

# CZ3002 - Advanced Software Engineering

# Software Project Management – Project Scheduling

Faculty: Dr Shen Zhiqi

School : School of Computer Science and Engineering

Email : zqshen@ntu.edu.sg

Office : N4-02B-43



## **Lesson Objectives**

At the end of the lesson, you should be able to:

- Recall the main project scheduling techniques
- Apply time-cost models in project management





## **Project Scheduling**



Establishing objectives



Estimating time, resources and costs required to complete each task



Assigning tasks to team members



Step 1

Step 2

Step 3

Step 4

Step 5

Breaking down project into tasks or work packages



Identifying precedence relationships and sequencing activities





## **Project Scheduling Techniques**

Bar chart





## **Project Scheduling Techniques**

#### Activity Network





## **Project Scheduling Techniques**

- Critical Path Method (CPM)
  - Network techniques
  - Consider precedence relationships and interdependencies
  - Identify critical path and critical activities

## **Practice**



## **Example**



F cannot start until C and D are done.

G cannot start until both E and F are done.

#### **Example**



E just has to be done in time for G to start at 36, so it has slack. D has to be done in time for F to go at 28, so it has no slack.



## **Example**









► ABC is critical path = 30

| Task | Crash<br>Cost Per<br>Week (\$) | Crash Weeks<br>Available |
|------|--------------------------------|--------------------------|
| Α    | 500                            | 2                        |
| В    | 800                            | 3                        |
| C    | 5,000                          | 2                        |
| D    | 1,100                          | 2                        |



Cheapest way to gain one week is to cut A.



► ABC is critical path = 29

| Task | Crash Cost Per Week (\$) | Crash Weeks<br>Available |
|------|--------------------------|--------------------------|
| Α    | 500                      | 1                        |
| В    | 800                      | 3                        |
| C    | 5,000                    | 2                        |
| D    | 1,100                    | 2                        |



| Weeks<br>Gained | Incremental Crash (\$) | Total<br>Crash (\$) |
|-----------------|------------------------|---------------------|
| 1               | 500                    | 500                 |

Cheapest way to gain one week still is to cut A.



► ABC is critical path = 28

| Task | Crash<br>Cost Per<br>Week (\$) | Crash Weeks<br>Available |
|------|--------------------------------|--------------------------|
| A    | 500                            | 0                        |
| В    | 800                            | 3                        |
| C    | 5,000                          | 2                        |
| D    | 1,100                          | 2                        |



| Weeks<br>Gained | Incremental<br>Crash (\$) | Total<br>Crash (\$) |
|-----------------|---------------------------|---------------------|
| 1               | 500                       | 500                 |
| 2               | 500                       | 1,000               |

Cheapest way to gain one week is to cut B.



► ABC is critical path = 27

| Task | Crash<br>Cost Per<br>Week (\$) | Crash Weeks<br>Available |
|------|--------------------------------|--------------------------|
| A    | 500                            | 0                        |
| В    | 800                            | 2                        |
| С    | 5,000                          | 2                        |
| D    | 1,100                          | 2                        |



| Weeks<br>Gained | Incremental Crash (\$) | Total<br>Crash (\$) |
|-----------------|------------------------|---------------------|
| 1               | 500                    | 500                 |
| 2               | 500                    | 1,000               |
| 3               | 800                    | 1,800               |

Cheapest way to gain one week is still to cut B.



Critical paths = 26 ADC & ABC

| Task | Crash<br>Cost Per<br>Week (\$) | Crash Weeks<br>Available |
|------|--------------------------------|--------------------------|
| A    | 500                            | 0                        |
| В    | 800                            | 1                        |
| С    | 5,000                          | 2                        |
| D    | 1,100                          | 2                        |



| Weeks<br>Gained | Incremental Crash (\$) | Total<br>Crash (\$) |
|-----------------|------------------------|---------------------|
| 1               | 500                    | 500                 |
| 2               | 500                    | 1,000               |
| 3               | 800                    | 1,800               |
| 4               | 800                    | 2,600               |

How to gain one week?



Critical paths = 26 ADC & ABC

| Task | Crash<br>Cost Per<br>Week (\$) | Crash Weeks<br>Available |
|------|--------------------------------|--------------------------|
| A    | 500                            | 0                        |
| В    | 800                            | 1                        |
| С    | 5,000                          | 2                        |
| D    | 1,100                          | 2                        |

To gain one week, cut B and D, or cut C?

- Cut B and D = \$1,900
- Cut C = \$5,000

So cut B and D.



| Weeks<br>Gained | Incremental Crash (\$) | Total<br>Crash (\$) |
|-----------------|------------------------|---------------------|
| 1               | 500                    | 500                 |
| 2               | 500                    | 1,000               |
| 3               | 800                    | 1,800               |
| 4               | 800                    | 2,600               |



Critical paths = 25 ADC & ABC

|   | Crash Cost<br>Per Week (\$) | Crash Weeks<br>Available |
|---|-----------------------------|--------------------------|
| A | 500                         | 0                        |
| В | 800                         | 0                        |
| С | 5,000                       | 2                        |
| D | 1,100                       | 1                        |

If B cannot be cut any more. The only way is to cut C.



| Weeks<br>Gained | Incremental Crash (\$) | Total<br>Crash (\$) |
|-----------------|------------------------|---------------------|
| 1               | 500                    | 500                 |
| 2               | 500                    | 1,000               |
| 3               | 800                    | 1,800               |
| 4               | 800                    | 2,600               |
| 5               | 1900                   | 4,500               |



Critical paths = 24 ADC & ABC

|   | Crash Cost<br>Per Week (\$) | Crash Weeks<br>Available |
|---|-----------------------------|--------------------------|
| A | 500                         | 0                        |
| В | 800                         | 0                        |
| C | 5,000                       | 1                        |
| D | 1,100                       | 1                        |

The only way is to cut C.



| Weeks<br>Gained | Incremental<br>Crash (\$) | Total<br>Crash (\$) |
|-----------------|---------------------------|---------------------|
| 1               | 500                       | 500                 |
| 2               | 500                       | 1,000               |
| 3               | 800                       | 1,800               |
| 4               | 800                       | 2,600               |
| 5               | 1900                      | 4,500               |
| 6               | 5000                      | 9,500               |



Critical paths = 23 ADC & ABC

|   | Crash Cost<br>Per Week (\$) | Crash Weeks<br>Available |
|---|-----------------------------|--------------------------|
| Α | 500                         | 0                        |
| В | 800                         | 0                        |
| C | 5,000                       | 0                        |
| D | 1,100                       | 1                        |

No remaining possibilities to reduce project length.



| Weeks<br>Gained | Incremental<br>Crash (\$) | Total<br>Crash (\$) |
|-----------------|---------------------------|---------------------|
| 1               | 500                       | 500                 |
| 2               | 500                       | 1,000               |
| 3               | 800                       | 1,800               |
| 4               | 800                       | 2,600               |
| 5               | 1900                      | 4,500               |
| 6               | 5000                      | 9,500               |
| 7               | 5000                      | 14,500              |



- Now we know how much it costs us to save any number of days
- If a customer says he will pay \$2,000 per week saved
- Only need to reduce 5 weeks
- We get \$10,000 from customer, but pay \$4,500 in expediting costs
- Increased profits = \$5,500

No remaining possibilities to reduce project length.



| Weeks<br>Gained | Incremental<br>Crash (\$) | Total<br>Crash (\$) |
|-----------------|---------------------------|---------------------|
| 1               | 500                       | 500                 |
| 2               | 500                       | 1,000               |
| 3               | 800                       | 1,800               |
| 4               | 800                       | 2,600               |
| <del>5</del>    | 1900                      | 4,500               |
| 6               | 5000                      | 9,500               |
| 7               | 5000                      | 14,500              |



## **Highlights**

- Summarizing the three main project scheduling activities:
  - Bar chart
  - Critical path analysis
  - Time-Cost model



## Project Plan Structure - Review

- Introduction
- Project organisation
- Hardware and software resource requirements
- Life cycle and Process definition
- Work breakdown
- Project estimation and schedule
- Monitoring and reporting mechanisms
- Risk analysis



#### Summary

- Good project management is essential for project success.
- The intangible nature of software causes problems for management.
- Managers have diverse roles but their most significant activities are planning, estimating and scheduling.
- Planning and estimating are iterative processes which continue throughout the course of a project.

