Assignment 5

Given: 9/27/18 Due: Wednesday 10/3/18

Exercises

Exercises are for your own practice. Don't hand them in.

- 1. (Maximum Spacing) You are given a graph G with 8 vertices v_1, \ldots, v_8 and a number k=3. Between v_i and v_j , there is an edge with weight $i \cdot j$. Find a clustering with k clusters of maximum spacing.
- 2. Solve Exercise 29, Chapter 4 on page 203 of the Textbook. (Degree sequences for graphs)

Problems

Problem solutions have to be handed in. A subset of them will be graded.

- 1. [5+10=15 points] (Huffman code)
 - (a) You have an alphabet $\{a, b, ..., h\}$ with frequencies 1, 2, ..., 8. Draw a tree defining a Huffman code.
 - (b) Assume you have an alphabet $A = \{a_1, \ldots, a_n\}$ where each character has a different weight. Find a small example where Huffman's algorithm could nevertheless create two (or more) essentially different Huffman codes.
 - Here, we consider two Huffman codes to be essentially different, if there is a length ℓ such that the number of characters encoded by binary strings of length ℓ is different for the two codes.
- 2. [20 points] Solve Problem 7, Chapter 4 on page 191 of the Textbook. (A greedy algorithm for El Goog)
- 3. [20 points] Solve Problem 21, Chapter 4 on page 200 of the Textbook. (MST for near-tree)