Introduction à la robotique industrielle TD – Master AURO – UPS

1 Partie I : Outils mathématiques

1.1 Les trois rotations de base

- 1. On considère un repère \mathcal{R}_0 orthonormé. On effectue une rotation d'un angle θ autour de l'axe \vec{x}_0 et on obtient le repère \mathcal{R}_1 . Établir l'expression de la matrice de rotation entre ces deux repères.
- 2. On considère un repère \mathcal{R}_0 orthonormé. On effectue une rotation d'un angle θ autour de l'axe $\vec{y_0}$ et on obtient le repère \mathcal{R}_1 . Établir l'expression de la matrice de rotation entre ces deux repères.
- 3. On considère un repère \mathcal{R}_0 orthonormé. On effectue une rotation d'un angle θ autour de l'axe $\vec{z_0}$ et on obtient le repère \mathcal{R}_1 . Établir l'expression de la matrice de rotation entre ces deux repères.
- 4. A l'aide des résultats précédents, déterminer l'axe et l'angle de rotation correspondant aux matrices de rotation suivantes :

$$R_{01} = \begin{pmatrix} 0.5 & 0 & 0.87 \\ 0 & 1 & 0 \\ -0.87 & 0 & 0.5 \end{pmatrix} \qquad R_{01} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad R_{01} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$
(1)

Choisir un repère \mathcal{R}_0 et dessiner le repère \mathcal{R}_1 .

1.2 Composition des rotations et changements de base

- 1. Soit un repère \mathcal{R}_0 . Pour définir le repère \mathcal{R}_2 , on effectue deux rotations :
 - la première, notée R_1 , est d'angle $-\pi/2$ autour de l'axe \vec{y}_0
 - la seconde, notée R_2 , est d'angle $\pi/2$ autour de l'axe \vec{x}_1 du repère \mathcal{R}_1 ainsi obtenu
 - (a) Dessiner les différents repères obtenus.
 - (b) Déterminer les matrices de passage entre \mathcal{R}_0 et \mathcal{R}_1 puis \mathcal{R}_1 et \mathcal{R}_2 .
 - (c) En déduire la matrice de passage entre \mathcal{R}_0 et \mathcal{R}_2 .
 - (d) Soit un vecteur \vec{v} de composantes (0, 1, 2) dans \mathcal{R}_0 . Donner ses composantes dans \mathcal{R}_1 et \mathcal{R}_2 .

1.3 Matrices de passage homogènes

1. On considère la figure 1 où sont définis deux repères \mathcal{R}_0 et \mathcal{R}_1 . Déterminer la matrice de passage homogène correspondante.

FIGURE 1 – Définition des repères.

2. On considère un bras manipulateur comportant 6 liaisons. On note \mathcal{R}_0 et \mathcal{R}_6 les repères qui sont respectivement liés à la base du bras manipulateur et l'organe terminal.

$$T_{06} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L \\ 1 & 0 & 0 & H \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (2)

où L et H sont deux longueurs positives. Dessiner l'organe terminal et son repère associé. Sachant que le centre de la pince O_7 se trouve à une distance d_1 du point O_6 selon \vec{x}_6 et à une distance d_2 du point O_6 selon \vec{z}_6 , déterminer sa position dans \mathcal{R}_0 . Donner la situation de l'organe terminal en utilisant les cosinus directeurs partiels et les coordonnées cartésiennes.