Big Data e Machine Learning

Daniela Maria Uez dani.uez@gmail.com

1 AGOSTO 2019

Arquitetura 5C

Configuration Level

IV. Cognition Level

III. Cyber Level

II. Data-to-Information Conversion Level

I. Smart Connection Level

Big Data e Machine Learning Manipular os dados

IIoT – Adquirir dados

Por que analisar os dados?

- Os dados armazenados só são úteis quando pode-se gerar informações a partir deles
- Essas informações são utilizadas na tomada de decisões
- Os dados não são completamente randômicos possuem padrões
- Encontrar padrões nos dados é o foco do ML
- A aplicação de métodos de aprendizado de máquina em grandes bases de dados é chamada de Mineração de Dados(data mining)

Aprendizagem de máquina

- ML usa a teoria estatística para modelos matemáticos que permitam inferir um conhecimento - preditivo ou descritivo – a partir de uma amostra dos dados
- Existem muitos algoritmos Como escolher o correto?
 - Supervisionados
 - Não supervisionados
 - Por reforço
 - •

Qual algoritmo usar?

- Depende do objetivo:
 - Se quer saber a previsão do tempo para o mês de agosto 2019
 - Se quer saber qual filme recomendar com base nos filmes que já foram assistidos
- Depende dos dados disponíveis
 - Dados podem ter atributos qualitativos e quantitativos

Usando ML

- 1) Coletar os dados
- 2) Preparar os dados de entrada
- 3) Analisar os dados de entrada
- 4) Treinar o algoritmo
- 5) Testar o algoritmo

Pré-processamento

- Normalmente os dados estão longe da perfeição para usar um algoritmo de ML
- Pré-processamento é composto de duas fases
 - Limpeza dos dados
 - Transformação dos dados

Limpeza dos dados

- Preencher dados ausentes
- Ajustar dados com ruídos
- Identificar e/ou remover valores aberrantes
- Resolver inconsistências
- Formatação de dados de forma a adequá-los à ferramenta de mineração

Características do conjunto de dados

- Dimensão: é o número de atributos que os objetos desse conjunto de dados possuem
 - Conjuntos com muitas dimensões não são bem classificados pelos algoritmos
- Dispersão: variabilidade da distribuição dos dados com relação à média - alguns algoritmos funcionam melhor com dados dispersos

Transformação dos dados

- É necessário para obter os dados numa forma mais apropriada para a mineração de dados.
- Em geral, transformação de dados envolve:
 - Agregação
 - Amostragem
 - Redução de dimensionalidade
 - Discretização e binarização
 - Transformação de variáveis

Agregação e Amostragem

- Agregação: combinação de dois ou mais objetos em um único
- Amostragem: seleciona um subconjunto dos objetos de dados a serem analisado
 - Usar uma amostra funcionará tão bem quanto usar o conjunto inteiro de dados se a amostra for representativa
 - Uma amostra é representativa se tiver aproximadamente as mesmas propriedade do conjunto original de dados.

Técnicas de Amostragem

 Amostragem estratificada: números proporcionais de objetos são selecionados de cada grupo

Binarização

- Binarização: Alguns algoritmos requerem que os dados estejam na forma de atributos binários (0 ou 1)
 - Tanto atributo contínuos quanto discretos podem precisar ser transformados em atributos binários
 - Pode ser necessário mais de um atributo binário

Discretização

- Discretização: transformação de um atributo contínuo em um categorizado
 - Por ex: atributo contínuo comprimento pode precisar ser transformado em um com categorias discretas: curto, médio ou longo

Transformação de variáveis

- Uma transformação que seja aplicada a todos os valores de uma variável
- Tipos:
 - Transformações funcionais simples: aplica uma função matemática a cada valor individualmente
 - Ex: x^k, log **x**
 - Normalização: faz o conjunto inteiro de valores ter uma determinada propriedade – usada em estatística

Referências

- Exemplos uso de ML empresas -

- Uso de Redes Neurais Artificiais para a Detecção das Doenças Olho de Boi e Manchas de Sarna em Maçãs -https://repositorio.ucs.br/xmlui/bitstream/handle/11338/3724/TCC%20lago%20dos%20Passos.pdf?sequence=1&isAllowed=y
- Aplicação de Processo de Classificação e Técnica de Bayes na Base de Dados de Acidentes Ocupacionais de uma Empresa Metalúrgica -https://repositorio.ucs.br/xmlui/bitstream/handle/11338/3913/TCC%20Charles%20da%20Luz%20Pola.pdf?sequence=1&isAllowed=y

Redução de Dimensionalidade

- Reduzir a dimensionalidade elimina características irrelevantes
- Pode reduzir o ruído
- Existem técnicas que reduzem a dimensionalidade de um conjunto de dados criando novos atributos que sejam uma combinação dos atributos antigos

Referências

Orange - https://orange.biolab.si/

Tutorial sobre Orange: https://orange3.readthedocs.io/

Mais documentação sobre o Orange: https://docs.biolab.si/3/visual-programming/

Dados da aula: www.uez.com.br/ucs

Repositório GitHub: https://github.com/daniuez/courses