Fast arithmetics in Artin-Schreier towers over finite fields

Luca De Feo¹ joint work with É. Schost²

 $^{1}\acute{\rm E}$ cole Polytechnique and INRIA, France 2 ORCCA and CSD, The University of Western Ontario, London, ON

October 10, 2009 RAIM, École Normale Supérieure, Lyon

1 / 30

Standard arithmetics

$$+,-,\times,/: \begin{cases} \mathbb{U}_i \times \mathbb{U}_i & \to \mathbb{U}_i \\ (u,v) & \mapsto u \operatorname{op} v \end{cases}$$

2 / 30

Inclusion

$$\iota : \begin{cases} \mathbb{U}_i & \subset \mathbb{U}_{i+1} \\ v & \mapsto \bar{v} \end{cases}$$

Membership

$$\iota^{-1} : \begin{cases} \mathbb{U}_{i+1} & \supset \mathbb{U}_i \\ \iota(v) & \mapsto v \end{cases}$$

$$\mathbb{U}_k$$
 p
 \mathbb{U}_{k-1}
 \mathbb{U}_2
 p
 \mathbb{U}_1
 p
 \mathbb{F}_{p}

Projection

$$\pi : \begin{cases} \mathbb{U}_{i+1} & \xrightarrow{\sim} \mathbb{U}_i^p \simeq \mathbb{U}_i[\gamma] \\ v & \mapsto (v_0, \dots, v_{p-1}) \end{cases}$$

$$\pi^{-1} : \begin{cases} \mathbb{U}_i^p \simeq \mathbb{U}_i[\gamma] & \xrightarrow{\sim} \mathbb{U}_{i+1} \\ (v_0, \dots, v_{p-1}) & \mapsto \sum_j v_j \gamma^j \end{cases}$$

Traces

$$\mathsf{Tr} : \begin{cases} \mathbb{U}_{i+1} & \to \mathbb{U}_i \\ v & \mapsto \mathsf{Tr}(v) \end{cases}$$

Galois action

$$\varphi : \begin{cases} G \times \mathbb{U}_i & \to \mathbb{U}_i \\ (\sigma, v) & \mapsto \sigma(v) \end{cases}$$

$$G := \mathsf{Gal}(\mathbb{U}_{i+1}/\mathbb{U}_i) \simeq \mathbb{Z}/p\mathbb{Z}$$

Crypto application: Isogeny computation

$$\begin{array}{c|c}
\mathbb{U}_{16} < -E[2^{18}] \\
2 \\
\mathbb{U}_{15} < -E[2^{17}] \\
\vdots \\
\mathbb{U}_{2} < --E[16] \\
2 \\
\mathbb{U}_{1} < --E[8] \\
\mathbb{F}_{q} < --E[4]
\end{array}$$

$$E,E'$$
 elliptic curves with $\#E(F_q)=\#E'(F_q)$

Theorem/Algorithm

Knowing $E[2^{k+3}]$ and $E'[2^{k+3}]$ \Rightarrow all isogenies of degree $< 2^k$

Example

- $\bullet \ \mathbb{F}_{q} = \mathbb{F}_{2^{163}}$,
- $E[4] \subset E(\mathbb{F}_q)$, $E[2^{i+2}] \subset E(\mathbb{U}_i)$,
- Isogeny degree $< 2^{15} \Rightarrow 16$ levels !!
- ullet One element of $\mathbb{U}_{16}\sim 1.5 \mathrm{MB}$!!

Our context

$$\mathbb{U}_{k} = \frac{\mathbb{U}_{k-1}[X_{k}]}{P_{k-1}(X_{k})}$$

$$\downarrow^{p}$$

$$\mathbb{U}_{k-1}$$

$$\downarrow^{l}$$

$$\mathbb{U}_{1} = \frac{\mathbb{U}_{0}[X_{1}]}{P_{0}(X_{1})}$$

$$\downarrow^{p}$$

$$\mathbb{F}_{q} = \frac{\mathbb{F}_{p}[X_{0}]}{Q(X_{0})}$$

Tower over finite fields

 P_i irreducible polynomial in $\mathbb{U}_i[X]$

Our context

$$\mathbb{U}_{k} = \frac{\mathbb{U}_{k-1}[X_{k}]}{P_{k-1}(X_{k})}$$

$$\downarrow^{p}$$

$$\mathbb{U}_{k-1}$$

$$\downarrow^{l}$$

$$\mathbb{U}_{1} = \frac{\mathbb{U}_{0}[X_{1}]}{P_{0}(X_{1})}$$

$$\downarrow^{p}$$

$$\mathbb{F}_{q} = \frac{\mathbb{F}_{p}[X_{0}]}{Q(X_{0})}$$

Tower over finite fields

 P_i irreducible polynomial in $\mathbb{U}_i[X]$

But this is too hard.

Artin-Schreier

Definition (Artin-Schreier polynomial)

 \mathbb{K} a field of characteristic p, $\alpha \in \mathbb{K}$

$$X^p - X - \alpha$$

is an Artin-Schreier polynomial.

Theorem

 \mathbb{K} finite. $X^p - X - \alpha$ irreducible $\Leftrightarrow \operatorname{Tr}_{\mathbb{K}/\mathbb{F}_p}(\alpha) \neq 0$. If $\eta \in \mathbb{K}$ is a root, then $\eta + 1, \ldots, \eta + (p-1)$ are roots.

Definition (Artin-Schreier extension)

 ${\cal P}$ an irreducible Artin-Schreier polynomial.

$$\mathbb{L} = \mathbb{K}[X]/\mathcal{P}(X).$$

 \mathbb{L}/\mathbb{K} is called an Artin-Schreier extension.

Our context

$$\mathbb{U}_{k} = \frac{\mathbb{U}_{k-1}[X_{k}]}{P_{k-1}(X_{k})}$$

$$\begin{vmatrix} p \\ \mathbb{U}_{k-1} \\ \vdots \\ \vdots \\ \mathbb{U}_{1} = \frac{\mathbb{U}_{0}[X_{1}]}{P_{0}(X_{1})}$$

$$\begin{vmatrix} p \\ \mathbb{U}_{0} = \mathbb{F}_{p^{d}} = \frac{\mathbb{F}_{p}[X_{0}]}{Q(X_{0})} \end{vmatrix}$$

Towers over finite fields

$$P_i = X^p - X - \alpha_i$$

We say that $(\mathbb{U}_0,\ldots,\mathbb{U}_k)$ is defined by $(\alpha_0,\ldots,\alpha_{k-1})$ over \mathbb{U}_0 .

ANY separable extension of degree p can be expressed this way

Size, complexities

$$\#\mathbb{U}_i = p^{p^i d}$$

 \mathbb{U}_k

Optimal representation

All common representations achieve it: $O(p^id)$

 \mathbb{U}_{k-1}

 \mathbb{U}_1

Complexities

optimal:

 $O(p^id)$ addition $\tilde{O}(i^a p^i d)$ FFT multiplication

quasi-optimal:

 $\tilde{O}(i^a p^{i+b} d)$

almost-optimal: suboptimal:

 $\tilde{O}(i^a p^{i+b} d^c)$

too bad:

 $\tilde{O}\left(i^a(p^{i+b})^ed^c\right)$

naive multiplication

Multiplication function M(n)

FFT: $M(n) = O(n \log n \log \log n)$,

Naive:

イロト イ団ト イミト イミト

 $M(n) = O(n^2).$

L. De Feo (École Polytechnique)

Outline

Representation

2 More arithmetics

Implementation and benchmarks

Representation matters!

\mathbb{U}_k

 \mathbb{U}_0

Multivariate representation of $v \in \mathbb{U}_i$

$$v = X_0^{d-1} X_1^{p-1} \cdots X_i^{p-1} + 2X_0^{d-1} X_1^{p-1} \cdots X_i^{p-2} + \cdots$$

\mathbb{U}_{k-1}

Univariate representation of $v \in \mathbb{U}_i$

- $\bullet \ \mathbb{U}_i = \mathbb{F}_p[x_i],$
- $v = c_0 + c_1 x_i + c_2 x_i^2 + \dots + c_{p^i d-1} x_i^{p^i d-1}$ with $c_i \in \mathbb{F}_p$.

How much does it cost to...

- Multiply?
- Express the embedding $\mathbb{U}_{i-1} \subset \mathbb{U}_i$?
- Express the vector space isomorphism $\mathbb{U}_i = \mathbb{U}_{i-1}^p$?
- Switch between the representations?

A primitive tower

 \mathbb{U}_k

 \mathbb{U}_{k-1}

 \mathbb{U}_1

 \mathbb{U}_0

Definition (Primitive tower)

A tower is primitive if $\mathbb{U}_i = \mathbb{F}_p[X_i]$.

In general this is not the case. Think of $P_0 = X^p - X - 1$.

Theorem (extends a result in [Cantor '89])

Let $x_0 = X_0$ such that $\operatorname{Tr}_{\mathbb{U}_0/\mathbb{F}_p}(x_0) \neq 0$, let

$$P_0 = X^p - X - x_0$$

 $P_i = X^p - X - x_i^{2p-1}$

with x_{i+1} a root of P_i in \mathbb{U}_{i+1} .

Then, the tower defined by (P_0, \ldots, P_{k-1}) is primitive.

Some tricks to play when p = 2.

Computing the minimal polynomials

 \mathbb{U}_0

We look for Q_i , the minimal polynomial of x_i over \mathbb{F}_p

Algorithm [Cantor '89]

•
$$Q_0 = Q$$

easy,

•
$$Q_1 = Q_0(X^p - X)$$

easy,

Let ω be a 2p-1-th root of unity,

•
$$q_{i+1}(X^{2p-1}) = \prod_{i=0}^{2p-2} Q_i(\omega^i X)$$

not too hard,

•
$$Q_{i+1} = q_{i+1}(X^p - X)$$

easy.

Complexity

 $O\left(\mathsf{M}(p^{i+2}d)\log p\right)$

Yes, we can multiply!

Standard arithmetics

$$+,-,\times,/: \begin{cases} \mathbb{U}_i \times \mathbb{U}_i & \to \mathbb{U}_i \\ (u,v) & \mapsto u \operatorname{op} v \end{cases}$$

Outline

Representation

More arithmetics

Implementation and benchmarks

Level embedding

$$\mathbb{U}_k$$
 \parallel
 \mathbb{U}_{k-1}
 \mathbb{U}_1
 \parallel

$$\pi : \begin{cases} \mathbb{U}_{i+1} & \xrightarrow{\sim} \mathbb{U}_i^p \simeq \mathbb{U}_i[\gamma] \\ v & \mapsto (v_0, \dots, v_{p-1}) \end{cases}$$

$$\pi^{-1} : \begin{cases} \mathbb{U}_i^p \simeq \mathbb{U}_i[\gamma] & \xrightarrow{\sim} \mathbb{U}_{i+1} \\ (v_0, \dots, v_{p-1}) & \mapsto \sum_j v_j \gamma^j \end{cases}$$

Level embedding

Push-down

Input $v \dashv \mathbb{U}_i$,

Output $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ such that $v = v_0 + \cdots + v_{p-1} x_i^{p-1}$.

Lift-up

Input $v_0, \ldots, v_{n-1} \dashv \mathbb{U}_{i-1}$,

Output $v \dashv \mathbb{U}_i$ such that $v = v_0 + \cdots + v_{n-1}x_i^{p-1}$.

Complexity function L(i)

It turns out that the two operations lie in the same complexity class, we note L(i) for it:

$$L(i) = O\left(pM(p^{i}d) + p^{i+1}d\log_{n}(p^{i}d)^{2}\right)$$

Push-down

Push-down

Input $v \dashv \mathbb{U}_i$, Output $v_0, \ldots, v_{p-1} \dashv \mathbb{U}_{i-1}$ s.t. $v = v_0 + \cdots + v_{p-1}x_i^{p-1}$.

- Reduce v modulo $x_i^p x_i x_{i-1}^{2p-1}$ by a divide-and-conquer approach,
- **9** each of the coefficients of x_i has degree in x_{i-1} less than $2 \deg_{x_i}(v)$,
- reduce each of the coefficients.

Theorem

Up to some simple formulae:

$$\left(\begin{array}{c} \pi^{-1} \end{array} \right) \left(v \right) \; \sim \; \left(\begin{array}{c} \pi^T \end{array} \right) \left(\begin{array}{c} M_v^T \end{array} \right) \left(\mathsf{Tr}^T \right)$$

- Tr can be easily computed through the residue formula.
- Linear algorithms can be transposed much like linear applications;
- computing $v \cdot \mathsf{Tr} := (M_v)(\mathsf{Tr}^T)$ is transposed multiplication.
- Computing π^T is transposed push-down.

Theorem

Up to some simple formulae:

$$\left(\begin{array}{c} \pi^{-1} \end{array}\right) \left(v\right) \; \sim \; \left(\begin{array}{c} \pi^T \end{array}\right) \left(\begin{array}{c} M_v^T \end{array}\right) \left(\mathsf{Tr}^T\right)$$

- Tr can be easily computed through the residue formula.
- Linear algorithms can be transposed much like linear applications;
- computing $v \cdot \mathsf{Tr} := (M_v)(\mathsf{Tr}^T)$ is transposed multiplication.
- Computing π^T is transposed push-down.

Theorem

Up to some simple formulae:

$$\left(egin{array}{c} \pi^{-1} \end{array}
ight) \left(v
ight) \, \sim \, \left(egin{array}{c} \pi^T \end{array}
ight) \left(egin{array}{c} M_v^T \end{array}
ight) \left({\sf Tr}^T
ight)$$

- Tr can be easily computed through the residue formula.
- Linear algorithms can be transposed much like linear applications;
- computing $v \cdot \mathsf{Tr} := (M_v)(\mathsf{Tr}^T)$ is transposed multiplication.
- Computing π^T is transposed push-down.

Theorem

Up to some simple formulae:

$$\left(egin{array}{c} \pi^{-1} \end{array}
ight) \left(v
ight) \, \sim \, \left(egin{array}{c} \pi^T \end{array}
ight) \left(egin{array}{c} M_v^T \end{array}
ight) \left({\sf Tr}^T
ight)$$

- Tr can be easily computed through the residue formula.
- Linear algorithms can be transposed much like linear applications;
- computing $v \cdot \mathsf{Tr} := (M_v)(\mathsf{Tr}^T)$ is transposed multiplication.
- Computing π^T is transposed push-down.

Lift-up

$$\begin{array}{ll} \text{Input} & v_0,\dots,v_{p-1}\dashv \mathbb{U}_{i-1}\\ \text{Output} \ v\dashv \mathbb{U}_i \quad \text{s.t.} \quad v=v_0+\dots+v_{p-1}x_i^{p-1} \end{array}$$

- $\textbf{0} \ \ \mathsf{Compute} \ \mathsf{the} \ \mathsf{linear} \ \mathsf{form} \ \ \mathsf{Tr} \in \mathbb{U}_i^{D^*} \mathsf{,}$
- compute $P_v = \mathsf{Push}\text{-}\mathsf{down}^T(\ell)$,
- lacksquare compute $N_v(Z) = P_v(Z) \cdot \operatorname{rev}(Q_i)(Z) \mod Z^{p^id-1}$
- \bullet return $\operatorname{rev}(N_v)/Q_i' \operatorname{mod} Q_i$.

Galois action

$$\varphi : \begin{cases} G \times \mathbb{U}_i & \to \mathbb{U}_i \\ (\sigma, v) & \mapsto \sigma(v) \end{cases}$$

$$G := \mathsf{Gal}(\mathbb{U}_{i+1}/\mathbb{U}_i) \simeq \mathbb{Z}/p\mathbb{Z}$$

Divide and conquer

We improve some operations in \mathbb{U}_i

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1} ;

$$\operatorname{\mathsf{op}}(v)$$
 \downarrow $\operatorname{\mathsf{op}}(v_0), \cdots, \operatorname{\mathsf{op}}(v_{p-1})$

Where it works

- traces,
- p-th roots,
- pseudotraces,

- inversion,
- Galois action.
-

Divide and conquer

We improve some operations in \mathbb{U}_i

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1} ;
- combine the results;

Where it works

- traces.
- p-th roots,
- pseudotraces,

- inversion,
- Galois action.
- . . .

Divide and conquer

We improve some operations in \mathbb{U}_i

- push-down the operands;
- recursively solve p instances in \mathbb{U}_{i-1} ;
- combine the results;
- lift-up.

Where it works

- traces.
- p-th roots,
- pseudotraces,

- inversion,
- Galois action,
- ...

Important application: Isomorphisms with generic towers

\mathbb{U}_k \mathbb{U}_{k-1} \mathbb{U}_1

 \mathbb{U}_0

Generic towers

- Let $(\alpha_0,\ldots,\alpha_{k-1})$ define a generic tower over \mathbb{U}_0 ,
- if we find an isomorphism we can bring fast arithmetics to it.

Computing the isomorphism [Couveignes '00]

Goal: factor $X^p - X - \alpha_i$ in U_{i+1} .

- Change of variables $X' = X \mu$ s.t.
- $X'^p X' \alpha_i$ has a root in \mathbb{U}_i ,
- Push-down, solve recursively, result is Δ ,
- Lift-up Δ,
- return $\Delta + \mu$.

 \mathbb{U}'_k

 \mathbb{U}_1'

 \mathbb{U}_0

Outline

Representation

2 More arithmetics

Implementation and benchmarks

Implementation

Implementation in NTL + gf2x

- GF2: p = 2, FFT, bit optimisation,
- Three types zz_p : $p < 2^{\lfloor long \rfloor}$, FFT, no bit-tricks,
 - ZZ_p: generic p, like zz_p but slower.

Comparison to Magma

Three ways of handling field extensions

- quo<U|P>: quotient of multivariate polynomial ring + Gröbner bases
- $@ \ \operatorname{ext<k}|\operatorname{P>:} \ \operatorname{field} \ \operatorname{extension} \ \operatorname{by} \ X^p-X-\alpha, \ \operatorname{precomputed} \ \operatorname{bases} \ + \ \operatorname{multivariate}$
- ext<k|p>: field extension of degree p, precomputed bases + multivariate

Benchmarks (on 14 AMD Opteron 2500)

- p = 2, d = 1, height varying,
- Three modes $\qquad \qquad \quad \bullet \ p \ {\rm varying}, \ d=1, \ {\rm height}=2,$
 - p = 5, d varying, height = 2.

Construction of the tower + precomputations

Multiplication

Isomorphism ([Couveignes '00] vs Magma)

Benchmarks on isogenies ([Couveignes '96])

Over $\mathbb{F}_{2^{101}}$, on an Intel Xeon E5430 Quad Core Processor 2.66GHz, 64GB ram

FAAST

These algorithms are packaged in a library

 ${\bf Download\ FAAST\ at} \\ {\bf http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST} \\$

We are currently writing an spkg for Sage.