Day 9 Notes

Zach Neveu

May 20, 2019

1 Agenda

- · Quizzes back
- No simple mapping from # to grade based on "expected number"
- Intro to LP
- Examples of LP

2 HW #2

- Definition of NP: **yes** example has certificate which can be verified in polynomial time.
- Definition is not symmetrical!
- Many problems in NP have inverse outside of NP

3 Linear Programming

- Example: Political Election categories (see day 8)
- Ex. Input: \$20k on roads, \$0 on guns, \$4k on farms, \$9k on gas
- Minimize $x_1 + x_2 + x_3 + x_4$ (total cost)

$$20(-2)+0(5)+4(0)+9(10) = 50,000$$

 $20(5)+0(2)+4(0)+9(0) = 100,000$
 $20(3)+0(-5)+4(0)+9(-2) = 200,000$

General Linear Program

Given a set of constants $a_1, ..., a_n$ and a set of variables $x_1, ..., x_n$, a **linear function** f on the variables is:

$$f(x_1,...,x_n) = a_1(x_1) + ... + a_n(x_n) = \sum_{\alpha=1}^n a_{\alpha} x_{\alpha}$$

Given a constant b and a linear function f, $f() \le b$ and $f() \ge b$ are linear inequalities f() = b is a linear equality

< and > are not linear!

LP Problem: The problem of maximizing or minimizing a linear function subject to a finite set of linear constraints.

Example:

Maximize: $x_1 + x_2$

Subject to: $4x_1 - x_2 \le 8$ $2x_1 + x_2 \le 10$ $5x_1 - 2x_2 \ge -2$

 $x_1, x_2 \ge 0$

Figure 1: Graph of Solution Space: where all regions overlap is valid (marked in white). x = y lines show value -> further from origin is better.

Example: Reclaiming Solid Waste

Inputs are 3 types of materials: 1,2&3

Table 1: Material Availability Material Available Pounds/Week

1	100
2	200
3	300

Problem:

Maximize: $5Y_A + 10Y_B$

Table 2: Grades			
Grade	Spec	profit/pound	
A	$M_1 \le 30\%, M_2 \le 40\%$	5	
В	$M_2 = 50\%, M_2 \le 20\%$	10	

Let: Z_{MN} = the proportion of grade M that is material N Subject to:

$$Z_{A_1} \le 0.3$$

$$Z_{A_2} \le 0.4$$

$$Z_{B_2} = 0.5$$

$$Z_{B_3} \le 0.2$$

$$Y_A * Z_{A_1} + Y_B * Z_{B_1} \le 100$$

:

UH OH! This multiplies variables which isn't linear...

Fix:

Let: $X_{MN} = \underline{\text{amount}}$ of Material N in grade M

New Constraints:

$$X_{A_1} + X_{B_1} \le 100$$

$$X_{A_2} + X_{B_2} \le 200$$

$$X_{A_3} + X_{B_3} \le 300$$

New Objective Function:

Maximize:
$$5(X_{A_1} + X_{A_2} + X_{A_3}) + 10(X_{B_1} + X_{B_2} + X_{B_3})$$

Takeaways

- Variable choices matter! Effects speed and solve-ability
- Seemingly non-linear variables can be re-written as linear variables

Standard Form

Given constants $c_1, ..., c_n, b_1, ..., b_m$ and m * n values a_g for $i = 1 \to m$ and $j = 1 \to n$, find $x_1, ..., x_n$ such that:

Maximize: $\sum_{j=1}^{n} c_j x_j$

Subject to: $\sum_{i=1}^{n} a_{ij} x_j \le b_i$ for $i = 1 \rightarrow m$

 $x_j \ge 0$ for $j = 1 \rightarrow n$

n = # variables m = # constraints

- In standard form, all variables $x \ge 0$
- Only maximization as operation

•

Concise Standard Form

- $A = (a_{ij})$
- $b = (b_i)$
- $c = (c_j)$
- $\boldsymbol{x} = (x_j)$

An LP formulation in standard form is: maximize $C^T x$ subject to $Ax \le b$, $x \ge 0$.