Exercício 3.7 - Análise e Correção

Prof. Ana Isabel Castillo

August 4, 2025

Seja $k \in \mathbb{Z}^+$. O sistema fornecido é:

$$\begin{cases} kx_1 + x_2 = 2 & (1) \\ kx_1 + 2x_2 + \frac{k}{5}x_3 = 3 & (2) \\ kx_1 + x_2 + 2x_3 = 2 & (3) \end{cases}$$

A matriz dos coeficientes é:

$$A = \begin{bmatrix} k & 1 & 0 \\ k & 2 & \frac{k}{5} \\ k & 1 & 2 \end{bmatrix}$$

Verificação do critério das linhas

Para o método de Gauss-Jacobi convergir, uma condição suficiente é que a matriz A seja **estritamente diagonalmente dominante por linhas**, ou seja, em cada linha, o módulo do elemento da diagonal principal deve ser maior que a soma dos módulos dos demais elementos da linha.

- Linha 1: $|k| > |1| + |0| \Rightarrow k > 1$
- Linha 2: $|2| > |k| + \left| \frac{k}{5} \right| = \frac{6k}{5} \Rightarrow 2 > \frac{6k}{5} \Rightarrow k < \frac{10}{3} \approx 1.6667$
- Linha 3: $|2| > |k| + |1| \Rightarrow 2 > k + 1 \Rightarrow k < 1$

Observe que:

- A primeira linha exige k > 1
- A terceira linha exige k < 1

Portanto, não existe valor inteiro positivo de k que satisfaça simultaneamente as três condições.

Portanto

Mesmo que tenham utilizado corretamente o raciocínio para encontrar a matriz de iteração C, a conclusão mais direta e suficiente neste caso vem da análise da **dominância diagonal por linhas**, que é um critério claro e eficiente para verificar a convergência do método de Gauss-Jacobi.

Não existe valor de $k \in \mathbb{Z}^+$ Que garanta a convergência do método de Gauss-Jacobi para este sistema.

Análise

você vez o sistema isolando as variáveis da forma usada no método de Gauss-Jacobi. A sequência apresentada foi:

$$x_1 = \frac{-x_2 + 2}{k}$$

$$x_2 = \frac{-kx_1 - \frac{k}{5}x_3 + 3}{2}$$

$$x_3 = \frac{-kx_1 - x_2 + 2}{2}$$

Comentário: As expressões estão corretamente isoladas. Isso mostra que o vc entendeu bem a ideia do método iterativo de Gauss-Jacobi.

Em seguida, você montou a matriz de iteração C, baseada na decomposição A=D+L+U, considerando $C=-D^{-1}(L+U)$. A matriz construída foi:

$$C = \begin{bmatrix} 0 & -\frac{1}{k} & 0\\ -\frac{k}{2} & 0 & -\frac{k}{10}\\ -\frac{k}{2} & -\frac{1}{2} & 0 \end{bmatrix}$$

Comentário: Essa matriz está correta. Representa a matriz de iteração de Gauss-Jacobi usando $D^{-1}(L+U)$.

Análise da norma:

você calculou a **norma infinita** da matriz C, ou seja, a maior soma dos módulos dos elementos por linha. Os cálculos:

• Linha 1:
$$\left| -\frac{1}{k} \right| = \frac{1}{k}$$

- Linha 2: $\left| -\frac{k}{2} \right| + \left| -\frac{k}{10} \right| = \frac{3k}{5}$
- Linha 3: $\left| -\frac{k}{2} \right| + \left| -\frac{1}{2} \right| = \frac{k}{2} + \frac{1}{2}$

$$\Rightarrow ||C||_{\infty} = \max\left\{\frac{1}{k}, \frac{3k}{5}, \frac{k}{2} + \frac{1}{2}\right\}$$

e afirmou corretamente que para garantir convergência:

$$||C||_{\infty} < 1$$

Comentário: Esse raciocínio está correto e bem feito. Porém, a conclusão foi:

Não existe valor de $k \in \mathbb{Z}^+$ tal que $\|C\|_{\infty} < 1$

Vamos analisar:

- Para a linha 2: $\frac{3k}{5} < 1 \Rightarrow k < \frac{5}{3}$ - Para a linha 3: $\frac{k}{2} + \frac{1}{2} < 1 \Rightarrow k < 1$ Portanto, as duas restrições levam a:

$$k < 1$$
 (mais restritiva)

Mas como $k \in \mathbb{Z}^+$, ou seja, $k \ge 1$, não existe valor inteiro positivo que satisfaça essa condição. Assim, a conclusão de você está **correta**.

Resumo da revisão:

- \bullet A manipulação algébrica e a montagem da matriz C foram bem feitas.
- O cálculo da norma infinita foi realizado corretamente.
- A conclusão final de que **não existe valor de** $k \in \mathbb{Z}^+$ tal que o método de Gauss-Jacobi convirja está correta.

Essa conclusão está correta. A abordagem geral de você está boa, com exceção de uma pequena confusão no uso da notação da norma (você deveria ter indicado $||C||_{\infty}$) e talvez ter deixado mais claro que a norma calculada foi a de linha.

Ajustes sugeridos: - Especificar claramente que usou a norma de linha $||C||_{\infty}$. - Indicar que a convergência do método não ocorre para nenhum $k \in \mathbb{Z}^+$, com base na condição obtida: $k < \frac{1}{2}$.

b) Convergência do Método de Gauss-Seidel

A matriz iterativa B_{GS} e calculo dos coeficientes:

$$\beta_1 = \frac{1}{k},$$

$$\beta_2 = \frac{k}{10} + \frac{1}{2},$$

$$\beta_3 = \frac{k}{20} + \frac{3}{4}.$$

A convergência do método exige max $|\beta_i| < 1$. Isso impõe a condição:

$$\frac{k}{20} + \frac{3}{4} < 1 \Rightarrow \frac{k}{20} < \frac{1}{4} \Rightarrow k < 5.$$

Logo, o método converge para $k \in \mathbb{Z}^+$ tal que k < 5.

c) Método Iterativo – Gauss-Seidel

Com k = 1, iteramos com a seguinte fórmula:

$$x_1^{(k+1)} = \frac{2 - x_2^{(k)}}{1},$$

$$x_2^{(k+1)} = \frac{3 - x_1^{(k+1)} - \frac{1}{5}x_3^{(k)}}{2},$$

$$x_3^{(k+1)} = \frac{2 - x_1^{(k+1)} - x_2^{(k+1)}}{2}.$$

Com
$$x^{(0)} = (1, 1, 1)^T$$
:
- $x^{(1)} = (1, \frac{9}{10}, \frac{1}{20})^T$ - $x^{(2)} = (\frac{1}{10}, \frac{189}{200}, -\frac{29}{400})^T$
Erro: $||x^{(2)} - x^{(1)}||_{\infty} = 0.1$.