Magnetism

Set - I

This document contains 100 multiple-choice questions on Magnetism and Matter and moving charges and magnetism, designed for NEET/EAMCET preparation. Each question has four options (a, b, c, d), with one correct answer. The answer key is provided at the end of the document.

Questions

- 1. Which of the following statements is true for a diamagnetic material?
 - a) It is attracted to a magnet.
 - b) It has a positive magnetic susceptibility.
 - c) It has no unpaired electrons.
 - d) It loses its magnetism at high temperatures.
- 2. The magnetic field lines due to a bar magnet:
 - a) Are closed loops.
 - b) Start from the north pole and end at the south pole.
 - c) Start from the south pole and end at the north pole.
 - d) Are straight lines.
- 3. A bar magnet has a magnetic moment of $10\,\mathrm{A}\;\mathrm{m}^2$. It is placed in a magnetic field of $0.5\,\mathrm{T}$ such that the angle between the magnetic moment and the field is 30° . The torque experienced by the magnet is:
 - a) 2.5 N m
 - b) $2.5 \,\mathrm{A} \,\mathrm{m}^2\mathrm{T}$
 - c) 2.5 J
 - d) 0 N m
- 4. The magnetic susceptibility of a paramagnetic material is:
 - a) Small and positive
 - b) Large and positive
 - c) Negative
 - d) Zero
- 5. In a ferromagnetic material, the magnetic domains are:

- a) Randomly oriented in the absence of an external magnetic field.
- b) Aligned in the direction of the external magnetic field.
- c) Permanently aligned even in the absence of an external magnetic field.
- d) Oriented perpendicular to the external magnetic field.
- 6. The angle of dip at a place is 60°. The horizontal component of the earth's magnetic field is 0.2 G. The total magnetic field strength at that place is:
 - a) 0.4 G
 - b) 0.2 G
 - c) 0.346 G
 - d) 0.1 G
- 7. The magnetic field strength H inside a long solenoid carrying current I with n turns per unit length is:
 - a) nI
 - b) $\mu_0 nI$
 - c) B, where B is the magnetic flux density
 - d) B/μ_0 , where B is the magnetic flux density inside the solenoid
- 8. In the hysteresis curve for a ferromagnetic material, the area of the loop represents:
 - a) The energy dissipated per unit volume per cycle.
 - b) The magnetic susceptibility.
 - c) The coercivity.
 - d) The retentivity.
- 9. Which of the following is a characteristic of a soft magnetic material?
 - a) High coercivity
 - b) Low permeability
 - c) High retentivity

- d) Low hysteresis loss
- 10. The magnetic field due to a magnetic dipole at a point along its axial line is:
 - a) $\frac{\mu_0}{4\pi} \cdot \frac{2m}{r^3}$
 - b) $\frac{\mu_0}{4\pi} \cdot \frac{m}{r^2}$
 - c) $\frac{\mu_0}{4\pi} \cdot \frac{m}{r^3}$
 - d) $\frac{\mu_0}{4\pi} \cdot \frac{m}{r}$
- 11. The declination at a place is the angle between:
 - a) The vertical component and the total magnetic field
 - b) The horizontal component and the geographic north-south direction
 - c) The total magnetic field and the geographic north-south direction
 - d) The horizontal component and the magnetic meridian
- 12. A bar magnet with magnetic moment 5 A m² is placed in a magnetic field of 0.2 T at an angle of 60° between the magnetic moment and the field. The potential energy of the magnet is:
 - a) -1 J
 - b) $-0.5 \,\mathrm{J}$
 - c) $-0.866 \,\mathrm{J}$
 - d) -1.2 J
- 13. The relative permeability of a material is 0.99. The material is:
 - a) Diamagnetic
 - b) Paramagnetic
 - c) Ferromagnetic
 - d) Ferrimagnetic
- 14. Curie's law states that for a paramagnetic material, the magnetic susceptibility is:
 - a) Directly proportional to temperature
 - b) Inversely proportional to temperature
 - c) Independent of temperature
 - d) Proportional to the square of temperature
- 15. The magnetic flux density B in a material is related to the magnetic field strength H by:
 - a) B = H
 - b) $B = \mu_0 H$

- c) $B = \mu H$, where μ is the permeability of the material
- d) $B = H/\mu_0$
- 16. The SI unit of magnetic moment is:
 - a) Ampere meter²
 - b) Newton meter
 - c) Tesla meter
 - d) Weber
- 17. Which of the following is not a ferromagnetic material?
 - a) Iron
 - b) Cobalt
 - c) Nickel
 - d) Aluminium
- 18. The Earth's magnetic field is approximately that of a bar magnet placed at the center of the Earth with its north pole towards the geographic:
 - a) North pole
 - b) South pole
 - c) East
 - d) West
- 19. The magnetic moment of an atom is due to:
 - a) Only the spin of electrons
 - b) Only the orbital motion of electrons
 - c) Both spin and orbital motion of electrons
 - d) The motion of protons in the nucleus
- 20. In a paramagnetic material, the magnetic dipoles:
 - a) Are permanently aligned
 - b) Align with the external magnetic field
 - c) Are randomly oriented
 - d) Oppose the external magnetic field
- 21. A magnetic needle oscillates in the Earth's horizontal magnetic field with a time period of 2 s. If the horizontal component of the Earth's magnetic field is 0.3×10^{-4} T, the moment of inertia of the needle is 5×10^{-6} kg m². The magnetic moment of the needle is:
 - a) $0.0296 \,\mathrm{A m^2}$
 - b) $0.0592 \,\mathrm{A m^2}$
 - c) $0.0148 \,\mathrm{A m^2}$
 - d) $0.1184 \,\mathrm{A} \;\mathrm{m}^2$
- 22. Which property distinguishes a ferromagnetic material from a paramagnetic material?

- a) High susceptibility
- b) Permanent magnetization after removal of external field
- c) Negative susceptibility
- d) Alignment opposite to the external field
- 23. A short bar magnet produces a magnetic field of 0.1 T at a point 10 cm along its axial line. The magnetic moment of the magnet is:
 - a) $0.5 \,\mathrm{A m}^2$
 - b) $0.25 \,\mathrm{A m}^2$
 - c) $1.0 \,\mathrm{A} \;\mathrm{m}^2$
 - d) $0.125 \,\mathrm{A m}^2$
- 24. The magnetic susceptibility of a material becomes zero when:
 - a) It is diamagnetic
 - b) It is ferromagnetic at Curie temperature
 - c) It is paramagnetic at absolute zero
 - d) It is placed in a vacuum
- 25. A solenoid of length 0.5 m has 500 turns and carries a current of 2 A. The magnetic field inside the solenoid is:
 - a) $4 \times 10^{-3} \,\text{T}$
 - b) $2.51 \times 10^{-3} \,\mathrm{T}$
 - c) $5 \times 10^{-3} \,\text{T}$
 - d) $1.26 \times 10^{-3} \,\mathrm{T}$
- 26. The coercivity of a material indicates:
 - a) The ability to retain magnetism
 - b) The field required to reduce magnetization to zero
 - c) The maximum magnetic field it can withstand
 - d) The susceptibility of the material
- 27. A magnetic dipole of moment 2 A m² is placed perpendicular to a uniform magnetic field of 0.4 T. The work done to rotate it to align with the field is:
 - a) 0.8 J
 - b) 1.6 J
 - c) 0.4 J
 - d) 0J
- 28. At the magnetic equator, the angle of dip is:
 - a) 90°
 - b) 45°
 - $c) 0^{\circ}$

- d) 60°
- 29. A bar magnet is cut into two equal halves perpendicular to its length. The magnetic moment of each half becomes:
 - a) Half of the original
 - b) Same as the original
 - c) Double the original
 - d) Zero
- 30. A current loop of area $0.01\,\mathrm{m}^2$ carrying 5 A is placed in a magnetic field of 2 T such that the plane of the loop is perpendicular to the field. The torque on the loop is:
 - a) 0.1 N m
 - b) $0.05\,\mathrm{N}\ \mathrm{m}$
 - c) 0.2 N m
 - d) 0 N m
- 31. The magnetization of a material is defined as:
 - a) Magnetic moment per unit volume
 - b) Magnetic field strength per unit area
 - c) Magnetic flux density
 - d) Magnetic susceptibility per unit volume
- 32. A proton moves with a velocity of 2×10^6 m/s perpendicular to a magnetic field of 0.5 T. The magnetic force on the proton is:
 - a) $1.6 \times 10^{-13} \,\mathrm{N}$
 - b) $3.2 \times 10^{-13} \,\mathrm{N}$
 - c) $1.6 \times 10^{-14} \,\mathrm{N}$
 - d) $8 \times 10^{-13} \,\text{N}$
- 33. The relative permeability of a ferromagnetic material is:
 - a) Slightly greater than 1
 - b) Much greater than 1
 - c) Less than 1
 - d) Equal to 1
- 34. Two identical bar magnets are placed end-toend with like poles together. The resultant magnetic moment of the system is:
 - a) Zero
 - b) Equal to one magnet
 - c) Double that of one magnet
 - d) Half that of one magnet
- 35. The vertical component of the Earth's magnetic field at a place is 0.4×10^{-4} T, and the angle of dip is 30°. The total magnetic field is:
 - a) $0.8 \times 10^{-4} \,\mathrm{T}$

- b) $0.462 \times 10^{-4} \,\mathrm{T}$
- c) $0.4 \times 10^{-4} \,\mathrm{T}$
- d) $0.346 \times 10^{-4} \,\mathrm{T}$
- 36. The retentivity of a material refers to:
 - a) The maximum magnetization achieved
 - b) The residual magnetism after removing the field
 - c) The field required to demagnetize it
 - d) The susceptibility at saturation
- 37. A magnetic dipole experiences a torque of $0.2\,\mathrm{N}$ m in a field of $0.5\,\mathrm{T}$ when placed at 90° to the field. Its magnetic moment is:
 - a) $0.4 \, \text{A m}^2$
 - b) $0.2 \,\mathrm{A m}^2$
 - c) $0.1 \,\mathrm{A \ m^2}$
 - d) $0.8 \, \text{A m}^2$
- 38. Which of the following materials exhibits hysteresis?
 - a) Diamagnetic
 - b) Paramagnetic
 - c) Ferromagnetic
 - d) All of the above
- 39. A circular coil of radius 0.05 m with 100 turns carries a current of 1 A. The magnetic moment of the coil is:
 - a) $0.785 \,\mathrm{A m}^2$
 - b) $1.57 \,\mathrm{A m^2}$
 - c) $0.392 \,\mathrm{A m^2}$
 - d) $3.14 \,\mathrm{A m}^2$
- 40. The magnetic field at a point on the equatorial line of a bar magnet is 2×10^{-5} T. If the magnet's magnetic moment is $0.1 \,\mathrm{Am}^2$, the distance of the point from the magnet is:
 - a) 0.1 m
 - b) 0.171 m
 - $c) 0.05 \, m$
 - d) 0.2 m
- 41. A magnetic needle in a uniform magnetic field of 0.2 T oscillates with a time period of 1 s. If its moment of inertia is $2 \times 10^{-5} \text{ kg m}^2$, the magnetic moment of the needle is:
 - a) $0.0789 \,\mathrm{A m^2}$
 - b) $0.0395 \,\mathrm{A m^2}$
 - c) $0.1578 \,\mathrm{A m}^2$

- d) $0.0197 \,\mathrm{A m}^2$
- 42. The magnetic field at a point due to a short bar magnet is $4 \times 10^{-6} \,\mathrm{T}$ along its equatorial line at a distance of 0.2 m. The magnetic moment of the magnet is:
 - a) $0.064 \,\mathrm{A m^2}$
 - b) $0.032 \,\mathrm{A m^2}$
 - c) $0.128 \,\mathrm{A m}^2$
 - d) $0.016 \,\mathrm{A m^2}$
- 43. Which of the following is true about the magnetization of a paramagnetic material?
 - a) It decreases with increasing temperature
 - b) It increases with decreasing magnetic field
 - c) It is independent of temperature
 - d) It becomes zero at Curie temperature
- 44. A bar magnet of magnetic moment 8 A m² is placed in a magnetic field of 0.25 T at an angle of 45°. The torque acting on it is:
 - a) 1.414 N m
 - b) 2 N m
 - c) 1 N m
 - d) 2.828 N m
- 45. The susceptibility of a diamagnetic material is:
 - a) Small and positive
 - b) Large and positive
 - c) Small and negative
 - d) Zero
- 46. A solenoid with 200 turns per meter carries a current of 3 A. The magnetic field strength (H) inside the solenoid is:
 - a) 600 A/m
 - b) 300 A/m
 - c) 900 A/m
 - d) 1200 A/m
- 47. The potential energy of a magnetic dipole of $4 \,\mathrm{A \ m^2}$ aligned at 60° with a magnetic field of $0.5 \,\mathrm{T}$ is:
 - a) -1J
 - b) -2 J
 - c) $-1.732 \,\mathrm{J}$
 - d) $-0.866 \,\mathrm{J}$
- 48. The angle of dip at the magnetic poles is:
 - a) 0°
 - b) 45°

- c) 90°
- d) 30°
- 49. A circular coil of 50 turns and radius 0.02 m carries a current of 2 A. The magnetic field at the center of the coil is:
 - a) $3.14 \times 10^{-3} \,\mathrm{T}$
 - b) $6.28 \times 10^{-3} \,\mathrm{T}$
 - c) $1.57 \times 10^{-3} \,\mathrm{T}$
 - d) $12.56 \times 10^{-3} \,\mathrm{T}$
- 50. The primary source of the Earth's magnetic field is believed to be:
 - a) Permanent magnets in the crust
 - b) Electric currents in the molten outer core
 - c) Solar wind interactions
 - d) Rotation of the Earth's solid core
- 51. A bar magnet of length 0.1 m has a pole strength of 20 A m. Its magnetic moment is:
 - a) $2 \,\mathrm{A m}^2$
 - b) $1 \,\mathrm{A m}^2$
 - c) 4 A m^2
 - d) $0.5 \,\mathrm{A m}^2$
- 52. The hysteresis loss in a ferromagnetic material depends on:
 - a) The frequency of the applied field
 - b) The coercivity only
 - c) The susceptibility only
 - d) The temperature only
- 53. A magnetic dipole of moment $3 \,\mathrm{A} \,\mathrm{m}^2$ is rotated from parallel to perpendicular orientation in a field of $0.6 \,\mathrm{T}$. The work done is:
 - a) 1.8 J
 - b) 0.9 J
 - c) 3.6 J
 - d) 0 J
- 54. The magnetic field inside a material with relative permeability 1000 and magnetic field strength $500\,\mathrm{A/m}$ is:
 - a) 0.628 T
 - b) 0.314 T
 - c) 0.157 T
 - d) 0.942 T
- 55. The magnetic moment of an electron orbiting in a circular path of radius 5.29×10^{-11} m with a speed of 2.19×10^6 m/s is:

- a) $9.27 \times 10^{-24} \,\mathrm{A m}^2$
- b) $4.64 \times 10^{-24} \,\mathrm{A m^2}$
- c) $1.85 \times 10^{-23} \,\mathrm{A m^2}$
- d) $2.32 \times 10^{-24} \,\mathrm{A m^2}$
- 56. In a hysteresis loop, the point where the magnetization becomes zero is called:
 - a) Retentivity
 - b) Coercivity
 - c) Saturation
 - d) Susceptibility
- 57. A square loop of side 0.1 m carrying 4 A is placed in a magnetic field of 0.8 T perpendicular to its plane. The torque on the loop is:
 - a) 0.032 N m
 - b) 0.064 N m
 - c) 0.016 N m
 - d) 0.128 N m
- 58. The magnetic field at a point 0.1 m along the axial line of a bar magnet is twice that at a point on its equatorial line at the same distance. The magnetic field on the equatorial line is 1×10^{-5} T. The magnetic moment is:
 - a) $0.02 \,\mathrm{A m}^2$
 - b) $0.01 \,\mathrm{A \ m^2}$
 - c) $0.04 \,\mathrm{A m}^2$
 - d) $0.005 \,\mathrm{A m^2}$
- 59. Which of the following phenomena is evidence of Earth's magnetic field reversals?
 - a) Variation in declination
 - b) Magnetization of oceanic crust rocks
 - c) Changes in dip angle
 - d) Increase in hysteresis loss
- 60. A magnetic needle is placed in a field where $B_H = 0.4 \times 10^{-4} \,\mathrm{T}$ and $B_V = 0.3 \times 10^{-4} \,\mathrm{T}$. The angle of dip is:
 - a) 36.87°
 - b) 53.13°
 - c) 45°
 - d) 60°
- 61. A magnetic needle oscillates with a time period of 4s in Earth's horizontal magnetic field of 0.25×10^{-4} T. If its moment of inertia is 8×10^{-5} kg m², the magnetic moment of the needle is:
 - a) $0.0197 \,\mathrm{A m}^2$

- b) $0.0395 \,\mathrm{A m^2}$
- c) $0.0790 \,\mathrm{A} \,\mathrm{m}^2$
- d) $0.0099 \,\mathrm{A m^2}$
- 62. The magnetic field at a point $0.05 \,\mathrm{m}$ along the axial line of a bar magnet is $8 \times 10^{-5} \,\mathrm{T}$. The magnetic moment of the magnet is:
 - a) $0.01 \,\mathrm{A \ m}^2$
 - b) $0.005 \,\mathrm{A m^2}$
 - c) $0.02 \,\mathrm{A} \,\mathrm{m}^2$
 - d) $0.0025 \,\mathrm{A m}^2$
- 63. The Curie temperature of a ferromagnetic material is the temperature above which it becomes:
 - a) Diamagnetic
 - b) Paramagnetic
 - c) Non-magnetic
 - d) Ferromagnetic
- 64. A magnetic dipole of moment 6 A m² is placed in a magnetic field of 0.3 T at an angle of 30°. The torque experienced by the dipole is:
 - a) $0.9\,\mathrm{N}\ \mathrm{m}$
 - b) 1.8 N m
 - c) 0.45 N m
 - d) 1.2 N m
- 65. The magnetic susceptibility of a ferromagnetic material is:
 - a) Small and positive
 - b) Very large and positive
 - c) Small and negative
 - d) Zero
- 66. A solenoid of length 1 m has 1000 turns and carries a current of 1.5 A. The magnetic flux density inside the solenoid is:
 - a) $1.885 \times 10^{-3} \,\mathrm{T}$
 - b) $3.77 \times 10^{-3} \,\mathrm{T}$
 - c) $0.942 \times 10^{-3} \,\mathrm{T}$
 - d) $2.51 \times 10^{-3} \,\mathrm{T}$
- 67. The potential energy of a magnetic dipole of $5\,\mathrm{A}\ \mathrm{m}^2$ placed perpendicular to a magnetic field of $0.4\,\mathrm{T}$ is:
 - a) 0 J
 - b) -2 J
 - c) 2 J

- d) -1J
- 68. The horizontal component of the Earth's magnetic field at a place is 0.36×10^{-4} T, and the total field is 0.6×10^{-4} T. The angle of dip is:
 - a) 36.87°
 - b) 53.13°
 - c) 45°
 - d) 60°
- 69. A circular coil of radius 0.1 m with 20 turns carries a current of 3 A. The magnetic moment of the coil is:
 - a) $1.885 \,\mathrm{A m^2}$
 - b) $0.942 \,\mathrm{A m^2}$
 - c) $3.77 \,\mathrm{A m}^2$
 - d) $0.628 \,\mathrm{A m^2}$
- 70. The primary reason paramagnetic materials are weakly attracted to magnetic fields is:
 - a) Presence of permanent dipoles
 - b) Alignment of atomic dipoles with the field
 - c) Opposition of atomic dipoles to the field
 - d) High retentivity
- 71. A bar magnet produces a magnetic field of 1×10^{-4} T at a point 0.2 m on its equatorial line. The magnetic moment of the magnet is:
 - a) $0.08 \,\mathrm{A m^2}$
 - b) $0.04 \,\mathrm{A m}^2$
 - c) $0.16 \,\mathrm{A} \,\mathrm{m}^2$
 - d) $0.02 \,\mathrm{A m}^2$
- 72. The coercivity of a soft iron sample is typically:
 - a) High
 - b) Low
 - c) Zero
 - d) Equal to its retentivity
- 73. A magnetic dipole of moment $10 \,\mathrm{A m^2}$ is rotated from 0° to 60° in a field of $0.5 \,\mathrm{T}$. The work done is:
 - a) 2.5 J
 - b) 5J
 - c) 1.25 J
 - d) 0 J
- 74. The magnetic field inside a material with relative permeability 500 and magnetic field strength $200 \,\mathrm{A/m}$ is:

- a) 0.1256 T
- b) 0.0628 T
- c) 0.2512 T
- d) 0.0314 T
- 75. A rectangular loop of area $0.02\,\mathrm{m}^2$ carrying $5\,\mathrm{A}$ is placed in a magnetic field of $1\,\mathrm{T}$ with its plane at 30° to the field. The torque on the loop is:
 - a) $0.05\,\mathrm{N}\ \mathrm{m}$
 - b) 0.0866 N m
 - c) 0.1 N m
 - d) 0.0433 N m
- 76. The retentivity of a ferromagnetic material is highest when:
 - a) It is fully magnetized
 - b) The external field is removed
 - c) The material is demagnetized
 - d) The coercivity is zero
- 77. A proton enters a magnetic field of $0.2 \,\mathrm{T}$ with a speed of $5 \times 10^5 \,\mathrm{m/s}$ at 60° to the field. The magnetic force on the proton is:
 - a) $8 \times 10^{-14} \,\text{N}$
 - b) $6.93 \times 10^{-14} \,\mathrm{N}$
 - c) $4 \times 10^{-14} \,\text{N}$
 - d) $1.6 \times 10^{-13} \,\mathrm{N}$
- 78. A bar magnet is cut into two equal halves along its length. The magnetic moment of each half is:
 - a) Same as the original
 - b) Half of the original
 - c) Double the original
 - d) Zero
- 79. A coil of 100 turns and radius $0.05\,\mathrm{m}$ carries a current of 2 A. The magnetic field at a point $0.1\,\mathrm{m}$ along its axis is:
 - a) $1.256 \times 10^{-4} \,\mathrm{T}$
 - b) $6.28 \times 10^{-5} \,\mathrm{T}$
 - c) $3.14 \times 10^{-5} \,\mathrm{T}$
 - d) $2.51 \times 10^{-4} \,\mathrm{T}$
- 80. The magnetic field lines inside a bar magnet run:
 - a) From north to south
 - b) From south to north
 - c) In closed loops

- d) Perpendicular to the magnet's axis
- 81. A magnetic needle oscillates in a uniform magnetic field of 0.1 T with a time period of 2 s. If its moment of inertia is 1×10^{-5} kg m², the magnetic moment of the needle is:
 - a) $0.00987 \,\mathrm{A} \,\mathrm{m}^2$
 - b) $0.01974 \,\mathrm{A m^2}$
 - c) $0.03948 \,\mathrm{A m}^2$
 - d) $0.00494 \,\mathrm{A m^2}$
- 82. A bar magnet produces a magnetic field of 2×10^{-5} T at a point 0.3 m along its axial line. The magnetic moment of the magnet is:
 - a) $0.081 \,\mathrm{A m^2}$
 - b) $0.162 \,\mathrm{A m^2}$
 - c) $0.027 \,\mathrm{A} \,\mathrm{m}^2$
 - d) $0.054 \,\mathrm{A m^2}$
- 83. The magnetic susceptibility of a material decreases with temperature in:
 - a) Diamagnetic materials
 - b) Paramagnetic materials
 - c) Ferromagnetic materials below Curie temperature
 - d) All magnetic materials
- 84. A magnetic dipole of moment $12 \,\mathrm{A} \,\mathrm{m}^2$ is placed at 60° to a magnetic field of $0.2 \,\mathrm{T}$. The torque on the dipole is:
 - a) $2.078\,\mathrm{N}\ \mathrm{m}$
 - b) 1.2 N m
 - c) 2.4 N m
 - d) 1.039 N m
- 85. The relative permeability of a diamagnetic material is:
 - a) Slightly less than 1
 - b) Much greater than 1
 - c) Exactly 1
 - d) Slightly greater than 1
- 86. A solenoid of 400 turns per meter carries a current of 2.5 A. The magnetic field strength inside the solenoid is:
 - a) $1000 \, \text{A/m}$
 - b) 800 A/m
 - c) $1200 \, A/m$
 - d) 600 A/m
- 87. The potential energy of a magnetic dipole of 8 A m² aligned parallel to a magnetic field of 0.25 T is:

- a) -2 J
- b) 0J
- c) 2 J
- d) -1J
- 88. The total magnetic field at a place is 0.5×10^{-4} T, and the vertical component is 0.3×10^{-4} T. The angle of dip is:
 - a) 36.87°
 - b) 53.13°
 - c) 60°
 - d) 45°
- 89. A circular coil of 150 turns and radius 0.03 m carries a current of 4 A. The magnetic field at the center is:
 - a) $2.513 \times 10^{-3} \,\mathrm{T}$
 - b) $5.026 \times 10^{-3} \,\mathrm{T}$
 - c) $1.257 \times 10^{-3} \,\mathrm{T}$
 - d) $7.539 \times 10^{-3} \,\mathrm{T}$
- 90. The hysteresis loop of a ferromagnetic material is wider when:
 - a) Coercivity is low
 - b) Retentivity is low
 - c) Energy loss is high
 - d) Susceptibility is high
- 91. A bar magnet of length 0.2 m has a magnetic moment of 4 A m². The pole strength of the magnet is:
 - a) 20 A m
 - b) 10 A m
 - c) 40 A m
 - d) 5 A m
- 92. The magnetic field at a point on the equatorial line of a bar magnet is 5×10^{-6} T at a distance of 0.4 m. The magnetic moment is:
 - a) $0.32 \,\mathrm{A \ m^2}$
 - b) $0.16 \,\mathrm{A m^2}$
 - c) $0.08 \,\mathrm{A} \,\mathrm{m}^2$
 - d) $0.64 \,\mathrm{A m^2}$
- 93. A magnetic dipole of $15\,\mathrm{A}$ m² is rotated from 30° to 90° in a field of $0.4\,\mathrm{T}$. The work done is:
 - a) 5.196 J
 - b) 2.598 J
 - c) 6 J
 - d) 3 J

- 94. The magnetic field inside a material with relative permeability 2000 and magnetic field strength 100 A/m is:
 - a) 0.2512 T
 - b) 0.1256 T
 - c) 0.5024 T
 - d) 0.0628 T
- 95. A square loop of side 0.05 m carrying 6 A is placed in a magnetic field of 0.5 T perpendicular to its plane. The torque is:
 - a) 0.0075 N m
 - b) 0.015 N m
 - c) 0.03 N m
 - d) 0.06 N m
- 96. The magnetic moment of a current loop depends on:
 - a) Current and area only
 - b) Magnetic field strength
 - c) Permeability of the medium
 - d) Temperature of the loop
- 97. An electron moves at 3×10^6 m/s perpendicular to a magnetic field of 0.3 T. The magnetic force on the electron is:
 - a) $1.44 \times 10^{-13} \,\mathrm{N}$
 - b) $2.88 \times 10^{-13} \,\mathrm{N}$
 - c) $7.2 \times 10^{-14} \,\mathrm{N}$
 - d) $4.8 \times 10^{-13} \,\mathrm{N}$
- 98. The magnetic field at a point 0.2 m along the axis of a circular coil of 50 turns, radius 0.05 m, and current 2 A is:
 - a) $3.14 \times 10^{-5} \,\mathrm{T}$
 - b) $1.57 \times 10^{-5} \,\mathrm{T}$
 - c) $6.28 \times 10^{-5} \,\mathrm{T}$
 - d) $2.51 \times 10^{-5} \,\mathrm{T}$
- 99. The magnetic field lines of a bar magnet:
 - a) Originate from the south pole
 - b) Are denser at the equator
 - c) Are denser near the poles
 - d) Do not intersect
- 100. A ferromagnetic material loses its magnetism completely when heated to:
 - a) Melting point
 - b) Curie temperature
 - c) Absolute zero
 - d) Critical temperature

Answer Key

1. c	11. b	21. b	31. a	41. b	51. a	61. c	71. a	81. b	91. a
2. a	12. b	22. b	32. a	42. a	52. a	62. a	72. b	82. a	92. a
3. a	13. a	23. a	33. b	43. a	53. a	63. b	73. a	83. b	93. b
4. a	14. b	24. b	34. a	44. a	54. a	64. a	74. c	84. a	94. a
5. a	15. c	25. b	35. b	45. c	55. a	65. b	75. b	85. a	95. b
6. a	16. a	26. b	36. b	46. a	56. b	66. a	76. b	86. a	96. a
7. a	17. d	27. a	37. a	47. a	57. b	67. a	77. b	87. a	97. a
8. a	18. b	28. c	38. c	48. c	58. a	68. b	78. b	88. c	98. a
9. d	19. c	29. a	39. a	49. b	59. b	69. a	79. b	89. b	99. c
10. a	20. b	30. a	40. b	50. b	60. a	70. b	80. b	90. a	100. b