TRX: A Formally Verified Parser Interpreter

Henri Binsztok Adam Koprowski

> MLstate, Paris, France http://mlstate.com

European Symposium on Programming (ESOP '10) 22 March

Outline

- Context
- Objective
- PEGs: Parsing Expression Grammars
- Mathematic Actions Appendix Appendix Actions Appendix Appendix
- **5** Termination Analysis for (X)PEGs
- 6 PEG interpreter in Coq
- Performance evaluation
- Related work
- Conclusions

- SaaS (Software as a service) is a new model of software deployment that is gaining popularity.
- OPA (One-Pot Application) is a new unified technology for developing rich web applications.
 - The language has built-in: persistency, parsing capabilities client-code generation capabilities, concurrency, . . .
- Safety is a distinguished feature of OPA:
 - OPA features a number of static checks for its applications,
 - OPA has a verification platform build on top of it [WIP]
 - OPA components will be subjected to formal verification [WIP]

 SaaS (Software as a service) is a new model of software deployment that is gaining popularity.

- OPA (One-Pot Application) is a new unified technology for developing rich web applications.
 The language has built-in: persistency, parsing capabilities,
- Safety is a distinguished feature of OPA:

- SaaS (Software as a service) is a new model of software deployment that is gaining popularity.
- OPA (One-Pot Application) is a new unified technology for developing rich web applications. The language has built-in: persistency, parsing capabilities, client-code generation capabilities, concurrency, ...
- Safety is a distinguished feature of OPA:

3 / 34

- SaaS (Software as a service) is a new model of software deployment that is gaining popularity.
- OPA (One-Pot Application) is a new unified technology for developing rich web applications.
 - The language has built-in: persistency, parsing capabilities, client-code generation capabilities, concurrency, ...

```
// Database
db /wiki: stringmap(string)
db /wiki = "this is a new page"
save(name,content) = /wiki[name] = jQuery.getVal(#(content)); []
// User interface
 <textarea rows={5} cols={80} id="text">{t}</textarea>
page(name) =
 <hl>{ name:string }</hl>
 f text(/wiki[name]) }
 <a onclick={save(name, "text")}>save</a>
main(name) = html("Mustate wiki :: {name}", page(name))
/* Dispatching urls: http://www.myserver.com/some_note should
  point to note some note */
urls = parser | "/" ([A-Za-z]+) -> main(Text.to string( 2 ))
                              -> main("Home")
// Starting the application and setting a default port
server = simple server(urls, 2009)
```

• Safety is a distinguished feature of OPA:

- SaaS (Software as a service) is a new model of software deployment that is gaining popularity.
- OPA (One-Pot Application) is a new unified technology for developing rich web applications.
 The language has built-in: persistency, parsing capabilities, client-code generation capabilities, concurrency, . . .
- Safety is a distinguished feature of OPA:
 - OPA features a number of static checks for its applications,
 - OPA has a verification platform build on top of it [WIP],
 - OPA components will be subjected to formal verification [WIP].

- SaaS (Software as a service) is a new model of software deployment that is gaining popularity.
- OPA (One-Pot Application) is a new unified technology for developing rich web applications.
 The language has built-in: persistency, parsing capabilities,
 - client-code generation capabilities, concurrency, ...
- Safety is a distinguished feature of OPA:
 - OPA features a number of static checks for its applications,
 - OPA has a verification platform build on top of it [WIP],
 - OPA components will be subjected to formal verification [WIP].

- SaaS (Software as a service) is a new model of software deployment that is gaining popularity.
- OPA (One-Pot Application) is a new unified technology for developing rich web applications.
 - The language has built-in: persistency, parsing capabilities, client-code generation capabilities, concurrency, . . .
- Safety is a distinguished feature of OPA:
 - OPA features a number of static checks for its applications,
 - OPA has a verification platform build on top of it [WIP],
 - OPA components will be subjected to formal verification [WIP].

- SaaS (Software as a service) is a new model of software deployment that is gaining popularity.
- OPA (One-Pot Application) is a new unified technology for developing rich web applications.
 - The language has built-in: persistency, parsing capabilities, client-code generation capabilities, concurrency, ...
- Safety is a distinguished feature of OPA:
 - OPA features a number of static checks for its applications,
 - OPA has a verification platform build on top of it [WIP],
 - OPA components will be subjected to formal verification [WIP].

- SaaS (Software as a service) is a new model of software deployment that is gaining popularity.
- OPA (One-Pot Application) is a new unified technology for developing rich web applications.
 - The language has built-in: persistency, parsing capabilities, client-code generation capabilities, concurrency, ...
- Safety is a distinguished feature of OPA:
 - OPA features a number of static checks for its applications,
 - OPA has a verification platform build on top of it [WIP],
 - OPA components will be subjected to formal verification [WIP].

Objective

- Parsing is a well-known and well-studied topic.
- Typical approach to parsing is by means of parser generators:

• ... can we use formal mehods to verify some properties of generated

Objective

- Parsing is a well-known and well-studied topic.
- Typical approach to parsing is by means of parser generators:

• ... can we use formal mehods to verify some properties of generated parsers?

Objective

- Parsing is a well-known and well-studied topic.
- Typical approach to parsing is by means of parser generators:

• ... can we use formal mehods to verify some properties of generated parsers?

Main reference

Bryan Ford
Parsing expression grammars: a recognition-based syntactic foundation

POPL '04

Definition

Parsing expressions over non-terminals \mathcal{V}_N and terminals \mathcal{V}_T :

```
\Delta :=
                                            empty expression
                                                any character
                                          a terminal symbol (a \in \mathcal{V}_T)
         ["s"]
                                                       a literal (s \in S)
         [a-z]
                                                       a range (a, z \in \mathcal{V}_T)
                                              a non-terminal (A \in \mathcal{V}_N)
                                                   a sequence (e_1, e_2 \in \Delta)
         e_1; e_2
        e_1/e_2
                                         a prioritized choice (e_1, e_2 \in \Delta)
                         a zero-or-more greedy repetition (e \in \Delta)
         e*
                          a one-or-more greedy repetition (e \in \Delta)
         e+
         e?
                                     an optional expression
                                                                   (e \in \Delta)
                                              a not-predicate (e \in \Delta)
         !е
         &е
                                            an and-predicate (e \in \Delta)
```

Definition

Parsing expressions over non-terminals \mathcal{V}_N and terminals \mathcal{V}_T :

```
\Delta :=
                                           empty expression
                                                any character
                                          a terminal symbol (a \in \mathcal{V}_T)
        ["s"] := [s_1]; \ldots; [s_n]
                                                       a literal (s \in S)
        [a-z] := [a] / \dots / [z]
                                                       a range (a, z \in \mathcal{V}_T)
                                              a non-terminal (A \in \mathcal{V}_N)
                                                   a sequence (e_1, e_2 \in \Delta)
         e_1; e_2
                                         a prioritized choice (e_1, e_2 \in \Delta)
         e_1/e_2
                         a zero-or-more greedy repetition (e \in \Delta)
         e*
                          a one-or-more greedy repetition (e \in \Delta)
         e+ := e; e*
         e? := e/\epsilon
                                     an optional expression
                                                                   (e \in \Delta)
                                              a not-predicate (e \in \Delta)
         !е
         \&e := !!e
                                            an and-predicate (e \in \Delta)
```

Definition

Parsing expressions over non-terminals \mathcal{V}_N and terminals \mathcal{V}_T :

```
\Delta :=
                                           empty expression
                                                any character
                                          a terminal symbol (a \in \mathcal{V}_T)
        ["s"] := [s_1]; \ldots; [s_n]
                                                      a literal (s \in S)
        [a-z] := [a] / \dots / [z]
                                                       a range (a, z \in \mathcal{V}_T)
                                              a non-terminal (A \in \mathcal{V}_N)
                                                   a sequence (e_1, e_2 \in \Delta)
        e_1; e_2
                                         a prioritized choice (e_1, e_2 \in \Delta)
        e_1/e_2
                         a zero-or-more greedy repetition (e \in \Delta)
        e*
        e+:=e; e* a one-or-more greedy repetition (e \in \Delta)
        e? := e/\epsilon
                                     an optional expression (e \in \Delta)
                                              a not-predicate (e \in \Delta)
        !е
        \&e := !!e
                                            an and-predicate (e \in \Delta)
```

PEG example

Example

A very simple PEG for mathematical expressions:

Example

How about making addition left-associative?

$$\mathtt{expr} := \mathtt{expr} \ [+] \ \mathtt{factor} \ / \ \mathtt{factor}$$

... but that makes the grammar *left-recursive*, leading to a *non-terminating* parser.

PEG example

Example

A very simple PEG for mathematical expressions:

Example

How about making addition left-associative?

$$expr := expr [+] factor / factor$$

... but that makes the grammar *left-recursive*, leading to a *non-terminating* parser.

PEG example

Example

A very simple PEG for mathematical expressions:

Example

How about making addition left-associative?

$$expr := expr [+] factor / factor$$

... but that makes the grammar *left-recursive*, leading to a *non-terminating* parser.

Examples ctd.

Example (Reserved words)

A PEG grammar for recognizing identifiers that are not reserved words:

Example ("Dangling" else)

Consider the following part of a CFG for the C language:

According to this grammar there are two possible readings of a statement

if
$$(e_1)$$
 if (e_2) s_1 else s_2

This ambiguity is easy to resolve using PEGs.

Examples ctd.

Example (Reserved words)

A PEG grammar for recognizing identifiers that are not reserved words:

Example ("Dangling" else)

Consider the following part of a CFG for the C language:

```
\begin{array}{rll} \mathtt{stmt} \; := \; & \mathtt{IF} \; \left( \; \mathsf{expr} \; \right) \; \mathtt{stmt} \\ & \mid \; \mathtt{IF} \; \left( \; \mathsf{expr} \; \right) \; \mathtt{stmt} \; \; \mathtt{ELSE} \; \; \mathtt{stmt} \\ & \mid \; \dots \end{array}
```

According to this grammar there are two possible readings of a statement

if
$$(e_1)$$
 if (e_2) s_1 else s_2

This ambiguity is easy to resolve using PEGs.

Formal definition of PEGs

Definition (PEG)

A parsing expressions grammar (PEG), \mathcal{G} , is a quadruple $(\mathcal{V}_N, \mathcal{V}_T, \mathsf{P}_{\mathsf{exp}}, e_s)$, where:

- ullet $\mathcal{V}_{\mathcal{T}}$ is a finite set of terminals,
- ullet \mathcal{V}_N is a finite set of non-terminals of the grammar,
- P_{exp} is the interpretation of the productions of the grammar, *i.e.*, $P_{exp}: \mathcal{V}_N \to \Delta$ and
- ullet e_s is the start production of the grammar, $e_s \in \mathcal{V}_N$.

Definition

Semantics of PEGs

- $(e, s) \stackrel{m}{\leadsto} \bot$: expression *e* fails on input string *s*.
- $(e,s) \stackrel{m}{\leadsto} \sqrt{s}$: expression e succeeds on s, leaving s' to be parsed.

Formal definition of PEGs

Definition (PEG)

A parsing expressions grammar (PEG), \mathcal{G} , is a quadruple $(\mathcal{V}_N, \mathcal{V}_T, \mathsf{P}_{\mathsf{exp}}, e_s)$, where:

- ullet $\mathcal{V}_{\mathcal{T}}$ is a finite set of terminals,
- ullet \mathcal{V}_N is a finite set of non-terminals of the grammar,
- P_{exp} is the interpretation of the productions of the grammar, *i.e.*, $P_{exp}: \mathcal{V}_N \to \Delta$ and
- e_s is the start production of the grammar, $e_s \in \mathcal{V}_N$.

Definition

Semantics of PEGs:

- $(e, s) \stackrel{m}{\leadsto} \bot$: expression e fails on input string s.
- $(e,s) \stackrel{m}{\leadsto} \sqrt{s}$: expression e succeeds on s, leaving s' to be parsed.

Definition (PEGs semantics, (1/2))

$$\frac{(\epsilon, s) \stackrel{1}{\leadsto} \sqrt{s}}{(\epsilon, s) \stackrel{1}{\leadsto} \sqrt{s}} \qquad \frac{(\mathsf{P}_{\mathsf{exp}}(p), s) \stackrel{m}{\leadsto} r}{(p, s) \stackrel{m+1}{\leadsto} r}$$

$$\frac{([\cdot], x :: xs) \stackrel{1}{\leadsto} \sqrt{s}}{(x, x :: xs) \stackrel{1}{\leadsto} \sqrt{s}} \qquad \overline{([\cdot], []) \stackrel{1}{\leadsto} \bot}$$

$$\frac{x \neq y}{(y, x :: xs) \stackrel{1}{\leadsto} \bot}$$

Definition (PEGs semantics, (1/2))

$$\frac{(\epsilon, s) \stackrel{1}{\leadsto} \sqrt{s}}{(\epsilon, s) \stackrel{1}{\leadsto} \sqrt{s}} \qquad \frac{(\mathsf{P}_{\mathsf{exp}}(p), s) \stackrel{m}{\leadsto} r}{(p, s) \stackrel{m+1}{\leadsto} r}$$

$$\frac{([\cdot], x :: xs) \stackrel{1}{\leadsto} \sqrt{s}}{(x, x :: xs) \stackrel{1}{\leadsto} \sqrt{s}} \qquad \overline{([\cdot], []) \stackrel{1}{\leadsto} \bot}$$

$$\frac{x \neq y}{(y, x :: xs) \stackrel{1}{\leadsto} \bot}$$

Definition (PEGs semantics, (1/2))

$$\frac{(\epsilon, s) \stackrel{1}{\leadsto} \sqrt{s}}{(\epsilon, s) \stackrel{1}{\leadsto} \sqrt{s}} \qquad \frac{(\mathsf{P}_{\mathsf{exp}}(p), s) \stackrel{m}{\leadsto} r}{(p, s) \stackrel{m+1}{\leadsto} r}$$

$$\frac{([\cdot], x :: xs) \stackrel{1}{\leadsto} \sqrt{s}}{(x, x :: xs) \stackrel{1}{\leadsto} \sqrt{s}} \qquad \overline{([\cdot], []) \stackrel{1}{\leadsto} \bot}$$

$$\frac{x \neq y}{(y, x :: xs) \stackrel{1}{\leadsto} \bot}$$

Definition (PEGs semantics (2/2))

$$\frac{(e_1,s)\overset{m}{\leadsto}\bot}{(e_1;e_2,s)\overset{m+1}{\leadsto}\bot}$$

$$\frac{(e_1,s)\overset{m}{\leadsto}\sqrt_{s'}}{(e_1/e_2,s)\overset{m+1}{\leadsto}\sqrt_{s'}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt_{s'}}{(e^*,s)\overset{m}{\leadsto}\sqrt_{s''}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\bot}{(!e,s)\overset{m+1}{\leadsto}\sqrt_{s}}$$

$$\frac{\left(e_{1},s\right)\overset{\scriptscriptstyle{m}}{\leadsto}\sqrt{_{s'}}\qquad\left(e_{2},s'\right)\overset{\scriptscriptstyle{n}}{\leadsto}r}{\left(e_{1};e_{2},s\right)\overset{\scriptscriptstyle{m+n+1}}{\leadsto}r}$$

$$\frac{\left(e_{1},s\right)\overset{\tiny{m}}{\leadsto}\bot\quad\left(e_{2},s\right)\overset{\tiny{n}}{\leadsto}r}{\left(e_{1}/e_{2},s\right)\overset{\tiny{m+n+1}}{\leadsto}r}$$

$$\frac{(e,s) \stackrel{m}{\leadsto} \bot}{(e*,s) \stackrel{m+1}{\leadsto} \sqrt{s}}$$

$$\frac{(e,s) \stackrel{m}{\leadsto} \sqrt{s'}}{(!e,s) \stackrel{m+1}{\leadsto} \bot}$$

Definition (PEGs semantics (2/2))

$$\frac{(e_1,s)\overset{\longrightarrow}{\sim}\bot}{(e_1;e_2,s)\overset{m+1}{\sim}\bot}$$

$$\frac{(e_1,s)\overset{\longrightarrow}{\sim}\sqrt_{s'}}{(e_1/e_2,s)\overset{m+1}{\sim}\sqrt_{s'}}$$

$$\frac{(e,s)\overset{\longrightarrow}{\sim}\sqrt_{s'}}{(e^*,s)\overset{m+1}{\sim}\sqrt_{s''}}$$

$$\frac{(e,s)\overset{m}{\sim}\bot}{(!e,s)\overset{m+1}{\sim}\sqrt_{s}}$$

$$\frac{(e_1,s)\stackrel{m}{\leadsto}\sqrt_{s'}\qquad (e_2,s')\stackrel{n}{\leadsto}r}{(e_1;e_2,s)\stackrel{m+n+1}{\leadsto}r}$$

$$\frac{(e_1,s)\stackrel{m}{\leadsto}\bot \qquad (e_2,s)\stackrel{n}{\leadsto}r}{(e_1/e_2,s)\stackrel{m+n+1}{\leadsto}r}$$

$$\frac{(e,s) \stackrel{m}{\leadsto} \bot}{(e*,s) \stackrel{m+1}{\leadsto} \sqrt{s}}$$

$$\frac{(e,s) \stackrel{m}{\leadsto} \sqrt{s'}}{(!e,s) \stackrel{m+1}{\leadsto} \bot}$$

Definition (PEGs semantics (2/2))

$$\frac{(e_1,s)\overset{m}{\leadsto}\bot}{(e_1;e_2,s)\overset{m+1}{\leadsto}\bot}$$

$$\frac{(e_1,s)\overset{m}{\leadsto}\sqrt{s'}}{(e_1/e_2,s)\overset{m+1}{\leadsto}\sqrt{s'}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{s'}}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{s''}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\bot}{(!e,s)\overset{m+1}{\leadsto}\sqrt{s}}$$

$$\frac{\left(e_{1},s\right)\overset{^{m}}{\leadsto}\sqrt{_{s'}}\quad\left(e_{2},s'\right)\overset{^{n}}{\leadsto}r}{\left(e_{1};e_{2},s\right)\overset{^{m+n+1}}{\leadsto}r}$$

$$\frac{(e_1,s)\stackrel{\scriptscriptstyle{m}}{\leadsto}\bot \qquad (e_2,s)\stackrel{\scriptscriptstyle{n}}{\leadsto}r}{(e_1/e_2,s)\stackrel{\scriptscriptstyle{m+n+1}}{\leadsto}r}$$

$$\frac{(e,s) \stackrel{\scriptscriptstyle{m}}{\leadsto} \bot}{(e*,s) \stackrel{\scriptscriptstyle{m+1}}{\leadsto} \sqrt{s}}$$

$$\frac{(e,s) \stackrel{m}{\leadsto} \sqrt{s'}}{(!e,s) \stackrel{m+1}{\leadsto} \bot}$$

11 / 34

PEGs in a nutshell

Expressiveness:

- √ PEGs are unambiguous,
- √ PEGs can handle lexical analysis.
- √ PEGs support backtracking and unlimited lookahead
- X ... but cannot easily handle left-recursion.
- \checkmark PEGs can parse all LL(k) and LR(k) languages... and more (including non-context-free grammars).
- Implementation:
 - √ Allow very easy implementation by means of a recursive descent parse
 - X Simple implementation can result in exponential time for parsing
 - √ Using memoization ensures linear time complexity (packrat parsing).
 - X ... but is expensive in terms of memory consumption

PEGs in a nutshell

Expressiveness:

- √ PEGs are unambiguous,
- √ PEGs can handle lexical analysis.
- ✓ PEGs support backtracking and unlimited lookahead
- X ... but cannot easily handle left-recursion.
- \checkmark PEGs can parse all LL(k) and LR(k) languages... and more (including non-context-free grammars).

• Implementation:

- $\checkmark\,$ Allow very easy implementation by means of a recursive descent parser.
- X Simple implementation can result in *exponential time* for parsing.
- ✓ Using memoization ensures *linear time* complexity (packrat parsing),
- X ... but is expensive in terms of memory consumption.

Semantic Actions

So far we can recognize whether a string belongs to the language defined by \mathcal{G} .

We need to be able to get a parse trace (AST).

For that we extend the type of parsing expressions Δ to a family of types Δ_{α} , where the index α is a type of the semantic value associated with the expression.

We also compositionally define default semantic values for all types of expressions.

And we introduce a new construct: coercion, $e[\mapsto]f$, which converts a semantic value v associated with e to f(v).

Semantic Actions

So far we can recognize whether a string belongs to the language defined by \mathcal{G} .

We need to be able to get a parse trace (AST).

For that we extend the type of parsing expressions Δ to a family of types Δ_{α} , where the index α is a type of the semantic value associated with the expression.

We also compositionally define default semantic values for all types of expressions.

And we introduce a new construct: coercion, $e[\mapsto]f$, which converts a semantic value v associated with e to f(v).

Semantic Actions

So far we can recognize whether a string belongs to the language defined by \mathcal{G} .

We need to be able to get a parse trace (AST).

For that we extend the type of parsing expressions Δ to a family of types Δ_{α} , where the index α is a type of the semantic value associated with the expression.

We also compositionally define default semantic values for all types of expressions.

And we introduce a new construct: coercion, $e[\mapsto]f$, which converts a semantic value v associated with e to f(v).

Semantic Actions

So far we can recognize whether a string belongs to the language defined by \mathcal{G} .

We need to be able to get a parse trace (AST).

For that we extend the type of parsing expressions Δ to a family of types Δ_{α} , where the index α is a type of the semantic value associated with the expression.

We also compositionally define default semantic values for all types of expressions.

And we introduce a new construct: coercion, $e[\mapsto]f$, which converts a semantic value v associated with e to f(v).

Semantic Actions

So far we can recognize whether a string belongs to the language defined by \mathcal{G} .

We need to be able to get a parse trace (AST).

For that we extend the type of parsing expressions Δ to a family of types Δ_{α} , where the index α is a type of the semantic value associated with the expression.

We also compositionally define default semantic values for all types of expressions.

And we introduce a new construct: coercion, $e[\mapsto]f$, which converts a semantic value v associated with e to f(v).

Derived operators

Example

The typed versions of our derived operators become:

$$\begin{array}{lll} [\textbf{a-z}] : \Delta_{\mathrm{char}} & := & [\textbf{a}] \ / \ \dots \ / \ [\textbf{z}] \\ ["s"] : \Delta_{\mathrm{string}} & := & [s_0]; \dots; [s_n] \ [\mapsto] \ \text{tuple2str} \\ e + : \Delta_{\mathrm{list}\,\alpha} & := & e; e * & [\mapsto] \ \lambda x . x_1 :: x_2 \\ e? : \Delta_{\mathrm{option}\,\alpha} & := & e \ [\mapsto] \ \lambda x . \operatorname{Some} x \\ & / \ \epsilon \ [\mapsto] \ \lambda x . \operatorname{None} \\ \& e : \Delta_{\mathrm{True}} & := & !!e \\ \end{array}$$

where tuple2str $(c_1, \ldots, c_n) = [c_1; \ldots; c_n]$.

15 / 34

Example ctd.

Example (Simple mathematical expressions ctd.)

We often want to ignore the semantical values attached to an expression: $e[\sharp] := e \ [\mapsto] \ \lambda x \cdot I$.

$$\Rightarrow$$
 ["(1+2) * (3 * 4)"] = 36

Example ctd.

Example (Simple mathematical expressions ctd.)

We often want to ignore the semantical values attached to an expression: $e[\sharp] := e \ [\mapsto] \ \lambda x . I.$

$$\Rightarrow$$
 ["(1+2) * (3 * 4)"] = 36

XPEGs

Definition (Extended Parsing Expressions Grammar (XPEG))

An extended parsing expressions grammar (XPEG), \mathcal{G} , is a tuple $(\mathcal{V}_N, \mathcal{V}_T, \mathsf{P}_{\mathsf{type}}, \mathsf{P}_{\mathsf{exp}}, \mathit{v}_{\mathsf{start}})$, where:

- $\mathcal{V}_{\mathcal{T}}$ is a finite set of terminals,
- \mathcal{V}_N is a finite set of non-terminals of the grammar,
- $P_{type}: \mathcal{V}_N \to Type$ is a function that gives types of semantic values of all productions.
- P_{exp} is the interpretation of the productions of the grammar, i.e., $P_{exp}: \forall_{p:\mathcal{V}_N} \Delta_{P_{type}(p)}$ and
- v_{start} is the start production of the grammar, $v_{\text{start}} \in \mathcal{V}_N$.

17 / 34

$$\frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{2}, e_{3}) \stackrel{\longrightarrow}{\sim} \sqrt{s}}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{2}, e_{3})}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{2}, e_{3})}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{2}, e_{3})}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{3}, e_{3})}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{3}, e_{3})}{(e_{1}; e_{2}, e_{3})} \frac{(e_{1}, e_{3}, e_{3})}{(e_{1}; e_{3}, e_{3})} \frac{(e_{1}, e_{3}, e_{3})}{(e_{1}; e_{3}, e_{3})} \frac{(e_{1}, e_{3}, e_$$

$$\frac{(e_{1}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}} \frac{(e_{1}, e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}} \frac{(e_{1}, e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}} \frac{(e_{1}, e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}} \frac{(e_{1}, e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}} \frac{(e_{1}, e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}} \frac{(e_{1}, e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}} \frac{(e_{1}, e_{2}, s) \stackrel{\longrightarrow}{\leadsto} \sqrt{s}}{(e_{1}; e_{2}, s)} \frac{(e_{1}, e_{2}, s)}{(e_{1}, e_{2}, s)} \frac{(e_{1}, e_{2}, e_{2}, s)}{(e_{1}, e_{2}, s)} \frac{(e_{1}, e_{2}, e_{2}, s)}{(e_{1}, e_{2}, e_{2}, s)} \frac{(e_{1}, e_{2}, e_{2}, e_{2}, s)}{(e_{1}, e_{2}, e_{2}, s)} \frac{(e_{1}, e_{2}, e_{2}, e_{2}, s)}{(e_{1}, e_{2}, e_{2}$$

$$\frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \perp \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}}{(e_{1}; e_{2}, s)} \stackrel{m}{\sim} \sqrt{s}} \qquad \frac{(e_{1}, e_{2}, s) \stackrel{m}{\sim} \sqrt{s}} \sim \frac{(e_{1}, e_{2}, s)}{(e_{1}, e_{2}, e_{2},$$

$$\frac{(e_{1},s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(e_{1}/e_{2},s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s'}}} \qquad \frac{(e_{1},s)\overset{m}{\leadsto}\bot \qquad (e_{2},s)\overset{n}{\leadsto}r}{(e_{1}/e_{2},s)\overset{m+n+1}{\leadsto}r}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}} \qquad (e*,s')\overset{n}{\leadsto}\sqrt{\overset{vs}{s''}}}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{\overset{v::vs}{s''}}} \qquad \frac{(e,s)\overset{m}{\leadsto}\bot}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{\overset{v}{s}'}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\bot}{\overset{m+1}{\leadsto}\sqrt{\overset{v}{s'}}} \qquad \frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s}}}{(e*,s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s}'}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\bot}{\overset{m+1}{\leadsto}\sqrt{\overset{v}{s}'}} \qquad \frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\bot}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\bot}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{\overset{v}{\leadsto}\sqrt{\overset{v}{s'}}}$$

$$\frac{(e_{1},s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(e_{1}/e_{2},s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s'}}} \qquad \frac{(e_{1},s)\overset{m}{\leadsto}\bot \qquad (e_{2},s)\overset{n}{\leadsto}r}{(e_{1}/e_{2},s)\overset{m+n+1}{\leadsto}r}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}} \qquad (e*,s')\overset{n}{\leadsto}\sqrt{\overset{vs}{s''}}}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{\overset{v}{s''}}} \qquad \frac{(e,s)\overset{m}{\leadsto}\bot}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{\overset{v}{s}'}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\bot}{\overset{m+1}{\leadsto}\sqrt{\overset{v}{s}'}} \qquad \frac{(e,s)\overset{m}{\leadsto}\bot}{\overset{m+1}{\leadsto}\sqrt{\overset{v}{s}'}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\bot}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s'}}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s'}}}$$

$$\frac{(e_{1},s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(e_{1}/e_{2},s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s'}}} \qquad \frac{(e_{1},s)\overset{m}{\leadsto}\bot \qquad (e_{2},s)\overset{n}{\leadsto}r}{(e_{1}/e_{2},s)\overset{m+n+1}{\leadsto}r}}{(e_{1}/e_{2},s)\overset{m+n+1}{\leadsto}r}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}} \qquad (e*,s')\overset{n}{\leadsto}\sqrt{\overset{vs}{s''}}}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{\overset{v}{s''}}} \qquad \frac{(e,s)\overset{m}{\leadsto}\bot}{(e*,s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s}'}}}{(e*,s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s}'}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\bot}{(e,s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s}'}}} \qquad \frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\bot}}{(!e,s)\overset{m+1}{\leadsto}\bot}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\overset{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\bot}}{(!e,s)\overset{m+1}{\leadsto}\sqrt{\overset{v}{s'}}}}$$

$$\frac{(e_{1},s)\overset{m}{\leadsto}\sqrt{\frac{v}{s'}}}{(e_{1}/e_{2},s)\overset{m+1}{\leadsto}\sqrt{\frac{v}{s'}}} \qquad \frac{(e_{1},s)\overset{m}{\leadsto}\bot \qquad (e_{2},s)\overset{n}{\leadsto}r}{(e_{1}/e_{2},s)\overset{m+n+1}{\leadsto}r}}{(e_{1}/e_{2},s)\overset{m+n+1}{\leadsto}r}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\frac{v}{s'}} \qquad (e*,s')\overset{n}{\leadsto}\sqrt{\frac{vs}{s''}}}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{\frac{v}{s''}}} \qquad \frac{(e,s)\overset{m}{\leadsto}\bot}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{\frac{1}{s}}}}{(e*,s)\overset{m+n+1}{\leadsto}\sqrt{\frac{1}{s}}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\bot}{(e,s)\overset{m+1}{\leadsto}\sqrt{\frac{1}{s'}}} \qquad \frac{(e,s)\overset{m}{\leadsto}\sqrt{\frac{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\bot}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\frac{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\sqrt{\frac{1}{s'}}}}$$

$$\frac{(e,s)\overset{m}{\leadsto}\sqrt{\frac{v}{s'}}}{(!e,s)\overset{m+1}{\leadsto}\sqrt{\frac{1}{s'}}}}$$

Some meta-properties of XPEGs

Lemma

If $(e,s) \leadsto \sqrt{\frac{v}{s}}$ then $(e*,s) \not\leadsto r$ for all r.

Theorem

If
$$(e,s) \stackrel{m}{\leadsto} \sqrt{\stackrel{s'}{v}}$$
 then s' is a suffix of s .

Theorem (unambiguity)

If
$$(e,s) \stackrel{m_1}{\leadsto} r_1$$
 and $(e,s) \stackrel{m_2}{\leadsto} r_2$ then $m_1 = m_2$ and $r_1 = r_2$

Some meta-properties of XPEGs

Lemma

If $(e,s) \rightsquigarrow \sqrt{\frac{v}{s}}$ then $(e*,s) \not\rightsquigarrow r$ for all r.

Theorem

If $(e,s) \stackrel{m}{\leadsto} \sqrt{\stackrel{s'}{v}}$ then s' is a suffix of s.

Theorem (unambiguity)

If $(e,s) \stackrel{m_1}{\leadsto} r_1$ and $(e,s) \stackrel{m_2}{\leadsto} r_2$ then $m_1 = m_2$ and $r_1 = r_2$.

Some meta-properties of XPEGs

Lemma

If $(e,s) \rightsquigarrow \sqrt{\frac{v}{s}}$ then $(e*,s) \not \rightsquigarrow r$ for all r.

Theorem

If $(e,s) \stackrel{m}{\leadsto} \sqrt{\stackrel{s'}{v}}$ then s' is a suffix of s.

Theorem (unambiguity)

If $(e,s) \stackrel{m_1}{\leadsto} r_1$ and $(e,s) \stackrel{m_2}{\leadsto} r_2$ then $m_1 = m_2$ and $r_1 = r_2$.

- lacksquare termination of all semantic actions in ${\cal G}$ and
- @ completness of $\mathcal G$ with respect to PEGs semantics.
- with Coq we get that for free.
- in general: undecidable but conservative analysis is sufficient in practice (essentially: complete)

- lacktriangledown termination of all semantic actions in $\mathcal G$ and
- $oldsymbol{\circ}$ completness of $\mathcal G$ with respect to PEGs semantics.
- with Coq we get that for free.
- in general: undecidable but conservative analysis is sufficient in practice (essentially: complete)

Ensuring termination of a PEG parser essentially essentially comes down to two problems:

- f 0 termination of all semantic actions in ${\cal G}$ and
- $oldsymbol{0}$ completness of ${\cal G}$ with respect to PEGs semantics.

Example

Remember:

$$expr := expr [+] factor / factor.$$

But also:

$$A := B / C ! D A$$

if B may fail and C and D may succeed, the former without consuming any input ... and it can get even worse with mutual recursion.

- 1 with Coq we get that for free.
- in general: undecidable

Ensuring termination of a PEG parser essentially essentially comes down to two problems:

- f 0 termination of all semantic actions in ${\cal G}$ and
- $oldsymbol{\circ}$ completness of ${\mathcal G}$ with respect to PEGs semantics.

Example

Remember:

$$expr := expr [+] factor / factor.$$

But also:

$$A := B / C ! D A$$

if B may fail and C and D may succeed, the former without consuming any input ... and it can get even worse with mutual recursion.

- with Coq we get that for free.
- 2 in general: undecidable

Ensuring termination of a PEG parser essentially essentially comes down to two problems:

- f 0 termination of all semantic actions in ${\cal G}$ and
- $oldsymbol{\circ}$ completness of ${\mathcal G}$ with respect to PEGs semantics.

Example

Remember:

$$expr := expr [+] factor / factor.$$

But also:

$$A := B / C ! D A$$

if B may fail and C and D may succeed, the former without consuming any input ... and it can get even worse with mutual recursion.

- 1 with Coq we get that for free.
- 2 in general: undecidable

- lacktriangledown termination of all semantic actions in $\mathcal G$ and
- $oldsymbol{2}$ completness of $\mathcal G$ with respect to PEGs semantics.
- with Coq we get that for free.
- in general: undecidable but conservative analysis is sufficient in practice (essentially: complete)

- $oldsymbol{0}$ termination of all semantic actions in ${\cal G}$ and
- $oldsymbol{\circ}$ completness of $\mathcal G$ with respect to PEGs semantics.
- with Coq we get that for free.
- 2 in general: undecidable
 - but conservative analysis is sufficient in practice (essentially: complete)

- lacktriangledown termination of all semantic actions in ${\cal G}$ and
- $oldsymbol{2}$ completness of $\mathcal G$ with respect to PEGs semantics.
- with Coq we get that for free.
- in general: undecidable but conservative analysis is sufficient in practice (essentially: complete)

PEG analysis

We define three groups of properties over parsing expressions:

- "0": parsing expression can succeed without consuming any input,
- \bullet "> 0": parsing expression can succeed after consuming some input,
- "\pm": parsing expression can fail.

 $e \in \mathbb{P}_0$ means that expression e has property "0"

 $e \in \mathbb{F}_{\geq 0} := e \in \mathbb{F}_0 \lor e \in \mathbb{F}_{\geq 0}.$

For arbitrary $e \in \Lambda$ and $s \in S$

MLstate

PEG analysis

We define three groups of properties over parsing expressions:

- "0": parsing expression can succeed without consuming any input,
- \bullet "> 0": parsing expression can succeed after consuming some input,
- "_": parsing expression can fail.
- $e \in \mathbb{P}_0$ means that expression e has property "0".
- $e \in \mathbb{P}_{\geq 0} := e \in \mathbb{P}_0 \lor e \in \mathbb{P}_{> 0}.$

Theorem

For arbitrary $e \in \Delta$ and $s \in S$:

- ullet if $(e,s) \leadsto \sqrt{rac{v}{s}}$ then $e \in \mathbb{P}_0$,
- ullet if $(e,s) \leadsto \sqrt{rac{s}{s'}}$ and |s'| < |s| then $e \in \mathbb{P}_{>0}$ and
 - ullet if $(e,s)\leadsto ot$ then $e\in \mathbb{P}_{ot}$.

PEG analysis

We define three groups of properties over parsing expressions:

- "0": parsing expression can succeed without consuming any input,
- "> 0": parsing expression can succeed after consuming some input,
- "⊥": parsing expression can fail.
- $e \in \mathbb{P}_0$ means that expression e has property "0".
- $e \in \mathbb{P}_{>0} := e \in \mathbb{P}_0 \lor e \in \mathbb{P}_{>0}.$

Theorem

For arbitrary $e \in \Delta$ and $s \in S$:

- if $(e, s) \rightsquigarrow \sqrt{\frac{v}{s}}$ then $e \in \mathbb{P}_0$,
- if $(e,s) \rightsquigarrow \sqrt{\frac{v}{s'}}$ and |s'| < |s| then $e \in \mathbb{P}_{>0}$ and
- if $(e, s) \rightsquigarrow \bot$ then $e \in \mathbb{P}_{\bot}$.

$$\begin{array}{ll} \overline{\epsilon \in \mathbb{P}_{0}} & \overline{\left[\cdot \right] \in \mathbb{P}_{>0}} & \overline{\left[\cdot \right] \in \mathbb{P}_{\perp}} & \overline{\left[a \right] \in \mathbb{P}_{>0}} & \overline{\left[a \right] \in \mathbb{P}_{>0}} \\ \overline{\left[a \right] \in \mathbb{P}_{>0}} & \overline{\left[\cdot \right] \in \mathbb{P}_{\perp}} & \overline{\left[a \right] \in \mathbb{P}_{>0}} & \overline{\left[a \right] \in \mathbb{P}_{\perp}} \\ \overline{e \in \mathbb{P}_{\perp}} & \overline{e \in \mathbb{P}_{>0}} & \overline{e \in \mathbb{P}_{\perp}} & \overline{e \in \mathbb{P}_{\geq 0}} \\ \overline{e \in \mathbb{P}_{\perp}} & \overline{e \in \mathbb{P}_{\geq 0}} & \overline{e \in \mathbb{P}_{\perp}} \\ \hline \\ \underline{\star \in \left\{ 0, > 0, \bot \right\}} & A \in \mathcal{V}_{N} & P_{\exp}(A) \in \mathbb{P}_{\star} \\ \overline{A \in \mathbb{P}_{\star}} & \overline{A \in \mathbb{P}_{\star}} \\ \hline \\ \underline{e_1 \in \mathbb{P}_{\perp} \lor \left(e_1 \in \mathbb{P}_{\geq 0} \land e_2 \in \mathbb{P}_{\perp} \right)} \\ \overline{e_1; e_2 \in \mathbb{P}_{\perp}} & \underline{e_1 \in \mathbb{P}_{0}} & \underline{e_2 \in \mathbb{P}_{0}} \\ \hline \\ \underline{e_1; e_2 \in \mathbb{P}_{0}} & \underline{e_2 \in \mathbb{P}_{0}} \end{array}$$

$$\begin{array}{c} \overline{\epsilon \in \mathbb{P}_{0}} & \overline{[\cdot] \in \mathbb{P}_{>0}} & \overline{[\cdot] \in \mathbb{P}_{\perp}} & \overline{[a] \in \mathbb{P}_{>0}} & \overline{[a] \in \mathbb{P}_{\perp}} \\ \hline e \in \mathbb{P}_{\perp} & e \in \mathbb{P}_{>0} & e \in \mathbb{P}_{>0} & e \in \mathbb{P}_{\perp} \\ \hline e * \in \mathbb{P}_{0} & e * \in \mathbb{P}_{>0} & e \in \mathbb{P}_{\perp} & e \in \mathbb{P}_{\geq 0} \\ \hline & A \in \mathbb{P}_{\perp} & e \in \mathbb{P}_{\geq 0} & e \in \mathbb{P}_{\perp} \\ \hline & A \in \mathbb{P}_{\star} & e \in \mathbb{P}_{\perp} & e \in \mathbb{P}_{\perp} \\ \hline & e_{1} \in \mathbb{P}_{\perp} \lor (e_{1} \in \mathbb{P}_{\geq 0} \land e_{2} \in \mathbb{P}_{\perp}) \\ \hline & e_{1} ; e_{2} \in \mathbb{P}_{\perp} \\ \hline & e_{1} ; e_{2} \in \mathbb{P}_{0} \\ \hline & e_{1} ; e_{2} \in \mathbb{P}_{0} \\ \hline \end{array}$$

$$\frac{e \in \mathbb{P}_{0}}{\epsilon \in \mathbb{P}_{0}} \quad \frac{[\cdot] \in \mathbb{P}_{\bot}}{[\cdot] \in \mathbb{P}_{\bot}} \quad \frac{a \in \mathcal{V}_{T}}{[a] \in \mathbb{P}_{>0}} \quad \frac{a \in \mathcal{V}_{T}}{[a] \in \mathbb{P}_{\bot}}$$

$$\frac{e \in \mathbb{P}_{\bot}}{e^{*} \in \mathbb{P}_{0}} \quad \frac{e \in \mathbb{P}_{>0}}{e^{*} \in \mathbb{P}_{>0}} \quad \frac{e \in \mathbb{P}_{\bot}}{!e \in \mathbb{P}_{0}} \quad \frac{e \in \mathbb{P}_{\ge 0}}{!e \in \mathbb{P}_{\bot}}$$

$$\frac{\star \in \{0, > 0, \bot\}}{A \in \mathcal{V}_{N}} \quad P_{\exp}(A) \in \mathbb{P}_{\star}$$

$$\frac{A \in \mathbb{P}_{\star}}{A \in \mathbb{P}_{\star}}$$

$$e_{1} \in \mathbb{P}_{\bot} \lor (e_{1} \in \mathbb{P}_{\ge 0} \land e_{2} \in \mathbb{P}_{\bot})$$

$$e_{1}; e_{2} \in \mathbb{P}_{\bot}$$

$$e_{1} \in \mathbb{P}_{0} \quad e_{2} \in \mathbb{P}_{0}$$

$$e_{1}; e_{2} \in \mathbb{P}_{0}$$

$$\begin{split} \frac{\left(e_1 \in \mathbb{P}_{>0} \wedge e_2 \in \mathbb{P}_{\geq 0}\right) \vee \left(e_1 \in \mathbb{P}_{\geq 0} \wedge e_2 \in \mathbb{P}_{>0}\right)}{e_1; e_2 \in \mathbb{P}_{>0}} \\ & \frac{e_1 \in \mathbb{P}_{\perp} \quad e_2 \in \mathbb{P}_{\perp}}{e_1/e_2 \in \mathbb{P}_{\perp}} \\ & \star \in \{0, > 0\} \quad e_1 \in \mathbb{P}_{\star} \vee \left(e_1 \in \mathbb{P}_{\perp} \wedge e_2 \in \mathbb{P}_{\star}\right) \\ & \frac{e_1/e_2 \in \mathbb{P}_{\star}}{e_1/e_2 \in \mathbb{P}_{\star}} \end{split}$$

Definition (Expression set of G)

$$\mathsf{E}(\mathcal{G}) = \{e' \mid e' \sqsubseteq e, e \in \mathsf{P}_{\mathsf{exp}}(A), A \in \mathcal{V}_{N}\}$$

 \Rightarrow We compute those properties by iterating over $\mathsf{E}(\mathcal{G})$ from \emptyset until reaching a fixpoint.

4 ロ ト 4 昼 ト 4 夏 ト 夏 ・ 夕 Q で

$$\begin{split} \frac{\left(e_1 \in \mathbb{P}_{>0} \wedge e_2 \in \mathbb{P}_{\geq 0}\right) \vee \left(e_1 \in \mathbb{P}_{\geq 0} \wedge e_2 \in \mathbb{P}_{>0}\right)}{e_1; e_2 \in \mathbb{P}_{>0}} \\ \\ \frac{e_1 \in \mathbb{P}_{\perp} \quad e_2 \in \mathbb{P}_{\perp}}{e_1/e_2 \in \mathbb{P}_{\perp}} \\ \\ \frac{\star \in \{0, > 0\} \quad e_1 \in \mathbb{P}_{\star} \vee \left(e_1 \in \mathbb{P}_{\perp} \wedge e_2 \in \mathbb{P}_{\star}\right)}{e_1/e_2 \in \mathbb{P}_{\star}} \end{split}$$

Definition (Expression set of G)

$$\mathsf{E}(\mathcal{G}) = \{e' \mid e' \sqsubseteq e, e \in \mathsf{P}_{\mathsf{exp}}(A), A \in \mathcal{V}_N\}$$

 \Rightarrow We compute those properties by iterating over E(\mathcal{G}) from \emptyset until reaching a fixpoint.

$$\begin{split} \frac{\left(e_1 \in \mathbb{P}_{>0} \wedge e_2 \in \mathbb{P}_{\geq 0}\right) \vee \left(e_1 \in \mathbb{P}_{\geq 0} \wedge e_2 \in \mathbb{P}_{>0}\right)}{e_1; e_2 \in \mathbb{P}_{>0}} \\ \\ \frac{e_1 \in \mathbb{P}_{\perp} \quad e_2 \in \mathbb{P}_{\perp}}{e_1/e_2 \in \mathbb{P}_{\perp}} \\ \\ \star \in \{0, > 0\} \quad e_1 \in \mathbb{P}_{\star} \vee \left(e_1 \in \mathbb{P}_{\perp} \wedge e_2 \in \mathbb{P}_{\star}\right) \\ \\ \frac{e_1/e_2 \in \mathbb{P}_{\star}}{e_1/e_2 \in \mathbb{P}_{\star}} \end{split}$$

Definition (Expression set of \mathcal{G})

$$\mathsf{E}(\mathcal{G}) = \{e' \mid e' \sqsubseteq e, e \in \mathsf{P}_{\mathsf{exp}}(A), A \in \mathcal{V}_{\textit{N}}\}$$

ESOP 2010

$$\begin{split} \frac{\left(e_1 \in \mathbb{P}_{>0} \wedge e_2 \in \mathbb{P}_{\geq 0}\right) \vee \left(e_1 \in \mathbb{P}_{\geq 0} \wedge e_2 \in \mathbb{P}_{>0}\right)}{e_1; e_2 \in \mathbb{P}_{>0}} \\ \\ \frac{e_1 \in \mathbb{P}_{\perp} \qquad e_2 \in \mathbb{P}_{\perp}}{e_1/e_2 \in \mathbb{P}_{\perp}} \\ \\ \frac{\star \in \{0, > 0\} \qquad e_1 \in \mathbb{P}_{\star} \vee \left(e_1 \in \mathbb{P}_{\perp} \wedge e_2 \in \mathbb{P}_{\star}\right)}{e_1/e_2 \in \mathbb{P}_{\star}} \end{split}$$

Definition (Expression set of \mathcal{G})

$$\mathsf{E}(\mathcal{G}) = \{e' \mid e' \sqsubseteq e, e \in \mathsf{P}_{\mathsf{exp}}(A), A \in \mathcal{V}_{N}\}$$

 \Rightarrow We compute those properties by iterating over $E(\mathcal{G})$ from \emptyset until reaching a fixpoint.

$$\begin{array}{c} \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} \\ \hline \\ \underline{e_1/e_2 \in \mathsf{WF}} & \overline{\epsilon \in \mathsf{WF}} \\ \\ \underline{A \in \mathcal{V}_N} & \mathsf{P}_{\mathsf{exp}}(A) \in \mathsf{WF} \\ \hline \\ A \in \mathsf{WF} & \overline{[\cdot] \in \mathsf{WF}} \\ \\ \underline{e_1 \in \mathsf{WF}} & \underline{e_1 \in \mathbb{P}_0 \Rightarrow e_2 \in \mathsf{WF}} \\ \hline \\ \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} & \overline{[a] \in \mathsf{WF}} \\ \\ \underline{e \in \mathsf{WF}}, & \underline{e \notin \mathbb{P}_0} & \underline{e \in \mathsf{WF}} \\ \hline \\ \underline{e \in \mathsf{WF}} & \underline{e \in \mathsf{WF}} \\ \hline \end{array}$$

$$\begin{array}{c} \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} \\ \hline \\ \underline{e_1/e_2 \in \mathsf{WF}} & \overline{\epsilon \in \mathsf{WF}} \\ \\ \underline{A \in \mathcal{V}_N} & \mathsf{P}_{\mathsf{exp}}(A) \in \mathsf{WF} \\ \hline \\ A \in \mathsf{WF} & \overline{[\cdot] \in \mathsf{WF}} \\ \\ \underline{e_1 \in \mathsf{WF}} & \underline{e_1 \in \mathbb{P}_0 \Rightarrow e_2 \in \mathsf{WF}} \\ \hline \\ \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} & \underline{a \in \mathcal{V}_T} \\ \hline \\ \underline{e_1 \in \mathsf{WF}} & \underline{e \in \mathsf{WF}} & \underline{e \in \mathsf{WF}} \\ \\ \underline{e \in \mathsf{WF}}, & \underline{e \notin \mathbb{P}_0} & \underline{e \in \mathsf{WF}} \\ \hline \\ \underline{e \in \mathsf{WF}} & \underline{e \in \mathsf{WF}} \\ \hline \end{array}$$

25 / 34

$$\begin{array}{c} \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} \\ \hline e_1/e_2 \in \mathsf{WF} & \overline{e} \in \mathsf{WF} \\ \hline \underline{A \in \mathcal{V}_N} & \underline{\mathsf{P}_{\mathsf{exp}}(A) \in \mathsf{WF}} \\ \hline \underline{A \in \mathsf{WF}} & \overline{[\cdot] \in \mathsf{WF}} \\ \hline \underline{e_1 \in \mathsf{WF}} & \underline{e_1 \in \mathbb{P}_0 \Rightarrow e_2 \in \mathsf{WF}} & \underline{a \in \mathcal{V}_T} \\ \hline e_1; e_2 \in \mathsf{WF} & \overline{[a] \in \mathsf{WF}} \\ \hline \underline{e \in \mathsf{WF}}, & \underline{e \notin \mathbb{P}_0} & \underline{e \in \mathsf{WF}} \\ \hline \underline{e* \in \mathsf{WF}} & \overline{[e \in \mathsf{WF}]} \\ \hline \end{array}$$

$$\begin{array}{c} \underline{e_1 \in \mathsf{WF}} \qquad e_2 \in \mathsf{WF} \\ \hline \\ e_1/e_2 \in \mathsf{WF} \\ \hline \\ A \in \mathsf{V_N} \qquad \mathsf{P}_{\mathsf{exp}}(A) \in \mathsf{WF} \\ \hline \\ A \in \mathsf{WF} \\ \hline \\ e_1 \in \mathsf{WF} \qquad e_1 \in \mathbb{P}_0 \Rightarrow e_2 \in \mathsf{WF} \\ \hline \\ e_1; e_2 \in \mathsf{WF} \\ \hline \\ e \in \mathsf{WF}, \qquad e \notin \mathbb{P}_0 \\ \hline \\ e \in \mathsf{WF} \\ \hline \\ e \in \mathsf{WF} \\ \hline \end{array} \qquad \begin{array}{c} a \in \mathcal{V}_T \\ \hline [a] \in \mathsf{WF} \\ \hline \\ e \in \mathsf{WF} \\ \hline \\ e \in \mathsf{WF} \\ \hline \end{array}$$

$$\begin{array}{c} \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} \\ \hline e_1/e_2 \in \mathsf{WF} & \overline{\epsilon \in \mathsf{WF}} \\ \\ \underline{A \in \mathcal{V}_N} & \mathsf{P}_{\mathsf{exp}}(A) \in \mathsf{WF} \\ \hline A \in \mathsf{WF} & \overline{[\cdot] \in \mathsf{WF}} \\ \hline e_1 \in \mathsf{WF} & e_1 \in \mathbb{P}_0 \Rightarrow e_2 \in \mathsf{WF} \\ \hline e_1; e_2 \in \mathsf{WF} & \overline{[a] \in \mathsf{WF}} \\ \hline \underline{e \in \mathsf{WF}}, & \underline{e \notin \mathbb{P}_0} \\ \hline e_* \in \mathsf{WF} & \overline{[e \in \mathsf{WF}]} \\ \hline \end{array}$$

25 / 34

$$\begin{array}{c} \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} \\ \hline e_1/e_2 \in \mathsf{WF} & \overline{\epsilon \in \mathsf{WF}} \\ \\ \underline{A \in \mathcal{V}_N} & \mathsf{P}_{\mathsf{exp}}(A) \in \mathsf{WF} \\ \hline A \in \mathsf{WF} & \overline{[\cdot] \in \mathsf{WF}} \\ \hline e_1 \in \mathsf{WF} & \underline{e_1 \in \mathbb{P}_0 \Rightarrow e_2 \in \mathsf{WF}} \\ \hline e_1; e_2 \in \mathsf{WF} & \overline{[a] \in \mathsf{WF}} \\ \hline \underline{e \in \mathsf{WF}, \quad e \notin \mathbb{P}_0} & \underline{e \in \mathsf{WF}} \\ \hline e_* \in \mathsf{WF} & \overline{[e \in \mathsf{WF}]} \\ \hline \end{array}$$

25 / 34

$$\begin{array}{c} \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} \\ \hline \\ \underline{e_1/e_2 \in \mathsf{WF}} & \overline{\epsilon \in \mathsf{WF}} \\ \\ \underline{A \in \mathcal{V}_N} & \mathsf{P}_{\mathsf{exp}}(A) \in \mathsf{WF} \\ \hline \\ A \in \mathsf{WF} & \overline{[\cdot] \in \mathsf{WF}} \\ \\ \underline{e_1 \in \mathsf{WF}} & \underline{e_1 \in \mathbb{P}_0 \Rightarrow e_2 \in \mathsf{WF}} \\ \hline \\ \underline{e_1 \in \mathsf{WF}} & \underline{e_2 \in \mathsf{WF}} & \overline{[a] \in \mathsf{WF}} \\ \\ \underline{e \in \mathsf{WF}}, & \underline{e \notin \mathbb{P}_0} & \underline{e \in \mathsf{WF}} \\ \hline \\ \underline{e \in \mathsf{WF}} & \underline{e \in \mathsf{WF}} \\ \hline \end{array}$$

 \Rightarrow Again iteration from \emptyset until reaching a fixpoint

Well-formedness of (X)PEGs

Definition (WF)

We say that \mathcal{G} is well-formed if $E(\mathcal{G}) = WF$.

Theorem

If G is well-formed then it is complete.

Well-formedness of (X)PEGs

Definition (WF)

We say that \mathcal{G} is well-formed if $E(\mathcal{G}) = WF$.

Theorem

If G is well-formed then it is complete.

Expressing PEGs in Coa

```
Parameter prods: Enumeration.
Parameter\ prods\_type: prods \rightarrow Type.
Inductive PExp : Type \rightarrow Type :=
  Terminal: char \rightarrow PExp char
  NonTerminal: \forall p, PExp (prods_type p)
  Star: \forall A, PExp A \rightarrow PExp (list A)
  Choice : \forall A, PExp A \rightarrow PExp A \rightarrow PExp A
```


Expressing PEGs in Coq

Example

```
Parameter prods : Enumeration.

Parameter prods_type : prods \rightarrow Type.

Inductive PExp : Type \rightarrow Type :=

| Terminal : char \rightarrow PExp char

| NonTerminal : \forall p, PExp (prods_type p)

| Star : \forall A, PExp A \rightarrow PExp (list A)

| Choice : \forall A, PExp A \rightarrow PExp A \rightarrow PExp A
```

⇒ Every such PEG is well-defined and well-typed.

PEGs in Coq

Example (Coq's grammar of our leading example)

```
Program Definition production p :=
  match p return PExp (prod_type p) with
     ws \Rightarrow (" "/" \backslash t") [*]
     number \Rightarrow ["0" - - "9"][+] [\rightarrow] digListToRat
     / ws; "("; expr; ")"; ws [\rightarrow] (\lambda v \Rightarrow A3\_5 v)
    factor \Rightarrow term; "*"; factor [\rightarrow] (\lambda v \Rightarrow A1\_3 \ v * A3\_3 \ v)
             / term
                                         [\rightarrow] (\lambda v \Rightarrow A1_3 v + A3_3 v)
    expr \Rightarrow factor; "+"; expr
             / factor
  end.
```

⇒ Thanks to notations and coercions this is not too different from what we had before...

PEGs in Coq

Example (Coq's grammar of our leading example)

```
Program Definition production p :=
   match p return PExp (prod_type p) with
      ws \Rightarrow (" "/" \backslash t")[*]
      number \Rightarrow ["0" - - "9"][+] [\rightarrow] digListToRat
      term \Rightarrow ws; number; ws [\rightarrow] (\lambda v \Rightarrow A2\_3 v)
                / ws; "("; expr; ")"; ws [\rightarrow] (\lambda v \Rightarrow A3_5 v)
     factor \Rightarrow term; "*"; factor [\rightarrow] (\lambda v \Rightarrow A1\_3 \ v * A3\_3 \ v)
                / term
                                                [\rightarrow] (\lambda v \Rightarrow A1_3 v + A3_3 v)
     expr \Rightarrow factor; "+"; expr
                / factor
   end.
```

 \Rightarrow Thanks to notations and coercions this is not too different from what we had before...

Checking PEGs well-formedness in Coq

Example

```
Program Fixpoint wf\_compute (wf : PES.t \mid wf\_prop wf) { measure (wf\_measure wf)} : { wf : PES.t \mid wf\_prop wf } := let wf' := wf\_derive wf in match PES.equal wf wf' with | true \Rightarrow wf | false \Rightarrow wf\_compute wf' end.
```

Theorem

wf ⊆ E(G) ⇒ wf_derive wf ⊆ E(G)
wf ⊆ wf_derive wf.

Checking PEGs well-formedness in Coq

Example

```
Program Fixpoint wf\_compute (wf: PES.t \mid wf\_prop \ wf) {measure (wf\_measure \ wf)}: {wf: PES.t \mid wf\_prop \ wf} := let wf' := wf\_derive \ wf in match PES.equal \ wf \ wf' with | true \Rightarrow wf | false \Rightarrow wf\_compute \ wf' end.
```

Theorem

- $wf \subseteq E(\mathcal{G}) \implies wf_derive \ wf \subseteq E(\mathcal{G})$
- $wf \subseteq wf_{-}derive wf$.

Example

```
Program Fixpoint parse
  (T : Type) (e : PExp T \mid is\_grammar\_exp e) (s : string)
: \{r : ParsingResult \ T \mid \exists \ n, [e, s] \Rightarrow [n, r]\} :=
match e with
end.
```


30 / 34

```
Program Fixpoint parse
  (T:Type) (e:PExp T | is\_grammar\_exp e) (s:string)
: \{r : ParsingResult \ T \mid \exists \ n, [e, s] \Rightarrow [n, r]\} :=
match e with
  Terminal c \Rightarrow
  match s with
     nil \Rightarrow Fail
     x::xs \Rightarrow
     match CharAscii.eg_dec c x with
       left \implies Ok \ xs \ c
       right \_ \Rightarrow Fail
     end
  end
end.
```

```
Program Fixpoint parse
  (T:Type) (e:PExp T | is\_grammar\_exp e) (s:string)
: \{r : ParsingResult \ T \mid \exists \ n, [e, s] \Rightarrow [n, r]\} :=
match e with
  NonTerminal p \Rightarrow
  parse (production p) s
end.
```

```
Program Fixpoint parse
  (T:Type) (e:PExp T | is\_grammar\_exp e) (s:string)
: \{r : ParsingResult \ T \mid \exists \ n, [e, s] \Rightarrow [n, r]\} :=
match e with
  Choice \_ e1 e2 \Rightarrow
  match parse e1 s with
     PR \ ok \ s' \ v \Rightarrow Ok \ s' \ v
    PR_{\text{-}}fail \Rightarrow parse e2 s
  end
end.
```

```
Program Fixpoint parse
   (T:Type) (e:PExp T | is\_grammar\_exp e) (s:string)
: \{r : ParsingResult \ T \mid \exists \ n, [e, s] \Rightarrow [n, r]\} :=
match e with
  Star \_e \Rightarrow
   match parse e s with
     PR_fail \Rightarrow Oks[]
     PR_{-}ok \ s' \ v \Rightarrow
      match parse (e [*]) s' with
        PR_{\text{-}}fail \Rightarrow Fail
        PR\_ok \ s'' \ v' \Rightarrow Ok \ s'' \ (v :: v')
      end
   end
end.
```

Example

```
Program Fixpoint parse (T:Type) (e:PExp\ T\mid is\_grammar\_exp\ e) (s:string) : \{r:ParsingResult\ T\mid \exists\ n, [e,s]\Rightarrow [n,r]\}:= match e with |\dots| end.
```

How about termination?

Example

```
(e_1, s_1) \succ (e_2, s_2) \iff \exists_{n_1, r_1, n_2, r_2} (e_1, s_1) \stackrel{r_1}{\leadsto} r_1 \land (e_2, s_2) \stackrel{r_2}{\leadsto} r_2 \land r_1 > r_2
    Program Fixpoint parse
       (T:Type) (e:PExp T | is\_grammar\_exp e) (s:string)
       {measure (e, s) (\succ)}
    : \{r : ParsingResult \ T \mid \exists \ n, [e, s] \Rightarrow [n, r]\} :=
    match e with
    end.
```

How about termination?


```
Program Fixpoint parse
       (T : Type) (e : PExp T | is\_grammar\_exp e) (s : string)
       {measure (e, s) (\succ)}
     : \{r : ParsingResult \ T \mid \exists \ n, [e, s] \Rightarrow [n, r]\} :=
    match e with
    end.
+ 43 TCCs.
```


 \Rightarrow rev uses append at every step and hence is quadratic

 \Rightarrow We better implement [a-z] as a primitive

 \Rightarrow ... and we better use binary $\mathbb N$ to compare characters

 \Rightarrow 85% of the time the parser is busy with GC! Let us tweak it

Evolution of TRX's performance

 \Rightarrow Can we do better than that?

- 7x slower than Aurochs (but more robust?).
- 32x slower than xml-light.

- 7x slower than Aurochs (but more robust?).
- 32x slower than xml-light.

32 / 34

XML performance

Anonymous review quote

"the experimental results are not really impressive, showing that the standard LALR(1) parser outperforms all the PEG-based ones."

2 0.00

Anonymous review quote

"I would like to applaud [the authors] for attempting to improve the performance of their toolkit and showing us a graph which suggests that a better tuned library and the elimination of interpretative overhead have a good chance of delivering competitive results. The mere fact that it is even feasible to consider 'Performance comparison' is progress indeed."

- 7x slower
- 32x slower

XML performance

Anonymous review quote

"the experimental results are not really impressive, showing that the standard LALR(1) parser outperforms all the PEG-based ones."

3 2 1 0 0.00 0.50

Anonymous review quote

"I would like to applaud [the authors] for attempting to improve the performance of their toolkit and showing us a graph which suggests that a better tuned library and the elimination of interpretative overhead have a good chance of delivering competitive results. The mere fact that it is even feasible to consider

'Performance comparison' is progress indeed."

- 7x slower
- 32x slower

50

Work on formally verified parsing:

SLR parser in HOL

Aditi Barthwal and Michael Norrish: Verified, Executable Parsing. *ESOP '09*

Work on formally verified parsing:

- SLR parser in HOL
 - Aditi Barthwal and Michael Norrish: Verified, Executable Parsing. ESOP '09
- library of parser combinators in Agda
 - Nils Anders Danielsson and Ulf Norell Structurally Recursive Descent Parsing. Draft, '08

Work on formally verified parsing:

- SLR parser in HOL
 - Aditi Barthwal and Michael Norrish: Verified, Executable Parsing. ESOP '09
- library of parser combinators in Agda
 - Nils Anders Danielsson and Ulf Norell Structurally Recursive Descent Parsing. Draft, '08
- PEG parser in Ynot/Coq
 - Ryan Wisnesky and Gregory Malecha and Greg Morrisett Certified Web Services in Ynot.

 WWV '09

Work on formally verified parsing:

- SLR parser in HOL (termination not addressed)
 - Aditi Barthwal and Michael Norrish: Verified, Executable Parsing. ESOP '09
- library of parser combinators in Agda (type-indices ruling out left-recursion)
 - Nils Anders Danielsson and Ulf Norell Structurally Recursive Descent Parsing.

 Draft. '08
- PEG parser in Ynot/Coq (termination not addressed)
 - Ryan Wisnesky and Gregory Malecha and Greg Morrisett Certified Web Services in Ynot.

 WWV '09

- We presented an interpreter for PEGs developed in Coq,
- along with the proofs of semantic preservation and termination ensuring total correctness of parsing.
- Using Coq's extraction capabilities this enables us to obtain formally correct parsers.

- We presented an interpreter for PEGs developed in Coq,
- along with the proofs of semantic preservation and termination ensuring total correctness of parsing.
- Using Coq's extraction capabilities this enables us to obtain formally correct parsers.

- We presented an interpreter for PEGs developed in Coq,
- along with the proofs of semantic preservation and termination ensuring total correctness of parsing.
- Using Coq's extraction capabilities this enables us to obtain formally correct parsers.

- We presented an interpreter for PEGs developed in Coq,
- along with the proofs of semantic preservation and termination ensuring total correctness of parsing.
- Using Coq's extraction capabilities this enables us to obtain formally correct parsers.

If you want to learn more about OPA I will be happy to discuss it over lunch!

http://mlstate.com

Thank you for your attention.

