Health Shocks, Portfolio Choice and Inequality

Juergen Jung

Chung Tran

Department of Economics

Towson University

Department of Economics Research School of Economics

Australian National University

CEF Conference 2023

July 2023

Disclaimer

This project was supported by a grant from the School of Emerging Technologies (SET) at Towson University and the Australian Research Council (ARC, Grant No.: DP210102784).

The content is solely the responsibility of the authors and does not represent the official views of the funding institutions.

Introduction

- Wealth gap by health starts at young age and becomes large by retirement time
 - Capatina, Keane and Maruyama (2020); De Nardi, Pashchenko and Porapakkarm (2018); Hosseini, Kopecky and Zhao (2021)
- Two operating channels
 - Health-income channels: health expenditure, labor productivity, labor supply and savings
 - Health-longevity channel: survival rates or longevity
- Missing channel: health-wealth portfolio channel
 - Heterogeneous wealth/savings portfolio by health status ightarrow heterogeneous investment returns
 - Compounding of investment returns ightarrow larger wealth gap over time

This paper

- Study health-wealth portfolio channel
 - quantify dynamic effects of health shocks on wealth portfolio over lifecycle
- Empirical analysis: data + regression
 - HRS panel data \Rightarrow long term effect of health at "40" \Rightarrow wealth composition at retirement
 - Examine long-term effects of **poor health at 45–55** on risky asset share at age 60–70
 - Dynamic (panel) regression models
- Structural analysis: model + counterfactual policies
 - Stochastic lifecycle model of portfolio choice w/ shocks to health, income and longevity
 - Decompose effects of health shocks on portfolio choice and wealth gap
 - Examine the role of health insurance in reducing wealth inequality

Findings

Empirical: HRS

- Statistically significant differences of lifecycle patterns of risky asset share by health at age 45–55
- Health effect primarily via extensive/participation margin (in stock investments)
 - Wealth mobility is low and decreases with age for the unhealthy individuals

Structural: Stochastic lifecycle model

- The health-wealth portfolio channel: important
 - counterfactuals: P90/P50 ↓ between 51–61%
- Lifetime cost of bad health: considerable
 - annualized average cost: \$6,500
- Expansion of either public or private health insurance
 - wealth gap: ↓ between 15–60%

Mechanism

- 1. Bad health \Rightarrow income losses and high expenditures $\Rightarrow \downarrow$ stock market participation
- 2. Heterogeneity in wealth portfolio by health status ⇒ heterogeneous investment returns
- 3. Compounding of investment returns \Rightarrow larger wealth gap over time
- 4. Expansion of health insurance $\Rightarrow \uparrow$ stock market participation $\Rightarrow \downarrow$ wealth gap

Related literature

- Macro-health economics: Lifecycle health models
 - Capatina, Keane and Maruyama 2020; Hosseini, Kopecky and Zhao 2021; De Nardi, Pashchenko and Porapakkarm 2018; Chen, Feng and Gu 2022; Mahler and Yum 2022
 - Nakajima and Telyukova 2022; Jung and Tran 2022; Jung and Tran 2023
- · Household finance: Lifecycle portfolio choice models
 - Seminal works: Samuelson (1969); Merton (1971)
 - Recent related studies: Yogo 2016; Fagereng, Gottlieb and Guiso 2017;
 Gomes and Smirnova 2021; Campanale, Fugazza and Gomes (2015);
 Tischbirek (2019)
 - Surveys: Gomes (2020) and Gomes, Haliassos and Ramadorai (2021)

Detailed references

Health-wealth portfolio channel: Empirical evidence

Health & Retirement Study (HRS) 1992-2018

- 20 fin. wealth components: checking/savings accts, CDs, bonds, T-bills, stocks, mutual funds, IRA/Keogh, ...
- Collapse financial assets into 2 classes:
 - 1. **safe assets** (checking/savings accts, money market funds, CDs, government savings bonds, T-bills, corporate, municipal and foreign bonds, as well as bond funds)
 - 2. risky assets (stocks and mutual funds)
- IRAs limited info \Rightarrow assign 45.8% of holdings to risky assets (Tischbirek, 2019)
- Health status
 - 1 excellent, 2 very good, 3 good, 4 fair, 5 poor
- Two groups by health status at age 45–55
 - **Sick:** 4-fair and 5-poor
 - **Healthy:** 1-excellent, 2-very good, 3-good health

Asset holdings by health status

Health shocks and risky asset holdings

Risky asset (stocks) share

	(1)	(2)	(3)
Sick at 45_55	-0.044***	-0.042***	-0.053***
	(0.005)	(0.007)	(800.0)
Sick × Unemployed at 45_55	-0.001	-0.004	-0.010
	(800.0)	(0.010)	(0.011)
Sick \times Uninsured at 45_55	0.035***	0.020**	0.038***
	(0.007)	(0.009)	(0.011)
Observations	24900	24750	24900
R^2	0.239	0.217	
Conditional P(Y>0)	No	No	No
Random Effects	No	No	Yes
Weighted	No	Yes	No

Standard errors in parentheses

More details

^{*} *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01

Stochastic lifecycle model

Lifecycle model: portfolio choice, health & HI

- A stochastic lifecycle model of portfolio choice
 - Lifespan: Age 40-94
 - Three educ. levels: No HS, HS and College
 - Two assets: Risky (stock) and safe (bond) assets
- Four idiosyncratic shocks
 - 1. Health
 - 2. Health insurance/employer type
 - 3. Labor
 - 4. Longevity (also health-dependent)
- Health insurance (HI)
 - Public HI: Medicaid & Medicare (w/ eligibility criteria)
 - Private HI: Employer HI (w/ community rating and tax deduct. premium)
- Government
 - Progressive inc. tax, payroll taxes, capital taxes (dividend, cap. gains & interest)
 - Soc. Security, Medicaid, Medicare, min. consumption program

Worker problem

- State vec: $x_j = \left\{ \vartheta, a_j, \epsilon_j^{incP}, \epsilon_j^h, \epsilon_j^{ehi} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4, 5\} \times \{0, 1\}$
- Expectation $\Rightarrow \mathbb{E}_{\epsilon_{i+1}^{incP}, \epsilon_{i+1}^h, \epsilon_{i+1}^{ehi}, \epsilon_{i+1}^s | \epsilon_i^{incP}, \epsilon_i^h, \epsilon_i^{ehi}}$

$$V\left(x_{j}\right) = \max_{\left\{c_{j}, \ell_{j}, \alpha_{j}\right\}} \left\{u\left(c_{j}, \ell_{j}\right) + \beta \mathbb{E}\left[\overbrace{\pi_{j}\left(\frac{h\left(e_{j}^{h}\right)}{h\left(e_{j}^{h}\right)}\right)}^{\text{Health surv. channel}}V\left(x_{j+1}\right) + \overbrace{\left(1 - \pi_{j}\left(\frac{h\left(e_{j}^{h}\right)}{h\left(e_{j}^{h}\right)}\right)\right)}^{\text{Health surv. channel}}u^{\text{beq}}\left(a_{j+1}\right)\right]\right\}$$

s.t.

$$a_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} \underbrace{-\text{Health income channel}}_{\text{Health income channel}} \underbrace{-\text{Health spend. channel}}_{\text{Health spend. channel}} \underbrace{-\text{tr}_{j}^{\text{si}} - \underbrace{-\text{o}_{j} \left(m_{j}, \varepsilon_{j,\vartheta}^{\text{ehi}}, y_{j}^{\text{agi}}, a_{j} \right)}_{\text{Health spend. channel}} \\ -\underbrace{1_{\left[\varepsilon_{j}^{\text{chi}}=1\right]} \text{prem}_{j}^{\text{ehi}} \underbrace{-\text{tax}_{j}}_{\text{Health tax channel}} - \left(1 + \tau^{c}\right) c_{j} - 1_{\left[\alpha_{j} > 0\right]} q \end{array} \right)$$

$$ilde{R}_{j+1} = lpha_{j} \left(1 + ilde{r}_{net,j+1}^{s}
ight) + \left(1 - lpha_{j}
ight) \left(1 + ar{r}_{net}^{b}
ight)$$

$$\mathsf{tax}_{j} = \mathsf{tax}^{y}\left(y_{j}^{\mathsf{tax}}\right) + \mathsf{tax}^{\mathsf{ss}}\left(y_{j}^{\mathsf{ss}}; \ \bar{y}^{\mathsf{ss}}\right) + \mathsf{tax}^{\mathsf{mcare}}\left(y_{j}^{\mathsf{ss}}\right)$$

Retiree problem

- State vector: $x_j = \left\{ \vartheta, a_j, \frac{e_j^h}{s_j^h} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4, 5\}$
- Expectation $\Rightarrow \mathbb{E}_{\epsilon_{i+1}^h, \epsilon_{i+1}^s | \epsilon_i^h}$

$$V\left(x_{j}\right) = \max_{\left\{c_{j}, \alpha_{j}\right\}} \left\{u\left(c_{j}\right) + \beta \mathbb{E}\left[\overbrace{\pi_{j}\left(\textbf{h}\left(\boldsymbol{\varepsilon}_{j}^{\textbf{h}}\right)\right)}^{\text{Health surv. channel}} V\left(x_{j+1}\right) + \overbrace{\left(1 - \pi_{j}\left(\textbf{h}\left(\boldsymbol{\varepsilon}_{j}^{\textbf{h}}\right)\right)\right)}^{\text{Health surv. channel}} u^{\text{beq}}\left(\textbf{a}_{j+1}\right)\right]\right\}$$

s.t.

$$a_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} \text{Health spend. channel} \\ a_j + \operatorname{tr}_j^{\operatorname{ss}}\left(\tilde{y}^{\theta}\right) + \operatorname{tr}_j^{\operatorname{si}} - \overbrace{o_j\left(m_j, \varepsilon_{j,\theta}^{\operatorname{chi}}, y_j^{\operatorname{agi}}, a_j\right)}^{\operatorname{Health spend. channel}} \\ -\operatorname{prem}^{\operatorname{mcare}} \underbrace{-\operatorname{tax}^y\left(y_j^{\operatorname{tax}}\right)}_{\operatorname{Health tax channel}} - (1 + \tau^c) \ c_j - \mathbf{1}_{\left[\alpha_j > 0\right]} q \end{array} \right)$$

$$ilde{ extit{R}}_{j+1} = \left(lpha_{j}\left(1+ ilde{ au}_{ extit{net},j+1}^{ extit{s}}
ight)+\left(1-lpha_{j}
ight)\left(1+ar{ au}^{b}
ight)
ight)$$

More Details

Calibration

Parameterization and calibration

- Data sources:
 - RAND-HRS for asset profiles, initial asset distribution
 - MEPS: labor supply, health shocks, health expenditures, coinsurance rates
 - Previous studies: income process, labor shocks

Target risky asset participation

Quantitative Analysis (Preliminary results)

Model replicates wealth mobility patterns

Model: Risky assets by health at age 45-55

	Healthy at 45-55	Sick at 45-55		
- Risky asset share α (at 65)	40%	24%		
- Stock part. (at 40) - Stock part. (at 65)	31% 41%	24% 25%		
- Wealth-to-inc (at 65)	5.65	3.59		

Counter factual: Health-wealth portfolio channel

	Benchmark	No risky assets	No bad health	No stocks & No bad health	
Wealth Gap					
All ages - P90/P50 - P50/P25	8.67 7.71	4.40 (\dagger 49%) 3.65 (\dagger 53%)	5.40 (\pm 38%) 6.22 (\pm 19%)	3.45 (\ 61%) 3.03 (\ 61%)	
At 65 - P90/P50 - P50/P25	9.01 10.78	4.40 (↓ 51%) 6.67 (↓ 49%)	5.06 (\dagger 44%) 5.91 (\dagger 45%)	3.55 (\pm 61%) 3.82 (\pm 65%)	

Counter factual: Cost of bad health

- Counterfactual
 - 1. Everybody draws good health (surprise shock)
 - 2. Everybody at age 45–55 draws good health
- · Policy functions are not affected!
- Calculate lifetime cost of bad health (annual averages) following De Nardi, Pashchenko and Porapakkarm (2018)

$$\overline{\mathsf{cost}_i} = \left(\frac{1}{\sum_{j=1}^J 1_{\mathsf{alive}_j}}\right) \sum_{j=1}^J 1_{\mathsf{alive}_j} \times \left(\begin{array}{c} \mathsf{net of med expens.} & \mathsf{net of med expens.} \\ \mathsf{always healthy} & \mathsf{benchmark} \\ \hline (y_{ij}^{**} - \mathit{oop}_{ij}^{**}) & - & \overbrace{(y_{ij}^* - \mathit{oop}_{ij}^*)} \\ \end{array}\right)$$

Counter factual: Cost bad health

	All	no HS	HS	College
Cost of bad health (40-death) Income loss+medical cost Percent of time in bad health Welfare cost	\$6,535 16.58% -	\$8,666 23.41% -	\$6,165 15.37% -	\$4,484 10.07% -
Cost of bad health (at 45–55) Income loss+medical cost Percent of time in bad health Welfare cost	\$3,537 8.91% -	\$4,300 12.63% -	\$3,386 8.15% -	\$2,845 5.59% -

Counter factual: Cost bad health

	Bench.	Good hith (always)	Good hlth (45–55)
Assets	100	122.5	111.3
Healthy at 45–55 - α at 65 - Stock part. at 40 - Stock part. at 65 - Wealth-to-inc at 65	40% 31% 41% 5.65	53% 35% 55% 6.01	41% 27% 42% 5.47
Sick at 45–55 - α at 65 - Stock part. at 40 - Stock part. at 65 - Wlth-to-inc at 65	24% 24% 24% 3.58	- - - -	- - - -
Consumption Labor part. Hours (workers)	100 49.5% 42.7	103.8 68% 43.4	101.8 67.7% 42.9

Good health at age 45-55

Health insurance policy experiments

	Bench.	Medicare (for all)	EHI (for all)
Assets	100	103.6	102.9
Healthy at 45–55 - α at 65 - Stock part. at 65 - Wealth-to-inc at 65	40%	43%	43%
	41%	44%	44%
	5.65	5.83	5.84
Sick at 45–55 - α at 65 - Stock part. at 65 - Wlth-to-inc at 65	24%	24%	23%
	24%	25%	24%
	3.58	3.83	3.74
Wealth gap - All age: P90/P50 - All age: P50/P25 - At 65: P90/P50 - At 65: P50/P25	8.67	6.94 (\ 20.0%)	7.32 (\ 10.5%)
	7.71	5.37 (\ 31.1%)	5.66 (\ 30.6%)
	9.01	7.64 (\ 15.2%)	7.64 (\ 15.2%)
	10.78	4.39 (\ 59.2%)	5.97 (\ 44.6%)

Policy experiments details 28 / 30

Conclusion

Conclusion

 Study dynamic effects of health shocks on savings, portfolio choice and wealth accumulation over lifecycle

Empirical

- Use HRS panel data to investigate health shocks ⇒ savings portfolio
- Dynamic (panel) regression models

Computational model

- Lifecycle model w/ savings (portfolio) decisions, health shocks and health insurance
- Quantify long-run effects of bad health on portfolio choice and wealth gaps
- Examine effects of health insurance reforms on wealth inequality at retirement

Supplementary material

Related literature I

- Lifecycle portfolio investment literature starting with Samuelson (1969); Merton (1971) and recent surveys in Gomes (2020) and Gomes, Haliassos and Ramadorai (2021)
- Health and wealth inequality
 - Medical expenditures and access to health insurance: De Nardi, French and Jones (2010); Nakajima and Telyukova (2022); Chen, Feng and Gu (2022); De Nardi, Pashchenko and Porapakkarm (2018)
 - Health on labor supply and productivity: Prados (2018); Capatina, Keane and Maruyama (2020); Hosseini, Kopecky and Zhao (2021)
 - Lifestyle behaviors: Mahler and Yum (2022)
- Wealth on proportion of risky assets has mixed results
 - positive effect: Wachter and Yogo (2010)
 - minor effect: Brunnermeier and Nagel (2008)
 - negative effect: Liu, Liu and Cai (2021)
- Additional channels
 - stock market entry/adjustment costs: Alan (2006); Bonaparte, Cooper and Zhu (2012); Fagereng, Gottlieb and Guiso (2017)
 - education: Cocco, Gomes and Maenhout (2005); Cooper and Zhu (2016)

Related literature II

- unemployment: Bagliano, Fugazza and Nicodano (2014); Bagliano, Fugazza and Nicodano (2019)
- household composition: Inkmann, Michaelides and Zhang (2022)
- demographics and composition of 401k: Egan, MacKay and Yang (2021)
- introduction of Pension Protection Act of 2006: Parker et al. (2022)
- longevity annuities: Zhou, Li and Zhou (2022)
- reverse mortgages: Nakajima and Telyukova (2017); Hambel, Kraft and Meyer-Wehmann (2022)
- cyclicality of skewness of income shocks: Catherine (2022)
- Estimated structural lifecycle models of portfolio choice and retirement: Yogo (2016); Fagereng, Gottlieb and Guiso (2017); Gomes and Smirnova (2021)
- Calibrated lifecycle models with liquidity costs of stocks and long-term bonds:
 Campanale, Fugazza and Gomes (2015) and Tischbirek (2019)
- Empirical lit. of health spending and health insurance on portfolio choice of elderly: Goldman and Maestas (2013); Ayyagari and He (2016)
 - Early life health status: Böckerman, Conlin and Svento (2021)
 - Current health status: Rosen and Wu (2004)
 - Subjective health status: Bressan, Pace and Pelizzon (2014)
 - Expected future health shocks: Edwards (2008)

Related literature III

Empirical financial literacy

- Cognitive abilities and investment decisions: Christelis, Jappelli and Padula (2010); Agarwal and Mazumder (2013); Gamble et al. (2015); Lindeboom and Melnychuk (2015); Mazzonna and Peracchi (2020); Shimizutani and Yamada (2020)
- Role of financial advising: Rossi and Utkus (2020, 2021)

Back to literature

Health & Retirement Study (RAND-HRS) 1992–2018

- Health and Retirement Study (RAND-HRS) panel data survey
- The majority of them are between 51–61 years
- Limit sample to heads of households and age group of 40–80 with wealth info
- In regressions we use reduced sample of 60–70 year olds
- Variables: labor market behavior, educational attainment, family background, government program participation, family life, health issues, assets, and income

HRS summary statistics I

	(1) w/H.Info Age:40-80	(2) Sick 45-55 A:40-80	(3) Alive60-70 A:40-80	(4) All A:60-70	(5) w/H.Info A:60-70	(6) Sick 45-55 A:60-70	(7) HlimWrk A:60-70
Sick at 45_55	0.30	1.00	0.27	0.27	0.27	1.00	0.65
Health Limits Work at 45_55	0.27	0.62	0.25	0.24	0.24	0.60	1.00
Health Limits Work	0.30	0.58	0.30	0.33	0.33	0.63	0.71
Spouse: Health Limits Work	0.24	0.32	0.24	0.26	0.26	0.36	0.34
Unemployed at 45_55	0.30	0.56	0.28	0.27	0.27	0.53	0.67
Uninsured at 45_55	0.29	0.35	0.28	0.27	0.27	0.34	0.32
P(Stocks)	0.42	0.20	0.45	0.45	0.45	0.22	0.28
P(Safe Assets)	0.79	0.62	0.81	0.81	0.82	0.65	0.70
Risky Assets (\$1,000)	91.09	20.66	103.20	107.80	128.11	27.98	41.23
Safe Assets (\$1,000)	95.04	30.30	104.61	110.00	127.84	40.95	52.74
Risky Asset Share	0.18	0.09	0.20	0.19	0.20	0.09	0.12
Safe Asset Share	0.61	0.53	0.62	0.62	0.62	0.56	0.58
Debt (\$1,000)	7.03	7.26	6.68	5.27	5.83	5.31	5.70
Nortgage (\$1,000)	48.70	28.30	47.62	36.16	45.81	26.78	29.36
Other home loans (\$1,000)	4.42	1.99	4.74	3.73	4.82	2.33	3.32
ncome Risk Aversion	3.20	3.26	3.19	3.28	3.24	3.32	3.28
inancial planning horizon	3.13	2.86	3.13	3.05	3.09	2.80	2.89
Prob. live to 75	61.59	48.71	62.32	63.00	62.28	49.39	54.08
Prob. live to 85	41.46	30.98	41.62	42.82	42.48	30.72	34.42
Age	59.91	58.63	61.47	64.64	64.16	63.92	63.98
Female	0.30	0.38	0.28	0.33	0.28	0.38	0.38
Married/Partnered	0.58	0.47	0.59	0.57	0.59	0.45	0.46
Nr. Children Alive	2.90	3.14	2.96	3.18	2.99	3.27	3.14
Black	0.21	0.30	0.20	0.20	0.19	0.28	0.26
Hispanic	0.13	0.21	0.12	0.11	0.11	0.19	0.13
No high school degree	0.25	0.42	0.25	0.29	0.25	0.44	0.36

HRS summary statistics II

High school degree	0.52	0.47	0.51	0.49	0.51	0.46	0.50
College or higher	0.24	0.10	0.24	0.22	0.25	0.10	0.13
Labor income (\$1,000)	33.80	16.36	32.20	21.20	25.01	10.16	8.73
Pre-govt HH income (\$1,000)	85.88	45.48	86.10	74.86	84.15	42.58	48.60
Employed	0.52	0.36	0.48	0.32	0.37	0.21	0.17
Receives Social Security	0.72	0.76	0.84	0.90	0.88	0.91	0.93
Health Excellent	0.12	0.02	0.12	0.11	0.10	0.02	0.04
Health Very Good	0.28	0.07	0.29	0.28	0.29	0.08	0.13
Health Good	0.31	0.23	0.31	0.32	0.33	0.27	0.30
Health Fair	0.20	0.46	0.19	0.21	0.21	0.41	0.34
Health Poor	0.08	0.22	0.08	0.09	0.08	0.21	0.20
Initial Health Excellent	0.21	0.03	0.23	0.20	0.23	0.02	0.07
Initial Health Very Good	0.28	0.06	0.29	0.27	0.28	0.06	0.14
Initial Health Good	0.28	0.16	0.28	0.29	0.28	0.15	0.26
Initial Health Fair	0.16	0.52	0.14	0.16	0.14	0.52	0.29
Initial Health Poor	0.07	0.24	0.07	0.08	0.07	0.25	0.23
Healthy	0.72	0.32	0.73	0.71	0.72	0.37	0.46
Body Mass Index	28.92	30.44	28.77	28.47	28.97	30.48	29.98
Smoker	0.22	0.31	0.21	0.19	0.18	0.24	0.24
OOP health exp. (\$1,000)	3.07	3.79	3.17	3.36	3.43	3.88	3.80
Total OOP exp. HH (\$1,000)	5.00	5.39	5.22	5.37	5.68	5.68	5.47
Insured	0.84	0.81	0.85	0.88	0.88	0.88	0.90
Uninsured	0.16	0.19	0.15	0.12	0.12	0.12	0.10
Public health insurance	0.31	0.46	0.33	0.42	0.40	0.59	0.62
Private health insurance	0.52	0.34	0.52	0.46	0.48	0.29	0.28
Observations	75526	22387	61107	56374	25686	6819	6261

HRS summary statistics III

Back to HRS variable definitions

Preference/belief differences by type

Safe asset share

	(1)	(2)	(3)
Sick at 45_55	0.015*	0.008	0.008
	(0.009)	(0.010)	(0.012)
C' L II L	0.050***	0.040***	0.045**
Sick $ imes$ Unemployed at 45_55	-0.050***	-0.049***	-0.045**
	(0.012)	(0.016)	(0.017)
Sick $ imes$ Uninsured at 45_55	-0.084***	-0.070***	-0.079***
	(0.012)	(0.017)	(0.017)
Observations	24900	24750	24900
R^2	0.057	0.049	
Conditional $P(Y>0)$	No	No	No
Random Effects	No	No	Yes
Weighted	No	Yes	No

Standard errors in parentheses

^{*} *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01

Preferences

Preferences

$$u\left(c_{j},\ell_{j};\bar{n}_{j}\right) = \frac{\left(c_{j}^{\eta} \times \left[\ell_{j} - 1_{\left[0 < n_{j}\right]} \times \bar{n}_{j}\right]^{1-\eta}\right)^{1-\sigma}}{1-\sigma} + \bar{u}$$

Warm-glow bequest

$$u^{\mathrm{beq}}\left(a_{j}\right) = \theta_{1} \frac{\left(a_{j} + \theta_{2}\right)^{\left(1 - \sigma\right)\eta}}{1 - \sigma}$$

Health

- Health:
 - 5 idiosyncratic (exogenous) health groups e^h ∈ {1, 2, 3, 4, 5}
 - Age dependent health expenditure $m(j, \vartheta, \varepsilon^h)$
 - Health state:

$$h\left(\epsilon^h\right) = \begin{cases} \text{healthy} & \text{if } \epsilon^h \in \{\text{excellent, very good, good}\}, \\ \text{sick} & \text{if } \epsilon^h \in \{\text{fair, poor}\}. \end{cases}$$

- Survival probability: $\pi\left(h\left(\epsilon^{h}\right)\right)$
- Health and labor income shocks:

$$\Pr\left(\boldsymbol{\epsilon}_{j+1}^{h}|\boldsymbol{\epsilon}_{j}^{h}\right)\in\Pi^{h}\left(\boldsymbol{j},\boldsymbol{\vartheta}\right)\text{ , }\Pr\left(\boldsymbol{\epsilon}_{j+1}^{\mathit{incP}}|\boldsymbol{\epsilon}_{j}^{\mathit{incP}}\right)\in\Pi_{j}^{\mathit{incP}}$$

Health insurance

Workers: exogenous employer HI

$$\epsilon_{j,\vartheta}^{\mathsf{ehi}} = \left\{ egin{array}{ll} 0 & ext{not privately insured,} \ 1 & ext{privately health insurance,} \end{array}
ight. ext{for } j \leq J_w$$

- $\epsilon_{j,\vartheta}^{\mathrm{ehi}}$ follows Markov process with $P\left(\epsilon_{j+1,\vartheta}^{\mathrm{ehi}}|\epsilon_{j,\vartheta}^{\mathrm{ehi}}\right)\in\Pi_{j,\vartheta}^{\mathrm{ehi}}$
- Coinsurance: $\gamma^{\rm ehi}$
- Premium: $prem_j^{Ins}$
- **Poor:** qualify for Medicaid w/ coinsurance $\gamma^{\rm maid}$ if $y_j^{\rm agi} < y^{\rm maid}$ and $a_j < a^{\rm maid}$
- Retired $j>J_1$ have Medicare w/ coinsurance $\gamma^{\rm mcare}$ and premium prem $^{\rm mcare}$

Out-of-pocket health spending

$$o_{j}\left(m_{j}, \epsilon_{j,\vartheta}^{\text{ehi}}, y_{j}^{\text{agi}}, a_{j}\right) = \\ = \begin{cases} \overbrace{1_{[\text{maid-yes}]} \gamma^{\text{maid}}}^{\text{primary HI}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right) & \text{if } \overbrace{\epsilon_{j,\vartheta}^{\text{ehi}} = 0 \ \land j \leq J_{w}}^{\text{working, no private HI}} \\ \overbrace{1_{[\text{maid-yes}]} \gamma^{\text{maid}}}^{\text{Medicaid is secondary HI}} \times \left(\overbrace{\gamma^{\text{ehi}}}^{\text{primary}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right)\right) & \text{if } \overbrace{\epsilon_{j,\vartheta}^{\text{ehi}} = 1 \ \land j \leq J_{w}}^{\text{ehi}} \\ \overbrace{1_{[\text{maid-yes}]} \gamma^{\text{maid}}}^{\text{Medicaid is secondary HI}} \left(\times \overbrace{\gamma^{\text{mcare}}}^{\text{primary}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right)\right) & \text{retired, with Medicare} \\ \overbrace{1_{[\text{maid-yes}]} \gamma^{\text{maid}}}^{\text{primary}} \left(\times \overbrace{\gamma^{\text{mcare}}}^{\text{primary}} \times m\left(j, \vartheta, \epsilon_{j}^{h}\right)\right) & \text{if } \overbrace{j > J_{w}}^{\text{primary}} \end{cases}$$

Labor income

- Profile by health type: $\bar{e}_{j} = \bar{e}\left(j,\vartheta,h\left(\epsilon^{h}\right)\right)$
- Exogenous income shock: $e_{j}\left(\vartheta,\epsilon^{h},\epsilon^{incP}\right)=\bar{e}_{j}\left(\vartheta,h\left(\epsilon^{h}\right)\right)\times\epsilon^{incP}$

Health-dependent income

• Labor income:
$$y_j\left(\ell_j, \vartheta, \epsilon_j^{incP}, \epsilon_j^h\right) = \widehat{w} \times e_j\left(\vartheta, \epsilon_j^{incP}, \epsilon^h\right) \times (1 - \ell_j)$$

Savings/Assets

- Two types of assets
 - risk-free bond b w/ real return r^b
 - risky stock s w/ return $\tilde{r}^s = r^b + \mu^s + \epsilon^s$ and risk premium $\mu_s > 0$, stoch. return $\epsilon^s \sim N\left(0, \sigma_{\epsilon^s}^2\right)$
- Net returns (see Gomes, Michaelides and Polkovnichenko, 2009)

$$\begin{split} \tilde{r}_{net}^{b} &= \frac{1 + \left[\left(r^{b} + 1 \right) \left(1 + \pi \right) - 1 \right] \left(1 - \tau^{d} \right)}{1 + \pi} - 1 \\ \tilde{r}_{net}^{s} &= \frac{1 + \tilde{g} \left(1 - \tau^{g} \right) + d \left(1 - \tau^{d} \right)}{1 + \pi} - 1 \end{split}$$

- W/ exogenous parameters
 - d, g̃: dividend vs. capital gains
 - au^d , au^g : dividend vs. capital gains tax
 - π inflation
- Borrowing limit $b_{i+1} \geq \underline{b}$, stock holdings $s_{i+1} \geq 0$
- Transaction cost q_{ϑ} when investing in risky asset

Taxes and transfers

Taxes

Labor income (Benabou 2002; Heathcote, Storesletten and Violante 2017)

$$ax^y(y_j^{ ax}) = \max\left[0,\,y_j^{ ax} - \lambda imes \left(y_j^{ ax}
ight)^{(1- au)}
ight]$$

- 0 < au < 1 progressivity
- λ scaling
- Payroll: $tax^{ss}\left(y_{j}^{ss}; \ \bar{y}^{ss}\right)$ and $tax^{mcare}\left(y_{j}^{ss}\right)$
- Consumption: τ^c
- Capital: au^d on dividends and au^g on capital gains

Transfers

- Social Security: trss
- Medicare, Medicaid
- Lump-sum transfers tr^{si} to guarantee c_{min}

Back to model overview

Worker Problem I

- State vec: $x_j = \left\{ \vartheta, a_j, \epsilon_j^{incP}, \epsilon_j^h, \epsilon_j^{ehi} \right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4\} \times \{1, 2, 3, 4, 5\} \times \{0, 1\}$
- Expectation $\Rightarrow \mathbb{E}_{\epsilon_{i+1}^{incP}, \epsilon_{i+1}^h, \epsilon_{i+1}^{ehi}, \epsilon_{i+1}^s | \epsilon_i^{incP}, \epsilon_i^h, \epsilon_i^{ehi}}$

$$V\left(x_{j}\right) = \max_{\left\{c_{j}, \ell_{j}, \alpha_{j}\right\}} \left\{u\left(c_{j}, \ell_{j}\right) + \beta \mathbb{E}\left[\underbrace{\frac{\text{Health surv. channel}}{\pi_{j}\left(\frac{h\left(\varepsilon_{j}^{h}\right)}{h\left(\varepsilon_{j}^{h}\right)}\right)} V\left(x_{j+1}\right) + \underbrace{\left(1 - \pi_{j}\left(\frac{h\left(\varepsilon_{j}^{h}\right)}{h\left(\varepsilon_{j}^{h}\right)}\right)\right)} u^{\text{beq}}\left(a_{j+1}\right)\right\}\right\} \left(\frac{1}{2} \left(\frac{h\left(\varepsilon_{j}^{h}\right)}{h\left(\varepsilon_{j}^{h}\right)}\right) \left(\frac{h\left(\varepsilon_{j}^{h}\right)}{h\left(\varepsilon_{j}^{h}\right)}\right)} u^{\text{beq}}\left(a_{j+1}\right)\right) \left(\frac{h\left(\varepsilon_{j}^{h}\right)}{h\left(\varepsilon_{j}^{h}\right)}\right) \left(\frac{h\left(\varepsilon_{j}^{h}\right)}{h\left$$

s.t.

$$a_{j+1} = \tilde{R}_{j+1} \left(\begin{array}{c} \underbrace{-1_{j+1} \left(\ell_{j}, \vartheta, \varepsilon_{j}^{incP}, \varepsilon_{j}^{h}\right)}_{\text{Health income channel}} + \operatorname{tr}_{j}^{\operatorname{si}} - \underbrace{-0_{j} \left(m_{j}, \varepsilon_{j,\vartheta}^{\operatorname{ehi}}, y_{j}^{\operatorname{agi}}, a_{j}\right)}_{\text{Health spend. channel}} - \underbrace{-1_{\left[\varepsilon_{j}^{\operatorname{ehi}} = 1\right]} \operatorname{prem}_{j}^{\operatorname{ehi}} - \underbrace{-1_{\left[\alpha_{j} > 0\right]} q}_{\text{Health tax channel}} - \underbrace{-1_{\left[\alpha_{j} > 0\right]} q}_{\text{Health spend. channel}} \right)$$

$$\begin{split} \tilde{R}_{j+1} &= \alpha_j \left(1 + \tilde{r}_{net,j+1}^{s} \right) + \left(1 - \alpha_j \right) \left(1 + \tilde{r}_{net}^{b} \right) \\ \tan &j = \tan^y \left(y_j^{\mathsf{tax}} \right) + \tan^{\mathsf{xs}} \left(y_j^{\mathsf{ss}}; \ \bar{y}^{\mathsf{ss}} \right) + \tan^{\mathsf{mcare}} \left(y_j^{\mathsf{ss}} \right) \\ &\underline{b} \leq b_{j+1}, \ 0 \leq s_{j+1} \end{split}$$

Worker Problem II

• Total taxable income y_j^{tax} and payroll tax eligible income y_j^{ss}

$$\begin{aligned} y_j^{\mathsf{tax}} &= y_j - \mathbf{1}_{[\mathsf{in}_{j+1} = 2]} \mathsf{prem}_j^{\mathsf{ehi}} \\ &- \mathsf{max} \left[0, \ o_j \left(m_j, \epsilon_{j,\theta}^{\mathsf{ehi}}, y_j^{\mathsf{agi}}, a_j \right) - 0.075 \times \left(y_j + r_b \times b_j + r_s \times s_j \right) \right] \end{aligned}$$

$$y_j^{ss} = y_j - 1_{[\mathsf{in}_{j+1}=2]}\mathsf{prem}_j^{\mathsf{ehi}}$$

Taxes

$$\begin{aligned} & \mathsf{tax}_j = \mathsf{tax}^y\left(y_j^{\mathsf{tax}}\right) + \mathsf{tax}^{\mathsf{ss}}\left(y_j^{\mathsf{ss}}; \ \bar{y}^{\mathsf{ss}}\right) + \mathsf{tax}^{\mathsf{mcare}}\left(y_j^{\mathsf{ss}}\right) \\ & \mathsf{tax}^{\mathsf{ss}}\left(y_j^{\mathsf{ss}}; \ \bar{y}^{\mathsf{ss}}\right) = \tau^{\mathsf{ss}} \times \min\left[y_j^{\mathsf{ss}}; \ \bar{y}^{\mathsf{ss}}\right] \\ & \mathsf{tax}^{\mathsf{mcare}}\left(y_j^{\mathsf{ss}}\right) = \tau^{\mathsf{mcare}} \times y_j^{\mathsf{ss}} \end{aligned}$$

Worker Problem III

Transfers

$$\begin{aligned} &\operatorname{tr}_{j}^{\operatorname{si}} = \operatorname{max}\left[0, \ c_{\operatorname{min}} + o\left(m_{j}\right) - y_{j}^{\operatorname{at}} - a_{j}\right] \\ &y_{j}^{\operatorname{at}} = y_{j} - \operatorname{tax}_{j} \end{aligned}$$

Average past labor earnings:

$$\bar{y}^{\vartheta} = \int_{j \leq J_r} w \times e(x) \times n(x) d\Lambda(x_j(\vartheta))$$

Back to worker problem

Retiree's Dynamic Optimization Problem I

- State vector: $x_j = \left\{\vartheta, a_j, \epsilon_j^h\right\} \in \{1, 2, 3\} \times R \times \{1, 2, 3, 4, 5\}$
- ullet Expectation $\Rightarrow \mathbb{E}_{\epsilon_{j+1}^h, \epsilon_{j+1}^s | \epsilon_j^h}$

$$V\left(x_{j}\right) = \max_{\left\{c_{j}, \alpha_{j}\right\}} \left\{u\left(c_{j}\right) + \beta \mathbb{E}\left[\overbrace{\pi_{j}\left(h\left(e_{j}^{h}\right)\right)}^{\text{Health surv. channel}} V\left(x_{j+1}\right) + \overbrace{\left(1 - \pi_{j}\left(h\left(e_{j}^{h}\right)\right)\right)}^{\text{Health surv. channel}} u^{\text{beq}}\left(a_{j+1}\right)\right]\right\}$$

s.t.

$$a_{j+1} = ilde{R}_{j+1} \left(egin{array}{c} & Health spend. \ channel \ & a_j + \operatorname{tr}_j^{\operatorname{ss}}\left(ar{y}^{ heta}
ight) + \operatorname{tr}_j^{\operatorname{si}} - o_j\left(m_j, \epsilon_{j, heta}^{\operatorname{ehi}}, y_j^{\operatorname{agi}}, a_j
ight) \ & -\operatorname{prem}_j^{\operatorname{mcare}} & -\operatorname{tax}^y\left(y_j^{\operatorname{tax}}
ight) - (1 + au^c) \ c_j - 1_{\left[lpha_j > 0
ight]} q \end{array}
ight)$$

$$egin{aligned} ilde{\mathcal{R}}_{j+1} &= \left(lpha_j \left(1 + ilde{r}_{\mathsf{net},j+1}^{\mathsf{s}} \right) + \left(1 - lpha_j
ight) \left(1 + ilde{r}^b
ight)
ight) \\ ilde{b} &\leq b_{j+1} \\ 0 &\leq s_{j+1} \end{aligned}$$

Retiree's Dynamic Optimization Problem II

$$\begin{aligned} y_{j}^{\mathsf{tax}} &= \mathsf{tr}_{j}^{\mathsf{ss}} - \mathsf{max}\left[0, \; \left(o_{j}\left(m_{j}\right) + \mathsf{prem}^{\mathsf{mcare}}\right) - 0.075 \times \left(r_{b} \times b_{j} + r_{\mathsf{s}} \times s_{j} + \mathsf{tr}_{j}^{\mathsf{ss}}\right)\right] \\ \mathsf{tr}_{j}^{\mathsf{si}} &= \mathsf{max}\left[0, \; c_{\mathsf{min}} + o_{j}\left(m_{j}\right) + \mathsf{prem}^{\mathsf{mcare}} + \mathsf{tax}^{y}\left(y_{j}^{\mathsf{tax}}\right) - a_{j} - \mathsf{tr}_{j}^{\mathsf{ss}}\right] \end{aligned}$$

Back to retired problem

Exogenous parameters

Parameter description	Parameter values	Source
Periods	J = 55	
Work periods	$J_{\rm W} = 25$	Age 40-64
Years modeled	years = 55	Age 40-94
Relative risk aversion	$\sigma = 3$	Standard values between $2.5 - 3.5$
Survival probabilities	$\pi_{j}\left(h\left(arepsilon^{h} ight) ight)$ see online appendix	İmrohoroğlu and Kitao (2012)
Health Shocks	ϵ_i^h see online appendix	MEPS 1996-2018
Health transition prob.	Π_i^h see online appendix	MEPS 1996-2018
Persistent labor shock autocor.	$\rho = 0.977$	French (2005)
Variance of transitory labor shock	$\sigma_{\tilde{e}_1}^2 = 0.0141$	French (2005)
Bias adjusted wage profile	$\bar{e}_{j}\left(\vartheta,h\left(\varepsilon^{h}\right)\right)$ see online appendix	MEPS 1996-2018
Private employer HI	$\gamma^{\text{ehi}} = 0.31$	MEPS 1996-2018
Medicaid coinsurance	$\gamma^{maid} = 0.11$	MEPS 1996-2018
Medicare coinsurance	$\dot{\gamma}^{mcare} = 0.30$	MEPS 1996-2018
Consumption tax	$ au^c = 5\%$	IRS
Bequest parameter	$\theta_2 = \$500,000$	De Nardi (2004); French (2005)
Payroll tax Social Security	$ au^{ss} = 10.6\%$	IRS
Payroll tax Medicare	$\tau_{\cdot}^{mcare} = 2.9\%$	SSA (2007)
Tax progressivity	$\tau_1^i = 0.053$	Guner, Lopez-Daneri and Ventura (2016)
Dividend tax	$\tau^{d} = 25\%$	Gomes, Michaelides and Polkovnichenko (2009)
Capital gains tax	$ au^{m{g}}=20\%$	Gomes, Michaelides and Polkovnichenko (2009)

Exogenous medical spending

Internal (calibrated) parameters

Parameters	Values	Calibration target	Model	Data	Source
Discount factor Fixed cost of work Pref. cons. vs. leis.	$\beta = 0.99$ $\bar{n}_{j,\vartheta}$ $\eta = 0.275$	Wealth-to-inc. 65 Avge. work part. Avge. hours wrkrs	4.79 Pan2,Fig.1 Pan3,Fig.1	4.6 Pan2,Fig.1 Pan3,Fig.1	HRS 1992-2018 MEPS 1996-2018 MEPS 1996-2018
Cost of investm.	$q_{artheta} \in \left[\overline{q_{artheta}}, ar{q}_{artheta} ight]$	Risky asset part.	Pan1,Fig.19	Pan1,Fig.19	HRS 1992-2018
Prog. tax scaling Bequest parameter Medicaid asset test Medicaid inc. test Cons. floor	$ \tau_0^i = 1.016 $ $ \theta_1 $ $ \bar{a}^{\text{maid}} = \$75k $ $ \bar{y}^{\text{maid}} = \$5.5k $ $ c_{\text{min}} = \$3.2k $	Assets of 90–94 Work. 40–64 on Maid Work. 20–39 on Maid Frac. net-assts<\$5k	Pan.4,Fig.1 Pan.2,Fig.2 Pan.2,Fig.2 20% (of pop.)	Pan.4,Fig.1 Pan.2,Fig.2 Pan.2,Fig.2 20%	Jung and Tran (2022) HRS 1992–2018 MEPS 1996–2018 MEPS 1996–2018 Jeske and Kitao (2009)

Figure 1: Calibration targets

Figure 2: Calibration targets (only Medicaid is a target)

Back to calibration

Figure 3: Model performance (not calibration targets)

Figure 4: Model performance: labor income by education and health

Figure 5: Model performance: hours worked by education and health

Figure 6: Model performance: labor force participation by education and health

Model performance (not targets)

Moments	Model	Data	Sources
Medical exp/income Gini medical spending Gini gross income Gini labor income Gini assets Frisch labor supply elasticities Interest rate: r	16.5%	Pan.3,Fig.3	MEPS 1996–2018
	0.56	0.60	MEPS 1996–2018
	0.40	0.46	MEPS 1996–2018
	0.55	0.54	MEPS 1996–2018
	0.58	0.69	HRS 1992–2018
	1.19–1.51	1.1–1.7	Fiorito and Zanella (2012)
	5.9%	5.2 – 5.9%	Gomme, Ravikumar and Rupert (2011)

Back to calibration

Policy experiments

- Expansion of Medicare to 20–64 year olds (UPHI)
- Expansion of EHI to all workers
- Medicare buy in for 55–64 year olds
- Expansion of Medicaid
- No insurance world

Exp. 1 (Medicare for all): Stock holdings

Exp. 1 (Medicare for all): Asset profiles

Exp. 1 (Medicare for all): Labor profiles

Exp. 2 (EHI for all workers): Stock holdings

Exp. 2 (EHI for all workers): Asset profiles

Experiments done

Back to results

References I

- Agarwal, Sumit and Bhashkar Mazumder. 2013. "Cognitive Abilities and Household Financial Decision Making." American Economic Journal: Applied Economics 5(1):193–207.
- Alan, Sule. 2006. "Entry costs and stock market participation over the life cycle." Review of Economic Dynamics 9(4):588-611.
- Ayyagari, Padmaja and Daifeng He. 2016. "Medicare Part D and Portfolio Choice." The American Economic Review 106(5):339–342.
- Bagliano, Fabio C., Carolina Fugazza and Giovanna Nicodano. 2014. "Optimal Life-Cycle Portfolios for Heterogeneous Workers." Review of Finance 18(6):2283–2323.
- Bagliano, Fabio C., Carolina Fugazza and Giovanna Nicodano. 2019. "Life-Cycle Portfolios, Unemployment and Human Capital Loss." *Journal of Macroeconomics* 60:325–340.
- Benabou, Roland. 2002. "Tax and Education Policy in a Heterogeneous Agent Economy: What Levels of Redistribution Maximize Growth and Efficiency?" Econometrica 70(2):481–517.
- Böckerman, Petri, Andrew Conlin and Rauli Svento. 2021. "Early Health, Risk Aversion and Stock Market Participation." Journal of Behavioral and Experimental Finance 32:100568.
- Bonaparte, Yosef, Russell Cooper and Guozhong Zhu. 2012. "Consumption smoothing and portfolio rebalancing: The effects of adjustment costs." *Journal of Monetary Economics* 59(8):751–768.
- Bressan, Silvia, Noemi Pace and Loriana Pelizzon. 2014. "Health Status and Portfolio Choice: Is Their Relationship Economically Relevant?" International Review of Financial Analysis 32:109–122.
- Brunnermeier, Markus K. and Stefan Nagel. 2008. "Do Wealth Fluctuations Generate Time-Varying Risk Aversion? Micro-evidence on Individuals." *American Economic Review* 98(3):713–736.
- Campanale, Claudio, Carolina Fugazza and Francisco Gomes. 2015. "Life-Cycle Portfolio Choice with Liquid and Illiquid Financial Assets." Journal of Monetary Economics 71:67–83.
- Capatina, Elena, Michael Keane and Shiko Maruyama. 2020. "Health Shocks and the Evolution of Earnings over the Life-Cycle.".
- Catherine, Sylvain. 2022. "Countercyclical Labor Income Risk and Portfolio Choices over the Life Cycle." *The Review of Financial Studies* 35(9):4016–4054.

References II

- Chen, Chaoran, Zhigang Feng and Jiaying Gu. 2022. "Health, Health Insurance, and Inequality." Working Paper.
- Christelis, Dimitris, Tullio Jappelli and Mario Padula. 2010. "Cognitive abilities and portfolio choice." European Economic Review 54(1):18–38.
- Cocco, João F., Francisco J. Gomes and Pascal J. Maenhout. 2005. "Consumption and Portfolio Choice over the Life Cycle." The Review of Financial Studies 18(2):491–533.
- Cooper, Russell and Guozhong Zhu. 2016. "Household Finance Over the Life-Cycle: What Does Education Contribute?" Review of Economic Dynamics 20:63–89.
- De Nardi, Mariacristina. 2004. "Wealth Inequality and Intergenerational Links." Review of Economic Studies 71:743-768.
- De Nardi, Mariacristina, Eric French and John Bailey Jones. 2010. "Why Do the Elderly Save? The Role of Medical Expenses." Journal of Political Economy 118(1):39–75.
- De Nardi, Mariacristina, Svetlana Pashchenko and Ponpoje Porapakkarm. 2018. "The Lifetime Costs of Bad Health." NBER Working Paper No. 23963.
- Edwards, Ryan D. 2008. "Health Risk and Portfolio Choice." Journal of Business & Economic Statistics 26(4):472-485.
- Egan, Mark L., Alexander MacKay and Hanbin Yang. 2021. "What Drives Variation in Investor Portfolios? Evidence from Retirement Plans." NBER Working Paper No. 29604.
- Fagereng, Andreas, Charles Gottlieb and Luigi Guiso. 2017. "Asset Market Participation and Portfolio Choice over the Life-Cycle." The Journal of Finance 72(2):705–750.
- Fiorito, Riccardo and Giulio Zanella. 2012. "The Anatomy of the Aggregate Labor Supply Elasticity." Review of Economic Dynamics 15(2):171–187.
- French, Eric. 2005. "The Effects of Health, Wealth, and Wages on Labour Supply and Retirement Behaviour." The Review of Economic Studies 72(2):395–427.
- Gamble, Keith Jacks, Patricia Boyle, Lei Yu and David Bennett. 2015. "Aging and Financial Decision Making." Management Science 61(11):2603–2610.

References III

- Goldman, Dana and Nicole Maestas. 2013. "Medical Expenditure Risk and Household Portfolio Choice." Journal of Applied Econometrics 28(4):527–550.
- Gomes, Francisco. 2020. "Portfolio Choice Over the Life Cycle: A Survey." Annual Review of Financial Economics 12(1):277–304.
- Gomes, Francisco, Alexander Michaelides and Valery Polkovnichenko. 2009. "Optimal savings with taxable and tax-deferred accounts." Review of Economic Dynamics 12(4):718–735.
- Gomes, Francisco, Michael Haliassos and Tarun Ramadorai. 2021. "Household Finance." *Journal of Economic Literature* 59(3):919–1000.
- Gomes, Francisco and Oksana Smirnova. 2021. "Stock Market Participation and Portfolio Shares Over the Life-Cycle." SSRN Working Paper No. 3808350.
- Gomme, Paul, B. Ravikumar and Peter Rupert. 2011. "The return to capital and the business cycle." Review of Economic Dynamics 14(2):262–278.
- Guner, Nezih, Martin Lopez-Daneri and Gustavo Ventura. 2016. "Heterogeneity and Government Revenues: Higher Taxes at the Top?" Journal of Monetary Economics 80:69–85.
- Hambel, Christoph, Holger Kraft and André Meyer-Wehmann. 2022. "When Should Retirees Tap Their Home Equity?" SSRN Working Paper No. 3681834.
- Heathcote, Jonathan, Kjetil Storesletten and Giovanni L Violante. 2017. "Optimal Tax Progressivity: An Analytical Framework." Quarterly Journal of Economics 132(4):1693–1754.
- Hosseini, Roozbeh, Karen Kopecky and Kai Zhao. 2021. "How Important Is Health Inequality for Lifetime Earnings Inequality?" Working Paper.
- İmrohoroğlu, Selahattin and Sagiri Kitao. 2012. "Social Security Reforms: Benefit Claiming, Labor Force Participation, and Long-run Sustainability." American Economic Journal: Macroeconomics 4(3):96–127.
- Inkmann, Joachim, Alexander Michaelides and Yuxin Zhang. 2022. "Family Portfolio Choice over the Life Cycle." SSRN Working Paper No. 3965481.

References IV

- Jeske, Karsten and Sagiri Kitao. 2009. "U.S. Tax Policy and Health Insurance Demand: Can a Regressive Policy Improve Welfare?" Journal of Monetary Economics 56(2):210–221.
- Jung, Juergen and Chung Tran. 2022. "Social Health Insurance: A Quantitative Exploration." Journal of Economic Dynamics and Control 139:104374.
- Jung, Juergen and Chung Tran. 2023. "Health Risk, Insurance and Optimal Progressive Income Taxation." Journal of the European Economic Association forthcoming.
- Lindeboom, Maarten and Mariya Melnychuk. 2015. "Mental Health and Asset Choices." Annals of Economics and Statistics (119/120):65–94.
- Liu, Xuan, Haiyong Liu and Zongwu Cai. 2021. "Time-Varying Relative Risk Aversion: Mechanisms and Evidence." SSRN Electronic Journal.
- Mahler, Lukas and Minchul Yum. 2022. "Lifestyle Behaviors and Wealth-Health Gaps inGermany.".
- Mazzonna, Fabrizio and Franco Peracchi. 2020. "Are Older People Aware of Their Cognitive Decline? Misperception and Financial Decision Making." IZA Discussion Paper No. 13725.
- Merton, Robert C. 1971. "Optimum consumption and portfolio rules in a continuous-time model." *Journal of Economic Theory* 3(4):373–413.
- Nakajima, Makoto and Irina A. Telyukova. 2017. "Reverse Mortgage Loans: A Quantitative Analysis." The Journal of Finance 72(2):911–950.
- Nakajima, Makoto and Irina A. Telyukova. 2022. "Medical Expenses and Saving in Retirement: The Case of U.S. and Sweden." Federal Reserve Bank of Minneapolis, Opportunity & Inclusive Growth Institute, Wortking Paper 8.
- Parker, Jonathan A., Antoinette Schoar, Allison T. Cole and Duncan Simester. 2022. "Household Portfolios and Retirement Saving over the Life Cycle." NBER Working Paper No. 29881.
- Prados, María José. 2018. "Health and Earnings Inequality Over the Life Cycle: The Redistributive Potential of Health Policies." Working Paper, USC Dornsife (Dissertation Paper, Dept. of Economics, Columbia University).
- Rosen, Harvey S and Stephen Wu. 2004. "Portfolio Choice and Health Status." Journal of Financial Economics 72(3):457-484.

References V

- Rossi, Alberto G. and Stephen P. Utkus. 2021. "Who Benefits from Robo-advising? Evidence from Machine Learning." SSRN 3552671.
- Rossi, Alberto G. and Stephen Utkus. 2020. "The Needs and Wants in Financial Advice: Human versus Robo-advising." Working Paper.
- Samuelson, Paul A. 1969. "Lifetime Portfolio Selection By Dynamic Stochastic Programming." The Review of Economics and Statistics 51(3):239–246.
- Shimizutani, Satoshi and Hiroyuki Yamada. 2020. "Financial Literacy of Middle-Aged and Older Individuals: Comparison of Japan and the United States." The Journal of the Economics of Ageing 16:100214.
- SSA. 2007. "Social Security Update 2007." SSA Publication No. 05-10003.
- Tischbirek, Andreas. 2019. "Long-Term Government Debt and Household Portfolio Composition." Quantitative Economics 10(3):1109–1151.
- Wachter, Jessica A. and Motohiro Yogo. 2010. "Why Do Household Portfolio Shares Rise in Wealth?" The Review of Financial Studies 23(11):3929–3965.
- Yogo, Motohiro. 2016. "Portfolio Choice in Retirement: Health Risk and the Demand for Annuities, Housing and Risky Assets." Journal of Monetary Economics 80:17–34.
- Zhou, Rui, Johnny Siu-Hang Li and Kenneth Zhou. 2022. "The Role of Longevity Annuities in Different Socioeconomic Classes: A Canadian Case Study." SSRN 4156290.