Introduction to Embedded System Design

Lecture - 3: Microcontroller Features, Essential Elements of Microcontroller Ecosystem

Dhananjay V. Gadre

Associate Professor

ECE Division

Netaji Subhas University of Technology, New Delhi

Badri Subudhi

Assistant Professor

Electrical Engineering Department

Indian Institute of Technology,
Jammu

Salient Features of Modern Microcontrollers

Expected Functions from a Microcontroller

- Read Digital Inputs
- Provide Digital Outputs
- Measure or maintain a record of Time (relative or absolute)
- Measure time between two events
- Measure Duration of an event
- Generate random numbers

Expected Functions from a Microcontroller

- Respond to asynchronous events (Interrupts)
- Measure Voltage/Current/Resistance
- Provide analog voltage/current
- Store data
- Visualize data/information
- Print data
- Control motion

Microcontrollers

- CPU- 4/8 /16 /32/64 bit microprocessor (CISC / RISC, VN/Harvard)
- Memory
 - ROM / EEPROM / Flash memory Program storage
 - Volatile Memory (RAM) Data Storage
- Digital Input / Output pins
- Communication Interfaces
- In System Programming & Debugging
 - SPI Bus/JTAG Interface
- Peripherals
 - Timers, Counters, PWM Generators
 - Watchdog Timer with independent oscillator
 - Analog to Digital Converter, Digital to Analog Converter (explicit or implicit)
- 6 Pin to 200+ pin Devices!

Size Diversity

AT Tiny10

TIVA TM4C1231 Cortex-M4

STM32F205 Cortex-M3

Features of Modern Microcontrollers

- Fully programmable pins Input or Output
- Output pins with 30-40 mA Source/Sink current capability
- Input Pins with weak and strong pull up or tri-state capability
- Each pin offers multiple functions one of which can be selected

Multiple Functions on Each Pin

Device Pinout, MSP430G2x13 and MSP430G2x53, 28-Pin Devices, TSSOP

```
28 D DVSS
                              P1.0/TA0CLK/ACLK/A0/CA0 III
                                                                           27 XIN/P2.6/TA0.1
                                                                           26 XOUT/P2.7
                  P1.1/TA0.0/UCA0RXD/UCA0SOMI/A1/CA1 3
                  P1.2/TA0.1/UCA0TXD/UCA0SIMO/A2/CA2 II 4
                                                                            25 TEST/SBWTCK
             P1.3/ADC10CLK/CAOUT/VREF-/VEREF-/A3/CA3 T
                                                                            24 RST/NMI/SBWTDIO
P1.4/SMCLK/UCB0STE/UCA0CLK/VREF+/VEREF+/A4/CA4/TCK
                                                                            23 P1.7/CAOUT/UCB0SIMO/UCB0SDA/A7/CA7/TD0/TDI
               P1.5/TA0.0/UCB0CLK/UCA0STE/A5/CA5/TMS T 7
                                                                            22 P1.6/TA0.1/UCB0SOMI/UCB0SCL/A6/CA6/TDI/TCLK
                                                                PW28
                                                              (TOP VIEW)
                                                                           21 P3.7/TA1CLK/CAOUT
                                            P3.1/TA1.0 II 8
                                            P3.0/TA0.2 II 9
                                                                           20 P3.6/TA0.2
                                                                           19 P3.5/TA0.1
                                            P2.0/TA1.0 II 10
                                            P2.1/TA1.1 II 11
                                                                            18 T P2.5/TA1.2
                                            P2.2/TA1.1 II 12
                                                                            17 P2.4/TA1.2
                                                                           16 P2.3/TA1.0
                                            P3.2/TA1.1 II 13
                                                                           15 P3.4/TA0.0
                                            P3.3/TA1.2 II 14
```

NOTE: ADC10 is available on MSP430G2x53 devices only.

Multiple Functions on Each Pin

Features of Modern Microcontrollers

- Some functions available on multiple pins.
- Flash memory for Program storage (1KB to few MB) with lock
- SRAM for data (0 to 10s of KB)
- EEPROM for semi-constants (0 to few KB)

Functions Available on Multiple Pins

Table 16-1. I2C Signals (100LQFP)

Pin Name	Pin Number	Pin Mux / Pin Assignment	Pin Type	Buffer Type ^a	Description
I2C0SCL	72	PB2 (3)	I/O	OD	I ² C module 0 clock. Note that this signal has an active pull-up. The corresponding port pin should not be configured as open drain.
I2C0SDA	73	PB3 (3)	I/O	OD	I ² C module 0 data.
I2C1SCL	34 74	PA6 (3) PG4 (3)	I/O	OD	I ² C module 1 clock. Note that this signal has an active pull-up. The corresponding port pin should not be configured as open drain.
I2C1SDA	$\begin{pmatrix} 35 \\ 75 \end{pmatrix}$	PA7 (3) PG5 (3)	I/O	OD	I ² C module 1 data.
I2C2SCL	36 95	PF6 (3) PE4 (3)	I/O	OD	I ² C module 2 clock. Note that this signal has an active pull-up. The corresponding port pin should not be configured as open drain.
I2C2SDA	$\begin{pmatrix} 58\\96 \end{pmatrix}$	PF7 (3) PE5 (3)	I/O	OD	I ² C module 2 data.
I2C3SCL	1 62	PD0 (3) PG0 (3)	I/O	OD	I ² C module 3 clock. Note that this signal has an active pull-up. The corresponding port pin should not be configured as open drain.

Features of Modern Microcontrollers

- Interrupt on Pin Change on all/most pins
- Internal and external clock sources. Internal RC clock w/ trimming
- Clock scalability
- Multiple Vcc domains
- Low operating current (from 1mA/MHz to 0.1 mA/MHz)

Features of Modern Microcontrollers

- Operating modes: active, sleep, power down
- Wide Vcc range (0.9V to 6V)
- Multiple Reset sources: POR, User, BOD, Watchdog
 - Watchdog timer with independent clock
- BOD with programmable threshold

Features of Modern Microcontrollers

- Mixed signal capability SAR/Dual-slope/Delta-Sigma ADC with resolution of 8 to 16 bits
- Mixed signal capability hardware DAC or through PWM
- Mixed signal requirement Independent Analog & Digital Vcc
- Timer and Counter: 8, 16-bits.
- High frequency PWM with various options (dead zone etc.)

Features of Modern Microcontrollers

- General Purpose Communication: UART, SPI, I2C, 1-wire
- Specialized Communication: CAN, LIN, Ethernet, USB (device, OTG, Host), WiFi, Bluetooth, BLE, RF
- Special function: floating point unit, encryption unit, hardware accelerator
- In System Programming and In Application Programming
- On Chip Debug
- JTAG
- DMA capability on needed peripherals

Application Development Tools

- Development platform (usually a PC these days)
- Assembler (cross-assembler), Compiler (cross-compiler)
- Simulator/debugger
- Evaluation board
- Program Download tool (ISP, or Bootloader)
- Emulator and/or On Chip Debugger (OCD)

System Development Tools

- Circuit prototyping facility
- Schematic capture and PCB layout CAD tools
- Circuit Soldering (POC, final versions) facility
- Microscope/Magnifier
- Oscilloscope, Logic Analyzer, Mixed Signal Oscilloscope
- DMM, LCR bridge
- Bench power supply

Elements of Microcontroller Ecosystem

"Roti, Kapda, Makaan and Internet" for a Microcontroller! (Essential Elements for Survival)

- Clock
- Reset
- Power Supply
- Program Download Capability

The Clock Subsystem!

- Why do we need Clock?
- What Should be the Clock Frequency?
- Implications of Clock Frequency Value?
- What Topology for the Clock Generator?
- Desirable Features for the Clock Generator?
- RTC Clock?
- Clock Frequency Stabilization: TCXO, Temperature Sensor + Varactor diode in parallel to Crystal.

Lecture - 3 Summary

- Expected Functions From a Microcontroller
- Salient features of modern Microcontrollers
- Elements of Microcontroller ecosystem

Thank you!