1. What is KKR? Why KKR is needed in A.I?

Knowledge Representation & reasoning is a technique for representing information about the real world so that a computer can understand and can utilize this knowledge to solve the complex real world problems.

2. Definition of PL (Propositional Logic), PDL(Predicate Logic), and FL(Fuzzy Logic).

Propositional logic (PL) is the simplest form of logic where all the statements are made by propositions. A proposition is a declarative statement that is either true or false. It is a technique of knowledge representation in logical and mathematical form.

Predicate Logic (PDL) deals with predicates, which are propositions, consist of variables. It is a powerful language that develops information about the objects in a more easy way and can also express the relationship between those objects.

Fuzzy Logic (**FL**) in artificial intelligence is a generalized form of standard logic, where any concept might have a truth degree ranging between 0.0 and 1.0.

3. What are the different types of inferences that are used on the above 3 types of knowledge representation techniques with examples?

Propositional logic (PL)

■ Modus Ponens: One of the most important rules of inference, and it states that if
P and P → Q is true, then we can infer that Q will be true. It can be represented as:

$$P \to Q, P \qquad \{((P \to Q) \land P) \to Q\}$$

- ∴Q
- Hence, we can say that, if P → Q is true and P is true then Q will be true

Example:

Statement-1: "If I am sleepy then I go to bed" $==> P \rightarrow Q$

Statement-2: "I am sleepy" ==> P

Conclusion: "I go to bed." ==> Q.

Hence, we can say that, if $P \rightarrow Q$ is true and P is true then Q will be true.

Modus Tollens: This rule state that if P → Q is true and ¬ Q is true, then ¬ P will also true. It can be represented as:

Example:

Statement-1: "If I am sleepy then I go to bed" ==> P→ Q

Statement-2: "I do not go to the bed."==> ~Q

Statement-3: Which infers that "I am not sleepy" => ~P

- **Hypothetical Syllogism (H. S.):** This rule state that if $P \rightarrow R$ is true whenever $P \rightarrow Q$ is true, and $Q \rightarrow R$ is true. It can be represented as the following notation:
- $\frac{(P \to Q) \land (Q \to R)}{\therefore P \to R}$

☐ Example:

Statement-1: If you have my home key then you can unlock my home. $P \rightarrow Q$ Statement-2: If you can unlock my home then you can take my money. $Q \rightarrow R$ Conclusion: If you have my home key then you can take my money. $P \rightarrow R$

- **Disjunctive Syllogism (D. S.):** The Disjunctive syllogism rule state that if PVQ is true, and ¬P is true, then Q will be true. It can be represented as:
- <u> (PVQ) ~P</u> ∴Q

■ Example:

Statement-1: Today is Sunday or Monday. ==>PVQ

Statement-2: Today is not Sunday. ==> ¬P

Conclusion: Today is Monday. ==> Q

♦ Drawbacks of PL -

- 1. Has limited expressive power
- 2. No representation to relations like "All, some, none, etc"
 - 1. E.g All eggs are rotten, some apples are sweet, etc.
- 3. Alternate = Predicate Logic

Predicate Logic (PDL)

Quantifiers:

- Logical operators which assert the scope of a predicate
 - ∀ For All (universal quantifier)
 - ∃ There Exists (existential quantifier)

- ∀x LOVELY (x) Everything is lovely.
- ∃x LOVELY (x) Something is lovely.
- $\forall x$ IN $(x, \text{garden}) \Rightarrow \text{LOVELY } (x)$ Everything in the garden is lovely.

Fuzzy Logic (FL)

Fuzzy Inference: The process of reasoning based on Fuzzy logic.

Example:

If the power transformer is slightly overloaded, Then keep this load for a while.

Fuzzy rule: A conditional statement in the form:

IF x is A THEN y is B, where x and y are linguistic variables, and A and B are linguistic values determined by fuzzy sets.

- Rule 1: IF (GPA is high) and (Exam is satisfactory) and (Approach is Smart) then (Decision is Select)
- Rule 2: IF (GPA is low) and (Exam is bad) or (Approach is Stupid)
 then (Decision is Reject)
- Inputs to a fuzzy system can be:
 - fuzzy, e.g. (Score = Moderate), defined by membership functions
 - exact, e.g.: (Score = 190); (Theta = 35), defined by crisp values.
- Outputs from a fuzzy system can be:
 - fuzzy, i.e. a whole membership function, or
 - exact, i.e. a single value is produced on the output.

Four steps: fuzzification, rule evaluation, aggregation of the rules, defuzzification

Rule 1: Rule 1:

THEN z is C1 THEN risk is low

Rule 2: Rule 2:

IF x is A2 IF project_funding is marginal AND y is B2 AND project_staffing is large

THEN z is C2 THEN risk is normal

Rule 3: Rule 3:

THEN z is C3 THEN risk is high

- 4. <u>Symbols, quantifiers, rules of inference in different types of knowledge representation technique</u> with examples.
 - Syntax of PL:
 - symbol -> P | Q | R | S | ...
 - atomic sentence -> TRUE | FALSE
 - sentence -> atomic sentence | complex sentence
 - complex sentences -> ~ sentence | (sentence ^ sentence) | (sentence v sentence) | (sentence → sentence) | (sentence ↔ sentence)
 - Precedence relation operators: ~, ^, v, →, ↔.

Predicate Logic

- ☐ Logical Connectives:
 - ➤ AND (^)
 - >OR (∀)
 - ➤ NOT (~)
 - \triangleright IMPLIES (\rightarrow)

Quantifiers:

- Logical operators which assert the scope of a predicate
 - ∀ For All (universal quantifier)
 - ∃ There Exists (existential quantifier)
 Operations on Fuzzy Sets
- Operations on fuzzy sets is done by means of their membership functions. Let A and B be fuzzy sets on a mutual universe.

1. Intersection of A and B is: $A \cap B =$	= A min B, corresponding items in a and b.
2. Union of A and B is: $A \cup B =$	= A max B, corresponding items in a and b.
3. Complement of A is: A =	= 1 - A
4. Dilation (increases the degree of membership of all members by spreading out the curve) of A is:	=DIL (A) = $(u_A(x)^{1/n})$ for all x in U
5. Concentration (decreases the degree of membership of all members) of A is:	=CON (A) = $(u_A(x)^n)$ for all x in U

5. <u>Difference between Fuzzy Logic and Crisp Logic. What are fuzzy expert systems?</u>

FUZZY SET

Defines value between 0 or 1

CRISP SET

Defines either value is 0 or 1

YES or NO

Crisp logic (crisp) is the same as boolean logic(either 0 or 1). Either a statement is true(1) or it is not(0), meanwhile fuzzy logic captures the degree to which something is true.

A fuzzy expert system is an expert system that uses fuzzy logic instead of Boolean logic. In other words, a fuzzy expert system is a collection of membership functions and rules that are used to reason about data. A typical fuzzy expert system has more than one rule.

6. Application of PL, PDL & FL

<u>Propositional Logic</u> - Design of computing machines, artificial intelligence, the definition of data structures for programming languages, etc.

Predicate Logic - Formal notations for writing clear and concise mathematical definitions.

Applications of Fuzzy Logic

Control Applications: Aircraft control, Sendai subway operation (Hitachi), Cruise control (Nissan), Automatic Transmission (Nissan, Sabaru), Self parking model car (Tokyo University), Space Shuttle docking (NASA)

Scheduling and Optimization:

Elevator Scheduling (Hitachi, Fujitsu, Mitsubishi)

Stock Market Analysis: Yamichi Securities

Signal Analysis for Tuning and Interpretation:

TV picture adjustment (Sony Corporation)

Handwriting Recognition: Sony Palmtop computer

Video Camera Autofocus: Sony and Canon Video Image Stabilizer: Matsushita, Panasonic

Fuzzy System Applications

- · Pattern recognition and classification
- · Fuzzy clustering
- Image and speech processing
- Fuzzy systems for prediction
- Fuzzy control
- Monitoring
- Diagnosis
- Optimization and decision making
- Group decision making

7. <u>Limitations of PL, PDL & FL</u>

Limitations of PL -

- 4. Has limited expressive power
- 5. No representation to relations like "All, some, none, etc"
- a. E.g All eggs are rotten, some apples are sweet, etc.

Limitations of PDL -

Limitations/Problems

- Lack of Semantics
 - No formal semantic of the relations
 - E.g. Does "IS-A" mean subclass, member, etc?
 - Possible multiple interpretations
 - Restricted expressiveness
 - E.g. can not distinguish between instance and class

Advantages:

Easy to follow hierarchy, easy to trace association, flexible

Disadvantages:

- Meaning attached to nodes might be ambiguous
- Exception handling is difficult
- Difficult to program

Disadvantages of Fuzzy Logic Systems -

- 1. Fuzzy logic is not always accurate, so The results are perceived based on assumption, so it may not be widely accepted.
- 2. Fuzzy systems don't have the capability of machine learning as well as neural network type pattern recognition.

A major drawback of Fuzzy Logic control systems is that they are completely dependent on human knowledge and expertise.

20