${f Last\ name}$		
First name		

LARSON—MATH 550—CLASSROOM WORKSHEET 19 Pascal's Triangle.

Concepts & Notation

- Sec. 3.4. mod notation.
- Sec. 4.4. Analyzing the size of n!
- Sec. 5.1. Binomial coefficients!

Estimating the size of n!

1. Check:
$$(n!)^2 = (1 \cdot 2 \dots n)(1 \cdot 2 \dots n) = \prod_{k=1}^n k(n+1-k)$$

2. Check:
$$k(n+1-k) = \frac{1}{4}(n+1)^2 - (k-\frac{1}{2}(n+1))^2$$

3. What is the smallest value of k(n+1-k) (for $k, n \in \mathbb{Z}^+, k \leq n$)?

4. What is the largest value of k(n+1-k) (for $k, n \in \mathbb{Z}^+, k \leq n$)?

5. What can we conclude?

6. Draw several level's of Pascal's Triangle.

Let $\binom{n}{m}$ be the number of m-subsets of an n-set.

7. Find $\binom{3}{1}$.

8. Find $\binom{3}{2}$.

9. Find $\binom{n}{1}$.

10. Find $\binom{n}{n-1}$.