bcbio validation: build 38, low frequency somatic variants, structural variations

Brad Chapman
Bioinformatics Core, Harvard Chan School
https://bcb.io

http://j.mp/bcbiolinks

5 November 2015

Outline

- Human build 38
- Low frequency somatic calling
- Structural variation

Currently: GRCh37/hg19

GRCh38 - graph based, many more alternative loci

 $\verb|http://www.slideshare.net/GenomeRef/transitioning-to-grch38|$

GRCh38 – advantage for variant calling

Reference assembly influence

Personalis^{*}

3 Personalis, Inc.

Avoiding collapsed repeats

http://www.slideshare.net/kmsteinberg/

the-importance-of-high-quality-reference-genome-assemblies-to-personal-and-medical-genomics

Comparison

- Build 37 and 38
- Validation sets: Genome in a Bottle, Illumina Platinum Genomes
- Lift-over methods: CrossMap/LiftOver, NCBI Remap
- 38 builds: with/without alternative alleles
- Variant callers: FreeBayes, GATK HaplotypeCaller

http://bcb.io/2015/09/17/hg38-validation/

Reference materials

Global Alliance for Genomics & Health

ICGC-TCGA DREAM Mutation Calling challenge

http://www.genomeinabottle.org/

http://ga4gh.org/#/benchmarking-team

https://www.synapse.org/#!Synapse:syn312572

hg19/hg38 comparison: NA12878 Platinum Genomes

GRCh37/hg38 comparison: NA12878 Genome in a Bottle

SNPs: gatk-haplotype

Indels: freebayes

Small variant results

- SNPs: build 38 more sensitive
- SNPs: build 38 reduces false positives
- Indels: build 38 detected more
- Indels: work on sensitivity and precision

Remapping results

Need conversion approaches for resources not yet available on build 38

- CrossMap: http://crossmap.sourceforge.net/
- NCBI remap: http://www.ncbi.nlm.nih.gov/genome/tools/remap
- Both performed well
- NCBI remap has additional sensitivity, but needs tuning

Major histocompatibility complex (MHC) – HLAs

http://www.ebi.ac.uk/ipd/imgt/hla/ http://sciscogenetics.com/technology/human-leukocyte-antigen-complex/

Alignment: bwa alternative allele support

https://github.com/lh3/bwa/blob/master/README-alt.md

HLA typing

- bwakit implementation
- 1000 genomes: build 38 + IMGT/HLA-3.18.0
- bwa extracts HLA reads
- fermi de novo assembly
- Remap assemblies back to HLA choices
- Call HLA types

https://github.com/lh3/bwa/blob/master/README-alt.md#hla-typing

HLA nomenclature

SGE Marsh 04/10

https://www.ebi.ac.uk/ipd/imgt/hla/ http://hla.alleles.org/alleles/p_groups.html

Validations

- Omixon example data
- bwakit calls on exome and deep targeted data
- P-group resolution
- Good results for exome
- Assembly problems with deep targeted

```
http://www.omixon.com/hla-typing-example-data/
https://gist.github.com/chapmanb/8e2a18c7bbbee3167395
```

Genome graphs and variation

http://www.nature.com/ng/journal/v46/n12/fig_tab/ng.3121_SF6.html

vg - tools for working with variant graphs

Outline

- Human build 38
- Low frequency somatic calling
- Structural variation

Cancer somatic calling

http://www.nature.com/nmeth/journal/v10/n8/fig_tab/nmeth.2562_F1.html

Cancer heterogeneity

http://en.wikipedia.org/wiki/Tumour_heterogeneity

VarDict

- AstraZeneca
- SNP + Insertion/Deletions
- Works on very deep targeted data

https://github.com/AstraZeneca-NGS/VarDictJava

DREAM synthetic dataset 4

in silico 3	in silico 4
BWA Backtrack	BWA MEM
SNV, SV (deletions, duplications, insertions, inversions) & \ensuremath{INDEL}	SNV, SV (deletions, duplications, inversions) & INDEL
100%	80%
50%, 33%, 20%	50%, 35% (effectively 30% and 15% due to cellularity)
Female	Male
HCC1143 BL from TCGA Benchmark 4	CPCG0102R (Provided by ICGC)

https://www.synapse.org/#!Synapse:syn312572/wiki/62018

VarDict sensivitity/precision before

VarDict sensivitity/precision after

How? Filter summary

```
((AF * DP < 6) &&

((MQ < 55.0 && NM > 1.0) ||

(MQ < 60.0 && NM > 2.0) ||

(DP < 10) ||

(QUAL < 45)))
```

Filter: mapping quality and number of mismatches

Filter: low depth

Filter: low quality

How can we improve?

- Incorporate machine learning methods
- Generalize with additional datasets
- AML31: http://aml31.genome.wustl.edu/

Outline

- Human build 38
- Low frequency somatic calling
- Structural variation

Structural variants critical in cancer

 $\verb|http://www.nature.com/nature/journal/v518/n7540/full/nature14169.htm||$

Improvements in speed, sensitivity and precision

Lumpy: https://github.com/arq5x/lumpy-sv
 Manta: https://github.com/Illumina/manta
 CNVkit: https://github.com/etal/cnvkit
 WHAM: https://github.com/zeeev/wham
 MetaSV: https://github.com/bioinform/metasv

4日 → 4個 → 4 至 → 4 至 → 1 至 → 9 Q (*)

Last year: Somatic deletions

Results: Germline deletions

Results: Somatic deletions

Results: Somatic insertions

Prioritize in previously known regions

Public cancer variant databases

- CIViC: https://civic.genome.wustl.edu
- IntOGen: http://www.intogen.org

http://www.amazon.com/The-Biology-Cancer-Robert-Weinberg/dp/0815340761

Summary

- Demonstrate current validation work in bcbio
- Human build 38
- HLA typing
- Low frequency cancer calling
- Structural variations + prioritization

http://bcb.io