Bài A. SUM4

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1 giây

Đếm số nghiệm nguyên của hệ (ở đây x là biến):

$$x_1 + x_2 + x_3 + x_4 = N$$

 $L_i \le x_i \le H_i, \forall i \in \{1, 2, 3, 4\}$

Dữ liệu vào

- $\bullet\,$ Dòng đầu tiên chứa Qlà số lượng test
case
- $\bullet~Q$ dòng tiếp theo, mỗi dòng chứa: $L_1~H_1~L_2~H_2~L_3~H_3~L_4~H_4~N$

Kết quả

 $\bullet~Q$ dòng là kết quả Qbài toán sau khi chia lấy dư cho 1000000007

Ví dụ

stdin	stdout
1	286
-5 5 -5 5 -5 5 -5 5 10	

Hạn chế

- $-10^9 \le L_i \le H_i \le 10^9$; $-10^9 \le N \le 10^9$; $1 \le Q \le 1000$
- Subtask 1: $|L_i|, |H_i| \le 100$
- Subtask 2: $|L_i|, |H_i| \le 10^5$
- Subtask 3: Q = 1
- Subtask 4: Ràng buộc gốc

Bài B. BRK

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1 giây

Cho xâu S độ dài n chỉ chứa các ký tự thuộc tập $\{'\{', '[', '(', ')', ']', ')', '?'\}$. Đếm số cách thay các dấu '?' bằng các ký tự khác để thu được dãy ngoặc đúng có bậc bằng k. Dãy ngoặc đúng bậc k được định nghĩa như sau:

- $\bullet~$ Xâu rỗng là dãy ngoặc đúng bậc 0
- Nếu A là dãy ngoặc đúng bậc a, B là dãy ngoặc đúng bậc b thì: $\{A\}$, (A), [A] là các dãy ngoặc đúng bậc a+1. AB là dãy ngoặc đúng bậc $\max(a,b)$

Dữ liệu vào

- $\bullet\,$ Dòng đầu chứa hai số nguyên dương:
 n~k
- Dòng thứ hai chứa một xâu có độ dài n, gồm các ký tự thuộc tâp $\{'\{', '[', '(', ')', ']', ')', '?'\}$

Kết quả

Ghi số cách thay thế, sau khi chia lấy dư cho $10^9 + 7$

Ví dụ

stdin	stdout
8 2 ?(??]?{}	3
?(??]?{}	
8 3	0
?(??]?{}	

Hạn chế

• $1 \le n \le 2000, 1 \le k \le 5$

Bài C. XSET

File dữ liệu vào: stdin File kết quả: stdout Hạn chế thời gian: 1 giây

Cho một dãy số nguyên dương $a=a_1,a_2,\ldots,a_n$ và một số k. Một tập con S của $\{1,2,\ldots,n\}$ được gọi là tập xor nếu S có không quá k phần tử và với mọi i,j thuộc S ta có $a_i+a_j=a_i\wedge a_j$. Ở đây \wedge là phép toán xor (tổng nim, cộng không nhớ hay hoặc triệt tiêu). Trọng số của S được hiểu là tổng tất cả các a_i với i thuộc S.

Yêu cầu: Hãy tính tổng trọng số tất cả các tập xor.

Dữ liệu vào

- $\bullet\,$ Dòng đầu tiên chứa số nguyên dương n
- $\bullet\,$ Dòng thứ hai chứa số nguyên dương k
- Nếu $n \le 10^4$ thì dòng thứ ba chứa n số, số thứ i là a_i . Nếu $n > 10^4$ thì không có dòng thứ ba

Kết quả

Ghi ra tổng trọng số tất cả các tập xor, sau khi chia lấy dư cho $10^9 + 7$.

Ví dụ

stdin	stdout
6	66
3	
1 1 2 3 4 5	

Hạn chế

- Subtask 1 (20%): $1 \le n, k, a_i \le 10^2$
- Subtask 2 (20%): $1 \le n, k, a_i \le 10^3$
- Subtask 3 (20%): $1 \le n, k \le 10^4$ và $a_i = i$
- Subtask 4 (20%): $1 \le n, k, a_i \le 10^4$
- Subtask 5 (20%): $1 \le n, k \le 10^{1000}$ và $a_i = i$