Exercice 1:

Soit $n \in \mathbb{N}^*$.

1. Soit F et G deux sous-espaces vectoriels de \mathbb{K}^n . Soit $\mathcal{B} = (\overrightarrow{b_1}, \dots, \overrightarrow{b_p})$ une base de F et $\mathcal{C} = (\overrightarrow{c_1}, \dots, \overrightarrow{c_q})$ une base de G.

On note F+G l'ensemble $\{\overrightarrow{x}+\overrightarrow{y}; (\overrightarrow{x}, \overrightarrow{y}) \in F \times G\}$ et $\mathcal{B} \cup \mathcal{C}$ la famille de vecteurs $(\overrightarrow{b_1}, \dots, \overrightarrow{b_p}, \overrightarrow{c_1}, \dots, \overrightarrow{c_q})$.

- 2. (a) Montrer que F + G est un sous-espace vectoriel de \mathbb{K}^n .
 - (b) Montrer que $\mathcal{B} \cup \mathcal{C}$ est génératrice de F + G.
 - (c) On suppose ici : $F \cap G = \{\overrightarrow{0}\}$.
 - i. Montrer que la famille $\mathcal{B} \cup \mathcal{C}$ est libre. Que peut-on en déduire sur la famille $\mathcal{B} \cup \mathcal{C}$?
 - ii. En déduire que $\dim(F+G) = \dim F + \dim G$.
- 3. On suppose ici $n=3,\,F=\{(x,y,z)\in\mathbb{K}^3,\,x=y=z\}$ et $G=\{(x,y,z)\in\mathbb{K}^3,\,x+y+z=0\}.$
 - (a) Déterminer $F \cap G$.
 - (b) Déterminer une base de F et une base de G.
 - (c) Soit $\overrightarrow{u} \in \mathbb{K}^3$ où $\overrightarrow{u} = (x, y, z)$. Déterminer deux vecteurs \overrightarrow{v} et \overrightarrow{w} tels que $(\overrightarrow{v}, \overrightarrow{w}) \in F \times G$ et $\overrightarrow{u} = \overrightarrow{v} + \overrightarrow{w}$.

Exercice 2 : Exercices en vrac (les questions 1, 2 et 3 sont indépendantes)

- 1. Déterminer le ou les couples de réels (a, b) tels que la famille ((1, 2, 3, 4), (2, 3, 4, 5), (3, 4, a, b)) soit une famille liée de \mathbb{R}^4 .
- 2. Soit $(\overrightarrow{e_1}, \dots, \overrightarrow{e_p})$ une famille libre de \mathbb{K}^n (où $n \in \mathbb{N}^*$). On pose $\overrightarrow{u} = \sum_{j=1}^p \lambda_j \overrightarrow{e_j}$ et, pour tout $i \in [1, p]$, $\overrightarrow{v_i} = \overrightarrow{u} + \overrightarrow{e_i}$.

On suppose que $(\mu_1, \ldots, \mu_p) \in \mathbb{K}^p$ est tel que $\sum_{i=1}^p \mu_i \overrightarrow{v_i} = \overrightarrow{0}$.

- (a) Justifier que : $\forall i \in [1, p], \ \mu_i + \left(\sum_{j=1}^p \mu_j\right) \lambda_i = 0.$
- (b) En déduire que $\sum_{j=1}^{p} \mu_j = 0 \Leftrightarrow \forall i \in [1, p], \ \mu_i = 0$ et également que $\left(\sum_{j=1}^{p} \mu_j\right) \times \left(1 + \sum_{i=1}^{p} \lambda_i\right) = 0$.
- (c) En déduire que la famille $(\overrightarrow{v_1}, \dots, \overrightarrow{v_p})$ est liée si et seulement si $\sum_{j=1}^p \lambda_j = -1$.
- 3. Déterminer une base et la dimension du sous-espace vectoriel G de \mathbb{R}^4 défini par

$$G = \left\{ (x, y, z, t) \in \mathbb{R}^4, \ \left\{ \begin{array}{l} x - y + 2z + t = 0 \\ x + y - z - t = 0 \end{array} \right\}.$$

Exercice 3:

On considère le sous-espace vectoriel de \mathbb{R}^4 défini par : W = Vect((1,3,1,1),(-2,-2,5,1),(-2,6,19,a))

- 1. Calculer $\dim W$ en fonction de a.
- 2. On suppose désormais (et pour les questions qui suivent) que la valeur de a est telle que dim W est minimal. Déterminer une base de W.
- 3. Donner un système d'équations cartésiennes de W.
- 4. En déduire que $\overrightarrow{u} = (0, 4, 7, 3)$ et $\overrightarrow{v} = (3, 5, -4, 0)$ sont des vecteurs de W. La famille $(\overrightarrow{u}, \overrightarrow{v})$ est-elle une base de W?
- 5. Compléter la famille $(\overrightarrow{u}, \overrightarrow{v})$ en une base de \mathbb{R}^4 (c'est-à-dire : trouver \overrightarrow{x} et \overrightarrow{y} dans \mathbb{R}^4 tels que $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{x}, \overrightarrow{y})$ est une base de \mathbb{R}^4).