Original Image #1:

With Random Initialization, seed = 1342

К	2	3	10	20	40
MSE	1580.27 186392 04127	1007.9519 383571846	167.47270 702309882	82.782904 02001679	48.247059 40029903
Iterations until convergence	15	38	17	25	26

With Random Initialization, seed = 4132

К	2	3	10	20	40
MSE	1594.51 217646 38618	827.78173 95618559	189.87726 73633638	70.252444 4772527	38.222893 76605777
Iterations until convergence	21	36	28	25	56

With Random Initialization and minimum distance, seed = 1342

К	2	3	10	20	40
MSE	1560.88 072355 41128	705.61688 08755369	149.81186 76316325	71.256210 626326	37.556168 88449374
Iterations until convergence	10	10	16	24	29

Pictures with Random Initialization, seed = 1342 K = 2:

K = 3:

K = 10:

K = 20:

K = 40:

Original Image #2:

With Random Initialization, seed = 1342

K	2	3	10	20	40
MSE	934.555 780540 2003	706.56782 30140982	196.99872 995135826	109.11216 621570146	58.331253 10342356
Iterations until convergence	6	13	18	21	42

With Random Initialization, seed = 4132

К	2	3	10	20	40
MSE	1011.29 456417 50075	709.61352 98054027	198.47918 582713694	109.97069 691397137	63.644819 57568519
Iterations until convergence	14	23	20	28	46

With Random Initialization and minimum distance, seed = 1342

К	2	3	10	20	40
MSE	936.696 483818 2356	656.31433 49639489	210.58471 95596923	105.32414 030279718	53.499795 2075581
Iterations until convergence	9	5	20	36	32

Pictures with Random Initialization, seed = 1342

K = 2:

K = 40:

Initialization Strategies:

Firstly, a shuffled copy of the pixel array is created. For the first initialization strategy, the first k points from the shuffled copy are used as the initial centres. For the second strategy, a minimum distance is used as a threshold for selecting our centres. The first point in the shuffled copy will be our first centre. The distance of the next point from each centre currently in the list is then computed and checked to be greater than the defined threshold. If so, it's appended as another centre, and the algorithm repeats until ass centres are found. In terms of selecting the minimum threshold, it will depend on the value of k. At lower k values, this threshold can be quite large, since we don't have as many centres to account for, however this initialization strategy does not make much of a difference here anyways. As we increase k, the threshold must decrease to be able to find enough centres. This value was roughly estimated to be around 30 for k = 40, 50 for k = 20, and 80 for k = 10.

Discussion:

When comparing the different initialization strategies, we can see a notable improvement in the time it takes to converge. At lower k values, the minimum distance makes almost no difference due to there not being enough random centres. However, at larger k values the algorithm is able to converge faster, and to a lower mean squared error. Additionally, we can see that k is directly inversely proportional to the mean squared error. As k increases, MSE decreases quickly, which is expected. However, as mentioned above, the initialization strategy makes little difference on the MSE, even on higher values of k (could be due to only testing it with one seed). In terms of the image quality, we can see that it is also proportional to k, and MSE.