This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Kokai (Japanese Unexamined Patent Publication) No. 59-231181 Title of the Invention: Slipper of Swash Plate Compressor Publication Date: December 25, 1984

Application No. 58-105267

Filing Date: June 13, 1983

Applicant: Hitachi, Ltd.

[Embodiments]

Embodiments of the present invention will be described below.

Fig. 2 is a cross sectional view of an embodiment of a slipper according to the present invention.

A base material 9 is made of steel. A sintered layer 8 is formed on the side face of the base material 9 adjacent to a swash plate. The sintered layer 8 is essentially made of Fe and contains a solid lubricant.

The embodiment will be described below in detail.

It is preferable that a carbon steel be used as a steel of the base material in view of mechanical properties and the price, or the like. Particularly, a carbon steel having a tensile strength of not less than 30kgf/mm² is preferred. If a carbon steel of less than 30kgf/mm² is used, there is a possibility that a slipper may be deformed under high load.

As a solid lubricant, for example, graphite, Pb, MoS₂, or BN is preferred. These may be used singly or in combination. If graphite is used, it is preferable that 0.5 to 5 wt% of the graphite be used. If graphite content is less than 0.5 wt%, anti-wearing property and lubrication by free graphite is insufficient. If graphite content is more than 5 wt%, the strength of the base material is decreased, and the segregation of graphite is caused when the base material is formed or the formability thereof becomes worse. It is more preferable that 2 to 4 wt% of graphite is used. On the other hand, if Pb is used, it is preferred that 8 to 30 wt% of Pb be used. If less than 8 wt% of Pb is used, a sufficient lubricating property cannot be obtained. If more than 30 wt% of Pb is used, there are problems in which the

strength of the sintered layer is decreased and the slipper is deformed under high load.

As components other than Fe, major constituents, for example, Cu and C are contained singly or in combination.

Cu enhances the strength of the sintered layer. It is preferable that the amount of Cu is in the range of 1 to 10 wt% with respect to the weight of all components. If less than 1 wt% of Cu is used, effects to increase the strength of the sintered layer due to the sintering properties are small. If more than 10 wt% of Cu is used, effects of anti-bind seizing property become saturated. If Cu is included, Sn may be included in combination therewith. Sn improves sliding properties and sintering properties of a portion made of Cu. It is preferable that 2 to 30 wt% of Sn is used with respect to the weight of Cu. If less than 2 wt% of Sn is used, the above-described effect is small. If more than 30 wt% of Sn is used, the sintered layer becomes brittle.

On the other hand, C enhances the strength of the sintered layer. It is preferable that C is used at 0.04 to 1.7 wt% with respect to the weight of Fe. If less than 0.04 wt% of C is used, the sintered layer becomes soft. If more than 1.7 wt% of C is used, the sintered layer becomes brittle.

Even if foreign matters are included at less than 3 wt% with respect to the weight of all components, the property of a slipper according to the present invention is not affected.

Regarding the thickness of the sintered layer to be formed, if the size of the slipper is 17.5¢ and 4mm in thickness, the thickness of 0.1 to 0.7mm is preferred. It is more preferable that the thickness is 0.3 to 0.5mm. If the thickness is less than 0.3mm, a solid lubricant, especially, Pb is vaporized and eluted and, thus a desired anti-binding property cannot be expected.

If the thickness is more than 0.5mm, the plastic deformation property of the sintered layer is enhanced and, thus a space between the slipper and the swash plate occurs due to plastic deformation when a high load operation is

carried out.

An example of a method for forming the sintered layer on the base material will now be described below.

Blast processing is carried out on the side face of the base material adjacent to the swash plate by use of grain size no. 50. A mixed powder of the solid lubricant and powder in which Fe is the major constituent thereof is put on the side face adjacent to the swash plate and then is pressurized by the pressure of 5 to 8 tf/cm². The mixed powder is heated to sinter the same at 800 to 1000°C for 20 to 40 minutes, in a non-oxidative atmosphere. If the temperature is less than 800°C, the mixed powder is not sufficiently sintered. If the temperature is not less than 1000°C and if Pb is included, cracks occur due to expansion of Pb. If the sintering operation is carried out for more than 40 minutes, Pb is vaporized.

In the embodiment shown in Fig. 2, a coating layer made of metallic salt (for example, metallic soap) or oxide (for example, FeS) is formed on a surface of the base material.

Embodiment 1

sample 1 of table 1 described below is phosphor bronze as a known material of a slipper, which is made of 10 wt% of Sn, 0.1 wt% of P and the remainder of Cu. Sample 2 is a material in which powder made of 3.5 wt% of Sn, 23 wt% of Pb and the remainder of Cu is sintered to a low-carbon steel. Sample 6 is a material according to the present invention, in which a mixed powder made of 5 wt% of Cu, 2 wt% of graphite, 25 wt% of Pb and the remainder of Fe powder which contains 0.6 wt% of C is put on a 0.3% carbon steel plate and is heated to be sintered at 950°C for about 30 minutes in non-oxidative atmosphere after being pressurized to adhere on the plate.

Table 1

Components	-	Cu	Sn	Pb	P	Graphite	Fe
Sample No.							
Known	1	Remainder	10		0.1		
material	2	Remainder	3.5	23			
Material according to the present invention	6	5	0.4	25		2	remainder

A piece for a wearing test is taken from the above samples; and an anti-binding property test is carried out by use of a rotation-type wearing test machine. A material to wear the piece for a wearing test is made of spheroidal graphite cast iron which is hardened by high-frequency. The test condition is sliding speed: 12m/c, lubricant: oil for refrigerator, amount of lubricant: 40cc/min. A loading value at which seizing occurs is obtained by increasing the loading value at intervals of 50kgf/cm² to 20kgf/cm². It takes 15 minutes at each loading value. Table 2 is a result of the anti-bind seizing property test.

Table 2

Sample No.	Loading value at which sintering occurs (kg)
1	100
2	120
3	More than 200

A loading value, in which seizing occurs of a material according to the present invention, is higher than that of sample 1 as a known slipper and sample 2 in which copperfamily sintered material is coated on a low-carbon steel plate. Thus, the material according to the present invention has good anti-binding property.

Embodiment 2

A mixed powder whose composition is described in sample no. 3 to 7 of table 3 is put on a carbon steel plate as a slipper base material, is heated at 950°C for 30 minutes in non-oxidative atmosphere to form a sintered layer having a

thickness of 0.4 to 0.7mm after being pressurized to adhere on the plate and, thus is supplied as a sample piece after being machined into a shape of a slipper by mechanical machining. As a comparative material, similar to the embodiment 1, phosphor bronze (sample no. 1) as a known material of a slipper and a material (sample no. 2) in which Cu-Sn-Pb-family sintered body is formed in a low-carbon steel. Fig. 4 shows conditions of anti-bind seizing property test by use of an actual slipper. Fig. 5 shows a result of the anti-binding property test using an actual slipper.

Table 3

		Cu	Sn	Pb	P	Graphite	Fe
Known	1	Remainder	10		0.1		
material	2	Remainder	3.5	23			
Material	3	2	0.1	10		1	Remainder
according	4	3	0.2	15		1.5	Remainder
to the	5	4	0.4	20		1.5	Remainder
present	6	5	0.4	25		2	Remainder
invention	7	10	0.5	30		4	Remainder

Table 4

Conditions of	anti-binding property	test
Sliding speed	(m/s)	14
Load (kgf/cm2)		30

Table 5

	Sample no.	The time that elapsed before sintering occurs
Known	1	6 minutes
material	2	9 minutes
Material	3	10 minutes
according	4	15 minutes
to the	5	22 minutes
present	6	25 minutes
invention	7	25 minutes

As is clear from table 5, comparing with sample no. 1 and sample no. 2, the time that elapsed before sintering occurs is extremely long, even if little lubricant is supplied, for a material according to the present invention. In other words, the material according to the present invention can provide an extremely good slipper in which no

sintering or abnormal wearing occurs even if little lubricant is temporarily supplied in an initial operation or a normal operation.

Fig. 6 shows comparative test conditions of the amount of wearing in the material of the present invention and a known slipper. As a comparative material, similar to the embodiment 1, phosphor bronze (sample no. 1) and a material (sample no. 2) in which a sintered body made of 3.5 wt% of Sn, 23 wt% of Pb and the remainder of Cu is formed in a low-carbon steel.

Table 6

Sliding speed (m/s)	22
Load (kgf/cm ²)	Max	95
	Min	8
The time of tes	t (hr)	600

Fig. 3 shows a result of a comparative test of the amount of wearing. It is apparent from Fig. 3 that a material of the present invention has extremely high wear resistance in comparison with a known material. Among samples shown in Fig. 3, sample no. 6 has particularly high wear resistance. In other words, a swash-plate-type compressor provided with a slipper in which a sintered layer made of 1 to 5 wt% of Cu, 0.5 to 5 wt% of graphite, 8 to 30 wt% of Pb and the remainder of Fe is formed on a steel material of the present invention, has a high wear resistance when sliding at high speed. The time elapsed before sintering occurs is extremely long even if little lubricant is temporarily supplied. Thus, the compressor has high durability and reliability in comparison with a known compressor.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 59231181 A

(43) Date of publication of application: 25.12.84

(51) Int. CI

F04B 25/04 // C22C 38/00

(21) Application number: 58105267

(22) Date of filing: 13.06.83

(71) Applicant:

HITACHI LTD

(72) Inventor:

OGINOYA MITSUO ASAHI NAOTATSU SUGINUMA ATSUSHI KISHI ATSUO

DEGAWA TAKU

(54) SLIPPER FOR SWASH PLATE TYPE COMPRESSOR

(57) Abstract:

PURPOSE: To improve a high-load, high-speed characteristics, a resistance to abrasion and a resistance to seizing by a method wherein a sintered body layer, formed on the swash plate side surface of a slipper base member of steel, is constituted of the principal constituent of Fe and a solid lubricating agent is contained thereinto.

CONSTITUTION: The base member 9 of the slipper 3 is made of steel having a tensile strength higher than 30kg/mm² and the surface of the base member 9 is provided with a coating layer 10 consisting of metal salt or metal sulfide. The surface of the base member 9 at the side of the swash plate 2 is formed with the sintered body layer 8 of 0.1W0.7 thick, which is consisting of 1W10wt% of Cu, 8W30wt% of Pb, 0.5W5wt% of graphite of solid lubricating agent and a balance of Fe. According to this method, the resistance to abrasion becomes prominent even under the high-speed sliding condition, the durable time against seizing becomes longer even under a condition that lubricating oil does not exist temporarily, and the

durability as well as the reliability may be improved compared with conventional compressors.

COPYRIGHT: (C)1984,JPO&Japio

⑩ 日本国特許庁 (JP)

①特許出願公開

⑩ 公開特許公報 (A)

昭59-231181

Int. Cl.³
F 04 B 25/04
C 22 C 38/00

②特

識別記号

庁内整理番号 7018—3H 7619—4K 砂公開 昭和59年(1984)12月25日

発明の数 1 審査請求 未請求

(全 6 頁)

願 昭58-105267

②出 願 昭58(1983)6月13日

⑩発 明 者 萩野谷三男

日立市幸町3丁目1番1号株式 会社日立製作所日立研究所内

⑩発 明 者 朝日直達

日立市幸町3丁目1番1号株式 会社日立製作所日立研究所内

仍発 明 者 杉沼篤

勝田市大字高場2520番地株式会

社日立製作所佐和工場内

⑩発 明 者 岸敦夫

勝田市大字髙場2520番地株式会 社日立製作所佐和工場内

②発明 者 出川卓

勝田市大字髙場2520番地株式会 社日立製作所佐和工場内

⑩出 願 人 株式会社日立製作所

東京都千代田区神田駿河台4丁

目6番地

個代 理 人 弁理士 鵜沼辰之 外 2 名

明 細 書

発明の名称 斜板式圧縮機のスリッパ 特許請求の範囲

- 1. 蓋材が鉄鋼からなり、酸蓋材の斜板側の面に 形成された焼結体層が、Feを主成分とし、固体 潤滑剤を含むことを特象とする斜板式圧縮機のス リッパ。
- 2. 固体潤滑剤がグラファイトである特許請求の 範囲第1項記載の斜板式圧縮機のスリッパ。
- 3. 固体潤滑剤がM o 8 。 及び/又はB N である 特許請求の範囲第 1 項記載の斜板式圧縮機のスリ ッパ。
- 4 ・ 焼結体層が、 C u 1 ~ 1 0 重量が、 クラファイト 0.5 ~ 5 重量が、 P b 8 ~ 3 0 重量が、 改部が F e からなる特許請求の範囲第 1 項叉は第 2 項記載の斜板式圧縮機のスリッパ。
- 5 · 焼結体層が、 C u 1 ~ 1 0 重量が、 グラフアイト 0.5 ~ 5 重量が、 P b 8 ~ 3 0 重量が、 S n が C u に対して 2 ~ 3 0 重量が、 残部が F e からなる特許請求の範囲第 1 項記載の斜板式圧縮機の

スリツバ。

- 6. Sn2~30重量 % でCu残部のCu-Sn 系合金粉末、グラファイト粉末、Pb粉末及び Fe粉末の混合粉末を焼結させて焼結体層を形成 した特許削求の範囲第5項配収の斜板式圧縮機の スリッパ。
- 7. 焼結体層が、Cu1~10重量が、グラファイト 0.5~5重量が、Pb8~30重量が、CがFeに対し0.04~1.7重量が、残部がFeからなる特許請求の範囲第1項記載の斜板式圧縮機のスリッパ。
- 8. 基材が、引張強さ30 Kg/mm³ 以上の強度を 有する特許請求の範囲第1項ないし第7項のいず れかに記載の斜板式圧縮機のスリッパ。
- 9. 基材表面に、金属塩又は硫化物からなる被覆層を設けた特許請求の範囲第8項記載の斜板式圧縮機のスリッパ。
- 10. 焼結体層の厚さが 0.1 ~ 0.7 mmである特許請求の範囲第 1 項ないし第 9 項のいずれかに記載の斜板式圧縮機のスリッパ。

(1)

特開昭59-231181(2)

発明の詳細な説明

〔発明の利用分野〕

本発明は斜板式圧縮機のスリッパに関する。 [発明の背景]

各種冷凍機器,油圧機器あるいは空調機器などにおいては、回転駆動隊からの選動をピストンなどの往復運動に変換する手段として剣板式伝達機機を採用した圧縮機を用いるものがある。この種の糾板式圧縮機は、例えば第1 図に示すように、回転運動するシャフト1 に斜めに取付けられた斜板2 と、スリッパ3 及びボール4 とによつてピストン5 は、シリンダ6を左右に往復運動させる。この時スリッパ3は、片面をボール4とピストン5 とによつて拘束された状態でボール4 と摺動し、もう一方の面は、斜板側面を高速度で摺動する。したがつて、スリッパには、高速摺動特性,耐荷重性の優れた材質が要求される。

一般に、冷凍機器あるいは油圧機器用の圧縮機等は、一定速度の電動機によつて駆動され、冷媒と潤滑油の混合物は、定常状態をもつて圧縮機内

(3)

ど無潤滑になる場合がある。したがつて、斜板とスリッパは金属同志の接触を起し易く、異常摩耗, 焼付け等が問題となる。また、通常運転における断続使用においても、その始動時に潤滑油が存在しないか、あるいは極めて乏しい状態になることもある。すなわち、冷媒に混合された潤滑油の流れが少ない状態が起る。このような状態で運転された場合、鉄板とスリッパの摺動面に多少の金属同志の接触が生じて摩耗が増進され、寿命の短縮あるいは焼付けが生ずることもある。また、高速、高荷重では潤滑油が存在しても斜板とスリッパとの摺動面に介在しにくい状態になり、摩耗, 焼付きが問題になる場合もある。

以上のように、斜板式圧縮機の斜板およびスリッパは極めて過酷な運転条件下で使用されるため、 とれに耐える材質、形状および装面処理等が提案 されている。

従来、斜板式圧縮機のスリッパ材としては、 Cu-Sn系合金の引抜材等が使用されていた。 を循環する。しかし、カーエアコン用の斜板式圧 稲機では、圧縮機とエンジンとがベルトで連結で れてかり、エンジンの回転数に比例して圧縮機器 したがつて、かりには 1 対1 で伝達れている。したがつて、圧縮機の回転数はイイののが、発車後でイイのが、発車後では 5 00 m により、10~20秒後には 6000 m に達するともある。また、空ふかし等により停止状態なるともある。また、空ふかし等により停止状態から数秒で4000~6000 m に達することもある。 こともある。また、空かかし等により停止状態から数秒で4000~6000 m に達することもある。 こともある。また、空かかし等により停止状態ないが、斜板とスリッパの摺動速度は 0~ 25 m/sにも及ぶ急酸な変化を受けることでなる。更に、冷なを圧縮するためにスリッパの移り、 ると触面圧は 200~10 kg f/cm と変化する。

前述したように、急激な摺動速度変化、負荷変動を受けるカーエアコン用の圧縮機では、冷凍回路中を循環する潤滑油量が変化する。特に、圧縮機内を冷媒と一緒に流通する油によつて各摺動部の潤滑を行う潤滑方式を採用した圧縮機においては、その傾向が顕著に現われ、一時的に、ほとん

(4)

しかし、従来のこの種のスリッパ材は耐摩耗性に 劣るため、CuーSn系合金に、耐摩耗性に有効 な敬量の元素を加え、耐摩耗性の改善を図つている。しかし、かかるスリッパ材を使用したとして も、従来の圧縮機において不可避とされている組 立後の初期運転、あるいは通常運転における断続 使用の始動時等の潤滑油不足に陥つた時において は、異常摩耗や焼付きが発生し易いという欠点が あつた。

また、低炭素鍋板に、Sn25~5重量が、Pb20~25重量が、残部がCuよりなる焼結体層を形成させたスリッパも知られている。しかし、この種のスリッパは、変形抵抗が低いので、高速、高負荷での耐焼付性は十分ではない。

ところで、掲動部材の摩耗現象であるが、2つの固体間に液体や固体などの潤滑剤を挿入すると、 摩擦力は著しく低下する。しかし、高負荷あるい は高速摺動時には、固体間に挿入された潤滑剤は 一部分あるいは全面に介在しなくなり、固体同志 の接触が生じて摩擦力は増大し、異常摩耗や焼付

き 等が生する。 これらを防止するためには、潤滑 剤を接触面に常に介在させる必要がある。摺動部 材自身に潤滑剤となりりる物質が含有されている もの、あるいは、潤滑剤の保持作用があるものが 摺動部材として良好な耐摩耗性を示すことになる。 との潤滑剤の保持作用であるが、潤滑剤の保持作 用を安定させるためには、摩擦面に凹部を形成す るととが良い。摺動部自身をかなりきれいに仕上 げても摩擦面にはミクロ的な凹凸が形成されるも のである。との凹凸が負荷を受けることにより凸 部が塑性変形して凹部がなくなる。その結果凹部 での潤滑油保持作用がなくなり、耐摩耗性は低下 する。すなわち、摩擦面は変形抵抗の高い方が好 ましい。特に、一時的に無給油になるような場合 は、耐焼付性に対し凹部形成の有無が重要な役割 を果す。

本発明は、従来のスリッパの上記欠点及び摺動 部材の上記摩耗現象を鑑みてなされたものである。 〔発明の目的〕

本発明の目的は、高負荷・高速摺動特性、耐摩

(7)

/m² 以下の材料では、髙負荷時にスリッパが変形するおそれがある。

固体潤滑剤としては、たとえば、グラフアイト, Pb, MoS2, BNが望ましい。これらは単独で用いてもよいし、併わせて用いてもよい。グラファイトの場合、全体に対し0.5~5重量が好ましい。0.5重量が未満では、耐摩耗性が十分でなく、遊離黒鉛による潤滑作用が不足となる。5重量が以上になると基地の強度が低下する上、成形時の黒鉛の偏析あるいは成形性の悪化等が生ずる。より好ましくは2~4重量がである。一方、Pbの場合、全体に対し8~30重量がが好ましい。8重量が未満では十分な潤滑性が得られず、30重量が以上では焼結体層の強度が低下し、高負荷時における変形等が問題となる。

主成分であるFe以外の成分としては、たとえば、Cu,Cを単独にあるいは同時に含ませてもよい。

C u は、焼結体層の強度を高める。量は、全体 に対して1~10重量をが好ましい。1重量を未 耗性,耐焼付き性に優れた、斜板式圧縮機のスリッパを提供することを目的とする。

〔発明の概要〕

本発明は、基材が鉄剱からなり、該基材の斜板 との摺動面に形成された焼結体層が、Feを主成 分とし、固体潤滑剤を含むことを特徴とする。こ れにより、高負荷・高速摺動特性、耐摩耗性、耐 焼付け性が向上する。

[発明の奥施例]

以下に本発明の奥施例を説明する。

第2図は本発明の一実施例を示すスリッパの断 面図である。

基材 9 は鉄鍋からなつている。基材 9 の斜板側の面には焼結体層 8 が形成されている。との焼結体層 8 は、Feを主成分とし、また、固体潤滑剤を含んでいる。

本実施例を更に詳細に説明する。

基材の鉄鋼としては、機械的性質,価格等の面から炭素鋼が望ましい。特に、30 Kg f / mm²以上の引張強さを有する炭素鋼が望ましい。30 Kg f

(8)

満では焼結性による焼結腐の強度に及ぼす効果が少なく、10重量を以上では耐焼付き性に対する効果が飽和する。また、Cuを含ませる場合は同時にSnを含ませてもよい。Snは、Cuの部分の摺動特性と焼結性を向上させるもので、Cuに対する比率は2~30重量をが好ましい。2重量を未満では、この効果が少なく、30重量を以上では、焼結体層に脆化が生する。

一方、Cは、焼結体層の強度を高める。Fe に対して 0.04~1.7 重量が好ましい。0.04 重量が未満では焼結体層は軟質になり、1.7 重量が以上になると焼結体層は脆くなる。

なお、不純物は全体に対して3重量3以下程度 混入しても本発明のスリッパの特性には影響を及 ほさない。

形成させる焼結体層の厚さであるが、たとえば、スリッパの寸法が17.5 ø, 厚み4 mとすると、0.1~0.7 mが好ましい。より好ましくは0.3~0.5 mである。0.3 m未満では、固体潤滑剤、特にPbが蒸発して溶出してしまい、所望の耐焼付

翻訳

き性が期待できない。

また、0.5 m以上では、焼結脳の塑性変形能が 大きくなり、高荷重運転時の塑性変形により斜板 との間に間隙ができてしまう。

次に、素材上への焼結層の形成方法の一例を述 べる。

まず、基材の斜板側の面を、粒径50帯でブラスト処理を行なり。ついで、その面上に、固体潤滑剤とFeを主成分とする粉末の混合粉末をのせ、5~8 tf/cmlの圧力で加圧する。ついで、非酸化性雰囲気中で、800~1000℃の温度で20~40分間加熱し、焼結を行なり。800℃未満の温度では焼結は不十分である。また、1000℃以上の温度では、Pbを含んでいる場合にはPbが膨張し、クラックが発生する。また、40分以上行なりとPbが蒸発してしまり。

なお、第2図に示す実施例では、基材装面に、 金属塩(たとえば金属セッケン)あるいは硫化物 (たとえばFeS)からなる被覆層を形成してあ る。

(11)

試験機により耐焼付き性試験を行つた。相手材は 球状無鉛齲鉄に高周波焼入れを行つたものである。 試験条件は摺動速度:12m/s、潤滑油:冷凍 機用オイル、潤滑油量:40cc/粒であり、荷 重は50 Kgf/cdから20 Kgf/cd の間隔で上昇 させて焼付きが発生する荷重を求めた。なお、各 荷重下での試験時間は15分である。第2表は耐 焼付き性試験の結果である。

第 2 表

試料紙	焼付き発生時の荷重 (Kg)
1	1 0 0
2	1 2 0
6	200以上

本発明材は試料1の従来のスリッパ及び試料2 の低炭素鋼板に鋼系焼結材を被覆したものよりも 高荷重まで焼付きが発生せず、良好な耐焼付性を 有することがわかる。

奥施例 2

第3表の試料 163~167の組成の混合粉末をス

奥施例1

下記第1次の試料1は8n10重量が、P0.1 重量が、残削がCulbなる従来のスリッパ材で あるリン育銅、試料2は低炭染鋼板にSn3.5重 量が、Pb23重量が、残部がCulbなる組成 の粉末を焼結させたものである。試料6は本発明 のものでCu(Sn重量がのCulSn合金粉末) 5重量が、グラファイト2重量が、Pb25重量 が、残部がC0.6重量がのFe粉末からなる混合 粉末を0.3が炭素鋼板上にのせ、加圧して密着し た後、950℃の非酸化性雰囲気中で約30分加 熱して焼結させたものである。

第 1 表

試料派	幼	Сu	Su	Рb	P	グラフアイト	Fe
従来材	1	残	10		0.1		
12年初	2	残	3.5	23			
本発明材	6	5	0.4	2 5		2	戏

上記試料より単耗試験片を採取し、回転式摩耗 (12)

リッパ基材である炭素鋼板上にのせ、加圧して密 着させた後、非酸化性雰囲気中で950℃にて約 30分間加熱して厚さ0.4~0.7 mmの焼結体層を 形成させ、機械加工によりスリッパ形状に加工後 試験片に供した。比較材としては実施例1と同様 の従来のスリッパ材であるリン育鋼(試料私1) 及び低炭素鋼にCuーSnーPb系焼結体を形成 させたもの(試料私2)である。第4安は実機で の耐焼付き性試験条件であり、第5表は実機での 耐焼付き性試験結果である。

第 3 表

	_	Сu	Sn	Pъ	P	グラフアイト	Fe
従来材	1	残	10		0. 1		
W X W	2	残	3. 5	2 3			
	3	2	0. 1	10		1	残
	4	3	0. 2	1 5		1. 5	残
本発明材	5	4	0. 4	2 0		1. 5	残
	6	5	0. 4	2 5		2	残
	7	10	0. 5	3 0		4	残

耐烧付性試験条件	4
摺動速度 (m/s)	1 4
荷 重(Kg f / cml)	3 0

無

	試料%	焼付き発生までの時間
	ретіли	2617 2 38 32 2 2 30 47 [8]
従来材	1	6 分
	2	9 分
	3	10分
	4	15分
本発明材	5	2 2 分
	6	2 5 分
	7	25分

第5 表を見ても明らかなように、本発明材であ る試料 1 及び試料 1 2 に比し、 殆んど 潤滑油の ない状態においても焼付き発生までの時間が著し く長いことがわかる。すなわち、本発明材は初期

(15)

を形成せしめたスリッパを組み込んだ斜板式圧縮 機は高速摺動条件のもとでも耐摩耗性に優れ、一 時的に潤滑油が殆んどない状態でも焼付き耐久時 間が著しく長く、従来の圧縮機に比し、耐久性、 信頼性の効果は大である。

〔発明の効果〕

本発明のスリッパは、高速摺動条件のもとでも 耐摩耗性に優れ、一時的に潤滑油がほとんどない 状態でも焼付き耐久時間が著しく長い。

図面の簡単な説明

第1図はカーエアコン用斜板式圧縮機の縦断面 図、第2図は本発明のスリッパの断面図、第3図 は本発明材及び従来材の摩耗量の比較図である。 1…シャフト、2…斜板、3…スリッパ、4…ポ ール、5…ピストン、6…シリンダ、7…摺動面、 8 …焼結体層、9 …基材、10 …被覆層。

代理人 弁理士 鵜沼辰之

運転あるいは通常運転等における一時的にほとん ど無給油状態に陥つた場合でも焼付きや異常摩耗 がない極めて良好なスリッパである。

第6 表は本発明材及び従来のスリッパの摩耗量 の比較試験条件である。比較材としては実施例1 と同様のリン青銅(試料紙1)及び低炭素鋼板に 8 n 3.5 重量 4、 P b 2 3 重量 4、 残部 C u より なる焼結体を形成せしめたものである(試料派2)。

摺動速度(1	2 2	
荷重	Max	9 5
(Kg f / cml)	8	
試験時間(600	

第3図は摩耗量の比較試験結果である。第3図 のように本発明材は従来材に比し、著しく耐摩耗 性が優れていることがわかる。中でも試料从6は 特に優れている。すなわち、本発明の鉄鋼材料に Cu1~5重量を、グラフアイトが0.5~5重量 多、 P b 8 ~ 3 0 重量 多、 残部が F e の 焼結 体層

(16)

第/図

第2図

