Метод распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей

Студент: Миронов Григорий, ИУ7-83Б Научный руководитель: Тассов Кирилл Леонидович

Актуальность метода

- Осуществление автоматизированного плавания
- Отслежнивание активности судов и кораблей
- Предотвращение столкновений судов и кораблей
- Предотвращение прочих критических ситуаций

Цель и задачи

Цель — разработка метода распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей. Задачи:

- Описать термины предметной области
- Проанализировать нейросетевые методы распознавания объектов
- Разработать соотвествующий метод распознавания
- Разработать программный комплекс, реализующий интерфейс для взаимодействия с разработанным методом
- Оценить результаты работы метода в зависимости от различных параметров системы

Существующие методы

Метод	Данные		Открытость
	Формат	Источник	метода
PHOTOMOD Radar	SAR	Спутник	_
Image—based ship detection using deep learning	Фото	Спутник	+
Fishing boat detection using Sentinel-1	SAR (SAFE)	Спутник	+

Постановка задачи

- Входное изображение является фотоснимком в формате PNG, JPG или JPEG
- Разрешение входного изображения не менее 640 × 640 пикселей
- Фотоснимок сделан в дневное время суток
- Надводные объекты имеют размер не менее 50 × 50 пикселей

Метод распознавания надводных объектов с аэрофотоснимоков

Сравнение нейронных сетей используемых для распознавания

Тип	Возможность	Устойчивость к			
нейронной	параллельного	искажениям	смещениям	шумам	
сети	обучения				
Персептрон	+	_	_	+	
Рекуррентная	+	+	+	+	
Сверточная	+	+	+	+	
Капсульная	+	+	+	_	

Методы распознавания объектов

CNN	mAP _{IoU}		Параметры,	FLOPs,	FPS
	$mAP_{0.5}$	$mAP_{0.5:0.95}$	млн. шт.	млрд.	
Faster R-CNN	62.5	_	53	888	< 20
YOLOv5n	45.7	28.0	1.9	4.5	934
YOLOv5x	50.7	68.9	86.7	205.7	252
YOLOv8n	37.3	50.4	3.2	8.7	1163
YOLOv8x	53.9	_	68.2	257.8	236

YOLOv8n (1/2)

YOLOv8n (2/2)

Выбор данных для обучения моделей

Информация о выбранных наборах данных:

- 10631 снимок надводных объектов
- 27632 размеченных объекта
- Снимки надводных объектов с разных ракурсов как в портовой зоне, так и на открытой воде

Набор данных разбивается на обучающую, тестовую и валидационные выборки в соотношении 85:10:5

Ансмабль нейронных сетей. Бэггинг

Объединение результатов (1/2)

- Окно без пересечений
- Наиболее «тяжелое» окно
- Пересечение подмножества пересекающихся окон с минимальным расстоянием до геометрического центра

Объединение результатов (2/2)

Полученные результаты

$$Precision = \frac{TP}{TP+FP}$$
 $Recall = \frac{TP}{TP+FN}$

TP — число истинно положительных распознаваний;

FP — число ложноположительных распознаваний;

FN — число ложно-отрицательных распознаваний;

Структура программного обеспечения

Исследование

Технические характеристики:

- CPU: Intel Core[™] i7-4790
- GPU: NVIDIA GeForce RTX 2060 6144M6
- RAM: 16 Γ6
- операционная система: Ubuntu 22.04 via WSL 2

Заключение

Был разработан метод распознавания надводных объектов с аэрофотоснимков с использованием нейронных сетей. В ходе выполнения работы были выполнены следующие задачи:

- Описаны термины предметной области.
- Проанализированы нейросетевые методы распознавания объектов.
- Разработан соотвествующий метод распознавания.
- Разработан программный комплекс, реализующий интерфейс для взаимодействия с разработанным методом.
- Проведена оценика результатов работы метода в зависимости от различных параметров системы.

Дальнейшее развитие

- Распознавание надводных объектов с фотоснимков в различных погодных условиях
- Классификация распознанных надводных объектов
- Исследование применимости метода для распознавания надводных объектов в видеопотоке