Question Number	Scheme	Marks
7(a)	$x^{2} - 9x + 14 = \left(x - \frac{9}{2}\right)^{2} + 14 - \frac{81}{4} = \left(x - \frac{9}{2}\right)^{2} - \frac{25}{4}$	M1
	$a = -\frac{9}{2}, \ b = -\frac{25}{4}$ oe	A1 (2)
(b)	(i) least value of $f(x) = -\frac{25}{4}$	B1ft
	(ii) least value when $x = \frac{9}{2}$	B1ft (2)
(c)	$x + 5 = x^2 - 9x + 14$	M1
	$x^{2}-10x+9=0 \Rightarrow (x-9)(x-1)=0$	M1
	Points are (9,14) (1,6)	A1A1 (4)
(d)	Area $\int_{1}^{9} ((x+5)-(x^2-9x+14)) dx = \int_{1}^{9} (-x^2+10x-9) dx$	M1
	$= \left[-\frac{x^3}{3} + 5x^2 - 9x \right]_1^9$	M1A1
	$= \left(-243 + 405 - 81\right) - \left(-\frac{1}{3} + 5 - 9\right) = 85\frac{1}{3}$	M1A1 (5)

Part	Mark	Notes
(a)	M1	For attempting to complete the square to achieve as a minimum
		$x^{2} - 9x + 14 = \left(x \pm \frac{9}{2}\right)^{2} + 14 - k$ where k is a constant
	A1	For the correct expression $x^2 - 9x + 14 = \left(x - \frac{9}{2}\right)^2 - \frac{25}{4}$ or $a = -\frac{9}{2}$, $b = -\frac{25}{4}$ oe stated
(b)(i)	B1ft	For the correct value $f(x) = -\frac{25}{4}$ follow through their value of ' $-\frac{25}{4}$ '
(ii)	B1ft	For the correct value of $x = \frac{9}{2}$ provided they have $\left(x - \frac{9}{2}\right)^2$ in part (a).
		Follow through their value of $\frac{9}{2}$

(c)	M1	For equating the equation of the line with the equation of C
		$x+5=x^2-9x+14 \Rightarrow x^2-10x+9=0$
		and attempting to form a 3TQ
	M1	Attempts to solve their 3TQ by any method, provided it is the result of equating the line
		with C
		$x^{2}-10x+9=0 \Rightarrow (x-9)(x-1)=0$
	A1	For the correct coordinates of either (9,14) or (1,6)
	A1	For both correct pairs of coordinates (9,14) and (1,6)
(d)	M1	For a correct expression for the required area with both limits correct. (ft their limits from (c)) Award this mark if they have 'curve – line' but otherwise correct.
		$\int_{1}^{9} ((x+5) - (x^{2} - 9x + 14)) dx = \left[\int_{1}^{9} (-x^{2} + 10x - 9) dx \right], \text{ accept } \int_{1}^{9} (x^{2} - 10x + 9) dx$
		OR
		Area under the trapezium – curve
		$\frac{1}{2} \times 8 \times (6+14) - \int_{1}^{9} (x^{2} - 9x + 14) dx$
	M1	For attempting to integrate the equation for the combined expression or the curve only.
	A1	For the correct integrated expression for required area. Ignore limits for this mark – even if
		they are absent altogether.
		Area = $=$ $\left[-\frac{x^3}{3} + 5x^2 - 9x \right]_1^9$ accept $\left[\frac{x^3}{3} - 5x^2 + 9x \right]_1^9$
		OR
		$\frac{1}{2} \times 8 \times (6+14) - \left(\frac{x^3}{3} - \frac{9x^2}{2} + 14x\right)_1^9$
		OR
		$\left[\left(\frac{x^2}{2} + 5x \right)_1^9 - \left(\frac{x^3}{3} - \frac{9x^2}{2} + 14x \right)_1^9 \text{or} \left(\frac{x^3}{3} - \frac{9x^2}{2} + 14x \right)_1^9 - \left(\frac{x^2}{2} + 5x \right)_1^9 \right]$
	M1	For substituting their limits $(x - \text{coordinates from part}(c))$ into their integrated expression.
		$=(-243+405-81)-(-\frac{1}{3}+5-9)=$
		OR
		$80 - \left[\left(\frac{9^3}{3} - \frac{9 \times 9^2}{2} + 14 \times 9 \right) - \left(\frac{1^3}{3} - \frac{9 \times 1^2}{2} + 14 \times 1 \right) \right] = \dots$
		OR
		$\left[\left(\frac{9^2}{2} + 5 \times 9 \right) - \left(\frac{1^2}{2} + 5 \times 1 \right) \right] - \left[\left(\frac{9^3}{3} - \frac{9 \times 9^2}{2} + 14 \times 9 \right) - \left(\frac{1^3}{3} - \frac{9 \times 1^2}{2} + 14 \times 1 \right) \right] = \dots$
	A1	For the correct area of $85\frac{1}{3}$ or $\frac{256}{3}$
		If they get a value of $-85\frac{1}{3}$ they must give a final value of $85\frac{1}{3}$ for this mark.