GDSC: Algorithms & Data Structures

Sergey Kopelevich, Vladislav Artiukhov

February 1, 2024

Contents

1.	Big-O Notations		1
	1.1	Definitions of $O, o, \Omega, \omega, \Theta$	1
	1.2	Asymptotic types: linear, quadratic, polylog, exponential	1
2.	Basic data structures		2
	2.1	Arrays, doubly linked list, singly linked list	2
	2.2	std::vector and how it works internally	2
	2.3	stack, queue, deque	2
	2.4	Keeping minimum for $O(1)$: min-stack, min-queue implementation	2
3.	Master Theorem		3
	3.1	Master Theorem	4
	3.2	Generalized Master Theorem	4
	3.3	Algorithm for recurrence relations	4
4.	Amortized Analysis		6
	4.1	Definition and general perception of the concept	7
	4.2	Amortized analysis: Potential method	7
5 .	Binary Search		9
	5.1	Definition, use cases	10
	5.2		10
	5.3	STL implementation	10

1. Big-O Notations

- 1.1 Definitions of $O, o, \Omega, \omega, \Theta$
- 1.2 Asymptotic types: linear, quadratic, polylog, exponential

For now refer to GDSC Competitive Programming Abstract (topics 1-5), Fall 2023.

2. Basic data structures

- 2.1 Arrays, doubly linked list, singly linked list
- 2.2 std::vector and how it works internally
- 2.3 stack, queue, deque
- 2.4 Keeping minimum for O(1): min-stack, min-queue implementation For now refer to GDSC Competitive Programming Abstract (topics 1-5), Fall 2023.

3. Master Theorem

3.1 Master Theorem

Algorithms that are written in a recursive manner oftentimes utilize *divide-and-conquer* technique which implies devision of the task into smaller subtasks that are processed by further recusive calls of the algorithm; once the subtask is small enough it is considered as a base case and processed manually. Some examples include **Merge sort algorithm**, **Binary search tree traversal**, etc.

For such algorithms we need to divide their asymptotics. **Master Theorem** is a generalized method that yields asymptotically tight bounds for divide and conquer algorithms [wiki].

Theorem 3.1. Master Theorem

Consider the following recurrence relation: $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ where $f(n) = n^c$ for constants $a > 0, b > 1, c \ge 0$; let $k = \log_b n$ be the recursion depth. Then the following holds:

$$\begin{cases}
T(n) = \Theta(a^k) = \Theta(n^{\log_b a}), & a > b^c \\
T(n) = \Theta(f(n)) = \Theta(n^c), & a < b^c \\
T(n) = \Theta(k \cdot f(n)) = \Theta(n^c \cdot \log n), & a = b^c
\end{cases}$$
(1)

Proof.

$$T(n) = f(n) + a \cdot T(\frac{n}{b}) = f(n) + af(\frac{n}{b}) + a^2 f(\frac{n}{b^2}) + \dots + a^k f(\frac{n}{b^k}) \quad | f(n) = n^c$$

$$T(n) = n^c + a \cdot (\frac{n}{b})^c + a^2 \cdot (\frac{n}{b^2})^c + \dots + a^k \cdot (\frac{n}{b^k})^c$$

$$T(b) = n^c \cdot (1 + \frac{a}{b^c} + (\frac{a}{b^c})^2 + \dots + (\frac{a}{b^c})^k)$$

Let $q = \frac{a}{b^c}$ and $S(q) = 1 + q + ... + q^k$:

- 1. If q = 1: $S(q) = 1 + 1 + ... + 1 = k + 1 = \log_b n + 1 \implies T(n) = \Theta(f(n) \cdot \log n)$.
- 2. If q < 1: S(q) is a geometric progression, thus it is equal to $S(q) = \frac{1-q^{k+1}}{1-q} = const = \Theta(1) \implies T(n) = \Theta(f(n))$.
 - 3. If q > 1: $S(q) = q^k + \frac{q^k 1}{q 1} = \Theta(q^k) \implies T(n) = \Theta(a^k \cdot (\frac{n}{b^k})^c) = \Theta(a^k)$.

Note: f(n) could be $O(n^c)$; it does not violate the proof $(f(n) = O(n^c) = C \cdot n^c)$.

3.2 Generalized Master Theorem

Theorem 3.2. Generalized Master Theorem

In the case of $f(n) = n^c \cdot \log_d n$ Master Theorem still holds:

$$T(n) = a \cdot T(\frac{n}{b}) + n^c \cdot \log_d n, \ a > 0, \ b > 1, \ c \ge 0, \ d \ge 0.$$

$$\begin{cases}
T(n) = \Theta(a^k) = \Theta(n^{\log_b a}), & a > b^c \\
T(n) = \Theta(f(n)) = \Theta(n^c \cdot \log^d n), & a < b^c \\
T(n) = \Theta(k \cdot f(n)) = \Theta(n^c \cdot \log^{d+1} n), & a = b^c
\end{cases}$$
(2)

3.3 Algorithm for recurrence relations

There are also recurrence relations with the following form:

Author: Vladislav Artiukhov

$$T(n) = a_0 \cdot T(n - p_0) + a_1 \cdot T(n - p_1) + \dots + a_k \cdot T(n - p_k)$$
 $a_i, p_i > 0, \sum p_i > 1$

There exists an algorithm of how to find asymptotics for such relations:

Theorem 3.3. Algorithm for recurrence relations

Given T(n) of the above form with the above constants, then the following holds:

 $T(n) = \Theta(\alpha^n)$, such that $\alpha > 1$ and it is the **only root** of the equation: $\alpha^n = a_0 \cdot \alpha^{n-p_0} + ... + a_k \cdot \alpha^{n-p_k}$

Example. Use of Master Theorem

1.
$$T(n) = 4 \cdot T(\frac{n}{2}) + 20 \cdot n^{\frac{3}{2}}$$

$$a = 4, \ b = 2, \ c = \frac{3}{2}, \ f(n) = 20 \cdot n^{\frac{3}{2}} \implies a = 4 > b^c = \sqrt{8} \implies T(n) = \Theta(n^{\log_b a}) = \Theta(n^2).$$

2. Merge sort algorithm recurrence relation: $T(n) = 2 \cdot T(\frac{n}{2}) + C \cdot n^1$

$$a = 2, b = 2, c = 1 \implies a = 4 = b^c = 2^1 \implies T(n) = \Theta(n^1 \cdot \log n)$$

Example. Use of Algorithm for recurrence relations

1.
$$T(n) = T(n-1) + 6 \cdot T(n-2)$$

$$T(n) = \Theta(\alpha)$$
, notice that $\alpha = 3$ satisfies the equation: $3^n = 3^{n-1} + 6 \cdot 3^{n-2}$.

2.
$$T(n) = T(n-1) + T(n-2) + T(n-3)$$

$$1 = \alpha^{-1} + \alpha^{-2} + \alpha^{-3} \implies \alpha \approx 1.839$$

4. Amortized Analysis

4.1 Definition and general perception of the concept

Remember that we were talking about **std::vector** we said that its **push_back** operation works for an average of $\Theta(1)$. It was due to presence of 2 **distinct states**:

- 1. vector has enough capacity to fit the next pushed element.
- 2. vector does not have enough capacity and has to make itself twice bigger (i.e. reallocating a memory buffer of size $2 \cdot N$).

There are definetely more complicated senarios where number of such *interesting states* is much greater, thus we need a unified approach of how to define this average, or **amortized**, time for an operation.

Definition 4.1. The amortized analysis

The amortized analysis is an approach that allows to determine an average running time (time complexity) of operations $o_1, o_2, ..., o_k$ in a sequence S over that sequence S.

There are several methods that are referred to as amortized analysis (wiki). We are going to discuss **Potential method**.

4.2 Amortized analysis: Potential method

Definition 4.2. Potential method

Introduce a **potential function** called $\Phi: \mathbf{S} \to \mathbf{R}_0^+$ where \mathbf{S} is a set of states of the considered data structure and $R_0^+ = [0, +\inf)$, i.e. the potential function maps states of the data structure to some non-negavite values. As an important edge case for the initial state S_{init} : $\Phi(S_{init}) = 0$.

Let o_i be an individual operation within some sequence of operations named Q. Let S_{i-1} be the state of the considered data structure before the execution of the operation o_i and S_i be the state after the execution of o_i . Let Φ be a chosen potential function, then the amortized time for an operation o_i is defined as follows:

$$T_a(o_i) = T_r(o_i) + (\Phi(S_i) - \Phi(S_{i-1}))$$
 where:

- 1. $T_a(o)$ amortized time of the operation.
- 2. $T_r(o)$ real/actual time spent on the operation.

Theorem 4.1. Potential method yields an upper bound

The amortized time of a sequence of operations always yields an **upper bound** of the the real/actual time for the considered sequence of operations, i.e.:

 $\forall O = o_1, o_2, ..., o_n$ be a sequence of operations, define:

- 1. $T_a(O) = \sum_{i=1}^n T_a(o_i)$ amortized time of the sequence O
- 2. $T_r(O) = \sum_{i=1}^n T_r(o_i)$ real time of the sequence O

Then: $T_r(O) \leq T_a(O)$

Proof. As definition for $T_a(O)$ suggests:

$$T_a(O) = \sum_{i=1}^n (T_r(o_i) + \Phi(S_i) - \Phi(S_{i-1})) = T_r(O) + \Phi(S_n) - \Phi(S_0)$$
$$T_a(O) = T_r(O) + \underbrace{\Phi(S_n)}_{\cdot \geq 0} - \underbrace{\Phi(S_0)}_{\cdot = 0} \geq T_r(O)$$

Author: Vladislav Artiukhov

Note: Generally speaking, Φ could be any function that satisfies the constraints but the idea is to find such Φ that would represent the closest upper bound of the real/actual time for the considered sequence of operations.

Example. Amortized analysis for std::vector::push_back operation

1. Analyse push_back operation that expands the vector:

Let $\Phi = 2 \cdot s - N$ where the s is the actual size of a vector and N is its capacity. Remember that the expansion occurs once s == N.

Let's consider a push_back operation that doubles the size of the vector:

- 1. $T_r = s + 1 = N + 1$ because we need to copy all the existing elements in a new buffer + place a new element; here s = N because the extention could only happen once s = N.
 - 2. $\Phi_0 = 2 \cdot s N \ge 0$ value of the potential function before the operation.
 - 3. $\Phi_1 = 2 \cdot (s+1) 2N \ge 0$ value of the potential function after the operation.

Thus, we have:

$$T_a = T_r + \Phi_1 - \Phi_0 = N + 1 + (2s + 2 - 2N - 2s + N) = N + 1 + (2 - N) = N - N + 3 = \Theta(1).$$

2. Analyse push_back operation that does not expand the vector:

Notice that in this case $\Delta \Phi = \Phi_1 - \Phi_0 = const$ and $T_r = const$, thus $T_a = const = \Theta(1)$.

For more examples check the wiki page.

5. Binary Search

- 5.1 Definition, use cases
- **5.2**
- 5.3 STL implementation