Trust Is Risk: Μία Αποκεντρωμένη Πλατφόρμα Οικονομικής Εμπιστοσύνης

Ορφέας Στέφανος Θυφρονίτης Λήτος

Εθνικό Μετσόβιο Πολυτεχνείο olitos@corelab.ntua.gr

Περίληψη Κεντρικά συστήματα φήμης χρησιμοποιούν αστέρια και κριτικές και επομένως χρειάζονται απόκρυψη αλγορίθμων για να αποφεύγουν τον αθέμιτο χειρισμό. Σε αυτόνομα αποχεντρωμένα συστήματα ανοιχτού κώδικα αυτή η πολυτέλεια δεν είναι διαθέσιμη. Στο παρόν κατασκευάζουμε ένα δίχτυο φήμης για αποχεντρωμένες αγορές όπου η εμπιστοσύνη που δίνει η κάθε χρήστης στις υπόλοιπες είναι μετρήσιμη και εκφράζεται με νομισματιχούς όρους. Εισάγουμε ένα νέο μοντέλο για πορτοφόλια bitcoin στα οποία τα νομίσματα κάθε χρήστη μοιράζονται σε αξιόπιστες συνεργάτες. Η άμεση εμπιστοσύνη ορίζεται χρησιμοποιώντας μοιραζόμενους λογαριασμούς μέσω των 1-από-2 multisig του bitcoin. Η έμμεση εμπιστοσύνη ορίζεται έπειτα με μεταβατικό τρόπο. Αυτό επιτρέπει να επιχειρηματολογούμε με αυστηρό παιγνιοθεωρητικό τρόπο ως προς την ανάλυση κινδύνου. Αποδειχνύουμε ότι ο χίνδυνος και οι μέγιστες ροές είναι ισοδύναμα στο μοντέλο μας και ότι το σύστημά μας είναι ανθεκτικό σε επιθέσεις Sybil. Το σύστημά μας επιτρέπει τη λήψη σαφών οικονομικών αποφάσεων ως προς την υποκειμενική χρηματική ποσότητα με την οποία μπορεί ένας παίκτης να εμπιστευθεί μία ψευδώνυμη οντότητα. Μέσω ανακατανομής της άμεσης εμπιστοσύνης, ο χίνδυνος που διατρέχεται χατά την αγορά από μία ψευδώνυμη πωλήτρια παραμένει αμετάβλητος.

Keywords: αποχεντρωμένο · εμπιστοσύνη · δίχτυο εμπιστοσύνης · γραμμές πίστωσης · εμπιστοσύνη ως χίνδυνος · ροή · φήμη · decentralized · trust · web-of-trust · bitcoin · multisig · line-of-credit · trust-as-risk · flow · reputation

Abstract. Centralized reputation systems use stars and reviews and thus require algorithm secrecy to avoid manipulation. In autonomous open source decentralized systems this luxury is not available. We create a reputation network for decentralized marketplaces where the trust each user gives to the rest of the users is quantifiable and expressed in monetary terms. We introduce a new model for bitcoin wallets in which user coins are split among trusted associates. Direct trust is defined using shared bitcoin accounts via bitcoin's 1-of-2 multisig. Indirect trust is subsequently defined transitively. This enables formal game theoretic arguments pertaining to risk analysis. We prove that risk and maximum flows are equivalent in our model and that our system is Sybil-resilient. Our system allows for concrete financial decisions on the subjective monetary amount a pseudonymous party can be trusted with. Through direct trust redistribution, the risk incurred from making a purchase from a pseudonymous vendor in this manner remains invariant.

Περιεχόμενα

Περιεχόμενα		
Κατάλογος Σχημάτων		
Κατάλογος Ψευδοχωδίχων		
1	Εισαγωγή	9
2	Λ ειτουργία	12
3	Ο γράφος εμπιστοσύνης	13
	Ορισμός Γράφου	13
	Ορισμός Παικτών	13
	Ορισμός Κεφαλαίου	13
	Ορισμός Άμεσης Εμπιστοσύνης	13
	Ορισμός Γειτονιάς	14
	Ορισμός Ολιχής Εισερχόμενης/Εξερχόμενης Άμεσης	
	Εμπιστοσύνης	14
	Ορισμός Περιουσίας	15
4	Η Εξέλιξη της Εμπιστοσύνης	15
	Ορισμός Γύρων	15
	Ορισμός Προηγούμενου/Επόμενου Γύρου	16
	Ορισμός Ζημίας	16
	Ορισμός Ιστορίας	16
5	Μεταβατικότητα Εμπιστοσύνης	17
	Ορισμός Αδρανούς Στρατηγικής	17
	Ορισμός Καχιάς Στρατηγιχής	18
	Ορισμός Συντηρητικής Στρατηγικής	18
6	Τρυστ Φλοω	21
	Ινδιρεςτ Τρυστ Δεφινιτιον	21
	Τρυστ Φλοω Τηεορεμ	22
	Ρισκ Ιναριανζε Τηεορεμ	23
7	Σψβιλ Ρεσιλιένςε	24
	Ινδιρεςτ Τρυστ το Μυλτιπλε Πλαψερς Δεφινιτιον	24
	Μυλτι-Πλαψερ Τρυστ Φλοω Τηεορεμ	24
	δρρυπτεδ Σετ Δεφινιτιον	24
	Σ ψβιλ Σ ετ Δ εφινιτιον	25
	δλλυσιον Δεφινιτιον	25
8	Ρελατεδ Ωορχ	26
9	Φυρτηέρ Ρεσεαρζη	27
	1 Προοφς, Λεμμας ανδ Τηεορεμς	28

2 Αλγοριτημς	37
Κατάλογος Σχημάτων	
Απλοί Γράφοι	9
UTXO	
Γύρος	
Παράδειγμα μεταβατικού παιχνιδιού	
Συνεργασία	
Τα μεταβατικά παιχνίδια είναι Ροές	
Αντοχή σε επιθέσεις Sybil	36
Κατάλογος Ψευδοκωδίκων	
Trust Is Risk Game	
Idle Strategy	17
Evil Strategy	
Conservative Strategy	
Transitive Game	
Execute Turn	
Validate Turn	
Commit Turn	

1 Εισαγωγή

Οι αποχεντρωμένες αγορές μπορούν να χατηγοριοποιηθούν ως χεντριχές και αποχεντρωμένες. Ένα παράδειγμα για κάθε κατηγορία είναι το ebay και το OpenBazaar. Ο χοινός παρονομαστής των καθιερωμένων διαδιχτυαχών αγορών είναι το γεγονός ότι η φήμη κάθε πωλήτριας και πελάτισσας εχφάζεται κατά χανόνα με τη μορφή αστεριών και χριτιχών των χρηστών, ορατές σε όλο το δίχτυο.

Ο στόχος μας είναι να δημιουργήσουμε ένα σύστημα φήμης για αποκεντρωμένες αγορές όπου η εμπιστοσύνη που η κάθε χρήστης δίνει στους υπόλοιπους είναι ποσοτικοποιήσιμη με νομισματικούς όρους. Η κεντρική παραδοχή που χρησιμοποιείται σε όλο το μήχος της παρούσας εργασίας είναι ότι η εμπιστοσύνη είναι ισοδύναμη με τον χίνδυνο, ή η θέση ότι η εμπιστοσύνη της Alice προς το χρήστη Charlie ορίζεται ως το μέγιστο χρηματικό ποσό που η Alice μπορεί να χάσει όταν ο Charlie είναι ελεύθερος να διαλέξει όποια στρατηγική θέλει. Για να υλοποιήσουμε αυτή την ιδέα, θα χρησιμοποιήσουμε τις πιστωτικές γραμμές όπως προτάθηκαν από τον Washington Sanchez [1]. Η Alice συνδέεται στο δίκτυο όταν εμπιστεύεται ενεργητικά ένα συγκεκριμένο χρηματικό ποσό σε έναν άλλο χρήστη, για παράδειγμα το φίλο της τον Βοδ. Αν ο Βοδ έχει ήδη εμπιστευθεί ένα χρηματικό ποσό σε έναν τρίτο χρήστη, τον Charlie, τότε η Alice εμπιστεύεται έμμεσα τον Charlie αφού αν ο τελευταίος ήθελε να παίξει άδικα, θα μπορούσε να έχει κλέψει ήδη τα χρήματα που του εμπιστεύθηκε ο Bob. Θα δούμε αργότερα ότι η Alice μπορεί τώρα να εμπλαχεί σε οιχονομιχή δραστηριότητα με τον Charlie.

Για να υλοποιήσουμε τις πιστωτικές γραμμές, θα χρησιμοποιήσουμε το Bitcoin [2], ένα αποκεντρωμένο κρυπτονόμισμα που διαφέρει από τα συμβατικά νομίσματα γιατί δεν βασίζεται σε αξιόπιστους τρίτους. Όλες οι συναλλαγές δημοσιεύονται σε ένα αποκεντρωμένο "λογιστικό βιβλίο", το blockchain. Κάθε συναλλαγή παίρνει κάποια νομίσματα ως είσοδο και παράγει ορισμένα νομίσματα ως έξοδο. Αν η έξοδος μιας συναλλαγής δεν συνδέεται στην είσοδο μιας άλλης, τότε η έξοδος αυτή ανήκει στο UTXO, το σύνολο των αξόδευτων εξόδων συναλλαγών. Διαισθητικά, το UTXO περιέχει όλα τα αξόδευτα νομίσματα.

 Σ χ. 1: Η Α εμπ. έμμεσα τον C 10B Σ χ. 2: Η Α εμπ. έμμεσα τον C 5B

Προτείνουμε ένα νέο είδος πορτοφολιού όπου τα νομίσματα δεν έχουν απο-

κλειστικό ιδιοκτήτη, αλλά τοποθετούνται σε μοιραζόμενους λογαριασμούς που υλοποιούνται μέσω των 1-από-2 multisig, μια κατασκευή του bitcoin που επιτρέπει σε μία από δύο προκαθορισμένες χρήστες να ξοδέψουν τα νομίσματα που περιέχονται σε έναν κοινό λογαριασμό [3]. Θα χρησιμοποιήσουμε το συμβολισμό $1/\{Alice, Bob\}$ για να αναπαραστήσουμε ένα 1-από-2 multisig που μπορεί να ξοδευτεί είτε από την Alice, είτε από τον Bob. Με αυτό το συμβολισμό, η σειρά των ονομάτων δεν έχει σημασία, εφ΄ όσον οποιαδήποτε από τις δύο χρήστες μπορεί να ξοδέψει τα νομίσματα. Ωστόσο, έχει σημασία ποια χρήστης καταθέτει τα χρήματα αρχικά στον κοινό λογαριασμό — αυτή η χρήστης διακινδυνεύει τα νομίσματά της.

Η προσέγγισή μας αλλάζει την εμπειρία της χρήστη κατά έναν διακριτικό αλλά και δραστικό τρόπο. Η χρήστης δεν πρέπει να βασίζει πια την εμπιστοσύνη της προς ένα κατάστημα σε αστέρια ή κριτικές που δεν εκφράζονται με οικονομικές μονάδες. Μπορεί απλά να συμβουλευθεί το πορτοφόλι της για να αποφασίσει αν το κατάστημα είναι αξιόπιστο και, αν ναι, μέχρι ποια αξία, μετρημένη σε bitcoin. Το σύστημα αυτό λειτουργεί ως εξής: Αρχικά η Alice μεταφέρει τα χρήματά της από το ιδιωτικό της bitcoin πορτοφόλι σε 1-από-2 διευθύνσεις multisig μοιραζόμενες με φίλες που εμπιστεύεται άνετα. Αυτό καλείται άμεση εμπιστοσύνη. Το σύστημά μας δεν ενδιαφέρεται για τον τρόπο με τον οποίο οι παίχτες χαθορίζουν ποιος είναι αξιόπιστος γι' αυτές τις απ' ευθείας 1-από-2 καταθέσεις. Αυτό το αμφιλεγόμενο είδος εμπιστοσύνης περιορίζεται στην άμεση γειτονιά κάθε παίκτη. Η έμμεση εμπιστοσύνη προς άγνωστους χρήστες υπολογίζεται από έναν ντετερμινιστικό αλγόριθμο. Συγκριτικά, συστήματα με αντικειμενικές αξιολογήσεις δε διαχωρίζουν τους γείτονες από τους υπόλοιπους χρήστες, προσφέροντας έτσι αμφιλεγόμενες ενδείξεις εμπιστοσύνης για όλους.

Ας υποθέσουμε ότι η Alice βλέπει τα προϊόντα του πωλητή Charlie. Αντί για τα αστέρια του Charlie, η Alice θα δει ένα θετικό αριθμό που υπολογίζεται από το πορτοφόλι της και αναπαριστά τη μέγιστη χρηματική αξία που η Alice μπορεί να πληρώσει με ασφάλεια για να ολοκληρώσει μια αγορά από τον Charlie. Αυτή η αξία, γνωστή ως έμμεση εμπιστοσύνη, υπολογίζεται με το θεώρημα Εμπιστοσύνης – Ροής (2). Σημειώστε ότι η έμμεση εμπιστοσύνη προς κάποια χρήστη δεν είναι ενιαία αλλά υποκειμενική. Κάθε χρήστης βλέπει μια ιδιαίτερη έμμεση εμπιστοσύνη που εξαρτάται από την τοπολογία του δικτύου. Η έμμεση εμπιστοσύνη που εμφανίζεται από το σύστημά μας διαθέτει την ακόλουθη επιθυμητή ιδιότητα ασφαλείας: Αν η Alice πραγματοποιήσει μια αγορά από τον Charlie, τότε εκτίθεται το πολύ στον ίδιο κίνδυνο στον οποίον εκτιθόταν πριν την αγορά. Ο υπαρκτός εθελούσιος κίνδυνος είναι ακριβώς εκείνος που η Alice έπαιρνε μοιραζόμενη τα νομίσματά της με τις αξιόπιστες φίλες της. Αποδεικνύουμε το αποτέλε-

σμα αυτό στο θεώρημα Αμετάβλητου Κινδύνου (3). Προφανώς δε θα είναι ασφαλές για την Alice να αγοράσει οτιδήποτε από τον Charlie ή από οποιαδήποτε άλλη πωλήτρια αν δεν έχει ήδη εμπιστευθεί καθόλου χρήματα σε καμία άλλη χρήστη.

Βλέπουμε ότι στο Trust Is Risk τα χρήματα δεν επενδύονται τη στιγμή της αγοράς και κατ΄ ευθείαν στην πωλήτρια, αλλά σε μια προγενέστερη χρονική στιγμή και μόνο προς άτομα που είναι αξιόπιστα για λόγους εκτός παιχνιδιού. Το γεγονός ότι το σύστημα αυτό μπορεί να λειτουργήσει με έναν εξ ολοκλήρου αποκεντρωμένο τρόπο θα γίνει σαφές στις επόμενες ενότητες. Θα αποδείξουμε το αποτέλεσμα αυτό στο θεώρημα Sybil Αντίσταστης (5).

Κάνουμε τη σχεδιαστική επιλογή ότι η κάθε παίκτης μπορεί να εκφράζει την εμπιστοσύνη της μεγιστικά με όρους του διαθέσιμού της κεφαλαίου. Έτσι, μία φτωχή παίκτης δεν μπορεί να διαθέσει πολλή άμεση εμπιστοσύνη στις φίλες της ανεξαρτήτως του πόσο αξιόπιστες είναι. Από την άλλη, μία πλούσια παίκτης μπορεί να εμπιστευθεί ένα μικρό μέρος των χρημάτων της σε κάποια παίκτη που δεν εμπιστεύεται εκτενώς και παρ΄ όλα αυτά να εμφανίζει περισσότερη άμεση εμπιστοσύνη από τη φτωχή παίκτη του προηγούμενου παραδείγματος. Δεν υπάρχει άνω όριο στην εμπιστοσύνη. Κάθε παίκτης περιορίζεται μόνο από τα χρήματά της. Έτσι εκμεταλλευόμαστε την παρακάτω αξιοσημείωτη ιδιότητα του χρήματος: Το ότι κανονικοποιεί τις υποχειμενικές ανθρώπινες επιθυμίες σε αντικειμενική αξία.

Υπάρχουν διάφορα χίνητρα για να συνδεθεί μία χρήστης στο δίχτυο αυτό. Πρώτον, έχει πρόσβαση σε καταστήματα που αλλιώς θα ήταν απρόσιτα. Επίσης, δύο φίλες μπορούν να επισημοποιήσουν την αλληλοεμπιστοσύνη τους εμπιστεύοντας το ίδιο ποσό η μία στην άλλη. Μια μεγάλη εταιρεία που πραγματοποιεί συχνά συμβάσεις υπεργολαβίας με άλλες εταιρείες μπορεί να εκφράσει την εμπιστοσύνη της προς αυτές. Μια χυβέρνηση μπορεί να εμπιστευθεί άμεσα τις πολίτες της με χρήματα και να τις αντιμετωπίσει με ένα ανάλογο νομικό οπλοστάσιο αν αυτές κάνουν ανεύθυνη χρήση της εμπιστοσύνης αυτής. Μια τράπεζα μπορεί να προσφέρει δάνεια ως εξερχόμενες και να χειρίζεται τις καταθέσεις ως εισερχόμενες άμεσες εμπιστοσύνες. Τέλος, το δίχτυο μπορεί να ειδωθεί ως ένα πεδίο επένδυσης και κερδοσκοπίας αφού αποτελεί ένα εντελώς νέο πεδίο οικονομικής δραστηριότητας.

Είναι αξισημείωτο το ότι το ίδιο φυσικό πρόσωπο μπορεί να διατηρεί πολλαπλές ψευδώνυμες ταυτότητες στο ίδιο δίκτυο εμπιστοσύνης και ότι πολλά ανεξάρτητα δίκτυα εμπιστοσύνης διαφορετικών σκοπών μπορούν να συνυπάρχουν. Από την άλλη, η ίδια ψευδώνυμη ταυτότητα μπορεί να χρησιμοποιηθεί για να αναπτύξει σχέσεις εμπιστοσύνης σε διαφορετικά περιβάλλοντα.

2 Λειτουργία

Θα ακολουθήσουμε τώρα τα βήματα της Alice από τη σύνδεση με το δίκτυο μέχρι να ολοκληρώσει επιτυχώς μια αγορά. Ας υποθέσουμε ότι αρχικά όλα τα νομίσματά της, ας πούμε $10\ddot{\mathbb{B}}$, είναι αποθηκευμένα έτσι που αποκλειστικά εκείνη μπορεί να τα ξοδέψει.

Δύο αξιόπιστοι φίλοι, ο Bob και ο Charlie, την πείθουν να δοκιμάσει το Trust Is Risk. Εγκαθιστά το πορτοφόλι Trust Is Risk και μεταφέρει τα 10 β από το κανονικό bitcoin πορτοφόλι της, εμπιστεύοντας 2 β στον Bob και 5 β στον Charlie. Τώρα ελέγχει αποκλειστικά 3 β και διακινδυνεύει 7 β με αντάλλαγμα το να είναι μέρος του δικτύου. Έχει πλήρη αλλά όχι αποκλειστική πρόσβαση στα 7 β που εμπιστεύθηκε στους φίλους της και αποκλειστική πρόσβαση στα υπόλοιπα 3 β, που αθροίζονται στα 10 β.

Μερικές ημέρες αργότερα, ανακαλύπτει ένα διαδικτυακό κατάστημα παπουτσιών του Dean, ο οποίος είναι συνδεδεμένος επίσης στο Trust Is Risk. Η Alice βρίσκει ένα ζευγάρι παπούτσια που κοστίζει $1\ddot{\mathbb{B}}$ και ελέγχει την αξιοπιστία του Dean μέσω του νέου της πορτοφολιού. Ας υποθέσουμε ότι ο Dean προκύπτει αξιόπιστος μέχρι $5\ddot{\mathbb{B}}$. Αφού το $1\ddot{\mathbb{B}}$ είναι λιγότερο από τα $5\ddot{\mathbb{B}}$, η Alice πραγματοποιεί την αγορά μέσω του καινούριου της πορτοφολιού με σιγουριά.

Τότε βλέπει στο πορτοφόλι της ότι τα αποκλειστικά της νομίσματα παρέμειναν στα 3\bar{B}, τα νομίσματα που εμπιστεύεται στον Charlie μειώθηκαν στα 4\bar{B} και ότι εμπιστεύεται τον Dean με 1\bar{B}, όσο και η αξία των παπουτσιών. Επίσης, η αγορά της είναι σημειωμένη ως "σε εξέλιξη". Αν η Alice ελέγξει την έμμεση εμπιστοσύνη της προς τον Dean, θα είναι και πάλι 4\bar{B}. Στο παρασκήνιο, το πορτοφόλι της ανακατένειμε τα νομίσματα που εμπιστευόταν με τρόπο ώστε εκείνη να εμπιστεύεται άμεσα στον Dean τόσα νομίσματα όσο κοστίζει το αγορασμένο προϊόν και η εμπιστοσύνη που εμφανίζει το πορτοφόλι να είναι ίση με την αρχική.

Τελικά όλα πάνε καλά και τα παπούτσια φτάνουν στην Alice. Ο Dean επιλέγει να εξαργυρώσει τα νομίσματα που του εμπιστεύθηκε η Alice κι έτσι το πορτοφόλι της δε δείχνει ότι εμπιστεύεται κανένα νόμισμα στον Dean. Μέσω του πορτοφολιού της, σημειώνει την αγορά ως επιτυχή. Αυτό επιτρέπει στο σύστημα να αναπληρώσει τη μειωμένη εμπιστοσύνη προς τον Charlie, θέτοντας τα νομίσματα άμεσης εμπιστοσύνης στα 5 \rlap{B} και πάλι. Η Alice τώρα ελέγχει αποκλειστικά 2 \rlap{B} . Συνεπώς τώρα μπορεί να χρησιμοποιήσει συνολικά 9 \rlap{B} , γεγονός αναμενόμενο, αφού έπρεπε να πληρώσει 1 \rlap{B} για τα παπούτσια.

3 Ο γράφος εμπιστοσύνης

Ας ξεχινήσουμε μια αυστηρή περιγραφή του προτεινόμενου συστήματος, συνοδευόμενη από βοηθητικά παραδείγματα.

Ορισμός 1 (Γράφος). Το Trust Is Risk αναπαρίσταται από μια ακολουθία κατευθυνόμενων γράφων με βάρη (\mathcal{G}_j) όπου $\mathcal{G}_j = (\mathcal{V}_j, \mathcal{E}_j), j \in \mathbb{N}$. Επίσης, αφού οι γράφοι έχουν βάρη, υπάρχει μία ακολουθία συναρτήσεων βάρους (c_j) με $c_j : \mathcal{E}_j \to \mathbb{R}^+$.

Οι κόμβοι αναπαριστούν τις παίκτες, οι ακμές αναπαριστούν τις υπάρχουσες άμεσες εμπιστοσύνες και τα βάρη το ποσό αξίας συνδεδεμένης με την αντίστοιχη άμεση εμπιστοσύνη. Όπως θα δούμε, το παιχνίδι εξελίσσεται σε γύρους. Ο δείκτης του γράφου αναπαριστά τον αντίστοιχο γύρο.

Ορισμός 2 (Παίχτες). Το σύνολο $V_j = V(\mathcal{G}_j)$ είναι το σύνολο όλων των παικτών στο δίκτυο. Το σύνολο αυτό μπορεί να ειδωθεί ως το σύνολο όλων των ψευδώνυμων ταυτοτήτων.

Κάθε κόμβος έχει έναν αντίστοιχο μη αρνητικό αριθμό που αναπαριστά το κεφάλαιό του. Το κεφάλαιο ενός κόμβου είναι η συνολική αξία που ο κόμβος κατέχει αποκλειστικά και κανείς άλλος δεν μπορεί να ξοδέψει.

Ορισμός 3 (Κεφάλαιο). Το κεφάλαιο της A στο γύρο j, $Cap_{A,j}$, ορίζεται ως τα συνολικά νομίσματα που ανήκουν αποκλειστικά στην A στην αρχή του γύρου j.

Το κεφάλαιο είναι η αξία που υπάρχει στο παιχνίδι αλλά δεν είναι μοιραζόμενη με έμπιστες τρίτες. Το κεφάλαιο μίας παίκτη μπορεί να ανακατανεμηθεί μόνο κατά τη διάρκεια των γύρων της, σύμφωνα με τις πράξεις της. Μοντελοποιούμε το σύστημα με τέτοιο τρόπο ώστε να είναι αδύνατο να προστεθεί κεφάλαιο στην πορεία του παιχνιδιού με εξωτερικά μέσα. Η χρήση του κεφαλαίου θα ξεκαθαρίσει μόλις οι γύροι ορισθούν με ακρίβεια.

Ο ορισμός της άμεσης εμπιστοσύνης ακολουθεί:

Ορισμός 4 (Άμεση Εμπιστοσύνη). Η άμεση εμπιστοσύνη από την A στη B στο τέλος του γύρου j, $DTr_{A\to B,j}$, ορίζεται ως το συνολικό ποσό αξίας που υπάρχει σε $1/\{A,B\}$ multisigs στο UTXO στο τέλος του γύρου j, όπου τα χρήματα έχουν κατατεθεί από την A.

$$DTr_{A\to B,j} = \begin{cases} c_j(A,B), & a\nu(A,B) \in \mathcal{E}_j \\ 0, & a\lambda\lambda\iota\acute{o}\varsigma \end{cases}$$
(1)

Ο ορισμός αυτός συμφωνεί με τον τίτλο του παρόντος κειμένου και συμπίπτει με τη διαίσθηση και τα κοινωνιολογικά πειραματικά αποτελέσματα του [4] ότι η εμπιστοσύνη που η Alice δείχνει στον Bob σε κοινωνικά δίκτυα

του φυσικού κόσμου αντιστοιχεί με την έκταση του κινδύνου στην οποία η Alice τοποθετεί τον εαυτό της με σκοπό να βοηθήσει τον Bob. Ένας γράφος παράδειγμα με τις αντίστοιχες συναλλαγές στο UTXO φαίνεται παρακάτω.

Σχ. 3: Ο Γράφος του Trust Is Risk το αντίστοιχο Bitcoin UTXO

Όποιος αλγόριθμος έχει πρόσβαση στο γράφο \mathcal{G}_j έχει επίσης πρόσβαση σε όλες της άμεσες εμπιστοσύνες του γράφου αυτού.

Ορισμός 5 (Γειτονιά). Χρησιμοποιούμε το συμβολισμό $N^+(A)_j$ για να αναφερθούμε σε κόμβους που η A εμπιστεύεται άμεσα και $N^-(A)_j$ για τους κόμβους που εμπιστεύονται άμεσα την A στο τέλος του γύρου j.

$$N^{+}(A)_{j} = \{B \in \mathcal{V}_{j} : DTr_{A \to B, j} > 0\}$$

$$N^{-}(A)_{j} = \{B \in \mathcal{V}_{j} : DTr_{B \to A, j} > 0\}$$
(2)

Αυτές καλούνται έξω και μέσα γειτονιές της Α στο γύρο j αντίστοιχα.

Ορισμός 6 (Ολική Εισερχόμενη/Εξερχόμενη Άμεση Εμπιστοσύνη). Χρησιμοποιούμε το συμβολισμό $in_{A,j}$, $out_{A,j}$ για να αναφερθούμε στη συνολική εισερχόμενη και εξερχόμενη άμεση εμπιστοσύνη αντίστοιχα.

$$in_{A,j} = \sum_{v \in N^{-}(A)_{j}} DTr_{v \to A,j} , \quad out_{A,j} = \sum_{v \in N^{+}(A)_{j}} DTr_{A \to v,j}$$
 (3)

Ορισμός 7 (Περιουσία). Το άθροισμα του κεφαλαίου και της εξερχόμενης άμεσης εμπιστοσύνης της Α.

$$As_{A,j} = Cap_{A,j} + out_{A,j} \tag{4}$$

4 Η Εξέλιξη της Εμπιστοσύνης

Ορισμός 8 (Γύροι). Σε κάθε γύρο j μία παίκτης $A \in \mathcal{V}$, A = Player(j), επιλέγει μία ή περισσότερες πράξεις εκ των δύο ακόλουθων κατηγοριών: $Steal(y_B, B)$: Να κλέψει αξία y_B από τη $B \in N^-(A)_{j-1}$, όπου $0 \le y_B \le DTr_{B \to A, j-1}$. Τότε:

$$DTr_{B\to A,j} = DTr_{B\to A,j-1} - y_B$$

 $Add(y_B, B)$: Να προσθέσει αξία y_B στη $B \in \mathcal{V}$, όπου $-DTr_{A \to B, j-1} \le y_B$. Τότε:

$$DTr_{A \to B, j} = DTr_{A \to B, j-1} + y_B$$

Όταν $y_B < 0$, θα λέμε ότι η A μειώνει την άμεση εμπιστοσύνη του προς την B κατά $-y_B$. Όταν $y_B > 0$, θα λέμε ότι η A αυξάνει την άμεση εμπιστοσύνη της προς τη B κατά y_B . Αν $DTr_{A\to B,j-1}=0$, τότε λέμε ότι η A αρχίζει να εμπιστεύεται άμεσα τη B. H A επιλέγει "πάσο" αν δεν επιλέξει καμία πράξη. Επίσης, έστω Y_{st}, Y_{add} η συνολική αξία που πρόκειται να κλαπεί και να προστεθεί αντίστοιχα από την A στο γύρο της j. Για να είναι ένας γύρος δυνατός, θα πρέπει

$$Y_{add} - Y_{st} \le Cap_{A,j-1} . (5)$$

Το κεφάλαιο ανανεώνεται σε κάθε γύρο: $Cap_{A,j} = Cap_{A,j-1} + Y_{st} - Y_{add}$.

Μία παίκτης δεν μπορεί να επιλέξει δύο πράξεις της ίδιας κατηγορίας προς την ίδια παίκτη σε ένα γύρο. Το σύνολο πράξεων το γύρο j συμβολίζεται $Turn_j$. Ο γράφος που προκύπτει εφαρμόζοντας τις πράξεις στον \mathcal{G}_{j-1} είναι ο \mathcal{G}_j .

Για παράδειγμα, έστω A = Player(j). Ένας έγκυρος γύρος μπορεί να είναι

$$Turn_{j} = \{Steal(x, B), Add(y, C), Add(w, D)\}$$
.

Η πράξη Steal απαιτεί $0 \le x \le DTr_{B\to A,j-1}$, οι πράξεις Add απαιτούν $DTr_{A\to C,j-1} \ge -y$ και $DTr_{A\to D,j-1} \ge -w$ και ο περιορισμός του κεφαλαίου $y+w-x \le Cap_{A,j-1}$.

Χρησιμοποιούμε prev(j) και next(j) για να δηλώσουμε τον προηγούμενο και τον επόμενο γύρο που παίχθηκε αντίστοιχα από την Player(j).

Ορισμός 9 (Προηγούμενος/Επόμενος Γύρος). Έστω $j \in \mathbb{N}$ ένας γύρος με Player(j) = A. Ορίζουμε τα prev(j), next(j) ως τον προηγούμενο και τον επόμενο γύρο που η A επιλέγεται να παίξει αντίστοιχα. Aν ο πρώτος γύρος που παίζει η A είναι ο j, είναι prev(j) = 0. Πιο αυστηρά, έστω

$$P = \{k \in \mathbb{N} : k < j \land Player(k) = A\}$$
 каг $N = \{k \in \mathbb{N} : k > j \land Player(k) = A\}$.

Tότε ορίζουμε prev(j), next(j) ως εξής:

$$prev(j) = \begin{cases} \max P, & P \neq \emptyset \\ 0, & P = \emptyset \end{cases}, next(j) = \min N$$

Το next(j) είναι πάντα καλώς ορισμένο με την παραδοχή ότι μετά από κάθε γύρο όλες οι παίκτες ξαναπαίζουν τελικά.

Ορισμός 10 (Ζημία). Έστω j γύρος τέτοιος ώστε Player(j) = A.

$$Damage_{A,j} = out_{A,prev(j)} - out_{A,j-1}$$
(6)

Λέμε ότι κλάπηκε από την A αξία $Damage_{A,j}$ ανάμεσα στον prev(j) και στον j. Παραλείπουμε τους δείκτες γύρων όταν εννοούνται από τα συμφραζόμενα.

Ορισμός 11 (Ιστορία). Ορίζουμε την Ιστορία, $\mathcal{H}=(\mathcal{H}_j)$, ως την ακολουθία όλων των διατεταγμένων ζευγών που περιέχουν τα σύνολα κινήσεων και την αντίστοιχη παίκτη.

$$\mathcal{H}_{j} = (Player(j), Turn_{j}) \tag{7}$$

Γνώση του αρχικού γράφου \mathcal{G}_0 , των αρχικών κεφαλαίων όλων των παικτών και της ιστορίας ισοδυναμούν με πλήρη κατανόηση της εξέλιξης του παιχνιδιού. Χτίζοντας στο παράδειγμα του σχήματος 3, μπορούμε να δούμε το γράφο που προκύπτει όταν η D παίξει

$$Turn_1 = \{ Steal(1, A), Add(4, C) \}$$
 (8)

 Σ χ. 4: Ο Γράφος του Παιχνιδιού μετά τον $Turn_1$ (8) στο γράφο του Σ χ. 3

Το Trust Is Risk ελέγχεται από έναν αλγόριθμο που επιλέγει μία παίκτη, λαμβάνει το γύρο που η παίκτης αυτή επιθυμεί να παίξει και, αν ο γύρος της είναι έγκυρος, τον εκτελεί. Αυτά τα βήματα επαναλαμβάνονται επ΄ αόριστον. Θεωρούμε ότι οι παίκτες επιλέγονται με τέτοιο τρόπο που μία παίκτης, μετά από τον γύρο της, τελικά θα ξαναπαίξει αργότερα.

```
Trust Is Risk Game
\begin{array}{ll} j = 0 \\ \text{while (True)} \\ \text{S} & j += 1; \ A \overset{\$}{\leftarrow} \mathcal{V}_j \\ \text{Turn = strategy}[A](\mathcal{G}_0, \ A, \ Cap_{A,0}, \ \mathcal{H}_{1...j-1}) \\ \text{S} & (\mathcal{G}_j, \ Cap_{A,j}, \ \mathcal{H}_j) = \text{executeTurn}(\mathcal{G}_{j-1}, \ A, \ Cap_{A,j-1}, \ \text{Turn}) \end{array}
```

Η strategy [A] () προσφέρει στην παίκτη A πλήρη γνώση του παιχνιδιού, εκτός από τα κεφάλαια των άλλων παικτών. Αυτή η παραδοχή μπορεί να μην είναι πάντα ρεαλιστική.

Η executeTurn() ελέγχει την εγκυρότητα του γύρου Turn και τον αντικαθιστά με έναν κενό γύρο αν είναι άκυρος. Ακόλουθα, δημιουργεί ένα νέο γράφο \mathcal{G}_j και ανανεώνει την ιστορία αναλόγως. Για τους αντίστοιχους ψευδοκώδικες, δείτε το Παράρτημα.

5 Μεταβατικότητα Εμπιστοσύνης

Στην ενότητα αυτή ορίζουμε μερικές στρατηγικές και δείχνουμε τους ανάλογους αλγορίθμους. Μετά ορίζουμε το Μεταβατικό Παιχνίδι (Transitive Game) που αναπαριστά το σενάριο χειρότερης περίπτωσης για μία τίμια παίκτη όταν κάποια άλλη παίκτης αποφασίζει να φύγει από το δίκτυο με τα χρήματά της και όλα τα χρήματα που άλλες εμπιστεύονται άμεσα σε αυτήν.

Ορισμός 12 (Αδρανής Στρατηγική (Idle Strategy)). Μία παίκτης Α ακολουθεί την αδρανή στρατηγική αν παίζει "πάσο" στο γύρο της.

Idle Strategy

```
Input : graph \mathcal{G}_0, player A, capital Cap_{A,0}, history (\mathcal{H})_{1...j-1} Output : Turn_j idleStrategy(\mathcal{G}_0, A, Cap_{A,0}, \mathcal{H}) : return(\emptyset)
```

Οι είσοδοι και οι έξοδοι είναι πανομοιότυποι με αυτούς της idleStrategy() στις υπόλοιπες στρατηγικές, συνεπώς αποφεύγουμε την επανάληψή τους.

Ορισμός 13 (Κακιά Στρατηγική). Μία παίκτης Α ακολουθεί την κακιά στρατηγική αν στο γύρο της κλέβει όλη την εισερχόμενη άμεση εμπιστοσύνη και μηδενίζει όλη την εξερχόμενη άμεση εμπιστοσύνη.

```
1 evilStrategy(\mathcal{G}_0, A, Cap_{A,0}, \mathcal{H}):
2 Steals = \bigcup_{v \in N^-(A)_{j-1}} \{Steal(DTr_{v \to A,j-1},v)\}
3 Adds = \bigcup_{v \in N^+(A)_{j-1}} \{Add(-DTr_{A \to v,j-1},v)\}
4 Turn_j = Steals \cup Adds
5 return(Turn_j)
```

Ορισμός 14 (Συντηρητική Στρατηγική). Μία παίκτης A ακολουθεί τη συντηρητική στρατηγική αν αναπληρώνει την αξία που έχασε από τον προηγούμενο γύρο, $Damage_A$, κλέβοντας από άλλες που την εμπιστεύονται άμεσα τόσο όσο μπορεί μέχρι την τιμή $Damage_A$ και δεν εκτελεί άλλη πράξη.

```
consStrategy(\mathcal{G}_0, A, Cap_{A,0}, \mathcal{H}):

Damage = out_{A,prev(j)} - out_{A,j-1}

if (Damage > 0)

if (Damage >= in_{A,j-1})

Turn_j = \bigcup_{v \in N^-(A)_{j-1}} \{Steal\left(DTr_{v \to A,j-1},v\right)\}

else

y = \text{SelectSteal}(G_j, A, \text{Damage}) \# y = \{y_v : v \in N^-(A)_{j-1}\}

Turn_j = \bigcup_{v \in N^-(A)_{j-1}} \{Steal\left(y_v,v\right)\}

else Turn_j = \emptyset

return(Turn_j)
```

H SelectSteal() επιστρέφει y_v με $v\in N^-\left(A\right)_{j-1}$ τέτοιο ώστε

$$\sum_{v \in N^{-}(A)_{j-1}} y_{v} = Damage_{A,j} \land \forall v \in N^{-}(A)_{j-1}, y_{v} \leq DTr_{v \to A,j-1} . (9)$$

Η παίκτης A μπορεί να ορίσει κατά βούληση πώς η SelectSteal() θα κατανείμει τις πράξεις Steal() κάθε φορά που καλεί τη συνάρτηση, εφ΄ όσον ο περιορισμός (9) είναι σεβαστός.

Όπως βλέπουμε, ο ορισμός καλύπτει μια πληθώρα επιλογών για τη συντηρητική παίκτη, αφού στην περίπτωση που $0 < Damage_{A,j} < in_{A,j-1}$ μπορεί να επιλέξει να κατανείμει τις πράξεις Steal () όπως επιθυμεί.

Ο συλλογισμός πίσω από αυτή τη στρατηγική προκύπτει από μια συνηθισμένη περίπτωση στον πραγματικό κόσμο. Έστω μία πελάτισσα, μία μεσάζοντας χι μία παραγωγός. Η πελάτισσα εμπιστεύεται χάποια αξία στη μεσάζοντα ώστε η τελευταία να μπορέσει να αγοράσει το επιθυμητό προϊόν από την παραγωγό και να το παραδώσει στην πελάτισσα. Η μεσάζοντας με τη σειρά της εμπιστεύεται ίση αξία στην παραγωγό, η οποία απαιτεί την προκαταβολή του ποσού για να μπορέσει να ολοκληρώσει τη διαδικασία παραγωγής. Ωστόσο, η παραγωγός τελικά δε δίνει το προϊόν ούτε επιστρέφει το ποσό λόγω πτώχευσης ή επιλογής να φύγει από την αγορά με ένα άδικο όφελος. Η μεσάζοντας τότε μπορεί να επιλέξει είτε να αποζημιώσει την πελάτισσα και να υποστεί τη ζημία, ή να αρνηθεί την αποζημίωση και να χάσει την εμπιστοσύνη της πελάτισσας. Η τελευταία επιλογή για τη μεσάζοντα είναι αχριβώς η συντηρητική στρατηγική. Χρησιμοποιείται στη συνέχεια του παρόντος ως η στρατηγική για όλες τις ενδιάμεσες παίκτες γιατί μοντελοποιεί με επιτυχία το σενάριο χειρότερης περίπτωσης που μία πελάτισσα μπορεί να αντιμετωπίσει αφού μία κακιά παίκτης αποφασίσει να κλέψει ό,τι μπορεί και οι υπόλοιπες παίκτες δεν εμπλέκονται σε κακή δράση.

Συνεχίζουμε με μία δυνατή εξέλιξη του παιχνιδιού, το Μεταβατικό Παιχνίδι. Στο γύρο 0, υπάρχει ήδη ένα συγκεκριμένο δίκτυο. Όλες οι παίκτες εκτός της A και της B ακολουθούν τη συντηρητική στρατηγική. Επιπλέον, το σύνολο των παικτών δε μεταβάλλεται κατά τη διάρκεια του Μεταβατικού Παιχνιδιού, συνεπώς μπορούμε να αναφερθούμε στο \mathcal{V}_j για κάθε γύρο jως \mathcal{V} . Επίσης, κάθε συντηρητική παίκτης μπορεί να βρίσκεται σε μία από τρεις καταστάσεις: Χαρούμενη (Happy), Θυμωμένη (Angry) ή Λυπημένη (Sad). Οι Χαρούμενες παίκτες έχουν ζημία 0, οι Θυμωμένες παίκτες έχουν θετική ζημία και θετική εισερχόμενη άμεση εμπιστοσύνη, άρα μπορούν να αναπληρώσουν τη ζημία τους τουλάχιστον μερικώς και οι Λυπημένες παίκτες έχουν θετική ζημία, αλλά 0 εισερχόμενη άμεση εμπιστοσύνη, άρα δεν μπορούν να αναπληρώσουν τη ζημία. Αυτές οι συμβάσεις θα ισχύουν όποτε χρησιμοποιούμε το Μεταβατικό Παιχνίδι.

```
Transitive Game
```

```
Input : graph \mathcal{G}_0, A \in \mathcal{V} idle player, B \in \mathcal{V} evil player Angry = Sad = \emptyset ; Happy = \mathcal{V} \setminus \{A,B\} for (v \in \mathcal{V} \setminus \{B\}) Loss_v = 0
```

```
j = 0
    while (True)
       j += 1; v \stackrel{\$}{\leftarrow} \mathcal{V} \setminus \{A\}
       Turn_j = strategy[v](\mathcal{G}_0, v, Cap_{v,0}, mathcal H_{1...j-1})
       executeTurn(\mathcal{G}_{j-1}, v, Cap_{v,j-1}, Turn_j)
       for (action \in Turn_i)
         action match do
9
            case Steal(y, w) do
10
               exchange = y
11
               Loss_w += exchange
12
               if (v != B) Loss_v -= exchange
13
               if (w != A)
14
                 \mathsf{Happy} = \mathsf{Happy} \setminus \{w\}
15
                 if (in_{w,j} == 0) Sad = Sad \cup \{w\}
16
                 else Angry = Angry \cup \{w\}
17
       if (v != B)
18
         \texttt{Angry} = \texttt{Angry} \setminus \{v\}
19
         if (Loss_v > 0) Sad = Sad \cup \{v\}
                                                              \#in_{v,j} should be zero
20
         if (Loss_v == 0) Happy = Happy \cup \{v\}
21
        Ένα παράδειγμα εκτέλεσης ακολουθεί:
                    Χαρούμενη
                                                                      Θυμωμένη
                       (D)
                                                                                        В
                                                       \mathcal{G}_1
     \mathcal{G}_0
                        С
          (Е
                                                            (E
                      Χαρούμενη
                                                                       Θυμωμένη
      Χαρούμενη
                                                        Χαρούμενη
                    Λυπημένη
                                                                      Λυπημένη
```

 Σ χ. 5: Η B κλέβει 7 $\ddot{\mathbb{B}}$, μετά η D κλέβει 3 $\ddot{\mathbb{B}}$ και η C κλέβει 3 $\ddot{\mathbb{B}}$

 \mathcal{G}_3

 \mathbf{E}

Λυπημένη

В

D

Χαρούμενη

В

D

Θυμωμένη

 \mathcal{G}_2

Ε

Χαρούμενη

Έστω j_0 ο πρώτος γύρος στον οποίο η B επιλέγεται. Μέχρι τότε, όλες οι παίκτες θα παίζουν "πάσο" αφού τίποτα δεν έχει κλαπεί ακόμα (βλέπε το

Παράρτημα (Θεώρημα 6) για μια αυστηρή απόδειξη αυτού του απλού γεγονότος). Επιπλέον, έστω v=Player(j) και j'=prev(j). Το Μεταβατικό Παιχνίδι παράγει γύρους:

$$Turn_{j} = \bigcup_{w \in N^{-}(v)_{j-1}} \{Steal(y_{w}, w)\}, \qquad (10)$$

όπου

$$\sum_{w \in N^{-}(v)_{j-1}} y_w = \min\left(in_{v,j-1}, Damage_{v,j}\right) .$$

Βλέπουμε ότι αν $Damage_{v,j} = 0$, τότε $Turn_j = \emptyset$.

Από τον ορισμό του $Damage_{v,j}$ και γνωρίζοντας ότι καμία στρατηγική σε αυτή την περίπτωση δεν μπορεί να αυξήσει καμία άμεση εμπιστοσύνη, βλέπουμε ότι $Damage_{v,j} \geq 0$. Επίσης, είναι $Loss_{v,j} \geq 0$ γιατί αν $Loss_{v,j} < 0$, τότε η v θα είχε κλέψει περισσότερη αξία απ΄ ότι της έχει κλαπεί, συνεπώς δε θα ακολουθόύσε τη συντηρητική στρατηγική.

6 Τρυστ Φλοω

We san now define the indirect trust from A to $B. \ \,$

Ορισμός 15 (Ινδιρεςτ Τρυστ). Της ινδιρεςτ τρυστ φρομ A το B αφτερ τυρν j ις δεφινεδ ας της μαξιμυμ ποσσιβλε αλυε τηατ ςαν βε στολεν φρομ A αφτερ τυρν j ιν της σεττιν g0 τρανσι τι εΓαμε (G_j, A, B) .

It is $Tr_{A\to B} \ge DTr_{A\to B}$. The next theorem shows that $Tr_{A\to B}$ is givite.

Τηεορεμ 1 (Τρυστ δνεργενςε Τηεορεμ).

δνσιδερ α Τρανσιτιε Γαμε. Τηερε εξιστς α τυρν συςη τηατ αλλ συβσεχυεντ τυρνς αρε εμπτψ.

Προοφ Σκετζη. Ιφ της γαμε διδν΄τ ζονεργε, της Steal () αςτιονς ωουλδ ζοντινυς φορεερ ωιτηουτ ρεδυςτιον οφ της αμουντ στολέν σερ τιμε, τηυς της ωουλδ ρεαζη ινφινιτψ. Ησωεερ τηις ις ιμποσσιβλε, σίνςε τηερε εξιστς ονλψ φινίτε τοταλ διρέςτ τρυστ.

Φυλλ προοφς οφ αλλ τηεορεμς ανδ λεμμας ςαν βε φουνδ ιν τηε Αππενδιξ.

Ιν της σεττινή οφ Τρανσιτιε Γαμε (\mathcal{G},A,B) , ωε μάχε υσε οφ της νοτατιον $Loss_A=Loss_{A,j}$, ωήςρε j is α τυρν τηατ της ήαμε ήας ξονέρηςδ. Ιτ is important to note τηατ $Loss_A$ is not της σαμε φορ ρεπέατεδ εξέςυτιονς οφ τηις χινδ οφ ήαμε, σίνες της ορδέρ in ωηίςη πλαψέρς αρέ ςηόσεν μαψ διφφέρ βετωέεν εξέςυτιονς ανδ της ξονσέρατις πλαψέρς αρέ φρές το ξηρόσε ωηίςη ινζομινή διρέςτ τρυστς της ωιλλ στέαλ ανδ ήοω μυςή φρομ έαςη.

Λετ G βε α ωειγητεδ διρεςτεδ γραπη. Ωε ωιλλ ινεστιγατε τηε μαξιμυμ φλοω ον τηις γραπη. Φορ αν ιντροδυςτιον το τηε μαξιμυμ φλοω προβλεμ σεε [5] π. 708. δνσιδερινγ εαςη εδγε΄ς ςαπαςιτψ ας ιτς ωειγητ, α φλοω ασσιγνμεντ $X=[x_{vw}]_{\mathcal{V}\times\mathcal{V}}$ ωιτη α σουρςε A ανδ α σινα B ις αλιδ ωηεν:

$$\forall (v, w) \in \mathcal{E}, x_{vw} \le c_{vw} \text{ and }$$
 (11)

$$\forall v \in \mathcal{V} \setminus \{A, B\}, \sum_{w \in N^+(v)} x_{wv} = \sum_{w \in N^-(v)} x_{vw} . \tag{12}$$

 Ω ε δο νοτ συπποσε ανψ σχεω σψμμετρψ ιν X. Τηε φλοω αλύε ις $\sum_{v\in N^+(A)} x_{Av}$, ωηιςη ις προέν το βε έχυαλ το $\sum_{v\in N^-(B)} x_{vB}$. Τηέρε έξιστς αν αλγοριτημ τηατ ρετυρνς τηε μαξιμυμ ποσσιβλε φλοω φρομ A το B, ναμέλψ MaxFlow~(A,B). Τηις αλγοριτημ ειδέντλψ νέεδς φυλλ χνοωλέδης οφ τηε γραπη. Τηε φαστέστ έρσιον οφ τηις αλγοριτημ ρυνς ιν $O(|\mathcal{V}||\mathcal{E}|)$ τιμε [6]. Ω ε ρέφερ το τηε φλοω αλύε οφ MaxFlow~(A,B) ας maxFlow~(A,B).

 Ω ε ωιλλ νοω ιντροδυςε τωο λεμμας τηατ ωιλλ βε υσεδ το προε τηε ονε οφ τηε ςεντραλ ρεσυλτς οφ τηις ωορχ, τηε Τρυστ Φλοω τηεορεμ.

Λεμμα 1 (ΜαξΦλοως Αρε Τρανσιτιε Γαμες).

Λετ \mathcal{G} β ε α γαμε γραπη, λετ $A, B \in \mathcal{V}$ ανδ MaxFlow(A, B) τηε μαξιμυμ φλοω φρομ A το B εξεςυτεδ ον \mathcal{G} . Τηερε εξιστς αν εξεςυτιον οφ ΤρανσιτιεΓαμε (\mathcal{G}, A, B) συςη τηατ $maxFlow(A, B) \leq Loss_A$.

Προοφ Σκετςη. Της δεσιρεδ εξεςυτιον οφ ΤρανσιτιεΓαμε () ωιλλ ςονταιν αλλ φλοως φρομ της $MaxFlow\left(A,B\right)$ ας εχυιαλεντ $Steal\left(\right)$ αςτιονς. Της πλαψερς ωιλλ πλαψ ιν τυρνς, μοινγ φρομ B βαςκ το A. Εαςη πλαψερωιλλ στεαλ φρομ ηις πρεδεςεσσορς ας μυςη ας ωας στολεν φρομ ηερ. Της φλοως ανδ της ςονσερατις στρατεγψ σηαρε της προπερτψ τηατ της τοταλ ινπυτ ις εχυαλ το της τοταλ ουτπυτ.

Λεμμα 2 (Τρανσιτιε Γαμες Αρε Φλοως).

Λετ $\mathcal{H} = \text{ΤρανσιτιεΓαμε}(\mathcal{G}, A, B)$ φορ σομε γαμε γραπη \mathcal{G} ανδ $A, B \in \mathcal{V}$. Τηερε εξιστς α αλιδ φλοω $X = \{x_{wv}\}_{\mathcal{V} \times \mathcal{V}}$ ον \mathcal{G}_0 συςη τηατ $\sum_{v \in \mathcal{V}} x_{Av} = Loss_A$.

Προοφ Σκετζη. Ιφ ωε εξςλυδε της σαδ πλαψερς φρομ της γαμε, της Steal () αςτιούς τηατ ρεμαίν ζουστίτυτε α αλίδ φλοώ φρομ A το B.

Τηεορεμ 2 (Τρυστ Φλοω Τηεορεμ).

Λετ G βε α γαμε γραπη ανδ <math>A, B ∈ V. Ιτ ηολδς τηατ

$$Tr_{A\to B} = maxFlow(A, B)$$
.

Aπόδειξη. Φρομ λεμμα 1 τηερε εξιστς αν εξεςυτιον οφ τηε Τρανσιτιε Γαμε συςη τηατ $Loss_A \geq maxFlow\left(A,B\right)$. Σίνςε $Tr_{A\to B}$ iς τηε μαξιμυμ λοσς τηατ A ςαν συφφερ αφτερ τηε ςονεργενςε οφ τηε Τρανσιτιε Γαμε, ωε σεε τηατ

$$Tr_{A\to B} \ge maxFlow(A,B)$$
 (13)

Βυτ σομε εξεςυτιον οφ της Τρανσιτιε Γαμε γιες $Tr_{A\to B}=Loss_A$. Φρομ λεμμα 2, τηις εξεςυτιον ςορρεσπονδς το α φλοω. Τηυς

$$Tr_{A\to B} \le maxFlow(A,B)$$
 . (14)

The theorem follows from (13) and (14).

Νοτε τηατ τηε μαξ Φ λοω ις τηε σαμε ιν τηε φολλοωινη τωο ςασες: Ιφ α πλαψερ ςηοοσες τηε ειλ στρατεγψ ανδ ιφ τηατ πλαψερ ςηοοσες α αριατιον οφ τηε ειλ στρατεγψ ωηερε σηε δοες νοτ νυλλιφψ ηερ ουτγοινη διρεςτ τρυστ.

Φυρτηερ θυστιφιςατιον οφ τρυστ τρανσιτιιτψ τηρουγη τηε υσε οφ MaxFlow ςαν βε φουνδ ιν τηε σοςιολογιςαλ ωορχ ςονδυςτεδ ιν [4] ωηερε α διρεςτ ςορρεσπονδενςε οφ μαξιμυμ φλοως ανδ εμπιριςαλ τρυστ ις εξπεριμενταλλψ αλιδατεδ.

Ηερε ωε σεε ανότηερ ιμπορτάντ τηεορέμ τηατ γιες τηε βασίς φορ ρισκιναριαντ τρανσαςτιούς βετωεεν διφφέρεντ, ποσσιβλψ υνκνοών, παρτίες.

Τηεορεμ 3 (Ρισχ Ιναριανςε Τηεορεμ). Λετ \mathcal{G} γαμε γραπη, $A, B \in \mathcal{V}$ ανδ l τηε δεσιρεδ αλυε το β ε τρανσφερρεδ φρομ A το B, ωιτη $l \leq Tr_{A \to B}$. Λετ αλσο \mathcal{G}' ωιτη τηε σαμε νοδες ας \mathcal{G} συςη τηατ

$$\forall v \in \mathcal{V}' \setminus \{A\}, \forall w \in \mathcal{V}', DTr'_{v \to w} = DTr_{v \to w}$$
.

Φυρτηερμορε, συπποσε τηατ τηερε εξιστς αν ασσιγνμεντ φορ τηε ουτγοινη διρεςτ τρυστ οφ $A, DTr'_{A\to v}$, συςη τηατ

$$Tr'_{A\to B} = Tr_{A\to B} - l . (15)$$

Λετ ανοτηερ γαμε γραπη, G'', βε ιδεντιζαλ το G' εξςεπτ φορ τηε φολλοωιν γ ςηαν γε:

$$DTr''_{A\to B} = DTr'_{A\to B} + l .$$

Ιτ τηεν ηολδς τηατ

$$Tr''_{A\to B} = Tr_{A\to B}$$
.

Απόδειξη. Της τωο γραπης \mathcal{G}' ανδ \mathcal{G}'' διφφερ ονλψ ον της ωειγητ οφ της εδγε (A,B), ωηιςη ις λαργερ βψ l ιν \mathcal{G}'' . Τηυς της τωο MaxFlowς ωιλλ ςηοοσε της σαμε φλοω, εξςεπτ φορ (A,B), ωηερε ιτ ωιλλ βε $x''_{AB}=x'_{AB}+l$.

Ιτ ις ιντυιτιελψ οβιους τηατ ιτ ις ποσσιβλε φορ A το ρεδυςε ηερ ουτγοινή διρέςτ τρυστ ιν α μαννέρ τηατ αςηιέες (15), σίνςε $maxFlow\left(A,B\right)$ ις ζοντινύους ωιτή ρεσπέςτ το A'ς ουτγοίνη διρέςτ τρυστς. Ω ε λέαε τηις ζαλζυλατίον ας παρτ οφ φυρτήερ ρεσέαρςη.

7 Σψβιλ Ρεσιλιένςε

Ονε οφ τηε πριμαρψ αιμς οφ τηις σψστεμ ις το μιτιγατε τηε δανγερ φορ Σ ψβιλ ατταςχς [7] ωηιλστ μαινταινινη φυλλψ δεςεντραλιζεδ αυτονομψ.

Ηερε ωε εξτενδ τηε δεφινιτιον οφ ινδιρεςτ τρυστ το μανψ πλαψερς.

Ορισμός 16 (Ινδιρεςτ Τρυστ το Μυλτιπλε Πλαψερς). Της ινδιρεςτ τρυστ φρομ πλαψερ A το a σετ οφ πλαψερς, $S \subset \mathcal{V}$ ις δεφινεδ aς τηε μαξιμυμ ποσσιβλε αλυε τηατ ςαν βε στολεν φρομ A ιφ αλλ πλαψερς iν S φολλοω τηε είλ στρατεγψ, A φολλοως τηε ίδλε στρατεγψ ανδ εερψονε έλσε $(\mathcal{V}\setminus (S\cup\{A\}))$ φολλοως τηε ςονσερατιε στρατεγψ. Μορε φορμαλλψ, λετ choices βε τηε διφφερεντ αςτιονς βετωεεν ωηιςη τηε ςονσερατιε πλαψερς ςαν ςηοοσε, τηεν

$$Tr_{A\to S,j} = \max_{j':j'>j, choices} \left[out_{A,j} - out_{A,j'} \right]$$
 (16)

Ωε νοω εξτενδ Τρυστ Φλοω τηεορεμ (2) το μανψ πλαψερς.

Τηεορεμ 4 (Μυλτι-Πλαψερ Τρυστ Φλοω).

 Λ ετ $S \subset \mathcal{V}$ ανδ T αυξιλιαρψ πλαψερ συςη τηατ $\forall B \in S, DTr_{B \to T} = \infty$. Ιτ ηολδς τηατ

$$\forall A \in \mathcal{V} \setminus S, Tr_{A \to S} = maxFlow(A, T)$$
.

Aπόδειξη. Ιφ T ςηφοσες τηε ειλ στρατεγψ ανδ αλλ πλαψερς ιν S πλαψαςςορδινή το τηε ςονσερατίε στρατεγψ, τηεψ ωίλλ ήσε το στεαλ αλλ τηειρ ινςομινή διρέςτ τρυστ σίνςε τηεψ ήσε συφφέρεδ αν ινφινίτε λόσς, τηυς τηεψωίλλ αςτ ιν α ωαψ ιδεντίζαλ το φολλοωίνη τηε είλ στρατεγψ ας φαρ ας MaxFlow ις ζονζερνέδ. Τηε τηεορέμ φολλοώς τηυς φρομ τηε Τρυστ Φλοω τηέορεμ.

 Ω ε νοω δεφινε σεεραλ υσεφυλ νοτιονς το ταςκλε της προβλεμ οφ Σ ψβιλ ατταςκς. Λετ Eε βε α ποσσιβλε ατταςκερ.

Ορισμός 17 (ὅρρυπτεδ Σετ). Λετ \mathcal{G} $\beta \epsilon$ α γαμε γραπη ανδ λετ $E\epsilon$ ηαε α σετ οφ πλαψερς $\mathcal{B} \subset \mathcal{V}$ ςορρυπτεδ, σο τηατ σηε φυλλψ ςοντρολς τηειρ ουτγοιν γ διρεςτ τρυστς το ανψ πλαψερ \mathcal{V} ανδ ςαν αλσο στεαλ αλλ ινςομιν γ διρεςτ τρυστ το πλαψερς \mathcal{B} . $\Omega \epsilon$ ςαλλ τηις τηε ςορρυπτεδ σετ. Τηε πλαψερς \mathcal{B} αρε ςονσιδερεδ το $\beta \epsilon$ λεγιτιματε $\beta \epsilon$ φορε τηε ςορρυπτιον, τηυς τηεψ μαψ $\beta \epsilon$ διρεςτλψ τρυστεδ $\beta \psi$ ανψ πλαψερ \mathcal{V} .

Ορισμός 18 (Σψβιλ Σετ). Λετ \mathcal{G} βε α γαμε γραπη. Σινςε παρτιςιπατιον \mathcal{G} τηε νετωορκ δοες νοτ ρεχυίρε ανψ κινδ οφ ρεγιστρατίον, \mathcal{G} ξαν ςρέατε ανψ νυμβερ οφ πλαψερς. Ωε ωίλλ ςαλλ τηε σετ οφ τηεσε πλαψερς \mathcal{G} , ορ Σψβιλ σετ. Μορέοερ, \mathcal{G} ξαν αρβιτραριλψ σετ τηε διρέςτ τρυστς οφ ανψ πλαψερ \mathcal{G} το ανψ πλαψερ ανδ ςαν αλσο στέαλ αλλ ινςομίν γ διρέςτ τρυστ το πλαψερς \mathcal{G} \mathcal{G} \mathcal{G} το \mathcal{G} τοτ \mathcal{G} βψ πλαψερς \mathcal{G} ςαν \mathcal{G} είρεςτλψ τρυστέδ ονλψ \mathcal{G} φψ πλαψερς \mathcal{G} \mathcal{G} θυτ νοτ \mathcal{G} \mathcal{G} πλαψερς \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} είς α σετ οφ πλαψερς ςορρυπτέδ \mathcal{G} \mathcal{G} \mathcal{G} \mathcal{G} είς \mathcal{G} είς α σετ οφ πλαψερς ςορρυπτέδ \mathcal{G} \mathcal{G} είς.

Ορισμός 19 (ὅλλυσιον). Λετ \mathcal{G} $\beta \epsilon$ α γαμε γραπη. Λετ $\mathcal{B} \subset \mathcal{V}$ $\beta \epsilon$ α ςορρυπτεδ σετ ανδ $\mathcal{C} \subset \mathcal{V}$ $\beta \epsilon$ α Σψβιλ σετ, βοτη ςοντρολλεδ $\beta \psi$ $E \epsilon$. Τηε τυπλε $(\mathcal{B}, \mathcal{C})$ ις ςαλλεδ α ςολλυσιον ανδ ις εντιρελψ ςοντρολλεδ $\beta \psi$ α σινγλε εντιτψ ιν τηε πηψσιςαλ ωορλδ. Φρομ α γαμε τηεορετις ποιντ οφ ιεω, πλαψερς $\mathcal{V} \setminus (\mathcal{B} \cup \mathcal{C})$ περςειε τηε ςολλυσιον ας ινδεπενδεντ πλαψερς ωιτη α διστινςτ στρατεγψ εαςη, ωηερεας ιν ρεαλιτψ τηεψ αρε αλλ συβθεςτ το α σινγλε στρατεγψ διςτατεδ $\beta \psi$ τηε ςοντρολλινγ εντιτψ. Εε.

Σχ. 6: Συνεργασία

Τηεορεμ 5 (Σψβιλ Ρεσιλιένζε).

 $\Lambda \epsilon \tau \mathcal{G}$ $\beta \epsilon$ α γαμε γραπη ανδ $(\mathcal{B}, \mathcal{C})$ $\beta \epsilon$ α ςολλυσιον οφ πλαψερς ον \mathcal{G} . Ιτ ις

$$Tr_{A\to\mathcal{B}\cup\mathcal{C}}=Tr_{A\to\mathcal{B}}$$
.

Proof Sketgh. The incoming direct trust to $\mathcal{B} \cup \mathcal{C}$ cannot be higher than the incoming direct trust to \mathcal{B} since \mathcal{C} has no incoming direct trust from $\mathcal{V} \setminus (\mathcal{B} \cup \mathcal{C})$.

Ωε ηαε προεν τηατ ζοντρολλινγ $|\mathcal{C}|$ ις ιρρελεαντ φορ Εε, τηυς Σψβιλ ατταςχς αρε μεανινγλεσς. Ωε νοτε τηατ τηις τηεορεμ δοες νοτ δελιερ ρεασσυρανζες αγαινστ ατταςχς ινολινγ δεςεπτιον τεςηνιχυες. Μορε σπεςιφιςαλλψ, α μαλιςιους πλαψερ ςαν ςρεατε σεεραλ ιδεντιτιες, υσε τηεμ λεγιτιματελψ το ινοπιρε οτηερς το δεποσιτ διρεςτ τρυστ το τηεσε ιδεντιτιες ανδ τηεν σωιτςη το τηε ειλ στρατεγψ, τηυς δεφραυδινγ εερψονε τηατ τρυστεδ τηε φαβριςατεδ ιδεντιτιες. Τηεσε ιδεντιτιες ςορρεσπονδ το τηε ςορρυπτεδ σετ οφ πλαψερς ανδ νοτ το τηε Σψβιλ σετ βεςαυσε τηεψ ηαε διρεςτ ινςομινγ τρυστ φρομ ουτσιδε τηε ζολλυσιον.

Ιν ζονζλυσιον, ωε ησε συζζεσσφυλλψ δελιερεδ ουρ προμισε φορ α Σ ψβιλρεσιλιεντ δεζεντραλιζεδ φινανζιαλ τρυστ σψστεμ ωιτη ιναριαντ ρισκ φορ πυρζησσες.

8 Ρελατεδ Ωορχ

Τηε τοπις οφ τρυστ ηας βεεν ρεπεατεδλψ ατταςχεδ ωιτη σεεραλ αππροαςηες: Πυρελψ ςρψπτογραπηις ινφραστρυςτυρε ωηερε τρυστ ις ρατηερ βιναρψανδ τρανσιτιιτψ ις λιμιτεδ το ονε στεπ βεψονδ αςτιελψ τρυστεδ παρτιες ις εξπλορεδ ιν ΠΓΠ [8]. Α τρανσιτιε ωεβ-οφ-τρυστ φορ φιγητινγ σπαμ ις εξπλορεδ ιν Φρεενετ [9]. Οτηερ σψστεμς ρεχυιρε ςεντραλ τρυστεδ τηιρδ παρτιες, συςη ας "Α-βασεδ ΠΚΙς [10] ανδ Βαζααρ [11], ορ, ιν τηε ςασε οφ ΒΦΤ, αυτηεντιςατεδ μεμβερσηιπ [12]. Ωηιλε οτηερ τρυστ σψστεμς αττεμπτ το βε δεςεντραλιζεδ, τηεψ δο νοτ προε ανψ Σψβιλ ρεσιλιενςε προπερτιες ανδ ηενςε μαψ βε Σψβιλ ατταςχαβλε. Συςη σψστεμς αρε ΦΙΡΕ [13], "ΟΡΕ [14] ανδ οτηερς [15,16,17]. Οτηερ σψστεμς τηατ δεφινε τρυστ ιν α νον-φινανςιαλ ωαψ αρε [18,19,20,21,22,23,24].

 Ω ε αγρεε ωιτη τηε ωορχ οφ [25] ιν τηατ τηε μεανίνη οφ τρυστ σηουλδ νοτ βε εξτραπολατεδ. Ω ε ηαε αδοπτεδ τηειρ αδίζε ιν ουρ παπερ ανδ υργε ουρ ρεαδέρς το αδήερε το τηε δεφινίτιονς οφ διρέςτ ανδ $i\nu$ διρέςτ τρυστ ας τηεψ αρε υσεδ ήερε.

Τηε Βεαερ μαρχετπλαςε [26] ινςλυδες α τρυστ μοδελ τηατ ρελιες ον φεες το δισςουραγε Σψβιλ ατταςχς. Ωε ςηοσε το αοιδ φεες ιν ουρ σψστεμ ανδ μιτιγατε Σψβιλ ατταςχς ιν α διφφερεντ μαννερ. Ουρ μοτιατινγ αππλιςατιον φορ εξπλορινγ τρυστ ιν α δεςεντραλιζεδ σεττινγ ις τηε ΟπενΒαζααρ μαρχετπλαςε. Τρανσιτιε φινανςιαλ τρυστ φορ ΟπενΒαζααρ ηας πρειουσλψ βεεν εξπλορεδ βψ [27]. Τηατ ωορχ ηοωεερ δοες νοτ δεφινε τρυστ ας α μονεταρψ αλυε. Ωε αρε στρονγλψ ινσπιρεδ βψ [4] ωηιςη γιες α σοςιολογιςαλ θυστιφι-

ςατιον φορ της ζεντραλ δεσιγν ζησιζε οφ ιδεντιφψινγ τρυστ ωιτη ρισχ. Ω ε γρεατλψ αππρεζιατε της ωορχ ιν Τρυστ Δ αις [28], ωηιζη προποσες α φινανζιαλ τρυστ σψστεμ τηατ εξηιβιτς τρανσιτις προπερτιες ανδ ιν ωηιζη τρυστ ις δεφινεδ ας λινεσ-οφ-ςρεδιτ, σιμιλαρ το ουρ σψστεμ. Ω ε ωερε αβλε το εξτενδ τηειρ ωορχ βψ υσινγ της βλοζχζηαιν φορ αυτοματεδ προοφσ-οφ-ρισχ, α φεατυρε νοτ ααιλαβλε το τηςμ ατ της τιμε.

Ουρ ςονσερατιε στρατεγψ ανδ Τρανσιτιε Γαμε αρε ερψ σιμιλαρ το τηε μεςηανισμ προποσεδ βψ τηε εςονομις παπερ [29] ωηιςη αλσο ιλλυστρατες φινανςιαλ τρυστ τρανσιτιιτψ ανδ ις υσεδ βψ Ριππλε [30] ανδ Στελλαρ [31]. ΙΟΥς ιν τηεσε ςορρεσπονδ το ρεερσεδ εδγες οφ τρυστ ιν ουρ σψστεμ. Τηε ςριτιςαλ διφφερενςε ις τηατ ουρ δενομινατιονς οφ τρυστ αρε εξπρεσσεδ ιν α γλοβαλ ςυρρενςψ ανδ τηατ ςοινς μυστ πρε-εξιστ ιν ορδερ το βε τρυστεδ ανδ σο τηερε ις νο μονεψ-ασ-δεβτ. Φυρτηερμορε, ωε προε τηατ τρυστ ανδ μαξιμυμ φλοως αρε εχυιαλεντ, α διρεςτιον νοτ εξπλορεδ ιν τηειρ παπερ, εεν τηουγη ωε βελιεε ιτ μυστ ηολδ φορ αλλ βοτη ουρ ανδ τηειρ σψστεμς.

9 Φυρτηερ Ρεσεαρςη

Ωηεν Alice μαχές α πυρςηασε φρομ Bob, σηε ηας το ρεδύςε ηέρ ουτγοινή διρέςτ τρυστ ιν α μαννέρ συςη τηατ της συπποσίτιον (15) οφ Pισχ Iναριανςε τηεορέμ Iς σατισφίεδ. Iοω Alice ςαν ρεςαλζυλατέ ηέρ ουτγοινή διρέςτ τρυστ ωιλλ Iε δισςυσσέδ Iν α φυτύρε παπέρ.

Ουρ γαμε ις στατις. Ιν α φυτυρε δψναμις σεττινγ, υσερς σηουλδ βε αβλε το πλαψ σιμυλτανεουσλψ, φρεελψ θοιν, δεπαρτ ορ δισςοννεςτ τεμποραριλψ φρομ τηε νετωορχ. Οτηερ τψπες οφ μυλτισιγς, συςη ας 1-οφ-3, ςαν βε εξπλορεδ φορ τηε ιμπλεμεντατιον οφ μυλτι-παρτψ διρεςτ τρυστ.

ΜαξΦλοω ιν ουρ ςασε νεεδς ςομπλετε νετωορχ χνοωλεδγε, ωηιςη ςαν λεαδ το πριαςψ ισσυες τηρουγη δεανονψμισατιον τεςηνιχυες [32]. ἃλςυλατινγ τηε φλοως ιν ζερο χνοωλεδγε ρεμαίνς αν όπεν χυεστίον. [33] ανδ ίτς ςεντραλίζεδ πρεδεςεσσορ, Πρί Π αψ [34], σεεμ το οφφερ ιναλυαβλε ινσίγητ ιντο ηοω πριαςψ ςαν βε αςηιεεδ.

Ουρ γαμε τηεορετις αναλψσις ις σιμπλε. Αν ιντερεστινγ αναλψσις ωουλδ ινολε μοδελλινγ ρεπεατεδ πυρςηασες ωιτη τηε ρεσπεςτιε εδγε υπδατες ον τηε τρυστ γραπη ανδ τρεατινγ τρυστ ον τηε νετωορκ ας παρτ οφ τηε υτιλιτψ φυνςτιον.

Αν ιμπλεμεντατιον ας α ωαλλετ ον ανψ βλοςχςηαιν οφ ουρ φινανςιαλ γαμε ις μοστ ωελςομε. Α σιμυλατιον ορ αςτυαλ ιμπλεμεντατιον οφ Τρυστ Ις Ρισκ, ςομβινεδ ωιτη αναλψσις οφ τηε ρεσυλτινγ δψναμιςς ςαν ψιελδ ιντερεστινγ εξπεριμενταλ ρεσυλτς. Συβσεχυεντλψ, ουρ τρυστ νετωορχ ςαν βε υσεδ ιν οτηερ αππλιςατιονς, συςη ας δεςεντραλιζεδ σοςιαλ νετωορχς [35].

Αππενδιξ

1 Προοφς, Λεμμας ανδ Τηεορεμς

Λεμμα 3 (Loss Εχυιαλέντ το Damage).

δνσιδερ α Τρανσιτιε Γαμε. Λετ $j \in \mathbb{N}$ ανδ v = Player(j) συςη τηατ v ις φολλοωιν v τηε ςονσερατιε στρατεγψ. Ιτ ηολδς τηατ

$$\min(in_{v,j}, Loss_{v,j}) = \min(in_{v,j}, Damage_{v,j})$$
.

 $A\pi\delta\delta\epsilon\iota\xi\eta$.

ασε 1: Λετ $v \in Happy_{j-1}$. Τηεν

- 1. $v \in Happy_i$ βεςαυσε $Turn_i = \emptyset$,
- 2. $Loss_{v,j} = 0$ because otherwise $v \notin Happy_j$,
- 3. $Damage_{v,j}=0$, ορ ελσε ανψ ρεδυςτιον ιν διρεςτ τρυστ το v ωουλδ ινςρεασε εχυαλλψ $Loss_{v,j}$ (λινε 12), ωηιςη ςαννοτ βε δεςρεασεδ αγαιν βυτ δυρινγ αν Ανγρψ πλαψερ΄ς τυρν (λινε 13).
- 4. $in_{v,j} \geq 0$

Τηυς

$$\min(in_{v,j}, Loss_{v,j}) = \min(in_{v,j}, Damage_{v,j}) = 0.$$

ασε 2: Λετ $v \in Sad_{j-1}$. Τηεν

- 1. $v \in Sad_i$ βεςαυσε $Turn_i = \emptyset$,
- 2. $in_{v,j} = 0$ (line 20),
- 3. $Damage_{v,j} \geq 0 \land Loss_{v,j} \geq 0$.

Τηυς

$$\min(in_{v,j}, Loss_{v,j}) = \min(in_{v,j}, Damage_{v,j}) = 0$$
.

If $v\in Angry_{j-1}$ then the same argument as in sases 1 and 2 hold when $v\in Happy_j$ and $v\in Sad_j$ respectively if we ignore the argument (1). Thus the theorem holds in explicit. \square

Προοφ οφ Τηεορεμ 1: Τρυστ δνεργενςε

Φιρστ οφ αλλ, αφτερ τυρν j_0 πλαψερ E ωιλλ αλωαψς πασς ηερ τυρν βεςαυσε σηε ηας αλρεαδψ νυλλιφιεδ ηερ ινςομινή ανδ ουτήοινη διρέςτ τρυστς ιν $Turn_{j_0}$, τηε ειλ στρατεή δοες νοτ ζονταιν ανψ ςασε ωηέρε διρέςτ τρυστ ις ινςρέασεδ ορ ωηέρε τηε ειλ πλαψέρ σταρτς διρέςτλψ τρυστίνη ανότηερ πλαψέρ ανδ τηε ότηερ πλαψέρς δο νότ φολλοώ α στρατεήψ ιν ωηίςη τηέψ ςαν ζηρόσε το Add () διρέςτ τρυστ το E. Τηε σαμέ ηολδς φορ πλαψέρ A βεςαυσε σηε φολλοώς τηε ίδλε στρατεήψ. Aς φαρ ας τηε ρέστ οψ τηε πλαψέρς

are sonserned, sonsider the Transitie Pame. As we san see from lines 2 and 12 - 13, it is

$$\forall j, \sum_{v \in \mathcal{V}_i} Loss_v = in_{E,j_0-1}$$
.

Ιν οτηέρ ωορδς, της τοταλ λοσς ις ςονσταντ ανδ έχυαλ το της τοταλ αλυε στολέν βψ E. Αλσο, ας ωε ςαν σες ιν λίνες 1 ανδ 20, ωηιςη αρέ της ονλψ λίνες ωηέρε της Sad σετ ις μοδιφιέδ, ονές α πλαψέρ έντερς της Sad σετ, ιτ ις ιμποσσιβλέ το έξιτ φρομ τηις σετ. Αλσο, ως ςαν σες τηατ πλαψέρς ιν $Sad \cup Happy$ αλωάψς πασς τηείρ τυρν. Ω ε ωίλλ νοώ σηοώ τηατ εεντυαλλψ της Angry σετ ωίλλ βε εμπτψ, ορ εχυιαλεντλψ τηατ εεντυαλλψ έερψ πλαψέρ ωίλλ πασς τηείρ τυρν. Συπποσέ τηατ ιτ ις ποσσιβλέ το ηας αν ινφινίτε αμούντ οφ τυρνς ιν ωηίςη πλαψέρς δο νότ ςηροσέ το πασς. Ω ε χνοώ τηατ της νυμβέρ οφ νόδες ις φινίτε, τηυς τηις ις ποσσιβλέ ονλψ ιφ

$$\exists j': \forall j \geq j', |Angry_j \cup Happy_j| = c > 0 \land Angry_j \neq \emptyset$$
.

Τηις στατεμεντ ις αλιδ βεςαυσε τηε τοταλ νυμβερ οφ ανγρψ ανδ ηαππψ πλαψερς ςαννοτ ινςρεασε βεςαυσε νο πλαψερ λεαες τηε Sad σετ ανδ ιφ ιτ ωερε το βε δεςρεασεδ, ιτ ωουλδ εεντυαλλψ ρεαςη 0. Σινςε $Angry_j \neq \emptyset$, α πλαψερ v τηατ ωιλλ νοτ πασς ηερ τυρν ωιλλ εεντυαλλψ βε ςηοσεν το πλαψ. Αςςορδινγ το τηε Τρανσιτιε Γαμε, v ωιλλ ειτηερ δεπλετε ηερ ινςομινγ διρεςτ τρυστ ανδ εντερ τηε Sad σετ (λινε 20), ωηιςη ις ςοντραδιςτινγ $|Angry_j \cup Happy_j| = c$, ορ ωιλλ στεαλ ενουγη αλυε το εντερ τηε Happy σετ, τηατ ις v ωιλλ αςηιεε $Loss_{v,j} = 0$. Συπποσε τηατ σηε ηας στολεν m πλαψερς. Τηεψ, ιν τηειρ τυρν, ωιλλ στεαλ τοταλ αλυε ατ λεαστ εχυαλ το τηε αλυε στολεν βψ v (σινςε τηεψ ςαννοτ γο σαδ, ας εξπλαινεδ αβοε). Ηοωεερ, τηις μεανς τηατ, σινςε τηε τοταλ αλυε βεινγ στολεν ωιλλ νεερ βε ρεδυςεδ ανδ τηε τυρνς τηις ωιλλ ηαππεν αρε ινφινιτε, τηε πλαψερς μυστ στεαλ αν ινφινιτε αμουντ οφ αλυε, ωηιςη ις ιμποσσιβλε βεςαυσε τηε διρεςτ τρυστς αρε φινιτε ιν νυμβερ ανδ ιν αλυε. Μορε πρεςισελψ, λετ j_1 βε α τυρν ιν ωηιςη α ςονσερατιε πλαψερ ις ςηοσεν ανδ

$$\forall j \in \mathbb{N}, DTr_j = \sum_{w,w' \in \mathcal{V}} DTr_{w \to w',j}$$
.

Αλσο, ωιτηουτ λοσς οφ γενεραλιτψ, συπποσε τηατ

$$\forall j \geq j_1, out_{A,j} = out_{A,j_1}$$
.

Ιν $Turn_{j_1}$, v στεαλς

$$St = \sum_{i=1}^{m} y_i .$$

 Ω ε ωιλλ σηοω υσινη ινδυςτιον τηατ

$$\forall n \in \mathbb{N}, \exists j_n \in \mathbb{N} : DTr_{j_n} \leq DTr_{j_1-1} - nSt$$
.

Βασε ςασε: Ιτ ηολδς τηατ

$$DTr_{i_1} = DTr_{i_1-1} - St$$
.

Εεντυαλλψ τηερε ις α τυρν j_2 ωηεν εερψ πλαψερ ιν $N^-(v)_{j-1}$ ωιλλ ησε πλαψεδ. Τηεν ιτ ηολδς τηατ

$$DTr_{i_2} \leq DTr_{i_1} - St = DTr_{i_1-1} - 2St$$
,

σίνςε αλλ πλαψερς ιν $N^-(v)_{j-1}$ φολλοω της ςονσερατίε στρατεγψ, εξςεπτ φορ A, ωηο ωίλλ νοτ ηαε βεεν στολεν ανψτηίνη δυε το της συπποσίτιον.

Ινδυςτιον ηψποτηεσις: Συπποσε τηατ

$$\exists k > 1 : j_k > j_{k-1} > j_1 \Rightarrow DTr_{j_k} \leq DTr_{j_{k-1}} - St$$
.

Ινδυςτιον στεπ: Τηέρε εξιστς α συβσετ οφ τηε Angry πλαψέρς, S, τηατ ηαε βεέν στολέν ατ λέαστ αλύε St ιν τοταλ βετώεεν τηε τυρνς j_{k-1} ανδ j_k , τηυς τηέρε εξιστς α τυρν j_{k+1} συςη τηατ αλλ πλαψέρς ιν S ωιλλ ηαε πλαψέδ ανδ τηυς

$$DTr_{i_{k+1}} \leq DTr_{i_k} - St$$
.

Ωε ηαε προεν βψ ινδυςτιον τηατ

$$\forall n \in \mathbb{N}, \exists j_n \in \mathbb{N} : DTr_{j_n} \leq DTr_{j_1-1} - nSt$$
.

Ηοωεερ

$$DTr_{i_1-1} \geq 0 \land St > 0$$
,

τηυς

$$\exists n' \in \mathbb{N} : n'St > DTr_{j_1-1} \Rightarrow DTr_{j_{n'}} < 0$$
.

Ωε η αε α ςοντραδιςτιον βεςαυσε

$$\forall w, w' \in \mathcal{V}, \forall j \in \mathbb{N}, DTr_{w \to w', j} > 0$$
,

τηυς εεντυαλλ ψ $Angry = \emptyset$ ανδ εερ ψ βοδ ψ πασσες.

Προοφ οφ Λεμμα 1: ΜαξΦλοως Αρε Τρανσιτιε Γαμες

We suppose that the turn of $\mathcal G$ is 0. In other words, $\mathcal G=\mathcal G_0$. Let $X=\{x_{vw}\}_{\mathcal V\times\mathcal V}$ be the glows returned by $MaxFlow\,(A,B)$. For any graph G there exists a MaxFlow that is a DAG. We satisfy proephise

υσινή της Φλοω Δ εζομποσιτιον τηξορεμ [36], ωηιζη στατές τηατ έαζη φλοώ ςαν βε σεεν ας α φινιτε σετ οφ πατης φρομ A το B ανδ ςψςλες, εαςη ηαινγ α ςερταιν φλοω. Ωε εξεςυτε MaxFlow(A, B) ανδ ωε αππλψ της αφορεμεντιονεδ τηεορεμ. Τηε ζψζλες δο νοτ ινφλυενζε τηε maxFlow(A,B), τηυς ωε ςαν ρεμοε τηέσε φλοώς. Της ρεσυλτινή φλοώ iς α MaxFlow(A,B) ωιτήουτ ςψςλες, τηυς ιτ ις α $\Delta A\Gamma$. Τοπολογιςαλλ ψ σορτιν γ τηις $\Delta A\Gamma$, ωε οβταιν α τοταλ ορδερ οφ ιτς νοδες συςη τηατ \forall νοδες $v, w \in \mathcal{V}: v < w \Rightarrow x_{wv} = 0$ [5]. Πυτ διφφερεντλψ, τηερε ις νο φλοω φρομ λαργερ το σμαλλερ νοδες. Bις μαξιμυμ σινςε ιτ ις τηε σινχ ανδ τηυς ηας νο ουτγοινγ φλοω το ανψ νοδε ανδ A ις μινιμυμ σινςε ιτ ις τηε σουρςε ανδ τηυς ηας νο ινςομινη φλοω φρομ ανψ νοδε. Της δεσιρεδ εξεςυτιον οφ Τρανσιτις Γαμε ωιλλ ςη00σε πλαψερς φολλοωινη της τοταλ ορδερ ινερσελ ψ , σταρτινη φρομ πλαψερ B. Ωε οβσερε τηατ $\forall v \in \mathcal{V} \setminus \{A, B\}, \sum_{w \in \mathcal{V}} x_{wv} = \sum_{w \in \mathcal{V}} x_{vw} \leq \max Flow(A, B) \leq in_{B,0}.$ Πλαψερ B ωιλλ φολλοω α μοδιφιεδ ειλ στρατεγψ ωηερε σηε στεαλς αλυε εχυαλ το ηερ τοταλ ινζομινγ φλοω, νοτ ηερ τοταλ ινζομινγ διρεςτ τρυστ. Λετ j_2 βε της φιρστ τυρν ωηςν A ις ςησσεν το πλαψ. Ω ε ωιλλ σησω υσινγ στρονγ ινδυςτιον τη ατ τη ερε εξιστς α σετ οφ αλιδ αςτιονς φορ εαςη πλαψερ αςςορδινη το τηειρ ρεσπεςτιε στρατεγ ψ συςη τηατ ατ τηε ενδ ο ϕ εαςη τυρν jτηε ςορρεσπονδινη πλαψερ v = Player(j) ωιλλ ηαε στολεν αλυε x_{wv} φρομ eash in-neighbour w.

Base sase: In turn 1,B steads adue exual to $\sum\limits_{w\in\mathcal{V}}x_{wB},$ foldowing the modified eil strategy.

$$Turn_{1} = \bigcup_{v \in N^{-}(B)_{0}} \left\{ Steal\left(x_{vB}, v\right) \right\}$$

Ινδυςτιον ηψποτηεσις: Λετ $k\in [j_2-2]$. Ωε συπποσε τηατ $\forall i\in [k]$, τηερε εξιστς α αλιδ σετ οφ αςτιονς, $Turn_i$, περφορμεδ βψ v=Player(i) συςη τηατ v στεαλς φρομ εαςη πλαψερ w αλυε εχυαλ το x_{wv} .

$$\forall i \in [k], Turn_i = \bigcup_{w \in N^-(v)_{i-1}} \{Steal\left(x_{wv}, w\right)\}\$$

Ινδυςτιον στεπ: Λετ $j=k+1, v=Player\,(j).$ Σίνςε αλλ της πλαψερς τηατ αρε γρεατερ τηαν v ιν της τοταλ ορδερ ηας αλρεαδψ πλαψεδ ανδ αλλ οφ τηςμ ηας στολεν αλυε εχυαλ το τηςιρ ινςομινή φλοω, ως δεδυςς τηατ v ηας βεεν στολεν αλυε εχυαλ το $\sum_{w\in N^+(v)_{j-1}} x_{vw}.$ Σίνςε ιτ ις της φιρστ τιμε v

πλαψς, $\forall w \in N^-(v)_{j-1}$, $DTr_{w \to v,j-1} = DTr_{w \to v,0} \ge x_{wv}$, thuς v is able to shoose the jollowing turn:

$$Turn_{j} = \bigcup_{w \in N^{-}(v)_{j-1}} \{Steal\left(x_{wv}, w\right)\}\$$

Μορέοερ, τηις τυρν σατισφιές της ζονσέρατιε στρατεγψ σίνζε

$$\sum_{w \in N^{-}(v)_{j-1}} x_{wv} = \sum_{w \in N^{+}(v)_{j-1}} x_{vw} .$$

Thus $Turn_i$ is a alid turn for the sonseratie player v.

 Ω ε ησε προέν τηστ ιν της ενδ οφ τυρν j_2-1 , πλαψέρ B ανδ αλλ της ςονσερατιε πλαψέρς ωιλλ ησε στολέν αλύε εξαςτλψ έχυαλ το τηείρ τοταλ ινζομινή φλοώ, τηυς A ωιλλ ησε βεέν στολέν αλύε έχυαλ το ηέρ ουτγοινή φλοώ, ωηιςη ις $maxFlow\left(A,B\right)$. Σίνςε τηέρε ρεμαίνς νο Ανήρψ πλαψέρ, j_2 ις α ζονέργενςε τυρν, τηυς $Loss_{A,j_2}=Loss_A$. Ωε ςαν αλσό σεε τηστ ιφ B ησδ ςηόσεν της οριγινάλ είλ στρατεήψ, της δεσςρίβεδ αςτίους ωουλδ στίλλ βε αλίδ ονλψ βψ συππλεμέντινή τητώ ωίτη αδδιτίοναλ $Steal\left(\right)$ αςτίους, τηυς $Loss_A$ ωουλδ φυρτηέρ ινζρέασε. Τηις προές της λέμμα.

Προοφ οφ Λεμμα 2: Τρανσιτιε Γαμες Αρε Φλοως

Λετ Sad, Happy, Angry βε ας δεφινεδ ιν της Τρανσιτις Γαμε. Λετ \mathcal{G}' βε α διρεςτεδ ωειγητεδ γραπη βασεδ ον \mathcal{G} ωιτη αν αυξιλιαρψ σουρςε. Λετ αλσο j_1 βε α τυρν ωηεν της Τρανσιτις Γαμε ηας ςονεργεδ. Μορε πρεςισελψ, \mathcal{G}' ις δεφινεδ ας φολλοως:

$$\mathcal{V}' = \mathcal{V} \cup \{T\}$$

$$\mathcal{E}' = \mathcal{E} \cup \{(T, A)\} \cup \{(T, v) : v \in Sad_{j_1}\}$$

$$\forall (v, w) \in \mathcal{E}, c'_{vw} = DTr_{v \to w, 0} - DTr_{v \to w, j_1}$$

$$\forall v \in Sad_{j_1}, c'_{Tv} = c'_{TA} = \infty$$

 Σ χ. 7: Γράφος \mathcal{G}' όπως προχύπτει από τον \mathcal{G} με βοηθητιχή πηγή T.

In the vigure aboe, S is the set of sad players. We observe that $\forall v \in V$,

$$\sum_{w \in N^{-}(v)' \setminus \{T\}} c'_{wv} =$$

$$= \sum_{w \in N^{-}(v)' \setminus \{T\}} (DTr_{w \to v,0} - DTr_{w \to v,j_{1}}) =$$

$$= \sum_{w \in N^{-}(v)' \setminus \{T\}} DTr_{w \to v,0} - \sum_{w \in N^{-}(v)' \setminus \{T\}} DTr_{w \to v,j_{-1}} =$$

$$= in_{v,0} - in_{v,j_{1}}$$
(17)

ανδ

$$\sum_{w \in N^{+}(v)' \setminus \{T\}} c'_{vw} =$$

$$= \sum_{w \in N^{+}(v)' \setminus \{T\}} (DTr_{v \to w,0} - DTr_{v \to w,j_{1}}) =$$

$$= \sum_{w \in N^{+}(v)' \setminus \{T\}} DTr_{v \to w,0} - \sum_{w \in N^{+}(v)' \setminus \{T\}} DTr_{v \to w,j-1} =$$

$$= out_{v,0} - out_{v,j_{1}}.$$
(18)

 Ω e san suppose that

$$\forall j \in \mathbb{N}, in_{A,j} = 0 , \qquad (19)$$

σινςε ιφ ωε φινδ α αλιδ φλοω υνδερ τηις ασσυμπτιον, τηε φλοω ωιλλ στιλλ βε αλιδ φορ τηε οριγιναλ γραπη.

Νεξτ ωε τρψ το ςαλςυλατε $MaxFlow\left(T,B\right)=X'$ ον γραπη \mathcal{G}' . Ωε οβσερε τηατ α φλοω ιν ωηιςη ιτ ηολδς τηατ $\forall v,w\in\mathcal{V},x'_{vw}=c'_{vw}$ ςαν βε αλιδ φορ τηε φολλοωινη ρεασονς:

- $\forall v,w \in \mathcal{V}, x'_{vw} \leq c'_{vw}$ (άπαςιτψ φλοω ρεχυιρεμεντ (11) $\forall e \in \mathcal{E}$)
- Σίνζε $\forall v\in Sad_{j_1}\cup\{A\}, c_{Tv}'=\infty,$ ρεχυίρεμεντ (11) πολδς φορ ανψ φλοω $x_{Tv}'\geq 0.$
- Λετ $v \in \mathcal{V}' \setminus (Sad_{j_1} \cup \{T, A, B\})$. Αςςορδινή το τηε ςονσερατίε στρατεγψ ανδ σίνζε $v \notin Sad_{j_1}$, ιτ ηολδς τηατ

$$out_{v,0} - out_{v,j_1} = in_{v,0} - in_{v,j_1}$$
.

δμβινινή τηις οβσερατίον ωίτη (17) ανδ (18), ωε ή αε τη ατ

$$\sum_{w \in \mathcal{V}'} c'_{vw} = \sum_{w \in \mathcal{V}'} c'_{wv} .$$

(Φλοω δυσερατιου ρεχυιρεμευτ (12) $\forall v \in \mathcal{V}' \setminus (Sad_{j_1} \cup \{T, A, B\}))$

- Λετ $v \in Sad_{j_1}$. Σίνςε v iς σαδ, ωε κνοώ τηστ

$$out_{v,0} - out_{v,j_1} > in_{v,0} - in_{v,j_1}$$
.

Since $c'_{Tv}=\infty$, we can set

$$x'_{Tv} = (out_{v,0} - out_{v,i_1}) - (in_{v,0} - in_{v,i_1})$$
.

Ιν τηις ωαψ, ωε ηαε

$$\sum_{w \in \mathcal{V}'} x'_{vw} = out_{v,0} - out_{v,j_1}$$
 ανδ

$$\sum_{w \in \mathcal{V}'} x'_{wv} = \sum_{w \in \mathcal{V}' \setminus \{T\}} c'_{wv} + x'_{Tv} = in_{v,0} - in_{v,j_1} +$$

$$+(out_{v,0}-out_{v,j_1})-(in_{v,0}-in_{v,j_1})=out_{v,0}-out_{v,j_1}$$
.

τηυς

$$\sum_{w \in \mathcal{V}'} x'_{vw} = \sum_{w \in \mathcal{V}'} x'_{wv} .$$

(Ρεχυιρεμεντ $12 \ \forall v \in Sad_{j_1}$)

- Σίνςε $c_{TA}'=\infty$, ωε ςαν σετ

$$x'_{TA} = \sum_{v \in \mathcal{V}'} x'_{Av} ,$$

τηυς φρομ (19) ωε ηαε

$$\sum_{v \in \mathcal{V}'} x'_{vA} = \sum_{v \in \mathcal{V}'} x'_{Av} .$$

(Pεχυιρεμεντ 12 φορ A)

 Ω ε σαω τηατ φορ αλλ νοδες, τηε νεςεσσαρψ προπερτιες φορ α φλοω το βε αλιδ ηολδ ανδ τηυς X' ις α αλιδ φλοω φορ $\mathcal G.$ Μορεοερ, τηις φλοω ις εχυαλ το $\max Flow\left(T,B\right)$ βεςαυσε αλλ ινςομινη φλοως το E αρε σατυρατεδ. Αλσο ωε οβσερε τηατ

$$\sum_{v \in \mathcal{V}'} x'_{Av} = \sum_{v \in \mathcal{V}'} c'_{Av} = out_{A,0} - out_{A,j_1} = Loss_A . \tag{20}$$

We define another graph, \mathcal{G}'' , based on \mathcal{G}' .

$$\mathcal{V}'' = \mathcal{V}'$$

$$E(\mathcal{G}'') = E(\mathcal{G}') \setminus \{(T, v) : v \in Sad_j\}$$

$$\forall e \in E(\mathcal{G}''), c_e'' = c_e'$$

If we execute MaxFlow(T,B) on the graph \mathcal{G}'' , we will obtain a glow X'' in which

$$\sum_{v \in \mathcal{V}''} x''_{Tv} = x''_{TA} = \sum_{v \in \mathcal{V}''} x''_{Av} .$$

Τηε ουτγοινή φλοώ φρομ A ιν X'' ωιλλ ρεμαίν της σαμε ας ιν X' φορ τωο ρεασούς: Φιρστλψ, υσίνη της Φλοώ Δεςομποσίτιον τητορέμ [36] ανδ δελετίνη της πατής τηατ ζονταίν εδήτες $(T,v):v\neq A$, ωε οβταίν α φλοώ ζουφιηυρατίον ωήτρε της τοτάλ ουτγοίνη φλοώ φρομ A ρεμαίνς ιναριαύτ, 1 τηυς

$$\sum_{v \in \mathcal{V}''} x''_{Av} \ge \sum_{v \in \mathcal{V}'} x'_{Av} .$$

Σεςονδλψ, ωε ηαε

$$\left. \sum_{v \in \mathcal{V}''} c''_{Av} = \sum_{v \in \mathcal{V}'} c'_{Av} = \sum_{v \in \mathcal{V}'} x'_{Av} \\
\sum_{v \in \mathcal{V}''} c''_{Av} \ge \sum_{v \in \mathcal{V}''} x''_{Av} \right\} \Rightarrow \sum_{v \in \mathcal{V}''} x''_{Av} \le \sum_{v \in \mathcal{V}'} x'_{Av} .$$

Τηυς ωε ςονςλυδε τηατ

$$\sum_{v \in \mathcal{V}''} x_{Av}'' = \sum_{v \in \mathcal{V}'} x_{Av}' . \tag{21}$$

Λετ $X = X'' \setminus \{(T, A)\}$. Οβσερε τηατ

$$\sum_{v \in \mathcal{V}''} x''_{Av} = \sum_{v \in \mathcal{V}} x_{Av} .$$

This glow is alid on graph $\mathcal G$ besause

$$\forall e \in \mathcal{E}, c_e \geq c_e''$$
.

Τηυς τηέρε εξιστς α αλιδ φλοω φορ έαςη εξέςυτιον οφ της Τρανσιτιέ Γαμέ συςη τηατ

$$\sum_{v \in \mathcal{V}} x_{Av} = \sum_{v \in \mathcal{V}''} x_{Av}'' \stackrel{(21)}{=} \sum_{v \in \mathcal{V}'} x_{Av}' \stackrel{(20)}{=} Loss_{A,j_1} ,$$

which is the ylow X.

 $^{^{-1}}$ Ω ε τηανχ Κψριαχός Αξιότις φορ ηις ινσίγητς ον τηε Φλοώ Δεςομποσίτιον τηέορεμ.

Τηεορεμ 6 (δυσερατιε Ωορλό Τηεορεμ).

Ιφ εερψβοδψ φολλοως τηε ςονσερατιε στρατεγψ, νοβοδψ στεαλς ανψ αμουντ φρομ ανψβοδψ.

Απόδειξη. Λετ \mathcal{H} βε τηε γαμε ηιστορψ ωηερε αλλ πλαψερς αρε ςονσερατιε ανδ συπποσε τηερε αρε σομε Steal () αςτιονς ταχινη πλαςε. Τηεν λετ \mathcal{H}' βε τηε συβσεχυενςε οφ τυρνς εαςη ςονταινινη ατ λεαστ ονε Steal () αςτιον. Τηις συβσεχυενςε ις ειδεντλψ νονεμπτψ, τηυς ιτ μυστ ηαε α φιρστ ελεμεντ. Τηε πλαψερ ςορρεσπονδινη το τηατ τυρν, A, ηας ςηοσεν α Steal () αςτιον ανδ νο πρειους πλαψερ ηας ςηοσεν συςη αν αςτιον. Ηοωεερ, πλαψερ A φολλοως τηε ςονσερατιε στρατεγψ, ωηιςη ις α ςοντραδιςτιον.

Προοφ οφ Τηεορεμ 5: Σψβιλ Ρεσιλιένςε

Let \mathcal{G}_1 be a game graph defined as follows:

$$\mathcal{V}_1 = \mathcal{V} \cup \{T_1\} ,$$

$$\mathcal{E}_1 = \mathcal{E} \cup \{(v, T_1) : v \in \mathcal{B} \cup \mathcal{C}\} ,$$

$$\forall v, w \in \mathcal{V}_1 \setminus \{T_1\}, DTr^1_{v \to w} = DTr_{v \to w} ,$$

$$\forall v \in \mathcal{B} \cup \mathcal{C}, DTr^1_{v \to T_1} = \infty ,$$

where $DTr_{v\to w}$ is the direct trust from v to w in $\mathcal G$ and $DTr_{v\to w}^1$ is the direct trust from v to w in $\mathcal G_1$.

Let also \mathcal{G}_2 be the induced graph that results from \mathcal{G}_1 if we refide the Sybil set, \mathcal{C} . We rename T_1 to T_2 and define $\mathcal{L}=\mathcal{V}\setminus(\mathcal{B}\cup\mathcal{C})$ as the set of legitimate players to facilitate somprehension.

 Σ χ. 8: Οι γράφοι \mathcal{G}_1 και \mathcal{G}_2

Αςςορδινη το τηεορεμ (4),

$$Tr_{A \to \mathcal{B} \cup \mathcal{C}} = maxFlow_1(A, T_1) \wedge Tr_{A \to \mathcal{B}} = maxFlow_2(A, T_2)$$
 . (22)

Ωε ωιλλ σηοω τηστ τηε MaxFlow οφ εαςη οφ τηε τωο γραπης ςαν βε υσεδ το ςονστρυςτ α αλιδ φλοω οφ εχυαλ αλυε φορ τηε οτηερ γραπη. Τηε φλοω $X_1 = MaxFlow\left(A,T_1\right)$ ςαν βε υσεδ το ςονστρυςτ α αλιδ φλοω οφ εχυαλ αλυε φορ τηε σεςονδ γραπη ιφ ωε σετ

$$\forall v \in \mathcal{V}_2 \setminus \mathcal{B}, \forall w \in \mathcal{V}_2, x_{vw,2} = x_{vw,1} ,$$

$$\forall v \in \mathcal{B}, x_{vT_2,2} = \sum_{w \in N_1^+(v)} x_{vw,1} ,$$

$$\forall v, w \in \mathcal{B}, x_{vw,2} = 0 .$$

Τηερεφορε

$$maxFlow_1(A, T_1) \leq maxFlow_2(A, T_2)$$

Λιχεωισε, της φλοω $X_2 = MaxFlow(A, T_2)$ ις α αλιδ φλοω φορ \mathcal{G}_1 βεςαυσε \mathcal{G}_2 ις αν ινδυςεδ συβγραπη οφ \mathcal{G}_1 . Τηερεφορε

$$maxFlow_1(A, T_1) \ge maxFlow_2(A, T_2)$$

Ωε ςονςλυδε τηατ

$$maxFlow(A, T_1) = maxFlow(A, T_2)$$
, (23)

τηυς φρομ
$$(22)$$
 ανδ (23) της τησορεμ ηολδς.

2 Αλγοριτημς

Τηις αλγοριτημ ςαλλς της νεςεσσαρψ φυνςτιονς το πρεπαρε της νεω γραπη.

Execute Turn

Input : old graph \mathcal{G}_{j-1} , player $A \in \mathcal{V}_{j-1}$, old capital $Cap_{A,j-1}$, TentativeTurn

Output : new graph \mathcal{G}_j , new capital $Cap_{A,j}$, new history \mathcal{H}_j

executeTurn(\mathcal{G}_{j-1} , A, $Cap_{A,j-1}$, TentativeTurn) :

 $(Turn_j, NewCap) = validateTurn(\mathcal{G}_{j-1}, A, Cap_{A,j-1}, TentativeTurn)$

return(commitTurn(\mathcal{G}_{i-1} , A, $Turn_i$, NewCap))

Τηε φολλοωινη αλγοριτημ αλιδατες τηατ τηε τεντατιε τυρν προδυςεδ βψ τηε στρατεγψ ρεσπεςτς τηε ρυλες ιμποσεδ ον τυρνς. Ιφ τηε τυρν ις ιναλιδ, αν εμπτψ τυρν ις ρετυρνεδ.

```
Validate Turn
    Input : old \mathcal{G}_{j-1}, player A \in \mathcal{V}_{j-1}, old Cap_{A,j-1}, Turn
    Output : Turn_i, new Cap_{A,i}
validateTurn(\mathcal{G}_{j-1}, A, Cap_{A,j-1}, Turn) :
      Y_{st} = Y_{add} = 0
      Stolen = Added = \emptyset
      for (action \in Turn)
         action match do
           case Steal(y, w) do
              if (y > DTr_{w \to A, j-1} \text{ or } y < 0 \text{ or } w \in Stolen)
                return(\emptyset, Cap_{A,i-1})
              else Y_{st} += y; Stolen = Stolen \cup \{w\}
           case Add(\mathbf{y},w) do
10
              if (y < -DTr_{A \to w, j-1} or w \in Added)
                return(\emptyset, Cap_{A,j-1})
              else Y_{add} += y; Added = Added \cup \{w\}
13
      if (Y_{add} - Y_{st} > Cap_{A,j-1}) return(\emptyset, Cap_{A,j-1})
14
      else return(Turn, Cap_{A,j-1} + Y_{st} - Y_{add})
```

Φιναλλψ, τηις αλγοριτημ αππλιες της τυρν το της ολό γραπη ανό ρετυρνς της νεω γραπη, αλονγ ωιτη της υπόατεδ ςαπιταλ ανό ηιστορψ.

```
Commit Turn

Input: old \mathcal{G}_{j-1}, player A \in \mathcal{V}_{j-1}, NewCap, Turn_j

Output: new \mathcal{G}_j, new Cap_{A,j}, new \mathcal{H}_j

commitTurn(\mathcal{G}_{j-1}, A, NewCap, Turn_j):

for ((v, w) \in \mathcal{E}_j) DTr_{v \to w, j} = DTr_{v \to w, j-1}

for (action \in Turn_j)

action match do

case Steal(y, w) do DTr_{w \to A, j} = DTr_{w \to A, j-1} - y

case Add(y, w) do DTr_{A \to w, j} = DTr_{A \to w, j-1} + y

Cap_{A,j} = \text{NewCap}; \mathcal{H}_j = (A, Turn_j)

return(\mathcal{G}_j, Cap_{A,j}, \mathcal{H}_j)
```

Ιτ ις στραιγητφορωαρδ το εριφψ τηε ςομπατιβιλιτψ οφ τηε πρειους αλγοριτημς ωιτη τηε ςορρεσπονδινγ δεφινιτιονς.

Αναφορές

1. Sanchez Ω .: Lines of "redit. https://gist.github.com/drwasho/ 2540b91e169y55988618^part-3-web-of-sredit (2016)

- 2. Νακαμοτο Σ.: Βιτςοιν: Α Πεερ-το-Πεερ Ελεςτρονις ἃση Σψστεμ (2008)
- 3. Αντονοπουλος Α. Μ.: Μαστερινή Βιτζοιν: Υνλοςκινή Διγιταλ "ρψπτοςυρρενςιες. Ο- Ρειλλψ Μεδια, Ινς. (2014)
- 4. Καρλαν Δ., Μοβιυς Μ., Ροσενβλατ Τ., Σζειδλ Α.: Τρυστ ανδ σοςιαλ ςολλατεραλ. Της Χυαρτερλψ Θουρναλ οφ Εςονομιςς, ππ. 1307-1361 (2009)
- 5. δρμεν Τ. Η., Λεισερσον $^{\circ}$. Ε., Ριεστ Ρ. Λ., Στειν $^{\circ}$.: Ιντροδυςτιον το Αλγοριτημς (3ρδ εδ.). ΜΙΤ Πρεσς ανδ ΜςΓραω-Ηιλλ (2009)
- 6. Ορλιν Θ. Β.: Μαξ Φλοως ιν O(νμ) Τιμε, ορ Βεττερ. ΣΤΟ '13 Προςεεδινγς οφ τηε φορτψ-φιφτη αννυαλ Α Μ σψμποσιυμ ον Τηεορψ οφ ςομπυτινγ, ππ.765-774, Α Μ, Νεω Ψορχ, δοι:10.1145/2488608.2488705 (2013)
- 7. Δουςευρ Θ. Ρ.: Τηε Σψβιλ Αττας
κ. Ιντερνατιοναλ ωορκσηοπ ον Πεερ-Το-Πεερ Σψστεμς (2002)
- 8. Ζιμμερμανν Π.: ΠΓΠ Σουρςε δδε ανδ Ιντερναλς. Της ΜΙΤ Πρεσς (1995)
- 9. ανδβερς Ο., Ωιλεψ Β., Ηους Τ. Ω.: Φρεενετ: Α Διστριβυτεδ Ανονψμους Ινφορματιον Στοραγε ανδ Ρετριεαλ Σψστεμ. Η. Φεδερρατη, Δεσιγνινς Πριαςψ Ενηανςινς Τεςηνολογιες ππ. 46-66, Βερχελεψ, ΥΣΑ: Σπρινςερ-ἔρλας Βερλιν Ηειδελβερς (2001)
- Αδαμς "., Λλοψδ Σ.: Υνδερστανδινγ ΠΚΙ: ςονςεπτς, στανδαρδς, ανδ δεπλοψμεντ ςονσιδερατιονς. Αδδισον-Ωεσλεψ Προφεσσιοναλ (2003)
- 11. Ποστ Α., Σηαη "., Μισλοε Α.: Βαζααρ: Στρενγτηενινη Υσερ Ρεπυτατιονς ιν Ονλινε Μαρκετπλαςες. Προςεεδινης οφ ΝΣΔΙ'11: 8τη ΥΣΕΝΙΞ Σψμποσιυμ ον Νετωορκεδ Σψστεμς Δεσιγν ανδ Ιμπλεμεντατιον, π. 183 (2011)
- 12. Λαμπορτ Λ., Σησσταχ Ρ., Πεασε Μ.: Τηε Βψζαντινε Γενεραλς Προβλεμ. Α Μ Τρανσαςτιονς ον Προγραμμινη Λανηυαγες ανδ Σψστεμς (ΤΟΠΛΑΣ) 4.3, ππ. 382-401 (1982)
- 13. Ηυψνή Τ. Δ., Θεννινγς Ν. Ρ., Σηαδβολτ Ν. Ρ.: Αν Ιντεγρατεδ Τρυστ ανδ Ρεπυτατιον Μοδελ φορ Οπεν Μυλτι-Αγεντ Σφστεμς. Αυτονομους Αγεντς ανδ Μυλτι-Αγεντ Σφστεμς, 13(2), ππ. 119-154 (2006)
- 14. Μιςηιαρδι Π., Μολα Ρ.: δρε: α δλλαβορατιε Ρεπυτατιον Μεςηανισμ το Ενφορςε Νοδε δοπερατιον ιν Μοβιλε Αδ-ηος Νετωορκς. Αδανςεδ δμμυνιςατιονς ανδ Μυλτιμεδια Σεςυριτψ, ππ. 107-121, Σπρινγερ ΥΣ (2002)
- 15. άννον Λ .: Οπεν Ρεπυτατιον: τηε Δεςεντραλιζεδ Ρεπυτατιον Πλατφορμ (2015) ηττπς: //οπενρεπυτατιον.νετ/οπεν-ρεπυτατιον-ηιγη-λεελ-ωηιτεπαπερ.πδφ
- 16. Γρϋνερτ Α., Ηυδερτ Σ., Κöνιγ Σ., Καφφιλλε Σ., Ω ιρτζ Γ.: Δεςεντραλιζεδ Ρεπυτατιον Μαναγεμεντ φορ δοπερατινγ Σοφτωαρε Αγεντς ιν Οπεν Μυλτι-Αγεντ Σψστεμς. ITΣΣΑ, 1(4), ππ. 363-368 (2006)
- 17. Ρεπαντίς Τ., Καλογεραχί ".: Δεςεντραλίζεδ Τρυστ Μαναγεμέντ φορ Αδ-ηος Πεερτο-Πέερ Νετωορχς. Προςεεδινής οφ της 4τη Ιντερνατίοναλ Ωορχσηοπ ον Μιδδλεωαρε φορ Περασίε ανδ Αδ-ηος δμπυτίνή, ΜΠΑ" 2006, π. 6, Α"Μ (2006)
- 18. Μυι Λ., Μοητασηεμι Μ., Ηαλβερσταδτ Α.: Α δμπυτατιοναλ Μοδελ οφ Τρυστ ανδ Ρεπυτατιον. Σψστεμ Σςιενςες, 2002. ΗΓΣΣ. Προςεεδινγς οφ τηε 35τη Αννυαλ Ηαωαιι Ιντερνατιοναλ δνφερενςε, ππ. 2431-2439 ΙΕΕΕ (2002)
- δμμερςε Β. Ε., Θόσανγ Α., Ισμαίλ Ρ.: Τηε Βετα Ρεπυτατίον Σψότεμ. Προςεεδίνης οφ τηε 15τη Βλεδ Ελεςτρονίς δμμερςε δνφερενςε (2002)
- 20. Συρψαναραψανα Γ., Ερενκραντζ Θ. Ρ., Ταψλορ Ρ. Ν.: Αν Αρςηιτεςτυραλ Αππροαςη φορ Δεςεντραλίζεδ Τρυστ Μαναγεμέντ. ΙΕΕΕ Ιντέρνετ δμπυτίνγ, 9(6), ππ. 16-23 (2005)
- 21. ἴσαν Α., Ποπ Φ., ριστεα κ.: Δεςεντραλίζεδ Τρυστ Μαναγεμεντ ιν Πεερ-το-Πεερ Σψστεμς. 10τη Ιντερνατιοναλ Σψμποσιυμ ον Παραλλελ ανδ Διστριβυτεδ δμπυτινγ, ππ. 232-239, IEEE (2011)

- 22. Συρψαναραψανα Γ., Διαλλο Μ., Ταψλορ Ρ. Ν.: Α Γενερις Φραμεωορχ φορ Μοδελινγ Δεςεντραλίζεδ Ρεπυτατιον-Βασεδ Τρυστ Μοδελς. 14τη Α΄Μ ΣιγΣοφτ Σψμποσιυμ ον Φουνδατιονς οφ Σοφτωαρε Ενγινεερινγ (2006)
- 23. άροννι Γ.: Ωαλχινή της ωεβ οφ τρυστ. Εναβλινή Τεςηνολογίες: Ινφραστρυςτυρε φορ δλλαβορατίε Εντερπρίσες, ΩΕΤ ΓΕ 2000, Προςεεδινής, ΙΕΕΕ 9τη Ιντερνατίοναλ Ωορχσήσης, ππ. 153-158 (2000)
- 24. Πεννινή Η.Π.: ΠΓΠ πατηφινδέρ πηπ.ςς.υυ.νλ
- 25. Γολλμανν Δ.: Ω ηψ τρυστ ις βαδ φορ σεςυριτψ. Ελεςτρονις νοτες ιν τηεορετιςαλ ςομπυτερ σςιενςε, 157(3), 3-9 (2006)
- 26. Σοσκα Κ., Κωον Α., ἣριστιν Ν., Δεαδας Σ.: Βεαερ: Α Δεςεντραλιζεδ Ανονψμους Μαρκετπλαςε ωιτη Σεςυρε Ρεπυτατιον (2016)
- 27. Ζινδρος Δ. Σ.: Τρυστ ιν Δεςεντραλίζεδ Ανονψμους Μαρχετπλαςες (2015)
- 28. ΔεΦιγυειρεδο Δ. Δ. Β., Βαρρ Ε. Τ.: Τρυστ Δ αις: Α Νον-Εξπλοιταβλε Ονλινε Ρεπυτατιον Σφστεμ. Ε΄, ὅλ. 5, ππ. 274-283 (2005)
- 29. Φυγγερ Ρ.: Μονεψ ας ΙΟΥς ιν Σοςιαλ Τρυστ Νετωορκς & Α Προποσαλ φορ α Δεςεντραλιζεδ θρρενςψ Νετωορκ Προτοςολ.
- Σςηωαρτζ Δ., Ψουνγς Ν., Βρίττο, Α.: Τηε Ριππλε προτοςολ ςονσενσυς αλγοριτημ. Ριππλε Λαβς Ινς Ωηίτε Παπέρ, 5 (2014) ηττπ://αρζηιε.ριππλε-προθέςτ. οργ/δεςεντραλίζεδςυρρενςψ.πδφ (2004)
- 31. Μαζιερες, Δ .: Τηε στελλαρ ςονσενσυς προτοςολ: Α φεδερατεδ μοδελ φορ ιντερνετλεελ ςονσενσυς. Στελλαρ Δ εελοπμεντ Φουνδατιον (2015)
- 32. Ναραψαναν Α., Σηματικο ".: Δε-ανονψμίζινη Σοςιαλ Νετωορκς. ΣΠ '09 Προςεεδινης οφ τηε 2009 30τη ΙΕΕΕ Σψμποσιυμ ον Σεςυριτψ ανδ Πριαςψ, ππ. 173-187, $10.1109/\Sigma\Pi.2009.22$ (2009)
- 33. Μαλαολτα Γ., Μορενο-Σανζηεζ Π., Κατε Α., Μαφφει Μ.: Σιλεντ Ω ηισπερς: Ενφορςινη Σεςυριτψ ανδ Πριαςψ ιν Δεςεντραλίζεδ "ρεδιτ Νετωορκς.
- 34. Μορενο-Σανζηεζ Π., Κατε Α., Μαφφει Μ., Πεςινα Κ.: Πριαςψ πρεσερινγ παψμεντς ιν ςρεδιτ νετωορχς. Νετωορχ ανδ Διστριβυτεδ Σεςυριτψ Σψμποσιυμ (2015)
- 35. Κονφορτψ Δ., Αδαμ Ψ., Εστραδα Δ., Μερεδιτη Λ. Γ.: Σψνερεο: Τηε Δεςεντραλιζεδ ανδ Διστριβυτεδ Σοςιαλ Νετωορχ (2015)
- 36. Αηυθα Ρ. Κ., Μαγναντι Τ. Λ., Ορλιν Θ. Β.: Νετωορκ Φλοως: Τηεορψ, Αλγοριτημς, ανδ Αππλιςατιονς. Πρεντιςε-Ηαλλ (1993) ηττπς://οςω.μιτ.εδυ. Λιςενσε: "ρεατιε δμμονς $B\Psi$ -N"- Σ A. (Φαλλ 2010)
- 37. Θώσανγ Α., Ισμαίλ Ρ., Βοψδ ".: Α Συρεψ οφ Τρυστ ανδ Ρεπυτατίον Σψστεμς φορ Ονλίνε Σερίζε Προισίον. Δεζίσιον Συππορτ Σψστεμς, 43(2), ππ. 618-644 (2007)