9. To determine the wavelength of laser light using single slit diffraction pattern.

Position of	Power in terms		
detector (mm)	of current (μA)		
-5.00	0.0		
-4.37	0.1		
-4.15	0.3		
-3.84	0.4		
-3.48	0.5		
-2.91	0.3		
-2.78	0.2		
-2.66	0.1		
-2.40	0.0		
-2.11	0.1		
-1.99	0.4		
-1.64	0.7		
-1.31	3.5		
-1.03	5.2		
-0.74	7.7		
-0.42	10.4		
0.00	11.3		
0.15	11.7		
0.44	11.4		
0.74	10.0		
0.95	8.1		
1.15	6.6		
1.55	2.7		
1.89	1.5		
2.14	0.5		
2.53	0.0		
2.97	0.1		
3.12	0.3		
3.25	0.5		
3.50	0.7		
3.90	0.8		
4.26	0.6		
4.65	0.3		
5.12	0.1		
5.55	0.0		

For Slit width (d):

Left Position	Right Position	d (mm)
(mm)	(mm)	
8.85	8.57	0.28
8.88	8.58	0.30
8.85	8.56	0.29

Observation	
d= 0.29 mm, LC: 0.01mm	
D=1090 mm, LC: 1mm	
2L= 2.53- (-2.4) = 4.93mm, LC:0.01mm	
$\Delta\theta_{\pm1}=0.0045$	

$$\Delta \theta_{\pm 1} = \frac{2L}{D}$$
 $\Delta \theta_{\pm 1} = \theta_1 - \theta_{-1} = \frac{2\lambda}{d}$

Error Analysis

The angular separation is defined as:

$$\Delta\theta_{\pm 1} = \frac{2L}{D} \qquad \dots (1)$$

Also,

$$\Delta\theta_{\pm 1} = \frac{2\lambda}{d} \quad \dots \quad (2)$$

From (1) & (2)

$$\lambda = \frac{d \times L}{D}$$

Calculation of log error in wavelength (λ) is given by:

$$\log(\lambda) = \log(d) + \log(L) + \log(D)$$

$$\frac{\mathrm{d}\lambda}{\lambda} = \frac{\mathrm{d}d}{d} + \frac{\mathrm{d}L}{L} + \frac{\mathrm{d}D}{D}$$

Here, dd = 0.01, dL = 0.01, dD = 1

$$\frac{d\lambda}{\lambda} = \frac{\mathrm{d}d}{d} + \frac{dL}{L} + \frac{dD}{D}$$

$$\frac{d\lambda}{\lambda} = \frac{0.01}{0.29} + \frac{0.01}{2.46} + \frac{1}{1090}$$

$$\frac{d\lambda}{\lambda} = 0.0389$$

 $d\lambda = \lambda \times 0.0389 = 652 \times 0.0389 = 25.36$ nm. (Calculated error in wavelength)

$$\lambda = 650 \pm 30$$
 nm