

Running Pegasus Workflows on OSG

An Introductory Tutorial

The Open Science Grid (OSG)

What is OSG?

- Distributed computing network of mostly universities and national labs who contribute their own local compute resources
 - Some resources are dedicated to OSG
 - Other resources are contributed when they sit idle

Who can use OSG?

- Anyone affiliated with a United States research institution (university or research lab)
- You can use OSG resources without contributing to its pool

How do you access OSG?

- ssh into a designated login node (e.g. login04.osgconnect.net)
- submit HTCondor jobs or Pegasus workflows

Where is it located?

- All over the United States with computing and storage elements at over 100 individual sites
- https://map.opensciencegrid.org/map/iframe#38.575019,-112.638144|3|terrain

The Open Science Grid (OSG) cont.

The Open Science Grid (OSG) cont.

Is my workload suitable?

	Ideal jobs!	Still very advantageous	Less-so, but maybe
CPU	1	< 8	> 8 (or MPI)
Walltime	< 12 hrs*	< 24 hrs*	> 24 hrs
RAM	< few GB	< 10s GB	> 10s GB
Input	< 500 MB**	< 10 GB**	> 10 GB
Output	< 1GB**	< 10 GB**	> 10 GB
Software pre-compiled binaries containers		Most other than ->	Licensed software, non-Linux

^{*} Or checkpointable

Caveats

- You don't know exactly where your job will run
- It is not guaranteed that you will have enough time for your job to finish
 - jobs could be preempted without warning (because we are using someone else's resource)

^{**} Per job; you can work with a large dataset on OSG if it can be split into pieces

Outline

- 1. The Open Science Grid
- 2. Running Pegasus Workflows
- 3. Running HTCondor Jobs
- 4. Additional Notes & Resources

Running Pegasus Workflows On OSG

- "Out of the box" Pegasus support through login nodes
 - pegasus4.9.3 installed by default (need to download rhel7 tarball to get the latest)
 - HTCondor is already installed
 - can use Pegasus' default generated SiteCatalog
 - can use Pegasus' default data staging configuration: condorio

Let's try running an example Pegasus workflow...

Example Workflow: What does it look like?

Example Workflow: Steps to run

- 1. ssh into log-in node: ssh <username>@login04.osgconnect.net
- 2. setup Pegasus path: export PATH=/public/ryantanaka/pegasus-5.0.0dev/bin:\$PATH
- 3. ensure path set correctly: which pegasus-version
- 4. setup Pegasus python path: export PYTHONPATH=\$(pegasus-config --python)
- 5. get workflow: git clone https://github.com/ryantanaka/pegasus-osg-tutorial.git
- 6. go to pegasus-workflow: cd pegasus-osg-tutorial/pegasus-workflow
- 7. run: ./workflow.py

Once the workflow finishes, it will automatically print the contents of the produced output file if it exists.

Example Workflow: Running jobs in containers

- How It Works
 - OSG hosts singularity images on its CernVM File System (CVMFS), a POSIX read-only file system where files are heavily cached in a manner transparent to the user
 - OSG provides pre-made containers with popular software packages
 - for a job to run in a container, two profile keys must be set:

Requirements = HAS_SINGULARITY == TRUE +SingularityImage = "/cvmfs/singularity.opensciencegrid.org/opensciencegrid/osgvo-el7:latest"

- this is telling OSG (not Pegasus) to use a container
- Using Your Own Custom Docker or Singularity Container (in brief)
 - 1. create your own custom container image using Docker and push it to Docker Hub
 - 2. add your Docker image to the OSG image repository
 - 3. use the container image in jobs (if your Docker image is updated, OSG will also update that image in its repository)

Example Workflow: Requesting GPU access

How It Works

- some of the compute nodes have nVidia GPUs
- for your job to run on a compute node with an available GPU, the Condor profile: request_gpus = 1 must be set
- only a single GPU can be requested
- you cannot specify a specific GPU without workarounds...
- queuing times will be longer as there are far less GPU resources as there are CPU resources

```
condor_status -const 'gpus >= 1' -af CUDADeviceName | sort | uniq -c
24 GeForce GTX 1080 Ti
60 GeForce GTX 750 Ti
4 Quadro RTX 5000
37 Quadro RTX 6000
4 Quadro RTX 8000
15 Tesla K20m
100 Tesla K40m
2 Tesla P100-PCIE-12GB
8 Tesla P100-PCIE-16GB
3 Tesla V100-PCIE-16GB
```


What was the OS of the host where your job ran??

Example Workflow: Run w/Container + GPU

In workflow.py:

- 1. uncomment lines 28 and 29 so that jobs using the hello_world executable can be run in a container
- 2. uncomment line 32 so that jobs using the hello_world executable will run on a compute node that has a GPU

Outline

- 1. The Open Science Grid
- 2. Running Pegasus Workflows
- 3. Running HTCondor Jobs
- 4. Additional Notes & Resources

Submitting an HTCondor Job

htcondor-job

hello_world.shhello_world.submit

To submit, simply run: condor_submit hello_world.submit

```
# executable
 executable = hello_world.sh
4 # file to save terminal output to
5 error = hello_world.err
6 output = hello_world.out
8 # output file to transfer back
9 transfer_output_files = output_file.txt
1 # request the resources that the job will need
2 request_cpus = 1
3 \text{ request\_gpus} = 1
4 request_memory = 8 MB
5 request_disk = 1 MB
17 # container settings
8 Requirements = HAS_SINGULARITY == TRUE
9 +SingularityImage = "/cvmfs/singularity.opensciencegrid.org/opensciencegrid/tensorflow-gpu:2.3-cuda-10.1
1 # queue one job
```


Outline

- 1. The Open Science Grid
- 2. Running Pegasus Workflows
- 3. Running HTCondor Jobs
- 4. Additional Notes & Resources

Other Notes

Data Management

	Purpose	Network mounted	Backed Up	Initial Quota*
/home	Storage of submit files, input files <100MB each, and per-job output up to a 1GB. Jobs should ONLY be submitted from this folder.	No	No	50 GB
/public	Staging ONLY for large input files (100MB-50GB, each) for publicly-accessible download into jobs (using HTTP or stashcp, see below) and large output files (1-10GB).	Yes	No	500 GB

	Recommended File Sizes	Where Data is Placed	Command	Purpose	Details
HTCondor File Transfer	<100 MB per file; <500 MB per job	/home	transfer_input_files	General-use transfer of job input from within /home.	HTCondor File Transfer
НТТР	<1 GB per file	/public or non-OSG web server	'	For input files 100MB-1GB, if shared across many jobs.	HTTP Access
OSG's StashCache	>1 GB per file; <10 GB per job	/public	'	For the largest input files, staged within /public	StashCache
GridFTP	> 10 GB	/public	gfal-copy	input staged in /public	Typically used by experts with large work flows. Please contact us if you're interested.

Other Notes cont.

- Job Submission
 - jobs should only be submitted from /home
 - jobs should never be submitted from /public
- OSG Documentation
 - Containers
 - GPU Resources
- Running Jobs on the Open Science Grid <u>video</u>

What GPU did your job get??

Questions?

