CMB 301B - Agronomia - Matemática 2

26 de Outubro de 2017

Nome:

Q:	1	2	3	4	5	Total	
P:	10	45	20	15	10	100	
N:							

	d_1	d_2	d_3	d_4	d_5	d_6	d_7	d_8
GRR								

Esboce o gráfico de uma função que satisfaça todas as condições dadas:

- f'(-1) não existe,
- f'(1) = f'(4) = 0,
- f'(x) > 0 se x < -1 ou 1 < x < 4,
- f'(x) < 0 se -1 < x < 1 ou x > 4.

Calcule a primeira e a segunda derivada das seguintes funções:

(a)
$$\boxed{7} f(x) = \frac{x^{(d_8+1)}}{5} + \frac{5}{x^{(d_7+1)}}$$

(b)
$$[8] f(x) = \frac{7}{2} \ln x$$

(c)
$$10 f(x) = (\sqrt{5}x - 4)(3 - x^6)^{(d_6+2)}$$

(d)
$$10 f(x) = e^{1-x^2}$$

(e)
$$10 f(x) = \frac{\cos x - 1}{\sin x + 1}$$

Considere a função $f(x) = (d_5 + 1)x^2e^{-x}$. Determine:

- (a) $\boxed{4} f(1)$
- (b) $\boxed{8}$ a reta tangente no ponto (1, f(1))
- (c) 8 os mínimos e máximos locais de f(x)

Considere um cilindro de raio r e altura h com volume 64000π ml. Quais os valores de r e h que minimizam a área da superfície?

Determine os máximos e o mínimos globais de $f(x) = -1 + (x-1)^2$ no intervalo [-1,0].