

Open Streets

Close streets to vehicles, **open streets** to people

Benefits:

- Public space in urban environments
- Cultural programming
- Special events
- Community building
- Cost effective

NYC DOT Open Streets

Open Streets Access

Often, open streets initiatives use an application process, biasing the streets to communities that know about it.

Question: Is there a more objective way to choose streets?

Braess's Paradox

Removing edges in a network can sometimes reduce traffic.

Question: Can we choose streets which, when "opened", reduce traffic?

Modeling: Empirical taxi trips. Easy to reroute cars when streets are "opened".

Collisions

Some intersections are more dangerous than others.

Question: Can we choose streets which, when "opened", reduce collisions?

Modeling: Empirical collisions. Not obvious how collisions change when streets are "opened".

Collision fatalities from 2013-2016 NYC Crash Mapper

Our Approach

Part I: Predicting Collisions

Data Sources:

- NYC Collisions
- NYC LION Infrastructure
- NOAA Daily Weather
- NYC Taxi Trips

Recurrent Graph Neural Network:

- Spatial dependency (e.g., speed changes)
- Temporal dependency (e.g., wet roads)

VS.

Recurrent GNN

Part I: Model Performance

Goal: Performance on negative and positive instances

Model	F1-score	Recall (Negative)	Recall (Positive)	Recall (Macro Average)
Gaussian NB	0.97 ± 0.0001	0.95±0.0001	0.15±0.0001	0.55±0.0001
LightGBM	0.78 ± 0.0005	0.64 ± 0.0006	0.80 ± 0.0003	0.72 ± 0.0002
XGBoost	0.80 ± 0.0001	0.67 ± 0.0001	0.81 ± 0.0001	0.74 ± 0.0001
DSTGCN (Yu et al. 2021)	0.67 ± 0.2600	0.56 ± 0.2701	0.59 ± 0.1070	0.57 ± 0.0401
Graph WaveNet (Wu et al. 2019)	0.75 ± 0.0121	0.61 ± 0.0160	0.68 ± 0.0006	$0.64{\pm}0.0080$
Recurrent GNN (Lite)	0.86 ± 0.0130	0.77 ± 0.0200	0.68 ± 0.0215	0.73 ± 0.0043
Recurrent GNN	0.87 ± 0.0064	0.78 ± 0.0102	0.74 ± 0.0157	0.76±0.0040

Table 1: Results of collision prediction models. Overall support in the test set was 1,803,363 observations: 1,789,838 negative and 13,525 positive examples. The \pm denotes standard deviation 10 random seeds. Since the F1-score ignores the imbalanced nature of our data, we use the macro average recall to select the best model.

Part I: Feature Importance

Directed importance using the integrated gradients approach on the model with the highest macro recall.

Part II: Reinforcement Learning

*collision risk from Recurrent GNN

State: Real historical day with some streets opened.

Action: Open an additional street.

Reward: Change in normalized collision risk (from model) and traffic (car density).

Goal: Capture complicated dynamics of opening street.

Part II: Comparison

Experiment: Average improvement from 30 runs of opening street simulations (a simulation lasts a month or until an opened street disconnects the network).

Comparison: Q-value approach gives consistently high improvement whereas open streets and random closures are comparable.

Part II: Which Streets?

Left: Q-values (blue is positive, red is negative)

Middle: 121 open streets (yellow) vs 121 q-

value streets (blue)

Right: Difference in number of open vs q-value streets

Future Work

More work is needed before deployment!

Measuring traffic: We assume taxi data (and shortest path trips) are representative.

Near-collision events: Collisions are sparse but near-collision sensors are rare.

Other cities: GNN widely applicable but data sources and formats are not.

Interpretability: Our deep models are not interpretable.

Thank you!

All our code and data are available at github.com/rtealwitter/OpenStreets

Preprint is available at arxiv.org/abs/2312.07680

Please reach out with questions or comments to rtealwitter@nyu.edu

