算法设计与分析作业二

作者: 吴润泽 **学号:** 181860109

Email: 181860109@smail.nju.edu.cn

2020年3月6日

目录

PART I															2									
problem	6.8																							2
problem	6.9																							4
problem	6.10)																						5
problem	6.13	3																						5
problem	6.15	õ																						5
PART II																								6
problem	7.1																							6
problem	7.2																							7
problem	7.3																							7
problem	7.4																							7
problem	7.6																							7

PART I

problem 6.8

算法分析 假定 n 总是 k 的倍数, 且 n 和 k 都是 2 的幂。

利用快排的思想,将数组从中间划分为两段 $A[0\cdots n/2],\ A[n/2+1\cdots n],$ 且左段元素小于右段元素。

对于子序列继续递归划分,得到 $A[0\cdots n/2^m]$, $A[n/2^m+1\cdots n/2^{m-1}]\cdots A[n-n/2^m+1\cdots n]$, 当 $2^m=k\to m=\log k$ 时,划分完成。

因此寻找中位数划分的函数时间复杂度应为 O(n),划分函数的递归方程为 W(n) = 2W(n/2) + O(n),划分左右子段 $\log k$ 次,方能使得总的时间复杂度达到 $O(n \log k)$ 。

具体算法实现请见下页

算法时间复杂度 对于 findk_pos,每次递归代价为 O(n),每次子问题缩小为原来一半的规模,且子问题只有一个,可列出递归方程为 T(n) = T(n/2) + O(n),由主定理可以得出 T(n) = O(n)。

对于 k_sorted,每次递归代价为 O(n),每次子问题缩小为原来一半,而需要划分左右两序列,子问题为两个,可列出递归方程为 W(n)=2W(n/2)+O(n),注意结束条件为递归调用了 $\log k$ 层,每层代价均为 O(n),因此时间复杂度为 $O(n\log k)$ 。

算法 1 k-sorted 算法

输入: 待划分序列 $A[1 \cdots n]$, 划分段数 k

输出: 划分后的的序列 A

- 1: **function** FINDK_POS(A, k_pos, begin, end) \\返回该段数组第 k 小
- 2: /* 利用快排思想,选定一个 key,将大于 key 的元素放在其右边,小于 key 放于左边。判断 key 插入的位置是否为 k,如果是则函数返回,如果插入位置大于 k 说明第 k 小位于左子序列对左边递归寻找,否则对右子序列递归寻找。*/
- 3: $split \leftarrow begin, key \leftarrow A[begin]$
- 4: **for** $i \leftarrow begin + 1 \text{ to end } \mathbf{do}$
- 5: $A[i] \le key ? swap(A[+ + split], A[i])$
- 6: end for
- 7: $split > k_pos$? return $findk_pos(A, k_pos, begin, split 1)$
- 8: $split < k_pos$? return $findk_pos(A, k_pos, split + 1, end)$
- 9: **return** split
- 10: end function
- 11: **function** K SORTED(A, begin, end, k, count = 1)
- 12: /* count 记录当前的段数,每次调用 findk_pos, A 被分为 [begin,mid] 和 [mid+1,end] 两段,段数变为原来两倍,且左段元素小于右段,调用 层数达到 logk 层算法结束,否则继续划分左右子序列 */
- 13: $mid \leftarrow (end begin)/2 + begin, count \leftarrow count * 2$
- 14: $findk_pos(A, mid, begin, end)$
- 15: **if** count == k **then**
- 16: 划分 k 段, 算法结束
- 17: $\mathbf{return} \ A$
- 18: **end if**
- 19: $k_sorted(A, begin, mid, k, count)$
- 20: $k_sorted(A, mid + 1, end, k, count)$
- 21: end function

problem 6.9

算法 2 对三个数进行排序

输入:含有三个各不相同的整数的序列 $A = \{a, b, c\}$

输出:从小到大排好序的序列 A

 ${\bf problem~6.10}$

 ${\rm problem}\ 6.13$

problem 6.15

PART II

problem 7.1

- problem 7.2
- problem 7.3
- $problem \ 7.4$
- problem 7.6