Notatka z AiSD. Nr 18 15 maja 2024

UNION-FIND

IIUWr. II rok informatyki

1 Definicja problemu

Dany jest skończony zbiór U oraz ciąg σ instrukcji UNION i FIND:

- Union(A,B,C); gdzie A,B rozłączne podzbiory U; wynikiem instrukcji jest utworzenie zbioru C takiego, że $C \leftarrow A \cup B$, oraz usunięcie zbiorów A i B;
- FIND(i); gdzie $i \in U$; wynikiem instrukcji jest nazwa podzbioru, do którego aktualnie należy i.

Problem polega na zaprojektowaniu struktury danych umożliwiającej szybkie wykonywanie ciągów σ . Początkowo każdy element U tworzy jednoelementowy podzbiór.

1.1 Uwagi i założenia

- Zbiór U jest mały (| U | « pojemność pamięci wewnętrznej). Zwykle przyjmuje się, że $U = \{1, \ldots, n\}$.
- Rozważa się dwa sposoby wykonywania ciągów σ :
 - on-line wynik każdej instrukcji musi zostać obliczony przed wczytaniem kolejnej instrukcji;
 - $\it off-line$ ciąg σ może być wczytany całkowicie zanim zostanie obliczony wynik którejkolwiek instrukcji.

Nas interesować będzie sposób on-line.

• Często nazwy podzbiorów są nieistotne, a instrukcja FIND służy jedynie do stwierdzenia czy dane elementy należą do tego samego podzbioru.

2 Przykład zastosowania

2.1 Konstrukcja minimalnego drzewa rozpinającego grafu

```
\begin{array}{l} T \leftarrow \emptyset \\ VS \leftarrow \emptyset \\ \text{for each } v \in V \text{ do } \text{ wstaw zbi\'or } \{v\} \text{ do } VS \\ \text{while } |VS| > 1 \text{ do} \\ \text{wybierz } \langle u, w \rangle \text{ z } E \text{ o najmniejszym koszcie} \\ \text{usu\'n} \; \langle u, w \rangle \text{ z } E \\ A \leftarrow FIND(u); \; B \leftarrow FIND(w) \\ \text{if } A \neq B \text{ then } \; UNION(A, B, X) \\ \text{wstaw } \langle u, w \rangle \text{ do } T \end{array}
```

3 Rozwiązania

3.1 Proste rozwiązanie

Do reprezentowania rodziny zbiorów używamy tablicy R[1..n] takiej, że

 $\forall_i \ R[i]$ jest nazwą zbioru zawierającego i.

Koszt: Find - $\Theta(1)$; Union - $\Theta(n^2)$.

3.2 Modyfikacja prostego rozwiązania

3.2.1 Idea

Oparta na dwóch trickach:

- Wprowadzamy nazwy wewnętrzne zbiorów (niewidoczne dla użytkownika).
- \bullet Podczas wykonywania UNION(A,B,C) zbiór mniejszy przyłączany jest do większego.

3.2.2 Realizacja

```
Używamy tablic: R, ExtName, IntName, List, Next i Size takich, że: R[i] = nazwa wewnętrzna zbioru zawierającego i, ExtName[j] = nazwa zewnętrzna zbioru o nazwie wewnętrznej j, IntName[k] = nazwa wewnętrzna zbioru o nazwie zewnętrznej j, List[j] = wskaźnik na pierwszy element w liście elementów zbioru o nazwie wewnętrznej j, Next[i] = następny po i element w liście elementów zbioru R[i], Size[j] = liczba elementów w zbiorze o nazwie wewnętrznej j.
```

```
 \begin{aligned} & \mathbf{procedure} \ Find(i) \\ & \mathbf{return} \ (ExtName(R[i])) \end{aligned} \\ \\ & \mathbf{procedure} \ UNION(I,J,K) \\ & A \leftarrow IntName[I] \\ & B \leftarrow IntName[J] \\ & \text{Niech } Size[A] \leq Size[B]; \ \text{w p.p. zamie\'n } A \ \text{i } B \ \text{rolami} \\ & el \leftarrow List[A] \\ & \mathbf{while} \ el \neq 0 \ \mathbf{do} \ R[el] \leftarrow B \\ & last \leftarrow el \\ & el \leftarrow Next[el] \end{aligned} \\ & Next[last] \leftarrow List[B] \\ & List[B] \leftarrow List[A] \\ & Size[B] \leftarrow Size[A] + Size[B] \\ & IntName[K] \leftarrow B \\ & ExtName[B] \leftarrow K \end{aligned}
```

Twierdzenie 1 Używając powyższego algorytmu można wykonać dowolny ciąg σ o długości O(n) w czasie $O(n \log n)$.

4 Struktury drzewiaste dla problemu Union-Find

4.1 Elementy składowe struktury danych

- Las drzew.
 - Każdy podzbiór reprezentowany jest przez drzewo z wyróżnionym korzeniem. Wierzchołki wewnętrzne zawierają wskaźnik na ojca (nie ma wskaźników na dzieci!).
- Tablica Element[1..n]:

Element[i] = wskaźnik na wierzchołek zawierający i.

• Tablica Root:

Root[I] =wskaźnik na korzeń drzewa odpowiadającego zbiorowi I

(nazwy zbiorów są dla nas nieistotne; będą one liczbami z [1,..,n]).

4.2 Realizacja instrukcji

Union(A, B, C) polega na połączeniu drzew odpowiadających zbiorom A i B w jedno drzewo i umieszczeniu w jego korzeniu nazwy C.

Find(i) polega na przejściu ścieżki od wierzchołka wskazywanego przez Element(i) do korzenia drzewa i odczytaniu pamiętanej tam nazwy drzewa.

Przy wykonywaniu tych instrukcji stosujemy następującą strategię:

- 1. instrukcję *Union* wykonujemy w sposób zbalansowany korzeń mniejszego (w sensie liczby wierzchołków) drzewa podwieszamy do korzenia drzewa większego (a dokładniej drzewa nie większego do korzenia drzewa nie mniejszego),
- 2. podczas instrukcji Find(i) wykonujemy kompresję ścieżki prowadzącej od i do korzenia wszystkie wierzchołki leżące na tej ścieżce podwieszamy bezpośrednio pod korzeń.

4.3 Implementacja

Każdy wierzchołek v zawiera pola:

- Father[v] wskaźnik na ojca (równy NIL, gdy v jest korzeniem),
- Size[v] liczba wierzchołków w drzewie o korzeniu v,
- Name[v] nazwa drzewa o korzeniu v

Zawartość pól Size[v] i Name[v] ma znaczenie tylko wówczas, gdy v jest korzeniem.

```
\begin{aligned} \textbf{procedure} \ & InitForest \\ \textbf{for} \ & i \leftarrow 1 \ \textbf{to} \ n \ \textbf{do} \ v \leftarrow Allocate - Node() \\ & Size[v] \leftarrow 1 \\ & Name[v] \leftarrow i \\ & Father[v] \leftarrow \text{NIL} \\ & Element[i] \leftarrow v \\ & Root[i] \leftarrow v \end{aligned}
```

```
 \begin{aligned} & \textbf{procedure} \ Union(i,j,k) \\ & \textbf{Niech} \ Size[Root[i]] \leq Size[Root[j]]; \ \textbf{w} \ \textbf{p.p.} \ \textbf{zamień} \ i \ \textbf{oraz} \ j \ \textbf{rolami} \\ & large \leftarrow Root[j] \\ & small \leftarrow Root[i] \\ & Father[small] \leftarrow large \\ & Size[large] \leftarrow Size[large] + Size[small] \\ & Name[large] \leftarrow k \\ & Root[k] \leftarrow large \end{aligned}
```

```
\begin{aligned} & procedure \ Find(i) \\ & list \leftarrow \text{NIL} \\ & v \leftarrow Element[i] \\ & \textbf{while} \ Father[v] \neq \text{NIL} \ \ \textbf{do} \ \text{wstaw} \ v \ \text{na} \ list \\ & v \leftarrow Father[v] \\ & \textbf{for each} \ w \in list \ \textbf{do} \ Father[w] \leftarrow v \\ & \textbf{return} \ Name[v] \end{aligned}
```

4.4 Analiza algorytmu

Lemat 1 Jeśli instrukcje Union wykonujemy w sposób zbalansowany, to każde powstające drzewo o wysokości h ma co najmniej 2^h wierzchołków.

Definicja 1 Niech $\tilde{\sigma}$ będzie ciągiem instrukcji Union powstałym po usunięciu wszystkich instrukcji Find z ciągu σ . Rzędem wierzchołka v względem σ nazywamy jego wysokość w lesie powstałym po wykonaniu ciągu $\tilde{\sigma}$.

Lemat 2 Jest co najwyżej $\frac{n}{2^r}$ wierzchołków rzędu r.

Wniosek 1 Kazdy wierzchołek ma rząd co najwyżej $\log n$.

Lemat 3 Jeśli w trakcie wykonywania ciągu σ wierzchołek w staje się potomkiem wierzchołka v, to rząd w jest mniejszy niż rząd v.

Definicja 2

$$\log^*(n) \stackrel{df}{=} \min\{k \mid F(k) \ge n\},\$$

 $qdzie\ F(0) = 1\ i\ F(i) = 2^{F(i-1)}\ dla\ i > 0.$

Rzędy wierzchołków dzielimy na grupy. Rząd r umieszczamy w grupie $\log^* r$.

4.4.1 Górne ograniczenie

Twierdzenie 2 Niech c będzie dowolną stałą. Wówczas istnieje inna stała c' (zależna od c) taka, że powyższe procedury wykonują dowolny ciąg σ złożony z cn instrukcji Union i Find w czasie c'n $\log^* n$.

IDEA DOWODU: Instrukcje Union wykonują się w czasie stałym. Wystarczy więc oszacować koszt instrukcji Find.

Koszt każdej instrukcji Find(v) jest proporcjonalny do liczby wierzchołków na ścieżce od v do korzenia. Obarczymy tym kosztem niektóre z odwiedzanych wierzchołków jak i samą instrukcję Find(v). Stosujemy przy tym następującą strategię:

- \bullet za odwiedzenie wierzchołka w jednostkowym kosztem obarczamy instrukcję Find(v), jeśli:
 - -w jest korzeniem drzewa lub
 - -w jest synem korzenia drzewa lub
 - -w i jego ojciec mają rzędy w innych grupach.
- w pozostałych przypadkach jednostkowym kosztem obarczamy odwiedzany wierzchołek.

Tezę otrzymujemy na podstawie dwóch spostrzeżeń:

- Ponieważ grup rzędów jest nie więcej niż $\log^* n$, każda instrukcja Find zostanie obciążona kosztem nie większym niż $\log^* n + 1$.
- \bullet Pokazujemy dla każdej grupy rzędów, że sumaryczne obciążenie wszystkich wierzchołków, których rzędy należą do niej, jest O(n).

4.4.2 Dolne ograniczenie

Otrzymane ograniczenie jest bliskie liniowemu, ale nie liniowe. Powstaje więc naturalne pytanie, czy tego ograniczenia nie można poprawić. Okazuje się, że można. Funkcja $\log^* n$ może zostać zastąpiona przez odwrotną funkcję Ackermanna, która rośnie jeszcze wolniej niż $\log^* n$. Kolejne twierdzenie pokazuje jednak, że zaprezentowana strutura drzewiasta nie osiąga złożoności liniowej. Nie wiadomo, czy istnieją struktury danych pozwalające na osiągnięcie czasu liniowego.

Twierdzenie 3 Algorytm realizujący ciągi instrukcji Union i Find przy użyciu powyższych procedur ma złożoność większą niż cn dla dowolnej stałej c.

Dowód tego twierdzenia, mimo, że nie jest trudny, wykracza poza zakres naszego przedmiotu. Można go znaleźć w [1].

UWAGA: na ćwiczeniach pokażemy, że przy pomocy struktur drzewiastych można w czasie $O(n \log^* n)$ realizować ciągi σ , które oprócz instrukcji Union i Find zawierają także instrukcje Insert i Delete.

Literatura

[1] A.V. Aho, J.E. Hopcroft i J.D. Ullman, *Projektowanie i Analiza Algorytmów Komputerowych*, PWN, 1983 (oraz Helion 2003).