Course: Data Mining

Homework 4

Student ID: 20C14001

Student Name: Le Duong Tuan Anh

Question 1

Training set

Shape	Country	Status	Group
Small	Germany	Single	A
Big	French	Single	A
Big	Germany	Single	A
Small	Italy	Single	В
Big	Germany	Married	В
Big	Italy	Single	В
Big	Italy	Married	В
Small	Germany	Married	В

a. Decision Tree by Information Gain measure

Class P: Group = A

Class N: Group = B

Info(Group) = I(3,5) =
$$-\frac{3}{8}log_2(\frac{3}{8}) - \frac{5}{8}log_2(\frac{5}{8}) \approx 0.954$$

Shape:

Shape	Country	Status	Group
Small	Germany	Single	A
Small	Italy	Single	В
Small	Germany	Married	В

Shape	Country	Status	Group
Big	French	Single	A
Big	Germany	Single	A
Big	Germany	Married	В
Big	Italy	Single	В
Big	Italy	Married	В

$$Info_{Shape}(Group) = \frac{3}{8}I(1,2) + \frac{5}{8}I(2,3) \approx 0.951$$

$$Gain(shape) = Info(Group) - Info_{Shape}(Group) = 0.003$$

Country:

Shape	Country	Status	Group
Small	Germany	Single	A
Big	Germany	Single	A
Big	Germany	Married	В
Small	Germany	Married	В

Shape	Country	Status	Group
Big	French	Single	A

Shape	Country	Status	Group
Small	Italy	Single	В
Big	Italy	Single	В
Big	Italy	Married	В

$$Info_{Country}(Group) = \frac{4}{8}I(2,2) + \frac{1}{8}I(1,0) + \frac{3}{8}I(0,3) = 0.5$$

$$Gain(Country) = Info(Group) - Info_{Country}(Group) = 0.454$$

Status:

Shape	Country	Status	Group
Small	Germany	Single	A
Big	French	Single	A
Big	Germany	Single	A
Small	Italy	Single	В
Big	Italy	Single	В

Shape	Country	Status	Group
Big	Germany	Married	В
Big	Italy	Married	В
Small	Germany	Married	В

$$Info_{Status}(Group) = \frac{5}{8}I(3,2) + \frac{3}{8}I(0,3) \approx 0.607$$

$$Gain(Status) = Info(Group) - Info_{Status}(Group) = 0.347$$

$$Gain(shape) = 0.003$$

 $Gain(country) = 0.454$
 $Gain(status) = 0.347$

So, choose attribute **Country** = **Germany** (as Country = French has only Group = A and Italy only has Group = B)

Shape	Country	Status	Group
Small	Germany	Single	A
Big	Germany	Single	A
Big	Germany	Married	В
Small	Germany	Married	В

$$Info(Group) = I(2,2) = 1$$

Shape:

Shape	Country	Status	Group
Small	Germany	Single	A
Small	Germany	Married	В

Shape	Country	Status	Group
Big	Germany	Single	A
Big	Germany	Married	В

$$Info_{shape}(Group) = \frac{2}{4}I(1,1) + \frac{2}{4}I(1,1) = 1$$

$$Gain(Status) = Info(Group) - Info_{Status}(Group) = 0$$

Status

Shape	Country	Status	Group
Small	Germany	Single	A
Big	Germany	Single	A

Shape	Country	Status	Group
Big	Germany	Married	В
Small	Germany	Married	В

Info_{shape}(status) =
$$\frac{2}{4}I(2,0) + \frac{2}{4}I(0,2) = 0$$

$$Gain(Status) = Info(Group) - Info_{Status}(Group) = 1$$

We choose **Status** is the next node. Now, we stop as there is only one result per split.

Decision Tree

b. Classification rules from (a):

If (country == Italy) then Group = B

If (country == French) then **Group = A**

If (**country** == **Germany**) then:

If (Status == Single) then Group = A

If (Status == Married) then Group = B.

c. Decision Tree by Gain Ratio measure:

Shape	Country	Status	Group
Small	Germany	Single	A
Big	French	Single	A
Big	Germany	Single	A
Small	Italy	Single	В
Big	Germany	Married	В
Big	Italy	Single	В
Big	Italy	Married	В
Small	Germany	Married	В

Class P: Group = A

Class N: Group = B

Info(Group) = I(3,5) =
$$-\frac{3}{8}log_2(\frac{3}{8}) - \frac{5}{8}log_2(\frac{5}{8}) \approx 0.954$$

Shape:

Shape	Country	Status	Group
Small	Germany	Single	A
Small	Italy	Single	В
Small	Germany	Married	В

Shape	Country	Status	Group
Big	French	Single	A
Big	Germany	Single	A
Big	Germany	Married	В
Big	Italy	Single	В
Big	Italy	Married	В

$$Info_{Shape}(Group) = \frac{3}{8}I(1,2) + \frac{5}{8}I(2,3) \approx 0.951$$

$$Gain(shape) = Info(Group) - Info_{Shape}(Group) = 0.003$$

$$SplitInfo(Shape) = -\frac{3}{8}log_2\left(\frac{3}{8}\right) - \frac{5}{8}log_2\left(\frac{5}{8}\right) \approx 0.954$$

$$GainRatio(Shape) = \frac{0.003}{0.954} \approx 0.003$$

Country:

Shape	Country	Status	Group
Small	Germany	Single	A
Big	Germany	Single	A
Big	Germany	Married	В
Small	Germany	Married	В

Shape	Country	Status	Group
Big	French	Single	A

Shape	Country	Status	Group
Small	Italy	Single	В
Big	Italy	Single	В
Big	Italy	Married	В

Info_{Country}(Group) =
$$\frac{4}{8}I(2,2) + \frac{1}{8}I(1,0) + \frac{3}{8}I(0,3) = 0.5$$

$$Gain(Country) = Info(Group) - Info_{Country}(Group) = 0.454$$

$$SplitInfo(Country) = -\frac{4}{8}log_2\left(\frac{4}{8}\right) - \frac{1}{8}log_2\left(\frac{1}{8}\right) - \frac{3}{8}log_2\left(\frac{3}{8}\right) \approx 1.406$$

$$GainRatio(Country) = \frac{0.454}{1.406} \approx 0.323$$

Status:

Shape	Country	Status	Group
Small	Germany	Single	A
Big	French	Single	A
Big	Germany	Single	A
Small	Italy	Single	В
Big	Italy	Single	В

Shape	Country	Status	Group
Big	Germany	Married	В
Big	Italy	Married	В
Small	Germany	Married	В

$$Info_{Status}(Group) = \frac{5}{8}I(3,2) + \frac{3}{8}I(0,3) \approx 0.607$$

$$Gain(Status) = Info(Group) - Info_{Status}(Group) = 0.347$$

$$SplitInfo(Status) = -\frac{5}{8}log_2\left(\frac{5}{8}\right) - \frac{3}{8}log_2\left(\frac{3}{8}\right) \approx 0.954$$

$$GainRatio(Status) = \frac{0.347}{0.954} \approx 0.364$$

We have:

$$GainRatio(shape) = 0.003$$

 $GainRatio(country) = 0.323$
 $Gain(status) = 0.364$

Splitting Attribute: Status, Status = Single (as Status = Married only has result Group = B)

Shape	Country	Status	Group
Small	Germany	Single	A
Big	French	Single	A
Big	Germany	Single	A
Small	Italy	Single	В
Big	Italy	Single	В

Info(Group) =
$$I(3,2) = -\frac{3}{5}log_2(\frac{3}{5}) - \frac{2}{5}log_2(\frac{2}{5}) \approx 0.971$$

Shape:

Shape	Country	Status	Group
Small	Germany	Single	A
Small	Italy	Single	В

Shape	Country	Status	Group
Big	French	Single	A
Big	Germany	Single	A
Big	Italy	Single	В

Info_{Shape} (Group) =
$$\frac{2}{5}I(1,1) + \frac{3}{5}I(2,1) \approx 0.117$$

 $Gain(shape) = Info(Group) - Info_{Shape}(Group) = 0.854$

SplitInfo(Shape) =
$$-\frac{2}{5}log_2\left(\frac{2}{5}\right) - \frac{3}{5}log_2\left(\frac{3}{5}\right) \approx 0.971$$

GainRatio(Shape) =
$$\frac{0.883}{0.971} \approx 0.88$$

Country:

Shape	Country	Status	Group
Small	Germany	Single	A
Big	Germany	Single	A

Shape	Country	Status	Group
Big	French	Single	A

Shape	Country	Status	Group
Small	Italy	Single	В
Big	Italy	Single	В

Info_{Shape}(Country) =
$$\frac{2}{5}I(2,0) + \frac{1}{5}I(1,0) + \frac{2}{5}I(0,2) = 0$$

$$Gain(Country) = Info(Group) - Info_{Shape}(Group) = 0.971$$

SplitInfo(Country) =
$$-\frac{2}{5}log_2\left(\frac{2}{5}\right) - \frac{1}{5}log_2\left(\frac{1}{5}\right) - \frac{2}{5}log_2\left(\frac{2}{5}\right) \approx 1.522$$

$$GainRatio(Country) = \frac{0.971}{1.522} \approx 0.909$$

We have:

$$GainRatio(shape) = 0.88$$

 $GainRatio(country) = 0.909$

Splitting Attribute: Country. Stopped, as for every split we have similar Group value.

Decision Tree:

Classification Rule:

If (status == Married) then Group = B

If (**status** == **Single**) then:

If (Country == Germany) or (Country == French) then Group = A

If (Country == Italy) then Group = B.

d. Evaluate the tree of (a) and (c)

Shape	Country	Status	(a) result	(c) result	Expected Result
Small	Germany	Single	A	A	A
Big	French	Single	A	A	A
Big	Germany	Single	A	A	A
Small	Italy	Single	В	В	В
Big	Germany	Married	В	В	В
Big	Italy	Single	В	В	В
Big	Italy	Married	В	В	В
Small	Germany	Married	В	В	В

Confusion Matrix for (a)

Actual\Predicted	A	В	
A	3	0	
В	0	5	
			Accuracy: 100%

Confusion Matrix for (b)

Actual\Predicted	A	В	
A	3	0	
В	0	5	
			Accuracy: 100%

Question 2

Customer	Article1	Article2	Article3	Article4	Article5	Artical6
1	0	1	0	1	1	0
2	0	1	1	1	0	1
3	1	0	1	0	1	0
4	1	0	0	1	0	1
5	1	0	0	0	1	0

a. K-means with Cosine distance

K=2

Initial centroids:

Center 1: (0,0,1,1,1)

Center 2: (0,1,1,0,0)

<u>Iteration 1:</u>

Center 1: (0,0,1,1,1)

Center 2: (0,1,1,0,0)

Article	Cosine Distance to Center 1	Cosine distance to Center 2
Article 1 (0,0,1,1,1)	0.0	0.5917517095361369
Article 2 (1,1,0,0,0)	1.0	0.5
Article 3 (0,1,1,0,0)	0.5917517095361369	0.0
Article 4 (1,1,0,1,0)	0.666666666666667	0.5917517095361369
Article 5 (1,0,1,0,1)	0.333333333333333	0.5917517095361369
Article 6 (0,1,0,1,0)	0.5917517095361369	0.5

<u>Update centroids:</u>

Center 1: (0,0,1,1,1); $(1,0,1,0,1) \rightarrow (0.5, 0, 1, 0.5, 1)$

Center 2: (1,1,0,0,0); (0,1,1,0,0); (1,1,0,1,0); $(0,1,0,1,0) \rightarrow (0.5, 1, 0.25, 0.5, 0)$

<u>Iteration 2:</u>

Center 1: (0.5, 0, 1, 0.5, 1)

Center 2: (0.5, 1, 0.25, 0.5, 0)

Article	Cosine distance to Center 1	Cosine distance to Center 2
Article 1 (0,0,1,1,1)	0.08712907	0.65358984
Article 2 (1,1,0,0,0)	0.7763932	0.15147186
Article 3 (0,1,1,0,0)	0.5527864	0.29289322
Article 4 (1,1,0,1,0)	0.63485163	0.07623957
Article 5 (1,0,1,0,1)	0.08712907	0.65358984
Article 6 (0,1,0,1,0)	0.7763932	0.15147186

<u>Update centroids:</u>

There is no chance on cluster, therefore, stop here.

Final centroids:

Center 1: (0.5, 0, 1, 0.5, 1); Article (1,5)

Center 2: (0.5, 1, 0.25, 0.5, 0); Article (2,3,4,6)

b. BetaCV measure

$$Cosine(i,j) = 1 - \frac{\sum_{i=1}^{n} A_i * B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} * \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

$$W_{in} = \frac{1}{2} \sum_{i=1}^{k=2} W(C_i, C_i) = 2.792091881014018$$

$$W_{out} = \frac{1}{2} \sum_{i=1}^{k} W(C_i, \overline{C_i})$$

$$= \sum W(C_1, C_2) = Cosine(1, 2) + Cosine(1, 3) + Cosine(1, 4) + Cosine(1, 6)$$

$$+ Cosine(5, 2) + Cosine(5, 3) + Cosine(5, 4) + Cosine(5, 6)$$

$$= 5.700340171477881$$

$$N_{in} = \sum_{i=1}^{k=2} {n_i \choose 2} = {2 \choose 2} + {4 \choose 2} = 7$$

$$N_{out} = \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} n_i n_j = 2 * 4 = 8$$

$$BetaCV = \frac{W_{in}/N_{in}}{W_{out}/N_{out}} = \frac{2.792091881014018 / 7}{5.700340171477881 / 8} = 0.5597845135 \approx 0.56$$