學號: B03901109 系級: 電機四 姓名: 陳緯哲

1. (1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何? (Collaborators: 賴又誠,https://github.com/mike87179/project/tree/master/hw4)

答:

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	40, 120)	Θ
masking_1 (Masking)	(None,	40, 120)	Θ
bidirectional_1 (Bidirection	(None,	200)	132600
batch_normalization_1 (Batch	(None,	200)	800
dense_1 (Dense)	(None,	80)	16080
leaky_re_lu_1 (LeakyReLU)	(None,	80)	Θ
batch_normalization_2 (Batch	(None,	80)	320
dropout_1 (Dropout)	(None,	80)	Θ
dense_2 (Dense)	(None,	1)	81
Total params: 149,881 Trainable params: 149,321 Non-trainable params: 560			

Word Embedding 的部分參考了 Collaborator 的方法,使用了 gensim 的 word2vec,將每個字轉為 120 維度的向量,並使用 Skip-gram 的方式來取 feature; RNN 訓練的過程中使用了adam、Earlystop 等技巧,並將 batch size 設為 512,雖然 epoch 設定為 30,但很少會訓練到 30 個 epoch; 在 public 上的準確率為 0.82459,private 則有 0.82332

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何? 答:

Layer (type)	0utput	Shape	Param #
input_1 (InputLayer)	(None,	40)	Θ
masking_1 (Masking)	(None,	40)	Θ
embedding_1 (Embedding)	(None,	40, 120)	2400000
dense_1 (Dense)	(None,	40, 80)	9680
leaky_re_lu_1 (LeakyReLU)	(None,	40, 80)	Θ
batch_normalization_1 (Batch	(None,	40, 80)	320
dropout_1 (Dropout)	(None,	40, 80)	Θ
flatten_1 (Flatten)	(None,	3200)	Θ
dense_2 (Dense)	(None,	1)	3201
Total params: 2,413,201 Trainable params: 2,413,041 Non-trainable params: 160			

BOW 使用了助教提供的模型,字彙量因為 memory 的關係,無法設定太大,最後調整成 1000,轉換方式設定為 count,並使用 Adam、Earlystop,準確率有 0.75929(public)、0.75897(private)。

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。答:

原本使用 CBOW 對這兩句話分別測得的情緒分數為 0.74 與 0.98,在 label 上都被標為 positive,雖然我個人認為前者應該是 negative,而他較後者的情緒分數也確實較低。 後來我改為使用 Skip-gram,對於題目的那兩句話分別測得 0.22 與 0.98,我認為會改善如此多的原因是在於 CBOW 沒辦法準確利用" BUT" 對語意進行分析,而 skip_gram 的方式則可以準確分析 But 前後語意的差異;另外 BOW 的部分完全沒辦法分出差異,主要原因就是他無法利用詞彙的順序來判別語意,只能從單詞的意義中去判別。

	RNN(CBOW)	RNN(Skip-gram)	BOW
Today is a good day	0.74	0.38	0.62
today is hot	0.98	0.98	0.62

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。 答:

	有標點符號	只留下問號與驚嘆號	無標點符號
Public	0.82286	0.82459	0.82297
private	0.82142	0.82332	0.82110

有無標點符號的準確率如上表,兩者之間的差異並不到,但無標點符號的效果稍微好一點, 我在想是否是因為有太多標點符號不存在正面或負面的意義,因此將標點符號的部分只留下問號與 驚嘆號,兩個較能表達情緒的符號,果然有改善準確率。

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label,並比較有無 semi-surpervised training 對準確率的影響。

答:

在 semi-supervised 的部分,因為記憶體的關係,我只取 semi_data 的前 10000 筆資料來進行訓練,先讓 model 對這些 data 做預測,再將預測的結果與有 label 的 data 串聯再一起,並進行 training,這個過程重複 3 次左右,門檻設定為 0.1,也就是預測結果高於 0.9 或低於 0.1 的時候才會進行訓練,最後結果如下,可以看出加上 semi-supervised 的效果並沒有改善準確率。

	supervised	Semi-supervised
Public	0.82459	0.82365
private	0.82332	0.82321