Exercise 5.1 Let $X = L^2((0,1),\mathbb{R})$. On $D_A := C_c^{\infty}((0,1),\mathbb{R}) \subset X$ consider the derivative operator

$$A \colon D_A \to X, \quad A(f) = f'.$$

Recall that A is closable. Show that the domain $D_{\overline{A}}$ of its closure is contained in

$$C_0^0([0,1],\mathbb{R}) = \{ f \in C^0([0,1],\mathbb{R}) \mid f(0) = 0 = f(1) \}.$$

Note: Do not forget that L^2 -convergence does *not* imply pointwise convergence.

Solution. Let $f \in D_{\overline{A}}$. Then there exists a sequence $(f_n)_{n \in \mathbb{N}}$ in D_A with

$$||f_n - f||_{L^2((0,1))} \to 0 \quad \text{and} \quad ||f'_n - \overline{A}f||_{L^2((0,1))} \to 0$$
 (1)

as $n \to \infty$. Since $f_n \in C_c^{\infty}((0,1),\mathbb{R})$ there holds $f_n(0) = 0 = f_n(1)$, however L^2 -convergence alone is *not* enough to conclude the same for f. Instead from (1) we expect f to be a primitive of $\overline{A}f$. Therefore, we consider the function $g: [0,1] \to \mathbb{R}$ given by

$$g(t) := \int_0^t \overline{A} f \, dx.$$

We apply Hölder's inequality to estimate

$$\left| f_n(t) - g(t) \right| = \left| \int_0^t \left(f'_n - \overline{A}f \right) dx \right|$$

$$\leq \int_0^t \left| f'_n - \overline{A}f \right| dx$$

$$\leq \left(\int_0^t \left| f'_n - \overline{A}f \right|^2 dx \right)^{\frac{1}{2}}$$

$$\leq \left\| f'_n - \overline{A}f \right\|_{L^2((0,1))}.$$

By taking the supremum over $t \in [0, 1]$ and then letting $n \to \infty$ we deduce that $(f_n)_{n \in \mathbb{N}}$ converges uniformly to g. Since uniform convergence implies L^2 -convergence, g must coincide with f and since it is uniform limit of continuous functions, it it also continuous. Finally, uniform convergence implies pointwise convergence, in particular

$$f(0) = \lim_{n \to \infty} \tilde{f}_n(0) = 0,$$
 $f(1) = \lim_{n \to \infty} \tilde{f}_n(1) = 0.$

Exercise 5.2 Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Let $A: D_A \subset X \to Y$ be a linear operator with closed graph. Show that the following statements are equivalent:

- (i) A is injective and its range $W_A := A(D_A)$ is closed in $(Y, \|\cdot\|_Y)$.
- (ii) There exists C > 0 so that $||x||_X \le C||Ax||_Y$ for every $x \in D_A$.

Solution. "(i) \Rightarrow (ii)". As a closed subspace of a complete space, $(W_A, \|\cdot\|_Y)$ is complete. Since $A: D_A \subset X \to W_A$ is bijective with closed graph and since X, W_A are Banach spaces and we may apply the Inverse Mapping Theorem to obtain a continuous inverse $A^{-1}: W_A \to D_A$. In particular, $\|A^{-1}\| =: C$ is finite and for every $x \in D_A$ we have

$$||x||_X = ||A^{-1}Ax||_X \le ||A^{-1}|| ||Ax||_Y = C||Ax||_Y.$$

"(ii) \Rightarrow (i)". Let $x \in D_A$ with Ax = 0, the inequality implies $||x||_X \leq 0$, hence x = 0. This implies that the linear map A is injective.

Let $(y_n)_{n\in\mathbb{N}}$ be a sequence in W_A converging to some $y\in Y$. By definition of W_A there exist $x_n\in D_A$ such that $Ax_n=y_n$. For every $n,m\in\mathbb{N}$, the assumptions implies

$$||x_n - x_m||_X \le C||Ax_n - Ax_m||_Y = C||y_n - y_m||_Y.$$

From $(y_n)_{n\in\mathbb{N}}$ being Cauchy in $(Y, \|\cdot\|_Y)$, we conclude that $(x_n)_{n\in\mathbb{N}}$ is Cauchy in $(X, \|\cdot\|_X)$. Since $(X, \|\cdot\|_X)$ is complete, there exists $X\ni x=\lim_{n\to\infty}x_n$. Since the graph of A is assumed to be closed, $x\in D_A$ and Ax=y. Therefore, $y\in W_A$ and we conclude that W_A is a closed subspace of Y.

Exercise 5.3 (Hörmander). Let $(X_0, \|\cdot\|_{X_0})$, $(X_1, \|\cdot\|_{X_1})$ and $(X_2, \|\cdot\|_{X_2})$ be Banach spaces and let

$$T_1: D_1 \subset X_0 \to X_1$$
, and $T_2: D_2 \subset X_0 \to X_2$

be linear operators with closed graphs such that $D_1 \subset D_2$. Prove that there exists a constant C > 0 so that

$$||T_2x||_{X_2} \le C(||T_1x||_{X_1} + ||x||_{X_0})$$
 for every $x \in D_1$.

Solution. Let Γ_1 and Γ_2 be the graphs of T_1 and T_2 respectively. Since T_1 and T_2 have closed graphs by assumption, $(D_1, \|\cdot\|_{\Gamma_1})$ and $(D_2, \|\cdot\|_{\Gamma_2})$ are Banach spaces, where $\|x\|_{\Gamma_i} = \|x\|_{X_0} + \|T_ix\|_{X_i}$, i = 1, 2, denote the graph norms. Since $D_1 \subset D_2$, we can consider the identity map Id: $(D_1, \|\cdot\|_{\Gamma_1}) \to (D_2, \|\cdot\|_{\Gamma_2})$ and claim that its graph is closed. Indeed, assume that $x_n \to x$ in $(D_1, \|\cdot\|_{\Gamma_1})$ and $\mathrm{Id}(x_n) = x_n \to y$ in $(D_2, \|\cdot\|_{\Gamma_2})$. Then, the definition of graph norm implies that both, $\|x_n - x\|_{X_0} \to 0$ and $\|x_n - y\|_{X_0} \to 0$ as $n \to \infty$ which implies x = y and proves the claim. The closed graph theorem implies that Id is continuous, which means that there exists C > 0 so that

$$||x||_{\Gamma_2} \le C||x||_{\Gamma_1} \quad \text{for all } x \in D_1.$$

By definition, this implies $||T_2x||_{X_2} \le C(||T_1x||_{X_1} + ||x||_{X_0}) - ||x||_{X_0}$.

Exercise 5.4 Let $(H, (\cdot, \cdot))$ be a Hilbert space and let $A: H \to H$ be a symmetric linear operator that is *coercive*, i.e. such that there exists $\lambda > 0$ so that

$$(Ax, x) \ge \lambda ||x||^2$$
 for every $x \in H$.

Show that A is an isomorphism of normed spaces and $||A^{-1}|| \leq \lambda^{-1}$.

Solution. If Ax = 0, then the assumption implies $\lambda ||x||^2 \le (Ax, x) = 0$. Since $\lambda > 0$, we have x = 0 which proves that the linear map A is injective.

Let $W_A := A(H)$ be the range of A. To prove that A is surjective, let $x \in W_A^{\perp}$. Then

$$0 = (Ax, x) \ge \lambda ||x||^2,$$

which implies x=0. Therefore, $W_A^{\perp}=\{0\}$ and $\overline{W_A}=(W_A^{\perp})^{\perp}=H$. Surjectivity of A follows if we show that W_A is closed in H because then, $W_A=\overline{W_A}=H$. Let $(y_n)_{n\in\mathbb{N}}$ be a sequence in W_A converging to some $y\in H$. Let $x_n\in H$ such that $Ax_n=y_n$. Then $(x_n)_{n\in\mathbb{N}}$ is a Cauchy-sequence in H, because for every $n,m\in\mathbb{N}$ we have

$$\lambda ||x_n - x_m||^2 \le (Ax_n - Ax_m, x_n - x_m) = (y_n - y_m, x_n - x_m)$$

$$\le ||y_n - y_m|| ||x_n - x_m||$$

and $(y_n)_{n\in\mathbb{N}}$ is a Cauchy-sequence by assumption. Hence there exists $x=\lim_{n\to\infty}x_n$. The Hellinger–Töplitz theorem (Beispiel 3.3.2) implies that A is continuous. Therefore, Ax=y which implies $y\in W_A$ and proves that W_A is closed in H.

We have shown that A is a continuous, bijective linear operator. The Inverse Mapping Theorem already implies that A has a continuous inverse. What remains to show is the estimate $\|A^{-1}\| \leq \frac{1}{\lambda}$ which follows from the assumption since for every $y \in H$

$$||A^{-1}y||^2 \le \frac{1}{\lambda} (AA^{-1}y, A^{-1}y) \le \frac{1}{\lambda} ||y|| ||A^{-1}y||,$$

thus $||A^{-1}y|| \le \frac{||y||}{\lambda}$.

Hints to Exercises.

- **5.1** Given $f \in D_{\overline{A}}$ consider a sequence $(f_n)_{n \in \mathbb{N}}$ in D_A which converges to f in X. Compare $f_n(t)$ to $g(t) := \int_0^t \overline{A} f \, dx$.
- **5.2** One implication follows from the Inverse Mapping Theorem.
- **5.3** Recall that, if $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and $A: D_A \subset X \to Y$ is a linear operator with closed graph, then $(D_A, \|\cdot\|_{\Gamma_A})$ is a Banach space, where $\|x\|_{\Gamma_A} = \|x\|_X + \|Ax\|_Y$ is the graph norm.
- **5.4** To prove surjectivity, i. e. $W_A := A(H) = H$, consider an element $x \in W_A^{\perp}$ and recall that $(W_A^{\perp})^{\perp} = \overline{W_A}$.