

Constraint Programming applied to the Multi-Skill Project Scheduling Problem

Kenneth D. Young, Thibaut Feydy and Andreas Schutt CP2017, 31st of August 2017





The Multi-Skill Project Scheduling Problem (MSPSP) is a variant of the Resource Constrained Project Scheduling Problem (RCPSP)



The Multi-Skill Project Scheduling Problem (MSPSP) is a variant of the Resource Constrained Project Scheduling Problem (RCPSP)

- Activities
- Workers
- Skills



The Multi-Skill Project Scheduling Problem (MSPSP) is a variant of the Resource Constrained Project Scheduling Problem (RCPSP)

- Activities
- Workers
- Skills

Aim: Find the fastest way to complete all the activities



The Multi-Skill Project Scheduling Problem (MSPSP) is a variant of the Resource Constrained Project Scheduling Problem (RCPSP)

- Activities
- Workers
- Skills

Aim: Find the fastest way to complete all the activities

#### Constraints

- Activity constraint: Precedence relations between activities
- Skill constraint: Activities require skills
- Worker constraint: Workers each have a variety of skills



Table: Workers' Skills

|             | Alice        | Bob          | Carl | Dora         |
|-------------|--------------|--------------|------|--------------|
| Programmer  | -            | ✓            | ✓    | ✓            |
| DB Designer | $\checkmark$ | -            | -    | -            |
| Webmaster   | $\checkmark$ | $\checkmark$ | -    | $\checkmark$ |



Table: Workers' Skills

|             | Alice        | Bob          | Carl | Dora         |
|-------------|--------------|--------------|------|--------------|
| Programmer  | -            | ✓            | ✓    | ✓            |
| DB Designer | $\checkmark$ | -            | -    | -            |
| Webmaster   | $\checkmark$ | $\checkmark$ | -    | $\checkmark$ |



Figure: Precedence Graph



Table: Workers' Skills

|             | Alice        | Bob          | Carl | Dora         |
|-------------|--------------|--------------|------|--------------|
| Programmer  | -            | ✓            | ✓    | ✓            |
| DB Designer | $\checkmark$ | -            | -    | -            |
| Webmaster   | $\checkmark$ | $\checkmark$ | -    | $\checkmark$ |

Table: Skill Requirement

|             | $A_1$ | A <sub>2</sub> | <i>A</i> <sub>3</sub> | A <sub>4</sub> |
|-------------|-------|----------------|-----------------------|----------------|
| Programmer  | -     | 1              | 2                     | 1              |
| DB Designer | 1     | -              | -                     | 1              |
| Webmaster   | 1     | 1              | -                     | -              |



Figure: Precedence Graph



Table: Workers' Skills

|             | Alice        | Bob          | Carl | Dora         |
|-------------|--------------|--------------|------|--------------|
| Programmer  | -            | ✓            | ✓    | ✓            |
| DB Designer | $\checkmark$ | -            | -    | -            |
| Webmaster   | $\checkmark$ | $\checkmark$ | -    | $\checkmark$ |

Table: Skill Requirement

|             | $A_1$ | $A_2$ | <i>A</i> <sub>3</sub> | $A_4$ |
|-------------|-------|-------|-----------------------|-------|
| Programmer  | -     | 1     | 2                     | 1     |
| DB Designer | 1     | -     | -                     | 1     |
| Webmaster   | 1     | 1     | -                     | -     |



Figure: Precedence Graph



Figure: Schedule

#### Intro: The Literature

- French research group
  - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
  - ▶ Exact branch and bound methods
  - Lower bounds
  - Adapted data from PSPLib

### Intro: The Literature

- French research group
  - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
  - Exact branch and bound methods
  - Lower bounds
  - Adapted data from PSPLib
- Portuguese research group
  - Principal researchers: Bernardo Almeida, Isabel Correia, Francisco Saldanha-da-Gama
  - Constructive heuristics
  - Randomised search heuristics
  - Generated their own data

### Intro: The Literature

- French research group
  - Principal researchers: Odile Belleguez-Morineau, Emmanuel Néron, Carlos Montoya
  - Exact branch and bound methods
  - Lower bounds
  - Adapted data from PSPLib
- Portuguese research group
  - Principal researchers: Bernardo Almeida, Isabel Correia, Francisco Saldanha-da-Gama
  - Constructive heuristics
  - Randomised search heuristics
  - Generated their own data
- Polish research group
  - Principal researchers: Myszkowski, Skowronski
  - Randomised search heuristics
  - Generated their own data



- Objective
  - Minimise the total project duration



- Objective
  - ▶ Minimise the total project duration
- Two main decisions



- Objective
  - Minimise the total project duration
- Two main decisions
  - 1. Scheduling decisions
    - Activity start times



- Objective
  - ▶ Minimise the total project duration
- Two main decisions
  - 1. Scheduling decisions
    - Activity start times
  - 2. Assignment decisions
    - Workers to activities
    - Workers to detivities
    - Skill contribution of workers



• Precedence relations are respected



- Precedence relations are respected
- Workers perform only one activity at a time



- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task



- Precedence relations are respected
- Workers perform only one activity at a time
- Workers cannot multi-task
- Skill requirement is satisfied
  - ▶ A worker for each skill must be present to perform the activity

### **Model: Decision Variables**



| Decision Variables |    |                                                                                                                     |  |  |  |  |  |  |
|--------------------|----|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Primary            | -  | Start time of activity $i \in V$<br>1 iff resource $r \in R$ contributes with skill $s \in S$ to activity $i \in V$ |  |  |  |  |  |  |
| Auxiliary          | ., | 1 iff activities $i$ and $j$ overlap for $(i,j) \in U$<br>1 iff resource $r \in R$ is assigned activity $i \in V$   |  |  |  |  |  |  |

### Model: Basic Constraints



$$s_{i} + p_{i} \leq s_{j} \qquad \forall (i, j) \in E$$

$$\sum_{r \in R} y_{ir}^{s} = sr_{i}^{s} \qquad \forall i \in V, \forall s \in S$$

$$\sum_{s \in S} \sum_{i \in V: s_{i} \leq t < s_{i} + p_{i}} y_{ir}^{s} \leq 1 \ \forall r \in R, \forall t \in \left\{0, 1, \dots, \sum_{i \in V} p_{i}\right\}$$

 $\forall i \in V, \forall r \in R, \forall s \in S$ 

 $v_{ir}^{s} < mast_{rs}$ 

### Model: Choice of Constraints



#### Unary Resource Constraint

• Each worker only performs one activity at a time

### Model: Choice of Constraints



#### Unary Resource Constraint

• Each worker only performs one activity at a time

#### Possible ways of modelling

- 1. Time-indexed decomposition
- Global constraints (either disjunctive or cumulative)
- 3. Order constraints



Time-indexed decomposition

$$\sum\nolimits_{s \in S} \sum\nolimits_{i \in V: s_i \leq t < s_i + p_i} y_{ir}^s \leq 1 \ \forall r \in R, \forall t \in \left\{0, 1, \dots, \sum\nolimits_{i \in V} p_i\right\}$$



Time-indexed decomposition

$$\sum\nolimits_{s \in S} \sum\nolimits_{i \in V: s_i \leq t < s_i + \rho_i} y_{ir}^s \leq 1 \ \forall r \in R, \forall t \in \left\{0, 1, \dots, \sum\nolimits_{i \in V} \rho_i\right\}$$

Cumulative global constraint

$$cumulative((s_i)_{i \in V}, (p_i)_{i \in V}, (x_{ir})_{i \in V}, 1) \quad \forall r \in R$$



First order constraint formulation

$$\neg o_{ij} \Leftrightarrow (s_i + p_i \le s_j) \lor (s_j + p_j \le s_i) \quad \forall (i, j) \in U$$
$$(x_{ir} \land x_{jr}) \Rightarrow \neg o_{ij} \qquad \forall (i, j) \in U, r \in R$$



First order constraint formulation

$$\neg o_{ij} \Leftrightarrow (s_i + p_i \le s_j) \lor (s_j + p_j \le s_i) \quad \forall (i, j) \in U$$
$$(x_{ir} \land x_{jr}) \Rightarrow \neg o_{ij} \qquad \forall (i, j) \in U, r \in R$$

Second order constraint formulation

$$(o_{ij} \Rightarrow s_i + p_i \le s_j) \land (\neg o_{ij} \Rightarrow s_j + p_j \le s_i)$$
  
 $\forall (i,j) \in U, \exists s \in S : sr_{is} + sr_{js} > \sum_{r \in R} mast_{rs}$ 

#### **Data: Overview**



• Tested on data from the literature and generated our own data

### **Data: Overview**



• Tested on data from the literature and generated our own data

|     |            |    |   |       | Best known results  |          |           |  |
|-----|------------|----|---|-------|---------------------|----------|-----------|--|
| set | #instances | n  | 1 | m     | source              | %optimal | #unsolved |  |
| 1a  | 216        | 22 | 4 | 10-30 | Correia et al. 2012 | 93.98    | 13        |  |
| 1b  | 216        | 42 | 4 | 20-60 | Almeida et al. 2016 | 2.31     | 211       |  |

### **Data: Overview**



• Tested on data from the literature and generated our own data

|     |            |       |      |       | Best known results  |          |           |  |
|-----|------------|-------|------|-------|---------------------|----------|-----------|--|
| set | #instances | n     | 1    | m     | source              | %optimal | #unsolved |  |
| 1a  | 216        | 22    | 4    | 10-30 | Correia et al. 2012 | 93.98    | 13        |  |
| 1b  | 216        | 42    | 4    | 20-60 | Almeida et al. 2016 | 2.31     | 211       |  |
| 2a  | 110        | 20-51 | 2-8  | 5-14  | Montoya et al. 2014 | 43.64    | 62        |  |
| 2b  | 77         | 32-62 | 9-15 | 5-19  | Montoya et al. 2014 | 66.20    | 24        |  |
| 2c  | 91         | 22-32 | 3-12 | 4-15  | Montoya et al. 2014 | 51.11    | 44        |  |

### **Data: Complexity Measures**



- 1. Skill Factor
  - ▶  $SF \in \{1, 0.75, 0.5, variable\}$

### **Data: Complexity Measures**



- 1. Skill Factor
  - $SF \in \{1, 0.75, 0.5, variable\}$
- 2. Network Complexity
  - $ightharpoonup NC \in \{1.5, 1.8, 2.1\}$

# **Data: Complexity Measures**



- 1. Skill Factor
  - $SF \in \{1, 0.75, 0.5, variable\}$
- 2. Network Complexity
  - $ightharpoonup NC \in \{1.5, 1.8, 2.1\}$
- 3. Modified Resource Strength
  - varied over 3 values

•

$$MRS = \frac{m}{\sum_{i \in V} \sum_{s \in S} sr_{is}}$$

## **Experiments: Search Strategies**



- Basic Search
  - ▶ Start times (*s<sub>i</sub>*)

## **Experiments: Search Strategies**



- Basic Search
  - Start times (s<sub>i</sub>)
- Sequential Searches
  - ▶ Start times  $(s_i)$ , then worker assignment  $(x_{ir})$
  - ▶ Start times  $(s_i)$ , then contribution of each worker  $(y_{ir}^s)$

### **Experiments: Search Strategies**



- Basic Search
  - ▶ Start times (s<sub>i</sub>)
- Sequential Searches
  - ▶ Start times  $(s_i)$ , then worker assignment  $(x_{ir})$
  - ▶ Start times  $(s_i)$ , then contribution of each worker  $(y_{ir}^s)$
- Priority searches ⇒ Group scheduling and assignment decisions of each activity together
  - priority-ff: choose activity group by smallest start time domain
  - priority-sml: choose activity group by smallest largest possible start time
  - priority-sm: choose activity group by smallest possible start time

#### Experiments: Set 1'a



- Tested on 216 generated instances with 22 activities
- Time limit of 600 seconds

### Experiments: Set 1'a



- Tested on 216 generated instances with 22 activities
- Time limit of 600 seconds

| unary cons. | search  | #nodes  | %optimal | runtime |
|-------------|---------|---------|----------|---------|
| cumulative  | default | 370,174 | 100.00   | 10.23s  |
| order-1     | default | 97,085  | 100.00   | 2.73s   |
| order-2     | default | 54,282  | 100.00   | 1.30s   |

# Experiments: Set 1'a



- Tested on 216 generated instances with 22 activities
- Time limit of 600 seconds

| unary cons. | search       | #nodes  | %optimal | runtime      |
|-------------|--------------|---------|----------|--------------|
| cumulative  | default      | 370,174 | 100.00   | 10.23s       |
| order-1     | default      | 97,085  | 100.00   | 2.73s        |
| order-2     | default      | 54,282  | 100.00   | 1.30s        |
| order-2     | priority-ff  | 41,762  | 100.00   | 1.25s        |
| order-2     | priority-sml | 20,786  | 100.00   | 0.68s        |
| order-2     | priority-sm  | 13,241  | 100.00   | <b>0.51s</b> |



- Tested on remaining benchmark instances
- Time limit of 600 seconds



- Tested on remaining benchmark instances
- Time limit of 600 seconds

| set | #nodes | %gap | #opt   | %opt | mean runtime | #closed |
|-----|--------|------|--------|------|--------------|---------|
| 1'b | 7,584k | 49.3 | 27/216 | 12.5 | 534.6s       | _       |



- Tested on remaining benchmark instances
- Time limit of 600 seconds

| set         | # nodes | %gap  | #opt   | %opt | mean runtime | #closed |
|-------------|---------|-------|--------|------|--------------|---------|
| 1' <i>b</i> | 7,584k  | 49.3  | 27/216 | 12.5 | 534.6s       | _       |
| 2 <i>a</i>  | 2,223k  | 185.2 | 81/110 | 73.6 | 195.2s       | ≥33     |



- Tested on remaining benchmark instances
- Time limit of 600 seconds

| set                      | # nodes | %gap | #opt            | %opt | mean runtime     | #closed    |
|--------------------------|---------|------|-----------------|------|------------------|------------|
| 1'b                      | 7,584k  | 49.3 | 27/216          | 12.5 | 534.6s           | _          |
| 2 <i>a</i><br>2 <i>b</i> |         |      | 81/110<br>63/77 |      | 195.2s<br>122.9s | ≥33<br>≥10 |



- Tested on remaining benchmark instances
- Time limit of 600 seconds

| set        | # nodes | %gap  | #opt   | %opt  | mean runtime | #closed |
|------------|---------|-------|--------|-------|--------------|---------|
| 1'b        | 7,584k  | 49.3  | 27/216 | 12.5  | 534.6s       | _       |
| 2 <i>a</i> | 2,223k  | 185.2 | 81/110 | 73.6  | 195.2s       | ≥33     |
| 2 <i>b</i> | 816k    | 22.4  | 63/77  | 81.8  | 122.9s       | ≥10     |
| 2 <i>c</i> | 14k     | 0.0   | 91/91  | 100.0 | 1.2s         | 44      |

# **Experiments: Complexity Measures**

DATA CSIRO

- Results of set 1'b
- Time limit of 600 seconds

# **Experiments: Complexity Measures**



- Results of set 1'b
- Time limit of 600 seconds

| measure | value    | #nodes | #props | %gap  | #opt   | %opt | runtime(s) |
|---------|----------|--------|--------|-------|--------|------|------------|
| SF      | 1        | 5.9m   | 706k   | 48.1  | 6/54   | 11.1 | 535.5      |
|         | 0.75     | 8.9m   | 765k   | 51.8  | 4/54   | 7.4  | 559.9      |
|         | 0.5      | 6.7m   | 914k   | 44.1  | 12/54  | 22.2 | 489.7      |
|         | variable | 8.6m   | 754k   | 52.4  | 5/54   | 9.26 | 553.5      |
| NC      | 1.5      | 7.7m   | 872k   | 58.3  | 6/72   | 8.3  | 559.9      |
|         | 1.8      | 7.9m   | 812k   | 47.7  | 8/72   | 11.1 | 541.3      |
|         | 2.1      | 7.0m   | 671k   | 41.03 | 13/72  | 18.1 | 502.8      |
| MRS     | #1       | 7.4m   | 1,106k | 79.2  | 11/72  | 15.3 | 525.4      |
|         | #2       | 7.9m   | 734k   | 45.6  | 6/72   | 8.3  | 558.4      |
|         | #3       | 7.3m   | 515k   | 24.0  | 10/72  | 13.9 | 520.1      |
| Overall |          | 7.5m   | 785k   | 49.3  | 27/216 | 12.5 | 534.6      |

#### **Summary**



 Applied the constraint programming solver chuffed to the MSPSP

#### **Summary**



- Applied the constraint programming solver chuffed to the MSPSP
- Generated a set of benchmark instances

#### Summary



- Applied the constraint programming solver chuffed to the **MSPSP**
- Generated a set of benchmark instances
- Created an effective constraint programming model
  - Together with an application tailored search strategy

# Acknowledgements



- Dr. Andreas Schutt
- Dr. Thibaut Feydy
- Adrian Goldwaser



#### Thanks for listening!

Questions?