Algebra Autumn 2025 Frank Sottile 11 September 2025

Fourth Homework

Write your answers neatly, in complete sentences. I highly recommend recopying your work before handing it in. Correct and crisp proofs are greatly appreciated; oftentimes your work can be shortened and made clearer.

Some problems were partially done in class. This is an opportunity to polish your skills at writing mathematics in a clear and organized manner.

I am also hoping that this assignment has some easier problems. The last homework was a bit more than I probably should assign.

Hand in at the start of class, Thursday 18 September:

- 21 Let G be a group with subgroups H and K.
 - (a) Prove that $H \cap K$ is a subgroup of G.
 - (b) If both H and K are normal subgroups of G, prove that $H \cap K$ is a normal subgroup of G.
 - (c) If the set $H \cap K$ is replaced by $H \cup K$, do the answers to parts (a) and (b) change? Justify your answer.
- 22. Let G be a group. Show that its commutator subgroup, [G,G], is a normal subgroup of G.
 - Show that G/[G,G] is an abelian group. This is the abelianization of G.
 - Suppose that $\varphi \colon G \to H$ is a homomorphism of groups with H abelian. Show that $[G,G] \subset \ker(\varphi)$. Conclude that every homomorphism from G to an abelian group factors through its abelianization.
- 23. You will prove Gorsat's Lemma: Let G_1 and G_2 be groups and suppose that H is a subgroup of $G_1 \times G_2$ whose image under each coordinate projection $p_i \colon G_1 \times G_2 \to G_i$ for $i \in \{1,2\}$ is surjective. Let $N_1 \subset H$ be the kernel of p_2 and $N_2 \subset H$ be the kernel of p_1 and show that we may identify N_i as a normal subgroup of G_i , for $i \in \{1,2\}$.
 - Finally, show that the image of H in $G_1/N_1 \times G_2/N_2$ is the graph of an isomorphism $G_1/N_1 \xrightarrow{\sim} G_2/N_2$.
- 24. Let \mathbb{K} be a field. Recall that $B(n, \mathbb{K})$ is the group of invertible upper triangular matrices with entries in \mathbb{K} . Show that $B(2, \mathbb{K})$ and $B(3, \mathbb{K})$ are solvable.
 - (A more elegant route than taken by Lang is to let $U(n, \mathbb{K})$ be the subgroup of $B(n, \mathbb{K})$ consisting of matrices with 1s along the diagonal, and explore the commutator subgroup $[U(n, \mathbb{K}), U(n, \mathbb{K})]$.)
- 25. Give two different composition series for the quaternion group Q_8 and verify that they are equivalent (à la Jordan-Hölder). Also, verify that Q_8 is solvable.
- 26. Repeat the previous question, but for the dihedral group of order 8.
- 27. Please give a complete proof of Theorem 3.2 in Lang:
 - Let G be a group with normal subgroup H. Then G is solvable if and only if both H and G/H are solvable.