高等代数 (荣誉) I 作业模板

请输入姓名

Tuesday $13^{\rm th}$ May, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明	
	0.1	Exercise 1
	0.2	Exercise 2
	0.3	Exercise 3
	0.4	Exercise 4
	0.5	Exercise 5
	0.6	Exercise 6
	0.7	Exercise 7
	0.8	Exercise 8
	0.9	Exercise 9
	0.10	Exercise 10

目录 1

0.1 Exercise 1

Characterise the ceigenspace corresponding to the ceigenvalue 0.

解答 \bar{A} 的零空间

0.2 Exercise 2

Demonstrate that if λ is a ceigenvalue, then so too is $e^{i\theta} \cdot \lambda$. Furthermore, show that for any ceigenvector v, there exists a ceigenvector associated with a ceigenvalue ≥ 0 .

解答 考虑
$$A\bar{v} = \lambda v, \Rightarrow A(e^{-i\theta}v) = \lambda e^{2i\theta}(e^{-i\theta}v)$$

0.3 Exercise 3

Suppose (v, σ) is a ceigenpair of A; then $(v, \sigma \overline{\sigma})$ is an eigenpair of $A\overline{A}$. In particular,

- if $A \in \mathbb{C}^{d \times d}$ possesses d ceigenpairs which are linearly independent over \mathbb{C} , then $A\overline{A}$ is diagonalisable with all eigenvalues non-negative.

Now consider the following **partial converse statement**:

- A has no ceigenvectors if and only if $A\overline{A}$ admits no eigenvalues in $\mathbb{R}_{\geq 0}$; - $A \in \mathbb{C}^{d \times d}$ has d linearly independent ceigenpairs over \mathbb{C} if and only if $A\overline{A}$ is diagonalisable with non-negative eigenvalues.

解答
$$A\bar{A}v = \sigma\bar{\sigma}v$$
,

0.4 Exercise 4

Elucidate **Exercise 3** (particularly the warning) with the following example:

$$A = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix}, \quad v = \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

解答 $A\bar{A} = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -i \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 因此 v 是 $A\bar{A}$ 的特征向量, 但是可以计算 v 不是 A 的 c 特征向量.

0.5 Exercise 5

This serves to complete **Exercise 2**. Suppose $\{(v_i, \lambda_i)\}_{i=1}^n$ are ceigenpairs of A such that $|\lambda_i| \neq |\lambda_j|$; show that $\{v_i\}_{i=1}^n$ are linearly independent.

解答
$$\{(v_i, |\lambda_i|^2)\}_{i=1}^n$$
 也是 $A\bar{A}$ 的特征对, 由于 $|\lambda_i|^2 \neq |\lambda_j|^2$, 所以 $\{v_i\}_{i=1}^n$ 线性无关.

0.6 Exercise 6

We aim to identify the analogue of the Jordan canonical form in the c-version, namely, $X = PJ\overline{P}^{-1}$. We commence with a very special case:

- $P\overline{P} = I$ if and only if $P = Q\overline{Q}^{-1}$ for some invertible Q.

解答 "⇒":
$$P\bar{P}=I$$
, Let $Q=P+I$, then $P\bar{Q}=P\bar{P}+P=P+I+Q$

目录 2

0.7 Exercise 7

The most elementary Jordan matrix is the diagonal matrix. Show that A is cdiagonalisable (i.e., $A = PD\overline{P}^{-1}$ for some P) if and only if $A\overline{A}$ is diagonalisable. In this scenario, $A\overline{A}$ has only nonnegative eigenvalues.

解答 "\(-\) ": $A\bar{A} = P^{-1}DP$ and D > 0, then we can find P such that $A = P\sqrt{D}P^{-1}$

0.8 Exercise 8

(Nilpotent part). Show that there exists a matrix P such that $PA\overline{P}^{-1} = \begin{pmatrix} N & O \\ O & B \end{pmatrix}$, where N comprises nilpotent Jordan blocks and B is invertible.

解答 把 AĀ 进行 Jordan

0.9 Exercise 9

To analyse the Jordan form of A, we begin by studying the Jordan form of $A\overline{A}$. Demonstrate the following:

- 1. $A\overline{A}$ has a characteristic polynomial with real coefficients;
- 2. non-real Jordan blocks occur in conjugate pairs;
- 3. if dim ker $(\lambda I A\overline{A}) = 1$ and $\lambda \in \mathbb{R}$, then $\lambda \geq 0$;

解答 1. Ex 2. AĀ 的特征值都是实数, 其特征多项式是实系数的.

2. Ex 12. A is csimilar to \bar{A} and $\bar{AA} = \bar{A}A$ 3. $v^*A\bar{A}v = \lambda v^*v$, 左为正, 故 $\lambda > 0$

0.10 Exercise 10

解答 对 $A\bar{A}$ 正特征值部分直接取对应特征向量, 对复数特征值部分, 交替选取 z 和 \bar{z} 对应特征向量, 对负数特征值部分, 个数一定是偶数, 然后对对应 Jordan 块直和得到半-Jordan 块后再计算.