МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

НАБЛИЖЕННЯ ФУНКЦІЙ МЕТОДОМ НАЙМЕНШИХ КВАДРАТІВ

МЕТОДИЧНІ ВКАЗІВКИ з курсу "Чисельні методи" для студентів спеціальності 113 "Прикладна математика"

Львів 2018

ТЕОРЕТИЧНА ЧАСТИНА

Метод найменших квадратів

Нехай в результаті вимірювань величини, яка описується функцією y(x) при $x=x_1, x=x_2,..., x=x_n, \ x_i \in [a,b], i=\overline{1,n}$ отримаємо таблицю значень $y_i, i=\overline{1,n}$. За даними таблиці треба побудувати аналітичну формулу

$$\overline{y}(x) = f(x, a_1, \dots, a_m), \tag{1}$$

яка залежить від m (m < n) параметрів a_i , $i = \overline{1,m}$, причому функція $\overline{y}(x)$ має "досить добре" наближувати функцію y(x) на всьому проміжку [a,b]. Вигляд функції f і кількість параметрів у деяких випадках відомі на основі додаткових міркувань. В інших випадках вони визначаються за графіком, побудованим за відомими значеннями $y(x_i)$ так, щоб залежність (1) була досить простою і добре відображала результати спостережень.

Якщо система рівнянь

має єдиний розв'язок, то він може бути знайдений з яких-небудь m рівнянь системи (2). Однак, у загальному випадку значення $y_i, x_i, i = \overline{1,n}$, є наближеними і точний вигляд залежності $\overline{y}(x)$ невідомий і через це система (2) переважно є несумісною. Тому визначимо параметри $a_1,...,a_m$ так, щоб у деякому розумінні всі рівняння системи (2) задовольнялися з найменшою похибкою, точніше, щоб мінімізувати функцію

$$S(a_1,...,a_m) = \sum_{i=1}^n [y_i - f(x_i,a_1,...,a_m)]^2$$
.

Такий метод розв'язання системи (2) називається методом найменших квадратів.

Якщо функція $S(a_1,...,a_m)$ досягає абсолютного мінімуму в області зміни параметрів $a_1,...,a_m$, то, розв'язуючи систему

$$\frac{\partial S}{\partial a_k} = -2\sum_{i=1}^n \left[y_i - f\left(x_i, a_1, \dots, a_m\right) \right] \frac{\partial f\left(x_i, a_1, \dots, a_m\right)}{\partial a_k} = 0, \quad k = \overline{1, m},$$

знаходимо точки, в яких може бути екстремум. Вибравши той розв'язок, який належить області зміни параметрів $a_1,...,a_m$ і в якому функція $S(a_1,...,a_m)$ має абсолютний мінімум, знаходимо незалежні значення $a_1,...,a_m$.

Якщо $f(x,a_1,...,a_m)$ лінійно залежить від параметрів $a_1,...,a_m$, тобто

$$f(x, a_1, ..., a_m) = \sum_{j=1}^m f_j(x)a_j,$$

то система (2) набуває вигляду

$$y_i = \sum_{i=1}^{m} f_j(x_i) a_j, \quad i = \overline{1, n}.$$
 (3)

Метод найменших квадратів розв'язування системи (3) полягає у тому, щоб визначити невідомі, які мінімізують суму квадратів нев'язок, тобто суму вигляду

$$S(a_1,...,a_m) = \sum_{i=1}^{n} \left[y_i - \sum_{j=1}^{m} f_j(x_i) a_j \right]^2.$$

3 умови мінімуму величини S як функції від $a_1,...,a_m$ отримаємо систему лінійних алгебраїчних рівнянь

$$\frac{\partial S}{\partial a_k} = -2\sum_{i=1}^n \left[y_i - \sum_{j=1}^m f_j(x_i) a_j \right] f_k(x_i) = 0, \ k = \overline{1, m}$$

або

$$\sum_{i=1}^{n} \left[\sum_{j=1}^{m} f_j(x_i) a_j \right] f_k(x_i) = \sum_{i=1}^{n} f_k(x_i) y_i, \ k = \overline{1,m} \ . \tag{4}$$

Розв'язок системи m лінійних алгебраїчних рівнянь (4) з m невідомими вважаємо наближеним розв'язком системи (3).

Приклад 1. Методом найменших квадратів для функції заданої таблицею

x_i	0	1/4	1/2	3/4	1
y_i	1	2	1	0	1

побудувати лінійний і квадратичний многочлени.

Розв'язування. Для наближення функції використаємо лінійний многочлен

$$\overline{y}(x) = a_1 + a_2 x.$$

Тоді

$$S(a_1, a_2) = \sum_{i=1}^{n} (y_i - a_1 - a_2 x_i)^2$$
.

Необхідна умова мінімуму функції Ѕ — виконання співвідношень

$$\frac{\partial S}{\partial a_1} = -2\sum_{i=1}^{n} (y_i - a_1 - a_2 x_i) = 0,$$

$$\frac{\partial S}{\partial a_2} = -2\sum_{i=1}^n x_i (y_i - a_1 - a_2 x_i) = 0.$$

Згрупувавши разом коефіцієнти при a_1 і a_2 , отримаємо систему двох лінійних рівнянь

$$\begin{cases} n \cdot a_1 + \sum_{i=1}^{n} x_i \cdot a_2 = \sum_{i=1}^{n} y_i, \\ \sum_{i=1}^{n} x_i \cdot a_1 + \sum_{i=1}^{n} x_i^2 \cdot a_2 = \sum_{i=1}^{n} y_i x_i. \end{cases}$$

Розв'язок цієї системи можна знайти за формулами Крамера

$$a_{1} = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\frac{15}{8} \cdot 5 - 2 \cdot \frac{5}{2}}{5 \cdot \frac{15}{8} - \frac{25}{4}} = \frac{7}{5};$$

$$a_2 = \frac{n\sum_{i=1}^n y_i x_i - \sum_{i=1}^n y_i \sum_{i=1}^n x_i}{n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} = \frac{5 \cdot 2 - 5 \cdot \frac{5}{2}}{5 \cdot \frac{15}{8} - \frac{25}{4}} = -\frac{4}{5}.$$

У випадку квадратичного многочлена необхідно знайти мінімум функції

$$S(a_1, a_2, a_3) = \sum_{i=1}^{n} (y_i - a_1 - a_2 x_i - a_3 x_i^2)^2.$$

Тоді

$$\frac{\partial S}{\partial a_1} = -2\sum_{i=1}^n (y_i - a_1 - a_2 x_i - a_3 x_i^2) = 0,$$

$$\frac{\partial S}{\partial a_2} = -2\sum_{i=1}^n x_i (y_i - a_1 - a_2 x_i - a_3 x_i^2) = 0,$$

$$\frac{\partial S}{\partial a_3} = -2\sum_{i=1}^n x_i^2 (y_i - a_1 - a_2 x_i - a_3 x_i^2) = 0.$$

Цю систему запишемо у вигляді

$$\begin{cases} n \cdot a_1 + \sum_{i=1}^{n} x_i \cdot a_2 + \sum_{i=1}^{n} x_i^2 \cdot a_3 = \sum_{i=1}^{n} y_i, \\ \sum_{i=1}^{n} x_i \cdot a_1 + \sum_{i=1}^{n} x_i^2 \cdot a_2 + \sum_{i=1}^{n} x_i^3 \cdot a_3 = \sum_{i=1}^{n} y_i x_i, \\ \sum_{i=1}^{n} x_i^2 \cdot a_1 + \sum_{i=1}^{n} x_i^3 \cdot a_2 + \sum_{i=1}^{n} x_i^4 \cdot a_3 = \sum_{i=1}^{n} y_i x_i^2. \end{cases}$$

Розв'язавши $\ddot{\text{ii}}$ за наших даних, знайдемо $a_1 = 7/5$, $a_2 = -4/5$, $a_3 = 0$. Отже, квадратичний многочлен у цьому випадку не дає ніякого покращення у порівнянні з лінійною інтерполяцією.

ПОСЛІДОВНІСТЬ ВИКОНАННЯ ЛАБОРАТОРНОЇ РОБОТИ

- 1. Одержати варіант завдання.
- 2. Вивчити теоретичну частину.
- 3. Використовуючи будь-яку з відомих Вам мов програмування, написати та відлагодити програму, яка повинна:
 - а) побудувати наближення методом найменших квадратів многочленами 0-го і 1-го степеня таблично задану функцію;
 - б) обчислити максимальну похибку наближення і суму квадратів відхилень наближуваної функції і отриманого многочлена;
 - в) зробити візуалізацію вхідних даних і отриманого многочлена.

3MICT 3BITY

- 1. Постановка задачі (конкретний варіант).
- 2. Алгоритм наближення функції методом найменших квадратів (розрахункові формули).
 - 3. Текст програми.
 - 4. Результати обчислення на комп'ютері.

СПИСОК ЛІТЕРАТУРИ

- 1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.:Наука, 1987.
- 2. Калиткин Н.Н. Численные методы. М.:Наука, 1978.
- 3. Каханер Д., Моулер К., Нэш С. Численные методы и программное обеспечение. М.:Мир, 2001.
- 4. Кутнів М. В. Чисельні методи: Навчальний посібник.— Львів: Видавництво «Растр-7», 2010.—288 с.
- 5. Самарский А.А., Гулин А.В. Численные методы. М.:Наука, 1986.
- 6. https://vns.lpnu.ua/course/view.php?id=5368

Варіанти завдань для лабораторної роботи:

Функція А

X	f(x)	X	f(x)
0,0	0,00000	0,5	0,47942
0,1	0,09983	0,6	0,56464
0,2	0,19866	0,7	0,64421
0,3	0,29552	0,8	0,71735
0,4	0,38941	0,9	0,78332

Відсутні точки

№	Значення точок		
вар.			
1	0,0	0,3	0,7
2	0,2	-	-
3	0,1	0,9	-
4	0,3	0,4	0,8
5	0.1	0,5	-
6	0,6	-	-
7	0,1	0,7	0,9
8	0,4	0,6	-
9	0,3	0,6	0,7
10	0,0	0,5	0,7

Функція В

X	f(x)	Х	f(x)
0,0	2,00000	0,5	1,07073
0,1	1,95533	0,6	0,77279
0,2	1,82533	0,7	0,49515
0,3	1,62160	0,8	0,26260
0,4	1,36235	0,9	0,09592

Відсутні точки

No	Значення точок		
вар.			
1	0,2	0,3	0,6
2	0,2	0,9	-
3	0,1	-	-
4	0,4	0,7	0,8
5	0.0	0,5	-
6	0,8	-	-
7	0,1	0,5	0,9
8	0,3	0,8	-
9	0,2	0,6	0,7
10	0,0	0,2	0,5

Функція С

Х	f(x)	X	f(x)
0,0	0,00000	0,5	1,71828
0,1	0,22140	0,6	2,32011
0,2	0,49182	0,7	3,05519
0,3	0,82211	0,8	3,95303
0,4	1,22554	0,9	5,04964

Відсутні точки

№	Значення точок		
вар.			
1	0,2	0,3	=
2	0,0	0,8	=
3	0,1	0,4	0,7
4	0,2	0,6	0,8
5	0.3	0,6	=
6	0,5	-	=
7	0,0	0,3	0,9
8	0,3	-	=
9	0,4	0,6	=
10	0,1	0,3	0,6