Numerical solutions of differential equations

Patrick Henning

pathe@kth.se

Division of Numerical Analysis, KTH, Stockholm

Course SF2521, 7.5 ECTS, VT18

Lecture 6

Hyperbolic Equations of first order - Part 3

FVM for Conservation Laws Linearization

Linearization

Linearization - Idea

Linearization

Let

- $ightharpoonup f: \mathbb{R} \to \mathbb{R}$ be a smooth flux
- \triangleright and $\mathbf{v}: \mathbb{R} \to \mathbb{R}$ and initial value of the form

$$\mathbf{v}(\mathbf{x}) = \mathbf{v}_{\mathsf{c}} + \varepsilon \tilde{\mathbf{v}}(\mathbf{x}).$$

where v_c is constant and $o < \varepsilon \ll 1$ is a perturbation parameter.

We seek $\mathbf{u} = \mathbf{u}(x,t) : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ with

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \mathbf{o}$$
 and $\mathbf{u}(x, \mathbf{o}) = \mathbf{v}(x)$.

Idea: If initial value is almost constant, we expect the solution $u(\cdot,t)$ to remain almost constant for every t.

Can we hence approximate the nonlinear equation by a linear equation?

Linearization - Idea

Idea: If initial value is <u>almost constant</u>, we expect the solution $u(\cdot,t)$ to remain <u>almost constant</u> for every t.

Can we hence approximate the nonlinear equation by a linear equation?

Why?

- ► Linear problem is mathematically simpler.
- We know how to handle linear hyperbolic equations.
- Useful applications, e.g.:
 Study how small perturbations around a constant state evolve in time (cf. HW2).
- Linearized problem tells us something about the stability of the non-linear problem.

FVM for Conservation Laws Linearization

Linearization - How?

We seek $u = u(x, t) : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ with

$$\partial_t u + \partial_x f(u) = 0$$
 and $u(x, 0) = v_c + \varepsilon \tilde{v}(x)$ (*)

How do we linearize?

Suppose that the solution to (*) can be written as

$$u(x,t) = v_c + \varepsilon \tilde{u}(x,t).$$

Hence with (*):

$$o = \partial_t \left(\mathbf{v}_{\mathsf{c}} + \varepsilon \tilde{\mathbf{u}}(x,t) \right) + \partial_x f(\mathbf{v}_{\mathsf{c}} + \varepsilon \tilde{\mathbf{u}}(x,t)) = \varepsilon \partial_t \tilde{\mathbf{u}}(x,t) + f'(\mathbf{v}_{\mathsf{c}} + \varepsilon \tilde{\mathbf{u}}(x,t)) \varepsilon \partial_x \tilde{\mathbf{u}}(x,t)$$

$$= \varepsilon \partial_t \tilde{\mathbf{u}}(x,t) + (f'(\mathbf{v}_{\mathsf{c}}) + \varepsilon \tilde{\mathbf{u}}(x,t) f''(\mathbf{v}_{\mathsf{c}}) + \mathcal{O}(\varepsilon^2)) \varepsilon \partial_x \tilde{\mathbf{u}}(x,t)$$

$$= \varepsilon \left(\partial_t \tilde{\mathbf{u}}(x,t) + f'(\mathbf{v}_{\mathsf{c}}) \partial_x \tilde{\mathbf{u}}(x,t) \right) + \mathcal{O}(\varepsilon^2).$$

Dropping the $\mathcal{O}(\varepsilon^2)$ term, we obtain the linearized equation

$$o = \partial_t \tilde{\mathbf{u}}(x,t) + f'(\mathbf{v_c}) \partial_x \tilde{\mathbf{u}}(x,t)$$
 with $\tilde{\mathbf{u}}(x,o) = \tilde{\mathbf{v}}(x)$.

We obtain $u(x, t) \approx v_c + \varepsilon \tilde{u}(x, t)$.

Linearization - Summary

We seek $u = u(x, t) : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ with

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \mathbf{o}$$
 and $\mathbf{u}(x, \mathbf{o}) = \mathbf{v}_{c} + \varepsilon \tilde{\mathbf{v}}(x)$

Linearized problem:

Find $\tilde{u} = \tilde{u}(x,t) : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ with

$$\partial_t \tilde{\mathbf{u}}(\mathbf{x},t) + f'(\mathbf{v}_{\mathbf{c}}) \partial_x \tilde{\mathbf{u}}(\mathbf{x},t) = 0$$
 with $\tilde{\mathbf{u}}(\mathbf{x},0) = \tilde{\mathbf{v}}(\mathbf{x})$.

The linearized approximation is given by

$$u(x,t) \approx \mathbf{v}_c + \varepsilon \, \tilde{u}(x,t).$$

Linearization - Generalization to systems

System: Let

- ▶ $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a smooth flux
- ▶ and $\mathbf{v}: \mathbb{R} \to \mathbb{R}^m$ and initial value of the form

$$\mathbf{v}(x) = \mathbf{v}_{c} + \varepsilon \tilde{\mathbf{v}}(x).$$

where \mathbf{v}_{c} is <u>constant</u> and $\mathbf{o} < \varepsilon \ll \mathbf{1}$ is a perturbation parameter.

We seek $\mathbf{u} = \mathbf{u}(x,t) : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^m$ with

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \mathbf{o}$$
 and $\mathbf{u}(x, \mathbf{o}) = \mathbf{v}(x)$.

Linearization - Generalization to systems

We seek $\mathbf{u} = \mathbf{u}(x,t) : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^m$ with

$$\partial_t \mathbf{u} + \partial_x \mathbf{f}(\mathbf{u}) = \mathbf{o}$$
 and $\mathbf{u}(x, \mathbf{o}) = \mathbf{v}_c + \varepsilon \tilde{\mathbf{v}}(x)$.

With

$$\mathbf{u} = \begin{pmatrix} \mathbf{u_1} \\ \vdots \\ \mathbf{u_m} \end{pmatrix}, \quad \mathbf{f}(\mathbf{u}) = \begin{pmatrix} \mathbf{f_1}(\mathbf{u_1}, \cdots, \mathbf{u_m}) \\ \vdots \\ \mathbf{f_m}(\mathbf{u_1}, \cdots, \mathbf{u_m}) \end{pmatrix}, \quad \mathbf{f}'(\mathbf{u}) = \begin{pmatrix} \frac{\partial \mathbf{f_1}(\mathbf{u})}{\partial \mathbf{u_1}} & \cdots & \frac{\partial \mathbf{f_1}(\mathbf{u})}{\partial \mathbf{u_m}} \\ \vdots & & \vdots \\ \frac{\partial \mathbf{f_m}(\mathbf{u})}{\partial \mathbf{u_1}} & \cdots & \frac{\partial \mathbf{f_m}(\mathbf{u})}{\partial \mathbf{u_m}} \end{pmatrix}$$

we can proceed as before: We seek $\tilde{\mathbf{u}} = \tilde{\mathbf{u}}(x,t) : \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}^m$

$$\partial_t \tilde{\mathbf{u}}(x,t) + \mathbf{f}'(\mathbf{v}_c) \partial_x \tilde{\mathbf{u}}(x,t) = 0$$
 with $\tilde{\mathbf{u}}(x,0) = \tilde{\mathbf{v}}(x)$.

The linearized approximation is given by

$$\mathbf{u}(x,t) \approx \mathbf{v}_c + \varepsilon \, \tilde{\mathbf{u}}(x,t).$$

Linearization

Note:

Sometimes there are features in the solution to a nonlinear problem that cannot be reproduced by linearized models