Análisis Funcional I

Tarea 5

Maite Fernández Unzueta. maite@cimat.mx Antonio Barragán Romero. antonio.barragan@cimat.mx

Problema 1 7A 2

Suponga que $a \geqslant 0, b \geqslant 0, \ y \ 1 Demuestra que$

$$ab = \frac{a^p}{p} + \frac{b^q}{q},$$

 $si\ y\ solo\ si\ a^p=b^q,\ donde\ q\ es\ el\ exponente\ dual\ de\ p.$

Demostración: Si a ó b son cero, la desigualdad es clara, asi que supongamos que ninguno es cero. Dado que la función $f(t) = e^t$ es estrictamente convexa pues $f''(t) = e^t > 0$, se cumple que

$$e^{\frac{1}{p}x+\frac{1}{q}y}\leqslant \frac{1}{p}e^x+\frac{1}{q}e^y,$$

con igualdad si y solo si x = y. Luego, para $x = p \ln(a), y = q \ln(b)$, se cumple que

$$ab = e^{\frac{1}{p}(p\ln(a)) + \frac{1}{q}(q\ln(y))} \leqslant \frac{1}{p}e^{p\ln(a)} + \frac{1}{q}e^{q\ln(b)} = \frac{1}{p}a^p + \frac{1}{q}b^q,$$

con igualdad si y solo si $p \ln(a) = q \ln(b)$, es decir si y solo si $a^p = b^q$, como queremos.

Problema 2 7A 3

Suponga que $a_1,...,a_n$ son números no negativos. Prueba que

$$\left(\sum_{i=1}^n a_i\right)^5 \leqslant n^4 \big(a_1^5 + \dots + a_n^5\big)$$

Demostraci'on: Notemos que 5 es el exponente dual de $\frac{5}{4}$, por lo tanto por la desigualdad de Hölder tenemos que

$$\begin{split} \sum_{i=1}^{n} a_i &= \sum_{i=1}^{n} 1 \cdot a_i \leqslant \left(\sum_{i=1}^{n} 1^{\frac{5}{4}}\right)^{\frac{4}{5}} \left(\sum_{i=1}^{n} a_i^5\right)^{\frac{1}{5}} \\ &= n^{\frac{4}{5}} \left(\sum_{i=1}^{n} a_i^5\right)^{\frac{1}{5}}, \end{split}$$

se sigue que

$$\left(\sum_{i=1}^{n} a_{i}\right)^{5} \leqslant n^{4} \left(a_{1}^{5} + \dots + a_{n}^{5}\right),$$

como queremos.

Problema 3 7A 7

Supongamos que (X, \mathcal{S}, μ) es un espacio métrico y $f, h: X \to F$ son \mathcal{S} -medibles. Prueba que

$$||fh||_r \leqslant ||f||_p ||h||_q$$

para todos los números positivos p,q,r tales que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.

Demostración: Primero notemos que como f,h son \mathcal{F} -medibles entonces $|f|^r$ y $|h|^r$ también lo son. Luego, de la hipótesis de que $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ obtenemos que

$$\frac{1}{\frac{p}{r}} + \frac{1}{\frac{q}{r}} = 1,$$

y ademas r(p+q)=pq, de donde se deduce que pq>rp y que pq>rq pues rp,rq>0, lo cual implica que q>r y p>r pues p,q son positivos y por tanto $\frac{q}{r}>1$ y $\frac{p}{r}>1$, pues r es positivo. Lo anterior no dice que podemos usar la desigualdad de Hölder sobre $|f|^r, |h|^r, \cos \frac{p}{r}$ y $\frac{q}{r}$ para obtener que

$$\begin{split} \int |fh|^r d\mu &= \int ||f|^r |h|^r |d\mu \leqslant \left(\int ||f|^r|^{\frac{p}{r}} d\mu \right)^{\frac{1}{p}} \left(\int ||h|^r|^{\frac{q}{r}} d\mu \right)^{\frac{1}{q}} \\ &= \left(\int |f|^p d\mu \right)^{\frac{r}{p}} \left(\int |h|^q d\mu \right)^{\frac{r}{q}}, \end{split}$$

de donde, al elevar lo anterior a $\frac{1}{r}$, obtenemos que

$$\left(\int |fh|^r d\mu\right)^{\frac{1}{r}} \leqslant \left(\int |f|^p d\mu\right)^{\frac{1}{p}} \left(\int |h|^q d\mu\right)^{\frac{1}{q}},$$

es decir, $||fh||_r \leqslant ||f||_p ||h||_q$, como queremos.

Problema 4 7A 8

Supongamos que (X, \mathcal{S}, μ) es un espacio métrico y $n \in \mathbb{Z}^+$. Prueba que

$$\left\| \prod_{i=1}^{n} f_i \right\|_{1} \leqslant \prod_{i=1}^{n} \left\| f_i \right\|_{p_i},$$

para todos los números positivos $p_1,...,p_n$ tales que $\sum_{i=1}^n \frac{1}{p_i} = 1$ y todas la funciones S-medibles $f_1,f_2,...,f_n:X \to F$.

Demostración:

Problema 5 7A 10

- Supongamos que $0 .

 i) Prueba que <math>\ell^p \subset \ell^q$.

 ii) Prueba que $\left\|\left\{a_n\right\}_n\right\|_p \geqslant \left\|\left\{a_n\right\}_n\right\|_q$ para toda sucesión $\left\{a_n\right\}_n \subset F$.
- i) Demostración: Dada $\left\{x_n\right\}_n \in \mathcal{C}^p$, se cumple que $\sum_{n=1}^\infty \left|x_n\right|^p < \infty$, lo cual implica que $\left|x_n\right|^p \to 0$, es decir, $\left\{\left|x_n\right|^p\right\}_n$ es convergente y por tanto es acotada, se sigue que $\{|x_n|\}_n$ es acotada y en consecuencia $\{x_n\}_n \in \ell^{\infty}$, de modo que $\ell^p \subset \ell^{\infty}$.

Como $|x_n|^p \to 0$ entonces existe $N \in \mathbb{N}$ tal que $|x_n|^p < 1$ para $n \geqslant N$, como q > p se sigue que $|x_n|^q < |x_n|^p$ para todo $n \geqslant N$. Dado que $\sum_{n=1}^{\infty} |x_n|^p < \infty$, se sigue que $\sum_{n=N}^{\infty} |x_n|^q \leqslant \sum_{n=N}^{\infty} |x_n|^p < \infty$, lo cual implica que $\sum_{n=1}^{\infty} |x_n|^q < \infty$, pues $\sum_{n=1}^{N-1} |x_n|^q < \infty$, es decir $\{x_n\}_n \in \ell^q$ y por tanto $\ell^p \subset \ell^q$.

ii) Demostración: Dado $\{a_n\}_n \subset \mathbf{F}$, sea $\alpha = \|\{a_n\}_n\|_n$ y notemos que

$$\frac{\left(\sum_{n=1}^{\infty}\left|\frac{a_{n}}{\alpha}\right|^{q}\right)^{1}}{q}=\frac{1}{\alpha}\|\{a_{n}\}\|=1,$$

entonces $\sum_{n=1}^{\infty} \left| \frac{x_n}{\alpha} \right|^p = 1$ lo cual implica que $\left| \frac{x_n}{\alpha} \right| \leqslant 1$ para todo $n \in \mathbb{N}$. Dado que q > p se cumple que $\left| \frac{x_n}{\alpha} \right|^q \leqslant \left| \frac{x_n}{\alpha} \right|^p$ para todo $n \in \mathbb{N}$, por lo cual

$$\sum_{n=1}^{\infty} \left| \frac{x_n}{\alpha} \right|^q \leqslant \sum_{n=1}^{\infty} \left| \frac{x_n}{\alpha} \right|^p = 1,$$

Problema 6 7A 11

Demuestra que:

$$\bigcap_{p>1} \ell^p \neq \ell^1.$$

Demostraci'on: Consideremos $\left\{\frac{1}{n}\right\}_n \subset F$, dado $1 sabemos que <math>\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge, y por tanto $\left\{\frac{1}{n}\right\}_n \in \mathscr{E}^p$. Mas aun, es claro que $\left\{\frac{1}{n}\right\}_n$ esta acotada, y por tanto $\left\{\frac{1}{n}\right\}_{n} \in \ell^{\infty}$. De lo anterior vemos que

$$\left\{\frac{1}{n}\right\}_n \in \bigcap_{p>1} \mathscr{C}^p,$$

sin embargo, sabemos que $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge, es decir , $\left\{\frac{1}{n}\right\}_n \notin \ell^1$, y por tanto no se puede dar la igualdad.

Problema 7 7A 12

Muestra que

$$\bigcap_{p<\infty} \mathcal{L}^p([0,1]) \neq \mathcal{L}^\infty([0,1]).$$

Demostración: Dado que una función esencialmente acotada (en [0,1]) es \mathcal{L}^p integrable para todo 0 (en <math>[0,1]), se cumple que $\bigcap_{p < \infty} \mathcal{L}^p([0,1]) \supset \mathcal{L}^\infty([0,1])$, por lo que para ver que no se da la igualdad mostraremos una función $\mathcal{L}^p([0,1])$ integrable para todo 0 tal que no sea esencialmente acotada en <math>[0,1].

Para ello consideremos $f:[0,1]\to\mathbb{R}$ dada por

$$f(x) = \begin{cases} -\log(x) & \text{si } x \in (0,1], \\ 0 & \text{si no.} \end{cases}$$

VEamos que $-\log(x) \leq \frac{1}{x}$ para todo $x \in (0, \infty)$, en especial para $x \in (0, 1)$ se cumple que

$$-\log(x) \leqslant \frac{1}{x} \Leftrightarrow$$

Problema 8 7A 13

Demuestra que

$$\bigcup_{p>1} \mathcal{L}^p([0,1]) \neq \mathcal{L}^1([0,1]).$$

Demostración: Consideremos la siguiente función

Problema 9 7A 14

Supongamos que $p, q \in (0, \infty]$, con $p \neq q$. Prueba que niguno de los conjuntos $\mathcal{L}^p(\mathbb{R})$ y $\mathcal{L}^q(\mathbb{R})$ es subconjunto del otro.

Demostración:

Problema 10 7A 15

Muestra que existe $f \in \mathcal{L}^2(\mathbb{R})$ tal que $f \notin \mathcal{L}^p(\mathbb{R})$ para todo $p \in (0, \infty] \setminus \{2\}$.