

www.**eritecampinas**.com.br

Colégio

PROFESSOR DANILO

ITINERÁRIO DE CIÊNCIAS – ANÁLISE DOS DADOS EXPERIMENTAIS – 15/04/2024 🗸

NOME: <u>MATHEUS HENRIQUE MOTTA MORAES</u>	NOTA:
ATIVIDADE 2° BIMESTRE	Da matemática, sabemos que $sen(A+B) = sen A \cdot cos B + sen A \cdot cos B$
Esta atividade deverá ser entregue até a próxima aula, dia 29 de abril. Será avaliada a parte envolvendo cálculo, embora haja um espaço para copiar as deduções feitas durante a aula.	Se, no entanto, $A = B = \theta$: $sen(2\theta) = sen\theta \cdot cos\theta + sen\theta \cdot cos\theta = 2 \cdot sen\theta \cdot cos\theta$ Portanto:
Vamos então começar falando sobre lançamento oblíquo. Q1.	Q8. Equação do alcance:
Seja o perfil de lançamento de um projétil.	
	Para maximizar o alcance do foguete, vamos desprezar a resistência do ar e tentar maximizar o resultado anterior. Fazemos isso encontrando o valor máximo do seno, que é 1 (e o argumento é 90°). Assim, encontramos que o alcance é máximo quando o lançamento é feito sob ângulo de 45°.
Q2. Na horizontal, o movimento é uniforme:	Equação do alcance máximo (para um ângulo de lançamento de 45°):
Q3.	Para usarmos o resultado experimental devemos utilizar a área
Na vertical, o movimento é uniformemente variado. Vamos considerar apenas uma equação:	do gráfico de F vs t, que nos fornece uma grandeza chamada Impulso e que usaremos a letra I para representá-la. O Impulso é igual à variação da quantidade de movimento e quantidade de movimento Q é igual ao produto da massa pela velocidade. Assim:
Q4. Decompondo o vetor velocidade inicial	Q10.
Q5. Decompondo o vetor velocidade final	Por fim, podemos relacionar a área do gráfico, sua massa e a equação do alcance.
'	ATIVIDADE AVALIATIVA
	 Como primeiro passo, estime a massa m de um foguete a ser lançado na Mobfog. O professor irá aceitar uma faixa bem grande de valores. Apenas justifique como chegou em tal valor.
Q6.	
Com as equações do movimento uniformemente variado, podemos calcular o tempo de voo	 Como segundo passo, determine a área do gráfico obtido através dos dados experimentais fornecidos pelo professor na tabela abaixo.
Q7.	
Substituindo o resultado anterior na equação do movimento horizontal	Como último passo, calcule o alcance máximo de acordo com
	a sua estimativa, a área do gráfico e as deduções feitas em sala

www.**eritecampinas**.com.br

PROFESSOR DANILO

,	,	
	ANIALICE DOC DADOC EVDEDIMENTALC	15/01/2021
THINERARIO DE GIENGIAS —	ANALISE DOS DADOS EXPERIMENTAIS -	· 15/U4/ZUZ4

	THO EGGGN DANGE	
tempo (ms)	Força (N)	
130	0,02	
310	0,24	
490	1,22	
670	5,96	
850	9,23	
1030	12,75	
1210	7,73	
1390	1,14	
1570	0,02	

