RS/Conference2019

San Francisco | March 4–8 | Moscone Center

SESSION ID:

Homomorphic Encryption

- Publicly operate on ciphertexts :
 - Correspondence between operations in the encrypted and in the clear domain.
- Fully Homomorphic encryption
 - Allows to evaluate an arbitrary function over encrypted inputs.
 - In particular, Boolean circuits by composing elementary gate operations :

$$[b_1], [b_2] \rightarrow [b_1 \land b_2], [\neg b_1], [b_1 \lor b_2]$$

Many applications: Cloud computation, Delegation of computation over sensitive date, Encrypted prediction processing

Somewhat HE to FHE

- Noise growth management using a refreshing technique
- Gentry's Bootstrapping [G09]

Amortized bootstrapping cost per gate is high Focus on reducing this cost

FHEW-based Bootstrapping [DM15]

([BR15],[CGGI16],[BDF18], our work)

Input: a LWE ciphertext of m, description of f, public parameters= (**BK**, ...).

Output: a LWE ciphertext of f(m).

FHEW-based Fast Bootstrapping

- [AP14]: achieve bootstrapping based on LWE with small polynomial factors.
- [DM15] : Gate Bootstrapping for binary gates in ≈ 1sec + extension.
- [CGGI16]/[CGGI17] : Gate Boostraping for MUX gates in ≈0.1sec.
- + arithmetic function via weighted automata.
- [BR15], [BDF18]: extension to larger gates (6-bits input,6-bits output in \approx 10sec.).
- [MS18]: improve the amortized bootstrapping cost.
- This work: analysis of the FHEW-based bootstrapping structure.
 - optimization of the Bootstrapping for larger gates, application to hom. circuits
 - \Rightarrow 6-bits input, 6-bits output in \approx 1.57sec.

TFHE

- T = module of reals modulo 1.
- **Secret key** : $s \in \{0,1\}^n$
- Encryption: $c = (a, b = m_i + a \cdot s + noise) \in T^{n+1}$ with $a \in T^n$ random.
- **Decryption**: Round $\varphi = b a \cdot s$ to the nearest element in message space.

Learning with errors assumption:

(a, b) indistinguishable from random in T^{n+1}

TFHE

- T = module of reals modulo 1.
- **Secret key** : $s \in \{0,1\}^n$
- Encryption: $c=(a, b=m_i+a\cdot s+noise) \in T^{n+1}$ with $a \in T^n$ random.
- **Decryption**: Round $\varphi = b a \cdot s$ to the nearest element in message space.

Example:
$$\mathcal{M} = \left\{0, \frac{1}{4}, -\frac{1}{4}, \frac{1}{2}\right\} \mod 1$$
 and $m = \frac{1}{2} \mod 1$

- 1. Compute $\varphi = m + noise$
- 2. Choose $\mathbf{a} \in T^n$ random
- 3. Return the ciphertext (a, as + φ)

TFHE Homomorphic Operations

- TLWE Sample : (n+1) torus scalars.
- TRLWE Sample: k+1 torus polynomials of degree N.

Operations in T: addition, external multiplication with integer elements.

TFHE Bootstrapping for evaluating $f: Z_t \rightarrow Z_t$

Step 1:

- 1. Round c=(a,b) in a discrete space of size 2N.
- 2. Encode f as a polynomial TV_F modulo X^N+1 where $f=F \circ round$

Step 2:

1. Homomorphically rotate the polynomial by b-as positions.

Step 3:

- 1. Extract the constant term which encrypts f(m).
- 2. Switch the ciphertext back to the original key.

Mutli-value Bootstrapping – Test Polynomial Factorization

• First-phase test polynomial: divides the torus circle in two parts.

Second-phase test polynomial: builds a linear combination of previous half-circles.

$$TV_F^{(1)} = t_a' X^a + t_b' X^b + t_c' X^c$$

Optimized multi-value Bootstrapping

Multi-output version

• Evaluate several functions $F_1,..., F_q$ on the same input.

Homomorphic Lookup Table

• A boolean Lookup Table (LUT) $f: Z_2^r \to Z_2^q$

Consider the case q=1

$$\Leftrightarrow$$
 F \circ φ where F : $Z_{2^r} \to Z_2$ and $\varphi : Z_2^r \to Z_{2^r}$ s.t. $\varphi(m_1,...,m_q) = \sum m_i 2^i$.

- Homomorphic evaluation of the function f:
- 1. Encode m_j as $\frac{j}{2^{r+1}}$ for $j \in Z_{2^r}$ and outputs as $\frac{j}{2^{r+1}}$ for $j \in Z_2$ on the half circle.
- 2. Multi-value Bootstrapping with $TV^0 = \sum X_i$ and TV_F^1 with small norm.

Homomorphic Circuits

Implementation for r=6

Encryption Parameters (for 128 bits of security):

- TLWE: n = 803, $\alpha_{LWE} = 2^{-20} \Rightarrow 6.3kB$
- TRLWE: N = 2^{14} , $\alpha_{TRWE} = 2^{-50}$ \Rightarrow 256kB
- TRGSW: $B_g = 2^6$, $l = 2^3$ \Rightarrow 2MB

Key Parameters (for 128 bits of security):

- LWE key: n = 803, h = 63
- BK < 2GB and KS $\approx 6GB$ generated in 66sec. both

Running time: Multi-value Bootstrapping with 6-bit inputs, 6bits-outputs runs in 1.57 sec on a single core of an Intel E3-1240 processor running at 3.50GHz.

Summary

- Optimize the multi-value input Bootstrapping
 - Split factorization method for the test polynomial.
 - Large gate homomorphic evaluation.
 - Multi-output evaluation on the same input.

- Application to homomorphic circuit
 - Implementation of 6-to-6-bits look-up-table in 1.57 sec (vs a≈ 10sec in [BDF18]).
 - Only 0.05 sec. more for additional 128 outputs on the same 6 input bits.

Conclusion

- Other applications (hints in the paper):
 - Optimization of the circuit bootstrapping of [CGGI17]: invoke the gate bootstrapping main subroutine once rather than p times.
 - Activation function in neural network homomorphic evaluation : where f is a threshold function.
- Further Improvements ?
 - Other possible factorization instanciations than splitting TV as TV_0 and TV_F^1 ?
- Implement other application where evaluating f using the Multi-value Bootstrapping could be efficient.

