Exercises

- 1. A set Ω is *pathwise connected* if any two points in Ω can be joined by a piecewise smooth curve entirely contained in Ω . We show that an open set Ω is pathwise connected if and only if Ω is connected.
 - (a) Suppose first that Ω is open and pathwise connected, and that it can be written as a disjoint union of non-empty open sets $\Omega = \Omega_1 \cup \Omega_2$. Let $w_1 \in \Omega_1$ and $w_2 \in \Omega_2$ and let $z : [0,1] \to \Omega$ be a curve with $z(0) = w_1$ and $z(1) = w_2$. Let

$$t^* = \sup_{0 \le t \le 1} \{t : z(s) \in \Omega_1 \text{ for all } 0 \le s \le t\}.$$

Arrive at a contradiction by considering the point $z(t^*)$.

- (b) Conversely, suppose that Ω is open and connected. Fix a point $w \in \Omega$ and let $\Omega_1 \subset \Omega$ denote the set of all points that can be joined to w by a curve contained in Ω . Also, let $\Omega_2 \subset \Omega$ denote the set of all points that cannot be joined to w by a curve in Ω . Show that both Ω_1 and Ω_2 are open, disjoint and their union is Ω . Conclude that $\Omega = \Omega_1$.
- 2. Let Ω be an open set in \mathbb{C} and $z \in \Omega$. The connected component C_z of z is the set of all points in w that can be reached from z by a curve entirely contained in Ω .
 - (a) Show that C_z is open and connected, and any two connected components are either disjoint or coincide.
 - (b) Show that Ω can have only countably many distinct connected components.
 - (c) Prove that if Ω is the complement of a compact set, then Ω has only one unbounded component.
- 3. For a function $f: \mathbb{C} \to \mathbb{C}$ and a curve γ in the complex plane define the integral with respect to \bar{z} as $\int_{\gamma} f d\bar{z} = \overline{\int_{\gamma} \bar{f} dz}$. From this the line integral with respect to x and y can be defined as

$$\int_{\gamma} f dx = \frac{1}{2} \left(\int_{\gamma} f dz + \int_{\gamma} f d\bar{z} \right)$$

$$\int_{\gamma} f dy = \frac{1}{2i} \left(\int_{\gamma} f dz - \int_{\gamma} f d\bar{z} \right)$$

Check that for f = u + iv

$$\int_{\gamma} f dz = \int_{\gamma} (u dx - v dy) + i \int_{\gamma} (u dy + v dx). \tag{0.1}$$

If we instead start by defining for any $p, q : \mathbb{R}^2 \to \mathbb{R}$ and $\gamma : [a, b] \to \mathbb{R}^2$ the line integral $\int_{\gamma} p dx + q dy$ by

$$\int_{\gamma} pdx + qdy := \int_{a}^{b} p\left(x(t), y(t)\right) \cdot x'(t)dt + q\left(x(t), y(t)\right) \cdot y'(t)dt$$

1

then show that the right hand side of (0.1) gives $\int_{\gamma} f dz$.

The integral with respect to the arc length is

$$\int_{\gamma} f ds = \int_{\gamma} f |dz| := \int_{\gamma} f(z(t))|z'(t)|dt$$

With $f \equiv 1$ one gets the arc length. In this case $\int_{-\gamma} f|dz| = \int_{\gamma} f|dz|$ and

$$\left| \int_{\gamma} f dz \right| \le \int_{\gamma} |f| \cdot |dz|.$$

Show the following **Theorem**: If p and q are (possibly complex valued) continuous functions in a region Ω , then for any curve γ in Ω the line integral $\int_{\gamma} p dx + q dy$ depends only on the endpoints of γ if and only if there exists a function U(x,y) in Ω with the partial derivatives $\partial U/\partial x = p$, $\partial U/\partial y = q$.

Hint: For the only if part fix a point (x_0, y_0) and let $U(x', y') = \int_{\gamma} p dx + q dy$ for any(?) curve γ which starts at (x_0, y_0) and ends at (x', y').

Thus $\int_{\gamma} f(z)dz = \int_{\gamma} f(z)dx + i \int_{\gamma} f(z)dy$ is dependent only on the endpoints for any γ if there is a function F on Ω such that

$$\frac{\partial F(z)}{\partial x} = f(z), \quad \frac{\partial F(z)}{\partial y} = if(z).$$

Conclude then that $\int_{\gamma} f dz$ with f continuous, depends only on the endpoints of γ if and only if f is the derivative of a holomorphic function in Ω . (note that we proved only one direction in class)

- 4. These calculations provide some insight into Cauchy's theorem
 - (a) Evaluate $\int_{\gamma} z^n dz$ for all integers n. Here γ is any circle centered at the origin with positive orientation. What if γ is a circle not containing the origin?
 - (b) show that if |a| < r < |b| then

$$\int_{\gamma} \frac{dz}{(z-a)(z-b)} = \frac{2\pi i}{a-b},$$

where γ denotes the circle centered at the origin, of radius r, with the positive orientation.

- 5. Suppose that f is holomorphic in an open set Ω . Prove that in any one of the following cases:
 - (a) Re(f) is constant;
 - (b) Im(f) is constant;
 - (c) |f| is constant;

one can conclude that f is constant.

- 6. Suppose f is continuous in a region Ω . Prove that any two primitives of f (if they exist) differ by a constant.
- 7. [HW 1, due 5 Oct] Consider a holomorphic function f on a region Ω . Let C be a circle inside Ω whose interior is also contained in Ω . Here is another way to show that $\int_C f(z)dz = 0$.

- (a) Consider any regular polygon P_n of n sides inscribed inside the circle. Argue that $\int_{P_n} f(z)dz = 0$.
- (b) Show that $\lim_{n\to\infty} \int_{P_n} f(z)dz = \int_C f(z)dz$.
- 8. The next few exercises show how complex integration can help us compute complicated real integrals.
 - (a) [HW 2, due Oct 11] Prove

$$\int_0^\infty \sin(x^2) dx = \int_0^\infty \cos(x^2) dx = \frac{\sqrt{2\pi}}{4}.$$

The integral \int_0^∞ is interpreted as $\lim_{R\to\infty}\int_0^R$. HINT: Integrate e^{-z^2} from 0 to R, then along the circular arc from R to $Re^{i\pi/4}$ and then along the straight line from $Re^{i\pi/4}$ to 0.

(b) Show $\int_0^\infty \frac{\sin x}{x} = \frac{\pi}{2}$.

HINT: The integral equals $\frac{1}{2i} \int_{-\infty}^{\infty} \frac{e^{ix}-1}{x} dx$. Use the indented semicircle.

(c) [HW 2, due Oct 11] Evaluate the integrals

$$\int_0^\infty e^{-ax}\cos(bx)dx \quad \text{and} \quad \int_0^\infty e^{-ax}\sin(bx)dx, \quad a > 0$$

by integrating e^{-Ax} , $A = \sqrt{a^2 + b^2}$, over an appropriate sector with angle ω , with $\cos \omega = a/A$.

- (d) Prove that for all $\xi \in \mathbb{C}$ we have $e^{-\pi \xi^2} = \int_{-\infty}^{\infty} e^{-\pi x^2} e^{2\pi i x \xi}$.
- 9. Suppose f is continuously complex differentiable on Ω , and $T \subset \Omega$ is a triangle whose interior is also contained in Ω . Apply Green's theorem to show that $\int_T f(z)dz = 0$. this provides a proof of Goursat's theorem under the additional assumption that f'is continuous.
- 10. Show that every non-constant polynomial $P(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$ with complex coefficients has a root in \mathbb{C} . From this conclude that P(z) has n roots $w_1, w_2, \cdots, w_n \text{ and } P(z) = a_n(z - w_1)(z - w_2) \cdots (z - w_n).$

HINT: Suppose not. Then note that $P(z)^{-1}$ is entire.

- 11. (Due Monday 25 October) Let f be a holomorphic function on the disc D_{R_0} centered at the origin and of radius R_0 .
 - (a) Prove that whenever $0 < R < R_0$ and |z| < R, then

$$f(z) = \frac{1}{2\pi} \int_0^{2\pi} f(Re^{i\phi}) \cdot Re\left(\frac{Re^{i\phi} + z}{Re^{i\phi} - z}\right) d\phi.$$

HINT: Note that if $w = R^2/\bar{z}$, then the integral of $f(\zeta)/(\zeta - w)$ around the circle of radius R centered at the origin is 0. Use this, together with the Cauchy integral formula.

(b) Show that

$$Re\left(\frac{Re^{i\gamma}+r}{Re^{i\gamma}-r}\right) = \frac{R^2-r^2}{R^2-2Rr\cos\gamma+r^2}.$$

3

- 12. (Due Monday 25 October) Say that a twice continuously differentiable real-valued function is harmonic if $\Delta u(x,y) = 0$ where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.
 - (a) If f is holomorphic in an open set Ω , then show that the real and imaginary parts of f are harmonic.
 - (b) Let u be a real-valued function defined on the unit disc \mathbb{D} . Suppose that u is twice continuously differentiable and harmonic.
 - i. Prove that there exists a holomorphic function f on \mathbb{D} such that Re(f) = u. Also show that the imaginary part of f is uniquely defined up to an additive (real) constant.

HINT: If there is such an f then $f'(z) = 2\partial u/\partial z$. Therefore, let $g(z) = 2\partial u/\partial z$ and prove that g is holomorphic. Why can one find F with F' = g? Prove that Re(f) differs from u by a real constant.

ii. Deduce from this result, and the above exercise, the Poisson integral representation formula from the Cauchy integral formula: If u is harmonic in \mathbb{D} and continuous on its closure, then if $z=re^{i\theta}$ one has

$$u(z) = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - \phi) u(\phi) d\phi$$

where $P_r(\gamma)$ is the Poisson kernel for the unit disc given by

$$P_r(\gamma) = \frac{1 - r^2}{1 - 2r\cos\gamma + r^2}.$$