			When a face of v	vagnitule of
380N is applied,	The spring Vi	eames V.36m la	ong.	
What is th	e stiffness of	the spring?		
Fuet = k	151			
\S =	10.36m-0.28	ml		
= (0.08 m			
380=0.0	78 k			
k=4750	3 <u>W</u>			
Vext the spu	rives is compress	ed so that its !	eusth is C.21 m. l	Nhad
Mugnitude of	face is vegur	ed to do this?		
Fret = -	SI			
15	SI= 10.21m-C.	28ml		
	= 0.07			
(Fuet)=47.	00.07			
= 3?	32.5N			

Y	œ	push	CN	a c	spring	W	hosi	e st	if#V	1 <i>8</i> 35	is	22 ^V /	m,	(cm	pvess	ivo)	it V	ntill	it	iS	
١.	8 0	Wh	Shrv	ter	tha	n if	s V	elax	ed	leng	h.	Wh	at								
fc	ve	tha!	+ fle	ςSγ	ovives	VW	v e	xals	CV	yo	N	hana	?								_
					_					•											
		.8 _{(N}	n = C	.01	8m																_
_	1																				
	1	S =	0.0	(8 m																	_
	1:	2 1	1																		_
_		Fuct L	= k	151																	_
_			20		01.0																
_			= 22		:018																_
_			0	2 a	/ N.I																_
_			FU	.51	6 N																_

Use the approximation that $\overrightarrow{v}_{\text{avg}} = \overrightarrow{p_f}/m$ for each time step.

A paddle ball toy consists of a flat wooden paddle and a small rubber ball that are attached to each other by an elastic band (figure). You have a paddle ball toy for which the mass of the ball is 0.011 kg, the stiffness of the elastic band is 0.925 N/m, and the relaxed length of the elastic band is 0.295 m. You are holding the paddle so the ball hangs suspended under it, when your cat comes along and bats the ball around, setting it in motion. At a particular instant the momentum of the ball is $\langle -0.02, -0.01, -0.02 \rangle$ kg·m/s, and the moving ball is at location $\langle -0.2, -0.61, 0 \rangle$ m relative to an origin located at the point where the elastic band is attached to the paddle. Define this instant as t = 0.

Determine	the positi	on of th	e ball a	2.1s later	, Using a	St of C.	5
	2.011kg	P, = <-(0.02,-0.	01,-0.02	7 kg//s		
· ·	.925 Mm 7.295 m	7:=<- bt=0		61,0>m			
LO (J. / C (J V V I	St C	. (5				

$$\begin{array}{c} = 0.6420 \text{ m} \\ \text{S} = 0.6420 \text{ m} \\ \text{S} = 0.6420 \text{ m} \\ = 0.247 \\ \text{Ls } \widehat{L} = \frac{\widehat{L}}{|\widehat{L}|} \\ = \frac{\langle -0.2, -0.61, 0 \rangle_{\text{m}}}{0.6420 \text{ m}} \\ = \langle -0.3116, -0.9502, 0 \rangle_{\text{m}} \\ = \langle -0.3116, -0.9502, 0 \rangle_{\text{m}} \\ = \langle -0.3210 \langle -0.3116, -0.9502, 0 \rangle_{\text{m}} \\ = \langle -0.3210 \langle -0.3116, -0.9502, 0 \rangle_{\text{m}} \\ = \langle -0.3210 \langle -0.3116, -0.9502, 0 \rangle_{\text{m}} \\ = \langle -0.1000, 0.3045, 0 \rangle_{\text{m}} \\ = \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0.01, -0.027 + \langle -0.1000, 0.1967, 0 \rangle_{\text{m}} \\ = \langle -0.02, -0$$

$$= \langle -0.02, -0.01, 0.027 + \langle 0.01, 0.01967, 0 \rangle$$

$$= \langle -0.01, 0.00967, -0.027 \rangle \times_{9} \cdot_{5}^{12}$$
3. V_{plante} $P_{osition}$

$$= \frac{P_{p}}{V_{p}}$$

$$= \frac{P_{osition}}{P_{osition}}$$

$$= \langle -0.01, 0.00967, -0.027 \rangle \times_{9} \times_{9}^{12}$$

$$= \langle -0.1991, 0.8791, -1.81827 \times_{9}^{12}$$

$$= \langle -0.2, -0.61, 0.7 + \langle -0.09091, 0.8791, -1.81827 \cdot_{0.1}^{12}$$

$$= \langle -0.2, -0.61, 0.7 + \langle -0.09091, 0.08791, -0.18182 \rangle$$

$$= \langle -0.2999, -0.5221, -0.18182 \rangle m$$
Storting with the same initial position and memorium, find the position of the ball of 0.053.

$$M = C.011 \times_{9} \quad \bar{P}_{1} = \langle -0.02, -0.01, -0.027 \times_{9}^{12} \times_{9}$$

$$= \langle -0.295 \times_{9}^{12} \times_{9}^$$

1. Find Net Force

Same as the first sertion

$$F_{nct} = \langle 0.1000, 0.1967, 0 \rangle N$$

2. Update Momentum

 $\vec{P}_r = \vec{P}_i + \vec{F}_{net} \Delta t$
 $= \langle -0.02, -0.01, -0.027 + \langle 0.000, 0.1967, 0 \rangle \cdot 0.05$
 $= \langle -0.02, -0.01, -0.027 + \langle 0.005, 0.009835, 0 \rangle$
 $= \langle -0.015, -0.000165, -0.027 + \langle 0.005, 0.009835, 0 \rangle$
 $\vec{V}_r = \frac{\vec{P}_r}{m}$
 $= \langle -0.015, -0.000165, -0.027$
 $= \langle -1.3636, -0.015, -1.8182 \rangle$
 $\vec{V}_r = \vec{V}_r + \vec{V}_r \Delta t$
 $= \langle -0.2, -0.61, 0 \rangle + \langle -1.3636, -0.015, -1.8182 \rangle \cdot 0.05$

= <-0	1.2,-0.61,0>	+ <-0.0	6818, -C.	00075,-	0.090917
=<-0	.2682,-0.6	108,-0	.090917		
Using the position	n and momeu +=0.1	/-lum you	Just ralale		LV VION Krom
M=C.011 k	$g \qquad \overline{\hat{p}}_{i} = \langle -C \rangle$ $n \qquad \overline{\hat{r}}_{i} = \langle -C \rangle$.01500,-	0.0001422	,-0.02>	tar vanding
Lo = 0.295 N				(), () () ()	
1. Find Net	Force				
	ring + Favority				
L. Fgavif;	,= < C, -9.8. G	2.011,07			
	= <c,-c.1c7< td=""><td>8,0>W</td><td></td><td></td><td></td></c,-c.1c7<>	8,0>W			
La F Sprine	=-ksî				
L» S	=] - - 0				
	→ []= r;				
	= \(\text{\$\text{\$0,070}\$}	3 + 0.3728	t 0.00826S		
	= 0.673	lm			

$$S = 0.3781 \text{ m}$$

$$L_{3}\hat{L} = \frac{1}{121}$$

$$= \frac{\langle -0.2662, -0.606, -0.09091 \rangle}{0.6731}$$

$$= \langle -0.3985, -0.9071, -0.1351 \rangle \text{ m}$$

$$\vec{F}_{spring} = -(0.925)(0.3781) \cdot \langle -0.3985, -0.9071, -0.1351 \rangle$$

$$= -0.3497 \cdot \langle -0.3985, -0.9071, -0.1351 \rangle$$

$$= \langle 0.1394, 0.3173, 0.04724 \rangle \text{ N}$$

$$\vec{F}_{inet} = \langle 0.1394, 0.2095, 0.04724 \rangle \text{ N}$$

$$2. \text{ Upderle Memerturn}$$

$$\vec{p}_{x} = \vec{p}_{i} + \vec{F}_{inet} \Delta \xi$$

$$= \vec{P}_{i} + \langle 0.00697, 0.01048, 0.002362 \rangle$$

$$= \langle -0.00803, 0.01033, -0.01764 \rangle$$
3. Updothe Position

F=F: +-	P* ∆t					
= 7: + <	(-0.73,0	.9393,	-1.6035) } }		
= 17; +4	-0.0365	,0.046	17,-0.09	3017>		
= \(\(-0. \)	3047,-0.	5636 -	0.17117	m		