MATH 8510, Abstract Algebra I

Fall 2016

Exercises 4-1

Due date Thu 15 Sep 4:00PM

Exercise 1. Let G be a group. The *commutator subgroup* of G is the subgroup [G,G] of G generated by the set of all elements of the form $xyx^{-1}y^{-1}$:

$$[G,G] := \langle xyx^{-1}y^{-1} \mid x,y \in G \rangle.$$

Let $f: G \to H$ be a group homomorphism.

(a) Prove that $A \subseteq G \implies f(\langle A \rangle) = \langle f(A) \rangle$.

Proof.

First we show $f(\langle A \rangle)$ is a subgroup of H.

 $e_G \in \langle A \rangle$ since $\langle A \rangle$ is a subgroup of G.

Then $f(e_G) = e_H \in f(\langle A \rangle)$ since f is homomorphism.

So $f(\langle A \rangle) \neq \emptyset$.

Let $y_1, y_2 \in f(\langle A \rangle)$.

Then $\exists x_1, x_2 \in \langle A \rangle$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. $\langle A \rangle$ is a subgroup of G, so $x_2^{-1} \in \langle A \rangle$.

So $x_1x_2^{-1} \in \langle A \rangle$ and then $f(x_1x_2^{-1}) \in f(\langle A \rangle)$.

Since
$$f$$
 is a homomorphism,
 $f(x_1x_2^{-1}) = f(x_1)f(x_2^{-1}) = y_1f(x_2)^{-1} = y_1y_2^{-1} \in f(\langle A \rangle).$

Besides, $f(\langle A \rangle) \subset H$.

Thus, $f(\langle A \rangle)$ is a subgroup of H.

 $f(A) \subseteq f(\langle A \rangle)$, so

$$\langle f(A) \rangle \subseteq f(\langle A \rangle).$$

Let $x \in \langle A \rangle$, then $x = a_1^{\epsilon_1} a_2^{\epsilon_2} ... a_n^{\epsilon_n}$ for some $n \in \mathbb{N}$ and $a_1, a_2, ... a_n \in A$ and $\epsilon_1, \epsilon_2, ... \epsilon_n \in \mathbb{Z}$.

$$f(x) = f(a_1^{\epsilon_1} a_2^{\epsilon_2} ... a_n^{\epsilon_n})$$

= $f(a_1)^{\epsilon_1} f(a_2)^{\epsilon_2} ... f(a_n)^{\epsilon_n}$
 $\in f(A) \subseteq \langle f(A) \rangle$

since f is a homomorphism and $f(a_1)^{\epsilon_1}, f(a_2)^{\epsilon_2}, ..., f(a_n)^{\epsilon_n} \in f(A)$. So we have

$$f(\langle A \rangle) \subseteq \langle f(A) \rangle$$
.

Since both of $f(\langle A \rangle)$ and $\langle f(A) \rangle$ are subgroups of H, $f(\langle A \rangle) = \langle f(A) \rangle$

(b) Prove that $B \subseteq C \subseteq H \implies \langle B \rangle \subseteq \langle C \rangle$.

Proof.

 $B \subseteq C \subseteq H$, so $B \subseteq C \subseteq \langle C \rangle \subseteq H$.

So $B \subseteq \langle C \rangle$.

Thus, $\langle B \rangle \subseteq \langle C \rangle$ since $\langle C \rangle$ is a subgroup of H.

(c) Prove that G is abelian if and only if $[G, G] = \{e\}$.

Proof.

(a) Assume G is abelian.

$$\begin{split} [G,G] &= \langle xyx^{-1}y^{-1}|x,y \in G \langle \\ &= \langle (xx^{-1})(yy^{-1})|x,y \in G \langle \\ &= \langle e|x,y \in G \langle \\ &= \{e\} \end{split}$$

(b)

- (d) Prove that $f([G,G]) \subseteq [H,H]$.
- (e) Prove that if H is abelian, then $[G, G] \subseteq \text{Ker}(f)$.

Exercise 2 (2.4.14). See the text for a hint for this exercise.

- (a) Prove that every finitely generated subgroup of $(\mathbb{Q}, +)$ is cyclic.
- (b) Prove that $(\mathbb{Q}, +)$ is not cyclic. Conclude that $(\mathbb{Q}, +)$ is not finitely generated.