Particle spectrograph

Wave operator and propagator

Quadratic (free) action $S = \int \partial u f du du du du du du du $

α							
$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{#2} f_{1^{-}}^{#1} a f_{1^{-}}^{#2}$	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\sqrt{2}t_2}{3}$	[2]	$-\frac{1}{3}ikt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 - r_4) + \frac{2t_2}{3}$		$-\frac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\left \int_{1}^{\#1} + \alpha \beta \right $	$o_1^{\#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} \dagger^{lpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#^2} +^{\alpha}$

00_1	$\frac{1}{-2k^2r_3+4}$	0	0	0	3	$-2k^{2}$ (r				Q_{ij}^{\dagger}	$\alpha\beta$		$\chi eta \chi$		
•	$\sigma_{0}^{\#1}$ \pm	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$		$\omega_{\circ+}^{*1}$ \pm	$f_{0}^{#1}$	$f_{0}^{#2}$ †	$\omega_{0^{\text{-}}}^{\#1} \dotplus$		$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$		
generators	Multiplicities											$\omega_{2^{-}}^{\#1} lpha_{eta}$	0	0	0
auge g	Multip	1	1	3	3	3	3	С	2	2	27	$f_{2}^{\#1}$	0	0	0
Source constraints/gauge generators	rreps			0	0	0 ==	0 ==	$-ik \ \sigma_1^{\#2}\alpha\beta == 0$		0 ==	Total constraints:	$\omega_2^{\#1}_{+\alpha\beta}$	$k^2 \left(-2 r_3 + r_4 \right)$	0	0
Source	SO(3) irreps	$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1} == 0$	$\tau_1^{\#2\alpha} ==$	$\tau_{1}^{\#1\alpha} ==$	$\sigma_{1}^{\#2\alpha} ==$	$\sigma_{1}^{\#1}{}^{\alpha}$ ==	$\tau_1^{\#1}\alpha\beta$ +	$\sigma_{2}^{\#1}^{\alpha\beta\chi}$	$\tau_2^{\#1}\alpha\beta =$	Total co		$\omega_2^{*1} + \alpha^{\beta}$	$f_2^{\#1} + ^{\alpha\beta}$	$o_{2}^{#1} +^{\alpha \beta \chi}$

 $\omega_{0}^{\#1}$

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

 $\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$

0

0

 $\omega_{2}^{\#1} +^{lphaeta \chi}$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$