Verjetnostne metode v računalništvu - zapiski s predavanj prof. Marca

Tomaž Poljanšek

študijsko leto 2023/24

Kazalo

1	Introduction 1				
	1.1	Probability	1		
	1.2	Random variables	2		
2	Qui	cksort, min-cut	4		
	2.1	Quicksort	4		
	2.2	Min-cut	6		
3	Complexity classes				
4	Che	ernoff bounds	11		
5	Monte Carlo methods				
	5.1	Example 1	16		
	5.2	Example 2	16		
	5.3	(ϵ, δ) -approximation	17		
	5.4	DNF counting	18		
6	Pol	ynomials	20		
7	Rar	ndom graphs	24		
	7.1	$G(n,\!p) \ model \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	24		
	7.2	Barbási-Albert Model	27		
8	Ma	rkov chains	29		

	9.1	Quicksort as RIC	40
9	9 Randomized incremented constructions (RIC)		
	8.4	M.C. for 1-factor in bipartite graphs	37
	8.3	Metropolis algorithm	34
	8.2	Generating a uniformly random element of a set	33
	8.1	2-SAT	32

Introduction

1.1 Probability

```
\begin{split} &(\Omega, F, P_r): \\ &\circ \ \emptyset \in F, \\ &\circ \ A \in F \implies A^c \in F, \\ &\circ \ A_1, A_2 \cdots \in F \implies \cup_{i=1}^\infty A_i \in F. \\ &P_r(A) \geq 0, \\ &P_r\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty P_r(A_i) \text{ if } A_i \text{ disjoint,} \\ &P_r\left(\bigcup_{i=1}^\infty A_i\right) \leq \sum_{i=1}^\infty P_r(A_i), \\ &\Omega = \left\{\omega_1, \omega_2 \dots\right\} - \text{countable case.} \\ &\left(\omega_1 \quad \omega_2 \quad \dots \right) \\ &Primer. \\ &\text{Alg():} \\ &\text{while True:} \\ &\text{B = sample as random from } \{0,1\} \quad \text{\# 1 with probability p} \\ &\text{if B = 1:} \end{split}
```

return

$$\Omega = \{1, 01, 001, 0001 \dots\}$$

$$\begin{pmatrix} 1 & 01 & 001 & 0001 & \dots \\ p & (1-p)p & (1-p)^2p & (1-p)^3p & \dots \end{pmatrix}.$$

1.2 Random variables

 $X:\Omega\to\mathbb{Z}.$

 $E[X] = \sum_{c \in \mathbb{Z}} c \cdot P_r(X = c)$ expected value of X.

Properties:

$$\circ E[f(X)] = \sum_{c \in \mathbb{Z}} f(c) \cdot P_r(X = c),$$

$$\circ \ E[aX + bY] = aE[X] + bE[Y],$$

$$\circ E[X \cdot Y] = E[X] \cdot E[Y]$$
 if X, Y independent,

$$\circ P_r(X \ge a) \le \frac{E[X]}{a} \, \forall a > 0 \, X \ge 0 \, \text{Markov inequality.}$$

Primer. (Continuing from before).

X = number of trials before return.

$$X:\Omega\to\mathbb{Z}.$$

Trditev 1.2.1. $E[X] = \frac{1}{p}$.

Dokaz 1.2.2. $X = \sum_{i=1}^{\infty} X_i$.

$$X_i = \begin{cases} 1 & \text{if trial } i \text{ is executed} \\ 0 & \text{else} \end{cases}$$

$$E[X] = E[\sum_{i=1}^{\infty} X_i] = \sum_{i=1}^{\infty} E[X_i] =$$

$$= \sum_{i=1}^{\infty} (1-p)^{i-1} = \frac{i=0}{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

$$E[X] = \frac{1}{p}.$$

 $P_r(X \ge 100 \cdot \frac{1}{p}) \le \frac{E[X]}{\frac{1}{p}} = \frac{1}{100}.$

Definicija 1.2.3.
$$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \sum_{i=1}^{\infty} \frac{1}{i}$$
.

Izrek 1.2.4. $H_n \le 1 + \ln(n)$.

Dokaz 1.2.5.

$$H_n = 1 + \sum_{i=2}^n \frac{1}{i} \stackrel{\text{integral}}{\leq} 1 + \int_1^n \frac{dx}{x} = 1 + \ln(x)|_1^n = 1 + \ln(n).$$

Quicksort, min-cut

2.1 Quicksort

```
Input: set (no equal element) (unordered list) S \in \mathbb{R}
      (or whatever you can compare linearly)

Output: ordered list

Code:
    def Quicksort(S):
    if |S| = 0 or 1:
      return S

    else:
      a = uniformly at random from S

      S^- = {b \in S | b < a}
      S^+ = {b \in S | a < b}
      return Quicksort(S^-), a, Quicksort(S^+)</pre>
```

C(n) - random variable, the number of comparisons in evaluation of Quicksort with |S|=n.

Izrek 2.1.1.
$$E[C(n)] = O(N \log(n))$$
.

Dokaz 2.1.2.
$$C(0) = C(1) = 0$$
.

$$E[C(n)] = n - 1 + \sum_{i=1}^{n} (E[C(i-1)] + E[C(n-i)]) \cdot P_r(a \text{ is } i\text{-it element}) \le 1 + \frac{2}{n} \sum_{i=1}^{n-1} E[C(i)].$$

Induction:

 $n=1:\checkmark$

 $n-1 \rightarrow n$:

$$\begin{split} E[C(n)] &\leq n + \frac{2}{n} \sum_{i=1}^{n} E[C(i)] \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{n} 5i \log i \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 5i \log i + \frac{2}{n} \sum_{i=1+\lfloor \frac{n}{2} \rfloor}^{n-1} 5i \log i \leq \\ &\leq n + \frac{2}{n} \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 5i \log \frac{n}{2} + \frac{2}{n} \sum_{i=1+\lfloor \frac{n}{2} \rfloor}^{n-1} 5i \log n \leq \\ &(\log \frac{n}{2} = \log n - 1) \\ &\leq n + \frac{2}{n} \left(\sum_{i=1}^{n} 5i \log n - \sum_{i=1}^{\frac{n}{2}} 5i \right) = \\ &= n + \frac{10}{n} \left(\frac{n(n-1)}{2} \log n - \frac{\frac{n}{2}(\frac{n}{2} + 1)}{2} \right) \leq \\ &\leq n + 5(n-1) \log n - n < \\ &< 5n \log n. \end{split}$$

$$P\left(C(n) \geq b \cdot 5n \log n\right) \overset{\text{Markov}}{\leq} \tfrac{1}{b}.$$

Dokaz 2.1.3.

2:

Let $S_1, S_2 \dots S_n$ sorted elements of S.

Define random variable $X_{ij} = \begin{cases} 1 \text{ if } S_i \text{ and } S_j \text{ are compared} \\ 0 \text{ else} \end{cases}$

$$\begin{split} &C(n) = \sum_{1 \leq i < j \leq n} E[X_{ij}]. \\ &E[X_{ij}] = P(S_i \text{ and } X_j \text{ compared}). \\ &S_{ij} \text{ - the last set including } S_i \text{ and } S_j. \\ &E[X_{ij}] = \frac{2}{|S_{ij}|} \leq \frac{2}{j-i+1}. \\ &|S_{ij}| \geq j-i+1. \\ &S_{ij} \text{ has everything in between.} \end{split}$$

$$\implies E[C(n)] \le \sum_{1 \le i < j \le n} \frac{2}{j - i + 1} = \sum_{k=j-i+1}^{n-1} \sum_{j=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le \sum_{k=j-i+1}^{n-1} \frac{2}{k} \le$$

$$\leq 2 \cdot n \cdot H_n \leq$$

$$\leq 2n(1+\log n).$$

2.2 Min-cut

G multigraph.

Cut: $U \subset V(G), \ U \neq \emptyset, V(g)$.

$$(U,V(G)\setminus U)=\{uv\in E(G)\mid u\in U,v\in V(G)\setminus U\}.$$

Problem min-cut:

Input: G.

Output: $\min |(U, V(G) \setminus U)|$ - cut size.

Algorithm 1:

 $x \in V(G)$

Call maxFlow(G, x, y) $\forall y \in V(G)$

Take min

maxFlow is Edmonds-Karp algorithm $O(|V||E|^2)$.

Algorithm 2 (Stoer Wagner)

Is
$$O(|E||V| + |V|log|V|)$$
.

Algorithm randMinCut:

$$\begin{split} & \texttt{G_0} = \texttt{G} \\ & \texttt{i} = \texttt{0} \\ & \texttt{while} \ | \texttt{V}(\texttt{G}_i) | > 2 \colon \\ & \texttt{e}_i = \texttt{uniformly at random from } \texttt{G}_i \\ & \texttt{G}_{i+1} = \texttt{G}_i \ / \ e_i \\ & \texttt{i} = \texttt{i} + \texttt{1} \\ & \texttt{u, v} = \texttt{V}(\texttt{G}_{n-2}) \ / / \ n = | \texttt{V}(\texttt{G}) | \\ & \texttt{U} = \{ \texttt{w} \in \texttt{V}(\texttt{G}) \ | \ \texttt{w is merged into u} \} \\ & \texttt{return (U, V(\texttt{G}) \setminus U)} \end{split}$$

Izrek 2.2.1. Algorithm randMinCut gives you a minimal cut with probability greater or equal to $\frac{2}{n(n-1)}$.

Dokaz 2.2.2.

Fact 1: $minCut(G_i) \leq minCut(G_i)$;

 \geq : minCut remains.

Fact 2: $minCut(G) < \delta(G)$.

k := minCut(G).

Let (A,B) be an optimal cut.

 ϵ_i not in (A,B).

 $P_r(Algorithm not returning (A,B))$

$$= P_r(\epsilon_0 \cap \cdots \cap \epsilon_{n-3})$$

$$= P_r(\epsilon_0 \cap \cdots \cap \epsilon_{n-4}) \cdot P_r(\epsilon_{n-3} \mid \epsilon_0 \cap \cdots \cap \epsilon_{n-4})$$

$$= P_r(\epsilon_{n-3} \mid \cap_{i=0}^{n-4} \epsilon_i) \cdot P_r(\epsilon_{n-3} \mid \cap_{i=0}^{n-4} \epsilon_i)$$

$$\dots P_r(\epsilon_1 \mid \epsilon_0) \cdot P_r(\epsilon_0).(*)$$
(2.1)

$$P_r(\overline{\epsilon_i} \mid \epsilon_{i-1} \cap \dots \cap \epsilon_0) = \frac{k}{|E(G_i)|} \stackrel{(**)}{\leq} \frac{k}{\frac{(n-i)k}{2}} = \frac{2}{n-i}$$
$$|E(G_i)| \geq \frac{(n-i)\delta(G)}{2} \geq \frac{(n-i)k}{2}.(**)$$
(2.2)

$$P_r(\epsilon_i \mid \epsilon_{i-1} \cap \dots \cap \epsilon_0) \ge 1 - \frac{2}{n-i} = \frac{n-2-i}{n-i}.$$

$$(*) \ge \frac{n-2}{n} \cdot \frac{n-3}{n-1} \dots \frac{1}{3} = \frac{2}{n(n-1)}.$$

Izrek 2.2.3. Running $randMinCut\ n(n-1)$ times and taking best output gives correct solution with probability ≥ 0.86 .

Dokaz 2.2.4. A_i - event that *i*-th run gives sub-optimal solution.

$$\begin{split} P_r(\text{solution not correct}) &= P_r(A_1 \cap \dots \cap A_{n(n-1)}) \\ &= \prod_{i=1}^{n(n-1)} P_r(A_i) \le (1 - \frac{2}{n(n-1)})^{n(n-1)} \\ &\le e^{-\frac{2}{n(n-1)} \cdot n(n-1)} = e^{-2} \le 0.14. \end{split}$$

 $1 - x \le e^x \ \forall x \in \mathbb{R}.$

If we run n(n-1)log(n) times $\to O\left(\frac{1}{n}\right)$. $O\left(n^2 \log n \cdot n\right)$.

Improved: $O(n^2 \log^3 n)$.

Complexity classes

Decision problem - yes/no question on a set of inputs = asking $w \in \Pi$. Randomized algorithms:

- Las Vegas algorithms: always gives correct solution, example: Quicksort.
- Monte Carlo algorithms: it can give wrong answers. Monte Carlo algorithms subtypes:

$$- \text{ type}(1) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \geq \frac{1}{2} \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } = 0 \end{cases}$$

$$- \text{ type}(2) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } = 1 \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \leq \frac{1}{2} \end{cases}$$

$$- \text{ type}(3) \colon \begin{cases} \text{if } \omega \in \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \geq \frac{3}{4} \\ \text{if } \omega \notin \Pi \implies \text{ algorithm returns } "\omega \in \Pi \text{" with probability } \leq \frac{1}{2} \end{cases}$$

type(1) and type(2): one-sided error, type(3): 2-sided error. $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ arbitrary numbers, can be something different (for type(3) better than coin flip).

Primer. Decisional problem: does a graph G have $minCut \leq k$?

```
Run randMinCut(G) n(n-1) times. 
 Algorithm randMinCut: 
 if one of runs gives |(A,B)| \leq k: 
 return true 
 else: 
 return false
```

Complexity classes:

- RP (randomized polynomial time): decisional problems for which there exists Monte Carlo algorithm of type(1) with polynomial time complexity (worst case).
- co-RP: decisional problems for which there exists Monte Carlo algorithm of type(2) with polynomial time complexity (worst case).
- BRP (bounded-error probabilistic polynomial time): decisional problems for which there exists Monte Carlo algorithm of type(3) with polynomial time complexity (worst case).
- ZPP (zero-error probabilistic polynomial time): decisional problems for which there exists Las Vegas algorithm with expected polynomial time complexity (worst case).

```
ZPP = RP \cap co-RP.
```

Chernoff bounds

Izrek 4.0.1. Let $X_1, X_2 ... X_n$ independent random variables with image $\{0, 1\}$.

Let $p_i = P_r(X_i = x_i), X = \sum_{i=1}^n X_i$ and $\mu = E(X) = p_1 + \dots + p_n$. For every $\delta \in (0,1)$:

$$P_r(X - \mu \ge \delta\mu) \le e^{-\frac{\delta^2\mu}{3}}$$

$$P_r(\mu - X \le \delta\mu) \le e^{-\frac{\delta^2\mu}{2}}$$

$$\Longrightarrow P_r(|X - \mu| \ge \delta\mu) \le e^{-\frac{\delta^2\mu}{3}}.$$

Probability falls extremely quickly after E(X).

Dokaz 4.0.2.

$$P_r(X - \mu \ge \delta \mu) = P_r(X \ge \mu(1 + \delta))$$

$$\stackrel{t \ge 0}{=} P_r(tX \ge t\mu(1 + \delta))$$

$$\stackrel{e^y > 0}{=} P_r(e^{tX} \ge e^{t\mu(1 + \delta)})$$

$$\stackrel{\text{Markov}}{\leq} \frac{E\left(e^{tX}\right)}{e^{t\mu(1 + \delta)}}$$

$$\stackrel{4.1}{\leq} \frac{e^{(e^t - 1)\mu}}{e^{t\mu(1 + \delta)}}$$

$$\stackrel{4.3}{\leq} e^{-\mu \frac{\delta^2}{3}}.$$

$$E(e^{tX}) = E(e^{tX_1 + \dots + tX_n})$$

$$= E(e^{tX_1} \dots e^{tX_n})$$

$$\stackrel{\text{independent}}{=} \prod_{i=1}^n E(e^{tX_i})$$

$$\stackrel{4.2}{\leq} \prod_{i=1}^n e^{p_i(e^t - 1)}$$

$$= e^{(e^t - 1)\sum_{i=1}^n p_i}$$

$$= e^{(e^t - 1)\mu}.$$

$$(4.1)$$

$$E(e^{tX_i}) = p_i \cdot e^t + (1 - p_i) \cdot e^0 = 1 + p_i(e^t - 1) \stackrel{1 + x \le e^x}{\le} e^{p_i(e^t - 1)}.$$
 (4.2)

Want:

$$e^{t} - 1 - t(1 + \delta) \le -\frac{\delta^{2}}{3} \,\forall \delta \in (0, 1)$$
 (4.3)

$$\begin{split} t &= \ln(1+\delta) \\ f(\delta) &= 1 + \delta - 1 - (1+\delta) \ln(1+\delta) + \frac{\delta^2}{3} \stackrel{?}{\leq} 0 \\ f(0) &= 0 \\ f'(\delta) &= 1 - \ln(1+\delta) - 1 + \frac{2}{3}\delta = \frac{2}{3}\delta - \ln(1+\delta) \stackrel{?}{\leq} 0 \\ \frac{2}{3}\delta &\leq \ln(1+\delta) \\ \delta &= 1 : \frac{2}{3} \stackrel{?}{\leq} \ln(2) \approx 0.69 \checkmark \end{split}$$

$$P_r(\mu - X \le \delta \mu) = P_r(X \ge \mu(1 - \delta))$$

$$\stackrel{t \ge 0}{=} P_r(tX \ge t\mu(1 - \delta))$$

$$\stackrel{e^y \ge 0}{=} P_r(e^{tX} \ge e^{t\mu(1 - \delta)})$$

$$\le \dots \le \frac{e^{(e^t - 1)\mu}}{e^{t\mu(1 - \delta)}}.$$

Want:
$$e^t - 1 - t(1 - \delta) \le -\frac{\delta^2}{2} \ \forall \delta \in (0,1)$$
:

$$t = \ln(1 - \delta)$$

$$f(\delta) = 1 - \delta - 1 - (1 - \delta)\ln(1 - \delta) + \frac{\delta^2}{2} \stackrel{?}{\leq} 0$$

$$f(0) = 0$$

$$f'(\delta) = -1 + 1 - \ln(1 - \delta) + \delta \stackrel{?}{\leq} 0$$

$$\frac{2}{3}\delta \leq \ln(1 + \delta)$$

$$\ln(1 - \delta) \stackrel{?}{\leq} -\delta \checkmark$$

$$X_i \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
$$X = \sum_{i=1}^n X_i$$
$$\mu = \frac{n}{2}$$

$$P_r(|X - \mu| \ge \sqrt{\frac{3}{2}n\ln(n)}) = P_r(|X - \mu| \ge \frac{n}{2}\sqrt{\frac{6}{n}\ln(n)})$$

$$\mu = \frac{n}{2}, \delta = \sqrt{\frac{6}{n}\ln(n)},$$
for "big" $n\delta \in (0,1)$

$$\stackrel{\text{Chernoff}}{\le} 2e^{-\frac{n}{2}\frac{6}{n}\ln(n)} = \frac{2}{n}.$$

$$d = \sqrt{\frac{3}{2}n\ln(n)}$$

$$\implies P_r(X \in (\mu - \sqrt{\frac{3}{2}n\ln(n)}, \mu + \sqrt{\frac{3}{2}n\ln(n)})) \ge 1 - \frac{2}{n}.$$

Trditev 4.0.3.

Let $X_1, X_2 \dots$ independent random variables with image $\{0,1\}$.

$$P_r(X_i = 1) = \frac{1}{2} \ \forall i.$$

Let
$$X = \sum_{i=1}^{cm} X_i$$
 where $c \ge 4$.

Then
$$P_r(X \le m) \le e^{-\frac{cm}{16}}$$
.

Dokaz 4.0.4.

$$P_r(X \le m) = P_r(\frac{cm}{2} - X \ge \frac{cm}{2} - m)$$

$$= P_r(\frac{cm}{2} - X \ge \frac{cm}{2}(1 - \frac{2}{c}))$$

$$\stackrel{\text{Chernoff}}{\le} e^{-\frac{\frac{cm}{2}(1 - \frac{2}{c})^2}{2}}$$

$$1 - \frac{2}{c} \ge \frac{1}{2} \text{ if } c \ge 4$$

$$\le e^{-\frac{cm}{2}\frac{1}{4}} = e^{-\frac{cm}{16}}.$$

Back to Quicksort.

Izrek 4.0.5.

With probability $\geq 1 - \frac{1}{n}$ Quicksort uses at most $48n \ln(n)$ comparisons.

Dokaz 4.0.6.

For $s \in S$ define $S_1^S \dots S_{t_s}^S \neq \emptyset$ sets that include s, t_s - number of comparisons with s where s is not a pivot +1.

Define: iteration i is successful if $|S_{i+1}| \leq \frac{3}{4}|S_i|$ ($\frac{1}{2}$ is too strict).

$$X_i = \begin{cases} 1 \text{ if iteration } i \text{ is successful} \\ 0 \text{ else} \end{cases}$$

$$P_r(X_i = 1) \ge \frac{1}{2}$$

$$S_i : n \to \frac{3}{4}n \to (\frac{3}{4})^2 n \to \cdots \to 1.$$

Notice: max number of iteration is $\log_{\frac{4}{3}}(n) = \frac{\ln(n)}{\ln(4) - \ln(3)}$.

Probability that we haven't succeeded in $\log_{\frac{4}{3}}(n)$ steps:

$$P_r(\sum_{i=1}^{c \log_{\frac{4}{3}}(n)} X_i < \log_{\frac{4}{3}}(n)) \le P_r(\sum_{i=1}^{c \log_{\frac{4}{3}}(n)} Y_i < \log_{\frac{4}{3}}(n))$$
(4.4)

$$\stackrel{\text{Chernoff}}{<} e^{-\frac{c \log_{\frac{4}{3}}(n)}{24}} \tag{4.5}$$

$$=e^{-\frac{c\ln(n)\log_{\frac{4}{3}}(e)}{24}}\tag{4.6}$$

$$=\frac{1}{n}\frac{c\log_{\frac{4}{3}}(e)}{24}\tag{4.7}$$

$$\log_{\frac{4}{3}}(e) \approx 3.4, \ c = 14$$
 (4.8)

$$\leq \left(\frac{1}{n}\right)^2\tag{4.9}$$

4.4 because X_i not independent, $Y_i \sim \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ independent.

 $P_r(t_s \ge c \log_{\frac{4}{3}}(n)) \ge \left(\frac{1}{n}\right)^2$ for one s.

 $c = 14 \implies$ at least $48 \ln(n)$ iterations with probability $\leq \left(\frac{1}{n}\right)^2$.

With probability as least $1 - \frac{1}{n}$ for all $s \in S$ it holds that s has $\leq 48 \ln(n)$ comparisons with a pivot.

 \implies total number of comparisons $n \cdot 48 \ln(n)$ with probability as least $1 - \frac{1}{n}$.

Monte Carlo methods

5.1 Example 1

Area of circle $= \frac{\pi}{4}$. $X_i = \begin{cases} 1 \text{ if you hit the area of circle} \\ 0 \text{ else} \end{cases}$ $P_r(X_i = 1) = \frac{\frac{\pi}{2}}{1} = \frac{\pi}{4}.$ $E(X_i) = \frac{\pi}{4}.$ $X = \frac{\sum_{i=1}^n X_i}{n}.$ $E(X) = \frac{n \cdot E(X_i)}{n} = E(X_i).$

5.2 Example 2

$$I = \int_{\Omega} f(x)dx - \text{volume.}$$

$$X_i = \begin{cases} 1 \ F(x_i, y_i) \le z_i \\ 0 \ \text{otherwise} \end{cases}$$

$$v \cdot E\left(\frac{\sum_{i=1}^n X_i}{n}\right) = I.$$

5.3 (ϵ, δ) -approximation

Definicija 5.3.1 ((ϵ, δ) -approximation). A random algorithm gives a (ϵ, δ) -approximation for value v if the output X satisfies:

$$P_r(|X - v| \le \epsilon v) \ge 1 - \delta.$$

Izrek 5.3.2. Let $X_1
ldots X_n$ be independent and identically distributed indicator variables. Let $\mu = E(X_i)$, $Y = \frac{\sum_{i=1}^m X_i}{m}$. If $m \ge \frac{3 \ln(\frac{2}{\delta})}{\epsilon^2 \mu}$, then $P_r(|Y - \mu| \ge \epsilon \mu) \le \delta \implies Y$ is (ϵ, δ) -approximation for μ .

Dokaz 5.3.3.

$$X = \sum_{i=1}^{n} X_i$$

$$E(X) = mE(x_i) = m\mu$$

$$m \ge \frac{3\ln(\frac{2}{\delta})}{\epsilon^2 \mu}$$

$$P_r(|Y - \mu| \ge \epsilon \mu) = P_r(\left|\frac{X}{m} - \mu\right| \ge \epsilon \mu)$$

$$= P_r(\frac{1}{m}|X - E(X)| \ge \frac{1}{m}\epsilon E(x))$$

$$\stackrel{\text{Chernoff}}{\le} 2e^{-\frac{\epsilon^2 E(x)}{3}}$$

$$= 2e^{-\frac{\epsilon^2 \mu m}{3}}$$

$$\le 2e^{-\frac{\epsilon^2 \mu}{3} \cdot \frac{3\ln(\frac{2}{\delta})}{\epsilon^2 \mu}} = \delta.$$

Back to example 1:

$$E(Y) = \frac{\pi}{4}, \delta = \frac{1}{1000} \text{ (99.9\% sure)}, \epsilon = \frac{1}{10000}$$

 $\implies M = \frac{3\ln\left(\frac{2}{1000}\right)^4}{\pi\left(\frac{1}{10000}\right)^2} \approx 29106.$

Problems for MC (Monte-Carlo):

• rare events, e.g.
$$X \sim \begin{pmatrix} 0 & 10^{100} \\ 1 - 10^{-20} & 10^{-20} \end{pmatrix}$$
, $E(X) = 10^{80}$

5.4 DNF counting

CNF: $(X_{i_1} \vee \overline{X_{i_2}} \vee X_{i_4}) \wedge (X_{i_1} \vee \overline{X_{i_3}}) \wedge \dots$

DNF: $(\overline{X_{i_1}} \wedge X_{i_2} \vee \overline{X_{i_4}}) \vee \dots$ - easy to determine if solution exists.

Question: number of solutions to a given DNF?

Observation: CNF F has a solution \iff DNF $\neg F$ has less than 2^n solutions, n is number of samples.

```
\begin{array}{l} \operatorname{ALG\_1(F):} \\ x = 0 \\ \text{for i in range(1,m+1):} \\ x\_1 \ \ldots \ x\_n \ \text{uniformly random from } \{0,1\}^n \\ \text{if } F(x\_1 \ \ldots \ x\_n) = 1: \\ x += 1 \\ \text{return } \frac{x}{m} \cdot 2^n \\ Y = \frac{\sum_{i=1}^m X_i}{m} \\ (\epsilon,\delta)\text{-approximation for } Y \\ E(Y) = \frac{\text{number of solutions of } F}{2^n} = \frac{c(F)}{2^n} \\ m \geq \frac{3\ln\left(\frac{2}{\delta}\right)}{\epsilon^2 E(X)} = \frac{3\ln\left(\frac{2}{\delta}\right)}{\epsilon^2} \cdot \frac{2^n}{x(F)} \\ c(F) \ \text{very small} \rightarrow m \ \text{exponentially big} \rightarrow \text{not good (we need a lot of samples)}. \end{array}
```

Definicija 5.4.1.

Definition 3.4.1.
$$SC_i = \{(a_1 \dots a_n) \in \{0,1\}^n \text{ such that } F = F_1 \vee \dots \vee F_t, \ F_i(a_1 \dots a_n) = 1\}.$$

$$|SC_i| = 2^{n-l_i}, \ l_i \text{: number of values in } F_i$$

$$U = \{(i,a) \mid i \in \{1,2 \dots t\}, \ a \in SC_i\}$$

$$U = \sum_{i=1}^t |SC_i| - O(tn) \text{ (space smaller than } \{0,1\}^n)$$

$$S = \{(i,a) \in U \mid a \in SC_i, \ a \notin SC_j \ 1 \leq j < i\}$$

$$|S| = |SC_1| + \dots + |SC_t| = c(F).$$

$$\text{ALG_2(F):}$$

$$x = 0$$

$$\text{for i in range(1,m+1):}$$

(i, a) uniformly random from U (**)

if (i, a)
$$\in$$
 S: (*)

$$x += 1$$

 $\texttt{return} \ \tfrac{x}{m} \ \cdot \ |U|$

(*) $a \in SC_i \to O(n), \ a \notin SC_j \ j = 1 \dots i - 1 \to O(tn) \implies O(tn), m$

(**): watch for details on how to, e.g. $x_2, x_2 \wedge x_3$: x_2 is more probable than $x_2 \wedge x_3 \to O(1)$.

Izrek 5.4.2. For $m = \lceil \frac{3t \ln\left(\left(\frac{2}{\delta}\right)\right)}{\epsilon^2} \rceil$ algorithm returns (ϵ, δ) -approximation in $O\left(\frac{t^n n \ln\left(\frac{2}{\delta}\right)}{\epsilon^2}\right)$ time.

Dokaz 5.4.3. $O(t \cdot n \cdot m)$.

Insert $m = \dots$

Prove

$$P_r(Y|U| - c(F) > \epsilon c(F)) < \delta$$
:

$$c(F) = |S|, E(Y) = \frac{|S|}{|U|}$$

$$P_r(Y|U| - c(F) > \epsilon c(F)) = P_r(|U|(Y - E(Y)) > \epsilon |U|E(Y)) \le \delta$$

if

$$m \ge \frac{3\ln\left(\frac{2}{\delta}\right)}{\epsilon^2 E(Y)} \ge \frac{3\ln\left(\frac{2}{\delta}\right)t}{\epsilon^2}$$

where

$$E(Y) = \frac{|S|}{|U|} \ge \frac{1}{t}$$

(= if disjoint).

In new space E(Y) much larger $\implies m$ smaller.

Polynomials

Let \mathbb{F} be a field.

 \mathbb{F} can be $\mathbb{R}, \mathbb{C}, \mathbb{Z}_p, \mathbb{F}_{p^n}$.

 $\mathbb{F}[x_1 \dots x_n]$ algebra of polynomials with values $x_1 \dots x_n$.

$$f \in \mathbb{F}[x_1 \dots x_n]$$

$$deg(f[x_1 \dots x_n]) := deg(f[x \dots x]).$$

Izrek 6.0.1. Let $p(x_1 \ldots x_n) \in \mathbb{F}[x_1 \ldots x_n]$ have the degree $d \geq 0$ and $p \neq 0$. Let $s \subset \mathbb{F}$ be finite. If $(r_1 \ldots r_n)$ is uniformly at random element from S^n . Then $P_r(p(r_1 \ldots r_n) = 0) \leq \frac{d}{|S|}$.

Dokaz 6.0.2. Induction on n.

n = 1:

$$p(x) = (x - z_1)(x - z_2) \dots (x - z_j)q(z)$$

number of zeros \leq degree - fact

$$P_r(p(r_1) = 0) = \frac{\text{number of zeros}}{|S|} \le \frac{d}{|S|}.$$

 $n-1 \rightarrow n$:

rewrite p:

$$p(x_1 \dots x_n) = \sum_{i=0}^{j} x^i p_i(x_2 \dots x_n)$$

$$j \le d$$

$$P_r(p(r_1 \dots r_n) = 0) = P_r(p(r_1 \dots r_n = 0) \mid p_j(r_2 \dots r_n) = 0) \cdot P_r(p_j(r_2 \dots r_n) = 0)$$

$$+ P_r(p(r_1 \dots r_n = 0) \mid p_j(r_2 \dots r_n) \ne 0) \cdot P_r(p_j(r_2 \dots r_n) \ne 0)$$

$$\le 1 \cdot \frac{d-j}{|S|} + \frac{j}{|S|} \cdot 1,$$

because

$$P_r(p(r_1...r_n = 0) \mid p_j(r_2...r_n) \neq 0) \le \frac{d-j}{|S|}$$

 $P_r(p_j(r_2...r_n) \neq 0) \le \frac{j}{|S|}.$

<u>Problem</u>:

Let $A,B,C \in \mathbb{F}^{n \times n}$, is $A \cdot B = C$? Computing $A \cdot B$:

- school-book algorithm: $O(n^3)$,
- Strassen algorithm: $O(n^{2,807...})$,
- galactic algorithm: $O(n^{2.372...})$ has enormous constants.

RAND_ACB(A,B,C):

```
for i in range(1,k+1):  \text{x uniformly at random from } \{0,1\}^n  if A \cdot (B \cdot x) \neq x:  \text{return false}   \text{return true}
```

 $O(kn^2)$.

If $A \cdot B = C$, algorithm returns true.

If $A \cdot B \neq C$:

$$P_r(ABx = Cx) = P_r((AB - C)x = 0)$$

= $P_r(||(AB - C)x||^2 = 0) \stackrel{\text{Poly }}{\leq} \frac{2}{3}$.

 $||(AB_C)x||^2$ - polynomial in $x_1 \dots x_n$ of degree 2.

If $A \cdot B \neq C$, then algorithm return false with probability at least $1 - \left(\frac{2}{3}\right)^k$. Problem:

1-factor in bipartite graphs.

$$|V(g)| = 2n.$$

Represent G with $n \times n$ matrix $Z = (Z_{ij})_{i,j=1}^n$

$$Z_{ij} = \begin{cases} X_{ij} \text{ if } a_i b_j \in E(x) & \text{(X: variable)} \\ 0 \text{ else} \end{cases}$$

$$det Z(x_{11} \dots x_{nn}) = \sum_{\pi \in S_n} sign(\pi) z_{1,\pi(1)} \dots z_{n,\pi(n)}$$
$$= \sum_{\pi \in S_n, \pi \text{ defines 1-factor}} sign(\pi) x_{1,\pi(1)} \dots x_{n,\pi(n)}.$$

 $det Z \neq 0 \iff G \text{ has 1-factor.}$

```
Rand_1factor(G):
```

construct Z with variables x11 ... xnn

for i in range(1,k+1):

u <- uniformly at random from $1,2..2n-1^{n^2}$ (r11 ... rnn) compuze d = det Z(r11 ... rnn)

if d != 0:

return true

return false

Complexity: $k \cdot$ computing determinant: $O\left(n^3\right)$ (Gaussian elimination). or apply approximation algorithm:

- ullet if G has no 1-factor it always returns false,
- if G has 1-factor, it returns true with probability at least $1 \left(\frac{n}{2n}\right)^k = 1 \left(\frac{1}{2}\right)^k$ (k konstant, larger set \implies smaller k needed).

Random graphs

$7.1 \quad G(n,p) \mod el$

G is a random Erdös-Rény graph if it has n vertices and each pair of vertices is connected with probability p.

Primer.
$$G\left(5,\frac{1}{2}\right)$$
.

$$E(\text{ edges in } G \text{ fron } G(n,p)) = \sum_{1 \le i < j \le n} E(X_{ij}) = \binom{n}{2} p.$$

$$X_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ have edge} \\ 0 & \text{otherwise} \end{cases}$$

p can be function of n.

 Y_v : degree of v.

$$E(Y_v) = (n-1)p.$$

Definicija 7.1.1.

We say that a random graph has some property almost surely (A.S.) if $P_r(G \in G(n,p))$ has property) $\stackrel{n\to\infty}{\to} 1$.

Trditev 7.1.2.

Let p be constant. Then $G \in G(n,p)$ has diameter 2 A.S.

Dokaz 7.1.3.

Let
$$u,v \in V(G)$$

$$X_w = \begin{cases} 1 \text{ if } uw \in E(G) \text{ in } vw \in E(G) \\ P_r(X_w = 1) = p^2 \end{cases}$$

$$P_r(X_w = 0 \text{ for all } w \neq u,v) = (1 - p^2)^{n-2}.$$

$$P_r(G \text{ has diameter } > 2)$$

$$= P_r(X_w = 0 \text{ for all } w \notin u,v \text{ for some } u,v)$$

$$\leq \binom{n}{2}(1 - p^2)^{n-2} \stackrel{n \to \infty}{\to} 0;$$

$$\binom{n}{2} \text{ - polynomial, } e^{\dots} \text{ - exponent.}$$

$$p = f(n)$$

$$\frac{1}{n}, \frac{1}{n^3}, \frac{\log n}{n}$$

Izrek 7.1.4. (without proof)

Let p be a function of n: let $G \in G(n,p)$:

- np < 1 G A.S. disconnected with connected components of size $O(\log n)$
- np = 1 G A.S. has 1 large component of size $O\left(n^{\frac{2}{3}}\right)$
- np = c > 1 G A.S. has giant component of size $dn, d \in (0,1)$
- $np \leq (1-\epsilon) \ln n$ G A.S. disconnected with isolated vertices
- $np > (1 \epsilon) \ln n G$ A.S. connected.

Izrek 7.1.5.

Let $np = \omega(n) \ln(n)$ for $\omega(n) \to \infty$, very slowly think of $\omega(n) = \log(\log n)$, then diam(G) in $\Theta\left(\frac{\ln n}{\ln(np)}\right)$ for G in G(n,p).

Lema 7.1.6.

Let $S \subset V(G), |S| = cn$ for $c \in (0,1]$ and $v \notin S$. then $cnp(1 - \omega^{-\frac{1}{3}}) \leq N_S(v) \leq cnp(1 + \omega^{-\frac{1}{3}})$ A.S. $(\omega^{-\frac{1}{3}} \to 0 \text{ very slowly})$.

Dokaz 7.1.7. (Lemma):

$$E(N_s(v)) = c \cdot n \cdot p, \delta = \omega^{-\frac{1}{3}}$$

$$P_r(|N_s(v) - cnp| \ge \delta cnp) \stackrel{\text{Chernoff}}{\le} 2e^{-\frac{\omega^{-\frac{2}{3}}cnp}{3}}$$
$$= 2e^{-\frac{cnp}{3\omega(n)^{\frac{2}{3}}}} \stackrel{n \to \infty}{\to} 0.$$

For all $v: n \cdot 2e^{-\frac{cnp}{3\omega(n)^{\frac{2}{3}}}} \stackrel{n \to \infty}{\longrightarrow} 0.$

Dokaz 7.1.8. (Theorem):

k be such that $\sum_{i=0}^{k-1} |N_i| \leq \frac{n}{2}, \sum_{i=0}^{k} |N_i| > \frac{n}{2}$.

$$|N_0| = 1$$

$$|N_i| \le |N_{i-1}| \cdot n \cdot p \cdot (1 + \omega^{-\frac{1}{3}})$$
:

$$\begin{split} |S| &\leq n, \ np(1+\omega^{-\frac{1}{3}})\text{-each element.} \\ k &= \frac{\log\left(\frac{n}{3}\right)}{\log\left(n\cdot p\cdot\left(1+\omega^{-\frac{1}{3}}\right)\right)} \\ &= \log_{np(1+\omega^{-\frac{1}{3}})}\frac{n}{3} = \Theta\left(\frac{\ln(n)}{\ln(np)}\right). \\ |N_{\leq k}| &= |N_1 \cup \dots \cup N_k|. \end{split}$$

$$|N_{\leq k}| \leq \sum_{i=0}^{k} (np(1+\omega^{-\frac{1}{3}}))^{i}$$

$$= \frac{(np(1+\omega^{-\frac{1}{3}}))^{k+1} - 1}{np(1+\omega^{-\frac{1}{3}}) - 1}$$

$$< \frac{np(1+\omega^{-\frac{1}{3}})^{k+1}}{\frac{1}{2}np(1+\omega^{-\frac{1}{3}})}$$

$$= 2np(1+\omega^{-\frac{1}{3}})^{k}$$

$$\stackrel{k}{=} 2 \cdot \frac{n}{3} \text{ haven't covered all}$$

$$\implies diam(G) > k \text{ bound from below.}$$

$$\begin{aligned} N_i &\subseteq S \\ \frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}} \right) \cdot |N_{i-1}| \leq |N_i| \end{aligned}$$

$$\begin{split} n &\geq \sum_{i=0}^{k} |N_i| \\ &\geq \sum_{i=0}^{k} \left(\frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}}\right)\right)^i \\ &= \frac{\left(\frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}}\right)\right)^{k+1} - 1}{\frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}}\right) - 1} \\ &\geq \left(\frac{1}{2} n p \left(1 - \omega^{-\frac{1}{3}}\right)\right)^k \quad / \ln \end{split}$$

$$\frac{\ln n}{\ln(np)} \approx \frac{\ln n}{\ln\left(\frac{1}{2}np\left(1-\omega^{-\frac{1}{3}}\right)\right)} \ge k.$$

$$\implies w \in S'.$$

Number of neighbors in N_k A.S. ≥ 1 ,

$$|N_k| \ge \left(\frac{1}{2}np\left(1 - \omega^{-\frac{1}{3}}\right)\right)^k \approx c \cdot n$$

 $\implies diam(G) = k + 1 \text{ A.S.}$

7.1.1 Scale free property

 $G \in G(n,p)$.

In real world: p(k) = proportion of degree k vertices.

 $\log(p(k)) = -\gamma \cdot \log k$

 $p(k) = k^{-\gamma}.$

Internet: $\gamma \approx 3.42$,

protein reactions: $\gamma \approx 2.89$.

7.2 Barbási-Albert Model

B.A. model.

Start with m modes.

Grow:

• add node v,

- add m edges from v (to u),
- for each new edge: $P(v \sim u) = \frac{degu}{\sum_{x} degx}$.

Izrek 7.2.1.

B.A. model has scale free property, in particular

$$p_k = \frac{2m(m+1)}{k(k+1)(k+2)}$$

Definicija 7.2.2.

 $p_n(k)$: expected proportion of degree k vertices in graph with k vertices, $p_k := \lim_{n \to \infty} p_n(k)$.

Dokaz 7.2.3.

 $p_n(k) \cdot n$: expected number of degree k vertices,

 $p_n(k)n \cdot \frac{k}{\sum_u degu} m = p_n(k) \cdot \frac{k}{2}$: expected number of degree k vertices changing into degree k+1 vertices.

$$\sum_{u} degu = 2|E|$$

$$p_{n+1}(k) \cdot (n+1) = p_n(k) \cdot n - p_n(k) \cdot \frac{k}{2} + p_n(k-1) \cdot \frac{k-1}{2}$$
, where

$$p_n(k) \cdot n$$
: degree $k \to k$,

$$p_n(k) \cdot \frac{k}{2} : k \to k+1,$$

$$p_n(k-1) \cdot \frac{k-1}{2} : k-1 \to k.$$

For n very big (very close to limit):

$$p_n \cdot (n+1) = p_k \cdot n - p_{k-1} \cdot \frac{k}{2} + p_{k-1} \cdot \frac{k-1}{2}$$

$$\implies p_k = \frac{k-1}{k+2} p_{k-1}.$$

For degree m:

$$(n+1) \cdot p_{n+1}(m) = p_n(m) \cdot n - p_n(m) \cdot \frac{m}{2} + 1$$

$$p_{m} = \frac{2}{m+2}$$

$$\implies p_{m+1} = \frac{2}{m+2} \cdot \frac{m}{m+3}$$

$$\implies p_{m+2} = \frac{2m(m+1)}{(m+2)(m+3)}$$

$$\implies p_{k} = \frac{2m(m+1)}{k(k+1)(k+2)}.$$

Markov chains

 Ω : finite set (of states).

Definicija 8.0.1 (Markov chain).

(Discrete time) Markov chain is a sequence of random variables $X=X_0,X_1,X_2\dots$ with image Ω and properties:

•
$$P(X_{i+1} = x \mid X_i = x_i, X_{i-1} = x_{i-1} \dots X_0 = x_0) = P(X_{i+1} = x \mid X_i = x_i),$$

•
$$PX_{i+1} = x \mid X_i = y = P(X_1 = x \mid X_0 = y)$$
 - time is homogenous.

Primer.

$$\Omega = \mathbb{Z}_5$$

$$P(X_{i+1} = x + 1 \mid X_i = x) = \frac{1}{2}$$

$$P(X_{i+1} = x - 1 \mid X_i = x) = \frac{1}{2}.$$

Definicija 8.0.2 (Transition matrix).

$$\Omega = \{x_1 \dots x_n\}$$
$$p_{ij} = P(X_{t+1} = j \mid X_t = i)$$

$$\begin{bmatrix} p_{11} & \dots & \\ p_{1n} & & \\ \vdots & & \vdots \\ p_{n1} & \dots & p_{nn} \end{bmatrix}$$

Definicija 8.0.3 (Transition graph).

Edge between states i and j exists if $p_{ij} > 0$.

P is stochastic matrix:

$$p_{ij} \in [0,1]$$

$$\sum_{i} p_{ij} = 1.$$

We choose beginning state randomly.

$$q(0) = (q_1(0) \dots q_n(0))$$

$$P(X_0 = i) = q_i(0).$$

Let
$$q(t) = (q_1(t) \dots q_n(t))$$

$$P(X_t = i) = q_i(t).$$

It holds:
$$q(t) = q(t-1) \cdot P = q(0) \cdot P^t$$
.

To find
$$q(t) = q(t-1) \cdot T = q(0)$$

$$\begin{bmatrix} 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

$$q(0) = (1, 0, 0, 0, 0)$$

$$q(1) = (1, \frac{1}{2}, 0, 0, \frac{1}{2})$$

$$q(2) = (\frac{1}{2}, 0, \frac{1}{4}, \frac{1}{4}, 0)$$
:

Definicija 8.0.4.

- Distribution π is stationary if $\pi = \pi \cdot P$,
- f_{ij} : probability that $X_t = x_j$ for some t assuming $X_0 = x_i$,

- h_{ij} : expected number of steps needed to get to state X_j strting in X_i (hitting time),
- N(i, t, q(0)): expected number of times we visit x_i after t steps starting with distribution q(0),
- $\forall f_{ij} > 0 \iff$ transition graph is strongly connected \iff we say the chain is irreducible,
- M.C. is aperiodic if there is no $c \in \{2, 3, 4...\}$ such that all lengths of cycled are divisible by c.

Izrek 8.0.5.

Let X be finite irreducible M.C. Then:

- a) there exists unique stationary distribution $\pi = (\pi_1 \dots \pi_n)$,
- b) $f_{ii} = 1, h_{ii} = \frac{1}{\pi_i},$
- c) $\lim_{t\to\infty} \frac{N(i,t,q(0))}{t} = \pi_i$ approaches π regardless of q(0),
- d) if X is aperiodic: $\lim_{t\to\infty} q(0) \cdot P^t = \pi$.

Primer.
$$P = \begin{bmatrix} 0 & \frac{1}{2} & \dots & \frac{1}{2} \\ \frac{1}{2} & 0 & \dots & 0 \\ \vdots & & \vdots \\ \dots & \frac{1}{2} & 0 \end{bmatrix}$$

$$\pi = (\frac{1}{n} \dots \frac{1}{n})$$

$$h_{i,i} = n$$

$$n = h_{i,i} = 1 + \frac{1}{2}h_{i-1,i} + \frac{1}{2}h_{i+1,i}, \quad h_{i-1,i} = h_{i+1,i}$$

$$n - 1 = h_{i-1,i}$$

$$E(\text{steps around}) \le h_{0,1} + h_{1,2} + \dots + h_{n-1,n} \le n(n-1).$$

8.1 2-SAT

Recall: k-SAT:

$$F = C_1 \wedge \dots \wedge C_m$$
$$C_i = X_{i1} \vee \dots \vee X_{ik}.$$

3-SAT: NP complete.

```
Algorithm:
```

```
\begin{aligned} & \text{def rand2SAT(F):} \\ & b^0 = (b\_0^0 \dots b\_n^0) \\ & \text{for i in range(t):} \\ & \text{if F}(b^i) = 1: \\ & \text{return True} \\ & \text{Cl <- clause trat is False} \\ & \text{xj <- uniformly at random from xl1 and xl2} \\ & b^{i+1} = (b\_0^i \dots not \ b\_j^i \dots b\_n^i) \\ & \text{if F}(X^t) = 1: \\ & \text{return True} \\ & \text{return False} \end{aligned}
```

Izrek 8.1.1.

If $k = 8n^2$, then $P(\text{rand2SAT} = \text{True} \mid \text{correct answer is True}) \ge \frac{3}{4}$.

Dokaz 8.1.2. Let $a = (a_1 \dots a_n)$ be a correct solution.

Let $X_i = \text{Hamming distance from } b^i \text{ to } a$.

Goal: bount $h_{n,0}$.

 $P(\text{distance of } b^{i+1} \text{ to } a \text{ is } j-1 \mid \text{distance of } b^i \text{ to } a \text{ is } j) \geq \frac{1}{2}.$

$$P = \begin{bmatrix} 0 & 1 & \dots & 0 \\ \frac{1}{2} & 0 & \dots & 0 \\ \vdots & & & \vdots \\ \dots & & 1 & 0 \end{bmatrix}$$

$$\begin{split} \pi &\stackrel{?}{=} \pi P \\ \pi &= \left(\frac{1}{2n}, \frac{1}{n} \dots \frac{1}{n}, \frac{1}{2n}\right) \\ \text{By theorem} \\ h_{i,i} &= \frac{1}{\pi_i} = n \text{ for } i = 1, 2 \dots n-1 \\ h_{0,0} &= h_{n,n} = 2n \\ n &= h_{i,i} = 1 + \frac{1}{2}h_{i+1,i} + \frac{1}{2}h_{i-1,i} \\ h_{i+1,i} &\leq 2n \\ i &= 0: \ 2n = h_{0,0} = 1 + h_{1,0} \implies h_{1,0} < 2n \\ h_{n,0} &\leq h_{n,n-1} + \dots + h_{1,0} \leq 2n^2 \\ E(\text{steps in algorithm to reach correct solution}) &= E(Z) \leq 2n^2 \\ P(\text{algorithm hasn't reached correct solution after } 8n^2 \text{ steps}) \\ &= P(Z > 8n^2) \stackrel{\text{Markov}}{\leq} \frac{E(Z)}{8n^2} \leq \frac{1}{4}. \end{split}$$

8.2 Generating a uniformly random element of a set

 Ω : set.

Let G be a symmetric graph on Ω .

We form M.C:

$$P_{x,y} = \begin{cases} \frac{1}{M} & \text{if } x \neq y \land x \sim y \\ 0 & \text{if } x \neq y \land x \nsim y \\ 1 - \frac{|N(x)|}{M} & \text{if } x = y \end{cases}$$

 $M \ge \max_{v \in \Omega} |N(v)|.$

If G is connected \implies M.C. is irrecudible.

$$\pi = \left(\frac{1}{|\Omega|} \dots \frac{1}{|\Omega|}\right)$$
$$\pi \stackrel{?}{=} \pi P$$

$$(\pi P)_x = \sum_y \pi_y P_{y,x}$$

$$= \sum_{y \in N(x)} \frac{1}{M} \cdot \frac{1}{|\Omega|} + \frac{1}{|\Omega|} \left(1 - \frac{|N(x)|}{M} \right) = \frac{1}{|\Omega|} = \pi_x.$$

 \implies if we walk on the Markov chain long enough, we end up in state x with probability $\pi_x = \frac{1}{|\Omega|}$

 \implies we can sample uniformly.

Primer.

G graph, finding largest independent set $(\forall u, v : u \nsim v)$ is NP-complete.

Lets try sampling a uniformly random independent set

 $\Omega = \{\text{independent sets}\}\$

$$u \sim v \text{ if } |u \triangle v| = 1 \ ((u \cup \{el\}) = v)$$

M.C.: X_0 = arbitrary independent set

 X_{i+1} :

- pick uniformly at random $v \in V(G)$,
- if $v \in U$ then $X_{i+1} = U \setminus \{v\}$,
- if $U \cup \{v\}$ is independent then $X_{i+1} = U \cup \{v\}$,
- else $X_{i+1} = U$.

M is number of vertices

$$\implies \forall u \in \Omega : \lim_{t \to \infty} P(X_t = u) = \frac{1}{|\Omega|}.$$

Note: irredudicle; $U \to \emptyset \to V$, aperiodic.

8.3 Metropolis algorithm

 Ω : set,

 π : chosen distribution on Ω .

Make G graph on Ω

$$P_{x,y} = \begin{cases} \frac{1}{M} \cdot \min\left(1, \frac{\pi_y}{\pi_x}\right) & \text{if } x \neq y \land x \sim y \\ 0 & \text{if } x \neq y \land x \nsim y \\ 1 - \sum_{y \in N(x)} & \text{if } x = y \end{cases}$$

$$M \ge \max_{v \in \Omega} |N(v)|$$

$$\pi \stackrel{?}{=} \pi P$$

$$\begin{split} (\pi P)_x &= \sum_y \pi_y P_{y,x} = \sum_{y \in N(x)} \pi_y \frac{1}{M} \min\left(\left(1, \frac{\pi_y}{\pi_x}\right)\right) + \pi_x \left(1 - \sum_{y \in N(x)} \frac{1}{M} \min\left(1, \frac{\pi_y}{\pi_x}\right)\right) \\ &= \sum_{y \in N(x), \pi_y \geq \pi_x} \pi_y \frac{1}{M} \cdot 1 + \sum_{y \in N(x), \pi_y < \pi_x} \pi_y \frac{1}{M} \frac{\pi_y}{\pi_x} + \pi_x \\ &- \sum_{y \in N(x), \pi_y \geq \pi_x} \pi_x \frac{1}{M} \frac{\pi_y}{\pi_x} - \sum_{y \in N(x), \pi_y < \pi_x} \frac{1}{M} \cdot 1 \\ &= \pi_x. \end{split}$$

Primer.

$$\Omega = \mathbb{Z} \cap [-1000,1000]$$

$$\pi \sim e^{-\frac{(x-\mu)^2}{2\delta}}$$

$$X_0$$
 arbitrary for i = in range(1,m):
$$y \leftarrow \text{uniformly from } X_i + 1, X_i - 1$$

$$M \leftarrow \text{uniformly from } [0,1]$$
 if $M \leq \frac{\pi(y)}{\pi(x)}$:
$$X_{i+1} = y$$
 else:
$$X_{i+1} = X_i$$
 return X_m

Primer.

Find maximum of a positive function f.

Use metropolis algorithm to sample proportional to f.

Note: all I need to know is ratios $\frac{f(y)}{f(x)}$.

Back to independent sets.

$$G = (V, E)$$

 $\Omega = \text{independent sets.}$

$$\lambda \in (1, \infty)$$

$$\pi(u) \sim \lambda^{|u|}$$

$$\pi(u) = \frac{\lambda^{|u|}}{\sum_{v \text{ independent set } \lambda^{|v|}}.$$

How to calculate the sum?

No problem: only need proportions.

 X_0 : arbitrary independent set.

$$X_i \to X_{i+1}$$
:

- we pick $v \in V$ uniformly at random,
- if $v \in X_i \implies$
 - $X_{i+1} = X_i \setminus \{v\}$ qith probability $\frac{1}{\lambda} = \min\{1, \frac{\pi_y}{\pi_x}\},$
 - $-X_{i+1} = X_i$ with probability $1 \frac{1}{\lambda}$,
- if $v \in X_j$ and $X_i \cup \{v\}$ is independent $\implies X_{i+1} = X_i \cup \{v\},\$
- otherwise $X_{i+1} = X_i$.

Primer. Bayes: $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B)}$.

 $B \leftarrow \text{machine is giving values, e.g. } y_1 = 0.05, y_2 = -0.1, y_3 = 0.07, y_4 = 3.$

We believe $B \sim N(\mu, 0.05)$.

 $\mu = laplacian(0, 0.01).$

$$P(\mu \mid B) = \frac{e^{\frac{|\mu|}{0.01}} e^{-\sum \frac{(x_i - \mu)^2}{0.05}}}{\int \dots}.$$

Integral is difficult to calculate.

Sample μ with Metropolis algorithm.

8.4 M.C. for 1-factor in bipartite graphs

G regular graph

|A| = |B|.

How to find 1-factor?

Augmenting paths.

Let M be (suboptimal) matching.

If we find s - t path, we switch edges and get bigger matching.

Starting point.

G d-regular graph.

Graph $G = (A \cup B, E)$, M suboptimal matching.

- Add s and add directed edges to vertices in A that are not matched with weight d,
- add t and add directed edges to vertices in B that are not matched with weight d,
- orient edges in M from B to A that weight d-1,
- orient edges in $E \setminus M$ from B to A that weight 1,
- we add edge from t to s that weight (|A| |M|)d.

Observation:

- for each vertex x: $deg^{-}(x) = deg^{+}(x)$ (out weights = in weights),
- if |A| > |M|, then graph is eulerian \implies there is an augmenting path.

How to find s - t path?

Do a random walk.

Expected time to get from s to t is $h_{s,t}$

$$\frac{1}{\pi(s)} = h_{s,s} = h_{s,t} + 1.$$

Lema 8.4.1.

Let X be a M.C. defined as a random walk on directed (weighted) graph with $deg^{-}(x) = deg^{+}(x)$ for each x. Then the stationary distribution is

$$\pi = \left[\frac{deg^+(x_i)}{|E|}\right]_{i=1}^n.$$

 w_{ij} : weight from i to j.

Dokaz 8.4.2.

$$\pi P = \pi \left[\frac{w_{ij}}{\deg^+(x_i)} \right]_{i,j=1}^n = \left[\frac{\sum_j w_j i}{|E|} \right]_{i=1}^n = \left[\frac{\deg^-(x_i)}{|E|} \right]_{i=1}^n = \left[\frac{\deg^+(x_i)}{|E|} \right]_{i=1}^n.$$

$$\begin{array}{l} h_{s,s} = \frac{1}{\pi_s} \leq \frac{|E|}{deg^+(s)} \leq \frac{3(|A|-|M|)d+|M|(d-1)+(|A|-|M|)d+|M|(d-1)}{(|A|-|M|)d} \leq \frac{4|A|}{|A|-|M|}. \\ \text{Expected time to find augmenting path} \leq \frac{4|A|}{|A|-|M|}. \end{array}$$

$$|A| = n$$

Expected time to find 1-factor $\leq \frac{4n}{n-1} = 4n \sum_{i=1}^{n-1} \frac{1}{i} \leq 4n(1+\ln n)$ - in $O(n \log n)$.

8.4.1 Network centrality

Degree as measure - natural idea.

Use M.C: walk randomly on the network, those that are visited more oftenly are more important.

Pagerank.

Let A be the adjacency matrix of G.

$$P_{ij} = \alpha \frac{A_{ij}}{degi} + (1 - \alpha) \frac{1}{n};$$

 α : normal random walk,

 $1 - \alpha$: jump to any.

 $\alpha = 0.85$.

Randomized incremented constructions (RIC)

```
Observation:
Let S be a set of n distinct elements.
Let X_1 \dots X_n be a random permutation of the elements.
Let S_i = \{X_1 \dots X_i\}.
P(X_i = \min(S_i)) = \frac{1}{i}.
Y = |\{j \in \{1 \dots n\} \mid j = \text{ minimal of } S_j\}|
Y = Y_1 + \dots + Y_n
Y_j = \begin{cases} 1 & \text{if } i = \min S_i \\ 0 & \text{otherwise} \end{cases}
E(Y) = \sum_{i=1}^{n} E(Y_i) = \sum_{i=1}^{n} \frac{1}{i} in O(\log n).
   Alg():
      X1 ... Xn = random permutation of S
      min = X1
      for i in range(1,n+1):
         if Xi < min:
            print("HA")
            min = Xi
```

```
We get O(\log n) "HA" printed.

Incremental construction (IC).

Input S = \{s_1 \dots s_n\}.

We will build structures DS(S_i):

DS(S_1 \to \dots \to DS(S_n)).

DS(S_n) will help us give answer.

Randomized: permute S at the beginning.
```

9.1 Quicksort as RIC

```
S: set of elements we want to order. X_1 \dots X_n: random permutation of S. S_i = \{X_1 \dots X_i\}. S_i splits \mathbb{R}. Define DS(S_i):
```

- save intervals: each interval will be saved by endpoints,
- for each interval we will be saving its points,
- for each X_j , j > i we will save in which interval it is,
- for each left point of the interval we will save the right point.

```
QuicksortEIC(S):

# start of DS(Si)

I=[(-\infty,\infty)]

P[(-\infty,\infty)] = S

for each Xi:

Int(Xi) = (-\infty,\infty)

Next(\infty) = \infty

# end of DS(Si)

for i in range(1,n+1):

Ii = Int(Xi) = (Xj,Xk)
```

```
\label{eq:continuous_section} \begin{split} &\text{Ii1} = (\texttt{Xj}, \texttt{Xi}) \\ &\text{Ii2} = (\texttt{Xi}, \texttt{Xk}) \\ &\text{for } \texttt{Xl} \neq \texttt{Xi}, \; \texttt{Xi} \in \texttt{P(I)}: \\ &\text{add } \texttt{Xl} \; \text{to } \texttt{P(Ii1)} \; \text{or } \texttt{P(Ii2)} \; \text{depending on } \texttt{Xl} < \texttt{Xi} \; \text{or } \texttt{Xl} > \texttt{Xi} \\ &\text{Next(Xj)} = \texttt{Xi} \\ &\text{Next(Xi)} = \texttt{Xk} \\ &\text{return } [\texttt{Next}(-\infty), \; \texttt{Next}(\texttt{Next}(-\infty)) \; \ldots] \end{split}
```

Similarity to quicksort: spliting intervals.