Введение в анализ данных

Домашнее задание 2. Pandas и Seaborn

Правила:

- Дедлайн **30 апреля 23:59**. После дедлайна работы не принимаются кроме случаев наличия уважительной причины.
- Выполненную работу нужно отправить на почту mipt.stats@yandex.ru, указав тему письма "[номер группы] Фамилия Имя Задание 2". Квадратные скобки обязательны.
- Прислать нужно ноутбук и его pdf-версию (без архивов). Названия файлов должны быть такими: 2.N.ipynb и 2.N.pdf, где N -- ваш номер из таблицы с оценками. pdf-версию можно сделать с помощью Ctrl+P. Пожалуйста, посмотрите ее полностью перед отправкой. Если что-то существенное не напечатается в pdf, то баллы могут быть снижены.
- Решения, размещенные на каких-либо интернет-ресурсах, не принимаются. Кроме того, публикация решения в открытом доступе может быть приравнена к предоставлении возможности списать.
- Для выполнения задания используйте этот ноутбук в качестве основы, ничего не удаляя из него.
- Если код будет не понятен проверяющему, оценка может быть снижена.
- Никакой код при проверке запускаться не будет.

Баллы за задание:

Легкая часть (достаточно на "хор"):

- Задача 1 -- 4 балла
- Задача 2 -- 2 балла

Сложная часть (необходимо на "отл"):

- Задача 3 -- 5 баллов
- Задача 4 -- 3 балла
- Задача 5 -- 8 баллов

Баллы за разные части суммируются отдельно, нормируются впоследствии также отдельно. Иначе говоря, 1 балл за легкую часть может быть не равен 1 баллу за сложную часть.

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

sns.set(style='whitegrid', font_scale=1.3)
%matplotlib inline
```

Легкая часть

Задача 1

Представьте, что вы министр образования страны котиков. Вам нужно решить какие школы лучше: маленькие или большие.

Вы решили, что нужно сравнить их по результатам единого кошачьего экзамена (ЕКЭ). Предлагается посмотреть на средний результат по школам: отсортировать по нему и сделать выводы исходя из топ 10 лучших школ.

Вам дан датасет cat_exam_data.csv

Описание данных:

- school -- номер школы;
- test score -- результат одного ученика из этой школы;
- number_of_students -- кол-во учеников в школе.

Приведены данные по всем ученикам из 500 школ страны котиков.

Загрузите датасет с результатами экзамена и посмотрите на первые пять строк.

Это можно сделать с помощью методов <u>read_csv (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html)</u> и <u>head (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.head.html)</u>.

```
In [2]: cat_exam_data = pd.read_csv('cat_exam_data.csv')
In [3]: cat_exam_data.head(5)
Out[3]:
```

	school	test_score	number_of_students
0	26	39.0	965
1	54	64.0	1483
2	356	64.0	1055
3	108	68.0	1806
4	298	78.0	971

Проверьте, что в данных нет пропусков (NaN). Если они есть:

- проверьте в каком столбце;
- удалите их.

Moryт помочь методы <u>isna (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.isna.html)</u> и <u>dropna (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html)</u>.

Посчитайте описательные статистики (среднее, мин, макс, и тд.) по колонкам в таблице с помощью одной функции:

```
In [6]: cat_exam_data.describe()
Out[6]:
```

	school	test_score	number_of_students
count	501358.000000	501358.000000	501358.000000
mean	250.096795	51.681788	1088.910569
std	144.428420	14.179981	281.016801
min	0.000000	0.000000	156.000000
25%	125.000000	42.000000	890.000000
50%	250.000000	52.000000	1079.000000
75%	377.000000	61.000000	1285.000000
max	499.000000	100.000000	1806.000000

Посчитайте сколько котиков получили 100 баллов:

```
In [7]: cat_exam_data[cat_exam_data.test_score == 100].test_score.c
ount()
Out[7]: 51
```

Выведите информацию о школах, где есть хотя бы один котик, получивший 100 баллов на ЕКЭ.

Отсортируйте эти школы по количеству стобалльников.

Moryт помочь методы groupby (https://pandas.pydata.org/pandas-docs/stable/reference /api/pandas.DataFrame.groupby.html), sort_values (https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.sort_values.html), transform (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transform.html) и count (https://pandas.pydata.org/pandas-docs/stable/reference /api/pandas.DataFrame.count.html).

Out[8]:

	index	school	number_of_students	test_score
0	48	486	800	2
1	0	4	1015	1
2	37	395	436	1
3	27	302	1517	1
4	28	303	701	1
5	29	315	580	1
6	30	328	789	1
7	31	342	920	1
8	32	346	913	1
9	33	351	1224	1
10	34	357	1003	1
11	35	359	895	1
12	36	394	1079	1
13	38	403	1317	1
14	1	14	777	1
15	39	412	1032	1
16	40	414	1134	1
17	41	425	929	1
18	42	429	768	1
19	43	436	878	1
20	44	451	1077	1
21	45	463	809	1
22	46	471	960	1
23	47	483	1222	1
24	26	283	823	1
25	25	282	1505	1
26	24	261	983	1
27	23	256	996	1
28	2	18	715	1
29	3	42	650	1
30	4	69	1012	1
31	5	82	555	1
32	6	90	1244	1
33	7	91	749	1

Посчитайте средний результат каждой из школ и посмотрите на результат:

Может помочь метод mean (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.mean.html).

Out[9]:

	school	number_of_students	test_score
0	0	418	52.294258
1	1	1209	52.028950
2	2	1035	51.751451
3	3	1245	51.566265
4	4	1015	51.025641
495	495	1139	50.933275
496	496	1209	51.146402
497	497	1140	51.141228
498	498	796	51.709799
499	499	1253	52.413738

500 rows × 3 columns

Отсортируйте школы по среднему результату:

```
In [10]: cat_exam_mean.sort_values('test_score', ascending=False, in
    place=True)
    cat_exam_mean.reset_index(inplace=True)
```

Посмотрите на топ 10 лучших результатов:

In [11]: cat_exam_mean.head(10)

Out[11]:

	index	school	number_of_students	test_score
0	57	57	560	53.341682
1	124	124	598	52.993311
2	263	263	669	52.982063
3	82	82	555	52.981982
4	366	366	773	52.970207
5	465	465	1179	52.957555
6	169	169	858	52.932401
7	449	449	357	52.910364
8	477	477	808	52.898515
9	464	464	431	52.865429

Вывод: Лучшие по среднему баллу школы не обязательно имеют стобалльников. Большинство лучших школ имеют малое число учеников.

Ожидаем, что внизу рейтинга будут только большие школы, давайте это проверим.

Посмотрите теперь на 10 худших школ:

In [12]: cat_exam_mean.tail(10)
Out[12]:

	index	school	number_of_students	test_score
490	383	383	636	50.716981
491	264	264	929	50.702906
492	48	48	649	50.690293
493	156	156	1093	50.641354
494	394	394	1079	50.461538
495	194	194	774	50.406977
496	471	471	960	50.362500
497	486	486	800	50.325000
498	211	211	351	50.248571
499	353	353	336	50.050595

Вывод: В списке худших по среднему баллу школ также присутствуют маленькие школы.

Постройте график зависимости среднего результата ЕКЭ от количества учеников:

Вывод: По данному графику нельзя судить о зависимости между средним баллом и количеством учеников.

Но как же тогда решить какие школы лучше?

Сгруппируйте учеников в зависимости от типа школы (<= 1000 учеников == маленькая школа):

Постройте гистограммы этих двух выборок на одном графике, установив параметры

- bins=10 --- число бинов гистограммы;
- alpha=0.5 --- прозрачность бинов.

```
In [15]: plt.figure(figsize=(16, 9))
         plt.hist(
              cat exam small.test score,
              bins=10,
              alpha=0.5,
              label='Маленькие школы'
         )
         plt.hist(
              cat_exam_large.test_score,
              bins=10,
              alpha=0.5,
              label='Большие школы'
         )
         plt.title('Средний балл в зависимости от типа школы', fonts
         ize=20)
         plt.legend(fontsize=14, loc=1)
         plt.xlabel('Средний балл за ЕКЭ')
         plt.ylabel('Количество участников')
         plt.show()
```


Вывод: Разбиение на группы и использование гистограммы помогло в демонстрации зависимости среднего балла от количества учеников в школе. Видно, что в маленьких школах больше человек имеет более высокий средний балл.

Задача 2

Задача заключается в работе с данными о трендах на YouTube. В этом вам поможет библиотека seaborn, которая была рассмотрена на одной из последних лекций.

1. Подготовка данных

Скачайте файл RUvideos_short.csv с данными о видео в российском сегменте Youtube с 14 ноября по 21 ноября 2017 года. Полная версия данных доступна на kaggle (https://www.kaggle.com/datasnaek/youtube-new#RUvideos.csv).

Прочитайте данные с помощью библиотеки pandas и напечатайте начало таблицы. В колонке trending_date записана дата. При чтении таблицы распознайте ee.

```
In [16]: def dp(st):
    return pd.to_datetime(st, format='%y.%d.%m')

ru_vid = pd.read_csv('RUvideos_short.csv', parse_dates=[1],
    date_parser=dp)
```

In [17]: ru_vid.head()

Out[17]:

	video_id	trending_date	title	channel_title	category_id	
0	gDuslQ9avLc	2017-11-14	Захар и Полина учатся экономить	Т—Ж БОГАЧ	22	2017-
1	AOCJIFEA_jE	2017-11-14	Биржа Мемов #29. Большой выпуск	Druzhko Show	22	2017-
2	VAWNQDgwwOM	2017-11-14	ХАЙП КЭМП - СВОЙ СРЕДИ ЧУЖИХ	Юлик	24	2017-
3	gknkFwKQfHg	2017-11-14	Сочная кесадилья с курицей	Hochland	22	2017-
4	3sYvZcwzZr8	2017-11-14	КЛИПЫ РОДИТЕЛЕЙ НА ШКОЛЬНЫЙ ВЫПУСКНОЙ	Совергон	24	2017-

В таблице много лишних данных. Оставьте следующие столбцы:

- trending_date -- дата в формате год-день-месяц;
- category_id -- категория видео, названия приведены в файле RU_category_id.json;
- views -- количество просмотров видео;
- likes -- количество лайков;
- dislikes -- количество дислайков;
- comment_count -- количество комментариев.

Из даты оставьте только день. Для этого можно пройтись циклом по всем датам и взять поле day у даты. Напечатайте начало таблицы.

Out[18]:

	trending_date	category_id	views	likes	dislikes	comment_count
0	14	22	62408	334	190	50
1	14	22	330043	43841	2244	2977
2	14	24	424596	49854	714	2944
3	14	22	112851	3566	122	80
4	14	24	243469	36216	631	1692

2. Некоторая визуализация

Постройте ящики с усами на каждый день по количеству просмотров. Насколько хороший получился график?

```
In [19]: sns.set(style='darkgrid')
    plt.figure(figsize=(16, 9))
    sns.boxplot(x='trending_date', y='views', data=ru_vid, pale tte='Set2');
```


Исправьте этот недостаток, установив некоторое значение.

Постройте jointplot по всем данным для количества просмотров по горизонтальной оси и количества лайков по вертикальной. Насколько информативен такой график?

Исправьте этот недостаток.

views

Сложная часть

Задача 3

Netflix за последние 5-10 лет обзавелись большим количеством зрителей. С увеличением числа зрителей увеличилось и разнообразие шоу. Соответственно, перед аналитиками из киноиндустрии встала задача исследования данных с рейтингами различных сериалов. В данном задании вам предстоит провести визуальный анализ датасета **1000 Netflix Shows** (по состоянию на 11.06.2017) и сделать выводы.

Описание признаков:

- title название шоу.
- rating рейтинг шоу. Например: G, PG, TV-14, TV-MA
- ratingLevel описание рейтинговой группы и особенностей шоу.
- release year год выпуска шоу.
- user rating score оценка пользователей.

Загрузите данные, выполнив код ниже.

```
In [24]: # код ниже менять нельзя (кроме пути до данных), просто зап
ycтите ячейку!
data = pd.read_csv('netflix_data.csv', encoding='cp437')
del data['ratingDescription'], data['user rating size']
```

Удалите из данных дупликаты. Сколько объектов удалено?

```
In [25]: old_size = len(data)
    data.drop_duplicates(inplace=True)
    print('Удалено строк: ',old_size - len(data))
```

Удалено строк: 500

Сколько объектов осталось?

```
In [26]: print('Осталось: ', len(data))
Осталось: 500
```

Сколько рейтинговых групп представлено в данных?

```
In [ ]: len(data.rating.unique())
```

Какие оценки пользователи ставят чаще? Постройте гистограмму оценок.

```
In [27]: plt.figure(figsize=(16, 9))

plt.hist(
    data.dropna()['user rating score'],
    bins=20,
    alpha=0.5,
)

plt.title('Оценки пользователей netflix', fontsize=20)
plt.xlabel('Оценка')
plt.ylabel('Количество')
plt.show()
```


Вывод: Нет шоу с рейтингом ниже 50. оценок больше 80 в датасете больше, чем оценок меньше 80.

Выведите основную информацию об оценках пользователей: среднее, стандартное отклонение, минимум, максимум, медиана. Отличаются ли медиана и среднее? Могут ли данные характеристики значительно отличаться? Почему?

```
data.dropna()['user rating score'].describe()
In [281:
Out[28]: count
                  246.000000
         mean
                   81.390244
                   12.677883
         std
                   55,000000
         min
         25%
                   71.000000
         50%
                   83.500000
         75%
                   92.750000
                   99.000000
         max
         Name: user rating score, dtype: float64
```

Ответ: Медиана и среднее отличается примерно на 2 пункта. Нет, из курса теории вероятностей нам известно, что медиана от матожидания отличается не более чем на корень из дисперсии. Матожидание в данном случае играет роль среднего

В какие годы были запущены шоу, представленные в датасете?

Постройте график, показывающий распределение количества запущенных шоу в зависимости от года. Наблюдается ли рост? Есть ли выбросы?

Вывод: В общем наблюдается рост, но имеем выброс.

Сравните среднюю оценку пользователей в 2016 со средней оценкой в 2017. Можно ли сделать вывод, что 2017 год успешнее для Netflix? ("Успешнее" значит, что пользователи в среднем ставили более высокие оценки) Ответить на этот вопрос вам поможет график, который вы построили выше.

```
In [31]: data_tmp = data[['release year', 'user rating score']].grou
    pby('release year').mean()

    print('2016 - {}'.format(*data_tmp.loc[2016]))
    print('2017 - {}'.format(*data_tmp.loc[2017]))

2016 - 84.31395348837209
    2017 - 88.125
```

Вывод: Нет, мы не можем сделать такой вывод. В 2016 году было аномально много новых телешоу. Примерно в 3 раза больше, чем в 2017.

Ниже представлены два графика, показывающие распределение шоу по рейтинговым группам. Какой тип графика визуально более интерпретируемый? (<u>Подсказка</u> (https://sun9-40.userapi.com/c854228/v854228652/c754f/j6z5gMjJy2k.jpg))

Постройтре самостоятельно график, который считаете более интерпретируемым. Сделайте вывод.

Вывод: <...>

Составьте топ-13 самых высоко оцененных шоу. Выберите из данного топа шоу, которое вам наиболее нравится (либо используйте scipy.stats.randint). Обозначим это шоу N. Ответьте на следующие вопросы:

- Какое шоу является худшим по оценкам в рейтинговой группе, к которой принадлежит N?
- Сколько шоу было выпущено в одном году с N?
- Насколько бы изменилась средняя оценка шоу, выпущенных в одном году с N, если бы Netflix не запустили шоу N?

```
In [ ]: ...
```

Ответьте на следующие вопросы при помощи boxplot:

- Какую рейтинговую группу зрители оценивали выше всего в последние пять лет?
- Как менялись оценки пользователей с течением времени? Постройте boxplot для каждого десятилетия.

In []:	:	
---------	---	--

Вывод: <...>

Задача 4

В данной задаче вам нужно будет продолжить анализ данных о видео на YouTube. Информация об имени категории видео содержится в файле RU_category_id.json. Следующий код читает этот файл, извлекает из него необходимую информацию, и записывает в виде pandas -таблицы.

Out[32]:

	id	name
0	1	Film & Animation
1	2	Autos & Vehicles
2	10	Music
3	15	Pets & Animals
4	17	Sports
5	18	Short Movies
6	19	Travel & Events
7	20	Gaming
8	21	Videoblogging
9	22	People & Blogs
10	23	Comedy
11	24	Entertainment
12	25	News & Politics
13	26	Howto & Style
14	27	Education
15	28	Science & Technology
16	30	Movies
17	31	Anime/Animation
18	32	Action/Adventure
19	33	Classics
20	34	Comedy
21	35	Documentary
22	36	Drama
23	37	Family
24	38	Foreign
25	39	Horror
26	40	Sci-Fi/Fantasy
27	41	Thriller
28	42	Shorts
29	43	Shows
30	44	Trailers

Добавьте к вашим данным имена категорий с помощью pd.merge .

Out[33]:

	trending_date	category_id	views	likes	dislikes	comment_count	catego
0	14	22	62408	334	190	50	Peop
1	14	22	330043	43841	2244	2977	Peop
2	14	24	424596	49854	714	2944	Ent€
3	14	22	112851	3566	122	80	Peop
4	14	24	243469	36216	631	1692	Ent€
1595	21	2	5498	373	19	49	
1596	21	2	40394	1339	179	201	
1597	21	25	3516	65	7	4	News
1598	21	25	47507	4372	231	2380	News
1599	21	25	5079	0	0	0	News

1600 rows × 7 columns

Составьте сводную таблицу о количестве просмотров по дням для каждой категории видео с помощю функции pivot_table.

```
ru vid pt = pd.pivot_table(ru_vid_new,
                                                values='views',
                                                index=['category name'],
                                                columns=['trending date'],
                                                aggfunc=np.sum)
            ru vid pt
Out[391:
             trending date
                             14
                                        15
                                                  16
                                                             17
                                                                         18
                                                                                    19
             category_name
                    Autos &
                             1350890.0 2076443.0 2051608.0
                                                              1386676.0 1713087.0 1736740.0
                   Vehicles
                   Comedy
                             2310887.0
                                       4152389.0 4156893.0
                                                              3556025.0
                                                                         3806238.0
                                                                                    3556578.0
                  Education
                              139723.0
                                          28850.0
                                                      6963.0
                                                               146943.0
                                                                          256076.0
                                                                                     310830.0
              Entertainment
                             5010384.0
                                       5289490.0
                                                  3373346.0
                                                             12299938.0
                                                                         7519942.0
                                                                                    5877590.0
                     Film &
                              636616.0
                                        931837.0 1160112.0
                                                              1820958.0 2725012.0 1075440.0
                  Animation
                    Gaming
                              885597.0
                                       1609621.0
                                                  1583149.0
                                                               557074.0
                                                                          600307.0
                                                                                     193316.0
              Howto & Style
                             2191619.0
                                       1562421.0
                                                   129763.0
                                                              1250164.0 1468139.0
                                                                                     156958.0
                      Music
                              733907.0
                                       1585619.0 4720464.0
                                                              9179397.0 6972429.0
                                                                                    1329904.0
                    News &
                             1010044.0 1225112.0 1174092.0
                                                              1251367.0 1056007.0 1028665.0
                    Politics
                      Other
                                       1197555.0 1438320.0
                                                               775077.0 1303122.0 1757119.0
                              851097.0
             People & Blogs
                             4740267.0
                                       4931179.0
                                                  4763680.0
                                                              5976118.0 5154219.0
                                                                                    4353670.0
             Pets & Animals
                             2013597.0
                                             NaN
                                                   608073.0
                                                               541708.0
                                                                           16179.0
                                                                                      12928.0
                  Science &
                             2053694.0
                                       6637302.0
                                                  6855094.0
                                                              2521015.0 8351102.0
                                                                                    9396340.0
                 Technology
                     Shows
                              951608.0
                                        656799.0
                                                   548936.0
                                                               609770.0
                                                                          808860.0
                                                                                         Nal
                     Sports
                              608587.0
                                       1181720.0
                                                  1193647.0
                                                               577087.0
                                                                           64261.0
                                                                                     911646.0
                    Travel &
                              104076.0
                                        136549.0
                                                      2271.0
                                                                   NaN
                                                                          253369.0
                                                                                     406558.0
                     Events
```

Визуализируйте таблицу с помощью heatmap . Для информативности поделите все числа на $10^6\,$.

Сделайте аналогичную сводную таблицу, добавив суммы по строкам и столбцам, назвав их "Всего просмотров".

In [36]:	<pre>ru_vid_pt_2 ', ru_vid_pt_2</pre>	= pd.pivot_table(ru_vid_new,						
Out[36]:								
	trending_date	14	15	16	17	18	19	
	category_name							
	Autos & Vehicles	1350890.0	2076443.0	2051608.0	1386676.0	1713087.0	173	
	Comedy	2310887.0	4152389.0	4156893.0	3556025.0	3806238.0	355	
	Education	139723.0	28850.0	6963.0	146943.0	256076.0	31	
	Entertainment	5010384.0	5289490.0	3373346.0	12299938.0	7519942.0	587	
	Film & Animation	636616.0	931837.0	1160112.0	1820958.0	2725012.0	107	
	Gaming	885597.0	1609621.0	1583149.0	557074.0	600307.0	19	
	Howto & Style	2191619.0	1562421.0	129763.0	1250164.0	1468139.0	15	
	Music	733907.0	1585619.0	4720464.0	9179397.0	6972429.0	132	
	News & Politics	1010044.0	1225112.0	1174092.0	1251367.0	1056007.0	102	
	Other	851097.0	1197555.0	1438320.0	775077.0	1303122.0	175	
	People & Blogs	4740267.0	4931179.0	4763680.0	5976118.0	5154219.0	435	
	Pets & Animals	2013597.0	NaN	608073.0	541708.0	16179.0	1	
	Science & Technology	2053694.0	6637302.0	6855094.0	2521015.0	8351102.0	939	

В чем проблема с информативностью подобных таблиц? Исправьте это.

951608.0

608587.0

104076.0

Shows

Sports

Travel &

Events

Всего

просмотров

656799.0

1181720.0

136549.0

548936.0

2271.0

25592593.0 33202886.0 33766411.0 42449317.0 42068349.0 3210

1193647.0

609770.0

577087.0

NaN

808860.0

64261.0

253369.0

91

40

Подсказка: посмотрите на графики, которые вы построили ранее.

Вывод: <...>

Задача 5

Yelp (yelp.com) — веб-сайт для поиска на местном рынке услуг, например ресторанов или парикмахерских, с возможностью добавлять и просматривать рейтинги и обзоры этих услуг. Для популярных бизнесов имеются сотни обзоров. Для обозревателей на сайте предусмотрены элементы социальной сети.

Вам предоставляется следующая информация о компаниях на Yelp:

Файл yelp_business.csv:

- business id уникальный идентификатор компании;
- name имя компании;
- address, city, state месторасположении компании;
- latitude, longitude географические координаты;
- categories категории услуг компании.

Файл yelp review.csv, содержащий оценки пользователей:

- business_id идентификатор компании, соответствующий файлу yelp_business.csv;
- stars поставленная пользователем оценка от 1 до 5.

В целях сокращения объема файла, текстовые отзывы пользователей не были включены.

Оригинальную версию датасета в формате json можно посмотреть по ссылке https://www.kaggle.com/yelp-dataset/yelp-dataset/data (https://www.kaggle.com/yelp-dataset/data)

Что нужно сделать:

- Найти город с наибольшим количеством компаний;
- Для этого города определить районы с наиболее качественными услугами. Пример с несколько другой задачей: https://yandex.ru/company/researches/2017/msk mobile map (https://yandex.ru/company/researches/2017/msk mobile map)
- А также найти рестораны с наилучшими отзывами.

Город с наибольшим количеством компаний

Загрузите данные из файла yelp_business.csv с помощью функции pd.read_csv. Посмотрите на первые несколько строк с помощью метода head.

```
In [40]: yelp_business = pd.read_csv('yelp_business.csv')
    del yelp_business['Unnamed: 0']
    yelp_business.head()
```

Out[40]:

	business_id	name	neighborhood	address	city
0	FYWN1wneV18bWNgQjJ2GNg	"Dental by Design"	NaN	"4855 E Warner Rd, Ste B9"	Ahwatukee
1	He-G7vWjzVUysIKrfNbPUQ	"Stephen Szabo Salon"	NaN	"3101 Washington Rd"	McMurray
2	KQPW8lFf1y5BT2MxiSZ3QA	"Western Motor Vehicle"	NaN	"6025 N 27th Ave, Ste 1"	Phoenix
3	8DShNS-LuFqpEWIp0HxijA	"Sports Authority"	NaN	"5000 Arizona Mills Cr, Ste 435"	Tempe
4	PfOCPjBrlQAnzNXj9h_w	"Brick House Tavern + Tap"	NaN	"581 Howe Ave"	Cuyahoga Falls

Найдите пять городов, по которым присутствует информация о наибольшем количестве компаний. Для этого стоит воспользоваться методами groupby, count, sort_values, head. В таблице должен быть указан город (название) и количество компаний в этом городе.

In [41]:	<pre>yelp_business.groupby('city').count().sort_values('business _id', ascending=False).head()</pre>							
Out[41]:		business_id	name	neighborhood	address	state	postal_code	latitı
	city							
	Las Vegas	26775	26775	21887	26775	26775	26655	26
	Phoenix	17213	17213	0	17213	17213	17121	17:
	Toronto	17206	17206	14064	17206	17206	17102	17:
	Charlotte	8553	8553	5844	8553	8553	8517	8!
	Scottsdale	8228	8228	0	8228	8228	8201	82

Пусть N -- город с наибольшим количеством компаний.

Оставьте в таблице только записи, соответствующие городу N. Нанесите все эти компании на график, в котором по оси x отметьте долготу, а по оси y -- долготу.

In [42]: yelp_business_new = yelp_business[yelp_business['city'] ==
 'Las Vegas'].reset_index()
 yelp_business_new

Out[42]:

		index	business_id	name	neighborhood	address
	0	6	kCoE3jvEtg6UVz5SOD3GVw	"BDJ Realty"	Summerlin	"2620 Regatta Dr, Ste 102"
	1	7	OD2hnuuTJI9uotcKycxg1A	"Soccer Zone"	NaN	"7240 W Lake Mead Blvd, Ste 4"
	2	26	VBHEsoXQb2AQ76J9l8h1uQ	"Alfredo's Jewelry"	Southeast	"5775 S Eastern, Ste 103"
	3	41	1Jp_hmPNUZArNqzpbm7B0g	"Task Electric"	Spring Valley	"7260 Cimarron Rd, Ste 130"
	4	48	DPQnTnNw2PJj7DdENM98Cw	"Star Nursery"	NaN	"5340 Boulder Hwy"
					•••	
267	770	174539	swjz4q8gI79Ndg4APuHEUA	"Stonegate Real Estate Services"	Westside	"3030 S Jones Blvd, Ste 105"
267	771	174545	pUhU5ohYv65g8B47dTXAKA	"Starbucks"	NaN	"591 N Eastern Ave, Ste 110"
267	772	174546	sH9WsMj8sNTTSAUWv4UEEg	"Sprint Store"	Southwest	"7325 S Rainbow Blvd, Ste 120"
267	773	174552	9ouC6BpmjFpLfHeQnLQqng	"9 Dragons Fight Shop"	Westside	"3375 S Decatur Blvd, Ste 7"
267	774	174556	n9a-3YhibkMDUEgnclivHg	"L'Occitane"	South Summerlin	"1980 Festival Pl Dr"

26775 rows × 12 columns

```
In [43]: with sns.plotting_context("notebook"), sns.axes_style("whit egrid"):
    plt.figure(figsize=(16, 9))

    x = yelp_business_new.latitude
    y = yelp_business_new.longitude
    plt.scatter(x, y, alpha=0.3)

plt.title('Pacпределение компаний по координатам')
plt.xlabel('Широта')
plt.ylabel('Долгота')
plt.show()
```


Сам город находится в сгустке точек. Есть какие-то компании, которые приписаны к этому городу, но находятся далеко от него. Избавьтесь от них, подобрав некоторые границы значений широты и долготы. Изобразите все компании на новом графике.

На этом графике должны выделяться некоторые улицы. Откройте карту города N и сравните ее с построенным графиком.

Попробуйте также автоматически подгружать карту города в качестве фона графика. Примеры. (https://plotly.com/python/scattermapbox/)

```
In [44]:
         up quantile = 0.85
         bottom quantile = 0.15
         lat_up = yelp_business_new.latitude.quantile(up_quantile)
         lat bot = yelp business new.latitude.quantile(bottom quanti
         le)
         long_up = yelp_business_new.longitude.quantile(up quantile)
         long bot = yelp business new.longitude.quantile(bottom quan
         tile)
         las_vegas = yelp_business_new.copy()
         las vegas = las vegas[las vegas.latitude > lat bot]
         las vegas = las vegas[las vegas.latitude < lat up]</pre>
         las vegas = las vegas[las vegas.longitude > long bot]
         las_vegas = las_vegas[las_vegas.longitude < long_up].reset_</pre>
         index()
         las_vegas
```

Out[44]:

	level_0	index	business_id	name	neighborhood	ê
0	5	49	_F3AMoo_zdl-he384ISQbw	"Rock of Ages"	NaN	F
1	9	59	Sx0C2RsDgrG3RxBBUoBqTw	"Kool Radiator Service"	Westside	
2	10	60	v2GJWvZqEAjUc22hZUYzYw	"John Armond Actor's Studio"	Westside	,
3	11	61	MmR06_kNAbmOPK-0pKvGtA	"Cinnabon"	Westside	M
4	12	82	bOOgAB_CEWWsxalAthnRSw	"Tenors of Rock"	The Strip	
13159	26763	174427	UpW3jyJ3_kTG7oDSflwnMA	"Archi's Thai Kitchen"	NaN	" F
13160	26766	174455	Fv4EXwV30rwGD2NzN1ekgA	"Gorilla Sushi"	Eastside	Tr /
13161	26768	174474	ZmNGlwy0MWnLVAT5qa31jw	"Western Door and Gate"	NaN	" H <i>}</i>
13162	26770	174539	swjz4q8gI79Ndg4APuHEUA	"Stonegate Real Estate Services"	Westside	В
13163	26773	174552	9ouC6BpmjFpLfHeQnLQqng	"9 Dragons Fight Shop"	Westside	В

13164 rows × 13 columns

Оценки компаний

Для выполнения задания нужно посчитать среднюю оценку каждой компании, а также количество выставленных оценок.

Загрузите таблицу оценок yelp_review.csv.

```
In [46]: yelp_review = pd.read_csv('yelp_review.csv')
del yelp_review['Unnamed: 0']
yelp_review
```

Out[46]:

	business_id	stars
0	AEx2SYEUJmTxVVB18LICwA	5
1	VR6GpWlda3SfvPC-lg9H3w	5
2	CKC0-MOWMqoeWf6s-szl8g	5
3	ACFtxLv8pGrrxMm6EgjreA	4
4	s2I_Ni76bjJNK9yG60iD-Q	4
5261663	Ngk84Ax1tXgpoJFEGxot3w	1
5261664	pOEL97ld-FJMKO8Ki8JmYg	3
5261665	5ubokMNw8qfbX2WtxgJG1Q	4
5261666	EO3i5kTUG7_S2OIQ23sdSA	3
5261667	HloEEXm_QzEpycuwA_RtQA	3

5261668 rows × 2 columns

В подгруженной таблице оценок оставьте только компании города N. Для этого установите значения business_id в качестве индекса у таблицы оценок и воспользуйтесь методом loc . Чтобы индекс снова сделать полем таблицы, можно воспользоваться методом reset_index .

```
In [47]: yelp_review = yelp_review.set_index('business_id').loc[las_
    vegas.business_id.tolist()].reset_index()
    yelp_review
```

Out[47]:

	business_id	stars
0	_F3AMoo_zdl-he384ISQbw	5
1	_F3AMoo_zdl-he384ISQbw	4
2	_F3AMoo_zdl-he384ISQbw	5
3	_F3AMoo_zdl-he384ISQbw	4
4	_F3AMoo_zdl-he384ISQbw	2
1049651	9ouC6BpmjFpLfHeQnLQqng	5
1049652	9ouC6BpmjFpLfHeQnLQqng	5
1049653	9ouC6BpmjFpLfHeQnLQqng	5
1049654	9ouC6BpmjFpLfHeQnLQqng	5
1049655	9ouC6BpmjFpLfHeQnLQqng	5

1049656 rows × 2 columns

Теперь посчитайте среднюю оценку каждой компании, а также количество выставленных компании оценок. Помочь в этом могут функции groupby и aggregate([np.mean, np.size]) .

Out[48]:

	stars	
	mean	size
business_id		
9e1ONYQuAa-CB_Rrw7Tw	4.088904	1451
DdmeR16TRb3LsjG0ejrQ	3.200000	5
Wsrul0IGEoeRmkErU5Gg	4.928571	14
e8PjCNhEz32pprnPhCwQ	3.473684	19
o5BoU7qYMALeVDK6mwVg	3.500000	6
zymuRbVoLoJSSNdBDaFBXg	3.800000	10
zzO9QVUj-XvZ8trNX2lqAg	4.888889	9
zzOo9n22fBbKAhbSpMzggA	3.230769	26
zzjqFOujmM9surbMANZ_ag	5.000000	3
zzsKbL1KMNJqazSqBXskxQ	3.666667	6

13164 rows × 2 columns

Назовите колонки таблицы красивыми именами, изменив <имя таблицы>.columns, после чего напечатайте несколько строк полученной таблицы.

```
In [49]: yelp_review.columns = ['stars', 'count']
yelp_review
```

Out[49]:

	stars	count
business_id		
9e1ONYQuAa-CB_Rrw7Tw	4.088904	1451
DdmeR16TRb3LsjG0ejrQ	3.200000	5
Wsrul0IGEoeRmkErU5Gg	4.928571	14
e8PjCNhEz32pprnPhCwQ	3.473684	19
o5BoU7qYMALeVDK6mwVg	3.500000	6
zymuRbVoLoJSSNdBDaFBXg	3.800000	10
zzO9QVUj-XvZ8trNX2lqAg	4.888889	9
zzOo9n22fBbKAhbSpMzggA	3.230769	26
zzjqFOujmM9surbMANZ_ag	5.000000	3
zzsKbL1KMNJqazSqBXskxQ	3.666667	6

13164 rows × 2 columns

Соедините две полученные ранее таблицы по компаниям города N в одну. Для этого сначала установите поле business_id в качестве индекса в обеих таблицах с помощью set_index (в одной из них это уже должно было быть сделано). Соединение таблиц можно выполнить с помощью join . Индексы у этих таблиц одинаковые, так что тип джойна не имеет значения. В полученной таблице должны получится поля latitude , longitude, categories, name, stars, count.

Out[50]:

	latitude	longitude	categories
business_id			
_F3AMoo_zdl-he384ISQbw	36.116965	-115.185696	Arts & Entertainment;Perfori
Sx0C2RsDgrG3RxBBUoBqTw	36.136639	-115.184585	Automotive;Auto Re
v2GJWvZqEAjUc22hZUYzYw	36.142544	-115.268731	Education;Performing Arts;Spec Schools
MmR06_kNAbmOPK-0pKvGtA	36.172532	-115.197258	Food;Coffee & Tea;Dess
bOOgAB_CEWWsxalAthnRSw	36.119310	-115.171770	Performing Arts;A Entertainr
UpW3jyJ3_kTG7oDSflwnMA	36.114816	-115.230970	Restaurants;
Fv4EXwV30rwGD2NzN1ekgA	36.100067	-115.127347	A Fusion;Restaurants;Japanese;S
ZmNGlwy0MWnLVAT5qa31jw	36.093946	-115.193811	Fenc Gates;Contractors;Garage I Servi
swjz4q8gl79Ndg4APuHEUA	36.134355	-115.224462	Real Estate Services;H Services;Property I
9ouC6BpmjFpLfHeQnLQqng	36.128780	-115.208990	Martial Arts;Sports Wear;N Clothing;Spo

13164 rows × 6 columns

Изобразите все компании на графике, раскрасив точку в цвет, оттенок которого соответствует средней оценке компании. Прозрачность точки выставляйте не более 0.3.

Чтобы получить районы города, округлите значения широты и долготы, подобрав оптимальный размер района. Например, можно сделать так np.round(долготa*4, decimals=1)*0.25.

latitude longitude categories

Out[54]:

categories	longitude	latitude	
			business_id
Arts & Entertainment;Performing Arts	-115.1875	36.1125	_F3AMoo_zdl-he384ISQbw
Automotive;Auto Repair	-115.1875	36.1375	Sx0C2RsDgrG3RxBBUoBqTw
Education;Performing Arts;Specialty Schools;Ar	-115.2625	36.1375	v2GJWvZqEAjUc22hZUYzYw
Food;Coffee & Tea;Desserts	-115.2000	36.1750	MmR06_kNAbmOPK-0pKvGtA
Performing Arts;Arts & Entertainment	-115.1750	36.1250	bOOgAB_CEWWsxalAthnRSw
Restaurants;Thai	-115.2250	36.1125	UpW3jyJ3_kTG7oDSflwnMA
Asian Fusion;Restaurants;Japanese;Sushi Bars	-115.1250	36.1000	Fv4EXwV30rwGD2NzN1ekgA
Fences & Gates;Contractors;Garage Door Service	-115.2000	36.1000	ZmNGlwy0MWnLVAT5qa31jw
Real Estate Services;Home Services;Property Ma	-115.2250	36.1375	swjz4q8gl79Ndg4APuHEUA
Martial Arts;Sports Wear;Men's Clothing;Sporti	-115.2125	36.1250	9ouC6BpmjFpLfHeQnLQqng

13164 rows × 6 columns

Для получения средней оценки компании по району постройте сводную таблицу при помощи pd.pivot_table, взяв в качестве индексов и колонок округленные широту и долготу, а в качестве значений -- оценки. Аггрегирующей функцией является среднее.

Изобразите полученную таблицу при помощи sns.heatmap.

Out[55]:

latitude	36.0750	36.0875	36.1000	36.1125	36.1250	36.1375	36.1500	;
longitude								
-115.2750	3.734188	3.407152	3.968718	3.992872	3.865603	3.839602	4.010097	_;
-115.2625	3.449343	3.267968	4.505556	3.772170	4.167445	4.186540	4.025555	4
-115.2500	3.982638	3.966790	3.303903	3.770370	3.164597	4.067836	3.951462	;
-115.2375	3.920783	3.671373	3.750875	3.766603	3.702661	3.930731	3.936796	;
-115.2250	4.086580	4.383181	3.415561	3.504605	3.696926	4.037469	3.482038	;
-115.2125	3.565369	4.064503	3.376118	3.747290	3.852467	3.671987	3.686752	;
-115.2000	3.701527	4.092650	3.685484	3.657213	3.588560	3.211779	3.712982	;
-115.1875	4.220275	3.902144	3.717346	3.629066	3.851402	3.880556	3.737187	;
-115.1750	3.772702	3.453970	3.385627	3.645073	3.713893	3.786319	3.845296	;
-115.1625	4.666667	3.658846	3.302583	3.449443	3.681152	3.272191	3.796460	;
-115.1500	3.632048	2.838716	3.196415	3.483840	3.371815	3.569874	3.779187	;
-115.1375	3.079850	3.086432	3.464427	3.459463	3.240935	3.450254	3.561315	;
-115.1250	2.665517	2.855556	3.720092	3.362136	3.248382	3.102121	3.957417	;

Полученный график имеет ряд недостатков. Во-первых, не очень правильно судить о районе, если в нем мало компаний. Во-вторых, на графике цветовая гамма автоматически подстроилась под минимальное и максимальное значения оценки.

Почему эти недостатки могут быть существенными?

Ответ: При малом количестве компаний оценка менее субъективна. При автоматическом выборе цветовой гаммы, мы не различим визуально районы с близкими, но одинаковыми оценками.

Оставьте районы, в которых имеется информация о не менее 30 компаний. Постройте новый график районов, использовав параметры \mbox{vmin} и \mbox{vmax} у функции $\mbox{sns.heatmap}$.

Out[57]:

latitude	36.0750	36.0875	36.1000	36.1125	36.1250	36.1375	36.1500	;
longitude								
-115.2750	NaN	NaN	NaN	3.992872	3.865603	3.839602	4.010097	-;
-115.2625	NaN	NaN	NaN	3.772170	NaN	4.186540	4.025555	4
-115.2500	NaN	NaN	NaN	NaN	3.164597	4.067836	3.951462	;
-115.2375	3.920783	3.671373	3.750875	3.766603	3.702661	3.930731	3.936796	;
-115.2250	4.086580	NaN	3.415561	3.504605	3.696926	4.037469	3.482038	;
-115.2125	3.565369	4.064503	3.376118	3.747290	3.852467	3.671987	3.686752	;
-115.2000	3.701527	4.092650	3.685484	3.657213	3.588560	NaN	3.712982	;
-115.1875	4.220275	3.902144	3.717346	3.629066	3.851402	3.880556	3.737187	;
-115.1750	NaN	3.453970	3.385627	3.645073	3.713893	3.786319	3.845296	;
-115.1625	NaN	NaN	3.302583	3.449443	3.681152	3.272191	3.796460	;
-115.1500	3.632048	2.838716	3.196415	3.483840	3.371815	3.569874	3.779187	;
-115.1375	NaN	3.086432	3.464427	3.459463	3.240935	3.450254	3.561315	;
-115.1250	NaN	NaN	3.720092	3.362136	NaN	NaN	3.957417	;

```
In [58]:
               f, ax = plt.subplots(figsize=(16, 9))
               sns.heatmap(yelp pt,
                                  vmin=2.5,
                                  vmax=5,
                                  ax=ax,
                                  cmap='viridis');
                                                                                                           5.0
                  -115.275
                 -115.2625
                   -115.25
                                                                                                           4.5
                 -115.2375
                  -115.225
                                                                                                           4.0
               ep -115.2125
bb -115.2
-115.1875
                 -115.2125
                  -115.175
                 -115.1625
                   -115.15
                 -115.1375
                  -115.125
                           36.075 36.0875
                                                36.1125
                                                              36.1375
                                                                              36.1625 36.175 36.1875
                                                           latitude
```

Сравните полученный график с предыдущим и сделайте вывод.

Вывод: Имеем график, который лучше отражает реальность. Лучше видны различия между районами.

Рестораны

Будем считать компанию рестораном, если в поле categories codepжится слово Restaurant . Составьте таблицу, в которой будет информация о всех ресторанах города N, для которых имеется не менее 5 отзывов. Далее постройте график районов, в котором каждому району сопоставьте среднюю оценку по ресторанам этого района. Рассматривайте только те районы, в которых есть не менее 10 ресторанов, для каждого из которых есть не менее 5 отзывов.

```
In [ ]: ...
```

Чем полезны ограничения снизу на количество отзывов для ресторана и количество ресторанов в районе?

Ответ: <...>

Кот Василий очень придирчив к выбору ресторана. Он доверяет только ресторанам с высоким рейтингом, который основывается на большом количестве отзывов. Напечатайте в виде таблицы информацию 10 ресторанах с самым большим рейтингом в порядке убывания рейтинга. Для каждого из этих ресторанов должно быть не менее 50 отзывов. По каждому ресторану необходимо вывести следующую информации: название ресторана, средняя оценка, количество отзывов, географические координаты, категории.

```
In [ ]: ...
```

Нанесите на карту все рестораны со средней оценкой не менее 4.7, которая посчитана по не менее 50 отзывам. Отдельным цветом отметьте 10 ресторанов, которые вы получили ранее.

```
In [ ]: ...
```

Охарактеризуйте кота Василия, а также сделайте общий вывод по задаче.

Вывод: <...>