COMP245: Probability and Statistics 2016 - Problem Sheet 5 Solutions

Discrete Random Variables

S1) (a)
$$S = \{HH, HT, TH, TT\}.$$

(b)
$$p_X(0) = \frac{1}{4}$$
, $p_X(1) = \frac{1}{2}$, $p_X(2) = \frac{1}{4}$.

(c)
$$p_Y(1) = \frac{1}{4}, p_Y(3) = \frac{3}{4}.$$

S2)
$$\frac{x}{p(x)} = \frac{2}{36} = \frac{3}{36} = \frac{4}{36} = \frac{5}{36} = \frac{6}{36} = \frac{5}{36} = \frac{4}{36} = \frac{3}{36} = \frac{1}{36}$$

S3) Let X be a random variable giving the number of heads obtained. Then $X \sim \text{Binomial}(4,\frac{1}{2})$

(a)
$$p(4) = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$$
.

(b)
$$p(3) = {4 \choose 1} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^1 = \frac{4}{16} = \frac{1}{4}.$$

(c)
$$p(2) + p(3) + p(4) = {4 \choose 2} \left(\frac{1}{2}\right)^2 \left(\frac{1}{2}\right)^2 + p(3) + p(4) = \frac{11}{16}$$
.

(d) By symmetry (switch heads with tails) $p(0) + p(1) = p(4) + p(3) = \frac{5}{16}$.

S4) (a) i.
$$p(0) = \frac{3}{8} \times \frac{2}{7} = \frac{3}{28}$$
; $p(1) = \frac{3}{8} \times \frac{5}{7} + \frac{5}{8} \times \frac{3}{7} = \frac{15}{28}$; $p(2) = \frac{5}{8} \times \frac{4}{7} = \frac{5}{14}$. ii.

Page 1 of 4

(b) i. $p(0) = \frac{3}{8} \times \frac{3}{8} = \frac{9}{64}$; $p(1) = \frac{3}{8} \times \frac{5}{8} + \frac{5}{8} \times \frac{3}{8} = \frac{15}{32}$; $p(2) = \frac{5}{8} \times \frac{5}{8} = \frac{25}{64}$.

- S5) (a) $\binom{5}{0}$ 0.4°0.6° = 0.078.
 - (b) $\binom{5}{1}$ 0.4¹ 0.6⁴ = 0.26.
 - (c) 1 P(none pass) = 0.922.
- S6) (a) The distribution is Binomial(110,0.8) so
 - i. Mean = $110 \times 0.8 = 88$.
 - ii. Standard deviation = $\sqrt{110 \times 0.8 \times (1 0.8)} = 4.195$.
 - (b) The distribution is Binomial(11000,0.8) so
 - i. Mean = $11000 \times 0.8 = 8800$.
 - ii. Standard deviation = $\sqrt{11000 \times 0.8 \times (1 0.8)} = 41.95$.
- S7) The distribution is Binomial $(5, \frac{1}{5})$ so
 - (a) 0.2^5 .

- (c) $\binom{5}{2}$ 0.2² 0.8³.
- (b) $\binom{5}{3}0.2^30.8^2 + \binom{5}{4}0.2^40.8^1 + \binom{5}{5}0.2^50.8^0$. (d) $1 0.2^5$.
- S8) For Binomial(n, p), mean=np, standard deviation= $\sqrt{np(1-p)}$, skewness= $\frac{1-2p}{\sqrt{np(1-p)}}$.
 - (a) 90, 3, -0.2667.
- (c) 50, 5, 0.
- (e) 700, 14.49, -0.0276.

- (b) 70, 4.58, -0.0873.
- (d) 900, 9.49, -0.0843.
- (f) 500, 15.81, 0.

Absolute value of skewness decreases as p gets closer to $\frac{1}{2}$ and as sample size n increases.

- S9) Let X be the total number of passes. This is a random variable formed as the sum of five Binomial random variables, one Binomial(2,0.4), one Binomial(4,0.6), etc.
 - (a) $E(X) = 2 \times 0.4 + 4 \times 0.6 + 5 \times 0.7 + 7 \times 0.8 + 2 \times 0.9 = 14.1.$
 - (b) $Var(X) = 2 \times 0.4 \times 0.6 + 4 \times 0.6 \times 0.4 + 5 \times 0.7 \times 0.3 + 7 \times 0.8 \times 0.2 + 2 \times 0.9 \times 0.1 = 3.79$, so sd(X) = 1.95.
- S10) (a) 1/0.4=2.5.
 - (b) 0.4.
 - (c) $0.4^3 = 0.064$.
- S11) (a) np, np(1-p).
 - (b) $\sum_{i=1}^{n} p_i$, $\sum_{i=1}^{n} p_i (1 p_i)$.
 - (c) The mean is unaffected, but further information would be needed to calculate the variance.
- S12) Write

$$E(N) = \sum_{n=1}^{\infty} P(N=n) \sum_{r=1}^{n} 1 = \sum_{n=1}^{\infty} \sum_{r=n}^{\infty} P(N=r) = \sum_{n=1}^{\infty} P(N \geq n) = \sum_{j=0}^{\infty} P(N > j).$$