Metody Optymalizacji Karol Janic 1 maja 2025

Spis treści

1	Zad	anie 1																					
	1.1	Cel																					
	1.2	Model	١.																				
		1.2.1	Zn	nienne	decy	zyj	ne																
		1.2.2	Fu	nkcja	celu																		
		1.2.3	Og	ranic	zenia																		
	1.3	Dane .																					
	1.4	Wynik	ci.														 						

1 Zadanie 1

1.1 Cel

Celem zadania jest zaplanowanie produkcji desek w tartatu w taki sposób aby zminimalzować liczbę odpadów. Deski mają stałą szerokośc i należy poprzecinać je w taki sposób aby zaspokoić zapotrzebowanie klientów na deski, które mogą być krótsze.

1.2 Model

Model parametryzowany jest szerokością desek $L \in \mathcal{R}_+$ (w calach), z której produkowane są wyroby oraz zapotrzebowaniem wyrażonym ciągiem par (l_i, n_i) , gdzie $1 \le i \le N$, l_i jest szerokością deski a n_i ich liczbą.

1.2.1 Zmienne decyzyjne

Całkowitoliczbowe zmienne decyzyjne x_m , gdzie $1 \le m \le M$ o wartościach nieujemnych określają dla każdego numeru cięcia m liczbę desek pociętych w ten sposób.

1.2.2 Funkcja celu

Funkcją celu jest minimalizacja sumy odpadów po cięciach: $\sum_{m=1}^{M} x_m \cdot C_m^r$

1.2.3 Ograniczenia

Jedyna grupa ograniczeń wymusza spełnienie zapotrzebowania na każdą szerokośc deski:

$$\sum_{m=1}^{M} C_m^{l_i} \le n_i, \qquad 1 \le i \le N$$

1.3 Dane

Zadana została długość deski L=22 oraz zapotrzebowanie 1.

$$\begin{array}{c|ccccc} i & 1 & 2 & 3 \\ \hline l_i & 3 & 5 & 7 \\ \hline n_i & 80 & 120 & 110 \\ \end{array}$$

Rysunek 1: Zapotrzebowanie na deski

1.4 Wyniki

Zapisano model programowania liniowego i wyznaczono optymalne rozwiązanie dla danych. Wyniki przedstawiono w tabeli ??. Taka produkcja nie generuje odpadów.