#### Assignment Project Exam Help

# Section 4: Dividecand Gonquer & Dynamic Programminger

Haneul Shin February 2021

#### Table of Contents

- Divide and Conquer

  - Introduction Assignment Project Exam Help
  - Karatsuba's algorithm
- Dynamic Programmilttps://powcoder.com
  - Introduction
  - Fibonacci
  - Longest path problem Add WeChat powcoder
  - Knapsack problem
- Practice Problems

## Assignment Project Exam Help

## Divide and Conquer

#### Divide and Conquer

#### Approach

- 1. Divide the probessignment derojecto Exam Help
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine the solution https://powlenders.com/e original problem.

Merge Sort 4, 5, 7, 2, 1, 3, 8, 6

Assignment Project Exam Help

https://powcoder.com

A divide and conquer algorithm to multiply two n digit numbers efficiently.

Recall: naive algorithesignament i Project Exam Help

https://powcoder.com

## Multiplication by Divide & Conquer

Suppose we are given x and y.

We write

Assignment Project Exam Help

 $^{a}h\overline{\overline{tt}}ps://powcoder.com^{10^{n/2}}c + d.$ 

Then,

$$xy = ac10^n + (ad + bc)10^n + bd.$$

## Multiplication by Divide & Conquer

Suppose we are given x and y.

We write

Assignment Project Exam Help

 $\overset{\text{a}}{\text{https://powcoder.com}} \overset{10^{n/2}}{\text{e}} \overset{\text{b}}{\text{coder.com}} \overset{y}{\text{coder.com}} \overset{10^{n/2}}{\text{c}} \overset{d}{\text{.}}$ 

Then,

$$Add_{xy} = Ac_10^n + (ad_1 + bc_2) + bd_1$$

Time complexity:  $T(n) = 4T(n/2) + O(n) \rightarrow T(n) = O(n^2)$ 

$$(a + b)(c + d) = (ad + bc) + (ac + bd)$$

## Assignment Project Exam Help

$$xy = ac10^n + (ad + bc)10^{n/2} + bd$$
https://powcoder.com

Add WeChat powcoder

Compute ac, bd, (a + b)(c + d)

$$(a + b)(c + d) = (ad + bc) + (ac + bd)$$

#### Assignment Project Exam Help

$$xy = ac10^n + \frac{1}{6}(a/b)(c+d)-ac-bd$$

#### Add WeChat powcoder

Compute ac, bd, (a + b)(c + d)

Time complexity: 
$$T(n) = 3T(n/2) + O(n) \rightarrow T(n) = O(n^{\log_2 3})$$

1234 · 3281

Assignment Project Exam Help

https://powcoder.com

1234 · 3281

Assignment Project Exam Help

https://powcoder.com

Compute ac, bd, (a + b)(c + d)

1234 · 3281

Assignment Project Exam Help

 $_{12}$  · https://powcoder.com  $_{+81}$ 

Compute ac, bd, (a + b)(c + d)

1234 · 3281

Assignment Project Exam Help

 $_{12}$  · https://powcoder.com  $_{+81}$ 

## Karatsuba's Algorithm $xy = ac10^n + [(a + b)(c + d) - ac - bd]10^{n/2} + bd$

 $1234 \cdot 3281$ 

Assignment Project Exam Help

 $_{12}$  · https://powcoder.com  $_{+81}$ 

$$1234 \cdot 3281 = 384 \cdot 10^4 + (5198 - 384 - 2754) \cdot 10^2 + 2754$$
  
= 4,048,754

## Assignment Project Exam Help

## Dynamic Programming

## Dynamic Programming

#### Approach

- 1. Divide a proble Assignmenty Project nExamillelp
- 2. Conquer the subproblems by solving them recursively.
- 3. Combine the solution https://powlenders.com/e original problem.

#### Comparison

#### **Divide and Conquer**

#### **Dynamic Programming**

- 1. Divide the probassignment Project. Exam Helpem into potentially independent subproblems.

  overlapping subproblems.
- 2. Conquer the subproblems by solving them recursively.

  solving them recursively.
- 3. Combine the solution Adde WeChat power the solutions to the subproblems to solve the original problem.

  Subproblems to solve the original problem.

#### Fibonacci Numbers

$$F_0 = 0$$
,  $F_1 = 1$ ,  $F_n = F_{n-1} + F_{n-2}$  for  $n \ge 2$ 

Assignment Project Exam Help

https://powcoder.com

## Types of Dynamic Programming

- 1. Top-down DP (recursion with memoization)
- 2. Bottom-up DP Assignment Project Exam Help

https://powcoder.com

Design an efficient algorithm to find the longest path in a directed acyclic graph whose edges have real-number weights (Problem Set 2, Problem 5)

ASSIGNMENT Project Exam Help 5)

https://powcoder.com

Design an efficient algorithm to find the longest path in a directed acyclic graph whose edges have real-number weights (Problem Set 2, Problem 5)

Assignment Project Exam Help 5)

#### Solution

#### https://powcoder.com

- 1. Sort the vertices in topological order.
- 2. Create an array *dist* sact that the track the longest path starting at v. Initialize each distance to be 0.
- 3. Iterate over the vertices in reverse topological order. For each vertex v:
  - a. Take the maximum possible sum of a child u's max path value and the edge weight of (v, u).
- 4. Return the maximum distance for any vertex.

Design an efficient algorithm to find the longest path in a directed acyclic graph whose edges have real-number weights (Problem Set 2, Problem 5)

ASSIGNMENT Project Exam Help



Design an efficient algorithm to find the longest path in a directed acyclic graph whose edges have real-number weights (Problem Set 2, Problem 5)

ASSIGNMENT Project Exam Help 5)



DP Relation:  $\operatorname{dist}[v] = \max(\max_{(v, u) \in E} (\operatorname{dist}[u] + w(v, u)), 0)$ 

#### 0/1 Knapsack Problem

Given n items with weights  $\{w_1, w_2, ..., w_n\}$  and values  $\{v_1, v_2, ..., v_n\}$  and a knapsack with capacity W determine the maximum possible value attained by the knapsack.

https://powcoder.com

#### 0/1 Knapsack Problem



#### 0/1 Knapsack Problem Solution

Let m[i, j] be the maximum possible value using the first i items using weight  $\leq j$ 

Assignment Project Exam Help

https://powcoder.com

## 0/1 Knapsack Problem Solution

Let m[i, j] be the maximum possible value using the first i items using weight  $\leq j$ 

#### Assignment Project Exam Help

- $\bullet \quad m[0,j] = 0$
- If w[i] > j, m[i, j] = m[i-1, j] powcoder.com
- If  $w[i] \leq j$ ,  $m[i,j] := \text{max}(m[i \in \Gamma, j], m[i \in V, j \in W[i]] + v[i])$

## 0/1 Knapsack Problem Solution

```
for j from 0 to W:
              Assignment Project Exam Help
  m[0,j] := 0
for i from 1 to n:
                     https://powcoder.com
  for j from 0 to W:
                     Add WeChat powcoder
    if w[i] > i:
      m[i, j] := m[i - 1, j]
    else:
      m[i,j] := \max(m[i-1,j], m[i-1,j-w[i]] + v[i])
```

## Assignment Project Exam Help

## Practiced Problems

#### Problem 1

Given an array a with n integers, design a divide & conquer algorithm to find the sum of the maximum sum subarray. (This is a subarray with the maximum possible sum, which may be empty). Project Exam Help

Example: For a = [2, 3, -http5:/3pdhy.moxler.m.subarray has sum 6.



#### Problem 2

Given an array a with n integers, find the length of a longest increasing subsequence of the array. (This is a maximum-length subsequence of the array such that each element is strictly larger than the previous element.)

https://powcoder.com

#### Problem 3

Given a set of coin values  $c = \{c_1, c_2, ..., c_k\}$  and a target sum of money n, determine the number of ways to produce the target sum where order matters. For instance, if  $c = \{1, 2\}$  and n = 3 there are 3 distinct ways (1+2, 2+1, 1+1+1).

https://powcoder.com