EPITA

Mathématiques

Partiel S1

durée : 3 heures

Janvier 2023

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 40 points. La note sera divisée par 2 pour obtenir une note sur 20.
Consignes:
— Lire le sujet en entier avant de commencer. Il y a en tout 8 exercices.
 La rigueur de votre rédaction sera prise en compte dans la note. Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

— Documents et calculatrices interdits.

— Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1 : encore des intégrales (3 points)

1. Sans intégration par parties ni changement de variable, calculer $I=\int_1^2 (x-1)\sqrt{x-1}\mathrm{d}x$
2. Sans intégration par parties ni changement de variable, calculer $J = \int_0^1 \frac{x^2 + 2}{x^3 + 6x + 1} dx$
Exercice 2 : cours sur les polynômes (4 points)
Soient A et B deux polynômes à coefficients réels.
1. Que savez-vous du degré de $A+B$ et de $A\times B$?
2. Un étudiant doit énoncer le théorème de la division euclidienne de A par B . Il écrit sur sa copie : « $\exists (Q,R) \in (\mathbb{R}[X])^2$ tel que $A = BQ + R$ et $0 \le R < B$ »
Son professeur lui compte faux. Rectifier correctement l'énoncé ci-dessus pour qu'il corresponde effectivement au thécrème demandé (et avoir tous les points).
3. Effectuer la division euclidienne de $A=2X^4+X-3$ par $B=X^2-X+1$.

4. Soit $\alpha \in \mathbb{R}$. Que signifie que α est une racine de A ? Donner un exemple d'un polynôme A de degré 3 qui admet α comme racine.
Exercice 3: nombres complexes (3 points)
Considérons l'équation (E) $(z+\sqrt{3}-i)(z^2-2z+2)=0$ d'inconnue $z\in\mathbb{C}.$
1. Résoudre (E) dans \mathbb{C} .
2. Donner la forme exponentielle de chacune des solutions de (E) .
Exercice 4 : arithmétique (11 points)
Les parties sont indépendantes. Les résultats de la question 1. peuvent être admis et utilisés par la suite.
1. Soient p un nombre premier et $a \in \mathbb{Z}$.
(a) Montrer que $p \wedge a = 1$ ou $p \mid a$.

(b	o) Montrer que $p \wedge a = 1$ si et seulement si $\exists b \in \mathbb{Z}$ tel que $ab \equiv 1[p]$.
2. (Considérons le nombre premier $p=47$. On cherche à résoudre l'équation (E) $23x\equiv 1[47]$ d'inconnue $x\in [1,46]$.
(8	n) Trouver dans \mathbb{Z}^2 une solution particulière (x_0, y_0) à l'équation (E_1) $23x + 47y = 1$.
(b	o) Résoudre (E_1) dans \mathbb{Z}^2 .
	/ · · · · · · · · · · · · · · · · · · ·
(0	En déduire toutes les solutions dans \mathbb{Z} de (E) . En déduire les solutions de (E) dans $[1,46]$.

3. Soi	$\pi_{a}(a,b)\in\mathbb{Z}^{2}.$
(a)	Montrer que $ab \equiv 0[47] \iff a \equiv 0[47]$ ou $b \equiv 0[47]$.
(b)	En déduire que $a^2 \equiv 1[47] \iff a \equiv 1[47]$ ou $a \equiv -1[47]$.
(c)	Trouver tous les $a \in [1, 46]$ tels que $a^2 \equiv 1[47]$.
(4)	Soient $a \in [1, 46]$ et $k \in \mathbb{N}$. Quel est le reste de la division euclidienne de a^{46k} par 47? Justifier.
(u)	Solent $a \in [1, 40]$ et $k \in \mathbb{N}$. Quel est le l'este de la division euclidienne de a par 47 : Justinei.
rci	ce 5 : suites 1 (4,5 points)
Soio $+\infty$	ent (u_n) et (v_n) deux suites ne s'annulant pas. Rappeler la définition de : $u_n \sim v_n$, $u_n = o(v_n)$ et $u_n = O(v_n)$ en o ?

(a)	$u_m \equiv n^2 + 1$ et $v_m \equiv e^m - n$
	$u_n = n^2 + 1$ et $v_n = e^n - n$.
(b)	$u_n = n^2 - n + 1$ et $v_n = n^2 - 1$.
	ice 6 : suites 2 (5,5 points)
 erc	
erc:	ice 6 : suites 2 (5,5 points)
erc:	ice 6 : suites 2 (5,5 points) ons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur $\mathbb R$ et la suite (u_n) définie par $\left\{ \begin{array}{ll} u_{n+1} & = & f(u_n) \\ u_0 & \in & \mathbb R \end{array} \right.$ donné
erc:	ice 6 : suites 2 (5,5 points) ons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur $\mathbb R$ et la suite (u_n) définie par $\left\{ \begin{array}{ll} u_{n+1} &=& f(u_n) \\ u_0 &\in& \mathbb R \end{array} \right.$ donné
erc:	ice 6 : suites 2 (5,5 points) ons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur $\mathbb R$ et la suite (u_n) définie par $\left\{ \begin{array}{ll} u_{n+1} & = & f(u_n) \\ u_0 & \in & \mathbb R \end{array} \right.$ donné
erc:	ice 6 : suites 2 (5,5 points) ons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur $\mathbb R$ et la suite (u_n) définie par $\left\{ \begin{array}{ll} u_{n+1} &=& f(u_n) \\ u_0 &\in& \mathbb R \end{array} \right.$ donné
e rc :	ice 6 : suites 2 (5,5 points) ons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur $\mathbb R$ et la suite (u_n) définie par $\left\{ \begin{array}{ll} u_{n+1} &=& f(u_n) \\ u_0 &\in& \mathbb R \end{array} \right.$ donné
e rc :	ice 6 : suites 2 (5,5 points) ons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur $\mathbb R$ et la suite (u_n) définie par $\left\{ \begin{array}{ll} u_{n+1} &=& f(u_n) \\ u_0 &\in& \mathbb R \end{array} \right.$ donné
erc:	ice 6 : suites 2 (5,5 points) ons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur \mathbb{R} et la suite (u_n) définie par $\left\{ \begin{array}{ll} u_{n+1} &=& f(u_n) \\ u_0 &\in& \mathbb{R} \end{array} \right.$ donné
e rc :	ice 6 : suites 2 (5,5 points) ons la fonction $f: x \longmapsto \frac{x^2 + 6x - 8}{8}$ définie sur $\mathbb R$ et la suite (u_n) définie par $\left\{ \begin{array}{ll} u_{n+1} &=& f(u_n) \\ u_0 &\in& \mathbb R \end{array} \right.$ donné

Mathématiques Partiel S1 – Janvier 2023

2.	Faire le tableau (complet) des variations de f sur \mathbb{R} .
3.	Pour la suite de l'exercice, nous prendrons $u_0 \in]-2,4[$. Montrer que $\forall n \in \mathbb{N}, \ u_n \in]-2,4[$.
4.	Étudier la monotonie de (u_n) .
J	
5.	La suite (u_n) est-elle convergente? Si oui, donner sa limite.

Exercice 7: une démonstration (4 points)

Soit $l \in \mathbb{R}$. Rappeler la définition avec les quantificateurs de « (u_n) converge vers l ».
Rappeler la définition avec les quantificateurs de « (u_n) est bornée ».
Montrer que si (u_n) converge alors (u_n) est bornée.
Expliquer pourquoi la réciproque est fausse.

Exercice 8: exercice original (5 points)

Soit (u_n) une suite réelle. On suppose que

$$\forall (p,q) \in (\mathbb{N}^*)^2, \ 0 \le u_{p+q} \le \frac{p+q}{pq}$$

En considérant des suites extraites de (u_n) , étudier le comportement de (u_n) en $+\infty$ (convergence ou divergence). Justifier avec soin.