Then p_{ij} is a strict half-norm on C(K) (see A-II, Sec. 2). Note that

(1.5)
$$p_{11}(f)u - f \ge 0$$
 (f \in C(K)).

For $x \in K$, define $\phi_x \in C(K)$ ' by $\langle f, \phi_x \rangle = f(x)/u(x)$. Let $f \in C(K)$ such that -f is not strictly positive. Then there exists $x \in K$ such that $f(x)/u(x) = p_{11}(f)$. For such an x we have

$$(1.6) \qquad \phi_{\mathbf{x}} \in \mathrm{dp}_{\mathbf{u}}(\mathbf{f})$$

(see A-II, Sec.2 for the definition of the subdifferential dp_{ij}).

Note that for $f \in C(K)$ one has $f \ge 0$ if and only if $p_u(-f) \le 0$ (i.e., the half-norm p_u induces the given ordering on C(K) (cf. A-II,Rem.2.8)). As a consequence, every p_u -contractive bounded operator T on C(K) is positive.

<u>Proposition</u> 1.10. Let A be a densely defined operator on C(K). Then there exists a strictly positive $u \in D(A)$. For any such u the following assertions are equivalent.

- (i) A is p₁₁-dissipative.
- (ii) Au \leq 0 and A satisfies (P).

<u>Proof.</u> Since $\{u \in C(K) : u >> 0\}$ is open and non-empty and D(A) is dense, there exists $0 << u \in D(A)$.

(i) implies (ii). One has $p_u(u)=1$. Let $x\in K$. It follows from (1.6) that $\phi_x\in dp_u(u)$. Since D(A) is dense, it follows from A-II, Thm. 2.7 that A is strictly p_u -dissipative. Hence $\langle Au,\phi_x\rangle \leq 0$. Thus (Au)(x) ≤ 0 . We now show (P). Let $0\leq f\in D(A)$ and $x\in K$ such that f(x)=0. We have to show that (Af)(x) ≥ 0 . Since f(x)=0 and $p_u(-f)=0$ we have by (1.6) $\phi_x\in dp_u(-f)$. Since A is strictly p_u -dissipative we conclude that $-u(x)^{-1}(Af)(x)=\langle A(-f),\phi_x\rangle \leq 0$. Hence (Af)(x) ≥ 0 .

(ii) implies (i). Let $f\in D(A)$. If $p_u(f)=0$, then $\phi:=0\in dp_u(f)$ and $<\!Af,\phi\!>\,\leq 0.$ If $p_u(f)>0$, then there exists $x\in K$ such that $\phi_x\in dp_u(f)$. Hence, $0\leq p_u(f)u-f$ and $(p_u(f)u-f)(x)=0$. It follows from (P) that $p_u(f)(Au)(x)-(Af)(x)\geq 0$. Hence (Af)(x) $\leq p_u(f)(Au)(x)\leq 0$ (by (ii)); i.e., $<\!Af,\phi_x\!>\,\leq 0$.

<u>Corollary</u> 1.11. Let A be a densely defined operator on C(K). If A satisfies (P) then A is closable and the closure of A satisfies (P) as well.