Precizâri legate de lucrarea de control

5 decembrie 2012

Teoreme care trebuie cu demontrație:

- 1) Teorema relativă la unicitatea limitei unui șir.
- 2) Teorema comparației pentru șiruri cu termeni pozitivi.
- 3) Teorema de păstrare a semnului unei funcții continue într-un punct.
- 4) Teorema lui Fermat.
- 5) Teorema de atingere a mărginirii pentru funcții continue pe un compact.

Exemple de probleme - exerciții

- 1. Dați caracterizarea cu ε a infimumului unei mulțimi.
- a) Determinați infimumul mulțimii $M = \{-\frac{1}{n} | n \in \mathbb{N}^*\}.$
- b) Arătați că mulțimea $M = \{-n | n \in \mathbb{N}\}$ nu are infimum în \mathbb{R} .
- c) Determinați infimumul mulțimii $M = \{\frac{n+5}{n+2} | n \in \mathbb{N}\}.$
 - 2. Dați caracterizarea cu ε a supremumului unei mulțimi.
- a) Determinați supremumul mulțimii $M = \{-\frac{1}{n} | n \in \mathbb{N}^*\}.$
- b) Arătați că mulțimea $M = \{n | n \in \mathbb{N}\}$ nu are supremum în \mathbb{R} .
- c) Determinați supremumul mulțimii $M = \{-\frac{n+5}{n+2} | n \in \mathbb{N}\}.$
 - 3. Dați definiția punctului de acumulare al unei mulțimi din \mathbb{R}^n .
- a) Fie mulțimea $M = \{\frac{1}{x} | x \in \mathbb{R}^*\}$. Arătați că 0 este un punct de acumulare al mulțimii M. Dați un exemplu și de alt punct de acumulare al lui M.
- b) Fie mulţimea $M = \{(-1)^n \frac{1}{n} | n \in \mathbb{N}^*\}$. Daţi un exemplu de punct de acumulare şi un exemplu de punct izolat al acestei mulţimi.
 - 4. Dați definiția punctului izolat al unei mulțimi din \mathbb{R}^n .
- a) Fie mulțimea $M = \{(-1)^n \frac{1}{n} | n \in \mathbb{N}^*\}$. Dați un exemplu de punct izolat al acestei mulțimi.
- b) Fie mulţimea $M=\{(\frac{1}{n},n)\in \mathbb{R}^2\,|\,n\in\mathbb{N}^*\}$. Daţi un exemplu de punct izolat al acestei mulţimi.
 - 5. Dați definiția mulțimii mărginite din \mathbb{R}^n . Studiați mărginirea următoarelor mulțimi:
- a) $M = \{(\frac{1}{n}, n) \in \mathbb{R}^2 \mid n \in \mathbb{N}^* \}.$
- b) $M = \{(-1)^n \frac{1}{n} | n \in \mathbb{N}^* \}.$
- 6. Dați definiția punctului interior al unei mulțimi din \mathbb{R}^n . Dați un exemplu de punct interior pentru mulțimea:
- a) $M = \{(0, x) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$
- b) $M = [1, 2] \times [-1, 1]$.
- c) $M = [2, 4] \times [1, 2] \cup [-2, -1] \times \{2\}.$

- 7. Daţi definiţia bilei deschise $B(x^0, r)$ din \mathbb{R}^n , cu centrul într-un punct x^0 şi rază r. Precizaţi care dintre punctele $P_1(1, 1)$, $P_2(0, 0)$, $P_3(-1, 1)$ aparţin bilei B((1, -1), 2), justificând răspunsul.
 - 8. Dați definiția vecinătății unui punct din \mathbb{R}^n .

Precizați care dintre mulțimile $U = [-1, 2] \times [0, 1]$ și $V = [-2, 2] \times \{0\}$ sunt vecinătăți ale punctului (0, 0), justificănd răspunsul.

9. Daţi definiţia limitei unui şir.

Fie $(x_n)_{n\in\mathbb{N}}$ un şir de numere reale. Demonstrați că, dacă subșirurile $(x_{2k})_{k\in\mathbb{N}}$ şi $(x_{2k+1})_{k\in\mathbb{N}}$ au aceeași limită x, atunci x este limita șirului $(x_n)_{n\in\mathbb{N}}$.

10. Dați definiția seriei convergente.

Utilizând definiția seriei convergente, arătați că seria $\sum_{n=1}^{+\infty} \frac{n}{2^n}$ este convergentă.

11) Daţi definiţia sumei unei serii.

Calculați suma seriei $\sum_{n=1}^{+\infty} \frac{2^n + (-1)^{n+1}}{5^n}$.

12) Determinați natura următoarelor serii și enunțați proprietatea utilizată pentru stabilirea naturii seriei.

a) $\sum_{n=1}^{+\infty} \left(a \frac{n^2 + n + 1}{n^2} \right)^n$, unde a > 0.

- b) $\sum_{n=1}^{+\infty} \frac{a^n}{\sqrt{n!}}$, unde a > 0.
- c) $\sum_{n=1}^{+\infty} \frac{(an)^n}{n!}$, unde a > 0.
- d) $\sum_{n=1}^{+\infty} a^{\ln n}$, unde a > 0.

e)
$$\sum_{n=1}^{n=1} \frac{\sqrt{n+1} - \sqrt{n}}{n}.$$

- f) $\sum_{n=1}^{n-1} \frac{3n+2}{n^2+1}$.
- g) $\sum_{n=1}^{+\infty} \sin n^2$.
- h) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\sqrt{n}}.$
- i) $\sum_{n=2}^{+\infty} \frac{n}{\ln n}$

(ca și criterii pot fi folosite, în funcție de situația concretă: criteriul rădăcinii, criteriul raportului, criteriul lui Raabe-Duhamel, criteriul comparației directe sau sub forma de raport, condiția necesara de convergență provenită din criteriul general de convergență a lui Cauchy, criteriul lui Leibniz).

- 13) Dați definiția seriei absolut convergente și definiția seriei semiconvergente. Studiați absolut convergenta și semiconvergența următoarelor serii:
- a) $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n(n-1)}$.

b)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{(n+a)^{\alpha}}$$
, unde $a \notin \{-n|n \in \mathbb{N}\}$, iar $\alpha > 0$.

- 14) Fie seria $\sum_{i=1}^{+\infty} \frac{a^n}{\sqrt[n]{n!}}$, unde $a \ge 0$. Pentru ce valori ale lui a seria este convergentă.
- 15) Dați definiția punctului de extrem local.

Determinați punctele de extrem local ale funcțiilor:

a) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x + 1, & \text{dacă } x < -1, \\ x^2 - 1, & \text{dacă } |x| \le 1, \\ |1 - \ln x|, & \text{dacă } x > 1. \end{cases}$$

b) $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} |x^2 - 1|, \text{ dacă } |x| < 1, \\ e^{x^2} - e, \text{ dacă } |x| \ge 1. \end{cases}$$

c)
$$f:(0,+\infty)\to \mathbb{R}, f(x)=\frac{|\ln x|}{\sqrt{x}}$$
, oricare ar fi $x\in(0,+\infty)$.

- 16) Enunțați teorema relativă la formula lui Taylor cu restul sub forma lui Lagrange. a) Scrieți formula lui Taylor cu restul de ordin n, dacă $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x^2 - x)e^x$, oricare ar fi $x \in \mathbb{R}$, în punctul $x^0 = 0$.
- b) Scrieţi formula lui Taylor cu restul de ordin n, dacă f:-1, $1 \to \mathbb{R}$, $f(x) = \frac{1}{x^2 1}$, oricare ar fi $x \in \mathbb{R}$, în punctul $x^0 = 0$.
- c) Scrieţi formula lui Taylor cu restul de ordin 5, dacă $f:(-\infty,1)\to \mathbb{R}$, $f(x)=\frac{x}{\sqrt{1-x}}$, oricare ar fi $x\in(-\infty,1)$, în punctul $x^0=0$.
- 17) Să se dea formula de calcul a normei unui element din \mathbb{R}^n . Să se calculeze ||x||, dacă $x = (2, -1, 0, 3) \in \mathbb{R}^n$.
- 18) Să se dea formula de calcul a distanței dintre două elemente din \mathbb{R}^n . Să se calculeze distanța dintre x și y, dacă $x = (-1, 2, 3) \in \mathbb{R}^3$ și $y = (-3, -1, 2) \in \mathbb{R}^2$.
- 19) Să se enunțe teorema relativă la reducerea calculului limitei unui șir cu termeni din \mathbb{R}^n la calculul a n limite de șiruri de numere reale. Calculați $\lim_{k\to\infty} x_k$, dacă $x_k\in\mathbb{R}^3$,

$$x_k = \left(\frac{\sqrt[k]{2^{k+1} + 3^k}}{\sqrt[k+1]{3^k + 5^{k+1}}}, \left(\frac{k^4 - k + 1}{k^4 + k^2 + k}\right)^{\frac{k^3 + 5}{2k + 1}}, \frac{1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}}{\ln k}\right).$$

- 20) Fie $g: \mathbb{R}^2 \to \mathbb{R}$ o funcție cu proprietatea că g(0,0) > 0 și fie $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (\sin x, \ln(y^2 + 1))$, oricare ar fi $x \in \mathbb{R}$. Arătați că există o vecinătate V a punctului $(\pi, \ln 1)$ cu proprietatea că f(x,y) > 0, oricare ar fi $(x,y) \in V$.
 - Alte enunțuri cerute:
- Definiția limitei unei funcții într-un punct.
- Enuntul teoremei lui Heine relativă la existența limitei unei funcții într-un punct.
- Definiția continuității unei funcții într-un punct.

- Enunțul teoremei relative la păstrarea semnului unei funcții continue.
- Enunțul teoremei relative la mărginirea unei funcții continue.