МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №1 по дисциплине «Операционные системы»

Тема: Исследование структур загрузочных модулей

Студент гр. 8382	 Вербин К.М.
Преподавател	 Ефремов М.А

Санкт-Петербург 2020

Цель работы.

Исследование различий в структурах исходных текстов модулей .COM и .EXE, структур файлов загрузочных модулей и способов их загрузки в основную память.

Необходимые сведения для составления программы.

Тип IBM PC хранится в байте по адресу 0F000:0FFFE, в предпоследнем байте ROM BIOS. Соответствие кода и типа в таблице:

PC	FF
PC/XT	FE,FB
AT	FC
PS2 модель 30	FA
PS2 модель 50 или 60	FC
PS2 модель 80	F8
PCjr	FD
PC Convertible	F9

Для определения версии MS DOS следует воспользоваться функцией 30H прерывания 21H. Входным параметром является номер функции в AH:

MOV AH,30h INT 21h

Выходными параметрами являются:

AL – номер основной версии. Если 0, то <2.0;

АН – номер модификации;

ВН – серийный номер ОЕМ (Original Equipment Manufacturer);

BL:CX – 24-битовый серийный номер пользователя.

Постановка задачи.

Требуется реализовать текст исходного .COM модуля, который определяет тип PC и версию системы. Ассемблерная программа должна читать

содержимое предпоследнего байта ROM BIOS, по таблице, сравнивая коды, определять тип PC и выводить строку с названием модели. Если код не совпадает ни с одним значением, то двоичный код переводиться в символьную строку, содержащую запись шестнадцатеричного числа и выводиться на экран в виде соответствующего сообщения. Затем определяется версия системы. Ассемблерная программа должна по значениям регистров AL и AH формировать текстовую строку в формате хх.уу, где хх - номер основной версии, а уу - номер модификации в десятичной системе счисления, формировать строки с серийным номером ОЕМ (Original Equipment Manufacturer) и серийным номером пользователя. Полученные строки выводятся на экран.

Далее необходимо отладить полученный исходный модуль и получить «хороший» .COM модуль, а также необходимо построить «плохой» .EXE, полученный из исходного текста для .COM модуля.

Затем нужно написать текст «хорошего» .EXE модуля, который выполняет те же функции, что и модуль .COM, далее его построить, отладить и сравнить исходные тексты для .COM и .EXE модулей.

Процедуры используемые в программе.

TETR_TO_HEX — Используется для перевода половины байта в шестнадцатеричную систему счисления.

BYTE_TO_HEX – Используется для перевода байта регистра AL в шестнадцатеричную систему счисления, помещая результат в AX.

WRD_TO_HEX – Используется для перевода двух байт регистра АХ в шестнадцатеричную систему счисления, помещая результат в регистр DI.

BYTE_TO_DEC – Используется для перевода байта регистра AL в десятичную систему счисления, помещая результат в SI.

ТҮРЕ_ІВМ_РС – Определяет тип ІВМ РС.

VERS DOS – Определяет версию MS DOS.

OEM_DOS – Определяет серийный номер OEM.

USER_DOS - Определяет серийный номер пользователя. PRINT – Вывод на экран.

Структуры данных.

Таблица 1 – Структуры данных

Название поля данных	Тип	Назначение
_type	db	Тип IBM PC
_PC	db	PC
_PC_XT	db	PC/XT
_AT	db	AT
_PS2_30	db	PS2 модель 30
_PS2_50_60	db	PS2 модель 50 или 60
_PS2_80	db	PS2 модель 80
_PCjr	db	PCjr
_PC_Conv	db	PC Convertible
_ver	db	Hoмер версии MS DOS
_oem	db	Серийный номер ОЕМ
_user	db	Серийный номер пользователя

Ход работы.

Шаг 1. Запуск «хорошего» .СОМ модуля.

```
BBB DOSBox 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Program: DOSBOX
                                                                               X
  For a short introduction for new users type: INTRO
  For supported shell commands type: HELP
  To adjust the emulated CPU speed, use ctrl-F11 and ctrl-F12.
  To activate the keymapper ctrl-F1.
  For more information read the README file in the DOSBox directory.
  HAUE FUN!
  The DOSBox Team http://www.dosbox.com
Z:>>SET BLASTER=A220 I7 D1 H5 T6
Z:\>MOUNT C "C:\Users\frast\Desktop\OC primers\LR1"
Drive C is mounted as local directory C:\Users\frast\Desktop\OC primers\LR1\
Z:\>C:
C:\>LAB1_1.COM
TYPE IMB PC
PC/XT
Version number MSDOS:5.0
Serial number OEM: 255
                              000000
Serial user s number:
C:\>_
```

Рисунок 1 – «Хороший» .COM модуль

Запуск «плохого» .EXE модуля.

Рисунок 2 – «Плохой» .EXE модуль

Шаг 2. Запуск «хорошего» .EXE модуля.

Рисунок 3 – «Хороший» .EXE модуль

Шаг 3. Ответы на контрольные вопросы. Отличия исходных текстов СОМ и ЕХЕ программ.

- 1) Сколько сегментов должна содержать СОМ-программа? Один сегмент.
 - 2) ЕХЕ программа?

ЕХЕ программа может содержать больше одного сегмента.

3) Какие директивы должны обязательно быть в тексте COM программы?

Директива ORG 100h (смещение 100h), так как при загрузке COM-файла в память DOS занимает первые 256 байт (100h) блоком данных PSP и располагает код программы только после этого блока. Директива ASSUME, ставящая в соответствие начало программы сегментам кода и данных.

4) Все ли форматы команд можно использовать в СОМ-программе?

Нет, не все, так как в отличие от EXE-программы, в которой существует таблица настроек (таблица разметки), называемая Relocation Table, COM-

программа ею не располагает. Адреса сегментов определяются загрузчиком в момент запуска программы на основе информации о местоположении полей адресов в файле из Relocation Table. Следовательно, в связи с отсутствием этой таблицы в СОМ-программах, команды вида mov [регистр], seg [сегмент] недопустимы.

Шаг 4. .COM модуль в шестнадцатеричном виде.

Рисунок 4 - .СОМ модуль в шестнадцатеричном виде

«Плохой» .EXE модуль в шестнадцатеричном виде.

Рисунок 5 - «Плохой» .EXE модуль в шестнадцатеричном виде «Хороший» .EXE модуль в шестнадцатеричном виде.

Рисунок 6 - «Хороший» .EXE модуль в шестнадцатеричном виде Ответы на контрольные вопросы. Отличия форматов файлов СОМ и EXE программ.

1) Какова структура файла СОМ? С какого адреса располагается код?

СОМ файл состоит из одного сегмента и содержит данные и машинные команды. Код начинается с адреса 0h, но при загрузке модуля устанавливается смещение в 100h.

2) Какова структура файла «плохого» EXE? С какого адреса располагается код? Что располагается с 0 адреса?

В «плохом» EXE файле данные и код содержатся в одном сегменте. Код располагается с адреса 300h. С адреса 0h располагается DOS header.

3) Какова структура файла «хорошего» EXE? Чем он отличается от «плохого» EXE файла?

В «хорошем» файле EXE содержится информация для загрузчика, сегмент стека, сегмент данных и сегмент кода (3 сегмента вместо одного в «плохом» .EXE). Код располагается с адреса 200h в отличии от 300h в «плохом» .EXE файле (в плохом EXE директива ORG делает дополнительное смещение 100h).

DOSBox 0.74-3, Cpu speed: 3000 cycles, Frameskip 0, Program: AFDPRO IP 0100 Flags 7202 BX 0000 DI 0000 +2 20CD DS 19F5 +4 9FFF +6 EA00 CX 0200 BP 0000 ES 19F5 HS 19F5 OF DF IF SF ZF AF DX 0000 SP FFFE SS 19F5 FS 19F5 CMD > DS:0000 1 9F 00 EA F0 CD ZO FF DS:0008 AD DE 1B 05 C5 06 0100 E97D01 JMP 0280 18 01 10 01 18 01 DS:0010 PUSH DS:0018 01 01 01 00 02 9104 59 CX POP DS:0020 FF FF 9105 50 PUSH AX DS:0028 FF FF EB 19 CO 106 45 INC DS:0030 AZ 01 14 00 18 00 9107 20494D [BX+DI+4D],CL AND DS:0038 FF FF FF FF 00 00 DS:0040 05 00 00 00 00 00 00 00 910A 4Z INC 910B 205043 AND [BX+SI+43],DL DS:0048 00 00 00 00 00 00 00 00 3 4 5 6 7 8 9 A B C D E F CD 20 FF 9F 00 EA FO FE AD DE 1B 05 C5 06 00 00 S:0000 f.Ω≡∎ i ... DS:0010 18 01 10 01 18 01 92 01 01 01 01 00 02 FF FF DS:0020 FF FF FF FF FF FF FF FF FF EB 19 CO 11 FF FF FF FF 00 00 00 00 DS:0030 AZ 01 14 00 18 00 F5 19 DS:0040 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Step 2ProcStep 3Retrieve 4Help ON 5BRK Menu 6 7 ↑ 8 ↓ 9 ← 16 →

Шаг 5. Загрузка СОМ модуля в основную память.

Рисунок 7 – Загрузка СОМ модуля в основную память

Ответы на контрольные вопросы. Загрузка СОМ модуля в основную память.

1) Какой формат загрузки СОМ модуля? С какого адреса располагается код?

После загрузки СОМ-программы в память сегментные регистры указывают на начало PSP. Код располагается с адреса 100h (ip = 0100h).

2) Что располагается с 0 адреса?

Адрес начала PSP.

3) Какие значения имеют сегментные регистры? На какие области памяти они указывают?

19F5h. Они указывают на начало PSP.

4) Как определяется стек? Какую область памяти он занимает? Какие адреса?

Стек определяется автоматически, указатель стека устанавливается на конец сегмента. Если для программы размер сегмента в 64КБ является достаточным, то DOS устанавливает в регистре SP адрес конца сегмента – FFFEh. Адреса расположены в диапазоне 0000h-FFFEh.

Шаг 6. Загрузка «хорошего» ЕХЕ модуля в память.

Рисунок 8 – Загрузка «хорошего» EXE модуля в память

Ответы на контрольные вопросы. Загрузка «хорошего» EXE модуля в память.

1) Как загружается «хороший» EXE? Какие значения имеют сегментные регистры?

В области памяти строится PSP, стандартная часть заголовка считывается в память, определяется длина тела загрузочного модуля, определяется начальный сегмент, загрузочный модуль считывается в начальный сегмент, таблица настройки считывается в рабочую память, определяются значения сегментных регистров. DS и ES устанавливаются на начало PSP, SS - на начало стека, CS - на начало сегмента кода.

2) На что указывают регистры DS и ES?

DS и ES указывают на начало PSP. После выполнения команд mov ax, @data и mov ds, ах регистре DS содержит адрес начала сегмента данных.

3) Как определяется стек?

В исходном коде модуля стек определяется при помощи директивы STACK, а при исполнении в регистры SS и SP записываются адрес начала сегмента стека и его вершины соответственно.

4) Как определяется точка входа?

При помощи директива END.

Вывод.

В ходе работы было проведено исследование различий в структурах исходных текстов модулей .COM и .EXE, структур файлов загрузочных модулей и способов их загрузки в основную память.