GRAFI: ALGORITMO DI FLOYD WARSHALL

[Deme, seconda edizione] cap. 14
Sezione 14.6

Quest'opera è in parte tratta da (Damiani F., Giovannetti E., "Algoritmi e Strutture Dati 2014-15") e pubblicata sotto la licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0 Italia.

Per vedere una copia della licenza visita http://creativecommons.org/licenses/by-nc-sa/3.0/it/.

Calcolare i cammini minimi tra tutte le coppie di vertici

Fino ad ora, ci siamo confrontati solo con il problema di trovare i cammini minimi tra un vertice di partenza s e tutti gli altri vertici del grafo.

In alcune applicazioni (ad esempio la propagazione di vincoli numerici), è necessario trovare i cammini minimi tra tutte le coppie di vertici del grafo.

In queste slide vedremo un algoritmo, basato sulla **programmazione dinamica**, che calcola i cammini minimi tra tutte le coppie di vertici del grafo in tempo polinomiale.

Nota: possiamo anche applicare Bellman-Ford (o Dijkstra, o BF-DAG) su tutti gli n nodi usando ciascun nodo come sorgente. Ad esempio, la complessità di Bellman-Ford su tutti i nodi è O(mn²) che con grafi densi è circa O(n²)

Distanze e cammini minimi kvincolati

Denotiamo i vertici del grafo come $v_1, v_2, ... v_n$.

Per un k fissato con $1 \le k \le n$ definiamo

Cammino minimo k-vincolato tra x e y (denotato con π_{xy}^k) il cammino che va da x a y di costo minimo tra tutti quelli che non contengono i vertici $\{v_{k+1}, ..., v_n\}$ (esclusi x e y estremi del cammino).

Distanza k-vincolata (denotata con d_{xy}^k) è il peso $W(\pi_{xy}^k)$ se π_{xy}^k esiste, ∞ altrimenti.

È facile notare che

$$\pi^0_{xy}$$
 = (x,y) e d^0_{xy} = W(x,y) se (x,y) \in E, π^0_{xy} = {} e d^0_{xy} = 0 se x = y, π^0_{xy} non esiste e d^0_{xy} = ∞ altrimenti. Infine, d^n_{xy} = $\delta(x,y)$

Nota: qui, per brevità, per le distanze si è usata la notazione del [Deme]. Dovessimo usare la solita notazione indicheremmo d_{xy}^k con $\delta^k(x,y)$.

Grafo k-vincolato

È immediato notare che un cammino minimo k-vincolato è un cammino minimo in un grafo (k-vincolato) $G_k = (V_k, E_k)$ in cui

$$V_k = (V - \{v_{k+1}, ... v_n\}) \cup \{x, y\} e$$

 $E_k = E \cap (V_k \times V_k)$

Essendo G_k un grafo, anche per esso esisteranno dei cammini minimi (che sono i cammini minimi k-vincolati) e varrà la proprietà della sottostruttura ottima (ogni sottocammino di un cammino minimo k-vincolato è esso stesso un cammino minimo k-vincolato).

Quindi potremo applicare le tecniche di programmazione dinamica.

Relazione tra distanze k-vincolate

Per ogni $1 \le k \le n$ e per ogni coppia x, y definiamo **l'equazione** ricorsiva

$$d_{xy}^k = \min(d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1})$$

DIMOSTRAZIONE: abbiamo 2 casi:

CASO 1: $v_k \notin \pi_{xy}^k$. Allora π_{xy}^k è anche un cammino minimo (k-1)-vincolato. Se così non fosse esisterebbe un cammino minimo $\pi_{xy}^{\prime k-1}$ (k-1)-vincolato di peso minore di π_{xy}^k . Ma allora $\pi_{xy}^{\prime k-1}$ sarebbe anche un cammino k-vincolato e avrebbe peso minore di π_{xy}^k (assurdo).

CASO 2: $v_k \in \pi_{xy}^k$. I sottocammini da x a v_k e da v_k a y sono cammini minimi k-vincolati (per la sottostruttura ottima). Poiché non contengono internamente v_k , essi sono anche i cammini minimi (k-1)-vincolati. Quindi possiamo dire che $d_{xy}^k = d_{xv_k}^{k-1} + d_{v_ky}^{k-1}$

Più semplicemente

La formula ricorsiva

$$d_{xy}^{k} = \min(d_{xy}^{k-1}, d_{xv_k}^{k-1} + d_{v_ky}^{k-1})$$

Può sembrare complicata, ma in realtà ciò che fa è semplicissimo.

Preso un k, si va a vedere se la concatenazione dei cammini minimi da x a v_k e da v_k a y ha peso minore del cammino minimo da x a y (senza considerare v_k , v_{k+1} , v_n). Quindi si va a verificare la (non verifica della) disuguaglianza triangolare

$$D(x,y) > D(x,k) + D(k,y)$$

Se la disuguaglianza triangolare non è verificata, si applica un rilassamento facendo passare il cammino minimo attraverso v_k .

$$D(x,y) \leftarrow D(x,k) + D(k,y)$$

Struttura di memoizzazione

Dobbiamo modellare, per ogni coppia di vertici x e y (ordinata in caso di grafi orientati) la lunghezza del cammino provvisorio da x a y.

Lo dobbiamo fare per ogni k-esima iterazione dell'algoritmo, con k ≤ n

Quindi ci servono n matrici D^k di dimensione nxn (quindi lo spazio richiesto è $O(n^3)$)

D ₀	V ₁	•••	V _n
V ₁	$d^0_{V_1V_1}$	•••	$d^0_{V_1V_n}$
•••	•••	•••	•••
v _n	$d^0_{V_nV_1}$	•••	$d^0_{V_nV_n}$

D^1	V ₁	•••	V _n
V ₁	$d^1_{V_1V_1}$	•••	$d_{ extsf{V}_1 extsf{V}_{n}}$
•••	•••	•••	•••
v _n	$d^1_{V_nV_1}$	•••	$d^1_{V_nV_n}$

 $\mathsf{D^{k-1}}[\mathsf{i},\mathsf{j}]$ contiene la **distanza** tra il vertice v_i e v_j in un grafo $\mathbf{G^{k-1}}$ in cui $V^{k-1} = G - \{v_k, v_{k+1}, \dots v_n\} \cup \{v_i, v_j\}$

D ^{k-1}	v ₁	v _j	v _n
v ₁	:	•••	•••
V _i	•••	•••	•••
v _n		•••	

 $\mathsf{D^k}[\mathsf{i},\mathsf{j}]$ contiene la **distanza** tra il vertice v_i e v_j in un grafo $\pmb{G^k}$ in cui $V^k = G - \{v_{k+1}, \dots v_n\} \cup \{v_i, v_j\}.$

Avendo aggiunto solo v_k rispetto al grafo precedente, le uniche strade diverse passano da v_k .

Qual è il miglior cammino da v_i a v_j che passa da v_k in G^k ? È a concatenazione del miglior cammino da v_i a v_k ed il migliore da v_k a v_j . Ma questi 2 già ce li ho nella matrice D^{k-1} . Infatti sono D^{k-1} [i,k] e D^{k-1} [k,j].

Allora, in G^k il miglior cammino da v_i a v_j è quello con distanza minore tra $D^{k-1}[i,j]$ (quella del vecchio cammino finora trovato) e $D^{k-1}[i,k] + D^{k-1}[k,j]$ (il cammino nuovo in G^k , che prima non c'era).

Floyd-Warshall – versione «facile»

```
 \begin{aligned} & \text{for } i = 1..n \\ & \text{for } j = 1..n \\ & \text{if } i = j \quad D^0[i,j] <- 0 \\ & \text{else if } (i,j) \in E \quad D^0[i,j] <- W(i,j) \\ & \text{else } D^0[i,j] <- \infty \\ & \text{for } k = 1..n \\ & \text{for } i = 1..n \\ & \text{for } j = 1..n \\ & \text{bold } D^k[i,j] <- D^{k-1}[i,j] \\ & \text{if } D^k[i,j] > D^{k-1}[i,k] + D^{k-1}[k,j] \text{ then } D^k[i,j] <- D^{k-1}[i,k] + D^{k-1}[k,j] \end{aligned}
```

Floyd-Warshall – ottimizzazione

Lo **spazio** richiesto dalla prima versione dell'algoritmo è **cubico**, vogliamo capire se è possibile fare di meglio.

Vorremmo usare una sola matrice aggiornata ad ogni iterazione, come facevamo per il vettore d negli algoritmi uno-a-molti.

Notiamo che l'ostacolo principale all'uso di una sola matrice è l'assegnazione $D^{k}[i,j] \leftarrow D^{k-1}[i,k] + D^{k-1}[k,j]$ che richiede l'uso di $D^{k-1}[i,k] e D^{k-1}[k,j]$ durante la kesima iterazione. Ma possiamo notare che $D^{k-1}[k,k] = 0$ (il cammino minimo da un vertice a se stesso è vuoto) e quindi

 $D^{k}[i,k] = min(D^{k-1}[i,k], D^{k-1}[i,k] + D^{k-1}[i,k]) = min(D^{k-1}[i,k], D^{k-1}[i,k] + 0) = D^{k-1}[i,k]$ E analogamente

$$D^{k}[k,j] = min(D^{k-1}[k,j], D^{k-1}[k,k] + D^{k-1}[k,j]) = min(D^{k-1}[k,j], 0 + D^{k-1}[k,j]) = D^{k-1}[k,j]$$

Di conseguenza, D^{k-1}[i,k] e D^{k-1}[k,j] non cambieranno valore dall'iterazione k-1 a quella k, quindi possiamo usare un'unica matrice D.

Algoritmo di Floyd-Warshall

```
Floyd-Warshall (G, W)

for i = 1..n

for j = 1..n

if i = j D[i,j] <- 0

else if (i,j) ∈ E D[i,j] <- W(i,j)

else D[i,j] <- ∞

for k = 1..n

for i = 1..n

for j = 1..n

if D[i,j] > D[i,k] + D[k,j] then D[i,j] <- D[i,k] + D[k,j]

end
```

Questa versione ha complessità spaziale O(n²) e temporale O(n³).

	Α	В	С	D
А	0	4	8	-5
В	8	0	-1	8
С	8	8	0	8
D	8	0	2	0

	Α	В	С	D
Α	0	4	8	-5
В	8	0	-1	8
С	8	8	0	8
D	8	0	2	0

i	j	K
Α	А	Α

$$D[A,A] > D[A,A] + D[A,A]?$$

i	j	K
Α	В	Α

$$D[A,B] > D[A,A] + D[A,B]?$$

...

	Α	В	С	D
Α	0	4	8	-5
В	8	0	-1	8
С	8	8	0	8
D	8	0	2	0

i	j	K
Α	С	В

$$D[A,C] > D[A,B] + D[B,C]?$$

 $\infty > 4 + (-1) = 3$

	Α	В	С	D
Α	0	4	3	-5
В	8	0	-1	8
С	8	8	0	8
D	∞	0	2	0

	Α	В	U	D
Α	0	4	3	-5
В	8	0	-1	8
С	8	8	0	8
D	8	0	2	0

i	j	K
D	С	В

	Α	В	С	D
Α	0	4	3	-5
В	8	0	-1	8
С	8	8	0	8
D	∞	0	-1	0

	Α	В	С	D
А	0	4	3	-5
В	8	0	-1	8
С	8	8	0	8
D	8	0	-1	0

i	j	K
Α	В	D

$$D[A,B] > D[A,D] + D[D,B]$$
?
4 > -5 + 0 = -5

	Α	В	С	D
Α	0	-5	3	-5
В	8	0	-1	8
С	8	8	0	8
D	8	0	-1	0

	A	В	U	D
Α	0	-5	3	-5
В	8	0	-1	8
С	8	8	0	8
D	8	0	-1	0

i	j	К
Α	С	D

$$D[A,C] > D[A,D] + D[D,C]$$
?
3 > -5 + (-1) = -6

	Α	В	С	D
Α	0	-5	-6	-5
В	8	0	-1	8
С	8	8	0	8
D	8	0	-1	0

La tabella non cambia da qui alla fine dell'algoritmo

Floyd-Warshall – cicli negativi

Anche in questo caso abbiamo bisogno di rilevare dei cicli di peso negativo.

In Floyd-Warshall, rilevare questo genere di cicli è relativamente semplice. Infatti in presenza di un ciclo è possibile raggiungere un vertice v da se stesso con un cammino di distanza $d_{vv} < 0$.

Ma noi abbiamo d_{vv} per ogni vertice v sulla diagonale della nostra matrice D, quindi ci basta aggiungere un controllo

if i = j and D[i,j] < 0 then return errore</pre>

Floyd-Warshall – cicli negativi

```
FW-NEG (G, W)

for i = 1..n

for j = 1..n

if i = j D[i,j] <- 0

else if (i,j) ∈ E D[i,j] <- W(i,j)

else D[i,j] <- ∞

for k = 1..n

for i = 1..n

for j = 1..n

if D[i,j] > D[i,k] + D[k,j] then D[i,j] <- D[i,k] + D[k,j]

if i = j and D[i,j] < 0 then return errore

end
```

Floyd-Warshall – predecessori

```
FW-PRED (G, W)
  for i = 1..n
     for j = 1..n
       P[i,j] < -1
       if i = j D[i,j] < -0
       else if (i,j) \in E D[i,j] \leftarrow W(i,j) P[i,j] \leftarrow i
       else D[i,i] <- ∞
  for k = 1..n
    for i = 1...n
       for j = 1..n
          if D[i,j] > D[i,k] + D[k,j] then
             D[i,i] \leftarrow D[i,k] + D[k,i]
             P[i,j] \leftarrow P[k,j]
          if i = j and D[i,j] < 0 then return errore
end
```

P[i,j] rappresenta il predecessore di j nel cammino minimo tra i e j

Se il cammino minimo tra i e j passa per il nodo k allora il predecessore di j in i~j sarà chiaramente il predecessore di j in k ~ j.

Floyd-Warshall – ricostruzione c.m.

```
Path-reconstruction (P, x, y)
if x = y return x
else return Path-reconstruction (P, x, P[x,y]) + y
```

Simulazioni di Floyd Warshall

https://www-m9.ma.tum.de/graph-algorithms/spp-floyd-warshall/index_en.html (permette di creare grafi personalizzati, mostra solo passaggi con modifiche)

https://www.cs.usfca.edu/~galles/visualization/Floyd.html (grafi casuali, mostra tutti i passaggi)

Cosa devo aver capito fino ad ora

- Il problema di trovare i cammini minimi tra tutte le coppie di vertici in un grafo
- Cammini minimi e distanze k-vincolati
- Utilizzo delle distanze k-vincolate come sottoproblemi dei cammini minimi (correttezza)
- Strutture di memoizzazione per il problema
- Algoritmo di Floyd-Warshall
 - Complessità temporale e spaziale (2 casi)

...se non ho capito qualcosa

- Alzo la mano e chiedo
- Ripasso sul libro
- Chiedo aiuto sul forum
- Chiedo o mando una mail al docente