System Design And Modelling

PRESENTED BY GROUP 22

Outline

- 1. Introduction
- 2. System Design
- 3. System Modelling

1. Introduction

Our system design and modeling process involved grouping functionalities based on similarities in implementation and breaking them down into modules, each providing a specific set of functions.

This approach was used to come up with the system design and the system model using UML diagrams.

2. System Design

In coming up with the system design for instance, we grouped the **Request for help and report disaster.**Them we came up with the following modules:

- Validation of Users Statement
 - Validate existence of location provided
 - 2. Ensure contact image is correctly provided
 - Check disaster exists
 - 4. Ensure video format is correct, size limits
 - 5. Ensure description provided meets minimum length criteria
- ii. Verification and validation of user statement
- iii. Feedback based on authenticity

Choosing Architecture

In choosing our architecture, we mainly took into consideration the non-functional requirements, since the non-functional requirements will be directly affected by the architecture. We mainly considered the following:

- Scalability
- 2. Performance
- 3. Offline Functionality

Based on this, we combined two architectures

- Client-sever Architecture
- Offline-first Architecture

Technologies

Considering the architecture and importance of the application, we chose to build a hybrid application using the following technologies:

- Client: Ionic with ReactTs
- Server: Node Js
- Database: MongoDB

3. System Modelling

This is the process of creating diagrams and representations of a system to understand how it works and how its parts interact.

- Context Diagram
- Use Case Diagram
- 3. Sequence Diagram
- 4. Class Diagram
- 5. Deployment Diagram

3.1 Context Diagram

3.1 Context Diagram

A context diagram is a high-level visual representation of a system and its interactions with external entities.

Components of a context diagram include:

i. System

ii. External Entities

- a. Users
- b. Authorities
- c. External Services

iii. Data Flows

3.2 Use Case Diagram

A use case diagram is a graphical representation that depicts how users interact with a system and its functionalities.

Actors:

- ı. User
- 2. Emergency Responders
- 3. External APIs (Geospatial Data Provider

3.3 Sequence Diagram

A sequence diagram is a visual representation of the message flow between objects in a system, arranged in chronological order. It shows process interactions arranged in time sequence.

- Report Disaster and Request For Help
- 2. Geospatial Data Integration

3.3.1 Report Disaster and Request for Help

This sequence diagram shows the steps involved in a user reporting a disaster event and requesting assistance during a disaster.

Objects

- Disaster Management System
- External System API
- Media/Database

3.3.2 Geospatial Data Integration

This sequence diagram illustrates how the DMS retrieves and integrates geospatial data to enhance situational awareness during a disaster.

Objects:

- Disaster Management System (DMS)
- 2. Geospatial Data Provider API
- 3. Geospatial Data Analytics Provider API and Evacuation Route Service Provider API (Optional
- 4. Mapping Service Provider API

3.4 Class Diagram

The class diagram of our disaster management system shows the various classes their attributes, methods and relationship to other classes.

3.5 Deployment Diagram

THE END!!!

