MASTECH MY-68 a napětí U_{34} a U_{56} digitálním multimetrem METEX MXD 4660A. Proud I_M procházející elektromagnetem jsme měřili analogovým ampérmetrem s třídou přesnosti 0,5 a rozsahem 6 A.

Vzorek germania měl rozměry $l = 6,000(5) \,\mathrm{mm}, \, d = 3,350(5) \,\mathrm{mm}$ a $t = 0,720(5) \,\mathrm{mm}$.

Naměřená voltampérová charakteristika je uvedena v tabulce 1 a zanesena do grafu 1.

Pomocí programu GNUPLOT 4.6 jsme lineární regresí určili konstantu úměrnosti mezi napětím U_{34} a proudem I_{12} jako 2,124(4) mA V⁻¹. Uvedená chyba je pouze statistická (chyba fitu). Porovnáním s (1) a metodou přenosu chyb jsme vypočítali měrnou vodivost vzorku $\sigma = 5,28(5) \,\mathrm{S\,m^{-1}}$, přičemž jsme odhadli vliv chyby původních měřených veličin na konečný výsledek a zohlednili ho.

Magnetické pole buzené elektromagnetem mělo indukci

$$B(T) = 0.098 \cdot I_M(A) \tag{6}$$

Hallovu konstantu jsme změřili pro dva různé proudy vzorkem — 2,50(6) mA a 5,00(9) mA. Označme je R_{H1} a R_{H2} resp. Teoreticky by se měly obě hodnoty shodovat.

Naměřené hodnoty jsou uvedeny v tabulce 2 a zaneseny do grafu 2.

Opět lineární regresí v programu GNUPLOT 4.6 jsme vypočítali konstanty úměrnosti mezi magnetickou indukcí B a Hallovým napětím U_H jako 223(2) mV T⁻¹ pro proud vzorkem 2,5 mA a 420(2) mV T⁻¹ pro 5 mA. Porovnáním s (2) a metodou přenosu chyb jsme vypočítali Hallovy konstanty $R_{H1} = 0.064(3)$ m³ A⁻¹ s⁻¹ a $R_{H2} = 0.060(3)$ m³ A⁻¹ s⁻¹, přičemž jsme opět odhadli vliv chyby měřených veličin.

Obě hodnoty se v rámci chyby shodují, má tedy smysl uvažovat skutečnou $R_H = 0.062(3) \,\mathrm{m}^3 \,\mathrm{A}^{-1} \,\mathrm{s}^{-1}$ jako jejich průměr.

Pro tuto hodnotu R_H jsme podle (5) vypočítali Hallovskou pohyblivost $\mu = 0.33(2)\,\mathrm{A\,s^2\,kg^{-1}}$ a podle (4) koncentraci nositelů náboje $n = 1.18(6)\cdot 10^{20}\,\mathrm{m^{-3}}$. Chybu jsme určili metodou přenosu chyb.

U_{34} (V)	$I_{12} (\mathrm{mA})$
0,232(2)	0,50(4)
0,474(2)	1,00(5)
0,712(2)	1,50(5)
0,946(3)	2,00(6)
1,183(3)	2,50(7)
1,423(3)	3,00(7)
1,651(3)	3,50(8)
1,885(3)	4,00(8)
2,11(2)	4,50(9)
2,34(2)	5,00(9)

Tabulka 1: Voltampérová chrakteristika vzorku

Graf 1: Voltampérová charakteristika vzorku

	$I_{12} = 2,50(6) \mathrm{mA}$			$I_{12} = 5,00(9) \mathrm{mA}$				
$I_M(A)$	B(T)	$U_{56}^{+}(mV)$	$U_{56}^{-}(mV)$	$U_H(\mathrm{mV})$	B(T)	$U_{56}^{+}({\rm mV})$	$U_{56}^{-}({\rm mV})$	$U_H(mV)$
0,5	0,049	49	26	12	0,049	101	61	20
1,0	0,098	59	14	23	0,098	123	38	42
1,5	0,147	71	4	33	0,147	145	20	63
2,0	0,196	82	-8	45	0,196	164	-2	83
2,5	0,245	94	-17	55	0,245	187	-19	103
3,0	0,294	104	-28	66	0,294	206	-41	124
3,5	0,343	116	-37	76	0,343	230	-59	145
4,0	0,392	126	-46	86	0,392	250	-77	163

Tabulka 2: Závislost Hallova napětí na magnetické indukci

Graf 2: Závislost Hallova napětí na magnetické indukci

Diskuze

Voltampérová charakteristika vzorku vyšla podle očekávání lineární (viz graf 1).

Stejně tak závislost Hallova napětí na magnetické indukci byla lineární při obou proudech vzorkem (viz graf 2). To je v souladu s naší teorií.

Při měření Hallova napětí jsme na vzorku zaznamenali parazitické kontaktní napětí, které se nám nepodařilo eliminovat a nebylo zcela zanedbatelné. Pro účely této úlohy jsme ho však zanedbali a nepředpokládáme, že by způsobená chyba byla výrazná (větší než 5%).

Závěr

Změřili jsme měrnou vodivost vzorku $\sigma = 5,28(5)\,\mathrm{S\,m^{-1}}$ a Hallovu konstantu $R_H = 0,062(3)\,\mathrm{m^3\,A^{-1}\,s^{-1}}$. Pomocí těchto údajů jsme určili Hallovskou pohyblivost elektronů ve vzorku $\mu = 0,33(2)\,\mathrm{A\,s^2\,kg^{-1}}$ a jejich koncentraci $n = 1,18(6)\cdot10^{20}\,\mathrm{m^{-3}}$.

Seznam použité literatury

1. Základní fyzikální praktikum [online]. [cit. 2017-01-26]. Dostupný z WWW: http://physics.mff.cuni.cz/vyuka/zfp/start.