1.1.2

- a) (-5, 7, 1) (3, -2, 4) = (-8, 9, -3). Therefore the line is $\vec{x}(t) = (3, -2, 4) + t(-8, 9, -3)$.
- b) (-3, -6, 0) (2, 4, 0) = (-5, -10, 0). Therefore the line is $\vec{x}(t) = (2, 4, 0) + t(-5, -10, 0)$.
- c) (3,7,-8) (3,7,2) = (0,0,-10). Therefore the line is $\vec{x}(t) = (3,7,-8) + t(0,0,-10)$.
- d) (3, 9, 7) (-2, -1, 5) = (5, 10, 2). Therefore the line is $\vec{x}(t) = (3, 9, 7) + t(5, 10, 2)$.

1.1.3

- a) Let A=(2,-5,-1), B=(0,4,6), C=(-3,7,1). Then B-A=(-2,9,7) and C-A=(-5,12,2). Therefore the plane equation is $\vec{x}(s,t)=(2,-5,-1)+s(-2,9,7)+t(-5,12,2)$.
- b) Let A=(3,-6,7), B=(-2,0,-4), C=(5,-9,2). Then B-A=(-5,6,-11) and C-A=(2,-3,-5). Therefore the plane equation is $\vec{x}(s,t)=(3,-6,-7)+s(-5,6,-11)+t(2,-3,-5)$.
- c) Let A = (-8, 2, 0), B = (1, 3, 0), C = (6, -5, 0). Then B A = (9, 1, 0) and C A = (14, -7, 0). Therefore the plane equation is $\vec{x}(s, t) = (-8, 2, 0) + s(9, 1, 0) + t(14, -7, 0)$.
- d) Let A = (1, 1, 1), B = (5, 5, 5), C = (-6, 4, 2). Then B A = (4, 4, 4) and C A = (-7, 3, 1). Therefore the plane equation is $\vec{x}(s, t) = (1, 1, 1) + s(4, 4, 4) + t(-7, 3, 1)$.

1.2.1

a) True

e) True

i) True

j) True

b) False

- f) False

c) Falsed) False

g) Falseh) False

k) True

1.2.13

It is not a vector space. The zero vector must be $0(a_1, a_2) = (0, a_2)$ for all $a_1, a_2 \in \mathbb{F}$. However since a_2 is variable, the zero vector is not unique and therefore V is not a vector space.

1.2.17

It is not a vector space. The zero vector must be $0(a_1, a_2) = (a_1, 0)$ for all $a_1, a_2 \in \mathbb{F}$. This fails the same way the last question does. Therefore V is not a vector space.

1.2.19

It is not a vector space. If V were a vector space, then $(2+3) \cdot (3,4) = 2 \cdot (3,4) + 3 \cdot (3,4)$. Calculating both sides:

$$(2+3) \cdot (3,4) = 5 \cdot (3,4)$$

= $(15, \frac{4}{5})$

and

$$(2+3) \cdot (3,4) = 2 \cdot (3,4) + 3 \cdot (3,4)$$
$$= (6,2) + (9,\frac{4}{3})$$
$$= (15,\frac{10}{3})$$

Since $(15, \frac{10}{3}) \neq (15, \frac{4}{5})$, distributivity doesn't hold and so V is not a vector space.

1.3.1

a) False

e) True

b) False

f) False

c) True

d) False

g) False

1.3.5

Proof. Let A be a square matrix. Then

$$(A + A^{\mathsf{T}})^{\mathsf{T}} = A^{\mathsf{T}} + A = A + A^{\mathsf{T}}$$

Therefore since $(A + A^{\mathsf{T}})^{\mathsf{T}} = A + A^{\mathsf{T}}$, $A + A^{\mathsf{T}}$ is a symmetric matrix.

1.3.12

Proof. Let $W = \{m \times n \text{ upper triangular matrices}\}$. Note that $W \subset M_{m \times n}(\mathbb{F})$. Let $w, k \in W$. k + w will result in an upper triangular matrix since every element below the main diagonal is zero in both and therefore their sum below the main diagonal will be zero. Therefore $k + w \in W$. Let $c \in \mathbb{F}$. $c \cdot w$ will give an upper triangular matrix since every zero element below the main diagonal multiplied by a constant will remain zero, resulting in an upper triangular matrix. Therefore $cw \in W$. Note that the zero matrix is upper triangular and hence is in W. Since W is closed under addition and scalar multiplication and the zero matrix is in W, W is a subspace of $M_{m \times n}(\mathbb{F})$.

1.3.22

Let \mathbb{F}_1 and \mathbb{F}_2 be fields. First consider even functions:

Proof. Let $E = \{g \text{ is even} : g \in \mathcal{F}(\mathbb{F}_1, \mathbb{F}_2)\}$. Note that $E \subset \mathcal{F}(\mathbb{F}_1, \mathbb{F}_2)$. Let $f, g \in E$. Let h(t) = f(t) + g(t) where $t \in \mathbb{F}_1$. Note that

$$h(-t) = f(-t) + g(-t) = f(t) + g(t) = h(t)$$

Therefore h(t) is also an even function and hence $h \in E$. Let $c \in \mathbb{F}_2$ and $j(t) = c \cdot f(t)$. Since $j(-t) = c \cdot f(-t) = c \cdot f(t) = j(t)$, j(t) is an even function and hence $j \in E$. Additionally, the zero function is even and odd so it is in E. Since E is closed under addition and scalar multiplication and contains the zero function, E is a subspace of $\mathcal{F}(\mathbb{F}_1, \mathbb{F}_2)$.

Next consider odd functions:

Proof. Let $O = \{g \text{ is odd} : g \in \mathcal{F}(\mathbb{F}_1, \mathbb{F}_2)\}$. Note that $O \subset \mathcal{F}(\mathbb{F}_1, \mathbb{F}_2)$. Let $f, g \in O$. Let h(t) = f(t) + g(t) where $t \in \mathbb{F}_1$. Note that

$$h(-t) = f(-t) + g(-t) = -f(t) - g(t) = -(f(t) + g(t)) = -h(t)$$

Therefore h(t) is also an odd function and hence $h \in O$. Let $c \in \mathbb{F}_2$ and $j(t) = c \cdot f(t)$. Note that $j(-t) = c \cdot f(-t) = -c \cdot f(t) = -j(t)$. Therefore j is an odd function and hence $j \in O$. Additionally, the zero function is even and odd so it is in O. Since O is closed under addition and scalar multiplication and contains the zero function, O is a subspace of $\mathcal{F}(\mathbb{F}_1, \mathbb{F}_2)$.