

Цифровые устройства и микропроцессоры I часть

Лекция 14

Лектор: Богаченков Алексей Николаевич

e-mail: microproc@mail.ru

Online-edu.mirea.ru

Темы лекции:

Основные этапы проектирования устройств на ПЛИС

Основные элементы языка VHDL

Примеры описаний на языке VHDL

Основные этапы проектирования устройств на ПЛИС

- Постановка задачи (техническое задание).
- Составление схемы (структурной, функциональной, принципиальной), где ПЛИС представлена как микросхема.

Основные этапы проектирования устройств на ПЛИС

Конструкторский этап. Разработка печатного узла, критерии: удобство подключения, минимум пересечений печатных проводников.

По результатам размещения и трассировки уточняются номера задействованных выводов ПЛИС.

Основные этапы проектирования устройств на ПЛИС

- Создание проекта в САПР ПЛИС (семейство/тип ПЛИС, корпус, средства синтеза, проектные ограничения).
- Описание проектируемого устройства (части, размещаемой в кристалле) либо в *схемотехнической форме*, т.е. в виде принципиальной схемы, либо в форме *поведенческого описания* на языке HLD (Hardware Description Language).
- Функциональное моделирование (симуляция) на уровне операторов языка HDL (при необходимости).
- Синтез устройства на уровне регистров (модулей типа дешифраторов, мультиплексоров, счетчиков и т.п.).
- Синтез модулей и всего устройства на кристалле на основе имеющихся ресурсов конкретной ПЛИС: логических ячеек, устройств ввода-вывода, памяти, интерфейсов, IP ядер и т.п.
- Размещение и трассировка проекта в кристалле.
- Временно́е моделирование (при необходимости).
- Генерация конфигурационного файла, программирование ПЛИС (загрузка проекта в кристалл).

Отладочные платы на ПЛИС

Отладочные платы на ПЛИС

Отладочные платы на ПЛИС и процессорах

Основные производители (разработчики) ПЛИС

Xilinx

Intel (Altera)

Microsemi (Actel)

Lattice Semiconductor

Achronix Semiconductor

а также QuickLogic, Silego, Atmel, Cypress и др.

В России: Воронежский завод полупроводниковых приборов выпускает кристаллы по лицензии Altera.

Методы описания проектируемого устройства

Структурное (схемотехническое)

а) принципиальная схема с применением типовых библиотечных компонентов:

I1, I0, О — обозначение выводов компонента,X1, X2, Y — обозначение внешних сигналов;

б) описание структуры и связей:

Потоковое и поведенческое

Описание входных, выходных сигналов и функционирования системы на языке Hardware Description Language (HDL):

```
Y \le X1 and not X2;
```

Методы описания проектируемого устройства

Основные HDL:

- VHDL
- Verilog
- SystemVerilog
- SystemC

Создание описания из других сред моделирования

Литература:

Тарасов И.Е. ПЛИС Xilinx. Языки описания аппаратуры VHDL и Verilog, САПР, приемы проектирования, 2019, с. 122–161],

VHDL: Справочное пособие по основам языка: учебное пособие / В. П. Бабак и др., 2010, с. 37–96]

VHDL — VHSIC (Very High-Speed Integrated Circuits) Hardware Description Language

Объекты языка

constant константа

variable переменная

signal сигнал — переносит информацию между компонентами

Примеры записи констант

Числа (литералы):

123 45.6 7.8e-2 16#9ABC# 2#1000_0101# (знак _ необязателен)

Символы, строки символов, битовые строки:

'a' "string" "101100" b"1001111" x"4F"

Основные типы данных

bit integer std_logic std_logic_vector

Тип **bit** принимает значения 0 и 1.

Tun **integer** описывает целые числа. Рекомендуется указывать диапазон:

signal x : integer range 0 to 255;

Тип **std_logic** является основным типом для представления сигналов. Уровни:

- 'U', Неинициализированный (сигнал, который еще не был задан).
- 'Х', Сильный неизвестный сигнал.
- '0', Сильный лог. 0
- '**1**', Сильная лог. 1
- 'Z', Высокий импеданс (Z-состояние)
- '**W**'. Слабый неизвестный сигнал
- '**L**'. Слабый лог. 0
- **'H**', Слабая лог. 1
- '-' Уровень сигнала не имеет значения

```
Тип std_logic_vector — группа сигналов std_logic.

Примеры объявлений:

signal a1 : std_logic_vector (7 downto 0);

или
signal a2 : std_logic_vector (0 to 15);

Присвоение значения:

a1 <= "00000011";
```

Другие типы данных

array boolean character string real access time перечислимый record signed unsigned natural

Функции преобразования типов

```
integer → std_logic_vector
<slv_sig> = CONV_STD_LOGIC_VECTOR(<int_sig>, <integer_size>);

std_logic_vector → integer
<int_sig> = CONV_INTEGER(<slv_sig>);

std_logic_vector → std_logic_vector (знаковое расширение)
<slv_sxt_sig> = SXT(<slv_sig>, <integer_size>);

std_logic_vector → std_logic_vector (дополнение нулями)
<slv_ext_sig> = EXT(<slv_sig>, <integer_size>);
```

Операторы

Оператор	Название
Логические операторы	
and	И
nand	И-НЕ
or	или
nor	или-не
xor	Исключающее ИЛИ
nxor	Исключающее ИЛИ-НЕ
not	HE
&	Объединение двоичных разрядов
Арифметические операторы	
+	Сложение
-	Вычитание, смена знака
*	Умножение
/	Деление
%, rem, mod	Остаток от деления
**	Возведение в степень
abs	Абсолютное значение
Операторы отношения	
<	Меньше
>	Больше
<=	Меньше или равно
>=	Больше или равно
=	Равно
/=	Не равно
Операторы сдвига	
srl	Логический сдвиг вправо
sll	Логический сдвиг влево
sra	Арифметический сдвиг вправо
sla	Арифметический сдвиг влево
ror	Циклический сдвиг вправо
rol	Циклический сдвиг влево

Операторы присваивания

```
:= Присвоение значений переменным и начальная инициализация сигналов.
```

<= Присвоение значений сигналам.

Примеры:

```
variable index : integer := 0;
y <= a or b;</pre>
```

Управляющие операторы

if...then...else case with...select for...loop while...loop process

Структурные операторы

entity
architecture
port map
component
generate

Структура модуля описания на VHDL

Описание интерфейса

Подключение библиотек library ... use ... Объявление интерфейса entity ... port ...

Описание архитектуры и функционирования

```
architecture...Объявление внутренних сигналов, компонентовsignal...component...Соединения компонентовport map...Операции параллельного выполненияПрисвоение(потоковые)process...(поведенческие)
```

Примеры описаний на языке VHDL

Структурное описание устройства

```
library IEEE;
                                   -- Объявление библиотек
use IEEE.STD_LOGIC_1164.all;
entity my_device is
                         -- Начало описания объекта
 port (
        a, b, c, d : in std_logic; -- Входные сигналы порта
                   : out std_logic -- Выходные сигналы порта
       );
end my device;
                                   -- Конец описания объекта
architecture arch of my_device is -- Начало описания архитектуры
signal s1, s2 : std logic;
                                   -- Объявление внутренних сигналов
component NAND2
                                   -- Объявление используемого компонента
 port (
                                   -- (библиотечного или ранее определенного),
        a, b : in std logic;
                                   -- здесь: nand2 - из библиотеки схем
        c : out std logic
end component;
```

Структурное описание устройства (продолжение)

```
begin
                                           -- Начало описания структуры или
                                               функционирования
D1: NAND2 port map
                                              Описание межкомпонентных связей:
  (a \Rightarrow a,
                                               имя вывода компонента => имя цепи
    b \Rightarrow b
    c \Rightarrow s1
  );
D2: NAND2 port map
  (a \Rightarrow c,
    b \Rightarrow d
    c => s2
  );
D3: NAND2 port map
  (a => s1,
    b => s2
    c \Rightarrow q
  );
end arch;
                                            -- Конец описания архитектуры
```

Потоковое (поведенческое) описание устройства

```
D1
                   D3
                                     -- Объявление библиотек
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity my device is
                                     -- Начало описания объекта
 port (
         a, b, c, d : in std_logic; -- Входные сигналы порта
                 : out std_logic -- Выходные сигналы порта
       );
                                     -- Конец описания объекта
end my device;
architecture arch of my_device is -- Начало описания архитектуры
                                     -- Объявление внутренних сигналов
signal s1, s2 : std logic;
begin
                                     -- Начало описания структуры или
                                     -- функционирования
s1 <= not (a and b);</pre>
s2 \ll not (c and d);
q \ll not (s1 and s2);
end arch;
                                     -- Конец описания архитектуры
```

Потоковое (поведенческое) описание устройства

Результаты синтеза

Синтезированная структура (RTL Schematic)

RTL - Register transfer level

Синтезированная структура (Technology Schematic)

