

Influencia de los patrones de viento en la incidencia de infecciones respiratorias agudas en Panamá entre los años 2017 y 2021

Proyecto final para la asignatura de Proyecto Integrador 2

Presentado por:

- Antonio Melillo
- Fabiola Montero
- Luis Muñoz
- Samuel Rodríguez

Facilitador. Juan Castillo, PhD Panamá, 24 de septiembre de 2025

Contenido

Ol Definición del problema

02 Objetivos

03 Alcance

04 Antecedentes

05 Justificación

06 Preprocesamiento de datos

07 Selección de atributos

08 Resultados de modelos

O9 Audiencias y decisiones posibles

Panel de visualización

Definición del Problema

- Las IRAs afectan de forma significativa al sistema de salud.
- No se ha estudiado el rol del viento en la dispersión de patógenos y partículas ni su incidencia en las enfermedades respiratorias.
- Dificulta sistemas de alerta temprana climáticas.
- Conocer la influencia del viento es clave para mejorar la vigilancia sanitaria.

Fuente: Sección de Estadísticas de Vigilancia del Departamento de Epidemiología del MINSA

Fuente: Informe de Virus Respiratorios, Departamento Nacional de Epidemiología del MINSA.

Objetivo general del proyecto

Identificar correlaciones relevantes entre los patrones de viento y la incidencia de infecciones respiratorias agudas (IRA) en Panamá durante el período 2017–2021, mediante la integración de datos meteorológicos y epidemiológicos.

Objetivos específicos del proyecto (6)

- Recolectar datos meteorológicos y epidemiológicos entre 2017 y 2021 Entregables:
 - a. Base de datos integrada con registros de velocidad y dirección del viento (ERA5)
 - b. Dataset de enfermedades respiratorias por región y temporalidad (MINSA e INEC)

- Diseñar una arquitectura para el procesamiento automatizado de datos Entregables:
 - a. Pipeline para ingestión, limpieza y transformación de datos.

- Analizar la correlación entre patrones de viento y casos de infecciones respiratorios agudas Entregables:
 - a. Dashboard o panel de visualización.

- Aplicar modelos predictivos y/o causales para evaluar el rol del viento como factor epidemiológico
 - Entregables:
 - a. Modelos entrenados
 - b. Métricas de desempeño

- Generar recomendaciones para vigilancia epidemiológica y políticas públicas basadas en los hallazgos
 - Entregables:
 - a. Artículo Científico
 - b. Presentación ejecutiva

Alcance y Limitaciones

INCLUIDO

- Análisis de datos meteorológicos del viento, que provienen del dataset ERA5 procesado, desde 2015 hasta 2024.
- Análisis de datos de incidencia de infecciones respiratorias agudas, obtenidos de MINSA/INEC.
- Limitado a la República de Panamá.
- Herramientas de análisis de datos.

Alcance y Limitaciones

NO INCLUIDO

- Predicciones a largo plazo sobre cambios en los patrones de viento debido al cambio climático.
- Evaluación de otras variables meteorológicas como variable principal (ej. radiación solar, presión atmosférica), aunque puedan mencionarse como contexto.
- Modelo de la dispersión de contaminantes específicos.
- Análisis de la calidad del aire.

Antecedentes: Infección Respiratoria Aguda

Afección de tipo inflamatorio del canal respiratorio. Según ubicación puede ser clasificada en

- Alta Nariz, senos nasales, faringe o laringe
- Baja Árbol bronquial, bronquios, bronquiolos y alvéolos

Antecedentes Viento seco y salud respiratoria

Conceptos Clave

- **Viento seco** = corrientes de aire con HR < 40 %.
- Origen:
 - Transporte continental
 - Subsidencia atmosférica
 - Capa de Aire Sahariano (SAL)
- En Panamá: más frecuente en temporada seca (ene-abr) con vientos alisios + Caribbean Low-Level Jet.

Clima en Panamá

Capa de aire sahariano SAL

Antecedentes Viento Seco y Enfermedades Respiratorias

Efectos fisiológicos

- Resequedad de mucosas → menor defensa inmunológica
- Disminución de función ciliar → + infecciones
- Mayor dispersión de partículas (PM₁₀ y PM_{2·5}) y virus

Caribbean Low-Level Jet Comportamiento Estacional

Es un chorro de aire del este, prominente y de bajo nivel, ubicado sobre el Mar Caribe entre el norte de América del Sur (Venezuela y Colombia) y las Antillas Mayores.

Octubre a abril

Zonal (de este a oeste) a través de la cuenca del Caribe y entra en la cuenca del Pacífico.

Mayo a septiembre

Una rama continúa hacia el oeste y la otra, la rama norte, fluye hacia el Golfo de México.

Justificación técnica

Justificación teórica

Preprocesamiento: Resultados

Dataset de viento, temperatura y presión

 Revisión de ajuste de datos a distribuciones

Variable	Distribución	Forma β	Desplazamiento	Escala	α	β
u10_media	genlogistic	0.760847	0.484338	0.065582	0.000000	0.000000
v10_media	genlogistic	0.218348	0.717656	0.038366	0.000000	0.000000
t2m_media	johnsonsu	0.000000	0.854006	0.052367	1.085592	0.970515
mslp_media	johnsonsu	0.000000	0.252808	0.102735	-0.908641	1.205413
ws10_media	johnsonsu	0.000000	-0.068365	0.013849	-7.294176	1.916786
blh_media	johnsonsu	0.000000	0.043086	0.064016	-2.206752	1.285573
CLLJ_index	genlogistic	0.583052	0.686578	0.092304	0.000000	0.000000
rel_hum_media	johnsonsu	0.000000	0.858165	0.071589	1.417694	1.086640
spec_hum_media	genlogistic	0.150944	0.882649	0.027506	0.000000	0.000000
velocidad_viento	johnsonsu	0.000000	-0.033191	0.009362	-6.090528	1.543254
direccion_viento	johnsonsu	0.000000	-0.029527	0.019825	-6.699347	1.827875
ind_vent_atm	johnsonsu	0.000000	0.004002	0.010868	-2.460135	0.907521

Preprocesamiento: Resultados

Velocidad promedio del viento entre 2014 y 2025 1.0

Dataset de viento, temperatura y presión

- Serie de tiempo de la velocidad promedio del viento con todas las provincias.
- Serie de tiempo de índice CLLJ.

COLUMBIA CLIMATE SCHOOL
INTERNATIONAL RESEARCH INSTITUTE
FOR CLIMATE AND SOCIETY

Selección de atributos

Dataset de factores meteorológicos y casos de IRA

Estandarización de datos

Resumen de resultados

Modelos: Resultados

• Métricas de los modelos.

Resultados de los modelos:

Modelo	Error cuadrático medio	R2 global
GWR con índice CLLJ original	1454325.121605	0.698075
MGWR con índice CLLJ original	2557451.020401	0.469062
GWR con índice CLLJ transformado	1456822.426226	0.697557
KhanZulfiqar	0.442887	0.608550
ST-GAM	94386.071402	0.972935
ST-GAM con λ automático	93780.195673	0.973063
ST-GAM con λ manual	102360.270714	0.971490

Modelos ST-GAM Poisson usan:

$$\mathrm{pseudo}\:R^2 = 1 - \frac{\mathrm{Deviance_{modelo}}}{\mathrm{Deviance_{nulo}}}$$

$$D = 2 \sum_i \left[y_i \log \left(rac{y_i}{\hat{\mu}_i}
ight) - (y_i - \hat{\mu}_i)
ight]$$

Audiencias

Audiencia	Uso del Panel
Salud Pública (MINSA, CSS)	Prevención, planificación y gestión de recursos
I ₅ ETESA / Meteorología	Alertas climáticas con impacto en salud
♠ Investigadores / Academia	Modelos y estudios sobre IRAs y ambiente
Urbanismo / MiAmbiente	Políticas de desarrollo urbano con enfoque en salud ambiental
Cooperación Internacional	Evaluación, financiamiento y cooperación
M ONGs / Sociedad Civil	Concientización y acción comunitaria
Medios / Periodismo	Divulgación científica y acceso público a la información
Hospitales Privados	Prever incrementos de demanda de atención por IRAs.
	Ajustar primas o coberturas estacionales
Recursos Humanos	Anticipar y gestionar el ausentismo laboral.
Farmacéuticas y Proveedores de Insumos	Prever aumentos en demanda de productos
Sector Educativo	Implementar medidas de prevención
Autoridades de Gestión de Riesgos	Coordinar esfuerzos interinstitucionales ante eventos simultáneos .

Decisiones posibles

- Ubicación de depósitos de residuos, crematorios, curtiembres, fábricas y otras instalaciones que generan humo y partículas contaminantes.
- Manejo de desechos residenciales y hospitalarios.
- Creación de barreras naturales y artificiales contra el viento.
- Perspectiva integral en el uso de suelos y aguas.
- Planes de Estado para el manejo de infecciones respiratorias agudas.
- Planificación de recursos humanos, médicos e instalaciones de salud.
- Cumplimiento de las leyes y reglamentos ambientales.
- Capacitación constante para el público.

Gracias por su atención

