

Nikhila P. Swarna September 18 2025

Pachter Lab **Division of Biology and Bioengineering California Institute of Technology**

light_ember

- one stop shop for generating entropy metrics and p-values

INPUT

- **h5ad_dir** (path to adata)
- partition_label (col in adata.obs)
- save_dir (path to save results)
- sampling= True
 - sample_id_col=None
 - category_col=None
 - condition col=None
 - o num draws=100
 - save_draws = False
 - o seed = 42
- partition_pvals=True
- block_pvals=False
 - block label=None
 - n_pval_iterations=1000
- n_cpus=1 (for parallel processing of sampling)

OUTPUT

- csv file in save_dir with all entropy metrics
- csv file in Psi_block_df folder with psi block
 - Separate file for pvals
 - Separate files for each partition
 - Alternate file names depending on sampling on or off.

generate_pvals

- manual access to generate pvals after initial investigation using light_ember

INPUT

- **h5ad_dir** (path to adata)
- partition_label (col in adata.obs)
- entropy_metrics_dir (path to light_ember output files)
- save_dir (path to save results)
- sample_id_col
- category_col
- condition col
- block_label=None
- seed = 42
- n_iterations=1000
- n_cpus=1

OUTPUT

- csv file in save_dir with entropy metrics and corresponding p-values and FDR q-values
 - Separate files for each partition

Defining entropy metrics for biological exploration

For a given gene in a count matrix that can be partitioned into r blocks (based on sex, strain, cell type, tissue, etc), we introduce **3 measures of specificity**:

block r	block 3	block 2	block 1
n			

- Psi (Ψ)
- Psi_{block} (Ψ_{block})
- Zeta (ζ)

Ψ	$oldsymbol{\psi}_{block}$	ζ
Fraction of information explained by partitioning	Specificity to a block	Specificity to a partition

Ψ- Information Fraction by Partition

The fraction of information explained by using a particular partition on gene *g*'s counts is given by:

$$\Psi = \frac{E_W}{E_T} = 1 - \frac{E_B}{E_T}$$

The Specificity of Information to Block, denoted by ψ_{block} , is the contribution of each block to Ψ :

\(\) - Specificity of Information to Partition

The specificity of information to a partition (ζ) is given by:

Comparison of the SIB distribution to the uniform distribution

How to select category and condition

Category - Mouse strain Condition - Sex

Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mouse strain		Str	ain A		Strain B			Strain C				Strain D				
Sex	Male	е	Fen	nale	Ma	ale	Female			Male Female			Ma	ale	Fen	nale

Number of unique draws

= (Number of replicates per category-condition group) $^{(Number of category-condition groups)}$ = $2^8 = 256$

One example draw:

Sample	1	3	5	7	9	11	13	15	
Mouse strain	Str	ain A	Stra	Strain B		in C	Strain D		
Sex	Male	Female	Male	Female	Male	Female	Male	Female	

How to select category and condition

Category - Cell line Condition - Gene perturbation

Sample	1	2	3	4	5	6	7	8	9	10	11	12
Cell line			Ce	ell line A			Cell line B					
Gene perturbation	Wildt	зуре	Overex	oression	Knoo	ckout	Wild	type	Overex	oression	Knoo	ckout

Number of unique draws

= (Number of replicates per category-condition group) $^{(Number of category-condition groups)}$ = $2^6 = 64$

One example draw:

Sample	1 3		5	7	9	11		
Cell line		Cell line	A	Cell line B				
Gene perturbation	WT	OE	КО	WT	OE	ко		

How to select category and condition

Category - Mouse strain Condition - Sex

Sample	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mouse strain		Str	ain A			Strain B			Strain C						Strain	D
Sex	Male		Female		Ma	Male Female				Male		Fen	nale	Mal	е	Female

Number of unique draws

= \prod (Number of replicates per category-condition group) = 1*3*2*2*3*2*1 = 144

One example draw:

Sample	1	2	5	7	9	12	14	16	
Mouse strain	Str	ain A	Stra	in B	Stra	in C	Strain D		
Sex	Male	Female	Male	Female	Male	Female	Male	Female	