Lecture 22

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Finite volume method

- FEM is <u>NOT</u> used.
- The box method is used.
 - Differential form

$$\nabla \cdot \mathbf{F} = s$$

Integrated form

$$\oint_{\partial \Omega} \mathbf{F} \cdot d\mathbf{a} = \int_{\Omega} s d^3 x$$

- Ω is the Voronoi cell.
- Delaunay mesh is needed!

Voronoi volume

- Within the Voronoi volume of a center node, the closest node is the center node.
 - Calculating the plane (3D) or the line (2D), which is perpendicular to an edge and cross its mid-point

Pentagon examples

Delaunay (Left) versus non-Delaunay (Right)

Poisson equation

- LHS, $\oint_{\partial\Omega} \mathbf{F} \cdot d\mathbf{a}$
 - It can be written as

$$\sum_{i=1}^{5} F_{0i} A_{0i} = -\sum_{i=1}^{5} \epsilon \frac{\phi_i - \phi_0}{l_{0i}} A_{0i}$$

- We must calculate l_{0i} and A_{0i} .

Recipe

- For a 2D structure, it is not very difficult.
 - For each triangle whose side lengths are a, b, and c, calculate the circumradius, R.

$$Area = \frac{abc}{4R}$$

From the circumcenter, by using the Pythagorean theorem,

$$R^2 = \left(A_{01,triangle}\right)^2 + \left(\frac{l_{01}}{2}\right)^2$$

How about an obtuse triangle?

Toy example

- Consider a triangle.
 - For an angle, θ , the side lengths are 1 and l.
 - Calculate the coordinate of its circumcenter.

3D mesh?

- Tetrahedron-based mesh
 - Difficult to calculate Voronoi cells
 - Structured grid cannot be used.

A structured grid (L. Wang et al., ULIS, 2014)

Electric field

- Consider a triangle.
 - We know the electrostatic potential.
 - How can we calculate the electric field?

