

Cluster Analysis

Lecture 13

Classification and Cluster Analysis

Reading: JWHT Chapters 4 and 10

DSA 8020 Statistical Methods II April 5-9, 2021

> Whitney Huang Clemson University

Cluster Analysis

Classification

Cluster Analysis

Data:

$$\{\boldsymbol{X}_i, Y_i\}_{i=1}^n,$$

where Y_i is the class information for the i_{th} observation $\Rightarrow Y$ is a qualitative variable

 Classification aims to classify a new observation (or several new observations) into one of those classes

Quantity of interest: $P(Y = k_{th} \text{ category} | \boldsymbol{X} = \boldsymbol{x})$

In this lecture we will focus on binary linear classification

Classification

We could compute the distances from this new observation ${\pmb z}$ = (z_1,z_2) to the groups, for example,

$$d_2 = \sqrt{(z_1 - \mu_{21})^2 + (z_2 - \mu_{22})^2}.$$

We could assign \boldsymbol{z} to the group with the smallest distance

In this one-dimensional example, $d_1 = |z - \mu_1| > |z - \mu_2|$. Does that mean z is "closer" to group 2 (red) than group 1 (blue)?

We should take the "spread" of each group into account.

$$\tilde{d}_1 = |z - \mu_1|/\sigma_1 < \tilde{d}_2 = |z - \mu_2|/\sigma_2$$

General Covariance Adjusted Distance: Mahalanobis Distance

Classification

Cluster Analysis

The Mahalanobis distance is a measure of the distance between a point z and a multivariate distribution of X:

$$D_M(z) = \sqrt{(z-\mu)^T \Sigma(z-\mu)},$$

where μ is the mean vector and Σ is the variance-covariance matrix of \boldsymbol{X}

Assume $X_1 \sim \text{MVN}(\mu_1, \Sigma)$, $X_2 \sim \text{MVN}(\mu_2, \Sigma)$, that is, $\Sigma_1 = \Sigma_2 = \Sigma$

Maximum Likelihood of group membership:

Group 1 if
$$\ell(\boldsymbol{z}, \boldsymbol{\mu}_1, \Sigma) > \ell(\boldsymbol{z}, \boldsymbol{\mu}_2, \Sigma)$$

Linear Discriminant Function:

Group 1 if
$$(\mu_1 - \mu_2)^T \Sigma^{-1} z - \frac{1}{2} (\mu_1 - \mu_2)^T \Sigma^{-1} (\mu_1 + \mu_2) > 0$$

Minimize Mahalanobis distance:

Group 1 if
$$(z - \mu_1)^T \Sigma^{-1} (z - \mu_1) < (z - \mu_2)^T \Sigma^{-1} (z - \mu_2)$$

All the classification methods above are equivalent

Example: Fisher's Iris Data

4 variables (sepal length and width and petal length and width), 3 species (setosa, versicolor, and virginica)

Classification

Cluster Analysis

Let's focus on the latter two classes (versicolor, and virginica)

To further simplify the matter, let's focus on the first two PCs of \boldsymbol{X}

Cluster Analysis

$$P(Y = k | \boldsymbol{X} = \boldsymbol{x}) = \frac{P(Y = k)P(\boldsymbol{X} = \boldsymbol{x}|Y = k)}{P(\boldsymbol{X} = \boldsymbol{x})} = \frac{\pi_k f_k(\boldsymbol{x})}{\sum_{k=1}^K \pi_k f_k(\boldsymbol{x})}.$$

Assuming $f_k(\boldsymbol{x}) \sim \text{MVN}(\boldsymbol{\mu}_k, \Sigma), \quad k = 1, \cdots, K$ and use $\hat{\pi}_k = \frac{n_k}{n} \Rightarrow$ it turns out the resulting classifier is linear in \boldsymbol{X}

nassilication

Classification Performance Evaluation

fit.LDA versicolor virginica versicolor 47 virginica 49

Main idea: Model the logit $\log \left(\frac{P(Y=1)}{1-P(Y=1)} \right)$ as a linear function in \boldsymbol{x}

Logistic Regression Classifier Cont'd

logisticPred
versicolor virginica
versicolor 48 2
virginica 1 49

Classification

In Linear Discriminant Analysis, we **assume** $\{f_k(\boldsymbol{x})\}_{k=1}^K$ are normal densities and $\Sigma_1 = \Sigma_2$, therefore we obtain a linear classifier. What if $\Sigma_1 \neq \Sigma_2 \Rightarrow$ we get quadratic discriminant analysis

Figure: Figure courtesy of An Introduction of Statistical Learning by G. James et al. pp. 150

What is Cluster Analysis?

Classification

Cluster Analysis

- Cluster: a collection of data objects
 - "Similar" to one another within the same cluster
 - "Dissimilar" to the objects in other clusters
- Cluster analysis: Grouping a set of data objects into clusters
- Clustering is unsupervised classification, unlike classification, there is no predefined classes, and the number of clusters is usually unknown

Major Clustering Approaches

Cluster Analysis

CLEMS

UNIVERSITY

- Partitioning algorithm: partition the observations into a pre-specified number of clusters, for example, k-means clustering
- Hierarchy algorithm: Construct a hierarchical decomposition of the observations to build a hierarchy of clusters, for example, hierarchical agglomerative clustering
- Model-based Clustering: A model is hypothesized for each of the clusters, for example, Gaussian mixture models

We will focus on partitioning algorithm and Modelbased Clustering

Partitioning Algorithm

Cluster Analysis

Let C_1,\cdots,C_K denote sets containing the indices of the observations $\{x_i\}_{i=1}^n$ in each cluster. These sets satisfy two properties:

- $C_1 \cup C_2 \cup \cdots \cup C_K = \{1,\cdots,n\} \Rightarrow$ each observation belongs to at least one of the K clusters
- $C_k \cap C_{k'} = \emptyset \ \forall k \neq k' \Rightarrow$ no observation belongs to more than one cluster

For instance, if the i_{th} observation (i.e. x_i) is in the k_{th} cluster, then $i \in C_k$

The k-Means Algorithm

- Step 0: Choose the number of clusters K
- Step 1: Randomly assign a cluster (from 1 to K), to each
 of the observations. These serve as the initial cluster
 assignments
- Step 2: Iterate until the cluster assignment stop changing
 - For each of the K cluster, compute the cluster centroid. The k_{th} cluster centroid is the mean vector of the observations in the k_{th} cluster
 - Assign each observations to the cluster whose centroid is closest in terms of Euclidean distance

Cluster Analysis

k-Means Clustering Illustration

Classification
Cluster Analysis

eruptions

eruptions

eruptions

kmean3.faithful <- kmeans(x = faithful, centers = 3)</pre>

Model-based clustering

Classification

- Model-based clustering is an alternative:
 - Sample observations arise from a mixture distribution of two or more components
 - Each component (cluster) is described by a probability distribution and has an associated probability in the mixture.
 - In Gaussian mixture models, we assume each cluster follows a multivariate normal distribution
 - Therefore, in Gaussian mixture models, the model for clustering is a mixture of multivariate normal distributions

library(mclust)

```
## Package 'mclust' version 5.4.5
## Type 'citation("mclust")' for citing this R package in publications.
```

```
BIC <- mclustBIC(faithful)
model1 <- Mclust(faithful, x = BIC)
```


Classification

dotor Ariaryolo

Fitting a Gaussian Mixture Model in R Cond't

Classification and

Model-Based Clustering Analysis for Iris Data

Classification and Cluster Analysis

Classification

Cluster Analysis