Patch/Gamma Analysis for EQ14 chameleon patches

Andy Pickering

February 27, 2017

Contents

1	Overview	2
2	Data	2
	Methods 3.1 dTdz	2
	3.2 N2	3
	3.3 Mixing Efficiency	3
4	Results	3
	4.1 Variation of Γ over time	5

1 Overview

The goal of this analysis is to compute mixing efficiency (Γ) for patches in EQ14 chameleon profiles, and see if we obtain values close to $\Gamma = 0.2$.

2 Data

Data are made by the 'Chameleon' microstructure profiler near the equator during the 'EQ14' experiment.

I'm using the raw Chameleon data files in:

All my analysis is in the main folder:

/Users/Andy/Cruises_Research/Analysis/Andy_Pickering/eq14_patch_gamma/. This is also a github repository.

3 Methods

- FindPatches_eq14_Raw.m Identifies patches in the profiles made by Process_tiwe_rawprofiles_AP.m, using potential temperature.
- Compute_N2_dTdz_patches_eq14_eachcast.m Computes N^2 and T_z for patches, using several different methods. SAves results in a structure 'patches'.
- add_binned_to_patches.m
- run_eq14_for_PATCHES.m Runs the Chameleon processing (including χ and ϵ) for just the patches identified in FindPatches_eq14_Raw.m. This calls average_data_PATCH_AP.m instead of average_data_gen1.m.
- add_patch_chi_eps_to_patches_eq14_each_profile.m
- combine_patch_profiles_eq14.m

3.1 dTdz

Temperature gradient is computed for each patch using the following methods:

- 1. $dtdz_{range}$: Take the range of T over the patch and divided by patch height
- 2. $dtdz_{line}$: Fit a straight line to sorted T using polyfit

3. $dtdz_{bulk}$: Use the 'bulk gradient' from Smyth et al 2001, which is the rms fluctuation from the background (sorted) temperature, divided by the thorpe scale (the rms re-ordering distances).

3.2 N2

 N^2 is computed for each patch using the following methods:

- 1. N_{range}^2 : Take the range of potential density over the patch divided by the patch height $(d\rho/dz)$, then compute $N^2 = \frac{-g}{\rho_o} \frac{d\rho}{dz}$ where ρ_o is the mean potential density over the patch.
- 2. N_{line}^2 : Fit a straight line to sorted potential density using polyfit to get $d\rho/dz$, then compute N2.
- 3. N_{bulk}^2 : Use 'bulk gradient' . This is calculated from the bulk T_z , using a linear fit between density and temperature.
- 4. N_4^2 : Compute N^2 from the sorted profile (sorted by potential density) using sw_bfreq, then take average over the patch. I believe this method is used by some commonly-used overturn codes.

3.3 Mixing Efficiency

Mixing Efficiency Γ is computed from the following equation using different N^2 and dT/dz values.

$$\Gamma = \frac{N^2 \chi}{2\epsilon T_z^2} \tag{1}$$

 χ and ϵ are computed over each patch from the Chameleon data. Gamma is computed for the following 4 combinations:

- 1. Γ_{range} : N_{range}^2 , $dtdz_{range}$
- 2. Γ_{line} : N_{line}^2 , $dtdz_{line}$
- 3. Γ_{bulk} : N_{bulk}^2 , $dtdz_{bulk}$
- 4. Γ_{range} : N_4^2 , $dtdz_{line}$

Values where ϵ is below the noise floor of $log_{10}[\epsilon] = -8.5$ are discarded.

4 Results

• Gamma computed over patches w/ linear fits is less than 0.2 (Figure 1).

Figure 1: Histogram of Γ for patches, using different estimates of N^2 and T_z . Vertical dashed line shows $\Gamma=0.2$. For all profiles.

4.1 Variation of Γ over time

To investigate whether Γ varies over time, I plotted Γ vs yday (Figure 2).

Figure 2: Plot of Γ for patches vs cast number. Vertical line is $\Gamma=0.2$. Red circles are the median value for each cast.