Игры с природой (без противодействия)

Выбор стратегии игроком *В* («природа») <u>случайным</u> <u>образом</u> (нецеленаправленно);

 $A=(a_1,a_2,...,a_m)$ - множество стратегий игрока A («лицо, принимающее решение» - ЛПР); $B=(b_1,b_2,...,b_n)$ - множество состояний природы; $C=(c_{ij}), \quad (i=\overline{1,m}, \quad j=\overline{1,n})$ – матрица стратегий.

Задача: свести матрицу выигрышей C к одному столбцу $\tilde{C} = (\tilde{c}_i)$ с помощью «оценочной функции» Ψ

$$\tilde{c}_i = \Psi_i(c_{11}, c_{12}, ..., c_{mn})$$

или, чаще всего,

$$\tilde{c}_i = \Psi(c_{i1}, c_{i2}, ..., c_{in}).$$

Пример:

$$\tilde{c}_i = \frac{1}{2} \left(\min_{j \in B} c_{ij} + \max_{j \in B} c_{ij} \right)$$

Оптимальная стратегия:

$$i^* = \arg \max_{i \in A} \tilde{c}_i$$

Критерии принятия решения в условиях неопределенности

- Байеса-Лапласа (матожидание)
- Бернулли (принцип недостаточного основания)
- Вальда (пессимистический, осторожный, max-min)
- максимума (оптимистический, авантюрный, max-max)
- Гурвица (смешанный)
- Сэвиджа (рисковый)

Критерий Байеса-Лапласа

Каждому состоянию природы b_{j} соответствует априорная вероятность наступления p_{j} ;

$$\sum_{j\in B} p_j = 1.$$

Оценочная функция – матожидание выигрыша:

$$\tilde{c}_i = \sum_{i \in B} p_i c_{ij} \to \max_{i \in A}$$

Пример 1 (задача о контролере)

$$C: \begin{pmatrix} -50 & -50 \\ -1000 & 0 \end{pmatrix}$$

 a_1 - купить билет; a_2 - не покупать билет; b_1 - контролер заходит (вероятность $p_1=p$); b_2 - контролер не заходит (вероятность $p_2=1-p$). Оценочная функция:

$$\tilde{c}_1 = -50p + (-50) \cdot (1-p) = -50,$$

 $\tilde{c}_2 = -1000p + 0 \cdot (1-p) = -1000p$

Решение: покупать билет, если p > 0.05

Критерий Бернулли (недостаточного основания)

В отсутствие априорных данных о вероятности наступления состояния природы b_{j} считать их все равновероятными:

$$\forall j \in B: \quad p_j = \frac{1}{n} = \text{const}$$

Оценочная функция:

$$\tilde{c}_i = \frac{1}{n} \sum_{j \in B} c_{ij} \to \max_{i \in A} \quad unu \quad \tilde{c}_i = \sum_{j \in B} c_{ij} \to \max_{i \in A}$$

Пример 1 (задача о контролере)

$$C: \begin{pmatrix} -50 & -50 \\ -1000 & 0 \end{pmatrix}$$

 $b_{\!\scriptscriptstyle 1}$ - контролер заходит (вероятность $p_{\!\scriptscriptstyle 1}=0.5$); $b_{\!\scriptscriptstyle 2}$ - контролер не заходит (вероятность $p_{\!\scriptscriptstyle 2}=0.5$). Оценочная функция:

$$\tilde{c}_1 = -50 \cdot \frac{1}{2} + (-50) \cdot \frac{1}{2} = -50,$$

$$\tilde{c}_2 = -1000 \cdot \frac{1}{2} + 0 \cdot \frac{1}{2} = -500$$

Решение: всегда покупать билет.

Критерий Вальда *(гипотеза антагонизма)*

минимизация вероятности (риска) проигрыша или гарантированная минимальная прибыль:

$$\max_{i \in A} \min_{j \in B} c_{ij}$$

т.е. нижняя цена игры.

Критерий максимума (оптимистический)

Максимизация возможного выигрыша:

$$\max_{i \in A} \max_{j \in B} c_{ij}$$

Критерий Гурвица (эвристический) (промежуточный между Вальда и максимума)

$$\max_{i \in A} \left(\alpha \min_{j \in B} c_{ij} + (1 - \alpha) \max_{j \in B} c_{ij} \right)$$

$$\alpha \in [0, 1] - eec$$

Критерий Сэвиджа (анализ рисков)

Матрица рисков (риски – недополученная прибыль при неоптимальной стратегии для каждого текущего состояния природы):

$$R = (r_{ij}), \quad r_{ij} = \max_{k \in A} c_{kj} - c_{ij}$$

Свойство: в каждом столбце R хотя бы один «0». Оптимальная стратегия (min-max omh. puckob):

$$\min_{i \in A} \max_{j \in B} r_{ij} = \min_{i \in A} \max_{j \in B} \left(\max_{k \in A} c_{kj} - c_{ij} \right)$$

Пример 1 (задача о контролере)

$$C: \begin{pmatrix} -50 & -50 \\ -1000 & 0 \end{pmatrix}$$

 $a_{\scriptscriptstyle 1}$ - купить билет;

 a_2 - не покупать билет;

 $b_{\scriptscriptstyle 1}$ - контролер заходит;

 b_2 - контролер не заходит.

Матрица рисков:

$$R: \begin{pmatrix} 0 & 50 \\ 950 & 0 \end{pmatrix}$$

Оптимальная стратегия: a_1

Пример 2

Стратегии	<i>b</i> ₁	<i>b</i> ₂	<i>b</i> ₃	<i>b</i> ₄	<i>b</i> ₅
a ₁	5	8	7	5	4
a ₂	1	10	5	5	6
a ₃	2	4	3	6	2
a ₄	3	5	4	12	3
max	5	10	7	12	6

Матрица рисков

Стратегии	<i>b</i> ₁	<i>b</i> ₂	b ₃	<i>b</i> ₄	<i>b</i> ₅
a ₁	0	2	0	7	2
a ₂	4	0	2	7	0
a ₃	3	6	4	6	4
a ₄	2	5	3	0	3

Оптимальная стратегия a_4 , т.к.

$$\min_{i \in A} \max_{j \in B} r_{ij} = \min\{7, 7, 6, 5\} = 5$$

Парадокс группового выбора

Сложность: выбор гипотезы принятия решения.

Возможное решение: привлечь *N* экспертов для оценки стратегий и составить итоговую оценку по их мнениям (например, по принципу голосования на основе критерия большинства).

Пример 3

	b_1	b_2	b_3	min
a_1	2	12	-3	-3
a_2	5	5	-1	-1
a_3	0	10	-2	-2

Эксперты (*N*=3):

- E1 (max-min)
 - $a_2 \succ a_3 \succ a_1$
- Е2 (Гурвиц, α=3/4) $a_3 \succ a_1 \succ a_2$
- ЕЗ (Бернулли) $a_1 \succ a_2 \succ a_3$

Итоговые мнения:

$$a_1 \succ a_2$$
 (2 из 3) $a_2 \succ a_3$ (2 из 3) $a_3 \succ a_1$ (2 из 3)

Нарушение транзитивности («замкнутый круг»):

$$a_1 \succ a_2 \succ a_3 \succ a_1 - ?$$

Парадокс группового выбора на основе принципа голосования (теорема Эрроу и пр.).

Пример 4 (выбор СЗИ).

 $A = (a_1, a_2, ..., a_m)$ - множество стратегий ЛПР A по выбору СЗИ или их комбинаций;

 $B = (b_1, b_2, ..., b_n)$ - множество угроз («природа»).

Задача: выбрать набор СЗИ из условия минимизации ущерба от возможных атак.

С3И

```
a_1 - firewall,
a_2 - COB,
a_3 - резервирование канала передачи информации,
a_4 = a_1 \wedge a_2
a_5 = a_1 \wedge a_3
a_6 = a_2 \wedge a_3
a_7 = a_1 \wedge a_2 \wedge a_3
a_{8} = \emptyset
```

Потенциальные угрозы

```
b_1 - smurf-ping,

b_2 - ICMP-flood,

b_3 - UDP-flood,

b_4 - TCP-flood,

b_5 - TCP SYN flood.
```

В качестве оценки выигрыша примем величину, обратную ожидаемому ущербу при применении каждого СЗИ в зависимости от возможной реализации каждой из потенциальных угроз:

$$W = (w_{ij}), \quad (i \in A, j \in B)$$

Исходные данные:

 c_i - стоимость СЗИ $(i \in A)$,

 y_j - величина ущерба от успешной атаки $(j \in B)$,

 $p_{_{j}}$ - в-ть реализации атаки $(j \in B)$,

 p_{ij}' - в-ть успешного отражения атаки $(i \in A, j \in B)$.

Вероятность нанесения ущерба:

$$P_{ij} = p_j (1 - p'_{ij})$$

Матрица затрат:

$$w_{ij} = c_i + P_{ij} y_j \rightarrow \min$$