ECE 133A HW 4

Lawrence Liu

October 27, 2022

Exercise A5.6

(a)

Let DX + XD = A, we have that $A_{ij} = (D_{ii} + D_{jj})X_{ij}$, Since DX + XD = B we have that

$$A_{ij} = B_{ij}$$

$$B_{ij} = (D_{ii} + D_{jj})X_{ij}$$

Therefore we get that

$$X_{ij} = \frac{B_{ij}}{D_{ii} + D_{jj}}$$

for any i, j, this will exist since $D_{ii} + D_{jj} \neq 0$ for all i and j this computation will cost us 2 flops, 1 for addition and one for division so in total solving for all X_{ij} will cost us $2n^2$ flops.

(b)

Let

$$L = \begin{bmatrix} L_{11} & 0 & \cdots & 0 \\ L_{21} & L_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{bmatrix}$$

$$X = \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{nn} \end{bmatrix}$$

Then we have that

$$LX = \begin{bmatrix} L_{11}X_{11} & L_{11}X_{12} & \cdots & L_{11}X_{1n} \\ L_{21}X_{11} + L_{22}X_{21} & L_{21}X_{12} + L_{22}X_{22} & \cdots & L_{21}X_{1n} + L_{22}X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1}X_{11} + \cdots + L_{nn}X_{n1} & L_{n1}X_{12} + \cdots + L_{nn}X_{n2} & \cdots & L_{n1}X_{1n} + \cdots + L_{nn}X_{nn} \end{bmatrix}$$

And

$$XL^{T} = \begin{bmatrix} L_{11}X_{11} & L21X_{11} + L22X_{12} & \cdots & L_{n1}X_{11} + \cdots + L_{nn}X_{1n} \\ L_{11}X_{21} & L21X_{21} + L22X_{22} & \cdots & L_{n1}X_{21} + \cdots + L_{nn}X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ L_{11}X_{n1} & L21X_{n1} + L22X_{n2} & \cdots & L_{n1}X_{n1} + \cdots + L_{nn}X_{nn} \end{bmatrix}$$

therefore we have that

$$B_{ij} = \sum_{k=1}^{i} L_{ik} X_{kj} + \sum_{k=1}^{j} L_{jk} X_{ik}$$

Therefore if we know X_{lm} for all $0 \le l \le i$ and $0 \le m \le j$ Except for X_{ij} we can express

$$X_{ij} = \frac{B_{ij} - \sum_{k=1}^{i-1} L_{ik} X_{kj} - \sum_{k=1}^{j-1} L_{jk} X_{ik}}{L_{ii} + L_{ij}}$$

Since $L_{ii} + L_{jj} \neq 0$ for all i, j this will exist. The two summations will cost us 2(i-1+j-1)-2 flops, and the subtractions will cost us 2 flops, and the division will cost us 2 flops since we need to first compute the sum $L_{ii} + L_{jj}$ so in total this computation will cost us 2(i+j) flops. Therefore to solve for all X_{ij} it will cost us

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 2(i+j) = 2 \sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)$$

$$= 2 \sum_{i=1}^{n} ni + \sum_{j=1}^{n} nj$$

$$= 2 \left(\frac{n^{2}(n+1)}{2} + \frac{n^{2}(n+1)}{2} \right)$$

$$= 2n^{2}(n+1)$$

Exercise A6.3

(a)

Since $S^T = -S$ we have that

$$S = \begin{bmatrix} 0 & c_{12} & \cdots & c_{1n} \\ -c_{12} & 0 & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -c_{1n} & -c_{2n} & \cdots & 0 \end{bmatrix}$$

therefore we have that for any $X = [x_1, x_2, \cdots, x_n]^T$

$$Sx = \begin{bmatrix} 0 + c_{12}x_2 + \dots + c_{1n}x_n \\ -c_{12}x_1 + 0 + \dots + c_{2n}x_n \\ \vdots \\ -c_{1n}x_1 - c_{2n}x_2 + \dots + 0 \end{bmatrix}$$

Therefore we have:

$$x^{T}Sx = \sum_{i=1}^{n} \sum_{j=i+1}^{n} c_{ij}x_{i}x_{j} - \sum_{i=1}^{n} \sum_{j=i+1}^{n} c_{ij}x_{i}x_{j} = 0$$

In order for (I - S)x = 0 will only happen if x = 0,

$$(I - S)x = 0$$

$$x^{T}(I - S)x = 0$$

$$x^{T}Ix - x^{T}Sx = 0$$

$$x^{T}Ix = 0x^{T}x$$

$$= 0x \cdot x = 0$$

Therefore (I - S)x = 0 will only happen if x = 0 so we have that I - S is nonsingular.

(b)

Similarly as how I-S is nonsingular we can show that I+S is nonsingular. Since

$$(I+S)x = 0$$

$$x^{T}(I+S)x = 0$$

$$x^{T}Ix + x^{T}Sx = 0$$

$$x^{T}Ix = 0x^{T}x$$

$$= 0x \cdot x = 0$$

Which once again leads to the result that (I+S)x=0 only when x=0, and thus I+S is nonsingular. Therefore we have that $(I-S)^{-1}$ and $(I+S)^{-1}$ exist. Thus we get

$$(I+S)(I-S)^{-1} = (2I - (I-S))(I-S)^{-1}$$

$$= 2(I-S)^{-1} - I$$

$$= (I-S)^{-1}(2I - (I-S))$$

$$= (I-S)^{-1}(I+S)$$

(c)

In order for a matrix A to be symmetric we must have that $A^TA = I$ we have

$$((I+S)(I-S)^{-1})^{T} ((I+S)(I-S)^{-1}) = ((I-S)^{-1})^{T} (I-S)(I+S)(I-S)^{-1}$$

$$= ((I-S)^{-1})^{T} (I-S)(I-S)^{-1}(I+S)$$

$$= ((I-S)^{-1})^{T} (I+S)$$

$$= ((I-S)^{T})^{-1} (I-S)^{-1}(I+S)$$

$$= ((I+S))^{-1} (I+S)$$

$$= I$$

Therefore we have that $A = (I + S)(I - S)^{-1}$ is orthogonal.

Exercise A6.9

(a)

We have that

$$S^{k-1} = \begin{bmatrix} 0 & I_{k-1} \\ I_{n-k+1} & 0 \end{bmatrix}$$

Therefore S^{k-1} will circularly shift W when we multiple W by it, in other words, the ith row of WS^{k-1} , $(WS^{k-1})_i$ will be

$$\left(WS^{k-1}\right)_i = \begin{bmatrix} \omega^{-i(k-1)} & \omega^{-ik} & \cdots & \omega^{-i(n-1)} & \omega^0 & \omega^i & \cdots & \omega^{i(k-2)} \end{bmatrix}$$

Likewise for $\operatorname{diag}(We_k)W$, we have that the ith row of $\operatorname{diag}(We_k)W$, $(\operatorname{diag}(We_k)W)_i$ will be

$$\begin{split} \left(\mathbf{diag}(We_k)W\right)_i &= \begin{bmatrix} \omega^{-i(k-1)} & \omega^{-i}\omega^{-i(k-1)} & \cdots & \omega^{i}n - 1\omega^{-i(k-1)} \end{bmatrix} \\ &= \begin{bmatrix} \omega^{-i(k-1)} & \omega^{-ik} & \cdots & \omega^{-i(n+k-2)} \end{bmatrix} \end{split}$$

Therefore for k > 1, (since it is obvious for k = 1 the equality holds)

$$(\mathbf{diag}(We_k)W)_i = \begin{bmatrix} \omega^{-i(k-1)} & \omega^{-ik} & \cdots & \omega^{-i(n-1)} & \omega^0 & \omega^i & \cdots & \omega^{i(k-2)} \end{bmatrix}$$

Since $\omega = e^{2\pi j/n}$.

Therefore we have that

$$WS^{k-1} = \mathbf{diag}(We_k)W$$

(b)

Let A_i be the matrix with the ith column being a and the rest of the matrix being 0, then we have that

$$T(a) = \sum_{i=1}^{n} s^{i-1} A_i$$

$$= \sum_{i=1}^{n} \frac{1}{n} W^H \mathbf{diag}(We_i) WA_i$$

$$= \frac{1}{n} W^H \sum_{i=1}^{n} text \mathbf{diag}(We_i) WA_i$$

We have that WA_i is a matrix with the ith column being $[\sum_{j=1}^n a_j, \sum_{j=1}^n a_j \omega^{-(j-1)}, \cdots \sum_{j=1}^n a_j \omega^{-(j-1)}]$ and the rest of the matrix being 0, therefore we have that,

$$WA_i = A_i^T W^T \qquad \qquad = A_i^T W$$

Therefore we have

$$T(a) = \sum_{i=1}^{n} \frac{1}{n} W^{H} \mathbf{diag}(We_{k}) WA_{i}$$

$$= \sum_{i=1}^{n} \frac{1}{n} W^{H} \mathbf{diag}(We_{k}) A_{i}^{T} W$$

$$= \frac{1}{n} W^{H} \left(\sum_{i=1}^{n} \mathbf{diag}(We_{k}) A_{i}^{T} \right) W$$

We have that QQ