

Papers & Cookies VII: Transformers Vaswani et al.'s Attention Is All You Need

Luis Oala ML Group @ Fraunhofer HHI

November 6, 2018

Overview

Attention as we (or I) know it

Terminology

Transformer

Basic mechanics

Results

Universal Transformer - changes and results

BERT - changes and results

Observations and questions

Bibliography

Figure: Vanilla seq2seq LSTM with attention mechanism.

Attention as we (or I) know it

 $attention(\mathbf{h}_{i}^{d}, \mathbf{H}^{e} \text{ or } \mathbf{H}^{d}, \theta) \text{ steps:}$

- (a) Calculate attention scores \mathbf{e}_i , e.g. as $\mathbf{e}_i = \mathbf{v}^T \tanh(\mathbf{W}_1 \mathbf{H} + \mathbf{W}_2 \mathbf{h}_i^d + \mathbf{b}_{attn})$,
- (b) normalize the attention scores to an attention distribution $\mathbf{a}_i = \operatorname{softmax}(\mathbf{e}_i)$ via $\operatorname{softmax}$
- (c) and finally combine the attention values, \mathbf{H} , into an attention weighted representation $\mathbf{h}_{i}^{\mathsf{d}^{*}} = \mathbf{H}\mathbf{a}_{i}$.
- (c) Then do what you please with $\mathbf{h}_{i}^{d^{*}}$, often we see concatenate(\mathbf{h}_{i}^{d} , $\mathbf{h}_{i}^{d^{*}}$) before going to the output FC layer.

Terminology

- Intra-temporal (regular) attention
 - ightharpoonup attention($\mathbf{h}_i^{\mathsf{d}}, \mathbf{H}^{\mathsf{e}}, \theta$)
- ► Intra-decoder attention/self-attention
 - ightharpoonup attention($\mathbf{h}_i^d, \mathbf{H}^d, \theta$)
- ightharpoonup **h**^d: query **q**
- ► H^e: keys K
- ► H^e: values V

Figure: Transformer illustration, graph taken from [3]

Scaled dot-product attention: softmax($\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}$)**V** With **Q**.shape = [seq-positions, d_k], **K**.shape = [seq-positions, d_k] and **V**.shape = [seq-positions, d_v]

Tracing the dimensions - step by step

- ▶ **QK**^T.shape = [seq-positions, seq-positions], interpretation: one row represents dots of one query with all keys like the attention scores **e**_i from before
- ▶ softmax($\frac{\mathbf{QK}^T}{\sqrt{d_k}}$).shape = [seq-positions, seq-positions], interpretation: one row represents attention distribution \mathbf{a}_i from before
- ▶ softmax($\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}}$)**V**.shape = [seq-positions, d_v], interpretation: one row represents attention weighted interpolation of all values w.r.t one query

Transformer - Bells and whistles

- ▶ Positional encoding as $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$
- Residual connections
- ► Layer normalization

Transformer - Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model	BLEU		Training Cost (FLOPs)	
	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [38]	24.6	39.92	$2.3 \cdot 10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S 9	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE 32	26.03	40.56	$2.0 \cdot 10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [39]		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble 38	26.30	41.16	$1.8 \cdot 10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble 9	26.36	41.29	$7.7 \cdot 10^{19}$	$1.2 \cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

Universal Transformer - Additions

Motivation

- Empirical: Improve generalization
- Theoretical: Expanding computational expressivity

Figure: Illustration of Universal Transformer, graph taken from [1]

Universal Transformer - Results

Model	BLEU
Universal Transformer small	26.8
Transformer base [31]	28.0
Weighted Transformer base [1]	28.4
Universal Transformer base	28.9

Table 7: Machine translation results on the WMT14 En-De translation task trained on 8xP100 GPUs in comparable training setups. All *base* results have the same number of parameters.

BERT - Usage

- Only use encoder part of transformer to pretrain a LM
- Pretraining on masked inputs and next sentence prediction
- Use encoder outputs as input for downstream task, fine-tune all parameters

Figure: Illustration of BERT for sequence classification task, graph taken from [2]

BERT - Results

Let us check the paper, too much stuff

Observations and questions

- ▶ Path length reduction vis-a-vis LSTM
- Computational elegance and impressive performance
- What is the point of positional encoding?
- Other ways to decode? (e.g. like in the Universal Transformer)
- ▶ BERT hyperparameters: how to validate the masking scheme?

Bibliography I

M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Kaiser.

Universal Transformers. arXiv preprint arXiv:1807.03819, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv preprint arXiv:1810.04805, 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, \. Kaiser, and I. Polosukhin.

Attention is all you need.

In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

read.