Package 'ggthemes'

May 12, 2019

```
Version 4.2.0
Title Extra Themes, Scales and Geoms for 'ggplot2'
Depends R (>= 3.3.0)
Imports ggplot2 (>= 3.0.0),
      graphics,
      grid,
      methods,
      purrr,
      scales,
      stringr,
      tibble
Suggests dplyr,
      covr,
      extrafont,
      glue,
      knitr,
      lattice,
      lintr,
      maps,
      mapproj,
      pander,
      rlang,
      rmarkdown,
      spelling,
      testthat,
      tidyr,
      vdiffr,
      withr
Description Some extra themes, geoms, and scales for 'ggplot2'.
      Provides 'ggplot2' themes and scales that replicate the look of plots
      by Edward Tufte, Stephen Few, 'Fivethirtyeight', 'The Economist', 'Stata',
      'Excel', and 'The Wall Street Journal', among others.
      Provides 'geoms' for Tufte's box plot and range frame.
License GPL-2
URL http://github.com/jrnold/ggthemes
BugReports http://github.com/jrnold/ggthemes
RoxygenNote 6.1.1
```

LazyData trueLanguage en-USEncoding UTF-8

R topics documented:

	3
-1	5
<u> </u>	6
<u>-1</u>	6
<u>-1</u>	7
- 1 - 1	8
cleveland_shape_pal	9
colorblind_pal	0
economist_pal	2
excel_new_pal	2
excel_pal	3
extended_range_breaks	3
few_pal	4
few_shape_pal	5
fivethirtyeight_pal	6
gdocs_pal	6
geom_rangeframe	7
geom_tufteboxplot	8
ggthemes	0
ggthemes_data	0
hc_pal	1
palette_pander	1
ptol_pal	2
scale_color_pander	2
scale_colour_canva	4
scale_colour_economist	4
scale_colour_excel_new	5
scale_colour_few	7
scale_colour_fivethirtyeight	8
scale_colour_gradient2_tableau	0
scale_colour_gradient_tableau	1
scale_colour_hc	3
scale_colour_ptol	4
scale_colour_stata	5
scale_colour_tableau	7
scale_colour_wsj	8
scale_fill_calc	9
scale_fill_excel	0
scale_fill_gdocs	2
scale_fill_solarized	3
scale_linetype_stata	5
scale_shape_calc	6
scale_shape_circlefill	7
scale_shape_cleveland	8
scale shape few 4	9

bank_slopes 3

	scale_shape_stata	50
	scale_shape_tableau	51
	scale_shape_tremmel	52
	show_linetypes	53
	show_shapes	54
	smart_digits	55
	solarized_pal	55
	stata_linetype_pal	56
	stata_pal	56
	stata_shape_pal	57
	stat_fivenumber	57
	tableau_color_pal	58
	tableau_gradient_pal	60
	tableau_shape_pal	61
	theme_base	62
	theme_calc	62
	theme_clean	63
	theme_economist	64
	theme_excel	65
	theme_excel_new	66
	theme_few	67
	theme_fivethirtyeight	68
	theme_foundation	68
	theme_gdocs	69
	theme_hc	69
	theme_igray	70
	theme_map	71
	theme_pander	72
	theme_par	73
	theme_solarized	74
	theme_solid	75
	theme_stata	75
	theme_tufte	76
	theme_wsj	77
	– 1 – 1	78
	wsj_pal	7 9
Index		80

bank_slopes

Bank Slopes to 45 degrees

Description

Calculate the optimal aspect ratio of a line graph by banking the slopes to 45 degrees as suggested by W.S. Cleveland. This maximizes the ability to visually differentiate differences in slope. This function will calculate the optimal aspect ratio for a line plot using any of the methods described in Herr and Argwala (2006). In their review of the methods they suggest using median absolute slope banking ('ms'), which produces aspect ratios which are generally the median of the various methods provided here.

4 bank_slopes

Usage

```
bank_slopes(x, y, cull = FALSE, weight = NULL, method = c("ms",
    "as"), ...)
```

Arguments

x x values y y values

cull logical. Remove all slopes of 0 or Inf.

weight No longer used, but kept for backwards compatibility.

method One of 'ms' (Median Absolute Slope) or 'as' (Average Absolute Slope). Other

options are no longer supported, and will use 'ms' instead with a warning.

... No longer used, but kept for backwards compatibility.

Value

numeric The aspect ratio (x, y).

Methods

As written, all of these methods calculate the aspect ratio (x / y), but bank_slopes will return (y / x) to be compatible with link[ggplot2]{coord_fixed()}.

Median Absolute Slopes Banking

Let the aspect ratio be $\alpha = \frac{w}{h}$ then the median absolute slop banking is the α such that,

$$median \left| \frac{s_i}{\alpha} \right| = 1$$

Let $R_z = z_{max} - z_{min}$ for z = x, y, and $M = median||s_i||$. Then,

$$\alpha = M \frac{R_x}{R_y}$$

Average Absolute Slope Banking

Let the aspect ratio be $\alpha = \frac{w}{h}$. then the mean absolute slope banking is the α such that,

$$mean \left| \frac{s_i}{\alpha} \right| = 1$$

Heer and Agrawala (2006) and Cleveland discuss several other methods including average (weighted) orientation, and global and local orientation resolution. These are no longer implemented in this function. In general, either the median or average absolute slopes will produce reasonable results without requiring optimization.

References

Cleveland, W. S., M. E. McGill, and R. McGill. The Shape Parameter of a Two-Variable Graph. Journal of the American Statistical Association, 83:289-300, 1988

Heer, Jeffrey and Maneesh Agrawala, 2006. 'Multi-Scale Banking to 45' IEEE Transactions On Visualization And Computer Graphics.

Cleveland, W. S. 1993. 'A Model for Studying Display Methods of Statistical Graphs.' Journal of Computational and Statistical Graphics.

Cleveland, W. S. 1994. The Elements of Graphing Data, Revised Edition.

calc_pal 5

See Also

```
banking()
```

Examples

```
library("ggplot2")

# Use the classic sunspot data from Cleveland's original paper
x <- seq_along(sunspot.year)
y <- as.numeric(sunspot.year)
# Without banking
m <- ggplot(data.frame(x = x, y = y), aes(x = x, y = y)) +
    geom_line()
m

## Using the default method, Median Absolute Slope
ratio <- bank_slopes(x, y)
m + coord_fixed(ratio = ratio)
## Using culling
## Average Absolute Slope
bank_slopes(x, y, method = "as")</pre>
```

calc_pal

Calc color palette (discrete)

Description

Color palettes from LibreOffice Calc. This palette has 12 values.

Usage

```
calc_pal()
```

See Also

```
Other colour calc: scale_fill_calc
```

Examples

```
library("scales")
show_col(calc_pal()(12))
```

6 canva_pal

calc_shape_pal

Calc shape palette (discrete)

Description

Shape palette based on the shapes used in LibreOffice Calc.

Usage

```
calc_shape_pal()
```

See Also

Other shapes calc: scale_shape_calc

Examples

```
library("ggplot2")
## Not run:
    show_shapes(calc_shape_pal()(13))
## End(Not run)
```

canva_pal

Canva.com color palettes

Description

150+ color palettes from canva.com. See canva_palettes().

Usage

```
canva_pal(palette = "Fresh and bright")
```

Arguments

palette

Palette name. See the names of canva_palettes() for valid names.

Value

A function that takes a single value, the number of colors to use.

canva_palettes 7

Examples

```
require("ggplot2")
require("tibble")
if (require("purrr") && require("scales") && require("dplyr")) {
        canva_df <- map2_df(</pre>
                canva_palettes,
                names(canva_palettes),
                ~ tibble(
                        colors = .x,
                        .id = seq_along(colors),
                        palette = .y
                )
        )
        ggplot(canva_df, aes(
                y = palette,
                x = .id,
                fill = colors
        )) +
                geom_raster() +
                scale_fill_identity(guide = FALSE) +
                theme_minimal() +
                theme(panel.grid = element_blank(),
                      axis.text.x = element_blank()) +
                labs(x = "", y = "")
        show_col(canva_pal("Fresh and bright")(4))
        show_col(canva_pal("Cool blues")(4))
        show_col(canva_pal("Modern and crisp")(4))
}
```

canva_palettes

150 Color Palettes from Canva

Description

150 four-color palettes by the canva.com design school. These palettes were derived from photos and "impactful websites".

Usage

canva_palettes

Format

A named list of character vector. The names are the palette names. The values of the character vectors are hex colors, e.g. "#f98866".

Source

http://makeadifferencewithdata.com/wp-content/uploads/2016/12/color-palettes.txt

8 circlefill_shape_pal

References

• Janie Kliever, 100 Brilliant Color Combinations and How to Apply Them to Your Designs, *Canva.com*, June 20, 2015.

- Mary Stribley, Website Color Schemes: The Palettes of 50 Visually Impactful Websites to Inspire You, *Canva.com*, January 26, 2016.
- Pablo Saenz de Tejeda, 150 paletas de colores para Tableau, January 1, 2017.
- Schwabish, Jonathan. 150+ Color Palettes for Excel, PolicyViz, January 12, 2017.

Examples

```
require("ggplot2")
require("tibble")
if (require("purrr") && require("scales") && require("dplyr")) {
        canva_df <- map2_df(</pre>
                canva_palettes,
                names(canva_palettes),
                ~ tibble(
                        colors = .x,
                        .id = seq_along(colors),
                        palette = .y
                )
        ggplot(canva_df, aes(
                y = palette,
                x = .id,
                fill = colors
        )) +
                geom_raster() +
                scale_fill_identity(guide = FALSE) +
                theme_minimal() +
                theme(panel.grid = element_blank(),
                      axis.text.x = element_blank()) +
                labs(x = "", y = "")
        show_col(canva_pal("Fresh and bright")(4))
        show_col(canva_pal("Cool blues")(4))
        show_col(canva_pal("Modern and crisp")(4))
}
```

circlefill_shape_pal Filled Circle Shape palette (discrete)

Description

Shape palette with circles varying by amount of fill. This uses the set of 3 circle fill values in Lewandowsky and Spence (1989): solid, hollow, half-filled, with two additional fill amounts: three-quarters, and one-quarter.

Usage

```
circlefill_shape_pal()
```

cleveland_shape_pal 9

Details

This palette supports up to five values.

References

Lewandowsky, Stephan and Ian Spence (1989) "Discriminating Strata in Scatterplots", Journal of the American Statistical Association, http://www.jstor.org/stable/2289649

See Also

```
Other shapes: cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland, scale_shape_tremmel, tremmel_shape_pal
```

Examples

```
library("ggplot2")

p <- ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(cyl))) +
  geom_point()

p + scale_shape_tremmel()
p + scale_shape_circlefill()
p + scale_shape_cleveland()
p + scale_shape_cleveland(overlap = TRUE)</pre>
```

cleveland_shape_pal

Shape palette from Cleveland "Elements of Graphing Data" (discrete).

Description

Shape palettes for overlapping and non-overlapping points.

Usage

```
cleveland_shape_pal(overlap = TRUE)
```

Arguments

overlap

logical Use the scale for overlapping points?

Note

In the *Elements of Graphing Data*, W.S. Cleveland suggests two shape palettes for scatter plots: one for overlapping data and another for non-overlapping data. The symbols for overlapping data relies on pattern discrimination, while the symbols for non-overlapping data vary the amount of fill. This palette attempts to create these palettes. However, I found that these were hard to replicate. Using the R shapes and unicode fonts: the symbols can vary in size, they are dependent of the fonts used, and there does not exist a unicode symbol for a circle with a vertical line. If someone can improve this palette, please let me know.

Following Tremmel (1995), I replace the circle with a vertical line with an encircled plus sign.

The palette cleveland_shape_pal() supports up to five values.

10 colorblind_pal

References

Cleveland WS. *The Elements of Graphing Data*. Revised Edition. Hobart Press, Summit, NJ, 1994, pp. 154-164, 234-239.

Tremmel, Lothar, (1995) "The Visual Separability of Plotting Symbols in Scatterplots", *Journal of Computational and Graphical Statistics*, http://www.jstor.org/stable/1390760

See Also

```
Other shapes: circlefill_shape_pal, scale_shape_circlefill, scale_shape_cleveland, scale_shape_tremmel, tremmel_shape_pal
```

Examples

```
### (discrete).

library("ggplot2")
p <- ggplot(mtcars) +
        geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
        facet_wrap(~am) +
        theme_bw()
# overlapping symbol palette
p + scale_shape_cleveland()
# non-overlapping symbol palette
p + scale_shape_cleveland(overlap = FALSE)</pre>
```

colorblind_pal

Colorblind Color Palette (Discrete) and Scales

Description

An eight-color colorblind safe qualitative discrete palette.

Usage

```
colorblind_pal()
scale_colour_colorblind(...)
scale_color_colorblind(...)
scale_fill_colorblind(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object

colorblind_pal 11

- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

References

```
Chang, W. "Cookbook for R" http://jfly.iam.u-tokyo.ac.jp/color
```

See Also

The **dichromat** package, dichromat_pal(), and scale_color_tableau() for other colorblind palettes.

Examples

```
library("ggplot2")
library("scales")

show_col(colorblind_pal()(8))
p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg, colour = factor(gear))) + facet_wrap(~am)
p + theme_igray() + scale_colour_colorblind()</pre>
```

12 excel_new_pal

economist_pal

Economist color palette (discrete)

Description

The hues in the palette are blues, grays, and greens. Red is not included in these palettes and should be used to indicate important data.

Usage

```
economist_pal(fill = TRUE)
```

Arguments

fill

Use the fill palette.

See Also

Other colour economist: scale_colour_economist

Examples

```
library("scales")
show_col(economist_pal()(6))
## fill palette
show_col(economist_pal(fill = TRUE)(6))
```

excel_new_pal

Excel (current versions) color palettes (discrete)

Description

Color palettes used by current versions of Microsoft Office and Excel.

Usage

```
excel_new_pal(theme = "Office Theme")
```

Arguments

theme

The name of the Office theme or color theme (not to be confused with gg-plot2 themes) from which to derive the color palette. Available themes include: "Atlas", "Badge", "Berlin", "Celestial", "Crop", "Depth", "Droplet", "Facet", "Feathered", "Gallery", "Headlines", "Integral", "Ion Boardroom", "Ion", "Madison", "Main Event", "Mesh", "Office Theme", "Organic", "Parallax", "Parcel", "Retrospect", "Savon", "Slice", "Vapor Trail", "View", "Wisp", "Wood Type", "Aspect", "Blue Green", "Blue II", "Blue Warm", "Blue", "Grayscale", "Green Yellow", "Green", "Marquee", "Median", "Office 2007-2010", "Orange Red", "Orange", "Paper", "Red Orange", "Red Violet", "Red", "Slipstream", "Violet II", "Violet", "Yellow Orange", "Yellow"

excel_pal 13

See Also

Other colour excel: excel_pal, scale_colour_excel_new, scale_fill_excel

Examples

```
library("scales")
for (i in names(ggthemes::ggthemes_data$excel$palettes)) {
   show_col(excel_new_pal(theme = i))(6)
}
```

excel_pal

Excel 97 ugly color palettes (discrete)

Description

The color palettes used in Microsoft Excel 97 (and up until Excel 2007). Use this for that classic ugly look and feel. For ironic purposes only. 3D bars and pies not included. Please never use this color palette.

Usage

```
excel_pal(line = TRUE)
```

Arguments

line

If TRUE, use the palette for lines and points. Otherwise, use the palette for area.

See Also

Other colour excel: excel_new_pal, scale_colour_excel_new, scale_fill_excel

Examples

```
library("scales")
show_col(excel_pal()(7))
show_col(excel_pal(line = FALSE)(7))
```

extended_range_breaks_

Pretty axis breaks inclusive of extreme values

Description

This function returns pretty axis breaks that always include the extreme values of the data. This works by calling the extended Wilkinson algorithm (Talbot et. al, 2010), constrained to solutions interior to the data range. Then, the minimum and maximum labels are moved to the minimum and maximum of the data range.

14 few_pal

Usage

```
extended_range_breaks_(dmin, dmax, n = 5, Q = c(1, 5, 2, 2.5, 4, 3),
  w = c(0.25, 0.2, 0.5, 0.05))
extended_range_breaks(n = 5, ...)
```

Arguments

dmin	minimum of the data range
dmax	maximum of the data range
n	desired number of breaks
Q	set of nice numbers
W	weights applied to the four optimization components (simplicity, coverage, density, and legibility) $\frac{1}{2}$
	other arguments passed to extended_range_breaks_()

Details

extended_range_breaks implements the algorithm and returns the break values. scales_extended_range_breaks uses the conventions of the **scales** package, and returns a function.

Value

For extended_range_breaks, the vector of axis label locations. For scales_extended_range_breaks, a function which takes a single argument, a vector of data, and returns the vector of axis label locations.

A function which returns breaks given a vector.

Author(s)

Justin Talbot <jtalbot@stanford.edu>, Jeffrey B. Arnold, Baptiste Auguie

References

Talbot, J., Lin, S., Hanrahan, P. (2010) An Extension of Wilkinson's Algorithm for Positioning Tick Labels on Axes, InfoVis 2010.

few_pal

Color Palettes Few "Show Me the Numbers"

Description

Qualitative color palettes from Stephen Few (2012) *Show Me the Numbers*. There are three palettes: Light, Medium, and Dark. Each palette comprises nine colors: gray, blue, orange, green, pink, brown, purple, yellow, red. For n = 1, gray is used. For n > 1, the eight non-gray colors are used.

Usage

```
few_pal(palette = "Medium")
```

few_shape_pal 15

Arguments

```
palette One of
```

Details

Use the light palette for filled areas, such as bar charts. Use the medium palette for points and lines. Use the dark palette for highlighting specific points or for small and thin lines and points.

References

Few, S. (2012) *Show Me the Numbers: Designing Tables and Graphs to Enlighten.* 2nd edition. Analytics Press.

"Practical Rules for Using Color in Charts".

See Also

```
Other colour few: scale_colour_few
```

Examples

```
library("scales")
show_col(few_pal()(7))
show_col(few_pal("Dark")(7))
show_col(few_pal("Light")(7))
```

few_shape_pal

Shape palette from "Show Me the Numbers" (discrete)

Description

Shape palette from Stephen Few's, "Show Me the Numbers". The shape palette consists of five shapes: circle, square, triangle, plus, times.

Usage

```
few_shape_pal()
```

References

Few, S. (2012) *Show Me the Numbers: Designing Tables and Graphs to Enlighten*, Analytics Press, p. 208.

16 gdocs_pal

```
fivethirtyeight_pal fivethirtyeight.com color palette
```

Description

The standard three-color fivethirtyeight.com palette for line plots comprises blue, red, and green.

Usage

```
fivethirtyeight_pal()
```

See Also

Other colour fivethirtyeight: scale_colour_fivethirtyeight

Examples

```
library("scales")
show_col(fivethirtyeight_pal()(3))
```

gdocs_pal

Google Docs color palette (discrete)

Description

Color palettes from Google Docs. This palette includes 20 colors.

Usage

```
gdocs_pal()
```

See Also

```
Other colour gdocs: scale_fill_gdocs
```

Examples

```
library("scales")
show_col(gdocs_pal()(20))
```

geom_rangeframe 17

|--|

Description

Axis lines which extend to the maximum and minimum of the plotted data.

Usage

```
geom_rangeframe(mapping = NULL, data = NULL, stat = "identity",
   position = "identity", ..., sides = "bl", na.rm = FALSE,
   show.legend = NA, inherit.aes = TRUE)
```

Arguments

mapping	Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
data	The data to be displayed in this layer. There are three options:
	If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().
	A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.
	A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data.
stat	The statistical transformation to use on the data for this layer, as a string.
position	Position adjustment, either as a string, or the result of a call to a position adjustment function.
	Other arguments passed on to layer(). These are often aesthetics, used to set an aesthetic to a fixed value, like colour = "red" or size = 3. They may also be parameters to the paired geom/stat.
sides	A string that controls which sides of the plot the frames appear on. It can be set to a string containing any of 'trbl', for top, right, bottom, and left.
na.rm	If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.
show.legend	logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.
inherit.aes	If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

- colour
- size
- linetype
- alpha

18 geom_tufteboxplot

References

Tufte, Edward R. (2001) The Visual Display of Quantitative Information, Chapter 6.

See Also

```
Other geom tufte: geom_tufteboxplot
```

Examples

```
library("ggplot2")
ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
geom_rangeframe() +
theme_tufte()
```

geom_tufteboxplot

Tufte's Box Plot

Description

Edward Tufte's revisions of the box plot as described in *The Visual Display of Quantitative Information*. This functions provides several box plot variants:

- · A point indicating the median, a gap indicating the interquartile range, and lines for whiskers.
- An offset line indicating the interquartile range and a gap indicating the median.
- A line indicating the interquartile range, a gap indicating the median, and points indicating the minimum and maximum values
- A wide line indicating the interquartile range, a gap indicating the median, and lines indicating the minimum and maximum.

Usage

```
geom_tufteboxplot(mapping = NULL, data = NULL, stat = "fivenumber",
  position = "dodge", outlier.colour = "black", outlier.shape = 19,
  outlier.size = 1.5, outlier.stroke = 0.5, voffset = 0.01,
  hoffset = 0.005, na.rm = FALSE, show.legend = NA,
  inherit.aes = TRUE, median.type = "point", whisker.type = "line",
  ...)
```

Arguments

mapping

Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

geom_tufteboxplot 19

A function will be called with a single argument, the plot data. The return

value must be a data.frame, and will be used as the layer data.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

outlier.colour colour for outlying points outlier.shape shape of outlying points outlier.size size of outlying points outlier.stroke stroke for outlying points

voffset controls the size of the gap in the line representing the median when median. type

= 'line'. This is a fraction of the range of y.

hoffset controls how much the interquartile line is offset from the whiskers when median.type

= 'line'. This is a fraction of the range of x.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

median.type If 'point', then the median is represented by a point, and the interquartile range

by a gap in the line. If median.type='line', then the interquartile range is represented by a line, possibly offset, and the median by a gap in the line.

whisker.type If 'line', then whiskers are represented by lines. If 'point', then whiskers are

represented by points at ymin and ymax.

Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also

be parameters to the paired geom/stat.

Aesthetics

- x [required]
- y [required]
- colour
- size
- linetype
- shape
- fill
- alpha

References

Tufte, Edward R. (2001) The Visual Display of Quantitative Information, Chapter 6.

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statistician 32, 12-16.

20 ggthemes_data

See Also

```
geom_boxplot()
Other geom tufte: geom_rangeframe
```

Examples

```
library("ggplot2")

p <- ggplot(mtcars, aes(factor(cyl), mpg))
# with a point for the median and lines for whiskers
p + geom_tufteboxplot()
# with a line for the interquartile range and points for whiskers
p + geom_tufteboxplot(median.type = "line", whisker.type = "point", hoffset = 0)
# with a wide line for the interquartile range and lines for whiskers
p + geom_tufteboxplot(median.type = "line", hoffset = 0, width = 3)
# with an offset line for the interquartile range and lines for whiskers
p + geom_tufteboxplot(median.type = "line")
# combined with theme_tufte
p + geom_tufteboxplot() +
theme_tufte() +
theme(axis.ticks.x = element_blank())</pre>
```

ggthemes

ggthemes

Description

This package contains extra themes, scales, and geoms, and functions for and related to **ggplot2**. See https://jrnold.github.io/ggthemes/ for documentation.

ggthemes_data

Palette and theme data

Description

The ggthemes environment contains various values used in themes and palettes. This is undocumented and subject to change.

Usage

ggthemes_data

Format

A list object.

hc_pal 21

hc_pal Highcharts JS color palette (discrete)

Description

The Highcharts JS uses many different color palettes in its plots. This collects a few of them.

Usage

```
hc_pal(palette = "default")
```

Arguments

palette character The name of the Highcharts theme to use.

Palettes

The following palettes are defined,

- · default
- · dark-unica

See Also

Other colour hc: scale_colour_hc

palette_pander Color palette from the pander package

Description

The **pander** ships with a default colorblind and printer-friendly color palette borrowed from http://jfly.iam.utokyo.ac.jp/color/.

Usage

```
palette_pander(n, random_order = FALSE)
```

Arguments

n number of colors. This palette supports up to eight colors.

random_order if the palette should be reordered randomly before rendering each plot to get

colorful images

See Also

Other colour pander: scale_color_pander

22 scale_color_pander

Examples

```
## Not run:
   palette_pander(TRUE)
## End(Not run)
```

ptol_pal

Color Palettes from Paul Tol's "Colour Schemes"

Description

Qualitative color palettes from Paul Tol, "Colour Schemes".

Usage

```
ptol_pal()
```

Details

Incorporation of the palette into an R package was originally inspired by Peter Carl's [Paul Tol 21 Gun Salute](https://tradeblotter.wordpress.com/2013/02/28/the-paul-tol-21-color-salute/)

References

```
Paul Tol. 2012. "Colour Schemes." SRON Technical Note, SRON/EPS/TN/09-002. https://personal.sron.nl/~pault/data/colourschemes.pdf
```

See Also

```
Other colour ptol: scale_colour_ptol
```

Examples

```
library("scales")
show_col(ptol_pal()(6))
show_col(ptol_pal()(4))
show_col(ptol_pal()(12))
```

scale_color_pander

Color scale from the pander package

Description

The **pander** ships with a default colorblind and printer-friendly color palette borrowed from http://jfly.iam.utokyo.ac.jp/color/.

scale_color_pander 23

Usage

```
scale_color_pander(...)
scale_colour_pander(...)
scale_fill_pander(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- · NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

```
theme_pander()
Other colour pander: palette_pander
```

scale_colour_canva

Discrete color scale using canva.com color palettes

Description

Color scale for canva.com color palettes described in canva_palettes().

Usage

```
scale_colour_canva(..., palette = "Fresh and bright")
scale_color_canva(..., palette = "Fresh and bright")
scale_fill_canva(..., palette = "Fresh and bright")
```

Arguments

```
... Arguments passed to discrete_scale().

palette Palette name. See the names of canva_palettes() for valid names.
```

```
scale_colour_economist
```

Economist color scales

Description

Color scales using the colors in the Economist graphics.

Usage

```
scale_colour_economist(...)
scale_color_economist(...)
scale_fill_economist(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object

- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

theme_economist() for examples.

Other colour economist: economist_pal

scale_colour_excel_new

Excel (current versions) color scales

Description

Discrete color scales used in current versions of Microsoft Office and Excel.

Usage

```
scale_colour_excel_new(theme = "Office Theme", ...)
scale_color_excel_new(theme = "Office Theme", ...)
scale_fill_excel_new(theme = "Office Theme", ...)
```

Arguments

theme

The name of the Office theme or color theme (not to be confused with ggplot2 themes) from which to derive the color palette. Available themes include:
"Atlas", "Badge", "Berlin", "Celestial", "Crop", "Depth", "Droplet",
"Facet", "Feathered", "Gallery", "Headlines", "Integral", "Ion Boardroom",
"Ion", "Madison", "Main Event", "Mesh", "Office Theme", "Organic", "Parallax",
"Parcel", "Retrospect", "Savon", "Slice", "Vapor Trail", "View", "Wisp",
"Wood Type", "Aspect", "Blue Green", "Blue II", "Blue Warm", "Blue", "Grayscale",
"Green Yellow", "Green", "Marquee", "Median", "Office 2007-2010", "Orange
Red", "Orange", "Paper", "Red Orange", "Red Violet", "Red", "Slipstream",
"Violet II", "Violet", "Yellow Orange", "Yellow"

Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for

. . .

scale_colour_few 27

the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

```
Other colour excel: excel_new_pal, excel_pal, scale_fill_excel
```

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
      geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
      facet_wrap(~am)
p + theme_excel_new() + scale_colour_excel_new()</pre>
```

scale_colour_few

Color scales from Few's "Practical Rules for Using Color in Charts"

Description

```
See few_pal().
```

Usage

```
scale_colour_few(palette = "Medium", ...)
scale_color_few(palette = "Medium", ...)
scale_fill_few(palette = "Light", ...)
```

Arguments

palette One of

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

- **drop** Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.
- **na.translate** Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.
- **na.value** If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- · NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more
info

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other colour few: few_pal

Description

Color scales using the colors in the fivethirtyeight graphics.

Usage

```
scale_colour_fivethirtyeight(...)
scale_color_fivethirtyeight(...)
scale_fill_fivethirtyeight(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

theme_fivethirtyeight() for examples.

Other colour fivethirtyeight: fivethirtyeight_pal

```
scale_colour_gradient2_tableau
```

Tableau diverging colour scales (continuous)

Description

Continuous color scales using the diverging color scales in Tableau. See scale_colour_tableau() for Tabaleau discrete color scales, and scale_colour_gradient_tableau() for sequential color scales.

Usage

```
scale_colour_gradient2_tableau(palette = "Orange-Blue Diverging", ...,
    na.value = "grey50", guide = "colourbar")

scale_fill_gradient2_tableau(palette = "Orange-Blue Diverging", ...,
    na.value = "grey50", guide = "colourbar")

scale_color_gradient2_tableau(palette = "Orange-Blue Diverging", ...,
    na.value = "grey50", guide = "colourbar")
```

Arguments

palette

Palette name.

- "ordered-sequential" "Blue-Green Sequential", "Blue Light", "Orange Light", "Blue", "Orange", "Green", "Red", "Purple", "Brown", "Gray", "Gray Warm", "Blue-Teal", "Orange-Gold", "Green-Gold", "Red-Gold", "Classic Green", "Classic Gray", "Classic Blue", "Classic Red", "Classic Orange", "Classic Area Red", "Classic Area Green", "Classic Area-Brown"
- "ordered-diverging" "Orange-Blue Diverging", "Red-Green Diverging", "Green-Blue Diverging", "Red-Blue Diverging", "Red-Black Diverging", "Gold-Purple Diverging", "Red-Green-Gold Diverging", "Sunset-Sunrise Diverging", "Orange-Blue-White Diverging", "Red-Green-White Diverging", "Green-Blue-White Diverging", "Red-Blue-White Diverging", "Red-Black-White Diverging", "Orange-Blue Light Diverging", "Temperature Diverging", "Classic Red-Green", "Classic Red-Blue", "Classic Red-Black", "Classic Area Red-Green", "Classic Orange-Blue", "Classic Green-Blue", "Classic Red-White-Green", "Classic Red-White-Black", "Classic Orange-White-Blue", "Classic Red-White-Black Light", "Classic Orange-White-Blue Light", "Classic Red-White-Green Light", "Classic Red-Green Light"

... Arguments passed to tableau_gradient_pal.

na. value Colour to use for missing values

guide Type of legend. Use 'colourbar' for continuous colour bar, or 'legend' for

discrete colour legend.

See Also

Other colour tableau: scale_colour_gradient_tableau, scale_colour_tableau, tableau_color_pal, tableau_gradient_pal

Examples

scale_colour_gradient_tableau

Tableau sequential colour scales (continuous)

Description

Continuous color scales using the sequential color palettes in Tableau. See scale_colour_tableau() for Tableau discrete color scales, and scale_colour_gradient2_tableau() for diverging color scales.

Usage

```
scale_colour_gradient_tableau(palette = "Blue", ...,
    na.value = "grey50", guide = "colourbar")

scale_fill_gradient_tableau(palette = "Blue", ..., na.value = "grey50",
    guide = "colourbar")

scale_color_gradient_tableau(palette = "Blue", ...,
    na.value = "grey50", guide = "colourbar")

scale_color_continuous_tableau(palette = "Blue", ...,
    na.value = "grey50", guide = "colourbar")

scale_fill_continuous_tableau(palette = "Blue", ...,
    na.value = "grey50", guide = "colourbar")
```

Arguments

palette Palette name.

- "ordered-sequential" "Blue-Green Sequential", "Blue Light", "Orange Light", "Blue", "Orange", "Green", "Red", "Purple", "Brown", "Gray", "Gray Warm", "Blue-Teal", "Orange-Gold", "Green-Gold", "Red-Gold", "Classic Green", "Classic Gray", "Classic Blue", "Classic Red", "Classic Orange", "Classic Area Red", "Classic Area Green", "Classic Area-Brown"
- "ordered-diverging" "Orange-Blue Diverging", "Red-Green Diverging",
 "Green-Blue Diverging", "Red-Blue Diverging", "Red-Black Diverging",
 "Gold-Purple Diverging", "Red-Green-Gold Diverging", "Sunset-Sunrise
 Diverging", "Orange-Blue-White Diverging", "Red-Green-White Diverging",
 "Green-Blue-White Diverging", "Red-Blue-White Diverging", "Red-Black-White
 Diverging", "Orange-Blue Light Diverging", "Temperature Diverging",
 "Classic Red-Green", "Classic Red-Blue", "Classic Red-Black", "Classic
 Area Red-Green", "Classic Orange-Blue", "Classic Green-Blue", "Classic
 Red-White-Green", "Classic Red-White-Black", "Classic Orange-White-Blue",
 "Classic Red-White-Black Light", "Classic Orange-White-Blue Light",
 "Classic Red-White-Green Light", "Classic Red-Green Light"

... Arguments passed to tableau_gradient_pal.

na. value Colour to use for missing values

guide Type of legend. Use 'colourbar' for continuous colour bar, or 'legend' for

discrete colour legend.

See Also

Other colour tableau: scale_colour_gradient2_tableau, scale_colour_tableau, tableau_color_pal, tableau_gradient_pal

Examples

scale_colour_hc 33

scale_colour_hc

Highcharts color and fill scales

Description

Colour and fill scales which use the palettes in hc_pal() and are meant for use with theme_hc().

Usage

```
scale_colour_hc(palette = "default", ...)
scale_color_hc(palette = "default", ...)
scale_fill_hc(palette = "default", ...)
```

Arguments

palette

character The name of the Highcharts theme to use.

. . .

Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

34 scale_colour_ptol

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other colour hc: hc_pal

scale_colour_ptol

Color Scales from Paul Tol's "Colour Schemes

Description

See ptol_pal(). These palettes support up to 12 values.

Usage

```
scale_colour_ptol(...)
scale_color_ptol(...)
scale_fill_ptol(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

scale_colour_stata 35

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other colour ptol: ptol_pal

Examples

```
library("ggplot2")

p2 <- ggplot(mtcars, aes(x = wt, y = mpg, colour = factor(gear))) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  scale_color_ptol("cyl") +
  theme_minimal() +
  ggtitle("Cars")

ggplot(diamonds, aes(x = clarity, fill = cut)) +
  geom_bar() +
  scale_fill_ptol() +
  theme_minimal()</pre>
```

scale_colour_stata

Stata color scales

Description

```
See stata_pal() for details.
```

36 scale_colour_stata

Usage

```
scale_colour_stata(scheme = "s2color", ...)
scale_fill_stata(scheme = "s2color", ...)
scale_color_stata(scheme = "s2color", ...)
```

Arguments

scheme character. One of "s2color", "s1rcolor", "s1color", or "mono".

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more
info

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

scale_colour_tableau 37

```
scale_colour_tableau Tableau color scales (discrete)
```

Description

Categorical (qualitative) color scales used in Tableau. Use the function scale_colour_gradient_tableau() for the sequential and scale_colour_gradient2_tableau() for the diverging continuous color scales from Tableu.

Usage

```
scale_colour_tableau(palette = "Tableau 10", type = "regular",
    direction = 1, ...)

scale_fill_tableau(palette = "Tableau 10", type = "regular",
    direction = 1, ...)

scale_color_tableau(palette = "Tableau 10", type = "regular",
    direction = 1, ...)
```

Arguments

```
palette Palette name. See tableau_color_pal() for available palettes.

type Palette type. One of "regular", "sequential", or "diverging". See tableau_color_pal().

direction If 1, the default, then use the original order of colors. If -1, then reverse the order.

Other arguments passed on to discrete_scale().
```

See Also

```
tableau_color_pal() for references.

Other colour tableau: scale_colour_gradient2_tableau, scale_colour_gradient_tableau, tableau_color_pal, tableau_gradient_pal
```

38 scale_colour_wsj

scale_colour_wsj

Wall Street Journal color and fill scales

Description

Colour and fill scales which use the palettes in wsj_pal(). These scales should be used with theme_wsj().

Usage

```
scale_colour_wsj(palette = "colors6", ...)
scale_color_wsj(palette = "colors6", ...)
scale_fill_wsj(palette = "colors6", ...)
```

Arguments

. . .

palette character The color palette to use: . "rgby", "red_green", "black_green", "dem_rep", "colors6"

Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

scale_fill_calc 39

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other colour wsj: wsj_pal

scale_fill_calc

LibreOffice Calc color scales

Description

Color scales from LibreOffice Calc.

Usage

```
scale_fill_calc(...)
scale_colour_calc(...)
scale_color_calc(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

40 scale_fill_excel

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

```
See theme_calc() for examples.

Other colour calc: calc_pal
```

scale_fill_excel

Excel 97 ugly color scales

Description

The classic "ugly" color scales from Excel 97.

Usage

```
scale_fill_excel(...)
scale_colour_excel(...)
scale_color_excel(...)
```

scale_fill_excel 41

Arguments

.. Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- · NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function expand_scale() to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other colour excel: excel_new_pal, excel_pal, scale_colour_excel_new

```
library("ggplot2")
# Line and scatter plot colors
```

42 scale_fill_gdocs

```
p <- ggplot(mtcars) +
        geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
        facet_wrap(~am)
p + theme_excel() + scale_colour_excel()

# Bar plot (area/fill) colors
ggplot(mpg, aes(x = class, fill = drv)) +
    geom_bar() +
    scale_fill_excel() +
    theme_excel()</pre>
```

scale_fill_gdocs

Google Docs color scales

Description

Color scales from Google Docs.

Usage

```
scale_fill_gdocs(...)
scale_colour_gdocs(...)
scale_color_gdocs(...)
```

Arguments

. . .

Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

scale_fill_solarized 43

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info.

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

```
See theme_gdocs() for examples.

Other colour gdocs: gdocs_pal
```

```
scale_fill_solarized Solarized color scales
```

Description

See solarized_pal() for details.

Usage

```
scale_fill_solarized(accent = "blue", ...)
scale_colour_solarized(accent = "blue", ...)
scale_color_solarized(accent = "blue", ...)
```

Arguments

accent character Starting color.

.. Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

44 scale_fill_solarized

limits A character vector that defines possible values of the scale and their order

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- · NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

expand Vector of range expansion constants used to add some padding around the data, to ensure that they are placed some distance away from the axes. Use the convenience function <code>expand_scale()</code> to generate the values for the expand argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more info

position The position of the axis. "left" or "right" for vertical scales, "top" or "bottom" for horizontal scales

super The super class to use for the constructed scale

See Also

Other solarized colour: solarized_pal

```
library("ggplot2")

p <- ggplot(mtcars) +
      geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
      facet_wrap(~am)
p + theme_solarized() +
    scale_colour_solarized()</pre>
```

scale_linetype_stata 45

Description

See stata_linetype_pal() for details.

Usage

```
scale_linetype_stata(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

aesthetics The names of the aesthetics that this scale works with

scale name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- · NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See guides() for more info.

super The super class to use for the constructed scale

See Also

Other linetype stata: stata_linetype_pal

46 scale_shape_calc

Examples

```
require("ggplot2")
if (require("tidyr") && require("dplyr")) {
  rescale01 <- function(x) {
     (x - min(x)) / diff(range(x))
}

gather(economics, variable, value, -date) %>%
  group_by(variable) %>%
  mutate(value = rescale01(value)) %>%
  ggplot(aes(x = date, y = value, linetype = variable)) +
  geom_line() +
  scale_linetype_stata()
}
```

scale_shape_calc

Calc shape scale

Description

See calc_shape_pal() for details.

Usage

```
scale_shape_calc(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

aesthetics The names of the aesthetics that this scale works with **scale_name** The name of the scale

scale_shape_circlefill 47

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See guides() for more info.

super The super class to use for the constructed scale

See Also

```
theme_calc() for examples.
Other shapes calc: calc_shape_pal
```

```
scale_shape_circlefill
```

Filled Circle Shape palette (discrete)

Description

Filled Circle Shape palette (discrete)

Usage

```
scale_shape_circlefill(...)
```

Arguments

. . Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

aesthetics The names of the aesthetics that this scale works with

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See guides() for more info.

super The super class to use for the constructed scale

See Also

circlefill_shape_pal() for a description of the palette.

Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_cleveland, scale_shape_tremmel, tremmel_shape_pal

Description

Shape scales from Cleveland "Elements of Graphing Data"

Usage

```
scale_shape_cleveland(overlap = TRUE, ...)
```

Arguments

overlap

logical Use the scale for overlapping points?

. . .

Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

scale_shape_few 49

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

aesthetics The names of the aesthetics that this scale works with

scale name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See guides() for more info.

super The super class to use for the constructed scale

References

Cleveland WS. The Elements of Graphing Data. Revised Edition. Hobart Press, Summit, NJ, 1994, pp. 154-164, 234-239.

See Also

cleveland_shape_pal() for a description of the palette.

Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_tremmel, tremmel_shape_pal

scale_shape_few

Scales for shapes from "Show Me the Numbers"

Description

scale_shape_few() maps discrete variables to up to five easily discernible shapes. It is based on the shape palette suggested in Few (2012).

Usage

```
scale_shape_few(...)
```

Arguments

... Common discrete_scale() parameters.

References

Few, S. (2012) *Show Me the Numbers: Designing Tables and Graphs to Enlighten*, Analytics Press, p. 208.

50 scale_shape_stata

See Also

scale_shape_few() for the shape palette that this scale uses.

scale_shape_stata

Stata shape scale

Description

```
See stata_shape_pal() for details.
```

Usage

```
scale_shape_stata(...)
```

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

aesthetics The names of the aesthetics that this scale works with

scale name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See guides() for more info

super The super class to use for the constructed scale

scale_shape_tableau 51

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
      geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
      facet_wrap(~am)
p + theme_stata() + scale_shape_stata()</pre>
```

scale_shape_tableau

Tableau shape scales

Description

```
See tableau_shape_pal() for details.
```

Usage

```
scale_shape_tableau(palette = "default", ...)
```

Arguments

palette

Palette name.

. . .

Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order.

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

aesthetics The names of the aesthetics that this scale works with

scale name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- NULL for no labels
- waiver() for the default labels computed by the transformation object

52 scale_shape_tremmel

- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See guides() for more info

super The super class to use for the constructed scale

See Also

Other shape tableau: tableau_shape_pal

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
      geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
      facet_wrap(~am)
p + scale_shape_tableau()</pre>
```

scale_shape_tremmel

Shape scales from Tremmel (1995)

Description

Shape scales from Tremmel (1995)

Usage

```
scale_shape_tremmel(overlap = FALSE, alt = TRUE, ...)
```

Arguments

overlap

use an empty circle instead of a solid circle when n == 2.

alt

If TRUE, then when n == 3, use a solid circle, plus sign and empty triangle. Otherwise use a solid circle, empty circle, and empty triangle.

. . .

Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the number of levels in the scale) returns the values that they should take.

breaks One of:

- · NULL for no breaks
- waiver() for the default breaks computed by the transformation object
- · A character vector of breaks
- A function that takes the limits as input and returns breaks as output

limits A character vector that defines possible values of the scale and their order

drop Should unused factor levels be omitted from the scale? The default, TRUE, uses the levels that appear in the data; FALSE uses all the levels in the factor.

na.translate Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify na.translate = FALSE.

show_linetypes 53

na.value If na.translate = TRUE, what value aesthetic value should missing be displayed as? Does not apply to position scales where NA is always placed at the far right.

aesthetics The names of the aesthetics that this scale works with

scale_name The name of the scale

name The name of the scale. Used as the axis or legend title. If waiver(), the default, the name of the scale is taken from the first mapping used for that aesthetic. If NULL, the legend title will be omitted.

labels One of:

- · NULL for no labels
- waiver() for the default labels computed by the transformation object
- A character vector giving labels (must be same length as breaks)
- A function that takes the breaks as input and returns labels as output

guide A function used to create a guide or its name. See guides() for more info.

super The super class to use for the constructed scale

See Also

tremmel_shape_pal() for a description of the palette.

Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland tremmel_shape_pal

Examples

```
library("ggplot2")

p <- ggplot(mtcars, aes(x = mpg, y = hp, shape = factor(cyl))) +
    geom_point()

p + scale_shape_tremmel()
p + scale_shape_tremmel(alt = TRUE)
p + scale_shape_tremmel(overlap = TRUE)</pre>
```

show_linetypes

Show linetypes

Description

A quick and dirty way to show linetypes.

Usage

```
show_linetypes(linetypes, labels = TRUE)
```

Arguments

linetypes A character vector of linetypes. See par().

Labels Label each line with its linetype (lty) value.

show_shapes

Value

This function called for the side effect of creating a plot. It returns linetypes.

See Also

```
show_col(), show_linetypes()
```

Examples

```
library("scales")
show_linetypes(linetype_pal()(3))
show_linetypes(linetype_pal()(3), labels = TRUE)
```

show_shapes

Show shapes

Description

A quick and dirty way to show shapes.

Usage

```
show_shapes(shapes, labels = TRUE)
```

Arguments

shapes A numeric or character vector of shapes. See par().

labels Include the plotting character value of the symbol.

Value

This function called for the side effect of creating a plot. It returns shapes.

See Also

```
show_col(), show_linetypes()
```

```
library("scales")
show_shapes(shape_pal()(5))
show_shapes(shape_pal()(3), labels = TRUE)
```

smart_digits 55

smart_digits

Format numbers with automatic number of digits

Description

Format numbers with automatic number of digits

Usage

```
smart_digits(x, ...)
smart_digits_format(x, ...)
```

Arguments

x A numeric vector to format

... Parameters passed to format()

Value

A character vector. smart_digits_format() returns a function with a single argument x, a numeric vector, that returns a character vector.

Author(s)

Josh O'Brien, Baptise Auguie, Jeffrey B. Arnold

References

Josh O'Brien, http://stackoverflow.com/questions/23169938/select-accuracy-to-display-additional-ax 23171858#23171858.

solarized_pal

Solarized color palette (discrete)

Description

Qualitative color palate based on the Ethan Schoonover's Solarized palette, http://ethanschoonover.com/solarized. This palette supports up to seven values.

Usage

```
solarized_pal(accent = "blue")
```

Arguments

accent

character Starting color.

56 stata_pal

Note

For a given starting color and number of colors in the palette, the other colors are the combination of colors that maximizes the total Euclidean distance between colors in L*a*b space.

See Also

```
Other solarized colour: scale_fill_solarized
```

Examples

```
library("scales")
show_col(solarized_pal()(2))
show_col(solarized_pal()(3))
show_col(solarized_pal("red")(4))
```

stata_linetype_pal

Stata linetype palette (discrete)

Description

Linetype palette based on the linepattern scheme in Stata. This palette supports up to 15 values.

Usage

```
stata_linetype_pal()
```

See Also

```
scale_linetype_stata()
Other linetype stata: scale_linetype_stata
```

stata_pal

Stata color palettes (discrete)

Description

Stata color palettes. See Stata documentation for a description of the schemes, http://www.stata.com/help.cgi?schemes.

Usage

```
stata_pal(scheme = "s2color")
```

Arguments

```
scheme character. One of "s2color", "s1rcolor", "s1color", or "mono".
```

Details

All these palettes support up to 15 values.

stata_shape_pal 57

Examples

```
library("scales")
show_col(stata_pal("s2color")(15))
show_col(stata_pal("s1rcolor")(15))
show_col(stata_pal("s1color")(15))
show_col(stata_pal("mono")(15))
```

stata_shape_pal

Stata shape palette (discrete)

Description

Shape palette based on the symbol palette in Stata used in scheme s2mono. This palette supports up to 10 values.

Usage

```
stata_shape_pal()
```

See Also

See scale_shape_stata() for examples.

stat_fivenumber

Calculate components of a five-number summary

Description

The five number summary of a sample is the minimum, first quartile, median, third quartile, and maximum.

Usage

```
stat_fivenumber(mapping = NULL, data = NULL, geom = "boxplot",
probs = c(0, 0.25, 0.5, 0.75, 1), na.rm = FALSE,
position = "identity", show.legend = NA, inherit.aes = TRUE, ...)
```

Arguments

mapping

Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of

the plot. You must supply mapping if there is no plot mapping.

data

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data. frame, and will be used as the layer data.

58 tableau_color_pal

geom The geometric object to use display the data probs Quantiles to use for the five number summary.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently

removes missing values.

position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().

Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also

be parameters to the paired geom/stat.

Value

A data frame with additional columns:

width width of boxplot

min minimum

lower hinge, 25% quantile middle median, 50% quantile upper upper hinge, 75% quantile

max maximum

See Also

```
stat_boxplot()
```

tableau_color_pal Tableau Color Palettes (discrete)

Description

Color palettes used in Tableau.

Usage

```
tableau_color_pal(palette = "Tableau 10", type = c("regular",
    "ordered-sequential", "ordered-diverging"), direction = 1)
```

Arguments

palette Palette name. See Details for available palettes.

type Type of palette. One of "regular", "ordered-diverging", or "ordered-sequential".

direction If 1, the default, then use the original order of colors. If -1, then reverse the

order.

tableau_color_pal 59

Details

Tableau provides three types of color palettes: "regular" (discrete, qualitative categories), "ordered-sequential", and "ordered-diverging".

- "regular""Tableau 10", "Tableau 20", "Color Blind", "Seattle Grays", "Traffic", "Miller Stone", "Superfishel Stone", "Nuriel Stone", "Jewel Bright", "Summer", "Winter", "Green-Orange-Teal", "Red-Blue-Brown", "Purple-Pink-Gray", "Hue Circle", "Classic 10", "Classic 10 Medium", "Classic 10 Light", "Classic 20", "Classic Gray 5", "Classic Color Blind", "Classic Traffic Light", "Classic Purple-Gray 6", "Classic Purple-Gray 12", "Classic Green-Orange 6", "Classic Green-Orange 12", "Classic Blue-Red 6", "Classic Blue-Red 12", "Classic Cyclic"
- "ordered-diverging""Orange-Blue Diverging", "Red-Green Diverging", "Green-Blue Diverging", "Red-Blue Diverging", "Red-Black Diverging", "Gold-Purple Diverging", "Red-Green-Gold Diverging", "Sunset-Sunrise Diverging", "Orange-Blue-White Diverging", "Red-Green-White Diverging", "Green-Blue-White Diverging", "Red-Blue-White Diverging", "Red-Black-White Diverging", "Orange-Blue Light Diverging", "Temperature Diverging", "Classic Red-Green", "Classic Red-Blue", "Classic Red-Black", "Classic Area Red-Green", "Classic Orange-Blue", "Classic Green-Blue", "Classic Red-White-Green", "Classic Red-White-Black Light", "Classic Orange-White-Blue Light", "Classic Red-White-Black Light", "Classic Red-Green Light"
- "ordered-sequential" "Blue-Green Sequential", "Blue Light", "Orange Light", "Blue",
 "Orange", "Green", "Red", "Purple", "Brown", "Gray", "Gray Warm", "Blue-Teal", "Orange-Gold",
 "Green-Gold", "Red-Gold", "Classic Green", "Classic Gray", "Classic Blue", "Classic Red", "Classic Orange", "Classic Area Red", "Classic Area Green", "Classic Area-Brown"

References

```
http://vis.stanford.edu/color-names/analyzer/
```

Maureen Stone, 'Designing Colors for Data' (slides), at the International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging, Banff, AB, Canada, June 22, 2007 http://www.stonesc.com/slides/CompAe%202007.pdf.

Heer, Jeffrey and Maureen Stone, 2012 'Color Naming Models for Color Selection, Image Editing and Palette Design', ACM Human Factors in Computing Systems (CHI) http://vis.stanford.edu/files/2012-ColorNameModels-CHI.pdf.

See Also

Other colour tableau: scale_colour_gradient2_tableau, scale_colour_gradient_tableau, scale_colour_tableau, tableau_gradient_pal

```
library("scales")

palettes <- ggthemes_data[["tableau"]][["color-palettes"]][["regular"]]

for (palname in names(palettes)) {
   pal <- tableau_color_pal(palname)
   max_n <- attr(pal, "max_n")
   show_col(pal(max_n))
   title(main = palname)
}</pre>
```

60 tableau_gradient_pal

```
tableau_gradient_pal Tableau colour gradient palettes (continuous)
```

Description

Gradient color palettes using the diverging and sequential continous color palettes in Tableau. See tableau_color_pal() for discrete color palettes.

Usage

```
tableau_gradient_pal(palette = "Blue", type = "ordered-sequential")
tableau_seq_gradient_pal(palette = "Blue", ...)
tableau_div_gradient_pal(palette = "Orange-Blue Diverging", ...)
```

Arguments

palette

Palette name.

- "ordered-sequential" "Blue-Green Sequential", "Blue Light", "Orange Light", "Blue", "Orange", "Green", "Red", "Purple", "Brown", "Gray", "Gray Warm", "Blue-Teal", "Orange-Gold", "Green-Gold", "Red-Gold", "Classic Green", "Classic Gray", "Classic Blue", "Classic Red", "Classic Orange", "Classic Area Red", "Classic Area Green", "Classic Area-Brown"
- "ordered-diverging""Orange-Blue Diverging", "Red-Green Diverging", "Green-Blue Diverging", "Red-Blue Diverging", "Red-Black Diverging", "Gold-Purple Diverging", "Red-Green-Gold Diverging", "Sunset-Sunrise Diverging", "Orange-Blue-White Diverging", "Red-Green-White Diverging", "Green-Blue-White Diverging", "Red-Blue-White Diverging", "Red-Black-White Diverging", "Orange-Blue Light Diverging", "Temperature Diverging", "Classic Red-Green", "Classic Red-Blue", "Classic Red-Black", "Classic Area Red-Green", "Classic Orange-Blue", "Classic Green-Blue", "Classic Red-White-Green", "Classic Red-White-Black", "Classic Orange-White-Blue", "Classic Red-White-Black Light", "Classic Orange-White-Blue Light", "Classic Red-White-Green Light", "Classic Red-Green Light"

type

Palette type, either "ordered-sequential" or "ordered-diverging".

... Arguments passed to tableau_gradient_pal.

See Also

Other colour tableau: scale_colour_gradient2_tableau, scale_colour_gradient_tableau, scale_colour_tableau, tableau_color_pal

```
library("scales")

x <- seq(0, 1, length = 25)
r <- sqrt(outer(x ^ 2, x ^ 2, "+"))
palettes <-
    ggthemes_data[["tableau"]][["color-palettes"]][["ordered-sequential"]]</pre>
```

tableau_shape_pal 61

```
for (palname in names(palettes)) {
  col <- tableau_seq_gradient_pal(palname)(seq(0, 1, length = 12))
  image(r, col = col)
  title(main = palname)
}</pre>
```

tableau_shape_pal

Tableau Shape Palettes (discrete)

Description

Shape palettes used by Tableau.

Usage

```
tableau_shape_pal(palette = c("default", "filled", "proportions"))
```

Arguments

palette

Palette name.

Details

Not all shape palettes in Tableau are supported. Additionally, these palettes are not exact, and use the best unicode character for the shape palette.

Since these palettes use unicode characters, their look may depend on the font being used, and not all characters may be available.

Shape palettes in Tableau are used to expose images for use a markers in charts, and thus are sometimes groupings of closely related symbols.

See Also

Other shape tableau: scale_shape_tableau

```
## Not run:
    # need to set a font containing these values
    show_shapes(tableau_shape_pal()(5))
## End(Not run)
```

62 theme_calc

theme_base

Theme Base

Description

Theme similar to the default settings of the 'base' R graphics.

Usage

```
theme_base(base_size = 16, base_family = "")
```

Arguments

```
base_size base font size base_family base font family
```

See Also

Other themes: theme_clean, theme_foundation, theme_igray, theme_par, theme_solid

Examples

```
library("ggplot2")

p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg, colour = factor(gear))) + facet_wrap(~am)
p + theme_base()
# Change values of par
par(fg = "blue", bg = "gray", col.lab = "red", font.lab = 3)
p + theme_base()</pre>
```

theme_calc

Theme Calc

Description

Theme similar to the default settings of LibreOffice Calc charts.

Usage

```
theme_calc(base_size = 10, base_family = "sans")
```

Arguments

```
base_size base font size
base_family base font family
```

theme_clean 63

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
        geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
        facet_wrap(~am) + theme_calc()

p + scale_color_calc()
q <- ggplot(mtcars) +
        geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
        facet_wrap(~am) +
        theme_calc()
q + scale_shape_calc()</pre>
```

theme_clean

Clean ggplot theme

Description

Clean ggplot theme with no panel background, black axis lines and grey fill colour for chart elements

Usage

```
theme_clean(base_size = 12, base_family = "sans")
```

Arguments

```
base_size Base font size.
base_family Base font family.
```

Author(s)

Konrad Zdeb <name.surname@me.com>

See Also

Other themes: theme_base, theme_foundation, theme_igray, theme_par, theme_solid

```
library("ggplot2")
p <- ggplot(mtcars, aes(x = wt, y = mpg, colour = factor(gear))) +
   geom_point() +
   facet_wrap(~am) +
   geom_smooth(method = "lm", se = FALSE) +
   theme_clean()</pre>
```

64 theme_economist

theme_economist

ggplot color theme based on the Economist

Description

A theme that approximates the style of *The Economist*.

Usage

```
theme_economist(base_size = 10, base_family = "sans",
  horizontal = TRUE, dkpanel = FALSE)

theme_economist_white(base_size = 11, base_family = "sans",
  gray_bg = TRUE, horizontal = TRUE)
```

Arguments

base_size base font size
base_family base font family

horizontal logical Horizontal axis lines?

dkpanel logical Darker background for panel region?

gray_bg logical If TRUE, use gray background, else use white background.

Details

theme_economist implements the standard bluish-gray background theme in the print *The Economist* and economist.com.

theme_economist_white implements a variant with a while panel and light gray (or white) background often used by *The Economist* blog Graphic Detail.

Use scale_color_economist() with this theme. The x axis should be displayed on the right hand side.

The Economist uses "ITC Officina Sans" as its font for graphs. If you have access to this font, you can use it with the **extrafont** package. "Verdana" is a good substitute.

Value

An object of class theme().

References

- The Economist
- Spiekerblog, "ITC Officina Display", January 1, 2007.
- http://www.economist.com/help/about-us

theme_excel 65

Examples

```
library("ggplot2")
p <- ggplot(mtcars) +</pre>
     geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
     facet_wrap(~am) +
     # Economist puts x-axis labels on the right-hand side
     scale_y_continuous(position = "right")
## Standard
p + theme_economist() +
  scale_colour_economist()
# Change axis lines to vertical
p + theme_economist(horizontal = FALSE) +
    scale_colour_economist() +
    coord_flip()
## White panel/light gray background
p + theme_economist_white() +
    scale_colour_economist()
## All white variant
p + theme_economist_white(gray_bg = FALSE) +
    scale_colour_economist()
## Not run:
## The Economist uses ITC Officina Sans
library("extrafont")
p + theme_economist(base_family="ITC Officina Sans") +
    scale_colour_economist()
## Verdana is a widely available substitute
p + theme_economist(base_family="Verdana") +
    scale_colour_economist()
## End(Not run)
```

theme_excel

ggplot theme based on old Excel plots

Description

Theme to replicate the ugly monstrosity that was the old gray-background Excel chart. Please never use this. This theme should be combined with the scale_colour_excel() color scale.

Usage

```
theme_excel(base_size = 12, base_family = "", horizontal = TRUE)
```

66 theme_excel_new

Arguments

```
base_size base font size
base_family base font family
horizontal logical. Horizontal axis lines?
```

Value

An object of class theme().

See Also

Other themes excel: theme_excel_new

Examples

theme_excel_new

ggplot theme similar to current Excel plot defaults

Description

Theme for ggplot2 that is similar to the default style of charts in current versions of Microsoft Excel.

Usage

```
theme_excel_new(base_size = 9, base_family = "sans")
```

Arguments

```
base_size base font size
base_family base font family
```

Value

An object of class theme().

See Also

Other themes excel: theme_excel

theme_few 67

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
     geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
     facet_wrap(~am)
p + theme_excel_new() + scale_colour_excel_new()</pre>
```

theme_few

Theme based on Few's "Practical Rules for Using Color in Charts"

Description

Theme based on the rules and examples from Stephen Few's *Show Me the Numbers* and "Practical Rules for Using Color in Charts".

Usage

```
theme_few(base_size = 12, base_family = "")
```

Arguments

```
base_size base font size base_family base font family
```

References

Few, S. (2012) *Show Me the Numbers: Designing Tables and Graphs to Enlighten.* 2nd edition. Analytics Press.

Stephen Few, "Practical Rules for Using Color in Charts", http://www.perceptualedge.com/articles/visual_business_intelligence/rules_for_using_color.pdf.

```
library("ggplot2")

p <- ggplot(mtcars) +
    geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
    facet_wrap(~am)

p + theme_few() + scale_colour_few()

p + theme_few() + scale_colour_few("Light")

p + theme_few() + scale_colour_few("Dark")

ggplot(mtcars) +
    geom_point(aes(x = wt, y = mpg, shape = factor(gear))) +
    theme_few() +
    scale_shape_few()</pre>
```

68 theme_foundation

theme_fivethirtyeight Theme inspired by fivethirtyeight.com plots

Description

Theme inspired by the plots on http://fivethirtyeight.com.

Usage

```
theme_fivethirtyeight(base_size = 12, base_family = "sans")
```

Arguments

```
base_size base font size base_family base font family
```

Examples

```
library("ggplot2")
p <- ggplot(mtcars, aes(x = wt, y = mpg, colour = factor(gear))) +
    geom_point() +
    facet_wrap(~am) +
    geom_smooth(method = "lm", se = FALSE) +
    scale_color_fivethirtyeight() +
    theme_fivethirtyeight()
p</pre>
```

theme_foundation

Foundation Theme

Description

This theme is designed to be a foundation from which to build new themes, and not meant to be used directly. theme_foundation() is a complete theme with only minimal number of elements defined. It is easier to create new themes by extending this one rather than theme_gray() or theme_bw(), because those themes define elements deep in the hierarchy.

Usage

```
theme_foundation(base_size = 12, base_family = "")
```

Arguments

```
base_size base font size base_family base font family
```

Details

This theme takes theme_gray() and sets all colour and fill values to NULL, except for the top-level elements (line, rect, and title), which have colour = "black", and fill = "white". This leaves the spacing and-non colour defaults of the default **ggplot2** themes in place.

theme_gdocs 69

See Also

Other themes: theme_base, theme_clean, theme_igray, theme_par, theme_solid

 ${\tt theme_gdocs}$

Theme with Google Docs Chart defaults

Description

Theme similar to the default look of charts in Google Docs.

Usage

```
theme_gdocs(base_size = 12, base_family = "sans")
```

Arguments

```
base_size base font size base_family base font family
```

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
  geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~am)
p + theme_gdocs() + scale_color_gdocs()</pre>
```

theme_hc

Highcharts Theme

Description

Theme based on the plots in HighchartsJS.

Usage

```
theme_hc(base_size = 12, base_family = "sans", style = c("default",
   "darkunica"), bgcolor = NULL)
```

Arguments

```
base_size base font size base_family base font family
```

style The Highcharts theme to use 'default', 'darkunica'.

bgcolor Deprecated

70 theme_igray

References

```
http://www.highcharts.com/demo/line-basic
https://github.com/highslide-software/highcharts.com/tree/master/js/themes
```

Examples

```
library("ggplot2")
p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,</pre>
     colour = factor(gear))) + facet_wrap(~am)
p + theme_hc() + scale_colour_hc()
p + theme_hc(bgcolor = "darkunica") +
  scale_colour_hc("darkunica")
dtemp <- data.frame(months = factor(rep(substr(month.name, 1, 3), 4),</pre>
                                    levels = substr(month.name, 1, 3)),
                    city = rep(c("Tokyo", "New York", "Berlin", "London"),
                               each = 12),
                    temp = c(7.0, 6.9, 9.5, 14.5, 18.2, 21.5,
                             25.2, 26.5, 23.3, 18.3, 13.9, 9.6,
                             -0.2, 0.8, 5.7, 11.3, 17.0, 22.0,
                             24.8, 24.1, 20.1, 14.1, 8.6, 2.5,
                             -0.9, 0.6, 3.5, 8.4, 13.5, 17.0,
                             18.6, 17.9, 14.3, 9.0, 3.9, 1.0,
                             3.9, 4.2, 5.7, 8.5, 11.9, 15.2,
                             17.0, 16.6, 14.2, 10.3, 6.6, 4.8))
ggplot(dtemp, aes(x = months, y = temp, group = city, color = city)) +
  geom_line() +
  geom_point(size = 1.1) +
  ggtitle("Monthly Average Temperature") +
  theme_hc() +
  scale_colour_hc()
ggplot(dtemp, aes(x = months, y = temp, group = city, color = city)) +
  geom_line() +
  geom_point(size = 1.1) +
  ggtitle("Monthly Average Temperature") +
  theme_hc(bgcolor = "darkunica") +
  scale_fill_hc("darkunica")
```

theme_igray

Inverse gray theme

Description

Theme with white panel and gray background.

Usage

```
theme_igray(base_size = 12, base_family = "")
```

theme_map 71

Arguments

```
base_size base font size base_family base font family
```

Details

This theme inverts the colors in the theme_gray(), a white panel and a light gray area around it. This keeps a white background for the color scales like theme_bw(). But by using a gray background, the plot is closer to the typographical color of the document, which is the motivation for using a gray panel in theme_gray(). This is similar to the style of plots in Stata and Tableau.

See Also

```
theme_gray(), theme_bw()
Other themes: theme_base, theme_clean, theme_foundation, theme_par, theme_solid
```

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
    geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
    facet_wrap(~am)
p + theme_igray()</pre>
```

theme_map

Clean theme for maps

Description

A clean theme that is good for displaying maps from geom_map().

Usage

```
theme_map(base_size = 9, base_family = "")
```

Arguments

```
base_size base font size
base_family base font family
```

72 theme_pander

```
theme_map()
gg
```

theme_pander

A ggplot theme originated from the pander package

Description

The **pander** ships with a default theme when the 'unify plots' option is enabled via panderOptions, which is now also available outside of **pander** internals, like evals, eval.msgs or Pandoc.brew.

Usage

```
theme_pander(base_size = 12, base_family = "sans", nomargin = TRUE,
   ff = NULL, fc = "black", fs = NULL, gM = TRUE, gm = TRUE,
   gc = "grey", gl = "dashed", boxes = FALSE, bc = "white",
   pc = "transparent", lp = "right", axis = 1)
```

Arguments

base_size	base font size
base_family	base font family
nomargin	suppress the white space around the plot (boolean)
ff	font family, like sans. Deprecated: use base_family instead.
fc	font color (name or hexa code)
fs	font size (integer). Deprecated: use base_size instead.
gM	major grid (boolean)
gm	minor grid (boolean)
gc	grid color (name or hexa code)
gl	grid line type (1ty)
boxes	to render a border around the plot or not
bc	background color (name or hexa code)
рс	panel background color (name or hexa code)
lp	legend position
axis	axis angle as defined in par(les)

theme_par 73

```
p <- ggplot(mtcars, aes(wt, mpg, colour = factor(cyl))) +
    geom_point()
p + theme_pander() + scale_color_pander()

ggplot(mpg, aes(x = class, fill = drv)) +
    geom_bar() +
    scale_fill_pander() +
    theme_pander()
}</pre>
```

theme_par

Theme which uses the current 'base' graphics parameter values from par(). Not all par() parameters, are supported, and not all are relevant to ggplot2 themes.

Description

```
Currently this theme uses the values of the parameters: "code", ""ps"", "code" "family", "fg", "bg", "adj", "font", "cex.axis", "cex.lab", "cex.main", "cex.sub", "col.axis", "col.lab", "col.main", "col.sub", "font", "font.axis", "font.lab", "font.main", "font.sub", "las", "lend", "lheight", "lty", "mar", "ps", "tcl", "tck", "xaxt", "yaxt".
```

Usage

```
theme_par(base_size = par()$ps, base_family = par()$family)
```

Arguments

```
base_size base font size base_family base font family
```

Details

This theme does not translate the base graphics perfectly, so the graphs produced by it will not be identical to those produced by base graphics, most notably in the spacing of the margins.

See Also

Other themes: theme_base, theme_clean, theme_foundation, theme_igray, theme_solid

```
library("ggplot2")

p <- ggplot(mtcars) +
    geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
    facet_wrap(~am)

p + theme_par()

# theme changes with respect to values of par
par(font = 2, col.lab = "red", fg = "white", bg = "black")
p + theme_par()</pre>
```

74 theme_solarized

theme_solarized

ggplot color themes based on the Solarized palette

Description

See http://ethanschoonover.com/solarized for a description of the Solarized palette.

Usage

```
theme_solarized(base_size = 12, base_family = "", light = TRUE)
theme_solarized_2(base_size = 12, base_family = "", light = TRUE)
```

Arguments

```
base_size base font size
base_family base font family
light logical. Light or dark theme?
```

Details

Plots made with this theme integrate seamlessly with the Solarized Beamer color theme. https://github.com/jrnold/beamercolorthemesolarized. There are two variations: theme_solarized is similar to to theme_bw(), while theme_solarized_2() is similar to theme_gray().

theme_solid 75

theme_solid

Theme with nothing other than a background color

Description

Theme that removes all non-geom elements (lines, text, etc), This theme is when only the geometric objects are desired.

Usage

```
theme_solid(base_size = 12, base_family = "", fill = NA)
```

Arguments

base_size Base font size.

base_family Ignored, kept for consistency with theme().

fill Background color of the plot.

See Also

Other themes: theme_base, theme_clean, theme_foundation, theme_igray, theme_par

Examples

```
library("ggplot2")
ggplot(mtcars, aes(wt, mpg)) +
  geom_point() +
  theme_solid(fill = "white")

ggplot(mtcars, aes(wt, mpg)) +
  geom_point(color = "white") +
  theme_solid(fill = "black")
```

 $theme_stata$

Themes based on Stata graph schemes

Description

Themes based on Stata graph schemes

Usage

```
theme_stata(base_size = 11, base_family = "sans", scheme = "s2color")
```

Arguments

```
base_size base font size
base_family base font family
```

scheme One of "s2color", "s2mono", "s1color", "s1rcolor", or "s1mono", "s2manual",

"s1manual", or "sj"

76 theme_tufte

Details

These themes approximate Stata schemes using the features **ggplot2**. The graphical models of Stata and ggplot2 differ in various ways that make an exact replication impossible (or more difficult than it is worth). Some features in Stata schemes not in ggplot2: defaults for specific graph types, different levels of titles, captions and notes. These themes also adopt some of the ggplot2 defaults, and more effort was made to match the colors and sizes of major elements than in matching the margins.

References

```
http://www.stata.com/help.cgi?schemes
```

Examples

```
library("ggplot2")
p <- ggplot(mtcars) +</pre>
  geom\_point(aes(x = wt, y = mpg, colour = factor(gear))) +
  facet_wrap(~am) +
  labs(title = "Graphs by car type",
       x = "Weight (lbs.)", y = "MPG")
# s2color
p + theme_stata() +
  scale_colour_stata("s2color")
p + theme_stata(scheme = "s2mono") +
  scale_colour_stata("mono")
# s1color
p + theme_stata(scheme = "s2color") +
  scale_colour_stata("s1color")
# s1rcolor
p + theme_stata(scheme = "s1rcolor") +
  scale_colour_stata("s1rcolor")
p + theme_stata(scheme = "s1mono") +
  scale_colour_stata("mono")
```

theme_tufte

Tufte Maximal Data, Minimal Ink Theme

Description

Theme based on Chapter 6 'Data-Ink Maximization and Graphical Design' of Edward Tufte *The Visual Display of Quantitative Information*. No border, no axis lines, no grids. This theme works best in combination with geom_rug() or geom_rangeframe().

Usage

```
theme_tufte(base_size = 11, base_family = "serif", ticks = TRUE)
```

theme_wsj 77

Arguments

base_size base font size
base_family base font family
ticks logical Show axis ticks?

Note

The default font family is set to 'serif' as he uses serif fonts for labels in 'The Visual Display of Quantitative Information'. The serif font used by Tufte in his books is a variant of Bembo, while the sans serif font is Gill Sans. If these fonts are installed on your system, then you can use them with the package **extrafont**.

References

Tufte, Edward R. (2001) The Visual Display of Quantitative Information, Chapter 6.

Examples

```
library("ggplot2")

p <- ggplot(mtcars, aes(x = wt, y = mpg)) +
    geom_point() +
    scale_x_continuous(breaks = extended_range_breaks()(mtcars$wt)) +
    scale_y_continuous(breaks = extended_range_breaks()(mtcars$mpg)) +
    ggtitle("Cars")

p + geom_rangeframe() +
    theme_tufte()

p + geom_rug() +
    theme_tufte(ticks = FALSE)</pre>
```

theme_wsj

Wall Street Journal theme

Description

Theme based on the plots in *The Wall Street Journal*.

Usage

```
theme_wsj(base_size = 12, color = "brown", base_family = "sans",
  title_family = "mono")
```

Arguments

```
base_size base font size

color The background color of plot. One of 'brown', 'gray', 'green', 'blue'.

base_family base font family

title_family Plot title font family.
```

78 tremmel_shape_pal

Details

This theme should be used with scale_color_wsj().

References

```
https://twitter.com/WSJGraphics
https://pinterest.com/wsjgraphics/wsj-graphics/
```

Examples

```
library("ggplot2")

p <- ggplot(mtcars) +
        geom_point(aes(x = wt, y = mpg, colour = factor(gear))) +
        facet_wrap(~am) +
        ggtitle("Diamond Prices")

p + scale_colour_wsj("colors6", "") + theme_wsj()

# Use a gray background instead

p + scale_colour_wsj("colors6", "") + theme_wsj(color = "gray")</pre>
```

tremmel_shape_pal

Shape palette from Tremmel (1995) (discrete)

Description

Based on experiments Tremmel (1995) suggests the following shape palettes:

Usage

```
tremmel_shape_pal(overlap = FALSE, alt = FALSE, n3alt = NULL)
```

Arguments

overlap use an empty circle instead of a solid circle when n == 2.

alt, n3alt If TRUE, then when n == 3, use a solid circle, plus sign and empty triangle. Otherwise use a solid circle, empty circle, and empty triangle.

Details

If two symbols, then use a solid circle and plus sign.

If three symbols, then use a solid circle, empty circle, and an empty triangle. However, that set of symbols does not satisfy the requirement that each symbol should differ from the other symbols in the same feature dimension. A set of three symbols that satisfies this is a circle (curvature), plus sign (number of terminators), triangle (line orientation).

This palette supports up to three values. If more than three groups of data, then separate the groups into different plots.

References

Tremmel, Lothar, (1995) "The Visual Separability of Plotting Symbols in Scatterplots" Journal of Computational and Graphical Statistics, http://www.jstor.org/stable/1390760

wsj_pal 79

See Also

Other shapes: circlefill_shape_pal, cleveland_shape_pal, scale_shape_circlefill, scale_shape_cleveland scale_shape_tremmel

wsj_pal

Wall Street Journal color palette (discrete)

Description

The Wall Street Journal uses many different color palettes in its plots. This collects a few of them, but is by no means exhaustive. Collections of these plots can be found on the WSJ Graphics Twitter feed and Pinterest.

Usage

```
wsj_pal(palette = "colors6")
```

Arguments

```
palette character The color palette to use: . "rgby", "red_green", "black_green", "dem_rep", "colors6"
```

Palettes

The following palettes are defined,

rgby Red/Green/Blue/Yellow theme. Examples: https://twitpic.com/b2e3v2. Up to four values.

red_green Green/red two-color scale for good/bad. Examples: https://twitpic.com/blavj6, http://twitpic.com/a4kxcl.

green_black Black-green 4-color scale for 'Very negative', 'Somewhat negative', 'somewhat positive', 'very positive'. Examples: https://twitpic.com/awbua0.

dem_rep Democrat/Republican/Undecided blue/red/gray scale. Examples: https://twitpic. com/awbua0.

colors6 Red, blue, gold, green, orange, and black palette. Examples: https://twitpic.com/9gfg5q.

See Also

```
Other colour wsj: scale_colour_wsj
```

Index

*Topic datasets	geom_rug, 76
canva_palettes, 7	geom_tufteboxplot, 18, 18
geom_rangeframe, 17	GeomRangeFrame (geom_rangeframe), 17
geom_tufteboxplot, 18	GeomTufteboxplot (geom_tufteboxplot), 18
ggthemes_data, 20	ggplot(), 17, 18, 57
stat_fivenumber, 57	ggthemes, 20
	ggthemes-package (ggthemes), 20
aes(), 17, 18, 57	ggthemes_data, 20
aes_(), 17, 18, 57	guides(), 11, 23, 25, 27–29, 34–36, 39–41,
	43–45, 47–50, 52, 53
bank_slopes, 3	,,
banking, 5	hc_pal, 21, 33, 34
borders(), 17, 19, 58	
1 7 70	layer(), 17, 19, 58
calc_pal, 5, 40	
calc_shape_pal, 6, 46, 47	palette_pander, 21, 24
canva_pal, 6	par, <i>53</i> , <i>54</i> , <i>73</i>
canva_palettes, 6, 7, 24	ptol_pal, 22, 34, 35
circlefill_shape_pal, 8, 10, 48, 49, 53, 79	
cleveland_shape_pal, 9, 9, 48, 49, 53, 79	<pre>scale_color_calc (scale_fill_calc), 39</pre>
colorblind_pal, 10	scale_color_canva(scale_colour_canva),
dichromat_pal, //	24
discrete_scale, 24, 49	scale_color_colorblind
discrete_scale(), 37	(colorblind_pal), 10
discrete_scale(), 3/	scale_color_continuous_tableau
economist_pal, 12, 25	<pre>(scale_colour_gradient_tableau),</pre>
excel_new_pal, 12, 13, 27, 41	31
excel_pal, 13, 13, 27, 41	scale_color_economist, 64
expand_scale(), 11, 23, 25, 26, 28, 29,	scale_color_economist
34–36, 39–41, 43, 44	(scale_colour_economist), 24
extended_range_breaks	scale_color_excel (scale_fill_excel), 40
<pre>(extended_range_breaks_), 13</pre>	scale_color_excel_new
extended_range_breaks_, 13	(scale_colour_excel_new), 25
	<pre>scale_color_few(scale_colour_few), 27</pre>
few_pal, 14, 27, 28	scale_color_fivethirtyeight
few_shape_pal, 15	(scale_colour_fivethirtyeight),
fivethirtyeight_pal, 16, 29	28
format, <i>55</i>	scale_color_gdocs (scale_fill_gdocs), 42
fortify(), <i>17</i> , <i>18</i> , <i>57</i>	scale_color_gradient2_tableau
1.46.40	<pre>(scale_colour_gradient2_tableau),</pre>
gdocs_pal, 16, 43	30
geom_boxplot, 20	scale_color_gradient_tableau
geom_map, 71	(scale_colour_gradient_tableau),
geom_rangeframe, 17, 20, 76	31

INDEX 81

scale_color_hc (scale_colour_hc), 33	scale_fill_excel, <i>13</i> , <i>27</i> , 40
scale_color_pander, 21, 22	scale_fill_excel_new
scale_color_ptol (scale_colour_ptol), 34	<pre>(scale_colour_excel_new), 25</pre>
scale_color_solarized	<pre>scale_fill_few(scale_colour_few), 27</pre>
(scale_fill_solarized), 43	scale_fill_fivethirtyeight
scale_color_stata (scale_colour_stata),	<pre>(scale_colour_fivethirtyeight),</pre>
35	28
scale_color_tableau, <i>l1</i>	scale_fill_gdocs, <i>16</i> , 42
scale_color_tableau	scale_fill_gradient2_tableau
(scale_colour_tableau), 37	(scale_colour_gradient2_tableau), 30
scale_color_wsj,78	
scale_color_wsj(scale_colour_wsj),38	scale_fill_gradient_tableau
scale_colour_calc(scale_fill_calc), 39	(scale_colour_gradient_tableau),
scale_colour_canva, 24	31
scale_colour_colorblind	scale_fill_hc (scale_colour_hc), 33
(colorblind_pal), 10	scale_fill_pander(scale_color_pander),
scale_colour_economist, <i>12</i> , 24	22
scale_colour_excel, 65	scale_fill_ptol (scale_colour_ptol), 34
<pre>scale_colour_excel (scale_fill_excel),</pre>	scale_fill_solarized, 43, 56
40	scale_fill_stata(scale_colour_stata),
scale_colour_excel_new, 13, 25, 41	35
scale_colour_few, 15, 27	scale_fill_tableau
scale_colour_fivethirtyeight, 16, 28	(scale_colour_tableau), 37
<pre>scale_colour_gdocs (scale_fill_gdocs),</pre>	scale_fill_wsj(scale_colour_wsj),38
42	scale_linetype_stata, 45, 56
scale_colour_gradient2_tableau, 30, 32,	scale_shape_calc, 6, 46
37, 59, 60	scale_shape_circlefill, 9, 10, 47, 49, 53,
scale_colour_gradient2_tableau(), 31,	79
37	scale_shape_cleveland, 9, 10, 48, 48, 53, 79
scale_colour_gradient_tableau, 30, 31,	scale_shape_few, 49, 50
37, 59, 60	scale_shape_stata, 50, 57
scale_colour_gradient_tableau(), 30, 37	scale_shape_tableau, 51, 61
scale_colour_hc, 21, 33	scale_shape_tremmel, 9, 10, 48, 49, 52, 79
scale_colour_pander	show_col, 54
(scale_color_pander), 22	show_linetypes, 53, 54
scale_colour_ptol, 22, 34	show_shapes, 54
scale_colour_solarized	smart_digits, 55
(scale_fill_solarized), 43	smart_digits_format (smart_digits), 55
scale_colour_stata, 35	solarized_pal, 43, 44, 55
scale_colour_tableau, 30, 32, 37, 59, 60	stat_boxplot, 58
scale_colour_tableau(), 30, 31	stat_fivenumber, 57
scale_colour_wsj, 38, 79	stata_linetype_pal, 45, 56 stata_pal, 35, 56
scale_fill_calc, 5, 39	stata_shape_pal, 50, 57
scale_fill_canva(scale_colour_canva),	StatFivenumber (stat_fivenumber), 57
24	Stati ivendinger (Stat_Tivendinger), 37
<pre>scale_fill_colorblind(colorblind_pal),</pre>	tableau_color_pal, 30, 32, 37, 58, 60
10	tableau_color_pal(), 37, 60
scale_fill_continuous_tableau	tableau_div_gradient_pal
<pre>(scale_colour_gradient_tableau),</pre>	(tableau_gradient_pal), 60
31	tableau_gradient_pal, 30, 32, 37, 59, 60
scale_fill_economist	tableau_seq_gradient_pal
(scale_colour_economist), 24	(tableau_gradient_pal), 60

82 INDEX

```
tableau_shape_pal, 51, 52, 61
theme, 64, 66, 75
theme_base, 62, 63, 69, 71, 73, 75
theme_bw, 68, 71, 74
theme_calc, 40, 47, 62
theme_clean, 62, 63, 69, 71, 73, 75
theme_economist, 25, 64
theme\_economist\_white
          (theme_economist), 64
\texttt{theme\_excel}, \textcolor{red}{\mathbf{65}}, \textcolor{red}{\mathbf{66}}
theme_excel_new, 66, 66
theme_few, 67
theme_fivethirtyeight, 29, 68
theme_foundation, 62, 63, 68, 71, 73, 75
theme_gdocs, 43, 69
theme_gray, 68, 71, 74
theme_hc, 33, 69
{\tt theme\_igray}, {\it 62}, {\it 63}, {\it 69}, {\it 70}, {\it 73}, {\it 75}
theme_{map}, 71
theme_pander, 24, 72
theme_par, 62, 63, 69, 71, 73, 75
theme_solarized, 74
theme_solarized_2 (theme_solarized), 74
theme_solid, 62, 63, 69, 71, 73, 75
theme_stata, 75
theme_tufte, 76
theme_wsj, 38, 77
tremmel_shape_pal, 9, 10, 48, 49, 53, 78
wsj_pal, 38, 39, 79
```