Single-Server Private Information Retrieval With Side Information Under Arbitrary Popularity Profiles

Alejandro Gomez-Leos (University of Texas at Austin)

Joint work with

Anoosheh Heidarzadeh
(Santa Clara University)

This work was done while both authors were at Texas A&M University.

Private Information Retrieval with Side Information (PIR-SI)

- A dataset is stored on one (or more) remote server(s).
- A user knows some subset of the dataset as side information, and desires a different subset of the dataset.

- Minimize download cost (i.e., total amount of information downloaded)
- Subject to leaking no information about the identities of the desired data

Private Information Retrieval with Side Information (PIR-SI)

- A dataset is stored on one (or more) remote server(s).
- A user knows some subset of the dataset as side information, and desires a different subset of the dataset.

- Minimize download cost (i.e., total amount of information downloaded)
- Subject to leaking no information about the identities of the desired data

Often, the PIR-SI formulations assume uniformly popular data.

Motivation

- From the servers' perspective, some data may be more popular than others.
 - E.g. any ranked dataset (video, image, forum messaging, etc.)
- Studies show the Zipf, Gamma, or Weibull distributions are more appropriate statistical models for online data access patterns*.

Motivation

- From the servers' perspective, some data may be more popular than others.
 - E.g. any ranked dataset (video, image, forum messaging, etc.)
- Studies show the Zipf, Gamma, or Weibull distributions are more appropriate statistical models for online data access patterns*.

This work focuses on extending PIR-SI techniques to this more general setting.

Related Work

	Data Popularity	# Servers	Side Info.
Sun-Jafar '17	No	Multiple	No
Banawan-Ulukus '17, '18	No	Multiple	No
Kadhe et al. '20	No	Multiple	Yes
Kadhe et al. '17	No	Single	Yes
Heidarzadeh <i>et al</i> . '18	No	Single	Yes
Li-Gastpar '18	No	Single	Yes
Heidarzadeh-Sprintson '22	No	Single	Yes
Vithana-Banawan-Ulukus '20	Yes	Multiple	No
This work	Yes	Single	Yes

Outline

- Model + Assumptions
- A Motivating Example
- Main Results
- Simulations
- Summary and Open Problems

Popularity-Aware PIR-SI (PA-PIR-SI) Setting

• Server stores K messages X_1, \ldots, X_K (independent and uniform over \mathbb{F}_q^n)

$$H(X_i) = n \log_2 q := B \quad \forall i \in \mathcal{K} \triangleq \{1, ..., K\}$$

Popularity-Aware PIR-SI (PA-PIR-SI) Setting

• Server stores K messages X_1, \ldots, X_K (independent and uniform over \mathbb{F}_q^n)

$$H(X_i) = n \log_2 q := B \quad \forall i \in \mathcal{K} \triangleq \{1, \dots, K\}$$

 $X_{\rm S}$: Side info. message(s)

 X_{W} : Demand message(s)

S: Side info. index set

W: Demand index set

M: # side info. message(s)

Popularity-Aware PIR-SI (PA-PIR-SI) Setting

• Server stores K messages X_1, \ldots, X_K (independent and uniform over \mathbb{F}_q^n)

$$H(X_i) = n \log_2 q := B \quad \forall i \in \mathcal{K} \triangleq \{1, \dots, K\}$$

Message popularities

$$\lambda_i > 0 \quad \forall i \in \mathcal{K}$$

Popularity Profile

$$\Lambda \triangleq (\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_K)$$

 $X_{\rm S}$: Side info. message(s)

 X_{W} : Demand message(s)

S: Side info. index set

W: Demand index set

M: # side info. message(s)

Side information index set is distributed uniformly.

$$p_{\mathbf{S}}(\mathbf{S}^*) \triangleq \frac{1}{\binom{K}{M}} \quad \forall \mathbf{S}^* \in [\mathcal{K}]^M \quad [\mathcal{K}]^M \text{ denotes the set of all M-size subsets of \mathcal{K}.}$$

Side information index set is distributed uniformly.

$$p_{\mathbf{S}}(\mathbf{S}^*) \triangleq \frac{1}{\binom{K}{M}} \quad \forall \mathbf{S}^* \in [\mathcal{K}]^M \quad [\mathcal{K}]^M \text{ denotes the set of all M-size subsets of \mathcal{K}.}$$

Why is this a good assumption?

Side information index set is distributed uniformly.

$$p_{\mathbf{S}}(\mathbf{S}^*) \triangleq \frac{1}{\binom{K}{M}} \quad \forall \mathbf{S}^* \in [\mathcal{K}]^M \quad [\mathcal{K}]^M \text{ denotes the set of all M-size subsets of \mathcal{K}.}$$

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \backslash \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \backslash \mathbf{W}^*]^M, \\ 0 & \text{otherwise}. \end{cases}$$

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \backslash \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \backslash \mathbf{W}^*]^M, \\ 0 & \text{otherwise} . \end{cases}$$

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \backslash \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \backslash \mathbf{W}^*]^M, \\ 0 & \text{otherwise}. \end{cases}$$

E.g.
$$K=4$$
, $M=1$, $\Lambda=(\lambda_1,\lambda_2,\lambda_3,\lambda_4)$

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \backslash \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \backslash \mathbf{W}^*]^M, \\ 0 & \text{otherwise}. \end{cases}$$

E.g.
$$K=4$$
, $M=1$, $\Lambda=(\lambda_1,\lambda_2,\lambda_3,\lambda_4)$

$$p_{\mathbf{W}|\mathbf{S}}(\{1\} | \{2\}) = \frac{\lambda_1}{\lambda_1 + \lambda_3 + \lambda_4}$$

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \setminus \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \setminus \mathbf{W}^*]^M, \\ 0 & \text{otherwise} . \end{cases}$$

E.g.
$$K = 4$$
, $M = 1$, $\Lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)$

$$p_{\mathbf{W|S}}(\{1\} \mid \{2\}) = \frac{\lambda_1}{\lambda_1 + \lambda_3 + \lambda_4}$$

$$p_{\mathbf{W|S}}(\{2\} \mid \{1\}) = \frac{\lambda_2}{\lambda_2 + \lambda_3 + \lambda_4}$$

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \setminus \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \setminus \mathbf{W}^*]^M, \\ 0 & \text{otherwise}. \end{cases}$$

E.g.
$$K = 4$$
, $M = 1$, $\Lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4)$

$$p_{\mathbf{W|S}}(\{1\} | \{2\}) = \frac{\lambda_1}{\lambda_1 + \lambda_3 + \lambda_4}$$

$$p_{\mathbf{W|S}}(\{2\} | \{1\}) = \frac{\lambda_2}{\lambda_2 + \lambda_3 + \lambda_4}$$

$$p_{\mathbf{W|S}}(\{1\} | \{1\}) = 0$$

Side information index set is distributed uniformly.

$$p_{\mathbf{S}}(\mathbf{S}^*) \triangleq \frac{1}{\binom{K}{M}} \quad \forall \mathbf{S}^* \in [\mathcal{K}]^M \quad [\mathcal{K}]^M \text{ denotes the set of all } M\text{-size subsets of } \mathcal{K}.$$

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \backslash \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \backslash \mathbf{W}^*]^M, \\ 0 & \text{otherwise}. \end{cases}$$

Side information index set is distributed uniformly.

$$p_{\mathbf{S}}(\mathbf{S}^*) \triangleq \frac{1}{\binom{K}{M}} \quad \forall \mathbf{S}^* \in [\mathcal{K}]^M \quad [\mathcal{K}]^M \text{ denotes the set of all } M\text{-size subsets of } \mathcal{K}.$$

 Conditional distribution of demand index given side info. index set is a function of the popularity profile.

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{X} \backslash \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{X}, \forall \mathbf{S}^* \in [\mathcal{X} \backslash \mathbf{W}^*]^M, \\ 0 & \text{otherwise}. \end{cases}$$

· Joint distribution of demand index and side info. index set follows...

$$p_{\mathbf{W},\mathbf{S}}(\mathbf{W}^*,\mathbf{S}^*) = \frac{1}{\binom{K}{M}} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \setminus \mathbf{S}^*} \lambda_i} \quad \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \setminus \mathbf{W}^*]^M$$

Side information index set is distributed uniformly.

$$p_{\mathbf{S}}(\mathbf{S}^*) \triangleq \frac{1}{\binom{K}{M}} \quad \forall \mathbf{S}^* \in [\mathcal{K}]^M \quad [\mathcal{K}]^M \text{ denotes the set of all } M\text{-size subsets of } \mathcal{K}.$$

 Conditional distribution of demand index given side info. index set is a function of the popularity profile.

$$p_{\mathbf{W}|\mathbf{S}}(\mathbf{W}^*|\mathbf{S}^*) \triangleq \begin{cases} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \setminus \mathbf{S}^*} \lambda_i} & \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \setminus \mathbf{W}^*]^M, \\ 0 & \text{otherwise}. \end{cases}$$

· Joint distribution of demand index and side info. index set follows...

$$p_{\mathbf{W},\mathbf{S}}(\mathbf{W}^*,\mathbf{S}^*) = \frac{1}{\binom{K}{M}} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \setminus \mathbf{S}^*} \lambda_i} \quad \forall \mathbf{W}^* \in \mathcal{K}, \forall \mathbf{S}^* \in [\mathcal{K} \setminus \mathbf{W}^*]^M$$

• Resulting marginal distribution of demand index...

$$p_{\mathbf{W}}(\mathbf{W}^*) = \frac{1}{\binom{K}{M}} \sum_{\mathbf{S}^* \in [\mathcal{K} \setminus \mathbf{W}^*]^M} \frac{\lambda_{\mathbf{W}^*}}{\sum_{i \in \mathcal{K} \setminus \mathbf{S}^*} \lambda_i} \quad \forall \mathbf{W}^* \in \mathcal{K}.$$

Requirements

Feasibility: Answer must be a deterministic function of query and messages.

$$H(\mathbf{A}^{[W,S]} | \mathbf{Q}^{[W,S]}, \mathbf{X}_1, ..., \mathbf{X}_K) = 0$$

• Decodability: Demand must be recoverable from answer, query, and side info.

$$H(\mathbf{X}_{\mathbf{W}} | \mathbf{A}, \mathbf{Q}, \mathbf{X}_{\mathbf{S}}) = 0$$

• Privacy: Query must not reveal any information about the demand index.

$$\mathbb{P}(\mathbf{W} = \mathbf{W}^* | \mathbf{Q} = \mathbf{Q}) = \mathbb{P}(\mathbf{W} = \mathbf{W}^*) \quad \forall \mathbf{W}^* \in \mathcal{K}.$$

Requirements

Feasibility: Answer must be a deterministic function of query and messages.

$$H(\mathbf{A}^{[W,S]} | \mathbf{Q}^{[W,S]}, \mathbf{X}_1, ..., \mathbf{X}_K) = 0$$

• Decodability: Demand must be recoverable from answer, query, and side info.

$$H(\mathbf{X}_{\mathbf{W}} | \mathbf{A}, \mathbf{Q}, \mathbf{X}_{\mathbf{S}}) = 0$$

• Privacy: Query must not reveal any information about the demand index.

$$\mathbb{P}(\mathbf{W} = \mathbf{W}^* | \mathbf{Q} = \mathbf{Q}) = \mathbb{P}(\mathbf{W} = \mathbf{W}^*) \quad \forall \mathbf{W}^* \in \mathcal{K}.$$

• Given the popularity profile Λ , the PA-PIR-SI problem is to design a protocol to generate Q and A, for any given (W,S), to satisfy these conditions.

Characterizing Performance

In particular, interested in the most efficient protocols.

The rate of a PA-PIR-SI protocol given by

Amount of info. demanded

Expected amount of info. downloaded

$$= \frac{B}{\sum_{\mathbf{W}^* \in \mathcal{X}} \sum_{\mathbf{S}^* \in [\mathcal{X} \setminus \mathbf{W}^*]^M} p_{\mathbf{W},\mathbf{S}}(\mathbf{W}^*,\mathbf{S}^*) H(\mathbf{A}^{[\mathbf{W}^*,\mathbf{S}^*]})}$$

- The **capacity** is the supremum of rates over all PA-PIR-SI protocols for Λ .
- Goal: Derive tight bounds on the capacity of the PA-PIR-SI problem
 - Upper bound (converse)
 - Lower bound (achievability)

Partition-and-Code Scheme (Kadhe et al. '17)

- 1. Assign $X_1, ..., X_K$ to disjoint sets, each of size M+1.
- 2. Assign the side info. messages and the demand message to one set.
- 3. Assign the rest of the messages to the remaining sets at random.
- 4. Query server for the sum of all messages in each set.

User decodes X_{W} by subtracting M side info. messages X_{S} off of the sum $\sum_{i\in\mathrm{W}\cup\mathrm{S}}X_i$

Download Rate
$$\frac{M+1}{K}$$

MDS Code Scheme (Kadhe et al.)

- 1. Choose distinct $\omega_1, \ldots, \omega_K \in \mathbb{F}_q$
- 2. Given user knows M side-information, query K-M linear combinations of form,

$$K-M \left\{ \begin{array}{ccccc} \omega_1^0 & \omega_2^0 & \cdots & \omega_K^0 \\ \omega_1^1 & \omega_2^1 & \cdots & \omega_K^1 \\ \vdots & \vdots & \ddots & \vdots \\ \omega_1^{K-M-1} & \omega_2^{K-M-1} & \cdots & \omega_K^{K-M-1} \end{array} \right] \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_K \end{bmatrix}$$

User decodes $X_1, ..., X_K$ by subtracting off M side-information from each linear combination and solving resulting system of equations

Download Rate
$$\frac{1}{K-M}$$

Outline

- Model + Assumptions
- A Motivating Example
- Main Results
- Simulations
- Summary and Open Problems

$$K = 6$$
, $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = \lambda_6$

The "uniform popularities" case

What can we do with existing PIR-SI protocols in this setting?

$$K = 6$$
, $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = \lambda_6$

The "uniform popularities" case

MDS Code Scheme

- Download rate 1/(K M) = 1/5
- Decodability satisfied by MDS property.
- Privacy satisfied, same query for all (W, S)

Partition-and-Code Scheme

- Download rate (M+1)/K = 1/3
- Decodability satisfied.
- Direct computation shows privacy satisfied.

Optimal scheme in this setting*

$$K = 6$$
, $\Lambda = (2,1,1,1,1,1)$

The "non-uniform popularities" case

What can we do with existing PIR-SI protocols in this new setting?

$$K = 6$$
, $\Lambda = (2,1,1,1,1,1)$

The "non-uniform popularities" case

MDS Code Scheme

- Download rate 1/(K M) = 1/5
- Decodability satisfied by MDS property.
- Privacy satisfied, same query for all (W, S)

Partition-and-Code Scheme

- Privacy condition does not hold.
- Cannot use this scheme in this setting.
- (Rate is immaterial).

Outline

- Model + Assumptions
- A Motivating Example
- Main Results
- Simulations
- Summary and Open Problems

Capacity of PA-PIR-SI

Theorem 1. For PA-PIR-SI with K messages and M side info. messages such that M+1 is a divisor of K and strictly less than \sqrt{K} , under any popularity profile Λ , the capacity is upper bounded by

$$R_{\rm UB} = \frac{M+1}{K}$$

and is lower bounded by

$$R_{\text{LB}} = \left(K - M - \left(K - M - \frac{K}{M+1}\right) \times \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])}{p_{\mathbf{W}}(\{1\})} \binom{K-1}{M}\right)^{-1}$$

where

$$\Gamma_{\{1\},[2:M+1]} = \min_{i \in [K-M:K]} \left\{ 1, \frac{p_{\mathbf{W},\mathbf{S}}(\{i\},[K-M:K] \setminus \{i\})p_{\mathbf{W}}(\{1\})}{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\{i\})} \right\}.$$

Capacity of PA-PIR-SI

Divisibility Condition

Theorem 1. For PA-PIR-SI with K messages and M side info. messages such that M+1 is a divisor of K and strictly less than \sqrt{K} , under any popularity profile Λ , the capacity is upper bounded by

$$R_{\rm UB} = \frac{M+1}{K}$$

and is lower bounded by

$$R_{\text{LB}} = \left(K - M - \left(K - M - \frac{K}{M+1}\right) \times \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])}{p_{\mathbf{W}}(\{1\})} \binom{K-1}{M}\right)^{-1}$$

where

$$\Gamma_{\{1\},[2:M+1]} = \min_{i \in [K-M:K]} \left\{ 1, \frac{p_{\mathbf{W},\mathbf{S}}(\{i\},[K-M:K] \setminus \{i\})p_{\mathbf{W}}(\{1\})}{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\{i\})} \right\}.$$

Achievability Scheme

Random Code Selection (RCS) Scheme

• Given realization (W^*, S^*)

$$\Gamma_{\mathbf{W}^*,\mathbf{S}^*} \triangleq \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\mathbf{W}^*)}{p_{\mathbf{W},\mathbf{S}}(\mathbf{W}^*,\mathbf{S}^*)p_{\mathbf{W}}(\{1\})}$$

Achievability Scheme

Random Code Selection (RCS) Scheme

Given realization (W*,S*)

$$\Gamma_{\mathbf{W}^*,\mathbf{S}^*} \triangleq \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\mathbf{W}^*)}{p_{\mathbf{W},\mathbf{S}}(\mathbf{W}^*,\mathbf{S}^*)p_{\mathbf{W}}(\{1\})}$$

Achievability Scheme

Random Code Selection (RCS) Scheme

Given realization (W*, S*)

$$\Gamma_{\mathbf{W}^*,\mathbf{S}^*} \triangleq \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\mathbf{W}^*)}{p_{\mathbf{W},\mathbf{S}}(\mathbf{W}^*,\mathbf{S}^*)p_{\mathbf{W}}(\{1\})}$$

Achievability Scheme

Random Code Selection (RCS) Scheme

Given realization (W*, S*)

$$\Gamma_{\mathbf{W}^*,\mathbf{S}^*} \triangleq \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\mathbf{W}^*)}{p_{\mathbf{W},\mathbf{S}}(\mathbf{W}^*,\mathbf{S}^*)p_{\mathbf{W}}(\{1\})}$$

$$K = 6$$
, $\Lambda = (2,1,1,1,1,1)$

The "non-uniform popularities" case

MDS Code Scheme

- Download rate 1/(K M) = 1/5
- Decodability and privacy satisfied.

Partition-and-Code Scheme

- Download rate N/A
- Cannot use this scheme in this setting.

RCS Scheme

- **Download rate** 13/40 (> 1/5)
- Decodability and privacy satisfied.

$$K = 6$$
, $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = \lambda_6$

The "uniform popularities" case

MDS Code Scheme

- Download rate 1/(K M) = 1/5
- Decodability and privacy satisfied.

Partition-and-Code Scheme

- Download rate (M+1)/K = 1/3
- Decodability and privacy satisfied.

RCS Scheme

- Download rate 1/3
- Decodability and privacy satisfied.

Achievability Scheme

Random Code Selection (RCS) Scheme

• Given realization (W^*, S^*)

$$\Gamma_{\mathbf{W}^*,\mathbf{S}^*} \triangleq \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\mathbf{W}^*)}{p_{\mathbf{W},\mathbf{S}}(\mathbf{W}^*,\mathbf{S}^*)p_{\mathbf{W}}(\{1\})},$$

Where does this choice come from?

- Consider parameters $\Gamma_{i,j}$ for each pair $(i,j) \in \mathcal{K} \times \mathcal{K}, i \neq j$
- Know X_j
- Given (i,j), follow Partition-and-Code Scheme w.p. $\Gamma_{i,j}$ or MDS Scheme w.p $1-\Gamma_{i,j}$
- Want to maximize RCS rate ...

$$\mathbb{E}_{\sim(\mathbf{W},\mathbf{S})}[\;\cdot\;]$$

$$\left(\sum_{i,j\in\mathcal{K}\times\mathcal{K},i\neq j}p_{\mathbf{W},\mathbf{S}}(i,j)\times\left[\Gamma_{i,j}\left(\frac{K}{M+1}\right)+(1-\Gamma_{i,j})(K-M)\right]\right)^{-1}$$

$$1/\text{rate of} \qquad 1/\text{rate of MDS}$$
Partition-and-Code Scheme

... subject to privacy condition.

Maximize

$$\mathbb{E}_{\sim (W,S)}[\;\cdot\;]$$

$$\left(\sum_{i,j\in\mathcal{K}\times\mathcal{K},i\neq j}p_{\mathbf{W},\mathbf{S}}(i,j)\times\left[\Gamma_{i,j}\left(\frac{K}{M+1}\right)+(1-\Gamma_{i,j})(K-M)\right]\right)^{-1}$$

1/rate of Partition-and-Code Scheme

1/rate of MDS

s.t.

$$\mathbb{P}(\mathbf{W} = i \,|\, \mathbf{Q} = \mathbf{Q}) = \mathbb{P}(\mathbf{W} = i) \quad \forall i \in \mathcal{K}.$$

 $\mathbb{E}_{\sim(\mathbf{W},\mathbf{S})}[\;\cdot\;]$ $\left(\sum_{i,j\in\mathcal{K}\times\mathcal{K},i\neq j}p_{\mathbf{W},\mathbf{S}}(i,j)\times\left[\Gamma_{i,j}\left(\frac{K}{M+1}\right)+(1-\Gamma_{i,j})(K-M)\right]\right)^{-1}$ $1/\mathrm{rate\ of\ Partition-and-Code\ Scheme}$ $1/\mathrm{rate\ of\ MDS}$

s.t.
$$\mathbb{P}(\mathbf{W} = i | \mathbf{Q} = \mathbf{Q}) = \mathbb{P}(\mathbf{W} = i) \quad \forall i \in \mathcal{K}$$
.

Is this optimization over $K^2 - K$ variables?

Is this optimization over $K^2 - K$ variables?

No; the privacy condition allows us to reduce the problem to a single variable.

- Recall MDS query is the same for all (W,S)
- Only Partition-and-Code Scheme queries have dependence on (W, S)
- We can represent each Partition-and-Code Scheme query as a partition.
- For example,

All 15 possible queries

Q ₁ {1,2} {3,4} {5,6}	Q ₂ {1,2} {3,6} {4,5}	Q ₃ {1,2} {3,5} {4,6}
Q ₄ {1,3} {2,4} {5,6}	Q ₅ {1,3} {2,6} {4,5}	Q ₆ {1,3} {2,5} {4,6}
Q ₇ {1,4} {2,3} {5,6}	Q ₈ {1,4} {2,6} {3,5}	Q ₉ {1,4} {2,5} {3,6}
Q ₁₀ {1,5} {2,3} {4,6}	Q ₁₁ {1,5} {2,6} {3,4}	Q ₁₂ {1,5} {2,4} {3,6}
Q ₁₃ {1,6} {2,3} {4,5}	Q ₁₄ {1,6} {2,5} {3,4}	Q ₁₅ {1,6} {2,4} {5,3}

All 15 possible queries

Q_1 (1,2)	Q ₂ {1,2}	Q_3 (1,2)
{3,4}	{3,6}	{3,5}
{5,6}	{4,5}	{4,6}
(0,0)	(1,0)	(', 0)
Q ₄ (1,3)	Q ₅ {1,3}	<i>Q</i> ₆ (1,3)
{2,4}	{2,6}	{2,5}
{5,6}	{4,5}	{4,6}
[0,0]	[4,0]	[4,0]
$Q_{7} _{\{1,4\}}$	Q ₈ (1,4)	2 ₉ {1,4}
{2,3}	{2,6}	{2,5}
{5,6}	{3,5}	{3,6}
[0,0]	(0,0)	լՆ,Նյ
<i>Q</i> ₁₀ {1,5}	Q ₁₁ {1,5}	Q ₁₂ <mark>{1,5}</mark>
{2,3}	{2,6}	{2,4}
{4,6}	{3,4}	{3,6}
נד,טן	ני,דן	(0,0)
<i>Q</i> ₁₃ {1,6}	<i>Q</i> ₁₄ {1,6}	<i>Q</i> ₁₅ {1,6}
{2,3}	{2,5}	{2,4}
{4,5}	{3,4}	{5,3}
14,05	10,4 β	\J,U,

All 15 possible queries

$$\mathbb{P}(\mathbf{W} = 1 \mid Q_1)$$

All 15 possible queries

$$\mathbb{P}(\mathbf{W}=1\mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid W = 1, S = 2) \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}$$

All 15 possible queries

$$\mathbb{P}(W = 1 \mid Q_1)$$
=\frac{\mathbb{P}(Q_1 \mid W = 1, S = 2) \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}
=\frac{\Gamma_{1,2} \times \frac{1}{L} \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}

All 15 possible queries

$$L = 3$$

{2,4}

{5,3}

 Q_2 (1,2) Q_3 (1,2) Q_1 (1,2) {3,4} {3,6} {3,5} **{5,6}** {4,5} {4,6} **[**{1,3} 6 {1,3} {1,3} {2,4} {2,5} {2,6} {5,6} {4,5} {4,6} {1,4} {1,4} {1,4} {2,5} {2,3} {2,6} {5,6} {3,5} {3,6} {1,5} 1 {1,5} 2 {1,5} {2,3} {2,6} {2,4} {4,6} {3,4} {3,6} {1,6} 4 {1,6} 5 {1,6}

{2,5}

{3,4}

{2,3}

{4,5}

$$\mathbb{P}(\mathbf{W} = 1 \mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid W = 1, S = 2) \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}$$

$$= \frac{\Gamma_{1,2} \times \frac{1}{L} \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}$$

All 15 possible queries

$$\mathbb{P}(W = 1 \mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid W = 1, S = 2) \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}$$

$$= \frac{\Gamma_{1,2} \times \frac{1}{L} \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}$$

$$= \mathbb{P}(W = 1)$$

All 15 possible queries

$$\mathbb{P}(W = 1 \mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid W = 1, S = 2) \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}$$

$$= \frac{\Gamma_{1,2} \times \frac{1}{L} \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(Q_1)}$$

$$= \mathbb{P}(W = 1)$$

$$\implies \mathbb{P}(Q_1) = \frac{\Gamma_{1,2} \times \frac{1}{L} \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(W = 1)}$$

All 15 possible queries

$$\mathbb{P}(\mathbf{W} = 2 \mid Q_1)$$

All 15 possible queries

$$\mathbb{P}(\mathbf{W} = 2 \mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid W = 2, S = 1) \times \mathbb{P}(W = 2, S = 1)}{\mathbb{P}(Q_1)}$$

All 15 possible queries

$$\mathbb{P}(\mathbf{W} = 2 \mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid \mathbf{W} = 2, \mathbf{S} = 1) \times \mathbb{P}(\mathbf{W} = 2, \mathbf{S} = 1)}{\mathbb{P}(Q_1)}$$

$$= \frac{\Gamma_{2,1} \times \frac{1}{L} \times \mathbb{P}(\mathbf{W} = 2, \mathbf{S} = 1)}{\mathbb{P}(Q_1)}$$

All 15 possible queries

$$\mathbb{P}(\mathbf{W} = 2 \mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid \mathbf{W} = 2, \mathbf{S} = 1) \times \mathbb{P}(\mathbf{W} = 2, \mathbf{S} = 1)}{\mathbb{P}(Q_1)}$$

$$= \frac{\Gamma_{2,1} \times \frac{1}{L} \times \mathbb{P}(\mathbf{W} = 2, \mathbf{S} = 1)}{\mathbb{P}(Q_1)}$$

All 15 possible queries

$$\mathbb{P}(W = 2 \mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid W = 2, S = 1) \times \mathbb{P}(W = 2, S = 1)}{\mathbb{P}(Q_1)}$$

$$= \frac{\Gamma_{2,1} \times \frac{1}{L} \times \mathbb{P}(W = 2, S = 1)}{\mathbb{P}(Q_1)}$$

$$= \mathbb{P}(W = 2)$$

All 15 possible queries

$$\mathbb{P}(W = 2 \mid Q_1)$$

$$= \frac{\mathbb{P}(Q_1 \mid W = 2, S = 1) \times \mathbb{P}(W = 2, S = 1)}{\mathbb{P}(Q_1)}$$

$$= \frac{\Gamma_{2,1} \times \frac{1}{L} \times \mathbb{P}(W = 2, S = 1)}{\mathbb{P}(Q_1)}$$

$$= \mathbb{P}(W = 2)$$

$$\implies \mathbb{P}(Q_1) = \frac{\Gamma_{2,1} \times \frac{1}{L} \times \mathbb{P}(W = 2, S = 1)}{\mathbb{P}(W = 2)}$$

All 15 possible queries

$$\mathbb{P}(Q_1)$$

$$= \frac{\Gamma_{1,2} \times \frac{1}{L} \times \mathbb{P}(W = 1, S = 2)}{\mathbb{P}(W = 1)}$$

$$= \frac{\Gamma_{2,1} \times \frac{1}{L} \times \mathbb{P}(W = 2, S = 1)}{\mathbb{P}(W = 2)}$$

The M = 1, K = 6 Case, Identities

$$\mathbb{P}(Q_1) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(2,1)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{3,4} \times p_{\mathbf{W},\mathbf{S}}(3,4)}{p_{\mathbf{W}}(3)} = \frac{\Gamma_{4,3} \times p_{\mathbf{W},\mathbf{S}}(4,3)}{p_{\mathbf{W}}(4)} = \frac{\Gamma_{5,6} \times p_{\mathbf{W},\mathbf{S}}(5,6)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{6,5} \times p_{\mathbf{W},\mathbf{S}}(6,5)}{p_{\mathbf{W}}(6)}$$

The M = 1, K = 6 Case, Identities

$$\mathbb{P}(Q_1) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(2,1)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{3,4} \times p_{\mathbf{W},\mathbf{S}}(3,4)}{p_{\mathbf{W}}(3)} = \frac{\Gamma_{4,3} \times p_{\mathbf{W},\mathbf{S}}(4,3)}{p_{\mathbf{W}}(4)} = \frac{\Gamma_{5,6} \times p_{\mathbf{W},\mathbf{S}}(5,6)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{6,5} \times p_{\mathbf{W},\mathbf{S}}(6,5)}{p_{\mathbf{W}}(6)}$$

$$\mathbb{P}(Q_2) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(2,1)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{3,6} \times p_{\mathbf{W},\mathbf{S}}(3,6)}{p_{\mathbf{W}}(3)} = \frac{\Gamma_{6,3} \times p_{\mathbf{W},\mathbf{S}}(6,3)}{p_{\mathbf{W}}(6)} = \frac{\Gamma_{5,4} \times p_{\mathbf{W},\mathbf{S}}(5,4)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{4,5} \times p_{\mathbf{W},\mathbf{S}}(4,5)}{p_{\mathbf{W}}(4)}$$

The M = 1, K = 6 Case, Identities

$$\mathbb{P}(Q_1) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(2,1)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{3,4} \times p_{\mathbf{W},\mathbf{S}}(3,4)}{p_{\mathbf{W}}(3)} = \frac{\Gamma_{4,3} \times p_{\mathbf{W},\mathbf{S}}(4,3)}{p_{\mathbf{W}}(4)} = \frac{\Gamma_{5,6} \times p_{\mathbf{W},\mathbf{S}}(5,6)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{6,5} \times p_{\mathbf{W},\mathbf{S}}(6,5)}{p_{\mathbf{W}}(6)}$$

$$\mathbb{P}(Q_2) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(2,1)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{3,6} \times p_{\mathbf{W},\mathbf{S}}(3,6)}{p_{\mathbf{W}}(3)} = \frac{\Gamma_{6,3} \times p_{\mathbf{W},\mathbf{S}}(6,3)}{p_{\mathbf{W}}(6)} = \frac{\Gamma_{5,4} \times p_{\mathbf{W},\mathbf{S}}(5,4)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{4,5} \times p_{\mathbf{W},\mathbf{S}}(4,5)}{p_{\mathbf{W}}(4)}$$

$$\mathbb{P}(Q_3) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(2,1)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{3,5} \times p_{\mathbf{W},\mathbf{S}}(3,5)}{p_{\mathbf{W}}(3)} = \frac{\Gamma_{5,3} \times p_{\mathbf{W},\mathbf{S}}(5,3)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{6,4} \times p_{\mathbf{W},\mathbf{S}}(6,4)}{p_{\mathbf{W}}(6)} = \frac{\Gamma_{4,6} \times p_{\mathbf{W},\mathbf{S}}(4,6)}{p_{\mathbf{W}}(4)}$$

:

$$\mathbb{P}(Q_{15}) = \frac{\Gamma_{1,6} \times p_{\mathbf{W},\mathbf{S}}(1,6)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{6,1} \times p_{\mathbf{W},\mathbf{S}}(6,1)}{p_{\mathbf{W}}(6)} = \frac{\Gamma_{2,4} \times p_{\mathbf{W},\mathbf{S}}(2,4)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{4,2} \times p_{\mathbf{W},\mathbf{S}}(4,2)}{p_{\mathbf{W}}(4)} = \frac{\Gamma_{5,3} \times p_{\mathbf{W},\mathbf{S}}(5,3)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{3,5} \times p_{\mathbf{W},\mathbf{S}}(3,5)}{p_{\mathbf{W}}(3)}$$

The M=1, K=6 Case, Identities

$$\mathbb{P}(Q_1) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(2,1)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{3,4} \times p_{\mathbf{W},\mathbf{S}}(3,4)}{p_{\mathbf{W}}(3)} = \frac{\Gamma_{4,3} \times p_{\mathbf{W},\mathbf{S}}(4,3)}{p_{\mathbf{W}}(4)} = \frac{\Gamma_{5,6} \times p_{\mathbf{W},\mathbf{S}}(5,6)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{6,5} \times p_{\mathbf{W},\mathbf{S}}(6,5)}{p_{\mathbf{W}}(6)}$$

$$\mathbb{P}(Q_2) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(2,1)}{p_{\mathbf{W}}(2)} = \frac{\Gamma_{3,6} \times p_{\mathbf{W},\mathbf{S}}(3,6)}{p_{\mathbf{W}}(3)} = \frac{\Gamma_{6,3} \times p_{\mathbf{W},\mathbf{S}}(6,3)}{p_{\mathbf{W}}(6)} = \frac{\Gamma_{5,4} \times p_{\mathbf{W},\mathbf{S}}(5,4)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{4,5} \times p_{\mathbf{W},\mathbf{S}}(4,5)}{p_{\mathbf{W}}(4)}$$

$$\mathbb{P}(Q_3) = \frac{\Gamma_{1,2} \times p_{\mathbf{W},\mathbf{S}}(1,2)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{2,1} \times p_{\mathbf{W},\mathbf{S}}(3,5)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{5,3} \times p_{\mathbf{W},\mathbf{S}}(3,5)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{6,4} \times p_{\mathbf{W},\mathbf{S}}(6,4)}{p_{\mathbf{W}}(6)} = \frac{\Gamma_{4,6} \times p_{\mathbf{W},\mathbf{S}}(4,6)}{p_{\mathbf{W}}(4)}$$

$$\mathbb{P}(Q_{15}) = \frac{\Gamma_{1,6} \times p_{\mathbf{W},\mathbf{S}}(1,6)}{p_{\mathbf{W}}(1)} = \frac{\Gamma_{6,1} \times p_{\mathbf{W},\mathbf{S}}(3,5)}{p_{\mathbf{W}}(6)} = \frac{\Gamma_{4,2} \times p_{\mathbf{W},\mathbf{S}}(4,2)}{p_{\mathbf{W}}(4)} = \frac{\Gamma_{5,3} \times p_{\mathbf{W},\mathbf{S}}(5,3)}{p_{\mathbf{W}}(5)} = \frac{\Gamma_{3,5} \times p_{\mathbf{W},\mathbf{S}}(3,5)}{p_{\mathbf{W}}(3)}$$

Maximize

$$\left(\sum_{i,j\in\mathcal{X}\times\mathcal{X}, j\neq i} p_{\mathbf{W},\mathbf{S}}(i,j) \times \left[\Gamma_{i,j}\left(\frac{K}{M+1}\right) + (1-\Gamma_{i,j})(K-M)\right]\right)^{-1}$$

1/rate of Partition-and-Code Scheme

 $\mathbb{E}_{\sim (\mathbf{W}, \mathbf{S})}[\cdot]$

1/rate of MDS

s.t.
$$\mathbb{P}(\mathbf{W} = i | \mathbf{Q} = \mathbf{Q}) = \mathbb{P}(\mathbf{W} = i) \quad \forall i \in \mathcal{K}$$
.

$$\left(K - M - \left(K - M - \frac{K}{M+1}\right) \times \Gamma_{1,2} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},\{2\}])}{p_{\mathbf{W}}(\{1\})} \begin{pmatrix} K - 1\\ M \end{pmatrix}\right)^{-1}$$

$$\Gamma_{1,2} = \min_{i \in [K-1:K]} \left\{ 1, \frac{p_{\mathbf{W},\mathbf{S}}(\{i\}, [K-1:K] \setminus \{i\}) p_{\mathbf{W}}(\{1\})}{p_{\mathbf{W},\mathbf{S}}(\{1\}, \{2\}) p_{\mathbf{W}}(\{i\})} \right\}$$

$$\left(K - M - \left(K - M - \frac{K}{M+1}\right) \times \Gamma_{1,2} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},\{2\}])}{p_{\mathbf{W}}(\{1\})} \begin{pmatrix} K - 1 \\ M \end{pmatrix}\right)^{-1}$$

$$\Gamma_{1,2} = \min_{i \in [K-1:K]} \left\{ 1, \frac{p_{\mathbf{W},\mathbf{S}}(\{i\}, [K-1:K] \setminus \{i\}) p_{\mathbf{W}}(\{1\})}{p_{\mathbf{W},\mathbf{S}}(\{1\}, \{2\}) p_{\mathbf{W}}(\{i\})} \right\}$$

We generalize this technique to M, K satisfying the divisibility condition, thus obtaining the lower bound on the capacity.

$$R_{\text{LB}} = \left(K - M - \left(K - M - \frac{K}{M+1}\right) \times \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])}{p_{\mathbf{W}}(\{1\})} \binom{K-1}{M}\right)^{-1}$$

$$\Gamma_{\{1\},[2:M+1]} = \min_{i \in [K-M:K]} \left\{ 1, \frac{p_{\mathbf{W},\mathbf{S}}(\{i\},[K-M:K] \setminus \{i\})p_{\mathbf{W}}(\{1\})}{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\{i\})} \right\}$$

Capacity of PA-PIR-SI

Theorem 1. For PA-PIR-SI with K messages and M side info. messages such that M+1 is a divisor of K and strictly less than \sqrt{K} , under any popularity profile Λ , the capacity is upper bounded by

$$R_{\rm UB} = \frac{M+1}{K}$$

and is lower bounded by

$$R_{\text{LB}} = \left(K - M - \left(K - M - \frac{K}{M+1}\right) \times \Gamma_{\{1\},[2:M+1]} \frac{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])}{p_{\mathbf{W}}(\{1\})} \binom{K-1}{M}\right)^{-1}$$

where

$$\Gamma_{\{1\},[2:M+1]} = \min_{i \in [K-M:K]} \left\{ 1, \frac{p_{\mathbf{W},\mathbf{S}}(\{i\},[K-M:K] \setminus \{i\})p_{\mathbf{W}}(\{1\})}{p_{\mathbf{W},\mathbf{S}}(\{1\},[2:M+1])p_{\mathbf{W}}(\{i\})} \right\}$$

•	Proof relies on a simple, but effective consequence of the decodability/privacy condition	ns.

- Proof relies on a simple, but effective consequence of the decodability/privacy conditions.
 - For a query generated by any PA-PIR-SI protocol, consider any message X_{W^*} .

- Proof relies on a simple, but effective consequence of the decodability/privacy conditions.
 - For a query generated by any PA-PIR-SI protocol, consider any message X_{W^*} .
 - There must exist M messages $X_{{
 m S}^*}$ such that $X_{{
 m W}^*}$ can be recovered given $X_{{
 m S}^*}$.

- Proof relies on a simple, but effective consequence of the decodability/privacy conditions.
 - For a query generated by any PA-PIR-SI protocol, consider any message $X_{
 m W^*}$.
 - There must exist M messages X_{S^*} such that X_{W^*} can be recovered given X_{S^*} .
 - Otherwise, from the server's perspective, the user wants $X_{\rm W^*}$ with 0 probability, contradicting the assumption that $\lambda_{\rm W^*}>0$.

- Proof relies on a simple, but effective consequence of the decodability/privacy conditions.
 - For a query generated by any PA-PIR-SI protocol, consider any message $X_{
 m W^*}$.
 - There must exist M messages X_{S^*} such that X_{W^*} can be recovered given X_{S^*} .
 - Otherwise, from the server's perspective, the user wants $X_{\rm W^*}$ with 0 probability, contradicting the assumption that $\lambda_{\rm W^*}>0$.
- \Longrightarrow Server's answer must have at least $\frac{K}{M+1}$ linear combinations, each of length B bits.

- Proof relies on a simple, but effective consequence of the decodability/privacy conditions.
 - For a query generated by any PA-PIR-SI protocol, consider any message $X_{
 m W^*}$.
 - There must exist M messages $X_{\mathbf{S}^*}$ such that $X_{\mathbf{W}^*}$ can be recovered given $X_{\mathbf{S}^*}$.
 - Otherwise, from the server's perspective, the user wants $X_{\rm W^*}$ with 0 probability, contradicting the assumption that $\lambda_{\rm W^*}>0$.
- \Longrightarrow Server's answer must have at least $\frac{K}{M+1}$ linear combinations, each of length B bits.
- \implies Rate upper bound is $\frac{B}{[K/(M+1)]B} = \frac{M+1}{K}$

Outline

- Model + Assumptions
- A Motivating Example
- Main Results
- Simulations
- Summary and Open Problems

 $\frac{R_{\text{RCS}}}{R_{UB}}$ and $\frac{R_{\text{MDS}}}{R_{UB}}$ vs. K, for M=1 and different models for the popularity profile.

 $\frac{R_{\mathrm{RCS}}}{R_{UB}}$ and $\frac{R_{\mathrm{MDS}}}{R_{UB}}$ vs. K, for different M and the Zipf model for the popularity profile.

Outline

- Model + Assumptions
- A Motivating Example
- Main Results
- Simulations
- Summary and Open Problems

In This Work:

- Introduced the PA-PIR-SI problem—a popularity-aware generalization of PIR-SI
- Studied the pitfalls of the existing PIR-SI schemes in the case of non-uniform popularities
- Derived bounds on the capacity of the PA-PIR-SI problem
 - Upper Bound: Using information-theoretic arguments.
 - Lower Bound: New achievability scheme (Randomized Code Selection).

Open Problems

- Capacity of multi-server PA-PIR-SI?
- Capacity of multi-message PA-PIR-SI?
- Capacity of multi-user PA-PIR-SI?
- Information leakage due to inaccurate statistics (e.g. noisy popularity profile)?