LABORATOR nr. 10 CALCUL NUMERIC

(titular de curs: prof. univ. dr. Bica Alexandru Mihai)

POLINOMUL DE INTERPOLARE HERMITE CU DOUA NODURI DUBLE

Algoritmul polinomului de interpolare Hermite

I. Date de intrare

a, b : nodurile de interpolare (date de tip double)

fa, fb, dfa, dfb: valorile interpolate (date de tip double)

 $x \in (a, b)$: punctul in care se realizeaza interpolarea (data de tip double)

II. Date de iesire: P(x)

III. Pasi

1. Calculeaza

$$\begin{split} P\left(x\right) &:= \left(\left(\left(b - x \right)^2 \cdot \left(x - a \right) \right) / \left(b - a \right)^2 \right) \cdot df a - \left(\left(\left(x - a \right)^2 \cdot \left(b - x \right) \right) / \left(b - a \right)^2 \right) \cdot df b + \\ &+ \left(\left(\left(b - x \right)^2 \cdot \left(2 \cdot \left(x - a \right) + \left(b - a \right) \right) \right) / \left(b - a \right)^3 \right) \cdot f a + \\ &+ \left(\left(\left(x - a \right)^2 \cdot \left(2 \cdot \left(b - x \right) + \left(b - a \right) \right) \right) / \left(b - a \right)^3 \right) \cdot f b \end{split}$$

2. Tipareste P(x); Stop.

Exemple numerice:

1. $a = \frac{\pi}{6}$, $b = \frac{\pi}{3}$, $f(a) = \frac{1}{2}$, $f(b) = \frac{\sqrt{3}}{2}$, $df(a) = \frac{\sqrt{3}}{2}$, $df(b) = \frac{1}{2}$, iar pentru x se iau pe rand valorile $\frac{\pi}{4}$ si $\frac{\pi}{5}$. Se aproximeaza valorile functiei sin x.

2. a=4, b=9, f(a)=2, f(b)=3, $df(a)=\frac{1}{4}$, $df(b)=\frac{1}{6}$, iar pentru x se iau pe rand valorile 5, 6, 7 si 8. Se aproximeaza valorile functiei $f(x)=\sqrt{x}$.

Algoritmul polinomului cubic de interpolare Hermite (cu trasarea graficului)

I. Date de intrare

a, b: nodurile de interpolare (date de tip double)

fa, fb, dfa, dfb: valorile interpolate (date de tip double)

II. Date de iesire: graficul polinomului Hermite

1. Calculeaza $h=\frac{b-a}{1000}$ 2. Pentru $j=\overline{0,1000}$ calculeaza $x[j]:=a+j\cdot h$

$$P[j] := \left(\left((b - x[j])^2 \cdot (x[j] - a) \right) / (b - a)^2 \right) \cdot df a - \left(\left((x[j] - a)^2 \cdot (b - x[j]) \right) / (b - a)^2 \right) \cdot df b + \right.$$

$$\left. + \left(\left((b - x[j])^2 \cdot (2 \cdot (x[j] - a) + (b - a)) \right) / (b - a)^3 \right) \cdot f a + \right.$$

$$\left. + \left(\left((x[j] - a)^2 \cdot (2 \cdot (b - x[j]) + (b - a)) \right) / (b - a)^3 \right) \cdot f b$$

3. Pentru $j = \overline{0,1000}$ tipareste (deseneaza) punctele (x[j], P[j]); Stop.

Exemple numerice:

- 1. Se dau $a = \frac{\pi}{6}$, $b = \frac{\pi}{2}$, $f(a) = \frac{1}{2}$, f(b) = 1, $df(a) = \frac{\sqrt{3}}{2}$, df(b) = 0. Se traseaza graficul aproximatiei functiei $f(x) = \sin x$ pe intervalul $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$.

 2. a = 4, b = 9, f(a) = 2, f(b) = 3, $df(a) = \frac{1}{4}$, $df(b) = \frac{1}{6}$, iar pentru
- x se iau pe rand valorile 5, 6, 7 si 8. Se traseaza graficul aproximatiei functiei $f(x) = \sqrt{x}$.

POLINOMUL LUI BERNSTEIN

Polinomul lui Bernstein de grad m
 relativ la functia f
 este definit prin formula:

$$(B_m f)(x) = \sum_{k=0}^{m} p_{m,k}(x) \cdot f\left(\frac{k}{m}\right), \quad \forall x \in [0,1]$$

unde

$$p_{m,k}(x) = C_m^k x^k (1-x)^{m-k} \ge 0, \quad \forall x \in [0,1], \quad \forall k = \overline{0,m}.$$

In programul de mai jos se implementeaza expresiile polinoamelor Bernstein de gradele 1 (culoarea negru), 2 (albastru), 3 (verde) si 4 (rosu) pentru aproximarea functiilor $f(x) = e^x$ (culoarea gri), (si eventual $g(x) = 1 + \sqrt{x}$), pe intervalul [0,1].

Astfel, se vor calcula:

$$B_{1}(f)(x) = 1 - x + x \cdot e$$

$$B_{2}(f)(x) = (1 - x)^{2} + 2 \cdot x \cdot (1 - x) \cdot \sqrt{e} + x^{2} \cdot e$$

$$B_{3}(f)(x) = (1 - x)^{3} + 3 \cdot (1 - x)^{2} \cdot x \cdot pow(e, \frac{1}{3}) + 3 \cdot x^{2} \cdot (1 - x) \cdot pow(e, \frac{2}{3}) + x^{3} \cdot e$$

$$B_{4}(f)(x) = (1 - x)^{4} + 4 \cdot (1 - x)^{3} \cdot pow(e, \frac{1}{4}) + 6 \cdot (1 - x)^{2} \cdot x^{2} \cdot \sqrt{e} + 4 \cdot (1 - x) \cdot x^{3} \cdot pow(e, \frac{3}{4}) + x^{4} \cdot e$$

in punctele $x[j] := a + j \cdot h$ cu $h = \frac{1}{1000}$.