SECRET

NO PHOTOCOPY This paper contains pages

Page ____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Year: 2024(Sem 2)Time allow: 1001 Name of Examiners: ._

Instruction to Candidate: (only on page 1) (1)

This paper contains _____ questions. Candidates must answer _____ questions. (2)

Question No __1

Diagonalize A and compute $V\mathbf{A}kV^{-1}$ to prove this formula for A^k :

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \text{ has } A^k = \frac{1}{2} \begin{pmatrix} 1+3^k & 1-3^k \\ 1-3^k & 1+3^k \end{pmatrix}.$$

and what is the meaning of $\lim_{k\to\infty} \frac{1}{3^k} A^k$.

Solution:

The eigenvalues of A are 3 and 1, and the corresponding eigenvectors are $v_1 = (-1, 1)$,

$$v_2 = (1,1)$$
. Therefore, A can be diagonalized as $A = VAV^{-1}$, where $V = [v_1, v_2]$, $\Lambda = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$ and $V^{-1} = \begin{pmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$. $A^k = V\Lambda^k V^{-1} = \frac{1}{2} \begin{pmatrix} 1+3^k & 1-3^k \\ 1-3^k & 1+3^k \end{pmatrix}$.

 $\lim_{k \to \infty} \frac{1}{3^k} A^k = \lim_{k \to \infty} \frac{1}{2} \begin{pmatrix} \frac{1}{3^k} + 1 & \frac{1}{3^k} - 1 \\ \frac{1}{3^k} - 1 & \frac{1}{3^k} + 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$ (the largest eigen vector)

NO PHOTOCOPY This paper contains pages	Page
NEWYORK UNIVERSITY Linear Algebra Final Review	
Subject: MATH-UA 140 Linear Algebra Name of Examiners: .	Year: $2024(\text{Sem } 2)$ Time allow: 1001
Instruction to Candidate: (only on page 1) (1) This paper contains questions. (2) Candidates must answer questions.	
Question No 2	

Solution:

||Qx|| = ||x||.

For u is a unit vector prove that $Q = I - 2uu^{\top}$ is an symmetric orthogonal matrix. Prove

 $4uu^{\top} + 4uu^{\top} = I$

For all orthogonal matrix Q, we have

$$||Qx||^2 = (Qx)^\top (Qx) = x^\top Q^\top Qx = x^\top x = ||x||^2$$

for $Q^{\top}Q = I$

For matrix I - P

is a also a projection matrix.

Examination Requirements: NIL

• $x \in col(P) = row(P)$: (I-P)x=x-Px=x-x=0

• $x \in \text{Nul}(P) = \text{LeftNul}(P)$: (I-P)x=x-Px=x-0=x

Left Null space = Right Null space = Colume space of P.

Column space = Row space = orthogonal complement of the colume space of P.

NO PHOTOCOPY	D
This paper contains pages	Page
NEWYORK	UNIVERSITY
Linear Algeb	ra Final Review
Subject: MATH-UA 140 Linear Algebra	Year: 2024(Sem 2)
Name of Examiners: .	
<u>Instruction to Candidate</u> : (only on page 1	<i>,</i>
(1) This paper contains questi	
(2) Candidates must answer q	uestions.
Question No 3	
What are the four fundamental subspaces	of $M = I - P$ in terms of the column space of
<i>P</i> .	
Solution	
For a projection matrix P : (projection matrix	trix is always symmetric)
• $x \in col(P) = row(P)$: Px=x	
• $x \in \text{Nul}(P) = \text{LeftNul}(P)$: Px=0	

SECRET

NO PHOTOCOPY	
This paper contains	 pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Year: 2024(Sem 2) Name of Examiners: . Time allow: 1001

 $\underline{\text{Instruction to Candidate}}: (\text{only on page 1})$

- (1) This paper contains _____ questions.
- (2) Candidates must answer _____ questions.

Question No 4

P is a Projection Matrix, prove P is symmetric and $P^2 = P$. What is the eigenvalue of Projection matrix P. Prove that I - 2P is an orthogonal matrix

Solution

 $P = A(A^T A)^{-1} A^T$ then

•
$$P^2 = A \underbrace{(A^T A)^{-1} A^T A}_{=I} (A^T A)^{-1} A^T = A(A^T A)^{-1} A^T = P$$

•
$$P^T = (A(A^TA)^{-1}A^T)^T = A^T(A^TA)^{-T}A = A(A^TA)^{-1}A^T$$
 (For A^TA symmetric)

Eigenvalue is 1,0 (for $P^2 = P$ so eigenvalues should satisfies $\lambda^2 = \lambda$) Since P is a projection matrix, we have $P = P^T$. To show that Q is an orthogonal matrix, we need to check that $QQ^T = I$. We have

$$QQ^{T} = (I - 2P)(I - 2P)^{T}$$

= $(I - 2P)(I^{T} - 2P^{T})$

=(I-2P)(I-2P) (since I and P are symmetric)

$$= I - 4P + 4P^2$$

Since for a projection matrix we have $P^2=P,$ this product is equal to $QQ^T=I,$ as required.

NO PHOTOCOPY	
This paper contains	 pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Year: 2024(Sem 2)Name of Examiners: . Time allow: 1001

<u>Instruction to Candidate</u>: (only on page 1)
(1) This paper contains _____ questions.

(2) Candidates must answer _____ questions.

Question No __5_

If $A^2 = -A$, what is the possible value of det(A).

Solution

 $A^2 = -A$ means $det(A^2) = det(-A)$ however

•
$$\det(A^2) = \det(A)^2$$

•
$$\det(-A) = (-1)^n \det(A) = \begin{cases} -\det(A) & \text{if } n \text{ is odd} \\ \det(A) & \text{if } n \text{ is even} \end{cases}$$

Thus

$$\det(A)^{2} = \begin{cases} -\det(A) & \text{if } n \text{ is odd} \\ \det(A) & \text{if } n \text{ is even} \end{cases}$$

which means

$$\det(A) = \begin{cases} 0, -1 & \text{if } n \text{ is odd} \\ 0, 1 & \text{if } n \text{ is even} \end{cases}$$

NO PHOTOCOPY	
This paper contains	 pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Year: 2024(Sem 2)Name of Examiners: . Time allow: $\underline{1001}$

<u>Instruction to Candidate</u>: (only on page 1)

- (1) This paper contains _____ questions.
- (2) Candidates must answer _____ questions.

Question No 5

Suppose an $m \times n$ matrix A has rank r. What are the ranks of

- (a) A^T ?
- (b) AA^T ?
- (c) $AA^T + \lambda I \ (\lambda > 0)$?
- (d) $A^T A A^T$?

Solution

Answer 1

- (A) r
- (B) we showed in class it's r (page 17 in https://2prime.github.io/files/linear/linearslide14filled.pdf)
- (C) it's a positive definite matrix with all eigenvalues larger than λ , think why.
- (D) r (similar page 17 in https://2prime.github.io/files/linear/linearslide14filled.pdf)

Answer 2 Using SVD

- (A) $\operatorname{rank}(A^T) = \dim(\operatorname{row}(A^T)) = \dim(\operatorname{col}(A)) = \operatorname{rank}(A) = r.$
- (B) Let $A = U\Sigma V^T$ be a full SVD. Then,

$$AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma^2 U^T.$$

Thus, $U\Sigma^2U^T$ is a SVD of AA^T . If Σ has r positive singular values then so will Σ^2 . Therefore, the rank of AA^T is r.

- (C) Since $I_m = UU^T$, the equation above yields $AA^T + \lambda I = U\Sigma^2U^T + \lambda I = U(\Sigma^2 + \lambda I_m)U^T$. Since $\Sigma^2 + \lambda I = \operatorname{diag}(\sigma_1^2 + \lambda, \dots, \sigma_r^2 + \lambda, \dots, \lambda)$, the rank is m.
- (D) $A^TAA^T=(U\Sigma V^T)^T(U\Sigma V^T)(U\Sigma V^T)^T=V\Sigma^TU^TU\Sigma V^TU^TU\Sigma V^T=V\Sigma^T\Sigma\Sigma^TV^T=V\Sigma^3V^T$. Σ^3 has r positive singular values as like Σ . Therefore, the rank is r.

SECRET

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Year: 2024(Sem 2)Name of Examiners: . Time allow: $\underline{1001}$

Instruction to Candidate: (only on page 1)

(1) This paper contains _____ questions.

(2) Candidates must answer ____ questions.

Question No <u>6</u>

The following matrices have only one eigenvalue: 1. What are the dimensions of the eigenspaces in each case?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

For a matrix A, the eigenspace with eigenvalue λ is the kernel of the matrix $A - \lambda I$. Here we have $\lambda = 1$, so we subtract I from each of the matrices above:

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

and find the dimensions of the kernels.

The ranks of these matrices are 0, 2, 2, 1 respectively, so by the rank-nullity theorem the dimensions of the kernels are 3, 1, 1, 2.

Answer: 3, 1, 1, 2.

NO	PHOTOCOP	Y

Name of Examiners: ._

This paper contains pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra

Year: 2024(Sem 2)Time allow: 1001

Instruction to Candidate: (only on page 1)

- (1) This paper contains _____ questions.
- (2) Candidates must answer _____ questions.

Question No __7_

For $A \in \mathbb{R}^{n \times n}$ has singular value $\sigma_1, \dots, \sigma_n$ prove

•
$$\operatorname{tr}(A^{\top}A) = \sigma_1^2 + \dots + \sigma_n^2$$

•
$$\operatorname{tr}((A^{\top}A + \lambda I)^{-1}A^{\top}A) = \frac{\sigma_1^2}{\sigma_1^2 + \lambda} + \dots + \frac{\sigma_n^2}{\sigma_n^2 + \lambda}$$

Solution

Using SVD $A = U\Sigma V^{\top}$ Then we have

•
$$A^{\top}A = V\Sigma^{\top}\Sigma V^{\top}$$
 so $\operatorname{tr}(A^{\top}A) = \operatorname{tr}(\Sigma^{\top}\Sigma) = \sigma_1^2 + \dots + \sigma_n^2$

•
$$(A^{\top}A + \lambda I) = V(\Sigma^{\top}\Sigma + \lambda I)V^{\top}, (A^{\top}A + \lambda I)^{-1} = V(\Sigma^{\top}\Sigma + \lambda I)^{-1}V^{\top}$$

$$\bullet \ (A^{\top}A + \lambda I)^{-1}A^{\top}A = V(\Sigma^{\top}\Sigma + \lambda I)^{-1}\Sigma^{\top}\Sigma V^{\top} = V \begin{bmatrix} \frac{\sigma_1^2}{\sigma_1^2 + \lambda} & 0 & \cdots & 0\\ 0 & \frac{\sigma_2^2}{\sigma_2^2 + \lambda} & \cdots & 0\\ \cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & \frac{\sigma_n^2}{\sigma_n^2 + \lambda} \end{bmatrix} V^{\top}$$

•

$$\operatorname{trace}((A^{\top}A + \lambda I)^{-1}A^{\top}A) = \operatorname{trace}\left(\begin{bmatrix} \frac{\sigma_1^2}{\sigma_1^2 + \lambda} & 0 & \cdots & 0\\ 0 & \frac{\sigma_2^2}{\sigma_2^2 + \lambda} & \cdots & 0\\ \cdots & \cdots & \cdots & \cdots\\ 0 & 0 & \cdots & \frac{\sigma_n^2}{\sigma_n^2 + \lambda} \end{bmatrix}\right) = \frac{\sigma_1^2}{\sigma_1^2 + \lambda} + \cdots + \frac{\sigma_n^2}{\sigma_n^2 + \lambda}$$