

All grammars are not LL(1)

Z	\rightarrow	d
Z	\rightarrow	XYZ
Y	\rightarrow	3
Y	\rightarrow	C
X	\rightarrow	Y
X	\rightarrow	a

	а	С	d	\$
X	X → a	$X \rightarrow Y$	$X \rightarrow Y$	
	$X \rightarrow Y$			
Y	Y → ε	$Y \rightarrow C$	$Y \rightarrow \varepsilon$	
		$Y \rightarrow \varepsilon$		
Z	Z→XYZ	Z→XYZ	$Z \rightarrow d$	Z→XYZ
			Z→XYZ	

```
FIRST (X) = {a, c, ε}

FIRST (Y) = {c, ε}}

FIRST (Z) = {d, a, c}

FOLLOW(X) = {c, d, a}

FOLLOW(Y) = {a, c, d}

FOLLOW(Z) = {$}
```

All grammars are not LL(1)

A grammar is an LL(1) grammar if all productions conform to the following conditions:

- 1. For each production A $\rightarrow \sigma 1 \mid \sigma 2 \mid \sigma 3 \dots \mid \sigma n$,
- FIRST (σ_i) FIRST $(\sigma_j) = \emptyset$, for all i, j, i <> j
- 2. If nonterminal X derives an empty string, then

FIRST (X)
$$\bigcap$$
 FOLLOW (X) = \emptyset

Bottom up parsing

Bottom up parsing

$$E \Rightarrow \underline{T} \Rightarrow \underline{T * F} \Rightarrow T * \underline{id} \Rightarrow \underline{F} * \underline{id} \Rightarrow \underline{id} * \underline{id}$$

Bottom up parsing

A handle of a string is a substring that matches the right side of a production, and whose reduction to the non-terminal on the left side of the production represents one step along the reverse of a rightmost derivation.

(The string, together with its position in the right sentential form where it occurs and the production used to reduce it).

Reducing β to A in $\alpha\beta$ w is termed as "pruning the handle" Where w contains only terminal symbols.

Shift-reduce parsing

	<u>Stack</u>	<u>Input</u>	<u>Action</u>
Step 1: Locating a substring	\$	id * id \$	shift
Step 2: Choosing a production	\$ id	* id \$	reduce F → id
	\$ F	* id\$	shift
Stack Input	\$ F	* id \$	reduce T → F
Initial condition \$ w\$	\$ T	* id \$	shift
Final condition \$S \$	\$ T *	id\$	shift
	\$ T * id	\$	reduce F → id
Viable Prefix- The sequence of	\$ T * F	\$	reduce T→T* F
symbols on the parsing stack	\$ T	\$	reduce E → T
	\$ E	\$	Accept

LR Parsing

- LR(k) parsing, introduce by D. Knuth in 1965
 - L is for Left-to-right scanning of the input
 - R is for reverse Rightmost derivation
 - k is the number of lookahead tokens
- Most general non-backtracking shift-reduce parsing method
- Can be constructed to recognise virtually all programming language constructs
- The class of grammar is a proper superset of the class of grammars that can be parsed with *predictive parsers*

LR Parsing

- Different types:
 - Simple LR or SLR, the easiest method for constructing shift-reduce parsers
 - Canonical LR
 - LALR
- LR-parsers represent the DFA as a 2D table
- Rows correspond to DFA states
- Columns correspond to terminals (action table) and nonterminals (goto table)

Transition between states

Two possibilities

- 1.If X is a terminal, then push X onto the stack
- 2.If X is a non-terminal, X will be pushed onto the stack during a reduction by X → β.
- 3. Thus, we need to first recognize β
- 4.So for every production $X \to \beta$, we need to indicate that X can be produced by reducing (recognising) any of the right hand sides of such productions.
- 5. This is basically the following transition.

SLR Parsing

LR(0) - zero tokens of lookahead

SLR - Simple LR: like LR(0), but uses FOLLOW sets to build more "precise" parsing tables

First we augment the grammar G with a new start symbol S' and a production

S' → S

Closure operation -

For a set of items I, we construct closure(I) as follows:

Every item in I is added to closure (I)

If $A\to\alpha$. B β is in closure (I) and $B\to\gamma$ is a production, then $B\to$. γ is added to closure (I)

Goto operation -

Goto(I, X) is the closure of the set of all items $[A \rightarrow \alpha \ X \ . \ \beta \]$, such that $[A \rightarrow \alpha \ . \ X \ \beta \]$ is in I.

Example

Augmented Grammar:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T^* F \mid F$$

$$F \rightarrow (E) \mid id$$

If
$$I = \{ E' \rightarrow \bullet E \}$$
,
then CLOSURE(I) is

$$E' \rightarrow \bullet E$$

$$E \rightarrow \bullet E + T$$

$$E \rightarrow \bullet T$$

$$T \rightarrow \bullet T * F$$

$$T \rightarrow \bullet F$$

$$F \rightarrow \bullet (E)$$

$$F \rightarrow id$$

Example

Augmented Grammar:

$$E' \rightarrow E$$

 $E \rightarrow E + T \mid T$

$$T \rightarrow T^* F \mid F$$

$$F \rightarrow (E) \mid id$$

$$I = \begin{bmatrix} E' \rightarrow E \bullet \\ E \rightarrow E \bullet + T \end{bmatrix}$$

$$GOTO(I, +)$$

$$E \rightarrow E + . T$$
 $T \rightarrow . T * F$
 $T \rightarrow . F$
 $F \rightarrow . (E)$
 $F \rightarrow . id$

The Canonical LR(0) Collection -- Example

$$I_0: E' \rightarrow .EI_1: E' \rightarrow E.I_s: E \rightarrow E+.T$$

$$E \rightarrow .E+T$$

$$E \rightarrow E.+T$$

 $T \rightarrow T.*F$

 $I_{,:} E \rightarrow T.$

 $I_i: T \to F$.

$$E \rightarrow .T$$

$$T \rightarrow .T*F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_{\circ}: E \to E+T$$
.

$$T \rightarrow .T*F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$T \rightarrow T.*F$$

$$I_{10}: T \to T*F$$
.

 $I_{ij}: F \to (E)$.

$$I_{r}: T \to T^*.F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$E \rightarrow .E+T$$

 $I_a: F \to (.E)$

$$E \to .T$$

$$T \rightarrow .T*F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_{r}: T \rightarrow T^{*}.F$$

$$I_{\mathbf{x}}: \mathbf{F} \to (\mathbf{E}.)$$

$$E \rightarrow E.+T$$

$$I_5$$
: $F \rightarrow id$.

Constructing SLR Parsing Table

Consider the grammar G'

1)Construct the canonical collection of sets of LR(0) items for G',

2)
$$C \leftarrow \{I_0, I_1 \dots I_n\}$$

3)Create the parsing <u>action</u> table as follows:

```
1) If a is a terminal, A \rightarrow \alpha. a \beta in I_i, and goto(I_i,a) = I_j, then action[i,a] = shift j
```

2)If $A \to \alpha$ is in I_i , then action[i,a] is reduce $A \to \alpha$ for all a in FOLLOW(A), where A <> S'

3)If S' \rightarrow S is in I_I, then action [I, \$] is accept

4)Create the parsing goto table

1) For all non-terminals A, if $goto(I_i, A) = I_i$, then goto[i, A] = j

5) All other entries will be marked as error

6)Initial state of the parser contains $S' \rightarrow S$

Parsing Tables of Expression Grammar

Action Table

Goto Table

1. E' → E
$2.E \rightarrow E + T$
3.E → T
$4.T \rightarrow T^* F$
5. T → F
6.F → (E)
7.F <i>→</i> id

							7.00.00.00		
state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5	8		s4	33		8	2	3
5		r6	r6		r6	r6	5		
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11		5		
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Parsing

Stack	Input	Parser Action
S0	id+id \$	Shift and move to state 5
S0 id S5	+id \$	Reduce F → id
S0 F S3	+id \$	Reduce T→ id
S0 T S2	+id \$	Reduce E → T
S0 E S1	+id \$	Shift and move to state 6
S0 E S1 + S6	id \$	Shift and move to state 5
S0 E S1 + S6 id S5	\$	Reduce F → id
S0 E S1 + S6 F S3	\$	Reduce T → F
S0 E S1 + S6 T S9	\$	Reduce E → E+T
S0 E S1	\$	Accept

state		action	goto			
	id	=	*	\$ S		\mathcal{R}
0	<i>s3</i>		<i>s5</i>	1	2	4
1				accept		
2		$s6/r(R \rightarrow L)$				
3		$r(L \rightarrow id)$		$r(L \rightarrow id)$		
4				$r(S \rightarrow R)$		
5	<i>s3</i>		<i>s5</i>		7	8
6	<i>s3</i>		<i>s</i> 5		7	9
7		$r(\mathcal{R} \rightarrow \mathcal{L})$		$r(\mathcal{R} \rightarrow \mathcal{L})$		
8		$r(\mathcal{L} \!\! o {}^*\!\mathcal{R})$		$r(L \rightarrow {}^*\mathcal{R})$		
9				$r(S \rightarrow L = R)$		

state		action	goto				
	id	=	*	\$	\mathcal{S}	Ĺ	\mathcal{R}
0	<i>s3</i>		<i>s5</i>		1	2	4
1				accept			
2		$\frac{s6/r(\mathcal{R} \rightarrow \mathcal{L})}{r(\mathcal{L} \rightarrow id)}$					
3		$r(L \rightarrow id)$		$r(L \rightarrow id)$			
4				$r(S { ightarrow} \mathcal{R})$			
5	<i>s3</i>		<i>s5</i>			7	8
6	<i>s3</i>		<i>s5</i>			7	9
7		$r(\mathcal{R} \rightarrow \mathcal{L})$		$r(\mathcal{R} \rightarrow \mathcal{L})$			
8		$r(\perp \rightarrow {}^*\mathcal{R})$		$r(L \rightarrow {}^*\!\mathcal{R})$)		
9				$r(S \rightarrow L = R)$			

$$S \rightarrow S$$
 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow R$
 $L \rightarrow M$
 $L \rightarrow M$
 $L \rightarrow M$
 $L \rightarrow M$

$$\mathcal{F}OLLOW(S') = \{\$\}$$
 $\mathcal{F}OLLOW(S) = \{\$\}$
 $\mathcal{F}OLLOW(L) = \{\$, =\}$
 $\mathcal{F}OLLOW(R) = \{\$, =\}$

$$S \rightarrow S$$
 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow R$
 $L \rightarrow M$
 $L \rightarrow M$
 $L \rightarrow M$
 $R \rightarrow L$

$$\mathcal{F}OLLOW(S') = \{\$\}$$
 $\mathcal{F}OLLOW(S) = \{\$\}$
 $\mathcal{F}OLLOW(L) = \{\$, =\}$
 $\mathcal{F}OLLOW(R) = \{\$, =\}$

$$S \rightarrow S$$
 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow R$
 $L \rightarrow R$
 $L \rightarrow Id$
 $R \rightarrow L$

=> *L=id => *id=id

$$\mathcal{F}OLLOW(S') = \{\$\}$$
 $\mathcal{F}OLLOW(S) = \{\$\}$
 $\mathcal{F}OLLOW(L) = \{\$, =\}$
 $\mathcal{F}OLLOW(R) = \{\$, =\}$

$$S' \rightarrow S$$
 $S \rightarrow \mathcal{L} = \mathcal{R}$
 $S \rightarrow \mathcal{R}$
 $\mathcal{L} \rightarrow \mathcal{R}$
 $\mathcal{L} \rightarrow id$
 $\mathcal{R} \rightarrow \mathcal{L}$

$$\mathcal{F}OLLOW(S') = \{\$\}$$
 $\mathcal{F}OLLOW(S) = \{\$\}$
 $\mathcal{F}OLLOW(L) = \{\$, =\}$
 $\mathcal{F}OLLOW(R) = \{\$, =\}$

$$S \xrightarrow{} S$$
 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow R$
 $L \rightarrow M$
 $L \rightarrow M$
 $R \rightarrow L$

$$FOLLOW(S') = \{\$\}$$

 $FOLLOW(S) = \{\$\}$
 $FOLLOW(L) = \{\$, =\}$
 $FOLLOW(R) = \{\$, =\}$

$$S \rightarrow S$$
 $S \rightarrow L = R$
 $S \rightarrow R$
 $L \rightarrow R$
 $L \rightarrow Id$
 $R \rightarrow L$

$$\mathcal{F}OLLOW(S') = \{\$\}$$
 $\mathcal{F}OLLOW(S) = \{\$\}$
 $\mathcal{F}OLLOW(L) = \{\$, =\}$
 $\mathcal{F}OLLOW(R) = \{\$, =\}$

$$S \xrightarrow{} S$$
 $S \rightarrow \mathcal{L} = \mathcal{R}$
 $S \rightarrow \mathcal{R}$
 $\mathcal{L} \rightarrow *\mathcal{R}$
 $\mathcal{L} \rightarrow id$
 $\mathcal{R} \rightarrow \mathcal{L}$

$$\mathcal{F}OLLOW(S') = \{\$\}$$
 $\mathcal{F}OLLOW(S) = \{\$\}$
 $\mathcal{F}OLLOW(L) = \{\$, =\}$
 $\mathcal{F}OLLOW(R) = \{\$, =\}$

Stack	Input	• Action
\$id	=id\$	Reduce
\$L	=id\$	Shift
\$L=	id\$	Shift
\$L=id	\$	Reduce
\$L=L	\$	Reduce
\$L=R	\$	

Stack	Input	Action
\$*id	=id\$	Reduce
\$*L	=id\$	Reduce

$$FOLLOW(L) = \{\$, =\}$$

Two types of Conflicts in LR parsing

- shift/reduce conflict
 - On some particular lookahead it is possible to shift or reduce
 - The if/else ambiguity would give rise to a shift/reduce conflict

- reduce/reduce
 - This occurs when a state contains more than one handle that may be reduced on the same lookahead.

Two types of Conflicts in LR parsing

- The conflict occurred because we made a decision about when to reduce based on what token may follow a non-terminal at any time.
- However, the fact that a token t may follow a non-terminal N in some derivation does not necessarily imply that t will follow N in some other derivation.
- SLR parsing does not make a distinction.
- Solution: instead of using general FOLLOW information, try to keep track of exactly what tokens many follow a non-terminal in each possible derivation and perform reductions based on that knowledge.

LR(1) items

- In LR(1) items, we also save all possible lookaheads
- The closure function for LR(1) items is defined as follows:

```
For each item A \rightarrow \alpha \bullet B\beta, x in state I, each production B \rightarrow \gamma in the grammar, and each terminal b in FIRST(\beta x), add B \rightarrow \bullet \gamma, b to I
```

If a state contains core item $B \rightarrow \bullet \gamma$ with multiple possible lookaheads b_1 , b_2 ,..., we write $B \rightarrow \bullet \gamma$, b_1/b_2 as shorthand for $B \rightarrow \bullet \gamma$, b_1 and $B \rightarrow \bullet \gamma$, b_2

Canonical LR(1) parsing

- Rules for creating the table is same as SLR, except we now use the possible lookahead tokens saved in each state, instead of the FOLLOW sets.
- The conflicts that appeared in the SLR parser is now resolved.
- However, the LR(1) parser has many more states. This is not very practical.

Canonical LR Parsing Table

	id	*	=	\$	S	L	R
0	S3	S5			1	2	4
1				accept			
2			S6	R(R->L)			
3			R(L->id)	R(L->id)			
4				R(S->R)			
5	S3	S5				7	8
6	S3'	S5'				7'	9
7			R(R->L)	R(R->L)			
8			R(L->*R)	R(L->*R)			
9				R(S->L=R)			
3'				R(L->id)			
5'	S3'	S5'					
7'				R(R->L)			
8'				R(L->*R)			

LALR Parsing

- It is required to reduce the number of states in an LR(1) parser.
- Some states in the LR(1) automaton have the same core items and differ only in the possible lookahead information.
- They also have similar transitions.
- For example, states I_3 and I_3 , I_5 and I_5 , I_7 and I_7 , I_8 and I_8 are states with same core items and similar transitions.
- Such states are merged in LALR parser.
- In our example SLR: 10 states, LR(1): 14 states, LALR(1): 10 states

	id	*	=	\$	S	L	R
0	S3	S5			1	2	4
1				accept			
2			S6	R(R->L)			
3			R(L->id)	R(L->id)			
4				R(S->R)			
5	S3	S5				7	8
6	S3'	S5'				7'	9
7			R(R->L)	R(R->L)			
8			R(R->L) $R(L->*R)$	R(L->*R)			
9				R(S->L=R)			

Conflicts in LALR(1) parsing

- LALR(1) parsers cannot introduce shift/reduce conflicts.
 - Such conflicts are caused when a lookahead is the same as a token on which we can shift.
- LALR(1) parsers can introduce reduce/reduce conflicts.
- Here's a situation when this might happen:

$$\mathcal{A} \to \mathcal{B}^{\bullet}, \chi$$

$$\mathcal{A} \to \mathcal{C}^{\bullet}, y$$

merge with

$$\mathcal{A} \to \mathcal{B} \bullet$$
, y
 $\mathcal{A} \to \mathcal{C} \bullet$, χ

to get:

$$\mathcal{A} \to \mathcal{B} \bullet$$
, χ/y
 $\mathcal{A} \to \mathcal{C} \bullet$, χ/y