Pappus chain

From Wikipedia, the free encyclopedia

In geometry, the **Pappus chain** is a ring of circles between two tangent circles investigated by Pappus of Alexandria in the 3rd century AD.

Contents

- 1 Construction
- 2 Properties
 - 2.1 Centers of the circles
 - 2.1.1 Ellipse
 - 2.1.2 Coordinates
 - 2.2 Radii of the circles
 - 2.3 Circle inversion
 - 2.4 Steiner chain
- 3 References
- 4 Bibliography
- 5 External links

A Pappus chain

Construction

The arbelos is defined by two circles, $C_{\rm U}$ and $C_{\rm V}$, which are tangent at the point ${\bf A}$ and where $C_{\rm U}$ is enclosed by $C_{\rm V}$. Let the radii of these two circles be denoted as $r_{\rm U}$ and $r_{\rm V}$, respectively, and let their respective centers be the points ${\bf U}$ and ${\bf V}$. The Pappus chain consists of the circles in the shaded grey region, which are externally tangent to $C_{\rm U}$ (the inner circle) and internally tangent to $C_{\rm V}$ (the outer circle). Let the radius, diameter and center point of the $n^{\rm th}$ circle of the Pappus chain be denoted as r_n , d_n and ${\bf P}_n$, respectively.

Properties

Centers of the circles

Ellipse

All the centers of the circles in the Pappus chain are located on a common ellipse, for the following reason. The sum of the distances from the $n^{\rm th}$ circle of the Pappus chain to the two centers ${\bf U}$ and ${\bf V}$ of the arbelos circles equals a constant

$$\overline{\mathbf{P}_n\mathbf{U}}+\overline{\mathbf{P}_n\mathbf{V}}=(r_U+r_n)+(r_V-r_n)=r_U+r_V$$

Thus, the foci of this ellipse are **U** and **V**, the centers of the two circles that define the arbelos; these points correspond to the midpoints of the line segments **AB** and **AC**, respectively.

Coordinates

If r = AC/AB, then the center of the *n*th circle in the chain is:

$$(x_n,y_n)=\left(rac{r(1+r)}{2[n^2(1-r)^2+r]}\ ,\ rac{nr(1-r)}{n^2(1-r)^2+r}
ight)$$

Radii of the circles

If r = AC/AB, then the radius of the *n*th circle in the chain is:

$$r_n = rac{(1-r)r}{2[n^2(1-r)^2 + r]}$$

Circle inversion

The height h_n of the center of the n^{th} circle above the base diameter ACB equals n times d_n .[1] This may be shown by inverting in a circle centered on the tangent point A. The circle of inversion is chosen to intersect the n^{th} circle perpendicularly, so that the n^{th} circle is transformed into itself. The two arbelos circles, $C_{\rm II}$ and $C_{\rm V}$, are transformed into parallel lines tangent to and sandwiching the n^{th} circle; hence, the other circles of the Pappus chain are transformed into similarly sandwiched circles of the same diameter. The initial circle C_0 and the final circle C_n each contribute $\frac{1}{2}d_n$ to the height h_n , whereas the circles C_1 - C_{n-1} each contribute d_n . Adding these contributions together yields the equation $h_n = n d_n$.

Under a particular inversion centered on \mathbf{A} , the four initial circles of the Pappus chain are transformed into a stack of four equally sized circles, sandwiched between two parallel lines. This accounts for the height formula $h_n = n \ d_n$ and the fact that the original points of tangency lie on a common circle.

The same inversion can be used to show that the points where the circles of the Pappus chain are tangent to one another lie on a common circle. As noted above, the inversion centered at point $\bf A$ transforms the

arbelos circles $C_{\rm U}$ and $C_{\rm V}$ into two parallel lines, and the circles of the Pappus chain into a stack of equally sized circles sandwiched between the two parallel lines. Hence, the points of tangency between the transformed circles lie on a line midway between the two parallel lines. Undoing the inversion in the circle, this line of tangent points is transformed back into a circle.

Steiner chain

In these properties of having centers on an ellipse and tangencies on a circle, the Pappus chain is analogous to the Steiner chain, in which finitely many circles are tangent to two circles.

References

1. Ogilvy, pp. 54-55.

Bibliography

- Ogilvy, C. S. (1990). Excursions in Geometry. Dover. pp. 54–55.
 ISBN 0-486-26530-7.
- Bankoff, L. (1981). "How did Pappus do it?". In Klarner, D. A. *The Mathematical Gardner*. Boston: Prindle, Weber, & Schmidt. pp. 112–118.
- Johnson, R. A. (1960). Advanced Euclidean Geometry: An elementary treatise on the geometry of the triangle and the circle (reprint of 1929 edition by Houghton Miflin ed.). New York: Dover Publications. pp. 116–117. ISBN 978-0-486-46237-0.
- Wells, D. (1991). *The Penguin Dictionary of Curious and Interesting Geometry*. New York: Penguin Books. pp. 5–6. ISBN 0-14-011813-6.

External links

- Floer van Lamoen and Eric W. Weisstein. "Pappus Chain" (http://mathworld.wolfram.com/PappusChain.html). *MathWorld*.
- Tan, Stephen. "Arbelos" (http://www.math.ubc.ca/~cass/courses/m308/projects/tan/html/home.html).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Pappus_chain&oldid=749693691"

- This page was last edited on 15 November 2016, at 18:28.
- Text is available under the Creative Commons Attribution-ShareAlike

License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.