1. Da 19 er et primtal, eksisterer en primitiv rod i \mathbb{F}_{19} ifølge sætning 2.4.4. Ifølge proposition 2.4.6 er da netop $\varphi(\varphi(19)) = \varphi(18) = \varphi(3^2 \cdot 2) = (3-1)3^{2-1}(2-1)2^{1-1} = 2 \cdot 3 = 6$ af sideklasserne $\overline{1}, \overline{2}, \ldots, \overline{18}$ primitive rødder modulo 19.

Nu finder vi

$$2^9 = 16 \cdot 32 \equiv -3 \cdot 13 \equiv -1 \pmod{19}, 2^2 \equiv 4 \pmod{19}.$$

Da \mathbb{F}_p^{\times} er cyklisk ifølge korollar 2.4.5, må ordenen af 2 desuden gå op i $18 = 2 \cdot 3^2$, hvormed ord(2) = 18.

Dermed er 2 en primitiv rod modulo 19, eller ækvivalent er 2 en generator for den cykliske gruppe \mathbb{F}_{19}^{\times} , hvormed vi har at alle andre generatorer er netop 2^a hvor $\gcd(a,18)=1$. Så vi har, at $2^5,2^7,2^{11},2^{13},2^{17}$ er de resterende primitive rødder, som netop bliver

$$2^{5} = 32 \equiv 13 \pmod{19}$$

$$2^{7} = 13 \cdot 4 \equiv 52 \equiv 14 \pmod{19}$$

$$2^{11} = -5 \cdot 2^{4} = (-5)(-3) = 15 \pmod{19}$$

$$2^{13} = (-4) \cdot 4 \equiv -16 \equiv 3 \pmod{19}$$

$$2^{17} = 3 \cdot (-3) \equiv 10 \pmod{19}.$$

Altså er 2, 3, 10, 13, 14, 15 samtlige primitive rødder modulo 19.

2. Vi har

$$x^{2} + 20x + 211 = \frac{1}{4} \left((2x + 20)^{2} - (20^{2} - 4 \cdot 211) \right).$$

Så ligningen har løsninger hvis og kun hvis $20^2-4\cdot 211=-444\equiv 82\pmod{263}$ er en kvadratisk rod modulo 263, altså hvis og kun hvis $\binom{82}{263}=1$. Ifølge kvadratisk reciprocitet (sætning 4.2.1) fås

Da $263^2 - 1 = 262 \cdot 264 = 262 \cdot 8 \cdot 33$ fås

$$\begin{pmatrix} 82\\263 \end{pmatrix} = \begin{pmatrix} 263\\41 \end{pmatrix}$$

$$= \begin{pmatrix} 17\\41 \end{pmatrix}$$

$$= (-1)^{\frac{16\cdot40}{4}} \begin{pmatrix} 41\\17 \end{pmatrix}$$

$$= \begin{pmatrix} 7\\17 \end{pmatrix}$$

$$= (-1)^{\frac{6\cdot16}{4}} \begin{pmatrix} 17\\7 \end{pmatrix}$$

$$= \begin{pmatrix} 3\\7 \end{pmatrix}$$

$$= (-1)^{\frac{2\cdot6}{4}} \begin{pmatrix} 7\\3 \end{pmatrix}$$

$$= -1 \begin{pmatrix} 1\\3 \end{pmatrix}$$

Altså eksisterer ingen heltallige løsninger til ligningen ved en lokal obstruktion.

3. (a) Da p er et primtal, er \mathbb{F}_p^{\times} cyklisk ifølge korollar 2.4.5, så lad $g \in \mathbb{F}_p^{\times}$ være en primitiv rod, dvs. $\operatorname{ord}(g) = p - 1 = 5k$ for $k \in \mathbb{Z}$ (hvor vi har brugt, at $p \equiv 1 \pmod{5} \Longrightarrow p - 1 = 5k$ for et $k \in \mathbb{Z}$). Lad nu $c = g^k$. Da har vi $c^5 = g^{5k} = g^{p-1} \equiv 1 \pmod{p}$, så $\operatorname{ord}(c) \leq 5$. Antag nu, at $d = \operatorname{ord}(c) < 5$. Da har vi

$$1 \equiv c^d \equiv g^{kd},$$

hvormed $\operatorname{ord}(g) \leq kd < 5k = p-1$, som er i modstrid med, at g er en primitiv rod. Dermed må $\operatorname{ord}(c) = 5$.

(b) Lad $g = 2 \cdot (c + c^{-1}) + 1$. Da har vi

$$\begin{split} g^2 - 5 &= 4 \left(c + c^{-1} \right)^2 + 4 (c + c^{-1}) - 4 \\ &= 4 \left[(c + c^{-1})^2 + (c + c^{-1}) - 1 \right] \\ &\equiv 4 \left[c^2 + c^{-2} + 2 + c + c^{-1} - 1 \right] \\ &\equiv 4 \left[c^2 + c + 1 + c^{-1} + c^{-2} \right] \\ &\equiv 4 c^k \left[c^2 + c + 1 + c^{-1} + c^{-2} \right], \quad \forall k \in \mathbb{Z}. \end{split}$$

Hvor sidste ækvivalens følger af, at c har orden 5 og $c^2+c+1+c^{-1}+c^{-2}\equiv 1+c+c^2+c^3+c^4\pmod p$. Dvs for alle $k\in\mathbb{Z}$ er $c^k\left(g^2-5\right)\equiv g^2-5\pmod p$. Hvis $g^2\not\equiv 5\pmod p$, har g^2-5 en invers modulo p, hvormed vi får $c^k\equiv 1\pmod p$ for alle k, dvs $c\equiv 1\pmod p$, som er en modstrid med, at c er et element af orden 5. Dermed må $g^2\equiv 5\pmod p$.

(c) Da vi har fundet et element $g=2\cdot(c+c^{-1})+1$, med $g^2\equiv 5\pmod 5$, er 5 per definition en kvadratisk rod modulo p, så per definition er $\binom{5}{p}=1$. Ved kvadratisk reciprocitet har vi desuden, at

$$\begin{pmatrix} 5 \\ p \end{pmatrix} = (-1)^{\frac{4(p-1)}{4}} \begin{pmatrix} p \\ 5 \end{pmatrix}
= \begin{pmatrix} p \\ 5 \end{pmatrix} \qquad (\text{Da } p \equiv 1 \pmod{5}) \implies p \neq 2, \text{ så } p - 1 \text{ er lige})
\stackrel{\alpha}{=} \begin{pmatrix} 5k+1 \\ 5 \end{pmatrix}
= \begin{pmatrix} 1 \\ 5 \end{pmatrix}
= 1.$$

hvor α følger af, at $p \equiv 1 \pmod{5} \implies p-1=5k \implies p=5k+1$ for et $k \in \mathbb{Z}$.

4. Antag for modstrid, at n er en primitiv rod modulo p, dvs. $\operatorname{ord}(n) = p - 1 = 2k$ for et $k \in \mathbb{Z}$, da p var antaget at være ulige. Da $\binom{n}{p} = 1$, eksisterer $m \in \mathbb{Z}$, så $m^2 \equiv n \pmod{p}$. Bemærk, at da n er en primitiv rod, må $m \not\equiv 0 \pmod{p}$, da vi ellers ville have $n \equiv 0 \pmod{p}$. Dermed fås fra Fermats lille sætning, at

$$1 \equiv m^{p-1} = m^{2k} = (m^2)^k \equiv n^k \pmod{p}.$$

Men da har vi $\operatorname{ord}(n) \leq k < 2k = \operatorname{ord}(n)$, som er en modstrid. Altså er n ikke en primitiv rod modulo p.