

Search For Delayed Photons Using Timing.

Tambe F Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics Results

Summary

Search For Delayed Photons Using Timing.

Shih-Chuan Kao¹

Yuichi Kubota¹ Tambe E. Norbert¹ Roger Rusack¹

¹University Of Minnesota

Long-Lived Meeting, November 29, 2014

Outline

- Search For Delayed Photons Using Timing.
- Tambe E. Norbert
- Outline

Introduction

Production and Decay

Dataset and Trigger Event

Selection

Background

Estimation Systematics

Results

Summary

- Introduction
- Production and Decay
- 3 Dataset and Trigger
- 4 Event Selection
- 5 Background Estimation
- 6 Systematics
- Results
- 8 Summary

Introduction

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

Long-Lived Particle Models

- ⋆ Gauge Mediated Supersymmetry Breaking (GMSB)
 - ightharpoonup Next-to-lightest SUSY (NLSP) is Neutralino $(\tilde{\chi}_1^0)$
 - $\triangleright eV keV$ Lightest-SUSY particle (LSP) is Gravitino (\tilde{G}).
 - ▶ Gravitino is a Dark Matter Candidate.
 - ⋆ General Gauge Mediation (GGM)
 - ▶ NLSP is a mixture of fermions (Bino, Wino, Higssino).
 - Several SUSY particles can be NLSP.

ECAL Resolution

- † ECAL timing resolution $\sigma_t < 500$ ps.
- † Use timing to identify photons and electrons from long-lived decay.

LHC Supersymmetry Production

Norbert Outline

Introduction

Production

and Decay

and Trigger

Event Selection

Background Estimation Systematics

Results

Summary

SUSY production mostly in strong interactions at LHC.

Cascade Decay Chain

Search For Delayed Photons Using Timing.

Tambe E.

Norbert Outline

Introduction

Production and Decay

Dataset and Trigger

Trigger Event

Selection

Background
Estimation

Systematics

Results

Summary

Y. Kats et al: arXiv:1110.6444v2

Delayed Photon Production

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline Introduction

Production

and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

Double Photon

2 Photons, 2 Jets, Large MET

Single Photon

Tranverse Decay Distance

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and

Trigger Event Selection

Background Estimation

Systematics

Results

Summary

Distance Travelled

$$L_T = c\tau \cdot (\gamma \beta_T) = c\tau \cdot \left(\frac{p_T}{m}\right)$$

Proper Decay Length

$$c\tau_{\rm NLSP} = C_{\rm grav}^2 \frac{1}{\kappa} \left(\frac{m_{\rm NLSP}}{GeV}\right)^{-5} \left(\frac{\sqrt{\rm F}}{TeV}\right)^4$$

Ruderman, D. Shih arXiv:1103.6083

Datasets

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results Summary • Data (19.1fb⁻¹)

Dataset Name	Recorded Luminosity $[fb^{-1}]$
/Run2012B/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	5.1
/Run2012C/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	6.9
/Run2012D/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	7.1
/Run2012C/Cosmics/Run2012C-22Jan2013-v1/RECO	3130384(events)
/Run2012D/Cosmics/Run2012C-22Jan2013-v1/RECO	52430 (events)
/SingleElectron/Run2012A-22Jan2013-v1/AOD	5.2
/DoubleElectron/Run2012C-22Jan2013-v1/AOD	4.8

• Signal MC [GMSB (SPS8)]

Λ [TeV]	100	120	140	160	180	300
$M_{\tilde{\chi}_1^0} [GeV/c^2]$	140	169	198	227	256	430
$c\tau$	215	325	130	245	185	
(mm)	425	645	515	490	365	495
	1700	1290	1030	975	730	
	3400	1935	2060	1945	1100	995
	5100	2955	2920	2930	2195	2960
	6000	3870	3985	3910	3950	
	9300	5985	6000	5875	5980	6000
		9825	10450	9815	10450	10450

\bullet $\gamma+$ Jets MC

\hat{p}_T [GeV /c]	σ_{LO} (pb)	Number of events
50 - 80	3322.3	1995062
80 - 120	558.3	1992627
120 - 170	108.0	2000043
170 - 300	30.1	2000069
300 - 470	2.1	2000130
470 - 800	0.212	1975231

HLT Trigger

Search For Delaved Photons Using Timing.

Tambe E.

Norbert Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

HLT_DisplacedPhoton65_CaloIdVL_IsoL_PFMET25

• HLT_Photon50_CaloIdVL_IsoL (Study Trigger)

ECAL Timing

Search For Delayed Photons Using

Timing. Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics Results

Summary

Time Reconstruction

- 10 digitized samples used.
- Fit and Weighted methods used to extract time.
- Time Measurement

$$T_{MAX} = \frac{\sum_{i} \frac{T_{MAX,i}}{\sigma_i^2}}{\sum_{i} \frac{1}{\sigma_i^2}}$$

Time Performance

• Time resolution better than 200 ps for E > 30 GeV

ECAL Timing(2)

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

Photon Timing

- $T_{\gamma} =$ Average Time of all Crystals.
- $T_{\gamma} = \text{Seed (most energetic) Crystal Time.}$

- Similar behavior seen in Seed and Average Time.
- We use seed time as Photon Measured Time in this analysis.

ECAL Timing(3): MC Vs Data

Figure : (LEFT): Before (RIGHT): After

- Timing corrections from data applied to $\gamma+$ Jets MC.
- \bullet $\gamma+$ Jets MC timing aligns better with data after corrections are applied.

Search For Delayed Photons Using Timing.

Tambe E.

Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Background

Estimation Systematics

Results

Summary

12 / 26

Long-Lived Decay

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

Source of Delayed Photon?

- Slow moving particle; $\beta << 1$,
- Non-nominal flight path,
- Stopped in subdetectors,

Slow Vs Off-Pointing Decay

Search For Delayed Photons Using Timing. Tambe E.

Norbert

Outline

Introduction

. . .

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

 $\Delta t_2 = (L1 + L2 - L3)/c$

Delayed photons mostly from slow moving neutralino decays.

Event Selection

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Trigger

Selection

Background Estimation

Systematics

Results

Summary

Object Selection Criteria

Variable	Selection Cuts
Photon $p_T(\gamma^{1(2)})$	> 80(45) GeV
$ \eta_{\gamma} $,(EB only),	< 3.0 (< 1.5)
Semi-minor axis (S_{Minor})	$0.12 \le S_{Minor} \le 0.38$
H/E	< 0.05
Track Vito, $\Delta R(\gamma, track)$	> 0.6
HCAL, ECAL, Track, Isolation	< 4.0, < 4.5, < 0.2
Cone Size(Iso γ) $\Delta R(\gamma,SC)$	< 0.4
Spike Swiss-Cross	$1 - E_4/E_1) < 0.98$
Jets must satisfy	JetID Requirements
Leading Jet p_T	$>35~{\sf GeV}$
Number Of Constituents	> 1
$\Delta R(\gamma, jet) = \sqrt{(\phi_{\gamma} - \phi_{jet})^2 + (\eta_{\gamma} - \eta_{jet})^2}$	> 0.3
E_T^{miss}	$>25~{\rm GeV}$

Kinematics Distribution

Search For Delayed Photons Using Timing.

Tambe E.

Norbert

Outline

. . .

Introduction

Production and Decay

Dataset and

Trigger Event Selection

Background Estimation

Systematics

Results

Summary

Figure : E_T^{miss}

• Different Λ values with the same $c\tau(10 \text{ m})$. Photon p_T is harder with higher values of Λ .

Signal Efficiency and Acceptance

Norbert Outline

Introduction

Production and Decay

Dataset and

Trigger Event

Selection Background

Estimation

Systematics

Results

Summary

Sharp drop in efficiency immediately beyond ECAL radius for slow moving neutralino decay as source of delayed photon.

Signal Efficiency and Acceptance(II)

Norbert

Outline

Introduction

Production and Decay

Dataset and

and Trigger Event

Selection Background

Estimation

Systematics

Results

Summary

Figure : Off-Pointing

Acceptance peaks at transverse decay length 800 mm with delayed photons from off-pointing neutralino decays.

Signal Efficiency and Acceptance(III)

Search For Delayed Photons Using Timing.

Tambe E.

Norbert

Outline

Introduction

Production and Decay

Dataset and

and Trigger Event

Selection Background

Estimation

Systematics

Results

Summary

Figure: 2 Dim Efficiency

Background Estimation

Photons
Using
Timing.

Tambe E.
Norbert

Search For Delayed

Outline

0

Introduction

Production

and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

Systematics

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

Background estimation is Data driven. Thus, most of a systematics come from signal, including:

Experimental Systematics

- Definition of Absolute or Zero time,
- ECAL time Resolution,
- Unclustered Energy,
- Jet energy scale,
- Jets energy resolution,
- Photon energy scale,
- Luminosity. We use standard CMS luminosity uncertainty.

Theoretical Systematics

- Choice of PDF.
- Re-normalization group equations.

Systematics(II

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and

Trigger Event

Selection

Background
Estimation

Systematics

Systematic

Results Summary Systematic Uncertainties

Cystematic Sheertameres			
Source	Uncertainty(%)		
Absolute time(Zero time)	$10 \sim 6$		
Unclustered Energy	$10 \sim 4$		
Photon Energy Scale	$4 \sim 2$		
ECAL Time Resolution	$5\sim 2$		
Jet Energy Scale	$9 \sim 3$		
Jet Energy Resolution	$9 \sim 2$		
Luminosity	2.6		
Choice of PDF	< 1		

 Systematics is obtained by studying the effects of varying by a few amount of a particular source of systematic on the total number of objects passing object selection cuts.

Results

Search For Delayed Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation Systematics

Results

Summary

Events Passing Final Selection

Sample	Lifetime($c au$)[mm]	Number Of Events
GMSB $\Lambda=180~{ m TeV}$	10500	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	6000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	4000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	3000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	2000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	1000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	500	
Data	1.00	
Background Total	0.014	

CLs Upper Limits

Search For Delaved Photons Using Timing.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and

Trigger Event

Selection

Background Estimation

Systematics

Results

Summary

Figure: Mass Limit

sample is $c\tau=12000$ mm but we measure $c\tau\approx10500$ mm

$c\tau$ -Mass Limits

Search For Delayed Photons Using Timing.

Tambe E.

Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary

Summary

Delayed Photons Using Timing. Tambe E.

Search For

Norbert Outline

Introduction

Production

and Decay

Dataset and Trigger

Event Selection

Background Estimation

Systematics

Results

Summary