

Engineering Physics

(PHY1701)

Dr. B. Ajitha

Assistant Professor Division of Physics VIT University Chennai, India ajitha.b@vit.ac.in

Module-4: Laser Principles and Engineering Application

Contents

- Laser Characteristics,
- Spatial and Temporal Coherence,
- Einstein Coefficient & its significance,
- Population inversion,
- Two, three & four level systems,
- Pumping schemes,
- Threshold gain coefficient,
- Components of laser,
- Nd-YAG, He-Ne, CO2 and their engineering applications
- William Silfvast, Laser Fundamentals, 2008, Cambridge University Press.

Q) Find the ratio of population of the two states in He-Ne laser that produces light of wavelength 6328 Å at 27°C.

Given data:

Wavelength, $\lambda = 6328 \text{ Å}$

Temperature, $T = 27^{\circ}C = 300 \text{ K}$

Solution

$$E = \frac{N_2}{N_1} = e^{-(E_2 - E_1)/kT}$$

$$E_2 - E_1 = \frac{12400}{6328}$$
 eV = 1.96 eV

$$\therefore \frac{N_2}{N_1} = \exp \left[\frac{-1.96 \text{ eV}}{(8.61 \text{ x } 10^{-5} \text{ eV/K}) 300 \text{ K}} \right]$$

$$= e^{-75.88} = 1.1 \times 10^{-33}$$

Q) The CO_2 laser is one of the most powerful lasers. The energy difference between the two lasers is 0.117 eV. Determine the frequency and wavelength of radiation.

$$\lambda = \frac{12400}{E \text{ (eV)}} = \frac{12400}{0.117}$$

$$\lambda = 105983 \text{ Å} = 10.5 \text{ µm.}$$

$$\gamma = \frac{c}{\lambda} = \frac{3 \times 10^8}{10.5 \times 10^6} = 2.9 \times 10^{13} \text{Hz}$$

Q) A He-Ne laser produces an output power of 5 mW. If it emits light of wavelength 632.8 nm, calculate the number of photons emitted by the laser in one second.

Given data:

Output power, $P = 5 \,\mathrm{mW}$

Wavelength, $\lambda = 632.8 \, \text{nm}$

Solution

Energy of one photon,
$$hv = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{632.8 \times 10^{-9}}$$

= 3.141 × 10⁻¹⁹ J
= 1.96 eV

Number of photons emitted =
$$\frac{\text{output power}}{\text{energy of one photon}} = \frac{5 \times 10^{-3}}{3.141 \times 10^{-19}}$$

= 1.591×10^{16} photons per second

Q) Calculate the relative population of the energy levels N_1 and N_2 at 300K, λ =500 nm.

From Maxwell and Boltzmann law, the relative population is given by

$$\frac{N_1}{N_2} = \frac{\exp\left(-\frac{E_1}{kT}\right)}{\exp\left(-\frac{E_2}{kT}\right)} = \exp\left(-\frac{E_1 - E_2}{kT}\right) = \exp\left(\frac{h\nu}{kT}\right)$$

Substituting the values of T and λ , we get

$$\frac{N_1}{N_2} = \exp\left(\frac{hv}{kT}\right) = \exp\left(\frac{hc}{\lambda kT}\right)$$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{500 \times 10^{-9} \times 1.38 \times 10^{-23} \times 300} = \exp(96.029)$$

$$= 5.068 \times 10^{41}$$

The relative population between N_1 and N_2 is 5.068×10^{41} .

(a) The He-Ne system is capable of lasing at several different IR wavelengths, the prominent one being 3.3913 μm . Determine the energy difference (in eV) between upper and lower levels for this wavelength.

Given data:

Wavelength, $\lambda = 3.3913 \, \mu m$

Solution

$$E = \frac{12400 \text{ (eV)}}{\lambda (\text{Å})} = \frac{12400}{33913} \text{ (eV)}$$
$$= 0.37 \text{ eV}$$

(b) Calculate the efficiency of a He-Ne laser, if it produces an output power of 5 mW and if it is operated with a current of 10 mA at 3 kV.

Given data:

Output power, P =
$$5 \text{ mW} = 5 \times 10^{-3} \text{ W}$$

Current, I = $10 \text{ mA} = 10 \times 10^{-3} \text{ A}$
Voltage, V = $5 \text{ kV} = 3 \times 10^{3} \text{ V}$

Solution

Efficiency =
$$\frac{\text{output power}}{\text{input power}} \times 100 \%$$

= $\frac{5 \times 10^{-3}}{10 \times 10^{-3} \times 3 \times 10^{3}} \times 100 \% = 0.016667 \%$

The efficiency of the laser = 0.016667 %

Q) A transition between the energy level E_2 and E_1 produces a light of wavelength 632.8 nm, calculate the energy of the emitted photons.

Given data:

Wavelength, $\lambda = 632.8 \text{ nm}$

Solution

Energy of the emitted photon,
$$E = hv = \frac{nc}{\lambda}$$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{632.8 \times 10^{-9}}$$

$$= 3.141 \times 10^{-19} \text{ J} = 1.96 \text{ eV}$$

The energy of the photon

$$= 1.96 \, eV$$

Q) A system has three energy levels E_1 , E_2 and E_3 . The energy levels E_1 and E_2 are at 0 eV and 1.4 eV respectively. If the lasing action takes place from the energy level E_3 to E_2 , and emits a light of wavelength 1.15 µm, find the value of E_3 ?

Given data:

The value of first energy level, $E_1 = 0 \text{ eV}$

Value of second energy level, $E_2 = 1.4 \text{ eV}$

Wavelength, $\lambda = 1.15 \, \mu \text{m}$

Solution

Energy of the emitted photon,
$$E = hv = \frac{hc}{\lambda}$$

$$= \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{1.15 \times 10^{-6}}$$

$$= 1.728 \times 10^{-19} \text{ J}$$

$$= 1.079 \text{ eV}$$

The energy value of
$$E_3 = E_2 + hv$$

= 1.4 eV + 1.079 eV
= 2.479 eV

The energy value of $E_3 = 2.479 \text{ eV}$

A laser transition takes place from an energy level at 3.2 eV to another level at 1.6 eV. Calculate the wavelength of the laser beam emitted.

Given data:

The value of higher energy level
$$E_1 = 3.2 \text{ eV}$$

The value of lower energy level
$$E_2 = 1.6 \text{ eV}$$

Solution

Energy difference,
$$E_2 - E_1 = 3.2 - 1.6$$

= 1.6 eV

Wavelength,
$$\lambda = \frac{hc}{E} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 1.6 \times 10^{-6}}$$

$$= 7.7648 \times 10^{-7} \,\mathrm{m}$$

The wavelength of the photon, $\lambda = 7.7648 \times 10^{-7}$ m

The band gap of GaAs is 1.42 eV. What is the wavelength of the laser beam emitted by a GaAs diode laser?

Given data:

Band gap of GaAs = 1.42 eV

Solution

Wavelength of laser emitted by GaAs,

$$\lambda = \frac{hc}{E} = \frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{1.42 \times 1.6 \times 10^{-6}}$$
$$= 8.749 \times 10^{-7} \,\mathrm{m}$$

The wavelength of the laser emitted by GaAs, $\lambda = 8.749 \times 10^{-7}$ m

A laser beam emits an output power of 1 mW. If it is focused as a spot havin a diameter of 1 μ m, calculate the intensity of the laser beam.

Given data:

Output power,
$$P = 1 \text{ mW} = 1 \times 10^{-3} \text{ W}$$

Diameter =
$$1 \mu m$$

Radius,
$$r = 0.5 \mu m = 0.5 \times 10^{-6} m$$

Solution

Intensity of laser =
$$\frac{\text{power}}{\text{area of cross section}} = \frac{1 \times 10^{-3}}{\pi \left(0.5 \times 10^{-6}\right)^2}$$

$$= 1.273 \times 10^9 \,\mathrm{W} \,\mathrm{m}^{-2}$$

The intensity of the laser = $1.273 \times 10^9 \text{ W m}^{-2}$