## **Team Members:**

Moonis Javed (50208261, moonisja) Surabhi Singh Ludu (50207139, sludu)

## **Activity 1:**

Step 1: Use the following command to run the vignette file

spark-submit vignette.py

## **Activity 2:**

Step 1: Use the following command to start hadoop on virtual machine

Start-hadoop.sh

**Step 2:** Place "la.lexicon.csv" in the current working directory in Virtual Machine where you'll run your code.

Step 3: Use following command to put input files into the hadoop file system

hdfs dfs -put <input\_folder\_name>

**Step 4:** Use this command to run the co-occurrence with two-gram and three-gram

spark-submit cooccurence.py <input\_folder\_name> <output\_folder\_name> <value of n>

[eg: spark\_submit cooccurence.py sample\_input sample\_output 2] (for two gram) [eg: spark\_submit cooccurence.py sample\_input sample\_output 3] (for three gran)

**Step 5:** Use this command to get the output folder hdfs dfs -get <output\_folder\_name>

**Step 6:** Repeat step 1-3 multiple times for two-gram and three-gram for different number of files from 2 to 50 (50 was the maximum number of files my system could support with Three-gram), and record values

**Step 7:** Put the recorded values in a data frame in "Lab5\_PlotForFeaturedActivity.ipynb" and run the file to plot graph.

## **Inference**



From this plot we can infer that tri-gram co-occurrence is not scalable with increasing number of files, as, the run time is increasing exponentially, and goes as high as 31 minutes with only 50 files.

Bi-gram co-occurrence on the other hand is quite scalable, we were able to process 300 files even with a run time of 11 minutes approximately.

