

National Aeronautics and Space Administration

Aviation Safety During Reduced And Intermittent Crew Operations – Discussion of Research Cooperation

Randall E. Bailey and Lynda J. Kramer

Crew Systems And Aviation Operations Branch
Research Directorate
NASA Langley Research Center

31 Mar 2015

Outline

- Background
 - Experiment overview
- Experiment Issues
 - Experiment logistics
 - PI, IRB, Pre-/Post-Flight Briefings
 - Simulator logistics (operator, operator station, pilot briefing rooms, scenario design, etc.)
 - Data (engineering unit data, video, eye gaze?)
 - Subject recruitment and arrangement
- Schedule/Scheduling
 - Experiment pre-test checkout
- Interagency Agreement
 - Required?
- What Else?

Background

- Aviation Operations and Safety Program,
 Safe Autonomous Systems Operations Project
 - Technical challenge: Reduced crew operations
 - Enable the use of fewer pilots during long haul flights which currently require crew augmentation
 - 3 and/or 4 pilots on-board long-haul flights
 - Single pilot operations during cruise
 - Also, investigating single with remote pilot operations concepts
 - Why?
 - Unmanned aerial vehicle technologies are emerging to extent that NASA has a fiduciary responsibility to stay ahead of and guide technology development in its (eventual) application to transport aircraft
 - Economic motivations for some NASA stakeholders
 - Work Package
 - Create Increasingly Autonomous Systems (IAS) that can support the pilot flying with capabilities now provided by or augmenting the pilot monitoring

Safety

- "Neither the general public nor the aviation community would tolerate any decrement in safety as a result of changes in the NAS associated with introduction of advanced IA systems."*
- Increasingly Autonomous (IA) systems, if properly designed, can replicate and enhance safety and reliability:
 - Adapt to changing patterns and preferences;
 - Remain vigilant at all times;
 - Increase the ability to tailor actions to specific circumstances and add flexibility to plans so that they better fit the immediate demands of the situation;
 - Increase the situation awareness of human operators by presenting information in a context-sensitive fashion;
 - Monitor human actions and alert and/or intervene to prevent errors from causing incidents or accidents; and
 - React quickly to avoid critical situations such as a collision.

^{*} NRC Report on Autonomy

Design Challenge for IAS

- Data suggests IAS an effective aid if:
 - Pilot has insight into; and
 - Some degree of control of IAS
 - Most effective if IAS performed task like another pilot would
- Appropriate levels of humanautonomy teaming?
 - Touchpoint with Autonomous Aircraft Operations

Design Data for IAS

Current State:

- Accident statistics cite the flightcrew as a primary contributor in over 60% of accidents involving transport category airplanes
- Yet, a well-trained and well-qualified pilot is acknowledged as the critical center point of aircraft safety systems and an integral safety component of the entire commercial aviation system.
- Little or no quantitative data exists on how and how many accidents/incidents are averted by crew actions.
- Develop Certification Criteria:
 "Equivalent Levels of Performance and Safety"
 - Collect human performance data
 - Basis by which to develop (and certification basis) increasingly autonomous systems

Flight Deck IAS

- Use "baseline" data to create IAS that:
 - Help pilots detect, diagnose and respond to the root cause of non-normal aircraft state and system status,
 - Convey the effect of system faults on dependent systems
 - Alert to problematic conditions,
 - Execute remedies, checklists, and actions
 - Level of authority?

- Applicability to areas beyond reduced crew operations
 - Quantas A380
 - Air France 447

Experiment Overview

Purpose:

- Perform a human-in-the-loop experiment to establish
 - "Equivalent levels of performance and safety" in current day operations
 - "Equivalent levels of performance and safety" in current day certification of single pilot operation
 - Collect data establishing severity of reduced crew operation / identifying ias and technologies needed

Experiment

Conducted in a current-day state-of-the-art Level D flight simulator

Experiment Concept

Concept

- Part 1: Crew, on motion / fixed-base
 - Cruise ops executing several scenarios difficult and/or high workload situations that may manifest themselves in flight.
 - "Equivalent levels of performance and safety" in current day operations
- Part 2: Single pilot certification case, on motion / fixed-base
 - Cruise ops executing several scenarios difficult and/or high workload situations that may manifest themselves in flight.
 - "Equivalent levels of performance and safety" in current day certification of single pilot operation
- Part 3: Single pilot fixed-base
 - Crew split to simulate the envisioned Reduced Crew Operations (RCO).
 - One crewmember will remain in the flight deck as Pilot Flying (PF). The other crewmember will act as Pilot Resting (PR) and will not be on the flight deck.
 - Similar/equivalent scenarios from Part One and Two will be presented to the PF.
 - The PR will be recalled to the flight deck to assist the PF at experimentally-determined times.
 - Collect data establishing severity of reduced crew operation / identifying IAS and technologies needed

Experiment Issues

Experiment Issues

- Experiment Logistics
 - Principal Investigators: NASA personal
 - with FAA assistance as necessary and appropriate
- IRB
- Data
 - Require: Engineering unit data, cockpit audio and video, event logging
 - All data time stamped
 - Desired: eye gaze data
- Subject recruitment and arrangement
 - NASA can do subject recruitment and arrangement
 - Would like FAA on-site pilot support for checkout and verification/validation of simulation experiment
- Simulator logistics
 - Require: sim operator?, at operator station?, pilot briefing rooms, assistance in scenario / experiment design as possible/practical, etc

Schedule / Scheduling

- Experiment Plan (Typical)
 - 16 crews required for statistical effect size
 - 2 days per crew, 8 hrs per day
 - 2 crews per week (4 day per week)
 - Result: 8 weeks duration
 - Can do intermittent ops
 - Final experiment design (yet to be completed) will define test schedule
- Schedule/Scheduling
 - Desired testing dates: August-Sept 2015
- Other Needs:
 - Pre-Test checkout time and rehearsal and dry-runs
 - Logistics set-up and fam. for NASA experiment team

Concluding Remarks

- NASA requests access and support for a research test in a Level D flight simulation facility
 - Outlined In general terms
- How can we do this?
 - Interagency agreement required?
 - What else?

Questions?

Crew Complement (1/2)

State-of-the-Art: Aircraft Design and Operations

- •Airworthiness Regulations Contain The Requirements For Determining The Minimum Flight Crew (14 Code of Federal Regulations (CFR) Part 23 and Part 25)
 - -The minimum flight crew must be established so that it is sufficient for safe operation, considering
 - (a) The workload on individual crewmembers;
 - (b) The accessibility and ease of operation of necessary controls by the appropriate crewmember; and
 - (c) The kind of operation authorized under §25.1525
- •Operating Regulations Establish Minimum Crew Requirements; e.g.,
 - Air Carrier Operations (Part 121):
 The minimum pilot crew is two pilots
 - Commuter or On-demand Operations (Part 135):
 The minimum pilot crew is two pilots
 if flying under Instrument Flight Rules (IFR)
 or >9 Seats

Crew Complement (2/2)

State-of-the-Art: Operations And Crew Duty / Rest

- Operating and Flightcrew Member
 Duty and Rest Requirements
 - 14 CFR Part 117
 - Crew Duty Depends Upon:
 - Time of Reporting
 - No. of Flight Segments
 - Crew Augmentation
 - Rest Facility

Table A to Part 117—Maximum Flight Time Limits for Unaugmented Operations Table

Time of report	Maximum flight time (hours)
0000-0459	8
0500-1959	9
2000-2359	8

Table B to Part 117—Flight Duty Period: Unaugmented Operations

	Maximum flight duty period (hours) for lineholders based on number of flight segments			sed on			
Scheduled time of start (acclimated time)	1	2	3	4	5	6	7+
0000-0359	9	9	9	9	9	9	9
0400-0459	10	10	10	10	9	9	9
0500-0559	12	12	12	12	11.5	11	10.5
0600-0659	13	13	12	12	11.5	11	10.5
0700-1159	14	14	13	13	12.5	12	11.5
1200-1259	13	13	13	13	12.5	12	11.5
1300-1659	12	12	12	12	11.5	11	10.5
1700-2159	12	12	11	11	10	9	9
2200-2259	11	11	10	10	9	9	9
2300-2359	10	10	10	9	9	9	9

Table C to Part 117—Flight Duty Period: Augmented Operations

	Maximum flight duty period (hours) based on rest facility and number of pilots					and
	Class 1 rest facility		Class 2 rest facility		Class 3 rest facility	
Scheduled time of start (acclimated time)	3 pilots	4 pilots	3 pilots	4 pilots	3 pilots	4 pilots
0000-0559	15	17	14	15.5	13	13.5
0600-0659	16	18.5	15	16.5	14	14.5
0700-1259	17	19	16.5	18	15	15.5
1300-1659	16	18.5	15	16.5	14	14.5
1700-2359	15	17	14	15.5	13	13.5

Incapacitation Challenges

- Quantifying Human Performance
 - Critical Element to IAS
 - Identification and Classification To Meet 10⁻⁹ Performance?
 - Multiple Sources / Fusion of Sensors
 Required
- Inducing Incapacitation Safely For Testing
- Protection of Personally-Identifying Information
- Use of Obtrusive Sensing Systems

RCO Challenges

- Long-range Augmented Crew Operations create challenges to safety and pilot proficiency
 - Long-duration with Few takeoffs/landings
 - Challenging Relationship between intervals of training and pilot proficiency
 - Quality of flight training
 - Schedule practices as they relate to critical skills and crew fatigue
 - Pilot experience
 - Relationship between pilot currency and proficiency
 - Command Experience of First Officer Vice Captain

- Route Structure Challenges
 - Remoteness: Viable alternates, polar routes, etc.
 - Duration: Stretching the time a Captain must be available for command should a contingency arise
 - Departure Time
 - Terrain: Landforms that require extra vigilance; special decompression escape routes
 - Comm Difficulties
 - ETOPS Considerations
 - Special Qualification airports and Routes
- Fatigue / Alertness
 - Inadequate Recovery Time during or after trips or the cumulative effects of all risk factors

Why RCO?

- Improved Operational Flexibility In Pilot Scheduling, Maintenance of Pilot Proficiency
- Improved Economic Efficiency for Affordable Air Taxi Services, Cargo Operations, Carrier Competitiveness

Aggregate flight crew costs (per crew seat per year) estimated to be \$344B for world-wide commercial transport fleet.*

Aircraft/Ops Type	Total Annual Crew Cost, per seat per year*
Regional Jet	\$3.4M
Low Cost Carrier	\$6.1M
Domestic Carrier	\$13.1M
Freight	\$26.6M
International	\$30.5M

^{*} R.M. Norman, "Economic Opportunities and Technological Challenges For Reduced Crew Operations," Dec 2007