(12) UK Patent Application (19) GB (11) 2 385 328 (13) A

(43) Date of A Publication 20.08.2003

- (21) Application No 0229456.9
- (22) Date of Filing 18.12.2002
- (30) Priority Data
 - (31) 60341988
- (32) 19.12.2001
- (33) US

(71) Applicant(s)

F Hoffmann-La Roche AG (Incorporated in Switzerland) 124 Grenzacherstrasse, CH-4070 Basle, Switzerland

(72) Inventor(s)

Wendy Lea Corbett Robert Lewis Crowther Pete William Dunten R.Ursula Kammlott Christine Maria Lukass

(74) Agent and/or Address for Service
Forrester Ketley & Co
Forrester House, 52 Bounds Green Road,
LONDON, N11 2EY, United Kingdom

- (51) INT CL⁷
 C12N 9/12 , A61K 31/4439 , A61P 3/10 , C07D 417/12
 // (C07D 417/12 213:56 277:46)
- (56) Documents Cited

Protein Science; Vol 11, pp 2456-2463 (2002). Tsuge et al. Structure; Vol 9, pp 205-214 (2001). Ito et al. Diabetes; Vol 48, pp 1698-1705 (1999). Mahalingam et al.

(58) Field of Search
INT CL⁷ C12N, C30B, G06F
Other: ONLINE: WPI, EPODOC, JAPIO, MEDLINE,
BIOSIS, EMBASE, SCISEARCH, CAPLUS

- (54) Abstract Title
 Crystals of glucokinase and methods of growing them
- (57) Crystalline forms of mammalian Glucokinase of sufficient size and quality to obtain structure data by X-ray crystallography are presented. Methods of growing such crystals are also disclosed.

Figure 1

Figure 2. The amino-acid sequence of the GST-GK fusion protein. The GST sequence was taken from GenBank entry U13852. Residue 229 of the fusion protein is the first residue of GK.

1 MSPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL EFPNLPYYID
61 GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL DIRYGVSRIA YSKDFETLKV
121 DFLSKLPEML KMFEDRLCHK TYLNGDHVTH PDFMLYDALD VVLYMDPMCL DAFPKLVCFK
181 KRIEAIPQID KYLKSSKYIA WPLQGWQATF GGGDHPPKSD LIEGRGIHMP RPRSQLPQPN
241 SQVEQILAEF QLQEEDLKKV MRRMQKEMDR GLRLETHEEA SVKMLPTYVR STPEGSEVGD
301 FLSLDLGGTN FRVMLVKVGE GEEGQWSVKT KHQMYSIPED AMTGTAEMLF DYISECISDF
361 LDKHQMKHKK LPLGFTFSFP VRHEDIDKGI LLNWTKGFKA SGAEGNNVVG LLRDAIKRRG
421 DFEMDVVAMV NDTVATMISC YYEDHQCEVG MIVGTGCNAC YMEEMQNVEL VEGDEGRMCV
481 NTEWGAFGDS GELDEFLLEY DRLVDESSAN PGQQLYEKLI GGKYMGELVR LVLLRLVDEN
541 LLFHGEASEQ LRTRGAFETR FVSQVESDTG DRKQIYNILS TLGLRPSTTD CDIVRRACES
601 VSTRAAHMCS AGLAGVINRM RESRSEDVMR ITVGVDGSVY KLHPSFKERF HASVRRLTPS

Figure 3

				tom	A.A.					222
	Atom	No.		ype	Type	A.A.#	X	Y	Z .	OCC B .
	ATOM		1	CB	SER	8	-0.421	63.744	24.899	1.00 50.68
5	ATOM		2	OG	SER	8	-0.752	63.605	23.524	1.00 50.85
	ATOM		3	С	SER	8	1.865	64.216	24.094	1.00 50.72
	MOTA		4	0	SER	8	2.308	63.644	23.102	1.00 51.79
	MOTA		5	N	SER	8	1.473	63.793	26.507	1.00 50.36
	MOTA		6	CA	SER	8	1.057	63.446	25.120	1.00 50.55
10	MOTA		.7	N	GLN	9	2.041	65.515	24.314	1.00 49.84
	MOTA		8	CA	GLN	9	2.831	66.312	23.385	1.00 48.95 1.00 49.08
	MOTA		9	CB	GLN	9	2.983	67.745	23.895	
	MOTA		10	CG	GLN	9	3.676	68.686	22.925	1.00 50.25 1.00 51.06
	MOTA		11	CD	GLN	9	3.206	70.127	23.085	1.00 51.08
15	MOTA		12		GLN	9 .	2.037	70.433	22.846	1.00 51.38
	MOTA		13	NE2	GLN	9 .	4.112	71.017	23.499	1.00 31.44
	ATOM		14	C	GLN	9	4.190	65.633	23.294	1.00 48.75
	ATOM		15	0	GLN	9	4.884	65.741	22.285	1.00 47.77
•	ATOM		16	N	VAL	10	4.560	64.926	24.361	1.00 47.77
20	MOTA		17	CA	VAL	10	5.823	64.198	24.392	1.00 46.39
	ATOM		18	CB	VAL	10	6.293	63.902	25.842	1.00 46.41
	MOTA		19		VAL	10	7.303	62.782	25.841	1.00 46.79
	ATOM		20		.VAL	10	6.952	65.135	26.436	1.00 46.73
	MOTA		21	С	VAL	10	5.616	62.885	23.653	1.00 46.17
25	MOTA		22	0	VAL	10	6.521	62.384	22.991 23.768	1.00 45.28
	MOTA		23	N	GLU	11	4.423	62.317	23.766	1.00 45.19
	MOTA		24	CA	GLU	11	4.159	61.071		1.00 45.21
	ATOM		25	CB	GLU	11	2.905	60.393	23.616 24.967	1.00 46.05
	MOTA		26	CG	GLU	11	3.105	59.709	24.957	1.00 46.30
30	MOTA		27	CD	GLU	11	4.224	58.664 57.918	23.948	1.00 46.28
	MOTA		28		GLU	11	4.350	58.583	25.940	1.00 45.66
	MOTA		29		GLU	11 11	4.963 4.002	61.345	21.580	1.00 44.48
	MOTA		30	С	GLU GLU	11	4.068	60.430	20.755	1.00 44.48
25	MOTA		31	0	GLN	12	3.807	62.614	21.239	1.00 43.86
35	MOTA		32 33	N CA	GLN	12	3.646	62.996	19.845	1.00 42.86
	MOTA		34	CB	GLN	12	2.972	64.368	19.715	1.00 44.49
	MOTA		35	CG	GLN	12	2.833	64.840	18.259	1.00 46.49
	ATOM ATOM		36	CD	GLN	12	1.986	66.099	18.113	1.00 47.74
40	MOTA		37		GLN	12	2.055		17.088	1.00 48.30
40	MOTA		38	NE2		12	1.174	66.388	19.131	1.00 47.51
	ATOM		39	C.	GLN	12	5.014	63.023	19.192	1.00 41.14
	ATOM		40	ō	GLN	12	5.139	62.739	18.002	1.00 41.76
	ATOM		41	N	ILE	13	6.038	63.360	19.971	1.00 38.51
45	ATOM		42	CA	ILE	13	7.398	63.388	19.450	1.00 36.48
7.7	MOTA		43	СВ	ILE	13	8.274	64.351	20.261	1.00 35.85
	ATOM		44	CG2		13	9.731	64.228	19.827	1.00 35.71
	ATOM		45		ILE	13	7.740	65.777	20.079	1.00 35.77
	ATOM		46		ILE	13	8.584	66.867	20.710	1.00 35.91
50	ATOM		47	c	ILE	13	8.018	61.981	19.452	1.00 36.01
50	MOTA		48	ō	ILE	13	8.572	61.528	18.442	1.00 35.99
	MOTA		49	N	LEU	14	7.903	61.288	20.580	1.00 34.88
	MOTA		50	CA	LEU	14	8.430	59.934	20.711	1.00 33.91
	MOTA		51	CB	LEU	14	8.230	59.432	22.141	1.00 33.29
55	MOTA		52	CG	LEU	14	8.853	60.321	23.215	1.00 33.43
	ATOM		53		LEU	14	8.510	59.781	24.594	1.00 33.04
	ATOM		54		LEU	14	10.354	60.398	23.001	1.00 33.04

	P.	igute 4									
	ATOM	55	С	LEU	14	7.766	58.957	19.730	1 00	33.55	
	ATOM	56	ō	LEU	14	8.208	57.812	19.578		33.21	
	ATOM	57.	N	ALA	15	6.710	59.403	19.065		32.69	
	ATOM	58	CA	ALA	15 [.]	6.021	58.551	18.104		32.59	
5	ATOM	59	CB	ALA	15	4.628	59.104	17.821		31.95	
J	ATOM	60	СВ	ALA	15	6.838	58.449				
	ATOM	61	0	ALA	15	6.664	57.519	16.808		32.79	
		62			16			16.018		33.05	
	MOTA		N	GLU		7.746	59.395	16.599		32.33	
10	MOTA	63	CA	GLU	16	8.575	59.369	15.403		32.74	
10	MOTA	64	CB	GLU	16	9.566	60.531	15.401		34.23	
	ATOM	65	CG	GLU	16	8.950	61.910	15.298		38.39	
	ATOM	66	CD	GLU	16	10.017	62.998	15.162		41.11	
	MOTA	67	OE1		16	10.445	63.269	14.012		40.68	
	ATOM	.68		GLU	16	10.438	63.562	16.212		42.77	
15	MOTA	69	C	GLU	16	9.369	58.073	15.279		31.93	
	ATOM	70	0	GLU	16	9.570	57.568	14.179		33.41	
	ATOM	71	N	PHE	17	9.841		16.401		30.37	
	ATOM	72	CA	PHE	17	10.640	56.321	16.369		27.71	
20	ATOM	73	CB	PHE	17	11.346	56.129	17.711		26.32	
20	ATOM	74	CG	PHE	17	12.309	57.230	18.045		24.22	
	MOTA	75		PHE	17	11.846	58.500	18.389		23.88	
	ATOM	76		PHE	17	13.680	57.010.			22.24	•
	MOTA	77		PHE	17	12.741	59.531	18.660		22,63	
	ATOM	78		PHE	17	14.574	58.027	18,250		21.23	•
25	MOTA	79	CZ	PHE	17	14.105	59.291	18.589		22.01	
	ATOM	80	C	PHE	17	9.836	55. 004		6.012		27.77
	ATOM	81	0	PHE	17	10.400	54. 15.		0 27.3		
	ATOM	82	N	GLN	18	8.517	55.213	15.957		28.12	
20	MOTA	83	CA	GLN	18	7.684		15.593		29.17	
30 .	ATOM	84	CB	GLN	18	6.216	54.484	15.599		30.98	
	MOTA MOTA	85 86	CD	GLN GLN	18 18	5.446 4.152	54.017	16.806			
		87			18		54.785	16.974		34.65	
	MOTA MOTA	88	NE2	GLN GLN	18	3.389 3.892	54.976	16.014		37.17 33.67	
35	ATOM	89	C	GLN	18	8.068	55.228	18.190		28.97	
33	ATOM	90	0	GLN	18	8.471	53.602 54.399	14.193 13.346		28.83	•
	ATOM	91	N	LEU	19	7.931	52.298	13.346		29.02	
	ATOM	92	CA	LEU	19	8.235	51.659	12.704		29.94	
	MOTA	93	СВ	LEU	19	9.641	51.069	12.749		29.78	
40	ATOM	94	CG	LEU	19	10.782	51.813	12.743		30.77	
-10	ATOM	95		LEU	19	10.702	53.251	12.477		30.67	
	ATOM	96		LEU	19	12.083	51.087	12.339		32.05	
	ATOM	97	C	LEU	19	7.199	50.549	12.511		31.41	
	ATOM	98	o	LEU	19	7.288	49.484	13.137		31.35	
45	ATOM	99	N	GLN	20	6.205	50.801	11.663		32.64	
	ATOM	100	CA	GLN	20	5.153	49.817	11.422		34.95	
	ATOM	101	CB	GLN	20	4.024	50.413	10.570		35.78	
	ATOM	102	CG	GLN	20	3.301	51.622	11.175		37.65	
	ATOM	103	CD	GLN	20	3.048	51.486	12.669		39.03	
50	ATOM	104	OE1		20	2.603	50.441	13.152		40.92	
	ATOM	105	NE2		20	3.324	52.552	13.410		40.04	
,	ATOM	106	С	GLN	20	5.692	48.568	10.730		35.83	
	ATOM	107	ō	GLN	20	6.827	48.547	10.247		36.56	
	ATOM	108	N	GLU	21	4.864	47.531	10.681		36.52	
55	ATOM	109	CA	GLU	21	5.240	46.279	10.062		37.80	
	ATOM	110	CB	GLU	21	4.024	45.357	9.998		39.22	
	ATOM	111	CG	GLU	21	4.298	43.898	9.625		42.88	
	MOTA	112	CD	GLU	21	4.568	43.009	10.844		44.63	
	ATOM	113		GLU	21	4.540	41.758	10.699		45.40	
				-							

Figure	4

								•	
	ATOM	114	OE2	GLU	21	4.810	43.564	11.943	1.00 45.89
	MOTA	115	С	GLU	21	5.770	46.549	8.654	1.00 38.20
	MOTA	116	0	GLU	21	6.892	46.183	8.324	1.00 38.71
	ATOM	117	N	GLU	22	4.972	47.208	7.826	1.00 38.54
5	MOTA	118	CA	GLU	22	5.386	47.478	6.457	1.00 39.08
	ATOM	119	СВ	GLU	22	4.308	48.267	5.703	1.00 40.61
	ATOM	120	CG	GLU	22	3.123	47.406	5.313	1.00 43.51
	ATOM	121	CD	GLU	22				
	ATOM	122		GLU		3.556	46.039	4.773	1.00 45.80
10					22	4.243	45.999	3.719	1.00 46.20
10	ATOM	123	OE2		22	3.215	45.007	5.414	1.00 46.87
	ATOM	124	C	GLU	22	6.711	48.197	6.359	1.00 38.74
	MOTA	125	0	GLU	22	7.482	47.954	5.423	1.00 39.26
	ATOM	126	N	ASP	23	6.988	49.084	7.308	1.00 37.74
	MOTA	127	CA	ASP	23	8.258	49.795	7.276	1.00 3723
15	ATOM	128	CB	ASP	23	8.356	50.779	8.437	1.00 38.62
	ATOM	129	CG	ASP	23	7.240	51.789	8.427	1.00 40.46
	ATOM	130	OD1	ASP	23	7.104	52.508	7.408	1.00 41.26
	ATOM /	131	OD2	ASP	23	6.495	51.861	9.438	1.00 41.77
	ATOM	132	С	ASP	23	9.371	48.760	7.382	1.00 35.54
20	MOTA	133	0	ASP	23	10.267	48.698	6.536	1.00 35.43
	ATOM	134	N	LEU	24	9.294	47.937	8.420	1.00 33.31
	ATOM	135	CA	LEU	24	10.288	46.910	8.631	1.00 32.04
	ATOM ·	136	CB	LEÚ	. 24	9.898	46.062	9.842	1.00 31.35
	ATOM	137	CG	LEU	24	9.920	46.801	11.196	1.00 31.33
25	ATOM	138		LEU	24	9.710	45.815	12.343	
	ATOM	139		LEU	24	11.253	47.526	11.367	1.00 23.40
	ATOM	140	C	LEU.	24	10.509	46.041	7.385	1.00 31.51
	ATOM	141	ō	LEU	24	11.645	45.723	7.049	1.00 31.67
	ATOM	142	N	LYS	25	9.434	45.673	6.693	1.00 31.57
30	ATOM	143	CA	LYS	25	9.551	44.863		
50	ATOM	144	CB	LYS	25	8.186	44.347	5.486	1.00 31.41
	ATOM	145	CĠ	LYS	25	7.574		5.061	1.00 31.91
	ATOM	145	CD	LYS	25		43.372	6.033	1.00 34.39
	ATOM	147	CE	LYS	25	6.224	42.901	5.531	1.00 36.61
35	ATOM	148				5.414	42.232	6.640	1.00 38.71
33	ATOM		NZ	LYS	25	3.978	42.086	6.235	1.00 39.39
		149	C	LYS	25 .	10.166	45.679	4.352	1.00 31.50
	MOTA	150	0	LYS	25		45.170	3.568	1.00 30.92
	ATOM	151	N	LYS		9.784	46.947	4.261	1.00 31.82
40	ATOM	152	CA	LYS	26	10.332	47.819	3.229	1.00 32.63
40	ATOM	153	CB	LYS	26	9.695	49.203	3.315	1.00 33.38
	ATOM	154	CG	LYS	26	10.053	50.129	2.177	1.00 35.11
	ATOM	155	CD	LYS	26	9.424	51.502	2.400	1.00 37.48
	ATOM	156	CE	LYS	26	9.364	52.312	1.104	1.00 39.72
	ATOM	157	NZ	LYS	26	8.706	53.645	1.307	1.00 42.62
45	ATOM	158	С	LYS	26	11.845	47.919	3.441	1.00 32.91
	MOTA	159	0	LYS	26	12.614	48.012	2.479	1.00 32.90
	MOTA	160	N	VAL	27	12.265	47.901	4.705	1.00 33.16
	MOTA	161	CA	VAL	27	13.687	47.956	5.046	1.00 33.43
	ATOM	162	CB	VAL	27	13.903	48.281	6.555	1.00 32.58
50	ATOM	163	CG1	VAL	27	15.335	47.960	6.963	1.00 32.13
	ATOM ·	164	CG2	VAL	27	13.622	49.755	6.818	1.00 31.04
	MOTA	165	С	VAL	27	14.305	46.586	4.727	1.00 33.90
٠.	MOTA	166	0	VAL	27	15.323	46.482	4.036	1.00 33.83
	MOTA	167	N	MSE	28	13.668	45.536	5.223	1.00 34.26
55	ATOM	168	CA	MSE	28	14.140	44.193	4.983	1.00 34.84
	ATOM	169	CB	MSE	28	13.072	43.198	5.393	1.00 35.83
	ATOM	170	CG	MSE	28	13.456	41.784	5.144	1.00 38.88
	ATOM	171	SE	MSE	28	12.108	40.670	5.608	1.00 35.40
	MOTA	172	CE	MSE	28	11.054	40.713	4.095	1.00 42.96

Figure	1	

	MOTA	173	С	MSE	28	14.465	44.016	3.505	1.00	35.32
	MOTA	174	0	MSE	28	15.571	43.621	3.144	1.00	35.22
	ATOM	175	N .	ARG	29	13.495	44.331	2.655	1.00	36.22
	MOTA	176	CA	ARG	29	13.665	44.191	1.218	1.00	36.59
5	ATOM	177	CB	ARG	29	12.352	44.520	0.509	1.00	37.37
	ATOM	178	CG	ARG	29	11.223	43.542	0.827	1.00	38.96
	ATOM -	179	CD	ARG	29	9.913	43.960	0.152	1.00	40.89
	MOTA	180	NE	ARG	29	8.760	43.281	0.744		42.88
	MOTA	181	CZ	ARG	29	7.621	43.889	1.081	1.00	43.80
10	ATOM	182	NHl	ARG	29	7.475	45.201	0.881	1.00	43.07
	ATOM	183	NH2	ARG	29	6.631	43.188	1.636	1.00	44.12
	ATOM	184	С	ARG	29	14.814	45.008	0.625		36.30
	MOTA	185	0	ARG	29	15.615	44.469	-0.133		35.58
	ATOM	186	N	ARG	30	14.906	46.296	0.948	1.00	36.85
15	ATOM	187	CA	ARG	30	16.008	47.091	0.410		38.41
	ATOM	188	CB	ARG	30	15.944	48.543	0.894		39.31
	ATOM	189	CG	ARG	30	14.676	49.285	0.513		41.96
	MOTA	190	CD	ARG	30	14.742	50.763	0.933		44.07
	MOTA	191	NE	ARG	30	13.415	51.384	0.995	1.00	45.48
20	ATOM	192	CZ	ARG	30	13.179	52.628	1.416	1.00	45.93
	ATOM	193		ARG	30	14.175	53.403	1.810	1.00	45.92
	MOTA	194	NH2	ARG	30	11.937	53.091	1.467	1.00	45.68
	MOTA	195	C	ARG	30	17.338	46.461	0.843	1.00	39.05
	MOTA	196	0	ARG	30 ,	18.286	46.404	0.061	1.00	38.99
25	MOTA	197	N	MSE	31	17.408	45.999	2.092		39.11
	ATOM	198	·CA	MSE	31	18.615	45.348	2.596	1.00	38.96
	MOTA	199	CB	MSE	31	18.374	44.784	4.002	1.00	40.43
•	MOTA	200	CG	MSE	31	19.512	43.922	4.599	1.00	42.62
	ATOM	201	SE	MSE	31	21.083	44.819	5.027	1.00	48.46
30	ATOM	202	CE	MSE	31	20.438	45.988	6.389	1.00	45.46
	ATOM	203	С	MSE	31	18.901	44.209			38.25
	ATOM	204	0	MSE	31	19.973	44.132	1.038		38.18
	ATOM	205	N	GLN	32	17.915	43.334	1.478		37.93
	MOTA	206	CA	GLN	32	18.037	42.199	0.589		37.33
35 .	MOTA	207	CB	GLN	32	16.708	41.475	0.480		36.41
	ATOM	208	CG	GLN	32	16.219	40.905	1.780		37.04
	MOTA	209	CD	GLN	32	15.304	39.723	1.561		37.28
	MOTA	. 210		GLN	32	15.740	38.682	1.072		38.23
40	MOTA	211	NE2		32	14.027	39.874	1.912		37.39
40	MOTA	212	С	GLN	32	18.475	42.641	-0.791		37.81
	MOTA MOTA	213 214	O N	GLN	32	19.215	41.929	-1.466		37.79
	ATOM	214		LYS	33	18.019	43.819	-1.205		38.80
	ATOM	215		LYS	33			-2.516		39.85
45	ATOM	217	CB CG	LYS LYS	33 33	17.525	45.588	-2.830		40.63
30	ATOM	217				17.591	45.992	-4.298		42.21
	ATOM	219	CD	LYS	33	16.924	47.336	-4.561		43.78
	ATOM	220	NZ	LYS LYS	33 33	17.160 16.639	47.803	-6.006		44.42
	ATOM	221	C	LYS	33		49.187	-6.256		44.23
50	ATOM	222	0	LYS	33	19.843	44.695	-2.574		40.37
50	MOTA	223	N	GLU	34	20.519	44.411	-3.564		40.53
	ATOM	224	CA	GLU	34	20.331	45.312	-1.500		40.59
	ATOM	225	CB	GLU	34	21.730	45.712	-1.378		40.95
	ATOM	226	CG	GLU	34	21.912 21.229	46.641	-0.179		41.24
55	ATOM	227	CD	GLU	34	21.229	47.956 48.506	-0.359 -1.741		41.42
	ATOM	228	OE1		34	22.650	48.810	-1.741	1.00	42.21
	ATOM	229	OE2		34	20.493	48.613	-2.063 -2.507	1.00	
	ATOM	230	C	GLU	34	22.667	44.528	-1.221	1.00	
	ATOM	231	<u>o</u> .	GLU	34	23.770	44.527	-1.767		41.06
				-		•	· - - ·	• •		

Fi	gure	4

	ATOM	232	N	MSE	35	22.233	43.534	-0.456	1.00 41.15
	MOTA	233	CA	MSE	35	23.038	42.350	-0.232	1.00 41.36
	MOTA	234	CB	MSE	35	22.289	41.354	0.648	1.00 41.62
	MOTA	235	CG	MSE	35	22.320	41.711		1.00 43.28
5	MOTA	236	SE	MSE	35	21.428	40.506		1.00 46.51
	MOTA	237	CE	MSE	35	22.217	38.947		1.00 45.63
`	ATOM	238	С	MSE	35		41.701		1.00 41.91
	ATOM	239	ő	MSE	35	24.532	41.367		
	ATOM	240	N	ASP	36				1.00 42.73
10	ATOM	241	CA	ASP	36	22.367 22.593	41.533		1.00 42.15
10	ATOM	242	CB	ASP	36		40.898		1.00 41.96
	ATOM	243	CG			21.264	40.633		1.00 43.56
				ASP	36	21.446	39.947		1.00 45.91
	MOTA	244		ASP	36	21.821	40.652		1.00 46.71
10	ATOM	245		ASP	36	21.232	38.707		1.00 46.76
- 15	ATOM	246	С	ASP	36	23.502	41.717		1.00 41.03
	ATOM	247	0	ASP	36	24.406	41.178	-5.217	1.00 40.61
	ATOM	248	И	ARG	37	23.257	43.021	-4.620	1.00 40.36
	ATOM	249	CA	ARG	37 ´	24.034	43.937	-5.446	1.00 39.76
	ATOM	250	CB	ARG	37	23.498	45.355	-5.283	1.00 39.56
20	ATOM	251	CG	ARG	37	22.252	45.621		1.00 40.04
	MOTA	252	CD	ARG	37	21.465	46.815		1.00 41.19
	MOTA	253	NE	ARG	37	22.278	48.002		1.00 41.70
	ATOM	254	CZ	ARG	37	22.938	48.711		1.00 42.38
	ATOM	255	NH1	ARG	37	22.899	48.362		1.00 42.59
· 25	MOTA	256	NH2	ARG	37	23.615	49.792		1.00 41.94
	ATOM	257	С	ARG	37		43.908		1.00 39.94
	ATOM	258	ō	ARG	37	26.335	43.732	-6.059	1.00 40.39
	ATOM	259	N	GLY	38	25.893	44.076	-3.890	1.00 40.39
	MOTA	260	CA	GLY	38	27.305	44.063	-3.557	1.00 39.94
30	ATOM	261	C	GLY	38	27.933	42.689		
••	ATOM	262	ō	GLY	38	29.163	42.546	-3.699	1.00 39.23
	ATOM	263	N	LEU	39	27.087		-3.695	1.00 39.59
	ATOM	264	CA	LEU	39	27.545	41.677	-3.834	1.00 38.16
	ATOM	265	CB	LEU	39	26.428	40.307	-3.960	1.00 37.65
35	ATOM	266	CG	LEU	39		39.376	-3.495	1.00 35.76
55	MOTA	267		LEU		26.821	38.029	-2.900	1.00 34.52
	ATOM	268		LEU	39	27.899	38.248	-1.857	1.00 33.52
					39	25.606	37.348	-2.284	1.00 32.44
	ATOM ATOM	269	C	LEU	39	27.931	39.989	-5.407	1.00 39.20
40		270	0	LEU	39	28.594	38.980	-5.681	1.00 39.88
40	MOTA	271	N	ARG	40	27.537	40.866	-6.329	1.00 40.51
	ATOM	272	CA	ARG	40	27.809	40.656	-7.751	1.00 41.77
	ATOM	273	CB	ARG	40	26.494	40.686	-8.526	1.00 42.80
	ATOM	274	CG	ARG	40	25.735	39.392	-8.377	1.00 44.75
	ATOM	275	CD	ARG	40	24.257	39.551	-8.636	1.00 46.47
45	MOTA	276	NE	ARG	40	23.639	38.239	-8.797	1.00 48.71
	MOTA	277	CZ	ARG	40	22.331	38.034	-8.890	1.00 50.01
	MOTA	278		ARG	40	21.497	39.064	-8.831	1.00 51.43
	ATOM	279	NH2	ARG	. 40	21.861	36.804	-9.060	1.00 50.46
	ATOM	280	С	ARG	40	28.802	41.623	-8.374	1.00 42.16
50	ATOM	281	0	ARG	40	28.783	42.819	-8.097	1.00 42.42
	ATOM	282	N	LEU	41	29.650	41.087	-9.247	1.00 42.03
	MOTA	283	CA	LEU	41 .	30.689	41.864	-9.902	1.00 42.00
	MOTA	284	СB	LEU	41	31.307		-11.041	1.00 42.00
	ATOM	285	CG	LEU	41	32.577		-11.660	1.00 41.78
55	ATOM	286	CD1		41	33.638		-10.583	1.00 41.78
	ATOM	287	CD2		41	33.087		-12.773	1.00 41.95
	ATOM	288	C	LEU	41	30.278		-12.773	1.00 41.95
	ATOM	289	ō	LEU	41	30.920		-10.428	1.00 42.57
	ATOM	290	N	GLU	42	29.219		-11.227	1.00 43.03
									

ı		Figure 4				9/63				
	ATOM	291	CA	GLU	42	28.788	44.562	-11.803	1.00	44.63
	ATOM	292	CB	GLU	42	27.494	44.369	-12.607	1.00	43.97
	ATOM	293	CG	GLU	42	26.436	43.533	-11.922	1.00	44.02
	MOTA	294	CD	GLU	42	26.546	42.057	-12.248	1.00	43.71
5	MOTA	295	OE1	GLU	42	27.673	41.527	-12.245	1.00	45.13
	ATOM	296		GLU	42	25.504		-12.496	1.00	43.50
	ATOM	297	C	GLU	42	28.616		-10.805		46.21
	MOTA	298	0	GLU	42	28.963		-11.103		46.22
	MOTA	299	N	THR	43	28.105	45.413	-9.616	1.00	47.90
10	MOTA	300	CA	THR	43	27.873	46.443	-8.608	1.00	49.10
	MOTA	301	CB	THR	43	26.370	46.533	-8.285	1.00	48.63
	MOTA	302	OG1	THR	43	25.772	45.242	-8.465	1.00	47.66
	MOTA	303	CG2	THR	43	25.679	47.531	-9.192	1.00	48.90
	MOTA	304	C	THR	43	28.629	46.226	-7.302	1.00	50.94
15	MOTA	305	0	THR	43	28.481	47.008	-6.362	1.00	51.52
	MOTA	306	N	HIS	44	29.456	45.185	-7.249	1.00	52.58
	MOTA	307	CA	HIS	44	30.204	44.854	-6.037	1.00	53.89
	MOTA	308	CB	HIS	44	31.210		-6.311		54.68
	ATOM	309	CG	HIS	44	32.552	44.208	-6.775		55.77
20	MOTA	310		HIS	44	33.748	44.257	-6.139		55.82
	MOTA	311		HIS	44	√32.758	44.772	-8.017		56.36
•	ATOM	312		HIS	. 44	34.020	45.146	-8.125		56.30
	ATOM	313		HIS	44	34.643	44.845	-6.999		56.06
	ATOM	314	С	HIS	44	30.950	46.013	-5.398		54.87
25	ATOM	315	0	HIS	44	30.823	46.254	-4.199		55.06
	MOTA	316	N	GLU	45	31.724	46.732	-6.203		56.25
	ATOM	317		GLU	45	32.540	47.826	-5.703		57.17
	MOTA	318	CB	GLU	45	33.618	48.180	-6.721		59.35
30	MOTA MOTA	319 - 320	CD	GLU GLU	45 45	33.146 34.107	49.127 50.279	-7.800 -7.985		61.61 63.07
50	ATOM	321		GLU	45	35.228	50.038	-8.487		63.72
	MOTA			GLU	45	33.747	51.420	-7.613		64.00
	MOTA	323	C	GLU	45	31.762	49.074	-5.356		56.66
	ATOM	324	Õ	GLU	45	32.295	49.985	-4.732		56.54
35	MOTA	325	N	GLU	46	30.508	49.135	-5.772		56.24
	ATOM	326	CA	GLU	46	29.708	50.306	-5.456		56.37
	ATOM	327	СВ	GLU	46	29.542	51.157	-6.704		57.92
	ATOM	328	CG	GLU	46	30.881	51.645	-7.212		60.77
	MOTA	329	CD	GLU	46	30.782	52.400	-8.515	1.00	62.28
40	MOTA	330	OE1	GLU	46	30.566	51.762	-9.571	1.00	62.25
	MOTA	331	OE2	GLU	46	30.914	53.641	-8.474	1.00	63.95
	MOTA	332	C	GLU	46	28.366	49.891	-4.873	1.00	55.40
	MOTA	333	0	GLU	46	27.309	50.123	-5.457	1.00	55.75
	MOTA	334	Ŋ	ALA	47	28.440	49.264	-3.704	1.00	53.89
45	ATOM	335	CA	ALA	47	27.273	48.783	-2.987	1.00	51.80
	MOTA	336	CB	ALA	47	27.140	47.280	-3.159		52.36
	MOTA	337	C	ALA	47	27.470	49.111	-1.524		49.98
	ATOM	338	0	ALA	47	28.448	48.664	-0.923		50.36
	MOTA	339	N	SER	48	26.553	49.894	-0.960		47.18
50	ATOM	340	CA	SER	48	26.630	50.267	0.444		44.70
•	MOTA	341	CB	SER	48	25.299	50.860			46.13
	MOTA	342	OG	SER	48	24.243	49.927	0.720		47.87
	MOTA	343	C	SER	48	26.965	49.041	1.287		42.45
	MOTA	344	0	SER	48	27.841	49.082	2.147	T.00	42.01

55 ATOM

MOTA

ATOM

· ATOM ATOM 345 N

347

348

346 CA VAL

349 CG2 VAL

CB VAL

CG1 VAL

VAL

49

49

49

49

49

26.261

26.516

25.231

25.496

24.102 46.672

47.946

46.713

45.849

44.625

1.037 1.00 40.48

2.740 1.00 38.40

2.472 1.00 37.16

1.00 38.96

1.00 38.62

1.762

1.875

10/63 Figure 4 ATOM 350 C VAL 27.572 45.997 49 0.929 1.00 37.97 ATOM. 351 0 VAL 49 27.266 45.474 -0.137 1.00 38.42 ATOM 352 N LYS 28.810 50 45.982 1.422 1.00 36.51 ATOM 353 CA LYS 45.385 50 29.937 0.703 1.00 34.95 ATOM 354 CB LYS 50 31.250 45.843 1.334 1.00 35.51 MOTA 355 CG LYS 50 31.574 47.322 1.091 1.00 36.68 MOTA 356 CD LYS 50 30.676 48.249 1.913 1.00 39.05 MOTA 357 CE LYS 50 30.865 48.018 3.419 1.00 39.54 MOTA 358 NZ LYS 50 32.316 48.157 3.792 1.00 40.04 ATOM 359 С LYS 30.012 50 43.879 0.482 1.00 33.72 MOTA 360 0 LYS 50 30.845 43.421 -0.2931.00 33.30 ATOM 361 N MSE 51 29.171 43.100 1.147 1.00 33.02 ATOM 362 CA MSE 29.209 51 41.647 0.967 1.00 32.08 ATOM 363 CB MSE 28.291 51 41.257 -0.190 1.00 34.01 ATOM 364 CG MSE 26.867 51 41.744 -0.025 1.00 36.03 ATOM 365 SE MSE 26.148 51 41.146 1.529 1.00 40.73 MOTA 366 CE MSE 51 25.558 39.411 1.085 1.00 37.98 MOTA 367 C MSE 30.637 41.180 51 0.666 1.00 30.17 ATOM 368 0 MSE 51 30.928 40.723 -0.437 1.00 30.22 20 ATOM 369 N LEU 52 31.518 41.295 1.650 1.00 28.96 MOTA 370 CA LEU 52 32.920 40.928 1.487 1.00 27.43 ATOM 371 ÇВ LEU 52 33.769 41.839 2.357 1.00 28.05 ATOM 372 CG LEU 52 33.649 43.319 1.991 1.00 28.52 ATOM 373 CD1 LEU 52 34.222 44.171 1.00 28.77 3.116 25 ATOM 374 CD2 LEU 52 34.369 43.583 0.658 1.00 28.75 ATOM 375 C LEU 52 33.273 39.482 1.803 1.00 26.61 MOTA 376 0 LEU 32.997 38.995 52 2.893 1.00 25.26 ATOM 377 N PRO 53 33.911 38.774 0.844 1.00 27.04 MOTA 378 CD PRO 53 34.270 39.142 -0.540 1.00 25.69 ATOM 379 CA PRO 53 34.264 37.375 1.133 1.00 27.99 MOTA 380 CB PRO 53 34.807 36.864 1.00 26.92 -0.204 ATOM 381 CG PRO 53 34.184 37.825 -1.241 1.00 25.77 MOTA 382 C PRO 53 35.314 37.361 2.239 1.00 28.40 38.271 ATOM 383 0 PRO 53 36.152 2.317 1.00 28.36 ATOM 384 N THR 54 35.255 36.329 3.080 1.00 29.46 4.226 ATOM 385 CA THR 54 36.149 36.142 1.00 30.53 ATOM 386 CB THR 54 35.317 35.951 5.502 1.00 29.48 MOTA 387 OG1 THR 54 34.589 34.711 5.418 1.00 27.97 ATOM 388 CG2 THR 34.324 37.084 54 5.659 1.00 29.42 MOTA 389 C 37.018 THR 54 34.884 4.071 1.00 31.60 ATOM 390 0 THR 54 37.657 34.423 5.025 1.00 32.25 ATOM 391 N TYR 55 37.017 34.311 2.877 1.00 32.63 ATOM 392 CA TYR 55 37.763 33.089 2.615 1.00 34.41 ATOM 393 CB TYR 55 39.249 33.421 2.405 1.00 33.07 45 ATOM 394 CG TYR 55 39.458 34.175 1.101 1.00 32.58 CD1 TYR ATOM 395 55 39.518 35.571 1.067 1.00 32.44 ATOM 396 CE1 TYR 55 39.572 36.263 -0.157 1.00 32.48 ATOM 397 CD2 TYR 55 39.467 33.492 -0.117 1.00 31.97 ATOM 398 CE2 TYR 55 39.516 34.172 -1.335 1.00 31.83 50 ATOM 399 CZ TYR 55 39.566 35.548 -1.351 1.00 32.18 ATOM 400 OH TYR 55 39.575 36.200 -2.568 1.00 32.67 ATOM 401 C TYR 55 37.559 31.956 3.637 1.00 36.06 ATOM 402 0 TYR 55 38.314 30.991 3.665 1.00 37.61 MOTA 403 N VAL 56 36.518 32.059 4.459 1.00 38.03 ATOM 404 CA VAL 56 36.199 31.006 5.429 1.00 39.87 MOTA 405 CB VAL 56 1.00 38.75 35.483 31.586 6.663 ATOM 406 CG1 VAL 56 35.202 30.492 1.00 38.10 7.669

ATOM

ATOM

CG2 VAL

VAL

C

56

56

36.336

35.249

32.660

30.032

7.285

4.706

1.00 38.76

1.00 42.20

407

408

}					•	11/63				
	Fi	gure 4				•				
) (DO)/	400	_		F.C.	34 000	20 276	4 410	1 00	43 02
	MOTA MOTA	409 410	o N	VAL ARG	56 57	34.098 35.718	30.376 28.821	4.418		42.02
	MOTA	411	CA	ARG	57	34.896	27.860	3.676		47.07
	ATOM	412	CB	ARG	5 <i>7</i>	35.688	27.288	2.499		48.02
5	ATOM	413	CG	ARG	5 <i>7</i>	36.209	28.310	1.508		49.08
	ATOM	414	CD	ARG	57	36.558	27.626	0.185		49.69
	MOTA	415	NE	ARG	57	37.239	28.528	-0.737		49.50
	ATOM	416	CZ	ARG	57	38.367	29.167	-0.447		48.83
	ATOM	417		ARG	57	38.938	28.997	0.745		48.13
10	ATOM	418		ARG	57	38.915	29.978	-1.345		47.51
	ATOM	419	С	ARG	57	34.311	26.695	4.449		48.57
	MOTA	420	0	ARG	57	34.810	26.310	5.500	1.00	48.65
	MOTA	. 421	N	SER	58	33.256	26.117	3.891	1.00	51.15
	MOTA	422	CA	SER	58	32.589	24.973	4.501	1.00	54.78
15	ATOM	423	CB	SER	58	31.204	24.793	3.882	1.00	54.26
	ATOM	424	OG	SER	58	31.258	24.980	2.475	1.00	54.39
	ATOM	425	С	SER	58	33.419	23.708	4.295	1.00	57.39
	MOTA	426	0	SER	58	33.097	22.645	4.823		57.47
	ATOM	427	N	THR	59	34.484	23.840	3.510		60.71
20	MOTA	428	CA	THR	59	35.392	22.740	3.216		64.02
	ATOM	429	CB	THR	59	35.886	22.823	1.758		63.73
	ATOM	430		THR	59	36.637	24.029	1.570		63.22
	ATOM	431		THR	59 50	34.704	22.843	0.801		63.87
25	MOTA MOTA	432 433	C O	THR	59 59	36.571 37.554	22.880	4.176		67.10 67.44
23	ATOM	434	Ŋ	PRO	60	36.480	23.562	3.884 5.349		69.75
	MOTA	435	CD	PRO	60	35.366	21.412	5.854		70.63
	MOTA	436	CA	PRO	60	37.556	22.320	6.337		71.72
	MOTA	437	CB	PRO	60	36.841	21.982	7.636		71.72
30	ATOM	438	CG	PRO	60	35.909	20.881	7.182		71.50
	MOTA	400	C	PRO	60	38.709	21.370	6.056		73.48
	ATOM	440	0	PRO	60	39.522	21.609	5.158		73.53
	MOTA	441	N	GLU	61	38.754	20.287	6.830	1.00	75.48
•	MOTA	442	CA	GLU	61	39.808	19.283	6.731		76.98
35	MOTA	443	CB	GLU	61	39.969	18.788	5.289		78.43
	MOTA	444	CG	GLU	61	40.806	17.516	5.161		80.68
	ATOM	445	CD	GLU	61	42.177	17.744	4.530		81.88
	MOTA	446		GLU	61	42.993	18.498	5.100		82.28
40	MOTA	447 448	C C	GLU	61 61	42.442	17.156 19.969	3.458		82.68
40	ATOM ATOM	449	0	GLU GLU	61	41.083 41.942	20.327	7.194 6.389		77.00 77.10
	ATOM	450	N	GLY	62	41.177	20.327	8.502		76.85
-	ATOM	451	CA	GLY	62	42.344	20.826	9.069		76.72
	ATOM	452	C	GLY	62	42.415	20.539	10.555		76.65
45	ATOM	453	ō	GLY	62	42.507	19.380	10.969		76.79
	ATOM	454	N	SER	63	42.361	21.594	11.362		76.25
	ATOM	455	CA	SER	63	42.417	21.458	12.814		75.06
	MOTA	456	CB	SER	63	41.401	20.413	13.300		75.92
	MOTA	457	OG	SER	63	41.350	20.363	14.718	1.00	76.69
50	MOTA	458	С	SER	63 .	43.818	21.062	13.259	1.00	73.60
•	MOTA	459	0	SER	63	44.090	19.899	13.561	1.00	73.10
	MOTA	460	N	GLU	64	44.705	22.045	13.280		71.83
	MOTA	461	CA	GLU	64	46.071	21.819	13.703		70.12
	ATOM	462	CB	GLU	64	46.996	22.824	13.011		71.42
55	ATOM	463	CG	GLU	64	48.464	22.726	13.417		73.74
	ATOM	464	CD	GLU	64	49.014	21.309	13.342		74.84
	ATOM ATOM	465 466		GLU GLU	64 64	48.623	20.466	14.187		75.26 75.45
	MOTA	467	C	GLU	64	49.837 46.136	21.041 21.971	12.434 15.221		67.97
	0.1	307	-		~~	-V. 130		44	1.00	51.51

F	ïe	ш	re	4

	ATOM	468	0	GLU	64	46.775	22.886	15.734	1.00	68.33
	MOTA	469	N	VAL	65	45.448	21.076	15.927		65.13
	ATOM	470	CA	VAL	65	45.400	21.067	17.391		62.32
	ATOM	471	CB	VAL	65	45.335	19.621	17.918		62.48
5	MOTA	472	CG1	VAL	65	45.487	19.607	19.430		62.45
	MOTA	473		VAL	65	44.011	18.975	17.508		62.79
	ATOM	474		VAL	65	46.587	21.752	18.055		60.42
	ATOM	475	Ö	VAL	65	47.703				
	MOTA	476	N	GLY	66		21.708	17.540		60.54
10	ATOM	477				46.354	22.386	19.200		58.26
10			CA	GLY	66	47.454	23.043	19.888		55.67
	ATOM	478	C	GLY	66	47.081	24.174	20.823		53.42
	ATOM	479	0	GLY	66	46.153	24.052	21.615		54.08
	ATOM	480	N	ASP	67	47.832	25.267	20.739	1.00	51.06
_	MOTA	481	CA	ASP	67	47.614	26.460	21.549	1.00	48.67
15	MOTA	482	CB	ASP	67	48.617	26.531	22.703	1.00	49.14
	MOTA	483	CG	ASP	67	48.381	25.462	23.751	1.00	49.34
	MOTA	484		ASP	67 .	48.201	24.287	23.365	1.00	49.37
	MOTA	485	OD2	ASP	67	48.386	25.791	24.956	1.00	49.62
	MOTA	486	С	ASP	67	47.832	27.634	20.612		47.26
20	MOTA	487	0	ASP	67	48.786	27.635	19.827		47.44
	ATOM	488	N	PHE	68	46.955	28.632	20.678		45.41
•	ATOM	489	CA	PHE	68	47.075	29.778	19.785		43.60
	ATOM	490	CB	PHE	68	46.031	29.682	18.667		41.17
	ATOM	491	ĊG	PHE		46.032	28.361	17.946		39.29
25	ATOM	492		PHE	68	45.621	27.199	18.592		38.55
	ATOM	493		PHE	68	46.468	28.272	16.623		38.76
	ATOM	494		PHE	68	45.647	25.966			38.24
	ATOM	495	CE2	PHE	68	46.498		17.934		
	ATOM	496	CZ	PHE	68 .	46.496	27.050 25.893	15.959		37.31
30	ATOM	497	C	PHE	68	46.088		16.619		37.76
20	ATOM	498	0	PHE	68		31.096	20.514		43.33
						46.395	31.147	21.621		43.27
	ATOM	499	N	LEU	69	47.386	32.166	19.889		43.51
	ATOM	500	CA	LEU	69	47.274	33.475	20.497		44.73
35	ATOM	501	CB	LEU	69 -	48.625	34.197	20.518		45.26
22	ATOM	502	CG	LEU	69	48.781	34.949	21.848		46.33
	ATOM	503		LEU	69	49.166	33.928	22.932		46.09
	ATOM .	504		LEU	69	49.811	36.072	21.748		45.48
	ATOM	505	С	LEU	69	46.275	34.278	19.681	1.00	45.37
	ATOM	506	0	LEU	69	46.448	34.451	18.470	1.00	45.62
40	MOTA	507	N	SER	70	45.228	34.758	20.351	1.00	45.75
	ATOM	508	CA	SER	70	44.177	35.528	19.697	1.00	44.98
	ATOM	509	CB	SER	70	42.794	34.984	20.074	1.00	44.61
	ATOM	510	OG	SER	70	42.697	33.589	19.844	1.00	44.25
	ATOM	511	С	SER	70	44.250	36.978	20.109	1.00	44.92
45	ATOM	512	0	SER	70	44.451	37.289	21.277	1.00	44.67
	ATOM	513	N	LEU	71 ·	44.095	37.858	19.130		45.85
	ATOM	514	CA	LEU	71	44.092	39.294	19.366		47.27
	ATOM	515	CB	LEU	71	45.064	40.000	18.421		47.71
	ATOM	516	CG	LEU	71	46.552	39.942	18.787		49.06
50	ATOM	517	CD1		71	47.008	38.497	19.039		49.69
	ATOM	518	CD2		71	47.348	40.572	17.656		49.35
	ATOM	519		LEU	71	42.668	39.752	19.082		47.94
	ATOM	520		LEU	71	41.873	38.997	18.499		
	ATOM	521		ASP	72	42.333	40.976	19.479		48.06
55	ATOM	522		ASP	72	42.333				48.20
	ATOM	523		ASP	72 72	40.985	41.451	19.244		48.67
	ATOM	524		ASP	72 72	38.668	40.807	20.262		48.71
	ATOM	525	OD1		72		41.420	20.243		49.13
	ATOM	526	OD2		72	38.090	41.549	19.144		49.57
	-11 At1	220	ODE	WAL	12	38.168	41.777	21.331	T.00	50.11

Figure	4

								_	
·	ATOM	527	С	ASP	72	40.819	42.962	19.258	1.00 48.98
	MOTA	528	ō	ASP	72	40.247	43.530	20.187 .	1.00 48.82
	ATOM	529	N	LEU	73	41.312	43.613	18.214	1.00 49.73
	ATOM	530	CA	LEU	73	41.193	45.060	18.117	1.00 51.48
5	ATOM	531	СВ	LEU	73	42.199	45.603	17.096	1.00 50.80
•	ATOM	532	CG	LEU	73	42.160	47.096	16.774	1.00 50.07
	ATOM	533	CD1		73	42.358	47.902	18.045	1.00 50.10
	ATOM	534	CD2		73	43.223	47.421	15.738	1.00 49.97
	ATOM	535	С	LEU	73	39.764	45.392	17.687	1.00 52.93
10	ATOM	536	0	LEU	73	38.909		17.628	1.00 52.38
	ATOM	537	N	GLY	74	39.504	46.665	17.401	1.00 54.88
	ATOM	538	ÇA	GLY	74	38.177	47.068	16.983	1.00 56.88
	MOTA	539	С	GLY	74	37.285	47.420	18.148	1.00 58.48
	ATOM	540	0	GLY	74	36.476	48.348	18.071	1.00 58.31
15	ATOM	541	N	GLY	75	37.428	46.668	19.233	1.00 60.27
	MOTA	542	CA	GLY	75	36.621	46.925	20.410	1.00 62.46
	ATOM	543	С	GLY	75	37.020	48.230	21.074	1.00 63.75
	MOTA	544	0	GLY	- 75	37.824	49.005	20.536	1.00 64.06
	MOTA	545	N	THR	76	36.452	48.481	22.248	1.00 64.50
20	ATOM	546	CA	THR	76	36.759	49.697	22.991	1.00 65.42
	MOTA	547	CB	THR	76	35.905	49.776	24.266	1.00 66.28
	ATOM .	548	0G1	THR.	. 76	36.361	48.791	25.203	1.00 67.43
	MOTA	549	CG2	THR	76	34.425	49.505	23.938	1.00 66.14
	MOTA	550	C	THR	76	38.238	49.651	23.385	1.00 65.25
25	ATOM	551	0	THR	76	39.005	50.595	23.152	1.00 65.01
	MOTA	552	N	ASN	77	38.622	48.528	23.980	1.00 64.74
	MOTA	553	CA	ASN	77	39.987	48.309	24.412	1.00 64.17
	MOTA	554	CB	ASN	77	40.015	47.966	25.903	1.00 65.44
	MOTA	555	CG	ASN	77	39.346	49.027	26.765	1.00 66.47
30	MOTA	556		ASN	77	39.656	50.219	26.663	1.00 67.13
	MOTA	557		ASN	77	38.431	48.596	27.629	1.00 66.65
	MOTA	558	С	ASN	77	40.547	47.149	23.603	1.00 63.19
	ATOM	559	0	ASN	77	39.795	46.303	23.120	1.00 62.58
	ATOM	560		PHE	78	41.866	47.123	23.446	1.00 62.14
35	ATOM	561	CA	PHE	78	42.526	46.051	22.708	1.00 61.12
	MOTA	562 563	CB	PHE	78 78	43.887	46.514 45.420	22.172 21.516	1.00 61.81 1.00 62.50
	MOTA	563 _. 564	CG CD1	PHE	78 78	44.684 44.347	44.956	20.245	1.00 62.30
	ATOM	565		PHE	78	45.741	44.818	20.243	1.00 62.81
40	ATOM ATOM	566		PHE	78	45.051	43.899	19.655	1.00 62.72
40	ATOM	567		PHE	78	46.450	43.763	21.607	1.00 63.38
	ATOM	568	CZ	PHE	78	46.103	43.301	20.336	1.00 63.01
	ATOM	569	C	PHE	78	42.732	44.893	23.668	1.00 60.09
	ATOM	570	ō	PHE	78	43.065	45.100	24.834	1.00 60.08
45	ATOM	571	N	ARG	79	42.528	43.675	23.184	1.00 58.63
15	MOTA	572	CA	ARG	79	42.706	42.504	24.025	1.00 57.40
	ATOM	573	CB	ARG	79	41.367	41.819	24.280	1.00 57.06
	ATOM	574	CG	ARG	79	41.481	40.637	25.222	1.00 57.49
	ATOM	575	CD	ARG	79	40.221	39.819	25.219	1.00 57.47
50	MOTA	576		ARG	79	39.062	40.646	25.504	1.00 57.16
	ATOM	577	CZ	ARG	79	37.818	40.266	25.267	1.00 57.69
	ATOM	578		ARG	79	37.586	39.071	24.738	1.00 57.38
	MOTA	579		ARG	79	36.812	41.080	25.555	1.00 58.45
	ATOM	580	С	ARG	79	43.663	41.522	23.368	1.00 56.71
55	MOTA	581	0	ARG	79	43.926	41.619	22.170	1.00 57.24
	ATOM	582	N	VAL	80	44.180	40.590	24.167	1.00 55.50
	MOTA	583	CA	VAL	80	45.114	39.557	23.724	1.00 54.27
	MOTA	584	CB	VAL		46.576	39.947	23.996	1.00 54.31
	ATOM	585	CG1	VAL	80	47.491	38.779	23.674	1.00 54.49

Fi	a	,,	۳,	•	4
rı	Ľ	u	г	2	4

	MOTA	586	CG2	VAL	80	46.960	41.158	23.166	1.00 54.39
	MOTA	587	С	VAL	80	44.806	38.327	24.555	1.00 54.04
	ATOM	588	0	VAL	80	44.517	38.447	25.738	1.00 53.31
	ATOM	589	N	MSE	81	44.881	37.144	23.957	1.00 54.52
5	ATOM	590	CA	MSE	81	44.568	35.935	24.703	1.00 54.59
	ATOM	591	CB	MSE	81	43.053	35.804	24.828	1.00 57.08
	MOTA	592	CG	MSE	81	42.300	36.025	23.520	1.00 60.39
	MOTA	593	SE	MSE	81	40.534	36.437	23.792	1.00 65.62
	ATOM	594	CE	MSE	81	39.999	34.926	24.679	
10	MOTA	595	С	MSE	81	45.142	34.645	24.146	1.00 53,56
	ATOM	596	0	MSE	81	45.598	34.582	23.007	1.00 52.99
	ATOM	597	N	LEU	82	45.096	33.611	24.978	1.00 52.63
	ATOM	598	CA	LEU	82	45.602	32.292	24.638	1.00 51.86
	ATOM	599	СВ	LEU	82	46.660	31.863	25.665	1.00 52.75
15	ATOM	600	CG	LEU	82	47.261	30.455	25.542	1.00 53.22
	MOTA	601	CD1		82	48.562	30.521	24.736	1.00 52.42
	ATOM	602		LEU	82.	47.523	29.882	26.937	1.00 52.42
	ATOM	603	C	LEU	82	44.461	31.286	24.650	1.00 51.18
	ATOM	604	ō	LEU	82	43.718	31.186	25.632	1.00 51.18
20	ATOM	605	Ŋ	VAL	83	44.333	30.535	23.563	1.00 51.20
	ATOM	606	CA	VAL	83	43.292	29.522	23.448	1.00 50.58
	ATOM	607	CB	VAL	83	42.274	29.887	22.362	1.00 30.00
	ATOM	608	CG1		.83	41.213	28.794	22.262	1.00 49.63
	ATOM	609		VAL	83	41.660	31.244		
25	ATOM	610	C	VAL	83	43.914	28.187	22.670 23.080	1.00 48.32 1.00 50.53
	ATOM	611	ō	VAL		44.759	28.122	22.192	1.00 50.93
	ATOM	612	N	LYS	84	43.496	27.127	23.763	1.00 50.95
	ATOM	613	CA	LYS	84	44.017	25.788	23.703	1.00 51.89
	ATOM	614	СВ	LYS	84	44.338	25.765	24.826	1.00 51.79
30	ATOM	615	CG	LYS	84	44.716	23.581	24.659	1.00 51.75
	ATOM	616	CD	LYS	84	44.951	22.870	26.009	1.00 51.58
	ATOM	617	CE	LYS	84	46.429	22.848	26.422	1.00 50.92
	ATOM	618	NZ	LYS	84	47.041	24.198	26.592	1.00 50.33
	ATOM	619	C	LYS	84	42.997	24.983	22.708	1.00 52.68
35	ATOM	620	0	LYS	84	42.115	24.327	23.282	1.00 53.00
	MOTA	621	N	VAL	85	43.124	25.038	21.383	1.00 52.91
	MOTA	622	CA	VAL	85	42.224	24.319	20.488	1.00 52.70
	ATOM	623	CB	VAL	85	42.399	24.805	19.048	1.00 51.79
	MOTA	624	CG1	VAL	85	41.302	24.232	18.176	1.00 52.19
40	MOTA	625	CG2	VAL	85	42.389	26.319	19.017	1.00 51.59
	MOTA	626	С	VAL	85	42.525	22.823	20.548	1.00 53.51
	ATOM	627	0	VAL	85	43.637	22.389	20.243	1.00 53.87
	MOTA	628	N	GLY	86	41.534	22.037	20.952	1.00 54.38
	MOTA	629	CA	GLY	86	41.726	20.603	21.053	1.00 55.35
45	MOTA	630	C	GLY	86	40.901	19.810	20.060	1.00 56.21
	MOTA	631	0	GLY	86	40.136	20.370	19.278	1.00 55.63
	ATOM	632	N	GLU	87	41.050	18.493	20.106	1.00 57.81
	MOTA	633	CA	GLU	87	40.339	17.611	19.195	1.00 59.64
	ATOM	634	CB	GLU	87	41.290	16.529	18.673	1.00 60.88
50	ATOM	635	CG	GLU	87	40.680	15.648	17.611	1.00 62.26
	MOTA	636	CD	GLU	87	40.215	16.457	16.423	1.00 63.21
	ATOM	637		GLU	87	41.072	16.931	15.644	1.00 63.20
	ATOM	638		GLU	87	38.989	16.631	16.278	1.00 64.58
	ATOM	639	С	GLU	87	39.133	16.959	19.859	1.00 60.12
55	ATOM	640	0	GLU	87	39.271	16.187	20.810	1.00.60.00
	ATOM	641	N	GLY	88	37.948	17.273	19.347	1.00 60.93
	ATOM	642	CA.	GLY	88	36.735	16.707	19.902	1.00 61.61
	ATOM	643	C	GLY	88	35.840	16.120	18.833	1.00 62.11
	ATOM	644	0	GLY	88	36.038	16.346	17.638	1.00 61.67

-		-
- KI	GIITA	Ω
	guit	~

	ATOM	645		GLU	89	34.845	15.363	19.274		62.79
٠.	ATOM	646		GLU	89	33.898	14.724	18.372		63.90
	ATOM	647		GLU	· 89	32.782	14:089	19.203	1.00	63.50
_	MOTA	648		GLU	89	33.304	13.137	20.275		62.64
5	MOTA	649		GLU	89	32.214	12.623	21.203	1.00	62.46
	MOTA	650			89	32.510	11.728	22.019	1.00	62.39
	ATOM	651		S Gra	89	31.064	13.110	21.128	1.00	62.11
	ATOM ·	652		GLU	89	33.312	15.688	17.325	1.00	65.16
	ATOM	653	0	GLU	89	32.975	16.837	17.634	1.00	64.98
10	MOTA	654	N	GLU	90	33.204	15.205	16.087	1.00	66.03
	ATOM	655	CA		. 90	32.667	15.977	14.958	1.00	66.67
	MOTA	656	CB	GLU	90	31.135	15.974	14.978	1.00	67.21
	ATOM	657	CG	GLU	90	30.495	14.620	14.717	1.00	66.83
	MOTA	658	CD	GLU	90	28.986	14.662	14.869	1.00	67.49
15	MOTA	659		CLU	90	28.308	15.273	14.009		67. 1 7
	MOTA	660		GLU	90	28.480	14.090	15.858		66.84
	ATOM	661	С	GLU	90	33.149	17.421	14.871		66.91
	ATOM	662	. 0	· GLU	90	32.623	18.212	14.080		66.74
	ATOM	663	N	GLY	91	34.149	17.769	15.671		67.05
20	ATOM	664	CA	GLY	91	34.649	19.126	15.628	1.00	67.38
	MOTA	665	С	GLY	91	36.036	19.339	16:201		67.42
	MOTA	666	0	GLY	91	37.025	18.797	15.708		68.24
	ATOM	667	N	GLN	92	36.094	20.154	17.246		66.86
	MOTA	668	CA	GLN	92	37.335	20.492	17.929		65.93
25	MOTA	669	CB	GLN	92	38.395	20.968	16.924		66.17
	MOTA	670	CG	GLN	92	38.007	22.215	16.159		66.24
	ATOM	671	CD	GLN	92	38.564	22.236	14.750	1.00	66.57
	ATOM	672		GLN	92	38.432	21.260	14.007		66.37
	ATOM	673		GLN	92	39.177	23.356	14.367		66.54
30	MOTA	674	C	GLN	92	36.999	21.605	18.920		65.21
	ATOM	675	0	GLN	92	36.625	22.721	18.530		65.44
	ATOM	676	N	TRP	93	37.111	21.278	20204		63.62
	ATOM	677	CA	TRP	93	36.820	22.227	21.261		61.61
	ATOM	678	CB	TRP	93	36.859	21.540	22.626		62.77
35	ATOM	679	CG	TRP	93	38.050	20.641	22.857	1.00	63.86
	MOTA	680		TRP	93	39.213	20.943	23.637	1.00	64.17
	ATOM	681	CE2		93	40.026	19.787	23.645	1.00	64.21
	ATOM	682		TRP	93	39.647	22.080	24.336	1.00	64.11
40	MOTA	683		TRP	93	38.206	19.349	22.424	1.00	63.84
40	ATOM	684		TRP	93	39.387	18.830	22.897	1.00	63.69
	ATOM	685		TRP	93	41.246	19.731	24.324	1.00	
	ATOM	686		TRP	93	40.859	22.026	25.009	1.00	
	MOTA	687		TRP	93	41.645	20.857	24.999	1.00	64.71
45	ATOM	688	C	TRP	93	37.784	23.393	21.248	1.00	59.53
45	ATOM	689	0	TRP	93		23.420	20.474	1.00	
	ATOM	690	N	SER	94	37.521	24.366	22.106	1.00	57.94
	MOTA	691	CA	SER	94	38.353	25.549	22.207	1.00	56.46
	ATOM	692	CB	SER	94	37.880	26.615	21.219	1.00	
50	ATOM	693	OG	SER	94	36.504	26.899	21.412	1.00	56.78
50	MOTA	694	C	SER	94	38.185	26.050	23.624	1.00	55.56
	ATOM	695	0	SER	94	37.142	25.822	24.237	1.00	
	ATOM	696	N	VAL	95	39.208	26.722	24.146	1.00	
	ATOM	697	CA	VAL	95	39.152	27.248	25.504	1.00	
c =	ATOM	698	CB	VAL	95	39.511	26.183	26.549	1.00	52.17
55	ATOM	699	CG1		95	39.742	26.844	27.891	1.00	
	ATOM	700		VAL	95	38.396	25.172	26.666	1.00	
	ATOM ATOM	701	C	VAL	95 05	40.099	28.399	25.719	1.00	
	ATOM	702 703	O N	VAL	95 06	41.268	28.315	25.357	1.00	
	NI ON	103	N	LYS	96	39.587	29.469	26.318	1.00	52.63

1.00 53.85

		•								
	ATOM	763	ОН	TYR	102	49.355	42.442	28.021	1.00	54.03
	ATOM	764	C	TYR	102	43.813	48.041	26.822		56.65
	MOTA	765	0	TYR	102	43.173	47.899	25.781		56.91
	MOTA	766	N	SER	103	43.891	49.203	27.462		58.50
5	MOTA	767	CA	SER	103	43.217	50.385	26.938		60.94
	ATOM	768	CB	SER	103	42.997	51.411	28.049		61.09
	ATOM	769	0G	SER	103	44.231	51.829	28.602		62.50
	ATOM	770	Ċ	SER	103	44.090	50.985	25.833		62.31
	ATOM	771	ō	SER	103	45.293	50.729	25.771		62.27
10	ATOM	772	N	ALA	104	43.487	51.783	24.960		64.47
	ATOM	773	CA	ALA	104	44.226	52.386	23.856		67.01
	ATOM	774	CB	ALA	104	43.516	52.093	22.526		67.01
	ATOM	775	C	ALA	104	44.410	53.888	24.025		68.66
	MOTA	776	0	ALA	104	43.458	54.658			69.01
15	ATOM	777	N	PRO	104	45.648		23.902		
13	ATOM	778	CD	PRO	105		54.327	24.305		70.09
	ATOM	779	CA			46.878	53.522	24.397		70.06
	ATOM	780	CB	PRO PRO	105 105	45.946	55.751	24.485		71.25
	ATOM		CG			47.443	55.748	24.783		70.79
20	ATOM	781 782	C	PRO	105	47.929	54.535	24.046		70.54
20	ATOM	783		PRO	105	45.592	56.586	23.251		72.81
	ATOM		0	PRO	105	45.837	56.170	22.117		73.09
		784	N	GLU	106	45.012	57.762	23.479		74.39
	ATOM ATOM	785	CA	GLU	106	44.619	58.652	22.391		76.25
25	ATOM	786 787	CB	GLU.	106	43.991	59.921	22.950		76.77
2,5	ATOM	788	CG CD	GLU	106	42.702	59.673	23.680		78.35
	ATOM	789		GLU	106	42.397	60.775	24.657		79.28
	ATOM	790		GLU GLU	106	42.239	61.934	24.214		79.74
	ATOM	791	C	GLU	106 106	42.326	60.478	25.871		80.03
30	ATOM	792	0	GLU	106	45.784	59.028	21.494		77.33
	ATOM	793	N .	ASP	107	45.600	59.262	20.300		77.48
	ATOM	794	CA	ASP	107	46.980 48.161	59.104	22.068		78.72
	ATOM	795	CB	ASP	107	49.431	59.440 59.316	21.284 22.134		80.10
	ATOM	796	CG	ASP	107	49.965	57.889			81.03
35	ATOM	797	OD1		107	49.198	56.976	22.185 22.569		81.42
55	ATOM	798	OD2		107	51.151	57.682	21.839		80.86
	ATOM	799	C	ASP	107	48.212	58.424	20.151		80.92
	ATOM	800	0	ASP	107	48.724	58.703	19.065		81.29
	ATOM	801	N	ALA	108	47.670	57.241	20.428		81.68
40	ATOM	802	CA	ALA	108	47.628	56.151	19.463		82.45
٠.	ATOM	803	CB	ALA	108	47.605	54.813	20.200		82.45
	ATOM	804	c	ALA	108	46.406	56.275	18.553		82.91
	ATOM	805	ō	ALA	108	46.536	56.351	17.331		82.98
	ATOM	806	N	MSE	109	45.221	56.303	19.157		83.41
45	ATOM	807	CA	MSE	109	43.974	56.414	18.407		83.78
	ATOM	808	СВ	MSE	109	42.787	56.519	19.368		85.45
	ATOM	809	.CG	MSE	109	41.581	55.678	18.972		87.01
	ATOM	810	SE	MSE	109	41.933	53.898	19.096		90.12
	ATOM	811	CE	MSE	109	42.665	53.581	17.453		88.95
50	ATOM	812	C	MSE	109	43.992	57.633	17.494		83.17
••	ATOM	813	ō	MSE	109	43.235	57.710	16.527		83.19
	ATOM	814	N	THR	110	44.854	58.590	17.820		82.51
	ATOM	815	CA	THR	110	44.986	59.815	17.040		82.00
	ATOM	816	СВ	THR	110	45.289	61.022	17.949		82.44
55	ATOM	817	OG1	THR	110	44.302	61.103	18.986		83.00
55	ATOM	818		THR	110	45.283	62.313	17.142		82.69
	ATOM	819	C	THR	110	46.150	59.640	16.082		81.25
	ATOM	820	ō	THR	110	46.137	60.123	14.949		80.95
	ATOM	821	N	GLY	111	47.168	58.933	16.559		80.84
										· •,•

				•					
	ATOM	822	CA	GLY	111	48.358	58.691	15.768	1.00 80.12
	ATOM	823	C	GLY	111	48.121	57.986	14.450	1.00 79.53
	ATOM	824	0	GLY	111	47.018	57.531	14.148	1.00 79.54
	ATOM	825	N	THR	112	49.181	57.904	13.658	1.00 78.87
5	ATOM	826	CA	THR	112	49.129	57.254	12.360	1.00 78.09
_	ATOM	827	CB	THR	112	50.427	57.553	11.561	1.00 78.67
	ATOM	828	OG1	THR	112	50.329	57.001	10.240	1.00 79.18
	ATOM	829	CG2	THR	112	51.644	56.956	12.279	1.00 78.48
	ATOM	830	C	THR	112	48.992	55.748	12.579	1.00 77.09
10	ATOM	831	ō	THR	112	49.231	55.254	13.685	1.00 76.48
	ATOM	832	N.	ALA	113	48.601	55.027	11.529	1.00 76.26
	MOTA	833	CA	ALA	113	48.443	53.573	11.603	1.00 75.60
	ATOM	834	CB	ALA	113	48.184	53.001	10.208	1.00 76.00
	ATOM	835	C	ALA	113	49.711	52.965	12.191	1.00 74.65
15	ATOM	836	ŏ	ALA	113	49.665	52.006	12.968	1.00 74.58
13	ATOM	837	И	GLU	114	50.845	53.538	11.803	1.00 73.24
	ATOM	838	CA	GLU	114	52.139	53.088	12.288	1.00 71.57
•	ATOM	839	CB	GLU	114	53.246	53.971	11.700	1.00 72.34
	MOTA	840	CG	GLU	114	53.130	54.167	10.188	1.00 71.64
20	ATOM	841	CD	GLU	114	53.325	52.877	9.401	1.00 72.49
20	ATOM	842		GLU	114	53.192	51.781	9.994	1.00 72.24
	ATOM	843	OE2	GLU	114	53.600	52.960	8.183	1.00 71.83
	ATOM	844	C	GLU	114	52.085	53.233	13.801	1.00 70.37
	ATOM	845	ō	GLU	114	52.297	52.266	14.537	1.00 69.92
25	ATOM	846	N	MET	115	51.778	54.450	14.246	1.00.68.75
	ATOM	847	ÇA	MET	115	51.657	54.760	15.669	1.00 66.97
	ATOM	848	CB	MET	115	51.013	56.140	15.866	1.00 67.15
•	ATOM	849	CG.	MET	115	51.999	57.277	16.040	1.00 66.94
	ATOM	850	SD	MET	115	53.203	56.869	17.320	1.00 67.61
30	ATOM	851	CE	MET	115	52.137	56.732	18.788	1.00 66.65
	ATOM	852	С	MET	115	50.799	53.718	16.374	1.00 65.81
	ATOM	853	0	MET	115	51.266	53.010	17.275	1.00 65.94
	ATOM	854	N	LEU	116	49.542	53.635	15.940	1.00 63.70
	ATOM	855	CA	LEU	116	48.561	52.711	16.504	1.00 61.63
35	MOTA	856	CB	LEU	116	47.287	52.720	15.650	1.00 60.89
	MOTA	857	CG	LEU	116	45.948	52.226	16.205	1.00 59.42
	MOTA	858	CD1	LEU	116	44.953	52.182	15.051	1.00 58.84
	MOTA	859	CD2	LEU	116	46.081	50.858	16.847	1.00 58.86
	MOTA	860	C .	LEU	116	49.083	51.285	16.613	1.00 60.35
40	MOTA	861	0	LEU	116	48.977	50.665	17.667	1.00 60.48
	MOTA	862	N	PHE	117	49.641	50.756	15.531	1.00 59.14
	MOTA	863	CA	PHE	117	50.138	49.391	15.580	1.00 58.14
	ATOM	864	СВ	PHE	117	50.298	48.819	14.173	1.00 57.03
	MOTA	865	CG	PHE	117	49.055	48.144	13.669	1.00 56.22
45	ATOM	866		PHE	117	48.005	48.889	13.143	1.00 55.49
	MOTA	867		PHE	117	48.909	46.763	13.783	1.00 55.59
	MOTA	868		PHE	117	46.830	48.270	12.741	1.00 55.25
	MOTA	869		PHE	117	47.736	46.134	13.384	1.00 55.20
	ATOM	870	CZ	PHE	117	46.695	46.887	12.862	1.00 55.23
50	MOTA	871	C	PHE	117	51.415	49.204	16.382	1.00 57.89
	ATOM	872	0	PHE	117	51.799	48.073	16.690	1.00 57.80
	MOTA	873	N	ALA	118	52.078	50.303	16.725 17.537	1.00 57.35
	MOTA	874	CA	ALA	118	53.275	50.193		1.00 56.79
c e	MOTA	875	CB	ALA	118	54.004	51.533	17.594	1.00 56.42
55	MOTA	876	C	ALA	118 118	52.747 53.220	49.792 48.829	18.922 19.536	1.00 56.46 1.00 56.68
	MOTA MOTA	877 878	O N	ALA ALA	118	51.733	50.515	19.336	1.00 55.57
	ATOM	879	CA	ALA	119	51.733	50.226	20.693	1.00 55.05
	ATOM	880	CB	ALA	119	49.931	51.135	20.952	1.00 53.91

19/63 Figure 4 ATOM 881 119 50.719 48.769 20.763 1.00 54.96 С ALA 882 ATOM 0 ALA 119 51.090 48.052 21.698 1.00 54.94 MOTA 883 N ILE 120 49.948 48.338 19.763 1.00 55.10 MOTA 884 CA ILE 120 49.443 46.969 19.715 1.00 55.51 ATOM 885 CB ILE 120 48.679 46.679 18.397 1.00 54.45 MOTA 886 CG2 ILE 120 47.922 45.363 18.525 1.00 53.30 ATOM 887 CG1 ILE 120 47.688 47.808 18.089 1.00 53.32 ATOM 888 CD1 ILE 120 46.871 47.581 16.820 1.00 51.70 ATOM 889 50.575 С ILE 120 45.957 19.846 1.00 56.57 ATOM 890 0 ILE 120 50.477 45.006 20.632 1.00 56.52 ATOM 891 SER 121 19.076 N 51.645 46.169 1.00 57.78 52.814 ATOM 892 CA SER 121 45.284 19.093 1.00 58.54 18.045 MOTA 893 CB SER 121 53.844 45.730 1.00 58.96 ATOM 894 OG SER 121 53.377 45.507 16.720 1.00 59.32 15 MOTA 895 53.457 С SER 121 45.280 20.473 1.00 58.74 MOTA 896 0 SER 121 54.007 44.265 20.918 1.00 57.56 MOTA 897 N ĢLU 122 53.379 46.422 21.151 1.00 59.50 MOTA 898 CA GLU 46.529 122 53.947 22.484 1.00 60.44 MOTA 899 CB GLU 122 54.003 47.986 22.941 1.00 60.60 20 ATOM 900 48.241 CG GLU 122 55.104 23.952 1.00 60.45 MOTA 49.252 901 CD GLU 122 54.706 25.003 1.00 61.76 MOTA 902 OE1 GLU 122 50.312 1.00 61.92 54.152 24.630 MOTA 903 OE2 GLU 48.986 122 54.950 26.202 1.00 62.20 MOTA 904 C GLU 122 45.725 1.00 60.63 53.091 23.452 MOTA 905 25 0 GĽU 122 53.565 44.761 24.048 1.00 60.82 MOTA 906 N CYS 123 51.831 46.120 23.605 1.00 60.96 MOTA 907 CA CYS 123 50.936 45.410 24.510 1.00 61.79 MOTA 908 CB CYS 123 45.840 1.00 61.63 49.481 24.278 MOTA 909 SG CYS 123 49.191 47.636 1.00 62.83 24.439 30 ATOM 910 C CYS 123 51.107 43.922 24.233 1.00 61.90 ATOM 911 0 CYS 123 51.028 43.095 25.147 1.00 61.89 MOTA 912 N 124 43.588 ILE 51.350 22.966 1.00 62.36 ATOM 913 CA ILE 124 42.197 51.561 22.588 1.00 62.79 СВ ATOM 914 ILE 42.061 124 52.033 21.109 1.00 62.52 35 ATOM 915 CG2 ILE 124 52.618 40.676 20.877 1.00 61.07 ATOM 916 CG1 ILE 124 50.866 42.280 20.138 1.00 61.53 ATOM 917 CD1 ILE 124 50.016 41.038 19.888 1.00 61.77 52.673 ATOM 918 ILE С 124 41.706 23.499 1.00 62.76 ATOM 919 0 ILE 124 52.475 40.807 24.320 1.00 62.23 40 ATOM 920 1.00 63.43 N SER 125 53.839 42.327 23.347 ATOM 921 CA SER 125 55.020 42.002 24.138 1.00 64.63 ATOM 922 125 CB SER 56.062 43.117 23.986 1.00 65.05 ATOM 923 0G SER 125 57.324 42.745 24.523 1.00 67.01 **ATOM** 924 С 125 54.646 41.840 25.610 SER 1.00 64.32 ATOM 925 0 SER 125 54.886 40.794 26.219 1.00 64.46 ATOM 926 126 N ASP 54.047 42.884 26.169 1.00 64.43 ATOM 927 ASP 126 1.00 64.86 CA 53.626 42.894 27.562 ATOM 27.788 928 CB ASP 126 52.660 44.060 1.00 64.95 ATOM 929 CG ASP 126 52.390 44.323 29.253 1.00 65.38 50 ATOM 930 OD1 ASP 126 51.952 43.389 29.955 1.00 65.74 ATOM 931 OD2 ASP 126 52.613 45.467 29.706 1.00 65.92 ATOM 1.00 64.65 932 C ASP 126 52.968 41.572 27.980 ATOM 933 0 ASP 126 53.424 40.918 28.924 1.00 64.28 ATOM 934 N PHE 127 51.902 41.189 27.274 1.00 64.96 ATOM 935 CA PHE 127 51.177 39.948 27.565 1.00 65.21 ATOM 936 CB PHE 127 50.145 39.657 26.468 1.00 64.22 ATOM 937 CG PHE 127 49.569 38.258 26.525 1.00 63.67 ATOM 938 CD1 PHE 127 48.774 37.857 27.594 1.00 63.64 MOTA CD2 PHE 1.00 63.42 939 127 49.830 37.343 25.512

	MOTA	940	CE1	PHE	127	48.247	36.564	27.652	1.00 63.40
	ATOM	941	CE2	PHE	127	49.308	36.051	25.560	1.00 63.55
	MOTA	942	CZ	PHE	127	48.516	35.661	26.632	1.00 63.49
	MOTA	943	С	PHE	127	52.154	38.791	27.631	1.00 65.83
5	MOTA	944	0	PHE	127	52.195	38.030	28.600	1.00 65.71
	ATOM	945	N	LEU	128	52.931	38.684	26.562	1.00 66.57
	ATOM	946	CA	LEU	128	53.942	37.656	26.387	1.00 67.52
	MOTA	947	CB	LEU	128	54.773	38.022	25.166	1.00 67.64
	MOTA	948	CG	LEU	128	53.926	38.452	23.969	1.00 67.42
10	ATOM .	949		LEU	128	54.819	39.108	22.941	1.00 67.90
	MOTA	950		LEU	128	53.195	37.251	23.387	1.00 67.65
	MOTA	951	С	LEU	128	54.850	37.502	27.609	1.00 68.09
	MOTA	952	Ο,	LEU	128	54.829	36.468	28.285	1.00 67.92
	ATOM	953	N	ASP	129	55.654	38.530	27.878	1.00 68.62
15	MOTA	954	CA	ASP	129	56.565	38.514	29.018	1.00 69.22
	MOTA	955	CB	ASP	129	57.135	39.907	29.287	1.00 68.93
	MOTA	956	CG ,	ASP	129	58.115	40.342	28.239	1.00 68.90
	MOTA	957		ASP	129	59.100	39.606	28.011	1.00 69.12
	MOTA	958		ASP	129	57.900	41.423	27.650	1.00 69.22
20	ATOM	959	C	ASP	129	55.843	38.059	30.267	1.00 69.59
	ATOM	960	0	ASP	129	56.063	36.956	30.761	1.00 69.41
	MOTA	. 961	N	LYS	130	54.973	38.940	30.753	1.00 70.10
	MOTA	962	CA	LYS	130	54.190 .		31.958	1.00 70.67
	MOTA	963	CB	LYS	130	53.285	39.946	32.159	1.00 70.80
25	MOTA	964	CG	LYS	130	54.076	41.252	32,052	1.00 70.54
	MOTA	965	CD	LYS	130	53.218	42.479	32.266	1.00 70.22
	MOTA	966		LYS	130	54.021	43.746	32.011	1.00 70.07
	MOTA	967	NZ	LYS	130	53.204	44.977	32.195	1.00 69.69
••	MOTA	968	C	LYS	130	53.394	37.441	31.982	1.00 71.17
30	MOTA	969	0	LYS	130	52.381	37.331	32.673	1.00 70.99
	MOTA	970	N	HIS	131	53.883	36.468	31.221	1.00 72.01
	ATOM	971	CA	HIS	131	53.301	35.139	31.125	1.00 73.44
	MOTA	972	CB	HIS	131	52.313	35.065	29.965	1.00 73.00
25	MOTA	973	CG	HIS	131	50.881	35.076	30.397	1.00 72.93
35	MOTA	974	CD2		131	49.960	34.085	30.454	1.00 72.73
	MOTA MOTA	975 976		HIS	131	50.256	36.210	30.869	1.00 72.87
	ATOM	976 977	NE2	HIS	131 131	49.010	35.917 34.634	31.196	1.00 73.01 1.00 73.04
	ATOM	978	C	HIS	131	48.806 54.424	34.124	30.954 30.908	1.00 74.61
40	ATOM	979	0	HIS	131				1.00 74.61
40	ATOM	980	N	GLN	132	54.419 55.374	33.049 34.502	31.514 30.046	1.00 74.70
	ATOM	981	CA	GLN	132	56.566	33.727	29.658	1.00 70.14
	ATOM	982		GLN	132	56.536		30.218	1.00 77.68
	ATOM	983	CG	GLN	132	55.424	31.387	29.676	1.00 77.00
45	ATOM	984	CD	GLN	132	55.823	30.611	28.436	1.00 78.41
73	ATOM	985		GLN	132	56.016	31.179	27.356	1.00 78.50
	ATOM	986	NE2		132	55.951	29.294	28.587	1.00 78.30
	ATOM	987	C	GLN	132	56.673	33.682	28.134	1.00 77.86
	ATOM	988	ŏ	GLN	. 132	57.769	33.638	27.574	1.00 77.91
50	ATOM	989	N	MSE	133	55.520	33.703	27.472	1.00 77.31
50	ATOM	990	CA	MSE	133	55.450	33.662	26.017	1.00 78.88
	ATOM	991	CB.	MSE	133	53.989	33.684	25.551	1.00 80.96
	ATOM	992	CG	MSE	133	53.278	32.347	25.586	1.00 83.34
	ATOM	993	SE	MSE	133	51.991	32.273	26.846	1.00 87.09
55	ATOM	994	CE	MSE	133	52.168	30.521	27.421	1.00 84.33
	ATOM	995	C	MSE	133	56.174	34.812	25.333	1.00 77.90
	ATOM	996	ō	MSE	133	55.552	35.548	24.567	1.00 78.34
	ATOM	997	N	LYS	134	57.470	34.973	25.587	1.00 75.97
	MOTA	998	CA	LYS	134	58.225		24.949	1.00 73.96

21/63 Figure 4 36.879 25.997 ATOM 999 CB LYS 134 58.976 1.00 73.14 25.454 1.00 72.28 ATOM 1000 CG LYS 134 59.676 38.125 1.00 70.99 MOTA 1001 CD 134 58.697 39.250 25.141 LYS 1.00 70.06 ATOM 1002 CE LYS 134 59.415 40.586 24.935 1.00 69.46 ATOM 1003 NZ LYS 134 60.234 40.640 23.687 1.00 72.94 ATOM 1004 C LYS 134 59.211 35.443 23.964 1.00 72.63 ATOM 1005 0 LYS 134 59.727 36.123 23.077 1006 34.148 24.132 1.00 72.28 ATOM N HIS 135 59.457 ATOM 1007 CA HIS 135 60.377 33.411 23.275 1.00 71.52 1.00 71.15 10 ATOM 1008 61.359 32.584 24.119 CB HIS 135 ATOM 1009 CG HIS 60.719 31'.448 24.859 1.00 70.88 135 30.109 1.00 70.87 ATOM 1010 CD2 HIS 135 60.908 24.773 1.00 70.81 1011 ATOM ND1 HIS 135 59.750 31.635 25.822 1.00 70.56 MOTA 1012 CE1 HIS 135 59.370 30.462 26.298 1013 NE2 HIS 1.00 70.85 15 ATOM 60.057 29.519 25.678 135 1.00 71.26 1014 MOTA С HIS 135 59.584 32.482 22.365 1015 31.818 1.00 71.53 MOTA 0 HIS 135 60.152 21.499 MOTA 1016 LYS 136 58.272 32.434 22.574 1.00 70.85 N MOTA 1017 LYS 57.393 31.590 21.766 1.00 70.33 CA 136 1.00 69.64 20 MOTA 1018 CB LYS 136 56.077 31.329 22.508 1.00 68.45 ATOM 1019 CG LYS 136 56.225 30.694 23.886 ATOM 1020 56.740 29.271 23.783 1.00 68.01 CD LYS 136 ATOM 1021 CE LYS 136 56.698 28.560 25.128 1.00 67.56 55.303 28.356 1.00 66.87 MOTA 1022 NZ LYS 136 25.623 1.00 70.46 25 ATOM 1023 57.088 32.296 С LYS 136 20.443 1.00 70.94 33.530 MOTA 1024 57.100 20.371 0 LYS 136 31.519 1.00 70.16 ATOM 1025 56.828 19.396 N LYS 137 ATOM 18.096 1.00 69.80 1026 CA LYS 137 56.505 32.096 1.00 71.09 ATOM 1027 CB LYS 137 57.505 31.642 17.023 ATOM 1028 CG 137 57.602 30.132 16.801 1.00 71.73 LYS ATOM 1029 29.840 1.00 72.44 CD LYS 137 58.567 15.654 MOTA 1030 58.915 28.363 15.545 1.00 72.39 CE LYS 137 ATOM 1031 59.919 28.136 14.463 1.00 72.59 NZ LYS 137 ATOM 1032 C LYS 137 55.097 31.685 17.702 1.00 68.73 35 ATOM 1033 0 LYS 137 54.799 31.476 16.524 1.00 69.92 ATOM 1034 31.579 1.00 66.57 N LEU 138 54.243 18.716 MOTA 1035 52.841 31.193 18.586 1.00 63.82 CA LEU 138 СВ MOTA 31.788 1.00 63.11 1036 LEU 138 52.057 19.748 ATOM 1037 1.00 62.89 CG LEU 138 52.364 31.145 21.092 40 ATOM 1038 CD1 LEU 51.924 32.068 22.220 1.00 62.68 138 ATOM 1039 CD2 LEU 138 51.669 29.786 21.150 1.00 61.80 ATOM 1040 C LEU 138 52.114 31.553 17.294 1.00 62.26 MOTA 52.416 32.566 1041 0 LEU 138 16.647 1.00 62.54 MOTA 1042 51.149 30.708 1.00 60.11 N PRO 139 16.894 45 ATOM 1043 PRO 50.841 29.394 17.489 1.00 59.82 CD 139 MOTA 1044 CA PRO 139 50.356 30.937 15.682 1.00 57.91 ATOM · 1045 CB PRO 139 49.761 29.564 15.398 1.00 58.05 28.999 MOTA 1046 49.573 16.772 1.00 59.12 CG PRO 139 31.968 1.00 55.89 1047 16.101 MOTA C PRO 139 49.302 50 ATOM 1048 48.469 31.693 16.973 1.00 55.71 0 PRO 139 1049 49.358 33.154 15.501 1.00 53.40 ATOM LEU 140 N ATOM 1050 48.440 34.237 15.850 1.00 50.78 LEU 140 CA MOTA 1051 CB LEU 140 49.195 35.576 15.834 1.00 49.87 1.00 49.01 ATOM 1052 CG LEU 140 48.452 36.893 16.091 ATOM 1053 CD1 LEU 140 49.414 37.933 16.646 1.00 48.17 MOTA 1054 47.825 37.389 14.801 1.00 48.88 CD2 LEU 140 ATOM 1055 C LEU 140 47.169 34.359 15.018 1.00 49.13 13.785 1056 MOTA 0 LEU 140 47.211 34.368 1.00 49.12 MOTA 1057 N GLY 141 46.040 34.441 15.722 1.00 46.93

	22/6
Figure 4	

	ATOM	1058	CA	GLY	141	44.743	34.613	15.086	1.00 43.70
	MOTA	1059	C	GLY	141	44.324	36.041	15.402	1.00 41.11
	ATOM	1060	0	GLY		44.277	36.414	16.569	1.00 41.46
	ATOM	1061	N	PHE	142	44.018	36.842	14.388	1.00 38.27
5	ATOM	1062	CA	PHE	142	43.659	38.232	14.629	1.00 36.42
•	ATOM	1063	СВ	PHE	142	44.648	39.118		
	ATOM	1064	CG	PHE				13.882	1.00 34.58
	ATOM				142	44.403	40.593	14.037	1.00 33.28
		1065		PHE	142	43.941	41.124	15.229	1.00 32.86
	ATOM	1066		PHE	142	44.702		12.992	1.00 32.75
.10	MOTA	1067		PHE	142	43.784	42.505	15.375	1.00 32.95
	MOTA	1068		PHE	142	44.551	42.845	13.125	1.00 31.57
	ATOM	1069	CZ	PHE	142	44.094	43.365	14.313	1.00 32.24
	MOTA	1070	С	PHE	142	42.224	38.652	14.300	1.00 36.83
	MOTA	1071	0	PHE	142	41.843	38.801	13.124	1.00 36.76
15	ATOM	1072	N	THR	143	41.423	38.848	15.347	1.00 35.96
	MOTA	1073	CA	THR	143	40.047	39.288	15.156	1.00 34.35
	ATOM	1074	CB	THR	143	39.179	38.997	16.373	1.00 33.98
	ATOM	1075		THR	143	38.947		16.472	1.00 33.45
	ATOM	1076		THR	143	37.854			
20	ATOM	1077					39.750	16.255	1.00 33.35
20	MOTA	1077		THR	143	40.081	40.793	14.964	1.00 33.92
			0	THR	143	40.190	41.544	15.928	1.00 34.30
	ATOM	1079	N	PHE	144	40.009	41.227	13.716	1.00 33.00
	ATOM	1080	CA	PHE	144	40.029	42.649	13.383	1.00 31.69
	ATOM -	1081	CB	PHE	144	40.891	42.842	12.132.	1.00 29.18
25	MOTA	1082	CG	PHE	144	41.189	44.264	11.807	1.00 26.95
	ATOM	1083	CD1	PHE	144	41.727	45.108	12.763	1.00 26.21
	ATOM	1084	CD2	PHE	144	40.956	44.755	10.533	1.00 25.39
	ATOM	1085	CE1	PHE	144	42.026	46.428	12.450	1.00 26.79
	MOTA	1086	CE2	PHE	144	41.250	46.070	10.212	1.00 25.46
30	ATOM	1087	CZ	PHE	144	41.785	46.910	11.167	1.00 25.80
	ATOM	1088	С	PHE	144	38.562	42.981	13.112	1.00 32.02
	ATOM	1089	0	PHE	144	37.929	42.280	12.333	1.00 33.96
	ATOM	1090	Ŋ	SER		38.025	44.027	13.744	1.00 33.30
	ATOM	1091	CA	SER	145	36.602	44.387	13.744	1.00 32.29
35	ATOM	1092	СВ	SER	145	35.993			
•	ATOM	1093	OG	SER	145	35.997	44.689	14.968	1.00 31.79
	ATOM	1094	C	SER			43.539	15.790	1.00 33.15
	MOTA	1094		SER	145	36.271	45.546	12.679	1.00 30.95
	ATOM	1096	0		145	35.601	46.508	13.082	1.00 30.63
40			N	PHE	146	36.723	45.456	11.439	1.00 30.27
40	ATOM	1097	CA	PHE	146	36.452	46.513	10.489	1.00 29.49
	ATOM	1098	CB	PHE	146	37.573	47.541	10.535	1.00 29.01
	ATOM	1099	CG	PHE	146	37.848	48.054	11.908	1.00 27.96
	ATOM	1100	CD1		146	38.654	47.336	12.775	1.00 28.87
	ATOM	1101	CD2		146	37.245	49.221	12.359	1.00 27.88
45	ATOM	1102		PHE	146	38.852	47.777	14.078	1.00 29.72
	ATOM	1103	CE2	PHE	146	37.434	49.670	13.659	1.00 26.92
	MOTA	1104	CZ	PHE	146	38.232	48.955	14.520	1.00 28.49
	ATOM	1105	C'	PHE	146	36.318	45.937		1.00 29.49
	ATOM	1106	0	PHE	146	36.668	44.778	8.846	1.00 29.56
50	MOTA	1107	N	PRO	147	35.805	46.738	8.152	1.00 29.02
	MOTA	1108	CD	PRO	147	35.452	48.167	8.211	1.00 28.09
	ATOM	1109	CA	PRO	147	35.662	46.212	6.798	
	ATOM	1110	CB	PRO	147	34.852			1.00 30.12
	ATOM	1111	CG				47.309	6.099	1.00 28.65
55	ATOM	1111		PRO	147	35.377	48.540	6.749	1.00 28.13
"	ATOM		C	PRO	147	37.047	45.969	6.179	1.00 30.89
		1113	0	PRO	147	37.938	46.821	6.263	1.00 32.17
	ATOM	1114		VAL	148	37.221	44.807	5.557	
	ATOM	1115		VAL	148	38.499	44.453	4.957	1.00 32.00
	MOTA	1116	CB	VAL	148	39.399	43.733	6.002	1.00 32.44

	ATOM	1117	CG1	VAL	148	4	10.471	42.940	5.311	1.00	33.36
	ATOM	1118	CG2	VAL	148	4	10.035	44.758	6.934	1.00	32.04
	ATOM	1119	С	VAL	148		38.351		3.733	1.00	31.54
	ATOM	1120	0	VAL	148	:	37.937	42.402	3.858	1,00	30.91
5	ATOM	1121	N	ALA	149	3	38.688		2.560	1.00	31.66
	ATOM	1122	CA	ALA	149		38.610		1.324		32.33
	ATOM	1123	CB	ALA	149		38.834		0.120		31,16
	ATOM	1124	С	ALA	149		39.723		1.428	1.00	33.43
	ATOM	1125	0	ALA	149		10.882		1.431		35.59
10	ATOM	1126	Ň	HIS	150		39.387		1.535		33.73
	ATOM	1127	CA	HIS	150		10.410		1.666		33.88
	MOTA	1128	СВ	HIS	150		39.868	38.780	2.450		34.82
	ATOM	1129	CG	HIS	150		39.879		3.933		35.58
	ATOM	1130		HIS	150		10.344		4.921		36.49
15	ATOM	1131		HIS	150		39.329		4.555		36.45
	ATOM	1132		HIS	150		39.454		5.865		36.79
	ATOM	1133		HIS	150		10.067		6.114		36.38
	ATOM	1134	C	HIS	150		10.960		0.353		34.39
	MOTA	1135	0	HIS	150		10.245		-0.655		34.56
20	ATOM	1136	N		151		12.239		0.380		34.73
20	ATOM			ALA							
		1137	CA	ALA	151		12.898		-0.762		34.53
	ATOM	1138	CB	ALA	151		14.334		-0.919		34.86
	MOTA	1139	C	ALA	151		12.894		-0.338		34.46
	ATOM	1140	0	ALA	151		12.734		-1.161		34.16
25	MOTA	1141 -		ASP	152		13.050		0.970		34.36
	MOTA	1142	CA	ASP	152		13.045		1.562		35.45
	MOTA	1143	CB	ASP	152		44.335		1.214		37.69
	MOTA	1144	CG	ASP	152		14.233		1.431		40.20
	MOTA	1145		ASP	152		43.219		2.007		40.73
30	MOTA	1146		ASP	152		15.177		1.018		42.29
	MOTA	1147	С	ASP	152	4	12.901	35,549	3.088	1.00	35.53
	MOTA	1148	0	ASP	152	4	43.048	36.642	3.642		35.08
	MOTA	1149	N	ILE	153	4	12.627	34.433	3.762	1.00	35.49
	MOTA	1150	CA	ILE	153	4	12.436	34.427	5.213	1.00	35.75
35	ATOM	1151	CB	ILE	153	4	12.258	32.984	5.754	1.00	35.32
	MOTA	1152	CG2	ILE	153	4	13.609	32.316	5.937	1.00	34.16
	MOTA	1153	CG1	ILE	. 153	4	11.593	33.022	7.130	1.00	35.44
	MOTA	1154	CD1	ILE	153		10.225	33.697	7.131	1.00	36.43
	MOTA	1155	C	ILE	153	4	13.571	35.079	6.011	1.00	36.77
40	ATOM	1156	0	ILE	153	4	13.450	35.278	7.229	1.00	36.40
	ATOM	1157	· N	ASP	154		14.665	35.411	5.332	1.00	.37.10
	ATOM	1158	CA	ASP	154	4	15.815	36.003	6.000	1.00	37.27
	ATOM	1159	CB	ASP	154	4	16.982	35.013	5.991	1.00	38.98
	ATOM	1160	ĊG	ASP	154		17.795		4.703		41.58
45	ATOM	1161		ASP	154.		17.215		3.605		42.46
	ATOM	1162		ASP	154		19.022		4.789		42.65
	ATOM	1163		ASP	154		16.233		5.307		36.74
	ATOM	1164	ō	ASP	154		17.360		5.471		37.07
	ATOM	1165	N	ALA	155		15.328		4.531		35.91
50	ATOM	1166	CA	ALA	155		15.650		3.830		36.20
	ATOM	1167	СВ	ALA	155		16.522		2.621		36.22
	ATOM	1168	C	ALA	155		14.412		3.387		36.20
	MOTA	1169	0	ALA	155		13.490		2.820		36.87
	ATOM	1170	И	GLY	156		14.402		3.642		36.26
55	ATOM	1171	CA	GLY	156		13.279		3.245		37.08
55	ATOM	1172	CA		156						38.10
	ATOM	1173		GLY GLY	156		13.481 14.027		3.647		38.10
	ATOM	1174	O N						4.711		
	ATOM	1174	CA	ILE	157 157		13.052 13.203	44.377 45.789	2.805 3.125		39.16 41.42
	VION	TT 13	ŲΑ	ILE	157	•	1J.ZU3	40./07	3.123	1.00	41.42

		Figure 4				24/63			•	•
	ATOM	1176	СВ	ILE	157	43.389	46.646	1.842	1.00	42.84
	ATOM	1177	CG2	ILE	157	44.844	46.550	1.349	1.00	44.32
	MOTA	1178	CG1	ILE	157	42.399	46.193	0.761	1.00	43.93
	ATOM	1179	CD1	ILE	157	42.630	46.838	-0.615	1.00	44.55
5	MOTA	1180	C	ILE	157	42.010		3.921	1.00	42.26
	ATOM	1181	0	ILE	157	40.864	45.912	3.732	1.00	42.28
	MOTA	1182	N	LEU	158	42.300	47.259	4.824	1.00	42.54
	MOTA	1183	CA	LEU	158	41.283	47.873	5.648		43.22
	ATOM	1184	CB	LEU	158	41.928	48.504	6.884		44.12
10	MOTA	1185	CG	LEU	158	41.090	49.514	7.670		44.84
	MOTA	1186		LEU	158	40.020	48.782	8.472		45.23
	ATOM	1187		LEU	158	42.006	50.320	8.590		45.09
	MOTA	1188	С	LEU	· 158	40.548	48.947	4.855		43.56
	MOTA	1189	0	LEU	158	40.984	50.099	4.801		43.77
15	ATOM	1190	N	LEU	159	39.434	48.569	4.239	1.00	
	ATOM	1191	CA	LEU	159	38.634	49.508	3.465		43.01
	MOTA	1192	CB	LEU	159	37.238	48.935	3.280		43.36
	MOTA	1193	CG	LEU	159	37.279	47.599	2.539		43.44
20	ATOM	1194		LEU	159	36.020	46.808	2.829	1.00	
20	ATOM	1195		LEU	159	37.443	47.857	1.050		42.93
	ATOM ATOM	1196 1197	C	LEU	159	38.564	50.879	4.139		42.62
	ATOM	1197	O.	ASN	159	38.745	51.905	3.488	1.00	
	ATOM	1199	N CA	ASN	160 160	38.297 38.243	50.902	5.440 6.170	1.00	42.20 41.99
25	ATOM	1200	CB	ASN	160	37.347	53.197	5.447		42.23
	ATOM	1201	CG	ASN	160	35.913	52.733	5.295		43.38
	ATOM	1202		ASN	160	35.225	53.102	4.334		42.38
	ATOM	1203		ASN	160	35.444	51.934	6.250		44.48
	ATOM	1204	C	ASN	160	37.813	51.988	7.616		41.13
30	ATOM	1205	0	ASN	160	37.359	50.913	8.011		41.17
	ATOM	1206	N	TRP	161	37.980	53.043	8.403		40.24
	ATOM	1207	CA	TRP	161	37.652	53.004	9.824		39.69
	MOTA	1208	CB	TRP	161	38.522	54.003	10.602		39.33
	MOTA	1209	CG	TRP	161	39.987	53.640	10.769	1.00	39.07
35	MOTA	1210	CD2	TRP	161	40.527	52.469	11.411	1.00	38.63
	MOTA	1211	CE2	TRP	161	41.931	52.616	11.438	1.00	38.27
·	MOTA	1212	CE3	TRP	161	39.960	51.317	11.972		38.43
	ATOM	1213		TRP	161	41.060	54.417	10.436		38.40
	ATOM	1214	NE1	TRP	161	42.228	53.812			38.42
40	MOTA	1215		TRP	161	42.778	51.659	12.000		38.26
	ATOM	1216		TRP	161	40.809	50.357	12.538		38.07
•	ATOM	1217		TRP	161	42.200	50.540	12.545		38.37
	MOTA MOTA	1218	C	TRP	161	36.196	53.301	10.150		39.07
45		· 1219 1220	0	TRP	161	35.578	54.193	9.562		39.38
43	MOTA MOTA	1221	N CA	THR THR	162 162	35.668 34.302	52.555	11.114		38.45
	ATOM	1221	CB	THR	162	34.302	52.734 51.600	11.593 11.125		38.37
	ATOM	1223		THR	162	33.926	50.338			37.71 37.02
	ATOM	1224		THR	162	33.226	51.635	11.548 9.617		36.52
50	ATOM	1225	C	THR	162	34.357	52.702	13.121		38.24
•	ATOM	1226	ō	THR	162	35.405	52.443	13.703		37.86
	ATOM	1227	N	LYS	163	33.231	52.968	13.770		38.99
	ATOM	1228	CA	LYS	163	33.192	52.941	15.222		39.72
	ATOM	1229	СВ	LYS	163	33.510	51.528	15.728		38.16
55	ATOM	1230	CG	LYS	163	32.467	50.487	15.311		36.62
	ATOM	1231	CD	LYS	163	32.727	49.108	15.918		34.66
	ATOM	1232	CE	LYS	163	33.829	48.349	15.195		33.22
	MOTA	1233	NZ	LYS	163	34.068	47.031	15.850		32.19
	MOTA	1234	C	LYS	163	34.142	53.956	15.848		40.71
								•		

26/63 Figure 4 46.800 49.065 3.115 1.00 60.42 MOTA 1294 CA ASN 173 47.922 49.722 3.913 1.00 61.72 ATOM 1295 ASN 173 CB 1.00 62.78 MOTA 1296 CG ASN 173 48.035 51.201 3.631 2.515 1.00 63.29 1297 48.367 51.605 MOTA OD1 ASN 173 1.00 63.06 1298 47.741 52.024 4.637 MOTA ND2 ASN 173 1.00 59.26 1299 C ASN 173 46.463 47.747 3.771 ATOM 1.00 59.57 45.440 47.624 4.430 MOTA 1300 0 ASN 173 46.763 1.00 58.79 47.336 3.598 MOTA 1301 ASN 174 N 1.00 58.46 47.126 45.447 4.196 ATOM 1302 ASN 174 CA 48.264 44.495 3.793 1.00 57.45 10 MOTA 1303 CB ASN 174 1.00 57.22 MOTA 1304 CG ASN 174 48.104 43.093 4.375 1.00 56.21 1305 174 48.757. 42.144 3.924 ATOM OD1 ASN 42.957 5.382 1.00 56.76 1306 174 47.245 ATOM ND2 ASN MOTA 1307 ASN 174 47.083 45.615 5.712 1.00 58.42 C 47.927 46.302 6.281 1.00 59.03 ATOM 1308 0 ASN 174 MOTA 1309 N VAL 175 46.091 45.008 6.359 1.00 58.23 1.00 57.79 1310 45.966 45.106 7.809 MOTA CA VAL 175 8.295 1.00 57.69 MOTA 44.544 44.765 1311 CB VAL 175 44.933 1.00 56.81 ATOM 1312 VAL 175 44.461 9.807 CG1 1.00 57.69 ATOM 1313 CG2 VAL 175 43.531 45.665 7.603 1.00 57.62 44.150 8.470 46.944 ATOM 1314 C VAL 175 44.560 9.319 1.00 57.89 47.734 MOTA 1315 0 VAL 175 42.878 1.00 57.24 1316 VAL 176 46.896 8.086 MOTA N 1.00 57.25 ATOM 1317 CA VAL 176 47.818 41.904 8.660 40.501 1.00 57.27 47.638 8.037 . 25 ATOM 1318 CB VAL 176 39.511 8.701 1.00 56.21 CG1 VAL 48.597 ATOM 1319 176 40.035 8.199 1.00 56.28 ATOM 1320 CG2 VAL 176 46.196 1.00 57.38 ATOM 1321 C VAL 176 49.232 42.396 8.362 1.00 57.30 50.212 41.911 8.926 ATOM 1322 0 VAL 176 1.00 57.41 49.319 43.374 7.467 30 ATOM 1323 N GLY 177 1.00 57.60 50.605 43.939 7.103 ATOM 1324 CA GLY 177 ATOM 1325 51.135 44.878 8.170 1.00 57.50 C GLY 177 1.00 58.09 MOTA 1326 0 GLY 177 52.171 44.605 8.781 1.00 56.68 45.982 50.425 1327 8.396 MOTA N LEU 178 46.959 9.396 1.00 55.42 50.837 ATOM 1328 178 CA LEU 1329 49.710 47.968 9.646 1.00 55.02 MOTA CB LEU 178 1.00 54.15 CG 49.394 48.906 8.466 MOTA 1330 LEU 178 MOTA 49.743 8.766 1.00 53.80 1331 CD1 LEU 178 48.158 49.815 MOTA 1332 CD2 LEU 178 50.588 8.197 1.00 54.17 ATOM 1333 C LEU 178 51.247 46.279 10.701 1.00 54.84 1.00 55.07 MOTA 1334 0 LEU 178 52.177 46.717 11.375 45.192 11.050 1.00 53.85 MOTA 1335 LEU 179 50.575 N 44.491 12.274 1.00 53.57 MOTA 1336 CA LEU 179 50.917 49.882 43.409 12.582 1.00 52.75 MOTA 1337 CB LEU 179 45 50.099 42.671 13.907 1.00 52.23 ATOM 1338 CG LEU 179 49,689 43.580 15.056 1.00 51.63 CD1 LEU MOTA 1339 179 ATOM CD2 LEU 49.286 41.381 13.935 1.00 51.34 1340 179 MOTA 1341 LEU 179 52.286 43.845 12.128 1.00 54.26 C ATOM 13.075 1:00 54.60 1342 0 LEU 179 53.070 43.796 10.932 1.00 54.59 50 ATOM N ARG 180 52.576 43.343 1343 42.679 10.688 1.00 54.08 ATOM 1344 CA ARG 180 53.855 53.824 41.911 9.357 1.00 52.59 ATOM 1345 CB ARG 180 1.00 50.37 MOTA 1346 CG ARG 180 53.273 40.498 9.515 53.276 39.702 8.223 1.00 47.24 MOTA 1347 CD ARG 180 8.425 1.00 45.06 MOTA ARG 180 52.610 38.420 1348 NE 37.754 7.462 1.00 43.97 ATOM 1349 CZARG 180 51.979 ATOM 1350 NH1 ARG 180 51.935 38.256 6.226 1.00 42.53 7.735 1.00 42.95 ATOM 1351 ARG 180 51.366 36.601 NH2 MOTA 1352 ARG 180 55.059 43.605 10.732 1.00 54.76

27/63 Figure 4 1.00 54.65 11.473 56.009 43.343 180 ATOM 1353 ARG 0 1.00 55.34 9.951 55.036 44.681 MOTA 1354 ASP 181 N 9.972 1.00 56.60 45.593 MOTA 1355 CA ASP 181 56.169 46.386 8.649 1.00 56.43 56.266 ATOM 1356 CB ASP 181 8.448 55.132 47.382 1.00 55.64 ATOM 1357 CG ASP 181 7.294 1.00 55.20 ASP 181 54.658 47.483 ATOM 1358 OD1 1.00 55.23 54.734 48.076 9.416 MOTA 1359 OD2 ASP 181 1.00 57.64 56.115 46.514 11.199 MOTA 1360 С ASP 181 1.00 57.96 56.510 47.685 11.153 ATOM 1361 0 ASP 181 12.303 1.00 57.87 55.634 45.947 ATOM 1362 ALA 182 N 55.524 46.646 13.577 1.00 57.84 MOTA 1363 CA ALA 182 13.836 1.00 58.19 54.078 47.048 MOTA 1364 CB ALA 182 1.00 57.83 14.657 56.013 45.683 ATOM 1365 C ALA 182 46.094 15.611 1.00 58.32 56.681 ALA ATOM 1366 0 182 1.00 57.35 55.669 44.404 14.505 ILE 183 15 MOTA 1367 N 56.109 43.381 15.448 1.00 57.40 ILE 183 ATOM 1368 CA 15.233 1.00 56.09 MOTA 1369 CB ILE 183 55.374 42.036 1.00 55.25 40.932 16.074 1370 56.025 MOTA CG2 ILE 183 1.00 55.30 53.904 42.174 15.628 MOTA 1371 CG1 ILE 183 1372 53.115 40.881 15.505 1.00 54.14 CD1 ILE 183 20 ATOM 1.00 58.51 15.199 ATOM 1373 ILE 183 57.600 43.164 C 1.00 59.24 16.002 58.294 42.531 ATOM 1374 0 ILE 183 14.077 1.00 59.04 184 58.093 43.689 MOTA 1375 LYS N 43.550 13.757 1.00 59.19 1376 184 59.508 ATOM CA LYS 1.00 59.15 1377 LYS 184 59.719 43.243 12.268 25 ATOM CB 1.00 58.36 44.354 11.310 MOTA 1378 CG LYS 184 59.356 9.868 1.00 58.59 59.566 43.897 ATOM 1379 CD LYS 184 1.00 59.26 42.735 9.500 58.637 184 MOTA 1380 CE LYS 8.067 1.00 59.63 184 58.751 42.306 ATOM 1381 NZLYS 44.806 14.155 1.00 59.27 184 60.270 30 ATOM 1382 C LYS 44.705 14.667 1.00 59.28 ATOM 184 61.382 1383 LYS 0 59..695 45.984 13.923 1.00 59.21 ARG 185 MOTA 1384 N ATOM 1385 ARG 185 60.383 47.211 14.331 1.00 59.69 CA 1.00 59.70 14.060 ATOM 1386 CB ARG 185 59.545 48.458 48.772 1.00 60.85 59.278 12.610 185 ATOM 1387 CG ARG 59.138 50.280 12.443 1.00 60.89 ATOM 1388 ARG 185 CD 50.628 11.459 1.00 62.26 58.121 MOTA 1389 NE ARG 185 1.00 61.84 50.403 11.620 56.819 MOTA 1390 CZ ARG 185 49.828 56.372 12.731 1.00 61.22 185 MOTA 1391 ARG NH1 55.966 50.754 10.666 1.00 62.23 MOTA 1392 NH2 ARG 185 1.00 60.41 MOTA 1393 ARG 185 60.574 47.104 15.836 C 1.00 60.45 61.630 47.430 16.384 MOTA 1394 O ARG 185 46.633 16.489 1.00 61.07 186 59.518 MOTA 1395 ARG N 46.460 17.933 1.00 61.42 186 59.489 ATOM 1396 CA ARG 1.00 61.16 ARG 186 58.066 46.055 18.358 ATOM 1397 CB 46.433 19.786 1.00 61.08 **ATOM** 1398 CG ARG 186 57.666 58.249 45.473 20.828 1.00 60.87 ARG 186 ATOM 1399 CD 45.894 22.188 1.00 61.44 NE 57.917 MOTA 1400 ARG 186 ARG 58.294 45.246 23.288 1.00 60.67 MOTA 1401 CZ186 44.133 23.201 1.00 60.28 ATOM 1402 NH1 ARG 186 59.024 1.00 61.46 57.942 45.712 24.481 186 ATOM 1403 NH2 ARG 18.344 1.00 61.85 60.516 45.399 ARG 186 1404 C ATOM 186 60.980 44.610 17.514 1.00 62.16 1405 ARG MOTA ٥ 1.00 62.07 1406 60.873 45.401 19.628 ATOM N GLY 187 1.00 62.22 61.843 44.455 20.157 1407 CA GLY 187 55 ATOM 19.754 1.00 62.50 187 61.591 43.017 MOTA 1408 C GLY 1.00 62.37 1409 GLY 187 60.541 42.692 19.202 **ATOM** 0 20.036 1.00 63.08 62.556 42.148 ATOM 1410 N ASP 188 19.684 1.00 62.67 62.414 40.746 188 ASP ATOM 1411 CA

)			•			29/63			
	F	igure 4							
	MOTA	1471	С	ALA	195	43.992	35.546	10.760	1.00 46.68
	ATOM	1472	ō	ALA	195	44.344	35.996	11.851	1.00 46.16
	ATOM	1473	N	MSE	196	43.157	36.182	9.940	1.00 45.43
	ATOM	1474	CA	MSE	196	42.521	37.459	10.279	1.00 44.60
5	ATOM	1475	CB	MSE	196	43.079	38.623	9.451	1.00 45.32
٠.	ATOM	1476	CG	MSE	196	42.329	39.925	9.716	1.00 47.29
	ATOM	1477	SE	MSE	196	42.937	41.426	8.852	1.00 53.21
	ATOM	1478	CE	MSE	196	44.264	41.920	9.982	1.00 51.44
	ATOM	1479	C	MSE	196	41.019	37.333	10.002	1.00 43.09
10	MOTA	1480	Ö	MSE	196	40.610	36.973	8.892	1.00 43.71
10	ATOM	1481	N	VAL	197	40.190	37.631	10.996	1.00 40.47
	MOTA	1482	CA	VAL	197	38.751	37.514	10.799	1.00 37.00
	MOTA	1483	CB	VAL	197	38.240	36.228	11.458	1.00 37.31
	MOTA	1484		YAL	197	38.840	35.004	10.766	1.00 36.64
15	MOTA	1485		VAL	197	38.643	36.217	12.914	1.00 36.88
13	ATOM	1486	C	VAL	197	37.991	38.710	11.354	1.00 35.22
	MOTA	1487	ō	VAL	197	38.561	39.544	12.057	1.00 35.21
	MOTA	1488	И	ASN	198	36.708	38.801		1.00 33.39
	ATOM	1489	CA	ASN	198	35.830	39.883	11.491	1.00 30.23
20	ATOM	1490	CB	ASN	198	34.740	40.175	10.446	1.00 30.65
20	ATOM	1491	CG	ASN	198	33.801	41.309	10.852	1.00 31.35
	MOTA	1492		ASN	198	32.907	41.128	11.686	1.00 32.70
	ATOM	1493		ASN	198	33.997	42.486	10.251	1.00 30.53
	ATOM	1494	C	ASN	198	35.217	39.356	12.780	1.00 28.41
25	ATOM	1495	ō	ASN	198	35.052	38.143	12.937	1.00 26.14
	ATOM	1496	N	ASP	199	34.892	40.252	13.711	1.00 27.77
	ATOM	1497	CA	ASP	199	34.325	39.816	14.990	1.00 26.87
	ATOM	1498	CB	ASP	199	34.156	41.007	15.945	1.00 26.75
	ATOM	1499	CG	ASP	199	33.254	42.097	15.396	1.00 26.24
30	ATOM	1500		ASP	199	33.221	42.292	14,167	1.00 26.90
	ATOM	1501		ASP	199	32.587	42.777	16.205	1.00 26.19
	ATOM	1502	C	ASP	199	33.027	39.034	14.843	1.00 26.43
	ATOM	1503	0	ASP	199	32.715	38.188	15.684	1.00 27.02
•	ATOM	1504	N	THR	200	32.291	39.292	13.763	1.00 25.45
35	ATOM	1505	CA	THR	200	31.050	38.585	13.510	1.00 25.65
	ATOM ·	1506	CB	THR	200	30.261	39.193	12.339	1.00 25.75
	ATOM	1507	OG1		200	31.008	39.044	11.130	1.00 26.04
	ATOM	1508	CG2	THR	200	. 30.002	40.672	12.573	1.00 26.48
	ATOM	1509	С	THR	200	31.383	37.155	13.143	1.00 26.96
40	ATOM	1510	0	THR	200	30.832	36.211	13.712	1.00 27.62
	ATOM	1511	N	VAL	201	32.295	36.990	12.189	1.00 28.07
	MOTA	1512	CA	VAL	201	32.695	35.654	11.742	1.00 28.50
	MOTA	1513	CB	VAL	201	33.785	35.726	10.665	1.00 29.26
	MOTA	1514	CG1	VAL	201	34.056	34.332	10.123	1.00 31.22
45	MOTA	1515	CG2	VAL	201	33.370	36.684	9.546	1.00 27.90
	MOTA	1516	C	VAL	201	33.231	34.818	12.901	1.00 29.16
	MOTA	1517	0	VAL	201	32.816	33.676	13.101	1.00 29.44
	MOTA	1518	N	ALA	202	34.156	35.395	13.663	1.00 30.31
	MOTA	1519	CA	AĻA	202	34.752	34.710	14.812	1.00 32.23
50	MOTA	1520	CB	ALA		35.591	35.705	15.643	1.00 31.72
	MOTA	1521	C	ALA		33.688	34.070	15.696	1.00 33.37
	MOTA	1522	0	ALA	202	33.789	32.894	16.073	1.00 34.14
	MOTA	1523	N	THR	203	32.667	34.858	16.019	1.00.34.41
	ATOM	1524	CA	THR	203	31.566	34.422	16.870	1.00 35.37
55	MOTA	1525	CB	THR	203	30.614	35.604	17.117	1.00.36.27
	A COOM	1526	001	THE	203	31 370	36 708	17 645	1.00 37.04

OG1 THR

С

0

CG2 THR

THR

THR

MOTA

MOTA

ATOM

MOTA

1526

1527

1528

1529

203

203

203

203

31.370 36.708 17.645 1.00 37.04 29.500 35.213 18.090 1.00 35.19

29.500 35.213 18.090 1.00 35.19 30.800 33.260 16.242 1.00 36.08 30.538 32.241 16.891 1.00 35.34

)				,		30/63			
	F	Figure 4							
	·								
	MOTA	1530	N	MSE	204	30.433	33.415	14.978	1.00 36.89
	MOTA	1531	CA	MSE	204	29.722	32.348	14.299	1.00 37.94
	MOTA	1532	СВ	MSE	204	29.582	32.665	12.811	1.00 39.76
	MOTA	1533	CG	MSE	204	29.065	31.504	11.954	1.00 40.74
5	MOTA	1534	SE	MSE	204	29.135	31.967	10.181	1.00 45.75
	ATOM	1535	CE	MSE	204	30.643	31.057	9.627	1.00 45.26
	ATOM	1536	С	MSE	204	30.531	31.075	14.465	1.00 38.36
	ATOM	1537	0	MSE	204	30.024	30.064	14.954	1.00 37.86
	ATOM.	1538	N	ILE	205	31.798	31.148	14.061	1.00 38.79
10	MOTA	1539	CA	ILE	205	32.696	30.008	14.137	1.00 40.09
	MOTA	1540	CB	ILE	205	34.178	30.451	13.981	1.00 39.81
	ATOM	1541	CG2		205	35.098	29.240	14.072	1.00 39.47
	ATOM	1542		ILE	205	34.398	31.112	12.616	1.00 39.46
	ATOM	1543	CD1	ILE	205	34.250	30.158	11.425	1.00 39.34
15		1544	C	ILE	205	32.527	29.215	15.440	1.00 41.34
13	ATOM	1545	ō	ILE	205	32.121	28.050	15.408	1.00 41.41
	ATOM	1546	Ŋ	SER	206	32.812	29.830	16.584	1.00 42.01
	ATOM	1547	CA	SER	206	32.683	29.112	17.849	1.00 42.01
	ATOM	1548	CB	SER	206	32.003	30.038	19.013	1.00 43.71
20	MOTA	1549	OG	SER	206			18.971	
20		1550			206	32.149	31.163		1.00 44.54
	ATOM		C	SER		31.306	28.494	18.056	1.00 44.83
	MOTA	1551	0	SER	206	31.185	27.304	18.364	1.00 45.40
	MOTA	1552	N	CYS	207 .	30.260	29.291	17.894	1.00 46.32
25	MOTA	1553	CA	CYS	207	28.912	28.764	18.079	1.00 48.14
25	ATOM	1554	CB	CYS	207	27.869	29.842	17.780	1.00 46.74
	MOTA	1555	SG	CYS	207	27.946	31.264	18.883	1.00 42.50
	MOTA	1556	C	CYS	207	28.666	27.551	17.186	1.00 50.79
	ATOM	1557	0	CYS	207	27.715	26.799	17.403	1.00 50.97
	MOTA	1558	N	TYR	208	29.533	27.361	16.190	1.00 53.91
30	ATOM	1559	CA	TYR	208	29.418	26.243	15.247	1.00 56.61
	ATOM	1560	CB	TYR	208	30.350	26.458	14.045	1.00 56.96
	ATOM	1561	CG	TYR	208	30.370	25.303	13.062	1.00 57.29
-	ATOM	1562		TYR	208	29.307	25.090	12.182	1.00 57.54
	ATOM	1563	CE1		208.	29.319	24.026	11.280	1.00 57.47
35	MOTA	1564	CD2	TYR	208	31.448	24.418	13.019	1.00 57.54
	ATOM	1565	CE2	TYR	208	31.468	23.350	12.125	1.00 57.60
	MOTA	1566	CZ	TYR	208	30.404	23.163	11.258	1.00 57.47
	MOTA	1567	OH	TYR	208	30.435	22.126	10.360	1.00 57.71
	ATOM	1568	C	TYR	208	29.705	24.867	15.854	1.00 58.12
40	ATOM	1569	0	TYR	208	28.874	23.960	15.773	1.00 58.61
	ATOM	1570	N	TYR	209	30.876	24.699	16.459	1.00 59.77
	ATOM	1571	CA	TYR	209	31.198	23.399	17.028	1.00 61.36
	MOTA	1572	CB	TYR	209	32.619	23.394	17.581	1.00 63.23
	MOTA	1573	CG	TYR	209	33.648	23.401	16.472	1.00 65.26
45	ATOM	1574		TYR	209		24.595	15.876	1.00 66.13
	MOTA	1575		TYR	209	34.959	24.594	14.807	1.00 67.31
	MOTA	1576		TYR	209	34.165	22.206	15.973	1.00 65.88
	MOTA	1577		TYR	209	35.062	22.193	14.906	1.00 66.79
	ATOM	1578	CZ	TYR	209	35 <i>.</i> 457	23.386	14.328	1.00 67.37
50	MOTA	1579	OH	TYR	209	36.350	23.370	13.277	1.00 67.62
	MOTA	1580	C	TYR	209	30.206	22.965	18.083	1.00 61.32
	MOTA	1581	0	TYR	209	30.048	21.771	18.336	1.00 61.19
	MOTA	1582	N	GLU	210	29.523	23.938	18.680	1.00 61.63
	MOTA	1583	CA	GLU	210	28.524	23.658	19.701	1.00 61.05
55	ATOM	1584	CB	GLU	210	28.444	24.808	20.706	1.00 -62.29
	ATOM	1585	CG	GLU	210	27.539	24.499	21.884	1.00 65.45
•	ATOM	1586	CD	GLU	210	27.716	25.463	23.050	1.00 67.38
	ATOM	1587		GLU	210	28,865	25.609	23.535	1.00 68.93
	ATOM	1588	OE2	GLU	210	26.707	26.065	23.488	1.00 67.92

Hi	PHILE	4

			_				00 450	** **		CO 04
	ATOM	15,89	C	GLU	210	27.175	23.459	19.026		60.04
	MOTA	1590	0	GLU	210	26.255	22.901	19.618		59.93
	ATOM	1591	N	ASP	211	27.073	23.920	17.780	1.00	58.82
	MOTA	1592	CA	ASP	211	25.849	23.797	16.984	1.00	57.80
5	ATOM	1593	CB	ASP	211	24.804	24.824	17.441	1.00	58.16
-	ATOM	1594	CG.	ASP	211	23.504	24.730	16.653		58.25
	ATOM	1595		ASP	211	22.490	25.299	17.111		57.88
	MOTA	1596	OD2	ASP	211	23.495	24.096	15.572		58.65
	MOTA	1597	C	ASP	211	26.173	23.993	15.503	1.00	56.54
10	MOTA	1598	0	ASP	211	26.351	25.116	15.037	1.00	56.17
	MOTA	1599	N	HIS	212	26.234	22.884	14.773	1.00	55.81
	MOTA	1600	ÇA'	HIS	212	26.577	22.884	13.351		55.26
	MOTA	1601	CB	HIS	212	26.699	21.442	12.852		57.87
	MOTA	1602	CG	HIS	212	27.816	20.678	13.493		61.52
15	MOTA	1603.		HIS	212	27.815	19.527	14.205		62.63
	MOTA	1604	ND1	HIS	212	29.127	21.110	13.460	1.00	62.80
	ATOM	1605	CEL	HIS	212	29.884	20.258	14.127.	1.00	63.70
	ATOM	1606	NE2	HIS	212	29.114	19.288	14.590	1.00	63.71
	MOTA	1607	С	HIS	212	25.665	23.656	12.412		53.29
20	MOTA	1608	ō	HIS	212	26.014	23.883	11.251		52.77
20					213	24.496				51.08
	ATOM	1609	N	GLN			24.058	12.895		
	ATOM	1610	CA.	GLN		23.579	24.790	12.037		48.22
	ATOM	. 1611	CB	GLN	213	22.135	24.347	12.298		49.39
	MOTA	1612	ĊG	GLN	213	21.957	22.839	12.130	1.00	50.76
25	MOTA	1613	CD	GLN	213	20.507	22.410	11.965	1.00	51.82
	MOTA	1614	OE1	GLN	213	19.653	22.721	12.803	1.00	52.48
	ATOM	1615		GLN	213	20.223	21.679	10.883		51.72
	ATOM	1616	C	GLN	213	23.746	26.289	12.202		45.19
			-							45.00
	ATOM	1617	0	GLN	213	22,978	27.077	11.654		
30	MOTA	1618	N	CYS	214	24.759	26.686	12.957		41.87
	ATOM	1619	CA	CYS	214	25.015	28.105	13.122		39.08
	MOTA	1620	CB	CYS	214	25.907	28.386	14.332	1.00	39.18
	ATOM	1621	SG	CYS	214	26.281	30.175	14.542	1.00	40.32
	ATOM	1622	C	CYS	214	25.743	28.530	11.859	1.00	36.43
35	ATOM	1623	Ō	CYS	214	26.915	28.214	11.689		36.06
••	ATOM	1624	N	GLU	215	25.046	29.223	10.967		33.00
	ATOM	1625	CA	GLU	215	25.664	29.672	9.736		30.60
							28.960			31.95
	ATOM	1626	CB	GLU	215	25.056		8.541		
	MOTA	1627	CG	GLU	215	25.289	27.466	8.561		33.57
40	MOTA	1628	CD	GLU	215	24.973	26.827	7.233		35.80
	ATOM	1629	OE1	GLU	215	25.719	27.094	6.264	1.00	37.32
	ATOM	1630	OE2	GLU	215	23.978	26.064	7.156	1.00	37.21
	ATOM	1631	C	GLU	215	25.518	31.162	9.563	1.00	28.84
	ATOM	1632	0	GLU	215	25.665	31,687	8.459	1.00	28.39
45	ATOM	1633	N	VAL	216	25.243	31.847	10.669		26.45
45				VAL	216	25.083	33.291	10.648		23.67
	MOTA	1634	CA							
	ATOM	1635	CB	VAL	216	23.589	33.706	10.607		23.44
	ATOM	1636		VAL	216	23.485	35.214	10.492		22.72
	ATOM	1637	CG2	VAL	216	22.875	33.031	9.449	1.00	22.30
50	MOTA	1638	С	VAL	216	25.671	33.858	11.921	1.00	22.20
	ATOM	1639	0	VAL	. 216	25.444	33.328	13.006	1.00	22.86
	ATOM	1640	N	GLY	217	26.423	34.939	11.793		21.40
	ATOM	1641	CA	GLY	217	26.997	35.554	12.965		21.14
										22.30
	ATOM	1642	C	GLY	217	26.524	36.994	13.022		
55	MOTA	1643	0	GLY	217	26.432	37.677	11.983		22.05
	ATOM	1644	N	MSE	218	26.201	37.454	14.228		23.03
	ATOM	1645	CA	MSE	218	25.748	38.815	14.414		23.03
	MOTA	1646	CB	MSE	218	24.208	38.880	14.445		25.98
	MOTA	1647	CG	MSE	218	23.647	40.306	14.646	1.00	28.99

F	ïgure	4

	ATOM	1648	SE	MSE	218	21.806	40.486	14.543	1.00	35.34
	MOTA	1649	CE	MSE.	218	21.273	39.804	16.207	1.00	31.95
	ATOM	1650	C	MSE	218	26.320	39.405	15.694	1.00	21.99
	MOTA	1651	0	MSE	218	26.425	38.738	16.724	1.00	22.34
5	MOTA	1652	N	ILE	219	26.694	40.670	15.606	1.00	21.28
	ATOM	1653	CA	ILE	219	27.240	41.402	16.720		20.85
	MOTA	1654	СВ	ILE	219	28.702	41.840	16.449		20.74
	MOTA	1655	CG2		219	29.164	42.757	17.558		19.65
	ATOM	1656		ILE	219	29.623	40.627	16.335		19.32
10 -	ATOM	1657	CD1		219	29.656	39.770	17.596		20.63
	ATOM	1658	c	ILE	219	26.413	42.676	16.838		21.47
	ATOM	1659	ō	ILE	219	26.297	43.431	15.868		21.30
	ATOM	1660	N	VAL	220	25.823	42.908	18.003		21.30
	ATOM	1661	CA	VAL	220	25.059	44.135			22.49
15	ATOM	1662	CB	VAL	220			18.224		
13	ATOM	1663		VAL	220	23.563	43.873	18.479		22.04
	ATOM	1664				22.815	45.183	18.425		21.50
	MOTA	1665		VAL	220	23.007	42.901	17.463		22.03
	MOTA		C	VAL	220	25.650	44.775	19.477		23.27
20	ATOM	1666	0	VAL	220	25.095	44.642	20.575		23.94
20		1667	N	GLY	221	26.795	45.436	19.312		22.78
	MOTA	1668	CA	GLY	221	27.448	46.063	20.443		22.86
	MOTA	1669	C	GLY	221	27.728	47.509	20.138		23.75
	ATOM	1670	0	GLY	221	26.816	48.264	19.828		25.09
	ATOM	1671	N	THR	222	28.988	47.906	20.233		24.06
25	ATOM	1672	CA	THR	222	29.375	49.277	19.939		24.06
	ATOM	1673	CB	THR	222	30.893	49.423	19.960		24.59
	MOTA	1674	OG1		222	31.377	49.051	21.258		26.00
•	MOTA	1675	CG2			31.299	50.860	19.640		24.67
	ATOM	1676	С	THR	222	28.888	49.530	18.533	1.00	24.09
30	ATOM	1677	0	THR	222	28.248	50.530	18.259	1.00	24.72
	ATOM	1678	И	GLY.	223	29.211	48.597	17.646		24.40
	MOTA	1679	CA	GLY	223	28.790	48.686	16.262	1.00	24.65
	ATOM	1680	C	GLY	223	27.797	47.560	16.020	1.00	25.05
	ATOM	1681	0	GLY	223	27.478	46.779	16.936	1.00	25.80
35	ATOM	1682	N	CYS	224	27.2 9 8	47.453	14.798		24.73
	ATOM	1683	CA	CYS	224	26.338	46.405	14.504	1.00	24.18
	ATOM	1684	CB	CYS	224	24.928	46.958	14.682	1.00	24.47
	ATOM	1685	SG	CYS	224	23.640	45.925	13.998		25.11
	ATOM	1686	С	CYS	224	26.550	45.895	13.085	1.00	23.65
40	ATOM	1687	0	CYS	224	26.618	46.683	12.144	1.00	24.07
	MOTA	1688	N	ASN	225	26.650	44.578	12.941	1.00	23.06
	MOTA	1689	CA	ASN	225	26.883	43.963	11.638	1.00	23.27
	MOTA	1690	CB	ASN	225	28.346		11.210	1.00	26.15
	MOTA	1691	CG	ASN	225	28.831	43.296	10.098	1.00	27.94
45	MOTA	1692		ASN	225	28.271	43.265	8.997	1.00	29.23
	MOTA	1693	ND2	ASN	225	29.878	42.524	10.393	1.00	28.62
	MOTA	1694	С	ASN	225	26.603	42.459	11.740	1.00	21.80
	MOTA	1695	0	ASN	225	26.291	41.954	12.827	1.00	20.54
	ATOM	1696	N	ALA	226	26.709	41.759	10.610	1.00	19.99
50	ATOM	1697	CA	ALA	226	26.478	40.322	10.566	1.00	19.47
	MOTA	1698	CB	ALA	226	24.994	40.032	10.443	1.00	20.99
	MOTA	1699	С	ALA	226	27.194	39.723	9.378		18.72
	MOTA	1700	0	ALA	226	27.529	40.428	8.415		17.97
	ATOM	1701	N	CYS	227	27.404	38.415	9.439		18.36
55	MOTA	1702	CA	CYS	227	28.077	37.675	8.368		19.35
	ATOM	1703	СВ	CYS	227	29.523	37.396	8.751		18.42
	MOTA	1704	SG	CYS	227	29.556	36.326	10.207		20.13
	ATOM ·	1705	С	CYS	227	27.331	36.352	8.291		19.81
	MOTA	1706	0	CYS	227	26.702	35.951	9.280		20.62

IGHTE

	ATOM	1707	N	TYR	228	27.402	35.668	7.148	1.00 20.49
	ATOM	1708	CA	TYR	228	26.705	34.384	6.989	1.00 20.56
	ATOM .	1709	CB	TYR ·	228	25.242	34.633	6.624	1.00 17.90
	ATOM	1710	CG	TYR	228	25.096	35.134	5.204	1.00 15.65
5	ATOM	1711		TYR	228	24.922	34.249	4.145	1.00 15.81
•	ATOM	1712		TYR	228	24.885	34.701	2.823	1.00 15.89
	ATOM	1713	CD2	TYR	228	25.221	36.483	4.913	1.00 15.28
	ATOM	1714	CE2	TYR	228	25.186	36.949	3.601	1.00 16.08
	ATOM	1715		TYR					
10			CZ		228	25.022	36.051	2.564	1.00 16.76
10	ATOM	1716	OH	TYR	228	25.033	36.505	1.263	1.00 18.93
	MOTA	1717	C	TYR	228	27.345	33.539	5.887	1.00 22.19
	MOTA	1718	0	TYR .	228	28.174	34.024	5.112	1.00 21.49
	ATOM	1719	N	MSE	229	26.928	32.278	5.808	1.00 24.74
	MOTA	1720	CA	MSE	229	27.438	31.349	4.808	1.00 26.69
15	MOTA	1721	CB	MSE	229	27.342	29.918	5.339	1.00 28.61
	ATOM	1722	CG	MSE	229	28.167	29.637	6.598	1.00 32.37
	MOTA	1723	SE	MSE	229	29.9 87	30.056	6.460	1.00 41.17
	ATOM	1724	CE	MSE	229	30.544	28.874	5.098	1.00 36.30
	ATOM	1725	С	MSE	229	26.663	31.470	3.481	1.00 27.83
20	MOTA	1726	0	MSE	229	25.535	30.994	3.363	1.00 28.02
	MOTA	1727	N	GLU	230	27.282	32.109	2.492	1.00 29.19
	ATOM	1728	CA	GLU	230	26.688	32.296	1.172	1.00 29.81
	ATOM	1729	CB	GLU	230	27.165	33.623	0.577	1.00 30.83
	ATOM	1730	CG	GLU	230	26.685	33.922	-0.843	1.00 32.33
25	ATOM	1731	CD	GLU	230	25.173	33.825	-0.989	1.00 34.04
	ATOM	1732	OE1	GLU	230	24.663	32.698	-1.222	1.00 34.43
	MOTA	1733		GLU	230	24.497	34.878	-01.858	1.00 33.65
	ATOM	1734	С	GLU	230	27.127	31.143	0.282	1.00 30.91
	MOTA	1735	Ō	GLU	230	27.958	30.319	0.685	1.00 30.80
30	ATOM	1736	N	GLU	231	26.562	31.078	-0.923	1.00 32.47
	ATOM	1737	CA	GLU	231	26.885	30.024	-1.883	1.00 34.04
	ATOM	1738	СВ	GLU	231	25.668	29.696	-2.745	1.00 34.21
	ATOM	1739	CG	GLU	231	24.408	29.396	-1.979	1.00 34.89
	ATOM	1740	CD	GLU	231	24.452	28.054	-1.296	1.00 36.36
35	MOTA	1741		GLU	231	24.745	27.064	-2.002	1.00 36.80
	MOTA	1742		GLU	231	24.182	27.981	-0.067	1.00 36.72
	ATOM	1743	C	GLU	231	27.997	30.550	-2.777	1.00 35.65
	ATOM	1744	0	GLU	231	27.889	31.663	-3.304	1.00 35.42
	ATOM	1745	Ŋ	MSE	232	29.060	29.758	-2.952	1.00 33.42
40	ATOM	1746	CA	MSE	232	30.188	30.181	-3.780	1.00 37.13
70	ATOM	1747	CB	MSE	232	31.191	29.036	-3.780	1.00 30.13
	MOTA	1748	CG	MSE	232	32.195	28.912	-2.765	1.00 45.40
	ATOM	1749	SE	MSE	232	33.237	30.431	-2.467	1.00 52.07
	ATOM	1750	CE	MSE	232	34.286	30.483	-3.969	1.00 32.07
45	ATOM	1751	CE	MSE	232	29.694	30.664		
43	ATOM					30.179		-5.137	1.00 38.02
		1752	0.	MSE	232		31.656 29.970	-5.678	1.00 36.84
	MOTA	1753	N	GLN	233	28.698		-5.668	1.00 38.35
	ATOM	1754	CA	GLN	233	28.110	30.331	-6.948	1.00 38.79
50	ATOM	1755	CB	GLN	233	26.954	29.373	-7.257	1.00 40.19
50	ATOM	1756	CG	GLN	233	25.658	30.041	-7.672	1.00 41.80
	ATOM	1757	CD	GLN	233	24.460	29.119	-7.510	1.00 43.22
	ATOM	1758	OE1		233	24.226	28.582	-6.424	1.00 44.27
	ATOM	1759	NE2		233	23.688	28.936	-8.586	1.00 43.87
	ATOM	1760	C	GLN	233	27.615	31.777	-6.936	1.00 38.45
55	MOTA	1761	0	GLN	233	27.495	32.407	-7.984	1.00 39.07
	ATOM	1762	N	ASN	234	27.329	32.313	-5.753	1.00 37.79
	MOTA	1763	CA	ASN	234	26.840	33.687	-5.668	1.00 36.56
	MOTA	1764	CB	ASN	234	25.657	33.771	-4.706	1.00 37.03
	MOTA	1765	CG	ASN	234	24.505	32.864	-5.119	1.00 36.83

	ŀ	igure 4		•	•					
	ATOM	1766	OD1	ASN	234	24.152	32.793	-6.299	1 00	36.50
	ATOM	1767		ASN	234	23.910	32.173	-4.146		36.25
	ATOM	1768	C	ASN	234	27.919	34.676	-5.250		35.71
	ATOM	1769	0	ASN	234	27.712	35.890			
5	ATOM	1770	N	VAL	235	29.069	34.156	-5.301		35.11
	MOTA	1771	CA	VAL	235	30.177		-4.837		35.22
	ATOM	1772					35.009	-4.439		34.85
			CB	VAL	235	31.056	34.321	-3.384		34.01
	ATOM	1773		VAL	235	31.949	35.343	-2.717		32.35
10	ATOM	1774		VAL	235	30.185	33.576	-2.376		32.63
10	ATOM .	1775	C	VAL	235	30.999	35.209	-5.706		35.79
	MOTA	1776	0	VAL	235	32.011	34.548	-5.910		35.65
	MOTA	1777	N	GLU	236	30.556	36.125	-6.556		37.55
	ATOM	1778	CA	GLU	236	31.220	36.383	-7.830		39.52
	MOTA	1779	CB	GLU	236	30.337	37.284	-8.701	1.00	39.67
15	MOTA	1780	CG	GLU	236	29.242	36.539	-9.448		41.02
	MOTA	1781	CD	GLU	236	28.214	37.467	-10.072		42.58
	MOTA	1782		GLU	236	28.607		-10.630	1.00	42.67
	ATOM	1783	OE2		. 236	27.009		-10.011	1.00	43.02
	ATOM	1784	C	GLU	236	32.631	36.961	-7.782	1.00	40.97
20	MOTA	1785	0	GLU	236	33.328	36.967	-8.803	1.00	42.27
	ATOM	1786	N	LEU	237	33.064	37.457	-6.628	1.00	41.32
	ATOM	1787	CA	LEU	237	34.408	38.017	-6.538	1.00	41.63
	ATOM	1788	CB	LEU	237	. 34.438	39.163	-5.537	1.00	41.68
	MOTA	1789	CĠ	LEU	237	33.545	40.367	-5.820	1.00	42.50
25	ATOM	1790		LEU	237	33.630	41.301	-4.623	1.00	44.17
	ATOM	1791	CD2	LEU	237	33.984	41.101	-7.085	1.00	42.46
	MOTA	1792	C	LEU	237	35.454	36.970	-6.148	1.00	42.43
	ATOM	1793	0	LEU	237	36.636	37.294	-6.010		42.30
	ATOM	1794	N	VAL	238	35.019	35.724	-5.967		42.96
30	MOTA	1795	CA	VAL	238	35.922	34.629	-5.606	1.00	43.89
	ATOM	1796	CB	VAL	238	35.917	34.380	-4.097		42.33
	ATOM	1797	CG1	VAL	238	36.722	33.136	-3.769	1.00	41.32
	ATOM	1798	CG2	VAL	238	36.503	35.578	-3.385		42.74
	MOTA	1799	С	VAL	238	35.520	33.337	-6.313		45.65
35	MOTA	1800	0	VAL	238	34.755	32.555	-5.770		46.15
	MOTA	1801	N	GLU	239	36.069	33.116	-7.510		47.60
	ATOM	1802	CA	GLU	239	35.769	31.947	-8.346		48.96.
	MOTA	1803	CB	GLU	239	36.819	31.793	-9.448		51.17
	MOTA	1804	CG	GLU	239	37.000		-10.290		53.95
40	ATOM	1805	CD	GLU	239	37.817	34.066	-9.570		56.27
	ATOM	1806	OE1	GLU	239	39.070	33.982	-9.637		58.40
	ATOM	1807	OE2	GLU	239	37.211		-8.918		
	ATOM	1808		GLU	239	35.599	30.594	-7.675		48.87
	ATOM	1809	0	GLU	239	36.272	30.274	-6.701		48.25
45	ATOM	1810	N	GLY	240	34.705	29.797	-8.252		49.09
	ATOM	1811	CA	GLY	240	34.412	28.469	-7.750		50.05
	ATOM	1812	C	GLY	240	32.967	28.418	-7.296		51.04
	MOTA	1813	0	GLY	240	32.482	29.379	-6.712		52.00
	ATOM	1814	N	ASP	241	32.259	27.332	-7.580		51.38
50	ATOM	1815	CA	ASP	241	30.882	27.214	-7.127		52.10
	ATOM	1816	CB	ASP	241	29.963	26.766	-8.252		52.95
	ATOM	1817	CG	ASP	241	30.186	27.534	-9.529		53.84
	ATOM	1818		ASP	241	30.046	28.779	-9.522		53.20
	ATOM	1819		ASP	241	30.496		-10.546		53.20
55	ATOM	1820	C	ASP	241	30.924	26.122	-6.083		52.90
	ATOM	1821	ō	ASP	241	29.898	25.563	-5.701		53.59
	ATOM	1822	N	GLU	242	32.131	25.816	-5.626		53.45
	ATOM	1823	CA	GLU,	242	32.325	24.760	-4.646		53.65
	ATOM	1824	CB	GLU	242	33.785	24.299	-4.670		55.19
	·							070		

								•	
						•			
•	F	igure 4				35/63			
,	3.0004	1005	00	CT 11	242		22 062	-3 926	1.00 57.57
	ATOM ATOM	1825 1826	CG CD	GLU GLU	242 242	34.056 35.527	23.062 22.672	-3.826 -3.811	1.00 57.57
	ATOM	1827	OE1	GLU	242	36.063	22.340	-4.893	1.00 59.63
	ATOM	1828	OE2		242	36.143	22.701	-2.717	1.00 59.85
5	ATOM	1829	C	GLU	242	31.933	25.159	-3.229	1.00 52.66
,	MOTA	1830	ŏ	GLU	242	32.469	26.113	-2.661	1.00 53.15
	ATOM	1831	N .	GLY	243	30.987	24.418	-2.665	1.00 51.11
	ATOM	1832	CA	GLY	243	30.545	24.673	-1.305	1.00 48.74
	ATOM	1833	C	GLY	243	30.200	26.110	-0.967	1.00 46.87
10	ATOM	1834	ō	GLY	243	29.879	26.917	-1.850	1.00 46.49
	ATOM	1835	N	ARG	244	30.288	26.421	0.326	1.00 44.89
	ATOM	1836	CA	ARG	244	29.967	27.748	0.838	1.00 43.27
	ATOM	1837	СВ	ARG	244	28.852	27.639	1.873	1.00 42.24
	ATOM	1838	CG	ARG	244	27.571	27.040	1.339	1.00 42.16
15	ATOM	1839	CD	ARG	244	26.442	27.153	2.356	1.00 41.35
	ATOM	1840	NE	ARG	244	25.254	26.425	1.925	1.00 39.30
	MOTA	1841	CZ	ARG	244	24.702	25.446	2.630	1.00 39.15
	MOTA	1842	NH1	ARG	244	25.236	25.085	3.794	1.00 38.10
	MOTA	1843	NH2	ARG	244	23.627	24.821	2.168	1.00 38.77
20	MOTA	1844	С	ARG	244	31.121	28.524	1.465	1.00 42.34
	ATOM	1845	0	ARG	244	32.089	27.945	1.958	1.00 41.77
	ATOM	1846	N	MSE	245	30.990	29.849	1.446	1.00 42.07
	ATOM	1847	CA	MSE	245	31.977	30.745	2.042	1.00 41.32
	ATOM	1848	CB	MSE	245	32.846	31.391	0.974	1.00 42.25
25	ATOM	1849	CG	MSE	245	33.870	32.345	1.566	1.00 44.07
	MOTA	1850	SE	MSE	245	34.884	33.206	0.332	1.00 47.16
	MOTA	1851	CE -		245	36.149	31.909	-0.005	1.00 44.40
	MOTA	1852	C	MSE	245	31.324 30.525	31.863 32.644	2.863 2.338	1.00 40.37 1.00 40.13
30	MOTA MOTA	1853 1854	O N	MSE CYS	245 246	31.664	31.940	4.148	1.00 40.13
50	ATOM	1855	CA	CYS	246	31.125	32.990	5.001	1.00 37.00
	MOTA	1856	CB	CYS	246	31.794	32.953	6.376	1.00 37.69
	ATOM	1857	SG	CYS	246	31.231	34.229	7.567	1.00 38.96
	ATOM	1858	C	CYS	246	31.422	34.320	4.311	1.00 35.82
35	MOTA	1859	0	CYS	246	32.484	34.497	3.706	1.00 34.54
	ATOM	1860	N	VAL	247	30.466	35.240	4.388	1.00 34.51
	MOTA	1861	CA	VAL	247	30.591	36.566	3.782	1.00 32.46
	ATOM	1862	CB	VAL	247	29.609	36.751	2.588	1.00 32.34
	MOTA	1863	CG1	VAL	247	29.709	38.170	2.038	1.00 31.78
40	MOTA	1864		VAL	.247	29.930	35.750	1.486	1.00 32.04
	MOTA	1865	C	VAL	247	30.239	37.580	4.863	1.00 32.03
	MOTA	1866	0	VAL	247	29.291	37.377	5.628	1.00 33.28
	MOTA	1867	N	ASN	248	31.011	38.657	4.931	1.00 29.34
	ATOM	1868	CA	ASN	248	30.792	39.699	5.917	1.00 27.36
45	ATOM	1869	CB	ASN	248	32.147	40.219	6.401	1.00 28.42
	MOTA	1870	CG	ASN	248	32.031	41.471	7.253	1.00 29.34
	MOTA	1871		ASN	248	30.975	41.774	7.816	1.00 29.82
	MOTA	1872 1873		ASN	248	33.141 29.983	42.201 40.798	7.374 5.257	1.00 29.54 1.00 27.10
EΩ	MOTA		С	ASN	248 248	30.531	41.618	4.503	1.00 27.10
50	MOTA	1874	O N7	ASN		28.679	40.823	5.544	1.00 26.98
	MOTA MOTA	1875 1876	N CA	THR THR	249 249	27.778	40.823	4.937	1.00 28.01
	MOTA	1877	CB	THR	249	26.325	41.634	5.424	1.00 23.83
	ATOM	1878		THR	249	26.228	42.100	6.775	1.00 25.10
55	ATOM	1879			249	25.899	40.156	5.380	1.00 23.10
23	ATOM	1880	C	THR	249	28.208	43.226	5.270	1.00 24.20
	ATOM	1881	Ö	THR	249	28.023	44.143	4.467	1.00 23.38
	ATOM	1882	N	GLU	250	28.777	43.406	6.462	1.00 24.31
	ATOM	1883	CA	GLU	250	29.219	44.733	6.891	1.00 23.61

.

Figure 4 36/63 ATOM 1884 GLU 250 30.446 45.145 6.060 1.00 23.87 CB 31.242 ATOM 1885 CG GLU 250 46.362 6.571 1.00 25.94 46.041 7.700 ATOM 1886 CD GLU 250 32.237 1.00 25.83 32.728 ATOM 44.893 1887 OE1 GLU 250 7.813 1.00 25.67 ATOM 32.552 46.960 1888 OE2 GLU 250 8.473 1.00 26.46 ATOM 1889 C GLU 250 28.003 45.624 6.589 1.00 23.30 28.110 ATOM 1890 0 GLU 250 46.648 5.896 1.00 23.33 26.841 45.208 7.096 ATOM 1891 N TRP 251 1.00 22.28 25.609 45.940 1.00 22.36 ATOM 1892 TRP 251 6.840 CA 24.376 45.077 10 MOTA 1893 CB 251 7.133 1.00 20.65 TRP ATOM 1894 CG TRP 251 24.133 44.726 8.543 1.00 18.29 43.648 ATOM 1895 CD2 TRP 251 23.308 9.016 1.00 16.51 ATOM 1896 23.279 43.725 CE2 TRP 251 10.424 1.00 15.08 ATOM 1897 CE3 TRP 251 22.589 42.635 8.384 1.00 16.17 24.565 15 ATOM 1898 CD1 TRP 251 45.395 9.652 1.00 17.71 ATOM 1899 NE1 TRP 251 24.051 44.795 10.795 1.00 17.10 ATOM 1900 CZ2 TRP 251 22.567 42.830 11.201 1.00 14.23 21.872 41.737 ATOM 1901 CZ3 TRP 251 9.171 1.00 15.72 ATOM CH2 TRP 21.869 41.842 1902 251 10.559 1.00 14.23 1.00 23.49 20 ATOM 1903 C TRP 251 25.445 47.283 7.523 ATOM 1904 TRP 251 24.541 48.044 7.167 1.00 23.95 0 ATOM 47.579 1905 N GLY 252 26.302 8.500 1.00 24.44 ATOM 1906 GLY 252 48.857 CA 26.214 9.179 1.00 25.17 49.979 ATOM 1907 C GLY 252 26.195 8.152 1.00 26.19 25 ATOM 1908 0 GLY 252 25.715 51.086 1.00 26.19 8.429 . 26.714 49.675 MOTA 1909 N ALA 253 6.960 1.00 26.83 ATOM 50.622 1910 CA ALA 253 26.791 5.851 1.00 27.86 ATOM 1911 CB ALA 253 27.822 50.148 4.851 1.00 27.90 MOTA 1912 C ALA 253 25.448 50.834 5.144 1.00 28.52 30 25.249 51.834 ATOM 1913 0 ALA 253 4.448 1.00 27.73 ATOM 1914 PHE 254 24.536 49.884 1.00 30.23 N 5.314 ATOM 1915 CA PHE 254 23.224 49.974 4.696 1.00 31.42 22.289 ATOM 1916 CB PHE 254 48.947 5.314 1.00 31.71 ATOM PHE 254 20.899 48.995 4.768 1917 CG 1.00 31.90 ATOM 1918 254 20.655 48.736 35 CD1 PHE 3.429 1.00 31.47 254 19.824 49.273 MOTA 1919 CD2 PHE 5.600 1.00 32.95 ATOM 1920 PHE 254 19.367 48.746 2.927 CE1 1.00 31.38 1921 254 18.518 ATOM: CE2 PHE 49.285 5.096 1.00 32.69 MOTA 1922 CZ PHE 254 18.295 49.021 3.763 1.00 31.47 MOTA 1923 Ċ PHE 254 22.664 51.367 4.928 1.00 32.56 ATOM 1924 0 PHE 254 22.638 51.839 6.064 1.00 33.19 ATOM 1925 N GLY 255 22.227 52.017 3.849 1.00 33.62 1926 255 53.354 ATOM CA GLY 21.674 3.947 1.00 34.98 ATOM 1927 C GLY 255 22.673 54.429 3.565 1.00 36.85 45 ATOM 1928 GLY 255 22.317 55.604 0 3.424 1.00 36.70 256 54.038 MOTA 1929 N ASP 23.932 3.395 1.00 38.95 MOTA 1930 CA **ASP** 256 24.966 55.000 3.038 1.00 41.47 256 26.349 ATOM 1931 CB **ASP** 54.347 3.088 1.00 41.77 ATOM 1932 ÇG **ASP** 256 26.880 54.224 4.502 1.00 42.36 ATOM 1933 OD1 ASP 256 26.573 55.120 1.00 43.08 5.322 27.617 MOTA 1934 OD2 ASP 256 53.251 4.791 1.00 42.28 ATOM 1935 C ÀSP 256 24.744 55.636 1.666 1.00 43.10 ATOM 1936 ASP 256 25.489 56.533 0 1.261 1.00 44.08 MOTA 1937 SER 257 23.729 55.171 0.946 N 1.00 44.19 MOTA 1938 SER 257 23.427 55.738 -0.363 CA 1.00 45.32 MOTA 1939 CB SER 257 23.714 54.713 -1.467 1.00 45.78 MOTA 1940 OG SER 257 22.845 53.601 -1.3751.00 46.48 21.967 **ATOM** 1941 C SER 257 56.204 -0.423 1.00 45.41 ATOM 1942 0 SER 257 21.378 56.316 -1.501 1.00 46.14

						-	•	•			
	,	D: 4									
\bigcirc		Figure 4				37/63				•	
lacksquare	ATOM	1943	N	GLY	258	21.393	56.466	0.751	1.00 45.52		
	ATOM	1944	CA	GLY	258	20.018	56.933	0.835	1.00 45.22		
	MOTA	1945	C	GLY	258	18.922	55.896	1.042	1.00 45.11		
_	ATOM	1946	0	GLY	258	17.745	56.253	1.068	1.00:45.45		
5		1947	N	GLU	259	19.284	54.627	1.205	1.00 44.67		
	MOTA	1948	CA	GLU	259	18.288	53.572	1.380	1.00 44.04	•	
	MOTA MOTA	1949 1950	CB CG	GLU GLU	259 259	18.954 19.952	52.187 51.916	1.415	1.00 44.23		
	ATOM	1951	CD	GLU	259	21.318	52.552	0.295 0.548	1.00 44.88 1.00 45.53	•	
10		1952	OE1		259	21.381	53.785	0.753	1.00 44.98		
·	MOTA	1953		GLU	259	22.335	51.817	0.537	1.00 45.95		
	ATOM	1954	C	GLU	259	17.462	53.749	2.647	1.00 43.91		
	MOTA	1955	0	GLU	259	16.461	53.061	2.836	1.00 43.49		
	ATOM	1956	N	LEU	260	17.875	54.661	3.520	1.00 43.87		
15		1957	CA	LEU	260	17.143	54.865	4.765	1.00 44.40		
	ATOM ATOM	1958	CB	LEU	260	18.023	54.513	5.967	1.00 44.36		
•	ATOM	1959 1960	CG CD1	LEU	260 260	18.398 19.315	53.041	6.153	1.00 44.87		
	ATOM	1961	CD2		260	17.127	52.879 52.216	7.369 6.307	1.00 44.30 1.00 44.88		
20	ATOM	1962	C	LEU	260	16.632	56.282	4.932	1.00 44.59		
	ATOM	1963	ō	LEU	260	15.744	56.534	5.749	1.00 44.72		
	ATOM	1964	N	ASP.	261	17.200	57.202	4.161	1.00 44.48		
	ATOM	1965	CA	ASP	261	16.821	58.608	4.234	1.00 44.18	•	
	MOTA	1966	CB	ASP	261	16.813	59.224	2.841	1.00 44.99		•
25	ATOM	1967	CG	ASP	261	18.192	59.310	2.247	1.00 46.23		
	MOTA MOTA	1968 1969		ASP ASP	261	19.165	58.994	2.980	1.00 46.42		
	ATOM	1970	C	ASP	261 261	18.296 15.482	59.697 58.885	1.055 4.892	1.00 46.79		
	ATOM	1971	ō	ASP	261	15.415	59.592	5.898	1.00 43.00 1.00 42.63		
30	ATOM	1972	N	GLU	262	14.424	58.317	4.320	1.00 41.88		
	ATOM	1973	CA	GLU	262	13.070	58.525	4.810	1.00 41.00		
	MOTA	1974	CB	GLU	262	12.088	57.744	3.940	1.00 41.65		
	ATOM	1975	CG	GLU	262	12.249	56.254	3.999	1.00 43.54		
25	ATOM	1976	CD	GLU	262	11.359	55.562	2.996	1.00 45.44		
35	ATOM	1977		GLU	262	11.715	55.561	1.800	1.00 47.21		
	MOTA MOTA	1978 1979	C	GLU GLU	262 262	10.296 12.830	55.031	3.391	1.00 47.29		
	ATOM	1980		GLU	262	11.997	58.211 58.852	6.286 6.918	1.00 39.99 1.00 40.22		
	ATOM	1981	N	PHE	263	13.545	57.238	6.845	1.00 38.83		
40	MOTA	1982	CA	PHE	263	13.360	56.908	8.258	1.00 37.00		
	MOTA	1983	CB	PHE	263	13.684	55.430	8.512	1.00 34.37		
	MOTA	1984	CG	PHE	263	12.828	54.476	7.717	1.00 32.41		
	MOTA	1985		PHE	263	13.366	53.753	6.660	1.00 30.67		
45	ATOM	1986		PHE	263	11.474	54.317	8.012	1.00 30.95		
45	ATOM ATOM	1987 1988		PHE	263 263	12.567	52.886	5.909	1.00 29.82		
•	MOTA	1989	CZ	PHE	263 263	10.667 11.214	53.450 52.737	7.261	1.00 28.87		
	MOTA	1990	C	PHE	263	14.197	57.797	6.213 9.190	1.00 29.09 1.00 36.78		
	ATOM	1991	ō	PHE	263	13.809	58.041	10.327	1.00 30.78		
50	MOTA	1992	N	LEU	264	15.328	58.301	8.712	1.00 36.72		
	MOTA	1993	CA	LEU	264	16.193	59.142	9.542	1.00 37.11		
	ATOM	1994	CB	LEU	264	17.389	59.638	8.725	1.00 36.98		
	MOTA	1995		LEU	264	18.131	58.621	7.852	1.00 36.59		
-	ATOM	1996		LEU		19.233	59.346	7.077	1.00 35.39		
55	ATOM ATOM	1997		LEU	264	18.701	57.503	8.717	1.00 35.46		
,	ATOM	1998 1999	С 0	LEU LEU	264 264	15.482 14.879	60.350 61.148	10.158	1.00 37.28		
	MOTA	2000	N	LEU	265	15.574	60.480	9.451 11.479	1.00 38.03 1.00 37.63		
	ATOM	2001	CA	LEU	265	14.965	61.585	12.215	1.00 37.33		

···

Figure 4 38/63 MOTA 2002 CB LEU 265 14.380 61.070 13.527 1.00 36.25 ATOM 2003 CG LEU 265. 13.529 59.807 13.417 1.00 35.76 MOTA 2004 CD1 LEU 265 13.157 59.295 14.808 1.00 35.17 ATOM 2005 CD2 LEU 265 12,292 60.120 12.598 1.00 35.59 MOTA 2006 C LEU 265 16.054 62.613 12.521 1.00 38.22 MOTA 2007 0 LEU 265 17.239 62.285 12.486 1.00 38.34 MOTA 2008 N GLU 266 15.653 63.844 12.832 1,00 39.22 MOTA 2009 CA GLU 266 16.599 64.922 13.137 1.00 40.56 MOTA 2010 CB GLU 266 15.874 66.101 13.813 1.00 41.82 10 ATOM 2011 CG GLU 266 15.277 65.777 15.196 1.00 44.28 ATOM 2012 CD GLU 266 14.612 66.974 15.886 1.00 44.95 ATOM 2013 OE1 GLU 266 13.543 67.432 15.410 1.00 45.08 ATOM 2014 OE2 GLU 266 15.163 67.452 16.910 1.00 45.53 ATOM 2015 Ç GLU 266 17.733 64.435 14.036 1.00 40.54 MOTA 2016 0 GLU 266 18.910 64.657 13.750 1.00 40.69 ATOM 2017 TYR N 267 17.366 63.760 15.121 1.00 40.61 ATOM 2018 CA TYR 267 18.342 63.234 16.062 1.00 40.30 ATOM TYR 2019 CB 267 17.639 62.364 17.110 1.00 39.44 ATOM 2020 CG TYR 267 16.216 62.784 17.423 1.00 38.98 2021 20 ATOM 15.134 CD1 TYR 267 61.967 17.066 1.00 38.66 ATOM 2022 CE1 TYR 267 13.813 62.342 17.349 1.00 38.28 ATOM 2023 CD2 TYR 267 15.943 63.995 18.075 1.00 38.72 ATOM 2024 CE2 TYR 267 14.619 64.381 18.364 1.00 38.45 ATOM 2025 13.564 CZ TYR 267 63.548 17.996 1.00 38.30 25 ATOM 2026 OH TYR 267 12.267 63.923 18.251 1.00 37.22 ATOM 2027 C 267 TYR 19.381 62.403 15.296 1.00 40.27 MOTA 2028 0 TYR 267 20.580 62.469 15.579 1.00 40.14 ATOM 2029 N ASP 268 18.909 61.626 14.324 1.00 40.61 ATOM 2030 CA ASP 268 19.781 60.790 13.511 1.00 40.87 30 ATOM 2031 CB ASP 268 18.946 59.920 12.566 1.00 39.36 MOTA 2032 CG ASP 18.183 268 58.843 13.301 1.00 38.52 MOTA 2033 OD1 ASP 268 18.819 58.118 14.082 1.00 39.79 **ATOM** 2034 OD2 ASP 268 16.961 58.711 13.110 1.00 36.13 MOTA 2035 C ASP 268 20.764 61.643 12.712 1.00 41.97 35 ATOM 2036 0 ASP 268 21.956 61.339 12.667 1.00 42.91 ATOM 2037 N ARG 269 20.266 62.710 12.090 1.00 42.73 ATOM 2038 CA ARG 269 21.113 63.606 1.00 43.23 11.310 ATOM . 2039 CB 64.793 ARG 269 20.302 10.786 1.00 45.34 **ATOM** 2040 CG ARG 269 18.923 64.464 1.00 47.46 10.223 MOTA 2041 CD 19.000 ARG 269 63.819 8.864 1.00 49.22 ATOM 2042 ARG NE 269 17.667 63.552 8.337 1.00 52.67 MOTA 2043 CZ ARG 269 17.426 62.969 7.165 1.00 54.63 MOTA 2044 NH1 ARG 269 18.436 62.591 6.386 1.00 55.41 **ATOM** 2045 NH2 ARG 269 16.173 62.747 6.775 1.00 55.38 45 ATOM 2046 C ARG 269 22.204 64.150 12.231 1.00 42.99 MOTA 2047 ARG 0 269 23.400 63.999 11.977 1.00 43.63 MOTA 2048 N LEU 270 21.777 64.796 13.305 1.00 41.99 MOTA 2049 CA LEU 270 22.702 65.372 14.261 1.00 41.33 MOTA 2050 CB LEU 270 21.924 65.812 15.502 1.00 41.15 50 ATOM 2051 CG LEU 270 21.004 67.002 15.217 1.00 40.34 MOTA 2052 CD1 LEU 270 19.964 67.182 16.307 1.00 39.94 MOTA 2053 CD2 LEU 270 21.879 68.237 15.084 1.00 40.26 MOTA 2054 С LEU 270 23.828 64.406 14.635 1.00 41.26 MOTA 2055 0 LEU 25.009 270 64.762 14.553 1.00 41.76 ATOM 2056 N VAL 271 23.462 63.188 15.030 1.00 40.24 MOTA 2057 VAL 271 CA 24.443 62.177 15.415 1.00 40.08 ATOM 2058 CB VAL 271 23.776 60.838 15.730 1.00 40.42 ATOM 2059 CG1 VAL 271 24.846 59.800 16.050 1.00 39.86 MOTA 2060 CG2 VAL 271 22.796 61.000 16.891 1.00 40.86

						* •				
	¥	igure 4								
\bigcup		igare 4				39/63				
	MOTA	2061	C ·	VAL	271	25.477	61.903	14.329	1.00 40.51	
	ATOM	2062	0	VAL	271	26.676	61.832	14.595	1.00 40.15	
	MOTA	2063	N	ASP	272	24.998	61.730	13.103 11.977	1.00 40.78 1.00 40.36	
	ATOM	2064	CA CB	ASP ASP	272 272	25.866 25.038	61.447 61.344	10.695	1.00 39.16	
5	ATOM ATOM	2065 2066	CG	ASP	272	25.792	60.670	9.553	1.00 38.09	,
	ATOM	2067		ASP	272	26.821	60.000	9.807	1.00 36.54	
	MOTA	2068		ASP	272	25.335	60.798	8.394	1.00 37.12	
	MOTA	2069	Ç	ASP	272	26.901	62.544	11.849	1.00 40.88	
10	ATOM	2070	0	ASP .	272	28.099	62.297	11.953	1.00 40.75	•
	ATOM	2071	N	GLU	273	26.429	63.763	11.638	1.00 41.96	
	ATOM	2072	CA	GLU	273	27.321	64.896	11.477	1.00 43.14	
	MOTA	2073	CB	GLU	273	26.501	66.170	11.470	1.00 44.13	
	ATOM	2074	ÇG	GLU	273	25.576	66.214	10.272	1.00 46.73	
15	ATOM	2075	CD	GLU	273	24.629	67.388	10.308	1.00 48.40	
	ATOM	2076		GLU	273	25.047	68.455	10.828	1.00 49.15	
	ATOM	2077	OE2		273	23.482	67.241	9.811	1.00 48.64	
•	ATOM	2078	C	GLU .	273	28.428	64.968	12.517	1.00 43.48	
	ATOM	2079	.0	GLU	273	29.575	65.279	12.187	1.00 43.59 1.00 44.05	
20	MOTA	2080	N	SER	274	28.095	64.666 64.702	13.767	1.00 44.03	
	ATOM	2081	CA	SER	274 274	29.089 28.421	64.762	14.837 16.205	1.00 45.39	
	ATOM ATOM	2082 2083	OG	SER	274	27.496	65.611	16.203	1.00 48.14	
•	ATOM	2083	C	SER	274	30.106	63.582	14.694	1.00 44.23	
25		2085	o	SER	274	31.292	63.783	14.931	1.00 44.76	•
. 23.	ATOM	2086	N	SER	275	29.632	62.400	14.318	1.00 43.84	
	ATOM	2087	CA	SER	275	30.489	61.227	14.162	1.00 43.42	
	ATOM.	2088	CB	SER	275	29.754	60.139	13.392	1.00 43.28	•
	ATOM.	2089	OG	SER	275	29.758	60.444	12.010	1.00 42.94	
30	MOTA	2090	С	SER	275	31.789	61.535	13.426	1.00 43.34	
	ATOM	2091	0	SER	275	31.914	62.552	12.738	1.00 43.76	
	ATOM	2092	N	ALA	276	32.756	60.639	13.570	1.00 42.68	
	MOTA	2093	ÇA	ALA	276	34.034	60.805	12.906	1.00 42.98	
	ATOM	2094	CB	ALA	276	35.108	60.015	13.639	1.00 42.92	
35	MOTA	2095	С	ALA	276	33.930	60.319	11.465	1.00 43.23	
	ATOM	2096		ALA	276	34.936	60.277	10.751	1.00 44.60 1.00 42.10	
	ATOM	2097	N	ASN	277 277	32.722 32.517	59.949 59.447	11.039 9.691	1.00 42.10	
	MOTA	2098 · 2099	CB	ASN ASN	277	32.517	57.927	9.685	1.00 41.63	
40	ATOM ATOM	2100	CG	ASN	277	31.654	57.283	10.659	1.00 42.64	
40	ATOM	2101		ASN	277	30.670	57.898	11.067	1.00 43.50	
•	ATOM	2102		ASN	277	31.925	56.033	11.029	1.00 42.98	
	ATOM	2103	С	ASN	277	31.178	59.865	9.104	1.00 40.57	
	MOTA	2104	0	ASN	277	30.430	59.039	8.579	1.00 39.89	
45	ATOM	2105	N	PRO	278	30.868	61.163	9.163	1.00 40.83	
	MOTA	2106	CD	PRO	278 ·	31.783	62.282	9.451	1.00 40.90	
	ATOM	2107	CA	PRO	278	29.600	61.657	8.623	1.00 40.71	
	MOTA	2108	CB	PRO	278	29.807	63.175	8.579	1.00 40.88	
0.1	ATOM	2109	CG	PRO	278	31.303	63.326	8.474	1.00 41.27	
50	MOTA	2110	C	PRO	278	29.239	61.074	7.258	1.00 40.60	
	MOTA	2111	0	PRO	278	29.949 28.131	61.284 60.338	6.270 7.216	1.00 40.71 1.00 40.34	
	MOTA	2112 2113	N CA	GLY	279 279	28.131	59.747	5.971	1.00 40.34	
	MOTA MOTA	2113	CA	GLY GLY		27.904	58.252	5.828	1.00 38.94	
55	ATOM	2114	0	GLY		27.315	57.635	4.952	1.00 39.74	
J.J.	MOTA	2115	N	GLN		28.735	57.660	6.683	1.00 38.66	
	MOTA	2117	CA	GLN		29.049	56.230	6.605	1.00 37.75	
	ATOM	2118	СВ	GLN	280	30.563	56.043	6.513	1.00 37.97	•
	MOTA	2119	CG	GLN		31.243	56.954	5.509	1.00 39.85	

,											
\bigcirc	F	igure 4					40/63	·			
	MOTA	2120		GLN	280		32.743	57.046	5.730	1.00 40.76	
	MOTA MOTA	2121 2122	OE1 NE2	GLN GLN	280 280		33.465 33.220	56.058 58.240	5.587 6.083	1.00 41.39 1.00 41.57	·
	ATOM	2123		GLN	280		28.553	55.455	7.817	1.00 41.57	
5	MOTA	2124		GLN	280		28.645	55.939	8.941	1.00 37.89	
	ATOM	2125		GLN	281		28.054	54.242	7.592	1.00 35.75	•
141	MOTA MOTA	2126 2127		GLN	281		27.572	53.401	8.681	1.00 34.04	
•	MOTA	2128		GLN GLN	281 281		28.590 29.971	53.404 52.951	9.829 9.447	1.00 33.35	
10	ATOM	2129		GLN	281		29.967	51.576	8.800	1.00 33.09 1.00 34.44	•
	ATOM	2130	OE1	GLN	281		29.917	51.451	7.572	1.00 33.95	
•	ATOM	2131		GLN	281		30.000	50.529	9.630	1.00 34.63	
8	MOTA	2132		GLN -	281		26.210	53.831	9.237	1.00 33.42	
15	MOTA MOTA	2133 2134		GLN LEU	281 282		25.895 25.395	53.530	10.390	1.00 34.87	
	ATOM	2135		LEU	282		24.098	54.511 54.992	8.436 8.913	1.00 31. 5 3 1.00 29.87	
	ATOM	2136		LEU	282	٠.	23.345	55.685	7.777	1.00 30.15	•
	MOTA	2137		LEU	282		24.030	56.871	7.085	1.00 30.41	
. 20	MOTA	2138	CD1		282		22.963	57.741	6.435	1.00 29.82	
. 20	ATOM ATOM	2139 2140	CD2	LEU .	282 282		24.815 23.191	57.699	8.097	1.00 30.66	
, .	ATOM	2141		LEU	282		22.716	53.949 54.153	9.578 10.698	1.00 28.70 1.00 28.78	
	ATOM	2142		TYR	283		22.935	52.841	8.894	1.00 27.35	
	ATOM	2143		TYR	283		22.095	51.793	9.461	1.00 26.53	*
25	ATOM ATOM	2144		TYR	283		22.233	50.511	8.633	1.00 24.41	
	ATOM	2145 2146		TYR TYR	283 283		21.420 20.021	49.338	9.143	1.00 22.90	
•	MOTA	2147		TYR	283		19.257	49.413 48.318	9.210 9.609	1.00 21.94 1.00 20.96	•
	MOTA	2148	CD2		283		22.038	48.129	9.503	1.00 21.53	
. 30	MOTA	2149		TYR	283		21.279	47.030	9.907	1.00 20.87	
	MOTA	2150		TYR	283		19.886	47.140	9.950	1.00 21.33	
	MOTA MOTA	2151 2152		TYR TYR	283 283		19.105 22.567	46.068 51.532	10.310	1.00 23.85	
	ATOM	2153		TYR	283		21.783	51.532	10.891 11.841	1.00 27.12 1.00 28.95	
35	MOTA	2154		GLU	284		23.869	51.352	11.035	1.00 26.60	
•	MOTA	2155		GLU	284		24.486	51.072	12.317	1.00 26.43	
	ATOM ATOM	2156 2157		GLU	284		25.982	50.905	12.108	1.00 27.03	
	ATOM	2158		GLU GLU	284 284		26.763 28.224	50.680 50.492	13.375 13.082	1.00 27.21	
40	ATOM	2159	OE1		284		28.897	51.506	12.734	1.00 27.57 1.00 27.02	
	MOTA	2160	OE2		284		28.670	49.319	13.185	1.00 26.30	
	ATOM	2161		GLU	284		24.249	52.133	13.381	1.00 26.81	
	ATOM ATOM	2162 2163		GLU LYS	284 285		24.197	51.826	14.582	1.00 26.06	
45	ATOM	2164		LYS	285		24.134 23.926	53.384 54.502	12.940 13.860	1.00 27.07 1.00 27.39	
,	MOTA	2165		LYS	285		24.339	55.825	13.186	1.00 27.39	
	MOTA	2166		LYS	285		25.840	56.012	13.132	1.00 24.13	
	ATOM	2167		LYS	285		26.235	57.110	12.179	1.00 23.29	
50	ATOM ATOM	2168 2169		LYS LYS	285		27.755	57.193	12.052	1.00 22.03	
50	ATOM	2169		LYS LYS	285 285		28.142 22.488	58.198 54.595	11.027 14.368	1.00 21.72	
	ATOM	2171		LYS	285		22.086	55.615	14.368	1.00 28.05 1.00 28.61	
	MOTA	2172		LEU	286		21.717	53.535	14.144	1.00 27.60	
	ATOM	2173		LEU	286		20.335	53.488	14.599	1.00 27.30	
55	ATOM ATOM	2174 2175		LEU .	286		19.399	53.157	13.435	1.00 28.57	
	ATOM	2175	CG I	LEU LEU	286 286		19.375 18.480	54.167 53.647	12.279 11.139	1.00 30.25 1.00 29.98	
	ATOM	2177	CD2 I		286		18.863	55.507	12.780	1.00 29.98	
	MOTA	2178		LEU	286		20.260	52.381	15.632	1.00 27.01	

*

								•				
											•	
\bigcirc	· F	igure 4				41/63			٠.			
$\overline{}$	ATOM	2179	0	LEU	286	19.296	52.294	16.399	1.00 27.55			
	ATOM	2180	N	ILE	287	21.306	51,554	15.645	1.00 26.00			
	MOTA	2181	CA	ILE	287	21.415	50.399	16.532	1.00 24.38			
	ATOM	2182	CB	ILE	287	21.551	49.141	15.715	1.00 23.92			
5	ATOM	2183		ILE	287	21.470	47.919	16.628	1.00 22.70			
	ATOM	2184		ILE	287	20.510	49.158	14.597	1.00 22.87			
	ATOM ATOM	2185 2186	CDI	ILE	287 287	20.676 22.639	48.042 50.444	13.607 17.433	1.00 22.79 1.00 24.65			
	ATOM	2187	o	ILE	287	22.550	50.255	18.644	1.00 23.54			
10	ATOM	2188	N	GLY	288	23.791	50.668	16.810	1.00 25.94	•		
	MOTA	2189	CA	GLY	. 288	25.060	50.714	17.519	1.00 26.86			
	MOTA	2190	C	GLY	288	25.081	51.266	18.927	1.00 27.76	•		
	MOTA	2191	0	GLY	288	24.697	52.412	19.164	1.00 28.19			
15	MOTA MOTA	2192 2193	N CA	GLY GLY	289 289	25.554 25.656	50.445 50.856	19.860 21.249	1.00 28.95			
13	ATOM	2193	C	GLY	289	26.632	52.007	21.407	1.00 30.64			
	MOTA	2195	ō	GLY	289	26.930	52.442	22.509	1.00 32.56			
	ATOM	2196	N	LYS	290	27.133	52.504	20.291	1.00 32.83			
	MOTA	2197	CA	LYS	290	28.067	53.607	20.296	1.00 33.99			
20	ATOM	2198	CB	LYS	290	29.104	53.373	19.191	1.00 35.04			
	ATOM	2199	CG	LYS	290	29.858	54.598	18.665	1.00 36.71			
	ATOM ATOM	2200 2201	CD	LYS LYS	290 290	31.032 31.936	54.996 56.011	19.551 18.839	1.00 38.80 1.00 39.77			
	ATOM	2202	NZ	LYS	290	32.864	56.707	19.787	1.00 41.04			
25	ATOM	2203	C	LYS	290	27.278	54.880	20.035	1.00 34.58			
	MOTA	2204	0	LYS	290	27.810	55.984	20.138	1.00 35.79			
	MOTA	2205	N	TYR	291	26.001	54.734	19.708	1.00 33.80			
	MOTA MOTA	2206 2207	CA CB	TYR TYR	291 291	25.196 25.010	55.907 56.046	19.406 17.892	1.00 33.61			
30	ATOM	2207	CG	TYR	291	26.256	55.752	17.084	1.00 33.22 1.00 33.77			
	MOTA	2209		TYR	291	26.659	54.435	16.838	1.00 34.23			
	MOTA	2210	CE1	TYR	291	27,789	54.155	16.065	1.00 34.17			
	ATOM	2211		TYR	291	27.021	56.783	16.542	1.00 33.61			
2.5	MOTA	2212		TYR	291	28.150	56.515	15.773	1.00 33.54			
35	ATOM ATOM	2213 2214	CZ	TYR TYR	291 291	28.528 29.620	55.200 54.928	15.532 14.729	1.00 33.76 1.00 34.36			
	ATOM	2215		TYR	291	23.836	55.874	20.070	1.00 33.11			
	ATOM	2216	ō	TYR	291	23.069	56.828	19.975	1:00 32.86			
	ATOM	2217	N	MSE	292	23.521	54.778	20.737	1.00 33.27			
40	ATOM	2218	CA	MSE	292	22.230	54.699	21.389	1.00 33.18			
	ATOM ATOM	2219 2220	CB CG	MSE MSE	292 292	22.066 20.639	53.349	22.062	1.00 33.77			
	ATOM	2221	SE	MSE	292	20.564	52.975 51.230	22.314 22.803	1.00 35.15 1.00 41.54			
	ATOM	2222	CE	MSE	292	20.269	50.385	21.171	1.00 35.91			
45	ATOM	2223	C	MSE	292	22.148	55.818	22.423	1.00 32.97			
	MOTA	2224	0	MSE	292	21.227	56.637	22.400	1.00 33.49			
	ATOM	2225	N	GLY	293	23.131	55.861	23.315	1.00 32.96			
	ATOM	2226 2227	CA C	GLY GLY	293 293	23.151 23.067	56.892	24.334	1.00 32.25			
50	ATOM ATOM	2228	0	GLY	293	22.307	58.290 59.126	23.750 24.241	1.00 32.18 1.00 33.24			
•	ATOM	2229	N	GLU	294	23.835	58.560	22.702	1.00 31.47			
	ATOM	2230	CA	GLU	294	23.809	59.883	22.096	1.00 31.38			•
	MOTA	2231	CB	GLU	294	24.875	59.971	21.008	1.00 33.29			
	MOTA	2232	CG	GLU	294	24.986	61.321	20.304	1.00 34.67			
55	ATOM ATOM	2233 2234	CD OF1	GLU	294 294	25.227 25.708	62.474 62.244	21.257 22.389	1.00 35.80 1.00 36.49			
	ATOM	2234		GLU	294 294	24.946	63.623	22.389	1.00 36.49			
	ATOM	2236	c	GLU	294	22.428	60.192	21.521	1.00 30.62			
	MOTA	2237	Ο.	GLU	294	21.919	61.305	21.664	1.00 30.94			

			•										•	
		•			•									
	T.	igure 4	٠.									•		
\bigcirc		iguie 4				4	12/63							
_	MOTA	2238	N	LEU	295		21.818	59.204	20.878	1.00 29.5				
	MOTA	2239	CA	LEU	295		20.495	59.392 58.112	20.303 19.589	1.00 29.2				
	ATOM ATOM	2240 2241	CB CG	LEU LEU	295 295		20.030 20.389	58.007	18.099	1.00 27.2				
5	ATOM	2242		LEU	295		19.979	56.668	17.522	1.00 21.8				
	ATOM	2243	CD2	LEU	295		19.677	59.136	17.352	1.00 25.7	1		•	
	MOTA	2244	С	LEU	295		19.497	59.787	21.388	1.00 29.9				
	ATOM	2245	0	LEU	295		18.587	60.573 59.250	21.156 22.585	1.00 30.19				
10	ATOM ATOM	2246 2247	N CA	VAL VAL	296 296		19.665 18.745	59.250	22.585	1.00 31.2				
10	ATOM	2248	СВ	VAL	296		18.890	58.623	24.831	1.00 32.4				
	ATOM	2249		VAL	296		17.827	58.899	25.868	1.00 32.9				
	ATOM	2250		VAL	296		18.762	57.198	24.323	1.00 33.5				
1.5	MOTA	2251	C	VAL	296		19.020	61.025	24.122	1.00 33.7				
15	MOTA ATOM	2252 2253	O N	VAL ARG	296 297		18.086 20.296	61.778 61.409	24.431 24.145	1.00 33.6				
	ATOM	2254	CA	ARG	297		20.659	62.757	24.563	1.00 35.3				
	MOTA	2255	CB	ARG	297		22.147	63.008	24.342	1.00 34.8				
	MOTA	2256	CG	ARG	297		22.940	63.279	25.609	1.00 35.2				
20	ATOM	2257	CD	ARG	297		23.791	64.525	25.454	1.00 35.9				
	ATOM ATOM	2258 2259	NE CZ	ARG ARG	297 297		24.226 [.] 24.476	64.700 65.878	24.074 23.513	1.00 37.13				
	ATOM	2260		ARG	297		24.348	66.994	24.226	1.00 38.4				
	ATOM	2261		ARG	297		24.809	65.944	22.229	1.00 36.6				
25	ATOM	2262	С	ARG	297		19.870	63.766	23.747	1.00 36.0				
	MOTA	2263	0	ARG	297		19.103	64.574	24.285	1.00 36.70				
	MOTA MOTA	2264 2265	N CA	LEU	298 298		20.063 19. 4 07	63.699 64.596	22.437 21.500	1.00 36.93 1.00 37.59				
	ATOM	2266	CB	LEU	298		19.768	64.178	20.077	1.00 37.2				
30	MOTA	2267	CG	LEU	298		21.272	64.065	19.816	1.00 36.1				
	MOTA	2268		LEU	298		21.478	63.784	18.341	1.00 36.89				
	ATOM ATOM	2269 2270	CD2	LEU LEU	298 298		21.991 17.892	65.356 64.633	20.218 21.670	1.00 35.03				
	ATOM	2271	Ö	LEU	298		17.276	65.708	21.618	1.00 38.4				
35	ATOM	2272	N	VAL	299		17.289	63.462	21.866	1.00 39.2				
	MOTA	2273	CA	VAL	299		15.839	63.389	22.054	1.00 40.0				
	MOTA	2274	CB	VAL	299 299		15.349 13.844	61.932 61.892	22.110 22.385	1.00 39.4				
	MOTA MOTA	2275 2276		VAL VAL	299		15.676	61.240	20.802	1.00 37.3				
40	MOTA	2277	C	VAL	299		15.435	64.087	23.350	1.00 40.9				
	MOTA	2278	0	LAV	299		14.321	64.612	23.461	1.00 41.6				
	ATOM	2279	N	LEU	300		16.337	64.091	24.328	1.00 41.4				
	MOTA MOTA	2280 2281	CA CB	LEU	300 300		16.043 16.973	64.737 64.224	25.600 26.713	1.00 42.3				
45	ATOM	2282	CG	LEU	300		16.943	62.766	27.206	1.00 40.3				
	MOTA	2283		LEU	300		17.677	62.711	28.545	1.00 40.1				
	ATOM	2284		LEU	300		15.517	62.251	27.380	1.00 38.7				
	MOTA	2285	C	LEU	300 300		16.204 15.304	66.251 67.020	25.444 25.806	1.00 43.4 1.00 43.8				
50	MOTA MOTA	2286 2287	N O	LEU LEU	301		17.346	66.675	24.898	1.00 43.8				
50	ATOM	2288	ĊA	LEU	301		17.603	68.100	24.707	1.00 43.8				
	MOTA	2289	CB	LEU	301		18.895	68.335	23.919	1.00 43.2				
	MOTA	2290	CG	LEU	301		20.211	67.969	24.613	1.00 43.4				
55	MOTA	2291 2292		LEU LEU	301 301		21.385 20.307	68.372 68.675	23.730 25.955	1.00 43.3° 1.00 43.7°				
55	ATOM ATOM	2292	CDZ	LEU	· 301		16.444	68.738	23.969	1.00 43.7				
	MOTA	2294	ō	LEU	301		16.068	69.875	24.254	1.00 44.3	В			
	ATOM	2295	N	ARG	302		15.863	68.007	23.025	1.00 44.4				
	MOTA	2296	CA	ARG	302		14.753	68.571	22.280	1.00 45.0	4			

Figure 4 43/63 ATOM 302 14.296 2297 CB ARG 67.660 21.148 1.00 45.49 MOTA 2298 CG ARG 302. 13.082 68.256 1.00 45.91 20.468 ATOM 2299 CD ARG 302 12.391 67.327 19.514 1.00 46.45 ATOM 2300 NE ARG 302 11.194 67.985 19.007 1.00 47.37 5 · ATOM 2301 CZ ARG 302 10.423 67.503 18.043 1.00 48.12 MOTA 2302 302 NH1 ARG 10.719 66.344 17.466 1.00 48.80 - ATOM 2303 NH2 ARG 302 9.357 68.190 17.657 1.00 47.77 ATOM 2304 ·C ARG 302 13.577 68.807 23.196 1.00 45.13 ATOM 2305 0 ARG 302 12.982 69.885 23.198 1.00 45.57 10 ATOM 2306 N LEU 303 13.228 67.787 23.966 1.00 45.14 MOTA 2307 CA LEU 303 12.113 67.918 24.883 1.00 45.18 ATOM 2308 CB LEU 303 11.952 66.624 25.695 1.00 44.02 ATOM 2309 24.846 CG LEU 303 11.495 65.427 1.00 42.43 MOTA 2310 LEU 303 CD1 11.365 64.162 25.690 1.00 41.06 15 ATOM 2311 CD2 LEU 303 10.154 65.784 24.207 1.00 41.96 ATOM 2312 C LEU 303 12.359 69.133 25.783 1.00 45.83 MOTA 2313 0 LEU 11.444 303 69.919 26.044 1.00 45.85 13.599 MOTA 2314 N VAL 304 69.302 26.232 1.00 46.44 MOTA 2315 CA VAL 304 13.943 70.440 27.085 1.00 47.76 20 ATOM 2316 304 15.443 70.426 CB VAL 27.496 1.00 47.79 MOTA 2317 CG1 VAL 304 15.866 71.815 27.996 1.00 46.89 ATOM 2318 CG2 VAL 304 15.678 69.386 28.581 1.00 47.81 MOTA 2319 C VAL 304 13.666 71.764 26.371 1.00 48.44 MOTA 2320 0 VAL 304 12.899 72.596 26.861 1.00 48.95 25 MOTA 2321 N ASP 305 14.297 71.946 25.212 1.00 48.52 MOTA 2322 CA ASP 305 14.143 73.165 24.432 1.00 48.31 MOTA 2323 CB ASP 305 14.968 73.067 23.143 1.00 49,45 ASP ATOM 2324 CG 305 16.441 72.715 23.412 1.00 51.00 MOTA 2325 OD1 ASP 305 17.056 73.323 24.317 1.00 50.99 30 MOTA 2326 OD2 ASP 305 16.994 71.834 22.715 1.00 51.84 MOTA 2327 ASP 305 Ç 12.677 73.460 24.122 1.00 47.77 MOTA (2328 0 ASP 305 12.341 74.541 23.641 1.00 48.22 MOTA 2329 N GLU 306 11.799 72.505 24.407 1.00 46.84 ATOM 2330 CA GLU 306 10.378 72.713 24.176 1.00 46.34 MOTA 2331 CB GLU 306 9.831 71.683 23.184 1.00 46.20 MOTA 2332 CG GLU 306 9.866 72.216 21.761 1.00 48.15 ATOM 2333 CD GLU 306 9.571 71.175 20.692 1.00 49.26 ATOM 8.514 2334 OE1 GLU 306 70.499 20.768 1.00 50.03 ATOM 2335 GLU OE2 306 10.398 71.049 19.759 1.00 49.62 ATOM' 2336 С GLU 306 9.635 72.661 25.493 1.00 45.99 MOTA 2337 0 GLU 306 8.459 72.331 25.550 1.00 45.90 ATOM 2338 ASN 307 10.350 N 72.997 26.560 1.00 46.00 MOTA 2339 CA ASN 307 9.787 73.029 27.902 1.00 45.60 ATOM 2340 CB ASN 307 9.033 74.342 28.094 1.00 46.42 ATOM 2341 CG ASN 307 9.971 75.531 1.00 46.98 28.224 ATOM 2342 OD1 ASN 307 10.435 75.849 29.321 1.00 47.63 ATOM 2343 307 10.273 ND2 ASN 76.181 27.102 1.00 46.93 MOTA 2344 307 8.886 C ASN 71.853 28.246 1.00 45.05 MOTA 2345 ASN 307 7.812 72.029 0 28.829 1.00 45.19 50 ATOM 2346 N LEU 308 9.336 70.650 27.900 1.00 44.24 **ATOM** 2347 CA LEU 308 8.575 69.439 28.180 1.00 43.28 MOTA 2348 CB LEU 308 8.376 68.637 26.893 1.00 43.27 MOTA 2349 LEU CG 308 7.070 68.825 26.115 1.00 44.09 ATOM 2350 CD1 LEU 308 6.765 70.294 25.935 1.00 44.22 ATOM 2351 CD2 LEU 308 7.182 68.139 24.760 1.00 43.94 ATOM 2352 С LEU 308 9.287 68.570 29.205 1.00 42.96 ATOM 2353 0 LEU 308 8.688 67.660 29.775 1.00 42.27 ATOM 2354 N LEU 309 10.560 68.868 29.448 1.00 43.49 ATOM 2355 CA LEU 309 11.368 68.077 30.371 1.00 44.85

•												
							•			*	•	
•		•							•			
		172	·			· ise						
	()	r	igure 4	*		44/63						
	<u> </u>	ATOM	2356	CB LEU	309	12.030	66.936	29.581	1.00 43.53			
		ATOM	2357	CG LEU	309	12.958	65.925	30.254	1.00 42.07			
		MOTA	2358	CD1 LEU	309	12.235	65.226	31.390	1.00 40.83			
•	• .	MOTA	2359	CD2 LEU	309	13.416	64.913	29.212	1.00 42.11			
	5	MOTA	2360	C LEU	309	12.436	68.900	31.108	1.00 46.21			
		ATOM	2361	O LEU	309	13.074	69.777	30.518	1.00 46.04			
		MOTA MOTA	2362 2363	N PHE	310 310	12.625 13.608	68.601 69.293	32.397 33.238	1.00 47.92 1.00 49.25			
		ATOM	2364	CB PHE	310	15.003	69.093	32.666	1.00 48.20			
	10	ATOM	2365	CG PHE	310	15.438	67.650	32.590	1.00 47.06			
		MOTA	2366	CD1 PHE	310	16.338	67.228	31.615	1.00 46.24			
		MOTA	2367	CD2 PHE	310	14.947	66.715	33.497	1.00 46.63			
		MOTA	2368	CE1 PHE	310	16.740	65.903	31.540	1.00 45.74		•	
		MOTA	2369	CE2 PHE	310	15.344	65.385	33.433	1.00 46.27			
	15	ATOM	2370	CZ PHE	310	16.243	64.978	32.451	1.00 45.93			
*		ATOM ATOM	2371 2372	C PHE	310 310	13.292 14.185	70.785 71.616	33.345 33.561	1.00 51.16 1.00 50.84			
		ATOM	2373	N HIS	311	12.009	71.109	33.183	1.00 53.40			
		ATOM	2374	CA HIS	311	11.529	72.482	33.262	1.00 55.80			
*	20	MOTA	2375	CB HIS	311	11.744	73.012	34.683	1.00 57.57		•	
		MOTA	2376	CG HIS	311	11.212	72.098	35.745	1.00 59.78			
		MOTA	2377	CD2 HIS	311	11.848	71.363	36.689	1.00 60.29			
		ATOM	2378	ND1 HIS		9.867	71.815	35.879	1.00 60.36			
	25	ATOM ATOM	2379 2380	CE1 HIS NE2 HIS	311 311	9.699 10.885	70.944 70.654	36.860 37.368	1.00 60.99			
	23	MOTA	2381	C HIS	311	12.214	73.384	32.236	1.00 56.24			
		ATOM	2382	O HIS	311	12.288	74.608	32.415	1.00 56.87		*	
		ATOM	2383	N GLY	312	12.705	72.772	31.159	1.00 55.96			
		MOTA	2384	CA GLY	312	13.366	73.522	30.109	1.00 55.87			
	30	ATOM	2385	C GLY	312	14.820	73.804	30.420	1.00 56.16			
		MOTA	2386	O GLY	312	15.563	74.264	29.562	1.00 56.58 1.00 56.52			
	•	ATOM ATOM	2387 2388	N GLU CA GLU	.313 313	15.235 16.612	73.519 73.765	31.646 32.048	1.00 57.69			
		ATOM	2389	CB GLU	313	16.621	74.379	33.447	1.00 59.84			
	35	ATOM	2390	CG GLU	313	15.849	75.698	33.515	1.00 63.16			
		ATOM	2391	CD. GLU	313	15.388	76.061	34.925	1.00 65.16			
		MOTA	2392	OE1 GLU	313 .		75.315	35.503	1.00 66.01			
		ATOM	2393	OE2 GLU	313		77.096	35.455	1.00 66.34			
	40	ATOM ATOM	2394 2395		313 313	17.439 17.155	72.484 71.529	32.011 32.728	1.00 57.06 1.00 57.01			
	40	ATOM	2396		314	18.463	72.472	31.169	1.00 56.56			
	•	ATOM	2397		314	19.316	71.305	31.029	1.00 56.76			
		MOTA	2398		314	19.454	70.939	29.557	1.00 56.47			
		MOTA	2399		314	20.699	71.490	31.643	1.00 56.94	,		
	45	MOTA	2400		314	21.310	72.558	31.527	1.00 57.46			
		MOTA	2401	N SER CA SER	315 315	21.183 -22.487	70.422 70.383	32.276 32.932	1.00 56.73 1.00 56.15			
		MOTA MOTA	2402 2403		315	22.666	69.029	33.624	1.00 56.44			
		ATOM	2404	OG SER	315	23.981	68.868	34.130	1.00 57.39			
	50	ATOM	2405	C SER	315	23.673	70.627	32.003	1.00 56.00			
		ATOM	2406	O SER	315	23.595	70.416	30.793	1.00 55.42			
		ATOM	2407		316	24.776	71.070	32.598	1.00 56.67			
		ATOM	2408	CA GLU	316	26.012	71.346	31.875	1.00 57.46			
	EE	ATOM	2409	CB GLU	316 316	27.111 28.458	71.754 72.050	32.860	1.00 58.71 1.00 60.34			
	55 .	ATOM ATOM	2410 2411	CD GLU	316	28.442	73.343	32.206 31.406	1.00 60.34			
		ATOM	2412		316	28.288	74.420	32.031	1.00 62.41			
		ATOM	2413		316	28.574		30.160	1.00 61.76			
		ATOM	2414		316	26.442	70.078	31.161	1.00 57.35			

		,	1	Figure 4										
	\cdot	'						45/63			,			
			MOTA	2415		GLU	316	26.770			1.00 57.68			
			ATOM	2416	N	GLN	317	26.439						
			ATOM ATOM	2417 2418	CA CB	GLN GLN	317	26.817			1.00 56.23			
·		5	ATOM	2419	CG	GLN	317 317	26.760 27.504			1.00 55.93			
		-	MOTA	2420	CD	GLN	317	27.063	67.113 66.355		1.00 55.46			
			ATOM	2421		GLN	317	27.246	65.140		1.00 55.01 1.00 54.83			
	•		MOTA	2422		GLN	317	26.468	67.074		1.00 54.68			
			ATOM	2423	C	GLN	317	25.902	67.210					
		10	MOTA	2424	0	GLN	317	26.376	66.634		1.00 56.16			
			ATOM	2425	N	LEU	318	24.599	67.476		1.00 56.41			
			ATOM	2426	CA	LEU	318	23.616	67.043		1.00 56.48			
•			MOTA MOTA	2427	CB	LEU	318	22.190	67.333		1.00 55.59			
		15	ATOM	2428 2429	CG CD1	LEU LEU	318 318	21.084	66.700		1.00 54.71			
	-	••	ATOM	2430		LEU	318	21.090 19.731	65.191		1.00 53.88			
			ATOM	2431	C	LEU	318	23.784	67.268 67.621		1.00 54.28			
			MOTA	2432	ō	LEU	318	23.692	66.893	27.029	1.00 56.99 1.00 57.21			
			MOTA	2433	N	ARG	319	24.011	68.924		1.00 57.21			
•		20	ATOM	2434	CA	ARG	319	24.177	69.530		1.00 57.68			
			MOTA	2435	CB	ARG	319	23.870	71.026		1.00 59.32			
			ATOM	2436	CG.		319	22.420	71.284	27.105	1.00 62.20			
			MOTA	2437	CD	ARG	319	22,125	72.743	27.401	1.00 64.53			
•		25	ATOM ATOM	2438 2439	NE CZ	ARG	319	20.758	72.927	27.892	1.00 66.89			
	•	~~	ATOM	2440		ARG ARG	319 319	20.297	.74.055	28.433	1.00 68.29			
			ATOM	2441		ARG	319	21.096 . 19.034	75.112 74.127	28.555	1.00 68.30	• • • • •		
			ATOM	2442	С	ARG	319	25.587	69.278	28.851 26.081	1.00 68.25 1.00 57.09			
			MOTA	2443	0	ARG	319	26.049	69.951	25.160	1.00 57.05			
	*	30	MOTA	2444	N	THR	320	26.246	68.277	26.667	1.00 56.25			
			MOTA	2445	CA	THR	320	27.612	67.888	26.318	1.00 55.15			
			ATOM	2446	CB	THR	320	28.478	67.836	27.589	1.00 54.85			
			ATOM ATOM	2447		THR	320	28.601	69.158	28.133	1.00 54.94		·	
	3	35	ATOM	2448 2449		THR THR	320 320	29.854	67.262	27.287	1.00 54.63			
	•		ATOM	2450	0	THR	320	27.689 27.476	66.524	25.613	1.00 55.04			
			ATOM	2451	N	ARG	321	28.017	65.480 66.536	26.229 24.326	1.00 55.13			
			ATOM	2452	CA	ARG	321	28.106	65.304	23.545	1.00 54.38 1.00 54.36			
			ATOM	2453	CB	ARG	321	28.841	65.586	22.236	1.00 56.05			
	4	10	ATOM	2454		ARG	321	28.153	66.651	21.402	1.00 59.03			
			ATOM	2455		ARG	321	28.943	67.013	20.156	1.00 61.60			•
			ATOM ATOM	2456 2457	NE CZ	ARG	321	28.331	68.123		1.00 63.68			
			ATOM	2458		ARG	321 321	28.909		18.406	1.00 65.43			
	4	15	ATOM	2459		ARG	321	30.119 28.280		17.997	1.00 65.83			
			MOTA	2460	С	ARG	321	28.765	64.123	17.792 24.262	1.00 65.76 1.00 52.97		-	
			ATOM	2461	0	ARG	321	29.885	64.234	24.758	1.00 52.97			
			ATOM	2462	N	GLY	322	28.056	62.996	24.316	1.00 51.39			
	_		ATOM	2463	CA	GLY	322	28.592	61.802	24.950	1.00 49.22			
	5	60	ATOM	2464	C	GLY	322	28.198	61.609	26.402	1.00 48.17			
			ATOM	2465	0	GLY	322	28.450	60.550	26.986	1.00 48.17			
			ATOM	2466	N	ALA	323	27.574	62.627	26.988	1.00 46.66			
			ATOM ATOM	2467 2468	CA CB	ALA ALA	323	27.150	62.573	28.385	1.00 44.99			
	5	55	ATOM	2469	СВ	ALA	323 323	26.462 26.224	63.861	28.761	1.00 45.87			
	-		ATOM ·	2470	ō	ALA	323	26.224	61.403 60.562	28.676 29.530	1.00 43.43			
			ATOM	2471	N	PHE	324	25.094	61.361		1.00 43.02 1.00 41.61			
			ATOM	2472	CA	PHE	324	24.147	60.282		1.00 40.44			
			ATOM	2473	CB	PHE	324	22.797	60.631		1.00 38.94			

$\overline{}$	F	igure 4						•		
)						46/63				
	ATOM	2474	CG	PHE	324	21.644	59.988	28.262	1.00 38.08	
	MOTA	2475	CD1	PHE	324	21.047	60.613	29.360	1.00 37.48	
	ATOM	2476	CD2	PHE	324	21.185	58.733	27.860	1.00 36.96	
	ATOM	2477	CE1	PHE	324	20.010	59.998	30.050	1.00 37.11	
5	MOTA	2478	CE2	PHE	324	20.146	58.105	28.542	1.00 37.79	
	ATOM	2479	CZ	PHE	324	19.555	58.739	29.643	1.00 37.73	
	ATOM	2480	C	PHE	324	24.721	59.033	27.525	1.00 40.11	
	ATOM	2481	0	PHE	324	24.785	58.937	26.289	1.00 40.76	
	MOTA	2482	N	GLU	3:25	25.129	58.072	28.350	1.00 39.06	
10	ATOM	2483	CA	GLU	325	25.740	56.851	27.844	1.00 37.85	•
	MOTA	2484	CB	GLU	325	26.846	56.418	28.781	1.00 38.17	
	MOTA	2485	CG	GLU	325	27.790	57.528	29.085	1.00 40.68	
	MOTA	2486	CD	GLU	325	28.922	57.075	29.951	1.00 42.47	
	MOTA	2487	0E1	GLU	325	28.653	56.608	31.086	1.00 44.06	
15	MOTA	2488	OE2	GLU	325	30.080	57.181	29.490	1.00 44.51	
	ATOM	2489	C	GLU	325	24.799	55.693	27.641	1.00 36.60	
	MOTA	2490	0	GLU	325	23.903	55.445	28.447	1.00 37.31	
	MOTA	2491	N	THR	326	25.019	54.968	26.554	1.00 35.30	
	MOTA	2492	CA	THR	326	24.193	53.816	26.245	1.00 33.37	
.20	ATOM	2493	CB	THR	326	24.875	52.921	25.207	1.00 31.58	
	MOTA	2494	OG1	THR	326	24.934	53.617	23.956	1.00 29.82	
	ATOM	2495	CG2	THR	326	24.113	51.619	25.041	1.00 29.94	
	MOTA	2496	С	THR	326	23.951	53.016	27.515	1.00 33.05	
	MOTA	2497	0	THR	326	22.846	52.528	27.742	1.00 33.99	
25	ATOM	2498	N	ARG	327	24.981	52.902	28.349	1.00 32.29	
	ATOM '	2499	CA	ARG	327	24.859	52.148	29.588	1.00 31.76	
	ATOM	2500	CB	ARG	327	26.146	52.245	30.417	1.00 33.30	
	MOTA	2501	CG	ARG	327	26.226	51.162	31.485	1.00 36.71	
	MOTA	2502	CD	ARG	327	27.596		32.177	1.00 38.88	
30	ATOM	2503	NE	ARG	327	27.795	52.024	33.249	1.00 40.62	
	MOTA	2504	CZ	ARG	327	28.274	53.255	33.069	1.00 41.13	
	MOTA	2505 ·			327	28.615	53.670	31.846	1.00 40.49	
	ATOM	2506	NH2		327	28.393	54.078	34.113	1.00 40.82	
25	ATOM	2507	C ·	ARG	. 327	23.681	52.691	30.387	1.00 30.62	٠.
35	ATOM	2508	0	ARG	327	22.888	51.930	30.940	1.00 29.96	
	ATOM	2509	N	PHE	328	23.559	54.014	30.425	1.00 29.60	
	ATOM	2510	CA	PHE	328	22.479	54.660	31.154	1.00 28.70	
	ATOM	2511	CB	PHE	328	22.632	56.176	31.069	1.00 28.03	
· 4 0	MOTA MOTA	2512 2513	CG CD1	PHE	328 328	23.903	56.684	31.686	1.00 27.73	
-10	ATOM	2514	CD2		328	24.337	57.975	31.439	1.00 27.37	
	ATOM	2514	CE1		328	24.678 25.526	55.857	32.505	1.00 28.92	
	ATOM	2516	CE2		328	25.871	58.437 56.305	31.992	1.00 28.75	
	ATOM	2517	CZ	PHE	328	26.298	57.599	33.069	1.00 28.74	
45	ATOM	2518	C	PHE	328	21.135	54.226	32.812	1.00 28.68	•
1.5	ATOM	2519	0	PHE	328	20.189	53.953	30.590	1.00 29.06	
	ATOM	2520	N	VAL	329	21.057	54.154	31.351 29.257	1.00 29.59	
	ATOM	2521	CA	VAL	329	19.830	53.735	28.587	1.00 28.40	
	ATOM	2522	CB	VAL	329	20.040	53.753		1.00 26.44	
50	ATOM	2523	CG1		329	18.737	53.107	27.059 26.387	1.00 25.14	
-	ATOM	2524	CG2		329	20.542	54.841		1.00 22.55	
	ATOM	2525	C	VAL	329	19.388	52.399	26.444 29.166	1.00 23.05 1.00 27.98	
	ATOM	2526	0	VAL	329	18.240	52.239			
	ATOM	2527	N	SER	330	20.308	51.442	29.576 29.219	1.00 27.88 1.00 28.76	
55	ATOM	2528	CA	SER	330	19.966	50.117	29.219	1.00 28.76	
	ATOM	2529	CB	SER	330	21.136	49.171	29.718	1.00 30.08	
	ATOM	2530	OG	SER	330	20.720	47.852	29.822	1.00 30.45	
	ATOM	2531	C	SER	330	19.534	50.107	31.172	1.00 31.40	
	ATOM	2532	ō	SER	330	18.690	49.298	31.577	1.00 31.74	

\bigcirc	Fi	gure 4				47/63			
\bigcirc									
	MOTA	2533	N	GLN	331 .	20.118	50.993	31.972	1.00 32.45
	ATOM	2534	CA	GLN	331	19.745	51.061	33.381	1.00 33.16
	ATOM	2535	CB	GLN	331	20.668	51.992	34.151	1.00 33.58
5	MOTA	2536	CG	GLN	331	22.093	51.540	34.194	1.00 35.83
3	ATOM ATOM	2537 2538	CD OE1	GLN GLN	331 331	22.947	52.534	34.919	1.00 37.72
	MOTA	2539		GLN	331	22.626 24.042	52.927 52.958	36.043 34.291	1.00 39.62
	ATOM	2540	C	GLN	331	18.327	51.591	33.482	1.00 38.98 1.00 33.78
	ATOM .	2541	0	GLN	331	17.428	50.881	33.938	1.00 34.06
10 -		2542	N	VAL	332	18.129	52.835	33.038	1.00 34.00
	ATOM	2543	CA	VAL	332	16.808	53.457	33.097	1.00 33.65
•	MOTA	2544	СВ	VAL .	332	16.760	54.791	32.282	1.00 32.19
•	ATOM	2545		VAL	332	17.279	54.584	30.905	1.00 33.04
	ATOM	2546	CG2	VAL	332	15.340	55.312		1.00 31.67
15	MOTA	2547	C	VAL	332	15.695	52.505	32.638	1.00 34.20
	MOTA	2548	0	VAL	332	14.571	52.566	33.139	1.00 34.51
	ATOM	2549	N	GLU	333	16.001	51.607	31.711	1.00 34.30
	MOTA	2550	CA	GLU	333	14.981	50.676	31.258	1.00 34.92
	ATOM	2551	CB	GLU	333	15.210	50.289	29.795	1.00 34.40
20	MOTA	2552	CG	GLU	333	14.893	51.413	28.837	1.00 33.07
•	ATOM	2553	CD	GLU.	333	14.806	50.956	27.409	1.00 31.80
	ATOM ATOM	2554 2555	OE1	GLU	333	13.983		27.114	1.00 31.65
	ATOM	2556	C	GLU GLU	333 333	15.561 ·14.949	51.504 49.438	26.581	1.00 31.72 1.00 35.76
25	ATOM	2557	0	GLU	333	14.163	48.520	32.135 31.911	1.00 35.78
23	ATOM	2558	N	SER	334	15.814	49.419	33.138	1.00 36.91
	ATOM	2559	CA	SER	334	15.876	48.307	34.071	1.00 38.13
	ATOM	2560	СВ	SER	334	17.328	47.934	34.346	1.00 39.38
	ATOM	2561	OG	SER	334	17.460	46.524	34.468	1.00 41.52
30	ATOM ·	2562	С	SER	334	15.201	48.747	35.362	1.00 37.93
	ATOM	2563	0	SER	334	15.053	47.973	36.306	1.00 38.63
	ATOM	2564	N	ASP	335	14.807	50.014	35.385	1.00 38.51
	MOTA	2565	CA	ASP	335	14.133	50.619	36.521	1.00 38.59
	ATOM	2566	СB	ASP	335	13.776	52.061	36.173	1.00 39.10
35	ATOM	2567	CG	ASP	335 .	13.346		37.373	1.00 39.89
	ATOM	2568		ASP	335	12.278	52.547	37.950	1.00 40.30
	ATOM ATOM	2569 2570	C C	ASP.	335	14.079	53.816	37.737	1.00 39.90
	ATOM	2571	0	ASP	335 335	12.876 12.241	49.809 49.249	36.840	1.00 39.11 1.00 39.03
40	ATOM	2572	N	THR	336	12.517	49.768	35.945 38.119	1.00 39.03
	ATOM	2573	CA	THR	. 336	11.372	48.999	38.605	1.00 39.94
	ATOM	2574	CB	THR	336	11.773	48.297	39.896	1.00 39.68
	ATOM	2575		THR	336	12.901	47.464	39.630	1.00 40.95
	ATOM	2576		THR	336	10.650	47.452	40.426	1.00 39.84
45	MOTA	2577	C	THR	336	10.043	49.735	38.853	1.00 40.52
	ATOM	2578	0	THR	336	8.984	49.108	38.931	1.00 40.91
	MOTA	2579	N	GLY	337	10.085	51.054	38.970	1.00 40.80
	ATOM	2580	CA	GLY	337	8.870	51.804	39.234	1.00 41.83
	ATOM	2581	С	GLY	337	9.307	52.948	40.112	1.00 42.60
50	ATOM	2582	0	GLY	337	8.990	54.105	39.865	1.00 43.33
	ATOM	2583	N	ASP	338	10.043	52.604	41.156	1.00 43.47
	ATOM	2584	CA	ASP	338	10.606	53.589	42.059	1.00 44.40
	ATOM ATOM	2585 2586	CB	ASP	338	11.354	52.868	43.175	1.00 44.83
55	ATOM	2587	CG OD1	ASP ASP	338 338	12.303 11.879	51.808 51.032	42.637	1.00 45.34 1.00 46.12
55	ATOM	2588		ASP	338	13.465	51.032	41.751 43.087	1.00 45.12
	ATOM	2589	C	ASP	338	11.597	54.296	43.087	1.00 45.59
	ATOM	2590	0	ASP	338	12.605	53.709	40.756	1.00 44.84
	ATOM	2591	N	ARG	339	11.310	55.533	40.763	1.00 44.81
									-

:															
)	F	Figure 4					48/63							
	,	ATOM	2592	CA	ARG	339		12.208	56.256	39.874	1.00	45.11			
		ATOM	2593	CB	ARG	339	•	11.702	57.687	39.654	1.00	45.72			
		ATOM	2594		ARG	339		10.466	57.799	38.783		46.11			
	-	ATOM	2595	CD	ARG	339		9.201	57.413	39.521		46.99			
	5	ATOM ATOM	2596 2597	NE CZ	ARG ARG	339		8.041 6.780	57.492	38.633		47.58	•		
		MOTA	2598	NH1		33 <u>9</u> 339		6.492	57.326 57.068	39.017 40.287		47.30 47.38			
		ATOM	2599	NH2		339		5.806	57.413	38.123		47.44		•	
		MOTA	2600	C	ARG	339		13.637	56.295	40.419		44.98			
	10	MOTA	2601	0	ARG	339		14.466	57.084	39.960		44.83	•		
		ATOM .	2602	N	LYS	340		13.922	55.441	41.394		44.75			
		ATOM	2603		LYS	340		15.238	55.394	42.001		45.05			
		ATOM ATOM	2604 2605		LYS LYS	340 340		15.341 14.358	54.179 54.250	42.917 44.081		46.19 47.87			
	15	ATOM	2606		LYS	340		14.598	53.154	45.094		47.87			
		ATOM	2607		LYS	340		13.365	52.949	45.957		50.44			
		MOTA	2608		LYS	340		13.353	51.589	46.598		51.78			
		MOTA	2609	C ·	LYS	340		16.398	55.422	41.014	1.00	44.66			
	20	MOTA	2610	0	LYS	340	•	17.186	56.372	41.026		44.90			
	20	ATOM ATOM	2611 2612	N CA	GLN GLN	341 341		16.509 17.603	54.408 54.362	40.155 39.174		43.94 42.93	• •		
		ATOM	2613		GLN	341		17.598	53.028	39.174		42.93			
		ATOM	2614		GLN	341	٠	18.035	51.860	39.289		48.03			
		ATOM	2615		GLN	341		18.758	50.801	38.482		49.69			
	25	MOTA	2616		GLN	341		19.731	51.101	37.779	1.00	50.67			
		MOTA	2617	NE2		341		18.297	49.556	38.581		50.43	•		
		ATOM	2618		GLN	341		17.616	55.497	38.146		40.93			
		ATOM ATOM	2619 2620	N O	GLN ILE	341 342		18.672 16.449	56.057 55.824	37.839 37.600		38.85 39.61			
	30	ATOM	2621		ILE	342		16.364	56.905	36.624		39.07			
		ATOM	2622		ILE	342		14.920	57.110	36.130		39.24			
•		MOTA	2623	CG2		342		14.880	58.226	35.107	1.00	39.19			
		ATOM	2624	CG1		342		14.392	55.817	35.501		39.87			
	35	ATOM ATOM	2625 2626	CD1		342		12.945	55.902 58.185	35.070		40.76			
	,,	ATOM	2627		ILE	342 342		16.832 17.704		37.301 36.795		38.43 37.48			
		ATOM	2628		TYR	343		16.240	58.466	38.456		38.93			
		MOTA	2629		TYR	343		16.580	59.647	39.236		39.71			
		ATOM	2630		TYR	343		15.813	59.656	40.567	1.00	40.97			
	40	ATOM	2631		TYR	3.43		16.173	60.835	41.448		42.53			
		ATOM ATOM	2632 2633	CD1 CE1		343 343		15.344	61.954	41.521		43.30			
		ATOM	2634	CD2		343		15.730 17.397	63.092 60.880	42.228 42.119		44.58 43.04			
		ATOM	2635	CE2		343		17.791	62.014	42.826		43.55			
	45	ATOM	2636	CZ	TYR	343		16.958	63.117	42.872		44.31			
		ATOM	2637		TYR	343		17.369	64.260	43.523		45.74			
		ATOM	2638		TYR	343		18.070	59.635	39.532		39.93			
		ATOM ATOM	2639 2640		TYR ASN	343 344		18.789 18.525	60.598 58.529	39.262		40.28			
	50	ATOM	2641		ASN	344		19.924	58.371	40.098 40.460		40.14 40.97			
		ATOM	2642		ASN	344		20.146	56.958	40.989		42.94			
		ATOM	2643	CG	ASN	344		21.287	56.880	41.977		44.68			
		ATOM	2644	OD1	ASN	344		22.448	57.137	41.628		46.05			
•		ATOM	2645	ND2		344		20.965	56.531	43.225		44.93			
	.55	MOTA	2646		ASN	344		20.869	58.649	39.292		40.46			
		ATOM	2647		ASN	344		21.946	59.208	39.483		40.33			
		ATOM ATOM	2648 2649		ILE .	345 345		20.460 21.280	58.262 58.467	38.085 36.890		40.50 39.89			
		ATOM			ILE	345		20.803	57.555	35.720		39.76			

											Ŷ.
			-								
				•	•	,	•		•		
		. 1	igure 4			! - !					•
	\bigcirc					49/63					
•		ATOM ATOM	2651 2652	CG2 ILE	345 345	21.597 20.966	57.849 56.090	34.448	1.00 38.62 1.00 38.74		
		ATOM	2653	CD1 ILE	345	20.201	55.151	35.242	1.00 38.74		
	_	MOTA	2654	C ILE	345	21.247	59.924	36.434	1.00 39.80		
	5	MOTA MOTA	2655 2656	O ILE	345 346	22.281 20.062	60.490	36.074	1.00 39.67		
		ATOM	2657	CA LEU	346	19.912	60.529 61.923	36.449 36.029	1.00 39.59 1.00 39.58		
		ATOM	2658	CB LEU	346	18.434	62.255	35.818	1.00 37.79		
	. 10	ATOM ATOM	2659 2660	CG LEU	346 346	17.809	61.528	34.625	1.00 36.58		
	10	ATOM	2661	CD2 LEU	346	16.277 18.363	61.599 62.145	34.684 33.337	1.00 35.18 1.00 35.05		
		MOTA	2662	C LEU	346	20.519	62.892	37.034	1.00 40.82		
		ATOM ATOM	2663 2664	O LEU N SER	346	21.177	63.857	36.654	1.00 41.02		
	15	ATOM	2665	CA SER	347 347	20.298 20.859	62.646 63.530	38.322 39.339	1.00 42.34 1.00 43.44		
		MOTA	2666	CB SER	347	20.491	63.042	40.745	1.00 43.90		
	•	MOTA MOTA	2667 2668	OG SER	347	20.665	61.639	40.868	1.00 45.32		
		ATOM	2669	C SER O SER	347 347	22.368 22.974	63.556 64.624	39.156 39.051	1.00 43.44 1.00 44.11		
	20	ATOM	2670	N THR	348	22.969	62.374	39.096	1.00 43.10		
		MOTA MOTA	2671 2672	CA THR	348	24.407	62.285	38.909	1.00 42.97		
		ATOM	2673	OG1 THR	348 348	24.853 24.666	60.830 60.096	38.700 39.918	1.00 42.31 1.00 42.08	•	
	• •	MOTA	2674	CG2 THR	348	26.322	60.780	38.282	1.00 40.85		
	25	ATOM ATOM	2675 2676	C THR	348	24.798	63.093	37.683	1.00 43.25		
		ATOM	2677	O THR N LEU	348 349	25.796 23.990	63.813 62.982	37.680 36.640	1.00 43.52		•
		ATOM	2678	CA LEU	349	24.271	63.697	35.412	1.00 44.17		
	30	MOTA MOTA	2679 2680	CB LEU	349	23:343	63.180	34.311	1.00 44.43		
	30	ATOM	2681	CG LEU	349 349	23.787 25.198	63.204 62.658	32.847 32.688	1.00 44.86 1.00 44.59		
		MOTA	2682	CD2 LEU	349	22.790	62.375	32.046	1.00 44.64		
		ATOM ATOM	2683 2684	C LEU	349	24.102	65.201	35.638	1.00 44.32		
	35	ATOM	2685	O LEU	349 350	24.317 23.722	66.003 65.574	34.726 36.862	1.00 45.33 1.00 43.94	٠.	
		MOTA	2686	CA GLY	350	23.559	66.981	37.210	1.00 43.15		
		ATOM ATOM	2687 2688	C GLY	350 350	22.167 22.024	67.570	37.038	1.00 42.49		•
		ATOM	2689	N LEU	351	21.143	68.752 66.758	36.703 37.288	1.00 41.70 1.00 41.97		•
	40	MOTA	2690	CA LEU	351	19.758	67.197	37.132	1.00 41.45		
		ATOM ATOM	2691 2692	CB LEU	351 351	19.194 19.875	66.676 67.115	35.812	1.00 40.99		
		MOTA	2693	CD1 LEU	351	19.516	66.144	34.522 33.416	1.00 40.66 1.00 41.63		
	4=	MOTA	2694	CD2 LEU	351	19.453	68.533	34.172	1.00 40.77		
	45	ATOM ATOM	2695 2696	C LEU	351 351	18.858 19.170	66.718 . 65.760	38.262 38.973	1.00 41.15 1.00 40.88		•
		ATOM	2697	N ARG	352	17.720	67.379	38.410	1.00 40.88		
		MOTA	2698	CA ARG	352	16.782	67.007	39.457	1.00 41.25	•	
	50	ATOM ATOM	2699 2700	CB ARG	352 352	16.614 17.929	68.173 68.581	40.431 41.070	1.00 42.65 1.00 43.68		
		MOTA	2701	CD ARG	352	18.504	67.421	41.851	1.00 45.59		
		ATOM	2702	NE ARG	352	19.960	67.478	41.917	1.00 47.73		
		ATOM ATOM	2703 2704	CZ ARG NH1 ARG	352 352	20.715 20.143	66.567 65.524	42.521 43.119	1.00 48.77 1.00 49.05		
	55	MOTA	2705	NH2 ARG	352	22.038	66.700	42.519	1.00 49.14		
		ATOM	2706	C ARG	352	15.458	66.621	38.827	1.00 39.59		
		ATOM ATOM	2707 2708	O ARG N PRO	352 353	14.512 15.378	67.399 65.388	38.793 38.324	1.00 40.34		
		ATOM	2709		353	16.325	64.285	38.555	1.00 37.28		
							•				
		•							. •	,	
•		•				•					
					•				•		

	_		igure 4										
()		.gare 4				50/63						
		MOTA	2710	CA	PRO	353	14.159	64.901	37.683	1.00 37.45			
		ATOM	2711	CB	PRO	353	14.595	63.552	37.134	1.00 37.27			
		ATOM	2712	CG	PRO	353	15.491	63.064	38.232	1.00 36.92			
	_	ATOM	2713	C	PRO	353	12.998	64.763	38.650	1.00 36.35			
	5	ATOM ATOM	2714 2715	O N	PRO SER	353 354	13.180	64.360	39.791	1.00 36.28			
		ATOM	2716	CA	SER	354	11.805 10.625	65.110 64.951	38.194 39.028	1.00 35:82		•	
		ATOM	2717	CB	SER	354	9.570	66.010	38.698	1.00 36.40 1.00 35.94	•		
		ATOM	2718	0G	SER	354	8.944	65.725	37.459	1.00 35.63			
	10	MOTA	2719	С	SER	354	10.091	63.570	38.653	1.00 36.41			
		MOTA	2720	0	SER	354	10.592	62.948	37.716	1.00 37.42			
		MOTA	2721	N	THR	355	9.087	63.091	39.375	1.00 36.02			
		MOTA	2722	CA	THR	355	8.493	61.790	39.099	1.00 35.68			
		ATOM	. 2723	CB	THR	355	7.200	61.615	39.923	1.00 36.38			
	15	ATOM	2724	0G1		355	7.525	61.645	41.316	1.00 37.75			
		ATOM ATOM	2725 2726	CG2 C		355	6.510	60.293	39.598	1.00 36.44		•	
		ATOM	2727	o	THR THR	355 355	8.161 8.319	61.633 60.548	37.609 37.029	1.00 35.80 1.00 34.73			
		ATOM	2728	N	THR	356	7.698	62.720	36.994	1.00 35.28			
	20	ATOM	2729	CA	THR	. 356	7.336	62.690	35.586	1.00 35.39			
		MOTA	2730	CB	THR	356	6.287	63.774	35.263	1.00 35.59			
		ATOM	2731	0G1	THR	356	6.651	64.990	35.925	1.00 35.39	٠.		
		ATOM	2732	CG2		356	4.892	63.331	35.719	1.00 34.33			
		ATOM	2733	C	THR	356	8.542	62.848	34.662	1.00 35.30			
	25	ATOM	2734	0	THR	356	8.560	62.285	33.559	1.00 34.91			
		ATOM ATOM	2735 2736	N CA	ASP ASP	357 357	9.537		35.089	1.00 35.07			
		ATOM	2737	CB	ASP	357 357	10.740 11.804	63.782 64.598	34.277 35.012	1.00 35.80 1.00 36.76			
		ATOM	2738	CG	ASP	357	11.451	66.077	35.116	1.00 38.19			
	30	ATOM	2739		ASP	357	11.475	66.778	34.071	1.00 37.60			
	•	ATOM	2740	QD2	ASP	357	11.158	66.538	36.249	1.00 38.76			
	• .	MOTA	2741	С	ASP	357	11.277	62.373	34.039	1.00 35.97			
		ATOM	2742	0	ASP	357	11.460	61.942	32.901	1.00 36.94			
•	25	ATOM	2743	И	CYS	358	11.498	61.649	35.131	1.00 35.67			
	35	ATOM ATOM	2744 2745	CA '	CYS CYS	358 358	12.013	60.293	35.057	1.00 35.44			
		ATOM	2746	SG	CYS	358 358	12.051 13.247	59.658 60.410	36.447 37.575	1.00 35.93 1.00 35.81			
		ATOM	2747		CYS	358	11.177	59.433	34.138	1.00 34.88			
		ATOM	2748	0	CYS	358	11.711	58.698	33.308	1.00 35.87			
	40	ATOM	2749	N	ASP	359	9.863	59.517	34.290	1.00 34.10			
		ATOM	275 0	CA	ASP	359	8.960	58.729	33.464	1.00 33.10			
		ATOM	2751	CB	ASP	359	7.519	58.964	33.910	1.00 35.03			
		ATOM	2752	CG	ASP	359	7.118		, 35.062	1.00 36.65			
	45	ATOM ATOM	2753 2754		ASP ASP	359	7.950	57.850	35.975	1.00 38.15			
	43	ATOM	2755	C	ASP	359 359	5.969 9.130	57.561 59.058	35.055 31.985	1.00 37.12 1.00 31.16			
		MOTA	2756	Ö	ASP	359	9.090	58.170	31.133	1.00 31.16			
		ATOM	2757	N	ILE	360	9.325	60.334	31.682	1.00 30.01			
		ATOM	2758	CA	ILE	360	9.524	60.741	30.300	1.00 28.61			
	50	ATOM	2759	CB	ILE	360	9.546	62.273	30.162	1.00 27.75		*	
		MOTA	2760	CG2		360	10.255	62.668	28.874	1.00 27.01			
		ATOM	2761	CG1		360	8.112	62.818	30.235	1.00 26.18			
		ATOM	2762	CD1		360	8.024	64.322	30.190	1.00 23.23			
	55	ATOM ATOM	2763 2764	С 0	ILE	360 360	10.857	60.176	29.825	1.00 29.21			
	55	ATOM	2765	N	VAL	360 361	10.919 11.923	59.480 60.466	28.805 30.569	1.00 29.88 1.00 28.39			
		ATOM	2766	CA	VAL	361	13.248	59.971	30.309	1.00 28.39			
		ATOM	2767	CB	VAL	361	14.258	60.256	31.342	1.00 27.73			
		MOTA	2768	CG1	VAL	361	15.575	59.551	31.055	1.00 27.43			

Figure 4 51/63 MOTA 2769 CG2 VAL 361 14.492 61.759 31.453 1.00 27.76 13.245 ATOM 2770 C VAL 361 58.464 29.919 1.00 27.74 ATOM 361 14.055 57.982 1.00 27.40 2771 0 VAL 29.107 ATOM 2772 И ARG 362 12.341 57.719 1.00 27.72 30.556 ATOM 2773 12.277 CA ARG 362 56.275 30.325 1.00 27.95 ATOM 2774 362 11.523 CB ARG 55.571 31.455 1.00 29.48 ATOM 2775 362 11.137 CG ARG 54.147 31.101 1.00 31.97 MOTA 2776 CD 362 10.900 1.00 33.93 ARG 53.266 32.308 MOTA 2777 NE ARG 362 10.930 51.859 31.893 1.00 37.37 ATOM 2778 CZ ARG 362 10.938 50.817 1.00 37.52 32.725 MOTA 2779 NH1 ARG 362 10.920 51.010 34.043 1.00 38.72 ATOM 2780 NH2 ARG 362 10.960 49.582 32.230 1.00 36.06 MOTA 2781 C ARG 362 11.614 55.959 28.994 1.00 27.88 MOTA 2782 0 ARG 362 12.016 55.032 28.289 1.00 29.02 ATOM 2783 10.586 N ARG 363 56.728 28.660 1.00 27.31 MOTA 2784 363 9.866 ÇA ARG 56.564 27.400 1.00 25.77 ATOM 2785 ÇВ ARG 363 8.641 57.486 27.374 1.00 26.51 ATOM 2786 CG ARG 363 7.530 57.084 28.318 1.00 26.30 MOTA 2787 CD ARG 363 6.730 55.929 27.739 1.00 28.36 20 MOTA 2788 NE ARG 363 6.259 56.216 26.380 1.00 30.91 MOTA 2789 CZ ARG 363 6.872 55.826 25.260 1.00 31.55 MOTA 2790 ARG 363 7.992 55.112 NH1 25.315 1.00 33.18 **ATOM** 2791 363 6.370 56.158 NH2 ARG 24.077 1.00 32.30 MOTA 2792 10.817 56.949 C ARG 363 1.00 24.71 26.272 25 ATOM 2793 363 10.748 56.392 1.00 24.40 0 ARG 25.175 ATOM 2794 N ALA 364 11.706 57.905 26.540 1.00 23.90 ATOM 2795 1.00 24.48 CA ALA 364 12.653 58.339 25.507 ATOM 2796 CB ALA 364 13.463 59.545 25.969 1.00 23.15 MOTA 2797 C ALA 364 13.571 57.176 25.226 1.00 25.01 30 ATOM 2798 0 ALA 364 13.854 56.872 24.069 1.00 26.22 MOTA 2799 N CYS 365 14.023 56.518 26.290 1.00 25.03 MOTA 14.902 2800 CA CYS 365 55.370 26.157 1.00 24.77 ATOM 2801 CB CYS 365 15.450 54.970 27.528 1.00 23.03 MOTA 2802 SG CYS 365 16.728 56.114 28.173 1.00 21.60 35 ATOM 2803 С CYS 365 14.140 54.206 25.514 1.00 26.44 1.00 27.49 MOTA 2804 0 CYS 365 14.661 53.535 24.617 MOTA 2805 N GLU 366 12.906 53.956 25.944 1.00 26.87 MOTA 2806 CA GLU 366 12.145 52.859 .25.342 1.00 27.98 MOTA 2807 GLU 366 10.757 1.00 28.74 CB 52.743 25.988 10.785 40 MOTA 2808 CG GLU 366 52.431 27.490 1.00 30.75 MOTA 2809 CD GLU 366 9.427 51.981 28.041 1.00 32.09 MOTA 2810 OE1 GLU 366 8.444 52.757 27.970 1.00 32.39 MOTA 2811 OE2 GLU 366 9.342 50.841 28.547 1.00 33.30 ATOM 2812 C GLU 366 12.005 53.056 23.815 1.00 28.15 45 ATOM 2813 366 12.117 52.104 0 GLU 23.029 1.00 27.63 ATOM 2814 N SER 367 11.776 54.304 23.407 1.00 28.42 ATOM 2815 11.612 CA SER 367 54.650 21.993 1.00 27.23 MOTA 2816 367 11.368 CB SER 56.156 21.833 1.00 27.45 2817 MOTA OG SER 367 10.161 56.552 22.447 1.00 27.44 ATOM 2818 С SER 367 12.824 54.276 21.165 1.00 26.52 ATOM 2819 367 12.724 53.567 0 SER 20.162 1.00 27.99 ATOM 2820 N VAL 368 13.977 54.773 1.00 24.30 21.581 MOTA 2821 CA VAL 368 15.194 54.499 20.849 1.00 22.45 ATOM 2822 CB VAL 368 16.324 55.395 21.375 1.00 20.96 ATOM 2823 CG1 VAL 368 17.623 55.075 20.682 1.00 18.44 MOTA 2824 CG2 VAL 368 15.928 56.843 21.190 1.00 18.99 MOTA 2825 С 368 VAL 15.605 53.019 20.888 1.00 23.13 ATOM 2826 368 1.00 23.88 0 VAL 15.850 52.420 19.832 ATOM 2827 N SER 369 15.660 52.405 22.071 1.00 22.54

	\bigcirc	F	igure 4					52/63						
	\bigcirc	ATOM	2828	CA	SER	369		16.071	51.003	22.106	1.00 21.93			
•		ATOM	2829	CB	SER	369		16.248	50.476	23.542	1.00 23.39			
		MOTA	2830	OG	SER	369		15.011	50.251	24.197	1.00 25.91			
		ATOM	2831	C	SER	369		15.109	50.112	21.348	1.00 20.54			
	5	ATOM	2832	0	SER	369		15.526	49.063	20.850	1.00 20.31			
		ATOM	2833	N	THR	370		13.832	50.499	21.259	1.00 18.40		•	
		ATOM	2834	CA	THR	370		12.878	49.682	20.496	1.00 17.32			
		MOTA	2835	CB	THR	370		11.400	49.976	20.859	1.00 16.46			
	10	ATOM	2836		THR	370		11.053	49.298	22.073	1.00 15.81			
	10	ATOM	2837	CG2		370		10.473	49.487	19.774	1.00 14.39	•		
		ATOM	2838	C	THR	. 370		13.076	49.936	19.001	1.00 17.03			
		MOTA MOTA	2839 2840	O N	THR	370		12.977	49.008	18.186	1.00 17.38			
		ATOM	2841	CA	ARG ARG	371 371		13.358 13.562	51.177 51.423	18.617	1.00 16.71			
	15	ATOM	2842	CB	ARG	371		13.810	52.905	17.201	1.00 16.54			
		MOTA	2843	CG	ARG	371		14.013	53.123	16.882 15.374	1.00 17.42 1.00 17.76			
		MOTA	2844	CD	ARG	371		14.283	54.559	14.943	1.00 17.78			
		ATOM	2845	NE	ARG	371		15.567	55.076	15.412	1.00 17.40			
		ATOM	2846	CZ	ARG	371		16.159	56.154	14.896	1.00 18.99			
	20	ATOM	2847			371		15.583	56.810	13.892	1.00 17.43			
		ATOM	2848	NH2	ARG	371		17.303	56.605	15.406	1.00 19.19			
		ATOM	2849	С	ARG	371		14.763	50.607	16.759	1.00 15.91			
		MOTA	2850	0	ARG	371		14.689	49.929	15.748	1.00 17.14		•	
		ATOM	2851	N	ALA	372		15.856	50.644	17.519	1.00 15.40	•		
	25	ATOM	2852		ALA	372		17.061	49.883	17.148	1.00 16.23			
		MOTA	2853	CB	ALA	372		18.152	50.046	18.197	1.00 15.66			
		ATOM ATOM	2854	С	ALA	372		16.775	48.407	16.957	1.00 16.83			
		ATOM	2855 2856	N O	ALA ALA	372 373		17.125	47.838	15.923	1.00 18.06			
	30	ATOM	2857		ALA	373		16.149 15.817	47.790	17.955	1.00 16.86			
		ATOM	2858		ALA	373		15.817	46.367 45.976	17.912 19.156	1.00 17.10 1.00 16.66			
		ATOM	2859	C	ALA	373		15.024	46.018	16.665	1.00 18.79			
· ;		ATOM	2860	Ō	ALA	373		15.301	45.004	16.018	1.00 20.02			
•		ATOM	2861		HIS	374		14.037	46.841	16.316	1.00 19.22			
	35	MOTA	2862		HIS	374	•	13.243	46.560	15.122	1.00 20.89			
		MOTA	2863		HIS	374		12.025	47.489	15.052	1.00 20.98			
		MOTA	2864	CG	HIS	374		10.948	47.131	16.029	1.00 19.79			
		MOTA	2865	CD2		374		10.813	46.065	16.855	1.00 19.53			
	. 40	ATOM	2866	ND1		374		9.833	47.914	16.229	1.00 19.92			•
	40	ATOM	2867	CE1		374		9.057	47.347	17.137	1.00 18.78			
		MOTA MOTA	2868 2869	NE2 C	HIS	374		9.629	46.223	17.532	1.00 18.61			
		ATOM	2870		HIS	374 374		14.075 14.136	46.696 45.789	13.866	1.00 21.57			
		ATOM	2871		MSE	375		14.722	47.835	13.058 13.698	1.00 21.42			
	45	ATOM	2872		MSE	375		15.561	48.027	12.528	1.00 24.00 1.00 26.05			
•		ATOM	2873		MSE	375		16.390	49.311	12.666	1.00 28.31			
		ATOM	2874		MSE	375		15.671	50.558	12.197	1.00 31.46			
		ATOM	2875		MSE	375		15.246	50.448	10.400	1.00 41.26			
		MOTA	2876	CE	MSE	375		16.340	51.745	9.680	1.00 36.51			
	. 50	ATOM	2877	C	MSE	375		16.476	46.810	12.390	1.00 25.84	•		
		ATOM	2878		MSE	375		16.501	46.159	11.351	1.00 26.84			
		ATOM	2879		CYS	376		17.200	46.489	13.455	1.00 25.61			
		ATOM	2880		CYS	376		18.107	45.349	13.436	1.00 25.11			
		ATOM	2881		CYS	376		18.693	45.117	14.831	1.00 26.04			
	55	MOTA	2882		CYS	376		20.038	43.879	14.876	1.00 27.98			
		MOTA	2883		CYS	376		17.445	44.058	12.931	1.00 24.01			
		MOTA	2884		CYS	376		18.015	43.369	12.078	1.00 24.35			
		ATOM ATOM	2885 2886		SER SER	377 377		16.251 15.519		13.443	1.00 22.14			
•		MION	2000	CA	JBK	3//		13.319	42.531	13.038	1.00 20.58			
													-	•

Figure 4 53/63 ATOM 2887 CB SER 377 14.203 42.399 13.811 1.00 20.36 ATÓM 2888 OG SER 377 13.233 43.325 13.338 1.00 20.95 ATOM 2889 С SER 377 15.210 42.535 11.542 1.00 20.00 MOTA 2890 0 SER 377 15.154 41.484 10.900 1.00 19.23 14.995 ATOM 2891 N ALA 378 43.715 10.980 1.00 19.64 ATOM 2892 CA ALA 378 14.723 43.787 9.549 1.00 19.32 ATOM 2893 CB ALA 378 14.521 45.243 9.119 1.00 18.02 MOTA 2894 C ALA 378 15.958 43:186 8.874 1.00 19.40 MOTA 2895 0 ALA 378 15.860 42.230 8.093 1.00 18.55 10 ATOM 2896 N GLY 379 17.123 43.740 9.222 1.00 20.18 MOTA 2897 CA GLY 379 18.381 43.271 8.669 1.00 20.06 MOTA 2898 C GLY 379 18.547 41.762 8.734 1.00 19.52 MOTA 2899 0 GLY 379 18.754 41.113 7.704 1.00 20.07 ATOM 2900 N LEU 380 18.442 41.201 9.936 1.00 18.61 ATOM 2901 LEU CA 380 18.596 39.763 10.110 1.00 18.74 ATOM 2902 CB LEU 380 18.489 39.371 11.579 1.00 18.49 ATOM 2903 CG LEU 18.774 380 37.881 11.816 1.00 17.82 **ATOM** 2904 37.586 CD1 LEU 380 20.215 11.383 1.00 16.94 ATOM 2905 CD2 LEU 18.557 380 37.512 13.285 1.00 16.34 ATOM 2906 C LEU 380 17.580 .38.938 9.341 1.00 19.56 MOTA 2907 0 LEU 380 17.895 37.833 8.892 1.00 20.67 ATOM 2908 N ALA 381 16.354 39.447 9.211 1.00 19.83 ATOM 2909 CA ALA 381 15.311 38.713 8.496 1.00 20.17 ATOM 2910 ÇВ ALA 381 13.961 39.327 8.759 1.00 19.87 25 ATOM 2911 ALA С 381 15.638 38.746 7.009 1.00 21.06 ATOM 2912 0 ALA 381 15.421 37.773 6.269 1.00 21.05 MOTA 2913 N GLY 382 16.174 39.874 6.567 1.00 21.33 MOTA 2914 CA GLY 382 16.561 39.965 5.175 1.00 22.63 ATOM 2915 С GLY 382 17.670 38.954 4.903 1.00 23.10 ATOM 2916 0 GLY 382 17.708 38.319 3.832 1.00 23.74 MOTA 2917 N VAL 383 18.579 38.778 5.859 1.00 21.83 ATOM 2918 CA VAL 383 19.642 37.828 5.615 1.00 22.47 ATOM 2919 CB VAL 383 20.786 37.967 6.643 1.00 22.80 MOTA 2920 CG1 VAL 383 21.737 36.777 6.525 1.00 21.04 ATOM 21.562 2921 CG2 VAL 383 39.298 6.396 1.00 21.85 ATOM 2922 C VAL 383 19.075 36.423 5.639 1.00 22.92 MOTA 2923 0 VAL 383 19.199 35.681 4.675 1.00 23.65 ATOM 2924 N ILE 384 18.414 36.061 6.724 1.00 23.52 ATOM 2925 CA 384 ILE 17.853 34.721 6.835 1.00 24.64 ATOM 2926 CB ILE 384 17.124 34.551 8.179 1.00 24.17 ATOM 2927 CG2 ILE 384 16.533 33.143 8.283 1.00 22.50 MOTA 2928 CG1 ILE 384 18.112 34.810 9.318 1.00 23.69 MOTA 2929 CD1 ILE 384 17.476 .34.861 10.661 1.00 24.39 ATOM 2930 C ILE 384 16.910 34.324 5.691 1.00 26.04 ATOM 2931 0 ILE 384 17.029 33.233 1.00 26.98 5.144 ATOM 2932 N ASN 385 15.974 35.182 5.310 1.00 26.88 ATOM 2933 CA ASN 385 15.097 34.785 4.218 1.00 27.99 **ATOM** 2934 CB ASN 385 13.984 35.819 3.998 1.00 25.92 ATOM 2935 ASN CG 385 13.038 35.918 5.174 1.00 23.68 2936 ATOM OD1 ASN 385 12.721 34.921 5.820 1.00 21.60 ATOM 2937 ND2 ASN 385 37.128 12.567 5.448 1.00 23.03 MOTA 2938 С ASN 385 15.888 34.579 2.915 1.00 29.62 ATOM 2939 0 ASN 385 15.610 33.647 2.143 1.00 29.62 ATOM 2940 N ARG 386 16.869 35.440 2.660 1.00 31.30 ATOM 2941 CA ARG 386 17.660 35.301 1.442 1.00 33.07 MOTA 2942 CB ARG 386 18.840 36.261 1.446 1.00 32.62 MOTA 2943 CG ARG 386 19.697 36.147 0.214 1.00 33.28 MOTA 2944 CD ARG 386 20.908 37.059 0.284 1.00 34.52 ATOM 2945 NE ARG 386 21.923 36.698 -0.704 1.00 35.29

\bigcirc		Figure 4					5.4160			
							54/63			
	ATOM	2946	CZ	ARG	386		21.812	36.910	-2.014	1.00 36.32
	ATOM	2947		ARG	386		20.729	37.492	-2.518	1.00 35.95
	ATOM	2948		ARG	386		22.782	36.525	-2.832	1.00 37.07
5	MOTA	2949	C	ARG	386		18.178	33.875	1.362	1.00 34.69
3	ATOM	2950	0	ARG	386		18.077	33.232	0.320	1.00 35.70
	ATOM	2951	N	MSE	387		18.710	33.383	2.480	1.00 35.94
	ATOM ATOM	2952	CA	MSE	387		19.250	32.036	2.560	1.00 37.39
	ATOM	2953	CB	MSE	387		19.903	31.828	3.927	1.00 39.78
· 10	ATOM	2954 2955	CG	MSE	387		21.099	32.754	4.186	1.00 42.37
10	ATOM	2956	SE CE	MSE	387		21.873	32.552	5.859	1.00 49.18
	ATOM	2957	C	MSE MSE	387 387		21.738	30.694	6.097	1.00 44.67
	ATOM	2958	0	MSE	387 387		18.179	30.976	2.311	1.00 38.50
	MOTA	2959	Ŋ	ARG			18.463	29.927	1.721	1.00 37.80
15	ATOM	2960	CA	ARG	388		16.954 15.808	31.255	2.769	1.00 40.15
	ATOM	2961	CB	ARG	388		14.554	30.352 30.941	2.586	1.00 41.28
	ATOM	2962	CG	ARG.	388		13.268	30.115	3.245	1.00 42.50
	ATOM	2963	CD	ARG	388		12.266	30.443	3.069	1.00 42.73 1.00 43.15
	ATOM	2964	NE	ARG	388		10.965	29.787	4.178 4.012	
20	MOTA	2965	CZ	ARG	388		10.049	30.134	3.104	1.00 44.47 1.00 44.46
	MOTA	2966		ARG	.388		10.283	31.139	2.269	1.00 44.46
	MOTA	2967		ARG			8.895	29.478	3.033	1.00 44.11
	ATOM	2968	С	ARG	388		15.579	30.210	1.094	1.00 41.39
	MOTA	2969	· O	ARG	388	,	15.516	29.104	0.554	1.00 40.76
25	MOTA	2970	N	GLU	389		15.460	31.355	0.439	1.00 41.88
	MOTA	2971	CA	GLU	389		15.275	31.405	-0.997	1.00 43.37
	MOTA	2972	CB	GLU	389		15.211	32.867	-1.448	1.00 45.21
	ATOM	2973	CG	GLU	389		15.227	33.079	-2.957	1.00 48.22
20	ATOM	2974	CD	GLU	389		13.894		-3.632	1.00 50.35
30	ATOM	2975	OE1		389		13.850	32.799	-4.891	1.00 51.00
•	ATOM ATOM	2976	OE2		389		12.900	32.464	-2.912	1.00 50.86
•	ATOM	2977 2978	C 0	GLU	389		16.476	30.713	-1.635	1.00 43.77
	ATOM	2979	N	GLU SER	389 390		16.325	29.726	-2.355	1.00 43.53
35	ATOM	2980	CA	SER	390		17.671 18.925	31.227	-1.335	1.00 43.84
	ATOM	2981	СВ	SER	390		20.112	30.697 31.549	-1.878	1.00 43.61
	ATOM	2982	OG	SER	390		20.229	32.703	-1.425 -2.241	1.00 43.41 1.00 43.45
	ATOM	2983	C	SER	390		19.243	29.234	-1.607	1.00 43.45
	MOTA	2984	0	SER	390		20.126	28.671	-2.251	1.00 44.11
40	MOTA	2985	N	ARG	391		18.555	28.614	-0.660	1.00 43.22
	ATOM	2986	CA	ARG	391		18.815	27.213	-0.396	1.00 43.67
	ATOM	2987	CB	ARG	391		19.174	26.994	1.078	1.00 42.72
	ATOM	2988	CG	ARG	391		20.440	27.699	1.512	1.00 41.51
4 50	ATOM	2989	CD	ARG	391		20.907	27.245	2.892	1.00 39.51
45	ATOM	2990	NE	ARG	391		22.183	27.864	3.231	1.00 37.99
	ATOM	2991		ARG	391		22.940	27.512	4.266	1.00 37.81
	MOTA	2992	NH1		391		22.545	26.540	5.070	1.00 36.05
	ATOM ATOM	2993 2994	NH2		391		24.105	28.121	4.482	1.00 37.12
50	ATOM	2995		ARG	391		17.578	26.404	-0.756	1.00 44.95
30	ATOM	2996		ARG SER	391 392		17.458	25.241	-0.372	1.00 45.05
	ATOM	2997		SER	392		16.666	27.023	-1.502	1.00 46.71
	ATOM	2998		SER	392		15.420 15.631	26.367 25.468	-1.895 -3.121	1.00 48.25
	ATOM	2999		SER	392		15.610	26.216	-3.121 -4.326	1.00 48.10 1.00 48.60
55	ATOM	3000		SER	392		14.880	25.536	-0.737	1.00 48.60
	ATOM	3001		SER	392		14.601	24.344	-0.882	1.00 49.37
	ATOM	3002		GLU	393		14.749	26.175	0.420	1.00 49.57
	ATOM	3003		GLU	393		14.237	25.510	1.617	1.00 53.54
	ATOM	3004	CB	GLU	393		15.085	25.897	2.842	1.00 54.33

												(
														•	
		1	Figure 4				•								
	\cup					5:	5/63							•	
		MOTA	3005	CG GLU	3.93	1	6.586	25.655	2.701	1.00	54.92				
		MOTA	3006	CD GLU	393	1	7.057	24.420	3.450	1.00	55.87				
•		MOTA	3007	OE1 GLU	393	1	6.845	24.347	4.683		55.29				
		MOTA	3008	OE2 GLU	393		7.646	23.523	2.806		56.69				
	5	MOTA	3009	C GLU	393	1	2.793	25.961	1.838		54.20				
		MOTA	3010	O .GTA	393		2.482	27.151	1.693		53.70			:	
		MOTA	3011	N ASP	394	1	1.907	25.026	2.173		55.42				
		ATOM	3012	CA ASP	394	1	0.519	25.404	2.419		56.88				
		MOTA	3013	CB ASP	394		9.585	24.194	2.400		58.69				
	10	ATOM	.3014	CG ASP	394	1	8.111	24.602	2.415		61.23				
		ATOM	3015	OD1 ASP	394	•	7.691	25.298	3.376		62.29				
		MOTA	3016	OD2 ASP	394		7.374	24.237	1.466		62.03				
		ATOM	3017	C ASP	394	10	0.489	26.041	3.795		56.57				
		MOTA	3018	O ASP	394	1	0.023	27.164	3.959	1.00	56.22				
	- 15	MOTA	3019	N VAL	395	10	0.994	25.298	4.773		56.79	•			
		MOTA	3020	CA VAL	395	1.	1.086	25.756	6.153		57.23				
		MOTA	3021	CB VAL	395	10	0.166	24.949	7.093	1.00	57.72				
		ATOM	3022	CG1 VAL	395	10	0.444	25.320	8.548	1.00	57.64				
		ATOM	3023	CG2 VAL	395		8.708	25.221	6.749	1.00	58.46		•		
	20	ATOM	3024	C VAL	395		2.534	25.538	6.575	1.00	57.01				
		ATOM	3025	O. VAL	395		2.968	24.407	6.793	1.00	56.90	•			
		ATOM	3026	N MSE	396		3.280	26.626	6.690		56.80				
		ATOM	3027	CA MSE	396		4.682	26.536	7.058		56.12				
		ATOM	3028	CB MSE	396		5.463	27.645	6.375		57.66				
	25	ATOM	3029	CG MSE	396		6.932	27.623	6.690		60.51				
		MOTA	3030	SE MSE	396		7.716	29.077	6.002		65.26				
		MOTA	3031	CE MSE	396		7.988	28.564	4.293	1.00					
		ATOM	3032	C MSE	396		1.964	26.600	8.545	1.00					
	30	MOTA MOTA	3033	O MSE	396		4.487	27.491	9.245	1.00					
	30	ATOM	3034	N ARG	397		5.740	25.637	9.025	1.00					
		MOTA	3035 3036	CA ARG	397		5.134	25.613	10.426	1.00					
		ATOM	3037	CB ARG	397		5.226	24.181	10.951	1.00					
		ATOM	3038	CD ARG	397 397		1.888	23.520	11.244	1.00					
	35	ATOM	3039	NE ARG	397 397		5.132	22.079	11.671	1.00					
		ATOM	3040	CZ ARG	3 <i>97</i> 397		3.985 1.056	21.448 20.294	12.326	1.00					
		MOTA	3041	NH1 ARG	397		5.215	19.651	12.990	1.00					
•		ATOM	3042	NH2 ARG	397		2.978	19.793	13.078 13.583	1.00					
		ATOM	3043	C ARG	397		7.509	26.252	10.397	1.00					
	40	ATOM	3044	O ARG	397		3.273	26.029	9.466	1.00					
		MOTA	3045	N ILE	398		7.825	27.064	11.395	1.00					
		MOTA	3046	CA ILE	398		1.120	27.721	11.396	1.00					
		MOTA	3047	CB ILE	398		2.202	28.791	10.293	1.00					
		MOTA	3048	CG2 ILE	398		3.161	29.864	10.532	1.00					
	45	ATOM	3049	CG1 ILE	398		.594	29.417	10.279	1.00					
		MOTA	3050	CD1 ILE	398		768	30.466	9.206	1.00					
	•	ATOM	3051	C ILE	398		.441	28.381	12.717	1.00					
		ATOM	3052	O ILE	398		3.557	28.890	13.404	1.00					
		ATOM	3053	N THR	399		.722	28.360	13.060	1.00					
	50	ATOM '	3054	CA THR	399		.185	28.954	14.290	1.00					
		ATOM	3055	CB THR	399		.052	27.988	15.079	1.00					
		ATOM	3056	OG1 THR	399		280	26.832	15.425	1.00					
		ATOM	3057	CG2 THR	399		.570	28.666	16.345	1.00				•	
		ATOM	3058	C THR	399		.001	30.197	13.994	1.00					
	55	MOTA	3059	O THR	399		.736	30.254	13.005	1.00					
	-	ATOM	3060	N VAL	400	21	.858	31.184	14.871	1.00					
		ATOM	3061	CA VAL	400		.539	32.457	14.759	1.00					
		MOTA	3062	CB VAL	400		.514	33.593	14.592	1.00					
		ATOM	3063	CG1 VAL	400	22	.211	34.934	14.415	1.00 3	31.76				

Figure 4 56/63 ATOM 3064 CG2 VAL 400 20.628 33.298 13.405 1.00 31.47 ATOM 3065 С VAL 400 23.336 32.685 16.039 1.00 30.19 ATOM 3066 0 VAL 400 22.779 32.640 17.144 1.00 30.96 ATOM 3067 N GLY 401 15.888 24.641 32.905 1.00 28.35 ATOM 3068 CA GLY 401 25.482 33.150 17.041 1.00 24.47 MOTA 3069 C GLY 401 25.487 34.641 17.235 1.00 23.04 ATOM 3070 0 GLY 401 25.595 35.388 16.260 1.00 20.38 MOTA 3071 Ŋ VAL 402 25.367 35.086 18.482 1.00 23.36 MOTA 3072 CA VAL 402 25.338 36.514 18.751 1.00 23.38 10 MOTA 3073 CB VAL 402 23.927 36.960 19.124 1.00 22.79 ATOM 3074 CG1 18.909 VAL 402 23.790 38.458 1.00 22.85 ATOM 3075 CG2 VAL 402 22.895 36.176 18.320 1.00 22.42 ATOM 3076 С VAL 402 26.252 36.899 19.893 1.00 24.25 MOTA 3077 0 VAL 26.484 402 36.098 20.794 1.00 25.20 **ATOM** 3078 N ASP 26.770 403 38.124 19.848 1.00 24.83 MOTA 3079 CA ASP 403 27.637 38.649 20.894 1.00 27.11 29.078 ATOM 3080 CB ASP 403· 38.212 20.691 1.00 30.98 ATOM 3081 CG ASP 403 30.003 38.739 21.787 1.00 34.48 ATOM 3082 OD1 ASP 403 29.887 39.938 22.122 1.00 36.02 20 ATOM 30B3 OD2 ASP 403 30.842 37.960 22.311 1.00 36.05 ATOM 3084 **ASP** 403 С 27.562 40.154 20.763 1.00 27.24 MOTA 3085 0 ASP 403 27.550 40.667 19.645 1.00 29.15 MOTA 3086 N GLY 404 27.519 40.863 21.888 1.00 26.60 ATOM 3087 CA GLY 404 27.410 42.316 21.863 1.00 26.50 25 MOTA 3088 C GLY 404 26.750 42.829 23.137 1.00 27.10 ATOM 3089 o GLY 404 25.810 42.193 23.665 1.00 26.90 MOTA 3090 Ν SER 405 27.209 43.972 23.644 1.00 26.72 ATOM 3091 CA SER 405 26.638 44.496 24.887 1.00 27.96 ATOM . 3092 CB SER 405 27.409 45.722 25.371 1.00 28.04 30 MOTA :3093 OG SER 405 27.164 46.828 24.521 1.00 30.53 ATOM 3094 С SER 405 25.168 44.857 24.738 1.00 28.25 ATOM 3095 0 SER 405 24.341 44.473 25.573 1.00 27.96 MOTA 3096 VAL 406 24.844 N 45.591 23.675 1.00 27.79 MOTA 3097 CA VAL 406 23.465 45.992 23.445 1.00 28.13 35 ATOM 3098 CB VAL 406 23.281 46.667 22.074 1.00 28.02 ATOM 3099 CG1 VAL 406 21.814 47.063 21.908 1.00 27.91 ATOM CG2 VAL 3100 406 24.197 47.877 21.940 1.00 26.07 ATOM 3101 VAL C 406 22.535 44.789 23.488 1.00 28.35 ATOM 3102 0 VAL 406 21.484 44.826 24.120 1.00 28.48 40 ATOM 3103 22.934 N TYR 407 43.718 22.811 1.00 28.72 MOTA 3104 CA TYR 407 22.130 42.493 22.736 1.00 28.45 MOTA 3105 CB TYR 407 22.613 41.643 21.558 1.00 26.86 MOTA 3106 CG TYR 407 21.831 40.373 21.341 1.00 25.29 ATOM 3107 CD1 TYR 407 20.700 40.358 20.535 1.00 25.44 MOTA 3108 CE1 TYR 407 19.964 39.189 20.346 1.00 25.93 ATOM 3109 CD2 TYR 407 22.213 39.192 21.955 1.00 24.93 MOTA 3110 CE2 TYR 21.488 407 38.021 21.780 1.00 25.18 MOTA 3111 czTYR 407 20.362 38.024 20.974 1.00 26.03 MOTA 3112 OH TYR 407 19.626 36.868 20.822 1.00 25.67 3113 ATOM С TYR 407 22.175 41.651 24.014 1.00 28.83 MOTA 3114 0 TYR 407 21.202 40.988 24.369 1.00 28.62 MOTA 3115 N LYS 408 23.306 41.674 24.705 1.00 29.64 MOTA 3116 CA LYS 408 23.440 40.881 25.916 1.00 30.07 MOTA 3117 CB LYS 408 24.904 40.477 26.118 1.00 30.08 ATOM 3118 CG LYS 408 25.442 39.556 25.030 1.00 30.61 ATOM 3119 CD LYS 408 26.597 38.698 25.529 1.00 30.05 ATOM 3120 CE LYS 408 26.799 37.515 24.601 1.00 30.22 ATOM 3121 NZ LYS 408 27.828 36.573 25.097 1.00 30.20 MOTA 3122 C LYS 408 22.940 41.551 27.185 1.00 30.82

						•				
				•						
	\bigcirc		Figure 4			57160				
	\cup	ATOM	3123	O LYS	408	57/63 22.327	40.901	28.038	1.00 31.98	•
		ATOM	3124	N LEU	409	23.176	42.853	27.296	1.00 30.97	
		ATOM	3125	CA LEU	409	22.823	43.598	28.501	1.00 31.11	
		ATOM	3126	CB LEU	409	24.006	44.482	28.875	1.00 30.54	
	5	MOTA	3127	CG LEU	409	25.305	43.700	28.962	1.00 29.31	
		ATOM ATOM	3128 3129	CD1 LEU CD2 LEU	409 409	26.372 25.067	44.591 42.423	29.597 29.785	1.00 29.41 1.00 28.16	
		ATOM	3130	C LEU	409	21.548	44.441	28.611	1.00 20.10	
		ATOM	3131	O LEU	409	20.978	44.542	29.708	1.00 31.86	
	10	ATOM	3132	N HIS	410	21.122	45.077	27.519	1.00.31.34	•
		ATOM	3133	CA HIS	410	19.929	45.912	27.572	1.00 30.80	
		MOTA MOTA	3134 3135	CB HIS	410 410	19.732 18.703	46.635 47.717	26.247 26.303	1.00 30.36	
	•	MOTA	3136	CD2 HIS	410	18.815	49.060	26.179	1.00 29.29	
	15	ATOM	3137	ND1 HIS	410	17.362	47.457	26.508	1.00 30.79	
		ATOM	3138	CE1 HIS	410	16.691	48.595	26.505	1.00 29.88	
	:	MOTA	3139	NE2 HIS	410	17.548	49.583	26.309	1.00 30.87	
-		ATOM ATOM	3140 3141	C HIS	410 410	18.728 18.467	45.031 44.055	27.900 27.207	1.00 31.41 1:00 31.97	
·	. 20	ATOM	3142	N PRO	411	17.985	45.376	28.969	1.00 31.63	
		ATOM	3143	CD PRO	411	18.173	46.690	29.610	1.00 31.32	
		MOTA	3144	CA PRO	411	16.798	44.708	29.518	1.00 31.33	
		ATOM	3145	CB PRO	411	16.111	45.815	30.299	1.00 31.27	
	. 25	MOTA	3146	CG PRO	411	17.257		30.822 28.571	1.00 32.32	,
	25	ATOM ATOM	3147 3148	C PRO O PRO	411 411	15.827 15.362	44.037 42.920	28.838	1.00 32.09 1.00 32.76	
		ATOM	3149	N SER	412	15.519	44.684	27.457	1.00 31.73	
·.		ATOM	3150	CA SER	412	14.527	44.094	26.573	1.00 31.92	,
	20	ATOM	3151	CB SER	412	13.210	44.834	26.771	1.00 32.51	
	30	ATOM ATOM	3152 3153	OG SER C SER	412 412	13.368 14.838	46.200 44.047	26.390 25.082	1.00 33.27 1.00 31.91	
		MOTA	3154	O SER	412	14.039	43.520	24.304	1.00 32.59	•
		ATOM	3155	N PHE	413	15.974	44.601	24.679	1.00 30.72	•
		MOTA	3156	CA PHE	413	16.348	44.615	23.271	1.00 30.13	
	35	ATOM	3157	CB PHE	413	17.778	45.105	23.130	1.00 28.18	
		ATOM ATOM	3158 3159	CG PHE CD1 PHE	413 413	18.213 18.085	45.285 46.522	21.716 21.094	1.00 25.96 1.00 25.70	
		ATOM	3160	CD2 PHE	413	18.772	44.233	21.015	1.00 23.70	
		ATOM	3161	CE1 PHE	413	18.517	46.711	19.787	1.00 25.13	
	40	ATOM	3162	CE2 PHE	413	19.208	44.408	19.707	1.00 24.84	
		MOTA	3163	CZ PHE	413	19.082	45.652	19.092	1.00 24.48	
		ATOM ATOM	3164 3165	C PHE O PHE	413 413	16.232 15.571	43.228 43.026	22.645 21.612	1.00 31.20 1.00 31.56	
		ATOM	3166	N LYS	414	16.888	42.268	23.275	1.00 31.75	
	45	MOTA	3167	CA LYS	414	16.851	40.906	22.790	1.00 32.75	
		MOTA	3168	CB LYS	414	17.626	39.999	23.755	1.00 33.66	
		ATOM	3169	CG LYS	414	17.570	38.526	23.429	1.00 34.45	
		MOTA MOTA	3170 3171	CD LYS	414 414	18.732 18.845	37.744 37.909	24.049 25.558	1.00 36.05 1.00 35.80	
	50	ATOM	3171	NZ LYS	414	19.972	38.817	25.920	1.00 35.60	
		ATOM	3173	C LYS	414	15.412	40.411	22.600	1.00 33.19	
		ATOM	3174	O LYS	414	15.054	39.927	21.518	1.00 33.30	
	•	ATOM	3175	N GLU	415	14.577	40.542	23.627	1.00 33.81	
	55	MOTA MOTA	3176 3177	CA GLU CB. GLU	415 415	13.193 12.462	40.071 40.251	23.513 24.838	1.00 34.53 1.00 37.66	
	در	ATOM	3177	CG GLU	415	13.062	39.497	26.002	1.00 37.88	
		ATOM	3179	CD GLU	415	14.376	40.090	26.520	1.00 45.68	
		ATOM	3180	OE1 GLU	415	14.523	41.339	26.526	1.00 47.31	
		MOTA	3181	OE2 GLU	415	15.245	39.293	26.956	1.00 47.44	

Figure 4 58/63 MOTA 3182 415 12.409 40.776 22.401 1.00 33.23 C GLU MOTA 3183 0 GLU 415 11.676 40.137 21.649 1.00 33.06 ATOM 3184 N ARG 416 . 12.551 42.092 22.299 1.00 31.77 ATOM 11.841 42.825 3185 CA ARG 416 21.264 1.00 30.32 ATOM 12.066 44.328 3186 CB ARG 416 21.427 1.00 31.27 ATOM 3187 CG ARG 416 11.645 44.875 22.796 1.00 33.92 11.783 ATOM 3188 CD ARG 416 46.393 22.901 1.00 35.48 11.545 ATOM 3189 NE ARG 416 46.866 24.267 1.00 38.24 11.982 **ATOM** 3190 CZ ARG 416 48.030 24.746 1.00 39.11 10 ATOM 3191 12.676 NH1 ARG 416 48.850 23.967 1.00 39.89 ATOM 11.754 48.365 3192 NH2 ARG 416 26.009 1.00 38.52 12.379 ATOM 3193 C ARG 416 42.354 19.916 1.00 29.08 3194 11.620 ATOM ARG 42.159 0 416 18.964 1.00 28.85 ATOM 3195 PHE 417 13.694 42.144 19.862 1.00 27.59 N 14.377 ATOM 3196 CA PHE 417 41.707 18.648 1.00 25.70 ATOM 3197 CB PHE 417 15.886 41.687 18.890 1.00 23.64 16.687 ATOM 3198 CG PHE 417 41.310 17.680 1.00 20.59 16.910 17.183 3199 ATOM CD1 PHE 417 42.230 16.671 1.00 18.99 MOTA 3200 CD2 PHE 417 40.018 17.540 1.00 19.41 20 ATOM 3201 CE1 PHE 417 17.610 41.870 15.540 1.00 19.87 17.884 ATOM 3202 CE2 PHE 417 39.641 16.413 1.00 18.04 ÇZ MOTA 3203 PHE 417 18.100 40.563 15.409 1.00 20.04 13.943 ATOM 3204 C PHE 417 40.342 18.099 1.00 25.74 13.568 ATOM 3205 · O PHE 417 40.225 16.927 1.00 25.24 14.012 13.612 13.638 3206 25 418 ATOM N HIS 39.301 18.922 1.00 26.11 ATOM 3207 HIS 418 CA 37.962 18.459 1.00 26.79 ATOM 3208 CB HIS 418 36.973 19.615 1.00 28.01 14.973 1.00 28.81 MOTA 3209 CG HIS 418 36.854 20.279 16.168 ATOM 3210 CD2 HIS 418 37.425 19.989 1.00 29.42 30 ATOM 3211 418 15.182 36.067 ND1 HIS 21.389 1.00 28.15 ATOM 3212 CE1 HIS 418 16.446 36.157 21.755 1.00 29.43 17.067 ATOM 3213 NE2 HIS 418 36.974 20.924 1.00 29.74 12.209 **ATOM** 3214 C HIS 418 37.985 17.876 1.00 26.41 11.976 3215 ATOM 0 HIS 418 37.565 16.733 1.00 26.40 35 11.284 ATOM 3216 ALA 419 38.487 N 18.688 1.00 25.83 MOTA 3217 CA ALA 419 9.885 38.603 1.00 25.05 18.328 9.182 ATOM 3218 ALA 419 39.454 CB 19.352 1.00 24.80 419 9.731 1.00 25.35 ATOM 3219 ALA 39.215 16.943 C ATOM 3220 ALA 419 9.146 38.601 16.029 1.00 25.99 0 10.249 ATOM 3221 N SER 420 40.425 16.777 1.00 25.26 MOTA 3222 CA SER 420 10.159 41.078 15.481 1.00 25.31 MOTA 3223 CB SER 420 10.897 42.405 15.515 1.00 23.85 10.692 420 ATOM 3224 OG SER 43.089 14.303 1.00 23.43 ATOM 3225 С SER 420 10.751 40.170 14.391 1.00 26.14 ATOM 3226 SER 420 10.145 39.976 0 13.331 1.00 25.95 11.926 VAL 421 ATOM. 3227 39.602 N 14.670 1.00 27.34 **ATOM** 3228 CA VAL 421 12.602 38.699 13.733 1.00 28.41 13.919 MOTA 3229 CB VAL 421 38.127 14.346 1.00 27.63 ATOM 3230 CG1 VAL 421 14.479 37.020 13.475 1.00 26.36 ATOM 3231 CG2 VAL 421 14.953 39.232 14.469 1.00 28.22 11.689 MOTA 3232 C VAL 421 37.535 13.325 1.00 29.65 MOTA 3233 0 VAL 421 11.557 37.227 12.130 1.00 28.72 11.069 ATOM 3234. N ARG 422 36.886 14.310 1.00 30.74 10.165 MOTA 3235 CA ARG 422 35.775 14.014 1.00 32.79 55 ATOM 3236 9.419 CB ARG 422 35.328 15.265 1.00 33.29 ATOM 3237 ARG 422 10.259 35.197 CG 16.512 1.00 34.47 ATOM 3238 CD ARG 422 11.081 33.927 16.558 1.00 34.54 ATOM 3239 NE ARG 422 11.862 33.905 17.795 1.00 35.75 12.824 1.00 35.45 ATOM 3240 ARG 422 33.028 18.066 CZ

Figure 4 59/63 ATOM 3241 13.127 NH1 ARG 422 32.085 17.180 1.00 35.35 ATOM 3242 NH2 ARG 422 13.490 33.108 19.215 1.00 33.55 MOTA 3243 C ARG 422 9.123 36.277 13.019 1.00 33.41 ATOM 3244 0 ARG 422 8.949 35.728 11.929 1.00 33.68 ATOM 3245 N ARG 423 8.446 37.348 13.417 1.00 34.00 ATOM 3246 CA ARG 423 7.394 37.946 12.622 1.00 34.13 ATOM 3247 CB ARG 423 7.022 39.301 13.207 1.00 35.16 ATOM 3248 - CG ARG 423 5.538 39.584 13.202 1.00 36.10 ATOM 3249 ARG CD 423 5.212 40.831 14.012 1.00 37.57 . 10 ATOM 3250 NE ARG 423 5.482 40.682 1.00 38.90 15.441 ATOM 3251 czARG 423 6.274 41.503 16.133 1.00 40.51 ATOM 3252 NH1 ARG 423 6.874 42.523 15.513 1.00 41.42 NH2 ARG ATOM 3253 423 6.461 41.324 17.440 1.00 38.76 ATOM 3254 С ARG 423 7.754 38.100 11.165 1.00 33.94 15 ATOM Ō 3255 ARG 423 6.919 1.00 35.59 37.849 10.295 ATOM 3256 N LEU 424 8.993 38.494 10.884 1.00 32.85 ATOM 3257 CA LEU 424 9.418 38.699 9.497 1.00 31.57 MOTA 3258 CB LEU 424 10.474 39.788 9.450 1.00 28.75 ATOM 3259 CG LEU 424 10.030 41.129 10.003 1.00 27.64 20 ATOM 3260 CD1 LEU 424 11.220 42.080 10.066 1.00 26.47 ATOM 3261 CD2 LEU 424 8.942 41.686 9.115 1.00 27.23 MOTA 3262 С LEU 424 9.950 37.479 8.747 1.00 32.00 3263 ATOM 0 LEU 424 10.232 37.562 7.551 1.00 31.15 3264 MOTA N THR 425 10.065 36.343 9.424 1.00 33.88 25 MOTA 3265 CA THR 425 10.615 35.153 8.778 1.00 35.30 ATOM 3266 CB THR 425 11.886 34.722 1.00 35.17 9.495 MOTA 3267 OG1 THR 425 11.580 34.463 10.874 1.00 35.24 ATOM 3268 THR CG2 12.939 425 35.817 9.399 1.00 35.16 MOTA 3269 C THR 425 9.711 33.923 8.675 1.00 37.00 ATOM 3270 0 THR 425 10.059 32.854 9.182 1.00 37.54 MOTA 3271 N PRO 426 8.562 34.040 7.982 1.00 38.04 . ATOM 3272 CD PRO 426 8.144 35.123 7.073 1.00 38.49 MOTA 3273 CA PRO 426 32.890 7.663 7.856 1.00 38.85 MOTA 3274 CB PRO 426 6.745 33.295 6.700 1.00 38.23 35 ATOM 3275 CG PRO 6.699 426 34.772 6.802 1.00 38.07 ATOM 3276 C PRO 8.445 426 31.615 7.527 1.00 39.83 MOTA 3277 0 PRO 426 9.378 31.641 6.728 1.00 40.28 ATOM 3278 N SER 427 8.073 30.510 8.158 1.00 40.72 MOTA 3279 CA SER 427 8.713 29.232 7.892 1.00 41.82 40 MOTA 3280 CB SER 427 8.358 28.785 6.474 1.00 42.86 ATOM 3281 OG SER 427 6.954 28.802 6.287 1.00 44.69 ATOM 3282 C SER 427 10.234 29.228 8.068 1.00 42.10 ATOM 3283 10.981 28.899 0 SER 427 7.140 1.00 41.85 ATOM 3284 N CYS 428 10.679 29.586 9.267 1.00 42.60 45 ATOM 3285 CA CYS 428 12.096 29.608 9.601 1.00 42.43 ATOM 3286 CB CYS 428 12.724 30.960 9.258 1.00 42.59 ATOM 3287 SG CYS 428 12.860 31.327 7.492 1.00 44.02 ATOM 3288 C CYS 428 12.195 29.381 11.096 1.00 42.45 MOTA 3289 0 CYS 428 11.671 30.169 11.879 1.00 43.76 ATOM 3290 N GLU 429 12.846 28.296 11.494 1.00 42.34 ATOM 3291 CA GLU 429 13.014 27.995 12.909 1.00 41.23 ATOM 3292 GLU CB 429 13.030 26.486 13.146 1.00 42.97 ATOM 3293 CG GLU 429 11.699 25.796 12.933 1.00 45.48 MOTA 3294 CD GLU 429 11.847 24.282 12.925 1.00 47.43 55 ATOM 3295 OE1 GLU 429 12.518 23.756 13.847 1.00 48.77 MOTA 3296 OE2 GLU 429 11.298 23.623 12.005 1.00 48.07 3297 ATOM C GLU 429 14.341 28.587 13.346 1.00 39.77 **ATOM** 3298 GLU 429 0 15.370 27.902 13.352 1.00 39.92 ATOM 3299 ILE 430 14.315 29.864 13.708 1.00 38.09

							,						
							,						
<i>y</i> ~	F	igure 4				٠							
\cup	ATOM	3300	CA	ILE	430	60/63 15.514	30.560	14.142	1 00	36.48			
	ATOM	3301	CB	ILE	430	15.341	32.070	13.998		35.17			
	ATOM	3302	CG2		430	16.659	32.770	14.280		34.48		•	•
. 5	MOTA MOTA	3303 3304	CG1 CD1		430 430	14.839 14.669	32.390 33.866	12.589 12.310		35.30 34.88			
Ĭ	ATOM	3305		ILE	430	15.872	30.254	15.591		37.06			
	ATOM	3306		ILE	430	15.044	30.399	16.495	1.00	38.13			
	ATOM ATOM	3307 3308		THR	431	17.109	29.823	15.808		36.61			
10	ATOM	3309		THR THR	431 431	17.600 18.067	29.520 28.053	17.146 17.240		36.17 36.58			
	ATOM	3310		THR	431	16.950	27.180	17.031		36.34			
	ATOM	3311		THR	431	18.692	27.774	18.604	1.00	36.38			
	ATOM ATOM	3312 3313		THR THR	431	18.796	30.441	17.396		36.13			
15	ATOM	3314		PHE	431 432	19.705 18.804	30.513 31.157	16.569 18.514		36.10 35.79			
	ATOM	3315		PHE	432	19.926	32.054	18.794		35.93			
	ATOM	3316		PHE	432	19.443	33.450	19.232	1.00	34.31			
	ATOM ATOM	3317 3318	CG CD1	PHE	432 432	18.643	34.194	18.188		32,53			
20	ATOM	3319	.CD2		432	17.271 19.262	33.977 35.124	18.048 17.353		31.59 31.00			
	MOTA	3320	CE1	PHE	432	16.527	34.676	17.092		30.53			
	ATOM	3321	CE2		432	18.525	35.826	16.395	1.00	30.25			
	ATOM ATOM	3322 3323		PHE PHE	432 432	17.154	35.600	16.266		30.11			
25	ATOM	3324		PHE	432	20.767 20.248	31.483	19.917 20.779		37.08 38.85	·		
	ATOM	3325		ILE	433	22.063	31.774	19.906		37.32			
,	ATOM	3326		ILE	433	22.933	31.321	20.983		38.46			
	MOTA MOTA	3327 3328	CB :	ILE TLE	433 433	23.526 22.398	29.890 28.863	20.722 20.624		39.06			
30	ATOM	3329	CG1		433	24.367	29.861	19.449	1.00	38.62			
	ATOM	3330		ILE	433	25.028	28.520	19.227	1.00	38.32			
•	ATOM ATOM	3331 3332		ILE	433	24.039	32.358	21.161	1.00				
	ATOM	3333		ILE GLU	433 434	24.429 24.527	33.034 32.505	20.201 22.388	1.00				
35	ATOM	3334		GLU	434	25.559	33.498	22.669	1.00				
	ATOM	3335	CB ·		434	25.152		23.885	1.00	43.91			
	ATOM ATOM	3336 3337	CG (GLU	434 434	23.769 23.342		23.744	1.00				
	ATOM	3338	OE1		434		35.640 35.072	24.965 26.074	1.00				
40	MOTA	3339	OE2	GLU	434		36.802	24.816	1.00				
·	ATOM	3340		GLU	434		32.950	22.865	1.00				
	ATOM ATOM	3341 3342		GLU SER	434 435	27.206 27.901	32.058 33.518	23.680	1.00				
	ATOM	3343		SER	435		33.075	22.119 22.167	1.00 1.00				
45	ATOM	3344	CB :		435	30.077		21.057	1.00				
	ATOM	3345		SER	435		35.186	21.053	1.00		•		
	atom atom	3346 3347		SER SER	435 435	29.984 30.043	33.274 34.396	23.507 24.022	1.00				
	ATOM	3348		GLU	436		32.180	24.022	1.00 1.00				
50	MOTA	3349		GLU	436	31.248		25.330	1.00				
	ATOM	3350		GLU ·	436	31.322	30.884	26.020	1.00	47.64			
	ATOM ATOM	3351 3352		GLU GLU	436 436	32.144 32.726	30.908 29.541	27.317 27.711	1.00				
	ATOM	3353	OE1		436	31.951	28.585	27.711	1.00				
55	ATOM	3354	OE2 (GLU	436	33.972	29.428	27.765	1.00				
	ATOM	3355		GLU	436	32.650	32.671	24.912	1.00				
	MOTA MOTA	3356 3357		GLU GLU	436 437	33.446 32.950	31.843 33.956	24.463 25.051	1.00				
	ATOM	3358	CA		437	34.252	34.462	24.643	1.00				

Figure 4 61/63 35.328 34.050 25.652 1.00 43.61 ATOM 3359 CB GLU 437 MOTA 3360 CG GLU 437 36.745 34.334 25.190 1.00 43.39 36.931 35.752 24.678 1.00 43.50 MOTA 3361 CD GLU 437 MOTA 3362 GLU 437 36.976 36.680 25.514 1.00 44.49 OE1 35.940 23.441 ATOM 3363 OE2 GLU 437 37.025 1.00 42.17 MOTA 3364 C GLU 437 34.569 33.880 23.264 1.00 43.56 MOTA 3365 0 GLU 437 35.530 33.131 23.108 1.00 45.30 MOTA 3366 N GLY 438 33.757 34.225 22.266 1.00 41.68 GLY 33.958 33.700 20.926 1.00 39.44 ATOM 3367 CA 438 19.934 10 3368 GLY 34.748 34.538 1.00 38.11 ATOM С 438 3369 GLY 34.932 34.130 18.791 1.00 37.45 ATOM 0 438 35.213 35.713 20.329 1.00 37.14 ATOM 3370 N SER 439 36.502 35.980 19.386 1.00 36.86 ATOM 3371 CA SER 439 37.983 1.00 36.81 3372 CB 35.916 19.714 MOTA SER 439 MOTA 3373 OG 439 36.825 38.678 18.878 1.00 35.32 SER С 37.420 36.053 19.444 1.00 36.74 MOTA 3374 SER 439 MOTA 3375 0 SER 439 38.192 36.265 18.513 1.00 36.37 **ATOM** 3376 440 37.774 35.439 20.562 1.00 36.58 N GLY ATOM 3377 CA GLY 440 39.126 34.957 20.746 1.00 36.42 MOTA 3378 C GLY 440 39.207 33.518 20.302 1.00 36.28 19.613 3379 40.146 1.00 36.20 ATOM 0 GLY 440 33.140 MOTA 3380 N ARG 441 38.224 32.714 20.699 1.00 36.09 ATOM 3381 CA ARG 441 38.190 31.309 20.312 1.00 37.16 MOTA 3382 CB ARG 441 37.151 30.562 21.138 1.00 37.34 25 ATOM ARG 37.312 3383 CG 441 30.717 22.632 1.00 39.57 36.334 ATOM 3384 CD ARG 441 29.806 23.375 1.00 42.28 ARG 1.00 44.36 NE 35.270 MOTA 3385 441 29.339 22.488 ATOM 3386 CZARG 441 34.240 28.585 22.862 1.00 45.80 MOTA NH1 ARG 34.103 28.192 1.00 45.87 3387 441 24.127 30 MOTA 3388 NH2 ARG 441 33.346 28.214 21.955 1.00 47.26 ATOM 3389 C ARG 441 37.848 31.179 18.821 1.00 37.42 ATOM 3390 0 ARG 441 38.103 30.151 18.189 1.00 37.52 37.270 32.234 18.262 1.00 37.34 ATOM 3391 N GLY 442 1.00 37.39 ATOM 3392 CA GLY 442 36.906 32.204 16.863 35 ATOM 3393 С GLY 442 38.165 32.308 16.048 1.00 37.47 38.483 31.410 1:00 37.51 MOTA 3394 0 GLY 442 15.278 38.887 33.408 1.00 38.17 MOTA 3395 N ALA 443 16,241 15.526 3396 ALA 40.134 33.660 1.00 38.50 ATOM CA 443 40.739 34.999 15.967 MOTA 3397 ALA 443 1.00 36.50 CB 32.521 ATOM 3398 C ALA 443 41.127 15.759 1.00 39.03 ATOM 3399 0 ALA 443 42.015 32.297 14.941 1.00 39.36 40.977 ATOM 3400 N ALA 444 31.807 16,875 1.00 39.93 3401 444 41.864 30.685 17.172 1.00 40.31 ATOM ÇA ALA ATOM 3402 CB ALA 444 41.724 30.242 18.623 1.00 39.25 45 ATOM 3403 C ALA 444 41.427 29.569 16.246 1.00 40.97 42.146 ATOM 3404 0 ALA 444 29.210 15.312 1.00 41.31 40.233 LEU 445 29.038 ATOM 3405 N 16.501 1.00 41.41 3406 LEU 445 39.678 27.960 15.690 1.00 41.97 ATOM CA 445 38.195 27.776 1.00 40.09 MOTA 3407 CB LEU 16.024 50 MOTA 3408 CG LEU 445 37.954 26.806 17.182 1.00 39.14 36.750 27.233 ATOM 3409 CD1 LEU 445 17.982 1.00 39.27 37.781 25.399 16.647 1.00 37.36 MOTA 3410 CD2 LEU 445 MOTA 3411 C LEU 445 39.860 28.156 14.176 1.00 43.29 LEU 445 39.918 27.179 13.427 1.00 43.28 ATOM 3412 0 55 ATOM VAL 446 39.955 29.406 13.729 1.00 44.66 3413 N VAL 446 40.136 29.684 12.307 1.00 46.32 ATOM 3414 CA 3415 VAL 446 39.687 31.120 11.948 1.00 46.15 - ATOM CB MOTA 3416 CG1 VAL 446 40.356 31.578 10.653 1.00 46.15

ATOM

3417

CG2 VAL

446

38.164

31.160

11.793

1.00 45.75

							•		
			•						
	F	igure 4							
<i>.</i>) ·						62/63			
	MOTA	3418	С	VAL	446	41.597	29.503	11.944	1.00 48.03
	ATOM	3419	0	VAL	446	41.929	29.105	10.825	1.00 48.75
	MOTA	3420	N	SER	447	42.465	29.802	12.904	1.00 49.63
	MOTA	3421	CA	SER	447	43.902	29.657	12.725	1.00 50.76
5	MOTA	3422	CB	SER	447	44.635	30.267	13.918	1.00 50.76
	ATOM	3423	OG	SER	447	44.377	31.659	14.021	1.00 50.83
	ATOM	3424	С	SER	447	44.259	28.173	12.612	1.00 52.07
	ATOM	3425	0	SER	447	44.923	27.753	11.662	1.00 52.17
10	ATOM ATOM	3426	N	ALA	448	43.804	27.387	13.584	1.00 53.51
10	ATOM	3427 3428	CA CB	ALA ALA	448 448	44.071	25.953	13.621	1.00 55.46
	MOTA	3429	C	ALA	448	43.273 43.751	25.306	14.745	1.00 55.02
	ATOM	3430	0	ALA	448	44.599	25.263 24.564	12.300	1.00 57.02
	ATOM	3431	N	VAL	449	42.523	25.457	11.726 11.825	1.00 57.18 1.00 58.39
15	ATOM	3432	CA	VAL	449	42.093	24.841	10.579	1.00 59.69
	ATOM	3433	CB	VAL	449	40.571	24.977	10.382	1.00 59.67
•	MOTA	3434		VAL	449	40.152	24.262	9.112	1.00 60.28
	ATOM	3435		VAL	449	39.833	24.384	11.577	1.00 59.48
	ATOM	3436	C	VAL	449	42.821	25.482	9.403	1.00 60.70
20	MOTA	3437	0	VAL	449	42.903	24.898	8.321	1.00 61.00
	ATOM	3438	N	ALA	450	43.361	26.677	9.627	1.00 61.41
	MOTA	3439	CA	ALA	450	44.093	27.392	8.591	1.00 62.12
	ATOM	3440	CB	ALA	450	43.981	28.889	8.814	1.00 62.32
	ATOM	3441		ALA	450	45.558	26.973	8.606	1.00 63.02
25	ATOM	3442	0	ALA	450	46.437	27.748	8.217	1.00 62.75
	ATOM ATOM	3443 3444	N	CYS	451	45.807	25.744	9.061	1.00 64.03
	ATOM	3445	CA CB	CYS CYS	451 451	47.160 47.530	25.183	9.148	1.00 65.19
	ATOM	3446	SG	CYS	451	46.901	24.440 22.720	7.850 7.723	1.00 65.75 1.00 66.86
30	ATOM	3447	C	CYS	451	48.239	26.217	9.474	1.00 65.22
	ATOM	3448	ō	CYS	451	47.929	27.230	10.144	1.00 65.18
•	MOTA	3449		CYS	451	49.398	25.979	9.073	1.00 65.50
	ATOM	. 3450	C1	HEX	1	31.023	47.521	12.611	1.00 25.83
	MOTA	3451	C2	HEX	1	32.239	47.182	11.801	1.00 25.25
35	ATOM	3452	C3	HEX	1	32.203	45.697	11.565	1.00 25.11
	ATOM	3453	C4	HEX	1	32.071	44.939	12.862	1.00 24.99
	MOTA	3454	C5	HEX	1	31.030	45.591	13.785	1.00 25.34
	ATOM	3455	C6	HEX	1	30.772	44.921		
40	MOTA	3456	01	HEX	1	30.750		12.579	1.00 27.04
40	MOTA MOTA	3457 3458	02 03	HEX	1 1	32.183 33.337	47.912	10.609	1.00 24.71
	ATOM	3459	03	HEX	. 1	33.337	45.251 43.621	10.836	1.00 25.99
	ATOM	3460	05	HEX	1	31.267	46.968	12.545 13.935	1.00 25.85 1.00 25.37
	ATOM	3461	06	HEX	ī	31.835	45.222	16.009	1.00 27.23
45	ATOM	3462	C1	LIG	1	30.034	26.620	8.669	1.00 27.23
	ATOM	3463	C2	LIG	ī	29.909	27.259	10.064	1.00 34.82
	ATOM	3464	C3	LIG	1	31.308	27.852	10.344	1.00 35.54
	MOTA	3465	C4	LIG	1	32.212	27.447	9.148	1.00 35.52
	ATOM	3466	C5	LIG	1	31.520	26.207	8.584	1.00 35.20
50	ATOM	3467	C6	LIG	1	33.670	27.245	9.637	1.00 36.33
	MOTA	3468	C7	LIG	1	34.562	26.321	8.758	1.00 37.11
	MOTA	3469	C8	LIG	1	35.946	26.832	8.778	1.00 36.91
	MOTA	3470	N9	LIG	1	36.382	27.317	7.570	1.00 36.92
E F	MOTA	3471		LIG	1	37.668	27.907	7.331	1.00 36.42
55	ATOM	3472		LIG	1	38.035	28.336	6.087	1.00 37.39
	ATOM ATOM	3473 3474		LIG LIG	1 1	39.058 39.426	28.930	6.462	1.00 36.99
	ATOM	3474 3475	S14		1	39.426 38.681	29.003 28.342	7.575 8.700	1.00 37.10 1.00 37.86
	ATOM	3476		LIG	î	36.640	26.843	9.817	1.00 37.86
			J _ •		-			011	

	F	igure 4			63/63			
	ATOM	3477	C16 LIG	1	34.538	24.890	9.296	1.00 37.59
	ATOM	3478	C17 LIG	1	34.906	24.620	10.6 10	1.00 37.22
	ATOM	3479	C18 LIG	1	34.658	23.346	11.130	1.00 38.09
	ATOM	3480	N19 LIG	1	34.084	22.371	10.404	1.00 38.80
5	ATOM	3481	C20 LIG	1	33.729	22.598	9.128	1.00 38.90
,	ATOM	3482	C21 LIG	1	33.942	23.860	8.546	1.00 38.73
	ATOM	3483	K1 K	1	32.471	32.037	-7.104	1.00 46.91

CRYSTALS OF GLUCOKINASE AND METHODS OF GROWING THEM

The invention relates to crystalline forms of Glucokinase of sufficient size and quality to obtain structural data by X-ray crystallography and to methods of growing such crystals.

5

Glucokinase (GK) is one of four hexokinases found in mammals [Colowick, S.P., in The Enzymes, Vol. 9 (P. Boyer, ed.) Academic Press, New York, NY, pages 1-48, 1973]. The hexokinases catalyze the first step in the metabolism of glucose, i.e., the conversion of glucose to glucose-6-phosphate. Glucokinase has a limited cellular distribution, being found principally in pancreatic β-cells and liver parenchymal cells. In addition, GK is a rate-controlling enzyme for glucose metabolism in these two cell types that are known to play critical roles in whole-body glucose homeostasis [Chipkin, S.R., Kelly, K.L., and Ruderman, N.B. in Joslin's Diabetes (C.R. Khan and G.C. Wier, eds.), Lea and Febiger, Philadelphia, PA, pages 97-115, 1994]. The concentration of glucose at which GK demonstrates half-maximal activity is approximately 8 mM. The other three hexokinases are saturated with glucose at much lower concentrations (<1 mM). Therefore, the flux of glucose through the GK pathway rises as the concentration of glucose in the blood increases from fasting (5 mM) to postprandial (≈10-15 mM) levels following a carbohydrate-containing meal [Printz, R.G., Magnuson, M.A., and Granner, D.K. in Ann. Rev. Nutrition Vol. 13 (R.E. Olson, D.M. Bier, and D.B. McCormick, eds.), Annual Review, Inc., Palo Alto, CA, pages 463-496, 1993]. These findings contributed over a decade ago to the hypothesis that GK functions as a glucose sensor in B-cells and hepatocytes (Meglasson, M.D. and Matschinsky, F.M. Amer. J. Physiol. 246, E1-E13, 1984). In recent years, studies in transgenic animals have confirmed that GK does indeed play a critical role in whole-body glucose homeostasis. Animals that do not express GK die within days of birth with severe diabetes while animals overexpressing GK have improved glucose tolerance (Grupe, A., Hultgren, B., Ryan, A. et al., Cell 83, 69-78, 1995; Ferrie, T., Riu, E., Bosch, F. et al., FASEB J., 10, 1213-1218, 1996). An increase in glucose exposure is coupled through GK in β-cells to increased insulin secretion and in hepatocytes to increased glycogen deposition and perhaps decreased glucose production.

The finding that type II maturity-onset diabetes of the young (MODY-2) is caused by loss of function mutations in the GK gene suggests that GK also functions as a glucose sensor in humans (Liang, Y., Kesavan, P., Wang, L. et al., Biochem. J. 309, 167-173, 1995). Additional evidence supporting an important role for GK in the regulation of glucose metabolism in humans was provided by the identification of patients that express a mutant form of GK with increased enzymatic activity. These patients exhibit a fasting hypoglycemia associated with an inappropriately elevated level of plasma insulin (Glaser, B., Kesavan, P., Heyman, M. et al., New England J. Med. 338, 226-230, 1998). While mutations of the GK gene are not found in the majority of patients with type II diabetes, compounds that activate GK and, thereby, increase the sensitivity of the GK sensor system will still be useful in the treatment of the hyperglycemia characteristic of all type II diabetes. Glucokinase activators will increase the flux of glucose metabolism in β-cells and hepatocytes, which will be coupled to increased insulin secretion. Such agents would be useful for treating type II diabetes.

In an effort to elucidate the mechanisms underlying kinase activation, the crystal structure of such proteins is often sought to be determined. The crystal structures of several hexokinases have been reported. See, e.g. A. E. Aleshin, C. Zeng, G. P. Bourenkov, H. D. Bartunik, H. J. Fromm & R. B. Honzatko 'The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate' Structure 6, 39-50 (1998); W. S. Bennett, Jr. & T. A. Steitz 'Structure of a complex between yeast hexokinase A and glucose I. Structure determination and refinement at 3.5 Å resolution' J. Mol. Biol. 140, 183-209 (1978); and S. Ito, S. Fushinobu, I. Yoshioka, S. Koga, H. Matsuzawa & T. Wakagi 'Structural Basis for the ADP-Specificity of a Novel Glucokinase from a Hyperthermophilic Archaeon' Structure 9, 205-214 (2001). Despite these reports, researchers armed with the knowledge of how to obtain crystals of related hexokinases have attempted to obtain crystals of any mammalian Glucokinase without success.

Applicants have discovered protocols which allow crystallization of mammalian Glucokinase with or without a bound allosteric ligand. The crystal structure has been solved by X-ray crystallography to a resolution of 2.7 Å. See Figures 3 and 4. Thus the invention relates to a crystalline form of Glucokinase and a crystalline form of a complex of Glucokinase and an allosteric ligand. The invention further relates to a method of forming crystals of Glucokinase, with or without a bound allosteric ligand.

Figure 1 shows Glucokinase co-crystals having P6(5)22 symmetry.

15

Figure 2 shows the amino acid sequence of an expressed Glucokinase used for crystallization.

Figure 3 shows a ribbon diagram of the structure of Glucokinase showing the α -helices and β -sheets.

Figure 4 shows the atomic structure coordinates for Glucokinase bound to 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide.

The present invention relates to crystalline forms of mammalian Glucokinase, with or without a ligand bound in the allosteric site, where the crystals are of sufficient quality and size to allow for the determination of the three-dimensional X-ray diffraction structure to a resolution of about 2.0 Å to about 3.5 Å. The invention also relates to methods for preparing and crystallizing the Glucokinase. The crystalline forms of Glucokinase, as well as information derived from their crystal structures can be used to analyze and modify glucokinase activity as well as to identify compounds that interact with the allosteric site.

The crystals of the invention include apo crystals and co-crystals. The apo crystals of the invention generally comprise substantially pure Glucokinase. The co-crystals generally comprise substantially pure Glucokinase with a ligand bound to the allosteric site.

5

It is to be understood that the crystalline Glucokinases of the invention are not limited to naturally occurring or native Glucokinases. Indeed, the crystals of the invention include mutants of the native Glucokinases. Mutants of native Glucokinases are obtained by replacing at least one amino acid residue in a native Glucokinase domain with a different amino acid residue, or by adding or deleting amino acid residues within the native polypeptide or at the N- or C- terminus of the native polypeptide, and have substantially the same three-dimensional structure as the native Glucokinase from which the mutant is derived.

15

By having substantially the same three-dimensional structure is meant having a set of atomic structure coordinates from an apo- or co-crystal that have a root mean square deviation of less than or equal to about 2 Å when superimposed with the atomic structure coordinates of the native Glucokinase from which the mutant is derived when at least about 50% to about 100% of the alpha carbon atoms of the native Glucokinase are included in the superposition.

20

In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a native Glucokinase domain in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, etc. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of the native Glucokinase will be apparent to those having skills in the art.

It should be noted that the mutants contemplated herein need not exhibit glucokinase activity. Indeed, amino acid substitutions, additions or deletions that interfere with the kinase activity of the glucokinase but which do not significantly alter the three-dimensional structure of the domain are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure coordinates obtained therefrom, can be used to identify compounds that bind to the native domain. These compounds may affect the activity or the native domain.

The derivative crystals of the invention generally comprise a crystalline glucokinase polypeptide in covalent association with one or more heavy metal atoms. The polypeptide may correspond to a native or a mutated Glucokinase. Heavy metal atoms useful for providing derivative crystals include, by way of example and not limitation, gold and mercury. Alternatively, derivative crystals can be formed from proteins which have heavy atoms incorporated into one or more amino acids, such as seleno-methionine substitutions for methionine.

The co-crystals of the invention generally comprise a crystalline Glucokinase polypeptide in association with one or more compounds at an allosteric site of the polypeptide. The association may be covalent or non-covalent.

The native and mutated glucokinase polypeptides described herein may be isolated from natural sources or produced by methods well known to those skilled in the art of molecular biology. Expression vectors to be used may contain a native or mutated Glucokinase polypeptide coding sequence and appropriate transcriptional and/or translational control signals. These methods include in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Maniatis et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; and Ausubel et al., 1989, Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience, NY.

A variety of host-expression vector systems may be utilized to express the Glucokinase coding sequence. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the Glucokinase coding sequence; yeast transformed with recombinant yeast expression vectors containing the Glucokinase coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g. baculovirus) containing the Glucokinase coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosiac virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the glucokinase coding sequence; or animal cell systems. The expression elements of these systems vary in their strength and specificities. Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promotors such as pL of bacteriophage µ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g., the 35 S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the glucokinase coding sequence, SV40-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.

25

10

The apo, derivative and co-crystals of the invention can be obtained by techniques well-known in the art of protein crystallography, including batch, liquid bridge, dialysis, vapor diffusion and hanging drop methods (see e.g. McPherson, 1982, *Preparation and Analysis of Protein Crystals*, John Wiley, NY; McPherson, 1990, *Eur. J. Biochem.* 189:1-23; Webber, 1991, *Adv. Protein Chem.* 41:1-36; Crystallization of Nucleic Acids and Proteins, Edited by Arnaud Ducruix and Richard Giege, Oxford University Press; Protein Crystallization Techniques, Strategies, and Tips, Edited by Terese Bergfors, International University Line, 1999). Generally, the apo- or co-crystals of the invention are grown by

placing a substantially pure Glucokinase polypeptide in an aqueous buffer containing a precipitant at a concentration just below that necessary to precipitate the protein. Water is then removed from the solution by controlled evaporation to produce crystallizing conditions, which are maintained until crystal growth ceases.

5

In a preferred embodiment of the invention, apo or co-crystals are grown by vapor diffusion. In this method, the polypeptide/precipitant solution is allowed to equilibrate in a closed container with a larger aqueous reservoir having a precipitant concentration optimal for producing crystals. Generally, less than about 10 µL of subtantially pure polypeptide solution is mixed with an equal volume of reservoir solution, giving a precipitant concentration about half that required for crystallization. This solution is suspended as a droplet underneath a coverslip, which is sealed onto the top of a reservoir. The sealed container is allowed to stand, from one day to one year, usually for about 2-6 weeks, until crystals grow.

For crystals of the invention, it has been found that hanging drops containing about

15

2-5 μ l of Glucokinase (9-22 mg/ml in 20 mM tris pH 7.1 measured at room temperature, 50 mM NaCl, 50 mM glucose, 10 mM DTT and optionally 0.2 mM EDTA) and an equal amount of reservoir solution (16-25% w/v polyethylene glycol with an average molecular weight from about 8000 to about 10000 Daltons, 0.1-0.2 M tris or bistris or Hepes or ammonium phosphate buffer, pH 6.9-7.5, 8-10 mM DTT, 0 - 30% saturated glucose) suspended over 0.5 to 1.0 mL reservoir buffer for about 3-4 weeks at 4-6°C provided crystals suitable for high resolution X-ray structure determination. Particularly preferred conditions were: about 2-5 μ l of Glucokinase (10 mg/ml in 20 mM tris pH 7.1 measured at room temperature, 50 mM NaCl, 50 mM glucose, 10 mM DTT and optionally 0.2 mM EDTA) and an equal amount of reservoir solution (22.5% w/v polyethylene glycol with an average molecular weight of about 10000 Daltons, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose) were suspended over 0.5 to 1.0 mL reservoir buffer for about 3-4 weeks at 4-6°C.

The optimum procedure for growing crystals large enough to collect data from involved first streaking 3-4 µl of protein solution on the coverslip, followed by streaking 3-4 µl of well solution across the elongated droplet of protein, forming a droplet shaped like the letter 'X'. Before discovering this crossed droplet technique, most droplets yielded showers of small crystals which were not large enough for data collection purposes. The crossed droplets allow gradients of protein and precipitating agent to form as the two solutions slowly mix, and the resulting kinetics of crystal nucleation and growth are optimal for the growth of a small number of large crystals in each crossed droplet. Simply mixing the protein and precipitant solutions together in a single round droplet often produced an overabundance of nuclei which grew to a final size too small for data collection purposes. Crystals usually appeared within 5 days of setup. The crystals grow in the form of hexagonal bipyramids, reaching dimensions of 0.2 x 0.2 x 0.4 mm typically, although larger crystals are often observed. Figure 1 shows grown crystals.

Crystals may be frozen prior to data collection. The crystals were cryo-protected with either (a) 20-30% saturated glucose present in the crystallization setup, (b) ethanol added to 15-20%, (c) ethylene glycol added to 10-20% and PEG10,000 brought up to 25%, or (d) glycerol added to 15%. The crystals were either briefly immersed in the cryo-protectant or soaked in the cryo-protectant for periods as long as a day. Freezing was accomplished by immersing the crystal in a bath of liquid nitrogen or by placing the crystal in a stream of nitrogen gas at 100 K.

15

The mosaic spread of the frozen crystals could sometimes be reduced by annealing, wherein the stream of cold nitrogen gas is briefly blocked, allowing the frozen crystal to thaw momentarily before re-freezing in the nitrogen gas stream. Another technique which was sometimes helpful in data collection was to center one of the ends of the hexagonal bipyramid in the x-ray beam, rather than the mid portion of the crystal. The mosaic spread could sometimes be reduced by this technique.

Diffraction data typically extending to 2.7 Å was collected from the frozen crystals at the synchrotron beamline X8C of the National Synchrotron Light Source in Brookhaven, New York. Under optimum conditions, data extending to 2.2 Å was recorded. See Figures 3 and 4 for solution. The space group of the crystals was determined to be P6(5)22 during the course of the solution of the crystal structure. The crystals have unit cell dimensions a = b = 79.62 + -0.60 Å, c = 321.73 + -3.70 Å, $c = 90^{\circ}$, $c = 120^{\circ}$. The crystals are in a hexagonal system with P6(5)22 symmetry.

Of course, those having skill in the art will recognize that the above-described crystallization conditions can be varied. Such variations may be used alone or in combination, and include polypeptide solutions containing polypeptide concentrations between 1 mg/mL and 60 mg/mL, any commercially available buffer systems which can maintain pH from about 6.5 to about 7.6, Tris-HCl concentrations between 10 mM and 200 mM, dithiothreitol concentrations between 0 mM and 20 mM, preferably between 8 and 10 mM, substitution of dithiothreitol with beta mercapto ethanol or other artrecognized equivalents, glucose concentrations between 0% w/v and 30% w/v, or substitution of glucose with other sugars known to bind to Glucokinase; and reservoir solutions containing polyethylene glycol (PEG) concentrations between about 10% and about 30%, polyethylene glycol average molecular weights between about 1000 and about 20,000 daltons, any commercially available buffer systems which can maintain pH from about 6.5 to about 7.6, dithiothreitol concentrations between 0 mM and 20 mM, substitution of dithiothreitol with beta mercapto ethanol or other art-recognized -SH group containing equivalents, or substitution of glucose with other sugars known to bind to Glucokinase, and temperature ranges between 4 and 20°C.

25

Derivative crystals of the invention can be obtained by soaking apo or co-crystals in mother liquor containing salts of heavy metal atoms, according to procedures known to those of skill in the art of X-ray crystallography.

Co-crystals of the invention can be obtained by soaking an apo crystal in mother liquor containing a ligand that binds to the allosteric site, or can be obtained by co-crystallizing the Glucokinase polypeptide in the presence of one or more ligands that bind to the allosteric site. Preferably, co-crystals are formed with a glucokinase activator disclosed in US Pat. No. 6,320,050; US Pat. Appl. 09/532,506 filed March 21, 2000; US Pat. Appl. 09/675,781 filed September 28, 2000; US Pat. Appl. 09/727,624, filed December 1, 2000; US Pat. Appl. 09/841,983, filed April 25, 2001; US Pat. Appl. 09/843,466, filed April 26, 2001; US Pat. Appl. 09/846,820, filed May 1, 2001; US Pat. Appl. 09/846,821, filed May 1, 2001; US Pat. Appl. 09/924,247, filed August 8, 2001; US Provisional Pat. Appl. 60/251,637, filed December 6, 2000; or US Provisional Pat. Appl. 60/318,715, filed September 13, 2001, each of which is incorporated herein by reference.

Methods for obtaining the three-dimensional structure of the crystalline glucokinases described herein, as well as the atomic structure coordinates, are well-known in the art (see, e.g., D. E. McRee, Practical Protein Crystallography, published by Academic Press, San Diego (1993), and references cited therein).

The crystals of the invention, and particularly the atomic structure coordinates obtained therefrom, have a wide variety of uses. For example, the crystals and structure coordinates described herein are particularly useful for identifying compounds that activate Glucokinases as an approach towards developing new therapeutic agents. One such compound is 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide and pharmaceutically acceptable salts thereof. Pharmaceutical compositions of said compounds can be developed, and said compounds can be used for the manufacture of a medicament comprising said compound for the treatment of hyperglycemia in type II diabetes.

The structure coordinates described herein can be used as phasing models in determining the crystal structures of additional native or mutated glucokinases, as well as

the structures of co-crystals of such glucokinases with allosteric inhibitors or activators bound. The structure coordinates, as well as models of the three-dimensional structures obtained therefrom, can also be used to aid the elucidation of solution-based structures of native or mutated glucokinases, such as those obtained via NMR. Thus, the crystals and atomic structure coordinates of the invention provide a convenient means for elucidating the structures and functions of glucokinases.

For purposes of clarity and discussion, the crystals of the invention will be described by reference to specific Glucokinase exemplary apo crystals and co-crystals. Those skilled in the art will appreciate that the principles described herein are generally applicable to crystals of any mammalian Glucokinase, including, but not limited to the Glucokinase of Figure 2.

As used herein, "allosteric site" refers in general to any ligand binding site on a mammalian Glucokinase other than the active site of the enzyme.

15

As used herein, "apo crystal" refers to crystals of mammalian Glucokinase formed without a bound allosteric ligand.

As used herein, "allosteric ligand" refers to any molecule which specifically binds an allosteric site on a mammalian Glucokinase.

EXAMPLES

Example 1: Expression and Purification of Glucokinase

Expression of GK

Glucokinase (GK) was expressed as a glutathione S-transferase (GST) fusion protein in Escherichia coli. The amino-acid sequence of the fusion protein is given in Figure 2.

The expression construct is based on the pGEX-3X vector from Pharmacia, as described in Y. Liang, P. Kesavan, L. Wang, K. Niswender, Y. Tanizawa, M. A. Permutt, M. A. Magnuson, F. M. Matschinsky, Biochem. J. 309, 167 (1995). The construct codes for one of the two liver isozymes of human GK. The GST tag is at the N-terminus of the construct, and is separated from the coding sequence for GK by a Factor Xa cleavage site. After purification of the GST fusion protein, the GST fusion tag was removed with Factor Xa protease, which also removes five residues from the N-terminus of GK.

Purification of GK

E. coli cells expressing GST-GK were suspended in lysis buffer (50 mM tris, 200 mM NaCl, 5 mM EDTA, 5 mM DTT, 1% NP-40, pH 7.7) in the presence of protease inhibitors, incubated with lysozyme at 200 µ/ml for 30 minutes at room temperature, and sonicated 4x30 sec. at 4° C. After centrifugation to remove insoluble material, the supernatant was loaded onto glutathione-Sepharose, washed with lysis buffer and then with lysis buffer minus NP-40. GST-GK was eluted with lysis buffer (minus NP-40) containing 50 mM D-glucose and 20 mM glutathione. The eluted protein was concentrated and dialyzed into 20 mM tris, 100 mM NaCl, 0.2 mM EDTA, 50 mM D-glucose, 1mM DTT, pH 7.7. Factor Xa was added at a protein ratio of 1:100 GST-GK followed by the addition of CaCl₂ to 1 mM, and the sample was incubated at 4° C for 48

hours. The sample was added to glutathione Sepharose and the unbound fraction collected and concentrated. The sample was then incubated with benzamidine Sepharose to remove Factor Xa, and the unbound fraction was collected and loaded on a Q Sepharose column equilibrated with 25 mM bis-tris propane, 50 mM NaCl, 5 mM DTT, 50 mM D-glucose and 5% glycerol (pH 7.0). The protein was eluted with a NaCl gradient from 50-400 mM. Fractions containing purified GK were pooled and concentrated and filtered.

Example 2: Formation of apo Crystal

4 μl of glucokinase and 4 μl of precipitant were mixed and equilibrated against the precipitant solution at 4° C. The glucokinase solution consisted of 22 mg/ml glucokinase prepared in Example 1 in 20 mM hepes pH 7.5, 50 mM NaCl, 10 mM DTT, and 50 mM glucose. The precipitant consisted of 22.5% PEG10000, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose; the precipitant solution contained seed crystals in order to microseed the droplets. Crystals appeared in the droplets after leaving the crystallization plates at 4° C.

Example 3: Formation of Co-crystal with 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide

3(a):

- 20

10

4 μl of glucokinase and 4 μl of precipitant were mixed and equilibrated against the precipitant solution at 4° C. The glucokinase solution consisted of 13 mg/ml glucokinase prepared in Example 1 in 20 mM tris pH 7.0, 50 mM NaCl, 10 mM DTT, 50 mM glucose, and the glucokinase activator 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide at a concentration 5 times that of the protein. The precipitant consisted of 22.5% PEG10000, 0.1 M tris pH 7.08, 10 mM DTT, 20% glucose. Crystals appeared in the droplets after leaving the crystallization plates at 4° C.

3(b):

Alternatively, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 18% PEG8000 was used; the precipitant solution contained seed crystals in order to microseed the droplets.

3(c):

In another alternative, crystals were grown as in Example 3(a) with the following changes: instead of 4 μ l glucokinase and 4 μ l precipitant, 2 μ l of each were used; the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 20% PEG8000 was used; the precipitant solution contained seed crystals in order to microseed the droplets.

15

20

3(d):

In yet another alternative, crystals were grown as in Example 3(a) with the following changes: instead of 4 µl glucokinase and 4 µl precipitant, 2 µl of each were used; the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 16% PEG10000 was used; glucose was not present as a component of the precipitant; the precipitant solution contained seed crystals in order to microseed the droplets.

25 3(e):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris

buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 25% PEG10000 was used.

3(f):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant 21.25% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant tris buffered at pH 7.52 was used.

3(g):

10

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of tris buffered at pH 7.08 in the precipitant, hepes buffered at pH 6.89 was used; in place of 20% glucose in the precipitant, 200 mM glucose was used.

15 **3(h)**:

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 0.1 M tris buffered at pH 7.08 in the precipitant, 0.2 M ammonium phosphate buffered at pH 7.03 was used; in place of 20% glucose in the precipitant, 200 mM glucose was used.

3(i):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant, 20% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant, tris buffered at pH 7.05 was used; in place of 10 mM DTT in the precipitant, 8 mM DTT was used; glucose was not present as a component of the precipitant.

3(j):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 12 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 22.5% PEG10000 as precipitant, 22% PEG8000 was used; glucose was not present as a component of the precipitant; the precipitant solution contained seed crystals in order to microseed the droplets.

3(k):

In still another alternative, crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 11 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of 20% glucose in the precipitant, 30% glucose was used.

Example 4: Formation of Co-crystal with N-(5-Bromo-pyridin-2-yl)-2-(3-chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-propionamide

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 9 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator N-(5-Bromo-pyridin-2-yl)-2-(3-chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-propionamide; in place of 20% glucose in the precipitant, 200 mM glucose was used.

Example 5: Formation of Co-crystal with 2-(3-Chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-N-(5-trifluoromethyl-pyridin-2-yl)-propionamide

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase

activator of Example 3(a), the glucokinase solution contained the glucokinase activator 2-(3-Chloro-4-methanesulfonyl-phenyl)-3-cyclopentyl-N-(5-trifluoromethyl-pyridin-2-yl)-propionamide; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used.

Example 6: Formation of Co-crystal with (2S)-2-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionylamino]-thiazole-4-carboxylic acid methyl ester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-2-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazole-4-carboxylic acid methyl ester; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used; in place of tris buffered at pH 7.08 in the precipitant, bistris buffered at pH 7.0 was used.

Example 7: Formation of Co-crystal with (2S)-{2-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionylamino]-thiazol-5-yl}-oxo-acetic acid ethyl ester

15

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 10 mg/ml glucokinase in tris buffer at pH 7.1 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{2-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionylamino]-thiazol-5-yl}-oxo-acetic acid ethyl ester; in place of 22.5% PEG10000 as precipitant, 21.25% PEG10000 was used.

Example 8: Formation of Co-crystal with (2S)-{3-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-ureido}-acetic acid methylester

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 9 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{3-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-ureido}-acetic acid methylester; in place of 20% glucose in the precipitant, 200 mM glucose was used.

10

Example 9: Formation of Co-crystal with (2S)-1-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-3-(3-hydroxy-propyl)-urea

15

20

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 14 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-1-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-3-(3-hydroxy-propyl)-urea; in place of 20% glucose in the precipitant, 200 mM glucose was used.

Example 10: Formation of Co-crystal with (2S)-{3-[3-Cyclopentyl-2-(3,4-dichlorophenyl)-propionyl]-ureido}-acetic acid ethyl ester

25

Crystals were grown as in Example 3(a) with the following changes: the glucokinase solution contained 14 mg/ml glucokinase in tris buffer at pH 7.08 instead of 7.0; the glucokinase solution included 0.2 mM EDTA; in place of the glucokinase activator of Example 3(a), the glucokinase solution contained the glucokinase activator (2S)-{3-[3-Cyclopentyl-2-(3,4-dichloro-phenyl)-propionyl]-ureido}-acetic acid ethyl ester; in place of tris buffered at pH 7.08 in the precipitant, tris buffered at pH 7.05 was used.

Example 11: Synthesis of 3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide

3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide can be prepared using well-

known organic synthesis techniques according to the following reaction scheme:

3-Cyclopentyl-2-pyridin-4-yl-N-thiazol-2-yl-propionamide is useful as an allosteric activator of Glucokinase and to assist the formation of co-crystals of Glucokinase.

In the present specification "comprises" means "includes or consists of" and "comprising" means "including or consisting of".

5

10

The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

```
SEQUENCE LISTING
  <110> F. Hoffmann - La Roche
  <120> CRYSTALS OF GLUCOKINASE AND METHODS OF GROWING THEM
  <130> Case 20892
5 <140> US 60/341988
   <141> 2001-12-19
   <150> US 60/341988
   <151> 2001-12-19
  <160> 1
10 <170> PatentIn version 3.1
   <210> 1
   <211> 692
   <212> PRT
   <213> Homo sapiens
15 <220>
   <221> GK
   <222> (229)..(692)
   <223>
   <300>
20 <308> Genbank U13852
   <309> 1994-12-13
   <313> (1)..(228)
```

Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln Pro

5 10 15

<400> 1

Thr Arg Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu
20 25 30

Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu

			35					40					45			
	Gly	Leu	Glu	Phe	Pro	Asn	Leu	Pro	Tyr	Tyr	Ile	Asp	Gly	Asp	Val	Lys
		50					55					60				
	Leu	Thr	Gln	Ser	Met	Ala	Ile	Ile	Arg	Tyr	Ile	Ala	Asp	Lys	His	Asn
5	65					70					75					80
	Met	Leu	Gly	Gly	Cys	Pro	Lys	Glu	Arg	Ala	Glu	Ile	Ser	Met	Leu	Glu
					85					90					95	_
	Gly	Ala	Val	Leu	Asp	Ile	Arg	Tyr	Gly	Val	Ser	Arg	Ile	Ala	Tyr	Ser
				100					105					110		
10	Lys	Asp	Phe	Glu	Thr	Leu	Lys	Val	Asp	Phe	Leu	Ser	Lys	Leu	Pro	Glu
			115					120	· .·			٠	125			
	Met	Leu	Lys	Met	Phe	Glu	Asp	Arg	Leu	Cys	His	Lys	Thr	Tyr	Leu	Asn
		130					135					140				
	Gly	Asp	His	Val	Thr	His	Pro	Asp	Phe	Met	Leu	Tyr	Asp	Ala	Leu	Asp
15	145					150				٠	155					160
	Val	Val	Leu	Tyr	Met	Asp	Pro	Met	Cys	Leu	Asp	Ala	Phe	Pro	Lys	Leu
					165					170				٠.	175	
	Val	Cys	Phe	Lys	Lys	Arg	Ile	Glu	Ala	Ile	Pro	Gln	Ile	Asp	Lys	Tyr
				180	•				185					190		
20	Leu	Lys	Ser	Ser	Lys	Tyr	Ile	Ala	Trp	Pro	Leu	Gln	Gly	Trp	Gln	Ala
			195	•				200					205			
	Thr	Phe	Gly	Gly	Gly	Asp	His	Pro	Pro	Lys	Ser	Asp	Leu	Ile	Glu	Gly
		210					215			•		220				
	Arg	Gly	Ile	His	Met	Pro	Arg	Pro	Arg	Ser	Gln	Leu	Pro	Gln	Pro	Asn
25	225					230					235					240
	Ser	Gln	Val	Glu	Gln	Ile	Leu	Ala	Glu	Phe	Gln	Leu	Gln	Glu	Glu	Asp
					245		*			250					255	
	Leu	Lys	Lys	Val	Met	Arg	Arg	Met	Gln	Lys	Glu	Met	Asp	Arg	Gly	Leu

				260					265					270		
	Arg	Leu	Glu	Thr	His	Glu	Glu	Ala	Ser	Val	Lys	Met	Leu	Pro	Thr	Tyr
			275					280				•	285			
	Val	Arg	Ser	Thr	Pro	Glu	Gly	Ser	Glu	Val	Gly	Asp	Phe	Leu	Ser	Leu
5		290					295				•	300				
	Asp	Leu	Gly	Ġly	Thr	Asn	Phe	Arg	Val	Met	Leu	Val	Lys	Val	Gly	Glu
	305					310					315					320
	Gly	Glu	Glu	Gly	Gln	Trp	Ser	Val	Lys	Thr	Lys	His	Gln	Met	Tyr	Ser
			·		325			-		330			•		335	
10	Ile	Pro	Glu	Asp	Ala	Met	Thr	Gly	Thr	Ala	Glu	Met	Leu	Phe	Asp	Tyr
				340					345					350		
	Ile	Ser	Glu	Cys	Ile	Ser	Asp	Phe	Leu	Asp	Lys	His	Glņ	Met	Lys	His
			355.					360					365			
	rys	Lys	Leu	Pro	Leu	Gly	Phe	Thr	Phe	Ser	Phe	Pro	Val	Arg	His	Glu
15		370					375					380				
	Asp	Ile	Asp	Lys	Gly	Ile	Leu	Leu	Asn	Trp	Thr	Lys	Gly	Phe	Lys	Ala
	385					390					395					400
	Ser	Gly	Ala	Glu	Gly	Asn	Asn	Val	Val	Gly	Leu	Leu	Arg	Asp	Ala	Ile
				•	405					410					415	
20	Lys	Arg	Arg	Gly	Asp	Phe	Glu	Met	Asp	Val	Val	Ala	Met	Val	Asn	Asp
		•		420				•	425					430		
	Thr	Val	Ala	Thr	Met	Ile	Ser	Сув	Tyr	Tyr	Glu	Asp	His	Gln	Cys	Glu
	•		435					440					445			
	Val	Gly	Met	Ile	Val	Gly		Gly	Cys	Asn	Ala		Tyr	Met	Glu	Glu
25		450					455					460				
	Met	Gln	Asn	Val	Glu	Leu	Val	Glu	Gly	Asp		Gly	Arg	Met	Cys	
	465					470					475		_			480
	Asn	Thr	Glii	Tro	Glv	Ala	Phe	Glv	Asp	Ser	Glv	Glu	Leu	qaA	Glu	Phe

					485					490					495	
	Leu	Leu	Glu	Tyr	Asp	Arg	Leu	Val	Asp	Glu	Ser	Ser	Ala	Asn	Pro	Gly
				500					505					510		
	Gln	Gln	Leu	Tyr	Glu	Lys	Leu	Ile	Gly	Gly	Lys	Tyr	Met	Gly	Glu	Leu
5			515					520					525			
	Val	Arg	Leu	Val	Leu	Leu	Arg	Leu	Val	Asp	Glu	Asn	Leu	Leu	Phe	His
		530					535					540				
	Gly	Glu	Ala	Ser	Glu	Gln	Leu	Arg	Thr	Arg	Gly	Ala	Phe	Glu	Thr	Arg
	545					550					555					560
10	Phe	Val	Ser	Gln	Val	Glu	Ser	Asp	Thr	Gly	Asp	Arg	Lys	Gln	Ile	Tyr
					565					570				•	575	
t	Asn	Ile	Leu	Ser	Thr	Leu	Gly	Leu	Arg	Pro	Ser	Thr	Thr	Asp	Cys	Asp
				580					585					590		
	Ile	Val	Arg	Arg	Ala	Cys	Glu	Ser	Val	Ser	Thr	Arg	Ala	Ala	His	Met
15			595					600					605			
	Cys	Ser	Ala	Gly	Leu	Ala	Gly	Val	Ile	Asn	Arg	Met	Arg	Glu	Ser	Arg
		61Ò	•				615					620				
	Ser	Glu	Asp	Val	Met	Arg	Ile	Thr	Val	Gly	Val	Asp	Gly	Ser	Val	Tyr
	625					630					635					640
20	Lys	Leu	His	Pro	Ser	Phe	Lys	Glu	Arg	Phe	His	Ala	Ser	Val	Arg	Arg
		•			645					650					655	
	Leu	Thr	Pro	Ser	Cys	Glu	Ile	Thr	Phe	Ile	Glu	Ser	Glu	Glu	Gly	Ser
				660					665					670		
	Gly	Arg	Gly	Ala	Ala	Leu	Val	Ser	Ala	Val	Ala	Суз	Lys	Lys	Ala	Cys
25			675				٠	680					685			
	Met	Leu	Gly	Gln												
		690														

Claims

1. A co-crystal of mammalian Glucokinase and a ligand bound to an allosteric site of the Glucokinase, wherein

the co-crystal has unit cell dimensions of:

a and b are from 79.02 Å to 80.22 Å;

c is from 318.03 Å to 325.03 Å;

 α and β are 90°; and

γ is 120°;

and the co-crystal has P6(5)22 symmetry.

10

15

5

2. A crystal of mammalian Glucokinase, wherein

the crystal has unit cell dimensions of:

a and b are from 79.02 Å to 80.22 Å;

c is from 318.03 Å to 325.03 Å;

α and β are 90°; and

γ is 120°;

and the crystal has P6(5)22 symmetry.

3. A process for co-crystalizing mammalian Glucokinase and an allosteric ligand of
 Glucokinase, the process comprising:

providing a buffered, aqueous solution of 9 to 22 mg/ml of the mammalian Glucokinase;

adding a molar excess of the allosteric ligand to the aqueous solution of mammalian Glucokinase; and

growing crystals by vapor diffusion using a buffered reservoir solution between about 10% and about 30% PEG, about 0% w/v and about 30% w/v glucose, and between 0 and 20 mM DTT, wherein the PEG has an average molecular weight between about 1,000 and about 20,000.

- 4. The process of claim 3, wherein the step of growing crystals by vapor diffusion comprises:
- streaking the buffered, aqueous solution of mammalian Glucokinase with added allosteric ligand on a surface to form an elongated droplet of protein solution, and streaking about an equal amount of the buffered reservoir solution across the elongated droplet of protein solution, forming a combined droplet shaped like the letter 'X'.
 - 5. A crystal produced by the process of claims 3 or 4.
 - 6. A compound identified by analysing the structure coordinates of the co-crystal of claim 1, said compound being a ligand that binds to the allosteric site of Glucokinase.

7. The compound

and pharmaceutically acceptable salts

thereof.

- 8. A pharmaceutical composition comprising the compound of claim 6.
- 9. The pharmaceutical composition of claim 8, wherein said compound is the compound of claim 7.
- Use of the compound of claim 6 for the manufacture of a medicament comprising a
 compound according to claim 6 for the treatment of hyperglycemia in type II diabetes.
 - 11. The use of claim 10 wherein said compound is the compound of claim 7.
- 15 12. A compound according to claims 6 or 7, for use as a therapeutic active substance, in particular for the reduction of hyperglycemia in type II diabetes.
 - 13. The novel crystals, processes, compounds, compositions and uses as hereinbefore described.

20

- 14. A process according to Claim 3 or 4 further comprising the step of freezing the crystals.
- 15. A method of identifying a ligand that binds to the allosteric site of
 5 Glucokinase comprising analysing the structure co-ordinates of a co-crystal according to Claim 1.
 - 16. Use of a co-crystal according to Claim 1 or a crystal according to Claim 2 in the identification of a compound which activates Glucokinase.
 - 17. Use of a co-crystal according to Claim 1 or a crystal according to Claim 2 for elucidating the structure and function of a Glucokinase.

- 18. A compound according to Claim 6 or 7, or a composition according to Claim 8 or 9, for use in a method of treatment of human or animal body.
 - 19. Any novel feature or combination of features described herein.

Application No:

GB 0229456.9

Examiner:

Dr Rowena Dinham

Claims searched:

1-5 & 14-17; and 12, 13, 18 Date of search:

16 June 2003

and 19 (in part)

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Category	Relevant to claims	Identity of document and passage or figure of particular relevance
A, P		Protein Science; Vol 11, pp 2456-2463 (2002). Tsuge et al. "Crystal structure of the ADP-dependent glucokinase" See entire document, especially Results and Discussion "Overall strucure"
A		Structure; Vol 9, pp 205-214 (2001). Ito et al. "Structural basis for the ADP-specificity of a novel glucokinase" See entire document, especially Results and Discussion "Crystal structure of T. lioralis glucokinase"
A	,	Diabetes; Vol 48, pp 1698-1705 (1999). Mahalingam et al. "Structural model of human glucokinase" See entire document, especially Results "Overall model and comparison with previous model and hexokinase structures"

Categories:

x	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

Worldwide search of patent documents classified in the following areas of the IPC':

C12N; C30B; G06F

The following online and other databases have been used in the preparation of this search report:

WPI, EPODOC, JAPIO, MEDLINE, BIOSIS, EMBASE, SCISEARCH, CAPLUS