Multispectral Object Detection

Bachhav Aryan Kishor

Indian Institute of Techhology Kanpur

Abstract

- Multispectral image pairs increase object detection by combining RGB and Thermal information for reliability.
- Proposed Cross-Modality Fusion Transformer (CFT) utilizes the Transformer framework, unlike CNN-based approaches.
- CFT leverages self-attention to enable simultaneous intra- and inter-modality fusion.
- Captures interactions between RGB and Thermal domains, improving multispectral detection performance.
- Experiments show CFT achieves state-of-the-art results in multispectral object detection.
- CFT's design allows for effective integration of long-range dependencies, providing enhanced contextual awareness across modalities.

Goal

- Enhance detection accuracy by combining complementary information from multiple spectra
- Improve robustness in challenging environments, such as low-light or adverse weather
- Capture unique features across different modalities to detect a broader range of objects
- Enable more effective and adaptable object detection systems for diverse applications.
- Energy efficiency by selectively using specific spectra based on environmental needs, preserving computational resources.
- Facilitate long-range detection by employing spectra that penetrate environmental obscurants, improving accuracy for distant objects

Methodology

Proposed Approach: The YOLOv5 feature extraction network is redesigned as a two-stream backbone, to process both RGB and thermal images.

Cross-Modality Fusion Backbone (CFB): The two-stream backbone integrates the proposed CFT modules for efficient fusion and interaction between modalities

Input Transformation: RGB and thermal feature maps are flattened and reordered for Transformer input.

Transformer for Multispectral Fusion: The self-attention mechanism helps the network learn the relationships between RGB and thermal modalities. The correlation matrix (α) shows how intra- and intermodality relationships are weighted to enhance detection performance.

Efficiency and Speed improvement:

To reduce training time, we replaced SPP with SPPF (Simple Path Pooling Fast) for faster feature extraction.

To reduce computation further I used CrossConv instead of standard Conv layers in some parts of the architecture.which requitre less feature parameter compare to stadard convolution.

Result

Ablation Studies

On LLVIP, CFT shows gains of 0.7% in mAP50, 0.9% in mAP75, and 0.1% in mAP.

On Vedai, CFT shows gains of 0.7% in mAP50, 0.9% in mAP75, and 0.1% in mAP.

Dataset	Modality	Method	mAP50	mAP75	mAP
		YOLOV5	95.8	68.4	60
LLVIP	RGB+T	CFT	96.5	69.3	60.1
		YOLOV5	70.4	47.7	46.8
VEDAI	RGB+T	CFT	73.4	52.7	51.6

Conclusion

- Proposed Approach: Introduced Cross-Modality
 Fusion Transformer (CFT) to increase multispectral
 object detection by learning long-range dependencies
 and global contextual information.
- Enhanced Backbone: CFT modules are densely integrated within the backbone to maximize feature fusion and leverage complementary information between RGB and Thermal features.
- Detector Combination: Successfully applied CFT to popular detectors like YOLOv5, YOLOv3, and Faster R-CNN, increasing in both one-stage and two-stage detectors in multispectral object detection.