MA 523: Homework 4

Carlos Salinas

September 28, 2016

PROBLEM 4.1 (LEGENDRE TRANSFORM)

Let $u(x_1, x_2)$ be a solution of the quasilinear equation

$$a^{11}(Du)u_{x_1x_1} + 2a^{12}(Du)u_{x_1x_2} + a^{22}(Du)u_{x_2x_2} = 0$$

in some region of \mathbb{R}^2 , where we can invert the relations

$$p^1 = u_{x_1}(x_1, x_2), \quad p^2 = u_{x_2}(x_1, x_2)$$

to solve for

$$x^1 = x^1(p_1, p_2), \quad x^2 = x^2(p_1, p_2).$$

Define then

$$v(p) := \mathbf{x}(p) \cdot p - u(\mathbf{x}(p)),$$

where $\mathbf{x} = (x^1, x^2)$, $p = (p_1, p_2)$. Show that v satisfies the *linear* equation

$$a^{22}(p)v_{p_1p_2} - 2a^{12}(p)v_{p_1p_2} + a^{11}(p)v_{p_1p_2} = 0.$$

(*Hint:* See [Evans, 4.4.3b], prove the identities (29)).

SOLUTION.

CARLOS SALINAS PROBLEM 4.2

Problem 4.2

Find the solution u(x,t) of the one-dimensional wave equation

$$u_{tt} - u_{xx} = 0$$

in the quadrant x > 0, t > 0 for which

$$\begin{cases} u(x,0) = f(x), & u_t(x,0) = g(x), & \text{for } x > 0 \\ u_t(0,t) = \alpha u_x(0,t), & \text{for } t > 0, \end{cases}$$

where $\alpha \neq -1$ is a given constant. Show that generally no solution exists when $\alpha = -1$. (*Hint:* Use a representation u(x,t) = F(x-t) + G(x+t) for the solution.)

Solution.

CARLOS SALINAS PROBLEM 4.3

Problem 4.3

(a) Let u be a solution of the wave equation $u_{tt} - c^2 u_{xx} = 0$ for $0 < x < \pi$, t > 0 such that $u(0,t) = u(\pi,t) = 0$. Show that the energy

$$E(t) = \frac{1}{2} \int_0^{\pi} \left(u_t^2 + c^2 u_x^2 \right) dx, \quad t > 0$$

is independent of t; i.e., $\frac{d}{dt}E=0$ for t>0. Assume that u is C^2 up to the boundary. (b) Express the energy E of the Fourier series solution

$$u(x,t) = \sum_{n=1}^{\infty} (a_n \cos(nct) + b_n \sin(nct)) \sin(nx)$$

in terms of coefficients a_n , b_n .

SOLUTION. For part (a), suppose that u is, as above, a solution to the wave equation which is C^2 up to the boundary. We show that its energy is independent of t, i.e., that dE/dt = 0. Assuming the energy is bounded, the dominated convergence theorem allows us to permute the order of integration and differentiation like so

$$\frac{dE(t)}{dt} = \frac{d}{dt} \left(\frac{1}{2} \int_0^{\pi} \left(u_t^2 + c^2 u_x^2 \right) dx \right)$$
$$= \frac{1}{2} \int_0^{\pi} \frac{\partial}{\partial t} \left(u_t^2 + c^2 u_x^2 \right) dx$$
$$= \frac{1}{2} \int_0^{\pi} 2u_t u_{tt} + 2c^2 u_x u_{xt} dx$$

which, after using the relation $u_{tt} = c^2 u_{xx}$, becomes

$$= c^2 \int_0^{\pi} u_t u_{xx} + u_x u_{xt} dx$$

$$= c^2 \int_0^{\pi} \frac{\partial}{\partial x} (u_x u_t) dx$$

$$= c^2 \left(u_x(\pi, t) u_t(\pi, t) - u_x(0, t) u_t(0, t) \right)$$

$$= 0$$

since the boundary conditions, i.e., u = 0, implies $u_x = u_t = 0$ at the boundary. For part (b), suppose u is a Fourier series solution to the wave equation, i.e.,

$$u(x,t) = \sum_{n=1}^{\infty} (a_n \cos(nct) + b_n \sin(nct)) \sin(nx).$$

CARLOS SALINAS PROBLEM 4.3

First we compute u_t and u_x . They are

$$u_t(x,t) = \frac{\partial}{\partial t} u(x,t)$$
$$= \sum_{n=1}^{\infty} cn (b_n \cos(nct) - a_n \sin(nct)) \sin(nx)$$

and

$$u_x(x,t) = \frac{\partial}{\partial x} u(x,t)$$
$$= \sum_{n=1}^{\infty} n(a_n \cos(nct) + b_n \sin(nct)) \cos(nx).$$

Thus,

$$E(t) = \frac{1}{2} \int_0^{\pi} \left[\left(\sum_{n=1}^{\infty} cn \left(b_n \cos(nct) - a_n \sin(nct) \right) \sin(nx) \right)^2 + c^2 \left(\sum_{n=1}^{\infty} n \left(a_n \cos(nct) + b_n \sin(nct) \right) \cos(nx) \right)^2 \right]$$

MA 523: Homework 4