Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	13 October 2022
Team ID	PNT2022TMID16094
Project Name	SMART FARMER - IOT ENABLED SMART
	FARMING APPLICATION SYSTEM.
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	As a user Registration through Gmail
FR-2	User Confirmation	As a user Confirmation via Email then generate the Confirmation via OTP
FR-3	Log in to system	Once confirmation message received after login the system and Check Credentials
FR-4	Check Credentials	Once check the credentials after go to the Manage modules.
FR-5	Manage modules	In this manage modules described the below functions like Manage System Admins Manage Roles of User Manage User permission and etc
FR-6	Logout	Then check Temperature, humidity and moisture after then logout or exist the application.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution. $\label{eq:following} % \[\begin{array}{c} (x,y) & (x,y) \\ (x,y)$

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Usability includes easy learn ability, efficiency in use, remember ability, lack of errors in operation and subjective pleasure.
NFR-2	Security	Sensitive and private data must be protected from their production until the decision-making and storage stages.
NFR-3	Reliability	The shared protection achieves a better trade-off between costs and reliability. The model uses dedicated and shared protection schemes to avoid farm service outages.
NFR-4	Performance	the idea of implementing integrated sensors with sensing soil and environmental or ambient parameters in farming will be more efficient for overall monitoring.

NFR-5	Availability	Automatic adjustment of farming equipment made possible by linking information like crops/weather and equipment to auto-adjust temperature, humidity, etc.
NFR-6	Scalability	scalability is a major concern for IoT platforms. It has been shown that different architectural choices of IoT platforms affect system scalability and that automatic real time decision-making is feasible in an environment composed of dozens of thousand.