Интегралы и дифференциальные уравнения

Лекции

2 семестр

GitHub: malyinik

Содержание

1	Пер	рвообразная и неопределённый интеграл	2
	1.1	Первообразная	2
		1.1.1 Свойства первообразной	2
	1.2		3
			3
			5
			6
	1.3		7
2	Пра	авильные и неправильные рациональные дроби	9
	2.1	Интегрирование простейших рациональных дробей	9
		$2.1.1 \frac{A}{r-a} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	9
		$2.1.2 \frac{\overset{\circ}{A}}{(x-a)^k} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	9
		$2.1.3 \frac{Mx+N}{x^k+px+q} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	0
	2.2	$x^k + px + q$ Неправильные рациональные дроби	
	2.3	Метод неопределённых коэффициентов	
	2.4	Метод конкретных значений	
	2.5	Выводы	
	2.6	Неберущиеся интегралы	
3	Опр	ределённый интеграл. Криволинейная трапеция	4
	3.1	Определённый интеграл	4
	3.2	Криволинейная трапеция	5
		3.2.1 Геометрический смысл	5
	3.3	Свойства определённого интеграла	5
	3.4	Определённый интеграл с переменным верхним пределом интегрирования . 2	0
		3.4.1 Свойства	1
		3.4.2 Формула Ньютона-Лейбница	2
	3.5	Методы вычисления определённого интеграла	
		3.5.1 Метод интегрирования по частям	3

Первообразная и неопределённый интеграл 1

Первообразная 1.1

Определение 1. Функция F(x) называется **первообразной** функции f(x) на интервале (a;b), если F(x) дифференцируема на (a;b) и $\forall x \in (a;b)$:

$$F'(x) = f(x) \tag{1}$$

Пример.

$$f(x) = \frac{1}{2\sqrt{x}}, \ D_f = (0; +\infty)$$

$$F(x) = \sqrt{x}$$
 — первообразная $f(x) = \frac{1}{2\sqrt{x}}$

$$F'(x) = (\sqrt{x})' = \frac{1}{2\sqrt{x}} = f(x)$$

$$f(x)=rac{1}{2\sqrt{x}},\; D_f=(0;+\infty)$$
 $F(x)=\sqrt{x}-$ первообразная $f(x)=rac{1}{2\sqrt{x}}$ $F'(x)=(\sqrt{x})'=rac{1}{2\sqrt{x}}=f(x)$ $F(x)=\sqrt{x}+3-$ первообразная $f(x)=rac{1}{2\sqrt{x}}$

1.1.1 Свойства первообразной

Свойство 1.

Если F(x) — первообразная функции f(x) на (a;b), то F(x)+C — первообразная функции f(x) на (a;b), где $\forall C-const.$

Свойство 2.

Если $\Phi(x)$ дифференцируема на (a;b) и $\forall x \in (a;b) \colon \Phi'(x) = 0$, то $\Phi(x) = const$, $\forall x \in (a;b).$

Свойство 3 (Существование первообразной).

Любая непрерывная функция на (a;b) имеет множество первообразных на этом интервале, причём любые две из них отличаются друг от друга на константу.

$$\Phi(x),\ F(x)$$
 — первообразные функции $f(x)$ на $(a;b)$
$$\Phi(x) - F(x) = const$$

1.2 Неопределённый интеграл

Определение 2. Множество первообразных функции f(x) на (a;b) называется **неопре**делённым интегралом.

$$\int f(x) dx = F(x) + C$$
 (2)

∫ — знак интеграла

f(x) — подынтегральная функция

f(x) dx — подынтегральное выражение

х — переменная

F(x) + C — множество первообразных

C — произвольная константа

Определение 3. Интегрирование — нахождение неопределённого интеграла.

1.2.1 Свойства неопределённого интеграла

Свойство 1.

Производная от неопределённого интеграла равна подынтегральной функции.

$$\left(\int f(x) \, dx \right)' = f(x)$$

Доказательство.

$$\left(\int f(x) dx\right)' \stackrel{(2)}{===} \left(F(x) + C\right)' = F'(x) + C' = F'(x) \stackrel{(1)}{===} f(x)$$

Свойство 2.

Дифференциал от неопределённого интеграла равен подынтегральному выражению.

$$\left| d\left(\int f(x) \, dx \right) = f(x) \, dx \right|$$

Доказательство.

$$d\left(\int f(x) dx\right) \stackrel{(2)}{=} d(F(x) + C) = (F(x) + C)' dx =$$

$$= (F'(x) + C') dx = F'(x) dx \stackrel{(1)}{=} f(x) dx$$

Свойство 3.

Неопределённый интеграл от дифференциала от некоторой функции равен сумме этой функции и константы.

$$\int d(F(x)) = F(x) + C, \quad \forall C - const$$

Доказательство.

$$\int d(F(x)) = \int F'(x) dx \stackrel{\text{(1)}}{=} \int f(x) dx \stackrel{\text{(2)}}{=} F(x) + C, \quad \forall C - const$$

Свойство 4.

Константу можно выносить за знак неопределённого интеграла.

$$\int \lambda \cdot f(x) \, dx = \lambda \int f(x) \, dx, \quad \lambda \neq 0$$

Доказательство.

Пусть F(x) — первообразная f(x)

$$\lambda \int f(x) dx \stackrel{(2)}{=} \lambda \cdot (F(x) + C), \quad \forall C - const$$

Функция $\lambda \cdot F(x)$ — первообразная $\lambda \cdot f(x)$:

$$(\lambda \cdot F(x))' = \lambda \cdot F'(x) \xrightarrow{(1)} \lambda \cdot f(x)$$

$$\int \lambda \cdot f(x) \, dx \xrightarrow{(2)} \lambda \cdot F(x) + C_1, \quad \forall C_1 - const$$

Так как константы C_1 , C — произвольные, $\lambda \neq 0$, то их всегда можно выбрать так, чтобы $C_1 = \lambda C$. Тогда множества $\lambda \cdot (F(x) + C)$ и $\lambda \cdot F(x) + C_1$ совпадают.

Свойство 5.

Если функции $f_1(x)$ и $f_2(x)$ на (a;b) имеют первообразные $F_1(x)$ и $F_2(x)$ соответственно, то функция $\lambda_1 f_1(x) + \lambda_2 f_2(x)$, где $\lambda_1, \lambda_2 \in \mathbb{R}$, имеет первообразную на (a;b), причём $\lambda_1^2 + \lambda_2^2 > 0$:

$$\int \left(\lambda_1 f_1(x) + \lambda_2 f_2(x)\right) dx = \lambda_1 \int f_1(x) dx + \lambda_2 \int f_2(x) dx$$

Доказательство.

 $F_1(x)$ — первообразная $f_1(x)$

 $F_2(x)$ — первообразная $f_2(x)$

$$\lambda_1 \int f_1(x) \, dx + \lambda_2 \int f_2(x) \, dx \stackrel{(2)}{=} \lambda_1 (F_1(x) + C_1) + \lambda_2 (F_2(x) + C_2) =$$

$$= \lambda_1 F_1(x) + \lambda_2 F_2(x) + \lambda_1 C_1 + \lambda_2 C_2, \quad \forall C_1, C_2 - const$$

Функция $F(x) = \lambda_1 F_1(x) + \lambda_2 F_2(x)$ — первообразная функции $\lambda_1 f_1(x) + \lambda_2 f_2(x)$.

$$F'(x) = \left(\lambda_1 F_1(x) + \lambda_2 F_2(x)\right)' = \lambda_1 F_1'(x) + \lambda_2 F_2'(x) \xrightarrow{\text{(1)}} \lambda_1 f_1(x) + \lambda_2 f_2(x)$$
$$\int \left(\lambda_1 f_1(x) + \lambda_2 f_2(x)\right) dx \xrightarrow{\text{(2)}} \lambda_1 f_1(x) + \lambda_2 f_2(x) + C, \quad \forall C - const$$

Так как константы C_1 , C_2 , C — произвольные, то всегда можно добиться выполнения равенства $C = \lambda_1 C_1 + \lambda_2 C_2$.

Тогда множества $\lambda_1 F_1(x) + \lambda_2 F_2(x) + \lambda_1 C_1 + \lambda_2 C_2$ и $\lambda_1 F_1(x) + \lambda_2 F_2(x) + C$ совпадают.

Свойство 6 (Инвариантность формы интегрирования).

Если $\int f(x) dx = F(x) + C$, где C - const, то $\int f(u) du = F(u) + C$, где C - const, $u = \varphi(x)$ — непрерывно-дифференцируемая функция.

Доказательство.

x — независимая переменная

f(x) — непрерывная функция

F(x) — первообразная f(x)

$$\int f(x) dx = F(x) + C, \ \forall C - const$$

Рассмотрим сложную функцию $F(u) = F(\varphi(x))$. Найдём дифференциал F(u):

$$d(F(u)) = F'(u) \cdot \underbrace{\varphi'(x) \, dx}_{du} = \begin{vmatrix} u = \varphi(x) \\ du = \varphi'(x) \, dx \end{vmatrix} = F'(u) \, du \stackrel{(1)}{=} f(u) \, du$$

Неопределённый интеграл:

$$\int f(u) du = \int d(F(u)) \xrightarrow{\text{(cb. 3)}} F(u) + C, \quad \forall C - const$$

Пример

$$\int \sin x \, dx = -\cos x + C \qquad \sin(2x) \, d(2x) = -\cos(2x) + C$$

1.2.2 Геометрический смысл

Неопределённый интеграл геометрически представляет собой семейство интегральных кривых (графиков функций) вида y = F(x) + C, $\forall C - const$.

Рис. 1: Геометрический смысл неопределённого интеграла

1.2.3 Таблица основных интегралов

Таблица 1: Таблица основных интегралов

$$\begin{aligned} 1. & \int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \ \forall C - const \end{aligned} & 11. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C \\ 2. & \int dx = x + C \end{aligned} & 12. & \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{a-x}{a+x} \right| + C \\ 3. & \int \frac{dx}{x} = \ln |x| + C \end{aligned} & 13. & \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C \\ 4. & \int e^x \, dx = e^x + C \end{aligned} & 14. & \int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C \\ 5. & \int a^x \, dx = \frac{a^x}{\ln a} + C \end{aligned} & 15. & \int \sinh x \, dx = \cosh x + C \\ 6. & \int \sin x \, dx = -\cos x + C \end{aligned} & 16. & \int \cosh x \, dx = \sinh x + C \\ 7. & \int \cos x \, dx = \sin x + C \end{aligned} & 17. & \int \frac{dx}{\cosh^2 x} = \tanh x + C \\ 8. & \int \frac{dx}{\cos^2 x} = \tan x + C \end{aligned} & 18. & \int \frac{dx}{\sinh^2 x} = -\coth x + C \\ 9. & \int \frac{dx}{\sin^2 x} = -\cot x + C \end{aligned} & 19. & \int \frac{dx}{\sin x} = \ln \left| \tan \frac{x}{2} \right| + C \\ 10. & \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C \end{aligned} & 20. & \int \frac{dx}{\cos x} = \ln \left| \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| + C \end{aligned}$$

Доказательство (19).

$$\int \frac{dx}{\sin x} = \int \frac{dx}{2\sin\frac{x}{2}\cos\frac{x}{2}} = \frac{1}{2}\int \frac{\frac{1}{\cos^2\frac{x}{2}}}{\frac{\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2\frac{x}{2}}} dx = \int \frac{\frac{1}{2\cos^2\frac{x}{2}}}{\operatorname{tg}\frac{x}{2}} dx = \int \frac{d\left(\operatorname{tg}\frac{x}{2}\right)}{\operatorname{tg}\frac{x}{2}} = \left|\operatorname{tg}\frac{x}{2}t\right| = \int \frac{dt}{t} = \ln|t| + C = \ln\left|\operatorname{tg}\frac{x}{2}\right| + C$$

1.3 Основные методы интегрирования

1. Непосредственное интегрирование (свойства + таблица)

Пример.

$$\int \left(3e^x + \sin x - \frac{1}{1+x^2}\right) dx = 3\int e^x dx + \int \sin x dx - \int \frac{dx}{1+x^2} =$$
$$= 3e^x - \cos x - \operatorname{arctg} x + C, \ \forall C - const$$

2. Метод подстановки

(2.1) Занесение под знак дифференциала

Пример.

$$\int \frac{e^{\arcsin x} \cdot 1}{\sqrt{1 - x^2}} \, dx = \int e^{\arcsin x} \, d(\arcsin x) = e^{\arcsin x} + C, \ \forall C - const$$

(2.2) Замена переменной

Пусть функция $x = \varphi(t)$ определена и дифференцируема на T, а множество X — множество значений этой функции, на котором определена f(x). Тогда, если существует первообразная функции f(x) на X, то на множестве T верно равенство:

$$\int f(x) dx = \begin{vmatrix} x = \varphi(t) \\ dx = \varphi'(t) \end{vmatrix} = \int f(\varphi(t))\varphi'(t)dt$$

Пример.

$$\int x(3x-1)^{2024} dx = \begin{vmatrix} 3x-1=t & 3x=t+1\\ x=\frac{1}{3}(t+1)\\ dx = \left(\frac{1}{3}t+\frac{1}{3}\right)' dt = \frac{1}{3}dt \end{vmatrix} = \int \frac{1}{3}(t+1) \cdot t^{2024} \frac{1}{3} dt$$

3. Интегрирование по частям

Пусть функции u = u(x) и v = v(x) непрерывно-дифференцируемые, тогда справедлива формула интегрирования по частям:

$$\int u \, dv = u \cdot v - \int v \, du$$

Доказательство.

Рассмотрим произведение $u \cdot v = u(x) \cdot v(x)$

Дифференциал:

$$d(u \cdot v) = u \cdot dv + v \cdot du$$

Выразим $u \cdot dv$:

$$u \cdot dv = d(u \cdot v) - v \cdot du$$

Интегрируем:

$$\int u \, dv = \int \left(d(uv) - v \, du \right)$$

По свойству неопределённого интеграла (5):

$$\int u \, dv = \int d(uv) - \int v \, du$$

По свойству неопределённого интеграла (3):

$$\int u \, dv = u \cdot v - \int v \, du$$

Пример.

1.
$$\int xe^x dx = \int \underset{v}{x} d(e_v^x) = xe^x - \int e^x dx = xe^x - e^x + C, \quad \forall C - const$$

2.
$$\int \underbrace{\arccos x}_{u} x \underbrace{dx}_{dv} = \begin{vmatrix} u = \arccos x, \ du = -\frac{1}{\sqrt{1 - x^{2}}} dx \\ dv = dx, \ v = \int dv = \int dx = x \end{vmatrix} =$$

$$= x \cdot \arccos x - \int \frac{-x \, dx}{\sqrt{1 - x^{2}}} = x \cdot \arccos x - \frac{1}{2} \int \frac{d(1 - x^{2})}{\sqrt{1 - x^{2}}} =$$

$$= x \cdot \arccos x - \frac{1}{2} \cdot \frac{(1 - x^{2})^{\frac{1}{2}}}{\frac{1}{2}} + C =$$

$$= x \cdot \arccos x - \sqrt{1 - x^{2}} + C, \quad \forall C - const$$

2 Правильные и неправильные рациональные дроби

Определение 1. Дробно-рациональной функцией или рациональной дробью называется функция, равная частному от деления двух многочленов.

$$\frac{P_m(x)}{Q_n(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0},$$

$$a_m, a_{m-1}, \dots, a_1, a_0, b_n, b_{n-1}, \dots, b_1, b_0 - const$$

где $P_m(x), \ Q_n(x)$ — многочлены степени m и n соответственно.

Определение 2. Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, то есть m < n.

Определение 3. Рациональная дробь называется **неправильной**, если степень числителя не меньше степени знаменателя, то есть $m \ge n$.

Простейшие рациональные дроби

1.
$$\frac{A}{x-a}$$
 2. $\frac{A}{(x-a)^k}$ 3. $\frac{Mx+N}{x^2+px+q}$ 4. $\frac{Mx+N}{(x^2+px+q)^k}$

где $A,\ a,\ M,\ N,\ p,\ q-const,\ K\in\mathbb{N},\ k\geqslant 2$ x^2+px+q не имеет действительных корней.

$$D = p^2 - 4q < 0, \quad 4q - p^2 > 0, \quad \boxed{q - \frac{p^2}{4} > 0}$$
 (*)

2.1 Интегрирование простейших рациональных дробей

2.1.1 $\frac{A}{x-a}$

$$\int \frac{A}{x-a} dx = A \int \frac{dx}{x-1} = A \int \frac{d(x-a)}{x-1} = A \cdot \ln|x-a| + C, \quad \forall C - const$$

2.1.2
$$\frac{A}{(x-a)^k}$$

$$\int \frac{A}{(x-a)^k} dx = A \int \frac{dx}{(x-a)^k} = A \int \frac{d(x-a)}{(x-a)^k} = A \int (x-a)^{-k} d(x-a) = A \cdot \frac{(x-a)^{-k+1}}{-k+1} + C,$$

$$\forall C - const$$

2.1.3 $\frac{Mx+N}{x^k+px+q}$

$$\begin{split} \int \frac{Mx+N}{x^2+px+q} \, dx &= \begin{vmatrix} x^2+px+q = x^2+2 \cdot \frac{p}{2}x + \frac{p^2}{4} - \frac{p^2}{4} + q = \\ &= \left(x + \frac{p}{2}\right)^2 + \left(q - \frac{p^2}{4}\right) \stackrel{(*)}{=\!=\!=} \left(x + \frac{p}{2}\right)^2 + b^2 \end{vmatrix} = \int \frac{Mx+N}{\left(x + \frac{p}{2}\right)^2 + b^2} \, dx = \\ &= \left|x + \frac{p}{2} = t \quad x = t - \frac{p}{2} \quad dx = dt\right| = \int \frac{M\left(t - \frac{p}{2}\right) + N}{t^2 + b^2} \, dt = \\ &= M \int \frac{t}{t^2 + b^2} \, dt + \left(N - \frac{p}{2}M\right) \int \frac{dt}{t^2 + b^2} = \\ &= \frac{M}{2} \int \frac{d(t^2 + b^2)}{t^2 + b^2} + \left(N - \frac{p}{2}M\right) \frac{1}{b} \arctan \frac{t}{b} = \\ &= \frac{M}{2} \ln|t^2 + b^2| + \frac{\left(N - \frac{p}{2}M\right)}{b} \arctan \frac{t}{b} + C = \\ &= \frac{M}{2} \ln|x^2 + px + q| + \frac{\left(N - \frac{p}{2}M\right)}{\sqrt{q - \frac{p^2}{4}}} \arctan \frac{x + \frac{p}{2}}{\sqrt{q - \frac{p^2}{4}}} + C, \quad \forall C - const \end{split}$$

Пример.

$$\int \frac{3x-5}{x^2+2x+10} dx = \int \frac{3x-5}{(x+1)^2+3^2} = \begin{vmatrix} x+1=t \\ x=t-1 \\ dx=dt \end{vmatrix} = \int \frac{3(t-1)-5}{t^2+3^2} dt =$$

$$= 3\int \frac{t dt}{t^2+3^2} - 8\int \frac{dt}{t^2+3^2} = 3 \cdot \frac{1}{2} \int \frac{d(t^2+3^2)}{t^2+3^2} - 8 \cdot \frac{1}{3} \arctan \frac{t}{3} =$$

$$= \frac{3}{2} \ln|t^2+9| - \frac{8}{3} \arctan \frac{t}{3} + C = \frac{3}{2} \ln|x^2+2x+10| - \frac{8}{3} \arctan \frac{x+1}{3} + C,$$

$$\forall C-const$$

2.2 Неправильные рациональные дроби

Любая неправильная рациональная дробь может быть представлена в виде суммы многочлена и правильной рациональной дроби.

$$\boxed{\frac{P(x)}{Q(x)} = L(x) + \frac{r(x)}{Q(x)}} \tag{\lor}$$

$$\frac{P(x)}{Q(x)}$$
 — неправильная рациональная дробь

$$L(x)$$
 — многочлен/частное от деления $P(x)$ на $Q(x)$

$$r(x)$$
 — остаток от деления $P(x)$ на $Q(x)$

$$\frac{r(x)}{Q(x)}$$
 — правильная рациональная дробь.

Интегрируя (∨) получаем:

$$\int \frac{P(x)}{Q(x)} dx = \int L(x) dx + \int \frac{r(x)}{Q(x)} dx$$

Вывод: Интегрирование неправильной рациональной дроби сводится к интегрированию многочлена и правильной рациональной дроби.

Теорема 1 (О разложении правильной рациональной дроби на простейшие).

Любая правильная рациональная дробь $\frac{P(x)}{O(x)}$, знаменатель которой можно разложить на множители:

$$Q(x) = (x - x_1)^{k_1} \cdot (x - x_2)^{k_2} \cdot \dots \cdot (x - x_n)^{k_n} \cdot (x^2 + p_1 x + q_1)^{s_1} \cdot \dots \cdot (x^2 + p_m + q_m)^{s_m},$$

может быть представлена и при том единственным образом в виде суммы простейших рациональных дробей:

$$\frac{P(x)}{Q(x)} = \frac{A_1}{x - x_1} + \frac{B_1}{(x - x_1)^2} + \dots + \frac{C_1}{(x - x_1)^{k_1}} + \dots + \frac{A_n}{(x - x_n)} + \frac{B_n}{(x - x_n)^2} + \dots + \frac{C_n}{(x - x_n)^{k_n}} + \frac{M_1 x + N_1}{x^2 + p_1 x + q_1} + \dots + \frac{M_{s_1} x + N_{s_1}}{(x^2 + p_1 x + q_1)^{s_1}} + \dots + \frac{E_1 x + F_1}{x^2 + p_m x + q_m} + \dots + \frac{E_{s_m} x + F_{s_m}}{(x^2 + p_m x + q_m)^{s_m}}$$

$$\left. \begin{array}{l} A_1, \ B_1, \ \dots, \ C_1 \\ A_n, \ B_n, \ \dots, \ C_n \\ M_1, \ N_1, \ \dots, \ M_{s_1}, \ N_{s_1} \\ E_1, \ F_1, \ \dots, \ E_{s_m}, \ F_{s_m} \end{array} \right\} \in \mathbb{R} \qquad \begin{array}{l} x^2 + p_1 x + q_1 \\ \dots \\ x^2 + p_m x + q_m \end{array} \quad \text{ не имеют} \\ x^2 + p_m x + q_m \end{array} \quad \text{действительных корней}$$

Пример.

1)
$$\frac{x^2+4}{(x-2)(x-3)^3} = \frac{A}{x-2} + \frac{B}{x-3} + \frac{C}{(x-3)^2} + \frac{D}{(x-3)^3}$$

2)
$$\frac{x^3+1}{x^2(x^2+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+1}$$

1)
$$\frac{x^2 + 4}{(x - 2)(x - 3)^3} = \frac{A}{x - 2} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2} + \frac{D}{(x - 3)^3}$$
2)
$$\frac{x^3 + 1}{x^2(x^2 + 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}$$
3)
$$\frac{x^2 + x + 13}{(x - 1)^2(x^2 - 4)(x^2 + 4)^2} = \frac{A}{x - 1} + \frac{B}{(x - 1)^2} + \underbrace{\frac{Cx + D}{x^2 - 4}}_{\frac{C}{x - 2} + \frac{D}{x + 2}} + \underbrace{\frac{Bx + F}{x^2 + 4}}_{\frac{C}{x^2 + 4} + 2} + \underbrace{\frac{Gx + H}{(x^2 + 4)^2}}_{\frac{C}{x - 2} + \frac{D}{x + 2}}$$

2.3 Метод неопределённых коэффициентов

Равенство в теореме о разложении правильной рациональной дроби на простейшие (**T. 1**) представляет собой тождество. Поэтому, приводя дроби к общему знаменателю, получим тождество числителей слева и справа. Приравнивая коэффициенты при одинаковых степенях x получаем СЛАУ для определения неизвестных коэффициентов.

Пример.
$$\int \frac{3x-4}{x(x-2)(x+1)} dx \Leftrightarrow \frac{3x-4}{x(x-2)(x+1)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+1} = \frac{A(x-2)(x+1) + Bx(x+1) + Cx(x-2)}{x(x-2)(x+1)}$$

$$0 \cdot x^2 + 3x - 4 = A(x-2)(x+1) + Bx(x+1) + Cx(x-2) = 2x^2(A+B+C) + (B-A-2C)x - 2A$$

$$\begin{vmatrix} x^2 \\ 3 = B - A - 2C \\ x^1 \\ 3 = B - A - 2C \end{vmatrix}$$

$$C \Pi A Y \qquad A = 2 \qquad B = \frac{1}{3} \qquad C = -\frac{7}{3}$$

$$\Leftrightarrow \int \left(\frac{2}{x} + \frac{1}{3} - \frac{1}{x-2} + \frac{-\frac{7}{3}}{x+1}\right) dx = 2 \int \frac{dx}{x} + \frac{1}{3} \int \frac{dx}{x-2} - \frac{7}{3} \int \frac{dx}{x+1} = 2 \ln|x| + \frac{1}{3} \ln|x-2| - \frac{7}{3} \ln|x+1| + C, \quad \forall C-const$$

2.4 Метод конкретных значений

После получения тождества числителей (**) подставляем конкретные значения переменной x, так как оно верно для любого x.

Обычно вместо x подставляют действительные корни знаменателя.

Пример.
$$x = 0: -4 = -2A \Rightarrow A = 2$$

$$x = 2: 3 \cdot 2 - 4 = B \cdot 2 \cdot 3 \Rightarrow B = \frac{1}{3}$$

$$x = -1: -3 - 4 = -C \cdot (-3) \Rightarrow C = -\frac{7}{3}$$

2.5 Выводы

- 1. **Метод конкретных значений** лучше использовать, когда в знаменателе правильной рациональной дроби нет кратных корней.
- 2. **Метод неопределённых коэффициентов** лучше использовать, когда в знаменателе правильной рациональной дроби кратные или комплексные (не действительные) корни.
- 3. Лучше комбинировать два метода.

2.6 Неберущиеся интегралы

1.
$$\int e^{-x^2} dx$$
 — интеграл Пуассона (теория вероятности)

2.
$$\int \frac{dx}{\ln x}$$
 — логарифмический интеграл (теория чисел)

3.
$$\int \cos x^2 dx$$
, $\int \sin x^2 dx$ — интегралы Френеля (физика)

3 Определённый интеграл. Криволинейная трапеция

3.1 Определённый интеграл

Пусть функция y = f(x) определена на [a; b].

Определение 1. Множество точек $a = x_0 < x_1 < \ldots < x_i < \ldots < x_n = b$ называется разбиением отрезка [a;b], при этом отрезки $[x_{i-1};x_i]$ называются отрезками разбиения.

$$i=1,\dots,n$$
 $i=\overline{1,n}$ $\Delta x_i=x_i-x_{i-1}$ — длина i -го отрезка разбиения $i=\overline{1,n}$ $\lambda=\max_i \Delta x_i$ — диаметр разбиения

Рассмотрим произвольное разбиение [a;b]. В каждом из отрезков разбиения $[x_{i-1};x_i]$ выберем точку $\xi_i,\ i=\overline{1,n}$. Составим сумму

$$S_n = \sum_{i=1}^n f(\xi_i) \cdot \Delta x_i$$
 (1)

(1) — интегральная сумма для функции y = f(x) на [a; b].

Определение 2. Определённым интегралом от функции y = f(x) на [a;b] называется конечный предел интегральной суммы (1), когда число отрезков разбиения растёт, а их длины стремятся к нулю.

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x$$
 (2)

Предел (2) не зависит от способа разбиения отрезка [a;b] и выбора точек $\xi_i,\ \overline{1,n}.$

f(x) — подынтегральная функция

f(x) dx — подынтегральное выражение

 \int_{a}^{b} — знак определённого интеграла

 $\stackrel{Ja}{a}$ — нижний предел интегрирования

b — верхний предел интегрирования

3.2 Криволинейная трапеция

Определение 3. Криволинейной трапецией называется фигура, ограниченная графиком функции y = f(x), отрезком [a;b] на Ox, прямыми x = a и x = b параллельными оси Oy.

3.2.1 Геометрический смысл

Определённый интеграл численно равен площади криволинейной трапеции.

$$S_{\text{\tiny Kp. Tp.}} = \int_a^b f(x) \, dx$$

Определение 4. Функция y = f(x) называется **интегрируемой** на [a;b], если существует конечный предел интегральной суммы (1) на [a;b].

Теорема 1 (Существование определённого интеграла).

Если функция y = f(x) непрерывна на [a; b], то она на этом отрезке интегрируема.

3.3 Свойства определённого интеграла

Теорема 2.

Если функция y = f(x) интегрируема на отрезке [a; b], то имеет место равенство

$$\left| \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \right|$$

Доказательство.

По определению определённого интеграла (опр. 2)

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i} - x_{i-1}) = -\lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i})(x_{i-1} - x_{i})$$
$$= -\int_{b}^{a} f(x) dx$$

Теорема 3 (Аддитивность определённого интеграла).

Если функция y = f(x) интегрируема на каждом из отрезков [a; c], [c; b] (a < c < b), то она интегрируема на [a; b] и верно равенство

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Доказательство.

Рассмотрим произвольное разбиение [a;b] такое, что одна из точек разбиения совпадает с точкой c:

$$a = x_0 < x_1 < \ldots < x_m = c < x_{m+1} < \ldots < x_n = b$$

Данное разбиение определяет ещё два разбиения:

$$a = x_0 < x_1 < \dots < x_{m-1} < x_m = c$$
 $\lambda_1 = \max_i \Delta x_i, \ i = \overline{1, m}$ $c = x_m < x_{m+1} < \dots < x_{n-1} < x_n = b$ $\lambda_2 = \max_i \Delta x_i, \ i = \overline{m+1, m}$

Так как функция y = f(x) интегрируема на [a; c] и на [c; b], то

$$\int_{a}^{c} f(x) dx = \lim_{\lambda_1 \to 0} \sum_{i=1}^{m} f(\xi_i) \cdot \Delta x_i$$
$$\int_{c}^{b} f(x) dx = \lim_{\lambda_2 \to 0} \sum_{i=m+1}^{n} f(\xi_i) \cdot \Delta x_i$$

 $\lambda = \max\{\lambda_1; \lambda_2\} \quad \lambda \to 0$

Суммируем интегральные суммы:

$$\sum_{i=1}^{m} f(\xi_i) \cdot \Delta x_i + \sum_{i=m+1}^{n} f(\xi_i) \cdot \Delta x_i = \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i$$

Вычислим предел:

$$\lim_{\lambda \to 0} \left(\sum_{i=1}^{m} f(\xi_i) \cdot \Delta x_i + \sum_{i=m+1}^{n} f(\xi_i) \cdot \Delta x_i \right) = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i$$

$$\lim_{\lambda \to 0} \sum_{i=1}^{m} f(\xi_i) \cdot \Delta x_i + \lim_{\lambda \to 0} \sum_{i=m+1}^{n} f(\xi_i) \cdot \Delta x_i = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i$$

$$\lim_{\lambda_1 \to 0} \sum_{i=1}^{m} f(\xi_i) \cdot \Delta x_i + \lim_{\lambda_2 \to 0} \sum_{i=m+1}^{n} f(\xi_i) \cdot \Delta x_i = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i$$

Из последнего равенства следует, что f(x) — интегрируема на [a;b] и верно равенство

$$\int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$$

Теорема 4.

Если C-const, то

$$\int_{a}^{b} c \, dx = c \cdot (b - a)$$

Доказательство

$$\int_{a}^{b} c \, dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} c \cdot \Delta x_{i} = c \cdot \lim_{\lambda \to 0} \sum_{i=1}^{n} x_{i} - x_{i-1} = c \cdot (b - a)$$

Теорема 5.

Если функции $f_1(x)$, $f_2(x)$ интегрируемы на [a;b], то их линейная комбинация

$$\lambda_1 f_1(x) + \lambda_2 f_2(x)$$
, где $\lambda_1, \lambda_2 \in \mathbb{R}$

интегрируема на [a;b] и верно равенство:

$$\int_a^b \left(\lambda_1 f_1(x) + \lambda_2 f_2(x)\right) dx = \lambda_1 \int_a^b f_1(x) dx + \lambda_2 \cdot \int_a^b f_2(x) dx$$

Доказательство.

$$\int_{a}^{b} \left(\lambda_{1} f_{1}(x) + \lambda_{2} f_{2}(x)\right) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} \left(\lambda_{1} f_{1}(\xi_{i}) + \lambda_{2} f_{2}(\xi_{i})\right) \cdot \Delta x_{i} =$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} \left(\lambda_{1} f_{1}(\xi_{i}) \cdot \Delta x_{i} + \lambda_{2} f_{2}(\xi_{i}) \cdot \Delta x_{i}\right) =$$

$$= \lim_{\lambda \to 0} \left(\sum_{i=1}^{n} \lambda_{1} f_{1}(\xi_{i}) \cdot \Delta x_{i} + \sum_{i=1}^{n} \lambda_{2} f_{2}(\xi_{i}) \cdot \Delta x_{i}\right) =$$

$$= \lim_{\lambda \to 0} \sum_{i=1}^{n} \lambda_{1} f_{1}(\xi_{i}) \cdot \Delta x_{i} + \lim_{\lambda \to 0} \sum_{i=1}^{n} \lambda_{2} f_{2}(\xi_{i}) \cdot \Delta x_{i} =$$

$$= \lambda_{1} \lim_{\lambda \to 0} \sum_{i=1}^{n} f_{1}(\xi_{i}) \cdot \Delta x_{i} + \lambda_{2} \lim_{\lambda \to 0} \sum_{i=1}^{n} f_{2}(\xi_{i}) \cdot \Delta x_{i} =$$

$$= \lambda_{1} \int_{a}^{b} f_{1}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx =$$

$$= \int_{a}^{b} \left(\lambda_{1} f_{1}(x) + \lambda_{2} f_{2}(x)\right) dx$$

Следствие 5.1.

$$\int_{a}^{a} f(x) \, dx = 0$$

Теорема 6 (О сохранении определённым интегралом знака подынтегральной функции).

Если f(x) интегрируема и неотрицательна на [a;b], то

$$\boxed{\int_{a}^{b} f(x) \, dx \geqslant 0}$$

Доказательство.

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}) \cdot \Delta x_{i}$$

 Δx_i — длины отрезков разбиения $\Delta x_i > 0$ $f(\xi_i) \geqslant 0$ по условию

$$f(\xi_i)\cdot \Delta x_i\geqslant 0,\ i=\overline{i,n}$$

$$\sum_{i=1}^n f(\xi_i)\cdot \Delta x_i\geqslant 0\quad \text{как сумма неотрицательных чисел}$$

$$\lim_{\lambda\to 0}\sum_{i=1}^n f(\xi_i)\cdot \Delta x_i\geqslant 0 \quad \mbox{по следствию из теоремы } o\ coxpaneнuu \\ \phi yнкцией\ знака\ своего\ предела$$

$$\int_{a}^{b} f(x) \, dx \geqslant 0$$

Теорема 7 (Об интегрировании неравенства).

Пусть функции f(x) и g(x) интегрируемы на [a;b] и $\forall x \in [a;b] \colon f(x) \geqslant g(x),$ то

$$\int_{a}^{b} f(x) \, dx \geqslant \int_{a}^{b} g(x) \, dx$$

Доказательство.

По условию $f(x)\geqslant g(x),\ \forall x\in [a;b].$ Обозначим $h(x)=f(x)-g(x)\geqslant 0.$ По теореме 6

$$\int_{a}^{b} (f(x) - g(x)) dx \ge 0$$

По теореме 5:

$$\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx \ge 0$$

$$\downarrow \downarrow$$

$$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

Теорема 8 (Об оценке модуля определённого интеграла).

Если функция f(x) и |f(x)| интегрируемы на [a;b], то справедливо неравенство

$$\left| \left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} \left| f(x) \right| dx \right|$$

Доказательство. $\forall x \in [a;b] \text{ справедливо неравенство}$

$$-|f(x)| \leqslant f(x) \leqslant |f(x)|$$

По теореме 5 и 7:

$$-\int_{a}^{b} \left| f(x) \right| dx \leqslant \int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} \left| f(x) \right| dx$$

Сворачиваем двойное неравенство:

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} |f(x)| dx$$

Теорема 9 (О среднем значении для определённого интеграла).

Если f(x) непрерывна на [a;b], то

$$\exists c \in [a;b] \colon f(c) = \frac{1}{b-a} \int_{c}^{b} f(x) \, dx$$

Доказательство.

Так как функция y = f(x) непрерывна на [a;b], то по теореме Beŭepumpacca она достигает своего наибольшего и наименьшего значения.

To есть $\exists m, M \in \mathbb{R}, \ \forall x \in [a;b] : m \leqslant f(x) \leqslant M$

По теореме 7:

$$\int_{a}^{b} m \, dx \leqslant \int_{a}^{b} f(x) \, dx \leqslant \int_{a}^{b} M \, dx$$

По теореме 5:

$$m \int_{a}^{b} dx \leqslant \int_{a}^{b} f(x) dx \leqslant M \int_{a}^{b} dx$$

По теореме 4:

$$m(b-a) \leqslant \int_a^b f(x) dx \leqslant M(b-a) \mid : (b-a)$$

Так как функция y = f(x) непрерывна на [a; b], то по теореме *Больцано-Коши* она принимает все свои значения между наибольшим и наименьшим значением.

$$m \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leqslant M$$

По теореме *Больцано-Коши* $\exists c \in [a; b]$:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Теорема 10 (Об оценке определённого интеграла).

Пусть функции f(x) и g(x) интегрируемы на [a;b] и $\forall x \in [a;b]\colon m\leqslant f(x)\leqslant N,\ g(x)\geqslant 0.$ Тогда

$$\boxed{m \int_a^b g(x) \, dx \leqslant \int_a^b f(x) \, g(x) \, dx \leqslant M \int_a^b g(x) \, dx}$$

Доказательство.

Так как $\forall x \in [a;b]$ верны неравенства

$$m \leqslant f(x) \leqslant M \quad | \cdot g(x)$$
$$g(x) \geqslant 0 \qquad m, M \in \mathbb{R}$$
$$m \cdot g(x) \leqslant f(x) \cdot g(x) \leqslant M \cdot g(x)$$

По теореме 7 и 5:

$$m \int_a^b g(x) \leqslant \int_a^b f(x) g(x) dx \leqslant M \int_a^b g(x) dx$$

Следствие 10.1. $g(x) \equiv 1, \ \forall x \in [a; b]$

$$m(b-a) \leqslant \int_{a}^{b} f(x) dx \leqslant M(b-a)$$

3.4 Определённый интеграл с переменным верхним пределом интегрирования

Пусть f(x) непрерывна на [a;b]. Рассмотрим $\int_a^b f(x) \, dx$. Закрепим нижний предел интегрирования a. Изменяем верхний предел интегрирования b, чтобы подчеркнуть изменение верхнего предела интегрирования.

$$b \longrightarrow x \quad x \in [a; b] \quad [a; x] \subset [a; b] \quad I(x) = \int_a^x f(x) dt.$$

Определение 1. Определённым интегралом с переменным верхним пределом интегрирования от непрерывной функции f(x) на [a;b] называется интеграл вида

$$I(x) = \int_a^x f(t) dt$$
, где $x \in [a; b]$

I(x) — переменная площадь криволинейной трапеции с основанием $[a;x] \subset [a;b]$.

3.4.1 Свойства

Теорема 1 (Непрерывность I(x)).

Если функция f(x) на [a;b] непрерывна, то $I(x) = \int_a^x f(x) dt$ — непрерывна на [a;b].

Доказательство.

Рассмотрим $I(x) = \int_a^x f(t) dt$

$$I(x+\Delta x) = \int_a^{x+\Delta x} f(t) \, dt$$

$$\Delta I(x) = I(x+\Delta x) - I(x) = \int_a^{x+\Delta x} f(t) \, dt - \int_a^x f(t) \, dt \xrightarrow{*, T3}$$

$$= \int_a^x f(t) \, dt + \int_x^{x+\Delta x} f(t) \, dt - \int_a^x f(t) \, dt = \int_a^{x+\Delta x} f(t) \, dt \xrightarrow{T9}$$

$$= f(c) \cdot (x+\Delta x-x) = f(c) \cdot \Delta x, \text{ где } c \in [x; x+\Delta x]$$

* — Так как функция f(x) непрерывна на [a;b], то f(x) интегрируема на $[a;b] \Rightarrow$ применяем свойство аддитивности определённого интеграла.

$$\lim_{\Delta x \to 0} \Delta I(x) = \lim_{\Delta x \to 0} f(c) \cdot \Delta x = 0$$

По определению непрерывной функций $\Rightarrow I(x) = \int_a^x f(t) dt$ непрерывна на [a;b].

Теорема 2 (О производной I(x)).

Если функция y = f(x) непрерывна на [a; b], то $\forall x \in [a; b]$ верно равенство

$$\left(I(x)\right)' = \left(\int_{a}^{x} f(t) dt\right)' = f(x)$$

Доказательство.

$$(I(x))' = \lim_{\Delta x \to 0} \frac{\Delta I(x)}{\Delta x} \stackrel{\text{T1}}{=} \lim_{\Delta x \to 0} \frac{f(c) \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} f(c) \stackrel{*}{=} f(x)$$

$$*$$
: a при $\Delta x \to 0$ $x + \Delta x \to x$ $c \to x$

Следствие 2.1. Функция I(x) — первообразная функции f(x) на [a;b], так как по теореме 2(I(x))' = f(x).

3.4.2 Формула Ньютона-Лейбница

Теорема 3.

Пусть функция f(x) — непрерывна на [a;b]. Тогда

$$\left| \int_{a}^{b} f(x) dx = F(x) \right|_{a}^{b} = F(b) - F(a)$$

где F(x) — первообразная f(x).

Доказательство.

Пусть F(x) первообразная f(x) на [a;b]. По следствию из теоремы 2 I(x) — первообразная f(x) на [a;b].

По свойству первообразной:

$$I(x) - F(x) = C$$

$$I(x) = F(x) + C, \text{ где } C - const$$

$$\int_a^x f(t) \, dt = F(x) + C, \text{ где } C - const \tag{\lor}$$

 $\bullet \ x = a$:

$$\int_{a}^{a} f(t) dt = F(a) + C$$
$$0 = F(a) + C$$
$$C = -F(a)$$

C = -F(a) подставим в (\vee):

$$\int_{a}^{x} f(t) dt = F(x) - F(a)$$

 $\bullet x = b$:

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

3.5 Методы вычисления определённого интеграла

3.5.1 Метод интегрирования по частям

Теорема 1.

Пусть функции u=u(x) и v=v(x) непрерывно дифференцируемы на [a;b]. Тогда имеет место равенство

$$\int_{a}^{b} u \, dv = u \, v \Big|_{a}^{b} - \int_{a}^{b} v \, du$$

Доказательство.

Рассмотрим произведение функций $u \cdot v$.

Дифференцируем:

$$d(u \cdot v) = v du + u dv$$
$$u dv = d(uv) - v du$$

Интегрируем:

$$\int_a^b u \, dv = \int_a^b \left(d(uv) - v \, du \right) = \int_a^b d(uv) - \int_a^b v \, du - u \, v \bigg|_a^b - \int_a^b v \, du$$

Пример.

$$\int_{1}^{e} \ln x \, dx = \begin{vmatrix} u = \ln x & du = \frac{1}{x} \, dx \\ dv = dx & v = x \end{vmatrix} = x \ln x \Big|_{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} \, dx = (e \ln e - 1 \cdot \ln 1) - x \Big|_{1}^{e} = e - (e - 1) = \cancel{e} - \cancel{e} + 1 = 1$$