Page Replacement Algorithms

1. Least Recently used (LRU)

In this case, the page which is least recently used is replaced with the new page.

2. First In First Out (FIFO)

In this case, the page which was brought into the cache/memory first is replaced first. Thus the page which has stayed for the longest time is replaced.

3. Least Frequently Used (LFU)

In this case, the page which is used for the least number of times is replaced first.

FIFO

2	3	2	ι	5	2.	4	5	3	2	5
2_	2.	2	2	5	5	5	5	3	3	3
	3	3	ზ	જ	2	2	2	d	2	5
			1	1	١	4	4	4	4	4
		Н		7	F	T	H	H	H	F

For the following string, simulate using FIFO & LRU.

Page Fault

6 0 12 0 30 4 2 30 32 1 20 15

(Page Size = 3)

6	0	12	o	30	4	2	30	32	1	20	15
6	6	6	6	30	30	30	30	32	32	8	15
	0	0	O	0	4	4	4	4	1	١	1
		12	12	12	12	2	2	2_	2	20	20
			H				 			 	F

HFFFFFFF

FIFO

No. of Page Faults => 7

6	0	12	0	30	4	2	30	32	1	20	15
6	6	6	0	30	30	30	30	30	30	20	20
	0	0	0	0	D	2	2	2	l	١	1
		12	12	12	4	4	4	30 2 32	32	32	15
		<u> </u>	H	F	F	F	H	F		F	F

LRU

No. of Page Faults = 7

Q. Find out page fault for following string using LFU method. Consider page frame size = 3.

70120304230321201701

Cost & Performance Measurement (2-Level Memory flierarchy)

l'arameters considered for performance Analysis

- 1. Average Cost (c)
- 2. Hit Ratio (H)
- 3. Average Access Time (ta)
- 4. Efficiency (2)

Any 2-Level memory has to be analysed with it's performance characteristics.

The different group of 2 Level memories can be cache memory & main memory, main memory, internal & virtual memory, internal & external cache memory, etc.

$$= \frac{C_1S_1 + C_2S_2}{S_1 + S_2}$$

where C1&C2 are the costs per bit of memory 1 (faster memory) & memory 2 (slower memory)

Si & Sz are the sizes of memory 1 and memory 2 respectively.

2. Hit Ratio (H) =
$$\frac{N_1}{N_1 + N_2}$$

where Ni is the no. of hits & Nz is the number of misses.

where t_{A1} & t_{A2} are the time taken to access memory 1 & memory 2 respectively.

$$t_{A} = Ht_{A_{1}} + (I-H)t_{A_{2}}$$

$$= Ht_{A_{1}} + (I-H)(t_{A_{1}}+t_{B})$$

where,

$$t_{A2} = t_{A1} + t_{B}$$

$$= t_{A1} + (I - H)_{tB}$$

where
$$s = \frac{t_{A2}}{t_{A1}} = \frac{Speed Ratio}{}$$