

Ticks as Vectors and African Tick Bite Fever

Alex Heaney 3/9/12

DEVOTED TO REDUCING MALARIA DEATHS
& SUFFERING IN HUMANITARIAN CRISES

Lesson Summary

1. Ticks as Disease Vectors

2. African Tick Bite Fever

Ticks

- Arthropoda
 - 2 types of ticks that are vectors for human disease
 - Hard ticks (Ixodidae class)
 - soft ticks (Argasidae class)

Picture Credit: www.floridahealth.com

Life Cycle of a Hard Tick Adults attach to the third host in the spring for feeding and mating. Summer Fall http://www.dpd.cdc.gov/dpdx Nymphs molt into adults after leaving Adult females drop second host. Third Year off host to lay eggs Summer 7 Second Year Nymphs attach to Spring second host. Eggs hatch into six-legged larvae. Larvae attach to = Infective Stage Larvae molt into and feed on nymphs after leaving Summer

& SUFFERING IN HUMANITARIAN CRISES

4

first host and

overwinter.

first host.

A = Diagnostic Stage

Connecting to a Host

 Questing: ticks feed by perching in low vegetation and waiting for a mammal to walk by

Photo Credit: Local Public Health Institute of Massachusetts http://www.masslocalinstitute.org

Connecting to a Host

- Questing
- Ticks use chemical stimuli, airborne vibrations, and body temperatures to locate mammals

Photo Credit: Local Public Health Institute of Massachusetts http://www.masslocalinstitute.org

Ticks as Disease Vectors

 transmit a greater variety of pathogenic microorganisms than any other arthropod vector group

 Bacteria/virus/protozoa in saliva of tick

Injected during a blood meal

Photo Credit: Lyme Disease Action http://www.lymediseaseaction.org.uk/about-ticks/tick-animation/

Ticks as Disease Vectors

Hypostoma attaches to the host's skin using hooks

Photo by Larisa Vredevoe, UC. Davis

Picture from (Parola, 2001)

Ticks as Disease Vectors

Substances secreted into skin

- Cementing substance
 - Glues the hypostoma in place
- Immunosuppressive, Anti-inflammatory chemicals
 - Helps the tick go unnoticed by the host
- Anticoagulant
 - Allows blood to go where it needs to go in the body

All help the pathogen to establish a foothold in the host

DEVOTED TO REDUCING MALARIA DEATHS
& SUFFERING IN HUMANITARIAN CRISES

Epidemiology of Tick Borne Diseases

Ticks are second only to mosquitoes as vectors of human infectious disease throughout the world

Epidemiology of Tick Borne Diseases in US

Recent dramatic increase in prevalence

Epidemiology of Tick Borne Diseases in US

- Recent dramatic increase in prevalence
- Prevalence varies within differing populations

FIGURE 3 Annual incidence rates of Rocky Mountain spotted fever, per 1 million population, among American Indians, and the total U.S. population, 1992-2005 (Holman et al., 2009).

Epidemiology of Tick Borne Diseases in US

- Possible explanations of increase in prevalence:
 - warming temperatures/increasing humidity
 - residential development in preferred tick ecosystems
 - Increased contact between ticks and humans
 - more competent tick vectors
 - international trade and travel distributing tick vectors and their preferred animal hosts

FIGURE 6 Hypothetical explanation for the usurge in cases of tick-borne encephalitis in Estonia, Latvia, and Lithuania, following the end of Soviet rule (Šumilo et al., 2007)

FIGURE 6 Hypothetical explanation for the usurge in cases of tick-borne encephalitis in Estonia, Latvia, and Lithuania, following the end of Soviet rule (Šumilo et al., 2007)

FIGURE 6 Hypothetical explanation for the usurge in cases of tick-borne encephalitis in Estonia, Latvia, and Lithuania, following the end of Soviet rule (Šumilo et al., 2007)

FIGURE 6 Hypothetical explanation for the usurge in cases of tick-borne encephalitis in Estonia, Latvia, and Lithuania, following the end of Soviet rule (Šumilo et al., 2007)

Diseases Carried by Ticks

Diseases:

Anaplasmosis

Ehrlichiosis

Lyme Disease

Rickettsiosis

Rocky Mountain Spotted Fever

Southern Tick-Associated Rash Illness

Tickborne relapsing fever

Tularemia

African Tick Bite Fever

364D Rickettsiosis

Meningoencephalitis

Colorado tick fever

Crimean

Congo hemorrhagic fever

Babesiosis

Cytauxziinosis

Bacteria

Anaplasma phagocytophilum

Ehrlichia

Borrelia burgdorferi

Rickettsiae

Borellia

spirochetes

Francisella tularensis

Virus

TBEV virus

CTF virus

CCHF virus

Protozoa

Babesia microti

C. Felis

LEVOTED TO REDUCING MALARIA DEATHS

& SUFFERING IN HUMANITARIAN CRISES

Diseases Carried by Ticks

Diseases:

Anaplasmosis

Ehrlichiosis

Lyme Disease

Rickettsiosis

Rocky Mountain Spotted Fever

Southern Tick-Associated Rash Illness

Tickborne relapsing fever

Tularemia

African Tick Bite Fever <

364D Rickettsiosis

Meningoencephalitis

Colorado tick fever

Crimean

Congo hemorrhagic fever

Babesiosis

Cytauxziinosis

Bacteria

Anaplasma phagocytophilum

Ehrlichia

Borrelia burgdorferi

Rickettsiae

Borellia

spirochetes

Francisella tularensis

Virus

TBEV virus

CTF virus

CCHF virus

Protozoa

Babesia microti

C. Felis

LEVOTED TO REDUCING MALARIA DEATHS

& SUFFERING IN HUMANITARIAN CRISES

African Tick Bite Fever

- Vector: Amblyomma hebraeum and A. variegatum ticks
- Bacteria: Rickettsia africae and Rickettsia parkeri
 - Thrive in tick salivary glands
 - Multiply in tick salivary glands and ovaries of tick
 - Once injected in host, initially spread via lymphatics, then travels to vascular endothelial lining cells of CNS, lungs, and myocardium

Epidemiology Amblyomma hebraeum

Endemic African Countries

Prevalence of A. hebraeum Tick

Epidemiology

- Not many cases reported within endemic countries
 - People in endemic countries are infected at a younger age
 - At this age, disease is not serious enough to warrant medical attention
 - Misdiagnosed as malaria

DEVOTED TO REDUCING MALARIA DEATHS
& SUFFERING IN HUMANITARIAN CRISES

3119.aspx

A Case Study (France)

- Patient: 69 year old white man
- History: had just returned from a 6 day trip to Zimbabwe
 - Had visited farms and other rural areas
- Admitted with a fever
- Signs/Symptoms:
 - multiple eschars on the right leg
 - headaches, dry cough, nausea, chills, back pain, dysphagia
 - lymphangitis and edema of the right leg

Clinical Presentation

- Symptoms start 1-2 weeks after infection
- rash and/or eschar at site of tick bite
 - Rash starts on wrists/ankles and spreads to the limbs
- Enlarged lymph nodes near eschar

Photo by Mark Wise, Travel Clinic

Clinical Presentation

- fever, headache, nausea, malaise, vomiting, abdominal pain
- Severe problems
 - Vascular epithelial cell damage by microbial replication
 - Vascular inflammation
 - Pulmonary edema
 - Distal, digital skin necrosis

Diagnostic Challenges

- Clinical Presentation similar for many different rickettsiae infections
 - tick bites, eschars, rash, painful regional lymphadenopathy
- Antibody-based laboratory techniques are not sufficient
 - Rickettsiae bacteria all cause similar immune responses in humans
- Can be misdiagnosed as Malaria

Preferred Diagnostic Techniques

Sample: Swab or skin biopsy from rash or eschar

- PCR test
 - Also possible with blood sample
- Immunohistochemical detection
- Culture isolation

Treatment

- Doxycycline
 - 200 mg/day
 - 3-14 days

Personal Methods of Prevention

Body be checked every few hours for ticks

 diethyl-3-methylbenzamide (DEET) and KBR 3023 lotions

Large Scale Preventative Strategies

- Deforestation or agricultural activities disrupt tick lifecycle
- Insecticides
 - Negative impact on environment
 - Ex. Amitraz, Decamethrin
- Tail tags

(top) and http://www.agric.wa.gov.au/PC 93608.html (bottom)

Ticks as Disease Vectors Summary

- Anthropoda phyla of animal parasites
 - hard ticks and soft ticks transmit human diseases
- Hard tick life cycles can include 1-3 feeding hosts, and humans are at risk of becoming an "accidental host" during feeding periods in the lifecycle
- Ticks use methods such as questing, chemical stimuli, and summoning signals to find a hosts
- Ticks transmit Bacteria/virus/protozoa during blood meals by secreting saliva (containing the pathogen) into the host
- Increasing reports of occurrence in tick borne diseases are due to changing environmental factors and growing disease recognition

African Tick Bite Fever Summary (1 of 2)

- Vector: Amblyomma hebraeum and A. variegatum ticks
- Bacteria: Rickettsia africae and Rickettsia parkeri
- Epidemiology
 - Mainly endemic to Sub-Saharan Africa, but some endemicity in Caribbean and Americas
 - Mainly a "traveler disease" few reported cases in endemic countries
- Clinical Presentation
 - rash, eschar, lymphangitis, fever, rare severe complications
- Diagnosis
 - Challenges in distinguishing it from other Rickettsial and febrile diseases
 - Use PCR, Immunohistochemical detection, culture isolation on skin biopsy

African Tick Bite Fever Summary (2 of 2)

- Treatment
 - Doxycycline
- Control Methods
 - Mainly personal prevention like DEET/KBR lotions
 - Some larger interventions like deforestation, insecticides, and tail tags
- If epidemic were to occur, obstacles for control would be lack of diagnostic tools and lack of large scale control methods

Questions??

DEVOTED TO REDUCING MALARIA DEATHS & SUFFERING IN HUMANITARIAN CRISES

Works Cited

- Centers for Disease Control and Prevention; Ticks (2011) <u>www.cdc.gov/ticks 2011</u>
- Grouqui, Philippe (1997). African Tick-Bite Fever; An Imported Spotless Rickettsiosis. Arch Intern Med, 157(1), 119-124
- Jensenius, Mogens (2005) Repellent efficacy of four commercial DEET lotions against Amblyomma hebraeum (Acari: Ixodidae), the principle vector of Rickettsia africae in southern Africa. Transactions of the Royal Society of Tropical Medicine, 99 (9), 708-711
- Kazar, J. (1991) Control of Rickettsial Diseases. European Journal of Epidemiology, 7(3), 282-286
- Ndip, Lucy (2004) Detection of *Rickettsia Africae* in patients and ticks along the coastal region of Cameroon. *American Journal of Tropical Medicine and Hygiene*, 71(3), 363-366
- Mandell, GL (2011). Principles and Practice of Infectious Disease. Churchill Livingstone Elsevier: Philadelphia, PA
- Norval, R.A.I. (1996) Efficacy of pheromone-acaricide impregnated tail-tag decoys for controlling the bont tick, *Amblyomma hebraeum* (Acari: Ixodidae), on cattle in Zimbabwe. *Experimental and Applied Acarology*, 20, 31-46
- Paddock, Christopher (2010). Through a glass, darkly: The global incidence of tick-borne diseases. Draft background paper written to stimulate discussion for the Institute of Medicine Committee on Lyme Disease and OTher Tick-Borne Diseases: The State of the Science
- Parola, Philippe (2001). Ticks and Tickborne Bacterial Diseases in Humans: An emerging Infectious Threat. *Clinical Infectious Diseases*, 32 (6), 897-928
- Parry, Eldryd (2004) Principles of Medicine in Africa. New York, NY: Cambridge University Press
- Robinson, Jennilee (2009) New Approaches to Detection and Identification of *Rickettsia africae* and *Ehrlichia ruminantium* in *Amblyomma variegatum*, (Acari: Ixodidae) Ticks from the Caribbean. *Journal of Medical Entomology*, 46 (4), 942-951
- Sanson, Tracy (2011) Tick-Borne Diseases. < emedicine.medscape.com>
- Vredevoe, Larisa. Tick Biology, University of California Davis. http://entomology.ucdavis.edu/faculty/rbkimsey/tickbio.html

LEVOTED TO REDUCING MALARIA DEATHS

& SUFFERING IN HUMANITARIAN CRISES

