Salem Lahlou 2025-05-04

Quiz 3: Neural Network Forward Propagation

Instructions

Select the best answer or provide the calculated result. Questions 1-4 cover core concepts, while question 5 involves calculation and broadcasting.

Questions

1. Dimensions Check

Consider a neural network with an input layer of size $n_x = 10$, a single hidden layer of size $n_h = 20$, and an output layer of size $n_y = 5$. What are the dimensions of the weight matrix $W^{[1]}$ connecting the input layer to the hidden layer? A) (10, 20) B) (20, 10) C) (10, 5) D) (20, 5)

2. Scalar Calculation (Hidden Layer)

Given an input
$$\mathbf{x} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, weights $W^{[1]} = \begin{bmatrix} 1 & 0.5 \\ -2 & 1 \end{bmatrix}$, and biases $b^{[1]} = \begin{bmatrix} 0.1 \\ -0.2 \end{bmatrix}$, calculate the pre-activation vector $\mathbf{z}^{[1]}$ for the hidden layer. A) $\begin{bmatrix} 1.6 \\ -5 & 2 \end{bmatrix}$ B) $\begin{bmatrix} 2.1 \\ -4 & 7 \end{bmatrix}$ C) $\begin{bmatrix} 1.1 \\ -3 & 2 \end{bmatrix}$ D) $\begin{bmatrix} 2.5 \\ -5 & 0 \end{bmatrix}$

3. Vector Form Equation

Which equation correctly represents the *activation* $\mathbf{a}^{[1]}$ of the hidden layer for a single input example \mathbf{x} , using activation function $g^{[1]}$? A) $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{W}^{[1]}\mathbf{x})$ B) $\mathbf{a}^{[1]} = \mathbf{W}^{[1]}g^{[1]}(\mathbf{x}) + \mathbf{b}^{[1]}$ C) $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]})$ D) $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{x}\mathbf{W}^{[1]} + \mathbf{b}^{[1]})$

4. Batch Processing Dimensions

If you process a batch of m=32 examples through the network described in Question 1 ($n_x=10, n_h=20, n_y=5$), what will be the dimensions of the final output activation matrix $A^{[2]}$? A) (5, 20) B) (32, 5) C) (5, 32) D) (20, 32)

5. Broadcasting Calculation (Hard)

Let
$$W^{[1]} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, input batch $X = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, and bias $b^{[1]} = \begin{bmatrix} 10 \\ 20 \end{bmatrix}$. Calculate the matrix $Z^{[1]} = W^{[1]}X + b^{[1]}$ after performing the matrix multiplication and broadcasting the bias. A) $\begin{bmatrix} 12 & 13 \\ 24 & 25 \end{bmatrix}$ B) $\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$ C) $\begin{bmatrix} 12 & 23 \\ 14 & 25 \end{bmatrix}$ D) $\begin{bmatrix} 20 & 30 \\ 40 & 50 \end{bmatrix}$

6. Two Hidden Layers Dimensions

Consider a neural network with architecture: Input $(n_x=50)$ -> Hidden 1 $(n_{h1}=100)$ -> Hidden 2 $(n_{h2}=60)$ -> Output $(n_y=10)$. If you process a batch of m=128 examples, what are the dimensions of the activation matrix $A^{[2]}$ (the output of the second hidden layer)? A) (100,128) B) (60,100) C) (60,128) D) (128,60)

Answers

- 1. B
- 2. A
- 3. C
- 4. C
- 5. A
- 6. C

Explanations

- 1. **B)** (20, 10): The dimensions of a weight matrix $W^{[l]}$ connecting layer l-1 to layer l are $(n_{\text{neurons in layer }l} \times n_{\text{neurons in layer }l-1})$. Here, l=1, layer l is the hidden layer $(n_h=20)$, and layer l-1 is the input layer $(n_x=10)$.
- 2. **A)** $\begin{bmatrix} 1.6 \\ -5.2 \end{bmatrix}$: Calculate $\mathbf{z}^{[1]} = \mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$. $z_1 = (1 \times 2 + 0.5 \times -1) + 0.1 = (2 0.5) + 0.1 = 1.5 + 0.1 = 1.6$. $z_2 = (-2 \times 2 + 1 \times -1) 0.2 = (-4 1) 0.2 = -5 0.2 = -5.2$
- 3. **C)** $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]})$: The activation is computed by first calculating the linear pre-activation part $(\mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]})$ and then applying the non-linear activation function $g^{[1]}$ to the result.
- 4. **C)** (5, 32): The output activation matrix $A^{[2]}$ will have dimensions ($n_{\text{neurons in output layer}} \times m$), which is $(n_v \times m) = (5 \times 32)$.
- 5. **A)** $\begin{bmatrix} 12 & 13 \\ 24 & 25 \end{bmatrix}$: First, compute $W^{[1]}X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$. Then, broadcast the bias $b^{[1]} = \begin{bmatrix} 10 \\ 20 \end{bmatrix}$ across the columns to match the shape of $W^{[1]}X$, resulting in $\begin{bmatrix} 10 & 10 \\ 20 & 20 \end{bmatrix}$. Finally, add them: $Z^{[1]} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} 10 & 10 \\ 20 & 20 \end{bmatrix} = \begin{bmatrix} 12 & 13 \\ 24 & 25 \end{bmatrix}$.
- 6. **C)** (60, 128): For batch processing, the activation matrix $A^{[l]}$ of layer l has dimensions $(n_{\text{neurons in layer }l} \times m)$. The second hidden layer has $n_{h2} = 60$ neurons, and the batch size is m = 128. Therefore, the dimensions of $A^{[2]}$ are (60, 128).