概率论:Week 11

1 分布

性质 (测度的性质). 设 $(\Omega, \mathcal{F}, \nu)$ 是一个测度空间.

- 1. (单调性). 如果 $A \subset B$, 那么 $\nu(A) \leq \nu(B)$.
- 2. (次可加性). 对于任意序列 A₁, A₂,...,

$$v\left(\bigcup_{i=1}^{\infty}A_{i}\right)\leqslant\sum_{i=1}^{\infty}v\left(A_{i}\right).$$

3. (连续性). 如果 $A_1 \subset A_2 \subset A_3 \subset \cdots$ (或者 $A_1 \supset A_2 \supset A_3 \supset \cdots$ 且 $\nu(A_1) < \infty$), 那么

$$\nu\left(\lim_{n\to\infty}A_n\right)=\lim_{n\to\infty}\nu\left(A_n\right),\,$$

其中

$$\lim_{n\to\infty}A_n=\bigcup_{i=1}^{\infty}A_i \quad \left(\ \ \, \cancel{ \cancel{x}} \ =\bigcap_{i=1}^{\infty}A_i\right).$$

设P是一个概率测度,P的累积分布函数定义为:

$$F(x) = P((-\infty, x]), \quad x \in \mathbb{R}$$

- 1. 设 F 是 \mathbb{R} 上的一个 c.d.f., 那么
 - (a) $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$;
 - (b) $F(\infty) = \lim_{x \to \infty} F(x) = 1$;
 - (c) F 是非降的, 即若 $x \le y$ 则 $F(x) \le F(y)$;
 - (d) F 是右连续的, 即 $\lim_{y \to x, y > x} F(y) = F(x)$.
- 2. 假设 ℝ 上的实值函数 F 满足上述的四个条件, 那么 F 是 (\mathbb{R} , \mathcal{B} (\mathbb{R})) 上唯一的概率测度的 c.d.f.

注记(对应关系). 概率的基本性质和分布函数的基本性质对应.

定义(随机变量). 从可测空间 (Ω, \mathscr{F}) 到可测空间 $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$ 上的可测映射X被称为随机变量. 即 $X^{-1}(B) \in \mathscr{F}, \forall B \in \mathscr{B}(\mathbb{R}),$ 或记为 $X^{-1}(\mathscr{B}(\mathbb{R})) \subset \mathscr{F}.$ $X^{-1}(\mathscr{B}(\mathbb{R}))$ 是使随机变量X可测的最小 σ 代数.

之前, 我们说明了随机变量怎么产生一个分布函数(distribution function). 并说明了分布函数满足的一些条件: 单调非增, 规范性, 右连左极(书上是左连右极).

1 分布 2

注记 (c.a.d.l.a.g.). a càdlàg (French: "continue à droite, limite à gauche"), RCLL ("right continuous with left limits"), or corlol ("continuous on (the) right, limit on (the) left") function is a function defined on the real numbers (or a subset of them) that is everywhere right-continuous and has left limits everywhere.

$$(\Omega, \mathcal{F}, P) \qquad (\mathbf{R}, \mathcal{R}) \quad \mu = P \circ X^{-1}$$

$$X \longrightarrow A \longrightarrow A$$

例 1 (实轴上的测度). $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ 上的测度可以由一个Stirltjes测度函数F定义, Stirltjes测度函数F是指

- 1. F是单调非增的
- 2. F是右连续的.

我们不加证明的给出以下的结论:

存在唯一的一个(\mathbb{R} , $\mathcal{B}(\mathbb{R})$)上的测度 μ 满足 $\mu((a,b]) = F(b) - F(a)$.

当F(x) = x时, 得到的测度 μ 是Lebesgue测度.

现在我们反过来说:满足上述三个条件,一定可以定义一个分布函数.

定理. 如果函数(右连左极)F满足单调非增, 规范性, 右连左极, 则函数F是某个随机变量X的分布函数.

证明. $\Diamond \Omega = (0,1)$, \mathscr{F} 是上面的Borel集, 即 $\mathscr{F} = \mathscr{B}(\mathbb{R}) \cap (0,1)$. $\Diamond P$ 是一个Lebesgue测度(直线上的长度). 若 $\omega \in (0,1)$, 定义

$$X(\omega) = \sup\{y : F(y) < \omega\}$$

只需证

$$\{\omega: X(\omega) \leq x\} = \{\omega: \omega \leq F(x)\}$$

因为 $P(\omega : \omega \leq F(x)) = F(x)$.

事实上, 一方面, 若 $\omega \in \{\omega : \omega \le F(x)\}$, 即 $\omega \le F(x)$, 则有 $X(\omega) \le x$. 因为

$$X(\omega) = \sup\{y : F(y) < \omega\}$$

$$\leq \sup\{y : F(y) < F(x)\}$$

$$= x$$

另一方面, 由于 $X(\omega) \le x$, 即 $\sup\{y : F(y) < \omega\} \le x = \sup\{y : F(y) < F(x)\}$, 根据F是右连左极的, 因此 $\omega \le F(x)$.

1 分布 3

注记(分布函数的逆), 书上直接定义

$$F^{-1}(y) = \inf\{x : F(x) > y\}$$

在0 < y < 1时,

$$F^{-1}(F(y_0)) = \inf\{x : F(x) > F(y_0) = F(y_0 - 0)\}$$

若 $F(y_0) = F(y_0+)$, 则 $F^{-1}(F(y_0)) = y_0$; 若 $F(y_0) < F(y_0+)$, 则 $F^{-1}(F(y_0)) \ge y_0$. 上述逆也被称为"右连续逆"(right-continuous(RC) inverse), 也被记为 F^{\rightarrow} .

若是右连左极的, 只需要把严格不等号改为不严格的.

$$F^{-1}(y) = \inf\{x : y \le F(x)\}.$$

上述逆也被称为"左连续逆"(left-continuous(LC) inverse), 也被记为F←.

注记 (两种证明方法的等价性). 定义 $\sup\{\emptyset\} = 0$, 则

$$\inf\{x : F(x) > s\} = \sup\{x : F(x) \le s\} \quad \inf\{x : F(x) \ge s\} = \sup\{x : F(x) < s\}$$

 $icA = \inf\{x : F(x) > s\}$, 则当F(x) > s, $x \ge A$, $\forall \epsilon, \exists x_{\epsilon}, A < x + \epsilon$, 把 ϵ 移项即由定义可得.

如果X和Y能推出相同的分布 μ 在(\mathbb{R} , $\mathcal{B}(\mathbb{R})$)上,则称X和Y是"依分布相等"(equal in distribution)的. 根据测度的生成, 依分布相等等价于 $P(X \le x) = P(Y \le x)$, $\forall x$. 记之为

$$X =_{d} Y$$

例2 (正态分布尾概率界的估计). 对于任意的<math>x > 0, 有

$$(x^{-1} - x^{-3}) \exp(-x^2/2) \le \int_x^{\infty} \exp(-y^2/2) dy \le x^{-1} \exp(-x^2/2)$$

证明. 对于上界, 写y = x + z, 有

$$\int_{x}^{\infty} \exp(-y^{2}/2) dy = \int_{x}^{\infty} \exp(-(x+z)^{2}/2) dz$$

$$= \int_{x}^{\infty} \exp(-x^{2}/2 - xz - z^{2}/2) dz$$

$$= \exp(-x^{2}/2) \int_{0}^{\infty} \exp(-xz) dz = x^{-1} \exp(-x^{2}/2)$$

对于下界,由于

$$\int_{x}^{\infty} (1 - 3y^{-4}) \exp(-y^{2}/2) dy = (x^{-1} - x^{-3}) \exp(-x^{2}/2)$$

即得.

例 3 (练习:正态分布的尾概率). 用上述的上下界估计P(N(0,1) > 4).

```
1 > x=4

2 > {(1-pnorm(x))*sqrt(2*pi)}

3 [1] 7.938803e-05

4 > {x^(-1) * exp(-(x^2)/2)}

5 [1] 8.386566e-05

6 > {(x^(-1) - x^(-3)) * exp(-(x^2)/2)}

7 [1] 7.862405e-05
```

2 随机变量 4

2 随机变量

在上一节, 我们介绍了一些具体的随机变量. 在这一节, 我们将梳理一些随机变量的具体性质.

定理. 若 $\{\omega: X(\omega) \in A\} \in \mathcal{F}, \forall A \in \mathcal{A}, \ \mathbb{1}S = \sigma(\mathcal{A}). \ MX$ 是可测的.

证明. 简写 $\{\omega: X(\omega) \in A\}$ 为 $\{X \in B\}$,则有

$$\{X \in \cup_i B_i\} = \cup_i \{X \in B_i\}$$
$$\{X \in B^c\} = \{X \in B\}^c$$

于是集合系 $\mathcal{B} = \{B : \{X \in B\} \in \mathcal{F}\}$ 是一个 σ 域, $\mathcal{B} \supset \mathcal{A}, \mathcal{S} = \sigma(\mathcal{A})$, 从而 $\mathcal{B} \supset \mathcal{S}$

上述结论表明了, 如果S是一个 σ 域, 则{ $\{X \in B\} : B \in S\}$ 也是一个 Ω 上的 σ 域, 它是 ω 上最小的保证X可测的结构, 也称它是"由随机变量X生成的 σ 域".

$$\sigma(X) = \{ \{ X \in B \} : B \in \mathcal{S} \}$$

例 4 (随机变量的证明). 假设X和Y是定义在概率空间 (Ω, \mathcal{F}, P) , 当 $A \in \mathcal{F}$ 上的随机变量. 定义 $Z(\omega)$, 对于 $\omega \in A$ 时, $Z(\omega) = X(\omega)$, 对于 $\omega \in A^c$ 时, $Z(\omega) = Y(\omega)$, 证明Z是一个随机变量.

证明.

$$Z^{-1}(B) = [Z^{-1}(B) \cap A] \cup [Z^{-1}(B) \cap A^{c}]$$
$$= [X^{-1}(B) \cap A] \cup [Y^{-1}(B) \cap A^{c}]$$
$$\in \mathcal{B}(\mathbb{R})$$

例 5. 证明: 分布函数只有至多可列的间断点.

3 随机变量独立性 5

证明. 设A是分布函数F的不连续点构成的集合,则 $\forall x < y \in A$, F(x-) < F(x), F(y-) < F(y),特别的,我们取y-充分靠近y,即x < y-.根据单调非降,有

$$F(x-) < F(x) \le F(y-) < F(y)$$

再根据有理数的稠密性, $\exists q_y \in (F(y-), F(y))$. 对每一个A中的元素重复上述操作. 定义 $\phi: A \to \mathbb{Q}, x \mapsto \phi(x) = q_x, \, \mathbb{Q}$ 则 ϕ 是一个到有理数上的单射, 因此 $|A| \leq \aleph_0$, 从而间断点至多可列.

例 6 (正变换法). 之前我们介绍分布函数定义随机变量的方法, 链接起了均匀分布和一般分布函数之间的关系, 现在我们要说明: 随机变量有统一的方法变换为(0,1)上的均匀分布. 即取Y = F(X). 我们对F是连续函数的情况加以证明. 根据分布函数的连续性, 我们有

$$\{F^{-1}(F(X)) \le F^{-1}(y)\} = \{X \le F^{-1}(y)\}$$

因此

$$P(F(X) \le y) = P(F^{-1}(F(X)) \le F^{-1}(y))$$

$$= P(X \le F^{-1}(y))$$

$$= F(F^{-1}(y))$$

$$= y$$

対于 $y = 0, P(F(X) \le 0) = \lim_{n} P(F(X) \le \frac{1}{n}) = \lim_{n} \frac{1}{n} = 0.$ 対于 $y = 1, P(F(X) \le 1) = \lim_{n} P(F(X) \le 1 - \frac{1}{n}) = \lim_{n} 1 - \frac{1}{n} = 1.$

证明. 取 $B \in \mathcal{T}$. $\{\omega : f(X(\omega)) \in B\} = \{\omega : X(\omega) \inf^{-1}(B)\} \in \mathcal{F}$,根据f的可测性: $f^{-1}(B) \in \mathcal{S}$.

3 随机变量独立性

注记 (A history of the symbol). Graham, Knuth, and Patashnik proposed using \bot for relatively prime numbers in their book Concrete Mathematics, at least by the second edition (1994).

Philip Dawid proposed a similar symbol 11 for (conditionally) independent random variables in 1979.

目前教材中共提到过四种独立性,在此加以梳理

- 1. 事件的独立性
- 2. 随机变量的独立性
- 3. 随机向量的独立性
- 4. 试验的独立性

定义 (事件的独立性). 若两事件满足 P(AB) = P(A)P(B) 则称两事件A, B独立.

定义 (随机变量的独立性). 两个随机变量 X,Y 相互独立是指对于直线上任意两个Borel点集 A,B, $P(X \in A, X \in B) = P(X \in A)P(X \in B)$. 即事件 $\{X \in A\}$ 和 $\{X \in B\}$ 是独立的事件.

注记. 由于A, B是任意两个Borel点集,因此可以这样通俗理解:随机变量的独立性是指由他们生成的所有的事件都独立.

注记. $P(A) = P(I_A = 1)$, 事件独立也可以写成这种随机变量的形式, 显然 I_A , I_B 独立则事件A, B独立, 反过来由事件独立性能推对立事件的独立性, 从而 I_A , I_B 独立.

书上直接给出多元的情况,

定义 (随机变量的独立性*). 设 ξ_1, \dots, ξ_n 为 n 个随机变量, 若对于任意的 x_1, \dots, x_n 成立

$$P\{\xi_1 < x_1, \dots, \xi_n < x_n\} = P\{\xi_1 < x_1\} \dots P\{\xi_n < x_n\}$$

则称 ξ_1, \dots, ξ_n 是相互独立的. 若 ξ_i 的分布函数为 $F_i(x), i = 1, 2, \dots, n$, 它们的联合分布函数为 $F(x_1, \dots, x_n)$, 则随机变量的独立性等价于对一切 x_1, \dots, x_n 成立

$$F(x_1, \cdots, x_n) = F_1(x_1) \cdots F_n(x_n)$$

在离散和连续的情况下又分别等价于概率质量的乘积,概率密度的乘积.

最后教材给出随机变量(向量)函数的独立性,

定理. 若 ξ_1, \dots, ξ_n 是相互独立的随机变量,则 $f_1(\xi_1), \dots, f_n(\xi_n)$ 也是相互独立的,这里 $f_i(i=1,\dots,n)$ 是任意的一元Borel函数.

证明. 对任意的一维Borel点集 A_1, \dots, A_n 有

$$P \{ f_1(\xi_1) \in A_1, \dots, f_n(\xi_n) \in A_n \}$$

$$= P \{ \xi_1 \in f_1^{-1}(A_1), \dots, \xi_n \in f_n^{-1}(A_n) \}$$

$$= P \{ \xi_1 \in f_1^{-1}(A_1) \} \dots P \{ \xi_n \in f_n^{-1}(A_n) \}$$

$$= P \{ f_1(\xi_1) \in A_1 \} \dots P \{ f_n(\xi_n) \in A_n \}$$

4 随机变量函数的分布

4.1 卷积公式

首先说明离散卷积公式若Z = X + Y 可取 $0, 1, 2, \cdots$ 所有非负整数. 而事件 $\{Z = k\}$ 是如下不相容事件

$${X = i, Y = k - i}, i = 0, 1, \dots, k$$

的并, 再考虑到独立性, 则对任意非负整数 k, 有

$$P(Z = k) = \sum_{i=0}^{k} P(X = i)P(Y = k - i).$$

这个概率等式被称为离散卷积公式.

在连续场合下, 若 ξ_1 , ξ_2 相互独立, 则 $\eta = \xi_1 + \xi_2$ 的密度函数为

$$q(y) = \int_{-\infty}^{\infty} p_1(u) p_2(y - u) du = \int_{-\infty}^{\infty} p_1(y - u) p_2(u) du$$

离散型应用: p相同情况下的二项分布,不同参数的Poisson分布的可加性. 即:

$$Poi(\lambda_1) * Poi(\lambda_2) = Poi(\lambda_1 + \lambda_2)$$

$$b(n_1, p) * \cdots * b(n_k, p) = b(\sum_{i=1}^k n_i, p)$$

注记. 两Poisson随机变量差 $K = N_1 - N_2$ 的分布不再是Poisson分布, 而是Skellam分布, 其形式为

$$p(k; \mu_1, \mu_2) = \Pr\{K = k\} = e^{-(\mu_1 + \mu_2)} \left(\frac{\mu_1}{\mu_2}\right)^{k/2} I_k(2\sqrt{\mu_1 \mu_2})$$

其中 μ_1, μ_2 为Poisson分布的参数.

连续型应用: 正态分布的可加性,

$$X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2) \Rightarrow X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

 Γ 分布的可加性.

$$X_1 \sim \Gamma(\alpha_1, \beta), X_2 \sim \Gamma(\alpha_2, \beta) \Rightarrow X_1 + X_2 \sim \Gamma(\alpha_1 + \alpha_2, \beta)$$

特别的, χ^2 分布是 Γ 分布, 也具有可加性, 参数相同的指数分布加起来是 Γ 分布.

注记 (Γ 分布的两种形式: shape form, scale form). 根据第二个参数的不同写法有以下的两种形式:

• 尺度形式:

$$f(x) = \begin{cases} \frac{1}{\Gamma(a)\beta^a} x^{a-1} e^{-x/\beta}, & 0 < x < \infty \\ 0, & \text{# th} \end{cases}$$

• 速率形式:

$$f(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, & 0 < x < \infty \\ 0, & \sharp w \end{cases}$$

写成这两种情况的原因我们可以通过一个参数为 λ 的Poisson过程的例子说明: 我们假定拥有 泊松过程的假设特别地,设随机变量W表示所需获得的k个事件(可能死亡)发生的时间,其中k是 固定的正整数.于是,W的 cdf 为

$$G(w) = P(W \leqslant w) = 1 - P(W > w)$$

根据Poisson分布, 我们可以写出

$$P(W > w) = \sum_{x=0}^{k-1} P(X = x) = \sum_{x=0}^{k-1} \frac{(\lambda w)^x e^{-\lambda w}}{x!}$$

于是 λ 是到达的速率, $\frac{1}{\lambda}$ 是等待时间.

不加证明的给出下面的概率等式

$$\int_{\lambda w}^{\infty} \frac{z^{k-1} e^{-z}}{(k-1)!} dz = \sum_{x=0}^{k-1} \frac{(\lambda x)^x e^{-\lambda w}}{x!}$$

则

$$G(w) = 1 - \int_{dw}^{\infty} \frac{z^{k-1} e^{-z}}{\Gamma(k)} dz = \int_{0}^{\lambda w} \frac{z^{k-1} e^{-z}}{\Gamma(k)} dz$$

这对于 $w \leq 0$, G(w) = 0 也成立.若我们通过令 $z = \lambda y$ 定义G(w)对积分中的积分变量进行变量变换,则

$$G(w) = \int_0^w \frac{\lambda^k y^{k-1} e^{-\lambda y}}{\Gamma(k)} dy, \quad w > 0$$

因此pdf为:

$$g(w) = G'(w) = \begin{cases} \frac{\lambda^k w^{k-1} e^{-\lambda w}}{\Gamma(k)}, & 0 < w < \infty \\ 0, & \sharp \text{ th} \end{cases}$$

因此尺度形式刻画的是等待间隔,速率形式刻画的是发生强度.

定理(卷积定理)。假设X,Y是两个独立的随机变量,F,G为其对应的累计分布函数,则

$$P(X+Y \le z) = \int F(z-y)dG(y).$$

其中dG(y)表示"使用分布函数G的,关于测度v的积分".

$$P(X+Y \le z) = \int \int 1_{(x+y \le z)} \mu(dx) \nu(dy)$$
$$= \int F(z-y) \nu(dy) = \int F(z-y) dG(y)$$

4.2 顺序统计量

极值的分布首先求极大值 ξ_n^* 的分布函数,

$$P\{\xi_n^* < x\} = P\{\max(\xi_1, \xi_2, \dots, \xi_n) < x;$$

$$= P\{\xi_1 < x, \xi_2 < x, \dots, \xi_n < x\}$$

$$= P\{\xi_1 < x\} \cdot P\{\xi_2 < x\} \cdots P\{\xi_n < x\}$$

$$= [F(x)]^n$$

其次求极小值 ξ_1^* 的分布函数,注意到

$$P\left\{\xi_1^* \geqslant x\right\} = P\left\{\min\left(\xi_1, \xi_2, \cdots, \xi_n\right) \geqslant x\right\}$$

$$= P\left\{\xi_1 \geqslant x, \xi_2 \geqslant x, \cdots, \xi_n \geqslant x\right\}$$

$$= P\left\{\xi_1 \geqslant x\right\} P\left\{\xi_2 \geqslant x\right\} \cdots P\left\{\xi_n \geqslant x\right\}$$

$$= \left[1 - F(x)\right]^n$$

顺序统计量方法采用概率元的方法(习题46).

样本中观测值落于 $(-\infty, x]$ 内的概率为 F(x), 落人区间 $(x, x + \Delta x]$ 内的概率为 $F(x, x + \Delta x)$ – F(x), 落人区间 $(x + \Delta x, \infty)$ 内的概率为 $1 - F(x, x + \Delta x)$. 将 n 个观测值分成这样的 3 组, 则其总的分法共有 $\frac{n!}{(k-1)!1!(n-k)!}$ 种. 于是, 由多项分布可得:

$$F_k(x + \Delta x) - F_k(x) \approx \frac{n!}{(k-1)!(n-k)!} F(x)^{k-1} (F(x + \Delta x) - F(x)) (1 - F(x + \Delta x))^{n-k}.$$

对两边除以 Δx , 并令 $\Delta x \rightarrow 0$, 即有:

$$f_k(x) = \lim_{\Delta x} \frac{F_k(x + \Delta x) - F_k(x)}{\Delta x} = \frac{n!}{(k-1)!(n-k)!} F(x)^{k-1} f(x) (1 - F(x))^{n-k}.$$

联合

$$\begin{cases} V = x_{(j)} - x_{(i)} \\ z = x_{(i)} \end{cases} \Rightarrow \begin{cases} x_{(i)} = z \\ x_{ij} = v + z \end{cases} \Rightarrow \begin{cases} x = z \\ x = v + z \end{cases}$$

4.3 变量变换方法

设二维随机变量 (X,Y) 的联合密度函数为 p(x,y), 如果函数

$$\begin{cases} u = g_1(x, y), \\ v = g_2(x, y) \end{cases}$$

有连续偏导数,且存在唯一的反函数

$$\begin{cases} x = x(u, v), \\ y = y(u, v), \end{cases}$$

由反函数存在定理,其变换的雅可比行列式

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \left(\frac{\partial(u, v)}{\partial(x, y)}\right)^{-1} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial v} \end{vmatrix}^{-1} \neq 0.$$

若

$$\begin{cases} U = g_1(X, Y), \\ V = g_2(X, Y), \end{cases}$$

则 (U,V) 的联合密度函数为

$$p(u, v) = p(x(u, v), y(u, v))|J|$$

教材上给出高维的例子,如果对 $y_i = g_i(x_1, \dots, x_n)$, $i = 1, 2, \dots, n$, 存在唯一的反函数 $x_i(y_1, \dots, y_n) = x_i(i = 1, \dots, n)$, 而且 (η_1, \dots, η_n) 的密度函数为 $q(y_1, \dots, y_n)$, 那么

$$G(y_1, \dots, y_n) = \int_{\substack{u_1 < y_1 \\ u \le v}} \dots \int q(u_1, \dots, u_n) du_1 \dots du_n$$

可知

$$q(y_1, \dots, y_n)$$

$$= \begin{cases} p(x_1(y_1, \dots, y_n), \dots, x_n(y_1, \dots, y_n)) |J| & \text{若}(y_1, \dots, y_n) \text{属于 } g_1, \dots, g_n \text{ 的值域} \\ 0, & \text{其他} \end{cases}$$

其中J为坐标变换的雅可比行列式

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \cdots & \frac{\partial x_1}{\partial y_n} \\ \vdots & & \vdots \\ \frac{\partial x_n}{\partial y_1} & \cdots & \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$

这里, 我们假定上述偏导数存在而且连续.

4.4 增补变量法

增补变量法实质上是变量变换法的一种应用:为了求出二维连续随机巠量 (X,Y) 的函数 U=g(X,Y) 的密度函数,增补一个新的随机变量 V=h(X,Y),一般令 V=X 或 V=Y. 先用变量变换法 求出 (U,V) 的联合密度函数 p(u,v),再对 p(u,v) 关于 v 积分,从而得出关于 U 的边际密度函数.设随机变量 X 与 Y 相互独立,其密度函数分别为 $p_X(x)$ 和 $p_Y(y)$.则 U=XY 的密度函数为

$$p_U(u) = \int_{-\infty}^{\infty} p_X\left(\frac{u}{v}\right) p_Y(v) \frac{1}{|v|} dv.$$

证明记 V = Y, 则 $\left\{ \begin{array}{ll} u = xy, \\ v = y \end{array} \right.$ 的反函数为 $\left\{ \begin{array}{ll} x = \dfrac{u}{v}, \\ y = v, \end{array} \right.$ 雅可比行列式为

$$J = \left| \begin{array}{cc} \frac{1}{v} & -\frac{u}{v^2} \\ 0 & 1 \end{array} \right| = \frac{1}{v},$$

所以 (U,V) 的联合密度函数为

$$p(u,v) = p_X\left(\frac{u}{v}\right) \cdot p_Y(v)|J| = p_X\left(\frac{u}{v}\right) p_Y(v) \frac{1}{|v|}.$$

对 p(u,v) 关于 v 积分, 就可得 U = XY 的密度函数为

$$p_U(u) = \int_{-\infty}^{\infty} p_X\left(\frac{u}{v}\right) p_Y(v) \frac{1}{|v|} dv.$$