Simple Radiative Transport

Rolf Wester

August 25, 2019

Contents

1.	Introduction	1
2.	Model Description	2
	2.1. Radiation Transport Equation	2
	2.2. Line Shapes	
	2.2.1. Doppler Broadeing	
	2.2.2. Pressure Broadening	
	2.3. Integration of the Radiation Transfer Equation	
	2.4. The HITRAN Data	
Α.	Appendix A	7
	A.1. Integration of the Radiation Transfer Equation	7
	A.2. Cubic Polynomial Interpolation	
	A.3. Line Shapes	8
	A.3.1. Gauss	
	A.3.2. Lorentz	9
В.	Bibliography	11
C.	Modtran	11

1. Introduction

Climate change, its causes, and possible remedies are in public focus. There is a consensus on the human made climate change amoung a vast majority of climate scientist. Yet there are still people who promote the idea that there is no climate change or if there is climate change that the causes are natural and not made und thus also not influencable by humans.

As a small contribution to the ongoing discussions in the public realm the objective of this report is to define and implement a very basic model of the earth's athmosphere and determine the amount of infrared radiation that is absorbed in the $15\mu m$ absorption band of CO_2 . This results of this little model are only meant to show the effect of CO_2 under quite simplifying assumptions are by no means a replacement for the many excellent research made in this field.

The model is described below and the source code is made available so that everbody interested can check the results. If the author has made a mistake, be it inde model definition or the computational code, he would be very appreciative for any hint.

2. Model Description

The key assumption of the simple athmosphere model are:

- The athmosphere consists mostly of molecules that don't interact with infrared radiation in the $15\mu m$ range
- Only CO_2 is absorbing and emitting infrared radiation
- The temperature and pressure of the athmosphere is assumed to be fixed, thus there is no self consistency between absorbtion and temperature
- Only upward travelling radiation is considered
- The main result is the difference in infrared radiation at the top of the athmosphere (TOA) at 70km escaping to free space
- Scatterng will be neglected
- The athmospheric gas is in local thermodynamic equalibrium so that all enery levels are occupied according to the Boltzmann factor
- All spectroscopic data of CO_2 ar etaken fro the HITRAn data base.

2.1. Radiation Transport Equation

The radiation transport equation reads:

$$\frac{dI_{\lambda}}{ds} = -\kappa_{\lambda}I_{\lambda} + \epsilon_{\lambda} \tag{1}$$

with:

$$I_{\lambda}: \left[\frac{W}{m^2 \ sr \ m} \right] \tag{2}$$

$$\epsilon_{\lambda} : \left\lceil \frac{W}{m^3 \ sr \ m} \right\rceil \tag{3}$$

$$\kappa_{\lambda} : \left\lceil \frac{1}{m} \right\rceil$$
(4)

The spantaneous emission ϵ_{λ} is given by:

$$\epsilon_{\lambda} = \frac{1}{4\pi} \frac{hc}{\lambda} N_u A_{ul} f(\lambda) \frac{\lambda^2}{c} \tag{5}$$

 A_{ul} ist the Einstein coefficient of spontaneous emission from upper to lower energy state, N_u the density of the upper state and is the $f(\lambda)$ line shape. The absorption coefficient κ_{λ} is given by:

$$\kappa_{\lambda} = \frac{h}{\lambda} \left(B_{lu} N_l - B_{ul} N_u \right) f(\lambda) \frac{\lambda^2}{c} \tag{6}$$

with the Einstein coefficients of absorption and stimulated emission:

$$B_{ul} = \frac{1}{8\pi} \frac{\lambda^3}{h} A_{ul} \quad , \quad \left[\frac{m^3}{Js^2} \right] \tag{7}$$

$$B_{lu} = \frac{g_u}{g_l} B_{ul} \tag{8}$$

The ensities of the upper and lower states are given by the Boltmann distribution at local temperature T:

$$N_u = N \frac{g_u}{Q(T)} \exp\left(-\frac{E_u}{k_B T}\right) \tag{9}$$

$$N_l = N \frac{g_l}{Q(T)} \exp\left(-\frac{E_l}{k_B T}\right) \tag{10}$$

 g_u and g_l are the degenercies of the upper and lower level respectively and Q(T) is the partition function.

2.2. Line Shapes

The main line broadening mechanisms is gases are natural line broadening, Doppler broadening and pressure broadening. Natural line broadening can be neglected. Pressure broadening is dominant in lower denser parts of the athmosphere whereas Doppler broadening becomes the dominat broadening mechanism in higher diluted regions of the athmosphere.

2.2.1. Doppler Broadeing

Doppler broadened line shapes are given by a Gaussian function:

$$f_G(\lambda) = \sqrt{\frac{\ln 2}{\pi \Delta \lambda^2}} \exp\left(-\frac{\ln 2}{\Delta \lambda^2} (\lambda - \lambda_0)^2\right)$$
(11)

$$\int_{-\infty}^{\infty} f_G(\lambda) d\lambda = 1 \tag{12}$$

with the half width at full maximum (HWFM) line width:

$$\frac{\Delta\lambda}{\lambda} = \frac{v}{c} = \frac{1}{c}\sqrt{\frac{2k_BT}{m}}\tag{13}$$

Doppler bradening is determined by the temperature and the mass of the particles.

2.2.2. Pressure Broadening

Pressure broadening is caused by the collisions between molecules, in the present model between N_2 and O_2 with CO_2 . The main determining factors are the concentration of the collision partners and the collison frequency. The line shapes are given by a Lorentz function:

$$f_L(\lambda) = \frac{1}{\pi} \frac{\Delta \lambda}{(\lambda - \lambda_0)^2 + \Delta \lambda^2}$$
 (14)

$$\int_{-\infty}^{\infty} f_L(\lambda) d\lambda = 1 \tag{15}$$

Contrary to the Gaussian line shapes of Doppler broadeing Lorentz functions have a much wider extend. In oder to keep computation times low the Lorentz functions have to be cut at a point. To estimate the introduced error the normlized Lorentz function is integrated from $-x_p$ to x_p :

$$F(x_p) = \frac{1}{\pi} \int_{-x_p}^{x_p} \frac{1}{1+x^2} dx = \frac{1}{\pi} \left(\arctan(x_p) - \arctan(-x_p) \right)$$
 (16)

 $F(x_p)=0.9$ at $x_p\approx 6.3$, 0.97 at $x_p=20$ and 0.99 at $x_p=40$. In the absorption computations limit is set at $20\Delta\lambda$ so that approximatly 3% of the radiation power is missing. To compensate for this a backround of 3% of a moving average will be added.

2.3. Integration of the Radiation Transfer Equation

The intensity in Equation 1 is integrated along a path from the earth surface to the TOA (top of athmosphere) which is assumed to be at a height of 70km. Assuming constant κ and ϵ in Equation 1 the solution is given by:

$$I(s) = I(s_0) \exp(-\kappa(s - s_0)) + \frac{\epsilon}{\kappa} (1 - \exp(-\kappa(s - s_0)))$$
(17)

Because κ and ϵ are not constant along the path from earths surface to TOA the inegration is subdivided into many steps. At each step κ and ϵ are accounted using local values of temperature and density.

In order to compute the total irradiance emenating from an area element of the surface to TOA the integration has to be done over the half sphere:

$$F(\theta) = \int_0^{2\pi} \int_0^{\pi/2} I(\theta) \sin(\theta) \cos(\theta) d\theta d\phi$$
 (18)

$$=2\pi \int_0^\theta I(\theta)\sin(\theta)\cos(\theta)d\theta \tag{19}$$

The intensity $I(\theta)$ is computed at 0^o and two further angles (in the computations 40^o and 80^o are chosen), the intermedite values are interpolated by a cubic polnomial (Chapter A.2). After determining the polynomial cofficients:

$$a_2 = \frac{(F_1 - F_0)\theta_2^3 - (F_2 - F_0)\theta_1^3}{\theta_1^2 \theta_2^3 - \theta_1^3 \theta_2^2}$$
(20)

$$a_3 = \frac{(F_2 - F_0)\theta_1^2 - (F_1 - F_0)\theta_2^2}{\theta_1^2 \theta_2^3 - \theta_1^3 \theta_2^2}$$
(21)

the integral is given by:

$$F(\theta) = 2\pi \int_0^\theta \left(a_0 + a_2 \theta^2 + a_3 \theta^3 \right) \sin(\theta) \cos(\theta) d\theta d\phi$$
(22)

The contributions of the different polynomial orders assuming constant $I(\theta)$ are:

$$\int_{0}^{\theta} \sin(\theta) \cos(\theta) d\theta = 0.5$$
$$\int_{0}^{\theta} \theta^{2} \sin(\theta) \cos(\theta) d\theta = 0.37$$
$$\int_{0}^{\theta} \theta^{3} \sin(\theta) \cos(\theta) d\theta = 0.38$$

2.4. The HITRAN Data

The spectroscopic CO_2 data where taken from the HIRAN database ([HITb]). The standard HITRAN data files use a fixed size format and information that are not used in the present report. HITRAN allows to define ones own format and data output. For easier handling the entries are separated by commas. The data rows are composed of:

- 1. Molecule ID, for CO_2 this is 2
- 2. Isotopologue ID, for CO_2 1 9
- 3. the transition wavenumber ν [cm⁻¹]
- 4. the line strength multiplied by isotopologue abunadance S, $[cm^{-1}/(molec\ cm^{-2}]]$
- 5. Einstein coefficient of spontaneous emission $A[s^{-1}]$
- 6. pressure line broadeing coefficient by collisions with air molecules γ_{air} [cm⁻¹atm⁻¹]
- 7. pressure line broadeing coefficient by collisions with CO_2 molecules γ_{self} [$cm^{-1}atm^{-1}$]
- 8. energy of the lower state E'' [cm^{-1}]
- 9. temperature exponent n_{air} for the air broadened HWHM

- 10. pressure shift induced by air δ_{air} , referred to $p = 1atm \ [cm^{-1}atm^{-1}]$
- 11. upper state degeneracy g'
- 12. upper state degeneracy g"

In the present report wavelenght λ [m] and energy [J] is used, whereas HITRAN uses wavenumber [cm⁻¹]. The transition from wavelenth to wavenumber has to be done carefully.

$$\lambda_{ul} \leftarrow \frac{10^{-2}}{\nu}$$

$$\Delta E_{ul} \leftarrow \frac{hc}{\lambda_{ul}}$$

$$E_{l} \leftarrow hc \frac{E''}{10^{-2}}$$

$$E_{u} \leftarrow E_{l} + \Delta E_{ul}$$

$$\gamma_{a} \leftarrow \frac{\gamma_{air}}{10^{-2}} 10^{-5}$$

$$\gamma_{s} \leftarrow \frac{\gamma_{self}}{10^{-2}} 10^{-5}$$

$$\delta_{a} \leftarrow \frac{\delta_{air}}{10^{-2}} 10^{-5}$$

$$\left[\frac{1}{m Pa}\right]$$

The HWHM Doppler line broadening is given by:

$$\alpha_D(T) = \frac{\nu_{ij}}{c} \sqrt{\frac{2N_A kT \ln 2}{M}}$$

The temperatue and pressure dependence of pressure broadened line width and pressure shift are defined by HITRAN as follows [HITa]:

$$\gamma(p,T) = \left(\frac{T_{ref}}{T}\right)^{n_{air}} (\gamma_{air}(p_{ref}, T_{ref})(p - p_{self}) + \gamma_{self}(p_{ref}, T_{ref})p_{self})$$

$$\nu_{ij}^* = \nu_{ij}\delta(p_{ref})p$$

Temperature dependent partition functions can be found at [HITc].

A. Appendix A

A.1. Integration of the Radiation Transfer Equation

The radiation transfer equation Equation 1 is of the form:

$$\frac{dy}{dx} = -ay + b \tag{24}$$

If a and b are contant the solution can be written as:

$$y(x) = c(x)\exp(-ax) \tag{25}$$

Inserting into Equation 24 yields:

$$\frac{dy}{dx} = \frac{dc(x)}{dx} \exp(-ax) - ac(x) \exp(-ax) = -ac(x) \exp(-ax) + b$$
 (26)

and further:

$$\frac{dc(x)}{dx} = b\exp(ax) \tag{27}$$

This can be integrated:

$$dc(x) = b\exp(ax)dx \tag{28}$$

$$\int_{c_0}^c dc(x) = b \int_0^x \exp(ax) dx \tag{29}$$

$$c - c_0 = -\frac{b}{a} (\exp(ax) - 1) \tag{30}$$

And finally:

$$y(x) = y(0)\exp(-ax) + \frac{b}{a}(1 - \exp(-ax))$$
(31)

A.2. Cubic Polynomial Interpolation

$$y(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 (32)$$

With $a_0 = y(0)$ and $\frac{dy(0)}{dx} = 0$ it follows that $a_1 = 0$. The coefficients a_2 and a_3 are determined by the linear system:

$$y(x_1) = y(0) + a_2 x_1^2 + a_3 x_1^3 (33)$$

$$y(x_2) = y(0) + a_2 x_2^2 + a_3 x_2^3 (34)$$

which can be written as matrix equation:

$$x \begin{pmatrix} x_1^2 & x_1^3 \\ x_2^2 & x_2^3 \end{pmatrix} \begin{pmatrix} a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} y(x_1) - y(0) \\ y(x_2) - y(0) \end{pmatrix}$$
(35)

Using Cramer's rule the solution is given by:

$$a_2 = \frac{(y(x_1) - y(0))x_1^3 - (y(x_2) - y(0))x_1^3}{x_1^2 x_2^3 - x_1^3 x_2^2}$$
(36)

$$a_3 = \frac{(y(x_2) - y(0))x_1^2 - (y(x_1) - y(0))x_2^2}{x_1^2 x_2^3 - x_1^3 x_2^2}$$
(37)

$$F(\theta) = 2\pi \int_0^\theta \left(a_0 + a_2 \theta^2 + a_3 \theta^3 \right) \sin(\theta) \cos(\theta) d\theta d\phi$$
 (38)

(39)

$$\int_{0}^{\theta} \sin(\theta) \cos(\theta) d\theta = 0.5$$
$$\int_{0}^{\theta} \theta^{2} \sin(\theta) \cos(\theta) d\theta = 0.37$$
$$\int_{0}^{\theta} \theta^{3} \sin(\theta) \cos(\theta) d\theta = 0.38$$

A.3. Line Shapes

A.3.1. Gauss

$$\frac{\Delta\lambda}{\lambda} = \frac{v}{c} = \frac{1}{c}\sqrt{\frac{2k_BT}{m}}\tag{40}$$

$$\exp(-ax_h^2) = \frac{1}{2} \tag{41}$$

$$-ax_h^2 = \ln\frac{1}{2}$$
 (42)

$$a = \frac{\ln 2}{x_h^2} \tag{43}$$

$$x_h = x_{hwhm} = \Delta\lambda \tag{44}$$

$$a = \frac{\ln 2}{\Delta \lambda^2} \tag{45}$$

$$\int \exp\left(-\frac{\ln 2}{\Delta \lambda^2}x^2\right) dx = \sqrt{\frac{\pi}{a}} \tag{46}$$

$$\sqrt{\frac{a}{\pi}} \int \exp\left(-\frac{\ln 2}{\Delta \lambda^2} x^2\right) dx = 1 \tag{47}$$

$$\sqrt{\frac{\ln 2}{\Delta \lambda^2}} \int \exp\left(-\frac{\ln 2}{\Delta \lambda^2} x^2\right) dx = 1 \tag{48}$$

$$\Delta \lambda = \frac{1}{c} \sqrt{\frac{2k_B T}{m}} \lambda \tag{49}$$

$$\sqrt{\frac{\ln 2}{\pi \Delta \lambda^2}} \int \exp\left(-\frac{\ln 2}{\Delta \lambda^2} (\lambda - \lambda_0)^2\right) dx = 1$$
 (50)

A.3.2. Lorentz

$$L(\nu) = \frac{a^2}{(\nu - \nu_0)^2 + a^2} \tag{51}$$

$$L(\nu_0) = 1 \tag{52}$$

$$L(\nu_h) = 1/2 = \frac{a^2}{(\nu_h - \nu_0)^2 + a^2}$$
(53)

$$(\nu_h - \nu_0)^2 + a^2 = 2a^2 \tag{54}$$

$$(\nu_h - \nu_0) = \Delta \nu = a \tag{55}$$

$$L(\nu) = \frac{\Delta \nu^2}{(\nu - \nu_0)^2 + \Delta \nu^2} \tag{56}$$

$$L(\lambda) = \frac{b^2}{c^2 (1/\lambda - 1/\lambda_0)^2 + b^2}$$
 (57)

$$L(\lambda) = \frac{b^2}{c^2 \left(\frac{\lambda - \lambda_0}{\lambda \lambda_0}\right)^2 + b^2}$$
(58)

$$L(\lambda) = \frac{b^2 \lambda^2 \lambda_0^2}{c^2} \frac{1}{(\lambda - \lambda_0)^2 + \lambda^2 \lambda_0^2 b^2 / c^2}$$
 (59)

$$L(\lambda_0) = 1 \tag{60}$$

$$L(\lambda_h) = \frac{1}{2} = \frac{b^2 \lambda_h^2 \lambda_0^2}{c^2} \frac{1}{(\lambda_h - \lambda_0)^2 + \lambda_h^2 \lambda_0^2 b^2 / c^2}$$
(61)

$$2\frac{b^2\lambda_h^2\lambda_0^2}{c^2} = (\lambda_h - \lambda_0)^2 + \lambda_h^2\lambda_0^2b^2/c^2$$
(62)

$$\frac{b^2 \lambda_h^2 \lambda_0^2}{c^2} = (\lambda_h - \lambda_0)^2 \tag{63}$$

$$\frac{b^2}{c^2} = (\lambda_h - \lambda_0)^2 \frac{1}{\lambda_h^2 \lambda_0^2}$$
 (64)

$$L = (\lambda_h - \lambda_0)^2 \frac{1}{(\lambda - \lambda_0)^2 + (\lambda_h - \lambda_0)^2}$$

$$(65)$$

$$\Delta \lambda_{hwhm} = \lambda - \lambda_0 \tag{66}$$

$$L = \frac{\Delta \lambda^2}{(\lambda - \lambda_0)^2 + \Delta \lambda^2} \tag{67}$$

$$\int_{-\infty}^{-\infty} \frac{1}{1+x^2} dx = \arctan(\infty) - \arctan(-\infty) = \pi$$
 (68)

$$x = \frac{(\lambda - \lambda_0)}{\Delta \lambda} \tag{69}$$

$$dx = \frac{1}{\Delta \lambda} d\lambda \tag{70}$$

$$L = \frac{\frac{1}{\pi} \Delta \lambda}{(\lambda - \lambda_0)^2 + \Delta \lambda^2} \tag{71}$$

$$L = \frac{1}{\pi} \frac{\Delta \lambda}{(\lambda - \lambda_0)^2 + \Delta \lambda^2} \tag{72}$$

$$\int \frac{1}{\pi} \frac{\Delta \lambda}{(\lambda - \lambda_0)^2 + \Delta \lambda^2} d\lambda = 1 \tag{73}$$

$$\int \frac{1}{\pi} \frac{\Delta \lambda}{(\lambda - \lambda_0)^2 + \Delta \lambda^2} d\lambda = 1 \tag{74}$$

B. Bibliography

References

[HITa] HITRAN. Definitions and Units. URL: https://hitran.org/docs/definitions-and-units/.

[HITb] HITRAN. Main Page. URL: https://hitran.org/.

[HITc] HITRAN. Partition Functions. URL: https://hitran.org/docs/iso-meta/.

C. Modtran

$$(S/d)_n = \frac{1}{\Delta \nu} \sum_j S_j(T_n) \tag{75}$$

$$S_{j}(T_{n}) = \frac{Q_{r}(T_{s})Q_{v}(T_{s})}{Q_{r}(T_{n})Q_{v}(T_{n})} \frac{1 - \exp(-h\nu_{j}/k_{B}/T_{s})}{1 - \exp(-h\nu_{j}/k_{B}/T_{n})} \exp\left(\frac{E_{j}T_{n}T_{s}}{k_{B}T_{0}T_{s}}\right) S_{j}(T_{s})$$
(76)

$$\gamma(T,p) = \gamma(T_0, p_0) \frac{p}{p_0} \left(\frac{T_0}{T}\right)^{x_m} \tag{77}$$

$$T_0 = 273.15K (78)$$

$$p_0 = 1013.25 mbar (79)$$

$$x_m = 3/4 \tag{80}$$