Name: Mohammad Arshad

Roll:20PH20022

1) Solve the equation $f(x) = x^3 - 0.165x^2 + 3.993*10^-4$ with initial $x_0 = 0.05$ with an e=0.0001:

The root of the equation obtained after Newton raphsons method is x=0.062377576543465846 The number of iterations performed by the code are 3.

Solve the equation $f(x) = x^3 - 0.165x^2 + 3.993*10^-4$ with initial $x_0 = 0.11$ with an e=0.0001:

The roots cannot be found with an initial value $x_0 = 0.11$ as it is the root of the derivative of the function.

From Newton raphson method,

$$X_j = x_i - f(x_i)/f'(x_i)$$

The denominator here goes to zero for x_0 .

There exists a maxima at $x=x_0$ and newton raphson method cannot be used at the maxima of the function

Can you give an other point x_0 where newton raphson method cannot be applied? By plotting the function f(x), we see that there exists an other maxima at x=0. So, the derivative again goes to zero at that point and newton raphson method cannot be applied.

PLOT:

This is a x vs f(x) plot . The f(x) is having a maxima at x=0 and minima at x=0.11

Plot e vs number of steps needed for convergence:

2)

Plot: Number of iterations vs the value:

Plot: Error vs Number of iterations:

We see that as the number of iterations increase, the error between the calculated value and the actual value is decreasing and tending to zero

3)We see that

For A:

The matrix is not strictly diagonal dominant at row 1 The matrix is not strictly diagonal dominant at row 2 The matrix is not strictly diagonal dominant at row 3 The matrix is not strictly diagonal dominant at row 4

So, the matrix is not strictly diagonal dominant.

For B:

The matrix is not strictly diagonal dominant at row 2 The matrix is not strictly diagonal dominant at row 3 The matrix is not strictly diagonal dominant at row 4

So, the matrix is not strictly diagonal dominant