

IMPACT OF BULK VISCOSITY ON THE DEVELOPMENT OF SHOCKED SHEAR LAYER

RADOUAN BOUKHARFANE* PEDRO JOSÉ MARTÍNEZ FERRER* ARNAUD MURA* VINCENT GIOVANGIGLI**

* INSTITUT PPRIME CNRS, FRANCE

** CMAP CNRS, FRANCE

Contents

- Introduction
- 2 DNS solver
 - Computational methodology
 - Numerical verification
- Results
 - Description of the numerical configuration
 - 2D case results
 - 3D case results
- Summary

Problem description

Constitutive model for a Newtonian fluid

$$\tau_{ij} = \underbrace{\kappa \Delta \delta_{ij}}_{\text{Volumetric changes}} + \underbrace{2\eta S_{ij}^d}_{\text{Deviatoric part}}$$

with
$$\Delta = \partial u_k / \partial x_k$$
 and $S_{ij}^d = S_{ij} - \Delta \delta_{ij} / 3$

Viscous dissipation rate

$$\Phi = \tau_{ij} S_{ij} = \kappa \Delta^2 + 2\eta S_{ij}^d S_{ij}^d$$

- Stokes' assumption is justified if $\kappa = 0$ (y dilute monatomic gases) or/and $\Delta = 0$ (incompressible or weakly compressible flows)
- Stokes' assumption is not exact for:
 - \checkmark most polyatomic gases, e.g., bulk to shear viscosity ratio is $O(10^3)$ for CO_2 at room temperature
 - \checkmark flows featuring high compressibility level where dilatational effects are not negligible

Problem description

- Few studies using DNS approach dedicated to the analysis of bulk viscosity effects
 - shock-hydrogen bubble interaction (Billet et al. 2008)^a
 - turbulent premixed combustion (Fru et al. 2012)^b

Assessment of the present study

- Investigation of the bulk viscosity effects on shear layer (SL) development
- Direct numerical simulations: no turbulence models
- High-speed combustion regimes: Scramjet engines
- Multicomponent transport
- Gas mixtures: hydrogen, air . . .
- Influence of shock wave compression

^aBillet, G., Giovangigli, V., & De Gassowski, G. (2008). Impact of volume viscosity on a shock-hydrogen-bubble interaction. Combustion Theory and Modelling.

^bFru, G., Janiga, G., & Thévenin, D. (2012). Impact of volume viscosity on the structure of turbulent premixed flames in the thin reaction zone regime. Flow, turbulence and combustion

CREAMS solver

- CREAMS: Compressible REActive Multi-Species solver (P' Institute)
 - Cartesian Navier-Stokes solver, three-dimensional, compressible, unsteady, viscous, multi-species, massively parallel (MPI, up to 100 000 cores)

Mass

$$\partial_t (\rho) + \nabla \cdot (\rho u) = 0$$

Momentum

$$\partial_t (\rho u) + \nabla \cdot (\rho u \otimes u + \rho I) = \nabla \cdot \tau$$

Total energy

$$\partial_t \left(\rho \mathcal{E}_t \right) + \nabla \cdot \left[\left(\rho \mathcal{E}_t + p \right) u \right] = \nabla \cdot \left(\tau u - q \right)$$

Species

$$\partial_{t}\left(\rho Y_{\alpha}\right) + \nabla \cdot \left(\rho Y_{\alpha} u\right) = -\nabla \cdot \left(\rho Y_{\alpha} V_{\alpha}\right) + \rho \dot{\omega}_{\alpha}, \quad \alpha \in \mathcal{S}$$

CREAMS solver

$$p = \rho RT/W$$
, $W = (\Sigma_{\alpha \in \mathcal{S}} Y_{\alpha}/W_{\alpha})^{-1}$, $h_{\alpha}(T) = \varphi_{\alpha} RT/W_{\alpha}$

with the polynomial φ_{α} being determined from JANAF tables

Spatial and temporal discretizations

- Convective fluxes are discretized using 7th order accurate WENO scheme
 - Shock sensor based on Adams & Shariff works
- Molecular fluxes are discretized using 8th order accurate centred difference scheme
- Temporal integration is performed using RK3 scheme combined with Strang's splitting
- Multicomponent transport (Soret and Dufour): EGLIB library^a
- Chemical reactions: CVODE with CHEMKIN II library

^a Ern, A., & Giovangigli, V. (1995). Fast and accurate multicomponent transport property evaluation. Journal of Computational Physics.

Incompressible mixing layer

- $M_{\rm C}=0.074, Re_{\omega}=\bar{\rho}\Delta U\delta_{\omega,0}/\bar{\mu}=5333~(U_1=100~{\rm (m/s)},\,U_2=50~{\rm (m/s)}$
- $L_1 \times L_2 = 320\delta_{\omega,0} \times 200\delta_{\omega,0}, N_1 \times N_2 = 1000 \times 280$

Contour distributions of vorticity

Incompressible mixing layer

Incompressible mixing layer

Compilation of results obtained for different shear layers

$Re_{\omega,0}$	$\sigma_{11_{ ext{max}}}$	$\sigma_{ m 22max}$	$\sigma_{12_{ ext{max}}}$	$\eta^{-1} \mathrm{d} \delta_{\omega} / \mathrm{d} x_1$	Type	Reference
-	0.190	0.120	0.114	0.160	Exp.	Spencer & Jones (1971)
1800	0.180	0.140	0.100	0.163	DNS-3D	Bell & Mehta (1990)
3200	0.160	0.130	0.100	0.130	DNS-3D	Rogers & Moser (1994)
5333	0.200	0.260	0.140	0.180	DNS-2D	Bogey (2000)
5333	0.240	0.280	0.120	0.166	DNS-2D	Present simulation

• Good match with previous results

3D case results

Numerical configuration

- $Re_{\omega} = \bar{\rho} \Delta U \delta_{\omega,0} / \bar{\mu} = 640, M_c = 0.48, \beta = 33^{\circ}$
- $\bullet \ L_1 \times L_2 \times L_3 = 275\delta_{\omega,0} \times 120\delta_{\omega,0} \times 15\delta_{\omega,0}, N_1 \times N_2 = 1700 \times 720 \times 180$
- Slip wall BC at top, R-H relations for a gas mixture at bottom and periodic BC in x₃-directions
- O'Conaire reaction mechanism: 10 species, 21 elementary reaction steps

Numerical configuration

Inlet stream conditions retained for inert and reactive numerical simulations

Quantity	Fuel stream	Oxidizer stream
p (Pa)	94232.25	94232.25
T (K)	545.0	1475.0
$\rho (\text{kg/m}^3)$	0.354	0.203
$Y_{\rm H_2} (-)$	0.05	0.0
$Y_{O_2}^{(-)}$	0.0	0.278
$Y_{\rm H_2O}$ (-)	0.0	0.17
Y _H (-)	0.0	5.60×10^{-7}
$Y_{\rm O}$ (-)	0.0	1.55×10^{-4}
$Y_{OH}(-)$	0.0	1.83×10^{-3}
Y_{HO_2} (-)	0.0	5.10×10^{-6}
$Y_{\rm H_2O_2}$ (-)	0.0	2.50×10^{-7}
$Y_{N_2}(-)$	0.95	0.55

Numerical configuration

- Species concentrations have been determined from equilibrium conditions
- Maximum value of the equilibrium temperature is approximately 2400 K
 - ✓ heat release level induces significant modifications to the large-scale development of SL

- κ/η reaches values greater than unity
 - dilatation may effect the instantaneous development of SL

• $\kappa = 0$ generates more spurious reflections

- Large values in the border of the mixing's region where ∇P and $\nabla \rho$ are significantly non-aligned
- Roll up process into vortices started earlier in the presence of bulk viscosity

- Bulk viscosity tends to favour the baroclinic term
- Production of baroclinic vorticity is more concentrated around $\xi_{st} = 0.41$.

$$\frac{\mathrm{D}\Omega}{\mathrm{D}t} = \underbrace{\frac{1}{2}\omega \cdot (\nabla u + \nabla u^{\mathsf{T}}) \cdot \omega}_{\mathrm{Vortex\ stretching}} - \underbrace{\Omega \nabla \cdot u}_{\mathrm{Dilatation}} + \underbrace{\omega \cdot \left(\frac{\nabla P \times \nabla \rho}{\rho^2}\right)}_{\mathrm{Baroclinic\ torque}} + \underbrace{\omega \cdot \left(\nabla \times \left[\frac{\nabla \cdot \tau}{\rho}\right]\right)}_{\mathrm{Viscous\ diffusion}}$$

- Profiles of longitudinal evolution of the three quantities are almost everywhere superimposed
- Shift to averaged time statistics tends to dwindle the differences observed in the instantaneous field

Reacting case

• δ_{ω} in the case $\kappa \neq 0$ develops less substantially than in the case $\kappa = 0$

Instantaneous fields (non-reacting case)

- Vortical structure's density is higher in the absence of bulk viscosity
- Vortex mechanisms are highly influenced by the effects of dilatation
- Bulk viscosity tends to increase turbulent dissipation

Vorticity thickness

Case	1st region	2 nd region	3 rd region
$\kappa = 0$	0.023	0.223	0.142
$\kappa \neq 0$	0.022	0.192	0.137

Values of $\eta^{-1} d\delta_{\omega}/dx_1$ (-)

- Inhibition of the expansion of the mixing layer is consistent with the morphology of the roll-up of the vortices
- Growth rate of the vorticity thickness in the case $\kappa = 0$ is substantially greater than that calculated in the case $\kappa \neq 0$.

Turbulent kinetic energy

- 3D character of simulation has a much greater effect on the spatial evolution of TKE
- Up to the abscissa $x_1/\delta_{\omega,0}=150$, the absence of bulk viscosity overestimates the case where the effect of κ is considered. The opposite happens after this abscissa

 ICCFD10, 12/07/2018

 RADDUAN BOUKHARFANE

 2025

Turbulent kinetic energy

$$\frac{\partial (\overline{\rho}K)}{\partial t} + \frac{\partial (\overline{\rho}\widetilde{u_k}K)}{\partial t} = \underbrace{\mathcal{P}}_{\text{Production}} + \underbrace{\mathcal{E}}_{\text{Dissipation}} + \underbrace{\mathcal{T}}_{\text{Transport}} + \underbrace{\mathcal{I}}_{\text{Pressure-strain}} + \underbrace{\mathcal{\Sigma}}_{\text{Mass flow}}$$

where:

$$\left\{ \mathcal{P}_{ij} = -\overline{\rho} \left(R_{ik} \frac{\partial \widetilde{U}_j}{\partial x_k} + R_{jk} \frac{\partial \widetilde{U}_i}{\partial x_k} \right) \right\}$$
 (1a)

$$\varepsilon_{ij} = -\frac{1}{\tau'_{ik}} \frac{\partial u''_{j}}{\partial x_{k}} - \frac{\partial u''_{i}}{\tau'_{jk}} \frac{\partial u''_{i}}{\partial x_{k}}$$
 (1b)

$$\mathcal{T}_{ij} = -\frac{\partial}{\partial x_k} \left(\overline{\rho u_i'' u_j'' u_k''} + \overline{P' u_i''} \delta_{jk} + \overline{P' u_j''} \delta_{jk} - \overline{\tau_{jk}' u_i''} - \overline{\tau_{ik}' u_j''} \right) \tag{1c}$$

$$\begin{cases} \mathcal{P}_{ij} = -\overline{\rho} \left(R_{ik} \frac{\partial \overline{u}_{j}}{\partial x_{k}} + R_{jk} \frac{\partial \overline{u}_{i}}{\partial x_{k}} \right) & \text{(1a)} \\ \varepsilon_{ij} = -\overline{\tau}_{ik}' \frac{\partial u_{j}''}{\partial x_{k}} - \overline{\tau}_{jk}' \frac{\partial u_{i}''}{\partial x_{k}} & \text{(1b)} \end{cases} \\ \mathcal{T}_{ij} = -\frac{\partial}{\partial x_{k}} \left(\overline{\rho u_{i}'' u_{j}'' u_{k}'' + \overline{P' u_{i}''} \delta_{jk} + \overline{P' u_{j}''} \delta_{jk} - \overline{\tau}_{jk}' u_{i}'' - \overline{\tau}_{ik}' u_{j}''} \right) & \text{(1c)} \\ \Pi_{ij} = \overline{P' \frac{\partial u_{i}''}{\partial x_{j}} + \overline{P' \frac{\partial u_{i}''}{\partial x_{k}}}} & \text{(1d)} \\ \Sigma_{ij} = \left(\overline{u_{i}''} \frac{\partial \overline{\tau}_{jk}}{\partial x_{k}} + \overline{u_{j}''} \frac{\partial \overline{\tau}_{jk}}{\partial x_{k}} \right) - \left(\overline{u_{i}''} \frac{\partial \overline{P}}{\partial x_{j}} + \overline{u_{j}''} \frac{\partial \overline{P}}{\partial x_{i}} \right) & \text{(1e)} \end{cases}$$

$$\sum_{ij} = \left(\overline{u_i''} \frac{\partial \overline{\tau_{jk}}}{\partial x_k} + \overline{u_j''} \frac{\partial \overline{\tau_{ik}}}{\partial x_k} \right) - \left(\overline{u_i''} \frac{\partial P}{\partial x_j} + \overline{u_j''} \frac{\partial P}{\partial x_i} \right)$$
(1e)

Turbulent kinetic energy

• Slightly smaller amplitude of production and dissipation terms in the case $\kappa = 0$

Skewness and flatness coefficients

 Amplitude of peaks in the intermittent zone higher for both the asymmetry and flatness coefficients in the presence of bulk viscosity

Summary

Conclusions

- Three-dimensional effects are more important than chemical kinetics effects
- Vorticity growth rate reduction behaviour modified by bulk viscosity
- Instantaneous effects are both affected in both 2D and 3D cases
- High order moments are more affected by bulk viscosity effect

Future works

- Three-dimensional reacting case
- 3D turbulent DNS with increasing M_c to increase compressibility (on going)
- Mixture featuring higher mixture κ values

Thanks for your attention!

If you have any questions, please feel free to ask.