Farmville 解题报告

绍兴市第一中学 王文涛

1 试题来源

TopCoder SRM 676 Div.1 Level 3 Farmville

2 试题大意

有n种植物。种植第i种植物的过程中从播种到收获需要 $time_i$ 的时间。同时种植有些植物之前会要求先收获过某些植物。设共有m对要求关系。保证这些要求关系没有环。多种植物可以同时种植。对于第i 种植物可以使用 $cost_i$ 块钱使得 $time_i$ 减少1(最多减到0)。现在有budget块钱,求最少用多少时间可以种完所有植物。

数据范围: $n, m \le 50$, $time_i \le 25$, $cost_i$, $budget \le 10^9$

时间限制:5s

3 算法介绍

首先二分答案,设当前二分到的时间为λ,问题转化为求λ时间内完成最少 需要多少钱。

我们可以把植物抽象成点,题中所述的关系抽象成有向边,那么整张图就 是拓扑图。

由于入度为0的点可能有多个,不妨在这张拓扑图上添加不需要时间的起点S,起点连向所有入度为0的点;同理添加终点T。

设 x_i 为第i种植物播种的时间, y_i 为第i种植物收获的时间, d_i 为第i种植物的时间减少的值。

显然,对于第i种植物有

$$y_i - x_i \ge time_i - d_i$$

$$y_i - x_i \ge 0$$

对于每条边(u,v)有

$$x_v \ge y_u$$

对于起点和终点有

$$y_T - x_S \le \lambda$$

最小化

$$\sum cost_i \cdot d_i$$

其中 $d_i \ge 0$, x_i , y_i 无限制。

现在我们考虑如何把这个线性规划对偶。

考虑最大费用循环流的线性规划建模。设 f_i 为第i条边的流量, Cap_i 为流量上界, $Cost_i$ 为费用。对每条边有

$$0 \leq f_i \leq Cap_i$$

对每个点x有流量平衡

$$\sum_{v_i=x} f_i - \sum_{u_i=x} f_i = 0$$

最大化 $\sum Cost_i \cdot f_i$

将其对偶,设前|E|个限制对应的变量为 d_i ,后|V|个限制对应的变量为 a_i ,则变成如下线性规划:对每条边有

$$a_{v_i} - a_{u_i} + d_i \ge Cost_i$$

 a_x 无限制, $d_i \ge 0$

观察式子可以发现,这就是有很多变量,然后给定一些差分的不等式,然后可以花费一定代价放宽某个不等式,要求总代价最小。所以这个模型都可以对偶转化为最大费用循环流。

那么这题的线性规划看起来满足这个模型。我们可以在没有 d_i 的不等式里强行添加上 d_i ,并设其费用为 ∞ 。这样就可以把整个问题转化为最大费用循环流, ∞ 的费用对应的是 ∞ 的流量限制。

对于最大费用循环流问题, 我们可以用消圈算法解决。