Bài 3: SỰ TƯƠNG ĐỒNG VÀ CÁC KHOẢNG CÁCH (TT)

I. Mục tiêu:

Sau khi thực hành xong, sinh viên nắm được:

- Khoảng cách thay đổi
- Khoảng cách dãy con chung dài nhất
- Khoảng cách biến đổi thời gian động

II. Tóm tắt lý thuyết:

1. Khoảng cách thay đổi (Edit distance):

Khoảng cách thay đổi là số ký tự nhỏ nhất mà khi thêm vào, xóa hoặc thay thế ký tự được yêu cầu để thay đổi 1 chuỗi thành 1 chuỗi khác.

Cho 2 chuỗi $\overline{X} = (x_1 \dots x_m)$ và $\overline{Y} = (y_1 \dots y_n)$, cho $Edit(\overline{X}, \overline{Y})$ là sự thay đổi được thực thi trong chuỗi \overline{X} để biến đổi thành chuỗi \overline{Y} , I_{ij} là bộ phận chỉ nhị phân được xác định như sau

$$I_{ij} = \begin{cases} 0 & \text{n\'eu } x_i = y_i \\ 1 & \text{ngược lại} \end{cases}$$

Xét \overline{X}_i là i kí hiệu đầu tiên của \overline{X} , \overline{Y}_j là j kí hiệu đầu tiên của \overline{Y} . Chi phí thích ứng tối ưu của 2 đoạn này là Edit(i,j). Mục tiêu là để xác định phép toán gì để thực thi phần tử cuối cùng của \overline{X}_i sao cho nó hoặc là match một phần tử trong \overline{Y}_j hoặc nó bị xóa. Có 3 khả năng xuất hiện:

- Phần tử cuối cùng của \overline{X}_i bị xóa và chi phí cho điều này là [Edit(i-1,j) + Deletion Cost]. (Phần tử cuối cùng của đoạn bị chặt cụt \overline{X}_{i-1} có thể hoặc không phù hợp với phần tử cuối của \overline{Y}_j tại điểm này).
- Một phần tử được thêm vào cuối của \overline{X}_i để phù hợp với phần tử cuối của \overline{Y}_j và chi phí của điều này là $[Edit(i, j-1) + Insertion\ Cost]$.

• Phần tử cuối cùng của \overline{X}_i được lật (flip) thành phần tử của \overline{Y}_j nếu nó khác nhau và chi phí cho điều này là $[Edit(i-1,j-1)+I_{ij}\cdot(Replacement\ Cost)].$

Khi đó, việc phù hợp tối ưu được xác định bằng đệ quy như sau:

$$Edit(i, j) = \begin{cases} Edit(i - 1, j) + Deletion \ Cost \\ Edit(i, j - 1) + Insertion \ Cost \\ Edit(i - 1, j - 1) + I_{ij} \cdot (Replacement \ Cost) \end{cases}$$

Ví dụ: Cho 2 chuỗi $\overline{X} = INTENTION$ và $\overline{Y} = EXECUTION$. Chương trình quy hoạch động tính dp(n,m) (hay Edit(n,m)) theo dạng bảng

- Giải bài toán bằng việc kết hợp lời giải tới các bài toán con.
- Khởi tạo:

$$dp(i,0) = i$$

$$dp(0,j) = j$$

• Đệ quy:

For each
$$i = 1 \dots m$$

For each $j = 1 \dots n$

$$dp(i,j) = \min \begin{cases} dp(i-1,j) + 1 \\ dp(i,j-1) + 1 \\ dp(i-1,j-1) + a \end{cases}$$

với

$$a = \begin{cases} 2 & n\hat{e}u \ x_i \neq y_j \\ 0 & nquọc \ lai \end{cases}$$

• Kết thúc: dp(n,m) là khoảng cách Edit.

Tính

$$dp(1,1) = \min(dp(0,1) + 1, dp(1,0) + 1, dp(0,0) + 2) = 2$$

$$dp(1,2) = \min(dp(0,2) + 1, dp(1,1) + 1, dp(0,1) + 2) = 3$$

$$dp(1,3) = \min(dp(0,3) + 1, dp(1,2) + 1, dp(0,2) + 2) = 4$$

$$dp(1,4) = \min(dp(0,4) + 1, dp(1,3) + 1, dp(0,3) + 2) = 5$$

$$dp(1,5) = \min(dp(0,5) + 1, dp(1,4) + 1, dp(0,4) + 2) = 6$$

$$dp(1,6) = \min(dp(0,6) + 1, dp(1,5) + 1, dp(0,5) + 2) = 7$$

$$dp(1,7) = \min(dp(0,7) + 1, dp(1,6) + 1, dp(0,6) + 0) = 6$$

$$dp(1,8) = \min(dp(0,8) + 1, dp(1,7) + 1, dp(0,7) + 2) = 7$$

$$dp(1,9) = \min(dp(0,9) + 1, dp(1,8) + 1, dp(0,8) + 2) = 8$$

N	9									
О	8									
Ι	7									
Т	6									
N	5									
Е	4									
Т	3									
N	2									
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	Т	Ι	О	N

Tương tự, ta có

N	9	8	9	10	11	12	11	10	9	8
О	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
T	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
T	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	Е	X	Е	С	U	T	I	О	N

Quay lui

• Các điều kiện cơ sở:

$$dp(i,0) = i$$

$$dp(0,j) = j$$

• Đệ quy:

For each
$$i = 1 \dots m$$

For each $j = 1 \dots n$

$$dp(i,j) = \min \begin{cases} dp(i-1,j) + 1 & \text{deletion} \\ dp(i,j-1) + 1 & \text{insertion} \\ dp(i-1,j-1) + a & \text{substitution} \end{cases}$$

với

$$a = \begin{cases} 2 & n \hat{e}u \ x_i \neq y_j \\ 0 & ngược lại \end{cases}$$

$$ptr(i,j) = \begin{cases} LEFT & \text{deletion} \\ DOWN & \text{insertion} \\ DIAG & \text{substitution} \end{cases}$$

n	9	↓8	∠ ←↓9	∠ 10	∠ ↓11	∠ 12	↓ 11	↓ 10	↓9	∠8
0	8	↓ 7	∠←↓ 8	∠←↓9	∠ - ↓ 10	∠ - ↓11	↓ 10	↓9	∠8	← 9
i	7	↓6	∠←↓ 7	∠←↓8	∠←↓9	∠ - ↓ 10	↓9	∠8	← 9	← 10
t	6	↓5	∠←↓ 6	∠←↓7	∠←↓8	∠ 4	∠8	← 9	← 10	← ↓ 11
n	5	↓4	∠ 5	∠←↓ 6	∠-↓7	∠←↓ 8	∠ - ↓9	∠ - ↓ 10	∠←↓11	∠↓10
e	4	∠3	← 4	∠ ← 5	← 6	← 7	←↓ 8	∠←↓9	∠←↓ 10	↓9
t	3	∠ ↓4	∠ ← ↓ 5	∠←↓ 6	∠-↓7	∠←↓ 8	∠ 7	← ↓ 8	∠←↓9	↓8
n	2	∠ 	∠←↓4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	↓ 7	∠←↓8	∠7
i	1	∠←↓ 2	∠←↓3	∠←↓4	∠-↓5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	← 8
#	0	1	2	3	4	5	6	7	8	9
	#	e	X	e	c	u	t	i	0	n

Ta có

2. Khoảng cách dãy con chung dài nhất (Longest Common Subsequence-LCSS):

Cho 2 chuỗi $\overline{X} = (x_1 \dots x_m)$ và $\overline{Y} = (y_1 \dots y_n)$. Xét X_i là i kí hiệu đầu tiên của \overline{X} , \overline{Y}_j là j kí hiệu đầu tiên của \overline{Y} và LCSS(i,j) biểu diễn các giá trị LCSS tối ưu giữa 2 đoạn này. Mục tiêu là để phù hợp phần tử cuối của \overline{X}_i và \overline{Y}_j hoặc là để xóa phần tử cuối của một trong hai chuỗi. Hai khả năng xuất hiện:

- Phần tử cuối của \overline{X}_i phù hợp với \overline{Y}_j . Giá trị tương đồng LCSS(i,j) có thể được biểu diễn đệ quyLCSS(i-1,j-1).
- Phần tử cuối không phù hợp. Trong trường hợp này, phần tử cuối của 1 trong 2 chuỗi cần được xóa. Giá trị của LCSS(i,j) hoặc là LCSS(i,j-1) hoặc LCSS(i-1,j) phụ thuộc vào chuỗi được chọn để xóa.

Khi đó, LCSS(i,j) được xác định như sau:

$$LCSS(i,j) = \max \begin{cases} LCSS(i-1,j-1) & \textit{if} \quad x_i = y_i \\ LCSS(i-1,j) & \textit{otherwise (no match on } x_i) \\ LCSS(i,j-1) & \textit{otherwise (no match on } y_i) \end{cases}$$

Ví dụ: Cho 2 chuỗi x = ACADB và y = CBDA, sử dụng chương trình động để tìm LCSS của 2 chuỗi.

```
X and Y be two given sequences
Initialize a table LCS of dimension X.length * Y.length
X.label = X
Y.label = Y
LCS[0][] = 0
LCS[][0] = 0
Start from LCS[1][1]
Compare X[i] and Y[j]
    If X[i] = Y[j]
    LCS[i][j] = 1 + LCS[i-1, j-1]
    Point an arrow to LCS[i][j]
Else
    LCS[i][j] = max(LCS[i-1][j], LCS[i][j-1])
    Point an arrow to max(LCS[i-1][j], LCS[i][j-1])
```

- Khởi tạo bảng $(m+1) \times (n+1)$ chiều với m,n tương ứng là chiều dài của chuỗi \overline{X} và chuỗi \overline{Y} . Dòng đầu tiên và cột đầu tiên được điền vào các số 0.

		С	В	D	A
	0	0	0	0	0
A	0				
С	0				
A	0				
D	0				
В	0				

- Điền vào mỗi ô của bảng sử dụng: Nếu ký tự tương ứng với dòng hiện tại và cột hiện tại đang phù hợp thì điền ô hiện tại bằng việc cộng thêm 1 thành phần tử đường chéo. Chỉ mũi tên tới ô đường chéo. Ngược lại lấy giá trị lớn nhất từ phần tử cột trước và dòng trước cho việc điền vào ô hiện tại. Chỉ mũi tên tới ô với giá trị lớn nhất. Nếu chúng bằng nhau thì vẽ tới giá trị bất kỳ của chúng.

		C	В	D	A
	0	0	0	0	0
A	0	0	0	0	1
С	0				
A	0				
D	0				
В	0				

- Lặp lại bước trên cho tới khi bảng được điền vào đầy đủ

		С	В	D	A
	0	0	Q	0	0
A	0	0	0	0	1
С	0	1	-1 ◆	-1	1
A	0	1	$\stackrel{1}{\underset{\blacktriangle}{}}$	1	2
D	0	1	1	2	$\frac{1}{2}$
В	0	1	2	$\overset{\perp}{2}$	$\stackrel{\mid}{2}$

- Giá trị nằm trong dòng cuối và cột cuối là chiều dài của LCSS.

		\mathbf{C}	В	D	A
	0	0	Q	0	0
A	0	0	0	0	1
С	0	1	-1 ◆	-1	1
A	0	1	1	1	2
D	0	1	1	2	$\frac{1}{2}$
В	0	1	2	2	2

- Để tìm LCSS, ta bắt đầu từ phần tử cuối và theo hướng của mũi tên

- Do đó, LCSS là CA

3. Khoảng cách biến đổi thời gian động (Dynamic Time Warping - DTW):

DTW kéo dãn chuỗi thời gian theo chiều thời gian một cách linh động tại mỗi vị trí. DTW xác định được khoảng cách giữa 2 chuỗi có chiều dài khác nhau. Xét metric Manhattan L_1 , $M(\overline{X_i}, \overline{Y_i})$ được xác định như sau:

$$M(\overline{X_i}, \overline{Y_i}) = |x_i - y_i| + M(\overline{X_{i-1}}, \overline{Y_{i-1}})$$

Xét DTW(i,j) là khoảng cách tối ưu giữa i phần tử đầu tiên của chuỗi $(x_1 \dots x_m)$ và j phần tử đầu tiên của chuỗi $(y_1 \dots y_n)$. Khi đó, DTW(i,j) được xác định như sau:

$$DTW(i,j) = distance(x_i,y_j) + \min \begin{cases} DTW(i,j-1) & repeat \ x_i \\ DTW(i-1,j) & repeat \ y_j \\ DTW(i-1,j-1) & repeat \ neither \end{cases}$$

Ví dụ: Cho 2 chuỗi thời gian A và B

Time	Series_1	Series_2
1	1	1
2	7	2
3	4	8
4	8	5
5	2	5
6	9	1
7	6	9
8	5	4
9	2	6
10	0	5

- Khởi tạo ma trận chi phí rỗng

- Tính chi phí: sử dụng công thức

$$DTW(i,j) = distance(x_i, y_j) + \min \begin{cases} DTW(i, j-1) & repeat \ x_i \\ DTW(i-1, j) & repeat \ y_j \\ DTW(i-1, j-1) & repeat \ neither \end{cases}$$

với $distance(A_i, B_j) = |A_i - B_j|.$

Ta tính:

$$DTW(1,1) = |1-1| = 0$$

$$DTW(1,2) = |1-2| + \min(0) = 1$$

$$DTW(1,3) = |1-8| + \min(1) = 8$$

$$DTW(1,4) = |1-5| + \min(8) = 12$$

$$DTW(1,5) = |1-5| + \min(12) = 16$$

$$DTW(1,6) = |1-1| + \min(16) = 16$$

$$DTW(1,7) = |1-9| + \min(16) = 24$$

$$DTW(1,8) = |1-4| + \min(24) = 27$$

$$DTW(1,9) = |1-6| + \min(27) = 32$$

$$DTW(1,10) = |1-5| + \min(32) = 36$$

$$DTW(2,1) = |7-1| + \min(0) = 6$$

$$DTW(3,1) = |4-1| + \min(6) = 9$$

$$DTW(4,1) = |8-1| + \min(9) = 16$$

$$DTW(5,1) = |2-1| + \min(16) = 17$$

$$DTW(6,1) = |9-1| + \min(17) = 25$$

$$DTW(7,1) = |6-1| + \min(25) = 30$$

$$DTW(8,1) = |5-1| + \min(30) = 34$$

$$DTW(9,1) = |2-1| + \min(34) = 35$$

$$DTW(10,1) = |0-1| + \min(35) = 36$$

$$DTW(2,2) = |7-2| + \min(0,1,6) = 5$$

. . .

- Tương tự, ta điền đầy đủ vào bảng

- Sự đồng nhất đường đi wraping: bắt đầu từ ở góc phải phía trên của ma trận và đi ngang qua bên trái ở phía dưới. Đường đi ngang qua được dựa vào láng giềng với giá trị nhỏ nhất. Ví dụ: bắt đầu với 17 và tìm giá trị nhỏ nhất giữa 18, 14 và 12.

	♦ 0	36	29	32	22	22	16	24	16	18	17	Min(18, 14, 12)
	2	35	27	24	17	17	15	21	12	14	12	(10, 11, 12)
	5	34	27	18	14	14	18	14	10	10	9	
	6	30	24	15	14	14	18	10	9	9	10	
	9	25	20	13	13	13	15	7	12	13	17	
Α	2	17	13	12	9	9	7	14	10	14	17	
	8	16	13	6	6	6	11	8	12	14	17	
	4	9	7	6	3	4	7	12	12	14	15	
	7	6	5	2	4	6	12	14	17	18	20	
	1	0	1	8	12	16	16	24	27	32	36	
	_	1	2	8	5	5	1	9	4	6	5	
											_	
						В						
	A	36	5 29	32	22	22	16	24	4 16	18	17	
		2 3	5 27	7 24	17	17	15	2	1 12	14	12	Min(14, 10, 9)
		5 34	4 27	18	14	14	18	14	4 10	10	9	
		30	24	15	14	14	18	10	9	9	10	
Α		9 2	5 20	13	13	13	15	7	7 12	13	17	
$\overline{}$		17	7 13	12	9	9	7	14	4 10	14	17	
		16	5 13	6	6	6	11	1	8 12	14	17	
	1	4 9	9 7	7 6	3	4	7	12	2 12	14	15	
		7 (6 5	5 2	4	6	12	14	4 17	18	3 20	
		1 (0 1	1 8	12	16	16	24	4 27	32	36	
	٠.		1 2	8	5	5	1	9	9 4		5	
						В					—	

- Số tiếp theo trong đường đi là 9. Quá trình này tiếp tục cho tới chúng ta đi tới phía dưới bên trái của bảng.

- Đường đi cuối cùng

- Khi đó chuỗi đường đi wraping là [17, 12, 9, 9, 9, 7, 7, 6, 3, 2, 1, 0].

III. Nội dung thực hành:

1. Viết chương trình tính khoảng cách edit

```
def find minimum edit distance(source string, target string) :
    # Create a dp matrix of dimension (source_string + 1) x (destination_matrix + 1)
    dp = [[0] * (len(source_string) + 1) for i in range(len(target_string) + 1)]
    # Initialize the required values of the matrix
    for i in range(1, len(target_string) + 1) :
        dp[i][0] = dp[i - 1][0] + 1
    for i in range(1, len(source_string) + 1) :
    dp[0][i] = dp[0][i - 1] + 1
    # Maintain the record of opertions done
    # Record is one tuple. Eg : (INSERT, 'a') or (SUBSTITUTE, 'e', 'r') or (DELETE, 'j')
    operations performed = []
    # Build the matrix following the algorithm
    for i in range(1, len(target_string) + 1) :
        for j in range(1, len(source_string) + 1) :
    if source_string[j - 1] == target_string[i - 1] :
                dp[i][j] = dp[i - 1][j - 1]
            else :
                dp[i][j] = min(dp[i-1][j] + 1, dp[i-1][j-1] + 2,
                                  dp[i][j-1]+1)
    # Initialization for backtracking
    i = len(target string)
    j = len(source string)
    # Backtrack to record the operation performed
    while (i != 0 and j != 0) :
        # If the character of the source string is equal to
        #the character of the destination string,
        # no operation is performed
        if target_string[i - 1] == source_string[j - 1] :
            i -= 1
            j -= 1
        else :
            # Check if the current element is derived from the upper-left diagonal element
            if dp[i][j] == dp[i - 1][j - 1] + 2:
                 operations_performed.append(('SUBSTITUTE',
                                                source string[j - 1], target string[i - 1]))
```

```
i -= 1
           j -= 1
        else :
           # Check if the current element is derived from the upper-left diagonal element
            if dp[i][j] == dp[i - 1][j - 1] + 2:
               operations_performed.append(('SUBSTITUTE',
                                             source_string[j - 1], target_string[i - 1]))
               j -= 1
            # Check if the current element is derived from the upper element
           elif dp[i][j] == dp[i - 1][j] + 1:
               operations_performed.append(('INSERT', target_string[i - 1]))
            # Check if the current element is derived from the left element
           else :
               operations_performed.append(('DELETE', source_string[j - 1]))
    # If we reach top-most row of the matrix
   while (j != 0):
       operations performed.append(('DELETE', source string[j - 1]))
    # If we reach left-most column of the matrix
   while (i != 0):
        operations_performed.append(('INSERT', target_string[i - 1]))
    # Reverse the list of operations performed as we have operations in reverse
    # order because of backtracking
   operations_performed.reverse()
    return [dp[len(target_string)][len(source_string)], operations_performed]
if __name__ == "__main__":
    # Get the source and target string
   print ("Enter the source string:")
   source_string = input().strip()
   print("Enter the target string :")
    target_string = input().strip()
```

```
# Find the minimum edit distance and the operation performed
distance, operations performed = find minimum edit distance(source string, target string
# Count the number of individual operations
insertions, deletions, substitutions = 0, 0, 0
for i in operations_performed :
    if i[0] == 'INSERT' :
         insertions += 1
    elif i[0] == 'DELETE' :
         deletions += 1
    else :
         substitutions += 1
# Print the results
print("Minimum edit distance : {}".format(distance))
print("Number of insertions : {}".format(insertions))
print("Number of deletions : {}".format(deletions))
print("Number of substitutions : {}".format(substitutions))
print("Total number of operations : {}".format(insertions +
                                                     deletions + substitutions))
print("Actual Operations :")
for i in range(len(operations performed)) :
    if operations_performed[i][0] == 'INSERT' :
         print("{}) {} : {}".format(i + 1, operations performed[i][0],
    operations_performed[i][1]))
elif operations_performed[i][0] == 'DELETE':
         print("{}) {}: {}".format(i + 1, operations performed[i][0],
                                       operations_performed[i][1]))
         print("{}) {} : {} by {} ".format(i + 1, operations_performed[i][0],
                                              operations_performed[i][1],
                                              operations_performed[i][2]))
```

- 2. Viết chương trình tính khoảng cách dãy con chung dài nhất
- 3. Viết chương trình tính khoảng cách biến đổi thời gian động
- 4. Yêu cầu:
 - Cài đặt và thực thi mục 1 trên máy tính.
 - Làm bài tương tự ở mục 2 và mục 3.
 - Viết file báo cáo trình bày tóm lượt lại phần code em đã làm trong mục 2 và 3.