$$\Pr[M = m \mid C = c] = \Pr[M = m],$$
 (1.1)

which holds for some encryption scheme (Gen, Enc, Dec). We apply Bayes' formula to the left-hand-side of expression 1.1 to yield

$$\Pr[M = m \mid C = c] = \frac{\Pr[M = m, C = c]}{\Pr[C = c]}$$
(1.2)

Since the $\Pr\left[M=m,C=c\right]$ term in expression 1.2 represents a Joint Probability Distribution, we also have

$$\Pr[M = m, C = c] = \Pr[M = m] \Pr[C = c | M = m]$$

This allows the result in expression 1.2 to be equivalently expressed as

$$\Pr\left[M=m\,|\,C=c\right] = \frac{\Pr\left[M=m\right]\,\Pr\left[C=c\,|\,M=m\right]}{\Pr\left[C=c\right]}$$

which is divided by Pr[M = m] to give

$$\frac{\Pr[M = m \mid C = c]}{\Pr[M = m]} = \frac{\Pr[C = c \mid M = m]}{\Pr[C = c]}$$
(1.3)

By noting that expression 1.1 implies

$$\frac{\Pr\left[M=m\,|\,C=c\right]}{\Pr\left[M=m\right]}=1,$$

the result in expression 2.2 becomes

$$\frac{\Pr\left[C=c\,|\,M=m\right]}{\Pr\left[C=c\right]}=1$$

Multiplying this result by Pr[C = c] gives

$$\Pr[C = c \mid M = m] = \Pr[C = c],$$
 (1.4)

thereby proving that $\Pr\left[M=m\,|\,C=c\right]=\Pr\left[M=m\right]$ implies $\Pr\left[C=c\,|\,M=m\right]=\Pr\left[C=c\right]$.

Problem 2): For a message of length $l \in \mathbb{Z}^+$, a one-time pad will be associated with three separate set spaces and three different algorithms.

The set spaces of a one-time pad are the key space K, the message space M, and the cipher-text space C. Additionally these spaces are such that

$$\mathcal{K} = \mathcal{M} = \mathcal{C} = \{0, 1\}^l, \tag{2.1}$$

where $\{0,1\}^l$ is the set of all binary strings having length l. Formally, the set $\{0,1\}^l$ is defined $\{0,1\}^l \equiv \{n_1,n_2,\ldots,n_l\}$ where $\forall i \in [1,l], n_i \ni [0,1] \subset \mathbb{Z}$ (i.e. either $n_i = 0$, or $n_i = 1$ for every element in the set)¹.

A one-time pad is also associated with the algorithms

- The key-generation algorithm, denoted Gen
- The encryption algorithm, denoted Enc
- The decryption algorithm, denoted Dec

The purpose of Gen is to generate a key for encrypting and decrypting our message, where ee denote this key k and say that $k \in \mathcal{K}$. We say that Gen works by choosing a string from \mathcal{K} according to the uniform distribution. From this choice of distribution, it follows that each possible key will be chosen with probability 2^{-l} .

Before we describe Enc and Dec algorithms we must define a bit-wise **XOR** on two binary strings of equal length. Let a and b be any two binary strings such that $a, b \in \{0, 1\}^l$. Additionally, let us express these strings by

$$a \equiv \{a_1, a_2, \dots, a_l\}$$

and

$$b \equiv \{b_1, b_2, \dots, b_l\},\,$$

respectively. The bit-wise **XOR** of a and b is be denoted by $a \oplus b$ and expressed as the binary string

$$a \oplus b \equiv \{a_1 \oplus b_1, a_2 \oplus b_2, \dots, a_l \oplus b_l\}$$

The elements of this binary string, the $a_i \oplus b_i$, are binary bits and are defined $\forall i \in [1, l]$ to be the traditional bit-level **XOR** of a_i and b_i , denoted $a_i \oplus b_i$. We use the truth table

to express the definition of the transitional bit-level \mathbf{XOR} and continue to the definitions of the \mathtt{Enc} and \mathtt{Dec} algorithms.

The Enc algorithm is used to encrypt the message into cipher-text based on the chosen key. We will denote the message to be encrypted by m, the cipher-text resulting from the encryption by c, and the

 $^{^1}$ This also holds for $\mathcal M$ and $\mathcal C$

key by k. These will each be such that $m \in \mathcal{M}$, $c \in \mathcal{C}$, and $k \in \mathcal{K}$. Using this notation and our definition for bitwise **XOR** from above, we define

$$c := m \oplus k$$

to be the expression used by Enc as it encrypts the message.

Inversely from the Enc algorithm, the Dec algorithm is used to decrypt the cipher-text back into the message based on the supplied key. Similarly to Enc, we define

$$m := c \oplus k$$

to be the expression used by Dec as it decrypts the message.

To prove the security of this one-time pad, consider any arbitrary message m and any arbitrary cipher-text c, where $m \in \mathcal{M}$ and $c \in \mathbb{C}$. Now, we express the probability of finding a particular c, given a particular m by

$$\Pr\left[C = c \mid M = m\right] \tag{2.2}$$

Using the fact that $c = m \oplus k$, this expression may be rewritten as

$$\Pr\left[C=c \,|\, M=m\right] = \Pr\left[M \oplus K=c \,|\, M=m\right]$$
$$= \Pr\left[M \oplus K=c \,|\, M=m\right] = \Pr\left[m \oplus K=c\right]$$

Next, we **XOR** the random variable term in the right-hand term of this expression by m to obtain

$$\Pr\left[m \oplus (m \oplus K) = m \oplus c\right] = \Pr\left[K = m \oplus c\right],\,$$

because $a \oplus a = 0$ for any binary string a. Above, we defined the probability of choosing any k to be $\Pr[K = k] = 2^{-l}$. This allows us to finally obtain the relations

$$\Pr\left[C = c \mid M = m\right] = \Pr\left[M \oplus K = c \mid M = m\right]$$

$$= \Pr\left[m \oplus K = c\right]$$

$$= \Pr\left[m \oplus (m \oplus K) = m \oplus c\right]$$

$$= \Pr\left[K = m \oplus c\right] = \frac{1}{2l}$$
(2.3)

Since or choice of m in expression 2.2 was arbitrary, the result in expression 2.3 must hold for any $m \in \mathcal{M}$. This implies that, for any $m_0, m_1 \in \mathcal{M}$, we relation

$$\Pr[K = m_0 \oplus c] = \frac{1}{2^l} = \Pr[K = m_1 \oplus c]$$

holds. This satisfies Lemma 2.3 from the text, thus the one-time pad is perfectly secure.

Problem 3): One-time pads are difficult to use in practice because the any key must be the same length as the message and each key can be used only once.

Problem 4): Begin by defining \prod to be the encryption scheme $\prod = ($ Gen, Enc, Dec) where

- The security parameter $n \in \mathbb{Z}$ and Gen are used to generate the key k by running Gen $(1^n) = k$
- The key k, message m, and Enc are used to produce cipher-text c by running $\operatorname{Enc}_k(m) = c$
- The key k, cipher-text c, and Dec are used to recover the message m by running $Dec_k(c) = m$

Additionally, let m_0, m_1 be messages of the same length and c be the cipher-text generated from one of the messages by running $\operatorname{Enc}_k(m_b) = c$, where $b = \{0, 1\}$. The encryption scheme \prod is considered to be **CPA** secure if the probability of a polynomial time-limited adversary \mathcal{A} , with access to m_0, m_1 and c, determining which message was used to compute c is equal to the sum of 1/2 and any value that is negligible on the order of n.

Now denote the experiment above as $\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}(n)$. Let this return 0 except when \mathcal{A} is able to determine which message was used to compute c then let $\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}(n)$ return 1. Using this notation, our definition **CPA** security can be formally stated

$$\Pr\left[\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}\left(n\right)=1\right]\leq\frac{1}{2}+\operatorname{negl}\left(n\right)\tag{4.1}$$

where negl(n) is a negligible function of order n.

Finally, consider the case for the experiment $\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}(n)$ where the messages m_0,m_1 passed to the adversary \mathcal{A} are such that $m_0=m_1$ and the result of $\operatorname{Enc}_k\left(m_i\right)=c_i$ is fixed each m_i in the message space. That is to say, for any fixed k, that each $c_i\in\mathcal{C}$ is determined by the result of $\operatorname{Enc}_k\left(m_i\right)$ for only one $m_i\in\mathcal{M}$. In this case the result of $\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}(n)$ will always be 1 because the cipher-texts $c_0=\operatorname{Enc}_k\left(m_0\right)$ and $c_1=\operatorname{Enc}_k\left(m_1\right)$ are always equal thereby allowing \mathcal{A} always to succeed every time this is case. In this case, \prod does not satisfy the definition given in expression 4.1 and is therefore not **CPA** secure. Thus, we must impose an additional requirement on **CPA** secure encryption schemes.

The problem arises from the case when $m_0=m_1$ and the when, for each fixed $m_i\in\mathcal{M}$, the function $\operatorname{Enc}_k\left(m_i\right)$ always returns the the same c_i . That is to say that the operation $\operatorname{Enc}_k\left(m_i\right)$ on each $m_i\in\mathcal{M}$ always determines single, unique corresponding $c_i\in\mathcal{C}$. With this in mind, we refine our definition of **CPA** security to also include the requirement that, given a fixed key k, the Dec algorithm be non-deterministic on $m\in\mathcal{M}$. This is equivalent to requiring that the Dec algorithm be such that any passed $m_i\in\mathcal{M}$ can return any $c\in\mathcal{C}$ with some non-zero probability, thereby making Dec probabilistic instead of deterministic.

Problem 5): The **ECB** mode of operation is defined, it terms of the expression for the resulting cipher-text c, according to

$$c = \{F_k(m_1), F_k(m_2), \dots, F_k(m_i), \dots, F_k(m_l)\}$$
(5.1)

where $F_k(m_i)$ is a pseudo random permutation function with key k and the m_i are the blocks of the message. Since each block is directly encrypted by $F_k(m_i)$, any $m_i \in \mathcal{M}$ can result in only one unique $c_i \in \mathcal{C}$ when passed to $F_k(m_i)$ this mode is deterministic and therefore *not* **CPA** secure. Since this mode is not **CPA** secure, it *cannot* be *CCA* secure. This is follows from the fact that *CCA* security of an encryption scheme \prod implies the *CPA* security of \prod .

We also define the **CTR** mode of operation in terms of the expression for resulting cipher-text c. For this mode of operation we have

$$c = \{c_0, c_1, c_2, \dots, c_i, \dots, c_l\}$$
(5.2)

with $c_0 = \text{ctr}$ and the remaining c_i defined as $c_i = r_i \oplus m_i$. Here the m_i are the blocks of the message and the r_i are defined, in terms of their index i, some random initial counter value ctr, and the keyed pseudo random permutation function $F_k(r_i)$, according to

$$r_i = F_k \left(\mathsf{ctr} + i \right) \tag{5.3}$$

Since $r_i = F_k \, (\mathtt{ctr} + i)$ and \mathtt{ctr} is chosen at random, the set of all $r_i, \, r = \{r_1, r_2, \ldots, r_i, \ldots, r_l\}$ represents a pseudo random sequence with the same length as the message. This implies that result $c_i = r_i \oplus m_i$ for each block of the message m_i depends on both on m_i and r_i instead of only m_i and the keyed pseudo random permutation function $F(m_i)$. By extension, any arbitrary message $m \in \mathcal{M}$ can be encrypted into any cipher-text $c \in \mathcal{C}$ with some non-zero probability, thereby making the **CTR** mode of operation probabilistic and thus **CPA** secure. Since the first block of the message, c_0 , holds the value of ctr in the clear, the cipher-text resulting from this mode of operation is deterministic on the value of ctr.

This enables an adversary to employ a **CCA** attack by sending $m_0 = 0^n$ and $m_1 = 1^n$ to the encryption oracle, flipping the first bit of c_1 in the cipher-text c returned by the encryption oracle to obtain c', and then sending c' to the decryption oracle to obtain either 10^{n-1} or 01^{n-1} . The possible results from the decryption oracle respectively imply that either m_0 was enciphered to into c or m_1 was enciphered into c thus giving the adversary two messages, cipher-text associated with each message, and the value of ctr used for encrypting both message. This information allows the adversary to eventually to recover the pseudo random permutation function F_k and its associated key used in to encrypt these messages. This attack is made possible because only the first bit in the cipher-text for m was changed and this first block of cipher-text is directly dependent on only the corresponding message block m_1 and the key k when the the value of ctr is known. The **CCA** attack exploits the fact that encryption in **CTR** mode becomes deterministic the on the values of ctr and some cipher-text are known.

Problem 6): Since any **CPA** secure encryption scheme requires than any message $m \in \mathcal{M}$ can be encrypted into any $c \in \mathcal{C}$ with some non-zero probability, any cipher-text c can correspond to the encryption of several different messages, thereby preventing an eavesdropper from learning anything about plain-text by comparing two cipher-texts for equivalence.

Problem 7): Each block in a cipher-text from an encryption, under **CBC** mode of operation, is dependent on either the cipher-text from the block before it or the value of IV, they must be encrypted or decrypted serially. Therefore, under the **CBC** mode of operation, there is no speed increase, in either encryption and decryption, available from parallel processing.

Problem 8): This **MAC** is *not* secure due to the high probability of collisions. To see this, consider any two messages $m, m^* \in \mathcal{M}$ such that $m = \{m_1, m_2, \dots, m_k, \dots, m_l\}$, $m^* = \{m_1^*, m_2^*, \dots, m_k^*, \dots, m_l^*\}$, $m_i = m_j^*$, $m_j = m_i^*$, and $m_k = m_k^*$ for all other k < l. Then, clearly we have

$$t = F_k(m_1) \oplus F_k(m_2) \oplus \cdots F_k(m_i) \oplus \cdots \oplus F_k(m_i) \oplus \cdots \oplus F_k(m_l)$$

which, by the the of **XOR**, is equivalent to

$$t = F_k(m_1) \oplus F_k(m_2) \oplus \cdots F_k(m_i) \oplus \cdots \oplus F_k(m_i) \oplus \cdots \oplus F_k(m_l)$$

Applying our definitions for m and m^* from above, we clearly see that

$$t = F_k(m_1) \oplus F_k(m_2) \oplus \cdots \oplus F_k(m_j) \oplus \cdots \oplus F_k(m_i) \oplus \cdots \oplus F_k(m_l)$$

= $F_k(m_1^*) \oplus F_k(m_2^*) \oplus \cdots \oplus F_k(m_i^*) \oplus \cdots \oplus F_k(m_i^*) \oplus \cdots \oplus F_k(m_l^*) = t^*$

thereby showing collisoins for this hash function.

Problem 9):

Problem 10): This scheme does not provide authentication. In any **CPA** secure scheme, it is required that multiple, different messages can be encrypted into any arbitrary cipher-text with some non-zero probability. Thus, we may have that $\operatorname{Enc}_k(m_1) = \operatorname{Enc}_k(m_2) = c$ even if $m_1 \neq m_2$. In this case $t_1 = t_2$ would be true. This is due to the fact that the hash function in this scheme is not keyed, therefore any arbitrary cipher-text c always yields the same tag $t = \mathbf{hash}(c)$. Therefore, this scheme only ensures that the cipher-text has not been tampered with, not that it is authentic. It does nothing to ensure that the underlying message is being represented by the received cipher-text or the cipher-text itself are authentic.

Mid-Term

Problem 11): Define the cipher-texts c and c', encrypted on a one-time pad with the same key, from messages m and m', respectively, as $c = m \oplus k$ and $c' = m' \oplus k$. Now, **XOR** these expressions together to obtain

$$c \oplus c' = (m \oplus k) \oplus (m' \oplus k)$$

Since $k \oplus k = 0$, our result simplifies to

$$c \oplus c' = m \oplus m'$$

thereby giving an adversary a relation between cipher and message texts.

Problem 12): Encryption keys can be securely reused with a stream cipher through the use of random initialization vectors and augmented pseudo random functions, G(IV,k) which accept both and initialization vector and a seed and remain pseudo random even when the IV is known. Is passed at the beginning of the current session so that Enc is defined as

$$\operatorname{Enc} := \langle IV, G(k, IV) \oplus m \rangle$$

Additionally, we have

$$\mathrm{Dec} := G(k, IV) \oplus c$$

as the new definition for Dec.

Problem 13):