

Survey of Data Methods Useful in the ONDRI Environment: Part III

Kelly Sunderland, Malcolm Binns, Derek Beaton, Pradeep Raamana

2019-Sep-10

Ordination

- Dimensionality reduction/projection
- Subspace/manifold method (learning)
- Orthogonal transformation
- Diagonalization or matrix factorization
- Matrix approximations
- Matrix decomposition
- Linear autoencoder (single layer a.k.a. stupid neural network)
- Sometimes correctly, sometimes incorrectly: factor analyses
- Spectral decomposition
- (Specific types of) "MVPA" and "RSA" in neuroimaging
- Multivariate statistics
- SURPRISE: It's all just sort of Principal Components Analysis (PCA)

Some sort of relationship

Chaos!

Overview

- PCA
- Something like
 - a PCA but with multiple tables, or structure for the columns?
 - a correlation or regression between tables?
 - a PCA but for all those weird types of data?

A component (sometimes a.k.a. factor)

- A new variable
 - Bits & pieces (weights, "loadings") of <u>all</u> original variables
- Each explains a proportion of total variance
- All observations exist along them
- Is orthogonal subsequent to the previous components

ONTARIO

BRAIN

INSTITUT

ONTARIEN

ONTARIO

BRAIN

Tiny example

A (terrible) component?

Loadings (are angles)

Spread: 32.933

Best fit of rectangles

Loadings & Contributions

Contributions are signed squared loadings * 100

Principal components analysis

Component 1: 86.67% of total variance

WholeBrain MidTemp FDG AV45 Hippocampus mPACCtrailsB

Magic SVD box

What if things are more complex?

- PCA
- Something like
 - a PCA but with multiple tables, or structure for the columns?
 - a correlation or regression between tables?
 - a PCA but for all those weird types of data?

What if things are more complex?

- PCA
- Something like
 - a PCA but with multiple tables, or structure for the columns?
 - a correlation or regression between tables?
 - a PCA but for all those weird types of data?

Chaos!

ONTARIO

123 total variables Each variable is normed

INITIATIVE

9 variables

1 / 3 = ~33%

Making it Fair Analysis

123 total variables
Each variable <u>and table</u> is normed

What if things are more complex?

- PCA
- Something like
 - a PCA but with multiple tables, or structure for the columns?
 - a correlation or regression between tables?
 - a PCA but for all those weird types of data?

Chaos!

Partial least squares ("correlation")

Reduced rank regression

 $X^{\mathsf{T}}Y$

 $(X^TX)(Y^TY)$

Partial least squares ("correlation")

Reduced rank regression

Canonical correlation analysis

What if things are more complex?

- PCA
- Something like
 - a PCA but with multiple tables, or structure for the columns?
 - a correlation or regression between tables?
 - a PCA but for all those weird types of data?

Everything up until now

- Generally normal(-ish) variables
- Assumed strictly continuous
- What about
 - Non-normal?
 - Counts?
 - Ordinal or Likert?
 - Lots of zeros?
 - Categorical?
- That you can compute a <u>meaningful</u> correlation matrix

Chaos!

Correspondence Analysis

	DX	PTRACCAT		
5023	CN	Asian		
5026	MCI	White		
5027	Dementia	White		
5028	Dementia	White		
5031	MCI	White		
5037	Dementia	Black		
5040	CN	Black		
5047	MCI	Black		
5054	Dementia	White		
5058	Dementia	Asian		
5063	Dementia	White		

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
5023	0	1	0	0	0	0	1
5026	1	0	0	1	0	0	0
5027	0	0	1	1	0	0	0
5028	0	0	1	1	0	0	0
5031	1	0	0	1	0	0	0
5037	0	0	1	0	0	1	0
5040	0	1	0	0	0	1	0
5047	1	0	0	0	0	1	0
5054	0	0	1	1	0	0	0
5058	0	0	1	0	0	0	1
5063	0	0	1	1	0	0	0

Correspondence Analysis

- "coding categorical variables with the indicator matrix of dummy variables and considering them as Gaussian, for instance, is almost a crime."
 - "Jan de Leeuw and the French School of Data Analysis" (Husson, Josse, Saporta)

	DX.MCI	DX.CN	DX.Dementia	PTRACCAT.White	PTRACCAT.Other	PTRACCAT.Black	PTRACCAT.Asian
DX.MCI	1	-0.815	-0.363	0.045	0.032	-0.043	-0.072
DX.CN	-0.815	1	-0.243	-0.047	0	0.067	0.003
DX.Dementia	-0.363	-0.243	1	0	-0.053	-0.035	0.116
PTRACCAT.White	0.045	-0.047	0	1	-0.562	-0.657	-0.45
PTRACCAT.Other	0.032	0	-0.053	-0.562	1	-0.031	-0.021
PTRACCAT.Black	-0.043	0.067	-0.035	-0.657	-0.031	1	-0.025
PTRACCAT.Asian	-0.072	0.003	0.116	-0.45	-0.021	-0.025	1

Correspondence Analysis

- Just like PCA but designed for
 - Non-normal
 - Counts
 - Ordinal & Likert
 - Lots of zeros
 - Categorical
- Generalizes PCA
 - Through the magic of Chi-squared preprocessing
- It's all you'll ever need if you know
 - But you need to know that it exists

What about everything else?

- Maybe another time?
- 100s, if not 1000s, of PCA-based or PCA-like methods
- Did not cover
 - {Distances & MDS & Clustering} and Networks
 - Discriminant/groups
 - t-SNE/UMA, some types of neural networks & some other types of other neural networks
 - Anything regarding all of the particulars of how/what to interpret
- Significance, stability, selection, and inference

Questions and Comments

