

לא לשכוח להפעיל הקלטה!

מה נלמד בשיעור זה?

Confusion Matrix-הערכת מודל סיווג

√ חישובי מדדים:

Accuracy

Sensitivity/Recall

Precision

F1

Confusion Matrix

Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive

Actual Negative True Positive (TP)

False Positive (FP) False Negative (FN)

True Negative (TN)

Confusion Matrix

?איך ניצור את המטריצה

<u>סוג הבעיה:</u> לסווג תמונות של כלבים וחתולים

<u>הנתונים:</u> 8 תמונות של חתולים, 5 תמונות של כלבים

<u>הגדרת (POSITIVE(1)</u> תמונות של חתולים

נערוך השוואה בין הערכים האמיתיים (Actual) נערוך השוואה בין

הערכים המחושבים שהמודל חזה (Predicted)

נערוך השוואה בין הערכים האמיתיים (Actual) נערוך השוואה בין

הערכים המחושבים שהמודל חזה (Predicted)

Actual

Predicted

נערוך השוואה בין הערכים האמיתיים (Actual) נערוך השוואה בין

הערכים המחושבים שהמודל חזה (Predicted)

Actual

Predicted

TP=5

לבין (Actual) נערוך השוואה בין הערכים האמיתיים

הערכים המחושבים שהמודל חזה (Predicted)

Actual

Predicted

TN=3

נערוך השוואה בין הערכים האמיתיים (Actual) נערוך השוואה בין

הערכים המחושבים שהמודל חזה (Predicted)

Actual

Predicted

FP=2

נערוך השוואה בין הערכים האמיתיים (Actual) נערוך השוואה בין

הערכים המחושבים שהמודל חזה (Predicted)

Actual

Predicted

FN=3

<u>סוג הבעיה:</u> לסווג תמונות של כלבים וחתולים

<u>הנתונים:</u> 8 תמונות של חתולים, 5 תמונות של כלבים

<u>הגדרת (POSITIVE(1) הגדרת</u>

נבנה טבלה בעזרת TP, TN, FP, TN

נבנה טבלה בעזרת FN ,TP ,TP ,TP

	Predicted Positive	Predicted Negative
Actual Positive	TP=5	FN=3
Actual Negative	FP=2	TN=3

משימת כיתה

חישובי מדדים:

Accuracy

Sensitivity/Recall □

Precision

F1

ACCURACY: PREDICTING CORRECTLY

Predicted Predicted Positive Negative Actual True Positive False Negative Positive (TP) (FN) Actual False Positive True Negative Negative (FP) (TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$

PRECISION: IDENTIFYING ONLY POSITIVE INSTANCES

Predicted Positive

Predicted Negative

Actual Positive

Actual Negative True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TN)

Precision =
$$\frac{TP}{TP + FP}$$

RECALL: IDENTIFYING ALL POSITIVE INSTANCES

Predicted Predicted Positive Negative True Positive Actual False Negative **Positive** (FN) (TP) Actual False Positive True Negative Negative (FP) (TN)

Recall or
$$=$$
 $\frac{TP}{TP + FN}$

?איזה מדד הוא חשוב

מקרים עם מחיר FN שלילי שקרי גבוה

התפרצות

מקרים עם מחיר FP חיובי שקרי גבוה

דואר זבל

כרייה

שריפת יער ויראלית

?Precision או Recall איזה מדד יותר חשוב?

Recall or Sensitivity =
$$\frac{TP}{TP + FN}$$

Precision =
$$\frac{TP}{TP + FP}$$

אנחנו צריכים משהו שלוקח בחשבון את שני המדדים

F1- דד

F1

מדד שמשקלל בתוכו את כל סוגי הבעיות: F1-score משמש למצוא את האיזון בין Precision ל

$$F_1 = rac{2}{rac{1}{recall} + rac{1}{precision}} = 2 \cdot rac{precision \cdot recall}{precision + recall}$$

ככל שהערך המקבל במדד F1 מתקרב לערך 1, המודל שלנו מדויק יותר

כאשר יש יותר משתי מחלקות Confusion Matrix

MULTIPLE CLASS ERROR METRICS

	Predicted Class 1	Predicted Class 2	Predicted Class 3
Actual Class 1	TP1		
Actual Class 2		TP2	
Actual Class 3			TP3

Most multi-class error metrics are similar to binary versions— just expand elements as a sum

מדדי הערכת מודל - סיכום

ERROR MEASUREMENTS

	Predicted Positive	Predicted Negative
Actual	True Positive	False Negative
Positive	(TP)	(FN)
Actual	False Positive	True Negative
Negative	(FP)	(TN)

Accuracy =
$$\frac{TP + TN}{TP + FN + FP + TN}$$
 Recall or Sensitivity =
$$\frac{TP}{TP + FN}$$
 F1 = 2
$$\frac{TP}{Precision + Recall}$$
 Precision + Recall
$$\frac{TP}{TP + FP}$$

סיכום המדדים

- יחס הדגימות שסווגו נכון מכל :Accuracy יחס הדגימות שסווגו נכון מכל התוויות ,לסך הדגימות
- עווית שסווגו נכון לתווית יחס הדגימות שסווגו נכון לתווית יחס הדגימות שסווגו לתווית
- יחס הדגימות שסווגו נכון לתווית ,לסך Recall: יחס הדגימות שסווגו נכון לתווית ,
 - Precision, Recall ממוצע הרמוני של:F1 מדד -√

מדדי הערכת מודל - מסקנות

ישנם מגוון מדדים להערכת ביצועי מודל הסיווג. ✓

∠ בחירת המדד המתאים למודל הוא שלב חשוב

עמוקה יותר לגבי דיוק המודל √

שלנו