

FT60F11 / 60F12

Data Sheet

(Commerical, Industrial, Automotive Grade 1)

Key Features

8-bit EEPROM based RISC MCU

Program: 2k x 14; RAM: 128 x 8; Data: 256 x 8

6 / 8 / 10 / 14 / 16 Pins

3 Timers, 3 Individual PWMs - 1 with Deadband

Low Standby, WDT and Operation Current

POR, LVR, Single Input Comparator

Selectable Source and Sink Current

High ESD, High EFT

Low V_{DD} Operation

Tunable HIRC

8-bit CPU (EEPROM)

37 RISC instructions: 2T or 4T
 16 MHz / 2T (V_{DD} ≥ 2.5)

• Up to 16 pins

Memory

• PROGRAM: 2k x 14 (R/W Protect)

DATA: 256 x 8RAM: 128 x 8

• 8-level Hardware Stack

Custom Key for hex encryption

Operation Conditions (5V, 25°C)

• V_{DD} ($V_{POR} \le 1.9V$) $V_{POR} - 5.5 V$ (Self-regulated by POR, $\le 1.7V$ for above 0°C)

Comercial Grade
 Industrial Grade
 40 - *85 °C
 40 - *105 °C

Automotive Grade 1 ^{-40 - +125 °C}
 Low Standby 0.2 μA

Normal Mode (16 MHz)
 132 μA/mips

2.3 µA

High Reliability

WDT

• 1M cycles, >20 years / 125°C storage (typical)

ESD > 4 kV

• EFT > 5.5 kV

PWM (Total 3)

• Support RUN in SLEEP

• Total 3 channels (same Period)

✓ Independent: Duty Cycle, Polarity

• 1 channel (up to 6 I/O):

✓ Complementary + Deadband

Auto Fault-Breaking (I/O, LVD)

· Secondary XOR, XNOR functions

One-Pulse mode:

Buzzer mode

Timers

• WDT (16-bit): 7-bit postscaler

• Timer0 (8-bit): 8-bit prescaler

• Timer2 (16-bit): 4-bit pre and post-scaler

Support RUN in SLEEP

LIRC, 1 or 2x {Instr. Clock, HIRC, Crystal}, 2x
 EC

I/O PORTS (Up to 14 I/O)

· Resistive Pull-Up, Pull-Down

• 14 I/O I_{SOURCE}: 4, 8 or 32 mA (5V, 25°C)

• 14 I/O I_{SINK}: 56 or 79 mA (5V, 25°C)

• 8 I/O: Interrupt / Wake-Up

Power Management

SLEEP

• LVR: 2.0, 2.2, 2.5, 2.8, 3.1, 3.6, 4.1 (V)

LVD: 2.0, 2.4, 2.8, 3.0, 3.6, 4.0 (V)
 (LVD also functions as a single input comparator with selectable polarity.)

System Clock (SysClk)

• HIRC High Speed Internal Oscillator

✓ 16MHz <±1.5% typical (2.5 - 5.5V, 25°C)

✓ Tunable

✓ 1, 2, 4, 8, 16, 32, 64 divider

• LIRC Low Power Internal Oscillator

✓ 32 kHz or 256 kHz

External Clock (I/O input)

Crystal Input

✓ HIRC or LIRC during startup

√ Fail Detect

Other Features (please enquire)

• ½ V_{DD} LCD bias

Integrated Development Environment (IDE)

• On-Chip Debug (OCD), ISP

• 3 hardware breakpoints

• System-Reset, Stop, Single Step, Run

Packages

 SOT23-6 SOP8 MSOP10 SOP14 SOP16

Rev2.00 - 1 - 2021-01-28

PARTS INFORMATION AND SELECTIONS

Part #	PROM	# of I/O	Package	
FT60F111- <u>ab</u>		6	SOP8	
FT60F11F-M <u>ab</u>	1k x14	8	MSOP10	
FT60F112- <u>ab</u>	IK X 14	12	SOP14	
FT60F112A- <u>ab</u>		12	30F14	
FT60F120-U <u>ab</u>		4	SOT23-6	
FT60F121- <u>ab</u>		6	SOP8	
FT60F12F-M <u>ab</u>		8	MSOP10	
FT60F122- <u>ab</u>	2k x14	12	SOP14	
FT60F122A- <u>ab</u>		12	30F14	
FT60F123- <u>ab</u>		14	SOP16	
FT60F123A- <u>ab</u>		14	30710	

Where
$$\underline{a} = R$$
; RoHS $\underline{b} = B$; Tube $= G$; Green $= T$; TR

MCU Part # Selections

Rev2.00 - 2 - 2021-01-28

Chip History

Revision	Description
Α	Preliminary version
B ~ D	Internal optimization
	Added LVDP to WDTCON[7] to control LVD polarity;
	2. Implemented 2x HIRC of the Timer2 clock source;
	3. The Schmitt inputs of PA2, PA3 and PA7 will be turned off when their pull-up and
E	pull-down are both enabled;
_	4. Moved CLKO from PA6 to PC5;
	5. Changed the polarity control bit of P1B and P1A2N from P1POL[5:6] to P1POL[6:5]
	during a Fault-Break event;
	Add BOOT level LVDDEB register to control LVD debounce;

Revision History

Date	Revision	Description
2018-12-19	1.00	Preliminary version
2020-05-09	1.0x	Old format optimization version
2021-01-28	2.00	Complete overhauled version (Too many changes to list. Please
2021-01-20	2.00	dis-regard preliminary version)

Rev2.00 - 3 - 2021-01-28

Table of Contents

1.	BLO	CK DIAGI	RAM AND PINOUTS	7
	1.1	Pinouts		8
	1.2	Pin Des	scription by Functions	10
2.	I/O P	ORTS		12
	2.1	Summa	ary of I/O PORT Related Registers	14
	2.2	Configu	ıring the I/O	16
3.	POW	'ER-ON-F	RESET (POR)	17
	3.1	воот я	Sequence	17
4.	SYS	ΓEM-RES	SET	19
	4.1	Summa	ary of SYSTEM-RESET Related Registers	20
	4.2	Brown-0	Out Reset (LVR / BOR)	20
	4.3	Illegal Ir	nstruction Reset	21
	4.4	Watch [Dog Timer (WDT) Reset	21
	4.5	Externa	Il System-Reset /MCLRB	22
	4.6	Detectir	ng the Type of Reset Last	22
5.	LOW	VOLTAG	GE DETECT / COMPARATOR (LVD)	23
	5.1	Summa	ary of LVD Related Registers	23
6.	osc	ILLATOR	RS and SYSCLK	24
	6.1	Summa	ary of Oscillator Modules Related Registers	25
	6.2	Internal	Clock Modes (HIRC and LIRC)	26
	6.3	Externa	Il Clock Modes	27
		6.3.1 E	EC mode	27
		6.3.2 L	LP and XT modes	27
	6.4	HIRC, L	IRC and EC inter-switching	29
7.	TIME	RS		30
	7.1	Watch [Dog Timer (WDT)	31
		7.1.1	Summary of WDT Related Registers	31
		7.1.2	Setting up and using the WDT	32
		7.1.3	Switching scaler between Timer0 and WDT	33

- 4 -

	7.2	TIMER0	. 34
		7.2.1 Summary of Timer0 Related Registers	. 35
	7.3	TIMER2	. 36
		7.3.1 Summary of Timer2 Related Registers	. 37
		7.3.2 R/W Operation of TMR2 register	. 38
8.	SLEE	P (POWER-DOWN)	. 39
	8.1	Entering into SLEEP	. 39
	8.2	Waking-Up from SLEEP	. 40
9.	INTE	RRUPTS	. 41
	9.1	Summary of Interrupt Related Registers	. 42
	9.2	PA2-INT and PORTA Interrupt-on-Change	. 44
10	. PWM		. 45
	10.1	Summary of PWM Related Registers	. 46
	10.2	Clock Sources	. 48
	10.3	Period	. 48
	10.4	Duty Cycle	. 48
	10.5	Deadband-Time	. 49
	10.6	Fault-Break Function	. 49
	10.7	Changing the Period and Duty Cycle	. 49
	10.8	PWM Output	. 50
	10.9	Secondary Output Functions of (P1B, P1C)	. 51
11	. DATA	A EEPROM	. 52
	11.1	Summary of DATA EEPROM Related Registers	. 52
	11.2	Writing DATA EEPROM	. 53
	11.3	Reading DATA EEPROM	. 54
12	. MEM	ORY READ / PROGRAM PROTECTON	. 54
13	. INST	RUCTION SET	. 55
14	. SPEC	CIAL FUNCTION REGISTERS	. 57
	14.1	Boot Level Registers	. 57
	14.2	Instruction Set Registers	. 59
	14.3	STATUS Register	. 62

14.4	PCL and PCLATH	. 63
15. ELE	CTRICAL SPECIFICATIONS	. 64
15.1	Absolute Maximum Ratings	. 64
15.2	Operation Characteristics	. 64
15.3	POR, LVR, LVD	. 65
15.4	I/O PORTS	. 66
15.5	Operation Current (I _{DD})	. 66
15.6	Internal Oscillators	. 67
15.7	Program and Data EEPROM	. 68
15.8	EMC characteristics	. 68
16. Cha	racterization Graphs	. 69
17. PAC	CKAGING INFORMATION	. 74
Contact	Information	. 79

1. BLOCK DIAGRAM AND PINOUTS

Figure 1-1 System block diagram

The list of standard abbreviation is as follows:

Abbreviation	Description
CPU	Central Processing Unit
SFR	Special Function Registers
SRAM	Static Random Access Memory
DROM	Data EEPROM
PROM	Program EEPROM
Timers	Timer0, Timer2
PWM	Pulse Width Modulator
LVD	Low Voltage Detect / comparator
OCD	On Chip Debug
I/O	Input / Output

Rev2.00 - 7 - 2021-01-28

1.1 Pinouts

Figure 1-2 SOT23-6 1 2

Figure 1-3 SOP8²

Figure 1-4 MSOP10²

Figure 1-5 SOP14²

Figure 1-6 SOP14²

Figure 1-7 SOP16²

¹ SOT23-6: PA4, PC5 and PA6 are bonded to pin-4. If PA4, PC5 and PA6 both output then PORTA4 = PORTC5 = PORTA6. Pull-Up/Pull-Down cannot be opposite of output data.

² For A~D version chip, CLKO function is mapped to PA6.

ſ	_			1
ISPCLK/PA0	1	•	16	PA1/ISPDAT
OSC2/PA6	2		15	PA2/T0CKI/INT/[P1C1]/BK0
OSC1/PA7	3		14	PA3/P1C0
VDD	4	FT60F123A-RB	13	GND
[P1B1]/ELVD/MCLRB/PA5	5	SOP16	12	PC2/[P1A1N]
P1B0/PA4	6		11	PC1/[P1A2]
CLKO/P1A0/PC5	7		10	PC0/[P1A2N]
P1A0N/PC4	8		9	PC3/[P1A1]

Figure 1-8 SOP16²

Rev2.00 - 9 - 2021-01-28

1.2 Pin Description by Functions

Table 1-1 lists all pin names and their respective functions.

Function	Description	Pin Name	GPIO	6	8	10	14	14(A)	16	16(A)
1 dilodoli	Boothplion	T III T CALL	equiv.	pins	pins	pins	pins	pins	pins	pins
Power		VDD		6	1	1	1	4	1	4
		GND		1	8	10	14	11	16	13
		PC5		(4) ¹	4	6	6	7	6	7
		PC4					7	8	7	8
		PC3						9	8	9
		PC2						12	9	12
		PC1					8		10	11
	Pull-Up /	PC0					9		11	10
GPIO	Pull-Down,	PA7		5		2	2	3	2	3
GFIO	Digital Input,	PA6		(4) ¹		3	3	2	3	2
	Digital Output	PA5			2	4	4	5	4	5
		PA4		(4) ¹	3	5	5	6	5	6
		PA3					10	10	12	14
		PA2			5	7	11	13	13	15
		PA1		3	6	8	12	14	14	16
		PA0		2	7	9	13	1	15	1
LVD	Input	ELVD	PA5		2	4	4	5	4	5
	Output	CLKO ²	PC5	(4) ¹	4	6	6	7	6	7
Clock	Timer0 Clock	T0CKI	PA2		5	7	11	13	13	15
Clock	OSC +	OSC1	PA7	5		2	2	3	2	3
	OSC -	OSC2	PA6	(4) ¹		3	3	2	3	2
ISP Debugger	ISP-Data	ISPDAT	PA1	3	6	8	12	14	14	16
ior Debuggei	ISP-CLK	ISPCK	PA0	2	7	9	13	1	15	1
Reset	Pull-up	/MCLRB	PA5		2	4	4	5	4	5
PA2-INT Edge		PA2-INT	PA2		5	7	11	13	13	15
		PA7		5		2	2	3	2	3
		PA6		(4) ¹		3	3	2	3	2
		PA5		. ,	2	4	4	5	4	5
PORTA	lanut.	PA4		(4) ¹	3	5	5	6	5	6
Logic-Changes	Input	PA3		. ,			10	10	12	14
Interrupt		PA2			5	7	11	13	13	15
		PA1		3	6	8	12	14	14	16
		PA0		2	7	9	13	1	15	1

 Table 1-1
 Pin description by functions

Rev2.00 - 10 - 2021-01-28

Function	Description	Pin	GPIO	6	8	10	14	14(A)	16	16(A)
1 diletion	Description	Name	equiv.	pins	pins	pins	pins	pins	pins	pins
		P1A0	PC5	(4) ¹	4	6	6	7	6	7
		[P1A1]	PC3					9	8	9
PWM1		[P1A2]	PC1				8		10	11
(Deadband)	/PWM1	P1A0N	PC4				7	8	7	8
	/PWM1	[P1A1N]	PC2					12	9	12
	/PWM1	[P1A2N]	PC0				9		11	10
PWM2		P1B0	PA4	(4) ¹	3	5	5	6	5	6
FVVIVIZ		[P1B1]	PA5		2	4	4	5	4	5
DIAMAG		P1C0	PA3				10	10	12	14
PWM3		[P1C1]	PA2		5	7	11	13	13	15
PWM Fault-Brea	ak Input	BK0	PA2		5	7	11	13	13	15

 Table 1-1
 Pin description by functions (continued)

Rev2.00 - 11 - 2021-01-28

2. I/O PORTS

Up to 14 I/O pins are available depending on the types of package. I/O ports are divided into 2 groups: PORTA (8) and PORTC (6). **Table 2-1** lists the functions of all I/O pins.

Figure 2-1 PORT block diagram

All I/O pins have the following functions (Table 2-3, Table 2-4):

Digital Output

Weak Pull-Up

Digital Input

Weak Pull-Down

In addition some I/O's have special functions assigned.

- 1. Debugger pins (ISP-Data, ISP-CLK) are hardwired and require no set-up.
- 2. Some special functions are configured at the IDE and loaded during BOOT (Table 2-2).
 - External Clock IN (OSC1, OSC2)
- System-Reset (/MCLRB)

- Internal Clock OUT
- 3. All other functions are Instruction Level assigned to the various I/O's. They are divided into 3 categories:
 - a. Digital Output
 - PWM
 - b. Digital Input
 - PWM Fault Break
 - Timer0 Clock Input

- External Edge Interrupt
- GPIO Interrupt-on-Change

- c. Analog Input
 - LVD / BOR

Name	ISP Debugger	CLK	Interrupt	LVD	PWM	Digitial I/O Pull-Up/Down	Source Current (mA)	Sink Current (mA)
PA0	CLK		\checkmark			√	4, 32	56, 79
PA1	DATA		√			√	4, 32	56, 79
PA2			√+ INT		PWM 3	√	4, 32	56, 79
PA3			√		PWM 3	√	4, 8, 32	56, 79
PA4			√		PWM 2	√	4, 8, 32	56, 79
PA5			$\sqrt{+}$ /MCLRB	ELVD	PWM 2	√	4, 32	56, 79
PA6		OSC-	√			√	4, 32	56, 79
PA7		OSC+	\checkmark			√	4, 32	56, 79
PC0					PWM 1N	√	8, 32	56, 79
PC1					PWM 1	√	8, 32	56, 79
PC2					PWM 1N	√	8, 32	56, 79
PC3					PWM 1	√	8, 32	56, 79
PC4					PWM 1N	√	8, 32	56, 79
PC5		Output			PWM 1	V	8, 32	56, 79
Notes		T0CKI = PA2			BK0 = PA2		V _{DD} =5,	V _{DS} =0.5

Table 2-1 I/O PORT Functions

Note: PA3-4 each has 3 configurable source current levels (see "PSRCAx" and "PSRCAHx" in **Table 2-4**), and the others each has 2 configurable source / sink current levels (see "PSRCx" and "PSINKx" in **Table 2-4**).

Rev2.00 - 13 - 2021-01-28

2.1 Summary of I/O PORT Related Registers

Name	Function	Default
	READ register when TRISx = 0 (Output enabled)	
RDCTRL	Input latch	Output
	Output latch	
MCLRE	Reset by External I/O	disabled
	• LP external oscillator across PA7 (+) and PA6 (-)	
	 XT external oscillator across PA7 (+) and PA6 (-) 	
FOSC	EC external oscillator at PA7 (+),PA6 as I/O	INTOSCIO
	INTOSC mode: PC5 output "Instruction Clock", PA6 and PA7 as I/O	
	INTOSCIO mode: PA6 and PA7 as I/O	

Table 2-2 BOOT Level I/O related configurations

Name	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Reset Value
TRISA	0x85	TRISA[7	RISA[7:0], PORTA Direction					1111 1111		
TRISC	0x87		_	TRISC[5:0],	PORTC Direct	ction				11 1111
PORTA	0x05	PORTA	Output Reg	ister						xxxx xxxx
PORTC	0x07		-	PORTC Out	put Register					xx xxxx
WPUA	0x95	PORTA	Weak Pull-l	Jp						1111 1111
WPUC	0x93		PORTC Weak Pull-Up			00 0000				
WPDA	0x89	PORTA	PORTA Weak Pull-Down					0000 0000		
WPDC	0x8D		-	PORTC We	ak Pull-Down					00 0000
MSCON	0x1B		-	PSRCAH4	PSRCAH3	SLVREN	CKMAVG	CKCNTI	T2CKRUN	11 0000
PSRCA	0x88	PORTA	Source Cur	rent Setting						1111 1111
PSRCC	0x94		_	PORTC Sou	ırce Current S	etting				11 1111
PSINKA	0x97	PORTA	PORTA Sink Current Setting				0000 0000			
PSINKC	0x9F		PORTC Sink Current Setting			00 0000				
IOCA	0x96	IOCA[7:	IOCA[7:0]: PORTA Interrupt-on-Change			0000 0000				
OPTION	0x81	/PAPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111

Table 2-3 Addresses and Reset Values of I/O related registers

Rev2.00 - 14 - 2021-01-28

Name		Status	Register	Addr.	Reset
TRISA	PORTA	PORT Digital Output (Direction)	TRISA[7:0]	0x85	RW-1111 1111
		1 = <u>Disables</u>			
TRISC	PORTC	0 = Enables (Disables	TRISC[5:0]	0x87	RW-11 1111
		Pull-Up/Down)			
/PAPU	'	es all PORTA Pull-Up	OPTION[7]	0x81	RW-1
	0 = WPUA	settings apply	0		
WPUA	PORTA	Weak Pull-Up	WPUA[7:0]	0x95	RW-1111 1111
MELLO	PORTC	1 = Enables (PORTA defaults)	IA/DUIOEE 01	0.00	DW 00 0000
WPUC	PORTC	0 = Disables (PORTC defaults)	WPUC[5:0]	0x93	RW-00 0000
WPDA	PORTA	Weak Pull-Down	WPDA[7:0]	0x89	RW-0000 0000
WPDC	PORTC	1 = Enables	WDDCE.01	0x8D	DW 00 0000
WPDC		0 = <u>Disables</u>	WPDC[5:0]	UX8D	RW-00 0000
PORTA	PORTA	Data Out Register	PORTA[7:0]	0x05	RW-xxxx xxxx
PORTC	PORTC	Data Out Negister	PORTC[5:0]	0x07	RW-xx xxxx
PSINKA	PA7-PA0	Sink Current (mA)	PSINKA[7:0]	0x97	RW-0000 0000
DOINIKO	PC5-PC0	1 = 79	DOINIZOTE O	00	DW 00 0000
PSINKC	PC5-PC0	0 = <u>56</u>	PSINKC[5:0]	0x9F	RW-00 0000
		Source Current (mA)			
PSRCA[7:5]	PA7-PA5	1 = <u>32</u>	PSRCA[7:5]	0x88	RW-111
		0 = 4			
PSRCAH4	PA4	Source Current (mA)	MSCON[5]	0x1B	RW-1
PSRCA[4]	1 7 (4	(00) = 4	PSRCA[4]	0x88	RW-1
PSRCAH3	PA3	(01) = 8 / (10) = 8	MSCON[4]	0x1B	RW-1
PSRCA[3]	. 7.0	(11) = <u>32</u>	PSRCA[3]	0x88	RW-1
PSRCA[2:0]	PA2-PA0	Source Current (mA)	PSRCA[2:0]	0x88	RW-111
PSRCC[5:0]	PC5-PC0	1 = <u>32</u> 0 = 8	PSRCC[5:0]	0x94	RW-11 1111

Table 2-4 Instruction Level I/O related registers

Rev2.00 - 15 - 2021-01-28

2.2 Configuring the I/O

For each PORT, configures the following four modules according to their functions (Table 2-5).

- Weak Pull-Up
- Weak Pull-Down

- Digital Input
- Digital Output

Functions	Digital Input	Pull-Up / Pull-Down	Digital Output	Settings
ISP-DATA	On	Off	On	(hardwired, instructions ignored)
ISP-CLK	On	Off	Off	(hardwired, instructions ignored)
/MCLRB	On	Pull-Up	Off	(BOOT set, instructions ignored)
CLOCK OUT	(don't care)	Off	On	(BOOT set, instructions ignored)
OSC+ (EC)	On	(optional)	Off	(BOOT set, instructions ignored)
OSC+ / OSC- (LP, XT)	Off	Off	Off	(BOOT set, instructions ignored)
LVD	Off	Off	Off	TRISx = 1
Timer0 Clk	On	(optional)	Off	TRISx = 1
Interrupt-on-Change	On	(optional)	Off	TRISx = 1
PA2-INT	On	(optional)	Off	TRISx = 1
BK0	On	(optional)	Off	TRISx = 1
Digital Input	On	(optional)	Off	TRISx = 1
PWM	On	Off	On	TRISx = 0
Digital Output	On	Off	On	TRISx = 0

Table 2-5 Instruction Level I/O Configuration Flags and Registers

Notes:

- 1. TRISx = 0: "Digital Output" enabled, "Pull-Up / Pull-Down" disabled (WPDx, WPUx ignored).
- 2. TRISx = 1: "Digital Output" disabled.
- 3. "Digital Input", "Pull-Up" and "Pull-Down" are automatic disabled when the PORT is an LVD input.
- 4. "/PAPU = 1" disables "Weak Pull-Up" for all PAx. There are no equivalent bits for PCx.
- 5. /MCLR enabled: PA5's Weak Pull-Up enabled (WPUA[5] ignored); PORTA[5] read "0".
- 6. Writing the PORTx Data Out registers will output the logic level to the corresponding I/O. Write operations are 'Read-Modify-Write' operations, meaning PORTx latch (output or input) are read first, then modified and written back, as up to 8 I/O share the same register.
- 7. Digital Output and Digital Input can be inclusive. Some applications need both enabled simultaneously.
- 8. The IDE can globally choose which PORT latch (output or input) to READ when TRISx = 0.
- 9. In Full-Reset or System-Reset PORTx will not reset, but TRISx will reset to "1", disabling output.

See Section 9 "Interrupts" for setting up PA2-INT and PORTA Interrupt-on-Change.

3. POWER-ON-RESET (POR)

During Power-On, V_{DD} increases from below the Power-On-Reset Voltage (V_{POR}) to above it. V_{DD} may not have completely discharged to 0V when the CPU is Power-On again.

- 1. The CPU is in a Full-Reset state when V_{DD} is below V_{POR} .
 - a. All Calibrated Data registers are not reset. Special Function Registers (SFR) are in Reset, except TMR0, PORTx, Z, HC, C, FSR, INDF, SRAM (see Section 14 Special Function Registers). Registers not reset, such as SRAM, will hold their values until V_{DD} drops below 0.6V (typical). Data of those resisters with V_{DD} below 0.6V are undetermined.
 - b. Program Counter = 0x00, Instruction Register = "NOP", Stack Pointer = "TOS" (Top of Stack).
- 2. BOOT commences when V_{DD} raises above V_{POR} .
- 3. Instruction execution begins with Program Counter = 0x00 after BOOT completion.

 V_{POR} is ~1.6V at 25°C (typical), increasing to ~1.9V at -40°C. For $V_{DD} \ge V_{POR}$, the CPU can function at a reduced speed of 8 MHz / 2T. POR alone can safeguard against a low V_{DD} failure, giving a self-regulated wider V_{DD} operating range with temperature. This is important for battery-powered system as the CPU can function down even to ~1.5V at typical battery operating environments, greatly extending useful battery life.

Notes:

- 1. V_{POR} is not configurable.
- The POR circuit is always on and will perform a Power-On-Reset any time V_{DD} voltage is below V_{POR}, not just during Power-On.

3.1 BOOT Sequence

Name	Function	default
PWRTEB	Additional ~64ms delay after BOOT load	disabled

Table 3-1 BOOT configuration

The value of BOOT configuration is set at the IDE, not by instructions. during BOOT:

- 1. CPU Idles for ~4ms.
- 2. The BOOT Level registers are loaded from the non-volatile memory. It takes ~17us. These registers are pre-set at the IDE and not affected by instructions.
- 3. If Power-On-Timer (PWRT) is enabled, the CPU will idle for ~64ms.

Rev2.00 - 17 - 2021-01-28

Figure 3-1 Power-On Sequence with PWRT and Checksum enabled

Figure 3-2 Minimum required PWRT during Power-On

 V_{DD} must be higher than 2.5V by the end of BOOT if the CPU is to run at 16MHz / 2T. The total BOOT time can increase from ~4ms to ~68ms by enabling the PWRT, giving more time for the power system to stabilize.

Enables LVR with $V_{BOR} \ge 2.5V$ for operation at 16MHz / 2T. LVR can be set to instruction controlled to monitor V_{DD} sporadically, instead of always on (see "LVREN", "SLVREN") to reduce power consumption.

Notes:

- 1. V_{DD} should not rise too slowly. $C_{VDD} \ge 22 \mu F$ is discouraged.
- 2. V_{DD} capacitor of 1 to $10\mu F$ is preferred. $C_{VDD} < 1\mu F$ capacitor may be too small for EFT considerations.
- 3. If a delay in startup is acceptable, enables PWRT and CSUM to improve CPU stability.

Rev2.00 - 18 - 2021-01-28

4. SYSTEM-RESET

System-Reset differs from POR in that it is not a Full-Reset. Depending on the trigger type and configurations, CPU may or may not BOOT. BOOT will wait ~4ms, reload the BOOT registers, and further delay system start by ~64ms if PWRT is enabled. In a System-Reset

- Registers reset in POR are reset, except BOOT registers.
- Program Counter = 0x00, Instruction Register = "NOP", Stack Pointer = "TOS" (Top of Stack).

The following 4 events besides debugger OCD can be configured to trigger a System-Reset:

- 1. Brown-Out (LVR / BOR) always BOOT.
- 2. Illegal Instructions (always on).
- 3. Watch-Dog Timer (WDT) BOOT if CPU not in SLEEP and "RBTENB" is set.
- 4. External I/O (/MCLRB).

Note: If a longer system restart time is acceptable, enable BOOT will improve system stability.

Figure 4-1 Reset circuit block diagram

Rev2.00 - 19 - 2021-01-28

4.1 Summary of SYSTEM-RESET Related Registers

Most settings for System-Reset are configured at the IDE, and cannot be changed by instructions.

Name	Functions	default
LVRS	7 V _{BOR} Voltage levels (V): 2.0 / 2.2 / 2.5 / 2.8 / 3.1 / 3.6 / 4.1	2.0
LVREN	LVR • Enabled • <u>Disabled</u> • Enabled except in SLEEP • Instruction controlled (SLVREN)	disabled
WDTE	 WDT Enabled (overrides instructions disable) Instruction controls (SWDTEN) 	SWDTEN control
MCLRE	Reset by External I/O	disabled
RBTENB	BOOT on WDT Reset	disabled

Table 4-1 BOOT Level RESET related configurations

4.2 Brown-Out Reset (LVR / BOR)

Brown-Out occurs when V_{DD} falls below a pre-configured Brown-Out Voltage (V_{BOR}) for a time longer than T_{BOR} . T_{BOR} takes 3 to 4 LIRC clock cycles (~94 – 125 μ s, LIRC will turn on automatically if not already). CPU System-Reset as long as $V_{DD} \le V_{BOR}$. Once $V_{DD} > V_{BOR}$ CPU will BOOT.

While V_{POR} is fixed, V_{BOR} can be set to 2.0, 2.2, 2.5, 2.8, 3.1, 3.6, 4.1V (see "LVRS" in Table 4-1).

Figure 4-2 LVR BOOT Timing Diagram

Rev2.00 - 20 - 2021-01-28

LVR function can have four different settings configured by BOOT (see "LVREN" in Table 4-1).

- 1. LVR enabled.
- 2. LVR disabled.
- 3. LVR enabled, except in SLEEP.
- 4. Let instructions enable or disable LVR (SLVREN, see Table 4-2).

Note: LVR can be instructions disabled in SLEEP to reduce power consumption. The CPU should wake up and enable LVR periodically to monitor V_{DD} if system V_{DD} is unstable.

Name	Status	Register	Addr.	Reset
	Applies only when LVREN cedes control to SLVREN			
SLVREN	1 = Enables LVR	MSCON0[3]	0x1B	RW-0
	0 = <u>Disables LVR</u>			

Table 4-2 Instruction Level LVR registers

4.3 Illegal Instruction Reset

There are many reasons a CPU fetches an instruction incorrectly, with interference and V_{DD} instability the most common. When such an event occurs System-Reset.

Illegal instruction reset circuit is always on. Although there is no dedicated Reset instruction, any deliberate illegal instruction is equivalent to a Reset instruction.

4.4 Watch Dog Timer (WDT) Reset

WDT overflows during SLEEP will result in a Wake-Up.

WDT overflows not during SLEEP will trigger a System-Reset. The IDE preset if a BOOT follows (see "RBTENB" in **Table 4-1**). This can reset a hanged CPU. Clear WDT from time to time in the program to avoid false reset.

For details on WDT operation and setting see Section 7.1 Watch Dog Timer (WDT).

4.5 External System-Reset /MCLRB

The CPU can be reset by a low voltage applied to the /MCLRB (PA5) pin if so configured by BOOT. The /MCLRB pin is usually soft pullup to V_{DD} with a resistor instead of directly, as shown in **Figure 4-3**. The external RC network also provides glitches filtering and over-current protection.

Figure 4-3 /MCLRB reset circuit

4.6 Detecting the Type of Reset Last

Four status flags /POR, /BOR, Time Out (/TF), Power Down (/PF) together can trace the type of last System-Reset, except between "/MCLR System-Reset during normal operation" and "Illegal Instruction Reset". Use instructions to set the flags to "1". In a Reset, the corresponding flag(s) latches to "0".

	/POR	/BOR	/TF	/PF
Reset Source	PCON[1]	PCON[0]	STATUS[4]	STATUS[3]
	0x	8E	0x03,	0x83
POR	0	(unknown)	1	1
LVR	_	0	1	1
WDT overflows while not in SLEEP (Reset)	_	-	0	-
WDT overflows while in SLEEP (Resume)	_	-	0	0
/MCLR Reset during SLEEP	_	-	1	0
/MCLR Reset during normal operation	_	-	-	-
Illegal Instruction	_	_	_	
On-Chip Debugger (OCD)	_	_	_	_

 Table 4-3
 Reset Related Status Flags ("-" no change)

Rev2.00 - 22 - 2021-01-28

5. LOW VOLTAGE DETECT / COMPARATOR (LVD)

LVD works similarly to a LVR except for the followings:

- None of the control and setting parameters are set by BOOT. They are set by instructions.
- I/O must be set appropriately: TRISx = 1;
- It will write LVDW instead of /BOR.
- It can be instructions configured to Interrupt. It will not trigger System-Reset.
- LVDDEB enables debouncing. Debouncing Time (T_{LVD}) takes 3 to 4 LIRC clock cycles (~94 125 μ s, LIRC will turn on automatically if not already)..
- The input to the LVD module can be configured to V_{DD} or the other I/O (PA5). The latter allows the LVD to function as a single input comparator to one of the six LVDL levels.
- The polarity of LVD can be set, such that the LVD can be a "High" or a "Low" comparator to V_{LVD-REF}.

Note: The external reset function (/MCLRB) of PA5 takes precedence over the LVD input function. When PA5 is configured as an external reset pin, the LVD detection will be ignored.

5.1 Summary of LVD Related Registers

Name	Function	default
LVDDEB	LVD debounce enable bit (≽ version E chip support)	Disabled

Table 5-1 BOOT Level LVD related register

Name		Status		Register	Addr.	Reset
LVDEN	<u>LVD</u>	1 = Enables	0 = <u>Disables</u>	PCON[3]		RW-0
		000 = <u>retention</u> 100 = 2.7				
LVDL	V	001 = retention	101 = 3.0	PCON[6:4]		RW-000
LVDL	$V_{\text{LVD-REF}}$	010 = 2.0	110 = 3.6	F CON[0.4]		1200 000
		011 = 2.4	111 = 4.0			
		If LVDP = 0:			0x8E	
		1 = Detect voltage < V _{LVD-REF} (no latch)				
LVDW	<u>LVD</u>	0 = <u>Detect voltage</u> > V _{LVD-REF}		PCON[2]		RO-x
LVDVV	triggered?	If LVDP = 1 (≥ version E chip):				IVO X
		1 = Detect voltage > $V_{LVD-REF}$ (no latch)				
		0 = <u>Detect voltage < V_{LVD-REF}</u>				
LVDP ³	LVDW Polarity	1 = antiphase	0 = non antiphase	WDTCON[7]	0x18	RW-0
LVDM	LVD input	1 = PA5		DCONI71	0x8E	RW-0
LVDIVI	<u>LVD Input</u>	0 = <u>V_{DD}</u>		PCON[7]	UXOE	RVV-U
LVDIE	LVD Interrupt	1 = Enables	0 = <u>Disables</u>	PIE1[5]	0x8C	RW-0
LV/DIE	<u>LVD</u>	1 = Yes		DID4[5]	0,400	RW-0
LVDIF	Interrupted? $0 = N_0$, or cleared			PIR1[5]	0x0C	KVV-0

Table 5-2 Instruction Level LVD Settings and Flags

_

Rev2.00 - 23 - 2021-01-28

³ ≥ version E chip support only.

6. OSCILLATORS and SYSCLK

Instruction chooses whether SysClk is the internal oscillator HIRC, internal oscillator LIRC, or one of the three external oscillators (EC, LP, XT, see "SCS" in **Table 6-2**). If external oscillator is chosen, BOOT level "FOSC" (**Table 6-1**) will determine which one of the three external oscillators is used. Instructions also select the frequency step down divider for internal oscillator (see IRCF and LFMOD in **Table 6-2**). SysClk is used to derive the Instruction Clock:

Instruction Clock = SysClk / N; N = 2 for 2T, 4 for 4T.

The pin assignments for external clock inputs and Instruction Clock output are set by BOOT (see FOSC).

Timers have their own oscillators. More than one oscillator can be active simultaneously.

Oscillators will turn on automatically when the Timers using them are enabled. They will remain active as long as the corresponding Timers are active. The oscillators can be configured to shutdown or be active in SLEEP. By keeping the corresponding oscillator active in SLEEP, Timer functions and PWM can also be active in SLEEP.

As instructions are halted in SLEEP, so will Instruction Clock. Any peripherals using Instruction Clock will also halt in SLEEP.

Figure 6-1 Clock source block diagram for SysClk

Rev2.00 - 24 - 2021-01-28

6.1 Summary of Oscillator Modules Related Registers

Name	Functions	default
	LP external oscillator across PA7 (+) and PA6 (-)	
	XT external oscillator across PA7 (+) and PA6 (-)	
FOSC	EC external oscillator at PA7 (+),PA6 as I/O pin	INTOSCIO
	INTOSC mode: PC5 output "Instruction Clock", PA6 and PA7 as I/O pins	
	INTOSCIO mode: PA6 and PA7 as I/O pins	
	Two-speed Startup for XT and LP	
IESO	Enabled	Enabled
	Disabled	
	Fail-Safe Clock Monitor	
FCMEN	Enabled	Enabled
	Disabled	
	# of SysClk per Instruction (2T or 4T)	
TSEL	• <u>2</u> (Instruction Clock = SysClk/2)	2
	4 (Instruction Clock = SysClk/4)	

 Table 6-1
 BOOT Level FOSC and 2-speed Start-Up configurations

				configuration			
			SCS	IRCF	LFMOD	OST	
	SysClk Source		OSCCON[0]	OSCCON[6:4]	OSCCON[7]		
				0x8F			
			RW-0	RW-100	RW-0		
	EC		0	-	-	-	
External	XT		0	-	-	1,024	
	LP		0	-	-	32,768	
	HIRC	16 MHz	1	111	-	-	
		8 MHz	1	110	-	-	
		4 MHz	1	101	-	-	
		<u>2 MHz</u>	1	<u>100</u>	-	-	
Internal		1 MHz	1	011	-	-	
		500 kHz	1	010	-	-	
		250 kHz	1	001	-	-	
	LIRC	256 kHz	1	000	1	-	
	LIKU	32 kHz	1	000	0	-	

Table 6-2 Instruction Level SysClk source setup

Rev2.00 - 25 - 2021-01-28

Name	Status	Register	Addr.	Reset
	Oscillator Start-Up Time-out (latched)?			
OSTS	1 = Running from the external clock	OSCCON[3]		RO-x
0010	(start-up successful)			NO X
	0 = Running from the internal oscillator			
	HIRC ready (latched)?		0v8E	
HTS	1 = Yes	OSCCON[2]	UXOI	RO-0
	0 = <u>No</u>			
	LIRC ready (latched)?			
LTS	1 = Yes	OSCCON[1]		RO-0
	0 = <u>No</u>		0x8F - 0x1B - 0x1D[3:0] 0x1C	
	4x averaging for LIRC and HIRC Cross Calibration			
CKMAVG	1 = Enables	MSCON0[2]	0x1B	RW-0
	0 = <u>Disables</u>		0v1D	
	Initiate LIRC and HIRC Cross Calibration		UXID	
CKCNTI	1 = Start	MSCON0[1]		RW-0
	0 = <u>Finished (auto-cleared)</u>			
SOSCPR	LIRC Period Calibrated by # of HIRC clocks	SOSCPR[11:0]		RW-FFF

Table 6-3 Oscillators Control/Status

6.2 Internal Clock Modes (HIRC and LIRC)

Internal high frequency clock (HIRC) is factory calibrated to 16 MHz @ $2.5\text{V}/25^{\circ}\text{C}$. Typical die to die variation is $< \pm 1.5\%$ at 2.5 - 5.5V, 25°C . The typical temperature variation from $^{-}40 - ^{+}85 ^{\circ}\text{C}$ is $\pm 4\%$.

HIRC is calibrated at the wafer level. Packaging may cause the HIRC frequency to drift. There is an option at the downloader to re-calibrate the HIRC. There is another option to store the calibrated HIRC frequency error at the last byte of the DATA EEPROM array. Each step represents a 2% / 128 = 0.016% error. The HIRC frequency trimmed value is stored in the "FOSCCAL" register. Users can change HIRC from the default 16 MHz (tuning). Trimming steps are non-linear (~130 kHz). A rough estimation is as follows:

FOSCCAL[5:0]
$$\pm$$
 N \approx 16000 \pm N * 130

Internal low frequency clock (LIRC) is factory calibrated to 256 kHz. Typical die to die variations is $< \pm 3.5\%$ at 2.5 - 5.5V, 25°C. The temperature variation from $^{-}40 - ^{+}85$ °C is $< \pm 2\%$.

There is an option at the downloader to measure the LIRC accuracy, and store the LIRC frequency error at the second to last byte of the DATA EEPROM array. Each step represents a 4% / 128 = 0.031% error.

LIRC and HIRC can be used to cross calibrate each other – A build in hardware uses Timer2 to measure the number of Instruction Clocks (set SysClk to HIRC at 16MHz) in one LIRC period ("LFMOD" dependent). Since LIRC has a lower temperature coefficient, the HIRC can be calibrated to the LIRC when the temperature fluctuates, thereby achieving the same ±2% temperature coefficient.

Figure 6-2 Single measurement timing diagram

To enable LIRC and HIRC Cross Calibration:

1. Set IRCF = 111, SCS = 1 ; select SysClk at 16MHz HIRC (other settings will have a lower accuracy).

2. Set CKMAVG = 1 ; 4 times averaging, choose 0 for no averaging.

3. Set TMR2ON = 1 ; enable Timer2.

4. Set CKCNTI = 1 ; start calibration, automatically Timer2 prescaler = 1, postscalar = 1,

T2CKSRC = SysClk for 2T; SysClk/2 for 4T

- 5. At the end of the calibration "CKCNTI =0", "CKMIF = 1" automatically.
- 6. Measured value is stored at SOSCPR;
- 7. If LIRC is 32kHz and CPU is running at 16MHz / 2T, the ideal matching number is 500.

Notes:

- Do not write SOSCPRH/L during LIRC and HIRC Cross Calibration.
- Timer2 cannot be used by other peripherals during LIRC and HIRC Cross Calibration.
- LIRC and HIRC Cross Calibration is incompatible with Single Step Debugger mode.

6.3 External Clock Modes

6.3.1 EC mode

External digital signal connected to OSC1 is the clock source (OSC2 is available for I/O). There is no set up or transition time delay when EC is used for SysClk after a POR or a wake-up from sleep.

6.3.2 LP and XT modes

A quartz crystal resonator or ceramic resonator is connected between OSC1 and OSC2 in LP or XT modes.

LP Oscillator mode has the lowest gain setting and current consumption of the three modes (EC, LP and XT). This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

Rev2.00 - 27 - 2021-01-28

XT Oscillator mode selects the highest gain setting of the internal inverter-amplifier.

After a BOOT or a Wake-Up from Sleep, program execution is suspended during OST counting if the clock source is XT or LP mode. This allows the XT or LP clock to stabilize. OST counts 1,024 or 32,768 counts of OSC1 (+ve terminal of the crystal input) for XT and LP respectively. For a 32.768 kHz tuning-fork type crystals the OST time is at least 1 second.

Notes: WDT is held in cleared until OST finished counting. Do not write WDTCON / OPTION during OST counting, otherwise unexpected behavior will occur.

Two-Speed Clock Start-up (see "IESO" in **Table 6-1**) allows instructions execution while OST counts, using the internal oscillator INTOSC as SysClk. It removes the external oscillator start-up time from the time spent awake and can reduce the overall power consumption, especially in cases of frequent SLEEP mode usage. The CPU wakes up from Sleep, performs a few instructions using the INTOSC as SysClk and return to Sleep without having to wait for the primary oscillator to become stable.

Note: Two-Speed Start-up is disabled for EC mode, as the oscillator does not require stabilization time.

Two Speed Start-up sequence

- 1. After a BOOT or Wake-up from Sleep.
- 2. INTOSC is used as SysClk for Instructions execution until OST time out.
- SysClk is held low from the falling edge of INTOSC until the falling edge of the new clock (LP or XT mode).
- 4. SysClk switches to the external clock source.

The Oscillator Start-up Time-out Status (OSTS) indicates whether the SysClk is running from the external clock source or from the internal clock source. This is an indirect way to find out if the Oscillator Start-up Timer (OST) has timed out for the LP or XT mode when the Two-Speed Clock Start-up mode is on.

Executing a SLEEP instruction will abort the OST, and OSTS will remain "0".

Fail-Safe Clock Monitor (FSCM, enabled by "FCMEN", see **Table 6-1**) allows the device to continue operating should the external oscillator fails. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is applicable to all external oscillator modes (EC, LP and XT). It is recommended that FSCM be enabled if an external oscillator is used.

An external oscillator is considered fail if it oscillates at ~1 kHz or below. A sample clock is generated by dividing the LIRC by 64. The external clock sets a latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is when an entire half-cycle of the sample clock elapses without the primary clock goes low.

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets OSFIF. Setting this flag will generate an interrupt if OSFIE is also set. The device hardware can then take steps to mitigate the problems that may arise from a failed clock. The SysClk will continue to be sourced from the internal clock source until the device hardware successfully restarts the external oscillator.

The internal clock source chosen by "FSCM" is determined by "IRCF". This allows the internal oscillator to be configured before a failure occurs.

Note: LFMOD does not affect the sample clock.

Figure 6-3 FSCM block diagram

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or toggling the SCS. When SCS is toggled, OST is restarted. While OST is running, the device continues to operate from INTOSC. When OST times out, the Fail-Safe condition is cleared and the device will be operating from the external clock source. The Fail-Safe condition must be resolved before the OSFIF flag is cleared.

Note: Any automatic clock switch, which may occur from Two-Speed Start-up or Fail-Safe Clock Monitor, will not update SCS. The program can monitor OSTS to determine the current SysClk source.

6.4 HIRC, LIRC and EC inter-switching

Figure 6-4 shows the timing during inter-switching. If either HIRC or LIRC is shutdown prior to switching (to save power) there is an extra oscillator setup delay time.

Figure 6-4 Switching from LIRC to HIRC (same principle applies switching among EC, LIRC, HIRC)

Rev2.00 - 29 - 2021-01-28

7. TIMERS

There are 3 Timers including the Watch Dog Timer (WDT).

	WDT	Timer0	Timer2
Prescaler (bit)	-	8 (WDT shared)	4 (1x, 4x, 16x)
Counter (bit)	16	8	16
Postscaler (bit)	7 (Timer0 shared)	-	4 (1 - 16x)
Clock Sources	• LP	• LP	• LP
	• XT	• XT	• XT
	• HIRC	HIRC	HIRC
	• LIRC	Instruction Clock	Instruction Clock
		PA2/T0CKI	2x Instruction Clock
		(transition counter)	• LIRC
			2x HIRC
			• 2x (EC, LP or XT)

Table 7-1 Timers' Resources

Notes: If a Timer's clock is not the instruction Clock, set "TMRxON = 0" before changing TMRx.

Any Timer enabled will turn on its clock source automatically. Instruction Clock is disabled at SLEEP so it cannot be used for WDT. When LP or XT Oscillator is selected, FOSC must be configured correspondingly or to INTOSCIO mode, otherwise the oscillator is off and no counting will occur.

WDT postscaler and Timer0 prescaler shares the same hardware. The hardware is Instruction Level assigned to one, but not both. The Timer not assigned the scaler will have a scaler value of "1".

<u>In a POR or System-Reset, all Timers' counter, prescaler, postscalar are reset except Timer0 counter</u>. The followings will also reset a Timer's counter and scaler(s):

	WDT	Timer0	Timer2
		TMR0 write	• TMR2ON = 0
Prescaler		PSA switching	LIRC and HIRC Cross
Fiescalei	_		Calibration start
			T2CON0, TMR2L/H write
	WDT, OST overflow	Timer0 overflows	TMR2 = PR2 (matches)
Countar	Enters/Exits SLEEP		
Counter	• CLRWDT		
	WDTCON write		
Postscaler	All Above except		All Alexanders (TMDOON)
	WDTCON write	_	All Above except (TMR2ON = O)
	 PSA switching 		0)

Table 7-2 Events reseting a Timer's Counter and Scaler(s)

Timer2 Counter, Prescaler and Postscaler will stop incrementing upon a PWM break, for as long as the

Break condition remains. It will resume after the PWM Break condition no long exist.

The end of a PWM Single Pulse will set "TMR2ON = 0". Restart by setting "TMR2ON = 1".

7.1 Watch Dog Timer (WDT)

WDT is used to "Wake-Up from SLEEP" or "System-Reset if the CPU stalls". WDT counts the number of clock cyles to a pre-set number until overflow.

- In SLEEP mode, a WDT overflow will trigger a Wake-up. The CPU will resume operation from where it is before SLEEP. This is not an Interrupt nor System-Reset event.
- In non-SLEEP mode, a WDT overflow will trigger a System-Reset (see Section 4 System-Reset). It may
 or may not BOOT depending on RBTENB setting.

Figure 7-1 Block diagram of WDT

The WDT will overflow after a WatchDog-Time: WDT-Period x WDT-Postscaler / WDT Clock Frequency.

For a given Clock Source, WatchDog-Time step doubles successively due to the binary nature of the WDT Postscalar. Using LIRC as clock source, the maximum settable time before WDT overflows is

$$2^{16} \times 2^{7} / 32 \text{kHz} = ~262 \text{ seconds}.$$

7.1.1 Summary of WDT Related Registers

Name	Functions	default		
WDTE	 WDT Enabled (overrides Instructions disable) Instruction controlled (SWDTEN) 	SWDTEN control		
RBTENB	BOOT on WDT Reset	disabled		

Table 7-3 BOOT Level WDT Selectors

Rev2.00 - 31 - 2021-01-28

Name	Status					Register	Addr.	Reset
	WDT Clock	Source						
	00 = LIRC					RW-00		
WCKSRC	01 = HIRC			WDTCON[6:5]				
WORORO	10 = LP (if F	OSC in LP	or INTOS	CIO mode*)		WD10014[0.5]		RVV-00
	11 = XT (if I	OSC in XT	or INTOS	CIO mode*)				
	*otherwise i	no WDT Clo	ck Source	!				
	WDT Period	<u>t</u>						
	0000 = 32		01	111 = 4,096			0x18	
	0001 = 64		10	000 = 8,192			OXIO	
WDTPS	0010 = 128		10	001 = 16,384		WDTCON[4:1]		RW-0100
WBII	0011 = 256			10 = 32,768		WBIOON[III]		
	0100 = <u>512</u>		10					
	0101 = 1,02	24	11					
	0110 = 2,048							
SWDTEN	1 = WDT Enables				WDTCON[0]		RW-0	
	0 = <u>WDT Disables</u> , if WDTE = 0							
LFMOD	1: LIRC = 256 kHz				OSCCON[7]	0x8F	RW-0	
	0: <u>LIRC = 32 kHz</u>					la d		
PSA	1 = <u>Scalar assigned as WDT Postscalar</u> 0 = Scalar assigned as Timer0 Prescalar				OPTION[3]		RW-1	
	0 = Scalar a							
		WDT Pos	tscalar	Timer0 Pr	escalar			
	000		1		2			
PS	001		2		4			
	010		4		8		0x81	
	011	(PSA=1)	8	(PSA=0)	16	OPTION[2:0]		RW-111
	100		16		32			
	101		32		64			
	110		64		128			
	111		<u>128</u>		<u>256</u>			
	XXX	(PSA =0)	1	(PSA =1)	1			

Table 7-4 Instruction Level WDT Related Registers

7.1.2 Setting up and using the WDT

WDTE (BOOT Level) and/or SWDTEN (Instruction Level) enable the WDT. RBTENB (BOOT Level) determines if a WDT triggered Reset will also BOOT.

WCKSRC (and LFMOD if the LIRC is selected) chooses the WDT clock source. WDTPS, PSA and PS together set the Postscalers.

To stop a WDT overflow, the WDT must be cleared before time expires. Refer to **Table 7-2** for events that will clear the WDT. Counting continues after WDT is cleared.

Rev2.00 - 32 - 2021-01-28

7.1.3 Switching scaler between Timer0 and WDT

As a result of having the same scaler assigned to either Timer0 or the WDT, it is possible to generate an unintended System-Reset when switching scaler between Timer0 and WDT.

When switching scaler assignment from Timer0 to WDT, the instruction sequence below must be followed.

BANKSEL TMR0 ; Can skip if already in TMR0 bank

CLRWDT : Clear WDT

CLRR TMR0 ; Clear TMR0 and scaler

BANKSEL OPTION

BSR OPTION, PSA ; Select WDT

LDWI b'11111000'; Mask scaler bits (PS2-0)

ANDWR OPTION, W

IORWI b'00000101'; Set WDT scaler bits to 32 (or any value desired)

STR OPTION

When switching scaler assignment from WDT to Timer0, the instruction sequence below must be followed.

CLRWDT ; Clear WDT and scaler

BANKSEL OPTION

LDWI b'11110000'; Mask TMR0 select and scaler bits (PSA, PS2-0)

ANDWR OPTION, W

IORWI b'00000011' ; Set Timer0 scale to 16 (or any value desired)

STR OPTION

Rev2.00 - 33 - 2021-01-28

7.2 TIMER0

Figure 7-2 Block diagram of Timer0

Timer0 is used to count transitions at an I/O "PA2-T0CKI", or as a timer to keep time (see T0CKSRC).

Timer0 counts and overflows upon reaching a time = TMR0[7:0] * Timer0 Prescaler

An Interrupt flag (T0IF) is set. Depends on the enable controls (T0IE and GIE) it may result in an <u>AWAKE from SLEEP</u> and/or <u>Interrupt</u>.

Notes:

- 1. Timer0 stops for two instruction cycles immediately following writing TMR0.
- 2. To be able to Wake-Up from SLEEP, set "T0CKRUN = 1" and "T0CKSRC ≠ 00" so Timer0 will not use Instruction Clock and be active in SLEEP. Or Timer0 will retain the value before entering SLEEP.
- 3. If Timer0 is used to count T0CKI, there are minimum period, high and low pulse width requirements relative to Timer0. However unless T0CKI is very fast and T_{T0CK} is very slow, the restrictions will usually be satisfied.

T0CKI	Minimum	Units	Conditions		
High or Low Pulse Width	0.5 * T _{T0CK} + 20	ns	no Prescaler		
High of Low Pulse Width	10	ns	with Prescaler		
Period	maximum(20, (T _{T0CK} +40)/N)	N = 1, 2, 4,, 256 (with N = 1 (no P		(with Prescaler)	
Pellou				(no Prescaler)	

4. See Section 7.1.3 regarding "Switching scaler between Timer0 and WDT modules"

7.2.1 Summary of Timer0 Related Registers

Name			Status			Register	Addr.	Reset
T0ON	Timer0		1 = <u>Enables</u> 0 = Disables		T0CON0[3]		RW-1	
T0CKRUN	T0CK ru	ın in SLEEP	1 = Yes (if not Instr. Clock) 0 = No		T0CON0[2]		RW-0	
	Timer0 Clock Source (T0CS = 0)						0x1F	
	00 = <u>Ins</u>	truction Clock	<u>:</u> 10	= LP ^(*)				
T0CKSRC	01 = HIF	RC	11 :	= XT ^(*)		T0CON0[1:0]		RW-00
	^(*) FOSC	should be co	nfigured	accordingly or	in			
	INTOSC	IO mode, oth	erwise c	scillator will no	t run.			
T0CS	Timer0 I	nput	1 = PA	2/T0CKI (Coun	ter)	OPTION[5]		RW-1
1003	Source		0 = <u>T0CKSRC</u> (Timer)		OP HON[5]		IXVV I	
T0SE	Counter Trigger		1 = <u>Falling Edge</u>		OPTON[4]		RW-1	
TOOL			0 = Rising Edge				1 () 1	
PSA	1 = <u>Scalar assigned as WDT Postscalar</u>				OPTION[3]		RW-1	
	0 = Scalar assigned as Timer0 Prescalar							
		WDT Posts	scalar	TIMER0 Prescalar				
	000		1		2		0x81	
	001		2		4		0.001	
	010		4		8			
PS	011	(PSA=1)	18	,	16	OPTION[2:0]		RW-111
	100		16		32	01 11011[2.0]		1200
	101		32		64			
	110		64		128			
	111		<u>128</u>		<u>256</u>			
	xxx	(PSA =0)	1	(PSA =1)	1			
TMR0[7:0]	Timer0 (Count Value				TMR0[7:0]	0x01	RW-xxxx xxxx

Table 7-5 Instruction Level Timer0 Related Control Registers

Name		Status	Register	Addr.	Reset	
		1 = Enables	(T0IE applies)			
GIE	Global Interrupt	0 = Global Disa	<u>ables</u>	INTCON[7]		RW-0
		(Wake-Up i	not affected)			
TOLE	Timer0 Overflow	1 = Enables			0x0B	DW 0
TOIE	Interrupt	0 = <u>Disables</u>	(no Wake-Up)	INTCON[5]	0x8B	RW-0
TOIF	Timer0 Overflow Interrupt?	1 = Yes 0 = <u>No</u>	(latched)	INTCON[2]		RW-0

Table 7-6 Timer0 Interrupt Enable and Status Bits

7.3 TIMER2

Figure 7-3 Timer2 block diagram

Timer2 is used as a timer. It is also for generating the PWM (without Postscalar, see **Section 10** PWM), and for LIRC and HIRC Cross Calibration counting (CKCNTI=1). Counter matches and postscalar overflows function can be used simultaneously.

Timer2 clock is fed into Timer2 Prescaler (options of 1, 4 or 16). The Prescaler output increments TMR2 from 0x00 until it matches PR2. Upon matching:

- 1. TMR2 resets to 0x00 on the next increment cycle
- 2. Timer2 Postscaler increments.
- 3. Timer2 overflows when Timer2 post-scaler output is equal to the post-scaler setting (1, 2 15 or 16).
- 4. Interrupt flag TMR2IF is set to 1. Depends on the enable controls (GIE, PEIE and TMR2IE) it may result in an <u>AWAKE from SLEEP</u> and/or <u>Interrupt</u>.

Notes:

- 1. TMR2 is not cleared when T2CON0 is written.
- 2. Both TMR2 and PR2 are R/W. They are 0x0000 and 0xFFFF respectively when reset.
- 3. If ("TMR2ON = 1", "T2CKRUN = 1", "T2CKSRC \neq 000"), Timer2 will run in SLEEP.

Rev2.00 - 36 - 2021-01-28

7.3.1 Summary of Timer2 Related Registers

Name		Stat	us	Register	Addr.	Reset	
T2CKRUN	T2CK run in SLEEP	1 = Yes (if not 0 = No	t Instruction Clock)	MSCON0[0]	0x1B	RW-0	
			le effective immediately				
PR2U	1 = PR2ACT	and P1xDTyA	CT update from	T2CON0[7]		WO1-0	
FR2U	PR2/P1x	DTy buffer imm	nediately	T2CON0[7]		VVO1-0	
	0 = Normal ι	update after end	d of a period				
		Timer2 Po					
	0000 = 1	0100 = 5	1000 = 9 1100 = 13				
TOUTPS	0001 = 2	0101 = 6	1001 = 10	T2CON0[6:3]	0x12	RW-0000	
	0010 = 3	0110 = 7	1010 = 11				
	0011 = 4	0111 = 8	1011 = 12				
TMR2ON	TMR2ON Timer2 (clear in PWM 1 = Enables		T2CON0[2]		RW-0		
	One-pulse m	node)	0 = <u>Disables</u>				
T2CKPS	Timer2/Time	er1 Prescaler	00 = 1 $1x = 16$	T2CON0[1:0]		RW-00	
(T1CKPS)			01 = 4				
		Timer2 Cloc	ck Source				
	000 = <u>Instru</u>	<u> </u>	100 = HIRC				
TOOLOGO		struction Clock	101 = LIRC	T000N45001	0.05	DV4/ 000	
T2CKSRC	010 = 2x HIF		110 = LP ^(*)	T2CON1[2:0]	0x9E	RW-000	
		, XT or EC ^(*)	111 = XT ^(*)				
		_	ed accordingly or in				
DDOL		•	e oscillator will not run.	DD01 [7:01	0,401	RW-1111 1111	
PR2L PR2H		period register		PR2L[7:0]	0x91 0x92	RW-1111 1111	
TMR2L		period register 2 count register		PR2H[7:0] TMR2L[7:0]			
					0x11	RW-0000 0000	
TMR2H	MOR OL LIMP	R2 count registe	II.	TMR2H[7:0]	0x13	RW-0000 0000	

Table 7-7 Instruction Level Timer2 Related Control Registers

Name		Status	Register	Addr.	Reset
	Gle	obal Interrupt			
GIE	1 = Enables	0 = Global Disables	INTCON[7]	000	RW-0
(PEIE, TMR2IE applies) (Wake-Up not affected)				0x0B	
Master Peripheral		1 = Enables (TMR2IE applies)	INITOONIGI	0x8B	RW-0
PEIE	Interrupt	0 = <u>Disables</u> (no Wake-Up)	INTCON[6]		RVV-U
TMDOIL	Timer2 matched PR2	1 = Enables	DIE4141	0,400	DW 0
TMR2IE	Interrupt	0 = <u>Disables</u> (no Wake-Up)	PIE1[1]	0x8C	RW-0
TMR2IF	Timer2 matched PR2	1 = Yes (latched)	DID4[4]	0,400	RW-0
I WIRZIF	Interrupt?	0 = <u>No</u>	PIR1[1]	0x0C	KVV-U

Table 7-8 Timer2 Interrupt Enable and Status Bit

7.3.2 R/W Operation of TMR2 register

TMR2H and TMR2L cannot be READ or WRITE simultaneously. Latches solves this problem. The following Read and Write sequences must be followed.

- To READ TMR2, read TMR2L first. Latches will latch TMR2H to a buffer TMR2H_buf, which is read next. If Timer2 clock is not Instruction Clock, set "TMR2ON =0", execute a NOP before reading TMR2.
- To WRITE TMR2, write TMR2H first. It will be stored in a TMR2H_buffer. Writing TMR2L next will
 update both TMR2H and TMR2L simultaneously. To avoid racing between writing and counting, TMR2
 should be stopped prior to writing by setting "TMR2ON = 0".

Figure 7-4 TMR2 Read Block Diagram

Figure 7-5 TMR2 Write Block Diagram

Rev2.00 - 38 - 2021-01-28

8. SLEEP (POWER-DOWN)

During SLEEP Instruction Clock is inactive and instructions execution is halted. Most modules are powered down to conserve power. As listed in **Table 8-1**, FT60F11x / FT60F12x can selectively turn on individual modules in SLEEP so that functions, LVR, LVD, WDT, Timers and PWM, can be maintained during SLEEP if desired without instruction interventions. Some modules can configure automatic power down upon SLEEP to save the need to turn them off by instructions.

	Condition in SLEEP	
	RUN	Auto-Shutdown?
Instruction Clock	(always power down)	Yes
LVR	LVREN = 00 or (LVREN = 01 & SLVREN=1)	LVREN = 10
LVD	LVDEN = 1	No
WDT	WDTE or SWDTEN	No
TIMER0	T0CKRUN = 1 & T0CKSRC ≠ 00 & T0ON = 1	T0CKRUN=0
TIMER2	T2CKRUN = 1 & T2CKSRC ≠ 000 & TMR2ON = 1	T2CKRUN=0
PWM	(follows TIMER2)	
HIRC / LIRC / EC / LP / XT	(follow peripherals that are using the	em)
I/O	(maintain their states before SLEEP unless PWM	SLEEP enabled)

 Table 8-1
 All except Instruction Clock can remain active in SLEEP if so desired

8.1 Entering into SLEEP

A SLEEP command puts the CPU to SLEEP.

- 1. If WDT is enabled, it will clear its Postscalar (if assigned) and counter, and start counting.
- 2. Time Out Flag (/TF) = 1
- 3. Power Down Flag (/PF) = 0
- 4. Clock sources
 - Instruction Clock shuts down automatically.
 - HIRC, LIRC, external oscillators (EC, LP, XT) are active if the Timer that uses them remains active. If
 a certain Timer auto-shutdown in SLEEP, its clock source will auto-shutdown too unless it is used by
 another Timer that remains active.
 - Instructure Clock will stop, and therefore output will not update anymore even if configured so.

5. I/O PORTS

- PWM output continue if Timer2 is active in SLEEP. PWM auto-shutdown if Timer2 auto-shutdown.
- For other digital outputs, they will maintain the state before SLEEP ((Tri-state, "0" or "1")

For more information about how peripherals work in SLEEP please refer to the corresponding chapters.

Rev2.00 - 39 - 2021-01-28

8.2 Waking-Up from SLEEP

There are 2 general principles to Wake-up from sleep:

- Time based, in which the CPU wakes up after a certain amount of time. LIRC is the clock choice for keeping time as it has lower power consumption than HIRC.
- Events based that triggers POR, System-Reset, Wake-up without Interrupt, and Interrupts, such as LVD, Interrupt-on-change, PA2-INT.
- 1. Watchdog Timer Wake-up if enabled (see Section 7.1 Watchdog Timer).
- 2. Full-Reset and System-Reset
 - POR Full-Reset (cannot be disabled)
 - External System-Reset by the /MCLR if enabled
 - LVR Reset if enabled
- Enabled Interrupts (Disabling the "Global Interrupt Enable" will not stop Wake-up). Please see Section
 Interrupts.

Notes:

- 1. Waking up will also clear WDT.
- 2. SLEEP must be followed by NOP

In Wake-up from SLEEP not preceded by execution of the "Interrupt Service Routine", such as WDT wakeup, or attempted Interrupts with Global Interrupt Enable (GIE) disabled, the next instruction will be executed twice. To avoid duplicate execution NOP must follow SLEEP.

SLEEP

NOP // harmless NOP will execute twice if Interrupt Service Routine not executed.

Rev2.00 - 40 - 2021-01-28

9. INTERRUPTS

Figure 9-1 Interrupt Block Diagram

The CPU supports 11 sources of Interrupt in 2 groups:

- 1) Non-Peripherals (Timer0 and I/O)
 - Timer0 Overflows
 - PA2-INT (automatic rising or falling edge interrupt)
 - PORTA Interrupt-on-Change (software controlled)

2) Peripherals

- Timer2 Postscalar overflows
- DATA EEPROM Write Completion
- LIRC and HIRC Cross Calibration Completion
- Fail-Safe Clock Monitor
- LVD condition matches

Rev2.00 - 41 - 2021-01-28

WDT overflows, unlike other Timers, will not result in an Interrupt. For other interrupts besides external I/O interrupts please see the corresponding chapters.

In an Interrupt the PC jumps to and executes the "Interrupt Service Routine (ISR)". There are multiple levels of Interrupt Disable/Enable.

- Each interrupt source has a local interrupt enable: TOIE, INTE, IOCAx, TMR2IE, EEIE, CKMIE, LVDIE;
- The 8 PAx Interrupt Inputs have a group PORT interrupt enable: PAIE (PORTA Interrupt Enable)
- The Peripheral interrupts has a master interrupt enable: PEIE (PEripheral Interrupt Enable).
- All controls above, if disabled, will not execute a Wake-Up from SLEEP.
- All interrupts are controlled by a global enable: GIE (Global Interrupt Enable). This enable differs from the
 others by allowing a Wake-Up from SLEEP even when disabled.
- Disabling the interrupts does not affect the setting of the interrupt flags.

The following sequences occur upon an Interrupt:

- Automatic set "GIE = 0", disabling further interrupts.
- The return address is pushed onto the stack and the PC (program counter) is loaded with 0x0004.
- Jump to the "Interrupt Service Routine" 1 2 instruction cycles after the interrupt.
- "Return from Interrupt (RETI)" instruction exits ISR. Prior to RETI must clear all interrupt flags.
- At the completion of the ISR, the PC returns to the address before the interrupt, which in SLEEP, is the address immediate after SLEEP.
- Automatic set GIE = 1 upon executing RETI, enabling future interrupts.

Note: Only the return PC is saved on the stack during an interrupt. Users desiring to have other registers (e.g., W and STATUS) saved must use instructions to write them into temporary registers explicitly. Use the last 16 bytes of GPR for temporary storages as they are common to all banks and do not require bank swithing.

9.1 Summary of Interrupt Related Registers

Name	Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Reset (RW)
INTCON	0x0B	GIE	PEIE	T0IE	INTE	PAIE	T0IF	INTF	PAIF	0000 0000
PIE1	0x8C	EEIE	CKMIE	LVDIE	ı	ı	OSFIE	TMR2IE	-	0000 0000
PIR1	0x0C	EEIF	CKMIF	LVDIF	ı	ı	OSFIF	TMR2IF	-	0000 0000
OPTION	0x81	/PAPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111
TRISA	0x85	PORTA	PORTA direction select							
IOCA	0x96	Interrupt	on PORTA	Logic-Ch	nanges					0000 0000

Table 9-1 Interrupt Related Register Addresses and Default

Rev2.00 - 42 - 2021-01-28

Name	Status		Register	Addr.	Reset
		1 = Enables (PEIE, local			
GIE	Global Interrupt	settings applies)	INTCON[7]		RW-0
OIL	GIE CIOSAI IIIOTAPE	0 = Global Disables	11410014[7]		1200
		(Wake-Up not affected)			
		1 = Enables			
PEIE	Master Peripheral Interrupt	(local settings applies)	INTCON[6]		RW-0
		0 = <u>Disables</u> (no Wake-Up)		0x0B	
T0IE	Timer0 Overflow Interrupt	1 = Enables	INTCON[5]	0x8B	RW-0
INTE	PA2-INT External Interrupt	0 = <u>Disables</u>	INTCON[4]		RW-0
PAIE	PORTA Interrupt-on-Change	(no Wake-Up)	INTCON[3]		RW-0
TOIF	Timer0 Overflow Interrupt?	4 34 4 4 1 1	INTCON[2]		RW-0
INTF	PA2-INT External Interrupt?	1 = Yes (latched) 0 = No	INTCON[1]		RW-0
PAIF	PORTA Interrupt-on-Change?	0 110	INTCON[0]		RW-0

Table 9-2 INTCON register

Name	Status		Register	Addr.	Reset
EEIE	EE Write Completed Interrupt		PIE1[7]		RW-0
CKMIE	LIRC Calibration Completed Interrupt	1 = Enables	PIE1[6]		RW-0
LVDIE	LVD Interrupt	0 = <u>Disabled</u>	PIE1[5]	0x8C	RW-0
OSFIE	External Oscillator Failed Interrupt	(no Wake-Up)	PIE1[2]		RW-0
TMR2IE	Timer2 matched PR2 Interrupt		PIE1[1]		RW-0

Table 9-3 PIE1 register

Name	Status		Register	Addr.	Reset
EEIF	EEPROM Write operation completed?		PIR1[7]		RW-0
CKMIF	LIRC Calibration completed?		PIR1[6]		RW-0
LVDIF	LVD interrupt?	1 = Yes (latched) 0 = No	PIR1[5]	0x0C	RW-0
OSFIF	External Oscillator Failed interrupt?	0 – <u>140</u>	PIR1[2]		RW-0
TMR2IF	Timer2 matching PR2 interrupt?		PIR1[1]		RW-0

Table 9-4 PIR1 register

Rev2.00 - 43 - 2021-01-28

Name		Status	Register	Addr.	Reset	
/DADLI	<u>PC</u>	RTA Pull-Up	ODTIONIZI		RW-1	
/PAPU	1 = Global Disables	0 = Enables WPUA settings	OPTION[7]	004	RVV-1	
INTEDG	PA2	OPTION[6]	0x81	RW-1		
INTEDG	1 = <u>Rising</u>	0 = Falling	OFTION[0]		1200 1	
	PORTA I/O D	igital Output (Direction)				
TRISA	1 = Input (Disables D	igital Output)	TRISA[7:0]	0x85	RW-11111111	
	0 = Disables Pull-Up/	Down				
IOCA	<u>PORTA li</u>	nterrupt-on-Change	100017:01	0x96	RW-00000000	
IOCA	1 = Enables	0 = <u>Disables</u>	IOCA[7:0]	0,000	KVV-00000000	

Table 9-5 OPTION, TRISA and IOCA registers

9.2 PA2-INT and PORTA Interrupt-on-Change

Name	PA2-INT	PORTA Logic-Changes
Channel(s)	PA2 only	PA0 – PA7 (up to 8 channels)
I/O Setup	TRISA[2] = 1	TRISA[x] = 1
Other settings	INTEDG, INTE, GIE, INTF	IOCA, PAIE, GIE, PAIF
Trigger	either Rising or Falling, not both	$0 \rightarrow 1 \text{ or } 1 \rightarrow 0$
Software Monitoring?	No	Required

Table 9-6 Differences between PA2-INT and PORTA Interrupt-on-Change

PA2-INT and PORTA Interrupt-on-Change are the external I/O interrupts. PA2 can be as both. PA2-INT will run unsupervised in the backgroup once setup properly. PORTA Interrupt-on-Change will need continuous software monitoring. For PORTA Interrupt-on-Change:

- 1. Latches Input Register into an Interrupt-On-Change latch (READ PORTA).
- 2. When input logic level changes, the difference in Input Register and latched data will set PAIF.
- 3. Latching Input Register will update compare reference, and if done immediately after PAIF is set have the effect of removing the Interrupt-On-Change trigger condition. PAIF can be instruction cleared when the Interrup-On-Change condition is no longer valid.

Figure 9-2 PORTA Transition interrupts

10. PWM

Figure 10-1 PWM block diagram

PWM features:

- 3 PWM channels with independent Duty Cycles: P1A, P1B, P1C
- All 3 channels are controlled by Timer2 with a same Period.
- Channel 1 with complementary output /P1A
- Channel 1 with Deadband control: P1A, /P1A
- 16-bit resolution ratio
- Independent polarity control for each PWM channel
- Multiple Break options with selectable Auto Resume
- PWM1 can map out to 3 I/O. PWM2 and PWM3 to 2 I/O each.
- XOR/XNOR secondary output functions
- Buzzer Mode
- One-pulse output mode.
- Period and Duty Cycle registers Double buffered read and write.

PWM Operation during SLEEP – PWM will keep running as long as it is enabled and Timer2 is running (see **Section 7.3** Timer2), SLEEPING or not. If Timer2 auto-shutdown at SLEEP, then PWM outputs will be frozen at the states before SLEEP. Timer2 clock source cannot be the Instruction Clock during SLEEP.

10.1 Summary of PWM Related Registers

	Timer2	Timer2 Period		Timer2 Counter		Duty Cycle	
	MSB	LSB	MSB	LSB	MSB	LSB	time
PWM1					DAADTU	P1ADTI	DADC
/PWM1	DDOLL	DDOL	TMDOLL	TMDOL	P1ADTH	PIADIL	P1DC
PWM2	PR2H	PR2L	TMR2H	TMR2L	P1BDTH	P1BDTL	-
PWM3					P1CDTH	P1CDTL	-

Name	Address	bit 7	bit 6 - 0	Reset (RW)
PR2H	0x92	PR2 Perio	d MSB	1111 1111
PR2L	0x91	PR2 Perio	d LSB	1111 1111
TMR2H	0x13	Timer2 co	unter MSB	0000 0000
TMR2L	0x11	Timer2 co	unter LSB	0000 0000
P1ADTH	0x14	P1A duty o	cycle MSB	0000 0000
P1ADTL	0x0E	P1A duty o	cycle LSB	0000 0000
P1BDTH	0x15	P1B duty o	cycle MSB	0000 0000
P1BDTL	0x0F	P1B duty o	cycle LSB	0000 0000
P1CDTH	0x1A	P1C duty	cycle MSB	0000 0000
P1CDTL	0x10	P1C duty	cycle LSB	0000 0000
P1CON	0x16	-	P1DC (deadband time)	0000 0000

Table 10-1 PWM Timing Setup

	Channel Assignments				Output			Polarity		
	Ch 0	Ch 1	Ch 2	Ch 0	Ch 1	Ch 2	Ch 0	Ch 1	Ch 2	
PWM1	PC5	PC3	PC1	P1A0OE	P1A1OE	P1A2OE	P1A0P	P1A1P	P1A2P	
/PWM1	PC4	PC2	PC0	P1A0NOE	P1A1NOE	P1A2NOE	P1A0NP	P1A1NP	P1A2NP	
PWM2	PA4	PA5	-	P1BOE	P1BALT	-	P1BP	-	_	
PWM3	PA3	PA2	-	P1COE	P1CALT	-	P1CP	-	-	

Name	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Addr.	Reset (RW)
P1BR1	P1C2S	SS [1:0]	P1B2S	S [1:0]	P1CALT	P1BALT	P1CSS	[1:0]	0x19	0000 0000
P10E	P1COE	P1BOE	P1A2NOE	P1A2OE	P1A1NOE	P1A10E	P1A0NOE	P1A0OE	0x90	0000 0000
P1POL	P1CP	P1BP	P1A2NP	P1A2P	P1A1NP	P1A1P	P1A0NP	P1A0P	0x99	0000 0000

Table 10-2 PWM Output Polarities (1 = reversed, 0 = <u>normal</u>) and Enables (1 = Enables, 0 = <u>Disables</u>)

⁴ For Version A-D chip, the polarity of P1B and P1A2N is controlled by P1A2NP and P1BP respectively during a Fault-Break event.

	Disab	led = 0, Enal	bled = 1	хс	R = 0, XNOR	= 1	Secondary Eupotions
	Ch 0	Ch 1	Ch 2	Ch 0	Ch 1	Ch 2	Secondary Functions
PWM1	-	-	-	-	-	-	N/A
/PWM1	-	-	-	-	-	-	N/A
PWM2	-	P1BF2E	-	-	P1BF2	-	P1B xor/xnor P1C
PWM3	-	P1CF2E	-	-	P1CF2	-	P1B xor/xnor P1C

Name	Address	bit 3	bit 2	bit 1	bit 0	Reset (RW)
P1AUX	0x1E	P1CF2E	P1CF2	P1BF2E	P1BF2	0000

Table 10-3 PWM Secondary Functions

Name	Control affecting all 3 PWMs	Register	Addr.	Reset
	New Period and Duty Cycle effective immediately			
PR2U	1 = PR2ACT and P1xDTyACT update from PR2/P1xDTy buffer immediately	T2CON0[7]	0x12	WO1-0
	0 = Normal update after end of a period			
P1BZM	1 = Buzzer mode at 50% duty cycle	T2CON2[3]		RW-0
FIDZIVI	0 = Normal PWM mode	1200112[3]	0x9E	KVV-0
D100	1 = One pulse mode	TACONIAI	UXSE	RW-0
P1OS	0 = Normal Continous mode	T2CON2[4]		Kvv=0

Table 10-4 PWM Control Functions affecting all 3 PWMs

Name	Control	Register	Addr.	Reset
	PWM Fault			
	000: Disables Fault-break 100: LVDW = 1 or BK0 = 0			
P1BKS	001: BK0 = 0 101: LVDW = 1 or BK0 = 1	P1BR0[6:4]	0x17	RW-0
	010: BK0 = 1 110: ADC Data Threshold flag is '1'			
	011: LVDW=1 111: Fault-Break function disable			
	PWM auto resume			
P1AUE	1 = PWM auto resume, P1BEVT clears upon exiting	P1CON[7]	0x16	RW-0
FIAUE	Fault-Break	F ICON[7]	UXIO	KVV-0
	0 = PWM resume after P1BEVT cleared by instructions			

Table 10-5 PWM Fault Source and Auto Resume

Name	Status	Register	Addr.	Reset
P1BEVT	PWM Fault-Break?	P1BR0[7]	0x17	RW-0
FIDEVI	1 = Yes (latches until clear) 0 = <u>No</u>	r ibixo[/]	UX 17	1700 0

Table 10-6 PWM Fault-Break Status

Name	Addr.	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Reset (RW)
P1BR0	0x17	P1BEVT	P1	BKS [2	:0]	P1E	3SS	P1ASS		0000 0000
P1BR1	0x19	P1C29	SS	P1B	2SS	P1CALT	P1BALT	P1CSS		0000 0000
P1AUX	0x1E	-	-	-	-	P1CF2E	P1CF2	P1BF2E	P1BF2	0000

	Outp	out State at F	ault	Notes			
	Ch 0	Ch 1	Ch 2	Notes			
PWM1		P1ASS		00 = High impedance;	⁽¹⁾ 00 = High impedance;		
/PWM1		1 17.00		01 = logic "0"			
PWM2	P1BSS	P1B2SS ⁽¹⁾	1	logic "0" = 0 if p1xxp = 0	17 - 1		
PWM3	P1CSS	P1C2SS ⁽¹⁾	-	logic "0" = 1 if p1xxp = 1			

Table 10-7 PWM Output State at Fault-Break

10.2 Clock Sources

Timer2 is the dedicated timer for all 3 PWMs. It can choose among 6 clock sources:

- 1x or 2x Instruction Clock
- 1x or 2x HIRC
- LIRC
- 1x or 2x External clock (when FOSC is configured as LP, XT or EC mode)

Please see Section 7.3 Timer2 on how to set it up.

10.3 Period

Timer2 PR2 (PR2H + PR2L) register determine the PWM period, by Equation 10-1

Equation 10-1 PWM Period = $(PR2 + 1)*T_{T2CK}*(TMR2 Prescaler value)$

When Timer2 counter TMR2 is equal to PR2:

- Timer2 period and duty cycle register (PR2ACT and P1xDTACT) are updated.
- "TMR2 = 0".
- P1Ax, P1Bx, P1Cx outputs logic High.

10.4 Duty Cycle

Each of the 3 PWM has individual duty cycle as set by corresponding 2 x 8-bit registers (P1xDTH, P1xDTL). P1xDTH is the MSB and the P1xDTL the LSB. P1xDTH and P1xDTL registers can be update at any time because the double buffered design.

The PWM pulse width and duty cycle are calculated by Equation 10-2 and Equation 10-3 respectively.

Equation 10-2 Pulse width = $P1xDT^*T_{T2CK}^*(TMR2 prescaler value)$

Equation 10-3 Duty cycle = $P1xDT \div (PR2+1)$

10.5 Deadband-Time

Figure 10-2 PWM dead-time diagram

If P1DC ≠ "00 0000", P1Ax and P1AxN delay their low to high transition by a "deadband" time. The effective pulse width and duty cycle are also be reduced corresponding. Deadband Timer uses the Timer2 clock.

10.6 Fault-Break Function

All 3 PWMs support Fault-Break function. Upon a Fault-Break event, PWM will output a preset condition according to its setting. The PWM will be in this condition as long as the break condition is valid. TMR2ON is not affected. Fault-Break criteria can be one of the followings:

- BK0 = 0
- BK0 = 1
- LVDW = 1 (LVDDEB enables debouncing filter for LVDW)
- LVDW = 1, BK0 = 0
- LVDW = 1, BK0 = 1
- ADC Data Comparison result is '1'

Note: P1BEVT is the Fault-Break status bit. LVDW is not latched and reflects the real time comparison result of LVD.

Output during Fault-Break – During a Fault-Break P1x output can be Input (High Impediance), Logic High or Low. Notice that P1B1, P1C1 Fault-Break output behavior are different from the other I/O.

Clearing a Fault-Break – P1BEVT cannot be cleared by instructions as long as the Fault-Break condition is active. When that condition no longer exists, P1BEVT is cleared by instructions.

Auto-Resume Mode – During a Fault-Break event, the Timer2 is on hold. After the Fault-Break event is over the Timer2 will resume from where it left off. The 3 PWM outputs can be simultaneously configured to Auto-Resume. Otherwise PWM outputs must be resumed by instructions.

10.7 Changing the Period and Duty Cycle

The Period and corresponding Duty Cycle registers can be updated anytime. The changes will not be effective until the beginning of the next period, unless using PR2U to force changes immediately.

Note: PR2 and P1xDTL, P1xDTH is read by instructions, but not the xxxACT register.

Figure 10-3 Update of Timer2 Register

The double-buffered design of the Period and Duty Cycle registers ensure glitch less PWM operation in most cases. If the registers were updated near the end of a Period (especially if the frequency of Timer2 is faster than SysClk), an unexpected situation might happen and generate an unexpected value in the xxxACT register.

TMR2_match		_
PR2H	E F	_
PR2L	FF 00	_ _
PR2ACT	EFF FFF	_ _

Figure 10-4 PR2ACT updated to FFF (expected value is F00)

It is strongly recommended that PR2 and xxxDTx update right after the beginning of a new period.

10.8 PWM Output

Mapping – The 3 independent duty cycle PWM channels P1A, P1B, P1C, can be mapped to different I/O. Up to three I/O can be mapped to the PWM1 channel, and 2 I/O for PWM2 and 3.

Buzzer Mode – The period is $(2*(PR2+1)*T_{T2CK}*(TMR2 Prescaler))$. 50% Duty Cycle square waves for P1A, P1B and P1C are output.

Rev2.00 - 50 - 2021-01-28

Figure 10-5 Buzzer mode output diagram

One-Pulse Output - P1A, P1B and P1C will generate a corresponding single pulse only.

10.9 Secondary Output Functions of (P1B, P1C)

PA2 and/or PA5 = P1B xor P1C (or its complementary, see "P1BF2E" and "P1CF2E" in Table 10-3).

Figure 10-6 Secondary Output Functions Block Diagram

Figure 10-7 Secondary functions of P1B and P1C timing diagram

Rev2.00 - 51 - 2021-01-28

11. DATA EEPROM

FT60F11x / FT60F12x has a 256 x 8-bit non-volatile DATA EEPROM memory array separately from the main program. The array has a typical R/W endurance of 1 M cycles. It is R/W accessible by instructions. One byte (8-bit) is written or read. There is no page mode. Erase/program is self-timed, eliminating instruction queries and saving limited code space. This allows WRITE to take place in the background while the CPU runs unhindered, or even to enter SLEEP.

READ takes two instruction clock cycles, whereas WRITE takes $T_{WRITE-EEPROM}$ (2 ~ 4 ms). There is an on-chip charge pump so there is no need to supply an external high voltage for erase and program. An interrupt flag is set when WRITE finishes.

There is no sequential READ or sequential WRITE. The address must be updated every time.

Any voltage above V_{POR} , which can be as low as 1.5V from die to die and at high temperature, will be able to run the CPU at 8MHz, 2T. The $V_{DD-WRITE}$ for writing DATA EEPROM is higher. Minimum $V_{DD-WRITE}$ is 1.9V and 2.2V for industrial grade and automotive grade 1 respectively. Reading DATA EEPROM has no such minimum V_{DD} restriction (see $V_{DD-READ}$).

11.1 Summary of DATA EEPROM Related Registers

Name	Status	Register	Addr.	Reset
EEDAT	DATA EEPROM data	EEDAT[7:0]	0x9A	RW-0000 0000
EEADR	DATA EEPROM address	EEADR[7:0]	0x9B	RW-0000 0000
	DATA EEPROM Write Enable (bit 3)			
WREN3	111 = Enables, reset to 000 after finished	EECON1[5]		RW-0
	(others) = <u>Disables</u>			
WREN2	DATA EEPROM Write Enable (bit 2)	EECON1[4]		RW-0
	DATA EEPROM Write Error?			
WRERR	1 = Premature terminated (MCLR or WDT Reset)	EECON1[3]	0x9C	RW-x
	0 = No			
WREN1	DATA EEPROM Write Enable (bit 1)	EECON1[2]		RW-0
	DATA EEPROM Reading?			
RD	1 = Yes (remains for 4 SysClk cycles, then = 0)	EECON1[0]		RW-0
	0 = No			
	DATA EEPROM Write Busy?			
WR	1 = Programming (reset to 0 after finished)	EECON2[0]	0x9D	RW-0
	0 = Finished			

Table 11-1 Instruction Level EEPROM Related Control Registers

Rev2.00 - 52 - 2021-01-28

Name	S	tatus	Register	Addr.	Reset
GIE	Global Interrupt	1 = Enables (PEIE, EEIE applies) 0 = Global Disables (Wake-Up not affected)	INTCON[7]	0x0B 0x8B	RW-0
PEIE	Master Peripheral Interrupt	1 = Enables (EEIE applies) 0 = <u>Disables</u> (no Wake-Up)	INTCON[6]		RW-0
EEIE	EEPROM program finished Interrupt	1 = Enables 0 = <u>Disables</u> (no Wake-Up)	PIE1[7]	0x8C	RW-0
EEIF	EEPROM program finished Interrupt?	1 = Yes (latched) 0 = <u>No</u>	PIR1[7]	0x0C	RW-0

Table 11-2 EEPROM Interrupt Enable and Status Bits

11.2 Writing DATA EEPROM

- 1. Set "GIE = 0";
- 2. If "GIE = 1", then repeat (1);
- 3. Write target address to EEADR;
- 4. Write target data EEDAT;
- 5. Set "WREN3, WREN2, WREN1" = "1, 1, 1" and maintain throughout the programming.
- 6. Must immediate set "WR = 1" to initiate write (otherwise will abort).
- 7. After programming completed (see $T_{WRITE-EEPROM}$ for write time), "WR = 0" and "WREN3, WREN2, WREN1" = "0, 0, 0" set automatically;

Program Example:

BCR INTCON, GIE

BTSC INTCON, GIE

LJUMP \$-2

BANKSEL EEADR

LDWI 55H

STR EEADR ; address is 0x55 STR EEDAT ; data is 0x55

LDWI 34H

STR EECON1 ; set WREN3/2/1 at the same time

BSR EECON2, 0 ; start writing BSR INTCON, GIE ; set GIE

Note:

- 1. Writing data into a byte involves two steps: a byte erase automatically followed by a byte program.
- 2. Data EEPROM Read while the array is still in programming will yield an incorrrect result.
- 3. If any one of WREN3, WREN2 or WREN1 clears before programming is finished, EEIF flag should be

cleared before the next programming.

11.3 Reading DATA EEPROM

Set EEADR register, then initiate read ("RD = 1"). Data will be available in the EEDAT register at the next instruction cycle. The EEDAT will be unchanged until the next READ or WRITE instruction.

The following is an example on how to read the DATA EEPROM:

BANKSEL EEADR LDWI dest_addr STR EEADR BSR EECON1, RD LDR EEDAT, W

12. MEMORY READ / PROGRAM PROTECTON

The PROGRAM CODE can be Array Read Protected. This protection selected at the IDE.

Name	Functions	default
СРВ	PROM Read Protection	disabled

Table 12-1 BOOT Level Memory Read and/or Program Protection

Rev2.00 - 54 - 2021-01-28

13. INSTRUCTION SET

Assembly Syntax	Function	Operation	Status
NOP	No operation	None	NONE
SLEEP	Enter SLEEP mode	0 → WDT; Stop OSC	/PF, /TF
CLRWDT	Clear WDT	$0 \rightarrow WDT$	/PF, /TF
LJUMP N	Long JUMP Address	$N \rightarrow PC$	NONE
LCALL N	Long CALL Subroutine	N → PC; PC + 1 → Stack	NONE
RETI	Return from Interrupt	Stack → PC; 1 → GIE	NONE
RET	Return from Subroutine	Stack → PC	NONE
BCR R, b	Bit Clear	$0 \rightarrow R(b)$	NONE
BSR R, b	Bit Set	$1 \rightarrow R(b)$	NONE
CLRR R	Clear Register	$0 \rightarrow R$	Z
LDR R, d (MOVF)	Load Register to d	$R \rightarrow d$	Z
COMR R, d	Complement Register	$/R \rightarrow d$	Z
INCR R, d	Increment Register	R + 1 → d	Z
INCRSZ R, d	Increment Register, Skip if 0	$R + 1 \rightarrow d$	NONE
DECR R, d	Decrement Register	R − 1 → d	Z
DECRSZ R, d	Decrement Register, Skip if 0	R − 1 → d	NONE
SWAPR R, d	Swap Halves Register	$R(0-3)R(4-7) \rightarrow d$	NONE
RRR R, d	Rotate Right Register	$R(0) \rightarrow C; R(n) \rightarrow R(n-1); C \rightarrow R(7);$	С
RLR R, d	Rotate Left Register	$R(7) \rightarrow C; R(n) \rightarrow R(n+1); C \rightarrow R(0);$	С
BTSC R, b	Bit Test, Skip if 0	Skip if R(b)=0	NONE
BTSS R, b	Bit Test, Skip if 1	Skip if R(b)=1	NONE
CLRW	Clear Working Register	$0 \rightarrow W$	Z
STTMD	Store W to OPTION	W → OPTION	NONE
CTLIO R	Control I/O Direction Register	W → TRISr	NONE
STR R (MOVWF)	Store W to Register	$W \rightarrow R$	NONE
ADDWR R, d	Add W and Register	$W + R \rightarrow d$	C, HC, Z
SUBWR R, d	Subtract W from Register	$R - W \rightarrow d$	C, HC, Z
ANDWR R, d	AND W and Register	$R \& W \rightarrow d$	Z
IORWR R, d	OR W and Register	$W \mid R \rightarrow d$	Z
XORWR R, d	XOR W and register	$W \wedge R \rightarrow d$	Z
LDWI I (MOVLW)	Load Immediate to W	$I \rightarrow W$	NONE
ANDWI I	AND W and imm	I & W → W	Z
IORWI I	OR W and imm	$I \mid W \rightarrow W$	Z
XORWII	XOR W and imm	I ^ W → W	Z
ADDWI I	Add imm to W	$I + W \rightarrow W$	C, HC, Z
SUBWI I	Subtract W from imm	$I - W \rightarrow W$	C, HC, Z
RETW I	Return, Place imm to W	Stack → PC; I → W	NONE

Table 13-1 37 RISC Instruction Commands

Field	Descriptions					
R(F)	SFR/GPR Address					
W	Working Register					
b	Bit address within the 8-bit Register / RAM					
I / Imm (k)	Immediate data					
Х	Don't' care, may be 0 or 1					
d	Destination select					
	1 = Store result in Register / RAM					
	0 = Store result in W					
N	Immediate program address					
PC	Program Counter					
/PF	Power-Down Flag					
/TF	Time-Out Flag					
TRISr	SFR TRISr, r can be A, C					
С	Carry bit					
НС	Half Carry					
Z	Zero Flag					

Table 13-2 OpCode Field

Name	Status	Register	Addr.	Reset
	Zero Bit: Result of an arithmetic or logic operation is zero?			
Z	1 = Yes	STATUS[2]		RW-x
	0 = No			
	Half Carry (ADDWR, ADDWI, SUBWI, SUBWR): Digit			
НС	Carry-Over or Borrow from the 4 th low-order bit of the result?		0x03 0x83	DW v
ПС	1 = Carry-Over, Yes; Borrow, No	STATUS[1]		RW-x
	0 = Carry-Over, No; Borrow, Yes		0,000	
	Carry (ADDWR, ADDWI, SUBWI, SUBWR): Digit			
	Carry-Over or Borrow from MSB of the result?	07.01.17.70		DW v
С	1 = Carry-Over, Yes; Borrow, No	STATUS[0]		RW-x
	0 = Carry-Over, No; Borrow, Yes			

Table 13-3 Computational Status Flags

Rev2.00 - 56 - 2021-01-28

14. SPECIAL FUNCTION REGISTERS

There are two types of Special Function Registers (SFR).

- BOOT level registers are set at the Integrated Development Environment (IDE);
- Instruction level registers;

14.1 Boot Level Registers

Figure 14-1 Boot Selectables in the IDE

Rev2.00 - 57 - 2021-01-28

Name	Functions	default
СРВ	PROM Read Protection	disabled
MCLRE	Reset by External I/O	disabled
PWRTEB	Power-Up Timer (PWRT)	disabled
	<u>WDT</u>	SWDTEN
WDTE	Enabled (overrides instructions disable)	control
	Instruction controls (SWDTEN)	CONTROL
	LP external oscillator across PA7 (+) and PA6 (-)	
	XT external oscillator across PA7 (+) and PA6 (-)	
FOSC	EC external oscillator at PA7 (+),PA6 as I/O pin	INTOSCIO
	INTOSC mode: PC5 output "Instruction Clock", PA6 and PA7 as I/O pin	
	INTOSCIO mode: PA6 and PA7 as I/O pins	
	# of SysClk per Instruction Cycle (2T or 4T)	
TSEL	• <u>2</u> (Instruction Clock = SysClk/2)	2
	4 (Instruction Clock = SysClk/4)	
	Fail-Safe Clock Monitor	
FCMEN	Enabled	Enabled
	Disabled	
	Two-speed Startup for XT and LP	
IESO	Enabled	Enabled
	Disabled	
	READ register when TRISx = 0 (Output enabled)	
RDCTRL	Input latch	Output
	Output latch	
	<u>LVR</u>	
	Enabled	
LVREN	Disabled	disabled
	Enabled except in SLEEP	
	Instruction controlled (SLVREN)	
RBTENB	BOOT on WDT Reset	disabled
LVRS	7 V _{BOR} Voltage levels (V):	2.0
	<u>2.0</u> / 2.2 / 2.5 / 2.8 / 3.1 / 3.6 / 4.1	2.0
LVDDEB	LVD debounce enable bit (≥ version E chip support)	disabled

Table 14-1 Boot Level Registers (selected at IDE)

Rev2.00 - 58 - 2021-01-28

14.2 Instruction Set Registers

Instruction set Speical Function Registers (SFR) are stored in four banks. The corresponding bank must be selected before the registers inside can be accessed.

Figure 14-2 Indirect addressing

Since extra instructions are involved in switching BANK, some often-used SFR are stored in all two banks to minimize switching. Registers common to all two BANKS are synchronized.

ADDR	Name	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Reset		
0, 80	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)									
2, 82	PCL		Program Counter's (PC) least Significant Byte									
3, 83	STATUS	-	-	PAGE	/TF	/PF	Z	HC	С	01 1xxx		
4, 84	FSR			Indirect I	Data Memo	ry Address	Pointer			xxxx xxxx		
A, 8A	PCLATH	-	-	-	Write Bu	uffer for upp	per 5 bits o	f Program	Counter	0 0000		
B, 8B	INTCON	GIE	PEIE	T0IE	INTE	PAIE	T0IF	INTF	PAIF	0000 0000		
0x70 - 0x7F 0xF0 - 0xFF		COMMON BANK SRAM								XXXX XXXX		

Table 14-2 Registers common to all two banks

Rev2.00 - 59 - 2021-01-28

ADDR	Name	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	reset	
0	INDF	Addressing	Addressing this location uses contents of FSR to address data memory (not a physical register)								
1	TMR0		Timer0 counter								
2	PCL		Program Counter's (PC) least Significant Byte								
3	STATUS	-	-	PAGE	/TF	/PF	Z	HC	С	0001 1xxx	
4	FSR			Indirect	: Data Men	nory Addres	s Pointer			XXXX XXXX	
5	PORTA	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	XXXX XXXX	
6	-					-					
7	PORTC	1	1	PC5	PC4	PC3	PC2	PC1	PC0	xx xxxx	
8	-					-					
9	-					-					
Α	PCLATH	-	ı	1	Write	Buffer for u	pper 5 bits o	f Program (Counter	0 0000	
В	INTCON	GIE	PEIE	TOIE	INTE	PAIE	T0IF	INTF	PAIF	0000 0000	
С	PIR1	EEIF	CKMIF	LVDIF	-	-	OSFIF	TMR2IF	-	0000 0000	
D	FOSCCAL	-	-			FOSC	CAL [5:0]			xx xxxx	
Е	P1ADTL			Least signif	icant byte	of P1A duty	cycle registe	er		0000 0000	
F	P1BDTL		Least significant byte of P1B duty cycle register								
10	P1CDTL		Least significant byte of P1C duty cycle register								
11	TMR2L			TMR2 [7:	0], Least s	ignificant by	te of TMR2			0000 0000	
12	T2CON0	PR2U		TOUTP	'S [3:0]		TMR2ON	T2CKI	PS [1:0]	0000 0000	
13	TMR2H			TMR2 [15	5:8], Most s	significant by	te of TMR2			0000 0000	
14	P1ADTH			Most signifi	cant byte	of P1A duty	cycle registe	r		0000 0000	
15	P1BDTH			Most signifi	cant byte	of P1B duty	cycle registe	r		0000 0000	
16	P1CON	P1AUE				P1DC [6:0	0]			0000 0000	
17	P1BR0	P1BEVT		P1BKS [2:0]		P1BS	S [1:0]	P1AS	SS [1:0]	0000 0000	
18	WDTCON	LVDP	WCKS	RC [1:0]		WDTI	PS [3:0]		SWDTEN	0000 1000	
19	P1BR1	P1C2S	S [1:0]	P1B2S	S [1:0]	P1CALT	P1BALT	P1CS	SS [1:0]	0000 0000	
1A	P1CDTH			Most signifi	cant byte	of P1C duty	cycle registe	r		0000 0000	
1B	MSCON	-	-	PSRCAI	H [1:0]	SLVREN	CKMAVG	CKCNTI	T2CKRUN	0011 0000	
1C	SOSCPRL				SOS	CPR [7:0]				1111 1111	
1D	SOSCPRH	-	-	-	-		SOSCP	R [11:8]		1111	
1E	P1AUX	-	-	-	-	P1CF2E	P1CF2	P1BF2E	P1BF2	0000	
1F	T0CON0	-	-	-	-	T0ON	T0CKRUN	T0CKS	RC [1:0]	1000	
20–3F									xxxx xxxx		
40–7F			SRAM BA	NK0, (64 By	tes) Physic	cal address	0x40–0x7F			XXXX XXXX	

Table 14-3 SFR, BANK 0

ADDR	Name	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	reset	
80	INDF	Addres	Addressing this location uses contents of FSR to address data memory (not a physical register)								
81	OPTION	/PAPU	/PAPU INTEDG TOCS TOSE PSA PS2 PS1 PS0						1111 1111		
82	PCL		Program Counter's (PC) least Significant Byte								
83	STATUS	-	-	PAGE	/TF	/PF	Z	HC	С	01 1xxx	
84	FSR			Indirect	Data Memor	y Address Po	inter			XXXX XXXX	
85	TRISA				TRISA	[7:0]				1111 1111	
86	-				-						
87	TRISC	ı	1			TRISC	[5:0]			11 1111	
88	PSRCA				PSRCA	\[7:0]				1111 1111	
89	WPDA				WPDA	[7:0]				0000 0000	
8A	PCLATH	-	-	-	Write	Buffer for up	per 5 bits of	Program Cou	nter	0 0000	
8B	INTCON	GIE	PEIE	T0IE	INTE	PAIE	T0IF	INTF	PAIF	0000 0000	
8C	PIE1	EEIE	CKMIE	LVDIE	-	-	OSFIE	TMR2IE	-	00000-	
8D	WPDC	-	-			WPDC	[5:0]			00 0000	
8E	PCON	LVDM	1	LVDL [2:0]		LVDEN	LVDW	/POR	/BOR	ppx0 0000	
8F	OSCCON	LFMOD		IRCF [2:0]		OSTS	HTS	LTS	SCS	0101 x000	
90	P1OE	P1COE	P1BOE	P1A2NOE	P1A2OE	P1A1NOE	P1A1OE	P1A0NOE	P1A0OE	0000 0000	
91	PR2L		PR	2 [7:0], Least	significant b	yte of Timer2	period regis	ter		1111 1111	
92	PR2H		PR	2[15:8], Most	significant b	yte of Timer2	period regis	ter		1111 1111	
93	WPUC	1	-			WPUC	[5:0]			00 0000	
94	PSRCC	1	1			PSRCC	[5:0]			11 1111	
95	WPUA				WPUA	[7:0]				1111 1111	
96	IOCA				IOCA	[7:0]				0000 0000	
97	PSINKA				PSINKA	A [7:0]				0000 0000	
98	-				-					0000 0000	
99	P1POL	P1CP	P1BP	P1A2NP	P1A2P	P1A1NP	P1A1P	P1A0NP	P1A0P	0000 0000	
9A	EEDAT				EEDAT	[7:0]				0000 0000	
9B	EEADR				EEADF	R [7:0]				0000 0000	
9C	EECON1	-	-	WREN3	WREN2	WRERR	WREN1	-	RD	00 x0-0	
9D	EECON2	-	-	-	-	-	-	-	WR	0	
9E	T2CON1	-	-	-	P10S	P1BZM	T	2CKSRC [2:	0]	0 0000	
9F	PSINKC	PSINKC [5:0]								00 0000	
A0-BF	SRAM BANK1 (32Bytes), Physical address 0x00–0x1F (this section of FT60F11x was not implemented)								XXXX XXXX		
C0-EF	-										
F0-FF			SI	RAM, acces	s BANK0's	0x70-0x7F				XXXX XXXX	
	1 200000 20000 2000										

Table 14-4 SFR, BANK 1

Notes:

- 1. INDF is not a physical register;
- 2. Gray parts indicate not used;
- 3. Do not write the unused register bits.

Rev2.00 - 61 - 2021-01-28

14.3 STATUS Register

Name	Status	Register	Addr.	Reset
PAGE	Register Bank Select $0 = Bank \ 0 \ (0x00h - 0x7Fh)$ $1 = Bank \ 1 \ (0x80h - 0xFFh)$	STATUS[5]		RW-0
/TF	Time-out? 1 = CLRWDT or SLEEP instruction after Power-up 0 = WDT time-out occurred	STATUS[4]		RO-1
/PF	Power-down? 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction	STATUS[3]	0x03 0x83	RO-1
Z	Zero: Result of an arithmetic or logic operation is zero? 1 = Yes 0 = No	STATUS[2]		RW-x
НС	Half Carry: Digit Carry-Over or Borrow from the 4 th low-order bit of the result? 1 = Carry-Over, Yes; Borrow, No 0 = Carry-Over, No; Borrow, Yes	STATUS[1]		RW-x
С	Carry: Digit Carry-Over or Borrow from MSB of the result? 1 = Carry-Over, Yes; Borrow, No 0 = Carry-Over, No; Borrow, Yes	STATUS[0]		RW-x

 Table 14-5
 Status Register

Notes:

- 1. The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, HC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.
- 2. It is recommended, therefore, that only BCR, BSR, SWAPR and STR instructions are used to alter the STATUS register.

Rev2.00 - 62 - 2021-01-28

14.4 PCL and PCLATH

The program array has only one Page (2kW). At the end of the Page (0x7FF) it will roll over to the beginning of Page (0x000). The address width of a command is 11 bits, and can address 2kW. For LJUMP and LCALL commands that jump from one page to another, no need to set PCLATH.

The Program Counter (PC) is 11 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte PC[10:8] is not directly readable or writable and comes from PCLATH. On any Reset, PC clears. Figure 14-3 shows the two situations for the loading of the PC.

Figure 14-3 Loading of PC in different situations

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC[10:8] bits to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by first writing the desired upper 3 bits to the PCLATH register

A computed JUMP is accomplished by adding an offset to the program counter (ADDWR PCL). Care should be exercised when jumping into a look-up table or program branch table (computed JUMP) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower 8 bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 0x000. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected).

Rev2.00 - 63 - 2021-01-28

15. ELECTRICAL SPECIFICATIONS

15.1 Absolute Maximum Ratings

Operation temperature (Commercial Grade)	⁻ 40 – [†] 85°C
Operation temperature (Industrial Grade)	
Operation temperature (Automotive Grade 1)	
Storage temperature	
Power supply voltage	V _{SS} -0.3V - V _{SS} +6.0V
PAD input voltage	V _{SS} -0.3V – V _{DD} +0.3V

Notes:

- 1. Stresses above "Absolute Maximum Ratings" may cause permanent damages to the device.
- 2. All characterizations are at 25°C, V_{DD} =1.9 5.5V unless otherwise stated.
- 3. Values and ranges indicated are from characterizations, and are not indicative of the final shipping criteria. Prodution test are at 25°C except for Automotive Grade 1.

15.2 Operation Characteristics

Parameter	Min	Typical	Max	Units	Conditions	
Foxe (SyeClk)	2T/4T	-	-	8	MHz	$-40 - 85$ °C, $V_{DD} = 1.9 - 5.5$ V
Fsys (SysClk)	21/41	-	_	16	MHz	$-40 - 85$ °C, $V_{DD} = 2.5 - 5.5$ V
	2T	-	125	-	ns	SvoClk = HIDC
Instruction Period	4T	-	250	-	ns	SysClk = HIRC
(T _{INSTRCLK})	2T	-	61	-	μs	SysClk = LIRC
	4T	-	122	ı	μs	Systik - LIKC
T0CKI High or Low	0.5 * T _{T0}	_{CK} + 20	-	ı	ns	no Prescaler
Pulse Width	10)	-	-	ns	with Prescaler
T0CKI Input Period	eriod Max. 20 and (T _{TOCK} +40)/N		-	ı	ns	N = 1, 2, 4,, 256 (Prescaler)
Power-On-Reset hold	-	8	-	ms	25°C, PWRT disable	
Ext. Reset pulse widtl	Ext. Reset pulse width (T _{MCLRB}) 200			-	ns	25°C
WDT period (T _{WDT})	_	1	-	ms	Prescaler = 1:32	

Note: T_{TOCK} is the period dictated by T0CKSRC.

Rev2.00 - 64 - 2021-01-28

15.3 POR, LVR, LVD

Power-On-Reset (POR)

Characteristic	Min	Typical	Max	Units	Conditions
I _{POR} Operating Current	_	0.14	_	μA	25°C , V _{DD} = 3.3V
V_{POR}	-	1.65	-	V	25°C

Low Voltage Reset (LVR)

Parameters	Min	Typical	Max	Units	Conditions
I _{LVR} Operating Current	-	13.54	-	μA	25°C, V _{DD} = 3.3V
	1.94	2.0	2.06		
	2.13	2.2	2.27		
	2.42	2.5	2.58		
V _{LVR} , LVR threshold	2.72	2.8	2.88	V	25°C
	3.01	3.1	3.19		
	3.49	3.6	3.71		
	3.98	4.1	4.22		
LVR delay	94	_	125	μs	25°C, V _{DD} = 1.9 – 5.5V

Low Voltage Detect (LVD)

Characteristic	Min	Typical	Max	Units	Conditions
I _{LVD} Operating Current	_	21.4	_	μA	25°C, V _{DD} = 3.3V
	1.94	2.0	2.06		
	2.33	2.4	2.47		
\/ I\/D throohold	2.72	2.8	2.88	V	25°C
V _{LVD} , LVD threshold	2.91	3.0	3.09	V	25 0
	3.49	3.6	3.71		
	3.88	4.0	4.12		
LVD delay	94	-	125	ns	25°C, V _{DD} = 1.9 – 5.5V

Rev2.00 - 65 - 2021-01-28

15.4 I/O PORTS

	Parameters		Min	Typical	Max	Units	Conditions
V_{IL}			0	-	0.3* V _{DD}	V	
V_{IH}			0.7* V _{DD}	-	V_{DD}	٧	
Leakage cu	ırrent		-1	-	1	μΑ	$V_{DD} = 5V$
Course	PA0-7	L0	-	-4	_		25°C \/ - 5\/
Source current	PA3-4, PC0-5	L1	-	-8	_	mA	25° C, $V_{DD} = 5$ V, $V_{OH} = 4.5$ V
Current	PA0-7, PC0-5	L2	-	-32	_		V _{OH} = 4.5V
Sink	PA0-7, PC0-5	L0	-	56	-	A	25°C, V _{DD} = 5V,
Current	PA0-7, PC0-5	L1	-	79	-	mA	V _{OL} = 0.5V
Pull-up resi	stance		-	21	-	kΩ	-
Pull-down r	Pull-down resistance		-	21	-	kΩ	-
Pull-up resistance		-	20	-	kΩ	Enable Pull-up	
Pull-down r	esistance		-	20	-	kΩ	and Pull-down simultaneously ⁵

15.5 Operation Current (I_{DD})

Parameters			T	ypical @V _{Dt}	o ⁽¹⁾	Units
Farameters	SysClk	2.0V	3.0V	5.5V	UTIILS	
	16 MHz	-	1.019	1.071		
		8 MHz	0.535	0.776	0.807	
Normal mode (2T) - I _{DD}		4 MHz	0.374	0.450	0.465	mΛ
Normal mode (21) - I _{DD}		2 MHz	0.226	0.275	0.282	mA
		1 MHz	0.153	0.190	0.195	
		32 kHz	0.024	0.032	0.033	
Sleep Mode (WDT OFF, LVR OFF)		-	0.077	0.138	0.199	
Sloop Mode (M/DT ON L)/D OFF)	LIRC	32 kHz	1.099	2.128	2.358	
Sleep Mode (WDT ON, LVR OFF)		32 kHz	_	24.005	27.468	
Sleep Mode (WDT OFF , LVR ON)	_	10.185	13.679	17.975	μA	
Sleep Mode (WDT ON, LVR ON)	_	10.790	15.663	20.106		
Sleep Mode (WDT OFF , LVR OFF , LVD	ON)	_	18.516	20.875	25.425	

Note: Sleep mode I_{SB} is measured with all I/O in Pull-down input mode.

Rev2.00 - 66 - 2021-01-28

For ≥ Version E chip, the Schmitt inputs of PA2, PA3 and PA7 will be turned off when their pull-up and pull-down are both enabled;

15.6 Internal Oscillators

Internal Low Frequency Oscillator (LIRC)

LIRC is set at 32 kHz during measurement (LFMOD=0).

Characteristic	Min	Typical	Max	Units	Conditions
Range	30.4	32	33.6	kHz	25°C, V _{DD} = 2.5V
temperature dependence	-2.0%	-	2.0%	-	$-40 - 85$ °C, $V_{DD} = 2.5V$
supply voltage variation	-3.5%	-	1.0%	-	25°C, V _{DD} = 1.9 – 5.5V
I _{LIRC} Operating Current	-	2.0	-	μA	25°C, V _{DD} = 3.0V
Start up Time	-	4.6	-	μs	25°C, V _{DD} = 3.0V

Internal High Frequency Oscillator (HIRC)

Parameters	Min	Typical	Max	Units	Conditions
Range	15.76	16	16.24	MHz	25°C, V _{DD} = 2.5V
temperature dependence	-8.0%	±4.0%	5.5%	-	$-40 - 85$ °C, $V_{DD} = 2.5V$
supply voltage variation	-1.0%	-	1.5%	-	25° C, $V_{DD} = 1.9 - 5.5$ V
I _{HIRC} Operating Current	-	51	-	μA	25°C, V _{DD} = 3.0V
Start up time	_	2.5	_	μs	25°C, V _{DD} = 3.0V

Rev2.00 - 67 - 2021-01-28

15.7 Program and Data EEPROM

	Parameters		Typical	Max	Units	Conditions
$V_{\text{DD-READ}}$	Program/Data EE read voltage	V_{POR}	_	5.5	V	-40 ~ 85 / 105 °C
V	Program EE write voltage	2.5	-	5.5	V	-40 ~ 85 / 105 °C
$V_{DD-WRITE}$	Data EE write voltage	1.9	-	5.5	V	-40 ~ 65 / 105 C
		100 k	-	-		25 °C
	Program EE erase/write cycles	40 k	-	-		85 °C
NI.		10 k	-	-	o rolo	105 °C
N _{END}		1,000 k	-	-	cycle	25 °C
	Data EE erase/write cycles	400 k	-	-		85 °C
		100 k	-	-		105 °C
		20		-	voor	after 1k cycles
	Drogram EE data retention	20	_			@ 85 °C
	Program EE data retention	10	_			after 1k cycles
т		10	_	_	year	@ 105 °C
T_{RET}		20	_	_		after 10k cycles
	Data EE data retention	20				@ 85 °C
	Data LL data retention	10	_	_		after 10k cycles
						@ 105 °C
т	Data EE write time	2.0	_	4.0	me	Auto-Erase enabled
T _{WRITE}	Data EE WIITE LITTE	0.7	_	1.3	ms	Auto-Erase disabled
I _{PROG}	Data EE programming current	_	_	300	μA	25 °C, V _{DD} = 3 V

15.8 EMC characteristics

ESD

Parar	meters	Min	Typical	Max	Units	Conditions
V _{ESD}	HBM	4000	-	-	V	MIL-STD-883H Method 3015.8
V _{ESD}	MM	200	-	-	V	JESD22-A115

Latch-up

Parameters	Min	Typical	Max	Units	Conditions
LU, static latch-up	200	-	-	mA	EIA/JESD 78

EFT

Parameters	Min	Typical	Max	Units	Conditions
V_{EFT}	5.5	-	-	kV	1μF Cap applied on V _{DD} (5V)

Note: EMC tests are performed at 25°C unless otherwise stated.

Rev2.00 - 68 - 2021-01-28

16. Characterization Graphs

Note: The characterization graphs are for reference only, not guaranteed by production test.

Figure 16-1 HIRC vs. V_{DD} ($T_A = 25$ °C)

Figure 16-2 LIRC vs. V_{DD} ($T_A = 25^{\circ}C$)

Figure 16-3 I_{DD} vs. Frequency (2T, $T_A = 25^{\circ}C$)

Figure 16-4 Sleep Current (I_{SB}) vs. Temperature

Figure 16-5 I_{OH} vs. V_{OH} @L0 = -4mA, V_{DD} = 5V

Figure 16-6 I_{OH} vs. V_{OH} @L1 = <u>-8mA</u>, V_{DD} = 5V

Rev2.00 - 71 - 2021-01-28

Figure 16-7 I_{OH} vs. V_{OH} @L2 = <u>-32mA</u>, V_{DD} = 5V

Figure 16-8 I_{OL} vs. V_{OL} @L0 = <u>56mA</u>, V_{DD} = 5V

Rev2.00 - 72 - 2021-01-28

Figure 16-9 I_{OL} vs. V_{OL} @L1 = $\underline{79mA}$, V_{DD} = 5V

Rev2.00 - 73 - 2021-01-28

17. PACKAGING INFORMATION

The device is available in SOT23-6, SOP8, MSOP10, SOP14 and SOP16 packages. The specific package size information is shown below:

SOT23-6

Cumbal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	_	1.300	_	0.051	
A1	0.040	0.100	0.002	0.004	
A2	1.050	1.150	0.041	0.045	
A3	0.600	0.700	0.024	0.028	
е	0.920	0.980	0.036	0.039	
e1	1.850	1.950	0.073	0.077	
b	0.350	0.450	0.014	0.018	
D	2.820	2.920	0.111	0.115	
E	2.650	2.950	0.104	0.116	
E1	1.550	1.650	0.061	0.065	
L	0.400	0.500	0.016	0.020	
L1	0.25	BSC	0.01	0BSC	

Rev2.00 - 74 - 2021-01-28

SOP8

	Dimensio	ons (mm)	Dimensions (inches)		
Symbol	Min	Max	Min	Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270	1.270 (BSC)		(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

MSOP10

O. male al	Dimensio	ons (mm)	Dimension	ns (inches)
Symbol	Min	Max	Min	Max
А	-	1.100	-	0.043
A1	0.050	0.150	0.002	0.006
A2	0.750	0.950	0.030	0.037
A3	0.300	0.400	0.012	0.016
b	0.180	0.260	0.007	0.010
b1	0.170	0.230	0.007	0.009
С	0.150	0.190	0.006	0.007
c1	0.140	0.160	0.006	0.006
D	2.900	3.100	0.114	0.122
Е	4.700	5.100	0.185	0.201
E1	2.900	3.100	0.114	0.122
е	0.500	(BSC)	0.020	(BSC)
L	0.400	0.700	0.016	0.028
L1	0.950	0.950 (REF)		(REF)
θ	0	8°	0	8°

Rev2.00 - 76 - 2021-01-28

SOP14

Symbol	Dimensions (mm)		Dimensions (inches)	
	Min	Max	Min	Max
Α	-	1.700	-	0.066
A1	0.100	0.200	0.004	0.008
A2	1.400	1.500	0.055	0.059
A3	0.620	0.680	0.024	0.027
b	0.370	0.420	0.015	0.016
D	8.710	8.910	0.343	0.347
E	5.900	6.100	0.232	0.238
E1	3.800	3.950	0.150	0.156
е	1.270 (BSC)		0.050 (BSC)	
L	0.500	0.700	0.020	0.027
L1	0.250 (BSC)		0.010 (BSC)	

SOP16

Symbol	Dimensions (mm)		Dimensions (inches)	
	Min	Max	Min	Max
А	_	1.700	_	0.066
A1	0.100	0.200	0.004	0.008
A2	1.420	1.480	0.056	0.058
A3	0.620	0.680	0.024	0.027
D	9.960	10.160	0.392	0.396
E	5.900	6.100	0.232	0.238
E1	3.870	3.930	0.152	0.153
b	0.370	0.430	0.015	0.017
е	1.240	1.300	0.048	0.051
L	0.500	0.700	0.020	0.027
L1	1.050 (REF)		0.041 (REF)	
L2	0.250 (BSC)		0.010 (BSC)	

Rev2.00 -78- 2021-01-28

Contact Information

Fremont Micro Devices (SZ) Limited

#5-8, 10/F, Changhong Building Ke-Ji Nan 12 Road, Nanshan District, Shenzhen, Guangdong, PRC 518057

Tel: (+86 755) 8611 7811 Fax: (+86 755) 8611 7810

Fremont Micro Devices (HK) Limited

#16, 16/F, Block B, Veristrong Industrial Centre, 34–36 Au Pui Wan Street, Fotan, Shatin, Hong Kong SAR

Tel: (+852) 2781 1186 Fax: (+852) 2781 1144

http://www.fremontmicro.com/

Rev2.00 -79- 2021-01-28

^{*} Information furnished is believed to be accurate and reliable. However, Fremont Micro Devices (SZ) Limited assumes no responsibility for the consequences of use of such information or for any infringement of patents of other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent rights of Fremont Micro Devices (SZ) Limited. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. Fremont Micro Devices (SZ) Limited products are not authorized for use as critical components in life support devices or systems without express written approval of Fremont Micro Devices (SZ) Limited. The FMD logo is a registered trademark of Fremont Micro Devices (SZ) Limited. All other names are the property of their respective owners.