T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte IV)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Anteriormente, aprendemos uma nova função de limiar, chamada de função logística, com a qual foi possível encontrar uma solução para o problema de classificação com o algoritmo do gradiente descendente.
- Classificadores que utilizam a função logística como função de limiar são conhecidos como regressores logísticos e são utilizados em problemas de classificação binária, ou seja, problemas com 2 classes apenas, após a discretização do valor de saída.
- Na sequência, veremos como lidar com problemas de classificação que envolvem mais de 2 classes, também chamados de classificação multiclasses.

Casos multi-classe

- Até agora, nós vimos como classificar utilizando *regressão logística*.
- Nesse caso, os dados pertencem a apenas 2 classes (i.e., Q=2).
- Porém, e quando o problema possuir mais de 2 classes (i.e., Q > 2)?
- Por exemplo
 - Reconhecimento de dígitos escritos à mão: 10 dígitos.
 - Classificação de texto: Esportes, Economia, Política, Entretenimento, etc.
 - Classificação de sentimentos: Neutro, Positivo, Negativo.

Casos multi-classe

- Quando Q > 2, chamamos o problema de classificação *multi-classes*.
- Existem algumas abordagens para a classificação multi-classe:
 - Um-Contra-o-Resto
 - Um-Contra-Um
 - Regressão Softmax
- As duas primeiras podem ser aplicadas a qualquer tipo de *classificador binário* e não apenas ao *regressor logístico*.
- A terceira abordagem é uma generalização do classificador logístico para problemas multi-classe.

Um-Contra-o-Resto

- Nesta abordagem, treina-se *um classificador binário* para cada classe q, para predizer a probabilidade $P(C_q | x(i); a), \forall q \in \{1, ..., Q\}$, i.e., C_q é a classe positiva, C_2 .
- Em outras palavras, treina-se Q classificadores binários, onde para cada classificador, a classe positiva, C_2 , é a q-ésima classe e a classe negativa, C_1 , é a junção de todas as outras, Q-1, classes.
- Fazendo isso, nós transformamos um problema com Q classes em Q problemas binários.
- Cada um dos Q classificadores binários é representado pela função hipótese $h_a^q(x(i))$.

Um-Contra-o-Resto

- Portanto, o q-ésimo *classificador* deve indicar a classe positiva caso o exemplo pertença à q-ésima classe, ou à classe negativa caso o exemplo pertença a qualquer uma das outras Q-1 classes.
- Após o treinamento, para cada exemplo de entrada, x(i), realiza-se Q predições e escolhe-se a classe que maximize $h_a^q(x(i))$

$$C_q = \arg\max_q h_a^q(\mathbf{x}(i)).$$

- A *vantagem* desta abordagem é que treina-se apenas *Q classificadores*.
- Uma *desvantagem* é que cada *classificador binário* precisa ser treinado com um conjunto negativo que é Q-1 vezes maior, o que pode aumentar o tempo de treinamento e a possibilidade de *classes desbalanceadas*.

Um-Contra-o-Resto

 $C_2(+)$

Passamos a ter 3 classificadores binários.

Um-Contra-Um

- Nesta abordagem, treina-se Q(Q-1)/2 classificadores binários.
- Cada *classificador* é treinado para classificar os exemplos pertencentes a cada um dos possíveis *pares* de classes.
 - Por exemplo, se Q=4, então treina-se 6 *classificadores* para classificar entre C_1/C_2 , C_1/C_3 , C_1/C_4 , C_2/C_3 , C_2/C_4 , e C_3/C_4 .
- Transformamos um problema com Q classes em Q(Q-1)/2 problemas binários.
- No final, cada exemplo é classificado conforme o **voto majoritário** entre os **classificadores**.
- Ou seja, a classe que receber mais votos é a classe atribuída ao exemplo.

Um-Contra-Um

- A principal vantagem dessa abordagem é que cada classificador precisa ser treinado apenas com as duas classes que ele deve distinguir, portanto, a chance de desbalanceamento é menor.
- Além disso, o tempo de treinamento de cada classificador também é menor, pois treina-se cada um deles com pares de classes.
- A *desvantagem* é que, por exemplo, se Q=10, temos que treinar 45 classificadores.
- Consequentemente, o tempo total de treinamento pode ser alto.

Um-Contra-Um

- Também conhecida como *regressão logística multinomial*.
 - Pois as saídas deste regressor podem ser interpretadas como as probabilidades de uma variável categoricamente distribuída (as classes) dado um conjunto de variáveis (atributos e pesos).
 - Em outras palavras, a regressão softmax estima a probabilidade de um exemplo de entrada pertencer a cada classe possível.
- É uma generalização do regressor logístico para problemas com *múltiplas* classes, em geral, Q>2.
- A ideia é treinar um único classificador com Q saídas, onde cada saída representa a probabilidade de um exemplo pertencer a uma das Q classes.
 - Por exemplo, para um problema com 4 classes, teremos um único classificador, mas com 4 saídas.

- Prediz *apenas uma classe por classificação*, portanto, ele deve ser usado apenas com *classes mutuamente exclusivas* como por exemplo diferentes tipos de plantas, dígitos, carros, etc.
 - lacktriangle Classes mutuamente exclusivas: exemplos pertencem a apenas uma das Q classes.
 - Já notícias e animais, por exemplo, podem pertencer a várias a várias classes ao mesmo tempo.
- Para termos um *único* classificador, o *regressor softmax possui uma* função hipótese de classificação, $h_a^q(x(i))$, e, consequentemente, uma função discriminante, $g_q(x(i))$, para cada classe q.

• A função hipótese de classificação associada à q-ésima classe, $h_a^q(x(i))$, é obtida passando-se a função discriminante da q-ésima classe, $g_q(x(i))$, através da função softmax,

$$P(C_q \mid \mathbf{x}(i), \mathbf{a}_q) = h_{\mathbf{a}}^q(\mathbf{x}(i)) = \frac{e^{g_q(\mathbf{x}(i))}}{\sum_{j=0}^{Q-1} e^{g_j(\mathbf{x}(i))}} = \frac{e^{\mathbf{x}(i)^T \mathbf{a}_q}}{\sum_{j=0}^{Q-1} e^{\mathbf{x}(i)^T \mathbf{a}_j}} \in \mathbb{R} [0, 1],$$

onde $a_q = \begin{bmatrix} a_0^q & a_1^q & \cdots & a_K^q \end{bmatrix}^T \in \mathbb{R}^{K+1\times 1}$ é o **vetor (coluna) de pesos** da q-ésima **função discriminante**, $g_q(x(i))$, e i indica o número da amostra.

- O somatório de termos exponenciais no denominador normaliza o valor da q-ésima saída de tal forma que o somatório das Q saídas seja igual a 1.
- Cada função discriminante tem seu próprio vetor de pesos, $oldsymbol{a}_q$.

- Assim como com o regressor logístico, podemos usar equações de *hiperplanos* ou *polinomiais* como *funções discriminantes*.
- Portanto, a função softmax estende a ideia do regressor logístico ao mundo multi-classes.
- Ou seja, a *função softmax* atribui uma *probabilidade condicional*, $P(C_q \mid x(i), a_q)$, a cada classe, q, em um problema com múltiplas classes, onde a soma destas Q probabilidades deve ser igual a 1

$$P(C_0 \mid \mathbf{x}(i), \mathbf{a}_0) + P(C_1 \mid \mathbf{x}(i), \mathbf{a}_1) + \dots + P(C_{Q-1} \mid \mathbf{x}(i), \mathbf{a}_{Q-1}) = 1.$$

• Portanto, o objetivo é encontrar um *modelo* (i.e., os *pesos* das *Q* funções hipótese) que atribua uma alta probabilidade para a classe alvo e, consequentemente, uma baixa probabilidade para as demais classes.

- Assim como fizemos anteriormente, precisamos definir uma *função de erro* e *minimizá-la* para encontrarmos os *pesos* das *Q funções hipótese* do classificador softmax.
- A função de erro médio para a regressão softmax é dada por

$$J_e(A) = -\frac{1}{N} \sum_{i=0}^{N-1} \sum_{q=0}^{Q-1} 1\{y(i) == q\} \log \left(h_a^q(x(i))\right),$$

 $h_a^q(x)$ tende a 1, caso

contrário, o erro aumenta.

onde $1\{\cdot\}$ é a *função indicadora*, de modo que $1\{$ uma condição verdadeira $\}$ = 1 e $1\{$ uma condição falsa $\}$ = 0, $A \in \mathbb{R}^{K+1 \times Q}$ é a matriz com os *pesos* para todas as *funções hipótese* das Q classes e y(i) é o i-ésimo valor esperado.

• A matriz ${\it A}$ contém em suas colunas os vetores de pesos, ${\it a}_q$, de cada umas das ${\it Q}$ funções discriminantes.

 Usando-se a codificação one-hot, a equação de erro médio pode ser reescrita como

$$J_e(\mathbf{A}) = -\frac{1}{N} \sum_{i=0}^{N-1} \mathbf{y}(i)^T \log \left(\mathbf{h}_a(\mathbf{x}(i)) \right),$$

onde $y(i) = [1\{y(i) == 0\}, \cdots, 1\{y(i) == Q-1\}]^T \in \mathbb{R}^{Q \times 1}$ é um vetor coluna utilizando a codificação *one-hot* e $h_a(x(i)) \in \mathbb{R}^{Q \times 1}$ é um vetor coluna com as saídas das Q funções hipóteses

$$h_{a}(x(i)) = [h_{a}^{0}(x(i)), \dots, h_{a}^{Q-1}(x(i))]^{T}$$

$$= [P(C_{0} \mid x(i), a_{0}), \dots, P(C_{Q-1} \mid x(i), a_{Q-1})]^{T}$$

•

$$J_e(A) = -\frac{1}{N} \sum_{i=0}^{N-1} \mathbf{y}(i)^T \log \left(\mathbf{h}_a(\mathbf{x}(i)) \right)$$

- Notem que quando existem apenas duas classes (Q=2), a função de erro médio é equivalente à função de erro médio do regressor logístico.
- Ou seja, mesmo tendo sido pensado para caso onde Q>2, o regressor softmax pode ser usado quando Q=2.
- A *função de erro médio não é linear* e, portanto, *não existe uma forma fechada* para encontramos os pesos. Porém, ela é *convexa* e, portanto, é garantido que o algoritmo do *gradiente descendente* encontre o mínimo global.

- Sendo assim, usamos o algoritmo do gradiente descendente para encontrar os pesos das Q funções discriminantes que minimizam a função de erro médio.
- A atualização iterativa dos **pesos** da q-ésima classe, C_q , é dada por

$$oldsymbol{a}_q = oldsymbol{a}_q - lpha rac{\partial J_e(A)}{\partial oldsymbol{a}_q}$$
, $orall q$

• Considerando uma função discriminante linear (i.e., hiperplano), a derivada da função de erro médio, $J_e(A)$, com respeito a cada vetor de pesos, a_q , tem uma expressão idêntica àquela obtida para a regressão la função discriminante,

 $\frac{\partial J_e(A)}{\partial a_q} = -\frac{1}{N} \sum_{i=0}^{N-1} \left[1\{y(i) == q\} - h_a^q(x(i)) \right] x(i)^T = -\frac{1}{N} X^T (y_q - \hat{y}_q).$

basta alterarmos o formato da matriz X.

Forma

Observações

- O *vetor gradiente* da *função de erro* depende da *função discriminante* adotada.
- Entretanto, como vimos antes, esta dependência afeta apenas a matriz de atributos, X.
- O regressor softmax apresenta duas propriedades:
 - $0 \le h_a^q(x(i)) \le 1$, ou seja, a saída da q-ésima função hipótese de classificação sempre será um valor dentro do intervalo [0, 1];
 - $\sum_{q=1}^{Q} h_{a}^{q}(x(i)) = \sum_{q=1}^{Q} P(C_{q} | x(i), a_{q}) = 1$, ou seja, o somatório das **probabilidades condicionais** de todas as Q classes é igual a 1.
- Estas duas propriedades fazem com que o vetor

$$\boldsymbol{h}_{a}(\boldsymbol{x}(i)) = [h_{a}^{1}(\boldsymbol{x}(i)), \dots, h_{a}^{Q}(\boldsymbol{x}(i))]^{T} \in \mathbb{R}^{Q \times 1},$$

contendo todas as saídas do regressor softmax atenda os requisitos de uma função massa de probabilidade multinomial.

• Após o treinamento, o classificador atribui ao exemplo de entrada, x(i), a classe, q, com a **maior probabilidade estimada**, que é simplesmente a classe com maior valor para $g_q(x(i)) = x(i)^T a_q$

$$C_q = \arg \max_q h_a^q(\mathbf{x}(i)) = \arg \max_q P(C_q \mid \mathbf{x}(i), \mathbf{a}_q) = \arg \max_q \mathbf{x}(i)^T \mathbf{a}_q.$$

• A arquitetura de um *regressor softmax* para três classes (i.e., Q=3) e dois atributos (x_1 e x_2) é mostrada abaixo.

A ideia por trás da **regressão softmax** é bastante simples: dado um exemplo de entrada x, o regressor softmax primeiro calcula uma "**pontuação**", $g_q(x) = x^T a_q$, para cada classe q, em seguida, estima a probabilidade de cada classe aplicando a função softmax às "**pontuações**".

Tarefas

- Quiz: "T320 Quiz Classificação (Parte IV)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #4.
 - Pode ser acessado através do link acima (Google Colab) ou no GitHub.
 - Se atentem aos prazos de entrega.
 - Instruções para resolução e entrega dos laboratórios.
 - Laboratórios podem ser resolvidos em grupo, mas as entregas devem ser individuais.

Obrigado!