Лабораторная работа 5

Люминесценция кристаллов при возбуждении рентгеновским излучением (Рентгенолюминесценция)

Цель работы Ознакомится с механизмом возникновения свечения материалов при воздействии высокоэнергетичного фотонного излучения. Измерить спектры излучения кристаллов фторидов в ультрафиолетовой и видимой области спектра.

Используемое оборудование: установка ВУФ2, вакуумная система, криостат, монохроматор ВМ4.

Рентгенолюминесценцией называют люминесценцию, возникающую при возбуждении веществ рентгеновским излучением. Рентгенолюминесценция является частным случаем радиолюминесценции. Общая схема процесса сводится к следующему. Ионизирующая частица или квант, попадая в кристалл, генерирует в конечном итоге низкоэнергетические электронные возбуждения: электронно-дырочные пары и экситоны. Мигрируя по решетке возбуждения передают свою энергию центрам люминесценции, переводя их в возбужденное состояние. Переход центров люминесценции обратно в основное состояние сопровождается испусканием фотонов. Весь процесс целесообразно разбить на три этапа - генерационный, миграционный и внутрицентровой.

Генерационный этап (т.е. генерация низкоэнергетических электронных возбуждений в кристаллической решетке) включает в себя процессы размена энергии, начинающийся с попадания в кристалл ионизирующей частицы (рентгеновского фотона) и заканчивающийся созданием термализованных электронов, дырок и экситонов. Процессы, протекающие на генерационном этапе, определяют такую фундаментальную характеристику радиационных процессов, как средняя энергия создания одной электронно-дырочной пары.

При прохождении через кристалл частицы или кванта, в результате ионизации атомов или ионов, создаются быстрые электроны. Пока энергия быстрых электронов превосходит энергию ионизации внутренних оболочек атомов кристалла, основным каналом потерь энергии для них является кулоновское столкновение с электронами внутренних оболочек, приводящее к ионизации - так называемые ионизационные потери.

Такое лавинной размножение электронов продолжается до тех пор, пока энергия электронов в лавине не падает ниже потенциала ионизации внутренних оболочек атомов решетки, и длится примерно 10^{-13} с.

После этого характер процесса меняется. Быстрые электроны сталкиваясь с электронами валентной зоны, отдают последним часть своей энергии, перебрасывая их в зону проводимости. Образовавшиеся при этом быстрые электроны и дырки, в свою очередь возбуждают вторичные частицы, и процесс лавинообразного размножения свободных электронов и дырок продолжается.

Когда энергия электрона падает ниже порогового значения E_i , единственным доступным для него каналом потерь энергии остается термализация в результате взаимодействия с фононами (квантами колебаний решетки небольшой энергии). Длительность генерационного этапа не превышает 10^{-10} с.

Миграционный этап

Первые измерения энергетического выхода радиолюминесценции показали, что при концентрации активатора порядка 0.1 мол. % энергетический выход составляет около 10%, то есть на два порядка превосходит ожидаемую с точки зрения прямого возбуждения величину. Следовательно, должен быть какой-то весьма эффективный механизм передачи энергии возбуждения от основного вещества к активатору.

Согласно этим механизмам, возбужденное состояние центров люминесценции может возникать в результате либо взаимодействия с экситоном, либо последовательного захвата дырки и электрона (электронная рекомбинационная люминесценция) или электрона и дырки (дырочная рекомбинационная люминесценция).

При небольших концентрациях активатора эффективность экситонной передачи энергии значительно ниже чем электронно-дырочной. Основным механизмом передачи энергии центрам люминесценции является электронно-дырочный механизм. Длительность миграционного может быть на несколько порядков больше, чем генерационного. Это связано с тем, что в процессе миграции электроны и дырки могут на некоторое время локализоваться на различных дефектах решетки (а дырки и автолокализоваться).

Такие промежуточные локализации сильно затягивают свечение.

В кристаллах с большими концентрациями активатора существенную роль играет ударное возбуждение центров свечения горячими электронами.

Внутрицентровой этап

Заключительным этапом является рекомбинация электрона и дырки на центре свечения, переводящая этот центр в возбужденное состояние, и последующий излучательный переход центра в основное состояние. Центрами свечения могут служить различные примесные и структурные дефекты. Наряду с излучательной рекомбинацией на дефектах наблюдается и рекомбинация в ненарушенной решетке, сопровождаемая свечением экситонов.

Для некоторых центров свечения в области не слишком высоких температур выход люминесценции при внутрицентровом возбуждении близок к единице.

Таблица 1. Полосы свечения ртутеподобных ионов в кристалле КСІ в эВ.

In ⁺	4.10, 2.94
T1 ⁺	5.05, 4.05
Ge^{2+}	5.20, 2.40
Sn^{2+}	4.45, 2.70
Pb^{2+}	4.70, 3.55
Ag^{2+}	5.47, 4.42

Ионы Ce^{3+} в кристаллах щелочноземельных фторидов характеризуются сравнительно узкими полосами свечения 4.07, 4.35 эВ (285, 305 нм) - переходы 5d - 4f.

Рис. Обобщенная схема процессов взаимодействия высокоэнергетического фотона с кристаллом (А.Васильев. физфак МГУ 1999).

Очень удачно процессы взаимодействия высокоэнергетических фотонов с кристаллическим телом сведены на рисунке А.Васильевым.

Люминесценция экситонов

В щелочно-галоидных кристаллах люминесценция экситонов эффективна только при низких температурах. Обычно при температурах выше $100~\rm K$ люминесенция экситонов не наблюдается. В кристаллах щелочноземельных фторидов ($\rm CaF_2$, $\rm SrF_2$, $\rm BaF_2$) свечение экситонов при рентгеновском возбуждении наблюдается и при комнатной температуре.

Таблица 2.

Кристалл	Энергетическая щель, эВ	Поглощение экситонов, эВ	Свечение экситонов (полуширина), эВ
MgF ₂	12.4	11.6	3.2 (0.95)
CaF ₂	12.2	11.2	4.44 (1.1)
SrF_2	11.44	10.6	4.13 (1)
BaF ₂	10.59	10	4.00 (0.9)
BaFBr			5.15
			4.2
BaFCl			3.3

Остовно-валентные переходы (или кросслюминесценция)

Этот вид люминесценции установлен относительно недавно. Люминесценция возникает при переходах электронов с валентной зоны на незанятые состояния в нижележащей остовной зоне металла. Характерна для кристаллов содержащих металлы с низкими ионизационными потенциалами Cs, Ba, и др. В BaF₂ наблюдались полосы остовно-валентных переходов при 5.6, 6.3 эВ.

Порядок выполнения работы

- 1. Разобрать по литературным источникам механизмы возбуждения радиолюминесценции. Генерационный, миграционный, внутрицентровой этапы. Экситонная люминесценция и остовно-валентные переходы. ([1] стр. 177, [2],[3])
- 2. Ознакомление с работой установки ВУФ2. Вакуумная система, криостат, монохроматор ВМ4. Порядок работы на установке.
 - 3. Измерение спектров рентгенолюминесценции.
- 4. Составление отчета, включающего краткое введение о механизмах рентгено люминесценции, характеристику экспериментальной установки с

блок-схемой, измеренные спектры свечения, идентификацию полос свечения на основе имеющихся данных.

Контрольные вопросы

- 1. Опишите последовательность процессов взаимодействия высокоэнергетического излучения с кристаллом. Опишите временные этапы разных типов преобразования энергии.
- 2. Каковы потери энергии на различных этапах.
- 3. Как оценить энергетический и квантовый выход люминесценции.
- **4.** Какие центры люминесценции наблюдаются при возбуждении рентгеновским излучением.

Рекомендуемая литература

- 1. Алукер Э.Д., Лусис Д.Ю., Чернов С.А. Электронные возбуждения и радиолюминесценция щелочно-галоидных кристаллов. Зинатне, Рига, 1979
- 2. Парфианович И.А., Саломатов В.Н. Люминесценция кристаллических веществ. том 1 и 2. Иркутск, 1974, 1977.
- 3. Родный П A ,обзор в журнале Физика твердого тела 1992, 34, № 7, с. 1975-1998
- 4. Michael Gaft, Renata Reisfeld, Gerard Panczer, Modern Luminescence Spectroscopy of Minerals and Materials, Springer-Verlag Berlin Heidelberg, 2005, 356p.