

Datasheet

APM32F030x4x6x8

Arm® Cortex®-M0+ based 32-bit MCU

Version: V1.6

1. Product characteristics

System Architecture

- 32-bit Arm® Cortex®-M0+core
- Up to 48MHz working frequency

Memory

- Flash: 16~64Kbytes
- SRAM: 4~8Kbytes

Clock, reset and power management

- External supply voltage: V_{DD}=2.0~3.6V
- Analog power supply: V_{DDA} = V_{DD} ~3.6V
- Power-on/power-down reset (POR/PDR)
- 4~32MHz crystal oscillator
- RTC 32KHz oscillator with calibration
- Internal 40 KHz RC oscillator

Low power consumption mode

- Sleep, halt and standby
- Up to 55 fast I/O pins
- Supports all mappable external interrupt vectors
- Almost all I/O pins are compatible with 5V input
- 5-channel DMA controller

Analog peripherals

 1 12-bit ADC; up to 16 external channels supported, conversion range: 0 ~ 3.6V, independent analog power supply: 2.4~3.6V

■ Real-time clock RTC

- Support calendar function
- It can be used for alarm and periodic wake-up in halt and standby mode

10 timers

- 1 16-bit advanced control timer with 7-channel PWM output
- Up to 5 general-purpose 16-bit timers
- 1 16-bit basic timer
- Independent watchdog and system window watchdog timer
- System tick timer

Communication interfaces

- Up to 2 I2C interfaces
- Up to 2 USART interfaces
- Up to 2 SPI interfaces
- CRC calculation unit
- Serial wire debugging (SWD)
- 96-bit UID

Contents

1.	Product characteristics	1
2.	Brief introduction	5
3.	Function description	6
3.1.	System block diagram	8
3.2.	Core	9
3.3.	Memory	9
3.4.	Address mapping	. 10
3.5.	Power management	. 11
3.5.1	Power supply scheme	. 11
3.5.2	Voltage regulator	. 11
3.5.3	Power supply monitor	. 11
3.6.	Clock tree	. 13
3.7.	Clock and startup	. 14
3.8.	Real time clock (RTC)	. 14
3.9.	Startup mode	. 14
3.10.	CRC calculation unit	. 15
3.11.	Interrupt controller	. 15
3.11.1	Nested Vector Interrupt Controller (NVIC)	. 15
3.11.2	External Interrupt/Event Controller (EINT)	. 15
3.12.	DMA	. 15
3.13.	Timer	. 16
3.14.	System tick timer	. 18
3.15.	General purpose input/output interface (GPIO)	. 18
3.16.	Communication interface	. 18
3.16.1	I2C bus	. 18
3.16.2	Universal synchronous/asynchronous transceiver (USART)	. 19
3.16.3	SPI	. 20
3.17.	Analog interface	. 20
3.17.1	ADC (analog/digital converter)	. 20
4.	Pin characteristics	. 22
4.1.	Pin definition	. 22
4.2	Pin function description	. 25

5.	Electrical specification	36
5.1.	Test condition	36
5.1.1	Maximum and minimum value	36
5.1.2	Typical value	36
5.1.3	Typical curve	36
5.1.4	Load capacitance	36
5.2.	Absolute maximum rating	.38
5.2.1	Maximum rated voltage characteristics	.38
5.2.2	Maximum Rated Current Features	.38
5.2.3	Maximum electrostatic characteristics	39
5.2.4	Static latch	40
5.2.5	Maximum temperature characteristics	40
5.3.	Testing under general working conditions	40
5.3.1	Embedded reset and power control module characteristic test	40
5.3.2	Built-in reference voltage characteristic test	41
5.3.3	Power consumption	41
5.3.4	External clock source characteristics	45
5.3.5	Internal clock source characteristics	45
5.3.6	Wake-up time in low power mode	46
5.3.7	PLL characteristics	47
5.3.8	Memory characteristics	47
5.3.9	I/O port characteristics	47
5.3.10	NRST pin characteristics	49
5.3.11	communication interface	50
5.3.12	12-bit ADC features	53
6.	Package Characteristics	54
6.1.	LQFP64 package information	54
6.2.	LQFP48 package information	57
6.3.	LQFP32 package information	60
6.4.	QFN48 package information	62
6.5.	QFN32 Package information	64
6.6.	QFN28 Package information	66
6.7.	TSSOP20 Package information	68
7.	Ordering information	69

8.	Packaging information	71
8.1.	Reel packaging	71
8.2.	Tray packaging	73
8.3.	Material tube	74
9.	Naming of common functional modules	75
10.	Version history	76

2. Brief introduction

The APM32F030x4x6x8 series chips are 32-bit high-performance microcontrollers based on Arm® Cortex®-M0+core, and the working frequency can reach 48MHz. Built-in high-speed memory (up to 64 kbytes of flash memory and 8 kbytes of SRAM), the chip pins are multiplexed with a large number of enhanced peripherals and I/O. All chips provide standard communication interfaces: I2C interface, SPI interface and USART interface.

The working temperature range of APM32F030x4x6x8 microcontroller is -40°C ~+105°C, and the voltage range is 2.0~3.6V Many power-saving modes ensure the requirements of low-power applications.

The APM32F030x4x6x8 microcontroller includes many different packages with 20, 28, 32, 48 and 64 pins, and different package forms make the peripheral configuration of the device different.

For information about the Arm® Cortex®-M0+core, please refer to the Arm® Cortex®-M0+technical reference manual, which can be downloaded from Arm's website.

3. Function description

See the following table for specific APM32F030x4x6x8 product functions and peripheral configuration.

Table 1 The functions and peripherals of APM32F030x4x6x8 series chips

Table 1 The functions and peripherals of Ar Mozi 00044000 series chips															
Products								APM3	2F030						
Model		F4P6	F6P6	F8P6	G4U6	G6U6	G8U6	K6U6	K6T6	K8T6	C6U6	C8U6	C6T6	C8T6	R8T6
Encapsul	Encapsulation		rssop2	0	QFN28			QFN32	2 LQFP32		QFN48		LQFP48		LQFP64
Flash memo	Flash memory (KB)		16 32 64 16 32 64 32 64 32 64 32		32	64									
SRAM(I	(B)								8						
	16-bit universal			4							5				
	16-bit advanced								1						
T:	16-bit Basic		0							1					
Timer	24-bit down counter								1						
	Watchdog (WDT)								2						
	Real-time clock								1						
	USART			1		2	2		1			2	1		2
communication interface	SPI			1			2		1			2	1		2
	I2C		0		,		2		1			2	1		2
	Unit								1						
12-bit ADC	External channel		9						10						16
	Internal channel								2						
GPIO	s		15			23		27	2	5		3	9		55

Products	APM32F030
Maximum CPU frequency	M0+@48MHz
A mala i a má da mara a made uma	Ambient temperature: -40℃至 85℃/-40℃至 105℃
Ambient temperature	Junction temperature: -40℃至 105℃/-40℃至 125℃
Working voltage	2.0~3.6V

3.1. System block diagram

Arm® Cortex®-MO+ (Fmax:48MHz) SWD NVIC SCB STK Flash Bus matrix GPIOs (A-F) Flash interface SRAM RCM TMR1/3/6/7/1 4/15/16/17 AHB1/APB CRC bridge RTC PMU WWDT IWDT SYSCFG SPI1/2 EINT USART1/2 ADC 1201/2 DBGMCU

Figure 1 System block diagram

3.2. **Core**

The Arm® Cortex®-M0+core is the latest generation of embedded Arm core. It is a low-cost platform, and APM32 is developed based on this platform, which has made a lot of optimization for system power consumption, while APM32 provides excellent computing performance and advanced system interrupt response.

The APM32F0xx series is based on the embedded Arm core, so it is compatible with all Arm tools and software.

The functional block diagram of APM32F030x4x6x8 series products is shown in figure 1.

3.3. **Memory**

See the following table for memory details:

Table 2 **Memory description**

Memory	Max bytes	Function					
Embedded flash	64Kbytoo	Llood to store programs and data					
memory	64Kbytes	Used to store programs and data					
SRAM	8Kbytes	Used to store temporary data					
Oution by to	405-4	Used to write protect memory and to protect the					
Option byte	16bytes	whole memory					

3.4. Address mapping

Figure 2 APM32F030x4x6x8 memory map

3.5. Power management

3.5.1 **Power supply scheme**

Table 3 Power supply scheme

Name	Voltage range	description
V _{DD}	2.0~3.6V	V_{DD} directly supplies power to IO port, and V_{DD} supplies power to core circuit through voltage regulator
V _{DDA}	V _{DD} ~3.6V	V_{DDA} supplies power to ADC, reset module, RC oscillator and PLL. The V_{DDA} voltage level must always be greater than or equal to the V_{DD} voltage level, and it should be given priority

Note: See Figure 9 (Power Supply Scheme) for more details on how to connect power supply pins.

3.5.2 **Voltage regulator**

There are three main modes of voltage regulator. The working mode of MCU can be adjusted by voltage regulator to reduce power consumption. See the following table for details of the three modes.

Table 4 Operation mode of voltage regulator

Name	description
Master mode (MR)	Used in normal operation mode.
Low power mode (LPR)	It can be used in halt mode when power demand decreases.
Power-down mode	Used in power standby mode, the output of the voltage regulator is high impedance, the power supply of the core circuit is cut off, the voltage regulator is in zero consumption state, and all the data of registers and SRAM will be lost.

Note: The voltage regulator is always in working state after reset, and outputs with high impedance in power-down mode.

3.5.3 **Power supply monitor**

Two circuits of power-on reset (POR) and power-down reset (PDR), are integrated inside the product. These two circuits are always in working condition. When the power-down reset circuit monitors that the power supply voltage is lower than the specified threshold V_{POR/PDR}, the system enters the reset state, so it does not need to use an external reset circuit.

For details of $V_{\text{POR/PDR}}$, please refer to 5. Test Conditions, Low Power Consumption Mode.

The APM32F0xx series supports the following three low power consumption modes, which can be configured by users to meet the best application requirements.

Table 5 Low power consumption mode

Mode type	description
Sleep mode	In sleep mode, the CPU stops working, all peripherals are in working state, and
	interrupts/events can wake up the CPU.
halt mode	halt mode can achieve the lowest power consumption mode without losing SRAM
	and register data.
	At this time, the internal 1.5V power supply is stopped, which causes the clocks of
	HSECLK, HSICLK and PLL to turn off, and the voltage regulator is placed in
	normal mode or low power consumption mode.
	Interrupt and event wake-up configured as EINT can wake up CPU from halt
	mode. EINT signal includes one of 16 external I/O ports, RTC alarm clock.
Standby mode	Standby mode is the lowest power consumption mode used by the chip. At this
	time, the internal voltage regulator is turned off, which causes the power supply of
	the internal 1.5V part to be cut off, and the clocks of HSECLK, HSICLK and PLL
	are turned off; SRAM and register data will also disappear. However, the contents
	of the backup register remain, and the standby circuit still works.
	The external reset signal on NRST, IWDT reset, a rising edge on WKUP pin or
	RTC alarm clock will terminate the chip standby mode.

Note: RTC, IWDT and corresponding clocks still work normally in halt or standby mode.

3.6. Clock tree

HSICLK Flash programming interface 1201/2 HSICLK HSICLK AHB/Core/ Memory/DMA PLLMUL ×2, ×3 ····×16 HSICLK 8MHz PLLCLK SYSCLI /1. 2•• /2 /8 System Timer /512 /1, /2, /4, /8, /16 APB peripheral APB_CLK_ /1, 2 •••16 APBPSC TMR1/3/6/ 14/15/16/ 17 HSECLK OSC 4-32MHz OSC_OUT HSECLK ×1, ×2 OSC_IN[HSECLK CSS /32 SYSCLK LSECLK ►RTC USART1 HSICLK LSICLK LSECLK /2, /4 ADC OSC32_OUT [LSECLK LSECLK OSC32_IN[HSTCLK14 RC 14MHz HSICLK14 LSICLK 40kHz LSICLK LSICLK | IWDT -PLLCLK -SYSCLK -HSECLK -HSICLK -HSICLK14 -LSICLK Clock output мсо Г

Figure 3 Clock tree of APM32F030x4x6x8

3.7. Clock and startup

Users can use 4~32MHz external high-speed clock with "failure monitoring" function through configuration. When the system clock does not detect that the external clock is configured, the system will automatically switch to the internal RC oscillator.

3.8. Real time clock (RTC)

RTC is an independent BCD timer/counter, which can not only support calendar function, but also have alarm clock interrupt and periodic interrupt function. Besides sub-second, second, minute, hour (12 or 24-hour format), week, date, month and year, the calendar clock existing in BCD (binary coded decimal system) format, the calendar function can also automatically adjust one month to 28, 29(leap year), 30 and 31 days.

Users can dynamically adjust RTC clock pulses from 1 to 32767. By adjusting RTC clock pulse to synchronize RTC and master clock, it can compensate the inaccuracy of quartz crystal, and the resolution of its digital calibration circuit is 1ppm. RTC has two programmable filter anti-tampering detection pins, which can wake up MCU in halt and standby modes when tampering events are detected. In addition, RTC has time stamp function, which can be used to save calendar contents. The timestamp function of RTC can be triggered by events on pins or tampering events. The MCU can wake up from the halt and standby modes when detecting a time event. The reference clock detection can use a more accurate second source clock (50 or 60Hz) to improve the accuracy of the calendar. Its clock source can be an external crystal oscillator, resonator or oscillator with 32.768kHz, an internal RC oscillator with low power consumption (typical frequency is 40KHz) or a high-speed external clock with 32 frequency division.

3.9. Startup mode

At startup, the user can select one of the following three startup modes by setting the high and low levels of the Boot pin:

- Startup from user Flash
- Startup from system memory
- Startup from embedded SRAM

Users can use USART to reprogram user Flash (ISP) when startup from system memory.

3.10. CRC calculation unit

A CRC (Cyclic Redundancy Check) calculation unit obtains a CRC code through a generator polynomial algorithm.

3.11. Interrupt controller

3.11.1 Nested Vector Interrupt Controller (NVIC)

The APM32F030x4x6x8 product has a nested vector interrupt controller, and NVIC can handle up to 32 maskable interrupt channels (excluding 16 interrupt lines of Cortex®-M0+) and 4 priorities.

Nested Vector Interrupt Controller (NVIC) has a tightly coupled NVIC interface, which directly transmits the interrupt vector entry address to the kernel, thus achieving low-latency interrupt response processing. In addition, it can give priority to late arriving higher priority interrupts

3.11.2 External Interrupt/Event Controller (EINT)

The external interrupt/event controller consists of 32 edge detectors that generate event/interrupt requests. Its trigger events (rising edge or falling edge or double edge) can be independently configured or shielded; There is a register that holds the status of all interrupt requests. Up to 55 general-purpose I/OS can be connected to 16 external interrupt lines. EINT can detect pulses whose width is smaller than the internal clock period.

3.12. **DMA**

Five flexible general-purpose DMA can transfer data from memory to memory, from peripheral to memory and from memory to peripheral. The DMA controller supports the management of the ring buffer, and when the controller reaches the end of the buffer, there is no need for user code intervention.

Each channel has special hardware DMA request logic, and each channel can be triggered by software, and the address and target address can also be set independently by software.

DMA can be used for major peripherals: SPI, I2C, USART, all TMRx timers (except TMR14) and ADC.

3.13. **Timer**

The APM32F030x4x6x8 product includes up to five general timers, a basic timer and an advanced control timer.

Table 6 Advanced control timer

Timer type	Advanced control timer		
Timer	TMR1		
Counter resolution	16 bits		
Counter type	Up, down, up/down		
Prescaler coefficient	Any integer between 1 and 65536		
DMA request generation	Yes		
Acquisition/comparis on channel	4		
Complementary output	Yes		
Function description	It has complementary PWM output with dead band insertion, and can also be regarded as a complete general timer. When configured as a 16-bit standard timer, it has the same function as the TMRx timer. When configured as a 16-bit PWM generator, it has full modulation capability (0~100%). In debug mode, the timer can be frozen. Provides synchronization or event linking.		

Table 7 Basic timer

Timer type	Basic timer		
Timer	TMR6		
Counter resolution	16 bits		
Counter type	Up		
Prescaler coefficient	Any integer between 1 and 65536		
DMA request generation	Yes		
Acquisition/comparison channel	0		
Complementary output	-		
Function description	It can be used as a universal 16-bit time base clock		

Table 8 General timer

Timer type	General timer							
Timer	TMR3	TMR14	TMR15	TMR16	TMR17			
Counter resolution	16 bits	16 bits	16 bits	16	16 bits			
Counter type	Up, down, Up, down	Up	Up	L	Jp			
Prescaler	Any integer between 1 and 65536	Any integer between 1 and 65536	Any integer between 1 and 65536	betwee	nteger n 1 and 536			
DMA request generation	Yes	No	Yes	Y	es			
Capture/ Comparison Channels	4	1	2		1			
Function description	There are 4 independent channels, each for input capture/output comparison, PWM or single pulse mode output. Up to 12 input capture, output comparison or PWM channels can be provided in the largest package configuration. It has an independent DMA request generation.	Single channel, PWM or single pulse mode output function for input capture/output comparison.	function of generation and request These three together, and with TMR1 through which can read or even TMR15 has channels, with TMR17 ar TMR15 can be	It has complementary output function with dead zone generation and independent DM request generation. These three timers can work together, and TMR15 operates with TMR1 through link function which can realize synchronization or event link function. TMR15 has two independent channels, while TMR16 and TMR17 can be synchronized with TMR15 can be synchronized with TMR16 and TMR17.				

Table 9 Comparison between independent watchdog and window watchdog

Name	Counter Resolution	Counter type	Prescaler coefficient	Function description
Independent watchdog (IWDT)	12 bits	down	Between 1 and 256 Arbitrary integer	The clock is provided by an internally independent RC oscillator of 40KHz, which is independent of the master clock, so it can run in halt and standby modes. The whole system can be reset in case of problems. You can provide timeout management for applications. It can be configured as a software or hardware startup watchdog.

Name	Counter Resolution	Counter type	Prescaler coefficient	Function description
				In debug mode, the counter can be paused for convenience of debugging.
Window watchdog (WWDT)	7 bits	down	-	It can be set to run freely. The whole system can be reset in case of problems. Driven by the master clock, it has early interrupt warning function. Timers in debug mode can be frozen.

3.14. System tick timer

System tick timer is a standard 24-bit down counter with automatic reloading function. When the counter is 0, it can generate a masked system interrupt and can program the clock source (HCLK or HCLK/8).

3.15. General purpose input/output interface (GPIO)

Each GPIO pin can be configured as an output (push-pull or open drain), an input (with or without pull-down) or a multiplexed peripheral function port by software. Most GPIO pins can be shared with digital or analog multiplexed peripherals.

The peripheral functions of I/O pins can be locked by a specific operation sequence to avoid accidental writing to I/O registers.

3.16. Communication interface

3.16.1 **I2C bus**

I2C1/2 can work in master mode and slave mode, and supports 7-bit and 10-bit addressing modes. I2C1/2 supports standard mode (up to 100kbit/s) or fast mode (up to 400kbit/s). In addition, I2C1 has built-in programmable analog and digital noise filters, and also supports ultra-fast mode (up to 1 Mbit/s).

In addition, I2C1 also provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP function, host notification protocol, hardware CRC(PEC) generation/verification, timeout verification and alarm protocol management.

I2C supports DMA function.

See table 10 for the differences between I2C1 and I2C2.

Table 10 APM32F030x4x6x8I2C function

I2C function	I2C1	I2C2 (2)
7-bit addressing mode	√ ⁽¹⁾	$\sqrt{}$
10-bit addressing mode	$\sqrt{}$	$\sqrt{}$
Standard mode (up to 100kbit/s)	$\sqrt{}$	√
Fast mode (up to 400kbit/s)	$\sqrt{}$	√
Ultra-fast mode (up to 1Mbit/s), I/O port supports 20mA output current drive	$\sqrt{}$	-
Independent clock	$\sqrt{}$	-
SM bus	$\sqrt{}$	-
Wake up from halt	-	-

Note:

- (1) $\sqrt{\ }$ = support
- (2) Available only on APM32F030x8 chip.

3.16.2 Universal synchronous/asynchronous transceiver (USART)

Up to two universal synchronous/asynchronous transceivers are built in the chip, and the communication rate can reach 6Mbit/s at the highest. All USART interfaces can be provided by DMA controller, and the functions that USART interfaces can realize are shown in the following table.

Table 11 APM32F0x6/8 USART function

LICART manda from a time	APM32F030x6	APM32	F030x8
USART mode/function	USART1	USART1	USART2
Hardware flow control of modem	$\sqrt{}$	$\sqrt{}$	√
Continuous communication using DMA	\checkmark	$\sqrt{}$	√
Multiprocessor communication	$\sqrt{}$	$\sqrt{}$	√
Synchronization mode	√	√	√
Smart card mode	-	-	-
Single wire half duplex communication	√	√	√
IrDA SIR codec module	-	-	-
LIN mode	-	-	-
Dual clock domain and wake-up from halt mode	-	-	-
Receiver timeout interrupt	√	√	-
MODBUS communication	-	-	-
Auto baud rate detection (supported mode)	2	2	-
USART data length	8 bit	s and 9 bits	

Note: $\sqrt{\ }$ = support.

3.16.3 **SPI**

Two SPI interfaces are embedded in APM32F0xx series, which enables the chip to communicate with external devices in half/full duplex serial mode. The interface can be configured as master mode or slave mode. Eight master mode frequencies can be generated by a 3-bit prescaler, with 4~16 bits per frame and a communication rate of 18 Mbit/s.

The functions of SPI1 and SPI2 are similar, see the table below for details.

Table 12 APM32F030x4x6x8 SPI function

SPI function	SPI	SPI2 ⁽²⁾
Calculation of hardware cyclic redundancy check	√ ⁽¹⁾	$\sqrt{}$
Receive/Send first in first out (FIFO)	$\sqrt{}$	$\sqrt{}$
NSS pulse mode	$\sqrt{}$	$\sqrt{}$
TI mode	√	V

Note:

- (1) $\sqrt{\ }$ = supported.
- (2) Available only on APM32F030x8 chip.

3.17. Analog interface

3.17.1 ADC (analog/digital converter)

The 12-bit A/D converter has up to 16 external channels and 2 internal channels (temperature sensor, voltage reference), which can perform single or scanning conversion.

The analog watchdog function can monitor multiple channels very accurately, and when the monitored signal exceeds the threshold value, an interrupt will be generated.

ADC supports DMA function.

3.17.1.1.Internal reference voltage (V_{REFINT})

The internal reference voltage (V_{REFINT}) provides a stable (band gap) voltage output for the ADC. V_{REFINT} is internally connected to the ADC_IN17 input channel.

Table 13 Internal reference voltage calibration value

Calibration value name	description	Memory address
VREFINT CAL	Original data collected at 30°C(± 5 °C)	0x1FFF F7BA - 0x1FFF F7BB
	and $V_{DDA} = 3.3v (10mv)$	

3.17.1.2. Serial wire debug port (SW-DP)

The product provides Arm SW-DP interface, through which MCU can be connected with serial line debugging tool.

4. Pin characteristics

4.1. Pin definition

Figure 4 Pin definition diagram of APM32F030x4x6x8 series LQFP64

Figure 5 Pin configuration diagram of APM32F030x4x6x8 series LQFP48

Figure 6 Pin configuration diagram of APM32F030x4x6x8 series LQFP32

Figure 7 Pin configuration diagram of APM32F030x4x6x8 series QFN48

Figure 8 Pin configuration diagram of APM32F030x4x6x8 series QFN32

Figure 9 Pin configuration diagram of APM32F030x4x6x8 series QFN28

Figure 10 Pin configuration diagram of APM32F030x4x6x8 series TSSOP20

4.2. Pin function description

Table 14 Legend/abbreviation used in output pin table

Name	Abbreviations	Definition						
Pin name	Unless otherv	Unless otherwise specified in parentheses below the pin name, the pin						
Pin name	functions dur	ring and after reset are the same as the actual pin name						
	S	Power supply pin						
Pin type	I	Input pins only						
	I/O	I/O pins						
	FT	I/O with 5V tolerance						
	FTf	I/O with 5 V tolerance, FM+ function						
1/0 - t	TTa	I/O with 3.3 V tolerance is directly connected to ADC						
I/O structure	TC	Standard 3.3VI/O						
	В	Dedicated BOOT0 pin						
	RST Bidirectional reset pin with built-in weak pull-up resis							
nov attention to	Unless otherwise	e specified in the notes, all I/O is set as floating input during						
pay attention to		and after reset						

Pin	Multiplexing function	The function selected by GPIOx_AFR register
function	Additional	Functions directly selected/enabled through peripheral registers
	function	

Table 15 Functional description of APM32F030x4x6x8 pin

Pin name			Pin c	oding	iotional a	escription			λο pii	Pin fur	ection
(Function after reset)	LQFP64	LQFP48 /QFN48	LQFP32	QFN32	QFN28	TSSOP20	Pin Type	I/O Structure	Notes	Multiplexing function	Additional function
VDD	1	1	-	-	-	-	S	-	-	Complementary	power supply
PC13	2	2	-	-	-	-	I/O	TC	(1)	-	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2
PC14-OSC32_IN (PC14)	3	3	-	-	-	-	I/O	TC	(1)	-	OSC32_IN
PC15-OSC32_OUT (PC15)	4	4	-	1	-	-	I/O	TC	(1)	1	OSC32_OUT
PF0-OSC_IN (PF0)	5	5	2	2	2	2	I/O	FT	1	-	OSC_IN
PF1-OSC_OUT (PF1)	6	6	3	3	3	3	I/O	FT	1	1	OSC_OUT
NRST	7	7	4	4	4	4	I/O	RST	1	Chip reset input/int (active	·
PC0	8	-	-	-	-	-	I/O	TTa	ı	EVENTOUT	ADC_IN10
PC1	9	-	-	-	-	-	I/O	TTa	1	EVENTOUT,	ADC_IN11
PC2	10	-	-	1	-	-	I/O	TTa	ı	EVENTOUT	ADC_IN12
PC3	11	-	-	-	-	-	I/O	TTa	-	EVENTOUT	ADC_IN13
VSSA	12	8	-	0	-	-	S	-	-	Analog	ground
VDDA	13	9	5	5	5	5	S	-	-	Analog pov	ver supply

Pin name			Pin c	oding			Pin	I/O		Pin fur	nction
(Function after reset)	LQFP64	LQFP48 /QFN48	LQFP32	QFN32	QFN28	TSSOP20	Туре	Structure	Notes	Multiplexing function	Additional function
PA0	14	10	6	6	6	6	I/O	TTa	-	USART2_CTS	ADC_IN0, RTC_TAMP2, WKUP1
PA1	15	11	7	7	7	7	I/O	TTa	-	USART2_RTS, EVENTOUT	ADC_IN1
PA2	16	12	8	8	8	8	I/O	ТТа	-	USART2_TX, TMR15_CH1	ADC_IN2
PA3	17	13	9	9	9	9	I/O	ТТа	-	USART2_RX, TMR15_CH2	ADC_IN3
PF4	18	-	-	-	1	-	I/O	FT	-	EVENTOUT	-
PF5	19	-	-	-	-	-	I/O	FT	-	EVENTOUT	-
PA4	20	14	10	10	10	10	I/O	TTa	-	SPI1_NSS, USART2_CK, TMR14_CH1	ADC_IN4
PA5	21	15	11	11	11	11	I/O	TTa	-	SPI1_SCK	ADC_IN5
PA6	22	16	12	12	12	12	I/O	TTa	-	SPI1_MISO, TMR3_CH1, TMR1_BKIN, TMR16_CH1, EVENTOUT	ADC_IN6

Pin name			Pin c	oding			Pin	I/O		Pin fur	nction	
(Function after reset)	LQFP64	LQFP48 /QFN48	LQFP32	QFN32	QFN28	TSSOP20	Туре	Structure	Notes	Multiplexing function	Additional function	
										SPI1_MOSI,		
										TMR3_CH2,		
PA7	23	17	13	13	13	13	I/O	TTa	_	TMR14_CH1,	ADC_IN7	
FA/	23	17	13	13	13	13	1/0	Ha	-	TMR1_CH1N,	ADC_IN7	
										TMR17_CH1,		
										EVENTOUT		
PC4	24	-	-	-	-	-	I/O	TTa	-	EVENTOUT	ADC_IN14	
PC5	25	-	-	-	-	-	I/O	TTa	-	-	ADC_IN15	
										TMR3_CH3,		
PB0	26	18	14	14	14	-	I/O	TTa	-	TMR1_CH2N,	ADC_IN8	
										EVENTOUT		
										TMR3_CH4,		
PB1	27	19	15	15	15	14	I/O	TTa	-	TMR14_CH1,	ADC_IN9	
										TMR1_CH3N		
PB2	28	20	-	16	-	-	I/O	FT	ı	-	-	
PB10	29	21	-	-	-	-	I/O	FT	-	I2C2_SCL	-	
DD 44	00	00					1/0				I2C2_SDA,	
PB11	30	22	-	-	-	-	I/O	FT	ı	EVENTOUT	-	
VSS	31	23	16	0	16	-	S	-	-	grou	ınd	
VDD	32	24	17	17	17	16	S	-	-	Digital pow	er supply	
										SPI2_NSS,		
PB12	33	25	-	-	-	-	I/O	FT	-	TMR1_BKIN,	-	
										EVENTOUT		

Pin name			Pin c	oding			Pin	I/O		Pin fur	nction	
(Function after reset)	LQFP64	LQFP48 /QFN48	LQFP32	QFN32	QFN28	TSSOP20	Туре	Structure	Notes	Multiplexing function	Additional function	
PB13	34	26	_	_	_		I/O	FT	-	SPI2_SCK,		
PDIS	34	20	-	-	-	-	1/0	ГІ	-	TMR1_CH1N	<u>-</u>	
										SPI2_MISO,		
PB14	35	27	-	-	-	-	I/O	FT	-	TMR1_CH2N,	-	
										TMR15_CH1		
										SPI2_MOSI,		
PB15	36	28	_				I/O	FT	_	TMR1_CH3N,	RTC_REFIN	
1 013	30	20	_	-	-	_	1/0	''	_	TMR15_CH1N,	KTO_KELIN	
										TMR15_CH2		
PC6	37	-	-	-	-	-	I/O	FT	1	TMR3_CH1	-	
PC7	38	-	-	-	-	-	I/O	FT	-	TMR3_CH2	-	
PC8	39	-	-	-	-		I/O	FT	1	TMR3_CH3	-	
PC9	40	-	-	-	-		I/O	FT	1	TMR3_CH4	-	
										USART1_CK,		
PA8	41	29	18	18	18		1/0	I/O FT -	FT		TMR1_CH1,	
PA8	41	29	18	18	18	-	1/0		-	EVENTOUT,	-	
										MCO		
										USART1_TX,		
PA9	42	30	19	19	19	17	I/O	FT	-	TMR1_CH2,	-	
										TMR15_BKIN		
										USART1_RX,		
PA10	43	31	20	20	20	18	I/O	FT	-	TMR1_CH3,	-	
										TMR17_BKIN		

Pin name	Pin coding							I/O		Pin function	
(Function after reset)	LQFP64	LQFP48 /QFN48	LQFP32	QFN32	QFN28	TSSOP20	Pin Type	Structure N	Notes	Multiplexing function	Additional function
										USART1_CTS,	
PA11	44	32	21	21	-	-	I/O	FT	-	TMR1_CH4,	-
										EVENTOUT	
										USART1_RTS,	
PA12	45	33	22	22	-	-	I/O	FT	-	TMR1_ETR,	-
										EVENTOUT	
PA13	46	34	23	23	21	19	I/O	FT	(2)	IR_OUT,SWDIO	_
(SWDIO)	40	34	23	25	21	19	1/0	' '	(2)	111_001,000010	-
PF6	47	35	-	-	-	-	I/O	FT	-	I2C2_SCL	-
PF7	48	36	-	-	-	-	I/O	FT	-	I2C2_SDA	-
PA14	PA14								(2)	USART2_TX,	
(SWCLK)	49	37	24	24	22	20	I/O	FT	(2)	SWCLK	-
										SPI1_NSS,	
PA15	50	38	25	25	23	-	I/O	FT	-	USART2_RX,	-
										EVENTOUT	
PC10	51	-	-	-	-	-	I/O	FT	-	-	-
PC11	52	-	-	-	-	-	I/O	FT	-	-	-
PC12	53	-	-	-	-	-	I/O	FT	-	-	-
PD2	54	-	-	-	-		I/O	FT	-	TMR3_ETR	-
PB3	55	39	26	26	24	-	I/O	FT	-	SPI1_SCK, EVENTOUT	-

Pin name	Pin coding							I/O		Pin function	
(Function after reset)	LQFP64	LQFP48 /QFN48	LQFP32	QFN32	QFN28	TSSOP20	Pin Type	Structure	Notes	Multiplexing function	Additional function
										SPI1_MISO,	
PB4	56	40	27	27	25	-	I/O	FT	-	TMR3_CH1,	-
										EVENTOUT	
										SPI1_MOSI,	
PB5	57	41	28	28	26		I/O	FT		I2C1_SMBA,	
PDS	37	41	20	20	20	-	1/0	Г	-	TMR16_BKIN,	-
										TMR3_CH2	
										I2C1_SCL,	
PB6	58	42	29	29	27	-	I/O	FT	-	USART1_TX,	-
										TMR16_CH1N	
										I2C1_SDA,	
PB7	59	43	30	30	28	-	I/O	FT	-	USART1_RX,	-
										TMR17_CH1N	
воото	60	44	31	31	1	1	1	В	-	Memory start	up selection
550	0.1	4.5		0.0						I2C1_SCL,	
PB8	61	45	-	32	-	-	I/O	FTf	-	TMR16_CH1	-
		62 46			-		I/O	FTf		I2C1_SDA,	
550	20		-	-		-				IR_OUT,	
PB9	62								-	TMR17_CH1,	-
				_						EVENTOUT	
VSS	63	47/0	32	0	0	15	S	-	-	grou	ınd
VDD	64	48	1	1	-	16	S	-	-	Digital power supply	

Note:

- (1) If PF0 and PF1 need to be configured as GPIO, HSEEN must be disabled first.
- (2) PC13, PC14 and PC15 are powered by the power switch. Because the switch only absorbs limited current (3 mA), the use of PC13 to PC15 of GPIO is limited in output mode: when the large load is 30 pF, the speed should not exceed 2 MHz; It is not used as a current source (for example, driving light emitting diodes).
- (3) Upon reset, these pins are configured as SWDIO and SWCLK multiplexing functions, and the internal pull-up of SWDIO pin and the internal pull-down of SWCLK pin are activated.

Table 16 Select multiplexing function for port A through GPIOA_AFR register

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PA0	-	USART2_CTS	-	-		-	-
PA1	EVENTOUT	USART2_RTS	-	-			-
PA2	TMR15_CH1	USART2_TX	-	-	-	-	-
PA3	TMR15_CH2	USART2_RX	-	-	-	-	-
PA4	SPI1_NSS	USART2_CK	-	-	TMR14_CH1		-
PA5	SPI1_SCK	-	-	-	-		-
PA6	SPI1_MISO	TMR3_CH1	TMR1_BKIN	-		TMR16_CH1	EVENTOUT
PA7	SPI1_MOSI	TMR3_CH2	TMR1_CH1N	-	TMR14_CH1	TMR17_CH1	EVENTOUT
PA8	MCO	USART1_CK	TMR1_CH1	EVENTOUT	-	-	-
PA9	TMR15_BKIN	USART1_TX	TMR1_CH2	-			ı
PA10	TMR17_BKIN	USART1_RX	TMR1_CH3	-		-	1
PA11	EVENTOUT	USART1_CTS	TMR1_CH4	-	-	SCL	-
PA12	EVENTOUT	USART1_RTS	TMR1_ETR	-	-	SDA	-
PA13	SWDIO	IR_OUT	-	-	-	-	-
PA14	SWCLK	USART2_TX	-	-	-	-	-
PA15	SPI1_NSS	USART2_RX	-	EVENTOUT		-	-

Table 17 Select multiplexing function for port B through GPIOB_AFR register

		-		•		
Pin name	AF0	AF1	AF2	AF3	AF4	AF5
PB0	EVENTOUT	TMR3_CH3	TMR1_CH2N	-		-
PB1	TMR14_CH1	TMR3_CH4	TMR1_CH3N	-		-
PB2	-	1	-	•	-	-
PB3	SPI1_SCK	EVENTOUT	-			-
PB4	SPI1_MISO	TMR3_CH1	EVENTOUT	•		TMR17_BKIN
PB5	SPI1_MOSI	TMR3_CH2	TMR16_BKIN	•		-
PB6	USART1_TX	I2C1_SCL	TMR16_CH1N	•	-	-
PB7	USART1_RX	I2C1_SDA	TMR17_CH1N	•		-
PB8	-	I2C1_SCL	TMR16_CH1	-	-	-
PB9	IR_OUT	I2C1_SDA	TMR17_CH1	EVENTOUT	-	-
PB10	-	I2C2_SCL	-	•		-
PB11	EVENTOUT	I2C2_SDA	-	•		-
PB12	SPI2_NSS	EVENTOUT	TMR1_BKIN	•		-
PB13	SPI2_SCK	-	TMR1_CH1N	-		
PB14	SPI2_MISO	TMR15_CH1	TMR1_CH2N	-	·	
PB15	SPI2_MOSI	TMR15_CH2	TMR1_CH3N	TMR15_CH1N	-	-

Table 18 Select multiplexing function for port C through GPIOC_AFR register

Pin name	AF0
PC0	EVENTOUT
PC1	EVENTOUT
PC2	EVENTOUT
PC3	EVENTOUT
PC4	EVENTOUT
PC5	-
PC6	TMR3_CH1
PC7	TMR3_CH2
PC8	TMR3_CH3
PC9	TMR3_CH4
PC10	
PC11	
PC12	
PC13	-
PC14	-
PC15	-

Table 19 Select multiplexing function for port D through GPIOD_AFR register

Pin name	AF0
PD2	TMR3_ETR

Table 20 Select multiplexing function for port F through GPIOF_AFR register

Pin name	AF0
PF0	-
PF1	-

5. Electrical specification

5.1. Test condition

All voltage parameters (unless otherwise specified) refer to Vss.

5.1.1 Maximum and minimum value

Unless otherwise specified, all products are tested on the production line at T_A =25°C. Its maximum and minimum values can support the worst environmental temperature, power supply voltage and clock frequency.

In the notes at the bottom of each table, it is stated that the data obtained through comprehensive evaluation, design simulation or process characteristics are not tested on the production line; On the basis of comprehensive evaluation, after passing the sample test, take the average value and add and subtract three times the standard deviation (average $\pm 3\Sigma$) to get the maximum and minimum values.

5.1.2 Typical value

Unless otherwise specified, typical data are based on T_A =25°C and V_{DD} = V_{DDA} =3.3V; These data are for design guidance only.

5.1.3 Typical curve

Unless otherwise specified, typical curves will not be tested on the production line, and will only be used for design guidance.

5.1.4 Load capacitance

Figure 11 Load conditions when measuring pin parameters

Figure 12 Pin input voltage measurement scheme

Figure 13 Current consumption measurement scheme

5.2. Absolute maximum rating

If the load on the device exceeds the absolute maximum rating, it may cause permanent damage to the device. Only the maximum load that can be borne is given here, and there is no guarantee that the device functions normally under this condition.

5.2.1 Maximum rated voltage characteristics

Table 21 Maximum rated voltage characteristics

Symbol	description	Minimum value	Maximum value	Unit
\/ \/	External main supply voltage (V _{DD}) (1)	-0.3	4.0	
V _{DD} -V _{SS}	External analog supply voltage (V _{DDA})	-0.3	4.0	
V _{DD} -V _{DDA}	Voltage difference allowed by VDD>VDDA	-	0.4	
	Input voltage on FT and FTf pins ⁽²⁾	Vss-0.3	V _{DD} +4.0	V
V _{IN} (2)	Input voltage on TTa pin (2)	V _{SS} -0.3	4.0	
VIN ²	воото	0	V _{DD} +4.0	
	Input voltage on any other pin	Vss-0.3	4.0	
$ \Delta V_{DDx} $	Voltage difference between different power supply pins	-	50	\/
Vssx-Vss	Voltage difference between different grounding pins	-	50	mV

Note:

- (1) All power supply (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the power supply within the external limited range.
- (2) If V_{IN} is within the maximum range, I_{INJ(PIN)} will not exceed its limit. If V_{IN} exceeds the maximum value, the value of I_{INJ(PIN)} must be externally limited to ensure that its maximum value is not exceeded. The forward injection current appears when V_{IN} is greater than V_{DD}, while the reverse injection current appears when V_{IN} is less than V_{SS}.

5.2.2 Maximum Rated Current Features

Table 22 Maximum Rated Current Features

Symbol	Description	Maximum	Unit
ΣI_{VDD}	Total current into sum of all V _{DD} power lines (source) ⁽¹⁾	120	
ΣI _{VSS}	Total current out of sum of all V _{SS} ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each V _{DD} power pin (source) (1)	100	mA
I _{VSS(PIN)}	Maximum current out of each V _{SS} ground pin (sink) ⁽¹⁾	-100	
I _{IO(PIN)}	Output current sunk by any I/O and control pin	25	

G	ee	h	/
CEMI	CONDUCT	OP W	•

	Output current source by any I/O and control pin	-25	
	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-80	
I _{INJ(PIN)} ⁽³⁾	Injected current on FT and FTf pins	-5/+0 ⁽⁴⁾	
	Injected current on TC and RST pins	±5	
	Injected current on TTa pins ⁽⁵⁾	±5	
$\Sigma I_{\text{INJ(PIN)}}^{(2)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±25	

Note:

- (1) All power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to a power supply within the external allowable range.
- (2) If V_{IN} does not exceed the maximum value, $I_{INJ(PIN)}$ will not exceed its limit. If VIN exceeds the maximum value, $I_{INJ(PIN)}$ must be externally limited to not exceed its maximum value. When $V_{IN} > V_{DD}$, there is a forward injection current; when $V_{IN} < V_{SS}$, there is a reverse injection current.
- (3) Reverse injection current can interfere with the analog performance of the ADC.
- (4) When several I/O ports have injection current at the same Time, the maximum value of ΣI_{INJ(PIN)} is the sum of the instantaneous absolute values of the forward injection current and the reverse injection current. These results are based on the calculation of the maximum value of ΣI_{INJ(PIN)} on the four I/O port pins of the device.
- (5) On these I/Os, a positive injection is induced by $V_{IN} > V_{DDA}$. Negative injection disturbs the analog performance of the device.
- (6) When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

5.2.3 Maximum electrostatic characteristics

Table 23 Electrostatic discharge (ESD)

Symbol	Parameter	Condition	Maximum value	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (manikin)	T _A =+25°C	3000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charging equipment model)	T _A =+25°C	2000	V

Note: The samples are measured by a third-party testing organization and are not tested in production.

5.2.4 Static latch

Table 24 Static latch

Symbol	Parameter	Condition	Туре
LU	Static latch class	T _A =+25°C/105°C	class IIA

5.2.5 Maximum temperature characteristics

 Table 25
 Temperature characteristics

Symbol	description	iption Numerical value	
T _{STG}	Storage temperature range	−65~ +150	°C
TJ	Maximum junction temperature	150	°C

5.3. Testing under general working conditions

Table 26 General working conditions

Table 20 General Working Conditions						
Symbol	Parameter	Condition	Minimum value	Maximum value	Unit	
F _{HCLK}	Internal AHB clock frequency	-	0	48		
fpclk	Internal APB clock frequency	-	0	48	MHz	
V _{DD}	Standard operating voltage	-	2	3.6	V	
V_{DDA}	Analog partial operating voltage	V _{DDA} must not be less than V _{DD}	2.4	3.6	V	
	/IN I/O input voltage	TC and RSTI/O	-0.3	V _{DD} +0.3		
Vin		TTa I/O	-0.3	V _{DDA} +0.3		
		FT and FTf I/O	-0.3	5.5	V	
		воото	0	5.5		

5.3.1 Embedded reset and power control module characteristic test

The parameters given in Table 27 are derived from the test results under the

conditions of ambient temperature and power supply voltage summarized in Table 26.

Table 27 Embedded reset and power control module features

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
(1)	Power-on/power-	Falling edge (2)	-	1.87	-	V
Vpor/pdr ⁽¹⁾	down reset threshold	Rising edge	-	1.92	-	V
V _{PDRhyst} ⁽³⁾	PDR hysteresis	-	-	50	-	mV
T _{RSTTEMPO} ⁽³⁾	Reset duration	-	1.70	2.51	3.32	ms

Note:

- (1) PDR detector monitors V_{DD} and V_{DDA} (if enabled in option byte), POR detector monitors V_{DD} only.
- (2) Product characteristics are guaranteed by design to the minimum V_{POR/PDR} value
- (3) Guaranteed by design and not tested in production.

5.3.2 Built-in reference voltage characteristic test

The parameters given in Table 28 are derived from the test results under the conditions of ambient temperature and power supply voltage summarized in Table 26.

Table 28 Built-in reference voltage

Symbol	Parameter	Condition	Minimu m value	Typical value	Maximum value	Unit
V _{REFINT}	Built-in reference voltage	-40°C < T _A < +105°C	1.19	1.23	1.24	V
t start	ADC_IN17 buffer startup time	-	-	-	10	μs
Ts_vrefint	Sampling time of ADC when reading out internal reference voltage	-	4	-	-	μs
ΔV_{REFINT}	Built-in reference voltage extends to temperature range	V _{DDA} =3.3V	1	-	10	mV

5.3.3 Power consumption

Power consumption test environment:

(1) Execute Dhrystone2.1, the compiling environment is KeilV5 and the compiling optimization level is L0.

- (2) All I/O pins are configured as analog inputs and are connected to a static level of V_{DD} or V_{SS} (non-loaded).
- (3) Unless otherwise specified, all peripherals are turned off.
- (4) The relationship between Flash waiting period setting and f_{HCMU}: 0~24MHz—0 waiting period, 24~48MHz—1 waiting period.
- (5) When it is greater than 24MHz, the instruction prefetch function is enabled (Note: this bit must be set before clock setting and bus frequency division).
- (6) When the peripheral is turned on: f_{PCLK}=f_{HCLK}.

Table 29 The program is executed in Flash, and the running mode consumes power

		power	Typical	value ⁽¹⁾	Maximum value (1)	
Parameter	Condition	fнсми	T _A =25°C, V _{DD} =3.3V		T _A =105°C, V _{DD} =3.6V	
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µ A)	I _{DD} (mA)
	(2)	48MHz	105.69	10.0	125.76	10.39
	External clock ⁽²⁾ , enabling all peripherals	24MHz	59.64	5.67	74.78	5.88
		8MHz	1.44	2.31	7.7	2.43
	External clock ⁽²⁾ , turn off all peripherals	48MHz	105.73	6.94	125.99	7.18
		24MHz	59.7	4.17	75.09	4.29
Running		8MHz	3.3	1.80	7.15	1.90
mode	Internal clock to enable all	48MHz	178.5	9.6	198.3	10.04
		24MHz	136.8	5.24	153.3	5.45
	peripherals	8MHz	81.4	1.88	91.7	1.97
		48MHz	178.4	6.51	198.1	6.82
	Internal clock, turn off all	24MHz	136.8	3.66	153.1	3.85
	peripherals	8MHz	81.4	1.33	91.7	1.40

Note:

- (1) Data based on comprehensive evaluation will not be tested in production unless otherwise specified.
- (2) The external clock is 8MHz. when f_{HCMU}>8MHz, PLL is started.

Table 30 The program is executed in SRAM, and the running mode consumes power

			Typical value ⁽¹⁾		Maximum value (1)		
Parameter	Condition	f _{HCMU} T _A =25°C, T _A =105 V _{DD} =3.3V V _{DD} =3					
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)	
Running	External clock ⁽²⁾ , enabling	48MHz	105.73	7.48	125.63	8.0	
mode	all peripherals	24MHz	59.67	4.1	74.76	4.7	

			Typical	value ⁽¹⁾	Maximum value (1)	
Parameter	Condition	fнсмu	T _A =25°C, V _{DD} =3.3V		T _A =105°C, V _{DD} =3.6V	
			I _{DDA} (µA)	I _{DD} (mA)	I _{DDA} (µA)	I _{DD} (mA)
		8MHz	3.3	1.9	7.20	2.2
	_ (2)	48MHz	105.78	4.4	125.98	4.60
	External clock ⁽²⁾ , turn off all peripherals	24MHz	59.71	2.6	74.96	2.7
		8MHz	3.3	1.4	7.11	1.5
		48MHz	178.5	7.06	198.2	7.39
	Internal clock to enable all peripherals	24MHz	139.8	3.65	153.3	4.0
	periprierais	8MHz	81.4	1.37	91.7	1.43
	Internal clock, turn off all	48MHz	178.5	3.94	198.1	4.14
		24MHz	136.8	2.07	153.2	2.23
peripher	periprierais	8MHz	81.4	0.79	91.7	0.86

Note:

- (1) According to the comprehensive evaluation, it is not tested in production.
- (2) The external clock is 8MHz. when f_{HCMU} >8MHz, PLL is started.

Table 31 Program is executed in SRAM or Flash, power consumption in sleep mode

			Typical	value (1)	Maximun	ı value ⁽¹⁾
Parameter	Condition	fнсми	T _A =25°C, V _{DD} =3.3V		T _A =105°C, V _{DD} =3.6V	
			I _{DDA} (µA)	I _{DD} (mA)	Idda(µA)	I _{DD} (mA)
	- (2)	48MHz	105.77	5.41	125.88	5.54
	External clock ⁽²⁾ , enabling all peripherals	24MHz	59.70	3.03	74.91	3.16
		8MHz	1.45	1.42	7.12	1.50
	- (2) (2) (5) (6)	48MHz	105.86	2.0	125.9	2.13
	External clock ⁽²⁾ , turn off all	24MHz	59.8	1.35	75.08	1.47
Sleep	peripherals	8MHz	1.44	0.84	7.14	0.94
mode		48MHz	161.55	4.93	187.25	5.14
	Internal clock to enable all	24MHz	115.48	2.60	136.87	2.72
	peripherals	8MHz	58.0	0.99	72.41	1.05
		48MHz	161.71	1.52	187.85	1.69
	Internal clock, turn off all	24MHz	115.54	0.86	137.13	0.99
	peripherals	8MHz	58.0	0.37	72.35	0.46

Note:

- (1) According to the comprehensive evaluation, it is not tested in production.
- (2) The external clock is 8MHz. when f_{HCMU} >8MHz, PLL is started.

Table 32 Power consumption in halt and standby mode

				Typica (T _A =2			Maximum value ⁽¹⁾ (T _A =105°C)	
Parameter		Condition	V _{DD} =2.4 V		V _{DD} =	3.3V	V _{DD} =3.6 V	
			I _{DDA} (μ A)	I _{DD} (μΑ)	I _{DDA} (μ A)	I _{DD} (μΑ)	I _{DDA} (μ A)	I _{DD} (μ A)
halt mode		The voltage regulator is in running mode, and the low-speed and high-speed internal RC oscillators and high-speed oscillators are off	2.43	21.1	2.98	21.9	7.0	62.6
	V _{DDA} monitoring ON	The voltage regulator is in low power consumption mode, and the low-speed and high-speed internal RC oscillators and high-speed oscillators are off	2.43	6.47	2.98	7.42	7.0	44.9
		Low-speed internal RC oscillator and independent watchdog are on	2.62	2.42	3.33	3.72	6.63	22.2
Standby mode		The low-speed internal RC oscillator and the independent watchdog are off	2.28	1.96	2.83	3.08	6.11	21.5
		The voltage regulator is in run mode, and the low-speed and high-speed internal RC oscillators and high-speed oscillators are off	1.3	17.7	1.5	18.0	3.4	56.4
halt mode	V _{DDA} monitoring OFF	The voltage regulator is in low power consumption mode, and the low-speed and high-speed internal RC oscillators and high-speed oscillators are off	1.3	6.33	1.5	7.38	3.3	44.9
Standby mode		Low-speed internal RC oscillator and independent watchdog are on	1.6	2.36	1.9	3.7	3.8	22.2
		The low-speed internal RC oscillator and the independent watchdog are off	1.2	1.93	1.31	3.05	3.0	21.5

Note: According to the comprehensive evaluation, it is not tested in production.

5.3.4 External clock source characteristics

High Speed External Clock Generated by Crystal Resonator (HSECLK osc)

For detailed parameters (frequency, package, precision, etc.) of crystal resonator, please consult the corresponding manufacturer.

Table 33 Characteristics of HSECLK 4~32MHz Oscillator (1)

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistance	-	-	200	-	kΩ
I _{DD}	HSECLK current consumption	$V_{DD} = 3.3 \text{ V},$ $R_m = 45 \Omega,$ $C_L = 10 \text{ pF} @ 8 \text{ MHz}$	-	660	-	μΑ
tsu(HSECLK)	Startup time	V _{DD} is stable		1.7		ms

Note: It is guaranteed by design and has not been tested in production.

Low Speed External Clock (LSECLK osc) Generated by Crystal Resonator

For detailed parameters (frequency, package, precision, etc.) of crystal resonator, please consult the corresponding manufacturer.

Table 34 LSECLK oscillator characteristics (f_{LSECLK}=32.768KHz) (1)

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
lod	LSECLK current consumption	High driving ability		1.5		μΑ
tsu(LSECLK)(2)	Startup time	V _{DDIOx} is stable	-	2	-	S

Note:

- (1) Guaranteed by design and not tested in production.
- (2) tsu(LSECLK) is the starting time, which is measured from the time when LSECLK is enabled by software to the time when stable oscillation at 32.768KHz is obtained. This value is measured using a standard crystal resonator, which may vary greatly due to different crystal manufacturers.

5.3.5 Internal clock source characteristics

Test of high speed internal (HSICLK)RC oscillator

Table 35 HSICLK oscillator characteristics

Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit			
fHSICLK	Frequency	-	-	8	-	MHz			

Geehy

Symbol	Parameter	Condition		Minimum value	Typical value	Maximum value	Unit
Acchsiclk HS		Factory calibration	V _{DD} =3.3V T _A =25°C	-1	-	1	%
	Accuracy of HSICLK oscillator		V _{DD} =2- 3.6V T _A =- 40~105°C	-5	-	5	%
tsu(HSICLK)	HSICLK oscillator start-up time	V _{DD} =3.3V T _A =-40~105°C		-	-	2	μs
IDDA(HSICLK)	HSICLK oscillator power consumption		-	-	60	-	μΑ

Note: According to the comprehensive evaluation, it is not tested in production.

Table 36 Characteristics of HSICLK14 oscillator

	Table 50	Characteristics of HoloER14 oscillator					
Symbol	Parameter	Conc	lition	Minimum value	Typical value	Maximum value	Unit
fHSICLK14	Frequency		-	-	14	-	MHz
Acchsiclk14	Accuracy of	F .	V _{DD} =3.3V T _A =25°C	-1	-	1	%
	HSICLK14 oscillator	Factory calibration	V _{DD} =2- 3.6V T _A =- 40~105°C	-5	-	5	%
tsu(HSICLK14)	Starting time of HSICLK14 oscillator	V _{DD} =3.3V T _A =-40~105°C		-	-	2	μs
IDDA(HSICLK14)	Power consumption of HSICLK14 oscillator		-	-	72	-	μА

Note: According to the comprehensive evaluation, it is not tested in production.

Low speed internal (LSICLK)RC oscillator test

Table 37 LSICLK oscillator characteristics

Symbol	Parameter	Minimum value	Typical value	Maximum value	Unit
flsiclk	Frequency (V _{DD} =2-3.6V, T _A =-40 ~ 105 C)	30	45	55	KHz
tsu(LSICLK)	Startup time of LSICLK oscillator (V _{DD} =3.3V, T _A =-40~105°C)	-	30	-	μs
I _{DD(LSICLK)}	LSICLK oscillator power consumption	-	0.5	-	μΑ

Note: According to the comprehensive evaluation, it is not tested in production.

5.3.6 Wake-up time in low power mode

Table 38 Awakening clock source parameters

Symbol Parameter		Typical value	Unit
twusleep	Wake up from sleep mode	0.52	
twustop	Wake up from halt mode	24	μs
twustdby	Wake up from standby mode	80	

Note: The wake-up time is measured from the start of the wake-up event to the first instruction read by the user program.

5.3.7 PLL characteristics

Table 39 PLL characteristics

		Nι			
Symbol	Parameter	Minimum value	Typical value	Maximum value	Unit
	PLL input clock	1	8	24	MHz
f _{PLL_IN}	PLL input clock duty cycle	40	-	60	%
f _{PLL_OUT}	PLL frequency doubling output clock $(V_{DD}=3.3V, T_A=-40\sim105^{\circ}C)$	16	-	48	MHz
tLOCK	PLL phase locking time	-	-	90	μs

Note: According to the comprehensive evaluation, it is not tested in production.

5.3.8 Memory characteristics

flash memory

Table 40 FLASH memory characteristics

	Table 40 I LAOT Memory Characteristics								
Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit			
t _{prog}	16-bit programming time	$T_A = -40 \sim 105$ °C $V_{DD} = 2.0 \sim 3.6$ V	-	3.5	-	μs			
terase	Page (1Kbytes) erase time	T _A =-40~105°C V _{DD} =2.0~3.6V	-	39	-	ms			
tме	Whole erase time	T _A =25°C V _{DD} =3.3V	-	7.2	-	ms			
V_{prog}	Programming voltage	T _A =-40~105°C	2.0	3.3	3.6	V			
t _{RET}	Data saving time	T _A =55°C	20	-	-	years			
N_{RW}	Erase cycle	T _A =25°C	10K	-	-	cycles			

Note: According to the comprehensive evaluation, it is not tested in production.

5.3.9 I/O port characteristics

Table 41 Dc characteristics ($T_A = -40^{\circ}\text{C} - 105^{\circ}\text{C}$, $V_{DD} = 2 \sim 3.6 \text{ v}$)

	SEMICONDUCTO					
Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit
	land the same	TC and TTa I/O	-	-	0.3V _{DD} +0.1	
VIL	Input low level	FT and FTf I/O	-	-	0.476V _{DD} -0.4	V
VIL	voltage	I/O pins except BOOT0 pin	-	-	0.3V _{DD}	V
		TC and TTa I/O	0.447V _{DD} +0.402	-	-	
VIH	Input high level	FT and FTf I/O	0.5V _{DD} +0.2	-	-	V
VIH	voltage	I/O pins except BOOT0 pin	0.7V _{DD}	-	-	V
	Schmidt	TC and TTa I/O		200		
V _{hys}	trigger hysteresis	FT and FTf I/O		300		mV
I_{lkg}	Input leakage	Vss≤V _{IN} ≤V _{DDIOx} Standard I / O port	-	-	±0.1	μA
Ç	current	V _{IN} =5V, FT I/O	-	-	70	·
R _{PU}	Weak pull- up equivalent resistance	V _{IN} =V _{SS}	30	40	50	kΩ
R _{PD}	Weak pull- down equivalent resistance	V _{IN} =V _{DDIOx}	30	40	50	kΩ

Table 42 Ac characteristics ($T_A = 25 c$)

MODEx[1:0] Configuration	Symbol	Parameter	Condition	Minimum value	Maximum value	Unit	
of				Value	Value		
	f _{max(IO)out}	Maximum	C _L =50 pF,	_	2	MHz	
	illiax(IO)out	frequency	V _{DD} =2.4~3.6V			1711 12	
	4	Output high to low			105		
10 (2MHz)	$\mathbf{t}_{f(IO)out}$	fall time	0 50 55		125		
		Output rise time	C _L =50 pF, V _{DD} =2.4~3.6V	-			ns
	t _{r (IO)out}	from low to high		-	125		
		level					
	4	Maximum	C _L =50 pF,		40	N 41 1-	
	f _{max(IO)out}	frequency	V _{DD} =2.4~3.6V		10	MHz	
		Output high to low			0.5		
01 (10MHz)	t _{f(IO)out}	fall time	0 50 - 5	-	25		
		Output rise time	C _L =50 pF,			ns	
	t _{r (IO)out} from Ic		V _{DD} =2.4~3.6V	-	25		
		level					

MODEx[1:0] Configuration of	Symbol	Parameter	Condition	Minimum value	Maximum value	Unit
	f _{max(IO)out}	Maximum frequency	C _L =30 pF, V _{DD} =2.7~3.6V	-	50	MHz
11 (50MHz)	$t_{f(IO)out}$	Output high to low fall time	0 00 - 5	1	5	
	t _r (IO)out	Output rise time from low to high level	C _L =30 pF, V _{DD} =2.7~3.6V	1	5	ns
FM+	f _{max(IO)out}	Maximum frequency (3)	C _L =50pF,	-	2	MHz
configuration	t _{f(IO)out}	Output falling time	V _{DDIOx}	-	34	
	$t_{r(IO)out}$	Output rise time	=2.4~3.6V	-	34	ns

Figure 14 Definition of input and output AC characteristics

Table 43 Output drive current characteristics (T_A=25°C)

Symbol	Parameter	Condition	Min	Max	Unit
Vol	I/O pin outputs low voltage	I _{IO} =8 mA	-	0.4	
V _{OH}	I/O pin outputs high voltage	V _{DDIOx} ≥2.7V	V _{DDIOx} -0.4	-	V
Vol	I/O pin outputs low voltage	I _{IO} =20 mA	-	1.3	.,
Vон	I/O pin outputs high voltage	V _{DDIOx} ≥2.7V	V _{DDIOx} -1.3	-	V

5.3.10 NRST pin characteristics

The NRST pin input drive adopts CMOS process, which is connected with a permanent pull-up resistor R_{PU} .

Table 44 NRST pin characteristics ($T_A = -40 \sim 105 \text{ C}$, $V_{CC} = 2 \sim 3.6 \text{ V}$)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIL(NRST)	NRST input low voltage	-	-	-	0.31V _{DD} +0.065	٧

Gee	hv
SEMICONDUCT	OP T

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{IH(NRST)}	NRST input high	_	0.446V _{DD} +0.405			
	voltage	-	0.446 V DD+0.405			
	Voltage hysteresis of			000	-	\ /
V _{hys(NRST)}	NRST Schmitt trigger	-	-	300		mV
D	Weak pull-up	\/ \/	20	40	50	1.0
R _{PU}	equivalent resistance	V _{IN} =V _{SS}	30	40	50	kΩ

5.3.11 communication interface

I2C interface characteristics

Standard mode (Sm): bit rate up to 100kbit/s

• Fast mode (Fm): bit rate up to 400 kbit/s

Ultra fast mode (Fm+): bit rate up to 1Mbit/s

Table 45 I2C interface characteristics (T_A = 25°C, V_{DD} = 3.3 V)

Table 40 120 interface characteristics (14 20 0, 150 010 1)									
Symbol	Parameter	Standard I2C		Fast I2C		Ultrafast I2C		Unit	
		Min	Max	Min	Max	Min	Max		
$t_{\text{w}(\text{SCLL})}$	SCL clock low time	4.84	-	1.21	-	0.52	-		
$t_{\text{w}(\text{SCLH})}$	SCL clock high time		-	1.14	-	0.46	-	μs	
$t_{\text{su}(\text{SDA})}$	SDA setup time	4460	-	860	-	321	-		
th(SDA)	SDA data holding time	103	181	0	252	0	145		
$t_{r(SDA)}$ $t_{r(SCL)}$	SDA and SCL rise time	-	500	-	300	-	120	ns	
t _f (SDA)	SDA and SCL fall time	-	9.86	-	8.12	-	4		
t _{h(STA)}	Start condition holding time	4.96	-	1		0.33	-		
t _{su(STA)}	Repeated start condition setup time	5.16	-	1.21	-	0.64	-	μs	
t _{su(STO)}	Setup time of stop condition	4.50	-	1.21	-	0.54	-	μs	
tw(STO:STA)	Time from stop condition to start condition (bus idle)	4.67	-	1.37	-	0.77	-	μs	

Figure 15 Bus AC waveform and measurement circuit

Note: The measuring points are set at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

SPI interface characteristics

Table 46 SPI characteristics (T_A = 25°C, V_{DD} = 3.3 V)

Symbol	Parameter	Condition	Min	Max	Unit
f _{SCK}	001 1 1 (holotype	-	18	N.41.1
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	18	MHz
t _r (SCK)	SPI clock rise and fall time	Load capacitance: C = 15pF	-	6	ns
t _{su(NSS)}	NSS setup time	Slave mode	223	-	ns
t _{h(NSS)}	NSS holding time	Slave mode	65	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Main mode, f _{PCMU} = 36MHz, Prescaler coefficient =4	54	57	ns
t _{su(MI)}	Data insult action time	holotype	12	-	
t _{su(SI)}	Data input setup time	Slave mode	20	-	ns
t _{h(MI)}	D () () () ()	holotype	34	-	
t _{h(SI)}	Data input holding time	Slave mode	22	-	ns
t _{a(SO)}	Data output access time	In slave mode, f _{PCLK} = 20MHz	-	17	ns
t _{dis(SO)}	Data output prohibition time	Slave mode	-	18	ns

Gee	hv
CEMICONDUC	TOD

Symbol	Parameter	Condition	Min	Max	Unit
t _{v(SO)}	Effective time of data output	Slave mode (after enable edge)	-	16	ns
t _{v(MO)}	Effective time of data output	Master mode (after enable edge)	-	6	ns
t _{h(SO)}		Slave mode (after enable edge)	11.5	-	
t _{h(MO)}	Data output holding time	Master mode (after enable edge)	2	-	ns

Figure 16 SPI timing diagram—slave mode and CPHA=0

Figure 17 SPI timing diagram—slave mode and CPHA=1

Note: The measuring points are set at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Figure 18 SPI timing diagram—main mode

Note: The measuring points are set at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

5.3.12 **12-bit ADC features**

Table 47 12-bit ADC features

Table 47 12 bit ADO Teatal 65								
Symbol	Parameter	Condition	Minimum value	Typical value	Maximum value	Unit		
V_{DDA}	Service voltage	-	2.4	ı	3.6	٧		
f _{ADC}	ADC frequency	-	0.6	ı	14	MHz		
C _{ADC}	Internal sampling and holding capacitance	-	-	8	-	pF		
R _{ADC}	Sampling resistance	-	-	-	1000	Ω		
ts	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs		
Tconv	Sampling and conversion Time	f _{ADC} = 14 MHz, 12-bit conversion	1	-	18	μs		

Table 48 12-bit ADC accuracy

Symbol	Parameter	Condition	Typical value	Maximum value	Unit
E _T	Composite error		2.18	4.0	
Eo	offset error	f _{PCLK} =48M,	0.7	3	
E _G	Gain error	f _{ADC} =14M, V _{DDA} =2.4V-3.6V	0.32	1.3	LSB
E _D	Differential linear error	T _A =-40°C~105°C	1.0	1.3	
EL	Integral linearity error	14 10 6 100 6	1.62	2.3	

6. Package Characteristics

6.1. **LQFP64 package information**

Figure 19 LQFP64 package outline

Note: The Figure is not drawn to scale.

Table 49 Package dimensions of LQFP64

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.600	OVERALL HEIGHT
2	A2	1.400±0.050	PKG THICKNESS
3	D	12.000±0.200	LEAD TIP TO TIP
4	D1	10.000±0.100	PKG LENGTH
5	E	12.000±0.200	LEAD TIP TO TIP
6	E1	10.000±0.100	PKG WIDTH
7	L	0.600±0.150	FOOT LENGTH
8	L1	1.000 REF.	LEAD LENGTH
9	е	0.500 BASE	LEAD PITCH
10	H(REF.)	(7.500)	GUM.LEAD PITCH
11	b	0.220±0.050	LEAD WIDTH

Note: The value in inches is converted from mm to 4 decimal places.

10. 3 12. 7 10. 3 10. 3 10. 3 10. 3 10. 3 10. 3

Figure 20 LQFP64 welding Layout suggestion

Note: Dimensions are in millimeters.

Figure 21 LQFP64 coding specification

6.2. LQFP48 package information

Figure 22 LQFP48 package outline

Note: The Figure is not drawn to scale.

Table 50 Package dimensions of LQFP48

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.60	OVERALL HEIGHT
2	A2	1.40±0.05	PKG THICKNESS
3	D	9.00±0.20	LEAD TIP TO TIP
4	D1	7.00±0.10	PKG LENGTH
5	E	9.00±0.20	LEAD TIP TO TIP
6	E1	7.00±0.10	PKG WIDTH
7	L	0.60±0.15	FOOT LENGTH
8	L1	1.00 REF.	LEAD LENGTH
9	е	0.50 BASE	LEAD PITCH
10	H(REF.)	(5.50)	GUM.LEAD PITCH
11	b	0.22±0.050	LEAD WIDTH

Note: The value in inches is converted from mm to 4 decimal places.

0. 30 7. 30 9. 70 5. 80 7. 30 13 [5.80 9. 70

Figure 23 LQFP48 welding Layout suggestion

Note: Dimensions are in millimeters.

Page 58 www.geehy.com

Figure 24 LQFP48 coding specification

6.3. LQFP32 package information

Figure 25 LQFP32 package outline

Note: The Figure is not drawn to scale.

Table 51 Package dimensions of LQFP32

S/N	SYM	DIMENSIONS	REMARKS
1	А	MAX.1.6	OVERALL HEIGHT
2	A2	1.40±0.05	PKG THICKNESS
3	D	9.00±0.20	LEAD TIP TO TIP
4	D1	7.00±0.10	PKG LENGTH
5	E	9.00±0.20	LEAD TIP TO TIP
6	E1	7.00±0.10	PKG WIDTH
7	L	0.60±0.15	FOOT LENGTH
8	L1	1.00 REF.	LEAD LENGTH
9	е	0.80 BASE	LEAD PITCH
10	H(REF.)	(5.60)	GUM.LEAD PITCH
11	b	0.370±0.080/0.070	LEAD WIDTH

Note: The value in inches is converted from mm to 4 decimal places.

9.70

9.70

1.20

1.20

1.20

7.30

7.30

7.30

9.70

1.20

9.70

Figure 26 LQFP32 welding Layout suggestion

Note: Dimensions are in millimeters.

Figure 27 LQFP32 coding specification

6.4. QFN48 package information

Figure 28 QFN48 package outline

Note: The Figure is not drawn to scale.

Table 52 Package dimensions of QFN48

Table 62 Table 92 amonotone 61 Q. 11 To							
OVMPOL	MILLIMETER						
SYMBOL	MIN	NOM	MAX				
А	0.7	0.75	0.8				
A1	-	0.02	0.05				

CVMPOL	MILLIMETER					
SYMBOL	MIN	NOM	MAX			
b	0.15	0.20	0.25			
С	0.18	0.20	0.23			
D	5.90	6.00	6.10			
D2	4.10	4.20	4.30			
е		0.40BSC				
E	5.90	6.00	6.10			
E2	4.10	4.20	4.30			
L	0.35	0.40	0.45			

Note: The value in inches is converted from mm to 4 decimal places.

Figure 29 **QFN48 welding Layout suggestion**

Arm authorization mark

Figure 30 QFN48 coding specification

Geehy logo \longrightarrow Geehy

Product series \longrightarrow APM32

Specific model \longrightarrow \longrightarrow XX \longleftarrow Revision Code

XXXXX \longleftarrow Date Code

6.5. QFN32 Package information

PIN1 -

Figure 31 QFN32 package outline

Table 53 **QFN32 Package dimensions**

SYMBOL	MILLIMETER					
	MIN	MAX				
A	0.5	0.55	0.6			

SYMBOL	MILLIMETER				
A1	0	0.02	0.05		
b	0.19	0.24	0.29		
D	4.9	5	5.1		
D2	3.4	3.4 3.5			
е		0.50BSC			
Nd		3.50BSC			
E	4.9	5	5.1		
E2	3.4 3.5 3.6				
Ne	3.50BSC				
L	0.35	0.4	0.45		

Figure 32 **QFN32 welding Layout suggestion**

Figure 33 QFN32 Code specification

6.6. QFN28 Package information

Figure 34 QFN28 package outline

Note: The Figure is not drawn to scale.

Table 54 QFN28 Package dimensions

CVMPOL	MILLIMETER					
SYMBOL	MIN	NOM	MAX			
А	0.70	0.75	0.80			
A1	0	0.02	0.05			
b	0.15	0.20	0.25			
С	0.18	0.20	0.25			
D	3.90	4.00	4.10			
D2	2.70	2.80	2.90			
е		0.40BSC				
Е	3.90	4.00	4.10			
E2	2.70	2.80	2.90			
L	0.30	0.35	0.40			

Note: The value in inches is converted from mm to 4 decimal places.

Figure 35 **QFN28 welding Layout suggestion**

Figure 36 QFN28 Code specification

6.7. TSSOP20 Package information

Figure 37 TSSOP20 Package information

Table 55 TSSOP20 Package dimensions

SYMBOL	Dimensions I	N Millimeters	Dimension	s IN Inches
STWIDGE	MIN	MAX	MIN	MAX
D	6.400	6.600	0.252	0.259
E	4.300	4.500	0.169	0.177
b	0.190	0.300	0.007	0.012
С	0.090	0.200	0.004	0.008
E1	6.250	6.550	0.246	0.258
Α	-	1.200	-	0.047
A2	0.800	1.000	0.031	0.039
A1	0.050	0.150	0.002	0.006
е	0.65(BSC)		0.026	(BSC)
L	0.500	0.700	0.020	0.028
Н	0.25(TYP)	0.01(TYP)
θ	1。	7。	1.	7.

Figure 38 TSSOP20 Code specification

7. Ordering information

XXX=Programmed device code R=Reel package Blank=Tray package T=Tube package

Table 56 Order information list

Order code	FLASH(KB)	SRAM(KB)	Package	SPQ	Temperature range
APM32F030F4P6-T	16	8	TSSOP20	14720	Industrial grade -40°C~85°C
APM32F030F6P6-T	32	8	TSSOP20	14720	Industrial grade -40°C~85°C
APM32F030F8P6-T	64	8	TSSOP20	14720	Industrial grade -40°C~85°C
APM32F030F4P6-R	16	8	TSSOP20	4000	Industrial grade -40°C~85°C
APM32F030F6P6-R	32	8	TSSOP20	4000	Industrial grade -40°C~85°C
APM32F030F8P6-R	64	8	TSSOP20	4000	Industrial grade -40°C~85°C
APM32F030G4U6	16	8	QFN28	4900	Industrial grade -40°C~85°C
APM32F030G6U6	32	8	QFN28	4900	Industrial grade -40°C~85°C
APM32F030G8U6	64	8	QFN28	4900	Industrial grade -40°C~85°C
APM32F030K6U6-R	32	4	QFN32	5000	Industrial grade -40°C~85°C
APM32F030K6U6	32	4	QFN32	4900	Industrial grade -40°C~85°C
APM32F030C6U6	32	8	QFN48	4900	Industrial grade -40°C~85°C
APM32F030C8U6	64	8	QFN48	4900	Industrial grade -40°C~85°C
APM32F030K6T6-R	32	4	LQFP32	2000	Industrial grade -40°C~85°C
APM32F030K6T6	32	4	LQFP32	2500	Industrial grade -40°C~85°C
APM32F030K8T6-R	64	8	LQFP32	2000	Industrial grade -40°C~85°C
APM32F030K8T6	64	8	LQFP32	2500	Industrial grade -40°C~85°C
APM32F030C6T6-R	32	4	LQFP48	2000	Industrial grade -40°C~85°C
APM32F030C6T6	32	4	LQFP48	2500	Industrial grade -40°C~85°C
APM32F030C8T6-R	64	8	LQFP48	2000	Industrial grade -40°C~85°C
APM32F030C8T6	64	8	LQFP48	2500	Industrial grade -40°C~85°C
APM32F030R8T6-R	64	8	LQFP64	1000	Industrial grade -40°C~85°C
APM32F030R8T6	64	8	LQFP64	1600	Industrial grade -40°C~85°C

Note: SPQ= Minimum number of packages

8. Packaging information

8.1. Reel packaging

Figure 39 Reel dimensions

Quadrant Assignments for PIN1 Orientation in Tape

Table 57 Reel packaging parameter specification table

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	A0 (mm)	B0 (mm)	K0 (mm)	W (mm)	Pin1 Quadrant
APM32F030R8T6	LQFP	64	1000	330	12.35	12.35	2.2	24	Q1
APM32F030C6T6	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32F030C8T6	LQFP	48	2000	330	9.3	9.3	2.2	16	Q1
APM32F030K6T6	LQFP	32	2000	330	9.3	9.3	2.2	16	Q1
APM32F030K8T6	LQFP	32	2000	330	9.3	9.3	2.2	16	Q1
APM32F030K6U6	QFN	32	5000	330	5.3	5.3	0.8	12	Q1
APM32F030F4P6	TSSOP	20	4000	330	6.7	6.9	1.3	16	Q1
APM32F030F6P6	TSSOP	20	4000	330	6.7	6.9	1.3	16	Q1
APM32F030F8P6	TSSOP	20	4000	330	6.7	6.9	1.3	16	Q1

Tray packaging 8.2.

Figure 40 Tray packaging diagram

Tray Dimensions

Table 58 Tray packaging parameter specification table

				<u> </u>					
Device	Packag e Type	Pins	SPQ	X- Dimension (mm)	Y- Dimension (mm)	X- Pitch (mm)	Y- Pitch (mm)	Tray Lengt h (mm)	Tray Width (mm)

Page 73 www.geehy.com

Geehv	,
SEMICONDUCTOR *	

							SEMICO	NDUCTOR -	
APM32F030R8T6	LQFP	64	1600	12.3	12.3	15.2	15.7	322.6	135.9
APM32F030C6T6	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F030C8T6	LQFP	48	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F030K6T6	LQFP	32	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F030K8T6	LQFP	32	2500	9.7	9.7	12.2	12.6	322.6	135.9
APM32F030C6U6	QFN	48	2600	7.25	7.25	11.8	12.8	322.6	135.9
APM32F030C8U6	QFN	48	2600	7.25	7.25	11.8	12.8	322.6	135.9
APM32F030K6U6	QFN	32	4900	5.2	5.2	8.7	9.0	322.6	135.9
APM32F030G4U6	QFN	28	4900	4.2	4.2	8.8	9.2	322.6	135.9
APM32F030G6U6	QFN	28	4900	4.2	4.2	8.8	9.2	322.6	135.9
APM32F030G8U6	QFN	28	4900	4.2	4.2	8.8	9.2	322.6	135.9

8.3. Material tube

Figure 41 Package drawing of material tube

Table 59 Specification table of material tube packaging parameters

Device	Package Type	Pins	Qty Per Tube	SPQ	L (mm)	W (mm)	H (mm)
APM32F030F8P6	TSSOP	20	46	14720	327	8.5	3.2
APM32F030F6P6	TSSOP	20	46	14720	327	8.5	3.2
APM32F030F4P6	TSSOP	20	46	14720	327	8.5	3.2

9. Naming of common functional modules

Table 60 Naming of common functional modules

Naming of common functional modules					
Description in Chinese	Abbreviations				
Reset management unit	RMU				
Clock management unit	CMU				
Reset and clock management unit	RCM				
External interrupt	EINT				
Universal IO	GPIO				
Multiplex IO	AFIO				
Wake up controller	WUPT				
Buzzer	BUZZER				
Independent watchdog timer	IWDT				
Window watchdog timer	WWDT				
Timer	TMR				
CRC controller	CRC				
Power management unit	PMU				
DMA controller	DMA				
Digital analogue converter	ADC				
Real-time clock	RTC				
External memory controller	EMMC				
Controller area network	CAN				
I2C interface	I2C				
serial peripheral interface	SPI				
Universal asynchronous transceiver	UART				
Universal asynchronous synchronous transceiver	USART				
Flash interface control unit	FMC				

10. **Version** history

Table 62 **Document Version History**

Date	Version	Change History
2020.07.1	V1.0.0	New folder
2020.07.16	V1.0.0	
2020.07.00	V 1.0.1	Modify the cover page and directory format
2020.9.9	V1.1	 (1) Modify the font (2) Modify the naming rules of Order Information *(Chapter 7), modify the order code in the order Information list table and add a column of the minimum number of packages (3) Modify the error in the Functional Description of APM32F030x4x6x8 Pin table (4) Modify the Figure 27 Code Specification in the package information (Chapter 6)
2021.6.4	V1.2	(1) Modify HXT-HSECLK LXT-LSECLK HIRC-HSICLK LIRC-LSICLK (2) modified LSECLK osc for crystal resonator to produce low speed. (3) Modify the title of the recommended Layout diagram corresponding to QFN32. (4) Delete the temperature sensor module
2021.6.30	V1.3	Increase the maximum rated current characteristic
2022.3.9	V1.4	(1) Modify the last number of model 6 to X(2) Delete the description of I2S in the DMA module(3) Added pin function description note 1
2022.5.7	V1.5	Modify some parameters
2022.6.22	V1.6	(1) Modify Arm trademark(2) Add the statement(3) Modify product naming rules figure

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter referred to as "Geehy"). The contents in this document are protected by laws and regulations of trademark, copyright and software copyright. Geehy reserves the right to make corrections and modifications to this document at any time. Please read this document carefully before using Geehy products. Once you use the Geehy product, it means that you (hereinafter referred to as the "users") have known and accepted all the contents of this document. Users shall use the Geehy product in accordance with relevant laws and regulations and the requirements of this document.

1. Ownership

This document can only be used in connection with the corresponding chip products or software products provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this document for any reason or in any form.

The "极海" or "Geehy" words or graphics with "®" or "TM" in this document are trademarks of Geehy. Other product or service names displayed on Geehy products are the property of their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party's products, services or intellectual property are involved in this document, it shall not be deemed that Geehy authorizes users to use the aforesaid third party's products, services or intellectual property, unless otherwise agreed in sales order or sales contract.

3. Version Update

Users can obtain the latest document of the corresponding models when ordering

Geehy products.

If the contents in this document are inconsistent with Geehy products, the agreement in thesales order or the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy

Laboratory or cooperative third-party testing organization. However, clerical errors in
correction or errors caused by differences in testing environment may occur inevitably.

Therefore, users should understand that Geehy does not bear any responsibility for such
errors that may occur in this document. The relevant data in this document are only used
to guide users as performance parameter reference and do not constitute Geehy's
guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and test the applicability of Geehy products to confirm that Geehy products meet their own needs, corresponding standards, safety or other reliability requirements. If loses are caused to users due to the user's failure to fully verify and test Geehy products, Geehy will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-EXPORT OR OTHER LAWS OF THE COUNTIRIES OF THE PRODUCTS SUPPLIERS, GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF, SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDE THE DOCUMENT "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE DOCUMENT (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY USERS OR THIRD PARTIES).

8. Scope of Application

The information in this document replaces the information provided in all previous versions of the document.

© 2020-2022 Geehy Semiconductor Co., Ltd. - All Rights Reserved