"Comprehensive Data Analysis and Visualization of the Pokémon Dataset"

A report generated through the analysis of Pokémon data, showcasing key insights and trends across various attributes such as types, stats, and generations, complemented by graphical visualizations created using Python libraries like Matplotlib and Pandas.

In Third Semester By

USN	Name of the Student				
1MS23IS097	Prince Khatri				
1MS23IS091	Prakhar Srivastava				

Under the guidance of Shivananda S

Professor Dept. of ISE, RIT

DEPARTMENT OF INFORMATION SCIENCE & ENGINEERING

RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE AFFILIATED TO VTU)

M. S. RAMAIAH NAGAR, M. S. R. I. T. POST, BANGALORE – 560054 2024-2025

DEPARTMENT OF INFORMATION SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project work entitled "Comprehensive Data Analysis and Visualization of the Pokémon Dataset" is a bonafide work carried out by Prince Khatri and Prakhar Srivastava bearing USN: 1MS23IS097 and 1MS23IS091 submitter report for Project Based Learning in partial fulfillment of requirements of Continuous Internal Evaluation of the course "Numerical Analysis with Python (ISAEC393) of Third Semester B.E. It is certified that all corrections/suggestions indicated for internal assessment has been incorporated in the report. The project has been approved as it satisfies the academic requirements in respect of project work prescribed by the above said course.

Signature of the Guide

Mr. Shivananda S

Professor

Dept. of ISE, RIT

Bangalore 54

Acknowledgement

We would like to take this opportunity to thank everyone who whole heartedly helped us in the project. We are very much thankful to our principal Dr. N V R Naidu for providing us the facilities to carry out our project work. We are grateful to our Head of Department, Dr. Anita Kanavalli, Professor and Head, Department of Information Science Engineering for providing us with this opportunity. We also wish to express our gratitude to our mini-project guide, Mr. Shivananda S, Professor, ISE, who was abundantly helpful and offered invaluable assistance, exemplary guidance and constant encouragement. We would also like to thank all teaching and non-teaching staff of our department for their kind cooperation in the successful completion of this project.

Contents

Introduction	5
Objectives	5
Dataset Overview	7
Step-by-step Analysis	8
Loading the Dataset	8
Data Cleaning	8
Explanatory Data Analysis	9
Legendary vs Non-Legendary Comparison	12
Generation Trends	16
Top Performers	17
Type Effectiveness	18
Conclusion	20

Introduction

The Pokémon dataset provides detailed information on 800 unique Pokémon, including their attributes, elemental types, base stats, generation, and legendary status. This comprehensive dataset serves as an excellent foundation for exploring various trends and patterns within the Pokémon universe.

Objectives

The primary goal of this project is to perform an in-depth analysis of the dataset to uncover meaningful trends, correlations, and insights. By leveraging statistical methods and data visualization techniques, the analysis will focus on exploring relationships between key attributes, such as the impact of type combinations on stats, the distribution of stats across generations, and the distinguishing features of legendary Pokémon.

The report will include:

1. Data Exploration and Cleaning:

- An initial overview of the dataset to understand its structure and identify missing or inconsistent data.
- o Cleaning and preprocessing steps to ensure the data is ready for analysis.

2. Descriptive Analysis:

- Summary statistics to understand the central tendencies and variability of key attributes like HP, Attack, Defense, and Speed.
- Distribution analysis of Pokémon types and generations.

3. Visualization of Insights:

- Graphical representations using Python libraries like Matplotlib and Seaborn to visualize trends, such as:
 - The frequency distribution of Pokémon types and their combinations.

- The evolution of stats across generations.
- Comparison of base stats between legendary and non-legendary Pokémon.
- Heatmaps and scatter plots to explore correlations between attributes.

4. Advanced Analysis:

- o Identifying outliers or unique Pokémon based on their stats.
- o Examining the role of dual types in boosting performance.
- Clustering Pokémon based on their attributes for deeper insights.

5. Reproducibility:

- A detailed step-by-step guide for replicating the analysis, including Python commands and explanations of the logic behind each step.
- Use of libraries such as Pandas for data manipulation, Matplotlib and Seaborn for visualization, and NumPy for statistical operations.

This project not only aims to uncover fascinating insights about Pokémon but also serves as a learning resource for data analysis enthusiasts. By following this report, readers will gain a deeper understanding of the Pokémon dataset and practical experience in using Python for data analysis and visualization.

Dataset Overview

The dataset includes the following fields:

- **ID**: A unique identifier assigned to each Pokémon.
- Name: The name of the Pokémon.
- Type 1: The primary elemental type of the Pokémon (e.g., Fire, Water, Grass).
- Type 2: The secondary elemental type of the Pokémon, if applicable.
- **HP**: Health Points, representing the Pokémon's ability to endure damage.
- Attack: The Pokémon's physical attack strength.
- **Defense**: The Pokémon's physical defense strength.
- **Sp. Atk**: Special attack strength, used for non-physical moves.
- Sp. Def: Special defense strength, used to resist non-physical moves.
- **Speed**: The Pokémon's speed, determining the order of moves in battle.
- **Generation**: The Pokémon's debut generation in the series.
- Legendary: A Boolean field indicating whether the Pokémon is classified as legendary.

This structured dataset provides comprehensive information for analysis and visualization of Pokémon attributes, allowing for in-depth insights into their characteristics and performance.

Step-by-step Analysis

Loading the Dataset

```
import pandas as pd

# Load dataset
data = pd.read_csv('NAP/pokemon_data.csv')

# Display the first 5 rows
data.head()
```

	#	Name	Type 1	Type 2	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation	Legendary
0	1	Bulbasaur	Grass	Poison	45	49	49	65	65	45	1	False
1	2	lvysaur	Grass	Poison	60	62	63	80	80	60	1	False
2	3	Venusaur	Grass	Poison	80	82	83	100	100	80	1	False
3	3	VenusaurMega Venusaur	Grass	Poison	80	100	123	122	120	80	1	False
4	4	Charmander	Fire	NaN	39	52	43	60	50	65	1	False

Data Cleaning

```
# Check for missing values
data.isnull().sum()

# Fill missing Type 2 with 'None'
data['Type 2'] = data['Type 2'].fillna('None')

# Verify cleaning
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 800 entries, 0 to 799
Data columns (total 12 columns):
## Column Non-Null Count Diving
```

#	Column	Non-Null Count	Dtype
0	#	800 non-null	int64
1	Name	800 non-null	object
2	Type 1	800 non-null	object
3	Type 2	800 non-null	object
4	HP	800 non-null	int64

```
5
    Attack
               800 non-null
                               int64
6
    Defense
             800 non-null
                              int64
    Sp. Atk 800 non-null
7
                              int64
    Sp. Def
8
               800 non-null
                              int64
    Speed
               800 non-null
                              int64
10 Generation 800 non-null
                              int64
11 Legendary 800 non-null
                              bool
dtypes: bool(1), int64(8), object(3)
memory usage: 69.7+ KB
```

Explanatory Data Analysis

A. Distribution of Pokémon Types

To visualize the frequency of primary and secondary types of Pokémon.

```
import matplotlib.pyplot as plt
import seaborn as sns

# Countplot for Type 1
plt.figure(figsize=(12, 6))
sns.countplot(y='Type 1', data=data, order=data['Type 1'].value_counts().index,
palette='viridis')
plt.title('Distribution of Primary Types')
plt.show()

# Countplot for Type 2
plt.figure(figsize=(12, 6))
sns.countplot(y='Type 2', data=data, order=data['Type 2'].value_counts().index,
palette='plasma')
plt.title('Distribution of Secondary Types')
plt.show()
```


B. Statistical Summary

```
# Summary statistics
data.describe()
```

	#	НР	Attack	Defense	Sp. Atk	Sp. Def	Speed	Generation
count	800.000000	800.000000	800.000000	800.000000	800.000000	800.00000	800.000000	800.00000
mean	362.813750	69.258750	79.001250	73.842500	72.820000	71.902500	68.277500	3.32375
std	208.343798	25.534669	32.457366	31.183501	32.722294	27.828916	29.060474	1.66129
min	1.000000	1.000000	5.000000	5.000000	10.000000	20.000000	5.000000	1.00000
25%	184.750000	50.000000	55.000000	50.000000	49.750000	50.000000	45.000000	2.00000
50%	364.500000	65.000000	75.000000	70.000000	65.000000	70.000000	65.000000	3.00000
75%	539.250000	80.000000	100.000000	90.000000	95.000000	90.000000	90.000000	5.00000
max	721.000000	255.000000	190.000000	230.000000	194.000000	230.000000	180.000000	6.00000

C. Correlation Heatmaps

To identify correlation between stats.

<u>Legendary vs Non-Legendary Comparison</u>

Analyze differences in stats between Legendary and non-Legendary Pokémon.

```
# Boxplot for stats comparison
plt.figure(figsize=(12, 6))
for stat in ['HP', 'Attack', 'Defense', 'Sp. Atk', 'Sp. Def', 'Speed']:
    sns.boxplot(x='Legendary', y=stat, data=data, palette='Set2')
    plt.title(f'{stat} Distribution by Legendary Status')
    plt.show()
```


Legendary

False

True

Generation Trends

To visualize how stats and counts vary across generations:

```
# Average stats by generation
stats_by_gen = data.groupby('Generation')[['HP', 'Attack', 'Defense', 'Sp. Atk',
'Sp. Def', 'Speed']].mean()
stats_by_gen.plot(kind='bar', figsize=(10, 6), colormap='rainbow')
plt.title('Average Stats by Generation')
plt.ylabel('Average Value')
plt.show()

# Count of Pokémon by generation
sns.countplot(x='Generation', data=data, palette='muted')
plt.title('Count of Pokémon by Generation')
plt.show()
```


Top Performers

To identify the top 10 Pokémon from the analyzed data.

```
#
                        Name
                                Type 1
                                          Type 2
                                                  Total
163
         MewtwoMega Mewtwo X
                              Psychic Fighting
                                                    780
164
         MewtwoMega Mewtwo Y
                              Psychic
                                                    780
                                             NaN
426
       RayquazaMega Rayquaza
                               Dragon
                                          Flying
                                                    780
422
         KyogrePrimal Kyogre
                                Water
                                             NaN
                                                    770
424
       GroudonPrimal Groudon
                               Ground
                                            Fire
                                                    770
552
                               Normal
                                             NaN
                                                    720
                      Arceus
268
    TyranitarMega Tyranitar
                                 Rock
                                            Dark
                                                    700
409
     SalamenceMega Salamence
                               Dragon
                                          Flying
                                                    700
413
    MetagrossMega Metagross
                               Steel
                                         Psychic
                                                    700
418
           LatiasMega Latias
                                         Psychic
                                                    700
                               Dragon
```

Type Effectiveness

```
# Average stats by Type 1
avg_stats_by_type = data.groupby('Type 1')[['HP', 'Attack', 'Defense', 'Sp. Atk',
'Sp. Def', 'Speed']].mean()
print(avg_stats_by_type)

# Visualize
avg_stats_by_type.plot(kind='bar', figsize=(14, 8), colormap='viridis')
plt.title('Average Stats by Type 1')
plt.ylabel('Average Value')
plt.show()
```

			5 6			I
	HP	Attack	Defense	Sp. Atk	Sp. Def	Speed
Type 1						
Bug	56.884058	70.971014	70.724638	53.869565	64.797101	61.681159
Dark	66.806452	88.387097	70.225806	74.645161	69.516129	76.161290
Dragon	83.312500	112.125000	86.375000	96.843750	88.843750	83.031250
Electric	59.795455	69.090909	66.295455	90.022727	73.704545	84.500000
Fairy	74.117647	61.529412	65.705882	78.529412	84.705882	48.588235
Fighting	69.851852	96.777778	65.925926	53.111111	64.703704	66.074074
Fire	69.903846	84.769231	67.769231	88.980769	72.211538	74.442308
Flying	70.750000	78.750000	66.250000	94.250000	72.500000	102.500000
Ghost	64.437500	73.781250	81.187500	79.343750	76.468750	64.343750
Grass	67.271429	73.214286	70.800000	77.500000	70.428571	61.928571
Ground	73.781250	95.750000	84.843750	56.468750	62.750000	63.906250
Ice	72.000000	72.750000	71.416667	77.541667	76.291667	63.458333
Normal	77.275510	73.469388	59.846939	55.816327	63.724490	71.551020
Poison	67.250000	74.678571	68.821429	60.428571	64.392857	63.571429
Psychic	70.631579	71.456140	67.684211	98.403509	86.280702	81.491228
Rock	65.363636	92.863636	100.795455	63.340909	75.477273	55.909091
Steel	65.222222	92.703704	126.370370	67.518519	80.629630	55.259259
Water	72.062500	74.151786	72.946429	74.812500	70.517857	65.964286

Conclusion

This project demonstrates the power of data analysis and visualization in uncovering meaningful insights from the Pokémon dataset. By systematically cleaning the data, visualizing distributions, and exploring correlations, we gained a deeper understanding of the relationships between Pokémon attributes, types, and generations. The analysis also highlighted the unique characteristics of Legendary Pokémon and identified trends that distinguish top-performing Pokémon.

These findings not only enhance our understanding of Pokémon characteristics but also serve as a foundation for further exploration. The reproducible Python commands included in this project provide an accessible framework for extending the analysis, allowing others to customize and build upon these insights.

Overall, this project showcases the potential of data-driven approaches to analyze structured datasets, offering valuable insights and practical experience in leveraging Python for data analysis and visualization.

References

Dataset

• Pokémon Dataset: https://gist.github.com/armgilles/194bcff35001e7eb53a2a8b441e8b2c6

Credits: https://github.com/armgilles

Libraries and Dependencies

- 1. Pandas:
 - o Official Documentation: https://pandas.pydata.org/
- 2. NumPy:
 - o Official Documentation: https://numpy.org/
- 3. Matplotlib:
 - o Official Documentation: https://matplotlib.org/
- 4. Seaborn:
 - o Official Documentation: https://seaborn.pydata.org/