

금성에서 보이는 무지개의 모습

서울대학교 컴퓨터공학부 이민준

SEOUL NATIONAL UNIVERSITY

서 울 대 학 교 공 과 대 학

Introduction

연구 동기: 무지개는 구름 속 액체 상태의 물이 태양광을 반사 및 굴절시키는 현상으로 구름 속 다른 액체 방울이 존재하는 다른 행성에서는 다른 모양의 무지개가 뜰 것이다.

연구 목적: 금성에서 보일 것으로 예측되는 무지개의 모양을 파이썬 시뮬레이션을 통해 시각화하는 연구이다.

Background

I. 금성 대기 속 무지개 발생 원인

금성의 대기 중에서 상부 구름의 75%가 액체 황산인 만큼 금성에서 무지개를 발생하는 주요 원인을 황산일 것이라 한정하고 연구를 진행했다. [2]

II. 물과 황산의 굴절률

빛은 매질에서 파장에 따라 이동속도에 차이가 존재하기에 굴절률(n)은 파장 (λ) 에 대한 식으로 존재하는데 이 식을 일반화한 것이 Cauchy's equation이며 각 계수는 실험적으로 얻을 수 있다.

$$n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} + \cdots$$
 (1)

지구에서 무지개를 형성하는 물과 금성에서 무지개를 형성할 것으로 예측되는 황산에 대해 굴절률에 대한 식을 얻는다(오른쪽 표). [3], [4] 이를 토대로 가시광선 범위에서 굴절률을 구할 수 있다 (왼쪽 그래프) (n: 굴절률, λ: 파장, R: 몰 굴절률)

[†]황산에 대해서는 molar refractivity에 대한 Cauchy's equation을 구한 선행 연구가 있었기에 Jorentz-Jorenz equation으로 굴절률로 바꿔줬다

Background (Continued)

III. 무지개 현상의 광학적 배경

무지개는 작은 구 형태의 액체에 의해 발생하는 현상이다. 이때 빛이 액체 방울에 입사할 때 반사되는 빛의 각도를 표현할 수 있다. 이를 기하적으로 계산하여 입사각(χ)에 따른 굴절각(D)을 계산해낼 수 있고 x에 따른 빛의 세기 함수를 구할 수 있다. [1]

$$D(x) = \pi - \left(4\sin^{-1}\frac{x}{n} - 2\sin^{-1}x\right)$$
 (2)

$$I \propto \left| \frac{x}{\sin D} \left(\frac{dD}{dx} \right)^{-1} \right| \tag{3}$$

4(1)을 보면 굴절률 (n)이 함수에 포함되어 빛의 세기에 영향을 주는 것을 알 수 있다. 즉 굴절률이 무지개의 모양을 좌우하는 것이다.

Method

무지개에 대한 광학적 지식을 토대로 무지개 생성 모델을 프로그래밍을 통해 구현한다. 프로그래밍 언어인 Python을 통해 구현하며 시각화는 Python 라이브러리 중 하나인 matplotlib을 사용한다.

I. 무지개 스펙트럼 생성 코드 작성 (Python)

- 1. 가시광선 파장대(400~700nm)를 30개의 동일 간격으로 나눈다.
- 2. 물의 굴절률을 각 파장마다 구한다.
- 3. 식 (2)를 사용하여 입사각에 따른 빛의 세기를 구한다.
- 4. 식 (1)을 활용하여 이를 각 반지름에 따른 빛의 세기로 변화한다.
- 5. 황산에 대해 2~4번을 반복한다

II. 스펙트럼 시각화 코드 작성 (Python)

- 파장에 해당하는 색의 RGB 코드를 구한다.
- 2. 파장별로 구한 무지개 스펙트럼을 하나의 그래프에 중첩한다.
- 3. 지구와 금성 각각의 무지개 그래프를 극 좌표계에 한 번에 표시하여 최종 그래프를 그린다.

무지개 생성 모델 코드 (github)

Result

Discussion

연구 분석: 이 연구의 무지개 모양 예측 모델은 지구 무지개의 각 반지름(40~42도)을 상당히 정확하게 예측했다. 이와 같은 정확도를 바탕으로 금성에서의 무지개 모양을 예측한 결과는 높은 신뢰성을 가지고 있다고 볼 수 있다.

연구 한계: 한 논문에서 지적하듯 금성의 대기에서 빛을 산란시키는 물질이 황산만 있는 것이 아니다. submicron aerosols 등 대기의 굴절률을 올리는 다른 물질들이 금성 대기에 존재하며 이를 보완할 필요가 있다. [2]

후속 연구 제안: 금성의 대기는 지구에 비해 두껍기에 어떤 대기 깊이 범주에서 무지개가 보일 정도의 태양광이 도달하는지 연구해본다.

Conclusion

이번 연구에서는 파이썬 시뮬레이션을 통해 금성에서의 무지개 모양을 예측했다. 지구에서 실제로 관측되는 무지개의 모양으로 검증하여 모델의 신뢰성을 검증했다.

[1] M. V. Berry. "Nature's optics and our understanding of light. Physics. pp. https://doi.org/10.1080/00107514.2015.971625.

[2] W. J. Markiewicz et al., "Glory on Venus cloud tops and the unknown UV absorber," Icarus (New York, N.Y. 1962), vol. 234, pp. 200-203, May 2014, doi: https://doi.org/10.1016/j.icarus.2014.01.030.

[3] A. N. Bashkatov and E. A. Genina, "Water refractive index in dependence on temperature and wavelength: a simple approximation," SPIE, 2003, doi: https://doi.org/10.1117/12.518857.

[4] M. Musso, R. Aschauer, A Asenbaum, C. Vasi, and E. Wilhelm, "Interferometric determination of the refractive index of liquid sulphur dioxide," Measurement science & technology, vol. 11, no. 12, pp. 1714-1720, Nov. 2000, doi: https://doi.org/10.1088/0957-0233/11/12/310