Réseaux de neurones récurrents et LSTM

Maxime Amossé, Vincent Auriau, Laurent Beaughon, Marc Bélicard, Yaqine Héchaïchi, Julien Hemery, Hugo Hervieux, Sylvain Pascou, Thaïs Rahoul, Pierre Vigier encadrés par Arpad Rimmel et Joanna Tomasik

CentraleSupélec

7 juin 2017

Projet long LSTM

- Introduction
- 2 Ressources
- 3 Principes généraux des réseaux de neurones
- Traitement de séquences, introduction aux réseaux récurrents
- 5 Génération de séquences avec des LSTM
- 6 Génération de musique
 - Génération de spectres audio
 - Génération de midi
 - Génération de partitions
- Conclusion

Introduction

• Étudier les publications originelles

- Étudier les publications originelles
- Implémenter un réseau simple

- Étudier les publications originelles
- Implémenter un réseau simple
- Étudier les algorithmes de traitement de séquence

- Étudier les publications originelles
- Implémenter un réseau simple
- Étudier les algorithmes de traitement de séquence
- Implémenter ces algorithmes

- Étudier les publications originelles
- Implémenter un réseau simple
- Étudier les algorithmes de traitement de séquence
- Implémenter ces algorithmes
- Découvrir la cellule LSTM et l'implémenter

Ressources

Organisation

- Réunion hebdomadaire
- Suivi des encadrants
- Répartition des tâches

Languages et outils

- Python et Numpy, C++ et Eigen
- Github et TravisCI
- Zotero
- LaTeX

Principes généraux des réseaux de neurones

Réseau de neurones

 ${f Figure}$ – Exemple de réseau simple

Propagation

FIGURE - Propagation dans une cellule simple

Source: Wikipedia.org

Méthode du gradient

FIGURE - Exemples de descente du gradient

Source: http://ludovicarnold.altervista.org/teaching/optimization/gradient-descent/

Rétropropagation

L'objectif est d'évaluer pour tout $w_{ij}^{(k)}$: $\frac{\partial E}{\partial w_{ij}^{(k)}}$.

$$\frac{\partial E}{\partial w_{ij}^{(k)}} = \sum_{l=1}^{M} \frac{\partial y_{l}^{(K)}}{\partial w_{ij}^{(k)}} \times \frac{\partial E}{\partial y_{l}}$$

Projet long LSTM

Problème type : MNIST

FIGURE - Exemple de données du MNIST

Problème type : MNIST

Résultats sur le MNIST :

entre 92.2% et 97.8% de précision en fonction de la structure du réseau

Traitement de séquences, introduction aux réseaux récurrents

Réseau récurrent

FIGURE - Exemple de réseau récurrent

Source : Wikipedia.org

Projet long LSTM

FIGURE - Dépliement dans l'espace

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

FIGURE - Dépliement dans l'espace d'une cellule LSTM

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Comparaison différentes méthodes sur Reber symétrique

FIGURE – Précision de différents algorithmes sur un apprentissage de grammaire de Reber symétrique

Génération de séquences avec des LSTM

Principe

FIGURE - Principe de génération de séquences

Exemple : génération de texte

Third Servan:

Of many bald with him fire, read now?

Second Murderer:

Out! where he wal'd apt thou, myself!

O brother's maliss and trunks and Caubble subject.

Now i' the fill in thy noble devart wagains to argon me thy commanded?

LADY ANNE:

Sir, af you have fellow's their eyes live?

Génération de musique

Trois approches différentes

Génération	de spectres	MIDI	de partitions		
Pas de temps	Libres	Libres	Contraints		
Hauteurs	Libres	Contraintes	Contraintes		

FIGURE – Comparaison des trois approches

Génération de spectres audio

Mise en forme des données

FIGURE - Création du dataset

Principe

FIGURE - Fourier RNN

Résultats

FIGURE - Spectre du signal généré

Génération de midi

Format

	Hauteurs											
Octave Number	C	C#	D	D#	E	F	F#	G	G#	Α	A#	В
0	0	1	2	3	4	5	6	7	8	9	10	11
1	12	13	14	15	16	17	18	19	20	21	22	23
2	24	25	26	27	28	29	30	31	32	33	34	35
3	36	37	38	39	40	41	42	43	44	45	46	47
4	48	49	50	51	52	53	54	55	56	57	58	59
5	60	61	62	63	64	65	66	67	68	69	70	71
6	72	73	74	75	76	77	78	79	80	81	82	83
7	84	85	86	87	88	89	90	91	92	93	94	95
8	96	97	98	99	100	101	102	103	104	105	106	107
9	108	109	110	111	112	113	114	115	116	117	118	119
10	120	121	122	123	124	125	126	127				

Commandes:

- note_on note velocity time
- note_off note velocity time

Principe

FIGURE - Visualisation de fichiers midi

Résultats

FIGURE - Jig générée

Génération de partitions

Génération de notes

FIGURE - Note RNN

Résultats

FIGURE - Une partition générée par Note RNN

Génération de notes en série

FIGURE - Series RNN

Résultats

FIGURE - Une partition générée par Series RNN

Génération de mesures en parallèle

FIGURE - Measure RNN

Encodage des mesures

FIGURE - Réseau encodeur de mesures

Résultats

FIGURE - Une partition générée par Measure RNN

Conclusion