Licence 1ere année Mathématiques et calcul 1er semestre

Lionel Moisan

Université Paris Descartes

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

1

Suites

Suites

- Définitions et exemples
- Convergence des suites
- Opérations sur les limites
- Comparaison de suites
- Exemples importants
- Suites monotones
- Suites adjacentes
- Suites extraites
- Suites récurrentes
- Suites négligeables, notation o()
- Suites équivalentes
- Exemples de calculs d'équivalents

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

3

Suites

Définitions et exemples

Une suite de nombres réels est un ensemble de nombres réels numérotés.

$$u_0 = 0, \ u_1 = 1, \ u_2 = 2, \ u_3 = 3, \ u_4 = 4, \dots$$
 $u_n = n$ $u_0 = 0, \ u_1 = 2, \ u_2 = 4, \ u_3 = 6, \ u_4 = 8, \dots$ $u_n = 2n$ $u_0 = 1, \ u_1 = 3, \ u_2 = 5, \ u_3 = 7, \ u_4 = 9, \dots$ $u_n = 2n + 1$ $u_1 = \frac{1}{1}, \ u_2 = \frac{1}{2}, \ u_3 = \frac{1}{3}, \ u_4 = \frac{1}{4}, \ u_5 = \frac{1}{5}, \dots$ $u_n = \frac{\sin(n)}{n^2 + 1}$ $u_1 = \frac{\sin(n)}{n^2 + 1}$

Définition. Une suite est une application de $\mathbb N$ dans un ensemble E.

Pour une suite $u : \mathbb{N} \to E$, on note u_n plutôt que u(n) le terme de rang n, et la suite u est souvent notée $(u_n)_{n \in \mathbb{N}}$ ou (u_n) .

L'ensemble des suites à valeurs dans E est noté $E^{\mathbb{N}}$. E peut être un ensemble quelconque : nombres, polynômes, fonctions, matrices, suites, etc.

Exemples:

$$u_n = n^2 + 1$$

$$u_n = e^{\frac{i\pi}{n}}, \quad n \in \mathbb{N}^*$$

$$P_n = X^2 - nX + n^2$$

$$f_n(x) = \sin(nx)$$

On se limitera ici aux suites numériques ($E = \mathbb{R}$ ou \mathbb{C})

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

_

Suites

Définitions et exemples

Exemples de suites

Suite définie explicitement :

$$u_n = (-1)^n$$
, $u_n = \frac{1+i}{1+2^n}$, $u_n = \sum_{k=1}^n k^2$,...

- Suite définie par récurrence :
 - ▶ $u_0 = 1$, et $\forall n \in \mathbb{N}$, $u_{n+1} = \sin(u_n)$.
 - ▶ suite de Collatz : $u_0 \in \mathbb{N}^*$, et

$$\forall n \in \mathbb{N}$$
, $u_{n+1} = \left\{ \begin{array}{ll} u_n/2 & \text{si } u_n \text{ est pair,} \\ 3u_n+1 & \text{si } u_n \text{ est impair.} \end{array} \right.$

• suite de Fibonacci : $u_0 = 0$, $u_1 = 1$, et

$$\forall n \in \mathbb{N}, \quad u_{n+2} = u_{n+1} + u_n.$$

Suites arithmétiques

Une suite arithmétique de raison r ($r \in \mathbb{C}$) est définie par son premier terme $u_0 \in \mathbb{C}$ et la récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + r.$$

Elle vérifie

$$\forall n \in \mathbb{N}, \quad u_n = u_0 + nr.$$

Par ailleurs, on a

$$\forall n \in \mathbb{N}, \quad u_0 + u_1 + \dots u_n = (n+1) \frac{u_0 + u_n}{2}$$

(le nombre de termes multiplié par la moyenne des extrêmes)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

Suites

Définitions et exemples

Suites géométriques

Une suite géométrique de raison r ($r \in \mathbb{C}$) est définie par son premier terme $u_0 \in \mathbb{C}$ et la récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+1} = r u_n.$$

Elle vérifie

$$\forall n \in \mathbb{N}, \quad u_n = u_0 r^n.$$

Par ailleurs, si $r \neq 1$, on a

$$\forall n \in \mathbb{N}, \quad u_0 + u_1 + \dots u_n = u_0 \frac{1 - r^{n+1}}{1 - r}.$$

On dit qu'une suite de réels $(u_n)_{n\in\mathbb{N}}$ est :

- ▶ croissante si $\forall n \in \mathbb{N}, u_{n+1} \ge u_n$
- ▶ strictement croissante si $\forall n \in \mathbb{N}, u_{n+1} > u_n$
- ▶ décroissante si $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$
- ▶ strictement décroissante si $\forall n \in \mathbb{N}, u_{n+1} < u_n$
- ightharpoonup monotone si (u_n) est soit croissante, soit décroissante
- ightharpoonup strictement montone si (u_n) est soit strictement croissante, soit strictement décroissante
- ▶ constante si $\forall n \in \mathbb{N}, u_n = u_0$
- ▶ majorée (par M) si $\forall n \in \mathbb{N}$, $u_n \leq M$
- ▶ minorée (par m) si $\forall n \in \mathbb{N}, u_n \geq m$
- bornée si (u_n) est à la fois majorée et minorée
- ▶ périodique s'il existe $p \in \mathbb{N}^*$ tel que $\forall n \in \mathbb{N}$, $u_{n+p} = u_n$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

Suites

Définitions et exemples

Exercice : Pour chaque suite ci-dessous, étudier la monotonie et le caractère majoré, minoré et périodique.

$$u_n = -3n + 2 \qquad u_n = \sqrt{n}$$

$$u_n = n(20 - n) \qquad u_n = \frac{1}{n^2 + 1}$$

$$u_n = E\left(\frac{n}{2}\right) \qquad E(x) : \text{ partie entière de } x$$

$$u_n = (-1)^n \qquad u_n = n(-1)^n$$

$$u_n = \sin\left(\frac{2\pi n}{7}\right) \qquad u_n = n + \sin\left(\frac{2\pi n}{7}\right)$$

Définition. On dit qu'une suite (u_n) vérifie la propriété (P) à partir d'un certain rang s'il existe un entier N tel que la suite extraite $(u_{N+n})_{n\in\mathbb{N}}$ vérifie (P).

Exemples:

- ► La suite des décimales de 1/6 = 0, 1666666... est constante à partir d'un certain rang
- ► La suite des décimales de 1/22 = 0,00454545... est périodique à partir d'un certain rang
- ► La suite de terme général $u_n = 20n n^2$ est décroissante à partir d'un certain rang (exercice : le montrer!)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

11

Suites

Convergence des suites

Définition d'une suite convergente

Définition intuitive : la suite (u_n) converge vers la limite L si pour tout $\varepsilon > 0$ (aussi petit que l'on veut), la suite (u_n) prend ses valeurs dans l'intervalle $[L - \varepsilon, L + \varepsilon]$ à partir d'un certain rang (qui dépend de ε bien sûr)

Définition. On dit que la suite $(u_n) \in \mathbb{R}^{\mathbb{N}}$ a pour limite $L \in \mathbb{R}$ (ou converge vers L) si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \geq N, \ |u_n - L| \leq \varepsilon.$$

Remarque:

$$|u_n - L| \le \varepsilon \iff -\varepsilon \le u_n - L \le \varepsilon \iff L - \varepsilon \le u_n \le L + \varepsilon$$

On note alors $\lim_{n\to+\infty}u_n=L$, ou $u_n\underset{n\to+\infty}{\longrightarrow}L$, ou $\lim(u_n)=L$

Limite

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

13

Suites

Convergence des suites

Exemples de suites convergentes

La suite
$$a_n = 1 - \frac{1}{n+1}$$

Suites a_n convergentes non monotones

Unicité de la limite

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$, $\forall n \geq N$, $|u_n - L| \leq \varepsilon$

Théorème: Si une suite $(u_n)_{n\in\mathbb{N}}$ converge vers une limite L, cette limite est unique.

- \triangleright Soient L et L' deux limites de la suite (u_n)
- Pour tout $\varepsilon > 0$ on a

$$\exists N \in \mathbb{N}, \quad \forall n \ge N, \quad |u_n - L| \le \varepsilon$$

 $\exists N' \in \mathbb{N}, \quad \forall n \ge N', \quad |u_n - L'| \le \varepsilon$

▶ on a alors, pour $n \ge \max(N, N')$,

$$|L - L'| = |L - u_n + u_n - L'| \le |L - u_n| + |u_n - L'| \le 2\varepsilon$$

rette inégalité étant vraie pour tout $\varepsilon > 0$, on en déduit que |L - L'| = 0

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

Suites

Convergence des suites

$$\forall \varepsilon > 0$$
, $\exists N \in \mathbb{N}$, $\forall n \geq N$, $|u_n - L| \leq \varepsilon$

Exercice: Montrer que la suite de terme général $u_n = \frac{1}{\sqrt{n}}$ a pour limite 0.

Soit $\varepsilon > 0$. On a

$$\left|\frac{1}{\sqrt{n}}\right| \le \varepsilon \quad \Leftrightarrow \quad \frac{1}{n} \le \varepsilon^2 \quad \Leftrightarrow \quad n \ge \frac{1}{\varepsilon^2}.$$

Pour
$$N = E\left(\frac{1}{\varepsilon^2}\right) + 1$$
, on a donc

$$\forall n \geq N, \quad |u_n - 0| \leq \varepsilon$$

donc (u_n) converge vers 0.

Propriété des suites convergentes

Proposition: Toute suite convergente est bornée

Soit (u_n) une suite convergente.

- ▶ Pour $\varepsilon = 1$, on a $\exists N, \forall n \geq N, L-1 \leq u_n \leq L+1$
- On pose alors

$$m = \min\{u_0, u_1, \dots, u_{N-1}, L-1\}$$

 $M = \max\{u_0, u_1, \dots, u_{N-1}, L+1\}$

et l'on a

 $\forall n \in \mathbb{N}, \qquad m \le u_n \le M.$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

17

Suites

Convergence des suites

Une suite qui ne converge pas est appelée suite divergente.

Exemples:

$$u_n = n$$
, $v_n = (-1)^n$, $w_n = n(-1)^n$

 \rightarrow une suite bornée n'est pas nécessairement convergente! Remarque : (u_n) est divergente mais admet une limite infinie

Définition. On dit que la suite $(u_n) \in \mathbb{R}^{\mathbb{N}}$ diverge vers $+\infty$ $(\lim(u_n) = +\infty)$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_n \geq A.$$

Définition. On dit que la suite $(u_n) \in \mathbb{R}^{\mathbb{N}}$ diverge vers $-\infty$ $(\lim (u_n) = -\infty)$ si

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_n \leq A.$$

Limites et opérations (1)

Si $u_n \xrightarrow[n \to \infty]{} L$ et $v_n \xrightarrow[n \to \infty]{} L'$, alors:

- $\blacktriangleright \ \forall \lambda \in \mathbb{R}, \quad \lambda u_n \xrightarrow[n \to \infty]{} \lambda L$
- $V_n + V_n \xrightarrow[n \to \infty]{} L + L'$
- $\triangleright u_n v_n \xrightarrow[n \to \infty]{} LL'$
- Si $L \neq 0$, $\frac{1}{u_n} \xrightarrow[n \to \infty]{1} \frac{1}{L}$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

19

Suites

Opérations sur les limites

Limites et opérations (2)

Proposition. Si $u_n \xrightarrow[n \to \infty]{} 0$ et (v_n) est bornée, alors $u_n v_n \xrightarrow[n \to \infty]{} 0$.

Preuve:

▶ (v_n) est bornée donc $\exists M, \forall n \in \mathbb{N}, |v_n| \leq M$

Soit $\varepsilon > 0$

- ► Comme $u_n \xrightarrow[n \to \infty]{} 0$, $\exists N, \forall n \ge N, |u_n| \le \frac{\varepsilon}{M}$
- ▶ On a donc $\forall n \geq N$, $|u_n v_n| \leq M \frac{\varepsilon}{M} = \varepsilon$.

On a donc bien montré que

$$\forall \varepsilon > 0, \exists N, \forall n \geq N, |u_n v_n| \leq \varepsilon.$$

Limites et opérations (3)

Théorème. Si $u_n \xrightarrow[n \to \infty]{} L$ et f est une fonction continue en L,

alors
$$f(u_n) \xrightarrow[n \to \infty]{} f(L)$$

Exercice: Trouver la limite de la suite $u_n = \cos(n) \sin\left(\frac{(-1)^n}{\sqrt{n}}\right)$

- ► La suite $(-1)^n$ est bornée, la suite $\frac{1}{\sqrt{n}}$ converge vers 0; donc la suite $\frac{(-1)^n}{\sqrt{n}}$ converge vers 0
- ▶ donc la suite $sin\left(\frac{(-1)^n}{\sqrt{n}}\right)$ converge aussi vers 0 puisque sin 0 = 0 et sin est continue sur \mathbb{R}
- La suite cos(n) est bornée et la suite $sin(\frac{(-1)^n}{\sqrt{n}})$ converge vers 0, donc la suite (u_n) converge vers 0

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

21

Suites

Opérations sur les limites

Exercice: Trouver la limite de la suite

$$v_n = \frac{\left(-1\right)^n}{n^{4/3}} \left(1 + \frac{1}{n}\right) \cos\left(\frac{2\pi n}{3}\right)$$

Exercice : Étudier la convergence de la suite définie par

$$u_n = \frac{\cos(n^2) + n}{n \tan\left(\frac{1}{n}\right) + \sqrt{n^2 + 1}}$$

Exercice: Soit une suite (u_n) qui converge vers $L \neq 0$.

Montrer que (u_n) est non nulle à partir d'un certain rang, c'est-à-dire que $\exists N \in \mathbb{N}, \forall n \geq N, \quad u_n \neq 0$

- ► Si L > 0, $\exists N \in \mathbb{N}$, $\forall n \ge N$, $|u_n L| \le \frac{L}{2}$. En particulier $L - \frac{L}{2} \le u_n$, donc $u_n \ge \frac{L}{2} > 0$.
- ▶ Si L < 0: on applique le résultat précédent à la suite de terme général $v_n = -u_n$, qui converge vers -L > 0

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

23

Suites

Opérations sur les limites

Limites infinies et opérations (1)

- $\lim_{n\to\infty} u_n = \pm \infty \Rightarrow \lim_{n\to\infty} \frac{1}{u_n} = 0$
- lim_{n→∞} $u_n = 0^+ \Rightarrow \lim_{n \to \infty} \frac{1}{u_n} = +\infty$ (rappel: $u_n \xrightarrow[n \to \infty]{} 0^+ \Leftrightarrow u_n \to 0 \text{ et } u_n > 0 \text{ à partir d'un certain rang}$)
- $\lim_{n\to\infty} u_n = 0^- \Rightarrow \lim_{n\to\infty} \frac{1}{u_n} = -\infty$

Exercice: Donner les limites des suites suivantes:

$$u_n = \frac{1}{\ln(n+2)}$$
 ; $v_n = \frac{1}{\sin(1/n)}$.

Limites infinies et opérations (2)

$$(u_n \longrightarrow +\infty \text{ et } v_n \longrightarrow L \text{ fini ou } +\infty) \Rightarrow u_n + v_n \longrightarrow +\infty$$

$$(u_n \longrightarrow +\infty \text{ et } v_n \longrightarrow L \text{ fini } > 0 \text{ ou } +\infty) \Rightarrow u_n v_n = +\infty$$

(résultats analogues pour les limites -∞).

Exercice: Donner les limites des suites suivantes:

$$u_n = \ln(n+1)\left(1-\frac{1}{n}\right)$$
 ; $v_n = n^2 + \sin(n)$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

25

Suites

Opérations sur les limites

Formes indéterminées (on ne peut pas conclure directement) :

$$(+\infty)-(+\infty)$$
 $(-\infty)-(-\infty)$ $(+\infty)+(-\infty)$
$$0\times\infty$$
 $\frac{0}{0}$ $\frac{\infty}{\infty}$

Limites et inégalités

Soient 2 suites (u_n) et (v_n) .

▶ Si $\forall n \in \mathbb{N}$, $u_n \le v_n$ et si u_n et v_n convergent, alors $\lim_{n \to \infty} u_n \le \lim_{n \to \infty} v_n$

En particulier, si (u_n) converge et si $\forall n \in \mathbb{N}, \ u_n \ge a$ alors $\lim_{n \to \infty} u_n \ge a$

Attention: même si $\forall n \in \mathbb{N}, u_n > a$, la conclusion est seulement $\lim_{n \to \infty} u_n \ge a$

 $\forall n \in \mathbb{N}^*$, $u_n = \frac{1}{n} > 0$, mais $\lim_{n \to \infty} u_n = 0$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

27

Suites

Comparaison de suites

Théorème des gendarmes

Soient 3 suites, (a_n) , (b_n) et (c_n) vérifiant :

- ▶ $\forall n \in \mathbb{N}$, $a_n \le b_n \le c_n$
- $ightharpoonup (a_n)$ et (c_n) convergent

alors (b_n) converge et $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n$

Exemple

$$\forall n \in \mathbb{N}^*, \quad v_n = \frac{(-1)^n}{n^2}.$$

Soient
$$u_n = \frac{-1}{n^2}$$
 et $w_n = \frac{1}{n^2}$

$$\forall n \in \mathbb{N}^*, \quad u_n \le v_n \le w_n$$

$$\lim_{n\to\infty}u_n=0=\lim_{n\to\infty}w_n$$

donc d'après le théorème des gendarmes, $v_n \xrightarrow[n \to \infty]{} 0$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

29

Suites

Comparaison de suites

Exercice: Donner les limites des suites suivantes:

1.
$$u_n = \frac{3n+6+(-1)^n}{5n+5}$$

2.
$$v_n = \frac{\sin(n\pi/6)}{n^2}$$

3.
$$w_n = \frac{n^3 + 2n^2((-1)^n + 4) + 5n - 1}{3n^3 + n^2 + 4n + 1}$$

Théorème : Soient (u_n) et (v_n) des suites telles que

$$\forall n \in \mathbb{N}, \quad u_n \leq v_n.$$

Alors

$$\lim u_n = +\infty \implies \lim v_n = +\infty$$

et

$$\lim v_n = -\infty \implies \lim u_n = -\infty.$$

Exercice: Prouver ce théorème.

Exercice: Donner les limites des suites suivantes:

1.
$$u_n = n^2 + (-1)^n$$

2.
$$v_n = -n^4 + 5n^2 \cos\left(\frac{2\pi n}{7}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

31

Suites

Comparaison de suites

Limites et valeurs absolues

Proposition : Si $\lim_{n\to\infty} u_n = L$, alors $\lim_{n\to\infty} |u_n| = |L|$

car la fonction f(x) = |x| est continue sur \mathbb{R} .

Attention : $(|u_n|)$ peut être convergente sans que (u_n) le soit!

exemple : $u_n = (-1)^n$

Théorème : Si $(v_n)_{n\in\mathbb{N}}$ est une suite telle que $|v_n|$ converge vers 0, alors $\lim_{n\to\infty}v_n=0$

▶ Soient $u_n = -|v_n|$ et $w_n = |v_n|$

Suites

- ▶ on a $u_n \le v_n \le w_n$
- $\lim_{n\to\infty} u_n = 0 = \lim_{n\to\infty} w_n$

donc d'après le théorème des gendarmes, $v_n \xrightarrow[n \to \infty]{} 0$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

33

Suites

Exemples importants

Suite arithmétique

Proposition. Soit (u_n) une suite arithmétique de terme initial u_0 et de raison r $(u_n = u_0 + nr)$.

$$ightharpoonup$$
 Si $r > 0$, $\lim_{n \to \infty} u_n = +\infty$

$$\blacktriangleright \operatorname{Si} r < 0, \quad \lim_{n \to \infty} u_n = -\infty$$

$$\triangleright \text{ Si } r = 0, \quad \lim_{n \to \infty} u_n = u_0$$

Suite géométrique

Soit $a \in \mathbb{R}$ et $u_n = a^n$, $\forall n \in \mathbb{N}$

- 1. Si a > 1, $\lim_{n \to \infty} a^n = +\infty$
- 2. Si |a| < 1, $\lim_{n \to \infty} a^n = 0$
- 3. Si a = 1, $\lim_{n \to \infty} a^n = 1$
- 4. Si $a \le -1$, a^n n'est pas convergente

Si a > 1: a = 1 + h, h > 0

$$a^{n} = (1+h)^{n} = \sum_{k=0}^{n} {n \choose k} h^{k} = 1 + n.h + \sum_{k=2}^{n} {n \choose k} h^{k} \underbrace{\sum_{k=2}^{n} {n \choose k} h^{k}}_{>0} \ge 1 + n.h$$

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

35

Suites

Exemples importants

Suite géométrique

Soit $a \in \mathbb{R}$ et $u_n = a^n$, $\forall n \in \mathbb{N}$

- 1. Si a > 1, $\lim_{n \to \infty} a^n = +\infty$
- 2. Si |a| < 1, $\lim_{n \to \infty} a^n = 0$
- 3. Si a = 1, $\lim_{n \to \infty} a^n = 1$
- 4. Si $a \le -1$, a^n n'est pas convergente

Si
$$|a| < 1$$
 et $a \neq 0$, $\frac{1}{|a|} > 1$, $\lim_{n \to \infty} \left(\frac{1}{|a|}\right)^n = +\infty$ $\lim_{n \to \infty} |a|^n = 0$

Si
$$a = 0$$
, $a^n = 0$: $\lim_{n \to \infty} a^n = 0$

Suite géométrique

Soit $a \in \mathbb{R}$ et $u_n = a^n$, $\forall n \in \mathbb{N}$

- 1. Si a > 1, $\lim_{n \to \infty} a^n = +\infty$
- 2. Si |a| < 1, $\lim_{n \to \infty} a^n = 0$
- 3. Si a = 1, $\lim_{n \to \infty} a^n = 1$
- 4. Si $a \le -1$, a^n n'est pas convergente

Si
$$a < -1$$
, $|a| > 1$, $\lim_{n \to \infty} |a|^n = +\infty$ a^n n'est pas bornée

Si
$$a = -1$$
, $a^n = (-1)^n$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

38

Suites

Exemples importants

Exercice: Montrer que

$$0.99999999 \cdots = 1.$$

Qu'en déduisez-vous?

Exercice: Donner la limite de $u_n = \left(\frac{1}{2} + \frac{1}{3n}\right)^n$.

Exercice: Soit

$$u_n = 2^n$$
 $v_n = 6^n$.

Donner les limites de (u_n) , de (v_n) , de (u_nv_n) et de (u_n+v_n) . Donner ensuite la limite de (u_n/v_n) pour en déduire la limite de (u_n-v_n) .

Suites (u_n) telles que $\left|\frac{u_{n+1}}{u_n}\right| \le \alpha < 1$

Soit $\alpha \in \mathbb{R}$, $0 < \alpha < 1$ et $(u_n)_{n \in \mathbb{N}}$ une suite telle que

$$\forall n \in \mathbb{N}, \quad u_n \neq 0 \quad \text{et} \quad \left| \frac{u_{n+1}}{u_n} \right| \leq \alpha$$

alors
$$\lim_{n\to\infty} u_n = 0$$

$$\left| \frac{u_n}{u_0} \right| = \left| \frac{u_1}{u_0} \right| \left| \frac{u_2}{u_1} \right| \left| \frac{u_3}{u_2} \right| \cdots \left| \frac{u_n}{u_{n-1}} \right| = \prod_{k=1}^n \left| \frac{u_k}{u_{k-1}} \right| \le \alpha^n$$

- $|u_n| \le \alpha^n |u_0|$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

40

Suites

Exemples importants

$$a \neq 0$$
, $u_n = \frac{a^n}{n!}$

$$\frac{u_{n+1}}{u_n} = \frac{a^{n+1}}{(n+1)!} \frac{n!}{a^n} = \frac{a}{n+1}$$

- ► Soit N = E(2|a|) (N entier, et $N + 1 \ge 2|a|$)
- Pour $n \ge N$, $\left| \frac{u_{n+1}}{u_n} \right| = \frac{|a|}{n+1} \le \frac{|a|}{N+1} \le \frac{1}{2}$

$$\left| \frac{u_n}{u_N} \right| = \left| \frac{u_{N+1}}{u_N} \right| \left| \frac{u_{N+2}}{u_{N+1}} \right| \cdots \left| \frac{u_n}{u_{n-1}} \right| = \prod_{k=N+1}^{k=n} \left| \frac{u_k}{u_{k-1}} \right| \le \left(\frac{1}{2} \right)^{n-N} = \left(\frac{1}{2} \right)^n \cdot 2^N$$

$$|u_n| \le \left(\frac{1}{2}\right)^n \cdot 2^N \cdot |u_N| \text{ or } \lim_{n \to \infty} \left(\frac{1}{2}\right)^n = 0 \text{ donc } \lim_{n \to \infty} u_n = 0$$

$$\lim_{n\to\infty}\frac{n^n}{n!}$$

$$u_n = \frac{n^n}{n!}$$

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^{(n+1)}}{(n+1)!} \cdot \frac{n!}{n^n} = \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n \xrightarrow[n \to +\infty]{} e > 2$$

donc $\exists N \in \mathbb{N}, \ \forall n \ge N, \ \frac{u_{n+1}}{u_n} \ge 2$

$$\forall n \geq N, \quad u_n = u_N. \frac{u_{N+1}}{u_N}. \frac{u_{N+2}}{u_{N+1}}... \frac{u_n}{u_{n-1}} \geq u_N. 2^{n-N} \underset{n \to +\infty}{\longrightarrow} +\infty$$

Ou, plus simplement : $n! = 1.2.3...n \le 1.n^{n-1}$

donc
$$u_n = \frac{n^n}{n!} \ge \frac{n^n}{n^{n-1}} = n \xrightarrow[n \to +\infty]{} + \infty$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

42

Suites

Exemples importants

Exercice : Donner les limites des suites définies par les formules suivantes :

1.
$$u_n = 3^n$$

2.
$$v_n = (0.5)^n$$

3.
$$W_n = 2^n + 5^n$$

4.
$$x_n = 2^n - 5^n$$

5.
$$y_n = 2^n - \frac{5^n}{n!}$$

6.
$$z_n = (-0.2)^n - 5^n$$

7.
$$t_n = \frac{3^{n+1}-1}{2^n+1}$$

Étude de la monotonie

Deux méthodes classiques pour étudier la croissance (ou la décroissance) d'une suite (u_n) :

méthode 1 : étudier le signe de la différence $u_{n+1} - u_n$

méthode 2 (si $u_n > 0$): calculer le rapport $\frac{u_{n+1}}{u_n}$

- ▶ si $\forall n$, $\frac{u_{n+1}}{u_n} \ge 1$, la suite (u_n) est croissante
- ▶ si $\forall n, \frac{u_{n+1}}{u_n} \le 1$, la suite (u_n) est décroissante

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

44

Suites

Suites monotones

Exemple 1 : Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$u_n = \ln(n+1) - \ln(n).$$

On a
$$u_{n+1} - u_n = \left(\ln(n+2) - \ln(n+1)\right) - \left(\ln(n+1) - \ln(n)\right)$$

$$= \ln\left(\frac{n+2}{n+1}\right) + \ln\left(\frac{n}{n+1}\right)$$

$$= \ln\left(\frac{n^2 + 2n}{n^2 + 2n + 1}\right)$$

Or
$$\frac{n^2 + 2n}{n^2 + 2n + 1} < 1$$
 donc $u_{n+1} - u_n = \ln\left(\frac{n^2 + 2n}{n^2 + 2n + 1}\right) < 0$

donc la suite (u_n) est décroissante.

Exemple 2 : Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_n = ne^{-\frac{1}{n!}}$$

$$\forall n \in \mathbb{N}, \qquad \frac{u_{n+1}}{u_n} = \frac{(n+1)e^{-\frac{1}{(n+1)!}}}{ne^{-\frac{1}{n!}}}$$
$$= \frac{n+1}{n}e^{\frac{1}{n!}-\frac{1}{(n+1)!}}$$
$$= \frac{n+1}{n}e^{\frac{n}{(n+1)!}} > 1$$

donc la suite (u_n) est croissante

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

46

Suites

Suites monotones

Exercice: Donner la monotonie des suites suivantes:

1.
$$u_n = \frac{3}{n+5}$$

2.
$$v_n = \frac{n}{n^2 + 1}$$

3.
$$(w_n)$$
 définie par $w_0 = 1$ et $w_{n+1} = w_n + w_n^2$

4.
$$(x_n)$$
 définie par $x_0 = 1$ et $x_{n+1} = \sqrt{1 + x_n^2}$.

Exercice : Soit u_n définie par $u_0 = 1$, $u_{n+1} = u_n + 2n + 3$.

- 1. Etudier la monotonie de u_n .
- 2. Montrer que pour tout n, $u_n \ge n^2$.
- 3. Donner la limite de u_n .

Limites et monotonie

Théorème:

- Une suite croissante et majorée converge.
- ► Une suite décroissante et minorée converge.
- ▶ Une suite croissante et non majorée tend vers $+\infty$.
- ▶ Une suite décroissante et non minorée tend vers $-\infty$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

48

Suites Suites monotones

Suite a_n croissante et majorée

Limites et monotonie

Une suite croissante et majorée converge

Soit $(u_n)_{n\in\mathbb{N}}$ une suite croissante et $A=\{u_n;\ n\in\mathbb{N}\}$

- $\rightarrow A \neq \emptyset$
- ▶ La suite est majorée ($\forall n \in \mathbb{N} \mid u_n \leq M$), donc A est une partie majorée de R
 - \rightarrow A admet une borne supérieure L.
- ▶ $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $L \varepsilon \leq u_N \leq L$
- La suite est croissante, donc $\forall n \geq N$, $L-\varepsilon \leq u_N \leq u_n \leq L+\varepsilon$ $|u_n - L| \le \varepsilon$

donc la suite (u_n) a pour limite L

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

50

Suites

Exemple

$$u_0 = 0$$
, $u_{n+1} = \frac{u_n^2 + 1}{2}$

- ▶ Montrons par récurrence que $\forall n \in \mathbb{N}, u_n \in [0, 1]$:
 - propriété vraie pour n = 0.
 - ▶ si $0 \le u_n \le 1$, alors $\frac{0^2+1}{2} \le \frac{u_n^2+1}{2} \le \frac{1^2+1}{2}$, i.e. $\frac{1}{2} \le u_{n+1} \le 1$.

la propriété est donc vraie pour tout $n \in \mathbb{N}$

- \hookrightarrow (u_n) est majorée
- (u_n) est croissante : $u_{n+1} u_n = \frac{u_n^2 + 1}{2} u_n = \frac{(u_n 1)^2}{2} \ge 0$
- $ightharpoonup (u_n)$ est croissante et majorée, donc converge vers une limite L
- $u_{n+1} \longrightarrow L \text{ et } u_{n+1} = \frac{u_n^2 + 1}{2} \longrightarrow \frac{L^2 + 1}{2}, \text{ donc } L = \frac{L^2 + 1}{2}$
- ► $L = \frac{L^2 + 1}{2}$ $\Rightarrow 2L = L^2 + 1$ $\Rightarrow (L 1)^2 = 0$ $\Rightarrow L = 1$

conclusion : (u_n) converge vers 1

Exemple

$$u_n = \sum_{k=0}^n \frac{1}{k!}$$

 \blacktriangleright (u_n) est croissante : pour tout n,

$$u_{n+1} - u_n = \sum_{k=0}^{n+1} \frac{1}{k!} - \sum_{k=0}^{n} \frac{1}{k!} = \frac{1}{(n+1)!} \ge 0$$

► Montrons que pour tout $n \ge 1$, $n! \ge 2^{n-1}$:

$$1! = 1 = 2^{1-1}$$
 et pour $n \ge 2$, $n! = 2 \times 3 \times \cdots \times n \ge 2 \times 2 \times \cdots \times 2 = 2^{n-1}$

Donc pour tout n,

$$u_n \le 1 + \sum_{k=1}^n \frac{1}{2^{k-1}} = 1 + \sum_{\ell=0}^{n-1} \frac{1}{2^{\ell}} = 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} \le 3$$

donc (u_n) est majorée

conclusion : (u_n) converge

(vous verrez plus tard que $\lim u_n = e$)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

52

Suites

Exemple

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

 $u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{(n+1)^2} \ge 0$ donc (u_n) est croissante

- ▶ Montrons par récurrence que $\forall n \ge 1$, $u_n \le 2 \frac{1}{n}$
 - 1. propriété vraie pour $n=1: u_1=1 \le 2-\frac{1}{1}$
 - 2. supposons $u_n \le 2 \frac{1}{n}$ (hypothèse de récurrence) $u_{n+1} = u_n + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2}$
 - $\frac{1}{(n+1)^2} = \frac{1}{(n+1)(n+1)} \le \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$
 - $u_{n+1} \le 2 \frac{1}{n} + \frac{1}{(n+1)^2} \le 2 \frac{1}{n} + \frac{1}{n} \frac{1}{n+1} = 2 \frac{1}{n+1}$
- ▶ $\forall n \in \mathbb{N}$: $u_n \le 2 \frac{1}{n} \le 2$ donc (u_n) est majorée

conclusion : (u_n) est convergente

(vous verrez plus tard que $\lim u_n = \frac{\pi^2}{6}$)

Exercice: Soit (v_n) définie par $v_0 = 1/2$ et $v_{n+1} = v_n - v_n^2$.

- 1. Quelle est la monotonie de (v_n) ?
- 2. Montrer que pour tout n, $0 \le v_n \le 1$.
- 3. Montrer que (v_n) converge et donner sa limite.

Exercice: Soit (v_n) définie par $v_0 = 1$ et $v_{n+1} = \frac{v_n^2}{1 + v_n^2}$.

- 1. Montrer que pour tout n, $0 < v_n \le 1$.
- 2. Quelle est la monotonie de (v_n) ?
- 3. Montrer que (v_n) converge et donner sa limite.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

54

Suites

Suites adjacentes

Suites adjacentes

Définition. Deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont dites adjacentes si

- 1. (v_n) est croissante et (u_n) est décroissante
- $2. \lim_{n\to\infty} (u_n v_n) = 0$

Théorème. Si deux suites sont adjacentes, alors elles sont convergentes et elles convergent vers la même limite.

Suites adjacentes

Démonstration

▶ On a $(u_n - v_n)$ décroissante et tendant vers 0, donc positive, donc on a le classement :

$$v_0 \le v_1 \le v_2 \le \dots \le v_n \le \dots \le u_n \le \dots \le u_2 \le u_1 \le u_0$$

- (v_n) est majorée par u_0 , comme elle est croissante, elle converge vers L
- (u_n) est minorée par v_0 , comme elle est décroissante, elle converge vers L'

Comme
$$\lim_{n\to\infty} (v_n - u_n) = 0$$
, $L = L'$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

56

Suites

Suites adjacentes

Exercice: Dans chaque cas suivant, dire si les suites (u_n) et (v_n) sont adjacentes. Dans l'affirmative, donner leur limite commune.

1.
$$u_n = -\frac{1}{n+1}$$
 $v_n = \frac{1}{n+3}$

2.
$$u_n = 1 - \frac{1}{n+1}$$
 $v_n = 1 + \sin\left(\frac{\pi}{2n+2}\right)$

3.
$$u_n = \frac{n-1}{n+1}$$
 $v_n = \frac{n}{n+1}$

4.
$$u_n = 1 - \frac{2}{n+1}$$
 $v_n = \frac{2n}{n+3}$

Suites extraites

Soit une suite $(u_n)_{n\in\mathbb{N}}$.

On peut construire plusieurs suites à partir de $(u_n)_{n\in\mathbb{N}}$:

- ▶ La suite des termes de rang pair : $(v_n) = (u_{2n})$
- ▶ La suite des termes de rang impair : $(w_n) = (u_{2n+1})$
- ▶ La suite des termes de rang multiple de 3 : $(a_n) = (u_{3n})$
- **.** . . .

La construction repose sur deux moyens :

- 1. on choisit certains termes de la suite
- 2. on ne revient pas en arrière

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

58

Suites

Suites extraites

On appelle suite extraite de la suite $(u_n)_{n\in\mathbb{N}}$ une suite $(v_n)_{n\in\mathbb{N}}$ telle que $v_n=u_{\varphi(n)}$, où $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ est une application strictement croissante.

Exemples:

- $\varphi(n)=2n$: suite des termes de rang pair $(v_n=u_{\varphi(n)}=u_{2n})$
- $\varphi(n) = 2n + 1$: suite des termes de rang impair $(w_n = u_{\varphi(n)} = u_{2n+1})$
- $\varphi(n) = 3n$: suite des termes de rang multiple de 3 $(a_n = u_{\varphi(n)} = u_{3n})$

Proposition: Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente vers L.

Toute suite $(u_{\varphi(n)})$ extraite de la suite $(u_n)_{n\in\mathbb{N}}$ converge vers la même limite L.

Cette proposition est utile pour montrer qu'une suite ne converge pas.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

60

Suites

Suites extraites

Exemple: $u_n = (-1)^n$

Si (u_n) converge vers L, toute suite extraite de (u_n) converge aussi vers L

- ► La suite extraite (v_n) vérifie $v_n = u_{2n} = 1$, donc $\lim_{n \to \infty} v_n = 1$
- ▶ La suite extraite (w_n) vérifie $w_n = u_{2n+1} = -1$, donc $\lim_{n\to\infty} w_n = -1$

Conclusion : (u_n) diverge

Proposition : Soit (u_n) une suite; on pose $(v_n) = (u_{2n})$ et $(w_n) = (u_{2n+1})$. Alors

$$\lim_{n\to\infty} u_n = L \quad \Longleftrightarrow \quad \lim_{n\to\infty} v_n = \lim_{n\to\infty} w_n = L$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

62

Suites

Suites extraites

Démonstration.

- 1. $\lim_{n\to\infty} u_n = L \implies \lim_{n\to\infty} v_n = \lim_{n\to\infty} w_n = L$ 2. $\lim_{n\to\infty} v_n = \lim_{n\to\infty} w_n = L \implies \lim_{n\to\infty} u_n = L$
- 1. Les suites $(v_n) = (u_{2n})$ et $(w_n) = (u_{2n+1})$ sont extraites de la suite (u_n) qui converge vers L, elles convergent donc aussi vers L
- (v_n) et (w_n) convergent vers L, donc $\forall \varepsilon > 0$, $\exists N_1$ et $\exists N_2$,

$$\forall n \geq N_1, |v_n - L| \leq \varepsilon$$
, et $\forall n \geq N_2, |w_n - L| \leq \varepsilon$

donc pour $N = \max\{N_1, N_2\}$,

$$\forall \varepsilon > 0$$
, $\exists N$, $\forall n \geq N$, $|v_n - L| \leq \varepsilon$, et $|w_n - L| \leq \varepsilon$

- ▶ Soit n > 2N (donc $n \ge 2N + 1$):
 - ▶ Si n est pair, n = 2p et p > N donc $|u_p - L| = |u_{2p} - L| = |v_p - L| \le \varepsilon$
 - ► Si n est impair, n = 2p + 1 et $p \ge N$ donc $|u_n - L| = |u_{2p+1} - L| = |w_p - L| \le \varepsilon$

Suites Suites extraites

Exercices (difficiles):

1. Soit (u_n) une suite et $(x_n) = (u_{2n})$, $(y_n) = (u_{2n+1})$, $(z_n) = (u_{3n})$ 3 suites extraites de (u_n) . Montrer que si ces 3 suites sont convergentes, alors (u_n) est convergente.

2. Soit (u_n) une suite telle que pour tout $k \in \mathbb{N}$ tel que $k \ge 2$, la suites extraite (u_{kn}) est convergente. Peut-on en conclure que (u_n) est convergente? (penser à la suite (u_n) qui vaut 1 lorsque n est premier et 0 sinon)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

64

Suites

Suites récurrentes

Suites récurrentes

Une suite récurrente est définie par

- 1. son terme initial : u_0
- 2. la relation de récurrence

$$\forall n \in \mathbb{N}, \quad u_{n+1} = f(u_n),$$

où $f: I \to \mathbb{R}$ est une fonction donnée.

Remarque importante : si $\lim(u_n) = L$ et f est continue, alors nécessairement L = f(L) (L est un point fixe de f)

Exercice : Soit (u_n) définie par $u_0 = 0$ et $u_{n+1} = \frac{u_n^2 + 1}{2}$. Donner la seule limite possible de (u_n) .

Exemples

Une suite arithmétique, de terme initial a et de raison r, est définie par :

- 1. $u_0 = a$
- 2. $u_{n+1} = u_n + r$

La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ associée est alors : f(x) = x + r

Une suite géométrique, de terme initial a et de raison q, est définie par :

- 1. $u_0 = a$
- 2. $u_{n+1} = u_n.q$

La fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ associée est alors : f(x) = x.q

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

66

Suites

Suites récurrentes

Exercice : On considère les suites (u_n) et (v_n) définies par $u_0 = 0$, $v_0 = 2$ et

$$v_{n+1} = \frac{3u_n + 1}{4}$$
 $u_{n+1} = \frac{3v_n + 1}{4}$.

- 1. Montrer que la suite $(s_n) = (u_n + v_n)$ est constante.
- 2. Montrer que la suite $(d_n) = (u_n v_n)$ est géométrique et donner sa formule en fonction de n.
- 3. En déduire des formules explicites pour (u_n) et (v_n) , donner leurs limites et dire si elles sont adjacentes.

Propriétés des suites récurrentes

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$. On dit que f est croissante si :

$$\forall x, x' \in \mathbb{R}, \quad x \le x' \implies f(x) \le f(x')$$

(autrement dit, f préserve le sens des inégalités)

Soit (u_n) une suite récurrente définie par $u_0 \in \mathbb{R}$ et la récurrence $u_{n+1} = f(u_n)$, avec f croissante.

- 1. Si $u_1 \ge u_0$, alors la suite (u_n) est croissante
- 2. Si $u_1 \le u_0$, alors la suite (u_n) est décroissante
- 3. Si $u_1 = u_0$, alors la suite (u_n) est constante

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

68

Suites

Suites récurrentes

$$u_{n+1} = f(u_n)$$
, avec f croissante et $u_1 \ge u_0$

Montrons par récurrence la propriété (P_n) : $u_n \le u_{n+1}$

- \triangleright (P_0) est vraie
- ▶ Si (P_n) est vraie (hypothèse de récurrence) la fonction f est croissante, donc :

$$u_n \le u_{n+1} \Rightarrow u_{n+1} = f(u_n) \le f(u_{n+1}) = u_{n+2}$$

donc (P_{n+1}) est vraie

▶ conclusion : $\forall n \in \mathbb{N}$, $u_n \le u_{n+1}$

 (u_n) est croissante

Exercice : Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=4/10$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n - u_n^3.$$

- 1. Montrer que pour tout n, $0 \le u_n \le 1$.
- 2. Montrer que (u_n) est décroissante.
- 3. (u_n) converge-t-elle? Si oui, donner la limite.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

70

Suites

Suites négligeables, notation o()

Notations de Landau

Définition. Soient (u_n) et (v_n) deux suites réelles. On dit que (u_n) est négligeable devant (v_n) , ce que l'on note $u_n = \underset{n \to \infty}{o} (v_n)$ (ou plus simplement $u_n = o(v_n)$ s'il n'y a pas d'ambiguïté), si

$$\forall \varepsilon > 0, \exists N, \forall n \ge N, |u_n| \le \varepsilon |v_n|$$

(i.e. $\forall \varepsilon > 0$, on a $|u_n| \le \varepsilon |v_n|$ à partir d'un certain rang).

Il est souvent plus commode d'utiliser la caractérisation suivante :

Proposition. Soient (u_n) et (v_n) deux suites réelles telles que v_n ne s'annule pas. Alors

$$u_n = o(v_n) \qquad \Longleftrightarrow \qquad \frac{u_n}{v_n} \xrightarrow[n \to \infty]{} 0.$$

Exemples

$$n = o(n^2) \operatorname{car} \frac{n}{n^2} = \frac{1}{n} \xrightarrow[n \to \infty]{} 0$$

►
$$ln(n) = o(n) car \frac{ln(n)}{n} \xrightarrow[n \to \infty]{} 0$$

- ▶ $\frac{1}{n} = o(1)$ et plus généralement, $u_n = o(1) \iff u_n \to 0$
- $u_n = o(0) \iff (u_n)$ est nulle à partir d'un certain rang (rarement utile)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

72

Suites

Suites négligeables, notation o()

Manipulation algébrique des o()

Dans la notation $u_n = o(v_n)$, le terme de droite représente n'importe quelle suite négligeable devant la suite (v_n) .

- → règles spéciales pour manipuler algébriquement les o() :
 - $ightharpoonup o(u_n) + o(u_n) = o(u_n)$
 - $\blacktriangleright \ \forall \lambda \neq 0, \quad \lambda o(u_n) = o(u_n) = o(\lambda u_n)$
 - ► $o(u_n) o(u_n) = o(u_n)$ → en pratique on ne met donc jamais un coefficient ou un signe — devant un o()
 - $ightharpoonup o(o(u_n)) = o(u_n)$
 - ightharpoonup si $u_n = o(v_n)$, alors $o(u_n) + o(v_n) = o(v_n)$
 - $\rightarrow X_n.o(V_n) = o(X_n.V_n)$
 - \triangleright $o(u_n).o(v_n) = o(u_n.v_n)$
 - ▶ en cas de doute on revient à la définition ou à la caractérisation $u_n/v_n \rightarrow 0$

Preuve de $o(u_n) + o(u_n) = o(u_n)$

Soit (x_n) et (y_n) deux suites telles que $x_n = o(u_n)$ et $y_n = o(u_n)$. Montrons que $x_n + y_n = o(u_n)$.

Soit $\varepsilon > 0$. Il existe N_1, N_2 tels que

$$\forall n \ge N_1, \quad |x_n| \le \frac{\varepsilon}{2} |u_n|$$

$$\forall n \geq N_2, \quad |y_n| \leq \frac{\varepsilon}{2} |u_n|$$

donc en posant $N = \max(N_1, N_2)$, on a

$$\forall n \geq N$$
, $|x_n + y_n| \leq |x_n| + |y_n| \leq \varepsilon |u_n|$

ce qui montre que $x_n + y_n = o(u_n)$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

74

Suites

Suites négligeables, notation o()

Preuve de $x_n.o(v_n) = o(x_n.v_n)$

Soit (u_n) une suite telle que $u_n = o(v_n)$. Montrons que $x_n.u_n = o(x_n.v_n)$.

On a

$$\forall \varepsilon > 0, \exists N, \forall n \geq N, |u_n| \leq \varepsilon |v_n|.$$

donc

$$\forall \varepsilon > 0, \exists N, \forall n \geq N, |x_n, u_n| \leq \varepsilon |x_n, v_n|.$$

c'est-à-dire exactement $x_n.u_n = o(x_n.v_n)$.

Comparaisons classiques

Si $\alpha > 0$, $\beta > 0$, $\mu > \lambda > 1$, alors

$$(\ln n)^{\alpha} \xrightarrow[n \to \infty]{} +\infty, \quad n^{\beta} \xrightarrow[n \to \infty]{} +\infty, \quad \lambda^{n} \xrightarrow[n \to \infty]{} +\infty,$$

$$n! \to +\infty, \quad n^{n} \to +\infty,$$

et

$$(\ln n)^{\alpha} = o(n^{\beta}), \quad n^{\beta} = o(\lambda^n), \quad \lambda^n = o(\mu^n),$$
 $\mu^n = o(n!), \quad n! = o(n^n)$

Exercice : Donner les limites des suites définies ci-dessous :

$$u_n = 2^n - n^{100}; \quad v_n = \frac{1}{\ln n - n^{-n}}; \quad w_n = e^{n^3 - 3^n}; \quad x_n = n^n - 100n!.$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

76

Suites

Suites équivalentes

Suites équivalentes

Définition. On dit que deux suites réelles (u_n) et (v_n) sont équivalentes, ce que l'on note $u_n \sim v_n$, si $u_n = v_n + o(v_n)$.

Remarque : $u_n \underset{n \to \infty}{\sim} v_n \iff v_n \underset{n \to \infty}{\sim} u_n$

Proposition. Soient (u_n) et (v_n) deux suites réelles telles que v_n ne s'annule pas. Alors

$$u_n \underset{n \to \infty}{\sim} v_n \qquad \Longleftrightarrow \qquad \frac{u_n}{v_n} \underset{n \to \infty}{\longrightarrow} 1.$$

Preuve :

$$u_n \underset{n \to \infty}{\sim} v_n \iff u_n = v_n + o(v_n) \iff \frac{u_n}{v_n} = 1 + o(1) \iff \frac{u_n}{v_n} \underset{n \to \infty}{\longrightarrow} 1.$$

Exemples

- ▶ $\sqrt{n} = o(n)$ donc $n + \sqrt{n} = n + o(n)$ donc $n + \sqrt{n} \sim_{n \to \infty} n$
- $\sqrt{n^2+1} = n\sqrt{1+\frac{1}{n^2}} \text{ et } \sqrt{1+\frac{1}{n^2}} \underset{n\to\infty}{\longrightarrow} 1, \text{ donc } \sqrt{n^2+1} \underset{n\to\infty}{\sim} n.$
- $\blacktriangleright \ \forall L \neq 0, \quad u_n \underset{n \to \infty}{\sim} L \iff u_n \underset{n \to \infty}{\longrightarrow} L$
- ▶ $u_n \sim 0 \Leftrightarrow (u_n)$ est nulle à partir d'un certain rang (rarement utile)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

78

Suites

Suites équivalentes

Règles de calcul avec les équivalents

- ▶ si $a_n \sim b_n$ et $b_n \sim c_n$, alors $a_n \sim c_n$
- ightharpoonup si $a_n \underset{n \to \infty}{\sim} x_n$ et $b_n \underset{n \to \infty}{\sim} y_n$, alors $a_n.b_n \underset{n \to \infty}{\sim} x_n.y_n$
- ▶ si $a_n \underset{n \to \infty}{\sim} x_n$ et $b_n \underset{n \to \infty}{\sim} y_n$ et b_n et y_n ne s'annulent pas, alors

$$\frac{a_n}{b_n} \sim \frac{x_n}{v_n}$$

- \blacktriangleright si $u_n \underset{n \to \infty}{\sim} v_n$ et $\alpha > 0$, alors $u_n^{\alpha} = v_n^{\alpha}$
- ightharpoonup si $u_n = o(v_n)$ et $v_n \underset{n \to \infty}{\sim} w_n$, alors $u_n = o(w_n)$
- ▶ en cas de doute on revient à la définition ou à la caractérisation $u_n/v_n \rightarrow 1$

Pièges à éviter

On n'additionne jamais les équivalents!

$$a_n \sim x_n$$
 et $b_n \sim y_n$ n'implique pas $a_n + b_n \sim x_n + y_n$

contre-exemple à retenir : $n+1 \underset{n\to\infty}{\sim} n$ et $-n \underset{n\to\infty}{\sim} -n$ (en additionnant, on obtiendrait l'absurdité $1 \sim 0$)

▶ Si $u_n \sim v_n$, on n'a pas $f(u_n) \sim f(g_n)$ pour toute fonction f!

contre-exemple :
$$u_n = n$$
, $v_n = n + \sqrt{n}$, $f(x) = e^x$

en effet
$$\frac{f(u_n)}{f(v_n)} = \frac{e^{n+\sqrt{n}}}{e^n} = e^{\sqrt{n}}$$
 ne tend pas vers 1

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

80

Suites

Suites équivalentes

Exercice: Soient deux suites (u_n) et (v_n) strictement positives telles que $v_n \to +\infty$ et et $u_n \underset{n \to \infty}{\sim} v_n$. Montrer que $\ln u_n \underset{n \to \infty}{\sim} \ln v_n$.

$$u_n \underset{n \to \infty}{\sim} v_n \implies \frac{u_n}{v_n} \underset{n \to \infty}{\longrightarrow} 1$$
 (caractérisation)
 $\Rightarrow \ln \left(\frac{u_n}{v_n}\right) \underset{n \to \infty}{\longrightarrow} 0$ (In est continue)
 $\Rightarrow \ln u_n - \ln v_n \underset{n \to \infty}{\longrightarrow} 0$
 $\Rightarrow \ln u_n - \ln v_n = o(1)$
 $\Rightarrow \ln u_n - \ln v_n = o(\ln v_n)$ (car $1 = o(\ln v_n)$)
 $\Rightarrow \ln u_n \underset{n \to \infty}{\sim} \ln v_n$ (définition)

Exercice: Soient deux suites (u_n) et (v_n) strictement positives telles que $v_n \to 0$ et $u_n \underset{n \to \infty}{\sim} v_n$.

Montrer que $\ln u_n \sim \ln v_n$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

82

Suites

Suites équivalentes

Équivalents de suites polynomiales

Proposition. Une expression polynomiale est équivalente à son terme dominant (terme de plus haut degré). Si $a_d \neq 0$, alors

$$a_d n^d + a_{d-1} n^{d-1} + \ldots + a_1 + a_0$$
 \sim $a_d n^d$

Preuve : Pour tout k < d, $n^k = o(n^d)$ donc $a_k n^k = o(n^d)$ et donc $a_d n^d + a_{d-1} n^{d-1} + \ldots + a_1 + a_0 = a_d n^d + o(n^d) \sim a_d n^d$.

Corollaire. Un quotient d'expressions polynomiales (fraction rationelle) est équivalente au quotient des termes dominants du numérateur et du dénominateur. Si $a_d \neq 0$ et $b_d' \neq 0$, alors

$$\frac{a_{d}n^{d} + a_{d-1}n^{d-1} + \ldots + a_{1} + a_{0}}{b_{d^{'}}n^{d^{'}} + b_{d^{'}-1}n^{d^{'}-1} + \ldots + b_{1} + b_{0}} \sim \frac{a_{d}n^{d}}{b_{d^{'}}n^{d^{'}}} \sim \frac{a_{d}n^{d}}{b_{d^{'}}} \sim \frac{a_{d}n^{d}}{b_{d^{'}}} n^{d-d^{'}}$$

Exercice: Pour chaque suite définie ci-dessous, donner un équivalent (le plus simple possible) et en déduire sa limite éventuelle.

$$u_n = \frac{4n^2 + 3n + 5}{e^n + e^{-n}}$$

$$v_n = \frac{5^n + n^2 2^n + n^n}{-2n^3 + n^2 - 4n + 1}$$

$$w_n = \frac{4n^2 + 3e^n - 5^n}{-2n^3 + 5^n + e^{-n}}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

84

Suites

Exemples de calculs d'équivalents

Exercice: En utilisant la formule de Stirling

$$n! \sim_{n\to\infty} n^n e^{-n} \sqrt{2\pi n}$$

calculer un équivalent de $\binom{2n}{n}$ (coefficient binomial)

$$\begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(2n)!}{(n!)^2}$$
 (définition)
$$\sim \frac{(2n)^{2n} e^{-2n} \sqrt{4\pi n}}{(n^n e^{-n} \sqrt{2\pi n})^2}$$
 (formule de Stirling)
$$\sim \frac{2^{2n} n^{2n} e^{-2n} \sqrt{4\pi n}}{n^{2n} e^{-2n} 2\pi n}$$

$$\sim \frac{2^{2n}}{\sqrt{\pi n}} \cdot \frac{2^{2n}}{\sqrt{\pi$$

Exercice: Trouver un équivalent de $u_n = \sqrt{n^2 + 1} - n$.

Pour "simplifier" l'expression $\sqrt{a} - b$, on multiplie et on divise par la quantité conjuguée $\sqrt{a} + b$:

$$u_{n} = \left(\sqrt{n^{2}+1}-n\right) \cdot \frac{\sqrt{n^{2}+1}+n}{\sqrt{n^{2}+1}+n}$$

$$= \frac{\left(\sqrt{n^{2}+1}\right)^{2}-n^{2}}{\sqrt{n^{2}+1}+n}$$

$$= \frac{1}{\sqrt{n^{2}+1}+n}$$

$$= \frac{1}{\sqrt{n^{2}+1}+n}$$

$$\underset{n\to\infty}{\sim} \frac{1}{2n} \operatorname{car} \sqrt{n^{2}+1}=n+o(n).$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

86

Suites

Exemples de calculs d'équivalents

Exercice: Pour chaque suite définie ci-dessous, donner un équivalent (le plus simple possible) et en déduire sa limite éventuelle.

$$u_n = \frac{\sqrt{1 + n^2} ((\sin n) \sqrt{n} - \ln(n^2))}{\ln(1 + e^{n^2}) (\sqrt{n + 1} - \sqrt{n})}$$

$$v_n = \frac{n^{2n} - (2n)^n}{\sqrt{e^n} - e^{\sqrt{n}}}$$

$$w_n = \ln(n + \sqrt{n})e^{-\sqrt{n}} - 2^{-n}\cos(n^{-2})$$

