Using Advanced Time Series Models

Advanced Models

Identifying patterns

- Capturing patterns
- Putting info into equations

Library 'forecast'

ARIMA model

Exponential smoothing

Summary

Demo

Theory of univariate ARIMA models

Example of usage

A framework developed by George Box and Gwilym Jenkins

Autoregressive Integrated Moving Average

 Autoregressive term - 'p' Integration/ differencing - 'd' MA Moving average - 'q'

Stationarity

ARIMA(p, d, q)

Non-stationary time series gets differenced ('d') before 'p' and 'q' get specified

ARMA(p, q)

With stationary time series the autoregressive ('p') and moving average ('q') terms get ordered without differencing

ARIMA Functions in R

arima()

- R Base
- Parameters need to be calculated with functions acf() and pacf()

auto.arima()

- Library(forecast)
- Calculates the parameters and does the differencing automatically

Variations of the Model

AR(1) - ARIMA(1, 0, 0)

Autoregressive model ('p' only)

MA(1) - ARIMA(0, 0, 1)

Moving average model ('q' only)

What Do the Parameters Do?

Summation of lags – AR
$$Y_t = c + \varphi_1 * y_{t-1} + \varphi_2 * y_{t-2} + \dots + \varphi_p * y_{t-p}$$

Degree of differencing – I

Summation of forecast error terms – MA
$$Y_t = c + \vartheta_1 * e_{t-1} + \vartheta_2 * e_{t-2} + \dots + \vartheta_q * e_{t-q}$$

How to Calculate an AR Model

Coefficients:

$$Y_t = \mathbf{c} + \mathbf{\varphi}_1 * y_{t-1}$$

Coefficients:

$$Y_t = c + \varphi_1 * y_{t-1} + \varphi_2 * y_{t-2} + \varphi_3 * y_{t-3} + \varphi_4 * y_{t-4}$$

How to Calculate an ARMA Model

$$Y_t = c + \varphi_1 * y_{t-1} + \vartheta_1 * e_{t-1}$$

ARIMA(0, 1, 0)

Drift: $c = Y_t - Y_{t-1}$

No drift: $Y_t = Y_{t-1}$

Demo

ARIMA models in practice

Dataset: 'lynx'

Terms to be familiar with:

- Stationarity
- Autoregression

What to Expect from 'lynx'?

Autocorrelation is clear

It might be stationary

There might be forecasting errors

ACF and PACF Plots of 'lynx'

How to Get the Best Model for the Data?

Several model options

Find the best suited one

- Smallest number of orders
- Smallest information criteria (AIC, AICc, BIC)
- Zero mean or non-zero mean

Calculating the ARIMA Model

```
Series: lynx
ARIMA(2,0,2) with non-zero mean
Coefficients:
                 ar2
                          ma1
                                             mean
             -0.6738 -0.2027
                                -0.2564 1544.4039
     1.3421
s.e. 0.0984
              0.0801
                       0.1261
                                0.1097
                                          131.9242
sigma^2 estimated as 761965: log likelihood=-932.08
AIC=1876.17
             AICc=1876.95
                            BIC=1892.58
```

$$Y_t = 1554.4 + 1.3421 * Y_{t-1} +$$

+ $(-0.6738) * Y_{t-2} +$
+ $(-0.2027) * e_{t-1} +$
+ $(-0.2564) * e_{t-2}$

Choosing a model is up to the analyst

- Dataset
- Surrounding factors

Literature of your field

- Best practices
- Conventions

Demo

Exponential smoothing

Time series data modeling

R implementation

Parameters of Exponential Smoothing

Error

Additive or multiplicative (if $x \in R^+$)

Trend

Non-present, additive or multiplicative

Seasonality

Non-present, additive or multiplicative

Parameter Operators

A Summation of components

Multiplication of components

Components are omitted

Example Model

What Exponential Smoothing Does

R Implementation

Library(forecast)

Function ets()

Automatically selects the optimal model for the data

Smoothing coefficients

Manage weighting

- Recent data → reactive model (~1)
- Whole data → smooth curves (~0)

Coefficients:

- α : Initial level

- β : Trend

- γ : Seasonality

Exponential Smoothing Functions in R

Function ses()
Simple exponential smoothing

Function holt()
Trend methods

Function hw()
Holt-Winters seasonal
methods

Function ets()
Selects the optimal model

The 'model=' Argument of 'ets()'

Further Arguments of 'ets()'

'beta=' 'alpha=' 'gamma=' 'lower=' 'upper='

```
plot(
    nottem, lwd = 3),
lines(
    etsmodel$fitted,
    col = "red")
```

- Comparing the model to the original data
- ◆ Plots 'nottem'
- **◄ Linewidth: 3px**
- Adds an extra line to above plot
- Values: fitted values of 'etsmodel'
- Line colour: red

Comparing the Models

nottem Time

Model 'ANA'

Model 'MNM'

R Implementation

Library(forecast)

Function ets()

Automatically selects the optimal model for the data

Share Your Thoughts with Us

Questions

Use the discussion board to ask questions and leave comments

Rating

Please rate this course and give some feedback

Course Layout

Module: Traits of Time Series Data

Time Series Vectors (Lags)

Terminology
Stats Background

Time Series Patterns

Time Series Visualizations

Main Concepts

Autocorrelation - Correlation within the dataset

O—O Stationarity – Constant mean and variance

 \bigcirc \rightarrow \bigcirc Differencing – The difference between two consecutive observations

Module: Using Simple Time Series Models

Module: Using Advanced Time Series Models

Simple or Advanced Techniques?

Advanced Techniques

Pattern in the data

Simple Techniques

No pattern is present

Congratulations! You have finished this course

Implement these tools and techniques in your daily work

Don't forget to update your portfolio/CV