SUMMARY OF DERIVATIVE RULES

First consider **simple rules**.

Is a function the sum or difference of some terms? Deal with the terms one by one:

$$(3x - e^{2x} + \sqrt{2})' = (3x)' - (e^{2x})' + (\sqrt{2})'$$

Does it have a constant factor? Move it outside of derivative:

$$(4x^2)' = 4(x^2)'$$
, also $\left(\frac{\ln x}{5}\right)' = \left(\frac{1}{5}\ln x\right)' = \frac{1}{5}(\ln x)'$

If the thing of which you take derivative has no variable inside, the derivative is zero.

$$(\ln 2)' = 0$$
, not " $\frac{1}{2}$ "

Advanced rules: fit one of the following pattern to your function (if it helps, actually draw the boxes around the building blocks). The building blocks are marked u and v for ease of references.

Pattern in function	Rule to use	Pattern for derivative
$u \cdot v$	Product	$u' \cdot v + u \cdot v'$
	Quotient	$\frac{\boxed{u'\cdot \overline{v} - u\cdot \overline{v'}}}{\boxed{v^2}}$
u^a	Power chain	$a[u]^{a-1} \cdot [u]'$
ln[u]	Logarithmic chain	$\frac{1}{u} \cdot u'$
eu	Exponential chain	$e^{u} \cdot u'$

After writing down the pattern for derivative, deal with each box marked with '; this is a separate computation of the derivative of the contents of that box.