Gap Analysis and Statistical Hypothesis Testing

From BUS 462 (Business Analytics) at SFU Amin Milani Fard - Fall 2018

Some slides are from Michael Brydon

1

Gap Analysis

Gap Analysis

- Is there a problem?
- What is the gap between expected performance and actual performance?

Store	Sales
1	\$ 8,617.63
2	\$ 10,249.81
3	\$ 11,905.92
4	\$ 11,021.00
5	\$ 12,193.02
6	\$ 6,387.60
7	\$ 11,851.34
8	\$ 13,442.58
9	\$ 7,975.78
10	\$ 9,787.87
11	\$ 10,958.20
12	\$ 13,326.81
13	\$ 13,120.29
14	\$ 9,751.82
15	\$ 10,925.57

Sagging sales: Chance or incompetence?

- consider the sales data
- is there a "problem" with Store 6?
- what about Store 9?

3

Variable Processes

$$f(x) = \frac{1}{\delta\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\delta}\right)}$$

- The store data results from a process with "natural" variation
 - Normally distributed data with μ = \$10,000 and σ = \$2000
 - P(s<6387) = 1.5%
 - P(s<7975) = 8.5%
- Errors:
 - Type I: asserting a gap exists when the difference is due to chance
 - Type II: asserting no gap exists when one actually does

4

t-test for Gap Analysis

- Two samples of data (A and B)
- Variability
- Hypothesis: the two samples have the same sample mean

$$t \, statistic = \frac{\overline{X}_A - \overline{X}_B}{\sqrt{\frac{\text{var}_A}{n_A} + \frac{\text{var}_B}{n_B}}}$$

5

t-test for Gap Analysis

- Tests whether the means of two groups are statistically different from each other
- If 2 means are statistically different, then the samples are likely to be drawn from 2 different populations, i.e. they really are different.

/

What Does Difference Mean?

- A statistical difference is a function of the <u>difference</u> <u>between means</u> relative to the <u>variability</u>.
- A small difference between means with large variability could be due to <u>chance</u>. Like a <u>signal-to-noise</u> ratio.

Low variability

Which one shows the *greatest* difference?

11

The probability distribution plot indicates that each of the two shaded regions has a probability of 0.02963—for a total of 0.05926.

This graph shows that t-values fall within these areas almost 6% of the time when the null hypothesis is true (P value)

12

T-test Summary

Use when:

- Sampled data is continuous
- Samples are representative and large (>30)

Three types

Paired:

- 1. data point in sample A matches a data point in sample B Unpaired:
 - 2. Assuming equal variance
 - 3. Assuming unequal variance

13

Continuous vs Categorical Samples

Continuous Data

- Numbers
- Summary measures
 - Sales
 - Opinion scores
 - Number of crimes

Categorical Data

- Frequencies of category membership
 - Polls (Candidate A or Candidate B?)
 - Purchase/Non-Purchase
 - Pay/Default

Recall: Gender Discrimination

- The charge is that its female employees receive substantially smaller salaries than the firm's male employees
- If we **censor** management positions, the salary gap disappears...

15

Statistical Dependence and Independenc	Statistical	Depend	lence and	Indeper	ıdence
--	-------------	--------	-----------	---------	--------

Preferred Brand of Shoes						
		Reebok	Nike	Adidas		
Grade in	А	2	3	3	8	
Course	В	S	6	8	20	
	С	2	3	4	9	
		10	12	15	37	

$$P(A \cap B) = P(A) \cdot P(B)$$

Assumption of independence

 $P(Grade = A \cap Reebok) = P(Grade = A) \cdot P(Reebok)$ seems okay

$$=\frac{8}{37}(\frac{10}{37})=0.058$$

$$E(Grade = A \cap Reebok) = P(Grade = A \cap Reebok)n = 0.058(37) = 2.16$$

17

Statistical Dependence and Independence

Experience with Statistics						
		Low	Med	High		
Grade in	Α	(0	1	7	8	
Course	В	2	10	8	20	
	С	8	1	0	9	
		10	12	15	37	

$$P(A \cap B) = P(A) \cdot P(B)$$

Assumption of independence gives a poor

 $P(Grade = A \cap Low Stats) = P(Grade = A) \cdot P(Low State)$

prediction

$$=\frac{8}{37}(\frac{10}{37})=0.058$$

$$E(Grade = A \cap Low Stats) = P(Grade = A \cap Low Stats)n = 0.058(37) = 2.16$$

There is a difference but is that significant?

Experience with Statistics						
		Low	Med	High		
Grade in	А	(0)	1	7	8	
Course	В	2	10	8	20	
	С	8	1	0	9	
		10	12	15	37	

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(Grade = A \cap Low Stats) = P(Grade = A) \cdot P(Low Stats)$$

$$= \frac{8}{37} (\frac{10}{37}) = 0.058$$

$$E(Grade = A \cap Low Stats) = P(Grade = A \cap Low Stats)n = 0.058(37) = 2.16$$

19

Assessing Independence

• χ^2 test of independence:

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

Larger value -> smaller prob of independence

- Assuming variables are independent (expected):
 - $P(A \cap B) = P(A) \times P(B)$
- Our data provides **observed** joint frequency
- Key idea: variables may be dependent in many different ways, but they can be independent in only one way

Parametric Test	Goal of the test	Non-Parametric Test	Goal of the test
Two Sample T-Test	To see if two samples have identical population means	Wilcoxon Rank-Sum Test	To see if two samples have identical population medians
One Sample T-Test	To test a hypothesis about the mean of the population a sample was taken from	Wilcoxon Signed Ranks Test	To test a hypothesis about the median of the population a sample was taken from
Chi-Squared Test for Goodness of Fit	To see if a sample fits a theoretical distribution, such as the normal curve	Kolmogorov-Smirnov Test	To see if a sample could have come from a certain distribution
ANOVA To see if two or more sample means are significantly different		Kruskal-Wallis Test	To test if two or more sample medians are significantly different

A parametric test requires a parametric assumption, such as normality. A nonparametric test does not rely on such parametric assumptions.