Segundo Entrenamiento de Teoría de Números Jesús Liceaga

jose.liceaga@cimat.mx 4 de septiembre de 2021

1. Congruencias

Definición. Sean a, b enteros y m un entero positivo. Decimos que "a es congruente a b módulo m", lo cual se escribe como $a \equiv b \mod m$, si m|b-a.

Proposición. La operación módulo cumple las siguientes propiedades.

- $a \equiv a \mod m$.
- Si $a \equiv b \mod m$, entonces $b \equiv a \mod m$.
- Si $a \equiv b \mod m$ y $b \equiv c \mod m$, entonces $a \equiv c \mod m$.
- Si $a \equiv b \mod m$ y $c \equiv d \mod m$, entonces $a + c \equiv b + d \mod m$.
- Si $a \equiv b \mod m$ y $c \equiv d \mod m$, entonces $ac \equiv bd \mod m$.
- Si $a \equiv b \mod m$, entonces $a^k \equiv b^k \mod m$ para todo entero positivo k.
- Si $an \equiv bn \mod m$ y MCD(n, m) = 1, entonces $a \equiv b \mod m$.

Importante: En el último punto, si $n \ y \ m$ no son primos relativos la congruencia no necesariamente se da: por ejemplo, 6 es congruente a 14 módulo 8 pero 3 no es congruente a 7 módulo 8.

Ejemplo. Encuentra todos los enteros positivos n para los cuales $3|n^2+1$.

2. Problemas: Parte 1

- 1. Demuestra los criterios de divisibilidad del 2, 3, 4, 5, 8, 9 y 11.
- 2. Para n entero positivo, encuentra el criterio de divisibilidad de 2^n y demuéstralo.
- 4. ¿Cuál es el último dígito de 7^{2021} ?
- 5. Demuestra que $7|2222^{5555} + 5555^{2222}$.
- 6. Demuestra que, para todo entero positivo n, $3|n^3 + 2n$.
- 7. Demuestra que, para todo entero positivo n, $5|n^5+4n$.
- 8. Prueba que $a + b|a^n + b^n$ para n par.
- 9. Demuestra que la diferencia de 2 cubos consecutivos no puede ser divisible entre 3.
- 10. Encuentra todos los enteros positivos n tales que $9|n^3+2$.
- 11. Prueba que si p es un primo mayor a 3, entonces $24|p^2-1$.

- 12. Prueba que para todo entero positivo n, $3804|(n^3 n)(5^{8n+4} + 3^{4n+2})$.
- 13. Sean a, b, c tres números enteros. Demuestra que si $9|a^3 + b^3 + c^3$ entonces 3|abc.
- 14. Encuentra todas las parejas de enteros positivos (a, b) tales que $a^4 + 1$ y $b^2 + 1$ no son divisibles entre 39 pero $(a^4 + 1)(b^2 + 1)$ sí lo es.
- 15. Prueba que $2021|1^{2021} + 2^{2021} + 3^{2021} + \cdots + 2020^{2021} + 2021^{2021}$.
- 16. Prueba que el siguiente criterio funciona para ver si un número es divisible entre 7: toma el número prescindiendo de las cifras de las unidades y se le resta el doble de dicha cifra. Se repite el proceso hasta llegar a un número de dos cifras. Si dicho número es múltiplo de 7, el original también lo es y solo en este caso.
- 17. Sean a, b, c enteros positivos tales que $a^2 + b^2 = c^2$. Prueba que 30|abc.
- 18. Prueba que $11|3^{2n+2} + 2^{6n+1}$.

3. El Pequeño Teorema de Fermat

Teorema. Sea a un entero y p un primo. Entonces

$$a^p \equiv a \mod p$$
.

En particular, si p no divide a a, entonces $a^{p-1} \equiv 1 \mod p$.

4. Problemas: Parte 2

- 1. Encuentra $3^{31} \mod 7$.
- 2. Prueba que $11|5^{2011} 5$.
- 3. Sea p un primo mayor a 5. Muestra que $p^8 \equiv 1 \mod 240$.
- 4. Demuestra el Pequeño Teorema de Fermat siguiendo el siguiente argumento.
 - Muestra que si k es un entero tal que 0 < k < p, entonces $\binom{p}{k}$ es divisible entre p.
 - Muestra que si a es entero, entonces $(a+1)^p \equiv a^p + 1 \mod p$.
 - Muestra que si a es entero, entonces $a^p \equiv a \mod p$.
- 5. Encuentra todos los primos p tales que $p|2^p + 1$.
- 6. Si un googolplex es $10^{10^{100}}$, qué día de la semana será dentro de un googolplex de días?
- 7. Demuestra que $728|a^{27} a^3$.
- 8. Encuentra todos los enteros positivos n tales que $2^{2^{n}+1}+2$ es divisible entre 17.