SEMAINE DU 05/02 AU 09/02

1 Cours

Espaces vectoriels

Définition et exemples fondamentaux Définition d'un \mathbb{K} -espace vectoriel. Exemples. Si X est un ensemble, on peut munir \mathbb{K}^X d'une struture de \mathbb{K} -espace vectoriel. Conséquence : \mathbb{K}^n , $\mathbb{K}^\mathbb{N}$, $\mathbb{K}^\mathbb{K}$ sont des \mathbb{K} -espaces vectoriels.

Sous-espaces vectoriels Définition. Intersection de sous-espaces vectoriels. Combinaisons linéaires d'une famille de vecteurs. Espace vectoriel engendré par une partie ou une famille.

Somme de sous-espaces vectoriels Somme de deux sous-espaces vectoriels. Somme directe de deux sous-espaces vectoriels. Sous-espaces supplémentaires. Si $E = F \oplus G$, définition du projeté de $x \in E$ sur F parallèlement à G. Somme d'un nombre fini de sous-espaces vectoriels. Somme directe d'un nombre fini de sous-espaces vectoriels.

Espaces vectoriels de dimension finie

Famille de vecteurs Familles génératrices. Familles libres/liées. Bases. Base adaptée à une décomposition en somme directe. Cas particulier des familles de \mathbb{K}^n (pivot de Gauss).

Dimension d'un espace vectoriel Théorème de la base incomplète/extraite. Existence de bases. Définition de la dimension. Dans un espace de dimension $\mathfrak n$ une famille génératrice/libre possède au moins/au plus $\mathfrak n$ éléments. Si $\mathcal B$ est une famille de $\mathfrak n$ vecteurs d'un espace vectoriel de dimension $\mathfrak n$, alors $\mathcal B$ est une base si elle est libre $\mathbf o\mathbf u$ génératrice.

2 Méthodes à maîtriser

- ▶ Savoir montrer qu'une partie d'un espace vectoriel en est un sous-espace vectoriel.
- \blacktriangleright Savoir déterminer une partie génératrice d'une partie de \mathbb{K}^n définie par des équations linéaires.
- ▶ Savoir montrer que deux sous-espaces sont supplémentaires (utiliser éventuellement une méthode par analyse/synthèse).
- ▶ Savoir montrer qu'un nombre fini de sous-espaces vectoriels sont en somme directe (somme nulle ⇒ termes nuls).
- ► Montrer qu'une famille est libre.
- \blacktriangleright Montrer qu'une famille de vecteurs de \mathbb{K}^n est libre, liée ou génératrice par pivot de Gauss.
- ▶ Déterminer une base et la dimension d'un sous-espace vectoriel de Kⁿ défini par un système d'équations cartésiennes (mettre sous forme d'un vect) ou par une famille génératrice (pivot de Gauss).
- ▶ Déterminer la dimension d'un espace vectoriel en exhibant une base.
- ▶ Utiliser la dimension pour montrer qu'une famille libre/génératrice est une base.

3 Questions de cours

- ▶ Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E en somme directe. Montrer que si $(f_1, ..., f_n)$ est une base de F et $(g_1, ..., g_p)$ est une base de G, alors $(f_1, ..., f_n, g_1, ..., g_p)$ est une base de F \oplus G.
- ► Calculer à l'aide de factorielles les produits $\prod_{k=1}^{n} (2k)$ et $\prod_{k=1}^{n} (2k+1)$.
- $\blacktriangleright \ \ \text{Calculer une primitive de } x \mapsto \frac{1}{P(x)} \ \text{où } P \ \text{est une fonction polynomiale de degré 2 au choix de l'examinateur.}$
- ► Calculer un équivalent simple de $\binom{2n}{n}$ à l'aide de la formule de Stirling.
- $lackbox{ }$ Calculer la dérivée $n^{\grave{e}me}$ de la fonction $f:x\mapsto rac{1}{x}.$

 $\textbf{ Calculer en fonction de } n \in \mathbb{N}^* \text{ les sommes doubles } S_n = \sum_{1 \leqslant i,j \leqslant n} \min(i,j) \text{ et } T_n = \sum_{1 \leqslant i,j \leqslant n} \max(i,j) \text{ sous forme factorisée}.$