9 BASIC MULTIPLICATION SCHEMES

Chapter Goals

Study shift/add or bit-at-a-time multipliers and set the stage for faster methods and variations to be covered in Chapters 10-12

Chapter Highlights

Multiplication= multioperand addition
Hardware, firmware, software algorithms
Multiplying 2's-complement numbers
The special case of one constant operand

BASIC MULTIPLICATION SCHEMES: TOPICS

Topics in This Chapter

- 9.1 Shift/Add Multiplication Algorithms
- 9.3 Basic Hardware Multipliers
- 9.4 Multiplication of Signed Numbers
- 9.5 Multiplication by Constants

9.1 SHIFT/ADD MULTIPLICATION ALGORITHMS

Notation for our discussion of multiplication algorithms:

a Multiplicand $a_{k-1}a_{k-2} \dots a_1a_0$ x Multiplier $x_{k-1}x_{k-2} \dots x_1x_0$ p Product $(a \times x)$ $p_{2k-1}p_{2k-2} \dots p_3p_2p_1p_0$

Initially, we assume unsigned operands

Fig. 9.1 Multiplication of two 4-bit unsigned binary numbers in dot notation.

MULTIPLICATION RECURRENCE

Multiplication with right shifts: top-to-bottom accumulation

$$p^{(j+1)} = (p^{(j)} + x_j \ a \ 2^k) \ 2^{-1}$$
 with $p^{(0)} = 0$ and $|$ —add—— $|$ —shift right— $|$

Multiplication with left shifts: bottom-to-top accumulation

$$p^{(j+1)} = 2p^{(j)} + x_{k-j-1}a$$
 with $p^{(0)} = 0$ and |shift| |----add-----|

EXAMPLES OF BASIC MULTIPLICATION

Right-sh	nift ==:	al	go ==	rith ==	nm ===	===	:==	===	==
a X =====		1	0	1 	0	⊢1 1 ===	0	1 1	0
<i>p</i> ⁽⁰⁾ + <i>x</i> ₀ <i>a</i>		0	0	0	0				
$2p^{(1)}$ $p^{(1)}$ $+x_1a$	0	1 0 1	0 1 0	1 0 1	0 1 0	0			
$2p^{(2)}$ $p^{(2)}$ $+x_2a$	0	1 0 0	1 1 0	1 1 0	1 1 0	0	0		
$2p^{(3)}$ $p^{(3)}$ $+x_3a$	0	0 0 1	1 0 0	1 1 1	1 1 0	1	0	0	
2p ⁽⁴⁾ p ⁽⁴⁾ ======	0	1 0	1 1 ==	0 1	1	1 1 ===	1 1	0	0

Fig. 9.2
Examples
of
sequential
multiplication with
right and
left shifts.

$$p^{(j+1)} = (p^{(j)} + x_j a 2^k) 2^{-1}$$
|----add-----|
|---shift right----|

Check: $10 \times 11 = 110 = 64 + 32 + 8 + 4 + 2$

EXAMPLES OF BASIC MULTIPLICATION (CONTINUED)

Fig. 9.2
Examples
of
sequential
multiplication with
right and
left shifts.

$$p^{(j+1)} = 2p^{(j)} + x_{k-j-1}a$$
|shift|
|----add-----|

Check: 10 x 11= 110= 64+32+8+4+2

Left	Left-shift algorithm													
а х					1 1	0	1 1	0 1						
$p^{(0)}$ $2p^{(0)}$ $+x_3a$				0	0 0 1	0 0 0	0 0 1	0 0 0						
$p^{(1)}$ $2p^{(1)}$ $+x_2a$			0	0	1 0 0	0 1 0	1 0 0	0 0 0						
p ⁽²⁾ 2p ⁽²⁾ +x ₁ a		0	0	1	0 1 1	1 0 0	0 0 1	0 0 0						
$p^{(3)}$ $2p^{(3)}$ $+x_0a$	0	0	1	1	0 0 1	0 1 0	1 0 1	0 0 0						
p ⁽⁴⁾	0	1	1	0	1	1	1==	0						

LIDE 7

9.3 BASIC HARDWARE MULTIPLIERS

Fig. 9.4 Hardware realization of the sequential multiplication algorithm with additions and right shifts.

EXAMPLE OF HARDWARE MULTIPLICATION

Fig. 9.4a Hardware realization of the sequential multiplication algorithm with additions and right shifts.

SEQUENTIAL MULTIPLICATION WITH LEFT SHIFTS

Fig. 9.4b Hardware realization of the sequential multiplication algorithm with left shifts and additions.

9.4

MULTIPLICATION OF SIGNED NUMBERS

Fig. 9.6 Sequential multiplication of 2's-complement numbers with right shifts (positive multiplier).

Negative multiplicand, positive multiplier:

No change, other than looking out for proper sign extension

Check:

$$^{-10} \times 11 = ^{-110} = ^{-512} + 256 + 128 + 16 + 2$$

=====	:==:	==	==	==	==	==	===	===	===	==:	==
a X 		1	0 1	1	1	0					
p ⁽⁰⁾ +x ₀ a		0 1	0	0 1	0	0					
2 <i>p</i> ⁽¹⁾ <i>p</i> ⁽¹⁾ + <i>x</i> ₁ <i>a</i>	1	1 1 1	0 1 0	1 0 1	1 1 1	0 1 0	0				
2p ⁽²⁾ p ⁽²⁾ +x ₂ a	1	1 1 0	0 1 0	0 0 0	0 0 0	1 0 0	0	0			
2p ⁽³⁾ p ⁽³⁾ +x ₃ a	1	1 1 1	1 1 0	0 1 1	0 0 1	0 0 0	1	0	0		
2p ⁽⁴⁾ p ⁽⁴⁾ +x ₄ a	1	1 1 0	0 1 0	0 0 0	1 0 0	0 1 0	0	1	0	0	
2p ⁽⁵⁾ p ⁽⁵⁾ ======	1	1 1 ==	1 1 ==	0 1 ==	0	1	0	0	1	0	0

SLIDE 11

THE CASE OF A NEGATIVE MULTIPLIER

Fig. 9.7 Sequential multiplication of 2's-complement numbers with right shifts (negative multiplier).

Negative multiplicand, negative multiplier:

In last step (the sign bit), subtract rather than add

Check:

$$^{-10} \times ^{-11} = 110 = 64 + 32 + 8 + 4 + 2$$

====== a X ======	==:	== 1 1 ==	== 0 0	== 1 1 ==	1 0 ==	0	===	===	===	==:	==
<i>p</i> ⁽⁰⁾ + <i>x</i> ₀ <i>a</i>		0	0	0	0	0					
$2p^{(1)}$ $p^{(1)}$ $+x_1a$	1	1 1 0	0 1 0	1 0 0	1 1 0	0 1 0	0				
2p ⁽²⁾ p ⁽²⁾ +x ₂ a	1	1 1 1	1 1 0	0 1 1	1 0 1	1 1 0	0	0			
$2p^{(3)}$ $p^{(3)}$ $+x_3a$	1	1 1 0	0 1 0	0 0 0	1 0 0	1 1 0	1	0	0		
$2p^{(4)}$ $p^{(4)}$ $+(-x_4a)$	1	1 1 0	1 1 1	0 1 0	0 0 1	1 0 0	1	1	0	0	
2p ⁽⁵⁾ p ⁽⁵⁾	0	0	0	1 0 ==	1 1 ==	0	1 0	1	1 1	0	0

SI IDF 12

SIGNED 2'S-COMPLEMENT HARDWARE MULTIPLIER

Fig. 9.8 The 2's-complement sequential hardware multiplier.

BOOTH'S RECODING

	Table	9.1	Radix-2 Booth's recoding
X_i	<i>X</i> _{<i>i</i>-1}	y _i	Explanation
0	0	0	No string of 1s in sight
0	1	1	End of string of 1s in x
1	0	-1	Beginning of string of 1s in x
1	1	0	Continuation of string of 1s in x

Example

Justification

$$2^{j} + 2^{j-1} + \dots + 2^{i+1} + 2^{i} = 2^{j+1} - 2^{i}$$

SLIDE 14

EXAMPLE MULTIPLICATION WITH BOOTH'S RECODING

Fig. 9.9 Sequential multiplication of 2's-complement numbers with right shifts by means of Booth's recoding.

<i>X</i> _i	<i>X</i> _{<i>i</i>-1}	Уi
0	0	0
0	1	1
1	0	-1
1	1	0

Check: $-10 \times -11 = 110 = 64 + 32 + 8 + 4 + 2$

======	==:	==	==	==	==	==	======	:===
a x y	- -==	1 1 1 ==	0 0 1	1 1 1 ==	1 0 1	0 1 1	Multipli Booth-	ier recodec
$p^{(0)} + y_0 a$		0	0	0	0	0		
$ \begin{array}{c} \hline 2p^{(1)} \\ p^{(1)} \\ +y_1 a \end{array} $	0	0 0 1	1 0 0	0 1 1	1 0 1	0 1 0	0	
2p ⁽²⁾ p ⁽²⁾ +y ₂ a	1	1 1 0	1 1 1	0 1 0	1 0 1	1 1 0	0 1 0	
2p ⁽³⁾ p ⁽³⁾ +y ₃ a	0	0 0 1	0 0 0	1 0 1	1 1 1	1 1 0	1 0 1 1 0	
2p ⁽⁴⁾ p ⁽⁴⁾ y ₄ a	1	1 1 0	1 1 1	0 1 0	0 0 1	1 0 0	1 1 0 1 1	0
2p ⁽⁵⁾ p ⁽⁵⁾ ======	0	0	0 0 ==	1 0	1	0	1 1 1 0 1 1 ======	0 1 0

PROBLEMAS

Problema 9.1. Faça a multiplicação 42x43 usando:

- a) Algoritmo Shift-Left.
- b) Algoritmo Shift-Right.

Problema 9.2. Faça a multiplicação -5x-3 usando:

a) Algoritmo Shift-Right com recodificação de Booth.

9.5 MULTIPLICATION BY CONSTANTS

Multiplication Using Binary Expansion

Example: Multiply R1 by the constant $113 = (1 \ 1 \ 1 \ 0 \ 0 \ 1)_{two}$

R2 ← R1 shift-left 1

R3 ← R2 + R1

R6 ← R3 shift-left 1

R7 ← R6 + R1

R112 ← R7 shift-left 4

R113 ← R112 + R1

Shift, add Shift

Ri: Register that contains i times (R1)

This notation is for clarity; only one register other than R1 is needed

Shorter sequence using shift-and-add instructions

R3 ← R1 shift-left 1 + R1

R7 ← R3 shift-left 1 + R1

R113 ← R7 shift-left 4 + R1

MULTIPLICATION VIA RECODING

Example: Multiply R1 by $113 = (1 \ 1 \ 1 \ 0 \ 0 \ 1)_{two} = (1 \ 0 \ 0^{-1} \ 0 \ 0 \ 1)_{two}$

R8 ← R1 shift-left 3

R7 ← R8 – R1

R112 ← R7 shift-left 4

R113 ← R112 + R1

Shift

Shift, subtract Shift, add

Shorter sequence using shift-and-add/subtract instructions

R7 ← R1 shift-left 3 – R1

R113 ← R7 shift-left 4 + R1

6 shift or add (3 shift-and-add) instructions needed without recoding

MULTIPLICATION VIA FACTORIZATION

Example: Multiply R1 by $119 = 7 \times 17 = (8 - 1) \times (16 + 1)$

R8 ← R1 shift-left 3

R7 ← R8 – R1

R112 ← R7 shift-left 4

R119 ← R112 + R7

Shorter sequence using shift-and-add/subtract instructions

R7 ← R1 shift-left 3 – R1

R119 ← R7 shift-left 4 + R7

Requires a scratch register for holding the 7 multiple

MULTIPLICATION BY MULTIPLE CONSTANTS

Example: Multiplying a number by 45, 49, and 65

R9 ← R1 shift-left 3 + R1 R45 ← R9 shift-left 2 + R9

R7 ← R1 shift-left 3 – R1

R49 \leftarrow R7 shift-left 3 - R7

R65 ← R1 shift-left 6 + R1

Separate solutions: 5 shift-add/subtract operations

A combined solution for all three constants

R65 \leftarrow R1 shift-left 6 + R1 R49 \leftarrow R65 - R1 left-shift 4

 $R45 \leftarrow R49 - R1 \text{ left-shift } 2$

A programmable block can perform any of the three multiplications

PROBLEMAS

Problema 9.3. Faça as seguintes multiplicações por constante a nível de transferência de registradores (RTL design):

- a) 43×A
- b) 129×A
- c) 63×A
- d) 945*xA*
- e) 4,5 ×A

Problema 9.4. Na multiplicação 978943xA

- a) Faça a compressão direta da informação.
- b) Use dois níveis de CSAs com os múltiplos de 7 no reconhecimento de padrão.

Problema 9.5. Na multiplicação 93177183807xA:

- a) Faça a compressão direta da informação.
- b) Use dois níveis de CSAs com os múltiplos de 21 no reconhecimento de padrão (pode usar os múltiplos ímpares até 21). Obtenha o custo e caminho crítico considerando A_{FA} e T_{FA} como a área e atraso por *Full-Adder*.

INF 21

MULTIPLICATION BY MULTIPLE CONSTANTS: HCUB SOFTWARE TOOL

Fazer a multiplicação pelo conjunto {67,89,99,44,35}

http://spiral.ece.cmu.edu/mcm/gen.html

SI IDE 2

PROBLEMAS

- **Problema 9.6.** A partir dos ferramenta que obtém o grafo associado à multiplicação de múltiplas constantes obtenha:
 - a)O grafo para a obtenção dos números primos 3, 5, 11, 13, 37, 41 e 43 (para a geração do grafo use *Fractional bits*: 0, *Algortihm*: Hcub e *Depth Limit*: Minimum possible)
 - b)O que poderia ser feito para melhorar a eficiência tendo em consideração que o substrator é uma unidade maior e com maior atraso que um somador?
 - c) Use agora *Algortihm*: BHM na ferramenta e reduza o número de níveis.

LIDE 23

MULTIPLICATION BY MULTIPLE CONSTANTS: ANOTHER EXAMPLE

Desenhe um circuito aritmético com uma entrada de seleção de dois bits, $S = s_1 s_0$, que realize as operações aritméticas mostradas na tabela usando unicamente um somador de 8 bits com *carry in* e *carry out* e multiplexadores 4:1. Suponha *A*, *B*, *C* e *D* entradas de *4*-bits sendo a entrada A uma entrada sempre par.

s	F
00	F = 3A + 560B + 256C + 4096D + 16389
01	F = 0.5A + 25B + 4224C + 4352D + 2049
10	F = 8499B + 6144
11	$F = \frac{(9393A + 4096B + 256C + 164)}{2}$

PROBLEMAS

Problema 9.7. Desenhe um circuito aritmético com uma entrada de seleção de dois bits, *S*=*s*1*s*0, que realize as operações aritméticas mostradas na tabela usando unicamente um somador de 8 bits com *carry in* e *carry out* e multiplexadores 4:1. Suponha *A*, *B*, *C* e *D* entradas de 4-bits sendo a entrada A uma entrada sempre par.

s	F
00	F = 3A + 560B + 256C + 4096D + 16389
01	F = 0,5A+25B+4224C+4352D+2049
10	F = 8499B + 6144
11	$F = \frac{(9393A + 4096B + 256C + 164)}{2}$

SLIDE 25

MULTIPLICATION BY MULTIPLE CONSTANTS: EXAMPLE

Solução:

As entradas são:

 $A = a_3 a_2 a_1 a_0 = a_3 a_2 a_1 0.$

 $B = b_3 b_2 b_1 b_0$.

 $C=c_3c_2c_1c_0.$

 $D=d_3d_2d_1d_0.$

MULTIPLICATION BY MULTIPLE CONSTANTS: EXAMPLE

Temos de inserir nas entradas E_i a informação das operações de multiplicação por constante. A tabela seguinte contem a informação a ser inserida.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	cin
EO	d3	d2	d1	d0	c3	c2	c1	c0	b3	b2	b1	ь0	a3	a2	a1	1	1
E1	0	1	0	b3	b2	b1	b0	b3	b2	b1	ь0	a3	a2	a1	1	1	
E2	c3	c2	c1	c0	1	c3	c2	c1	c0	b3	b2	b1	b0	a3	a2	a1	1
E3	d3	d2	d1	d0	d3	d2	d1	d0	b3	b2	b1	ь0	b3	b2	b1	ь0	
E4	b3	b2	b1	b0	1												
E5	b3	b2	b1	b0	1	1	0	b3	b2	b1	b0	b3	b2	b1	b0	1	
E6	a3	a2	a1	1	1												
E7	0	b3	b2	b1	ь0	c3	c2	c1	c0	1	0	1	0	a3	a2	a1	

Para F quando S=0 (soma de E0 com E1).

$$F=(2^{1}+2^{0})A+(2^{9}+2^{5}+2^{4})B+(2^{8})C+(2^{12})D+(2^{14}+2^{2}+2^{0}).$$

Para F quando S=1 (soma de E2 com E3).

$$F=(2^{-1})A+(2^4+2^3+2^0)B+(2^{12}+2^7)C+(2^{12}+2^8)D+(2^{11}+2^0).$$

Para F quando S=2 (soma de E4 com E5).

$$F=(2^{13}+2^8+2^5+2^4+2^1+2^0)B+(2^{11}+2^{10}+2^1).$$

Para F quando S=3 (soma de E6 com E7) numerador da divisão.

$$F = (2^{13} + 2^{10} + 2^{7} + 2^{4} + 2^{1} + 2^{0})A + (2^{12})B + (2^{8})C + (2^{7} + 2^{5} + 2^{1}).$$