WHAT IS CLAIMED IS:

1		1.	A method of protecting a conductor in a micromachined device, said
2	method comp	rising:	
3		provid	ling a substrate for a micromachined device;
4		provid	ling a conductor as part of said micromachined device for use in
5	conducting ele	ectrical	signals during operation of said micromachined device;
6		provid	ing a protective covering for said conductor so that said conductor is
7	disposed between said substrate and said protective covering.		
1		2.	The method as described in claim 1 wherein said protective covering
2	comprises pol	ysilicor	1.
1		3.	The method as described in claim 1 wherein said providing a
2	protective cov	ering c	omprises depositing said protective covering as a layer of material.
1		4.	The method as described in claim 3 wherein said layer of material
2	protects a plui	ality of	`conductors.
1		5.	The method as described in claim 1 and further comprising:
2		electri	cally coupling said protective covering with said substrate so as to
3	configure a ground ring around said conductor.		
1		6.	The method as described in claim 1 and further comprising:
2		config	uring said protective covering so as to form a tunnel relative to said
3	conductor.		
1		7.	The method as described in claim 1 and further comprising:
2		not de	positing a passivation layer over an active mechanical component of
3	said micromachined device.		
1		8.	A micromachined device comprising:
2		a subs	trate;

3	a conductor configured as part of said micromachined device;		
4	a protective covering disposed over said conductor so that said conductor is		
5	disposed between said substrate and said protective covering.		
1	9. The device as described in claim 8 wherein said protective covering		
2	comprises polysilicon.		
1	10. The device as described in claim 8 wherein said protective covering is		
2	deposited as a layer of material.		
1	11. The device as described in claim 10 wherein said layer of material		
2	protects a plurality of conductors.		
1	12. The device as described in claim 8 wherein said protective covering is		
2	electrically coupled with said substrate so as to form a ground ring around said conductor.		
1	13. The device as described in claim 8 wherein said protective covering is		
2	configured so as to form a tunnel relative to said conductor.		
1	14. The device as described in claim 8 wherein said device is configured		
2	for operation without a passivation layer disposed over said condutor.		
1	15. A method of protecting a conductor in a micromachined device, said		
2	method comprising:		
3	providing a micromachined device comprising a substrate;		
4	providing a conductor as part of said micromachined device;		
5	providing as part of said micromachined device a protective covering, whereir		
6	said conductor is disposed between said protective covering and said substrate of said		
7	micromachined device.		
1	16. The method as described in claim 15 wherein said providing a		
2	protective covering comprises utilizing polysilicon as said protective covering.		
1	17. The method as described in claim 15 wherein said providing said		
2	protective covering comprises depositing said protective covering as a layer of material.		

1	18. The method as described in claim 17 wherein said layer of material		
2	protects a plurality of conductors.		
1	19. The method as described in claim 15 and further comprising:		
2	electrically coupling said protective covering with said substrate so as to		
3	configure a ground ring around said conductor.		
1	20. The method as described in claim 15 and further comprising:		
2	configuring said protective covering so as to form a tunnel relative to said		
3	conductor.		
1	21. The method as described in claim 15 and further comprising:		
2	not depositing a passivation layer over an active mechanical component of		
3	said micromachined device.		
1	22. A micromachined apparatus comprising:		
2	a substrate;		
3	a bonding pad;		
4	a conductor disposed over said substrate, wherein said conductor is electrically	y	
5	coupled with said bonding pad;		
6	an active mechanical component disposed over said substrate, wherein said		
7	active mechanical component is configured to move relative to said substrate;		
8	a protective cover disposed over said conductor so that said conductor is		
9	disposed between said protective cover and said substrate.		
1	23. The apparatus as described in claim 22 wherein said active mechanical		
2	component comprises a mirror.		
1	24. The apparatus as described in claim 23 wherein said mirror comprises		
2	silican		

1	25. The apparatus as described in claim 22 wherein said active mechanical
2	component is exposed to the atomosphere during operation of said apparatus.
1	26. The apparatus as described in claim 22 wherein a portion of said
2	conductor is exposed to the atmosphere during operation of said apparatus.
1	27. The apparatus as described in claim 22 wherein said protective cover
2	comprises an polysilicon.
1	28. The apparatus as described in claim 22 wherein said protective layer of
2	material is operable to protect said conductor from an electrical short when a voltage of at
3	least 100 Volts is applied to said protective layer of material.
1	29. The apparatus as described in claim 22 wherein said protective layer of
2	material is configured so as to form a ground ring with said substrate around said conductor.
1	30. The apparatus as described in claim 22 wherein said protective layer of
	material is configured so as to form a tunnel relative to said conductor.
1	The apparatus as described in claim 22 wherein said apparatus is
2	configured for operation without depositing a passivation layer.
1	32. A method of providing a micromachined apparatus, said method
2	comprising:
3	providing a substrate;
4	disposing a bonding pad over said substrate;
5	disposing a conductor over said substrate, wherein said conductor is
6	electrically coupled with said bonding pad;
7	disposing an active mechanical component over said substrate, wherein said
8	active mechanical component is configured to move relative to said substrate during
9	operation of said micromachined apparatus;
10	disposing a protective cover over said conductor so that said conductor is
11	disposed between said protective covering and said substrate.

1		33.	The method as described in claim 32 wherein said active mechanical
2	component co	mprise	s a mirror.
1		34.	The method as described in claim 33 wherein said mirror comprises
2	silicon.		
1		35.	The method as described in claim 32 wherein said active mechanical
2	component is	expose	d to the atomosphere during operation of said micromachined apparatus.
1		36.	The method as described in claim 32 wherein a portion of said
2	conductor is e	xposed	to the atmosphere during operation of said micromachined apparatus.
1		37.	The method as described in claim 32 wherein said protective cover
2	comprises pol	ysilicor	1.
1		38.	The method as described in claim 32 wherein said protective cover is
2	operable so as	to prot	ect said conductor from an electrical short when a voltage of at least 100
3	Volts is applied to said protective cover.		
1		39.	The method as described in claim 32 and further comprising:
2		electri	cally coupling said protective cover with said substrate so as to
3	configure a gr	ound ri	ng around said conductor.
1		40.	The method as described in claim 32 and further comprising:
2		config	uring said protective cover so as to form a tunnel relative to said
3	conductor.		
1		41.	The method as described in claim 32 and further comprising:
2		not de	positing a passivation layer over an active mechanical component of
3	said micromachined apparatus.		
1		42.	A method of configuring a micromachined apparatus, said method
2	comprising:		
3		provid	ing a bonding pad as part of said micromachined apparatus;

4	providing an active mechanical component, wherein said active mechanical		
5	component is configured to move during operation of said micromachined apparatus;		
6	disposing a conductor between said active mechanical component and said		
7	bonding pad;		
8	protecting at least a portion of said conductor disposed between said active		
9	mechanical component and said bonding pad with a protective layer of material operable to		
10	protect said conductor from electrical shorts.		
1	43. The method as described in claim 42 wherein said providing an active		
2	mechanical component comprises providing a mirror.		
1	44. The method as described in claim 42 and further comprising		
2	configuring said active mechanical component so as to be exposed to the atmosphere during		
3	operation of said micromachined apparatus.		
1	45. The method as described in claim 42 wherein said protective layer of		
2	material protects said conductor when a voltage of at least 100 Volts is applied to said		
3	protective layer of material.		
1	46. The method as described in claim 42 and further comprising:		
2	configuring said protective layer of material so as to form at least part of a		
3	ground ring around said conductor.		
1	47. The method as described in claim 42 and further comprising:		
2	configuring said protective layer of material so as to form a tunnel relative to		
3	said conductor.		
1	48. The method as described in claim 42 and further comprising:		
2	not depositing a passivation layer over said active mechanical component.		
1	49. A micromachined apparatus comprising:		
2	a bonding pad;		

3		an active mechanical component configured to move during operation of said		
4	micromachine	achined apparatus;		
5 6	bonding pad;	a conductor disposed between said active mechanical component and said		
7		a covering configured so as to protect at least a portion of said conductor		
8	disposed betw	een said bonding pad and said active mechanical component from electrical		
9	shorts.			
1 2	active mechan	50. The micromachined apparatus as described in claim 49 wherein said tical component comprises a mirror.		
1		51. The micromachined apparatus as described in claim 49 wherein a		
2	portion of said	d conductor is exposed to the atmosphere during operation of said		
3	micromachine	ed apparatus.		
1		52. The micromachined apparatus as described in claim 49 wherein said		
2	covering is co	nfigured so as to protect said conductor when a voltage of at least 100 Volts is		
3	applied to said	l covering.		
1		53. The micromachined apparatus as described in claim 49 wherein said		
2	covering is co	nfigured so as to form at least part of a ground ring around said conductor.		
1		54. The micromachined apparatus as described in claim 49 wherein said		
2	covering is co	nfigured so as to form a tunnel relative to said conductor.		
1		55. The micromachined apparatus as described in claim 49 wherein said		
2	micromachine	ed apparatus is configured without depositing a passivation layer.		
1		56. A method comprising:		
2		providing a substrate;		
3		disposing a conductor over said substrate operable for conducting electrical		
4	signals;	•		
5		configuring an equipotential barrier at least partially around said conductor		
6	operable for p	rotecting said conductor from electrical shorts.		

1	57.	The method as described in claim 56 wherein said configuring an	
2	equipotential barrie	er comprises:	
3	dep	ositing polysilicon over said conductor; and	
4	elec	trically coupling said polysilicon with said substrate so as to form an	
5	equipotential ring.		
1	58.	The method as described in claim 57 and further comprising:	
2	elec	trically coupling said equipotential ring to a circuit ground.	
1	59.	The method as described in claim 56 wherein said configuring an	
2	equipotential barrier comprises:		
3	con	figuring a tunnel of electrically conductive material over said conductor;	
4	and		
5	couj	pling said electrically conductive material with said substrate.	
1	60.	The method as described in claim 59 and further comprising:	
2	elec	trically coupling said equipotential barrier to a circuit ground.	
1	61.	An apparatus comprising:	
2	a su	bstrate;	
3	a co	nductor disposed over said substrate, said conductor operable for	
4	conducting electrical signals;		
5	an e	quipotential barrier disposed at least partially around said conductor and	
6	operable for protecting said conductor from electrical shorts.		
1	62.	The apparatus as described in claim 61 wherein said equipotential	
2	barrier comprises p	olysilicon; and	
3	whe	rein said polysilicon is electrically coupled with said substrate so as to	
4	form an equipotent	ial ring.	

- 1 63. The apparatus as described in claim 62 wherein said equipotential ring 2 is configured for coupling to a circuit ground during operation of said apparatus.
- 1 64. The apparatus as described in claim 61 wherein said equipotential
 2 barrier comprises a conductive material configured as a tunnel over said conductor; and
 3 wherein said conductive material is electrically coupled with said substrate.
- 1 65. The apparatus as described in claim 64 wherein said equipotential 2 barrier is configured for coupling to a circuit ground during operation of said apparatus.