Large Language Models – Based Test Case Generation

A Comprehensive Analysis of How AI is Revolutionizing Automated Testing

NIKHIL YATES

```
LASSONDE YORK U
```

```
.:-=++*#%#%@*==--=+*%%*+=-:.
           . -=+##*+=-==+-.;=.- ;. ;+=--+#@#*+-.
        .=##+-=#--: ... : .-%+=: ..::+-..-=#*#=:
     .-*#+: :#-...+=. :* ..:=..:==-:.. .:: -%+**-
    =*+=;, ;=*;, ,#- += ,,, #*, ,;=---;,;,
   ;%@=-;;-*=, .-+-,+%+-; .-==#%= -#;., .-=;.;% %-
  =@+,,;-;-#=-=-;,, *@-,, =%+;;;;--==-,
             .-+%% %+ -. - :+ *: ---- -=@+
:%=+ .:. .. .++-:... - :. -=. .-*@%***%+.
   .;-=# - ;+-;-@---;;;=@@#=; . .+#, ==-;;-+@
     . . +*=: . . =# #+==+@ +-.. :=#+. :+: #
 *%=:+#:. ... -#%+. .#: .-+*+==--:. :-*. ..-+
  +%+==**+=-::=##=. :--=+ . =%=:. ..:-+=-==-:-=:...*@
   .=*%@****# + -*. :*-: #=:-: .... .....*. ...:*%
      .;-===+@. .-=%- .;**. - ; . .;-+=. +*=---; = -
            + #-. :+. :-+#-::-%=.:-::.-*@%##**#% +. .=::+%=
             %@=: :#-, ,+ ,,=%%#*%+%+# @%#******#%****+.
              -***+==---++*##@*#@-+++*+%+**==*+++=+@*...
                 .;-=++*++=-;++++=#@@#%##+===++++++#@*
                            : - +@ ##+=#**#*+*#%%#*+:
                               . +#=:--#@:::...
                                . +#- +*.
```

Automating Code Generation

- > Background and Motivation
 - Code Automation
 - GPT-4
 - Pynguin
- > Experiment Design
- Findings
 - The Data
 - Subjective Interpretations
- Discussion and Applications
- **>** Q&A

Current General Exploratory Research

RANDOM TESTS VS COVERAGE-BASED TESTS

- Random approach to test case generation is stronger than the coverage-based approach
- > Random approach benefits:
 - Simplicity
 - Minimizes bias
 - Performs well in contexts with large input sizes

EMPIRICAL STUDIES, LLMS

- LLM-based test generation tools are incredibly powerful
 - Tests are realistic
 - Tests could contain assertions
- LLM's are not expected to cover edge cases
 - Training data does not encompass non-typical use cases
- Transformer architecture drives high performance on sequential (textual) data
- LLMs are better for generation regression tests

HUMAN-ORIENTED TEST GENERATION

- All studies complement the 'human' aspect of LLM-based tests
- Reports that include any nonempirical observations do not incorporate them directly into the study
 - Usually an additional statement/comment

LACK OF CRITICISM

- Critical observations about the relationship between empirical and non-empirical qualities of LLM-based tests
- Lack of critical research comparing qualitative attributes of traditional tools and LLM-based tools

Generative Pre-Trained Transformer 4

175 BILLION Parameters

Compared to 6 billion in GPT-3.5

- Out-of-box large language model that boasts accuracy, elevated understanding, sophisticated response abilities
- A new animal compared to its predecessors
- New tool = research opportunities
- General Research
 - Strong ability to contextualize input (transformer architecture)
 - Low edge-case inclusion in GPT-3.5
 - GPT-4 stresses the importance of random-case generation
 - Output quality:
 - Clear
 - Relevant
 - Limited to the training data
- Empirical Test Generation Study (Shäfer et al.)
 - Realistic
 - No expectation for edge-case coverage
 - Limited qualitative analysis

Pynguin

- Background
 - Unit test generation suite
 - First tool that generates unit tests for dynamically-types languages
 - Currently *not* a production-level tool
- Dynamic Generation Approach
 - Generates a basic test
 - Iteratively runs the program against the test and changes the test to improve code coverage
 - Mutants
- Performance limitations increase with codebase complexity
- Most popular dynamic test generation tool for python

Experiment Design

Experiment Overview

OBJECTIVE

- Assess the quality of the tests that the LLM-based tool produces
- Compare the LLM-based tool with the traditional tool
 - Performance differences
 - Non-performance differences

DATASET

- > TensorFlow GitHub repository
- > Rich, diverse data
- > Strong and practical codebase

EVALUATION METRICS

- > Quantitative and Qualitative
- Filling the gaps of existing research
- Emphasis on the relationship between KPIs, not just face value

RESEARCH QUESTIONS

- To guide research and experimentation
- > The essence of the project

Generation Process

- **>** GPT-4
 - 1. Copy the entire python module into the system
 - 2. Method specification
 - 3. pytest runnable
 - 4. Repository compatibility*

- Pynguin
 - 1. Configuration analysis
 - 2. Standard execution
 - Repository compatibility*

Dataset information

- TensorFlow/python/autograph/pyct
- > 50 methods
- Diversity across the data:
 - methods type (instance, class, static methods)
 - Variable functionality
- Randomness Motivation:
 - Edge case generation
 - Manifested function: LLM training
 - Increased understanding of future code
 - Benchmarking
 - Validation
 - Data richness

Quantitative Evaluation Metrics

quantScore

- Summation of quantitative KPI scores
- Each KPI is judged using a 2-point grading scale
- */8

flakeIndex

- Score card to assess the consistency of tests
- Quantitative KPIs are co-dependent
 - Specific tests
 - Function of the method

Qualitative Evaluation Metrics

qualScore

- Summation of qualitative KPI scores
- Each KPI is judged using a 2-point grading scale
- */8
- > Unique nature of qualitative KPIs
 - Subjectiveness
 - Independence
 - Extensiveness
- Qualitative KPIs are 'complete' but inconsistent
 - Structure of the tool's output
 - GPT-4 output can be extensively modified

Guiding Questions

RQ1

(Performance) How well does the LLM-based test generation tool perform with respect to the criteria for strong test cases?

RQ2

(Competence) To what extent does the traditional and LLM-based test generation tools differ quantitatively? Qualitatively?

Result Analysis

Initial Observations

Precision Discrepancies

Tool	Generated Test Files	Generated Test Cases
Pynguin	5	33
GPT-4	50	150

- > Experiment Integrity
 - 1:1 Comparisons

GPT-4 Quantitative Analysis – RQ1

Tool	Coverage	Pass %	Exec. Time (s)	Flakiness
GPT-4	76.4%	70%	6.2	0.0
	1.5/2- Complex dataset- Rigidity of	2/2 - NO xFail tests generated - Testing thoroughness	1.8/2 - With respect to dataset complexity, complexity of tests, and test coverage	2/2Consistency over 3 rounds of testing

quantScore = 7.3

GPT-4 Qualitative Analysis – RQ1

Tool	Clarity	Readability	Realism	Identifiable
GPT-4	2	1.7	1.9	2
	 Tests were clear and direct The tests did not do unnecessary work (i.e., irrelevant testing) 	 Well annotated Appropriate naming conventions Some test files contained minimal redundant comments 	 Very accurate in terms of actual use case Some cases did not accommodate arbitrary user input 	 No "over-testing" LLM did not generate tests that were similar to previously generated tests All test cases were distinct

qualScore = 7.6

Comparing Tools – RQ2

QUANTITATIVE COMPARISON					
Tool	Coverage	Pass%	Time (s)	Flakiness	quantScore
GPT-4	76.4%	70%	6.2	0.0	7.3
Pynguin	64.2%	21%	5.7	0.1	5.2

QUALITATIVE COMPARISON					
Tool	Clarity	Readability	Realism	Identifiable	qualScore
GPT-4	2	1.7	1.9	2	7.6
Pynguin	0.9	1.1	1.5	1.2	4.7

Pass Frequency

Examples

```
import pytest
     import gast
     from tensorflow.python.autograph.pyct.ast_util import parallel_walk
     class TestParallelWalk:
         # Test Case 1: Parallel walk with identical ASTs
         def test_identical_asts(self):
             node1 = gast.parse("a = 1 + 2")
             node2 = qast.parse("a = 1 + 2")
             for n1, n2 in parallel walk(node1, node2):
                 assert type(n1) == type(n2), "Nodes should be of the same type"
         # Test Case 2: Parallel walk with different ASTs
         def test_different_asts(self):
             node1 = gast.parse("a = 1 + 2")
             node2 = gast.parse("b = 3 + 4")
             with pytest.raises(ValueError):
                 for _ in parallel_walk(node1, node2):
                     pass
         # Test Case 3: Parallel walk with different structures
         def test_different_structure(self):
             node1 = gast.parse("a = 1 + 2")
             node2 = gast.parse("for i in range(10): a = i")
             with pytest.raises(ValueError):
                 for _ in parallel_walk(node1, node2):
                     pass
     # If you wish to run the tests directly using this script
     if name == " main ":
         pytest.main()
33
```

```
# Test cases automatically generated by Pynguin (https://www.pynguin.eu).
 # Please check them before you use them.
 import pytest
 import tensorflow.python.autograph.pyct.inspect_utils as module_0
 import inspect as module_1
 import tokenize as module 2
 import ast as module_3
def test_case_0():
    none_type_0 = None
    var 0 = module 0.isconstructor(none type 0)
    assert var_0 is False
@pytest.mark.xfail(strict=True)
 def test case 1():
     none_type_0 = None
    var_0 = module_0.islambda(none_type_0)
    module_0.getqualifiedname(none_type_0, none_type_0, none_type_0)
def test_case_2():
    none type 0 = None
    var_0 = module_1.istraceback(none_type_0)
    var_1 = module_0.isnamedtuple(var_0)
    assert var_1 is False
@pytest.mark.xfail(strict=True)
def test_case_3():
    bool_0 = True
    var_0 = module 0.isbuiltin(bool_0)
    assert var_0 is True
    var 1 = module 2.group()
    module_0.getnamespace(var_1)
@pytest.mark.xfail(strict=True)
def test_case_4():
     none_type_0 = None
    var_0 = module_0.getfutureimports(none_type_0)
    var_1 = module_0.isbuiltin(var_0)
    assert var_1 is False
    var_2 = module_0.isnamedtuple(none_type_0)
     assert var 2 is False
     module_0.getqualifiedname(none_type_0, none_type_0, none_type_0, none_type_0)
```


Conclusion

(Performance) How well does the LLM-based test generation tool perform with respect to the criteria for strong test cases?

RQ2

(Competence) To what extent does the traditional and LLM-based test generation tools differ quantitatively? Qualitatively?

Applications and Discussion

Further Research and Applications

- Project focused on developing test cases for the python code base:
- What about a statically typed language like Java?
- On 50 test cases from the tensorflow/java/ directory:
- Strong quantScore of 7.1 and qualScore of 7.5
- Comparison against a traditional unit-test generation tool like Randoop, Palus?

- The benefits of test-driven code development
- Robustness
- Comprehension
- Validity
- Transformation of code
- Collaboratory benefits
- And more!
- Test-drive development in schools
 - A meaningful piece of criteria

Questions

Thank You! Acknowledgements to Prof. Song Wang