图论作业(第四周)

黄瑞轩 PB20111686

Chap 3 Prob. 7

按下面方法来构造满足条件的图G。

- (1) 选取两个完全图 $K_{n+1}[1,2]$ 作为图 G 的两个部分,这保证了当前 $\delta(G)=n$ 。
- (2) 在 $K_{n+1}[1]$ 中选择 l_1 个点,记为 V_1 ,在 $K_{n+1}[2]$ 中选择 l_2 个点,记为 V_2 ,满足 $l_1+l_2=l$ 。
- (3) 对于 V_1 中每个元素,可以在 $V(K_{n+1}[2])-V_2$ 中选择一些顶点(记为 V_2'),记这里选择的顶点总数为 m_1 ,将 V_1 中每个元素与 V_2' 中的元素之间建立一条边(V_2' 中的元素只能用一次,这一步的正确性由 $m_1 < m \leq n$ 保证)。对于 V_2 中的元素亦是如此(保证 $m_1+m_2=m$)。
- (4) 上面的操作保证了顶点的度数只会增加而不会减少,这里有 2n+2 个顶点,最多只有 m 个顶点度数增加,因此 $\delta(G)=n$ 仍满足;如果不删除 V_1+V_2 中的所有顶点,比如已经删除了 l-1 个顶点,还剩下 V_1 中某个顶点,按照上面的构造这个顶点一定会和 $V(K_{n+1}[2])-V_2$ 中某个顶点连通,剩下的图仍然是连通的,当删除 V_1+V_2 中所有顶点后图一定不连通,故 $\kappa(G)=l$;同理, $\kappa'(G)=m$ 。

Chap 3 Prob. 10

如果 G_1 与 G_2 有超过一个公共顶点,则会形成圈,使得 $G_1 \cup G_2$ 是块,与 G_1, G_2 是块矛盾,块 G_1, G_2 之间最多只有一个公共顶点。

如果 G_1 与 G_2 只有一个公共顶点 u ,那么 u 一定是 $G_1\cup G_2$ 的割顶,但如果 u 不是 G 的割顶,意味着 G_1 中元素 w 到 G_2 中元素 v 在 G 中有不经过 u 的轨道 $P(w,v)=P_1(w,u)+P_2(u,v)$,设经过 u 的轨道为 Q(w,v) 。

由于 G_1,G_2 都是块,于是任给 $w,v,x\in V(G_1)\cup V(G_2),w\in V(G_1),v\in V(G_2)$,不妨设 $x\in G_2$,可以找到这样的 P(w,v),使得 x 不在 P(w,v) 上。 (因为 $x\not\in G_1$,所以 $x\not\in P_1(w,u)$,块 G_2 的性质保证可以选一条 $P_2(u,v)$ 使得 x 不在其上。)故 $G_1\cup G_2$ 是块,与 G_1,G_2 是块矛盾,所以 u 是 G 的割顶。

Chap 3 Prob. 13

设图 G 的边图为 L(G) ,现在要考虑 uv- 边割集,则在 L(G) 中添加顶点 u,v ,将与 u,v 直接连接的边代表的顶点各自与 u,v 相连构成新图 H 。

根据顶点版本的Menger定理, H 的 uv- 顶割集元素个数与 u,v 之间不含公共顶点的轨道数相同。 H 中两个顶点相邻表示 G 中两条道路相邻, H 中两条轨道公共的顶点表示 G 中公共的边,在 G 的视角,即 G 的 uv- 边割集元素个数与 u,v 之间不含公共边的轨道数相同。

可能的疑问: 照这么说,岂不是 $\kappa(G)=\kappa'(G)$? 非也,在构造边图时, u,v 的所有直接相连的边都会成为一个独立的顶点, u,v 之间不含公共边的轨道数事实上是 u,v 相连边形成的独立顶点之间的轨道数总和,在这个意义上也即 $\kappa(G)\leq\kappa'(G)$ 。上面的解答为了方便直观理解,在 L(G) 中添加顶点 u,v,将与 u,v 直接连接的边代表的顶点各自与 u,v 相连了。

Chap 3 Prob. 26

 $H_{8,3}$ 的绘画过程:

 $H_{9,3}$ 的绘画过程:

Chap 4 Prob. 2

首先 $\nu \geq 3$ 是显然的,则 $\varepsilon \leq 3\nu-6$,又 $\nu-\varepsilon+\phi=2$,五面体 $\phi=5$,结合已有式子得到 $\nu \geq 4.5$,即 $\nu \geq 5$ 。 $\nu=5$ 的时候存在这样的五面体(四棱锥),根据欧拉公式其 $\varepsilon=8$; $\nu=6$ 的时候存在这样的五面体(三棱台),根据欧拉公式其 $\varepsilon=9$ 。当 $\varepsilon \geq 10$ 时, $\sum_{v \in G} \deg(v) = 2\varepsilon \geq 20 \geq \delta \nu$,而 $\nu-\varepsilon+5=2$,得到 $7\delta \leq 20$,即 $\delta < 3$,对于五面体来说这是不可能的,故没有其他边数更多的五面体类型了。

Chap 4 Prob. 3

- (1) 由于 $\nu>11$,则 $\varepsilon\leq 3\nu-6$, $\varepsilon(G^c)=\varepsilon(K_{\nu})-\varepsilon(G)\geq \frac{\nu(\nu-1)}{2}-3\nu+6$,当 $\nu>11$ 时显然有 $\frac{\nu(\nu-1)}{2}-3\nu+6>3\nu-6$,所以 G^c 不是平面图。
 - (2) 由 (1) 计算可知,当 $10 \le \varepsilon(G_{\nu=8}) \le 18$ 时,可以保证 G,G^c 均是平面图,下面是一个例子。

Chap 4 Prob. 6

- (1) 假设 $\forall f \in F(G), \deg(f) \geq 5$,则 $\sum_{f \in F(G)} \deg(f) = 2\varepsilon \geq 5\phi$,又 $2\varepsilon \geq \delta\nu = 3\nu$,结合欧拉公式 $\nu \varepsilon + \phi = 2$,得 $\phi \geq 12$,与题设矛盾。故 $\exists f_0 \in F(G), \deg(f_0) \leq 4$ 。
- (2) 正十二面体是由 12 个正五边形所组成的正多面体,它共有 20 个顶点、 30 条棱,每个顶点的度数都是 3 ,但是每个面的度数都是 5 。