[03-60-231] Assignment 2

Stephen Nusko 103693282

October 7, 2013

1 Question 2.1

1.1 Part c

Evaluate $(\forall x)(\exists y)(P(x)\Rightarrow Q(x,y))$ Let $\mathbf{x}=1$. We obtain $(\exists y)(P(1)\Rightarrow Q(1,y))$ Let $\mathbf{y}=2$. Then $P(1)\equiv T$ and $Q(1,2)\equiv T$ Therefore $(\exists y)(P(1)\Rightarrow Q(1,y))$ is evaluated to true. Let $\mathbf{x}=2$. We obtain $(\exists y)(P(2)\Rightarrow Q(2,y))$ Since $P(2)\equiv F$ $\therefore (\exists y)(P(2)\Rightarrow Q(2,y))$ is evaluated to true. $\therefore (\forall x)(\exists y)(P(x)\Rightarrow Q(x,y))$ is evaluated to true.

1.2 Part i

Evaluate $(\exists x)(\exists y)(Q(x,a)\Rightarrow Q(b,y)$ Let $\mathbf{x}=1$. We obtain $(\exists y)(Q(1,a)\Rightarrow Q(b,y)$ Let $\mathbf{y}=2$. We obtarin $(Q(1,a)\Rightarrow Q(b,2)$ since $Q(1,a)\equiv Q(1,2)\equiv T\equiv Q(b,2)\equiv Q(1,2)$ $\therefore Q(1,2)\Rightarrow Q(1,2)$ is evaluated to true. $\therefore (\exists y)(Q(1,a)\Rightarrow Q(b,y))$ is evaluated to true. $\therefore (\exists x)(\exists y)(Q(x,a)\Rightarrow Q(b,y))$ is evaluated to true.

2 Question 2.2

2.1 Part c

Prove $((\forall x)\alpha(x) \lor (\forall x)\beta(x)) \Rightarrow (\forall x)(\alpha(x) \lor \beta(x))$ Solution: (indirect proof)

1. $\neg((\forall x)(\alpha(x) \lor \beta(x))$	Hypothesis
2. $(\exists x) \neg (\alpha(x) \lor \beta(x))$	1, FE7
3. $(\exists x) \neg \alpha(x) \land \neg \beta(x))$	2, E17
4. $\neg \alpha(x) \land \neg \beta(x)$	3, UI
5. $\neg \alpha(x)$	4, 12
6. $\neg \beta(x) \land \neg \alpha(x)$	4, E9

7. $\neg \beta(x)$	6, I2
8. $(\exists x) \neg \alpha(x)$	5, EQ
9. $(\exists x)\neg\beta(x)$	7, EQ
10. $(\exists x) \neg \alpha(x) \wedge (\exists x) \neg \beta(x)$	8, 9, I6
11. $\neg(\forall x)\alpha(x) \wedge (\exists x)\neg\beta(x)$	10, FE7
12. $\neg(\forall x)\alpha(x) \land \neg(\forall x)\beta(x)$	11, FE7
13. $\neg((\forall x)\alpha(x) \lor (\forall x)\beta(x)$	$12,\mathrm{E}17$
$ \therefore \neg((\forall x)(\alpha(x) \lor \beta(x)) \Rightarrow \neg((\forall x)\alpha(x) \lor (\forall x)\beta(x)) $ $ \therefore ((\forall x)\alpha(x) \lor (\forall x)\beta(x)) \Rightarrow (\forall x)(\alpha(x) \lor \beta(x)) $	

2.2 Part d

Prove $(\forall x)(\alpha(x) \Rightarrow \beta(x)) \Rightarrow ((\forall x) \neg \beta(x) \Rightarrow (\forall x) \neg \alpha(x))$ Solution: (indirect proof)

1. $\neg((\forall x)\neg\beta(x)\Rightarrow(\forall x)\neg\alpha(x))$	Hypothesis
2. $\neg(\neg((\forall x)\neg\beta(x))\lor(\forall x)\neg\alpha(x))$	1, E18
3. $\neg\neg(\forall x)\neg\beta(x) \land \neg(\forall x)\neg\alpha(x)$)	2, E17
4. $(\forall x) \neg \beta(x) \land \neg(\forall x) \neg \alpha(x)$	3, E15
5. $(\forall x) \neg \beta(x)$	4, I2
6. $\neg(\forall x)\neg\alpha(x) \wedge (\forall x)\neg\beta(x)$	4, E9
7. $\neg(\forall x)\neg\alpha(x)$	7, I2
8. $(\exists x) \neg \neg \alpha(x)$	8, FE7
9. $(\exists x)\alpha(x)$	9, E15
10. $\alpha(x)$	10, EI
11. $\neg \beta(x)$	5, UI
12. $\alpha(x) \wedge \neg \beta(x)$	10, 11, I6
13. $(\exists x)(\alpha(x) \land \neg \beta(x))$	12, EQ
14. $(\exists x)(\neg\neg\alpha(x)\land\neg\beta(x))$	13, E15
15. $(\exists x) \neg (\neg \alpha(x) \lor \beta(x))$	14, E17
16. $\neg((\forall x)(\neg\alpha(x)\vee\beta(x)))$	15, FE7
17. $\neg((\forall x)(\alpha(x) \Rightarrow \beta(x)))$	16, E18
$ \therefore \neg((\forall x) \neg \beta(x) \Rightarrow (\forall x) \neg \alpha(x)) \Rightarrow \neg((\forall x)(\alpha(x) \Rightarrow \beta(x))) $ $ \therefore (\forall x)(\alpha(x) \Rightarrow \beta(x)) \Rightarrow (\forall x) \neg \beta(x) \Rightarrow (\forall x) \neg \alpha(x) $	

3 Question 2.3

3.1 Part d

Prove $((\exists x)(P(x) \land (\forall y)((R(y) \land S(x,y)) \Rightarrow Z(x,y))) \land ((\forall x)(P(x) \Rightarrow (\exists y)(R(y) \land \neg U(x,y) \land T(x,y)))) \land ((\forall x)(\forall y)((P(x) \land R(y) \land T(x,y)) \Rightarrow S(x,y))) \Rightarrow ((\exists x)(\exists y)(P(x) \land R(x) \land Z(x,y) \land \neg U(x,y)))$ Solution: (direct proof)

1.	$(\exists x)(P(x) \land (\forall y)((R(y) \land S(x,y)) \Rightarrow Z(x,y)))$	Hypothesis from P1
2.	$(\forall x)(P(x) \Rightarrow (\exists y)(R(y) \land \neg U(x,y) \land T(x,y)))$	Hypothesis from P2
3.	$(\forall x)(\forall y)((P(x) \land R(y) \land T(x,y)) \Rightarrow S(x,y))$	Hypothesis from P3
4.	$P(c) \wedge (\forall y)((R(y) \wedge S(c,y)) \Rightarrow Z(c,y)$	1, EI, c is a constant
5.	P(c)	4, I2
6.	$(\exists y)(R(y) \land \neg U(c,y) \land T(c,y)$	5, 2, I3
7.	$R(k) \wedge \neg U(c,k) \wedge T(c,k)$	6, EI, k is a constant
8.	$R(k) \wedge \neg U(c,k)$	7, I2
9.	R(k)	8, I2
10.	$ eg U(c,k) \wedge R(k)$	9, E9
11.	eg U(c,k)	10, I2
12.	$T(c,k) \wedge R(k) \wedge \neg U(c,k)$	7, E9
13.	T(c,k)	12, I2
14.	$P(c) \wedge R(k)$	5, 9, I6
15.	$P(c) \wedge R(k) \wedge T(c,k)$	14, 13, I6
16.	S(c,k)	15, 3, I3
17.	$(\forall y)((R(y) \land S(c,y) \Rightarrow Z(c,y) \land P(c)$	4, E9
18.	$(\forall y)((R(y) \land S(c,y) \Rightarrow Z(c,y)$	17, I2
19.	$R(k) \wedge S(c,y)$	9, 16, I6
20.	Z(c,k)	19, 18, I3
21.	$P(c) \wedge R(k) \wedge Z(c,k)$	14, 20, I6
22.	$P(c) \wedge R(k) \wedge Z(c,k) \wedge \neg U(c,k)$	21, 11, I6
23.	$(\exists y)(P(c) \land R(y) \land Z(c,y) \land \neg U(c,y)$	22, EQ
24.	$(\exists x)(\exists y)(P(x) \land R(y) \land Z(x,y) \land \neg U(x,y)$	23, EQ
$ ((\exists x)(P(x) \land (\forall y)((R(y) \land S(x,y)) \Rightarrow Z(x,y))) \land ((\forall x)(P(x) \Rightarrow (\exists y)(R(y) \land \neg U(x,y) \land T(x,y)))) \land ((\forall x)(\forall y)((P(x) \land R(y) \land T(x,y)) \Rightarrow S(x,y))) \Rightarrow ((\exists x)(\exists y)(P(x) \land R(x) \land Z(x,y) \land \neg U(x,y))) $		

4 Question 2.4

4.1 Part f

The universe of discourse are poems.

Let I(x) denote an interesting poem.

Let M(x) denote a modern poem.

Let F(x) denote a poem written by me.

Let S(x) denote a poem written about a soap bubble.

Let R(x) denote a poem that is popular with people of real taste.

Let A(x) denote a poem that is affected.

Then we must prove: $((\neg(\exists x)(I(x)\land \neg R(x)))\land (\neg(\exists x)(M(x)\land \neg B(x)))\land ((\forall x)(F(x)\land S(x)))\land (\neg(\exists x)(\neg M(x)\land S(x))))\Rightarrow ((\forall x)(F(x)\land \neg I(x)))$

1. $\neg(\exists x)(I(x) \land \neg R(x))$	Hypothesis from P1
2. $\neg(\exists x)(M(x) \land \neg B(x))$	Hypothesis from P2
3. $(\forall x)(F(x) \land S(x))$	Hypothesis from P3
4. $\neg(\exists x)(B(x) \land R(x))$	Hypothesis from P4
5. $\neg(\exists x)(\neg M(x) \land S(x))$	Hypothesis from P5
6. $(\forall x) \neg (I(x) \land \neg R(x))$	1, FE8
7. $(\forall x)(\neg I(x) \lor \neg \neg R(x))$	6, E16
8. $(\forall x)(\neg \neg R(x) \lor \neg I(x))$	7, E10
9. $(\forall x)(\neg R(x) \Rightarrow \neg I(x))$	8, E18
10. $\neg R(x) \Rightarrow \neg I(x)$	9, UI
11. $(\forall x) \neg (\neg M(x) \land S(x))$	$5, \mathrm{FE}8$
12. $(\forall x)(\neg \neg M(x) \lor \neg S(x))$	11, E16
13. $(\forall x)(\neg S(x) \lor \neg \neg M(x))$	12, E10
14. $(\forall x)(\neg S(x) \lor M(x))$	13, E15
15. $(\forall x)(S(x) \Rightarrow M(x))$	14, E18
16. $S(x) \Rightarrow M(x)$	15, UI
17. $(\forall x) \neg (M(x) \land \neg B(x))$	2, FE8
18. $(\forall x)(\neg M(x) \lor \neg \neg B(x))$	17, E16
19. $(\forall x)(\neg M(x) \lor B(x))$	18, E15
20. $(\forall x)(M(x) \Rightarrow B(x))$	19, E18
21. $M(x) \Rightarrow B(x)$	20, UI
22. $(\forall x) \neg (B(x) \land R(x))$	4, FE8
23. $(\forall x)(\neg B(x) \lor \neg R(x))$	$22,\mathrm{E}16$
24. $(\forall x)(B(x) \Rightarrow \neg R(x))$	23, E18

25. $B(x) \Rightarrow \neg R(x)$	24, UI	
26. $S(x) \Rightarrow B(x)$	16, 21, I5	
$27. S(x) \Rightarrow \neg R(x)$	26, 25, I5	
28. $S(x) \Rightarrow \neg I(x)$	27, 10, I5	
29. $F(x) \wedge S(x)$	3, UI	
30. $F(x)$	29, I2	
31. $S(x) \wedge F(x)$	29, E9	
32. $S(x)$	32, I2	
33. $\neg I(x)$	33, 28, I3	
34. $F(x) \wedge \neg I(x)$	30, 34, I6	
35. $(\forall x)(F(x) \land \neg I(x))$	45, Gen	
$ \therefore \left(\left(\neg (\exists x) (I(x) \land \neg R(x)) \right) \land \left(\neg (\exists x) (M(x) \land \neg B(x)) \right) \land \left((\forall x) (F(x) \land S(x)) \right) \land \left(\neg (\exists x) (\neg M(x) \land S(x)) \right) \right) \Rightarrow \left((\forall x) (F(x) \land \neg I(x)) \right) $		