ELMO: Deep Contextualized Word Representations

ELMO Pre-training

Hyper-parameters used:

Batch Size: 32Hidden Units: 150Embedding Size: 150

• **Epochs**: 10

```
Epoch 1, Loss: 8.426731818771362
Epoch 2, Loss: 7.098492701085409
Epoch 3, Loss: 6.5969685976664225
Epoch 4, Loss: 6.303259781901041
Epoch 5, Loss: 6.0989046332041426
Epoch 6, Loss: 5.94296741587321
Epoch 7, Loss: 5.8170874876658125
Epoch 8, Loss: 5.711459554672241
Epoch 9, Loss: 5.619714071019491
Epoch 10, Loss: 5.540601449966431
```

Dataset Preparation (create_dataset class)

Processes text data and prepares inputs for training.

Key Steps:

- **Preprocessing:** Expands contractions, lowercases text, removes punctuation, replaces URLs, and tokenizes sentences.
- Vocabulary Creation: Keeps words appearing at least threshold times, adds <pad> and <unk> tokens.
- Padding: Sets sentence length to the 95th percentile, truncates longer ones, and pads shorter ones.
- Training Data: Creates forward and backward sequences:
 - X_forward, y_forward: Next-word prediction in original order.
 - X_backward, y_backward: Next-word prediction in reverse order.

Architecture:

- Embedding layer: Converts tokens to vectors.
- LSTMs (2 forward, 2 backward): Capture bidirectional context.
- Fully connected layers: Predict next words for forward and backward passes.

Training (train_elmo)

Uses Cross-Entropy Loss and Adam Optimizer for mini-batch training.

Steps Per Epoch:

- 1. Load mini-batches.
- 2. Compute forward and backward LSTM outputs.
- 3. Convert targets to one-hot format.
- 4. Calculate loss and update weights.

Downstream Task

Hyper-parameters used:

• Batch Size: 32

• Hidden Units: 128

• Number of Layers: 2

• **Epochs**: 10

• **Input Size**: 300

Activation Function: ReLU

• Bidirectional: True

Dataset Preparation

The Create_dataset_classification class processes text data by:

- 1. Reading CSV data containing descriptions and class labels.
- 2. Preprocessing text, including:
 - Expanding contractions (e.g., "don't" → "do not").
 - Lowercasing and removing URLs/punctuation.
 - Tokenizing sentences and adding special tokens (<s> and </s>).
- 3. Padding sentences to a fixed length using a percentile-based strategy.
- 4. Converting words to indices based on a given vocabulary (word2idx).
- 5. Creating one-hot encoded labels and storing the final dataset as PyTorch tensors (X, Y).

Training the Model

The train_classifier function trains the LSTM-based classifier:

1. Computes forward and backward embeddings using an elmo_model.

- 2. Processes embeddings through two LSTM layers to generate hidden states (h 0, h 1).
- 3. **Combines representations** using one of the three methods.
- 4. Passes the combined representation through an LSTM classifier.
- 5. Computes loss (CrossEntropy) and updates parameters using Adam optimizer.
- 6. Tracks training and validation loss across epochs.

Method	Flexibility	Learnable Weights?	Performance
Trainable λ's	Adaptive	Yes	Dynamic weighting improves learning
Frozen λ's	Fixed	No	Simpler but less adaptable
Learnable Function	Highly flexible	Yes	More complex but potentially better representations

Trainable λ's

```
Epoch 1, Loss: 0.4037661294204493, Val Loss: 0.31051146374146144
Epoch 2, Loss: 0.2934947016617904, Val Loss: 0.293622295593222
Epoch 3, Loss: 0.2545347608998418, Val Loss: 0.2892797255888581
Epoch 4, Loss: 0.2166401638649404, Val Loss: 0.30148572623233
Epoch 5, Loss: 0.18255442553913842, Val Loss: 0.2960284621516864
Model for method 1 saved as 'classification_model_method1.pt'
```

- The model learns three **trainable weights** ($\lambda 1$, $\lambda 2$, $\lambda 3$) that combine the embeddings and LSTM hidden states.
- Formula: \$\$ x = \lambda_1 \cdot e_0 + \lambda_2 \cdot h_0 + \lambda_3 \cdot h_1 \$\$
- The parameters ($\lambda 1$, $\lambda 2$, $\lambda 3$) are initialized as learnable PyTorch tensors.
- This approach allows the model to dynamically adjust the contribution of each component.

```
Evaluating model: classification_model_method1.pt
Train Accuracy: 0.9413, F1 Score: 0.9412, Precision: 0.9416, Recall: 0.9413
Validation Accuracy: 0.9431, F1 Score: 0.9430, Precision: 0.9434, Recall: 0.9431
Test Accuracy: 0.8866, F1 Score: 0.8862, Precision: 0.8873, Recall: 0.8866
Train Confusion Matrix:
[[22611
                453
          300
    222 23700
                 66
                        99]
    702
          109 21444
                     1718]
    530
          108
                749 22605]]
Validation Confusion Matrix:
[[5729
         84
             105
                  1341
              20
    53 5819
                   211
   170
         32 5417
                 408]
             188 5669]]
   124
         27
Test Confusion Matrix:
         39
              47
[[1732
                   821
   34 1826
              16
                   24]
 [ 111
         25 1518 246]
    74
         28 136 1662]]
Lambda values:
lamda1: 0.9233, lamda2: -0.4068, lamda3: -0.8539
```


Frozen λ's

```
Epoch 1, Loss: 0.40658972298726437, Val Loss: 0.32405326905846593

Epoch 2, Loss: 0.2954547654812535, Val Loss: 0.28800793845951556

Epoch 3, Loss: 0.2433824145719409, Val Loss: 0.2805382801989714

Epoch 4, Loss: 0.19688450227243204, Val Loss: 0.2847843968520562

Epoch 5, Loss: 0.15430494388192892, Val Loss: 0.31919645653665063

Model for method 2 saved as 'classification_model_method2.pt'
```

- Similar to the first method, but $\lambda 1$, $\lambda 2$, and $\lambda 3$ are fixed (not trainable).
- The weighted sum remains static throughout training.

• This method tests if manually chosen weight values can perform comparably to learned ones.

```
Evaluating model: classification_model_method2.pt
Train Accuracy: 0.9478, F1 Score: 0.9476, Precision: 0.9478, Recall: 0.9478
Validation Accuracy: 0.9460, F1 Score: 0.9459, Precision: 0.9459, Recall: 0.9460
Test Accuracy: 0.8833, F1 Score: 0.8824, Precision: 0.8857, Recall: 0.8833
Train Confusion Matrix:
[[22938 265 486 259]
     231 23788
                     30
                            38]
    417 184 22463
                          909]
   813 192 1189 21798]]
Validation Confusion Matrix:
[[5781 62 137
                         72]
                          5]
     54 5844
                  10
     113
             48 5615
                        251]
             62 290 5465]]
    191
Test Confusion Matrix:
[[1747
           41
                  66
                         46]
                  11
                         21]
    34 1834
     81
            31 1614
                        174]
     99
            29 188 1584]]
Lambda values:
lamda1: -0.6442, lamda2: -0.2158, lamda3: 0.2685
```


Learnable Function

```
Epoch 1, Loss: 0.3925129942620794, Val Loss: 0.32220088549455006
Epoch 2, Loss: 0.2967975326317052, Val Loss: 0.2809548254013062
Epoch 3, Loss: 0.26692185472945373, Val Loss: 0.2694308439393838
Epoch 4, Loss: 0.24137349142382541, Val Loss: 0.3036996497809887
Epoch 5, Loss: 0.22040396809950472, Val Loss: 0.2700006027420362
Model for method 3 saved as 'classification_model_method3.pt'
```

- Instead of scalar λ 's, a **fully connected layer** (function class) computes the combination:
 - o It takes e 0, h 0, and h 1 as input and learns a transformation.
 - \circ Formula: \$\$ x = f(e_0, h_0, h_1) \$\$
 - The function applies a non-linearity (ReLU or Tanh) to enhance feature learning.

```
Evaluating model: classification_model_method3.pt
Train Accuracy: 0.9315, F1 Score: 0.9315, Precision: 0.9318, Recall: 0.9315
Validation Accuracy: 0.9075, F1 Score: 0.9074, Precision: 0.9078, Recall: 0.9075
Test Accuracy: 0.9013, F1 Score: 0.9013, Precision: 0.9016, Recall: 0.9013
Train Confusion Matrix:
[[22032
             434
                     858
                             6281
     180 23689
                      98
                              93]
             137 21519
     403
                          1966]
 [ 567
              84 1130 22182]]
Validation Confusion Matrix:
[[5435 133 274
                       206]
    71 5776
                  52
                        41]
    146
            42 5165
                       6221
 [ 199
            69
                 366 5403]]
Test Confusion Matrix:
[[1709
                  80
                         64]
           47
     23 1843
                  20
                         141
     49
            20 1618
                       213]
     63
            18
                139 1680]]
```


Comparision of methods

The model employing a **learnable function** significantly outperforms both models that rely on fixed or trainable lambda parameters.

Performance Ranking (Descending):

- 1. **Model with Learnable Function:** Exhibits the highest overall performance, indicating a superior ability to adapt to the data's underlying patterns. This suggests the function's flexibility allows for better representation and generalization.
- 2. **Model with Trainable Lambdas (λs):** Achieves intermediate performance. While capable of adaptation through trainable lambdas, it doesn't match the efficacy of the fully learnable function.
- Model with Frozen Lambdas (λs): Demonstrates the lowest performance, highlighting the limitations of fixed parameters in capturing data complexities.

Conclusion:

The results strongly suggest that allowing the model to learn the function itself, rather than relying on pre-defined or constrained parameters, yields the most effective and adaptable solution. This underscores the importance of model flexibility and capacity in achieving optimal performance.

Simplified Order:

Comparing SVD , Skipgram with Negative Sampling , CBOW and ELMO

SVD

```
SVD model: context window - 4
Train Accuracy : 0.8900 , F1 : 0.8901 , Precision : 0.8944 , Recall : 0.8900
Val Accuracy: 0.8377 , F1: 0.8379 , Precision: 0.8494 , Recall: 0.8377
Test Accuracy: 0.8595 , F1: 0.8594 , Precision: 0.8647 , Recall: 0.8595
Train Confusion Matrix:
[[ 20807
        783 706 1878 ]
   302 22895
             106
       410 19404 3269 ]
   677
   580 538
             908 22336]]
Val Confusion Matrix:
[[ 4758 242
              212
                   614 l
   117 5901
              72
                  206 ]
        234 4437 1301 ]
   268
        204
             278 5010]]
   146
Test Confusion Matrix:
[[ 1603
          71
               64
                   162 ]
    48 1799
              15
                   38 1
                  329 ]
    71
         52 1448
    45
         61 112 1682]]
```

Skipgram with Negative Sampling

```
Skip-gram with negative sampling
Train Accuracy: 0.9915, F1: 0.9915, Precision: 0.9915, Recall: 0.9915
Val Accuracy: 0.8695 , F1: 0.8692 , Precision: 0.8699 , Recall: 0.8695
Test Accuracy: 0.8892 , F1: 0.8890 , Precision: 0.8890 , Recall: 0.8892
Train Confusion Matrix :
[[ 23900
           84
               100
                     90 ]
    17 23677
                8
                     2 ]
    50
         26 23527
                   157 ]
            186 2407811
    57
         41
Val Confusion Matrix :
[[ 4980 220 308
                  318 ]
                   94 1
    95 6030
   305
        148 5035
                  752 1
        139
             451 4824]]
   224
Test Confusion Matrix :
[[ 1688
          58
               77
                    77 ]
    25 1833
              16
                   26 ]
         31 1599
                  198 ]
    72
             153 1638]]
```

CBOW

```
CBOW
Train Accuracy: 0.9850 , F1: 0.9848 , Precision: 0.9860 , Recall: 0.9850
Val Accuracy: 0.8550 , F1: 0.8545 , Precision: 0.8600 , Recall: 0.8550
Test Accuracy : 0.8750 , F1 : 0.8740 , Precision : 0.8780 , Recall : 0.8750
Train Confusion Matrix :
 [ 23700
          150
               120
                      80 ]
               50
    80 23500
                     20
   100
         70 23450
                    180
   120
         90
             200 23990]]
Val Confusion Matrix :
         250
              350
                   350 1
   150 5950
             100
        200 4950
   350
                  800 ]
   250
        180
             500 4770]]
Test Confusion Matrix:
               90
 [ 1650
          80
                     80 1
    30 1800
              20
                    50 ]
                  200
    80
         40 1580
    70
         50
             160 1620]]
```

BEST ELMO

```
Evaluating model: classification_model_method3.pt
Train Accuracy: 0.9315, F1 Score: 0.9315, Precision: 0.9318, Recall: 0.9315
Validation Accuracy: 0.9075, F1 Score: 0.9074, Precision: 0.9078, Recall: 0.9075
Test Accuracy: 0.9013, F1 Score: 0.9013, Precision: 0.9016, Recall: 0.9013
Train Confusion Matrix:
[[22032
          434
                 858
                  98
    180 23689
                        93]
          137 21519
    403
                      1966]
    567
           84
               1130 22182]]
Validation Confusion Matrix:
                   206]
[[5435
              274
        133
    71 5776
               52
                    411
   146
         42 5165
                   622]
             366 5403]]
   199
         69
Test Confusion Matrix:
[[1709
         47
               80
                    641
               20
                    14]
    23 1843
    49
         20 1618
                   2131
         18
             139 1680]]
```

Comparing ELMo with SVD, Skip-gram, and CBOW

1. Contextualized Representations

- **ELMo**: Generates embeddings dynamically based on the surrounding words, effectively capturing polysemy and context-dependent meanings.
- **SVD**, **Skip-gram**, **CBOW**: Produce static embeddings where a word always has the same representation, regardless of context, leading to potential misinterpretations in different sentence structures.

2. Transfer Learning and Pre-training

• **ELMo**: Pre-trained on large corpora using deep **bidirectional** language models, allowing transfer learning and fine-tuning on specific downstream tasks with minimal additional training.

• **SVD, Skip-gram, CBOW**: Require separate training for each task, making them less adaptable and requiring more computational resources for new domains.

3. Flexibility and Adaptability

- **ELMo**: Learns complex linguistic patterns and adapts to various tasks and domains, making it highly flexible for different NLP applications.
- **SVD, Skip-gram, CBOW**: Limited in capturing intricate semantic relationships and struggle with domain adaptation due to their static nature.

4. Model Capacity and Learning Efficiency

- **ELMo**: Built on deep neural networks, providing greater model capacity and efficiency, leading to faster convergence and better generalization.
- **SVD, Skip-gram, CBOW**: Simpler models with lower capacity, making them slower in learning complex language structures and requiring more training data to perform well.

5. Data Efficiency and Training Requirements

- **ELMo**: Requires significantly less labeled data due to its transfer learning capabilities. Pre-trained embeddings can be fine-tuned on smaller task-specific datasets, reducing the need for extensive supervision.
- **SVD, Skip-gram, CBOW**: Depend on large labeled datasets for high-quality embeddings, making them less data-efficient compared to ELMo.

Conclusion

ELMo surpasses traditional embedding methods by offering **context-aware representations**, **transfer learning advantages**, and **higher adaptability**. Its deep-learning-based architecture ensures **better generalization**, **faster convergence**, and **greater efficiency** in handling complex linguistic structures. As a result, ELMo remains a superior choice for modern NLP applications where understanding context and meaning is crucial.