Chapter 3 Vector Spaces

Section 3.3 Linear independence

Lemma Given n vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$, it is possible to write one of the vectors as a linear combination of the other n-1 vectors if and only if there exist scalars c_i , $i=1,\cdots,n$, not all zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n=\mathbf{0}.$$

Proof Suppose

$$\mathbf{v}_n = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_{n-1} \mathbf{v}_{n-1}.$$

Subtracting \mathbf{v}_n from both sides of this equation, we get

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_{n-1}\mathbf{v}_{n-1} - \mathbf{v}_n = \mathbf{0}.$$

Conversely, if $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n = \mathbf{0}$ and at least one of the c_i 's, say c_n , is nonzero, then

$$\mathbf{v}_n = (c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_{n-1}\mathbf{v}_{n-1})/c_n.$$

Definition (Linearly independent) The vectors $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n}$ in a vector space V are said to be **linearly independent** if

$$c_1\mathbf{v_1}+c_2\mathbf{v_2}+\cdots+c_n\mathbf{v_n}=\mathbf{0},$$

implies that all the scalars $c_i = 0$, $i = 1, 2, \dots, n$.

Definition (Linearly dependent) The vectors $\mathbf{v_1}, \mathbf{v_2}, \cdots, \mathbf{v_n}$ in a vector space V are said to be **linearly dependent** if there exist scalars c_i , $i = 1, 2, \cdots, n$, not all zero, such that $c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots + c_n\mathbf{v_n} = \mathbf{0}$.

To check whether $\{v_1, v_2, \dots, v_n\}$ are linearly independent:

Step 1 Consider the system

$$c_1\mathbf{v_1}+c_2\mathbf{v_2}+\cdots+c_n\mathbf{v_n}=\mathbf{0}.$$

Step 2 Solve for c_1, c_2, \cdots, c_n .

- ▶ If there is only the trivial solution (i.e. $c_i = 0$ for all i), then the vectors are linearly independent.
- ▶ If there are Infinitely many solutions, then the vectors are linearly dependent.

Example Are $(1, 2, 4)^T$, $(2, 1, 3)^T$, $(4, -1, 1)^T$ linearly independent in \mathbb{R}^3 ?

Solution
If
$$c_1\begin{pmatrix}1\\2\\4\end{pmatrix}+c_2\begin{pmatrix}2\\1\\3\end{pmatrix}+c_3\begin{pmatrix}4\\-1\\1\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}$$
, then
$$\begin{cases} 1c_1 & +2c_2 & +4c_3 & = 0\\ 2c_1 & +1c_2 & -1c_3 & = 0\\ 4c_1 & +3c_2 & +1c_3 & = 0 \end{cases}$$
.

$$\begin{pmatrix} 1 & 2 & 4 & 0 \\ 2 & 1 & -1 & 0 \\ 4 & 3 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & -3 & -9 & 0 \\ 0 & -5 & -15 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 4 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The solutions are
$$\begin{pmatrix} 2\alpha \\ -3\alpha \\ \alpha \end{pmatrix}$$
 where α is any real number.

(If
$$\alpha = 1$$
, then $\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$ and so $2\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} - 3\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Therefore, the three vectors are linearly dependent.

Example Is
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 linearly independent?

Solution Solving
$$c \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, we have $c = 0$. So $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is linearly independent.

Example Are
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ linearly independent?

Solution Solving
$$c_1\begin{pmatrix} 1\\0 \end{pmatrix} + c_2\begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$$
, we have $c_1 = c_2 = 0$. So $\begin{pmatrix} 1\\0 \end{pmatrix}$, $\begin{pmatrix} 0\\1 \end{pmatrix}$ are linearly independent.

3.3 Linear independence

Example Are $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$ linearly independent?

Solution Solving $c_1\begin{pmatrix}1\\0\end{pmatrix}+c_2\begin{pmatrix}2\\0\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}$, we have $c_1=-2\alpha$, $c_2=\alpha$, where α is a real number. So $\begin{pmatrix}1\\0\end{pmatrix}$, $\begin{pmatrix}2\\0\end{pmatrix}$ are linearly dependent.

Example Are
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ linearly independent? Solution Solving $c_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} 2 \\ 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we have $c_1 = -2\alpha$, $c_2 = \alpha$ and $c_3 = 0$, where α is a real number. So $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are linearly dependent.

Example Show that (x-1)(x-2), (x-1), 1 are linearly independent in P_3 .

Solution Suppose

$$a_1(x-1)(x-2) + a_2(x-1) + a_3 = 0.$$

Then

$$a_1x^2 + (-3a_1 + a_2)x + (2a_1 + a_3) = 0.$$

Comparing the coefficients on both sides, we have

$$\begin{cases} a_1 & = 0 \\ -3a_1 + a_2 & = 0 \\ 2a_1 + a_3 & = 0 \end{cases}, \quad \text{which gives} \quad \begin{cases} a_1 = 0 \\ a_2 = 0 \\ a_3 = 0 \end{cases}.$$

Hence, (x-1)(x-2), (x-1), 1 are linearly independent in P_3 .

Theorem Let $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ be n vectors in \mathbf{R}^n and let $X = (\mathbf{x}_1, \dots, \mathbf{x}_n)$. The vectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ will be linearly dependent if and only if X is singular.

Proof The equation

$$c_1\mathbf{x}_1+c_2\mathbf{x}_2+\cdots+c_n\mathbf{x}_n=\mathbf{0}$$

can be rewritten as a matrix equation $X\mathbf{c} = \mathbf{0}$. This equation will have a nontrivial solution if and only if X is singular. Thus, $\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n$ will be linearly dependent if and only if X is singular.

Theorem Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be vectors in a vector space V.

The following are equivalent.

- 1. Any vector $\mathbf{v} \in \operatorname{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ can be written uniquely as a linear combination of $\mathbf{v}_1, \cdots, \mathbf{v}_n$.
- 2. $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.

(Negation version) The following are equivalent.

- Not 1. There is a vector $\mathbf{v} \in \operatorname{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ can be written as more than one linear combinations of $\mathbf{v}_1, \cdots, \mathbf{v}_n$.
- Not 2. $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent.

(Negation version) The following are equivalent.

Not 1. There is a vector $\mathbf{v} \in \operatorname{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ can be written as more than one linear combinations of $\mathbf{v}_1, \cdots, \mathbf{v}_n$.

Not 2. $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent.

Proof of "Not $(1) \Rightarrow \text{Not } (2)$ "

If $\mathbf{x} \in \text{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$. Suppose that \mathbf{x} have two expressions of linear combination

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n \tag{1}$$

$$\mathbf{x} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \dots + d_n \mathbf{v}_n \tag{2}$$

If $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are linearly independent, then subtracting (2) from (1) yields

$$(c_1-d_1)\mathbf{v}_1+(c_2-d_2)\mathbf{v}_2+\cdots+(c_n-d_n)\mathbf{v}_n=\mathbf{0}.$$
 (3)

By the linear independence of $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ the coefficients of (3) must all be 0. Hence, $c_i = d_i$, $i = 1, \cdots, n$.

(Negation version) The following are equivalent.

Not 1. There is a vector $\mathbf{v} \in \operatorname{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ can be written more than one linear combinations of $\mathbf{v}_1, \cdots, \mathbf{v}_n$.

Not 2. $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent.

Proof Not "(2) \Rightarrow Not (1)" If $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$ are linearly dependent, then there exist d_1, \cdots, d_n , not all 0, such that

$$d_1\mathbf{v}_1 + d_2\mathbf{v}_2 + \dots + d_n\mathbf{v}_n = \mathbf{0}. \tag{4}$$

Adding (1) and (4), we get

$$\mathbf{x} = (c_1 + d_1)\mathbf{v}_1 + \cdots + (c_n + d_n)\mathbf{v}_n.$$

Since the d_i 's are not all 0, thus, if $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent, the representation of a vector as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n$ is not unique.

Theorem Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be vectors in a vector space V.

The following are equivalent.

- 1. Any vector $\mathbf{v} \in \mathsf{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_n\}$ can be written uniquely as a linear combination of $\mathbf{v}_1, \cdots, \mathbf{v}_n$.
- 2. $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.

So, if $Span\{\mathbf{v}_1, \dots, \mathbf{v}_n\} = V$, The following are equivalent.

- 1. A vector $\mathbf{v} \in V$ can be written uniquely as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n$.
- 2. $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.

If a) Span $\{\mathbf{v}_1,\cdots,\mathbf{v}_n\}=V$ and b) $\mathbf{v}_1,\cdots,\mathbf{v}_n$ are linearly independent, then for any vector $\mathbf{v}\in V$, $\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n$

for some unique c_i . And we will call (c_1, c_2, \dots, c_n) the coordinates of \mathbf{v} .