Лемма 1 (доказана в теме "Применение фокального свойства гиперболы")

Если в системе целочисленно удалённых точек (далее СЦТ) найдутся три точки M_1, M_2 и M_3 , не лежащие на одной прямой, и $a = |M_1 M_2| \in \mathbb{N}, b = |M_1 M_3| \in \mathbb{N}, c = |M_2 M_3| \in \mathbb{N}$, то максимальное количество точек в такой СЦТ равно $\min\{ab, ac, bc\}$.

Лемма 2

Если в СЦТ найдётся $\beta=2m^2+1$ точек, никакие три из которых не лежат на одной прямой, и эта СЦТ лежит в пределах квадрата со стороной n, то $n>\frac{\beta-1}{4}$ (иначе говоря, $\beta<4n+1$).

Доказательство

СЦТ лежит в пределах квадрата со стороной n. Разобьём этот квадрат на m^2 меньших равных между собой квадратов со стороной $\frac{n}{m}$. Тогда по принципу Дирихле найдётся хотя бы один квадрат со стороной $\frac{n}{m}$, внутри которого (возможно, включая границы) найдутся три точки, принадлежащие рассматриваемой СЦТ. Обозначим их через $M_1,\ M_2$ и M_3 . Ни одно из расстояний $|M_1M_2|,\ |M_1M_3|$ и $|M_2M_3|,$ очевидно, не превышает диагонали квадрата со стороной $\frac{n}{m}$, т. е. $\frac{n}{m}\sqrt{2}$. Тогда по лемме 1 количество точек в СЦТ $\beta \leq \frac{8n^2}{m^2}$. Имеем:

$$2m^{2} + 1 \le \frac{8n^{2}}{m^{2}}$$

$$2m^{2} < 2m^{2} + 1 \le \frac{8n^{2}}{m^{2}}$$

$$2m^{2} < \frac{8n^{2}}{m^{2}}$$

$$m^{2} < \frac{4n^{2}}{m^{2}}$$

$$m^{4} < 4n^{2}$$

 $T. \ \kappa. \ n$ положительно, извлекаем корень:

$$m^{2} < 2n$$

$$2m^{2} + 1 < 4n + 1$$

$$\beta < 4n + 1$$

$$n > \frac{\beta - 1}{4}$$

Лемма доказана.

Утверждение 1 (вспомогательное)

$$\forall \, (\beta \in \mathbb{N}) \left[2\sqrt{\frac{\beta - 1}{2}} < \beta \right]$$

Доказательство

Т. к. $\beta > 0$, возводим обе части неравенства в квадрат:

$$4\frac{\beta - 1}{2} < \beta^{2}$$
$$\beta^{2} - 2\beta + 2 > 0$$
$$\beta^{2} - 2\beta + 1 > -1$$
$$(\beta - 1)^{2} > -1$$

Утверждение доказано.

Лемма 3.

Пусть СЦТ состоит из γ точек, никакие три из которых не лежат на одной прямой, и лежит внутри квадрата со стороной n. Тогда $\gamma < 12n + 4$.

Доказательство

Возьмём $m \in \mathbb{N}$ такое, что $2m^2+1 \le \gamma \le 2(m+1)^2$ (это можно сделать единственным образом). Обозначим $2m^2+1=\beta$, откуда $m=\sqrt{\frac{\beta-1}{2}}$. Тогда по лемме 2 имеем $\beta<4n+1$. Оценим γ :

$$\gamma \le 2(m+1)^2 = 2m^2 + 4m + 2 < \beta + 1 + 2 \cdot 2\sqrt{\frac{\beta - 1}{2}} < \beta + 1 + 2\beta = 3\beta + 1 < 12n + 4$$

Лемма доказана.