IN THE CLAIMS

1. (previously presented): A compound of formula I,

$$R^3$$
 R^4
 R^5
 Z
 R^1

wherein X represents an an optionally substituted amide, amine or sulfonamide group, which latter three groups are connected to the indole ring through their nitrogen atom;

Y represents a carboxylic acid, a carboxylic acid ester, a carboxylic acid amide, a hydroxamic acid, a hydroxamic acid ester or hydroxymethyl;

Z comprises a C₁₋₈ alkylene or a C₂₋₈ heteroalkylene chain;

 R^1 represents an optionally substituted aryl or heteroaryl group; one of the groups R^2 , R^3 , R^4 and R^5 represents an optionally substituted aryl or heteroaryl group and the other groups R^2 , R^3 , R^4 and R^5 are independently selected from hydrogen, G^1 , an aryl group, a heteroaryl group (which latter two groups are optionally substituted by one or more substituents selected from A), C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl. C_{2-6} alkynyl or C_{3-8} heterocycloalkyl (which latter five groups are optionally substituted by one or more substituents selected from G^1 and/or G^1); and/or

b) any two other groups which are adjacent to each other are optionally linked to form, along with two atoms of the essential benzene ring in the compound of formula I, a 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

A represents:

- an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B;
- II) å C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^1 and/or Q^1 ; or
 - III) a G¹ group; or

IV) two adjacent A substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two A substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

 G^1 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹-R¹⁰;

wherein A^1 represents a single bond or a spacer group selected from $-C(Q^2)A^2$ -, $-S(O)_0A^3$ -, $-N(R^{11})A^4$ -, $-OA^5$ - and -S-, in which:

A² represents A⁶ or -S-;

A³ represents A⁶:

 $A^4 \text{ represents } A^7, -C(Q^2)N(A^{11})C(Q^2)N(R^{11})-, -C(Q^2)N(A^{11})C(Q^2)O-, \\ C(Q^2)N(A^{11})S(O)_nN(R^{11})-, -C(Q^2)S-, -S(O)_nN(R^{11})C(Q^2)N(R^{11})-, -S(O)_nN(R^{11})C(Q^2)O-, \\ -S(O)_nN(R^{11})S(O)_nN(R^{11})- \text{ or } -S(O)nO-; \\$

A⁵ represents A⁷ or -S(O)_nO-;

A⁶ represents a single bond, -N(R¹¹)- or O-;

 A^7 represents a single bond, $-C(Q^2)$ -, $-C(Q^2)N(R^{11})$ -, $-C(Q^2)O$ -, $-S(O)_n$ - or $-S(O)_nN(R^{11})$;

 Q^1 and Q^2 independently represent, on each occasion when mentioned above, =O, =S, =NR¹⁰, =NN(R¹⁰)(R¹¹), =NOR¹⁰, =NS(O)₂N(R¹⁰)(R¹¹), =NCN, =C(H)NO₂ or =C(R¹⁰)(R¹¹);

R⁶ and R⁷ independently represent, on each occasion when mentioned above:

- I) hydrogen;
- II) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B; or
- III) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which groups are optionally substituted by one or more substituents selected from G^2 and/or Q^3 ; or

 A^6 and R^7 may be linked together to form along with the N atom and -E- group to which A^6 and A^7 are respectively attached, a 5- to a-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is optionally substituted by one or more substituents selected from G^2 and/or Q^3 :

B represents:

I) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G² and/or wherein any two adjacent atoms of the aryl or

heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

- II) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^2 and/or Q^3 ; or
 - III) a G² group; or
- IV) two adjacent B substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two B substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

 G^2 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A⁸-R¹²:

wherein A^8 represents a single bond or a spacer group selected from $-C(Q^4)A^9$ -, $-S(O)_nA^{10}$ -, $-N(R^{13})A^{11}$ -, $-OA^{12}$ - and -S-, in which:

A⁹ represents A¹³ or -S-:

A¹⁰ represents A¹³;

A¹¹ represents A¹⁴, -C(Q⁴)N(R¹³)C(Q⁴)N(R¹³)-, -C(Q⁴)N(R¹³)C(Q⁴)O-,

 $-C(Q^4)N(R^{13})S(O)_nN(R^{13})-, \ -C(Q^4)S-, \ -S(O)_nN(R^{13})C(Q^4)N(R^{13})-, \ -S(O)_nN(R^{13})C(Q^4)O-, \$

 $-S(O)_nN(R^{13})S(O)_nN(R^{13})$ - or $-S(O)_nO$ -;

A¹² represents A¹⁴ or -S(O)_nO-;

A¹³ represents a single bond, -N(R¹³)- or -O-;

 A^{14} represents a single bond, $-C(Q^4)$ -, $-C(Q^4)N(R^{13})$ -, $-C(Q^4)O$ -, $-S(O)_0$ or $-S(O)_0N(R^{13})$;

Q³ and Q⁴ independently represent, on each occasion when mentioned above, =O, =S, =NR¹², =NN(R¹²)(R¹³), =NOR¹², =NS(O)₂N(R¹²)(R¹³), =NCN, =C(H)NO₂ or =C(R¹²)(R¹³);

R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ are independently selected from:

- i) hydrogen;
- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G³ and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms, which ring is itself optionally substituted by one or more substituents selected from halo. -R¹⁴. -OR¹⁴ and =O: or

iii) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^3 and/or W^1 ; or

any pair of R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 8-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G³ and/or W¹;

 G^3 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹⁵-R¹⁵:

wherein A^{15} represents a single bond or a spacer group selected from -C(W²) A^{16} _, -S(O)_n A^{17} -, -N(R¹⁶) A^{18} -, -OA¹⁹- and -S-, in which:

A¹⁶ represents A²⁰ or -S-;

A¹⁷ represents A²⁰;

 A^{18} represents A^{21} , $-C(W^2)N(R^{16})C(W^2)N(R^{16})$ -, $-C(W^2)N(R^{16})C(W^2)O_{_}$,

 $-C(W^2)N(R^{16})S(O)_nN(R^{16})-, \ -C(W^2)S-, \ -S(O)_nN(R^{16})C(W^2)N(R^{16})-, \ -S(O)_nN(R^{16})C(W^2)O-, \$

 $-S(O)_nN(R^{16})S(O)_nN(R^{16})$ - or $-S(O)_nO$ -;

A¹⁹ represents A²¹ or -S(O)_nO-;

A²⁰ represents a single bond, -N(R¹⁶)- or -O-;

 A^{21} represents a single bond, $-C(W^2)$ -, $-C(W^2)N(R^{16})$ -, $-C(W^2)O$ -, $-S(O)_n$ - or $-S(O)_nN(R^{16})$;

 W^1 and W^2 independently represent, on each occasion when mentioned above, =O, =S, =NR¹⁵, =NN(R¹⁵)(R¹⁶), =NOR¹⁵, =NS(O)₂N(R¹⁵)(R¹⁶), =NCN, =C(H)NO₂ or =C(R¹⁵)(R¹⁶); R¹⁴, R¹⁵ and R¹⁶ are independently selected from:

- i) hydrogen;
- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G^4 , methylenedioxy, difluoromethylenedioxy and/or dimethylenedioxy; or
- iii) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^4 and/or J; or

any pair of R14, R15 and R16 may, for example when present on the same or on

adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 7-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G⁴ and J;

 G^4 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A²²-R¹⁷;

wherein A²² represents a single bond or a spacer group selected from -C(O)A²³-,

 $-S(O)_nA^{24}$ -, $-N(R^{18})A^{25}$ -, $-OA^{26}$ - and -S-, in which:

A²³ represents A²⁷ or -S-;

A²⁴ represents A²⁷;

A²⁵ represents A²⁸, -C(O)N(R¹⁸)C(O)N(R¹⁸)-, -C(O)N(R¹⁸)C(O)O-,

 $-C(O)N(R^{18})S(O)_0N(R^{18})_{-1}$, $-C(O)S_{-1}$, $-S(O)_0N(R^{18})C(O)N(R^{18})_{-1}$, $-S(O)_0N(R^{18})C(O)O_{-1}$

 $-S(O)_{p}N(R^{18})S(O)_{p}N(R^{18})$ - or $-S(O)_{p}O$ -;

A²⁶ represents A28 or -S(O)_nO-;

A²⁷ represents a single bond, -N(R¹⁸)- or -O-;

 A^{28} represents a single bond, -C(O)-, $-C(O)N(R^{18})$ -, -C(O)O-, $-S(O)_n$ - or $-S(O)_nN(R^{18})$;

J represents, on each occasion when mentioned above, =O, =S, =NR¹⁷, =NN(R¹⁷)(R¹⁸), =NOR¹⁷, =NS(O)₂N(R¹⁷)(R¹⁸), =NCN, =C(H)NO₂ or =C(R¹⁷)(R¹⁸);

R¹⁷ and R¹⁸ are independently selected from hydrogen and C'-6 alkyl, which latter group is optionally substituted by one or more substituents selected from halo, -NH₂, -N(H)Me,

-N(H)Et, -N(H)i-Pr, -NMe $_2$, -N(Me)Et, -N(Me)i-.Pr, -NEt $_2$, -OH, -OMe, -OEt, -Oi-, Pr and =O; and n represents, on each occasion when mentioned above, 1 or 2,

or a pharmaceutically-acceptable salt thereof.

2. (previously presented): A compound as claimed in Claim 1, wherein;

X represents:

-N(R⁶)-E-R⁷;

E represents a single bond, -CG(O)- or -S(O)_n-;

Y represents -CH2OH, -C(O)N(H)R8, -C(O)N(H)OR8 or -C(O)OR8;

Z represents a C₁₋₈ alkylene or a C₂₋₈ heteroalkylene chain, both of which:

- (i) optionally contain one or more unsaturations;
- (ii) are optionally substituted by one or more substituents selected from halo,- R^8 , $-N(R^8)(R^9)$, $-OR^8$ and =O; and/or
- (iii) may form part of an additional 3- to a-membered ring formed between any one or more members of the C1-S alkylene or C2-S heteroalkylene chain, which ring optionally contains 1 to 3 heteroatoms and/or 1 to 3 unsaturations and which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -N(R⁸)(R⁹), -OR⁸ and =O;

R¹ represents an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from A;

one of the groups R², R³, R⁴ and R⁵ represents an aryl group or a heteroaryl group (both of which are optionally substituted by one or more substituents selected from A) and:

- a) the other groups are independently selected from hydrogen, G^1 , an aryl group, a heteroaryl group (which latter two groups are optionally substituted by one or more substituents selected from A), C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl. C_{2-6} alkynyl or C_{3-8} heterocycloalkyl (which latter five groups are optionally substituted by one or more substituents selected from G^1 and/or
- b) any two other groups which are adjacent to each other are optionally linked to form, along with two atoms of the essential benzene ring in the compound of formula I, a 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

A represents:

- I) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B;
- II) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^1 and/or Q^1 : or

- III) a G¹ group; or
- IV) two adjacent A substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two A substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

 G^1 represents, on each occasion when mentioned above, halo, cyano, -N₃, -N0₂, -ONO₂ or -A¹-R¹⁰;

wherein A^1 represents a single bond or a spacer group selected from $-C(Q^2)A^2$ -, $-S(O)_0A^3$ -, $-N(R^{11})A^4$ -, $-OA^5$ - and -S-, in which:

A² represents A⁶ or -S-:

A³ represents A⁶;

 $A^4 \text{ represents } A^7, -C(Q^2)N(A^{11})C(Q^2)N(R^{11})-, -C(Q^2)N(A^{11})C(Q^2)O-, \\ C(Q^2)N(A^{11})S(O)_nN(R^{11})-, -C(Q^2)S-, -S(O)_nN(R^{11})C(Q^2)N(R^{11})-, -S(O)_nN(R^{11})C(Q^2)O-, \\ -S(O)_nN(R^{11})S(O)_nN(R^{11})- \text{ or } -S(O)nO-; \\ \\$

 A^5 represents A^7 or $-S(O)_nO$ -;

A⁶ represents a single bond, -N(R¹¹)- or O-;

 A^7 represents a single bond, $-C(Q^2)$ -, $-C(Q^2)N(R^{11})$ -, $-C(Q^2)O$ -, $-S(O)_0$ - or $-S(O)_0N(R^{11})$;

 Q^1 and Q^2 independently represent, on each occasion when mentioned above, =O, =S, =NR¹⁰, =NN(R¹⁰)(R¹¹), =NOR¹⁰, =NS(O)₂N(R¹⁰)(R¹¹), =NCN, =C(H)NO₂ or =C(R¹⁰)(R¹¹);

R⁶ and R⁷ independently represent, on each occasion when mentioned above:

- hydrogen;
- II) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B; or
- III) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-6} heterocycloalkyl group, all of which groups are optionally substituted by one or more substituents selected from G^2 and/or Q^3 ; or

A⁶ and R⁷ may be linked together to form along with the N atom and -E- group to which A⁶ and A⁷ are respectively attached, a 5- to a-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is optionally substituted by one or more substituents selected from G² and/or Q³:

B represents:

- an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G² and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;
- II) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^2 and/or Q^3 ; or
 - III) a G² group; or
- IV) two adjacent B substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two B substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

 G^2 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A⁸-R¹²;

wherein A^8 represents a single bond or a spacer group selected from $-C(Q^4)A^9$ -, $-S(O)_nA^{10}$ -, $-N(R^{13})A^{11}$ -, $-OA^{12}$ - and -S-, in which:

A⁹ represents A¹³ or -S-;

A¹⁰ represents A¹³;

 A^{11} represents A^{14} , $-C(Q^4)N(R^{13})C(Q^4)N(R^{13})$ -, $-C(Q^4)N(R^{13})C(Q^4)O$ -,

 $-C(Q^4)N(R^{13})S(O)_nN(R^{13})-, \ -C(Q^4)S-, \ -S(O)_nN(R^{13})C(Q^4)N(R^{13})-, \ -S(O)_nN(R^{13})C(Q^4)O-, \$

 $-S(O)_{n}N(R^{13})S(O)_{n}N(R^{13})\text{- or }-S(O)_{n}O\text{-}; \\$

 A^{12} represents A^{14} or $-S(O)_0O$ -;

A¹³ represents a single bond, -N(R¹³)- or -O-;

 $A^{14} \ \text{represents a single bond, } -C(Q^4)-, \ -C(Q^4)N(R^{13})-, \ -C(Q^4)O-, \ -S(O)_n \ \text{or } -S(O)_n N(R^{13});$

Q³ and Q⁴ independently represent, on each occasion when mentioned above, =O, =S, =NR¹². =NN(R¹²)(R¹³), =NOR¹². =NS(O)₂N(R¹²)(R¹³), =NCN, =C(H)NO₂ or =C(R¹²)(R¹³);

 $R^8,\,R^9,\,R^{10},\,R^{11},\,R^{12}$ and R^{13} are independently selected from:

- i) hydrogen;
- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G^3 and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally

containing 1 or more heteroatoms, which ring is itself optionally substituted by one or more substituents selected from halo, -R¹⁴, -OR¹⁴ and =O; or

iii) a C₁₋₆ alkyl, C₃₋₁₀ cycloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl or C₃₋₈ heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G³ and/or W¹; or

any pair of R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 8-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G³ and/or W¹;

 G^3 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹⁵-R¹⁵:

wherein A^{15} represents a single bond or a spacer group selected from -C(W²) A^{16} _, -S(O)_n A^{17} -, -N(R¹⁶) A^{18} -, -OA¹⁹- and -S-, in which:

A¹⁶ represents A²⁰ or -S-;

A¹⁷ represents A²⁰;

 A^{18} represents A^{21} , $-C(W^2)N(R^{16})C(W^2)N(R^{16})$ -, $-C(W^2)N(R^{16})C(W^2)O_{_}$,

 $-C(W^2)N(R^{16})S(O)_nN(R^{16})-, -C(W^2)S-, -S(O)_nN(R^{16})C(W^2)N(R^{16})-, -S(O)_nN(R^{16})C(W^2)O-, -S(O)_nN(R^{16}$

 $-S(O)_nN(R^{16})S(O)_nN(R^{16})$ - or $-S(O)_nO$ -;

 A^{19} represents A^{21} or $-S(O)_nO$ -;

A²⁰ represents a single bond, -N(R¹⁶)- or -O-;

 A^{21} represents a single bond, $-C(W^2)$ -, $-C(W^2)N(R^{16})$ -, $-C(W^2)O$ -, $-S(O)_n$ - or $-S(O)_nN(R^{16})$;

 W^1 and W^2 independently represent, on each occasion when mentioned above, =O, =S, =NR¹⁵, =NN(R¹⁵)(R¹⁶), =NOR¹⁵, =NS(O)₂N(R¹⁵)(R¹⁶), =NCN, =C(H)NO₂ or =C(R¹⁵)(R¹⁶); R¹⁴, R¹⁵ and R¹⁶ are independently selected from:

- i) hydrogen;
- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G^4 , methylenedioxy, difluoromethylenedioxy and/or dimethylenedioxy; or
- iii) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^4 and/or J; or

any pair of R¹⁴, R¹⁵ and R¹⁶ may, for example when present on the same or on

adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 7-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G⁴ and J;

 G^4 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A²²-R¹⁷:

wherein A²² represents a single bond or a spacer group selected from -C(O)A²³-,

-S(O)₆A²⁴-, -N(R¹⁸)A²⁵-, -OA²⁶- and -S-, in which:

A²³ represents A²⁷ or -S-;

A²⁴ represents A²⁷;

 $A^{25} \text{ represents } A^{28}, \text{ -C(O)N(R}^{18})\text{C(O)N(R}^{18})\text{-, -C(O)N(R}^{18})\text{C(O)O-,}$

 $-C(O)N(R^{18})S(O)_0N(R^{18})-, -C(O)S-, -S(O)_0N(R^{18})C(O)N(R^{18})-, -S(O)_0N(R^{18})C(O)O-,$

 $-S(O)_nN(R^{18})S(O)_nN(R^{18})$ - or $-S(O)_nO$ -;

A²⁶ represents A28 or -S(O)_nO-;

A²⁷ represents a single bond, -N(R¹⁸)- or -O-;

 A^{28} represents a single bond, -C(O)-, $-C(O)N(R^{18})$ -, -C(O)O-, $-S(O)_n$ - or $-S(O)_nN(R^{18})$;

J represents, on each occasion when mentioned above, =O, =S, =NR¹⁷, =NN(R¹⁷)(R¹⁸), =NOR¹⁷, =NS(O)₂N(R¹⁷)(R¹⁸), =NCN, =C(H)NO₂ or =C(R¹⁷)(R¹⁸);

R¹⁷ and R¹⁸ are independently selected from hydrogen and C'-6 alkyl, which latter group is optionally substituted by one or more substituents selected from halo, -NH₂, -N(H)Me,

-N(H)Et, -N(H)i-Pr, -NMe₂, -N(Me)Et, -N(Me)i-.Pr, -NEt₂, -OH, -OMe, -OEt, -Oi-, Pr and =O; and n represents, on each occasion when mentioned above, 1 or 2,

or a pharmaceutically-acceptable salt thereof.

- 3. (original): A compound as claimed in Claim 2, wherein n represents 2.
- 4. (previously presented): A compound as claimed in Claim 2, wherein A represents G¹ or any two adjacent A substituents may be linked by a methylenedioxy group.
- 5. (previously presented): A compound as claimed in claim 2, wherein G¹ represents halo, cyano, -NO₂ or -A¹-R¹⁰.
- 6. (previously presented): A compound as clamed in claim 2, wherein A^2 represents A^6 .
- 7. (previously presented): A compound as claimed in claim 2, wherein A³ and A⁵ independently represent a single bond.
- 8. (previously presented): A compound as claimed in claim 2, wherein A^4 represents a single bond, $-C(Q^2)$ or $-S(Q)_2$ -.
- 9. (previously presented): A compound as claimed in claim 2, wherein Q² represents =O.
- 10. (previously presented): A compound as claimed in claim 2, wherein B represents G^2 .
- 11. (previously presented): A compound as claimed in claim 2, wherein G^2 represents halo, cyano, -NO₂- or -A⁸-R¹².
- 12. (previously presented): A compound as claimed in claim 2, wherein A^8 represents a single bond, $-N(R^{13})A^{11}$ or $-OA^{12}$ -.
- 13. (previously presented): A compound as claimed in claim 2, wherein A¹¹ and A¹² independently represent a single bond.

- 14. (previously presented): A compound as claimed in claim 1, wherein Z represents C_{1-6} alkylene, in which one of the carbon atoms in the chain may be replaced with oxygen.
- 15. (previously presented): A compound as claimed in claim 1, wherein Y represents CH₂OH, -C(O)NHR⁸ or --C(O)OR⁸.
- 16. (previously presented): A compound as claimed in claim 1, wherein R¹ represents optionally substituted fluorenyl, phenyl or pyridyl.
- 17. (previously presented): A compound as claimed in claim 1, wherein (when X represents an optionally substituted aryl or heteroaryl group) X represents an optionally substituted phenyl, thienyl, pyridyl, pyrazolyl, pyrazolyl, pyrazolyl or quinolinyl group.
- 18. (previously presented): A compound as claimed in claim 1, (when they represent an optionally substituted aryl or heteroaryl group) R², R³, R⁴, and R⁵ represent optionally substituted phenyl, pyridyl or naphthyl.
- 19. (previously presented): A compound as claimed in Claim 2, wherein the other substituents on the benzene ring of the indole represent hydrogen or G¹.
- 20. (previously presented): A compound as claimed in claim 2, wherein R^6 represents hydrogen or C_{1-3} alkyl group (which latter group is optionally substituted by G^2).
- 21. (previously presented): A compound as claimed in claim 2, wherein R^7 represents phenyl or pyridyl (which groups are optionally substituted by one or more substituents selected from B), or C_{1-4} alkyl, C_{2-4} alkenyl or C_{5-10} cycloalkyl (which latter three groups are optionally substituted by one or more substituents selected from G^2).
- 22. (previously presented): A compound as claimed in claim 2, wherein R^6 and R^7 are linked to form a 5- or 6-membered ring optionally substituted by =0.
- 23. (previously presented): A compound as claimed in Claim 2, wherein R^8 and R^{13} independently represent C_{1-3} alkyl or hydrogen.

- 24. (previously presented): A compound as claimed in claim 2, wherein R^{10} represents hydrogen, phenyl, tetrazolyl, C_{1-4} alkyl, C_{2-4} alkenyl or C_{5-6} cycloalkyl, which latter five groups are optionally substituted by one or more substituents selected from G^3 .
- 25. (previously presented): A compound as claimed in claim 2, wherein R^{12} represents hydrogen, phenyl, pyrrolyl, C_{1-4} alkyl or C_{5-10} cycloalkyl, which latter four groups are optionally substituted by one or more substituents selected from G^3 .
- 26. (previously presented): A compound as claimed in claim 2, wherein R^{11} represents hydrogen or C_{2-4} alkenyl.
- 27. (previously presented): A compound as claimed in claim 2, wherein G³ represents halo, -R¹⁵ or -OR¹⁵.
- 28. (previously presented): A compound as claimed in claim 2, wherein R¹⁵ represents hydrogen, C₁₋₃ alkyl or phenyl.
- 29. (previously presented): A compound as claimed in claim 16, wherein the optional substituents are selected from halo, -NO₂, cyano, methylenedioxy, C_{1-6} alkyl (which alkyl group is optionally substituted by one or more substituents selected from a halo group, a phenyl groups and OR^{19}), C_{2-6} alkenyl, C_{3-10} cycloalkyl (which cycloalkyl group is optionally substituted with C_{1-6} alkyl), phenyl (which group is optionally substituted with one or more substituents selected from halo and OR^{19}), a heteroaryl group selected from tetrazolyl and pyrrolyl (which groups are optionally substituted by one or more C_{1-6} alkyl groups), methylthio, methylsulfonyl, methylsulfonyl, =O, - OR^{19} , - $N(R^{19})R^{20}$, - $C(O)OR^{19}$, - $C(O)R^{19}$, - $C(O)N(R^{19})R^{20}$, - $S(O)_2N(R^{19})r^{20}$ and/or - $N(R^{19})S(O)_2R^{21}$, wherein R^{19} and R^{20} independently represent hydrogen, phenyl, C_{1-4} alkenyl, C_{1-6} alkyl (which alkyl group is optionally substituted by one or more fluoro atoms) or a phenyl group and R^{21} represents phenyl or C_{1-6} alkyl (which alkyl group is optionally substituted by one or more fluoro atoms).
- 30. (previously presented): A compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, for use as a phramaceutical.

- 31. (previously presented): A pharmaceutical formulation including a compound as defined in claim 1, or a pharmaceutically-acceptable salt thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.
 - 32. 38. (canceled)
- 39. (original): A process for the preparation of a compound as defined in Claim 2, which comprises:
 - (i) reaction of a compound of formula II,

$$R^3$$
 R^4
 R^5
 X
 Y
 X
 Y

wherein X Y, R², R³, R⁴ and R⁵ are as defined in Claim 2, with a compound of formula III, R¹ZL¹ III

wherein L¹ represents a suitable leaving group and R¹ and Z are as defined in Claim 2;

(ii) reaction of a compound of formula IV,

wherein L⁴ represents L² or L³, in which L² and L³ represent appropriate leaving groups and L⁴ is attached to one or more of the carbon atoms of the benzenoid ring of the indole, and the remaining positions of the benzenoid ring are substituted with 1 to 3 (depending on the number of L⁴ substituents) substituents R² to R⁵ as appropriate, and Z. X, Y, R¹, R², R³; R⁴ and R⁵ are as defined in Claim 2, with a compound of formula V,

$$R^{22}L^5$$
 V

wherein R^{22} represents R^2 , R^3 , R^4 or R^5 (as appropriate), and L^5 represents L^2 (when L^4 is L^3) or L^3 (when L^4 is L^2) as defined above;

(iii) for compounds of formula I in which X represents an optionally substituted aryl or heteroaryl group, reaction of a compound of formula VI,

wherein L^2 is as defined above and Z, Y, R^1 , R^2 , R^3 , R^4 and R^5 are as defined in Claim 2, with a compound of formula VII,

wherein L³ is as defined above and Xª represents an aryl or heteroaryl group, optionally substituted as defined in Claim 2;

(iv) for compounds of formula I in which X represents –N(R⁶)-E-R⁷, reaction of a compound of formula VI as defined above, with a compound of formula VIII,

wherein E, R⁶ and R⁷ are as defined in Claim 2;

(v) for compounds of formula I in which X represents -N(R⁶)-E-R⁷, reaction of a compound of formula IX,

$$R^{3}$$
 R^{4}
 R^{5}
 Z
 R^{1}
 X

wherein Z, Y, R¹, R², R³, R⁴, R⁵ and R⁶ are as defined in Claim 2, with a compound of formula X,

$$R^7$$
-E-L X

wherein L1 is as defined above and E and R+ are as defined in Claim 2;

- (vi) for compounds of formula I in which E represents a single bond and R^7 is a C_{1-6} alkyl group, C_{3-6} alkenyl or a C_{3-6} alkynyl group, reduction of a compound of formula I, wherein X represents -C(O)- and R^7 represents H, a C_{1-5} , alkyl group, a C_{2-5} alkenyl or a C_{2-5} alkynyl group.
 - 40. (previously presented): A compound of formula I,

$$\mathbb{R}^3$$
 \mathbb{R}^2
 \mathbb{R}^3
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2
 \mathbb{R}^2

wherein X represents an optionally substituted amide, amine or sulfonamide group, wherein said groups are connected to the indole ring through their nitrogen atom;

Y represents a carboxylic acid, a carboxylic acid ester, a carboxylic acid amide, a hydroxamic acid, a hydroxamic acid ester or hydroxymethyl;

Z comprises a C₁₋₈ alkylene or a C₂₋₉ heteroalkylene group;

R¹ represents an optionally substituted anyl or heteroaryl group;

one of the groups R^2 , R^3 , R^4 and R^5 represents an optionally substituted aryl or heteroaryl group and the other groups R^2 , R^3 , R^4 and R^5 are independently selected from hydrogen, G^1 , an aryl group, a heteroaryl group (which latter two groups are optionally substituted by one or more substituents selected from A), C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl. C_{2-6} alkynyl or C_{3-8} heterocycloalkyl (which latter five groups are optionally substituted by one or more substituents selected from G^1 and/or G^1); and/or

b) any two other groups which are adjacent to each other are optionally linked to form, along with two atoms of the essential benzene ring in the compound of formula I, a 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

A represents:

- an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B;
- II) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^1 and/or Q^1 ; or
 - III) a G¹ group; or
- IV) two adjacent A substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two A substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;

 G^1 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹-R¹⁰;

wherein A^1 represents a single bond or a spacer group selected from $-C(Q^2)A^2$ -, $-S(O)_nA^3$ -, $-N(R^{11})A^4$ -, $-OA^5$ - and -S-, in which:

A² represents A⁶ or -S-;

A³ represents A⁶;

 $A^4 \text{ represents } A^7, \text{--}C(Q^2)N(A^{11})C(Q^2)N(R^{11})\text{--}, \text{--}C(Q^2)N(A^{11})C(Q^2)O\text{--}, \\ C(Q^2)N(A^{11})S(O)_nN(R^{11})\text{--}, \text{--}C(Q^2)S\text{--}, \text{--}S(O)_nN(R^{11})C(Q^2)N(R^{11})\text{--}, \text{--}S(O)_nN(R^{11})C(Q^2)O\text{--}, \\ -S(O)_nN(R^{11})S(O)_nN(R^{11})\text{--} \text{ or --}S(O)nO\text{--}; \\$

 A^5 represents A^7 or $-S(O)_nO$ -;

 A^6 represents a single bond, $-N(R^{11})$ - or O-;

 $A^7 \ \text{represents a single bond, -C(Q^2)-, -C(Q^2)N(R^{11})-, -C(Q^2)O-, -S(O)_n- \ \text{or -S(O)}_nN(R^{11});}$

 Q^1 and Q^2 independently represent, on each occasion when mentioned above, =O, =S, =NR¹⁰, =NN(R¹⁰)(R¹¹), =NOR¹⁰, =NS(O)₂N(R¹⁰)(R¹¹), =NCN, =C(H)NO₂ or =C(R¹⁰)(R¹¹);

R⁶ and R⁷ independently represent, on each occasion when mentioned above:

- hydrogen;
- II) an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from B; or
- III) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which groups are optionally substituted by one or more substituents selected from G^2 and/or Q^3 ; or

 A^6 and R^7 may be linked together to form along with the N atom and -E- group to which A^6 and A^7 are respectively attached, a 5- to a-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is optionally substituted by one or more substituents selected from G^2 and/or Q^3 :

B represents:

- an aryl group or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G² and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo, -R⁸, -OR⁸ and =O;
- II) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^2 and/or Q^3 ; or
 - III) a G² group; or
- IV) two adjacent B substituents may be linked together to form, along with the essential atoms of the aryl or heteroaryl group to which the two B substituents are attached, a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from halo. -R⁸. -OR⁸ and =O:

 G^2 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A⁸-R¹²:

wherein A^8 represents a single bond or a spacer group selected from $-C(Q^4)A^9$ -, $-S(O)_0A^{10}$ -, $-N(R^{13})A^{11}$ -, $-OA^{12}$ - and -S-, in which:

A⁹ represents A¹³ or –S-;

A¹⁰ represents A¹³;

 A^{11} represents A^{14} , $-C(Q^4)N(R^{13})C(Q^4)N(R^{13})$ -, $-C(Q^4)N(R^{13})C(Q^4)O$ -.

 $-C(Q^4)N(R^{13})S(O)_nN(R^{13})-, \ -C(Q^4)S-, \ -S(O)_nN(R^{13})C(Q^4)N(R^{13})-, \ -S(O)_nN(R^{13})C(Q^4)O-, \$

 $-S(O)_nN(R^{13})S(O)_nN(R^{13})$ - or $-S(O)_nO$ -;

A¹² represents A¹⁴ or -S(O)_nO-;

A¹³ represents a single bond, -N(R¹³)- or -O-;

 A^{14} represents a single bond, $-C(Q^4)$ -, $-C(Q^4)N(R^{13})$ -, $-C(Q^4)O$ -, $-S(O)_n$ or $-S(O)_nN(R^{13})$;

 Q^3 and Q^4 independently represent, on each occasion when mentioned above, =O, =S, =NR¹², =NN(R¹²)(R¹³), =NOR¹², =NS(O)₂N(R¹²)(R¹³), =NCN, =C(H)NO₂ or =C(R¹²)(R¹³);

 R^8 , R^9 , R^{10} , R^{11} , R^{12} and R^{13} are independently selected from:

- i) hydrogen;
- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G^3 and/or wherein any two adjacent atoms of the aryl or heteroaryl group may be linked together to form a further 5- to 6-membered ring, optionally containing 1 or more heteroatoms, which ring is itself optionally substituted by one or more substituents selected from halo, $-R^{14}$, $-OR^{14}$ and =O; or
- iii) a C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^3 and/or W^1 : or

any pair of R⁸, R⁹, R¹⁰, R¹¹, R¹² and R¹³ may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 8-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G³ and/or W¹;

 G^3 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A¹⁵-R¹⁵:

wherein A^{15} represents a single bond or a spacer group selected from -C(W²) A^{16} _, -S(O)_n A^{17} -, -N(R¹⁶) A^{18} -, -OA¹⁹- and -S-, in which:

A¹⁶ represents A²⁰ or -S-;

A¹⁷ represents A²⁰:

 A^{18} represents A^{21} , $-C(W^2)N(R^{16})C(W^2)N(R^{16})$ -, $-C(W^2)N(R^{16})C(W^2)O_{_}$,

 $-C(W^2)N(R^{16})S(O)_nN(R^{16})-, \ -C(W^2)S-, \ -S(O)_nN(R^{16})C(W^2)N(R^{16})-, \ -S(O)_nN(R^{16})C(W^2)O-, \$

 $-S(O)_nN(R^{16})S(O)_nN(R^{16})$ - or $-S(O)_nO$ -;

A¹⁹ represents A²¹ or -S(O)_nO-;

A²⁰ represents a single bond, -N(R¹⁶)- or -O-;

 $A^{21} \ \text{represents a single bond, -C(W^2)-, -C(W^2)N(R^{16})-, -C(W^2)O-, -S(O)_n- or -S(O)_nN(R^{16});}$

 W^1 and W^2 independently represent, on each occasion when mentioned above, =O, =S, =NR¹⁵, =NN(R¹⁵)(R¹⁶), =NOR¹⁵, =NS(O)₂N(R¹⁵)(R¹⁶), =NCN, =C(H)NO₂ or =C(R¹⁵)(R¹⁶); R¹⁴, R¹⁵ and R¹⁶ are independently selected from:

i) hvdrogen:

- ii) an aryl or a heteroaryl group, both of which are optionally substituted by one or more substituents selected from G^4 , methylenedioxy, difluoromethylenedioxy and/or dimethylenedioxy; or
- iii) a C_{1-6} alkył, C_{3-10} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl or C_{3-8} heterocycloalkyl group, all of which are optionally substituted by one or more substituents selected from G^4 and/or J; or

any pair of R¹⁴, R¹⁵ and R¹⁶ may, for example when present on the same or on adjacent atoms, be linked together to form with those, or other relevant, atoms, a further 5- to 7-membered ring, optionally containing 1 to 3 heteroatoms and/or 1 to 3 unsaturations, which ring is itself optionally substituted by one or more substituents selected from G⁴ and J;

 G^4 represents, on each occasion when mentioned above, halo, cyano, -N₃, -NO₂, -ONO₂ or -A²²-R¹⁷;

wherein A^{22} represents a single bond or a spacer group selected from -C(O) A^{23} -, -S(O) $_{n}A^{24}$ -, -N(R¹⁸) A^{25} -, -OA²⁶- and -S-, in which:

A²³ represents A²⁷ or -S-;

A²⁴ represents A²⁷;

 A^{25} represents A^{28} , $-C(O)N(R^{18})C(O)N(R^{18})$ -, $-C(O)N(R^{18})C(O)O$ -,

 $-C(O)N(R^{18})S(O)_{n}N(R^{18})-, \ -C(O)S-, \ -S(O)_{n}N(R^{18})C(O)N(R^{18})-, \ -S(O)_{n}N(R^{18})C(O)O-, \ -$

 $-S(O)_nN(R^{18})S(O)_nN(R^{18})$ - or $-S(O)_nO$ -;

A²⁶ represents A28 or -S(O)_nO-;

A²⁷ represents a single bond, -N(R¹⁸)- or -O-;

 A^{28} represents a single bond, -C(O)-, $-C(O)N(R^{18})$ -, -C(O)O-, $-S(O)_n$ - or $-S(O)_nN(R^{18})$;

J represents, on each occasion when mentioned above, =0, =S, =NR¹⁷, =NN(R¹⁷)(R¹⁸), =NOR¹⁷, =NS(O)₂N(R¹⁷)(R¹⁸), =NCN, =C(H)NO₂ or =C(R¹⁷)(R¹⁸);

 R^{17} and R^{18} are independently selected from hydrogen and C'-6 alkyl, which latter group is optionally substituted by one or more substituents selected from halo, -NH₂, -N(H)Me,

-N(H)Et, -N(H)i-Pr, -NMe₂, -N(Me)Et, -N(Me)i-.Pr, -NEt₂, -OH, -OMe, -OEt, -Oi-, Pr and =O; and n represents, on each occasion when mentioned above, 1 or 2, or a pharmaceutically-acceptable salt thereof.

41. (previously presented): A compound according to claim 40 wherein

X is a substituted benzoylamino group;

Y is a carboxylic acid or carboxylic acid ester group;

Z represents an optionally substituted C_{1-8} alkylene or a C_{2-9} heteroalkylene group;

R¹ is an optionally substituted aryl group;

one of R^2 , R^3 , R^4 and R^5 is optionally substituted aryl and the others are hydrogen.

42. (previously presented): A compound according to claim 41 which is 6-(4-butylphenyl)-1-(3-chlorobenzyl)-3-(4-isopropoxybenzoylamino)-indole-2-carboxylic acid.