

• Application sur un exemple :

• Application sur un exemple :

état	а	b	
0	0,2	1	
1	3	0,2	١
2	3,4	2	
3	2	1	
4	-	3	

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

$$T=\{2,3\}$$

Considérer les ensembles d'état comme un nouvel état Partir de l'état initial et construire les ensembles des atteints par chaque transition

état	а	b
0	0,2	1

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

Considérer les ensembles d'état comme un nouvel état Partir de l'état initial et construire les ensembles des atteints par chaque transition

état	a	b
0	0,2	

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

Considérer les ensembles d'état comme un nouvel état Partir de l'état initial et construire les ensembles des atteints par chaque transition

état	a	b
0	0,2	1
0,2	0,2,3,4	1,2
1	3	0,2

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

état	a	b
0	0,2	1
0,2	0,2,3,4	1,2
1	3	0,2
0,2,3,4		
1,2		
3		

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

état	а	b
0	0,2	1
0,2	0,2,3,4	1,2
1	3	0,2
0,2,3,4	0,2,3,4	1,2,3
1,2	3,4	0,2
3	2	1

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

état	а	b
0	0,2	1
0,2	0,2,3,4	1,2
1	3	0,2
0,2,3,4	0,2,3,4	1,2,3
1,2	3,4	0,2
3	2	1
1,2,3	3,4,2	0,2,1
3,4	2	1,3
2	3,4	2

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

état	а	b
0	0,2	1
0,2	0,2,3,4	1,2
1	3	0,2
0,2,3,4	0,2,3,4	1,2,3
1,2	3,4	0,2
3	2	1
1,2,3	3,4,2	0,2,1
3,4	2	1,3
2	3,4	2
2,3,4	3,4,2	2,1,3
0,1,2	0,2,3,4	1,0,2
1,3	3,2	0,2,1

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

état	а	b
0	0,2	1
0,2	0,2,3,4	1,2
1	3	0,2
0,2,3,4	0,2,3,4	1,2,3
1,2	3,4	0,2
3	2	1
1,2,3	3,4,2	0,2,1
3,4	2	1,3
2	3,4	2
2,3,4	3,4,2	2,1,3
0,1,2	0,2,3,4	1,0,2
1,3	3,2	0,2,1
2,3	3,4,2	2,1

état	а	b
0	0,2	1
1	3	0,2
2	3,4	2
3	2	1
4	-	3

état		a		b	
0	0	0,2	1	1	2
0,2	1	0,2,3,4	3	1,2	4
1	2	3	5	0,2	1
0,2,3,4	3	0,2,3,4	3	1,2,3	6
1,2	4	3,4	7	0,2	1
3	5	2	8	1	2
1,2,3	6	3,4,2	9	0,2,1	10
3,4	7	2	8	1,3	11
2	8	3,4	7	2	8
2,3,4	9	3,4,2	9	2,1,3	6
0,1,2	10	0,2,3,4	3	1,0,2	10
1,3	11	3,2	12	0,2,1	10
2,3	12	3,4,2	9	2,1	4

Renommez enfin les états

Les états
contenant au
moins un
terminal
deviennent
terminaux
T={1,3,4,4,5,6,
7,8,9,10,11,12}

état	а	b
0	1	2
1	3	4
2	5	1
3	3	6
4	7	1
5	8	2
6	9	10
7	8	11
8	7	8
9	9	6
10	3	10
11	12	10
12	9	4

- Faire classes d'équivalence : en séparant les états terminaux A et les non terminaux B
- S'il existe un symbole a_k et 2 états e_i et e_j d'une même classe tels que Δ(e_i, a_k) et Δ(e_j, a_k) n'appartiennent pas à la même classe, créer alors une nouvelle classe et séparer e_i et e_j. On laisse dans une même classe tous les états qui donnent un état d'arrivée dans la même classe
- Recommencer jusqu'à ce qu'il n'y ait plus rien à séparer
- Chaque classe forme un état du nouvel automate

état	а	b
0	1	2
1	3	4
2	5	1
3	3	6
4	7	1
5	8	2
6	9	10
7	8	11
8	7	8
9	9	6
10	3	10
11	12	10
12	9	4

- $A = \{0,2\}$ (NT)
- $B = \{1,3,4,5,6,7,8,9,10,11,12\}$ (T)

état	а	b
0	1	2
1	3	4
2	5	1
3	3	6
4	7	1
5	8	2
6	9	10
7	8	11
8	7	8
9	9	6
10	3	10
11	12	10
12	9	4

•
$$A = \{0,2\}$$

•
$$B = \{1,3,4,5,6,7,8,9,10,11,12\}$$

•
$$\Delta(0,b) = 2 \in A$$
, $\Delta(2,b) = 1 \in B$

•
$$\rightarrow$$
 A = {0} C = {2}

•
$$\Delta(5,b) = 2 \in \mathbb{C}$$
, $\Delta(1,b) = 4 \in \mathbb{B}$

•
$$\rightarrow$$
 B = {1,3,4,6,7,8,9,10,11,12} D= {5}

•
$$\forall i \in B \ \Delta(i,a) \in B \ \Delta(i,b) \in B$$

• /Terminaux B et D

état	а	b
0	1	2
1	3	4
2	5	1
5	8	2

état	а	b
Α	В	С
В	В	В
C	D	В
D	В	С

• On appelle ε-fermeture ε_f de l'ensemble d'états E, l'ensemble des états accessible depuis chaque élément de E par des ε-transitions

- $\varepsilon_{\mathbf{f}}(\{\mathbf{e}_0\}) = \{\mathbf{e}_0, \mathbf{e}_1\}$
- $\varepsilon_f(\lbrace e_1 \rbrace) = \lbrace e_1 \rbrace$
- $\varepsilon_{f}(\{e_{2}\}) = \{e_{2}, e_{0}, e_{1}\}$
- $\varepsilon_{\mathbf{f}}(\{\mathbf{e}_3\}) = \{\mathbf{e}_3\}$
- $\varepsilon_{\rm f}(\{e_4\}) = \{e_4, e_2, e_0, e_1\}$
- $\varepsilon_{f}(\{e_{3}, e_{4}\}) = \{e_{3}, e_{4}, e_{2}, e_{0}, e_{1}\}$
- •

• Voyons sur l'exemple:

état	а	b	С	3
0	2		0	1
1	3	4		
2			1,4	0
3		1		
4			3	2

- Partir de ε -fermeture de l'état initial $\varepsilon_f(\{0\}) = \{0,1\}$
- Ajouter dans la table de transition toutes les ε-fermeture des nouveaux états produits, ainsi que leur transitions, recommencer jusqu'à ce qu'il n'y ait plus de nouvel état
- Les états contenant au moins un terminal deviennent terminaux
- Renuméroter

Exemple:

$$\varepsilon_{\rm f}(\Delta(\{1\},b)) = \{1,4,2,0\}$$

état	а	b	С	3
0 _	2		0	1
1 -	<u></u>	\ +	/	
2 -		/	1,4	0
3		*	/	
4_			3	2

état	а	b	С	
0,1	2,0,1,3	4,2,0,1	0,1	
				c C

état	а	b	С	3
0 🛂			0	1
1 =	3	4		
2 💆			1,4	0
3 /		/	/	
4 _			3	2

état	а	b	С
0,1	0,1,2,3	0,1,4,2	0,1
0,1,2,3	2, 0, 1, 3	4, 2, 0, 1	0,1,4, 2
0,1,2,4	2, 0, 1, 3	4, 2, 0, 1	0, 1, 4, 2, 3

état	а	b	C	ω
0	2		0	1
1	3	4		
2			1,4	0
3		1		
4			3	2

état	а	b	С
0,1	0,1,2,3	0,1,2,4	0,1
0,1,2,3	0,1,2,3	0,1,2,4	0,1,2,4
0,1,2,4	0,1,2, 3	0,1,2,4	0,1,2,3,4
0,1,2,3,4	2, 0, 1, 3	4, 2, 0, 1	0, 1, 4, 2, 3

а	b	C	ω
2		0	1
3	4		
		1,4	0
	1		
		3	2
	2	2 3 4	2 0 3 4 1,4

état		а		b		C	
0,1	0	0,1,2,3	1	0,1,2,4	2	0,1	0
0,1,2,3	1	0,1,2,3	1	0,1,2,4	2	0,1,2,4	2
0,1,2,4	2	0,1,2, 3	1	0,1,2,4	2	0,1,2,3,4	3
0,1,2,3,4	3	0, 1, 2, 3	1	0, 1, 2, 4	2	0, 1 , 2, 3,	4 3

état	а	b	С	ω
0	2		0	1
1	3	4		
2			1,4	0
3		1		
4			3	2

•
$$T=\{2,3\}$$

état	а	b	С
0	1	2	0
1	1	2	2
2	1	2	3
3	1	2	3

$AEF \rightarrow ER$

- L'automate d'état initial e_i reconnaît le langage L_i
- Système d'équation liant les L_i :
- $\forall \Delta(e_i,a) = e_j \Rightarrow L_i = a L_j$
- $\forall e_i \in T \Rightarrow L_i = \varepsilon$
- $L_i = \alpha$ et $L_i = \beta \Rightarrow L_i = \alpha | \beta$
- L = α L | β \Rightarrow L = $\alpha^*\beta$ (L = α L \Rightarrow L = α^* : boundage! \Rightarrow erreur)

$AEF \rightarrow ER : Exemple$

$AEF \rightarrow ER : Exemple$

- $L_0 = b L_0 | a L_1 | b L_2$
- $L_1 = b L_2 | c L_3$
- $L_2 = a L_0 | c L_2 | a L_4$
- $L_3 = \varepsilon$
- $L_4 = \varepsilon \mid b \mid L_3$

$AEF \rightarrow ER : Exemple$

- $L_0 = b L_0 | a L_1 | b L_2$
- $L_1 = b L_2 | c L_3$
- $L_2 = a L_0 | c L_2 | a L_4$
- $L_3 = \varepsilon$
- $L_4 = \varepsilon \mid b \mid L_3$

- $L_3 = \varepsilon$
- $L_4 = \varepsilon \mid b$
- $L_2 = c L_2 | a L_0 | a (\epsilon | b)$ = $c^* (a | ab | a L_0)$
- $L_1 = b L_2 | c$ = $b c^* (a | ab | a L_0) | c$
- $L_0 = b L_0 | a L_1 | b L_2$ = $b L_0 | abc*(a|ab|aL_0)|ac$ | $bc* (a | ab | a L_0)$ = $(b|aabc*|abc*) L_0 |$ abc*(a|ab|ac|abc)

Analyse lexicale

But : Reconnaître des classes de symboles :

- Un entier, un réel, un identificateur (java), le mot-clé if
- Il est possible aussi, de préciser, par exemple, que l'on veut les constantes réelles ont un exposant optionnel à 2 chiffres

Analyse lexicale

C'est la première étape d'un compilateur.

L'analyseur lexical va fournir des symboles à l'analyseur syntaxique

- Soit sous forme de liste
- Soit par appels successifs next_token()

Analyse lexicale : difficultés

Soit l'entrée "2.3E5xy", (exposant optionnel à 2 chiffres) et c le caractère courant :

- c=getChar(): '2' ⇒ a reconnu un ENTIER
- c=getChar(): '.' ⇒ tente de reconnaître un REEL
- c=getChar(): '3' ⇒ a reconnu un REEL
- c=getChar(): 'E' ⇒ tente de reconnaître un REEL
- c=getChar(): '5' ⇒ tente de reconnaître un REEL
- c=getChar(): 'x' ⇒ "2.3E5x" pas un REEL!
- return Token.REEL("2.3"): dernier symbole reconnu

mémorisation du dernier symbole reconnu

Analyse lexicale : difficultés

Soit l'entrée "if19"

Mot-Cle-IF et Entier(19)

Ou

Ident("if19")

Solutions:

- Reconnaissance du plus long fragment (préfixe)
- Séparateurs obligatoires
- Priorités (mots-clé prioritaires)

• . . .

Analyse lexicale: Fonctionnement

Un analyseur lexical ne fonctionne pas exactement comme un automate classique.

- L'automate :
- reconnaît un langage
- accepte ou rejette un mot

L'analyseur:

- découpe un mot en sous-mots (priorités, + long prefixe ...)
- en associant un symbole a chaque sous-mot
- accepte ou rejette le mot

On parlera dans ce cours d'automate fonctionnant comme un analyseur lexical.

Analyse lexicale: Fonctionnement

État de reconnaissance d'un symbole = état final.

Tant qu'on peut transiter sur un caractère, on le fait.

Mémorisation du dernier état terminal traverse + sous-mot associe.

Quand on ne peut plus transiter:

- si état terminal :
 - émission du symbole associé;
 - retour dans l'état initial.
- si état non terminal :
 - si état mémorisé : émission du symbole associé,
 - repositionnement éventuel de la tête de lecture
- sinon erreur.

Analyse lexicale : Définitions

- Une unité lexicale est une suite de caractères qui a une signification collective
- Un modèle est une règle associée à une unité lexicale qui décrit l'ensemble des chaînes d'une source qui peuvent correspondre à cette unité lexicale
- On appelle lexème toute suite de caractères d'une source qui concorde avec le modèle d'une unité lexicale

Analyse lexicale: Exemples

L'unité lexicale :

- opR (nom arbitraire) peut représenter les opérateurs relationnels >= <= < > ...
- ID: toto, a, tab, ... seraient des identificateurs (variables, types, fonction, procédures ...)
- MtC: if, else, while ... seraient les mots-clé

Le modèle :

- D'un identificateur pourrait être une lettre ou _ suivi de lettres ou _ ou chiffres
- D'un entier : toute suite non vide de chiffres précédés éventuellement de + ou –

>= <= < > ... toto, a, tab, ... if, else, while ... sont des lexèmes

Analyse lexicale: Mise en Œuvre

- Le mécanisme de base pour décrire les unités lexicale est l'expression régulière.
- On a vu qu'elles étaient facilement transformable en AFN puis AFD puis AFD simplifiés : les transformations faites à la main dans la partie précédente peuvent être facilement programmés.
- Des analyseurs lexicaux tels Lex et FLex en langage C et JLex et JFLex pour java réalisent ce travail.

Analyse lexicale : Expression régulière (exemples)

Le chiffre 1:1

- Un chiffre quelconque : 0|1|2|3|4|5|6|7|8|9
- Un nombre : 0| (1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*
- Éventuellement un point suivi d'un nombre :
 ε|.(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*
- Un exposant éventuel :
 ε|E(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)
- Les constantes entières et réelles :
 (0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*(|.(0|1|2|3|4|5|6|7|8|9))
 5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9))*(|E(0|1|2|3|4|5|6|7|8|9))
 (0|1|2|3|4|5|6|7|8|9)))

Analyse lexicale : Expression régulière (lourdeur)

besoin d'augmenter le confort de spécification ;

- lisibilité;
- concision.

sans toucher à l'expressivité (garder un langage régulier).

descriptions régulières.

Pour rassembler et nommer des ensembles de caractères. Ex :

- ch = [0-9]
- ca = [a-zA-Z]
- Ce qui donne pour les nombres exprimés précédemment :
- ch ch* (ε | ch ch*)

Analyse lexicale: Description

régulière Descriptions régulières ou définitions régulières

- Pour nommer des expressions régulières et s'en resservir :
- intconst = ch ch*
- realconst = intconst.intconst(E ch ch|)

Formellement : suite de définitions

- N1 = E1
- $\cdot N_n = E_n$
- ou:
- les N_i sont des noms distincts 2 à 2;
- les E_i sont des expressions régulières sur $\Sigma \cup \{N_1, ..., N_{i-1}\}$.
- Pas de descriptions récursives.

Analyse lexicale : Détection

d'erreurs

- Peu d'erreurs sont détectables à ce niveau : les seules détectables sont les suites de caractères ne correspondant à aucun modèle d'unité lexicale.
- Stratégie en cas de détection :
 - Mode panique (avertir et ignorer les caractères qui posent problème)
 - Correction d'erreur
 - Arrêt immédiat
- Ex : esle faute de frappe pour else ou identificateur

1a identificateur a1 ou a ou constante 1 ...

Description régulière: Limitation

- Le théorème de Kleene affirme qu'un langage est rationnel si et seulement s'il est reconnu par un automate fini
- Malheureusement, tous les langages ne sont pas rationnels par exemple
 « autant de a que de b » ne sont pas tous rationnels si (ab)ⁿ l'est aⁿbⁿ ne l'est pas

aⁿbⁿ avec n<4 l'est, mais pas dans le cas général

Description régulière : Limitation

- Sur l'exemple précédent (que l'on peut rapprocher du cas concret autant de parenthèses ouvrantes que fermantes) on sent bien intuitivement qu'il faudrait pour aⁿbⁿ (∀n) un nombre indéterminé d'états (de « mémoires »)
- Pour une démonstration plus formelle, on utilisera le Lemme de l'étoile encore appelé Lemme de pompage (hors cours)