AD-A023 114

RIA-76-U200

Cy No. 2

TECHNICAL

AD-A023 114 R-TR-76-001

A TEST METHOD FOR MEASURING THE STIFFNESS OF COATED FABRICS AT LOW TEMPERATURES

R. A. FAORO

SEPTEMBER 1975

TECHNICAL REPORT

RESEARCH DIRECTORATE

Approved for public release, distribution unlimited.

ROCK ISLAND, ILLINOIS 61201

DISPOSITION INSTRUCTIONS:

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER:

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GDVT ACCESSION NO. R-TR-76-001	3. RECIPIENT'S CATALDG NUMBER
4. TITLE (and Subtitio) A TEST METHOD FOR MEASURING THE STIFFNESS OF COATED FABRICS AT LOW TEMPERATURES	S. TYPE OF REPORT & PERIOD COVERED Technical Report Nov 71 - Jun 74 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(*) Richard A. Faoro	8. CONTRACT DR GRANT NUMBER(*)
9. PERFORMING ORGANIZATION NAME AND ADDRESS CDR, Rock Island Arsenal GEN Thomas J. Rodman Laboratory Rock Island, IL 61201	PROGRAM ELEMENT PROJECT, TASK Program 4930.1 PRON A1-2-P6350-AW-M1 AMS Code 4931.0M.6350
11. CONTROLLING DFFICE NAME AND ADDRESS Director	12. REPORT DATE September 1975
Army Materials and Mechanics Research Center Watertown, MA 02172	13. NUMBER OF PAGES 25
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release, distribution un	limited
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	m Report)

18. SUPPLEMENTARY NOTES

- 19. KEY WDRDS (Continue on reverse side if necessary and identify by block number)
- 1. Coated Fabrics
- 2. Rubber
- 3. Plastic
- 4. Low Temperature
- Test Method Stiffness
- 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A test method was developed for use in determining the stiffness of plastic and rubber-coated fabrics at low temperatures by use of a torsional wire apparatus. From the test data obtained with this method, angular twist versus temperature curves can be prepared, and the temperatures at which the relative moduli of the coated fabric are 2,5,10, and 100 times as large as the modulus at room temperature can be determined. The method has been accepted by the American Society for Testing and Materials and has been published as ASTM D3388-75.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

	•		
	•		
	•		
	ŧ		

FOREWORD

This project has been accomplished as part of the US Army Materials Testing Technology Program, which has for its objective the timely establishment of testing techniques, procedures or prototype equipment (in mechanical, chemical, or nondestructive testing) to insure efficient inspection methods for material/material procured or maintained by AMC.

CONTENTS

DD FORM	14	73	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•		i
FOREWOR	D	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	i	ii
CONTENT	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		iv
OBJECTI	VE	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•		1
BACKGRO	UND	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	٠	•		1
APPROAC	H	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•		٠	•	•	٠		2
RESULTS	AN	D D	ISC	CUSS	OIS	. 1	•	•	•	•	•	•	•	•	•	•	•	•	•	•		2
CONCLUS	ION	s.	•	•	•	•	•	•	•					•		•	•	•	•	•	•	4
RECOMME	NDA'	ric	ONS	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	5
TABLES	AND	j'I	GUF	ŒS	•	•	•	•	•	•	•	•	•	•	٠		٠	•	٠	•	٠	6
DISTRIB	TUT	01/1																				17

OBJECTIVE:

The purpose of this work was to develop a test method to indicate the degree to which rubber or plastic-coated fabrics stiffen during exposure over a range of temperatures from ambient to $-67^{\circ}F$, or colder. It was desired that the test method provide a means for measuring wide variations in material stiffness, and provide quantitative results.

BACKGROUND:

One of the most stringent requirements called for on nonmetallic components and accessories of Army weapons is that they remain operational at very low temperatures. This requirement stems from the need for Army materiel to be functional in all global environments.

Tests have been developed and standardized that are satisfactory for determining the capability of solid rubber components to function at low temperatures. ASTM D1053 is the standard method of test for measuring the stiffening of solid rubber at low temperatures. ASTM D1229 is used to measure the capability of solid rubber to recover, at low temperatures, from compressive stresses. ASTM D1329 is used to evaluate the capability of solid rubber to retract at low temperature after having been elongated. ASTM D746 is used to determine the temperature at which a rubber exhibits brittle failure under impact.

Tests have also been developed and standardized by ASTM that are adequate for determining the capability of <u>cellular</u> rubber parts to function at low temperatures. ASTM Methods D1055 and D1056 describe test procedures for measuring the compression-deflection characteristics of cellular rubber at subnormal temperatures.

However, test methods with the rubber-coated fabrics are not adequate. Although ASTM Method D2137 is adequate for determining the temperature at which a coated fabric becomes brittle under impact, no completely satisfactory method is available for measuring the temperature at which a coated fabric becomes too stiff to be useable. The stiffening temperature is nearly always warmer than the brittle temperature, thus the stiffening point is more important to users of coated fabrics than the brittle point is, thus a reliable method for determining the stiffening point is essential. Such a method would be applicable to a broad spectrum of coated fabric items, most of them procured on a very large volume basis. Examples of such items are tarpaulins, gun covers, aircraft covers, pneumatic floating equipment, air supported shelters, gun shield mantle covers, fuel storage containers, and many types of pouches and bags.

Current Federal and Military specifications for rubber or plastic coated fabrics cite five methods for determining the low temperature stiffness of such fabrics. The undesirable features of these methods are given in Table 1. This report covers the work performed in developing a test method to correct the listed deficiences. The method should be praptable to all coated fabrics regardless of the nature and thickness of the

coating and substrate. The test results obtained from the new method should be reportable in quantitative terms such as moduli so that the stiffness of a variety of coated fabrics can be readily compared.

APPROACH:

This study was directed toward the use of commercially available test equipment. Because one objective of the work was to develop a test method that would provide quantitative measures of stiffness, the search for suitable equipment quite naturally led to the realm of modulus testers. The work of Lindemann pinpointed the search to the torsional tester described in ASTM Method D1053-73. This ASTM method, normally used to measure the stiffness of rubber specimens ranging in thickness from 0.060 inch to 0.125 inch, was modified by Lindemann to accommodate polymer films in the 20 to 30 mil thickness range. The approach taken, in the study reported herein, followed the techniques of Lindemann in attempting to further modify the ASTM method to accommodate coated fabrics over the thickness range from 0.004 to 0.100 inch. Means were sought to increase the sensitivity of the tester so that it could be used with very thin materials. Methods that were studied to increase sensitivity included the use of longer torsion wires than are normally used and the increasing of specimen width and length.

RESULTS AND DISCUSSION:

The three torsion wires that are a part of the ASTM D1053 test equipment have torsional constants of 0.125, 0.500 and 2.000 gf. cm/degree of twist. Even the most sensitive of these wires (0.125 gf. cm/degree) proved to be too insensitive for use with very thin coated fabrics. Thus, more sensitive torsion wires were made from tempered beryllium copper wire in lengths of 5.3 to 5.5 inches and 0.012 inch in diameter. The torsional constants of the new wires were between 0.036 and 0.040 gf. cm/degree of twist. These wires proved to be suitable for use with only a few types of coated fabrics, namely very thin and very flexible materials. The wires were unsuitable for use with the majority of the coated fabrics used in military applications. Typical neoprene and nitrile rubber-coated nylon fabrics exhibited torsional twists at room temperature of less than 120 angular degrees. Angular twists at room temperature, in the range of 120 to 170 angular degrees, are required to obtain meaningful data with the ASTM test.

The attempt to improve the sensitivity of the ASTM test by the increasing of the width of the specimen was successful. The standard specimen

^{1.} M.D. Lindemann, Appl. Polym. Symp., 10, 73 (1969)

^{2.} Annual Book of ASTM Standards, Part 37, 240 (1975)

free-span length (1.0 inch) was retained, but the width was increased from 0.125 to 0.250 inch. New specimen clamps were fabricated with their faces 0.25 inch wide to facilitate proper contact with the 0.250 inch width specimen. By an increase in width, the effective modulus of the specimens was increased. A large variety of chemical and physical types of coated fabrics were tested and the angular twists at room temperature were within the acceptable range of 120 to 170 angular degrees, as shown in Table 2. These tests were made with standard torsion wires having torsional constants (K) of 0.500 or 2.000 gf. cm/degree of twist.

The reproducibility of the method with the wider than standard specimen, was determined over a temperature range of $-10^{\circ}\mathrm{F}$ to $-70^{\circ}\mathrm{F}$. Only fair reproducibility was obtained, as shown by the twist versus temperature curves, for duplicate tests, in Figure 1. Prior experience in measuring the stiffness of rubber with the ASTM D1053 test apparatus had indicated that duplicate tests performed by a single operator would give twist values at a given temperature that would vary by no more than ± 2 angular degrees. The variation obtained on the coated fabric with the modified equipment was about ± 6 degrees, as shown in Figure 1.

Investigation of the test equipment during its use at low temperatures showed that, as the torsion head was rotated through 150 degrees, the specimens would not always twist evenly throughout their entire free length; but, these specimens would often fold over (on themselves) when the torque was applied. This phenomenon caused the sample holder to tilt while in the heat-transfer medium, thus this tilting caused erroneous readins of angular twist. To alleviate the tendency of the specimen to fold over on itself required an increase in specimen free length from 1.0 to 1.5 inches. This increase necessitated a modification in the standard test equipment used with ASTM. Thus, this change necessarily required an increase in the length of the center spindle on the D1053 sample holder by one-half inch. The distance between the top and the bottom specimen clamps was adjusted to give the one and one-half inch free span length. Duplicate tests with the 1.5 inch long specimen showed excellent reproducibility, as noted in Figure 2.

A round-robin testing program involving four laboratories was conducted to determine the reproducibility of the new method. Testing was done according to ASTM D1053 with the exception of the change in specimen size (width increased from 0.125 to 0.250 inch and free-span length increased from 1.0 to 1.5 inches). Two specimens of each of the coated fabrics, listed in Table 3, were tested by the measurement of twist in angular degrees at approximately 10°F intervals over the temperature range of -00°F to +60°F. The spread of results over the entire range of test temperatures is shown in Figures 3,4,5, and 6. The values of T_{10} obtained by the four laboratories are also shown in these figures. T_{10} is the temperature at which the modulus of the material under test is ten times larger than the modulus at room temperature. This is the criterion commonly used to indicate the coldest temperature at which a material is useable in an

application involving flexing. The reproducibility of both the twist versus temperature curves and the T_{10} values was satisfactory in the consideration of the fact that the data were obtained by four laboratories.

During the balloting of the test method in ASTM Subcommittee D-11.14 on Low Temperature and Resilience Testing, the suggestion was made that the direction of the weave may have an effect on the flexibility of a coated fabric. Twist versus temperature curves for three specimens of coated Fabric D, cut in three different directions (warp, fill and bias), exhibited good reproducibility in the critical temperature range of -50°F to -30°F, as shown in Figure 7. To eliminate the direction of the cut of the specimen (from becoming a variable for some specialty type coated fabrics) required a change in the test method. This change stipulated that the test specimen be cut on the bias, that is on a 45 degree angle in the direction of the weave. With respect to the use of nonwoven fabrics, the specifying of the direction of specimen cut will not be necessary.

A quantitive means for comparing the stiffness of coated fabrics at low temperatures is provided by determination of the temperatures at which the relative moduli of a coated fabric are 2,5,10, and 100 times as large as they (the moduli) are at room temperature. These temperatures can be calculated by use of the tables in ASTM D1053. The requirement to determine and report these relative moduli was added to the test procedure. The T_{10} values for several of the coated fabrics listed in Table 2 were determined and are shown in Figure 8.

The proposed test method was approved by ASTM on 29 March 1975 and was published³ the following month under the designation ASTM D3388-75, entitled "Standard Method of Measuring Low-Temperature Stiffening of Fabrics Coated with Rubber or Rubber-Like Materials, by Means of Torsional Wire Apparatus."

CONCLUSIONS:

A test method has been developed for measuring the stiffening of coated fabrics that results from exposure to low temperatures. The method has been proved to provide reproducible results and has been published as an ASTM standard. This method is applicable to both balanced and unbalanced coated fabrics covering a wide range of thicknesses and flexibilities. Test specimens do not require handling during test, and the test apparatus is free from machine variables such as friction of moving parts. The method is nondestructive in nature, that is, it provides stiffness data at ever-decreasing temperatures prior to the onset of cracking, flaking, or other deteriorating effects. The method provides quantitative results that provide comparison of the flexibility of coated fabrics over broad temperature ranges.

^{3.} Annual Book of ASTM Standards, Part 37,611 (1975)

RECOMMENDATIONS:

Government agencies responsible for the preparation of specifications for coated fabrics should specify the low-temperature flexibility of the materials described within the specifications by citing ASTM D3388 as the method of test, and by citing appropriate requirements. An example of a requirement might be that "the T_{10} of the coated fabric shall be -40°F, or colder."

TABLE I

EXISTING METHODS OF TEST FOR DETERMINING THE STIFFNESS OF COATED FABRICS AT LOW TEMPERATURES.

METHOD

Method 5874 of Fed. Test Method STD. No. 191 - 180°bend plus roller

Mandrel bend (various tests involving different specimen sizes and bending rates)

180° bend (no roller)

Method 5204 of Fed. Test Method STD. No. 191 - Self-weighted cantilever

Method 5206 of Fed. Test Method STD. No. 191 - Cantilever bending

UNDESIRABLE FEATURES

Does not provide quantitative estimate of stiffness; poor reproducibility because rate of bending is not specified; failure criteria somewhat subjective (flaking or cracking). Sample size (8" x 8") is large.

Poor reproducibility because bending rate is not specified; does not provide quantitative estimate of stiffness.

Poor reproducibility because bending rate is not specified; does not provide quantitative estimate of stiffness.

Various lengths of specimens are required that are dependent upon specimen thickness. Method does not give reproducible results on unbalanced coatings. Rollers do not always turn specimen into roll nip, necessitating excessive handling of specimen.

High moduli specimens will not drop through the required 41.5 degree angle unless they are very long. Some coated fabrics must be used in lengths that are more than two feet to obtain a bend of 41.5 degrees.

TABLE 2

ROOM TEMPERATURE TWIST OF COATED FABRICS MEASURED WITH A MODIFIED* ASTM D1053 APPARATUS

1. Neoprene		Costing	Substrate	Total Thickness, inch	Weight3 Oz/yd ²	K (wire), g.cm/deg.	Twist Angular degrees
2. Neoprene Nylon 0.019 16 2.0 155 3. Neoprene Nylon 0.011 10 0.5 141 4. Neoprene Nylon 0.022 19 2.0 157 5. Neoprene Nylon 0.008 6 0.5 158 6. Neoprene Glass 0.006 7 0.5 137 7. Neoprene Dacron 0.009 9.5 0.5 149 8. Vinyl Nylon 0.014 11 2.0 165 9. Vinyl Nylon 0.021 18 2.0 160 10. Vinyl Glass 0.014 15.5 2.0 164 11. Vinyl Glass 0.014 15.5 2.0 164 11. Vinyl Glass 0.014 15.5 2.0 164 11. Vinyl Glass 0.006 7 0.5 132 12. Vinyl Dacron 0.012 10 0.5 131 13. Modified Vinyl Nylon 0.004 2.5 0.5 169 14. Nitrile Cotton 0.020 18.5 0.5 165 15. Nitrile Nylon 0.017 16 0.5 162 16. Hypalon Nylon 0.020 16 2.0 157 17. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nowoven Polyester 0.022 16 0.5 136 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 160 23. Silicone Dacron 0.017 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven Polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven	1.	Neoprene	Cotton	0.015	16	0.5	140
3. Neoprene Nylon 0.011 10 0.5 141 4. Neoprene Nylon 0.022 19 2.0 157 5. Neoprene Nylon 0.008 6 0.5 158 6. Neoprene Glass 0.006 7 0.5 137 7. Neoprene Dacron 0.009 9.5 0.5 149 8. Vinyl Nylon 0.021 18 2.0 165 9. Vinyl Nylon 0.021 18 2.0 160 10. Vinyl Glass 0.014 15.5 2.0 164 11. Vinyl Glass 0.014 15.5 2.0 164 11. Vinyl Dacron 0.012 10 0.5 131 13. Modified Vinyl Nylon 0.021 10 0.5 131 13. Modified Vinyl Nylon 0.004 2.5 0.5 169 14. Nitrile Cotton 0.020 18.5 0.5 165 15. Nitrile Nylon 0.017 16 0.5 162 16. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Nylon 0.036 32 2.0 142 18. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nylon 0.024 22 0.5 150 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 160 23. Silicone Dacron 0.015 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven Polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.024 24.5 0.5 149 29. Viton Nonwoven	2.		Nylon		16		155
4. Neoprene Nylon 0.022 19 2.0 157 5. Neoprene Nylon 0.008 6 0.5 158 6. Neoprene Glass 0.006 7 0.5 137 7. Neoprene Dacron 0.009 9.5 0.5 149 8. Vinyl Nylon 0.014 11 2.0 165 9. Vinyl Nylon 0.021 18 2.0 160 10. Vinyl Glass 0.006 7 0.5 132 11. Vinyl Glass 0.006 7 0.5 132 12. Vinyl Dacron 0.012 10 0.5 131 13. Modified Vinyl Nylon 0.004 2.5 0.5 169 14. Nitrile Cotton 0.020 18.5 0.5 165 15. Nitrile Nylon 0.017 16 0.5 165 16. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven Polyester 0.022 16 0.5 136 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven Polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven		-			10	0.5	
5. Neoprene		-			19		
6. Neoprene Glass 0.006 7 0.5 137 7. Neoprene Dacron 0.009 9.5 0.5 149 8. Vinyl Nylon 0.014 11 2.0 165 9. Vinyl Nylon 0.021 18 2.0 160 10. Vinyl Glass 0.014 15.5 2.0 164 11. Vinyl Glass 0.006 7 0.5 132 12. Vinyl Dacron 0.002 10 0.5 131 13. Modified Vinyl Nylon 0.004 2.5 0.5 169 14. Nitrile Cotton 0.020 18.5 0.5 165 15. Nitrile Nylon 0.017 16 0.5 162 16. Hypalon Nylon 0.036 32 2.0 157 17. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven Polyester 0.022 16 0.5 160 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 130 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 155 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven							
7. Neoprene Dacron 0.009 9.5 0.5 149 8. Vinyl Nylon 0.014 11 2.0 165 9. Vinyl Nylon 0.021 18 2.0 160 10. Vinyl Glass 0.014 15.5 2.0 164 11. Vinyl Glass 0.006 7 0.5 132 12. Vinyl Dacron 0.012 10 0.5 131 13. Modified Vinyl Nylon 0.004 2.5 0.5 169 14. Nitrile Cotton 0.020 18.5 0.5 165 15. Nitrile Nylon 0.017 16 0.5 162 16. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.036 32 2.0 142 18. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nylon 0.022 16 0.5 136 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven Polyester 0.002 149 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven							
9. Vinyl Nylon 0.021 18 2.0 160 10. Vinyl Glass 0.014 15.5 2.0 164 11. Vinyl Glass 0.006 7 0.5 132 12. Vinyl Dacron 0.012 10 0.5 131 13. Modified Vinyl Nylon 0.004 2.5 0.5 169 14. Nitrile Cotton 0.020 18.5 0.5 165 15. Nitrile Nylon 0.017 16 0.5 162 16. Hypalon Nylon 0.036 32 2.0 157 17. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven	7.		Dacron	0.009	9.5		149
10. Vinyl	8.	Vinyl	Nylon	0.014	11	2.0	165
11. Vinyl Glass 0.006 7 0.5 132 12. Vinyl Dacron 0.012 10 0.5 131 13. Modified Vinyl Nylon 0.004 2.5 0.5 169 14. Nitrile Cotton 0.020 18.5 0.5 165 15. Nitrile Nylon 0.017 16 0.5 162 16. Hypalon Nylon 0.020 16 2.0 157 17. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven polyester 0.022 16 0.5 136 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 130 23. Silicone Nonwoven polyester 0.017 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven	9.	Vinyl	Nylon	0.021	18	2.0	160
12. Vinyl	10.	Vinyl	Glass	0.014	15.5	2.0	164
13. Modified Vinyl Nylon 0.004 2.5 0.5 169 14. Nitrile Cotton 0.020 18.5 0.5 165 15. Nitrile Nylon 0.017 16 0.5 162 16. Hypalon Nylon 0.020 16 2.0 157 17. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven polyester 0.022 16 0.5 136 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 160 23. Silicone Nonwoven polyester 0.017 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 138 29. Viton Nonwoven	11.	Vinyl	Glass	0.006	7	0.5	132
14. Nitrile	12.	Vinyl	Dacron	0.012	10	0.5	131
15. Nitrile	13.	Modified Vinyl	Nylon	0.004	2.5	0.5	169
16. Hypalon Nylon 0.020 16 2.0 157 17. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven	14.	Nitrile	Cotton	0.020	18.5	0.5	165
17. Hypalon Nylon 0.036 32 2.0 142 18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven 20. Butyl Nonwoven <td></td> <td>Nitrile</td> <td>Nylon</td> <td>0.017</td> <td>16</td> <td>0.5</td> <td>162</td>		Nitrile	Nylon	0.017	16	0.5	162
18. Butyl Cotton 0.013 11 0.5 161 19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven 0.022 16 0.5 136 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 160 23. Silicone Nonwoven 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven 138		Hypal on	Nylon			2.0	
19. Butyl Nylon 0.024 22 0.5 150 20. Butyl Nonwoven polyester 0.022 16 0.5 136 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 160 23. Silicone Nonwoven polyester 0.017 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven		Hypalon	Nylon		32	2.0	
20. Butyl Nonwoven polyester 0.022 16 0.5 136 21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 160 23. Silicone Nonwoven polyester 0.017 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven							
Polyester 0.022 16 0.5 136		•	Ny 1 on	0.024	22	0.5	150
21. Silicone Glass 0.032 34.5 2.0 167 22. Silicone Dacron 0.015 16 0.5 160 23. Silicone Nonwoven 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven	20.	Butyl					
22. Silicone Dacron 0.015 16 0.5 160 23. Silicone Nonwoven 16 0.5 139 24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven			polyester				
23. Silicone Nonwoven		Silicone	Glass		34.5	2.0	167
Polyester 0.017 16 0.5 139			Dacron	0.015	16	0.5	160
24. Urethane Nylon 0.030 28 2.0 155 25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven	23.	Silicone	Nonwoven				
25. Urethane Dacron 0.008 4 2.0 163 26. EPT Nonwoven polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven			polyester			0.5	139
26. EPT Nonwoven polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven		Urethane	Nylon		28	2.0	155
polyester 0.019 14 0.5 121 27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven			Dacron	0.008	4	2.0	163
27. Polyacrylate Dacron 0.024 24.5 0.5 149 28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven	26.	EPT					
28. Polyethylene Nylon 0.008 4.5 0.5 138 29. Viton Nonwoven							
29. Viton Nonwoven							
			*	0.008	4.5	0.5	138
	29.	Viton					
polyester 0.011 11 0.5 154				0.011	11	0.5	154
30. Polyurethane Saran film	30.	Polyurethane					
and nylon 0.043 35.5 2.0 149			and nylon	0.043	35.5	2.0	149

^{*}Sample width increased from 0.125 in. to 0.250 in. Sample holders changed to accommodate larger sample.

0 -10 Reproducibility of Twist vs. Temperature Curves for a Vinyl-Coated Fabric (12, Table 2) (Specimen Length = 1.0 inches) -20 Temperature, OF -30 -50 Figure 1 09--70 40-140 80 120-100 09

8

Angular Twist, Degrees

Curves for a Vinyl-Coated Dacron Fabric (12, Table 2) (Specimen Length = 1.5 inches) -10 Reproducibility of Twist vs. Temperature -20 -30 07-Figure 2 -50 09-140-120-00 -04 09

OF.

Temperature,

Angular Twist, Degrees

TABLE 3

COATED FABRICS TESTED PER MODIFIED ASTH D1053 IN INTER-LABORATORY ROUND-ROBIN

Coated Fabric	Coating/Substrate	Total Thickness inches	Weight3
A	Hypalon/Nylon	0.019	16
Д	Vinyl/Nylon	0.025	1.8
O	Neoprene/Nylon	0.050	42
D	Nitrile/Cotton Duck	0.057	43

Figure 3 Reproducibility of Twist vs. Temperature of a Hypalon-Coated Nylon Fabric (A) in Inter-Laboratory Tests

Figure 4 Reproducibility of Twist vs. Temperature of a Vinyl-Coated Nylon Fabric (B) in Inter-Laboratory Tests

Figure 5 Reproducibility of Twist vs. Temperature of a Neoprene-Coated Nylon (C) Fabric in Inter-Laboratory Tests

Figure 6 Reproducibility of Twist vs. Temperature of a Nitrile-Coated Cotton Duck Fabric (D) in Inter-Laboratory Tests 160 140 Angular Twist, Degrees 120 100 80 60 40 LAB T₁₀, -41 A -32 B C -29 20 -26 -60 -40 -20 0 +20 +40 +60 +80 Temperature, oF.

		Copies
Α.	Department of Defense	
	Defense Documentation Center ATTN: TIPDR Cameron Station Alexandria, VA 22314	12
	Defense Metals Information Center Battelle Memorial Institute 505 King Avenue Columbus, OH 43201	2
В.	Department of the Army	
	HQ DA (DAMA-AR) Washington, DC 20310	1
	Commander U. S. Army Material Development and Readiness Command ATTN: DRCQA DRCQA-E DRCQA-P DRCRD-TC DRCDL DRCRD-EA DRCRD-U 5001 Eisenhower Avenue Alexandria, VA 22333	1 2 2 1 1 1
	Commander U. S. Army Materiel Development and Readiness Command Scientific and Technical Information Team - Europe ATTN: DRXST-STL Dr. Richard B. Griffin APO New York 09710	1
	Commander U. S. Army Armament Command ATTN: DRSAR-RDP DRSAR-SC DRSAR-EN DRSAR-QA DRSAR-PPI Pock Island II 61201	1 1 1 2

•		Copies
P. O. Box 1221	M. Davis J. Murray	1
Commander U. S. Army Elector ATTN: DRSEL-PADRSEL-CONTROL DRSEL-TON DRSEL-WINDRSEL-RI Fort Monmouth,	L-D T-DT L-DT 'L-DO D-EA	2 1 1 1 1 1
DRSMI-RI DRSMI-QI	Mr. Robert O. Black P Redstone Scientific Info Center S Mr. George Stewart, Jr. SD Mr. Leslie Conger	1 1 2 1
ATTN: DRSTA-Q DRSTA-R DRSTA-R DRSTA-R DRSTA-R	HP Mr. O. Renius KMD Mr. J. Dudzinski KMD Mr. J. Lemmer KAB Mr. W. Wulf KAM Mr. D. J. Hakenbruch Avenue	1 1 1 1 1
ATTN: AMSTE-R	t and Evaluation Command A ng Ground, MD 21005	1

	Copies
Commander U. S. Army Aviation Systems Command ATTN: DRSAV-EE DRSAV-LE DRSAV-PV DRSAV-EEG DRSAV-EFS DRSAV-FEE DRSAV-LEP DRSAV-LSA St. Louis, MO 63166	1 1 1 1 1 1
Commander U. S. Army Troop Support Command ATTN: DRSTS-M DRSTS-P DRSTS-R 4300 Goodfellow Blvd. St. Louis, MO 63120	1 1 1
Director Army Materials and Mechanics Research Center ATTN: DRXMR-M DRXMR-P DRXMR-PL DRXMR-RA Mr. F. Valente DRXMR-MN Mr. H. Hatch DRXMR-MQ DRXMR-MS Watertown, MA 02172	1 1 2 1 1 1
Commander U. S. Army Tropic Test Center ATTN: STETC-MO-A (Technical Library) APO New York 09827	1
Commander U. S. Army Arctic Test Center ATTN: STEAC-MO-AS APO Seattle 98773	1
Commander U. S. Army Foreign Science and Technology Center ATTN: DRXST-SD3 220 Seventh Street, NE Charlottesville VA 22901	1

	Copies
Commander Corpus Christi Army Depot ATTN: DRXAD-FES Mr. Bee Corpus Christi, TX 98419	1
Commander U. S. Army MERDC ATTN: DRXFB-E DRXFB-M DRXFB-X DRXFB-O DRXFB-D DRXFB-D DRXFB-J DRXFB-W DRXFB-DQ DRXFB-MM Fort Belvoir, VA 22060	1 1 1 1 1 1 2
Director DARCOM Ammunition Center ATTN: SARAC-DE Savanna, IL 61074	1
Commander Edgewood Arsenal ATTN: SAREA-PA SAREA-PA-Q SAREA-PA-T SAREA-TS-A Aberdeen Proving Ground, MD 21010	1 1 1
Commander Frankford Arsenal ATTN: SARFA-A2000 SARFA-F6000 SARFA-J1000 SARFA-K1000 SARFA-N1000 SARFA-N7100 Mr. Mondress SARFA-P3000 SARFA-P3000 SARFA-Q1000 Philadelphia, PA 19137	1 2 1 1 1 1 1 2

	Copies
Commander Picatinny Arsenal ATTN: SARPA-FR-G Mr. A. Clear SARPA-FR-M Mr. W. Powers SARPA-FR-P Mr. H. DeFazio SARPA-FR-S Mr. T. M. Roach Jr. SARPA-TS-S Mr. M. Costello SARPA-QA-T Mr. D. Stein Dover, NJ 07801	1 1 1 1 1
Commander Rock Island Arsenal ATTN: SARRI-LEQ Mr. J. Hausman SARRI-RS Mr. V. Long SARRI-Q Mr. W. Betts Rock Island, IL 61201	1 1 1
Commander Watervliet Arsenal ATTN: SARWV-PPI Mr. L. A. Jette	1 1 1 1
Commander Harry Diamond Laboratories ATTN: DRXDO-RCD 2800 Powder Mill Road Adelphi, MD 20783	2
Commander U. S. Army Natick Research and Development Command ATTN: DRXNL-EQR DRXNL-GE Kansas Street Natick MA 01760	1

	Copies
Commander U. S. Army White Sands Missile Range ATTN: STEWS-AD-L STEWS-ID-P White Sands Missile Range, NM 88002	1
Commander	
Aberdeen Proving Ground ATTN: STEAP-MT STEAP-TL STEAP-MT-M Mr. J. A. Feroli STEAP-MT-G Mr. R. L. Huddleston Aberdeen Proving Ground, MD 21005	1 1 1
Commander U. S. Army Yuma Proving Ground ATTN: STEYP-MTS STEYP-ADT Yuma, AZ 85364	1
Commander Dugway Proving Ground ATTN: STEPD-TO(D) Dugway Proving Ground, UT 84022	1
Commander U. S. Army Electronic Proving Ground ATTN: STEEP-MT Ft. Huachuca, AZ 85613	1
Commander Jefferson Proving Ground ATTN: STEJP-TD-1 Madison, IN 47250	. 1
Director U. S. Army Production Equipment Agency ATTN: DRXPE-MT Rock Island Arsenal Rock Island. IL 61201	

	Copies
President U. S. Army Airborne Communications and Electronics Board ATTN: STEBF-TD Ft. Bragg, NC 28037	1
President U. S. Army Air Defense Board ATTN: STEBD-TD Ft. Bliss, TX 79916	1
President U. S. Army Armor and Engineer Board ATTN: STEBB-TD Ft. Knox, KY 40121	1
President U. S. Army Aviation Test Board ATTN: STEBG-MT Ft. Rucker, AL 36360	1
President U. S. Army Field Artillery Board ATTN: STEBA-TD Ft. Sill, OK 73503	1
President U. S. Army Infantry Board ATTN: STEBC-TE Ft. Benning, GA 31905	1
Commander Anniston Army Depot ATTN: DRXAN-QA Anniston, AL 36202	1
Commander Letterkenny Army Depot ATTN: DRXLE-QA Chambershurg PA 17201	1

	Copies
Commander Lexington-Bluegrass Army Depot ATTN: DRXLX-QA Lexington, KY 40507	1
Commander New Cumberland Army Depot ATTN: DRXNC-QA New Cumberland, PA 17070	1
Commander Pueblo Army Depot ATTN: DRXPU-Q Pueblo, CO 81001	2
Commander Red River Army Depot ATTN: DRXRR-QA Texarkana, TX 75502	1
Commander Sacramento Army Depot ATTN: DRXSA-QA Sacramento, CA 95801	1
Commander Savanna Army Depot ATTN: DRXSV-QA Savanna, IL 61074	1
Commander Seneca Army Depot ATTN: DRXSE-RG Romulus, NY 14541	1
Commander Sharpe Army Depot ATTN: DRXSH-QE Lathrop, CA 95330	1
Commander Sierra Army Depot ATTN: DRXSI-DQA	1

		Copies
	Commander Tobyhanna Army Depot Tobyhanna, PA 18466	1
	Commander Tooele Army Depot ATTN: DRXTE-QA Tooele, UT 84074	2
С.	Department of the Navy	
	Commander Naval Sea Systems Command Washington, DC 20362	1
	Director Naval Research Laboratory ATTN: Code 8430 Dr. J. M. Krafft Washington, DC 20375	1
D.	Department of the Air Force	
	Commander Wright Air Development Division ATTN: ASRC Wright-Patterson AFB, OH 45433	2
	AFML/DO/Library Wright-Patterson AFB, OH 45433	1

DISTRIBUTION LIST UPDATE

- - - FOR YOUR CONVENIENCE - - -

Government regulations require the maintenance of up-to-date distribution lists for technical reports. This form is provided for your convenience to indicate necessary changes or corrections.

If a change in our mailing lists should be made, please check the appropriate boxes below. For changes or corrections, show old address exactly as it appeared on the mailing label. Fold on dotted lines, tape or staple the lower edge together, and mail.

Remove Name From List	Change or Correct Address
Old Address:	Corrected or New Address:
	COMMENTS
Date:	Signature:

Technical Report #

FOLD HERE

Return Address:

POSTAGE AND FEES PAID
DEPARTMENT OF THE ARMY
DOD 314

OFFICIAL BUSINESS
Penalty for Private Use \$300

Commander
Rock Island Arsenal
Attn: SARRI-LR
Rock Island, Illinois 61201

FOLD HERE

Test Method-Stiffnass Tast Method-Stiffnass Copias available DISTRIBUTION UNCLASSIFIED Low Temperatura DISTRIBUTION UNCLASSIPIED Low Temperature Coatad Fabrics Costad Fabrica from DDC Plastic Plastic Rubber Rubbar 4 2 3 2 3 A TEST METHOD FOR MEASURING THE STIFFNESS OF COATED FABRICS AT LOW A TEST METHOD POR MEASURING THE STIFFNESS OF COATED FARRICS AT LOW A teat method was daveloped for use in datarmining the stiffnass of plastic and rubber-costed fabrics at low temperatures by use of a torsional with apparatus. Prom the teat date obseriated with this method, angular twist versus temperatures curves can be parequired, and the temperatures at which the relative moduli of the costed fabric are 2,510, and 100 times as large as the modulus at room temperature can be datarmined. The method has been been been published as ASTM D3308-75. A test mathod was davaloped for use in determining the stiffness of plastic and rubber-costed fabrics at low temperatures by use of a torsional wire apparatus. From the test date obtained with Raport R-TR-76-001, Sapt 75, p. incl. illus. tmblas, (PROM A1-2-P6350-AW-M1, AMS CODE 4931.0M.6350) Unclassified raport. Raport R-IR-76-001, Sapt 75, p. incl. illus. tablas, (PRGN A1-2-P6350-AW-H1, AMS CODE 4931.0M.6350) Unclassified raport. ACCESSION NO. ACCESSION NO. AD ACCE CDR, Rock Island Arsenal GEN Thomas J. Rodman Laboratory GEN Thomas J. Rodman Laboratory Rock Island, Illinois 61201 Rock Island, Illinois 61201 AD CDR, Rock Island Arsanal by Richard A. Faoro by Richard A. Faoro TEMPERATURES. TEMPERATURES. Test Method-Stiffness Test Method-Stiffness Copies svailabla UNCLASSIFIED Low Temperatura DISTRIBUTION UNCLASSIFIED Low Temparaturs DISTRIBUTION Coatad Fabrics Coatad Fabrics from DDC Plastic Plastic Rubber 2. Rubber 2. 3 . 17 5. 1. 9 7 2 A TEST METHOD POR MEASURING THE STIFFNESS OF COATED PABRICS AT LOW A TEST METHOD FOR MEASURING THE STIFFNESS OF COATED PABRICS AT LOW accepted by the American Society of Teating and Materials and has been published as ASTM D3388-75. A test method was daveloped for use in determining the stiffness of plastic and rubber-coated fabrics at low temperatures by use of a torsional wire apparatus. From the test data obtained with this method, angular twist versus temperature curves can be pre-pared, and the temperatures at which the relative moduli of the coated fabric ara 2,5,10, and 100 times as large as the modulus at room temperature can be determined. The metbod has been of plastic and rubber-coated fabrics at low temperatures by use of a torsional wirs apparatus. From the test data obtained with A tast method was devaloped for use in detarmining the stiffness Report R-TR-76-001, Sept 75, p. incl. illus. tables, (PRON A1-2-P6350-AW-M1, AMS CODE Raport R-TR-76-001, Sapt 75, p. incl. illus. tablas, (PRON A1-2-P6350-AW-H1, AMS CODE 4931.QM.6350) Unclassifiad raport. ACCESSION NO. ACCESSION NO. tables, (PRON A1-2-P6350-AW-MI, AMS 4931, OM. 6350) Unclassifiad raport. GEN Thomas J. Rodman Laboratory Rock Island, Illinoia 61201 CDR, Rock Island Arsanal Rock Island, Illinois 61201 AD CDR, Rock Island Arsenal by Richard A. Faoro by Richard A. Faoro TEMPERATURES, TEMPERATURES

Copies svailable

from DDC

this method, angular twist varsua tamperatura curvas can be prapated, and the temperaturas at which the relative moduli of the costed fabric are 1,5,10, and 100 times as large as the modulus at room temperatura can be determined. The method has been been published as ASTM D3368-75.

Copies available

from DDC

this method, angular twist varsus temparaturs curves can be prapared, and the temparatures at which the relative moduli of the coated fabric ats 15,10, and 100 times as large as the modulus at room temparature can be determined. The wethod has been accepted by the American Society of Issting and Materials and has

bean published as ASTM D3388-75.