Carnap	About	Book	Login
--------	--------------	------	-------

Logic, First Course, Winter 2020. Week 8, Lecture 1, Handout.

Double negation rule

Law of the excluded middle

Since we will often want to appeal to double-negation without having to redo this proof over and over, we simply include a new rule for law of the excluded middle which says that one can always put $\phi \lor \neg \phi$ on a line, and justify it as LEM . Note that no line number is put down as part

of the justification.

. . . φνηφ LEM

Other derived rules

- Law of excluded middle: p ∨ ¬p is a tautology. Abbreviation: LEM
- Law of non-contradiction: $\neg(p \land \neg p)$ is a tautology. Abbreviation: LNC
- The law of double-negation: p is equivalent to ¬¬p. Abbreviation: DN
- Law of commutativity for conjunction: $p \land q$ is equivalent to $q \land p$. Abbreviation: LCC
- Law of commutativity for disjunction: $p \lor q$ is equivalent to $q \lor p$. Abbreviation LCD.
- Law of associativity for conjunction: (p ∧ q) ∧ r is equivalent to p ∧ (q ∧ r). Abbreviation:

 LAC
- Law of associativity for disjunction: $(p \lor q) \lor r$ is equivalent to $p \lor (q \lor r)$. Abbreviation: LAD
- Law of distribution, part 1: p ∧ (q ∨ r) is equivalent to (p ∧ q) ∨ (p ∧ r). Abbreviation: LDC (where the final "C" is short for the initial conjunction)
- Law of distribution, part 2: p ∨ (q ∧ r) is equivalent to (p ∨ q) ∧ (p ∨ r). Abbreviation: LDD (where the final "D" is short for the initial disjunction)