Теорія категорії І курс магістратура, 2 семестр

14 лютого 2024 р.

0.1 Основні означення

Definition 0.1.1 Категорія C складається з наступних компонент:

- із набору **об'єктів**; об'єкти позначають за X, Y, Z, \ldots , а набір позначають за Ob(C);
- із набору **морфізмів**; морфізми позначають за f, g, h, \ldots , а набір позначають за $\operatorname{Hom}(C)$;
- кожний морфізм має область визначення та область значень; позначається зазвичай як $f \colon X \to Y$, де об'єкт X область визначення, об'єкт Y область значень;
- кожний об'єкт X має **тотожний морфізм** $1_X \colon X \to X;$
- для кожних морфізмів $f\colon X\to Y,\ g\colon Y\to Z$ існуватиме **композиція морфізмів** $g\circ f\colon X\to Z.$ При цьому всьому зобов'язані виконуватися такі аксіоми:
- 1) для всіх морфізмів $f: X \to Y$ виконано $1_Y \circ f = f \circ 1_X = f;$
- 2) для кожних трьох морфізмів $f\colon W\to X, g\colon X\to Y, h\colon Y\to Z$ виконується асоціативність композиції, тобто $f\circ (g\circ h)=(f\circ g)\circ h.$

Remark 0.1.2 Морфізми ще часто називають **стрілочками**.

Example 0.1.3 Розглянемо Set – це буде категорія, яка складається з наступного:

- Ob(Set) набір всіх множин;
- Hom(Set) набір всіх відображень;
- тотожне відображення $1_X: X \to X$ задається як $x \mapsto x$;
- композиція між $f\colon X\to Y$ та $g\colon Y\to Z$ задається $g\circ f$ таким чином: $x\mapsto f(x)\mapsto g(f(x)).$ Ясно, що всі ці дві аксіоми виконані.

Важливо, що Ob(Set) – це саме <u>набір</u> всіх множин, а не множина всіх множин. Тому що парадокс Рассела стверджує, що не існує множини, елементи яких будуть множинами.

До речі, $\operatorname{Set}(X,Y)$ – набір всіх відображень $f\colon X\to Y$ – буде, насправді, <u>множиною</u>. Відображення між двома множинами – це просто підмножина декартового добутку $X\times Y$. Коли ми беремо дві довільні множини X,Y, то звідси $X\times Y$ теж буде множиною.

Definition 0.1.4 Категорія M, що складається з одного об'єкту, називається **моноїдом**.

Definition 0.1.5 Задано C – категорія.

Стрілочка $f: X \to Y$ називається ізоморфізмом, якщо існує стрілка $g: Y \to X$, для якої

$$f \circ g = 1_Y$$
 $g \circ f = 1_X$

У свою чергу об'єкти X,Y даної категорії називаються **ізоморфними**.

Позначення: $X \cong Y$.

Definition 0.1.6 Ендоморфізмом назвемо стрілочку $f \colon X \to X$. Тобто це стрілка між двома однаковими об'єктами.

Автоморфізмом назвемо ізоморфім f, який ϵ ендоморфізмом.

Definition 0.1.7 Категорія C називається дискретною, якщо

$$C(A,B) = \begin{cases} \emptyset, & A \neq B \\ \{1_A\}, & A = B \end{cases}$$

Тобто існують лише стрілки $A \to A$, і тільки тотожні.

Definition 0.1.8 Категорія D називається підкатегорією C, якщо

набір об'єктів D міститься в наборі об'єктів C

набір стрілок $A \to B$ в D міститься в наборі стрілок $A \to B$ в C для довільних об'єктів A, B із D композиція двох морфізмів в D задається так само, як і в C

Definition 0.1.9 Підкатегорія D категорії C називається **повною**, якщо

набір стрілок A, B в D збігається з набором стрілок A, B в C, для довільних об'єктів A, B із D