Микропрограммы (МП) вычисления исполнительных адресов операндов при различных способах адресации

Косвенная адресация

Схема выборки операнда при косвенной адресации

Чем будет отличаться микропрограмма определения исполнительного адреса операнда при косвенной адресации для восьмибайтной выборки из ОП (ШВ=8)?

Длина операнда (8 байтов) равна ширине выборки из ОП!

Примеры ГСА исполнения команд для ШВ=8

Микропрограмма исполнения команды сложения с фиксированной точкой (I4)

Описание команды. Первый операнд складывается со вторым операндом, результат записывается на место первого операнда. Операнды имеют формат I4. Признак результата: 0 — =0; 1 — <0; 2 —>0; 3 — переполнение. Прерывания: адресация, спецификация, переполнение с фиксированной точкой.

ГСА построена при следующих предположениях: $E_{O\Pi}$ =512МВ, ШВ=8, $E_{P\Pi}$ =16, тип РП — раздельная (РПФ — регистровая память РОН, РПП — регистровая память РПТ, РАРПФ и РСРПФ — соответственно регистр адреса и регистр слова (регистр данных) РПФ, ЧтРПФ — микрооперация чтения из РПФ), команда работает с данными формата I4.

Адрес слова (I4) должен быть кратен 4.

Микропрограмма исполнения команды загрузки двойного слова (F8).

Описание команды. Второй операнд длиной 8 байт помещается из ОП на место первого операнда (в пару РПТ). Значение второго операнда в ОП не изменяется. Признак результата остается без изменения. Прерывания программы: адресация спецификация.

ГСА построена при тех же предположениях: E_{OП}=512MB, ШВ=8, E_{PП}=16, тип РП – раздельная.

Операнд формата F8 (8 байт) выбирается на ПортД за одно обращение к ОП (ширина выборки из ОП равна длине операнда), а в регистровую память записывается за два обращения (РСРПП – четырехбайтный). Номер первого регистра регистровой пары, в которую пишется операнд должен быть четным. Адрес (нечетный) следующего регистра формируется так:

В момент времени t на РСРПФ – 29-разрядный адрес операнда длиной полуслово (I2):

Примеры ГСА исполнения команд для ШВ=4

Перегрузка в регистры АЛУ (Р2 и Р1) младших частей второго и первого операнда, выполнение операции сложения с плавающей точкой в АЛУ (управляющий сигнал СлПТ инициирует выполнение микропрограммы сложения чисел с плавающей точкой в АЛУ, по окончании выполнения микропрограммы АЛУ сбрасывает сигнал занятости $Z_{AЛУ}$)

Запись результата (сначала младшей, потом старшей части) из регистра Р1 АЛУ в пару РПТ (на место первого операнда), сохранение признака результата в РПР и фиксирование флагов прерываний в РФ

Проверка отсутствия исключительной ситуации

Полный состав флагов проектируемой учебной ЭВМ

Можно ограничиться флагами, вырабатываемыми пятью командами, заданными вариантом на КП. А можно и не ограничиваться, учитывая то, что мы все делаем общее дело ;-)

На структурной схеме рассмотренные передачи сигналов можно обозначить так:

Если длина операнда, записываемого в память, меньше ширины выборки из ОП, то операция записи в память превращается в операцию чтения из ОП — записи в ОП.

В данном случае нужно считать из ОП слово, на которое указывает адрес второго операнда, и в этом слове заменить одно из полуслов на полуслово (младшее) из РОН R₁.

Для этого в блоке 5 адрес слова (ПортД(3:29)) записывается на ПортА, а номер заменяемого полуслова (ПортД(30)) сохраняется на триггере НПС, т.к. информация в ПортД будет затерта в результате выполнения операции ЧтОП (в том же блоке), предназначенной как раз для считывания слова ОП, в котором нужно заменить полуслово.

Пример ГСА исполнения команды перехода

Микропрограмма исполнения команды условного перехода по маске (УПм).

<u>Описание команды.</u> Продвинутый адрес команды в СЧАК замещается адресом перехода, если значение признака результата в РПР соответствует коду, указанному в поле маски М₁. В противном случае продолжается выполнение обычной последовательности команд с использованием продвинутого адреса. Когда во всех четырех разрядах маски находятся единицы, происходит безусловный переход. Если во всех четырех разрядах маски находятся нули или поле R₂ содержит нули, то команда эквивалентна отсутствию операции (переход не происходит). Признак результата остается без изменения.

Проверка соответствия двухразрядного позиционного кода признака результата четырехразрядному коду маски.

Прерывания программы отсутствуют.

Обозначение осведомительного сигнала x_i на структурной схеме процессора:

Схема вычисления функции f

Единичному значению каждого бита маски соответствует определенное значение признака результата в РПР:

Значение РПР	Номер	
	соответствующего	
	разряда РК	
00	8	
01	9	
10	10	
11	11	

Таким образом, используя одну и ту же команду УПм, можно организовать переходы по различным условиям:

если результат предыдущей арифметической команды:

=0 (PK(8:11)=1000); <0 (PK(8:11)=0100); >0 (PK(8:11)=0010); ≠0 (PK(8:11)=0110); ≤0 (PK(8:11)=1100); ≥0 (PK(8:11)=1010);

ПП(РК(8:11)=0001).

Пример ГСА исполнения команды ввода-вывода

Микропрограмма исполнения команды записи байта в МВВ (ПМ).

Описание команды: младший байт порта данных (ПортД) процессора переписывается в порт МВВ, номер которого задан полем НУВВ.

График выполнения курсового проекта

Номер этапа	Название этапов курсового проекта	Срок выполнения этапов проекта (неделя)
1.	Получение задания. Оформление листа задания	1
2.	Изучение литературы и уточнение постановки задачи. Определение структуры и разрядности основных элементов ЦОУ.	V 2
3.	Разработка форматов команд и уточнение форматов обрабатываемых данных.	√ 3
4.	Изучение особенностей алгоритма выборки команды для заданной ширины выборки.	4
5.	Разработка раздельных ГСА исполнения команд.	5-6
6.	Построение общей ГСА функционирования процессора.	7
7.	Построение структурной схемы ЦОУ и архитектуры внешних выводов процессора.	8
8.	Разработка структурной схемы управляющего устройства (УУ).	9
9.	Разработка микропрограммы функционирования УУ.	10-11
10.	Разработка принципиальной схемы заданного узла УУ.	12-13
11.	Оформление пояснительной записки и чертежей	14-15
12.	Защита проекта (в соответствии с графиком защиты)	16-17

Объединенная ГСА функционирования процессора (укрупненные блоки нужно раскрыть)

Установка флага исключительной ситуации «Резервная команда».

