

```
name: <unnamed>
               d:\GitSoftware\mlad\Examples\mlad fpm\mlad example.smcl
        loa:
               smcl
    log type:
   opened on: 29 Nov 2023, 11:26:45
1 . // Load data
2 . use https://www.pclambert.net/data/rott3, clear
  (Rotterdam breast cancer data (augmented with cause of death))
4 . // Use stpm3 model to fit simple model in Stata
5 . // Variables
        -- hormon (factor variable)
6 . //
7 . //
        -- age (natural spline)
8 . stpm3 i.hormon @ns(age,df(3)), scale(lncumhazard) df(4)
 Iteration 0: Log likelihood = -2886.9797
Iteration 1: Log likelihood = -2884.0565
  Iteration 2: Log likelihood = -2884.0429
  Iteration 3: Log likelihood = -2884.0429
                                                            Number of obs = 2,982
                                                            Wald chi2(4) = 132.42
  Log likelihood = -2884.0429
                                                            Prob > chi2
                                                                          = 0.0000
                 Coefficient Std. err.
                                                            [95% conf. interval]
                                                   P>|z|
  xb
        hormon
                                            4.21
                                                              .1996119
                   .3731572
                              .0885452
                                                   0.000
          yes
                                                                          .5467026
   ns fl agel
                  -3.142327
                                           -3.52
                                                   0.000
                                                             -4.894149
                                                                         -1.390505
                              .8938032
   _ns_f1_age2
                                                   0.010
                                                             -1.723043
                  -.9788548
                              .3796951
                                                                         -.2346661
                                           -2.58
   _ns_f1_age3
                  -2.199723
                              .3953551
                                           -5.56
                                                   0.000
                                                             -2.974604
                                                                         -1.424841
  time
         _ns1
                  -25.52175
                              1.864219
                                          -13.69
                                                   0.000
                                                             -29.17555
                                                                         -21.86795
                              .9963344
                   8.048509
                                           8.08
                                                   0.000
                                                             6.095729
                                                                         10.00129
          ns2
          _ns3
                  -1.016756
                              .0438515
                                          -23.19
                                                   0.000
                                                             -1.102703
                                                                         -.9308083
                                                   0.000
          ns4
                  -.6569238
                               .0476898
                                                              -.750394
                                          -13.77
                                                                         -.5634536
          cons
                   .8747299
                               .1904223
                                            4.59
                                                   0.000
                                                              .5015089
                                                                         1.247951
 Extended functions
   (1) @ns(age, df(3))
9 . estimates store stpm3
11. // I will use the spline variables created by stpm3 when I use mlad
13. // Here is a simple way to get initial values
14. // fit exponential model & use least squares
15. streg i.hormon _ns_f1_age1 _ns_f1_age2 _ns_f1 age3, dist(exp)
    Failure _d: osi==1
Analysis time _t: os/12
    Exit on or before: time 10*12
          ID variable: pid
  Iteration 0: Log likelihood = -3022.1979
  Iteration 1:
                Log likelihood = -2977.5856
  Iteration 2: Log likelihood = -2967.277
  Iteration 3: Log likelihood = -2967.2473
  Iteration 4: Log likelihood = -2967.2473
  Exponential PH regression
```

```
No. of subjects = 2,982

No. of failures = 1,171

Time at risk = 20,002.4244

Leg likelihood = -2967.2473

Number of obs = 2,982

LR chi2(4) = 109.90

Prob > chi2 = 0.0000
```

t	Haz. ratio	Std. err.	Z	P> z	[95% conf.	interval]
hormon yes ns_f1_age1 ns_f1_age2 ns_f1_age3 _cons	1.424495	.1256015	4.01	0.000	1.198417	1.693221
	.0509612	.0453617	-3.34	0.001	.0089036	.291684
	.3769882	.1429753	-2.57	0.010	.1792684	.7927781
	.1230702	.0483402	-5.33	0.000	.0569919	.2657618
	.2219702	.0417761	-8.00	0.000	.1534947	.3209933

Note: _cons estimates baseline hazard.

- 16. predict surv, surv
- 17. gen logcumH = log(-log(surv))
- 18. regress logcumH i.hormon _ns_f1_age1 _ns_f1_age2 _ns_f1_age3 _ns1 _ns2 _ns3 _ns4 if > _d

Source	SS	df	MS	Number of obs F(8, 1162)	= >	1,171 99999.00
Model Residual	639.715523 2.9834e-11	8 1,162	79.9644404 2.5675e-14	Prob > F R-squared	=	0.0000 1.0000
Total	639.715523	1,170	.546765404	Adj R-squared Root MSE	=	1.0000 1.6e-07

logcumH	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
hormon yes ns_f1_age1 ns_f1_age2 ns_f1_age3 ns_f1_age3 ns1 ns2 ns3 ns4 cons	.3538171 -2.976691 9755414 -2.095001 -13.18746 3.111902 9738248 6637326 .7966883	1.40e-07 -2.1 6.06e-08 -1.6 6.14e-08 -3.4 2.23e-07 -5.9 1.39e-07 2.2 2.18e-08 -4.5 4.45e-08 -1.5	e+07 e+07 e+07 e+07 e+07 e+07 e+07	0.000 0.000 0.000 0.000 0.000	.3538171 -2.976691 9755415 -2.095001 -13.18746 3.111902 9738249 6637327 .7966882	.3538172 -2.97669 9755413 -2.095 -13.18746 3.111902 9738248 6637325 .7966883

```
19. // Store inital values
20. matrix b_init = e(b)
21.
22. // mlad is an alternative optimizer in Stata
23. // It calls Python and most calculations are performed within Python
24. // mlad requires a Python file to define the log-likelhood
25.
26. // Python likelihood file
27. // arguments for function are
28. // -- beta - parameters
29. // -- X - data
30. // -- wt - weights (vector of 1's if no weights in mlad)
```

```
31. // -- M - dictionary containing othervars etc
33. // The Python file is only a few lines as the log-likelhood is simple
34. type fpm hazard ll.py
 import jax.numpy as jnp
  import mladutil as mu
  def python_ll(beta,X,wt,M):
   xb = mu.linpred(beta, X, 1)
    time = mu.linpred(beta, X, 2)
    eta = xb + time
    dtime = jnp.dot(M["dns"], beta[1])[:,None]
    return(jnp.sum(wt*(M["_d"]*(jnp.log(dtime) + eta) - jnp.exp(eta))))
36. // Note that gradient (score) and Hessian functions are automatically obtained
37. // from the above when using mlad using automatic differentiation.
38.
39. // There is an option to include a Python setup file
40. // It is useful here as we need the derivatives of the log(time) spline variables
41. // These are needed within the log-likelihood function
42. // The setup file is called once before the iterations start.
43. type fpm setup.py
  import jax.numpy as jnp
  from sfi import Macro
  def mlad setup(M):
    dnsvars = Macro.getGlobal("dnsvars").split()
    dns = []
    for v in range(len(dnsvars)):
      dns.append(M[dnsvars[v]])
    dns.append(jnp.zeros((len(M[dnsvars[1]]),1)))
    dns = (jnp.array(dns).squeeze(axis=2)).T
    M["dns"] = dns
    return (M)
44.
45. // Fit model using mlad
46. // need to supply the two python files
47. // Setup two equations as stpm3
48. // -- xb equation is for covariates effects
49. //
        -- time equation is for effect of time
50. // Also the event indicator (_d) and derivatives (_dns1 _dns2 _dns3 _dns4) of 51. // the spline variables are needed
52. global dnsvars _dns1 _dns2 _dns3 _dns4
         53. mlad (xb:
           pysetup(fpm setup)
                                                                            ///
                                                                            ///
           llfile(fpm \overline{h}azard ll)
           init(b_init) search(off)
 Iteration 0: Log likelihood = -2967.2473
Iteration 1: Log likelihood = -2886.9559
  Iteration 2: Log likelihood = -2884.0586
 Iteration 3: Log likelihood = -2884.0429
Iteration 4: Log likelihood = -2884.0429
```

- 54. estimates store mlad
- 55. // display estimates
- 56. ml display

Log likelihood = -2884.0429

Number of obs = 2,982Wald chi2(4) = 132.42 Prob > chi2 = 0.0000

	Coefficient	Std. err.	Z	P> z	[95% conf	. interval]
hormon yes ns_f1_age1 ns_f1_age2 ns_f1_age3	.3731572	.0885452	4.21	0.000	.1996119	.5467026
	-3.142327	.8938032	-3.52	0.000	-4.894149	-1.390505
	9788548	.3796951	-2.58	0.010	-1.723043	2346661
	-2.199723	.3953551	-5.56	0.000	-2.974604	-1.424841
ns1	-25.52175	1.864219	-13.69	0.000	-29.17555	-21.86795
ns2	8.048509	.9963344	8.08	0.000	6.095729	10.00129
ns3	-1.016756	.0438515	-23.19	0.000	-1.102703	9308083
ns4	6569238	.0476898	-13.77	0.000	750394	5634536
cons	.8747299	.1904223	4.59	0.000	.5015089	1.247951

- 57.
- 58. // compare estimates and standard errors 59. estimates table stpm3 mlad, se

Variable	stpm3	mlad	
hormon yes	.37315725	.37315725 .08854516	
_ns_f1_age1 _ns_f1_age2 _ns_f1_age3	-3.1423274 .89380321 97885475 .37969509 -2.1997227 .39535509	-3.1423274 .89380321 97885475 .37969509 -2.1997227 .39535509	
ns1 ns2 ns3 ns4 cons	-25.521752 1.864219 8.0485086 .99633437 -1.0167556 .04385147 65692379 .04768975 .87472985 .19042234	-25.521752 1.864219 8.0485087 .99633437 -1.0167556 .04385147 65692379 .04768975 .87472985 .19042234	

Legend: b/se

- 60.
- 61. // Note: leads to identical estimates
 62. // mlad is faster in large datasets (depending on number of cores)
- 63. log close
 - name:
 - log: d:\GitSoftware\mlad\Examples\mlad_fpm\mlad_example.smcl
 - log type: smcl
 - closed on: 29 Nov 2023, 11:26:47