PROCESAREA SEMNALELOR CURS 09

SERII DE TIMP - MODELE ARMA

Cristian Rusu

CUPRINS

- mediere exponenţială
- modele MA
- modele ARMA

- funcțiile de mediere glisantă atribuie aceeași pondere elementelor și folosește un număr finit de elemente din trecut
- o idee nouă: contribuția pe care o are fiecare termen în medie descrește pe măsură ce trece timpul
- primim o serie de timp cu N elemente: x[0], x[2], ..., x[N-1]
- creăm o nouă serie de timp:

$$s[0] = x[0]$$

$$s[t] = \alpha x[t] + (1 - \alpha)s[t - 1], t > 1$$

- α se numește factorul de uitare (sau de netezire), $0 \le \alpha \le 1$
- α trebuie ales

de ce se numește mediere exponențială?

$$s[t] = \alpha x[t] + (1 - \alpha)s[t - 1]$$

$$= \alpha x[t] + \alpha (1 - \alpha)x[t - 1] + (1 - \alpha)^2 s[t - 2]$$

$$= \alpha (x[t] + (1 - \alpha)x[t - 1]) + (1 - \alpha)^2 s[t - 2]$$

$$= \dots$$

de ce se numește mediere exponențială?

$$s[t] = \alpha x[t] + (1 - \alpha)s[t - 1]$$

$$= \alpha x[t] + \alpha (1 - \alpha)x[t - 1] + (1 - \alpha)^{2}s[t - 2]$$

$$= \alpha (x[t] + (1 - \alpha)x[t - 1]) + (1 - \alpha)^{2}s[t - 2]$$

$$= \alpha (x[t] + (1 - \alpha)x[t - 1] + (1 - \alpha)^{2}x[t - 2] + \dots + (1 - \alpha)^{t-1}x[1]) + (1 - \alpha)^{t}x[0]$$

$$= \alpha \sum_{i=0}^{t-1} (1 - \alpha)^{i}x[t - i] + (1 - \alpha)^{t}x[0]$$

- progresia matematică de puteri ale lui $(1-\alpha)$ este o versiune discretă a funcției exponențiale
- de ce se numește mediere?

de ce se numeşte mediere?

$$\alpha \sum_{i=0}^{t-1} (1 - \alpha)^i = \alpha \frac{1 - (1 - \alpha)^t}{1 - (1 - \alpha)} = 1 - (1 - \alpha)^t$$

deci avem că:

$$\alpha \sum_{i=0}^{t-1} (1 - \alpha)^i - (1 - \alpha)^t = 1$$

adică avem o mediere ponderată

• cum îl calculăm pe α ?

$$s[t] = \alpha(x[t] + (1 - \alpha)x[t - 1] + (1 - \alpha)^2x[t - 2] + \dots + (1 - \alpha)^{t-1}x[1]) + (1 - \alpha)^tx[0]$$

$$= \alpha \sum_{i=0}^{t-1} (1 - \alpha)^ix[t - i] + (1 - \alpha)^tx[0]$$

- avem două opțiuni:
 - îl alegem
 - îl calculăm
- dacă vrem să îl calculăm cum facem?

• cum îl calculăm pe α ?

$$s[t] = \alpha(x[t] + (1 - \alpha)x[t - 1] + (1 - \alpha)^2x[t - 2] + \dots + (1 - \alpha)^{t-1}x[1]) + (1 - \alpha)^tx[0]$$

$$= \alpha \sum_{i=0}^{t-1} (1 - \alpha)^i x[t - i] + (1 - \alpha)^t x[0]$$

- avem două opțiuni:
 - îl alegem
 - îl calculăm
- dacă vrem să îl calculăm cum facem?
 - minimizăm $\sum_{t=0}^{N-2} (s[t] x[t+1])^2$, nu $\sum_{t=0}^{N-1} (s[t] x[t])^2$ care are o soluție banafă 0
 - putem să folosim cele mai mici pătrate ca să rezolvăm pentru α ?

• cum îl calculăm pe α ?

$$s[t] = \alpha(x[t] + (1 - \alpha)x[t - 1] + (1 - \alpha)^2x[t - 2] + \dots + (1 - \alpha)^{t-1}x[1]) + (1 - \alpha)^tx[0]$$

$$= \alpha \sum_{t=0}^{t-1} (1 - \alpha)^i x[t - i] + (1 - \alpha)^t x[0]$$

- avem două opţiuni:
 - îl alegem
 - îl calculăm
- dacă vrem să îl calculăm cum facem?
 - minimizăm $\sum_{t=0}^{N-2} (s[t]-x[t+1])^2$, nu $\sum_{t=0}^{N-1} (s[t]-x[t])^2$ care are o soluție banafă 0
 - putem să folosim cele mai mici pătrate ca să rezolvăm pentru α ?
 - NU, pentru că problema nu este liniară în α
 - atunci, cum găsim α ?

• un calcul greșit pentru lpha

$$(s[t] - x[t+1])^2 = (\alpha(x[t] - s[t-1]) + s[t-1] - x[t+1])^2$$

adică avem nevoie de

$$\alpha(x[t] - s[t-1]) \approx x[t+1] - s[t-1]$$

• cum rezolvăm acum?

• un calcul greșit pentru lpha

$$(s[t] - x[t+1])^2 = (\alpha(x[t] - s[t-1]) + s[t-1] - x[t+1])^2$$

adică avem nevoie de

$$\alpha(x[t] - s[t-1]) \approx x[t+1] - s[t-1]$$

cum rezolvăm acum?

$$\begin{bmatrix} x[t] - s[t-1] \\ x[t-1] - s[t-2] \\ x[t-2] - s[t-3] \\ \vdots \\ x[2] - s[1] \end{bmatrix} \alpha = \begin{bmatrix} x[t+1] - s[t-1] \\ x[t] - s[t-2] \\ x[t-1] - s[t-3] \\ \vdots \\ x[3] - s[1] \end{bmatrix}$$

• un calcul gresit pentru α

$$(s[t] - x[t+1])^2 = (\alpha(x[t] - s[t-1]) + s[t-1] - x[t+1])^2$$

adică avem nevoie de

$$\alpha(x[t] - s[t-1]) \approx x[t+1] - s[t-1]$$

cum rezolvăm acum?

$$\begin{bmatrix} x[t] - s[t-1] \\ x[t-1] - s[t-2] \\ x[t-2] - s[t-3] \\ \vdots \\ x[2] - s[1] \end{bmatrix} \alpha = \begin{bmatrix} x[t+1] - s[t-1] \\ x[t] - s[t-2] \\ x[t-1] - s[t-3] \\ \vdots \\ x[3] - s[1] \end{bmatrix}$$

$$\alpha = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} = \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\|_2^2}$$

$$\alpha = \frac{\mathbf{a}^T \mathbf{b}}{\mathbf{a}^T \mathbf{a}} = \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\|_2^2}$$

MODELUL MA

- modelul medie glisantă (moving average MA)
 - ideea: trecutul afectează viitorul (combinații ale valorilor din trecut pot prezice valori din viitor)
 - la momentul i vom face o combinație liniară de erori anterioare
 - cât de mult mergem în trecut? un orizont p pe care îl alegem
- formularea matematică

$$\hat{y}[i] = \epsilon[i] + \theta_1 \epsilon[i-1] + \theta_2 \epsilon[i-2] + \dots + \theta_p \epsilon[i-p] + \mu = \begin{bmatrix} 1 & \theta_1 & \dots & \theta_p & 1 \end{bmatrix} \begin{bmatrix} \epsilon[i] \\ \epsilon[i-1] \\ \vdots \\ \epsilon[i-p] \\ \mu \end{bmatrix}$$

ce este operația de mai sus?

MODELUL MA

- modelul medie glisantă (moving average MA)
 - ideea: trecutul afectează viitorul (combinații ale valorilor din trecut pot prezice valori din viitor)
 - la momentul i vom face o combinație liniară de erori anterioare
 - cât de mult mergem în trecut? un orizont p pe care îl alegem
- formularea matematică

$$\hat{y}[i] = \epsilon[i] + \theta_1 \epsilon[i-1] + \theta_2 \epsilon[i-2] + \dots + \theta_p \epsilon[i-p] + \mu = \begin{bmatrix} 1 & \theta_1 & \dots & \theta_p & 1 \end{bmatrix} \begin{bmatrix} \epsilon[i] \\ \epsilon[i-1] \\ \vdots \\ \epsilon[i-p] \\ \mu \end{bmatrix}$$

- ce este operația de mai sus?
- produs scalar, deci din nou cele mai mici pătrate pentru a estima parametrii θ ai modelului
- eroarea la fiecare pas poate să fie estimată ca zgomot gaussian

MODELUL MA

- un exemplu
- estimăm media unei serii să fie 12, apoi la fiecare moment de timp avem și presupunem că am estimat $\theta_1=\frac{1}{2}$

ziua	predicția	valoarea reală	eroarea
1	12	14	2
2	13 = 12 + 2/2	13	0
3	12 = 12 + 0/2	8	-4
4	10 = 12 - 4/2	14	4
5			
6			

Presupunerea implicită este că valorile reale fluctuează în jurul mediei

COMBINAȚIA: ARMA

• ARMA = AR(p) + MA(q)

$$y[t] = \sum_{i=1}^{p} x_i y[t-i] + \sum_{i=1}^{q} \theta_i \varepsilon[t-i] + \varepsilon[t]$$

- parametrii sunt:
 - p parametrii auto-regresivi
 - q parametrii de mediere
- problema: din cauza MA, optimizarea parametrilor devine foarte dificilă aici

• discuție la tablă cazul p=1 și q=1

DATA VIITOARE

modele mai avansate pentru serii de timp