

CSC 5741 Lecture 7: Linear Regression, Classification and Clustering

Lighton Phiri < <u>lighton.phiri@unza.zm</u>>
Department of Library and Information Science
University of Zambia

Announcements—May 14, 2019

Assessments

- Class Theory Test: May 21, 2019
- Mini Project Deliverables: May 20, 2019
 - (i)Technical Report; (ii) Code Repository for Fully Functional Implementation (including interactive Jupyter Notebook) + Labelled Dataset; (iii) Presentation Slides
- Mini Project Presentations: Mary 28, 2019
 - Presentations [10 minutes]; Demonstrations [2 minutes]; Q&A [3 minutes]
- Epilogue Lecture: May 28, 2019
 - Theory of Estimators
 - Academic Talk + Beyond CSC 5741

Lecture Series Outline

- Part I: Linear Regression, Classification and Clustering
- Part II: Jupyter Notebook Walkthrough

Lecture Series Outline

- Part I: Linear Regression
 - Introduction
 - Regression
 - Linear Regression
 - Classification
 - Clustering
- Part II: Jupyter Notebook Walkthrough

Introduction (1/3)

- The Cross-industry standard process for data mining (CRISP-DM) is a model commonly used to highlight approaches in data mining
 - CRISP-DM segments a data mining project into six phases with no strict order of execution
 - Surveys conducted suggest CRISP-DM is the most widely used methodology

Introduction (2/3)

- Define the model components, features, how it behaves and how to interpret it
- Evaluate the various alternative techniques that can be integrated with the model
 - e.g. Evaluate different classification algorithms

Introduction (3/3)

- Finding patterns in data that provide insight or enable fast and accurate decision making
 - Prediction
 - Pattern recognition

Regression (1/2)

- Regression generally involves predicting one variable from another
- It is a statistical modeling technique that evaluates the relationship between one variable (dependent variable) and one or more other variables (independent variables)
- Uses a single equation for determining the relationship between the dependent variable and the independent variables

Regression (2/2)

- Variable
 - Any factor that can take on a value
 - Definition of value is aligned with data attributes—numeric, categorical, ordinal
- Dependent variable
 - The observed or measured variable
- Independent variable
 - Variable that is manipulated in order to observe desired outcome

Linear Regression (1/3)

 Linear Regression is used to fit a linear model to data where the dependent variable is continuous/numeric variable

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n + \varepsilon$$

 Given a set of points (Xi,f(xi)), we wish to find a linear function (or line in 2 dimensions) that "goes through" these points.

Linear Regression (2/3)

- The associated error is computed by finding the distance between the data point and the straight line
 - Observed value Predicted value
 - Yi f(xi)

May 7 2019 CSC 5741 L07 - 1st

Linear Regression (3/3)

• Sum of Squared Errors (SSE) typically used to determine the accuracy of the linear equation

$$SSE = \sum_{y} (y_{abserved} - y_{predicted})^{2}$$

- A small SSE value implies a better fit and is thus desirable
- The goal of Linear regression is to minimize SSE

Classification (1/)

- Classification involve the prediction of a categorical variable
 - Binary classification involves two categorical variables
 - Multilabel classification involves more than two categorical variables
 - Multiclass classification associates multiple labels to one outcome

Clustering (1/)

 Clustering is a pattern recognition technique that groups observations into groups that have meaning in the context of a particular problem.

Clustering (2/)

- Clustering is an unsupervised learning techniques
 - Inputs are organized into an efficient representation that characterizes them.
 - Unlike linear regression and classification, does not rely on predefined classes.
 - It can uncover previously undetected relationships in a complex data set.

Clustering (3/)

- Two main clustering approaches: non-hierarchical and hierarchical
 - In nonhierarchical clustering, the relationship between clusters is undetermined.
 - In hierarchical clustering repeatedly links pairs of clusters until every data object is included in the hierarchy

Clustering (3/)

- Two main clustering approaches: non-hierarchical and hierarchical
 - In nonhierarchical clustering, the relationship between clusters is undetermined.
 Opposite is true for hierarchical clustering

Clustering (4/)

- Example in Jupyter Notebook uses K Mean clustering—a non-hierarchical clustering approach
 - Select k clusters
 - Set random centroids: centers with those k clusters
 - reassigning all data objects to their closest cluster
 - Compute new cluster centers as mean value

Clustering (5/)

 Elbow plot can be used to evaluate optimal number of clusters

Q & A Session

Comments, concerns and complaints?

Lecture Series Outline

- Part I: Linear Regression
- Part II: Jupyter Notebook Walkthrough
 - Univariate Linear Regression
 - Multivariate Linear Regression
 - Binary Classification
 - Multilabel Classification
 - K Means Clustering

May 7 2019 CSC 5741 L07 - 2⁻¹

Bibliography

- [1] Witten, I. H., Frank, E., Hall, M. A., Pal, C. J. (2017) Data Mining: Practical Machine Learning Tools and Techniques. Chapter 2 https://www.cs.waikato.ac.nz/ml/weka/book.html
- [2] An introduction to machine learning with scikit-learn https://scikit-learn.org/stable/tutorial/basic/tutorial.html

CSC 5741 Lecture 7: Linear Regression, Classification and Clustering

Lighton Phiri < <u>lighton.phiri@unza.zm</u>>
Department of Library and Information Science
University of Zambia