CHEM 179 / 279 -Numerical Algorithms Applied to Computational Quantum Chemistry

Lecture 20: 3/4/2024

Outline

- Recap and wrap-up: CNDO/2 SCF model
- How to evaluate CNDO/2's two-electron integrals
- CNDO/2 chemistry

Recap: CNDO/2

- A (quite drastic) simplification of ab initio HF theory
- (i) Use a valence minimal basis (like EHT) so no core Is electrons for C, N, O, etc.
- (ii) "Zero differential overlap" (ZDO) approximation to simplify 2-electron integrals
 - \circ Like $S_{\mu\nu}$, ERIs decay exponentially with distance between ω_{μ} and ω_{ν} (& likewise ω_{λ} and ω_{σ})
 - But decay only as R^{-1} with distance between $(\mu\nu)$ and $(\lambda\sigma)$
 - Motivates the ZDO approximation for ERIs: $(\mu\nu \mid \lambda\sigma) \approx (\mu\mu \mid \lambda\lambda)\delta_{\mu\nu}\delta_{\lambda\sigma}$
- ullet Approximate retained ERIs so as to preserve rotational invariance of $E_{
 m CNDO/2}$
 - $\circ \quad (\mu\mu\,|\,\lambda\lambda) \leftarrow \gamma_{AB} \quad \text{where } \omega_{\mu} \text{ is on atom A, and } \omega_{\nu} \text{ is on atom B}$
 - $0 \quad \gamma_{AB} = \int d\mathbf{r} \int d\mathbf{r}' [s_A(\mathbf{r})]^2 |\mathbf{r} \mathbf{r}'|^{-1} [s_B(\mathbf{r}')]^2$

Recap: CNDO/2 Fock matrix

•
$$\gamma_{AB} = \int d\mathbf{r} \int d\mathbf{r}' [s_A(\mathbf{r})]^2 |\mathbf{r} - \mathbf{r}'|^{-1} [s_B(\mathbf{r}')]^2$$

- Diagonal Fock matrix elements with ZDO
 - Each term of the ab initio Hamiltonian is accounted for.... of course with approximations!

$$F^{\alpha}_{\mu\mu} = -\frac{1}{2} \left(I_{\mu} + A_{\mu} \right) + \left[\left(p^{\mathsf{tot}}_{AA} - Z_{A} \right) - \left(p^{\alpha}_{\mu\mu} - \frac{1}{2} \right) \right] \gamma_{AA} + \sum_{B \neq A} \left(p^{\mathsf{tot}}_{BB} - Z_{B} \right) \gamma_{AB}$$
Tabulated On-site On-site Off-site
IP and EA electrostatics Exchange electrostatics

Off-diagonal Fock matrix elements with ZDO

$$F^{\alpha}_{\mu\nu} = \frac{1}{2} \left(\beta_A + \beta_B \right) s_{\mu\nu} - p^{\alpha}_{\mu\nu} \gamma_{AB}$$
Tabulated
site-site
h+J
site-site
exchange

quantity	Н	C	N	O	F
$\frac{1}{2}\left(I_{s}+A_{s}\right)$	7.176	14.051	19.316	25.390	32.272
$\frac{1}{2}(I_p + A_p)$		5.572	7.275	9.111	11.080
$-\beta$	9	21	25	31	39

CNDO/2 SCF method

- The CNDO/2 method applies the ZDO approximation to the overlap matrix also
 - As a consequence, the eigenvalue problem is conventional (like Huckel) not generalized (like EHT & HF)
 - For unrestricted orbitals, we have the following equations for the unknown MO coefficients.

$$\circ \quad \mathbf{F}^{\alpha}\mathbf{C}^{\alpha} = \mathbf{C}^{\alpha}\boldsymbol{\varepsilon}^{\alpha}$$

$$\mathbf{F}^{\beta}\mathbf{C}^{\beta}=\mathbf{C}^{\beta}\boldsymbol{\varepsilon}^{\beta}$$

The density matrices needed to build the Fock matrices are given by:

$$P^{\alpha}_{\mu\nu} = \sum_{i}^{p} C^{\alpha}_{\mu i} C^{\alpha}_{\nu i}$$

$$P^{\beta}_{\mu\nu} = \sum_{i}^{q} C^{\beta}_{\mu i} C^{\beta}_{\nu i}$$

$$P_{\mu\nu}^{\alpha} = \sum_{i}^{p} C_{\mu i}^{\alpha} C_{\nu i}^{\alpha} \qquad P_{\mu\nu}^{\beta} = \sum_{i}^{q} C_{\mu i}^{\beta} C_{\nu i}^{\beta} \qquad P_{AA}^{\text{tot}} = \sum_{\mu \in A} [P_{\mu\mu}^{\alpha} + P_{\mu\mu}^{\beta}]$$

- The Fock matrix expressions also involve:
 - The tabulated parameters (easy to implement): β_{μ} , I_{μ} , A_{μ}
 - The (geometry-dependent) overlap matrix: Ready to re-use from your EHT code
 - The small number of ERIs. We must discuss how to evaluate them!

Evaluation of 2-electron integrals

- Let's look closely at the 2-center, 2-electron integrals:
 - $\bullet \quad \gamma_{AB} = \int d\mathbf{r}_1 \int d\mathbf{r}_2 [s_A(\mathbf{r}_1)]^2 |\mathbf{r}_1 \mathbf{r}_2|^{-1} [s_B(\mathbf{r}_2)]^2$
- The atomic spherical charge distributions are defined as

- Expanding it out gives 81 primitive contributions
 - $\bullet \quad \gamma_{AB} = \sum_{k}^{3} \sum_{k'}^{3} \sum_{l}^{3} \sum_{l'}^{3} d'_{ks_A} d'_{k's_A} d'_{ls_B} d'_{l's_B} [0]^{(0)}$
 - $\bullet \quad [0]^{(0)} = \int d\mathbf{r}_1 \int d\mathbf{r}_2 \omega_k^s (\mathbf{r}_1 \mathbf{R}_A) \omega_{k'}^s (\mathbf{r}_1 \mathbf{R}_A) \frac{1}{r_{12}} \omega_l^s (\mathbf{r}_2 \mathbf{R}_B) \omega_l^s (\mathbf{r}_2 \mathbf{R}_B)$

Evaluation of 2-electron integrals

- Key result: this difficult-looking 6D integral can be reduced to a ID integral
 - As first proven by S.F. Boys in 1950 (the integral is called the Boys function)

•
$$[0]^{(0)} = U_A U_B \sqrt{2V^2} \sqrt{\frac{2}{\pi}} \int_0^1 \exp(-Tu^2) du$$

- The constants T, U_A , U_B , V are all related to the Gaussian exponents and positions:
 - $\bullet \quad T = V^2 \left(\mathbf{R}_A \mathbf{R}_B \right)^2$
 - $V^2 = \left(\sigma_A + \sigma_B\right)^{-1}$
 - $U_A = (\pi \sigma_A)^{3/2}$
 - $\bullet \quad \sigma_{A} = \left(\alpha_{k} + \alpha_{k'}\right)^{-1}$

The Boys function is an error function

Here is the key identity

•
$$\int_0^1 \exp\left(-Tu^2\right) du = \frac{1}{2} \sqrt{\frac{\pi}{T}} \operatorname{erf}\left(\sqrt{T}\right)$$

- The error function varies from 0 (as $x \to 0$) to 1 (as $x \to \infty$):
 - $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-v^2) dv$
- In fact, electron repulsion does not diverge as $|\mathbf{R}_A \mathbf{R}_B| \to 0$
 - $\lim_{r\to 0} [r^{-1}\operatorname{erf}(r)] = 2/\sqrt{\pi}$
 - A consequence of charge distributions rather than point charges!

Notes on this evaluation

- This method is of computing the s-type 2-center, 2-electron integrals is both efficient and accurate
 - You have already gone over things related to this in your lab section this week
- Algorithms for evaluating erf are in Numerical Recipes Ch. 6.2, but also it's a function call available in Armadillo
- Physically, we consider the net charge on an atom to be spherical and compute the Coulomb repulsion of that amount of net charge from the other spherical net charges

Converging SCF equations

- SCF equations are non-linear
 - There are no formal guarantees that the SCF procedure will converge
 - Depends on initial guess
- We discussed P=0 as a guess last week, but that's not a very good guess!
 - Only works for very well-behaved molecules
- Another convenient alternative is a Huckel guess (you will have all the pieces)

• Form
$$H_{\mu\mu} = -\frac{1}{2} \left(I_{\mu} + A_{\mu} \right), \ H_{\mu\nu} = -\frac{1}{2} (\beta_A + \beta_B) S_{\mu\nu}$$

- Solve $HC^{(0)} = C^{(0)}\varepsilon$
- $\bullet \quad \mathsf{Make} \; (P^{\beta}_{\mu\nu})^{(0)} = \; \sum_{i}^{q} C^{(0)}_{\mu i} C^{(0)}_{\nu i}; \quad (P^{\alpha}_{\mu\nu})^{(0)} = \sum_{i}^{p} C^{(0)}_{\mu i} C^{(0)}_{\nu i}$

CNDO/2 chemistry: diatomic molecules

Equilibrium bond length (Å)

Binding energy (eV)

Molecule	CNDO/2	Experiment	CNDO/2	Experiment
H2	0.75	0.74	5.4	4.8
НВ	1.19	1.23	10.0	3.6
HF	1.00	0.92	6.8	6.1
СО	1.19	1.13	22.2	11.2
N2	1.14	1.09	25.5	9.9
ОН	1.03	0.97	7.4	4.6
СН	1.11	1.12	9.6	3.6
CN	1.17	1.17	23.8	7.6

Far better than EHF (Less good than HF)

Drastically poorer than HF (Huge overbinding)

