Типы задач

- 1. Цель состоит из n различных уязвимых частей. Относительная площадь отсеков S_n . По каждому отсеку достаточно m_n попаданий для уничтожения цели, соответственно. Построить зависимость G(m). Определить среднее необходимое число попаданий.
- 2. По цели с известным законом поражения G(m) производится стрельба n выстрелами. Вероятности попадания в цель определенного числа выстрелов P_{mn} заданы. Найти вероятность поражения цели.
- 3. Построить зависимость вероятности попадания в прямоугольную цель со сторонами a, b, параллельными главным осям рассеивания. Рассмотреть случай: 1) постоянного математического ожидания M, переменного значения дисперсии D; 2) фиксированного значения дисперсии D, переменного значения математического ожидания M.
- 4. Определить вероятность поражения прямоугольной цели, симметрично расположенной относительно центра рассеивания. Известны длины сторон прямоугольника a, b и СКО σ_x , σ_v .
- 5. Случай стрельбы по сложному контуру цели. Габариты цели h_y , h_z , площадь контура цели S, величина ошибок E_y , E_z . Определить вероятность поражения цели.
- 6. Стрельба по круглой цели. Систематические ошибки отсутствуют. Построить зависимость вероятности попадания в цель с радиусом $r_{\rm ц}$, в зависимости от СКО.
- 7. Группа вертолетов производит стрельбу по a танкам и b бронемашинам. Вероятность поражения каждого танка за стрельбу p_a , вероятность поражения бронемашины за стрельбу - p_b . Определить среднее число пораженных объектов, а также вероятность уничтожения не менее двух объектов.
- 8. Ведется стрельба независимыми выстрелами (всего *п* выстрелов) по группе, состоящей из *п* целей. Стрельба без наблюдения результатов и переноса огня. Каждый выстрел может поразить не более одной цели. Вероятность поражения каждой из целей при одном выстреле равны,

соответственно p_i . Определить среднее число пораженных целей в результате всей стрельбы.

- 9. Со стороны противника приближается три бомбардировщика. За оставшееся до нанесения удара время, вероятность сбить первый бомбардировщик составляет p_1 , второй p_2 , а третий p_3 . Необходимо определить вероятность уничтожения не менее одного бомбардировщика, а также среднее число сбитых бомбардировщиков.
- 10. Из береговых орудий произвели n выстрелов по N кораблям. Стрельба происходит с переносом огня, вероятность поражения корабля при одном выстреле составляет p. Определить среднее число потопленных кораблей, а также вероятность потопления не менее (N-2) кораблей. Рассмотреть случай, когда число выстрелов больше, чем число кораблей.
- 11. Ведется стрельба по групповой рассредоточенной цели. Число целей N больше, чем число производимых выстрелов n. Вероятность поразить цель при одном выстреле составляет p. Определить среднее число пораженных целей, а также вероятность, что хотя бы 2 цели будет поражено.
- 12. По летящему самолету может быть нанесено заранее неизвестное число атак истребителей, но максимальное количество 4. Вероятности того, что будет нанесена 1, 2 или 3 атаки одинаковы и равны p_{123} . Каждый из истребителей, при исправной аппаратуре, поражает самолет с вероятностью $p_{\rm n}$. Вероятность безотказной работы аппаратуры истребителя равна p_{6} . Найти вероятность того, что самолет будет поражен.
- 13. Для уничтожения крупной наземной цели с трех баз запустили крылатые ракеты. Вероятность того, что ракета с первой базы долетит до цели p_1 , со второй базы p_2 , с третьей базы p_3 . Вероятность поразить цель для каждой из запущенных крылатых ракет (без учета противодействия) p_n . Найти вероятность поражения цели.
- 14. Для выполнения боевого задания посылается четыре самолета. Все самолеты преодолевают зону ПВО противника. В этой зоне каждый из самолетов поражается независимо друг от друга с вероятностью p. Если до цели долетит один самолет, то средняя доля поражения будет p_1 , если два

- самолета, то p_2 , если долетят три самолета, то p_3 , а если долетят все самолеты, то p_4 . Найти среднюю долю поражения с учетом противодействия.
- 15. Четыре бомбардировщика направляются в район расположения противника для нанесения удара по малоразмерному объекту. Вероятность поражения цели каждым из бомбардировщиков равна: p_1 , p_2 , p_3 , p_4 . Перед подлетом к цели каждый из бомбардировщиков проходит зону ПРО противника, в которой его могут сбить с вероятность p. Найти вероятность поражения цели.
- 16. В сторону к противнику запущены пять ракет. Вероятность преодолеть систему ПРО каждой из ракет p. Если до цели долетит одна ракета, то средняя доля поражения будет p_1 , если две ракеты, то p_2 , если три ракеты, то p_3 , если четыре ракеты, то p_4 , если долетят все ракеты, то p_5 . Найти среднюю долю поражения с учетом противодействия.
- 17. В условиях отсутствия оптической видимости пять истребителей вылетели на перехват воздушной цели. При исправном радиолокационном прицеле, истребитель поражает цель с вероятностью p_{π} . При нерабочем состоянии прицела атака срывается. Вероятность безотказной работы прицела равна p_6 . Найти вероятность поражения воздушной цели.

Вариант	Задача 1	S1	S2	S3	S4	S5	m1	m2	m3	m4	m5	Задача 2	Условие	Задача З	Условие	Задача 4	Условие
1		0.2	0.4	0.1	0.3	0	1	2	3	4	0	4	Произвольно	7	a=2; b=2	17	
2		0.6	0.1	0.2	0.1	0	1	2	4	4	0	5	Произвольно	10	Произвольно	16	
3		0.2	0.1	0.15	0.15	0.4	1	2	4	4	4	6	r=10 м	11	Произвольно	15	
4		0.5	0.2	0.1	0.1	0.1	2	2	1	4	4	2	G(5)=1, n=5	9	Произвольно	14	
5		0.7	0.1	0.1	0.1	0	1	1	3	5	0	3	Случай 1	8	n≥4	13	
6		0.3	0.3	0.3	0.1	0	2	2	1	4	0	4	Произвольно	10	Произвольно	12	
7		0.6	0.2	0.1	0.1	0	1	2	3	5	0	5	Произвольно	8	n≥4	17	
8		0.1	0.1	0.15	0.15	0.5	2	1	3	2	1	6	r=15 м	9	Произвольно	16	
9		0.3	0.2	0.3	0.2	0	1	1	3	4	0	5	Произвольно	7	a=1; b=2	15	
10		0.4	0.1	0.15	0.15	0.2	1	2	3	4	4	6	r=75 м	11	Произвольно	16	
11		0.1	0.2	0.1	0.1	0.5	2	2	3	4	4	2	G(4)=1, n=4	10	Произвольно	17	
12		0.4	0.1	0.25	0.25	0	2	2	3	4	0	3	Случай 2	11	Произвольно	12	
13	1	0.4	0.1	0.25	0.25	0	1	2	4	5	0	4	Произвольно	9	Произвольно	14	Произвольно
14		0.3	0.3	0.2	0.2	0	1	2	3	5	0	5	Произвольно	7	a=1; b=3	13	
15		0.5	0.1	0.15	0.15	0.1	2	2	1	4	2	6	r=100 м	10	Произвольно	17	
16		0.2	0.1	0.15	0.15	0.4	1	2	2	4	3	6	r=25 м	8	n≥4	12	
17		0.3	0.2	0.1	0.1	0.3	2	2	1	4	3	2	G(4)=1, n=4	9	Произвольно	14	
18		0.5	0.3	0.1	0.1	0	1	2	4	5	0	3	Случай 2	7	a=2; b=1	13	
19		0.5	0.3	0.1	0.1	0	1	2	2	4	0	4	Произвольно	10	Произвольно	15	
20		0.25	0.25	0.25	0.25	0	1	2	4	5	0	5	Произвольно	8	n≥4	16	
21		0.3	0.1	0.15	0.15	0.3	1	1	3	2	4	6	r=50 м	9	Произвольно	17	
22		0.2	0.2	0.1	0.1	0.4	1	2	2	2	4	2	G(5)=1, n=5	7	a=2; b=3	12	
23		0.5	0.2	0.2	0.1	0	1	2	2	5	0	3	Случай 1	9	Произвольно	14	
24		0.5	0.2	0.2	0.1	0	2	2	3	5	0	4	Произвольно	10	Произвольно	13	
25		0.4	0.1	0.4	0.1	0	2	2	3	4	0	5	Произвольно	11	Произвольно	17	

Вариант	Задача 1	S1	S2	S3	S4	S5	m1	m2	m3	m4	m5	Задача 2	Условие	Задача З	Условие	Задача 4	Условие
26	1	0.5	0.2	0.1	0.1	0.1	1	1	3	4	2	2	G(4)=1, n=4	7	a=2; b=2	15	- Произвольно
27		0.6	0.1	0.2	0.1	0	1	2	2	4	0	3	Случай 2	10	Произвольно	16	
28		0.6	0.1	0.2	0.1	0	1	2	3	4	0	4	Произвольно	9	Произвольно	17	
29		0.5	0.2	0.15	0.15	0	1	2	2	5	0	5	Произвольно	8	n≥4	12	
30		0.1	0.1	0.15	0.15	0.5	2	2	1	4	4	6	r=20 м	10	Произвольно	14	
31		0.4	0.2	0.1	0.1	0.2	1	2	3	4	4	2	G(5)=1, n=5	8	n≥4	13	
32		0.6	0.2	0.1	0.1	0	2	2	3	4	0	3	Случай 1	9	Произвольно	15	
33		0.6	0.2	0.1	0.1	0	2	2	1	4	0	4	Произвольно	7	a=3; b=2	16	