Math 551, Applied PDE's

Lecture 22

Recap: PDE's in polar coords, heat and wave eqn problems

(H7.7)

An axisymmetric problem for the heat eqn: $\partial_t u =
abla^2 u$

(H7.7.9)

- Axisymmetric domain: $0 \le r \le b$: (disk of radius b)
- ullet Axisymmetric BC: u(r=b)=0 ("cold" Dirichlet BC, value same for all heta)
- ullet Axisymmetric IC: u(t=0)=A(r)
- ullet No part of the problem makes the soln depend on heta so seek a heta-independent soln u=u(r,t) of the PDE

$$rac{\partial u}{\partial t} = rac{1}{r}rac{\partial}{\partial r}\left(rrac{\partial u}{\partial r}
ight)$$

ullet Separation of variables trial soln: u(r,t)=f(r)h(t)

$$rac{h'(t)}{h(t)} = rac{(rf'(r))'}{rf(r)} = -\lambda$$

 \bullet $h'/h=-\lambda$ solution: $h(t)=ce^{-\lambda t}$ with λ unknown

Axisymmetric heat problem (continued)

The f(r) ODE problem on $0 \le r \le b$:

$$rac{d}{dr}\left(rrac{df}{dr}
ight)=-\lambda rf$$

- ullet In Sturm-Liouville form: p(r)=r (singular at r=0), q=0, $\sigma=r$ (weight fcn)
- ullet BC's: $u(r=b)=0 \implies f(b)=0$ and singular SL at $r=0 \implies$ seek f(0)= bounded $eq \infty$
- The λrf term does not match with Cauchy-Euler form; this is NOT CE. This eqn is called **Bessel's eqn of order zero** (BE-0). This is the simplest of a whole family of Bessel ODE's.... (to be continued).

Digression: Matching ODE's to "standard forms" - scaling in/out λ parameters

ullet Example 1: Original equation $\dfrac{d^2g}{dx^2} + \lambda g = 0$

Let $z=\sqrt{\lambda}\,x$ and y(z)=g(x).

Use chain rule $(x=z/\sqrt{\lambda} \text{ and } g(x)=y(\sqrt{\lambda}\,x))$ then the ODE becomes:

$$\left(\sqrt{\lambda}
ight)^2 rac{d^2 y}{dz^2} + \lambda y = 0 \qquad \Longrightarrow \qquad rac{d^2 y}{dz^2} + y = 0 \quad { ext{Standard Osc eqn}}$$

General soln of the scaled problem: $y(z) = c_1 \cos z + c_2 \sin z$ $\cos z, \sin z$ are called the trigonometric fcns of 1st, 2nd kind Un-do scaling to get general soln of original problem

$$g(x) = c_1 \cos(\sqrt{\lambda} x) + c_2 \sin(\sqrt{\lambda} x)$$

ullet Example 2: Original equation $\dfrac{d}{dr}\left(r\dfrac{df}{dr}
ight) + \lambda r f = 0$

Let $z=\sqrt{\lambda}\,r$ and y(z)=f(r).

Use chain rule $(r=z/\sqrt{\lambda} \text{ and } f(r)=y(\sqrt{\lambda}\,r))$ then ODE becomes:

$$\sqrt{\lambda} \frac{d}{dz} \left(\frac{z}{\sqrt{\lambda}} \sqrt{\lambda} \frac{dy}{dz} \right) + \lambda \frac{z}{\sqrt{\lambda}} y = 0 \qquad \Longrightarrow \qquad \frac{d}{dz} \left(z \frac{dy}{dz} \right) + z y = 0$$

Standard form Bessel eqn of order zero: $\frac{d}{dz}\left(z\frac{dy}{dz}\right) + zy = 0$

• General solution:

$$y(z) = c_1 J_0(z) + c_2 Y_0(z)$$

 $J_0(z)$: the 1st kind Bessel fcn of order zero

 $Y_0(z)$: the 2nd kind Bessel fcn of order zero

They are specific "special fcns" with tabulated properties, just like \cos , \sin (and are oscillatory fcns like \cos , \sin too).

Other key properties: $J_0(0)=1$ and $Y_0(z o 0) o -\infty$ and $J_0,Y_0 o 0$ for $z o \infty$ (decaying oscillations)

Un-do scaling to get general soln of original problem

$$f(r) = c_1 J_0(\sqrt{\lambda} r) + c_2 Y_0(\sqrt{\lambda} r)$$