Pt7

Sets

- F: Farms
- P : Facilities
- T: Tankers
- R: Milkruns
- $I = \{PF, FARMS, TIME, COST\}$: Indexes for milkrun list

Data

- $Milkruns_{ri}$ list of milkruns $r \in R$ indexed by $i \in I$
- $Supply_f$ milk supply from each farm $f \in F$ (L)
- $PMin_p$ minimum daily processing at processing facility $p \in P$ (L)
- $PMax_p$ maximum daily processing at processing facility $p \in P$ (L)
- $Maintenance_t$ daily cost of maintenance for tanker $t \in T$
- MMax maximum number of minutes a tanker can be used for each day (min)

Variables

- W_{pt} binary assignment of tankers $t \in T$ to processing facilities $p \in P$
- X_{prt} binary assignment of routes $r \in R$ to processing facilities $p \in P$ and tankers $t \in T$

Objective function

$$\min\left(\sum_{p \in P} \sum_{r \in R} \sum_{t \in T} \left(X_{prt} \times Milkruns_{r,COST}\right) + \sum_{p \in P} \sum_{t \in T} \left(W_{pt} \times Maintenance_{t}\right)\right)$$

Constraints

• Total milk processed at processing facility $p \in P$ cannot exceed the processing capacity.

$$\sum_{r \in R} \sum_{t \in T} \sum_{f \in F \text{ st. } f \in Milkruns_{r, \text{FARMS}}} X_{prt} \times Supply_f \leq PMax_p, \quad \forall p \in P$$

• Total milk processed at processing facility $p \in P$ must meet the minimal operational requirement.

$$\sum_{r \in R} \sum_{t \in T} \sum_{f \in F \text{ st. } f \in Milkruns_{r, \text{FARMS}}} X_{prt} \times Supply_f \ge PMin_p, \quad \forall p \in P$$

• Each tanker $t \in T$ for processing facility $p \in P$ cannot be operational for more than 10 hours (600min).

$$\sum_{r \in R} X_{prt} \times Milkruns_{r,\text{TIME}} \leq MMax, \quad \forall p \in P, \ t \in T$$

• If a tanker $t \in T$ is used, the binary tanker variable must be set.

$$X_{prt} = 1 \implies W_{pt} = 1, \quad \forall p \in P, \ t \in T, \ r \in R$$

• Tankers must be used in order, i.e., tanker 1 and then tanker 2 etc.,

$$W_{pt} = 1 \implies W_{p(t-1)} = 1, \quad \forall p \in P, \ t \in T, \ t > 0$$

• If a milkrun does not originate from processing facility $p \in P$, it cannot be assigned to a tanker at that facility.

$$X_{prt} = 0$$
, $\forall p \in P, t \in T, r \in R \text{ if } Milkruns_{r,PF \neq p}$

• Each farm $f \in F$ must be visited on one of the assigned routes.

$$\sum_{p \in P} \sum_{r \in R} \sum_{t \in T} X_{prt} = 1, \quad \forall f \in F \text{ if } f \in Milkruns_{r, \text{FARMS}}$$