FOUNDATIONS OF STATISTICAL DECISION MAKING

Relationships and Prediction

February 12, 2021

Aaron R. Baggett, Ph.D.

Department of Physical Therapy University of Mary Hardin-Baylor PHTH 7147: Critical Inquiry I

Outline

- Correlation
- Predicting outcomes (Regression)

Recap

- Statistical variables
- Multiple group comparisons (ANOVA)

Resources

• Slides, data, and handouts available at:

bit.ly/umhb_dpt

- Today's example data are from the 2002-2004 National Education Longitudinal Study (NELS)
- Nationally representative, longitudinal study of U.S. high school students
- Surveys of students, their parents, math and English teachers, and school administrators
- Student assessments in math (10th & 12th grades) and English (10th grade)

- Variables:
 - 1. grades: GPA of student in 2002
 - 2. pared: Highest education of parent (in years)
 - 3. hwork: Amount of time spent doing homeworkd during the week (in hours)

Let's look at the NELS data

	grades	pared	hwork
1	78	13	2
2	79	14	6
3	79	13	1
4	89	13	5
5	82	16	3
6	77	13	4
100	74	12	4

Variable correlations

	Grades	Parent Education	Homework
Grades	1.00	_	_
Parent Education	0.29 (0.08)	1.00	_
Homework	0.33 (0.11)	0.28 (0.08)	1.00

- Statistical technique used to determine the degree to which two variables are related
- Two numerical variables: Pearson's r
- The degree of relationship between two variables can vary from -1.0 to 1.0
- This is sometimes referred to as magnitude
- The closer the relationship is to -1.0 or 1.0, the stronger the magnitude or degree of relation between two variables

- Correlation coefficients describe two characteristics:
 - 1. The degree to which two variables are related
 - The direction, or type of effect one variable has on the other (i.e., positive or negative)

- Two types of correlation:
 - 1. Positive Correlation:
 - Higher scores on one variable associated with higher scores on a second variable
 - 2. Negative Correlation:
 - Higher scores on one variable associated with lower scores on a second variable

- It's always recommended that you visualize your correlational data first
- ullet The results may yield more information than the r alone
- ullet For example, imagine we have the following data with r=-0.064

Χ	У
55.38	97.18
51.54	96.03
46.15	94.49
_	_
44.10	92.69
	55.38 51.54 46.15

- What determines a strong, medium, and small correlation?
 - Cohen (1988) suggested the following:
 - r < 0.10 = small
 - $> 0.10 \ r < 0.30 = \text{medium}$
 - r > 0.50 = large

- Once calculated, r can be squared (r^2)
- This is called a coefficient of determination
- Proportion of variability in one variable that can be accounted for (or explained) by variability in the other variable
- The remaining proportion can be explained by factors other than your variables

o **Fx**: $r = 0.50 \rightarrow r^2 = 0.25$

- We often examine correlations visually using a scatterplot
- Graphically depicts the relationship between 2 variables
- Typically, the predictor is on the X-axis and the outcome is on the Y-axis

	Quantitative X	Ordinal X	Nominal X
Quantitative Y	Pearson's r	_	_
Ordinal Y	Biserial r_b	Spearman $ ho$	_
Nominal Y	Point Biserial r_{pb}	Rank Biserial r_{rb}	Phi (ϕ)

Calkins (2005)

PREDICTION AND

REGRESSION

- Regression is a statistical procedure used to predict values of one variable from values of another variable
- It is a hypothetical model of the relationship between at least two variables
- The model used is a linear one
- Therefore, we describe the relationship using the equation of a straight line

 Imagine we suspect parents' education and time spent doing homework combine to predict students' grades

Regression model equation:

$$Y = a + bX_1 + bX_2 + e$$

- a = Intercept
 - \circ Point where regression line crosses Y axis
- b = Slope of the line

$$Y = a + bX_1 + bX_2 + e$$

- Y = Criterion or dependent variable
 - Variable being measured and predicted
 - \circ Y = students' grades
- X = Predictor or independent variable
 - Variable we use to predict the outcome
 - \circ X_1 = parents' education
 - \circ X_2 = homework

NELS Data

pared	n	mean_grades	sd_grades	mean_hw	sd_hw
10	4	72.25	2.87	3.75	1.26
11	3	78.33	7.51	3.33	1.15
12	13	78.08	9.80	4.46	1.81
13	23	79.22	6.07	4.78	2.19
14	19	81.37	6.85	5.32	1.57
15	15	81.67	6.82	5.53	2.45
16	12	83.42	6.54	5.75	2.30
17	8	82.50	9.96	5.62	2.39
18	2	87.00	18.38	6.00	1.41
20	1	80.00		6.00	

NELS Data

- Let's regress students' grades on parent education and time spent doing homework
- Notice the intercept term and coefficients for pared and hwork
- Interpretation can be tricky

```
##
##
    LINEAR REGRESSION
##
    Model Fit Measures
##
##
      Mode1
                              R<sup>2</sup>
##
                0.3899378
                              0.1520515
##
          1
##
##
##
    MODEL SPECIFIC RESULTS
##
##
    MODEL 1
##
    Model Coefficients - grades
##
      Predictor
                    Estimate
##
                                    SE
                                                  t
                                                                 р
##
##
      Intercept
                    63.2270245
                                    5.2397841
                                                  12.066723
                                                                 < .000001
##
      pared
                     0.8706230
                                    0.3842331
                                                   2.265872
                                                                  0.0256820
##
      hwork
                     0.9878456
                                    0.3608845
                                                   2.737290
                                                                  0.0073697
##
```

Relationships and Prediction Baggett (PHTH 7147)

```
##
##
    MODEL 1
##
    Model Coefficients - grades
##
##
##
      Predictor
                    Estimate
                                   SE
                                                 t
                                                               р
##
##
      Intercept
                    63.2270245
                                   5.2397841
                                                 12.066723
                                                                < .0000001
                     0.8706230
                                   0.3842331
                                                  2.265872
                                                                0.0256820
##
      pared
##
      hwork
                     0.9878456
                                   0.3608845
                                                  2.737290
                                                                0.0073697
##
```

Interpretation

For a student who spends 0 hours weekly doing homework and whose parent has 0 years of education, we would predict his/her GPA to be approximately 63.23.

```
##
##
    MODEL 1
##
    Model Coefficients - grades
##
##
##
      Predictor
                    Estimate
                                   SE
                                                 t
                                                               р
##
##
      Intercept
                    63.2270245
                                   5.2397841
                                                 12.066723
                                                                < .0000001
                     0.8706230
                                   0.3842331
                                                  2.265872
                                                                0.0256820
##
      pared
##
      hwork
                     0.9878456
                                   0.3608845
                                                  2.737290
                                                                0.0073697
##
```

Interpretation, contd.

For every 1 unit increase in parent education and time spent weekly doing homework, we would expect this students' GPA to increase by 0.871 and 0.988 points, respectively.

{What's wrong here?}

- We need to mean center both pared (M = 14.03, SD = 1.93) and hwork (M = 5.09, SD = 2.06)
- This will allow more realistic interpretation

```
##
    LINEAR REGRESSION
##
    Model Fit Measures
##
##
      Mode1
                              R<sup>2</sup>
##
                0.3899378
                              0.1520515
##
          1
##
##
##
    MODEL SPECIFIC RESULTS
##
##
    MODEL 1
##
    Model Coefficients - grades
##
      Predictor
                        Estimate
##
                                      SE
                                                    t
                                                                    р
##
                        80.470000
##
      Intercept
                                      0.7091574
                                                    113.472689
                                                                    < .000001
##
      pared_center
                        1.680633
                                      0.7417156
                                                      2.265872
                                                                     0.0256820
##
      hwork_center
                        2.030291
                                      0.7417156
                                                      2.737290
                                                                     0.0073697
##
```

 Baggett (PHTH 7147)
 Relationships and Prediction
 02/12/21
 34 / 41

```
##
##
    MODEL 1
##
    Model Coefficients - grades
##
##
##
      Predictor
                       Estimate
                                     SE
                                                   t
                                                                   р
##
##
      Intercept
                       80.470000
                                     0.7091574
                                                    113,472689
                                                                   < .0000001
      pared center
                        1.680633
                                     0.7417156
                                                      2.265872
                                                                    0.0256820
##
##
      hwork center
                        2.030291
                                     0.7417156
                                                      2.737290
                                                                    0.0073697
##
```

Interpretation

For a student who spends M = 5.09 hours weekly doing homework and whose parent has M = 14.03 years of education, we would predict his/her GPA to be approximately 80.47.

```
##
##
    MODEL 1
##
    Model Coefficients - grades
##
##
##
      Predictor
                       Estimate
                                     SE
                                                   t
                                                                  р
##
##
      Intercept
                       80.470000
                                     0.7091574
                                                   113.472689
                                                                   < .0000001
      pared center
                        1.680633
                                     0.7417156
                                                     2.265872
                                                                    0.0256820
##
##
      hwork center
                        2.030291
                                     0.7417156
                                                     2.737290
                                                                    0.0073697
##
```

Interpretation, contd.

For every 1 unit change in parent education and time spent weekly doing homework, we would expect a students' GPA to change by 1.68 and 2.03 points, respectively.

- Overall model interpretation
- ullet In regression, we typically use R^2 as a meausre of effect size
- Proportion of variance explained by the model

```
##
## Model Fit Measures
##
## Model R R<sup>2</sup>
##
## 1 0.3899378 0.1520515
##
```

Model Fit	Measures	
Model	R	R²
1	0.3899378	0.1520515
	Model	

Interpretation

Parents' education and the time spent doing homework combine to explain approximately $0.152 \rightarrow 15.20\%$ of the variability in determining students' grades.

Recap

- Correlation and regression are used to predict outcomes using past data
- Interpretation can be tricky
- Causation cannot be assumed

