Feature engineering for the dataset.

```
In [159]: #import libraries.
             import pandas as pd
             import numpy as np
             import matplotlib.pyplot as plt
In [160]:
            data_frame=pd.read_csv('cancer_dataset.csv')
            data_frame.head()
Out[160]:
                  County
                          FIPS 45.5_objective Adj.Death_rate low_death_rate upper_death_rate avg_c
                  United
             0
                             O
                                                       46.0
                                                                      45.9
                                                                                              157
                                          No
                                                                                      46.1
                  States
                   Perry
                                                                                     144.2
                 County, 21193
                                          No
                                                      125.6
                                                                     108.9
                Kentucky
                  Powell
                                          No
                                                      125.3
                                                                     100.2
                                                                                     155.1
                 County, 21197
                Kentucky
                   North
                   Slope
                                                      124.9
                                                                      73.0
                          2185
                                          No
                                                                                     194.7
                Borough,
                  Alaska
                  Owsley
                 County, 21189
                                          No
                                                      118.5
                                                                      83.1
                                                                                     165.5
                Kentucky
```

```
In [161]: #we are removing the 'County' feature from dataframe.
data_frame.drop(['County'],axis=1,inplace=True)
```

```
In [162]: #checking the categorical and numerical variables.
    categorical_features=[]
    numerical_features=[]
    for cols in data_frame.columns:
        if data_frame[cols].dtype=='0':
            categorical_features.append(cols)
        else:
            numerical_features.append(cols)
```

```
In [163]: |print('Categorical features: ',categorical_features)
           print('Numeircal features: ',numerical features)
                                      ['45.5_objective', 'recent_trend', 'State']
           Categorical features:
           Numeircal features: ['FIPS', 'Adj.Death_rate', 'low_death_rate', 'upper_death_rate', 'avg_deaths', 'recent_5_year_trend', 'lower_tr
           end', 'upper trend']
In [164]: data_frame.head()
Out[164]:
                FIPS 45.5_objective Adj.Death_rate low_death_rate upper_death_rate avg_deaths rec
            0
                  0
                              No
                                          46.0
                                                        45.9
                                                                       46.1
                                                                              157376.0
            1 21193
                                         125.6
                                                       108.9
                                                                      144.2
                                                                                  43.0
                              No
            2 21197
                              No
                                         125.3
                                                       100.2
                                                                      155.1
                                                                                  18.0
               2185
                              No
                                         124.9
                                                        73.0
                                                                      194.7
                                                                                  5.0
            4 21189
                                         118.5
                                                        83.1
                                                                      165.5
                              No
                                                                                  8.0
In [165]: #handling missing values.
           #first for categorical variables.
           for cols in categorical_features:
                data_frame[cols].fillna('Missing',inplace=True)
In [166]: data_frame[categorical_features].isnull().sum()
Out[166]: 45.5_objective
                                0
           recent trend
                                0
           State
                                0
           dtype: int64
In [167]:
           #now for numerical features.
           for cols in numerical features:
                median=data frame[cols].median()
                data_frame[cols].fillna(median,inplace=True)
In [168]: data_frame[numerical_features].isnull().sum()
Out[168]: FIPS
           Adj.Death rate
                                      0
           low_death_rate
           upper_death_rate
           avg_deaths
           recent_5_year_trend
                                      0
           lower_trend
                                      0
           upper_trend
           dtype: int64
```



```
In [170]: #'FIPS', 'Adj.Death_rate','low_death_rate','upper_death_rate','avg_
#these features are need to be tranformed.
```

```
In [171]: features_trans=['FIPS', 'Adj.Death_rate','low_death_rate','upper_de
transformed_features=[]
for cols in features_trans:
    if 0 in data_frame[cols].unique():
        pass
    else:
        transformed_features.append(cols)
        data_frame[cols]=np.log(data_frame[cols])
```

In [172]: data_frame.head()

Out [172]:

	FIPS	45.5_objective	Adj.Death_rate	low_death_rate	upper_death_rate	avg_deaths	rec
0	0	No	3.828641	3.826465	3.830813	11.966393	
1	21193	No	4.833102	4.690430	4.971201	3.761200	
2	21197	No	4.830711	4.607168	5.044070	2.890372	
3	2185	No	4.827513	4.290459	5.271460	1.609438	
4	21189	No	4.774913	4.420045	5.108971	2.079442	

In [173]: print('Features transformed: ',transformed_features)

Features transformed: ['Adj.Death_rate', 'low_death_rate', 'upper
_death_rate', 'avg_deaths']

0

avg_deaths

10

12

In [176]: data_frame[categorical_features].head(20)

Out[176]:

	45.5_objective	recent_trend	State
0	No	falling	United States
1	No	stable	Kentucky
2	No	stable	Kentucky
3	No	Missing	Alaska
4	No	stable	Kentucky
5	No	falling	Florida
6	No	Rare_var	Kentucky
7	No	stable	Kentucky
8	No	stable	Kentucky
9	No	stable	Kentucky
10	No	stable	Kentucky
11	No	stable	Arkansas
12	No	stable	Tennessee
13	No	stable	Kentucky
14	No	stable	Kentucky
15	No	stable	Missouri
16	No	stable	Missouri
17	No	stable	Kentucky
18	No	Missing	Alaska
19	No	stable	Kentucky

```
In [177]: #'State' feature need not to contain Rare_var because all the categ
```

```
In [178]: #now, converting categorical features into numeric features.
#checking the number of categories in features.
for cols in categorical_features:
    print(cols,': ',len(data_frame[cols].value_counts()))
```

45.5_objective : 3 recent_trend : 4 State : 52

In [179]: for cols in categorical_features:
 rank=data_frame[cols].value_counts(ascending=True).index
 mapping={k:i for i,k in enumerate(rank,0)}
 data_frame[cols]=data_frame[cols].map(mapping)

In [180]: data_frame.head()

Out[180]:

	FIPS	45.5_objective	Adj.Death_rate	low_death_rate	upper_death_rate	avg_deaths	rec
0	0	2	3.828641	3.826465	3.830813	11.966393	
1	21193	2	4.833102	4.690430	4.971201	3.761200	
2	21197	2	4.830711	4.607168	5.044070	2.890372	
3	2185	2	4.827513	4.290459	5.271460	1.609438	
4	21189	2	4.774913	4.420045	5.108971	2.079442	

In [181]: #normalizing the data.
#using mixmax scaler.
from sklearn.preprocessing import MinMaxScaler

Trem bixted in propresessing ampere in initialistate

In [182]: scaler=MinMaxScaler()
x=data_frame.iloc[:,1:-1]

scaler.fit(x)

Out[182]: MinMaxScaler()

In [187]: transformed_data=scaler.transform(x)
 transformed_data_frame=pd.DataFrame(scaler.transform(x),columns=x.c
 transformed_data_frame

Out[187]:

	45.5_objective	Adj.Death_rate	low_death_rate	upper_death_rate	avg_deaths	recent_
0	1.0	0.615723	0.695157	0.470742	1.000000	0.66
1	1.0	1.000000	1.000000	0.889692	0.244998	1.00
2	1.0	0.999085	0.970622	0.916463	0.164869	1.00
3	1.0	0.997862	0.858874	1.000000	0.047004	0.30
4	1.0	0.977739	0.904597	0.940306	0.090251	1.00
3136	0.0	0.667016	0.671307	0.591267	0.179053	0.30
3137	0.0	0.667016	0.671307	0.591267	0.179053	0.30
3138	0.0	0.667016	0.671307	0.591267	0.179053	0.30
3139	0.0	0.667016	0.671307	0.591267	0.179053	0.30
3140	0.0	0.667016	0.671307	0.591267	0.179053	0.30

3141 rows × 9 columns

In [190]: final_data_frame=pd.concat([data_frame[['FIPS']].reset_index(drop=T
final_data_frame.head()

Out [190]:

	FIPS	45.5_objective	Adj.Death_rate	low_death_rate	upper_death_rate	avg_deaths	rec
0	0	1.0	0.615723	0.695157	0.470742	1.000000	
1	21193	1.0	1.000000	1.000000	0.889692	0.244998	
2	21197	1.0	0.999085	0.970622	0.916463	0.164869	
3	2185	1.0	0.997862	0.858874	1.000000	0.047004	
4	21189	1.0	0.977739	0.904597	0.940306	0.090251	

In [191]: final_data_frame.to_csv('final_data.csv',index=False)