BACS2063 Data Structures and Algorithms

BINARY TREES

Chapter 9

Learning Outcomes

At the end of this lecture, you should be able to

- Describe applications of binary trees such as expression trees and decision trees.
- Implement binary trees and binary search trees
- Discuss the factors that affect the efficiency of the binary search tree operations

Tree Concepts

- Previous ADTs place data in linear order.
- Some data organizations require categorizing data into groups, subgroups
 - This is hierarchical classification
 - Data items appear at various levels within the organization
- A tree provides a hierarchical organization in which data items have *ancestors* and descendants
 - This organization is richer and more varied than any other ADT

Hierarchical Organization

Example: Family trees

Fig. 25-1 Carole's children and grandchildren.

Hierarchical Organization

Example: Organization Charts

Fig. 25-3 A university's administrative structure.

Hierarchical Organization

• Example: File Directories

Fig. 25-4 Computer files organized into folders

- A tree is a set of nodes connected by edges.
- The edges indicate relationships among nodes.
- Nodes are arranged in levels.
 - Indicate the nodes' hierarchy
 - Top level is a single node called the root

Fig. 25-5 A tree equivalent to the tree in Fig. 25-4

- Nodes at a given level are children of nodes of the previous level
- A node with children is the parent node of those children – node A is the parent of nodes B,C,D and E.
- Nodes with the same parent are siblings nodes
 B,C,D and E have the same parent A.
- A node with no children is a leaf node e.g. nodes N,
 O and P.
- The only node with no parent is the root node
 - All others have one parent each

- A node is reached from the root by a path.
 - The length of the path is the number of edges that compose it
- The height of a tree is the number of levels in the tree.
 - Height of tree T = 1 + height of the tallest subtree of T.
- The subtree of a node is a tree rooted at a child of that node.

Binary Trees

• A tree in which each node has <u>at most two children</u>.

Fig. 25-6 Three binary trees.

Binary Trees

 A binary tree is either empty or has the following form

- Where T_{left} and T_{right} are binary trees

Height of Binary Trees

Traversals of a Tree

- Tree traversal
 - The process of stepping through / visiting all the nodes in the tree.
 - Each node is visited / processed exactly once during a traversal.
- Visiting a node
 - Processing the data within a node
- A traversal can pass through a node without visiting it at that moment

Preorder Traversal

- Visit root before the subtrees.
 - Visit the root
 - Visit all the nodes in the root's left subtree
 - Visit all the nodes in the root's right subtree

Fig. 25-8 The visitation order of a preorder traversal. 15

Inorder Traversal

- Visit root between visiting the subtrees.
 - Visit all the nodes in the root's left subtree
 - Visit the root
 - Visit all the nodes in the root's right subtree

Fig. 25-9 The visitation order of an inorder traversal.

Postorder Traversal

- Visit root after visiting the subtrees.
 - Visit all the nodes in the root's left subtree
 - Visit all the nodes in the root's right subtree.
 - Visit the root

Fig. 25-10 The visitation order of a postorder traversal.

Level-order Traversal [Optional]

Begin at the root, visit nodes one level at a time

This is an example of

a breadth-first traversal.

Fig. 25-11 The visitation order of a level-order traversal.

Exercise

 Reconstruct a unique binary tree for the following traversal outputs

(i)Preorder: 11,8,3,2,1,5,4,6,10,9,7

Inorder: 2,3,1,8,4,5,6,11,9,10,7

Exercise

 Reconstruct a unique binary tree for the following traversal outputs

(i)Preorder: 6,4,2,1,3,5,8,7,9,10,11

Inorder: 1,2,3,4,5,6,7,9,8,10,11

An Interface for Binary Trees

• BinaryTreeInterface.java

```
public interface BinaryTreeInterface<T>
  public T getRootData();
  public boolean isEmpty();
  public void clear();
  public void setTree(T rootData);
  public void setTree(T rootData,
  BinaryTreeInterface<T> leftTree,
  BinaryTreeInterface<T> rightTree);
```

Building a binary tree

Consider a client program to build the following binary tree:

Fig. 25-13 A binary tree whose nodes contain one-letter strings

Building a binary tree

Given that the class **BinaryTree** implements the interface **BinaryTreeInterface**, we can build the given binary tree in Figure 25-13 (of previous slide) as follows:

- Represent each of its leaves (D, F, G, H) as a one-node tree each.
- Moving up the tree from its leaves,
 - Use method setTree() to form the next level of subtrees (i.e. subtree E, B, C)
 - Use method setTree() to form the final tree (A)

Sample Code

In Chapter9\binarytree folder:

- BinaryTreeInterface.java
- BinaryTree.java
- BinaryTreeDriver.java

Binary Tree Example: Expression Trees

An expression tree represents an algebraic expression whose operators are binary.

Fig. 25-14 Expression trees for four algebraic expressions.

Traversal of Expression Trees

- An inorder traversal of an expression tree visits variables and operators in the tree in the order in which they appear in the original infix expression.
- A preorder traversal produces the prefix form of the expression.
- A postorder traversal produces the postfix form of the expression.

Algorithm evaluate

```
Algorithm evaluate(expressionTree)
if (expressionTree is empty)
  return 0
else {
  firstOperand = evaluate(left subtree of
                            expressionTree)
  secondOperand = evaluate(right subtree of
                            expressionTree)
  operator = the root of expressionTree
  return the result of the operation operator
     and its operands firstOperand and
     secondOperand
```

Binary Tree Example: Decision Trees

A decision tree can be the basis of an expert system

Helps users solve problems, make decisions

Fig. 25-15 A portion of a binary decision tree.

Decision Tree for a Guessing Game (1)

Example: Guess-the-Country

Fig. 25-16 An initial decision tree for a guessing game.

Decision Tree for a Guessing Game (2)

Fig. 25-17 The decision tree for a guessing game after acquiring another fact.

Traversing Recursively

- Postorder traversal
 - Public method for user, calls private method

```
public void postorderTraverse() {
  postorderTraverse(root);
private void
    postorderTraverse(BinaryNodeInterface<T> node){
  if (node != null) {
     postorderTraverse(node.getLeft());
     postorderTraverse(node.getRight());
     System.out.print(node.getData() + " ");
```

Implementing Tree Traversals

- In the BinaryTree class, the method postorderTraverse() carried out a postorder traversal of the tree.
- However, this method <u>can only display</u> the data during traversal.
- To provide the client with more flexibility, we should define the traversals as iterators.
 - In this way, the client can do more than simply display data during a visit and we can control when each visit takes place.

Tree traversals using iterators

- Use an *iterator* that has the methods hasNext() and next(), as given in the interface java.util.Iterator.
- As illustrate with lists, we can define a method that returns such an iterator.
- Since we can have several kinds of tree traversals, a tree class could have several methods that each return a different kind of iterator.

Tree Implementation

- The most common implementation of a tree uses a linked structure.
- Nodes similar to those used in linked lists represent each element in the tree.

Nodes in a Binary Tree

- A node object that represents a node in a tree references both the data and the node's children.
- It contains a reference to a data object and references to its left child and right child, which are other nodes in the tree.
 - Either reference to a child could be null.
 - If both of them are null, the node is a leaf node.

Fig. 26-1 A node in a binary tree.

Node for Binary Trees

```
private class Node {
  private T data;
  private Node left;
  private Node right;
  . . .
}
```

Binary Search Trees

- A search tree organizes its data so that a search is more efficient
- Binary search tree
 - Nodes contain Comparable objects
 - A node's data is greater than the data in the node's left subtree
 - A node's data is <u>less than the data in the node's right</u> subtree

Binary Search Trees

Fig. 25-18 A binary search tree of names.

Binary Search Trees

- The *efficiency of a search* depends on the *number of* comparisons that a successful search requires, i.e. the number of nodes along the path from the root to the node that contains the desired item.
- The height of a tree directly affects the length of the longest path from the root to a leaf. Hence, the height affects the efficiency of a worst-case search.
- Searching a binary search tree of height h is O(h).

Search Tree Characteristics

- A search tree stores data in a way that facilitates efficient searching.
- The nature of a binary search tree enables us to search it using a simple recursive algorithm

Searching in Search Trees

Like performing a binary search on a (sorted) array:

- For a sorted array
 - Search one of two halves of the array
- For the binary search tree
 - Search one of two subtrees of the binary search tree

Implementation of Tree Search

 Due to the recursive nature of the binary search tree structure, it is easier to implement its operations using recursion.

• Note:

- The add, contains, getEntry and remove operations need to search through the binary search tree in their implementation.

Recursive Search Algorithm

Algorithm bstSearch(binarySearchTree, desiredObject)

- // Searches a binary search tree for a given object.
- // Returns true if the object is found.

```
if (binarySearchTree is empty)
  return false
```

- else if (desiredObject == object in the root of binarySearchTree)
 return true
- else if (desiredObject < object in the root of binarySearchTree)
 return bstSearch(left subtree of binarySearchTree, desiredObject)
 else</pre>

return bstSearch(*right subtree of* binarySearchTree, desiredObject)

Sample Code

In Chapter9\binarytree folder:

- BinarySearchTreeInterface.java
- BinarySearchTree.java
- BinarySearchTreeDriver.java
- QueueInterface.java
- ArrayQueue.java

Binary Search Tree Implementation

Source code:

- BinarySearchTreeInterface.java
 - Operations: contains, getEntry, add, remove, isEmpty, clear, getPreorderIterator, getInorderIterator, getPostorderIterator
- BinarySearchTree.java
 - Implements the interfaceBinarySearchTreeInterface
 - Contains private inner classes:
 - Node to represent a binary search tree node
 - ReturnObject required for the private removeEntry method to return the removed node's data object

Iterators for Tree Traversals

 Provides the creation of iterator objects to perform tree traversals.

```
import java.util.Iterator;
...
public Iterator<T> getPreorderIterator();
public Iterator<T> getPostorderIterator();
public Iterator<T> getInorderIterator();
```

getInorderIterator() method

```
public Iterator<T> getInorderIterator() {
   return new InorderIterator();
}
```

Inner class InorderIterator

- Define the class **InorderIterator** as a *private inner class* of **BinarySearchTree**.
- Has a queue object as a data field.

```
private class InorderIterator implements Iterator<T> {
  private QueueInterface<T> queue = new ArrayQueue<T>();
  public InorderIterator() {
    inorder(root);
  private void inorder(BinaryNodeInterface<T> treeNode) {
```

Inner class InorderIterator

- The constructor invokes method **inorder()**.
- In method **inorder()**, the "visit" results in the current node's data being enqueued into the queue.

```
public InorderIterator() {
  inorder(root);
private void inorder(BinaryNodeInterface<T> treeNode) {
  if (treeNode != null) {
    inorder(treeNode.getLeft());
    queue.enqueue(treeNode.getData());
    inorder(treeNode.getRight());
```

Method next()

Removes and returns the next entry in the queue.

```
public T next() {
  if (!queue.isEmpty())
    return queue.dequeue();
  else
    throw new NoSuchElementException();
}
```

Methods getEntry and findEntry

- Method getEntry returns the located data object.
- Usual strategy for methods with recursive algorithms is applied throughout the class BinarySearchTree, i.e.:
 - Implement the actual recursive search as a private method findEntry that the public method getEntry invokes.

The method getEntry

```
public T getEntry(T entry) {
  return findEntry(root, entry);
private T findEntry(BinaryNode rootNode, T entry) {
  T result = null;
  if (rootNode != null) {
    T rootEntry = rootNode.data;
    if (entry.equals(rootEntry))
      result = rootEntry;
    else if (entry.compareTo(rootEntry) < 0)</pre>
      result = findEntry(rootNode.left, entry);
    else
      result = findEntry(rootNode.right, entry);
  return result;
```

The method contains

 Method contains simply calls getEntry to see whether a given entry is in the tree

```
public boolean contains(T entry) {
  return getEntry(entry) != null;
}
```

Adding an Entry

• Every addition to a binary search tree adds a new leaf to the tree.

Fig. 27-4 (a) A binary search tree; (b) the same tree after adding Chad.

Adding an Entry Recursively

Fig. 27-5 Recursively adding *Chad* to smaller subtrees of a binary search tree ... continued →

Adding an Entry Recursively

Fig. 27-5 (ctd.) Recursively adding *Chad* to smaller subtrees of a binary search tree.

Methods add and addEntry

- The public method add calls the private recursive method addEntry, if the tree is not empty.
- Like findEntry, addEntry has a node as a parameter that is initially the root node of the tree.
- When addEntry is called recursively, this parameter is either the left child or the right child of the current root.

Methods add and addEntry

```
public T add(T newEntry) {
  T result = null;
  if (isEmpty())
    root = new BinaryNode(newEntry);
  else
    result = addEntry(root, newEntry);
  return result;
}
```

```
private T addEntry(BinaryNode rootNode, T newEntry) {
T result = null;
 int comparison = newEntry.compareTo(rootNode.data);
 if (comparison == 0) {
  result = rootNode.data;
  rootNode.data = newEntry;
 else if (comparison < 0) {
    if (rootNode.left != null)
    result = addEntry(rootNode.left, newEntry);
    else
    rootNode.left = new BinaryNode(newEntry);
 else {
    if (rootNode.right != null)
    result = addEntry(rootNode.right, newEntry);
    else
    rootNode.right = new BinaryNode(newEntry);
    return result;
```

Duplicate Entries

For each node in a binary search tree,

- The data in a node is greater than the data in the node's left subtree,
- The data in a node is *less than or equal* to the data in the node's right subtree.
 - If duplicates are allowed, place the duplicate in the entry's right subtree.

Fig. 27-3 A binary search tree with duplicate entries.

Exercise

- Construct a binary search tree using the following sequence of values: M, E, Q, W, C, H, B, D, G, L, A
- Identify the values for preorder traversal, inorder & postorder traversal

Removing an Entry

- The **remove** method must receive an entry to be matched in the tree
 - If found, it is removed
 - Otherwise the method returns null
- 3 possible cases:
 - The node has no children, it is a leaf (simplest case)
 - The node has one child
 - The node has two children

1. Removing a Leaf Node

If the node is a left child of its parent, then the left reference of its parent is set to **null**. Otherwise, if the node is a right child of its parent, then the right reference of its parent is set to **null**.

Fig. 27-6 (a) Two possible configurations of leaf node *N*; (b) the resulting two possible configurations after removing node *N* by setting the child reference of P to null.

make C a child of P instead of N

Fig. 27-6 (a) Two possible configurations of leaf node N; (b) the resulting two possible configurations after removing node N.

If we remove N, left with two orphans, P can only accept one of them, no room for both. Thus, **removing N** is not a option. We do not want to remove node N to remove its entry. Find a node A that is easy to remove and replace N's entry, then remove node A.

Fig. 27-8 Two possible configurations of node *N* that has two children.

Fig. 27-9 Node N and its subtrees;

- (a) entry a is immediately before e, b is immediately after e;
- (b) after deleting the node that contained a and replacing e with a.

- Delete the entry e from a node N that has two children
 - Find the rightmost node R in N's left subtree
 - Replace the entry in node N with the entry that is in node R
 - Delete node R
 - Note: This will be either deleting a leaf node or a node with only 1 child.

Fig. 27-10 The largest entry a in node N's left subtree occurs in the subtree's rightmost node R.

Fig. 27-11 (a) A binary search tree; (b) after removing Chad;

Fig. 27-11 (c) after removing Sean; (d) after removing Kathy.

Example

• Case 1:remove -4

• Case 2:remove 18

Example

- Case 3: remove 12
- Go to the left subtree of the node 12 with largest value is 9.

Example

- Case 3: remove 12
- (Alternative way) Go to the right subtree of the leftmost node 12 with smallest value is 19.

Removing an Entry in the Root

- The public method remove calls a private recursive method removeEntry
 - Method remove passes the root of the tree to method removeEntry
 - Since method removeEntry might remove the root node from the tree, we must ensure a reference to the tree's root is always retained.
 - removeEntry returns a reference to the root of the revised tree, which remove can use to update root
 - However, removeEntry must also give to remove the entry it removes
 - An additional parameter **oldEntry** is passed to **removeEntry** for the method to change its value to the removed entry.

Removing an Entry in the Root

 To enable the additional parameter oldEntry's value to be changed to the removed entry's value, the inner class ReturnObject is defined.

ReturnObject

- An inner class that has a single data field and simple set and get methods
- Used as the type for oldEntry

Methods remove and removeEntry

```
public T remove(T entry) {
 ReturnObject oldEntry =
    new ReturnObject(null);
 BinaryNode newRoot =
   removeEntry(root, entry,
    oldEntry);
root = newRoot;
return oldEntry.get();
```

```
private BinaryNode removeEntry(BinaryNode rootNode, Tentry,
   ReturnObject oldEntry) {
if (rootNode != null) {
  T rootData = rootNode.data;
  int comparison = entry.compareTo(rootData);
  if (comparison == 0) {
   oldEntry.set(rootData);
   rootNode = removeFromRoot(rootNode);
  else if (comparison < 0) {
   BinaryNode leftChild = rootNode.left;
   BinaryNode subtreeRoot = removeEntry(leftChild, entry,
    oldEntry);
   rootNode.left = subtreeRoot;
  else {
   BinaryNode rightChild = rootNode.right;
   rootNode.right = removeEntry(rightChild, entry, oldEntry);
  } // end if
} // end if
return rootNode;
```

Removing an Entry in the Root

It will be a special case only if we actually remove the root node. It occurs when the root has at most one child

Fig. 27-12 (a) Two possible configurations of a root that has one child; (b) after removing the root.

Exercise

• Explain the steps to remove the values **A**, **Q** and **E** (*in the given sequence*) from the tree. Show the resulting binary search tree.

Efficiency of Operations (1)

- Operations add, remove and getEntry require a search that begins at the root
- In the worse case, searches begins at root and examine each node on a path and ends at a leaf.
- Maximum number of comparisons is directly proportional to the height, h of the tree. These operations are O(h).

Efficiency of Operations (2)

- The tallest tree has height *n* if it contains *n* nodes. The tree looks like a linked chain, and the searching is like searching a linked chain, O(*n*).
- The shortest tree is full. The height of a full tree containing n nodes is $\log_2(n+1)$. Thus, in the worst case, searching a full binary search tree is an $O(\log_2 n)$.
- Both full and complete binary search tree can give us O(log, n) performance.

Efficiency of Operations

Importance of Balance

- Balance of the tree affects the performance of the search process
- Completely balanced
 - Subtrees of each node have exactly same height
- Height balanced
 - Subtrees of each node in the tree differ in height by no more than 1
- Completely balanced or height balanced trees are balanced

Importance of Balance

- If entries are added to an empty binary tree
 - Best <u>not</u> to have them sorted first
 - Tree is more balanced if entries are in random order

Fig. 27-14 Some binary trees that are height balanced.

Balanced Search Trees (Optional)

- The operations on a binary search tree are O(log n) if the tree is balanced. However, the add and remove operations do not ensure that a binary search tree remains balanced.
- Balanced search trees carries out rearrangement of nodes whenever it becomes unbalanced. Types of balanced search trees include:
 - AVL Trees
 - 2-3 Trees
 - B-Trees

Review of learning outcomes

You should now be able to

- Describe applications of binary trees such as expression trees and decision trees.
- Implement binary trees and binary search trees
- Discuss the factors that affect the efficiency of the binary search tree operations

References

- Carrano, F. M., 2019, Data Structures and Abstractions with Java, 5th edn, Pearson
- Liang, Y.D., 2018. Introduction to Java Programming and Data Structures.11th ed.United Kingdom:Pearson