《离散数学》期末考试题(A)参考答案

 $- \cdot 1. \quad A \cup B = \{\{a\}, \quad \{a,b\}, \quad \{b,c\}, \quad \{c\}\}, \quad A \cap B = \{\{c\}\}, \quad P(A) = \{\emptyset, \{\{a,b\}\}, \{\{c\}\}, \{\{a,b\}, \{c\}\}\}.$

$$2.3^3,3^9,3^{27}$$
.

$$3.(p \lor q) \downarrow 0.$$

5.9.

 \Box , 1(C); 2(B); 3(A); 4(C); 5(D).

 \equiv , $1(\times)$; $2(\sqrt{})$; $3(\times)$; $4(\times)$; $5(\sqrt{})$.

四、证 对于任意 $(x,y) \in (A-B) \times (C-D)$,有 $x \in A-B$ 且 $y \in C-D$,于是 $x \in A, x \notin B$

且 $y \in C, y \notin D$, 进而 $(x,y) \in A \times C, (x,y) \notin B \times D$, 因此 $(x,y) \in (A \times C) - (B \times D)$, 所

例 如 取 $A=B=\{a,b\}, C=\{c\}, D=\{d\}$, 这 时 $A-B=\varnothing$, 进 而 $(A-B)\times(C-D)=\varnothing$,而

$$(A \times C) - (B \times D) = \{(a,c),(b,c)\} - \{(a,d),(b,d)\} = \{(a,c),(b,c)\},\$$

故
$$(A-B)\times(C-D)\neq(A\times C)-(B\times D)$$
.

五、证 1.对于任意 $x \in \mathbb{N}$,由于 x + x = 2x 是偶数,于是 $(x,x) \in R$,因此 R 是 \mathbb{N} 上的自反 关系.

对于任意 $x,y\in\mathbb{N}$,若 $(x,y)\in R$,则 x+y 是偶数,即 y+x 是偶数,于是 $(y,x)\in R$,因此 R 是 \mathbb{N} 上的对称关系.

对于任意 $x,y,z\in\mathbb{N}$,若 $(x,y)\in R$ 且 $(y,z)\in R$,则 x+y 是偶数且 y+z 是偶数,于 是 x+z=(x+y)+(y+z)-2y 是偶数,进而 $(x,z)\in R$,因此 R 是 \mathbb{N} 上的传递关系.

综上所述,R是N上的等价关系.

2. N 关于等价关系 R 的所有等价类为 $[0]_R = \{0,2,4,6,...\}$ 和 $[1]_R = \{1,3,5,7,...\}$.

3.令
$$f: N \to N, f(x) = \begin{cases} 0, x \in \mathbb{A} \\ 1, x \in \mathbb{A} \end{cases}$$
, 显然 $R = \{(x, y) \mid x, y \in N, f(x) = f(y)\}$.

六、证 令N(x):x是自然数,Z(x):x是整数,则

前提: $\exists x N(x), \forall x (N(x) \rightarrow Z(x))$

结论: $\exists x Z(x)$

构造性证明如下:

$$(1)\exists xN(x)$$
 P

$$(2) N(c) ES(1)$$

$$(3) \forall x (N(x) \rightarrow Z(x))$$

$$(4) N(c) \rightarrow Z(c)$$
 US(3)

(5)
$$Z(c)$$
 $T(2)(4)I$

(6)
$$\exists x Z(x)$$
 EG(5)

七、**证** (1)对于任意 (a,b), $(c,d) \in G$,有 $a,c \neq 0$,进而 $ac \neq 0$,于是 $(ac,ad+b) \in G$,即 "·"是 G上的代数(封闭)运算.

(2)结合律 对于任意 $(a,b),(c,d),(e,f) \in G$,一方面有

$$((a,b)\cdot(c,d))\cdot(e,f) = (ac,ad+b)\cdot(e,f)$$

$$=(ace, ac \cdot f + (ad + b)) = (ace, acf + ad + b),$$

另一方面有

$$(a,b) \cdot ((c,d) \cdot (e,f)) = (a,b) \cdot (ce,cf+d) = (ace,a(cf+d)+b)$$

$$= (ace, acf + ad + b),$$

于是 $((a,b)\cdot(c,d))\cdot(e,f)=(a,b)\cdot((c,d)\cdot(e,f))$.

(3)单位元为(1,0) 对于任意 $(a,b) \in G$,由于

$$(1,0)\cdot(a,b)=(a,b+0)=(a,b)$$
且 $(a,b)\cdot(1,0)=(a,a0+b)=(a,b)$,于是 $(1,0)$ 是单位元.

(4)每元素均存在逆元 对于任意
$$(a,b) \in G$$
,因为 $\left(\frac{1}{a}, -\frac{b}{a}\right) \in G$ 且

$$(a,b)\cdot\left(\frac{1}{a},-\frac{b}{a}\right) = \left(a\cdot\frac{1}{a},a\cdot\left(-\frac{b}{a}\right)+b\right) = (1,0), \overline{m}$$

$$\left(\frac{1}{a}, -\frac{b}{a}\right) \cdot (a,b) = \left(\frac{1}{a} \cdot a, \frac{1}{a} \cdot b + \left(-\frac{b}{a}\right)\right) = (1,0) ,$$

所以,G中每元素均有逆元.

(5)由于 $(1,2)\cdot(2,1)=(2,3)$ 且 $(2,1)\cdot(1,2)=(2,5)$,即 $(1,2)\cdot(2,1)\neq(2,1)\cdot(1,2)$,因而"·"不可交换.

综上所述, (G,\cdot) 是非 Abel 群.

八、**证**(反证) 设G是不连通的,则G有 $k(k \ge 2)$ 个连通分支 $G_1, G_2, ..., G_k$. 对于任意 $i(1 \le i \le k)$,令 G_i 是 (n_i, m_i) 图.

若存在 $j(1 \le j \le k)$ 使得 $n_j = 1$,则另外 6 个节点所生成的子图恰 15 条边. 由于 G 是简单图, K_6 的边数为 15,即 G 中含 K_6 子图. 显然, K_6 不是平面图,这与已知 G 是平面图矛盾.

若存在 $j(1 \le j \le k)$ 使得 $n_j = 2$,则另外 5 个节点所生成的子图恰 14 条边,这不可能,因为 K_5 的边数恰为 10.

于是 $n_j \geq 3$, j=1,2,...,k,因此对于每个连通分支有 $m_i \leq 3n_i - 6(1 \leq j \leq k)$,进而 $m = \sum_{i=1}^k m_i \leq \sum_{i=1}^k (3n_i - 6) = 3\sum_{i=1}^k n_i - 6k = 3n - 6k \quad . \quad \text{因 为} \quad n = 7, m = 15 \quad , \quad \text{所 以}$ $15 \leq 3 \cdot 7 - 6k$,由此得出 $k \leq 1$,与 $k \geq 2$ 矛盾.故 G 是连通图.