The group G is isomorphic to the group labelled by [360, 118] in the Small Groups library. Ordinary character table of $G \cong A6$:

	1a	2a	3a	3b	4a	5a	5b
χ_1	1	1	1	1	1	1	1
χ_2	5	1	2	-1	-1	0	0
χ_3	5	1	-1	2	-1	0	0
χ_4	8	0	-1	-1	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$
χ_5	8	0	-1	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$
χ_6	9	1	0	0	1	-1	-1
χ_7	10	-2	1	1	0	0	0

Trivial source character table of $G\cong A6$ at p=5:

Trivial source character table of $G = Ab$ at $p = 5$:										
Normalisers N_i	N_1					N_2				
p-subgroups of G up to conjugacy in G	P_1					P_2				
Representatives $n_j \in N_i$	1a	3a	2a	4a	3b	1a	2a			
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7$	10	1	2	2	1	0	0			
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	5	2	1	-1	-1	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	5	-1	1	-1	2	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7$	25	-2	1	1	-2	0	0			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	10	1	-2	0	1	0	0			
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1			
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	16	-2	0	0	-2	1	-1			

$$P_1 = Group([()]) \cong 1$$

 $P_2 = Group([(2, 4, 3, 5, 6)]) \cong C5$

$$\begin{split} N_1 &= AlternatingGroup([1..6]) \cong \text{A6} \\ N_2 &= Group([(2,4,3,5,6),(3,5)(4,6)]) \cong \text{D10} \end{split}$$