Financial Time Series Analysis:

Activision Blizzard, Inc. (ATVI)

The analysis concerns the listing of Activision Blizzard, Inc. (ATVI), a US company that produces and distributes video games. The data, daily basis, be found Yahoo Finance on can on (https://it.finance.yahoo.com/quote/ATVI?p=ATVI&.tsrc=fin-srch) range from 5 January 2015 to 31 December 2021 (1762 observations). The available variables are "open", the opening prices, "close", the closing prices, "high", the highest price, "low", the lowest price, "volume", number of shares traded, and "adjusted", i.e. the "close" prices adjusted for dividends. The objective of the analysis is to forecast volatility in the next 10 days from 1 January 2022 to 12 January 2022 (excluding Saturdays and Sundays).

Preliminary analyses:

Adjusted vs Ln(Adjusted) [11]

Figure [11] shows the trend of "adjusted" prices, the one on the right is in a logarithmic scale often preferred because it better captures the variations. A growing trend emerges interrupted by negative phases in 2019 and 2021.

The data emporate he near stationary a feet confirmed by the linear decay of the ACE and by (1) close to 1 in the

The data appear to be non-stationary, a fact confirmed by the linear decay of the ACF and by $\phi(1)$ close to 1 in the PACF, as visible [12].

Price

The ADF test confirms the presence of a RU (table 11):

tau3 phi2 phi3 tau2 phi1 statistics -2.191422 2.60629 3.139543 statistic -2.195816 3.180493 1pct 5pct 10pct 1pct 5pct 10pct -3.96 -3.41 -3.12 -3.43 -2.86 -2.57 tau3tau26.09 4.68 4.03 6.43 4.59 3.78 phi2 phi 1 phi3 8.27 6.25 5.34

ADF Tests (11)

Returns

Ts plot, ACF and PACF of log-returns [13]

Figure [13] shows yield plots with the corresponding ACF and PACF. The log-returns values seem to behave like a WN (in fact ACF and PACF are similar) with mean 0 with the difference that the volatility varies over time. The best ARMA on returns is ARMA(1,0) (table 12) with standardized student t distribution of errors [figure 16]. Robust matrix of ARMA(1,0) model coefficients:

EstimateStd.E	rror t value	Pr(> t)	Informa	tion Criteria:
mu 0.14496328 0.037	15019 3.9020	9.536679	9e-05	Akaike 4.134797
ar1 -0.08989513 0.026	07008 -3.4482	210 5.64314	1e-04	Bayes 4.147225
sigma 2.13518543	0.12689134	16.826880	0.000000e+00	
shape 3.59854165	0.35343093	10.181740	0.000000e+00	

WEAPON(1,0) (12)

In order to model volatility, various GARCH-type models are adopted starting from simple-GARCH (sGARCH), the simplest (Table 13).

Robust matrix of sGARCH model coefficients (1, 1):

Information criteria:

			(-, -).		
	EstimateStd.Er	ror t value	Pr(> t)	Akaike 4.08	33470
mu	0.16031128	0.03538001	4.531126	5.867024e-06	Bayes 4.102111
ar1	-0.06724427	0.02424906	-2.773067	5.553069e-03	
omega	0.32272135	0.11298132	2.856413	4.284569e-03	
alpha1	0.10332267	0.03640286	2.838312	4.535284e-03	
beta1	0.82617634	0.05162429	16.003637	0.000000e+00	
shape	4.27591533	0.47097146	9.078927	0.000000e+00	

sGARCH(1,1) (13)

CIs are better than ARMA(1,0) and all coefficients are highly significant. Before moving on to the GJR-GARCH specification, a model analogous to the sGARCH with the addition of a term that presents a possible asymmetric behavior of the conditional variance, it is necessary to test that the data actually present this asymmetric component with the tests of signs (Table 14)

t value	prob		t value prob		
Sign bias	0.6318618	0.5275594	Positive sign bias 0.535	6643 0.	5922583
Negative sign bias	0.3560575	0.7218402	Joint Effect	0.4823431	0.9227531
					Sign Tests (14)

Table (14) seems to exclude an asymmetry effect. The estimated GJR-GARCH(1,1) (Table 15) contradicts this result: it has slightly lower CIs than the sGARCH(1,1) model.

	EstimateStd.Error	r t value	Pr(> t)	Informa	ation criteria:
mu	1.408501e-01	3.572732e-02	3.9423650	8.068206e-05	Akaike 4.068428
ar1	-7.918403e-02	2.495840e-02	-3.1726398	1.510598e-03	Bayes 4.090175
omega	2.219963e-01	9.691699e-02	2.2905815	2.198763e-02	
alpha1	3.424963e-08	2.505195e-07	0.1367144	8.912565e-01	
beta1	8.773602e-01	3.837333e-02	22.8637996	0.000000e+00	
range1	1.352935e-01 4.131032	2e-02 3.27505	1.056	5418e-03	
shape	4.326810e+00	4.538131e-01	9.5343427	0.000000e+00	GJR- <i>GARCH</i> (1,1) (15)
The coe	efficient associated with the	e "leverage" effe	ct (gamma1) is	s highly significant	(see also the NIC (News Impact
Curve) i	in figure [14]).				

Obtained as a special case of the Family-GARCH, the T-GARCH model is estimated (Table 16):

	EstimateStd.Erro	r t value	Pr(> t)	Information	criteria:
mu	0.13383993	0.03560369	3.759159	0.0001704856	Akaike 4.062516
ar1	-0.07171283	0.02209787	-3.245237	0.0011735280	Bayes 4.084263
omega	0.10139953	0.03300704	3.072058	0.0021258859	
alpha1	0.03208596	0.02409900	1.331423	0.1830499650	
beta1	0.88464996	0.02909388	30.406738	0.0000000000	
range1	0.11006211 0.02859	328 3.84923	0.0001	1184897	
shape	4.46090036	0.48836320	9.134391	0.0000000000	T-GARCH(1,1) (16)

Usually this model is the one that best fits the data: in this case we observe even lower CIs than the GJR-GARCH. Graph [14] shows the NIC of the estimated GARCH models: the curves show the impact of Ut-1 news versus the conditional variance. In sGARCH the conditional variance does not react asymmetrically with respect to Ut-1, the opposite of what happens in the other two models.

News Impact Curve

NIC (News Impact Curve) [14] Figure [15] shows the ACF of the standardized residuals of the T-GARCH: it is noted that they are not correlated and the autocorrelations are always almost all within the acceptance bands.

Residui standardizzati

Residui standardizzati al quadrato

Residui standardizzati in valore assoluto

Residue ACF [15]

The outcome of the Ljung-Box and ARCH tests can be predicted from the ACFs in figure [15] (first H autocorrelations essentially null at all lags and very stable variance), since the autocorrelations are found within the bands except for some lags: facts confirmed by table (17).

Ljung-Box on standardized residues:

lag	8	9	12	17	22	27
statistics	5.79413	9.192854	13.66523	21.8104 28.48	78 30.04746	
parameter	1	2	5	10	15	20
p.value 0.01607	1977	0.01008781	0.01788173	0.01610019	0.01870755	0.06908835
Ljung-Box on st	andardize	d squared residua	als:			
lag	8	9	12	17	22	27
statistics	1.273935	5 1.32036	54 1.868	3.820	555 4.8852	224 6.459754
parameter	1	2	5	10	15	20
p.value 0.25902	297	0.5167572	0.8670308	0.9550791	0.9930544	0.9981168
Ljung-Box on st	andardize	d residuals in abs	solute value:			
lag	8	9	12	17	22	27
statistics	5.073308	5.49271	13 6.245	16.56	302 22.654	142 26.12174
parameter	1	2	5	10	15	20
p.value 0.02429	9697	0.06416119	0.2830134	0.08460998	0.09175785	0.1618287

ARCH tests:

statistics	0.79469	968 1.234	98 1.852772	2.864086
parameter	4	8	12	16
p.value 0.939	1576	0.9962842	0.9996005	0.9998758

Ljung-Box and ARCH test (17)

In table (18) the Nyblom test, to verify the stability of the parameters throughout the period considered:

Individu	ual test statistics:	Individual critical values:	Joint test statistic:	Joint Critical Values:
mu	0.0765550	10% 5% 1%	1.289422	10% 5% 1%
ar1	0.1128225	0.353 0.470 0.748		1.69 1.90 2.35
omega	0.3434348			
alpha1	0.2408769			
beta1	0.3300493			
age11	0.6133600			
shape	0.2500094			Nyblom test (18)

The test, obtained after shortening the series from 2011-2021 (unstable parameters were obtained) to 2015-2021, shows that in general all the parameters are stable. Figure [16] shows the unconditioned distribution of the standardized residuals, from which it can be seen that they fit better to a standardized student t than to a normal one.

Unconditional distribution of the standardized residuals [16]

The BDS test (Table 19) tests the null hypothesis that the residuals are generated by random variables IID:

Standard Normal	p-value
[0.5798] [1.1596] [1.7394] [2.3191]	[0.5798] [1.1596] [1.7394] [2.3191]
[2] -1.3038 -0.6705 -0.1822 -0.2915	[2] 0.19230.5026 0.8554 0.7707
[3] -1.1255 -0.3828 0.0683 -0.2773	[3] 0.26040.7019 0.9455 0.7815
[4] -0.6237 -0.0215 0.3061 -0.1418	[4] 0.53290.9829 0.7595 0.8872

BDS Tests (19)

The null hypothesis of the test is confirmed.

Finally the I-GARCH (1, 1), which by construction is stationary in the strong sense but not in the weak sense.

	EstimateStd.Erro	or t value	Pr(> t)	Information (Criteria
mu	0.1668748	0.03861495	4.321508	1.549665e-05	Akaike 4.093164
omega	0.2455451	0.10569714	2.323100	2.017376e-02	Bayes 4.105591
alpha1	0.1698579	0.04670338	3.636951	2.758840e-04	
beta1	0.8301421	NA	NA NA		
shape	3.5209391	0.31478619	11.185176	0.000000e+00	I-GARCH(1,1) (20)

Table (20) shows slightly higher ICs than the three GARCH models presented. The I-GARCH has a persistence of alpha1 + beta1 = 0.8301421 + 0.1698579 = 1.

Ex-post forecast:

To compare the results, the Garman-Klass measure is used as a benchmark, a measure of volatility that uses the four price measures "open", "close", "high" and "low".

Garman-Klass volatility measure [17]

In general, the two models seem to follow the proxy in figure [17] quite well, there is some slight more marked difference only towards mid-2017 and at the peak of 2020. To evaluate which model is the best among the four, in the table (21) the comparison of the error measures for both volatility and variance:

Measure	model	MYSEL	F	BUT IT	`IS	RMS ex	tension	MPE ex	tension	MAPS
RMSPE	E extension	ScMAE	scRMSI	Ξ						
Volatility	GARCH	-0.0309	0.6638	1.0431	-0.1882	0.3620	0.5066	0.8659	0.9116	
Volatility	GJRGARCH	-0.0284	0.6610	1.0496	-0.1748	0.3520	0.4884	0.8623	0.9173	
Volatility	TGARCH exten	sion	-0.0040	0.6401	1.0156	-0.1595	0.3386	0.4569	0.8350	0.8876
Volatility	IGARCH extens	sion	-0.2819	0.7640	1.1214	-0.3151	0.4415	0.6295	0.9966	0.9800
Variance	GARCH	0.8663	3.4716	9.0957	-0.6330	0.9181	1.6171	0.9096	0.9438	
Variance	GJRGARCH	0.7742	3.5075	9.1830	-0.5880	0.8782	1.5050	0.9190	0.9529	
Variance	TGARCH exten	sion	0.9480	3.3568	8.9925	-0.5277	0.8209	1.3027	0.8795	0.9331
Variance	IGARCH extens	sion	-0.5523	4.0805	9.2493	-1.0265	1.2352	2.3172	1.0691	0.9597
								F	rror Med	surements (21)

With respect to volatility, the T-GARCH seems to be the best (it is a model built specifically on volatility), while with respect to variance things are not very clear. It is noted that many ME and all MPE are negative therefore forecasts will probably tend to be higher than the true values. Having so many observations available, it is possible to make other checks such as the Diebold-Mariano test which compares two models at a time, evaluating which is the best among them.

```
GJR-GARCH vs T-GARCH -> Horiz: 1, Loss fct pow: 1, Stat (L1-L2): 4.585386, p-value = 4.851e-06
GARCH vs T-GARCH -> Horiz: 1, Loss fct pow: 2, Stat (L1-L2): 2.998648, p-value = 0.00275
```

Conditional variance:

GJR-GARCH vs T-GARCH -> Horiz: 1, Loss fct pow: 1, Stat (L1-L2): 4.769405, p-value = 2e-06 GARCH vs T-GARCH -> Horiz: 1, Loss fct pow: 2, Stat (L1-L2): 1.984773, p-value = 0.04732 It is concluded that the best model is the T-GARCH.

The Mincer-Zarnowitz test in table (22) checks whether an estimated model produces unbiased predictions. For the GARCH, GJR-GARCH and T-GARCH models the predictions do not appear biased, while for the IGARCH the F statistic in the Joint test is rejected.

T-GARCH:

HAC.se HAC.tstat estimates HAC.pvalue 0.7192473 Intercept 0.1983835 0.2758210 4.720840e-01 fit 0.8998397 0.1452298 6.1959723 7.196606e-10 (HAC) F stat: 0.285455, df: (2, 1760), p-value: 0.75170

IGARCH:

Estimate HAC.se HAC.tstat HAC.pvalue Intercept 0.6468953 0.2787662 2.320565 2.042411e-02 fit 0.5959210 0.1299054 4.587348 4.806193e-06 (HAC) F stat: 27.92452, df: (2, 1760), p-value: 1.150737e-12

Mincer-Zarnowitz test (22)

Ex-ante forecasts:

Figure [18] shows the forecast of returns and volatility for the 10 days following 31 December 2021 in which the financial markets are open. In table (23) the forecast values.

	Return forecasts (%):	Volatility forecasts:
T[0] = 2021-12-31		
T+1	0.2462	1,524
T+2	0.1258	1,545
T+3	0.1344	1,566
T+4	0.1338	1,585
T+5	0.1338	1.603
T+6	0.1338	1,621
T+7	0.1338	1,637
T+8	0.1338	1,653
T+9	0.1338	1,667
T+10	0.1338	1,681

Ex-ante forecast values (23)