Econometrics 2 – Part 1

Arieda Muço

Central European University

Winter 2023

Case 1: Measurement Error in Y_i

• True relationship

$$Y_i^* = \alpha + X_i'\beta + u_i$$

- But Y_i^* is not observed
- We observe Y_i measured with error

$$Y_i = Y_i^* + \epsilon_i$$

Case 1: Measurement Error in Y_i

- Assumptions:
 - \bullet $\epsilon_i \sim iid\left(0, \sigma_{\epsilon}^2\right)$
 - $Cov(X_i, \epsilon_i) = 0$
- Estimated Model:

$$Y_i = \alpha + X_i'\beta + \underbrace{(u_i + \epsilon_i)}_{v_i}$$

Note: $Cov(v_i, X_i) = 0$

- OLS estimator of β is unbiased
- Error variance: $Var(u_i + \epsilon_i) = \sigma_u^2 + \sigma_{\epsilon}^2$

Case 2: Measurement Error in X_i

• Consider a bivariate model without constant:

$$Y_i = \rho s_i^* + u_i$$
 where
$$Cov(s_i^*, u_i) = 0$$

- s_i^* true level of schooling
- We observe $s_i = s_i^* + \epsilon_i$
- Classical Measurement Error (CME)
 - $\epsilon_i \sim iid\left(0, \sigma_{\epsilon}^2\right)$
 - $Cov(\epsilon_i, s_i^*) = 0$

Estimated model

$$Y_{i} = \rho s_{i}^{*} + u_{i}$$

$$= \rho(s_{i} - \epsilon_{i}) + u_{i} = \rho s_{i} \underbrace{-\rho \epsilon_{i} + u_{i}}_{\tilde{u}_{i}}$$

$$Y_{i} = \rho s_{i} + \tilde{u}_{i} \quad \text{estimated model}$$

Are the error term and the regressor correlated?

$$Cov(s_{i}, \tilde{u}_{i}) = Cov(s_{i}, u_{i} - \rho\epsilon_{i}) = Cov(s_{i}, -\rho\epsilon_{i})$$

$$= -\rho Cov(s_{i}, \epsilon_{i}) = -\rho Cov(s_{i}^{*} + \epsilon_{i}, \epsilon_{i})$$

$$= -\rho\sigma_{\epsilon}^{2}$$

If
$$\rho > 0$$
, $Cov(s_i, \tilde{u}_i) < 0$

Measurement error bias

$$Y_i = \rho s_i + \tilde{u}_i$$

Estimating the model with OLS gives

$$\tilde{\rho} = \frac{Cov(Y_i, s_i)}{Var(s_i)}$$

$$= \frac{Cov(\rho s_i + \tilde{u}_i, s_i)}{Var(s_i)}$$

$$= \rho + \frac{Cov(\tilde{u}_i, s_i)}{Var(s_i)}$$

$$= \rho - \rho \frac{\sigma_{\epsilon}^2}{Var(s_i)}$$

Measurement error bias

Attenuation Bias

$$\tilde{\rho} = \rho - \rho \frac{\sigma_{\epsilon}^2}{\sigma_s^2} = (1 - \lambda) \, \rho$$

$$\lambda = \frac{\sigma_{\epsilon}^2}{\sigma_s^2} = \frac{\sigma_{\epsilon}^2}{\sigma_{\epsilon}^2 + \sigma_{s^*}^2}$$

- λ noise to signal ratio
- 1- λ is interesting as it tells us that measurement error causes attenuation bias (this fraction is smaller than one)

$$1 - \frac{\sigma_{\epsilon}^2}{\sigma_{\epsilon}^2 + \sigma_{s^*}^2} = \frac{\sigma_{s^*}^2}{\sigma_{\epsilon}^2 + \sigma_{s^*}^2} = \frac{Var(s^*)}{Var(s)}$$

Multivariate Model

$$Y_i = \rho s_i^* + X_i \beta + u_i$$

$$s_i = s_i^* + \epsilon_i$$

Classical ME: $Cov(s_i^*, \epsilon_i) = 0$, $Cov(X_i, \epsilon_i) = 0$

Attenuation Bias

$$\tilde{\rho} = \rho \frac{\sigma_{r_1^*}^2}{\sigma_{r_1^*}^2 + \sigma_{\epsilon}^2}$$

- where r_1^* is the population error from regression of $s_i^* = X_i \beta + r_1^*$
- If s_i is highly correlated with X_i , attenuation bias increases with inclusion of more covariates in the model

Multivariate Model

Consider a situation where

$$Cov(s_i^*, X_i) \neq 0$$
 is high $Cov(\epsilon_i, X_i) = 0$

Then:

- X_i 's that are correlated with s_i^* soak up the signal in s_i , but leave the noise.
- Because X_i is uncorrelated with ϵ_i this exacerbates the ME problem.
- Example: X_i parental education, earnings etc.