Reanalysis

Julia Haaf

3/5/2020

```
library(ggpubr)

## Loading required package: ggplot2

## Loading required package: magrittr

library(metaBMA)

## Loading required package: Rcpp

library(ggplot2)
library(knitr)
library(kableExtra)
library(papaja)
library(lemon)

ggplot2::theme_set(theme_apa(base_size = 12))
```

This document combines all analyses to draw plots.

Running Analyses

```
library(BayesFactor)
library(MCMCpack)
library(knitr)
library(kableExtra)
library(metafor)
library(papaja)
require(ggplot2)
ggplot2::theme_set(theme_apa(base_size = 10))
bayesBF <- function(dat, rScale = c(1, .4, .24), M = 30000, Mprior = 200000)</pre>
    N <- nrow(dat)
    J <- length(unique(dat$source))</pre>
    loc <- unique(dat$source)</pre>
    cond <- 2 - as.numeric(dat$ms_condition)</pre>
    alpha <- 1:J
    beta <- (J + 2):(2 * J + 1)
    mu \leftarrow J + 1
    X \leftarrow matrix(nrow = N, ncol = 2 * J + 1, 0)
    for(i in 1:N){
```

```
locit <- which(loc == dat$source[i])</pre>
  X[i, locit] <- 1</pre>
  X[i, J + 1] \leftarrow cond[i]
  X[i, J + 1 + locit] \leftarrow cond[i]
    gMap \leftarrow rep(0:2, c(J, 1, J))
    samples <- nWayAOV(dat$pro_minus_anti, X</pre>
                         , gMap, rscale = rScale
                         , posterior = T, iterations = M)
    bfFull <- nWayAOV(dat$pro_minus_anti, X</pre>
                        , gMap, rscale = rScale
                        , posterior = F, iterations = M)$bf
    bfNull <- nWayAOV(dat$pro_minus_anti, X[ , 1:J]</pre>
                        , gMap[1:J], rscale = rScale[1]
                        , posterior = F, iterations = M)$bf
    bfOne <- nWayAOV(dat$pro_minus_anti, X[ , 1:(J + 1)]</pre>
                       , gMap = rep(0:1, c(J, 1),), rscale = rScale[1:2]
                       , posterior = F, iterations = M)$bf
    samplesOne <- nWayAOV(dat$pro_minus_anti, X[ , 1:(J + 1)]</pre>
                            , gMap = rep(0:1, c(J, 1),), rscale = rScale[1:2]
                            , posterior = T, iterations = M)
    #Positive Effects (random)
    effect <- samples[500:M, beta + 1] + samples[500:M, mu + 1]
    post.pos <- mean(apply(effect > 0, 1, mean) == 1)
    gm <- rinvgamma(Mprior, .5, .5 * rScale[3]^2)</pre>
    m.1 <- rnorm(Mprior, 0, sqrt(gm))</pre>
    g <- rinvgamma(Mprior, .5, .5*rScale[2]^2)
    a1 <- 1:Mprior
    for (m in 1:Mprior) a1[m] = mean(rnorm(J, m.1[m], sqrt(g[m])) > 0)
    prior.pos \leftarrow mean(a1 == 1)
    #Positive Effect (common)
    effectOne <- samplesOne[500:M, mu + 1]
    post.pos.One <- mean(effectOne > 0)
    bfpostUpdate <- post.pos.One / .5</pre>
    bf <- c(exp(bfFull - bfNull)</pre>
             , exp(bfOne - bfNull) * bfpostUpdate
             , exp(bfFull - bfNull) * post.pos/prior.pos)
    out <- c(bf, post.pos, prior.pos)</pre>
    names(out) <- c("F0", "10", "P0", "post.pos", "prior.pos")</pre>
    effsize \leftarrow samples[500:M, mu + 1]/sqrt(samples[500:M, 2 * J + 3])
    effsizeCI <- quantile(effsize, probs = c(.025, .975))</pre>
    return(list("bfs" = out, "effects" = effect, "N" = nrow(dat), "ES" = mean(effsize), "CI" = effsizeC
}
simple.fig <- function(dat){</pre>
  meansbycondloc <- with(dat
                           , tapply(pro_minus_anti
                                     , list(source, ms_condition)
```

```
, mean, na.rm = TRUE))
effects <- meansbycondloc[, 1] - meansbycondloc[, 2]
plot(sort(effects)
    , pch = 19, ylab = "Effect", xlab = "Source")
abline(h = 0)
}</pre>
```

Reanalysis with Exclusion Criterion .1.1

This is the original main analysis that is the basis for the key claims of the Many Labs 4 project.

```
dat.111 <- read.csv2("data/reanalysis_111.csv", header = T)</pre>
dat.211 <- read.csv2("data/reanalysis_211.csv", header = T)</pre>
dat.311 <- read.csv2("data/reanalysis_311.csv", header = T)</pre>
rean.111 <- bayesBF(dat = dat.111)</pre>
rean.111$bfs
##
             F0
                                         P0
                           10
                                                 post.pos
                                                             prior.pos
## 0.0286022429 0.0963455239 0.0000954560 0.0002711772 0.0812550000
rean.111$ES
## [1] 0.009109488
rean.111$CI
##
        2.5%
                  97.5%
## -0.106000 0.123864
resFig(rean.111$effects, dat = dat.111)
```



```
rean.211 <- bayesBF(dat = dat.211)
rean.211$bfs

## F0 10 P0 post.pos prior.pos
## 0.051258343 0.175450591 0.008369224 0.015796075 0.096745000
rean.211$ES

## [1] 0.01760426
rean.211$CI

## 2.5% 97.5%
## -0.1745616 0.2110923
resFig(rean.211$effects, dat = dat.211)</pre>
```


rean.311 <- bayesBF(dat = dat.311)
rean.311\$bfs

F0 10 P0 post.pos prior.pos
0.10914313 0.35830152 0.07673534 0.07606522 0.10819000
rean.311\$ES

[1] 0.04562541
rean.311\$CI

2.5% 97.5%
-0.2247833 0.3176610

Reanalysis with Exclusion Criterion .3.2

```
(1,3,2), (2,3,2), \text{ and } (3,3,2)
dat.132 <- read.csv2("data/reanalysis_132.csv", header = T)</pre>
dat.232 <- read.csv2("data/reanalysis_232.csv", header = T)</pre>
dat.332 <- read.csv2("data/reanalysis_332.csv", header = T)</pre>
rean.132 <- bayesBF(dat = dat.132)</pre>
rean.132$bfs
                                         post.pos prior.pos
                        10
                                    P0
## 0.07280708 0.48246173 0.08146795 0.13857157 0.12384000
rean.132$ES
## [1] 0.08099185
rean.132$CI
                     97.5%
##
          2.5%
## -0.1207725 0.2793634
resFig(rean.132$effects, dat = dat.132)
```



```
rean.232 <- bayesBF(dat = dat.232)
rean.232$bfs

## F0    10    P0    post.pos    prior.pos
## 0.1488152   1.0281878   0.3702084   0.3082268   0.1239000

rean.232$ES

## [1]   0.1386719
rean.232$CI

##    2.5%    97.5%
## -0.1108561   0.3882399

resFig(rean.232$effects, dat = dat.232)</pre>
```



```
rean.332 <- bayesBF(dat = dat.332)
rean.332$bfs

## F0     10     P0 post.pos prior.pos
## 0.2037756 1.1838467 0.6414410 0.3848005 0.1222450

rean.332$ES

## [1] 0.1746868
rean.332$CI

##     2.5%     97.5%
## -0.1211669     0.4783894

resFig(rean.332$effects, dat = dat.332)</pre>
```


Summary

```
BFs <- rbind(rean.111$bfs, rean.211$bfs, rean.311$bfs, rean.132$bfs, rean.232$bfs, rean.332$bfs)
BFs <- round(1/ BFs[, 1:3], 2)
Ns <- c(rean.111$N, rean.211$N, rean.311$N, rean.132$N, rean.232$N, rean.332$N)
BFs <- cbind(Ns, BFs)
rownames(BFs) <- paste("Exclusion Criterion", c(111, 211, 311, 132, 232, 332))
colnames(BFs) <- c("Sample Size", "$BF_{0f}$", "$BF_{01}$", "$BF_{0+}$")</pre>
apa_table(BFs, escape = FALSE, caption = "Bayes factors for key analyses.", note = "All Bayes factors a
# kable(BFs, escape = FALSE, format = "latex") %>%
# kable_styling(latex_options = "striped", font_size = 12)
library(metaBMA)
library(ggplot2)
library(knitr)
library(kableExtra)
library(papaja)
library(lemon)
ggplot2::theme_set(theme_apa(base_size = 12))
default.prior
                  <- prior(family = "t",
                           param = c(0, 0.707, 1)
                           , lower = 0
```

Table 1: Bayes factors for key analyses.

	Sample Size	BF_{0f}	BF_{01}	BF_{0+}
Exclusion Criterion 111	2,211.00	34.96	10.38	10,476.03
Exclusion Criterion 211	637.00	19.51	5.70	119.49
Exclusion Criterion 311	277.00	9.16	2.79	13.03
Exclusion Criterion 132	700.00	13.73	2.07	12.27
Exclusion Criterion 232	386.00	6.72	0.97	2.70
Exclusion Criterion 332	229.00	4.91	0.84	1.56

Note. All Bayes factors are reported in favor of the null model.

```
oosterwijk.prior <- prior(family = "t",</pre>
                            param = c(0.35, 0.102, 3)
                            , lower = 0
vohs.prior
                   <- prior(family = "norm",
                            param = c(0.3, 0.15)
                              lower = 0
priors <- list(default = default.prior,</pre>
               oosterwijk = oosterwijk.prior,
               vohs = vohs.prior
# lower truncate priors at zero?
.bmaCalculateBFHeterogeneity <- function(prior_models, posterior_models){
# Returns the heterogeneity Bayes factor
  postOdds <- (posterior_models["random_HO"] + posterior_models["random_H1"]) /</pre>
               (posterior_models["fixed_HO"] + posterior_models["fixed_H1"])
  priorOdds <- (prior_models[3] + prior_models[4]) / (prior_models[1] + prior_models[2])</pre>
  BFheterogeneity <- postOdds/priorOdds
  return(BFheterogeneity)
}
# BFrf or BFfr?
.runRema <- function(y, SE, priors, extrainfo = FALSE){</pre>
# Returns a list containing:
# BFmu: dataframe with 1 row/3columns (BF per prior)
```

```
# BFtau: dataframe with 1 row/3columns (BF per prior)
# est: list containing 3 dataframes per prior
       with effect size and 95% credible interval estimates
  BFmu <- BFtau <- data.frame(default = 0,
                               oosterwijk = 0,
                               vohs = 0
  empty.dataframe <- data.frame(est.es = numeric(),</pre>
                                 est.lower = numeric(),
                                 est.upper = numeric()
  est <- list(default = empty.dataframe,
              oosterwijk = empty.dataframe,
              vohs = empty.dataframe
  for(i in 1:length(priors)){
    rema <- meta_bma(y, SE, d = priors[[i]], control = list(adapt_delta = 0.995))
    BFmu[, i] <- 1/rema$inclusion$incl.BF # BF in favour of the null model
    if(extrainfo){
      BFtau[i] <- .bmaCalculateBFHeterogeneity(rema$prior_models, rema$posterior_models)
      est.es <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "mean"]
      est.lower <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "2.5%"]
      est.upper <- rstan::summary(rema$meta$random$stanfit_dstudy)$summary[3:(length(y) + 2), "97.5%"]
      est[[i]] <- rbind(est[[i]], cbind(est.es, est.lower, est.upper))</pre>
    }
  }
  if(!extrainfo){
    return(BFmu)
  } else {
    remaResult <- list(BFmu = BFmu,
                        BFtau = BFtau,
                        est = est
    return(remaResult)
  }
}
remaForest <- function(obs.data, est.data){</pre>
# Returns a forest plot with observed and estimated effects
I <- nrow(obs.data)</pre>
ord <- order(obs.data$yi)</pre>
es <- obs.data$yi[ord]
est.es <- est.data[ord, "est.es"]</pre>
est.lower <- est.data[ord, "est.lower"]</pre>
est.upper <- est.data[ord, "est.upper"]</pre>
studyLabels <- obs.data[ord, "source"]</pre>
lower \leftarrow es - qnorm(1.95/2) * obs.data$sei
upper \leftarrow es + qnorm(1.95/2) * obs.data$sei
```

```
y.obs <- I:1
y.est \leftarrow rev(seq(.6, I - .4, 1))
dfBoth <- data.frame(es = c(es, est.es),
                     y = c(y.obs, y.est),
                     studyLabels = c(studyLabels, studyLabels),
                     lower = c(lower, est.lower), upper = c(upper, est.upper),
                     g = rep(c("Observed", "Estimated"), each = I)
plot <- ggplot(dfBoth, aes(x = es, y = y)) +</pre>
        geom_vline(xintercept = 0, linetype = "dotted") +
        geom_point(aes(shape = as.factor(dfBoth$g), colour = as.factor(dfBoth$g))) +
        geom_errorbarh(aes(xmin = dfBoth$lower, xmax = dfBoth$upper, colour = as.factor(dfBoth$g)),
                        height = .1, show.legend = FALSE) +
        scale_y_continuous(breaks = I:1, labels = as.character(studyLabels),
                                    expand = c(0, 0.5) +
        scale_color_manual("", values = c("black", "slategrey"),
                                    labels = c(gettext("Estimated"), gettext("Observed"))) +
        scale_shape_manual("", values = c(16, 15)) +
        guides(shape = guide_legend(reverse=TRUE, override.aes = list(size=3)),
               colour = guide legend(reverse=TRUE)) +
        xlab("Mortality Salience Effect") +
        ylab(" ") +
        theme(axis.line.y = element_blank(),
              axis.ticks.y = element_blank())
return(plot)
```

Original Analysis

```
m.111 <- read.csv2("data/metaset_111.csv", header = T)
m.211 <- read.csv2("data/metaset_211.csv", header = T)
m.311 <- read.csv2("data/metaset_311.csv", header = T)

rema.111 <- .runRema(m.111$yi, m.111$sei, priors, TRUE)
rema.211 <- .runRema(m.211$yi, m.211$sei, priors, TRUE)
rema.311 <- .runRema(m.311$yi, m.311$sei, priors, TRUE)

remaForest(m.111, rema.111$est$default) + ggtitle("Exlusion Criterion 111")</pre>
```


remaForest(m.211, rema.211\$est\$default) + ggtitle("Exlusion Criterion 211")

remaForest(m.311, rema.311\$est\$default) + ggtitle("Exlusion Criterion 311")

Mortality Salience Effect

```
BFs.og <- cbind(rbind(rema.111$BFmu, rema.211$BFmu, rema.311$BFmu),
                                              rbind(rema.111$BFtau, rema.211$BFtau, rema.311$BFtau))
BFs.og <- round(BFs.og, 2)
rownames(BFs.og) <- paste("Exclusion Criterion", c(111, 211, 311))</pre>
subhead <- rep(c("Default", "Oosterwijk", "Vohs"), 2)</pre>
colnames(BFs.og) <- subhead</pre>
colhead <- list("Effect Size BF" = c(2, 4),</pre>
                                              "Heterogeneity BF" = c(5, 7))
apa_table(BFs.og, escape = FALSE, caption = "Model-averaged Bayes factors for key analyses.",
                            note = "All Bayes factors are reported in favor of the null model.",
                            col spanners = colhead)
##
##
## \begin{table}[tbp]
## \begin{center}
## \begin{threeparttable}
## \caption{\label{tab:unnamed-chunk-14}Model-averaged Bayes factors for key analyses.}
## \begin{tabular}{lllllll}
## \toprule
## & \multicolumn{3}{c}{Effect Size BF} & \multicolumn{3}{c}{Heterogeneity BF} \\
## \cmidrule(r){2-4} \cmidrule(r){5-7}
## & \multicolumn{1}{c}{Default} & \multicolumn{1}{c}{Oosterwijk} & \multicolumn{1}{c}{Vohs} & \multi
## \midrule
## Exclusion Criterion 111 & 12.60 & 44.69 & 16.64 & 0.44 & 0.43 & 0.44\\
```

Exclusion Criterion 211 & 7.95 & 16.84 & 7.20 & 0.41 & 0.42 & 0.42\\

```
## Exclusion Criterion 311 & 4.18 & 4.01 & 2.49 & 0.56 & 0.57 & 0.57\\
## \bottomrule
## \addlinespace
## \end{tabular}
## \begin{tablenotes}[para]
## \normalsize{\textit{Note.} All Bayes factors are reported in favor of the null model.}
## \end{tablenotes}
## \end{threeparttable}
## \end{center}
## \end{table}
```

Analysis for the Main Claim of the Comment

```
m.132 <- read.csv2("data/metaset_132.csv", header = T)
m.232 <- read.csv2("data/metaset_232.csv", header = T)
m.332 <- read.csv2("data/metaset_332.csv", header = T)

rema.132 <- .runRema(m.132$yi, m.132$sei, priors, TRUE)
rema.232 <- .runRema(m.232$yi, m.232$sei, priors, TRUE)
rema.332 <- .runRema(m.332$yi, m.332$sei, priors, TRUE)
remaForest(m.132, rema.132$est$default) + ggtitle("Exlusion Criterion 132")</pre>
```

Exlusion Criterion 132

Mortality Salience Effect

```
remaForest(m.232, rema.232$est$default) + ggtitle("Exlusion Criterion 232")
```


remaForest(m.332, rema.332\$est\$default) + ggtitle("Exlusion Criterion 332")

Mortality Salience Effect

```
BFs.cmnt <- cbind(rbind(rema.132$BFmu, rema.232$BFmu, rema.332$BFmu),
                                                  rbind(rema.132$BFtau, rema.232$BFtau, rema.332$BFtau))
BFs.cmnt <- round(BFs.cmnt, 2)</pre>
rownames(BFs.cmnt) <- paste("Exclusion Criterion", c(132, 232, 332))</pre>
colnames(BFs.cmnt) <- subhead</pre>
apa_table(BFs.cmnt, escape = FALSE, caption = "Model-averaged Bayes factors for comment analyses.",
                            col_spanners = colhead)
##
##
## \begin{table}[tbp]
## \begin{center}
## \begin{threeparttable}
## \caption{\label{tab:unnamed-chunk-16}Model-averaged Bayes factors for comment analyses.}
## \begin{tabular}{lllllll}
## \toprule
## & \multicolumn{3}{c}{Effect Size BF} & \multicolumn{3}{c}{Heterogeneity BF} \\
## \cmidrule(r){2-4} \cmidrule(r){5-7}
## & \multicolumn{1}{c}{Default} & \multicolumn{1}{c}{Oosterwijk} & \multicolumn{1}{c}{Vohs} & \multi
## \midrule
## Exclusion Criterion 132 & 3.82 & 5.84 & 2.75 & 0.39 & 0.40 & 0.40\\
## Exclusion Criterion 232 & 1.42 & 0.90 & 0.66 & 0.48 & 0.50 & 0.47
## Exclusion Criterion 332 & 1.45 & 0.73 & 0.62 & 0.53 & 0.53 & 0.52
## \bottomrule
## \end{tabular}
## \end{threeparttable}
```

```
## \end{center}
## \end{table}
```

All Other Variants

```
sets <- c(112, 212, 312, 121, 221, 321, 122, 222, 322, 131, 231, 331)
rema.other <- data.frame(metaset = character(),
                         default = numeric(),
                         oosterwijk = numeric(),
                         vohs = numeric()
for(i in sets){
  path.m <- paste0("data/metaset_", i, ".csv")</pre>
 m <- read.csv2(path.m, header = T)</pre>
 rema <- .runRema(m$yi, m$sei, priors, FALSE)
  rema.other <- rbind(rema.other, cbind(rema))
}
rema.other <- round(rema.other, 2)</pre>
rownames(rema.other) <- paste("Exclusion Criterion", sets)</pre>
colnames(rema.other) <- c("Default", "Oosterwijk", "Vohs")</pre>
apa_table(rema.other, escape = FALSE, caption = "Model-averaged Bayes factors for all other analyses.")
##
##
## \begin{table}[tbp]
## \begin{center}
## \begin{threeparttable}
## \caption{\label{tab:unnamed-chunk-18}Model-averaged Bayes factors for all other analyses.}
## \begin{tabular}{1111}
## \toprule
## & \multicolumn{1}{c}{Default} & \multicolumn{1}{c}{Oosterwijk} & \multicolumn{1}{c}{Vohs}\\
## \midrule
## Exclusion Criterion 112 & 7.32 & 16.49 & 6.80\\
## Exclusion Criterion 212 & 3.66 & 4.24 & 2.32\\
## Exclusion Criterion 312 & 4.18 & 4.01 & 2.49\\
## Exclusion Criterion 121 & 10.34 & 34.12 & 12.76\\
## Exclusion Criterion 221 & 4.32 & 5.88 & 2.99\\
## Exclusion Criterion 321 & 1.45 & 0.73 & 0.62\\
## Exclusion Criterion 122 & 3.82 & 5.84 & 2.75\\
## Exclusion Criterion 222 & 1.42 & 0.90 & 0.66\\
## Exclusion Criterion 322 & 1.45 & 0.73 & 0.62\\
## Exclusion Criterion 131 & 6.17 & 16.58 & 6.40\\
## Exclusion Criterion 231 & 4.32 & 5.88 & 2.99\\
## Exclusion Criterion 331 & 1.45 & 0.73 & 0.62\\
## \bottomrule
## \end{tabular}
## \end{threeparttable}
## \end{center}
## \end{table}
```

Plots Original Analysis

```
m.111$labelpretty <- c("Ashland University", "Azusa Pacific University", "Brigham Young University - Id
forest.all(obs.data = dat.111, es.data = m.111, est.averaging = rema.111$est$default, est.multilevel =
                                                                           В.
 Α.
                      Ashland University
             Pace University – In House
University of Florida
                 Azusa Pacific University
     University of Wisconsin - In House
                Pace University – Expert
           University of Kansas - Expert
                          Ithaca College
       University of California, Riverside
University of Kansas – In House
        University of Wisconsin - Expert
      Virginia Commonwealth University
          Worcester Polytechnic Institute
              Pacific Lutheran University
                    Wesleyan University
                      Occidental College
             University of Pennsylvania
The College of New Jersey
                                                                                    Observed
      Brigham Young University - Idaho
             Southern Oregon University
                                                                                    Estimated
                     University of Illinois
                                                       -2
                                                                      2
                                                                                                           0.5
                                                -4
                                                                                   -1.0
                                                                                           -0.5
                                                                                                   0.0
                                                                                                                  1.0
                                              Unstandardized Effect
                                                                                          Standardized Effect
```

Combining Evidence from multiverse analysis

```
sets <- c(111, 211, 311, 132, 232, 332, 112, 212, 312, 121, 221, 321, 122, 222, 322, 131, 231, 331)
ssize <- data.frame("metaset" = character(),</pre>
                      "N" = numeric(),
                      "N.study" = numeric()
for(i in sets){
  path.m <- paste0("data/reanalysis_", i, ".csv")</pre>
  m <- read.csv2(path.m, header = T)</pre>
  N \leftarrow nrow(m)
  path.m <- paste0("data/metaset_", i, ".csv")</pre>
  m <- read.csv2(path.m, header = T)
  N.study <- nrow(m)</pre>
  ssize <- rbind(ssize, c(i, N, N.study))</pre>
}
rema.all <- rbind(BFs.og[, 1:3]</pre>
                    , BFs.cmnt[, 1:3]
                     rema.other
rema.all <- 1/rema.all
rema.all <- cbind(rema.all, "N" = ssize[, 2], "N.study" = ssize[, 3])</pre>
rema.all <- cbind(rema.all, "Crit" = rownames(rema.all))</pre>
result <- tidyr::gather(rema.all, prior, bf, Default:Vohs, factor_key = TRUE)
result$Nscaled <- result$N.study/2
result <- result[!duplicated(result$bf),]</pre>
```

```
xrange <- c(0, 2500)
yrange <- c(1/50, 50) # log scale
# Plot with n participants included on the x-axis, BF01 on the y-axis, colors for
# participant exclusion sets and bubble sizes for number of studies included
ggplot(aes(x = N, y = bf, size = Nscaled, color = as.factor(prior)), data = result) +
  geom_jitter(alpha = 0.6, width = 15) +
  scale_y = continuous(trans='log', limits = yrange, breaks = c(1/50, 1/5, 1, 5, 50)) +
  scale_size_identity() +
  scale_colour_brewer(palette = 'Dark2') +
  labs(x = 'Sample Size', y = expression(BF["10"]), color = "Priors") +
  xlim(xrange) +
  geom_hline(yintercept = 1) +
  theme_apa() +
  theme_classic(base_size = 19) +
  theme(axis.line=element_line()) +
  guides(color = guide_legend(override.aes = list(size = 4))) +
  coord_capped_cart(gap = 0.1, bottom = 'none', left = 'none') + #caps the axes so they don't touch
  theme(axis.title.x = element_text(vjust=-0.5),
        axis.text.x = element_text(vjust=-0.5),
        axis.text.y = element_text(hjust=.8,),
       axis.ticks.length = unit(0.25, 'cm')
```

