Bagus Sartono Prodi Statistika dan Sains Data IPB University

- One-Way Analysis of Variance (Analisis Ragam Satu Arah)
- Digunakan untuk menguji kesamaan rata-rata dua atau lebih populasi
- Dapat dikatakan sebagai perluasan dari uji-t dua contoh saling bebas

membandingkan produktivitas dari 3 (tiga) varietas padi

membandingkan rata-rata nilai siswa yang duduk di baris depan, tengah dan belakang

membandingkan preferensi konsumen terhadap 4 (empat) merek produk

Hipotesis

H0: $\mu_1 = \mu_2 = \mu_3$

H1: ada setidaknya satu yang

berbeda

Asumsi:

- Contoh acak dan bersifat saling bebas
- Ragam ketiga populasi sama
- Error pengamatan menyebar normal

membandingkan rata-rata nilai siswa yang duduk di baris depan, tengah dan belakang

 Contoh acak dari setiap kelompok baris tempat duduk diambil.

 Data nilai ujian mata pelajaran yang berhasil dikumpulkan adalah sebagai berikut

• Depan : 82, 83, 97, 93, 55, 67, 53

• Tengah : 83, 78, 68, 61, 77, 54, 69, 51, 63

• Belakang : 38, 59, 55, 66, 45, 52, 52, 61

Hipotesis

 H_0 : $\mu_D = \mu_T = \mu_B$

H₁: ada setidaknya satu yang berbeda


```
Keragaman
Total = Keragaman
Dalam Grup + Keragaman
Antar Grup
```

catatan:

JK = Jumlah Kuadrat (sum of square)

$$JK(Total) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (x_{ij} - \overline{\overline{x}})^2$$

$$JK(\text{Antar Grup}) = \sum_{i=1}^{k} n_i (\overline{x}_i - \overline{\overline{x}})^2$$

- k = banyaknya grup/populasi yang dibandingkan
- n₁, n₂, ..., n_k adalah ukuran contoh dari masing-masing grup/populasi
- $n = n_1 + n_2 + ... + n_k$

$$JK(\text{Dalam Grup}) = \left(\sum_{j=1}^{n_1} (x_{1j} - \overline{x}_1)^2\right) + \left(\sum_{j=1}^{n_2} (x_{2j} - \overline{x}_2)^2\right) + \dots + \left(\sum_{j=1}^{n_k} (x_{kj} - \overline{x}_k)^2\right)$$

TABEL ANOVA

Sumber Keragaman	db	JK	KT	F
Antar Grup	k – 1	JK(AG)	MS(AG) = JK(AG) / db	KT(AG)/KT(DG)
Dalam Grup	n – k	JK(DG	KT(DG) = JK(DG)/db	
Total	n – 1	JK (T)		

db: derajat bebas

JK = jumlah kuadrat (sum of squares, SS)

KT = kuadrat tengah (mean squares, MS)

 $F = F_{hitung}$

k = banyaknya grup/populasi yang dibandingkan

 $n = n_1 + n_2 + ... + n_k$

Kriteria penolakan H₀

 $F > F_{tabel}$ dengan derajat bebas (dbA, dbD), atau p-value < α

membandingkan rata-rata nilai siswa yang duduk di baris depan, tengah dan belakang

Hipotesis

 H_0 : $\mu_D = \mu_T = \mu_B$

H₁: ada setidaknya satu yang berbeda

Sumber Keragaman	db	JK	KT	F
Antar Grup	2	1902	951.0	5.9
Dalam Grup	21	3386	161.2	
Total	23	5288	229.9	

 F_{tabel} pada db_1 = 2 dan db_2 = 21, serta α = 5% adalah **3.4668** p-value = 0.009 = F.DIST.RT(5.9, 2, 21)

Karena nilai F lebih dari F_{tabel} , kita simpulkan **Tolak H_0**, dengan demikian dikatakan bahwa rata-rata tingkat penguasaan materi pelajaran di tiga tempat duduk tersebut tidak semuanya sama besar. Dalam bahasa lain, posisi tingkat duduk mempengaruhi tingkat pengusaan materi pelajaran.

terima kasih