概率论与数理统计公式整理

第1章 随机事件及其概率

随机试验	如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,
和随机事	但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试
件	验。
IT	试验的可能结果称为随机事件。
	在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有
	如下性质:
	①每进行一次试验,必须发生且只能发生这一组中的一个事件;
	②任何事件,都是由这一组中的部分事件组成的。
基本事件、	这样一组事件中的每一个事件称为基本事件,用 ω 来表示。
样本空间	基本事件的全体,称为试验的样本空间,用 Ω 表示。
和事件	一个事件就是由 Ω 中的部分点(基本事件 ω)组成的集合。通常用大写字母
	A , B , C , …表示事件,它们是 Ω 的子集。
	Ω 为必然事件, Ø 为不可能事件。
	不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,
	必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 ①关系:
	如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生):
	如来事件も的组成部分已定事件が的组成部分, (A) 人工必有事件が (A) 人工
	如果同时有 $A \subset B$, $B \supset A$, 则称事件 A 与事件 B 等价, 或称 A 等于 B :
	$A=B_{\circ}$
	$A \times B$ 中至少有一个发生的事件: $A \cup B$, 或者 $A+B$ 。
	属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A – B ,也可
	_
	表示为 $A-AB$ 或者 AB ,它表示 A 发生而 B 不发生的事件。
事件的关	A 、 B 同时发生: $A \cap B$, 或者 AB 。 $A \cap B=\emptyset$,则表示 $A 与 B$ 不可能同时发生,
系与运算	称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。
	_
	Ω -A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示 A 不发生
	的事件。互斥未必对立。
	②运算:
	结合率: A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C
	分配率: (AB) \cup C=(A \cup C) \cap (B \cup C) (A \cup B) \cap C=(AC) \cup (BC)
	德摩根率: $\bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \overline{A_i}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}$
	设 Ω 为样本空间, A 为事件,对每一个事件 A 都有一个实数 $P(A)$,若满
概率的公	足下列三个条件: 1° 0≤P(A)≤1,
理化定义	$2^{\circ} P(\Omega) = 1$
	3° 对于两两互不相容的事件 A1, A2, ····有

	$P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$
	常称为可列 (完全) 可加性。
	则称 P(A) 为事件 A 的概率。
	1° $\Omega = \{\omega_1, \omega_2 \cdots \omega_n\},$
	$2^{\circ} P(\omega_1) = P(\omega_2) = \cdots P(\omega_n) = \frac{1}{n}$
eth 400 36d	设任一事件 A ,它是由 $\omega_1, \omega_2 \cdots \omega_m$ 组成的,则有
古典概型	$P(A) = \{(\omega_1) \cup (\omega_2) \cup \cdots \cup (\omega_m)\} = P(\omega_1) + P(\omega_2) + \cdots + P(\omega_m)$
	$=\frac{m}{n}=A$ 所包含的基本事件数 基本事件总数
	若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空
	间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件 A,
几何概型	
	$P(A) = \frac{L(A)}{L(\Omega)}$ 。其中 L 为几何度量(长度、面积、体积)。
加法公式	P(A+B)=P(A)+P(B)-P(AB)
	当 P(AB) = 0 时, P(A+B) = P(A) + P(B)
	P(A-B)=P(A)-P(AB) 当 B \subset A 时, $P(A-B)=P(A)-P(B)$
减法公式	当 $A = \Omega$ 时, $P(\overline{B}) = 1 - P(B)$
	$\exists A=\Omega \cap J, P(B)=1-P(B)$
	定义 设 $A \times B$ 是两个事件,且 $P(A) > 0$,则称 $\frac{P(AB)}{P(A)}$ 为事件 A 发生条件下,事
条件概率	件 B 发生的条件概率,记为 $P(B/A) = \frac{P(AB)}{P(A)}$ 。
	条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 $P(\Omega/B)=1 \Rightarrow P(\overline{B}/A)=1-P(B/A)$
	乘法公式: $P(AB) = P(A)P(B/A)$
またハー	更一般地,对事件 A ₁ , A ₂ , ···A _n , 若 P(A ₁ A ₂ ···A _{n-1})>0,则有
乘法公式	$P(A_1A_2A_n) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1A_2)P(A_n \mid A_1A_2$
	A_{n-1})
	①两个事件的独立性
	设事件 $A \setminus B$ 满足 $P(AB) = P(A)P(B)$, 则称事件 $A \setminus B$ 是相互独立的。
X-L ->- L-1.	若事件 A 、 B 相互独立,且 $P(A) > 0$,则有
独立性	$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$
	若事件 A 、 B 相互独立,则可得到 \overline{A} 与 \overline{B} 、 \overline{A} 与 \overline{B} 也都相互独立。

	必然事件 Ω 和不可能事件 0 与任何事件都相互独立。 0与任何事件都互斥。
	②多个事件的独立性
	设 ABC 是三个事件,如果满足两两独立的条件,
	P(AB) = P(A) P(B); $P(BC) = P(B) P(C)$; $P(CA) = P(C) P(A)$
	并且同时满足 P(ABC)=P(A)P(B)P(C)
	那么A、B、C相互独立。
	对于 n 个事件类似。
	设事件 B1, B2, · · · , Bn 满足
	$_{1}$ 。 $B_{1}, B_{2}, \dots, B_{n}$ 两两互不相容, $P(B_{i}) > 0 (i = 1, 2, \dots, n)$
全概公式	$A \subset \bigcup_{i=1}^n B_i$,则有
	$P(A) = P(B_1)P(A \mid B_1) + P(B_2)P(A \mid B_2) + \dots + P(B_n)P(A \mid B_n)$
	设事件 B1, B2,, Bn 及 A 满足
	1° B_1 , B_2 ,, B_n 两两五不相容, $P(Bi)_{>0}$, $i=1, 2,, n$,
	$A \subset \bigcup_{i=1}^n B_i$ $P(A) > 0$,
贝叶斯公	
式	$P(B_i/A) = \frac{P(B_i)P(A/B_i)}{\sum_{i=1}^{n} P(B_i)P(A/B_i)}, i=1, 2, \dots_n.$
)=1 此公式即为贝叶斯公式。
	$P(B_i)$, $(i=1, 2,, n)$, 通常叫先验概率。 $P(B_i/A)$, $(i=1, 2,, n)$
	n),通常称为后验概率。贝叶斯公式反映了"因果"的概率规律,并作出了
	"由果朔因"的推断。
	我们作了 ⁿ 次试验,且满足
	◆ 每次试验只有两种可能结果, A 发生或 A 不发生;
	◆ 每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发生与
	否是互不影响的。
伯努利概	这种试验称为伯努利概型,或称为 n 重伯努利试验。
型	用 p 表示每次试验 A 发生的概率,则 \overline{A} 发生的概率为 $1-p=q$,用 $P_n(k)$ 表
	示 n 重伯努利试验中 A 出现 $k(0 \le k \le n)$ 次的概率,
	$P_n(k) = C_n^k p^k q^{n-k}, k = 0,1,2,\dots,n$

第二章 随机变量及其分布

世の高散型随机变量 X 的可能取值为 X_k ($k=1,2,\cdots$) 且取各个值的概率,即事件 ($X=X_k$) 的概率为 $P(X=x_k)=p_k$, $k=1,2,\cdots$, 则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出: $\frac{X}{P(X=x_k)} = \sum_{k=1}^{\infty} p_k = 1$ (1) $p_k \ge 0$, $k=1,2,\cdots$, (2) $\sum_{k=1}^{\infty} p_k = 1$ 。 设 $F(x) = \sum_{k=1}^{\infty} f(x) dx$,则称 X 为连续型随机变量 X 的分布函数,若存在非负函数 $f(x)$,对任意实数 X ,有 $F(x) = \int_{\infty} f(x) dx$,则称 X 为连续型随机变量。 $f(x)$ 称为 X 的概率密度函数或密度函数,简称概率密度。 密度函数具有下面 4 个性质: 1° $f(x) \ge 0$ 。 2° $\int_{\infty}^{\infty} f(x) dx = 1$ 。 $P(X=x) \approx P(x < X \le x + dx) \approx f(x) dx$ 积分元 $f(x) dx$ 在连续型随机变量理论中所起的作用与 $P(X=x_k) = p_k$ 在离散型随机变量理论中所起的作用相类似。		
(2) 连续 型随机变 量的分布 密度	型随机变量的分布	件 $(X=X_k)$ 的概率为 $P(X=x_k)=p_k$, $k=1,2,\cdots$, 则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出: $\frac{X}{P(X=x_k)} \frac{x_1,x_2,\cdots,x_k,\cdots}{p_1,p_2,\cdots,p_k,\cdots}$ 显然分布律应满足下列条件:
与连续型 随机变量 的关系 $P(X=x) \approx P(x < X \le x + dx) \approx f(x)dx$ 程 和	型随机变 量的分布	$F(x)=\int_{-\infty}^x f(x)dx$,则称 X 为连续型随机变量。 $f(x)$ 称为 X 的概率密度函数或密度函数,简称概率密度。 密度函数具有下面 4 个性质: $1^\circ \qquad f(x) \geq 0$ 。
散型随机变量理论中所起的作用相类似。	与连续型 随机变量	积分元 $f(x)dx$ 在连续型随机变量理论中所起的作用与 $P(X = x_k) = p_k$ 在离
		散型随机变量理论中所起的作用相类似。

	VIII			
	设 <i>X</i> 为随	i机变量, x 是任意实数,则函数		
	F(x) = I	$P(X \le x)$		
	称为随机变量	X的分布函数,本质上是一个累积函数。		
	P(a < X)	$\leq b$) = $F(b) - F(a)$ 可以得到 X 落入区间 $(a,b]$ 的概率。分布		
	函数 F(x)表	示随机变量落入区间(- ∞,x]内的概率。		
	分布函数具有如下性质:			
	1° 0≤	$F(x) \le 1, -\infty < x < +\infty;$		
(4) 分布函数	2° F(.	(x) 是单调不减的函数,即 $(x_1 < x_2)$ 时,有 $(x_1) \le F((x_2))$;		
	3° F($-\infty$) = $\lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;		
	4° F((x+0) = F(x), 即 $F(x)$ 是右连续的;		
	5° $P(X = x) = F(x) - F(x - 0)$.			
	对于离散型随机变量, $F(x) = \sum_{x_k \le x} p_k$;			
	对于连续型随机变量, $F(x) = \int_{-\infty}^{x} f(x) dx$ 。			
	0-1 分布	P(X=1)=p, P(X=0)=q		
		在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生		
		的次数是随机变量,设为 X ,则 X 可能取值为 $0,1,2,\cdots,n$ 。		
(5) 八大分布		$P(X=k) = P_n(k) = C_n^k p^k q^{n-k} , \qquad \sharp \qquad \uparrow$		
	二项分布	$q = 1 - p, 0 ,$		
		则称随机变量 X 服从参数为 n , p 的二项分布。记为		
		$X \sim B(n, p)$.		
		当 $n=1$ 时, $P(X=k)=p^kq^{1-k}$, $k=0.1$,这就是 (0-1) 分		
		布,所以(0-1)分布是二项分布的特例。		

	设随机变量 X 的分布律为		
	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \lambda > 0, k = 0,1,2\cdots,$		
泊松分布	则称随机变量 X 服从参数为 λ 的泊松分布,记为 $X \sim \pi(\lambda)$ 或		
	者 $P(\lambda)$ 。 泊松分布为二项分布的极限分布 $(np=\lambda, n\to\infty)$ 。		
超几何分布	$P(X = k) = \frac{C_M^k \bullet C_{N-M}^{n-k}}{C_N^n}, k = 0,1,2\dots, l$ $l = \min(M, n)$		
	随机变量 X 服从参数为 n, N, M 的超几何分布,记为 H(n, N, M)。		
几何分布	$P(X = k) = q^{k-1}p, k = 1,2,3,\dots$, 其中 p≥0, q=1-p。		
	随机变量 X 服从参数为 p 的几何分布,记为 G(p)。		
	设随机变量 X 的值只落在 $[a, b]$ 内,其密度函数 $f(x)$ 在 $[a, b]$ 上为常数 $\frac{1}{b-a}$,即 $f(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{其他,} \end{cases}$		
均匀分布	则称随机变量 X 在[a, b]上服从均匀分布,记为 $X\sim U(a, b)$ 。 分布函数为		
	$F(x) = \int_{-\infty}^{x} f(x)dx = \begin{cases} 0, & x < a, \\ \frac{x - a}{b - a}, & a \le x \le b \\ 1, & x > b. \end{cases}$		
	当 a \leq x ₁ $<$ x ₂ \leq b 时, X 落在区间(x_1, x_2)内的概率为 $P(x_1 < X < x_2) = \frac{x_2 - x_1}{b - a}$ 。		

	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$
指数分布	其中 $\lambda > 0$,则称随机变量 X 服从参数为 λ 的指数分布。 X 的分布函数为
	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$
	记住积分公式: $\int_{0}^{+\infty} x^{n} e^{-x} dx = n!$

	正态分布	设随机变量 X 的密度函数为 $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$ 其中 μ 、 $\sigma > 0$ 为常数,则称随机变量 X 服从参数为 μ 、 σ 的正态分布或高斯(Gauss)分布,记为 $X \sim N(\mu, \sigma^2)$ 。 $f(x)$ 具有如下性质: $1^{\circ} f(x)$ 的图形是关于 $x = \mu$ 对称的; $2^{\circ} $
(6) 分位数	下分位表: F	$\mathcal{O}(X \le \mu_{\alpha}) = \alpha$;
(7) 函数分布	离散型	已知 X 的分布列为 $ \frac{X}{P(X=x_i)} \begin{vmatrix} x_1, & x_2, & \cdots, & x_n, & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \end{vmatrix}, $ $Y=g(X)$ 的分布列($y_i=g(x_i)$ 互不相等)如下: $ \frac{Y}{P(Y=y_i)} \begin{vmatrix} g(x_1), & g(x_2), & \cdots, & g(x_n), & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \\ p_1, & p_2, & \cdots, & p_n, & \cdots \\ \end{pmatrix} $ 若有某些 $g(x_i)$ 相等,则应将对应的 p_i 相加作为 $g(x_i)$ 的概率。
	连续型	先利用 X 的概率密度 $f_X(x)$ 写出 Y 的分布函数 $F_Y(y) = P(g(X) \le y)$, 再利用变上下限积分的求导公式求出 $f_Y(y)$ 。

第三章 二维随机变量及其分布

			如果二维	随机向量	ŧξ (X,	Y) 的所	有可能取	值为至多	可列
			个有序对(x,	y),则和	尔ζ为离	散型随机	量。		
			设 ξ = (X, Y)的	所有可能	能取值为	$(x_i, y_j)(i$	j = 1, 2,) ,
			且事件{ ξ=(:	(x_i, y_j)	的概率为	J <i>p_{i,i}</i> , 称			
	(1) 联合	离散型	$P\{(X,Y)\}$	$(x_i, y_i) = (x_i, y_i)$	(y_j) $\} = p$	$o_{ij}(i, j=1)$	1,2,)		
	分布		为 ξ = (X, Y)的分布	律或称え	为X和Y	的联合分	布律。联	合分
			布有时也用下	面的概率	区分布表	来表示:			
			X	<i>y</i> 1	y 2		y ;		
			X_I	p_{ll}	p_{12}		p_{lj}		1
			X2	p_{2I}	P22		p_{2j}		1
			:	:	:		:	:	
			X_i	p_{il}		•••	p_{ij}		
			:	:	:		:	÷	[
			这里 pij具有						_
			$(1) p_{ij} \geqslant 0$ $(2) \sum_{i} \sum_{j} \sum_{i} p_{ij}$,, ;				
			1 2 2 2 j	Py X					
			对于二维队		$\exists \xi = 0$	(X,Y),	如果存	在非负	函 数
			$f(x,y)(-\infty$	< <i>x</i> < +∞	$0,-\infty < y$	$y<+\infty$),	使对任法	意一个其	邻边
			分别平行于坐	经标轴的知	巨形区域	D,即D	= { (X, Y)	a <x<b, c<<="" td=""><td>y<d}< td=""></d}<></td></x<b,>	y <d}< td=""></d}<>
			有 P ((V , V) = i	D) [[.	C() J				
		连续型	$P\{(X,Y)\in I$	$D_j = \prod_{D} j$	(x, y)a	хау,			
则称 ξ 为连续型随机向量; 并称 $f(x,y)$ 为 ξ) 为ξ= (X, Y)的	分布			
			密度或称为X						
			分布密度 (1) f(x, y		具有下面	i两个性质	Ī:		
		1	\ 1 \ 1 \ A,)	, _ 0,					

(2) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$

(2) 二维	$\xi(X=x,Y=$	$(y) = \xi(X = x \cap Y = y)$		
随机变量				
	设 (X, Y) 为	二维随机变量,对于任意实数 x, y, 二元函数		
		$F(x, y) = P\{X \le x, Y \le y\}$		
	称为二维随机向量(X,Y)的分布函数,或称为随机变量 X 和 Y 的联合分布函数。			
		新数是一个以全平面为其定义域,以事件		
		$\infty < X(\omega_1) \le x, -\infty < Y(\omega_2) \le y$ } 的概率为函数值的一个实值函		
(3) 联合	数。分布函数	F(x, y)具有以下的基本性质:		
分布函数	$(1) 0 \le F(z)$	$(x, y) \le 1;$		
		分别对 x 和 y 是非减的,即		
		当 $x_2 > x_1$ 时,有 $F(x_2, y) \ge F(x_1, y)$; 当 $y_2 > y_1$ 时,有 $F(x, y_2) \ge F(x, y_1)$; (3) $F(x, y)$ 分别对 x 和 y 是右连续的,即		
	F(x, y) = F(x + 0, y), F(x, y) = F(x, y + 0);			
	(4) F(-∞,	$(x,-\infty) = F(-\infty, y) = F(x,-\infty) = 0, F(+\infty,+\infty) = 1.$		
	(5) 对于 x ₁	$< x_2, y_1 < y_2,$		
	$F(x_2, y_2) -$	$F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1) \ge 0.$		
(4) 离散型 与连续型的关系	$P(X = x, Y = y) \approx P(x < X \le x + dx, y < Y \le y + dy) \approx f(x, y) dxdy$			
	离散型	X 的边缘分布为		
		$P_{i\bullet} = P(X = x_i) = \sum_i p_{ij}(i, j = 1, 2, \dots);$		
		Y的边缘分布为		
(5) 边缘分布		$P_{\bullet j} = P(Y = y_j) = \sum_i p_{ij}(i, j = 1, 2, \dots)$		
	连续型	X的边缘分布密度为		
		$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy;$		
		Y的边缘分布密度为		
		$f_{\gamma}(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$		

		在已知 X=x ₁ 的条件下, Y 取值的条件分布为
	离散型	$P(Y = y_j \mid X = x_i) = \frac{p_{ij}}{p_{i\bullet}};$
	1717	在已知 Y=y/的条件下, X 取值的条件分布为
(6) 条件分布		$P(X = x_i \mid Y = y_j) = \frac{p_{ij}}{p_{\bullet j}},$
		在已知 Y=y 的条件下, X 的条件分布密度为
	连续型	$f(x \mid y) = \frac{f(x, y)}{f_Y(y)};$
		在已知 X=x 的条件下, Y 的条件分布密度为
		$f(y \mid x) = \frac{f(x, y)}{f_X(x)}$
	一般型	$F(X, Y) = F_X(x) F_Y(y)$
	离散型	$p_{ij} = p_{i\bullet} p_{\bullet j}$
		有零不独立
	连续型	$f(x, y) = f_x(x) f_y(y)$
		直接判断, 充要条件:
		①可分离变量
(7)		②正概率密度区间为矩形
独立性	二维正态分布	$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1} \right)^2 - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \left(\frac{y-\mu_2}{\sigma_2} \right)^2 \right]},$
		$\rho = 0$
	随机变量的	若 X ₁ , X ₂ , …X _a , X _{m+1} , …X _n 相互独立, h, g 为连续函数,则:
	函数	h (X ₁ , X ₂ , ··· X _n) 和 g (X _{n+1} , ··· X _n) 相互独立。
		特例: 若 X 与 Y 独立,则: h (X)和 g (Y)独立。
		例如: 若 X 与 Y 独立,则: 3X+1 和 5Y-2 独立。

设随机向量 (X, Y) 的分布密度函数为

$$f(x,y) = \begin{cases} \frac{1}{S_D} & (x,y) \in D \\ 0, & 其他 \end{cases}$$

其中 S_D 为区域 D 的面积,则称 (X,Y) 服从 D 上的均匀分布,记为 (X,Y) \sim U (D)。

例如图 3.1、图 3.2 和图 3.3。

(8) 二维均匀 分布

图 3.1

图 3.2

	设随机向量(X, Y)的分布密度函数为			
	$f(x,y) = \frac{1}{2\pi}$	$\frac{1}{e\sigma_1\sigma_2\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2-\frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\left(\frac{y-\mu_2}{\sigma_2}\right)^2\right]},$		
	其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, \rho < 1$ 是 5 个参数,则称(X,Y)服从二维正态分			
(9)	布,			
二维正态	记为 (X, Y)	\sim N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, ho$).		
	由边缘密度的 布,	1计算公式,可以推出二维正态分布的两个边缘分布仍为正态分		
	即 X~N $(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2).$			
	但是若 X~N(μ_1 , σ_1^2), Y ~ $N(\mu_2,\sigma_2^2)$,(X, Y)未必是二维正态分布。			
		根据定义计算: $F_Z(z) = P(Z \le z) = P(X + Y \le z)$		
	Z=X+Y	对于连续型, $f_{z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx$		
		两个独立的正态分布的和仍为正态分布($\mu_1+\mu_2,\sigma_1^2+\sigma_2^2$)。		
		n 个相互独立的正态分布的线性组合,仍服从正态分布。		
(10) 函数分布		$\mu = \sum_{i} C_i \mu_i$, $\sigma^2 = \sum_{i} C_i^2 \sigma_i^2$		
		若 $X_1, X_2 \cdots X_n$ 相 互 独 立 , 其 分 布 函 数 分 别 为		
	Z=max,min($F_{x_1}(x)$, $F_{x_2}(x)\cdots F_{x_n}(x)$,则 $Z=\max,\min(X_1,X_2,\cdots X_n)$ 的分布		
	$X_1, X_2, \cdots X_n$	函数为:		
		$F_{\max}(x) = F_{x_1}(x) \bullet F_{x_2}(x) \cdots F_{x_n}(x)$		
		$F_{\min}(x) = 1 - [1 - F_{x_1}(x)] \bullet [1 - F_{x_2}(x)] \cdots [1 - F_{x_n}(x)]$		

		$F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_2, n_1)}$
	F分布	服从第一个自由度为 n_1 ,第二个自由度为 n_2 的 F 分布, 记为 $F \sim f(n_1, n_2)$.
	P /\≠	*
		$F = \frac{X/n_1}{Y/n_2}$
		设 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$, 且 X 与 Y 独立, 可以证明
		$t_{1-\alpha}(n) = -t_{\alpha}(n)$
		服从自由度为 n 的 t 分布, 记为 T~t(n)。
		$T = \frac{X}{\sqrt{Y/n}}$
	t 分布	可以证明函数 ***
		$X \sim N(0,1), Y \sim \chi^2(n),$
		设 X, Y 是两个相互独立的随机变量, 且
		$Z = \sum_{i=1}^{k} Y_i \sim \chi^2 (n_1 + n_2 + \dots + n_k).$
		则
		$Y_i - \chi^2(n_i),$
		χ^2 分布满足可加性:设
	χ^2 分布	分布中的一个重要参数。
	2.0.4	所谓自由度是指独立正态随机变量的个数,它是随机变量
		服从自由度为 n 的 χ^2 分布,记为 W $\sim \chi^2(n)$ 。
		$W = \sum_{i=1}^{n} X_i^2$
		布,可以证明它们的平方和
		设 n 个随机变量 X_1, X_2, \cdots, X_n 相互独立,且服从标准正态分

第四章 随机变量的数字特征

(1)	离散型	连续型

	I			
	期望 期望就是平均值	设 X 是离散型随机变量,其分布	设 X 是连续型随机变量,其概率密 度为 f(x),	
		$k=1, 2, \dots, n,$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$	
		$E(X) = \sum_{k=1}^{n} x_k p_k$	(要求绝对收敛)	
		K=1	(安尔纪科权政)	
		(要求绝对收敛)	V - (V)	
		Y=g(X)	Y=g(X)	
	函数的期望	$E(Y) = \sum_{k=1}^{n} g(x_k) p_k$	$E(Y) = \int_{-\infty}^{+\infty} g(x) f(x) dx$	
	方差		+∞	
一维	D(X)=E[X-E(X)] ² , 标准差	$D(X) = \sum_{k} [x_{k} - E(X)]^{2} p_{k}$	$D(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x) dx$	
随机变量	$\sigma(X) = \sqrt{D(X)} ,$			
的数 字特 征		①对于正整数 k, 称随机变量 X 的 k 次幂的数学期望为 X 的 k	, , , , , , , , , , , , , , , , , , , ,	
100		阶原点矩,记为 v_k , 即 $v_k = E(X^k) = \sum_i x_i^k p_i,$	矩,记为 v_k ,即 $v_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx,$	
		k=1, 2, ···.	k=1, 2, ···.	
	矩	②对于正整数 k, 称随机变量 X 与 E (X) 差的 k 次幂的数学期		
		望为 X 的 k 阶中心矩,记为 μ_k ,	的 k 阶中心矩,记为 μ_k ,即	
		即	$\mu_k = E(X - E(X))^k$	
		$\mu_k = E(X - E(X))^k$	$\mu_k = E(X - E(X))$	
			$= \int_{-\infty}^{+\infty} (x - F(Y))^k f(x) dx$	
		$= \sum_{i} (x_i - E(X))^k p_i ,$	$\sum_{\infty} (x - E(X)) f(x) dx,$ $k=1, 2, \cdots.$	
		k=1, 2, ···.		
	切比雪夫不等式	设随机变量 X 具有数学期望 E (任意正数 ε , 有下列切比雪夫不	X) = μ , 方差 D (X) = σ², 则对于 等式	
		$P(X - \mu \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$		
		切比雪夫不等式给出了在未知 X 的分布的情况下,对概率		
		$P(X - \mu \ge \varepsilon)$		
		的一种估计,它在理论上有重要	意义。	

(2)	(1) E(C)=C		
期望	(2) E(CX)=CE(X)		
的 性		n n	
质	(3) $E(X+Y)=E(X)+E(X)$	$E(\sum_{i=1}^{n} C_i X_i) = \sum_{i=1}^{n} C_i E(X_i)$	
	(4) E(XY)=E(X) E(Y), 充分条件: X 和 Y 独立;	
		充要条件: X 和 Y 不相关。	
(3)	(1) D(C)=0; E(C)=		
方 差	(2) $D(aX)=a^2D(X)$;	E(aX) = aE(X)	
的 性	(3) $D(aX+b) = a^2D(X+b)$); $E(aX+b)=aE(X)+b$	
质	(4) $D(X) = E(X^2) - E^2$	()	
	(5) $D(X \pm Y) = D(X) +$)(Y), 充分条件: X 和 Y 独立;	
		充要条件: X 和 Y 不相关。	
	$D(X \pm Y) = D(X)$	+D(Y) ±2E[(X-E(X))(Y-E(Y))], 刃	心条件成立。
	而 E (X+Y)=E ())+E(Y), 无条件成立。	
		期望	方差
	0-1 分布 B(1, p)	p	p(1-p)
	// 2 (1, p)	P	P(Z P)
	二项分布 $B(n,p)$	np	np(1-p)
	泊松分布 $P(\lambda)$	λ	λ
(4) 常 见	几何分布 $G(p)$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
分布的期望和	超几何分布 $H(n, M, N)$	$\frac{nM}{N}$	$\frac{nM}{N} \left(1 - \frac{M}{N} \right) \left(\frac{N-n}{N-1} \right)$
方差	均匀分布 $U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	指数分布 e(λ)	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	正态分布 $N(\mu, \sigma^2)$	μ	σ^2
	χ ² 分布	n	2n
	t 分布	0	$\frac{n}{n-2} \text{ (n>2)}$

(5)维机量数特	期望	$E(X) = \sum_{i=1}^{n} x_i p_{i\bullet}$ $E(Y) = \sum_{j=1}^{n} y_j p_{\bullet j}$	$E(X) = \int_{-\infty}^{+\infty} x f_X(x) dx$ $E(Y) = \int_{-\infty}^{+\infty} y f_Y(y) dy$
	函数的期望	$E[G(X,Y)] = \sum_{i} \sum_{j} G(x_{i}, y_{j}) p_{ij}$	$E[G(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} G(x,y) f(x,y) dxdy$
	方差	$D(X) = \sum_{i} [x_i - E(X)]^2 p_{i\bullet}$ $D(Y) = \sum_{j} [x_j - E(Y)]^2 p_{\bullet j}$	$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f_X(x) dx$ $D(Y) = \int_{-\infty}^{+\infty} [y - E(Y)]^2 f_Y(y) dy$
	协方差	对于随机变量 X 与 Y ,称它们的二阶混合中心矩 μ_{11} 为 X 与 Y 的协方 差或相关矩,记为 σ_{XY} 或 $cov(X,Y)$,即 $\sigma_{XY} = \mu_{11} = E[(X - E(X))(Y - E(Y))].$ 与记号 σ_{XY} 相对应, X 与 Y 的方差 $D(X)$ 与 $D(Y)$ 也可分别记为 σ_{XX} 与 σ_{YY} 。	

			对于随机变量 X 与 Y, 如果 D (X) >0, D(Y) >0, 则称
			$\sigma_{\scriptscriptstyle XY}$
			$rac{\sigma_{_{XY}}}{\sqrt{D(X)}\sqrt{D(Y)}}$
			为 X 与 Y 的相关系数,记作 $ ho_{XY}$ (有时可简记为 $ ho$)。
			$\mid \rho \mid \leqslant$ 1,当 $\mid \rho \mid$ =1 时 称 X 与 Y 完全相关: $P(X=aY+b)=1$
	相关系数	te l	完全相关 $\left\{ egin{aligned} & \Xi ho = 1 & \exists ho = 1 & \exists ho = -1 & \exists \ ho = -1 & \exists \ \rho = -1 $
			而当 $\rho = 0$ 时,称 X 与 Y 不相关。
			以下五个命题是等价的:
			2cov(X, Y) = 0;
			$\mathfrak{B}E(XY) = E(X)E(Y);$
	协方差矩	巨阵	$\begin{pmatrix} \sigma_{XX} & \sigma_{XY} \\ \sigma_{YY} & \sigma_{YY} \end{pmatrix}$
			$(\sigma_{yx} - \sigma_{yy})$
			对于随机变量 X 与 Y , 如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的
	混合矩		$k+1$ 阶混合原点矩,记为 ν_{kl} ; $k+1$ 阶混合中心矩记为:
			$u_{kl} = E[(X - E(X))^{k} (Y - E(Y))^{l}].$
(6)	(i) cov (X,	Y)=cov (Y,	X);
协方	(ii) $cov(aX, bY) = ab cov(X, Y)$;		
差 的			
性质	(iv) cov(X,	cov(X, Y) = E(XY) - E(X) E(Y).	
(7)独立	(i) 若附	趙机变量 Χ 与 Υ	Y 相互独立,则 $ ho_{xy}=0$; 反之不真。
和不相关	(ii) 若	(X, Y) ∼N ($\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$),
ТИХ	则 X	5 与 Y 相互独立	Z的充要条件是 X 和 Y 不相关。

第五章 大数定律和中心极限定理

	切比雪 夫大数 定律	设随机变量 X_1 , X_2 , …相互独立,均具有有限方差,且被同一常数 C 所界: $D(X_i) < C(i=1,2,\cdots)$,则对于任意的正数 ε ,有 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n E(X_i)\right < \varepsilon\right) = 1.$ 特殊情形: 若 X_1 , X_2 , …具有相同的数学期望 $E(X_1) = \mu$,则上式成为 $\lim_{n\to\infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$
(1) 大数定律 $\overline{X} \rightarrow \mu$	伯努利大数定律	设 μ 是 μ 次独立试验中事件 μ 发生的次数, μ 是事件 μ 在 每次试验中发生的概率,则对于任意的正数 μ ,有 $\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right <\varepsilon\right)=1.$ 伯努利大数定律说明,当试验次数 μ 很大时,事件 μ 发生的频率与概率有较大判别的可能性很小,即 $\lim_{n\to\infty} P\left(\left \frac{\mu}{n}-p\right \geq\varepsilon\right)=0.$ 这就以严格的数学形式描述了频率的稳定性。
	辛钦大数定律	设 X_1 , X_2 , …, X_n , …是相互独立同分布的随机变量序列,且 E $(X_n) = \mu$,则对于任意的正数 ε 有 $\lim_{n \to \infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \mu\right < \varepsilon\right) = 1.$
(2) 中心极限定理 $\overline{X} \to N(\mu, \frac{\sigma^2}{n})$	列维一 林德伯 格定理	设随机变量 X_1 , X_2 , …相互独立,服从同一分布,且具有相同的数学期望和方差: $E(X_k) = \mu, D(X_k) = \sigma^2 \neq 0 (k = 1, 2, \cdots)$,则随机变量

	棣莫弗 一拉普 拉斯定 理	设随机变量 X_n 为具有参数 n, p (0 <p<1) 的二项分布,则对于<br="">任意实数 x, 有 $=\lim_{n\to\infty}P\bigg\{\frac{X_n-np}{\sqrt{np(1-p)}}\leq x\bigg\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{t^2}{2}}dt.$</p<1)>
(3) 泊松定理	其中 k=0	

第六章 样本及抽样分布

	总体	在数理统计中,常把被考察对象的某一个(或多个)指标的全
		体称为总体(或母体)。我们总是把总体看成一个具有分布的随
		机变量 (或随机向量)。
	个体	总体中的每一个单元称为样品(或个体)。
	样本	我们把从总体中抽取的部分样品 x_1, x_2, \dots, x_n 称为样本。样本
		中所含的样品数称为样本容量,一般用 n 表示。在一般情况下,
(1)数理		总是把样本看成是 n 个相互独立的且与总体有相同分布的随机
		变量,这样的样本称为简单随机样本。在泛指任一次抽取的结
统 计 的 基 本概念		果时, x_1, x_2, \cdots, x_n 表示 n 个随机变量 (样本);在具体的一次
		抽取之后, x_1, x_2, \cdots, x_n 表示 n 个具体的数值 (样本值)。我们
		称之为样本的两重性。
	样本函数和 统计量	设 x_1, x_2, \cdots, x_n 为总体的一个样本,称
		$\varphi = \varphi \qquad (x_1, x_2, \cdots, x_n)$
		为样本函数,其中 φ 为一个连续函数。如果 φ 中不包含任何未
		知参数,则称 φ (x_1, x_2, \dots, x_n) 为一个统计量。

	常见统计量及其性质	样本均值
(2) 正态 总体下的	正态分布	设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数 $u^{\frac{def}{\sigma}} \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0,1).$
四大分布	t 分布	设 x_1,x_2,\cdots,x_n 为来自正态总体 $N(\mu,\sigma^2)$ 的一个样本,则样本函数 $t^{\frac{def}{2}}\frac{x-\mu}{s/\sqrt{n}}\sim t(n-1),$ 其中 $t(n-1)$ 表示自由度为 $n-1$ 的 t 分布。

	χ ² 分布	设 x_1, x_2, \dots, x_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则样本函数 $w^{\frac{def}{2}} \frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1),$
		其中 $\chi^2(n-1)$ 表示自由度为 n-1 的 χ^2 分布。
		设 x_1, x_2, \cdots, x_n 为来自正态总体 $N(\mu, \sigma_1^2)$ 的一个样本,而
		y_1, y_2, \dots, y_n 为来自正态总体 $N(\mu, \sigma_2^2)$ 的一个样本,则样本
		函数
	F分布	$F = \frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1),$ 其中
		$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \overline{x})^2, \qquad S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \overline{y})^2;$
		$F(n_1-1,n_2-1)$ 表示第一自由度为 n_1-1 , 第二自由度为
		n_2-1 的 F 分布。
(3) 正态 总体下分	\overline{X} ±	$rac{1}{2} S^2$ 独立。
布的性质		

第七章 参数估计

		设总体 X 的分布中包含有未知数 $\theta_1, \theta_2, \cdots, \theta_m$,则其分布函数可以表成
		$F(x;\theta_1,\theta_2,\cdots,\theta_m)$. 它的 k 阶原点矩 $v_k=E(X^k)(k=1,2,\cdots,m)$ 中也
		包含了未知参数 $\theta_1,\theta_2,\cdots,\theta_m$, 即 $v_k=v_k(\theta_1,\theta_2,\cdots,\theta_m)$ 。又设
		x_1, x_2, \dots, x_n 为总体 X 的 n 个样本值, 其样本的 k 阶原点矩为
		1 2
		$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{k} (k=1,2,\cdots,m).$
		这样,我们按照"当参数等于其估计量时,总体矩等于相应的样本矩"
		的原则建立方程,即有
(1)	矩估计	$v_1(\hat{\theta_1}, \hat{\theta_2}, \dots, \hat{\theta_m}) = \frac{1}{n} \sum_{i=1}^n x_i,$
从旧日		$(\hat{a}, \hat{a}, \hat{a}, \hat{b}, b$
		$\begin{cases} v_2(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^2, \end{cases}$
		$v_m(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_m) = \frac{1}{n} \sum_{i=1}^n x_i^m.$
		由上面的 m 个方程中,解出的 m 个未知参数 $(\hat{\theta_1}, \hat{\theta_2}, \cdots, \hat{\theta_m})$ 即为参数
		$(\theta_1, \theta_2, \cdots, \theta_m)$ 的矩估计量。
		若 $\hat{\boldsymbol{\theta}}$ 为 $\boldsymbol{\theta}$ 的矩估计, $g(x)$ 为连续函数,则 $g(\hat{\boldsymbol{\theta}})$ 为 $g(\boldsymbol{\theta})$ 的矩估计。

		当 总 体 X 为 连 续 型 随 机 变 量 时 , 设 其 分 布 密 度 为
	极大似然估计	$f(x; \theta_1, \theta_2, \cdots, \theta_m)$, 其中 $\theta_1, \theta_2, \cdots, \theta_m$ 为未知参数。又设
		x_1, x_2, \dots, x_n 为总体的一个样本,称
		$L(\theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n f(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数,简记为 L_o . 当 总 体 X 为 离 型 随 机 变 量 时 , 设 其 分 布 律 为
		$P{X = x} = p(x; \theta_1, \theta_2, \dots, \theta_m)$,则称
		$L(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_m) = \prod_{i=1}^n p(x_i; \theta_1, \theta_2, \dots, \theta_m)$
		为样本的似然函数。
		若似然函数 $L(x_1,x_2,\cdots,x_n;\theta_1,\theta_2,\cdots,\theta_m)$ 在 $\hat{\theta}_1,\hat{\theta}_2,\cdots,\hat{\theta}_m$ 处取
		到最大值,则称 $\hat{\boldsymbol{\theta}}_1,\hat{\boldsymbol{\theta}}_2,\cdots,\hat{\boldsymbol{\theta}}_m$ 分别为 $\boldsymbol{\theta}_1,\boldsymbol{\theta}_2,\cdots,\boldsymbol{\theta}_m$ 的最大似然估计值,
		相应的统计量称为最大似然估计量。
		$\left. \frac{\partial \ln L_n}{\partial \theta_i} \right _{\theta_i = \hat{\theta}_i} = 0, i = 1, 2, \cdots, m$
		若 $\hat{\boldsymbol{\theta}}$ 为 $\boldsymbol{\theta}$ 的极大似然估计, $g(x)$ 为单调函数,则 $g(\hat{\boldsymbol{\theta}})$ 为 $g(\boldsymbol{\theta})$ 的极大似然估计。
(2)估 计量的 评选标 准	无偏性	设 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 为未知参数 θ 的估计量。若E ($\hat{\theta}$) = θ ,则称
		$\hat{m{ heta}}$ 为 $m{ heta}$ 的无偏估计量。
		$E(\overline{X}) = E(X), E(S^2) = D(X)$
	有效性	设 $\hat{\theta}_1 = \hat{\theta}_1(x_1, x_{,2}, \dots, x_n)$ 和 $\hat{\theta}_2 = \hat{\theta}_2(x_1, x_{,2}, \dots, x_n)$ 是未知参数 θ
		的两个无偏估计量。若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效。
	I	

	一致性	设 $\hat{\boldsymbol{\theta}}_n$ 是 $\boldsymbol{\theta}$ 的一串估计量,如果对于任意的正数 $\boldsymbol{\varepsilon}$,都有 $\lim P(\hat{\boldsymbol{\theta}}_n - \boldsymbol{\theta} > \boldsymbol{\varepsilon}) = 0,$
		$n \to \infty$
		则称 $\hat{m{ heta}}_n$ 为 $m{ heta}$ 的一致估计量(或相合估计量)。
		若 $\hat{\theta}$ 为 θ 的无偏估计,且 $D(\hat{\theta}) \to 0 (n \to \infty)$,则 $\hat{\theta}$ 为 θ 的一致估计。
		只要总体的 E(X)和 D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。
	置信区间和置信度	设总体 X 含有一个待估的未知参数 θ 。如果我们从样本 $x_1, x_{,_2}, \cdots, x_n$ 出
		发 , 找 出 两 个 统 计 量 $\theta_1=\theta_1(x_1,x,2,\cdots,x_n)$ 与
		$\theta_2=\theta_2(x_1,x,_2,\cdots,x_n)$ $(\theta_1<\theta_2)$, 使 得 区 间 $[\theta_1,\theta_2]$ 以
		$1-\alpha(0<\alpha<1)$ 的概率包含这个待估参数 θ ,即
		$P\{\theta_1 \le \theta \le \theta_2\} = 1 - \alpha,$
		那么称区间 $[heta_1, heta_2]$ 为 $ heta$ 的置信区间, $1-lpha$ 为该区间的置信度(或置
		信水平)。
(3)	单总期方区计态的和的估	设 $x_1, x_{,2}, \cdots, x_n$ 为总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,在置信度为 $1-\alpha$
区间估 计		下,我们来确定 μ 和 σ^2 的置信区间 $[\theta_1,\theta_2]$ 。具体步骤如下:
		(i)选择样本函数; (ii)由置信度1-α,查表找分位数;
		(iii)导出置信区间 $[heta_1, heta_2]$ 。
		已知方差,估计均值 (i)选择样本函数
		$u = \frac{\overline{x - \mu}}{\sigma_0 / \sqrt{n}} \sim N(0,1).$
		(ii) 查表找分位数
		$P\left(-\lambda \le \frac{\bar{x} - \mu}{\sigma_0 / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
		(iii) 导出置信区间
		$\left[\bar{x} - \lambda \frac{\sigma_0}{\sqrt{n}}, \bar{x} + \lambda \frac{\sigma_0}{\sqrt{n}} \right]$

	(i)选择样本函数 -
	$t = \frac{x - \mu}{S / \sqrt{n}} \sim t(n - 1).$
	(ii)查表找分位数
未知方差,估计均值	$P\left(-\lambda \le \frac{\bar{x} - \mu}{S / \sqrt{n}} \le \lambda\right) = 1 - \alpha.$
	(iii) 导出置信区间
	$\left[\overline{x} - \lambda \frac{S}{\sqrt{n}}, \overline{x} + \lambda \frac{S}{\sqrt{n}} \right]$
	(i)选择样本函数
	$w = \frac{(n-1)S^2}{\sigma^2} \sim \kappa^2 (n-1).$
	(ii) 查表找分位数
方差的区间估计	$P\left(\lambda_1 \le \frac{(n-1)S^2}{\sigma^2} \le \lambda_2\right) = 1 - \alpha.$
	(iii) 导出 σ 的置信区间
	$\left[\sqrt{\frac{n-1}{\lambda_2}}S, \sqrt{\frac{n-1}{\lambda_1}}S\right]$