Московский физико-технический институт Физтех-школа прикладной математики и информатики

ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Андрей Михайлович Райгородский

Автор: Киселев Николай Репозиторий на Github

Содержание

0.1	Топология метрических пространств	
0.2	Полпространство метрического пространства	. 4

Определение 0.1. Пусть $\{x_n\} \subset X, a \in X$. Говорят, что x_n сходится к a, если $\rho(x_n, a) \to 0$. Пишут $\lim_{n \to \infty} x_n = a$ или $x_n \to a$.

Замечание.

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} : \forall n > N(x_n \in B_{\varepsilon}(a))$$

Следствие. $x_n \to a, x_n \to b \Leftrightarrow a = b$

Доказательство.
$$0 \leqslant \rho(a,b) \leqslant \underbrace{\rho(a,x_n)}_{\to 0} + \underbrace{\rho(x_n,b)}_{\to 0}$$

Следствие. $x_n \to a \Rightarrow \{x_n\}$ — ограничена (то есть $\{x_n\}$ ограничено как множество).

Доказательство.
$$\rho(x_n, a) \to 0 \Rightarrow \{\rho(x_n, a)\}$$
 ограничена $\Rightarrow \exists R \in \mathbb{R} : R > \sup\{\rho(x_n, a)\} \Rightarrow x_n \in B_R(a)$.

Следствие. Пусть $\{x_n\}, \{y_n\}: x_n \to a, y_n \to b$ — последовательности в нормированном линейном пространестве, $\{\alpha_n\} \subset \mathbb{R}: \alpha_n \to \alpha$. Тогда

- 1. $x_n + y_n \to a + b$
- 2. $\alpha_n x_n \to \alpha a$

Доказательство.

1.
$$||x_n + y_n - (a+b)|| \le \underbrace{||x_n - a||}_{\to 0} + \underbrace{||y_n - b||}_{\to 0}$$

2.
$$\|\alpha_n x_n - \alpha x\| = \|\alpha_n x_n - \alpha x_n + \alpha x_n - \alpha a\| \leqslant \underbrace{|\alpha_n - \alpha|}_{\to 0} \|x_n\| + |\alpha| \underbrace{\|x_n - a\|}_{\to 0}$$

0.1 Топология метрических пространств

Определение 0.2. Пусть (X, ρ) — метрическое пространство, $E \subset X$.

- 1. $x \in int \ E \Leftrightarrow \exists \varepsilon > 0 : B_{\varepsilon}(x) \subset E$. Множество $int \ E$ называются множеством внутренних точек
- 2. $x \in ext\ E \Leftrightarrow \exists \varepsilon > 0: B_{\varepsilon}(x) \subset X \setminus E$. Множество $ext\ E$ называются множеством внешних точек
- 3. $x \in \delta E \Leftrightarrow \forall \varepsilon > 0 : B_{\varepsilon}(x) \cap E \neq \varnothing, B_{\varepsilon}(x) \cap (X \setminus E) \neq \varnothing$. Множество δE называются множеством граничных точек

Определение 0.3.

- 1. $X = int \ E \sqcup ext \ E \sqcup \delta E$
- 2. $ext E = int (X \setminus E)$

Определение 0.4. Множество $G \subset X$ называется открытым, если все его точки являются внутренними $(G = int \ G)$

Определение 0.5. Множество $G \subset X$ называется открытым, если $X \setminus G$ открыто

Утверждение 0.1.

- 1. Открытый шар $B_r(a)$ открыт
- 2. Замкнутый шар $\overline{B_r}(a)$ замкнут
- 3. int E открыто

Доказательство.

- 1. $x \in B_r(a)$. Положим $\varepsilon = r \rho(x, a)$. Тогда если $y \in B_\varepsilon(x) \Rightarrow \rho(y, a) \leqslant \rho(y, x) + \rho(x, a) \leqslant \varepsilon + \rho(x, a) \leqslant r \Rightarrow B_\varepsilon(x) \subset B_r(a)$.
- 2. $x\in X\setminus \overline{B_r}(a)$. $\varepsilon=\rho(x,a)-r\Rightarrow$ аналогично пункту 1), $X\setminus \overline{B_r}(a)$ открыто, т.е. $\overline{B_r}(a)$ замкнуто
- 3. $x \in int E \Rightarrow \exists B_{\varepsilon}(x) \subset E \Rightarrow B_{\varepsilon}(x) \subset int E$, т.к. $B_{\varepsilon}(x)$ открыто.

Лемма 0.1. Объединение любого количества открытых множеств и пересечение конечного количества открытых множеств является открытым множеством

Доказательство. Аналогично случаю для ℝ

Определение 0.6. $\overset{\circ}{B}_{r}(a) = B_{r}(a) \setminus \{a\}$

Определение 0.7. Точка $x\in X$ называется предельной множества E, если $\forall \varepsilon>0$ $\overset{\circ}{B}_{\varepsilon}$ $(x)\cap E\neq\varnothing$

Множество всех предельных точек принято обозначать через E'

Теорема 0.1 (Критерий замкнутости). Следующие утверждения равносильны:

- 1. E замкнуто
- 2. $E \supset \delta E$
- 3. $E \supset ext E$
- 4. $\forall \{x_n\} \subset E(x_n \to x \Rightarrow x \in E)$

Доказательство.

- $1\Rightarrow 2$: Пусть $x\in X\setminus E\Rightarrow \exists B_{\varepsilon}(x)\subset X\setminus E$, т.е. x внешняя точка E. Тогда $\delta E\subset E$
- $2\Rightarrow 3$: Пусть x предельная точка тогда она либо внутренняя, и тогда $x\in E,$ либо граничная, но $\delta E\subset E\Rightarrow x\in E$
- $3\Rightarrow 4$: Пусть $\{x_n\}\subset E, x_n\to x$. Тогда либо $\exists x_n=x$ и тогда $x\in E$, либо x предельная точка, и она $\in E$.

 $\overline{\Phi\Pi M M \Phi T M}$, весна 2025

 $4\Rightarrow 1$: Рассмотрим $x\in X\setminus E$. Пусть она не является внутренней для $X\setminus E$. Тогда $\forall \varepsilon>0\exists B_{\varepsilon}(x)\cap E\neq\varnothing\Rightarrow$ рассмотрим последовательность точек $x_n\in\exists B_{\varepsilon}(x)\cap E:x_n\to x$. Такая последовательность существует по Аксиоме Выбора $(\exists \varphi:2^X\to X:\varphi(x)\subset X\Rightarrow x_n=\varphi\left(B_{\frac{1}{n}}(x)\right))$. Но тогда $x\in E$. Противоречие

Определение 0.8. $\overline{E} = E \cup \delta E$ — замыкание множества E

Замечание.

- 1. $\overline{E} = X \setminus ext E$
- 2. $F\supset E$, причем F замкнутое. Тогда $F\supset \overline{E}$

Доказательство.

- 1. $X = int \ E \cup ext \ E \cup \delta E$.
- 2. $X \setminus F \subset X \setminus E \Rightarrow X \setminus F \subset int(X \setminus E) \Rightarrow F \supset \overline{E}$.

Замечание. $x \in \overline{E} \Leftrightarrow \forall \varepsilon > 0 B_{\varepsilon}(x) \cap E \neq \varnothing \Leftrightarrow \exists \{x_n\} \subset E(x_n \to x)$

Определение 0.9. $x \in X$ называется точкой прикосновения E, если $\forall \varepsilon > 0 B_{\varepsilon}(x) \cap E \neq \varnothing$

0.2 Подпространство метрического пространства

Определение 0.10. Пусть (X, ρ) — метрическое пространство, $\emptyset \neq E \subset X$. Тогда $\rho|_{E \times E}$ — метрика на E. Пара $(E, \rho|_{E \times E})$ называется подпространством (X, ρ) , $\rho|_{E \times E}$ называется индуцированной метрикой на E

Определение 0.11. $B_r^E(x) = \{ y \in E | \rho(x, y) < \varepsilon \}$

Замечание. $B_r^E(x) = B_r^X(x) \cap E$

Лемма 0.2. U открыто в $E \Leftrightarrow \exists V \subset X : U = V \cap E$, причем V открыто

Доказательство.

- $\Rightarrow x \in U \Rightarrow \exists B_{\varepsilon_x}^E(x) \subset U$, т.е. $U = \bigcup_{x \in U} B_{\varepsilon_x}^E(x)$. Положим $V = \bigcup_{x \in U} B_{\varepsilon_x}^X(x)$ открытое в X. Тогда $V \cap E = \bigcup_{x \in U} (B_{\varepsilon_x}^X(x) cap E) = \bigcup_{x \in U} B_{\varepsilon_x}^E(x) = U$
- $\Leftarrow x \in U = V \cap E$, где V открыто в $X \Rightarrow \forall x \in V \exists B_{\varepsilon}^X(x) \subset V \Rightarrow B_{\varepsilon}^E(x) = B_{\varepsilon}^E(x) \cap E \subset V \cap E$.

Пример. $X = \mathbb{R}, E = (-1, 3].$

- 1. $A = (1,3] = (1,4) \cap E$ открыто в E (но не в X)
- 2. B = (-1,0) замкнута в E (но не в X)
- 3. C = (0,1] не замкнуто и не открыто