实验要求

对于 \mathbb{R}^2 空间非二次规划问题 $\min f(x) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$,分析:

- (1) 精确直线搜索时,目标函数值随迭代次数改变的情况
- (2) 回溯直线搜索时,设置不同的 α , β 值时,目标函数值随迭代次数改变的情况。注:初始值相同。
- (3) 使用Newton下降方法,令回溯直线搜索时 $\alpha=0.1, \beta=0.7$,目标函数值随迭代次数改变的情况。

精确直线搜索

实现过程

将eps设置为5e-6,并将迭代过程保存到csv文件中。

设置初始点(3,3)。

代码实现见附件精确直线搜索.cpp。

实验结果

求得 $x^* = (-0.347, 0), f(x^*) = 2.559$,符合理论结果。

由生成的csv文件,反映目标函数值随迭代次数变化的情况绘制折线图如下,csv文件见附件。

结果分析

显然迭代次数越多下降越慢, 误差越小。

回溯直线搜索

实现过程

将eps设置为5e-6,并将迭代过程保存到csv文件中, α , β 手动设置。设置初始点(3,3)。

代码实现见附件回溯直线搜索.cpp。

实验结果

改变 α , β 的值, 结果如下:

$\alpha \setminus \beta$	0.25	0.5	0.75	0.95
0.125	27	37	40	51
0.25	39	33	41	42

α\β	0.25	0.5	0.75	0.95
0.375	39	40	32	43
0.5	40	36	38	29

无论 α, β 取何值,均可求得理论结果 $x^* = (-0.347, 0), f(x^*) = 2.559$ 。

观察目标函数值随迭代次数改变的情况,选择对角线上的 β/α 对绘图, $\alpha \setminus \beta$ 为0.125/0.25,0.25/0.5,0.375/0.75,0.5/0.95 折线图如下(刨除起始过大点),csv文件见附件。

结果分析

迭代次数最好结果为(0.125,0.25),最差结果为(0.125,0.95)关注到当 β/α 在2左右时,迭代次数最少,猜测 β/α 的取值既不能过大,也不能过小,否则会导致迭代次数增加。

使用Newton下降方法

实现过程

将eps设置为5e-6,并将迭代过程保存到csv文件中, $\alpha=0.1, \beta=0.7$ 。 设置初始点(3,3)。

代码实现见附件Newton.cpp。

实验结果

求得 $x^* = (-0.347, 0), f(x^*) = 2.559$,符合理论结果。 迭代次数为15次。

由生成的csv文件,反映目标函数值随迭代次数变化的情况绘制折线图如下,csv文件见附件。

结果分析

同参数下	梯度下降方法需要迭代38次	牛顿下降方法显著优于梯度下降方法。
10122811		