Trends for Big Data and Apache Spark in 2017

Matei Zaharia @matei_zaharia

2016: A Great Year for Spark

- Spark 2.0: stabilizes structured APIs, 10x speedups, SQL 2003 support
- Structured Streaming
- 3.6x growth in meetup members

Spark Streaming At Bing Scale

Kaarthik Sivashanmugam

@kaarthikss

Microsoft

Bing Scale Problem - Log Merging

- Merge Bing query events with click events
- Lambda architecture: batch- and stream-processing shares the same C# library
- Spark Streaming in C#

Apache Spark @Scale: A 60 TB+ production use case

Sital Kedia Shuojie Wang Avery Ching

Facebook often uses analytics for data-driven decis product growth has pushed our analytics engines to a single query. Some of our batch analytics is exect (contributed to Apache Hive by Facebook in 2009) implementation. Facebook has also continued to gri against several internal data stores, including Hive.

facebook

Credit Fraud Prevention with Spark and Graph Analysis

Chris D'Agostino
VP Technology, Capital One
@chrisdagostino

This Talk

What are the new trends for big data apps in 2017?

Work to address them at Databricks + elsewhere

Three Key Trends

- 1 Hardware: compute bottleneck
- Users: democratizing access to big data
- (3) Applications: production apps

Three Key Trends

- 1 Hardware: compute bottleneck
- Users: democratizing access to big data
- (3) Applications: production apps

Hardware Trends

2010

Storage 100 MB/s (HDD)

Network 1Gbps

CPU ~3GHz

Hardware Trends

	2010	2017	
Storage	100 MB/s (HDD)	1000 MB/s (SSD)	
Network	1Gbps	10Gbps	
CPU	~3GHz	~3GHz	

Hardware Trends

	2010	2017	
Storage	100 MB/s (HDD)	1000 MB/s (SSD)	10x
Network	1Gbps	10Gbps	10 x
CPU	~3GHz	~3GHz	

Response: simpler but more parallel devices (e.g. GPU, FPGA)

Summary

In 2005-2010, I/O was the name of the game

· Network locality, compression, in-memory caching

Now, compute efficiency matters even for data-intensive apps

And harder to obtain with more types of hardware!

Spark Effort: Project Tungsten

Optimize Apache Spark's CPU and memory usage, via:

- Binary storage format
- Runtime code generation

Tungsten's Binary Encoding

Tungsten's Code Generation

DataFrame/SQL Code

Logical Expressions

Java Bytecode

```
df.where(df("year") > 2015)
```


GreaterThan(year#234, Literal(2015))


```
bool filter(Object baseObject) {
   int offset = baseOffset + bitSetWidthInBytes + 3*8L;
   int value = Platform.getInt(baseObject, offset);
   return value > 2015;
}
```

compiles to pointer arithmetic

databricks

Impact of Tungsten

Whole-stage code gen

Optimized Parquet

Ongoing Work

Standard binary format to pass data to external code

- Either existing format or Apache Arrow (SPARK-19489, SPARK-13545)
- Binary format for data sources (SPARK-15689)

Integrations with deep learning libraries

Intel BigDL, Databricks TensorFrames (see talks today)

Accelerators as a first-class resource

Three Key Trends

- 1 Hardware: compute bottleneck
- 2 Users: democratizing access to big data
- (3) Applications: production apps

Languages Used for Spark

Our Approach

Spark SQL

Spark 2.0: more of SQL 2003 than any other open source engine

High-level APIs based on single-node tools

DataFrames, ML Pipelines, PySpark, SparkR

Ongoing Work

Next generation of SQL and DataFrames

- Cost-based optimizer (SPARK-16026 + many others)
- Improved data sources (SPARK-16099, SPARK-18352)

Continue improving Python/R (SPARK-18924, 17919, 13534, ...)

Make Spark easier to run on a single node

- Publish to PyPI (SPARK-18267) and CRAN (SPARK-15799)
- Optimize for large servers
- As convenient as Python multiprocessing

Three Key Trends

- 1 Hardware: compute bottleneck
- Users: democratizing access to big data
- (3) Applications: production apps

Big Data in Production

Big data is moving from offline analytics to production use

- Incorporate new data in seconds (streaming)
- Power low-latency queries (data serving)

Currently very hard to build: separate streaming, serving & batch systems

Our goal: single API for "continuous apps"

Structured Streaming

High-level streaming API built on DataFrames

- Transactional I/O to files, databases, queues
- Integration with batch & interactive queries

Structured Streaming

High-level streaming API built on DataFrames

- Transactional I/O to files, databases, queues
- Integration with batch & interactive queries

API: incrementalize an existing DataFrame query

databricks

Structured Streaming

High-level streaming API built on DataFrames

- Transactional I/O to files, databases, queues
- Integration with batch & interactive queries

API: incrementalize an existing DataFrame query

databricks

Early Experience

Running in our analytics pipeline since second half of 2016

Powers real-time metrics for properties including Nickelodeon and MTV

Monitors 1000s of WiFi access points

Ongoing Work

Integrations with more systems

- JDBC source and sink (SPARK-19478, SPARK-19031)
- Unified access to Kafka (SPARK-18682)

New operators

- mapWithState operator (SPARK-19067)
- Session windows (SPARK-10816)

Performance and latency

Three Key Trends

- 1 Hardware: compute bottleneck
- Users: democratizing access to big data
- (3) Applications: production apps

All integrated in Apache Spark 2.0

Thanks Enjoy Spark Summit!

databricks