Denoising Diffusion Probabilistic Models

Jun Hyung Lee

References

- > Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Jasacha Sohl-Dickstein (2015)
- > Generative Modeling by Estimating Gradients of the Data Distribution, Yang Song, Stefano Ermon (2020)
- > https://huggingface.co/blog/annotated-diffusion
- > https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
- > Denoising Diffusion-based Generative Modeling: Foundations and Applications, Karsten Kreis, Ruiqi Gao, Arash Vahdat (CVPR Diffusion Tutorial 2022)
- > https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html
- > https://www.assemblyai.com/blog/diffusion-models-for-machine-learning-introduction/

Denoising Diffusion Models

Denoising Diffusion Models contain two processes:

- ① Forward Diffusion Process: Process that gradually adds noise to input data $q(x_t|x_{t-1})$ -> fixed, no learnable parameters
- ② Denoising Reverse Process: Process that trains to generate data by denoising $P_{\theta}(x_{t-1}|x_t)$ -> training, generating procedure

Forward Diffusion Process

- \triangleright Denoising Diffusion Models contain two processes: Forward Diffusion Process: Process that gradually adds noise to input data $q(x_t|x_{t-1})$ -> fixed, no learnable parameters
- $\triangleright x_T$ nearly becomes Isotropic Gaussian

$$q(x_t|x_{t-1}) \coloneqq N(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I) \longrightarrow q(x_{1:T}|x_0) \coloneqq \prod_{t=1}^{T} q(x_t|x_{t-1})$$

Denoising Reverse Process

If we can reverse the forward process $q(x_{t-1}|x_t)$ we will be able to recreate the true sample from a gaussian noise input. However, it's not an easy task to estimate the true sample because it requires to use the entire dataset. Therefore, we need to learn a model P_{θ} to approximate these conditional probabilities.

$$P_{\theta}(x_{0:T}) \coloneqq P(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t) \longrightarrow P_{\theta}(x_{t-1}|x_t) \coloneqq N(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t)) q(x_{1:T}|x_0) \coloneqq \prod_{t=1}^{T} q(x_t|x_{t-1})$$

Forward Process sampling at x_t

 \triangleright The Markov Chain of two diffusion processes can sample x_t at any arbitrary time step t in a closed form using reparameterization trick.

Let
$$\alpha_t = 1 - \beta_t$$
 and $\overline{\alpha}_t = \prod_{i=1}^T \alpha_i$:

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1-\alpha_t} z_{t-1} \qquad ; \text{ where } z_{t-1}, z_{t-2} \dots N(0,I)$$

$$x_t = \sqrt{\alpha_t} \alpha_{t-1} x_{t-2} + \sqrt{1-\alpha_t} \alpha_{t-1} \bar{z}_{t-2} \qquad ; \text{ where } \bar{z}_{t-2} \text{ merges two Gaussians}$$

$$\vdots$$

$$x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1-\bar{\alpha}_t} z$$

$$q(x_t|x_0) = N(x_t; \sqrt{\bar{\alpha}_t} x_0, (1-\bar{\alpha}_t)I)$$

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Variational Bound

Loss Terms:

- (I) L_T has no learnable parameters (constant during training)
- (2) L_{t-1} are KL divergence between gaussians (KL divergence between Forward Process Posterior and Denoising Reverse Process)
- $\Im L_0$ is the familiar reconstruction term

$$L := E_{q} \left[D_{kL} (q(x_{T}|x_{0})||p(x_{T})) + \sum_{t>1} D_{kL} (q(x_{t-1}|x_{t},x_{0})||P_{\theta}(x_{t-1}|x_{t})) - \log P_{\theta}(x_{0}|x_{1}) \right]$$

$$L_{T} \qquad L_{t-1} \qquad L_{0}$$

https://angusturner.github.io/generative_models/2021/06/29/diffusion-probabilistic-models-I.html

Mean Predictor (L_{t-1})

> Trainable network in reverse denoising process:

$$P_{\theta}(x_{t-1}|x_t) = N(x_{t-1}; \boldsymbol{\mu}_{\theta}(x_t, \mathbf{t}), \sigma_t^2 I)$$
Trainable network

 \triangleright Where $q(x_{t-1}|x_t,x_0)$, it becomes tractable when conditioned on x_0 :

$$q(x_{t-1}|x_t,x_0) = N\big(x_{t-1};\widetilde{\boldsymbol{\mu}}_t(\boldsymbol{x}_t,\boldsymbol{x}_0),\widetilde{\beta}_t I\big)$$

 \triangleright Since both $q(x_{t-1}|x_t,x_0)$ and $P_{\theta}(x_{t-1}|x_t)$ are gaussians, the KL divergence has a simple form:

$$L_{t-1} = E_q \left[\frac{1}{2\sigma_t^2} || \widetilde{\boldsymbol{\mu}}_t(\boldsymbol{x}_t, \boldsymbol{x}_0) - \boldsymbol{\mu}_{\boldsymbol{\theta}}(\boldsymbol{x}_t, t) ||^2 \right] + C$$
Mean Squared Error

Forward Process Posterior Mean $(\tilde{\mu}_t)$

- \triangleright So how do we know $\widetilde{\mu}_t$?
- Following the standard Gaussian density function, the mean and variance can be parameterized. "Reverse conditional probability" is tractable when conditioned on x_0 :

$$\widetilde{\boldsymbol{\mu}}_{t}(\boldsymbol{x}_{t},\boldsymbol{x}_{0}) := \frac{\sqrt{\overline{\alpha}_{t}-1}\beta_{t}}{1-\overline{\alpha}_{t}}\boldsymbol{x}_{0} + \frac{\sqrt{\alpha_{t}}(1-\overline{\alpha}_{t-1})}{1-\overline{\alpha}_{t}}\boldsymbol{x}_{t} \qquad \qquad \widetilde{\beta}_{t} := \frac{1-\overline{\alpha}_{t-1}}{1-\overline{\alpha}_{t}}\beta_{t}$$

ightharpoonup We can represent $\mathbf{x_0} = \frac{1}{\sqrt{\bar{\mathbf{a}_t}}} (\mathbf{x_t} - \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\varepsilon})$ and plug it into the above equation:

$$\widetilde{\mu}_{t}(x_{t}, x_{0}) := \frac{\sqrt{\overline{\alpha}_{t} - 1}\beta_{t}}{1 - \overline{\alpha}_{t}} \frac{1}{\sqrt{\overline{a}_{t}}} \left(x_{t} - \sqrt{1 - \overline{\alpha}_{t}}\varepsilon\right) + \frac{\sqrt{\alpha_{t}}(1 - \overline{\alpha}_{t-1})}{1 - \overline{\alpha}_{t}} x_{t} \longrightarrow \widetilde{\mu}_{t} = \frac{1}{\sqrt{\alpha_{t}}} \left(x_{t} - \frac{\beta_{t}}{\sqrt{1 - \overline{\alpha}_{t}}}\varepsilon\right)$$

Denoising Reverse Process Mean(μ_{θ})

- \succ We want to train μ_{θ} to predict $\widetilde{\mu}_t = \frac{1}{\sqrt{\alpha_t}} \left(x_t \frac{\beta_t}{\sqrt{1-\overline{\alpha}_t}} \varepsilon \right)$
- $\triangleright x_t$ is available as input at training time, we can reparameterize the gaussian noise term instead and predict ε_t from the input x_t at time step t:

$$\mu_{\theta}(x_{t}, t) = \frac{1}{\sqrt{\alpha_{t}}} \left(x_{t} - \frac{\beta_{t}}{\sqrt{1 - \overline{\alpha_{t}}}} \varepsilon_{\theta}(x_{t}, t) \right)$$
Thus, $x_{t-1} = N \left(x_{t-1}; \frac{1}{\sqrt{\alpha_{t}}} \left(x_{t} - \frac{\beta_{t}}{\sqrt{1 - \overline{\alpha_{t}}}} \varepsilon_{\theta}(x_{t}, t) \right) \right)$, $\Sigma_{\theta}(x_{t}, t)$

 \succ The loss term L_t is parameterized to minimize the difference from $\widetilde{\mu}_t$:

$$\begin{split} L_t &= E_{x_0,\varepsilon} \left[\frac{1}{2||\Sigma_{\theta}(x_t,t)||_2^2} ||\widetilde{\mu}_t(x_t,x_0) - \mu_{\theta}(x_t,t)||^2 \right] \\ L_t &= E_{x_0,\varepsilon} \left[\frac{1}{2||\Sigma_{\theta}(x_t,t)||_2^2} ||\frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \varepsilon_t \right) - \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \varepsilon_{\theta}(x_t,t) \right) ||^2 \right] \\ L_t &= E_{x_0,\varepsilon} \left[\frac{\beta_t^2}{2\alpha_t(1-\bar{\alpha}_t)||\Sigma_{\theta}(x_t,t)||_2^2} ||\varepsilon_t - \varepsilon_{\theta}(x_t,t)||^2 \right] \\ L_t &= E_{x_0,\varepsilon} \left[\frac{\beta_t^2}{2\alpha_t(1-\bar{\alpha}_t)||\Sigma_{\theta}(x_t,t)||_2^2} ||\varepsilon_t - \varepsilon_{\theta}(x_t,t)||^2 \right] \end{split}$$

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Noise Predictor (L_{t-1})

Mean Predictor -> Noise Predictor

 ε -prediction both resembles Langevin dynamics and it simplifies the diffusion model's variational bound to an objective that resembles denoising score matching.

$$E_{x_0,\varepsilon}\left[\frac{\beta_t^2}{2\sigma_t^2\alpha_t(1-\bar{\alpha}_t)}||\varepsilon-\varepsilon_\theta(\sqrt{\bar{\alpha}_t}x_0+\sqrt{1-\bar{\alpha}_t}\varepsilon,t)||^2\right]$$

$$L_{simple}(\theta) := E_{t,x_0,\varepsilon} [||\varepsilon - \varepsilon_{\theta} (\sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon, t)||^2]$$

Network Architecture

- > Diffusion model has the same input and output dimensions, therefore U-Net-like architectures are commonly implemented.
- Parameters are shared across time, which is specified to the network using the Transformer sinusoidal position embedding and used self-attention at the 16 x 16 feature map resolution.
- > Learning reverse process variance leads to unstable training and poorer sample quality compared to fixed variances.
- $> \beta_1 = 10^{-4}, \beta_T = 0.02$

Sampling Algorithm

- ➤ Algorithm 1 #5 resembles denoising score matching (Song, 2019)
- The connection also has the reverse implication that a certain weighted form of denoising score matching is the same as variational inference to train a Langevin-like sampler.

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: end for 6: return \mathbf{x}_{0}

> Other methods for learning transition operators of Markov Chain include infusion training, variational walkback, generative stochastic networks etc

Summary

Denoising Diffusion Models contain two processes:

- ① Forward Diffusion Process: Process that gradually adds noise to input data $q(x_t|x_{t-1})$ -> fixed, no learnable parameters
- ② Denoising Reverse Process: Process that trains to generate data by denoising $P_{\theta}(x_{t-1}|x_t)$ -> training, generating procedure

Forward Diffusion Process (Fixed)

