Fortgeschrittenenpraktikum der Fakultät Physik

Versuch 23: Quanten Analogien

Luca Dietrich (luca.dietrich@tu-dortmund.de) Cihad Gözsüz (cihad.goezsuez@tu-dortmund.de)

Durchführung: 03.05.2021 Abgabe: 21.07.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	setzung	3
2	Theorie		3
	2.1	Das Wasserstoffatom	3
	2.2	Das Wasserstoffmolekül	5
	2.3	Der 1-dim Festkörper	6
	2.4	Analogie zum Wasserstoffatom und -molekül	7
		2.4.1 Wasserstoffatom	7
		2.4.2 Wasserstoffmolekül	9
	2.5	Analogie zum 1-dim Festkörpers	9
3	Aufbau und Durchführung		
	3.1	Der Aufbau	9
	3.2	Vorbereitende Experimente	
	3.3	Das Wasserstoffatom	
	3.4	Das Wasserstoffmolekül	
	3.5	Der 1-dim Festkörper	
4	Aus	wertung	11
5	Disk	cussion	16

1 Zielsetzung

Ziel des Versuchs ist es quantenmechanische Strukturen wie das Wasserstoffatom, Wasserstoffmolekül und die Bandstruktur in eindimensionalen Festkörpern mit Hilfe von Analogien in der Akustik zu untersuchen und die Gemeinsamkeiten und Grenzen dieser Analogien zu untersuchen. Dazu werden akustische Experimente mit Hohlraumresonatoren und Zylindern aus Aluminium durchgeführt.

2 Theorie

Für die quantenmechanischen Modellen können Analogien mit Hilfe der Akustik geschaffen werden, im Folgenden werden die quantenmechanischen Grundlagen für die einzelnen Modelle erläutert und die Gemeinsamkeiten und Unterschiede zu den akustischen Experimenten benannt und begründet.

2.1 Das Wasserstoffatom

Das Wasserstoffatom ist das simpelste Atom. Es besteht aus einem Proton im Kern und einem Elektron in der Hülle. Die zeitunabhängige Schrödingergleichung für dieses System lautet:

$$\hat{H}\,\varPsi(\vec{r}) = -\frac{\hbar^2}{2m}\triangle\,\varPsi(\vec{r}) - \frac{e^2}{4\pi\epsilon_0 r}\,\varPsi(\vec{r}) = E\,\varPsi(\vec{r}) \eqno(1)$$

Dabei ist $\Psi(\vec{r})$ ist die Wellenfunktion, E die Gesamtenergie und \hat{H} der Hamiltonoperator. Für ein Elektron im Wasserstoffatom lautet \hat{H} :

$$\hat{H} = -\frac{\hat{p}^2}{2m} - \frac{e^2}{4\pi\epsilon_0 r} \tag{2}$$

Hierbei ist \hat{p} der Impulsopertaor, \hbar das gekürzte planksche Wirkungsquantum, m die Masse des Elektrons, e die Elementarladung und ϵ_0 die elektrische Feldkonstante. Aufgrund der Kugelsymmteire des Systemes werden Kugelkoordinaten verwendet, dort lautet der Laplace-Operator \triangle :

$$\triangle = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2} = \triangle_r + \frac{1}{r^2} \triangle_{\theta, \varphi}$$
(3)

Um die Schrödingergleichung zu lösen wird die Wellenfunktion Ψ mit dem Seperationsansatz in einen Radialteil R_{nl} und einen Winkelanteil Φ_{lm} aufgeteilt:

$$\Psi_{nlm}(\vec{r}) = R_{nl}(r)\,\Phi_{lm}(\theta,\varphi) \tag{4}$$

Für das Wasserstoffatom gibt es 3 Quantenzahlen namens n,l,m. Dabei ist n die Hauptquantenzahl, l die Nebenquantenzahl und m die Magnetquantenzahl. Für die Quantenzahlen gilt

$$n \in \mathbb{N}$$
$$l \in \mathbb{N}_0$$
$$m \in \mathbb{Z}$$

und

$$l < n$$
$$|m| \le l.$$

Mit dem Seperationsansatz entstehen zwei entkoppelte Differentialgleichungen. Für dieses Experiment ist jedoch nur die Lösung des Winkelanteils interessant, da nur dieser in dem akustischen Modell modelliert werden kann. Dies führt für den Radialanteil und Winkelanteil zu folgender Differentialgleichung:

$$ER_{nl}(r) = \left(-\frac{\hbar^2}{2mr}\frac{\partial^2}{\partial r^2}r - \frac{\hbar^2}{2mr^2}l(l+1) - \frac{e^2}{r}\right)R_{nl}(r) \eqno(5)$$

$$-l(l+1)\Phi_{lm} = \triangle_{\theta,\varphi}\,\Phi_{lm}(\theta,\varphi) \tag{6}$$

Dabei ist $\triangle_{\theta,\varphi}$ der Winkelanteil des Laplace operators \triangle in Kugelkoordinaten. Der Term mit l(l+1) kommt in der Herleit ung dadurch zustande, dass $-\hbar^2 \triangle_{\theta,\varphi} = \hat{L}^2$ entspricht, wobei \hat{L} der Drehimpulsoperator ist. Für \hat{L}^2 gilt folgende Eigenwert gleichung:

$$\hat{L}^2 |\psi\rangle = \hbar^2 l(l+1) |\psi\rangle \tag{7}$$

Die Eigenwertgleichung (6) kann mit Hilfe der Kugelflächenfunktionen $Y_{lm}(\theta,\varphi)$ gelöst werden und diese ergeben sich zu:

$$Y_{lm}(\theta,\varphi) = \frac{1}{\sqrt{2\pi}} N_{lm} P_{lm}(\cos\theta) e^{im\varphi}$$
(8)

Hierbei bezeichnet P_{lm} die zugeordneten Legendrepolynome

$$P_{lm}(x) = \frac{(-1)^m}{2^l l!} \left(1 - x^2\right)^{\frac{m}{2}} \frac{d^{l+m}}{dx^{l+m}} \left(x^2 - 1\right)^l \tag{9}$$

und N_{lm} den Normierungsfaktor

$$N_{lm} = \sqrt{\frac{2l+1}{2} \cdot \frac{(l-m)!}{(l+m)!}}.$$
 (10)

Die Eigenenergiewerte des Wasserstoffatoms betragen:

$$E_n = -\frac{e^2}{8\pi\epsilon_0 a_0} \cdot \frac{1}{n^2} \tag{11}$$

Dabei bezeichnet $a_0 = \frac{4\pi\epsilon_0\hbar^2}{me^2}$ den Bohrschen Radius. In Gleichung (11) ist auffällig, dass die Eigenenergiewerte beim Wasserstoffatom eine Entartung in m aufzeigen, die durch die sphärische Symmetrie resultiert. Diese Entartung kann durch ein anlegen eines äußeren Magnetfeldes aufgehoben werden. Durch die Felder wird die Symmetrie gebrochen. Dieser Effekt wird Zeemanneffekt genannt. Die Entartung in l ist jedoch ein Resultat aus dem $\frac{1}{r}$ - Potential. Zusätzlich führt die Berücksichtigung von Spin und relativistischen Beiträgen zu weiteren Aufspaltungen, diese wurden hierbei jedoch nicht berücksichtigt.

2.2 Das Wasserstoffmolekül

Das Wasserstoffmolekül H_2 besteht aus 2 Wasserstoffatomen und ist damit das einfachste neutrale Molekül. Es besteht also aus 2 positiven Protonen und 2 Elektronen. Dieses Problem ist jedoch nicht analytisch lösbar. Jedoch existieren Näherungen, um die Wellenfunktion des Systems zu approximieren. Die zu lösende Schrödingergleichung lautet:

$$E\Psi(1,2) = \left(\hat{H}_1 + \hat{H}_2 - \frac{e^2}{r_{a2}} - \frac{e^2}{r_{b1}} - \frac{e^2}{r_{12}} - \frac{e^2}{R_{ab}}\right)\Psi(1,2) \tag{12}$$

Hierbei sind $\hat{H}_{1,2}$ die Hamiltonoperatoren der einzelnen Wasserstoffatome, und die anderen Variablen beschreiben die Abstände der Elektronen 1 und 2 zu den Kernen a und b aus Abbildung 1.

Abbildung 1: Schematische Skizze des Wasserstoffmoleküls.

Da die Elektronen Fermionen sind unterliegen sie dem *Pauli-Verbot* und dies muss auch die Wellenfunktion erfüllen. Also muss die Gesamtwellenfunktion antisymmetrisch sein. Die Gesamtwellenfunktion $\Psi(1,2)$ besteht aus einer Ortswellenfunktion $\tilde{\Psi}(1,2)$ und einer Spinwellenfunktion S(1,2):

$$\Psi(1,2) = \tilde{\Psi}(1,2) \cdot S(1,2) \tag{13}$$

Dadurch muss die Spinwellenfunktion antisymmetrisch sein, falls die Ortswellenfunktion symmetrisch ist und vice versa. Dadurch ergeben sich 4 mögliche Wellenfunktionen:

$$\varPsi_{t1}(r_1,r_2) = \uparrow_1 \uparrow_2 (\varPsi_a(r_1)\varPsi_b(r_2) - \varPsi_a(r_2)\varPsi_b(r_1)) \tag{14}$$

$$\varPsi_{t2}(r_1,r_2) = \downarrow_1 \downarrow_2 (\varPsi_a(r_1)\varPsi_b(r_2) - \varPsi_a(r_2)\varPsi_b(r_1)) \tag{15}$$

$$\varPsi_{t3}(r_1,r_2) = \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 + \uparrow_2 \downarrow_1 \right) \left(\varPsi_a(r_1) \varPsi_b(r_2) - \varPsi_a(r_2) \varPsi_b(r_1) \right) \tag{16}$$

$$\varPsi_s(r_1,r_2) = \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 - \uparrow_2 \downarrow_1 \right) \left(\varPsi_a(r_1) \varPsi_b(r_2) + \varPsi_a(r_2) \varPsi_b(r_1) \right) \tag{17}$$

Hierbei bezeichnet \uparrow_i und \downarrow_i den jeweiligen Spin des jeweiligen Elektrons und r_i bezeichnet die position im Raum des Elektrons. Dabei bilden die Ψ_t Wellenfunktionen das Triplett mit antisymmetrischer Ortswellenfunktion und symmetrischer Spinwellenfunktion, dies wird als Orthowasserstoff bezeichnet. Ψ_s ist das Singulett mit antisymmetrischer Spinwellenfunktion und symmetrischer Ortswellenfunktion und wird als Parawasserstoff bezeichnet. Beim Wasserstoffmolekül gibt es bindende und anti-bindende Zustände, diese werden durch den Phasenunterschied $\Delta \varphi$ definiert. Nur bei einer Überlappung mit einem geraden Zustand, wirkt das Resultat bindend und bei einem Phasenunterschied von $\Delta \varphi = \pi$ wird dieser Zustand als ungerade bezeichnet und wirkt antibindend.

2.3 Der 1-dim Festkörper

Beim Festkörper kommt es durch das Pauli-Prinzip, das beschreibt dass 2 Fermionen wie Elektronen sich nicht gleichzeitig im selben Zustand befinden dürfen, im Gegensatz zum Wasserstoffatom nicht zu scharfen Spektrallinien sondern zu Energiebändern, die aus den erlaubten Zonen bestehen. Zwischen den Energiebändern gibt es Bandlücken, die aus den verbotenen Zonen bestehen. Um einen Festkörper zu modellieren werden Kastenpotentiale mit periodischen Randbedingungen verwendet. Dadurch ergibt sich in der Dispersionsrelation $E(\vec{k})$ in erster Näherung eine Proportionalität zu k^2 . Die Dispersionsrelation beträgt:

$$E(k) = \frac{\hbar^2 k^2}{2m} \tag{18}$$

In einem eindimensionalen Festkörper wird ein Elektron in einem periodischen Potential U(x) betrachtet. Das Potential und die Wellenfunktion in eine Fourierreihe entwickelt ergibt dann:

$$U(x) = \sum_{i} U_G \cdot e^{iGx} \tag{19}$$

$$U(x) = \sum_{G} U_G \cdot e^{iGx}$$

$$\Psi(x) = \sum_{k} C_k \cdot e^{ikx}$$

$$(19)$$

Aus den periodischen Randbedingungen ergibt sich dann $k = \frac{2\pi}{L}n$. Dies eingesetzt in die Schrödingergleichung ergibt dann:

$$E\Psi(x) = \left(-\frac{\hbar^2}{2m}\Delta + U(x)\right)\Psi(x) \tag{21}$$

Für ein Elektron ergibt sich dann folgende Gleichung:

$$\left(\frac{\hbar^2 k^2}{2m} - E\right) C_k + \sum_G U_G C_{k-G} = 0 \tag{22}$$

Die Darstellung der Dispersionsrelation muss jedoch auf ein reduziertes Zonenschema mit Wellenvektor beschränkt auf $-\frac{\pi}{a} \leq k \leq \frac{\pi}{a}$ eingegrenzt werden. Das vollständige Zonenschemaergibt sich durch periodisches aneinander Reihen dieser Dispersionsrelation vom reduzierten Zonenschema. Die Zone, die das reduzierte Zonenschema umfasst, wird auch als die *erste Brillouin-Zone* bezeichnet.

Jedoch sind Festkörper in der Realität nicht zu 100% reine Kristalle und besitzen oft Defekte. Diese Defekte werden häufig durch Fehlstellen oder Fremdatome in der Kristallstruktur ausgelöst und müssen durch veränderte Potentialtöpfe modelliert werden.

2.4 Analogie zum Wasserstoffatom und -molekül

Im Folgenden werden die Analogien zwischen akustischen Experimenten und dem Modell des Wasserstoffatom und Wasserstoffmolekül dargestellt.

2.4.1 Wasserstoffatom

Für einen Kugelresonator gilt im klassischen Fall die Helmholtzgleichung mit

$$\frac{\partial^2 p(\vec{r}, t)}{\partial t^2} = \frac{\triangle p(\vec{r}, t)}{\rho \kappa},\tag{23}$$

wobei $p(\vec{r},t)$ der Druck ist an der Stelle \vec{r} zur Zeit t, ρ und κ sind dabei die Dichte und die Kompressibilität des Mediums bzw. der Luft. Ähnlich wie im quantenmechanischen Modell lässt sich die Zeitentwicklung von der räumlichen Entwicklung seperarieren, dafür wird folgender Ansatz verwendet:

$$p(\vec{r},t) = p(\vec{r}) \cdot \cos(\omega t) \tag{24}$$

Durch Einsetzen von $\frac{1}{c^2} = \rho \kappa$, wobei c die Schallgeschwindigkeit ist, ergibt sich die stationäre Druckverteilung mit dem Laplaceoperator \triangle aus Gleichung (3) in Kugelkoordinaten:

$$-\frac{\omega^2}{c^2}p(\vec{r}) = \triangle p(\vec{r}) = \left(\triangle_r + \frac{1}{r^2} \triangle_{\theta,\varphi}\right)p(\vec{r}) \tag{25}$$

Äquivalent wie in Kapitel 2.1 kann dieses Problem durch Seperation mit $p(r,\theta,\varphi) = \Psi_{lm}(\theta,\varphi) \cdot R(r)$ in einen Radial- und Winkelanteil seperiert werden und es entstehen 2 unabhängige Gleichungen:

$$-l(l+1)\Psi_{lm}(\theta,\varphi) = \triangle_{\theta,\varphi}\Psi_{lm}(\theta,\varphi)$$
(26)

$$\frac{\omega^2}{c^2}R(r) = \left(-\frac{\partial^2}{\partial r^2} - \frac{2}{r}\frac{\partial}{\partial r} + \frac{l(l+1)}{r^2}\right)R(r)$$
 (27)

Abbildung 2: Schematischer Aufbau des Kugelresonators. [Anleitung]

Ohne den Zwischenring wird durch die Stellung von Mikrofon und Lautsprecher und die Symmetrie derer nur die m=0 Moden angeregt. Durch Einsetzen eines Zwischenrings wie in Abbildung 2 wird die Symmetrie gebrochen und es werden nun auch die $m\neq 0$ Moden angeregt. Dadurch wird die Entartung in m teilweise aufgehoben. Dabei sind durch den Zwischenring nur noch die jeweiligen +m- und -m-Moden entartet. Die Kugelflächenfunktionen sind nun durch die Zwischenringe eigentlich auch keine exakte

Lösungen mehr, aber sie sind immernoch näherungsweise eine Lösung des Systems. Im Allgemeinen ergeben die Messungen mit dem Mikrofon in der Analogie auch nur das Betragsquadrat $|\Psi|^2$ der Wellenfunktion und nicht die Wellenfunktion Ψ an sich.

2.4.2 Wasserstoffmolekül

Für das Wasserstoffmolekül werden zwei Kugelresonatorüber eine kreisförmige Blende mit einander verbunden. Genau wie im Wasserstoffmolekül sind die Wellenfunktionen der einzelnen Elektronen bzw. den einzelnen Kugelresonatoren miteinander gekoppelt und verbunden. Die dabei entstehenden Orbitale überlappen dann in den verbundenen Resonatoren. Genau wie beim Wasserstoffmolekül gibt es bindende und anti-bindende Zustände, diese werden auch über den Phasenunterschied $\Delta \varphi$ definiert wie im Ende von Abschnitt 2.2 beschrieben.

2.5 Analogie zum 1-dim Festkörpers

Beim akustischen Analogon werden Aluminiumzylinder mit Zwischenblenden zu einer linearen Kette gereiht. Für einen zylindrischen Hohlraumresonator ist die Dispersionsrelation linear abhängig zur Wellenzahl κ im Festkörper ist eine quadratischer Zusammenhang vorhanden. Resonanzen entstehen, wenn die Länge des Zylinders einem Vielfachen der Wellenlänge des Schalls entspricht. Die einzelnen Röhren werden dann aneinander gereiht mit Blenden, dadurch beeinflussen sich die einzelnen Resonatoren gegenseitig. Die Strecke von einer Blende zur nächsten entspricht im akustischen Analogon der ersten Brillouin-Zone. Der Durchmesser der Öffnungen der eingesetzten Blenden entspricht dann der Kopplungsstärke der einzelnen Resonatoren und jede Schallwelle wird beim Durchlaufen der Blende gestreut. Defekte stören die Periodizität in einem reellen Festkörper, im Akustikexperiment werden die Störungen durch einzelne Zylinder in der Kette simuliert, die entweder kürzer oder länger sind als die anderen. Dadurch entstehen Störungen in der Resonatorkette und diese können als Defekte bezeichnet werden.

3 Aufbau und Durchführung

Im Folgenden wird der Aufbau und die Durchführung des versuchs beschrieben.

3.1 Der Aufbau

Die Materialien für den Versuch sind in Abbildung 3 zu sehen. Für den Versuch stehen in einem Baukasten kugelförmige Hohlraumresonatoren als Halbkugeln mit Lautsprecher und Mikrofon jeweils in einer der beiden Hälften. Außerdem gibt es 2 weitere Halbkugeln mit einem Loch und dazugehörige Blenden mit den Durchmessern von $d = \{10, 13, 16\}$ mm. Zusätzlich sind in einem Baukasten zylinderförmige Hohlraumresonatoren mit den Längen von $h = \{12.5, 50, 75\}$ mm und Blenden mit den Durchmessern von $d = \{10, 13, 16\}$ mm vorhanden. Diese Bauteile können auf eine Schiene aufgebracht werden, wo dann auch ein Lautsprecher und ein Mikrofon als Enden vorhanden sind. Die Messung kann einerseits

über einen Computer mit der Software namens SpectrumSLC durchgeführt werden. Dabei bietet die Schnittstelle mit dem Computer ein Audiosignal an den Lautsprecher und aknn die Signale des Mikrofons empfangen und verarbeiten. Eine andere Variante ist die Messung mit Hilfe eines Oszilloskops. Die Schaltung ist in Abbildung 4 skizziert. Dafür wird der Lautsprecher an der Steuerelektronik an Speaker Out und das Mikrofon an Micro Input angeschlossen. Ein Sinusgenerator wird einerseits mit Channel 1 vom Oszilloskop verbunden als auch in Sine Input der Steuerelektronik. Channel 2 wird an den Anschluss namens AC Monitor in der Steuerelektronik angeschlossen. in der Steuerelektronik ist ein Frequenz-Amplitude-Konverter vorhanden, damit die Frequenzen am Oszilloskop untersucht werden können. Mit Hilfe der sweep-Funktion des Sinusgenerators können dann die Daten zeitlich mit der Frequenz am Oszilloskop verarbeitet werden. Am PC können die Daten direkt gespeichert werden udn am Oszilloskop können durch Anschließen eines USB-Sticks die Bilder gespeichert werden.

Abbildung 3: Hohlraumresonatoren und Irisblenden. [Anleitung]

Abbildung 4: Skizze der Schaltung des Versuchs. [Anleitung]

3.2 Vorbereitende Experimente

Bevor mit den richtigen Experimenten angefangen werden kann, muss die Versuchstechnik getestet werden. Dafür werden die zylinder mit einer Länge von 50 mm benötigt. Es wird nun zuerst ein Zylinder Zwischen Lautsprecher und Mikrofon gestellt und ein Frequenzspektrum von 100 Hz bis 12 kHz mit dem Oszilloskop aufgenommen und dokumentiert. Danach wird ein Zylinder an die Kette angehangen und das selbe Spektrum aufgenommen. Dies wird bis zum 12. Zylinder durchgeführt. Danach wird die selbe Messung mit dem Computer durchgeführt. Die Frequenzspektren sollten jeweils keine signifikanten Unterschiede zwischen der Messung mit dem Oszilloskopund dem Computeraufweisen. Zum Schluss wird ein Frequenzspektrum eines einzelnen 75 mm Zylinders mit Oszilloskop und Computer aufgenommen und verglichen.

- 3.3 Das Wasserstoffatom
- 3.4 Das Wasserstoffmolekül
- 3.5 Der 1-dim Festkörper
- 4 Auswertung

Abbildung 5: Gemessene Frequenzspektren der Zylinder-Resonatoren mit unterschiedlicher Länge. Die Messung am Oszillator ist links angegeben und die Messung am Computer rechts.

Abbildung 6: Das Frequenzspektrum eines 75 mm langen Zylinder-Resonators.

(a) Messung am Computer

(b) Messung am Oszilloskop

Abbildung 7: Das Frequenzspektrum eines kugelförmigen Hohlraumresonators bei einer Ausrichtung von $\theta=180^\circ$ in dem Bereich $0.1\,\mathrm{kHz}$ bis $10\,\mathrm{kHz}$.

(a) Resonanz bei $2.3\,\mathrm{kHz}$

(b) Resonanz bei $3.67\,\mathrm{kHz}$

(c) Resonanz bei 6.18 kHz

(d) Resonanz bei $7.38\,\mathrm{kHz}$

Abbildung 8: Amplitudenmessung an den Resonanzfrequenzen in Abhängigkeit vom Azimutwinkel $\phi.$

5 Diskussion