Machine Learning

Haydn Cheng

February 21, 2025

Contents

1 Linear Regression

2

Linear Regression

In a linear regression model, we assume that the true relationship between the response Y and the predictors X_j , j = 1, ..., p is given by

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon, \tag{1.1}$$

where ϵ is a random error term which is indepedent of X_j and has mean zero.

From the set of n observation pairs (x_i, y_i) , we estimate the regression coefficients $\hat{\beta}_j$, $j = 1, \ldots, p$ by minimizing the sum of squared residuals (RSS)

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
, $\hat{\mathbf{y}} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$. (1.2)

¹Ideally this is truely random but in reality this may be due to predictors that have not been taken into account, which would violates the mean equals to zero property.