

# COSC 6374 Parallel Computation

#### Parallel Computer Architectures

Some slides on network topologies based on a similar presentation by Michael Resch, University of Stuttgart

Edgar Gabriel Fall 2015

**UNIVERSITY of HOUSTON** 



#### Flynn's Taxonomy

- SISD: Single instruction single data
  - Classical von Neumann architecture
- SIMD: Single instruction multiple data
- MISD: Multiple instructions single data
  - Non existent, just listed for completeness
- MIMD: Multiple instructions multiple data
  - Most common and general parallel machine



#### Single Instruction Multiple Data (I)

- Also known as Array-processors
- A single instruction stream is broadcasted to multiple processors, each having its own data stream



**UNIVERSITY of HOUSTON** 



## Single Instruction Multiple Data (II)

- · Interesting detail: handling of if-conditions
  - First all processors, for which the if-condition is true execute the according code-section, other processors are on hold
  - Second, all processors for the if-condition is not true execute the according code-section, other processors are on hold
- Some architectures in the early 90s used SIMD (MasPar, Thinking Machines)
- No SIMD machines available today
- SIMD concept used in processors of your graphics card



## Multiple Instructions Multiple Data (I)

- Each processor has its own instruction stream and input data
- Most general case every other scenario can be mapped to MIMD
- Further breakdown of MIMD usually based on the memory organization
  - Shared memory systems
  - Distributed memory systems

**UNIVERSITY of HOUSTON** 



## Shared memory systems (I)

- All processes have access to the same address space
  - E.g. PC with more than one processor
- Data exchange between processes by writing/reading shared variables
  - Shared memory systems are easy to program
  - Current standard in scientific programming: OpenMP
- Two versions of shared memory systems available today
  - Symmetric multiprocessors (SMP)
  - Non-uniform memory access (NUMA) architectures



### Symmetric multi-processors (SMPs)

• All processors share the same physical main memory



- Memory bandwidth per processor is limiting factor for this type of architecture
- Typical size: 2-16 processors

**UNIVERSITY of HOUSTON** 



### SMP processors: Example

- AMD 8350 quad-core Opteron (Barcelona)
  - Private L1 cache: 32 KB data, 32 KB instruction
  - Private L2 cache: 512 KB unifiedShared L3 cache: 2 MB unified





#### SMP processors: Example(II)

- Intel X7350 core2-quad (Tigerton)
  - Private L1 cache: 32 KB instruction, 32 KB data
  - Shared L2 cache: 4 MB unified cache



**UNIVERSITY of HOUSTON** 



5



#### NUMA architectures (I)

- Some memory is closer to a certain processor than other memory
  - The whole memory is still addressable from all processors
  - Depending on what data item a processor retrieves, the access time might vary strongly



UNIVERSITY of HOUSTON



#### NUMA architectures (II)

- Reduces the memory bottleneck compared to SMPs
- More difficult to program efficiently
  - First touch policy: data item will be located in the memory of the processor which touches the data item first
  - Relative location of threads/processes to each other matter
- To reduce effects of non-uniform memory access, caches are often used
  - ccNUMA: cache-coherent non-uniform memory access architectures
- Largest example as of today: SGI Origin with 512 processors



#### NUMA systems: Example

 AMD 8350 quad-core Opteron (Barcelona): multiprocessor configuration





## Distributed memory machines (I)

- Each processor has its own address space
- Communication between processes by explicit data exchange
  - Sockets
  - Message passing
  - Remote procedure call / remote method invocation





#### Distributed memory machines (II)

- Performance of a distributed memory machine strongly depends on the quality of the network interconnect and the topology of the network interconnect
  - Of-the-shelf technology: e.g. fast-Ethernet, gigabit-Ethernet
  - Specialized interconnects: InfiniBand, Myrinet, Quadrics, ...

**UNIVERSITY of HOUSTON** 



### Distributed memory machines (III)

- Two classes of distributed memory machines:
  - Massively parallel processing systems (MPPs)
    - · Tightly coupled environment
    - Single system image (specialized OS)
  - Clusters
    - Of-the-shelf hardware and software components such as
      - Intel P4, AMD Opteron etc.
      - Standard operating systems such as LINUX, Windows, BSD UNIX



#### Hybrid systems

• E.g. clusters of multi-processor nodes



**UNIVERSITY of HOUSTON** 



### Network topologies (I)

- Important metrics:
  - Latency:
    - minimal time to send a very short message from one processor to another
    - Unit: ms, µs
  - Bandwidth:
    - amount of data which can be transferred from one processor to another in a certain time frame
    - Units: Bytes/sec, KB/s, MB/s, GB/s
       Bits/sec, Kb/s, Mb/s, Gb/s,
       baud

## Network topologies Territories LABORATERY STL

| 1(00)/01/1 (0)/01/05/05/05/05/01/ |                                                                     |                                       |
|-----------------------------------|---------------------------------------------------------------------|---------------------------------------|
| Metric                            | Description                                                         | Optimal parameter                     |
| Link                              | A direct connection between two processors                          |                                       |
| Path                              | A route between two processors                                      | As many as possible                   |
| Distance                          | Minimum length of a path between two processors                     | Small                                 |
| Diameter                          | Maximum distance in a network                                       | Small                                 |
| Degree                            | Number of links that connect to a processor                         | Small (costs) /<br>Large (redundancy) |
| Connectivity                      | Minimum number of links that have to be cut to separate the network | Large (reliability)                   |
| Increment                         | Number of procs to be added to keep the properties of a topology    | Small (costs)                         |
| Complexity                        | Number of links required to create a network topology               | Small (costs)                         |



#### Bus-Based Network (I)

- All nodes are connected to the same (shared) communication medium
- Only one communication at a time possible
  - Does not scale



- Examples: Ethernet, SCSI, Token Ring, Memory bus
- Main advantages:
  - simple broadcast
  - cheap



#### Bus-Based Networks (II)

- Characteristics
  - Distance: 1
  - Diameter: 1
  - Degree: 1
  - Connectivity: 1
  - Increment: 1
  - Complexity:1

**UNIVERSITY of HOUSTON** 



### Directly connected networks

- A direct connection between two processors exists
- · Network is built from these direct connections
- · Relevant topologies
  - Ring
  - Star
  - Fully connected
  - Meshes
  - Toruses
  - Tree based networks
  - Hypercubes



## Ring network

• N: Number of processor connected by the network

• Distance: 1: N/2

• Diameter: N/2

• Degree: 2

• Connectivity: 2

• Increment: 1

• Complexity: N



UNIVERSITY of HOUSTON



#### Star network

- All communication routed through a central node
  - Central processor is a bottleneck

• Distance: 1 or 2

• Diameter: 2

• Degree: 1 or N-1

• Connectivity: 1

• Increment: 1

• Complexity: N-1





## Fully connected network

• Every node is connected directly with every other node

• Distance: 1

• Diameter: 1

• Degree: N-1

• Connectivity: N-1

• Increment:

• Complexity: N\*(N-1)/2



UNIVERSITY of HOUSTON

## TECHNOLOGIES LABORATURY

#### Meshes (I)

• E.g. 2-D mesh

• Distance:  $1:\sim 2\sqrt{N}$ 

• Diameter:  $\sim 2\sqrt{N}$ 

• Degree: 2-4

• Connectivity: 2

• Increment:  $\sim \sqrt{N}$ 

• Complexity: ~2N





## Meshes (II)

- E.g. 3-D mesh
- Distance:  $1:~3\sqrt[3]{N}$
- Diameter:  $\sim 3\sqrt[3]{N}$
- Degree: 3-6
- Connectivity: 3
- Increment:  $-(\sqrt[3]{N})^2$
- Complexity: ~



UNIVERSITY of **HOUSTON** 



## Toruses (I)

- E.g. 2-D Torus
- Distance: 1:~ $\sqrt{N}$
- Diameter:  $\sim \sqrt{N}$
- Degree: 4
- Connectivity: 4
- Increment:  $\sim \sqrt{N}$
- Complexity: ~2N





## Toruses (II)

• E.g. 3-D Torus

• Distance:  $1: \sim \sqrt[3]{N}$ 

• Diameter:  $\sim \sqrt[3]{N}$ 

Degree: 6Connectivity: 6

• Increment:  $\sim (\sqrt[3]{N})^2$ 

• Complexity: ~

Picture not available!

**UNIVERSITY of HOUSTON** 



## Tree based networks (I)

- Leafs are computational nodes
- Intermediate nodes in the tree are switches
- Higher level switching elements suffer from contention





#### Tree-based networks (II)

• Fat tree: binary tree which increases the number of communication links between higher level switching elements to avoid contention

 $1:2\log_2(N)$ • Distance:

• Diameter:  $2log_2(N)$ 

• Degree: 1

 Connectivity: 1

• Increment: Ν

• Complexity: ~2N



**UNIVERSITY of HOUSTON** 



#### Hypercube (I)

• An n-dimensional hypercube is constructed by doubling an n-1 dimensional hypercubes and connecting the according edges









0-D hypercube 1-D hypercube

2-D hypercube

3-D hypercube



## Hypercubes (II)



#### 4-D hypercube

UNIVERSITY of HOUSTON

PARALLEL SOFTWARE TECHNOLOGIES LABORATORY

## Hypercubes (III)

• 4-D hypercube also often shown as

• Distance: 1:log<sub>2</sub>(N)

• Diameter:  $log_2(N)$ 

• Degree:  $log_2(N)$ 

• Connectivity: log<sub>2</sub>(N)

• Increment: N

• Complexity:  $log_2(N)*N/2$ 





#### Crossbar Networks (I)

• A grid of switches connecting nxm ports



- a connection from one process to another does not prevent communication between other process pairs
- Scales from the technical perspective
- · Does not scale from the financial perspective
- Aggregated Bandwidth of a crossbar: sum of the bandwidth of all possible connections at the same time

**UNIVERSITY of HOUSTON** 



## Crossbar networks (II)

 Overcoming the financial problem by introducing multistage networks

