Sample problmes

- 1. Suppose that X_1, \ldots, X_n be a random sample from pdf $f(x; \lambda) = \frac{1}{\lambda} e^{-x/\lambda}, x > 0, \lambda > 0$.
 - (a) Find the asymptotic distribution of $\sqrt{n}((\overline{X}_n)^2 \lambda^2)$.
 - (b) Find a function g such that the asymptotic distribution of $\sqrt{n}(g(\overline{X}_n) g(\lambda))$ does not depend on λ .
- 2. Suppose that X_1, \ldots, X_n is a random sample from $N(0, \theta), 0 < \theta < \infty$.
 - (a) Find the MLE of θ .
 - (b) Show that the MLE of θ is an unbiased estimator.
 - (c) Compute the efficiency of the MLE of θ .
- 3. Suppose X_1, \ldots, X_n is a random sample from pdf $f(x; \theta) = \theta x^{-\theta 1}, 1 < x, 0 < \theta$.
 - (a) Find a sufficient statistic for θ .
 - (b) Find the MLE of $\eta = P(X_1 > e)$.
 - (c) Find the asymptotic distribution of $\hat{\eta}$, where $\hat{\eta}$ is the MLE of η .
- 4. Let X_1, \dots, X_n is a random sample from $N(\mu, 1)$ and Y_1, \dots, Y_m be a random sample from $N(\mu, 4)$. Assuming that X_i 's and Y_j 's are independent for all $i = 1, \dots, n$ and $j = 1, \dots, m$.
 - (a) Show that $\hat{\mu}_1 = (\bar{X}_n + \bar{Y}_m)/2$ is unbiased for μ , where $\bar{X}_n = \sum_{i=1}^n X_i/n$ and $\bar{X}_m = \sum_{j=1}^m Y_j/m$.
 - (b) Find the MLE of μ .
 - (c) Show that $\hat{\mu}^{MLE}$ is more efficient estimator than $\hat{\mu}_1$.
- 5. Suppose that X_1, \ldots, X_n is a random sample from $f(x; \theta) = e^{-(x-2\theta)}, x > 2\theta, -\infty < \theta < \infty$.
 - (a) Find a sufficient statistic for θ .
 - (b) Let T be the sufficient statistic obtained from (a). Find $\phi(T)$ that satisfies $E(\phi(T)) = \theta$.