COMP 330 Winter 2021 Assignment 2

Belle Pan 260839939

4th February 2021

Solution 1.

Give regular expressions for the following languages over $\{a,b\}$:

- 1. $\{w|w \text{ contains an even number of occurrences of } a\}$
- 2. $\{w|w \text{ contains an odd number of occurrences of } b\}$
- 3. $\{w |$ does not contain the substring $ab\}$
- 4. $\{w|w \text{ does not contain the substring } aba\}$

Below are the corresponding regular expressions:

- 1. $(b^*ab^*ab^*)^* + b^*$
- $2. (a^*ba^*)(ba^*ba^*)^*$
- 3. b^*a^*
- 4. $b^* + b^*aa^*(bbb^*aa^*)^*b^*$

Solution 2.

Suppose you have a DFA $M=(S,\Sigma,s_0,\delta,F)$. Consider two sitinct states s_1,s_2 , i.e. $s_1\neq s_2$. Suppose further that for all $a\in\Sigma$ $\delta(s_1,a)=\delta(s_2,a)$. Show that for any nonempty word w over Σ we have $\delta^*(s_1,a)=\delta^*(s_2,a)$.

Using induction on the length of the word w:

- Base case: |w| = 1 (length of the word w is 1)
 - We must show that for all $a \in \Sigma$, $\delta^*(s_1, a) = \delta^*(s_2, a)$.
 - This is already given in the question, $\forall a \in \Sigma \ \delta(s_1, a) = \delta(s_2, a)$.
 - Therefore, there is no other verification processes needed.
- Inductive Hypothesis: $\forall w \in \Sigma^*, |w| < n \Longrightarrow \delta^*(s_1, w) = \delta^*(s_2, w).$
 - Consider a word wa where a is any letter $\in \Sigma$ and |w| = n 1.
 - This yields : $\delta^*(s_1, wa)$
 - By the definition of δ^* , $\delta^*(s_1, wa) = \delta(\delta^*(s_1, w), a)$.
 - Then, by the inductive hypothesis, $\delta^*(s_1, wa) = \delta(\delta^*(s_1, w), a) = \delta(\delta^*(s_2, w), a)$
 - And finally, by the definition of δ^* , $\delta^*(s_1, wa) = \delta(\delta^*(s_1, w), a) = \delta(\delta^*(s_2, w), a) = \delta^*(s_2, wa)$

The inductive hypothesis holds and thus shows that for any nonempty word w over Σ we have $\delta^*(s_1, a) = \delta^*(s_2, a)$.

Solution 3. Show that the following languages are not regular by using the pumping lemma:

- 1. $\{a^n b^m a^{n+m} | n, m \ge 0\}$
- 2. $\{x|x=x^R, x\in\Sigma^*\}$ where x^R means x reversed (palindromes).

Below are the corresponding proofs using the demon - angel strategy of showing the pumping lemma:

- 1. (a) The demon picks a number p.
 - (b) The angel picks the word $a^pba^{(p+1)}$.
 - (c) The demon is forced to pick a y value that is made of exclusively a's due to the constraints $|xy| \le p$ and |y| > 0. Suppose that $y = a^k$.
 - (d) The angel picks i=3 such that the new word is $a^{p+2k}ba^{p+1}$. This word is not in the language as $1 \neq 2k$.
 - (e) Thus, by the pumping lemma, this language is indeed not regular.
- 2. (a) The demon picks a number p.
 - (b) The angel picks the word a^pbba^p .
 - (c) The demon is forced to pick x, y, z values such that for any $i \ge 0$, xy'z remains a palindrome; thus, $x = a^j$ for some $j \in \{0, ..., p-1\}$, $y = a^k$ for some $k \in \{1, ..., p\}$, and $z = a^lbba^p$ for some $l \in \{0, ..., p-1\}$.
 - (d) The angel picks i = 2 such that the new word is $a^{p+k}bba^p$. As k > 0, this word is not a palindrome and is thus not in the language.
 - (e) Therefore, by the pumping lemma, this language is indeed not regular.

Solution 4. Show that the following languages are not regular by using the pumping lemma:

- 1. $\{a \in \{a,b,c\}^* | |x| \text{ is a square}\}\$, where |x| means the length of x.
- **2.** $\{a^{2n}b^n\}$

Below are the corresponding proofs using the demon - angel strategy of showing the pumping lemma:

- 1. (a) The demon picks a number p.
 - (b) The angel picks the word $a^{p^2}b^{3p^2}$. $|a^{p^2}b^{3p^2}| = 4p^2$.
 - (c) The demon is forced to pick a y value that is made of exclusively a's due to the constraints $|xy| \le p$ and |y| > 0. Let |y| = k and $0 < k \le p$.
 - (d) The angel picks i=2 such that the new word is $a^{p^2+k}b^{3p^2}$ and $|a^{p^2+k}b^{3p^2}|=4p^2+k$. As $k\leq p<4p+1$, we know that $4p^2+q<4p^2+4p+1=(2p+1)^2$; $4p^2+q$ cannot be a square number as it is strictly less than the square after $4p^2$ and thus is not in the language.
 - (e) Therefore, by the pumping lemma, this language is indeed not regular.
- 2. (a) The demon picks a number p.
 - (b) The angel picks the word $a^{2p}b^p$.
 - (c) The demon is forced to pick a y value that is made of exclusively a's due to the constraints $|xy| \le p$ and |y| > 0. Let |y| = k and k > 0.
 - (d) The angel picks i=0 such that the new word is $a^{2p-k}b^p$. As $2p-k\neq 2p$, this word is not in the language.
 - (e) Thus, by the pumping lemma, this language is indeed not regular.

Solution 5. We are using the alphabet $\{0,1\}$. We have a DFA with 5 states, $S = \{s_0, s_1, s_2, s_3, s_4\}$. The start state is s_0 and the only accepting state is also s_0 . The transitions are given by the formula $\delta(s_i,a) = s_j$ where $j = i^2 + a \mod 5$. Draw the table showing which pairs of states are in-equivalent and then construct the minimal automaton. Remember to remove useless states right from the start, before you draw the table.

Let us draw the automaton described:

We notice that s_3 is an unreachable state; this means that we may remove it immediately, before the table is drawn.

States	s_0	s_1	s_2	s_4
s_0	Self	0	0	0
s_1		Self	0	1
s_2			Self	0
s_4				Self

Table 1: The table achieved by running the algorithm.

There is only one pair of states that are equivalent by the algorithm : s_1 and s_4 . We may now create the following minimized DFA:

