2024 级数学分析甲 II(H) 第一次小测

Record: grapesea

2025年3月27日

Multiple-Choice: 单项选择; Multiple-Answer: 多项选择

1. Multiple-Choice (10 Points) 对于幂级数 $\sum_{n=1}^{+\infty} \frac{2^n \ln n}{n} x^n$,下述叙述正确的有()A. 其收敛半径为 2. B. 其在 $(-\frac{1}{2},0)$ 上一致收敛.

- C. 其收敛域为 $(-\frac{1}{2}, \frac{1}{2})$.
- D. 其在 $(0,\frac{1}{2})$ 上一致收敛.

2. Multiple-Answer (10 Points)

2. Multiple-Answer (10 Points)
下述级数中收敛的有(
$$A. \sum_{n=1}^{+\infty} \left(\frac{1}{\sqrt{4n-3}} + \frac{1}{\sqrt{4n-1}} - \frac{1}{\sqrt{2n}} \right)$$

$$B. \sum_{n=1}^{+\infty} \frac{1}{n \left(\sum_{k=1}^{n} \frac{1}{k} \right)}$$

$$C. \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \right)$$

$$D. \sum_{n=1}^{+\infty} \left(e - \sum_{k=0}^{n} \frac{1}{k!} \right)$$

B.
$$\sum_{n=1}^{+\infty} \frac{1}{n \left(\sum_{k=1}^{n} \frac{1}{k} \right)}$$

C.
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n} - \ln \left(1 + \frac{1}{n} \right) \right)$$

D.
$$\sum_{n=1}^{+\infty} \left(e - \sum_{k=0}^{n} \frac{1}{k!} \right)$$

已知级数
$$\sum_{n=1}^{+\infty} \int_0^{\frac{\pi}{n}} \frac{\sin x}{1+x^{2025}} dx$$
 (1) 和 $\sum_{n=1}^{+\infty} \sin \frac{n^3 \pi}{1+n^2}$ (2),则 () A. 级数 (1),(2) 均条件收敛

- B. 级数 (1) 条件收敛, 而级数 (2) 绝对收敛
- C. 级数 (1) 绝对收敛, 而级数 (2) 条件收敛
- D. 级数 (1),(2) 均绝对收敛

设对 $\forall n \in \mathbb{Z}^+, \ a_n > 0$ 。且满足级数 $\sum\limits_{k=1}^{+\infty} a_k$ 收敛。记 $r_n = \sum\limits_{k=n+1}^{+\infty} a_k$,则下述论述错误的有(

A. 级数
$$\sum_{n=2}^{+\infty} \frac{a_n}{\sqrt{n \ln n}}$$
 必收敛

B. 级数
$$\sum_{n=1}^{+\infty} \frac{\sqrt[n]{a_n}}{n}$$
 必收敛

A. 级数
$$\sum_{n=2}^{+\infty} \frac{a_n}{\sqrt{n \ln n}}$$
 必收敛 B. 级数 $\sum_{n=1}^{+\infty} \frac{\sqrt{a_n}}{n}$ 必收敛 C. 级数 $\sum_{n=2}^{+\infty} \frac{a_n}{\sqrt{r_{n-1}}} + \sqrt{r_n}$ 必收敛

D. 级数
$$\sum_{n=1}^{+\infty} \sqrt{\frac{a_n}{n}}$$
 必收敛

5. Multiple-Answer (10 Points)

下述命题中正确的有()

- A. 函数项级数 $\sum_{n=1}^{\infty} x^n (1-x^n)$ 在 [0,1] 上一致收敛 B. 函数列 $\{nx(1-x)^n\}$ 在 [0,1] 上点态收敛,但非一致收敛
- C. 设对 $\forall n \in \mathbb{Z}^+, f_n(x)$ 在 [0,1] 上连续。若对 $\forall n \in \mathbb{Z}^+, x_n \in [0,1]$ 且 $\lim_{n \to +\infty} x_n = x_0$,以及 $f_n(x)$ 在 [0,1]上一致收敛于 f(x), 则有 $\lim_{n\to+\infty} f_n(x_n) = f(x_0)$
 - D. 函数项级数 $\sum_{n=1}^{+\infty} \frac{n}{1+n^3x}$ 在 (0,1) 上一致收敛

6. Multiple-Choice (10 Points)
$$\sum_{n=1}^{+\infty} \frac{1}{n!+(n+1)!}$$
 的和为()A. $2e-1$

- B. 1 C. $\frac{1}{2}$ D. $2e \frac{1}{2}$

7. Multiple-Answer(10 Points)

- 下述命题中正确的有() A. 对 $\forall x \in (0,2\pi)$,有: $\sum_{n=1}^{+\infty} \frac{\sin{(nx)}}{n} = \frac{\pi-x}{2}$
- B. 设对 $\forall n \in \mathbb{Z}^+, \ u_n(x)$ 在 [0,1] 上单调,且 $\sum_{n=1}^{+\infty} u_n(0)$ 与 $\sum_{n=1}^{+\infty} u_n(1)$ 都绝对收敛,则: $\sum_{n=1}^{+\infty} u_n(x)$ 在 [0,1]
- 上绝对收敛且一致收敛 C. 幂级数 $\sum_{n=2}^{+\infty} (1+\frac{1}{n})^{n^2} x^n$ 的收敛域为: $[-\frac{1}{e},\frac{1}{e})$ D. 若 $\sum_{n=1}^{+\infty} a_n$ 是发散的正项级数,则有:存在收敛于 0 的正数数列 $\{b_n\}$,使得 $\sum_{n=1}^{+\infty} a_n b_n$ 发散

已知函数 $f(x) = \begin{cases} 0, & 0 \le x < \frac{1}{2}, \\ x^2, & \frac{1}{2} \le x \le 1 \end{cases}$ 的 Fourier 级数为 $\sum_{n=1}^{+\infty} b_n \sin n\pi x, S(x)$ 是级数 $\sum_{n=1}^{+\infty} b_n \sin n\pi x$ 的和函

数,则 $S(\frac{7}{2}) = ($)
A. $\frac{1}{8}$ B. $-\frac{1}{4}$ C. $\frac{1}{4}$ D. $-\frac{1}{8}$

以下命题正确的是()

- 以下命题止确的是() A. $\sum_{n=1}^{+\infty} \frac{\sin(nx)}{\sqrt{n}}$ 在 $[0,\pi)$ 上内闭一致收敛 B. $\sum_{n=1}^{+\infty} \frac{\sin(nx)}{\sqrt{n}}$ 在 $[0,\pi]$ 上内闭一致收敛 C. $\sum_{n=1}^{+\infty} \frac{\sin(nx)}{\sqrt{n}}$ 在 $[0,\pi]$ 上一致收敛 D. $\sum_{n=1}^{+\infty} \frac{\sin(nx)}{\sqrt{n}}$ 是 $[-\pi,\pi]$ 上某个连续函数的 Fourier 级数

- 10. Multiple-Choice (10 Points) 对于级数 $\sum\limits_{n=1}^{+\infty} \frac{(-1)^n}{n\sqrt[n]{n}}$,以下命题正确的是()A. 无法判定该级数的敛散性
- B. 该级数发散
- C. 该级数绝对收敛
- D. 该级数条件收敛