COGNOMS:															
NOM:								D	NI/NI	E:					

IMPORTANTE leer atentamente antes de empezar el examen: Escriba los apellidos, el nombre y el DNI/NIE antes de empezar el examen. Escriba un solo carácter por recuadro, en mayúsculas y lo más claramente posible.

Problema 1. (3.5 puntos)

Dado el siguiente código escrito en C, que compilamos para un sistema linux de 32 bits:

a)	Dibuja cómo quedarían almacenadas en memoria las estructuras st1 y st2 , indicando claramente los desplazamientos respecto al inicio, el tamaño de todos los campos y el tamaño de los structs.

b)	Dibuja el bloque de activación de la rutina examen, indicando claramente los desplazamientos respecto a %ebp el tamaño de todos los campos.

c)	Traduce a ensamblador x86 la instrucción aux.s[v2]=3 ;	que	se	encuentra	dentro	de	la	subrutina	

Sea un computador con una memoria cache con capacidad para 8 líneas de 2 bytes cada una, y que está organizada asociativamente en 4 conjuntos. Por su parte, la memoria principal se encuentra organizada en bytes y posee una capacidad de 32 bytes.

d)	Indica cuáles son los bits de toda dirección de memoria principal (@MP) que se han de utilizar para determinar el conjunto al que pertenece una línea de cache, cuáles a la etiqueta, y cuáles al byte dentro de la línea de cache. Justifica tu respuesta.
	·
fall cua	política de escritura de la cache es copy back, write-allocate. La política de reemplazo es FIFO, y el primer acceso en o a un conjunto de cache se guarda en la vía 0. Sabemos que inicialmente la memoria cache está vacía y que para lquier posición @ de memoria principal su contenido es 2 @ (e.g. el contenido de la posición 6 es 12). Dada la Jiente secuencia de instrucciones ejecutada por el procesador:
mo7	7b 17, %ah - movb 6, %al - movb \$100, 8 - movb \$101, 16 - movb 9, %bh - movb 25, %bl
e)	Dibuja el contenido final de la memoria cache y de las posiciones de memoria principal involucradas. Indica también el contenido final de los registros %ah, %al, %bh y %bl. Para la cache debes dar el número de conjunto y los contenidos de todos los campos de cada línea involucrada (etiqueta, datos y bits de estado). Pon en decimal los valores de cada byte de datos.
El t	iempo de acceso a la memoria cache es de 1 ciclo (Tsa). Para leer o escribir un bloque en la memoria principal se
	plean 8 ciclos. El tiempo dedicado a realizar los accesos a memoria de dicha secuencia de operaciones es de 100 ns.
f)	Calcula a qué frecuencia está funcionando el procesador que ejecuta la secuencia de instrucciones del apartado e), e indica cuál es la tasa de aciertos y fallos que se obtiene.

COGNOMS:																								
NOM:													DI	NI/I	NIE:									
Problema Queremos p 32 bits, map void refe	rograma eo direc rence	ar un s cto, tai	simula maño (ignec	de ca	che 16 t add	Kbyt ress	es,	tama	año (de b	loqı	ie 64	byt	es.	La r	utin	a a p	orog	ram	ar es	s:			s de
a) Escribo	unsigr unsigr unsigr unsigr unsigr	ned i ned i ned i	nt by	yte; loqu inea	ie_m;	// //	pos blo	sici oque nea	ión e de de	del e me	by emoi	yte ria dor	den	tro se	o do maj	el :	blo di	que					SS	
Un estudiar	ite ha de	eclara	do las	sigui	entes e	estruc	tur	as d	e da	tos į	glob	ales	:											
unsigned unsigned b) Escribe addre	int v[[256] gment	; o de c	// ódig	vecto: o en C	r co para (rre calc	spc ular	ndi la v	ent arial	e a ble l	a lo ocal	s b boo	its lea	s de na n	e va niss	alio cua	dez ndo	se a	cced		la di	irec	ción
En la práction																								
unsigned Recordemo	int d[256]	;	//	vecto	r co	rre	spc	ndi	ent	e a	a 10				_				,			. 6. 0	
void refe	rence	(uns	igned	lin	t add	ress	, ບ	ınsi	.gne	ed i	nt	LE)												
	e un frag dos a) y												rres	mocon	ıdier	nte.	Pue	des	usar	· las	vari	able	s de	e los

Hemos ejecutado los siguientes fragmentos de código, prácticamente idénticos a los usados en la práctica 7, en un procesador con un sólo nivel de cache de datos.

Código A	Código B	Código C
<pre>for (i=0, j=0; j<n; +="" i="i" j++)="" pre="" step;="" sum="sum" v[i];="" {="" }<=""></n;></pre>	<pre>for (i=0, j=0; j<n; (i="" if="" j++)="" {="">= limite) i = 0; sum = sum + v[i]; i = i + line_size; }</n;></pre>	<pre>for (i=0, j=0; j<n; %="" ((j="" +="" cache_size;="" i="i" if="" j++)="" limite)="=0)" pre="" sum="sum+" v[i];="" {="" }<=""></n;></pre>

Cada elemento de v[i] ocupa 1 byte.

line_size es el tamaño de bloque en bytes.

cache_size es el tamaño de la cache en bytes.

N = 1000000

El vector V es suficientemente grande para que ningún acceso exceda el tamaño del vector.

En este procesador no es posible contar directamente el número de fallos en la cache de datos, pero hemos medido el tiempo de ejecución de cada uno de los códigos. El tiempo de ejecución de cada código es $T_{total} = T_{ideal} + T_{fallos}$ donde T_{ideal} es el tiempo que tardaría el código si no hubiese fallos de cache y T_{fallos} es el tiempo adicional debido a los fallos de cache. T_{ideal} puede ser distinto según el código. La siguiente tabla muestra el tiempo de ejecución (T_{total}) en milisegundos en función de las variables step y limite.

Of diag. A	step	4	8	16	32	64
Código A	T _{total}	15 ms	20 ms	30 ms	50 ms	50 ms
0/11 0	limite	2*1024	4*1024	5*1024	6*1024	8*1024
Código B	T _{total}	15 ms	15 ms	42 ms	55 ms	55 ms
2/11 2	limite	1	2	3	4	5
Código C	T _{total}	20 ms	20 ms	60 ms	60 ms	60 ms

La precisión es de 1 ms, por lo que los tiempos son aproximados y pequeñas variaciones en el número de fallos pueden dar como resultado el mismo tiempo. En caso que sea necesario asume que el algoritmo de reemplazo es LRU.

d)	Calcula el tamaño de línea de la cache. Justifica la respuesta.
ц, Г	Calcula el tarriario de infea de la cacrie. Justifica la respuesta.
L.	
(e)	Calcula el tamaño de la cache. Justifica la respuesta.
f)	Calcula la asociatividad de la cache. Justifica la respuesta.

COGN	OMS:																									
N	NOM:														D	NI/	NIE:									
Proble	ema 3	3. (3	.5 pւ	ıntos)																					
Se ha denom progra	ninare	mos	PC1)	y se	ha v	isto	que	su tie	mpo	de e	ejec	ucióı	n es	de 1	Γho	ras	. Par	арс	der	estir	mar					-
• Fas		ódig men ódig	o PA te sir	RALEI que	IZAE haya	SLE, o	ocupa rhea	a el 6 d de o	4% d comu	el tie inica	empo ción	o de /sin	la e cron	jecu izaci	ción ón.	de	P er	el F	C1.	Se p	ued	e pa	irale	lizar		e P
Con el un sist sistem	ema ı	nult	iproc	esado	or de	32	proce	esado		-	-			-	-						-				-	
a) C	alcula	el n	náxin	no spe	eed-u	ıp qı	ue po	odría	conse	eguir	se a	l eje	cuta	r el	prog	grai	ma P	con	el P	C2.						_
b) C	alcula	cuá	ntos	proce	sado	ores	sería	n nec	esari	os p	ara (obte	ner	un s	peed	d-u	p de	3 er	el F	C2.						
Al PC2 configi	uració	n pe	rmite	e aum	enta	r el a	anch	o de l	panda	a má	xim	o de	la E	/S er	1 5x	en	el ca	so d	e las	lect	ura	s, y	en 4	x en	el ca	aso
de las llaman disco s	nos PC	3. S	aben																							
c) C	alcula	el n	náxin	no spe	eed-u	ıp qı	ue po	dría (conse	eguir	se a	l eje	cuta	ır el	prog	grai	ma P	con	el P	C3 re	espe	ecto	PC1			
-	alcula álculo									5 de	l PC	3. Si	no :	se es	spec	ific	a cla	ram	ente	cón	no s	e h	an r	ealiza	ado	los

Otra opción que se ha barajado para mejorar el rendimiento del sistema es añadir un RAID6 de 8 discos como el D en lugar del sistema RAID5 del PC3. El disco D tiene una capacidad de 1 Terabyte y un ancho de banda de 400 MBytes/s.

	e)	Describe las principales características de este sistema RAID6, dibujando un esquema de cómo se distribuyen los datos y especificando el tipo de entrelazado, número de Terabytes de información redundante, número mínimo de discos que han de fallar para que el sistema deje de ser operativo, ancho de banda máximo de las lecturas en acceso secuencial y applie de banda (en general) de las escrituras en acceso aleatorio
Γ		acceso secuencial y ancho de banda (en general) de las escrituras en acceso aleatorio.
	ı	
	ı	
	ı	
	ı	
	ı	· · · · · · · · · · · · · · · · · · ·
	ı	· · · · · · · · · · · · · · · · · · ·
	ı	· · · · · · · · · · · · · · · · · · ·
	ı	· · · · · · · · · · · · · · · · · · ·
	ı	
	I	· ·
	ı	
	I	
	I	
	ı	
	ı	
	I	
	ı	
	ı	
	I	
(prim de bl es de (igno	PU del sistema (en todos los casos) está alimentada con una tensión de 1,2 V, tiene una memoria cache de datos de ner nivel L1D 2-asociativa con acceso paralelo a etiquetas y datos. La capacidad de la cache es de 128 KB y el tamaño loque de cache de 64 bytes. Las direcciones físicas son de 48 bits. La corriente de fugas de la memoria RAM estática e 3 micro Amperios por bit. Para simplificar el problema solo tendremos en cuenta las memorias de etiquetas y datos oraremos por tanto los bits V, D, etc)
	f)	Calcula la potencia media estática (debida a fugas) de la cache. Pista: calcula el tamaño en bits de las memorias de datos y etiquetas.
		· ·
	l	
	l	
	l	
	ı	
	I	
	I	
	ı	
	ı	
		nergía consumida durante un acceso la memoria de etiquetas es de 5 nJ (nanoJoules) por vía, y la consumida durante Icceso a la memoria de datos es de 25 nJ por vía. El consumo del resto de componentes de la cache es despreciable.
	g)	Calcula la energía dinámica consumida al realizar una lectura en acierto a la cache.
	<u> </u>	
	ı	
	ı	
	I	
	ı	
- 1		