Fonctions convexes

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Gén	éralités
	1.1	Définition géométrique
		Définition analytique
2	Thé	orèmes
	2.1	Inégalités de pentes
		Lien entre convexité et dérivée
		Fonctions concaves
	2.4	Exemples
3	Cons	séquence de la concavité : inégalités usuelles
	3.1	Corollaire de la convexité
	3.2	Inégalité arithmético-géométrique
		Inégalité de HÖLDER
		3.3.1 Couple d'exposants conjugués
		3.3.2 Théorème
	3.4	Inégalité de Minkowski

1 Généralités

1.1 Définition géométrique

Soit I un intervalle non trivial de \mathbb{R} et $f: I \longrightarrow \mathbb{R}$. Pour $a, b \in I$ avec a < b, on appelle u_{ab} l'unique application affine qui coïncide avec f en a et b. Pour $t \in \mathbb{R}$, on a donc

$$u_{ab}\left(t\right) = \frac{f\left(b\right) - f\left(a\right)}{b - a}\left(t - a\right) + f\left(a\right)$$

On dit que f est convexe sur I si $\forall a, b \in I$ avec $a < b, \forall t \in [a, b], f(t) \leq u_{ab}$.

Géométriquement, la portion du graphe de f comprise entre les droites d'équations x = a et x = b est en dessous de la corde joignant les points (a, f(a)) et (b, f(b)).

1.2 Définition analytique

Avec les notations précédentes, f est convexe si et seulement si $\forall x, y \in I, \forall t \in [0, 1],$

$$f\left(tx + (1-t)y\right) \leqslant tf\left(x\right) + (1-t)f\left(y\right)$$

Démonstration

- \Rightarrow Soient $x, y \in I$ et $t \in [0, 1]$.
 - Si x = y, $\forall t \in [0, 1]$, tx + (1 t)x = x et tf(x) + (1 t)f(x) = f(x) donc $f(x) \leq f(x)$.
 - Supposons $x \neq y$, par exemple x < y. Pour $t \in [0,1]$, $tx + (1-t)y \in [x,y]$ donc

$$f(tx + (1-t)y) \leq u_{xy}(tx + (1-t)y)$$

Posons, pour $\Omega \in \mathbb{R}$, $u_{xy}(\Omega) = \alpha\Omega + \beta$ avec $\alpha, \beta \in \mathbb{R}$. On a alors:

$$u_{xy}(tx + (1 - t)y) = \alpha(tx + (1 - t)y) + \beta$$

$$= \alpha(tx + (1 - t)y) + (t + (1 - t))\beta$$

$$= t(\alpha x + \beta) + (1 - t)(\alpha y + \beta)$$

$$= tu_{xy}(x) + (1 - t)u_{xy}(y)$$

$$= tf(x) + (1 - t)f(y)$$

 \Leftarrow Soient $a,b \in I$ avec a < b et $x \in [a,b]$. Montrons alors que $f(x) \leqslant u_{ab}(x)$. On peut écrire

$$x = ta + (1 - t)b$$
 $t = \frac{b - x}{b - a} \in [0, 1]$

On a donc

$$f(ta + (1 - t)b) \le tf(a) + (1 - t)f(b)$$

 $\le tu_{ab}(a) + (1 - t)u_{ab}(b) = u_{ab}(ta + (1 - b)b)$

En effet, u_{ab} est affine.

2 Théorèmes

2.1 Inégalités de pentes

Soit I un intervalle non trivial de $\mathbb R$ et $f:I\longrightarrow \mathbb R$. Alors f est convexe si et seulement si $\forall x,y,z\in I$ avec $x\leqslant y\leqslant z,$

$$\frac{f\left(y\right) - f\left(x\right)}{y - x} \leqslant \frac{f\left(z\right) - f\left(x\right)}{z - x} \leqslant \frac{f\left(z\right) - f\left(y\right)}{z - y}$$

Démonstration

 \Rightarrow Soient $x, y, z \in I$ avec x < y < z. On écrit :

$$y = tx + (1 - t)z$$
 $t = \frac{z - y}{z - x} \in [0, 1]$

– D'où $f(y) = f(tx + (1-t)z) \le tf(x) + (1-t)f(z)$ car f est convexe. Ainsi :

$$f(y) - f(z) \leq tf(x) + (1 - t) f(z) - f(z)$$

$$\leq t (f(x) - f(z))$$

$$\leq \frac{z - y}{z - x} (f(x) - f(z))$$

z - y > 0 d'où

$$\frac{f(y) - f(z)}{z - y} \leqslant \frac{f(x) - f(z)}{z - x} \Leftrightarrow \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}$$

- De même,

$$f(y) - f(x) \leq tf(x) + (1 - t) f(z) - f(x)$$

$$\leq (1 - t) (f(z) - f(x))$$

$$\leq \frac{y - x}{z - x} (f(z) - f(x))$$

y - x > 0 d'où

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x}$$

 \Leftarrow Supposons que $\forall x, y, z \in I$ avec x, y, z, on ait

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(z) - f(x)}{z - x} \leqslant \frac{f(z) - f(y)}{z - y}$$

En particulier, soient $a, b \in I$ avec a < b, et $c \in [a, b]$. Montrons que $f(c) \leq u_{ab}(c)$.

- Si c = a ou c = b, c'est évident.
- $\operatorname{Si} c \in [a, b[$

$$\frac{f\left(c\right) - f\left(a\right)}{c - a} \leqslant \frac{f\left(b\right) - f\left(a\right)}{b - a} \Rightarrow f\left(c\right) \leqslant f\left(a\right) + \frac{f\left(b\right) - f\left(a\right)}{b - a}\left(c - a\right) = u_{ab}\left(c\right)$$

2.2 Lien entre convexité et dérivée

Soit $f: I \longrightarrow \mathbb{R}$ dérivable ^a. Les assertions suivantes sont équivalentes ^b:

- (1) f est convexe.
- (2) f' est croissante.
- $(3) \forall x, x_0 \in I,$

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

- a. Il est ici crucial de relater une autre éclatante victoire du sage M. Sellès contre le confus Aménofis :
- Eh m'sieur c'est pas une vraie fonction ça!
- Comment ça c'est pas une vraie fonction? Toi t'es pas un vrai élève!
- b. « Lasse a encore frappé! »

Cette dernière proposition s'interprète géométriquement comme le fait que le graphe de f est toujours au dessus de n'importe quelle de ses tangentes.

De plus, si f est deux fois dérivable sur I, f est convexe si et seulement si $f'' \ge 0$.

Démonstration

 $(1) \Rightarrow (2)$ Soient $a, b \in I$ avec a < b, montrons que $f'(a) \leq f'(b)$. On sait que pour a < t < b,

$$\frac{f(t) - f(a)}{t - a} \leqslant \frac{f(b) - f(a)}{b - a} \leqslant \frac{f(b) - f(t)}{b - t}$$

On a donc pour $t \in]a, b[$, $\frac{f(t) - f(a)}{t - a} \le \frac{f(b) - f(a)}{b - a}$. Par passage à la limite lorsque $t \to a$, $f'(a) \le \frac{f(b) - f(a)}{b - a}$. De même, on obtient avec l'autre inégalité $\frac{f(b) - f(a)}{b - a} \le f'(b)$ lorsque $t \to b$. Ainsi, $f'(a) \le f'(b)$.

(2) \Rightarrow (3) Soit $x_0 \in I$, posons $\varphi : x \in I \longrightarrow f(x) - [f(x_0) + f'(x_0)(x - x_0)]$. φ est dérivable sur I et $\varphi'(x) = f'(x) - f'(x_0)$. f' est croissante donc si $x \ge x_0$, $f'(x) \ge f'(x_0)$ et si $x \le x_0$, $f'(x) \le f'(x_0)$. On obtient donc le tableau de variations de la figure 1. Il est donc clair que φ admet un minimum en x_0 et $\varphi(x_0) = 0$

x		x_0	
$\varphi'(x)$	=	0	+
$\varphi(x)$			

FIGURE 1 – Tableau de variations de $\varphi(x) = f(x) - [f(x_0) + f'(x_0)(x - x_0)]$

donc $\varphi(x) \ge 0$ pour $x \in I$, d'où le résultat.

 $(3) \Rightarrow (1)$ Soient $x, y \in I$ et $t \in [0, 1]$. Notons $x_0 = tx + (1 - t)y \in [x, y]$. On a par hypothèse,

$$\begin{cases} f(x) \ge f(x_0) + f'(x_0)(x - x_0) & \text{(a)} \\ f(y) \ge f(x_0) + f'(x_0)(y - x_0) & \text{(b)} \end{cases}$$

Ainsi, comme t et 1-t sont positifs,

$$t(a) + (1 - t)(b) \Leftrightarrow tf(x) + (1 - t)f(y) \ge f(x_0) + f'(x_0)[t(x - x_0) + (1 - t)(y - x_0)]$$
Or $t = \frac{y - x_0}{y - x}$ et $1 - t = \frac{x_0 - x}{y - x}$ donc
$$t(x - x_0) + (1 - t)(y - x_0) = \frac{(y - x_0)(x - x_0)}{y - x} + \frac{(x_0 - x)(y - x_0)}{y - x}$$

D'où le résultat escompté :

$$f(x_0) = f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

2.3 Fonctions concaves

 $f: I \longrightarrow \mathbb{R}$ est concave si et seulement si -f est convexe.

On a tout de suite (avec les notations précédentes) les assertions suivantes équivalentes :

- (1) f est concave.
- (2) $\forall a, b \in I, \forall x \in [a, b], f(x) \geqslant u_{ab}(x).$
- (3) $\forall x, y \in I, \forall t \in [0, 1], f(tx + (1 t)y) \ge tf(x) + (1 t)f(y).$

Lorsque f est dérivable sur I, les assertions suivantes sont équivalentes :

- (1) f est concave.
- (2) f' est décroissante.
- (3) $\forall x, x_0 \in I$, $f(x) \leq f(x_0) + f'(x_0)(x x_0)$. Si f est deux fois dérivable sur I:

$$f$$
 est concave $\Leftrightarrow f'' \leq 0$

2.4 Exemples

- ln est concave sur \mathbb{R}_+^* , \mathcal{C}^{∞} sur \mathbb{R}_+^* et $\forall x > 0$, $\ln''(x) = -\frac{1}{x^2} < 0$. Ainsi, $\forall x > 0$,

$$\ln(x) \leqslant \ln 1 + \ln'(1)(x-1) \Leftrightarrow \ln(x) \leqslant x - 1$$

- exp est convexe sur \mathbb{R} donc $\forall t \in \mathbb{R}$,

$$e^{t} \ge e^{0} + \exp(0)(t - 0) \Leftrightarrow e^{t} \ge 1 + t$$

 $\varphi: \left[0, \frac{\pi}{2}\right] \longrightarrow \mathbb{R}$ $t \mapsto \sin t$

 φ est deux fois dérivable sur $\left[0,\frac{\pi}{2}\right]$ et $\forall t \in \left[0,\frac{\pi}{2}\right], \varphi''(t) = -\sin t < 0$. Par conséquent, φ est concave donc $\forall t \in \left[0, \frac{\pi}{2}\right]$:

$$\sin t \geqslant u_{0,\frac{\pi}{2}} \Leftrightarrow \sin t \geqslant \frac{2}{\pi}t$$

3 Conséquence de la concavité : inégalités usuelles

Corollaire de la convexité

Soit $f: I \longrightarrow \mathbb{R}$ convexe. Alors $\forall n \in \mathbb{N}^*, \ \forall x_0, x_1, \dots, x_n \in I \text{ et } \forall \lambda_0, \lambda_1, \dots, \lambda_n \in \mathbb{R}_+ \text{ v\'erifiant } \sum_{k=1}^n \lambda_k = 1, \text{ on a :}$

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n} \lambda_i f\left(x_i\right)$$

Démonstration Raisonnons par récurrence :

- Pour n=1, c'est trivial. Pour n=2, l'énoncé dit que $\forall x,y\in I,\ \forall \lambda,\mu\in\mathbb{R}_+$ avec $\lambda+\mu=1$,

$$f(\lambda x + \mu x) \leq \lambda f(x) + \mu f(x)$$

Ce qui est vrai car $\lambda, \mu \in [0,1]$ et $\lambda = 1 - \mu$. Cette inégalité a en fait déjà été démontrée.

- Montrons une propriété qui nous sera utile par la suite : soient $n \in \mathbb{N}^*$, $x_0, x_1, \ldots, x_n \in I$ et $\lambda_0, \lambda_1, \ldots, \lambda_n \in I$ \mathbb{R}_+ avec $\sum_{i=1}^n \lambda_i = 1$. On pose alors $x = \min_{1 \le i \le n} x_i$ et $y = \max_{1 \le i \le n} x_i$. On a donc pour $i \in [1, n]$, $\lambda_i x \le \lambda_i x_i \le \lambda_i y$ car $\lambda_i > 0$ pour tout $i \in [1, n]$. Ainsi,

$$\underbrace{\sum_{i=1}^{n} \lambda_{i} x}_{x} \leqslant \underbrace{\sum_{i=1}^{n} \lambda_{i} x_{i}}_{y} \leqslant \underbrace{\sum_{i=1}^{n} \lambda_{i} y}_{y}$$

Donc
$$\sum_{i=1}^{n} \lambda_i x_i \in [x, y] \subset I$$
.

- Supposons que la propriété est vraie pour $n \ge 2$. Soient $x_0, x_1, \ldots, x_{n+1} \in I$, $\lambda_0, \lambda_1, \ldots, \lambda_{n+1} \in \mathbb{R}_+$ avec $\sum_{i=1}^{n} \lambda_i = 1$. Montrons que

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \leqslant \sum_{i=1}^{n+1} \lambda_i f\left(x_i\right)$$

- \circ Si $\lambda_1 = \cdots = \lambda_n = 0$, c'est trivial.
- o Sinon, $\exists k \in [1, n]$ tel que $\lambda_i > 0$. Ainsi, $S = \sum_{j=1}^n \lambda_j > 0$ donc

$$\sum_{i=1}^{n+1} \lambda_i x_i = \lambda_{n+1} x_{n+1} + S\left(\sum_{i=1}^n \frac{\lambda_i}{S} x_i\right)$$

Posons alors pour $i \in [1, n]$, $\mu_i = \frac{\lambda_i}{S}$. Par conséquent $\sum_{i=1}^n \mu_i = \frac{\sum_{i=1}^n \lambda_i}{S} = 1$ donc $y = \sum_{i=1}^n \mu_i x_i \in I$. Or $\lambda_{n+1} \ge 0$, $S \ge 0$ et $\lambda_{n+1} + S = 1$ donc, puisque f est convexe :

$$f\left(\lambda_{n+1}x_{n+1} + Sy\right) \leqslant \lambda_{n+1}f\left(x_{n+1}\right) + Sf\left(y\right)$$

D'après l'hypothèse de récurrence,

$$f(y) = f\left(\sum_{i=1}^{n} \mu_i x_i\right) \leqslant \sum_{i=1}^{n} \mu_i f(x_i)$$

Donc

$$f\left(\sum_{i=1}^{n} \lambda_{i} x_{i}\right) = f\left(\lambda_{n+1} x_{n+1} + S y\right)$$

$$\leqslant \lambda_{n+1} f\left(x_{n+1}\right) + S f\left(y\right)$$

$$\leqslant \lambda_{n+1} f\left(x_{n+1}\right) + S \sum_{i=1}^{n} \frac{\lambda_{i}}{S} f\left(x_{i}\right)$$

$$\leqslant \sum_{i=1}^{n+1} \lambda_{i} f\left(x_{i}\right)$$

3.2 Inégalité arithmético-géométrique

Soient $n \in \mathbb{N}^*$ et $a_0, a_1, \dots, a_n \in \mathbb{R}_+$. Alors

$$\left(\prod_{i=1}^{n} a_i\right)^{\frac{1}{n}} \leqslant \frac{\sum_{i=1}^{n} a_i}{n} \Leftrightarrow m_g\left(a_0, a_1, \dots, a_n\right) \leqslant m_a\left(a_0, a_1, \dots, a_n\right)$$

Démonstration

- Si $\exists w \in \llbracket 1, n \rrbracket$ tel que $a_w = 0$, c'est trivial.
- Supposons $a_0, a_1, \ldots, a_n \in \mathbb{R}_+^*$. Alors $\forall i \in [1, n], a_i = e^{b_i}$ avec $b_i = \ln a_i$ donc

$$\frac{a_1 + \dots + a_n}{n} = \frac{1}{n} e^{b_1} + \frac{1}{n} e^{b_2} + \dots + \frac{1}{n} e^{b_n}$$

Si on pose pour $1 \le i \le n$, $\lambda_i = \frac{1}{n}$, alors $\lambda_i \ge 0$ et $\sum_{i=1}^n \lambda_i = 1$. exp est convexe donc on a

$$\frac{a_1 + \dots + a_n}{n} = \sum_{i=1}^n \lambda_i e^{b_i} \geqslant \exp\left(\sum_{i=1}^n \lambda_i b_i\right)$$

$$= \sum_{i=1}^n b_i$$

$$= \left(e^{b_1 + b_2 + \dots + b_n}\right)^{\frac{1}{n}}$$

$$= \left(e^{b_1} e^{b_2} \dots e^{b_n}\right)^{\frac{1}{n}}$$

$$= m_q (a_0, a_1, \dots, a_n)$$

Corollaire Pour $n \in \mathbb{N}^*$ et $a_0, a_1, \dots, a_n \in \mathbb{R}_+^*$, on définit

$$\frac{1}{m_h(a_0, a_1, \dots, a_n)} = m_a\left(\frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n}\right)$$

Alors

$$m_h(a_0, a_1, \dots, a_n) \leq m_g(a_0, a_1, \dots, a_n)$$

En effet,

$$\frac{1}{m_h(a_0, a_1, \dots, a_n)} = m_a \left(\frac{1}{a_1}, \frac{1}{a_2}, \dots \frac{1}{a_n}\right)$$

$$\geqslant m_g \left(\frac{1}{a_1}, \frac{1}{a_2}, \dots \frac{1}{a_n}\right)$$

$$\geqslant \left(\frac{1}{a_1 a_2 \cdots a_n}\right)^{\frac{1}{n}}$$

$$\geqslant \frac{1}{m_g(a_0, a_1, \dots, a_n)}$$

3.3 Inégalité de Hölder

3.3.1 Couple d'exposants conjugués

On dit que $(p,q) \in (\mathbb{R}_+^*)^2$ est un couple d'exposants conjugués si $\frac{1}{p} + \frac{1}{q} = 1$. Ceci impose p > 1 et q > 1.

Par exemple, (2,2) et $(2,\frac{3}{2})$ sont de tels couples.

3.3.2 Théorème

Soit $n \in \mathbb{N}^*$, $x_0, x_1, \dots, x_n \in \mathbb{R}_+$, $y_0, y_1, \dots, y_n \in \mathbb{R}_+$ et (p, q) un couple d'exposants conjugués. Alors :

$$\sum_{i=1}^{n} x_i y_i \leqslant \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_i^q\right)^{\frac{1}{q}}$$

Pour (p,q)=(2,2), on retrouve Cauchy-Schwarz dans $\mathbb{R}^{n\ a}.$

a. Voir section 1.2.2.4 du cours complet page 14.

Petit lemme Soient $a, b \in \mathbb{R}$. Alors

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$$

En effet:

- Si a = 0 ou b = 0, c'est trivial.

- Supposons $a \neq 0$ et $b \neq 0$. Alors

$$\frac{a^p}{p} + \frac{b^q}{q} = \frac{1}{p} e^{p \ln a} + \frac{1}{q} e^{q \ln b}$$

Posons $p \ln a = x$ et $q \ln b = y$, $\frac{1}{p} + \frac{1}{q} = 1$ et exp est convexe donc

$$\frac{1}{p}e^{x} + \frac{1}{q}e^{y} \geqslant e^{\frac{x}{p} + \frac{y}{q}}$$

$$\geqslant e^{\ln a + \ln b}$$

$$\geqslant ab$$

Démonstration

- Supposons que $\sum_{i=1}^n x_i^p = 1 = \sum_{i=1}^n y_i^q$. On a alors $x_i y_i \leqslant \frac{x_i^p}{p} + \frac{y_i^q}{q}$, d'où :

$$\sum_{i=1}^{n} x_{i} y_{i} \leq \sum_{i=1}^{n} \frac{x_{i}^{p}}{p} + \sum_{i=1}^{n} \frac{y_{i}^{q}}{q}$$

$$\leq \frac{1}{p} \sum_{i=1}^{n} x_{i}^{p} + \frac{1}{q} \sum_{i=1}^{n} y_{i}^{q}$$

$$\leq \frac{1}{p} + \frac{1}{q}$$

$$\leq 1 = \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} y_{i}^{q}\right)^{\frac{1}{q}}$$

- Revenons au cas général et essayons de nous ramener à la situation précédente.

o Si $\forall i \in [1, n], x_i = 0$ ou $\forall i \in [1, n], y_i = 0$, l'inégalité est vraie.

o Dans le cas contraire, $\sum_{i=1}^{n} x_i^p > 0$ et $\sum_{i=1}^{n} y_i^q > 0$. Posons $\alpha = \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}}$ et $\beta = \left(\sum_{i=1}^{n} y_i^q\right)^{\frac{1}{q}}$, et pour $i \in [[i,n]], x_i' = \frac{x_i}{\alpha}$ et $y_i' = \frac{y_i}{\beta}$. Alors

$$\sum_{i=1}^{n} x_i'^p = \sum_{i=1}^{n} \frac{x_i^p}{\alpha^p}$$

$$= \frac{1}{\alpha^p} \sum_{i=1}^{n} x_i^p$$

$$= \frac{\alpha^p}{\alpha^p}$$

$$= 1$$

De même, $\sum_{i=1}^{n} y_i' = 1$. D'après le cas précédent,

$$\sum_{i=1}^{n} x_i' y_i' \leqslant 1 \quad \Leftrightarrow \quad \frac{1}{\alpha \beta} \sum_{i=1}^{n} x_i y_i \leqslant 1$$

$$\Leftrightarrow \quad \sum_{i=1}^{n} x_i y_i \leqslant \alpha \beta$$

Corollaire Soit $n \in \mathbb{N}^*$, $z_0, z_1, \dots, z_n \in \mathbb{C}$, $\omega_0, \omega_1, \dots, \omega_n \in \mathbb{C}$ et (p, q) un couple d'exposants conjugués. Alors

$$\left| \sum_{i=1}^{n} z_i \omega_i \right| \leqslant \left(\sum_{i=1}^{n} |z_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |\omega_i|^q \right)^{\frac{1}{q}}$$

En effet, d'après l'inégalité triangulaire, $\left|\sum_{i=1}^n z_i \omega_i\right| \leq \sum_{i=1}^n |z_i| |\omega_i|$. On peut appliquer le théorème précédent aux réels positifs $|z_i|$ et $|\omega_i|$.

3.4 Inégalité de Minkowski

Soit $p \ge 1$, $n \in \mathbb{N}^*$, $x_0, x_1, \dots, x_n \in \mathbb{R}_+$ et $y_0, y_1, \dots, y_n \in \mathbb{R}_+$. Alors

$$\left(\sum_{i=1}^{n} (x_i y_i)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} y_i^p\right)^{\frac{1}{p}}$$

Hint! Pour p > 1, considérer q tel que $\frac{1}{p} + \frac{1}{q} = 1 \Leftrightarrow q = \frac{p}{p-1}$. Écrire alors pour $i \in [1, n]$

$$(x_i y_i)^p = x_i (x_i + y_i)^{p-1} + y_i (x_i + y_i)^{p-1}$$

Appliquer ensuite HÖLDER intelligemment!