Inhaltsverzeichnis

1	Terme	3
	1.1 substitution	3
	1.2 Kontext	3
2	Operationelle Semantik von TES	3
3	Terminierung	4
4	Reduktionsordnungen	5
	4.1 Polynomordnungen	6
5	Konfluenz	8
6	Der λ-Kalkül	16
7	Der ungetypte λ -Kalkül	16
	7.1 Rekursion	19
	7.2 Auswertungsstrategie	19
8	Der einfach getypte λ -Kalkül	20
	8.1 Typinferenz	23
	8.2 Subjektreduktion	25
9	Church Rosser des λ -Kalkül	26
10	Curry-Howard Isomorphismus	29
11	Induktive Datentypen	31
	11.1 Mengenkonstruktionen	33
	11.2 Initialität und Rekursion	36

11.3 Mehrsortige Typen	37
11.4 Strukturelle Induktion über Datentypen	39
11.5 strukturelle Induktion über mehrsortige Datentypen	39
11.6 Kodaten	41

Vorlesung 2

Alexander Mattick Kennung: qi69dube

Kapitel 1

30. Juni 2020

1 Terme

$$\Sigma$$
 – Terme $t ::= x | f(t_1, ..., t_n) \ (x \in V, f/n \in \Sigma)$

V Menge von Variablen.

 $T_{\Sigma}(V)$ = Menge der Σ -Terme über V (ist nicht fix, kann sich u.u. z.B. verkleinern)

FV(t) = Menge der in t (frei) vorkommenden Variablen.

$$FV(x) = \{x\}$$

$$FV(f(t_1,\ldots,t_n)) = \bigcup_{i=1}^n FV(t_i)$$

1.1 substitution

Substitution ist eine Abbildung $\sigma: V_0 \to T_{\Sigma}(V)$ für ein $V_0 \subseteq V$, V_0 endlich.

Substitution ist eine Abbildung
$$\sigma: v_0 \to I_{\Sigma}(V)$$
 für ein $v_0 \subseteq V$, v_0 endlich.
$$[t_1/x_1, \dots, t_n/x_n] \ V_0 = \{x_0, \dots, x_1\}, \sigma(x_i) = t_i \ t\sigma = \begin{cases} x\sigma = \sigma(x) \\ f(t_1, \dots, t_n)\sigma = f(t_1\sigma, \dots, t_n\sigma) \end{cases}$$

1.2 Kontext

$$C(\cdot) = (\cdot)|f(t_1, \dots, c(\cdot), \dots, t_n), (f/n \in \Sigma)$$

$$f(t_1,...,C(\cdot),...,t_n)(g) = f(t_1,...,C(g),...,t_n)$$

2 Operationelle Semantik von TES

$${\to_0}{\subseteq T_\Sigma(V)\times T_\Sigma(V)}$$

$$R \subseteq T_{\Sigma}(V) \times T_{\Sigma}(V)$$
 heißt

- abgeschlossen bezüglich $C(\cdot)$, wenn $\forall t, s(tRs \Longrightarrow C(t)RC(s))$
 - Bsp.: $x + y + = y + x \implies z * (x + y) = z(y + x)$ zeigt Kontextabschluss $C(\cdot) = z * (\cdot)$
- Kontextabgeschlossen \iff R abgeschlossen für alle $C(\cdot)$
- stabil $\iff \forall t, s, \sigma(tRs \implies (t\sigma)R(s\sigma))$

- z.B.
$$x + y = y + x \implies z^2 + xw = xw + z^2$$

Einschrittreduktion $\rightarrow \subseteq T_{\Sigma}(V) \times T_{\Sigma}(V) = \text{kontextabgeschlossener und stabiler Abschluss von } \rightarrow_0$

$$\rightarrow = \{(C(s\sigma), C(t\sigma)) | t \rightarrow_0 s, C(\cdot) \text{Kontext}, \sigma \text{ Substitution}\}\$$

Bew.: Wenn man einen Kontext von einem Kontext macht, erhält man einen Kontext (weil es nur eine Freistelle gibt).

Wenn man substituiert dann ist die substitution entweder in s/t oder im Kontext, substitution im Kontext ändert nur in einen neuen kontext (es bleibt aber kontext).

Reduktion →* (sprich "t reduziert zu s")

Konvertierbarkeit $\leftrightarrow^* = (\rightarrow \cup \rightarrow^-)^*$ ist die Äquivalenz zu \rightarrow .

t **normal** $\iff \neg \exists s(t \to s) \iff t \nrightarrow s$ Normalform von t $\iff t \to^* s$ s normal

Lemma 2.1. *Sei* $R \subseteq T_{\Sigma}(v) \times T_{\Sigma}(V)$

- 1) R kontextabg. \iff R abgeschlossen bzg. aller $f(t_1, ..., t_{i-1}, (\cdot), t_{i+1}, ..., t_n)$ (Induktion über kontexte!):
- (\cdot) ist trivial.

$$tRs \Longrightarrow C(t)RC(s) \Longrightarrow f(t_1,...,C(t),...,t_n)Rf(t_1,...,C(s),...,t_n)$$

2) R stabil \Longrightarrow (R kontextabg. \iff R abgeschlossen bezgl aller $f(x_1, \ldots, (\cdot), \ldots, x_n)$) (folgt direkt aus 1.)

Beispiel 2.1.

$$\Sigma = \{+/2, s/1, 0/0\}$$

1)
$$s(x) + y \to_0 s(x + y)$$

2)
$$0 + y \rightarrow_0 y$$

3)
$$(x + y) + z \rightarrow_0 x + (y + z)$$

Es gibt versch umklammerungsmöglichkeiten:

$$(s(x) + s(y)) + z \xrightarrow{1), C(\cdot) + z, \sigma = [s(y)/y]} s(x + s(y)) + z \xrightarrow{1), C(\cdot), \sigma = [(x+s(y))/x]} s((x+s(y)) + z) \xrightarrow{3)} s(x + (s(y) + z) \xrightarrow{1)} s(x + s(y + z))$$

$$(s(x) + s(y)) + z \xrightarrow{3), C(\cdot), \sigma = [s(x)/x, s(y)/y]} s(x) + (s(y) + z) \xrightarrow{1)} s(x) + s(y + z) \xrightarrow{1)} s(x + s(y + z))$$

Unterschied Gleichungstheorie und TES: Gleichungstheorie ist eine Umkehrbare relation zwischen Termen!

3 Terminierung

Definition 3.1.

 $R \subseteq X \times X$ wohlfundiert \iff es existiert keine unendliche folge $x_0, ..., x_n$ mit $x_0 R x_1 R ...$

 $(\mathbb{Z}, >)$ ist nicht wohlfundiert. (0 > -1 > -2 > ...

 $(\mathbb{Q}_+,>)$ ist nicht wohlfundiert $1>\frac{1}{2}>\frac{1}{4}>\frac{1}{8}>\dots$

(N, >) ist wohlfundiert (es endet spätestens bei 0, induktion über Kettenanfänge)

Beweis 3.1. i.V. Die Kette $n_1 > n_2 > ...$ ist endlich.

Annahme: es gibt eine unendliche Kette bei $n_0 > n_1 > \cdots \implies n_1 > n_2 > \ldots$ wäre auch unendlich $(\infty - 1 = \infty)$. Widerspruch zur Induktionsvorraussetzung!

Definition 3.2.

- schwach normalisierend \iff that eine NF. $t \rightarrow \cdots \rightarrow s$ normal.
- stark normalisierend \iff es gibt keine unendliche reduktionsfolge $\neg \exists t = t_0 \rightarrow t_1 \rightarrow \dots$ (unendlich). (es gibt keine zyklen)

TES (Σ, \to_0) schwach/stark normalisierend (WN(SN)) \iff alle t in (Σ, \to_0) schwach/stark normalisierend.

Beispiel 3.1.

 $f(x) \rightarrow_0 f(x)$

 $g(x) \rightarrow 1$

g(x) stark normalisierend einzige Reduktion $g(x) \rightarrow 1 \rightarrow$

f(x) nicht schwach normalisierend einzige Reduktion $f(x) \rightarrow f(x) \rightarrow ...$

g(f(x)) schwach normalisierend: $g(f(x)) \rightarrow 1 \rightarrow (Haskell ausführung)$

oder $g(f(x)) \rightarrow g(f(x)) \rightarrow \dots$ (deshalb nicht stark normalisierend, hier ML-ausführung)

4 Reduktionsordnungen

 \leq vs <: reflexiv vs. irreflexiv: $\forall x (\neg x R x)$.

R ist strikte Ordnung \iff R transitiv und Irreflexiv (z.B.>).

Definition 4.1.

 $R \subseteq T_{\Sigma}(V) \times T_{\Sigma}(V)$.

Reduktionsordnung \iff R wohlfundierte, stabile, kontextabgeschlossen, strikte Ordnung.

(aus wohlfundiert folgt strikt, sonst könnte man eine unendliche Folge xRxRxRxRxR...).

Satz 1. Sei > Reduktionsordnung und $\forall t, s(t \rightarrow_0 s \implies t > s) \implies SN$ (also in jeder Ersetzungsregel wird nach anwendung der Term kleiner).

Beweis 4.1. > ist stabil und kontextabgeschlossen, und $\rightarrow_0 \subseteq$ > \Longrightarrow \rightarrow ist wohlfundiert, d.h. \rightarrow ist SN.

(Weil \rightarrow der kontextabg. und stabile abschluss von \rightarrow_0 ist, wenn > wohlfundiert ist, dann kann es auch keine unendlichen Mengen in der Teilmenge \rightarrow geben)

Beispiel 4.1.

|t| = Größe von t. t > s: \iff |t| > |s| (also die länge).

kontextabgeschlossen: $|t| > |s| \implies |C(t)| > |C(s)|$ (freiplatz kommt einmal vor.)

stabil? nicht immer |x + 2y - x| > |y + y| aber: $\sigma = [100x/y] |x + 2 * 100x - x| > |100x + 100x|!$

aber Ok, wenn in $t \rightarrow_0 s$ stets jede variable s höchstens so oft wie in t vorkommt.

Ø ist eine Reduktionsordnung.

 \rightarrow SN \Longrightarrow \rightarrow ⁺ Reduktionsordnung.

4.1 Polynomordnungen

Recall: Polynome die menge der Polynome über \mathbb{N} d.h. mit natürlich zahligen koeffizienten (insbesondere also keine z.B. $-1x^2$).

$$\mathbb{N}[x_1, ..., x_n] = \left\{ \sum_{i_1, ..., i_n \in \mathbb{N}} a_{i_1, ..., i_n} x_1^{i_1} ... x_n^{i_n} | a_{i_1, ..., i_n} \in \mathbb{N} \ a_{i_1, ..., i_n} = 0 \text{ fast immer} \right\}$$

z.B. $x^2y + 2y^2zx \in \mathbb{N}[x, y, z]$ ein summand wird "Monom" genannt. z.B. ist y^2zx ein monom und gehört zu $a_{121} = 2$ jedes $p \in \mathbb{N}[x_1, \dots, x_n]$ definiert eine Funktion

$$\mathbb{N}^n \to \mathbb{N} \ (k_1, \dots, k_n) \to p(k_1, \dots, k_n) \in \mathbb{N}$$

p,q Polynom $\implies p+q, p\times q$ ist Polynom (nach Zusammenfassen gleichartiger Monome)

 \implies für $p \in \mathbb{N}[x_1, ..., x_n], q_1, ..., q_n \in \mathbb{N}[y_1, ..., y_k]$

 $\implies p(q_1,...,q_n) \in \mathbb{N}[y_1,...,y_k]$ (die eingesetzten polynome können von jeder Art "k" sein, das "buffert" auch unten evtl vorliegende $(x^2)^3 = x^6$ mit $a_{xyz} = 0$)

$$k_1, \dots, k_n \in \mathbb{N} \implies p(k_1, \dots, k_n) \in \mathbb{N}$$

Definition 4.2. Sei $\emptyset \neq A \subseteq \mathbb{N}$.

$$p >_A q \iff \forall k_1, \dots, k_n \in A(p(k_1, \dots, k_n) > q(k_1, \dots, k_n))$$

Beispiel 4.2.

 $x^2 >_{\mathbb{N}} x$ gilt nicht $1^2 \not> 1$ aber schon für $A = \{n \in \mathbb{N} | n \ge 2\}$

Lemma 4.1. $>_A$ ist wohlfundiert.

Beweis 4.2. Annahme: $p_0 >_A p_1 >_A \dots$ (unendlich) wähle $a \in A$; dann $p_0(a, \dots, a) > p_1(a, \dots, a) > \dots$ in $\mathbb N$ WIDER-SPRUCH ($>_{\mathbb N}$ ist wohlfundiert)

Definition 4.3. $p \in \mathbb{N}[x_1, ..., x_n]$ streng monoton:

$$\forall j \exists i_1, \dots, i_n (i_j > 0 \land a_{i_1 \dots i_n} > 0)$$

(also wenn x_i im polynom struktur ist, muss es auch einen koeffizienten geben, der $\neq 0$ ist)

Lemma 4.2.

$$p \ streng \ monoton \iff \forall k_1, ..., k_n, k'_1, ..., k'_n((k_1, ..., k_n) > (k'_1, ..., k'_n) \implies p(k_1, ..., k_n) > p(k'_1, ..., k'_n))$$

 \iff 1) $\forall j(k_j \ge k_i')$ und 2) $\exists j(k_j > k_i')$ (mindestens eins echt größer).

Beweis 4.3. " \Longrightarrow "

$$a_{i_1,\dots,i_n}k_1^{i_1}\dots k_n^{i_n}\geq a_{i_1,\dots,i_n}k_1^{i_1'}\dots k_n^{i_n'}$$
 stets, einmal ">" \square

Definition 4.4. (monotone) Polynomielle Interpretion $\mathscr A$ besteht aus

- zu jedem $f/n \in \Sigma$ ein streng monotones $p_f \in \mathbb{N}[x_1, ..., x_n]$
- $A \subseteq \mathbb{N}$ die unter p_f abgeschlossen ist

so dass
$$k_1, ..., k_n \in A \implies p_f(k_1, ..., k_n) \in A$$

(Eine polynomordnung besteht aus einem polynom für jedes signatursymbol und einer auswahl natürlicher Zahlen)

 \rightarrow Polynomordnung $\succ_{\mathcal{A}} t \succ_{\mathcal{A}} s \iff p_t \succ_{\mathcal{A}} p_s$

mit
$$p_x = x p_{f(t_1,...,t_n)} = p_f(p_{t_1},...,p_{t_n})$$

Satz 2. $>_A$ ist eine Reduktionsordnung!

Korrolar 4.1. Wenn $t \to_0 s \implies t \succ_{\mathcal{A}} s$, $dann \to SN$.

Beispiel 4.3.

$$f(f(g(x))) \to_0 f(g(g(x)))$$

$$p_f(x) = x^2 + 1, p_g(x) = x \text{ also } f(f(g(x))) \equiv (x^2 + 1)^2 + 1 \succ_{\mathbb{N}} f(g(g(x))) = x^2 + 1$$

oder einfach $p_f(x) = x^2$, $p_g(x) = x$ also, dann muss man jedoch $A = \mathbb{N} \setminus \{1, 0\}$

Lemma 4.3. (Substitutionslemma):

$$\sigma = [t_1/x_1, ..., t_n/x_n], p \in \mathbb{N}[x_1, ..., x_n] \implies p_{t\sigma} = p_t(p_{t_1}, ..., p_{t_n})$$

Beweis 4.4. Induktion über t.

$$-p_{x_i\sigma} = p_{t_i} = P_{x_i}(p_{t_1}, ..., p_{t_n})$$

$$p_{f(s_1,\ldots,s_k)\sigma}=p_f(p_{s_1}\sigma,\ldots,p_{s_k}\sigma)$$

$$=_{IV} p_f(p_{s_1}(p_{t_1},\ldots,p_{t_n}),\ldots)$$

$$= p_f(p_{s_1},...,p_{s_k})(p_{t_1},...,p_{t_n}) = p_{f(s_1,...,s_n)}(p_{t_1},...,p_{t_n})$$

Beweis 4.5. (>_ℳ ist Reduktionsordnung)

- strikte Ordnung per definition
- wohlfundiert (es gibt keine endlos absteigende polynomfolge)
- $\succ_{\mathscr{A}}$ stabil: Sei $t \succ_{\mathscr{A}} s, \sigma = [t_1/x_1, \ldots]$

zZ.:
$$t\sigma \succ_{\mathcal{A}} s\sigma$$
: Seien $k_1, \ldots, k_n \in A$

$$p_{t\sigma}(k_1,...,k_n) = p_t(p_{t_1}(k_1,...,k_n),...) > p_s(p_{t_1}(k_1,...,k_n),...) = P_{s\sigma}(k_1,...,k_n)$$

• $\succ_{\mathscr{A}}$ kontextabgeschlossen: Sei $t \succ_{\mathscr{A}} s$, $C(\cdot) = f(x_1, \cdot, (\cdot)_i, \dots, x_n)$ (weil stabilität schon gezeigt, reicht das)

zZ:
$$C(t) \succ_{\mathcal{A}} C(s)$$
 Seien $k_1, \dots, k_n \in A$

$$p_f(k_1,\ldots,p_t(k_1,\ldots,k_n),\ldots,k_n) \stackrel{streng\ monoton}{<} p_f(k_1,\ldots,p_s(k_1,\ldots,k_n))$$

Es ist beweisbar untentscheidbar, ob es für eine gegebene reduktionsordnung eine polynomordnung die deren Terminierung beweist, gibt. (halteproblem)

Beispiel 4.4.

$$(x \oplus y) \oplus z \rightarrow_0 x \oplus (y \oplus z)$$

$$x \oplus (y \oplus z) \rightarrow_0 y \oplus y$$

Gesucht ist also eine poly interpretation von "⊕":

Hier: Linke seite muss mehr gewichtet werden als die Rechte.

$$p_{\oplus}(x, y) = x^2 + y$$

führt zu:

$$(x^2 + y)^2 + z >_{\mathscr{A}} x^2 + (y^2 + z) = x^4 + 2x^2y + y^2 + z$$

$$\mathcal{A} = [1, \infty)$$

$$x^2 + y^2 + z \not\succ_{\mathcal{A}} y^2 + y$$

Geht also nicht, wenn man $x^2 \to \infty$

Besser:

$$p_{\oplus}(x, y) = x^2 + xy$$

$$(x^2 + xy)^2 + (x^2 + xy)z = x^4 + 2x^3y + x^2y^2 + x^2z + xyz >_{\mathcal{A}} x^2 + x(y^2 + yz) = x^2 + xy^2 + xyz$$

$$\mathcal{A} = \mathbb{N}_{\geq 1}$$

$$x^2 + xy^2 + xyz >_{\mathscr{A}} y^2 + yy = 2y^2$$

$$\mathcal{A} = \mathbb{N}_{>2}$$

(Wichtig, man darf keine variablen "verlieren" wenn man noch umformungsschritte hat!)

5 Konfluenz

Beispiel 5.1. Gruppen

$$x \cdot (y \cdot z) \stackrel{\rightharpoonup}{=} (x \cdot y) \cdot z$$

$$x \cdot e \stackrel{\rightarrow}{=} x$$

$$x \cdot x^{-1} \stackrel{\longrightarrow}{=} e$$

$$y \cdot (x \cdot x^{-1}) \rightarrow y \cdot e \rightarrow y \rightarrow \text{ ist eine NF}$$

oder

$$y \cdot (x \cdot x^{-1}) \rightarrow (y \cdot x) \cdot x^{-1} \rightarrow \text{ist eine NF}$$

(Knuth-bendix algorithmus[1] würde zur konfluenz führen: regel von einer der beiden NF zur anderen)

Definition 5.1.

- t,s **zusammenführbar** (zf) $\iff \exists u(t \rightarrow^* u^* \leftarrow s)$ (u.U auch mit null schritten)
- TES T heißt **konfluent** (CR, church/Rosser) $\iff \forall t, s, s'(t \rightarrow^* s \land t \rightarrow^* s' \implies s, s' zf)$

• T heißt **lokal konfluent** (WCR, weakly Church/Rosser) $\iff \forall t, s, s'(t \rightarrow s \land t \rightarrow s' \implies s, s' \ zf)$ (also in nur einem schritt zusammenführbar)

z.B.: ist oben 5.1 weder stark noch schwach CR

Satz 3. *Sei t konfluent* \Longrightarrow

1)
$$s \leftrightarrow^* t \iff s, t \ zf$$

2)
$$s, s'$$
 NF von $t \implies s = s'$

Beweis 5.1.

$$1) \Leftarrow klar \Longrightarrow$$

Haben
$$s = t_0 \leftrightarrow t_1 \leftrightarrow \cdots \leftrightarrow t_n = t$$

Induktion über n:

$$n = 0$$
: $s = t$ klar

$$n \rightarrow n+1$$
: Nach I.V. $s = t_0 \rightarrow^* q^* \leftarrow t_n \leftrightarrow t_{n+1}$

Fall 1: $t_n \leftarrow t_{n+1}$ fertig (weil t_n über q mit s zusammenführbar)

Fall 2: $t_n \to t_{n+1}$ dann gibt es ein r, dass über \to^* mit t_{n+1} und q erreichbar ist (wegen konfluenz) $t_n \longrightarrow t_{n+1}$

$$t_n \longrightarrow t_{n+1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$t_0 \longrightarrow q^* - \cdots \rightarrow r$$

2) $s \leftrightarrow^* s' \implies s, s' zf : s \to^* u^* \leftarrow s'$ weil s, s' NF, braucht man genau 0 schritte: s = u = s'

hier ein bsp für eine konfluente form:

Satz 4. (Newman's Lemma)

$$SN \land WCR \Longrightarrow CR$$

(also lokale konfluenz und stark normalisierend, führt zur vollen konfluenz, starke konfluenz ist i.a untentscheidbar (und so auch SN, deshalb widerspricht dieser Satz dem nicht...)) Beweis, später

Beispiel 5.2.

Regeln

 $l_1 \rightarrow r_1$

 $l_2 \to r_2$

Terme

$$C_1(l_1\sigma_1) = t = C_2(l_2\sigma_2)$$

$$C_1(l_1\sigma_1) \rightarrow C_1(r_1\sigma_1)$$

$$C_2(l_2\sigma_2) \rightarrow C_2(r_2\sigma_2)$$

 C_1 kann ignoriert werden wegen kontextabgeschlossen.

Weil l_2 in l_1 hineinragt, ist nach anwendung von $l_2 \rightarrow r_2$ kein l_1 mehr für die zweite Regel vorhanden (die eine anwendung zerschiest die prämisse einer zweiten)

Definition 5.2. Unifikation

t, s Terme $t \stackrel{\cdot}{=} s$

 σ Unifikator von t,s ($\sigma \in Unif(t,s)$) $\iff t\sigma = s\sigma$ (syntaktisch)

t, s unfiz $\iff unif(t,s) \neq \emptyset$

 σ all gemeiner als $\sigma' \iff \exists \tau (\sigma' = \sigma \tau)$

 σ allgemeinster Unifikator (mgu) von t, s $\sigma = mgu(t,s) \iff \sigma \in Unif(t,s) \land \forall \sigma' \in Unif(t,s) (\sigma \text{ allgemeiner als } \sigma')$ mgu existiert, wenn t,s unifizierbar, eindeutig bis auf isomorphismus (injektive umbennennung)

Beispiel 5.3. unifikation

$$k(r(x), x) \stackrel{\cdot}{=} k(z, r(z))$$

decomp r(x) = z, x = r(z)

elim
$$r(r(z)) \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} r(z)$$

occurs.

$$\sigma = [h(x)/y, g(x)/z]$$

Definition 5.3. kritisches Paar nach Knuth-Bendix

Seien $l_1 \to_0 r_1, l_2 \to_0 r_2$,

 $l_1 = C(t)$ t nichttrivial (d.h. t keine Variable, konstanten gehen aber...)

und
$$FV(l_2) \cap FV(l_1) = \emptyset$$

 $\sigma = mgu(t, l_2)$

also, wenn man $r_1\sigma \leftarrow l_1\sigma = C(t)\sigma = (C\sigma(t\sigma) = C\sigma(l_2) \rightarrow C\sigma(r_2\sigma) = C(r_2)\sigma$

 $\implies (r_1\sigma, C(r_2)\sigma)$ kritisches Paar

Lemma 5.1. $(r_1\sigma, C(r_2\sigma))$ kritisches Paar

 $\implies r_1\sigma \leftarrow l_1\sigma = C(l_2)\sigma \rightarrow C(r_2)\sigma$ (kritische Paare sind divergente Redukte eines gemeinsamen ursprungs)

Korrolar 5.1. $TWCR \implies alle\ Paare\ sind\ zf$

Satz 5. alle kritischen Paare $zf \implies WCR$ (Critical Pair Lemma)

Aufwand ist $O(n^3)$ (paare und dann jede Regel für kontext C(t) einsetzen, mal die anzahl der Schritte, den jede reduktion selbst benötigt)

Beispiel 5.4. (Gruppe)

$$(l_1 \rightarrow_0 r_1) = (x \cdot (y \cdot z)) \rightarrow_0 (x \cdot y) \cdot z)$$

(in frische variablen umbennenen)

$$(l_2 \rightarrow_0 r_2) = (x' \cdot e \rightarrow x')$$

Jetzt: wähle einen Teilterm aus, und mach das "t" draus:

$$C(\cdot) = x \cdot (\cdot)$$

$$t = y \cdot z \ \sigma = mgu(t, l_2) = [y/x', e/z]$$

$$\rightarrow$$
 kritisches Paar $(r_1\sigma, C(r_2)\sigma) = ((x \cdot y) \cdot e, x \cdot y)$

(die r_1 , r_2 sind oben definiert...)

Beispiel 5.5.

$$l_1 \to_0 r_1 = (x \cdot (y \cdot z)) \to_0 (x \cdot y) \cdot z)$$

$$l_2 \rightarrow_0 r_2 = (x' \cdot x^{-1'} \rightarrow_0 e)$$

$$C(\cdot) = x \cdot (\cdot)$$

$$t = y \cdot z$$

$$\sigma = mgu(t, l_2) = [x'/y, x^{-1'}/z]$$

$$(x \cdot x') \cdot x^{'-1} \leftarrow x \cdot (x' \cdot x^{-1'}) \rightarrow x \cdot e \text{ nicht z.f.}$$

Beispiel 5.6.
$$l_1 \rightarrow_0 r_1 = (x \cdot (y \cdot z) \rightarrow_0 (x \cdot y)z) = l_2 \rightarrow_0 r_2$$

$$t = y \cdot z \, \sigma = mgu(t, l_2) = mgu((y \cdot z), x' \cdot (y' \cdot z')) = [y/x', y' \cdot z'/z]$$

$$(x \cdot y) \cdot (y' \cdot z') \leftarrow x \cdot (y \cdot (y' \cdot z')) \rightarrow x \cdot ((y \cdot y') \cdot z')$$

sind z.f.

ACHTUNG

wenn man das umbennenen der variablen vergisst, dann krigt man $y \cdot z$ und $x \cdot (y \cdot z) \longrightarrow \bot$ occurs!!

Beweis 5.2. Critical Pair Lemma5

Notation $C(\cdot) \subseteq D(\cdot) \iff \exists E(\cdot)(C(\cdot) = D(E(\cdot)))$ (also C liegt unter D, wenn man in D einen weiteren kontext einführen kann, um ihn zu C zu verwandeln! Wie bei mgu auch)

 $C(\cdot) \perp D(\cdot) \iff C(\cdot) \not \sqsubseteq D(\cdot) \land D(\cdot) \not \sqsubseteq C(\cdot)$ (also keiner ist subset des anderen, sie sind orthogonal)

Sei $l_1 \rightarrow_0 r_1, l_2 \rightarrow r_2$ anwendbar auf s

Fall 1: $C_1(\cdot) \perp C_2(\cdot)$

Beide Terme stören sich nicht, ich kann immer beide Regeln in beliebiger Reihenfolge anwenden

Fall 2: o.b.d.A $C_2(\cdot) \sqsubseteq C_1(\cdot)$ mit $C_1(\cdot) = (\cdot)$ (man kann sich den äußersten einfach wegdenken, der Teilbaum unter einem echten $C_1 \neq (\cdot)$ ist equivalent zu einem normalen Baum mit wurzel direkt unter C_1)

ohne einschrenkung $l_2\sigma=l_2$, weil l_2 sowieso vollkommen unter unserer substitution liegt, also auch im nachhinein gemacht werden kann (es stört den Rest des Terms nicht).

unterfall 2a) C_2 ist echt unterhalb von l_1

auf der rechten seite ist $l_1 \to r_1$ nicht mehr anwendbar, weil $l_1 \to r_1$ fordert, dass es 3 gleiche argumente gibt. unterfall 2b) C_2 ist nicht unterhalb von l_1 , d.h. (\cdot) von C_2 liegt in l_1 :

Dies ist gleich der situation des Kritischen paares 5.1: Der einzige ort, wo es schiefgehen kann ist also, wenn das kritische paar nicht zf ist.

Es reicht also: Für $\sigma \in Unif(t, l_2)$ ist $(r_1\sigma, C_2(r_2)\sigma)$ zf.

Gilt nach Annahmen für $\sigma = mgu(t, l_2)$ (alle kritischen paare sind zf), dann $\sigma' = \sigma \tau$ für ein τ

 $r_1\sigma\tau$, $C_2(r_2)\sigma\tau$ unsere Reduktions relation ist stabil, also ist $r_1\sigma$, $C_2(r_2)\sigma$ zf, so auch alle substitution en.

Satz 6. wohlfundiert Induktion

 $R \subseteq X \times X$ wohlfundiert \Longrightarrow

Wenn $\forall x (\forall y (xRy \Longrightarrow P(y))) \Longrightarrow P(x)$ (1)

(wenn für alle nachfolger von x P(y) gilt, dann gilt auch P(x))

 $dann \ gilt \ \forall x(P(x)) \ (2)$

dies heißt wohlfundierte Induktion.

Beweis 5.3. Kontraposition:

zeige (1) $\land \neg$ (2) $\Longrightarrow R$ nicht wohlfundiert.

Per \neg (2) ex. x_0 mit $\neg P(x_0)$

 \Rightarrow (1) ex. x_1 mit $x_0Rx_1 \neg P(x_1)...$

d.h. $x_0Rx_1Rx_2...$, R nicht wf.

(dependent choice, viel harmloser als ZFC's auswahlaxiom)

Beispiel 5.7. 1) $X = \mathbb{N} R = \{(n+1, n) | n \in \mathbb{N} \}$

wohlfundierte Relation (bzw vollständige Relation als wohlfundierte...):

P(0)

 $\forall n(P(n) \Longrightarrow P(n+1))$

zusammen liefert das $\forall n(P(n))$

Beispiel 5.8. $X = \mathbb{N}$ R = >: Course-of-values-Induktion (man nimmt also für alle echt kleineren n die Aussage an)

Beweis 5.4. Newman's Lemma 4 $SN\&WCR \implies CR$

beweis per wohlfundierter Relation über \rightarrow (ist wf wegen SN).

o.E. $t \rightarrow^+ s, s'$ (weil in 0 schritten reduzieren trivialerweise sofortig zf ist)

Idee: man teilt die schritte zwischen s und s' in jeweils zwei paare von beiden seiten (s_0, s'_0) dann Induktionsvorraussetzung anwenden, woraus man folgern kann, dass dies für jeden schritt möglich ist:

6 Der λ -Kalkül

Beispiel haskell

```
twice f x = f $ f x
-- Eigentlich ``Schönfinkelisierung'' nach dem echten Erfinder.
map:: (a-> b)-> (List a-> List b)
map f [] = []
map f (x:xs) = (f x):map(f xs)
```

ungetypter λ -Kalkül = LISP.

getypter λ -Kalküle

Church (Ein zuerst unvollständiges system), Kleene, Rosser (haben beide R, Curry)

7 Der ungetypte λ -Kalkül

Definition 7.1. $\lambda x.t$ "die Funktion, die x auf t abbildet $x \mapsto t$ (wobei üblicherweise $x \in FV(T)$ ist)" ts Anwendung von s auf t. (Applikation)

Terme t,s gegeben durch:

$$t, s ::= x | t s | \lambda x. t (x \in V)$$

Wobei das Zweite als (λ) -Notation.

Beispiel 7.1.

- " $\lambda x.3 + x$ " (3 und plus ist technisch gesehen nicht definiert...)
- $\lambda x.xx$ (Haskell würde typfehler liefern, wenn man x als funktion auf sich selbst andwendet, es gibt aber sinnvole kontexte für solche dinge: Wenn x eine berechenbare funktion ist, dann muss es einen bestimmten, Gödelnummerierbaren, funktionsraum geben. Das erste x wäre dann die interpretation als funktion, und die zweite die Gödelnummer)
- $\lambda x.\lambda y.x =: f$, dann wäre z.B. $f xy = (\lambda y.x)y = x$

Definition 7.2. Freie Variablen und konventionen

Kontexte

$$C(\cdot) = (\cdot)|tC(\cdot)|C(\cdot)s|\lambda x.C(\cdot)$$

Kongruenz = Kontextabgeschlossene Äquivalenz.

Notation $\lambda x_1 \dots \lambda x_n \cdot t = \lambda x_1 \dots x_n \cdot t$

tsu = (ts)u

Scope von λ so weit wie möglich.

 $\lambda x.xx = \lambda x.(xx)$ im gegensatz zu $(\lambda x.x)x$

Freie Variablen:

 $FV(x) = \{x\}$

 $FV(ts) = FV(t) \cup FV(s)$

 $FV(\lambda x.t) = FV(t) \setminus \{x\}$

Definition 7.3. Substitution

- $x\sigma = \sigma(x)$
- $(ts)\sigma = (t\sigma)(s\sigma)$
- $(\lambda x.t)\sigma = \lambda y.(t\sigma')$ wobei y eine **frische variable** ist (also $y \in FV(\sigma(z)), (z \in FV(t) \setminus \{x\} \iff z \in FV(\lambda x.t))$), sonst könnte x "gefangen werden" $\lambda x.y[x/y] \neq \lambda x.x!!$ Lösung, wie bei \forall /\exists in GLOIN. (capture-avoiding substitution, liefert hier $\lambda x.y[x/y] = \lambda t.x$, mit $\sigma' = \sigma[x \to t]$) de-Broujin indizes. $(\lambda x.\lambda y.xy = \lambda \lambda.2$ 1) oder nominale Mengen[3]

Definition 7.4. $t =_{\alpha} s$ (sprich " α -äquivalent")

 \iff t geht aus s durch **Umbennenung** gebundener Variablen hervor (ohne Variableneinfang!).

Formal: $=_{\alpha}$ ist die von

$$\lambda x.t =_{\alpha} \lambda y.t[y/x] \, (y \notin FV(t) \setminus \{x\})$$

erzeugte Kongruenz

Beispiel 7.2.

$$\lambda x.xy =_{\alpha} \lambda z.zy =_{\alpha} \lambda y.yy$$

Lemma 7.1. $=_{\alpha}$ ist stabil

Beweis 7.1. Es reicht: erzeugende Relation ist stabil:

$$R = \{(\lambda x.t, \lambda y.t[y/x]) | y \notin FV(\lambda x.t)\}$$

Sei also $y \notin FV(\lambda x.t)$

zZ: $(\lambda x.t)\sigma R(\lambda y.t[y/x])\sigma$

Daraus folgt (2) $\lambda x'.t\sigma' \lambda y'.t[y/x]\sigma''$

Wobei $\sigma' = \sigma[x \mapsto x']$ und $\sigma'' = \sigma[y \mapsto y']$ und x', y' frisch

 $[y/x]\sigma'' = \sigma'[y'/x']$

$$x \rightarrow y \rightarrow y' = x \rightarrow x' \rightarrow y'$$

somit ist die Rechte seite $\lambda y' . t\sigma[y'/x']$ mit $y' \notin FV(\lambda x' . t\sigma')$ frisch.

Die Rechte seite is talso gleich der linken in (2)

Satz 7. β-Reduktion. Operationale Semantik ("Wie sich ein program während der Ausführung verändert")

Im imperativen gibt es Kontexte: η , $(x := 1; c) \rightarrow \eta[x \mapsto 1]; c$ $(\eta \ Umgebung, wie in GLOIN)$

In λ -Kalkül gibt es sowas nicht: β -Reduktion als kontextabgeschlossene Umformung

$$(\lambda x.3 + x)3 \rightarrow 3 + 4(\rightarrow wenn + bekannt ist)$$

 λ -Kalkül ist im wesentlichen ein TES (nicht 100% wegen alpha-equiv und gebundenen Variablen)

$$(\beta) (\lambda x.t) x \rightarrow_0 t$$

 \implies Einschrittreduktion \rightarrow

$$C((\lambda x.t)s) \rightarrow C(t[s/x])$$

 $(\lambda x.t)s$ heißt β -Redex.[hier nicht: (η) $\lambda x.yx \rightarrow_0 y$, beliebt in theoriebetrachtung, aber nicht in programmiersprachen (wenn man Seiteneffekte/IO hat, macht (η) viel kaputt, weil damit die "ausführung" von x auf y umgangen wird)]

Beispiel 7.3.

- $(\lambda x.xx)(yx) \rightarrow_{\beta} yx(yx)$
- $(\lambda x y. x(yx))zu \rightarrow_{\beta} \lambda y. z(yz)u \rightarrow_{\beta} z(uz)$
- $\omega := \lambda x.xx$, $\omega \omega = (\lambda x.xx)\omega \rightarrow_{\beta} = \omega \omega \rightarrow_{\beta} ...$ Nicht terminierend.
- Booleans " $x \times x \rightarrow x$ "

$$true := \lambda xy.x \ false := \lambda xy.y$$

- Paare: " $Paar \equiv Fkt$ " $Bool \rightarrow x$
 - $fst := \lambda p.ptrue$
 - $snd := \lambda p.pfalse$
 - $pair := \lambda xy.\lambda z.zxy$ wobei "z eine von true/false ist"

Dies liefert uns:

7.1 Rekursion

 $fact = \lambda n$.if n=0 then 1 else n*fact(n-1)

Dieser Aufruf besteht aus einer primitiven rekursionsfunktion F und der funktion selbst. fact = F fact

 $F = \lambda f \cdot \lambda n$.if n=0 then 1 else n*f(n-1) F nennt man auch ein Funktional.

fact = F fact nennt man Fixpunktgleichung. (rekursive Funktionen sind Fixpunktgleichen)

Fixpunktkombinator fix:

fix F = F(fix F)

Satz 8. λ -Kalkül Fixpunktkombinator

1) Jedes t hat einen Fixpunkt s, d.h. $s \rightarrow_{\beta} ts$ (also die Reduktion liefert wieder ts auf dem wider reduziert werden kann, ad absurdum)

2) Es existiert ein Fixpunktkombinator Y, d.h. Y $t \rightarrow_{\beta} s$ s ist Fixpunkt von t

$$Yt \rightarrow_{\beta} s \stackrel{(1)}{\rightarrow_{\beta}} ts$$

Beweis 7.2.

1) $s = W_t W_t$, $W_t = \lambda x . t(xx)$ (wie oben bei $\omega \omega$, bloß mit t ausenrum):

$$s = W_t W_t = (\lambda x. t(xx)) W_t \rightarrow_{\beta} t(W_t W_t) = ts$$

2) $Y = \lambda f.W_fW_f$ wenn man das jetzt auf ein fanwendet erhält man genau fs = s

Beispiel 7.4. Der Fall von oben $\lambda x.xx = \omega$ und dann $\omega \omega$ hat die funktion $t = \omega$ terminiert deshalb nicht.

 $\lambda x.((\lambda y.y)(xx))$ jetzt $t=\lambda y.y$ (also rekursion über die Identitätsfunktion) und s wäre dann $\omega\omega\to_{\beta}t(\omega\omega)\to_{\beta}\omega\omega$

7.2 Auswertungsstrategie

Beispiel 7.5.

 $(\lambda x y.x)x(\omega \omega)$ Wenn man probiert zuerst $\omega \omega$ zu reduzieren, läuft man undendlich weiter.

Wenn man den rechten reduziert erhält man:

 $(\lambda y.x)(\omega \omega)$ wo man entweder wieder ad absurdum $(\omega \omega)$ reduzieren kann (ML, leftmost-innermost, applikativ), oder das ganze zerlegen in:

 $\lambda y.x\omega\omega = x$ (Haskell, leftmost-outermost, normal/standard)

Definition 7.5. applikative (leftmost-innermost) Reduktion \rightarrow_a

induktiv definiert durch:

1a) $(\lambda x.t)s \rightarrow_a t[s/x]$ wenn t,s normal (innermost, eager).

2a) $(\lambda x.t \rightarrow_a \lambda x.t')$, wenn $t \rightarrow_a t'$ (eine echte prog. sprache macht aber niemals Termreduktionen unter einem lambda)

3a) $ts \rightarrow_a t's$ wenn $t \rightarrow_a t'$

4a) $ts \rightarrow_a ts'$, wenn $s \rightarrow_a s'$ und t normal.

Definition 7.6. normale (leftmost-outermost) Reduktion \rightarrow_n

1n) $(\lambda x.t)s \rightarrow_n t[s/x]$ immer (outermost reinziehen)

2n) $\lambda x.t \rightarrow_n \lambda x.t'$, wenn $t \rightarrow_n t'$

3n) $ts \rightarrow_n t's$, wenn $t \rightarrow_n t'$ und t keine λ -Abstraktion. (wenn es eine wäre, dann 1. Regel)

4n) $ts \rightarrow_n ts'$ wenn $s \rightarrow_n s'$ und t normal und keine λ -Abstraktion.

Beispiel 7.6. $(\lambda y.x)(\omega\omega)$

mit normaler Reduktion:

 $(\lambda y.x)(\omega\omega) \rightarrow_{1n} x$

mit Applikativer Reduktion:

 $(\lambda y.x)(\omega\omega) \to_{4.a} (\lambda y.x)(\omega\omega)$

Satz 9. Standardisierungssatz:

 $Sei \ t \rightarrow^* s \ s \ Normal form \implies t \rightarrow^*_n s$

(Nebenbemerkung: $(\lambda x. fxx)t \rightarrow_n ftt \rightarrow_n fst \rightarrow_n fss \ und \ (\lambda x. fxx)t \rightarrow_a (\lambda x. fxx)s \rightarrow_a fss \ also \ geht \ es \ mit \ applikativen \ schneller, weil man funktionen nur 1 mal evaluieren muss)$

8 Der einfach getypte λ -Kalkül

Typen α , β :

 $\alpha \rightarrow \beta$ Funktion von α nach β

Typvariablen a,b,...

z.B. $\lambda x.x: a \rightarrow a$

Definition 8.1.

Gegebene Menge V var.

Typvariablen **B** von Basistypen.

(**bool**, **Int**, ...) sind typen α , β , ...

definiert durch

$$\alpha, \beta ::= a|\mathbf{b}|\alpha \to \beta \ (a \in \mathbf{V}, \mathbf{b} \in \mathbf{B})$$

z.B. $a \to (b \to a) = (a \to b) \to a = a \to b \to a$ Terme: Church: $\lambda x : \alpha . t$ nur typkorrekte Terme. (also termbildung und typisierung)

Curry: $\lambda x.t$, Term kann typisierbar sein oder nicht.

 $\omega = \lambda x.xx$ z.B. nicht typisierbar ($\lambda \rightarrow$, weil typ voll rekursiv ist)

wir benützen curry.

 $x\lambda y.y$? weil x unbekannt/untypisiert.

Definition 8.2. kontexte

Ein Kontext ist eine endliche Menge Γ von Typisierungsannahmen x: $\alpha(x \in V)$ "x hat typ α "

Schreibweise: Γ , x: $\alpha = \Gamma \cup \{x : \alpha\}$

d.h. Γ ist eine endliche partielle Abbildung. (von variablennamen auf typen)

Typisierungsurteile (typing judgements) $\Gamma \vdash t : \alpha$ "in Kontext Γ hat t Typ α " z.B. $f : a \rightarrow b, x : a \vdash fx : b$

Herleitbarkeit induktiv:

$$\begin{split} &(\mathsf{Ax}) \ \frac{}{\Gamma \vdash x : \alpha} \ (x : \alpha) \in \Gamma \\ &(\to_e) \ \frac{}{\Gamma \vdash t : \alpha \to \beta} \ \Gamma \vdash s : \alpha }{\Gamma \vdash t : \beta} \\ &(\to_i) \ \frac{}{\Gamma [x \mapsto \alpha] \vdash t : \beta} \ \text{(also wenn x schon einen typ hat, wird dieser Überschrieben, shadowing)} \\ \end{aligned}$$

Rechts: sonst könnte x: α zum clash führen! (in der Realität könnte man das lösen, indem man aus Γ eine List statt eine Menge baut)

Beispiel 8.1.

$$Ax \xrightarrow{\vdash x: a \to b, y: a \vdash x: a \to b, y: a \vdash y: a} AX$$

$$\xrightarrow{\rightarrow_i} \frac{\vdash x: a \to b, y: a \vdash xy: b}{\vdash x: a \to b \vdash \lambda y. xy: a \to b}$$

$$\xrightarrow{\vdash \lambda xy. xy: (a \to b) \to (a \to b)}$$

$$\rightarrow_{e} \frac{x: a \rightarrow \vdash x: a \rightarrow x: a \rightarrow \vdash x: a}{\rightarrow_{i} \frac{x: \vdash xx}{\vdash \lambda x. xx:}}$$
CIRCULAR DEPENDENCY

Berechnungsprobleme:

• gilt $\vdash t : \alpha$? (typcheck)

• finde (existiert?) α mit $\vdash t : \alpha$ (Typinferenz)

• finde (existiert?) t mit $\vdash t : \alpha$ (Type inhabitation)

Beispiel 8.2. $a \rightarrow a$ inhabited (Identitätsfunktion $\lambda x.x$, bildet typ auf sich selbst ab, nach curry-howard tautologie) a nicht inhabited (also für sich stehend hat ein wert nicht irgendeinen typ, nicht obdA gültig) $(a \rightarrow a) \rightarrow a$ nicht inhabited (das erste ist eine Tautologie, also immer wahr, a selbst ist aber nicht immer wahr) denn: wäre $\vdash t: (a \to a) \to a$, dann $t(\lambda x.x): a$ widerspruch! (dependent Types a'la idris/agda, Programmsynthese, automatisches Beweisen)

Eigenschaften:

c frisch
$$\frac{\phi(c)}{\forall (\phi)} \forall I$$

$$\frac{\phi \vdash \psi}{\phi \rightarrow \psi} \rightarrow I$$

c frisch
$$\frac{\phi(c) \vdash \psi(c)}{\forall x(\phi \rightarrow \psi)}$$
 herleitbar:

Beweis:
$$\forall I \frac{\phi \vdash \psi}{\frac{\phi(c) \to \psi(c)}{\forall x(\phi \to \psi)}} \text{ c frisch}$$

Regel zulässig \iff durch ihre Hinzunahme wird nichts neu herleitbar.

Lemma 8.1. (Weakening)

$$(wk) \frac{\Gamma \vdash t : \alpha}{\Gamma' \vdash t : \alpha} \Gamma \subseteq \Gamma'$$

(also ein größerer Kontext ändert nichts an der Herleitbarkeit)

Beweis 8.1. Induktion über Herleitung von $\Gamma \vdash t : \alpha$

$$(Ax)\Gamma \vdash x : \alpha, x : \alpha \in \Gamma \implies x : \alpha \in \Gamma' \implies \Gamma' \vdash x : \alpha \ (\rightarrow_i) \ \frac{\Gamma[x \mapsto \alpha] \vdash t : \beta}{\Gamma \vdash \lambda x. t : \alpha \to \beta}$$

(*) Nach IV. (prämisse ist kleineres Gamma als konklusion) $\Gamma'[x \mapsto \alpha] \vdash t : \beta$

da
$$\Gamma[x \mapsto \alpha] \subseteq \Gamma'[x \mapsto \alpha]$$

Sei $y : \beta \in \Gamma[x \mapsto \alpha]$ (also ein beta ist links, so muss es auch rechts sein)

Fall 1:
$$y \neq x \implies y : \beta \in \Gamma \implies y : \beta \in \Gamma' \implies y : \beta \in \Gamma'[x \mapsto \alpha]$$

Fall 2:
$$y = x \implies \beta = \alpha \implies y : \beta = x : \alpha \in \Gamma[x \mapsto \alpha]$$

per (*) $\rightarrow_i \Gamma' \vdash \lambda x.t : \alpha \rightarrow \beta$ (die prämisse gilt, also kann man auch die gleiche folgerung machen)

Lemma 8.2. Inversion

(man kann alle Regeln auch umdrehen)

- 1) $\Gamma \vdash x : \alpha \implies (x : \alpha) \in \Gamma$ (ax inversion)
- 2) $\Gamma \vdash ts : \beta \implies es \ existiert \ \alpha \ mit \ \Gamma \vdash t : \alpha \rightarrow \beta \ (\rightarrow_e \ inversion, \ also \ wenn \ es \ eine \ Anwendung \ gibt, \ dann \ muss \ es$ eine Funktion \ dazu \ gegeben \ haben)
- 3) $\Gamma \vdash \lambda x.t: \gamma \implies \gamma$ hat die Form $\alpha \rightarrow \beta$ und $\Gamma[x \mapsto \alpha] \vdash t: \beta (\rightarrow_i inversion, also der type des input einer Funktion muss herleitbar sein)$

Beweis 8.2. Regeln sind syntaxgerichtet

8.1 Typinferenz

 $\lambda x.x: a \rightarrow a$

$$\lambda x.x:(a \rightarrow b) \rightarrow (a \rightarrow b)$$

Offensichtlich ist das erst besser als das zweite. Es muss also eine "Algemeinheitshierarchie" geben (most general typing)

Definition 8.3. Terminologie/Notation:

 $TV(\alpha)$ = Menge der in α vorkomenden Typvariablen.

$$TV(\Gamma) = \bigcup_{(x:\alpha) \in \Gamma} TV(\alpha)$$

Typsubstitution = Substitution von Typen für Typvariablen σ Lösung von $\Gamma \vdash t : \alpha$, wenn $\Gamma \sigma \vdash t : \alpha \sigma$ herleitbar.

allgemeinste Lösung (wie bei mgu $\sigma' = \sigma\theta$ dann ist σ das allgemeinere, wenn das $\forall \sigma'$ gilt dann ist σ die allgemeinste Lösung)

Prinzipaltyp von $\Gamma \vdash t$ = allgemeinste Lösung von $\Gamma \vdash t$: a a frisch $(a \notin TV(\Gamma))$ (prinzipaltyp ist allgemeinste Lösung mit frischen typen und eindeutig modulo Umbennenung)

 $\Gamma \vdash t$ typisierbar $\iff \Gamma \vdash t : a$ hat eine Lösung. (a frisch)

Satz 10. Algorithmus W nach HINDLEY/MILNER

Berechne zu $\Gamma \vdash t : \alpha$ ("Ziel")

 $PT(\Gamma;t;\alpha)$ Menge von Typgleichungen $a \doteq \beta$ mit $PT(\Gamma;t;\alpha)$ unfizierbar $\iff \Gamma \vdash t : \alpha$ hat Lösung.

 $mgu(PT(\Gamma;t;\alpha))$ liefert allgemeinste Lösung von $\Gamma \vdash t:\alpha$ (liefert und ist nicht gleich, weil der PT mehr variablen substituiert als notwendig)

 \implies mgu(PT(();t;a))(a) = Prinzipaltyp von t (a frisch, t geschlossen)

Implizit geht man bei diesen Regeln immer von $x \in \Gamma$ aus

- $PT(\Gamma; x; \alpha) = {\alpha \doteq \beta | x : \beta \in \Gamma}$ (nach Ax inversionslemma)
- $PT(\Gamma; ts; \alpha) = PT(\Gamma; t; a \rightarrow \alpha) \cup PT(\Gamma; s; a)$ global(a frisch) nach (\rightarrow_e)
- $PT(\Gamma; \lambda x.t; \alpha) = PT(\Gamma[x \mapsto a]; t, b) \cup \{a \to b \doteq \alpha\}$ mit a, b **global** frisch (\to_i) invers. (wir fitten also input auf a und output auf b)

Das global ist notwendig, um einfang bei unifikation zu vermeiden. Lösung z.b. über [3]

Beispiel 8.3.

 $\vdash \lambda xy.xy$

 $PT(\emptyset, \lambda xy.xy; a) = PT(x : b, \lambda y.xy, c) \cup \{a = b \rightarrow c\} =$

 $PT(x:b,y:d;xy;e) \cup \{a \doteq b \rightarrow c, c \doteq d \rightarrow e\}$

 $PT(x:b,y:d;x;f \to e) \cup PT(x:b,y:d;y;y:f) \cup \{a = b \to c, c = d \to e\}$

 $= \{b \doteq f \rightarrow e, y \doteq f, a \doteq b \rightarrow c, c \doteq c = d \rightarrow e\}$

jetzt hat man gleichungen, die man unifizieren muss:

 $mgu = [f/d, f \rightarrow e/c, f \rightarrow e/b, (f \rightarrow e) \rightarrow (f \rightarrow e)/a]$ wir haben oben mit a angefangen, also ist der endtyp $\lambda xy.xy$: $(f \rightarrow e) \rightarrow (f \rightarrow e)$ ist Prinzipaltyp.

 $PT(x:a;x\lambda z.z;c) = PT(x:a;x;b\to c) \cup PT(x:a,\lambda z.z;b) = \{a \doteq b \to c\} \cup PT(x:a,z:d;z;e) \cup \{b \doteq d \to e\} = \{a \doteq b \to c, d \doteq e, b \doteq d \to e\}$

 $mgu = [e \rightarrow e/b, e \rightarrow e \rightarrow c/a, c/c]$ " $e \rightarrow e \rightarrow c/a, c/c$ " also ist Prinzipaltyp.

 $PT(\phi; \lambda x. xx, a) = PT(x:b; xx; c) \cup \{a \doteq b \rightarrow c\} = PT(x:b; x; d \rightarrow c) \cup PT(x:b; x; d) \cup \{a \doteq b \rightarrow c\} = \{b \doteq d \rightarrow c, b \doteq d, \ldots\}$ Unifikation liefert occurs \bot nach substitution [d/b]

Satz 11. (Γ, t) typisierbar $\iff PT(\Gamma; t; a)$ (a frisch) unifizierbar; dann $mgu(PT(\Gamma; t; \alpha))|_{TV(\Gamma) \cup \{a\}}$ Prinzipaltyp von $(\Gamma; t)$

Beweis 8.3. Zeige allgemeiner:

 $PT(\Gamma; t; \alpha)$ unifizierbar $\iff \Gamma \vdash t : \alpha \text{ l\"osbar}$

dann

 $mgu(PT(\Gamma;t;\alpha))|_{TV(\Gamma,\alpha)}$

allgemeinste Lösung von $\Gamma \vdash t : \alpha$

Zeige dazu:

 $\Gamma \sigma \vdash t : \alpha \sigma \iff \sigma \text{ ist erweiterbar zu } \sigma' \in Unif(PT(\Gamma; t; \alpha))$

d.h. $\sigma'|_{TV(\Gamma,\alpha} = \sigma$ sigma ist also erweiterbar.

per Induktion über t:

" \Leftarrow ": per Typregeln(8.2).

z.B.
$$t = \lambda x.s$$
:

haben
$$\sigma' \in Unif(PT(\Gamma[x \mapsto a]; s; b) \cup \{\alpha \doteq a \rightarrow b\})$$

Nach IV.
$$\underbrace{\Gamma[x \mapsto a]\sigma'}_{=\Gamma[x \mapsto a]\sigma} \vdash s : \underbrace{b\sigma'}_{b\sigma}$$
Per (\rightarrow_e)
$$\underbrace{\frac{\Gamma[x \mapsto a]\sigma}{\Gamma[x \mapsto a]\sigma}}_{S : b\sigma} s : b\sigma'$$

Daraus folgt $\alpha \sigma' = \alpha \sigma$

" \Longrightarrow " Per Inversion:

$$1.\Gamma\sigma \vdash x : \alpha\sigma \stackrel{inversion}{\Longrightarrow} x : \beta \in \Gamma, \alpha\sigma = \beta\sigma$$

$$\Rightarrow \sigma \in Unif(\underbrace{PT(\Gamma; x; \alpha)}_{\alpha \doteq \beta})$$

$$2. \Gamma \sigma \vdash ts : \alpha \sigma \stackrel{Inversion}{\Longrightarrow}$$

es existiert ein γ mit $\Gamma \sigma \vdash t : \gamma \rightarrow \alpha \sigma, \Gamma \sigma \vdash s : \gamma$

Setze
$$\sigma' = \sigma[a \mapsto \gamma]$$
 (a global frisch) $\implies \Gamma \sigma' \vdash t : (a \to \alpha)\sigma', \Gamma \sigma' \vdash s : a\sigma'$

$$\overset{IV}{\Longrightarrow} \sigma' \text{ erweitert zu } \underbrace{\sigma'' \in Unif(PT(\Gamma;t;a \to \alpha))}_{\text{gemeinsame TV sind nur die aus } TV(\Gamma;\alpha;a)} \text{ und } \sigma'' \in Unif(PT(\Gamma;s;a))$$

$$\Rightarrow \sigma'' \in Unif(PT(\Gamma, ts, \alpha))$$

3.
$$\Gamma \sigma \vdash \lambda x.s : \alpha \sigma \stackrel{Inversion}{\Longrightarrow}$$

$$\alpha \sigma = \beta \rightarrow \gamma \Gamma \sigma[x \mapsto \beta] \vdash s : \gamma$$

Setze $\sigma' = \sigma[a \mapsto \beta, b \mapsto \gamma]$, a,b global frisch

$$\implies \Gamma[x \mapsto a]\sigma' \vdash s : b\sigma'$$

$$\overset{IV}{\Longrightarrow} \sigma' \text{ erweitert zu } \sigma'' \in Unif(PT(\Gamma[x \mapsto a]; s; b))$$

$$\stackrel{(a \to b)\sigma'' = \alpha\sigma''}{\Longrightarrow} \sigma'' \in Unif(PT(\Gamma; \lambda x.s; \alpha))$$

(Das letzte folgt daraus, dass $\alpha \sigma = \beta \rightarrow \gamma$ ist und wir $\sigma' = \sigma[a \mapsto \beta, b \mapsto \gamma]$ haben)

8.2 Subjektreduktion

Satz 12.
$$\Gamma \vdash t : \alpha, t \rightarrow_{\beta} s \Longrightarrow \Gamma \vdash s : \alpha$$

$$\wedge$$
 " \Leftarrow " gilt **NICHT**: z.B. $t = (\lambda x.y)(\lambda x.xx) \rightarrow_{\beta} y$

Lemma 8.3. Substitution

$$\Gamma[x \mapsto \alpha] \vdash t : \beta, \Gamma \vdash s : \alpha \Longrightarrow \Gamma \vdash t[s/x] : \beta$$

Beweis: induktion über t.

Beweis 8.4.
$$t = C((\lambda x.u)v), s = C(v[u/x])$$

Induktion über $C(\cdot)$

z.B.: $C(\cdot) = (\cdot)$ Per inversion:

$$\Gamma \vdash \lambda x.u : \beta \rightarrow \alpha, \Gamma \vdash v : \beta$$

$$\Gamma[x \mapsto \beta] \vdash u : \alpha$$

$$\stackrel{subst-lemma}{\Longrightarrow} \Gamma \vdash \underbrace{u[v/x]} : \alpha$$

9 Church Rosser des λ -Kalkül

(Dies ist der Ursprüngliche Church-Rosser beweis, der Name wird jetzt mittlerweile für alle TES benutzt).

Lemma 9.1. Streifenlemma (strip-lemma)

Effektiv ein mittelweg zwischen WCR und CR.

 $oben \ hat \ man \ die \ n\text{-}beta\text{-}reduktionen. \ Unten \ macht \ man \ jeweils \ immer \ einen \ Schritt \ und \ kaskadiert \ nach \ links.$

Dies geht für jedes TES.

Speziell für lambda sähe das so aus.

markierte Terme: $t, s := x|ts|\lambda x.t|(\lambda x.t)s$ (also genau gleich, man kann nur **beta-reduzierbare** terme markieren).

Diese unterstriche müssen wieder "unlocked" werden.

|t|: Entfernt _ aus t, z.B. $|(\lambda x.t)s| = (\lambda x.|t|)|s|$

 $\phi(t)$ Reduziere alle unterstrichenen Redexe:

- $\phi(x) = x$
- $\phi(ts) = \phi(t)\phi(s)$
- $\phi(\lambda x.t) = \lambda x.\phi(t)$
- $\phi((\underline{\lambda}x.t)s) = \phi(t)[\phi(s)/x]$

Syntaktic sugar $t \stackrel{|\cdot|}{\rightarrow} |t|$

Lemma 9.2. Lemma A

 $Dabei\,(\lambda x.t)s \to_{\underline{\beta}} t[s/x]\,\,(\underline{\lambda} x.t)s \to_{\underline{\beta}} t[s/x]\,\,Es\,ignoriert\,also\,\,die\,\,Unterstriche.$

Beweis 9.1. Reduziere auf $t \rightarrow_{\beta} s$, Induktion über Kontexte

Wir bekommen also nicht mehr dazu, oder verlieren ausdruckskraft.

Lemma 9.3. Syntaktisches Substitutionslemma

$$u[v/y][s/x] = u[s/x][v[s/x]/y]$$

nicht simultan! Das v wird vom x beeinflusst.

wenn $y \notin FV(s), x \neq y$ (bei dem ersten hätte man eine doppelsubstitution, beim zweiten wird die zweite reduktion void)

Beweis 9.2. Induktion über u (weil in diesen Reinsubstituiert wird)

Der interessante Fall ist hier der Induktionsanfang, weil im I.S nur weitergereicht wird.

Sei n eine Variable. (LHS/RHS =Left/Right handed side)

 $u \notin \{x, y\} \checkmark$

 $u = x : LHS = s, RHS = s \text{ weil } y \notin FV(s)$

u = y: LHS = v[s/x], RHS = v[s/x]

Lemma 9.4. Lemma B

a) $\phi(t[s/x]) = \phi(t)[\phi(s)/x]$

b) ϕ bewahrt β

Beweis 9.3. .

a) Induktion über t, interessant nur $t = (\lambda y.u)v$

$$\phi(((\underline{\lambda}y.u)v)[s/x]) \stackrel{(1)}{=} \phi((\underline{\lambda}y.u[s/x])v[s/x]) = \phi(u[s/x])[\phi(v[s/x])/y]$$

$$\stackrel{IV}{=} \phi(u) [\phi(s)/x] [\phi(v) [\phi(s)/x])/y]$$

$$= \underbrace{\phi(u)[\phi(v)/y]}_{\phi((\underline{\lambda}y,u)v)} [\phi(s)/x]$$

$$= \frac{\phi((\lambda y,u)v)[\phi(s)/x]}{\phi((\underline{\lambda}y,u)v)} [\phi(s)/x]$$

 $= \phi((\underline{\lambda}y.u)v)[\phi(s)/x]$

- (1) o.E. $y \neq x$ $y \notin FV(s)$ (im zweifelsfall umbennenen)
- b) Reduziere auf $t \rightarrow_{\beta} s$, Induktion über Kontexte:
- (·): Fälle nach Markierung:

Fall 1: markiert:

$$\begin{bmatrix} (\underline{\lambda}x.u)v & \rightarrow_{\underline{\beta}} & u[v/x] \\ \phi & \phi \\ \phi(u)[\phi(v)/x] & = & \phi(u)[\phi(v)/x] \end{bmatrix}$$

Fall 2: unmarkiert:

$$\begin{bmatrix} (\lambda x.u)v & \rightarrow_{\underline{\beta}} & u[v/x] \\ \phi & \phi \\ \lambda x.\phi(u)\phi(v) & \rightarrow_{\beta} & \phi(u)[\phi(v)/x] \end{bmatrix}$$

Beispiel mit nichtleerem kontext:

Kontext
$$(\underline{\lambda}x.C(\cdot))s$$
 und $t \to_{\beta} s$

$$\phi(\underline{\lambda}x.C(t))s = \phi(C(t))[\phi(s)/x] \xrightarrow{IV,C \ ist \ kleinerer \ Kontext} \phi(C(s))[\phi(s)/x] \checkmark$$

Lemma 9.5. Lemma C

Beweis 9.4. Induktion über t, interessanter Fall $t = (\underline{\lambda}x.u)v$ (sonst passiert ja nichts):

$$\begin{bmatrix} (\underline{\lambda}x.u)v & \stackrel{|\cdot|}{\rightarrow} & (\lambda x.|u|)|v| \\ \phi & \phi \\ \phi(u)[\phi(v)/x] & \beta \leftarrow & (\lambda x.\phi(u))\phi(v) \end{bmatrix}$$

 $C((\lambda x.u)v)$

10 Curry-Howard Isomorphismus

Typen = Propositionen (=Formel) "Types are propositions".

Terme/Programme = Beweise (u.U. ist ein Typ nicht bewohnt, also nicht Beweisbar)

Coq "man hat einen Term definiert, der diesen Typ hat"

minimale Logik:

$$\phi, \psi ::= a | \phi \rightarrow \psi \ (a \in V)$$

Deduktion:

$$(\rightarrow_{E}) \frac{\Gamma \vdash \phi \rightarrow \psi \qquad \Gamma \vdash \phi}{\Gamma \vdash \psi}$$

$$(\rightarrow_{I}) \frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \rightarrow \psi}$$

$$(Ax) \frac{\Gamma \vdash \phi}{\Gamma \vdash \phi}$$

Satz 13. *C-H-I*:

 $\vdash \phi \iff \phi \ bewohnt$

Beweis 10.1. .

 \leftarrow trivial: lösche Terme aus Herleitung von $\vdash t : \phi$ ergibt Herleitung $\vdash \phi$ (damit erhält man die kombination der ϕ als typen, dies sind trivialerweise die Herleitung)

 \implies Zu Γ definiert Kontext $\bar{\Gamma}$:

$$\Gamma = {\phi_1, \dots, \phi_n} \implies \bar{\Gamma} = {x_1 : \phi_1, \dots, x_n : \phi_n}$$

Also jeder Term wird als Typ gewertet und bekommt eine Variable.

Zeige
$$\Gamma \vdash \psi \Longrightarrow \exists t(\bar{\Gamma} \vdash t : \psi)$$

per Induktion über Herleitungen von $\Gamma \vdash \psi$

(Ax):
$$\phi \in \Gamma \implies \psi = \phi_i$$
 für ein $x_i : \phi_i \in \bar{\Gamma} \stackrel{(AX)}{\Longrightarrow} \bar{\Gamma} \vdash x_i : \phi_i$

$$(\rightarrow_E) \ \frac{\Gamma \vdash \phi \rightarrow \psi \qquad \Gamma \vdash \phi}{\Gamma \vdash \psi}$$

I.V. haben t,s mit

$$\frac{\bar{\Gamma} \vdash t : \phi \to \psi \qquad \bar{\Gamma} \vdash s : \phi}{\bar{\Gamma} \vdash ts : \psi}$$

 (\rightarrow_I) Beweis

$$(\rightarrow_I) \ \frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \psi \rightarrow \phi}$$

I.V. haben (bei $\phi = \phi_{n+1}$)

$$(\rightarrow_{I}) \frac{\bar{\Gamma}, x_{i+1} : \phi_{i+1} \qquad \vdash t : \psi}{\bar{\Gamma} \vdash \lambda x_{i}.t : \phi_{i+1} \rightarrow \psi}$$

^"→" ist intuitionistisch!

z.B.
$$((a \rightarrow b) \rightarrow a) \rightarrow a$$
 ist klassisch gültig, aber in miminaler (intuitionistischer) Logik nicht herleitbar.
(Ax)
$$\frac{(Ax)}{(a \rightarrow a) \vdash (a \rightarrow a) \rightarrow a} \frac{(Ax)}{(a \rightarrow a) \rightarrow a \vdash a} \frac{(a \rightarrow a) \rightarrow a \vdash a}{(a \rightarrow a) \rightarrow a \vdash a \rightarrow a}$$
(\rightarrow_I)
$$\frac{(a \rightarrow a) \rightarrow a \vdash a}{(\rightarrow_I)} \frac{(a \rightarrow a) \rightarrow a \vdash a}{\vdash ((a \rightarrow a \rightarrow)a) \rightarrow a}$$

Auf Typebene:

$$\underbrace{((a \to a) \to a) \to a}_{\lambda f. f(\lambda x. x)}$$

Man hat eine funktion, die wieder eine funktion erhält also das innere $(a \rightarrow a) \rightarrow a$ und hat als Ergebnis wieder ein a. Dazu muss man anwenden. Die innerer funktion muss den typ $a \rightarrow a$ haben. Das einzig mögliche hierfür ist die identitätsfunktion $\lambda x.x$

Deshalb haben wir eine funktion f in den wir eine funktion (identität) haben.

11 Induktive Datentypen

data Nat where

0: ()-> Nat

Suc: Nat->Nat

definiert Signatur $\Sigma_{Nat} = \{0/0, Suc/1\}$

Die Semantik von Nat ist definiert als

 $[Nat] = \{0, Suc(0), Suc(Suc(0)), ...\}$ also ein Herbrandmodell.

Definition 11.1. Ein Σ-Modell (Σ-Algebra) $\mathfrak M$ besteht aus

- Menge M (Träger)
- $zu f/n \in \Sigma$
- $\mathfrak{M}[\![f]\!]:M^n\to M$

Interpretion von Termen unter Umgebung $\eta:V\to M$:

 $\mathfrak{M}[\![t]\!]\eta\in M$

$$\mathfrak{M}[\![x]\!]\eta=\eta(x)\;x\in V$$

$$\mathfrak{M}\llbracket f(t_1,\ldots,t_n)\rrbracket \eta = \mathfrak{M}\llbracket f\rrbracket (\mathfrak{M}\llbracket t_1 \rrbracket \eta,\ldots,\mathfrak{M}\llbracket t_n \rrbracket \eta)$$

Beispiel 11.1. [Nat] ist eine Σ_{Nat} -Algebra per:

$$[\![Nat]\!][\![0]\!]=0$$

$$[\![Nat]\!][\![succ]\!](x) = Suc(x) \in [\![Nat]\!]$$

Definition 11.2. Seien $\mathfrak{M}, \mathfrak{N} \Sigma$ -Algebren.

 Σ -Homomorphismus = Abbildung $h: M \to N$ (wobei M,N trägermengen des respektiven Models sind)

$$\forall f/n \in \Sigma, x_1, \dots, x_n \in M$$

$$h(\mathfrak{M}[\![f]\!](x_1,...,x_n)) = \mathfrak{M}[\![f]\!](h(x_1),...,h(x_n))$$

Erinnerung: lineare Abbildung:

$$h(\lambda \cdot x) = \lambda h(x) \wedge h(x+y) = h(x) + h(y)$$

sprich: homomorphismen sind lineare Abbildung zwischen Algebren.

Lemma 11.1. • $id_n : \mathfrak{M} \to \mathfrak{M}$ ist Σ -Homomorphismus

• $h: \mathfrak{M} \to \mathfrak{N}, k: \mathfrak{N} \to \mathfrak{P}$ sind Σ -Homomorphismus $\Longrightarrow k \cdot h: \mathfrak{M} \to \mathfrak{P}$ ist Σ -Homomorphismus

Definition 11.3. h ist isomorphismus \iff h Σ -Homomorphismus und bijektiv.

 $\iff \exists h^{-1}(h\cdot h^{-1}=id \land h^{-1}\cdot h=id)$ (aber i.A. zwei verschiedene identitätsfunktionen!)

Isomorphismen sind also strukturerhaltend!!!

Dies gilt nicht in jedem Kontext: geordnete Systeme lassen das nicht einfach so zu!.

Menge A $\{b, \gamma\}$ ohne Ordnung und eine geordnete Menge B $(\{1, 0\}, \leq)$.

Es gibt ein $h: A \to B: x \le y \implies h(x) \le h(y)$

Aber das h^{-1} ist nicht monoton: $0 \le 1$, $h^{-1}(0) \nleq h^{-1}(1)$

Das heißt die Abbildung die im Algebraischen sinne isomorphismen sind, sind nicht unbedingt isomorphismen im Kontext der geordneten Mengen.

Lemma 11.2. h Isomorphismus $\implies h^{-1}$ ist Isomorphismus

Beweis 11.1. zZ: h^{-1} ist Homomorphismus (bijektivität ist ja bereits bekannt!), d.h.

$$h^{-1}(\mathfrak{N} \llbracket f \rrbracket (y_1, \dots, y_n) = \mathfrak{M} \llbracket f \rrbracket (h^{-1}(y_1), \dots, h^{-1}(y_n))) \overset{h \text{ injektiv}}{\Longleftrightarrow} \underbrace{h(h^{-1}(\mathfrak{N} \llbracket f \rrbracket (y_1, \dots, y_n)))}_{\mathfrak{N} \llbracket f \rrbracket (y_1, \dots, y_n)} = \underbrace{h(\mathfrak{M} \llbracket f \rrbracket (h^{-1}(y_1), \dots, h^{-1}(y_n))))}_{=\mathfrak{N} \llbracket f \rrbracket (h(h^{-1}(y_1), \dots, h(h^{-1}(y_n))))}$$

Erinnerung $m \equiv n \pmod{4}$ ist Äquivalenzklasse $\mathbb{Z}/4\mathbb{Z} = \{[n]_4 | n \in \mathbb{Z}\} = \{[0]_4, [1]_4, [2]_4, [3]_4\}$

Darauf kann addition definiert werden: $[n]_4 + [m]_4 = [n + m]_4$ ist wohldefiniert.

Beispiel 11.2. Σ_{Nat} -Algebra \mathfrak{M} mit $M = \mathbb{Z}/4\mathbb{Z}, \mathfrak{M}[[0]] = [0]_4, \mathfrak{M}[[suc]]([n]_4) = [n+1]_4$

 $h: [Nat] \to \mathfrak{M}$

 $Suc^{n}(0) \rightarrow [n]_4$ ist homomorph:

 $h([Nat][0]) = [0]_4 = \mathfrak{M}[0]$

 $h(\llbracket Nat \rrbracket \llbracket Suc \rrbracket (Suc^n(0))) = h(Suc^{n+1}(0)) = [n+1]_4 = \mathfrak{M} \llbracket Suc \rrbracket ([n]_4) = \mathfrak{M} \llbracket Suc \rrbracket (h(Suc^n(0))) \text{ (sogar surjektiv homomorph, aber natürlich nicht injektiv, somit kein isomorphismus)}$

Allg.: Datentyp D= Signatur Σ , $[\![D]\!] = [\![\Sigma]\!] = T_{\Sigma}(\emptyset)$ (also alle geschlossenen Terme) als Algebra, mit $[\![\Sigma]\!] [\![f]\!] (t_1, \ldots, t_n) = f(t_1, \ldots, t_n)$

Definition 11.4. Σ -Algebra \mathfrak{M} initial $\iff \forall \mathfrak{N} \exists ! \ Homomorphismus \ h : \mathfrak{M} \to \mathfrak{N}$ (initiales Modell ist also algemeinstes Modell)

Satz 14. $[\![\Sigma]\!]$ ist initial genannt "Termalgebra"

Beweis 11.2. Sei \mathfrak{N} eine Σ-Sigma Algebra. zZ: $\exists !h$ mit

$$(*) \ h([\![\Sigma]\!][\![f]\!](t_1,\ldots,t_n)) = \mathfrak{N}[\![f]\!](h(t_1),\ldots,h(t_n)) \ (f/n \in \Sigma)$$

gilt für $h(t) = \mathfrak{N}[t]$,

(*) ist rekursive Definition von $\mathfrak{N}[...]$

Satz 15. Die initiale Σ -Algebra ist eindeutig bis auf **eindeutige** Isomorphie (also kategorietheorie...)

Beweis 11.3. Seien $\mathfrak{M}, \mathfrak{N}$ initial

$$\mathfrak{M}_{\leftarrow \exists !k}^{\exists !h \rightarrow} \mathfrak{N}$$

Zu $\mathfrak{M}, \mathfrak{N}$ gehört jeweils eine identitätsfunktion.

Wegen eindeutigkeit der homomorphismen, muss $k \cdot h = id$ sein (bzw $h \cdot k = id$)

technisch gesehen definiert sich damit eine Äquivalenzklasse über Σ -Algebraen.

11.1 Mengenkonstruktionen

$$X_1, X_2$$
 Mengen $X_1 \times X_2 = \{(x_1, x_2) | x_1 \in X_1, x_2 \in X_2\}$

$$\pi_i(x_1, x_2) = x_1$$
 (i-te Projektion, i=1,2)

$$\pi_i: X_1 \times X_2 \to X_i$$

Mehrer funktionen auf gleiche daten:

$$f_i: Y \to X_i \text{ (i=1,2)}$$

$$< f_1, f_2 >: Y \to X_1 \times X_2$$

$$y \mapsto (f_1(y), f_2(y))$$

kartesisches Produkt von Projektionen. (lifting)

$$g_i: Y_i \to X_i$$

$$g_1 \times g_2 : Y_1 \times Y_2 \rightarrow X_1 \times X_2$$

$$(y_1, y_2) \mapsto (g_1(y_1), g_2(y_2))$$

Beispiele:

$$\pi_i \cdot < f_1, f_2 >= f_i$$

$$<\pi_1,\pi_2>=id,<\pi_1\cdot f,\pi_2\cdot f>=f$$

$$g_1 \times g_2 = \langle g_1 \cdot \pi_1, g_2 \cdot \pi_2 \rangle$$

 $X_1 + X_2$ (addition als analog zur Multiplikation mit kartesischen produkt)

$$X_1 + X_2 = \{(i, x) | i \in \{1, 2\}, x \in X_i\}$$

(umbennen, damit keine zwei elemente sich gegenseiteig in der Menge auslöschen) Duale

$$X_i \rightarrow X_1 + x_2$$

$$x \mapsto (i, x)$$

$$\text{zu } f_i : X_i \to Y \ (i = 1, 2)$$

kopaar.

$$[f_1, f_2]: X_1 + X_2 \rightarrow Y$$

 $[f_1, f_2](i, x) \mapsto f_i(x)$ (man wählt also die i-te funktion aus. effektiv "case" statement)

zu
$$g_i: X_i \rightarrow Y_i \ (i=1,2)$$

$$g_1 + g_2 : X_1 + X_2 \rightarrow Y_1 + Y_2$$

$$(g_1+g_2)(i,x)\mapsto (i,g_i(x))$$

Lemma 11.3. Duale:

$$[f_1, f_2] \circ i n_i = f_i$$

$$r \circ i n_1, r \circ i n_2] = r$$

$$g_1 + g_2 = [i n_1 \circ g_1, i n_2 \circ g_2]$$

Beweis 11.4. $[f_1, f_2](in_i(x)) = [f_1, f_2](i, x) = f_i(x)$

$$[r \circ i n_1, r \circ i n_2](i, x) = r(i n_i(x)) = r(i, x)$$

$$[i\,n_1\circ g_1,i\,n_2\circ g_2](i,x)=i\,n_i(g_i(x))=(i,g_i(x))=(g_1+g_2)(i,x)$$

Beispiel 11.3. Bäume

data Tree where

Nil: ()-> Tree

Node: Tree*Tree->Tree

Eine Σ_{Tree} -Algebra \mathfrak{M} :

 $\mathfrak{M}\llbracket Nil \rrbracket : 1 \to M \text{ (wobei 1 unit } \{*\} \text{ ist)}$

 $\mathfrak{M}[Node]:M^2\to M$

d.h. \mathfrak{M} gegeben durch $\alpha: 1 + M^2 \to M$

 $(\mathfrak{M}[Nil] = \alpha(in_1(*)) \text{ und } \mathfrak{M}[Node] = \alpha(in_2(x, y)))$

h homomorph bezüglich Node $\iff h(\mathfrak{M}[Node](x,y)) = \mathfrak{N}[Node](h(x),h(y))$

Erinnerung die Eckigen klammern heißen: gib mir vom paar $[f_1, f_2](i, x)$ die i-te funktion angewandt auf x.

Da jedes Teildiagram kommutiert, gilt homomorphie.

(Das gilt genau so für NIL (wenn man in_2 verwendet))

Allgemein gilt für eine Σ-Algebra

$$=\alpha:\underbrace{f/n\in\Sigma}_{=:F_{\Sigma}M}M^n\to M$$

Dann $h\mathfrak{M} \to \mathfrak{N}$ Homomorphismus $\iff F_{\Sigma}$

$$\sum_{f/n \in \Sigma} M^n \xrightarrow{\sum_{f/n \in \Sigma} h^n} \sum_{f/n \in \Sigma} N^n$$

$$\downarrow^{\beta}$$

$$M \xrightarrow{f} N$$

sprich, wenn man für alle signatursymbole f ein solches signaturquadrat bauen kann, dann gilt homomorphismus.

$$(F_{\Sigma}h = \sum_{f/n \in \Sigma} h^n)$$

Man kann also alles in eine Abbildung darstellen: das h wird einfach der Tuple aller homomorphismen eines signa-

tursymbole!

11.2 Initialität und Rekursion

Datentyp Σ : $[\![\Sigma]\!]$ Initiale Σ -Algebra.

zu f/n wähle $a_f:A^n\to A$ (konstruktion einer Algebra zu Σ)

Dan existiert ein eindeutiger homomorphismus (per def. der initialität) $h: [\![\Sigma]\!] \to A$ mit

$$h(f(\underbrace{x_1, \dots, x_n})) = a_f(\underbrace{h(x_1), \dots, h(x_n)}_{rekursive\ Aufrufe\ von\ h})$$

Rekursive Definition von h (definiert eindeutig h) also a_f sind irgendwelche funktionen, die etwas vom typ A liefern. (man wechselt also von $[\![\Sigma]\!]$ auf A mithilfe eines homomorphismus)

man nennt dies das **fold-Schema**: h= fold $(\lambda y ... y_n.a_f)_{f \in \Sigma}$ (sprich a_f ist eine totale funktion über f.)

```
z.B. Tree: (foldcg): Tree \rightarrow a mit c: a, g: a \rightarrow a \rightarrow a
```

```
fold c g Nil = c
fold c g (Node x y) = g (fold c g x) (fold c g y)
-- sprich man baut hier ein pattern auf, dass einmal eine interpretation a_NIL =c
-- und eine interpretation a_Node(x,y) = g erwartet
```

fold 1 * = λx .1 (also multiplikation aller blätter, wobei jedes blatt wert 1 hat)

fold $1 += \lambda x.\#leaves(x)$

```
fact 0 = 1
fact (suc n) = (suc n)*(fact n)
--problem man braucht auch suc n, nicht nur das ergebnis des rekursiven aufrufs fact!
```

Dies kann man jedoch lösen:

h = < fact, id > wenn man das programmieren kann, dann kann man das im fold schema schreiben, da in h ja die id drinnen ist.

```
h = (1,0)
h =
```

Mehrstellige Funktionen:

```
+: Nat \times Nat \rightarrow Nat
```

```
0+k=k (suc\ n)+k=suc\ (n+k) Currying: +: Nat \to (Nat \to Nat) += fold(\lambda k.k) \underbrace{(\lambda fk.Suc(f\ k))}_{(Nat\to Nat)\to (Nat\to Nat)} \text{ primitive Rekursion:} Rekursion \ \ddot{u}\text{ber Argumente verwende rekursive Aufrufe auf Konstruktorargumente.}
```

11.3 Mehrsortige Typen

```
data Tree a, Forest a where
   Leaf: a-> Tree a
   Node: Forest a-> Tree a
   Nil: ()-> Forest a
   Cons: Tree a * Forest a-> Forest a
   -- bzw Cons:Tree a->Forest a-> Forest a
```

mehrsortige Signatur, hier Sortenmenge $S = \{\underbrace{a}_{S_0}, Tree \ a, Forest \ a\}$

Definition 11.5. Eine sortierte Signatur $\Sigma = (S_0, S, F)$ besteht aus:

- Einer Menge S von Sorten
- Menge $S_0 \subseteq S$ von Parametern
- Eine Menge F von Funktionssymbolen bzw. Konstruktoren c mit <u>Profilen</u> $c: a_1 \times \cdots \times a_n \to b$ mit $n \ge 0$ $a_1, \dots, a_n \in S$ und $b \in S \setminus S_0$ (sprich wir das ziel soll nicht wieder ein Parameter sein $Tree\ a \to Forest\ a$)

Definition 11.6. .

- Ein Kontext ist eine Menge $\Gamma = \{x_1 : a_1, \dots, x_k : a_k\}$ mit Sorten $a_i \in S$ paarweise verschiedenen Variablen x_i . (also endliche partielle Abbildung $\Gamma : Var \to Sorte$)
- $\Gamma \vdash t : a$ "Term t hat im Kontext Γ Sorte a"

definier induktiv:

$$\overline{\Gamma \vdash x : a} (x : a \in \Gamma)$$

$$\frac{\Gamma \vdash t_1 : a_1, \dots \Gamma \vdash t_n : a_n}{\Gamma \vdash c(t_1, \dots, t_n) : b} \ (c : a_1 \times \dots \times a_n \to b)$$

Wir schreiben $T_{\Sigma}(\Gamma)_a = \{t \; Ter \, m | \Gamma \vdash t : a\}$ für die Menge der Terme der Sorte a im Kontext Γ .

z.B. $x : a \vdash Node(Cons(Node(Nil)(Cons(Leaf(x)Nil))) : Tree(a)$

Definition 11.7. Sei $V = (V_a)_{a \in S_0}$ eine Mengenfamilie. Eine mehrsortige Σ-Algebra $\mathfrak M$ über V besteht aus

- für $a \in S$ Menge $\mathfrak{M}[a] = V_a$
- einer Abbildung

 $\mathfrak{M}[\![c]\!]: \mathfrak{M}[\![a_1]\!] \times \cdots \times \mathfrak{M}[\![a_n]\!] \to \mathfrak{M}[\![b]\!]$

für jedes $c: a_1 \times \cdots \times a_n \rightarrow b$

Gegeben $\mathfrak M$ Umgebung η für Γ (d.h. $\eta(x) \in \mathfrak M \llbracket a \rrbracket$ für jede $\Gamma(x) = a$), $\Gamma \vdash t : a$

 $\mathfrak{M}[\![t]\!]\eta\in\mathfrak{M}[\![a]\!]$

rekursiv definiert wie bisher.

Ein Σ-Homomorphismus $h: \mathfrak{M} \to \mathfrak{N}$ über V besteht aus Abbildungen (ist also selbst mehrsortig)

$$h_a: \mathfrak{M}\llbracket a \rrbracket \to \mathfrak{N}\llbracket a \rrbracket \; (a \in S)$$

mit $h_a = id$ für $a \in S_0$ (Parameter werden in ruhe gelassen)

sodass

$$h_b(\mathfrak{M}[c](x_1,...,x_n)) = \mathfrak{N}[c](h_{a_1}(x_1),...,h_{a_n}(x_n))$$

für $c: a_1 \times \cdots \times a_n \rightarrow b \in \Sigma$

Termalgebra

Zu $V = (V_a)_{a \in S_0}$ setze $\Gamma(V) = \{x : a | a \in S_0, x \in V_a\}$

Termalgebra $[\![\Sigma]\!]_V$ (Semantik des Datentyps Σ gegeben V)

$$[\![\Sigma]\!]_V[\![a]\!] = T_\Sigma(\Gamma(V))_a \ (a \in S)$$

$$[\![\Sigma]\!]_V[\![c]\!](t_1,\ldots,t_n)=c(t_1,\ldots t_n)$$

Satz 16. Initialität/Fold-Prinzip

Für jede Σ -Algebra $\mathfrak N$ über V existiert genau ein Σ -Homomorphismus

$$h: [\![\Sigma]\!]_{\nu} \to \mathfrak{N}$$

11.4 Strukturelle Induktion über Datentypen

data List a where

```
Nil:()->List a

Cons: a->List a-> List a

concat::List a->List a

concat Nil k=k

concat (Cons x 1) k = Cons x (concat 1 k)

Beweisen Assoziativität: ccl(cckv) = cc((cclk) v)

Strukturelle Induktion: Ein Fall pro Konstruktor

I.V. jeweils für Konstruktorargumente (also immer induktion über das argument, dass auch rekursion betreibt)
hier über l

-Nil: cc Nil (cckv) = cckv = cc(ccNilk) v

Cons: cc (Cons x l) (cckv) = Cons x (ccl(cckv)) IV Cons x (cc(cclk) v) = cc(ccns x l) k) v = cc (Cons x (cclk)) v = Cons x (cc(cclk) v)
```

11.5 strukturelle Induktion über mehrsortige Datentypen

```
mirrort::Tree a->Tree a
--wald an senkrechter achse spiegeln, also wald und jeden baum an einer senkrechten achse spieg
mirrorf::Forest a->Forest a
mirrort (Leaf x) = Leaf x
mirrort (Node f) = Node (mirrorf f)
mirrorf Nil = Nil
mirrorf (Cons t f) = concat (mirrorf f) (Cons (mirror t) Nil)
--sortiertes flattening nach baumreihenfolge
```

```
flattenf: Forest a->List a
                          flattent (Leaf x) = [x]
                          flattent (Node f) = flattenf f
                          flattentf Nil = []
                          flattenf (Cons t f)= concat (flattent t) (flattenf f)
                          rev:List a->List a
                          rev Nil = Nil
                          rev (Cons x y) = concat (rev y) [x]
Behauptung: flattent (mirrort t) = rev (flattent t)
Induktion über t:
flattent (mirrort (Leaf x)) = [x] = rev (flattent (Leaf x))
Leaf geht, Node:
flattent (mirrort (Node f)) = flattent (Node (mirrorf f) ) = flattenf (mirrorf f)
andere seite:
rev (flattent (Node f)) = rev (flattenf f)
Induktionsbehauptung für f:Forest a
flattenf(mirrorf f) = rev(flattenf f)
dann gilt "rev ( flattenf f) = flattenf (mirrorf f)" per I.V.
jetzt müssen wir die Induktionsvorraussetzung für Wälder anwenden: sprich dass flattenf (mirrorf f) = rev (flattenf f)
für alle Wälder gilt
flattenf (mirrorf Nil) = [] = rev (flattenf Nil)
gilt also für Nil, jetzt Cons
flattenf (mirrorf (Cons t f)) = flattenf (concat (mirrorf f) (Cons (mirror t) Nil)) Lemma A concat (flattenf (mirrorf f))
(\text{flattenf} \, (\text{Cons} \, (\text{mirrort t}) \, \text{Nil})) \, \, Lemma \, B \, \text{concat} \, (\underbrace{flattenf(mirrorf \, f)}) \, (\underbrace{flattent(mirrort \, t))}) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t}))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{rev} \, (\text{flattenf} \, (\text{mirrort t})))) = \text{concat} \, (\text{flattenf} \, (\text{mirrort t}))) = \text{concat} \, (\text{flattenf} \, (\text{mirrort t})) = 
tenf f)) (rev (flattent t))
andere seite
rev (flattenf (Cons t f)) = rev (concat (flattent t) (flattenf f))
ist gleich (Vgl Übung, bzw umgekehrte concatenation von zwei invertierten listen ist gleich der invertierten list)
Lemma A: flattenf (concat f g) = concat (flattenf f) (flattenf g)
Beweis: Induktion über f (aber hier haben wir keine Bäume!! I.A. für bäume könnte T sein, der Beweis ist unabhängig).
Trivial beweisbar via induktion.
Lemma B: flattenf [t] = flattent t (trivial, ausrechnen)
flatten einfach als fold:
fold \lambda x.[x] id [] cc
mirror als fold
```

flattent: Tree a->List a

fold Leaf Node Nil ($\lambda x y.cc y[x]$)

das einzige, was bei mirror "was macht" ist Cons, bei dem werden die resultate der unteren schicht in umgekehrter Reihenfolge verbunden (und das erste zum forst "casten")

11.6 Kodaten

Daten werden konstruiert Cons x Nil

Kodaten werden destruiert/beobachtet

z.B. $A^{\omega} = \{a_0, a_1, a_2, \dots | a_i \in A\}$ streams über A. (omega als Menge der ordinale, für uns einfach Nat)

hd (head): $A^{\omega} \to A$ gibt a_0 aus a_0 : $a_1 a_2 \dots$ zurück.

tl (tail): $A^{\omega} \rightarrow A^{\omega}$

 $(a_0, a_1, \ldots) \mapsto (a_1, a_2, \ldots)$

codata Stream where

hd:Stream->A

tl:Stream->Stream

Im gegensatz zu Datentypen, die über konstruktoren definiert ist, sind Kodatentypen über destructoren definiert.

map f:Stream->Stream

hd(map f s) = f (hd s)

tl (map f s) = map f (tl s)

Definition von map, allerdings terminiert map nie (soll es schließlich auch nicht).

Zunächst $< hd, tl >: A^{\omega} \rightarrow A \times A^{\omega}$

wir produzieren also aus A^{ω} eine ding aus der Trägermenge hinaus.(Destruction)

Koalgebra: Träger M, Abb $\alpha: M \to A \times M$

 A^{ω} ist Koalgebra (genauer $(A^{\omega}, < hd, tl >)$ ist Koalgebra)

weiter Koalgebra:

 $(A^{\omega}, \langle f \circ hd, tl \rangle)$, denn $A^{\omega} \stackrel{hd}{\rightarrow} A \stackrel{f}{to} A$

Ax
$$A^{\omega}$$

Ax A^{ω}

explizit:

linke Komponente: hd(h(s)) = f(hd(s))

rechte Komponente: tl(h(s)) = tl(h(s))

Mengenoperatoren: (polynomialfunktoren)

 $G := A|id|(G_1 + G_2)|G_1 \times G_2$ A Menge (zum eingeklammerten werden wir nicht kommen)

GX rekursiv definiert:

$$(A)X = A$$

$$id(X) = X$$

$$(G_1 + G_2)X = G_1X + G_2X$$

$$(G_1\times G_2)X=G_1X\times G_2X$$

entsprechend mit abbildungen Gf: $GX \rightarrow GY$ $(f: X \rightarrow Y)$

Definition 11.8. Eine G-Koalgebra

besteht aus einer Menge M (von "Zuständen") und Abbildung $\alpha: M \to GM$.

Beispiel 11.5.

 $G=A \times id$

G-Koalgebra = Koalgebra oben. $M \rightarrow A \times M$

Literatur

- [1] Knuth-bendix algorithm for creating CR TES from terminating TES https://en.wikipedia.org/wiki/Knuth%E2%80%93Bendix_completion_algorithm
- [2] dependant choice https://de.wikipedia.org/wiki/Axiom_der_abh%C3%A4ngigen_Auswahl
- [3] nominale Mengen https://www.tcs.ifi.lmu.de/mitarbeiter/martin-hofmann/publikationen-pdfs/c43-nominalrenamingsets.pdf