Optimization in Machine Learning

Univariate optimization Golden ratio

Learning goals

- Simple nesting procedure
- Golden ratio

UNIVARIATE OPTIMIZATION

Let $f : \mathbb{R} \to \mathbb{R}$.

Goal: Iteratively improve eval points. Assume function is unimodal. Will not rely on gradients, so this also works for black-box problems.

Let $f: \mathbb{R} \to \mathbb{R}$.

Always maintain three points: left, right, and current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

Propose random point in interval.

× × ×

NB: Later we will define the optimal choice for a new proposal.

Let $f: \mathbb{R} \to \mathbb{R}$.

Compare proposal against current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

If it is better: proposal becomes current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

New search interval: around current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

Propose a random point.

Let $f: \mathbb{R} \to \mathbb{R}$.

Compare proposal against current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

If it is better: proposal becomes current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

New search interval: around current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

Propose a random point.

Let $f: \mathbb{R} \to \mathbb{R}$.

Compare proposal against current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

If it is better: proposal becomes current best.

Let $f: \mathbb{R} \to \mathbb{R}$.

New search interval: around current best.

- Initialization: Search interval $(x^{\text{left}}, x^{\text{right}}), x^{\text{left}} < x^{\text{right}}$
- Choose x^{best} randomly.
- For t = 0, 1, 2, ...
 - Choose x^{new} randomly in $[x^{\text{left}}, x^{\text{right}}]$
 - If $f(x^{\text{new}}) < f(x^{\text{best}})$:
 - $x^{\text{best}} \leftarrow x^{\text{new}}$
 - New interval: Points around x^{best}

Key question: How can x^{new} be chosen better than randomly?

• Insight 1: Always in bigger subinterval to maximize reduction.

• **Insight 2:** x^{new} symmetrically to x^{best} for uniform reduction.

Consider two hypothetical outcomes x^{new} : $f_{\text{new},a}$ and $f_{\text{new},b}$.

If $f_{new,a}$ is the outcome, x_{best} stays best and we search around x_{best} :

If $f_{new,b}$ is outcome, x_{new} becomes best point and search around x_{new} :

 \mathbf{X}_{best}

 X_{new}

 \mathbf{X}_{right}

 \mathbf{X}_{left}

For uniform reduction, require the two potential intervals equal sized:

$$b := x_{right} - x_{best} = x_{new} - x_{left}$$

One iteration ahead: require again the intervals to be of same size.

$$c := x_{best} - x_{left} = x_{right} - x_{new}$$

To summarize, we require:

$$a = x^{right} - x^{left},$$

 $b = x_{right} - x_{best} = x_{new} - x_{left}$
 $c = x_{best} - x_{left} = x_{right} - x_{new}$

- We require the same percentage improvement in each iteration
- For φ reduction factor of interval sizes (a to b, and b to c)

$$\varphi := \frac{b}{a} = \frac{c}{b}$$
$$\varphi^2 = \frac{b}{a} \cdot \frac{c}{b} = \frac{c}{a}$$

$$\frac{a}{a} = \frac{b}{a} + \frac{c}{a}$$

$$1 = \varphi + \varphi^{2}$$

$$0 = \varphi^{2} + \varphi - 1$$

• Unique positive solution is $\varphi = \frac{\sqrt{5}-1}{2} \approx 0.618$.

- With x^{new} we always go φ percentage points into the interval.
- Given x^{left} and x^{right} it follows

$$x^{best} = x^{right} - \varphi(x^{right} - x^{left})$$

= $x^{left} + (1 - \varphi)(x^{right} - x^{left})$

and due to symmetry

$$x^{new} = x^{left} + \varphi(x^{right} - x^{left})$$

= $x^{right} - (1 - \varphi)(x^{right} - x^{left}).$

Termination criterion:

 A reasonable choice is the absolute error, i.e. the width of the last interval:

$$|x^{best} - x^{new}| < \tau$$

• In practice, more complicated termination criteria are usually applied, for example in *Numerical Recipes in C, 2017*

$$|x^{right} - x^{left}| \le \tau(|x^{best}| + |x^{new}|)$$

is proposed as a termination criterion.

Optimization in Machine Learning

Univariate optimization Brent's method

Learning goals

- Quadratic interpolation
- Brent's procedure

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x^{best} . Right: New interval.

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x^{best} . Right: New interval.

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x^{best} . Right: New interval.

Similar to golden ratio procedure but select x^{new} differently: x^{new} as minimum of a parabola fitted through

Left: Fit parabola (dashed) and propose minimum (red) as new point. Middle: Switch / not switch with x^{best} . Right: New interval.

QUADRATIC INTERPOLATION COMMENTS

- Quadratic interpolation **not robust**. The following may happen:
 - Algorithm suggests the same x^{new} in each step,
 - x^{new} outside of search interval,
 - Parabola degenerates to line and no real minimum exists
- Algorithm must then abort, finding a global minimum is not guaranteed.

BRENT'S METHOD

- Brent proposed an algorithm (1973) that alternates between golden ratio search and quadratic interpolation as follows:
 - Quadratic interpolation step acceptable if: (i) x^{new} falls within [x^{left}, x^{right}] (ii) x^{new} sufficiently far away from x^{best} (Heuristic: Less than half of movement of step before last)
 - Otherwise: Proposal via golden ratio
- Benefit: Fast convergence (quadratic interpolation), unstable steps (e.g. parabola degenerated) stabilized by golden ratio search
- Convergence guaranteed if the function *f* has a local minimum
- Used in R-function optimize()

EXAMPLE: MLE POISSON

- Poisson density: $f(k \mid \lambda) := \mathbb{P}(x = k) = \frac{\lambda^{k} \cdot \exp(-\lambda)}{k!}$
- Negative log-likelihood for *n* observations:

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right) = -\sum_{i=1}^{n} \log f\left(x^{(i)} \mid \lambda\right)$$

$$-\ell(\lambda,\mathcal{D}) = -\log \prod_{i=1}^{n} f\left(x^{(i)} \mid \lambda\right)$$

GR and Brent converge to minimum at $x^* \approx 1$.

But: GR needs \approx 45 it., Brent only needs \approx 15 it. for same tolerance.

