# **Ukraine Brain Drain:**

# **Exploring Factors and Methods**

Allison Moore

STAT 692: Statistical Consulting

Texas A&M University

April 18, 2024

# Table of Contents

| Background                                  | 3   |
|---------------------------------------------|-----|
| The Data and Methodology                    | 4   |
| Step 1: Gather, Clean, and Explore the Data | 4   |
| Step 2: Statistical Analysis                | 5   |
| Step 3: Inference Model                     | 6   |
| Step 4: Results and Conclusions             | 6   |
| Results and Discussion                      | 7   |
| Spatial Results                             | 7   |
| Temporal Results.                           | 8   |
| Multivariate Results.                       | 10  |
| Inference Models                            | 12  |
| Expanded Discussion                         | 13  |
| Conclusion                                  | 13  |
| Bibliography                                | 16  |
| Appendix A: List of Variables               | A-1 |
| Appendix B: Exploratory Data Analysis       | B-1 |
| Appendix C: Spatial Analysis                | C-1 |
| Appendix D: Temporal Analysis               | D-1 |
| Appendix E: Multivariate Analysis           | E-1 |
| Appendix F: Inference Models                | F-1 |

## **Background**

For the last 43 years, Client International Agency, Inc. (CIAI) has provided NATO leaders and decisions makers with high quality geopolitical analysis in key problem areas. With the recent increase in Russian aggression in Ukraine, CIAI has begun initial consideration of the Ukrainian brain drain problem. Originally coined in 1963 by the British Royal Society, *Brain Drain* is the emigration of scientists and other 'academic brains' (p. 363). Since 1963, social scientists have considered the implications of brain drain on the sending state (the emigrant's original country), with an overwhelming majority of case studies focusing on third world countries. However, little is known about what factors motivate Ukrainian emigrants to seek out specific areas within Europe.

This paper aims to provide CIAI personnel with a more wholistic understanding of the potential analytical methods and variables that should be used in their future research and analysis addressing Ukrainian emigration. Having a better understanding of the limitations and concerns associated with the Ukrainian brain drain use case will provide CIAI with the ability to assist decision makers more efficiently and with greater efficacy. Below, I will discuss the data and methodology used in this study, with the primary response variable being the number of Ukrainian emigrants, normalized by state population within Germany. Then I will provide key results and an expanded discussion of these results. Finally, I will conclude the paper with recommendations and future research opportunities that may be advantageous to CIAI.

## The Data and Methodology

International Relations (IR) analysis typically takes place at any of three levels: the International System, the state (read as 'country'), or the individual level. To prevent confusion within this study, I will use 'country' to represent the state level of analysis and 'state' to refer to the individual states located inside of Germany. To gain the most insight about the aspects that impact and result from Ukrainian brain drain, I establish a concise, four-step methodology that spans across the system and country levels of analysis. Figure 1 summarizes the four steps used- which are discussed in detail below.



**Figure 1**. The six-step methodology for this study. The first steps is the most important for ensuring that quality analysis can be conducted in steps 2 through 4. I implemented manual quality control steps throughout the study.

Step 1: Gather, Clean, and Explore the Data. The first step revolves around identifying, acquiring, and understanding the data necessary for the analysis. Table 1 lists the variables used in the final analysis and acts as a quick reference tool as you review this report. Data at the country level is limited to 2005-2021 due to lack of data availability- or reliability- outside this range. After retrieving the data, I combined the variables into a machine-readable format (.csv) and checked the data for missing values. Appendix A contains the complete list of all variables that were used, and the methods used to modify values or fill in any missing values contained in the original data.

|         | Variable | Representation                                                       | Manipulation                                 | Source                                                  |  |  |
|---------|----------|----------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|--|--|
| Europe  | UkPop    | Number of foreign-born Ukrainians in the specified country           | Set Ukraine to 0                             | United Nations Statistics Division                      |  |  |
|         | State    | The specific geographical states within Germany                      | Factorized                                   | Federal Statistical Office Destatis                     |  |  |
|         | Year     | Year of measurement (2005-2021)                                      | None                                         | None                                                    |  |  |
|         | CPI      | Consumer Price Index                                                 | Per Capita normalization                     | Federal Statistical Office Destatis                     |  |  |
|         | ICTPC    | Information, Communication, and Technology industry value            | Per Capita normalization                     | Federal Statistical Office Destatis                     |  |  |
| Germany | UkPopPC  | Number of foreign-born Ukrainians in the specified<br>German state   | Per Capita normalization                     | Federal and State Statistical Office                    |  |  |
| Geri    | PATPC    | Number of patents for the specified German state and year            | Per Capita normalization                     | Federal Statistical Office Destatis                     |  |  |
|         | DeathT   | Total sum of military and civilian deaths in Ukraine during conflict | Sum across all categories                    | Uppsala Universitet Department of<br>Peace and Conflict |  |  |
|         | EXAvg    | Average number passing final degree exams                            | Average across all genders and nationalities | Federal Statistical Office Destatis                     |  |  |
|         | LFEX     | Average life expectancy of all German state citizens                 | Average across genders                       | Federal Statistical Office Destatis                     |  |  |

**Table 1**. The list of variables that were used in the final analysis. Variables will be referred to using their shorthand form in the 'Variable' column. Refer to Appendix A for the complete list of variables used throughout the study.

Next, I conducted Exploratory Data Analysis (EDA), which is a process to understand the limitations of and the underlying relationships within the data collected. The EDA process also assists in identifying which independent variables should be included. I select Germany for country level analysis during this step. Appendix B details the EDA process, identified limitations, and describes how I mitigated these limitations in later analysis. Although most variables do not follow a normal distribution, I do not use any data transformations in the final analysis or inference model, as maintaining interpretability is important to CIAI. Python version 3.11.4 was used during the EDA process.

Step 2: Statistical Analysis. Following EDA, I conduct simple statistical analyses using R, version 4.3.1. This consists of spatial, temporal, and multivariate analyses. This step is extremely important because the presence of correlation within the data can lead to conclusions that are

inaccurate. Identifying and accounting for correlation is integral to the integrity of the results when precision is required.

Spatial analysis is done through the use of proximity matrices and Moran's I test for spatial autocorrelation, which are discussed in detail in <u>Appendix C</u>. Temporal analysis is done using autocorrelation functions (ACFs) for individual variables, and vector autoregression for multivariate temporal correlations. Temporal analysis is described in <u>Appendix D</u>. Lastly, multivariate analysis consists of Kruskal Wallis tests, backward step multivariate regression models, and backward step generalized least squares models which incorporate temporal autocorrelation. These are detailed in Appendix E.

Step 3: Inference Models. To provide CIAI with predictive capabilities, I utilized random forest regression trees. This type of inference model leverages numerous cross-validated iterations to reduce error and minimize variance in the final result. I selected random forest because tree-based inference models retain a high level of interpretability- which was noted to be of great importance to CIAI. Appendix F contains the full inference model results.

Step 4: Results and Conclusions. After all analysis and inference modeling has been summarized, I provide a discussion on my findings and recommendations. This report is intended to provide the most important "take aways." For detailed technical information regarding analysis and results, please refer to the appropriate appendices. Because this is an exploratory study, I used several statistical methods to analyze the data.

Compounding this aspect, within the IR domain, it is inherently difficult to identify causation.

Therefore, many of the conclusions in this study are overarching and are geared towards identifying potential solutions for future analysis.

#### **Results and Discussion**

Throughout the analysis, I use a p-value of 0.05 as the primary demarcation to reject a null hypothesis. However, I highlight three levels of significance: 0.01, 0.05, and 0.1; this is to provide CIAI with the ability to assume more- or less- risk in the interpretations of this study.

Spatial Results. Spatial analysis was conducted for Europe and Germany using the two proximity matrices that were developed. This analysis used Moran's I test for spatial autocorrelation to test if a variable is representative of a spatial random process. Table 2 shows the most valuable information from this analysis. At the international level, Ukrainian population is highly significantly-positively correlated. This means that Ukrainian emigrants tend to cluster around the same areas within Europe. This clustering could potentially be the result of social network obligations (e.g., family, friends, religious groups, etc.), or cultural similarities present in the receiving states. The p-value for Germany's Ukrainian distribution is too large to reject the null hypothesis for Moran's I test; thus, I conclude that the distribution of Ukrainian emigrants across Germany is a random spatial process. Appendix C contains a detailed explanation of Moran's I test and an in-depth analysis of each variable used in the study.

|         | Region  | Standard Deviate | p-value   |
|---------|---------|------------------|-----------|
| UkPop   | Europe  | 2.6400           | 0.0041*** |
| UkPopPC | Germany | -0.0063          | 0.5025    |
| PATPC   | Germany | 2.1348           | 0.0164 ** |
| СРІ     | Germany | 2.3263           | 0.0100*** |
| ICTPC   | Germany | 0.9679           | 0.1665    |
| EXAvg   | Germany | 1.3008           | 0.0967*   |
| LFEX    | Germany | 2.1826           | 0.0145**  |

Level of significance: \*\*\* 0.01 \*\* 0.05 \*0.10

**Table 2.** Results for spatial autocorrelation of Ukrainian emigrants across Europe and Germany. The p-value for Europe is highly significant, which allows me to reject the null hypothesis and conclude that there is positive spatial correlation present. For Germany, the p-value is too large to reject the null, thus I conclude that the distribution of Ukrainians in Germany is a spatially random process. Of note, PATPC, CPI, and LFEX also indicate the presence of positive spatial correlation (clustering).

Because there is spatial autocorrelation present in PATPC, CPI, and LFEX, I developed individual models at the state level. This removed the spatial component from the data all together and allowed me to provide more accurate models that are unique to the specific states within Germany. Next, I consider the temporal aspects of the data, as the data span the years 2005-2021.

<u>Temporal Results.</u> Data for the entirety of Europe was only used for spatial analysis and for guiding selection of an ideal country for the country level of analysis. Thus, temporal analysis was conducted only for the 16 states of Germany.

First, I plotted an autocorrelation function (ACF) for each state-variable combination.

These are shown in <u>Appendix D</u>, Figure D-1. All state-variable combinations indicated either no temporal correlation, or an autoregressive (AR) type temporal correlation. To verify this visual inspection, each state-variable item was iteratively fit to AR models varying from order 0 to 5

(i.e., six different models were used from no temporal correlation to temporal dependence on the last 1-5 years). Table 3 shows the results from this iterative process.

|                               | CPI   | ICTPC | UkPopPC | PATPC | EXAvg | LFEX  | DeathT |
|-------------------------------|-------|-------|---------|-------|-------|-------|--------|
| Baden Wurttemberg             | AR(2) | AR(2) | AR(4)   | NONE  | NONE  | NONE  |        |
| Bayern                        | AR(2) | NONE  | AR(3)   | AR(2) | NONE  | NONE  |        |
| Berlin                        | AR(4) | AR(3) | AR(4)   | NONE  | NONE  | NONE  |        |
| Brandenburg                   | AR(2) | AR(4) | NONE    | NONE  | NONE  | NONE  |        |
| Bremen                        | AR(2) | NONE  | AR(2)   | AR(2) | NONE  | NONE  |        |
| Hamburg                       | AR(4) | NONE  | NONE    | NONE  | NONE  | NONE  |        |
| Hessen Mecklenburg Vorpommern | AR(3) | NONE  | NONE    | AR(2) | NONE  | NONE  |        |
|                               | AR(3) | NONE  | NONE    | NONE  | NONE  | NONE  | NONE   |
| Niedersachsen                 | AR(3) | AR(2) | AR(3)   | NONE  | NONE  | NONE  | IVOIVL |
| Nordrhein Westfalen           | AR(2) | AR(2) | NONE    | NONE  | NONE  | NONE  |        |
| Rheinland Pfalz               | AR(2) | AR(2) | AR(2)   | NONE  | NONE  | NONE  |        |
| Saarland                      | AR(2) | NONE  | AR(2)   | NONE  | NONE  | NONE  |        |
| Sachsen                       | AR(2) | AR(2) | NONE    | NONE  | NONE  | NONE  |        |
| Sachsen Anhalt                | AR(2) | AR(3) | AR(2)   | NONE  | NONE  | NONE  |        |
| Schleswig Holstein            | AR(4) | NONE  | AR(2)   | NONE  | NONE  | AR(3) |        |
| Thüringen                     | AR(2) | NONE  | AR(2)   | NONE  | NONE  | NONE  |        |

**Table 3**. Consolidated autoregressive model fits. The best AR model was selected for each state-variable by minimum Akaike information criteria (AIC). Note that EXAvg and DeathT exhibit no temporal autocorrelation, while LFEX and PATPC have only a few states with temporal autocorrelation. CPI is the only variable with all states indicating temporal autocorrelation.

Next, I considered bivariate temporal relationships between the response variable, UkPopPC, and each independent variable using models like equation 1 below, where t is the current year, const is a constant, and variable is the selected independent variable.

$$UkPopPC_{t} = const + UkPopPC_{t-1} + variable_{t-1}$$
 (1)

All independent variables included at least one state in which the selected independent variable granger causes UkPopPC<sup>1</sup>. This indicates that there is temporal correlation present amongst the variables (not just within a variable). When accuracy is important, this correlation

<sup>&</sup>lt;sup>1</sup> Granger Cause: When one time series can be used to predict another time series. This means that the current year value for UkPopPC is dependent upon the previous year's measurement for the selected independent variable.

must be accounted for. To further explore the intervariable effects, I explored multivariate methods.

Multivariate Results. Multivariate analysis encompasses uncovering how multiple variables interact with one another. The Kruskal Wallis (KW) test was used to compare how each individual German state influences the uniqueness of each of the other variables. This results in the declaration of which states are statistically the same across each variable. The null hypothesis for this test is that the two states share the same distribution for the specified variable. The most noteworthy results from this test were that EXAvg and CPI are statistically the same across all states. All remaining variables, including the response variable – UkPopPC, reject the null hypothesis in about 40% of the cases. This furthers the idea that constructing state level inference models will provide more accurate predictions than a single model for all of Germany. Appendix E provides the tabulated results for the KW test.

Following the KW test, I fit two distinct types of multivariate models: a simple linear model and a generalized least squares (GLS) model which accounts for a temporal AR correlation at a lag of one year<sup>2</sup>. I used backward step to find the minimum Akaike information criteria (AIC) for both model types<sup>3</sup>. Table 4 provides the results from these two models. The GLS model selected only a single variable of importance for all states, while the simple linear model identified numerous unique variable combinations across each state. The Shapiro Residual p-value column indicates whether the Shapiro- Wilk normality test indicated that the

-

<sup>&</sup>lt;sup>2</sup> These models were developed using R's lm() and gls( correlation = ARMA(p=1)) functions.

<sup>&</sup>lt;sup>3</sup> AIC: Akaike information criteria. A relative quality of measurement estimator commonly used for comparing statistical models. Backward step is an iterative process which involves removing variables from a model to find the model with the minimum AIC.

residuals were statistically considered to be white noise<sup>4</sup>. Those p-values marked as significant reject the null hypotheses of normality and are considered different from white noise (i.e., the model is a poor representation for the data).

|                        | Simple Linear Model                  | Shapiro<br>Residual p-val | GLS, ARMA(1,0) | Shapiro<br>Residual p-val |
|------------------------|--------------------------------------|---------------------------|----------------|---------------------------|
| Baden Wurttemberg      | CPI + ICTPC + PATPC + LFEX           | 0.1905                    | CPI            | 0.9987                    |
| Bayern                 | CPI + ICTPC + PATPC + EXAvg + DeathT | 0.3791                    | PATPC          | 0.0012***                 |
| Berlin                 | ICTPC + PATPC + LFEX                 | 0.2839                    | PATPC          | 0.4003                    |
| Brandenburg            | ICTPC + LFEX                         | 0.0014***                 | PATPC          | 0.0001***                 |
| Bremen                 | PATPC + LFEX                         | 0.0855*                   | PATPC          | 0.6708                    |
| Hamburg                | EXAvg + DeathT + LFEX                | 0.6680                    | PATPC          | 0.3946                    |
| Hessen                 | CPI + ICTPC + PATPC + LFEX           | 0.7161                    | PATPC          | 0.8882                    |
| Mecklenburg Vorpommern | ICTPC + EXAvg                        | 0.0701*                   | PATPC          | 0.0003***                 |
| Niedersachsen          | ICTPC + PATPC + LFEX                 | 0.3512                    | PATPC          | 0.6797                    |
| Nordrhein Westfalen    | ICTPC + PATPC + LFEX                 | 0.5237                    | PATPC          | 0.2445                    |
| Rheinland Pfalz        | ICTPC + LFEX                         | 0.0081***                 | PATPC          | 0.7701                    |
| Saarland               | CPI + ICTPC + PATPC + EXAvg          | 0.6467                    | PATPC          | 0.3181                    |
| Sachsen                | CPI + EXAvg                          | 0.0147**                  | PATPC          | 0.0000***                 |
| Sachsen Anhalt         | CPI + ICTPC + EXAvg + LFEX           | 0.3010                    | PATPC          | 0.6671                    |
| Schleswig Holstein     | ICTPC + EXAvg + LFEX                 | 0.8336                    | PATPC          | 0.3088                    |
| Thüringen              | CPI + ICTPC + EXAvg + LFEX           | 0.6264                    | PATPC          | 0.7158                    |

Level of significance: \*\*\* 0.01 \*\* 0.05 \*0.10

**Table 4** Comparison of the best linear model and the best generalized least squares (GLS), ARMA(1,0) model. The table shows the identified important variables along with the residuals Shapiro Wilk p-value. Most notably, the GLS model selects only a single variable in all cases. The simple linear model appears to provide more normal residuals; however, this is likely because the simple linear models do not account for the correlations present in the data.

Although the simple linear models appear to be good fits at the 95% confidence level (only three states have non-normal residuals, versus four states for GLS), it is important to remember that these linear models do not account for the multivariate temporal correlation identified in the previous section (and Appendix D). Therefore, the GLS models are more

<sup>&</sup>lt;sup>4</sup> Shapiro-Wilk test: A test of data normality. A model that is a 'good' fit for the data will have normally distributed residuals. Residuals are the differences between the model's prediction and the actual values. Residuals that are normally distributed are commonly referred to as 'white noise.'

accurate because they account for the granger causality that exists across most variables and the response variable.

Inference Models. To verify the theory that fitting individual models for each state is necessary, I first fit a cross validated random forest to all data across Germany. Figure 1 shows that State is the most important variable for increasing node purity. It also shows that there is substantial reduction in mean average error (MAE) with the transition to individual state models.



|                        | IVIAL     |
|------------------------|-----------|
| Germany                | 1.501E-04 |
| Berlin                 | 1.184E-04 |
| Mecklenburg Vorpommern | 8.917E-05 |
| Thuringen              | 6.679E-05 |
| Sachsen                | 6.283E-05 |
| Brandenburg            | 3.929E-05 |
| Baden Wurttemberg      | 3.871E-05 |
| Bayern                 | 3.814E-05 |
| Bremen                 | 3.575E-05 |
| Saarland               | 3.161E-05 |
| Niedersachsen          | 3.114E-05 |
| Sachsen Anhalt         | 2.920E-05 |
| Schleswig Holstein     | 2.640E-05 |
| Hamburg                | 2.448E-05 |
| Rheinland Pfalz        | 1.804E-05 |
| Hessen                 | 1.560E-05 |
| Nordrhein Westfalen    | 1.385E-05 |
|                        |           |

MAF

**Figure 1** Feature importance for all of Germany random forest model (left) and all random forests' mean absolute errors, listed from largest error to smallest error (right). The model for the entirety of Germany indicates that State is the most important variable for increasing node purity and there is marked reduction in model error when fitting individual state models.

Considering the individual state models, CPI, ICTPC, and PATPC rank among the most frequent important variables. The most important features for each state inference model and the corresponding model learning curves can be found in <u>Appendix F</u>.

Expanded Discussion. Each step of the analysis conducted further indicates that developing individual state-based inference models is critical to reducing the effects of correlation and minimizing inference error. Segregating the states completely removed the spatial correlation component and left only the temporal correlation, which was accounted for by using GLS models with temporal autocorrelation considerations. In this analysis, a generic AR(1) was used as the correlation component in the GLS models. For more accurate analysis in the future, CIAI personnel should consider fitting state-specific AR correlations within their GLS models.

There appears to be a clear relationship between Ukrainian populations across Germany and the number of patents issued in previous years. It is unknown whether the number of patents entices Ukrainian brains, or if the change in number of patents results from Ukrainian brains; however, this is a relationship that deserves additional study and may benefit from narrative or survey data.

The most unexpected finding from this research is that the number of military and civilian deaths in Ukraine during conflict between 2005-2021 does not appear to impact the number of Ukrainian emigrants arriving to most states of Germany. However, it is important to retain this variable in future analysis because, as data becomes available for 2021-2024, this finding may be invalidated.

#### Conclusion

This research applied diverse statistical methods to a variety of variables within the country of Germany with the goal of exploring methods that can be applied in future CIAI analysis across Europe. This study is limited in scope to the exploration of data related to

Ukrainian brain drain; and, due to the breadth of IR problem sets, it is often impossible to demonstrate causation. But, in this case, there is much to be gathered from correlation and inference. Between spatial, temporal, and multivariate analysis, several relationships were uncovered that warrant follow on analysis with more direct attention.

In this study, I found that Ukrainians tend to cluster in Northern/Northwestern Europe. I also found that the number of Ukrainian immigrants in German states maintains a strong relationship to number of patents when considering value changes across time. Information, Communication, and Technology industry value and Consumer Price Index also provided strong temporal relationships to Ukrainian immigrants but was identified as less important than number of patents for most German states. The number of deaths in Ukraine during periods of conflict did not impact number of Ukrainian immigrants in Germany in a statistically significant way.

The concept of developing individual models for each state is a key finding from this study that will likely provide CIAI with the most success moving forward. I recommend first developing a country analysis priority list, then conducting state/ regional level analysis within each country, leveraging GLS models when temporal correlation is present. All variables used in this study were important to specific states. Thus, I also recommend utilizing similar variables for other countries.

Future research is needed in two key areas. First, the factors leading to Ukrainian emigrant clustering within Europe. Potential additional variables to include at the system level are country democratic status, cultural similarity index (such as Dr. Roose's index), digital access index, and number of academic articles published. The second area revolves around the

qualitative analysis of Ukrainian emigration at all levels of analysis. I recommend pairing this qualitative analysis with quantitative methods- beginning with Germany is a natural starting point. Both areas will benefit from Ukrainian brain survey data. Narrative data may help CIAI to understand the causation behind the clustering and correlation uncovered in this work. And, understanding the factors that motivate Ukrainian brains to settle in specific regions around Europe will help CIAI personnel to provide more accurate advisement to NATO leaders.

## Bibliography

- Oldfield, R. C., Simmons, J. A., Jeffery, J. W., Cooper, W. M., Eden, R. J., Jones, G. O., Kondic, V., McMichael, J., Pike, E. R., Andrews, K. W., Bragg, W. L., Bagguley, D. M. S., Baker, J. M., Cooke, A. H., Elliott, R. J., Griffiths, J. H. E., ter Háar, D., Hatton, J., Hill, R. W., ... Holliday, P. (1963). The Emigration of Scientists from the United Kingdom. *Minerva*, 1(3), 358–380. http://www.jstor.org/stable/41821578
- Federal and State Statistical Office. Specialist series / 1 / 2 <1982 2021>. Results of the Central Register of Foreigners. Wiesbaden. https://www.statistischebibliothek.de/mir/receive/DESerie mods 00000018
- Federal Statistical Office Destatis. Genesis- Online. *Database of the Federal Statistical Office of Germany*. https://www-genesis.destatis.de/genesis/online/data?operation=sprachwechsel&language=en
- UC Davis Geodata. (2022). Gadm41\_ABW.gpkg. https://geodata.ucdavis.edu/gadm/gadm4.1/gpkg/
- United Nations Statistics Division. (2024). Foreign-Born Population by Country/Area of Birth, Age and Sex. Updated 23 February 2024. https://data.un.org/Data.aspx?q=foreign+population&d=POP&f=tableCode%3a44
- Uppsala Universitet Department of Peace and Conflict. (2024). Uppsala Conflict Data Program (UCDP): Ukraine. https://ucdp.uu.se/country/369
- Wickham, H., Chang, W., Henry, L., Pedersen, T.L., Takahashi, K. Wilke, C., Woo, K., Yuntani, H., Dunnington, D., and van den Brand, T. Create a Data Frame of Map Data. ggplot2. https://ggplot2.tidyverse.org/reference/map\_data.html

# **Appendix A: List of Variables**

This appendix provides a comprehensive list of all variables considered and any manipulation or imputation used.

|         | Variable  | Representation                                                  | Missing Values             | Manipulation                                            | #Obs. | Source                                               |
|---------|-----------|-----------------------------------------------------------------|----------------------------|---------------------------------------------------------|-------|------------------------------------------------------|
| pe      | UkPop     | Number of foreign-born Ukrainians in the specified country      | 15 set to 0                | Set Ukraine to 0                                        | 39    | United Nations Statistics Division                   |
| Europe  | Latitude  | Latitude of country borders                                     | None                       | None                                                    | 13909 | Wickam, et al.                                       |
| "       | Longitude | Longitude of country borders                                    | None                       | None                                                    | 13909 | Wickam, et al.                                       |
|         | State     | The specific geographical states within Germany.                | None                       | Factorized                                              | 272   | Federal Statistical Office<br>Destatis               |
|         | Latitude  | Latitude of state borders                                       | None                       | None                                                    | 11302 | UC Davis Geodata                                     |
|         | Longitude | Longitude of state borders                                      | None                       | None                                                    | 11302 | US Davis Geodata                                     |
|         | Year      | Year of measurement (2005-2021)                                 | None                       | None                                                    | 272   |                                                      |
|         | СРІ       | Consumer Price Index                                            | 20 filled by extrapolation | Per Capita normalization                                | 272   | Federal Statistical Office<br>Destatis               |
|         | ICTPC     | Information, Communication, and Technology industry value       | None                       | Per Capita normalization                                | 252   | Federal Statistical Office<br>Destatis               |
|         | UkPopPC   | Number of foreign-born Ukrainians in the specified German state | None                       | Per Capita normalization                                | 272   | Federal and State Statistical<br>Office              |
|         | PATPC     | Number of patents for the specified German state and year       | None                       | Per Capita normalization                                | 272   | Federal Statistical Office<br>Destatis               |
|         | DeathA    | Number of receiving state deaths (Ukrainian Military)           | None                       | Summarized to mitigate correlation                      | 2990  | Uppsala Universitet Department of Peace and Conflict |
| Germany | DeathB    | Number of attacking state deaths                                | None                       | Summarized to mitigate correlation                      | 2990  | Uppsala Universitet Department of Peace and Conflict |
| 95      | DeathC    | Number of civilian Ukrainian deaths                             | None                       | Summarized to mitigate correlation                      | 2990  | Uppsala Universitet Department of Peace and Conflict |
|         | DeathT    | Total sum of DeathA, DeathB, and DeathC                         | None                       | Sum across all categories                               | 2990  | Uppsala Universitet Department of Peace and Conflict |
|         | EXAvg     | Average number passing final degree exams                       | None                       | Average across all genders and nationalities            | 272   | Federal Statistical Office<br>Destatis               |
|         | LFEXM     | Life expectancy of men                                          | None                       | Summarized to mitigate correlation                      | 272   | Federal Statistical Office<br>Destatis               |
|         | LFEXW     | Life expectancy of women                                        | None                       | Summarized to mitigate correlation                      | 272   | Federal Statistical Office<br>Destatis               |
|         | LFEX      | Average life expectancy of all German state citizens            | None                       | Average across genders                                  | 272   | Federal Statistical Office<br>Destatis               |
|         | Rent      | Cost of rent                                                    | None                       | Dropped due to correlation with and similarity to CPI   | 272   | Federal Statistical Office<br>Destatis               |
|         | GDP       | Gross Domestic Product                                          | None                       | Dropped due to correlation with and similarity to ICTPC | 272   | Federal Statistical Office<br>Destatis               |

Variable dropped from analysis.

Variable created by summarization.

# **Appendix B: Exploratory Data Analysis**

Appendix B is maintained in a separate file (Appendix\_B.ipynb) and is available upon request.

# **Appendix C: Spatial Analysis**

This appendix consolidates the spatial analysis performed for all three levels of analysis (International System, State, and Individual). For the International system, data was collected on 31 countries. At the country level, data was collected for all 16 states in Germany.

Developing the Proximity Matrices. A proximity matrix (also known as a neighbor matrix) was created for both Europe and Germany. Figure C-1 shows the Germany proximity matrix, a 16x16 binary matrix. '1' indicates that the state listed in the corresponding row shares a border with the state in the corresponding column. '0' indicates that the two states do not share a border. The Europe proximity matrix, a 39x39 matrix, is not shown due to its size.

|                     | Baden<br>Wurttemberg | Bayern | Berlin | Brandenburg | Bremen | Hamburg | Hessen | Mecklenburg<br>Vorpommern | Niedersachsen | Nordrhein<br>Westfalen | Rheinland<br>Pfalz | Saarland | Sachsen | Sachsen<br>Anhalt | Schleswig<br>Holstein | Thuringen |
|---------------------|----------------------|--------|--------|-------------|--------|---------|--------|---------------------------|---------------|------------------------|--------------------|----------|---------|-------------------|-----------------------|-----------|
| Baden Wurttemberg   | 0                    | 1      | 0      | 0           | 0      | 0       | 1      | 0                         | 0             | 0                      | 1                  | 0        | 0       | 0                 | 0                     | 0         |
| Bayern              | 1                    | 0      | 0      | 0           | 0      | 0       | 1      | 0                         | 0             | 0                      | 0                  | 0        | 1       | 0                 | 0                     | 1         |
| Berlin              | 0                    | 0      | 0      | 1           | 0      | 0       | 0      | 0                         | 0             | 0                      | 0                  | 0        | 0       | 0                 | 0                     | 0         |
| Brandenburg         | 0                    | 0      | 1      | 0           | 0      | 0       | 0      | 1                         | 1             | 0                      | 0                  | 0        | 1       | 1                 | 0                     | 0         |
| Bremen              | 0                    | 0      | 0      | 0           | 0      | 0       | 0      | 0                         | 1             | 0                      | 0                  | 0        | 0       | 0                 | 0                     | 0         |
| Hamburg             | 0                    | 0      | 0      | 0           | 0      | 0       | 0      | 0                         | 1             | 0                      | 0                  | 0        | 0       | 0                 | 1                     | 0         |
| Hessen              | 1                    | 1      | 0      | 0           | 0      | 0       | 0      | 0                         | 1             | 1                      | 1                  | 0        | 0       | 0                 | 0                     | 1         |
| Mecklenburg         | 0                    | 0      | 0      | 1           | 0      | 0       | 0      | 0                         | 1             | 0                      | 0                  | 0        | 0       | 0                 | 1                     | 0         |
| Niedersachsen       | 0                    | 0      | 0      | 1           | 1      | 1       | 1      | 1                         | 0             | 1                      | 0                  | 0        | 0       | 1                 | 1                     | 1         |
| Nordrhein Westfalen | 0                    | 0      | 0      | 0           | 0      | 0       | 1      | 0                         | 1             | 0                      | 1                  | 0        | 0       | 0                 | 0                     | 0         |
| Rheinland Pfalz     | 1                    | 0      | 0      | 0           | 0      | 0       | 1      | 0                         | 0             | 1                      | 0                  | 1        | 0       | 0                 | 0                     | 0         |
| Saarland            | 0                    | 0      | 0      | 0           | 0      | 0       | 0      | 0                         | 0             | 0                      | 1                  | 0        | 0       | 0                 | 0                     | 0         |
| Sachsen             | 0                    | 1      | 0      | 1           | 0      | 0       | 0      | 0                         | 0             | 0                      | 0                  | 0        | 0       | 1                 | 0                     | 1         |
| Sachsen Anhalt      | 0                    | 0      | 0      | 1           | 0      | 0       | 0      | 0                         | 1             | 0                      | 0                  | 0        | 1       | 0                 | 0                     | 1         |
| Schleswig Holstein  | 0                    | 0      | 0      | 0           | 0      | 1       | 0      | 1                         | 1             | 0                      | 0                  | 0        | 0       | 0                 | 0                     | 0         |
| Thuringen           | 0                    | 1      | 0      | 0           | 0      | 0       | 1      | 0                         | 1             | 0                      | 0                  | 0        | 1       | 1                 | 0                     | 0         |

**Figure C-1**. The German state proximity matrix. This matrix is used in the test for spatial autocorrelation (Moran's I test). Note that each state will contain a '0' when comparing to itself (i.e., a state is considered to NOT share a border with itself).

Spatial Analysis of the International System. After the proximity matrices are developed, I conduct a geospatial distribution analysis of Ukrainian emigrants across Europe. Figure C-2 shows a clear concentration of Ukrainians in Northern/Western Europe and a lack of data for several states. Because we want to see the pure distribution of Ukrainian emigrants, I do not

normalize the data in the per capita method used for the state analysis. This allows us to view the raw spatial distribution of our variable.



**Figure C-2**. Spatial distribution of Ukrainians in Europe. The data used is the most recent measurement available for each state, which is inconsistent and ranges from 2001-2021. Several states did not have any data available. These states are shown in grey. I also exclude Ukraine from this analysis; thus, it is also shown in grey.

Figure C-3 is a surface plot of this data. The surface plot is a visualization of the data after a thin plate spline regression (TPSR) has been applied to smooth the state boundaries. The TPSR surface plot suggests the distribution of Ukrainians is highly correlated, with a large concentration in North-Central Europe.

# Foreign Ukrainian Population Surface Plot, All Ages and Genders 8 9 150000 150000 10 20 30 X

**Figure C-3**. Thin plate spline surface of Ukrainian population in European states. This plot suggests the distribution of Ukrainians across Europe is not random and is consolidated heavily around Germany. This is evident through the clustering of colors. Missing values were removed for this analysis.

To confirm my visual interpretation of the surface plot, I conduct Moran's I test for spatial autocorrelation. This test is a spatial statistical test that checks data for the presence of spatial autocorrelation; and it requires the use of the proximity matrix. The null and alternative hypotheses for this test are displayed below.

 $H_0$ : The variable is randomly distributed across space  $H_A$ : The variable is not a random spatial processes

The result of the test is the p-value 0.004145 and the standard deviate 2.64. This p-value allows me to reject the null hypothesis and conclude there is a presence of spatial correlation, being 99.6% confident. The positive standard deviate shows that this correlation is

positive spatial correlation (i.e., we will tend to have high values surrounding high values and low values surrounding low values). This confirms my visual surface plot check.

Because I use analysis of the International System to identify an ideal state for deeper analysis, I only consider the response variable's spatial distribution. As there is significant clustering around Germany, I opt to use Germany as the country for further analysis.

Spatial Analysis of Country Level. Like the international level of analysis, I begin by considering the geospatial distribution of Ukrainian emigrants across German states. Figure C-4 shows high concentrations of Ukrainians in the darker shaded regions. Now that I am considering the country level, I normalize the Ukrainian population values by each state's total population, to get a per capita or percent of total population value. Visually, the Ukrainian population in each state appears to be random.

#### Average Foreign Ukrainian Population Normalized by Total Population



**Figure C-4.** Spatial distribution of Ukrainian population across German states. Ukrainian population was normalized by total state population; representation is shown as percent of state population. Ukrainian population appears to be fairly randomly distributed.

To confirm this visual inspection, I conduct Moran's I test with the same null and alternative hypotheses listed in Equations 1 and 2 in the previous section. Table C-1 lists the Moran's I test for spatial autocorrelation values. Because the data is also temporal, I consider each year, as well as the overall temporal average. From these values, I cannot reject the null hypothesis and conclude that the variable is a random spatial process.

| YEAR                            | STANDARD DEVIATE | P-VALUE |
|---------------------------------|------------------|---------|
| 2005                            | 0.10209          | 0.4593  |
| 2006                            | 0.10052          | 0.4600  |
| 2007                            | 0.05748          | 0.4771  |
| 2008                            | 0.0989           | 0.4606  |
| 2009                            | 0.076094         | 0.4697  |
| 2010                            | 0.10692          | 0.4574  |
| 2011                            | 0.14702          | 0.4416  |
| 2012                            | 0.16784          | 0.4334  |
| 2013                            | 0.14605          | 0.4419  |
| 2014                            | -0.13413         | 0.5533  |
| 2015                            | -0.49515         | 0.6898  |
| 2016                            | -0.40685         | 0.6579  |
| 2017                            | -0.1705          | 0.5677  |
| 2018                            | -0.03712         | 0.5148  |
| 2019                            | 0.067637         | 0.4730  |
| 2020                            | 0.25026          | 0.4012  |
| 2021                            | 0.58198          | 0.2803  |
| AVERAGED<br>ACROSS ALL<br>YEARS | -0.0063          | 0.5025  |

**Table C-1**. Moran's I Test for spatial autocorrelation. All results indicate that Ukrainian population is likely representative of a random spatial process and does not exhibit autocorrelative behaviors. An interesting feature here is the shift from positive to negative, back to positive standard deviate values.

Table C-2 contains the Moran's I test results for the independent variables that were selected during EDA for use in the final analysis. Spatial correlation is evident in PATPC (number of patents per capita), CPI (Consumer Price Index), and LFEX (average life expectancy). ICTPC (Information, Communication, and Technology value per capita) and EXAvg (average university final exam pass rate) generally do not demonstrate spatial correlation.

| YEAR    | <u>PAT</u>   | PC     | <u>CPI</u> |        | <u>ICT</u> I | PC     | EXA     | wg     | <u>LFEX</u> |        |
|---------|--------------|--------|------------|--------|--------------|--------|---------|--------|-------------|--------|
|         | Std.         | p-     | Std.       | p-     | Std.         | p-     | Std.    | p-     | Std.        | p-     |
|         | Dev.         | value  | Dev.       | value  | Dev.         | value  | Dev.    | value  | Dev.        | value  |
| 2005    | 3.4103       | 0.0003 | 2.6764     | 0.0037 | 0.94551      | 0.1722 | 1.0587  | 0.1449 | 1.7974      | 0.0361 |
| 2006    | 2.7488       | 0.0030 | 2.7232     | 0.0032 | 0.93585      | 0.1747 | 0.63358 | 0.2632 | 1.9115      | 0.0280 |
| 2007    | 2.5674       | 0.0051 | 2.6646     | 0.0039 | 0.94268      | 0.1729 | 1.3568  | 0.0874 | 1.9063      | 0.0283 |
| 2008    | 2.1946       | 0.0141 | 2.5271     | 0.0058 | 1.0155       | 0.1549 | 0.72743 | 0.2335 | 1.9267      | 0.0270 |
| 2009    | 2.3495       | 0.0094 | 2.4076     | 0.0080 | 1.0342       | 0.1505 | 0.96757 | 0.1666 | 2.1326      | 0.0165 |
| 2010    | 2.3495       | 0.0094 | 2.2508     | 0.0122 | 1.0588       | 0.1448 | 0.53098 | 0.2977 | 2.175       | 0.0148 |
| 2011    | 2.1658       | 0.0152 | 2.1637     | 0.0152 | 1.0262       | 0.1524 | -1.0907 | 0.8623 | 2.3706      | 0.0089 |
| 2012    | 2.2969       | 0.0108 | 2.1721     | 0.0149 | 1.0107       | 0.1561 | 0.14735 | 0.4414 | 2.4101      | 0.0080 |
|         |              |        |            |        |              |        | -       |        |             |        |
| 2013    | 2.1494       | 0.0158 | 1.8933     | 0.0292 | 0.95226      | 0.1705 | 0.10786 | 0.5429 | 2.3451      | 0.0095 |
| 2014    | 1.9828       | 0.0237 | 1.6643     | 0.0480 | 0.98944      | 0.1612 | 0.18279 | 0.4275 | 2.3018      | 0.0107 |
|         |              |        | -          |        |              |        | -       |        |             |        |
| 2015    | 1.7306       | 0.0418 | 0.33833    | 0.6324 | 0.94625      | 0.1720 | 0.00943 | 0.5038 | 2.2319      | 0.0128 |
| 2016    | 1.7231       | 0.0424 | 0.34095    | 0.3666 | 0.91047      | 0.1813 | 1.028   | 0.1520 | 2.2553      | 0.0121 |
| 2017    | 1.7436       | 0.0406 | 0.65529    | 0.2561 | 0.94292      | 0.1729 | 1.5471  | 0.0609 | 2.1309      | 0.0166 |
| 2018    | 1.5198       | 0.0643 | 0.20477    | 0.4189 | 0.94699      | 0.1718 | 1.526   | 0.0635 | 2.2375      | 0.0126 |
|         |              |        | -          |        |              |        |         |        |             |        |
| 2019    | 1.4153       | 0.0785 | 0.33832    | 0.6324 | 0.92156      | 0.1784 | 0.61488 | 0.2693 | 2.25        | 0.0122 |
| 2020    | 1.6462       | 0.0499 | no vari    | ation  | 0.94835      | 0.1715 | 0.97967 | 0.1636 | 2.1173      | 0.0171 |
| 2021    | 1.7896       | 0.0368 | 0.55106    | 0.2908 | 0.92786      | 0.1767 | 1.8315  | 0.0335 | 2.2827      | 0.0112 |
| Average | 2.1348       | 0.0164 | 2.3263     | 0.0100 | 0.9679       | 0.1665 | 1.3008  | 0.0967 | 2.1826      | 0.0145 |
|         | •            |        | •          |        | •            |        | •       |        | •           |        |
| Sig     | nificance at | 0.01   | 0.05       | 0.1    |              |        |         |        |             |        |

**Table C-2**. Moran's I Test for spatial autocorrelation in all independent variables. Note the legend in the bottom of the table indicates the level of significance.

# **Appendix D: Temporal Analysis**

This appendix consolidates all temporal analysis performed. Because I only used spatial analysis at the International System level of analysis, this appendix only contains results at the Country level.

Temporal analysis considers how a single variable is related to itself over time. To uncover this relationship, autocorrelation functions (ACFs) are used. All ACF plots are provided at the end of this appendix in Figure D-1. ACFs can be plotted to visually reveal a variable's underlying relationship with its past self and can aid in identifying if the variable tends to adhere to an autoregressive (AR) model or a moving average (MA) model. There are added complexities when a variable demonstrates behaviors of both types of models; however, we are fortunate that all of our variables exhibit classic autoregressive behaviors, or do not appear to have a temporal relationship at all.

|                                      | CPI   | ICTPC | UkPopPC | PATPC | EXAvg | LFEX  | DeathT |
|--------------------------------------|-------|-------|---------|-------|-------|-------|--------|
| Baden Wurttemberg                    | AR(2) | AR(2) | AR(4)   | NONE  | NONE  | NONE  |        |
| Bayern                               | AR(2) | NONE  | AR(3)   | AR(2) | NONE  | NONE  |        |
| Berlin                               | AR(4) | AR(3) | AR(4)   | NONE  | NONE  | NONE  |        |
| Brandenburg                          | AR(2) | AR(4) | NONE    | NONE  | NONE  | NONE  |        |
| Bremen                               | AR(2) | NONE  | AR(2)   | AR(2) | NONE  | NONE  |        |
| Hamburg                              | AR(4) | NONE  | NONE    | NONE  | NONE  | NONE  |        |
| Hessen                               | AR(3) | NONE  | NONE    | AR(2) | NONE  | NONE  |        |
| Mecklenburg Vorpommern               | AR(3) | NONE  | NONE    | NONE  | NONE  | NONE  | NONE   |
| Niedersachsen                        | AR(3) | AR(2) | AR(3)   | NONE  | NONE  | NONE  | NONE   |
| Nordrhein Westfalen                  | AR(2) | AR(2) | NONE    | NONE  | NONE  | NONE  |        |
| Rheinland Pfalz                      | AR(2) | AR(2) | AR(2)   | NONE  | NONE  | NONE  |        |
| Saarland                             | AR(2) | NONE  | AR(2)   | NONE  | NONE  | NONE  |        |
| Sachsen                              | AR(2) | AR(2) | NONE    | NONE  | NONE  | NONE  |        |
| Sachsen Anhalt<br>Schleswig Holstein | AR(2) | AR(3) | AR(2)   | NONE  | NONE  | NONE  |        |
|                                      | AR(4) | NONE  | AR(2)   | NONE  | NONE  | AR(3) |        |
| Thuringen                            | AR(2) | NONE  | AR(2)   | NONE  | NONE  | NONE  |        |

**Table D-1**. Fitted time series models for each state across all variables. Of note, DeathT does not vary by state as it is the total number of conflict deaths in Ukraine.

<sup>\*</sup>AR(X) = Autoregressive model of order X

Knowing this, I iterate over multiple orders of AR models. The results of this iterative process are listed in Table D-1. An order of an AR model indicates how many time units in the past the current value is related to. For example, in Berlin, the Consumer Price Index (CPI) for the current year is related to the past 4 years' values of CPI. The minimum Akaike information criteria (AIC) was used for selection.

The models discussed in Table D-1 account for the autocorrelation of a single variable over time; however, the response variable may also have interactions with independent variables throughout time. To check for this, we fit models that use "lagging." Lagging a variable shifts the position of each measurement over time. For example, to consider how the response variable, UkPopPC, relates to ICTPC over time, we use vector autoregression (VAR) models D1 and D2 to account for both autocorrelation and multivariate lagged relationships.

$$UkPopPC_t = const + UkPopPC_{t-1} + ICTPC_{t-1}$$
 (D1)

$$UkPopPC_t = const + UkPopPC_{t-1} + UkPopPC_{t-2} + ICTPC_{t-1} ICTPC_{t-2}$$
 (D2)

Here, const represents a constant and t represents the year of measurement. Model D1 captures the relationships between UkPopPC and ICTPC lagged up to one year, while Model D2 captures the relationship lagged over two years. When one time series can be used to predict another time series, it is said to 'Granger' cause the other time series. Table D-2 contains the results from fitting the VAR models D1 and D2, which includes both Granger causality and instantaneous p-values.

| LAG 1                  |           |           |           |           |           |           |           |           |           |           |           |           |  |
|------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| STATE                  | ICTF      | C         | С         | PI        | PAT       | PC        | EXA       | EXAvg     |           | DeathT    |           | LFEX      |  |
|                        | Granger p | Instant p |  |
| Baden Wurttemberg      | 0.92478   | 0.14958   | 0.59929   | 0.06527   | 0.50867   | 0.25743   | 0.70598   | 0.92726   | 0.81968   | 0.22373   | 0.30554   | 0.09513   |  |
| Bayern                 | 0.04273   | 0.13364   | 0.01929   | 0.86616   | 0.69150   | 0.85580   | 0.55204   | 0.95862   | 0.00713   | 0.01718   | 0.09052   | 0.17738   |  |
| Berlin                 | 0.15855   | 0.04803   | 0.07933   | 0.83835   | 0.71168   | 0.01762   | 0.47341   | 0.78213   | 0.21518   | 0.08379   | 0.15841   | 0.20529   |  |
| Brandenburg            | 0.00053   | 0.02450   | 0.00005   | 0.03812   | 0.03299   | 0.02914   | 0.36704   | 0.20008   | 0.42373   | 0.45894   | 0.00080   | 0.00599   |  |
| Bremen                 | 0.15503   | 0.03286   | 0.00809   | 0.09052   | 0.00725   | 0.10631   | 0.85234   | 0.58036   | 0.80722   | 0.39527   | 0.37995   | 0.01820   |  |
| Hamburg                | 0.55938   | 0.21903   | 0.53851   | 0.36951   | 0.24328   | 0.87078   | 0.57884   | 0.19482   | 0.13931   | 0.44618   | 0.95042   | 0.42324   |  |
| Hessen                 | 0.00059   | 0.28144   | 0.00009   | 0.70593   | 0.00009   | 0.40620   | 0.74889   | 0.57583   | 0.91907   | 0.47315   | 0.00106   | 0.08638   |  |
| Mecklenburg Vorpommern | 0.31403   | 0.06313   | 0.04658   | 0.78460   | 0.88179   | 0.13492   | 0.13434   | 0.82770   | 0.00132   | 0.02052   | 0.07733   | 0.14602   |  |
| Niedersachsen          | 0.00004   | 0.02764   | 0.00001   | 0.20107   | 0.00415   | 0.32844   | 0.91361   | 0.52086   | 0.82234   | 0.22192   | 0.00005   | 0.03382   |  |
| Nordrhein Westfalen    | 0.00647   | 0.02781   | 0.01134   | 0.05115   | 0.11090   | 0.06574   | 0.67382   | 0.49592   | 0.22863   | 0.79673   | 0.05881   | 0.03539   |  |
| Rheinland Pfalz        | 0.00005   | 0.44479   | 0.00006   | 0.94837   | 0.04350   | 0.04819   | 0.69259   | 0.76599   | 0.78167   | 0.40440   | 0.00921   | 0.16558   |  |
| Saarland               | 0.10300   | 0.74428   | 0.35314   | 0.44474   | 0.99997   | 0.24131   | 0.94032   | 0.06178   | 0.25558   | 0.30003   | 0.00760   | 0.69364   |  |
| Sachsen                | 0.41850   | 0.06434   | 0.36176   | 0.02323   | 0.40297   | 0.79398   | 0.68070   | 0.07364   | 0.54498   | 0.85137   | 0.02550   | 0.01155   |  |
| Sachsen Anhalt         | 0.00001   | 0.64325   | 0.00000   | 0.57405   | 0.00009   | 0.03088   | 0.37643   | 0.59865   | 0.46791   | 0.63837   | 0.00371   | 0.16166   |  |
| Schleswig Holstein     | 0.00646   | 0.26877   | 0.00338   | 0.62319   | 0.05093   | 0.13368   | 0.21605   | 0.60430   | 0.64907   | 0.26695   | 0.00669   | 0.62586   |  |
| Thuringen              | 0.09900   | 0.10673   | 0.17569   | 0.14937   | 0.25996   | 0.05382   | 0.00709   | 0.83859   | 0.82427   | 0.29986   | 0.53561   | 0.08244   |  |

|                        |                 |           |           |           | LAG 2     |           |           |           |           |           |           |           |
|------------------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| STATE                  | ICTF            | C         | С         | PI        | PAT       | PC        | EXA       | vg        | Deat      | :hT       | LFE       | X         |
|                        | Granger p       | Instant p | Granger p | Instant p | Granger p | Instant p | Granger p | Instant p | Granger p | Instant p | Granger p | Instant p |
| Baden Wurttemberg      | 0.91783         | 0.16133   | 0.54312   | 0.05780   | 0.19925   | 0.15124   | 0.90822   | 0.90506   | 0.95287   | 0.54824   | 0.09234   | 0.08263   |
| Bayern                 | 0.00847         | 0.25174   | 0.03533   | 0.31157   | 0.93052   | 0.75642   | 0.32605   | 0.13678   | 0.03717   | 0.01887   | 0.04317   | 0.29609   |
| Berlin                 | 0.32019         | 0.06049   | 0.07250   | 0.98293   | 0.34238   | 0.02403   | 0.72555   | 0.62335   | 0.26774   | 0.11673   | 0.06483   | 0.57320   |
| Brandenburg            | 0.02030         | 0.06220   | 0.00484   | 0.03219   | 0.42699   | 0.23488   | 0.56833   | 0.32420   | 0.70005   | 0.11412   | 0.10882   | 0.00774   |
| Bremen                 | 0.19306         | 0.02122   | 0.03335   | 0.15122   | 0.02585   | 0.29380   | 0.82096   | 0.59001   | 0.61583   | 0.66694   | 0.00342   | 0.23480   |
| Hamburg                | 0.36837         | 0.56819   | 0.26898   | 0.17598   | 0.25104   | 0.31560   | 0.96884   | 0.22510   | 0.54602   | 0.59788   | 0.01165   | 0.24593   |
| Hessen                 | 0.00078         | 0.52016   | 0.02425   | 0.55794   | 0.01023   | 0.23722   | 0.70232   | 0.50945   | 0.76402   | 0.20604   | 0.00588   | 0.50609   |
| Mecklenburg Vorpommern | 0.23641         | 0.02030   | 0.07318   | 0.30264   | 0.23274   | 0.18622   | 0.50868   | 0.25550   | 0.01228   | 0.02503   | 0.07893   | 0.20840   |
| Niedersachsen          | 0.00443         | 0.06265   | 0.00413   | 0.29215   | 0.04937   | 0.20976   | 0.61807   | 0.30371   | 0.48666   | 0.11574   | 0.01317   | 0.02950   |
| Nordrhein Westfalen    | 0.01116         | 0.05964   | 0.04244   | 0.07085   | 0.24478   | 0.08230   | 0.37585   | 0.34358   | 0.24080   | 0.18572   | 0.00418   | 0.40279   |
| Rheinland Pfalz        | 0.00453         | 0.11495   | 0.03852   | 0.77984   | 0.00818   | 0.85806   | 0.20077   | 0.32630   | 0.98534   | 0.64765   | 0.10553   | 0.55684   |
| Saarland               | 0.09671         | 0.85765   | 0.10560   | 0.30984   | 0.89610   | 0.43653   | 0.78561   | 0.34121   | 0.40892   | 0.17124   | 0.12383   | 0.51432   |
| Sachsen                | 0.09648         | 0.33072   | 0.18220   | 0.05450   | 0.35949   | 0.16619   | 0.35226   | 0.02215   | 0.74315   | 0.27962   | 0.00021   | 0.10059   |
| Sachsen Anhalt         | 0.01957         | 0.24715   | 0.00992   | 0.98867   | 0.20530   | 0.05124   | 0.46236   | 0.52966   | 0.97704   | 0.42854   | 0.00109   | 0.67782   |
| Schleswig Holstein     | 0.00674         | 0.27877   | 0.01445   | 0.41736   | 0.20280   | 0.23295   | 0.68331   | 0.07271   | 0.25752   | 0.23610   | 0.00259   | 0.99052   |
| Thuringen              | 0.05943         | 0.23402   | 0.61890   | 0.18146   | 0.16919   | 0.04632   | 0.05212   | 0.36792   | 0.58350   | 0.24258   | 0.93039   | 0.11427   |
|                        |                 |           |           |           |           |           |           |           |           |           |           |           |
|                        | Significance at | 0.01      | 0.05      | 0.1       |           |           |           |           |           |           |           |           |

**Table D-2**. Vector autoregression p-values for lag 1 and lag 2 models. Each variable is fit to the response variable, UkPopPC, for each German state. Note the legend at the bottom indicates the level of significance for the tests. It is interesting to note that variables Granger cause UkPopPC across more states than instantaneously cause UkPopPC.



demonstrates statistical significance up to a lag, and then does not cross back over the blue line.

DeathT: Sachsen

DeathT: SchleswigHolstein

0 2 4 6 8 10 12

DeathT: Thuringen

## **Appendix E: Multivariate Analysis**

This appendix provides details on the analysis conducted which entailed multiple variables (non-spatial and non-temporal analysis).

Because most variables were identified as non-normal during exploratory data analysis (EDA), I opted to use the Kruskal Wallis (KW) test to compare all state pairs. The KW test is used in statistics to compare two or more groups. It is a non-parametric test, which means that it does not require normal data; however, it does mandate that all groups' data are from the same distribution family. Below are the null and alternative hypotheses for the KW test.

$$H_0$$
:  $\tilde{y}_A = \tilde{y}_B$ 

$$H_A: \tilde{y}_A \neq \tilde{y}_B$$

Where  $\tilde{y}_x$  is the variable's population median for state x. Note that I am running this test for pairs and not larger sets of states. This results in 120 pairs. Table E-1 provides a quick summary of the results, while Table E-2 provides the detailed state to state results. Interestingly, EXAvg and CPI are the only two variables in which we cannot reject the null hypothesis in all cases (i.e., we assume that all states belong to the same group for these variables). In more than 40% of the pairs, we can reject the null hypothesis for the Ukrainian population per capita values. This suggests that several states are unique in their Ukrainian born population and encourages the use of individual statistical and inference models for each state.

|                           | EXAVG | ICTPC  | UkPopPC | PATPC  | CPI   | LFEX   | % Unique |
|---------------------------|-------|--------|---------|--------|-------|--------|----------|
| BADEN WURTTEMBERG         | 0     | 5      | 7       | 10     | 0     | 10     | 36%      |
| BAYERN                    | 0     | 5      | 7       | 10     | 0     | 7      | 32%      |
| BERLIN                    | 0     | 5      | 9       | 4      | 0     | 2      | 22%      |
| BRANDENBURG               | 0     | 7      | 3       | 8      | 0     | 2      | 22%      |
| BREMEN                    | 0     | 9      | 7       | 5      | 0     | 6      | 30%      |
| HAMBURG                   | 0     | 10     | 7       | 8      | 0     | 4      | 32%      |
| HESSEN                    | 0     | 8      | 5       | 4      | 0     | 5      | 24%      |
| MECKLENBURG<br>VORPOMMERN | 0     | 7      | 6       | 10     | 0     | 6      | 32%      |
| NIEDERSACHSEN             | 0     | 4      | 7       | 6      | 0     | 2      | 21%      |
| NORDRHEIN<br>WESTFALEN    | 0     | 5      | 5       | 6      | 0     | 2      | 20%      |
| RHEINLAND PFALZ           | 0     | 3      | 7       | 5      | 0     | 4      | 21%      |
| SAARLAND                  | 0     | 4      | 5       | 4      | 0     | 6      | 21%      |
| SACHSEN                   | 0     | 6      | 3       | 5      | 0     | 4      | 20%      |
| SACHSEN ANHALT            | 0     | 8      | 5       | 8      | 0     | 9      | 33%      |
| SCHLESWIG HOLSTEIN        | 0     | 4      | 9       | 6      | 0     | 2      | 23%      |
| THURINGEN                 | 0     | 10     | 10      | 5      | 0     | 3      | 31%      |
| OVERALL                   | 0.00% | 41.67% | 42.50%  | 43.33% | 0.00% | 30.83% |          |

**Table E-1.** Percentage of state pairs that are statistically different from one another by state. Each state has 15 other states to compare to. The numbers listed in the variable columns are the total number of pairs that the indicated state is statistically different from. The percentages at the bottom and right represent the total percent of pairs that are statistically different for each variable (bottom) and each state across all variables (right).

Following Kruskal Wallis, I fit two types of multivariate models. First is a simple linear-multivariate model. Although I have identified the presence of spatial correlation within and amongst our variables (see Appendix D), it is pertinent to see which variables' raw values lead to the "best fit" for each state. I use backward step to find the model with the minimum Akaike information criteria (AIC). To validate these models, I view plots of the model residuals and use the Shapiro-Wilk normality test to determine if the residuals are equivalent to white noise.

Table E-2 contains each state's identified "best" linear model where UkPopPC is the response variable. Interestingly, most models identify ICTPC and LFEX as necessary for the best fit, while only two states include DeathT.

|                      | Variable  | UkPopPC  | CDI       | ICTPC     | PATPC    | LFEX      |         |
|----------------------|-----------|----------|-----------|-----------|----------|-----------|---------|
| Baden Wurttemberg    | Estimate  | •        | 9.60E-06  |           |          |           |         |
| bauen wurttenberg    |           | 0.026    | 0.017     |           |          |           |         |
|                      | p-value   |          |           |           |          |           | DoothT  |
| D                    |           | UkPopPC  |           | ICTPC     | PATPC    | •         | DeathT  |
| Bayern               | Estimate  |          | -5.13E-05 |           | -0.55757 | 0.00095   | 5.5E-08 |
|                      | p-value   | 0.000    | 0.002     |           |          | 0.178     | 0.091   |
|                      |           | UkPopPC  |           | PATPC     | LFEX     |           |         |
| Berlin               | Estimate  |          | 2.41E-04  |           |          |           |         |
|                      | p-value   | 0.021    | 0.000     |           | 0.051    |           |         |
|                      | Variable  | UkPopPC  | ICTPC     | LFEX      | PATPC    |           |         |
| Brandenburg          | Estimate  | 0.01992  | 0.00021   | -2.35E-04 | -3.17535 |           |         |
|                      | p-value   | 0.010    | 0.023     | 0.016     | 0.199    |           |         |
|                      | Variable  | UkPopPC  | PATPC     | LFEX      |          |           |         |
| Bremen               | Estimate  | 0.01706  | -1.40129  | -0.00018  |          |           |         |
|                      | p-value   | 0.008    | 0.137     | 0.016     |          |           |         |
|                      | Variable  | UkPopPC  | EXAvg     | DeathT    | LFEX     |           |         |
| Hamburg              | Estimate  |          | -6.71E-04 | -3.08E-08 | 9E-05    |           |         |
| Ŭ                    | p-value   | 0.017    |           |           |          |           |         |
|                      | ·         | UkPopPC  |           | ICTPC     | PATPC    | LFEX      |         |
| Hessen               | Estimate  | •        | 2.23E-05  |           |          | -0.00018  |         |
| 11000011             | p-value   | 0.042    |           |           | 0.079    | 0.029     |         |
|                      | •         | UkPopPC  |           | EXAvg     | 0.070    | 0.020     |         |
| Mecklenburg          | Estimate  | •        |           | •         |          |           |         |
| Vorpommern           |           |          |           |           |          |           |         |
|                      | p-value   | 0.011    |           |           | LEEV     |           |         |
| Nicelevanelesev      |           | UkPopPC  |           | PATPC     | LFEX     |           |         |
| Niedersachsen        | Estimate  | 0.02213  |           | -0.68945  |          |           |         |
|                      | p-value   | 0.001    |           |           |          |           |         |
|                      | 1         | UkPopPC  |           | PATPC     | LFEX     |           |         |
| Nordrhein Westfalen  | Estimate  |          | 4.79E-05  |           |          |           |         |
|                      | p-value   | 0.000    | 0.001     | 0.028     | 0.000    |           |         |
|                      | Variable  | UkPopPC  | ICTPC     | LFEX      |          |           |         |
| Rheinland Pfalz      | Estimate  | 0.01435  | 7.68E-05  | -1.66E-04 |          |           |         |
|                      | p-value   | 0.000    | 0.007     | 0.000     |          |           |         |
|                      | Variable  | UkPopPC  | CPI       | ICTPC     | PATPC    | EXAvg     |         |
| Saarland             | Estimate  | 0.00212  | -1.67E-05 | 0.00012   | 0.90839  | 5.66E-04  |         |
|                      | p-value   | 0.002    | 0.023     | 0.019     | 0.090    | 0.028     |         |
|                      | Variable  | UkPopPC  | CPI       | EXAvg     |          |           |         |
| Sachsen              | Estimate  | -0.00083 | 2.5E-05   | 0.00222   |          |           |         |
|                      | p-value   | 0.104    | 0.000     | 0.043     |          |           |         |
|                      | Variable  | UkPopPC  | CPI       | ICTPC     | EXAvg    | LFEX      |         |
| Sachsen Anhalt       | Estimate  | -        | -8.08E-06 |           | _        | -9.21E-05 |         |
|                      | p-value   | 0.012    |           |           |          |           |         |
|                      | ·         | UkPopPC  |           | EXAvg     | LFEX     |           |         |
| Schleswig Holstein   | Estimate  |          | 1.62E-04  | _         |          |           |         |
| 3511.5511.6101.61011 | p-value   | 0.000    |           |           |          |           |         |
|                      | Variable  | UkPopPC  |           | ICTPC     | EXAvg    | LFEX      |         |
| Thuringen            | Estimate  |          | 2.13E-05  |           | -0.0002  | -0.0001   |         |
| munigen              | p-value   | 0.00676  | 0.022     |           | 0.219    | 0.016     |         |
| 1                    | l b-value | 0.021    | 0.022     | 0.199     | 0.219    | 0.016     |         |

**Table E-2.** Best linear model fits by state. Each state's identified best fit is drastically different from the others, with various combinations of identified important variables and estimated coefficients changing signs throughout. This supports the concept that it is integral to consider each state as a unique entity.

The second type of multivariate model I use is a generalized least squares (GLS) model with an ARMA(1,0) correlation structure<sup>5</sup>. This type of model takes the temporal correlation uncovered in Appendix D into consideration and is anticipated to provide more accurate results because it accounts for the correlation in our variables. Table E-3 compiles the "best" GLS models and compares the resulting Shapiro Wilk p-value to the linear model results. Notably, the GLS model selects only a single variable as important for each state, with most states identifying PATPC as important. Although the simple linear model appears to provide more normal residuals, the results from the GLS are likely more accurate because the linear model does not account for correlation within the data.

|                        | Simple Linear Model                  | Shapiro Residual p-val | GLS, ARMA(1,0) | Shapiro Residual p-val |  |
|------------------------|--------------------------------------|------------------------|----------------|------------------------|--|
| Baden Wurttemberg      | CPI + ICTPC + PATPC + LFEX           | 0.1905                 | CPI            | 0.9987                 |  |
| Bayern                 | CPI + ICTPC + PATPC + EXAvg + DeathT | 0.3791                 | PATPC          | 0.0012                 |  |
| Berlin                 | ICTPC + PATPC + LFEX                 | 0.2839                 | PATPC          | 0.4003                 |  |
| Brandenburg            | ICTPC + LFEX                         | 0.0014                 | PATPC          | 0.0001                 |  |
| Bremen                 | PATPC + LFEX                         | 0.0855                 | PATPC          | 0.6708                 |  |
| Hamburg                | EXAvg + DeathT + LFEX                | 0.6680                 | PATPC          | 0.3946                 |  |
| Hessen                 | CPI + ICTPC + PATPC + LFEX           | 0.7161                 | PATPC          | 0.8882                 |  |
| Mecklenburg Vorpommern | ICTPC + EXAvg                        | 0.0701                 | PATPC          | 0.0003                 |  |
| Niedersachsen          | ICTPC + PATPC + LFEX                 | 0.3512                 | PATPC          | 0.6797                 |  |
| Nordrhein Westfalen    | ICTPC + PATPC + LFEX                 | 0.5237                 | PATPC          | 0.2445                 |  |
| Rheinland Pfalz        | ICTPC + LFEX                         | 0.0081                 | PATPC          | 0.7701                 |  |
| Saarland               | CPI + ICTPC + PATPC + EXAvg          | 0.6467                 | PATPC          | 0.3181                 |  |
| Sachsen                | CPI + EXAvg                          | 0.0147                 | PATPC          | 0.0000                 |  |
| Sachsen Anhalt         | CPI + ICTPC + EXAvg + LFEX           | 0.3010                 | PATPC          | 0.6671                 |  |
| Schleswig Holstein     | ICTPC + EXAvg + LFEX                 | 0.8336                 | PATPC          | 0.3088                 |  |
| Thuringen              | CPI + ICTPC + EXAvg + LFEX           | 0.6264                 | PATPC          | 0.7158                 |  |
|                        | Significance at 0.01 0.05 0.1        |                        |                |                        |  |

**Table E-3.** Comparison of the best linear model and the best generalized least squares (GLS), ARMA(1,0) model. The figure shows the identified important variables along with the Shapiro Wilk p-value. Most notably, the GLS model selects only a single variable in all cases. The simple linear model provides more normal residuals; however, this is likely because the models do not account for the correlations present in the data.

-

<sup>&</sup>lt;sup>5</sup> ARMA= Autoregressive Moving Average. I use an ARMA model of order 1, 0. This equates to an AR(1). Please refer to Appendix D for details.

|                                                                                                                                        |                                                                | Exam                                                     | n Average                                 | ICT Value                                           | e Per Capita                 | UkPop Pe                                   | er Capita                     | Patents P                                | Per Capita                       |                                        | СРІ                              | Life Ex                                   | kpectancy                    |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|------------------------------|--------------------------------------------|-------------------------------|------------------------------------------|----------------------------------|----------------------------------------|----------------------------------|-------------------------------------------|------------------------------|
| State Pair                                                                                                                             | Critical Diff                                                  | Observed<br>Diff                                         | Statistically<br>Significant              | Observed<br>Diff                                    | Statistically<br>Significant | Observed Diff                              | Statistically<br>Significant  | Observed<br>Diff                         | Statistically<br>Significant     | Observed<br>Diff                       | Statistically<br>Significant     | Observed<br>Diff                          | Statistically<br>Significant |
| BadenWurttemberg-Bayern                                                                                                                | 95.2256                                                        | 1.5882                                                   | FALSE                                     | 13.8824                                             | FALSE                        | 149.1176                                   | TRUE                          | 16.5294                                  | FALSE                            | 1.5000                                 | FALSE                            | 35.0294                                   | FALSE                        |
| BadenWurttemberg-Berlin BadenWurttemberg-Brandenburg                                                                                   | 95.2256                                                        | 4.8824                                                   | FALSE                                     | 15.1765                                             | FALSE                        | 199.0000                                   | TRUE                          | 145.2941                                 | TRUE                             | 4.4412                                 | FALSE                            | 103.8529                                  | TRUE                         |
|                                                                                                                                        | 95.2256                                                        | 21.7941                                                  | FALSE                                     | 118.7647                                            | TRUE                         | 82.7059                                    | FALSE                         | 225.4706                                 | TRUE                             | 9.4706                                 | FALSE                            | 134.5294                                  | TRUE                         |
| BadenWurttemberg-Bremen BadenWurttemberg-Hamburg                                                                                       | 95.2256                                                        | 18.8824                                                  | FALSE                                     | 66.3529                                             | FALSE                        | 157.2353                                   | TRUE                          | 160.7647                                 | TRUE                             | 2.6471                                 | FALSE                            | 188.9118                                  | TRUE                         |
|                                                                                                                                        | 95.2256                                                        | 14.2941                                                  | FALSE                                     | 83.4706                                             | FALSE                        | 170.9412                                   | TRUE                          | 47.2941                                  | FALSE                            | 24.8529                                | FALSE                            | 81.8529                                   | FALSE                        |
| BadenWurttemberg-Hessen                                                                                                                | 95.2256                                                        | 25.0000                                                  | FALSE                                     | 39.0588                                             | FALSE                        | 107.7059                                   | TRUE                          | 83.2941                                  | FALSE                            | 18.2647                                | FALSE                            | 44.7353                                   | FALSE                        |
| BadenWurttemberg-MecklenburgVorpommern BadenWurttemberg-Niedersachsen                                                                  | 95.2256                                                        | 16.8235                                                  | FALSE                                     | 126.2941                                            | TRUE                         | 124.5294                                   | TRUE                          | 247.5294                                 | TRUE                             | 4.3529                                 | FALSE                            | 188.3529                                  | TRUE                         |
|                                                                                                                                        | 95.2256                                                        | 13.8824                                                  | FALSE                                     | 60.5882                                             | FALSE                        | 10.1176                                    | FALSE                         | 64.4706                                  | FALSE                            | 13.9412                                | FALSE                            | 118.8824                                  | TRUE                         |
| BadenWurttemberg-NordrheinWestfalen BadenWurttemberg-RheinlandPfalz                                                                    | 95.2256                                                        | 13.6471                                                  | FALSE                                     | 0.5882                                              | FALSE                        | 105.8824                                   | TRUE                          | 61.7647                                  | FALSE                            | 2.6176                                 | FALSE                            | 131.0882                                  | TRUE                         |
|                                                                                                                                        | 95.2256                                                        | 21.7059                                                  | FALSE                                     | 73.1176                                             | FALSE                        | 9.9412                                     | FALSE                         | 122.1765                                 | TRUE                             | 9.3824                                 | FALSE                            | 90.2941                                   | FALSE                        |
| BadenWurttemberg-RiefmandPlatz                                                                                                         | 95.2256                                                        | 5.7647                                                   | FALSE                                     | 60.0000                                             | FALSE                        | 51.1765                                    | FALSE                         | 143.4706                                 | TRUE                             | 10.4412                                | FALSE                            | 191.7941                                  | TRUE                         |
| BadenWurttemberg-Sachsen BadenWurttemberg-SachsenAnhalt                                                                                | 95.2256<br>95.2256                                             | 2.7941<br>1.7059                                         | FALSE<br>FALSE                            | 110.1176<br>146.2941                                | TRUE<br>TRUE                 | 82.1176<br>22.3529                         | FALSE<br>FALSE                | 164.2353<br>238.3529                     | TRUE<br>TRUE                     | 3.1765<br>5.9118                       | FALSE<br>FALSE                   | 90.0000                                   | FALSE<br>TRUE                |
| BadenWurttemberg-SchleswigHolstein                                                                                                     | 95.2256                                                        | 9.0000                                                   | FALSE                                     | 40.7059                                             | FALSE                        | 41.2353                                    | FALSE                         | 192.4118                                 | TRUE                             | 29.1176                                | FALSE                            | 110.2353                                  | TRUE                         |
| BadenWurttemberg-Thuringen Bayern-Berlin                                                                                               | 95.2256                                                        | 0.9412                                                   | FALSE                                     | 156.7647                                            | TRUE                         | 44.2941                                    | FALSE                         | 123.1765                                 | TRUE                             | 2.8235                                 | FALSE                            | 158.0588                                  | TRUE                         |
|                                                                                                                                        | 95.2256                                                        | 6.4706                                                   | FALSE                                     | 29.0588                                             | FALSE                        | 49.8824                                    | FALSE                         | 128.7647                                 | TRUE                             | 5.9412                                 | FALSE                            | 68.8235                                   | FALSE                        |
| Bayern-Brandenburg                                                                                                                     | 95.2256                                                        | 23.3824                                                  | FALSE                                     | 132.6471                                            | TRUE                         | 66.4118                                    | FALSE                         | 208.9412                                 | TRUE                             | 10.9706                                | FALSE                            | 99.5000                                   | TRUE                         |
| Bayern-Bremen                                                                                                                          | 95.2256                                                        | 20.4706                                                  | FALSE                                     | 52.4706                                             | FALSE                        | 8.1176                                     | FALSE                         | 144.2353                                 | TRUE                             | 4.1471                                 | FALSE                            | 153.8824                                  | TRUE                         |
| Bayern-Hamburg                                                                                                                         | 95.2256                                                        | 15.8824                                                  | FALSE                                     | 69.5882                                             | FALSE                        | 21.8235                                    | FALSE                         | 30.7647                                  | FALSE                            | 23.3529                                | FALSE                            | 46.8235                                   | FALSE                        |
| Bayern-Hessen Bayern-MecklenburgVorpommern                                                                                             | 95.2256                                                        | 26.5882                                                  | FALSE                                     | 25.1765                                             | FALSE                        | 41.4118                                    | FALSE                         | 66.7647                                  | FALSE                            | 19.7647                                | FALSE                            | 9.7059                                    | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 18.4118                                                  | FALSE                                     | 140.1765                                            | TRUE                         | 24.5882                                    | FALSE                         | 231.0000                                 | TRUE                             | 2.8529                                 | FALSE                            | 153.3235                                  | TRUE                         |
| Bayern-Niedersachsen                                                                                                                   | 95.2256                                                        | 15.4706                                                  | FALSE                                     | 74.4706                                             | FALSE                        | 139.0000                                   | TRUE                          | 47.9412                                  | FALSE                            | 15.4412                                | FALSE                            | 83.8529                                   | FALSE                        |
| Bayern-NordrheinWestfalen                                                                                                              | 95.2256                                                        | 15.2353                                                  | FALSE                                     | 13.2941                                             | FALSE                        | 43.2353                                    | FALSE                         | 45.2353                                  | FALSE                            | 4.1176                                 | FALSE                            | 96.0588                                   | TRUE                         |
| Bayern-RheinlandPfalz                                                                                                                  | 95.2256                                                        | 23.2941                                                  | FALSE                                     | 87.0000                                             | FALSE                        | 139.1765                                   | TRUE                          | 105.6471                                 | TRUE                             | 10.8824                                | FALSE                            | 55.2647                                   | FALSE                        |
| Bayern-Saarland                                                                                                                        | 95.2256                                                        | 7.3529                                                   | FALSE                                     | 73.8824                                             | FALSE                        | 97.9412                                    | TRUE                          | 126.9412                                 | TRUE                             | 11.9412                                | FALSE                            | 156.7647                                  | TRUE                         |
| Bayern-Sachsen                                                                                                                         | 95.2256                                                        | 4.3824                                                   | FALSE                                     | 124.0000                                            | TRUE                         | 67.0000                                    | FALSE                         | 147.7059                                 | TRUE                             | 1.6765                                 | FALSE                            | 54.9706                                   | FALSE                        |
| Bayern-SachsenAnhalt                                                                                                                   | 95.2256                                                        | 0.1176                                                   | FALSE                                     | 160.1765                                            | TRUE                         | 126.7647                                   | TRUE                          | 221.8235                                 | TRUE                             | 7.4118                                 | FALSE                            | 187.7059                                  | TRUE                         |
|                                                                                                                                        | 95.2256                                                        | 10.5882                                                  | FALSE                                     | 54.5882                                             | FALSE                        | 190.3529                                   | TRUE                          | 175.8824                                 | TRUE                             | 27.6176                                | FALSE                            | 75.2059                                   | FALSE                        |
| Bayern-SchleswigHolstein<br>Bayern-Thuringen                                                                                           | 95.2256                                                        | 2.5294                                                   | FALSE                                     | 170.6471                                            | TRUE                         | 190.3529                                   | TRUE                          | 175.8824                                 | TRUE                             | 1.3235                                 | FALSE                            | 123.0294                                  | TRUE                         |
| Berlin-Brandenburg                                                                                                                     | 95.2256                                                        | 16.9118                                                  | FALSE                                     | 103.5882                                            | TRUE                         | 116.2941                                   | TRUE                          | 80.1765                                  | FALSE                            | 5.0294                                 | FALSE                            | 30.6765                                   | FALSE                        |
| Berlin-Bremen                                                                                                                          | 95.2256                                                        | 14.0000                                                  | FALSE                                     | 81.5294                                             | FALSE                        | 41.7647                                    | FALSE                         | 15.4706                                  | FALSE                            | 1.7941                                 | FALSE                            | 85.0588                                   | FALSE                        |
| Berlin-Hamburg                                                                                                                         | 95.2256                                                        | 9.4118                                                   | FALSE                                     | 98.6471                                             | TRUE                         | 28.0588                                    | FALSE                         | 98.0000                                  | TRUE                             | 29.2941                                | FALSE                            | 22.0000                                   | FALSE                        |
| Berlin-Hessen Berlin-MecklenburgVorpommern                                                                                             | 95.2256                                                        | 20.1176                                                  | FALSE                                     | 54.2353                                             | FALSE                        | 91.2941                                    | FALSE                         | 62.0000                                  | FALSE                            | 13.8235                                | FALSE                            | 59.1176                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 11.9412                                                  | FALSE                                     | 111.1176                                            | TRUE                         | 74.4706                                    | FALSE                         | 102.2353                                 | TRUE                             | 8.7941                                 | FALSE                            | 84.5000                                   | FALSE                        |
| Berlin-Niedersachsen                                                                                                                   | 95.2256                                                        | 9.0000                                                   | FALSE                                     | 45.4118                                             | FALSE                        | 188.8824                                   | TRUE                          | 80.8235                                  | FALSE                            | 9.5000                                 | FALSE                            | 15.0294                                   | FALSE                        |
| Berlin-NordrheinWestfalen                                                                                                              | 95.2256                                                        | 8.7647                                                   | FALSE                                     | 15.7647                                             | FALSE                        | 93.1176                                    | FALSE                         | 83.5294                                  | FALSE                            | 1.8235                                 | FALSE                            | 27.2353                                   | FALSE                        |
| Berlin-RheinlandPfalz                                                                                                                  | 95.2256                                                        | 16.8235                                                  | FALSE                                     | 57.9412                                             | FALSE                        | 189.0588                                   | TRUE                          | 23.1176                                  | FALSE                            | 4.9412                                 | FALSE                            | 13.5588                                   | FALSE                        |
| Berlin-Saarland                                                                                                                        | 95.2256                                                        | 0.8824                                                   | FALSE                                     | 44.8235                                             | FALSE                        | 147.8235                                   | TRUE                          | 1.8235                                   | FALSE                            | 6.0000                                 | FALSE                            | 87.9412                                   | FALSE                        |
| Berlin-Sachsen                                                                                                                         | 95.2256                                                        | 2.0882                                                   | FALSE                                     | 94.9412                                             | FALSE                        | 116.8824                                   | TRUE                          | 18.9412                                  | FALSE                            | 7.6176                                 | FALSE                            | 13.8529                                   | FALSE                        |
| Berlin-SachsenAnhalt                                                                                                                   | 95.2256                                                        | 6.5882                                                   | FALSE                                     | 131.1176                                            | TRUE                         | 176.6471                                   | TRUE                          | 93.0588                                  | FALSE                            | 1.4706                                 | FALSE                            | 118.8824                                  | TRUE                         |
| Berlin-SchleswigHolstein                                                                                                               | 95.2256                                                        | 4.1176                                                   | FALSE                                     | 25.5294                                             | FALSE                        | 240.2353                                   | TRUE                          | 47.1176                                  | FALSE                            | 33.5588                                | FALSE                            | 6.3824                                    | FALSE                        |
| Berlin-Thuringen                                                                                                                       | 95.2256                                                        | 3.9412                                                   | FALSE                                     | 141.5882                                            | TRUE                         | 243.2941                                   | TRUE                          | 22.1176                                  | FALSE                            | 7.2647                                 | FALSE                            | 54.2059                                   | FALSE                        |
| Brandenburg-Bremen                                                                                                                     | 95.2256                                                        | 2.9118                                                   | FALSE                                     | 185.1176                                            | TRUE                         | 74.5294                                    | FALSE                         | 64.7059                                  | FALSE                            | 6.8235                                 | FALSE                            | 54.3824                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 7.5000                                                   | FALSE                                     | 202.2353                                            | TRUE                         | 88.2353                                    | FALSE                         | 178.1765                                 | TRUE                             | 34.3235                                | FALSE                            | 52.6765                                   | FALSE                        |
| Brandenburg-Hamburg Brandenburg-Hessen                                                                                                 | 95.2256                                                        | 3.2059                                                   | FALSE                                     | 157.8235                                            | TRUE                         | 25.0000                                    | FALSE                         | 142.1765                                 | TRUE                             | 8.7941                                 | FALSE                            | 89.7941                                   | FALSE                        |
| Brandenburg-MecklenburgVorpommern Brandenburg-Niedersachsen                                                                            | 95.2256                                                        | 4.9706                                                   | FALSE                                     | 7.5294                                              | FALSE                        | 41.8235                                    | FALSE                         | 22.0588                                  | FALSE                            | 13.8235                                | FALSE                            | 53.8235                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 7.9118                                                   | FALSE                                     | 58.1765                                             | FALSE                        | 72.5882                                    | FALSE                         | 161.0000                                 | TRUE                             | 4.4706                                 | FALSE                            | 15.6471                                   | FALSE                        |
| Brandenburg-NordrheinWestfalen                                                                                                         | 95.2256                                                        | 8.1471                                                   | FALSE                                     | 119.3529                                            | TRUE                         | 23.1765                                    | FALSE                         | 163.7059                                 | TRUE                             | 6.8529                                 | FALSE                            | 3.4412                                    | FALSE                        |
| Brandenburg-RheinlandPfalz                                                                                                             | 95.2256                                                        | 0.0882                                                   | FALSE                                     | 45.6471                                             | FALSE                        | 72.7647                                    | FALSE                         | 103.2941                                 | TRUE                             | 0.0882                                 | FALSE                            | 44.2353                                   | FALSE                        |
| Brandenburg-Saarland                                                                                                                   | 95.2256                                                        | 16.0294                                                  | FALSE                                     | 58.7647                                             | FALSE                        | 31.5294                                    | FALSE                         | 82.0000                                  | FALSE                            | 0.9706                                 | FALSE                            | 57.2647                                   | FALSE                        |
| Brandenburg-Sachsen Brandenburg-SachsenAnhalt                                                                                          | 95.2256                                                        | 19.0000                                                  | FALSE                                     | 8.6471                                              | FALSE                        | 0.5882                                     | FALSE                         | 61.2353                                  | FALSE                            | 12.6471                                | FALSE                            | 44.5294                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 23.5000                                                  | FALSE                                     | 27.5294                                             | FALSE                        | 60.3529                                    | FALSE                         | 12.8824                                  | FALSE                            | 3.5588                                 | FALSE                            | 88.2059                                   | FALSE                        |
| Brandenburg-SchleswigHolstein                                                                                                          | 95.2256                                                        | 12.7941                                                  | FALSE                                     | 78.0588                                             | FALSE                        | 123.9412                                   | TRUE                          | 33.0588                                  | FALSE                            | 38.5882                                | FALSE                            | 24.2941                                   | FALSE                        |
| Brandenburg-Thuringen                                                                                                                  | 95.2256                                                        | 20.8529                                                  | FALSE                                     | 38.0000                                             | FALSE                        | 127.0000                                   | TRUE                          | 102.2941                                 | TRUE                             | 12.2941                                | FALSE                            | 23.5294                                   | FALSE                        |
| Bremen-Hamburg                                                                                                                         | 95.2256                                                        | 4.5882                                                   | FALSE                                     | 17.1176                                             | FALSE                        | 13.7059                                    | FALSE                         | 113.4706                                 | TRUE                             | 27.5000                                | FALSE                            | 107.0588                                  | TRUE                         |
| Bremen-Hessen                                                                                                                          | 95.2256                                                        | 6.1176                                                   | FALSE                                     | 27.2941                                             | FALSE                        | 49.5294                                    | FALSE                         | 77.4706                                  | FALSE                            | 15.6176                                | FALSE                            | 144.1765                                  | TRUE                         |
| Bremen-MecklenburgVorpommern Bremen-Niedersachsen                                                                                      | 95.2256                                                        | 2.0588                                                   | FALSE                                     | 192.6471                                            | TRUE                         | 32.7059                                    | FALSE                         | 86.7647                                  | FALSE                            | 7.0000                                 | FALSE                            | 0.5588                                    | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 5.0000                                                   | FALSE                                     | 126.9412                                            | TRUE                         | 147.1176                                   | TRUE                          | 96.2941                                  | TRUE                             | 11.2941                                | FALSE                            | 70.0294                                   | FALSE                        |
| Bremen-NordrheinWestfalen                                                                                                              | 95.2256                                                        | 5.2353                                                   | FALSE                                     | 65.7647                                             | FALSE                        | 51.3529                                    | FALSE                         | 99.0000                                  | TRUE                             | 0.0294                                 | FALSE                            | 57.8235                                   | FALSE                        |
| Bremen-RheinlandPfalz                                                                                                                  | 95.2256                                                        | 2.8235                                                   | FALSE                                     | 139.4706                                            | TRUE                         | 147.2941                                   | TRUE                          | 38.5882                                  | FALSE                            | 6.7353                                 | FALSE                            | 98.6176                                   | TRUE                         |
| Bremen-Saarland                                                                                                                        | 95.2256                                                        | 13.1176                                                  | FALSE                                     | 126.3529                                            | TRUE                         | 106.0588                                   | TRUE                          | 17.2941                                  | FALSE                            | 7.7941                                 | FALSE                            | 2.8824                                    | FALSE                        |
| Bremen-Sachsen Bremen-SachsenAnhalt                                                                                                    | 95.2256                                                        | 16.0882                                                  | FALSE                                     | 176.4706                                            | TRUE                         | 75.1176                                    | FALSE                         | 3.4706                                   | FALSE                            | 5.8235                                 | FALSE                            | 98.9118                                   | TRUE                         |
|                                                                                                                                        | 95.2256                                                        | 20.5882                                                  | FALSE                                     | 212.6471                                            | TRUE                         | 134.8824                                   | TRUE                          | 77.5882                                  | FALSE                            | 3.2647                                 | FALSE                            | 33.8235                                   | FALSE                        |
| Bremen-SchleswigHolstein                                                                                                               | 95.2256                                                        | 9.8824                                                   | FALSE                                     | 107.0588                                            | TRUE                         | 198.4706                                   | TRUE                          | 31.6471                                  | FALSE                            | 31.7647                                | FALSE                            | 78.6765                                   | FALSE                        |
| Bremen-Thuringen                                                                                                                       | 95.2256                                                        | 17.9412                                                  | FALSE                                     | 223.1176                                            | TRUE                         | 201.5294                                   | TRUE                          | 37.5882                                  | FALSE                            | 5.4706                                 | FALSE                            | 30.8529                                   | FALSE                        |
| Hamburg-Hessen                                                                                                                         | 95.2256                                                        | 10.7059                                                  | FALSE                                     | 44.4118                                             | FALSE                        | 63.2353                                    | FALSE                         | 36.0000                                  | FALSE                            | 43.1176                                | FALSE                            | 37.1176                                   | FALSE                        |
| Hamburg-MecklenburgVorpommern                                                                                                          | 95.2256                                                        | 2.5294                                                   | FALSE                                     | 209.7647                                            | TRUE                         | 46.4118                                    | FALSE                         | 200.2353                                 | TRUE                             | 20.5000                                | FALSE                            | 106.5000                                  | TRUE                         |
| Hamburg-Niedersachsen                                                                                                                  | 95.2256                                                        | 0.4118                                                   | FALSE                                     | 144.0588                                            | TRUE                         | 160.8235                                   | TRUE                          | 17.1765                                  | FALSE                            | 38.7941                                | FALSE                            | 37.0294                                   | FALSE                        |
| Hamburg-NordrheinWestfalen                                                                                                             | 95.2256                                                        | 0.6471                                                   | FALSE                                     | 82.8824                                             | FALSE                        | 65.0588                                    | FALSE                         | 14.4706                                  | FALSE                            | 27.4706                                | FALSE                            | 49.2353                                   | FALSE                        |
| Hamburg-RheinlandPfalz                                                                                                                 | 95.2256                                                        | 7.4118                                                   | FALSE                                     | 156.5882                                            | TRUE                         | 161.0000                                   | TRUE                          | 74.8824                                  | FALSE                            | 34.2353                                | FALSE                            | 8.4412                                    | FALSE                        |
| Hamburg-Saarland                                                                                                                       | 95.2256                                                        | 8.5294                                                   | FALSE                                     | 143.4706                                            | TRUE                         | 119.7647                                   | TRUE                          | 96.1765                                  | TRUE                             | 35.2941                                | FALSE                            | 109.9412                                  | TRUE                         |
| Hamburg-Sachsen                                                                                                                        | 95.2256                                                        | 11.5000                                                  | FALSE                                     | 193.5882                                            | TRUE                         | 88.8235                                    | FALSE                         | 116.9412                                 | TRUE                             | 21.6765                                | FALSE                            | 8.1471                                    | FALSE                        |
| Hamburg-SachsenAnhalt                                                                                                                  | 95.2256                                                        | 16.0000                                                  | FALSE                                     | 229.7647                                            | TRUE                         | 148.5882                                   | TRUE                          | 191.0588                                 | TRUE                             | 30.7647                                | FALSE                            | 140.8824                                  | TRUE                         |
| Hamburg-SchleswigHolstein                                                                                                              | 95.2256                                                        | 5.2941                                                   | FALSE                                     | 124.1765                                            | TRUE                         | 212.1765                                   | TRUE                          | 145.1176                                 | TRUE                             | 4.2647                                 | FALSE                            | 28.3824                                   | FALSE                        |
| Hamburg-Thuringen Hessen-MecklenburgVorpommern                                                                                         | 95.2256                                                        | 13.3529                                                  | FALSE                                     | 240.2353                                            | TRUE                         | 215.2353                                   | TRUE                          | 75.8824                                  | FALSE                            | 22.0294                                | FALSE                            | 76.2059                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 8.1765                                                   | FALSE                                     | 165.3529                                            | TRUE                         | 16.8235                                    | FALSE                         | 164.2353                                 | TRUE                             | 22.6176                                | FALSE                            | 143.6176                                  | TRUE                         |
| Hessen-Niedersachsen                                                                                                                   | 95.2256                                                        | 11.1176                                                  | FALSE<br>FALSE                            | 99.6471                                             | TRUE                         | 97.5882                                    | TRUE                          | 18.8235                                  | FALSE                            | 4.3235                                 | FALSE                            | 74.1471                                   | FALSE                        |
| Hessen-NordrheinWestfalen                                                                                                              | 95.2256                                                        | 11.3529                                                  | FALSE                                     | 38.4706                                             | FALSE                        | 1.8235                                     | FALSE                         | 21.5294                                  | FALSE                            | 15.6471                                | FALSE                            | 86.3529                                   | FALSE                        |
| Hessen-RheinlandPfalz                                                                                                                  | 95.2256                                                        | 3.2941                                                   |                                           | 112.1765                                            | TRUE                         | 97.7647                                    | TRUE                          | 38.8824                                  | FALSE                            | 8.8824                                 | FALSE                            | 45.5588                                   | FALSE                        |
| Hessen-Saarland                                                                                                                        | 95.2256                                                        | 19.2353                                                  | FALSE                                     | 99.0588                                             | TRUE                         | 56.5294                                    | FALSE                         | 60.1765                                  | FALSE                            | 7.8235                                 | FALSE                            | 147.0588                                  | TRUE                         |
| Hessen-Sachsen                                                                                                                         | 95.2256                                                        | 22.2059                                                  | FALSE                                     | 149.1765                                            | TRUE                         | 25.5882                                    | FALSE                         | 80.9412                                  | FALSE                            | 21.4412                                | FALSE                            | 45.2647                                   | FALSE                        |
| Hessen-SachsenAnhalt                                                                                                                   | 95.2256                                                        | 26.7059                                                  | FALSE                                     | 185.3529                                            | TRUE                         | 85.3529                                    | FALSE                         | 155.0588                                 | TRUE                             | 12.3529                                | FALSE                            | 178.0000                                  | TRUE                         |
| Hessen-SchleswigHolstein                                                                                                               | 95.2256                                                        | 16.0000                                                  | FALSE                                     | 79.7647                                             | FALSE                        | 148.9412                                   | TRUE                          | 109.1176                                 | TRUE                             | 47.3824                                | FALSE                            | 65.5000                                   | FALSE                        |
| Hessen-Thuringen                                                                                                                       | 95.2256                                                        | 24.0588                                                  | FALSE                                     | 195.8235                                            | TRUE                         | 152.0000                                   | TRUE                          | 39.8824                                  | FALSE                            | 21.0882                                | FALSE                            | 113.3235                                  | TRUE                         |
| MecklenburgVorpommern-Niedersachsen MecklenburgVorpommern-NordrheinWestfalen                                                           | 95.2256                                                        | 2.9412                                                   | FALSE                                     | 65.7059                                             | FALSE                        | 114.4118                                   | TRUE                          | 183.0588                                 | TRUE                             | 18.2941                                | FALSE                            | 69.4706                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 3.1765                                                   | FALSE                                     | 126.8824                                            | TRUE                         | 18.6471                                    | FALSE                         | 185.7647                                 | TRUE                             | 6.9706                                 | FALSE                            | 57.2647                                   | FALSE                        |
| MecklenburgVorpommern-RheinlandPfalz                                                                                                   | 95.2256                                                        | 4.8824                                                   | FALSE                                     | 53.1765                                             | FALSE                        | 114.5882                                   | TRUE                          | 125.3529                                 | TRUE                             | 13.7353                                | FALSE                            | 98.0588                                   | TRUE                         |
| MecklenburgVorpommern-Saarland MecklenburgVorpommern-Sachsen                                                                           | 95.2256                                                        | 11.0588                                                  | FALSE                                     | 66.2941                                             | FALSE                        | 73.3529                                    | FALSE                         | 104.0588                                 | TRUE                             | 14.7941                                | FALSE                            | 3.4412                                    | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 14.0294                                                  | FALSE                                     | 16.1765                                             | FALSE                        | 42.4118                                    | FALSE                         | 83.2941                                  | FALSE                            | 1.1765                                 | FALSE                            | 98.3529                                   | TRUE                         |
| MecklenburgVorpommern-SachsenAnhalt                                                                                                    | 95.2256                                                        | 18.5294                                                  | FALSE                                     | 20.0000                                             | FALSE                        | 102.1765                                   | TRUE                          | 9.1765                                   | FALSE                            | 10.2647                                | FALSE                            | 34.3824                                   | FALSE                        |
| MecklenburgVorpommern-SchleswigHolstein MecklenburgVorpommern-Thuringen                                                                | 95.2256                                                        | 7.8235                                                   | FALSE                                     | 85.5882                                             | FALSE                        | 165.7647                                   | TRUE                          | 55.1176                                  | FALSE                            | 24.7647                                | FALSE                            | 78.1176                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 15.8824                                                  | FALSE                                     | 30.4706                                             | FALSE                        | 168.8235                                   | TRUE                          | 124.3529                                 | TRUE                             | 1.5294                                 | FALSE                            | 30.2941                                   | FALSE                        |
| Niedersachsen-NordrheinWestfalen                                                                                                       | 95.2256                                                        | 0.2353                                                   | FALSE                                     | 61.1765                                             | FALSE                        | 95.7647                                    | TRUE                          | 2.7059                                   | FALSE                            | 11.3235                                | FALSE                            | 12.2059                                   | FALSE                        |
| Niedersachsen-RheinlandPfalz                                                                                                           | 95.2256                                                        | 7.8235                                                   | FALSE                                     | 12.5294                                             | FALSE                        | 0.1765                                     | FALSE                         | 57.7059                                  | FALSE                            | 4.5588                                 | FALSE                            | 28.5882                                   | FALSE                        |
| Niedersachsen-Saarland                                                                                                                 | 95.2256                                                        | 8.1176                                                   | FALSE                                     | 0.5882                                              | FALSE                        | 41.0588                                    | FALSE                         | 79.0000                                  | FALSE                            | 3.5000                                 | FALSE                            | 72.9118                                   | FALSE                        |
| Niedersachsen-Sachsen Niedersachsen-SachsenAnhalt                                                                                      | 95.2256                                                        | 11.0882                                                  | FALSE                                     | 49.5294                                             | FALSE                        | 72.0000                                    | FALSE                         | 99.7647                                  | TRUE                             | 17.1176                                | FALSE                            | 28.8824                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 15.5882                                                  | FALSE                                     | 85.7059                                             | FALSE                        | 12.2353                                    | FALSE                         | 173.8824                                 | TRUE                             | 8.0294                                 | FALSE                            | 103.8529                                  | TRUE                         |
| Niedersachsen-SchleswigHolstein                                                                                                        | 95.2256                                                        | 4.8824                                                   | FALSE                                     | 19.8824                                             | FALSE                        | 51.3529                                    | FALSE                         | 127.9412                                 | TRUE                             | 43.0588                                | FALSE                            | 8.6471                                    | FALSE                        |
| Niedersachsen-Thuringen NordrheinWestfalen-RheinlandPfalz                                                                              | 95.2256                                                        | 12.9412                                                  | FALSE                                     | 96.1765                                             | TRUE                         | 54.4118                                    | FALSE                         | 58.7059                                  | FALSE                            | 16.7647                                | FALSE                            | 39.1765                                   | FALSE                        |
|                                                                                                                                        | 95.2256                                                        | 8.0588                                                   | FALSE                                     | 73.7059                                             | FALSE                        | 95.9412                                    | TRUE                          | 60.4118                                  | FALSE                            | 6.7647                                 | FALSE                            | 40.7941                                   | FALSE                        |
| NordrheinWestfalen-Saarland                                                                                                            | 95.2256                                                        | 7.8824                                                   | FALSE                                     | 60.5882                                             | FALSE                        | 54.7059                                    | FALSE                         | 81.7059                                  | FALSE                            | 7.8235                                 | FALSE                            | 60.7059                                   | FALSE                        |
| NordrheinWestfalen-Sachsen                                                                                                             | 95.2256                                                        | 10.8529                                                  | FALSE                                     | 110.7059                                            | TRUE                         | 23.7647                                    | FALSE                         | 102.4706                                 | TRUE                             | 5.7941                                 | FALSE                            | 41.0882                                   | FALSE                        |
| Nordrhein Westfalen-Sachsen Anhalt                                                                                                     | 95.2256                                                        | 15.3529                                                  | FALSE                                     | 146.8824                                            | TRUE                         | 83.5294                                    | FALSE                         | 176.5882                                 | TRUE                             | 3.2941                                 | FALSE                            | 91.6471                                   | FALSE                        |
| NordrheinWestfalen-SchleswigHolstein                                                                                                   | 95.2256                                                        | 4.6471                                                   | FALSE                                     | 41.2941                                             | FALSE                        | 147.1176                                   | TRUE                          | 130.6471                                 | TRUE                             | 31.7353                                | FALSE                            | 20.8529                                   | FALSE                        |
| NordrheinWestfalen-Thuringen                                                                                                           | 95.2256                                                        | 12.7059                                                  | FALSE                                     | 157.3529                                            | TRUE                         | 150.1765                                   | TRUE                          | 61.4118                                  | FALSE                            | 5.4412                                 | FALSE                            | 26.9706                                   | FALSE                        |
| RheinlandPfalz-Saarland                                                                                                                | 95.2256                                                        | 15.9412                                                  | FALSE                                     | 13.1176                                             | FALSE                        | 41.2353                                    | FALSE                         | 21.2941                                  | FALSE                            | 1.0588                                 | FALSE                            | 101.5000                                  | TRUE                         |
| RheinlandPfalz-Sachsen                                                                                                                 | 95.2256                                                        | 18.9118                                                  | FALSE                                     | 37.0000                                             | FALSE                        | 72.1765                                    | FALSE                         | 42.0588                                  | FALSE                            | 12.5588                                | FALSE                            | 0.2941                                    | FALSE                        |
| RheinlandPfalz-SachsenAnhalt                                                                                                           | 95.2256                                                        | 23.4118                                                  | FALSE                                     | 73.1765                                             | FALSE                        | 12.4118                                    | FALSE                         | 116.1765                                 | TRUE                             | 3.4706                                 | FALSE                            | 132.4412                                  | TRUE                         |
| RheinlandPfalz-SchleswigHolstein                                                                                                       | 95.2256                                                        | 12.7059                                                  | FALSE                                     | 32.4118                                             | FALSE                        | 51.1765                                    | FALSE                         | 70.2353                                  | FALSE                            | 38.5000                                | FALSE                            | 19.9412                                   | FALSE                        |
| RheinlandPfalz-Thuringen                                                                                                               | 95.2256                                                        | 20.7647                                                  | FALSE                                     | 83.6471                                             | FALSE                        | 54.2353                                    | FALSE                         | 1.0000                                   | FALSE                            | 12.2059                                | FALSE                            | 67.7647                                   | FALSE                        |
| Michianur laiz-Illulligell                                                                                                             | JJ.22JU                                                        | 2.9706                                                   | FALSE                                     | 50.1176                                             | FALSE                        | 30.9412                                    | FALSE                         | 20.7647                                  | FALSE                            | 13.6176                                | FALSE                            | 101.7941                                  | TRUE                         |
| Saarland-Sachsen                                                                                                                       | 95.2256                                                        |                                                          |                                           | 86.2941                                             | FALSE                        | 28.8235                                    | FALSE                         | 94.8824                                  | FALSE                            | 4.5294                                 | FALSE                            | 30.9412                                   | FALSE                        |
| Saarland-SachsenAnhalt                                                                                                                 | 95.2256                                                        | 7.4706                                                   | FALSE<br>FALSE                            |                                                     |                              | 92.4118                                    | FALSE                         | 48.9412                                  | FALSE                            | 39.5588                                | FALSE                            | 81.5588                                   | FALSE                        |
| Saarland-SachsenAnhalt<br>Saarland-SchleswigHolstein<br>Saarland-Thuringen                                                             | 95.2256<br>95.2256<br>95.2256                                  | 7.4706<br>3.2353<br>4.8235                               | FALSE<br>FALSE                            | 19.2941<br>96.7647                                  | FALSE<br>TRUE                | 92.4118<br>95.4706                         | TRUE                          | 48.9412<br>20.2941                       | FALSE                            | 39.5588<br>13.2647                     | FALSE                            | 81.5588<br>33.7353                        | FALSE<br>FALSE               |
| Saarland-SachsenAnhalt Saarland-SchleswigHolstein Saarland-Thuringen Sachsen-SachsenAnhalt Sachsen-SchleswigHolstein                   | 95.2256<br>95.2256<br>95.2256<br>95.2256<br>95.2256            | 7.4706<br>3.2353<br>4.8235<br>4.5000<br>6.2059           | FALSE<br>FALSE<br>FALSE<br>FALSE          | 19.2941<br>96.7647<br>36.1765<br>69.4118            | FALSE FALSE FALSE            | 95.4706<br>59.7647<br>123.3529             | TRUE<br>FALSE<br>TRUE         | 20.2941<br>74.1176<br>28.1765            | FALSE<br>FALSE<br>FALSE          | 13.2647<br>9.0882<br>25.9412           | FALSE<br>FALSE<br>FALSE          | 33.7353<br>132.7353<br>20.2353            | FALSE TRUE FALSE             |
| Saarland-SachsenAnhalt Saarland-SchleswigHolstein Saarland-Thuringen Sachsen-SachsenAnhalt Sachsen-SchleswigHolstein Sachsen-Thuringen | 95.2256<br>95.2256<br>95.2256<br>95.2256<br>95.2256<br>95.2256 | 7.4706<br>3.2353<br>4.8235<br>4.5000<br>6.2059<br>1.8529 | FALSE<br>FALSE<br>FALSE<br>FALSE<br>FALSE | 19.2941<br>96.7647<br>36.1765<br>69.4118<br>46.6471 | FALSE FALSE FALSE FALSE      | 95.4706<br>59.7647<br>123.3529<br>126.4118 | TRUE<br>FALSE<br>TRUE<br>TRUE | 20.2941<br>74.1176<br>28.1765<br>41.0588 | FALSE<br>FALSE<br>FALSE<br>FALSE | 13.2647<br>9.0882<br>25.9412<br>0.3529 | FALSE<br>FALSE<br>FALSE<br>FALSE | 33.7353<br>132.7353<br>20.2353<br>68.0588 | FALSE FALSE FALSE            |
| Saarland-SachsenAnhalt Saarland-SchleswigHolstein Saarland-Thuringen Sachsen-SachsenAnhalt Sachsen-SchleswigHolstein                   | 95.2256<br>95.2256<br>95.2256<br>95.2256<br>95.2256            | 7.4706<br>3.2353<br>4.8235<br>4.5000<br>6.2059           | FALSE<br>FALSE<br>FALSE<br>FALSE          | 19.2941<br>96.7647<br>36.1765<br>69.4118            | FALSE FALSE FALSE            | 95.4706<br>59.7647<br>123.3529             | TRUE<br>FALSE<br>TRUE         | 20.2941<br>74.1176<br>28.1765            | FALSE<br>FALSE<br>FALSE          | 13.2647<br>9.0882<br>25.9412           | FALSE<br>FALSE<br>FALSE          | 33.7353<br>132.7353<br>20.2353            | FALSE TRUE FALSE             |

 Table E-4. Complete breakdown of the Kruskal Wallis test results. Those pairs that are statistically different for a specified variable are labeled 'TRUE' and highlighted green.

# **Appendix F: Inference Models**

This appendix provides additional details on the inference models developed using Random Forest Regression Trees, with k-fold cross validation (k=6)<sup>6</sup>. Figure F-1 provides the learning curve (how the model performs across varying train-test splits) and the feature importance plot for all data (all of Germany). Notably, State is the most important feature. This encourages follow on- individual state models.



**Figure F-1.** All of Germany random forest results. Train-test split versus mean absolute error (left) shows that the model performance improves with more training data. To avoid overfitting the model, I select a conservative train-test split ratio of 0.6 for mean absolute error measurements. The feature importance plot (right) shows that State, ICTPC, and PATPC are the top three most important features when considering all of the data across Germany.

Figures F-2 and F-3 provide the state-specific learning curves and feature importance plots. Similar to the All of Germany Feature Importance, most states contain DeathT in the bottom two.

<sup>&</sup>lt;sup>6</sup> The R library caret was used to generate the random forest models.



**Figure F-2**. Individual state learning curves. Several states exhibit slightly irregular performance in early train-test splits; however, most models improve substantially between 0.6-0.8.



**Figure F-3**. Individual state feature importance plots. CPI, ICTPC, and PATPC occur in the top two most important features the most often. Notably, DeathT appears in the bottom two in most states.