LOW-PRIORITY QUEUE FLUCTUATIONS IN TANDEM OF QUEUING SYSTEMS UNDER CYCLIC CONTROL WITH PROLONGATIONS

V. M. Kocheganov¹, A. V. Zorine¹

Departament of Applied Probability Theory, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia kocheganov@gmail.com, zoav1602@gmail.com

Abstract

A tandem of queuing systems is considered. Each system has a high-priority input flow and a low-priority input flow which are conflicting. In the first system, the customers are serviced in the class of cyclic algorithms. The serviced high-priority customers are transferred from the first system to the second one with random delays and become the high-priority input flow of the second system. In the second system, customers are serviced in the class of cyclic algorithms with prolongations. Low-priority customers are serviced when their number exceeds a threshold. A mathematical model is constructed in form of a multidimensional denumerable discrete-time Markov chain. The recurrent relations for partial probability generating functions for the low-priority queue in the second system are found.

Keywords: tandem of controlling queuing systems, cyclic algorithm with prolongations, conflict flows, multidimensional denumerable discrete-time Markov chain

1. Introduction

Conflict traffic flows control at a crossroad is one of the classical problem of queuing theory. The problem has been solved for different classes of algorithms: the class of algorithms with a cyclic fixed rhythm, with renewals ("with a loop") with dynamic priorities, etc. However, several (two in our case) consecutive crossroads are of great interest, because in a real life after car passed one highway intersection it finds itself at another one. In other words, output flow of the first intersection forms input flow of the second intersection. Hence, the second input flow no longer has simple probabilistic structure known a priori (for example, non-ordinary Poison process) and knowledge about service algorithm should be taken into account to deduce formation properties of the first output flow.

In [1] the problem of tandem of two crossroads was carried out and rigorous probabilistic model was built. At each of the intersections, in addition to the high priority flow, there was the traffic flow "in the perpendicular direction", with lower priority. The service of the flows on first intersection is supposed to be in the class of cyclic algorithms and in the of cyclic algorithms with prolongations on the second intersection. Over and above, vehicles could not turn from one conflict direction to another.

In this paper we continue the study of described problem and deepen in low priority flow of the second intersection investigation.

2. The setting of the problem

This section contains statement of the problem according to []. First of all the tandem is presented as queuing system to give generic formulation while in the end of the section system of two consecutive crossroads is brought as simple example. More rigorous mathematical model is built in next section.

Consider queuing system of the following type: There are four input flows of cus-

Figure 1: Structure scheme of queuing system

tomers coming into the system with one server. Customers from input flow Π_j arrive to corresponding queue with an unbounded capacity, $j \in \{1, 2, 3, 4\}$. For $j \in \{1, 2, 3\}$ discipline of the queue O_j is FIFI (First In First Out). In other words, the earlier customer came to system the earlier it is serviced. Disciplie of the queue O_4 is described below. Input flows Π_1 and Π_3 are generated by external environment, which has only one state. Each of these flows is a nonordinary Poisson process. Denote λ_1 and λ_3 the intensity for the bulk arrival for the flows Π_1 and Π_3 respectively. Generating function of customer number in the bulk of flow Π_j is

$$f_j(z) = \sum_{\nu=1}^{\infty} p_{\nu}^{(j)} z^{\nu}, \quad j \in \{1, 3\},$$
 (1)

assuming it is finite for any $z \in \mathbb{C}$ such as $|z| < (1+\varepsilon)$, $\varepsilon > 0$. Quantity $p_v^{(j)}$ is probability of event that customers number in a bulk of flow Π_j is exactly v. Being serviced Π_1 customers come back to the system as Π_4 customers. Π_4 customers in turn after service

come back to the system as Π_2 ones. Flows Π_2 and Π_3 are conflicting in the sense that customers arriving from different sources cannot be served simultaneously in the same queuing system. This means that the problem cannot be reduced to a corresponding problem with fewer input flows by merging the flows together.

Given positive integers d, n_0, n_1, \ldots, n_d , we introduce a finite set $\Gamma = \{\Gamma^{(k,r)} : k = 0, 1, \ldots, d; r = 1, 2, \ldots n_k\}$ of states in which server can be. At each state $\Gamma^{(k,r)}$ sever stays during time $T^{(k,r)}$. Define sets $\Gamma^{\rm I}$, $\Gamma^{\rm II}$, $\Gamma^{\rm III}$ and $\Gamma^{\rm IV}$ as follows. In state $\gamma \in \Gamma^{\rm I}$ only customers of queues O_1 , O_2 and O_4 are serviced. In state $\gamma \in \Gamma^{\rm II}$ only customers of queues O_2 and O_4 are serviced. In state $\gamma \in \Gamma^{\rm II}$ only customers of queues O_3 and O_4 are serviced. In state $\gamma \in \Gamma^{\rm IV}$ only customers of queues O_3 and O_4 are serviced. The set Γ defines as union $\Gamma = \Gamma^{\rm I} \cup \Gamma^{\rm II} \cup \Gamma^{\rm III} \cup \Gamma^{\rm III}$ disjoint sets. We will also need following sets in the future ${}^1\Gamma = \Gamma^{\rm I} \cup \Gamma^{\rm III}$, ${}^2\Gamma = \Gamma^{\rm I} \cup \Gamma^{\rm II}$, ${}^3\Gamma = \Gamma^{\rm III} \cup \Gamma^{\rm IV}$.

Server changes its state according following rule. We will call the set $C_k = \{\Gamma^{(k,r)}: r=1,2,\dots n_k\}$ kth cycle, $k=1,2,\dots,d$ (Pic. $\ref{Pic. 27}$). When k=0 state of the form $\Gamma^{(0,r)}$ we will call prolongation state, $r=1,2,\dots,n_0$. Denote $r\oplus_k 1=r+1$ for $r< n_k$ and $r\oplus_k 1=1$ while $r=n_k, k=0,1,\dots,d$. In cycle C_k we select subsets C_k^O input, C_k^I output and $C_k^N=C_k\setminus (C_k^O\cup C_k^I)$ neutral states. Then after server was in state $\Gamma^{(k,r)}\in C_k\setminus C_k^O$ it switches to the state $\Gamma^{(k,r\oplus_k 1)}$ of the same cycle C_k . After state $\Gamma^{(k,r)}$ in C_k^O server switches to the state $\Gamma^{(k,r\oplus_k 1)}$, if number of customers in the queue O_3 in switching moment greater than predetermined threshold L. In other case, that is if number of customers in the queue O_3 lesser or equal L, then new state is prolongation state $\Gamma^{(0,r_1)}$, where $r_1=h_1(\Gamma^{(k,r)})$ and $h_1(\cdot)$ —given mapping of the set $\bigcup_{k=1}^{d} C_k^O$ on $\{1,2,\dots,n_0\}$. After state $\Gamma^{(0,r)}$ the state of the same type $\Gamma^{(0,r_2)}$ is chosen, if number of customers in queue O_3 is lesser or equal L, where $r_2=h_2(r)$ and $h_2(\cdot)$ —given mapping of the set $\{1,2,\dots,n_0\}$ on itself; in other case state of the form $\Gamma^{(k,r_3)}\in C_k^I$ is on, where $\Gamma^{(k,r_3)}=h_3(r)$ and $h_3(\cdot)$ —given mapping $\{1,2,\dots,n_0\}$ on the set $\bigcup_{k=1}^{d} C_k^I$. We assume that all prolongation states $\Gamma^{(0,r)}$ belong to the set ${}^2\Gamma$, and relations $C_k^O\subset {}^2\Gamma$ and $C_k^I\subset {}^3\Gamma$ are hold. We also assume that all the cycles have exactly one input and output state. And last assumption is that all the prolongation vertices form one cycle, that is we can put $h_2(r)=r\oplus_0 1$.

More formally server changes its states according to the following rule:

$$h(\Gamma^{(k,r)}, y) = \begin{cases} \Gamma^{(k,r \oplus_k 1)}, & \text{if } (\Gamma^{(k,r)} \in C_k \setminus C_k^{O}) \text{ or } (\Gamma^{(k,r)} \in C_k^{O} \& y > L); \\ \Gamma^{(0,h_1(\Gamma^{(k,r)}))}, & \text{if } \Gamma^{(k,r)} \in C_k^{O} \text{ and } y \leqslant L; \\ \Gamma^{(0,r \oplus_0 1)}, & \text{if } k = 0 \text{ and } y \leqslant L; \\ h_3(r), & \text{if } k = 0 \text{ and } y > L. \end{cases}$$

$$(2)$$

In general service durations of different customers can be dependent and have different distributions. That is why instead of classic approach which specifies distributions of every particular customer, saturation flows will be used. Such a flow Π_j^{sat} , $j \in \{1, 2, 3, 4\}$, is defined as virtual output flow given maximum loading of the server,

and for $j \in \{1, 2, 3\}$ given also maximum loading of the corresponding queue. Saturation flow Π_j^{sat} , $j \in \{1, 2, 3\}$ contains non-random number of customers $\ell_{k,r,j}$, serviced during $T^{(k,r)}$, if server's state is $\Gamma^{(k,r)}$. Let \mathbb{Z}_+ — be the set of non-negative integer numbers. Then given the fact, that queue O_4 contains $x \in \mathbb{Z}_+$ customers, saturation flow Π_4^{sat} is determined to contain all the x customers. Finally in the state $\Gamma^{(k,r)}$ every customer from queue O_4 with probability $p_{k,r}$ and independently of others ends servicing and come to queue O_2 of the flow Π_2 . The customer of queue O_4 stay on up to the next round with probability $1 - p_{k,r}$. On next round the picture is the same.

As we mentioned earlier in the end of the section we introduce real-life example of defined queuing system: tandem of two consecutive crossroads (Fig. ??). Flows of

Figure 2: Example: crossroads tandem

arriving cars play role of customer flows formed by external environment: conflicting flows Π_1 and Π_5 on the first crossroad; flow Π_3 on the second. Every car from flow Π_1 , after passing first road intersection, comes to the queue O_4 of the flow Π_4 . Whereupon the car arrives to the next road intersection with some probability ($p_{k,r}$ for the state $\Gamma^{(k,r)}$) or does not have time to do so and stays for another round. In case it has time it comes in queue O_2 and waits it's turn to pass it. Such system is an instance of more general queuing model described above.

The full source text using T_FX as well as all auxiliary materials, namely,

- .tex file,
- pictures in .pdf (or .eps) format (if available),
- the paper in pdf format

have to be submitted as a zip-archive.

The name of the archive should be **Surname1_Surname2_Surname3.zip**.

3. Font

Type the text of the paper in 10 points, regular. Each paragraph is to be indented 5 mm, and their intervals must be 0 points before and after.

4. Mathematical formulae and references

To make references to mathematical expressions, it is recommended to use LATEX mechanism. For example, the formula given below

$$P(n,t) = \frac{\partial^n B(t)}{\partial t^n} \tag{3}$$

can be referred as (3).

5. Theorems and proofs

Theorems are defined like follows

Theorem 1. *Text of the theorem.*

Proof. Proof of Theorem 1. If using such reference, you need to recompile your paper with LATEX twice.

6. Figures and tables

Figures should be provided in PDF or EPS format. Raster pictures have to be made with maximal resolution (minimal 300 dots per inch).

Figure 3: Difference in fractions of synchronous packets for W = 16.

Parameter	T	Е	Δ, %	Parameter	Т	Е	Δ, %
$ ho_1^{(1)}$	0,187	0,194	3,7	$\rho_1^{(2)}$	0,127	0,120	5,6
$\rho_2^{(1)}$	0,073	0,072	1,4	$\rho_2^{(2)}$	0,052	0,053	1,9
$ ho_3^{(1)}$	0,148	0,147	0,7	$\rho_3^{(2)}$	0,103	0,103	0,0
$\rho_4^{(1)}$	0,036	0,036	0,0	$ ho_4^{(2)}$	0,026	0,027	3,7
$C^{(1)}$	0,479	0,476	0,6	$C^{(2)}$	0,656	0,640	2,5
C_1^*	0,341	0,339	0,6	C_3^*	0,323	0,329	1,8
C_2^*	0,296	0,298	0,7	C_4^*	0,286	0,286	0,0

Table 1: Comparison of system parameters.

The figures and tables must be numbered, have a self-contained caption and referred in the main text. Figure and table captions are placed below the object and centered. Also, avoid placing figures and tables before their first mention in the text. Use the abbreviation "Fig." even at the beginning of a sentence.

The authors are recommended not to use characters smaller than 9 point in figures. Do not use abbreviations in the titles unless they are unavoidable.

7. Conclusion

Place a full list of references [1, 2, 3, 4, 5] at the end of the paper. List the references according to the order of their appearance in the text.

REFERENCES

- Bianchi G. Performance Analysis of the IEEE 802.11 Distributed Coordination Function // IEEE Journal on Selected Areas in Communications. 2000. V. 18. P. 535-547.
- 2. Vishnevsky V. M., Lyakhov A. I. IEEE 802.11 Wireless LAN: Saturation Throughput Analysis with Seizing Effect Consideration // Cluster Computing. 2002. V. 5. P. 133-144.
- 3. Neuts M. F. Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker, New York, 1989.
- 4. Schriber T. J. Simulation using GPSS. John Wiley & Sons, 1974.
- 5. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov