AI YP24 Команда 11

Тема: Выявление аномалий в данных

Руководитель: Кирилл Малюшитский

Команда

- Егошин Юрий (@Yuri_Dmitrievich)
- Глеб Лысенко (@glebly)
- Силиневич Илья (@uJlbl0IILuH)
- Цыбакова Ольга (@olgasub57)

О проекте

Цель

- Реализовать сервис для определения фрода в транзакционных данных (банковские карты, USA)

Задачи

- Научиться проводить анализ данных и обучение модели на практике
- Реализовать сервис для определения фрода и задеплоить
- Определить ключевые пороговые метрики и сравнить качество модели на основе этих метрик
- Рассчитать бизнес ценность

Этапы проекта

- ♣ Выбрать Dataset, провести EDA,
- → ML, выбрать и обучить наиболее подходящую модель
- Реализовать сервис (BE API + FE) и развернуть его
- Усовершенствовать модель, внедрение DL-архитектуры

Датасет

Исходный датасет

	Unnamed:	trans_date	_trans_time	C	_num	merchant	category	amt	first	last	gender	street .		long ci	ity_pop	job	dob	trans_num	unix_time	merch_lat	merch_long	is_fraud mer	rch_zipcode
0	0	2019-0	1-01 00:00:18	27031861896	2095	fraud_Rippin, Kub and Mann	misc_net	4.97	Jennifer	Banks	F	561 Perry Cove		-81.1781	3495	Psychologist, counselling	1988-03- 09	0b242abb623afc578575680df30655b9	1325376018	36.011293	-82.048315	0	28705.0
1	1	2019-0	1-01 00:00:44	6304233	37322	fraud_Heller, Gutmann and Zieme	grocery_pos	107.23	Stephanie	Gill	F	43039 Riley Greens Suite 393	- 1	118.2105	149	Special educational needs teacher	1978-06- 21	1f76529f8574734946361c461b024d99	1325376044	49.159047	-118.186462	0	NaN

Размер исходного датасета

data.shape

(1296675, 24)

Проведена предобработка данных:

- удалили столбцы Unnamed: 0, first, last
- перевели столбец trans_date_trans_time в datetime.
- разделили общую датувремя на год месяц день и отдельно время
- заполнили в столбце 'merch_zipcode' пропущенные значения -1
- рассчитали возраст столбец 'age'

#	columns (total 24 colu Column	Non-Null Count	Dtype
0	Unnamed: 0	1296675 non-nul:	l int64
1	trans_date_trans_time	1296675 non-nul:	l object
2	cc_num	1296675 non-nul:	l int64
3	merchant	1296675 non-nul:	l object
4	category	1296675 non-nul:	l object
5	amt	1296675 non-nul:	l float64
6	first	1296675 non-nul:	l object
7	last	1296675 non-nul:	l object
8	gender	1296675 non-nul:	l object
9	street	1296675 non-nul:	l object
10	city	1296675 non-nul:	l object
11	state	1296675 non-nul:	l object
12	zip	1296675 non-nul:	l int64
13	lat	1296675 non-nul:	l float64
14	long	1296675 non-nul:	l float64
15	city_pop	1296675 non-nul:	l int64
16	job	1296675 non-nul:	l object
17	dob	1296675 non-nul:	l object
18	trans_num	1296675 non-nul:	l object
19	unix_time	1296675 non-nul:	l int64
20	merch_lat	1296675 non-nul:	l float64
21	merch_long	1296675 non-nul:	l float64
22	is_fraud	1296675 non-nul:	l int64
23	merch zipcode	1100702 non-nul;	flastc.

EDA

• Сильный дисбаланс классов

	proportion
is_fraud	
0	99.421135
1	0.578865

count

morning	midday	evening	night	
0	0	1	0	4133
		0	1	2633
	1	0	0	466
1	0	0	0	274

• пик мошенничества - между 18 и 24 часами и также с 00 часов до 06 утра

EDA

• сколько в среднем теряется денег за одну мош. тр. и медиана потери

Признак amt

```
[ ] data[data['is_fraud'] == 1]['amt'].mean() # сколько в среднем теряется денег за одну мош. тр.
```

531.3200919264589

D data[data['is_fraud'] == 1]['amt'].median() # медианное значение за одну мош.тр.

₹ 396.505

• большинство мошенничества - бакалейные товары, сетевых магазинов

EDA

Финальный датасет

cc_num	merchant	category	amt	gender	street	city	state	zip	lat	long	city_pop	job	dob	merch_lat	merch_long	is_fraud	merch_zipcode	name	trans_year	trans_month	trans_day	trans_time	age
0 2703186189652095	fraud_Rippin, Kub and Mann	misc_net	4.97	F	561 Perry Cove	Moravian Falls	NC	28654	36.0788	-81.1781	3495	Psychologist, counselling	1988- 03-09	36.011293	-82.048315	0	28705.0	Jennifer Banks	2019	1	1	00:00:18	36
1 630423337322	fraud_Heller, Gutmann and Zieme	grocery_pos	107.23	F	43039 Riley Greens Suite	Orient	WA	99160	48.8878	-118.2105	149	Special educational needs teacher	1978- 06-21	49.159047	-118.186462	0	-1.0	Stephanie Gill	2019	1	-1	00:00:44	46

Лидерство мошеннических операций по штатаг

amt

0.000428

0.000353

0.000251

0.000248

0.000217

0.000184

0.000166

Ключевые метрики

- **F1** баланс между recall и precision так как сильный дисбаланс классов
- Целевой показатель F1>= 0.82
- Recall максимальное количество мошеннических операций Целевой показатель Recall >= 0.85
- Precision точность выявления мошенничества Целевой показатель Precision >=0.80

Baseline, Метрики, расчет

Применили модель LogisticRegression как базовую, так и с гиперпараметрами: balanced, penalty: I2, C: 0.01, solver: sag, liblinear

					1 \ \ \	/ / /	Profit
Модель	Гипрепараметры F1		Precision Re	call	ROC_AUC	Businees metric	Percentage
							, %
LogisticRegression		0.24	0.74	0.14	0.90	3 236 176 000	124.78
LogisticRegression	balanced	0.089	0.05	0.83	0.95	2 962 146 000	114.22
	balanced,						
LogisticRegression	penalty: 12,	0.089	0.047	0.83	0.95	2 962 122 000	114.22
Logistickegression	C: 0.01,	0.005	0.047	0.03	0.93	2 962 122 000	114.22
	solver: sag						
	balanced,						
	penalty: 11,						
LogisticRegression	C: 0.01,	0.089	0.047	0.83	0.95	2 962 154 000	114.22
	solver:						
	liblinear						

Выбор лучшего результата

- Лучшие метрики на модели LogisticRegression без применения каких-либо параметров
 F1 = 0.24, Precision = 0.74, Recall = 0.14 но это низкие показатели.
- SMOTE:
 F1 = 0.11, Precision = 0.06, Recall = 0.81 но это низкие показатели.
- Перебор порога для более высоких показателей метрик:

Лучший порог: 0.15, F1-Score: 0.44

Precision (Validation): 0.55 Recall (Validation): 0.36 Precision (Test): 0.58 Recall (Test): 0.39

F1 - score недостаточно высокая

• Лучший показатель F1 = 0.44

Бизнес метрики

В модель добавлены 2 бизнес метрики для оценки экономической эффективности модели:

1) Операционная маржа в результате выявления мошеннических операций с помощью модели

OM = (T - TP) * K - A * (TP + FP),

Т - число всех транзакций

ТР - количество истинно полож. результатов

К - комиссия от 1й транзакции

А - затраты на работу с выявленными моделью показателями мошеннических операций (арбитраж)

FP - количество ложноположительных результатов

2) Маржинальность выявления моделью мошеннических операций

 $OM_{=}$ = OM / (T - TP) * K

Измеряется в % и отражает эффективность определения моделью мошеннических операций.

Структура проекта

1. backend/:

Содержит API-логику на базе **FastAPI**, включая обработку данных, модели и маршруты:

- `data/`: хранит входные данные (основной CSV-файл для обучения)
 - `main.py`: главный файл запуска приложения
 - `log_config.py`: файл с настройками логгера
 - `preprocessing_data.py`: функция предобработки данных
 - `sub_functions.py`: дополнительные функции для работы API
 - `Dockerfile`: инструкция для сборки контейнера
 - `logs/`: хранение логов backend

2. frontend/:

Содержит Streamlit-приложение для визуализации:

- `logs/`: хранит логи для анализа ошибок и запросов
- `арр.ру`: основной файл для запуска приложения
- `config.py`: файл, содержащий настройки проекта
- `Dockerfile`: инструкция для сборки контейнера

3. docker-compose.yml:

Описывает сборку и запуск обоих сервисов (backend и frontend)

4. Сопроводительные файлы README.md и report.pdf:

- Описывают структуру проекта и способы его запуска
- Показывают, что должен получить пользователь при работе с проектом

Архитектура проекта DOCKER STREAMLIT CLIENT **FastAPI EndPoints** set_active_model get_list_models active_model model_predict remove_model fit_new_model remove_all

Схема работы с сервисом

Фронт (Streamlit)

ML Модель: Обучение и Предсказания

Используйте это приложение для загрузки данных, обучения модели, получения метрик и выполнения предсказаний.

Загрузка данных

Загрузка CSV файла с данными

Загрузите CSV файл с данными:

Drag and drop file here
Limit 200MB per file • CSV

Browse files

Пожалуйста, загрузите файл.

Выбор модели для предсказаний

Показать список моделей

Рис2. Streamlit интерфейс

Предсказания

Установка активной модели

Введите идентификатор (имя) модели:

Установить активную модель

Проверка активной модели

Проверить активную модель

Загрузите CSV файл с данными для предсказания:

Drag and drop file here

Browse files

Развертывание и эксплуатация

Проект развернут на VPS с конфигурацией: 4 x 3.3 ГГц CPU • 8 ГБ RAM • 80 ГБ NVMe с публичным ірv4

- http://193.160.208.32:8501/ для работы с интерфейсом Streamlit
- http://193.160.208.32:8000/docs#/ для взаимодействия с API

OC - Ubuntu 18.04, установленный Docker и Docker Compose

Рис3. Интерфейс Streamlit

Рис4. Серверная часть

Демо работы сервиса

Скринкаст. Демонстрация работы сервиса через интерфейс

- 1. Выбор датасета и определение задачи вместе
- 2. EDA, подготовка, пропуски, анализ данных, ML вместе
- 3. Разработка ВЕ, FE, доработка МL, развертывание вместе
- 4. Презентация вместе

Бизнес ценность

Для транзакционного банковского бизнеса

Маржа = Количество транзакций (Т) х Комиссия (К) - Затраты (А)

Ценность решения:

- снижение потерь на фрод операциях
- снижение рисков для клиентов (мерчантов) банка (имидж)

ROI

- ROI = ((4000*30*12 - 336000)/(336000)) * 100%= 320 % т.е затраты окупятся менее чем за год

Расчет

- 0.5% от общего объема транзакций фрод
- 530\$ в среднем потери на одну фрод операцию
- 100\$ затраты бизнеса на арбитраж фрод операции

Итого, при количество транзакций T = 10 тыс в сутки

- фрод - 50 операций, потери 50*530 = 2650

Возьмем модель с качеством предсказаний фрода ~80% (целевое)

- **Ценность для клиентов** 2650 * 0.8 = **2120** \$ в сутки
- Ценность для банка 50*0.8*100= 4000 \$ в сутки

Цели по проекту на второе полугодие

- Усовершенствование ML
- Доработка сервисных решений
- Определение пороговых метрик
- Работа с пропусками данных и признаками с целью улучшения метрик
- Исследовать другие модели, оценить их эффект.
- Обучение нейронки и сравнение с результатами ML
- Расчет и оценка бизнес эффекта от внедрения проекта

- Выбрали Dataset, провели EDA
- Реализовали Модель
- Спроектировали API, реализовали Front для работы с моделью
- Развернули решение
- Посчитали бизнес ценность, заземлили ее на метрики модели
- Наметили планы на следующие этапы