

Description

Image

Caption

1. Leather hat. 2. Leather armchair. © John Fernandez

The material

Leather is a natural fabric. It is made by the tanning of animal hide, a smelly process in which the hide is soaked in solutions of tannins for weeks or months, making it pliable and resistant to decay. It has high tensile strength and is exceptionally tough and resilient, yet it is flexible and - as suede - is soft to touch. Leather is used for belts, gaskets, shoes, jackets, handbags, linings and coverings. It can be injection molded by placing a piece in the mold prior to injected the polymer resin.

Composition (summary)

Collagen (protein)/12% H2O

General properties

Density		50.6	-	65.5	lb/ft^3			
Price	*	7.53	-	9.39	USD/lb			
Date first used		-10000						
Mechanical properties								
Young's modulus		0.0145	-	0.0725	10^6 psi			
Shear modulus	*	0.00435	-	0.0145	10^6 psi			
Bulk modulus	*	0.145	-	0.29	10^6 psi			
Poisson's ratio		0.05	-	0.48				
Yield strength (elastic limit)		0.725	-	1.45	ksi			
Tensile strength		2.9	-	3.77	ksi			
Compressive strength		0.145	-	0.29	ksi			
Elongation		18	-	75	% strain			
Hardness - Vickers	*	' 2	-	3	HV			
Fatigue strength at 10^7 cycles		0.653	-	1.31	ksi			
Fracture toughness	*	2.73	-	4.55	ksi.in^0.5			
Mechanical loss coefficient (tan delta)	*	' 0.1	-	0.5				
Themselveseedee								
Thermal properties								
Glass temperature		1 224	-	260	°F			
Maximum service temperature	*	[*] 224	-	260	°F			
Minimum service temperature	*	' -118	-	-99.7	°F			
Thermal conductor or insulator?		Good insulator						
Thermal conductivity		0.0901	-	0.0924	BTU.ft/h.ft^2.F			
Specific heat capacity		0.366	-	0.413	BTU/lb.°F			

V/mil

Thermal expansion coefficient	* 22.2	-	27.8	µstrain/°F
Electrical properties				
Electrical conductor or insulator?	Poor insulator			
Electrical resistivity	* 1e8	-	1e10	µohm.cm
Dielectric constant (relative permittivity)	* 5	-	10	
Dissipation factor (dielectric loss tangent)	* 0.01	-	0.05	

* 12.7

- 25.4

Optical properties

Dielectric strength (dielectric breakdown)

Transparency	Opaque			
Processability Moldability Machinability	3 4	-	4	
Eco properties Embodied energy, primary production CO2 footprint, primary production Recycle	1.11e4 4.08	-	1.22e4 4.5	kcal/lb lb/lb

Supporting information

Design guidelines

The quality of leather depends on the animal. Most comes form cattle, but some also from sheep, goat, deer, alligator, seal, shark and even snake. 'Top grade' leather is the outside layer, and is the best quality: durable, close fibers, with the highest strength and flexibility. 'First split' leather comes from the next layer; it has lower quality. 'Second split', from the inside, has the lowest quality. 'Patent leather' is an old name for glossy black leather for shoes and handbags.

Technical notes

Leather for drive belts (and those that hold up trousers) is soaked in oils or waxes to make if flexible; it has a density of 0.95 Mg/m^3 and a tensile strength up to 26 MPa. Leather is remarkable for having a tensile stiffness and strength that is much greater than that in bending, allowing it to flex easily yet carry tensile loads. It is a consequence of the fibrous nature of the material: the fibers all lie in the plane of the skin.

Typical uses

Drive belts and seals; shoes; bags; jackets, cases and luggage; briefcases hats, clothing; fancy goods, handbags and linings.

Links

Reference

ProcessUniverse