cially when it has to be done manually by experts, it is a good idea to label representative instances rather than just random instances.

But perhaps we can go one step further: what if we propagated the labels to all the other instances in the same cluster? This is called *label propagation*:

```
y_train_propagated = np.empty(len(X_train), dtype=np.int32)
for i in range(k):
    y train propagated[kmeans.labels ==i] = y representative digits[i]
```

Now let's train the model again and look at its performance:

```
>>> log_reg = LogisticRegression()
>>> log reg.fit(X train, y train propagated)
>>> log_reg.score(X_test, y_test)
0.928888888888889
```

We got a tiny little accuracy boost. Better than nothing, but not astounding. The problem is that we propagated each representative instance's label to all the instances in the same cluster, including the instances located close to the cluster boundaries, which are more likely to be mislabeled. Let's see what happens if we only propagate the labels to the 20% of the instances that are closest to the centroids:

```
percentile closest = 20
X cluster dist = X digits dist[np.arange(len(X train)), kmeans.labels ]
for i in range(k):
    in cluster = (kmeans.labels == i)
    cluster_dist = X_cluster_dist[in_cluster]
    cutoff_distance = np.percentile(cluster_dist, percentile_closest)
    above cutoff = (X cluster dist > cutoff distance)
    X_cluster_dist[in_cluster & above_cutoff] = -1
partially_propagated = (X_cluster_dist != -1)
X_train_partially_propagated = X_train[partially_propagated]
y_train_partially_propagated = y_train_propagated[partially_propagated]
```

Now let's train the model again on this partially propagated dataset:

```
>>> log reg = LogisticRegression()
>>> log req.fit(X train partially propagated, y train partially propagated)
>>> log_reg.score(X_test, y_test)
0.94222222222222
```

Nice! With just 50 labeled instances (only 5 examples per class on average!), we got 94.2% performance, which is pretty close to the performance of logistic regression on the fully labeled digits dataset (which was 96.7%). This is because the propagated labels are actually pretty good, their accuracy is very close to 99%:

Active Learning

To continue improving your model and your training set, the next step could be to do a few rounds of active learning: this is when a human expert interacts with the learning algorithm, providing labels when the algorithm needs them. There are many different strategies for active learning, but one of the most common ones is called uncertainty sampling:

- The model is trained on the labeled instances gathered so far, and this model is used to make predictions on all the unlabeled instances.
- The instances for which the model is most uncertain (i.e., when its estimated probability is lowest) must be labeled by the expert.
- Then you just iterate this process again and again, until the performance improvement stops being worth the labeling effort.

Other strategies include labeling the instances that would result in the largest model change, or the largest drop in the model's validation error, or the instances that different models disagree on (e.g., an SVM, a Random Forest, and so on).

Before we move on to Gaussian mixture models, let's take a look at DBSCAN, another popular clustering algorithm that illustrates a very different approach based on local density estimation. This approach allows the algorithm to identify clusters of arbitrary shapes.

DBSCAN

This algorithm defines clusters as continuous regions of high density. It is actually quite simple:

- For each instance, the algorithm counts how many instances are located within a small distance ε (epsilon) from it. This region is called the instance's εneighborhood.
- If an instance has at least min_samples instances in its ε-neighborhood (including itself), then it is considered a core instance. In other words, core instances are those that are located in dense regions.
- All instances in the neighborhood of a core instance belong to the same cluster. This may include other core instances, therefore a long sequence of neighboring core instances forms a single cluster.

 Any instance that is not a core instance and does not have one in its neighborhood is considered an anomaly.

This algorithm works well if all the clusters are dense enough, and they are well separated by low-density regions. The DBSCAN class in Scikit-Learn is as simple to use as you might expect. Let's test it on the moons dataset, introduced in Chapter 5:

```
from sklearn.cluster import DBSCAN
from sklearn.datasets import make moons
X, y = make_moons(n_samples=1000, noise=0.05)
dbscan = DBSCAN(eps=0.05, min samples=5)
dbscan.fit(X)
```

The labels of all the instances are now available in the labels instance variable:

```
>>> dbscan.labels
array([ 0, 2, -1, -1, 1, 0, 0, 0, ..., 3, 2, 3, 3, 4, 2, 6, 3])
```

Notice that some instances have a cluster index equal to -1: this means that they are considered as anomalies by the algorithm. The indices of the core instances are available in the core_sample_indices_ instance variable, and the core instances themselves are available in the components_instance variable:

```
>>> len(dbscan.core_sample_indices_)
808
>>> dbscan.core sample indices
array([ 0, 4, 5, 6, 7, 8, 10, 11, ..., 992, 993, 995, 997, 998, 999])
>>> dbscan.components
array([[-0.02137124, 0.40618608],
      [-0.84192557, 0.53058695],
      [-0.94355873, 0.3278936],
      [ 0.79419406, 0.60777171]])
```

This clustering is represented in the left plot of Figure 9-14. As you can see, it identified quite a lot of anomalies, plus 7 different clusters. How disappointing! Fortunately, if we widen each instance's neighborhood by increasing eps to 0.2, we get the clustering on the right, which looks perfect. Let's continue with this model.

Figure 9-14. DBSCAN clustering using two different neighborhood radiuses

Somewhat surprisingly, the DBSCAN class does not have a predict() method, although it has a fit predict() method. In other words, it cannot predict which cluster a new instance belongs to. The rationale for this decision is that several classification algorithms could make sense here, and it is easy enough to train one, for example a KNeighborsClassifier:

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n neighbors=50)
knn.fit(dbscan.components_, dbscan.labels_[dbscan.core_sample_indices_])
```

Now, given a few new instances, we can predict which cluster they most likely belong to, and even estimate a probability for each cluster. Note that we only trained them on the core instances, but we could also have chosen to train them on all the instances, or all but the anomalies: this choice depends on the final task.

```
>>> X_new = np.array([[-0.5, 0], [0, 0.5], [1, -0.1], [2, 1]])
>>> knn.predict(X_new)
array([1, 0, 1, 0])
>>> knn.predict_proba(X_new)
array([[0.18, 0.82],
       [1. , 0. ],
       [0.12, 0.88],
       [1. , 0. ]])
```

The decision boundary is represented on Figure 9-15 (the crosses represent the 4 instances in X new). Notice that since there is no anomaly in the KNN's training set, the classifier always chooses a cluster, even when that cluster is far away. However, it is fairly straightforward to introduce a maximum distance, in which case the two instances that are far away from both clusters are classified as anomalies. To do this, we can use the kneighbors() method of the KNeighborsClassifier: given a set of instances, it returns the distances and the indices of the k nearest neighbors in the training set (two matrices, each with *k* columns):

```
>>> y dist, y pred idx = knn.kneighbors(X new, n neighbors=1)
>>> y pred = dbscan.labels [dbscan.core sample indices ][y pred idx]
>>> y_pred[y_dist > 0.2] = -1
>>> y_pred.ravel()
array([-1, 0, 1, -1])
```


Figure 9-15. cluster_classification_diagram

In short, DBSCAN is a very simple yet powerful algorithm, capable of identifying any number of clusters, of any shape, it is robust to outliers, and it has just two hyperparameters (eps and min_samples). However, if the density varies significantly across the clusters, it can be impossible for it to capture all the clusters properly. Moreover, its computational complexity is roughly $O(m \log m)$, making it pretty close to linear with regards to the number of instances. However, Scikit-Learn's implementation can require up to $O(m^2)$ memory if eps is large.

Other Clustering Algorithms

Scikit-Learn implements several more clustering algorithms that you should take a look at. We cannot cover them all in detail here, but here is a brief overview:

- Agglomerative clustering: a hierarchy of clusters is built from the bottom up. Think of many tiny bubbles floating on water and gradually attaching to each other until there's just one big group of bubbles. Similarly, at each iteration agglomerative clustering connects the nearest pair of clusters (starting with individual instances). If you draw a tree with a branch for every pair of clusters that merged, you get a binary tree of clusters, where the leaves are the individual instances. This approach scales very well to large numbers of instances or clusters, it can capture clusters of various shapes, it produces a flexible and informative cluster tree instead of forcing you to choose a particular cluster scale, and it can be used with any pairwise distance. It can scale nicely to large numbers of instances if you provide a connectivity matrix. This is a sparse m by m matrix that indicates which pairs of instances are neighbors (e.g., returned by sklearn.neighbors.kneighbors_graph()). Without a connectivity matrix, the algorithm does not scale well to large datasets.
- *Birch*: this algorithm was designed specifically for very large datasets, and it can be faster than batch K-Means, with similar results, as long as the number of features is not too large (<20). It builds a tree structure during training containing

- just enough information to quickly assign each new instance to a cluster, without having to store all the instances in the tree: this allows it to use limited memory, while handle huge datasets.
- Mean-shift: this algorithm starts by placing a circle centered on each instance, then for each circle it computes the mean of all the instances located within it, and it shifts the circle so that it is centered on the mean. Next, it iterates this mean-shift step until all the circles stop moving (i.e., until each of them is centered on the mean of the instances it contains). This algorithm shifts the circles in the direction of higher density, until each of them has found a local density maximum. Finally, all the instances whose circles have settled in the same place (or close enough) are assigned to the same cluster. This has some of the same features as DBSCAN, in particular it can find any number of clusters of any shape, it has just one hyperparameter (the radius of the circles, called the bandwidth) and it relies on local density estimation. However, it tends to chop clusters into pieces when they have internal density variations. Unfortunately, its computational complexity is $O(m^2)$, so it is not suited for large datasets.
- Affinity propagation: this algorithm uses a voting system, where instances vote for similar instances to be their representatives, and once the algorithm converges, each representative and its voters form a cluster. This algorithm can detect any number of clusters of different sizes. Unfortunately, this algorithm has a computational complexity of $O(m^2)$, so it is not suited for large datasets.
- Spectral clustering: this algorithm takes a similarity matrix between the instances and creates a low-dimensional embedding from it (i.e., it reduces its dimensionality), then it uses another clustering algorithm in this low-dimensional space (Scikit-Learn's implementation uses K-Means). Spectral clustering can capture complex cluster structures, and it can also be used to cut graphs (e.g., to identify clusters of friends on a social network), however it does not scale well to large number of instances, and it does not behave well when the clusters have very different sizes.

Now let's dive into Gaussian mixture models, which can be used for density estimation, clustering and anomaly detection.

Gaussian Mixtures

A Gaussian mixture model (GMM) is a probabilistic model that assumes that the instances were generated from a mixture of several Gaussian distributions whose parameters are unknown. All the instances generated from a single Gaussian distribution form a cluster that typically looks like an ellipsoid. Each cluster can have a different ellipsoidal shape, size, density and orientation, just like in Figure 9-11. When you observe an instance, you know it was generated from one of the Gaussian distri-

butions, but you are not told which one, and you do not know what the parameters of these distributions are.

There are several GMM variants: in the simplest variant, implemented in the Gaus sianMixture class, you must know in advance the number k of Gaussian distributions. The dataset \mathbf{X} is assumed to have been generated through the following probabilistic process:

- For each instance, a cluster is picked randomly among k clusters. The probability of choosing the j^{th} cluster is defined by the cluster's weight $\phi^{(j)}$. The index of the cluster chosen for the i^{th} instance is noted $z^{(i)}$.
- If $z^{(i)}=j$, meaning the i^{th} instance has been assigned to the j^{th} cluster, the location $\mathbf{x}^{(i)}$ of this instance is sampled randomly from the Gaussian distribution with mean $\boldsymbol{\mu}^{(j)}$ and covariance matrix $\boldsymbol{\Sigma}^{(j)}$. This is noted $\mathbf{x}^{(i)} \sim \mathcal{N}(\boldsymbol{\mu}^{(j)}, \boldsymbol{\Sigma}^{(j)})$.

This generative process can be represented as a *graphical model* (see Figure 9-16). This is a graph which represents the structure of the conditional dependencies between random variables.

Figure 9-16. Gaussian mixture model

Here is how to interpret it:8

- The circles represent random variables.
- The squares represent fixed values (i.e., parameters of the model).

⁷ Phi (ϕ or ϕ) is the 21st letter of the Greek alphabet.

⁸ Most of these notations are standard, but a few additional notations were taken from the Wikipedia article on plate notation.

- The large rectangles are called *plates*: they indicate that their content is repeated several times.
- The number indicated at the bottom right hand side of each plate indicates how many times its content is repeated, so there are m random variables $z^{(i)}$ (from $z^{(1)}$ to $z^{(m)}$) and m random variables $\mathbf{x}^{(i)}$, and k means $\mathbf{\mu}^{(j)}$ and k covariance matrices $\Sigma^{(j)}$, but just one weight vector ϕ (containing all the weights $\phi^{(1)}$ to $\phi^{(k)}$).
- Each variable $z^{(i)}$ is drawn from the *categorical distribution* with weights ϕ . Each variable $\mathbf{x}^{(i)}$ is drawn from the normal distribution with the mean and covariance matrix defined by its cluster $z^{(i)}$.
- The solid arrows represent conditional dependencies. For example, the probability distribution for each random variable $z^{(i)}$ depends on the weight vector ϕ . Note that when an arrow crosses a plate boundary, it means that it applies to all the repetitions of that plate, so for example the weight vector ϕ conditions the probability distributions of all the random variables $\mathbf{x}^{(1)}$ to $\mathbf{x}^{(m)}$.
- The squiggly arrow from $z^{(i)}$ to $\mathbf{x}^{(i)}$ represents a switch: depending on the value of $z^{(i)}$, the instance $\mathbf{x}^{(i)}$ will be sampled from a different Gaussian distribution. For example, if $z^{(i)}=j$, then $\mathbf{x}^{(i)} \sim \mathcal{N}(\mu^{(j)}, \Sigma^{(j)})$.
- Shaded nodes indicate that the value is known, so in this case only the random variables $\mathbf{x}^{(i)}$ have known values: they are called *observed variables*. The unknown random variables $z^{(i)}$ are called *latent variables*.

So what can you do with such a model? Well, given the dataset X, you typically want to start by estimating the weights ϕ and all the distribution parameters $\mu^{(1)}$ to $\mu^{(k)}$ and $\Sigma^{(1)}$ to $\Sigma^{(k)}$. Scikit-Learn's GaussianMixture class makes this trivial:

```
from sklearn.mixture import GaussianMixture
gm = GaussianMixture(n components=3, n init=10)
gm.fit(X)
```

Let's look at the parameters that the algorithm estimated:

```
>>> gm.weights
array([0.20965228, 0.4000662 , 0.39028152])
>>> gm.means_
array([[ 3.39909717, 1.05933727],
       [-1.40763984, 1.42710194],
      [ 0.05135313, 0.07524095]])
>>> gm.covariances_
array([[[ 1.14807234, -0.03270354],
       [-0.03270354, 0.95496237]],
      [[ 0.63478101, 0.72969804],
       [ 0.72969804, 1.1609872 ]],
```

```
[[ 0.68809572, 0.79608475], [ 0.79608475, 1.21234145]]])
```

Great, it worked fine! Indeed, the weights that were used to generate the data were 0.2, 0.4 and 0.4, and similarly, the means and covariance matrices were very close to those found by the algorithm. But how? This class relies on the Expectation-Maximization (EM) algorithm, which has many similarities with the K-Means algorithm: it also initializes the cluster parameters randomly, then it repeats two steps until convergence, first assigning instances to clusters (this is called the expectation step) then updating the clusters (this is called the maximization step). Sounds familiar? Indeed, in the context of clustering you can think of EM as a generalization of K-Means which not only finds the cluster centers ($\mu^{(1)}$ to $\mu^{(k)}$), but also their size, shape and orientation ($\Sigma^{(1)}$ to $\Sigma^{(k)}$), as well as their relative weights ($\phi^{(1)}$ to $\phi^{(k)}$). Unlike K-Means, EM uses soft cluster assignments rather than hard assignments: for each instance during the expectation step, the algorithm estimates the probability that it belongs to each cluster (based on the current cluster parameters). Then, during the maximization step, each cluster is updated using all the instances in the dataset, with each instance weighted by the estimated probability that it belongs to that cluster. These probabilities are called the *responsibilities* of the clusters for the instances. During the maximization step, each cluster's update will mostly be impacted by the instances it is most responsible for.

Unfortunately, just like K-Means, EM can end up converging to poor solutions, so it needs to be run several times, keeping only the best solution. This is why we set n_init to 10. Be careful: by default n_init is only set to 1.

You can check whether or not the algorithm converged and how many iterations it took:

```
>>> gm.converged_
True
>>> gm.n_iter_
3
```

Okay, now that you have an estimate of the location, size, shape, orientation and relative weight of each cluster, the model can easily assign each instance to the most likely cluster (hard clustering) or estimate the probability that it belongs to a particular cluster (soft clustering). For this, just use the predict() method for hard clustering, or the predict_proba() method for soft clustering:

```
[2.01535333e-06, 9.99923053e-01, 7.49319577e-05], ..., [9.9999571e-01, 2.13946075e-26, 4.28788333e-07], [1.00000000e+00, 1.46454409e-41, 5.12459171e-16], [1.00000000e+00, 8.02006365e-41, 2.27626238e-15]])
```

It is a *generative model*, meaning you can actually sample new instances from it (note that they are ordered by cluster index):

It is also possible to estimate the density of the model at any given location. This is achieved using the score_samples() method: for each instance it is given, this method estimates the log of the *probability density function* (PDF) at that location. The greater the score, the higher the density:

If you compute the exponential of these scores, you get the value of the PDF at the location of the given instances. These are *not* probabilities, but probability *densities*: they can take on any positive value, not just between 0 and 1. To estimate the probability that an instance will fall within a particular region, you would have to integrate the PDF over that region (if you do so over the entire space of possible instance locations, the result will be 1).

Figure 9-17 shows the cluster means, the decision boundaries (dashed lines), and the density contours of this model: