Categorical Data Analysis

Table of contents

1	Goals 1.1 Goals	1 1
2	Levels of measurement	2
	2.1 Levels of measurement	2
3	General linear model (GLM)	5
	3.1 General linear model (GLM)	5
	3.2 Assumptions	6
	3.3 Violations of assumptions	11
	3.4 What NOT to do	15
4	Generalized linear model (GLiM)	17
	4.1 Extension of GLM	17
	4.2 Similarities and differences	20
5	Summary	22
	5.1 Summary	22

1 Goals

1.1 Goals

1.1.1 Goals of this section

- Review linear regression
 - **Assumptions** and how categorical variables violate them
- Introduce generalized linear model (GLiM) framework

- Specific models in the GLiM family
 - Logistic regression
 - Ordinal and multinomial logistic regression
 - Poisson regression (inc negative binomial regression)
 - A few others, time permitting

1.1.2 Goals of this lecture

- What does "categorical" mean?
 - Levels of measurement of variables
- Linear regression
 - Assumptions
 - Violation of assumptions
- Generalized linear model (GLiM) framework

2 Levels of measurement

2.1 Levels of measurement

2.1.1 Continuous vs categorical?

- We talk about "continuous" variables or "categorical" variables
 - Sometimes the distinctions between them are easy to see
 - But often they are not
- We are going to talk about levels of measurement for variables
 - A more fine-grained, nuanced discussion of types of variables
- Focus on why it matters

2.1.2 Levels of measurement

- Attributed to Stevens (1946)
- Four **ordered** levels of measurement
 - Nominal
 - Ordinal
 - Interval
 - Ratio

2.1.3 Nominal variables

- Categories with no intrinsic ordering
 - Nominal = "name"
- Examples
 - Department: Psychology, Epidemiology, Statistics, Business
 - Religion: Christian, Jewish, Muslim
 - Ice cream flavor: vanilla, chocolate, strawberry

2.1.4 Ordinal variables

- Categories with some intrinsic ordering
 - Ordinal = "ordered"
 - Differences between categories are **not meaningful**
- Examples
 - Dose of treatment: low, medium, high
 - Rankings: 1st, 2nd, 3rd, 4th
 - Education: high school, some college, college grad, graduate
 - Likert scales: agree, neutral, disagree

2.1.5 Interval variables

- Quantitative variables with no meaningful 0 point
 - ("Meaningful 0": value of 0 = nothing)
 - **Differences** between values are meaningful but **ratios** are not!
- Example: Temperature in Fahrenheit or Celsius
 - Difference from 100F to 90F = difference from 90F to 80F
 - But 100F is **not twice** 50F (because 0F is arbitrary)
- Most "continuous" variables you deal with are interval
 - Most statistical procedures assume interval-level measurement

2.1.6 Ratio variables

- Quantitative variables with meaningful 0 point
 - ("Meaningful 0": value of 0 = nothing)
 - **Differences** between values are meaningful and so are **ratios**!
- Example: Temperature in Kelvin
 - **Difference** from 100K to 90K = difference from 90K to 80K
 - 100K is **twice as hot** as 50K (0K is *zero* molecular movement)
- Few variables in the behavioral sciences are ratio-level
 - Age, weight

2.1.7 Summary of levels of measurement

1. Nominal: unordered categories

2. Ordinal: ordered categories

3. Interval: quantitative with no meaningful 0 point

4. Ratio: quantitative with meaningful 0 point

2.1.8 Stevens (1946)

The levels of measurement determines what **mathematical** (and **statistical**) operations you can perform

Mathematical operation	Nominal	Ordinal	Interval	Ratio
equal, not equal	✓	✓	✓	√
greater or less than		\checkmark	\checkmark	\checkmark
add, subtract			\checkmark	\checkmark
multiply, divide				\checkmark
central tendency	mode	median	mean	mean

2.1.9 Categorical outcomes

- Most "categorical" variables are nominal or ordinal
 - **Binary** variables (e.g., yes / no)
 - Ordered categories (e.g., Likert items)
 - Unordered categories (e.g., race / ethnicity)

- Counts are considered categorical but are ratio
- ANOVA and regression models focus on means
 - We can't calculate means for nominal or ordinal variables
 - What can we do?

3 General linear model (GLM)

3.1 General linear model (GLM)

3.1.1 General linear model (GLM)

- The general linear model (GLM) is
 - a "general" statistical model
 - to predict a single continuous, conditionally normally distributed outcome variable
 - from one or more continuous or categorical predictors

3.1.2 ANOVA and linear regression are GLM

- Analysis of variance (ANOVA) and linear regression (OLS regression) are both special cases of the general linear model
- ANOVA
 - 1 continuous outcome
 - 1 or more *categorical* predictors
- Linear regression
 - 1 continuous outcome
 - 1 or more continuous or categorical predictors

3.1.3 Linear regression

Two equivalent ways to present the linear regression equation

1. Predicted score is a fxn of coefficients and predictors, no error term

$$\hat{Y}_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_p X_{pi}$$

2. Observed score is a fxn of coefficients, predictors, and error term

$$Y_i = b_0 + b_1 X_{1i} + b_2 X_{2i} + \dots + b_p X_{pi} + e_i$$

3.1.4 Linear regression: $\hat{Y} = 8.55 + 2.97 X$

3.2 Assumptions

3.2.1 Assumptions of GLM

- \bullet There are three major assumptions of GLM that are required to make valid statistical inferences
 - These assumptions are about the **residuals** of the model
- 1. Independence
- 2. Constant variance (homoskedasticity)
- 3. Conditional normality

3.2.2 Residuals

- Each subject has
 - Observed outcome value: Y_i

 $\begin{array}{lll} & - \ \mathbf{Predicted} \ \mathrm{outcome} \ \mathrm{value:} \ \hat{Y}_i \\ & - \ \mathbf{Residual} \ \mathrm{value:} \ e_i = Y_i - \hat{Y}_i \end{array}$

3.2.3 Independence

- Independence of observations means that subject i's values do not depend on subject j's values
 - Independent observations will be uncorrelated
 - But lack of correlation doesn't mean they're independent
- Non-independence occurs because of clustering of observations in groups (e.g., families, classrooms) or repeated observations on the same person over time
 - Not specific to categorical outcomes, but can always happen

3.2.4 Constant variance

- **Homoskedasticity**: The variance of the residuals is **constant**, regardless of the value of the predictor(s)
 - Heteroscedasticity is the opposite (non-constant variance)
- Any variable can display heteroskedasticity
 - Categorical variables **typically** display heteroskedasticity
 - Binary variables (0,1) show increasing then decreasing variance
 - Count variables often show increasing variance

3.2.5 Constant variance

3.2.6 Constant variance

3.2.7 Conditional normality

- Residuals are normally distributed at each value of the predictor(s)
 - Distribution of outcome variable needn't be normal
 - Overall distribution of residuals needn't be normal
 - Though one or both will often be true
- Categorical outcomes often result in non-normal residuals
 - Often discrete and bounded
 - The normal distribution is **continuous** and **unbounded**

3.2.8 Conditional normality

3.2.9 Conditional normality

3.2.10 Conditional normality: Rough approximation

3.3 Violations of assumptions

3.3.1 Violations: Non-normality of residuals

- Most statistical tests (such as t-tests of regression coefficients) are **parametric** tests that assume **normal distributions**
 - Non-normality of residuals means that these tests are not appropriate and will be biased
- I'm not referring to slight deviations from normality here
 - There is NO WAY to make a binary variable "approximately normal"

3.3.2 Violation of normality: Figures

3.3.3 Violation of normality: Figures

3.3.4 Violation of normality: Figures

3.3.5 Violations: Heteroskedasticity

- Heteroskedasticity leads to bias in standard errors
 - Standard error may be too high or too low
- The t-test of a regression coefficient: $t = b/se_b$
 - where se_b is a function of the ${\bf constant}$ standard deviation of the residuals, σ
 - If the residuals have **non-constant variance**, there is not a single value of σ to use in calculating se_b

3.3.6 Violation of homoskedasticity: Figure

3.3.7 Violation of homoskedasticity: Figure

3.3.8 Violation of homoskedasticity: Figure

3.4 What NOT to do

3.4.1 What NOT to do

- Historically, people have either **ignored** these violations or have used **transformations** of the outcome variable
 - e.g., natural log of a count, square root of a proportion
- Problem: Transformations don't actually do what we think they do
 - May slightly normalize the univariate distribution
 - But don't fix heteroskedasticity or conditional non-normality of residuals

3.4.2 Count outcome

3.4.3 Residuals for count outcome in linear regression

3.4.4 Transform count: In(count)

3.4.5 Residuals with In(count)

4 Generalized linear model (GLiM)

4.1 Extension of GLM

4.1.1 GLiM is a "generalized" version of GLM

- Linear regression (GLM)
 - 1 continuous and conditionally normally distributed outcome
 - 1 or more continuous or categorical predictors
- Generalized linear model (GLiM)
 - 1 outcome that **may or may not** be continuous or conditionally normally distributed
 - 1 or more continuous or categorical predictors

4.1.2 GLiM family of models

- The generalized linear model (GLiM) is not just one model
 - It is a **family** of regression models

 Choose features (i.e., residual distribution) to match the characteristics of your outcome variable

4.1.3 GLiM framework

- All GLiMs have a similar underlying **framework**
 - Random component: distribution of the residuals
 - Systematic component: linear combination of predictors and regression coefficients
 - Link function: relates random and systematic components

4.1.4 Random component

- Distribution of residuals
 - Typically same as (conditional) distribution of the outcome
- GLiMs can use any distribution in the exponential family
 - Normal, exponential, binomial, multinomial, Poisson
 - * All have $e^{something}$ in their probability distribution
 - * Continuous outcome: (conditional) normal distribution
 - * Binary outcome: (conditional) binomial distribution
 - * Count outcome: (conditional) Poisson distribution

4.1.5 Systematic component

- In GLM, we talk about \hat{Y} , the expected or predicted value of Y
 - In GLiM, we will talk about η (eta), which is **some function of** \hat{Y}
 - (More on the "some function of" in a minute...)
- Specifically, we say that η is a function of the predictors (Xs) and regression coefficients (bs)
 - Also called the "linear predictor"
 - Systematic component: $\eta = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$

4.1.6 Link function

- The link function relates \hat{Y} (expected value of Y) to η
 - What needs to happen to get a straight line (systematic)
- Depends on the outcome type and random component
 - You generally won't have any intuition about this
 - Canonical links: Most commonly used, easiest to estimate
 - * Identity link function: $\hat{Y} = \eta$
 - * Logit link function: $logit(\hat{Y}) = ln(\frac{\hat{Y}}{1-\hat{V}}) = \eta$
 - * Natural log link function: $ln(\hat{Y}) = \eta$

4.1.7 GLiM example: Putting it together

- Continuous and normally distributed Y predicted by X
 - Systematic component: $\eta = b_0 + b_1 X$
 - Random component: Normal distribution
 - Link function: Identity $(\hat{Y} = \eta)$
 - Put them together:

 - $$\label{eq:second_equal} \begin{split} *~\hat{Y} &= \eta = b_0 + b_1 X \\ *~ \text{where the residuals} \sim N(0, \sigma^2) \end{split}$$

4.1.8 GLiM parts

- Even with this example, the three parts are probably a little abstract right now
- Next week, we'll talk about the specific example of logistic regression
 - That should make it more concrete
 - We'll also start talking more about **distributions** which should help with this idea of "picking a residual distribution"

4.1.9 Transformation of the predicted value

- I just told you not to transform the outcome, so ???
 - Notice that the link function uses \hat{Y} , not Y
 - Don't: **Transform** then *predict*
 - Do (using GLiM): **Predict** then *transform*

- For a linear transformation (add, subtract, multiply by a constant, identity), order doesn't matter
 - For a **non-linear** transformation (ln, logit, etc.), **order matters**

4.2 Similarities and differences

4.2.1 The same...

- t-test is a special case of ANOVA
- ANOVA is a special case of regression
- Linear regression and ANOVA are special cases of GLiM
 - GLiM with identity link and normally distributed residuals
- For a normally distributed outcome, you have a choice of using a regression procedure or using a GLiM procedure

4.2.2 ... with some differences

~	Linear regression	GLiM
Estimation	Ordinary least squares (OLS)	Maximum likelihood (ML)
Missing data	Listwise deletion	Maximum likelihood (ML)
Tests	t-tests	$z \text{ or } \chi^2\text{-tests*}$
Overall	R^2	Pseudo- R^2

^{*} For a normal outcome, R gives t-tests in GLiM procedure

4.2.3 Linear regression procedure

```
model1_lr <- lm(y ~ x, data1)
summary(model1_lr)</pre>
```

Call:

lm(formula = y ~ x, data = data1)

Residuals:

```
Min 1Q Median 3Q Max -55.087 -15.069 -0.278 15.475 65.242
```

```
Coefficients:
```

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.5513 2.5881 3.304 0.00133 **
x 2.9727 0.4557 6.523 3.03e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 25.27 on 98 degrees of freedom Multiple R-squared: 0.3028, Adjusted R-squared: 0.2957 F-statistic: 42.56 on 1 and 98 DF, p-value: 3.025e-09

4.2.4 GLiM procedure

```
model1_glim <- glm(y ~ x, data1, family = gaussian(link = "identity"))
summary(model1_glim)</pre>
```

Call:

glm(formula = y ~ x, family = gaussian(link = "identity"), data = data1)

Deviance Residuals:

Min 1Q Median 3Q Max -55.087 -15.069 -0.278 15.475 65.242

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.5513 2.5881 3.304 0.00133 **

x 2.9727 0.4557 6.523 3.03e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 638.64)

Null deviance: 89764 on 99 degrees of freedom Residual deviance: 62587 on 98 degrees of freedom

AIC: 933.7

Number of Fisher Scoring iterations: 2

5 Summary

5.1 Summary

5.1.1 Summary of this week

- What does "categorical" mean?
 - Levels of measurement of variables
- Linear regression
 - Assumptions
 - Violation of assumptions
- Generalized linear model (GLiM) framework

5.1.2 Next few weeks

- GLiMs that are used in psychology
 - Binary outcomes: Logistic (and probit) regression
 - Ordered categories (3+): Ordinal logistic regression
 - Unordered categories (3+): Multinomial logistic regression
 - Count outcomes: Poisson regression, overdispersed Poisson regression, negative binomial regression, excess zeroes versions of these models