The Pumping Lemma for Context-Free Languages Take an infinite context-free language

Generates an infinite number of different strings

Example: $S \rightarrow AB$

 $A \rightarrow aBb$

 $B \rightarrow Sb$

 $B \rightarrow b$

$$S \to AB$$

 $A \rightarrow aBb$

 $B \rightarrow Sb$

 $B \rightarrow b$

In a derivation of a long string, variables are repeated

A derivation:

 $S \Rightarrow AB \Rightarrow aBbB \Rightarrow abb\underline{B}$

 $\Rightarrow abbSb \Rightarrow abbABb \Rightarrow abbaBbBb \Rightarrow$

 $\Rightarrow abbabbBb \Rightarrow abbabbbb$

Consider now an infinite context-free language $\ L$

Let G be the grammar of $L-\{\lambda\}$

Take G so that I has no unit-productions no λ -productions

Let p = (Number of productions) \times (Largest right side of a production)

Let m = p + 1Example $G: S \to AB$ $A \to aBb$ $B \to Sb$ $B \to b$ $p = 4 \times 3 = 12$ m = p + 1 = 13

Take a string $w \in L(G)$ with length $|w| \ge m$

We will show:

in the derivation of $\ensuremath{\mathcal{W}}$ a variable of $\ensuremath{\mathcal{G}}$ is repeated

 $S \Rightarrow w$ $v_1 \Rightarrow v_2 \Rightarrow \cdots \Rightarrow v_k \Rightarrow w$ $S = v_1$

We know:

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \stackrel{*}{\Longrightarrow} x$$

This string is also generated:

$$s \Rightarrow uAz \Rightarrow uxz$$

$$uv^0xy^0z$$

We know:

$$S \stackrel{*}{\Rightarrow} uAz$$

$$A \Rightarrow vAy$$

$$A \stackrel{*}{\Rightarrow} x$$

This string is also generated:

$$s \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvxyz$$

The original
$$w = uv^1xy^1z$$

We know:

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \stackrel{*}{\Rightarrow} x$$

This string is also generated:

$$s \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvvAyyz \Rightarrow uvvxyyz$$

$$uv^2xy^2z$$

We know:

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \stackrel{*}{\Rightarrow} x$$

This string is also generated:

$$S \stackrel{*}{\Rightarrow} uAz \Rightarrow uvAyz \stackrel{*}{\Rightarrow} uvvAyyz \stackrel{*}{\Rightarrow}$$

$$uv^3xy^3z$$

We know:

$$S \Rightarrow uAz$$
 $A \Rightarrow vAy$ $A \Rightarrow x$

This string is also generated:

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvvAyyz \stackrel{*}{\Rightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvv\cdots vAy\cdots yyyz \stackrel{*}{\Rightarrow}$$

$$\stackrel{*}{\Rightarrow} uvvv\cdots vxy\cdots yyyz$$

$$uv^ixy^iz$$

Therefore, any string of the form

$$uv^i x y^i z$$
 $i \ge 0$

is generated by the grammar G

38

Therefore,

knowing that $uvxyz \in L(G)$

we also know that $uv^i x y^i z \in L(G)$

$$L(G) = L - \{\lambda\}$$

$$uv^{i}xy^{i}z \in L$$

Observation: $|vxy| \le m$

Since A is the last repeated variable

The Pumping Lemma:

For infinite context-free language L there exists an integer m such that for any string $w \in L$, $|w| \ge m$ we can write w = uvxyz with lengths $|vxy| \le m$ and $|vy| \ge 1$ and it must be: $uv^i xy^i z \in L$, for all $i \ge 0$

Applications The Pumping Lemma

Non-context free languages $\{a^nb^nc^n:n\geq 0\}$ Context-free languages $\{a^nb^n:n\geq 0\}$

Theorem: The language

 $L = \{a^n b^n c^n : n \ge 0\}$ is **not** context free

Proof: Use the Pumping Lemma

for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Pumping Lemma gives a magic number msuch that:

Pick any string $w \in L$ with length $|w| \ge m$

We pick: $w = a^m b^m c^m$

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that Lis context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

We can write: w = uvxyz

with lengths $|vxy| \le m$ and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$
 $|vxy| \le m$

$$w = a^m b^m c^m$$

$$w = uvxyz$$
 $|vxy| \le m$

$$|vxy| \le m$$

 $L = \{a^n b^n c^n : n \ge 0\}$

$$|vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

We examine all the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

 $|vy| \ge 1$

Case 1: vxy is within a^m

mmaaa...aaa bbb...bbb ccc...ccc

u vxy

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxvz$$

$$w = uvxyz$$
 $|vxy| \le m$

$$|vy| \ge 1$$

Case 1: v and y consist from only a

mm

aaa...aaa bbb...bbb ccc...ccc

u vxy

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

Case 1: Repeating v and y

$$k \ge 1$$

$$m+k$$

'aaaaaa...aaaaaa'bbb...bbb ccc...ccc

$$u v^2 x y^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$
 $|vxy| \le m$

$$|vy| \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$

$$k \ge 1$$

$$m+k$$

$$m$$
 r

$$u v^2 x y^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$
 $|vxy| \le m$

$$|vy| \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$

However:
$$uv^2xy^2z = a^{m+k}b^mc^m \notin L$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$Case 2: vxy \text{ is within } b^m$$

$$m \qquad m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$|vxy| \le m$$
 $|vy| \ge 1$

Case 2: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

vxy

$$w = a^m b^m c^m$$

и

$$w = uvxyz$$
 $|vxy| \le m$ $|vy| \ge 1$

Case 3: vxy is within c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$|vxy| \leq m$$

$$|vy| \ge 1$$

Case 3: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz$$

$$w = uvxyz$$
 $|vxy| \le m$

$$|vy| \ge 1$$

Case 4: vxy overlaps a^m and b^m

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 4: Possibility 1: } v \text{ contains only } a$$

$$y \text{ contains only } b$$

$$m \qquad m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \qquad vxy \qquad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 4: Possibility 1: } v \text{ contains only } a$$

$$k_1 + k_2 \ge 1 \qquad y \text{ contains only } b$$

$$m + k_1 \qquad m + k_2 \qquad m$$

$$aaa...aaaaaaa bbbbbbb...bbb ccc...ccc$$

$$u \qquad v^2xy^2 \qquad z$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 4: From Pumping Lemma: } uv^2 xy^2 z \in L$$

$$k_1 + k_2 \ge 1$$

$$m + k_1 \qquad m + k_2 \qquad m$$

$$aaa...aaaaaaa bbbbbbbb...bbb ccc...ccc$$

$$u \qquad v^2 xy^2 \qquad z$$

 $L = \{a^n b^n c^n : n \ge 0\}$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 4: From Pumping Lemma: } uv^2xy^2z \in L$$

$$k_1 + k_2 \ge 1$$

$$\text{However: } uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

$$\textbf{Contradiction!!!}$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 4: Possibility 2: } v \text{ contains } a \text{ and } b$$

$$y \text{ contains only } b$$

$$m \qquad m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \qquad vxy \qquad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 4: From Pumping Lemma: } uv^2xy^2z \in L$$

$$k_1 + k_2 + k \ge 1$$

$$m \qquad k_1 \quad k_2 \qquad m + k \qquad m$$

$$aaa...aaaaabbaabb bbbbbbb...bbb ccc...ccc$$

$$u \qquad v^2xy^2 \qquad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 4: From Pumping Lemma: } uv^2xy^2z \in L$$

$$\text{However:} \qquad k_1 + k_2 + k \ge 1$$

$$uv^2xy^2z = a^mb^{k_1}a^{k_2}b^{m+k}c^m \notin L$$

$$\textbf{Contradiction!!!}$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$Case 4: \text{ Possibility 3: } v \text{ contains only } a$$

$$y \text{ contains } a \text{ and } b$$

$$m \qquad m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \qquad vxy \qquad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 4: Possibility 3: } v \text{ contains only } a$$

$$y \text{ contains } a \text{ and } b$$

Similar analysis with Possibility 2

There are no other cases to consider

(since $|vxy| \le m$, string vxy cannot overlap a^m , b^m and c^m at the same time)

In all cases we obtained a contradiction

Therefore: The original assumption that

 $L = \{a^n b^n c^n : n \ge 0\}$

is context-free must be wrong

Conclusion: L is not context-free