Problema: FIB

Fibonacci representations

italian

CEOI 2018, giorno 2. Memoria disponibile: 256 MB.

16.08.2018

Definiamo la sequenza dei numeri di Fibonacci come:

$$F_1 = 1$$

$$F_2 = 2$$

$$F_n = F_{n-1} + F_{n-2} \text{ per } n \ge 3$$

I primi elementi della sequenza sono quindi: 1, 2, 3, 5, 8, 13, 21, ...

Per un intero positivo p, definiamo X(p) come il numero distinto di modi per esprimere p come somma di numeri di Fibonacci **distinti**.

Due modi sono considerati distinti se esiste un numero di Fibonacci che è presente in solamente uno di essi.

Ti viene data una sequenza di n numeri interi a_1, a_2, \ldots, a_n . Per un suo prefisso non vuoto a_1, a_2, \ldots, a_k , definiamo $p_k = F_{a_1} + F_{a_2} + \ldots + F_{a_k}$.

Il tuo compito è di trovare, per tutti i k = 1, ..., n, i valori di $X(p_k)$ modulo $10^9 + 7$.

Input

La prima riga dello standard input contiene un intero n $(1 \le n \le 100\,000)$. La seconda riga contiene n interi separati da spazio a_1, a_2, \ldots, a_n $(1 \le a_i \le 10^9)$.

Output

Lo standard output deve contenere n righe. La riga k-esima, dovrà contenere il valore di $X(p_k)$ modulo (10^9+7) .

Esempio

Per il l'input:	l'output corretto è:
4	2
4 1 1 5	2
	1
	2

Spiegazione dell'esempio:

Abbiamo i seguenti valori di p_k :

$$\begin{aligned} p_1 &= F_4 = 5 \\ p_2 &= F_4 + F_1 = 5 + 1 = 6 \\ p_3 &= F_4 + F_1 + F_1 = 5 + 1 + 1 = 7 \\ p_4 &= F_4 + F_1 + F_1 + F_5 = 5 + 1 + 1 + 8 = 15 \end{aligned}$$

Il numero 5 può essere espresso in due modi: come $F_2 + F_3$ e semplicemente come F_4 (che corrispondono a 2 + 3 e 5, rispettivamente). Quindi abbiamo che $X(p_1) = 2$.

Successivamente abbiamo $X(p_2) = 2$ poichè $p_2 = 1 + 5 = 1 + 2 + 3$.

L'unico modo per esprimere 7 come somma di numeri di Fibonacci distinti è 2+5.

Infine, il numero 15 può essere espresso come 2+13 e 2+5+8 (cioè in due modi).

Grading

L'insieme dei test è diviso nei seguenti subtask con limitazioni aggiuntive. I test in ogni subtask consistono in uno o più gruppi di test. Ogni gruppo di test contiene uno o più test case.

Subtask	Limitazioni	Punti
1	$n, a_i \le 15$	5
2	$n, a_i \le 100$	20
3	$n \leq 100, a_i$ sono quadrati di numeri naturali distinti	15
4	$n \le 100$	10
5	a_i sono numeri pari distinti	15
6	nessuna limitazione aggiuntiva	35