

Limites - Parte 1

1 A ideia de limite

Conforme discutido no vídeo Introdução à Noção de Limites - Parte 1, disponível em https://www.youtube.com/watch?v=haDTo1bBMTM, nessa parte do curso, queremos analisar gráficos de funções e verificar os limites laterais (à esquerda e à direita) em pontos determinados.

Exemplo 1.1 Uma panela com água foi colocada no fogo. No início, a água está em temperatura ambiente (TI) e começa a aquecer. No instante em que começa a fervura (t_1) , alguém joga um balde de gelo, provocando uma queda brusca da temperatura, até TG. Poderíamos representar essa situação como no gráfico abaixo.

Depois, a temperatura torna a subir até atingir a temperatura de ebulição, quando se estabiliza.

O que acontece com a temperatura quando o tempo se aproxima de t_1 ou t_2 ?

Se, antes do instante t_1 , fosse possível prever a temperatura em t_1 , iríamos dizer que a temperatura seria TE, já que a temperatura está se aproximando deste valor antes de t_1 . Por outro lado, se fosse possível voltar o tempo para trás, e analizar o que acontece com a temperatura quando o tempo volta para t_1 , diríamos que a temperatura se aproximaria de TG.

Esta é a primeira noção de **limite** que temos, e o que está sendo estimado aqui é o limite à esquerda e à direita da temperatura, quando o tempo se aproxima de t_1 .

No limite à esquerda, estamos deixando o tempo t se aproximar de t_1 com valores menores do que t_1 (à esquerda de t_1 na reta dos números reais) e vendo o que acontece com a temperatura. Se for possível fazer uma previsão, diremos que o **limite da temperatura** T(t) quando t tende a t_1 pela esquerda é o valor da previsão. Escrevemos

$$\lim_{t \to t_1^-} T(t) = TE,$$

onde T(t) é a temperatura dada em função do tempo t. Repare no - ao lado do t_1 , indicando que o limite é à esquerda

Da mesma forma, se aproximamos o tempo de t_1 com valores maiores que t_1 (à direita de t_1) e podemos prever que a temperatura se aproxima de um valor, diremos que o **o limite de** T(t) **quando** t **tende a** t_1 **pela esquerda** \acute{e} este valor da previs $\~{a}$ o. Escrevemos

$$\lim_{t \to t_1^+} T(t) = TG.$$

 $O + ao lado do t_1 indica que o limite é à direita.$

Em qualquer um dos limites acima, à esquerda ou à direita, o valor da função no instante exato t_1 não interessa. Se tivéssemos $T(t_1) = TG$, os limites seriam os mesmos.

Formalmente, dado um valor fixo x=a, de tal maneira que o conjunto $(a-r,a)\cup(a,a+r)$ está contido no domínio de f, analisamos o comportamento de f nesse conjunto para calcular $\lim_{x\to a^-} f(x)$ (lê-se: limite de f(x) quando x tende a a, pela esquerda) e $\lim_{x\to a^+} f(x)$ (lê-se: limite de f(x) quando x tende a a, pela direita).

O limite à esquerda é verificado analisando o comportamento de f em valores de x menores que a (à esquerda de a na reta numérica), e muito próximos de a. Analogamente, o limite pela direita é verificado analisando o comportamento de f em valores de x maiores que a (à direita de a na reta numérica), e muito próximos de a.

Dizemos que o limite quando x tende a a de f(x) existe e é igual ao número real L, se ambos os limites laterais existem e valem L. Isto é:

$$\lim_{x \to a} f(x) = L \Leftrightarrow \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$

Exemplo 1.2 As figuras 1 e 2 apresentam os gráficos das funções f e g. Para cada uma das funções, existem os limites laterais em x = -1? O limite existe?

Figura 1: gráfico de f(x)

Figura 2: gráfico de g(x)

Solução: Para f(x), fazendo x se aproximar de -1 por valores maiores que -1, vemos que f(x) se aproxima de 0. Portanto, $\lim_{x\to -1^+} f(x) = 0$. Para calcular o limite à esquerda, escolhemos valores menores que x cada vez mais próximos de -1, para concluirmos $\lim_{x\to -1^-} f(x) = 1$. Cada um dos limites laterais existe, mas são diferentes. Portanto, não existe $\lim_{x\to -1} f(x)$. Procedendo de modo análogo para g(x), vemos que existem os limites laterais, e ambos valem 1. Portanto, $\lim_{x\to -1} g(x) = 1$.

Exemplo 1.3 Nesse caso, em x=3, existe o limite à esquerda. O limite à direita não existe em x=3 pois, quando x se aproxima de 3 pela direita, f(x) não se aproxima de nenhum número, na verdade o valor de f(x) fica tão grande quanto se queira (dizemos que tende a infinito). Assim, como um dos limites laterais não existe, o limite $\lim_{x\to 1} f(x)$ não existe.

Figura 3: Não existe o limite à direita em x = 3.

2 Calculando alguns limites

No vídeo Introdução à Noção de Limites - Parte 2, disponível em https://www.youtube.com/watch?v=9 apresentamos alguns resultados que permitem calcular diversos limites. Aqui, fazemos um breve resumo esquematizado desses resultados, resolvemos alguns exemplos e propomos exercícios.

Observação 2.1 Para algumas funções, sabe-se que, para todo a do domínio, $\lim_{x\to a} f(x) = f(a)$. Citamos, nesse momento:

- (1) Funções polinomiais
- (2) Funções exponenciais
- (3) Funções trigonométricas em seus domínios
- (4) Funções logarítmicas, $x \in (0, \infty)$
- (5) Funções raízes n-ésimas $y = \sqrt[n]{x}$, com $x \in [0, \infty)$ se n for par $e \ x \in \mathbb{R}$ se n for impar.
- (6) Função modular $y = |x|, x \in \mathbb{R}$

Este fato será melhor apresentado e devidamente justificado no tópico continuidade. Por enquanto, vamos justificar intuitivamente com o fato de que o gráfico destas funções não apresenta "quebras" em pontos do domínio.

É importante observar que este fato também vale para os limites laterais, isto é $\lim_{x\to a^+} f(x) = f(a)$ e $\lim_{x\to a^-} f(x) = f(a)$.

Além disso, também vimos que

Teorema 1 1 Dadas duas funções, f e g, tais que $\lim_{x\to a} f(x) = L_f$ e $\lim_{x\to a} g(x) = L_g$:

- (1) $\lim_{x\to a} (f(x)+g(x)) = L_f + L_g$. (Lê-se: o limite da soma é a soma dos limites, caso os limites existam)
- (2) $\lim_{x\to a} (f(x) \cdot g(x)) = L_f \cdot L_g$. (Lê-se: o limite do produto é o produto dos limites, caso os limites existam)

¹Esse resultado é bem conhecido. Sua demonstração poderá ser feita com a introdução da noção formal de limite.

(3) Se $L_g \neq 0$, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L_f}{L_g}$. (Lê-se: o limite do quociente é o quociente dos limites, caso os limites existam e o denominador não tenha limite 0)

Nos primeiros exemplos, vamos justificar cada passo e sugerimos que você também faça isso para firmar a teoria. Com a prática, pode—se assumir como óbvias certas justificativas.

Exemplo 2.1

$$\lim_{x \to 2} e^x (x^3 + 2x) = \lim_{x \to 2} e^x \cdot \lim_{x \to 2} (x^3 + 2x) \quad \text{Teorema 1 item (2)}$$

$$= 12e^2 \quad \text{Observação 2.1 itens (1) e (2)}$$

Exemplo 2.2

$$\lim_{x \to 0} \left(\cos(x) + \frac{x^4 + 3x}{\sin(x + \pi/2)} \right) = \lim_{x \to 0} \cos(x) + \lim_{x \to 0} \frac{x^4 + 3x}{\sin(x + \pi/2)} \quad \text{Teorema 1 [01]}$$

$$= 1 + \frac{\lim_{x \to 0} (x^4 + 3x)}{\lim_{x \to 0} \sin(x + \pi/2)} \quad \text{Teorema 1 item (3)}$$

$$= 1 + \frac{0}{1} \quad \text{Observação 2.1 itens (2) e (3)}$$

$$= 1$$

Exemplo 2.3

$$f(x) = \begin{cases} x^3 - x^2 + 3, & \text{se } x < 1 \\ 2x + 5, & \text{se } x \ge 1 \end{cases}$$

Vamos olhar $\lim_{x\to 1} f(x)$. Se $x\to 1^-$, $f(x)=x^3-x^2+3\to 3$. Se $x\to 1^+$, $f(x)=2x+5\to 7$. A função tem limites laterais diferentes e, portanto, não existe $\lim_{x\to 1} f(x)$.

Vamos agora discutir um fato bastante intuitivo, e que nasce do próprio conceito de limite.

Proposição 2.1 Sejam f e g funções definidas num intervalo aberto I e seja $a \in I$. Se f(x) = g(x) para todo $x \in I \setminus \{a\}$ e $\lim_{x \to a} g(x) = L$, então $\lim_{x \to a} f(x) = L$.

Note que esta proposição afirma que para comparar o limite de duas funções quando $x \to a$, apenas importa o que acontece em torno de a, independente do que possa acontecer em a. De fato, poderíamos até generalizar a proposição anterior e considerar que f e g são funções definidas no conjunto $I \setminus \{a\}$.

Observe na figura acima. Se duas funções coincidem perto de x=a, é natural que tenham o mesmo limite quando $x \to a$.

Este fato será muito utilizado ao longo do curso, e é o que justifica o cálculo de limites através de manipulações algébricas, como veremos no exemplo abaixo.

Exemplo 2.4 Calcular

$$\lim_{x \to -2} \frac{2x^2 + 3x - 2}{(x+2)\operatorname{sen}(x)}.$$

Nossa primeira tentativa seria utilizar o item (3) do Teorema 1 e fazer algo como

$$\lim_{x \to -2} \frac{2x^2 + 3x - 2}{(x+2)\operatorname{sen}(x)} = \frac{\lim_{x \to -2} 2x^2 + 3x - 2}{\lim_{x \to -2} (x+2)\operatorname{sen}(x)}.$$

Mas, como o limite do denominador é 0, não poderíamos ter utilizado o item (3) do Teorema 1.

Uma forma de calcularmos este limite é observar que, perto de -2, o numerador e o denominador da fração tendem para 0. Assim, vemos que é possível fatorar o numerador para reescrever, para $x \neq -2$,

$$\lim_{x \to -2} \frac{2x^2 + 3x - 2}{(x+2) \operatorname{sen}(x)} = \lim_{x \to -2} \frac{(2x-1)(x+2)}{(x+2) \operatorname{sen}(x)} = \lim_{x \to -2} \frac{(2x-1)\cancel{(x+2)}}{\cancel{(x+2)} \operatorname{sen}(x)} = \lim_{x \to -2} \frac{2x-1}{\operatorname{sen}(x)} = \frac{-5}{\operatorname{sen}(-2)}.$$

Em nosso curso, lidaremos com vários limites desta forma, e soluções como esta serão aceitas. Porém, é importante entender por que esta forma de calcular um limite está correta. Vamos então refazer as contas anteriores, justificando cuidadosamente com a Proposição 2.1. Considerando

$$f(x) = \frac{2x^2 + 3x - 2}{(x+2)\operatorname{sen}(x)}, x \neq -2 \ e \ x \neq n\pi,$$

queremos então calcular

$$\lim_{x \to -2} f(x).$$

Para $x \neq -2$, temos

$$f(x) = \frac{2x^2 + 3x - 2}{(x+2)\sin(x)} = \frac{(2x-1)\cancel{(x+2)}}{\cancel{(x+2)}\sin(x)} = \frac{2x-1}{\sin(x)}.$$

Assim, para $x \neq -2$, $f(x) = g(x) = \frac{x+2}{\operatorname{sen}(x)}$. Logo, pela Proposição 2.1, temos que

$$\lim_{x \to -2} \frac{2x^2 + 3x - 2}{(x+2)\operatorname{sen}(x)} = \lim_{x \to -2} f(x) = \lim_{x \to -2} g(x) = \lim_{x \to -2} \frac{2x - 1}{\operatorname{sen}(x)} = \frac{-5}{\operatorname{sen}(-2)}.$$

Na última igualdade, simplesmente substituímos x = -2.

Observe que sen(-2) é um número (uma calculadora nos dará uma boa aproximação), então já chegamos ao valor do limite. Não precisamos aqui calcular sen(-2).

Na última seção deste texto, veremos outros exemplos de limites em que utilizaremos fatoração e outras manipulações algébricas, sempre justificando a aplicabilidade destas manipulações pela Proposição 2.1.

Um segundo ponto, que discutimos no vídeo, foi a relação entre o limite de duas funções, f e g e o limite da composta: $f \circ g$. Como sempre, quando se trata de composição, precisamos entender a ordem com que as operações são feitas. Se estamos falando de $f \circ g(x)$, para cada x, primeiro calculamos g para obter um valor e, depois, calculamos f desse valor. Esquematicamente:

$$x \stackrel{g}{\mapsto} g(x) \stackrel{f}{\mapsto} f(g(x))$$

Então, se queremos $\lim_{x\to a} f \circ g(x)$, precisamos calcular o limite quando x tende a a de g, e obter um valor ℓ . Depois, precisamos estudar o que acontece com a função f perto de ℓ e não de a. Esquematicamente:

$$\begin{array}{cccc}
x & \stackrel{g}{\longmapsto} & g(x) & \stackrel{f}{\longmapsto} & f(g(x)) \\
\downarrow & & \downarrow & & \downarrow \\
& \lim_{x \to a} g(x) & \lim_{x \to \ell} f(x) \\
a & \stackrel{x \to a}{\Longrightarrow} & \ell & \stackrel{x \to \ell}{\Longrightarrow} & ???
\end{array}$$

Formalmente, enunciamos o resultado:

Teorema 2 Se
$$\lim_{x\to a} g(x) = \ell$$
, $\lim_{x\to \ell} f(x) = L$ e $\ell \notin D(f)$, então $\lim_{x\to a} f \circ g(x) = L$.

Observação 2.2 No teorema anterior, estamos supondo que existe r > 0 tal que $(a-r,a) \cup (a,a+r) \subset D(g)$ e $g(x) \neq \ell$, $\forall x \in (a-r,a) \cup (a,a+r)$.

Exemplo 2.5 Suponha que f(x) é uma função, tal que $\lim_{x\to 1} f(x) = 3$, $\lim_{x\to 0} f(x) = \sqrt{3}$ e $\lim_{x\to -2} f(x) = 5$. Seja g(x) = 3x - 2, $x \in \mathbb{R}$. Quanto vale $\lim_{x\to 0} f\circ g(x)$?

Representando no esquema:

$$\begin{array}{ccccc}
x & \stackrel{g}{\longmapsto} & 3x - 2 & \stackrel{f}{\longmapsto} & f(3x - 2) \\
\downarrow & & \downarrow & & \downarrow \\
& \lim_{x \to 0} 3x - 2 & \lim_{x \to -2} f(x) \\
0 & \stackrel{x}{\longrightarrow} & -2 & \stackrel{x}{\longrightarrow} & 5
\end{array}$$

Formalmente $\lim_{x\to 0} g(x) = -2$ e $\lim_{x\to -2} f(x) = 5 \Rightarrow \lim_{x\to 0} f \circ g(x) = 5$.

O Teorema 2 nos fornece uma técnica muito importante para o cálculo de limites, conhecida como substituição de variável. Para calcular o limite

$$\lim_{x \to a} f\left(g(x)\right)$$

sabendo que $\lim_{x\to a}g(x)=\ell$, definimos u=g(x) e, temos então

$$\lim_{x \to a} f(g(x)) = \lim_{u \to \ell} f(u) = L,$$

que pode ser um limite muito mais simples de calcular. É muito importante se lembrar, de, além de trocarmos g(x) por u, trocarmos o ponto no qual calculamos o limite, isto é, trocar $x \to a$ por $u \to \ell$.

Esta técnica é justificada pelo Teorema 2, pois ele afirma que, se $\lim_{x\to a} g(x) = \ell$ e $\lim_{x\to \ell} f(x) = L$ então

$$\lim_{x \to a} f(g(x)) = \lim_{x \to \ell} f(x),$$

que é a mesma coisa que escrever $\lim_{u \to \ell} f(u)$, apenas estamos renomeando a variável.

Exemplo 2.6 Sabendo que $\lim_{x\to 0} f(x) = 2$, calcular

$$\lim_{x \to 1} \frac{f(x-1)}{x+1}.$$

Podemos fazer u = x - 1. Com isso, x = u + 1, logo, o denominador pode ser reescrito como x+1=u+1+1=u+2. Além disso, temos $\lim_{x\to 0} (x-1)=0$, logo $u\to 0$ quando $x\to 1$. Assim,

$$\lim_{x \to 1} \frac{f(x-1)}{x+1} = \lim_{u \to 0} \frac{f(u)}{u+2} = \frac{\lim_{u \to 0} f(u)}{\lim_{u \to 0} u+2} = \frac{2}{2} = 1.$$

Exemplo 2.7 Sabendo que $\lim_{x\to 0} f(x) = 2$, calcular

$$\lim_{x \to 2} \frac{f(2x^2 - 8)}{x^2}.$$

Podemos fazer $u=2x^2-8$. Com isso, $2x^2=u+8$ e então $x^2=\frac{u}{2}+4$. Além disso, temos $\lim_{x\to 2} 2x^2 - 8 = 0$, logo $u \to 0$ quando $x \to 2$. Assim,

$$\lim_{x \to 2} \frac{f(2x^2 - 8)}{x^2} = \lim_{u \to 0} \frac{f(u)}{\frac{u}{2} + 4} = \frac{\lim_{u \to 0} f(u)}{\lim_{u \to 0} \frac{u}{2} + 4} = \frac{2}{4} = \frac{1}{2}.$$

Vários outros exemplos serão vistos na última seção, quando utilizaremos susbstituição de variável para calcular alguns limites envolvendo funções trigonométricas.

Exemplo 2.8 Considere:

$$f(x) = \begin{cases} 3x + 5, & \text{se } x < 2 \\ x^2, & \text{se } x > 2 \end{cases} \qquad e \quad g(x) = \begin{cases} 2x, & \text{se } x < 1 \\ 2x + 2, & \text{se } x > 1 \end{cases}$$

Estude $\lim_{x\to 1} f\circ g(x)$. Solução: se $x\to 1^-, g(x)\to 2^-,$ porque para valores de x menores que 1, g(x)=2x e se x<1, 2x<2. The following following formula $x\to 1$ is given by $x\to 1$. Se se $x\to 1^+, g(x)\to 4$ e $\lim_{x\to 1} f(x)=16$. Se $x \to 2^-$, $f(x) \to 11$. Portanto, $\lim_{x \to 1^-} f \circ g(x) = 11$. Se se $x \to 1^+$, $g(x) \to 4$ e $\lim_{x \to 4} f(x) = 16$. Portanto $\lim_{x \to 1^+} f \circ g(x) = 16$. Conclusão: Não existe o limite da composta em x = 1, porque os limites laterais são diferentes.