The Method of Green's Functions

Ryan Coyne

NHTI-Concord's Community College

5/5/2023

$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$f(1) = \frac{1^2 - 1}{1 - 1} = \frac{0}{0}$$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$f(1) = \frac{1^2 - 1}{1 - 1} = \frac{0}{0}$$

$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$f(1) = \frac{1^2 - 1}{1 - 1} = \frac{0}{0}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

$$f(x) = \frac{1}{x}$$

$$f(x) = x + 1$$

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x}$$

$$f'(x) = -\frac{1}{x^2}$$

$$f(x) = \frac{1}{x}$$

 $f'(x) = -\frac{1}{x^2}$
 $f'(1) = 1$

The Anti-Derivative

$$\int f(x)dx = F(x)$$

The Anti-Derivative

$$\int f(x)dx = F(x)$$

$$f(x) = \frac{1}{x}$$

$$\int \frac{1}{x}dx = \ln x + c$$

$$f(x) = \frac{1}{x}$$

$$f(x) = \frac{1}{x}$$

$$\int_{\mathbf{a}}^{\mathbf{b}} f(x) dx = F(a) - F(b)$$

$$f(x) = \frac{1}{x}$$

$$\int_{1}^{3} f(x)dx = F(3) - F(1)$$

$$= \ln(3) - \ln(1)$$

Differential Equations

The Adjoint Operator

The Dirac Delta Function

The Method of Green's Functions