Information Science and Statistics

Series Editors:

M. Jordan

J. Kleinberg

B. Schölkopf

Information Science and Statistics

Akaike and Kitagawa: The Practice of Time Series Analysis.

Bishop: Pattern Recognition and Machine Learning.

Cowell, Dawid, Lauritzen, and Spiegelhalter: Probabilistic Networks and Expert Systems.

Doucet, de Freitas, and Gordon: Sequential Monte Carlo Methods in Practice.

Fine: Feedforward Neural Network Methodology.

Hawkins and Olwell: Cumulative Sum Charts and Charting for Quality Improvement.

Jensen and Nielsen: Bayesian Networks and Decision Graphs, Second Edition.

Lee and Verleysen: Nonlinear Dimensionality Reduction.

Marchette: Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint.

Rissanen: Information and Complexity in Statistical Modeling.

Rubinstein and Kroese: The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation, and Machine Learning.

Studený: Probabilistic Conditional Independence Structures.

Vapnik: The Nature of Statistical Learning Theory, Second Edition.

Wallace: Statistical and Inductive Inference by Minimum Massage Length.

John A. Lee Michel Verleysen

Nonlinear Dimensionality Reduction

John Lee Molecular Imaging and Experimental Radiotherapy Université catholique de Louvain Avenue Hippocrate 54/69 B-1200 Bruxelles Belgium john.lee@uclouvain.be

Michel Verleysen Machine Learning Group – DICE Université catholique de Louvain Place du Levant 3 B-1348 Louvain-la-Neuve Belgium michel.verleysen@uclouvain.be

Series Editors:

Michael Jordan Division of Computer Science and Department of Statistics Cornell University University of California, Berkeley Berkeley, CA 94720 USA

Jon Kleinberg Department of Computer Science Ithaca, NY 14853 USA

Bernhard Schölkopf Max Planck Institute for Biological Cybernetics Spemannstrasse 38 72076 Tübingen Germany

Library of Congress Control Number: 2006939149

ISBN-13: 978-0-387-39350-6 e-ISBN-13: 978-0-387-39351-3

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science + Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

Preface

Methods of dimensionality reduction are innovative and important tools in the fields of data analysis, data mining, and machine learning. They provide a way to understand and visualize the structure of complex data sets. Traditional methods like principal component analysis and classical metric multidimensional scaling suffer from being based on linear models. Until recently, very few methods were able to reduce the data dimensionality in a nonlinear way. However, since the late 1990s, many new methods have been developed and nonlinear dimensionality reduction, also called manifold learning, has become a hot topic. New advances that account for this rapid growth are, for example, the use of graphs to represent the manifold topology, and the use of new metrics like the geodesic distance. In addition, new optimization schemes, based on kernel techniques and spectral decomposition, have led to spectral embedding, which encompasses many of the recently developed methods.

This book describes existing and advanced methods to reduce the dimensionality of numerical databases. For each method, the description starts from intuitive ideas, develops the necessary mathematical details, and ends by outlining the algorithmic implementation. Methods are compared with each other with the help of different illustrative examples.

The purpose of the book is to summarize clear facts and ideas about well-known methods as well as recent developments in the topic of nonlinear dimensionality reduction. With this goal in mind, methods are all described from a unifying point of view, in order to highlight their respective strengths and shortcomings.

The book is primarily intended for statisticians, computer scientists, and data analysts. It is also accessible to other practitioners having a basic background in statistics and/or computational learning, such as psychologists (in psychometry) and economists.

Contents

No	Notations			
AcronymsXVII				
1	Hig	h-Dim	nensional Data	1
	1.1	Pract	ical motivations	1
		1.1.1	Fields of application	2
		1.1.2	The goals to be reached	3
	1.2	Theor	retical motivations	3
		1.2.1	How can we visualize high-dimensional spaces?	4
		1.2.2	Curse of dimensionality and empty space phenomenon .	6
	1.3	Some	directions to be explored	9
		1.3.1	Relevance of the variables	10
		1.3.2	Dependencies between the variables	10
	1.4	About	t topology, spaces, and manifolds	11
	1.5	Two l	oenchmark manifolds	14
	1.6	Overv	view of the next chapters	16
2	Cha	aractei	ristics of an Analysis Method	17
	2.1	Purpo	ose	17
	2.2	Expec	eted functionalities	18
		2.2.1	Estimation of the number of latent variables	18
		2.2.2	Embedding for dimensionality reduction	19
		2.2.3	Embedding for latent variable separation	20
	2.3	Intern	nal characteristics	22
		2.3.1	Underlying model	22
		2.3.2	Algorithm	23
		2.3.3	Criterion	23
	2.4	Exam	ple: Principal component analysis	24
		2.4.1	Data model of PCA	24
		2.4.2	Criteria leading to PCA	26

X	Contents

		2.4.3	Functionalities of PCA	29
		2.4.4	Algorithms	31
		2.4.5	Examples and limitations of PCA	33
	2.5	Towar	d a categorization of DR methods	37
		2.5.1	Hard vs. soft dimensionality reduction	38
		2.5.2	Traditional vs. generative model	39
		2.5.3	Linear vs. nonlinear model	40
		2.5.4	Continuous vs. discrete model	40
		2.5.5	Implicit vs. explicit mapping	41
		2.5.6	Integrated vs. external estimation of the dimensionality	41
		2.5.7	Layered vs. standalone embeddings	42
		2.5.8	Single vs. multiple coordinate systems	42
		2.5.9	Optional vs. mandatory vector quantization	43
		2.5.10	Batch vs. online algorithm	43
		2.5.11	Exact vs. approximate optimization	44
		2.5.12	The type of criterion to be optimized	44
_				
3			n of the Intrinsic Dimension	47
	3.1		tion of the intrinsic dimension	47
	3.2		l dimensions	48
		3.2.1	The q-dimension	49
		3.2.2	Capacity dimension	51
		3.2.3	Information dimension	52
		3.2.4	Correlation dimension	53
		3.2.5	Some inequalities	54
	2.2	3.2.6	Practical estimation	55
	3.3		dimension estimators	59
		3.3.1	Local methods	59
	3.4	3.3.2	Trial and error	60 62
	3.4	3.4.1	arisons	-
		3.4.1 $3.4.2$	Data Sets	63 63
		3.4.2	Correlation dimension.	63
		3.4.3 $3.4.4$	Local PCA estimator	65
		3.4.4 $3.4.5$	Trial and error	66
		3.4.6	Concluding remarks	67
		3.4.0	Concluding Temarks	01
4	Dist	tance l	Preservation	69
	4.1		of-the-art	69
	4.2	Spatia	l distances	70
		4.2.1	Metric space, distances, norms and scalar product	70
		4.2.2	Multidimensional scaling	73
		4.2.3	Sammon's nonlinear mapping	82
		4.2.4	Curvilinear component analysis	88
	4.3	Graph	distances	97
		4.3.1	Geodesic distance and graph distance	97

			Contents	XI
		4.3.2 Isomap		102
		4.3.3 Geodesic NLM		111
		4.3.4 Curvilinear distance analysis		114
	4.4	Other distances		
		4.4.1 Kernel PCA		
		4.4.2 Semidefinite embedding		125
5	Top	oology Preservation		
	5.1	State of the art		
	5.2	Predefined lattice		
		5.2.1 Self-Organizing Maps		
		5.2.2 Generative Topographic Mapping		
	5.3	Data-driven lattice		
		5.3.1 Locally linear embedding		
		5.3.2 Laplacian eigenmaps		
		5.3.3 Isotop		165
6	Me	thod comparisons		
	6.1	Toy examples		
		6.1.1 The Swiss roll		
		6.1.2 Manifolds having essential loops or sphe		
	6.2	Cortex unfolding		
	6.3	Image processing		
		6.3.1 Artificial faces		
		6.3.2 Real faces		214
7	Cor	nclusions		225
	7.1	Summary of the book		225
		7.1.1 The problem		225
		7.1.2 A basic solution		226
		7.1.3 Dimensionality reduction		
		7.1.4 Latent variable separation		
		7.1.5 Intrinsic dimensionality estimation		
	7.2	Data flow		
		7.2.1 Variable Selection		
		7.2.2 Calibration		
		7.2.3 Linear dimensionality reduction		
		7.2.4 Nonlinear dimensionality reduction		
		7.2.5 Latent variable separation		
	7.0	7.2.6 Further processing		
	7.3	Model complexity		
	7.4	Taxonomy		
		7.4.1 Distance preservation		
	7 5	7.4.2 Topology preservation		
	$7.5 \\ 7.6$	-		
	1.0	Nonspectral methods		441

XII	Contents

	7.7	Tentative methodology	. 242
	7.8	Perspectives	
\mathbf{A}	Mat	trix Calculus	. 247
	A.1	Singular value decomposition	. 247
	A.2	Eigenvalue decomposition	. 248
		Square root of a square matrix	
В	Gau	ıssian Variables	. 251
	B.1	One-dimensional Gaussian distribution	. 251
	B.2	Multidimensional Gaussian distribution	. 253
		B.2.1 Uncorrelated Gaussian variables	. 254
		B.2.2 Isotropic multivariate Gaussian distribution	. 254
		B.2.3 Linearly mixed Gaussian variables	. 256
\mathbf{C}	Opt	imization	. 259
	C.1	Newton's method	. 259
		C.1.1 Finding extrema	. 260
		C.1.2 Multivariate version	. 260
	C.2	Gradient ascent/descent	. 261
		C.2.1 Stochastic gradient descent	. 261
D	Vec	tor quantization	. 263
	D.1	Classical techniques	. 265
	D.2	Competitive learning	. 266
		Taxonomy	
	D.4	Initialization and "dead units"	. 267
${f E}$	Gra	ph Building	. 269
	E.1	Without vector quantization	. 270
		E.1.1 <i>K</i> -rule	
		E.1.2 ϵ -rule	
		E.1.3 τ -rule	
	E.2	With vector quantization	
		E.2.1 Data rule	. 272
		E.2.2 Histogram rule	. 274
\mathbf{F}		olementation Issues	
	F.1	Dimension estimation	. 277
		F.1.1 Capacity dimension	
		F.1.2 Correlation dimension	
	F.2	Computation of the closest point(s)	
	F.3	Graph distances	. 280
\mathbf{Re}	feren	ices	. 283

	Contents	XIII
Index		. 297

Notations

 $\hat{\mathbf{X}}$

Estimation of X

```
\mathbb{N}
        The set of positive natural numbers: \{0, 1, 2, 3, \ldots\}
\mathbb{R}
        The set of real numbers
        Known or unknown random variables taking their values in \mathbb{R}
y, x
\mathbf{A}
        A matrix
        An entry of the matrix \mathbf{A}
a_{i,i}
        (located at the crossing of the ith row and the jth column)
N
        Number of points in the data set
M
        Number of prototypes in the codebook C
        Dimensionality of the data space (which is usually \mathbb{R}^D)
D
        Dimensionality of the latent space (which is usually \mathbb{R}^{P})
P
        (or its estimation as the intrinsic dimension of the data)
\mathbf{I}_D
        D-dimensional identity matrix
\mathbf{I}_{P\times D} Rectangular matrix containing the first P rows of \mathbf{I}_D
        N-dimensional column vector containing ones everywhere
\mathbf{1}_N
        Random vector in the known data space: \mathbf{y} = [y_1, \dots, y_d, \dots, y_D]^T
\mathbf{y}
        Random vector in the unknown latent space: \mathbf{x} = [x_1, \dots, x_p, \dots, x_P]^T
        The ith vector of the data set
\mathbf{y}(i)
\mathbf{x}(i)
        (Unknown) latent vector that generated \mathbf{y}(i)
\hat{\mathbf{x}}(i)
        The estimate of \mathbf{x}(i)
\mathcal{Y}
        The data set \mathcal{Y} = \{\dots, \mathbf{y}(i), \dots\}_{1 \le i \le N}
\mathcal{X}
        The (unknown) set of latent vectors that generated \mathcal{Y}
\hat{\mathcal{X}}
        Estimation of \mathcal{X}
\mathbf{Y}
        The data set in matrix notation: \mathcal{Y} = [\dots, \mathbf{y}(i), \dots]_{1 \le i \le N}
\mathbf{X}
        The (unknown) ordered set of latent vectors that generated Y
```

\mathcal{M} \mathbf{m} $E_x\{x\}$ $\mu_x(x)$	A manifold (noted as a set) The functional notation of \mathcal{M} : $\mathbf{y} = \mathbf{m}(\mathbf{x})$ The expectation of the random variable x The mean value of the random variable x
$\mu_X(x)$	(computed with its known values $x(i)$, $i = 1,, N$)
μ_i	The <i>i</i> th-order centered moment
μ_i'	The i th-order raw moment
$egin{array}{c} \hat{ ext{C}}_{ ext{xy}} \ \hat{ ext{C}}_{ ext{xy}} \end{array}$	The covariance matrix between the random vectors ${\bf x}$ and ${\bf y}$
$\hat{ extbf{C}}_{ extbf{xy}}$	The estimate of the covariance matrix
$f(\mathbf{x}), \mathbf{f}(\mathbf{x})$	Uni- or multivariate function of the random vector \mathbf{x}
$\frac{\partial f(\mathbf{x})}{\partial x_n}$	Partial derivative of f with respect to x_p
$ abla_{\mathbf{x}} f(\mathbf{x})$	Gradient vector of f with respect to \mathbf{x}
$\mathbf{H}_{\mathbf{x}}f(\mathbf{x})$	Hessian matrix of f with respect to \mathbf{x}
$\mathbf{J_x}\mathbf{f}(\mathbf{x})$	Jacobian matrix of \mathbf{f} with respect to \mathbf{x}
	Scalar product between the two vectors $\mathbf{y}(i)$ and $\mathbf{y}(j)$
$d(\mathbf{y}(i), \mathbf{y}(j))$	Distance function between the two vectors $\mathbf{y}(i)$ and $\mathbf{y}(j)$
	(often a spatial distance, like the Euclidean one)
5/ / 1	shortened as $d_{\mathbf{y}}(i,j)$ or $d_{\mathbf{y}}$ when the context is clear
	Geodesic or graph distance between $\mathbf{y}(i)$ and $\mathbf{y}(j)$
\mathcal{C},\mathcal{G}	Codebook (noted as a set) in the data and latent spaces
\mathbf{C}, \mathbf{G}	Codebook (noted as a matrix) in the data and latent spaces
$\mathbf{c}(r),\ \mathbf{g}(r)$	Coordinates of the rth prototypes in the codebook
	(respectively, in the data and latent spaces)

Acronyms

DR Dimensionality reduction

LDR Linear dimensionality reduction

NLDR Nonlinear dimensionality reduction

ANN Artificial neural networks
EVD Eigenvalue decomposition
SVD Singular value decomposition

SVM Support vector machines

VQ Vector quantization

 $\begin{array}{lll} {\rm CCA} & {\rm Curvilinear\ component\ analysis} & & {\it NLDR\ method} \\ {\rm CDA} & {\rm Curvilinear\ distance\ analysis} & & {\it NLDR\ method} \\ \end{array}$

 ${\bf EM} \quad {\bf Expectation\text{-}maximization} \quad \quad \textit{optimization technique}$

GTM Generative topographic mapping NLDR method
HLLE Hessian LLE (see LLE) NLDR method
KPCA Kernel PCA (see PCA) NLDR method
LE Laplacian eigenmaps NLDR method
LLE Locally linear embedding NLDR method

MDS Multidimensional scaling LDR/NLDR method MLP Multilayer perceptron ANN for function approx.

MVU Maximum variance unfolding (see SDE) NLDR method NLM (Sammon's) nonlinear mapping NLDR method PCA Principal component analysis LDR method

RBFN Radial basis function network

ANN for function approx.

SDE Semidefinite embedding NLDR method

SDP Semidefinite programming optimization technique

SNE Stochastic neighbor embedding NLDR method SOM (Kohonen's) self-organizing map NLDR method

TRN Topology-representing network ANN