# Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis

Sujit Rokka Chhetri Mohammad Abdullah Al Faruque

## Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis



Sujit Rokka Chhetri Department of Electrical Engineering and Computer Science University of California Irvine, CA, USA Mohammad Abdullah Al Faruque Department of Electrical Engineering and Computer Science (EECS) University of California Irvine, CA, USA

ISBN 978-3-030-37961-2 ISBN 978-3-030-37962-9 (eBook) https://doi.org/10.1007/978-3-030-37962-9

#### © Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG. The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



#### **Preface**

Cyber-physical systems (CPS) consist of a unique integration of discrete cyber-domain processes and continuous physical domain components. Current modeling approaches use extensive first-principle approaches to derive the various components of CPS. However, it is difficult to model some of the stochastic phenomenon (such as environmental variation, physical process variation, etc.) of CPS using the first-principle approach. Hence, in this book we have explored a data-driven modeling approach for CPS and present various methodologies for modeling security and creating virtual replica or digital twin of the physical system. Furthermore, we will also present new algorithms to handle complex non-Euclidean data for modeling the CPS. More specifically, the book will present and exploration of the unintended emissions from the physical domain of the CPS to infer various cyber-domain states.

This book provides a new perspective on modeling the cyber-physical system using a data-driven approach. It covers the use of state-of-the-art machine learning and artificial intelligence algorithms for modeling various aspects of the CPS. It provides insight on how a data-driven modeling approach can be utilized to take advantage of the relation between the cyber and the physical domain of the CPS for aiding the first-principle approach in capturing the stochastic phenomenon affecting the CPS.

The books book provides a practical use case of the data-driven modeling approach for securing the CPS, presenting novel attack models, building and maintaining the digital twin of the physical system. Furthermore, it also provides novel data-driven algorithms to handle non-Euclidean data. In summary, this book presents a novel perspective for modeling the CPS.

The first-principle based approach for modeling the CPS is complex and timeconsuming. Below we present three major reasons for proposing a new book in this area:

Due to the advancement of machine learning and artificial intelligence algorithms, there has been a huge leap in performing data-driven modeling. However, to the best of our knowledge, there are no books covering the data-driven modeling of the CPS to aid in capturing the stochastic phenomenon affecting CPS.

viii Preface

• The book presents some practical application for securing the CPS as well as building the digital twin of the physical twin of CPS. The digital twin is expected to be one of the pillars for next generation of CPS. Hence, this book provides timely coverage of building and maintaining the digital twins of CPS.

• The book also provides novel algorithms for handling not just Euclidean data but also non-Euclidean data. These algorithms will thus demonstrate how the next generation of digital twins may be made more cognitive by allowing it to process and extract information from complex and higher dimensional data.

Some of the unique features of the book can be listed as follows:

- Only book covering the data-driven modeling of the CPS utilizing the unique relation between the cyber and the physical domain.
- Coverage of machine learning and artificial intelligence algorithms for datadriven modeling of the CPS.
- Practical use case of the data-driven modeling approach for security and building digital twin of the CPS.
- Well-structured and comprehensive book chapters covering the breadth and depth in data-driven modeling of CPS.

Irvine, CA, USA Irvine, CA, USA Sujit Rokka Chhetri Mohammad Abdullah Al Faruque

### Acknowledgments

We would like to thank all the current and past members of Advanced Integrated Cyber-Physical Systems (AICPS) lab at the University of California of Irvine for contributing to the research and content of this book. We are really grateful for your help and support.

## **Contents**

| 1   | Introduction |                                                         |                                                        |   |  |  |
|-----|--------------|---------------------------------------------------------|--------------------------------------------------------|---|--|--|
|     | 1.1          | Cyber-Physical System                                   |                                                        |   |  |  |
|     | 1.2          | Data-Driven Modeling                                    |                                                        |   |  |  |
|     | 1.3          | Side-Channel Analysis                                   |                                                        |   |  |  |
|     | 1.4          | Book S                                                  | Sections                                               |   |  |  |
|     |              | 1.4.1                                                   | Part I: Data-Driven Attack Modeling                    |   |  |  |
|     |              | 1.4.2                                                   | Part II: Data-Driven Defense of Cyber-Physical Systems |   |  |  |
|     |              | 1.4.3                                                   | Part III: Data-Driven Digital Twin Modeling            |   |  |  |
|     |              | 1.4.4                                                   | Part IV: Non-Euclidean Data-Driven Modeling of         |   |  |  |
|     |              |                                                         | Cyber-Physical Systems                                 |   |  |  |
|     | 1.5          | Summ                                                    | ary                                                    |   |  |  |
|     | Refe         | rences                                                  | ······                                                 |   |  |  |
|     |              |                                                         |                                                        |   |  |  |
| Pai | t I D        | Oata-Dri                                                | ven Attack Modeling                                    |   |  |  |
| 2   | Data         | Data-Driven Attack Modeling Using Acoustic Side-Channel |                                                        |   |  |  |
|     | 2.1          | Introdu                                                 | action                                                 | 1 |  |  |
|     |              | 2.1.1                                                   | Research Challenges and Contributions                  | 1 |  |  |
|     | 2.2          | Backg                                                   | round and Related Work                                 | 1 |  |  |
|     | 2.3          | •                                                       |                                                        | 1 |  |  |
|     |              | 2.3.1                                                   | System Description                                     | 1 |  |  |
|     |              | 2.3.2                                                   | Equation of Motion                                     | 1 |  |  |
|     |              | 2.3.3                                                   | Natural Rotor Oscillation Frequency                    | 1 |  |  |
|     |              | 2.3.4                                                   | Stator Natural Frequency                               | 1 |  |  |
|     |              | 2.3.5                                                   | Source of Vibration                                    | 1 |  |  |
|     | 2.4          | Acous                                                   | tic Leakage Analysis                                   | 1 |  |  |
|     |              | 2.4.1                                                   | Side-Channel Leakage Model                             | 1 |  |  |
|     |              | 2.4.2                                                   | Leakage Quantification                                 | 2 |  |  |
|     |              | 2.4.3                                                   | Leakage Exploitation                                   | 2 |  |  |

xii Contents

|     | 2.5 Attack Model Description |         |                                                  | 21  |
|-----|------------------------------|---------|--------------------------------------------------|-----|
|     |                              | 2.5.1   | Attack Model                                     | 21  |
|     |                              | 2.5.2   | Components of the Attack Model                   | 22  |
|     |                              | 2.5.3   | Attack Model Training and Evaluation             | 31  |
|     | 2.6                          | Results | s for Test Objects                               | 34  |
|     |                              | 2.6.1   | Speed of Printing                                | 34  |
|     |                              | 2.6.2   | The Dimension of the Object                      | 35  |
|     |                              | 2.6.3   | The Complexity of the Object                     | 35  |
|     |                              | 2.6.4   | Reconstruction of a Square                       | 36  |
|     |                              | 2.6.5   | Reconstruction of a Triangle                     | 37  |
|     |                              | 2.6.6   | Case Study: Outline of a Key                     | 37  |
|     | 2.7                          | Discus  | sion                                             | 39  |
|     |                              | 2.7.1   | Technology Variation                             | 39  |
|     |                              | 2.7.2   | Sensor Position                                  | 39  |
|     |                              | 2.7.3   | Sensor Number                                    | 39  |
|     |                              | 2.7.4   | Dynamic Window                                   | 40  |
|     |                              | 2.7.5   | Feature Separation during Multiple Axis          |     |
|     |                              |         | Movement and Noise                               | 40  |
|     |                              | 2.7.6   | Target Machine Degradation                       | 40  |
|     | 2.8                          |         | ary                                              | 40  |
|     | Refe                         |         |                                                  | 41  |
| •   |                              |         |                                                  | 4.0 |
| 3   |                              | _       | Driven Attack Model with a Compiler Modification | 43  |
|     | 3.1                          |         | action                                           | 43  |
|     | 3.2                          |         | Model Description                                | 44  |
|     | 3.3                          | _       | ller Attack                                      | 47  |
|     |                              | 3.3.1   | Profiling Phase                                  | 48  |
|     |                              | 3.3.2   | Attack Phase                                     | 49  |
|     |                              | 3.3.3   | Compiler Modification                            | 50  |
|     |                              | 3.3.4   | Transformations for Leakage Maximization         | 51  |
|     | 3.4                          | -       | mental Results                                   | 53  |
|     |                              | 3.4.1   | Accuracy Metric                                  | 55  |
|     |                              | 3.4.2   | Mutual Information                               | 56  |
|     |                              | 3.4.3   | Partial Success Rate                             | 58  |
|     |                              | 3.4.4   | Total Success Rate                               | 60  |
|     | 3.5                          |         | sion                                             | 61  |
|     |                              | 3.5.1   | Countermeasures                                  | 62  |
|     | 3.6                          |         | ary                                              | 63  |
|     | Refe                         | rences  |                                                  | 63  |
| Da- | .4 TT 1                      | Data Da | inon Defence of Cohon Dhanical Systems           |     |
|     |                              |         | iven Defense of Cyber-Physical Systems           |     |
| 4   |                              |         | Defense Through Leakage Minimization             | 67  |
|     | 4.1                          |         | action                                           | 67  |
|     |                              | 4.1.1   | Motivation for Leakage-Aware Security Tool       | 67  |
|     |                              | 4.1.2   | Problem and Challenges                           | 68  |
|     |                              | 413     | Contributions                                    | 69  |

Contents xiii

|   | 4.2      | System Modeling |                                                 |     |
|---|----------|-----------------|-------------------------------------------------|-----|
|   |          | 4.2.1           | Data-driven Leakage Modeling and Quantification | 70  |
|   |          | 4.2.2           | Attack Model                                    | 71  |
|   |          | 4.2.3           | Formulation of Data-Driven Leakage-Aware        |     |
|   |          |                 | Optimization Problem                            | 73  |
|   |          | 4.2.4           | Success Rate of the Adversary                   | 76  |
|   | 4.3      | Experi          | mental Results                                  | 78  |
|   |          | 4.3.1           | Mutual Information                              | 79  |
|   |          | 4.3.2           | Test with Benchmark 3D Models                   | 81  |
|   | 4.4      | Case S          | tudy with an Attack Model                       | 85  |
|   |          | 4.4.1           | Success Rate Calculation                        | 85  |
|   |          | 4.4.2           | Test Case with Reconstruction                   | 86  |
|   | 4.5      | Discus          | sion                                            | 87  |
|   | 4.6      | Summa           | ary                                             | 89  |
|   | Refe     | rences          |                                                 | 89  |
| 5 | Data     | -Driven         | Kinetic Cyber-Attack Detection                  | 91  |
| J | 5.1      |                 | iction                                          | 91  |
|   | 5.1      | 5.1.1           | Motivation                                      | 92  |
|   |          | 5.1.2           | Problem and Challenges                          | 92  |
|   |          | 5.1.3           | Contributions                                   | 93  |
|   | 5.2      |                 | Cyber-Attack Adversary Model                    | 93  |
|   | 5.3      |                 | Method                                          | 94  |
|   | 0.0      | 5.3.1           | Mutual Information                              | 95  |
|   |          | 5.3.2           | KCAD Architecture                               | 96  |
|   |          | 5.3.3           | Acoustic Analog Emissions                       | 99  |
|   |          | 5.3.4           | Performance Metrics                             | 101 |
|   | 5.4      |                 | mental Results                                  | 101 |
|   |          | 5.4.1           | Experimental Setup                              | 101 |
|   |          | 5.4.2           | Mutual Information Calculation                  | 102 |
|   |          | 5.4.3           | Model Function Estimation                       | 102 |
|   |          | 5.4.4           | Results for Detection of Kinetic Attack         | 104 |
|   |          | 5.4.5           | Test Case: Base Plate of a Quad Copter          | 106 |
|   | 5.5      | Discus          | sion                                            | 107 |
|   | 5.6      | Summa           | ary                                             | 108 |
|   | Refe     | rences          |                                                 | 108 |
| 6 | Data     | -Driven         | Security Analysis Using Generative Adversarial  |     |
|   | <b>-</b> | _               |                                                 | 111 |
|   | 6.1      | Introdu         | ection                                          | 111 |
|   |          | 6.1.1           | Research Challenges                             | 112 |
|   |          | 6.1.2           | Preliminaries                                   | 113 |
|   |          | 6.1.3           | Novel Contributions                             | 114 |
|   | 6.2      |                 | -Based CPPS Security Model                      | 114 |
|   | 63       |                 | Model Generation                                | 116 |

xiv Contents

|     | 6.4    | Case S  | tudy and Analysis                             | 118 |
|-----|--------|---------|-----------------------------------------------|-----|
|     |        | 6.4.1   | <i>G<sub>CPPS</sub></i> Generation            | 119 |
|     |        | 6.4.2   | Experimental Data Collection                  | 121 |
|     |        | 6.4.3   | CGAN Modeling                                 | 121 |
|     |        | 6.4.4   | Security Analysis Results                     | 122 |
|     | 6.5    | Summa   | ary                                           | 125 |
|     | Refe   | erences |                                               | 125 |
| Pai | rt III | Data-D  | riven Digital Twin Modeling                   |     |
| 7   |        |         | ta-Driven Digital Twin Modeling               | 129 |
| ,   | 7.1    |         | action                                        | 129 |
|     | 7.1    | 7.1.1   | Research Challenges.                          | 130 |
|     |        | 7.1.2   | Contributions                                 | 130 |
|     |        | 7.1.2   | Digital Twin Model                            | 131 |
|     | 7.2    |         | Twin of Cyber-Physical Additive Manufacturing | 131 |
|     | 1.2    | _       | 1 1                                           | 131 |
|     |        | 7.2.1   | Key Performance Indicators (KPIs)             | 131 |
|     | 7.3    |         | ng Digital Twin Updated                       | 135 |
|     | 7.4    | -       | ng Digital Twin Opuatedng Digital Twin        | 136 |
|     | 7.4    | 7.4.1   | Sensor/Emission Modality Selection            | 136 |
|     |        | 7.4.2   | Feature Engineering                           | 136 |
|     |        | 7.4.3   | Sensor Positioning                            | 137 |
|     |        | 7.4.4   | Data-Driven Models                            | 138 |
|     | 7.5    |         | mental Setup                                  | 138 |
|     | 7.5    | 7.5.1   | The Test-Bed                                  | 139 |
|     |        | 7.5.2   | Test 3D Objects                               | 142 |
|     |        | 7.5.3   | Data Collection                               | 142 |
|     |        | 7.5.4   | Data Segmentation                             | 144 |
|     | 7.6    |         | ation and Results for Digital Twin Models     | 146 |
|     | 7.0    | 7.6.1   | Digital Twin Models                           | 146 |
|     |        | 7.6.2   | Aliveness                                     | 146 |
|     | 7.7    |         | ary                                           | 151 |
|     |        |         | шy                                            | 152 |
| _   |        |         |                                               |     |
| 8   |        |         | Living Digital Twin Modeling                  | 155 |
|     | 8.1    |         | action                                        | 155 |
|     |        | 8.1.1   | Research Challenges                           | 156 |
|     |        | 8.1.2   | Contribution                                  | 156 |
|     |        | 8.1.3   | Motivational Case Study for Multi-Sensor Data |     |
|     |        | 0.1.1   | Analysis                                      | 157 |
|     |        | 8.1.4   | Related Work                                  | 158 |
|     | 8.2    | _       | round                                         | 159 |
|     |        | 8.2.1   | Concept Definition                            | 159 |
|     |        | 8.2.2   | IoT Sensor Data as Side-Channels              | 160 |
|     |        | 8.2.3   | Metric for Quality Measurement                | 161 |

Contents xv

|          | 8.3                                              | Buildin                                                                                                                                      | g the Digital Twin                                                                                                                                                                                                                                                                                                                                                                                        | 161                                                                                                   |
|----------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|          |                                                  | 8.3.1                                                                                                                                        | DT <sub>product</sub> Parsing                                                                                                                                                                                                                                                                                                                                                                             | 163                                                                                                   |
|          |                                                  | 8.3.2                                                                                                                                        | Feature Extraction                                                                                                                                                                                                                                                                                                                                                                                        | 163                                                                                                   |
|          |                                                  | 8.3.3                                                                                                                                        | Synchronize and Segment                                                                                                                                                                                                                                                                                                                                                                                   | 163                                                                                                   |
|          |                                                  | 8.3.4                                                                                                                                        | Clustering Algorithm                                                                                                                                                                                                                                                                                                                                                                                      | 164                                                                                                   |
|          |                                                  | 8.3.5                                                                                                                                        | Anomaly Localization Algorithm                                                                                                                                                                                                                                                                                                                                                                            | 165                                                                                                   |
|          |                                                  | 8.3.6                                                                                                                                        | Digital Twin Update Algorithm                                                                                                                                                                                                                                                                                                                                                                             | 165                                                                                                   |
|          |                                                  | 8.3.7                                                                                                                                        | Quality Inference Model                                                                                                                                                                                                                                                                                                                                                                                   | 166                                                                                                   |
|          | 8.4                                              | Experin                                                                                                                                      | nental Setup                                                                                                                                                                                                                                                                                                                                                                                              | 167                                                                                                   |
|          |                                                  | 8.4.1                                                                                                                                        | IoT Sensors                                                                                                                                                                                                                                                                                                                                                                                               | 167                                                                                                   |
|          |                                                  | 8.4.2                                                                                                                                        | Digital Twin Parameters                                                                                                                                                                                                                                                                                                                                                                                   | 169                                                                                                   |
|          |                                                  | 8.4.3                                                                                                                                        | Sensor Position Analysis                                                                                                                                                                                                                                                                                                                                                                                  | 169                                                                                                   |
|          |                                                  | 8.4.4                                                                                                                                        | Performance of Clustering Algorithms                                                                                                                                                                                                                                                                                                                                                                      | 171                                                                                                   |
|          |                                                  | 8.4.5                                                                                                                                        | Anomaly Localization Accuracy                                                                                                                                                                                                                                                                                                                                                                             | 171                                                                                                   |
|          |                                                  | 8.4.6                                                                                                                                        | System Degradation Prediction Analysis                                                                                                                                                                                                                                                                                                                                                                    | 174                                                                                                   |
|          |                                                  | 8.4.7                                                                                                                                        | Quality Inference                                                                                                                                                                                                                                                                                                                                                                                         | 176                                                                                                   |
|          |                                                  | 8.4.8                                                                                                                                        | Comparative Analysis                                                                                                                                                                                                                                                                                                                                                                                      | 177                                                                                                   |
|          | 8.5                                              | Discuss                                                                                                                                      | sion                                                                                                                                                                                                                                                                                                                                                                                                      | 179                                                                                                   |
|          | 8.6                                              | Summa                                                                                                                                        | ry                                                                                                                                                                                                                                                                                                                                                                                                        | 180                                                                                                   |
|          | Refer                                            |                                                                                                                                              | ······                                                                                                                                                                                                                                                                                                                                                                                                    | 181                                                                                                   |
| Don      | 4 TX7                                            | Non Em                                                                                                                                       | olidoon Doto Drivon Modeling of Cyber Physical                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |
| Par<br>9 | Non-                                             | Systems<br>euclidea                                                                                                                          | n Data-Driven Modeling Using Graph                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       |
|          | Non-c                                            | Systems<br>euclidear<br>olutiona                                                                                                             | n Data-Driven Modeling Using Graph<br>l Neural Networks                                                                                                                                                                                                                                                                                                                                                   | 185                                                                                                   |
|          | <b>Non-6 Conv</b> 9.1                            | Systems<br>euclidear<br>olutiona<br>Introdu                                                                                                  | n Data-Driven Modeling Using Graph l Neural Networks                                                                                                                                                                                                                                                                                                                                                      | 185                                                                                                   |
|          | Non-6<br>Conve<br>9.1<br>9.2                     | Systems<br>euclidear<br>olutiona<br>Introdu<br>Related                                                                                       | n Data-Driven Modeling Using Graph I Neural Networks ction                                                                                                                                                                                                                                                                                                                                                | 185<br>186                                                                                            |
|          | <b>Non-6 Conv</b> 9.1                            | Systems euclidean olutiona Introdu Related Graph I                                                                                           | n Data-Driven Modeling Using Graph I Neural Networks ction                                                                                                                                                                                                                                                                                                                                                | 185<br>186<br>187                                                                                     |
|          | Non-6<br>Conve<br>9.1<br>9.2                     | Systems<br>euclidean<br>olutiona<br>Introdu<br>Related<br>Graph I<br>9.3.1                                                                   | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction                                                                                                                                                                                                                                                                    | 185<br>186<br>187<br>188                                                                              |
|          | Non-6<br>Conve<br>9.1<br>9.2                     | Systems<br>euclidear<br>olutiona<br>Introdu<br>Related<br>Graph I<br>9.3.1<br>9.3.2                                                          | n Data-Driven Modeling Using Graph l Neural Networks ction l Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding                                                                                                                                                                                                                                              | 185<br>186<br>187<br>188<br>189                                                                       |
|          | Non-6<br>Conve<br>9.1<br>9.2                     | Systems<br>euclidear<br>olutiona<br>Introdu<br>Related<br>Graph I<br>9.3.1<br>9.3.2<br>9.3.3                                                 | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation                                                                                                                                                                                                                     | 185<br>186<br>187<br>188                                                                              |
|          | Non-6<br>Conve<br>9.1<br>9.2                     | Systems<br>euclidear<br>olutiona<br>Introdu<br>Related<br>Graph I<br>9.3.1<br>9.3.2                                                          | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network                                                                                                                                                                       | 185<br>186<br>187<br>188<br>189                                                                       |
|          | Non-6<br>Conve<br>9.1<br>9.2                     | Systems<br>euclidear<br>olutiona<br>Introdu<br>Related<br>Graph I<br>9.3.1<br>9.3.2<br>9.3.3<br>9.3.4                                        | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers                                                                                                                                                                | 185<br>186<br>187<br>188<br>189<br>189                                                                |
|          | Non-6<br>Conve<br>9.1<br>9.2                     | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4                                                                   | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction                                                                                                              | 185<br>186<br>187<br>188<br>189<br>189                                                                |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3               | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6                                                       | n Data-Driven Modeling Using Graph l Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters                                                                    | 185<br>186<br>187<br>188<br>189<br>189<br>192<br>197                                                  |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3               | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 GrabCA                                                | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters AD Dataset                                                         | 185<br>186<br>187<br>188<br>189<br>189<br>192<br>197<br>197                                           |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3               | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 GrabCA Results                                        | n Data-Driven Modeling Using Graph l Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters AD Dataset                                                         | 185<br>186<br>187<br>188<br>189<br>189<br>192<br>197<br>198<br>199                                    |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3               | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4  9.3.5 9.3.6 GrabCA Results 9.5.1                                 | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters AD Dataset Activation Functions                                    | 185<br>186<br>187<br>188<br>189<br>192<br>197<br>197<br>198<br>199<br>201                             |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3               | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 GrabCA Results 9.5.1 9.5.2                            | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters AD Dataset Activation Functions Kernel Size                        | 185<br>186<br>187<br>188<br>189<br>189<br>197<br>197<br>198<br>199<br>201<br>201                      |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3               | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 GrabCA Results 9.5.1 9.5.2 9.5.3                      | n Data-Driven Modeling Using Graph I Neural Networks ction Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters AD Dataset  Activation Functions Kernel Size Dropout               | 185<br>186<br>187<br>188<br>189<br>192<br>197<br>197<br>198<br>199<br>201<br>201<br>202               |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3               | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.3.6 GrabCA Results 9.5.1 9.5.2 9.5.3 9.5.4                | n Data-Driven Modeling Using Graph l Neural Networks ction l Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters AD Dataset  Activation Functions Kernel Size Dropout Layers      | 185<br>186<br>187<br>188<br>189<br>192<br>197<br>197<br>198<br>199<br>201<br>201<br>202<br>203        |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5 | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4  9.3.5 9.3.6 GrabCA Results 9.5.1 9.5.2 9.5.3 9.5.4 Discuss       | n Data-Driven Modeling Using Graph l Neural Networks ction l Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters AD Dataset  Activation Functions Kernel Size Dropout Layers sion | 185<br>186<br>187<br>188<br>189<br>192<br>197<br>197<br>198<br>199<br>201<br>201<br>202<br>203<br>204 |
|          | Non-c<br>Conv<br>9.1<br>9.2<br>9.3<br>9.4<br>9.5 | Systems euclidean olutiona Introdu Related Graph I 9.3.1 9.3.2 9.3.3 9.3.4  9.3.5 9.3.6 GrabCA Results 9.5.1 9.5.2 9.5.3 9.5.4 Discuss Summa | n Data-Driven Modeling Using Graph l Neural Networks ction l Work Learning Using Convolutional Neural Network Knowledge Graph Extraction Attribute Embedding Neighbor Nodes Aggregation Structural Graph Convolutional Neural Network Layers Classification for Engineering Design Abstraction Graph Learning Algorithm Hyper-Parameters AD Dataset  Activation Functions Kernel Size Dropout Layers      | 185<br>186<br>187<br>188<br>189<br>192<br>197<br>197<br>198<br>199<br>201<br>201<br>202<br>203        |

xvi Contents

| Dyna | mic Gra      | ph Embedding                                 |  | 209 |
|------|--------------|----------------------------------------------|--|-----|
| 10.1 | Introduction |                                              |  | 209 |
|      | 10.1.1       | Research Challenges                          |  | 21  |
|      | 10.1.2       | Contribution                                 |  | 21  |
| 10.2 | Related      | Work                                         |  | 21  |
|      | 10.2.1       | Static Graph Embedding                       |  | 21  |
|      | 10.2.2       | Dynamic Graph Embedding                      |  | 21  |
|      | 10.2.3       | Dynamic Link Prediction                      |  | 21  |
| 10.3 | Motivat      | ting Example                                 |  | 21  |
| 10.4 | Method       | lology                                       |  | 21  |
|      | 10.4.1       | Problem Statement                            |  | 21  |
|      | 10.4.2       | dyngraph2vec Algorithm                       |  | 21  |
|      | 10.4.3       | Optimization                                 |  | 21  |
| 10.5 | Experin      | ments                                        |  | 21  |
|      | 10.5.1       | Datasets                                     |  | 21  |
|      | 10.5.2       | Baselines                                    |  | 22  |
|      | 10.5.3       | Evaluation Metrics                           |  | 22  |
| 10.6 | Results      | and Analysis                                 |  | 22  |
|      | 10.6.1       | SBM Dataset                                  |  | 22  |
|      | 10.6.2       | Hep-th Dataset                               |  | 22  |
|      | 10.6.3       | AS Dataset                                   |  | 22  |
|      | 10.6.4       | MAP Exploration                              |  | 22  |
|      | 10.6.5       | Hyper-Parameter Sensitivity: Lookback        |  | 22  |
|      | 10.6.6       | Length of Training Sequence Versus MAP Value |  | 22  |
| 10.7 | Discuss      | sion                                         |  | 22  |
| 10.8 | Summa        | ry                                           |  | 22  |
|      |              |                                              |  | 22  |