

Janvier 2021 Durée:1h30

<u>Physique pour l'ingénieur</u>

Session principale

Exercice 1

Soit une particule quantique de masse m et d'énergie totale E>0 confinée dans un puits infini de potentiel défini par :

$$V(x) = \begin{cases} 0 & 0 \le x \le a \\ +\infty & x < 0 \text{ et } x > a \end{cases}$$

On note $\varphi(x)$ la fonction d'onde indépendante du temps dans le puits.

- 1- Résoudre l'équation de Schrödinger stationnaire à l'intérieur du puits.
- **2-** Montrer que $\varphi(x)$ dépend d'un entier n.

On note dans ce qui suit $\varphi_n(x)$ et E_n au lieu de $\varphi(x)$ et E.

- 3- Donner les énergies E_n de la particule en fonction de n. Justifier le choix de $n \in \mathbb{N}^*$.
- 4- Commenter les niveaux d'énergie E_n .
- 5- Normaliser $\varphi_n(x)$.
- **6-** Vérifier que les fonctions d'onde $\varphi_n(x)$ sont orthogonales.

Exercice 2

Soit un système physique à deux niveaux d'énergie dont l'espace des états admet comme une base orthonormée les vecteurs propres $|1\rangle$ et $|2\rangle$ de l'hamiltonien non perturbé H_0 , associés aux valeurs propres $\varepsilon_1 = \hbar \omega$ et $\varepsilon_2 = \hbar \omega$, respectivement.

$$H_0 = \begin{pmatrix} \hbar \omega & 0 \\ 0 & \hbar \omega \end{pmatrix}$$
 , $|1\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Où ω est une constante réelle et positive.

On cherche à évaluer les modifications qui apparaissent lorsqu'on introduit un terme de couplage W qui permettra au système de passer d'un état à l'autre. Dans la base $\{|1\rangle, |2\rangle\}$, W s'écrit :

$$W = \begin{pmatrix} 0 & \hbar\Omega \\ \hbar\Omega & 0 \end{pmatrix}$$

Où Ω est une constante réelle et positive.

Le système présente donc un hamiltonien total $H = H_0 + W$.

- 1- Déterminer les énergies propres E_1 et $E_2 < E_1$ de H.
- 2- Déterminer les vecteurs propres normés $|\varphi_1\rangle$ et $|\varphi_2\rangle$ associés aux énergies propres E_1 et E_2 .

A l'instant t = 0, l'état du système est $|\Psi(0)\rangle = |2\rangle$:

- 3- Déterminer l'état $|\Psi(t)\rangle$ du système à l'instant t.
- 4- Déterminer la probabilité $P_1(t)$ de trouver le système à l'instant t dans l'état $|1\rangle$.
- 5- Tracer $P_1(t)$. Commenter.