Big Data: Una nueva oportunidad de desarrollo

Esta presentación describe, bajo un marco común, los conceptos fundamentales de Big Data.

Descargue la última versión de este documento de: https://github.com/jdvelasq/Lecture-notes-on-analytics/blob/master/intersoftware-big-data.pdf

JUAN DAVID VELÁSQUEZ HENAO, MSc, PhD Profesor Titular

Departamento de Ciencias de la Computación y la Decisión Facultad de Minas Universidad Nacional de Colombia, Sede Medellín ♠ jdvelasq@unal.edu.co

y @jdvelasquezh

Thttps://github.com/jdvelasq

https://goo.gl/prkjAq

RG https://goo.gl/vXH8jy

Big Data &
Data Analytics
Categoría A,
Convocatoria 781 de 2017

Hadoop / MapReduce (2005)

Hadoop / MapReduce (2005)

Evolución del Big Data

Hadoop / MapReduce

Primera implementación de un sistema Big Data

Hadoop 0.10.1

Procesamiento distribuido de grandes conjuntos de datos en clusters de computadores.

Mahout 0.1

Implementación de algoritmos de machine learning en Hadoop

Hbase 0.20.5

Sistema distribuido y scalable no relacional para almacenamiento de grandes volúmenes de datos (BigTable)

Tez 0.5.0

Procesamiento de grafos acíclicos complejos

Spark 0.8.0

Herramienta general para el procesamiento de datos a gran escala

Pig Latin (2008)

CROSS EXLAIN FILTER **FOREACH GENERATE GROUP** ILLUSTRATE **JOIN** LIMIT LOAD ORDER STREAM **SPLIT** ST0RE SET OUIT

Lenguaje similar al SQL para el análisis de grandes volúmenes de datos en Hadoop representados como flujos de datos.

Ejemplo de Pig

```
records = LOAD 'sample.txt' AS (year:chararray, temperature:int, quality:int);
filtered_records = FILTER records BY temperature;
grouped_records = GROUP filtered_records BY year;
max_temp = FOREACH grouped_records GENERATE group, MAX(filtered_records.temperature);
DUMP max_temp;
```

NoSQL (2009)

Datos tabulares

KEY	Fecha	Planta	Generación
001	2017-10-01	Jaguas	100.2
002	2017-10-01	Playas	23.1
003	2017-10-01	Guatape	130.1

Document (JSON/XML)

```
Fecha: 2017-10-01,
   Planta: Jaquas,
   Generación: 100.2
},{
   Fecha: 2017-10-01,
   Planta:Playas,
   Generación: 23.1,
},{
   Fecha: 2017-10-01,
   Planta:Guatapé,
   Generación: 130.1
```

Pares <clave, valor>

Tabla**001**. Fecha=2017-10-01

Tabla001.Planta=Jaguas

Tabla001.Generación=100.2

Tabla**002**. Fecha=2017-10-01

Tabla002.Planta=Playas

Tabla002.Generación=23.1

Tabla **003**. Fecha = 2017 - 10 - 01

Tabla003.Planta=Guatapé

Tabla003.Generación=130.1

Sistema orientado a filas

001:2017-10-01, Jaquas, 100.2

002:2017-10-01, Playas, 23.1

003:2017-10-01, Guatape, 130.1

Column family database

001:{Fecha:2017-10-01, Planta:Jaguas, Generación:100.2} 002:{Fecha:2017-10-01, Planta:Playas, Generación:23.1} 003:{Fecha:2017-10-01, Planta:Guatapé, Generación:130.1}

Big Data Analytics (2011)

Apache Mahout

Implementación en Map/Reduce (Java y otros) de los algoritmos de aprendizaje estadístico y aprendizaje de máquinas

Estadística básica

Clasificación y regresión

Filtrado colaborativo

Agrupamiento

Reducción de dimensiones

Extracción de características

Minería de patrones frecuentes

Métricas de evaluación

Exportación de modelos

Optimización

Spark SQL
Spark Streaming
GraphX
MLlib

Spark's MLlib

Implementación en Spark de los algoritmos de aprendizaje estadístico y aprendizaje de máquinas

Java Scala Python R

Theano

H20

Keras

TensorFlow

Computación de alto desempeño

Deep Learning

Apache Hive (2013)

Ejemplo de Hive

```
CREATE TABLE records (year STRING, temperature INT, quality INT)
  ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t';
LOAD DATA LOCAL INPATH 'sample.txt' OVERWRITE INTO TABLE records;
SELECT year, MAX(temperature) FROM records GROUP BY year;
```

Apache Spark (2014)

Hadoop / MapReduce

Apache Zeppellin (2015)

Open Data Science & Modern Analytics (2018)

DataOps (2015)

Big Data: Una nueva oportunidad de desarrollo

Esta presentación describe, bajo un marco común, los conceptos fundamentales de Big Data.

Descargue la última versión de este documento de: https://github.com/jdvelasq/Lecture-notes-on-analytics/blob/master/intersoftware-big-data.pdf

JUAN DAVID VELÁSQUEZ HENAO, MSc, PhD Profesor Titular

Departamento de Ciencias de la Computación y la Decisión Facultad de Minas

Universidad Nacional de Colombia, Sede Medellín

idvelasq@unal.edu.co

y @jdvelasquezh

Thttps://github.com/jdvelasq

https://goo.gl/prkjAq

RG https://goo.gl/vXH8jy

Big Data &
Data Analytics
Categoría A,
Convocatoria 781 de 2017