

**STRATIGRAPHIC NOMENCLATURE
RECOMMENDED FOR USE BY THE
MISSOURI DEPARTMENT OF NATURAL RESOURCES
MISSOURI GEOLOGICAL SURVEY**

by
David L. Bridges (Phanerozoic strata)
Patrick S. Mulvany (Phanerozoic strata and Introduction)
Lisa M. Lori (Proterozoic rocks)

August 19, 2019

MISSOURI GEOLOGICAL SURVEY
Joe Gillman, Director and State Geologist

CONTENTS

Introduction—2019 Updated Version	1
Introduction—1993 Original Version	2
Chronological Listing of Nomenclature	3
Alphabetical Listing of Nomenclature	15
References	29

STRATIGRAPHIC NOMENCLATURE ADOPTED FOR USE BY THE MISSOURI DEPARTMENT OF NATURAL RESOURCES MISSOURI GEOLOGICAL SURVEY

INTRODUCTION — 2019 Update of Information Circular 31

The chrono-lithostratigraphy of Missouri has changed considerably since the Missouri Geological Survey published Information Circular 31 in 1993. The purpose of this update is to capture all the changes while assuring compliance with the *North American Stratigraphic Code* set by the North American Commission on Stratigraphic Nomenclature (1983). The formulae for *Code*-compliant stratigraphic names and examples of them are shown below. It should be noted that the Missouri Geological Survey's past use of quotation marks for flagging informally named and unnamed units has been abandoned.

Formal Unit Names — (*Code* specifies all words begin with upper case letter)

Position + Geographic Place Name + Lithology + Rank Term

Cambrian System, Mississippian Subsystem, Middle Pennsylvanian Series, Missourian Stage, Lower Warsaw Formation, Liberty Memorial Shale, St. Peter Sandstone, Chouteau Limestone, Sullivan Siltstone Member, Kansas City Group, Bronson Subgroup, Quarry Ledge (important marker bed recognized for over 100 years and worthy of formal status)

Informal Unit Names — (*Code* specifies only words in geographic place name begin with upper case letter)

position + Geographic Place Name + position + lithology + rank term

upper Cambrian series, Riverton lower coal bed, Farlington limestone bed, Farley upper limestone facies, Flint Hill sandstone facies, Squirrel sandstone, Chariton conglomerate

Unnamed Unit Names — (not specified in *Code* and adopted by Missouri Geological Survey)

the word "unnamed" + position + lithology + rank term

unnamed formation, unnamed shale, unnamed shale member, unnamed middle limestone facies

In the chronological and alphabetical listings of stratigraphic units contained herein, chronostratigraphic units appear in bold Times New Roman typeface (e.g., **Pennsylvanian Subsystem**), whereas lithostratigraphic units appear in plain Arial typeface (e.g., Dennis Formation). Both global and North American names have been employed for chronostratigraphic units.

Advances in conodont biostratigraphy have made it possible in many cases to recognize coevality of Paleozoic lithostratigraphic units having different names and occurring at different geographic locations in the state. Therefore, a line entry in the chronostratigraphic listing may contain more than one lithostratigraphic unit, indicating that all the units appearing in the line were deposited contemporaneously during an unspecified interval of time represented by the line. For example, line 4 on page 10 states, "Reeds Spring Fm., Bentonville Fm., Lower Warsaw Ls.," indicating that the three units were deposited at the same time, though in different parts of the state. This organizational strategy embodies both the *Law of Superposition* and *Walther's Law*. So as not to encumber a clean portrayal of the step-by-step march of geologic time, no attempt has been made to indicate geographic locations of the lithostratigraphic units. That information is contained in the reference literature.

For one exception—the McLouth Formation—the lithostratigraphic units listed occur in outcrop and are not confined to the subsurface. Names for Cambrian units confined to the subsurface are in Mulvany and Thompson (2013).

The names of Proterozoic crystalline basement rock units that serve as the foundation for the Phanerozoic stratigraphic succession are included, though they are not listed in chronological order.

INTRODUCTION — 1993 Original Information Circular 31

In October, 1965, a Stratigraphic Names Committee was appointed by the State Geologist to recommend stratigraphic nomenclature and classification to be used by the Missouri Geological Survey. The first action of this committee was to recommend adoption of the Code of Stratigraphic Nomenclature of the American Commission on Stratigraphic Nomenclature (AAPG Bulletin, 1961, v.45, n. 5, p. 645-655). Shortly after adoption of the Code, the committee, with the help of other Survey staff members, prepared a list of formal names of rock-stratigraphic units in Missouri to be used in Survey manuscripts and publications. This list serves as a standard for uniform nomenclature usage by Survey staff members and has been recommended for use by agencies and individuals who rely on the Survey to provide such information.

In 1984 the Geological Survey, Missouri Department of Natural Resources, adopted the *North American Stratigraphic Code* (AAPG Bulletin, 1983, v. 67, n. 5, p. 841-875), which allowed some changes in the original concepts of formal stratigraphic nomenclature. Generally, a single formal name is recommended for each rock-stratigraphic unit. The name selected for a specific unit is based on knowledge of subsurface and surface characteristics of that unit throughout the state. The formal name of a formation that consists predominantly, but not necessarily entirely, of a single lithology comprises a geographic name followed by that of the predominant lithology. An example is the **Burlington Limestone**, which, as the name implies, is predominantly limestone, although it usually contains varying amounts of chert and locally may contain a high percentage of dolomite. If a formation has no single predominant lithology, its formal name consists of a geographic name followed by the word "Formation." An example is **Roubidoux Formation**. The first letter of each element of a formal name is capitalized. If the unit is not formally recognized, but is used as a marker bed within a formation, the name is usually placed within quotation marks ("Swan Creek sandstone" of the Cotter Dolomite; "Quarry Ledge" of the Jefferson City Dolomite).

Rock-stratigraphic units of member rank are similarly named. If a member has a single predominant lithology the appropriate lithologic term is included between the geographic name and the word "Member." An example is the **Myrick Station Limestone Member of the Pawnee Formation**. Several units have been defined as a series of formations that constitute a **group**, with designations like the **Macy Limestone of the Plattin Group**. Although referred to as a group in detailed studies, the Plattin can be called the **Plattin Limestone** if a more regional, less detailed definition for the unit is desired, and the subdivisions are not used.

Facies and coal beds are usually not given formal recognition, although the newest code does allow coal beds to be recognized formally if desired, or required by the nature of the study. Examples of currently accepted informal usages are **Tebo coal**, and **Cooper limestone facies of the Cedar Valley Limestone**.

One of the functions of the Stratigraphic Committee is to recommend changes in stratigraphic nomenclature to the State Geologist. Proposals for such changes must be submitted to the committee by Survey geologists and are subject to final approval by the State Geologist.

1993 Stratigraphic Committee: Tom Thompson, Chairman; Jim Palmer; Mark Middendorf; Dave Smith; Bruce Netzler; Don Miller; and Jim Martin.

CHRONOLOGICAL LISTING OF NOMENCLATURE

Phanerozoic Eonothem

Cenozoic Erathem

Quaternary System

Holocene Series

Alluvium

Pleistocene Series

Upper Pleistocene Stage, Wisconsin Stage

Peoria Loess

Roxana Silt

Middle Pleistocene Stage, Illinoian Stage

Loveland Silt

Middle Pleistocene Stage, Pre-Illinoian Stage

McCredie Formation

Crowley's Ridge Silt, Macon Member

Columbia Member

Fulton Member

Lower Pleistocene Stage, Pre-Illinoian Stage

Moberly Formation

Atlanta Formation

Neogene System

Pliocene (?) Series

Mounds Gravel

Paleogene System

Eocene Series

Wilcox Group

Holly Springs Formation

Ackerman Formation

Paleocene Series

Midway Group

Porters Creek Clay

Clayton Formation

Mesozoic Erathem

Cretaceous System

Upper Cretaceous Series

Maastrichtian Stage

Owl Creek Formation

McNairy Formation

Campanian Stage

Coffee Sand

Post Creek Formation

Little Bear Formation

Paleozoic Erathem

Carboniferous System

Pennsylvanian Subsystem
Upper Pennsylvanian Series
Gzhelian Stage, Virgilian Stage

- Indian Cave Sandstone
- Wabaunsee Group
 - Richardson Subgroup
 - Stotler Formation
 - Grandhaven Member (?)
 - Dry Shale Member
 - Dover Limestone Member
 - Pillsbury Shale
 - Zeandale Formation
 - Maple Hill Limestone Member
 - Wamego Shale Member
 - Nyman coal bed
 - Tarkio Limestone Member
 - Nemaha Subgroup
 - Willard Shale
 - Emporia Formation
 - Elmont Limestone Member
 - Harveyville Shale Member
 - Reading Limestone Member
 - Auburn Shale
 - Bern Formation
 - Wakarusa Limestone Member
 - Soldier Creek Shale Member
 - Burlingame Limestone Member
 - Sacfox Subgroup
 - Scranton Formation
 - Silver Lake Shale Member
 - Rulo Limestone Member
 - Cedar Vale Shale Member
 - Elmo coal bed
 - Happy Hollow Limestone Member
 - White Cloud Shale Member
 - Howard Formation
 - Utopia Limestone Member
 - Winzeler Shale Member
 - Church Limestone Member
 - Aarde Shale Member
 - Nodaway coal bed
 - Severy Shale
 - Shawnee Group
 - Topeka Formation
 - Coal Creek Limestone Member
 - Holt Shale Member
 - Dubois Limestone Member
 - Turner Creek Shale Member
 - Sheldon Limestone Member
 - Jones Point Shale Member
 - Curzon Limestone Member
 - Iowa Point Shale Member
 - Hartford Limestone Member

Calhoun Shale
Deer Creek Formation
 Ervine Creek Limestone Member
 Larsh-Burroak Shale Member
 Rock Bluff Limestone Member
 Oskaloosa Shale Member
 Ozawkie Limestone Member
Tecumseh Shale
 Rakes Creek Shale Member
 Ost Limestone Member
 Kenosha Shale Member
Lecompton Formation
 Avoca Limestone Member
 King Hill Shale Member
 Beil Limestone Member
 Queen Hill Shale Member
 Big Springs Limestone Member
 Doniphan Shale Member
 Spring Branch Limestone Member
Kanwaka Shale
 Stull Shale Member
 Clay Creek Limestone Member
 Jackson Park Shale Member
Oread Formation
 Kereford Limestone Member
 Heumader Shale Member
 Plattsouth Limestone Member
 Heebner Shale Member
Kasimovian Stage, Virgilian Stage
 Leavenworth Limestone Member
 Snyderville Shale Member
 Toronto Limestone Member
Douglas Group
 Lawrence Shale
 Wathena Shale Member
 Amazonia Limestone Member
 Pigeon Hill Shale Member
 Ireland sandstone facies
 Robbins shale facies
 Cass Formation
 Shoemaker Limestone Member
 Little Pawnee Shale Member
 Haskell Limestone Member
Kasimovian Stage, Missourian Stage
 Stranger Formation
 Vinland Shale Member
 Westphalia Limestone Member
 Tonganoxie Sandstone Member
 Sibley upper coal bed
 Iatan Limestone Member
 Weston Shale Member
 Lansing Group
 South Bend Formation
 Kitaki Limestone Member

Gretna Shale Member
Little Kaw Limestone Member
Rock Lake Shale
Stanton Formation
 Stoner Limestone Member
 Eudora Shale Member
 Captain Creek Limestone Member
Vilas Shale
Plattsburg Formation
 Spring Hill Limestone Member
 Hickory Creek Shale Member
 Merriam Limestone Member
Kansas City Group
Zarah Subgroup
 Lane Shale
 Bonner Springs Shale Member
 Farley Limestone Member
 Farley upper limestone facies
 Farley middle shale facies
 Farley lower limestone facies
 Island Creek Shale Member
Wyandotte Formation
 Argentine Limestone Member
 Quindaro Shale Member
 Frisbie Limestone Member
Liberty Memorial Shale
Iola Formation
 Raytown Limestone Member
 Muncie Creek Shale Member
 Paola Limestone Member
Linn Subgroup
 Chanute Shale
 Dewey Formation
 Cement City Limestone Member
 Quivira Shale Member
Nellie Bly Formation
 Belton sandstone
Cherryvale Formation
 Westerville Limestone Member
 Wea Shale Member
 Block Limestone Member
 Fontana Shale Member
Bronson Subgroup
Dennis Formation
 Winterset Limestone Member
 Stark Shale Member
 Canville Limestone Member
Galesburg Shale
Swope Formation
 Bethany Falls Limestone Member
 Hushpuckney Shale Member
 Middle Creek Limestone Member
Elm Branch Shale
Hertha Formation

Sniabar Limestone Member
Mound City Shale Member
Pleasanton Group
Shale Hill Formation
Guthrie Mountain Shale Member
Ovid coal bed
Critzer Limestone Member
Blue Mound Shale Member
Locust Creek coal beds
Knobtown Limestone Member
Weldon River Sandstone Member
Chariton conglomerate
Maney Shale Member
Exline Limestone Member

Upper? Middle? Pennsylvanian Series

Kasimovian? Moscovian? Stage, Desmoinesian Stage

Hepler Formation
unnamed shale member
Grain Valley coal bed
East Branch Sandstone Member
Marmaton Group
Holdenville Subgroup
Lost Branch Formation
unnamed shale member
Cooper Creek Limestone Member
unnamed shale member
Nuyaka Creek Shale Member
Sni Mills Limestone Member
Memorial Shale
unnamed shale member
Dawson coal bed
Perry Farm Shale Member
Idenbro limestone bed
Lenapah Formation
Norfleet Limestone Member
Nowata Shale
Walter Johnson Sandstone Member
Laredo coal bed
Appanoose Subgroup
Altamont Formation
Worland Limestone Member
Lake Neosho Shale Member
Amoret Limestone Member
Bandera Shale
Bandera Quarry Sandstone Member
Farlington limestone bed

Middle Pennsylvanian Series

Moscovian Stage, Desmoinesian Stage

Mulberry coal bed
Pawnee Formation
Coal City Limestone Member
Mine Creek Shale Member
Myrick Station Limestone Member
Anna Shale Member

Labette Shale
Lexington coal bed
Englevale Sandstone Member
Alvis coal bed
Labette lower sandstone
Fort Scott Subgroup
Higginsville Limestone
Little Osage Formation
Blackwater Creek Shale Member
Flint Hill sandstone facies
Houx Limestone Member
Binkley Shale Member
Morgan School Shale Member
Summit coal bed
Blackjack Creek Limestone
Blackjack Creek upper limestone member
Blackjack Creek middle limestone member
Blackjack Creek lower limestone member
Excello Shale
Cherokee Group
Cabaniss Subgroup
Mulky Formation
Mulky coal bed
Breezy Hill Limestone Member
Lagonda Formation
Squirrel sandstone facies
Bevier Formation
Bevier coal bed
Verdigis Formation
Wheeler Member
Wheeler coal bed
Ardmore Limestone Member
Oakley Shale Member
Mecca Quarry shale bed
Croweburg Formation
Croweburg coal bed
Fleming Formation
Fleming coal bed
Robinson Branch Formation
Robinson Branch coal bed
Mineral Formation
Mineral coal bed
Scammon Formation
Scammon coal bed
Chelsea Sandstone Member
Tiawah Limestone Member
Tebo Formation
Tebo coal bed
Weir Formation
Weir-Pittsburg upper coal bed
Weir-Pittsburg middle coal bed
Weir-Pittsburg lower coal bed
Krebs Subgroup
Welborn Formation

- Hackberry Branch Limestone Member
- Bluejacket Sandstone
 - Bluejacket coal bed
- Drywood Formation
 - Drywood coal bed
 - Drywood lower coal bed
- Rowe Formation
 - Rowe coal bed
- Warner Sandstone
 - Warner (Neutral) coal bed
- Hartshorne (?) Formation
- Riverton Shale

Moscovian Stage, Atokan Stage

- Riverton Shale
 - Riverton upper coal bed
 - Riverton middle coal bed
 - Riverton lower coal bed
- Ladden Branch Limestone Member

Lower Pennsylvanian Series

- Bashkirian Stage, Atokan Stage**
 - Burgner Formation
- Bashkirian Stage, Morrowan Stage**
 - McLouth Formation (subsurface only)
 - Hale Formation
 - Prairie Grove Member
 - Cheltenham Formation
 - Graydon Conglomerate

Mississippian Subsystem

Middle Mississippian Series

- Visean Stage, Chesterian Stage**
 - Vienna Limestone
 - Tar Springs Sandstone
 - Fayetteville Shale, Tar Springs Sandstone
 - Wedington Sandstone Member of Fayetteville Shale
 - Fayetteville Shale, Glen Dean Limestone
 - Fayetteville Shale, Hardinsburg Formation
 - Fayetteville Shale, Golconda Formation
 - Haney Limestone Member of Golconda Formation
 - Fraileys Shale Member of Golconda Formation
 - Hindsville Limestone, Batesville Sandstone, Golconda Formation
 - Beech Creek Limestone Member of Golconda Formation
 - Cypress Formation
 - Paint Creek Formation
 - Ridenhower Limestone Member
 - Bethel Member
 - Downeys Bluff Limestone Member
 - Yankeetown Sandstone
 - Renault Formation
 - Aux Vases Sandstone
 - Ste. Genevieve Limestone

Visean Stage, Meramecian Stage

- St. Louis Limestone

Salem Formation
Ritchey Formation, Upper Warsaw Formation

Visean Stage, Osagean Stage

Reeds Spring Fm., Bentonville Fm., Lower Warsaw Fm.
Short Creek Member of Bentonville Formation
Pierson Ls., Reeds Spring Fm., Bentonville Fm., Keokuk Ls.
Peerless Park Member of Keokuk Limestone

Lower Mississippian Series

Tournaisian Stage, Osagean Stage

Pierson Ls., Reeds Spring Fm., Bentonville Fm., Burlington Ls.
Pierson Ls., Reeds Spring Fm., Bentonville Fm., Burlington Ls., Fern Glen Fm.
Pierson Limestone, Fern Glen Formation
Meppen Limestone Member of Fern Glen Formation
Pierson Limestone

Tournaisian Stage, Kinderhookian Stage

Chouteau Group
McCraney Limestone, Northview Formation
Baird Mountain Limestone Member of Northview Formation
Chouteau Limestone, Sedalia Formation
Chouteau Limestone, unnamed formation
Chouteau Limestone, Compton Limestone
Hannibal Shale
Hannibal Shale, Bachelor Formation
Hannibal Shale
Horton Creek Limestone

Devonian System

Upper Devonian Series

Famennian Stage

Chattanooga Shale?, Louisiana Limestone
Chattanooga Shale?, Saverton Shale, Louisiana Limestone
Chattanooga Shale?, Saverton Shale, Sulphur Springs Group
Bushberg Sandstone of Sulphur Springs Group
Glen Park Limestone of Sulphur Springs Group
unnamed shale of Sulphur Springs Group
Chattanooga Shale, Saverton Shale, Holts Summit Sandstone
Chattanooga Sh., Saverton Sh., Holts Summit Sandstone, Maple Mill shale
Chattanooga Shale, Holts Summit Sandstone, Grassy Creek Shale
Sylamore Ss., Chattanooga Sh., Holts Summit Ss., Grassy Creek Sh., Turpin Ss.

Frasnian Stage

Sweetland Creek Shale
Snyder Creek Shale, Cedar Valley Limestone?
Cedar Valley Limestone

Middle Devonian Series

Givetian Stage

Cedar Valley Limestone
Cedar Valley Limestone, Fortune Formation, St. Laurent Limestone
Cedar Valley Limestone, St. Laurent Limestone
St. Laurent Limestone
St. Laurent Limestone, Beauvais Sandstone

Eifelian Stage
St. Laurent Limestone, Beauvais Sandstone
Grand Tower Limestone

Lower Devonian Series

Emsian Stage
Grand Tower Limestone
Clear Creek Chert
Little Saline Limestone

Pragian Stage?
Grassy Knob Chert
Lochkovian Stage?
Grassy Knob Chert
Bailey Formation

Silurian System

Pridoli Series
Bailey Formation
Bainbridge Formation
Moccasin Springs Member

Ludlow Series

Ludfordian Stage
Moccasin Springs Member
Gorstian Stage
Moccasin Springs Member

Wenlock Series

Homerian Stage
St. Clair Limestone Member
Sheinwoodian Stage
St. Clair Limestone Member
Seventy-Six Shale Member

Llandovery Series

Telychian Stage
Seventy-Six Shale Member
Sexton Creek Limestone
Aeronian Stage
Bowling Green Dolomite
Rhuddanian Stage
Bryant Knob Formation
Kissenger Limestone Member

Ordovician System

Upper Ordovician Series

Hirnantian Stage, Cincinnati Stage
Noix Limestone, Cyrene Limestone, Leemon Formation
Maquoketa Group
Girardeau Limestone
Maquoketa Shale
Orchard Creek Shale
Katian Stage, Cincinnati Stage
Orchard Creek Shale

Thebes Sandstone
Cape La Croix Shale
Cape Limestone, Kimmswick Limestone

Katian Stage, Mohawkian Stage

Kimmswick Limestone
House Springs K-bentonite bed

Decorah Group
Guttenberg Limestone
Kings Lake Limestone

Sandbian Stage, Mohawkian Stage

Kings Lake Limestone
Spechts Ferry Formation
Glencoe Shale Member
Millbrig K-bentonite bed
Castlewood Limestone Member
Deicke K-bentonite bed

Plattin Group
Macy Limestone
Zell Member
Hook Member
Hager Limestone
Victory Member
Hely Member
Glaize Creek Member
Beckett Limestone
Bloomsdale Limestone
Establishment Shale Member
Brickeys Member
Blomeyer Member

Pecatonica Formation
Oglesby Member
Medusa Member
Joachim Dolomite
Metz Member
Matson Member
Defiance Member
Boles Member

Sandbian Stage, Whiterockian Stage

Joachim Dolomite, St. Peter Sandstone
Augusta Member of Joachim Dol., Starved Rock Member of St. Peter Ss.
Abernathy Member of Joachim Dol., Starved Rock Member of St. Peter Ss.

Middle Ordovician Series

Darriwilian Stage, Whiterockian Stage

Dutchtown Formation, St. Peter Sandstone
Starved Rock Member of St. Peter Sandstone
Tonti Member of St. Peter Sandstone
Kress Member of St. Peter Sandstone
Everton Formation

Lower Ordovician Series, Ibexian Series

Floian Stage

Smithville Dolomite
Powell Dolomite

Cotter Dolomite
Swan Creek sandstone
Jefferson City Dolomite

Tremadocian Stage
Jefferson City Dolomite
Quarry Ledge
Roubidoux Formation
Gasconade Dolomite
Skullrockian Stage of Ibexian Series
Gasconade Dolomite
Gunter Sandstone Member

Cambrian System

upper Cambrian series, Ibexian Series

Skullrockian Stage of Ibexian Series
Gunter Sandstone Member, Potosi-Eminence Dolomite, Eminence Dolomite

upper Cambrian series, Millardan Series

Sunwaptan Stage
Potosi-Eminence Dolomite, Eminence Dolomite
Potosi-Eminence Dolomite, Potosi Dolomite
Dug Hill Fm.?, Taum Sauk ls. facies?, Potosi-Eminence Dol., Potosi Dol.
Dug Hill Fm., Taum Sauk ls. facies, Derby-Doerun Dol. of Elvins Group
Dug Hill Fm., Taum Sauk ls. facies, Derby-Doerun Dol. and Davis Fm. of Elvins Group

Steptoean Stage
Dug Hill Fm., Taum Sauk ls. facies, Derby-Doerun Dol. and Davis Fm. of Elvins Group
Dug Hill Fm., Taum Sauk ls. facies, Davis Fm. of Elvins Group
Dug Hill Formation, Taum Sauk limestone facies, Bonneterre Formation
Whetstone Creek Member of Bonneterre Formation
Sullivan Siltstone Member of Bonneterre Formation

middle Cambrian series, Lincolnian Series

Marjuman Stage
Sullivan Siltstone Member of Bonneterre Formation
Dug Hill Formation, Taum Sauk limestone facies, Bonneterre Formation,
Lamotte-Bonneterre transition beds, Lamotte-Dug Hill transition beds
Lamotte Sandstone

Proterozoic Eonothem (crystalline basement rock)

St. Francois Mountains Volcanic Supergroup

Taum Sauk Group
Cope Hollow Formation
Johnson Shut-Ins Rhyolite
Proffit Mountain Formation
Taum Sauk Rhyolite
Royal Gorge Rhyolite
Bell Mountain Rhyolite
Wildcat Mountain Rhyolite
Russell Mountain Rhyolite
Lindsey Mountain Rhyolite
Ironton Rhyolite
Buck Mountain Shut-Ins Formation
Pond Ridge Rhyolite
Cedar Bluff Rhyolite

Shepherd Mountain Rhyolite
Butler Hill Group
Ironton Hollow Rhyolite
Wolf Mountain Ignimbrite
Tribby Breccia
Iron Mountain Lake ignimbrite
Grassy Mountain Ignimbrite
Lake Killarney Formation
unassigned volcanic units
Little Creek formation
Glover formation
Ketcherside Mountain ignimbrite
Buford Mountain Rhyolite
Buford Mountain trachyandesite
Iron Mountain Lake rhyolite
Mudlick dellenite
St. Francois Mountains Intrusive Suite
hypabyssal rocks
Buford Granite Porphyry
Munger Granite Porphyry
Carver Creek Granite Porphyry
Brown Mountain Rhyolite Porphyry
plutonic rocks
Graniteville Granite
Silvermine Granite
Knoblick Granite
Slabtown Granite
Stono Granite
Butler Hill Granite
Breadtray Granite

ALPHABETICAL LISTING OF NOMENCLATURE

A

Aarde Shale Member	4
Abernathy Member	12
Ackerman Formation	3
Aeronian Stage	11
Alluvium	3
Altamont Formation	7
Alvis coal bed	8
Amazonia Limestone Member	5
Amoret Limestone Member	7
Anna Shale Member	7
Appanoose Subgroup	7
Ardmore Limestone Member	8
Argentine Limestone Member	6
Atlanta Formation	3
Atokan Stage	9
Auburn Shale	4
Augusta Member	12
Aux Vases Sandstone	9
Avoca Limestone Member	5

B

Bachelor Formation	10
Bailey Formation	11
Bainbridge Formation	11
Baird Mountain Limestone Member	10
Bandera Shale	7
Bandera Quarry Sandstone Member	7
Bashkirian Stage	9
Batesville Sandstone	9
Beauvais Sandstone	10, 11
Beckett Limestone	12
Beech Creek Limestone Member	9
Beil Limestone Member	5
Bell Mountain Rhyolite	13
Belton sandstone	6
Bentonville Formation	10
Bern Formation	4
Bethany Falls Limestone Member	6
Bethel Member	9
Bevier coal bed	8
Bevier Formation	8
Big Springs Limestone Member	5
Binkley Shale Member	8
Blackjack Creek Limestone	8
Blackjack Creek lower limestone member.....	8
Blackjack Creek middle limestone member.....	8

Blackjack Creek upper limestone member.....	8
Blackwater Creek Shale Member	8
Block Limestone Member	6
Blomeyer Member	12
Bloomsdale Limestone	12
Blue Mound Shale Member	7
Bluejacket coal bed	9
Bluejacket Sandstone	9
Boles Member	12
Bonner Springs Shale Member	6
Bonneterre Formation	13
Bowling Green Dolomite	11
Breadtray Granite	14
Breezy Hill Limestone Member	8
Brickeys Member	12
Bronson Subgroup	6
Brown Mountain Rhyolite Porphyry	14
Bryant Knob Formation	11
Buck Mountain Shut-Ins Formation	13
Buford Granite Porphyry	14
Buford Mountain Rhyolite	14
Buford Mountain trachyandesite.....	14
Burgner Formation	9
Burlingame Limestone Member	4
Burlington Limestone	10
Bushberg Sandstone	10
Butler Hill Granite	14
Butler Hill Group	14

C

Cabaniss Subgroup	8
Calhoun Shale	5
Cambrian System	13
Campanian Stage	3
Canville Limestone Member	6
Cape La Croix Shale	12
Cape Limestone	12
Captain Creek Limestone Member	6
Carboniferous System	3
Carver Creek Granite Porphyry	14
Cass Formation	5
Castlewood Limestone Member	12
Cedar Bluff Rhyolite	13
Cedar Vale Shale Member	4
Cedar Valley Limestone	10
Cement City Limestone Member	6
Cenozoic Erathem	3
Chanute Shale	6
Chariton conglomerate	7
Chattanooga Shale	10

Chelsea Sandstone Member	8
Cheltenham Formation	9
Cherokee Group	8
Cherryvale Formation	6
Chesterian Stage	9
Chouteau Group	10
Chouteau Limestone	10
Church Limestone Member	4
Cincinnatian Stage	11
Clay Creek Limestone Member	5
Clayton Formation	3
Clear Creek Chert	11
Coal City Limestone Member	7
Coal Creek Limestone Member	4
Coffee Sand	3
Columbia Member	3
Compton Limestone	10
Cooper Creek Limestone Member	7
Cope Hollow Formation	13
Cotter Dolomite	13
Cretaceous System	3
Critzer Limestone Member	7
Croweburg coal bed	8
Croweburg Formation	8
Crowley's Ridge Silt	3
Curzon Limestone Member	4
Cypress Formation	9
Cyrene Limestone	11

D

Darriwilian Stage	12
Davis Formation	13
Dawson coal bed	7
Decorah Group	12
Deer Creek Formation	5
Defiance Member	12
Deicke K-bentonite bed	12
Dennis Formation	6
Derby-Doerun Dolomite	13
Desmoinesian Stage	7
Devonian System	10
Dewey Formation	6
Doniphan Shale Member	5
Douglas Group	5
Dover Limestone Member	4
Downeys Bluff Limestone Member	9
Dry Shale Member	4
Drywood coal bed	9
Drywood Formation	9

Drywood lower coal bed	9
Dubois Limestone Member	4
Dug Hill Formation	13
Dutchtown Formation	12

E

East Branch Sandstone Member	7
Eifelian Stage	11
Elm Branch Shale	6
Elmo coal bed	4
Elmont Limestone Member	4
Elvins Group	13
Eminence Dolomite	13
Emporia Formation	4
Emsian Stage	11
Englevale Sandstone Member	8
Eocene Series	3
Ervine Creek Limestone Member	5
Establishment Shale Member	12
Eudora Shale Member	6
Everton Formation	12
Excello Shale	8
Exline Limestone Member	7

F

Famennian Stage	10
Farley Limestone Member	6
Farley lower limestone facies	6
Farley middle shale facies	6
Farley upper limestone facies	6
Farlington limestone bed	7
Fayetteville Shale	9
Fleming coal bed	8
Fleming Formation	8
Fern Glen Formation	10
Flint Hill sandstone facies	8
Floian Stage	12
Fontana Shale Member	6
Fort Scott Subgroup	8
Fortune Formation	10
Fraileys Shale Member	9
Frasnian Stage	10
Frisbie Limestone Member	6
Fulton Member	3

G

Galesburg Shale	6
Gasconade Dolomite	13
Girardeau Limestone	11

Givetian Stage	10
Glaize Creek Member	12
Glen Dean Limestone	9
Glen Park Limestone	10
Glencoe Shale Member	12
Glover formation	14
Golconda Formation	9
Gorstian Stage	11
Grain Valley coal bed	7
Grand Tower Limestone	11
Grandhaven Member (?)	4
Graniteville Granite	14
Grassy Creek Shale	10
Grassy Knob Chert	11
Grassy Mountain Ignimbrite	14
Graydon Conglomerate	9
Gretna Shale Member	6
Gunter Sandstone Member	13
Guthrie Mountain Shale Member	7
Guttenberg Limestone	12
Gzhelian Stage	4

H

Hackberry Branch Limestone Member	9
Hager Limestone	12
Hale Formation	9
Haney Limestone Member	9
Hannibal Shale	10
Happy Hollow Limestone Member	4
Hardinsburg Formation	9
Hartford Limestone Member	4
Hartshorne (?) Formation	9
Harveyville Shale Member	4
Haskell Limestone Member	5
Heebner Shale Member	5
Hely Member	12
Hepler Formation	7
Hertha Formation	6
Heumader Shale Member	5
Hickory Creek Shale Member	6
Higginsville Limestone	8
Hindsville Limestone	9
Hirnantian Stage	11
Holdenville Subgroup	7
Holly Springs Formation	3
Holocene Series	3
Holt Shale Member	4
Holts Summit Sandstone	10
Homerian Stage	11

Hook Member	12
Horton Creek Limestone	10
House Springs K-bentonite bed	12
Houx Limestone Member	8
Howard Formation	4
Hushpuckney Shale Member	6
hypabyssal rocks	14

I

Iatan Limestone Member	5
Ibexian Series	12, 13
Idenbro limestone bed	7
Illinoian Stage	3
Indian Cave Sandstone	4
Iola Formation	6
Iowa Point Shale Member	4
Ireland sandstone facies	5
Iron Mountain Lake ignimbrite	14
Iron Mountain Lake rhyolite	14
Ironton Hollow Rhyolite	14
Ironton Rhyolite	13
Island Creek Shale Member	6

J

Jackson Park Shale Member	5
Jefferson City Dolomite	13
Joachim Dolomite	12
Johnson Shut-Ins Rhyolite	13
Jones Point Shale Member	4

K

Kansas City Group	6
Kanwaka Shale	5
Kasimovian Stage	5, 7
Katian Stage	11, 12
Keokuk Limestone	10
Kenosha Shale Member	5
Kereford Limestone Member	5
Ketcherside Mountain ignimbrite	14
Kimmswick Limestone	12
Kinderhookian Stage	10
King Hill Shale Member	5
Kings Lake Limestone	12
Kissenger Limestone Member	11
Kitaki Limestone Member	5
Knoblick Granite	14
Knobtown Limestone Member	7
Krebs Subgroup	8
Kress Member	12

L

Labette lower sandstone	8
Labette Shale	8
Ladden Branch Limestone Member	9
Lagonda Formation	8
Lake Killarney Formation	
14	
Lake Neosho Shale Member	7
Lamotte Sandstone	13
Lamotte-Bonneterre transition beds	13
Lamotte-Dug Hill transition beds	13
Lane Shale	6
Lansing Group	5
Laredo coal bed	7
Larsh-Burroak Shale Member	5
Lawrence Shale	5
Leavenworth Limestone Member	5
Lecompton Formation	5
Leemon Formation	11
Lenapah Formation	7
Lexington coal bed	8
Liberty Memorial Shale	6
Lincolnian Series	13
Lindsey Mountain Rhyolite	13
Linn Subgroup	6
Little Bear Formation	3
Little Creek formation	14
Little Kaw Limestone Member	6
Little Osage Formation	8
Little Pawnee Shale Member	5
Little Saline Limestone	11
Llandovery Series	11
Lochkovian Stage	11
Locust Creek coal beds	7
Lost Branch Formation	7
Louisiana Limestone	10
Loveland Silt	3
Lower Devonian Series	11
Lower Mississippian Series	10
Lower Ordovician Series	12
Lower Pennsylvanian Series	9
Lower Pleistocene Stage	3
Lower Warsaw Formation	10
Ludfordian Stage	11
Ludlow Series	11

M

Maastrichtian Stage	3
----------------------------------	---

Macon Member	3
Macy Limestone	12
Mantey Shale Member	7
Maple Hill Limestone Member	4
Maple Mill shale	10
Maquoketa Group	11
Maquoketa Shale	11
Marjuman Stage	13
Marmaton Group	7
Matson Member	12
McCraney Limestone	10
McCredie Formation	3
McLouth Formation (subsurface only).....	9
McNairy Formation	3
Mecca Quarry shale bed	8
Medusa Member	12
Memorial Shale	7
Meppen Limestone Member	10
Meramecian Stage	9
Merriam Limestone Member	6
Mesozoic Erathem	3
Metz Member	12
middle Cambrian series	13
Middle Creek Limestone Member	6
Middle Devonian Series	10
Middle Mississippian Series	9
Middle Ordovician Series	12
Middle Pennsylvanian Series	7
Middle Pleistocene Stage	3
Midway Group	3
Millardan Series	13
Millbrig K-bentonite bed	12
Mine Creek Shale Member	7
Mineral coal bed	8
Mineral Formation	8
Mississippian Subsystem	9
Missourian Stage	5
Moberly Formation	3
Moccasin Springs Member	11
Mohawkian Stage	12
Morgan School Shale Member	8
Morrowan Stage	9
Moscovian Stage	7, 9
Mound City Shale Member	7
Mounds Gravel	3
Mudlick dellenite	14
Mulberry coal bed	7
Mulky coal bed	8
Mulky Formation	8

Muncie Creek Shale Member	6
Munger Granite Porphyry	14
Myrick Station Limestone Member	7

N

Nellie Bly Formation	6
Nemaha Subgroup	4
Neogene System	3
Nodaway coal bed	4
Noix Limestone	11
Norfleet Limestone Member	7
Northview Formation	10
Nowata Shale	7
Nuyaka Creek Shale Member	7
Nyman coal bed	4

O

Oakley Shale Member	8
Oglesby Member	12
Orchard Creek Shale	11
Ordovician System	11
Oread Formation	5
Osagean Stage	10
Oskaloosa Shale Member	5
Ost Limestone Member	5
Ovid coal bed	7
Owl Creek Formation	3
Ozawkie Limestone Member	5

P

Paint Creek Formation	9
Paleocene Series	3
Paleogene System	3
Paleozoic Erathem	3
Paola Limestone Member	6
Pawnee Formation	7
Pecatonica Formation	12
Peerless Park Member	10
Pennsylvanian Subsystem	4
Peoria Loess	3
Perry Farm Shale Member	7
Phanerozoic Eonothem	3
Pierson Limestone	10
Pigeon Hill Shale Member	5
Pillsbury Shale	4
Plattin Group	12
Plattsburg Formation	6
Plattsmouth Limestone Member	5

Pleasanton Group	7
Pleistocene Series	3
Pliocene (?) Series	3
plutonic rocks	14
Pond Ridge Rhyolite	13
Porters Creek Clay	3
Post Creek Formation	3
Potosi Dolomite	13
Potosi-Eminence Dolomite	13
Powell Dolomite	12
Pragian Stage	11
Prairie Grove Member	9
Pre-Illinoian Stage	3
Pridoli Series	11
Proffit Mountain Formation	13
Proterozoic Eonothem	13

Q

Quarry Ledge	13
Quaternary System	3
Queen Hill Shale Member	5
Quindaro Shale Member	6
Quivira Shale Member	6

R

Rakes Creek Shale Member	5
Raytown Limestone Member	6
Reading Limestone Member	4
Reeds Spring Formation	10
Renault Formation	9
Rhuddanian Stage	11
Richardson Subgroup	4
Ridenhower Limestone Member	9
Ritchey Formation	10
Riverton lower coal bed	9
Riverton middle coal bed	9
Riverton Shale	9
Riverton upper coal bed	9
Robbins shale facies	5
Robinson Branch coal bed	8
Robinson Branch Formation	8
Rock Bluff Limestone Member	5
Rock Lake Shale	6
Roubidoux Formation	13
Rowe coal bed	9
Rowe Formation	9
Royal Gorge Rhyolite	13
Roxana Silt	3
Rulo Limestone Member	4

Russell Mountain Rhyolite	13
---------------------------------	----

S

Sacfox Subgroup	4
Salem Formation	10
Sandbian Stage	12
Saverton Shale	10
Scammon coal bed	8
Scammon Formation	8
Scranton Formation	4
Sedalia Formation	10
Seventy-Six Shale Member	11
Severy Shale	4
Sexton Creek Limestone	11
Shale Hill Formation	7
Shawnee Group	4
Sheinwoodian Stage	11
Sheldon Limestone Member	4
Shepard Mountain Rhyolite	14
Shoemaker Limestone Member	5
Short Creek Member	10
Sibley upper coal bed	5
Silurian System	11
Silver Lake Shale Member	4
Silvermine Granite	14
Skullrockian Stage	13
Slabtown Granite	14
Smithville Dolomite	12
Sni Mills Limestone Member	7
Sniabar Limestone Member	7
Snyder Creek Shale	10
Snyderville Shale Member	5
Soldier Creek Shale Member	4
South Bend Formation	5
Spechts Ferry Formation	12
Spring Branch Limestone Member	5
Spring Hill Limestone Member	6
Squirrel sandstone facies	8
St. Clair Limestone Member	11
St. Francois Mountains Intrusive Suite	14
St. Francois Mountains Volcanic Supergroup	13
St. Laurent Limestone	10, 11
St. Louis Limestone	9
St. Peter Sandstone	12
Stanton Formation	6
Stark Shale Member	6
Starved Rock Member	12
Ste. Genevieve Limestone	9
Steptoean Stage	13
Stoner Limestone Member	6

Stono Granite	14
Stotler Formation	4
Stranger Formation	5
Stull Shale Member	5
Sullivan Siltstone Member	13
Sulphur Springs Group	10
Summit coal bed	8
Sunwaptan Stage	13
Swan Creek sandstone	13
Sweetland Creek Shale	10
Swope Formation	6
Sylamore Sandstone	10

T

Tar Springs Sandstone	9
Tarkio Limestone Member	4
Taum Sauk Group	13
Taum Sauk limestone facies	13
Taum Sauk Rhyolite	13
Tebo coal bed	8
Tebo Formation	8
Tecumseh Shale	5
Telychian Stage	11
Thebes Sandstone	12
Tiawah Limestone Member	8
Tonganoxie Sandstone Member	5
Tonti Member	12
Topeka Formation	4
Toronto Limestone Member	5
Tournaisian Stage	10
Tremadocian Stage	13
Tribby Breccia	14
Turner Creek Shale Member	4
Turpin Sandstone	10

U

unassigned volcanic units	14
unnamed formation of Chouteau Group	10
unnamed shale member above Cooper Creek Limestone Member	7
unnamed shale member below Cooper Creek Limestone Member	7
unnamed shale member of Hepler Formation	7
unnamed shale member of Memorial Shale	7
unnamed shale of Sulphur Springs Group	10
upper Cambrian series	13
Upper Cretaceous Series	3
Upper Devonian Series	10
Upper Ordovician Series	11
Upper Pennsylvanian Series	4, 7

Upper Pleistocene Stage	3
Upper Warsaw Formation	10
Utopia Limestone Member	4

V

Verdigris Formation	8
Victory Member	12
Vienna Limestone	9
Vilas Shale	6
Vinland Shale Member	5
 Virgilian Stage	4, 5
 Visean Stage	9, 10

W

Wabaunsee Group	4
Wakarusa Limestone Member	4
Walter Johnson Sandstone Member	7
Wamego Shale Member	4
Warner (Neutral) coal bed	9
Warner Sandstone	9
Wathena Shale Member	5
Wea Shale Member	6
Wedington Sandstone Member	9
Weir Formation	8
Weir-Pittsburg lower coal bed	8
Weir-Pittsburg middle coal bed	8
Weir-Pittsburg upper coal bed	8
Welborn Formation	8
Weldon River Sandstone Member	7
 Wenlock Series	11
Westerville Limestone Member	6
Weston Shale Member	5
Westphalia Limestone Member	5
Wheeler coal bed	8
Wheeler Member	8
Whetstone Creek Member	13
White Cloud Shale Member	4
 Whiterockian Stage	12
Wilcox Group	3
Wildcat Mountain Rhyolite	13
Willard Shale	4
Winterset Limestone Member	6
Winzeler Shale Member	4
 Wisconsin Stage	3
Wolf Mountain Ignimbrite	14
Worland Limestone Member	7
Wyandotte Formation	6

Y

Yankeetown Sandstone	9
----------------------------	---

Z

Zarah Subgroup	6
Zeandale Formation	4
Zell Member	12

REFERENCES

All Systems

- Beveridge, T.R., 1961**, Composite stratigraphic column for Missouri. Missouri Department of Business and Administration, Division of Geological Survey and Water Resources, Miscellaneous Publication 21, 1 sheet (approximately 39 inches long by 16 inches wide).
- Bridges, D.L., and Mulvany, P.S., 2018 (updated 2019)**, Composite stratigraphic column for Missouri. Missouri Department of Natural Resources, Missouri Geological Survey, Miscellaneous Publication 21 Revised, Standard Version and Colored Version, 1 sheet (approximately 34 inches long by 16 inches wide).
- Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, updated May 2019**, The ICS International Chronostratigraphic Chart. Episodes, vol. 36, p. 199–204.
URL <http://www.stratigraphy.org/ICSSchart/ChronostratChart2019-05.pdf>.
- Howe, W.B., and Koenig, J.W., 1961**, The stratigraphic succession in Missouri. Missouri Department of Business and Administration, Division of Geological Survey and Water Resources, Volume 40 (2nd Series), 185 p., 1 plate.
- North American Commission on Stratigraphic Nomenclature, 1983**, North American stratigraphic code. American Association of Petroleum Geologists Bulletin, vol. 67, p. 841–875.
- Starbuck, E.A., 2017**, Geologic map of Missouri. Missouri Department of Natural Resources, Missouri Geological Survey, 1 sheet map, 1:500,000 scale.
- Thompson, T.L., 1995**, The stratigraphic succession in Missouri. Missouri Department of Natural Resources, Division of Geology and Land Survey, Volume 40 (2nd Series) Revised, 189 p.
- Thompson, T.L., 2001**, Lexicon of stratigraphic nomenclature in Missouri. Missouri Department of Natural Resources, Division of Geology and Land Survey, Report of Investigations 73, 367 p.

Cenozoic

- Dastas, N.R., Chamberlain, J.A., Jr., and Garb, M.P., 2014**, Cretaceous–Paleogene dinoflagellate biostratigraphy and the age of the Clayton Formation, southeastern Missouri, USA. Geosciences, vol. 4, p. 1–29.
- Mason, J.A., Bettis, E.A., III, Roberts, H.M., Muhs, D.R., and Joeckel, R.M., 2006**, Last glacial loess sedimentary system of eastern Nebraska and western Iowa, *in* Mandel, R.D., ed., Guidebook of the 18th Biennial Meeting of the American Quaternary Association. Kansas Geological Survey, Technical Series 21, p. 1-1–1-22.
- Rovey, C.W., II, 1997**, The nature and origin of gleyed polygenetic paleosols in the loess covered glacial drift plain of northern Missouri. Catena, vol. 32, p. 153–172.
- Rovey, C.W., II, and Kean, W.F., 2001**, Palaeomagnetism of the Moberly Formation, northern Missouri, confirms a regional magnetic datum within the pre-Illinoian glacial sequence of the Midcontinental USA. Boreas, vol. 30, p. 53–60.
- Rovey, C.W., II, Siemens, M., and Balco, G., 2016**, Provenance, age, and depositional mechanisms of the Grover Gravel: evidence for multiple erosion cycles, volcanic eruptions, and early glaciations, *in* Lasemi, Z., and Elrick, S.D., eds., 1967–2016—Celebrating 50 Years of Geoscience in the Mid-Continent: Guidebook for the 50th Annual Meeting of the Geological Society of America North-Central Section, April 18–19, 2016. Illinois State Geological Survey Guidebook 43, p. 97–124.

Cretaceous

- Dastas, N.R., Chamberlain, J.A., Jr., and Garb, M.P., 2014**, Cretaceous–Paleogene dinoflagellate biostratigraphy and the age of the Clayton Formation, southeastern Missouri, USA. Geosciences, vol. 4, p. 1–29.

Harrison, R.W., and Litwin, R.J., 1997, Campanian coastal plain sediments in southeastern Missouri and southern Illinois—significance to the early geologic history of the northern Mississippi embayment. *Cretaceous Research*, vol. 18, p. 687–696.

Carboniferous Pennsylvanian

Gentile, R.J., and Thompson, T.L., 2004, Paleozoic succession in Missouri—Pennsylvanian Subsystem. Missouri Department of Natural Resources, Geological Survey and Resource Assessment Division, Report of Investigations 70, Part 5, 1225 p.

Gentile, R.J., Thompson, T.L., and Mulvany, P.S., 2004, The Pennsylvanian Subsystem of Missouri (a comparison of former and present classifications). Missouri Department of Natural Resources, Geological Survey and Resource Assessment Division, Miscellaneous Publication 51, 1 sheet.

Goreva, N., and Alekseev, A.S., 2010, New conodont species from the Kasimovian Stage (Upper Carboniferous) of Moscow and Moscow basin. *Stratigraphy and Geologic Correlation*, vol. 18, no. 6, p. 593–606.

Heckel, P., 2013, Pennsylvanian stratigraphy of the northern Midcontinent shelf and biostratigraphic correlation of cyclothsems. *Stratigraphy*, vol. 10, nos. 1–2, p. 3–39.

Heckel, P.H., Alekseev, A.S., Barrick, J.E., Boardman, D.R., Goreva, N.V., Isakova, T.N., Nemyrovska, T.I., Ueno, K., Villa, E., and Work, D.M., 2008, Choice of conodont *Idiognathodus simulator* as the event marker for the base of the Gzhelian Stage (Upper Pennsylvanian Series, Carboniferous System). *Episodes*, vol. 31, no. 3, p. 319–324.

Lambert, L.L., Heckel, P.H., and Barrick, J.E., 2003, Swadelina new genus (Pennsylvanian Conodonta), a taxon with potential chronostratigraphic significance. *Micropaleontology*, vol. 49, no. 2, p. 151–158.

Lane, H.R., 1967, Uppermost Mississippian and lower Pennsylvanian conodonts from the type Morrowan region, Arkansas. *Journal of Paleontology*, vol. 41, no. 4, p. 119–123.

Lane, H.R., Brenckle, P.L., Baesemann, J.F., and Richards, B., 1999, The IUGS boundary in the middle of the Carboniferous: Arrow Canyon, Nevada, USA. *Episodes*, vol. 22, no. 4, p. 272–283.

Roscoe, S.J., and Barrick, J.E., 2009, Revision of *Idiognathodus* species from the Desmoinesian-Missourian (~Moscovian-Kasimovian) boundary interval in the Midcontinent basin, North America, Chapter 9, in Over, J.D., ed., *Conodont Studies Commemorating the 150th Anniversary of the First Conodont Paper (Pander, 1856) and the 40th Anniversary of the Pander Society*. *Palaeontographica Americana*, vol. 62, p. 115–147.

Thompson, T.L., and Lambert, L.L., 2017, Atokan (Middle Pennsylvanian) conodonts from laterally restricted pre-Cherokee units of southwestern Missouri. *Stratigraphy*, vol. 14, nos. 1–4, p. 377–389.

Carboniferous Mississippian

Boardman, D.R., Thompson, T.L., Godwin, C., Mazzullo, S.J., Wilhite, B.W., and Morris, B.T., 2013, High-resolution conodont zonation for Kinderhookian (Middle Tournaisian) and Osagean (Upper Tournaisian–Lower Visean) strata of the western edge of the Ozark Plateau, North America. *Shale Shaker*, vol. 64, no. 2, p. 98–151.

Canis, W.F., 1967, Conodonts and biostratigraphy of the Lower Mississippian of Missouri. Dissertation, University of Missouri, Columbia, 180 p.

Canis, W.F., 1968, Conodonts and biostratigraphy of the Lower Mississippian of Missouri. *Journal of Paleontology*, vol. 42, no. 2, p. 525–555.

Chauffe, K.M., and Guzman, M., 1997, Conodonts form the McCraney Limestone and the McCraney-Chouteau Limestone transition beds (Kinderhookian, Lower Carboniferous) in northeastern Missouri and west-central Illinois, U.S.A. *Micropaleontology*, vol. 43, no. 3, p. 221–252.

- Furnish, W.M., and Saunders, W.B., 1971**, Ammonoids from the middle Chester Beech Creek Limestone, St. Clair County, *in* Faunal studies of the type Chesterian, Upper Mississippian of southwestern Illinois. University of Kansas Paleontological Contributions 51, p. 1–14.
- Lane, H.R., and Brenckle, P.L., 2005**, Type Mississippian subdivisions and biostratigraphic succession, *in* Heckel, P.H., ed., Stratigraphy and biostratigraphy of the Mississippian Subsystem (Carboniferous System) in its type region, the Mississippi River valley of Illinois, Missouri, and Iowa. Illinois State Geological Survey Guidebook 34, p. 76–105.
- Lane, H.R., Brenckle, P.L., and Baesemann, J.F., 2005**, The type section of the Osagean Series (Mississippian Subsystem), west-central Missouri, U.S.A. Bulletins of American Paleontology, no. 369, p. 183–197.
- Maples, C.G., and Waters, J.A., 1987**, Redefinition of the Meramecian/Chesterian boundary (Mississippian). *Geology*, vol. 15, p. 647–651.
- Mazzullo, S.J., Boardman, D.R., Wilhite, B.W., Godwin, C.G. and Morris B.T., 2013**, Revisions of outcrop lithostratigraphic nomenclature in the Lower to Middle Mississippian Subsystem (Kinderhookian to basal Meramecian series) along the shelf-edge in southwest Missouri, northwest Arkansas, and northeast Oklahoma. *Shale Shaker*, v. 63, no. 6, p. 414–454.
- Rexroad, C.B., and Fraunfelter, G.H., 1977**, Upper Mississippian conodonts and boundary relationships in southern Illinois, *in* Frank, C.O., ed., Guidebook for field trips—Carbondale 1977. Postmeeting Field Trips, Volume 2. Southern Illinois University Department of Geology, p. 80–103.
- Thompson, T.L., 1967**, Conodont zonation of lower Osagean rocks (Lower Mississippian) of southwestern Missouri. Missouri Geological Survey and Water Resources, Report of Investigations 39, 88 p.
- Thompson, T.L., 1972**, Conodont biostratigraphy of Chesterian strata of southwestern Missouri. Missouri Geological Survey and Water Resources, Report of Investigations 50, 49 p.
- Thompson, T.L., 1975**, Redescription and correlation of the Fern Glen Formation of Missouri, *in* Studies in Stratigraphy, Part 4. Missouri Department of Natural Resources, Division of Research & Technical Information, Report of Investigations 57, p. 141–172.
- Thompson, T.L., 1986**, Paleozoic succession in Missouri—Mississippian System. Missouri Department of Natural Resources, Division of Geology and Land Survey, Report of Investigations 70, Part 4, Revised, 182 p. [Revised and original versions are distinguishable by looking at second line from bottom of page vii, where the word “volkmannianum” signifies revised version and “yolkmannianum” signifies original version. Revised version contains many more corrections.]
- Thompson, T.L., and Fellows, L.D., 1970**, Stratigraphy and conodont biostratigraphy of the Kinderhookian and Osagean rocks of southwestern Missouri and adjacent areas. Missouri Geological Survey and Water Resources, Report of Investigations 45, 263 p.

Devonian

- Anderson, W.I., 1966**, Upper Devonian conodonts and the Devonian-Mississippian boundary of north-central Iowa. *Journal of paleontology*, vol. 40, no. 2, p. 395–415.
- Chauff, K.M., and Dombrowski, A., 1977**, Hemilistriona, a new conodont genus from the basal shale member of the Sulphur Springs Formation, east-central Missouri. *Geologica et Palaeontologica*, vol. 11, p. 109–120.
- Chauff, K.M., and Klapper, G., 1978**, New conodont genus Apatella (Late Devonian), possible homeomorph Bactrognathus (Early Carboniferous, Osagean Series), and homeomorphy in conodonts. *Geologica et Palaeontologica*, vol. 12, p. 151–164.
- Chauff, K.M., and Nichols, P.A., 1995**, Multielement conodont species from the Louisiana Limestone (Upper Devonian) of west-central Illinois and northeastern Missouri, U.S.A. *Micropaleontology*, vol. 41, no. 2, p. 171–186.

- Chlupáč, I., and Oliver, W.A., Jr., 1989**, Decision on the Lochkovian-Pragian boundary stratotype (Lower Devonian). *Episodes*, vol. 12, no. 2, p. 109–114.
- Collinson, C., Becker, L.E., James, G.W., Koenig, J.W., Swann, D.H., Carlson, M.P., and Dorheim, F.H., 1967**, Devonian of the north-central region, United States, *in* Oswald, D.H., ed., International symposium of the Devonian System, Calgary, 1967, vol. 1. Alberta Society of Petroleum Geologists, p. 933–971.
- Devera, J.A., and Fraunfelter, G.H., 1988**, Middle Devonian paleogeography and tectonic relationships east of the Ozark dome, southeastern Missouri, southwestern Illinois and parts of southwestern Indiana and western Kentucky, *in* McMillian, N.J., Embry, A.F., and Glass, D.J., eds., Devonian of the World: Proceedings of the 2nd International Symposium on the Devonian System. Canadian Society of Petroleum Geologists, Memoir 14, vol. 2, p. 179–186.
- Fraunfelter, G.H., 1984**, Correlation of the St. Laurent Formation (Middle Devonian) near Belgique in northern Perry County, Missouri. *Missouri Academy of Science Transactions*, vol. 18, p. 73–77.
- Gouwy, S.A., Day, J., and Macleod, K.G., 2013**, Lower and Middle Devonian conodont biostratigraphy and conodont apatite $\delta^{18}\text{O}$ variations in the southern Illinois basin, USA, *in* Whalen, M., Osadetz, K., Richards, B., Kabanov, P., Weissenberger, J., Potma, K., Koenigshof, P., Suttner, T., Kido, E., and Da Silva, A., eds., IGCP 580-596 Geophysical and Geochemical Techniques: A Window on the Paleozoic World—Programme with Abstracts, Geological Survey of Canada and ERCB Core Research Center, Calgary, Canada, p. 33–34.
- Hynes, A.R., Over, J.D., and Day, J.E., II, 2014**, Conodont biostratigraphy of the Sweetland Creek Shale and Grassy Creek Shale, Upper Devonian, southeastern Iowa basin. *Geological Society of America Abstracts with Programs*, vol. 46, no. 6, p. 420.
- Klapper, G., Feist, R., Becker, R.T., and House, M.R., 1993**, Definition of the Frasnian/Famennian Stage boundary. *Episodes*, vol. 16, no. 4, p. 433–441.
- Klapper, G., Feist, R., and House, M.R., 1987**, Decision on the boundary stratotype for the Middle/Upper Devonian Series boundary. *Episodes*, vol. 10, no. 2, p. 97–101.
- Meents, W.F., and Swann, D.H., 1965**, Grand Tower Limestone (Devonian) of southern Illinois. Illinois State Geological Survey, Circular 389, 34 p.
- Orr, R.W., 1964**, Biostratigraphic zonation and correlations based on conodonts of Middle Devonian strata of southern Illinois and adjacent states. Thesis, University of Texas, Austin, 123 p.
- Orr, R.W., 1964**, Conodonts from the Devonian Lingle and Alto Formations of southern Illinois. Illinois State Geological Survey, Circular 361, 28 p.
- Schumacher, D., 1972**, Conodont biostratigraphy and paleoenvironments of Middle–Upper Devonian beds, Missouri. Dissertation, University of Missouri, Columbia, 86 p.
- Schumacher, D., and Ethington, R.L., 1968**, Conodonts from the late Middle Devonian and early Late Devonian of central Missouri. *Geological Society of America Abstracts for 1968*, 681–682 p.
- Smoot, V.B., 1958**, Conodonts from isolated Devonian outcrops. Thesis, University of Missouri, Columbia, 92 p.
- Thomas, L.A., 1949**, Devonian–Mississippian formations of southeast Iowa. *Geological Society of America Bulletin*, vol. 60, p. 403–438.
- Thompson, T.L., and Satterfield, I.R., 1975**, Stratigraphy and age of the Fortune Formation (Devonian) of Missouri, *in* Studies in Stratigraphy, Part 4. Missouri Department of Natural Resources, Division of Research & Technical Information, Report of Investigations 57, p. 121–140.
- Thompson, T.L., 1993**, Paleozoic succession in Missouri—Silurian and Devonian Systems. Missouri Department of Natural Resources, Division of Geology and Land Survey, Report of Investigations 70, Part 3, 228 p.

- Walliser, O.H., Bultynck, P., Weddige, R.T., Becker, R.T., and House, M.R., 1995**, Definition of the Eifelian-Givetian Stage boundary. *Episodes*, vol. 18, no. 3, p. 107–115.
- Witzke, B.J., Bunker, B.J., and Rogers, F.S., 1989**, Eifelian through lower Frasnian stratigraphy and deposition in the Iowa area, central Midcontinent, U.S.A. Canadian Society of Petroleum Geologists, Memoir 14, p. 221–250.
- Woodruff, M.L., 1990**, Middle and Upper Devonian (Givetian–Famennian) conodont biostratigraphy and lithostratigraphy in the subsurface of northeastern Missouri. Thesis, University of Iowa, Iowa City, 239 p.
- Yolkin, E.A., Kim, A.I., Weddige, K., Talent, J.A., and House, M.R., 1997**, Definition of the Pragian/Emsian boundary. *Episodes*, vol. 20, no. 4, p. 235–240.
- Zalusky, D.W., 1958**, Holts Summit (Devonian conodonts from Missouri). Thesis, University of Missouri, Columbia, 98 p.
- Ziegler, W., and Klapper, G., 1985**, Stages of the Devonian System. *Episodes*, vol. 8, no. 2, p. 104–109.

Silurian

- Amsden, T.W., and Barrick, J.E., 1986**, Late Ordovician–Early Silurian strata in the central United States and the Hirnantian Stage. *Oklahoma Geological Survey Bulletin* 139, 95 p.
- Barrick, J.E., Kleffner, M.A., Gibson, M.A., Peavy, F.N., and Karlsson, H.R., 2010**, The mid-Lufordian Lau Event and Carbon Isotope Excursion (Ludlow, Silurian) in southern Laurentia—Preliminary results. *Bollettino della Società Paleontologica Italiana*, vol. 49, no. 1, p. 13–33.
- Branson, E.B., and Mehl, M.G., 1933**, Conodonts from the Bainbridge (Silurian) of Missouri, *in* Branson, E.B., and Mehl, M.G., Conodont studies number 1. University of Missouri Studies, Quarterly of Research, v. 8, p. 39–53.
- Cooper, B.J., 1976**, Multielement conodonts from the St. Clair Limestone (Silurian) of southern Illinois. *Journal of Paleontology*, vol. 50, no. 2, p. 205–217.
- Cramer, B.D., Brett, C.E., Melchin, M.J., Männik, P., Kleffner, M.A., McLaughlin, P.I., Loydell, D.K., Munnecke, A., Jeppsson, L., Corradini, C., Brunton, F.R., and Saltzman, M.R., 2010**, Revised correlation of Silurian provincial series of North America with global and regional chronostratigraphic units and $\delta^{13}\text{C}_{\text{carb}}$ chemostratigraphy. *Lethaia*, vol. 44, p. 185–202.
- Holland, C.H., 1982**, The state of Silurian stratigraphy. *Episodes*, vol. 5, no. 2, p. 21–23.
- Holland, C.H., 1985**, Series and stages of the Silurian System. *Episodes*, vol. 8, no. 2, p. 101–103.
- Liebe, R.M., and Rexroad, C.B., 1977**, Conodonts from Alexandrian and early Niagaran rocks in the Joliet, Illinois area. *Journal of Paleontology*, vol. 51, no. 4, p. 844–857.
- Kleffner, M.A., 1989**, A conodont-based Silurian chronostratigraphy. *Geological Society of America Bulletin*, vol. 101, p. 904–912.
- McAdams, N.E.B., Cramer, B.D., Bancroft, A.M., Melchin, M.J., Devera, J.A., and Day, J.E., 2019**, Integrated $\delta^{13}\text{C}_{\text{carb}}$, conodont, and graptolite biochemostratigraphy of the Silurian from the Illinois basin and stratigraphic revision of the Bainbridge Group. *Geological Society of America Bulletin*, vol. 131, no. 1-2, p. 335–352.
- McCracken, A.D., and Barnes, C.R., 1982**, Restudy of conodonts (Late Ordovician–Early Silurian) from the Edgewood Group, Clarksville, Missouri. *Canadian Journal of Earth Sciences*, vol. 19, p. 1474–1485.
- Rexroad, C.B., 1980**, Stratigraphy and conodont paleontology of the Cataract Formation and the Salamonie Dolomite (Silurian) in northeastern Indiana. *Indiana Department of Natural Resources, Geological Survey Bulletin* 58, 83 p.
- Rexroad, C.B., and Craig, W.W., 1971**, Restudy of conodonts from the Bainbridge Formation (Silurian) at Lithium, Missouri. *Journal of Paleontology*, vol. 45, no. 4, p. 684–703.

Rexroad, C.B., and Droste, J.B., 1982, Stratigraphy and conodont paleontology of the Sexton Creek Limestone and Salamonie Dolomite (Silurian) in northwestern Indiana. Indiana Department of Natural Resources, Geological Survey Special Report 25, 29 p.

Satterfield, I.R., and Thompson, T.L., 1969, Phosphatic inarticulate brachiopods from the Bainbridge Formation (Silurian) of Missouri and Illinois. *Journal of Paleontology*, vol. 43, no. 4, p. 1042–1044.

Satterfield, I.R., and Thompson, T.L., 1975, Seventy-six Shale, a new member of the Bainbridge Formation (Silurian) in southeastern Missouri, *in* Studies in Stratigraphy, Part 3. Missouri Department of Natural Resources, Division of Research & Technical Information, Report of Investigations 57, p. 109–120.

Thompson, T.L., 1993, Paleozoic succession in Missouri—Silurian and Devonian Systems. Missouri Department of Natural Resources, Division of Geology and Land Survey, Report of Investigations 70, Part 3, 228 p.

Thompson, T.L., and Satterfield, I.R., 1975, Stratigraphy and conodont biostratigraphy of strata contiguous to the Ordovician-Silurian boundary in eastern Missouri., *in* Studies in Stratigraphy, Part 2. Missouri Department of Natural Resources, Division of Research & Technical Information, Report of Investigations 57, p. 61–108.

Ordovician

Amsden, T.W., and Barrick, J.E., 1986, Late Ordovician-Early Silurian strata in the central United States and the Hirnantian Stage. *Oklahoma Geological Survey Bulletin* 139, 95 p.

Andrews, H.E., 1967, Middle Ordovician conodonts from the Joachim Dolomite of eastern Missouri. *Journal of Paleontology*, vol. 41, no. 4, p. 881–901.

Barnes, C.R., and Bergström, S.M., 1988, Conodont biostratigraphy of the uppermost Ordovician and lowermost Silurian. *Bulletin of the British Museum of Natural History (Geology)*, vol. 43, p. 325–343.

Bergström, S.M., and Boucot, A.J., 1988, The Ordovician-Silurian boundary in the United States. *Bulletin of the British Museum of Natural History (Geology)*, vol. 43, p. 273–284.

Bergström, S.M., and Ferretti, A., 2017, Conodonts in Ordovician biostratigraphy. *Lethaia*, vol. 50, p. 424–439.

Bergström, S.M., Finney, S.C., Xu, C., Pålsson, C., Zhi-hao, W., and Grahn, Y., 2000, A proposed global boundary stratotype for the base of the Upper Series of the Ordovician System: The Fågelsång section, Scania, southern Sweden. *Episodes*, vol. 23, no. 2, p. 102–109.

Bergström, S.M., and Leslie, S.A., 2010, The Ordovician zone index conodont *Amorphognathus ordovicicus* Branson & Mehl, 1933, from its type locality and the evolution of the genus *Amorphognathus* Branson & Mehl, 1933. *Journal of Micropalaeontology*, vol. 29, p. 73–80.

Bergström, S.M., Löfgren, A., and Maletz, J., 2004, The GSSP of the second (upper) stage of the Lower Ordovician Series: Diabasbrottet at Hunneberg, Province of Västergötland southwestern Sweden. *Episodes*, vol. 27, no. 4, p. 265–272.

Bergström, S.M., Saltzman, M.M., and Schmitz, B., 2006, First record of the Hirnantian (Upper Ordovician) $\delta^{13}\text{C}$ excursion in the North American Midcontinent and its regional implications. *Geology Magazine*, vol. 143, no. 5, p. 657–678.

Chapman, K.R., 1984, Conodonts from the Lower Ordovician of central Missouri. Thesis, University of Missouri, Columbia, 74 p.

Chen, X., Bergstrom, S.M., Zhang, Y., and Fan, J., 2009, The base of the Middle Ordovician in China with reference to the succession at Hengtang near Jiangshan, Zhejiang Province, southern China. *Lethaia*, vol. 42, p. 218–231.

Chen, X., Rong, J., Fan, J., Zhan, R., Mitchell, C.E., Harper, D.A.T., Melchin, M.J., Ping'an, P., Finney, S.C., and Wang, X., 2006, The global boundary stratotype section and point (GSSP) for the

- base of the Hirnantian Stage (the uppermost of the Ordovician System). *Episodes*, vol. 29, no. 3, p. 183–196.
- Clegg-Riley, C., 2005**, Conodont biostratigraphy of the Lower Ordovician Cotter and Powell Dolomite transition in the Ozark region of north-central Arkansas. Thesis, University of Arkansas, Little Rock, 159 p.
- Cooper, R.A., Nowlan, G.S., and Williams, S.H., 2011**, Global stratotype section and point for base of the Ordovician System. *Episodes*, vol. 24, no. 1, p. 19–28.
- Dew, M.M., 1987**, Spatial distribution of conodonts in the Decorah formation near Barnhart, Missouri. Thesis, University of Missouri, Columbia, 51 p.
- Ethington, R.L., Repetski, J.E., and Derby, J.R., 2012**, Ordovician of the Sauk Megasequence in the Ozark region of northern Arkansas and parts of Missouri and adjacent states, *in* Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, A.W., and Sternbach, C.A., eds., The great American carbonate bank: The geology and economic resources of the Cambrian-Ordovician Sauk Megasequence of Laurentia. Association of Petroleum Geologists Memoir 98, p.275–300.
- Fagerlin, S.C., 1980**, Lower Ordovician conodonts from the Jefferson City formation of Missouri. Dissertation, University of Missouri, Columbia, 103 p.
- Glassinger, C.L., 1972**, A statistical analysis of the Middle Ordovician conodonts of the Kimmswick Limestone of eastern Missouri. Thesis, University of Missouri, Columbia, 112 p.
- Golden, J.B., 1969**, Lower Middle Ordovician conodonts from the Everton Formation of northern Arkansas and southeastern Missouri. Thesis, University of Missouri, Columbia, 94 p.
- Goldman, D., Leslie, S.A., Nölvak, J., Young, S., Bergstrom, S.M., and Huff, W.D., 2007**, The global stratotype section and point (GSSP) for the base of the Katian Stage of the Upper Ordovician Series at Black Knob Ridge, southeastern Oklahoma, USA. *Episodes*, vol. 30, no. 4, p. 258–270.
- Hardy, R.P., 1946**, Conodonts from the Fernvale of eastern Missouri. Thesis, University of Missouri, Columbia, 109 p.
- Kennedy, D.J., 1980**, A restudy of conodonts described by Branson & Mehl, 1933, from the Jefferson City formation, Lower Ordovician, Missouri. *Geologica et Palaeontologica*, vol. 14, p. 45–76.
- Kurtz, V.E., 1981**, The Cambrian-Ordovician boundary in Missouri as determined by conodonts, *in* Taylor, M.E., ed., Short papers for the Second International Symposium on the Cambrian System. U.S. Geological Survey Open-File Report, 81-743, p. 115–117.
- Leslie, S.A., 2000**, Mohawkian (Upper Ordovician) conodonts of eastern North America and Baltoscandia. *Journal of Paleontology*, vol. 74, no. 6, p. 1122–1147.
- McCracken, A.D., and Barnes, C.R., 1982**, Restudy of conodonts (Late Ordovician–Early Silurian) from the Edgewood group, Clarksville, Missouri. *Canadian Journal of Earth Sciences*, vol. 19, 1474–1485.
- Moore, A.H., 1970**, Lower Ordovician conodonts from the upper Jefferson City formation of central and eastern Missouri. Thesis, University of Missouri, Columbia, 114 p.
- Repetski, J.E., 1973**, The conodont fauna of the Dutchtown Formation (Middle Ordovician) of southeast Missouri. Thesis, University of Missouri, Columbia, 182 p.
- Repetski, J.E., and Ethington, R.L., 2010**, Conodonts and biostratigraphy of the Gunter Sandstone Member of the Gasconade formation in southern Missouri. *Geological Society of America Abstracts with Programs*, vol. 42, no. 2, p. 48.
- Repetski, J.E., Ethington, R.L., Furnish, W.M., and Kennedy, D.J., 1993**, Conodonts from the Oneota and Gasconade Dolomites (Lower Ordovician) of the central Midcontinent, U.S.A. *Geological Society of America Abstracts with Programs, North-Central Section*, vol. 25, no. 3, p. 74–75.

- Repetski, J.E., Loch, J.D., and Ethington, R.L., 1998**, Conodonts and biostratigraphy of the Lower Ordovician Roubidoux Formation in and near the Ozark National Scenic Riverways, southeastern MO, *in* Santucci, V.L., and McClelland, L., eds., National Park Service Paleontological Research, Technical Report NPS/NRGRD.GRDTR-98/01, Geological Resources Division, Lakewood, Colorado, p. 109–115.
- Repetski, J.E., Loch, J.D., Ethington, R.L., and Dresbach, R.L., 2000**, A preliminary reevaluation of the stratigraphy of the Roubidoux Formation of Missouri and correlative Lower Ordovician units in the southern Midcontinent, *in* Johnson, K.S., ed., Platform carbonates in the southern Midcontinent, 1996 symposium. Oklahoma Geological Survey Circular 101, p. 103–106.
- Repetski, J.E., Orndorff, R.C., Weary, D.J., and Ethington, R.L., 2000**, Conodont biostratigraphy of the Eminence Dolomite-Gasconade Dolomite contact interval in the Missouri Ozarks. Geological Society of America Abstracts with Programs, vol. 32, no. 3, p. 39–40.
- Rexroad, C.B., Droste, J.B., and Ethington, R.L., 1982**, Conodonts from the Everton dolomite and the St. Peter Sandstone (lower Middle Ordovician) in a core from southwestern Indiana. Indiana Department of Natural Resources, Geological Survey Occasional Paper 39, 11 p.
- Ross, R.J., Jr., Adler, F.J., Amsden, T.W., Bergstrom, D., Bergström, S.M., Carter, C., Churkin, M., Cressman, E.A., Derby, J.R., Dutro, J.T., Ethington, R.L., Finney S.C., Fisher, D.W., Fisher, J.H., Harris, A.G., Hintze, L.F., Ketner, K.B., Kolata, D.L., Landing, E., Neuman, R.B., Sweet, W.C., Pojeta, J., Jr., Potter, A.W., Rader, E.K., Repetski, J.E., Shaver, R.H., Thompson, T.L., and Webers, G.F., 1982**, The Ordovician System in the United States. International Union of Geological Sciences, Publication No. 12, 73 p.
- Ryan, W.A., Jr., 1940**, The conodonts from the Jefferson City formation (Lower Ordovician) of Missouri. Thesis, University of Missouri, Columbia, 67 p.
- Satterfield, I.R., 1971**, Conodonts and stratigraphy of the Girardeau Limestone (Ordovician) of southeast Missouri and southwest Illinois. Journal of Paleontology, vol. 45, no. 2, p. 265–273.
- Strothmann, F.H., 1940**, Conodonts from the Kimmswick of eastern Missouri. Thesis, University of Missouri, Columbia, 74 p.
- Sweet, W.C., 1984**, Graphic correlation of upper Middle and Upper Ordovician rocks, North American Midcontinent Province, U.S.A., *in* Brutun, D., ed., Aspects of the Ordovician System. University of Oslo, Palaeontological Contributions No. 295, p. 23–35.
- Sweet, W.C., Thompson, T.L., and Satterfield, I.R., 1975**, Conodont stratigraphy of the Cape Limestone (Maysvillian) of eastern Missouri, *in* Studies in Stratigraphy, Part 1. Missouri Department of Natural Resources, Division of Research & Technical Information, Report of Investigations 57, p. 1–60.
- Thompson, T.L., 1991**, Paleozoic succession in Missouri—Ordovician System. Missouri Department of Natural Resources, Division of Geology and Land Survey, Report of Investigations 70, Part 2, 282 p.
- Thompson, T.L., and Satterfield, I.R., 1975**, Stratigraphy and conodont biostratigraphy of strata contiguous to the Ordovician-Silurian boundary in eastern Missouri, *in* Studies in Stratigraphy Part 2. Missouri Department of Natural Resources, Division of Research & Technical Information, Report of Investigations 57, p. 61–108.
- Wang, X., Stouge, S., Erdtmann, B., Chen, X., Li, Z., Wang, C., Zeng, Q., Zhou, Z., and Chen, H., 2005**, A proposed GSSP for the base of the Middle Ordovician Series: the Huanghuachang section, Yochang, China. Episodes, vol. 28, no. 2, p. 105–117.
- Witzke, B.J., and Metzger, R.A., 2005**, Ordovician conodonts and stratigraphy of the St. Peter Sandstone and Glenwood Shale, central United States. Bulletins of American Paleontology, no. 368, p. 53–91.

Cambrian

- Cooper, R.A., Nowlan, G.S., and Williams, S.H., 2011**, Global stratotype section and point for base of the Ordovician System. Episodes, vol. 24, no. 1, p. 19–28.

Kurtz, V.E., 1981, The Cambrian-Ordovician boundary in Missouri as determined by conodonts, *in* Taylor, M.E., ed., Short papers for the Second International Symposium on the Cambrian System. U.S. Geological Survey Open-File Report, 81-743, p. 115–117.

Mulvany, P.S., and Thompson, T.L., editors, 2013, Paleozoic succession in Missouri—Cambrian System. Missouri Department of Natural Resources, Missouri Geological Survey, Report of Investigations 70, Part 1, Revised, 266 p.

Repetski, J.E., Orndorff, R.C., Weary, D.J., and Ethington, R.L., 2000, Conodont biostratigraphy of the Eminence Dolomite-Gasconade Dolomite contact interval in the Missouri Ozarks. Geological Society of America Abstracts with Programs, vol. 32, no. 3, p. 39–40.

Proterozoic

Berry, A.W., Jr., 1976, Proposed stratigraphic column for Precambrian volcanic rocks, western St. Francois Mountains, Missouri, *in* Kisvarsanyi, E.B., ed., Studies in Precambrian geology with a guide to selected parts of the St. Francois Mountains, Missouri. Missouri Department of Natural Resources, Division of Geology and Land Survey, Report of Investigations 61 = Contribution to Precambrian Geology 6, p. 81–90.

Lori, L.M., 2019 in progress, Exposed Proterozoic rocks in Arcadia Valley, Iron and St. Francois Counties, Missouri, map.

Nusbaum, R.L., 1987, Recognition of a Proterozoic cauldron boundary in southeastern Missouri: Southeastern Geology, vol. 27, no. 4, p. 219–227.

Sides, J.R., 1981, Geology of the Ketcherside Mountain area, southeastern Missouri, and the source of Grassy Mountain Ignimbrite. Geological Society of America Bulletin 92 Part I, p. 686–693.

Sides, J.R., Bickford, M.E., Shuster R.D., and Nusbaum, R.L., 1981, Calderas in the Precambrian terrane of the St. Francois Mountains, southeastern Missouri. Journal of Geophysical Research, B, Solid Earth and Planets, vol. 86, no. 11, p. 10,349–10,364.

Tolman, C.F., and Robertson, F., 1969, Exposed Precambrian rocks in southeast Missouri. Missouri Geological Survey and Water Resources, Report of Investigations 44 = Contribution to Precambrian Geology 1, 68 p.