Network QoS 371-2-0213

Lecture 11

Gabriel Scalosub

Outline

- Adversarial Queueing Theory: Recap and Traffic Stability
 - AQT: Recap
 - Traffic Stability
 - Alternative Definitions of Adversaries
- 2 Topology Stability
 - Universal Stability for r=1
 - Universal Stability for r < 1
- An Adversarial Framework for Wireless Networks
 - Model
 - The MaxWeight Protocol

System and Traffic Model

- Slotted time
- Directed graph G = (V, E)
 - ullet single rate-1 queue Q_e at link tail
 - unlimited buffer space
 - ullet employs scheduling policy ${\cal P}$
- Unit size packets
 - $\bullet \ p=(\pi_p,a_p)$
 - π_p simple path in G and a_p arrival time at path source
 - take a single time slot to traverse a link
- (r, b)-adversary
 - for any time interval I and edge $e \in E$

$$N(e, I) \leq r|I| + b$$

- N(e, I): # packets injected during interval I with $e \in path$
- Stability
 - $\sup_t \sum_{e \in F} Q_e(t) < \infty$
 - $Q_e(t)$: queue size at tail of e at time t

Protocols

Work-conserving (WC)

FIFO	Nearest-to-Go (NTG)	Farthest-to-Go (FTG)	Shortest-in-System (SIS)
LIFO	Farthest-from-Source (FFS)	Nearest-to-Source (NTS)	Longest-in-System (LIS)

Last Week Results

- Stability vs. delay
 - for any (r < 1, b)-adversary and any WC protocol, the system is stable iff it has bounded delay
 - "if" direction holds also for r=1
- Farthest-to-go
 - universally stable
- FIFO
 - not universally stable for any rate r > 0
- Some protocols are universally stable, and some are not. E.g.,

Protocol	Universally Stable?	
FIFO	No	
LIFO	No	
Nearest-to-Go (NTG)	No	
Farthest-from-Source (FFS)	No	
Farthest-to-Go (FTG)	Yes	
Nearest-to-Source (NTS)	Yes	
Shortest-in-System (SIS)	Yes	
Longest-in-System (LIS)	Yes	

This Week

- Easy traffic
 - are there rates for which any WC protocol is stable?
 - e.g., sometimes even FIFO might be stable
 - depends on topology?
- Universally stable topologies
 - are there topologies for which any WC protocol is stable?
 - at any rate ≤ 1 ?

Stability Against Low-rate Adversaries

Theorem

For any G = (V, E) there exists some r(G) > 0 s.t. any WC protocol \mathcal{P} is stable on G against $(r < r(G), b \ge 0)$ -adversaries.

Proof (for FIFO and r(G) = 1/d)

- Assume $r < \frac{1}{d}$
- ullet Prove that every packet has bounded delay T in every link
 - ⇒ overall bounded delay implies stability
- Given any $\delta \in (0,1)$ define

•
$$w_{\delta} = \frac{b}{1-\epsilon} \cdot \frac{1}{\delta}$$

•
$$r_{\delta} = r + \delta(1-r)$$

• for small enough
$$\delta$$
, $r_\delta \in (r, \frac{1}{d})$

• "smooth-out" bursts over intervals I of length w_{δ}

$$N(e, I) \le w_{\delta}r + b = w_{\delta}r + w_{\delta}(1 - r)\delta = w_{\delta} \cdot r_{\delta}$$

Stability Against Low-rate Adversaries

Theorem

For any G = (V, E) there exists some r(G) > 0 s.t. any WC protocol \mathcal{P} is stable on G against $(r < r(G), b \ge 0)$ -adversaries.

Proof (for FIFO and r(G) = 1/d)

- Every packet p arriving at Q_e at t, leaves by $T_t = t + w_\delta \cdot r_\delta$
 - By induction on t
- Base case: $t \leq d \cdot w_{\delta} \cdot r_{\delta}$
 - ullet assume by contradiction p is still in Q_e at T_t
 - $Q_e(t) \geq w_\delta \cdot r_\delta + 1$
 - FIFO...
 - $N(e, [0, t]) \leq \lceil d \cdot r_{\delta} \rceil \cdot w_{\delta} \cdot r_{\delta} \leq w_{\delta} \cdot r_{\delta}$
 - (number of w_δ windows \times bound per window) $+ (r_\delta < \frac{1}{d})$
 - contradiction

Stability Against Low-rate Adversaries

Theorem

For any G = (V, E) there exists some r(G) > 0 s.t. any WC protocol \mathcal{P} is stable on G against $(r < r(G), b \ge 0)$ -adversaries.

Proof (for FIFO and r(G) = 1/d)

- Induction step: consider $t > d \cdot w_{\delta} \cdot r_{\delta}$
 - assume by contradiction p is still in Q_e at T_t
 - $Q_e(t) > w_\delta \cdot r_\delta + 1$
 - FIFO...
 - every packet in e's buffer at t was injected after $t d \cdot w_{\delta} \cdot r_{\delta}$
 - assume the contrary
 - by I.H. it waited in every prior link $\leq w_{\delta} \cdot r_{\delta}$ time
 - hence, it was in the system $< d \cdot w_{\delta} \cdot r_{\delta}$ time
 - it cannot be in the buffer at t
 - $N(e, [t d \cdot w_{\delta} \cdot r_{\delta}, t]) \leq w_{\delta} \cdot r_{\delta}$
 - same as base case
 - contradiction

Alternative Definition of Adversaries

- Above proof implies an alternative definition of adversaries
- (w, ε) -window adversary
 - for any time interval I of length w, and edge $e \in E$

$$N(e, I) \leq \lceil w(1 - \varepsilon) \rceil$$

- An adversary is an (r < 1, b)-adversary iff it is a $(w, \varepsilon > 0)$ -window adversary
 - \leftarrow trivial, by choosing $r = (1 \varepsilon)$ and b = w
 - \Rightarrow follows from the proof by choosing a sufficiently small δ :

•
$$w_{\delta} = \frac{b}{1-r} \cdot \frac{1}{\delta}$$

•
$$r_{\delta} = r + \delta(1 - r)$$
 $(\xrightarrow{\delta \to 0} r)$

• set
$$w = w_{\delta}$$
 and $\varepsilon = 1 - r_{\delta}$

Unstable Topologies (r = 1)

Theorem (instability of cycles (r = 1))

LIS is unstable for the n-cycle $(n \ge 3)$ against (1, b)-adversaries

Proof sketch.

- i-loop
 - packet from i to i
- (1, *b*)-adversary:
 - phases P_k , k = 1, 2, ...
 - sub-phase $S_{k,1}$: for nk time units inject 1-loops
 - sub-phase $S_{k,2}$: for nk time units: inject 0-loops
- Under LIS, by end of P_k
 - 1 packet in node 1
 - nk 1 packets in node 0
- Proof by induction on k
- $\lim_{t\to\infty} Q_{(0,1)}(t) = \infty$

Directed Acyclic Graphs (DAGs)

Theorem

A network G = (V, E) is universally stable for r = 1 iff G is a DAG

- Notation
 - for every link $e = (u, v) \in E$, define
 - d_e: edge level (max-distance from source node)
 - potential f(e):

$$f(e) = \left\{ egin{array}{ll} 1 & u ext{ is a source} \ 1 + \sum_{u ext{ incoming edges } e'} f(e') & ext{otherwise} \end{array}
ight. \quad \left(egin{array}{ll} d_e = 0
ight) \end{array}$$

- $A_e(t)$: number of packets in the *network* at t requiring e
- $Q_e(t)$: number of packets in e's queue at t
- assume system is empty at t=0
- Proof idea:
 - show that $A_e(t) < b \cdot f(e)$
 - hence, stable $(Q_e(t) \leq A_e(t))$
 - combine with instability of cycles

Directed Acyclic Graphs (DAGs)

Lemma

For all $e \in E$ and t, $A_e(t) \leq b \cdot f(e)$

Proof (by induction on edge level)

- Basis: d(e) = 0, and arbitrary t
 - i.e., e = (u, v) leaves a source node u
 - $A_e(\cdot) = Q_e(\cdot)$
 - let $t' \leq t$ be maximal such that $Q_e(t') = 0$
 - exists since system is empty at 0
 - Adversary's injections during (t', t]
 - $N(e,(t',t]) \leq (t-t')+b$
 - at least t t' packets traverse e during (t', t]
 - by maximality of t' + WC
 - hence, $Q_e(t) \leq b = b \cdot 1 = b \cdot f(e)$
- Induction step: assume true for all t and e' s.t. d(e') < d(e)

Directed Acyclic Graphs (DAGs)

Lemma

For all $e \in E$ and t, $A_e(t) \leq b \cdot f(e)$

Proof (by induction on edge level)

- Choose t' as in the base case
 - hence, $A_e(t) \leq A_e(t') + b$

$$\overbrace{A_e(t') + \overbrace{(t-t') + b}^{r|I|+b} - \overbrace{(t-t')}^{Q_e \neq \emptyset}}^{Q_e \neq \emptyset}$$

- At t', $Q_e(t') = 0$ (by choice of t')
 - packets contributing to $A_e(t')$ cross some incoming edge of u
 - $A_e(t') \leq \sum_{u \text{ incoming edges } e'} A_{e'}(t')$
 - for every incoming edge e' of u
 - d(e') < d(e)
- Hence,

$$egin{array}{lll} A_e(t) & \leq & b + A_e(t') \ & \leq & b + \sum_{u ext{ incoming edges } e'} A_{e'}(t') \ & \leq & b + \sum_{u ext{ incoming edges } e'} b \cdot f(e') = b \cdot f(e) \end{array}$$

Decomposing Universal Stability

- Goal:
 - find characteristics of networks that guarantee stability (r < 1)
 - DAGs for r=1
- Strongly-connected components
- G is a DAG of its strongly-connected components

- Stability and connected components
 - if a connected component is not universally stable
 - entire network is not
 - is the converse also true?

Theorem

If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are universally stable $(V_1 \cap V_2 = \emptyset)$, then for any $E_3 \subset V_1 \times V_2$, $G = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3)$ is universally stable.

Theorem

If
$$G_1 = (V_1, E_1)$$
 and $G_2 = (V_2, E_2)$ are universally stable $(V_1 \cap V_2 = \emptyset)$, then for any $E_3 \subset V_1 \times V_2$, $G = (V_1 \cup V_2, E_1 \cup E_2 \cup E_3)$ is universally stable.

Corollary

A network is universally stable iff every strongly-connected component is universally stable

- Simple proof by induction on number of connected components
 - "Hard" part is the above theorem...

Proof of Theorem

- We will use the window-adversary definition
- Assume G_1 and G_2 are universally stable for $(w, \varepsilon > 0)$ -window adversaries
- Goal: show that G is stable for $(w, \varepsilon > 0)$ window adversaries
- Assume some $(w, \varepsilon > 0)$ window adversary
- G_1 stable: has some bounded delay T_1 (since $\varepsilon > 0$)
 - $\forall t$, any packet injected to G_1 at t leaves G_1 by $t + T_1$
- Consider any time interval I of length T_2
 - how many packets can enter G_2 during such an interval?

Proof of Theorem

• We would like to find some $0 < \varepsilon' \le \varepsilon$ satisfying

$$(T_1 + T_2 + w)(1 - \varepsilon) \leq T_2(1 - \varepsilon')$$

- implies: number of packets entering G_2 during interval of length T_2 is at most $T_2(1-\varepsilon')$
- i.e., traffic entering G_2 "generated" by a (T_2, ε') -window adversary
- This is satisfied for $T_2 = \frac{(T_1 + w)(1 \varepsilon)}{\varepsilon \varepsilon'}$
- \bullet G_2 is stable, hence it has bounded delay
- All traffic entering G has bounded delay \Rightarrow G is stable

Universal Stability for r < 1

- Are DAGs still the only universally stable topologies?
 - Specifically, are cycles universally stable for r < 1?

Theorem

Cycles are universally stable for r < 1

- What are the exact conditions for universal stability for r < 1?
- Graph minor of G:
 - any graph resulting from contracting/deleting edges

Universal Stability for r < 1

- Are DAGs still the only universally stable topologies?
 - Specifically, are cycles universally stable for r < 1?

Theorem

Cycles are universally stable for r < 1

• What are the exact conditions for universal stability for r < 1?

Theorem (for networks with no parallel edges)

A network is universally stable for r < 1 iff it excludes the minors

- Verifying if H is/isn't a minor of G: NP-hard in general
- For fixed minors (as in this case): poly-time solvable

Open Questions & References

- Are there non trivial (topology,protocol) pairs that are stable?
 - currently only known for universally stable topology/protocol
- Given a protocol P, are there P-stable topologies?
 - topologies stable for protocol P
 - e.g., FIFO-stable topologies?
- Are there protocols/topologies stable only for $r < 1 \varepsilon$?
 - e.g., only for $r \leq \frac{1}{2}$

References

- Borodin, Kleinberg, Raghavan, Sudan, and Williamson. Adversarial Queueing Theory, Journal of the ACM 48(1):13–38 (2001)
- Andrews, Awerbuch, Fernández, Leighton, Liu, and Kleinberg.
 Universal-Stability Results and Performance Bounds for Greedy
 Contention-Resolution Protocols, Journal of the ACM 48(1):39–69 (2001)
- Goel. Stability of networks and protocols in the adversarial queueing model for packet routing, Networks 37(4):219–224 (2001)

An Adversarial Model for Wireless Networks

- Wireless networks
 - dynamic channel conditions
 - dynamic link capacities
 - links disappearing/re-appearing
 - ad-hoc
 - topology constantly changing
 - routing is difficult
- Digraph G = (V, E) with max-degree Δ , slotted time
 - link capacity $c_e(t)$ ($\forall e \in E$ and time t):
 - dynamic, changes as a function of t
 - controlled by the adversary
 - assume: $\forall t, c_e(t) \in \{0,1\}$
 - $E_t = \{e \in E \mid c_e(t) = 1\}$
 - injected packet p
 - size ℓ_p
 - source s_p , destination d_p
 - path not specified!!
 - assume $\ell_p \equiv 1$

Adversaries and Objective

- Question:
 - how would we define a "reasonable" adversary?
 - no specific path
 - not clear if path ever exists
 - even if it exists now, not clear if it will ever reappear
- Assume the adversary identifies some path
 - for any time interval I s.t. |I| = w, and p injected during I
 - Γ_p : some specific adversary-path between s_p and d_p
 - N(e, I): number of packets p injected during I s.t. $e \in \Gamma_p$
- (w, ε) -window adversary
 - for any time interval I of length w

$$N(e, I) \le (1 - \varepsilon) \sum_{t \in I} c_e(t) \quad (\le w)$$

Objective

Determine scheduling and routing for each packet

• Concern: (when) can we guarantee stability?

Designing a Protocol

- AQT lesson: scheduling matters
 - be careful not to cause overload downstream
- How can this be implemented "locally"?
 - necessary: no permanent global view of the graph/routes
 - forward only if doesn't cause "local" overload
- Note: not work conserving!!
 - in particular, no delay guarantees
- A classical result in stochastic network analysis
 - Tassiulas&Ephremides: load-balancing locally is optimal
- Per-destination queueing
 - $\forall v \in V$: maintain a queue $Q_{v,d}$ for each destination $d \in V$
 - $q_{v,d}^t$: size of $Q_{v,d}$ in time t

The MaxWeight Protocol

Algorithm 1 MaxWeight(β): at any time t

- 1: accept all arrivals at t
- 2: **for** every $(v, u) \in E_t$ **do**

3:
$$d_{(v,u)}^* \leftarrow \operatorname{arg\,max}_d \left\{ (q_{v,d}^t)^\beta - (q_{u,d}^t)^\beta \right\}$$

- 4: if $q_{v,d^*}^t q_{u,d^*}^t \ge \Delta$ then
- forward a $d_{(v,u)}^*$ -packet from v to u
- 6: end if
- 7: end for
- 8: drop all packets that have arrived at their destination

Theorem (for large enough eta)

 $MaxWeight(\beta)$ ensures the system is stable

"constant" $\beta > 1$

Proof Idea

- Proof method: potential function
 - recall AAP

•
$$|O \setminus A| \le \Phi \le O(\log n) |A|$$

• here: a "classical" drift argument

$$P(t) = \sum_{v,d \in V} (q_{v,d}^t)^{\beta+1}$$

- Proof idea:
 - show that P(t) is always bounded:
 - if queues become too large, P(t) decreases (fast)!!
 - a.k.a.: negative drift
 - stability: since $\sum_{v,d \in V} q_{v,d}^t \leq P(t)$

The Key (Technical...) Lemma

Lemma

Every packet p injected at t can be associated with packets forwarded along Γ_p s.t. the sum of potential changes due to these forwardings until time (t+w-1) is at least

$$O(q^{eta-1}) - rac{arepsilon}{1-arepsilon}(eta+1)q^eta$$

where q is height of p's injection queue at t.

Corollary

 $\exists q^* = q^*(n, w, \varepsilon)$ s.t. if $q \ge q^*$ then the sum of potential change is less than $-\varepsilon q^{\beta}$.

• I.e., the *decrease* is $\Omega(q^{\beta})$.

Proof Sketch

- A packet is only forwarded to a smaller queue
 - ⇒ potential increase is only due to injections
- By contradiction: adversary makes the system unstable
 - ⇒ the potential increases unboundedly
- There's no point to repeat a configuration
 - configuration S_t : state of all the queues at t
 - for all t < t', $S_t \neq S_{t'}$
 - ullet otherwise, we can just "remove" the period between t and t'
- Number of configurations with max-queue size q: $q^{(n^2)}$
 - $\implies t_q = O(q^{(n^2)})$: first time a queue reaches load q
 - after $q^{(n^2)}$ steps there's an injection to a queue with load q

Proof Sketch

- A packet is only forwarded to a smaller queue
 - ⇒ potential increase is only due to injections
- By contradiction: adversary makes the system unstable
 - ⇒ the potential increases unboundedly
- ullet Overall potential inc. during $[t_q,t_q+w)$ can be shown to be
 - $O(t_q) = O(q^{(n^2)})$
- By lemma, potential dec. during $[t_a, t_a + w)$
 - $\Omega(q^{\beta})$
 - for $q \ge q^*$
- for $\beta > n^2$ and large enough q the difference is < 0
 - I.e., a negative drift
- Contradiction!

Aftermath and References

Aftermath

- results extend also to arbitrary edge capacities/packet lengths
- works also for $\beta = 1$
 - a much more complex proof...
- various related models / results
 - both generalizations and special cases

References

- Andrews, Jung, and Stolyar. Stability of the Max-Weight Routing and Scheduling Protocol in Dynamic Networks and at Critical Loads, STOC 2007, pp. 145–154
- Lim, Jung, and Andrews. Stability of the Max-Weight Protocol in Adversarial Wireless Networks, Infocom 2012, pp. 1251–1259
- Tassiulas and Ephremides. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks, IEEE Transactions on Automatic Control 37(12):1936–1948 (1992)