Metody obliczeniowe

wykład nr 4

- różniczkowanie przybliżone
- całkowanie numeryczne

Pierwsza pochodna funkcji

Pierwsza pochodna funkcji (definicja):

$$f'(x_k) = \lim_{\Delta x \to 0} \frac{f(x_k + \Delta x) - f(x_k)}{\Delta x}$$

Oznaczenia:

- \mathbf{f} funkcja określona na siatce punktów $\{\mathbf{x}_0, \dots, \mathbf{x}_n\}$
- $f_k := f(x_k)$ (k=0,...,n)
- f'_k:=f'(x_k) (k=0,...,n)
- h odległość miedzy punktami węzłowymi (węzły równoodległe)

Pierwsza pochodna funkcji

- najprostsze przybliżenia wzory dwupunktowe
 - wzór dwupunktowy "w przód"

$$f_k \approx \frac{f_{k+1} - f_k}{h}, \qquad 0 \le k < n$$

wzór dwupunktowy "w tył"

$$f_k \approx \frac{f_k - f_{k-1}}{h}, \qquad 0 < k \le n$$

- -źródła niedokładności:
 - •błędy obcięcia zmniejszając h można zwiększyć dokładność,
 - •błędy zaokrąglenia
 - •wolna zbieżność,
 - koszt obliczeń znacząco wzrasta przy malejącym h

Pierwsza pochodna funkcji

wzory wielopunktowe

wzór trójpunktowy

$$f_{k}' \approx \frac{f_{k+1} - f_{k-1}}{2h}, \qquad 0 < k < n$$

 przybliżenie jest dobre jeśli f(x) zmienia się wolno na odcinku o długości 2h

Pochodne funkcji wzory wielopunktowe

wzór pięciopunktowy

$$f_k \approx \frac{-f_{k+2} + 8f_{k+1} - 8f_{k-1} + f_{k-2}}{12h}, \qquad 1 < k < n-1$$

- im więcej punktów tym trudniej wyznaczyć pochodne w punktach brzegowych \mathbf{x}_0 , \mathbf{x}_n
- · wzór trójpunktowy dla drugiej pochodnej

$$f_k = \frac{f_{k+1} - 2f_k + f_{k-1}}{h^2}, \quad 0 < k < n$$

wzór daje dobre przybliżenie dla funkcji wolnozmiennej

Zadanie: zapisz funkcję Scilaba obliczającą przybliżone wartości pierwszej i drugiej pochodnej danej funkcji f w określonym punkcie x przy użyciu wzorów podanych powyżej; WE: f, x, h

• Problem (a,b – krańce przedziału całkowania):

$$\int_{a}^{b} f(x)dx = ?$$

• Problem (a,b – krańce przedziału całkowania):

$$\int_{a}^{b} f(x)dx = ?$$

- Możliwe rozwiązanie:
 - przybliżenie funkcji podcałkowej f(x) przez funkcję interpolującą g(x)
 - przybliżamy wówczas:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} g(x)dx$$

• Problem (a,b – krańce przedziału całkowania):

$$\int_{a}^{b} f(x)dx = ?$$

- Możliwe rozwiązanie:
 - przybliżenie funkcji podcałkowej f(x) przez funkcję interpolującą g(x)
 - przybliżamy wówczas:

$$\int_{a}^{b} f(x)dx \approx \int_{a}^{b} g(x)dx$$

dostajemy oszacowanie (całkę możemy obliczyć z dowolną dokładnością, jeżeli tylko f(x) daje się przybliżyć dowolnie dokładnie):

$$|f(x)-g(x)| < \varepsilon, \ x \in [a,b]$$
 \Rightarrow $|\int_{a}^{b} [f(x)-g(x)]dx| \le \varepsilon(b-a)$

przybliżenie funkcji podcałkowej wielomianem Lagrange'a o węzłach równoodległych

$$I(f) = \int_{a}^{b} f(x)dx$$

$$f(x) \approx L_{n}(x) = \sum_{i=0}^{n} f(x_{i}) \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$I(f) = \int_{a}^{b} f(x)dx$$

$$f(x) \approx L_{n}(x) = \sum_{i=0}^{n} f(x_{i}) \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

$$I(f) \approx I(L_{n}) = \int_{a}^{b} L_{n}(x)dx = \int_{a}^{b} \left(\sum_{i=0}^{n} f(x_{i}) \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}\right) dx$$

$$x_{i} = a + ih; \quad x = a + th \quad (x \in [a, b] \Rightarrow t \in [0, n]); \quad dx = hdt; \quad h = \frac{b - a}{n}$$

$$I(f) \approx h \sum_{i=0}^{n} f(x_{i}) \int_{0}^{n} \left(\prod_{\substack{j=0 \ j \neq i}}^{n} \frac{a + th - a - jh}{a + ih - a - jh}\right) dt = h \sum_{i=0}^{n} f(x_{i}) \int_{0}^{n} \left(\prod_{\substack{j=0 \ j \neq i}}^{n} \frac{t - j}{i - j}\right) dt$$

$$I(f) \approx \sum_{i=0}^{n} A_i f(x_i)$$
 gdzie $A_i = h \int_{0}^{n} \left(\prod_{\substack{j=0 \ j \neq i}}^{n} \frac{t-j}{i-j} \right) dt$

pojęcie kwadratury

Wzory postaci

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n} A_{k} f(x_{k})$$

przybliżające wartość całki nazywać będziemy kwadraturami

- współczynniki \mathbf{A}_{k} nazywać będziemy współczynnikami kwadratury,
- punkty x_k nazywać będziemy węzłami kwadratury,

Jeśli

$$I(f) = \int_{a}^{b} f(x)dx,$$
 $Q(f) = \sum_{k=0}^{n} A_{k} f(x_{k})$

to wyrażenie R(f)=I(f)-Q(f) nazywać będziemy resztą kwadratury

Kwadratura koła Problemy starożytne

Kwadratura koła

- skonstruowaniu przy użyciu cyrkla i linijki bez podziałki, kwadratu, którego pole równe jest polu danego koła (danej figury geometrycznej)
- księżyce Hipokratesa

Trysekcja kąta

podziale kąta na trzy równe części jedynie przy użyciu cyrkla i linijki

• Podwojenie sześcianu - problemem delijski

zbudowanie sześcianu o objętości dwa razy większej niż dany

• Kwadratura powstała poprzez przybliżenie funkcji podcałkowej wielomianem Lagrange'a o węzłach równoodległych

$$f(x) \approx L_n(x) = \sum_{i=0}^n f(x_i) \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$$

$$I(f) \approx \sum_{i=0}^{n} A_i f(x_i)$$
 gdzie $A_i = h \int_{0}^{n} \left(\prod_{\substack{j=0 \ j \neq i}}^{n} \frac{t-j}{i-j} \right) dt$

nosi nazwę kwadratury Newtona-Cotesa

ogólny wzór kwadratury

$$I(f) \approx \sum_{i=0}^{n} A_i f(x_i)$$
 gdzie $A_i = h \int_{0}^{n} \left(\prod_{\substack{j=0 \ j \neq i}}^{n} \frac{t-j}{i-j} \right) dt$

• n=1 (wzór trapezów)

$$Q_{1}(f) = A_{0}f(a) + A_{1}f(b), h = b - a$$

$$A_{0} = h \frac{1}{(-1)} \int_{0}^{1} (t - 1)dt = -h \cdot \left[\frac{t^{2}}{2} - t\right]_{0}^{1} = \frac{h}{2}$$

$$A_{1} = h \int_{0}^{1} t dt = h \cdot \left[\frac{t^{2}}{2}\right]_{0}^{1} = \frac{h}{2}$$

$$Q_1(f) = \frac{b-a}{2} (f(a) + f(b))$$

ogólny wzór kwadratury

$$I(f) \approx \sum_{i=0}^{n} A_i f(x_i)$$
 gdzie $A_i = h \int_{0}^{n} \left(\prod_{\substack{j=0 \ i \neq i}}^{n} \frac{t-j}{i-j} \right) dt$

• n=2 (wzór parabol)

$$A_0 = h \frac{1}{(-1)(-2)} \int_0^2 (t-1)(t-2)dt = \frac{h}{2} \cdot \left[\frac{t^3}{3} - 3\frac{t^2}{2} + 2t\right]_0^2 = \frac{h}{3}$$

$$A_1 = h \frac{1}{(-1)} \int_0^2 t(t-2)dt = -h \cdot \left[\frac{t^3}{3} - t^2\right]_0^2 = \frac{4}{3}h$$

$$A_2 = h \frac{1}{2} \int_0^2 t(t-1)dt = \frac{h}{2} \cdot \left[\frac{t^3}{3} - \frac{t^2}{2}\right]_0^2 = \frac{h}{3}$$

$$Q_2(f) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

Kwadratury złożone Newtona-Cotesa

- Błąd kwadratur Newtona-Cotesa jest proporcjonalny do pewnej potęgi długości przedziału całkowania
- jeżeli przedział całkowania jest duży, kwadratura (nawet niskiego stopnia) może nie zapewnić żadnej dokładności

Wyjście:

- podziel przedział całkowania [a,b] na pewną liczbę podprzedziałów $[x_{i-1},x_i]$ (i=1,...,N; $a=x_0< x_1<...< x_{N-1}< x_N=b$)
- w każdym podprzedziale $[\mathbf{x}_{i-1}, \mathbf{x}_{i}]$ zastosuj kwadraturę niskiego stopnia i zsumuj wyniki.

Kwadraturę będącą sumą kwadratur prostych nazywamy kwadraturą złożoną.

- błąd kwadratury złożonej jest dużo mniejszy niż odpowiedniej kwadratury prostej
- zwiększając liczbę podziałów możemy dowolnie zmniejszać błąd

Kwadratury złożone Newtona-Cotesa

n=1 (złożony wzór trapezów)

stosując wzór trapezów dla każdego z przedziałów

$$[x_{i-1}, x_i]$$
 (i=1,...,N)

$$Q_{1}(f) = \frac{x_{i} - x_{i-1}}{2} (f(x_{i}) + f(x_{i-1}))$$

otrzymujemy po zsumowaniu

$$Q_{1,N}(f) = \frac{b-a}{N} \left(\frac{f(a)+f(b)}{2} + \sum_{k=1}^{N-1} f(x_k) \right)$$

• n=2 (złożony wzór parabol - Simpsona)

przyjmując N parzyste, stosując wzór parabol dla każdego z przedziałów

$$[\mathbf{x}_{2i}, \mathbf{x}_{2i+2}]$$
 (i=0,...,N-2) dostajemy:

$$Q_{2,N} = \frac{b-a}{6N} \left(f(a) + 4\sum_{k=1}^{N} f(x_{2k-1}) + 2\sum_{k=1}^{N-1} f(x_{2k}) + f(b) \right)$$

• n=3 (wzór ,,trzech ósmych") – kwadratura prosta

$$Q_3(f) = \frac{b-a}{8} (f(a) + 3*f(a + \frac{b-a}{3}) + 3*f(a + 2\frac{b-a}{3}) + f(b))$$

Kwadratury złożone Newtona-Cotesa przykład zastosowania wzoru prostokątów i parabol

$$\mathbf{I} = \int_{0}^{1} \sqrt{1 - \mathbf{x}^2} \mathbf{d} \mathbf{x} = \frac{\pi}{4}$$

wzór trapezów

n	1	2	4	8
$\mathbf{I_p}$	0.5	0.683013	0.7489273	0.772455
I	0.7853982	0.7853982	0.7853982	0.7853982
eps	36	13	4.64	1.65

wzór parabol

N	2	4	8
I_p	0.74402	0.770899	0.780297293
Ι	0.7853982	0.7853982	0.7853982
eps	5.3	1.85	0.65

$$eps = \left| \frac{I_p - I}{I} \right| 100\%$$

pojęcie rzędu kwadratury

Mówimy iż kwadratura Q jest rzędu r jeżeli:

- I(W)=Q(W) dla wszystkich wielomianów W(x) stopnia mniejszego od r (I() oznacza wartość dokładną całki)
- istnieje wielomian W(x) stopnia r (r≥1) taki, że
 I(W)≠Q(W)

- Kwadratury Newtona-Cotesa oparte na **n+1** węzłach są rzędu
 - n+2 dla n parzystych
 - n+1 dla n nieparzystych

Kwadratury złożone Newtona-Cotesa zbieżność ciągu kwadratur

- Obliczamy całkę $\int_{a}^{b} f(x)dx$ korzystając ze złożonego wzoru trapezów
- przy podziale odcinka [a,b] na N części, kwadraturę obliczamy ze wzoru:

$$Q_{1,N}(f) = \frac{b-a}{N} \left(\frac{f(a)+f(b)}{2} + \sum_{k=1}^{N-1} f(x_k) \right)$$

Kwadratury złożone Newtona-Cotesa

zbieżność ciągu kwadratur

- Obliczamy całkę $\int_{-b}^{b} f(x)dx$ korzystając ze złożonego wzoru trapezów
- przy podziale odcinka [a,b] na N części, kwadraturę obliczamy ze wzoru:

$$Q_{1,N}(f) = \frac{b-a}{N} \left(\frac{f(a)+f(b)}{2} + \sum_{k=1}^{N-1} f(x_k) \right)$$

• obliczenia prowadzimy w schemacie **z połowieniem kroku** otrzymujemy ciąg kwadratur $(Q_{1,n})_n$, zbieżny do dokładnej wartości całki

$$Q_{1,2N} = \frac{b-a}{2N} \left(\frac{f(a)+f(b)}{2} + \sum_{k=1}^{2N-1} f(x_k) \right) = \frac{1}{2} Q_{1,N} + \frac{b-a}{2N} \sum_{k=1}^{N} f(x_{2k-1})$$

formuła pozwala wykorzystać poprzednie obliczenia $\mathbf{f}(\mathbf{x}_k)$

przyspieszenie szybkości zbieżności ciągu kwadratur

zbieżny ciąg kwadratur
$$(Q_{1,n})_n: Q_{1,1} \to Q_{1,2} \to \dots \to Q_{1,n} \to \dots$$
 I(f)

przyspieszenie szybkości zbieżności ciągu kwadratur

zbieżny ciąg kwadratur $(Q_{1,n})_n: Q_{1,1} \to Q_{1,2} \to \dots \to Q_{1,n} \to \dots I(f)$

- przedział całkowania [a,b] dzielimy na 2ⁱ (i=0,1,...)
 równych części
- oznaczamy: $h_i = \frac{b-a}{2^i}$, $x_{i,k} = a + kh_i$, $f_{i,k} = f(x_{i,k})$
- wzór trapezów możemy zapisać:

$$T_{0,i} = h_i \left(\sum_{k=0}^{2^i} f_{i,k} - \frac{f(a) + f(b)}{2} \right)$$

błąd wzoru wynosi (współczynniki c_k nie zależą od i):

$$I(f) - T_{0,i} = c_1 h^2_i + c_2 h^4_i + c_3 h^6_i + \dots$$

przyspieszenie szybkości zbieżności ciągu kwadratur

• dla i=0, i=1 otrzymujemy:

$$I(f) - T_{0,0} = c_1 h^2_0 + c_2 h^4_0 + c_3 h^6_0 + \dots \qquad h_1 = \frac{h_0}{2}$$

$$I(f) - T_{0,1} = c_1 h^2_1 + c_2 h^4_1 + c_3 h^6_1 + \dots = \frac{1}{4} c_1 h^2_0 + \frac{1}{16} c_2 h^4_0 + \frac{1}{64} c_3 h^6_0 + \dots$$

przyspieszenie szybkości zbieżności ciągu kwadratur

• dla i=0, i=1 otrzymujemy:

$$I(f) - T_{0,0} = c_1 h^2_0 + c_2 h^4_0 + c_3 h^6_0 + \dots \qquad h_1 = \frac{h_0}{2}$$

$$I(f) - T_{0,1} = c_1 h^2_1 + c_2 h^4_1 + c_3 h^6_1 + \dots = \frac{1}{4} c_1 h^2_0 + \frac{1}{16} c_2 h^4_0 + \frac{1}{64} c_3 h^6_0 + \dots$$

• eliminując pierwsze składniki prawych stron dostajemy:

$$I(f) - T_{0,0} \approx 4(I(f) - T_{0,1})$$
 \Rightarrow $I(f) \approx \frac{4T_{0,1} - T_{0,0}}{3} = T_{0,1} - \frac{T_{0,1} - T_{0,0}}{3}$

przyspieszenie szybkości zbieżności ciągu kwadratur

• dla i=0, i=1 otrzymujemy:

$$I(f) - T_{0,0} = c_1 h^2_0 + c_2 h^4_0 + c_3 h^6_0 + \dots \qquad h_1 = \frac{h_0}{2}$$

$$I(f) - T_{0,1} = c_1 h^2_1 + c_2 h^4_1 + c_3 h^6_1 + \dots = \frac{1}{4} c_1 h^2_0 + \frac{1}{16} c_2 h^4_0 + \frac{1}{64} c_3 h^6_0 + \dots$$

• eliminując pierwsze składniki prawych stron dostajemy:

$$I(f) - T_{0,0} \approx 4(I(f) - T_{0,1})$$
 \Rightarrow $I(f) \approx \frac{4T_{0,1} - T_{0,0}}{3} = T_{0,1} - \frac{T_{0,1} - T_{0,0}}{3}$

oznaczając

$$T_{m,i} = T_{m-1,i+1} + \frac{T_{m-1,i+1} - T_{m-1,i}}{2^{2m} - 1}$$

otrzymujemy kwadratury Romberga

przyspieszenie szybkości zbieżności ciągu kwadratur

- T_{0,i} wartość złożonego wzoru trapezów przy podziale przedziału całkowania na 2ⁱ równych części
- wzór kwadratury:

$$T_{m,i} = T_{m-1,i+1} + \frac{T_{m-1,i+1} - T_{m-1,i}}{2^{2m} - 1}$$

• wielkości T_{m, i} można zapisać w nieskończonej tablicy

- zbieżność ciągu $(\mathbf{T}_{m,0})_m$ z reguły jest dużo szybsza niż ciągu $(\mathbf{T}_{0,m})_m$
- kwadratury tworzące drugą kolumnę diagramu są złożonymi wzorami parabol
 - wszystkie kwadratury tworzące dany wiersz diagramu oparte są na tych samych równoodległych węzłach
 - każda z kwadratur $T_{k,0},T_{k,1},...$ jest rzędu **2k+1**

przykład zastosowania

$$\mathbf{I} = \int_0^1 \sqrt{1 - \mathbf{x}^2} \mathbf{d} \mathbf{x} = \frac{\pi}{4}$$

n	1	2	4	8
wzór trapezów	0.5	0.683013	0.7489273	0.772455
kwadratura Romberga		0.744017	0.772691	0.781055
wartość dokładna	0.7853982	0.7853982	0.7853982	0.7853982
błąd procentowy wzoru trapezów	36	13	4.64	1.65
błąd procentowy kwadratury Romberga		5.3	1.62	0.55

Kwadratury Gaussa

Problem

• dla ustalonego **n** poszukujemy **kwadratury o maksymalnym rzędzie**

$$Q(f) = \sum_{k=0}^{n} A_k f(x_k)$$

przybliżającej wartość dokładną całki

$$\int_{a}^{b} f(x)dx$$

problem sprowadza się do odpowiedniego wyboru węzłów

Kwadratury Gaussa

Problem

• dla ustalonego **n** poszukujemy **kwadratury o maksymalnym rzędzie**

$$Q(f) = \sum_{k=0}^{n} A_k f(x_k)$$

przybliżającej wartość dokładną całki

$$\int_{a}^{b} f(x)dx$$

problem sprowadza się do odpowiedniego wyboru węzłów

• dany jest ciąg wielomianów ortogonalnych $P_0(x), \ldots, P_n(x), \ldots$ (wielomian $P_n(x)$ jest n-tego stopnia), tzn.

$$(P_i, P_k) = \int_a^b P_i(x)P_j(x)dx = 0 \qquad dla \qquad i \neq k$$

• Kwadraturą o **maksymalnym rzędzie** (równym **2n+2**) jest kwadratura interpolacyjna, której węzłami są pierwiastki **(n+1)**–go wielomianu ortogonalnego na przedziale **[a, b]**, kwadratury takie nazywane są **kwadraturami Gaussa**.

• Na przedziale [-1,1] wielomianami ortogonalnymi są wielomiany Legendre'a:

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

• Współczynniki kwadratury Gaussa-Legendre'a

$$Q(f) = \sum_{k=1}^{N} f(x_k) A_k$$

wyrażają się wzorami

$$A_k = -\frac{2}{(N+2)P_{N+2}(x_k)P'_{N+1}(x_k)} \qquad k = 0,1,...,N$$

• $\mathbf{x_k}$ (k=0,1,...,N) są pierwiastkami wielomianu $P_{N+1}(x)$

Dana funkcja ciągła f(x) na przedziale [a,b]

• sprowadzamy całkę $\int_{a}^{b} f(x)dx$

do postaci znormalizowanej $\int_{0}^{1} F(u)du$

$$x = \frac{b+a}{2} + \frac{b-a}{2}u,$$

$$dx = \frac{b-a}{2}du$$

$$u = -1 \Rightarrow x = 0$$

$$dx = \frac{b-a}{2}du$$

$$u = -1 \Rightarrow x = a, \qquad u = 1 \Rightarrow x = b$$

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{1} f(\frac{b+a}{2} + \frac{b-a}{2}u)du = \int_{-1}^{1} F(u)du$$

$$F(u) = \frac{b-a}{2} f(\frac{b+a}{2} + \frac{b-a}{2}u)$$

obliczamy wartość przybliżoną całki

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} F(u)du \approx \sum_{i=0}^{N} F(u_{i})A_{i}$$

- $-\mathbf{u_i}$ (i=0,...,N) węzły kwadratury tzw. punkty Gaussa
- A_i współczynniki kwadratury
- N+1 ilość punktów Gaussa

$$F(u) = \frac{b-a}{2} f\left(\frac{b+a}{2} + \frac{b-a}{2}u\right)$$

przykład

obliczyć całkę $\int_{1}^{5} (x^2 + 2) dx$

wyznaczenie współczynników i węzłów (pierwiastków (N+1) – go wielomianu kwadratury Gaussa-Legendre'a dla N=1

$$A_k = -\frac{2}{(N+2)P_{N+2}(x_k)P'_{N+1}(x_k)}$$

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

$$P_2(x) = \frac{1}{8} \cdot [2(x^2 - 1) \cdot 2x]' = \frac{1}{2} [x^3 - x]' = \frac{3}{2} x^2 - \frac{1}{2} = \frac{3}{2} (x^2 - \frac{1}{3}) = \frac{3}{2} (x - \frac{\sqrt{3}}{3})(x + \frac{\sqrt{3}}{3})$$

$$P_2'(x) = 3x$$
, $P_3(x) = \frac{1}{8 \cdot 6} [(x^2 - 1)^3]''' = \frac{5}{2} x^3 - \frac{3}{2} x$

$$A_0 = A_1 = -\frac{2}{3 \cdot (\frac{5}{2 \cdot 3\sqrt{3}} - \frac{3}{2\sqrt{3}}) \cdot \sqrt{3}} = -\frac{2}{3(\frac{5}{6} - \frac{9}{6})} = 1$$

przykład

$$\int_{1}^{5} (x^2 + 2) dx$$

• sprowadzenie całki do postaci znormalizowanej:

$$x = \frac{b+a}{2} + \frac{b-a}{2}u, \qquad dx = \frac{b-a}{2}du$$

$$\int_{1}^{5} (x^{2} + 2)dx = \int_{-1}^{1} \{ [(3 + 2u)^{2} + 2] \cdot 2 \} du = \int_{-1}^{1} (8u^{2} + 24u + 22) du$$

• obliczenie wartości kwadratury (wartość dokładna = 49.3333)

$$u_0 = -\frac{\sqrt{3}}{3} = -0.57735,$$
 $u_1 = \frac{\sqrt{3}}{3} = 0.57735$

$$\sum_{i=0}^{1} F(u_i) A_i = (8u_0^2 + 24u_0 + 22) + (8u_1^2 + 24u_1 + 22)$$

$$= 8(-0.57735)^2 + 24(-0.57735) + 22 + 8 \cdot 0.57735^2 + 24 \cdot 0.57735 + 22 = 49.33328$$

węzły i współczynniki

Ν	V	k	Węzły x_k	Współczynniki A_k
1	(0	$x_0 = -0,5773502692\dots$	$A_0 = 1$
	1	1	$x_1 = 0,5773502692\dots$	$A_1 = 1$
2	2 (0	$x_0 = -0,7745966692\dots$	$A_0 = 5/9$
	1	1	$x_1 = 0$	$A_1 = 8/9$
	2	2	$x_2 = 0,7745966692\dots$	$A_2 = 5/9$
3	3 (0	$x_0 = -0,8611363116\dots$	$A_0 = 0,3478548451\dots$
	1	1	$x_1 = -0,3399810436\dots$	$A_1 = 0,6521451549\dots$
	2	2	$x_2 = 0,3399810436\dots$	$A_2 = 0,6521451549\dots$
	3	3	$x_3 = 0,8611363116\dots$	$A_3 = 0,3478548451\dots$

Trudności w całkowaniu numerycznym

funkcja podcałkowa jest osobliwa Modyfikujemy problem:

- zamiana zmiennych
- całkowanie przez części
- wyłączenie łatwo całkowalnego składnika zawierającego osobliwości (uwaga: możliwe znoszenie się składników!)
- specjalne wzory całkowe

Przykład

$$\int_{0}^{1} \frac{e^{x}}{\sqrt{x}} dx \qquad \Rightarrow x = t^{2}, dx = 2t \cdot dt \Rightarrow 2\int_{0}^{1} e^{t^{2}} dt$$

$$\int ... \iint_{\Omega} f(x_1, ..., x_n) dx_1 ... dx_n = ?$$

- **kubatury** wielowymiarowe odpowiedniki kwadratur złożonych
- dla funkcji **n** zmiennych podział na n-wymiarowe obszary regularne w których znane są wzory kwadratur prostych

dla funkcji **n**-zmiennych dokonując podziału odcinka [**a**_i,**b**_i] (**i**=1,...,**n**) na **m** części otrzymujemy **m**ⁿ **n**-wymiarowych kostek

uogólniony wzór parabol

$$\int_{[a,b]\times[c,d]} f(x,y)dxdy = ?$$

- [a,b]×[c,d] wyznacza prostokątny obszar całkowania
- przedział [a,b] dzielimy na 2n części, przedział [c,d] dzielimy na 2m części.
- przyjmujemy oznaczenia

•
$$x_0=a$$
, $x_i=a+ih$ (i=0,1,...,2n), $x_{2n}=b$, $h=(b-a)/2n$

•
$$y_0=c$$
, $y_i=c+ik$ (i=0,1,...,2m), , $y_{2m}=d$, $k=(d-c)/2m$

• obszar całkowania zostaje podzielony na **n**•**m** prostokątów

$$[x_{2i},x_{2i+2}]\times[y_{2i},y_{2i+2}]$$
 (i=0,1,...,n-1; j=0,1,...,m-1),

• w każdym z n·m prostokątów stosujemy kubaturę prostą (uogólniony wzór parabol):

uogólniony wzór parabol

• dla prostokąta oznaczonego $R_{1,1}$ otrzymujemy formułę:

$$\int_{R} f(x,y) dx dy \approx \frac{1}{9} hk \Big(f(x_0, y_0) + f(x_2, y_0) + f(x_0, y_2) + f(x_2, y_2) + 4[f(x_0, y_1) + f(x_2, y_1) + f(x_1, y_0) + f(x_1, y_2)] + 16f(x_1, y_1) \Big)$$

uogólniony wzór parabol

po zsumowaniu dostajemy:

$$\int_{[a,b]\times[c,d]} f(x,y)dxdy \approx \frac{1}{9}hk \sum_{i=0}^{2n} \sum_{j=0}^{2m} a_{ij} f(x_i, y_j)$$

$$A = \begin{bmatrix} 1 & 4 & 2 & 4 & 2 & \dots & 4 & 2 & 4 & 1 \\ 4 & 16 & 8 & 16 & 8 & \dots & 16 & 8 & 16 & 4 \\ 2 & 8 & 4 & 8 & 4 & \dots & 8 & 4 & 8 & 2 \\ & & & & & & & & & & \\ 4 & 16 & 8 & 16 & 8 & \dots & 16 & 8 & 16 & 4 \\ 1 & 4 & 2 & 4 & 2 & \dots & 4 & 2 & 4 & 1 \end{bmatrix}$$

Zadanie: zapisz funkcję SciLaba obliczającą całkę z funkcji dwóch zmiennych, wykorzystującą uogólniony wzór trapezów. Dane wejściowe: a,b,c,d,f,n,m. Przetestuj dla funkcji $f(x,y)=xy^2$ na obszarze [0,2]x[0,4] przyjmując n=5,m=10

Zadanie: zapisz funkcję SciLaba obliczającą całkę z funkcji dwóch zmiennych, wykorzystującą uogólniony wzór parabol. Dane wejściowe: a,b,c,d,f,n,m. Przetestuj dla funkcji f(x,y)=xy² na obszarze [0,2]x[0,4] przyjmując n=5,m=10

• w przypadku gdy obszar całkowania nie jest prostokątem, konstruujemy prostokąt zawierający obszar całkowania,

budujemy funkcję pomocniczą, którą całkujemy przy użyciu wzoru kubatur

$$\overline{f}(x,y) = \begin{cases} f(x,y) & dla & (x,y) \in \Omega \\ 0 & dla & (x,y) \in R - \Omega \end{cases}$$

przykład zastosowania kubatury Gaussa

- Dana jest funkcja dwóch zmiennych f(x,y) ciągła i ograniczona w obszarze trójkątnym D.
- Wierzchołki trójkąta wyznaczają punkty $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), (\mathbf{x}_3, \mathbf{y}_3)$ nie leżące na jednej prostej.
- Wprowadza się podstawienie normalizujące wyjściowy trójkąt do trójkąta prostokątnego, równoramiennego o wierzchołkach (0,0),
 (0,1),(1,0):

$$x = x_1 + (x_2 - x_1)\xi + (x_3 - x_1)\eta$$
$$y = y_1 + (y_2 - y_1)\xi + (y_3 - y_1)\eta$$

przykład zastosowania kubatury Gaussa

• Zmiana układu współrzędnych wymaga pomnożenia funkcji podcałkowej przez tzw. jacobian przekształcenia:

$$J = \begin{vmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial y}{\partial \eta} \end{vmatrix} = \begin{vmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{vmatrix}$$

$$J = (x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)$$
$$|J| = 2|D|$$

|D| - pole wyjściowego trójkąta D

przykład zastosowania kubatury Gaussa

Funkcja podcałkowa dla trójkąta znormalizowanego przyjmuje postać:

$$F(\xi,\eta) = |J| f[x_1 + (x_2 - x_1)\xi + (x_3 - x_1)\eta, y_1 + (y_2 - y_1)\xi + (y_3 - y_1)\eta]$$

Końcowy wzór do obliczania całki podwójnej po trójkącie:

$$\int_{0}^{1} d\xi \int_{0}^{1-\xi} F(\xi, \eta) d\eta = \frac{1}{2} \sum_{i=1}^{n} F(\xi_{i}, \eta_{i}) w_{i}$$

- w_i współczynniki kwadratury
- n liczba punktów Gaussa

n	$\xi_{\mathtt{i}}$	$\eta_{\mathtt{i}}$	$\mathbf{w}_\mathtt{i}$
3	1/2	1/2	1/3
	0	1/2	1/3
	1/2	0	1/3

przykład zastosowania kubatury Gaussa

• Obliczyć całkę z funkcji f(x,y)=x+3y-1 po obszarze trójkątnym zbudowanym na wierzchołkach (1,1),(3,2),(2,3)

$$x = x_1 + (x_2 - x_1)\xi + (x_3 - x_1)\eta = 1 + (3 - 1)\xi + (2 - 1)\eta = 1 + 2\xi + \eta$$
$$y = y_1 + (y_2 - y_1)\xi + (y_3 - y_1)\eta = 1 + (2 - 1)\xi + (3 - 1)\eta = 1 + \xi + 2\eta$$

przykład zastosowania kubatury Gaussa

$$F(\xi, \eta) = |3| \cdot \left[1 + 2\xi + \eta + 3(1 + \xi + 2\eta) - 1\right] = 9 + 15\xi + 21\eta$$

$$\frac{1}{2} \sum_{i=1}^{n} F(\xi_{i}, \eta_{i}) w_{i} = \frac{1}{2} \sum_{i=1}^{3} F(\xi_{i}, \eta_{i}) w_{i}$$

$$= \frac{1}{2} \left[F\left(\frac{1}{2}, \frac{1}{2}\right) \cdot \frac{1}{3} + F\left(0, \frac{1}{2}\right) \cdot \frac{1}{3} + F\left(\frac{1}{2}, 0\right) \cdot \frac{1}{3} \right]$$

$$= \frac{1}{2} \cdot \frac{1}{3} \cdot \left[27 + 19.5 + 16.5 \right] = 10.5$$

Zadanie: zapisz funkcję SciLaba obliczającą całkę z funkcji dwóch zmiennych, po trójkącie, wzorem 3-punktowym Gaussa. Dane wejściowe: współrzędne wierzchołków trójkąta, funkcja f(x,y).

Przetestuj dla podanego wyżej przykładu.

Wzory kubatur Gaussa

- gotowe wzory dla prostych figur geometrycznych
- transformacja całki zamiana zmiennych, przekształcenie funkcji podcałkowej

$$\iint_{\Omega} f(x, y) dx dy \qquad \Rightarrow \qquad \iint_{S} F(\xi, \eta) d\xi d\eta$$

Wzór prostokątów

funkcje SciLaba

• int2d()

 obliczenie całki z funkcji 2 zmiennych po obszarze opisanym siatką trójkątów

• int3d()

 obliczenie całki z funkcji 3 zmiennych, obszar całkowania opisany siatką czworościanów

integrate(), intg()

obliczenie całki z funkcji jednej zmiennej metodą kwadratur

intsplin()

 obliczenie całki z funkcji sklejanej (jednej zmiennej) interpolującej zbiór punktów

inttrap()

 obliczenie całki z funkcji (jednej zmiennej) interpolującej zbiór punktów – wzór trapezów

Podsumowanie Różniczkowanie i całkowanie numeryczne

- Obliczanie pierwszej i drugiej pochodnej funkcji
 - wzory dwupunktowe,
 - wzór trójpunktowy, pięciopunktowy
- Całkowanie numeryczne
 - sformułowanie problemu, określenie sposobu rozwiązania
- Pojęcie kwadratury
 - węzły kwadratury,
 - współczynniki kwadratury,
 - reszta kwadratury
- Kwadratury Newtona-Cotesa
 - wyprowadzenie wzoru
 - kwadratury proste :
 - wzór trapezów (liczba węzłów =2)
 - wzór parabol (liczba węzłów =3)

Podsumowanie - cd. Różniczkowanie i całkowanie numeryczne

- Złożone kwadratury Newtona-Cotesa
- Pojęcie rzędu kwadratury
 - rząd kwadratur Newtona-Cotesa
- Istota i algorytm metody Romberga
- Problem kwadratur o maksymalnym rzędzie
 - wielomiany ortogonalne,
 - kwadratura Gaussa-Legendre'a
 - całkowanie funkcji kwadraturami Gaussa
 - postać znormalizowana całki, punkty Gaussa