CLAIMS

What is claimed is:

1	1.	A method of updating a routing table, the method comprising the computer-implemented
2		steps of:
3		selecting, from a set of routers, a particular router that is associated with a first time that
4		is a shortest time among all times associated with routers in the set of routers;
5		sending a first data packet to the particular router;
6		receiving a second data packet that indicates a second time taken for the first data packet
7		to travel to a destination indicated by the first data packet;
8		updating the first time based on the second time; and
9		updating the routing table based on information contained in the second data packet.
1	2.	The method of Claim 1, further comprising:
2		updating, based on information contained in the second data packet, a path associated
3		with both the destination and the particular router.
1	3.	The method of Claim 1, further comprising:
2		updating, based on information contained in the second data packet, an indication of an
3		amount of bandwidth available on a path taken by the second data packet.
1	4.	The method of Claim 1, further comprising:
2		updating, based on information contained in the second data packet, an indication of
3		whether a path taken by the first data packet is feasible.
l	5.	The method of Claim 1, further comprising:
2		updating, based on information contained in the second data packet, a list of routers that
3		indicates all routers in a path taken by the first data packet to a router that sent the
ļ		first data packet to a present router.
	6.	The method of Claim 1, further comprising:
2		updating the second data packet to indicate an amount of bandwidth available on a path
}		taken by the second data packet.

1	7.	The method of Claim 1, further comprising:
2		updating the second data packet to indicate whether a path taken by the first data packet
3		is feasible.
1	8.	A method of updating a routing table, the method comprising the computer-implemented
2		steps of:
3		for each neighbor router in a set of neighbor routers, associating the neighbor router with
4		an amount of time predicted to be required for a data packet to travel to a
5		specified destination if the data packet is transmitted through the neighbor router;
6		receiving a first data packet that indicates the specified destination;
7		in response to receiving the first data packet, selecting, from the set of neighbor routers, a
8		particular neighbor router that is associated with a first amount of time that is a
9		lowest amount of time, relative to the specified destination, among amounts of
10		time associated with neighbor routers in the set of neighbor routers;
11		sending the first data packet to the particular neighbor router;
12		receiving a second data packet that indicates a second amount of time taken for the first
13		data packet to travel to the specified destination;
14		updating, based on the second amount of time, the first amount of time; and
15		updating, based on information contained in the second data packet, the routing table.
1	9.	A method of updating a routing table, the method comprising the computer-implemented
2		steps of:
3		for each neighbor router in a set of neighbor routers, associating the neighbor router with
4		an amount of time predicted to be required for a data packet to travel to a
5		specified destination if the data packet is transmitted through the neighbor router;
6		receiving a forward ant data packet that indicates the specified destination;
7		selecting, based on one or more first specified criteria, a subset of the set of neighbor
8		routers;
9		in response to receiving the forward ant data packet, selecting, from the subset of
10		neighbor routers, a particular neighbor router that is associated with a first amount
11		of time that is a lowest amount of time, relative to the specified destination,

12		among amounts of time associated with neighbor routers in the subset of neighbor
13		routers;
14		sending the forward ant data packet to the particular neighbor router;
15		receiving a backward ant data packet that indicates a second amount of time taken for the
16		forward ant data packet to travel to the specified destination;
17		determining, based on information indicated in the backward ant data packet, whether
18		one or more second specified criteria are satisfied; and
19		if the one or more second specified criteria are satisfied, then performing steps
20		comprising:
21		updating, based on the second amount of time, the first amount of time; and
22		if one or more third specified criteria are satisfied, then updating, based on
23		information indicated in the backward ant data packet, the routing table.
1	10.	The method of Claim 9, wherein the one or more first specified criteria comprise a
2		criterion that no neighbor router in the subset of neighbor routers is contained in a list of
3		routers that have already been visited by the forward ant data packet.
1	11.	The method of Claim 9, further comprising:
2		determining whether any neighbor router in the set of neighbor routers is associated with
3		an amount of time that is lower than the first amount of time; and
4		if any neighbor router in the set of neighbor routers is associated with an amount of time
5		that is lower than the first amount of time, then updating the forward ant data
6		packet to indicate a present router in a loop-avoidance router field of the forward
7		ant data packet.
1	12.	The method of Claim 11, wherein a loop-avoidance router field of the backward ant data
2		packet indicates a router indicated by the loop-avoidance router field of the forward ant
3		data packet.
1	13.	The method of Claim 12, wherein the one or more second specified criteria comprise a
2		criterion that the router indicated by the loop-avoidance router field of the backward ant
3		data packet is not contained in a list of routers that the forward ant visited after visiting a
4.		present router.

1	14.	The method of Claim 9, wherein the one or more third specified criteria comprise a
2		criterion that the second amount of time is lower than any other amount of time, relative
3		to the specified destination, among amounts of time associated with neighbor routers in
4		the set of neighbor routers.
1	15.	The method of Claim 9, further comprising:
2		determining whether a router from which the backward ant data packet was received
3		matches a router associated with the destination in the routing table; and
4		if the router from which the backward ant data packet was received does not match the
5		router associated with the destination in the routing table, then updating a path
6		feasibility flag of the backward ant to indicate that a path taken by the forward ant
7		is not feasible.
1	16.	The method of Claim 15, wherein the one or more third specified criteria comprise a
2		criterion that the path feasibility flag of the backward ant indicates that the path taken by
3		the forward ant is feasible.
1	17.	The method of Claim 9, wherein the one or more third specified criteria comprise a
2		criterion that a path taken by the forward ant data packet from a present router to the
3		specified destination does not include any routers that are identified in a potential
4		upstream node list.
1	18.	A computer-readable medium carrying one or more sequences of instructions for
2		updating a routing table, which instructions, when executed by one or more processors,
3		cause the one or more processors to carry out the steps of:
4		selecting, from a set of routers, a particular router that is associated with a first time that
5		is a shortest time among times associated with routers in the set of routers;
6		sending a first data packet to the particular router;
7		receiving a second data packet that indicates a second time taken for the first data packet
8		to travel to a destination indicated by the first data packet;
9		updating, based on the second time, the first time; and
10		updating, based on information contained in the second data packet, the routing table.

1	19.	An apparatus for updating a routing table, comprising:
2		means for selecting, from a set of routers, a particular router that is associated with a first
3		time that is a shortest time among times associated with routers in the set of
4		routers;
5		means for sending a first data packet to the particular router;
6		means for receiving a second data packet that indicates a second time taken for the first
7		data packet to travel to a destination indicated by the first data packet;
8		means for updating, based on the second time, the first time; and
9		means for updating, based on information contained in the second data packet, the
10		routing table.
1	20.	An apparatus for updating a routing table, comprising:
2		a network interface that is coupled to a data network for receiving one or more packet
3		flows therefrom;
4		a processor;
5		one or more stored sequences of instructions which, when executed by the processor,
6		cause the processor to carry out the steps of:
7		selecting, from a set of routers, a particular router that is associated with a first
8		time that is a shortest time among times associated with routers in the set
9		of routers;
10		sending a first data packet to the particular router;
11		receiving a second data packet that indicates a second time taken for the first data
12		packet to travel to a destination indicated by the first data packet;
13		updating, based on the second time, the first time; and
14		updating, based on information contained in the second data packet, the routing
15		table.