EV - 06/2016

Schriftliche Prüfung aus VO Energieversorgung am 22.06.2016

Name/Vorname:	/ MatrNr./Knz.:	/

1. Leitungsgleichung (24 Punkte)

Gegeben ist eine $380\ kV$ -Drehstromfreileitung in einem 50 Hz-Netz mit Viererbündel und der Länge 400 km mit folgenden Parametern:

$$R' = 0$$
; $\frac{\Omega}{km}$; $X' = 0.30 \frac{\Omega}{km}$; $G' = 0 \frac{S}{km}$; $C' = 20 \frac{nF}{km}$

- a. (3) Wie groß ist die komplexe Ausbreitungskonstante γ der Freileitung?
- b. (3) Welche Spannung stellt sich am Ende der leerlaufenden Leitung ein, wenn am Anfang Nennspannung herrscht?
- c. (5) Berechnen sie die Kompensationsimpedanz, welche am Ende der leerlaufenden Leitung zugeschaltet werden muss, damit sich am Ende der Leitung ein Spannungsanstieg von 105% der Nennspannung einstellt.
- d. (3) Für welche Scheinleistung muss die Kapazität bzw. Induktivität des Bauelements für die Kompensation der Leitung nach Punkt c. dimensioniert werden?
- e. (2) Wie sollte diese Impedanz mit der **Leitung verschaltet** werden (mit Begründung)?

Die folgenden Teilaufgaben können ohne Lösung der Teilaufgaben b-e bearbeitet werden. Verwenden Sie ab hier folgenden Wert für die Kompensationsimpedanz: $X=j950~\Omega.$

- f. (3) Berechnen Sie die **Spannung am Leitungsende** nach dem Kompensationsvorgang, wenn am Anfang der Leitung Nennspannung herrscht.
- g. (3) Die thermisch zulässige Leistung dieser Leitung soll der doppelten natürlichen Leistung entsprechen. Wie groß ist in diesem Fall der zulässige Strom eines <u>Einzelleiters</u>?
- h. (2) Wie groß ist die **Blindleistung am Anfang** der Leitung, wenn diese mit dem **Wellenwiderstand** abgeschlossen ist?

EV - 06/2016

2. Zweipoliger Kurschluss mit Erdberührung (24 Punkte)

Generator:

 $U_N = 6kV$, $S_N = 7$ MVA, x_d " = 15%

<u>Transformator:</u>

YNd5, $U_1/U_2 = 30/6$, $S_N = 8$ MVA, $u_k = 16\%$, (Annahme $P_k = 0$ kW), $X_{(0)} = 15 \Omega$ (auf 30kV Seite) Sternpunkt **exakt kompensiert ("gelöschtes Netz")**

Freileitung:

 $X'_{(1)} = 0.3 \text{ Ohm/km}, X'_{(0)} = 0.9 \text{ Ohm/km}, C'_{E} = 7 \text{ nF/km}, I = 20 \text{ km}$

Am Ende der Freileitung ereignet sich im 50Hz-Netz ein **zweipoliger Kurzschluss** zwischen den Phasen b und c **mit Erdberührung**.

- a. (6) Zeichnen Sie die **Ersatzschaltung** im Mit-, Gegen- und Nullsystem mit korrekter Verschaltung der drei Systeme für den dargestellten Kurzschlussfall
- b. (6) Berechnen Sie die wirksamen Impedanzen des Generators, des Transformators und der Leitung (in Ohm) am Kurzschlussort.
- c. (3) Berechnen Sie die Mit-, Gegen und Nullimpedanz.
- d. (3) Wie groß ist die im Sternpunkt verwendete **Petersenspule**, sodass die Leitungskapazitäten exakt kompensiert werden?
- e. (3) Wie groß sind die drei **Komponentenströme** $I_{(0)}$, $I_{(1)}$ und $I_{(2)}$ am Kurzschlussort?
- f. (3) Wie groß sind die drei **Phasenströme** $\underline{I}_{(a)}$, $\underline{I}_{(b)}$ und $\underline{I}_{(c)}$ am Kurzschlussort?

EV - 06/2016

3. Wirtschaftlichkeitsvergleich GuD-KW und LKW (24 Punkte)

In einem Energieversorgungsnetz werden zusätzliche Kraftwerke gebaut. Die folgenden zwei Kraftwerkstypen sind zu vergleichen:

GuD-Kraftwerk 500 €/kW _{el} 6 % 250 MW _{el} 95 €/kW _{el} a 0,30 €/m³ Erdgas 60 % 0,001 €/kWh _{el} 5000 h/a	Laufwasserkraftwerk 2800 €/kW _{el} 5 % 250 MW _{el} 87 €/kW _{el} a 0 €/kWh 88 % 0 €/kWh 4000 h/a
25 a	4000 h/a 40 a
	500 €/kW _{el} 6 % 250 MW _{el} 95 €/kW _{el} a 0,30 €/m³ Erdgas 60 % 0,001 €/kWh _{el} 5000 h/a

Hinweis: Heizwert von Erdgas Hu = 35,8 MJ/m³

- a. (9) Wie hoch sind die Stromgestehungskosten für das GuD-Kraftwerk?
- b. (7) Wie hoch sind die Stromgestehungskosten für das Laufwasserkraftwerk?
- c. (5) Bedingt durch sehr kalte Winter und unerwartete Reparaturen erreicht das Laufwasserkraftwerk nicht seine Sollstundenanzahl von 4000 h/a. Unter welche Volllaststundenzahl darf das Laufkraftwerk nicht sinken um noch günstiger als das GuD-KW (dieses bleibt bei 5000 Volllaststunden) produzieren zu können?
- d. (3) Zeichnen Sie qualitativ richtig die beiden Stromgestehungskosten in Abhängigkeit der Volllaststunden. Achsenbeschriftung nicht vergessen!

EV - 06/2016

4.	Fünf Sicherheitsregeln	(4 Punkte)
----	------------------------	------------

Bringen Sie die fünf Sicherheitsregeln in die richtige Reihenfolge:
Benachbarte, unter Spannung stehende Teile abdecken oder abschranken
Freischalten (d.h. allpoliges Trennen einer elektrischen Anlage von spannungs führenden Teilen)
Spannungsfreiheit allpolig feststellen
Erden und kurzschließen
Gegen Wiedereinschalten sichern

5. Theoriefragen (24 Punkte)			
Name/Vorname:/ MatrNr./Knz.:/			
Richtige Antwort bitte <u>deutlich</u> markieren.			
Hinweis: Es ist jeweils genau eine Antwort richtig! Nicht beantwortete Fragen geben 0 Punk-			
te, falsch beantwortete Fragen werden als -0,5 Punkte gewertet. Maximale Punktzahl dieses			
Prüfungsteils ist 24 Punkte, minimale Punktzahl ist 0 Punkte.			
1. Welche Anforderungen müssen Energieversorgungssysteme erfüllen?			
Zuverlässigkeit, Wirtschaftlichkeit, Umweltverträglichkeit			
Zuverlässigkeit, Vernetzung, Schnelligkeit			
Wirtschaftlichkeit, Profitabilität, Risikominimierung			
2. Wie setzt sich die Erzeugung elektrischer Energie in Österreich etwa zusammen?			
60% Wasserkraft, 10% andere Erneuerbare, 30% fossil-thermische Kraftwerke			
60% Wasserkraft, 30% andere Erneuerbare, 10% fossil-thermische Kraftwerke			
60% fossil-thermische Kraftwerke, 30% Wasserkraft, 10% andere Erneuerbare			
3. In welchem Größenbereich bewegt sich die Leistung eines Laufwasserkraftwerkes an			
der Donau in Österreich in etwa?			
unter 10 MW bis 100 MW			
☐ 150 MW bis 300 MW			
350 MW bis über 1000 MW			
4. Welche Netzebene des elektrischen Netzes wird in Österreich als Netzebene 7 be-			
zeichnet?			
☐ Das Niederspannungsnetz			
Mittelspannungsnetze			
☐ Das Höchstspannungsnetz			
5. Bei welcher Phasenlage zwischen sinusförmigem Strom- und Spannungsverlauf wird			
der Betrag der Wirkleistung minimal?			
☐ Wenn der Strom der Spannung 90° voraus- oder nacheilt			
Wenn Strom und Spannung gleiche Phasenlage haben			
☐ Wenn der Strom der Spannung 180° voraus- oder nacheilt			

6.	Welche Amplitude haben die Leiter-Leiter-Spannungen in einem symmetrischen 110kV-Netz?	
7.	Mit welcher Frequenz pulsiert die Augenblicksleistung in einem symmetrischen 50Hz- Drehstromsystem?	
	☐ Mit 50Hz ☐ Mit 100Hz ☐ Gar nicht	
8.	Wie verhält sich ein übererregter Synchrongenerator bezüglich seiner Blindleistung? Wie eine Kapazität Wie eine Induktivität Wie ein Widerstand	
9.	Eine Wasserkraftanlage kann mit einer Wassermenge Q von 40m³/s eine elektrische Leistung von 8MW erzeugen. Welche Höhendifferenz arbeitet die Turbine ungefähr ab?	
	□ 5m□ 20m□ 25m	
10.	Welche Komponenten des elektrischen Energiesystems verhalten sich bzgl. Mit- und Gegensystem gleich?	
	☐ Transformatoren☐ Synchrongeneratoren☐ Elektrische Maschinen	
11.	Welche Komponente der symmetrischen Komponenten wird mit dieser Schaltung bestimmt?	
	☐ Das Nullsystem ☐ Das Mitsystem ☐ Das Gegensystem ☐ Raumzeiger und Nullgröße	
12.	Wie verhält sich eine Freileitung, die oberhalb der natürlichen Leistung betrieben wird, gegenüber dem Energiesystem?	
	☐ Eher wie eine Induktivität ☐ Eher wie eine Kapazität	

☐ Eher wie ein Widerstand

EV - 06/2016

13. Welches Bauelement kann eingesetzt werden, um ein Leistung betriebene Leitung zu kompensieren?	ne unterhalb der natürlichen
_	
☐ Eine Drosselspule (Induktivität)	
Eine Kondensatorbatterie (Kapazität)Ein Widerstand	
Elli Widerstalld	
14. Welche Auswirkung haben Bündelleiter bei Freileitun	ngen gegenüber Einfachleitern?
Sie reduzieren die natürliche Leistung	
Sie erhöhen den Wellenwiderstand	
Sie erhöhen die natürliche Leistung	
15. Auf welche Art ist die dargestellte Einfachleitung vero	drillt?
_	1/3 1/3 1/3 1/3
α-Verdrillung	
☐ β-Verdrillung ☐ γ-Verdrillung	cX
γ-vertainiung	
16. Die Generatoren eines Kraftwerkes, das an ein 50Hz-	Netz angeschlossen ist, haben
eine synchrone Drehzahl von 250 Umdrehungen/min	
Generatoren?	
□ 5	
☐ 10	
☐ 12	
12	
17. Stoßkurzschlussstrom Ip und Anfangskurzschlusswech	nselstrom I _k " hängen entspre-
chend $I_p = \kappa \sqrt{2} I_k$ " zusammen. In welchem Wertebere	
gen?	
✓ Von 0 bis 1	
☐ Von 1 bis 2	
☐ Von 1 bis 2	
U VOITO DIS 2	
18. Wann tritt praktisch kein Gleichglied im Kurzschlussst	tromverlauf auf?
Wenn der stationäre Fehlerstrom im Zeitpun	ıkt des Fehlereintritts gerade
seinen Nulldurchgang hätte	
Wenn der stationäre Fehlerstrom im Zeitpun	ıkt des Fehlereintrittes gerade
seinen maximalen Wert hätte	
Wenn der Strom unmittelbar vor Fehlereintr	itt gerade seinen maximalen
Wert hatte	
19. Welche Größen sind bei der Lastflussrechnung an ein	em PV-Knoten vorgegeben?
_	
Photovoltaikeinspeisung und Verbraucherleis	stung
☐ Wirkleistung P und Blindleistung Q	
Wirkleistung P und Spannung U	

EV - 06/2016

20. Innerhalb welcher Zeit soll die Primärregelleistung (Frequency Containment Reserve) voll aktiviert sein?
Spätestens 15s nach Aktivierung
☐ Spätestens 30s nach Aktivierung
Spätestens 15min nach Aktivierung
21. In welchem Kernreaktortyp gibt es keinen Sekundärdampfkreislauf?
☐ Im Siedewasserreaktor
☐ Im Druckwasserreaktor
☐ In keinem der beiden Reaktortypen
22. Wie hängt die mögliche Leistung einer Windturbine von der Luftdichte ρ ab?
☐ Linear (~ρ) ☐ Quadratisch (~ρ ²) ☐ Kubisch (~ρ ³) ☐ Gar nicht
23. Was ist ein Vorteil von symmetrischen Drehstromsystemen gegenüber Wechselstromsystemen?
☐ Transformierbarkeit
☐ Keine Blindleistung
Konstante Augenblicksleistung
24. Eine Windkraftanlage mit der Nennleistung 5MW speist in einem Jahr eine Energie von 10GWh in das Netz ein. An 80 Stunden im Jahr erreicht sie dabei ihre Nennleistung, den Rest des Jahres liegt ihre Leistung unterhalb der Nennleistung. Welche Volllaststunden weist diese Windkraftanlage auf?
□ 80h□ 400MWh□ 2000h