

Mission Overview and Objectives

Raj Bhatt, Yolanda Shea and CPF Team NASA Langley Research Center March 2, 2023

GSICS Data & Research Working Groups
Annual Meeting 2023

CLARREO Pathfinder Payload

HySICS: HyperSpectral Imager for Climate Science

Push-broom spectrometer

Spectral Range	350 nm - 2300 nm
Spectral Sampling	3 nm
Radiometric Uncertainty	0.3% (1-sigma)
Swath Width	10° (70 km nadir)
Spatial Sampling	0.5 km
Platform	ISS

https://clarreo-pathfinder.larc.nasa.gov/

CPF Science Objectives

Objective #1: High Accuracy SI-Traceable Reflectance Measurements

Demonstrate on-orbit calibration ability to reduce reflectance uncertainty by a factor of **5-10 times** compared to the best operational sensors on orbit.

Objective #2: Inter-Calibration Capabilities

Demonstrate ability to transfer calibration to other key RS satellite sensors by intercalibrating with CERES & VIIRS.

	Objective #1	Objective #2
Uncertainty	Spectrally-resolved & broadband reflectance: ≤0.3% (1σ)	Inter-calibration methodology uncertainty: ≤0.3% (1σ)
Data Product	Level 1A: Highest accuracy, best for inter-cal, lunar obs Level 1B: Approx. consistent spectral & spatial sampling, best for science studies using nadir spectra	Level 4: One each for CPF-VIIRS & CPF-CERES inter- cal. Merged data products including all required info for inter-cal analysis

https://clarreo-pathfinder.larc.nasa.gov/

Intercalibration between CPF and Target Instrument

- An idealized intercalibration setup requires perfectly matched data in time, space, angles, and wavelengths
- Realistic intercalibration tolerates finite differences in sampling, thereby resulting in several sources of uncertainty
 - Spatial mismatch
 - Angular differences (SZA, VZA, and RAA)
 - Spectral band differences
- CPF will demonstrate a state-of-the-art intercalibration methodology mitigating the uncertainties from imperfect data matching
 - 2-axis pointing capability
 - Mitigates impacts from spatial, angular, and spectral mismatches

CPF-Target (CERES or VIIRS) Intercalibration Uncertainty Budget

CPF-Target Intercalibration Uncertainty Sources

Spatial Matching
Noise
(<0.1%)

Spatial convolution of CPF spectra and target instrument measurements within intercalibration footprints

Point Spread
Function Knowledge
Uncertainty
(<0.1%)

Applicable to CERES only

Spectral Matching (<0.1%)

Difference in spectral coverage between CPF and target instrument Angular Adjustment (<0.1%)

Imperfect angles matching between CPF and target instrument

Unaccounted uncertainty (<0.1%)

Uncertainty
Contribution due to
any instability in
the target
instrument within a
month

Temporal and Spatial matching noise

- For VIIRS, 15 km (at nadir) FOV for spatial convolution
- For CERES, prelaunch PSF used for CPF spatial convolution
- Based on Wielicki et al. (2008)
 - Large intercalibration FOV preferred (at least 3) to 10 times the native spatial resolution)
 - For ≥15 km FOV, ~5000 intercalibration samples would be needed to mitigate the spatial matching noise below 0.1%
 - Dependence on time simultaneity is minimal below 6 minutes for larger FOV (e.g., 100 km)
 - Summarized in CPF-SER-022
- Revisiting the sampling study
 - Emulating scene variability that CPF will see
 - Estimated single sample matching noise of 10% -> Increases samples needed to 10K

Pathfinder

Can we expect >10,000 samples monthly?

Intercalibration Sampling Estimates

- Intercalibration Sample Criteria Reduce number of samples included in monthly reference-target comparison
 - At least 95% coverage of CPF & Target footprints
 - Sun-view geometry limits (SZA, RAZ)
 - Low probability of sun glint
 - VIIRS only (low polarization scenes)
- 10% Reduction due to ISS maneuvers prohibiting Earth View during IC events

CPF-CERES estimate: ~12K/month

2017 Low-Fidelity Intercal Simulation Data – Est. CPF-CERES Sampling

CPF-CERES Angular Adjustment

Intercalibration

- on thousands of simulated CPF-like radiance spectra (randomly chosen) at different angular conditions
- Significant reduction of bias and noise after angular correction

After correction

0.8

SE = 0.37%

CPF reflectance

Before correction

SE = 1.36%

0.2

VIIRS M5 reflectance

CPF angles

CLARREO Pathfinder

Process for

evaluating our

current angular

Comp.

Analysis

VIIRS angles

CPF IC team has developed a PCRTMbased algorithm for angular adjustment

Angular correction LUTs generated based

Bias = 0.16%

Stdev = 2.08%

VIIRS M5

channel

-1.5

sample # 10

of total

Spectral range extension for CPF-CERES CLARRED Intercalibration

- o CPF spectral range (350-2300 nm)
- CPF measurements must be extended to 200 nm 5 μm to account for CERES unfiltered radiance definition
- PCRTM-based spectral gap filling algorithm
- Anticipated 1-σ uncertainty < 0.1%

Spectral wavelength matching

- Spectral mismatch between reference and target sensors results in scene-dependent intercalibration results (e.g., MODIS and VIIRS)
- Hyperspectral measurements from reference sensor substantially mitigates the spectral difference issue
- At 4 nm spectral sampling, the impact is within 0.1% for MODIS bands (Wu et. al. 2015)

Polarization Distribution Model (PDM) Look-up Tables

PDM Application Module:
Using VIIRS scene
characterization info from L2
files, identifies correct LUT
DOP/AOLP estimates from
ePDMs & tPDMs

PDMs will be used to identify low-polarized radiances.

Development Lead: *Daniel Goldin*

- SZA = $[40^{\circ}, 50^{\circ}]$
- Band = 670 nm
- AOD = [0.05, 0.1]
- Wind Sp. = [2 m/s,10 m/s]

Developed by: Daniel Goldin & Costy Lukashin

ePDM

- Based on Polder measurements
- 3 wavelengths: 490, 670, and 865 nm
- Wavelength interpolation tPDM
- ADRTM simulation
- All wavelengths

Theoretical PDMs: Simulated using Adding-Doubling Radiative Transfer Model

- $SZA = 45^{\circ}$
- Band = 672 nm
- AOD = 0.076
- Wind Sp. = 7.5 m/s

Simulated by: Wenbo Sun

CPF Intercalibration Benefits

- Improved reference instrument for satellite intercalibration
- Lunar reflectance characterization
- PICS characterization at hyperspectral level
- Augmenting existing intercalibration approaches

CPF Timeframe Update

- CPF launch delayed (previous launch date was Dec 2023)
- Payload delivery date: No earlier than Spring 2024
- ISS Schedule: Launch no earlier than late 2025 (TBR)

Conclusions

- CPF will demonstrate a state-of-the-art intercalibration capability (0.3% uncertainty at k=1) by calibrating CERES and VIIRS against high-accuracy CPF measurements
 - Extensive # of intercalibration footprints
 - CPF pointing capability
 - OPDMs
 - PCRTM-based angular adjustments and spectral corrections
- Scheduled nadir scans of CPF can be used to intercalibrate other RS imagers in GEO and LEO orbits
- CPF measurements will assist validating other intercalibration methodologies and enhance the radiometric and spectral characterization of invariant Earth targets (DCC, PICS, etc.)

