.1

א. הטענה איננה נכונה, ונביא דוגמה נגדית.

. $R,S\in M$ מתקיים . $S=\{(1,2),(2,3),(1,3)\}$ וב- $R=\{(1,2),(2,3)\}$ מתקיים

על פי שאלה 2.35 בכרך ייקומבינטוריקהיי,

$$t(R) = R \cup R^2 \cup R^3 = \{(1,2),(2,3)\} \cup \{(1,3)\} \cup \emptyset = \{(1,2),(2,3),(1,3)\}$$

$$t(S) = S \cup S^2 \cup S^3 = \{(1,2), (2,3), (1,3)\} \cup \{(1,3)\} \cup \emptyset = \{(1,2), (2,3), (1,3)\}$$

מתקיים $S \nsubseteq R$ אך עם זאת $t(S) \subseteq t(R)$ ובפרט מתקיים, t(R) = t(S) בכך הפרכנו את הטענה.

ב. הטענה איננה נכונה, ונביא דוגמה נגדית.

, ולכן,
$$R^2 = \{(1,1),(2,2)\}$$
, אכן, $R = \{(1,2),(2,1)\}$ נתבונן ב-

$$t(R^2) = \{(1,1),(2,2)\} \cup \{(1,1),(2,2)\} \cup \{(1,1),(2,2)\} = \{(1,1),(2,2)\}$$

$$t(R) = R \cup R^2 \cup R^3 = \{(1,2),(2,1)\} \cup \{(1,1),(2,2)\} \cup \{(1,2),(2,1)\} =$$
עם זאת,
$$= \{(1,1),(2,2),(1,2),(2,1)\}$$

ובכך הפרכנו , $t(R^2) \neq (t(R))^2$ ומתקיים , $(t(R))^2 = \{(1,1), (2,2), (1,2), (2,1)\}$ ובכך הפרכנו את הטענה.

- ג. (תודה רבה לרון הס על הפתרון לשאלה זו. ראו את הפתרון בלשונו בשאלה " $\frac{2007}{1}$ מועד 90 שאלה 1ג' " בפורום "לקראת הבחינה").
- .2 תודה רבה לאיתי הראבן שפתר את השאלה בפורום: ראו הנושא "2007א', מועד 90. שאלה 2" בפורום "לקראת הבחינה".

.3

- א. זהו מספר החליפות עם חזרות של חמישה איברים מתוך שישה סוגים, ולכן התשובה א. זהו מספר החליפות עם חזרות של המשה היא $6^5 = 7776$.
- ב. כל מחלקת שקילות היא בעצם צירוף עם חזרות של חמישה איברים מתוך שישה סוגים שכן כל האיברים באותה מחלקה זה כל האיברים מהצירוף, כשמשנים את $D(6,5) = \binom{10}{5} = 252$
- ג. זהו בעצם מספר התמורות עם חזרות של חמישה איברים, כאשר שלושה איברים ג. $P(5;3,2) = \frac{5!}{23!} = 10$ זהים, ועוד שני איברים זהים. כלומר, התשובה היא

- ד. נתבונן במחלקת השקילות בה נמצאת המחרוזת abcdd. אכן, כל איבר במחלקת הברים השקילות של המחרוזת הזו היא תמורה עם חזרות של $P(5;1,1,1,2)=\frac{5!}{2!}=60$ הוא עונה על הדרישות.
- 4. נשתמש בפונקציה יוצרת. עבור הארטיקים בטעם לימון ואננס, נמשיך את הפונקציה עד
 4. נשתמש בפונקציה יוצרת. עבור גורמים שגדולים מ-20, כי יוסי צריך לבחור רק 20 אינסוף כי גם ככה לא נבחר גורמים שגדולים מ-20, כי יוסי צריך לבחור רק אינסוף כי גם ככה לא נבחר גורמים היא:

. x^{20} של המקדם את ובה החפשים הוא , $(1+x+x^2+...)^2\cdot(1+x+x^2+...+x^8)^2$

עייפ נוסחה (i) בממיין 15,

$$(1+x+x^2+...)^2 \cdot (1+x+x^2+...+x^8)^2 = (1+x+x^2+...)^2 \cdot \left(\frac{1-x^9}{1-x}\right)^2 =$$

$$= (1+x+x^2+...)^2 \cdot \left(\frac{1}{1-x}\right)^2 \cdot (1-x^9)^2 =$$

$$= (1+x+x^2+...)^2 \cdot \frac{1}{(1-x)^2} \cdot (1-x^9)^2$$

ועל פי נוסחה (iii) בממיין 15,

$$(1+x+x^2+...)^2 \cdot \frac{1}{(1-x)^2} \cdot (1-x^9)^2 = (1+x+x^2+...)^4 \cdot (1-x^9)^2 =$$

$$= (1+x+x^2+...)^4 \cdot (1-2x^9+x^{18})$$

נחפש מקדמים משלימים למקדמים בסוגריים מימין

עבור 1, נחפש את המקדם של x^{20} בביטוי (iii) על פי נוסחה וווי (1+x+ x^2 +...)

.
$$D(4,20) = {23 \choose 3} = 1771$$
 שווה ל-1771, המקדם שווה ל-1771

עבור (2-). מכפול אותו ב-(2-) שווה ל-(2-) שווה ל-(2-) שווה ל-(2-) עבור (2-) המקדם של (2-) שווה ל-(2-) שווה ל-(2-)

.
$$D(4,2) = \binom{5}{3} = 10$$
 הוא $(1+x+x^2+...)^4$ בביטוי x^2 בביטוי x^{18}

1771 - 728 + 10 = 1053 לכן התשובה הסופית היא