Evolved Transformer

David R. So, Chen Liang, Quoc V. Le Google Research, Brain Team ICML 2019

Kyung-Jae Cho VUNO Inc.

Towards a Conversational Agent that Can Chat About Anything

- Modern chatbots tend to be highly specialized
- Current open-domain chatbots often don't make sense
- Google Research proposed "human-like open domain chatbot"

Motivation

- **AutoML** produce models that exceed the perf. of those designed by humans (AmoebaNet, NasNet)
- The advances have mostly focused on improving vision models

- Some efforts has invested in searching for sequence models (NAS, ENAS)
 - However, they focused on improving RNNs
- Recent work shown better alternative (transformer) to RNNs on sequence problems
- Goal: examine the use of NAS methods to design better transformer

Related Work

- Field of NAS
 - Best architecture search methods are computationally intensive (AmoebaNet, NASNet)
 - Other methods developed speed in mind (DARTS, ENAS, SMASH .. etc)
 - Approach to both increase efficiency and search quality (PNAS, use of Hyperband)

 This paper tries to use the most efficient and effective AutoML on searching the best transformer models

Methods

- Employ evolution-based architecture search (tournament selection)
 - Simple & Efficient than reinforcement learning when resources are limited
- Proposed methods
 - Define search space to create new transformer architecture
 - Warm starting by seeding with Transformer
 - Proposed progressive dynamic hurdles (PDH)
 - Search on WMT 2014 English German translation task is computationally expensive
 - Thus, need an efficient way search space

Search space

- NasNet-like search space
- Each cell contains blocks which receive two hidden state inputs and produce new hidden states as output
- The block perform separate transformation outputs to each input and combine the transformation output to produce a single block output
- Search space contains
 - (1) five branch-level search fields
 - (2) one block-level search field
 - (3) one cell level search field

Figure 1. Architecture composition from encoding. Each block produces a new hidden state that is added to the pool of hidden states subsequent blocks can select as branch inputs. Each encoder has 6 unique blocks per cell and each decoder has 8 unique blocks per cell. Each cell is repeated *number of cells* times.

Five Branch-level search field

Input

- Specifies what hidden state from the block will be fed as input to the branch
- For each i^{th} block, the branch input is [0,i)

Normalization

■ [Layer Norm, None] applied to each input

Layers

Neural network layer applied after normalization

Relative output dimension

- Used to specify the absolute output dimension
- *d*: [1,10]
- Every layer i, $a_i = d_i * s$, so that the parameter size is within a fixed range

Activations

Non-linearity applied {SWISH, RELU, LEAKY RELU, None}

STANDARD CONV wx1: for $w \in \{1,3\}$ DEPTHWISE SEPARABLE CONV wx1: for $w \in \{3,5,7,9,11\}$ LIGHTWEIGHT CONV wx1 r: for $w \in \{3,5,7,15\}$, $r \in \{1,4,16\}$ (Wu et al., 2019). r is the reduction factor, equivalent to d/H described in Wu et al. (2019). h HEAD ATTENTION: for $h \in \{4,8,16\}$ GATED LINEAR UNIT(Dauphin et al., 2017) ATTEND TO ENCODER: (Only available to decoder) IDENTITY: No transformation applied to input DEAD BRANCH: No output

Block-level & Cell-level search field

Combiner functions

- {Addition, Concatenation, Multiplication}, padding applied if embedding depths are different
- Number of cells
 - **•** [1,6]

Figure 1. Architecture composition from encoding. Each block produces a new hidden state that is added to the pool of hidden states subsequent blocks can select as branch inputs. Each encoder has 6 unique blocks per cell and each decoder has 8 unique blocks per cell. Each cell is repeated *number of cells* times.

Tournament selection

- (1) Create population by creating P random models
- (2) Randomly sample models from population
- (3) Select parent with highest accuracy
- (4) Produce child by mutating the parent
- (5) Remove model with lowest accuracy in the population
- (6) Repeat (2) (5) for C times

```
Algorithm 1 Aging Evolution
                                            ▶ The population.
  population \leftarrow \text{empty queue}
                                    ▶ Will contain all models.
  history \leftarrow \varnothing
  while |population| < P do
                                       ▶ Initialize population.
      model.arch \leftarrow RANDOMARCHITECTURE()
      model.accuracy \leftarrow TrainAndEval(model.arch)
      add model to right of population
      add model to history
  end while
  while |history| < C do
                                       \triangleright Evolve for C cycles.
                                          ▶ Parent candidates.
      sample \leftarrow \varnothing
      while |sample| < S do
          candidate \leftarrow random element from population
                     \triangleright The element stays in the population.
          add candidate to sample
      end while
      parent \leftarrow \text{highest-accuracy model in } sample
      child.arch \leftarrow \texttt{MUTATE}(parent.arch)
      child.accuracy \leftarrow TrainAndEval(child.arch)
      add child to right of population
      add child to history
      remove dead from left of population
                                                      ⊳ Oldest.
      discard dead
  end while
  return highest-accuracy model in history
```

Seeding the Search Space with Transformer

- To help navigate the large search space, we warm start the search process by seeding our initial population with a known strong model, original transformer
- This anchors the search to a known good starting point, and guarantees at least a single strong potential parent in the population
- The paper offer empirical support

Evolution with Progressive Dynamic Hurdles (PDH)

- WMT takes longer to train and evaluate
 - Takes 300K training steps (10 hours) using single TPU
- To address this problem we proposed PDH
 - Dynamically allocate resources to more promising architectures according to their fitness
- Hurdle -> mean fitness of current population

```
Algorithm 1 Calculate Model Fitness with Hurdles
  inputs:
    model: the child model
    s: vector of train step increments
    h: queue of hurdles
  append \infty to h
  TRAIN_N_STEPS(model, s_0)
  fitness \leftarrow \text{EVALUATE}(model)
  i \leftarrow 0
  hurdle \leftarrow h_i
  while fitness > hurdle do
     i \leftarrow i + 1
     TRAIN_N_STEPS(model, s_i)
     fitness \leftarrow \text{EVALUATE}(model)
     hurdle \leftarrow h_i
  end while
  return fitness
```

Algorithm 2 Evolution Architecture Search with PDH inputs: s: vector of train step increments m: number of child models per hurdle $h \leftarrow empty queue$ $i \leftarrow 0$ $population \leftarrow INITIAL_POPULATION()$ while i < LENGTH(s) - 1 do $population \leftarrow EVOL_N_MODELS(population,$ m, s, h $hurdle \leftarrow MEAN_FITNESS_OF_MAX(population)$ append hurdle to hend while $population \leftarrow EVOL_N_MODELS(population,$ m, s, h**return** population

Experiment Setup

- Datasets
 - Machine Translation
 - WMT 18 En-De
 - WMT 14 En-Fr
 - WMT En-Cs
 - Language Modeling
 - 1 Billion Word Language Model Benchmark (LM1B)
- Training Details and Hyperparameters
 - Nearly identical to "Attention is all you need" settings
 - But modified to used memory-efficient Adafactor optimizer
 - Warm up to constant learning rate of 10-2 over 10k steps
 - Use inverse-square-root learning-rate decay
 - etc

Ablation study of search techniques

- with PDH, with Transformer warm start
- Compared with equalize resource consumption
- Proposed search has best performance on average and lowest std
- Although "30K no hurdles" produced the best model but worst model at the same time
 - High standard deviation -> not stable
- Early stopping performed worse (15K vs. 30K)
- For 180K vs 300k it was resource inefficient and number of models were limited

SEED MODEL	TRAIN STEPS	Num Models	TOP MODEL PERPLEXITY
TRANSFORMER RANDOM TRANSFORMER TRANSFORMER TRANSFORMER TRANSFORMER TRANSFORMER	PDH PDH 15K 30K 180K 300K	6000 6000 29714 14857 2477 1486	$egin{array}{l} \textbf{4.50} \pm 0.01 \ 5.23 \pm 0.19 \ 4.57 \pm 0.01 \ 4.53 \pm 0.07 \ 4.58 \pm 0.05 \ 4.61 \pm 0.02 \ \end{array}$

Table 1. Top model validation perplexity of various search setups. Number of models were chosen to equalize resource consumption.

Main search

- We launched a large scale version of our search
- The four most notable aspects of the found architecture
 - 1) wide depth-wise separable convolution
 - 2) Gated Linear Units
 - 3) Branching structures
 - 4) swish activations
- The latter portion is almost identical to the Transformer

Latter portion Identical

Performance and Analysis

- ET demonstrates stronger performance than the transformer at all sizes
- ET is more effective than the transformer at smaller model sizes

Figure 4. Performance comparison of the Evolved Transformer against the Transformer across number of parameters.

Generalization of Evolved Transformer

- Test if ET's strong performance generalizes
- At the "big" model size, BLEU performance saturates
 - Overfitting starts to occur at big model sizes
 - Data augmentation or hyperparameter tuning could improve performance

TASK	Size	TRAN PARAMS	ET PARAMS	TRAN PERP	ET PERP	TRAN BLEU	ET BLEU
WMT'14 EN-DE WMT'14 EN-DE WMT'14 EN-DE	BASE BIG DEEP	61.1M 210.4M 224.0M	64.1M 221.7M 218.1M	4.24 ± 0.03 3.87 ± 0.02 3.86 ± 0.02	$egin{array}{c} \textbf{4.03} \pm 0.02 \ \textbf{3.77} \pm 0.02 \ \textbf{3.69} \pm 0.01 \ \end{array}$	28.2 ± 0.2 29.1 ± 0.1 29.2 ± 0.1	$egin{array}{c} {\bf 28.4} \pm 0.2 \\ {\bf 29.3} \pm 0.1 \\ {\bf 29.5} \pm 0.1 \\ \end{array}$
WMT'14 EN-FR WMT'14 EN-FR	BASE BIG	60.8 209.8M	63.8M 221.2M	3.61 ± 0.01 3.26 ± 0.01	3.42 ± 0.01 3.13 ± 0.01	40.0 ± 0.1 41.2 ± 0.1	40.6 ± 0.1 41.3 ± 0.1
WMT'14 EN-Cs WMT'14 EN-Cs	BASE BIG	59.8M 207.6M	62.7M 218.9M	$4.98 \pm 0.04 \\ 4.43 \pm 0.01$	$m{4.42} \pm 0.01 \\ m{4.38} \pm 0.03$	27.0 ± 0.1 28.1 ± 0.1	27.6 ± 0.2 28.2 ± 0.1
LM1B	Big	141.1M	151.8M	30.44 ± 0.04	28.60 ± 0.03	-	-

Compare with other previous results

Evolved Transformer achieved a new SOTA

Model	Params	BLEU	SacreBLEU (Post, 2018)
Gehring et al. (2017)	216M	25.2	_
Vaswani et al. (2017)	213M	28.4	-
Ahmed et al. (2017)	213M	28.9	-
Chen et al. (2018)	379M	28.5	-
Shaw et al. (2018)	213M	29.2	-
Ott et al. (2018)	210M	29.3	28.6
Wu et al. (2019)	213M	29.7	-
Evolved Transformer	218M	29.8	29.2

Table 4. Model comparison on WMT'14 En-De.

Conclusion

- Presented first neural architecture search conducted to find improved transformer
- To mitigate the size of the search space and the cost of training child models, the paper proposed progressive dynamic hurdles method and warm starting
- In experiment the Evolved Transformer showed consistent stronger performance on both translation and language modeling
- On WMT 14 En-De, the ET established new SOTA of 29.8 BLEU
- It also proved to be efficient at smaller sizes achieving the same quality as the original "big" transformer with 37.6% less parameters

Putting the world's medical data to work

kcho035@vuno.co