初等数论(5)

Lemma: $a,b,c,d\in\mathbb{Z}$, $a\neq 0$, $c\neq 0$, $a\mid b$, $c\mid d$, $\bigcirc \bigvee f:$

Proof: ab $A \in \mathbb{Z}$, s.t. $b = a\lambda$

 $:= c \mid d := \exists \mu \in \mathbb{Z}, s.t. d = c \mu$

 $(a\lambda)(c\mu) = (a\lambda)c)\mu = (a(\lambda c))\mu = (a(\lambda c))\mu = (a(c\lambda))\mu$ $= ((ac)\lambda)\mu = (ac)(\lambda\mu)$

· aceIlacto ac∈Z a≠o Ac≠o·· a, c∈ I

 $abol \in \mathbb{Z}$ $abol \in \mathbb{Z}$ $abol \in \mathbb{Z}$ $abol \in \mathbb{Z}$ $b, d \in \mathbb{Z}$

ac bd

Lemm (最大公告数的性质) $X_1, X_2 \in \mathbb{Z}$,则有:

 $lcm(x_1, x_2) = lcm(x_2, x_1) = lcm(-x_1, x_2) = lcm(x_1, -x_2) = lcm(-x_1, -x_2)$ = $Lcm(|x_1|, |x_2|)$

Proof:如果x1,2中有0,则:

 $lcn(x_1, x_2) = 0$, $lcn(x_2, x_1) = 0$, $lcn(-x_1, x_2) = 0$, $lcn(x_1, -x_2) = 0$,

 $(cm(-X_1, -X_2) = 0, (cm(|X_1|, |X_2|) = 0)$

 $: lom(x_1, x_2) = lom(x_2, x_1) = lom(-x_1, x_2) = lom(x_1, -x_2) = lom(-x_1, -x_2) = lom(x_1, |x_2|)$

下设 X_1 , X_2 中没有 O, 即 $X_1 \neq O$ 且 $X_2 \neq O$., $lcm(X_1, X_2) = min \left\{ m \in \mathbb{Z}_{\geq 1} : X_1 \middle| m \text{ 且 } X_2 \middle| m \right\} = min \left\{ m \in \mathbb{Z}_{\geq 1} : X_2 \middle| m \text{ 且 } X_1 \middle| m \right\} = lcm(X_2, X_1)$

 $|cm(x_1,x_2) = min\{m \in \mathbb{Z}_{\geq 1} : x_1|m + x_2|m\} = min\{m \in \mathbb{Z}_{\geq 1} : -x_1|m + x_2|m\} = |cm(-x_1,x_2)$ $|\operatorname{cm}(X_1, X_2)| = \min \left\{ m \in \mathbb{Z}_{\geq 1} : |X_1| m : |X_2| m \right\} = \min \left\{ m \in \mathbb{Z}_{\geq 1} : |X_1| m : |X_2| m \right\} = |\operatorname{cm}(X_1, -X_2)$ $lcm(x_1, x_2) = lcm(-x_1, x_2) = lcm(-x_1, -x_2)$ $: lcm(x_1, x_2) = lcm(x_2, x_1) = lcm(-x_1, x_2) = lcm(x_1, -x_2) = lcm(-x_1, -x_2)$ = Lcm $(|x_1|, |x_2|)$ Lemma (最小公倍数白6性质) n∈Z≥1, x1, x2, --, xn∈Z, x2 x1, x3 x1, --, xn x1. 见有: $lcm(x_1,...,x_n) = x_1$ Proof:分两种情况讨论: ② $x_1 \neq 0$. WHA: $x_2 \mid x_1, x_2 \mid x_1, \dots, x_n \mid x_1 \dots x_2 \neq 0$, $x_3 \neq 0, \dots, x_n \neq 0$ ·· X₁ , X₂ , ··· , X_n 全都不为 ○ ·· |X₁| ∈ Z_{>|} : |X||是X|的最小的正倍数 (1) (把 xi的全体倍数按从小到大排列,有: $- < -4|x_1| < -3|x_1| < -2|x_1| < -|x_1| < 0 < |x_1| < 2|x_1| < 0 < |x_1| < 2|x_1| < 4|x_1| < - |x_1| < 0 < |x_1| < 2|x_1| < 0 < |x_1| < |x_$ X1, ..., Xn的公倍数一定是XI的倍数 $\left| \operatorname{cm} \left(\mathsf{x}_{1}, \cdots, \mathsf{x}_{n} \right) \right| \leq \left| \mathsf{x}_{1} \right| \qquad \left| \operatorname{cm} \left(\mathsf{x}_{1}, \cdots, \mathsf{x}_{n} \right) = \left| \mathsf{x}_{1} \right| \qquad \right)$

Proof:分两种情况讨论:

 $0 \times_{1},..., \times_{n} + f_{0}$. Itself $lcm(x_{1},...,x_{n}) = 0$, $lcm(x_{1},...,x_{n},d) = 0$ $lcm(x_{1},...,x_{n}) = 0 = lcm(x_{1},...,x_{n},d)$

① X1, ··· , Xn 中没有0,即: X1 +0,··· , Xn +0. ··· d | X1 ··· d +0 ·· X1,··· , Xn , d 全都不为0

又d∀m ∈ Z,有:

若x, m, 则:d|x, x, m :d|m ::x, m且d|m.

艺x/m且d/m, 见J x/m

·· 又Hm∈Z,有: XIm ←> XIm且dm

 $|\operatorname{cm}(x_1, \dots, x_n) = \min \{ m \in \mathbb{Z}_{\geq 1} : x_1 | m \cdot \mathbb{E} x_2 | m \cdot \mathbb{E} \dots \cdot \mathbb{E} x_n | m \}$ $= \min \{ m \in \mathbb{Z}_{\geq 1} : (x_1 | m \cdot \mathbb{E} x_1 | m) \cdot \mathbb{E} x_2 | m \cdot \mathbb{E} \dots \cdot \mathbb{E} x_n | m \}$

= min {m E Z = 1 : X | m且 X z | m且 - 1 且 X n | m且 d | m }

 $= lcm(x_1, --, x_n, d) \square$

Lemma (最大公信教的数乘性质) $n\in\mathbb{Z}_{\geq 1}$, $x_1,...,x_n\in\mathbb{Z}$, $\lambda\in\mathbb{Z}_{\geq 0}$, 则有: $lcm(\lambda x_1,...,\lambda x_n)=\lambda\cdot lcm(x_1,...,x_n)$

 $Proof: \exists \lambda = 0 \exists t$, $lon(\lambda x_1, \dots, \lambda x_n) = lon(0, \dots, 0) = 0 = 0 \cdot lon(x_1, \dots, x_n) = \lambda \cdot lon(x_1, \dots, x_n)$ $Fig. \lambda \in \mathbb{Z}_{\geq 1}$

如果 X1,···, Xn中有0,则有: \X1,···, \Xn中有0. $\lim_{n \to \infty} \left(\lim_{n \to \infty} \left(\lim_{$ 下设 X1,···, X1中没有0. :: X1+0,···, X1+0 :: X1,···, X1全不为0 $\therefore \lambda \in \mathbb{Z}_{\geq 1} \qquad \therefore \lambda \times_1 \neq 0, \dots, \lambda \times_n \neq 0 \qquad \therefore \lambda \times_1, \dots, \lambda \times_n \hat{\mathbf{x}} \wedge \hat{\mathbf{x}}$ $\mathcal{L}A = lcm(\lambda x_1, \dots, \lambda x_n) \in \mathbb{Z}_{\geq 1}$, $B = lcm(x_1, \dots, x_n) \in \mathbb{Z}_{\geq 1}$ 又长了=1,…,几.有: $-\lambda_{x_{j}} | A - \lambda_{x_{j}} |$ $A \in \mathbb{Z}_{\geq 1}$, $\lambda x_j \in \mathbb{Z}$, $\lambda x_j \neq 0$, $\lambda \in \mathbb{Z}_{\geq 1}$, $\lambda \neq 0$, $\lambda |\lambda x_j|$, $\lambda |A|$, $\lambda x_j |A|$ $\frac{\lambda x_j}{\lambda} \left| \frac{A}{\lambda} \right| \times x_j \left| \frac{A}{\lambda} \right|$ $: A \in \mathbb{Z}_{\geq 1}, \quad \lambda \in \mathbb{Z}_{\geq 1}, \quad \lambda \mid A \qquad : \stackrel{A}{\longrightarrow} \in \mathbb{Z}_{\geq 1}$ $|cm(x_1, -, x_n)| \leq \frac{A}{\lambda} \qquad |B| \leq \frac{A}{\lambda} \qquad |\lambda>0| \qquad |A| \leq |\lambda| + |A| = A$ 对Yk=1,...,n,有: .: Xk | Lcm(x1, --, xn) : Xk | B $B \in \mathbb{Z}_{\geq 1}$, $x_k \in \mathbb{Z}$, $x_k \neq 0$, $\lambda \in \mathbb{Z}_{\geq 1}$, $\lambda \neq 0$, $x_k \mid B$: XXk XB $A \in \mathbb{Z}_{\geq 1}$, $B \in \mathbb{Z}_{\geq 1}$ $A \cap A \cap B \in \mathbb{Z}_{\geq 1}$ $A = \lambda B$ $\therefore \operatorname{lcm}(\lambda x_1, \cdots, \lambda x_n) \leqslant \lambda B \qquad \therefore A \leqslant \lambda B \leqslant A$ $: lom(\lambda x_1, ..., \lambda x_n) = \lambda \cdot lom(x_1, ..., x_n)$