Пересчет баллов по апелляции

Анализ, тест, итоговый

Студент: Аёмбеков Руслан Худжамёрович

Группа: МОб-1401

Начало выполнения: 12.01.2017 10:15

Окончание выполнения: 12.01.2017 10:36

Вопрос: Задание номер 107

Укажите правильный ответ

Интеграл $\iiint_T (x^2+y^2) dx dy dz$, где T- область, ограниченная поверхностями $z=x^2+y^2$, z=1, равен

- $0 \pi/6$
- π/3
- $0 \pi/4$
- Ο π/8
- [©] Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 39

Укажите правильный ответ

Интеграл $\iint_{\mathcal{G}} (5y+1) dx dy$, где G — область, ограниченная

линиями
$$y = -x - 2$$
, $y = 0$, $x = 0$, равен

- -14/3
- 0 14/3
- 0 10/3
- 0 -10/3
- Верно
- Не верно
- Не учитывать

Укажите правильный ответ

Справедливо равенство

$$\int_{0}^{2} dx \int_{\sqrt{2x-x^{2}}}^{\sqrt{2x}} f(x,y) dy = \int_{0}^{1} dy \left[\int_{y^{2}/2}^{1-\sqrt{1-y^{2}}} f(x,y) dx + \int_{1+\sqrt{1-y^{2}}}^{2} f(x,y) dx \right] + \int_{1}^{2} dy \int_{y^{2}/2}^{2} f(x,y) dx$$

$$\int_{0}^{2} dx \int_{\sqrt{2x-x^{2}}}^{\sqrt{2x}} f(x,y) dy = \int_{0}^{2} dy \left[\int_{y^{2}/2}^{1-\sqrt{1-y^{2}}} f(x,y) dx + \int_{1+\sqrt{1-y^{2}}}^{2} f(x,y) dx \right] + \int_{1}^{2} dy \int_{y^{2}/2}^{2} f(x,y) dx$$

$$\int_{0}^{2} dx \int_{\sqrt{2x-x^{2}}}^{\sqrt{2x}} f(x,y) dy = \int_{0}^{1} dy \left[\int_{y^{2}/2}^{1-\sqrt{1-y^{2}}} f(x,y) dx + \int_{1+\sqrt{1-y^{2}}}^{2} f(x,y) dx \right] + \int_{1}^{2} dy \int_{y^{2}/2}^{1} f(x,y) dx$$

$$\bigcap_{0}^{2} dx \int_{\sqrt{2x-x^{2}}}^{\sqrt{2x}} f(x,y) dy = \int_{0}^{1} dy \left[\int_{y^{2}/2}^{1+\sqrt{1-y^{2}}} f(x,y) dx + \int_{1+\sqrt{1-y^{2}}}^{2} f(x,y) dx \right] + \int_{1}^{2} dy \int_{y^{2}/2}^{2} f(x,y) dx$$

- [©] Верно
- Не верно
- [©] Не учитывать

Укажите правильные ответы

нтеграл
$$\int_{L} \frac{(x+y)dx - (x-y)dy}{x^2 + y^2}$$
 по окружности $x = cost$, $y = sint$, $0 \le t \le 2\pi$, в направлении возрастания параметра равен

- \circ π
- \odot -2π
- \bigcirc $-\pi$
- \circ 2π
- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 222

Укажите правильные ответы

ітеграл $\int_L x^2 y dx + y^2 x dy$ по кривой x=t, $y=t^3$, $0 \le t \le 1$, в направлении возрастания параметра равен

- 1/2
- 0 7/15
- 0 3/4
- 0 2/9
- Верно
- Не верно

Укажите правильные ответы

Интеграл $\int_{L} \; (x+5) dl$ по отрезку прямой от точки (0; 1) до точки (1; 0) равен

- (a) $11\sqrt{2}$
- $0 11\sqrt{2}/2$
- \bigcirc $10\sqrt{2}$
- \bigcirc $\sqrt{2}/10$
- Верно
- Не верно
- [©] Не учитывать

Вопрос: Задание номер 133

Укажите правильный ответ

1нтеграл $\int_L y^2 dl$, где L- кривая x=acost, y=asint, $0 \le t \le \pi/2$, равен

- \odot $\pi a^3/4$
- $\bigcirc \pi a^3/2$
- \bigcirc $\pi a^2/4$
- \bigcirc $\pi a^2/2$
- Верно
- Не верно

Укажите правильный ответ

Преобразование Фурье функции $f(x) = \begin{cases} 3, & x \in [2;3] \\ 0, & x < 2 \end{cases}$ или x > 3 имеет вид

$$\hat{f}(y) = \begin{cases} \frac{3}{y} (\sin(3y) - \sin(2y) - i(\cos(3y) - \cos(2y)), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{3}{y} (\sin(3y) - \sin y - i(\cos(3y) - \cos y), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{3}{y} (\sin(4y) - \sin(2y) - i(\cos(4y) - \cos(2y)), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

$$3, & y = 0$$

$$\hat{f}(y) = \begin{cases} \frac{3}{y} (\sin(3y) - \sin y - i(\cos(3y) - \cos y), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{3}{y} (\sin(4y) - \sin(2y) - i(\cos(4y) - \cos(2y)), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{3}{y} \left(\sin(4y) - \sin(3y) - i(\cos(4y) - \cos(3y)), & y \neq 0 \\ 3, & y = 0 \end{cases}$$
3, $y = 0$

- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 305

Укажите правильные ответы

энометрический ряд Фурье функции $f(x) = \begin{cases} 1, & x \geq 0 \\ 0, & x < 0 \end{cases}$ на отрезке [-2,2] сходи: $_{K}f(x)$

- \bullet всюду на отрезке [-2,2] за исключением двух точек
- $^{\circ}$ всюду на отрезке [-2,2] за исключением одной точки
- $^{\circ}$ всюду на отрезке [-2,2] за исключением трёх точек
 - [©] Верно
 - Не верно
 - Не учитывать

Укажите правильные ответы

Ротором (вихрем) векторного поля $\vec{a} = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$ называется вектор-функция

•
$$rot\vec{a} = (Q_z - R_y)\vec{i} + (R_x - P_z)\vec{j} + (P_y - Q_x)\vec{k}$$

$$\bigcirc \quad rot\vec{a} = \left(R_y - Q_z\right)\vec{i} + \left(P_z - R_x\right)\vec{j} + \left(Q_x - P_y\right)\vec{k}$$

- [©] Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 458

Укажите правильные ответы

Ротор векторного поля $\vec{a} = yz^2\vec{j} + x\vec{k}$ равен

$$\bigcirc$$
 $-2yz\vec{i}+\vec{j}$

$$\bigcirc$$
 $-2yz\vec{i}-\vec{j}$

$$\bigcirc$$
 2yz $\vec{i} + \vec{j}$

$$\bigcirc$$
 2yz $\vec{i} - \vec{j}$

- Верно
- Не верно
- Пе учитывать

Укажите правильный ответ

вергенция векторного поля $\vec{a}=(7{\rm x}^2-3{\rm y})\vec{\iota}+6yz^3\vec{k}$ в точке (-1;0;-3) равнє

- 0 -14
- 0 14
- 0 41
- -41
- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 396

Укажите правильные ответы

Модуль градиента скалярного поля u = xz + yz в точке M(-1;0;1) равен

- \bigcirc $\sqrt{2}$
- \bigcirc $\sqrt{5}$
- √3
- Верно
- [©] Не верно
- [⊃] Не учитывать

Итоговый комментарий к тесту:

Пересчет баллов по апелляции

Анализ, тест, итоговый

Студент: Александров Дмитрий Александрович

Группа: МОб-1401

Начало выполнения: 12.01.2017 10:17

Окончание выполнения: 12.01.2017 10:43

Вопрос: Задание номер 120

Укажите правильные ответы

бъём тела, ограниченного поверхностями z=0, $4z=x^2+y^2$, $x^2+y^2=2x$, равен

- \odot $\pi/8$
- $3\pi/8$

$$0 3\pi/4$$

$$0 \pi/4$$

- [©] Верно
- Не верно
- [©] Не учитывать

Укажите правильные ответы

Интегральной суммой функции

соответствующей данному разбиению

области G на части G_i $(i=1,2,\ldots,n)$ с площадями ΔS_i и данному выбору

промежуточных точек M_i , называется сумма

- [©] Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 57

Укажите правильные ответы

Площадь области, ограниченной линиями $4 + x = y^2$, x + 3y = 0, равна

- $\bigcirc 20\frac{2}{3}$
- \bigcirc 20 $\frac{5}{4}$
- \bigcirc 21 $\frac{5}{6}$
- Верно
- Не верно
- Не учитывать

Укажите правильные ответы

Интеграл
$$\int_L y^2 dx + x^2 dy$$
 по

ривой $x = a(t-sint), \ y = a(1-cost), \ 0 \le t \le 2\pi \ (a>0),$ в направлении возрастания параметра равен

- $\bigcirc \pi a^3 (5-\pi)$
- \bigcirc $\pi a^3 (5-6\pi)$
- $\Omega \pi a^3 (5-4\pi)$
- Верно
- Не верно
- [©] Не учитывать

Вопрос: Задание номер 205

Укажите правильные ответы

Интеграл $\int_{AB} x^2 dx + xy dy$ по кривой x = cost, y = sint, $0 \le t \le \pi/2$, в направлении возрастания параметра равен

- 0 1
- \circ 0
- 2
- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 188

Укажите правильные ответы

Интеграл $\int_{L} \frac{dl}{x^2+y^2}$ по кривой $x=2cost,\;y=2sint,\;\frac{\pi}{2}\leq t\leq \pi$, равен

- $-\pi/2$
- $\bigcirc -\pi/4$
- $0 \pi/2$
- \odot $\pi/4$
- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 179

Укажите правильные ответы

Интеграл $\int_{L} \cos^2 x dl$ по отрезку прямой от точки (0; 1) до точки (1; -2) равен

$$\bigcirc$$
 $\sqrt{10}\left(1-\frac{\sin 2}{2}\right)$

$$\bigcirc \quad \sqrt{10} \left(1 + \frac{\sin 2}{2} \right)$$

$$\bigcirc \quad \frac{\sqrt{10}}{2} \left(1 - \frac{\sin 2}{2} \right)$$

- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 345

Укажите правильный ответ

Преобразование Фурье функции $f(x) = \begin{cases} 3, & x \in [2;3] \\ 0, & x < 2 \end{cases}$ или x > 3 имеет вид

$$\hat{f}(y) = \begin{cases} \frac{3}{y}(\sin(3y) - \sin(2y) - i(\cos(3y) - \cos(2y)), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{3}{y}(\sin(3y) - \sin y - i(\cos(3y) - \cos y), & y \neq 0 \\ 3, & y = 0 \end{cases}$$
3, $y = 0$

$$\hat{f}(y) = \begin{cases} \frac{3}{y} (\sin(3y) - \sin y - i(\cos(3y) - \cos y), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{3}{y} \left(\sin(4y) - \sin(2y) - i(\cos(4y) - \cos(2y)), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{3}{y} (\sin(4y) - \sin(3y) - i(\cos(4y) - \cos(3y)), & y \neq 0 \\ 3, & y = 0 \end{cases}$$

[©] Верно

Не верно

Укажите правильные ответы

энометрический ряд Фурье функции $f(x) = x^3$ на отрезке [-1,1] сходится к f(x)

- $^{\circ}$ во всех точках отрезка [-1,1]
- lacktriangle всюду на отрезке [-1,1] за исключением двух точек
- $^{\circ}$ всюду на отрезке $[^{-1,1}]$ за исключением одной точки
- $^{\circ}$ всюду на отрезке $[^{-1,1}]$ за исключением трёх точек
 - Верно
 - Не верно
 - Пе учитывать

Вопрос: Задание номер 350

Укажите правильный ответ

, $\vec{a}(M)$ — векторное поле, заданное в области G; \vec{l} — фиксированный вектор; M — эиксированная точка в G; M' — произвольная точка в G, отличная от M и такая, что $\overrightarrow{MM'}||\vec{l}; MM'$ — величина направленного отрезка, идущего от M к M'. изводной векторного поля $\vec{a}(M)$ в точке M по направлению вектора \vec{l} называется вектор

$$\bigcirc \quad \lim_{M^{/} \to M} \frac{\vec{a} \big(M^{/} \big) - \vec{a} (M)}{M M^{/}}$$

$$\bigcirc \quad \lim_{M^{/} \to M} \frac{\vec{a}(M^{/}) - \vec{a}(M)}{|MM^{/}|}$$

$$\bigcirc \quad \lim_{M^{/} \to M} \frac{\vec{a}(M) - \vec{a}(M^{/})}{MM^{/}}$$

$$\bigcirc \quad \lim_{M^{/} \to M} \frac{\vec{a}(M) - \vec{a}(M^{/})}{|MM^{/}|}$$

- Верно
- Не верно
- Не учитывать

Укажите правильные ответы

486. Ротор векторного поля $\vec{a} = 7xyz^3 \vec{i}$ в точке (-1;0;1) равен

$$\bigcirc$$
 $-5\vec{k}$

$$\odot$$
 $7\vec{k}$

$$\bigcirc$$
 $-7\vec{k}$

$$\bigcirc$$
 $5\vec{k}$

• Верно

○ Не верно

Не учитывать

Вопрос: Задание номер 447

Укажите правильные ответы

Дивергенция векторного поля $\vec{a} = \mathrm{e}^{\mathrm{x}+\mathrm{y}+\mathrm{z}}\vec{\imath} - z^3\vec{k}$ в точке (0;2;4) равна

$$e^6 + 48$$

©
$$e^6 - 48$$

$$e^6 + 84$$

$$e^6 - 84$$

- Верно
- Не верно
- Не учитывать

Укажите правильные ответы

роизводная скалярного поля u=arctg(xy) в точке M(1;-1) по направлению $\mathsf{Beктоpa}\ \vec{l}=\{-2;1\}_{\mathsf{равна}}$

Пересчет баллов по апелляции

Анализ, тест, итоговый

Студент: Антипов Антон Сергеевич

Группа: МОб-1402

Начало выполнения: 12.01.2017 08:30

Окончание выполнения: 12.01.2017 08:43

HET POTO

Вопрос: Задание номер 120

Укажите правильные ответы

Объём тела, ограниченного поверхностями z=0, $4z=x^2+y^2$, $x^2+y^2=2x$, равен

- $0 \pi/8$
- $0 3\pi/8$
- \odot $3\pi/4$
- $0 \pi/4$
- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 26

Укажите правильные ответы

рал $\iint_{\mathcal{G}} xydxdy$, где \mathcal{G} — область, ограниченная линиями $x=y^2$, $y=x^2$, ра

- 0 -1/12
- O -1/3
- 0 1/3
- 1/12
- Верно
- Не верно
- Пе учитывать

Вопрос: Задание номер 39

Укажите правильный ответ

Интеграл
$$\iint_G (5y+1) dx dy$$
, где $G-$ область, ограниченная линиями $y=-x-2$, $y=0$, $x=0$, равен

- -14/3
- 0 14/3
- 0 10/3
- -10/3
- Верно
- Не верно
- Пе учитывать

Укажите правильные ответы

теграл $\int_{L} x^{2}dx + y^{2}dy$ по кривой $y = \sqrt{x}$ от точки (0;0) до точки (1;1) равен

- 3/2
- 0 2/3
- 0 4/3
- 0 3/4
- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 247

Укажите правильный ответ

Интеграл $\int_{AB} \left(2x - \frac{3}{y}\right) dx$ по кривой $y = x^4$ от точки (1; 1) до точки (2; 16) равен

- (a) $2\frac{1}{8}$
- \bigcirc $2\frac{1}{2}$
- $\bigcirc 2\frac{1}{6}$
- $\bigcirc 2\frac{1}{5}$
- Верно
- Не верно
- [©] Не учитывать

Вопрос: Задание номер 176

Укажите правильные ответы

Интеграл $\int_{L}^{} \frac{dl}{\sin^2 x}$ по отрезку прямой от точки (2; 18) до точки (1; 13) равен

- $0 \sqrt{27}(ctg2-ctg1)$
- $0 \sqrt{27}(ctg1-ctg2)$
- $\sqrt{26}(ctg2-ctg1)$
- $0 \sqrt{26}(ctg1-ctg2)$
 - Верно
 - Не верно
 - Не учитывать

Укажите правильные ответы

Интеграл $\int_L y \, dl$, где L -кривая $y^2 = 2x$, $0 \le x \le 2$, равен

$$\bigcirc \quad \frac{\sqrt{5}+1}{3}$$

$$\begin{array}{ccc}
\bullet & \frac{\sqrt{5}-1}{3} \\
\bullet & \frac{5\sqrt{5}-1}{3}
\end{array}$$

$$\bigcirc \frac{5\sqrt{5}+1}{3}$$

- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 327

Укажите правильные ответы

Пусть $f(x) \in L_1(-\infty,\infty)$. Тогда функция $\hat{f}(y)$, являющаяся образом Фурье кции f(x), непрерывна по y в каждой точке бесконечной прямой и удовлетворяє условию

$$\left| \lim_{|y| \to \infty} \left| \hat{f}(y) \right| = 1/2$$

$$\bigcap \lim_{|y| \to \infty} |\hat{f}(y)| = 1$$

$$\bigcap \lim_{|y|\to\infty} |\hat{f}(y)| = 0$$

[©] Верно

- Не верно
- Не учитывать

Укажите правильные ответы

Тригонометрический ряд Фурье функции $f(x) = x^2$ на отрезке [-1,1]

- содержит синусы и не содержит косинусов
- О содержит косинусы и не содержит синусов
- О содержит как синусы, так и косинусы
 - [©] Верно
 - Не верно
 - Пе учитывать

Вопрос: Задание номер 352

Укажите правильные ответы

эргенцией векторного поля $\vec{a}=P(x,y,z)\vec{\imath}+Q(x,y,z)\vec{\jmath}+R(x,y,z)\vec{k}$ называет скалярная функция

$$\bigcirc \quad div \, \vec{a} = \frac{\partial R}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial P}{\partial z}$$

$$\bullet \quad div \, \vec{a} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

$$\bigcirc \quad div \, \vec{a} = \frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} + \frac{\partial R}{\partial z}$$

$$\bigcirc \quad div \, \vec{a} = \frac{\partial Q}{\partial x} + \frac{\partial R}{\partial y} + \frac{\partial Q}{\partial z}$$

- Верно
- Не верно
- Не учитывать

Укажите правильный ответ

Ротор векторного поля $\vec{a} = \frac{y}{x^2} \vec{j} - \frac{1}{x} \vec{k}$ в точке (3; 1; 8) равен

$$-\frac{1}{9}\vec{j} - \frac{2}{27}\vec{k}$$

$$\bigcirc \quad \frac{1}{9}\vec{j} + \frac{2}{27}\vec{k}$$

$$\bigcirc \quad -\frac{1}{9}\vec{j} + \frac{2}{27}\vec{k}$$

- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 435

Укажите правильный ответ

Дивергенция векторного поля $\vec{a} = xy\vec{j} + yz^3\vec{k}$ в точке (5;1;1) равна

- 0 8
- 0.7
- 0 -8
- @ _7

- Верно
- Не верно
- Не учитывать

Укажите правильные ответы

радиент скалярного поля u = (x-1)(y-2)(z-3) в точке M(2;3;4) равен

- (1;-1;1)
- (a) {1;1;1}
- ({1;1;-1}
- (-1;-1;-1)
- Верно
- Не верно
- Не учитывать

Итоговый комментарий к тесту:

Пересчет баллов по апелляции

Анализ, тест, итоговый

Студент: Вагапов Айрат Ирекович

Группа: МОб-1402 ПИп-1600а

Начало выполнения: 12.01.2017 08:35

Окончание выполнения: 12.01.2017 09:14

Вопрос: Задание номер 102

Укажите правильные ответы

Интеграл $\iiint_T yzdxdydz$, где T- область, ограниченная поверхностями $x^2+y^2+z^2=1$, z=0 ($z\geq 0$), равен

- O -3
- ② 2/5
- 0
- 0 4
- Верно
- Не верно
- Пе учитывать

Вопрос: Задание номер 54

Укажите правильный ответ

Площадь области, ограниченной линиями xy = 4, x = 1, y = 2, равна

- \bigcirc 4ln2 2
- 0 4ln2 4
- \odot 2ln2-4
- \bigcirc 2ln2-2
- [©] Верно

- Не верно
- Пе учитывать

Укажите правильный ответ

Интеграл
$$\iint_G x dx dy$$
, где G — область, ограниченная линиями $x=0$, $y=x^3$, $x+y=2$, равен

- 0 7/15
- 8/15
- · -7/15
- -8/15
- [©] Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 223

Укажите правильный ответ

Интеграл
$$\int_L (x+y)dx + (x-y)dy$$
 по

ивой
$$x=Rcost,\;y=Rsint,\;0\leq t\leq \frac{\pi}{2}\;(R>0),$$
 в направлении возрастания параметра равен

$$\bigcirc -R^2$$

$$\odot R^2$$

- \bigcirc -I
- \circ R
- [©] Верно
- Не верно
- Не учитывать

Укажите правильные ответы

Если АВ – кусочно-гладкая кривая, заданная

ениями
$$x=\varphi(t),\ y=\psi(t),\ \alpha\leq t\leq \beta,\ A=\big(\varphi(\alpha),\psi(\alpha)\big),\ B=\big(\varphi(\beta),\psi(\beta)\big),$$
 рункции $P(x,y)$ и $Q(x,y)$ кусочно-непрерывны вдоль кривой АВ, то существует криволинейный интеграл второго рода $\int_{AB}P(x,y)dx+Q(x,y)dy$ и справедл равенство

$$\bigcap_{AB} P(x,y)dx + Q(x,y)dy =
\int_{\alpha}^{\beta} \left(P(\varphi(t), \psi(t)) (\varphi'(t))^{2} + Q(\varphi(t), \psi(t)) (\psi'(t))^{2} \right) dt$$

$$\bigcirc \int_{AB} P(x,y)dx + Q(x,y)dy = \int_{\alpha}^{\beta} \Big(P\Big(\varphi(t),\psi(t)\Big) |\varphi'(t)| + Q(\varphi(t),\psi(t)) |\psi'(t)| \Big) dt$$

$$\bigcap_{AB} P(x,y)dx + Q(x,y)dy = \int_{\alpha}^{\beta} \Big(P(\varphi(t),\psi(t)) \varphi'(t) + Q(\varphi(t),\psi(t)) \psi'(t) \Big) dt$$

- [©] Верно
- Не верно
- Не учитывать

Укажите правильные ответы

нтеграл $\int_{L} \; (2x+5y)dl$ по отрезку прямой от точки (0; 0) до точки (1; 9) равен

- $\bigcirc \frac{47}{2\sqrt{82}}$
- 82√47
- 47√82/2
- 47√82
- Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 132

Укажите правильные ответы

Масса материальной кривой L, заданной

уравнениями
$$x = e^{-t}cost$$
, $y = e^{-t}sint$, $z = e^{-t}$, $0 \le t \le ln3$, и имеющей

постоянную плотность ho_0 , равна

- \bigcirc $3\rho_0/\sqrt{2}$
- $\bigcirc 2\rho_0/\sqrt{3}$
- \circ $\rho_0/2\sqrt{3}$
- $\rho_0/3\sqrt{2}$
- Верно

- Не верно
- ि Не учитывать

Укажите правильные ответы

Преобразование Фурье функции $f(x) = \begin{cases} 2x, & x \in [-1,1] \\ 0, & x < -1 \text{ или } x > 1 \text{ имеет вид} \end{cases}$

$$\hat{f}(y) = \begin{cases} \frac{4i}{y^2} \left(\frac{\sin y}{y} - \cos y \right), & y \neq 0 \\ 0, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{4i}{y} (siny - cosy), & y \neq 0 \\ 0, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} 4i \left(\frac{siny}{y} - cosy \right), & y \neq 0 \\ 0, & y = 0 \end{cases}$$

$$\hat{f}(y) = \begin{cases} \frac{4i}{y} \left(\frac{\sin y}{y} - \cos y \right), & y \neq 0 \\ 0, & y = 0 \end{cases}$$

- [©] Верно
- Не верно
- [©] Не учитывать

Вопрос: Задание номер 289

Укажите правильные ответы

Для любой кусочно-непрерывной на отрезке $[-\pi,\pi]$ функции f(x) её тригонометрические коэффициенты Фурье a_k и b_k стремятся к

- \odot от при $k \to \infty$
- \bigcirc 0 при $k \rightarrow \infty$
- \bigcirc 1 при $k \to \infty$
 - Верно
 - Не верно
 - Не учитывать

Напишите правильный ответ

ерхность (линия), на которой функция u(M), задающая скалярное поле, приним постоянное значение, называется поверхностью (линией)

tyejht

- [©] Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 494

Укажите правильный ответ

Ротор векторного поля $\vec{a} = (14xz + 2yz^4)\vec{k}$ в точке (7; -1; 0) равен

- \circ $\vec{0}$
- 2ī
- \bigcirc $-2\bar{j}$
- \odot $2\vec{k}$
- [©] Верно
- Не верно

Укажите правильные ответы

Дивергенция векторного поля $\vec{a} = x^6 y \vec{i} + y^2 z^6 \vec{k}$ в точке (3;1;0) равна

- 0 1485
- 0 1854
- 0 1458
- 1548
- [©] Верно
- Не верно
- Не учитывать

Вопрос: Задание номер 360

Укажите правильный ответ

1роизводная скалярного поля $u=3xy^2z^3$ в точке M(0;1;2) по направлению ${}_{\mathsf{Beкторa}}\ \vec{l}=\{2;4;0\}_{\mathsf{равна}}$

- \bigcirc 24/ $\sqrt{5}$
- 24√5
- 12√5
- $12/\sqrt{5}$
- Верно

- Не верно
- [©] Не учитывать

Итоговый комментарий к тесту:

Пересчет баллов по апелляции

Анализ, тест, итоговый

Студент: Додонов Алексей Владимирович

Группа: МОб-1402

Начало выполнения: 12.01.2017 08:32

Окончание выполнения: 12.01.2017 09:11

Вопрос: Задание номер 116

Укажите правильный ответ

Объём тела, ограниченного поверхностями $2z = y^2 + x^2$, z = 2, равен

- 4π
- \bigcirc 2π
- \circ 6π
- \circ 8 π
- Верно
- С Не верно

Укажите правильные ответы

Интеграл
$$\iint_G (y-11) dx dy$$
, где $G-$ область, ограниченная
$$\text{линиями} \ y=x-2, \ y=0, \ x=0, \text{равен}$$

- -71/3
- 0 71/3
- 0 70/3