الجمهورية الجزائرية الديمقراطية الشعبيبة

السنة الدراسية:2024–2025 اختبار الثلاثي الثالث المستوى:الثالثة ثانوي

دورة ماي 2025

وزارة الدفاع الوطني الشعبي أركان الجيش الوطني الشعبي دائرة الاستعمال والتحضير مديرية مدارس أشبال الأمة

الشعبة: رياضيات

المادة: علوم فيزيائية المدة:04 سا و30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

يحتوي الموضوع الأول على 06 صفحات (من الصفحة 01 من 12 إلى الصفحة 06 من 12)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

يهدف هذا التمرين إلى حساب كتلة الشمس بطريقتين.

أثبت الفلكي يوهان كبلر سنة 1609 أن النظام الذي وضعه كوبرنيخ عن مركزية الشمس هو الوحيد الذي يعكس الحقيقة بدقة وعن طريق عمليات حسابية معقدة ومتعددة، وضع كبلر القوانين الثلاثة الهامة المتعلقة بحركة الكواكب.

- (B) و(C) من المجموعة الشمسية تدور حول الشمس في معلم هيليومركزي.
- 1. ذَكِرْ بقوانين كبلر الثلاثة، هل القانون الأول محقق حسب ما يبينه الشكل (1)؟ علل.

الكوكب	$T(10^7s)$	$r(10^8 Km)$
(الأرض)A	3,16	1,50
(المريخ)B	T_B	2,28
(المشتر <i>ي</i>) C	37,40	r_{c}

الشكل 1

الكواكب الثــلاث حيثT يمثل دور الكوكب حول
الشمس، و r يمثل القيمة المتوسطة التي تفصل
مركزي عطالة الشمس والكوكب.

بالاعتماد على أحد قوانين كيبلر احسب r_c البعد

المتوسط بين مركزي الشمس وكوكب المشتري، و T_B دور كوكب المريخ حول الشمس.

- 3. نقبل من أجل تسهيل الدراسة أن حركة الأرض حول الشمس دائرية منتظمة نصف قطر مسارها r وأن الأرض تخضع لتأثير الشمس فقط.
 - ثابت \overline{G} التي تؤثر بها الشمس على الأرض وأعط عبارة شدتها بدلالة $\overline{F_{S/T}}$ (ثابت 1.3

.r و (كتلة الأرض) m_T (كتلة الأرض) و الجذب العام)،

وجد كتلة $F_{S/T}=3,56 imes 10^{22} N$ أوجد كتلة الشمس.

- 4. بيان الشكل (2) يمثل تغيرات a_G تسارع مركز $\frac{1}{r^2}$ عطالة الكواكب حول الشمس بدلالة
- الثاني الثاني الثاني الثاني الثاني الثاني المين أن عبارة $a_G = \alpha imes rac{1}{r^2}$: الشكل على الشكل على تكتب على الشكل عبارته α ثابت يطلب تعيين عبارته .
- 2.4. بالاعتماد على بيان الشكل (2) استنتج كتلة الشمس.
 - 3.4. هل تتوافق هذه النتيجة مع القيمة المحسوبة سابقا؟

المعطيات:

 $G = 6.67 \times 10^{-11} SI$ $r_T = 1.5 \times 10^{11} m$ $m_T = 5.97 \times 10^{24} Kg$

التمرين الثاني: (04 نقاط)

الجزء الأول:

مر إنتاج واستخدام الليثيوم 6Li بمراحل عدة خلال التاريخ الحديث، وازداد الطلب على إنتاجه أثناء

الحرب الباردة نتيجة سباق التسلح النووي، إذ يتم قذف نواة الليثيوم

 6_3Li بنيترون للحصول على تريتيوم 3_1H وإشعاع 6_3Li

وأيضا في مجال الإلكترونيات تم استخدامه بشكل كبير جدا في صناعة البطاريات القابلة لإعادة الشحن الشكل (3).

- 6_3Li أكتب معادلة التفاعل النووي الحادث إثر قذف نواة الليثيوم 6_3Li بنيترون.
 - .MeV أحسب طاقة الربط النووي لنواة 6Li بالـ 2
 - من بين النواتين 6_3Li و 3_1H ما هي النواة الأكثر استقرار؟

الجزء الثاني:

للمفوية المعوية والبنكرياسية، يتكون أساسا من Lutathera هو علاج للأورام اللمفوية المعوية والبنكرياسية، يتكون أساسا من الأنوية المشعة للوتيسيوم $\frac{177}{71}Lu$ ، يدخل الخلية حاملاً النظير المشع

الشكل (3)

 $^{177}_{71}Lu$ للوتيسيوم $^{177}_{10}$ ، فيُطلق إشعاعًا يدمر الحمض النووي للخلايا السرطانية ويثبط نمو الورم. يتفكك $t_{1/2}=6.65\, jours$ بإصدار الجسيم B^- ليتحول إلى نواة الهفنيوم H ،وله زمن نصف عمر يقدر بـ والم يتم تحضيره على شكل قارورات موجهة للاستعمال في مستشفيات متخصصة.

- 1. أعط تعربفا لما تحته سطر في النص.
- $^{177}_{71}Lu$. بتطبيق قوانين الانحفاظ اكتب معادلة تفكك نواة .
- $m_0 = 0.12 \ mg$ من اللوتيسيوم $m_0 = 0.12 \ mg$ من اللوتيسيوم 3.
 - تاريخ الصنع: 06/05/2020 الساعة 30: 14
 - تاريخ انتهاء الصلاحية: 28/05/2020 الساعة 40: 16
 - النشاط الاشعاعي الابتدائي A_0 للعينة لحظة صنعها. 1.2
- 2.2. حدد النسبة $\frac{A(t)}{4}$ للعينة التي من أجلها يعتبر الدواء غير فعالا للاستعمال في العلاج.

المعطيات:

$m_p = 1,00728 u$	$m_n = 1,00866 u$	$m(_{3}^{6}Li) = 6.01348u$
$N_A = 6.02 \times 10^{23} mol^{-1}$	$E_l (^3_1 H) = 8,47 MeV$	$1u = 931.5 MeV/c^2$

التمرين الثالث: (06 نقاط)

إلى زيادة سعة المكثفة.

في مجال الأرصاد الجوية météorologie يمكن قياس نسبة الرطوبة في الهواء (RH%) بواسطة جهاز الهيجرومتر الإلكتروني المزود بالقط humidistance الشكل (4) والذي يتكون أساسا من مكثفة تتغير سعتها C مع تغير نسبة الرطوبة في الهواء، فعندما تزبد الرطوبة النسبية في الهواء، تمتص طبقة العازل الرطوبة في حساس الهيجرومتر السعوي، فتزداد ثابتية العزل الكهربائي للماء مقارنةً بالمادة الجافة، مما يؤدي

الشكل (4)

- ا. لتحديد قيمة السعة لهذا اللاقط في مكان معين ننجز التركيب التجريبي
 - الممثل في الشكل (5) والمكون من:
 - I_0 عطی تیار کھربائیا ثابتا مولد تیار مثالی یعطی تیار
 - مكثفة اللاقط مفرغة سعتها C.
 - ناقلين أوميين $\Omega = 1$ و $R_1 = 1$ مجهولة.
 - بادلة K وأسلاك التوصيل.
 - جهاز فولط متر رقمي.
 - ا. عند اللحظة t=0 نضع البادلة في الوضع (1):

بواسطة برنامج مناسب تمكنا من رسم بيان تغيرات الطاقة المخزنة في المكثفة بدلالة مربع الزمن

 $\mathbf{F} \boldsymbol{E}_{\mathcal{C}}(\boldsymbol{mj})$

.(6) الشكل $E_C = f(t^2)$

 $u_1 = 300 \ mV$: يشير جهاز الفولط متر الى قيمة ثابتة $I_0 = 3 \times 10^{-4} \, A$ تأكد أن شدة التيار الكهربائى. 1

2. أوجد عبارة الطاقة المخزنة في المكثفة $E_{C}(t)$ بدلالة $.t_{9}C_{6}I_{0}$

 $E_C = f(t^2)$ اعتمادا على البيان .3

1.3. احسب قيمة السعة C للمكثفة.

دد الزمن النهائي t_f لشحن المكثفة، 2.3

 E_{cmax} والطاقة الأعظمية المخزنة في المكثفة عند نهاية الشحن

بين أن التوتر الكهربائي U_{cmax} بين طرفى المكثفة عند نهاية عملية الشحن 4

 $.(U_{Cmax} = 6V)$

اا. للتأكد من قيمة السعة المحسوبة سابقا نؤرجح البادلة الى الوضع (2) في اللحظة (t=0) عندما (t=0)تشحن المكثفة كليا.

1. فسر الظاهرة الكهربائية الحادثة للمكثفة مجهربا.

 $u_{c}(t)$ بين طرفي المكثفة. $u_{c}(t)$ بين طرفي المكثفة.

 $u_{C}(t) = A.e^{-\alpha t}$: حل المعادلة التفاضلية السابقة يكتب على الشكل 3.3.

1.3. حدد عبارة كل من الثابتين

 $\cdot \alpha$ $\circ A$

ماذا يمثل الثابت $\frac{1}{\alpha}$? وما 2.3مدلوله الفيزيائي؟

3.3. بين بالتحليل البعدي ان متجانس مع الزمن. $\frac{1}{\alpha}$

4. البيان الموضح في الشكل (7) يمثل تغيرات الطاقة المخزنة في المكثفة

 $E_C = g(t)$ بدلالة الزمن

1.4. أكتب العبارة $E_{C}(t)$ اللحظية

للطاقة المخزنة في المكثفة بدلالة الزمن. الصفحة 4 من 12

 $-t^2(s^2)$

الشكل (6)

- 2.4. عين من البيان قيمة الطاقة الأعظمية المخزنة في المكثفة واستنتج سعة المكثفة.
- $t=rac{ au'}{2}$ في اللحظة t=0 في اللحظة $E_C(t)$ في اللحظة في اللحظة t=0 في اللحظة ألى اللحظة ألى اللحظة ألى اللحظة أل
 - R_2 احسب مقاومة الناقل الأومي R_2
 - (t= au') عند اللحظة R_2 عند الناقل الأومى عند اللحظة 3. احسب الطاقة المستهلكة بفعل جول في الناقل الأومى
- 5. إن نسبة الرطوبة الموافقة لهذه السعة هي 80% = RH أعد رسم منحنى الشكل (7) كيفيا على ورقة إجابتك $E_c = g'(t)$. RH = 10% عليه كيفيا البيان $E_c = g'(t)$ في منطقة جافة تكون فيها نسبة الرطوبة

الجزء الثاني: (06 نقاط)

التمرين التجريبي: (06 نقاط)

الماء الاكسجيني او بيروكسيد الهيدروجين H_2O_2 له الكثير من الاستخدامات الطبية والتجميلية للجسم، فهو يعمل على تطهير الجروح وتخليصها من البكتيريا، كما يُعزز من صحة الفم وتنظيف الأسنان وجعلها أكثر بياضا ولمعانا، لذلك يُباع في الصيدليات بتراكيز مختلفة حسب مجال استعماله.

يهدف هذا التمرين للمتابعة الزمنية للتفكك الذاتي للماء الأكسجيني:

1. نأخذ محلولا (S_0) من الماء الأكسجيني $H_2O_{2(aq)}$ الذي يُباع في الصيدليات تركيزه المولي S_0 ونقوم بتمديده F مرة للحصول على المحلول S_1 للماء الاكسجيني تركيزه المولي S_1 بأخذ حجما قدره بتمديده $V_1=20mL$ من المحلول S_1 ونفرغه في بيشر به ماء شديد البرودة وقطرات من حمض الكبريت المركز ونعايره بواسطة محلول برمنغنات البوتاسيوم S_1 المركز ونعايره بواسطة محلول برمنغنات البوتاسيوم S_1 المنافق حجم S_1 من محلول برمنغنات البوتاسيوم يعد إضافة حجم S_2 من محلول برمنغنات البوتاسيوم، يُنمذج التحول الكيميائي الحادث بتفاعل كيميائي معادلته:

$$5H_2O_{2(aq)} + 2MnO_{4(aq)}^- + 6H_3O_{(aq)}^+ = 5O_{2(g)} + 2Mn_{(aq)}^{2+} + 14H_2O_{(\ell)} \dots (1)$$

- 1.1. أكتب المعادلتين النصفيتين للأكسدة والارجاع الموافقتين لتفاعل المعايرة الحادث.
- 2.1. كيف نستدل على نقطة التكافؤ تجريبيا؟ هل يؤثر إضافة الماء وقطع الجليد على قيمة V_E ؛ لماذا؟
 - عبر عن c_1 بدلالة V_E و V_1 و بدلالة عن c_1 عبر عن c_1
- 2. الماء الأكسجيني يتفكك ببطئ شديد في الشروط العادية منتجا غاز ثنائي الأكسجين وفق تفاعل تام $2\,H_2O_{2(aq)}=O_{2(g)}+2\,H_2O_{(\ell)}$ (2)

في اللحظة t=0 ونضيف له قطرات من $V_0=80mL$ في دورق حجم خيم نضيف له قطرات من

محلول كلور الحديد الثلاثي الذي يُعتبر وسيطا لتسريع التفكك الذاتي للماء الاكسجيني. الدراسة التجريبية مكنتنا من رسم المنحنيين الممثلين لحجم غاز ثنائي الأكسجين المنطلق بدلالة الزمن $V_{o_2} = f(t)$ وكمية مادة الماء الاكسجيني المتبقي بدلالة كمية مادة غاز ثنائي الاكسجين المنطلق $n_{H_{O_2}} = g(n_{O_2})$ الموضحين في الشكلين (8) و (9) على الترتيب.

- 1.2. عرف الوسيط
- 2.2. هل يعتبر كلور الحديد الثلاثي وسيطا؟ علل. مانوع الوساطة؟
 - 3.2. أنجز جدولا لتقدم هذا التفاعل.
- ، x_{max} ومنحنى الشكل (9) استنتج قيم كل من: التقدم الأعظمي .4.2 . F_0
 - 5.2. استنتج سلما لمحور التراتيب بالنسبة لمنحنى الشكل (8).
 - .6.2 عرف زمن نصف التفاعل $t_{1/2}$ وحدد قيمته.
 - . بين أن سرعة التفاعل تكتب بالعلاقة: $\frac{dV_{o_2}(t)}{dt}$: تا العالمة التفاعل تكتب بالعلاقة: $v(t)=\frac{1}{V_M} imes \frac{dV_{o_2}(t)}{dt}$
 - 8.2. استنتج السرعة الحجمية الأعظمية لاختفاء الماء الأوكسجيني.

 $V_{M}=24\ L.\ mol^{-1}$: الحجم المولي في شروط التجربة

انتهى الموضوع الأول

الموضوع الثانى

يحتوي الموضوع الثاني على06 صفحات (من الصفحة 07 من 12 إلى الصفحة 12 من 12) الجزء الأول: (14 نقطة) التمرين الأول: (04 نقاط)

 $N_A=6 imes 10^{23}mol^{-1}$ ، $1MeV=1.6 imes 10^{-13}\,j$ ، $1MWat=10^6Wat$ ، $1ng=10^{-9}\,g$ معطیات: $E_\ell({}^{137}_{53}I)=1124.4MeV$ 137 معطیات طاقة الربط لنواة الیود

- ا. يستخدم اليورانيوم 235 كوقود لتوليد الطاقة الكهربائية في المفاعل النووي، المخطط الحصيلة الطاقوية لأحد التفاعلات النووية الحادثة في المفاعل النووي ممثلة في الشكل (1)
 - 1. اكتب معادلة التفاعل النووي الحادث وحدد نوعه.
 - z. باستخدام قانونی الانحفاظ، جد قیمهٔ کل من z
 - 3. اعتمادا على الشكل (1) جد ما يلى:
 - 1.3. طاقة الربط E_l لكل من النواتين ^{235}U و ^{97}Z ثم حدد أيهما أكثر استقرارا مع التعليل.
 - MeV من هذا التفاعل ب E_{lib} من من الطاقة المحررة
 - $E_1 = 2,19697$ ينتج استطاعة كهربائية متوسطة r = 2,19697 الشكل (1) الشكل (1) ما النووي ينتج استطاعة كهربائية متوسطة r = 35% بمردود طاقوي r = 35% الشكل (1) الشكل (1) استنتج مقدار الكتلة r = 35% المستهلكة من طرف هذا المفاعل النووي خلال شهر واحد.

- اا. يعتبر اليود 131 من بين الغازات المنطلقة والتي بإمكانها الانفلات من المفاعل النووي مما يجعلها تؤثر على صحة الإنسان لكونها تثبت في الغدة الدرقية.
 - A(t) أعطت الدراسة تغيرات النشاط الإشعاعي m'(t) لعينة من اليود 131 بدلالة الكتلة المتفككة m'(t).
 - البيان حدد الكتلة الابتدائية M_0 .1.1 والنشاط الإشعاعي الابتدائي m_0

m'(t) المتفككة النظرية التي تربط النشاط الإشعاعي A(t) بالكتلة المتفككة .3.1

- $t_{1/2}$ واحسب قيمته بوحدة $t_{1/2}$ واحسب قيمته بوحدة $t_{1/2}$
- A_0 . تصبح العينة غير فعالة عندما تبلغ قيمة النشاط الإشعاعي 40% من قيمته الابتدائية 2احسب مدة انتهاء مفعول العينة.

التمرين الثاني: (04 نقاط)

 8° تتشكل لعبة أطفال من مستوي AB أملس طوله d ، يميل عن الأفق بزاوية و $^{\circ}83$ عن طريق تحريك الموضع A شاقوليا، وايضا جهاز استقبال للكرية طوله $L=0.5 \mathrm{m}$ الذي يأخذ $(0, \vec{\imath}, \vec{j})$ في المستوي OS $= x_s = 0.5 m$ في الحلبة على مسافة الموضح في الشكل (3).

دراسة حركة الكرية على المسار AB:

نقوم بإرسال كرية صغيرة (G) من البلاستيك نعتبرها نقطية كتلتها m من الموضع A(المحدد بالزاوية $lpha_0$) بسرعة ابتدائیة V_A انصل إلى

0,7

(كل التأثيرات مع الهواء مهملة) الموضع u_B بسرعة u_B برتفع عن سطح حلبة اللعبة ب

- 1. بتطبیق القانون الثانی لنیوتن علی مرکز عطالة الکریة (G) بین أن المعادلة التفاضلیة $\frac{dv(t)}{dt} = -g \sin \alpha_0$:لسرعة تكتب بالشكل $v(ms^{-1})$
 - .2 استنتج المعادلة الزمنية للسرعة $v_{G}(t)$ بدلالة كل من V_A و g ، α ، t
 - 3. دراسة حركة الكرية (G) على المسار AB مكنتنا من الحصول على البيان $v_G = f(t)$ الممثل لتغيرات سرعة الكرية بدلالة الزمن-الشكل (4)-.
 - 1.3. من بين البيانين (a) و (b) ،حدد البيان الممثل لتغيرات $v_G(t)$ ، مع التعليل.

- . d و v_B ، B النرمن المستغرق لوصول الكرية إلى الموضع t_B : النرمن المستغرق لوصول الكرية الم
 - $lpha_0$ أحسب قيمة الزاوية $lpha_0$

ال. دراسة حركة الكرية في المعلم $(0,\vec{\iota},\vec{j})$:

نثبت جهاز الارسال عند زاوية α فتصل الكرية الى الموضع B بسرعة $v_{\scriptscriptstyle B}=4m.s^{-1}$ تُعطى عبارة شعاع الموضع لحركة مركز عطالة الكرية (G) في المعلم $(0,\vec{1},\vec{j})$ بالعبارة التالية: $\overrightarrow{OG} = (V_B.\cos\alpha.t).\vec{i} + (-4.9.t^2 + V_B.\sin\alpha.t + 0.5).\vec{j}$

- y(x) استخرج معادلة مسار الحركة .1
- 2. دراسة حركة الكرية (G) في المعلم $(0,\vec{1},\vec{j})$ مكنتنا من الحصول على البيان $E_C=g(t)$ الممثل لتغيرات الطاقة الحركية للكرية بدلالة الزمن-الشكل(5)-.
 - 1.2. احسب كتلة الكرية.
 - lpha احسب قيمة الزاوية lpha.
 - 3.2. حدد احداثیات الذروة.
 - 3. هل نجح الارسال؟ علل
- 4. جد قيمتي الزاويتين α_2 و اللتان من أجلهما تسقط الكرية على جهاز الاستقبال.

$$g = 9.8 \, m. \, s^{-2}$$
 ; $\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha$

التمرين الثالث: (06 نقاط)

نحقق الدارة الكهربائية الممثلة في الشكل (6) باستعمال العناصر الكهربائية التالية:

- E مولد التوتر الكهربائي المثالي قوته المحركة الكهربائية -
 - . R -ناقل أومي مقاومته
 - . r وشيعة ذاتيتها L ومقاومتها الداخلية
 - -قاطعة K وصمام ثنائي.
 - ا. من أجل المتابعة الزمنية لتطور التوتر الكهربائي بين طرفى كل من الوشيعة $u_b(t)$
- والناقل الأومى $u_R(t)$ نستعمل راسم الاهتزاز المهبطى ذو ذاكرة.
- 1. أعد رسم الدارة الكهربائية موضحا عليها كيفية ربط راسم الاهتزاز المهبطي لمشاهدة كل من (t) . 11. (t)
 - . $u_R(t)$ و $u_b(t)$
 - نغلق القاطعة عند اللحظة t=0 فنحصل t=0 على البيانين الممثلين في الشكل (7)
 - 1.2. بتطبيق قانون جمع التوترات جد المعادلة التفاضلية للتوتر $u_R\left(t
 ight)$ بين طرفي الناقل الأومى.

الشكل (6)

- ، $u_R(t) = A \left(1 e^{-\frac{t}{B}}\right)$ هو المعادلة التفاضلية التفاضلية السابقة هو .2.2 علما أن حل المعادلة التفاضلية المن A و B بدلالة مميزات الدارة.
- 3.2. ما هو المدلول الفيزيائي للثابت B? باستعمال التحليل البعدي حدد وحدة قياسه.
 - .3 بين أن عبارة التوتر بين طرفي الوشيعة $u_b(t)$ تعطى بالعلاقة:

$$u_b(t) = \frac{E}{R+r} \left(r + R e^{-\frac{R+r}{L}t} \right)$$

- 4. اعتمادا على البيانين الممثلين في الشكل (7) أوجد:
- $R_{eq}=50~\Omega$ علما أن المقاومة المكافئة للدارة هي R علما أن المقاومة المكافئة الدارة علم $R_{eq}=50~\Omega$
 - I_0 استنتج قيمة شدة التيار في النظام الدائم 2.4
- L المميز للدارة، ثم استنتج قيمة ذاتية الوشيعة au
- 4.4. جد قيمة شدة التيار المار في الدارة عند اللحظة $t=6\ ms$ ، ثم استنتج قيمة الطاقة المخزنة في الوشيعة عند هذه اللحظة.
 - $u_{R}(t)$ و $u_{b}(t)$ و المنحنيين البيانيين M نقطة تقاطع المنحنيين البيانيين $u_{b}(t)$
 - $L=rac{R+r}{ln\left(rac{2R}{R-r}
 ight)}\;t_M$:بين أن ذاتية الوشيعة تحقق العلاقة العالية: 1.5

ميث: t_M تمثل اللحظة الزمنية الموافقة لنقطة التقاطع M

- ابقا؟ المتحصل عليها سابقا؟ L أحسب قيمة ذاتية الوشيعة L هل تتوافق مع النتيجة المتحصل عليها سابقا؟
- ال. بعد غلق القاطعة مدة زمنية كافية لبلوغ النظام الدائم نضع نواة حديدية داخل الوشيعة ثم عند اللحظة t=0
 - i(t) بتطبيق قانون جمع التوترات، جد المعادلة التفاضلية للتيار المار في الدارة.
 - بين أن: $i(t)=I_0~e^{-rac{t}{ au'}}$ جل للمعادلة التفاضلية السابقة .2
 - $ln\frac{I_0}{i}=f(t)$ من رسم البيان i(t) بدلالة الزمن من رسم البيان الممثل في الشكل (8).
 - 1.3. اكتب معادلة البيان.
 - 2.3. بالمطابقة مع العلاقة النظرية الموافقة للبيان أحسب قيمة ثابت الزمن τ' ، واستنتج قيمة الذاتية L'
 - 3.3. ما هو تأثير وجود النواة الحديدية على استقرار التيار في الدارة؟ علل.

حمض البنزويك OH

الجزء الثاني: (06 نقاط)

التمرين التجريبي: (06 نقاط)

الجزءان الأول والثاني منفصلان.

الجزء الأول: معايرة حمض البنزويك.

يستخدم حمض البنزويك C_6H_5COOH الشكل (9) بشكل واسع في مستحضرات التجميل والأغذية والأشكال الصيدلانية كمادة حافظة، و يستخدم أيضا كمضاد فطري في المستحضرات موضعية التطبيق (كالمراهم).

قصد تحديد ثابت الحموضة للثنائية

نقوم بالتجربة التالية: $(C_6H_5COOH\ /\ C_6H_5COO^-)$ نقوم بالتجربة التالية: نأخذ حجم V_a من محلول مائي لحمض البنزويك تركيزه

المولي C_a ونتابع تغيرات C_b ونتابع تغيرات وركسيد الصوديوم تركيزه المولي ونتابع تغيرات وركسيد المولي وركسيد التفاعلي بدلالة الحجم V_b المحصل عليها والمزيج التفاعلي بدلالة الحجم V_b الممثل التغيرات V_b المربع بدلالة المربع بدلالة المربع والممثل التغيرات V_b الممثل التغيرات V_b الممثل المديع بدلالة المربع بدلالة المربع بدلالة المربع والمحتود والمح

. $V_b < V_{bE}$ و التكافؤ و (S_b) المحلول

- 1. أعط مخططا للبروتوكول التجريبي لعملية المعايرة موضحا الزجاجيات المستعملة وأدوات الوقاية.
- 2. اكتب المعادلة المنمذجة لتفاعل المعايرة، ومثل جدول التقدم للتفاعل.

. V_{bE} و V_b

- $.\frac{\left[C_6H_5COO^{-}
 ight]}{\left[C_6H_5COOH
 ight]}$ و النسبة pH المزيج بدلالة pKa المزيج بدلالة 4.
- $(C_6H_5COOH/C_6H_5COO^-)$ و pKa و pKa المثنائية البيان، استنتج قيمة كل من pKa على البيان، استنتج قيمة كل من pKa عمود كهربائي.

تستخدم الطاقة التي تمنحها الأعمدة لتشغيل عدة اجهزة كهربائية، يتكون العمود التالي من:

- النصف الأول: صفيحة من الحديد Fe مغمورة داخل محلول كبريتات الحديد الثنائي $V_1=100\,mL$ و حجمه $c_1=0.1\,mol/L$ و حجمه $(Fe^{+2}+S{O_4}^{-2})$
- $(Ag^+ + NO_3^-)$ النصف الثاني: صفيحة من الفضة Ag مغمورة داخل محلول نترات الفضة $V_2 = 100~mL$ و حجمه C_2 و حجمه بالمولى و C_2

يمثل البيان الموضح في الشكل (11) Ag^+ تغيرات التركيز المولي لشوارد الفضة t بدلالة الزمن t

- 1. حدد قطبى العمود مع التعليل.
- ارسم التمثيل التخطيطي للعمود الكهربائي موضحا كيفية ربط جهاز الفولط متر.

- 3. ما هو دور الجسر الملحي أثناء تشغيل العمود؟ أعط الرمز الاصطلاحي للعمود.
- 4. أكتب معادلة التفاعل المنمذج للتحول الكيميائي الحاصل في العمود أثناء اشتغاله.
 - 5. أنجز جدول التقدم للتفاعل الحادث في العمود.
 - $.[Ag^+] = -rac{I}{F.V_2}t + C_2$ بين أن: .6
 - 7. بالاستعانة بالبيان حدد:
 - . I قيمة شدة التيار الكهربائي 1.7
 - .2.7 التركيز المولي C_2 لمحلول نترات الفضة.
 - . x_{max} مدة لاشتغال العمود ثم احسب التقدم الاعظمي 3.7
 - . أحسب التغير الكتلى Δm_{Fe} في مسرى الحديد.

$$1F = 96500 \ C. \ mol^{-1}$$
 $M_{Fe} = 56 \ g. \ mol^{-1}$:يعطى:

انتهى الموضوع الثاني

الجمهورية الجزائرية الديمقراطية الشعبيبة

السنة الدراسية:2024-2025

الشعبة: رياضيات

وزارة الدفاع الوطني

أركان الجيش الوطني الشعبي

دائرة الاستعمال والتحضير

اختبار الثلاثي الثالث

المستوى:الثالثة ثانوي

مديرية مدارس أشبال الأمة

الموضوع الأول

التصحيح النموذجي لمادة: علوم فيزيائية

	T
العلامة	عناصر الإجابة
	التمرين الأول (4ن)
0,25	_1_ قوانين كبلر الثلاث
	• القانون الأول لكبلر: إن الكواكب تتحرك وفق مدارات إهليليجية تمثل الشمس إحدى محرقيها
0,25	• القانون الثاني لكبلر: المستقيم الرابط بين الشمس والكوكب يمسح مساحات متساوية خلال
	مجالات زمنية متساوية
0,25	• القانون الثالث لكبلر: إن مربع الدور يتناسب مع مكعب البعد المتوسط للكوكب عن الشمس.
0,25	$\frac{T^2}{r^3} = K = \frac{4\pi^2}{GM}$ نعم القانون الأول مُحقق من الشكل : نلاحظ أن مدار ات الكواكب الثلاث إهليليجية والشمس تقع في أحد المحرقي هذا المدار
	3_ الاعتماد على قانون كبلر الثالث وتطبيقه على الأرض نحسب قيمة هذه النسبة:
	$T^2 \qquad (3.16 \times 10^7)^2$
	$r^3 = \frac{1}{(1,50 \times 10^8 \times 10^3)^3} =$
	$=2,958696\times 10^{-19}s^2/m^{-3}$
	 الآن نطبق قانون كبلر الثالث على المريخ:
	$\frac{T_B^2}{r^3} = 2,958696 \times 10^{-19}$
	نجد :
	$T_B^2 = 2,958696 \times 10^{-19} \times (2,28 \times 10^8 \times 10^3)^3$
0.5	$T_B = 59217823,71 \ s = 5,92 \times 10^7 s = 1.876 \ ans$
	 الآن نطبق قانون كبلر الثالث على كوكب المشتري :
	$\frac{(37,40\times10^7)^2}{a_c^3} = 2,958696\times10^{-19}$
	$a_C^3 = \frac{(37,40 \times 10^7)^2}{2.958696 \times 10^{-19}} = 4,7276 \times 10^{35}$
0.5	$a_C = \sqrt[3]{4,7276 \times 10^{35}} = 7,79 \times 10^{11} \text{m}$
0.5	
	1- تمثيل القوة التي تأثر بها الشمس :
	(le Soleil) S—نرمز للشمس ب
	ونر مز للأرض بــ (la Terre)

تمرین 02: (04نقاط)
الجزء الأول :
0,25 $0,25$ $0,25$ $0,25$ $0,25$ $0,25$ $0,25$ $0,25$ $0,25$ $0,25$ $0,25$ $0,25$ $0,25$ $0,25$
$E_l(^6_3Li)$: $E_l(^6_3Li)$: $E_l(^6_3Li)$ -2 $E_l(^6_3Li) = [3\ m_p + (6-3)m_n - m(^6_3Li)] imes C^2$
= [((3.1,00728)+(3.1,00866))-6,01348]×931,5
= 31,98771 MeV
$rac{E_l({}_3^6Li)}{A}=rac{31,98771}{6}=5,33\ MeV/$ nuc
• $\frac{E_l({}_1^3H)}{A} = \frac{8,47}{3} = 2,8233 \; MeV/\text{nuc}$
النواة الأكثر استقرار هي الليثيوم لأن لها طاقة الربط لكل نوية أكبر
الجزء الثاني
1. تعریف لما تحته سطر فی النص
• النواة المشعة: هي نواة غير مستقرة تتفكك تلقائيا مصدرة اشعاعات من نمط ألفا أو بيتا أو غاما 0,25
ونواة بنت أكثر استقرارا
• <u>نظائر:</u> هي الأنوية التي تملك نفس العدد الشحني و تختلف في العدد الكتلي
$ullet$ هو الكترون تصدره الانوية التي تملك فائض نترونات من جراء تحول نترون الى بروتون ${f B}^-$
• زمن نصف العمر: هو الزمن اللازم لتفكك نصف الانوية الابتدائية
Z=72 $A=177$ معادلة التفكك: $Z=72$ $A=177$ يتطبيق قانوني الانحفاظ نجد. $Z=72$ $A=177$ معادلة التفكك. $Z=72$
$^{177}_{71}Lu ightarrow ^{177}_{72}Hf+eta^-$ يمنه تصبح المعادلة:
النشاط الابتدائي A_0 للعينة لحظة صنعها. $-1-3$
$A_0 = \lambda N_0$
$= \frac{\ln 2}{t} \frac{m}{M} N_A$
$= \frac{\ln 2}{6 \cdot 65 \times 24 \times 3600} \frac{0 \cdot 12 \times 10^{-3}}{177} 6 \cdot 023 \times 10^{23}$
$=4,926187253\times10^{11}Bq$

	2. 2 نشاط العينة الذي من أجله يعتبر الدواء غير فعالا للاستعمال في العلاج
0,25	$A (t) = A_0 e^{-\lambda t}$
0,25	$\frac{A(t)}{A_0} = e^{-\frac{\ln 2}{6.65 \times 24 \times 3600} \times (22 \times 24 \times 3600 + 2 \times 3600 + 10 \times 60)}} = 0.100 = 10\%$
	ر 106نقاط) الثالث (106نقاط)
	$I_0 = 3 imes 10^{-4} A$ تأكد أن التيار الكهربائي الذي يعطيه المولد $U_0 = RI_0$
0,25	$I_0 = \frac{U_0}{R} = \frac{0.3}{1000} = 3.10^{-4}A$
	E_{C} اوجد عبارة الطاقة المخزنة في المكثفة $E_{C}(t)$ بدلالة I_{0} و D و D .
3*0,25	$E_C = \frac{1}{2}CU_C^2 = \frac{1}{2}C(\frac{q}{c})^2 = \frac{1}{2}C(\frac{I_0 \times t}{c})^2 = \frac{I_0^2}{2C} \times t^2$
	$^{\prime}E_{\mathcal{C}}=f(t^2)$ - اعتمادا على البيان
	$E_c = a \times t^2$ للمكثفة البيان عبارة عن خط مستقيم يمر من المبدأ معادلته C البيان عبارة عن خط مستقيم يمر
0.25+0,25	$a=rac{{I_0}^2}{2C}$ $C=rac{{I_0}^2}{2a}=1$ بالمطبقة مع العلاقة النظرية $a=rac{0.45 imes 10^{-3}-0}{1}=4.5 imes 10^{-4}$
	$\frac{(3.10^{-4})^2}{2\times(4.5\times10^{-4})} = > C = 1.10^{-4}F$
0.25.0.25	2-3 -من البيان
0,25 0,25	E_{Cmax} واستنتج الطاقة المخزنة في المكثفة عند نهاية الشحن
	$t_f = 2s$ وزمن نهاية الشحن $E_{cmax} = 1.8 imes 10^{-3} \mathrm{J}$
	المكتفة عند نهاية عملية الشحن U_{cmax} بين طرفى المكتفة عند نهاية عملية الشحن $3-3$
0,25	$E_{Cmax} = \frac{1}{2}CU_{Cmax}^2 = 1.8 \times 10^{-3}$
	$U_{Cmax} = \sqrt{\frac{2E_{Cmax}}{C}} = \sqrt{\frac{1.8 \times 2 \times 10^{-3}}{1.10^{-4}}} = 6V$
	$(t=0)$ غندما تشحن المكثفة كليا $(U_0=6\ V)$ نؤرجح الباد لة الى الوضع (2) في لحظة ($U_0=0$. II
0,25	1-أ ذكر الظاهرة الكهربائية الحادثة للمكثفة مجهريا مع التعليل
	ظاهرة : تفريغ المكثفة التفسير : تعود الإلكترونات المتراكمة في اللبوس B إلى اللبوس A حتى يصبح
	اللبوسين متعادلين كهربائيا ، عندها نقول أن المكثفة تفرغت
	ين طرفى المكثفة $u_{c}(t)$ بين طرفى المكثفة $u_{c}(t)$ بين طرفى المكثفة
	$u_{ m C}+{\scriptscriptstyle R_2i}=0u_{ m C}+u_{ m R2}=0$ بتطبیق قانون جمع التوترات
	4

$\frac{R_2 dU_{\rm C}}{dt} + u_{\rm C} = 0$ نجد	بالأشتقاق
$\frac{dU_{c}}{dt} + \frac{U_{c}}{R_{2}C}$	= 0
(ثابت يطلب تعيين عبارته $u_C(t)=A$. $e^{-lpha t}$ المعادلة يكتب بالشكل: $u_C(t)=A$. $u_C(t)$	3-1 حل
في المعادلة التفاضلية نجد :	بالتعويض
$\frac{dU_{\rm C}}{dt} = U_0 \times \alpha e^{-\alpha t}$	
ومنه. $u_0 imes lpha e^{-lpha t} - rac{1}{ ext{R2C}} imes u_0$	$e^{-\alpha t}=0$
0,25	$\alpha = \frac{1}{R2C}$
$u_C(t) =$	$A.e^{-\alpha t}$
من الشروط الابتدائية A	استخراج
$U_{C} = E$	t = 0
	A = E
مثل الثابت 1/α وما مدلوله الفيزيائي	3-2ماذا ي
و ثابت الزمن r المميز للدارة	یمثل: ه $lpha$
ت الزمن : الزمن المميز للدارة و هو الزمن اللازم لشحن مكثفة بنسبة % 63	3_3 _ ثابت
يل البعدي ان $1/lpha$ متجانس مع الزمن	سن بالتحل
$[\tau_1] = [$	
$[\tau_1] = \frac{[\mathbf{U}]}{[I]} \cdot \frac{[q]}{[U]} = \frac{[\mathbf{q}]}{[I]} = \frac{[\mathbf{q}]}{\frac{[q]}{[t]}} = \frac{[1]}{\frac{[1]}{[t]}}$	[11][0]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$[\tau_1] = [t] = s$	
العبارة اللحظية للطاقة المخزنة $E_{\mathcal{C}}(t)$ في المكثفة بدلالة الزمن	<u>4-1 أكتب</u>
$E_C = \frac{1}{2}Cu_C^2 = \frac{1}{2}C(u_0e^{-\frac{t}{\tau}})^2 = \frac{1}{2}Cu_0^2$	$u_0^2 e^{-\frac{2t}{\tau}}$.
من البيان قيمة E_{cmax} الطاقة المخزنة العظمى في المكثفة	4-2عين ه
$E_{Cmax} = 0.36 \times 5 = 1.8 \times 10^{-3}$	
سعة المكثفة	واستنتج ا

0,25	$E_{Cmax} = \frac{1}{2}CU_{Cmax}^2$
0,23	$C = \frac{2E_C}{U_C^2} = \frac{2 \times 1,8 \times 10^{-3}}{(6)^2} = 1 \times 10^{-4} F$
	من الشكل بين ان مماس للمنحنى في اللحظة $\frac{\tau}{2} = \frac{1}{2}$ يقطع محور الأزمنة ثم عين قيمة ثابت الزمن τ
0,25	$E_C = \frac{1}{2}C(Ee^{\frac{-t}{\tau}})^2$
0,25	$\frac{dE_C}{dt} = \frac{1}{2}CE^2 \left(\frac{=2}{\tau}\right) e^{\frac{=2t}{\tau}}$
	$0 = \frac{1}{2}CE^{2}\left(\frac{=2}{\tau}\right)e^{\frac{=2t}{\tau}}\left(t-0\right) + \frac{1}{2}CE^{2}\left(e^{\frac{t}{\tau}}\right)^{2}$
0.25	$t = \frac{\tau}{2}$
	$ au=0.2$ $\qquad \qquad \frac{ au}{2}=0.1s$ من البيان
0,25	$rac{R_2}{ au}$ الناقل الاومي $ au_2$ $ au=R_2$ $ au=R_2$
	$R_2 = \frac{\tau}{C} = \frac{0.2}{10^{-4}} = 2000 \Omega$
	R_2 الناقل الأومى R_2 الناقل الأومى R_2
	$(t = \tau)$ عند اللحظة
0,25	$E_C(\tau) = E_C(0) - E_C(\tau)$ $= \frac{1}{2}Cu_0^2 \left(e^{-\frac{2(0)}{\tau}} - e^{-\frac{2(\tau)}{\tau}}\right)$
	$= \frac{1}{2} \times (1 \times 10^{-4}) \times 6^{2} (1 - 0.13) = 1.566 \text{ mj}.$
0,25	5-ر سم منحني كيفي
	التمرين التجريبي (06نقاط)
0,25	1.1. أكتب المعادلتين النصفيتين للأكسدة والارجاع الموافقتين لتفاعل المعايرة الحادث.
	$MnO_{4(aq)}^{-} + 8H^{+} + 5e^{-} = Mn_{(aq)}^{2+} + 4H_{2}O_{(\ell)}$
0,25	$H_{2}O_{2(aq)} = O_{2(g)} + 2H^{+} + 2e^{-}$
	6

2.1. كيف نستدل على نقطة التكافؤ تجريبيا ؟	0,25
بالتغير اللوني للمحلول الجادث في البيشر	
هل يؤثر إضافة الماء وقطع الجليد على قيمة V_E الماذا؟	
	0,25
بالتركيز	
V_{E} عبر عن c_{1} بدلالة V_{E} و V_{E} ثم احسب قيمته.	
$rac{n_1}{lpha}=rac{n_2}{eta}$ عند نقطة التكافؤ مزيج ستوكيومتري $rac{C_1V_1}{2}=rac{C_2V_E}{2}$	0,25
$C_1 = \frac{5C_2V_E}{2V_1} = \frac{5 \times 10^{-2} \times 20 \times 10^{-3}}{2 \times 20 \times 10^{-3}} = 2,5 \times 10^{-2} \text{ mol/l}$	0,23
1-2 <u>عرف الوسيط</u>	0,25
هو فرد كيميائي يسرع عملية التفاعل ولايظهر في معادلة التفاعل ولا يغير حالة نهائية للجملة	0,23
2-2 هل يعتبر كلور الحديد الثلاثي وسيطا؟	
نعم يعتبر وسيطا التعليل لانه لم يظهر في معادلة التفاعل .	0,25
مانوع الوساطة؟	
وساطة متجانسة لان الوسيط والمحلول من نفس الطور	0,25 0,25
3.2. جدول للتقدم هذا التفاعل.	0,25
$c_{_0}$ ، التقدم الأعظمي ومنحنى الشكل (9) استنتج قيم كل من: التقدم الأعظمي $c_{_0}$ ،	
H_2O_2 بما ان التفاعل تام فان متفاعل محد هو الماء الاوكسجيني	0,25
$nH_2O_2 - 2X_{MAX} = 0$	
$X_{\text{max}} = \frac{nH_2O_2}{2} = \frac{8 \times 10^{-3}}{2} = 4 \times 10^{-3} \text{mol}$	
التركيز الابتدائي	0,25
$nH_2O_2 = 2X_{MAX}$ $C_0V_0 = 2X_{MAX}$	
$C_0 V_0 = 2X_{MAX}$ $C_0 = \frac{2X_{MAX}}{V_0} = \frac{810^{-3}}{8010^{-3}} = 0.1 \frac{mol}{l}$	0,25
معامل التمديد	0,25
$F = \frac{C_0}{C_1} = \frac{0.1}{0.01} = 10$	
5.2. استنتج سلما لمحورتراتيب بالنسبة لمنحنى الشكل (1).	0,25 0,25
1000000000000000000000000000000000000	
$1Cm \rightarrow XmL$	
ومنه	

	$V_{o_2} = 0.024 mL$
0,25	6. <u>2. عرف زمن نصف التفاعل</u> وحدد قيمته.
0,25	هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي X_f
	$t_{1/2} = 8 \mathrm{min}$ تحدید قیمته
0,25	$v = rac{1}{V_M} rac{d~V_{O_2}}{d~t}$: علم ان $x = rac{V_{O_2}}{V_M}$ نعلم ان $x = n_{O_2}$ نعلم ان $x = n_{O_2}$ من جدول التقدم
	$\frac{dx}{dx} = \frac{dV_{o_2}}{dx}$
0.25	$\frac{-}{dt} = \frac{-}{dtV_{M}}$ imi
0,25	$1 dV_{o}$
0,25	$v = \frac{1}{V_M} \frac{dV_{O_2}}{dt}$
0,25	$v = \frac{1}{24} \frac{0.096 - 0}{10 - 0} = 410^{-4} \frac{mol}{min}$ $v = \frac{1}{24} \frac{0.096 - 0}{10 - 0} = 410^{-4} \frac{mol}{min}$ $v_{VOL} = \frac{v_{O2VOL}}{1}$ استنتج سرعة اختفاء الماء الأوكسجيني عند نفس اللحظة $v_{VOL} = \frac{v_{O2VOL}}{1}$
	1
	$V_{V_{o_2} vOL} = V_{V_{o_2}} V_T = 4 \times 10^{-4} \times 80 \times 10^{-3} = 3,2 \times 10^{-5} \frac{mol}{l \min}$
0,25	
0,25	

السنة الدراسية:2024-2025

وزارة الدفاع الوطني

أركان الجيش الوطني الشعبي

دائرة الاستعمال والتحضير

اختبار الثلاثي الثالث

الموضوع الثاني

مديرية مدارس أشبال الأمة

الشعبة: رياضيات

المستوى:الثالثة ثانوي

التصحيح النموذجي لمادة: علوم فيزيائية

التمرين الأول: (04 ن)

السلم		التصحيح	
	0.125	- 1- كتابة معادلة التفاعل النووي: 	
0.25	0.125	${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{137}_{53}I + {}^{97}_{2}Y + x {}^{1}_{0}n$	
	0.123	نوعه: انشطار نووي	
	0. 25	Z- ایجاد قیمهٔ Z و X :	
0.5		x=2 من قانون صودي: $x=35+1=137+97+x$ و منه:	
	0.25	Z = 39 و منه: $92 = 53 + Z$	
		و $^{97}_{Z}$: و الجاد طاقة الربط E_l لكل من النواتين $^{235}_{92}$ و $^{97}_{Z}$:	
	0. 25	$\Delta E_1 = E_3 - E_2 = E_{l\binom{235}{92}U} = 1737 MeV$	
		$\Delta E_2 = E_3 - E_1 = E_{l\binom{137}{53}l} + E_{l\binom{97}{2}Y}$	
	.025	$\to E_{l\binom{97}{2}Y} = \Delta E_2 - E_{l\binom{137}{53}I} = 797.6 \text{MeV}$	
01	0.25	$rac{E_{linom{97}{Z}Yig)}}{A}>rac{E_{linom{235}{92}U}}{A}$ گن: $rac{235}{A}$ گن: $rac{97}{A}$	
	0.25	ب- تحديد الطاقة المحررة E_{lib} من نواة اليورانيوم 235:	
		$\Delta E_3 = E_2 - E_3 = E_{lib} = 185 MeV$	
		4- استنتاج مقدار الكتلة m لليورانيوم 235 المستهلكة من طرف هذا المفاعل النووي:	
		$N = \frac{E_{lib T}}{E} = \frac{E_{ele}}{E} \times 100$ 100 M P At	
0. 5	0.25	$m = \frac{N}{N_A}M = \frac{\frac{E_{lib T}}{E_{lib}}}{N_A}M = \frac{\frac{E_{ele}}{r} \times 100}{E_{lib N_A}M} = \frac{100 M P \Delta t}{r E_{lib N_A}}$	
	0.25	$100 M P \Delta t$ $100 \times 235 \times 800 \times 10^6 \times 30 \times 24 \times 3600$	
		$m = \frac{100 M P \Delta t}{r E_{lib} N_A} = \frac{100 \times 235 \times 800 \times 10^6 \times 30 \times 24 \times 3600}{35 \times 185 \times 1.6 \times 10^{-13} \times 6 \times 10^{23}} = 78.39 kg$	
	0.35	A_0 ا- 1- أ- تحديد الكتلة الابتدائية m_0 و النشاط الإشعاعي الابتدائي A_0 :	
	0.25	$A_0 = 4 \times 10^7 \ Bq \ g \ m_0 = 8.8 \ ng$	
		$A(t) = rac{A_0}{2^{t/t}_{1/2}}$ ب- اثبات أن:	
		$A(t) = A_0 \; e^{-\lambda t} \;\; : A(t)$ من قانون التناقص الاشعاعي	
	0.25	$A(t) = A_0 e^{-\lambda t} = A_0 e^{-\frac{\ln 2}{t_{1/2}}t} = A_0 e^{\ln 2^{\frac{-t}{t_{1/2}}}} = A_0 2^{\frac{-t}{t_{1/2}}}$	

01.5		$A(t) = \frac{A_0}{2^{t/t_{1/2}}}$
		m'(t)ت- ايجاد العلاقة النظرية التي تربط النشاط الإشعاعي $A(t)$ بالكتلة المتفككة تربط النشاط الإشعاعي
	0.25	$A(t) = \lambda N(t) = \frac{\ln 2}{t_{1/2}} \frac{m(t)}{M} N_A = \frac{N_A \ln 2}{M t_{1/2}} \left(m_0 - m'(t) \right)$
	0.25	ث- تعريف زمن نصف العمر: هو الزمن اللازم لتفكك أو بقاء نصف الأنوية الابتدائية.
		- <i>حس</i> اب قیمته:
		$A=lpha \ { m m}^{'}+eta$ البيان عبارة عن خط مستقيم لا يمر من المبدأ معادلته من الشكل
	0.25	$A = -4.55 \times 10^{15} m' + 4 \times 10^7$
	0.25	$t_{1/2}=-rac{N_A\ln 2}{Mlpha}=rac{6 imes 10^{23} imes \ln 2}{131 imes 4.55 imes 10^{15}}=697740.6s$ بالمطابقة نجد: $lpha=-rac{A\ln 2}{t_{1/2}}=lpha$
	0.25	$t_{1/2} = 8 Jours$
		2- حساب مدة انتهاء مفعول العينة:
0.25	0.25	$A(t) = A_0 e^{-\lambda t} \rightarrow 0.4 A_0 = A_0 e^{-\lambda t}$
0.25		$ln0.4 = -\lambda t \rightarrow t = -\frac{ln0.4}{\lambda}$
		$t = -\frac{t_{1/2}ln0.4}{ln2} \rightarrow t = 10.57 Jours$

التمرين الثاني: (04 ن)

 - 1- تبيين أن
بتطبيق القا
الجملة المد
المرجع العد
القوة المؤثر
بالاسقاط على
ومنه: 0
- استنتاح
2- أ-البيان
(التسارع
ب- اسن

	0.25	(2 5 + 2 52) × 0 2	
	0.23	$d = S_{\text{max}} = \frac{(3.5 + 2.52) \times 0.2}{2} = 0.602 m$	
		L	
		ت- حساب قيمة الزاوية ₀ :	
		$a_G = \frac{dv}{dt} = -\frac{3.5 - 2.52}{0 - 0.2} = -4.9 \text{ m/s}^2$	
	0.25	de 0 012	
		$a_G = -g \sin \alpha_0 \rightarrow \sin \alpha_0 = \frac{-a_G}{g} = 0.5 \rightarrow \alpha_0 = 30^\circ$	
		g	
0.25		y(x) استخراج معادلة المسار:	
0.23	0.25	$y(x)=rac{-4.9}{v_B^2\cos lpha^2}x^2+x anlpha+0.5$ بالتعويض في $y(t)$ نجد:	
-		$v_B = \cos \alpha^2$ $v_B \cos \alpha$	
	0.35		
	0.25	$Ec_0 = \frac{1}{2}mv_B^2 \to m = \frac{2Ec_0}{v_B^2} = \frac{2 \times 0.8}{4^2} = 0.1 \text{ kg}$	
		ب- حساب قيمة الزاوية α:	
		1 $2F_{\alpha}$ 2×0.2	
	0.25	$Ec_S = \frac{1}{2}mv_x^2 \to v_x = \sqrt{\frac{2Ec_S}{m}} = \sqrt{\frac{2 \times 0.2}{0.1}} = 2 m/s$	
	0.20	\sqrt{m}	
		$v_x = v_B \cos \alpha \rightarrow \cos \alpha = \frac{v_x}{v_B} = 0.5 \rightarrow \alpha = 60^{\circ}$	
1		$ au_B$ ت- زمن بلوغ الذروة: $t_s=0.35~s$	
		احداثيات الذروة:	
	0.25		
	0.25	$x(t_s) = v_B \cos \alpha \ t_s = 0.7 \ m$ $y(t_s) = -4.9 \ t_s^2 + v_B \sin \alpha \ t_s + 0.5 = 1.11 \ m$	
	0.20	$y(t_S)=-4.9t_S^-+ u_B^-\sin u^-t_S^-+0.5=1.11m$ الم ينجح الارسال لأنه حتى يتحقق الارسال يجب ان يتحقق الشرطان $x_S=0.5m$ و $x_S=0.5m$	
		-	
0.5	0.5	L = 0.5 m	
		نعوض χ_S في معادلة المسار نجد:	
		$y(x_S) = \frac{-4.9}{v_B^2 \cos \alpha^2} x_S^2 + x_S \tan \alpha + 0.5 = 1.06 m > L$	
		-4 ایجادقیمة α ₁ -4	
		1	
		$y(x_S) = \frac{-4.9}{v_B^2 \cos \alpha^2} x_S^2 + x_S \tan \alpha + 0.5$	
0.5		$L = \frac{-4.9}{v_B^2} x_S^2 (1 + \tan \alpha^2) + x_S \tan \alpha + 0.5$	
$v_B^2 = v_B^2$ $7.66 \times 10^{-2} \tan \alpha^2 - 0.5 \tan \alpha + 0.0766 = 0$			
		$7.00 imes 10$ $ 0.5$ $ an lpha + 0.0700 0 باستخدام المميز \Delta نجد:$	
		·	
	0.25	$\tan \alpha_1 = 6.37 \rightarrow \alpha_1 81^{\circ}$	
		$\alpha_2 = 9^{\circ}$	

اللتمرين الثالث: (06 ن)

السلم		التصحيح
0.25	0.25	ا- 1 - الدارة: u_{B}
1.75	0.5	: $_{R}$ (t) المعادلة التفاضلية لـ $_{R}$ (t) u_{b} (t) $+$ u_{R} (t) $=$ E من قانون جمع التوترات: $L\frac{di(t)}{dt}$ $+$ r $i(t)$ $+$ R $i(t)$ $=$ E $\frac{di(t)}{dt}$ $+$ $\frac{di(t)}{dt}$
	0.25 0.25 0.25	ب- ايجاد عبارة كل من A و B : $ \frac{du_R(t)}{dt} = \frac{A}{B}e^{-\frac{t}{B}} \leftarrow u_R(t) = A\left(1-e^{-\frac{t}{B}}\right) $ بالتعويض في المعادلة التفاضلية نجد : $ A = \frac{RE}{(r+R)} $ T نامدلول الفيزيائي له هو : ثابت الزمن T
	0.25	تحدید وحدة قیاسه: بالتحلیل البعدي نجد: $[B] = rac{[L]}{[R]} = rac{[U][T][I]^{-1}}{[U][I]^{-1}} = [T]$
	0.25	B متجانس مع الزمن وحدته الثانية $u_b(t)$ عبارة $u_b(t)$ عبارة $u_b(t)=E-u_R(t)\leftarrow u_b(t)+u_R(t)=E$ من قانون جمع التوترات: $u_b(t)=E-\frac{RE}{(r+R)}\left(1-e^{-\frac{t}{\tau}}\right) \rightarrow u_b(t)=\frac{E}{R+r}\Big(r+Re^{-\frac{R+r}{L}t}\Big)$
	0.25	: R قيمة المقاومة R : $R_{eq} = R + r = 5$ $R = 50$ $R_{eq} = R + r = 10$ $R_{eq} = 10$
1.5	0.25	$u_R~(5 au)=~R~I_0 ightarrow I_0=rac{u_R~(5 au)}{R}=0.12~A$ ت- ایجاد قیمهٔ ثابت الزمن $ au=2~ms$: تابعاد تیمهٔ ثابت الزمن $ au=2~ms$

	0.25	استنتاج قيمة ذاتية الوشيعة L :						
	0.25	$ au = \frac{L}{(r+R)} \rightarrow L = \tau R_{eq} = 0.1 H$						
		$(r+R)$ $t=6\ ms$ عند اللحظة التيار المار في الدارة عند اللحظة $t=6\ ms$						
	0.25	$u_{R}\left(t ight)=\left.i(t) ight)$ من البيان $u_{R}\left(t ight)=4.6V$ ومنه						
	0.05	$i(t) = \frac{u_R(t)}{R} = 0.115 \text{ A}$						
	0.25	 استنتاج قيمة الطاقة المخزنة في الوشيعة عند هذه اللحظة: 						
		ر استنتاج قيمة الطاقة المخزنة في الوشيعة عند هذه اللحظة: $E_b(t)=rac{1}{2}L\ i^2(t)=1.2 imes10^{-3}J$						
		$L=rac{R+r}{\ln(rac{2R}{R-r})}\;t_M$ أ- تبيين أن ذاتية الوشيعة تحقق العلاقة التالية: -4						
		$u_b\left(t_M ight)=u_R\left(t_M ight)$ عند نقطة التقاطع يكون:						
		$\frac{E}{R+r}\left(r+R\ e^{-\frac{R+r}{L}t_M}\right) = \frac{R\ E}{(r+R)}\left(1-\ e^{-\frac{R+r}{L}t_M}\right)$						
		$r + R e^{-\frac{R+r}{L}t_M} = R - R e^{-\frac{R+r}{L}t_M} \rightarrow 2R e^{-\frac{R+r}{L}t_M} = R - r$						
	0.5	$e^{-\frac{R+r}{L}t_M} = \frac{R-r}{2R} \rightarrow -\frac{R+r}{L}t_M = ln\left(\frac{R-r}{2R}\right)$						
0.75								
		$L = \frac{R+r}{\ln\left(\frac{2R}{R-r}\right)} t_M$						
		ں۔ حساب قیمة ذاتیة الوشیعة L:						
		$L = \frac{40 + 10}{\ln\left(\frac{2 \times 40}{40 - 10}\right)} \times 1.9 \times 10^{-3} = 0.097 \approx 0.1 H$						
	0.25	$ln\left(\frac{2\times40}{40-10}\right)$						
		نعم تتوافق مع النتيجة السابقة						
		$i\left(t ight)$ ا۔ 1- إيجاد المعادلة التفاضلية لـ $i\left(t ight)$						
		$u_{b}\left(t ight) +u_{R}\left(t ight) =0$ من قانون جمع التوترات:						
0.25	0.25	$L'\frac{di(t)}{dt} + ri(t) + Ri(t) = E \rightarrow \frac{di(t)}{dt} + \frac{(r+R)}{L'}i(t) = 0$						
		$\frac{di(t)}{dt} + \frac{1}{\tau}i(t) = 0$						
		at $ au$ على المعادلة التفاضلية السابقة $i(t)=I_0~e^{-rac{t}{ au'}}$ على -2						
		$\frac{di(t)}{dt} = -\frac{I_0}{\tau}e^{-\frac{t}{\tau'}} \leftarrow i(t) = I_0 e^{-\frac{t}{\tau'}}$						
0.25	0.25	بالتعويض في المعادلة التفاضلية $t = 1$						
		$-\frac{0}{\tau'}e^{-\frac{t}{\tau'}} + \frac{1}{\tau'}I_0 e^{-\frac{t}{\tau'}} = 0$						
		نستنتج انه حل للمعادلة التفاضلية						
		3- أ- معادلة البيان:						
		$ln \stackrel{\circ}{-} = lpha \ t$ البيان عبارة عن خط مستقيم يمر من المبدأ معادلته من الشكل:						
	0.25							

		1					
		$ln\frac{I_0}{i} = 200 \ t \leftarrow \ \alpha = \frac{1}{5 \times 10^{-3}} = 200$					
	0.25	i $5 imes 10^{-3}$. $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$					
1							
	0.25	$lnrac{0}{t}=rac{1}{t}$ من العلاقة النظرية $u=0$ $i(t)=I_0$ $e^{-rac{t}{t}}$ من العلاقة النظرية $i(t)=I_0$					
		$ au' = 5 imes 10^{-3} s \leftarrow rac{1}{ au'} = 200$ وبالمطابقة نجد:					
	0.25	ت- استنتاج قيمة ذاتية الوشيعة 'L':					
		$\tau' = \frac{L'}{(r+R)} \to L' = \tau' R_{eq} = 0.25 H$					
0.25	0.25						
0.23	0.23	4- في النواة الحديدية يستقر التيار بشكل ابطئ لأن وجود النواة الحديدية يزيد ذاتية الوشيعة L مما مما L مما مما L مما مما مما مما مما مما مما مما مما مم					
		يزيد ثابت الزمن $ au$ وعليه يستغرق التيار مدة اكبر للاستقرار (بلوغ النظام الدائم)					
		التمرين التجريبي: (06ن)					
	0.25	الجزء الأول:					
	0.23	1. البروتوكول التجريبي					
	0.5 0.25	الزجاجيات: سحاحة و بيشر - الأجهزة: مخلاط كهرومغناطيسي، pHمتر- للوقاية: كمامة مئزر نظارات قفازات					
	0.23	$C_6H_5COOH_{(aq)}+OH^{(aq)}=C_6H_5COO^{(aq)}+H_2O_{(l)}$.2 معادلة تفاعل المعايرة: .2					
		$V_b < V_{bE}$ عنا جدول تقدم تفاعل المعايرة من أجل حجم $V_b < V_{bE}$ 3.					
		التقدم $Acide + OH^{(aq)} = Base + H_2O_{(l)}$					
	0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	0.25						
		$C_b V_b = x_f$ بما أن $V_b < V_b$ فإن OH^- هو المتفاعل المحد أي بما أن $V_b < V_{bE}$					
		$igl[C_6H_5COOHigr] = C_aV_a - x_f = C_aV_a - C_bV_b$ و منه $igl[C_6H_5COO^-igr] = x_f = C_bV_b$ و منه					
	0.5	-					
		$rac{\left[C_6H_5COO^- ight]}{\left[C_6H_5COOH ight]}$ = $rac{C_bV_b}{C_bV_{beq}-C_bV}$:اذن تصبح النسبة $C_aV_a=C_bV_{beq}$					
		$egin{aligned} egin{bmatrix} igl[C_6 H_5 COO^- igr] = rac{V_b}{V_{beq} - V_b} \end{aligned}$ ومنه					
		عبارة pK_a : لدينا: $pK_a = \frac{\left[RCOO^-\right]_f}{\left[RCOOH\right]_f} imes \left[H_3O^+\right]_f$ نطبق (log عبارة مينا: عبارة الدينا: الدينا: المينا: $pK_a = \frac{\left[RCOO^-\right]_f}{\left[RCOOH\right]_f}$					
	0.5	[PCOO_] a					
		$-\log K_a = -\log \frac{[RCOO^{-1}]_f}{[RCOOH]_f} - \log[H_3O^{+1}]_f$					
		$\begin{bmatrix} RCOO^{-} \end{bmatrix}_{f} \qquad \begin{bmatrix} RCOO^{-} \end{bmatrix}_{f}$					
		$pH = \log \frac{[RCOO^{-}]_{f}}{[RCOOH]_{f}} + pK_{a}$ each $pK_{a} = -\log \frac{[RCOO^{-}]_{f}}{[RCOOH]_{f}} + pH$					
	0.25	$\mathrm{pH} = A \log(rac{V_b}{V_{beq} - V_b}) + B$ البيان عبارة عن خط مستقيم لا يمر من المبدأ معادلته. 4					
		$V_{beq} - V_b$					

0.25	$pK_a=4.2$ بالمطابقة مع العلاقة السابقة نجد:

								1	
								الجزء الثاني:	
							د دانیال:	1- قطبي عمود	
0.25	0.25		صفيحة الحديد Fe تمثل القطب السالب و صفيحة الفضة Ag تمثل القطب الموجب لأن تركيز						
				ب الموجب	منه تمثل القطر	لها عملية ارجاع و	تنقص و عليه تحدث	شوارد الفضة	
2- رسم التمثيل التخطيطي لعمود دانيال						-2			
0.25	0.25		صفيحة جسر ملحي الفضة المحديد الثنائي						
			3- دور الجسر الملحي:						
							ت تصفي العمود.	الوصل بين ا	
	0.25					لِين.	، الكهربائي بين المحلوا	ضمان النقل	
0.5	0.25		- الرمز الاصطلاحي للعمود:						
	0.25	$\ominus Fe Fe^{2+} Ag^{+} Ag \oplus$							
			4- كتابة معادلة التفاعل الحادث أثناء اشتغال العمود:						
					•				
0.25	0.25	القطب السالب(مصعد): عملية أكسدة $Fe=Fe^{2+}+2^-$ عملية أكسدة $Ag^++e^-=Ag$ القطب الموجب(مهبط): عملية ارجاع $Fe+2$ $A^+=Fe^{2+}+2$ Ag معادلة التفاعل الحادث:							
			معدده المقاعل العدم الحادث في العمود: 5- إنجاز جدول التقدم الحادث في العمود:						
				ادلة التفاعل	معا	Fe +		$Fe^{2+} +$	· ,
			الحالة	التقدم			كمية المادة بالمول		
0.25	0.25		ح الابتدائية	x = 0	n_3	n_2	n_1	n_4	
				ح الانتقالية	x(t)	$n_3-x(t)$	$n_2-2x(t)$	$n_1 + x(t)$	$n_4 + 2x(t)$
			ح النهائية	x_f	n_3-x_f	n_2-2x_f	$n_1 + x_f$	$n_4 + 2x_f$	
			$[Ag^+] = -rac{I}{F.V_2}t + \mathcal{C}_2$ -6 تبيين أن: -6						
			$[Ag^+]=rac{n_2-2x(t)}{V_2}=rac{C_2V_2-2x(t)}{V_2}=C_2-rac{r_1V_2}{V_2}$ من جدول التقدم:						
0.25	0.25			x(t) =	$=\frac{It}{2F}$ أي: Z	Z=2 علماأن: Q	= I t = Z x(t)	(t)F لدينا:	

		$[Ag^{+}] = -rac{I}{F.V_{2}}t + C_{2}$ ومنه:
		7- أ- تحديد شدة التيار الكهربائي:
		$[Ag^+]=\ t+eta$:البيان عبارة عن خط مستقيم لا يمر من المبدأ معادلته من الشكل
		$\alpha = \frac{0.2 - 0.1}{(0 - 1500) \times 60} = 1.11 \times 10^{-6} \beta = 0.2$
		$[Ag^+] = 1.11 \times 10^{-6} \ t + 0.2$ وعليه:
1	0.25	$I=10.71~mA$ وعليه: $I=-lpha$ $F.V_2 \leftarrow -rac{I}{F.V_2}=lpha$ بالمطابقة نجد:
	0.25	ب- تحديد التركيز المولي C_2 لمحلول نترات الفضة:
		$eta=C_2=0.2mol/L$ بالمطابقة نجد:
		ت- تحديد اقصى مدة لاشتغال العمود:
	0.25	$t_f=1500min$:من البيان
		- حساب قيمة التقدم الأعظمي:
	0.25	$x_{max} = \frac{It_f}{2F} = \frac{10.71 \times 10^{-3} \times 1500 \times 60}{2 \times 96500} = 4.99 \times 10^{-3} \ mol \cong 5 \ mmol$ لدينا:
		التغير الكتلي Δm_{Fe} في مسرى الحديد: Δm_{Fe}
0.25	0.25	$\Delta m_{Fe} = m_{Fe_f} - m_{Fe_0} = M_{Fe} \left(n_{Fe_f} - n_{Fe_0} \right)$
		$\Delta m_{Fe} = M_{Fe} (n_{Fe_0} - x_{max} - n_{Fe_0}) = -M_{Fe} x_{max}$
		$\Delta m_{Fe} = -56 \times 5 \times 10^{-3} = -0.28 \ g$