# Lab2Q4

### Loading required libraries

```
library(dplyr)
library(ggplot2)
```

#### Reading data

```
data = read.csv("June 10-July 12, 2015 - Gaming, Jobs and Broadband - CSV.csv")
```

Removing the variables having more than 65% missing values

```
dt = data[, colMeans(is.na(data)) <= .65]</pre>
```

#### Missing value imputation

We will replace the remaining missing values using Mode imputation

```
Mode <- function(x, na.rm = FALSE) {
    if(na.rm){
        x = x[!is.na(x)]
    }
    ux <- unique(x)
    return(ux[which.max(tabulate(match(x, ux)))])
}

vec = c()
for(n in names(dt))
{
    s = sum(is.na(dt[,n]))
    if(s >0)
    {
        vec = c(vec,n)
    }
}

for(var in vec)
{
    dt[is.na(dt[,var]),var] <- Mode(dt[,var],na.rm = T)
}</pre>
```

### Converting selected variables to factor

```
conames = c("int_date", "age", "zipcode", "weight", "standwt", "i..psraid")
dt[,!colnames(dt) %in% conames] = lapply(dt[,!colnames(dt) %in% conames], as.factor)
```

## How would you rate your community as a place to live?

Overall, how would you rate your community as a place to live? Would you say it is...

- 1 Excellent
- 2 Good
- 3 Only fair, OR
- 4 Poor?
- 8 (VOL.) Don't know
- 9 (VOL.) Refused

### Creating data frame with useful variables

```
q1 = select(dt,sample,lang,usr,cregion,state,form,sex,age,race,q1,marital,par,educ2,inc)
```

We will look at couple of graphs and variables to answer the above question

### Plot 1 : Age Distribution

```
ggplot(q1, aes(x = age)) + geom_histogram(color = "black", fill = "red")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



From the above plot, we can observe that most of the people belonging to age group 50-70 participated in survey.

# Plot 2: q1 vs Race

```
ggplot(q1,aes(race,fill = race)) +geom_bar()
```



From the frequency curve, we can see that most surveys are from people belonging to race group 1, i.e, White ggplot(q1,aes(q1,fill = race)) + geom\_bar(position = "dodge")



From the above curve we can conclude that ppl belonging to "White" race have voted the most for Excellent/Good quality of life, while the minority race such as Native American/American Indian have voted the least for Excellent/Good quality of life.

Plot 3: q1 vs Sex

ggplot(q1,aes(q1,fill = sex)) + geom\_bar(position = "dodge") + scale\_fill\_discrete(name="Sex",labels=c(



From the above plot, we can observe that more number of females have voted for "Excellent" quality while almost equal number of males and females have voted for "Good" quality.

# Plot 4: q1 vs PAR

```
ggplot(q1, aes(x = q1, fill = par)) + geom_bar(position = "dodge") + scale_fill_discrete(name = "parent")
```



Survey states that people or guardian who doesn't have children under age 18 have rated more to "Excellent/Good" community to live in.

# Q2 Part(a): Do you ever play video games on a computer, TV, game console, or portable device like a cell phone?

```
1 Yes
2 No
8 (VOL.) Don't know
9 (VOL.) Refused
Q2 <- select(dt,sample:q1,game1:game4,age,race,marital,par,educ2,inc)
Q2 <- select(Q2, -(sample:form))
Q2 <- select(Q2, -q1,-marital)
levels(Q2$game1) [4] = "8"</pre>
```

#### Plot 1: game1 vs Parent

```
ggplot(Q2, aes(x = game1, fill = par)) + geom_bar(position = "dodge") + scale_fill_discrete(name = "par
```



Survey states that people or guardian who doesn't have children under age 18 does not play video games.

# Q2 Part(b): Video games are a waste of time

### Plot 2: game2b vs income

```
ggplot(Q2,aes(x = game2b, fill = inc)) + geom_bar() + facet_grid(~inc)
```



Most of the people believe that video games are waste of time is true for some of the games but not others, whereas people earning (30k-40k) believes that it is true for all games.

# $\mathbf{Q2}\ \mathbf{Part}(\mathbf{c})$ : Most people who play video games are men

Plot 3: game3a vs sex

```
ggplot(Q2, aes(x = game3a, fill = sex)) + geom_bar(position = "dodge") + scale_fill_discrete(name = "Se
```



Almost everyone has agreed that most people who play video games are men.

# Q2 Part(d): People who play violent video games are more likely to be violent themselves

Plot 4: game3b vs race

```
ggplot(Q2, aes(x = game3b, fill = race)) + geom_bar() + facet_grid(~race)
```



Survey states that a person from any race disagrees with the fact that b. People who play violent video games are more likely to be violent themselves.

# Q3 About how often do you use the internet?

About how often do you use the internet? [READ] {Modified Teens Relationships}

- 1 Almost constantly
- 2 Several times a day
- 3 About once a day
- 4 Several times a week, OR
- 5 Less often?
- 8 (VOL.) Don't know
- 9 (VOL.) Refused

### Creating dataframe with useful variables

```
Q3 = select(dt, sample, lang, usr, cregion, state, sex, par, educ2, race, inc, age, emplnw, intfreq)
```

We will merge levels of some factors that do not provide much information

```
levels(Q3$intfreq)[7] = "8"
levels(Q3$intfreq)

## [1] "1" "2" "3" "4" "5" "8"
levels(Q3$inc)[11] = "98"
```

We will be looking at couple of plots to draw inferences and relationship between internet frequency and other factors

### Plot 1: intfreq

```
table(Q3$intfreq)
##
##
                            5
                                 8
           2
                 3
    390 1115
              211
                    137
                          136
                                12
ggplot(Q3,aes(intfreq)) + geom_bar(fill = "blue")
  900 -
count
  300 -
     0 -
                             2
                                           3
                                                                       5
                                               intfreq
```

The above frequency tells us that majority of people voted for option 2 i.e. "Several times a day".

### Plot 2: intfreq vs sex

```
ggplot(Q3,aes(intfreq,fill = sex)) + geom_bar(position = "dodge") + scale_fill_discrete(name="Sex",labe
```



From the above plot, we can see that males tend to spend more time on internet while there are more number of female users than male users.

Plot 3: intfreq vs parental

```
ggplot(Q3,aes(intfreq,fill = par)) + geom_bar(position = "dodge") +scale_fill_discrete(name="Parental S")
```



From the above graph, we can observe that the people who are parent of under 18 year age tend to use internet comparatively less.

# Plot 4 :intfreq vs age

ggplot(Q3,aes(y=age,x=intfreq)) + geom\_boxplot(aes(fill = intfreq)) + scale\_fill\_discrete(name="Interne")



From the above plot, we can conclude that people belonging to younger age group (<40) tend to use internet more oftenly that others.

# Plot 5: intfreq vs income

```
levels(Q3$inc)[11] = "98"
ggplot(Q3,aes(x = intfreq,fill = inc)) + geom_bar() + facet_wrap(~inc)
```



By observing the above plots carefully, we came to know that as income level of people increases they tend to spend more time on internet.