

AMENDMENTS

In the Claims

	Current Status of Claims
	1.(canceled)
1	2.(canceled)
2	3.(canceled)
- 3	4.(canceled)
. 4	5.(canceled)
5	6.(canceled)
6	7.(currently amended) A method of producing a variable acceleration vector on a mass
7	comprising the steps of:
8	positioning a mass inside an simulator room;
9	rotating the room relative to a center axis,
10	rotating the room relative to a second axis parallel to the center axis;
11	rotating the room relative to a third axis perpendicular to the second axis, where the
12	three rotating steps produce a desired acceleration vector on the mass within the room; and
13	adjusting a distance between the room and the center axis;
14	changing a magnitude and/or direction of the acceleration vector acting on the mass
15	inside the room;
16	where the three rotating steps and the adjusting step produce a desired acceleration
17	vector on the mass within the room.
1	8.(previously amended) The method of claim 7, where the changing step includes:
2	changing a rate of rotation about the center axis, the second axis and/or the third axis.
1	9.(currently amended) The method of claim 7, further comprising the step of:
2	changing a the distance between the room and the center axis.

1	10.(currently amended) The method of claim 7, where the changing step includes:
2	changing a rate of rotation about the center axis, the second axis, the third axis and/or
3	a the distance between the room and the center axis.
1	11.(currently amended) A method of producing a virtual reality effect comprising the step
2	of:
3	positioning a person in an acceleration seat in a simulator room including at least one
. 4	video screen;
5	displaying on the at least one video screen a simulated image;
6	rotating the room relative to a center axis, a second axis parallel to the center axis and
7	a third axis perpendicular to the second axis to produce an acceleration vector; and
8	adjusting a distance between the room and the center axis, where the rotating and
9	adjusting produce an acceleration vector; and
10	changing a magnitude and/or direction of the acceleration vector,
11	where the image and acceleration vector are temporally associated to produce a
12	simulated temporal event.
1	12.(previously presented) The method of claim 11, where the changing step includes:
2	changing a rate of rotation about the center axis, the second axis and/or the third axis.
1	13.(currently amended) The method of claim 11, further comprising the step of:
2	changing a the distance between the room and the center axis.
1	14.(currently amended) The method of claim 11, where the changing step includes:
2	changing a rate of rotation about the center axis, the second axis, the third axis and/or
3	a the distance between the room and the center axis.

1	15.(currently amended) A method of producing a variable acceleration vector on a mass
2	comprising the steps of:
3	creating an acceleration vector having a magnitude and direction on a mass positioned
4	inside a simulator room through rotation about three axes a center axis, a second axis and a
5	third axis, two of which the center and second axes are parallel, while the third axis is
6	perpendicular to the two parallel center and second axes and adjusting a distance between the
· 7	room and the center axis; and
. 8	varying the magnitude and/or direction of the acceleration vector.
1	16.(previously amended) The method of claim 15, where the changing step includes:
2	changing a rate of rotation about the center axis, the second axis, the third axis and/or
3	a the distance between the room and the center axis.
1	17.(previously presented) A machine for creating a changing force direction and magnitude
2	sensed by an object over time comprising:
3	a positioning containment including an object, where the containment is mounted on
4	a rotatable base,
5	a counter balance mass mounted on the base opposite the positioning containment;
6	a rotating means adapted to rotate the base, and
7	an angular orientating means adapted to orient the positioning containment,
8	an distance adjusting means adapted to change a distance between the positioning
9	containment and the counter balance mass,
10	where the rotating means, and the angular orientating means, the adjusting means
11	cooperate to produce a desired acceleration vector on the object and to change the
12	acceleration vector in time.
1	18.(canceled) The machine of claim 17, further comprising:

2	an distance adjusting means adapted to change a distance between the positioning
3	containment and the counter balance mass,
4	where the rotating means, the angular orientating means and the adjusting means
5	cooperate to produce the acceleration vector on the object.
1	19.(previously amended) A machine for creating a changing force magnitude sensed by
2	an object over time comprising:
3	a positioning containment including an object, and
4	a means adapted to create an acceleration vector on the object which changes with
5	time relative to a simulated event,
6	where the means comprises:
7	a rotatable base upon which the positioning containment is mounted,
8	a counter balance mass mounted on the base opposite the positioning
9	containment,
10	a rotating means adapted to rotate the base;
11	an angular orientating means adapted to orient the positioning
12	containment relative to the base;
13	an distance adjusting means adapted to simultaneously change a
14	distance between a center axis of rotation of the rotating means and the
15	positioning containment and between the center axis and the counter balance
16	mass,
17	where the rotating means, the angular orientating means and the
18	adjusting means cooperate to produce the acceleration vector on the object.
1	20.(canceled) The machine of claim 19, wherein the means includes:
2	a rotatable base upon which the positioning containment is mounted,
3	a counter balance mass mounted on the base opposite the positioning containment,
4	a rotating means adapted to rotate the base;

5	an angular orientating means adapted to orient the positioning containment relative
· 6	to the base;
7	an distance adjusting means adapted to simultaneously change a distance between a
8	center axis of rotation of the rotating means and the positioning containment and between the
9	center axis and the counter balance mass,
10	where the rotating means, the angular orientating means and the adjusting means
11	cooperate to produce the acceleration vector on the object.
1	21.(previously amended) A machine for creating a changing force direction and magnitude
2	sensed by an object over time comprising:
3	a rotatable base mounted on an anchor and including a rotating means adapted to
4	rotate the base;
5	a rotatable simulator room mounted on the base including
6	an acceleration seat,
7	a rotary means adapted to rotate the simulator room,
8	an angular orientation means adapted to angularly orient the simulator room
9	relative the base, and
10	at least one video screen adapted to display a simulated image,
11	a counter balance mass mounted on the base opposite the simulator room, and
12	an distance adjusting means adapted to change a distance between a simulator room
13	and the counter balance mass,
14	where the rotating means, the rotary means, the angular orientating means and the
15	adjusting means cooperate to produce the acceleration vector on the object and where the
16	image and the acceleration vector varies in time relative to a simulated event.