

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 20/04/2010	Anilú Gómez Pantoja Nancy Aguas García David Flores Granados Fernando Gómez García	Se cambio la estructura por actualización del temario. Revisión de recomendaciones.
		Trovidion do recembridadionos.

Relación con otras asignaturas	
Anteriores	Posteriores
Asignatura(s)	
a) Probabilidad y estadística	
b) Algebra lineal	
c) Investigación de operaciones	
	No aplica
Tema(s)	
a) Distribuciones de probabilidad	
b) Matrices	

Nombre de la as	ignatura		Departamento o Licenciatura
Simulación			Ingeniería Industrial
.		2.6.11	<i>.</i>
Ciclo	Clave	Créditos	Área de formación curricular

3 - 4	110424	6	Licenc	ciatura Pr	eespecia	alidad
Tipo de asig	ınatura		Horas o	de estudio	1	
			HT	HP	TH	н

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Diferenciar las principales herramientas de software para simulación discreta y continua.

Objetivo procedimental

Aplicar herramientas de software para la simulación discreta y continua para análisis y toma de decisiones.

Objetivo actitudinal

Promover la responsabilidad para la realización del análisis y la toma de decisiones empleando software de simulación.

Unidades y temas

Unidad I. INTRODUCCION A LA SIMULACION

Diferenciar los principales conceptos relacionados con simulación para la obtención de una base introductoria al software relacionado.

- 1) Conceptos básicos
 - a) Variables aleatorias
 - b) Espacios discretos y continuos
 - c) Funciones probabilísticas discretas y continuas

Unidad II. MÉTODO DE MONTECARLO

Aplicar software para la solución de problemas con el método de Montecarlo.

- 1) Conceptos principales
- 2) Características
- 3) Ambientes de uso

5) Aplicaciones
Unidad III. CADENAS DE MARKOV
Emplear software para la solución de problemas utilizando cadenas de Markov.
1) Conceptos principales
2) Características
3) Ambientes de uso
4) Caso de estudio
5) Aplicaciones
Unidad IV. TEORIA DE JUEGOS Y DE COLAS
Usar software para la solución de problemas utilizando teoría de juegos y de colas.
1) Conceptos principales
2) Características
3) Ambientes de uso
4) Caso de estudio
5) Aplicaciones
Unidad V. SERIES DE TIEMPO
Operar software para la solución de problemas utilizando series de tiempo.
1) Conceptos principales

4) Caso de estudio

- 2) Características
- 3) Ambientes de uso
- 4) Caso de estudio
- 5) Aplicaciones

Actividades que promueven el aprendizaje

Docente Estudiante

Promover el trabajo individual en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos.

Realizar demostraciones de software.

Aplicar prácticas para el uso del software.

Definir estrategias para identificar las

herramientas utilizadas en el ámbito laboral.

Realizar tareas asignadas

Participar en el trabajo individual y en equipo

Resolver casos prácticos

Discutir temas en el aula

Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal (señalar las actividades que realizarán):

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Tareas	20

Evidencias individuales	30
Evidencias grupales	20
Total	100

Fuentes de referencia básica

Bibliográficas

Brockwell, P. (200). Time Series: Theory and Methods. (2da edición). Springer.

De la Fuente, D. y Pino, R. (1996). Simulación. Servicio de Publicaciones de la Universidad de Oviedo.

Law, A. (2006). Simulation Modeling and Analysis. Mc Graw-Hill.

Rios, D. Rios S. (2008) Simulación. Métodos y aplicaciones (2a edición). España: Ra-Ma.

Robert, C., Casella, G. (2010) Monte Carlo Statistical Method (1a edición). New York:

Springer.

Stewart, W. (2009). Probability, Markov Chains, Queues, and Simulation: The Mathematical Basis of Performance Modeling (1a edición). Princeton Universy Press.

Web gráficas

No aplica

Fuentes de referencia complementaria

Bibliográficas

Altiok, T., Melamed, B. (2007). Simulation Modeling and Analysis with ARENA. Academic Press.

Dassault Systemes (2006). Manual de usuario: DELMIA

Guasch, A., Piera, M. A., Casanovas, J. y Figueras, J. (2002). Modelado y Simulación: Aplicación a procesos logísticos, de fabricación y servicios. Ciudad: Ediciones UPC.

Law, A. (2006) Simulation Modeling and Analysis with Expertfit Software (1a edición). McGraw-Hill

Robert, C., Casella, G. (2010) Introducing Monte Carlo Methods with R (Use R) (1a edición). New York: Springer.

Web gráficas

Manual de Fluent: http://my.fit.edu/itresources/manuals/fluent6.3/help/html/ug/node3.htm

Manuales de gambit: http://hmf.enseeiht.fr/travaux/CD0405/optmfn/mci/manuals/gambit/gambit.htm

Perfil profesiográfico del docente

Académicos

Ciencias de la computación, físico-matemáticas o electrónicas.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en el manejo de software de simulación y/o matemáticas.