

MATHE 1 — LINEARE ALGEBRA

ÜBUNG 1: KOMPLEXE ZAHLEN

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 27. Oktober 2020

WER BIN ICH?

- ► Eric [Kunze]
- ▶ eric.kunze@mailbox.tu-dresden.de
- ► Fragen, Wünsche, Vorschläge, ...

► Telegram: @oakoneric bzw. t.me/oakoneric

EINFÜHRUNG IN DIE MATHEMATIK FÜR INFORMATIKER

Teil A: Lineare Algebra

- ▶ VL: Prof. Dr. Ulrike Baumann
- ► KA: Dr. Henri Mühle
- ▶ UE: me

Teil B: Diskrete Strukturen

- ▶ VL: Prof. Dr. Ellen Henke
- ► KA: Dr. Antje Noack
- ▶ UE: up to you

EINFÜHRUNG IN DIE MATHEMATIK FÜR INFORMATIKER

Website für das Modul:

```
https://tu-dresden.de/mn/math/algebra/das-institut/beschaeftigte/antje-noack/dateien/einfmathinf
```

ab hier: nur LAG-Teil (aber DIS ähnlich)

OPAL-Kurs:

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/26113441794?0

- ► Informationen zur Lehrveranstaltung
- Skript zur Vorlesung
- Übungsblätter
- ► Hausaufgabenabgabe
- ► Lösungsvorschläge
- ► Forum

VORLESUNG VS. ÜBUNG

Was ist eine Übung?

"Lehrveranstaltung an der Hochschule, in der etw., bes. das Anwenden von Grundkenntnissen, von den Studierenden geübt wird" [Duden]

VORLESUNG VS. ÜBUNG

Was ist eine Übung?

"Lehrveranstaltung an der Hochschule, in der etw., bes. das Anwenden von Grundkenntnissen, von den Studierenden geübt wird" [Duden]

Übung
Üben und Festigen des Stof-
fes der VL
(selbst definierbares) lang-
sameres Tempo
(sehr) viel Interaktion
> 80% Verständnis

WAS WIRD IN DER ÜBUNG ERWARTET?

- ► Vorlesungsmaterial wurde vollständig angesehen
- ▶ Übungsblatt wurde angesehen (evtl. ausgedruckt, gespeichert, ...)
- ► Aufgaben wurden im Vorfeld vorbereitet

MEIN MATERIAL

meine Website

https://oakoneric.github.io

- ▶ https://github.com/oakoneric/lineare-algebra-ws20
- ▶ github.com \rightarrow oakoneric \rightarrow lineare-algebra-ws20
- Slides und Beamer-Stuff
- ▶ evtl. zusätzliche Materialien (nach Bedarf)
- ▶ kein Anspruch auf Vollständigkeit & Korrektheit
- gefundene Fehler melden

Übungsblatt 1

KOMPLEXE ZAHLEN

$$\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

Sei $z \in \mathbb{C}$ eine beliebige komplexe Zahl. Wir können z darstellen als z = a + bi mit reellen Zahlen $a, b \in \mathbb{R}$.

- ▶ Re(z) := a ist der **Realteil** von z
- ► Im(z) := b ist der **Imaginärteil** von z

Wir können komplexe Zahlen u.a. addieren, subtrahieren, multiplizieren, dividieren und insbesondere

- ▶ invertieren, d.h. z^{-1} berechnen
- ▶ konjugieren, d.h. $\bar{z} := a bi$ berechnen

DARSTELLUNG KOMPLEXER ZAHLEN

Sei $z \in \mathbb{C}$, r = |z| und $\varphi = Arg(z)$.

- \triangleright z = a + bi
- $ightharpoonup z = r \cdot (\cos(\varphi) + i\sin(\varphi))$
- $ightharpoonup z = r \cdot e^{i\varphi}$

$$\cos(\varphi) = \frac{a}{r}$$
$$\sin(\varphi) = \frac{b}{r}$$

Keine Angst vor Mathe!

KEINE ANGST VOR MATHE!

Euklid: Satz 4 in Buch II der "Elemente"

Wird eine Strecke in zwei geteilt, dann ist das Quadrat über der ganzen Strecke gleich den Quadraten über den Teilen und dem doppelten Rechteck, das die Teile ergeben, zusammen.

siehe http://www.opera-platonis.de/euklid/Buch2.pdf

KEINE ANGST VOR MATHE!

al-Khwarizmi in Al-jabr wa'l muqabalah'

What must be the amount of a square, which, when twenty-one dirhems are added to it, becomes equal to the equivalent of ten roots of that square?

Solution: Halve the number of the roots; the moiety is five. Multiply this by itself; the product is twenty-five. Subtract from this the twenty-one which are connected with the square; the remainder is four. Extract its root; it is two. Subtract this from the moiety of the root, which is five; the remainder is three. This is the root of the square which you required, and the square is nine. Or you may add the root of the moiety of the roots; the sum is seven; this is the root of the square which you sought for, and the square itself is forty nine.