Lecture Module - Ordinary Differential Equations

ME3001 - Mechanical Engineering Analysis

Mechanical Engineering
Tennessee Technological University

Module 4 - Ordinary Differential Equations

Module 4 - Ordinary Differential Equations

- Topic 1 What is a Differential Equation?
- Topic 2 Standard Form of an ODE
- Topic 3 Classification
- Topic 3 Classification

Topic 1 - What is a Differential Equation?

•

•

•

•

What is a Differential Equation?

with respect to the	
and one or more of its	of the
A differential equation is an equat	ion which describes a function
Definition:	

Ordinary Differential Equations are written in the following form.

$$a_n \frac{dy^{(n)}}{d^{(n)}x} + a_{n-1} \frac{dy^{(n-1)}}{d^{(n-1)}x} + \dots + a_2 \frac{dy^2}{d^2x} + a_1 \frac{dy}{dx} + a_0 y = f(x)$$

The apostrophe is commonly used for the derivative.

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_2 y'' + a_1 y' + a_0 y = f(x)$$

If time is the independent variable the equation changes slightly.

Is the differential equation ordinary or partial?

An ordinary differential equa	tion has independent	
variable and dep	oendent variable.	
A partial differential equation	n has	
independent variable	dependent variable.	

What is the order of the equation?

The order of a differential equation is the

present in the equation.

What is the degree of the equation?

The **degree** of a differential equation is the ______
of its highest derivative, after the equation has been made rational and integral in all of its derivatives.

Is the differential equation linear or non-linear?

An ordinary differential equation is _____ if the following statements are true.

- The dependent variable and its derivatives are of the first degree.
- The coefficients are constants or dependent on the independent variable.

If either rule is broken, the equation is - .

Differential equations are used to describe physical systems in many areas of engineering. An equation that represents a physical (or theoretical) system is known as a _____

- Solid Mechanics
- Kinematics and Dynamics
- Heat Transfer and Thermodynamics
- Fluid Mechanics

Newton's Second Law

$$\Sigma F = ma$$

leads to an equation of motion.

$$\dot{y} + \frac{c}{m}y = f(t)$$

The solution to a differential equation describes the		
function	_ _ as a	
of the		
	_·	

There are many different methods for finding the solution

Topic 2 - Standard Form of an ODE

•

•

•

•

Topic 3 - Classification

•

•

•

•

Topic 3 - Examples

•

•

•

•