DDoS

outline

- DoS attacks
- botnet
- DDoS attacks

DoS attacks

DoS vs DDoS

- A denial-of-service attack (DoS attack) or distributed DoS attack (DDoS attack) is an attempt to make a computer resource unavailable to its intended users
 - DoS: a single machine performs attacks
 - Exploits system design weaknesses (e.g., ping of death)
 - · often uses flooding as well
 - DDoS: a botnet performs attacks
 - flooding-based
- DoS/DDoS denies a victim (host, router, or entire network) from providing or receiving normal services

source: https://ipwithease.com/dos-vs-ddos/

DoS attacks

Scenario

- Attacker uses forged source addresses
 - given sufficient privilege to "raw sockets"
 - easy to create
- generates a large volume of packets
 - directed at target
 - with different, random, source addresses
 - May cause some congestion
- responses are scattered across Internet
- real source is much harder to identify

Example

- Ping of death (a series of fragmented packets)
- Ping flooding

SYN flooding attack

- attacker sends SYN packets with spoofed source addresses
- but does not send ACK packets

source: https://www.imperva.com/learn/ddos/syn-flood/

SYN cookies

A SYN flooding attack leaves half-open connections

- The "SYN queue" keeps track of these half-open connections
 - a transmission control block (TCB) is created for each new TCP connection
- We track the 4-tuple (source IP and port, destination IP and port), seq # of client, seq # of server
- Idea: we don't really need to keep all of this
 - We just need enough to recognize the ACK of the client
 - Can we get away without storing anything locally?

stateful vs stateless

SYN cookies: illustration

There are some variations in implementing SYN cookies

- server's sequence number is determined cryptographically
 - seq# = f(4-tuple, current_time, server_secret), which is written in SYN-ACK packet
 - only the client knows the correct seq#, to be included in ACK and verified by server

limitation of DoS attacks

- have limited volume if a single source used
- multiple systems can generate much higher traffic volume to form a DDoS Attack
 - Often compromised PC's / workstations
 - Zombies with backdoor programs installed
- Botnet: bot + network
 - Bot: a compromised machine installed with remote controlled code
 - Networked bots under a single commander (botmaster)

botnet

botnet: a network of bots

- DDoS attack illustration
 - A botnet is the workhorse

botnet: a detailed view

a real botnet is more complicated

Bot-ma ster

- composes botnet using malware
- •sends commands and control to bots

C&C server

 intermediate server that delivers commands and control from bot-master to bots

Bot

- malware developed by a bot-master
- performs malicious activities in a client machine
- Hard-coded IPs or DNS names of C&C servers

botnet

•a network composed of a number of bots, C&C servers, and a bot-master

how to make a botnet

- aka botnet infection
- representative infection methods
 - email attachments
 - clicking on malicious pop up ads
 - downloading dangerous software from a website
- complex botnets may self-propagate, finding and infecting devices automatically
 - worms and Trojan horses

What botnets do

botnets do malicious activities

Botnet construction

Botnet evolution

Centralized model

decentralized model (P2P)

P2P-based Botnet

- Weakness of C&C botnets
 - A captured bot (e.g., honeypot) could reveal C&C servers
 - The few C&C servers can be shut down at the same time
 - A captured/hijacked C&C server could reveal all or most of the members of the botnet
- C&C centralized □ P2P control is a natural evolution
 - P2P-based network is believed to be much harder to shut down

botnet features

- Complex propagation/techniques
 - combination of worm/virus, backdoor, spyware, rootkit, ...
- Difficult to countermeasure
 - uses normal users' PCs ☐ i.e. legitimate IP addresses
 - generates a relatively small number of attack packets by each PC
 - upon DDoS attacks, difficult to distinguish normal user traffic from botnet traffic
 - new botnet techniques have been continually developed

DDoS-as-a-service

- Aka stresser or booter service
 - Can be used in good or evil way
- So easy to attack any host

DDoS attacks

DDoS attack classification

- bandwidth depletion vs (system) resource depletion
- •L7 vs L4 vs L3
- direct vs reflection vs amplification
- other criteria...

OSI 7 layer reference model

two reference models for networking

	OSI 7 layer model	Internet model
L7	Application	
	Presentation	Application
	Session	
L4	Transport	TCP/UDP
L3	Network	IP
	Data Link	link
	Physical	physical

DDoS attacks on different layers

- well-known attacks in each layer
- packets are for some particular protocol in a layer

OSI 7 layer model

L7	Application	SP.
	Presentation	gei
	Session	
L4	Transport	SY
L3	Network	floo pir
	Data Link	
	Physical	

SPAM, DNS queries, HTTP get

SYN flood, FIN flood, RST flood, UDP flood ping flood, smurf attack

reflection attack

- use normal behavior of network
- bots send packets with spoofed source addresses, which is the target
- server response is directed at target
- if bots send many requests to multiple servers, response can flood target

source: https://blog.cloudflare.com/reflections-on-reflections/

amplification attack

dest addr = broadcast

- Amplification attacks are a variant of reflection attacks
 - Two types
- the original request to the broadcast address
 - all hosts on that network can potentially respond to the request
 - called a smurf attack
- Or the response is much bigger than the request
 - DNS request/response

Router

Device

Attacker

general response to DDoS

- blackholing
- Access control list
- Firewall
- Intrusion Detecting System (IDS)
 - Intrusion prevention system (IPS)
- manual response
- Load Balancing

trends in DDoS attacks

Cloud-based DDoS mitigation

Route attack to cloud based scrubbing center.

Source: netscout.com

carpet-bombing attacks

- DDoS attacks on entire subnets instead of focusing on specific target IPs
- Detection systems usually focus on a single destination IP, not a subnet, often resulting in the attack not being detected until too late
- Example
 - SSDP Amplification misuse is set to trigger at 4 Mbps
 - A 40 Gbps attack distributed among 16384 addresses in a 14bit address block is 2.42 Mbps per address
 - Host-based detection will therefore not trigger
- Defense should consider the subnet-wide destinations

SSDP: Simple Service Discovery

Protocol