k-Nearest Neighbor (k-NN) as Regression

Previous class

- k-Nearest Neighbor (k-NN) as Classification
- Application of *k*-NN in R/RStudio and Inference

Today's class

- Re-cap and application of *k*-NN as Classification
- k-Nearest Neighbor (k-NN) as Regression
- Application of *k*-NN in R/RStudio and Inference

Industry Speaker Session

- Topic:
 - > Supply Chain Management in Footwear and Apparel Industry
- Mike Brewer, VP of Global Sourcing and Manufacturing, Nike
- Thursday, 14 April 2022 (Today), 6:00pm 7:15pm
- 132 Lillis

Supervised Learning

Regression

- Goal is to predict a continuous numerical outcome
- Predicting House price
- Predicting patients' length of stay (LOS) in an outpatient department
- > Predicting Sales of a brick & mortar retail store based on traffic, labor

Classification

- ➤ Goal is to predict a categorical outcome
- > Two classes: Is the email spam or not spam?

Is the tumor benign or malignant?

Is the arriving patient high risk or low risk?

Multi-class: Classifying fruits into Apple, Orange, Banana based on shape, color...

Classifying a new movie into one of the groups - PG, TV-14, G

k-NN

- Simple Machine Learning/Predictive algorithm
- Used for
 - ➤ Classification (of a categorical outcome)
 - Regression (of a numerical outcome)
- Method relies on finding "similar" observations in the data
- Referred as "Neighbors."
- "Neighbors" are used to derive a prediction for a new observation

k-NN as Classification

- Identify k neighboring observations in the dataset that are similar to the new observation you wish to classify
- Assign the **predominant class** of neighbors to a new observation

- Identify 1 observation in the dataset that is near to the new observation you wish to classify
- Assign the class of neighboring observation to new observation
- Sample data with three variables V1, V2, Class

V1	V2	Class
64	94	1
18	70	2
24	9	1
46	20	2
72	91	2
66	1	1
12	11	1

V1	$\mathbf{V}2$	Class
60	60	

New observation

•

Scatter plot

New observation (yellow point)

New observation prediction = **Class 1**

New observation prediction = **Tie**

New observation prediction = **Class 1 (predominant)**

New observation prediction = Class 2 (predominant)

k-NN as classification model in R

- Step 1: Main data
 - > Standardize the numeric input variables
 - Convert input character variables into dummy (binary) variables
- Step 2: Pick only standardized input numeric & dummy variables in main data
 - Standardized main data
- Step 3: New data prediction of interest
 - > Standardize the numeric input variables
 - Convert input character variables into dummy variables
- Step 4: Pick only standardized input numeric & dummy variables in new data
 - Standardized new data
- Step 5: Track the output variable in the main data
 - Main data output
- Step 6: Execute the function "knn" to predict for new observation

k-NN as Regression

- Identify k observations in the dataset that are similar to the new observation you wish to predict
- \blacksquare Take the **average** of k observations as a prediction for new observation

1-NN as Regression

- Identify 1 observation in the dataset that is near to the new observation you wish to predict
- Assign the observation to new observation as a prediction
- Sample data with two variables X, Y

X	\mathbf{Y}
2.573	18.887
9.667	46.964
6.619	29.495
1.150	10.620
2.271	14.267
2.472	13.381

X	Y
4.5	5.

New observation

•

Scatter plot

New observation (yellow line)

1-NN as Regression

New observation prediction = Y1

2-NN as Regression

Data on used Toyota Corolla cars

- Data on sales of used cars in the Netherlands, late summer 2004
- Attributes
 - > model: Toyota car model
 - > price: offer price in euros
 - ➤ age_08_04: age in months as of August 2004
 - ➤ mfg_month: manufacturing month (1,2,3.....12)
 - mfg_year: manufacturing year
 - km: accumulated kilometers on the odometer
 - fuel_type : fuel type (petrol, diesel, cng)
 - > hp: horsepower

•

Data on used Toyota Corolla cars

Selected variables

Price, age, and km

age_08_04	km	price
23	46,986	13,500
23	72,937	13,750
24	41,711	13,950
26	48,000	14,950
30	38,500	13,750
32	61,000	12,950
27	94,612	16,900
30	75,889	18,600
27	19,700	21,500

age_08_04	km	price
23	30,000	5

New observation

Plot of toyota corolla data

Price (continuous)

Today's class mandatory steps

- Create a folder name "f.knn_regression" within the folder
 "oba_455_555_ddpm_r/rproject"
- Download "knn_regression_code.R", and all csv files from canvas
- Place all downloaded files in
 - "oba_455_555_ddpm_r/rproject /f.knn_regression"
- Open RStudio project
- Open "knn_regression_code.R" file within RStudio

k-NN as regression model in R

- Step 1: Main data
 - > Standardize the numeric input variables
 - Convert input character variables into dummy (binary) variables
- Step 2: Pick only standardized input numeric & dummy variables in main data
 - Standardized main data
- Step 3: New data prediction of interest
 - > Standardize the numeric input variables
 - Convert input character variables into dummy variables
- Step 4: Pick only standardized input numeric & dummy variables in new data
 - Standardized new data
- Step 5: Track the output variable in the main data
 - Main data output
- Step 6: Execute the function "knn.reg" to predict for new observation

Plot of toyota data post normalization

- If k = 1, prediction is 16,750
- If k = 2, prediction in 16,250 (= $\frac{16750 + 15750}{2}$)
- If k = 3, prediction is 16,816.67 (= $\frac{16750 + 15750 + 17950}{3}$)

Choosing k

- Too Low (E.g., k = 1)
 - We may be fitting noise in the data
 - ➤ Ignoring a lot of information
 - Overfitting
- Too High (E.g., k = number of observations in the data)
 - Loss of ability to capture local structure of the data
 - Underfitting
- Balance between overfitting and underfitting
- How to achieve balance?
- How to choose k?
 - Best Classification/Regression (Prediction) performance
 - We will discuss this is more scientifically 2 classes from now

(Dis)Advantages of k-NN

- Simplicity and lack of parametric assumptions
- Time taken to find nearest neighbors in large datasets can be unaffordable
 - > Reduce time taken to compute distance by using **dimension reduction** techniques
 - Sophisticated data structures such as **search trees** to speed up identifying the nearest neighbor
- Number of observations required increases exponentially with the number of variables/predictors in the data
 - E.g., in *k*-NN as a classifier for ridge mowers data, we have two variables Income, Lot Size
- Lazy learner
 - For every prediction, the algorithm computes distances for all the data points

Next class

Midterm1

- Next Tuesday (19th April 2022); Multiple choice quiz on canvas
- > Topics discussed until today
- > Open book
- Conceptual knowledge
- ➤ Identifying the appropriateness of different techniques for different business problems/scenarios
- > Identifying strengths and shortcomings of the techniques
- > Interpret results of analyses
- Code errors, output

Thank You