```
!pip install -q pandasql !pip install -q plotly

GOAL: To recommend 5 round trip routes between medium and large US airports for an airline company looking to enter US domestic market
```

```
import pandas as pd
import numpy as np
import seaborn as sns
from statistics import mean
from pandasql import sqldf
import matplotlib.pyplot as plt
import statsmodels.api as sm

%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
import plotly.io as pio
pio.renderers.default='notebook'
pd.set_option('display.float_format', lambda x: '%.2f' % x)
```

```
In [131... airport_raw_df = pd.read_csv('data/airport_codes.csv')
flights_raw_df = pd.read_csv('data/flights.csv')
tickets_raw_df = pd.read_csv('data/tickets.csv')
```

Generic functions for data quality

CLIENT's Moto: "On time for you" Dataset for analysis: 2019 Q1 flights data

```
''' Function : To check if nulls are in the aggregates post grouping for a passed dataframe
In [132...
                      : Dataframe, Columns to be grouped, Aggregate column
              Returns : Dataframe with nulls '''
          def find_nulls_post_grouping(df, groupCols, resultCol):
              result_df = df.groupby(groupCols, as_index=False)[resultCol].mean()
              return (result_df[resultCol].isna()].reset_index(drop=True) if result_df[resultCol].isna().sum() else 'No nulls in
          ''' Function : To calculate feature-wise null percentage for a passed dataframe for all/ selected features
In [133...
              Params : Input Dataframe, Columns - optional
              Returns : Dataframe with feature wise missing percent for all features/ selected features '''
          def find_missing_percent(df, cols=[]):
              input_df = df[cols] if cols else df
              missing_airport_df = input_df.isnull().sum(axis=0).reset_index()
              missing_airport_df.columns = ['VARIABLE', 'MISSING']
              missing_airport_df['PERCENT_MISSING']=(missing_airport_df['MISSING'])/input_df.shape[0]*100
              missing_airport_df.sort_values('PERCENT_MISSING', ascending=False, inplace=True, ignore_index=True)
              print("Total records: ", df.shape[0])
              return missing_airport_df[missing_airport_df.PERCENT_MISSING>0]
          ''' Function : To check if value is numeric else returns non-numeric invalid values
In [134...
              Returns : Returns non-numeric values whereas returns null if numeric '''
          def check_numeric(value):
                  pd.to_numeric(value)
                  return np.NaN
              except ValueError:
                  return value
          ''' Function : To show box and dist plots for passed dataframe
In [135...
              Params : Dataframe, Columns to be plotted
              Returns : None '''
          def show_distribution(data,col):
              fig,(ax1,ax2)=plt.subplots(2, 1)
              sns.distplot(data[col],ax=ax1)
              sns.boxplot(data[col],ax=ax2,color='orange')
          ''' Function : To find outliers of passed dataframe column
In [136...
              Params : Dataframe, Columns to be plotted
              Returns : None '''
          def find outliers(df, col):
              q3 = df[col].quantile(0.75)
              q1 = df[col].quantile(0.25)
              IQR = q3 - q1
              upper_bound = q3 + (1.5 * IQR)
              lower_bound = q1 - (1.5 * IQR)
              return upper_bound
In [137...
              Function: Drop specified cols from passed dataframe
              Params : Dataframe, Columns to be dropped
              Returns : None '''
```

def drop columns(df, cols):

```
for col in cols:
    df.drop(col, axis = 1, inplace = True)
```

Data Quality Check

1. Airport File

```
airport_raw_df.head()
In [138...
                                             NAME ELEVATION_FT CONTINENT ISO_COUNTRY MUNICIPALITY IATA_CODE
                                                                                                                                    COORDINATES
Out[138...
                  TYPE
                                                                                                                               -74.93360137939453,
                                     Total Rf Heliport
                                                            11.00
                 heliport
                                                                                                 Bensalem
                                                                                                                NaN
                                                                                                                                   40.07080078125
                                  Aero B Ranch Airport
                                                          3435.00
                                                                                        US
                                                                                                                             -101.473911, 38.704022
          1 small_airport
                                                                        NaN
                                                                                                    Leoti
                                                                                                                NaN
          2 small_airport
                                         Lowell Field
                                                           450.00
                                                                        NaN
                                                                                        US
                                                                                              Anchor Point
                                                                                                               NaN
                                                                                                                         -151.695999146, 59.94919968
                                                                                                                               -86.77030181884766,
                                                           820.00
                                                                                        US
          3 small_airport
                                        Epps Airpark
                                                                        NaN
                                                                                                  Harvest
                                                                                                                NaN
                                                                                                                                34.86479949951172
                              Newport Hospital & Clinic
                  closed
                                                           237.00
                                                                        NaN
                                                                                        US
                                                                                                  Newport
                                                                                                                NaN
                                                                                                                                -91.254898, 35.6087
                                            Heliport
           airport_raw_df.info()
In [139...
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 55369 entries, 0 to 55368
          Data columns (total 8 columns):
           #
               Column
                              Non-Null Count Dtype
           0
               TYPE
                              55369 non-null object
           1
               NAME
                              55369 non-null
                                              object
               ELEVATION_FT 48354 non-null float64
           2
           3
               CONTINENT
                              27526 non-null object
               ISO_COUNTRY
                              55122 non-null object
           5
               MUNICIPALITY 49663 non-null object
           6
               IATA_CODE
                              9182 non-null
                                              object
               COORDINATES
                             55369 non-null object
          dtypes: float64(1), object(7)
          memory usage: 3.4+ MB
           # Percentage missing values in airport_df
In [140...
           find_missing_percent(airport_raw_df)
          Total records: 55369
Out[140...
                VARIABLE MISSING PERCENT_MISSING
          0
                IATA_CODE
                             46187
                                               83.42
               CONTINENT
                             27843
                                               50.29
          2 ELEVATION_FT
                              7015
                                               12.67
          3 MUNICIPALITY
                              5706
                                               10.31
          4 ISO_COUNTRY
                               247
                                                0.45
           # As we are interested in analyzing US airports. Let's explore ISO_COUNTRY field first
In [141...
           # All 247 missing entries in Country variable belongs to the continent 'AF' ie Africa and not 'North America'
           # Such entries will be filtered out in next stepsince only US airports are of interest. So we are good to go
           airport_raw_df[airport_raw_df['ISO_COUNTRY'].isna()]['CONTINENT'].value_counts()
Out[141...
         ΑF
          Name: CONTINENT, dtype: int64
           # Checking if there is any mismatch in the continent names for US country airports (NA for NorthAmerica/ nan are accepted)
In [142...
           airport_raw_df.loc[(airport_raw_df['ISO_COUNTRY']=='US') & (airport_raw_df['TYPE'].isin(['medium_airport','large_airport'])) ]['CO
Out[142... Series([], Name: CONTINENT, dtype: int64)
           # Since we can extract all US airports by country column as US and also as all the 247 nulls in that col belong to
           # non-NorthAmerica continent. We dont have to worry abt continent column
           # There aren't any nulls in Type column. So lets narrow down by type and country for our analysis
In [144...
           airport_raw_df[airport_raw_df.ISO_COUNTRY=='US']['TYPE'].value_counts(dropna=False)
Out[144...
         small_airport
                             13708
          heliport
                              6268
                              1392
          closed
          medium airport
                               687
          seaplane_base
                               566
          large airport
                               171
          balloonport
                                18
          Name: TYPE, dtype: int64
           # Narrowing down the search as we are interested in analysis of medium and large US domestic airports
In [145...
           airport_df = airport_raw_df.loc[(airport_raw_df['ISO_COUNTRY']=='US') & (airport_raw_df['TYPE'].isin(['medium_airport','large_airp
In [146...
           # 858 entries are US medium/ large airports
           airport_df.shape
```

```
Out[146... (858, 8)
           # Sorting the iata codes such that nulls appear in the end
In [147...
           # So taht when dropping the duplicates we can retain the first match and get rid of the rest
           airport_df = airport_df.sort_values(by='IATA_CODE', ascending=True, na_position='last').reset_index(drop=True)
In [148...
          # Duplicates
           airport_df[airport_df.duplicated(subset = ['TYPE', 'NAME', 'MUNICIPALITY'])]
Out[148...
                       TYPE
                                             NAME ELEVATION_FT CONTINENT ISO_COUNTRY MUNICIPALITY IATA_CODE
                                                                                                                              COORDINATES
          839 medium_airport Columbus Municipal Airport
                                                          1447.00
                                                                        NaN
                                                                                        US
                                                                                                Columbus
                                                                                                               NaN -97.34259796, 41.44800186
In [149.
           airport_df.drop_duplicates( subset=['TYPE', 'NAME', 'MUNICIPALITY'], keep='first', inplace=True )
           # Missing % for filtered data of US domestic medium and large airports
In [150...
           find_missing_percent(airport_df)
          Total records: 857
Out[150...
                VARIABLE MISSING PERCENT_MISSING
              CONTINENT
                                              100.00
          0
                              857
               IATA_CODE
                               36
                                               4.20
          2 ELEVATION_FT
                                3
                                               0.35
          3 MUNICIPALITY
                                3
                                               0.35
          # Here the IATA code column is only of interest which has 36 nulls. Lets see if can fill the nulls based on municipality.
In [151...
           # We have municipalities in airports file and cities in flights file but same city/municipality can have multiple airports
           # Eq. Newyork can have 2 airports - JFK and LGA. Since we are limited not to use extra datasets, we will drop the nulls in iata
          airport_df = airport_df.dropna(subset=['IATA_CODE'])
In [152..
          airport_df.shape[0]
In [153.
Out[153... 821
```

2. Flights File

```
In [154...
           flights_raw_df.head()
Out[154...
             FL_DATE OP_CARRIER TAIL_NUM OP_CARRIER_FL_NUM ORIGIN_AIRPORT_ID ORIGIN ORIGIN_CITY_NAME DEST_AIRPORT_ID DESTINATION DEST_CI
                2019-
          0
                             WN
                                    N955WN
                                                           4591
                                                                              14635
                                                                                       RSW
                                                                                                  Fort Myers, FL
                                                                                                                          11042
                                                                                                                                         CLE
                                                                                                                                                  Clev
               03-02
                2019-
          1
                             WN
                                     N8686A
                                                           3231
                                                                              14635
                                                                                       RSW
                                                                                                  Fort Myers, FL
                                                                                                                          11066
                                                                                                                                        CMH
                                                                                                                                                 Colu
               03-02
                2019-
          2
                             WN
                                     N201LV
                                                           3383
                                                                              14635
                                                                                       RSW
                                                                                                  Fort Myers, FL
                                                                                                                          11066
                                                                                                                                        CMH
                                                                                                                                                 Colu
                03-02
                2019-
          3
                             WN
                                    N413WN
                                                           5498
                                                                              14635
                                                                                       RSW
                                                                                                  Fort Myers, FL
                                                                                                                          11066
                                                                                                                                        CMH
                                                                                                                                                 Colu
               03-02
                2019-
                             WN
                                     N7832A
                                                           6933
                                                                              14635
                                                                                       RSW
                                                                                                  Fort Myers, FL
                                                                                                                          11259
                                                                                                                                         DAL
                03-02
           # Excluding cancelled flights from our analysis
In [155...
           flights_df = flights_raw_df[flights_raw_df['CANCELLED']==0.0]
           # Flights file has only got 2019-1Q data and in entirety can be used for our analysis
In [156...
           print('Flights data is from date: ' + flights_raw_df['FL_DATE'].min() + ' and ' + flights_raw_df['FL_DATE'].max())
          Flights data is from date: 1/1/19 and 3/9/19
          # Check for invalid non-numeric values by calling custom function in the following cols which is required for aggregation
In [157...
           cols = ['DISTANCE', 'AIR TIME', 'ARR DELAY', 'DEP DELAY', 'OCCUPANCY RATE']
               print(flights_df[col].apply(check_numeric).dropna().reset_index(drop=True).value_counts())
          ****
          NAN
                        20
                       10
          Hundred
                       10
          Twenty
          Name: DISTANCE, dtype: int64
          $$$
                 1810
          Two
                   10
          NAN
                   10
          Name: AIR TIME, dtype: int64
          Series([], Name: ARR DELAY, dtype: int64)
          Series([], Name: DEP_DELAY, dtype: int64)
          Series([], Name: OCCUPANCY_RATE, dtype: int64)
In [158...
          # Converting read cols to numeric which will also get rid of above invalid values
```

Out[159...

```
# Distance has invalid values

cols = ['DISTANCE', 'AIR_TIME', 'ARR_DELAY', 'DEP_DELAY', 'OCCUPANCY_RATE']
flights_df[cols] = flights_df[cols].apply(pd.to_numeric, errors='coerce')
```

In [159... flights_df.describe()

	ORIGIN_AIRPORT_ID	DEST_AIRPORT_ID	DEP_DELAY	ARR_DELAY	CANCELLED	AIR_TIME	DISTANCE	OCCUPANCY_RATE
count	1864272.00	1864272.00	1864272.00	1859895.00	1864272.00	1857415.00	1861592.00	1863962.00
mean	12685.80	12687.10	10.77	5.65	0.00	109.39	772.38	0.65
std	1522.33	1521.97	50.07	52.41	0.00	70.47	582.68	0.20
min	10135.00	10135.00	-63.00	-94.00	0.00	-121.00	-1947.00	0.30
25%	11292.00	11292.00	-6.00	-15.00	0.00	59.00	344.00	0.48
50%	12889.00	12889.00	-2.00	-6.00	0.00	91.00	612.00	0.65
75%	14057.00	14057.00	7.00	8.00	0.00	139.00	1013.00	0.83
max	16218.00	16218.00	2941.00	2923.00	0.00	2222.00	9898.00	1.00

In [160... | # From below, overall there are < 1% nulls in each of the above four variables which is very minimal

In [161... find_missing_percent(flights_df)

Total records: 1864272

Out[161...

	VARIABLE	MISSING	PERCENT_MISSING
0	AIR_TIME	6857	0.37
1	ARR_DELAY	4377	0.23
2	DISTANCE	2680	0.14
3	OCCUPANCY_RATE	310	0.02

Handling missing values, outliers, negatives and skewness for below quantitative columns

- DISTANCE
- AIR_TIME
- ARR_DELAY
- DEP_DELAY
- OCCUPANCY_RATE

a) DISTANCE variable

```
In [162... # From below, Distance here spans from negative values -2000 until 10000 which is unusual and 2680 are nulls # Since we have 1.8 Million records, we shall group by origin-dest to identify mode and perform # mode level imputation for distance which might fix above issues as well as skewness
```

In [163... show_distribution(flights_df,'DISTANCE')


```
In [164... # Lets chk this for example pre and post imputation
# Here we see different distance for the same route 'RSW-STL' whihe should ideally be the most frequent ones ie 979
flights_df[(flights_df['ORIGIN'] == 'RSW') & (flights_df['DESTINATION'] == 'STL')]['DISTANCE'].value_counts()
```

```
Out[164... 979.00 238 9000.00 10
```

Name: DISTANCE, dtype: int64

```
In [165... # Mode level distance imputation
    route_groups = flights_df.groupby(['ORIGIN','DESTINATION'], as_index=False)
    mode_by_group = route_groups['DISTANCE'].agg(lambda x: x.mode()[0])[['ORIGIN','DESTINATION','DISTANCE']]
    flights_df = flights_df.merge(mode_by_group, how='left', on=['ORIGIN','DESTINATION'])[['FL_DATE','OP_CARRIER','TAIL_NUM','OP_CARRIER')]
```

```
In [166... # This is fixed post-imputation
flights_df[(flights_df['ORIGIN'] == 'RSW') & (flights_df['DESTINATION'] == 'STL')]['DISTANCE'].value_counts()
```

```
Out[166... 979.00 248
```

Name: DISTANCE, dtype: int64

```
In [167... # Nulls are also handled with mode level imputation
flights_df['DISTANCE'].isna().sum()
```

Out[167... 0

As we know, Boston to Honolulu is the longest domestic flight in US - 11 hours - 5095 miles. There is just one origin-dest pair ie, MIA-ABQ which is said to have a distance of 10000 miles way beyond 6000 miles. MIA-ABQ is actually ~2000 miles and here its 5X of its original value which is clearly an outlier.

```
In [168... # As we know, Boston to Honolulu is the longest domestic flight in US - 11 hours - 5095 miles
# There is just one origin-dest pair ie, MIA-ABQ which is said to have a distance of
# 10000 miles way beyond 6000 miles. MIA-ABQ is actually ~2000 miles and here its 5X of its original value
# which is clearly an outlier.
flights_df[flights_df['DISTANCE'] > 6000][['ORIGIN','DESTINATION','DISTANCE']].value_counts()
```

Out[168... ORIGIN DESTINATION DISTANCE MIA ABQ 9898.00 10 dtype: int64

In [170... # POST-IMPUTATION for DISTANCE (Invalids, nulls are all handled and the distribution has become less skewed show_distribution(flights_df, 'DISTANCE')

b) AIR_TIME variable

```
In [171... # When both the air time AND arrival delay fields are null, its equivalent to flight getting cancelled (flights_df.loc[((flights_df['AIR_TIME'].isna()) & (flights_df['ARR_DELAY'].isna()))].shape[0])/(flights_df.shape[0])*100
```

Out[171... 0.23478459572742458

```
In [172... # 4377 records of ~1.8Million are probably cancelled flights marked instead as not cancelled
# So dropping probably cancelled flights from our analysis
flights_df_cleaned = flights_df.loc[~((flights_df['AIR_TIME'].isna()) & (flights_df['ARR_DELAY'].isna()))]
```

In [173... show_distribution(flights_df_cleaned, 'AIR_TIME')


```
In [174... flights_df_cleaned[flights_df_cleaned['AIR_TIME']<0].shape</pre>
```

Out[174... (100, 12)

```
In [175... pd.unique(flights_df_cleaned[flights_df_cleaned['AIR_TIME']<0][['ORIGIN', 'DESTINATION']].values.ravel('K'))</pre>
```

Out[175... array(['JFK', 'ORD'], dtype=object)

```
In [176... # Abnormal for airtime to be negative which is 0.005% of dataset and that too for 1 route, JFK-ORD and hence removing them.
# There are records with <10 min Air_time but its still feasible. So leaving them as such eg. Actual air_time for Alaska-Petersbur flights_df_cleaned = flights_df_cleaned[~(flights_df_cleaned['AIR_TIME']<0)]
```

In [177... | flights_df_cleaned['AIR_TIME'].describe()

```
1857305.00
Out[177... count
                      109.40
         mean
         std
                      70.45
                       1.00
         min
         25%
                      59.00
                      91.00
         50%
                     139.00
         75%
                     2222.00
         max
         Name: AIR_TIME, dtype: float64
In [178... | # Certain extremities have airtime of 18 hrs which is huge for US domestic flights
          # But by arr_delay we can say that majority of flights arrived within more or less 5 mins of expected arrival,
          # so these can be considered as expected air times
          flights_df_cleaned[ flights_df_cleaned['AIR_TIME']>1000 ]
```

178		FL_DATE	OP_CARRIER	TAIL_NUM	OP_CARRIER_FL_NUM	ORIGIN	DESTINATION	DISTANCE	DEP_DELAY	ARR_DELAY	CANCELLED	AIR_TIME
	76718	2019- 03-27	EV	N14542	4304	JAX	EWR	820.00	-9.00	1439.00	0.00	1557.00
	1859374	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1859379	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1859864	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1859869	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1860354	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1860359	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1860844	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1860849	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1861334	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1861339	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1861824	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1861829	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1862314	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1862319	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1862804	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1862809	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1863294	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1863299	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00
	1863784	3/2/19	WN	N937WN	4434	RSW	MCI	1155.00	-7.00	-5.00	0.00	1080.00
	1863789	2/23/19	AS	N7845A	3434	RSW	MDW	1105.00	-1.00	5.00	0.00	2222.00

c) DEP_DELAY and ARR_DELAY variables

```
In [179... # Air time vs arrival delay
# Air time range is between 0-800 predominantly with variation delay between 0 and 200. There is not much variation in arr_delay w
    dist_delay = flights_df_cleaned.groupby('AIR_TIME', as_index = False)['ARR_DELAY'].mean()
    x = dist_delay.AIR_TIME
    y = dist_delay.ARR_DELAY
    plt.xlabel("Air Time")
    plt.ylabel("Arrival Delay")
    plt.scatter(x, y, alpha=0.4)
```


In [180... show_distribution(flights_df_cleaned, 'DEP_DELAY')

In [181... | # Since departure and arrival delays are highly correlated they doesnt seem to much vary in range from above

In [182... show_distribution(flights_df, 'ARR_DELAY')

In [183... flights_df_cleaned.describe()

Out[183... DISTANCE DEP_DELAY ARR_DELAY CANCELLED AIR_TIME OCCUPANCY_RATE

		_	_		_	
count	1859785.00	1859785.00	1859785.00	1859785.00	1857305.00	1859475.00
mean	772.46	10.72	5.65	0.00	109.40	0.65
std	581.11	49.96	52.41	0.00	70.45	0.20
min	31.00	-63.00	-94.00	0.00	1.00	0.30
25%	344.00	-6.00	-15.00	0.00	59.00	0.48
50 %	612.00	-2.00	-6.00	0.00	91.00	0.65
75 %	1013.00	7.00	8.00	0.00	139.00	0.83
max	4983.00	2941.00	2923.00	0.00	2222.00	1.00

```
In [184... # Very early departures
    (flights_df_cleaned[flights_df_cleaned['DEP_DELAY'] < -15].shape[0]) / (flights_df_cleaned.shape[0]) * 100</pre>
```

Out[184... 0.7481509959484564

In [185... # Flights can depart few mins early due to quick onboarding but otherwise very early departure is very less likely to happen. Henc flights_df_cleaned = flights_df_cleaned.loc[~(flights_df_cleaned['DEP_DELAY'] < -15)]

```
# Long haul flights has lesser variation in arrival delay over short haul flights
%matplotlib inline
dist_delay = flights_df_cleaned.groupby('DISTANCE')['ARR_DELAY'].mean().reset_index()

# plot a scatter plot that takes distance as predictor, and arrival delay as response
x = dist_delay['DISTANCE']
y = dist_delay['ARR_DELAY']
plt.xlabel("Distance")
plt.ylabel("Arrival Delay")
plt.scatter(x, y, alpha=0.4)
```

```
80
     60
Arrival Delay
      40
     20
      0
   -20
                       1000
                                      2000
                                                    3000
                                                                  4000
                                                                               5000
                                           Distance
```

```
find_outliers(flights_df_cleaned, 'ARR_DELAY')
In [187..
Out[187... 45.0
          # Percent of >24hrs DEP_DELAY data out of total
In [188...
           (flights_df_cleaned[flights_df_cleaned['DEP_DELAY']>1440].shape[0])/ (flights_df_cleaned.shape[0]) * 100
         0.0023836985358131747
Out[188...
          # Almost 44 flights have departed well later than 24 hrs/ 1440 mins which is less likely to happen without being cancelled
In [189...
           # Since we dont have delay reasons excluding such data (0.002%) from analysis
          flights_df_cleaned = flights_df_cleaned.loc[~(flights_df_cleaned['DEP_DELAY']>1440)]
          # Create a new column as ON_TIME where, if ARR_DELAY less than 15 mins its on-time else as delayed (as per Beaureau of Transportat
In [190...
          flights_df_cleaned['ON_TIME'] = flights_df_cleaned['ARR_DELAY'].apply(lambda x: 1 if x < 15 else 0)</pre>
          flights_df_cleaned['DELAY_GRT_30MINS'] = flights_df_cleaned['ARR_DELAY'].apply(lambda x: 1 if x > 30 else 0)
In [191..
          find_nulls_post_grouping(flights_df_cleaned, ['ORIGIN','DESTINATION'], 'ARR_DELAY')
In [192.
          'No nulls in ARR_DELAY column, post grouping and mean aggregation'
Out[192..
          flights_df['OCCUPANCY_RATE'].isna().sum()
In [193.
Out[193...
         310
          find_nulls_post_grouping(flights_df, ['ORIGIN','DESTINATION'],'OCCUPANCY_RATE')
         'No nulls in OCCUPANCY_RATE column, post grouping and mean aggregation'
```

3. Tickets File

Out[199... 200 \$

\$ 100.00

713

305

```
In [195..
          tickets_raw_df = pd.read_csv('data/tickets.csv')
In [196...
           # Provided dataset is for 2019-Q1
           tickets_raw_df.head()
                  ITIN_ID YEAR QUARTER ORIGIN ORIGIN_COUNTRY ORIGIN_STATE_ABR ORIGIN_STATE_NM ROUNDTRIP
Out[196...
                                                                                                                  REPORTING_CARRIER PASSENGERS
            201912723049
                           2019
                                        1
                                              ABI
                                                               US
                                                                                  ΤX
                                                                                                  Texas
                                                                                                              1.00
                                                                                                                                  MQ
                                                                                                                                               1.00
          1 201912723085
                           2019
                                        1
                                              ABI
                                                               US
                                                                                  ΤX
                                                                                                  Texas
                                                                                                              1.00
                                                                                                                                  MQ
                                                                                                                                               1.00
          2 201912723491
                           2019
                                        1
                                              ABI
                                                               US
                                                                                  ΤX
                                                                                                  Texas
                                                                                                              1.00
                                                                                                                                  MQ
                                                                                                                                               1.00
          3 201912723428
                           2019
                                              ABI
                                                               US
                                                                                  ΤX
                                                                                                  Texas
                                                                                                              1.00
                                                                                                                                  MQ
                                                                                                                                               1.00
          4 201912723509
                          2019
                                        1
                                              ABI
                                                               US
                                                                                  ΤX
                                                                                                  Texas
                                                                                                              0.00
                                                                                                                                  MQ
                                                                                                                                               1.00
In [197...
          # Rountrips should oly be considered for analysis
           # Columns interested are origin, destination and itin_fare alone
          tickets_df = tickets_raw_df[tickets_raw_df['ROUNDTRIP']==1.0]
          tickets_df = tickets_df[['ORIGIN','DESTINATION','ITIN_FARE']]
In [198...
          # 560 fare details ~0.08% are nulls
          find_missing_percent(tickets_df)
          Total records: 708600
Out[198...
             VARIABLE MISSING PERCENT_MISSING
          0 ITIN_FARE
                           560
                                             0.08
          # Invalid fare detials are there for ~1200 records ~0.17% which is handled during numeric conversion
In [199...
          tickets_df['ITIN_FARE'].apply(check_numeric).dropna().value_counts()
```

```
820$$$
                       272
          Name: ITIN_FARE, dtype: int64
          tickets_df['ITIN_FARE'] = tickets_df['ITIN_FARE'].apply(pd.to_numeric, errors='coerce')
In [200.
           tickets_df.describe()
In [201.
Out[201...
                 ITIN_FARE
                706750.00
          count
          mean
                    473.69
                    344.27
            std
                      0.00
            min
           25%
                    280.00
           50%
                    416.00
           75%
                    596.00
                  38400.00
           max
           show_distribution(tickets_df, 'ITIN_FARE')
In [202..
            0.0015
          Density
            0.0010
            0.0005
            0.0000
                         5000 10000 15000 20000 25000 30000 35000 40000
                         5000 10000 15000 20000 25000 30000 35000 40000
                                        ITIN_FARE
         Averages do not include frequent-flyer or 'zero fares' or a few abnormally high reported fares.
In [203...
           # As per Beareau of Transportation Statistics (BTS) for 2019Q1, fares above 10000 seems too expensive for roundtrip fare for US do
           tickets_df[tickets_df['ITIN_FARE']>10000].shape[0]
Out[203... 9
          # Its unknown from the data if the passenger had applied coupons or which travel classes(first class or not) or bulk booking
           # So as per BTS 2019Q1 and owing to above assumption, excluding <$50 round trip fare that is too less for US domestic flights
           tickets_df[tickets_df['ITIN_FARE']<50].shape[0]</pre>
Out[204... 40520
           abnormal_fares_percent = ((tickets_df[tickets_df['ITIN_FARE']<50].shape[0] + tickets_df[tickets_df['ITIN_FARE']>10000].shape[0] )/
In [205...
           print("Records with round-trip-fares between 2 domestic airports with abnormal figures are (<50$ and >10000$) " + str(round(abnorm
          Records with round-trip-fares between 2 domestic airports with abnormal figures are (<50$ and >10000$) 5.72%
In [206...
           # Lets nullify such abnormal fares so that we get fair enough average fare by grouping ORIGIN-DEST pairs
           tickets_df['ITIN_FARE'].mask((tickets_df['ITIN_FARE'] < 50) | (tickets_df['ITIN_FARE'] > 10000), np.nan, inplace=True)
           show_distribution(tickets_df,'ITIN_FARE')
In [207...
            0.002
            0.001
            0.000
                                    4000
                           2000
                                              6000
                                                       8000
                                                               10000
                                    4000
                                              6000
                           2000
                                                       8000
                                                               10000
                                       ITIN_FARE
           find_missing_percent(tickets_df)
In [208...
          Total records: 708600
             VARIABLE MISSING PERCENT_MISSING
Out[208...
          0 ITIN_FARE
                                             5.98
                          42379
```

```
9/25/22, 11:31 PM
                                                                               Airline Data Challenge_Arul
               tickets_df['ITIN_FARE'].describe()
    In [209.
                       666221.00
              count
    Out[209...
                           501.54
               mean
                           328.59
               std
                            50.00
               min
                           304.00
               25%
                           433.00
               50%
               75%
                           611.00
                         9816.00
               max
               Name: ITIN_FARE, dtype: float64
    In [210...
               # Conditionally join two dataframes airport_df and tickets_df
               # Aggregation at leg level for each origin-destination pair
    In [211...
               flights_legs = flights_df_cleaned.groupby(['ORIGIN', 'DESTINATION'], as_index=False).agg({'OP_CARRIER': ['nunique'], 'TAIL_NUM': [
               flights_legs.columns = ['origin', 'dest', 'carriers', 'flights', 'distance', 'occupancy_rate', 'avg_dep_delay', 'avg_arr_delay',
               flights_legs['on_time_percent'] = (flights_legs['on_time'] / flights_legs['flights']) * 100
               flights_legs['delay_grt_30mins_percent'] = (flights_legs['delay_grt_30mins'] / flights_legs['flights']) * 100
               flights_legs['on_time_percent'] = flights_legs['on_time_percent'].astype(int)
               flights_legs['delay_grt_30mins_percent'] = flights_legs['delay_grt_30mins_percent'].astype(int)
               drop_columns(flights_legs,['on_time', 'delay_grt_30mins'])
               flights_legs[['flights', 'distance']] = flights_legs[['flights', 'distance']].apply(pd.to_numeric, errors="coerce")
               flights_legs
    In [212...
    Out[212...
                           dest carriers flights distance occupancy_rate avg_dep_delay avg_arr_delay on_time_percent delay_grt_30mins_percent
                  0
                       ABE
                             ATL
                                       2
                                            217
                                                   692.00
                                                                    0.64
                                                                                  5.98
                                                                                                5.46
                                                                                                                                        13
                  1
                       ABE
                             CLT
                                       1
                                            248
                                                   481.00
                                                                    0.67
                                                                                  4.06
                                                                                               4.51
                                                                                                                 81
                                                                                                                                         8
                  2
                       ABE
                            DTW
                                       2
                                            248
                                                   425.00
                                                                    0.64
                                                                                 15.97
                                                                                              10.69
                                                                                                                 78
                                                                                                                                         12
                                                  1041.00
                  3
                       ABE
                             FLL
                                             20
                                                                    0.58
                                                                                 13.60
                                                                                              10.85
                                                                                                                 75
                                                                                                                                         10
                  4
                       ABE
                            ORD
                                             156
                                                   654.00
                                                                    0.67
                                                                                 22.56
                                                                                              15.85
                                                                                                                 69
                                                                                                                                         23
               5905
                       YAK
                            CDV
                                             41
                                                   213.00
                                                                    0.62
                                                                                  9.22
                                                                                              11.83
                                                                                                                 75
                                                                                                                                         12
               5906
                            JNU
                                                   198.00
                                                                    0.77
                                                                                 16.96
                                                                                              18.41
                                                                                                                 70
                       YAK
                                             27
                                                                                                                                         14
```

103.00 0.66 11.62 11.50 74 14 5907 YKM SEA 305 5908 YUM DFW 28 1022.00 0.64 16.00 15.46 89 7 5909 YUM PHX 341 160.00 0.65 0.87 -2.52 5 89

5910 rows × 10 columns

```
%matplotlib inline
In [213...
          dist_delay = flights_legs.groupby('carriers')['avg_arr_delay'].mean().reset_index()
          x = dist_delay['carriers']
          y = dist_delay['avg_arr_delay']
          plt.xlabel("carriers")
          plt.ylabel("Average Arrival Delay")
          plt.scatter(x, y, alpha=0.4)
          # Arrival delay seems higher with increase in careers
```

Out[213... <matplotlib.collections.PathCollection at 0x204b3f0f820>


```
# Merging of airports and tickets by iata_code to that of origin and destination
In [214...
          tickets_airport_origin_merge = tickets_df.merge(airport_df, how='inner', left_on='ORIGIN', right_on='IATA_CODE')[['TYPE','ORIGIN'
                                        = tickets_airport_origin_merge.merge(airport_df, how='inner', left_on='DESTINATION', right_on='IATA_
          tickets_airport_dest_merge
In [215...
          tickets_airport_merge_filtered = tickets_airport_dest_merge.loc[(tickets_airport_dest_merge['ORIGIN_TYPE'].isin(['medium_airport',
          tickets_airport_merge_filtered['route'] = np.where(tickets_airport_merge_filtered.ORIGIN > tickets_airport_merge_filtered.DESTINAT
          tickets_airport_merge_filtered['ITIN_FARE']=tickets_airport_merge_filtered['ITIN_FARE'].apply(lambda x : pd.to_numeric(x, errors='
          roundtrip_fares = tickets_airport_merge_filtered.groupby('route').agg({ 'ORIGIN_TYPE':['first'],'ORIGIN':['min'], 'DESTINATION':['
In [216...
```

```
roundtrip_fares.columns = ['origin_type', 'origin', 'dest', 'dest_type', 'avg_rtr_fare']
           # Avg rountrip fares for each origin-dest pair between medium and large airports
In [217...
           roundtrip_fares
Out[217...
                    origin_type origin dest
                                                 dest_type avg_rtr_fare
              0 medium_airport
                                  ABI
                                       ABE medium_airport
                                                                758.00
              1 medium_airport
                                  ABE
                                      ABQ
                                                                534.00
                                               large_airport
                                       AGS medium_airport
              2
                                  ABE
                                                                391.00
                    large_airport
              3 medium_airport
                                  ABE AMA
                                               large_airport
                                                                654.00
                                       ASE medium_airport
                                  ABE
                                                                742.00
              4 medium_airport
          24040 medium_airport
                                      XNA medium_airport
                                 VLD
                                                                778.67
          24041 medium_airport
                                  VPS
                                      XNA
                                                                270.90
                                               large_airport
                                 VPS YUM medium_airport
          24042
                                                                796.00
                    large_airport
          24043 medium_airport
                                            medium_airport
                                  YAK WRG
                                                                745.00
          24044 medium_airport
                                 YKM XNA medium_airport
                                                                461.00
         24045 rows × 5 columns
In [218...
           find_missing_percent(roundtrip_fares)
          Total records: 24045
Out[218...
              VARIABLE MISSING PERCENT_MISSING
          0 avg_rtr_fare
                             365
                                              1.52
In [219...
           # Since %nulls is minimal for avg_rtr_fare in the order of ~2% for grouped origin-dest pair, dropping them as profit cant be calcu
           roundtrip_fares = roundtrip_fares.loc[roundtrip_fares['avg_rtr_fare'].notna()]
In [220..
           roundtrip_fares['avg_rtr_fare'].describe()
Out[220...
                  23680.00
         count
          mean
                     586.40
                     250.23
          std
          min
                     54.00
          25%
                     440.46
          50%
                     534.09
          75%
                     662.94
                   5960.00
          max
          Name: avg_rtr_fare, dtype: float64
           flights_legs[flights_legs['flights']<50].shape[0]</pre>
Out[221... 1028
           # Considering only the routes which has flights > 50 for Q1 2019
In [222...
           flights_legs_filtd = flights_legs[flights_legs['flights']>50]
In [223...
           # Distance vs Arrival Delay for each leg
           import plotly.express as px
           fig = px.scatter(flights_legs_filtd, x="distance", y="avg_arr_delay",color='flights',
                            title="Distance vs Arrival Delay for each leg",template="simple_white")
```

Distance vs Arrival Delay for each leg

fig.show("notebook")

fig.update_layout(barmode='stack', xaxis={'categoryorder':'total descending'})


```
-20
```

Carriers vs Average Arrival Delay


```
# Lets merge roundtrip fares dataframe with that of flights dataframe to find avg fare, avg distance, avg delays at each leg level
In [225...
          flights_rtr_legs_query = '''
In [226...
          SELECT f.origin,
          f.dest,
          f.carriers,
          f.flights,
          f.distance,
          f.occupancy_rate,
          f.avg_dep_delay,
          f.avg_arr_delay,
          d.avg_rtr_fare,
          d.origin_type,
          d.dest_type,
          f.on_time_percent,
          f.delay_grt_30mins_percent
          FROM roundtrip_fares d JOIN flights_legs_filtd f
          on ((d.origin=f.origin and d.dest=f.dest) or (d.origin=f.dest and d.dest=f.origin)) '''
```

```
In [227... flights_rtr_legs = sqldf(flights_rtr_legs_query, locals())
```

In [228... # Merged dataframe consisiting of roundtrip routes at each leg level with aggregated metrics flights_rtr_legs

Out[228		origin	dest	carriers	flights	distance	occupancy_rate	avg_dep_delay	avg_arr_delay	avg_rtr_fare	origin_type	dest_type	on_time_percent	c
	0	ABE	ATL	2	217	692.00	0.64	5.98	5.46	576.91	medium_airport	large_airport	78	
	1	ATL	ABE	2	217	692.00	0.67	7.76	-0.35	576.91	medium_airport	large_airport	87	
	2	ABE	CLT	1	248	481.00	0.67	4.06	4.51	499.24	medium_airport	large_airport	81	
	3	CLT	ABE	1	251	481.00	0.66	3.86	-1.32	499.24	medium_airport	large_airport	87	
	4	ABE	DTW	2	248	425.00	0.64	15.97	10.69	449.50	medium_airport	large_airport	78	
	•••													
	4675	TPA	STL	1	211	869.00	0.67	10.80	2.90	399.75	large_airport	large_airport	80	

```
dest carriers flights distance occupancy_rate avg_dep_delay avg_arr_delay avg_rtr_fare
                                                                                                                                 dest_type on_time_percent c
       origin
                                                                                                                 origin_type
                TUL
 4676
          STL
                                         351.00
                                                            0.65
                                                                            9.47
                                                                                                                                                         78
                           1
                                  163
                                                                                           4.58
                                                                                                      434.72
                                                                                                                 large_airport large_airport
 4677
          TUL
                STL
                                         351.00
                                                            0.64
                                                                            2.55
                                                                                          -4.10
                                                                                                      434.72
                                                                                                                                                         92
                                  161
                                                                                                                 large_airport large_airport
                                                                          22.32
                                                            0.63
                                                                                          12.22
 4678
          TPA
                TTN
                                   77
                                         955.00
                                                                                                      183.09
                                                                                                              medium_airport large_airport
                                                                                                                                                         74
 4679
                                         955.00
                                                            0.63
                                                                           10.82
                                                                                           6.00
                                                                                                      183.09 medium_airport large_airport
         TTN
                TPA
                                   71
                                                                                                                                                         78
4680 rows × 13 columns
```

Roundtrip route identifier
flights_rtr_legs['route'] = np.where(flights_rtr_legs.origin > flights_rtr_legs.dest, flights_rtr_legs['dest']+'-'+flights_rtr_leg
In [230... # Group corresponding leg level flights data as single roundtrip route
flights_rtr_grp = flights_rtr_legs.groupby('route').agg({ 'flights': ['min'], 'carriers': ['mean'] , 'distance': ['sum']
 'delay_grt_30mins_percent':'mean', 'route': 'count'}).round(2).reset_index()
flights_rtr_grp.columns = ['roundtrip_route', 'avg_flights', 'avg_carriers', 'distance', 'occupancy_rate', 'avg_dep_delay' , 'avg_
flights_rtr_grp['on_time%'] = flights_rtr_grp['on_time%'].astype(int)
flights_rtr_grp['delay_grt_30mins%'] = flights_rtr_grp['delay_grt_30mins%'].astype(int)
flights_rtr_grp = flights_rtr_grp.loc[flights_rtr_grp['cnt']>1] # means filter rountrips
drop_columns(flights_rtr_grp, ['cnt'])

In [231... | flights_rtr_grp[['roundtrip_route','avg_flights','avg_carriers','distance','occupancy_rate','avg_dep_delay','avg_arr_delay','on_ti

Out[231		roundtrip_route	avg_flights	avg_carriers	distance	occupancy_rate	avg_dep_delay	avg_arr_delay	on_time%	delay_grt_30mins%	avg_rtr_fare
	0	ABE-ATL	217	2.00	1384.00	0.65	6.87	2.56	82	10	576.91
	1	ABE-CLT	248	1.00	962.00	0.66	3.96	1.60	84	7	499.24
	2	ABE-DTW	248	2.00	850.00	0.64	13.70	5.98	79	12	449.50
	3	ABE-ORD	156	3.00	1308.00	0.65	29.40	24.08	64	29	585.79
	4	ABE-SFB	111	1.00	1764.00	0.66	6.26	3.36	83	9	205.35
	•••										
	2346	SMF-STL	88	1.00	3358.00	0.66	9.19	0.64	85	7	502.27
	2347	SNA-STS	87	1.00	866.00	0.64	8.98	3.81	83	9	328.26
	2348	STL-TPA	209	1.00	1738.00	0.66	11.33	5.08	79	9	399.75
	2349	STL-TUL	161	1.00	702.00	0.65	6.01	0.24	85	7	434.72
	2350	TPA-TTN	71	1.00	1910.00	0.63	16.57	9.11	76	16	183.09

2329 rows × 10 columns

Top 10 busiest U.S. round trip routes

avg rc

1000

500

fig.show("notebook")

RANK	ROUNDTRIP ROUTES	AVERAGE FLIGHTS	ON TIME%	AVERAGE CARRIERS	DISTANCE (MILES)	
					(,	
1	LAX-SFO	4153	69	7	674	
2	LGA-ORD	3563	66	6	1466	
3	LAS-LAX	3236	78	8	472	
4	JFK-LAX	3121	82	4	4950	
5	LAX-SEA	2484	78	6	1908	
6	BOS-LGA	2392	71	5	368	
7	HNL-OGG	2377	91	1	200	
8	PDX-SEA	2375	77	5	258	
9	ATL-MCO	2350	85	5	808	
10	ATL-LGA	2291	77	5	1524	

Generic functions for key metrics calculation

```
In [236...
          TOTAL_PASSENGERS = 200
          FUEL_COST_PER_MILE = 8
          DELAY_COST_PER_MIN = 75
          INSURANCE_COST_PER_MILE = 1.18
          UPFRONT_PLANE_COST = 90000000
          OPERATIONAL COST MEDIUM AIRPORT = 5000
          OPERATIONAL_COST_LARGE_AIRPORT = 10000
          ROUNDTRIP BAGGAGE PER CUSTOMER = 70
          ALLOWED DELAY IN MINS=15
          def calculateRevenue(df):
              baggage fees = 0.50*(df.avg flights*df.occupancy rate*TOTAL PASSENGERS)*ROUNDTRIP BAGGAGE PER CUSTOMER
              tickets_fares = df.avg_flights*df.occupancy_rate*TOTAL_PASSENGERS*df.avg_rtr_fare
              return (baggage_fees + tickets_fares)
          def calculateTotalCost(df):
In [237...
              total_fuel_cost = df.avg_flights * ( (df.distance*FUEL_COST_PER_MILE) + (df.distance*INSURANCE_COST_PER_MILE) )
              total operational cost = np.where(df.origin type=='medium airport', OPERATIONAL COST MEDIUM AIRPORT, OPERATIONAL COST LARGE AIRP
              total_delay_cost = np.where(df.avg_dep_delay>ALLOWED_DELAY_IN_MINS, (df.avg_dep_delay-ALLOWED_DELAY_IN_MINS)*DELAY_COST_PER_MI
              return (total_fuel_cost + total_operational_cost + total_delay_cost)
In [238...
          def convertToMillions(df,col):
```

```
Airline Data Challenge_Arul
              return '$'+(df[col].astype(float)/1000000).round(1).astype(str) + 'M'
          def calculate_breakeven(df):
In [239...
              return (UPFRONT_PLANE_COST / (df['total_profit_usd']/df['avg_flights']))
          flights_rtr_grp['total_revenue_usd'] = calculateRevenue(flights_rtr_grp)
In [240...
          flights_rtr_grp['total_cost_usd'] = calculateTotalCost(flights_rtr_grp)
          flights_rtr_grp['total_profit_usd'] = flights_rtr_grp['total_revenue_usd'] - flights_rtr_grp['total_cost_usd']
          flights_rtr_grp['total_profit_per_carrier_usd'] = flights_rtr_grp['total_profit_usd'] / flights_rtr_grp['avg_carriers']
          flights_rtr_profit_top10 = flights_rtr_grp.nlargest(10,'total_profit_usd').reset_index(drop=True)
          # Conversion to necessary types
          flights_rtr_profit_top10[['avg_carriers', 'distance', 'avg_rtr_fare', 'total_revenue_usd', 'total_cost_usd', 'total_profit_usd',
          # Formatting as read
          flights_rtr_profit_top10['total_revenue'] = convertToMillions(flights_rtr_profit_top10,'total_revenue_usd')
          flights_rtr_profit_top10['total_cost'] = convertToMillions(flights_rtr_profit_top10,'total_cost_usd')
          flights_rtr_profit_top10['total_profit'] = convertToMillions(flights_rtr_profit_top10,'total_profit_usd')
          flights_rtr_profit_top10['profit_share'] = convertToMillions(flights_rtr_profit_top10, 'total_profit_per_carrier_usd')
          # Ranking based on most profittable
          flights_rtr_profit_top10[["Rank"]] = flights_rtr_profit_top10[["total_profit_usd"]].rank(method='dense',ascending=False).astype(in
          flights_rtr_profit_top10 = flights_rtr_profit_top10.sort_values("Rank")
          # Tabular data - Top10 most profitable routes
In [241...
          import plotly.graph_objects as go
          col = ['<b>RANK</b>', '<b>ROUNDTRIP ROUTES</b>', '<b>ROUNDTRIP FLIGHTS</b>','<b>TOTAL PROFIT</b>','<b>TOTAL REVENUE</b>','<b>TOTAL
          df = flights_rtr_profit_top10
          fig = go.Figure(data=[go.Table(
              columnwidth =[20,40],
              header=dict(values=col,
                          fill_color='powderblue',
                          align='left'),
              cells=dict(values=[df.Rank, df.roundtrip_route, df.avg_flights,df.total_profit,df.total_revenue,df.total_cost, df['on_time%'],
                         fill_color='paleturquoise',
                         align='left'))
```

RANK	ROUNDTRIP ROUTES	ROUNDTRIP FLIGHTS	TOTAL PROFIT	TOTAL REVENUE	TOTAL COST	ON TIME%	AVERAGE CARRIERS	DISTANCE (MILES)	AVERAGE FARE
1	JFK-LAX	3121	\$275.5M	\$417.3M	\$141.8M	82	4	4950	993
2	LAX-SFO	4153	\$157.2M	\$182.9M	\$25.7M	69	7	674	303
3	LGA-ORD	3563	\$141.1M	\$189.1M	\$48.0M	66	6	1466	373
4	JFK-SFO	1838	\$133.0M	\$220.3M	\$87.3M	74	4	5172	886
5	EWR-SFO	1187	\$121.7M	\$177.7M	\$55.9M	69	2	5130	1116
6	ATL-LGA	2291	\$119.0M	\$151.1M	\$32.1M	77	5	1524	472
7	BOS-LGA	2392	\$117.5M	\$125.6M	\$8.1M	71	5	368	368
8	DCA-ORD	1832	\$115.2M	\$135.8M	\$20.6M	78	6	1224	535
9	LAS-LAX	3236	\$108.0M	\$122.0M	\$14.0M	78	8	472	255
10	DCA-LGA	1672	\$105.7M	\$112.3M	\$6.6M	69	2	428	481

```
In [242...
           # Breakeven analysis
           flights rtr profit top10['breakeven'] = calculate breakeven(flights rtr profit top10)
           flights_rtr_profit_top10['breakeven'] = flights_rtr_profit_top10['breakeven'].astype(int)
           # Breakeven in terms of roundtrip flights
           flights_rtr_profit_top10[['roundtrip_route','avg_flights', 'total_revenue', 'total_cost', 'total_profit', 'breakeven', 'avg_carri
Out[242...
             roundtrip_route avg_flights total_revenue total_cost total_profit breakeven avg_carriers distance
          0
                    JFK-LAX
                                 3121
                                            $417.3M
                                                      $141.8M
                                                                 $275.5M
                                                                               1019
                                                                                             4
                                                                                                   4950
          1
                   LAX-SFO
                                 4153
                                                                                             7
                                            $182.9M
                                                       $25.7M
                                                                 $157.2M
                                                                               2377
                                                                                                    674
          2
                   LGA-ORD
                                                       $48.0M
                                                                 $141 1M
                                                                               2272
                                                                                             6
                                 3563
                                            $189.1M
                                                                                                   1466
```

fig.update_layout(width=990)

fig.show("notebook")

```
roundtrip_route avg_flights total_revenue total_cost total_profit breakeven avg_carriers distance
3
          JFK-SFO
                         1838
                                   $220.3M
                                               $87.3M
                                                          $133.0M
                                                                        1243
                                                                                        4
                                                                                              5172
4
         EWR-SFO
                         1187
                                   $177.7M
                                               $55.9M
                                                          $121.7M
                                                                         877
                                                                                        2
                                                                                              5130
                        2291
                                               $32.1M
                                                                        1733
                                                                                        5
5
          ATL-LGA
                                   $151.1M
                                                          $119.0M
                                                                                              1524
6
         BOS-LGA
                                                          $117.5M
                                                                        1831
                                                                                        5
                        2392
                                   $125.6M
                                                $8.1M
                                                                                               368
7
        DCA-ORD
                                               $20.6M
                        1832
                                   $135.8M
                                                          $115.2M
                                                                        1431
                                                                                        6
                                                                                              1224
8
         LAS-LAX
                         3236
                                               $14.0M
                                                                                        8
                                   $122.0M
                                                          $108.0M
                                                                        2696
                                                                                               472
9
         DCA-LGA
                         1672
                                   $112.3M
                                                $6.6M
                                                          $105.7M
                                                                        1423
                                                                                        2
                                                                                               428
```

```
In [243...
          # Recommended routes
          recommended_routes = flights_rtr_profit_top10
          recommended_routes["Rank"] = recommended_routes[["on_time%","delay_grt_30mins%","total_profit_usd"]].apply(tuple,axis=1)\
                        .rank(method='dense',ascending=False).astype(int)
          recommended_routes = recommended_routes.sort_values("Rank")
          #recommended_routes[['Rank','roundtrip_route','avg_flights', 'distance', 'occupancy_rate', 'avg_dep_delay', 'avg_arr_delay', 'on_t
In [244...
          # Recommended Routes
          import plotly.graph_objects as go
          col = ['<b>RANK</b>', '<b>ROUNDTRIP ROUTES</b>', '<b>AVERAGE ROUNDTRIP FLIGHTS</b>', '<b>AVERAGE ARRIVAL DELAY</b>', '<b>ON TIME%</b</pre>
          df = recommended_routes
          fig = go.Figure(data=[go.Table(
              columnwidth =[30,60],
              header=dict(values=col,
                          fill_color='powderblue',
                          align='left'),
              cells=dict(values=[df.Rank, df.roundtrip_route, df.avg_flights,df.avg_arr_delay,df['on_time%'],df['delay_grt_30mins%'], df.tot
                         fill_color='lavender',
                         align='left'))
          fig.update_layout(width=900)
          fig.show("notebook")
```

RANK	ROUNDTRIP ROUTES	AVERAGE ROUNDTRIP FLIGHTS	AVERAGE ARRIVAL DELAY	ON TIME%	ARRIVAL DELAY>30%	TOTAL PROFIT	AVERAGE CARRIERS	DISTANCE (MILES)
1	JFK-LAX	3121	-1.8	82	10	\$275.5M	4	4950
2	DCA-ORD	1832	6.54	78	13	\$115.2M	6	1224
3	LAS-LAX	3236	7.02	78	12	\$108.0M	8	472
4	ATL-LGA	2291	5.47	77	14	\$119.0M	5	1524
5	JFK-SFO	1838	6.96	74	17	\$133.0M	4	5172
6	BOS-LGA	2392	14.49	71	20	\$117.5M	5	368
7	LAX-SFO	4153	15.79	69	22	\$157.2M	7	674
8	DCA-LGA	1672	12.09	69	20	\$105.7M	2	428
9	EWR-SFO	1187	14.83	69	19	\$121.7M	2	5130
10	LGA-ORD	3563	19.71	66	23	\$141.1M	6	1466

```
#Breakeven table
In [245...
          import plotly.graph objects as go
          col = ['<b>ROUND TRIP ROUTES</b>', '<b>AVERAGE ROUNDTRIP FLIGHTS</b>','<b>TOTAL REVENUE</b>','<b>TOTAL COST</b>','<b>TOTAL PROFIT
          df = recommended_routes.nsmallest(5,'Rank').reset_index(drop=True)
          fig = go.Figure(data=[go.Table(
              columnwidth =[30,30],
              header=dict(values=col,
                          fill_color='powderblue',
                          align='left'),
              cells=dict(values=[ df.roundtrip_route, df.avg_flights,df.total_revenue,df.total_cost, df.total_profit,df.occupancy_rate, df.b
                         fill_color='paleturquoise',
                         align='left'))
          ])
          fig.update_layout(width=750)
          fig.show("notebook")
```