

2021 고려대학교 대학혁신지원사업

KU-Insight Miner Al선배 강의 추천 Knowledge Graph를 활용한 R-GCN기반 제2전공 추천 시스템 개발

고려대학교 디지털정보처 데이터 hub팀 데이터 사이언티스트 이진숙 2021.07.16

$R-GCN^{[1]}$

Relational Graph Convolutional Network

$$h_i^{l+1} = \sigma(\sum_{m \in \mathcal{M}_i} g_m(h_i^l, h_j^l))$$

where

 $h_i^l \in \mathbb{R}^{d^l}$: hidden state of lth layer

 d^l : dimension of l layer

 $\sigma(.)$: element – wise activation function like ReLU

 \mathcal{M}_i : set of incoming messages for node vin(often identical to the set of incoming edges)

 \mathcal{G}_{m} (, ,): accumulated and passed through dimension of l layer

* note: message specific neural network or simply a linear transformation $g_{m(h_i, h_j)} = Wh_j$ W weight matrix like [2] suggested $Graph: G = (V, \mathcal{E}, R)$

 $Node: v_i \in V$

 $Relationship\ type: r \in R$

Edges: $(v_i, r, v_j) \in \mathcal{E}$

$R-GCN^{[1]}$

Forward-pass update an entity or node denoted by v_i in a relational + directed and labeled multi-graph

Propagation model

$$h_i^{l+1} = \sigma(W_0^l h_i^l + \sum_{r \in R} \sum_{j \in N_i^r} \frac{1}{c_{i,r}} W_r^l h_j^l)$$
Neighbors

where

 N_i^r : set of neighbor indices of node i under relation $r \in R$

 $C_{i,r}$: a problem – specific normalization (it can be learned or chosen in advance such as $c_{i,r} = |N_i|$)

 (C_3) wished (C_4) wished $(C_4$

Neighbor들로부터 전달된 feature vector들을 normalized summation하는 과정 기존의 GCN과는 다르게 relation-specific하게 transformation(엣지의 타입이나 방향성을 고려함)

$R-GCN^{[1]}$

 $h_i^{l+1} = \sigma(\sum_{r \in R} \sum_{j \in N_i^r} \frac{1}{c_{i,r}} (W_r^l) h_j^l + W_0^l h_i^l)$

Two ways of regularization

Rare relationship에서는 overfitting 위험이 있어 Regularization 진행(Reducing parameters)

(1) Basis decomposition(linear combination of the number of components)

$$W_r^l = \sum_{b=1}^B a_{rb}^l V_b^l$$

 $V_b^l \in \mathbb{R}^{d^{l+1} \times d^l}$ with coefficients a_{rb}^l

specifying the numbers of unique Ws that you want to have for the layer \rightarrow B

each of the Wrs is calculated by combining those components linearly so they learn a coefficient for each of the components

Two ways of regularization

$$h_i^{l+1} = \sigma(\sum_{r \in R} \sum_{j \in N_i^r} \frac{1}{c_{i,r}} (W_r^l) h_j^l + W_0^l h_i^l)$$

Rare relationship에서는 overfitting 위험이 있어 Regularization 진행(Reducing parameters)

(2) Block-diagonal decomposition

$$egin{aligned} W_r^l &= \bigoplus_{b=1}^B \, Q_{br}^l \ &= diag(Q_{1r}^l, ..., \, Q_{br}^l) \ &Q_{br}^l \in \mathbb{R}^{(d^{l+1}/B) imes (d^l/B)} \end{aligned}$$

defined through direct sum over a set of low dimensional matrices

Variables are strongly interconnected within a group but don't have much interactions outside of the group

Link Prediction Task Flow

 $Graph: G = (V, \mathcal{E}, R)$

 $Node: v_i \in V$

 $Relationship\ type: r \in R$

Edges: $(v_i, r, v_j) \in \mathcal{E}$

Link Prediction Task Flow

 ε 대신에 불완전한 링크 $\hat{\varepsilon}$ 제공 , f(s,r,o) 를 실제 (s,r,o)에 가깝게 예측

Training

Sampling

Negative Sampling (ω)

Optimization

Cross entropy

$$\mathcal{L} = -\frac{1}{(1+\omega)|\hat{\varepsilon}|} \sum_{(s,r,o,y)\in\mathcal{T}} ylog(f(s,r,o)) + (1-y)log(1-l(f(s,r,o)))$$

T: total set of real and corrupted triples

l : *logistic sigmoid function*

y : y = 1 for positive triples and y = 0 for negative ones

Knowledge Graph 정의 및 데이터

14학번~21학번의 수강이력, 관심과목등록, 학적정보, 제1전공, 2전공 커리큘럼

이용 데이터

- 1. 수강이력
- 2. 기준 1) 2014~2021학번 서울캠퍼스학생 기준 2) 2014~2021년도 수강이력
- 2. 제1전공, 제2전공 내역
- 3. 학과, 융합전공, 학생설계전공 커리큘럼

Knowledge Graph

- 1. Vertex 정의
- 학생
- 강의
- 학과, 제2전공
- 2. Relation 정의
- 수강
- 전공, 제2전공 이수
- 어떤 이수구분으로 커리큘럼 포함

* IMPORTANT * Train and test set split

Validation에는 졸업생 및 수료생의 의 제2전공 내역, Test에는 재학생 제2전공 내역

*교양의 경우에 학과는 교양교육원

Train triplets(N = 1,410,295)

1. 수강이력

기준 1) 2014~2021학번 서울캠퍼스학생 기준 2) 2014~2021년도 수강이력

2. 제1전공, 제2전공 내역

3. 학과, 이중, 융합, 학생설계 커리큘럼

Valid triplets (N = 7,409)

제2전공 내역(졸업, 수료)

기준 1) 2014~2021학번 서울캠퍼스학생

Test triplets (N = 26,937)

제2전공 내역(재학, 휴학생)

기준 1) 2014~2021학번 서울캠퍼스학생

이용모델: R-GCN

Subject Perturbation과 Object perturbation

Link Prediction Task Flow

 ε 대신에 불완전한 링크 $\hat{\varepsilon}$ 제공 , f(s,r,o) 를 실제 (s,r,o)에 가깝게 예측

Relation Embedding의 한 방법으로 가중치의 대각행렬을 이용하여 score계산

Merkel:
$$h = (1,0)^T$$
 Score = $h^T W_r t$

Germany: $t = (1,0)^T$

$$= \sum_{r=0}^{\infty} (h \odot t) \odot diag(W_r)$$

Is_leader: $W_r = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

추천 Flow

Object perturbation score만 사용

Recommendation Task Flow

Result 1. Metric & Hyperparameter setting

Hit@n, Recall@n, MRR

MRR(Mean Reciprocal Rank)

$$MRR = \frac{1}{|S|} \sum_{i=1}^{|S|} \frac{1}{rank_i}$$

Epoch	Dropout	LR	n-bases	Negative Sample	Composit ion
~100000	0.2	0.01	4	0	Basic

Recall

$$Recall = \frac{1}{|S|} \sum_{i=1}^{|S|} \frac{|courses_i \cap recommended_i|}{|courses_i|}$$

Hit@1,3,10

N개 안에 포함

Evaluate every 1000

Loss 대신에 Valid MRR로 Best epoch 설정

Experiment 1. Hit@10의 경우 98% 정확도

Hit@n, MRR

num_entity: 43389 num_relation: 17

num_train_triples: 1410295

num_valid_triples: 7409

num_test_triples: 26937

Best Model Description(Evaluated every 1000 epoch)

Epoch	Dropout	LR	n-bases	Train Loss	Valid MRR	Test MRR	Hit@1	Hit@3	Hit@10
90000	0.2	1e-2	4	0.1378	0.7473	0.8104	0.687	0.928	0.984

Example 1. 제2전공 추천

훈련셋에 들어가지 않은 데이터 테스트, top10개 추천 리스트 출력

mmajor_nm	score	mmajor_nm	score	mmajor_nm	score	mmajor_nm	score
바이오의공학부	0.994280	사학과	0.912904	공공거버넌스와리더십융합전공	0.977941	암호학융합전공	0.996524
의과학융합전공	0.576477	중어중문학과	0.673528	경제학과	0.976081	수학과	0.996165
뇌인지과학융합전공	0.492002	정치외교학과	0.608415	법과행정융합전공	0.720717	보험과위험관리학생설계전공	0.992712
경제통계학부 빅데이터전공	0.489575	일어일문학과	0.350359	경영학과	0.177749	금융공학융합전공	0.983837
		국어국문학과	0.269022	사회규범과 행정 융합전공	0.100891	통계학과	0.956303
인공지능융합전공	0.445383	통일과국제평화융합전공	0.239582	행정학과	0.083138	지구환경과학과	0.936540
전기전자공학부	0.399804	자유전공학부	0.221816	인문학과정의융합전공	0.045330	소프트웨어벤처융합전공	0.924663
식품영양학과	0.346129	의료인문학융합전공	0.219849	금융공학융합전공	0.043269	경영학과	0.915762
메디컬융합공학융합전공	0.254796	인문학과정의융합전공	0.129227	자유전공학부	0.009594	기술창업융합전공	0.856390
신소재공학부	0.199610	소셜커뮤니케이션학생설계전공	0.086313	정치외교학과	0.006152	식품자원경제학과	0.802311
언어학과	0.079861					_	

1전공 바이오의공학부, 2전공 바이오의공학부 심화전공 학생

1전공 사학과, 2전공 정치외교학과 이중전공 학생 1전공 경제학과, 융합전공 학생

1전공 수학과, 2전공 공공거버넌스와리더십 2전공 보험과위험관리학생설계전공 학생설계전공 학생

Example 1. 제2전공 추천

훈련셋에 들어가지 않은 데이터 테스트, top10개 추천 리스트 출력

mmajor_nm	score	mmajor_nm	score	mmajor_nm	score	mmajor_nm	score
교육학과	0.998676	독어독문학과	0.999130	건축사회환경공학부	0.905345	미디어학부	0.779057
인적자원개발학학생설계전공	0.998085	경영학과	0.996465	융합에너지공학과	0.167512	자유전공학부	0.333001
국어교육과	0.948781	서어서문학과	0.935053	기술창업융합전공	0.137871	소프트웨어벤처융합전공	0.108209
다문화한국어교육융합전공	0.947611	인문학과문화산업융합전공	0.634863	산업경영공학부	0.006059	융합보안융합전공	0.040923
패션디자인및머천다이징융합전공	0.925751	통일과국제평화융합전공	0.322756	전기전자공학부	0.002546	기술창업융합전공	0.023030
인문학과정의융합전공	0.614305	불어불문학과	0.218219	기계공학부	0.000880	미디어문예창작학과	0.021631
인문심리학학생설계전공	0.598036	중국학부	0.142102	신소재공학부	0.000695	패션디자인및머천다이징융합전공	0.016423
소비자분석학학생설계전공	0.583741	글로벌학부 한국학전공	0.108632	응용통계학과	0.000497	컴퓨터학과	0.006101
가정교육과	0.488956	인적자원개발학학생설계전공	0.074516	소프트웨어벤처융합전공	0.000393	인적자원개발학학생설계전공	0.004414
심리학부	0.331412	금융공학융합전공	0.071468	화공생명공학과	0.000358	스마트보안학부	0.003717
1전공 교육학과, 2전공 인적자원개발학학생설계전공		1전공 독어독문학 2전공 경영학회 이중전공 학생	화 ^{''}	1전공 건축사회환 2전공 건축사회횐		1전공 미디어학부 2전공 소프트웨어벤처원	

2전공 경영학과 이중전공 학생

Example 1. 제2전공 추천

다전공이 없는 같은 사회학과 학생

mmajor_nm	score	mmajor_nm	score	mmajor_nm	score	mmajor_nm	score
통일과국제평화융합전공	0.880532	사회학과	0.264107	사회학과	0.517796	사회학과	0.414091
사회학과	0.765507	경제학과	0.048913	의료인문학융합전공	0.046174	교육학과	0.000314
철학과	0.712162	통계학과	0.025963	교육학과	0.015661	통일과국제평화융합전공	0.000275
한국사학과	0.656078	인문학과정의융합전공	0.004163	통일과국제평화융합전공	0.013948	자유전공학부	0.000099
인문학과정의융합전공	0.376938	교육학과	0.004130	과학기술학융합전공	0.004029	사학과	0.000055
독어독문학과	0.306265	의료인문학융합전공	0.003865	소셜커뮤니케이션학생설계전공	0.003905	인문학과정의융합전공	0.000032
국어국문학과	0.278535	보험과위험관리학생설계전공	0.002365	인문학과정의융합전공	0.001393	한국사학과	0.000030
정치외교학과	0.113022	금융공학융합전공	0.001933	사학과	0.000722	의료인문학융합전공	0.000012
일어일문학과	0.054413	통일과국제평화융합전공	0.001701	철학과	0.000366	국어국문학과	0.000005
독일문화학과	0.030368	소비자분석학학생설계전공	0.001600	소비자분석학학생설계전공	0.000328	과학기술학융합전공	0.000004

맞춤형 추천 가능성 확인

결론 및 보완점

- 강의 추천보다 성능이 뛰어난 것 확인 → 커리큘럼이 중요한 역할을 한 것으로 사료됨
- 다전공이 없는 학생의 콜드 스타트 문제 해결
- 같은 학과여도 다른 추천 결과 → 맞춤형 추천 가능 확인

 서울캠퍼스 학생이 세종캠퍼스의 제2전공을 선택하거나 세종캠퍼스의 학생이 소속변경을 한 경우에 추천 리스트에 세종캠퍼스에서만 이수가능한 제2전공이 추천됨 → 쿼리로 필터링

2021 고려대학교 대학혁신지원사업

KU-Insight Miner AI선배 강의 추천 Knowledge Graph를 활용한 R-GCN기반 제2전공 추천 시스템 개발

감사합니다!

고려대학교 디지털정보처 데이터 hub팀 데이터 사이언티스트 이진숙 2021.07.16