UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i	MAT-INF 1100 — Modellering og beregninger.
Eksamensdag:	Fredag 4. desember 2009.
Tid for eksamen:	9:00 – 12:00.
Oppgavesettet er på 8	sider.
Vedlegg:	Formelark.
Tillatte hjelpemidler:	Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Husk å fylle inn kandidatnummer under.

Kandidatnr:	

Første del av eksamen består av 10 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Dersom du svarer feil eller lar være å krysse av på en oppgave, får du null poeng. Du blir altså ikke "straffet" for å gjette. Andre del av eksamen består av tradisjonelle oppgaver. I denne delen teller hvert av de 7 delspørsmålene 10 poeng. Den totale poengsummen er altså maksimalt 100 poeng. I andre del av eksamen må du begrunne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet får 0 poeng selv om de er riktige!

Del 1: Flervalgsoppgaver

Dei 1. Hei valgsoppgavei
Oppgave 1. Differensialligningen $y'' - 2y' + 10y = 0$ har den generelle løsningen
$y(x) = C_1 e^x + C_2 e^{-x}$
$y(x) = C_1 \cos 3x + C_2 \sin 3x$
$\boxed{x} y(x) = e^x (C_1 \cos 3x + C_2 \sin 3x)$
$y(x) = e^x (C_1 \cos 2x + C_2 \sin 2x)$
$y(x) = e^{3x}(C_1 \cos x + C_2 \sin x)$
Oppgave 2. En løsning av differensialligningen $y''' - 8y = 0$ er
$ y(x) = \sin 8x$
$y(x) = e^{8x}$
$y(x) = e^{-2x}$
$y(x) = e^{-x}$

(Fortsettes på side 2.)

Oppgave 3. Vi har gitt differensialligningen y' - f(x)y = 3x for x > 0. Hvis $y(x) = x^2$ er en løsning av ligningen, hva er da f(x)?

$\int f(x) =$	$=-1/x^2$
f(x) =	$=1/x^2$
f(x) =	=-1/x
f(x) =	=1/x
_ , ,	
Oppgave	e 4. Løsningen av differensialligningen
	$y' + xy^2 = x$, $y(0) = 0$,
er gitt ved	d
\mathbf{x} $y(x) =$	$= (e^{x^2} - 1)/(e^{x^2} + 1)$
y(x) =	$=x^2$
y(x) =	=x/(1+x)
y(x) =	$=1-e^{-x^2/2}$
$y = \sin y$	$= (e^{x^{2}} - 1)/(e^{x^{2}} + 1)$ $= x^{2}$ $= x/(1+x)$ $= 1 - e^{-x^{2}/2}$ In x
Oppgave positive lø ved	e 5. Vi bruker Newtons metode til å finne en tilnærming til den øsningen av ligningen $x^2 = 2$, med startverdi $x_0 = 1$. Da er x_2 gitt
	3/2
x $x_2 = 1$	17/12
$x_2 = 3$	35/24
$x_2 = 0$	5/4
$egin{array}{cccc} x_2 = 1 & & & \\ \hline x & x_2 = 1 & & \\ \hline \end{array}$	11/8
Oppgave ganger pret 32 bits	e 6. Et program genererer digital lyd ved å måle lyden 22 050 sekund (i en kanal, altså ikke stereo), og hver måling lagres som flyttall. For hvert minutt med lyd vil dette gi 000 bytes
	000 bytes
	000 bytes
	4 000 bytes
	000 bytes
funksjone: Da vil der $\pi/2$	e 7. Vi bruker halveringsmetoden for å finne et nullpunkt for n $f(x) = \cos x$ på intervallet $[0, 10]$, der x er angitt i radianer. In beregnede løsningen konvergere mot den vil ikke konvergere
meroc	zen vii ikke konvergere
(Fortsette	es på side 3.)

Oppgave 8. En norsk tekst kodes med ISO Latin1 og UTF-16 i de to
filene fil1 (ISO Latin1) og fil2 (UTF-16). Hvilket av følgende utsagn er da
sant?
☐ Norske tegn blir feil i fil1
☐ fil1 inneholder flere bytes enn fil2
x fil2 inneholder flere bytes enn fil1
Norske tegn blir feil i fil2
fil1 og fil2 inneholder like mange bytes
Oppgave 9. Hvilket av følgende utsagn er sant?
$\hfill \Box$ Ved numerisk løsning av differensialligninger er Eulers metode vanligvis
mer nøyaktig enn Eulers midtpunktmetode
$\boxed{\mathtt{x}}$ Ved numerisk løsning av differensialligninger er Taylors metode av
tredje orden vanligvis mer nøyaktig enn Eulers metode
$\hfill \Box$ Ved numerisk løsning av differensialligninger er Eulers metode vanligvis
mer nøyaktig enn Taylors metode av andre orden
Ued numerisk integrasjon er trapesregelen vanligvis mer nøyaktig enn
Simpsons formel
Ued numerisk integrasjon er midtpunktregelen vanligvis mer nøyaktig
enn Simpsons formel
Oppgave 10. Vi bruker uttrykket $(f(h)-2f(0)+f(-h))/h^2$ til å beregne tilnærminger til $f''(0)$ (vi regner eksakt, uten avrundingsfeil). Da vil alltid svaret bli riktig hvis $f(x)$ er
en trigonometrisk funksjon
en logaritmisk funksjon
et fjerdegrads polynom
\square på formen e^{ax} der a er et reelt tall
x et tredjegrads polynom

Del 2

Husk at i denne delen må alle svar begrunnes!

Oppgave 1.

a) Vis at differensligningen

$$3y_{n+2} - 16y_{n+1} + 5y_n = -20, \quad y_0 = 2, \quad y_1 = 7/3$$
 (1)

har løsningen

$$y_n = \frac{5 - 3^{-n}}{2}.$$

Løsning. Vi finner først den generelle løsningen av den homogene ligningen. Det karakteristiske polynomet $3r^2 - 16r + 5 = 0$ har løsningene $r_1 = 1/3$ og $r_2 = 5$. Den generelle løsningen av den homogene ligningen er derfor $y_n^h = C_1 3^{-n} + C_2 5^n$.

Siden høyresiden er en konstant forsøker vi med en partikulærløsning på formen $y_n^p = A$. Vi setter inn og finner at da må 3A - 16A + 5A = -20, så A = 5/2. Den generelle løsningen av (1) uten startverdier er derfor

$$y_n = y_n^h + y_n^p = C_1 3^{-n} + C_2 5^n + 5/2.$$

De to startverdiene gir de to ligningene

$$2 = y_0 = C_1 + C_2 + 5/2$$
$$7/3 = y_1 = C_1/3 + 5C_2 + 5/2.$$

Av dette ser vi at $C_1 = -1/2$ og $C_2 = 0$. Løsningen er derfor $y_n = (5-3^{-n})/2$.

b) Anta at vi simulerer (løser numerisk) differensligningen (1) ved hjelp av flyttall. Hvordan vil den beregnede løsningen $\{\bar{y}_n\}$ oppføre seg for store verdier av n? Forklar hvorfor.

Løsning. Startverdien $y_1 = 7/3$ kan ikke representeres eksakt i maskinen, og ved programmering av differensligningen vil vi også få divisjon med 3, noe som også gir små feil. Dette svarer til at det blir små avrundingsfeil i de to konstantene C_1 og C_2 slik at numerisk simulering svarer til en løsning med $\tilde{C}_1 = -1/2 + \epsilon_1$ og $\tilde{C}_2 = \epsilon_2$ der ϵ_1 og ϵ_2 er tall av størrelsesorden 10^{-17} . Løsningen som simuleres er derfor

$$\tilde{y}_n = (-1/2 + \epsilon_1)3^{-n} + \epsilon_2 5^n + 5/2.$$

Her ser vi at for store n til leddet $\epsilon_2 5^n$ dominere fullstendig, og før eller siden bli så stort at vi får overflow.

Oppgave 2. I denne oppgaven vil du få bruk for at entropien til et alfabet $\mathcal{A} = \{\alpha_i\}_{i=1}^n$ der symbolene har sannsynlighet $p_i = p(\alpha_i)$, er gitt ved

$$H(p_1, \dots, p_n) = -\sum_{i=1}^{n} p_i \log_2 p_i.$$

Alfabetet $\mathcal{A} = \{A, B, C\}$ med sannsynlighetene

$$p(A) = 0.4, \quad p(B) = 0.4, \quad p(C) = 0.2$$

brukes i resten av denne oppgaven.

(Fortsettes på side 5.)

a) Hva vil normalt være det minimale antall bits som er nødvendig for å kode en tekst på 5 tegn med dette alfabetet og disse sannsynlighetene?

Løsning. Entropien angir det minimale antall bits per symbol for dette alfabetet og disse sannsynlighetene og er gitt ved

$$H(p_1, p_2, p_3) = -0.4 \log_2 0.4 - 0.4 \log_2 0.4 - 0.2 \log_2 0.2 \approx 1.52.$$

Dette betyr at det minimale antall bits for å kode en tekst med 5 tegn er omtrent $5 \times 1.52 = 7.61$, altså 8 bits.

b) En ukjent tekst $\mathbf{x} = \{x_1, x_2, x_3, x_4, x_5\}$ av lengde 5 har blitt kodet med aritmetisk koding, noe som har gitt koden 1011 (dette er en kortere kode enn det som er vanlig med aritmetisk koding). Hva er den opprinnelige teksten \mathbf{x} ?

Løsning. Den aritmetiske koden svarer til det binære tallet 0.1011_2 som på desimal form er

$$c_1 = 0.1011_2 = 0.6875.$$

Vi deler intervallet [0, 1] opp i delintervaller i forhold til sannsynlighetene til de ulike symbolene og tilordner symboler til intervaller som følger:

Siden den binære koden ligger i intervallet $[a_1, b_1) = [0.4, 0.8)$ til B ser vi at $x_1 = B$.

For å finne x_2 må vi se hvilket delintervall av $[a_1, b_1)$ som koden ligger i. For å sjekke dette transformerer vi $[a_1, b_1)$ til intervallet [0, 1) og transformerer c_1 på tilsvarende måte. Funksjonen som ordner dette er

$$g_1(x) = \frac{x - a_1}{b_1 - a_1} = \frac{x - 0.4}{0.4}.$$

Anvender vi denne på c_1 får vi

$$c_2 = g_1(c_1) = \frac{0.2875}{0.4} = 0.71785$$

Vi ser at c_2 ligger i intervallet til B, altså er $x_2 = B$, og vi setter $[a_2, b_2) = [0.4, 0.8)$.

For å finne x_3 strekker vi også $[a_2, b_2)$ til [0, 1) med funksjonen

$$g_2(x) = \frac{x - a_2}{b_2 - a_2} = \frac{x - 0.4}{0.4}.$$

Anvender vi denne på c_2 får vi

$$c_3 = g_2(c_2) = 0.796875.$$

Vi ser at c_3 ligger i [0.4, 0.8), altså er også $x_3 = B$ og vi setter $[a_3, b_3) = [0.4, 0.8)$.

Vi strekker $[a_3, b_3)$ til [0, 1) med

$$g_3(x) = \frac{x - a_3}{b_3 - a_3} = \frac{x - 0.4}{0.4}.$$

Anvender vi denne på c_3 får vi

$$c_4 = q_3(c_3) = 0.992188.$$

Vi ser at c_4 ligger i [0.8, 1), altså er $x_4 = C$ og vi setter $[a_4, b_4) = [0.8, 1)$. For å finne det siste tegnet må vi strekke det siste intervallet $[a_4, b_4)$ til [0, 1) og la c_4 følge med. Dette gjør vi med funksjonen

$$g_4(x) = \frac{x - a_4}{b_4 - a_4} = \frac{x - 0.8}{0.2}.$$

Dette gir

$$c_5 = g_4(c_4) = 0.960938.$$

Dette tallet ligger i intervallet [0.8, 1), dermed er $x_5 = C$. Tilsammen har vi da funnet at den ukjente teksten er $\mathbf{x} = BBBCC$.

Oppgave 3. Vis ved induksjon at

$$\sum_{j=1}^{n} \frac{1}{j^2} \le 2 - \frac{1}{n}$$

for alle heltall $n \geq 1$.

Løsning. Vi skal altså vise at påstanden P_n er sann for alle naturlige tall n, der P_n er gitt ved

$$P_n: \sum_{j=1}^n \frac{1}{j^2} \le 2 - \frac{1}{n}$$

Vi sjekker først tilfellet n = 1. Da blir påstanden $P_1 : 1 \le 2 - 1$ som opplagt er sann.

Anta nå at vi har vist at P_n er sann for n = k, altså at

$$\sum_{j=1}^{k} \frac{1}{j^2} \le 2 - \frac{1}{k},$$

vi må vise at da er påstanden også sann for n = k + 1, med andre ord at

$$P_{k+1}: \sum_{j=1}^{k+1} \frac{1}{j^2} \le 2 - \frac{1}{k+1}$$

er sann. Dette følger av at

$$\begin{split} \sum_{j=1}^{k+1} \frac{1}{j^2} &= \sum_{j=1}^k \frac{1}{j^2} + \frac{1}{(k+1)^2} \\ &\leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2} \\ &\leq 2 - \frac{1}{k} + \frac{1}{k(k+1)} \\ &= 2 - \frac{k+1-1}{k(k+1)} \\ &= 2 - \frac{1}{k+1}. \end{split}$$

Her følger den andre ulikheten av at $1/(k+1) \le 1/k$.

En alternativ måte å gjøre dette på, som ikke krever at en ser hvilken ekstra ulikhet som skal brukes, er som følger. Vi begynner som over og får fra induksjonshypotesen at

$$\sum_{j=1}^{k+1} \frac{1}{j^2} = \sum_{j=1}^{k} \frac{1}{j^2} + \frac{1}{(k+1)^2}$$

$$\leq 2 - \frac{1}{k} + \frac{1}{(k+1)^2}.$$

Vi ser at dersom P_{k+1} skal være sann så må

$$2 - \frac{1}{k} + \frac{1}{(k+1)^2} \le 2 - \frac{1}{k+1}$$

eller

$$\frac{1}{k+1} + \frac{1}{(k+1)^2} \le \frac{1}{k}.$$

Vi ganger med $k(k+1)^2$ på begge sider og får at dette er ekvivalent med ulikheten

$$k(k+1) + k \le (k+1)^2$$

som igjen er ekvivalent med

$$k^2 + 2k \le k^2 + 2k + 1$$
.

Dette er igjen ekvivalent med at $0 \le 1$, noe som opplagt er sant, altså er P_{k+1} sann.

Oppgave 4. I denne oppgaven skal du løse den andreordens differensialligningen

$$x'' + t^2x' + \frac{1}{x^2 + 1} = t, \quad x(0) = 0, \ x'(0) = 1$$
 (2)

numerisk.

a) Skriv ligningen (2) som et system av to førsteordens differensialligninger.

Løsning. Vi innfører en ny ukjent $x_2 = x'$ slik at $x'_2 = x''$, og gir dessuten x nytt navn, $x_1 = x$. Vi får da at $x_2 = x'_1$ og $x'_2 = x'' = t - t^2x' - 1/(x^2 + 1)$ eller

$$x'_1 = x_2,$$
 $x_1(0) = 0,$
 $x'_2 = t - t^2 x_2 - \frac{1}{x_1^2 + 1},$ $x_2(0) = 1.$

b) Bruk Eulers metode på systemet i deloppgave (a) med steglengde h = 0.5 til å finne en tilnærming til x(1), altså løsningen av (2) for t = 1.

Løsning. Eulers metode for systemer er gitt ved

$$x_{k+1} = x_k + hf(t_k, x_k), \quad k = 0, 1, \dots$$

I vårt tilfelle blir dette på komponentform

$$\begin{aligned} x_1^{k+1} &= x_1^k + h x_2^k, \\ x_2^{k+1} &= x_2^k + h \Big(t_k - t_k^2 x_2^k - \frac{1}{(x_1^k)^2 + 1} \Big). \end{aligned}$$

Dessuten er $(x_1^0, x_2^0) = \boldsymbol{x}_0 = \boldsymbol{x}(0) = (x_1(0), x_2(0)) = (0, 1)$ og h = 0.5. Fra dette får vi

$$\begin{split} x_1^1 &= x_1^0 + 0.5 x_2^0 = 0 + 0.5 \times 1 = 0.5, \\ x_2^1 &= x_2^0 + 0.5 \Big(t_0 - t_0^2 x_2^0 - \frac{1}{(x_1^0)^2 + 1} \Big) = 1 + 0.5 \Big(0 - 0^2 \times 1 - \frac{1}{0^2 + 1} \Big) = 0.5. \end{split}$$

Vi tar et steg til og får

$$\begin{split} x_1^2 &= x_1^1 + 0.5 x_2^1 = 0.5 + 0.5 \times 0.5 = 0.75, \\ x_2^2 &= x_2^1 + 0.5 \left(t_1 - t_1^2 x_2^1 - \frac{1}{(x_1^1)^2 + 1} \right) \\ &= 0.5 + 0.5 \left(0.5 - 0.5^2 \times 0.5 - \frac{1}{0.5^2 + 1} \right) = 0.2875. \end{split}$$

Lykke til!