題號	模型回答	時間(秒)
1.	智慧刀把主要透過 Wi-Fi (2.45 GHz 802.11 b/g/n) 的通訊方式連接。	4.56
2.	智慧刀把能夠偵測 Fx(軸向力)、Fy(徑向力)和 Mz(扭矩)。	3.83
3.	智慧刀把的防水防塵等級是 IP67。	6.85
4.	G1/15,000 rpm	5.60
5.	>6 小時	4.12
6.	>10 天	4.45
7.	充電中。	3.64
8.	充電完成	5.03
9.	充電接點未貼合、變壓器不符要求 (DC12V, 2A) 、充電座故障	5.09
	智慧刀把的訊號強度是否足夠可以透過檢查 RSSI (接收訊號強度) 值來判	
10.	斷。一般而言,RSSI 值應該大於 -50dBm,以確保數據完整性。如果	6.62
	RSSI 值小於 -50dBm,則可能導致數據不完整。	
11.	在「即時監控」模式按下「START RECORD」按鈕	3.37
12.	「即時監控」頁面,按「TOOL CHANGE」進行換刀	5.19
13.	在「儲存設定」頁面勾選「Save a Parsed File?」	5.90
14.	C:\VTR	4.28
1.5	原始數據存放在:Raw Data Folder Location	4.00
15.	日誌文件存放在:Log File Location	4.99
16.	在虛擬刀房的歷程檢視中,選取 Folder 和 File 後按「ADD UCL LCL」	5.22
17.	可能處於休眠模式,接上充電座充電	4.61
18.	智慧刀把電量低	5.57
	我已經在計畫設定頁面選擇了MAC與刀具編號,按下「BIND」按鈕,但	
	還是沒有收到任何通知或資訊。	
19.	你可能需要檢查以下幾個方面:	6.78
	1.確認智慧刀把是否正確連接到設備 2.檢查 MQTT 傳輸延遲資料 3.檢查文	
	字資料庫內容 4.檢查 BIND 按鈕狀態	
20.	透過晃動 (超過 G 值門檻) 喚醒	6.71
	1. 閒置模式:在這個模式下,智慧刀把不會執行任何操作,並且處於休眠	
	狀態。	
	2. 傳輸模式:在這個模式下,智慧刀把可以進行資料傳輸,但可能需要額	
	外的設定或配置。	
21.	3. 設定模式:在這個模式下,使用者可以調整智慧刀把的各項參數和設	6.84
	置,以最佳化其功能。	
	4. 休眠模式:在這個模式下,智慧刀把進入低功耗狀態以節省電池壽命。	
	5. 休眠喚醒模式:在這個模式下,當智慧刀把被喚醒時,它能夠快速恢復	
	到之前的工作狀態。 這對於需要經常使用智慧刀把的人來說尤其有用。	
22.	休眠喚醒模式是智慧刀把的一種功能,它允許在不使用時將刀把進入低功	4.26

	耗狀態,然後在需要時輕鬆喚醒。這有助於延長電池壽命並提高整體效	
	北	
	請注意,這些資訊僅基於提供的資料,並且可能不是最新或完整的。建議	
	參考官方文件以獲得準確和最新的資訊。	
	1. Router SSID: 這個參數用於指定連接到無線網路的名稱。	
	2. Password:這個參數用於指定連接到無線網路的密碼。	
	3. IP: 這個參數用於指定智慧刀把在區域網路中的 IP 地址。	
	4. Port:這個參數用於指定智慧刀把使用的特定端口號。	
	5. RF Power Level:這個參數用於調整 RF 信號的功率水平,以改善連接品	
23.	質。	7.23
	6. G 值門檻:這個參數用於設定 G 值閱值,用於檢測環境中存在的磁場強	
	度。	
	7. polling 間隔:這個參數用於設定 MQTT 主題發布的頻率。	
	8. 休眠時間:這個參數用於設定智慧刀把進入休眠模式的時間間隔。	
—	DC 12V	3.73
	2A	
	根據上述資訊,無法回答使用者問題。因為沒有關於刀把電壓或 MQTT 傳	
25.	輸延遲資料的資訊,因此無法提供充電座的輸入電流。建議查閱充電座的	3.75
	說明書或技術規格以獲得準確答案。	
i i	MQTT 在智慧刀把上主要用於傳輸數據,並且負責智慧刀把與虛擬刀房之	
26.	間的通訊。它允許在不同裝置和系統之間進行實時通信,使得智慧刀把能	5.84
	夠接收來自虛擬刀房的指令並執行相應操作。	
27.	MQTT 的預設通訊埠是 1883	6.48
	根據提供的資訊,無法回答使用者問題,因為沒有關於 MQTT 通訊設定或	
j	Windows Defender 防火牆中的 MQTT 傳輸延遲資料的具體細節。請提供更	
	多背景資訊或詳細說明,以便更好地協助您。以下是如何設定 MQTT 的通	
28.	訊:	7.27
	1. 安裝 MQTT 代理程式,如 Mosquitto。	
	2. 設定 MQTT 代理程式以使用特定的主題和頻道進行連接。	
	3. 在 Windows Defender 防火牆中新增輸入規則,允許 Port 1883。	
	1. 確認智慧刀把是否處於閒置模式 (綠燈閃爍) 2. 檢查 IP 與 Router 設	7.52
29.	定 3. 確認 MQTT 設定是否正確	7.53
20	在「歷程檢視」頁面中,使用「Start Time」和「End Time」來設定時間範	1 60
30.	圍	4.68
	為了查看工具的移動軌跡,我們需要使用模擬分析頁面中的「Coordinate	
	$Xullet Yullet Z_{ot}$ 圖表。這些圖表顯示了工具在三維空間中移動時的位置資料。	6 71
31.	1. 開啟模擬分析頁面。	6.71
-	1. 例以供做为例只回。	

		-
	3. 圖表將顯示工具在三維空間中的移動軌跡。X 軸代表水平方向,Y 軸代	
	表垂直方向,Z 軸代表深度或高度。	
	為了分析刀具的最大受力情況,我們可以使用歷程檢視中的「CH1 Max、	
	CH2 Max、CH3 Max、CH4 Max」來查看不同通道的最大值。這些值代表每	
	個通道在特定時間段內測量到的最大力量。	
	以下是詳細步驟:	
32.	1. 開啟歷程檢視並找到「CH1 Max、CH2 Max、CH3 Max、CH4 Max」的資	6.03
	料點。	
	2. 將這些資料點進行比較,以確定哪個通道具有最高的最大受力情況。	
	3. 根據所選擇的通道,評估其對應的刀具以確定它是否處於最佳工作狀態	
	或需要調整。	
	為了回答這個問題,我們需要使用「歷程檢視」頁面來比較模擬結果和實	
	際測試結果。以下是步驟:	
33.	1. 在「歷程檢視」頁面中,選擇基準測試數據。	5.32
	2. 尋找與新測試結果相關的測試記錄。	
	3. 比較兩組資料並確定任何差異或趨勢。	
	根據上述資訊,智慧刀把發送的訊號間隔過長可能是因為 MQTT 設定錯	
34.	誤。這意味著 MQTT 傳輸延遲或失敗,使得智慧刀把無法即時傳送訊號。	3.90
	使用者應該檢查 MQTT 設定並確保它們正確運作,以解決此問題。	
	根據提供的資訊,無法直接從文字資料庫內容確認智慧刀把是否正常工	
2.5	作。然而,我可以提供一些一般性的建議來確保智慧刀把正常運作:	7.27
35.	1.檢查電量 2.監控訊號強度 3.觀察狀態 4.使用「自動測試」模式 5.參考	7.27
	MQTT 傳輸延遲資料	
26	可以在「儲存設定」頁面設定是否存儲原始數據(TXT)、是否存儲解析	5.60
36.	後數據(CSV)、CSV 寫入模式、受力數據最小紀錄門檻	
37.	按下「APPLY UPDATES」按鈕即可變更「儲存設定」。	3.48
	根據文字資料庫內容,當無法檢測到智慧刀把,或變更通訊設定後需要重	
38.	新掃描智慧刀把。這是因為在這些情況下,智慧刀把可能已經被識別為不	5.05
	安全或未連接狀態,因此需要進行重新掃描以確保其正確運作和安全性。	
39.	在虛擬刀房的「計畫設定」中,使用「UPDATE PLAN」按鈕	5.68
40.	刀把為連線狀態	4.99
41.	智慧刀把一代最高電壓為 8.45 V。	3.57
	1. 智慧刀把一代最低電壓為多少?	
	答:智慧刀把一代最低電壓為 7.0 V。	
42.	2. 請問智慧刀把一代的最低電壓是多少?	4.76
	答:智慧刀把一代最低電壓為 7.0 V。	
43.	根據文字資料庫內容,智慧刀把一代耗電速率在哪個區間是多少?	
	根據文字資料庫內容,智慧刀把一代耗電速率在哪個區間是多少?	6.70

	根據文字資料庫內容,智慧刀把一代耗電速率在哪個區間是多少?	
44.	智慧刀把二代最高電壓為 4.03 V。	3.85
45.	智慧刀把二代最低電壓為 3.3 V。	3.29
46.	智慧刀把二代耗電速率為 0.00150 V/min。	3.63
47.	資料每 0.4 秒傳送一包。	3.05
	TToLP 為 Time To Live 的縮寫,代表資料在網路上傳輸時的有效期限。一	
	般來說,TToLP的值通常設定為64位元組(8個字節),這意味著資料將	
48.	在網路上存活約 10 分鐘。	6.16
	因此,根據提供的資訊,我們無法回答使用者問題「TToLP 正常為多	
	少?」因為沒有關於 MQTT 傳輸延遲或文字資料庫內容的具體細節。	
49.	(查無刀把 port 資料)	4.81
	2024_6_10 的 NC 碼為何?	
50.	2024_6_10 的 NC 碼為何?	7.16
	2024 6 10 的 NC 碼為何?	
51.	根據文字資料庫內容,工件材質是由使用的刀具和加工路徑決定。因此,	6.74
31.	如果沒有關於刀具或加工路徑的資訊,就無法確定工件材質。	0.74
52.	根據文字資料庫內容,機台名稱為 MC-001。因此,2024 10 25 使用的機台	3.00
32.	<u>名稱是 MC-001。</u>	3.00
53.	無法提供控制器廠牌的資訊。	6.80
	1. 2024 10 25 使用的刀把型號是甚麼?	
	答案:智慧刀把	
54.	2. 2024_10_25 使用的刀把電壓是多少?	5.95
J4.	答案:查無刀把電壓資料	3.73
	3. 2024 10 25 使用的 MQTT 傳輸延遲資料是多少?	
	答案:查無 MQTT 傳輸延遲資料	
55.	STH1 刀的直徑為 6 英寸。	3.11
56.	由於沒有提供任何關於 STH1 刀具編號的具體資訊,因此無法直接回答這	6.81
30.	個問題。	0.01
57.	查無 STH1 刀具刃數資料。請參考文字資料庫內容或與設備製造商聯繫以	3.37
	獲取詳細資訊。	
	根據文字資料庫內容,智慧刀把一代最高電壓為 8.45 V。然而,由於沒有	
58.	關於 STH1 的具體資訊或 MQTT 傳輸延遲資料,我們無法確定其當前剩	5.67
	餘電壓。建議參考其他來源以獲取有關 STH1 剩餘電壓的最新資訊。	
	1. 2024_01_15 使用的 STH1 多久到最低電壓?	
59.	根據文字資料庫內容,沒有提供特定日期(如2024_01_15)的最低電壓資	
	訊。	6.70
	2. 2024_01_15 使用的 STH1 多久到最高電壓?	
	根據文字資料庫內容,沒有提供特定日期(如2024_01_15)的最高電壓資	

	訊。	
	3.2024_0015 使用的 STH1 最低電壓是多少?	
	根據文字資料庫內容,最低電壓為 2.67 V。然而,這個值可能與特定的日	
	期有關,因此建議參考具體日期的記錄以獲得準確的答案。	
	1. 2024_01_19 使用的 STH1 MAC 為多少?	
60.	A. 查無刀把電壓資料,因此無法提供 STH1 的 MAC 資料。	
	2. 2024_01_19 使用的 STH2 MAC 為多少?	4.41
	A. 同樣地,由於查無 MQTT 傳輸延遲資料,因此無法提供 STH2 的	
	MAC 資料。	
(1	根據上述資訊,無法得知刀把 d4w5 的使用情況,因為沒有關於該特定刀把	4.35
61.	的相關資料。請提供更多背景資訊或詳細說明,以便更好地協助您。	
62.	根據上述資訊,無法回答使用者問題,因為沒有關於 NC 碼的具體資料。	5.49
63.	根據上述資訊,查無特定日期(2024 01 15)下的刀具清單	3.87
64.	根據提供的資訊,無法確定 2024 02 28 使用的機台是什麼。	3.94
65.	查無 2024 11 27 的平均 RSSI 資料,請參考文字資料庫內容。	4.16
66.	查無 2025 05 11 的刀把溫度變化範圍相關資訊,請參考文字資料庫內容。	3.49
	根據上述資訊,無法確定刀具 Side-101-R1 使用於哪些智慧刀把。請提供更	4.61
67.	多詳細資訊或更新的資料以獲得準確答案。	
60	根據提供的資訊,無法得知刀具 Side-101-R1 的使用情況。請參考文字資	4.25
68.	料庫內容進行進一步調查或提供更多背景資訊以獲得更準確的答案。	
(0)	根據上述資訊,無法提供 MQTT 傳輸延遲資料。因此,無法回答使用者問	5.34
69.	<u>題。</u>	
70.	根據提供的資訊,無法回答使用者問題。	3.89