Assignment 1

Due: Tuesday, October 13 at 4:00pm

1. Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces, and assume Γ is the alphabet for which $\mathcal{Y} = \mathbb{C}^{\Gamma}$. Suppose further that $\{K_{a,b}: a,b \in \Gamma\} \subset L(\mathcal{X})$ is a collection of operators, and $\Phi \in T(\mathcal{X},\mathcal{Y})$ is the map defined by

$$\Phi(X) = \sum_{a,b \in \Gamma} \langle K_{a,b}, X \rangle E_{a,b}$$

for every $X \in L(\mathcal{X})$.

- (a) Give a necessary and sufficient condition on the collection $\{K_{a,b}: a,b \in \Gamma\}$ for Φ to be completely positive. Your condition should, in principle, be efficiently checkable.
- (b) Give a necessary and sufficient condition on the collection $\{K_{a,b}: a,b \in \Gamma\}$ for Φ to be trace-preserving.
- (c) Suppose $\Phi \in T(\mathcal{X}, \mathcal{Y})$ is given and you wish to find a collection $\{K_{a,b} : a, b \in \Gamma\}$ so that the equation above holds for all $X \in L(\mathcal{X})$. Give a simple formula that allows you to obtain each operator $K_{a,b}$ from Φ .
- 2. Let \mathcal{X} , \mathcal{Y} , and \mathcal{Z} be complex Euclidean spaces and let $\Phi \in C(\mathcal{X}, \mathcal{Y} \otimes \mathcal{Z})$ be a channel. Suppose further that there exists a density operator $\rho \in D(\mathcal{Y})$ such that

$$\operatorname{Tr}_{\mathcal{Z}}(J(\Phi)) = \rho \otimes \mathbb{1}_{\mathcal{X}}.$$

Prove that there exists a complex Euclidean space \mathcal{W} , a density operator $\sigma \in D(\mathcal{Y} \otimes \mathcal{W})$, and a channel $\Psi \in C(\mathcal{W} \otimes \mathcal{X}, \mathcal{Z})$ so that

$$\Phi(X) = (\mathbb{1}_{L(\mathcal{Y})} \otimes \Psi)(\sigma \otimes X)$$

for all $X \in L(\mathcal{X})$. (Proposition 2.29 in the book may be helpful when answering this problem.)

3. Let \mathcal{X} and \mathcal{Y} be complex Euclidean spaces, let Σ be an alphabet, and let $\mu: \Sigma \to \operatorname{Pos}(\mathcal{Y})$ be a measurement. Prove that for every collection of operators $\{X_a: a \in \Sigma\} \subset \operatorname{L}(\mathcal{X})$ it holds that

$$\left\| \sum_{a \in \Sigma} X_a \otimes \mu(a) \right\| \leq \max_{a \in \Sigma} \|X_a\|.$$

4. Let $\mathcal X$ and $\mathcal Y$ be complex Euclidean spaces, let Σ be an alphabet, and let $\eta: \Sigma \to \operatorname{Pos}(\mathcal X)$ be an ensemble of states. Suppose further that $u \in \mathcal X \otimes \mathcal Y$ is a vector such that

$$\operatorname{Tr}_{\mathcal{Y}}(uu^*) = \sum_{a \in \Sigma} \eta(a).$$

Prove that there exists a measurement $\mu: \Sigma \to \operatorname{Pos}(\mathcal{Y})$ for which it holds that

$$\eta(a) = \operatorname{Tr}_{\mathcal{Y}} ((\mathbb{1}_{\mathcal{X}} \otimes \mu(a)) u u^*)$$

for all $a \in \Sigma$. (Similar to Problem 2 above, Proposition 2.29 in the book may be helpful when answering this problem.)