Robot Training - Projeto Ararajuba

Breno Pinheiro de Meneses Gabriel Henrique Vasconcelos da Silva Marina Oliveira Batista

Universidade Federal de Campina Grande - UFCG Centro de Engenharia Elétrica e Informática - CEEI Departamento de Engenharia Elétrica - DEE

2 de Junho de 2022

Objetivos

Associação de Sensores

- Filtragem dos dados da odometria com base no IMU
- Utilização da odometria com o LiDAR por meio do Laser Scan Matcher
- Implementação de um mundo arbitrário
- Detecção de objetos por cor com a câmera

- Filtragem dos dados da odometria com base no IMU
 - Implementação de um Filtro Estendido de Kalman
 - Foi usado o pacote Robot_pose_ekf
 - Pacote padrão ROS para tal aplicação
 - O pacote tem como entrada dados de odometria e imu

Figura 1: Dados obtidos por meio da implementação do EKF utilizando Odometria e IMU - Pequeno desvio de rota

Figura 2: Dados obtidos por meio da implementação do EKF utilizando Odometria e IMU- Obstrução de rota

- Utilização de sensores extroceptivos para odometria
 - LiDAR
 - Criação de um mundo
- Pacote: Laser Scan Matcher
 - Predição de varredura: IMU e Odometria de roda
- Tópico: /pose2D

Figura 3: Visualização no RVIZ e Gazebo do mapa arbitrário implementado

Figura 4: Dados obtidos por meio da implementação da Odometria do LiDAR com predição do IMU

Figura 5: Dados obtidos por meio da implementação da Odometria do LiDAR

- Detecção de objetos por cor com a câmera RGB
 - Código teste feito em Python
 - Interface ROS OpenCV (CV_Bridge)
 - Pacote do ROS que fornece uma interface entre o ROS e o OpenCV
 - Localização do objeto encontrado (x,y)

Figura 6: Detecção de objeto de cor amarela e a publicação da posição (x,y).

Dúvidas

Redundância de sensores

- Odometria como uma das entradas do Laser Scan Matcher
- Inclusão da estimativa gerada por meio do EKF como odometria
- Redundância do uso do IMU no EKF e no Laser Scan Matcher

Próximos Passos

Associação de Sensores

- Avaliar o uso da posição estimada do EKF juntamente com a estimação do Laser Scan Matcher
- Definição e detecção de marcadores específicos
- Correspondência de mapa por meio do LiDAR

Cronograma

- Início da Semana 1: 12 de maio de 2022
- Final da Semana 9: 14 de julho de 2022

	Semanas								
Etapas	1	2	3	4	5	6	7	8	9
1	Х								
2		Х	Х						
3			X	Х	Х				
4					Х	Х			
5						Х	Х		
6							Х	Х	Х

Obrigado!

Breno Pinheiro de Meneses Gabriel Henrique Vasconcelos da Silva Marina Oliveira Batista

Universidade Federal de Campina Grande - UFCG Centro de Engenharia Elétrica e Informática - CEEI Departamento de Engenharia Elétrica - DEE

2 de Junho de 2022

breno.meneses@ee.ufcg.edu.br
gabriel.vasconcelos@ee.ufcg.edu.br
marina.batista@ee.ufcg.edu.br

