Lecture 2: January 14, 2015 cs 573: Probabilistic Reasoning Professor Nevatia
Spring 2015

Review

- Course requirements and Grading
 - Assignments (7-8, 1-2 may be programming, no projects), 30% weight
 - Exams 1 (between 7th and 9th weeks), Exam 2 (April 29, class time), 30% weight each
 - Class attendance, 10% (does not apply for DEN students)
- Enrollment: sign in, if in class
- Course content: as listed in Lec 1 slides (subject to listed *caveats*)
- Assignment #1 to be posted today, due Jan 26
- Last lecture: Intro to probability
 - Distribution function
 - Joint probability, conditional probability
- Today's objective
 - Independences
 - Continuous distributions
 - Graph terminology
 - Many, many definitions...

Independence

- Event α is independent of event β in P, denoted as $P \models \alpha \perp \beta$, if $P(\alpha \mid \beta) = P(\alpha)$, or if $P(\beta) = 0$
- Follows that $P(\alpha \cap \beta) = P(\alpha) P(\beta)$
- Examples: toss two coins; coin toss and weather...
- Full independence is rare, *conditional independence* where two events are independent, given a third event
- Conditional independence
 - P (USC | UCLA, GradeA) = P(USC | GradeA)(USC means admitted to USC, similar for UCLA)
 - P (Congestion | Flu, Hayfever, Season) = P (Congestion | Flu, Hayfever)
- Event α is independent of event β in P, given event γ , denoted as $P \models (\alpha \perp \beta \mid \gamma)$ if $P(\alpha \mid \beta \cap \gamma) = P(\alpha \mid \gamma)$, or if $P(\beta \mid \gamma) = 0$
- Follows that $P(\alpha \cap \beta \mid \gamma) = P(\alpha \mid \gamma) P(\beta \mid \gamma)$

Conditional Independence Properties

- Conditional independence of variables
 - **Defn:** X is *cond indep* of Y given Z, in distribution P, if P satisfies $(x \perp y \mid z)$ for all possible values of x, y and z
- Proposition: P satisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ iff $P(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z}) = P(\mathbf{X} \mid \mathbf{Z})$ $P(\mathbf{Y} \mid \mathbf{Z})$
- Properties of conditional independence, equations (2.7) thru (2.11)
 - Given without proof
 - Symmetry:

$$(X \perp Y \mid Z) \Longrightarrow (Y \perp X \mid Z).$$

• Decomposition:

$$(X \perp Y, W \mid Z) \Longrightarrow (X \perp Y \mid Z).$$

Weak union:

$$(X \perp Y, W \mid Z) \Longrightarrow (X \perp Y \mid Z, W).$$

Contraction:

$$(X \perp W \mid Z, Y) \& (X \perp Y \mid Z) \Longrightarrow (X \perp Y, W \mid Z).$$

• Intersection: For positive distributions, and for mutually disjoint sets X, Y, Z, W:

$$(X \perp Y \mid Z, W) \& (X \perp W \mid Z, Y) \Longrightarrow (X \perp Y, W \mid Z).$$

Queries

Probability Query

- Given some evidence, find probability of desired variables
- Evidence consists of instantiation e of a set of variables E
- Compute P(Y|E=e), where Y is set of query variables
 - Marginal over **Y** conditioned on **e**; also called *posterior* distribution
 - There may be additional variables that we don't care about

MAP Query

- Maximum a posteriori assignment or most probable explanation (MPE)
- MAP (W| e) = arg max_w P(w,e), W = X E
- Note that maximal joint assignment is not same as maxima of individual assignments, example on next page

MAP Example (Ex 2.4)

$$\begin{array}{c|cc}
 a^0 & a^1 \\
\hline
 0.4 & 0.6
\end{array}$$

Note: right table gives conditional, not joint, probabilities

$$MAP(A) = a^1$$

However, $MAP(A, B) = (a^0, b^1)$:

 $\arg \max_{a,b} P(a,b) \neq (\arg \max_a P(a), \arg \max_b P(b))$

Marginal MAP Query

- We only care about the assignment of a subset of the variables
 - Disease diagnosis: full MAP query would compute joint distribution of diseases and symptoms, we may only be interested in disease probabilities
 - MAP $(\mathbf{Y}|\mathbf{e})$ = arg max_y $P(\mathbf{y},\mathbf{e})$
 - Let Z = X Y E
 - MAP ($\mathbf{Y}|\mathbf{e}$) = arg max_y $\sum_{z} P(\mathbf{Y}, \mathbf{Z}|\mathbf{e})$
 - Note: marginal MAP query can not be computed directly from a MAP query

Continuous Spaces

- Random variables may take continuous values, say in range [0,1]. Example: max temperature tomorrow
 - P(X = x) is = 0 in such cases
- Probability *density* function (pdf), say p(x)
- Cumulative distribution function

$$P(X \le a) = \int_{-\infty}^{a} p(x)dx$$

$$P(a \le X \le b) = \int_{a}^{b} p(x)dx$$

$$\int_{al(X)} p(x)dx = 1$$

Distributions

Uniform distribution

A variable X has a uniform distribution over [a, b], denoted $X \sim \text{Unif}[a, b]$ if it has the PDF

$$p(x) = \begin{cases} \frac{1}{b-a} & b \ge x \ge a \\ 0 & \text{otherwise.} \end{cases}$$

Gaussian (Normal) distribution

A random variable X has a Gaussian distribution with mean μ and variance σ^2 , denoted $X \in \mathcal{N}(\mu; \sigma^2)$, if it has the PDF

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Joint Density Functions

Let P be a joint distribution over continuous random variables X_1, \ldots, X_n . A function $p(x_1, \ldots, x_n)$ is a joint density function of X_1, \ldots, X_n if

- $p(x_1,\ldots,x_n)\geq 0$ for all values x_1,\ldots,x_n of X_1,\ldots,X_n .
- p is an integrable function.
- For any choice of a_1, \ldots, a_n , and b_1, \ldots, b_n ,

$$P(a_1 \le X_1 \le b_1, \ldots, a_n \le X_1 \le b_n) = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} p(x_1, \ldots, x_n) dx_1 \ldots dx_n.$$

Marginalize joint density function

$$p(x) = \int_{-\infty}^{\infty} p(x, y) dy.$$

Conditional Density Functions

Let p(x,y) be the joint density of X and Y. The conditional density function of Y given X is defined as

$$p(y \mid x) = \frac{p(x, y)}{p(x)}$$

When p(x) = 0, the conditional density is undefined.

$$p(x,y) = p(x)p(y \mid x)$$

$$p(x \mid y) = \frac{p(x)p(y \mid x)}{p(y)}$$

Let X, Y, and Z be sets of continuous random variables with joint density p(X, Y, Z). We say that X is conditionally independent of Y given Z if

$$p(\boldsymbol{x} \mid \boldsymbol{z}) = p(\boldsymbol{x} \mid \boldsymbol{y}, \boldsymbol{z})$$
 for all $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ such that $p(\boldsymbol{z}) > 0$.

Expectation

- Expectation of X (expected or mean value) under the distribution P, is given by: $E_P[X] = \Sigma_x x \cdot P(x)$
 - Example of a dice roll
- If X is continuous: $E_P[X] = \int x \cdot P(x)$
- Expectation of f(x) is $E_P[f(X)] = \Sigma_x f(x)$. P(x)
- $E[a \cdot X + b] = a E[X] + b$
- E[X + Y] = E[X] + E[Y]
- If X and Y are independent E [X.Y]= E[X]. E[Y]
- $E_P[X|y] = \Sigma_x x \cdot P(x|y)$

Variance

• *Variance* of *X* , given distribution *P*, is given by:

$$Var_{P}[X] = E_{P}[(X - E_{P}[X])^{2}] = E_{P}[X^{2}] - E_{P}[X]^{2}$$

Standard Deviation
$$\sigma_X = \sqrt{Var[X]}$$

If X and Y are independent, then

$$Var[X + Y] = Var[X] + Var[Y]$$

Let X be a random variable with Gaussian distribution $N(\mu, \sigma^2)$, then $E[X] = \mu$ and $Var[X] = \sigma^2$.

(Chebyshev inequality):

$$P(|X - \mathbf{E}_P[X]| \ge t) \le \frac{\mathbf{Var}_P[X]}{t^2}$$

$$P(|X - \mathbf{E}_P[X]| \ge k\sigma_X) \le \frac{1}{k^2}.$$

Entropy of a Distribution (Appendix A.1)

• Definition: **Entropy** of X given distribution P(x)

$$H_{P}(X) = E_{P} (\log 1/P(x)) = \sum_{x} P(x) \log (1/P(x))$$

= $-\sum_{x} P(x) \log P(x)$

- Consider a fair coin, H_p will be .5log .5 + .5 log .5 = 1 (log base 2)
- What if a coin always comes up heads: entropy = 0 (no need to transmit the result)
- If the coin is unfair, P(heads) = .9; entropy will be lower than for a fair coin.
- Entropy can be related to coding/information theory
 - How many bits needed to transmit the data in an optimal code
- Another interpretation is how much information do we get from a result, or how much uncertainty is introduced by a distribution
 - Consider uniform vs highly peaked or bi-modal distributions

More Entropy Definitions

Joint Entropy

$$H_{P}(X_{1}, X_{2}...X_{n}) = E_{P}[\log 1/P(X_{1}, X_{2}...X_{n})]$$

Conditional Entropy

$$H_{P}(X|Y) = E_{P}[\log 1/P(X|Y)] = H_{P}(X,Y) - H_{P}(Y)$$

- Additional cost of encoding X, when we already know Y
- Entropy Chain Rule

$$H_{P}(X_{1}, X_{2}...X_{n}) = H_{P}(X_{1}) + H_{P}(X_{2}|X_{1}) + H_{P}(X_{n}|X_{1}..., ..., X_{n-1})$$

Graph Terminology

- Set of nodes and edges
- Nodes: $\mathcal{X} = \{X_1, \dots, X_n\}$.
- Edges: directed edge $X_i \rightarrow X_j$ or an undirected edge $X_i X_j$
- Unspecified edge type denoted by $X_i \rightleftharpoons X_j$
- Only one type of edge between two nodes (though graph may be mixed)
- *Directed graph*: all edges are directed
- *Undirected graph*: all edges are undirected
- *Parent, Child* relations (directed edge)
- Neighbor (undirected edge)
- *Degree* of a node: number of edges that the node participates in
- *Indegree* of a node: X number of directed edges pointing to X
- Degree of a graph: maximal degree of a node in the graph

Subgraphs and Cliques

Let $K = (X, \mathcal{E})$, and let $X \subset X$. We define the induced subgraph K[X] to be the graph (X, \mathcal{E}') where \mathcal{E}' are all the edges $X \rightleftharpoons Y \in \mathcal{E}$ such that $X, Y \in X$.

A subgraph over X is complete if every two nodes in X are connected by some edge. The set X is often called a clique; we say that a clique X is maximal if for any superset of nodes $Y \supset X$, Y is not a clique.

USC CS573: Advanced AI, Spring 2015

More Graph Definitions

- Path
- Trail
- Connected Graph
- Ancestor/descendant
- Topological ordering

Paths and Trails

We say that X_1, \ldots, X_k form a path in the graph $\mathcal{K} = (\mathcal{X}, \mathcal{E})$ if, for every $i = 1, \ldots, k-1$, we have that either $X_i \to X_{i+1}$ or $X_i - X_{i+1}$. A path is directed if, for at least one i, we have $X_i \to X_{i+1}$.

We say that X_1, \ldots, X_k form a trail in the graph $K = (\mathcal{X}, \mathcal{E})$ if, for every $i = 1, \ldots, k-1$, we have that $X_i \rightleftharpoons X_{i+1}$.

In the graph K of figure 2.3, A, C, D, E, I is a path, and hence also a trail. On the other hand, A, C, F, G, D is a trail, which is not a path.

A graph is connected if for every X_i, X_j there is a trail between X_i and X_j .

Orderings

We say that X is an ancestor of Y in $K = (X, \mathcal{E})$, and that Y is a descendant of X, if there exists a directed path X_1, \ldots, X_k with $X_1 = X$ and $X_k = Y$. We use Descendants $_X$ to denote X's descendants, Ancestors $_X$ to denote X's ancestors, and NonDescendants $_X$ to denote the set of nodes in X – Descendants $_X$.

In our example graph K, we have that F, G, I are descendants of C. The ancestors of C are A, via the path A, C, and B, via the path B, E, D, C.

A final useful notion is that of an ordering of the nodes in a directed graph that is consistent with the directionality its edges.

Let $\mathcal{G} = (\mathcal{X}, \mathcal{E})$ be a graph. An ordering of the nodes X_1, \ldots, X_n is a topological ordering relative to \mathcal{K} if, whenever we have $X_i \to X_j \in \mathcal{E}$, then i < j.

Cycles

- Cycles: a cycle is a path $X_1, X_2...X_k$ where $X_1 = X_k$
- Directed acyclic graphs (DAGs)
- Partially directed acyclic graph (PDAG): some edges may be undirected. Chain components consist of subgraphs connected by undirected edges; chains are connected by directed edges. Six chain components in example: {A}, {B}, {C,D,E}, {F,G}, {H},

Loops

- Loops: a loop is a trail $X_1, X_2...X_k$ where $X_1 = X_k$
- Singly connected: no loops
 - Leaf node: only one adjacent node
 - Polytree: singly connected, directed
 - Forest: undirected- singly connected
 Directed- Each node has at most one parent
- Tree: connected direct forest

Polytree Example

Chordal Graphs

• Define a chord and a chordal graph

Let $X_1-X_2-\cdots-X_k-X_1$ be a loop in the graph; a chord in the loop is an edge connecting X_i and X_j for two nonconsecutive nodes X_i, X_j . An undirected graph \mathcal{H} is said to be chordal if any loop $X_1-X_2-\cdots-X_k-X_1$ for $k\geq 4$ has a chord.

- In a chordal graph, longest minimal loop is a triangle: also called a triangulated graph
- Directed Chordal graph:

A graph K is said to be chordal if its underlying undirected graph is chordal.

Next Class

• Read sections 3.1,3.2 and 3.3 of the KF book