Visualizing Effect Sizes Across the Full Distribution

Daniel Anderson, Joseph Stevens, Joseph Nese

Univeristy of Oregon

Background

- · Effect sizes generally defined by standardized mean differences
 - Cohen's d
 - Hedges' g
- · Particularly in non-experimental settings, interest may lie at other locations of the scale
 - Achievement gaps at proficiency cut scores on statewide tests
- Depending on the shape of each distribution, magnitude of group differences may depend upon scale location

Cohen's d & Hedges' g

$$d = \frac{\bar{X}_{foc} - \bar{X}_{ref}}{\sqrt{\frac{(n_{foc} - 1)Var_{foc} + (n_{ref} - 1)Var_{ref}}{n_{foc} + n_{ref} - 2}}}$$

$$g = d\left(1 - \frac{3}{4(n_{foc} + n_{ref}) - 9}\right)$$

Percentage above the cut effect sizes

Percentage Above the Cut

$$d^{pac} = PAC_{ref} - PAC_{foc}$$

Highly dependent on scale location

Transformed Percentage Above the Cut

$$d^{tpac} = \Phi^{-1}(PAC_{ref}) - \Phi^{-1}(PAC_{foc})$$

 Assumes both distributions are normally distributed with equal variance

Probability-Probability Plots

Area Under the PP Curve

Putting AUC in SD units

Ho and colleagues

$$V = \sqrt{2}\Phi^{-1}(AUC)$$

- Scale invariant
- Assumes respective normality
 - Normal with respect to each other under a shared transformation

- AUC and V make fewer assumptions about the data, but are nonetheless summary measures.
- May miss nuances in the data that can be picked up by visualizations particularly if the magnitude of the effect depends on scale location.

Implementation in esvis

R package actively in development

· Install using the *devtools* package

```
install.packages("devtools")
library(devtools)
install_github("DJAnderson07/esvis")
```

- · Release to CRAN planned for summer
- · Has many useful features currently

See current development at

https://github.com/DJAnderson07/esvis

Example data

I have stored a dataset in an object called d. Below are the first six rows of these data.

##		sid	cohort	sped	ethnicity	frl	ell	season	reading	math
##	2873	332347	1	Non-Sped	Hispanic	FRL	Active	Spring	167	192
##	162	400047	1	Non-Sped	Native Am.	FRL	Non-ELL	Spring	191	191
##	355	400047	1	Non-Sped	Native Am.	FRL	Non-ELL	Fall	183	182
##	387	400047	1	Non-Sped	Native Am.	FRL	Non-ELL	Winter	178	179
##	230	400277	1	Non-Sped	Native Am.	FRL	Non-ELL	Winter	199	197
##	648	400277	1	Non-Sped	Native Am.	FRL	Non-ELL	Fall	203	196

Standard argument structure

· All functions in *esvis* take a common argument structure, as follows

```
fun_name(outcome ~ group, data, additional_optional_args)
```

PP Plots

• Examine math differences by free or reduced lunch status

```
pp_plot(math ~ frl, d)
```

- Notice shading by default when only two groups are compared.
- AUC and V annotated to the plot, by default
- Plot is fully customizable with calls to base plotting functions (e.g., main, col, etc.)

More than one group?

· Highest performing group selected by default

```
pp_plot(reading ~ ethnicity, d)
```


Change reference group

· Investigate differences by ELL Classification

```
pp_plot(reading ~ ell, d, ref_group = "Non-ELL")
```


ECDFs

· Produced equivalently

```
ecdf_plot(reading ~ ell, d)
```


Cut-point?

ecdf_plot(reading ~ ell, d, ref_cut = c(190, 200, 207))

Add horizontal reference lines

ecdf_plot(reading ~ ell, d, ref_cut = c(190, 200, 207), hor_ref = TRUE)

Binned ES Plot

- · Split each distribution into arbitrary (even) quantile bins
- · Calculate mean difference within each bin
- Divide by overall pooled standard deviation

$$d_{[i]} = \frac{\bar{X}_{foc_{[i]}} - \bar{X}_{ref_{[i]}}}{\sqrt{\frac{(n_{foc}-1)Var_{foc} + (n_{ref}-1)Var_{ref}}{n_{foc} + n_{ref} - 2}}}$$

· In this case, essentially equivalent to Cohen's *d*, except that there are multiple mean differences (one for each bin)

Ethnicity differences

binned_plot(math ~ ethnicity, d)

Change binning

Quintile binning

binned_plot(math ~ ethnicity, d, qtiles = seq(0, 1, .2))

Change reference group

binned_plot(math ~ ethnicity, d, ref_group = "Black", qtiles = seq(0, 1, .2))

Themes (last note on plots)

· Currently standard and dark themes implemented

Estimation (quickly)

esvis will also calculate a number of effect sizes using the same argument structure, including:

- · Cohen's d
- Hedges' g
- · AUC
- · /
- PAC with any set of cut scores
- TPAC with one cut score (currently)

By default, effect sizes are produced for all possible pairwise comparisons, but reference groups can be selected as well.

coh_d(math ~ ethnicity, d)

##	ref_group	foc_group	estimate
## 1	White	Asian	0.10689571
## 2	White	Two or More	0.30281232
## 3	White	Hispanic	1.03147010
## 4	White	Black	0.72127040
## 5	White	Am. Indian	0.76483392
## 6	White	Native Am.	0.84185433
## 7	Asian	Two or More	0.07471180
## 8	Asian	Hispanic	0.72590767
## 9	Asian	Black	0.39210777
## 10	Asian	Am. Indian	0.29878405
## 11	Asian	Native Am.	0.39455423
## 12	Two or More	Hispanic	0.40811606
## 13	Two or More	Black	0.21475724
## 14	Two or More	Am. Indian	0.16297587
## 15	Two or More	Native Am.	0.24174797
## 16	Hispanic	Black	0.02423883
## 17	Hispanic	Am. Indian	0.25579261
## 18	Hispanic	Native Am.	0.30800593
## 19	Black	Am. Indian	0.12256685
## 20	Black	Native Am.	0.15962973

coh_d(math ~ ethnicity, d, "White")

```
##
    ref_group foc_group estimate
                   Asian 0.1068957
## 1
        White
## 2
       White Two or More 0.3028123
## 3
      White
                Hispanic 1.0314701
## 4
      White
                   Black 0.7212704
## 5
     White Am. Indian 0.7648339
## 6
       White Native Am. 0.8418543
```

```
pac(math ~ ethnicity, d, cut = c(190, 200, 207), ref_group = "White")
```

```
##
                foc group cut estimate
     ref group
## 1
         White
                  Asian 190 0.091192628
## 2
         White Two or More 190 0.105914547
## 3
                  Hispanic 190 0.204674477
         White
## 4
         White
                    Black 190 0.194817998
## 5
         White Am. Indian 190 0.281166804
## 6
         White Native Am. 190 0.293704535
## 22
         White
                     Asian 200 0.067726906
## 23
         White Two or More 200 0.138174016
## 24
                  Hispanic 200 0.265801628
         White
## 25
         White
                Black 200 0.258117222
## 26
               Am. Indian 200 0.262496905
         White
## 27
         White
                Native Am. 200 0.328528106
## 43
         White
                     Asian 207 0.006063335
## 44
         White Two or More 207 0.085670751
## 45
         White
                 Hispanic 207 0.183788361
## 46
         White
                     Black 207 0.182983988
## 47
         White Am. Indian 207 0.180997357
## 48
         White Native Am. 207 0.241836807
```

Summary and future developments

- · Visualizing group differences across the full scale, or at particular points of the scale, is important for interpretation and communication.
- esvis provides a simple interface to produce powerful visualizations

Future development

- · Interactions with:
- Interactions via panel plotting
- · Others?

