Solució al problema 6 I

Aplicant el teorema de Gerschgorin tenim que els valors propis estan en els discs:

$$D_1(2), \qquad D_8(2), \qquad D_{-2}(2).$$

El disc $D_8(2)$ no té intersecció amb els altres discs. Per tant, hi ha unúnic valor propi, que necessariament ha de ser real, i que té el módul màxim.

Usant el mètode de la potència obtenim un valor propi i el seu corresponent vector propi:

$$\lambda_1 \approx 8.187637313169,$$

 $v^T \approx (9.835340549 \cdot 10^{-2}, 9.912841992 \cdot 10^{-1}, -8.764841043 \cdot 10^{-2}).$

Solució al problema 6 II

3 Notem que det A=9 i ${\rm tr}\,A=5$. Per tant, si λ_2 i λ_3 són la resta de valors propis, tenim

$$\lambda_1\lambda_2\lambda_3=9, \qquad \lambda_1+\lambda_2+\lambda_3=5.$$

Per tant, λ_2 i λ_3 són solucions de l'equació:

$$\lambda^2 - (5 - \lambda_1)\lambda + \frac{9}{\lambda_1} = 0.$$

Resolent l'equació obtenim que els altres valors propis són -0.3933..., -2.7942517....

Una altra possibilitat és fer potència desplaçda, per exemple amb $\mu=4$. Això ens dóna el valor propi $-2.7942517\ldots$