作业(3)答案

1. 思考题

(1) 处理器调度分为哪几种类型?简述各类调度的主要任务。

高级调度、中级调度和低级调度

高级调度也叫做作业调度,主要任务是从外存的作业后备队列选择作业,分配资源,创建进程,将进程装入内存,并投入到就绪队列;

中级调度也叫做对换,主要任务是将进程从内存换到外存,或将外存作业换至内存;低级调度也叫做进程调度,主要任务是从就绪队列选择进程,并将处理器分配给进程,使之运行。

2. 应用题

(1) 某操作系统不支持多线程机制,高级程序设计语言提供了用户级多线程库,请画出用户级线程与操作系统进程之间的状态转换图。

(2) 某系统就绪队列中有 10 个进程,已知该系统处理间隔时钟中断需 1ms,完成一次进程切换需 9ms。若采用时间片轮转算法调度进程,时间片长度设为 200ms,试计算系统在进程调度的过程中,轮转一次所花费的调度开销占该次进程调度总时间的多少。

10/(200+10)=4.76%

(3) 现有 5 个批处理作业 A~E 均已到达一台按单道方式执行的处理器,其运行时间分别为 2 min、4 min、6 min、8 min 和 10min,各自的优先级分别规定为 1、2、3、4 和 5,其中 5 是最高级。对于时间片轮转调度算法(时间片长度为 2min)、优先数调度算法、最短作业优先调度算法、先来先服务调度算法(按作业到达次序 C、D、B、E、A),在忽略进程切换时间的前提下,计算出平均作业周转时间。

解答:

(一) 时间片轮转法调度 (每个时间片大小为 2min):

CDII	٨	D	\mathbf{C}	D	Е	D	\mathbf{C}	D	Е	C	D	E	D	E	Е
Cru	A	D)	ע	Ŀ	D		ע	Ĺ)	ע	E	ע	Ŀ	E

作业到达系统的时刻为 0,则各个进程的完成时刻和周转时间如下:

1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =						
作业	开始运行时刻	完成时刻	周转时间 (min)			
A	0	2	2			
В	2	12	12			
С	4	20	20			
D	6	26	26			
Е	8	30	30			

平均周转时间为: (2+12+20+26+30)/5=18 (min)

(二)优先数调度:

CPU	E	D	C	В	A
() 1	0 18	3	4 28	30

作业到达系统的时刻为0,则各个进程的完成时刻和周转时间如下:

作业	开始运行时刻	完成时刻	周转时间 (min)			
A	28	30	30			
В	24	28	28			
С	18	24	24			
D	10	18	18			
Е	0	10	10			

平均周转时间为: (30+28+24+18+10) /5=22 (min)

(三) 先来先服务调度算法(按作业到达次序 C、D、B、E、A)

0	CPU	C	D	В	Е	A	
	(6	1,	1 1	8	28	30

作业到达系统的时刻为 0,则各个进程的完成时刻和周转时间如下:

作业	开始运行时刻	完成时刻	周转时间 (min)
A	28	30	30
В	14	18	18
С	0	6	6
D	6	14	14
Е	18	28	28

平均周转时间为: (30+18+6+14+28) /5=19.2 (min)

(4) 在一个只支持三道程序同时运行的多道程序系统中,作业调度采用最短作业优先调度算法,进程调度采用以优先数为基础的抢占式调度算法。在下表所示的作业序列中,优先数即为进程优先数,优先数越小则优先级越高。

作业名	到达时刻	估计运行时间/min	优先数
A	10:00	40	5
В	10:20	30	3
С	10:30	60	4
D	10:50	20	6
E	11:00	20	4
F	11:10	10	4

试填充下表:

作业名	进入内存时刻	运行结束时间	作业周转时间 (min)			
A						
В						
С						
D						
Е						
F						
平均作业周转时间 T=						

解答:

作业名	进入内存时刻	运行结束时间	到达时刻	作业周转时间 (min)		
A	10:00	12:40	10:00	160		
В	10:20	10:50	10:20	30		
С	10:30	11:50	10:30	80		
D	10:50	13:00	10:50	130		
Е	12:00	12:20	11:00	80		
F	11:50	12:00	11:10	50		
	平均作业周转时间 T=88.3 (min)					

(5) 在一个只支持 4 道程序同时运行的多道程序系统中,若在一段时间内先后到达 6 个作业,其提交时刻和估计运行时间由下表给出。

作业	提交时刻	估计运行时间/min
1	8:00	60
2	8:20	35
3	8:25	20
4	8:30	25
5	8:35	5
6	8:40	10

系统采用 SRTF 调度算法,作业被调度进入系统后中途不会退出,但作业运行时可被剩余时间更短的作业所抢占。①分别给出 6 个作业的开始执行时间、作业完成时间、作业周转时间。②计算平均作业周转时间。注意:请画出处理器分配的具体情况。解答:

作业名	开始执行时刻	运行结束时间	提交时刻	作业周转时间 (min)		
1	8:00	10:35	<mark>8:00</mark>	155		
2	8:20	9:55	8:20	95		
3	8:25	8:45	8:25	20		
4	9:00	9:25	<mark>8:30</mark>	55		
5	8:45	8:50	8:35	15		
6	8:50	9:00	8:40	20		
	平均作业周转时间 T=60 (min)					