Problem 1. True or False

Josh Park

- (a) There is a field isomorphism $\varphi : \mathbb{Q}(\sqrt{-5}) \to \mathbb{Q}(\sqrt{5})$.
- (b) There is a homomorphism of finite fields $\psi : \mathbb{F}_3 \to \mathbb{F}_{37}$.
- (c) If L:K is a field extension, and $\alpha,\beta\in L$ are distinct elements with the same minimal polynomial over K, then $K(\alpha)$ and $K(\beta)$ are isomorphic fields.
- (d) It is not possible to construct, using compass and straightedge in the usual way, a length whose 14th power is twice a given length.
- (e) The polynomial $x^{36} + x^{35} + \cdots + x + 1$ is irreducible over \mathbb{Q} .
- (f) If K is a field and α is an element of an extension field L of K, then every element of $K(\alpha)$ can be expressed as a polynomial in α with coefficients in K.

Problem 2.

- (a) Let $\varphi_1: K_1 \to L_1$, $\varphi_2: K_2 \to L_2$ be embeddings and $\sigma: K_1 \to K_2$, $\tau: L_1 \to L_2$ isomorphisms. Define what it means for τ to extend σ .
- (b) Let L:M:K be a tower of field extensions. Define what it means for $\sigma:M\to L$ to be a K-homomorphism.
- (c) Define what is meant by the degree of a field extension L:K.
- (d) Define what is meant by the minimal polynomial of an algebraic element $\alpha \in L$ over K.

Problem 3. Let L: K be a field extension. Suppose that $\alpha \in L$ is algebraic over K and $\beta \in L$ is transcendental over K. Suppose also that $\alpha \notin K$. Show that $K(\alpha, \beta) : K$ is not a simple field extension.

Problem 4. Let $\theta = \sqrt{3 + 3\sqrt[3]{6}}$, and write $L = \mathbb{Q}(\theta)$.

- (a) Calculate the minimal polynomial of θ over \mathbb{Q} , and hence determine the degree of $L:\mathbb{Q}$.
- (b) Let $f \in \mathbb{Q}[t]$ be a monic polynomial of degree 4. Suppose $\alpha \in L$ satisfies $f(\alpha) = 0$. Is it possible for fto be irreducible over \mathbb{Q} ? Justify your answer.
- (c) Suppose $\beta, \gamma \in \mathbb{C}$ with $\beta + \gamma \in \mathbb{Q}^{\text{alg}}$ and $\beta \gamma \in \mathbb{Q}^{\text{alg}}$. Prove that β and γ are algebraic over \mathbb{Q} .

Problem 5. Let $L:\mathbb{Q}$ be an algebraic extension, and let $\varphi:L\to L$ be a field homomorphism.

- (a) Show that φ is a \mathbb{Q} -homomorphism.
- (b) Suppose $\alpha \in L$. Show that the minimal polynomial of α over \mathbb{Q} has $\varphi^n(\alpha)$ as a root for each $n \geq 0$.
- (c) Let $\alpha \in L$. Show that there is a positive integer d with the property that $\varphi^d(\alpha) = \alpha$. Moreover, putting $\beta = \alpha + \varphi(\alpha) + \cdots + \varphi^{d-1}(\alpha)$, with d taken to be the smallest such non-negative integer, show that φ is a $\mathbb{Q}(\beta)$ -homomorphism of L.

Problem 6. With t an indeterminate, let $f \in \mathbb{Z}[t]$ be a polynomial of degree $n \geq 1$, and put $K = \mathbb{Q}(f)$.

- (a) Find a polynomial $F \in K[X]$ with F(t) = 0, and deduce that $\mathbb{Q}(t) : K$ is algebraic of degree at most n.
- (b) Let $g \in \mathbb{Z}[t]$, $g \neq f$. Show there exists a non-zero polynomial $H(X,Y) \in \mathbb{Z}[X,Y]$ with H(f(t),g(t)) = 0.