732A96/TDDE15 Advanced Machine Learning Graphical Models and Hidden Markov Models

Jose M. Peña IDA, Linköping University, Sweden

Lecture 3: Parameter Learning

Contents

- Parameter Learning for BNs
 - Maximum Likelihood
 - Expectation Maximization Algorithm
- Parameter Learning for MNs
 - Iterative Proportional Fitting Procedure

Literature

- Main source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. Chapters 8 and 9.
- Additional source
 - Koski, T. J. T. and Noble, J. M. A Review of Bayesian Networks and Structure Learning. Mathematica Applicanda 40, 51-103, 2012.

Parameter Learning for BNs: Maximum Likelihood

• Given a sample $d_{1:N}$, the log likelihood function is

$$\log p(d_{1:N}|\theta_G,G) = \log \left[\prod_{I} p(d_I|\theta_G,G)\right] = \log \left[\prod_{I} \prod_{i} p(d_I[X_i]|d_I[pa_G(X_i)],\theta_G)\right]$$

$$\begin{split} &= \log \big[\prod_{I} \prod_{i} \theta_{X_i = d_I[X_i] \mid pa_G(X_i) = d_I[pa_G(X_i)]} \big] = \log \big[\prod_{i} \prod_{j} \prod_{k} \theta_{X_i = k \mid pa_G(X_i) = j}^{N_{ijk}} \big] \\ &= \sum_{i} \sum_{i} \sum_{k} N_{ijk} \log \theta_{X_i = k \mid pa_G(X_i) = j} \end{split}$$

where N_{ijk} is the number of instances in $d_{1:N}$ with $X_i = k$ and $pa_G(X_i) = j$.

▶ To maximize the log likelihood function subject to the constraint $\sum_k \theta_{X_i=k|pa_G(X_i)=j} = 1$ for all i and j, we maximize

$$\sum_{i} \sum_{j} \sum_{k} N_{ijk} \log \theta_{X_i = k \mid pa_G(X_i) = j} + \sum_{i} \sum_{j} \lambda_{ij} \left(\sum_{k} \theta_{X_i = k \mid pa_G(X_i) = j} - 1 \right)$$

where λ_{ii} are called Lagrange multipliers.¹

▶ Setting to zero the derivative with respect to $\theta_{X_i=k|pa_G(X_i)=j}$ gives

$$\theta_{X_i=k|pa_G(X_i)=j} = -N_{ijk}/\lambda_{ij}$$

▶ Replacing in the constraint gives $\lambda_{ij} = -N_{ij}$ and $\theta_{X_i=k|pac(X_i)=j}^{ML} = N_{ijk}/N_{ij}$.

¹Any stationary point of the Lagrangian function is a stationary point of the original function subject to the constraints. Moreover, the log likelihood function is concave.

- Let d_{1:N} be an incomplete sample, i.e. d_i[X_i] =? for some i and I. Let o_{1:N} denote the observed part of d_{1:N}, and u_{1:N} the unobserved part.
- ▶ The log likelihood function over $o_{1:N}$ is

$$\log p(o_{1:N}|\theta_{G},G) = \log \prod_{l} \sum_{u_{l}} p(o_{l},u_{l}|\theta_{G},G) = \sum_{l} \log \sum_{u_{l}} p(o_{l},u_{l}|\theta_{G},G)$$

▶ To maximize it subject to the constraint $\sum_k \theta_{X_i=k|pa_G(X_i)=j} = 1$ for all i and j, we maximize

$$\sum_{l} \log \sum_{u_l} p(o_l, u_l | \theta_G, G) + \sum_{i} \sum_{j} \lambda_{ij} \left(\sum_{k} \theta_{X_i = k | p a_G(X_i) = j} - 1 \right)$$

Its derivative with respect to $\theta_{X_i=k|pa_G(X_i)=j}$ is

$$\sum_{l} \frac{\sum_{u_{l}:c_{l}[X_{i}]=k,c_{l}[pa_{G}(X_{i})]=j} \prod_{i'} \theta_{X_{i'}=c_{l}[X_{i'}]|pa_{G}(X_{i'})=c_{l}[pa_{G}(X_{i'})]}}{\theta_{X_{i}=k|pa_{G}(X_{i})=j} \sum_{u_{l}} p(o_{l},u_{l}|\theta_{G},G)} + \lambda_{ij}$$

$$=\sum_{l}\sum_{u_l:c_l[X_i]=k,c_l[pa_G(X_i)]=j}\frac{p(u_l|o_l,\theta_G,G)}{\theta_{X_i=k|pa_G(X_i)=j}}+\lambda_{ij}=M_{ijk}/\theta_{X_i=k|pa_G(X_i)=j}+\lambda_{ij}$$

where $c_l = \{o_l, u_l\}$ and $M_{ijk} = \sum_l \sum_{u_l: c_l \lceil X_i \rceil = k, c_l \lceil pa_G(X_i) \rceil = i} p(u_l | o_l, \theta_G, G)$.

▶ Setting the derivative to zero gives

$$\theta_{X_i=k|pac(X_i)=i} = -M_{ijk}/\lambda_{ij}$$

Replacing this into the constraint gives $\lambda_{ij} = -M_{ij}$ and, thus, $\theta_{X_i=k|pa_G(X_i)=j}^{ML} = M_{ijk}/M_{ij}$. No closed form solution but it suggests ...

- ▶ The EM algorithm increases $\log p(o_{1:N}|\theta_G,G)$ in each iteration. So, it is locally but not necessarily globally optimal.
- ▶ Note that computing $p(U_I|o_I, \theta_G, G)$ requires inference.

- As shown before, maximizing the log likelihood function over O is inefficient as no closed form solution exists.
- Moreover, it is ineffective due to multimodality, i.e. each completion of the data defines a unimodal function but their sum may be multimodal.
- Consider instead maximizing its expectation

$$\begin{split} & \mathrm{E}_{U_{1:N}}[\log p(o_{1:N}, U_{1:N} | \theta_G, G)] = \sum_{l} \sum_{u_l} p(u_l | o_l, \theta_G, G) \log p(o_l, u_l | \theta_G, G) \\ & = \sum_{l} \sum_{u_l} p(u_l | o_l, \theta_G, G) \sum_{i} \log \theta_{X_i = c_l[X_i] | pa_G(X_i) = c_l[pa_G(X_i)]} \end{split}$$

where $c_l = \{o_l, u_l\}$. Then

$$\mathbb{E}_{U_{1:N}}[\log p(o_{1:N}, U_{1:N} | \theta_G, G)] = \sum_i \sum_j \sum_k M_{ijk} \log \theta_{X_i = k | pa_G(X_i) = j}$$

where $M_{ijk} = \sum_{l} \sum_{u_l:c_l \lceil X_i \rceil = k, c_l \lceil pa_G(X_i) \rceil = j} p(u_l | o_l, \theta_G, G)$.

▶ Then, $\theta_{X_i=k|pa_G(X_i)=j}^{ML} = M_{ijk}/M_{ij}$. No closed form solution but it suggests the EM algorithm too.

▶ Another way to motivate the EM algorithm is as follows:

$$\log p(o_{1:N}|\theta_G,G) = L(q,\theta_G) + KL(q||p)$$

where

- $L(q, \theta_G) = \sum_{u_{1:N}} q(u_{1:N}) \log \left[p(o_{1:N}, u_{1:N} | \theta_G, G) / q(u_{1:N}) \right]$
- $KL(q||p) = -\sum_{u_{1:N}} q(u_{1:N}) \log \left[p(u_{1:N}|o_{1:N},\theta_G,G)/q(u_{1:N}) \right]$
- $q(U_{1:N})$ is a probability distribution.
- ▶ To see it, note that $L(q, \theta_G)$

$$= \sum_{u_{1:N}} q(u_{1:N}) [\log p(u_{1:N}|o_{1:N},\theta_G,G) + \log p(o_{1:N}|\theta_G,G)] - \sum_{u_{1:N}} q(u_{1:N}) \log q(u_{1:N})$$

$$= \log p(o_{1:N}|\theta_G, G) + \sum_{u_{1:N}} q(u_{1:N}) \log p(u_{1:N}|o_{1:N}, \theta_G, G) - \sum_{u_{1:N}} q(u_{1:N}) \log q(u_{1:N})$$

$$= \log p(o_{1:N}|\theta_G, G) - KL(q||p)$$

- ▶ Note that $KL(q||p) \ge 0$ and, thus, $\log p(o_{1:N}|\theta_G, G) \ge L(q, \theta_G)$ for any $q(U_{1:N})$.
- ► E step: Maximize the lower bound $L(q, \theta_G)$ by setting $q(U_{1:N}) = p(U_{1:N}|o_{1:N}, \theta_G, G)$, since then KL(q||p) = 0.
- Note that now $L(q, \theta_G) = \mathbb{E}_{U_{1:N}}[\log p(o_{1:N}, U_{1:N}|\theta_G, G)] + constant.$
- ▶ M step: Maximize the lower bound $L(q, \theta_G)$ with respect to θ_G .
- ▶ The last step may introduce a non-zero KL(q||p), resulting in an iterative process: The EM algorithm.

Parameter Learning for MNs: Iterative Proportional Fitting Procedure

• Given a complete sample $d_{1:N}$, the log likelihood function is

$$\log p(d_{1:N}|\theta_G, G) = \sum_{K \in CI(G)} \sum_k N_k \log \varphi(k) - N \log Z$$

where N_K is the number of instances in $d_{1:N}$ with K = k. Then

$$\log p(d_{1:N}|\theta_G, G)/N = \sum_{K \in Cl(G)} \sum_k p_e(k) \log \varphi(k) - \log Z$$

where $p_e(X)$ is the empirical probability distribution obtained from $d_{1:N}$.

▶ Let $Q \in Cl(G)$. The derivative with respect to $\varphi(q)$ is

$$\frac{\partial \log p(d_{1:N}|\theta_G,G)/N}{\partial \varphi(q)} = \frac{p_e(q)}{\varphi(q)} - \frac{1}{Z} \frac{\partial Z}{\partial \varphi(q)}$$

▶ Let $Y = X \setminus Q$. Then

$$\frac{\partial Z}{\partial \varphi(q)} = \sum_{y} \prod_{K \in Cl(G) \setminus Q} \varphi(k, \overline{k}) = \frac{Z}{\varphi(q)} \sum_{y} \prod_{K \in Cl(G) \setminus Q} \varphi(k, \overline{k}) \frac{\varphi(q)}{Z} = \frac{Z}{\varphi(q)} p(q | \theta_G, G)$$

where \overline{k} denotes the elements of q corresponding to the elements of $K \cap Q$.

Putting together the results above, we have that

$$\frac{\partial \log p(d_{1:N}|\theta_G,G)/N}{\partial \varphi(q)} = \frac{p_e(q)}{\varphi(q)} - \frac{p(q|\theta_G,G)}{\varphi(q)}$$

Parameter Learning for MNs: Iterative Proportional Fitting Procedure

Setting the derivative to zero gives ²

$$\varphi^{ML}(q) = \varphi(q)p_e(q)/p(q|\theta_G,G)$$

No closed form solution but ...

```
IPFP

Initialize \varphi(K) for all K \in Cl(G)

Repeat until convergence

Set \varphi(K) = \varphi(K)p_e(K)/p(K|\theta_G,G) for all K \in Cl(G)
```

- ▶ IPFP increases $\log p(d_{1:N}|\theta_G,G)$ in each iteration. So, it is globally optimal.
- Iterative coordinate ascend method.
- Note that computing p(K|θ_G, G) in the last line requires inference. Moreover, the multiplication and division are elementwise.
- Note also that Z needs to be computed in each iteration, which is computationally hard. This can be avoided by a careful initialization.

²The log likelihood function is concave.

Contents

- Parameter Learning for BNs
 - Maximum Likelihood
 - Expectation Maximization Algorithm
- Parameter Learning for MNs
 - ▶ Iterative Proportional Fitting Procedure

Thank you