Status of Gopher Rockfish (Sebastes carnatus) and Black-and-Yellow Rockfish (Sebastes chrysomelas) Off the California Coast in 2019

Gopher rockfish (left) and black-and-yellow rockfish (right). Photos courtsey Steve Lonhart.

8

10

11

12

13

14

15

16

17

18

Melissa H. Monk¹ Xi He¹

¹Southwest Fisheries Science Center, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 110 McAllister Way, Santa Cruz, California 95060

DRAFT SAFE

Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy.

2019-05-31

Status of Gopher Rockfish (Sebastes carnatus) and Black-and-Yellow Rockfish (Sebastes chrysomelas) Off the California Coast in 2019

4 Contents

25	Executive Summary	
26	Stock	
27	Catches	-
28	Data and Assessment	V
29	Stock Biomass	vii
30	Recruitment	X
31	Exploitation status	xii:
32	Ecosystem Considerations	ΧV
33	Reference Points	χV
34	Management Performance	XV.
35	Unresolved Problems and Major Uncertainties	XV.
36	Decision Table	vi
37	Research and Data Needs	XX

38 References

39 Executive Summary

executive-summary

40 Stock stock

This assessment reports the status of the GBY rockfish (Sebastes carnatus/Sebastes chrysomelas) resource in U.S. waters off the coast of ... using data through 2018.

 $_{ ext{catches}}$

- Information on historical landings of GBY rockfish are available back to xxxx... (Table a).
- ⁴⁵ Commercial landings were small during the years of World War II, ranging between 4 to 27
- metric tons (mt) per year.
- 47 (Figures a-b)
- 48 (Figure c)
- 49 Since 2000, annual total landings of GBY rockfish have ranged between 69-159 mt, with
- landings in 2018 totaling 93 mt.

Figure a: GBY rockfish catch history for the recreational fleets. fig:Exec_catch1

Figure b: Stacked line plot of GBY rockfish catch history for the commercial fleets. $f^{ig:Exec_catch2}$

Table a: Recent GBY rockfish landings (mt) by fleet.

					tab:Exec_o	<u>catch</u>
Year	Landings 1	Landings 2	Landings 3	Landings 4	Landings 5	Total
2005	-	-	-	-	-	_
2006	-	-	-	-	-	-
2007	-	-	-	-	-	-
2008	_	-	-	-	-	-
2009	_	-	-	-	-	-
2010	_	-	-	-	-	-
2011	_	-	-	-	-	-
2012	-	-	-	-	-	-
2013	-	-	-	-	-	-
2014	-	-	-	-	-	-

Figure c: Catch history of GBY rockfish in the model. fig:r4ss_catches

Data and Assessment

data-and-assessment

- This a new full assessment for GBY rockfish, which was last assessed in ... using Stock
- 53 Synthesis Version xx. This assessment uses the newest version of Stock Synthesis (3.30.xx).
- The model begins in 1916, and assumes the stock was at an unfished equilibrium that year.
- ⁵⁵ (Figure d).

Figure d: Map depicting the distribution of California scorpionfish out to 600 ft. The stock assessment is bounded at Pt. Conception in the north to the U.S./Mexico border in the south.

56 Stock Biomass stock-biomass

⁵⁷ (Figure e and Table b).

- The 2018 estimated spawning biomass relative to unfished equilibrium spawning biomass is above the target of 40% of unfished spawning biomass at 45.1% (95% asymptotic interval: \pm
- 60 28.9%-61.3%) (Figure f). Approximate confidence intervals based on the asymptotic variance
- estimates show that the uncertainty in the estimated spawning biomass is high.

Table b: Recent trend in beginning of the year spawning output and depletion for the model for GBY rockfish.

			tab	o:SpawningDeplete_mod1
Year	Spawning Output	$^{\sim}~95\%$	Estimated	~ 95%
	(million eggs)	confidence	depletion	confidence
		interval		interval
2010	864.575	(604.3-1124.85)	0.650	(0.515 - 0.786)
2011	795.859	(549.68-1042.04)	0.599	(0.471 - 0.726)
2012	741.221	(507.57-974.88)	0.558	(0.437 - 0.678)
2013	711.779	(487.79 - 935.76)	0.535	(0.421 - 0.65)
2014	691.107	(474.44-907.77)	0.520	(0.41 - 0.63)
2015	661.019	(449.78 - 872.25)	0.497	(0.39 - 0.604)
2016	634.707	(425.9 - 843.51)	0.477	(0.371 - 0.584)
2017	612.729	(404.15 - 821.3)	0.461	(0.353 - 0.569)
2018	599.056	(389.03-809.08)	0.451	(0.34 - 0.561)
2019	599.431	(397.31-801.55)	0.451	(0.289 - 0.613)

Spawning output with ~95% asymptotic intervals

Figure e: Time series of spawning biomass trajectory (circles and line: median; light broken lines: 95% credibility intervals) for the base case assessment model. fig:Spawnbio_all

%unfished with ~95% asymptotic intervals

Figure f: Estimated percent depletion with approximate 95% asymptotic confidence intervals (dashed lines) for the base case assessment model. $fig:RelDeplete_all$

62 Recruitment recruitment

Recruitment deviations were estimated from xxxx-xxxx (Figure g and Table c).

Table c: Recent recruitment for the model.

tah	• R	ecriii	t mod	1
uau	. 10	SCI UI	t_mou	_

		L č	ap:wecruit_m
Year	Estimated	~ 95% confidence	
	Recruitment (1,000s)	interval	
2010	3218.83	(1410.42 -	-
		7345.97)	
2011	2746.99	(1180.57 -	
		6391.77)	
2012	2631.66	(1126.64 -	
		6147.16)	
2013	2767.28	(1179.6 - 6491.88)	
2014	3916.77	(1632.26 -	
		9398.66)	
2015	5510.34	(2305.44 -	
		13170.55)	
2016	4079.14	(1645.01 -	
		10115.07)	
2017	3360.32	(1372 - 8230.16)	
2018	2968.86	(1262.36 -	
		6982.25)	
2019	3352.25	(1373.02 -	
		8184.58)	
			-

Age-0 recruits (1,000s) with ~95% asymptotic intervals

Figure g: Time series of estimated GBY rockfish recruitments for the base-case model with 95% confidence or credibility intervals. f ig:Recruits_all

Exploitation status

exploitation-status

- Harvest rates estimated by the base model management target levels (Table d and Figure h).
 - Table d: Recent trend in spawning potential ratio and exploitation for GBY rockfish in the model. Fishing intensity is (1-SPR) divided by 50% (the SPR target) and exploitation is F divided by $F_{\rm SPR}$.

				tab:SPR_Exploit_mod1
Year	Fishing	$^{\sim}95\%$	Exploitation	~ 95%
	intensity	confidence	rate	confidence
		interval		interval
2009	0.67	(0.49 - 0.85)	0.08	(0.06-0.1)
2010	0.82	(0.63-1.02)	0.11	(0.08-0.15)
2011	0.81	(0.61-1.01)	0.11	(0.08-0.14)
2012	0.71	(0.52 - 0.9)	0.08	(0.06-0.1)
2013	0.67	(0.49 - 0.86)	0.07	(0.05-0.09)
2014	0.78	(0.58-0.97)	0.09	(0.07 - 0.12)
2015	0.81	(0.61-1.01)	0.10	(0.07 - 0.13)
2016	0.85	(0.64-1.05)	0.10	(0.07 - 0.13)
2017	0.85	(0.64-1.06)	0.10	(0.06-0.13)
2018	0.81	(0.6-1.02)	0.08	(0.05-0.11)

Figure h: Estimated spawning potential ratio (SPR) for the base-case model. One minus SPR is plotted so that higher exploitation rates occur on the upper portion of the y-axis. The management target is plotted as a red horizontal line and values above this reflect harvests in excess of the overfishing proxy based on the SPR $_{50\%}$ harvest rate. The last year in the time series is 2018.

67 Ecosystem Considerations

ecosystem-considerations

- In this assessment, ecosystem considerations were not explicitly included in the analysis.
- This is primarily due to a lack of relevant data and results of analyses (conducted elsewhere)
- that could contribute ecosystem-related quantitative information for the assessment.

Reference Points

reference-points

This stock assessment estimates that GBY rockfish in the model is above the biomass target $(SB_{40\%})$, and well above the minimum stock size threshold $(SB_{25\%})$. The estimated relative depletion level for the base model in 2019 is 45.1% (95% asymptotic interval: \pm 28.9%-61.3%, corresponding to an unfished spawning biomass of 599.431 million eggs (95% asymptotic interval: 397.31-801.55 million eggs) of spawning biomass in the base model (Table e). Unfished age 1+ biomass was estimated to be 1,969 mt in the base case model. The target spawning biomass $(SB_{40\%})$ is 532 million eggs, which corresponds with an equilibrium yield of 145 mt. Equilibrium yield at the proxy F_{MSY} harvest rate corresponding to $SPR_{50\%}$ is 136 mt (Figure i).

Table e: Summary of reference points and management quantities for the base case model.

0 111	T	tab:Ref_p	
Quantity	Estimate	Low	High
		2.5%	2.5%
		limit	limit
Unfished spawning output (million eggs)	1,329	1,030	1,629
Unfished age 1+ biomass (mt)	1,969	1,642	$2,\!296$
Unfished recruitment (R_0)	3,749	$1,\!561$	5,937
Spawning output (2018 million eggs)	599	389	809
Depletion (2018)	0.451	0.34	0.561
Reference points based on $\mathrm{SB}_{40\%}$			
Proxy spawning output $(B_{40\%})$	532	456	607
SPR resulting in $B_{40\%}$ ($SPR_{B40\%}$)	0.458	0.458	0.458
Exploitation rate resulting in $B_{40\%}$	0.139	0.107	0.171
Yield with $SPR_{B40\%}$ at $B_{40\%}$ (mt)	145	105	184
Reference points based on SPR proxy for MSY			
Spawning output	593	509	677
SPR_{proxy}	0.5		
Exploitation rate corresponding to SPR_{proxy}	0.121	0.093	0.15
Yield with SPR_{proxy} at SB_{SPR} (mt)	136	99	173
Reference points based on estimated MSY values			
Spawning output at MSY (SB_{MSY})	297	248	346
SPR_{MSY}	0.299	0.288	0.31
Exploitation rate at MSY	0.234	0.171	0.296
Dead Catch MSY (mt)	165	117	212
Retained Catch MSY (mt)	165	117	212

Management Performance

management-performance

Table f

Table f: Recent trend in total catch and commercial landings (mt) relative to the management guidelines. Estimated total catch reflect the commercial landings plus the model estimated discarded biomass.

				<u>tab:mnmgt_p</u>	erform
Year	OFL (mt;	ABC (mt)	ACL (mt; OY	Estimated	
	ABC prior to		prior to 2011)	total catch	
	2011)			(mt)	
2007	-	-	=	_	
2008	-	-	-	-	
2009	-	-	_	_	
2010	-	-	_	_	
2011	-	-	_	_	
2012	-	-	-	-	
2013	-	-	_	_	
2014	-	-	_	_	
2015	-	-	_	_	
2016	-	-	_	_	
$\boldsymbol{2017}$	-	-	-	-	
2018	-	-	-		

Becision Table

decision-table

Table g: Projections of potential OFL (mt) for each model, using the base model forecast.

________________________________tab:OFL_projection

Year	OFL
2019	145.83

Figure i: Equilibrium yield curve for the base case model. Values are based on the 2018 fishery selectivity and with steepness fixed at 0.718. $^{\texttt{fig:Yield_all}}$

Table h: Summary of 10-year projections beginning in 2020 for alternate states of nature based on an axis of uncertainty for the model. Columns range over low, mid, and high states of nature, and rows range over different assumptions of catch levels. An entry of "-" indicates that the stock is driven to very low abundance under the particular scenario.

 ${\tt tab:Decision_table_mod1}$ States of nature

Low~M~0.05				Base 1	M 0.07	High M 0.09		
	Year	Catch	Spawning	Depletion	Spawning	Depletion	Spawning	Depletion
			Output		Output		Output	
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
Low M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	_	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule	2022	-	-	-	-	-	-	-
	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	_	-	-	-	_	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	-	-	-	-	-	-
	2021	-	-	-	-	-	-	-
40-10 Rule,	2022	-	-	-	-	-	-	-
High M	2023	-	-	-	-	-	-	-
	2024	-	-	-	-	-	-	-
	2025	-	-	-	-	-	-	-
	2026	-	-	-	-	-	-	-
	2027	-	-	-	-	-	-	-
	2028	-	-	-	-	-	-	-
	2019	-	-	-	-	-	-	-
	2020	-	_	-	-	-	_	-
	2021	-	_	-	-	-	_	-
Average	2022	-	_	-	_	-	_	-
Catch	2023	-	_	-	-	-	_	-
	2024	-	_	-	_	-	_	-
	2025	-	_	-	_	-	_	-
	2026	-	_	-	_	-	_	-
	2027	-	_	-	-	-	_	-
	2028							

Table i: Base case results summary.

18 2019					1118.10	599.4	(389.03 809.08) (397.31 801.55)		0.5	.) (0.289-0.613)	3352.25	. (1373.02 -	
2018			0.81	0.08	1097.89	599.1			0.5	(0.34-0.561)	2968.86	(1262.36 -	6982.25)
2017			0.85	0.10	1101.05	612.7	(404.15-821.3)		0.5	(0.353-0.569)	3360.32	(1372 -	8230.16)
2016			0.85	0.10	1116.13	634.7	(425.9-843.51)		0.5	(0.371-0.584)	4079.14	(1645.01 -	10115.07)
2015			0.81	0.10	1140.65	661.0	77.57-974.88) (487.79-935.76) (474.44-907.77) (449.78-872.25)		0.5	(0.39-0.604)	5510.34	(2305.44 -	13170.55)
2014			0.78	0.09	1156.13	691.1	(474.44-907.77)		0.5	(0.41-0.63)	3916.77	(1632.26 -	9398.66)
2013			0.67	0.07	1184.00	711.8	(487.79-935.76)		0.5	(0.421-0.65)	2767.28	(1179.6 -	6491.88)
2012			0.71	0.08	1246.97	741.2	(507.57-974.88)		9.0	(0.437 - 0.678)	2631.66	(1126.64 -	6147.16)
2011			0.81	0.11	1332.20	795.9	(549.68-	1042.04)	9.0	(0.471-0.726)	2746.99	(1180.57 -	6391.77)
2010			0.82	0.11	1391.63	864.6	95% CI (604.3-1124.85)		0.7	95% CI (0.515-0.786)	3218.83	(1410.42 -	7345.97)
Quantity	Landings (mt) Total Est. Catch (mt)	OFL (mt) $ACL (mt)$	$(1-SPR)(1-SPR_{50\%})$	Exploitation rate	Age $1+$ biomass (mt)	Spawning Output	95% CI		Depletion	95% CI	Recruits	95% CI	

85 Research and Data Needs

research-and-data-needs

86	We recommend	the following	research be	conducted	before th	ne next	assessment
----	--------------	---------------	-------------	-----------	-----------	---------	------------

- 87 1. **xxxx**:
- 88 2. **xxxx**:
- 89 3. **xxxx**:
- 90 4. **xxxx**:
- 91 5. **XXXX**:

92 References

references