Simple Artificial Neural Networks

 $\alpha'' = 2(\theta'' + \phi'' + \phi'' + \phi'')$, where α'' is the black marker α'' is the more of α' is the black marker α'' is the more of α' in the size of α' in the

For simplicity, let's use, $\sigma(z) = \tanh(z)$, for our activation function, and randomly initialise our weight, as to $u^{(1)} = 1.3$ and $b^{(1)} = -0.1$.

We now have a slightly changed notation. The neurons which are labelled by their layer with a superscript in brackets, are now also labelled with their number in that layer as a subscript, and form vectors $\mathbf{a}^{(i)}$ and $\mathbf{a}^{(i)}$.

The weights now form a matrix $\mathbf{W}^{(1)}$, where each element, $w_{ij}^{(1)}$, is the link between the neuron j in the previous layer and resuren i in the current layer. For example $w_{ij}^{(1)}$ is highlighted linking $a_{ij}^{(1)}$ to $a_{ij}^{(1)}$.

For a network with weights, $\mathbf{W}^{(1)} = \begin{bmatrix} -2 & 4 & -1 \\ 6 & 0 & -3 \end{bmatrix}$, and bias $\mathbf{b} = \begin{bmatrix} 0.1 \\ -2.5 \end{bmatrix}$.

 $a^{(0)} = \begin{bmatrix} 0.3 \\ 0.4 \\ 0.1 \end{bmatrix}$

 $\label{eq:alpha} \begin{array}{ll} & \mathbf{a}^{(2)} = \sigma(\mathbf{W}^{(2)}\mathbf{W}^{(1)}\mathbf{a}^{(0)} + \mathbf{W}^{(2)}\mathbf{b}^{(1)} + \mathbf{b}^{(2)}) \\ \\ & \mathbf{a}^{(2)} = \sigma(\mathbf{W}^{(1)}\mathbf{a}^{(1)} + \mathbf{b}^{(2)}). \end{array}$

 $\mathbf{Z} \mathbf{a}^{(2)} = \sigma(\mathbf{W}^{(2)}\sigma(\mathbf{W}^{(1)}\mathbf{a}^{(0)} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)})$

Correct in this form, the entire function of the n same as, $\mathbf{a}^{(2)} = \sigma(\mathbf{W}^{(2)}\mathbf{a}^{(1)} + \mathbf{b}^{(2)})$ $\mathbf{a}^{(1)} = \sigma(\mathbf{W}^{(1)}\mathbf{a}^{(0)} + \mathbf{b}^{(2)}),$ but in a single statement.

With the weights and biases set here, observe how $a_0^{(1)}$ activates when $a_0^{(2)}$ is active, and $a_1^{(1)}$ activates when $a_0^{(2)}$ is inactive. Then the output neuron, $a_0^{(2)}$, activates when neither $a_0^{(1)}$ nor $a_0^{(1)}$ are too active.

