

新能源 通用控制器平台简介

2015年03月20日

郑州跃博汽车电器有限公司

目 录

- 一、产品历史概况
- 二、产品技术路线
- 三、产品现况及产品特点

2015. 3. 12

一、研发历史概况

郑州跃博

一、研发历史概况

郑州跃博

2010年1月信号 转换器(ARM-Cortex-M0平台)

2011年7月第一代整 车控制器产品样机完 成小批量车辆试装

2013年7月第第二代整车控制器立项开发 (FreeScale MPC56xx 32位平台)

9S12平台)

2012年1月第一代整 车控制器硬件微调. 增加实时时钟和故障 存储单元

二、研发技术路线

软件及产品开发遵循: V流程

- 1、从设计需求到应用软件开 发都采用基于模型的开发方法 在设计每一个过程中都进行设 计验证。
- 2、减小在设计前期引入的错误。

硬件开发思路: 多产品平台化

目前新能源车辆初期发展阶段,多产品平台化有利于提高控制器硬件的产量,避免了对应不同应用时,重复开发硬件,将节省的人力物力应用与产品的可靠性验证上。

通用控制器: VCU、BMU、HCU

郑州跃博汽车电器有限公司

三、研发现况及产品特点

整车控制器硬件构架及主要性能指标

以飞思卡尔32位Qorivva内核的高性 能汽车级处理芯片, MPC56xx系列, 作为主控芯片(目前基本形为5644A) , 配备16位安全监控芯片, 使VCU硬 件核心部分设计符合ISO26262安全 功能规范

10 . 105°C

工作温度	-40 ~ 105°C	有]列	软硬件双有]列
供电电压	9~16V	安全模块	16位安全控制器,飞思卡尔9S16系列;
极限电压	40V, 1min	LIN接口	1路
电源接口	具备常电接口可低功耗休眠	数字输入	16路, 可软件或硬件单独配置单个通道为高电平有效或者低电平有效(拟定4个可软件配置)
休眠唤醒	CAN、指定IO	PWM输入	4路
电流消耗	<1A(12V空载),休眠 <3mA	大电流低边驱动	8路, 最大通过电流4A
CPU频率	>80MHz,(MPC564x系列芯片兼容管脚设计)	12V车继电器驱动	8路, (可驱动启动继电器)
SRAM内存	>=100kbyte	高边输出	8路, 最大输出电流≥300mA
CAN接口	3通道, 满足ISO11898, 高速CAN	模拟输入	6路12位AD, 输入电压范围0~12V, 高精度电阻分压可调
程序下载	支持JTAG和CAN Bootloader	传感器供电	6路5V对外输出
Flash存储器	2Mbyte	PWM输出	6路
故障存储器 (EEPROM)	2MBit	DA输出	2路, 0~5V

三、研发现况及产品特点

郑州跃博

三、研发现况及产品特点

郑州跃博

整车控制器主要功能

行车主要控制流程

充电控制流程

Ready For Soaring

1、电子点火控制策略

- ① 接通点火开关(ON) 后,只是接通控制器 电路, 仪表等电路, 电机不运转
- ② 点火开关拨到起动档 后(ST)时,电机开 始运转,松开点火开 关后,电机低速运转
- ③ 点火开关关闭时 (OFF),电机停止运 转

2、怠速稳定控制策略

- ① 点火开关拨到起动档后(**ST**)后,松开点火开关后,电机低速运转;
- ② 点火开关在ON档时,不踩加速踏板,"电子油门"根据车辆转速变换情况,自动调节电动机的转矩,使电机转速保持稳定,车辆在稳定的"怠速"下稳定行驶,调节算法采用PI算法

3、离合器控制策略

- ① 离合器踏板慢抬时,电动机的转速下降较少,转矩缓慢增加,使车辆平稳起步;
- ② 离合器踏板抬得过快时,电动机停止运转

