JEGYZŐKÖNYV KLASSZIKUS FIZIKA LABORATÓRIUM

10. MÉRÉS - FÉNYELHAJLÁSI JELENSÉGEK VIZSGÁLATA

• Mérést végezte : Brindza Mátyás

 \bullet Mérést végző Neptun-azonosítója: Z2R8XS

• Mérés időpontja : 2021.08.31.

• Jegyzőkönyv leadásának időpontja : 2021.09.01.

A mérés célja:

A mérés a Fraunhofer-féle elhajlással foglalkozik. A fény hullámtermészetét vizsgáljuk szimpla rés, kettős rés és egy hajszál segítségével.

Mérőeszkzök:

- Lézer
- Detetkor
- Optikai
- Segéd-ernyők
- Számítógép
- Rés
- Kettős rés
- Hajszál

A mérés elméleti háttere:

A résre merőlegesen beeső fény eltérül, elhajlási képet mutat. Ha egy a széles réstől elég messze helyezünk egy detektort, akkor periodikusan fognak megjelenni az intenzitásminimumok az ernyőn, melyek a nyaláb középpontjától kifelé egyre kevésbé intenzitású részeket ölelnek fel. (A mérés csak az ún. Fraunhofer-elhajlás jelenségkörével foglalkozik.)

Egy rést vizsgálva a centrumtól mért szög függvényében az intenzitás

$$I(\alpha) = \frac{\sin^2 \left[\pi \cdot \frac{a}{\lambda} \sin(\alpha)\right]}{\left[\pi \cdot \frac{a}{\lambda} \sin(\alpha)\right]^2}$$

ahol λ a fény hullámhossza, α pedig az eltérülés szöge. Az n-deik intenzitásminimum távolsága a főmaximumtól:

$$x_n = n \cdot \frac{\lambda \cdot L}{a}$$

ahol L a detekor és a rés távolsága. A rés szélessége felítrható, mint

$$a = \frac{\lambda \cdot L}{m}$$

ahol m az $x_n(n)$ adatsorra illesztett egyenes meredeksége.

Kettő rés esetén a rések képei interferálnak egymással, így megjelennek első- és másodrendű minimumok is. Az intenzitás-eloszlás egy egy-rés kép burkológörbével rendelkezik. Az intenzitás két rés esetén:

$$I(\alpha) = \frac{\sin^2 \left[\pi \cdot \frac{a}{\lambda} sin(\alpha)\right]}{\left[\pi \cdot \frac{a}{\lambda} sin(\alpha)\right]^2} \cdot \cos \left(d \cdot \frac{d}{\lambda} \cdot sin(\alpha)\right)$$

ahol d a két rés távolsága. A másodrendű minimumok pozíciója is periodikus lesz:

$$x_k = k' \cdot \frac{\lambda \cdot L}{d}$$

A hajszálon elhajló fény alakja megegyezik az egy-résével.

Mérési adatok és kiértékelés

 Hullámhossz : $\lambda=632.8nm\pm0.1nm$ Ernyő-rés távolság : $2632mm\pm0.5mm$ Rés-lézer távolság : $392mm\pm0.5mm$

Az egy-rés és a két-rés mérésnél is az A jelzésű rést használtam.

A hibaszámolásnál az alábbi képletet használtam.

$$\frac{\Delta a}{a} = \frac{\Delta m}{m} + \frac{\Delta \lambda}{\lambda} \frac{\Delta L}{L}$$

Illetve

$$\frac{\Delta d}{d} = \frac{\Delta m}{m} + \frac{\Delta \lambda}{\lambda} \frac{\Delta L}{L}$$

Egy rés

A számítógépen lévő kirajzoló program segítségével megkerestem a minimumhelyeket.

k	x[mm]
-1.0	-8.4772
-2.0	-20.094
-3.0	-31.397
-4.0	-42.857
-5.0	-54.003
5.0	62.124
4.0	52.139
3.0	39.461
2.0	28.209
1.0	16.165

Az egy-rés elhajlási kép minimumhelyei

Az illesztés eredménye:

$$m = 11.7676472727mm \pm 0.0647973304mm$$
$$b = 4.12698mm \pm 0.214908mm$$

A rés szélessége:

$$a = 0.14135569850 \pm 0.00585459mm$$

Egy-rés elhajlás

Két rés

 ${\bf A}$ számítógépen lévő kirajzoló program segítségével megkerestem az első- és a másodrendű minimumhelyeket.

k	x[mm]
-1.0	-7.783
-2.0	-19.702
-3.0	-32.339
-4.0	-44.976
-5.0	-57.911
5.0	70.335
4.0	56.893
3.0	44.151
2.0	32.044
1.0	18.836

Az két-rés elhajlási kép elsőrendű minimumhelyei

A másodrendű minimumokra illesztett egyenes meredekségéből számolandó a rések távolsága. Az illesztés eredménye:

 $m = 2.6833773809mm \pm 0.0070338910mm$

Egy-rés elhajlás illesztés

k	x[mm]
-3.5	-3.9202
-2.5	-1.1972
-1.5	1.5258
-0.5	4.108
0.5	6.7894
1.5	9.4601
2.5	12.23
3.5	14.906

Az két-rés elhajlási kép másodrendű minimumhelyei

$$b = 5.48773750000mm \pm 0.0161166693mm$$

A rések távolsága:

 $d = 0.619899389405803mm \pm 0.002969480292mm$

Két-rés elhajlás

Két-rés elhajlás

Hajszál

Ez a mérés csupán kvalitatív céllal készült.

Két-rés elhajlás illesztés - elsőrendű minimumok

Két-rés elhajlás illesztés - másodrendű minimumok

Hajszál elhajlás

Hajszál elhajlás

Hajszál elhajlás

Diszkusszió

Az egy-rés mérésnél sikeresen meghatároztuk a rés nagyságát, a két-rés mérésnél pedig meghatároztuk a két rés távolságát. A hajszálas mérés csak kvalitatív céllal készült, kvalitatívan viszont nagyon jól látszanak a minimumhelyek.

Minden mérés reálisnak tűnik, mindenhol bőven elfogadhatóak a hibák - sehol sincs hatalmas relatív hiba. A mérés sikeresnek tekinthető.

Felhasznált irodalom

[1] Böhönyey - Havancsák - Huhn: Mérések a klasszikus fizika laboratóriumban, szerkesztette: Havancsák Károly, ELTE Eötvös Kiadó, Budapest, 2003.