Neparametrické testy

B02907 Informační a komunikační technologie

Lubomír Štěpánek, Ústav biofyziky a informatiky 1. LF UK

Upozornění!

- dole v poznámkách jsou u většiny snímků rozšiřující a vysvětlující komentáře
- u některých statistických metod budete odkazováni na statistické tabulky, které jsou volně přístupné online na adrese http://new.euromise.org/czech/tajne/ucebnice/html/html/node15.html
- (obvykle bude ještě na příslušném snímku odkaz zopakován; autor vynaložil značné úsilí, aby se symbolika v prezentacích shodovala se symbolikou v tabulkách, proto by neměla být orientace v tabulkách problémem)
- z předložených prezentací se můžete učit, můžete je kopírovat či jinak měnit, ale bez dovolení autora/autorů je nesmíte použít do svých publikací ☺
- předložené prezentace nejsou bezchybnou statistickou kuchařkou, proto ne zcela doporučuji se na ně ve svých pracích odkazovat, nebo je dokonce citovat
- pokud se budu sám odkazovat na vhodnou literaturu, myslím tím nejspíše následující dvě knihy:
 - Zvára: Biostatistika. Karolinum, Praha 1988
 - Zvárová et al.: Biomedicínská statistika I. Základy statistiky pro biomedicínské obory
- dotazy a konzultace možné a vlastně i doporučeny

(Lubomír Štěpánek, stepanek.lub@seznam.cz)

Neparametrické testy hypotéz

(pro metrická data s jiným než normálním rozdělením a pro ordinální data)

Jak myslí neparametrický test

- máme dva výběry, alespoň jeden nemá normální data
- o jeho rozdělení nic nevíme
- nutné určit pořadí prvků seřazených vzestupně
- test zkoumá, jak moc jsou pořadí obou výběrů "promíchaná" – čím méně, tím odlišnější data

Tělesná výška/cm	Celkové pořadí	Tělesná výška/cm	Celkové pořadí
153	4	188	7
191	8	148	3
176	5	134	1
184	6	147	2

Tělesná výška/cm	Celkové pořadí	Tělesná výška/cm	Celkové pořadí
134	1	176	5
147	2	184	6
148	3	188	7
153	4	191	8

Parametrické vs. neparametrické testy

parametrické testy

- neurčité rozdělení, nemusí být normální
- v hypotéze pouze rozdílnost rozdělení
- rozdělení není normální, takže je obtížné určit hladinu významnosti

neparametrické testy

- vyžadujeme normálnost dat (šikmost, špičatost)
- v hypotéze porovnávaná charakteristika (průměr X rozptyl)
- můžeme vypočítat hladinu významnosti (díky normálnosti dat)

Neparametrický test hypotézy

- máme-li dva (ev. více) výběry, z nichž alespoň jeden nevykazuje normální rozdělení (data metrická), nebo máme-li ordinální data
- máme-li formulovanou hypotézu
- máme-li ke každému prvku přiřazenu hodnotu celkového pořadí (!)
- ¬ můžeme provést tzv. neparametrický test hypotézy

Kvantilový, mediánový a znaménkový test

- pro jeden výběr s jiným než normálním rozdělením, metrické hodnoty seřazené vzestupně podle velikosti, nebo přímo data ordinální
- kvantilový test
 - H0: k-tý kvantil výběru = c (= konst.), H1: k-tý kvantil výběru ≠ c (0<k<1; min<c<max výběru)
 - test je založen na testové statistice Z

$$Z = \frac{m - nk}{\sqrt{nk(1 - k)}}$$

- m je počet hodnot, které jsou menší než c
- je-li $|Z| \ge z_{1-\alpha/2}$, zamítáme nulovou hypotézu, jinak ji přijímáme
- např. "H0: 95% percentil výšky osmnáctiletých chlapců je 185 cm"
- mediánový test
 - jako kvantilový pro k=0,5
- znaménkový test modifikace mediánového
 - místo hodnot znaku máme rozdíly těchto hodnot oproti předchozí hodnotě, např. "změna teploty před a po podáním léku", "změna tlaku krve před a po léčbě" atd.
 - H0: medián=0, H1: medián≠0

Wilcoxonův nepárový test (Mann-Whitney test)

- dva nezávislé výběry, alespoň jeden má jiné než normální rozdělení – obdoba nepárového t-testu
- H0: rozdělení obou výběrů je shodné, H1: rozdělení obou výběrů je odlišné
- H0 např. "rozdělení bolestivosti u výběru s horním a dolním zkříženým syndromem je stejné" atd.
- provedeme celkové pořadí, poté součty S₁ a S₂ pořadí prvního a druhého výběru, dále spočítáme:

$$U_i = S_i - \frac{n_i(n_i + 1)}{2}$$
 pro $i \in \{1, 2\}$

- H0 přijímáme, pokud min (U_1, U_2) <kritická hodnota $(n_1, n_2, alfa)$
- kritickou hodnotu nalezneme v tabulkách

Wilcoxonův párový test

- dva závislé výběry, alespoň jeden má jiné než normální rozdělení – obdoba párového t-testu
- H0: medián rozdílů je nulový, H1: medián rozdílů je nenulový
- H0 např. "mediány počtu T buněk při remisi a relapsu Hodgkinovy choroby jsou stejné"
- spočítáme rozdíl obou hodnot každého prvku, absolutní hodnoty rozdílů celkově seřadíme a doplníme znaménko
- sečtěme hodnotu všech kladných pořadí pokud je tento součet menší než kritická hodnota(n₁, n₂, alfa), zamítáme nulovou hypotézu H0
- kritickou hodnotu nalezneme v tabulkách

- několik nezávislých výběrů, alespoň jeden má nenormální rozdělení dat – obdoba nepárového Wilcoxonova testu
- H0: všechny výběry mají stejné spojité rozdělení, H1: alespoň jedna dvojice výběrů nemá shodné rozdělení
- určíme celkové pořadí každého prvku v rámci sloučení všech k výběrů, pro i-tý výběr pak sečteme pořadí jeho prvků T_i
- spočítáme testovou statistiku Q

$$Q = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{T_i^2}{n_i} - 3(n+1)$$

• H0 zamítáme, pokud $Q \ge \chi_{1-\alpha}(df)^2$, tuto hodnotu nalezneme v tabulkách, df = k-1

- vzestupné pořadí matek (dle věku při porodu):
- 19, 20, 21, 23, 23, 24, 25, 26, 27, 27, 28, 29, 30, 32, 33

vzdělání matky:	základní vzdělání	maturita	vysoká škola
věk matky při porodu:	19	23	27
	21	24	29
	20	27	33
	23	26	32
	25	28	30

	Multiple Comparisons p values (2-tailed); vě Independent (grouping) variable: dosažené Kruskal-Wallis test: H (2, N= 15) = 10,63297 p						
	maturita vysoká škola základní						
Depend.:	R:7,800C	R:12,700	vzdělání				
věk matky při porodu			R:3,5000				
maturita		0,24960	0,38532				
vysoká škola	0,24960		0,00343				
zákadní vzdělání	0,38532	0,00343					

Friedmanův test

- několik vzájemně závislých výběrů, alespoň jeden má nenormální rozdělení dat (většinou ale mají nenormální rozdělení všechny) – obdoba párového Wilcoxonova testu (zde pro >2 výběry)
- H0: všechny výběry mají stejné spojité rozdělení, H1: alespoň jedna dvojice výběrů nemá shodné rozdělení
- typickým příkladem soubor prvků (např. pacientů) v různých časech (etapách léčby atd.)
- např. H0: rozdělení velikosti nádoru (resp. mediánu velikosti) je po první, druhé, třetí i čtvrté chemoterapii shodné; vs. H1: rozdělení velikosti nádoru (resp. mediánu velikosti) po první, druhé, třetí i čtvrté chemoterapii není shodné (některá dvojice rozdělení není shodná, je signifikantně odlišná)
- Statistica, R, online verze

Friedmanův test

fáze hubnoucí kůry:	1. fáze	2. fáze	3. fáze	4. fáze
hmotnosti pacientů:	105	90	80	75
	130	100	95	90
	95	80	75	70
	160	120	110	105
	115	95	85	80

	Friedman ANOVA and Kendall Coel ANOVA Chi Sqr. (N = 5, df = 3) = 15 Coeff. of Concordance = 1,0000 Ave						
	Average Sum of Mean Std.De						
Variable	Rank	Ranks					
1. fáze	4,00000	20,0000	121,000	25,347			
2. fáze	3,00000	15,0000	97,0000	14,832			
3. fáze	2,00000	10,0000	89,0000	13,874			
4. fáze	1,00000	5,00000	84,0000	13,874			

Hodnocen 1 faktor v různých situacích nebo 2 faktory (závislost)

Nezávislé – různé výběry Závislé (př. tíž pacienti v různých situacích) Srovnání s populací, dva nebo více výběrů

Proměnné	1 faktor				2 faktory		
Výběry	NEZAVISLE			ZAV	ZAVISLE		
Data	1 výběr	2 výběry	k výběrů	2 výběry	k výběrů		
Metrická	Interval spolehlivosti, u-test	t-test	ANOVA při jednoduchém třídění	Párový t-test	Analýza rozptylu s opakování	Pearsonův	Poloha
	Interval spolehlivosti	F-test	Bartlett	Fergusonův		korelační koeficient	Variabilita
		Wilcoxon	17	Wilcoxon			
Ordinální	Kvantilový test	2∨ýběro∨ý Mann-Whitney	Kruskal-Wallis (-H test)	2výběrový pro závislé	Friedman	Spearmanův	Poloha
	Siegel - Tukey		Shorac		korelační koeficient	Variabilita	
Alternativní	Test dobré shody	χ-kvadrát 2*2, Fisher	χ-kvadrát, k*m tabulka	MC Nemar	Q-test	Kontingenční korelační koeficient	Cetnosti výskytu

Data metrická (měřitelná) symetrická ordinální (pořadí) nebo asymetrická alternativní (ano-ne)

Srovnáváme I střední hodnoty nebo variability

lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz