Image Detection: Large and Small Feature Extraction

GOUCHER —college—

Sam Shapiro, Isabelle Pardew, and Phong Le

Department of Mathematics, Goucher College, 1021 Dulaney Valley Rd., Baltimore, MD 21204

Abstract

We present our progress on the comparison of different image recognition algorithms. We studied large feature extraction with a variation of the Viola-Jones face detection algorithm. This algorithm attempts to identify faces by comparing them to certain "Haar features." The most useful features are selected by a training algorithm called Adaboost. The detection time is then decreased through a specially trained "cascaded classifier." In some initial tests, our version of this algorithm is able to identify faces with up to 98% accuracy. Small feature extraction was studied with principal component analysis and the Weyl representation. Our goal is to compare how these two algorithms perform at identifying cancerous cells.

Haar Features

Fig 1: The five basic features used. All other feasters can be obtained by stretching these, and reversing the colors.

Fig 2: An example of how Haar features may be used to represent a face. [1]

A face detection algorithm uses Haar features to identify the large facial features. All of the Haar features necessary that are needed to identify a face may be derived by stretching and inverting the colors of the five features shown in figure 1, In a typical face detection application there are about 160,000 different features to consider![2] To narrow this down to a reasonable number we use Adaboost.

Adaboost

Adaboost is a machine learning algorithm that selects the best features to identify faces with. One starts out with a large number of **weak classifiers**. A weak classifier is given by $h(x, f, p, \theta) = 1$ if $pf(x) < p\theta$ and = 0 otherwise. Where x is an image, f is a Haar feature, p is a polarity that equals 1 or -1, θ is a threshold, and f(x) is how well the feature matches the image. 1 means there is a face and 0 means there is no face. A weak classier should be able to identify faces with slightly above 50% accuracy.

We want to create a **strong classifier**, basically a linear combination of the best weak classifiers which is more accurate than a single weak classifier. To do this we use Adaboost, which runs for T training rounds. For $1 \le t \le T$ we find the weak classifier which minimizes the weighted error: $\epsilon_t = \sum_i w_i |h(x_i, f_t, p_t, \theta_t) - y_i|$ where x_i, f_t, p_t minimize ϵ_t , and $y_i = 1,0$ faces and non-faces respectively. The weights w_i are updated for the next training round. We define $h_t(x) = h(x, f_t, p_t, \theta_t)$ and $\alpha_t = log\left(\frac{1-\epsilon_t}{\epsilon_t}\right)$. Our strong classifier is then: C(x) = 1 if $\sum_{t=1}^T \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^T a_t$ and t = 0 otherwise. [2]

Cascaded Classifiers

Unfortunately, evaluating a single strong classifier at every location on an image in search of a face is very inefficient, so we use a **cascaded classifier**. A cascaded classifier consists of many strong classifiers, called layers. The goal is for each layer to determine whether a sub-window is definitely not a face or maybe a face. [3] Each layer is trained to have a very high detection rate, but also a significant false positive rate.

The early layers contain only a few weak classifiers, so they are quick to evaluate. If a layer determines that a sub-window is possibly a face, it continues to the next layer. If a layer determines that a sub-window is definitely not a face, then the detector immediately proceeds to the next sub-window. So the vast majority of sub-windows are quick to evaluate.

References

- 1. Arubas, Eyal. "Face Detection and Recognition (Theory and Practice)." *Eyal's Technical Blog*. N.p., 6 Apr. 2013. Web. http://eyalarubas.com/face-detection-and-recognition.html.
- 2. Viola, Paul, and Michael J. Jones. "Robust Real-Time Face Detection." *International Journal of Computer Vision* 57.2 (2004): 137-154.
- 3. Jensen, Ole Helvig. "Implementing the Viola-Jones Face Detection Algorithm." Diss. Technical U of Denmark, 2008. Web.

Detection Results

Isabelle Stuff

More Isabelle Stuff?