Milwaukee School of Engineering

Electrical Engineering and Computer Science Department

EE-3032 - Final Exam - Dr. Durant

November, 2017

May use $8\%" \times 11"$ note sheet. No calculator.

Good luck!

Name: <u>Inading Moto</u>

 Page 3:
 (17 points) ______

 Page 4:
 (24 points) ______

 Page 5:
 (16 points) ______

 Page 6:
 (15 points) ______

 Page 7:
 (12 points) ______

 Page 8:
 (16 points) ______

Total: (100 points) _____

Table 5.1

Basic Properties of Fourier Transform

	Time Domain	Frequency Domain
Signals and constants	$x(t), y(t), z(t), \alpha, \beta$	$X(\Omega), Y(\Omega), Z(\Omega)$
Linearity	$\alpha x(t) + \beta y(t)$	$\alpha X(\Omega) + \beta Y(\Omega)$
Expansion/contraction in	$x(\alpha t), \alpha \neq 0$	$\frac{1}{ \alpha }X\left(\frac{\Omega}{\alpha}\right)$
time		
Reflection	x(-t)	$X(-\Omega)$
Parseval's energy relation	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$	$E_{x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) ^{2} d\Omega$
Duality	X(t)	$2\pi x(-\Omega)$
Time differentiation	$\frac{d^n x(t)}{dt^n}, n \ge 1$, integer	
Frequency differentiation	-jtx(t)	$\frac{dX(\Omega)}{d\Omega}$
Integration	$\int_{-\infty}^{t} x(t')dt'$	$\frac{X(\Omega)}{N} + \pi X(0)\delta(\Omega)$
Time shifting	$x(t-\alpha)$	$e^{-j\alpha\Omega}X(\Omega)$
Frequency shifting	$e^{j\Omega(f}x(t)$	$X(\Omega - \Omega_0)$
Modulation	$x(t)\cos(\Omega_c t)$	$0.5[X(\Omega - \Omega_c) + X(\Omega + \Omega_c)]$
Periodic signals	$x(t) = \sum_{k} X_{k} e^{jk \Omega_{k} y}$	$X(\Omega) = \sum_{k} 2\pi X_{k} \delta(\Omega - k\Omega_{0})$
Symmetry	x(t) real	$ X(\Omega) = X(-\Omega) $
		$\angle X(\Omega) = -\angle X(-\Omega)$
Convolution in time	z(t) = [x * y](t)	$Z(\Omega) = X(\Omega)Y(\Omega)$
Windowing/Multiplication	x(t)y(t)	$\frac{1}{2\pi}[X*Y](\Omega)$
Cosine transform	x(t) even	$X(\Omega) = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$, real
Sine transform	x(t) odd	$X(\Omega) = -j \int_{-\infty}^{\infty} x(t) \sin(\Omega t) dt$, imaginary

Table 5.2 Fourier Transform Pairs

	Function of Time	Function of Ω
(1)	$\delta(t)$	1
(2)	$\delta(t-\tau)$	$e^{-j\Omega \tau}$
(3)	u(t)	$\frac{1}{i\Omega} + \pi \delta(\Omega)$
(4)	<i>u</i> (- <i>t</i>)	$\frac{-1}{j\Omega} + \pi\delta(\Omega)$
(5)	sign(t) = 2[u(t) - 0.5]	$\frac{2}{j\Omega}$
(6)	$A, -\infty < t < \infty$	$2\pi\Lambda\delta(\Omega)$
(7)	$Ae^{-at}u(t), a > 0$	$\frac{A}{j\Omega+a}$
(8)	$Ate^{-at}u(t), a > 0$	$\frac{A}{(j\Omega+a)^2}$
(9)	$e^{-a t }, a > 0$	$\frac{2a}{a^2+\Omega^2}$
(10)	$\cos(\Omega_0 t), -\infty < t < \infty$	$\pi[\delta(\Omega-\Omega_0)+\delta(\Omega+\Omega_0)]$
(11)	$\sin(\Omega_0 t), -\infty < t < \infty$	$-j\pi[\delta(\Omega-\Omega_0)-\delta(\Omega+\Omega_0)]$
(12)	$p(t) = A[u(t+\tau) - u(t-\tau)], \tau > 0$	$2\Lambda \tau \frac{\sin(\Omega r)}{\Omega r}$
(13)	$\frac{\sin(\Omega_0 t)}{\pi t}$	$P(\Omega) = u(\Omega + \Omega_0) - u(\Omega - \Omega_0)$
(14)	$x(t)\cos(\Omega_0 t)$	$0.5[X(\Omega - \Omega_0) + X(\Omega + \Omega_0)]$

- 1. (4 points) **Sketch** the **imaginary** part of $x(t) = 5e^{(-1+j2\pi)t} u(t)$.
- 2. (4 points) **Explain** whether $s(t) = \sin(3\pi t) + \cos(7\pi t)$ is **periodic**. If it is, calculate its **fundamental period**.
- 3. (4 points) *Explain* whether $y(t) = cos(t) + sin(\pi t)$ is *periodic*. If it is, calculate its *fundamental period*.
- 4. (5 points) Calculate $Y(\Omega)$, the Fourier transform of y(t), or explain why it cannot be done.

(2) saying cont be done since not periodic

(1)

(2) Yes... $\Lambda_1 = 3\pi - \Lambda_2 = 7\pi$ $f_1 = \frac{7}{2}$ $f_2 = \frac{7}{4}$ $T_1 = \frac{2}{3}$ $T_2 = \frac{2}{4}$ $T_0 = LOM(T_1, T_2) = 2 s$ $(\frac{1}{3}Hz, T_1)$

(3) No, ratio of freq. is not rational, 1:17.

(4) Use Tables...

Y(1): TT (S(1)-1+S(1)-j 6(1-TT)+j 8(1-TT))

Common Mistake: True that F.S. does not exist.

But F.T. does not depend on a fond period.

So, just apply Impority of the F.T. to the

2 components.

- 5. (7 points) Find a > 2 such that z(t) = r(t) + r(t-1) 3r(t-2) + r(t-a) has finite energy. Sketch the resulting z(t). (-) went of w/ minor/assoc. encor
- 6. (6 points) Let $w(t) = 4 \sin(\Omega_1 t)$. Fold the signal, double its frequency, and then delay the result by 1 (-1) procedence: +-1 First
- 7. (6 points) Let $v(t) = e^{at}u(-t)$, >0. Decompose v(t) into even and odd signals such that $v(t) = v_e(t) + v_o(t)$.
- 8. (5 points) Calculate the energy or power as appropriate of $q(t) = (2+3j)e^{i\pi t/2}(u(t-10)-u(t))$.

(Cx)-(+-10)

(6) Fold: w(-t) = 4 our (- 1,t) = -4 pir (1,t) Dable frag: - 4 pir (-20, t) = -4 pir (20, t) Dolay : 4 sin (-2 Q,(+-1)= -4 pin (2 Q, (+-1)) OR, equiv.

 $(7) \quad v_{\bullet}(x) = \frac{v(t) + v(-1)}{2} = \dots \quad e^{-|t|ae} = \frac{1}{2} \left(e^{at} d - t \right) + e^{-at} v(t)$

 $v_c(t) = \frac{v(t) - v(-t)}{2} = \frac{1}{2} \left(e^{at} v(-t) - e^{-at} v(t) \right) = \frac{e^{-Ha}}{2} \cdot - | \cdot ogn(t) |$

(8) Ex= 50 9 (x) of (t) dt = (2+3)(2-3)(10 e) 12 e-12 ft = (4+9) 500 e oft = 130

9.	(6 points) Let x(t) be an unknown system input and y(t) be the corresponding system output.
	Specifically, let $y(t) = e^{-a t }x(t)$, a>0. Prove or convincingly explain whether this system has each of
	the following properties:

a. Linear yes, no closs effects for $x(t)=x_1(t)+x_2(t)$ b. Time-invariant no, gain of e-alt charges which time

c. BIBO stable yes. Max gain = Imi = alt = 1

10. (6 points) Now, consider the system y(t) = x(t)x(t-1). **Prove or convincingly explain** whether this system has each of the following properties:

a. Linear no, fails scaling. 2x inpor -> 4x output

b. Time-invariant yes, (both components delayed together)
c. BIBO stable yes. M bound input yields M bound output.

11. (4 points) Which of the following properties are necessary for a system to have an impulse response?

Causal

BIBO stable

d. Time-invariant

12. (15 points) Let a system have impulse response $h(t) = e^{-t}u(t)$. Let the system input be x(t) = u(t) - u(t)3). Find the system output y(t) using convolution. Hint: there are 2 non-trivial pieces. Sketch your result.

(A)
$$\int_{0}^{t} e^{-t} dt = -1 \cdot \left[e^{-t} \right]_{t=0}^{t=t} = -1 \left(e^{-t} - 1 \right) = 1 - e^{-t}$$

(B) $\int_{t-3}^{t} e^{-7} d7 = -1 \left[e^{-7} \right]_{t=t-3}^{t=t} = -1 \left(e^{-t} - e^{-t+3} \right) = e^{-t+3} - e^{-t}$

Continuity: $y(3^{-}) = 1 - e^{-3}$ $y(3^{+}) = e^{0} - e^{-3} = 1 - e^{-3} = y(3^{-})$

13. (12 points) A periodic signal has the Fourier Series {2/5, 0, -2/3, 0, 2, $\underline{0}$, 2, 0, -2/3, 0, 2/5}. $\Omega_0 = 2\pi$.

- a. What is the **DC offset** of the signal? $\sqrt{5}$
- Is the signal even, odd, or neither? Even. $X_k \in Real$ only coine leven compenents
- What is the **power** of the signal? $9\frac{47}{120}$, see below
- What is the Fourier transform of this periodic signal?
- **Sketch** the **power spectrum** of the signal.
- What is the time-domain signal itself?

(c) Parsava),
$$P_{x} = \sum_{k} |X_{k}|^{2} = 2(\frac{2}{5})^{2} + 2(\frac{4}{5})^{2} + 2(2)^{2} = 2(\frac{4}{25} + \frac{4}{9} + 4)$$

$$= 2(\frac{36 + 100}{225} + 4)$$

$$= 2(\frac{4}{125})$$

$$= 8 \frac{27^{2}}{225}$$

$$= 9 \frac{47}{225}$$

(d) $\times (\Omega) = \frac{1}{100} \delta(\Omega + 100) - \frac{2}{3}\delta(\Omega + 300) + 2\delta(\Omega + \Omega_0) + \frac{2}{5}\delta(\Omega - 300) + \frac{2}{5}\delta(\Omega - 5\Omega_0)$

pour spection = |Xel, not KIR

(F) x(t)= \frac{4}{3}cos(5 = 0 t) - \frac{4}{3}cos(3 = 0 ot) + 4cos(set) can sub in a = 2TT & simplify.

- 14. (4 points) Sketch the *magnitude response* from -10 to 10 Hz of a *bandpass filter* that passes signals between 2 and 4 Hz, but blocks signals outside of this range.
- 15. (6 points) Use lines 13 and 14 from Table 5.2 to determine the *impulse response* h(t) of this system, assuming that the *phase shift is 0*.
- 16. (6 points) Let a system have impulse response $h(t) = 20e^{-4t}u(t)$. Let the system input be the steady state signal $x(t) = \sin(3t)$. What is the **steady state output**?

(15) If no \$\phi \shirt, (13) \quad \quad

 $h(t) = ho(t) \cos(6\pi t) = 2 \cos(6\pi t) \text{ sinc } (2\pi t)$ $| \ln (14) = \frac{16^2 + 12^2}{5} \sin(4\pi t)$ $| \ln (14) = \frac{16^2 + 12^2}{5} \sin(4\pi t)$

(16) Table 5.2, I'm 7. $H(\Delta) = \frac{A}{j \cdot \Delta + 4} = \frac{20}{j \cdot \Delta + 4}$ $x(t) = Rid(3t), \quad \Delta_1 = 3 \frac{1000}{5}$ $H(\Delta) = H(3) = \frac{20}{3j' + 4} \cdot \frac{-3j' + 4}{-3j' + 1} = \frac{80 - j' 60}{16 + 9} = \frac{16 - j/2}{-5} = 3.2 - j \cdot 2.4$ $y(t) = 4 Rid(3t + tan^{-1}(\frac{-3}{4})) = 4 Rid(3t - tan^{-1}(\frac{-3}{4}))$ IHI's gainPage 8 of 8