

Chapter 1

Approximate learning of k-step invariant

1.1

Definition 1.1.1. k-step invariant of a probabilistic program P: Given a probabilistic program P and a set S of initial states, the k-step invariant or the k-iterative closure of P with respect to S is given by the set $cl_k(S) = \{\sigma \in \{0,1\}^{|V|} \mid \sigma \text{ is reachable from } S \text{ in at most } k \text{ iterations of } P\}$. Note that $cl_k(S) = \bigcup_{i=0}^k \psi^i(S) = \{\sigma \in \{0,1\}^{|V|} \mid \sigma \text{ is reachable in at most } k \text{ steps from } S\}$, where ψ denotes the single-iteration input-output function for the program P.

Definition 1.1.2. Distance between a candidate and the k-step invariant: Given a probabilistic program P and a set S of initial states, the distance between a given candidate T and the k-step invariant $cl_k(S)$ is given by $d(T, cl_k(S)) = \sum_{y \in (cl_k(S) \setminus T)} \Pr_{x \sim_U S}[y \text{ is reachable from } x \text{ in at most } k \text{ iterations }] = \Pr_{x \sim_U S}[(cl_k(S) \setminus T) \text{ is reachable from } x \text{ in at most } k \text{ iterations }].$

Assumption 1.1.1. Succint description of the true k-step invariant: We have assumed that the true k-step invariant for a given probabilistic program P with respect to a set S of initial states can be expressed in the form of a CNF of bounded size (polynomial) in the number of variables.

Assumption 1.1.2. Sampling access to internal random variables of P: We have assumed that the probabilistic program can be allowed to run in a deterministic manner by fixing a random seed, given sampling access to the internal random variables R.

Note. Monotonicity of candidates with respect to violating transitions: An important thing to note here is that for the ease of analysis, we are only interested in the family Γ of candidates such that given any candidate $T \in \Gamma$, any k-length transition starting from S does not return back to T once it goes out of it.

<u>Problem</u> 1.1.3. (Additive approximation of the distance of a candidate T from k-step invariant $cl_k(S)$): Given a probabilistic program P, a set S of initial states, the number of iterations k and a candidate T, parameters $\epsilon, \delta \in (0,1]$ output an ϵ -additive approximation of the distance $d(T, cl_k(S))$ with probability at least $1 - \delta$.

Theorem 1.1.4 (Correctness of DistEstimate). Given a probabilistic program P, a set S of initial states, the number of iterations k, a candidate T expressed as a CNF, parameters $\epsilon, \delta \in (0,1]$, DistEstimate outputs an ϵ -additive estimate of the $d(T, cl_k(S))$ with probability at least $1 - \delta$. Also, DistEstimate requires at most $\lceil \frac{1}{2\epsilon^2} \log(\frac{2}{\delta}) \rceil$ samples from $\mathrm{Unif}(S \times \mathcal{P}(R))$.

Algorithm 1 IsNotWitness(T, w)

```
1: Initialize \tau \leftarrow 0.
2: \tau \leftarrow T(w)
```

3: Output $\neg \tau$.

Algorithm 2 DistEstimate($P(V, R), S, T, \epsilon, \delta, k$)

```
1: Initialize m \leftarrow \lceil \frac{1}{2\epsilon^2} \log(\frac{2}{\delta}) \rceil, S_U \leftarrow \emptyset, \hat{d}_{S_U} \leftarrow 0, \tau \leftarrow 0.

2: S_U \leftarrow m iid samples from \mathrm{Unif}(S \times \mathcal{P}(R)).

3: \mathbf{for} \ i \in [m] \ \mathbf{do}

4: With (x_i, R_i) \in S_U as initial state, run the program P for k iterations to obtain an output state y_i.

5: \tau \leftarrow \mathtt{IsNotWitness}(T, y_i)

6: \hat{d}_{S_U} \leftarrow \hat{d}_{S_U} + \frac{\tau}{m}

7: \mathbf{end} \ \mathbf{for}

8: Output \hat{d}_{S_U}.
```

For a given candidate T, we can write the distance of T from the k-step invariant $cl_k(S)$ as follows: $d(T, cl_k(S)) = \Pr_{x \sim_{U} S}[(cl_k(S) \setminus T) \text{ is reachable from } x \text{ in at most } k \text{ iterations}].$

Proof of correctness of DistEstimate:

Claim: Given a probabilistic program P, a set S of initial states, the number of iterations k, a candidate T expressed in CNF, parameters $\epsilon, \delta \in (0,1]$, DistEstimate outputs an estimate \hat{d}_{S_U} of the distance $d(T, cl_k(S))$ with the following guarantees:

$$\Pr[|\hat{d}_{S_U} - d(T, cl_k(S))| \le \epsilon] \ge (1 - \delta)$$

Proof. Description of IsNotWitness: IsNotWitness takes in a CNF formula T and a given assignment w of the variables $V \in \text{supp}(T)$ and returns 1 if w is not a witness for T, and 0 otherwise.

Description of DistEstimate: Line 2 samples m states from $(S \times \mathcal{P}(R))$ uniformly at random so as to obtain a sample set $S_U = \{(x_1, R_1), (x_2, R_2), ..., (x_m, R_m)\}$, where for each $i \in [m]$, x_i is the initial state and R_i is the fixed initial seed for the internal random bits of P.

Starting from each state defined by (x_i, R_i) ; $i \in [m]$, the program P is executed for exactly k iterations in Line 4. According to assumption , if for a given initial state (x_i, R_i) , the k-length transition to output state y_i goes out of the set represented by T at some j-th iteration $(j \in [k])$, y_i is guaranteed not to be a witness for the candidate T. Hence, it is sufficient to just check the output state y_i reached after k iterations.

Now, let's define the following event for each state $(x_i, R_i) \in S_U$; $i \in [m]$:

 E_i : With (x_i, R_i) as initial state, the output state y_i reached after k iterations is not a witness for T.

Note that the collection of events $\{E_i\}_{i=1}^m$ are mutually independent. Next, we define indicator random variables for these events as $\mathbf{1}_{E_i}$. Define the statistic $\hat{d}_{S_U} = \frac{1}{m} \sum_{i=1}^m \mathbf{1}_{E_i}$. Line 6 updates the estimate \hat{d}_{S_U} based on the check for non-witness of output state y_i for the candidate T in line 5 via the subroutine IsNotWitness.

We observe that $\mathbb{E}[\hat{d}_{S_U}] = \Pr_{x \sim_U S}[(cl_k(S) \setminus T) \text{ is reachable from } x] = d(T, cl_k(S))$ and thus, \hat{d}_{S_U} is an unbiased estimator of the quantity $d(T, cl_k(S))$. Applying additive Chernoff bound given an error parameter $\epsilon \in (0, 1]$, we get

$$\Pr[|\hat{d}_{S_U} - \mathbb{E}[\hat{d}_{S_U}]| \ge \epsilon] = \Pr[|\hat{d}_{S_U} - d(T, cl_k(S))| \ge \epsilon] \le 2e^{-2m\epsilon^2}$$

We want to make this probability go below a certain threshold, given by δ . Thus,

$$2e^{-2m\epsilon^2} \le \delta \implies m \ge \frac{1}{2\epsilon^2} \log(\frac{2}{\delta}).$$

This gives us a sample complexity of $O(\frac{1}{\epsilon^2}\log(\frac{2}{\delta}))$. Thus, we can conclude that if we take at least $\lceil \frac{1}{2\epsilon^2}\log(\frac{2}{\delta}) \rceil$ iid samples from $\mathrm{Unif}(S \times \mathcal{P}(R))$, $\mathrm{DistEstimate}$ outputs an ϵ -additive estimate \hat{d}_{S_U} of $d(T, cl_k(S))$ with probability at least $1 - \delta$.

Problem definition:

Problem 1.1.5. (Approximate learning of the k-step invariant $cl_k(S)$): Given a program probabilistic P defined on program variables V, a set S of initial states and parameters $k \in \mathbb{N}$ for the number of program iterations, $\epsilon, \delta \in (0, 1]$, output a candidate \hat{S}_k for the k-step invariant $cl_k(S)$ such that $d(\hat{S}_k, cl_k(S)) \leq \epsilon$ with probability at least $1 - \delta$.

High-level overview of the algorithm:

Ideally, the objective is to learn the k-step invariant $cl_k(S)$. However, it is extremely hard. In this context, can we atleast approximate $cl_k(S)$? That is, we want to output some \hat{S}_k such that $d(\hat{S}_k, cl_k(S))$ is as small as possible. An informal sketch of the algorithm to approximately learn $cl_k(S)$ via \hat{S}_k is given below. The algorithm runs in k phases and tries to learn $cl_k(S)$ in a BFS manner, i.e., it starts off with S and learns $cl_1(S), cl_2(S), ..., cl_k(S)$ via the sequence $\hat{S}_1, \hat{S}_2, ..., \hat{S}_k$.

- 1. Phase 1:- Objective is to learn $cl_1(S)$ starting from S.
 - ullet Sample *enough* states from S and run the program P for one iteration to obtain a set of output states.
 - ullet Build a labeled dataset D using these output states such that the states which are in S are labeled 0 and 1 otherwise.
 - Learn a binary decision tree with bounded size (according to the size of the formula we want) on D to output a formula φ .
 - If $d(S \vee \varphi, cl_1(S)) \geq \epsilon$, perform weighted secondary sampling (counterexample-guided sampling). Extend the dataset D by labeling these newly sampled instances.
 - Output $\hat{S}_1 = S \vee \varphi$.
 - Theoretical guarantees on how close \hat{S}_1 is to the actual one-step invariant $cl_1(S)$ depends on the number of samples taken and the restriction on the size of φ , which is actually dictated by the size of the decision tree learnt.
- 2. Phase $i : i \in \{2, 3, ..., k\}$:- Objective is to learn \bar{S}_i starting from \hat{S}_{i-1} .
 - ullet Sample enough states from S and run the program P for i iterations to obtain a set of output states.
 - Build a labeled dataset D using these output states such that the states which are in \hat{S}_{i-1} are labeled 0 and 1 otherwise.
 - Learn a binary decision tree with bounded size (according to the size of the formula we want) on D. This decision tree would then correspond to the formula φ such that $d(\hat{S}_{i-1} \vee \varphi, \bar{S}_i)$ is minimized.
 - Output $\hat{S}_i = \hat{S}_{i-1} \vee \varphi$.
 - Once again, theoretical guarantees on how close \hat{S}_i is to the actual *i*-step invariant \bar{S}_i depends on the number of samples taken and the restriction on the size of φ , which is actually dictated by the size of the decision tree learnt.

Algorithm 3 ApproxInv $(P(V,R), S, \epsilon, \eta, \delta, k)$

```
1: Initialize t \leftarrow \lceil something \rceil, D_t \leftarrow \emptyset, D \leftarrow \emptyset, \hat{d} \leftarrow \infty, T \leftarrow \{\}, W \leftarrow S.
 2: for j \in [k] do
           D_t \leftarrow t \text{ iid samples from Unif}(S \times \mathcal{P}(R)).
           D \leftarrow \mathtt{BuildDataset}(P(V,R),D_t,W,j).
 4:
           T \leftarrow \mathtt{TreeLearner}(D).
 5:
           \hat{d} \leftarrow \mathtt{DistEstimate}(P(V,R),S,T,\frac{\epsilon}{k},\delta,j)
 6:
           while \hat{d} \leq \frac{\eta}{k} do
 7:
                 D \leftarrow D \cup SecondarySampler(P(V, R), S, T)
 8:
                 T \leftarrow \mathtt{TreeLearner}(D).
9:
                 \hat{d} \leftarrow \mathtt{DistEstimate}(P(V,R),S,T,\epsilon,\delta,j)
10:
           end while
11:
           W \leftarrow T.
12:
           D_t \leftarrow \emptyset.
13:
           D \leftarrow \emptyset.
14:
15: end for
16: Output W.
```

Algorithm 4 BuildDataset $(P(V,R),D_t,W,j)$

```
1: Initialize t \leftarrow |D_t|, D \leftarrow \emptyset, \tau \leftarrow 0.

2: for i \in [t] do

3: With (x_i, R_i) \in D_t as initial state, run the program P for j iterations to obtain an output state y_i.

4: \tau \leftarrow \texttt{IsNotWitness}(W, y_i)

5: D \leftarrow D \cup (y_i, \tau)

6: end for

7: Output D.
```

Algorithm 5 TreeLearner(D)

```
1: Initialization.
2:
3: Output-
```

Algorithm 6 SecondarySampler(P(V,R),S,T)

```
1: Initialization.
2:
3: Output-
```

Figure 1.1: Sketch of ApproxInv

1.1.1 Problems in ApproxInv:

- TreeLearner might learn a small-sized formula T such that there exists some state $s \notin cl_k(S)$ but s is a witness for T. In that case $d(T, cl_k(S)) \to \infty$. This depends on the pruning scheme of the full decision tree.
- Checking whether some candidate T is valid, i.e., $T \subseteq cl_k(S)$ requires us to verify all possible k-length runs of the program P.