

Science: Lesson 2 - Matter

Matter is anything that has mass and occupies space.

 Matter can be classified into two main categories, which are pure substances and mixtures. The figure¹ below helps us to visualize the further subcategories.

Atom: is a particle of matter that uniquely defines a chemical element. See figure²

- Nucleus: the center of an atom. It contains the neutrons and protons of the atoms
 - Neutrons: neutrally charged particles
 - Protons: positively charged particles
- **Electrons:** negatively charged particles. These orbit the nucleus.
- **Isotopes**: atoms with the same number of protons but different numbers of neutrons. Examples:
 - o Carbon 12 has 6 neutrons and 6 protons (which makes 12 atomic mass).
 - Carbon 13 has 7 neutrons (and 6 protons making 13) and carbon 14 has 8 neutrons.

¹Figure was snipped from the <u>1.3: Classification of Matter - Chemistry LibreTexts</u> website.

² Ducksters. (2024). Science for Kids: The Atom. *Ducksters*. Retrieved from https://www.ducksters.com/science/the_atom.php

- Allotropes: chemical elements that exist in two or more different forms.
 Examples:
 - o Carbon existing naturally as graphite and diamond.
 - o Oxygen exists as the breathable harmless air (O_2) while Ozone (O_3) is deadly.
- Mixtures: substances made from the combination of two or more different substances. They are usually a physical combination that retains the properties of the combined substances.
- Homogeneous mixture: all samples of that mixture are the same.
 Examples: salt and water, brass (an alloy of copper and zinc).
- Heterogeneous mixture: not all samples of that mixture are the same.
 Examples: oil and water, salt and pepper, water and gasoline, vinegar, and oil.

Particle Theory of Matter: states that matter is formed of tiny particles. The particles:

- Are constantly randomly moving about
- Can be arranged regularly or randomly
- Are held together by weak or strong forces
- · Have empty spaces between them
- An element is a substance that cannot be broken down into another substance. Examples of element includes oxygen (O_2) , hydrogen (H_2) , chlorine (Cl), iron (Fe).
- **A compound** is the chemical combination of two or more elements. A prominent example of a compound is water (H_2O) . It is the chemical combination of two molecules of hydrogen and one molecule of oxygen. Another example is salt (sodium chloride, NaCl).
- A molecule is a group of two or more atoms that form the smallest identifiable unit into which a pure substance can be broken down into.

The periodic table³ is an organized array of elements with increasing atomic number. Each row is called a period, and each column is called a group.

Periodic table of the elements

^{*}Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC). © Encyclopædia Britannica, Inc.

- Atomic number is the number of protons present in an element.
- Atomic mass is the average number of protons plus neutrons in the element.
- For any given element, the atomic number is usually the smaller number while
 the atomic mass is the larger number written as a decimal. The figure⁴ presents
 an illustration of the numbers.

³ The periodic table figure was snipped from <u>Periodic table | Definition, Elements, Groups, Charges, Trends, & Facts | Britannica website.</u>

⁴ The figure was snipped from <u>The Periodic Table of Elements | Biology for Majors I (lumenlearning.com)</u> website.

Science: Lesson 3 - Motion

Motion describes the movement of objects or how they change positions.

One-Dimensional Motion

Linear motion is one-dimensional motion. This means an object moving in a straight line (from right to left or left to right).

- The two broad categories that classify the measurements of an object in motion are vector and scalar quantities.
- **Scalar quantities** are quantities that have magnitude and no direction. Examples: time, distance, speed, mass.
- **Vector quantities** are quantities that have both magnitude and direction. Examples are displacement, velocity, acceleration, and force.
- **Velocity** is the change in displacement per unit time and **Speed** is the change in distance per unit time. The SI unit of both quantities is m/s.
 - The SI unit (International System of Units) is a standardized set of units for measuring physical quantities.
- Acceleration is the change in velocity per unit time. Its SI unit is m/s^2 .

Acceleration due to gravity: the acceleration experienced by a body due to free fall near the surface of a massive surface. Denoted as g, acceleration due to gravity near the surface of the earth is given as $g = 9.81 \, m/s^2$.

• This value increases when a body is close to the earth's surface and decreases as the body gets farther away from the earth's surface.

Video: Speed, Velocity, and Acceleration | Physics of Motion Explained

Force: a push or pull on an object resulting from the object's interaction with another object. The SI unit of force is Newtons.

- Friction is a force that opposes or resists motion. Friction is the force that
 results from the motion between any two surfaces. The SI unit of friction is
 Newtons.
- Attractive Force brings two objects to come closer to each other while
- **Repulsive Force** causes two objects to move away from each other. Examples are mechanics, electricity, magnetism, gravity.

Video:

What is Force? | Contact Force and Non-Contact Force | Science Lesson for Kids

Real life examples of Friction (youtube.com)

Newton's Laws of Motion:

- 1. A body at rest remains at rest, or a body in motion remains in motion, unless acted upon by a force.
- 2. The force acting on a body is directly proportional to its acceleration.

$$F = ma$$

3. To every action, there is an equal but opposite reaction.

Video: Newton's 3 Laws of Motion for Kids: Three Physical Laws of Mechanics for Children - FreeSchool

Pressure: the perpendicular force per unit area.

$$Pressure = \frac{Force}{Area}$$

It has N/m^2 as its SI unit (or Pascals).

Video: Pressure Calculations on Maximum and Minimum pressure

Density: is mass per unit volume. It is the amount of matter packed into a space.

Solids are denser than liquids and liquids are denser than gases.

$$\rho = \frac{mass}{Volume}$$

• Density is important because it helps in determining whether an object sinks or floats in a fluid.

Video: Density Practice Problems - Tyler DeWitt

Science: Lesson 1 - Matter

States of Matter

- Matter is anything that has mass and occupies space.
- **Mass** is the amount of matter in a substance. **Weight** is how much that body weighs (they do not mean the same thing).
- **Volume** is amount of space that matter takes up.
- There are three states of matter:

	Solids	Liquids	Gases
Characteristics	Definite shapeDefinite volumeCannot be compressed	No definite shapeDefinite volumeCan be slightly compressed	No definite shapeNo definite volumeCan be easily compressed
Molecules	 Molecules: are tightly packed. This is why solids have a definite shape. 	 Molecules: not tightly packed This is why liquids can flow and take the shape of their containers. 	 Molecules: are very loose This is why gases are freely abounding in the atmosphere.
Expansion	Expands slightly when heated. Can contract back to original size.	 Expands more visibly when frozen. Can contract back to initial size. 	Easily expands and contracts.

Video: States of Matter - Solids, Liquids, Gases & Plasma - Chemistry

Phase Changes of Matter: when a matter is converted from one state to another. The figure¹ below shows the phase change process:

¹ The figure was snipped from <u>Lesson on Phase Diagrams - Hydrogen Fuel Cells (weebly.com)</u> website.

Examples:

Solid	\Longrightarrow	liquid	ice cubes melting ice cubes melting
Liquid		solid	water freezing to ice
Liquid	\Longrightarrow	Gas	boiling water creates steam
Gas	\Longrightarrow	Liquid	water droplets condense and falls as rain
Solid	\Rightarrow	Gas	dry ice changes directly to a gas at room temperature
Gas	\Rightarrow	Solid	water vapour changes to ice crating frost

Change in Temperature Causes Chage in State of Matter

- Boiling point: the temperature at which that liquid begins to change state to gas.
- Melting point: the temperature at which a solid begins to change state into a liquid.
- Freezing point: the temperature at which a liquid changes state into a solid.

Remember:

- Solids have high melting points and very high boiling points because a large amount of heat will be needed to break the strong bonds between the atoms.
- Gases have low boiling points and freezing points because the atoms are loosely bonded.

Video: Changes in States of Matter || Freezing, Melting, Condensation, Evaporation, Sublimation, Deposition

Physical And Chemical Properties of Matter

Physical Properties: are observable or can be measured.

- They can be measured as internal or external properties.
- They are usually reversible reactions
- The substance remains the same with the same properties
- Examples: density, colour, hardness, melting and boiling points, and electrical conductivity.
- Physical changes affect the form of a chemical substance, but not its chemical composition.

Chemical Properties are properties that describe how a substance reacts with another substance to form an entirely new substance.

- They are mostly irreversible reactions.
- A substance's composition is changed to form an entirely new substance with different properties.
- Examples: flammability, toxicity, acidity, reactivity, and heat of combustion.

Video: Physical and Chemical Properties