

FORESEE®

LPDDR Datasheet

Confidential

D-00263

FLXC2002G-C4 ongsys

Version 1.0

LONGSYS ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE.

Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. All brand names, trademarks and registered trademarks belong to their respective owners.

This document and all information discussed herein remain the sole and exclusive property of Longsys Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or other-wise.

For updates or additional information about Longsys products, contact your nearest Longsys office.

© 2021 Shenzhen Longsys Electronics Co., Ltd. All rights reserved.

Revision History

Rev.	Date	Changes
1.0	2021/10/09	Document Create.

Confidential

Longsys

Confidential

Longsys

Confidential

Longsys

Confidential

CONTENTS

Revision History	2
CONTENTS	
1 Key Features	
3 Functional Block Diagram	6
4 Ordering Information	
5 Ball Assignment	8
6 Pin Description	
7 Package Information	
8 Input/Output Capacitance	11
8.1 IDD Specification Parameters and Operating Conditions	11
8.2 Absolute Maximum DC Ratings	14
8.3 Recommended DC Operating Conditions	
8.4 Initialization Timing Parameters	
8.5 AC Timing	
8.5.1 Clock Timing	
8.5.2 Read Output Timing	18

Confidential

)

Longsys

1 Key Features

Features

- Ultra-low-voltage core and I/O power supplies
 - VDD1 = 1.70-1.95V; 1.8V nominal
 - VDD2 = 1.06-1.17V; 1.10V nominal
 - VDDQ = 0.57-0.65V; 0.6V nominal
- Frequency range
 - 1600 –10 MHz (data rate range: 3200–20
 Mb/s/pin)
- 16n prefetch DDR architecture
- 8 internal banks per channel for concurrent operation
- Single-data-rate CMD/ADR entry
- Bidirectional/differential data strobe per byte lane
- Programmable READ and WRITE latencies (RL/WL)
- Programmable and on-the-fly burst lengths (BL =16,32)
- Directed per-bank refresh for concurrent bank operation and ease of command scheduling
- Up to 12.8 GB/s per chip (2 channels x 6.4 GB/s)

- On-chip temperature sensor to control self refresh rate
- Partial-array self refresh (PASR)
- Selectable output drive strength (DS)
- Clock-stop capability
- RoHS-compliant, "green" packaging
- Programmable VSSQ (ODT) termination
- Single-ended CK and DQS support

Options

- VDD1/VDD2/VDDQ: 1.8V/1.1V/0.6V
- Array configuration
 - 512Meg x 32 (2 channels x16 I/O)
- Device configuration
 - 512M16 x 2 die in package
- FBGA "green" package
 - 200-ball VFBGA (10mm x 14.5mm x1.0mm max)
- Speed grade, cycle time
 - 625ps @ RL = 28/32¸ ⊵√ 🦠
- Operating temperature range -25°C to +85°C

Confidential

2 SDRAM Addressing

	Configuration		512Meg x 32 (16Gb/Package)				
	Channel A, Rank 0		x16 mode x 1 die				
Die Configuration	Channel B, Rank 0		x16 mode x 1 die				
Die Configuration	Channel A, Rank 1		NA NA				
	Channel B, Rank 1	Pol	NA NA				
	Device density (per die)		8Gb				
: 2]	Device density (per channe	l)	8Gb				
Confidential	Configuration(per die)		64Mb × 16 DQ × 8 banks				
	Number of channels (per di	e)	SYS 1				
	Number of banks (per chann	el)	Tolla 8				
	Array prefetch (bits, per chan	nel)	256				
1 0	Number of rows (per channe	el)	65336				
Die Addressing	Number of columns (fetch bound	daries)	64				
	Page size (bytes)		2048				
	Channel density (bits per chan	nel)	8,589,934,592				
	Total density (bits per die)		8,589,934,592				
	Bank address		BA[2:0]				
	Row add	dress	R[15:0]				
	x16 Colum addres		C[9:0]				
	Burst starting address bound	ary	64-bit				

Confidential

Longsys

3 Functional Block Diagram

DRAM Block Diagrams

Dual -Die, Dual-Channel, Package Block Diagram

Longsys

Confidential

Longsys

<u>conf</u>idential

4 Ordering Information

Part Number	Package Size(mm)	Memory Combination	Operation Voltage	Density Speed		Package
FLXC2002G-C4	10*14.5*1.0 (max)	LPDDR4X	1.8V/1.1V/0.6V	16Gb	3200Mbps	200ball FBGA (Lead & Halogen Free)

Confidential

5 Ball Assignment

200-Ball Dual-Channel Discrete VFBGA

	1	2	3	4	5	6	7	8	9	10	11	12
Α	DNU	DNU	V _{SS}	V _{DD2}	ZQ0	1000	***************************************	NC	V _{DD2}	V _{SS}	DNU	DNU
В	DNU	DQ0_A	V _{DDQ}	DQ7_A	V _{DDQ}		ongs	V _{DDQ}	DQ15_A	V _{DDQ}	DQ8_A	DNU
С	V _{SS}	DQ1_A	DMI0_A	DQ6_A	V _{SS}	1	0110	V _{SS}	DQ14_A	DMI1_A	DQ9_A	V _{SS}
D	V_{DDQ}	V _{SS}	DQS0_t_A	V _{SS}	V_{DDQ}			V_{DDQ}	V _{SS}	DQS1_t_A	V _{SS}	V_{DDQ}
E	V _{SS}	DQ2_A	DQS0_c_A	DQ5_A	V _{SS}			V _{SS}	DQ13_A	DQS1_c_A	DQ10_A	V _{SS}
F	V _{DD1}	DQ3_A	V _{DDQ}	DQ4_A	V _{DD2}			V _{DD2}	DQ12_A	V _{DDQ}	DQ11_A	V _{DD1}
GE	V _{ss}	ODT_CA_A	V _{SS}	V _{DD1}	V _{SS}			V _{SS}	V _{DD1}	V _{SS}	NC	V _{SS}
H	V_{DD2}	CA0_A	NC	CS0_A	V _{DD2}			V _{DD2}	CA2_A	CA3_A	CA4_A	V _{DD2}
J	V _{SS}	CA1_A	V _{SS}	CKE0_A	NC		1	CK_t_A	CK_c_A	V _{SS}	CA5_A	V _{SS}
K	V _{DD2}	V _{SS}	V _{DD2}	V _{SS}	NC			NC	V _{SS}	V _{DD2}	V _{SS}	V _{DD2}
L						1	·			3	,	
М			1									
N	V _{DD2}	V _{SS}	V _{DD2}	V _{SS}	NC			NC	V _{SS}	V _{DD2}	V _{SS}	V _{DD2}
Р	V _{SS}	CA1_B	V _{SS}	CKE0_B	NC			CK_t_B	CK_c_B	V _{SS}	CA5_B	V _{SS}
R	V _{DD2}	CA0_B	NC	CS0_B	V _{DD2}			V _{DD2}	CA2_B	CA3_B	CA4_B	V _{DD2}
T	V _{SS}	ODT_CA_B	V _{SS}	V _{DD1}	V _{SS}			V _{SS}	V _{DD1}	V _{SS}	RESET_n	V _{SS}
U	V _{DD1}	DQ3_B	V _{DDQ}	DQ4_B	V _{DD2}			V _{DD2}	DQ12_B	V _{DDQ}	DQ11_B	V _{DD1}
V	V _{SS}	DQ2_B	DQS0_c_B	DQ5_B	V _{SS}			V _{SS}	DQ13_B	DQS1_c_B	DQ10_B	V _{SS}
W	V_{DDQ}	V _{SS}	DQS0_t_B	V _{SS}	V_{DDQ}			V_{DDQ}	V _{SS}	DQS1_t_B	V _{SS}	V _{DDQ}
Υ	V _{SS}	DQ1_B	DMI0_B	DQ6_B	V _{SS}			V _{SS}	DQ14_B	DMI1_B	DQ9_B	V _{SS}
AA	DNU	DQ0_B	V _{DDQ}	DQ7_B	V_{DDQ}			V_{DDQ}	DQ15_B	V_{DDQ}	DQ8_B	DNU
AB	DNU	DNU	V _{SS}	V _{DD2}	V _{SS}			V _{SS}	V _{DD2}	V _{SS}	DNU	DNU
,	1	2	3	14n	5	6	7	8	9	10	11	12
		(v _{ss}	T.O								
						iew (ball d	lown)				~	CVS
		LPDDR4_A(0	Channel A)	LP	DDR4_B(Ch	annel B)	ZQ, OD	T_CA, RESI	ET	Supply	Grou	SYS ind

Symbol	Туре	Description
CK_t_A, CK_c_A, CK_t_B, CK_c_B	Input	Clock: CK_t and CK_c are differential clock inputs. All address, command and control input signal are sampled on positive edge of CK_t and the negative edge of CK_c. AC timings for CA parameters are referenced to clock. Each channel (A, B) has its own clock pair.
CKE0_A, CKE0_B	Input	Clock enable: CKE HIGH activates and CKE LOW deactivates the internal clock signals, input buff and output drivers. Power-saving modes are entered and exited via CKE transitions. CKE is samp at the rising edge of CK.
CS0_A, CS0_B	Input	Chip select: Each channel (A, B) has its own CS signals.
CA[5:0]_A, CA[5:0]_B	Input	Command/address inputs: Provide the command and address inputs according to the command truth table. Each channel (A, B) has its own CA signals.
ODT_CA_A, ODT_CA_B	Input	CA ODT control: The ODT_CA pin is used in conjunction with the Mode Register to turn on/off the Die-Termination for CA pins.
DQ[15:0]_A, DQ[15:0]_B	I/O	Data input/output: Bidirectional data bus.
DQS[1:0]_t_A, DQS[1:0]_c_A, DQS[1:0]_t_B, DQS[1:0]_c_B	1/0	Data strobe: DQS_t and DQS_c are bi-directional differential output clock signals used to strobe data during a READ or WRITE. The Data Strobe is generated by the DRAM for a READ and is edge aligned with Data. The Data Strobe is generated by the Memory Controller for a WRITE and must arrive prior to Data. Each byte of data has a Data Strobe signal pair.
DMI[1:0]_A, DMI[1:0]_B	1/0	Data Mask/Data Bus Inversion: DMI is a bi-directional signal which is driven HIGH when the dat the data bus is inverted, or driven LOW when the data is in its normal state. Data Inversion can be disabled via a mode register setting. Each byte of data has a DMI signal. This signal is also used along with the DQ signals to provide write data masking information to the DRAM. The DMI pin function - Data Inversion or Data mask - depends on Mode Register setting.
ZQ0	Reference	ZQ calibration reference: Used to calibrate the output drive strength and the termination resistan The ZQ pin shall be connected to VDDQ through a $2400 \pm 1\%$ resistor.
V_{DDQ} , V_{DD1} , V_{DD2}	Supply	Power supplies: Isolated on the die for improved noise immunity.
V _{SS}	Supply	Ground Reference: Power supply ground reference.
RESET_n	Input	RESET: When asserted LOW, the RESET pin resets both channels of the die.
DNU	-	Do not use: Must be grounded or left floating.
NC	Confic	No connect: Not internally connected.

Longsys

Package Information

0.4.50.	DIMENSION IN MM			DIMENSION IN INCH			
SYMBOL	MIN.	NOM.	NOM. MAX.		MIN. NOM.		MAX.
А			1.00			-	0.039
A1		0.21			0.00	08	
A2	0.64	0.70	0.76	0.025	0.02	28	0.030
b	0.25	0.30	0.35	0.010	0.0	12	0.014
D	14.40	14.50	14.60	0.567	0.5	71	0.575
Е	9.90	10.00	10.10	0.390 0.394		0.398	
е	C	.65 BS(C.	0.026 BSC.			
e1	C	.80 BS0	C.	\0	031	BS	C.
JEDEC		١	10-311(REF.)/M	M		
aaa			0.	10			
bbb			0.	10			
ddd			0.	08			
eee			0.	15			
fff			0.	08			
N	SE (mr	m) SI) (mm)	E1 (mr	n)	D1	(mm)
200	1.20 BS	SC. 0.9	75 BSC.	8.80 BSC. 13.65 BSC			65 BSC.

Longsys

onfidential

8 Input/Output Capacitance

Part Number	Parameter	Symbol	Min.	Max.	Unit	Notes
	Input capacitance, CK_t and CK_c	Сск	0.5	0.9	pF	
	Input capacitance delta, CK_t and CK_c	C _{DCK}	0	0.09	pF	3
	Input capacitance, all other input-only pins	Cı	0.5	0.9	pF	4
FLXC2002G-C4	Input capacitance delta, all other input-only pins	Сы	-0.10	0.10	pF	5
FLXC2002G-C4	Input/output capacitance, DQ, DMI, DQS_t, DQS_c	gS _{C10}	0.7	1.3	pF	6
	Input/output capacitance delta, DQS_t, DQS_c	C _{DDQS}	0	0.1	pF	7
	Input/output capacitance delta, DQ, DMI	C _{DIO}	-0.1	0.1	pF	8
	Input/output capacitance ZQ pin	CzQ	0	5.0	pF	

Notes:

- 1. This parameter applies to die device only (does not include package capacitance).
- 2. This parameter is not subject to production test. It is verified. The capacitance is measured according to JEP147 (Procedure for measuring input capacitance using a vector network analyzer (VNA) with VDD1, VDD2, VDDQ, VSS, VSS, VSS applied and all other pins floating.
- 3. Absolute value of CCK_t CCK_c.
- 4. CI applies to CS, CKE, and CA[5:0].
- 5. $CDI = CI 0.5 \times (CCK_t + CCK_c)$; It does not apply to CKE.
- 6. DM loading matches DQ and DQS.
- 7. Absolute value of CDQS_t and CDQS_c.
- 8. CDIO = CIO Average (CDQn, CDMl, CDQS_t, CDQS_c) in byte-lane.

8.1 IDD Specification Parameters and Operating Conditions

Parameter/Condition	Symbol	Power Supply	Current	Notes
Operating one bank active-precharge current:	IDD01	VDD1	ongfBD S	
tCK=tCK(MIN); tRC=tRC(MIN); CKE is HIGH; CS is LOW between valid commands; CA bus inputs are switching;	IDD02	VDD2	TBD	
Data bus inputs are stable; ODT is disabled	IDD0Q	VDDQ	TBD	
Idle power-down standby current: tCK = tCK (MIN); CKE	IDD2P1	VDD1	TBD	
is LOW; CS is LOW; All banks are idle; CA bus inputs are switching; Data bus inputs are stable; ODT is	IDD2P2	VDD2	TBD	SSYS
disabled	IDD2PQ	VDDQ	TBD	
Idle power-down standby current with clock stop: CK_t =LOW, CK_c = HIGH; CKE is LOW; CS is LOW; All banks	IDD2PS1	VDD1	TBD	

Parameter/Condition	Symbol	Power Supply	Current	Notes
are idle; CA bus inputs are stable; Data bus inputs are stable; ODT is disabled	IDD2PS2	VDD2	TBD	
	IDD2PSQ	VDDQ	TBD	
Idle non-power-down standby current: tCK = tCK (MIN);	IDD2N1	VDD1	TBD	
CKE is HIGH; CS is LOW; All banks are idle; CA bus inputs are switching; Data bus inputs are stable; ODT is	ODD2N2	VDD2	TBD	
disabled	IDD2NQ	VDDQ	TBD	
Idle non-power-down standby current with clock	IDD2NS1	VDD1	TBD	
stopped: CK_t = LOW; CK_c = HIGH; CKE is HIGH; CS is LOW; All banks are idle; CA bus inputs are stable; Data	IDD2NS2	VDD2	TBD	
bus inputs are stable; ODT is disabled	IDD2NSQ	VDDQ	TBD	
Active power-down standby current: tCK = tCK (MIN);	IDD3P1	VDD1	TBD	
CKE is LOW; CS is LOW; One bank is active; CA bus inputs are switching; Data bus inputs are stable; ODT is disabled	IDD3P2	VDD2	TBD	
	IDD3PQ	VDDQ	TBD	
Active power-down standby current with clock stop:	IDD3PS1	VDD1	TBD	
CK_t = LOW, CK_c = HIGH; CKE is LOW; CS is LOW; One bank is active; CA bus inputs are stable; Data bus	IDD3PS2	VDD2	TBD	
inputs are stable; ODT is disabled	IDD3PSQ	VDDQ	TBD	
Active non-power-down standby current: tCK = tCK	IDD3N1	VDD1	TBD	
(MIN);CKE is HIGH; CS is LOW; One bank is active; CA bus inputs are switching; Data bus inputs are stable;	IDD3N2	VDD2	TBD	
ODT is disabled	IDD3NQ	VDDQ	TBD	SYS
Active non-power-down standby current with clock	IDD3NS1	VDD1	TBD	5
stopped: CK_t = LOW, CK_c = HIGH; CKE is HIGH; CS is LOW; One bank is active; CA bus inputs are stable;	IDD3NS2	VDD2	TBD	
Data bus inputs are stable; ODT is disabled	IDD3NSQ	VDDQ	TBD	

Eident	Parameter/Condition	Symbol	Power Supply	Current	Notes
Eiden	Operating burst READ current: tCK = tCK (MIN); CS is	IDD4R1	VDD1	TBD	
	LOW between valid commands; One bank is active; BL = 16 or 32; RL = RL(MIN); CA bus inputs are switching;	IDD4R2	VDD2	TBD	
	50% data change each burst transfer;ODT is disabled	IDD4RQ	VDDQ	TBD	
	Operating burst WRITE current: tCK = tCK (MIN); CS is LOW between valid commands; One bank is active; BL = 16 or 32; WL =WL(MIN); CA bus inputs are switching;	IDD4W1	VDD1	TBD	
		IDD4W2	VDD2	TBD	
	50% data change each burst transfer; ODT is disabled	IDD4WQ	VDDQ	TBD	
Co	All-bank REFRESH burst current: tCK = tCK (MIN); CKE is HIGH between valid commands; tRC = tRFCab (MIN); Burst refresh; CA bus inputs are switching; Data bus	IDD51	VDD1	TBD	
		IDD52	VDD2	TBD	
	inputs are stable; ODT is disabled	IDD5Q	VDDQ	TBD	
	All-bank REFRESH average current: tCK = tCK (MIN); CKE is High between valid commands tRC = tREFI; CA bus inputs are switching; Data bus inputs are stable;	IDD5AB1	VDD1	TBD	
		IDD5AB2	VDD2	TBD	
	ODT is disabled	IDD5ABQ	VDDQ	TBD	
	Per-bank REFRESH average current: tCK = tCK (MIN);	IDD5PB1	VDD1	TBD	
	CKE is High between valid commands tRC = Trefi/8; CA bus inputs are switching; Data bus inputs are	IDD5PB2	VDD2	TBD	
	stable; ODT is disabled	IDD5PBQ	VDDQ	TBD	
	Power-down self refresh current: CK_t = LOW, CK_c =	IDD61	VDD1	TBD	
	HIGH;CKE is LOW; CA bus inputs are stable; Data bus inputs are stable; Maximum 1x self refresh rate; ODT is	IDD62	VDD2	TBD	rsys
	disabled(25°C)	IDD6Q	VDDQ	ТВО	5

Notes:

- Published IDD values except IDD4RQ are the maximum of the distribution of the arithmeticmean. Refer to the following note for IDD4RQ;.
- IDD4RQ value is reference only. Typical value. DBI disabled, VOH = VDDQ/3, TC = 25°C. 2.
- Measurement conditions of IDD4R and IDD4W values: DBI disabled, BL = 16. 3.

8.2 Absolute Maximum DC Ratings

Parameter	Symbol	Min	Max	Unit	Notes
VDD1 supply voltage relative to VSS	VDD1	-0.4	2.1	V	1
VDD2 supply voltage relative to VSS	VDD2	-0.4	1.5	V	1
VDDQ supply voltage relative to VSS	VDDQ	-0.4	1.5	V	1
Voltage on any ball relative to VSS	VIN, VOUT	-0.4yS	1.5	V	
Storage temperature	TSTG	-55	125	$^{\circ}$	2

Longsys

Notes:

- For information about relationships between power supplies, see the Voltage Ramp and Device Initialization section.
- Storage temperature is the case surface temperature on the center/top side of the device. For measurement conditions, refer to the JESD51-2 standard.

8.3 Recommended DC Operating Conditions

Recommended DC Operating Conditions									
Symbol	Min	Тур	Max	DRAM	Unit	Notes			
VDD1	1.7	1.8	1.95	Core 1 power	V	1,2			
VDD2	1.06	1.1	1.37	Core 2 power/Input buffer power	V	1,2,3			
VDDQ	0.57	0.6	0.65	I/O buffer power	V	2,3			

Notes:

- VDD1 uses significantly less power than VDD2. 1.
- The voltage range is for DC voltage only. DC voltage is the voltage supplied at the DRAM and is inclusive of all noise up to 20 MHz at the DRAM package ball.
- The voltage noise tolerance from DC to 20 MHz exceeding a peak-to-peak tolerance of 45mV at the DRAM ball is not included in the TdIVW. 3.

Symbol	Parameter	Min	Тур	Max 8	Unit	Notes
VREF(CA),max_r0	VREF(CA) range-0 MAX	_	-	30%	VDD2	1,11
VILLI (OA),IIIAX_IO	operating point					1,11
VREF(CA),min_r0	VREF(CA) range-0 MIN	100/	-	-	VDD2	1,11
VKEF(CA),IIIII_IU	operating point	10%				1,11
VREF(CA),max_r1	VREF(CA) range-1 MAX	-	-	42%	VDD2	1,11
VKEF(CA),IIIaX_II	operating point				VDD2	1,11
VREF(CA),min_r1	VREF(CA) range-1 MIN	22%	-	-	VDD2	s¥,£1
VKEF(CA),IIIII_II	operating point				10116	2),11
VREF(CA),step	VREF(CA) step size	0.30%	0.40%	0.50%	VDD2	2
VREF(CA),set_tol	VREF(CA) set tolerance	-1.00%	0.00%	1.00%	VDD2	3,4,6
VNEF(OA),Set_tor	VKEP(CA) Set tolerance	-0.10%	0.00%	0.10%	VDD2	3,5,7
tVREF_TIME-SHORT	VREF(CA) step time	(2)-	-	100	ns	8
tVREF_TIME-MIDDLE	VREF(GA) SIEP HITE	-	-	200	ns	12

Symbol	Parameter	Min	Тур	Max	Unit	Notes
tVREF_TIME-LONG		-	-	500	ns	9
tVREF_time_weak		-	-	1	ms	13,14
VREF(CA)_val_tol	VREF(CA) valid tolerance	-0.10%	0.00%	0.10%	VDD2	10

Notes:

- 1. V_{REF(CA)} DC voltage referenced to V_{DD2(DC)}.
- 2. $V_{REF(CA)}$ step size increment/decrement range. $V_{REF(CA)}$ at DC level.
- 3. VREF(CA), new = VREF(CA), old + n × VREF(CA), step; n = number of steps; if increment, use "+"; if decrement, use "-".
- 4. The minimum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ 1.0% × V_{DD2} . The maximum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ + 1.0% × V_{DD2} . For n > 4.
- 5. The minimum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ 0.10% × V_{DD2} . The maximum value of $V_{REF(CA)}$ setting tolerance = $V_{REF(CA),new}$ + 0.10% × V_{DD2} . For n < 4
- 6. Measured by recording the minimum and maximum values of the V_{REF(CA)} output over the range, drawing a straight line between those points and comparing all other V_{REF(CA)} output settings to that line.
- Measured by recording the minimum and maximum values of the V_{REF(CA)} output across four consecutive steps (n = 4), drawing a straight line between those points and comparing all other V_{REF(CA)} output settings to that line.
- 8. Time from MRW command to increment or decrement one step size for V_{REF(CA)}.
- 9. Time from MRW command to increment or decrement V_{REF,min} to V_{REF,max} to V_{REF,max} to V_{REF,min} change across the V_{REF}(CA) range in V_{REF} voltage.
- 10. Only applicable for DRAM component level test/characterization purposes. Not applicable for normal mode of operation. V_{REF} valid is to qualify the step times which will be characterized at the component level.
- 11. DRAM range-0 or range-1 set by MR12 OP[6].
- 12. Time from MRW command to increment or decrement more than one step size up to a full range of VREF voltage within the same VREF(CA) range.
- 13. Applies when VRCG high current mode is not enabled, specified by MR13 [OP3] = 0b.
- 14. ^tV_{REF}_time_weak covers all V_{REF}(CA) range and value change conditions are applied to ^tV_{REF}_TIME-SHORT/MIDDLE/LONG.

8.4 Initialization Timing Parameters

Parameter	Min	Max	Unit	Comment
tINIT0	-	20	ms	Maximum voltage ramp time
tINIT1	200	-	μs	Minimum RESET_n LOW time after completion of voltage ramp
tINIT2	10	-	nsal	Minimum CKE LOW time before RESET_n goes HIGH
tINIT3	2	-nf-ide	ms	Minimum CKE LOW time after RESET_n goes HIGH
tINIT4	5	011-	tCK	Minimum stable clock before first CKE HIGH
tINIT5	2	-	μs	Minimum idle time before first MRW/MRR command
tCKb	Note 1, 2	Note 1, 2	ns	Clock cycle time during boot

Notes:

- 1. Minimum tCKb guaranteed by DRAM test is 18ns.
- 2. The system may boot at a higher frequency than dictated by minimum tCKb. The higher boot frequency is system dependent.

8.5 AC Timing

8.5.1 **Clock Timing**

Parameter	Symbol	Min/ Max	Data Rate 3200Mbps	Unit
Average clock period	+CV(ova)	Min	625	ps
Average clock period	tCK(avg)	Max	100	ns
Average HIGH pulse	+CU(ava)	Min	10195 0.45	+CK(ova)
width	tCH(avg)	Max	0.55	tCK(avg)
Average LOW pulse	+Ol (over)	Min	0.45	+OK(2)
width	tCL(avg)	Max	0.55	tCK(avg)
Absolute clock period	tCK(abs)	Min	tCK(avg)min + tJIT(per)min	ps
Absolute clock HIGH	+CU(aba)	Min	0.43	tCK(ova)
pulse width	tCH(abs)	Max	0.57	tCK(avg)
Absolute clock LOW	tCL(abs)	Min	0.43	tCK(ova)
pulse width	(CL(abs)	Max	1 00.57	tCK(avg)
Clock pariod litter	+ UT(par)allawad	Min	-40	
Clock period jitter	tJIT(per)allowed	Max	40	ps
Maximum clock jitter	4			
between two	+ ial			
consecutive clock	tJIT(cc)allowed	Max	80	ps
cycles (includes clock				
period jitter)				

Longsys

8.5.2 **Read Output Timing**

Parameter	Symbol	Min/	Data Rate System	Unit
Parameter	Syllibol	Max	3200Mbps	Offic
DQS output access	tDQSCK	Min	1500	no
time from CK_t/CK_c	IDQSCK	Max	3500	ps
DQS output access time from CK_t/CK_c - voltage variation	tDQSCK_ VOLT	erMax al	7	ps/mV
DQS output access time from CK_t/CK_c- temperature variation	tDQSCK_ TEMP	Max	4 Longs:	S ps°/C
CK to DQS rank to rank variation	tDQSCK_r ank2rank	Max	1.0	ns
		confide	ential	
Everything for Memory			16 / 19 Longsy	s Copyright

Parameter	Symbol	Min/ Max	Data Rate 3200Mbps	Unit
DQS_t, DQS_c to DQ skew total, per group, per access (DBI Disabled)	tDQSQ	Max	0.18	UI
DQ output hold time total from DQS_t, DQS_c (DBI Disabled)	tQH	Min	MIN(tQSH, tQSL)	ps
Data output valid window time total, per pin (DBI-Disabled)	tQW_total	Min	0.75	UI
DQS_t, DQS_c to DQ skew total, per group, per access (DBI-Enabled)	tDQSQ_DBI	Max	0.18	UI
DQ output hold time total from DQS_t, DQS_c (DBI-Enabled)	tQH_DBI	Min	MIN(tQSH_DBI, tQSL_DBI)	ps
Data output valid window time total, per pin (DBI-Enabled)	tQW_total_	Min	0.75	UI
DQS_t, DQS_c differential output LOW time (DBI- Disabled)	tQSL	Min	tCL(abs) - 0.05	tCK(avg)
DQS_t, DQS_c differential output HIGH time (DBI- Disabled)	tQSH	Min	tCH(abs) - 0.05	tCK(avg)
DQS_t, DQS_c differential output LOW time (DBI- Enabled)	tQSL-DBI	JerMin ¹²¹	tCL(abs) - 0.045	tCK(avg)
DQS_t, DQS_c differential output HIGH time (DBI- Enabled)	tQSH-DBI	Min	tCH(abs) - 0.045	tCK(avg)
Read preamble	tRPRE	Min	ential 2.0	tCK(avg)

tRPST

tRPST

tLZ(DQS)

tLZ(DQ)

tHZ(DQS)

tHZ(DQ)

Min

Min

Min

Min

Parameter

DQS Low-Z from clock

DQ Low-Z from clock

DQS High-Z from clock

DQ High-Z from clock

0.5 tCK Read

1.5 tCK Read

postamble

postamble

(RL x tCK)+ tDQSCK(Min) - (tRPRE(Max) x tCK) - 200ps

(RL x tCK) + tDQSCK(Min) - 200ps

 $(RL \times tCK) + tDQSCK(Max) + (BL/2 \times tCK) + (tRPST(Max))$

xtCK) - 100ps

(RL x tCK) + tDQSCK(Max) + tDQSQ(Max) + (BL/2 x

tCK) -100ps

ps

ps

ps

ps

8.5.3 Write Timing

Parameter	Symbol	Min/ Max	Data Rate 3200Mbps	Unit
Rx timing window total at VdIVW voltage levels	TdIVW_t otal	Max	0.3	UI
Rx timing window 1-bit toggle (at VdIVW voltage levels)	TdIVW_1-bit	Max	TBD	UI
DQ and DMI input pulse width (at VCENT_DQ)	TdIPW	Min	0.45 Longsys	UI
DQ-to-DQS offset	tDQS2DQ	Min	200	ps
	*1	Max	800	, p
DQ-to-DQ offset	toodo	Max	30	ps
DQ-to-DQS offset temperature variation	tDQS2DQ _temp	Max	0.6 Longs	ps/°C
DQ-to-DQS offset voltage variation	tDQS2DQ _volt	Max	33	ps/50mV
DQ-to-DQS offset rank to rank variation	t DQS2DQ _rank2rank	Max	200	ps

1	Parameter	Symbol	Min/ Max	Data Rate 3200Mbps	Unit
ilde	WRITE command to first	+D000	Min	0.75	+OV()
	DQS transition	tDQSS	Max	1.25	tCK(avg)
	DQS input HIGH-level width	tDQSH	Min	0.4	tCK(avg)
	DQS input LOW-level width	tDQSL	Min	Longsys 0.4	tCK(avg)
	DQS falling edge to CK setup time	tDSS	Min	0.2	tCK(avg)
	DQS falling edge from CK hold time	tDSH	Min	0.2	tCK(avg)
	0.5 Tck Write postamble	tWPST	MIN	0.5	tCK(avg)
	1.5 Tck Write postamble	tWPST	Min	Longs J.5	tCK(avg)
	Write preamble	tWPRE	Min	2.0	tCK(avg)

Confidential

Longsys

Confidential