LIC: LECTURE Signal Generators

- Multivibrator: Need and Different Types
 - Astable Multivibrator
 - Monostable Multivibrator
 - Bistable Multivibrator
- Astable Multivibrator
 - Working Principal
 - Calculation of Time Period
 - Design Example

Multivibrator

- The Multivibrator is the electronic circuit which is used to implement two state devices like oscillator, timer and flip-flops.
- Here, the two states refer to the two voltage levels of the Multivibrators.
- Depending upon the number of stages, the multivibrator can be divided into three types.

Multivibrator

Astable – A *free-running multivibrator* that has NO stable states but switches continuously between two states this action produces a train of square wave pulses at a fixed frequency. (Eg. Relaxation Oscillator)

Trigger pulse absent

Astable Multivibrator _______

Monostable – A *one-shot multivibrator* that has only ONE stable state and is triggered externally with it returning back to its first stable state. (Eg. Timer applications)

Bistable – A *flip-flop* that has TWO stable states that produces a single pulse either positive or negative in value. (Eg.-Sequential Circuits)

ASTABLE MULTIVIBRATOR(Free Running Multivibrator)

ASTABLE MULTIVIBRATOR

Derivation of Time Period (T=t1+t2)

Calculation of charging time-t₁

VFinal= Vsat \Rightarrow Vin = -BVsat __t|/RC $V_{C(t_1)} = V_{Sat} + (-BV_{Sat} - V_{Sat})e$ $V_{C(t_1)} = V_{Sat} + (-BV_{Sat} - V_{Sat})e$ $V_{C(t_1)} = V_{Sat} + (-BV_{Sat} - V_{Sat})e$

$$\left[\begin{array}{c} \frac{1-\beta}{1+\beta} \end{array}\right] = \frac{-t_1/RC}{e}$$

$$\Rightarrow t_1 = -RCLn\left[\frac{1-\beta}{L+\beta}\right]$$

$$t_1 = RC Ln \left[\frac{1+\beta}{1-\beta} \right]$$

ASTABLE MULTIVIBRATOR

Derivation of Time Period (T=t1+t2)

Calculation of discharging time-t2

$$V_{c(t)} = V_{final} + \left[V_{initial} - V_{final}\right] e^{-t/RC}$$

$$V_{initial} = \beta V_{cat} \rightarrow -\beta V_{sat}$$

$$V_{final} = -V_{sat}$$

$$V_{c(t_2)} = -V_{sat} + \left[\beta V_{sat} - \left(-V_{sat}\right)\right] e$$

$$V_{c(t_2)} = -V_{sat} + V_{sat} \cdot \left(1+\beta\right) \cdot e$$

$$-t_2/RC$$

$$-bV_{sat} = -V_{sat} + V_{sat} \cdot \left(1+\beta\right) \cdot e$$

$$\frac{1-\beta}{1+\beta} = e$$

$$\frac{1-\beta}{1+\beta} = e$$

$$1+\beta$$

$$= t_2 = RC \times ln\left(\frac{1+\beta}{1-\beta}\right)$$

$$T = t_1 + t_2 = 2t_1 = 2RC \cdot ln\left(\frac{1+\beta}{1-\beta}\right)$$

Design Problem-1

An op-amp multivibrator circuit is constructed using the following components.

R1 = 35 k Ω , R2 = 30 k Ω , R = 50 k Ω and C = 0.01 uF and powered with Vcc = 11V, VEE = -11V DC supply.

Calculate the circuits frequency of oscillation.

Design Problem-1

An **op-amp multivibrator circuit** is constructed using the following components. R1 = $35k\Omega$, R2 = $30k\Omega$, R = $50k\Omega$ and C = 0.01uF and powered with Vcc=11V, VEE=-11V DC supply. Calculate the circuits frequency of oscillation.

$$\beta = \frac{R2}{R1 + R2} = \frac{30k\Omega}{35k\Omega + 30k\Omega} = 0.462$$

$$T = 2RC ln \left(\frac{1+\beta}{1-\beta} \right) = 2RC ln \left(\frac{1+0.462}{1-0.462} \right)$$

$$T = 2 \times (50 \text{k}\Omega \times 0.01 \text{uF}) \times In(2.717)$$

\therefore T = 0.001\times or 1mS

$$f = \frac{1}{T} = \frac{1}{0.001} = 1,000$$
Hz or 1kHz

LIC: LECTURE Signal Generators

- **✓** Astable Multivibrator
 - ✓ Working Principal
 - **✓** Calculation of Time Period
 - **✓ Design Example**
- Monostable Multivibrator
 - Working Principal
 - Calculation of Time Period and Recovery Time
 - Design Example

MONOSTABLE MULTIVIBRATOR

(1 STABLE & 1 QUASI-STABLE STATE-One Shot Multivibrator)

RC Differentiator Circuit

MONOSTABLE MULTIVIBRATOR

Derivation of Time Period (T) for unstable state (Pulse Width)

t= RCIn (1+R2/R1)

MONOSTABLE MULTIVIBRATOR

Derivation of Charging
Time/Capacitor Recovery Time Stable State

op-amp monostable circuit is constructed using the An components. R1 = $30k\Omega$, R2 = $30k\Omega$, R = $150k\Omega$ and C = 1.0uF. If the op-amp monostable is supplied from a $\pm 12V$ supply and the timing period is initiated with a 10ms pulse.

Calculate the circuits timing period, capacitor recovery time, total time between trigger pulses and the differentiator network values. Draw the completed circuit.

Data given: R1 = R2 = $30k\Omega$, R = $150k\Omega$, C = 1.0uF and pulse width equals ten milliseconds, (10ms).

$$\beta = \frac{R_1}{R_1 + R_2} = \frac{30k\Omega}{30k\Omega + 30k\Omega} = 0.5$$

$$T = RC.ln \left(1 + \frac{R_1}{R_2} \right)$$

$$= RC \times In \left(1 + \frac{30k\Omega}{30k\Omega} \right)$$

$$= 150 \text{k}\Omega \times 1.0 \text{uF} \times 0.693$$

$$\beta = \frac{R_1}{R_1 + R_2} = \frac{30k\Omega}{30k\Omega + 30k\Omega} = 0.5$$

$$T_{(charging)} = RC \times In \left(\frac{1 + \beta}{1 - \frac{V_D}{V_{CC}}}\right)$$

$$T_{\text{(charging)}} = RC \times In \left(\frac{1 + 0.5}{1 - \frac{0.7}{12}} \right)$$
 $\therefore T_{\text{(total)}} = 104 \text{ms} + 70 \text{ms} = 174 \text{ms}$

$$T_{(total)} = T_{(delay)} + T_{(charging)}$$

$$\therefore T_{(total)} = 104ms + 70ms = 174ms$$

$$\therefore T_{(ch.)} = 150k\Omega \times 1.0uF \times 0.465 = \underline{70ms}$$

$$T = 0.104$$
 secs or 104 ms

The input pulse is given as 10ms, therefore the negative spike duration will be 1m (10%). If we assume a capacitance value of 0.1uF, then the differentiator RC values calculated as:

Pulse width =
$$1ms = 5RC$$

If
$$C = 0.1uF$$

$$R = \frac{1ms}{5 \times 0.1 uF} = 2000\Omega \text{ or } 2k\Omega$$

LIC: LECTURE Signal Generators

- ✓ Monostable Multivibrator using op-Amp
 - **✓ Working Principal**
 - ✓ Calculation of Time Period and Recovery Time
 - ✓ Design Example
- 555 Time IC
 - Pin Configuration
 - Internal Block Diagram
- Astable Multivibrator using Timer IC

PIN DIAGRAM

ASTABLE MULTIVIBRATOR USING 555 TIMER

- 1 Ground
- 2 Trigger
- 3 Output
- 4 Reset
- 5 Control
- 6 Threshold
- 7 Discharge
- 8 Vcc

FUNCTIONAL BLOCK DIAGRAM OF ASTABLE MULTIVIBRATOR

TIMING PULSES

DERIVATION FOR THE EXPRESSION OF DUTY CYCLE

$$V_C = V_{CC} \left(1 - e^{-t/RC} \right)$$

• Time taken, t_1 by the circuit to charge from $0 - \frac{2}{3}V_{CC}$,

$$\frac{2}{3}V_{CC} = V_{CC}(1 - e^{-t_1/RC})$$

$$t_1 = 1.099RC$$

• Time taken, t_2 by the circuit to charge from $0 - \frac{1}{3}V_{CC}$,

$$\frac{1}{3}V_{CC} = V_{CC}(1 - e^{-t_2/RC})$$

$$t_2 = 0.405RC$$

• Time to charge from $\frac{1}{3}V_{CC}$ to $\frac{2}{3}V_{CC}$,

$$\mathsf{T}_\mathsf{C} = \mathsf{t}_1 - \mathsf{t}_2$$

$$T_C = 0.69(R_1 + R_2)C$$

• Capacitor discharges from $\frac{2}{3}V_{CC}$ to $\frac{1}{3}V_{CC}$. $\frac{1}{3}V_{CC} = \frac{2}{3}V_{CC}e^{-t/_{RC}}$

Solving the equation we get,

$$t = 0.69 T_D = 0.69 R_2 C$$

Total time,

$$T = T_C + T_D$$

$$T = 0.69 (R_1 + 2R_2)C$$

$$f = \frac{1.45}{(R_1 + 2R_2)C}$$

• Duty cycle,

$$D\% = \frac{T_C}{T} \times 100\%$$

$$\Rightarrow D\% = \left(\frac{R_1 + R_2}{R_1 + 2R_2}\right) \times 100\%$$

$$T = 0.69 (R_1 + 2R_2)C$$

$$f = \frac{1.45}{(R_1 + 2R_2)C}$$

EXAMPLE 10.3. In the circuit of Fig. 10.16 specify suitable components for $f_0 = 50 \text{ kHz}$ and D(%) = 75%.

Solution. Let C = 1 nF, so that $R_A + 2R_B = 1.44/(f_0C) = 28.85 \text{ k}\Omega$. Imposing $(R_A + R_B)/(R_A + 2R_B) = 0.75$ gives $R_A = 2R_B$. Solving gives $R_A = 14.4 \text{ k}\Omega$ (use 14.3 k Ω) and $R_B = 7.21 \text{ k}\Omega$ (use 7.15 k Ω).

Q1) For a astable multivibrator using 555 timer, R_1 = 6.8k Ω , R_2 = 3.3k Ω and C = 0.1 μ F. Calculate (a) t_{HIGH} , (b) t_{LOW} , (c) free running frequency and (d) duty cycle, D.

Ans:-

- (a) $t_{HIGH} = 0.7 ms$
- (b) $t_{LOW} = 0.23 ms$
- (c) f = 1.07kHz
- (d) D = 0.75 or 75%

LIC: LECTURE Signal Generators

- **√** 555 Time IC
 - **✓** Pin Configuration
 - ✓ Internal Block Diagram
- ✓ Astable Multivibrator using Timer IC
 - Design Example
- Bistable Multivibrator using Timer IC
 - Applications

ADJUSTABLE DUTY CYCLE MULTIVIBRATOR

DUTY CYCLE DERIVATION

During charging,

$$T_C = 0.69 \, R_A \, C$$

During discharge,

$$T_D = 0.69 R_B C$$

• Therefore, total time period T is,

$$T = 0.69 (R_A + R_B)C$$

$$f = \frac{1.45}{(R_A + R_B)C}$$

$$D = \frac{R_A}{R_A + R_B}$$

MONOSTABLE MULTIVIBRATOR USING 555 TIMER

FUNCTIONAL BLOCK DIAGRAM OF MONOSTABLE MULTIVIBRATOR

TIME PERIOD DERIVATION

Q2) Design a monostable multivibrator using 555 timer to produce a pulse width of 100ms. Calculate the value of R by assuming the values of C = 0.47μ F.

Ans: -

T = 1.1 RC

 $R = 193.423k\Omega$

APPLICATION OF MONOSTABLE MULTIVIBRATOR

Frequency Divider

Pulse Width Modulation

SCHMITT TRIGGER

LIC: LECTURE Signal Generators

- ✓ Design of Multivibrators using Timer IC
 - **✓ Different Applications**
- Sine Wave Generation Using Op-Amp
 - Circuit
 - Derivation of frequency of operation
- Triangular Wave Generation Using Op-Amp
 - Circuit
 - Derivation of frequency of operation

Sine Wave Generation

- One of the simplest sine wave oscillators which uses a RC network in place of the conventional LC tuned tank circuit to produce a sinusoidal output waveform, is called a **Wien Bridge Oscillator**.
- The Wien Bridge Oscillator is so called because the circuit is based on a frequency-selective form of the Wheatstone bridge circuit.
- The Wien Bridge oscillator is a two-stage RC coupled amplifier circuit that has good stability at its resonant frequency, low distortion and is very easy to tune making it a popular circuit as an audio frequency oscillator but the phase shift of the output signal is considerably different from the previous phase shift **RC Oscillator**.

WEIN'S BRIDGE OSCILLATOR

The loop gain must be unity or greater. The feedback signal feeding back at the input must be phase-shifted by 360° (which is the same as zero degrees).

$$\frac{V_{0}}{V_{1}N} = \frac{22}{Z_{1}+22} \qquad = \frac{P_{2}}{1+j\omega P_{2}C_{2}}$$

$$\frac{P_{2}}{1+j\omega P_{2}C_{2}} \qquad = \frac{P_{2}}{1+j\omega P_{2}C_{2}}$$

$$\frac{V_{0}}{V_{1}N} = \frac{P_{2}}{1+j\omega C_{1}} + \frac{P_{2}}{1+j\omega C_{2}P_{2}} + \frac{P_{2}C_{1}}{1-\omega^{2}P_{1}P_{2}C_{1}C_{2}} + \frac{P_{2}C_{1}}{1-\omega^{2}P_{1}P_{2}C_{1}C_{2}} + \frac{P_{2}C_{1}}{1+j\omega C_{2}P_{2}} + \frac{P_{2}C_{1}}{1+j\omega C_{2}P_{2}}$$

w2 P1 P2 C1 C2 = 1 211 x JRB CICZ JRBC1C2

$$\frac{R_2C_1}{Vin} = \frac{R_2C_1}{R_1C_1 + R_2C_2 + R_2C_1}$$

$$AB = 1$$

$$A = \frac{1}{1} = \frac{P_1C_1 + P_2C_2 + P_2C_1}{P_2} = \frac{P_1}{P_2} + \frac{C_2}{C_1} + 1$$

$$A = \frac{1}{\beta} = \frac{P_1 C_1 + P_2 C_2 + P_2 C_1}{P_2 C_1} = \frac{P_1 + \frac{C_2 + 1}{P_2}}{P_2 C_1}$$

$$\frac{R_{4}}{R_{3}} = \frac{R_{1}}{R_{2}} + \frac{C_{2}}{C_{1}}$$

$$C_{1} = C_{2}$$

$$\Rightarrow R_{4} = 2$$

TRIANGULAR WAVE GENERATOR ????

TRIANGULAR WAVE GENERATOR

TRIANGULAR WAVE GENERATOR using Schmitt Trigger

OUTPUT WAVEFORMS

$$V_{0} = -\frac{1}{RC} \int_{0}^{\infty} 0 \ln(t) dt$$

$$V_{0} = -\frac{1}{RC} \int_{0}^{\infty} 0 \ln(t) dt$$

$$V_{0} = -\frac{1}{RC} \times (-V_{0} + V_{0} + V_{0}$$

TRIANGULAR WAVE GENERATOR using Astable Multivibrator

LIC: LECTURE PHASE LOCKED LOOP (PLL)

• PLL Circuit

- Need and Requirements
- Circuit
- Working Principal
- Phase Detector Design
- Voltage Controlled Oscillator
- Application as Frequency Synthesizer (f.N) or f/N

PHASE LOCKED LOOP (PLL)

- Frequency Demodulation
- Clock Recovery
- Noise and Jitter Reduction
- Frequency Synthesizer
- Stable SystemClock inMicroprocessors

PHASE LOCKED LOOP (PLL)

PLL Working Principal

PLL Working Principal

- Lock range: The range of frequencies over which the PLL maintains lock with the incoming signal is called the lock range of PLL.
- Capture range: The range of frequencies over which the PLL can <u>acquire</u> lock with an i/p signal is called the capture range.
- PULL In Time: The capture of an i/p signal does not take place as soon as the signal is applied, But it takes finite time. The total time taken by the PLL to establish lock is called pull-in time.

Capture transient

ANALOG PHASE DETECTOR

Analysis

- *Phase detector is a multiplier which multiplies the input signal $(V_{in} = V_s \sin(2\pi f_{in}t))$ by the VCO signal $(V_{out} = V_o \sin(2\pi f_{out}t + \varphi))$
- Therefore, Phase detector output, $V_e = kV_s V_o sin(2\pi f_{in}t) sin(2\pi f_{out}t + \varphi)$
- where $k \rightarrow$ phase comparator gain
 - $\varphi \rightarrow$ phase shift between the input signal and the VCO output.

❖ Above expression indicates that output contains a double frequency term and a DC component.

- DC signal is applied to the modulating input signal of the VCO.
- \clubsuit When at lock, $f_{in} = f_{out}$,

For a perfect locked state, the phase shift should be 90°, in order to get zero error signal, i.e. $V_e = 0$.

Drawbacks of Switch Type Phase Detector

- 1. Output voltage V_e is proportional to the input signal amplitude making the phase detector gain and the loop gain dependent on the input signal amplitude.
- 2. Output is proportional to $\cos \varphi$ and not φ making it nonlinear.

➤Both drawbacks can be eliminated by limiting the amplitude of the input signal i.e. converting the input to a constant amplitude square wave.

DIGITAL Phase Detector

DIGITAL Phase Detector

DC Output voltage Vs phase difference \(\phi \) curve

LIC: LECTURE PHASE LOCKED LOOP (PLL)

- **✓ PLL Circuit**
 - **✓ Need and Requirements**
 - **✓** Circuit
 - **✓ Working Principal**
 - **✓ Phase Detector Design**
 - Voltage Controlled Oscillator
 - Application as Frequency Synthesizer (f.N) or f/N

VOLTAGE Controlled Oscillator (VCO)

Pin Configuration

BLOCK DIAGRAM

Output Frequency Calculation

• Total voltage on the capacitor changes from 0.25 $V_{\rm CC}$ to 0.5 $V_{\rm CC}$.

$$\Delta V = 0.25 V_{CC}$$

Capacitor charges with a constant current source.

$$\frac{\Delta V}{\Delta t} = \frac{i}{C_1}$$

$$\Delta t = \frac{0.25 V_{CC} C_1}{i}$$

• Time period of triangular waveform = $2\Delta t$

• Frequency, f_o is

$$f_o = \frac{1}{T}$$

• But,

$$i = \frac{V_{CC} - V_C}{R_1}$$

• where V_C = voltage at pin 5.

$$f_o = \frac{2(V_{CC} - V_C)}{C_1 R_1 V_{CC}}$$

Outcomes

- Output freq. of VCO
 can be changed by
 - a) R_1
 - b) C₁
 - c) Modulating input V_C
- V_C can be varied by connecting a R₂ R₃ circuit as shown in the circuit.

Low Pass Filter

Frequency Translation

Frequency multiplier/ divider

FREQUENCY MULTIPLIER

Frequency Synthesizer

Monolithic Phase Locked loop (NE/SE 565)

