МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ І СПОРТУ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО"

КАФЕДРА КОНСТРУЮВАННЯ ЕОА

3BIT

з лабораторної роботи №5 по курсу «Основи теорії кіл - 2» на тему «Гармонійні сигнали в найпростіших ланцюгах»

Виконав:

студент гр. ДК-82

Сопіра Р. Я.

Перевірив:

доцент

Короткий Є. В.

Послідовний контур

Використані значення:

R = 985 Om,

L = 0.925 мГн,

С = 138 нФ

$$f_{\mathit{pes}} = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} = \frac{1}{2 \cdot \pi \cdot \sqrt{0.925 \cdot 10^{-3} \cdot 138 \cdot 10^{-9}}} \approx 14.09 \left(\kappa \Gamma \mathbf{y} \right)$$

Параметри вхідного сигналу:

$$U_{\text{bx}} = 1 \text{ B},$$
 $f = 8 \text{ к}\Gamma\text{ц}$

Для вимірювання фаз сигналів був використаний наступний скрипт:

[===]

Напруга на резисторі

LTSpice:

$$\phi_{R} \! = \! (\frac{0.806}{125}) \! \cdot \! 360 \! = \! 2.32^{\circ}$$

Експеримент:

Напруга на котушці

LTSpice:

$$\varphi_L = \left(\frac{34}{125}\right) \cdot 360 \approx 98^{\circ}$$

Експеримент:

Напруга на конденсаторі

LTSpice:

$$\phi_C \!=\! (\frac{-39}{125}) \!\cdot\! 360 \!\approx\! -112^{^{\circ}}$$

Експеримент:

Результати вимірювань

Табл. 1

Cx.		U _{bx}	Δφ	$\mathbf{U}_{\mathbf{R}}$	Δφ	Uc	Δφ	\mathbf{U}_{L}	Δφ	I _{BX}
-//-	В, мА, °	1	5.67	0.9739	-83.25	0.1480	72.84	0.0472	0.00	0.989
	Діюче	0.7071		0.6887		0.1047		0.0334		0.699

 $I_{\text{вх}} = I_{\text{R}} = I_{\text{C}} = I_{\text{L}}$, тому, що маємо послідовний контур; через це різниця фаз між напругою на вході та струмом буде нульовою.

Опори схеми:

$$\begin{split} & X_R = Re^{j(\Delta\phi)} = 985\,e^{j(5.67)} = 980.18 + 97.32\,j\,(O_M) \\ & X_L = 2\pi f \cdot L\,e^{j(\Delta\phi)} = 2\,\pi\,8 \cdot 0.925 = 46.5\,e^{j(72.84)} = 13.72 + 44.43\,j\,(O_M) \\ & X_C = \frac{1}{2\pi\,f\cdot C}\,e^{j(\Delta\phi)} = \frac{1}{2\pi\,8 \cdot 138 \cdot 10^{-6}}e^{j(-83.25)} = 144.16\,e^{j(-83.25)} = 16.94 - 143.16\,j\,(O_M) \\ & X_{ex} = X_C + X_L = 30.66 - 98.73\,j = 103.38\,e^{j(-72.75)}(O_M) \\ & Z_{ex} = X_R + X_{ex} = 1010.84 - 1.41\,j = 1010.84\,e^{j(-0.08)}(O_M) \\ & \dot{Y}_{ex} = \frac{1}{\dot{Z}_{ex}} = \frac{1}{1010.84}\,e^{j(0.08)} = 0.989\,e^{j(0.08)}(\,M_CM) \end{split}$$

Струм у схемі:

$$\dot{I}_{\rm ex} = \frac{\dot{U}_{\rm ex}}{\dot{Z}_{\rm ex}} = \frac{1 \, e^{j(0)}}{1010.84 \, e^{j(-0.08)}} = 0.989 \, e^{j(0.08)} (\,{\rm MA}\,)$$

2):

$$\dot{X}_{R} = \frac{\dot{U}_{R}}{\dot{I}_{ex}} = \frac{0.9739 \, e^{j(5.67)}}{0.000989 \, e^{j(0.08)}} = 984.63 \, e^{j(5.59)} = 979.95 + 95.9 \, j \, (Om)$$

$$\dot{X}_L = \frac{\dot{U}_L}{\dot{I}_{\rm ex}} = \frac{0.0472 e^{j(72.84)}}{0.000989 e^{j(0.08)}} = 47.73 e^{j(72.76)} = 14.15 + 45.59 j (Om)$$

$$\dot{X}_{C} = \frac{\dot{U}_{C}}{\dot{I}_{\rm ex}} = \frac{0.148\,e^{j(-83.25)}}{0.000989\,e^{j(0.08)}} = 149.65\,e^{j(-83.33)} = 17.38 - 148.64\,j\,(O{\rm M})$$

$$\overset{\cdot }{X}_{\mathrm{ex}} = \overset{\cdot }{X}_{C} + \overset{\cdot }{X}_{L} = 31.53 - 103.05 \ j = 107.77 \ e^{j(-73.00)} (O_{\mathrm{M}})$$

Векторна діаграма напруг

Табл. 2

Cx.		R	X _C	X_{L}	Хвх	$Z_{\text{\tiny BX}}$	Y _{BX}
-//-	Ом, мСм	985 e ^ j(5.67)	144.16 e ^ j(-83.25)	46.5 e ^ j(72.84)	103.38 e ^ j(-72.75)	1010.84 e ^ j(-0.08)	0.989 e ^ j(0.08)
-//-	Ом, мСм	992.38 e ^ j(5.59)	149.65 e ^ j(-83.33)	47.73 e ^ j(72.76)	107.77 e ^ j(-73)	-	-

Векторні діаграми опорів

Розрахунок потужностей

Повна потужність:

$$S_R = U_R \cdot I_{ex} = 0.6887 \cdot 0.699 \approx 0.4814 (B \cdot A \cdot 10^{-3})$$

$$S_L = U_L \cdot I_{ex} = 0.0334 \cdot 0.699 \approx 0.0234 (B \cdot A \cdot 10^{-3})$$

$$S_C = U_C \cdot I_{ex} = 0.1047 \cdot 0.699 \approx 0.0732 (B \cdot A \cdot 10^{-3})$$

Активна потужність:

$$P_R = S_R \cdot \cos \Delta \varphi_R = 0.4814 \cdot \cos(5.67^\circ) \approx 0.4790 \, (\text{MBm})$$

$$P_L = S_L \cdot \cos \Delta \varphi_L = 0.0234 \cdot \cos(72.84^\circ) \approx 0.0069 (MBm)$$

$$P_R = S_R \cdot \cos \Delta \varphi_R = 0.0732 \cdot \cos(-83.25^\circ) \approx 0.0086 (MBm)$$

Реактивна потужність:

$$Q_R = S_R \cdot \sin \Delta \ \varphi_R = 0.4814 \cdot \sin(5.67^\circ) \approx 0.0476 (eap \cdot 10^{-3})$$

$$Q_L = S_L \cdot \sin \Delta \varphi_L = 0.0234 \cdot \sin (72.84^{\circ}) \approx 0.0224 (\epsilon ap \cdot 10^{-3})$$

$$Q_C = S_C \cdot \sin \Delta \varphi_C = 0.0732 \cdot \sin(-83.25^\circ) \approx -0.0727 (eap \cdot 10^{-3})$$

Векторні діаграми потужностей

Потужності на резисторі

Потужності на котушці

Потужності на конденсаторі

Висновок

На даній лабораторній було досліджено поведінку гармонійних сигналів у послідовному коливальному контурі шляхом моделювання схеми у симуляторі LTSpice і шляхом експерименту.

На макетній платі було побудовано послідовний коливальний контур та за допомогою плати Analog Discovery 2 та програми Waveforms виміряні потрібні величини. Подальші розрахунки виконувалися методом комплексних амплітуд. Було розраховано опори та потужності схеми і побудовано відповідні векторні діаграми.

Репозиторій на GitHub: [===]