README: Computational Time

The folder contains 2 subfolders: Table 3 and Figure 6. These two folders include code and functions for generating Table 3 and Figure 6 in Section 4.

Subfolder Table3

File name	Description
soybean.R	Code for obtaining imputation time for the soybean dataset
nwts.R	Code for obtaining imputation time for the nwts dataset
nhanes.R	Code for obtaining imputation time for the nhanes dataset
credit.R	Code for obtaining imputation time for the credit dataset
adult.R	Code for obtaining imputation time for the adult dataset

After running the above files, outputs would be stored in the folder result. This folder contains computational time results for different datasets.

File name	Description
soybean.RData	Computational time results for the soybean dataset
nwts.RData	Computational time results for the nwts dataset
nhanes.RData	Computational time results for the nhanes dataset
credit.RData	Computational time results for the credit dataset
adult.RData	Computational time results for the adult dataset

We can then obtain the summary statistics for these results.

File name	Description	
summary.R	Summary of computational time for obtaining Table 3 in Section 4.	

Datasets used in this section

- Dataset soybean is originally from the UCI Machine Learning Repository (Dua and Graff 2019). The dataset used in Section 4 is downloaded from the R package mlbench (Leisch and Dimitriadou 2021).
- Dataset nwts (D'Angio et al. 1989) can be downloaded from the R package addhazard (Hu et al. 2017).
- Dataset nhanes used in Section 4 can be downloaded from the R package hexbin (Carr et al. 2020).
- Dataset credit (Yeh and Lien 2009) is from the UCI Machine Learning Repository (Dua and Graff 2019). Users can also directly use the datafile credit.rda in the Table3 folder.

• Dataset adult (Becker and Kohavi 1996) is from the UCI Machine Learning Repository. Users can also load this dataset from the R package misle (Deng 2021).

Subfolder Figure6

File name	Description
time1.R	Code for obtaining running time for simulated data with 100 observations and
	different numbers of continuous features (11, 21 and 31).
time1b.R	Code for obtaining running time for simulated data with 100 observations and
	different numbers of binary features (11, 21 and 31).
time1c.R	Code for obtaining running time for simulated data with 100 observations and
	different numbers of a mix of binary and 3-class categorical features (11, 21 and 31).
time2.R	Code for obtaining running time for simulated data with 1000 observations and
	different numbers of continuous features (11, 21 and 31).
time2b.R	Code for obtaining running time for simulated data with 1000 observations and
	different numbers of binary features (11, 21 and 31).
time2c.R	Code for obtaining running time for simulated data with 1000 observations and
time2c.k	different numbers of a mix of binary and 3-class categorical features (11, 21 and 31).
time3.R	Code for obtaining running time for simulated data with 10000 observations and
	different numbers of continuous features (11, 21 and 31).
time3b.R	Code for obtaining running time for simulated data with 10000 observations and
	different numbers of binary features (11, 21 and 31).
time3c.R	Code for obtaining running time for simulated data with 10000 observations and
	different numbers of a mix of binary and 3-class categorical features (11, 21 and 31).
time4.R	Code for obtaining running time for simulated data with 100000 observations and
	different numbers of continuous features (11, 21 and 31).
time4b.R	Code for obtaining running time for simulated data with 100000 observations and
	different numbers of binary features (11, 21 and 31).
time4c.R	Code for obtaining running time for simulated data with 100000 observations and
	different numbers of a mix of binary and 3-class categorical features (11, 21 and 31).
timepfm.R	Code for generating Figure 6 in Section 4.

References

Becker, B., and Kohavi, R. (1996), "adult Dataset," https://archive.ics.uci.edu/ml/datasets/adult.

Carr, D., ported by Nicholas Lewin-Koh, Maechler, M., and contains copies of lattice functions written by Deepayan Sarkar (2020), hexbin: Hexagonal Binning Routines, R package version 1.28.1. Available at https://CRAN.R-project.org/package=hexbin.

- D'Angio, G. J., Breslow, N., Beckwith, J. B., Evans, A., Baum, E., Delorimier, A., Fernbach, D., Hrabovsky, E., Jones, B., Kelalis, P. et al. (1989), "Treatment of Wilms' Tumor. Results of the Third National Wilms' Tumor Study," *Cancer*, 64, 349–360.
- Deng, Y. (2021), misle: Multiple Imputation Through Statistical Learning, R package. Available at https://github.com/agnesdeng/misle.
- Dua, D., and Graff, C. (2019), "UCI Machine Learning Repository," University of California, Irvine, School of Information and Computer Sciences. Available at http://archive.ics.uci.edu/ml.
- Hu, J. K., Breslow, N., and Chan, G. (2017), addhazard: Fit Additive Hazards Models for Survival Analysis, R package version 1.1.0. Available at https://CRAN.R-project.org/package=addhazard.
- Leisch, F., and Dimitriadou, E. (2021), *mlbench: Machine Learning Benchmark Problems*, R package version 2.1-3. Available at https://cran.r-project.org/web/packages/mlbench.
- Yeh, I.-C., and Lien, C.-h. (2009), "The Comparisons of Data Mining Techniques for the Predictive Accuracy of Probability of Default of Credit Card Clients," Expert Systems with Applications, 36, 2473–2480.