Package 'rfcipDemand'

October 28, 2025

Type Package

Title Estimate Federal Crop Insurance Program Demand Models

Version 0.0.0.9000

Author Francis Tsiboe [aut, cre] (https://orcid.org/0000-0001-5984-1072)

Maintainer Francis Tsiboe <ftsiboe@hotmail.com>

Creator Francis Tsiboe

Description Tools to construct county–crop–practice–plan–unit panels from the USDA RMA Summary of Business (SOBTPU) and related sources, and to estimate FCIP demand systems with two-way cluster-robust covariance. The pipeline standardizes coverage measures, merges price and instrument variables, adds rental-rate and price-index controls, reconciles county acreage (FSA/NASS), and produces diagnostics including robust first-stage F-tests. Methods align with the empirical design in ``The crop insurance demand response to premium subsidies Evidence from U.S. Agriculture" (Food Policy, 2023, 119(3)).

License GPL-3 + file LICENSE

URL https://github.com/you/rfcipDemand

BugReports https://github.com/you/rfcipDemand/issues

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

VignetteBuilder knitr

Depends R (>= 4.1.0)

Imports rfsa, data.table, systemfit, sandwich, doBy, car, plyr, usmap, stats, utils, tidyr, stringr

Remotes github::UrbanInstitute/urbnmapr, github::dylan-turner25/rfsa, github::JanMarvin/nlsur

Suggests knitr, rmarkdown, tibble, dplyr, purrr, readr, lavaan, testthat (>= 3.0.0)

LazyData true

Cite-us If you find it useful, please consider staring the repository and citing the following studies
- Tsiboe, F., & Turner, D. (2023). ``The crop insurance demand response to premium subsidies Evidence from U.S. Agriculture". Food Policy, 119(3). doi.org/10.1016/j.foodpol.2023.102505
- Tsiboe, F., & Turner, D. (2023). Econometric identification of crop insurance participation.
Agricultural and Resource Economics Review. 52(3) 476-497. doi.org/10.1017/age.2023.13

Contents

adjust_agent_outcomes_by_elasticity
adjust_indemnity_liability_per_acre
calibrate_fcip_demand_elasticities
estimate_fcip_instruments
fcip_contiguous_county
fcip_demand_data_dispatcher
fcip_demand_elasticities_lavaan
fcip_demand_sys_coeff_table
fcip_demand_sys_effect
fcip_demand_sys_estimate
fcip_demand_sys_fit
fcip_demand_sys_partial
fcip_demand_sys_prep
fcip_demand_sys_run
fcip_demand_sys_tests
fcip_demand_sys_vcov
fcip_recodes_commodity_groupings
fcip_recodes_insurance_plan
fcip_recodes_practice
fcip_recodes_type
fixed_effect_model_data_prep
format_fcip_demand_table
fsa_crop_linker
get_yu2018_instrument
global_variables
nass_census_state_beginning_farmer_and_rancher_data
nass_index_for_price_recived
nass_marketing_year_avg_price
nass_state_rental_rates
nass_us_ag_price_index_monthly
premium_subsidy_schedule
25

 ${\it adjust_agent_outcomes_by_elasticity} \\ {\it Adjust\ FCIP\ outcomes\ by\ price\ elasticities}$

Description

Index

Simulates changes in Federal Crop Insurance Program (FCIP) outcomes- coverage level, insured acres, liability, premium, subsidy, and indemnity- under an alternative premium-per-liability using elasticities of insured acres and/or coverage level.

```
adjust_agent_outcomes_by_elasticity(
      alternate_premium_per_liability,
      insured_acres_elasticity,
      coverage_level_elasticity,
      baseline_coverage_type,
      baseline_coverage_level,
      baseline_insured_acres,
      baseline_liability_per_acre,
      baseline_premium_per_liability,
      baseline_subsidy_per_premium,
      baseline_indemnity_per_acre,
      final_revenue_per_acre,
      assumption = 0,
      premium_subsidy_schedule = NULL,
      rate_differential_schedule = NULL
    )
Arguments
    alternate_premium_per_liability
                     Numeric. Alternative premium per dollar of liability.
    insured_acres_elasticity
                     Numeric. Elasticity of insured acres w.r.t. price (percent basis).
    coverage_level_elasticity
                     Numeric. Elasticity of coverage level w.r.t. price (percent basis).
    baseline_coverage_type
                     Character. Baseline coverage type code ("A" or "C").
   baseline_coverage_level
                     Numeric in (0,1]. Baseline coverage level share.
    baseline_insured_acres
                     Numeric. Baseline insured acres.
   baseline_liability_per_acre
                     Numeric. Baseline liability per acre.
    baseline_premium_per_liability
                     Numeric. Baseline premium per dollar of liability.
    baseline_subsidy_per_premium
                     Numeric in (0,1). Subsidy share of total premium.
    baseline_indemnity_per_acre
                     Numeric. Baseline indemnity per acre.
    final_revenue_per_acre
                     Numeric. Revenue per acre (used for indemnity adjustment).
                     Integer (0,1,2,3). Scenario selector (see above). Default \emptyset.
    assumption
    premium_subsidy_schedule
                     Optional numeric vector of length 8 corresponding to coverage levels 0.50,
                     0.55, ..., 0.85. Multiplicative factors applied to baseline_subsidy_per_premium
                     at the scenario coverage. Defaults to 1's.
    rate_differential_schedule
                     Optional numeric vector of length 8 corresponding to coverage levels 0.50,
                     0.55, ..., 0.85. Multiplicative factors applied to alternate_premium_per_liability
                     at the scenario coverage. Defaults to 1's.
```

Details

Assumptions (set via assumption):

- 0: Fixed demand both coverage and acres remain at baseline.
- 1: Acres respond to price (elasticity gamma); coverage fixed.
- 2: Coverage responds to price (elasticity tetha); acres fixed.
- 3: Both acres and coverage respond.

Price response:

Price response is applied using the percent change in price:

$$\%\Delta p = 100 \times \left(\frac{\text{alt}}{\text{base}} - 1\right),\,$$

and for any baseline quantity q with elasticity e_q :

$$q_{\rm new} = q_{\rm base} \left[1 + \left(e_q \times \frac{\% \Delta p}{100} \right) \right]. \label{eq:qnew}$$

Coverage adjustment:

Coverage is rounded to the nearest 0.05 grid and truncated to the range (0,0.85). Values less than 0.50 are set to 0 (i.e., no coverage). Coverage type code is set to "A" for buy-up coverage and "C" for CAT coverage. For CAT policies, scenario coverage levels at 0.50/0.55 are adjusted to reflect CAT rules.

Per-acre liability and indemnity are updated using adjust_indemnity_liability_per_acre.

Optional schedules:

Coverage-specific scaling is possible via:

- premium_subsidy_schedule: length-8 numeric for coverage levels 0.50, 0.55, ..., 0.85. Multiplies the baseline_subsidy_per_premium at the scenario coverage.
- rate_differential_schedule: length-8 numeric for the same grid. Multiplies the alternate_premium_per_li at the scenario coverage.

Missing or zero inputs:

If either insured_acres or coverage_level_percent is NA or 0 after adjustment, both are reset to 0 and all dollar outcomes are set to 0.

Elasticities are applied multiplicatively to baseline quantities. Coverage levels are snapped to the 0.05 grid and truncated. When schedules are supplied, subsidy shares and premium rates are rescaled relative to the baseline coverage before applying to the scenario coverage.

Value

A list with elements:

coverage_type_code Scenario coverage type ("A" or "C").

coverage_level_percent Scenario coverage level share.

insured_acres Scenario insured acres.

liability_amount Total liability = acres * adjusted liability per acre.

total_premium_amount Total premium = liability * alt premium/liability.

subsidy_amount Subsidy = total premium * subsidy share.

indemnity_amount Total indemnity = acres * adjusted indemnity per acre.

price_change_pct Percent price change used for elasticity adjustments.

```
adjust_indemnity_liability_per_acre
```

Adjust liability and indemnity per acre at an alternative coverage level

Description

Compute adjusted liability per acre and adjusted indemnity per acre when moving from a baseline coverage level to a new level. The method floors production-to-count at 0 and resolves five mutually exclusive cases via data.table::fcase().

Usage

```
adjust_indemnity_liability_per_acre(
  coverage_level_percent,
  final_revenue_per_acre,
  baseline_coverage_level,
  baseline_liability_per_acre,
  baseline_indemnity_per_acre
)
```

Arguments

Numeric vector; baseline indemnity per acre.

Details

- production_to_count = pmax(baseline_liability_per_acre baseline_indemnity_per_acre,
 0)
- adj_Liability_per_acre = (baseline_liability_per_acre / baseline_coverage_level)* coverage_level_percent
- Indemnity cases (I1-I5) selected with data.table::fcase().

Value

A list with:

```
adj_Liability_per_acre Adjusted liability per acre.
adj_Indemnity_per_acre Adjusted indemnity per acre.
```

```
{\it calibrate\_fcip\_demand\_elasticities} \\ {\it Calibrate\ FCIP\ demand\ elasticities}
```

Description

Fits a 2-equation FCIP demand system over an estimation window ending in calibration_year and returns capped elasticities (-2, 0) by disaggregation level using fcip_demand_sys_estimate()

Usage

```
calibrate_fcip_demand_elasticities(
  calibration_year,
  estimation_window,
  data,
  drawn_pools = NULL,
  disaggregate = NULL
)
```

Arguments

calibration_year

Integer. Last year of the estimation window.

estimation_window

Integer (>= 1). Number of years ending at calibration_year.

data data.table. Input panel. Must include: commodity_year, commodity_code,

drawID, pool, insurance_plan_code, price, net_reporting_level_amount,

coverage_level_percent_aggregate, rent, county_acreage, total_premium_amount,

subsidy_amount, liability_amount, tau, subsidy_rate_65, subsidy_rate_75.

drawn_pools Optional data. table used to filter data via an inner join on intersecting columns.

disaggregate Optional character vector of grouping variables passed to the estimator (e.g.,

"commodity_code" or c("state","commodity_code")).

Details

Internally, the function (i) restricts data to the estimation years, (ii) collapses insurance plan codes and sets price := 1 for non-RP crops, (iii) constructs log variables, trend and year dummies, and (iv) estimates the system with rate endogenous and tau0 as the excluded instrument. Estimates are truncated to (-2, 0) and returned in wide form.

Value

```
data.table with columns: disag, level, gamma_elasticity, theta_elasticity.
```

estimate_fcip_instruments

Estimate FCIP Instrumental Variables (Unloaded Rates)

Description

Uses historical FCIP rate data to build instrumented unloaded-rate variables following:

1. Tsiboe & Turner (2023), Econometric identification of crop insurance participation *Agricultural and Resource Economics Review*, 52(3):476-497. https://doi.org/10.1017/age. 2023.13

Usage

```
estimate_fcip_instruments(year, statplan)
```

Arguments

year Integer. The target crop year for which to construct instruments. statplan A data.table containing FCIP rate elements, including at least:

commodity_year Year of the rate observation.
state_code, county_code County identifiers.

commodity_code Crop identifier.

insured_area, lcr, contiguous_state_code, contiguous_county_code Fields re-

quired by estimate_fcip_unloaded_rate().

Details

- 1. Task list: Identify all unique (state, county) pairs with data in the 2-21 years before year.
- 2. **Unloaded-rate calculation**: For each county in task_list, call estimate_fcip_unloaded_rate() on the same 2-21 year window to get tau. Errors return NULL so processing continues.
- 3. Contiguous-county smoothing:
 - Build a lookup table of contiguous counties (using contiguous_county).
 - For each contiguous group, compute the mean tau to get tau_c.
- 4. **Merge & fill**: Left-join the raw adm and contiguous_adm; replace any zero/NA/Inf tau with the group mean tau_c into tau_sob.
- Cleanup: Drop helper columns (tau, tau_c), remove invalid rows, add commodity_year, and return the result.

Value

A data.table with one row per county-crop for the specified year, containing:

```
state_code, county_code, commodity_code Keys.tau_sob Smoothed unloaded rate (uses contiguous-county means to fill zeros/NAs).commodity_year The input year, repeated.
```

See Also

Other FCIP instruments: get_yu2018_instrument()

Description

A combined dataset for fcip_contiguous_county

Usage

```
data(fcip_contiguous_county)
```

Format

A data frame with 24307 rows and 12 columns covering Inf-Inf.

Source

USDA-RMA, Actuarial Data Master - A0123

```
fcip_demand_data_dispatcher
```

Build dataset to estimate Federal Crop Insurance Program (FCIP) demand (modular pipeline)

Description

End-to-end pipeline that: (1) prepares SOBTPU and coverage aggregates, (2) adds prices/instruments/rental rates/price index, (3) reconciles county acreage (FSA + NASS), and (4) finalizes bins/labels/pooling for demand estimation.

Usage

```
fcip_demand_data_dispatcher(
   study_years = 2001:(as.numeric(format(Sys.Date(), "%Y")) - 1),
   identifiers = c("commodity_year", FCIP_INSURANCE_POOL, "insurance_plan_code",
        "unit_structure_code")
)
```

Arguments

study_years Integer vector of commodity years to include. Defaults to 2001: (as.numeric(format(Sys.Date(), "%Y")) - 1).

identifiers Character vector of grouping keys that define the aggregation grain. Must be

columns present in SOBTPU (e.g., "commodity_year", FCIP_INSURANCE_POOL, "insurance_plan_code", "unit_structure_code", and-if desired-additional keys like "commodity_code" or "practice_code"). Enrichment joins for recodes are performed only when the required keys are included in identifiers

Details

Aligned with Asche, Bekkerman, & Li (2023), *Food Policy*, 119(3):102505 (doi:10.1016/j.foodpol.2023.102505). Requires internet access to download release .rds assets and several in-memory lookup tables (see stage docs).

Value

A data.table ready for FCIP demand estimation.

```
fcip_demand_elasticities_lavaan

Calibrate FCIP demand elasticities via IV-SEM (lavaan)
```

Description

Fits a just-identified IV-style SEM where instr_rate instruments tilda_rate, and tilda_rate enters two outcome equations (tilda_ghamma, tilda_theta). Endogeneity is encoded via residual correlations between tilda_rate and each outcome. The instrument is excluded from the outcome disturbances.

Usage

```
fcip_demand_elasticities_lavaan(
  data,
  estimator = c("ML", "MLR"),
  missing = c("fiml", "listwise")
)
```

Arguments

```
data.frame with cols: instr_rate, tilda_rate, tilda_gamma, tilda_theta
estimator "ML" or "MLR" (default "MLR" = robust SE/tests)
missing "fiml" or "listwise" (default "fiml")
```

Details

Constraints imposed:

```
1. b1 < 0, 2) b2 < 0, 3) b1 + b2 + b1*b2 < 0
```

Value

A data.table of parameter estimates and logical convergence flag

fcip_demand_sys_coeff_table

Tidy coefficient table with cluster-robust SEs (from supplied VCOV)

Description

Builds a clean coefficient table for a systemfit model using a **user-supplied covariance matrix** (e.g., two-way clustered from fcip_demand_sys_vcov()). Estimates come from coef(fit), standard errors from diag(vcMat), then Z-scores and two-sided normal p-values are computed. The demand column is inferred from the equation prefix in the coefficient names:

- "gamma_*" to "gamma"
- "theta_*" to "theta" Otherwise the prefix itself is used.

Usage

```
fcip_demand_sys_coeff_table(fit, vcMat, p_digits = 5)
```

Arguments

fit A fitted systemfit object.

vcMat A covariance matrix conformable with coef(fit). Row/column names are used

to align; if missing, positional alignment is assumed.

p_digits Integer; number of digits to keep for p-values (default 5).

Value

A data.frame with columns: demand, coef, Estimate, StdError, Zvalue, Pvalue.

```
fcip_demand_sys_effect
```

Delta-method "total protection response"

Description

Combines equation-specific effects into a single "total" effect for each regressor in c(fields\$endogenous, fields\$included) using car::deltaMethod and a supplied covariance matrix.

Usage

```
fcip_demand_sys_effect(fit, vcMat, fields, data)
```

Arguments

vcMat Covariance matrix conformable with coef(fit) (e.g., from fcip_demand_sys_vcov()).

fields Named list carrying model fields; must include outcome, endogenous, and

included.

data Estimation data used to check variable availability and build delta-method ex-

pressions.

Value

A data.frame with rows demand="total" and columns: demand, coef, Estimate, StdError, Zvalue, Pvalue.

fcip_demand_sys_estimate

System estimator (modular wrapper; preserves original outputs)

Description

Estimates a two-equation system with an endogenous regressor across disaggregation levels. The pipeline is: (1) per-level sample selection (min n per commodity_year), (2) partialling-out / tilda transforms, (3) system estimation (e.g., IV/3SLS via internal helpers), (4) clustered variance estimation, (5) delta-method totals, (6) optional constrained re-estimation of elasticities (lavaan), (7) diagnostics, and (8) row-binding results across levels.

Usage

fcip_demand_sys_estimate(model, data, constrained_elasticities = FALSE)

Arguments

model

List specifying the system; required elements are:

- outcome (character(2)): names of the two outcomes in data.
- endogenous (character(1)): endogenous regressor name.
- included (character): included (exogenous) regressors.
- disag (character(1) or NULL): disaggregation key column in data.
- FE (logical): include fixed effects in the internal run (handled by helpers). Optional elements:
- excluded (character or NULL): excluded instruments.
- partial (character or NULL): variables to partial out (tilda).
- restrict (logical): pass-through to internal restricted estimation.
- name (character(1)): label carried to the output.

data

data.frame/data.table containing all referenced columns in model plus pool and commodity_year. Columns in model\$outcome, model\$endogenous, model\$included, and (if used) model\$excluded and model\$partial must exist in data.

constrained_elasticities

Logical (default FALSE). If TRUE, re-estimate the elasticities via a constrained SEM (lavaan) and, where applicable, replace positive elasticity estimates with constrained ones. See **Constrained elasticities (optional)**.

Details

Inputs and preprocessing

- model\$outcome must be a character vector of length 2 giving the two outcome column names in data. Internally these are mapped to gamma and theta for estimation convenience.
- model\$disag is the name of the disaggregation key. If NULL, a dummy "full_sample" key is created.

12 fcip_demand_sys_fit

- The disaggregation key is coerced to character.
- For each level of model\$disag, the function keeps only levels that have at least 30 observations per commodity_year (computed via doBy::summaryBy). Levels failing this threshold are dropped.

Per-level estimation For each retained level, the function calls internal helpers (fcip_demand_sys_run, etc.) to (i) partially out controls if requested, and (ii) estimate the system with clustered VCOV and delta-method totals. Errors at the level are caught and the level is skipped (no hard stop).

Constrained elasticities (optional) When constrained = TRUE, elasticities on the endogenous regressor are re-estimated per level via a lavaan SEM with sign restrictions (internal helper fcip_demand_elasticities_l using estimator = "MLR", missing = "listwise"). The constrained estimates replace any positive system estimates for the elasticities; a logical flag constrained marks levels where a replacement occurred. The returned columns are reduced to disag, level, demand, constrained, and Estimate.

Returned shape

- If constrained_elasticities = FALSE (default), returns the full per-level system output from fcip_demand_sys_run with additional columns: disag, level, and rounded Zvalue, Pvalue.
- If constrained = TRUE, returns a compact table with disag, level, demand, constrained, Estimate after merging the constrained elasticities.

Value

A data.table aggregating results across all disaggregation levels. The column set depends on constrained (see **Returned shape**).

fcip_demand_sys_fit Build systemfit formulas and estimate the system

Description

Constructs the list of structural equations (g) and instrument sets (h), then runs systemfit() using OLS (when no excluded instruments) or 3SLS-GMM (when excluded instruments are present).

Usage

```
fcip_demand_sys_fit(
  data,
  fields,
  tilda_included,
  tilda_endogenous,
  tilda_excluded
)
```

Arguments

data Estimation data.frame/data.table containing the tilda_* and instr_* variables referenced by the formulas.

fields Named list with at least outcome, included, endogenous, and optionally excluded.

tilda_included Character vector of residualized included regressor names (e.g., "tilda_x1"). tilda_endogenous

Character vector of residualized endogenous regressor names (e.g., "tilda_z1").

tilda_excluded Character vector of instrument names (e.g., "instr_z1"), or NULL when no excluded instruments are used.

Value

A list with elements:

fit Fitted systemfit object.

g List of structural formulas.

h List of instrument formulas.

fcip_demand_sys_partial

Residualize ("partial out") and build tilded / instrument variables

Description

If excluded instruments exist, runs first-stage OLS for each endogenous variable e: e ~ 1 + partial + included + excluded, storing the fitted values as instr_e. If partial is non-empty, it then regresses instr_e ~ 1 + partial and replaces instr_e <- instr_e - fitted(instr_e ~ partial) (i.e., removes the partial component; conceptually $\widehat{instr}_e(partial)$).

Outcomes, included, and endogenous variables are residualized on partial to create tilda_<var> (or copied if partial is empty).

Usage

```
fcip_demand_sys_partial(data, fields, partial_override = NULL)
```

Arguments

data A data. frame/data. table with referenced variables.

 $\label{limit} List\ with:\ outcome,\ endogenous,\ included,\ optional\ excluded,\ optional\ partial.$

partial_override

Optional character vector to override fields\$partial.

Details

Uses defensive checks so absent columns are ignored (with a warning) rather than erroring. If partial is empty, residualization is a no-op and tilda_* simply copy the originals. Formulas are constructed via stats::reformulate() to avoid paste/quoting pitfalls.

Value

List with data, tilda_included, tilda_endogenous, tilda_excluded.

Description

Drops incomplete/invalid rows, removes constant partials, and optionally demeans via a fixed-effects helper.

Usage

fcip_demand_sys_prep(data, fields)

Arguments

data Estimation dataset that already contains all columns referenced by fields.

fields Named list: outcome, endogenous, included, excluded (opt), partial (opt),

FE (logical), disag (column name).

Value

A list: data (prepped), NFE (number of FE), partial (possibly reduced).

Description

Runs the full pipeline: prep -> partial/tilda creation -> systemfit -> two-way clustered VCOV -> delta-method totals -> optional restricted step -> diagnostics; then returns a tidy coefficient table with metadata.

Usage

fcip_demand_sys_run(data, fields)

Arguments

data Estimation dataset

fields Named list carrying model fields (see fcip_demand_estimation()), includ-

ing disag, FE, outcome, endogenous, included, optional excluded, partial,

restrict, and name.

Value

A data.frame with columns demand, coef, Estimate, StdError, Zvalue, Pvalue and meta-columns model, endogenous, FE, name, disag

fcip_demand_sys_tests $System \ diagnostics: \ two-way \ robust \ first-stage \ F \ (+ \ optional \ approx. \ J)$

Description

Produces diagnostics without re-running GMM:

- **FTest**: joint relevance of excluded instruments in each first stage, using the same two-way (pool by crop year) cluster-robust covariance via fcip_demand_sys_vcov() with kind = "lm". Reports the **minimum** F across endogenous regressors.
- **JTest** (optional): an *approximate* over-identification test computed as the sum of per-equation Sargan statistics $J_k \approx n_k R_k^2$ from regressions of equation residuals on that equation's instrument set. This is a quick check (not the system Hansen J).

Usage

```
fcip_demand_sys_tests(g, h, data, fit, NFE, approx_j = FALSE)
```

Arguments

g	List of system equations (the same formulas passed to systemfit).
h	List of instrument formulas (the same formulas passed to systemfit).
data	Estimation data.frame/data.table containing all variables in g/h plus clustering columns pool and crop_yr.
fit	A fitted systemfit object (used for N and residCov_* extraction).
NFE	Integer: number of absorbed fixed effects (for reporting only).
approx_j	Logical, compute the approximate (non-robust) Sargan J as described above. Default FALSE (returns NA for JTest).

Value

A data.frame with rows: N, NFE, residCov_11, residCov_22, residCov_12, JTest, FTest.

fcip_demand_sys_vcov Two-way cluster-robust covariance for FCIP demand models

Description

Computes a Cameron-Gelbach-Miller two-way cluster-robust covariance matrix using inclusion-exclusion: $V = V_{pool} + V_{year} - V_{pool_year}$. Works for both systemfit (stacked system) and lm (first-stage).

Usage

```
fcip_demand_sys_vcov(
  object,
  data,
  kind = c("systemfit", "lm"),
  pool_col = "pool",
  year_col = "commodity_year",
  NFE = 0L,
  n_partial = 0L,
  n_eq = NULL
)
```

Arguments

object	Fitted model: either a systemfit or lm.
data	Estimation data containing pool and year identifiers.
kind	One of c("systemfit", "lm"). If omitted, auto-detected.
pool_col	Name of the pool/cluster id column in data (default "pool").
year_col	Name of the year/time id column in data (default "crop_yr").
NFE	Integer; number of absorbed fixed effects (for df rescaling).
n_partial	Integer; count of variables partialed out per equation.
n_eq	Integer; number of equations (length(object\$eq) for systemfit, 1 for lm). You can override if needed.

Details

Rescaling. Let n be the number of observations (stacked across equations for systemfit). With k_old the number of coefficients and $k_new = k_old + NFE + n_partial * n_eq$, the returned matrix is scaled by $(n - k_old - 1)/(n - k_new - 1)$.

Row alignment (lm). Rows used by 1m are inferred from rownames(model.matrix(object)). If they cannot be mapped back to data, the first nobs(object) rows are used.

Value

Covariance matrix aligned with coef(object).

```
\label{lem:codes_commodity_groupings} fcip\_recodes\_commodity\_groupings
```

Description

A combined dataset for fcip_recodes_commodity_groupings

```
data(fcip_recodes_commodity_groupings)
```

Format

A data frame with 3572 rows and 10 columns covering 1997-2025.

Source

 $USDA\text{-}RMA, Actuarial\ Data\ Master\ -\ A00400\ and\ A00420\ supplemented\ data\ from\ legacy\ ADM\ files$

Description

A combined dataset for fcip_recodes_insurance_plan

Usage

```
data(fcip_recodes_insurance_plan)
```

Format

A data frame with 773 rows and 10 columns covering 1989-2025.

Source

USDA-RMA, Actuarial Data Master - A00460 supplemented data from legacy ADM files

```
fcip_recodes_practice fcip_recodes_practice
```

Description

A combined dataset for fcip_recodes_practice

Usage

```
data(fcip_recodes_practice)
```

Format

A data frame with 28640 rows and 8 columns covering 1997-2025.

Source

USDA-RMA, Actuarial Data Master - A00510 supplemented data from legacy ADM files

```
fcip_recodes_type
fcip_recodes_type
```

Description

A combined dataset for fcip_recodes_type

Usage

```
data(fcip_recodes_type)
```

Format

A data frame with 232730 rows and 7 columns covering 1999-2025.

Source

Generated internally, using harmonize_crop_type_codes()

```
fixed_effect_model_data_prep
```

Prepare and demean data for fixed-effects models

Description

This function

- 1. Filters to complete cases on the specified panel, time, weight, variables, and output
- 2. If output is NULL, creates a dummy output column filled with 1s
- 3. Drops any panel with only one observation
- 4. Computes within-panel means for the output + each variable in varlist (_mean_i)
- 5. Computes overall sample means for the same set of variables (_mean)
- 6. Replaces each variable in varlist by value within_panel_mean + overall_mean

```
fixed_effect_model_data_prep(
  data,
  varlist,
  panel,
  time,
  wvar = NULL,
  output = NULL
```

Arguments

data	A data.frame or data.table containing the data.
varlist	Character vector of variable names to be demeaned.
panel	Character vector of column name(s) defining the panel identifier.
time	Character scalar name of the time variable.
wvar	Character scalar name of a variable to keep but not demean (optional, default NULL).
output	Character scalar name of an output variable whose means are computed but not altered; if NULL, a dummy column named "output" is created (optional, default NULL).

Value

A list with components

- data: a data.table containing
 - the original panel, time, wvar, varlist, and output columns
 - two mean columns for each of c(output, varlist): <name>_mean_i (within-panel) and <name>_mean (overall)
- NFE: the number of panels with more than one observation

```
format_fcip_demand_table
```

Table: Crop Insurance Demand System for US Federal Crop Insurance Pools (2001/22)

Description

Build a two-column, GitHub-safe panel table summarizing a crop insurance demand system. The table is organized into panels for coverage level (Theta), insured acres (Gamma), total protection response, a covariance matrix block, and additional statistics. Coefficients are formatted as estimate (std. error) with significance stars.

Usage

```
format_fcip_demand_table(df, var_labels)
```

Arguments

df A data frame containing the results with columns:

- demand (chr): panel identifier; expected values include "Theta", "Gamma", and "Total".
- coef (chr): raw coefficient/row labels (e.g., "tilda_rate", "residCov_11", "N").
- Estimate (dbl): point estimates.
- StdError (dbl): standard errors (may be NA for scalars).
- Pvalue (dbl): p-values used to add significance stars.

var_labels A named character vector mapping raw names to display labels,

Details

Designed for README/output knitted as github_document; use with knitr::kable(..., format = "pipe") to avoid HTML-only features.

Value

A tibble with two columns, Variables and Estimates, where panel headers have empty Estimates to enable bolding (if rendered in HTML) and coefficients are formatted as "estimate*** (se)".

fsa_crop_linker

Simulator Helper Datasets

Description

A combined dataset for fsa_crop_linker

Usage

```
data(fsa_crop_linker)
```

Format

A data frame with 8594 rows and 8 columns covering Inf-Inf.

Source

Internal innovation

get_yu2018_instrument Formulate & Merge National Subsidy Rate Instrument (Yu et al., 2018)

Description

Downloads the historical Summary of Business RDS and computes national subsidy-rate instruments at specified coverage levels, following Yu et al. (2018).

```
get_yu2018_instrument(
   dt,
   delivery_systems = c("RBUP", "FBUP"),
   plan_codes = c(1:3, 90, 44, 25, 42),
   coverage_levels = c(65, 75)
)
```

global_variables 21

Arguments

```
dt sobcov
delivery_systems
Character vector. Delivery systems to include; default c("RBUP","FBUP").

plan_codes Integer vector. Insurance plan codes to include; default c(1:3, 90, 44, 25, 42).

coverage_levels
Numeric vector. Percent coverage levels to keep; default c(65, 75).
```

Value

A data.table with columns: commodity_year, subsidy_rate_65, subsidy_rate_75.

See Also

Other FCIP instruments: estimate_fcip_instruments()

Description

A combined dataset for global_variables

Usage

```
global_variables
```

Format

A data frame with 8594 rows and 8 columns covering Inf-Inf.

Source

Internal innovation

```
nass\_census\_state\_beginning\_farmer\_and\_rancher\_data \\ nass\_census\_state\_beginning\_farmer\_and\_rancher\_data
```

Description

A combined dataset for nass_census_state_beginning_farmer_and_rancher_data

```
data(nass_census_state_beginning_farmer_and_rancher_data)
```

Format

A data frame with 255 rows and 16 columns covering Inf-Inf.

Source

USDA NASS Quick Stats

Description

A combined dataset for nass_index_for_price_recived

Usage

```
data(nass_index_for_price_recived)
```

Format

A data frame with 35 rows and 3 columns covering 1990-2024.

Source

USDA NASS Quick Stats

Description

A combined dataset for nass_marketing_year_avg_price

Usage

```
data(nass_marketing_year_avg_price)
```

Format

A data frame with 587 rows and 7 columns covering 1868-2022.

Source

USDA NASS Quick Stats

nass_state_rental_rates 23

```
nass_state_rental_rates
```

nass_state_rental_rates

Description

A combined dataset for nass_state_rental_rates

Usage

```
data(nass_state_rental_rates)
```

Format

A data frame with 1792 rows and 5 columns covering 1994-2025.

Source

Output from get_state_rental_rates() function

```
nass\_us\_ag\_price\_index\_monthly \\ nass\_us\_ag\_price\_index\_monthly
```

Description

A combined dataset for nass_us_ag_price_index_monthly

Usage

```
data(nass_us_ag_price_index_monthly)
```

Format

A data frame with 2799 rows and 8 columns covering Inf-Inf.

Source

USDA NASS: https://www.nass.usda.gov/Charts_and_Maps/graphics/data

premium_subsidy_schedule

premium_subsidy_schedule

Description

A combined dataset for premium_subsidy_schedule

Usage

data(premium_subsidy_schedule)

Format

A data frame with 7522 rows and 7 columns covering 2001-2025.

Source

USDA-RMA, Actuarial Data Master supplemented data from legacy ADM files

Index

```
* Estimation Data
                                               fcip_demand_sys_vcov, 15
    fcip_demand_data_dispatcher, 8
                                               fcip_demand_sys_vcov(), 15
* Estimators panel models
                                               \verb|fcip_recodes_commodity_groupings|, 16|
    fixed_effect_model_data_prep, 18
                                               fcip_recodes_insurance_plan, 17
* FCIP instruments
                                               fcip_recodes_practice, 17
    estimate_fcip_instruments, 7
                                               fcip_recodes_type, 18
                                               fixed_effect_model_data_prep, 18
    get_yu2018_instrument, 20
* datasets
                                               format_fcip_demand_table, 19
                                               fsa_crop_linker, 20
    fcip_contiguous_county, 8
    fcip_recodes_commodity_groupings,
                                               get_yu2018_instrument, 7, 20
                                               global_variables, 21
    fcip_recodes_insurance_plan, 17
    fcip_recodes_practice, 17
                                               nass_census_state_beginning_farmer_and_rancher_data,
    fcip_recodes_type, 18
    fsa_crop_linker, 20
                                               nass_index_for_price_recived, 22
    global_variables, 21
    \verb|nass_census_state_beginning_farmer_and_rancher_data|, \\
                                               nass_state_rental_rates, 23
                                               nass_us_ag_price_index_monthly, 23
    nass_index_for_price_recived, 22
    nass_marketing_year_avg_price, 22
                                               premium_subsidy_schedule, 24
    nass_state_rental_rates, 23
    nass_us_ag_price_index_monthly, 23
    premium_subsidy_schedule, 24
adjust_agent_outcomes_by_elasticity, 2
adjust_indemnity_liability_per_acre, 4,
calibrate_fcip_demand_elasticities, 6
estimate_fcip_instruments, 7, 21
fcip_contiguous_county, 8
fcip_demand_data_dispatcher, 8
fcip_demand_elasticities_lavaan, 9
fcip_demand_sys_coeff_table, 10
fcip_demand_sys_effect, 10
fcip_demand_sys_estimate, 11
fcip_demand_sys_estimate(), 6
fcip_demand_sys_fit, 12
fcip_demand_sys_partial, 13
fcip_demand_sys_prep, 14
fcip_demand_sys_run, 14
fcip_demand_sys_tests, 15
```