#### Министерство образования Российской Федерации

# Московский государственный технический университет имени Н.Э.Баумана

Факультет информатики и систем управления Кафедра теоретической информатики и компьютерных технологий

Лабораторная работа №2

"Аппроксимация таблично-заданной функции методом наименьших квадратов"

по курсу "Численные методы"

Выполнил: Беляев А.В.

Проверила: Домрачева А.Б.

## Оглавление

- 1. Постановка задачи
- 2. Основные теоретические сведения
- 3. Текст программы
- 4. Тесты
- 5. Вывод

## Постановка задачи

Дана таблично-заданная функция  $y_i = g(x_i)$ , i = 1, ..., 10 (таблица 1).

Необходимо найти f(x) такое, что:

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2 \to min$$

Таблица 1:  $y_i = g(x_i)$ :

| X | 0.5  | 1.0  | 1.5  | 2.0  | 2.5  | 3.0  | 3.5  | 4.0  | 4.5  | 5.0  |
|---|------|------|------|------|------|------|------|------|------|------|
| Υ | 3.02 | 3.21 | 2.95 | 4.06 | 4.03 | 5.39 | 5.97 | 6.51 | 6.77 | 7.79 |

Решение разбивается на этапы:

1. Выбор вида функции:

Определить вид функции Z(x), используя функции из таблицы 2.

2. Линеаризация выбранной функции:

Привести выбранную функцию к линейному виду.

3. Непосредственный расчет параметров:

Определить коэффициенты линейной функции с помощью метода наименьших квадратов.

Вычислить коэффициенты нелинеаризованной функции.

Оценить погрешность  $\delta = \min \delta_i$ .

Оценить  $S = \sum_{i=1}^{n} (y_i - Z(x_i))^2$ , введя среднее арифметическое, геометрическое и гармоническое.

$$x_a = \frac{x_0 + x_n}{2}$$

$$x_g = \sqrt{x_0 x_n}$$

$$x_h = \frac{x_0 x_n}{x_0 + x_n}$$

$$y_a^* = \frac{y_0^* + y_n^*}{2}$$

$$y_{g}^{*} = \sqrt{y_{0}y_{n}}$$

$$y_{h}^{*} = \frac{y_{0}^{*}y_{h}^{*}}{y_{0} + y_{n}}$$

$$\delta_{1} = |Z(x_{a}) - y_{a}^{*}|$$

$$\delta_{2} = |Z(x_{g}) - y_{g}^{*}|$$

$$\delta_{3} = |Z(x_{a}) - y_{g}^{*}|$$

$$\delta_{4} = |Z(x_{g}) - y_{a}^{*}|$$

$$\delta_{5} = |Z(x_{h}) - y_{g}^{*}|$$

$$\delta_{6} = |Z(x_{h}) - y_{h}^{*}|$$

$$\delta_{7} = |Z(x_{h}) - y_{h}^{*}|$$

$$\delta_{8} = |Z(x_{g}) - y_{h}^{*}|$$

$$\delta_{9} = |Z(x_{g}) - y_{h}^{*}|$$

Таблица 2. Замены для функций:

| Функция           | Замена для получения                                                                                |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| Функция           | линейного аналога                                                                                   |  |  |  |  |
| y = ax + b        | $\begin{cases} \bar{x} = x \\ \bar{y} = y \\ \bar{b} = b \\ \bar{a} = a \end{cases}$                |  |  |  |  |
| $y = ax^b$        | $\begin{cases} \bar{x} = \ln(x) \\ \bar{y} = \ln(y) \\ \bar{b} = \ln(a) \\ \bar{a} = b \end{cases}$ |  |  |  |  |
| $y = ae^{bx}$     | $\begin{cases} \bar{x} = x \\ \bar{y} = \ln(y) \\ \bar{b} = \ln(a) \\ \bar{a} = b \end{cases}$      |  |  |  |  |
| $y = a \ln x + b$ | $\begin{cases} \bar{x} = \ln(x) \\ \bar{y} = y \\ \bar{b} = b \\ \bar{a} = a \end{cases}$           |  |  |  |  |

| $y = \frac{a}{x} + b$       | $\begin{cases} \bar{x} = 1/x \\ \bar{y} = y \\ \bar{b} = b \\ \bar{a} = a \end{cases}$           |
|-----------------------------|--------------------------------------------------------------------------------------------------|
| $y = \frac{1}{ax + b}$      | $\begin{cases} \bar{x} = x \\ \bar{y} = 1/y \\ \bar{b} = b \\ \bar{a} = a \end{cases}$           |
| $y = \frac{x}{ax + b}$      | $\begin{cases} \bar{x} = x \\ \bar{y} = x/y \\ \bar{b} = b \\ \bar{a} = a \end{cases}$           |
| $y = ae^{\frac{b}{x}}$      | $\begin{cases} \bar{x} = 1/x \\ \bar{y} = \ln(y) \\ \bar{b} = \ln(a) \\ \bar{a} = b \end{cases}$ |
| $y = \frac{1}{a \ln x + b}$ | $\begin{cases} \bar{x} = \ln(x) \\ \bar{y} = 1/y \\ \bar{b} = b \\ \bar{a} = a \end{cases}$      |

## Основные теоретические сведения

Метод наименьших квадратов:

Если f(x) = ax + b – линейная функция, то для минимизации

$$S(a,b) = \sum_{i=1}^{n} (y_i - (ax_i + b))^2 \to min$$

Коэффициенты выбираются следующим образом (с заменой):

$$\begin{cases} aA + bB = D \\ aB + bC = F \end{cases}$$
$$\left(a = \frac{BF - CD}{B^2 - FA}\right)$$

$$\begin{cases} a = \frac{BF - CD}{B^2 - FA} \\ b = \frac{BD - AF}{B^2 - FA} \end{cases}$$

$$\begin{cases} a = n \frac{\sum_{1}^{n} x_{i} y_{i} - \sum_{1}^{n} x_{i} \sum_{1}^{n} y_{i}}{n \sum_{1}^{n} x_{i}^{2} - (\sum_{1}^{n} x_{i})^{2}} \\ b = \frac{\sum_{1}^{n} y_{i} - a \sum_{1}^{n} x_{i}}{n} \end{cases}$$

При подобных a и b функция S(a,b) принимает наименьшее значение.

### Текст программы

Была написана программа на языке C++. На Листинге 1 представлен обобщенный код функции, реализующий расчет коэффициентов для случая экспоненциальной функции.

```
Листинг 1
XTYPE x[N] = \{ 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 \};
XTYPE y[N] = \{ 3.02, 3.21, 2.95, 4.06, 4.03, 5.39, 5.97, 6.51, 6.77, 7.79 \};
XTYPE X_a = (x[0] + x[N-1]) / 2;
XTYPE X_g = sqrt(x[0] * x[N-1]);
XTYPE X_h = (x[0] * x[N-1]) / (x[0] + x[N-1]);
XTYPE Y_a = (y[0] + y[N-1]) / 2;
XTYPE Y_g = sqrt(y[0] * y[N-1]);
XTYPE Y_h = (y[0] * y[N-1]) / (y[0] + y[N-1]);
XTYPE z_3(XTYPE x, XTYPE a, XTYPE b) {
       return a * exp(b * x);
void f_3(int k, XTYPE xarr[], XTYPE yarr[]) {
       XTYPE sum_x = 0, sum_y = 0, sum_xx = 0, sum_xy = 0;
       for (i = 0; i < N; i++) {
               sum_x += xarr[i];
               sum_xx += xarr[i] * xarr[i];
               sum_y += log(yarr[i]);
               sum_xy += xarr[i] * log(yarr[i]);
       }
       sXX = sum_xx;
       sX = sum_x;
       sXY = sum_xy;
       sY = sum_y;
       XTYPE a_curr = (sX*sY - N*sXY) / (pow(sX, 2) - N*sXX);
       XTYPE b_{curr} = (sX*sXY - sXX*sY) / (pow(sX, 2) - N*sXX);
       a[k-1] = exp(b_curr);
       b[k - 1] = a_{curr};
       printf("y = \%f*x + \%f \ n", a[k - 1], b[k - 1]);
```

```
t = count _deltas(); \\ XTYPE t_min = FLT_MAX; \\ for (i = 0; i < NF; i++) \\ if (t[i] < t_min) \\ t_min = t[i]; \\ d[k-1] = t_min; \\ printf("delta = %f\n", t_min); \\ XTYPE S = 0; \\ for (i = 0; i < N; i++) \\ S += pow((y[i] - z_3(x[i], a[k-1], b[k-1])), 2); \\ printf("S = %f\n\n", S); \\ \}
```

#### Тесты

| f(x)                        | а         | b         | $\delta_{min}$ | $\sum_{i}^{n} (y_i - f(x_i))^2$ |
|-----------------------------|-----------|-----------|----------------|---------------------------------|
| y = ax + b                  | 1.124121  | 1.878667  | 0.119660       | 1.369849                        |
| $y = ax^b$                  | 3.260526  | 0.445295  | 0.118837       | 3.910534                        |
| $y = ae^{bx}$               | 2.477520  | 0.232206  | 0.158496       | 1.018414                        |
| $y = a \ln x + b$           | 2.095890  | 3.257042  | 0.027753       | 6.189605                        |
| $y = \frac{a}{x} + b$       | -2.190746 | 6.253327  | 0.017437       | 14.150211                       |
| $y = \frac{1}{ax + b}$      | -0.050878 | 0.365794  | 0.423214       | 3.081460                        |
| $y = \frac{x}{ax + b}$      | 0.090979  | 0.266043  | 0.077976       | 4.808385                        |
| $y = ae^{\frac{b}{x}}$      | 6.208591  | -0.478169 | 0.007957       | 12.487358                       |
| $y = \frac{1}{a \ln x + b}$ | -0.100229 | 0.307797  | 0.005499       | 2.923973                        |

Исходя из проведенных тестов было получено наилучшее приближение экспоненциальной функцией. График этого приближения на рисунке 1:



# Вывод

В ходе выполнения лабораторной работы, был реализован метод наименьших квадратов, сводящий вычисления к простому расчету неизвестных коэффициентов. Для представленной таблично-заданной функции было получено наилучшее приближение.