ECE 417 Midterm 1

Vikas Dhiman

Feb 18th, 2021

(1) Student name:

Student email:

About the exam

- 1. There are total 5 problems. You must attempt all 5.
- 2. Maximum marks: 50 (70 with bonus).
- 3. Maximum time allotted: 50 min
- 4. Calculators are allowed.
- 5. One US Letter size or A4 size cheat sheet (both-sides) is allowed.

Problem 1 What are the two criteria for a 3 × 3 matrix A to be a valid rotation matrix? (5 min, 5 marks)

 $AA^{T}=T$ on the genality $A^{T}A=I$ of the det $A^{T}A=I$

Figure 1: Rotation between red frame and green coordinate frame.

Problem 2 For Fig 1, write the rotation matrix
$$R(\theta)$$
 that converts between coordinates of point from red coordinate frame \mathbf{p}_c to green coordinate frame \mathbf{p}_w such that $\mathbf{p}_w = R(\theta)\mathbf{p}_c$. (Optional part) Test your formula if it looks correct for $\theta = -30^\circ$, $\mathbf{p}_c = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. (5 min, 5 marks)

$$R(\theta) = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \cdot (5 \text{ min}, 5 \text{ marks})$$

$$R(\theta) = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \cdot (5 \text{ min}, 5 \text{ marks})$$

Figure 2: Rotation of point \mathbf{v} around axis \mathbf{k} by angle θ

Problem 3 In Figure 2, we are rotating point \mathbf{v} around axis unit-vector $\hat{\mathbf{k}}$ by an angle θ . \mathbf{v}_{\perp} lies in the plane of \mathbf{v} and $\hat{\mathbf{k}}$ and is orthogonal (perpendicular) to \mathbf{k} . \mathbf{w} is perpendicular to the plane of \mathbf{v} and $\hat{\mathbf{k}}$. First, write the unit-vector $\hat{\mathbf{w}}$ in terms of \mathbf{v} and $\hat{\mathbf{k}}$. Then write unit-vector $\hat{\mathbf{v}}_{\perp}$ in terms of \mathbf{v} and $\hat{\mathbf{k}}$. (10 min, 10 marks)

Problem 4 Using the fact that at minima (or maxima) of a differentiable function $f(\mathbf{x})$, $\nabla_{\mathbf{x}} f(\mathbf{x}) = 0$, find the minima of the following function,

$$f(\mathbf{x}) = \mathbf{x}^{\top} A^{\top} A \mathbf{x} + 2 \mathbf{b}^{\top} \mathbf{x} + c$$

(10 min, 10 marks)

$$\frac{\partial}{\partial x} \left(x^T A^T A x + 2 b x + C \right) = 0$$

$$\Rightarrow$$
 $(A^TA)X = b$

$$\frac{\partial (x^TQx)}{\partial x} = 20$$

$$f(x) = (x - \mu_1)(x - \mu_1) + (x - \mu_2)(B'B)(x - \mu_2)$$

$$= (x' - \mu_1)(x - \mu_1) + (x' - \mu_2)(B'B)(x - \mu_2)$$

$$= (x' - \mu_1)(x - \mu_1) + (x' - \mu_2)(B'B)(x - \mu_2)$$

Problem 5 In figure 3 find the 3D position of pothole in the World coordinate frame, in terms of h and K. The Camera mounted directly on top of the world frame. The road is a perfect plane and the pothole lies on the road plane. You do not need to substitute in the values, providing a formula or pseudo-code for computing the pothole coordinates is enough. (20 min, 20 marks, Bonus marks: 20)

Purholi compra mod

Punholi compra mod

Punholi compra mod

Ray (1) 1 EIR

Ray (1) > 1 EIR

Ray (1) > 1 EIR

Conner a forme

Towns a forme

Ray (2) X = 2 K d u

Ray (3) World frome

Towns a forme

X = R(0) X + t

X = Ry (3) with Roadflanc

(2 x = 2)