Talen en Automaten Assignment 1

November 22, 2017

Exercise 1

- a). f: $A^* \rightarrow A^*$ $f(\lambda) = \lambda$ f(aw) = f(w) f(bw) = b f(w)f(cw) = c f(w)
- b). 1. $f(f(\lambda)) = \lambda f(\lambda) = \lambda$
 - 2. f(f(w)) = f(w) (IH)
 - 3. f(f(xw)) = f(x f(w)) = x f(w) if $x \neq a$
 - $f(xw) = x f(w) \text{ if } x \neq a$
 - f(f(xw)) = f(f(w)) and $f(f(w)) = {}^{IH} f(w)$ if x = a
 - f(xw) = f(w) if x = a

Exercise 2

- a). (a) $abba \in L_1, L_2, L_3$
 - (b) abbba $\notin L_1, L_2, L_3$
- b). If there exists a word that is in a language, but doesn't exist in a different language, the two languages have to be different:
 - 1. abbaabba \notin L₁, abbaabba \notin L₂,
 - 2. abbabba $\in L_3$, abbabba $\notin L_1$
 - 3. abbaabba $\in L_3,$ abbaabba $\notin L_2$
- c). If there exists a word in $\{a, b\}^*$, which doesn't exist in $L((b^*a)^* + b^*)$ then the two languages have to be different:
 - babb $\in \{a, b\}$
 - babb $\notin L((b^*a)^* + b^*)$

so the language L isn't equal to $\{a, b\}^*$.

Exercise 3

- a). $L = \{(ba*b + a)*a\}$
- b). $L = \{((DU)^* + (UD)^*)^*\}$