Polygenic Scores RECAP

POLYGENIC SCORES

Each small "v" represents a genomic variant that is present in an individual's genome but are not associated with cystic fibrosis. Each larger "V" represents a CFTR gene mutation.

POLYGENIC SCORES

Each red "v" represents variants in an individual's genome that is associated with coronary artery disease. Each smaller gray "v" is a variant that is also present in the person's genome but is not implicated in disease.

A polygenic score is the sum of disease-specific risk genetic variants an individual has.

WHAT IS A PGS

$$PGS = \sum_{i} X_{i} b_{i}$$

b is the slope (effect size) from reggresion/GWAS

The genotype of the individual for SNP i (0, 1, 2 – counting the number of the alternative allele) AA = 0

Aa = 1

aa = 2

i represents the SNP; thus, if you have 10 SNPs, i will take the values 1, 2,..,10 iteratively

HOW TO COMPUTE A (simple) PGS?

SNPs	Adams Genotypes	Ref allele	Alt allele	X	b	Xb
SNP-1	TC	T	С	1	0.04	0.04
SNP-2	GG	G	T	0	0.02	0.00
SNP-3	CC	Α	C	2	0.05	0.10
SNP-4	TG	T	G	1	0.02	0.02
SNP-5	AA	A	G	0	0.06	0.00

0: Set LD (=0.8) and *P* values (0.01)

SNP	b	р
1	0.21	0.005
2	0.22	0.0048
3	0.25	0.0003
4	0.1	0.04
5	0.05	0.15
6	0.02	0.49
7	0.03	0.87
8	0.12	0.003
9	0.14	0.0034
10	0.18	0.0004
11	0.21	0.00003
12	0.12	0.15
13	0.14	0.12
14	0.03	0.84
15	0.02	0.32

1: Sort by P-value

SNP	b	р
11	0.21	0.00003
3	0.25	0.0003
10	0.18	0.0004
8	0.12	0.003
9	0.14	0.0034
2	0.22	0.0048
1	0.21	0.005
4	0.1	0.04
13	0.14	0.12
5	0.05	0.15
12	0.12	0.15
15	0.02	0.32
6	0.02	0.49
14	0.03	0.84
7	0.03	0.87

2: Compute LD and select variants based of thresholds

SNP	b	р	r²
11	0.21	0.00003	1st var
3	0.25	0.0003	0.96
10	0.18	0.0004	0.93
8	0.12	0.003	0.88
9	0.14	0.0034	0.74
2	0.22	0.0048	0.4
1	0.21	0.005	0.03
4	0.1	0.04	0.04
13	0.14	0.12	0.05
5	0.05	0.15	0.03
12	0.12	0.15	0.04
15	0.02	0.32	0.01
6	0.02	0.49	0.01
14	0.03	0.84	0.01
7	0.03	0.87	0.01

ar<mark>iant in LD-pair</mark>

Have LD>r² – ignore those

0: Set LD (=0.8) and *P* values (0.01)

SNP	b	р
1	0.21	0.005
2	0.22	0.0048
3	0.25	0.0003
4	0.1	0.04
5	0.05	0.15
6	0.02	0.49
7	0.03	0.87
8	0.12	0.003
9	0.14	0.0034
10	0.18	0.0004
11	0.21	0.00003
12	0.12	0.15
13	0.14	0.12
14	0.03	0.84
15	0.02	0.32

1: Sort by P-value

SNP	b	р
11	0.21	0.00003
3	0.25	0.0003
10	0.18	0.0004
8	0.12	0.003
9	0.14	0.0034
2	0.22	0.0048
1	0.21	0.005
4	0.1	0.04
13	0.14	0.12
5	0.05	0.15
12	0.12	0.15
15	0.02	0.32
6	0.02	0.49
14	0.03	0.84
7	0.03	0.87

2: Compute LD and select variants based of thresholds

SNP	b	р	r²
11	0.21	0.00003	
3	0.25	0.0003	
10	0.18	0.0004	
8	0.12	0.003	
9	0.14	0.0034	1st va
2	0.22	0.0048	0.98
1	0.21	0.005	0.96
4	0.1	0.04	0.96
13	0.14	0.12	0.52
5	0.05	0.15	0.34
12	0.12	0.15	0.10
15	0.02	0.32	0.04
6	0.02	0.49	0.01
14	0.03	0.84	0.01
7	0.03	0.87	0.01

ariant in LD-pair

Have LD>r² – ignore those

0: Set LD (=0.8) and P values (0.01)

b	р
0.21	0.005
0.22	0.0048
0.25	0.0003
0.1	0.04
0.05	0.15
0.02	0.49
0.03	0.87
0.12	0.003
0.14	0.0034
0.18	0.0004
0.21	0.00003
0.12	0.15
0.14	0.12
0.03	0.84
0.02	0.32
	0.21 0.22 0.25 0.1 0.05 0.02 0.03 0.12 0.14 0.18 0.21 0.12 0.14 0.03

1: Sort by P-value

SNP	b	р
11	0.21	0.00003
3	0.25	0.0003
10	0.18	0.0004
8	0.12	0.003
9	0.14	0.0034
2	0.22	0.0048
1	0.21	0.005
4	0.1	0.04
13	0.14	0.12
5	0.05	0.15
12	0.12	0.15
15	0.02	0.32
6	0.02	0.49
14	0.03	0.84
7	0.03	0.87

2: Compute LD and select variants based of thresholds

	r²	р	b	SNP
		0.00003	0.21	11
		0.0003	0.25	3
		0.0004	0.18	10
		0.003	0.12	8
		0.0034	0.14	9
		0.0048	0.22	2
		0.005	0.21	1
		0.04	0.1	4
riant in LD-pair	1st va	0.12	0.14	13
	0.86	0.15	0.05	5
	0.82	0.15	0.12	12
Have I D. v2	0.81	0.32	0.02	15
Have LD>r ² – i	0.85	0.49	0.02	6
	0.85	0.84	0.03	14
	0.81	0.87	0.03	7

ve LD>r² – ignore those

0: Set LD (=0.8) and *P* values (0.01)

SNP	b	р
1	0.21	0.005
2	0.22	0.0048
3	0.25	0.0003
4	0.1	0.04
5	0.05	0.15
6	0.02	0.49
7	0.03	0.87
8	0.12	0.003
9	0.14	0.0034
10	0.18	0.0004
11	0.21	0.00003
12	0.12	0.15
13	0.14	0.12
14	0.03	0.84
15	0.02	0.32

1: Sort by P-value

SNP	b	р
11	0.21	0.00003
3	0.25	0.0003
10	0.18	0.0004
8	0.12	0.003
9	0.14	0.0034
2	0.22	0.0048
1	0.21	0.005
4	0.1	0.04
13	0.14	0.12
5	0.05	0.15
12	0.12	0.15
15	0.02	0.32
6	0.02	0.49
14	0.03	0.84
7	0.03	0.87

2: Compute LD and select variants based on LD

SNP	b	р	r²
11	0.21	0.00003	—
3	0.25	0.0003	
10	0.18	0.0004	
8	0.12	0.003	
9	0.14	0.0034	4
2	0.22	0.0048	
1	0.21	0.005	
4	0.1	0.04	
13	0.14	0.12	
5	0.05	0.15	
12	0.12	0.15	
15	0.02	0.32	
6	0.02	0.49	
14	0.03	0.84	
7	0.03	0.87	

3: Compute PGS based on effect sizes (b) and *P*-values

$$PGS = \sum X_i b_i$$

$$= X_{11} \times 0.21 + X_9 \times 0.14$$

Repeat for other *P*-value cutoffs (and LD values)

How does the PGS associate with the disease

$$y_{disease} = PGS + \varepsilon$$

MORE SOPHISTICATED METHODS EXISTS

(B) PRS-CS **EB-PRS** lassosum PRS-CS-auto **LDpred** LDpred-funct RSS **SBLUP** LDpred-inf BayesC **BSLMM BVSR TlpSum MultiBLUP DPR SBayesR** 2D PRS **CNN NEG PANPRS** 2019 2011 2015 2017 2001 2013 2021 **AnnoPred** DNN Mak et al BayesA, C+T CTPR **BayesR** PleioPred **NPS** BayesCπ, BayesB **MTGBLUP BVR** wMT-SBLUP Bayesian So et al BayesD,BayesD π **SDPR JAMPred** Lasso **DBSLMM**

WHAT DO YOU NEED?

1. A large well-powered GWAS for your trait of interest

2. An independent cohort that has been genotyped

(3. That some individuals in the cohort has the phenotype)

IMPORTANT CONSIDERATIONS

- 1 You are "born" with your polygenic score
 - Everytime a new and better
 - GWAS is released
 - Scoring method is developed
 - we can recalculate a persons score
- 2 The accuracy of the polygenic score depents on ancestry

ACCURACY OF PGS AND ANCESTRY

Genetic distance to training population

IMPORTANT CONSIDERATIONS

- 1 You are "born" with your polygenic score
 - Everytime a new and better
 - GWAS is released
 - Scoring method is developed
 - we can recalculate a persons score
- 2 The accuracy of the polygenic score depents on ancestry
- Rare genetic variants in concert with the polygenic burden may modulate the disease risk

RARE VARIANTS AND PGS - MODULATION OF RISK

Two frameshift mutations strongly associated with breast cancer in Finland

Table 2 Risk for breast cancer events in the population in carriers of the PALB2 and CHEK2 frameshift mutations, and in the top decile of the polygenic risk score (PRS).

	PALB2	CHEK2	PRS > 90%
Number of individuals	336	1648	12,298
Number of cases	84	214	1821
ifetime risk of breast cancer, % (95% CI)	56.1 (50.8-61.4)	31.7 (29.5-33.9)	32.5 (31.6-33.4)
Mean age at disease onset in cases (SD)	53.1 (10.4)	56.5 (12.0)	57.8 (11.3)
ifetime risk was estimated by age 80. The variants were rs180 and PRS analyses in 122,978 women.			

HR=4.99

HR=2.19

HR = Hazard ratio

A hazard ratio tells us whether a subject in the treatment group who is unaffected at any given time has a greater, equal, or lower probability (i.e., hazard rate) of experiencing the event during the next unit of time than an unaffected subject in the control group.

RARE VARIANTS AND PGS MODULATION OF RISK

→ high breast cancer PGS comes with a comparable risk profile to frameshift mutations in breast cancer susceptibility genes PALB2 and CHEK2, and that the PGS strongly modifies breast cancer risk in the mutation carriers

