МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №1

«Анализ динамических характеристик эталонных моделей систем со стандартной настройкой»

по дисциплине Системы управления в электроприводе

Выполнил: Студент группы

R34362 Ванчукова Т. С.

Преподаватель: Ловлин С.Ю.

Содержание

Задание
Ход работы
Линейный оптимум4
Задание 1
Задание 2
Задание 3
Задание 4 6
Биномиальный оптимум
Задание 1
Задание 2
Задание 3
Задание 4
Оптимум по модулю
Задание 1
Задание 2
Задание 3
Задание 4
Симметричный оптимум16
Задание 1
Задание 2
Задание 3
Задание 4
Астатизм третьего порядка
Задание 1
Задание 2
Задание 3
Задание 4
Результаты работы

Исследование характеристик систем, настроенных на биномиальный оптимум, оптимум по модулю, симметричный оптимум, настройкой на астатизм третьего порядка.

Задание 1

Для перечисленных стандартных передаточных функций разомкнутых систем $W_{\text{раз}}(s)$ найти соответствующие им передаточные функции замкнутых систем $W_{\text{зам}}(s)$, снять кривые переходных процессов при отработке скачка задающего воздействия.

Задание 2

Параметры переходных процессов: время переходного процесса для входа в 5% зону — t_{p5} , время переходного процесса для входа в 2% зону — t_{p2} , перерегулирование — Δy занести в Таблица 1.

Задание 3

Снять кривые переходных процессов при отработке задающих воздействий вида g = vt и $g = at^2$. Заполнить Таблица 2.

Задание 4

Снять ЛАЧХ и ФЧХ передаточных функций разомкнутых и замкнутых систем управления указанных выше эталонных настроек. Определить запас по амплитуде, запас по фазе и показатель колебательности. Заполнить

Таблица *3*.

Ход работы

$$T_u = 0.0116$$

Линейный оптимум Задание 1

$$W_{
m pas.лин.}(s) = rac{1}{T_u s}$$
 $W_{
m sam.лин.}(s) = rac{1}{T_u s + 1}$

Рисунок 1. Кривая переходного процесса линейного оптимума

Задание 2 Найдем время переходного процесса для входа в 5% и в 2% зону.

$$t_{tr5} = t_1 - t_0$$

 t_0 – время начала переходного процесса

 t_1 — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \ge D, D = 0.05 \cdot |y_0 - y_{ss}|$$

$$t_{tr5} = 0.095$$

$$t_{tr2} = 0.098$$

Вычислим перерегулирование Ду:

$$\Delta y = 0$$

Рисунок 2. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t$ и график ошибки

Рисунок 3. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t^2$ и график ошибки

Так как при линейном воздействии ошибка равна установившемуся значению, а при квадратичном — бесконечности, система имеет первый порядок астатизма.

Задание 4 ЛАЧХ и ФЧХ передаточных функций разомкнутых и замкнутых систем:

Рисунок 4. ЛАЧХ и ФЧХ передаточных функций разомкнутой системы

Рисунок 5. ЛАЧХ и ФЧХ передаточных функций замкнутой системы

Определим запас по амплитуде, по фазе, показатель колебательности. По Рисунок 4 видим, что запас по амплитуде равен бесконечности.

Запас по фазе равен 90°, определяем по графикам: -90 - (-180) = 90°.

Показатель колебательности:
$$M = \frac{10^{\frac{max(Lw)-Lw(1)}{20}}}{10^{\frac{Lw(1)}{20}}} = 1$$

Биномиальный оптимум

Задание 1

$$W_{\text{раз.бин}}(s) = \frac{1}{3T_u s (T_u s + 1)}$$
 $W_{\text{зам.бин.}}(s) = \frac{1}{3T_u s^2 + 3T_u s + 1)}$

Рисунок 6. Кривая переходного процесса биномиального оптимума Задание 2 Найдем время переходного процесса для входа в 5% и в 2% зону.

$$t_{tr5} = t_1 - t_0$$

 t_0 – время начала переходного процесса

 t_1 — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \ge D, D = 0.05 \cdot |y_0 - y_{ss}|$$

$$t_{tr5} = 0.0753$$

$$t_{tr2} = 0.0863$$

Вычислим перерегулирование Δy :

$$\Delta y = 0.0041$$

Рисунок 7. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t$ и график ошибки

Рисунок 8. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t^2$ и график ошибки

Так как при линейном воздействии ошибка равна установившемуся значению, а при квадратичном — бесконечности, система имеет первый порядок астатизма.

Задание 4 ЛАЧХ и ФЧХ передаточных функций разомкнутых и замкнутых систем:

Рисунок 9. ЛАЧХ и ФЧХ передаточных функций разомкнутой системы

Рисунок 10. ЛАЧХ и ФЧХ передаточных функций замкнутой системы

Определим запас по амплитуде, по фазе, показатель колебательности. По Рисунок 9 видим, что запас по амплитуде равен бесконечности.

Запас по фазе равен 73°, определяем по графикам: -107 - (-180) = 73°.

Показатель колебательности:
$$M = \frac{10^{\frac{max(Lw) - Lw(1)}{20}}}{10^{\frac{Lw(1)}{20}}} = 1$$

Оптимум по модулю Задание 1

$$W_{\text{раз.мод.}}(s) = \frac{1}{2T_u s (T_u s + 1)}$$
 $W_{\text{зам.мод.}}(s) = \frac{1}{2T_u s^2 + 2T_u s + 1)}$

Рисунок 11. Кривая переходного процесса оптимума по модулю

Задание 2 Найдем время переходного процесса для входа в 5% и в 2% зону.

$$t_{tr5} = t_1 - t_0$$

 t_0 – время начала переходного процесса

 t_1 – максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \ge D, D = 0.05 \cdot |y_0 - y_{ss}|$$

$$t_{tr5} = 0.0473$$

$$t_{tr2} = 0.0973$$

Вычислим перерегулирование Δу:

$$\Delta y = 0.0432$$

Рисунок 12. Кривая переходных процессов при отработке задающего воздействия вида $g = 1 \cdot t$ и график ошибки

Рисунок 13. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t^2$ и график ошибки

Так как при линейном воздействии ошибка равна установившемуся значению, а при квадратичном — бесконечности, система имеет первый порядок астатизма.

Задание 4 ЛАЧХ и ФЧХ передаточных функций разомкнутых и замкнутых систем:

Рисунок 14. ЛАЧХ и ФЧХ передаточных функций разомкнутой системы

Рисунок 15. ЛАЧХ и ФЧХ передаточных функций замкнутой системы

Определим запас по амплитуде, по фазе, показатель колебательности. По Рисунок 14 видим, что запас по амплитуде равен бесконечности.

Запас по фазе равен 90° , определяем по графикам: $-115 - (-180) = 65^{\circ}$.

Показатель колебательности:
$$M = \frac{10^{\frac{max(Lw) - Lw(1)}{20}}}{10^{\frac{Lw(1)}{20}}} = 1$$

Симметричный оптимум Задание 1

$$W_{\text{раз.мод.}}(s) = \frac{4T_u s + 1}{8T_u^2 s^2 (T_u s + 1)}$$
$$W_{\text{зам.мод.}}(s) = \frac{4T_u s + 1}{8T_u^3 s^3 + 8T_u^2 s^2 + 4T_u s + 1}$$

Рисунок 16. Кривая переходного процесса симметричного оптимума Задание 2 Найдем время переходного процесса для входа в 5% и в 2% зону.

$$t_{tr5} = t_1 - t_0$$

 t_0 – время начала переходного процесса

 t_1 – максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \geq D, D = 0.05 \cdot |y_0 - y_{ss}|$$

$$t_{tr5} = 0.1703$$

$$t_{tr2} = 0.1913$$

Вычислим перерегулирование Δy :

$$\Delta y = 0.4338$$

Рисунок 17. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t$ и график ошибки

Рисунок 18. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t^2$ и график ошибки

Так как при линейном воздействии ошибка равна нулю, а при квадратичном — установившемуся значению, система имеет второй порядок астатизма.

Задание 4 ЛАЧХ и ФЧХ передаточных функций разомкнутых и замкнутых систем:

Рисунок 19. ЛАЧХ и ФЧХ передаточных функций разомкнутой системы

Рисунок 20. ЛАЧХ и ФЧХ передаточных функций замкнутой системы Определим запас по амплитуде, по фазе, показатель колебательности.

По Рисунок 19 видим, что запас по амплитуде равен бесконечности.

Запас по фазе равен 37°, определяем по графикам: -143 - (-180) = 37°.

Показатель колебательности:
$$M = \frac{10^{\frac{max(Lw)-Lw(1)}{20}}}{10^{\frac{Lw(1)}{20}}} = 1.6515.$$

Астатизм третьего порядка

Задание 1

$$W_{\text{pa3.act.}}(s) = \frac{(16T_u s + 1)(4T_u s + 1)}{128T_u^3 s^3 (T_u s + 1)}$$

$$W_{\text{gam.act.}}(s) = \frac{W_{\text{pa3.act.}}(s)}{1 + W_{\text{pa3.act.}}(s)} = \frac{64T_u^2 s^2 + 20T_u s + 1}{128T_u^4 s^4 + 128T_u^3 s^3 + 64T_u^2 s^2 + 20T_u s + 1}$$

Рисунок 21. Кривая переходного процесса астатизма третьего порядка

Задание 2 Найдем время переходного процесса для входа в 5% и в 2% зону.

$$t_{tr5} = t_1 - t_0$$

 t_0 – время начала переходного процесса

 t_1 — максимальное значения t, при котором справедливо:

$$\varepsilon(t_1) \geq D, D = 0.05 \cdot |y_0 - y_{ss}|$$

$$t_{tr5} = 0.1883$$

$$t_{tr2} = 0.2533$$

Вычислим перерегулирование Δy :

$$\Delta y = 0.5638$$

Рисунок 22. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t$ и график ошибки

Рисунок 23. Кривая переходных процессов при отработке задающего воздействия вида $g=1\cdot t^2$ и график ошибки

Так как при линейном и квадратичном воздействиях ошибка равна нулю, система имеет третий порядок астатизма.

Задание 4 ЛАЧХ и ФЧХ передаточных функций разомкнутых и замкнутых систем:

Рисунок 24. ЛАЧХ и ФЧХ передаточных функций разомкнутой системы

Рисунок 25. ЛАЧХ и ФЧХ передаточных функций замкнутой системы Определим запас по амплитуде, по фазе, показатель колебательности. По Рисунок 24 видим, что запас по амплитуде равен: 0 - (-204.599) = 204.599.

Запас по фазе равен 90°, определяем по графикам: -150 - (-180) = 30°.

Показатель колебательности:
$$M = \frac{10^{\frac{max(Lw)-Lw(1)}{20}}}{10^{\frac{Lw(1)}{20}}} = 2.0571$$

Результаты работы

Таблица 1

Эталонная	t - C	t - C	Δy	
модель	t_{p5} , c	t_{p2} , c	ΔУ	
Линейный	0.095	0.098	0	
оптимум	0.073	0.096	U	
Биномиальный	0.0753	0.0863	0.0041	
оптимум	0.0733	0.0003	0.0041	
Оптимум по	0.0473	0.0973	0.0432	
модулю	0.0473	0.0973	0.0432	
Симметричный	0.1703	0.1913	0.4338	
оптимум	0.1703	0.1913	0.4330	

Астатизм			
третьего	0.1883	0.2533	0.5638
порядка			

Таблица 2

Эталонная модель	Статическая система	Астатизм первого порядка	Астатизм второго порядка	Астатизм третьего порядка
Линейный оптимум		√		
Биномиальный оптимум		✓		
Оптимум по модулю		✓		
Симметричный оптимум			√	
Астатизм третьего порядка				√

Таблица 3

Эталонная	Показатель	Запас по	Запас по фазе	
модель	колебательности	амплитуде	1	
Линейный	1	%	90°	
оптимум	1	3	70	
Биномиальный	1	80	73°	
оптимум	1	3	7.5	
Оптимум по	1	80	65°	
модулю	1	8	03	
Симметричный	1.6515	20	37°	
оптимум	1.0313	80	37	
Астатизм				
третьего	2.0571	204.599	30°	
порядка				

Вывод: в процессе выполнения лабораторной работы были исследованы характеристики систем, настроенных на биномиальный оптимум, оптимум по модулю, симметричный оптимум, настройкой на астатизм третьего порядка, а именно были вычислили прямые показатели качества (время переходного процесса, перерегулирование, показатель колебательности), частотные характеристики: были построены ЛАЧХ и ФЧХ, вычислены запасы по амплитуде и фазе.

В ходе проведенного исследования было выявлено, что линейный, биноминальный и технический оптимумы являются астатизмами первого порядка, следовательно, только при линейно-возрастающем сигнале эти оптиумы могут достигнуть установившейся ошибки. Симметричный оптиум – атстатизм второго порядка, значит, установившееся ошибка может быть достигнута при квадратичном воздействии, а при линейно-возрастающем стремится к нулю. Астатизм третьего порядка при линейно-возрастающем и квадратичном сигналах стремится к нулю (результаты представлены в Таблица 2).

Также можно сделать вывод (Таблица *1*), что лучшими динамическими показателями (быстродействие и перерегулирование) обладает линейный оптимум, а худшими астатизм третьего порядка. У астатизма третьего порядка наибольший показатель колебательности и наименьший запас по фазе.