

Objectif:

Comprendre comment un système d'exploitation fonctionne et comment l'utiliser

Gestion de la Mémoire

(cours précédent : Systèmes d'Exploitation – Shell et Utilitaires)

I.8. Gestion de la Mémoire

I. Système d'Exploitation

- 1. Sommaire
- 2. Introduction
- 3. Noyau et Pilotes
- 4. Utilisateurs et Sessions
- 5. Système de Fichier
- 6. Permissions et Droits
- 7. Shell et Utilitaires
- 8. Gestion de la Mémoire
- 9. Programmes et Processus
- 10. Variables d'Environnement
- 11. Scripts Shell
- 12. Gestion des Paquets

- I. Systèmes d'Exploitation
- I.8. Gestion de la Mémoire

Gestion de la Mémoire

I.8. Gestion de la Mémoire

■ Le nom de cette interface est **mémoire virtuelle**.

▲ Tous les processus lancés dans l'espace utilisateur (applications utilisateur) ou dans l'espace noyau (composants logiciels du système d'exploitation) utilisent toujours des adresses en mémoire virtuelle.

Le noyau « traduit » **automatiquement** les adresses en mémoire virtuelle en adresses réelles en mémoire physique.

I.8. Gestion de la Mémoire

Bien que les données puissent être stockées dans différentes parties de la mémoire physique, la **mémoire virtuelle** affiche les données en mémoire comme étant **contiguës**.

Le noyau stocke les données sur la mémoire physique sous forme (généralement) de « pages » (**« frames »**) de données de 4 kilo-octets.

Les programmes (dont la taille dépasse 4 kilo-octets) sont généralement chargés dans la mémoire physique en 1 ou plusieurs « pages » de données.

I.8. Gestion de la Mémoire

• Le noyau stocke les « pages » de données dans la RAM (Random Access Memory) :

L'accès en lecture/écriture à la mémoire volatile est très rapide, mais les données sont supprimées si le matériel est éteint.

 Si le noyau manque d'espace pour stocker les « pages » de données dans la mémoire volatile, les données sont stockées dans la mémoire non volatile (par exemple un disque dur) dans un espace de stockage réservé nommé swap :

Les accès en lecture/écriture à la mémoire non volatile sont très lents, mais les données sont préservées si le matériel est éteint.

I.8. Gestion de la Mémoire

- Si le noyau manque d'espace pour stocker des « pages » de données dans la mémoire volatile et non volatile :
 - Les programmes ne peuvent plus être chargés en mémoire;
 - Les programmes déjà chargés ne peuvent pas utiliser la mémoire et peuvent s'arrêter de manière inattendue.

I.8. Gestion de la Mémoire

Mémoire virtuelle et mémoire physique :

I.8. Gestion de la Mémoire

Sur les Systèmes d'Exploitation Linux, on peut afficher des informations générales sur l'utilisation de la mémoire volatile (RAM) et de la mémoire non volatile (SWAP) avec :

free -h

(free suivi de l'argument -h)

Pour afficher des informations détaillées sur la **mémoire physique installée**, nous pouvons utiliser l'utilitaire suivant :

dmidecode

Pour afficher des informations sur la **mémoire virtuelle**, nous pouvons utiliser l'utilitaire suivant :

vmstat

- I. Systèmes d'Exploitation
- I.9. Programmes et Processus

Programmes et Processus

(voir le cours suivant : Systèmes d'Exploitation – Programmes et Processus)