ENGR 13x2 Engineering Design with CAD

Creativity & Analytical Decision Making Tools

• • The Design Cycle

• • Agenda

- o Creativity
- o Generating creative ideas
- o Evaluating ideas
 - SWOT analysis
 - Weighted decision matrix
 - Paired Comparison analysis

Creativity . . .

- o Not limited to music, art, and literature
- Critical to the design process
 - Separates design from analysis and replication
 - You can't make the necessary changes in the design cycle without it
- o Feels difficult sometimes

• • Barriers to creativity

- o Internal factors
 - Fear of rejection / failure / risk
- o Pre-conceived notions
 - "I'm just not a creative person"
- Failure to look past an obvious first solution
 - "Good is the enemy of Great" Jim Collins
- o Pre-judging ideas
- o Time crunch

Generating creative ideas

- o Informal brainstorming
 - Ideas are contributed randomly by any group member
 - Ideas are collected, reviewed, and discussed by the group
- o Allows members to play off one another
- Can generate a large number of ideas in a short period of time
- Done effectively, can break down barriers to creativity
- o Better for small groups

- Absolutely necessary for success!
- o Each group sets their own some guidelines:
 - No holding back any idea, any time
 - No boundaries no idea is "too crazy"
 - No criticizing don't critique until the final discussion
 - No dismissing don't discount an idea
 - No limit one more idea is always good
 - No restrictions draw from any field of experience
 - No shame no one should ever be made to feel embarrassed about an idea

Let's try an example...

PROBLEM – There is a large squirrel population at OSU. Many squirrels are killed each semester by cars traveling on University Street. How can we prevent the death of these poor, innocent creatures?

- Works better in large or unfamiliar groups
 - Keeps 1 or 2 from dominating the discussion
 - Don't want anyone to check out of the process
 - Draws in all group members
 - Avoids a chaotic environment where ideas cannot be captured and creativity is inhibited
 - Fill a cup with a fire hose . . .
 - Provides an opportunity for people to think
- Requires someone to serve as facilitator
 - Run the session and enforce the "rules"

• • Two methods

- o Brainwriting
- o Idea Trigger

o There are MANY others

- Each member writes down an idea on a piece of paper
- After a given period of time, everyone passes their paper to the next participant
- Next participant can build on this idea or write a new one
- Continue until the papers make their way back to the beginning
- o Compile and review ideas

• • Idea Trigger

- o Phase 1 Idea Generation
 - Each member has a paper divided into four or five columns
 - Design issue is summarized by the facilitator
 - Each participant writes, in column one, as many ideas as possible
 - 2 minutes, break, 1 minute
 - Encourage the trivial and the ridiculous
 - No talking during this phase

• • Idea Trigger

- o Phase 2 Idea Trigger
 - Take turns reading ideas from column 1
 - Other members cross out duplicates
 - Write new ideas in column 2
 - Repeat with column 2, 3, etc. until ideas are exhausted
 - 2nd and 3rd column are usually the most creative

- Phase 3 Compilation
 - Facilitator generates a master list of all ideas generated
 - Discuss all ideas, decide which ones to keep for further consideration

• • What next?

 Once we have brainstormed ideas, we need strategies for narrowing down and selecting which idea(s) to pursue further.

- A structured way of identifying a potential design's
 - Strengths
 - Weaknesses
 - Opportunities
 - Threats

• • • Weighted Decision Matrix

- To make confident and rational decisions when you have multiple options and multiple factors to take into account.
 - Step 1: List each option as a column heading and each factor/criteria as a row.
 - Step 2: Assign a "weight" to each criteria based on its relative importance.
 - Step 3: Work through the table, giving a raw score to each option for each criteria.
 - Step 4: Multiply raw scores by weights.
 - Step 5: Add up the weighted scores for each option and look for the highest.

• • Decision Matrix Example

Weighted Decision Matrix Example

	Transfer Decision Matrix Example										
	Concept	A	4	[3	()	E	- -
Criteria	Weight	Raw	Wtd								
I	1										
П	1.5										
Ш	1										
IV	2										
V	3										
	Totals:										

Scale for Weight Values:

- 4 Critical importance
- 3 High importance
- 2 Medium importance
- 1 Low importance
- 0 Minimum importance

• • Decision Matrix Example

Weighted Decision Matrix Example

	Concept	A	4	[3	([)	[
Criteria	Weight	Raw	Wtd								
I	1	2		3		1		0		2	
П	1.5	1		1		3		3		3	
Ш	1	4		4		3		4		2	
IV	2	2		2		4		2		3	
V	3	1		2		1		4		2	
	Totals:										

Scale for Weight Values:

- 4 Critical importance
- 3 High importance
- 2 Medium importance
- 1 Low importance
- 0 Minimum importance

Scale for Raw Scores:

- 4 Far exceeds requirement
- 3 Exceeds requirement
- 2 Meets requirement
- 1 Minor deficiencies
- O Does not meet requirement

• • Decision Matrix Example

Weighted Decision Matrix Example

	Concept	Þ	4	E	3	(C	[)	6	=
Criteria	Weight	Raw	Wtd	Raw	Wtd	Raw	Wtd	Raw	Wtd	Raw	Wtd
I	1	2	2	3	3	1	1	0	0	2	2
П	1.5	1	1.5	1	1.5	3	4.5	3	4.5	3	4.5
Ш	1	4	4	4	4	3	3	4	4	2	2
IV	2	2	4	2	4	4	8	2	4	3	6
V	3	1	3	2	6	1	3	4	12	2	6
		Totals:	14.5		18.5		19.5		2/3) (20.5

Scale for Weight Values:

- 4 Critical importance
- 3 High importance
- 2 Medium importance
- 1 Low importance
- 0 Minimum importance

Scale for Raw Scores:

- 4 Far exceeds requirement
- 3 Exceeds requirement
- 2 Meets requirement
- 1 Minor deficiencies
- O Does not meet requirement

• • • Another Example

9	A	В	С	D	E	F	G	Н
1			Options	(Alterna	atives)			
2	Citeria	Weighting	Vehic	le A	Vehic	leB	Vehic	le C
3			Rating	Total	Rating	Total	Rating	Total
4	Purchase Price	5	6	30	4	20	3	15
5	Fuel Consumption	6	3	18	4	24	2	12
6	Reliability	4	4	16	4	16	5	20
7	Available Space	3	3	9	4	12	5	15
8	Engine Power	2	2	4	4	8	6	12
9	Total			77		80		74

Weighted Decision Matrix

source: https://www.infonautics.ch/blog/decision-matrix/

• • • Another Example

A decision matrix for a self-administered syringe

		CONCEPTS							
				CONCERTS					
		£	¥.	D	F	E			
		(refer	ence)						
		Master (Cylinder	Leve	r Stop	Dial Screw			
Selection			Weighted		Weighted		Weighted		
Criteria	Weight	Rating	Score	Rating	Score	Rating	Score		
Ease of Handling	5	3	0.15	3	0.15	4	0.2		
Ease of use	15	3	0.45	4	0.6	4	0.6		
Readable settings	10	3	0.3	3	0.3	5	0.5		
Dosage accuracy	25	3	0.75	3	0.75	2	0.5		
Durability	15	3	0.45	5	0.75	4	0.6		
Manufacturability	20	3	0.6	3	0.6	2	0.4		
Portability	10	3	0.3	3	0.3	3	0.3		
Total Score		3.00		3.45		3.10			
	3			l	3				
С	ontinue?		No		Yes		No		

source: http://deseng.ryerson.ca/~fil/t/oldT/concept/evaluation1.html

Paired Comparison Analysis can help.

Option	A	В	С	D	E	F	G	Н
Α								
В								
С								
D								
E								
F								
G								
н								

- List options as both Row and Column headings.
- Block out cells on the diagonal and below.
- In blank cells, compare the Row option with the Column option and write in the more important one.
- Optional: Score the difference in importance (2x, 3x, etc.)
- Consolidate the results by adding up the values for each option.

• • • An Example
A philanthropist is choosing between several different nonprofit organizations that are asking for money.

The Paired Comparison Analysis helps her rank their "importance."

	A: Overseas Development	B: Local Educational	C: University	D: Disaster Relief
A: Overseas Development		A, 2	C, 1	A, 1
B: Local Educational			C, 1	B, 1
C: University				C, 2
D: Disaster Relief				

source: https://www.mindtools.com/pages/article/newTED_02.htm

- Result: \bullet A = 3 (37.5 percent)
 - B = 1 (12.5 percent)
 - C = 4 (50 percent)

