Lasso Regression

Nipun Batra

IIT Gandhinagar

September 22, 2025

Outline

- 1. Introduction and Motivation
- 2. Mathematical Formulation
- 3. Why Lasso Gives Sparsity
- 3.1 Geometric Interpretation
- 3.2 Gradient Descent Interpretation
- 4. Geometric Interpretation
- 5. Regularization Effects
- 6. Feature Selection Properties
- 7. Subgradient Methods
- 8. Coordinate Descent Algorithm
- 9. Worked Example
- 10. Visual Coordinate Descent
- 11. Failure of Coordinate Descent
- 12. Mathematical Derivation
- 13. Lasso vs Ridge Comparison
- 14. Summary and Applications

Introduction and Motivation

What is Lasso Regression?

Definition: LASSO

Least Absolute Shrinkage and Selection Operator

What is Lasso Regression?

Definition: LASSO

Least Absolute Shrinkage and Selection Operator

Key Points: Key Properties

- Uses L1 penalty (absolute values) instead of L2 penalty
- Leads to sparse solutions (many coefficients become exactly zero)
- Performs automatic feature selection
- Popular for high-dimensional problems

Mathematical Formulation

Problem: Why Not Just Use Ridge?

Important: Limitation of Ridge Regression

Ridge regression shrinks coefficients but **never makes them exactly zero**

Problem: Why Not Just Use Ridge?

Important: Limitation of Ridge Regression

Ridge regression shrinks coefficients but **never makes them exactly zero**

Example: High-Dimensional Problem

- 1000 features, only 50 are truly relevant
- Ridge gives tiny but non-zero coefficients for irrelevant features
- Model is not interpretable
- Need automatic feature selection!

Lasso Objective Function

Definition: Constrained Form

$$m{ heta}_{\mathsf{opt}} = rg\min_{m{ heta}} \|(\mathbf{y} - \mathbf{X}m{ heta})\|_2^2$$
 subject to $\|m{ heta}\|_1 \leq s$

Lasso Objective Function

Definition: Constrained Form

$$m{ heta}_{ ext{opt}} = rg \min_{m{ heta}} \|(\mathbf{y} - \mathbf{X} m{ heta})\|_2^2 ext{ subject to } \|m{ heta}\|_1 \leq m{s}$$

Theorem: Penalized Form (Using Lagrangian Duality)

Constrained form is equivalent to:

$$oldsymbol{ heta}_{\mathsf{opt}} = rg\min_{oldsymbol{ heta}} \underbrace{\|(\mathbf{y} - \mathbf{X}oldsymbol{ heta})\|_2^2 + \lambda \|oldsymbol{ heta}\|_1}_{\mathsf{Lasso \ Objective}}$$

Lasso Objective Function

Definition: Constrained Form

$$m{ heta}_{\mathsf{opt}} = rg \min_{m{ heta}} \|(\mathbf{y} - \mathbf{X} m{ heta})\|_2^2$$
 subject to $\|m{ heta}\|_1 \leq s$

Theorem: Penalized Form (Using Lagrangian Duality)

Constrained form is equivalent to:

$$oldsymbol{ heta}_{\mathsf{opt}} = rg\min_{oldsymbol{ heta}} \underbrace{\|(\mathbf{y} - \mathbf{X}oldsymbol{ heta})\|_2^2 + \lambda \|oldsymbol{ heta}\|_1}_{\mathsf{Lasso Objective}}$$

L1 Norm (Manhattan Distance)

$$\|\boldsymbol{\theta}\|_1 = |\theta_1| + |\theta_2| + \dots + |\theta_d| = \sum_{j=1}^d |\theta_j|$$

The Challenge: Non-Differentiability

Important: Problem

The L1 norm $\|m{\theta}\|_1 = \sum_j | heta_j|$ is not differentiable at $heta_j = 0$

The Challenge: Non-Differentiability

Important: Problem

The L1 norm $\|m{\theta}\|_1 = \sum_j |\theta_j|$ is **not differentiable** at $\theta_j = 0$

Cannot Use Standard Calculus

$$\frac{\partial}{\partial \boldsymbol{\theta}} \left[\|(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})\|_{2}^{2} + \lambda \|\boldsymbol{\theta}\|_{1} \right] = 0$$

This fails because $\frac{\partial |\theta_j|}{\partial \theta_j}$ is undefined at $\theta_j=0$

Key Points: Solution Approaches

- · Coordinate Descent: Optimize one coefficient at a time
- Subgradient Methods: Generalize derivatives to non-smooth functions

Why Lasso Gives Sparsity

Sparsity: The Key Question

Important: Central Question

Why does Lasso produce sparse solutions while Ridge doesn't?

Sparsity: The Key Question

Important: Central Question

Why does Lasso produce sparse solutions while Ridge doesn't?

Key Points: Two Perspectives

- Geometric: Shape of constraint regions
- Algorithmic: Behavior of optimization algorithms

Sparsity: The Key Question

Important: Central Question

Why does Lasso produce sparse solutions while Ridge doesn't?

Key Points: Two Perspectives

- Geometric: Shape of constraint regions
- Algorithmic: Behavior of optimization algorithms

Example: Preview

We'll see why L_p norms with p < 2 promote sparsity

L2 Norm: Ridge Constraint

Key Points: L2 Properties

• **Shape**: Perfect circle

• Constraint: $\theta_0^2 + \theta_1^2 \le c$

 Boundary: Smooth everywhere

• Intersection: Rarely on axes

• **Result**: No sparsity

Important: Key Issue

Ridge shrinks coefficients but never makes them exactly zero

L1 Norm: Lasso Constraint

Key Points: L1 Properties

- Shape: Diamond/rhombus
- Constraint: $|\theta_0| + |\theta_1| \le c$
- Corners: Sharp at axes
- Intersection: High probability on axes
- Result: Automatic sparsity!

Theorem: Sparsity Mechanism

Sharp corners at axes \Rightarrow solutions with $\theta_0=0$ or $\theta_1=0$

L_p Norm: Even More Sparsity (p < 1)

Key Points: L_p **Properties** (p < 1)

• Shape: Highly concave

• **Constraint**: $(|\theta_0|^p + |\theta_1|^p)^{1/p} \le c$

Corners: Ultra-sharp at axes

Sparsity: Extremely high

• Problem: Non-convex!

Important: Trade-off

Better sparsity but computational difficulty (non-convex optimization)

Sparsity Progression: $L_2 \rightarrow L_1 \rightarrow L_p$

Theorem: Key Insight

As p decreases from 2 to 1 to p < 1:

- Constraint regions become more pointed at axes
- · Probability of intersection at axes increases
- Sparsity increases
- · Optimization difficulty increases

Example: Why p = 1 is Special

- Still promotes sparsity (sharp corners)
- Remains convex (unlike p < 1) and Computationally tractable
- · Perfect balance of sparsity and solvability

L2 vs L1: Gradient Behavior

Gradient: $\frac{df}{d\theta} = \theta$ Shrinks proportionally to cur-

rent value

Key Points: L1 Penalty: $f(\theta) = |\theta|$

Subgradient: $sign(\theta) = \pm 1$ Constant push toward zero

L2 vs L1: Gradient Behavior

Example: Start at $\theta = 5$

L2: $5 \rightarrow 2.5 \rightarrow 1.25 \rightarrow 0.625 \rightarrow \dots$ (never exactly zero)

L1: $5 \to 4.5 \to 4.0 \to 3.5 \to \ldots \to 0$ (reaches zero in finite steps)

Geometric Interpretation

Sample Dataset for Demonstration

Example: True Function

We'll demonstrate Lasso on a simple linear relationship: y = 4x + 7

Sample data from y = 4x + 7 with noise

Geometric Interpretation: L1 vs L2 Constraints

L1 vs L2 constraint regions

Key Points: Key Insight Diamond corners \Rightarrow exact zeros! Circle \Rightarrow no sparsity.

Regularization Effects

Effect of λ on Solution Path

Important: Regularization Parameter

 λ controls fit vs sparsity trade-off

 $\lambda = 1.0$ - Moderate

 $\lambda = 1.25$ - Higher

Increasing Regularization Strength

 $\lambda=2.0$ - Very strong

Key Points: Observation

As λ increases \to more coefficients become exactly zero (automatic feature selection)

Lasso Regularization Path

Coefficient values vs λ

Key Points: Key Observations

- Coefficients shrink to zero as λ increases
- · Natural feature selection ordering

Feature Selection Properties

Lasso for Automatic Feature Selection

Definition: Automatic Feature Selection

Lasso performs regression and feature selection simultaneously by setting irrelevant coefficients to exactly zero

Key Points: Key Advantages

- Sparsity: Many coefficients → exactly zero
- Interpretability: Understand which features matter
- Efficiency: Fewer parameters, faster prediction

Subgradient Methods

What is a Subgradient?

A subgradient generalizes the concept of gradient to convex but non-differentiable functions

What is a Subgradient?

A subgradient generalizes the concept of gradient to convex but non-differentiable functions

Example: Classic Example

For f(x) = |x|:

- f(x) = 1 when x > 0
- f(x) = -1 when x < 0
- f(0) is undefined, but subgradient $\in [-1, 1]$

What is a Subgradient?

A subgradient generalizes the concept of gradient to convex but non-differentiable functions

Example: Classic Example

For f(x) = |x|:

- f(x) = 1 when x > 0
- f(x) = -1 when x < 0
- f(0) is undefined, but subgradient $\in [-1, 1]$

Important: Why Important for Lasso?

The L1 penalty $|\theta_j|$ is non-differentiable at $\theta_j=0$

Subgradient: Visual Intuition

Non-differentiable function at x_0

Important: Task

Find the "derivative" of f(x) at the non-differentiable point $x=x_0$

Construction

Find differentiable g(x) such that:

- $g(x_0) = f(x_0)$
- $g(x) \le f(x)$ for all x

Subgradient of |x| at x = 0

Supporting lines with slopes in $\left[-1,1\right]$

Subgradient Set

For f(x) = |x| at x = 0:

$$\partial f(0) = [-1, 1]$$

Key Points: Key Insight

Multiple supporting lines \Rightarrow set of valid subgradients

Important: Lasso Connection

This subgradient concept is exactly what we need for the L1 penalty term!

Coordinate Descent Algorithm

Introduction to Coordinate Descent

Definition: Coordinate Descent

Optimization method: minimize one coordinate at a time

Introduction to Coordinate Descent

Definition: Coordinate Descent

Optimization method: minimize one coordinate at a time

Key Points: Key Idea

- · Hard: optimize all coordinates together
- · Easy: optimize one coordinate at a time
- Perfect for non-differentiable Lasso!

Algorithm Overview

$$\min_{\pmb{\theta}} \mathit{f}(\pmb{\theta}) \text{ becomes } \min_{\theta_j} \mathit{f}(\theta_1, \dots, \theta_{j-1}, \theta_j, \theta_{j+1}, \dots, \theta_{\textit{d}})$$

Coordinate Descent Properties

Key Points: Advantages

• No step-size: Exact 1D minimization

• Convergence: Guaranteed for convex Lasso

• Efficient: Closed-form updates

Coordinate Descent Properties

Key Points: Advantages

No step-size: Exact 1D minimization

Convergence: Guaranteed for convex Lasso

Efficient: Closed-form updates

Selection Strategies

Cyclic, Random, or Greedy coordinate selection

Important: Process

Cycle through coordinates, optimizing one at a time until convergence

Worked Example

Coordinate Descent Example Setup

Learn $y = \theta_0 + \theta_1 x$ using coordinate descent on the dataset below

X	у
1	1
2	2
3	3

Setup

- Initial parameters: $(\theta_0, \theta_1) = (2, 3)$
- MSE = $\frac{14+3\theta_0^2+14\theta_1^2-12\theta_0-28\theta_1+12\theta_0\theta_1}{3}$
- Using standard least squares (no regularization for simplicity)

Coordinate Descent Iterations

Iteration 1:

INIT:
$$\theta_0=2$$
 and $\theta_1=3$

Fix
$$\theta_1 = 3$$
, optimize θ_0 :
$$\frac{\partial \text{MSE}}{\partial \theta_0} = 6\theta_0 + 24 = 0$$

$$\theta_0 = -4$$

Iteration 2:

INIT:
$$\theta_0 = -4$$
 and $\theta_1 = 3$

Fix
$$\theta_0 = -4$$
, optimize θ_1 : $\theta_1 = 2.7$

Starting point

After 2 iterations

Visual Coordinate Descent

Coordinate Descent: Setup

Example: Problem

Minimize

$$f(\theta_0, \theta_1) = (\theta_0 - 2)^2 + (\theta_1 - 1)^2$$

starting from (0,3)

Coordinate Descent: Step 1

Coordinate Descent: Step 2

Descent

Failure of Coordinate

Mathematical Derivation

Lasso Coordinate Descent: Setup

Lasso Objective

$$\text{Minimize } \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=0}^d |\theta_j|$$

Lasso Coordinate Descent: Setup

Lasso Objective

$$\text{Minimize } \sum_{i=1}^n (y_i - \hat{y}_i)^2 + \lambda \sum_{j=0}^d |\theta_j|$$

Key Points: Key Definitions

- $\rho_j = \sum_{i=1}^n x_{ij} (y_i \hat{y}_i^{(-j)})$ (partial residual correlation)
- $z_j = \sum_{i=1}^n x_{ij}^2$ (feature norm squared)
- $\hat{y}_{i}^{(-j)} = \text{prediction without } j\text{-th feature}$

Lasso Coordinate Descent: Setup

Coordinate Update Rule

Fix all θ_k for $k \neq j$, minimize w.r.t. θ_j :

$$\min_{\theta_j} \sum_{i=1}^n (y_i - \hat{y}_i^{(-j)} - \theta_j x_{ij})^2 + \lambda |\theta_j|$$

Subgradient Analysis

Subgradient of Lasso Objective w.r.t. $heta_j$

$$\frac{\partial}{\partial \theta_j}(\mathsf{Lasso}) = -2\rho_j + 2\theta_j \mathsf{z}_j + \lambda \frac{\partial}{\partial \theta_j} |\theta_j|$$

Subgradient Analysis

Subgradient of Lasso Objective w.r.t. $heta_j$

$$\frac{\partial}{\partial \theta_j}(\mathsf{Lasso}) = -2\rho_j + 2\theta_j \mathsf{z}_j + \lambda \frac{\partial}{\partial \theta_j} |\theta_j|$$

Theorem: Subgradient of $|\theta_j|$

$$\frac{\partial}{\partial \theta_j} |\theta_j| = \begin{cases} +1 & \text{if } \theta_j > 0\\ [-1, +1] & \text{if } \theta_j = 0\\ -1 & \text{if } \theta_j < 0 \end{cases}$$

Soft-Thresholding Solution

Theorem: Complete Lasso Update Rule

$$\theta_{j} = \begin{cases} \frac{\rho_{j} + \lambda/2}{z_{j}} & \text{if } \rho_{j} < -\lambda/2\\ 0 & \text{if } |\rho_{j}| \leq \lambda/2\\ \frac{\rho_{j} - \lambda/2}{z_{j}} & \text{if } \rho_{j} > \lambda/2 \end{cases}$$

Important: Sparsity Mechanism

If correlation $|\rho_j| \leq \lambda/2$ is weak, set $\theta_j = 0!$

Key Points: Soft-Thresholding Properties

- Shrinkage: Coefficients pulled toward zero
- Selection: Small coefficients → exactly zero
- **Smooth**: Continuous shrinkage + selection

Lasso vs Ridge Comparison

Lasso vs Ridge: Key Differences

Property	Ridge (L2)	Lasso (L1)
Penalty	$\sum heta_j^2$	$\sum \theta_j $
Sparsity	Never exactly zero	Can be exactly zero
Feature Selection	No	Yes
Differentiable	Yes	No (at $\theta_j = 0$)
Solution Method	Closed form	Coordinate descent
Constraint Shape	Circle	Diamond
Best for	Multicollinearity	Feature selection

Key Points: When to Use Each

Lasso: High-dimensional data, need interpretable model, expect

few relevant features

Ridge: All features somewhat relevant, multicollinearity issues,

want stable solution

Summary and Applications

Lasso Regression: Summary

Theorem: Three-Part Understanding

Visual: L1 diamond constraint \rightarrow sparsity at sharp corners **Algorithmic**: Coordinate descent + soft-thresholding \rightarrow ex-

act zeros

Mathematical: Subgradients handle non-differentiability el-

egantly

Key Points: Key Advantages

- Regression + feature selection simultaneously
- · Sparse, interpretable models
- Handles high-dimensional data well

Lasso Regression: Summary

Key Points: Limitations

- Arbitrary selection among correlated features
- · May underperform when all features are relevant

Applications and Extensions

Example: Real-World Applications

- **Genomics**: 20,000+ genes → identify disease markers
- Text Mining: 100k+ words → sentiment analysis features
- Signal Processing: Sparse signal reconstruction
- Finance: Risk factor selection from hundreds of indicators
- Marketing: Customer segmentation with key attributes

Key Points: Extensions

- Elastic Net: Combines L1 + L2 penalties
- Group Lasso: Selects groups of related features
- Fused Lasso: Enforces smoothness in ordered features