Floating Point Representation

- normalized notation with 3 bit fields
- · implicit one only one digit before the decimal pt, whose value is ONE which is omitted
 - Sign
 - Fraction (Mantissa)
 - Exponent (binary field holding a biased exponent)

IEEE754 Format

- specifies sizes for 16, 32, 64 bit floating point formats
 - "Exponent" is actually the 'biased exponent.'

Biased Exponent

- Biased Exponent = Actual Exponent + Exponent Bias
 - bias for 16bit = 15
 - bias for 32bit = 127
 - o bias for 64bit = 1023
- exponent bias = $2^{b-1}-1$

$$F = (-1)^s \times (1 + fraction) \times 2^{(biased exp - bias)}$$

IEEE754 Exceptions

sign	Exponent	Fractional	Number
0 or 1	000	000	± ZERO
0 or 1	000	Any non-zero	Subnormal
0 or 1	111	000	± infinity
0 or 1	111	Any non-zero	NaN (e.g., sqrt(-1)

Underflow & Overflow

- underflow exact result non-zero and smaller than the smallest representable value
 - o loss of precision and lead to computational error
- overflow exact result is finite but exceeds largest representable value
- when either detected, hardware returns zero / max + exception signal

Subnormal Numbers

- represent numbers below $\pm 1.18 \times 10^{-38}$ for 32 bit values
 - $\circ~$ subnormals extend the range to $\pm 1\times 10^{-45}$

Smallest/Largest value representable

· Smallest non-zero is exponent 0b0000 0001 with fraction all zeros (23 bits)

$$(-1)^{s} \times (1+0) \times 2^{1-127} = \pm 2^{-126} \approx 1.18 \times 10^{-38}$$

- · Why is this the smallest value?
 - Exponent = 0b0000 0000 indicates a subnormal number.
- So, the smallest non-zero, **non-subnormal** number is 0b0000 0001 0000... 00
- Largest value is exponent 0b1111 1110 with fraction all ones (23 bits)

$$(-1)^s \times (1 + (1 - 2^{-23})) \times 2^{254 - 127} = \pm (2^{128} - 2^{104}) \approx 3.40 \times 10^{38}$$

- Similarly, why is the largest exponent not 0b1111 1111?
 - IEEE754 reserves this for ±∞ and ±NaN
- So, our largest exponent is 0b1111 1110 = 254
- We cannot use exponents of 0b0000 0000 or 0b1111 1111 for computations.

FP Resolution

- FP numbers are not distributed uniformly across range
 - fixed point, resolution is the same across the entire range
 - fp, resolution increases as number gets bigger

Let's see two cases for 32-bit IEEE-754

- E.g. 1) 10 => 0x4120 0000
 - Adding 1 to this number gives 10.000001
 - By changing LSB, value changes by 10⁻⁶.
- E.g. 2) 10000 => 0x461C 4000
 - Adding 1 to this number gives 10000.001
 - By changing LSB, value changes by 10⁻³.

FP Rounding

- · finite bits; computation produces more bits than that can be stored, must truncate values
 - rounding modes nearest value, towards 0, towards $\pm\infty$
 - use truncation

Rounding Rule	Data	Rounded Result
Nearest	+0.123456	+0.12346
Nearest	-0.123456	-0.12346
Townsta	+0.123456	+0.12345
Truncate	-0.123456	-0.12345
Davidina	+0.123456	+0.12346
Rounding up	-0.123456	-0.12345
Davidina dava	+0.123456	+0.12345
Rounding down	-0.123456	-0.12346

FP Operations

Multiplication

- first multiply decimal parts (mantissa in fp)
- · add the exponents
- normalize (standard notation) result to begin with 1

- $\widehat{\mbox{\ \ }}$ Calculate SR = S1 XOR S2, to get the sign of the result.
- 2 Add exponents ER = E1 + E2
- 3 Multiply mantissas MR = M1 * M2 and truncate
- 4 Normalize Mantissa (and adjust ER if needed)
- (5) Check for special conditions (overflow, underflow, special values etc.)

S1	E1	M1
	,	ĸ
S2	E2	M2
	=	=
SR	ER	MR

Addition & Subtraction

- 1) If E1 != E2, adjust the larger to match the smaller.
- 2 Add the mantissas.
- 3 Normalize result mantissa
- ④ Check for special conditions (overflow, underflow, special values etc.)

Does your hardware support it? What if it doesn't?

- Without dedicated FP hardware, your code will default to 'software floating point'.
- Table on the right shows the number of cycles taken on an ARM CPU to do FP operations with and without hardware support.
- If so, FP operations will be a lot slower!

Operation	With FPU	Without FPU
ADD	1	102
SUB	1	108
MUL	1	166
DIV	14	475

Drawbacks of Float

- Despite many advantages of floats over fixed point, the biggest disadvantage is area.
- Compared to a 32-bit integer adder, a 32-bit FP adder costs 30x the chip area.
- A multiplier costs 2x as much as an integer multiplier.
- If you do have FPU hardware, how can things still go wrong?

Floating Point Operations

- · rounding error can accumulate
 - use doubles
- · operations are not commutative
- other formats
 - bfloat16 (S + 8E + 7M)
 - o FP8
 - o FP4