การคัดเลือกตัวแปรโดยการหาค่าเอยูซีเหมาะสมที่สุด

วรัญญู วงษ์เสรี, ปวริศ ธารีชาญ

สาขาวิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

บทคัดย่อ

เอยูซีเป็นเกณฑ์ที่ใช้ในการเปรียบเทียบประสิทธิภาพของตัวจำแนก การ วิเคราะห์ทางสถิติหาความสัมพันธ์ระหว่างเอยูซีและอัตราผิดพลาด (Error rate) พบว่ากรณีที่คลาสไม่สมดุลที่มีอัตราผิดพลาดสูง ตัวจำแนกที่มีความ ถูกต้อง (Accuracy) สูงอาจจะไม่ได้มีค่าเอยูซีสูง เนื่องจากความถูกต้อง จะแปรผันตามจำนวนตัวอย่างที่จำแนกผิดพลาด ในขณะที่เอยูซีนอกจาก จะแปรผันตามจำนวนตัวอย่างที่จำแนกผิดพลาด แล้วยังแปรผันตามลำดับ (Rank) ของตัวอย่างที่จำแนกผิดพลาดด้วย และมีการพิสูจน์เชิงทฤษฎีและ ทดลองพบว่าเอยูซีมีความสอดคล้อง (Consistency) และความสามารถใน การจำแนก (Discriminancy) สูงกว่าความถูกต้องทั้งในกรณีที่คลาสสมดุล และไม่สมดุล นอกจากนี้ตัวจำแนกที่มีค่าเอยูซีสูงจึงมีความเหมาะสมมากกว่า ตัวจำแนกที่มีความถูกต้องสูง ดังนั้นจึงมีความจำเป็นในการหาฟังก์ชันความ สูญเสีย (Loss function) ที่เหมาะสมสำหรับการหาค่าเอยูซีที่เหมาะสมที่สุด

1 บทน้ำ

เป้าหมายของขั้น ตอนวิธีการ เรียนรู้สำหรับ ปัญหาการ จำแนก คือ การ สร้าง ตัวจำแนกจากชุดข้อมูลที่มีป้ายกำกับเพื่อให้แบบจำลองสามารถใช้ ในการ พยากรณ์ชุดข้อมูลทดสอบ โดยทั่วไปความสามารถในการทำนายของขั้นตอน วิธีการ เรียนรู้สำหรับ ปัญหาการ จำแนกสามารถ วัด ได้ จากค่า ความ แม่นยำ (หรือ อัตราผิดพลาดซึ่งเท่ากับ 1 ลบด้วยค่าความแม่นยำ) ของชุดข้อมูล ทดสอบ และโดยส่วนใหญ่ของแบบจำลองการจำแนกนั้นสามารถประมาณค่า ความน่าจะเป็นของการเกิดคลาส ได้แต่มักไม่ค่อยนำมาประเมินประสิทธิภาพ ของ แบบ จำลอง เท่า ไหร่ ทำให้ ความ แม่นยำ ถูก พิจารณา เพียง ถูก ต้อง หรือ ผิดพลาด เพียง เท่านั้น ค่า ความ แม่นยำ นั้น อาจไม่ เพียงพอใน การ ประเมิน ประสิทธิภาพของแบบจำลองการจำแนก เช่น ในทางการตลาด ที่ต้องการ กระตุ้นยอดขายสูงสุดให้เพิ่มขึ้นจากลูกค้า จึงทำให้ต้องการดำเนินกลยุทธ์ ทางการค้าต่อลูกค้าที่ส่งผลมากที่สุดต่อการขายในแต่ละบุคคล มิใช่เพียงแค่ การดำเนินกลยุทธ์ต่อลูกค้าที่เพียงสนใจแค่ว่าจะทำให้ลูกค้าซื้อหรือไม่เท่านั้น เพราะ ต้องการที่จะเพิ่มโอกาสการซื้อของลูกค้าให้เกิดผลสูงสุด ดังนั้นในกรณี นี้เพียงแค่เพิ่มโอกาสการซื้อของลูกค้านั้นไม่เพียงพอ แต่ต้องเป็นวิธีที่เพิ่ม โอกาสการซื้อของลูกค้าได้มากที่สุดด้วย

ดัง นั้นการ จัด อันดับ จึง เป็น ที่ ต้องการ มากกว่า แค่ การ จัด ประเภท และ สามารถคำนวณได้ง่ายเนื่องจากแบบจำลองการจำแนกส่วนใหญ่จะสร้างการ ประมาณความน่าจะเป็นที่สามารถใช้ในการจัดอันดับได้

เส้นโค้ง ROC (Receiver Operating Characteristics) ได้ถูกนำเอามา ใช้ในการประเมินประสิทธิภาพการจัดอันดับของขั้นตอนวิธีการเรียนรู้สำหรับ ปัญหาการจำแนกโดยพบว่า AUC มีคุณสมบัติที่พึงประสงค์หลายประการเมื่อ เทียบกับความแม่นยำ ในบทความนี้จะแสดงให้เห็นในเชิงประจักษ์ว่า AUC เป็นการประเมินประสิทธิภาพแบบจำลองที่ดีกว่าความแม่นยำ

2 เกณฑ์ สำหรับ การ เปรียบ เทียบ มาตรการ การ ประเมิน

เริ่มต้นด้วยการเปรียบเทียบ AUC และความแม่นยำจากนั้นอธิบายคำ จำกัดความที่เป็นทางการในการเปรียบเทียบตัวประเมินประสิทธิภาพแบบ จำลองการจำแนกทั้งสองประเภท

2.1 ค่า AUC เทียบกับ ค่าความแม่นยำ

การคำนวณ AUC สามารถคำนวณได้จาก[1]

$$AUC = \frac{\sum r_i - n_p \frac{n_p + 1}{2}}{n_p n_n} \tag{1}$$

ตารางที่ 1 ตัวอย่างข้อมูลการคำนวณ AUC

	-	-	-	-	+	-	+	+	+	+	
i					1		2	3	4	5	
r_i					5		7	8	9	10	

ตารางที่ 2 ตัวอย่างแบบจำลองการจำแนกทั้งสองที่มีค่าความแม่นยำเท่ากัน แต่มี AUC ต่างกัน

ตัวจำแนกที่ 1	-	-	-	-	+	-	+	+	+	+
ตัวจำแนกที่ 2	+	-	-	-	-	+	+	+	+	-

เมื่อ n_p และ n_n คือจำนวนตัวอย่างทั้งหมดของคลาสบวก และคลาส ลบตามลำดับ และ r_i คือหมายเลขอันดับของคลาสบวกที่ i จากตัวอย่าง ในตารางที่ 1 พบว่ามีคลาสบวกและ คลาสลบอยู่อย่างละ 5 ตัว และเมื่อ คำนวณหาค่า AUC จะได้ดังนี้ $\frac{(5+7+8+9+10)-5\times\frac{6}{2}}{5\times5}$ ซึ่งเท่ากับ $\frac{24}{25}$ โดย ค่าสูงสุดของ AUC จะมีค่าเท่ากับ 1 ในตัวอย่างถัดไปจะเห็นว่าเหตุใด AUC จึงเป็นหน่วยวัดที่ดีกว่าความแม่นยำ

พิจารณาแบบจำลองการจำแนก 2 แบบจำลองที่มีการประมาณความน่า จะเป็นสำหรับชุดตัวอย่างการทดสอบ 10 ชุด โดยเป็นคลาสบวกและ คลาส ลบอย่างละ 5 ตัว ซึ่งเห็นได้ชัดเจนว่าการจำแนกทั้ง 2 ตัว มีค่าความแม่นยำ เท่ากับ 80% (จำแนกคลาสบวกถูกต้อง(จริงบวก) 4 ตัว จำแนกคลาสลบถูก ต้อง(จริงลบ) 4 ตัวและ จำแนกคลาสบวกผิด(เท็จลบ) 1 ตัว จำแนกคลาสลบ ผิด(เท็จบวก) 1 ตัว รวมถูกต้องทั้งหมด 8 ตัวจาก 10 ตัว) แต่ค่า AUC ของตัว จำแนกที่ 1 และ 2 นั้นเท่ากับ $\frac{24}{25}$ และ $\frac{16}{25}$ ตามลำดับ พบว่าความแม่นยำ ไม่สามารถแยกความแตกต่างของทั้งสองแบบจำลองได้ ในขณะที่ค่า AUC สามารถแยกความแตกต่างของทั้งสองแบบจำลองได้

2.2 ความสอดคล้อง (Consistency) และความสามารถใน การจำแนก (Discriminancy)

เมื่อต้องเปรียบเทียบประสิทธิภาพของแบบจำลองที่แตกต่างกันดัชนีหนึ่ง ที่ควรคำนึงถึงคือความสอดคล้อง เพื่อระบบุว่าแบบจำลองที่เปรียบเทียบกัน นั้นจะมีการทำงานหรือ เปลี่ยนแปลงไปในทิศทางเดียวกัน หรือกลับกัน หรือ 14

อีกดัชนีหนึ่งความสามารถในการจำแนก (Discriminancy) ความสามารถ ในการ แยก รูป แบบ ที่ แตก ต่าง กัน ดัชนีใน การ ประเมิน ประสิทธิภาพ แบบ ใด สามารถ จำแนก สูง กว่า อีก แบบ นั้น จะ ต้อง มี เหตุการณ์ ที่ การ ประเมิน ประสิทธิภาพ หนึ่งไม่ สามารถ แยก รูป แบบ สอง ชุด ข้อมูล ที่ มี ความ ต่าง กันได้ แต่อีกการประเมินประสิทธิภาพสามารถทำได้

3 ทดลองเปรียบเทียบ

ในส่วนนี้จะแสดงให้เห็นอย่างชัดเจนด้วยบนข้อมูลที่จำลองขึ้นในทุกกรณี โดยวิธีการเรียงสับเปลี่ยนทางคณิตศาสตร์ โดยข้อมูลจะมีทั้งหมดสองคลาส กำหนดให้เป็นคลาสบวกและ คลาสลบการทดลองจะแบ่งเป็นสองกรณีคือ ข้อมูลที่สมดุลกันและ ไม่สมดุลกัน

3.1 ข้อมูลสองคลาสที่สมดุล

ดังนั้นชุด ข้อมูล ใน การ ทดลอง นี้ จะ ประกอบ ด้วย ตัวอย่าง บวก และ ลบ จำนวนเท่ากัน (binary class) โดยจะทดลองข้อมูล ที่มีขนาด 4, 6, 8, 10, 12, 14, 16, 18 และ 20 ตัวอย่าง

โดยเมื่อข้อมูลมีขนาด 2n จะมีรูปแบบที่เป็นไปได้ทั้งหมด $\binom{2n}{n}$ และ รูปแบบที่สนใจทั้งหมดมีดังนี้ ให้ a,b เป็นรูปแบบชุดข้อมูลที่แตกต่างกัน ถ้า AUC(a) > AUC(b) และ acc(a) > acc(b) ด้วย จะนับ ว่าค่า AUC มีความสอดคล้องกับค่าความแม่นยำ แต่ถ้า AUC(a) > AUC(b) แต่ acc(a) < acc(b) จะ ถูก นับ ว่าค่า AUC ไม่มี ความสอดคล้องกับค่าความแม่นยำ โดยให้ค่าความสอดคล้อง C คิดได้จาก เหตุการณ์ที่ค่า AUC และค่าความแม่นยำ เป็นไปในทิศทางเดียวกัน หารด้วย ผลรวมของทั้งสองเหตุการณ์ ผลลัพธ์จากการทดลองแสดงดังตารางที่ 3

ถ้า acc(a)=acc(b) แต่ $AUC(a) \neq AUC(b)$ ด้วย จะนับว่าค่า AUC นั้นมีความสามารถในการจำแนกสูงกว่าค่าความแม่นยำ แต่ เมื่อ AUC(a)=AUC(b) และ $acc(a) \neq acc(b)$ จะถูก นับว่าค่าความแม่นยำ นั้นมีความสามารถในการจำแนกสูงกว่าค่า AUC ความ สามารถในการจำแนก D คิดได้จากเหตุการณ์ที่ AUC มีความสามารถในการ จำแนกสูงกว่าค่าความแม่นยำ หารด้วย เหตุการณ์ที่ค่าความแม่นยำ มีความ สามารถในการจำแนกสูงกว่า AUC ผลลัพธ์จากการทดลองแสดงดังตารางที่ 4

ตารางที่ 3 ความสอดคล้องกันของ AUC และ ความแม่นยำ

0	ค่า AUC และ	ค่า AUC และ	α
2n	ค่าความแม่นยำ	ค่าความแม่นยำ	C
	สอดคล้องกัน	ไม่สอดคล้องกัน	
4	9	0	1
6	113	1	0.991
8	1,459	34	0.977
10	19,742	766	0.963
12	273,600	13,997	0.951
14	3,864,673	237,303	0.942
16	55,370,122	3,868,959	0.935
18	802,343,521	61,797,523	0.928
20	11,733,729,456	975,464,160	0.923

ตารางที่ 4 ความสามารถในการจำแนกของค่า AUC และ ความแม่นยำ

	ค่า AUC	ค่าความแม่นยำ	
2n	จำแนกได้ดีกว่า	จำแนกได้ดีกว่า	D
	ค่าความแม่นยำ	ค่า AUC	
4	5	0	∞
6	62	4	15.5
8	762	52	14.4
10	9,416	618	15.2
12	120,374	7,369	16.3
14	1,578,566	89,828	17.6
16	21,161,143	1,121,120	18.9
18	288,745,778	14,290,466	20.2
20	3,998,425,154	185,536,518	21.5

รูปที่ 1 ค่าความสอดคล้องและค่าความสามารถในการจำแนก เทียบจำนวน ตัวอย่าง

ในการทดลองที่ข้อมูลเป็นมีจำนวนคลาสสองคลาสและเป็นข้อมูลที่สมดุล พบว่า AUC นั้นมีความสอดคล้องกับ ค่าความแม่นยำและ AUC นั้นสามารถ จำแนกเหตุการณ์ที่แตกต่างกันที่ค่าความแม่นยำไม่สามารถจำแนกได้มากกว่า และเมื่อพิจารณามองความสามารถในการจำแนกนั้นพบว่ายิ่งจำนวนข้อมูล เยอะมากขึ้นนั้น ความสามารถในการจำแนกของ AUC จะสูงขึ้นด้วย แสดงดัง รูปที่ 1

3.2 ข้อมูลสองคลาสที่สมดุล

ข้อมูลไบนารีคลาสที่ไม่สมดุลโดยจะกำหนดให้มีตัวอย่างคลาสบวก 25% และตัวอย่างคลาสลบ 75% โดยข้อมูลที่ใช้จะมีจำนวน 4, 8, 12 และ 16 ตัวอย่าง และยังคงใช้สูตรการคำนวณหาค่า AUC เหมือนเดิมและเนื่องจาก จำนวนตัวอย่างนั้นไม่สมดุลทำให้การคำนวณค่าความแม่นยำจะเปลี่ยนจาก เดิมที่ให้ 5 ตัวอย่างแรกเป็นคลาสลบและ 5 ตัวอย่างถัดไปเป็นคลาสบวกหรือ อีกนัยหนึ่งคือแบ่งตรงกลางอย่างละครึ่ง แต่เมื่อข้อมูลนั้นมีขนาดไม่เท่ากัน ทำให้การแยกคลาสบวกและคลาสลบเป็น 75% แรกเป็นคลาสลบ และ 25% เป็นต่อมาเป็นคลาสบวกตามอัตราส่วนของข้อมูลเข้าที่เปลี่ยนไป

ตารางที่ 5 ความสอดคล้องกันของ AUC และ ความแม่นยำ(ไม่สมดุล)

	ค่า AUC และ	ค่า AUC และ	
2n	ค่าความแม่นยำ	ค่าความแม่นยำ	C
	สอดคล้องกัน	ไม่สอดคล้องกัน	
4	3	0	1
6	187	10	0.949
12	12,716	1,225	0.912
16	926,884	114,074	0.890

ตารางที่ 6 ความสามารถในการจำแนกของค่า AUC และ ความแม่นยำ(ไม่ สมดุล)

2n	ค่า AUC จำแนกได้ดีกว่า	ค่าความแม่นยำ จำแนกได้ดีกว่า	D
	ค่าความแม่นยำ	ค่า AUC	
4	3	0	∞
8	159	10	15.9
12	8,986	489	18.4
16	559,751	25,969	21.6

รูปที่ 2 ค่าความสอดคล้องและ ค่าความสามารถในการจำแนก เทียบจำนวน ตัวอย่าง กรณีข้อมูลไม่สมดุล

ตารางที่ 7 ความสอดคล้องและความสามารถในการจำแนกของค่า AUC และ ความแม่นยำ(ไม่สมดุล ขนาดข้อมูล 10 ตัวอย่าง)

คลาสบวก	คลาสลบ	C	D
1	9	1.0	∞
2	8	0.926	22.3
3	7	0.939	15.5
4	6	0.956	14.9
5	5	0.963	15.2

และสุดท้ายเป็นการทดลองในหลายๆ อัตราส่วนของคลาสบวกและคลาส ลบ โดยกำหนดให้มีข้อมูลทั้งหมด 10 ตัวอย่าง โดยเริ่มจากสมดุลคือมีทั้งหมด อย่างละ 5 ตัวอย่างจากนั้นเพิ่มและ ลดคลาสใดคลาสหนึ่งไปเรื่อยๆ จนไม่ สามารถลดได้ ในกรณีนี้คือเหลือตัวเดียว

จากการทดลองทั้งสองไม่ว่าเป็นข้อมูลทั้งแบบที่สมคุลและ ไม่สมคุลก็ตาม ผลการทดลองยังคงเป็นไปในทิศทางเดียวกัน ทั้งในมุมความสอดคล้องที่ยัง คงสอดคล้องกันสูง และในมุมความสามารถในการจำแนกที่ AUC มีความ สามารถในการจำแนก สูงขึ้น เรื่อยๆ ตาม ขนาด ของข้อมูล และ ยิ่งมีความ สามารถในการจำแนกสูงมากขึ้นเมื่อข้อมูลเกิดความไม่สมคุลของทั้งสองคลาส

4 การประยุกต์ใช้

จากการทดลองที่ผ่านมาได้เปรียบเทียบตัวประเมินประสิทธิภาพทั้งสอง คือค่า AUC และ ค่าความแม่นยำ โดยว่า AUC มีประสิทธิภาพดีกว่าค่าความ แม่นยำ แต่อย่างไรก็ตามในการใช้งานจริงทั้ง AUC และความแม่นยำไม่ใช่เป้า หมายสุดท้าย เช่น ธนาคาร หรือ บริษัทประกันภัย อาจจะมีข้อมูลของลูกค้าอยู่ มหาศาลโดยสิ่งที่ต้องการสุดท้ายคือการคาดการณ์การทำกำไรให้กับ บริษัท

สมมติว่าลูกค้า ที่ถูกเก็บในฐาน ข้อมูล มีการเก็บ ด้วย แอตทริบิวต์ จำนวน หนึ่ง และ ลูกค้า แต่ละ ราย อาจ เป็น ผู้ ซื้อ หรือ ไม่ใช่ ผู้ ซื้อ ผลิตภัณฑ์ บาง อย่าง เนื่องจากปัญหานี้เป็นปัญหาการจำแนกแบบไบนารี่ ลูกค้าจะได้รับการติดต่อ จากแคมเปญการส่งเสริมการขายสำหรับลูกค้าแต่ละ รายโดย บริษัทต้องคาด การณ์ว่าในสินค้าชนิดๆ หนึ่งนั้นลูกค้าแต่ละ รายมีความต้องการสินค้านั้นมาก เพียงใด และ ต้องเพิ่มโอกาสการซื้อมากน้อยเพียงใด

อย่างไรก็ตามการประยุกต์ใช้ บริษัท อาจต้องการโปรโมตเพียงเล็กน้อยให้ กับลูกค้าที่มีแนวโน้มสูงที่สุดที่คาดการณ์ไว้ และต้องโปรโมตมากขึ้นสำหรับ ลูกค้าที่มีแนวโน้มสดลง ซึ่งทำให้กำไรที่ได้ต่อลูกค้าแต่ละคนนั้นต่างกันไป ด้วยซึ่งในความเป็นจริง ก่อให้เกิดผลดีต่อรายได้ของบริษัทเพราะสามารถลด การโปรโมตเกินจำเป็นสำหรับลูกค้าที่มีแนวโน้มจะซื้อสินค้าสูงๆ อยู่แล้ว เช่น ลูกค้าที่มีแนวโน้มจะซื้อสินค้าสูงสุด 10% แรกนั้นอาจจะเป็นลูกค้าที่มีการซื้อ สินค้าเป็นประจำในการโปรโมตสินค้าที่ลูกค้ากลุ่มนี้ซื้อเป็นประจำอยู่แล้วอาจ ไม่จำเป็น และเพิ่มโอกาสให้ลูกค้าที่มีแนวโน้มลดลงมามีโอกาสซื้อสินค้ามาก ขึ้นด้วย

5 สรุป

ใน บทความ นี้ ได้ ให้ คำ จำกัด ความ อย่าง เป็น ทางการ เกี่ยว กับ ความ สอดคล้องและ ความสามารถในการจำแนก เพื่อใช้ประเมินผลสำหรับขั้นตอน วิธีการเรียนรู้ในปัญหาการจำแนก กำหนดรูปแบบและเกณฑ์ที่ใช้สำหรับการ เปรียบเทียบตัวประเมินประสิทธิภาพทั้งสอง และ แสดงให้เห็นอย่างชัดเจน ว่า AUC นั้นเป็นตัวประเมินประสิทธิภาพที่ดีกว่าค่าความแม่นยำ และได้นำ ไปเปรียบเทียบกับเหตุการณ์จริงในธุรกิจเพื่อแสดงผลลัพธ์ที่น่าสนใจว่า AUC เกี่ยวข้องโดยตรงกับกำไรสุทธิมากกว่าค่าความแม่นยำในการตลาดทางตรง

การ เพิ่ม ประสิทธิภาพ AUC นั้น เป็น ที่ ต้องการ มากกว่า การ เพิ่ม ความ แม่นยำในการนำขั้นตอนวิธีการ เรียนรู้สำหรับ ปัญหาการ จำแนก รวมถึงการ ทำเหมืองข้อมูลที่จะนำไปประยุกต์ใช้ในโลกความเป็นจริง

ข้อมูลอ้างอิง

[1] D.J. Hand and R.J. Till. A simple generalisation of the area under the ROC curve for multipleclass classification problems.

- Machine Learning, 45:171–186, 2001.
- [2] Ling, Charles X and Huang, Jin and Zhang, Harry. AUC: a Statistically Consistent and more Discriminating Measure than Accuracy. Fredericton, NB, Canada
- [3] Jin Huang and Ling, C.X. *Using AUC and accuracy in evaluating learning algorithms*. London, Ontario, Canada