CS4417 / CS9647 / CS 9117 Unstructured Data

Course Content

- Analysis and Discovery (approx. ½)
 - Representing text and documents
 - Analyzing and discovering structure
- Systems and Applications (other ½)
 - Systems for large-scale unstructured data storage and processing
 - Contemporary software and applications

Tentative Topics

- Structure in Unstructured Data
- Text preprocessing and representation
- Document representation and retrieval
- Corpus structure
- Language structure

- Neural net language models, GPT
- Distributed programming models,
 MapReduce
- Systems and applications of distributed models
- Hadoop
- NoSQL, MongoDB

Logistics

- Lectures in NCB-113
 Tuesday 3:30pm to 4:20pm
- Lectures in SEB-1200
 Thursday 2:30pm to 4:20pm
- Instructor: Dr. Arshin Rezazadeh
- TAs: Chris Steward, Caro Strickland, Maxwell Yin
- Guest Lectures offered by Profs. from the CS Dept.

Communication

- Using only OWL for electronic communication
- OWL forums for questions and discussions
 - Can post anonymously if you want instructor and TAs only can see poster's name
- OWL messaging to contact the instructional team directly
 - "Instructor" Arshin
 - "Secondary Instructor" Chris, Caro and Maxwell
- OWL will be monitored Monday Friday, 9am to 5pm
- Check the forums first

Preparation

 I may post required readings and/or videos ahead of class.

 I will give at least one week's lead time; will send an OWL announcement.

 You are responsible for the assigned content, and it might be asked on the midterm/exam.

Evaluation

- 3 Assignments
 - 45% for undergrads, 35% for graduate students
- Midterm (Focus on first half; location TBA)
 - **20%**
- Final (Focus on second half, but cumulative)
 - **25%**
- Class participation (iClicker)
 - **10%**
- Graduates only: Technical Topic Report
 - **10%**

Technical Topic Report

- CS9647 and CS9117 Only
 - Individual, 2 Page report on a technology not covered in the course
 - Check OWL assignment for full specification
- Introduction
 - Overview of what the technology is and how it is applied
- Capabilities and Mechanisms
 - Describe what the technology can do and the techniques it uses
- Related Methods
 - Give a history of the development of the technology, and identify related technologies and competitors
- Opportunities
 - Speculate on how this technology could either evolve into new technologies or be applied in new ways in the future.

Questions?

About topics?

About logistics?

About evaluation?

What is *Structured* Data?

- For this course, we are considering "structured" data to be things like
 - Relational databases
 - (Good) excel spreadsheets
 - (Closed-ended) survey data

What is Unstructured Data?

- Working definition: Unstructured data (or unstructured information) is information that does not have a pre-defined <u>data model</u> or is *not organized in a pre-defined manner*.
- Data may have *latent, implicit,* or *unknown* structure; natural language has *lots* of structure, but it does not have a complete formal description

Tasks Using Unstructured Data

- Information retrieval
 - Find documents relevant to a query
- Labeling
 - Spam/not spam
 - Sentiment analysis
 - Semantic association, annotating unstructured data with new information
- Structure-finding
 - Discover common topics
 - Discover networks of collaborators

Data Representations

- Often, a collection of data can be divided into 'elements'
 - In statistics, sometimes called 'units of analysis'
 - E.g., html page, photo, invoice, social media post
- Representations allow us to relate elements of unstructured data to each other.
- We will take a detailed look at how language is represented, and identify parallels to representing other kinds of data.

Example: Text Representations

- Bytes
- Characters
- Words
- Sentences

Documents

- We can structure these by tokenization, tagging (part of speech, emotional valence), others.
- Vector representations (traditional and machine-learning derived)

Image Representations

- Bytes
- Pixels

Images

- "Word analogs" like SIFT, SURFs. Invariant(ish) with respect to viewpoint.
- Compression/transformation-based representations
 - Unsupervised: PCA, manifold learning, autoencoders
 - Supervised: Classification, regression

Unstructured Data are often BIG

- Volume (size)
- Variety (representation)
- Velocity (stored vs. streaming)
- Veracity
 - Accuracy and precision
 - Errors, completeness, and integrity
- Validity
 - Data governance and management

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

[161 BILLION GIGABYTES]

Variety

DIFFERENT FORMS OF DATA

420 MILLION WEARABLE, WIRELESS HEALTH MONITORS

4 BILLION+ HOURS OF VIDEO

are watched on YouTube each month

400 MILLION TWEETS

are sent per day by about 200 million monthly active users

30 BILLION PIECES OF CONTENT

are shared on Facebook every month

Big Data Challenges

Storage

Computation

Both of these must be distributed.

Big Data Solutions

- Storage
 - E.g., Hadoop Distributed File System, relies on replication, sharding

- Computation
 - E.g., MapReduce programming model,
 implemented by e.g., MongoDB, Hadoop, ...

Big Data Analytics

- Big data analytics platforms package up solutions to storage and computation challenges
- Can be hosted locally, or deployed to a cloud platform
- Cloud is increasingly common We can watch the world grind to a halt when AWS goes down.
 - (Ofc the "cloud" is just somebody else's computer(s).)

Big Data Landscape Infrastructure Applications Analytics Ad Optimization **Hadoop Related** NoSQL / NewSQL Analytics Solutions \ **Data Visualization OPERA** m6d DataXu Databases ()uid visual ly cloudera HADAPT Hortonworks infochimps Q Palantir TURN rocketfuel 10gen Datameer across centrifuge LIBARStoru birst MAPR DRAWNOSCALE Publisher KARMASPHERE Marketing metaLayer SS% platfora dataspora Yieldex !! bloomreach MPP Databases Crowdsourcing a yieldbot, \ 😭 CLICKFOX. Social Media Services ZERTIC/ Dataminr LexisNexis^{*} **Industry Applications HPCC Systems** kognitio KNEWTON cash Wongal Acunu PAR ACCEL mechanicalturk NEXT Bloomberg Mile Sense GREENPLUM Stormpath sound numberFire ERADATA ASTER Location / People / Events @ IVIPERVA IT Analytics Cleversafe Fliptop RapLeaf splunk> **Data Sources** Recorded Future sumologici codefortytwo Data Marketplaces V Data Sources Place IC RADIUS DATADOG DATAGUISE nimblestorage factual. premise кпоета Crowdsourced SMB Analytics Monitoring DataMarket SUMAII **© CONTINULITY** Windows Azure impetus! StackIQ NETEZZA infochimps **RJMetrics** Personal Data Withings Runkeeper W BASIS Cross Infrastructure / Analytics JAWBONE Google Microsoft VMWare TITLE ORACLE **Open Source Projects** Coordination / Machine nedolo Packages Learning Workflow

© Matt Turck (@mattturck) and ShivonZilis (@shivonz)

Big Data Platforms - Features

- Databases for unstructured data e.g., MongoDB
- Services that provide machine learning
- Systems that provide storage for massive amounts of data, lots of processing power, and programming support for running multiple tasks
- Data integration from multiple sources
- Tools for specific types of analytics, e.g., customer profiles

Adapting to Big and Unstructured Data

- Enterprises are looking to a new generation of databases referred to as NoSQL
- Document-centric
- Flexible schema
- Often, no traditional relations (one-to-one, one-to-many, many-to-many; more like none-to-none)

Summary

- Unstructured data lacks a priori structure spec
- Key challenges
 - Representation
 - How do we represent unstructured data to accomplish the tasks we need to?
 - Storage and computation
 - How do we support the development and use of representations on big datasets?

