Topics to Review: The following topics are fair game on the first exam. Remember, you are allowed to bring a review sheet to the exam that fills one side of an 8.5x11" piece of paper. Also remember to bring a calculator.

Transducers

- Resistive Transducers (e.g., strain gages, thermistors)
- Differential Capacitors
- LVDTs
- Thermocouples
- Piezoelectrics
- Detection Circuits
 - Wheatstone Bridge
 - Reactance Bridge
 - RLC Divider
- Amplifiers
 - Buffers
 - Inverting, Non-inverting
 - Summing
 - Differential, Instrumentation
 - CMRR
 - Non-ideal op amp characteristics (e.g., bias current, slew rate, resistor selection)
- Passive and Active Filters
 - LPF, HPF, Bandpass, Bandstop
 - Identify and derive transfer functions and cutoff/resonant frequencies for first- and second-order filters
 - Bode plots (sketch and interpret)
 - Design "simple" filters
 - Integrators and differentiators
- Comparators (with hysteresis)
- Relays and Transistors (to the level covered in lab and problem sets; used for isolation, switching and one-bit ADC)
- Binary Numbers
 - You do not need to know offset binary, 2's complement, octal, hexadecimal, BCD.
 - You do need to know how to convert between base $10 \leftrightarrow base 2$.
- Logic Gates & Truth Tables
- D & JK Flip Flops
- Shift Registers & Counters

- Analog-to-Digital Conversion
 - Saturation and quantization
 - Sampling frequency and aliasing
 - One-bit ADC
 - Flash ADC
 - Successive approximation (general approach, not details of schematic)
- Digital-to-Analog Conversion
 - Summer with scaled resistors
 - R-2R Ladder
 - Need for LPF
- Miscellaneous
 - Know the difference between zero-order, first-order and second-order systems
 - Input/output impedance
 - Noise (different types, ways to actively and passively reduce noise at different stages in circuits)
 - Resolution, sensitivity, accuracy, precision

Types of Questions to Expect

- Evaluate a circuit
 - Solve for voltages and currents
 - Sketch waveforms of outputs or mid-circuit nodes
 - Modify a circuit to change its behavior
 - Early errors will not hose you, but you must show all of your work!
- Design a circuit
 - Block diagrams are your best friend!
 - Always state your assumptions
 - More than one way to do it
- Explain / define something
- There will be no "plug-and-chug" problems; think homework problems with the ante upped a bit.
- There will be no LabVIEW questions.