A parallel MCTDHF code for multi-electron systems in strong fields

Armin Scrinzi
Vienna U. of Technology
Photonics Insitute

Motivation:

Attosecond pump-probe: Auger decay

Scheme of measurment

Core-hole formation
by attosecond XUV
Probe electron emission
by few-cycle laser

[Drescher et al., Nature (2002)]

Motivation:

Attosecond pump-probe: ionization dynamics

Watch an atom while it is being ionized

a strong laser ionizes during a single field cycle (2.6 fs @ 800 nm)

- depletion of neutral
- appearance of ion
- intermediate states?

Motivation:

Rescattering imaging of a molecular orbital

- (1) Laser detaches electron from molecule
- (2) The electron is directed back by the laser
- (3) Scattering produces harmonics
- (4) Harmonics contain a tomographic image of the HOMO

Measured image of the HOMO of N₂ [Itatani et al., Nature, (2004)]

How exactly does the electron come back? What does one actually measure?

Strong fields:

Hydrogen electron density during two laser cycles

Key characteristics of the systems

Laser electric field ~ atomic field strength

- => highly non-perturbative
- => large simulation volumes

Short time scales: 100 attoseconds ~ electron orbit time => non-stationary, wave-packet like situation

Several electrons are involved:

- -- Auger process
- -- strong field ionization
- -- rescattering
- -- molecules

Both, continuous and bound, parts of the system => both, quantum and near classical, behavior

Hamiltonian

$$H(t) = \sum_{l=1}^{f} \frac{1}{2} \left[\frac{1}{\mathbf{i}} \vec{\nabla}_l - e \vec{A}(t) \right]^2 + V_n(\vec{r}_l) + \sum_{k=l+1}^{f} \frac{1}{|\vec{r}_l - \vec{r}_k|}$$

V_n ... nuclear potential: Coulomb or model

A(t) ... laser vector potential, velocity gauge is <u>better</u> in very strong fields

Observables

High harmonic radiation lonization yields Electron spectra

Our implementation of MCTDHF:

Basics: MCTDHF = MCTDH + F

$$\Psi(\vec{x}_1, \dots, \vec{x}_f; t) = \sum_{j_1=1}^{n} \dots \sum_{j_f=1}^{n} A_{j_1 \dots j_f}(t) \, \varphi_{j_1}(\vec{x}_1; t) \dots \varphi_{j_f}(\vec{x}_{f;t})$$

All differences to MCTDH are "technical" (but important)

- an orbital carries all single particle properties 3 spatial + 1 spin coordinates ("3d mode combination")
- A_{j1...jf} are strictly anti-symmetric with resp. to their indices many fewer (independent) A's (<1000) than in MCTDH
- there are only two-particle interactions
- use Slater rules for the calculation of mean fields etc.
- choose between restricted and unrestricted orbitals

New code developed from scratch

Our implementation of MCTDHF: Typical numbers

Box sizes:

200 atomic units in laser polarization direction 20 atomic units perpendicular (absorbing boundaries)

Spatial grid points: $10^5 \sim 10^6$

Number of particles: 2 – 8

Strict cylindrical symmetry (to be extended to full 3d)

Run times: hours (but on a parallel computer)

Memory: ~ 500 MB (can be seriously improved)

Our implementation of MCTDHF:

Discretization and related stuff

Spatial discretization:

- Finite elements on cylinder coordinates (ρ,z)
- Product grid ~ 1000 x 100
- FFT method on z (only on single-processor)

Integrations:

transformation to quadrature grid

Time-integration:

- Runge-Kutta self-adaptive time-step and order up to 6
- CMF ("Constant Mean Field"):
 more function calls for given accuracies (!?)

Our implementation of MCTDHF:

Discretization and related stuff (cont'd)

Two-particle potential - low rank approximation:

$$rac{1}{|ec{r}_1 - ec{r}_2|} pprox \sum_{m=1}^M U_m(ec{r}_1) U_m(ec{r}_2)$$
 M ~ 200

Schmidt-decomposition (present)
H-matrix techniques (planned, good for parallel code!)

Initial state calculation: imaginary time propagation (to be improved)

More technical details: Caillat et al., Phys. Rev. A (2005)

Parallelization

Scatter orbitals over cpu's

Calculation of mean fields: non-local interaction reduced by low-rank approximation

Application of mean fields: strictly local

Differential operators have negligible communication

Nearly linear scaling up to 32 CPUs (and beyond?)

Scaling of the parallel code

Deviations from linear scaling mostly due to scalar calculation of d/dt A₁

NOTE: speedup is given relative to the 2-CPU calculation as the scalar code also partially uses 2 CPUs

NOTE: loss at 32 CPU not understood, maybe hardware?

Checks He and H₂ ground state energies

```
H<sub>2</sub> energy at R=1.4
Helium ground state
 (restricted MCHF)
                           (restricted MCHF)
 n, f
     energy
                           n, f energy
 2,2 -2.8589
                          2, 2 -1.8466
 4,2 -2.8751
                           4, 2 -1.8652
 6,2 -2.8819
                          6, 2 -1.8725
 8,2 -2.8827
                           8, 2 -1.8732
(exact -2.9037)
                           (exact -1.8887)
```

Acceptable accuracies

Difference to exact due to single-electron discretization (?)

A two electron model of "Argon"

Ionization potential 0.57 a.u., second ionization pot. 1.2 a.u. two active electrons

Laser single-cycle laser pulse a 800 nm, peak intensity 3x10¹⁴ W/cm² (~ field 0.1 a.u.) [~ experimental parameters]

MOVIE

Electron density as a function of time range 1 – 10⁻⁴

Electron density of Ar below 10⁻⁴

MOVIE: same as before, but range $10^{-4} - 10^{-7}$

Our effect is a very small effect on top of a large effect

Need high accuracies!

(Is that why high order Runge-Kutta wins?)

Calculation for "N₂"

- Two nuclei at separation of 2 a.u., same ionization potential as Ar, two active electrons, same laser parameters as before
- Similar picture, somewhat more ionization...

Does an electron tunnel ionize from N₂ in the same way as from Ar?

Are "all tunnels alike"?

Are all tunnels alike?

Key hypotheses of the molecular imaging experiment: all electrons tunnel in the same way depend only on the ionization potential

Put a "probe" into the electron flux some 15 a.u. away from the system

"Measure" the electrons passing through a barrier

Rescattering p, spectra as a function of time

Are all tunnels alike?

Electron momenta through the barrier

Importance of correlation: 4 vs. 8 orbitals

Basic picture correct with 4 orbitals

Qualitatively "all tunnels are alike"!

Quantitative consequence for orbital imaging remain to be investigated

Strong field ionization of large molecules

1-d model molecules
Dependence of ionization on

- laser intensity
- size of the molecule
 - = number of active

electrons

Multiconfiguration quantitatively and qualitatively differs from single-configuration Hartree-Fock

Ionization of a molecule with 6 active electrons

6 nuclei, 1 active electron/nucleus,

ionization potential: 0.3 a.u. laser intensity: 3x10¹⁴ W/cm²

NOTE: ~ 80 % ionization

First results:

More stable than 1d: comparable depletion at 10 times the intensity

Summary

- Ab initio time-dependent code for cylindrically symmetric systems
- Highly scalable parallel implementation
- Arbitrary potential shapes
- Non-perturbatively strong external fields
- Realistic applications to strong-field laser-atom and laser-molecule interactions

Outlook

Technical improvements

- Space discretization (e.g. "cascading")
- Time-integration methods: CMF (accuracy ?)
- H-matrix representation of 1/(r₁-r₂)

Extend applications:

- stacks of quantum dots
- introduce nuclear motion
- non-cylinder symmetric systems

People

Juergen Zanghellini: 1d code (now U. Graz)

Markus Kitzler: 1d code (now doing experiments)

Jeremie Caillat: 3d, cylinder coordinates (now CNRS, Paris)

Gerald Jordan: recent calculations

Christopher Ede: visualization

Money:

Austrian Science Foundation:

SFB ADLIS – Advanced Light Sources

SFB AURORA – High Performance Computing