Morfologia matematica (alcune note)

Richiamiamo: traslazione

- A \subseteq Zⁿ, t \in Zⁿ
- Traslazione di A rispetto ad un vettore t A₁ = { c∈Zⁿ | c=a+t, a∈A }

- $A^r = \{ c \mid c=-a, a \in A \}$
- Complemento di A $A^c = Z^n - A$

Nota: consideriamo per semplicità

L'intero piano «tassellato», nelle applicazioni regione limitata

Somma di Minkowski (Dilation)

- $A \oplus B = \{ c \in Z^n \mid c=a+b, a \in A, b \in B \}$
- $A \oplus B = U A_b$, $b \in B$
 - Si dimostra facilmente: $A \oplus B = B \oplus A$

Dilation

L'insieme B viene normalmente definito elemento strutturante

Possibile implementazione

Posso codificare le traslazioni, attenzione se il valore centrale è 0 si perde la trslazione (0,0) ovvero la copia dell'immagine originale nella dilatazione.

	1	1	1	
		1	1	
		1	1	

Immagine I (binaria 0/1)

	1	
1	1	1
	1	

Elemento Strutturante B

Considero solo i valori uguali ad 1 e sommo la matrice B centrata in questi valori in una matrice inizialmente nulla

	a .							1			
×		1	1	1		合	1	1	1		
			1	1		7		1	Î		
			1	1					ē		
									3		

							1	1		
	1	1	1			1	2	2	1	
		1	1				1	1		
		1	1					8		

							1	1	1		
	1	1	1		合	1	2	3	2	1	
		1	1				1	1	1		
		1	1					8			

							1	1	1		
	1	1	1		合	1	2	4	2	1	
		1	1		7		2	2	2		
		1	1					1			
								,			

							1	1	1		
	1	1	1		合	1	2	4	3	1	
		1	1		7		2	3	3	1	
		1	1					1	1		
								3			

							1	1	1		
	1	1	1		合	1	2	4	3	1	
		1	1		7		2	4	3	1	
		1	1				1	2	2		
		2						1			

							1	1	1		
·	1	1	1		合	1	2	4	3	1	
		1	1		7		2	4	4	1	
		1	1				1	3	3	1	
		2						1	1		

								1	1	1		
	1	1	1		⇧		1	1	1	1	1	
		1	1		7			1	1	1	1	
		1	1					1	1	1	1	
						81	8		1	1		
					,	X			>0),	82

Erosione (Differenza di Minkowski)

- $A \ominus B = \{ c \in Z^n \mid c+b \in A, per ogni b \in B \}$
- $A \ominus B = \bigcap A_{-b} b \in B$

Posso implementare come dilatazione ma prima faccio riflessione per la matrice B: in questo modo tralso con –B (in Matlab significa riodinare righe e colonne come per la convoluzione).

Al termine considero solo i valori uguali al numero di non zero All'interno di B: ovvero quelli che sono nell'intersezione.

NOTA: nel caso di elemento strutturante simmetrico l'operazione iniziale di riordinamento non cambia B.

Proprietà

$$(A+B)+C=A+(B+C) \qquad (A-B)-C=A-(B+C)$$

$$(A\cup B)+C=(A+C)\cup(B+C) \qquad (A\cap B)-C=(A-C)\cap(B-C)$$

$$A+B=\cup A_b \qquad A-B=\cap A_{-b}$$

$$A\subseteq B\Rightarrow (A+C)\subseteq (B+C) \qquad A\subseteq B\Rightarrow (A-C)\subseteq (B-C)$$

$$(A\cap B)+C\subseteq (A+C)\cap(B+C) \qquad (A\cup B)-C\supseteq (A-C)\cup(B-C)$$

$$A+(B\cup C)=(A+B)\cup(A+C) \qquad A-(B\cup C)=(A-C)\cap(B-C)$$

$$(A+B)^c=A^c-B^r$$

$$A+B_t=(A+B)_t \qquad A-B_t=(A-B)_{-t}$$

$$A-(B\cap C)\supset (A-C)\cup (B-C)$$

Per semplicità di notazione si è usato +e- per gli operatori erosion e dilation

Closing

C(A, K) = (A+K)-K
 A⊆C(A,K)=C(C(A,K),K)

K

Α

A+K

(A+K)-K

Closing

Opening

O(A, K) = (A-K)+K
 O(O(A,K),K)=O(A,K)⊆A

K

Α

A-K

(A-K)+K

Opening

• O(A, K) = (A-K)+K

K

Α

A-K

(A-K)+K

Elaborazione delle Immagini Morfologia matematica 21

Hit or Miss

- $A \otimes (J,K) = (A-J) \cap (A^c-K)$
 - con il vincolo J∩K=Ø
- Permette di trovare strutture regolari (template matching)

- Ricerca di punti isolati (8-connessi)
 - A-J=A

23

Elaborazione delle Immagini Morfologia matematica

Umbra (estensione alle immagini gray scale)

- $A \subseteq E^n$, $F \subseteq E^{n-1}$, $x \in F$, $y \in E$
- Top di un insieme A $(T[A]:F \rightarrow E)$: $T[A](x) = max \{ y \mid (x, y) \in A \}$
- Umbra di f (f:F \rightarrow E): U[f] = { (x, y) \in F x E | y \leq f(x) }

Umbra - proprietà

- $T[A] \subseteq A \subseteq U[A] \subseteq Z^n$
- U[U[A]] ≡ U[A]

Dilatazione immagini scale di grigio

- Dati: $F,K\subseteq Z^{n-1}$, $f:F\rightarrow E$, $k:K\rightarrow Z$
- Si definisce dilation di f tramite k
 f ⊕k = T{U[f]⊕U[k]}
- Si dimostra che una definizione equivalente è: (f ⊕k)(x) = max{f(x-z)+k(z) | z∈K, x-z∈F}
- Dal punto di vista computazionale la complessità è equivalente ad una convoluzione

Erosione immagine a livelli di grigio

- Dati: $F,K\subseteq Z^{n-1}$, $f:F\rightarrow E$, $k:K\rightarrow Z$
- Si definisce erosione di f tramite k
 f → k = T{U[f] → U[k]}
- Si dimostra che una definizione equivalente è: (f ⊕ k)(x) = min{f(x+z)-k(z) | z∈K, x+z∈F}