Análise do Aerossol Atmosférico e de suas Fontes no Bairro Africano de Nina, em Acra, capital de Gana.

Thiago Gomes Veríssimo <thiago.verissimo at usp.br> Orientador: Américo Kerr

Instituto de Físisca

26 de Agosto de 2015

- Projeto
- 2 Experimento
- 3 Metodologia
- 4 Resultados

Poluição do Ar em Acra, capital de Gana

Projeto Internacional:

Air Pollution in Accra Neighborhoods: Spatial, Socioeconomic, and Temporal Patterns coordenado por pesquisadores da Harvard School of Public Healt nos Estados Unidos e da Universidade de Ghana.

África Subsariana (SSA)

Diferente das cidade dos países desenvolvidos, que tem como principais fontes de poluição a industria e o transporte, nas cidade da SSA as fontes tem outro perfil, pois na SSA:

- população predominantemente rural;
- grande parte das vias não pavimentadas;
- maior taxa de crescimento populacional urbano do mundo;
- não possuem sistemas de monitoramento sistemático de Poluição do Ar;
- é comum o uso da queima de biomassa para o cozimento de alimentos (comercial e doméstico), tanto em regiões urbanas quanto rurais.

Fotos do bairro de Nima

Figura: Fotos do bairro de Nima

Localização no Mapa

Figura: Localização no Mapa

Amostragem

Características dos locais amostrados (2007 e 2008):

- Residencial (5°35′2.00″ e -0°11.0′58″): Avenida com pouco tráfego de veículos e não pavimentada
- Tráfego (5°34′54″ e -0°11′56.30″): Avenida pavimentada com tráfego intenso de veículos (com exceção do período noturno).

Pontos de amostragem em Nima

Figura: Amostragem Nima

Figura: Distribuição das frequência de direção dos ventos, dados da NOAA

Fluorescência de Raios X - ED-XRF

Modelamento matemático usado na ED-XRF:

$$N_{ij} \propto \frac{m_{ij}}{A_i} I_i \Delta t_i$$
 (1)

Onde,

- N_{ij} = Contagem de fótons na amostra i para o elemento químico j;
- I_i = Corrente (ampère) na amostra i;
- Δt_i = Tempo vivo (segundos) que a amostra i foi irradiada;
- m_{ij} = Massa (grama) na amostra i para o elemento químico j;
- $A_i = \text{Área } (cm^2)$ irradiada da amostra i.

Calibração: Ajuste do Fator de Resposta

Constante de proporcionalidade: Fator de Resposta:

$$R_j = \frac{A_i}{m_{ij}} \frac{N_{ij}}{I_i \Delta t_i} \tag{2}$$

Limite de Detecção

Modelo receptor

Modelo Receptor é uma abordagem matemática para quantificar o efeito das fontes nas amostras. Determinar as fontes a partir do receptor.

Análise Multivariada reduz as dimensões (variáveis) de um conjunto de dados em um conjunto de dados analítico complexo que poderão ser interpretados como tipo de fontes.

Conservação de massa

Fundamentação do modelo receptor: Conservação de massa. Todos modelos resolvem a mesma equação:

$$x_{ij} = \sum_{\rho=1}^{P} g_{i\rho} f_{\rho j} + \epsilon_{ij}$$
 (3)

- x_{ij} = concentração na amostra i da espécie j;
- f_{pj} = concentração da espécie j emitida na fonte p (ferfil da fonte, assinatura da fonte ou Factor Loadings);
- $g_{ip} = \text{contribuição da fonte p para amostra i } (Factor Score);$
- $\epsilon = \text{Erro do modelo empregado/resíduo}$.

Positive Matrix Factorizarion

Função objeto - Q - é uma função que precisa ser minimizada ou maximizada usando métodos numéricos para equações não lineares, pois não tem solução analítica.

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} \left[\frac{e_{ij}}{u_{ij}} \right]^2 \tag{4}$$

	PM _{2.5}	PM_{10}	Total
Área residencial (vias não pavimentadas)	199	197	396
Tráfego intenso (vias pavimentadas)	227	233	460
Total	426	430	856

Tabela: Quantidade de amostras coletadas por região e moda.

Sigla	Região	Moda	Casos
RFcH	Residencial	$MP_{2.5}$	197
TFcH	Tráfego intenso	$MP_{2.5}$	183
RIcH	Residencial	MP_{10}	197
TlcH	Tráfego intenso	MP_{10}	200
RGcH	Residencial	$MP_{2.5-10}$	196
TGcH	Tráfego intenso	$MP_{2.5-10}$	199

Tabela: Quantidade de amostras coletadas incluíndo o período do Harmatã.

Sigla	Região	Moda	Casos
RFsH	Residencial	$MP_{2.5}$	118
TFsH	Tráfego intenso	$MP_{2.5}$	117
RIsH	Residencial	MP_{10}	118
TIsH	Tráfego intenso	MP_{10}	121
RGsH	Residencial	$MP_{2.5-10}$	119
TGsH	Tráfego intenso	$MP_{2.5-10}$	120

Tabela: Quantidade de amostras coletadas excluíndo o período do Harmatã.

Sigla	n	Média	Desvio Padrão	Mediana	Ultrapassagens
RFcH	197	83.28	18.12	29.43	131
RGcH	183	50.61	4.68	29.66	28
RlcH	197	113.77	11.55	58.72	86
TFcH	200	76.42	9.47	36.36	184
TGcH	196	59.58	4.35	39.42	38
TIcH	199	133.99	11.63	72.72	108

Tabela: Estatística descritiva e ultrapassagens dos padrões de referência da Organização Mundial de Saúde (OMS). 25 ug/m^3 para $MP_{2.5}$ e 70 ug/m^3 para MP_{10} .

Tabela: Análise de Fatores: RFsH

KFSH								
Variable	PC1	PC4	PC2	PC3	PC5	h2	u2	com
Al	0.98	0.11	-0.06	0.07	0.05	0.99	0.01	1.05
Si	0.98	0.12	-0.05	0.05	0.04	0.99	0.01	1.05
Ti	0.98	0.11	-0.07	0.07	0.07	0.99	0.01	1.05
Fe	0.98	0.11	-0.07	0.08	0.08	0.99	0.01	1.06
Mn	0.98	0.13	-0.06	0.09	0.07	0.99	0.01	1.07
Ca	0.98	0.12	-0.02	0.06	0.09	0.98	0.02	1.06
Mg	0.96	0.12	0.08	0.08	0.02	0.95	0.05	1.06
mass	0.92	0.27	-0.01	0.17	0.11	0.96	0.04	1.27
V	0.78	0.05	0.07	0.30	-0.03	0.71	0.29	1.31
K	0.65	0.59	0.12	0.26	0.12	0.87	0.13	2.48
S	0.06	0.87	0.42	0.01	0.08	0.94	0.06	1.47
P	0.44	0.80	0.00	0.02	0.00	0.84	0.16	1.56
Na	-0.28	0.19	0.81	-0.08	0.05	0.77	0.23	1.39
CI	0.41	-0.04	0.76	-0.06	0.24	0.81	0.19	1.79
Br	-0.13	0.20	0.66	0.26	-0.06	0.56	0.44	1.61
BC	0.14	0.15	-0.16	0.78	0.19	0.71	0.29	1.35
Pb	0.22	-0.08	0.31	0.75	0.05	0.72	0.28	1.57
Zn	0.12	0.09	0.13	0.21	0.93	0.94	0.06	1.20
SS loadings	9.13	2.04	2.03	1.52	1.03			
Proportion Var	0.51	0.11	0.11	0.08	0.06			
Cumulative Var	0.51	0.62	0.73	0.82	0.88			
Cum. factor Var	0.58	0.71	0.84	0.93	1			

Figura: RFsH: Residencial Fino sem Harmatã

Tabela: Análise de Fatores: TFsH

TFsH

I FSH								
Variable	PC1	PC3	PC2	PC4	PC5	h2	u2	com
Fe	0.98	0.13	-0.02	0.09	0.02	1.00	0.00	1.06
Ti	0.98	0.13	-0.03	0.07	0.01	0.99	0.01	1.05
Ca	0.98	0.13	0.02	0.09	0.03	0.99	0.01	1.06
Mn	0.98	0.13	-0.02	0.08	0.02	0.99	0.01	1.05
Si	0.98	0.16	-0.04	0.05	0.02	0.98	0.02	1.06
Al	0.97	0.16	-0.05	0.06	0.01	0.98	0.02	1.07
mass	0.95	0.15	0.02	0.18	0.10	0.97	0.03	1.15
Mg	0.94	0.19	0.06	0.06	0.03	0.93	0.07	1.10
V	0.87	0.13	0.03	0.21	0.07	0.83	0.17	1.18
K	0.84	0.28	0.06	0.27	0.20	0.90	0.10	1.57
Pb	0.68	-0.02	0.16	0.40	0.30	0.74	0.26	2.18
Zn	0.68	0.02	0.21	0.33	0.19	0.64	0.36	1.86
P	0.33	0.88	-0.10	0.08	-0.01	0.90	0.10	1.32
S	0.18	0.85	0.25	0.08	0.31	0.92	0.08	1.57
Na	-0.34	0.18	0.85	-0.06	0.10	0.88	0.12	1.47
Cl	0.48	-0.08	0.76	0.00	0.13	0.83	0.17	1.78
BC	0.21	0.12	-0.08	0.92	0.03	0.92	0.08	1.16
Br	0.08	0.20	0.16	0.06	0.94	0.96	0.04	1.17
SS loadings	10.48	1.87	1.48	1.32	1.19			
Proportion Var	0.58	0.1	0.08	0.07	0.07			
Cumulative Var	0.58	0.69	0.77	0.84	0.91			
Cum. factor Var	0.64	0.76	0.85	0.93	1			

Figura: Tráfego Fino sem Harmatã

Tabela: Análise de Fatores: RGsH

110311								
Variable	PC1	PC2	PC4	PC3	PC5	h2	u2	com
Mn	0.96	0.20	0.09	0.13	0.08	0.99	0.01	1.16
Ca	0.96	0.15	0.07	0.10	0.13	0.97	0.03	1.12
Ti	0.95	0.22	0.09	0.13	0.07	0.99	0.01	1.17
Fe	0.95	0.22	0.10	0.14	0.08	0.99	0.01	1.19
Si	0.94	0.25	0.07	0.14	0.07	0.97	0.03	1.21
Al	0.93	0.28	0.07	0.17	0.06	0.98	0.02	1.26
Mg	0.92	0.24	0.04	0.12	0.10	0.94	0.06	1.21
V	0.91	0.28	0.09	0.15	0.08	0.95	0.05	1.29
CI	0.89	0.00	-0.01	-0.27	0.06	0.86	0.14	1.19
K	0.81	0.39	0.24	0.18	0.20	0.94	0.06	1.92
Pb	0.75	0.12	0.37	0.15	0.29	0.81	0.19	1.97
Zn	0.69	0.22	0.41	0.08	0.20	0.73	0.27	2.12
S	0.32	0.87	0.11	-0.09	0.19	0.90	0.10	1.42
P	0.37	0.84	0.04	0.09	-0.07	0.85	0.15	1.42
BC	0.08	0.58	0.33	0.44	0.33	0.76	0.24	3.25
mass	0.12	0.12	0.91	-0.01	0.02	0.86	0.14	1.07
Na	-0.24	-0.04	0.01	-0.93	0.07	0.92	0.08	1.15
Br	0.22	0.12	0.05	-0.05	0.92	0.92	0.08	1.16
SS loadings	9.92	2.47	1.37	1.36	1.23			
Proportion Var	0.55	0.14	0.08	0.08	0.07			
Cumulative Var	0.55	0.69	0.76	0.84	0.91			
Cum. factor Var	0.61	0.76	0.84	0.92	1			

Figura: Residencial Grosso sem Harmatã

Tabela: Análise de Fatores: TGsH

Variable	PC1	PC2	PC4	PC3	PC5	h2	u2	com
Ti	0.98	0.12	0.10	0.10	0.06	0.99	0.01	1.08
Fe	0.97	0.12	0.10	0.09	0.06	0.99	0.01	1.08
Mn	0.97	0.10	0.10	0.08	0.05	0.98	0.02	1.06
Ca	0.97	0.08	0.10	0.08	0.11	0.97	0.03	1.07
Si	0.96	0.16	0.10	0.13	0.08	0.98	0.02	1.13
Al	0.95	0.19	0.09	0.15	0.06	0.98	0.02	1.16
V	0.95	0.15	0.09	0.08	0.03	0.94	0.06	1.08
Mg	0.94	0.16	0.09	0.12	0.10	0.94	0.06	1.13
CI	0.90	-0.06	0.07	-0.15	0.12	0.85	0.15	1.11
K	0.87	0.35	0.20	0.14	0.14	0.96	0.04	1.56
Pb	0.74	0.27	0.36	0.15	0.24	0.82	0.18	2.11
P	0.72	0.57	0.01	0.03	-0.06	0.85	0.15	1.92
Zn	0.67	0.35	0.36	0.08	0.17	0.74	0.26	2.32
S	0.30	0.88	0.03	-0.13	0.13	0.89	0.11	1.32
BC	-0.05	0.75	0.26	0.38	0.20	0.82	0.18	1.93
mass	0.21	0.13	0.91	-0.01	0.04	0.90	0.10	1.15
Na	-0.22	-0.06	0.00	-0.94	0.04	0.94	0.06	1.13
Br	0.18	0.20	0.06	-0.04	0.94	0.96	0.04	1.18
SS loadings	10.7	2.2	1.29	1.21	1.1			
Proportion Var	0.59	0.12	0.07	0.07	0.06			
Cumulative Var	0.59	0.72	0.79	0.86	0.92			
Cum. factor Var	0.65	0.78	0.86	0.93	1			

Figura: Tráfego Grosso sem Harmatã

Visualização do período do Harmatã

Figura: Tráfego Inalável com Harmatã

