EDA y ETL **ETL: Extract, Transform, Load Machine Learning: Preparación** Tests estadísticos Normalización Método manual Extraccion **Independencia** entre variables predictoras EDA: Análisis exploratorio de datos Hipotesis Nula y Errores Tipo I y II obtener datos crudos v almacenarlos - las variables predictoras tienen que ser independientes para - cogemos el valor que queremos normalizar y - Tablas de bases de datos SOL o NoSOL restamos la media de la columna, y dividimos el El Análisis Exploratorio de Datos se refiere al Hipótesis nula (H0) poder crear un modelo de regresión lineal - Ficheros de texto plano resultado por el maximo restado por el minimo de la proceso de realizar una serie de investigaciones - en general es la afirmación contraria a la que queremos probar - Emails Variables numéricas: Correlaciones inciales sobre los datos que tenemos para poder columna - Información de páginas web Hipótesis alternativa (H1) descubrir patrones, detectar anomalías, probar pairplot df["col norm"] = (df["col VR"] -- Hoias de cálculo - en general la afirmación que queremos comprobar hipótesis y comprobar suposiciones con la ayuda de sns.pairplot(df) df["col_VR"].media()) / (df["col_VR"].max() -- Ficheros obtenidos de API's estadísticas y representaciones gráficas. - covarianza df["col VR"].min()) Transformación - medida de la probabilidad de que una hipótesis nula sea cierta df numéricas.cov() Método logarítmica 1. Entender las variables procesar los datos, unificarlos, limpiarlos, correlación de Pearson (relación lineal) - valor entre 0 y 1 *no se puede hacer si algún valor sea 0* validarlos, filtrarlos, etc. - si *p-valor* < 0.05 **X** Rechazamos la hipótesis nula. df numéricas.corr() df["col norm"] = df["col VR"].apply(lambda x: - Formetear fechas que variables temenos - si *p-valor* > 0.05 ✓ Aceptamos la hipótesis nula. - correlación de Spearman (relación no lineal) np.log(x) if x > 0 else 0) - Reordenar filas o columnas .head(), .tail(), .describe(), .info(), .shape df numéricas.corr(method = 'spearman') que tipos de datos - Unir o separar datos Error Tipo I: Método raiz cuadrada - correlación de Kendall (datos numéricos pero - Combinar las fuentes de datos .dtypes(), .info() - rechazar la hipótesis nula cuando es verdadera import math categóricos y ordinales) si temenos nulos o duplicados - Limpiar y estandarizar los datos **Error Tipo II:** isnull().sum() - Verificar y validar los datos df["col norm"] = df["col VR"].apply(lambda x: df numéricas.corr(method = 'kendall') - Eliminar duplicados o datos erroneos - aceptar la hipótesis nula cuando es falsa .duplicated().sum() math.sqrt(x)) que valores unicos temenos - Filtrado, realización de calculos o agrupaciones Método stats.boxcox() Variables categóricas: Chi-cuadrado .unique(), .value_counts() Tests estadísticos - V-Cramer: varía entre 0 y 1 Carga aplica una transformación logarítmica para los librería sidetable: - más cerca a 1 más dependientes valores positivos v exponencial para valores - cargar los datos en su formato de destino, el tipo stb.freq() devuelve el value counts de variables Normalidad - resultado < 0,7 para hacer ML ✓ negativos de nuestra columna de lo cual dependerá de la naturaleza, el tamaño y la categóricas, mas el porcentaje, cuenta cumulativa y complejidad de los datos. Los sistemas más comunes - la variable respuesta tiene que tener una distribución normal para poder import researchpy as rp from scipy import stats porcentaje cumulativa suelen ser: crear un modelo de regresión lineal df["col norm"], lambda ajustada = stb.missing() tabla de cuenta de nulos y el crosstab, test results, expected = rp.crosstab - Ficheros csv stats.boxcox(df["col VR"]) porcentaie del total (df["col1"], df["col2"], test= "chi-square", Visualmente: - Ficheros ison expected freqs= True, prop= "cell") - Bases de datos - histograma o distribución Método MinMaxScaler 2. Limpiar el dataset test results devuelve los resultados del test en un - Almacenes de datos (Data Warehouse) - grafico de cuantiles teóricos (Q-Q) from sklearn.preprocessing import MinMaxScaler - Lagos de datos (Data Lakes) más alineados están los puntos entorno a la recta, más normales modelo = MinMaxScaler(feature range=(0.1). serán nuestros datos quitar duplicados (filas o columnas) **Homocedasticidad** (homogeneidad de varianzas) copy=True) cambiar nombres de columnas import statsmodels.api as sm modelo.fit(df["col_VR"]) - las variables predictoras tienen que tener homogeneidad de cambiar tipo de datos de columnas sm.qqplot(datos, line ='45') datos normalizados = modelo.transform(df["col VR"]) varianzas en comparación con la variable respuesta ordenar columnas **APIs** Metodos analiticos: df datos norm = pd.DataFrame(datos normalizados, separar columna en dos con str.split() Visualmente: columns = ['col norm']) crear intervalos con pd.cut() Asimetría violinplot import requests libreria para realizar peticions HTTP crear porcentajes o ratios df['col norm'] = df datos norm - distribuciones asimétricas positivas: media > mediana y moda a una URL, para hacer web scraping decidir como tratar outliers: mantenerlos, - distribuciones asimétricas negativas: media < mediana y moda regplot (columnas numéricas vs variable respuesta) url = 'enlace' el enlace de la que queremos extraer eliminarlos, o reemplazarlos con la media, **ANOVA** datos from scipv.stats import skew mediana o moda; o aplicar una imputacion Metodos analiticos: header = {} opcional; contiene informacion sobre las skew(datos normales) método de scipy que calcula el sesgo import statsmodels.api as sm - test de Levene (más robusto ante falta de decidir como tratar nulos: peticiones realizadas (tipo de ficheros, credenciales) df['columna'].skew() método de pandas que calcula el sesgo normalidad) o Bartlett from statsmodels.formula.api import ols - eliminar filas o columnas con nulos drop.na() response = requests.get(url=url, header = header) lm = ols('col_VR ~ col_VP1 + col_VP2 + col_VP3', from scipy import stats - imputar valores perdidos: pedimos a la API que nos de los datos data=df).fit() variables = {'parametro1':'valor1', - reemplazarlos con la media, mediana o moda from scipy.stats import levene - leptocurtosis: valor de curtosis mayor que 0 (pico alto) usando .fillna() o .replace() 'parametro2':'valor2'} devuelve un dataframe de los resultados: mesocurtosis: valor de curtosis igual a 0 (pico medio) Variables categóricas: response = request.get(url=url, params=variables) - imputer con metodos de machine learning df (degrees of freedom): para variables categóricas - hay que crear un dataframe para cada valor único de platicurtosis: valor de curtosis menor que 0 (plana) usando la libreria sklearn: Simple-Imputer. pedimos a la API que nos de los datos con los será el número de valores únicos menos 1; para las columnas categóricas from scipy.stats import kurtosistest Iterative-Imputer, o KNN Imputer parametros segun el diccionario de parametros que le variables numéricas será siempre 1 df_valor1 = df[df['col1'] == 'valor1']['col_VR'] pasamos kurtosistest(datos) devuelve un p-valor sum sq: medida de variación/desviación de la media response.status code devuelve el status de la peticion df valor2 = df[df['col1'] == 'valor2']['col VR'] p-valor del test > 0.05: datos normales mean sq: es el resultado de dividir la suma de response.reason devuelve el motive de codigo de estado levene test = stats.levene(df valor1, df valor2, 3. Analizar relaciones entre variables p-valor del test < 0.05: datos NO normales cuadrados entre el número de grados de libertad. response.text devuelve los datos en formato string center='median') response.json() devuelve los datos en formato json F: un test que se utiliza para evaluar la capacidad Test de Shapiro-Wilk bartlett test = stats.bartlett(df valor1, df valor2, Analizar relaciones entre las variables df = pd.json normalize(response.json) devuelve los explicativa que tiene la variable predictora sobre - para muestras < 5000 center='median') para encontrar patrones, relaciones o anomalias datos en un dataframe la variación de la variable respuestae - hipótesis nula: distribución normal Relaciones entre dos variables numéricas: Variables numéricas: - PR(>F): si el p-valor < 0.05 es una variable scatterplot from scipy import stats Codigos de respuesta de HTTP - hay que crear un dataframe de las columnas numéricas significativa; que puede afectar a la VR regplot - scatterplot con línea de regresion sin la variable respuesta stats.shapiro(df["datos"]) lm.summary() devuelve una resumen de los matriz de correlación y heatmap - p-valor del test > 0.05: datos normales ✓ 1XX informa de una 4XX error durante peticion for col in df_numericas.columns: resultados: joinplot - permite emparejar dos gráficas - una respuesta correcta 401 peticion incorrecta - p-valor del test <) 0.05: datos NO normales statistic, p val = levene(df[col], df['col VR'], histograma con scatter o reg plot por ejemplo coef: representa los cambios medios en la VR para 2XX codigo de exito 402 sin autorizacion Relaciones entre dos variables categóricas: Test de Kolmogorov-Smirnov center='median') una unidad de cambio en la VP mientras se mantienen 200 OK 403 prohibido countplot constantes el resto de las VP; los signos nos - para muestras > 5000 resultados[col] = p val 201 creado 404 no encontrado Relaciones entre variables numéricas y categóricas: indican si esta relación es positiva o negativa 5XX error del servidor 202 aceptado devuelve los p-valores en un diccionario - hipótesis nula: distribución normal swarmplot **std err**: cuanto menor sea el error estándar, más 204 sin contenido 501 error interno del servidor from scipy import kstest p-valor del test > 0.05: varianzas iguales, violinplot precisa será la estimación 3XX redireccion 503 servicio no disponible homocedasticidad ✓ pointplot kstest(df["datos"], 'norm') t: es el resultado de dividir el coeficiente entre boxplot p-valor del test > 0.05: datos normales √ p-valor del test < 0.05: varianzas diferentes, su error estándar

- p-valor del test < p-valor (alfa) 0.05: datos NO normales

heterocedasticidad

Machine Learning	Regresión Lineal: Métricas	Regresión Logística: Métricas				Balanceo para Regresión Logística	GridSearch y best_estimator_
Estandarización	<pre>from sklearn.metrics import r2_score, mean_squared_error, mean absolute error</pre>	Matriz de confusión				Downsampling	Despues de hacer las predicciones de un modelo Decision Tree, examinamos lás métricas de los
	R2: representa la proporción de la varianza que puede ser	Matriz de confusión		Predicción		ajustar la cantidad de datos de la categoría mayoritaria a la minoritaria	resultados:
- cambiar los valores de nuestras columnas de manera que la desviación estándar de la distribución sea igual a 1 y la media igual a 0; para que las VP sean comparables	explicada por las VP del modelo; mayor R2=mejor modelo r2_score(y_train,y_predict_train)			Positivo	Negativo	Método manual df minoritaria = df[df['col'] == valor min]	- si temenos overfitting hay que reducir la profundidad del modelo
Método manual	<pre>r2_score(y_test,y_predict_test) MAE (Mean absolute error): medida de la diferencia entre los</pre>		Positivo	Verdadero	Falso negativo	df muestra = df[df['col'] == valor max].sample	- si temenos underfitting hay que aumentar la profundidad del modelo
<pre>df["col_esta"] = (df ["col_VR"] - df ["col_VR"].media()) / (df ["col VR"].std()</pre>	valores predichos vs los reales; menor MAE=mejor modelo mean_absolute_error(y_train,y_predict_train)	Realidad		positivo	, and the second	<pre>(num_minoritarios, random_state = 42) df_balanceado = pd.concat([df_minoritaria,</pre>	<pre>max_features = np.sqrt(len(x_train.columns)) podemos calcular el valor de max features siendo la</pre>
Sklearn StandardScaler	<pre>mean_absolute_error(y_test,y_predict_test)</pre>		Negativo	Falso	Verdadero	df_muestra],axis = 0) Método RandomUnderSample	raíz cuadrada del número de variables predictoras
from sklearn.preprocessing import StandardScaler	MSE (Mean Squared Error): mide el promedio(media) de los errores al cuadrado; menor MSE=mejor modelo			positivo	negativo	import imblearn	<pre>arbol.treemax_depth nos muestra el max depth usado por defecto, para poder ajustarlo; deberíamos</pre>
scaler = StandardScaler()	<pre>mean_squared_error(y_train,y_predict_train)</pre>	para crear un heatmap de una matriz de confusión:				<pre>X = df.drop('col_VR', axis=1)</pre>	usar la mitado como mucho
<pre>scaler.fit(df_num_sin_VR) datos estandarizados = scaler.transform (df num sin VR)</pre>	mean_squared_error(y_test,y_predict_test)	<pre>from sklearn.metrics import confusion_matrix mat_lr = confusion_matrix(y_test, y_pred_test)</pre>				y = df['col_VR'] down sampler = RandomUnderSampler()	- GridSearch ejecuta todas las posibles combinaciones de hiperparámetros que le damos con
df_datos_esta = pd.DataFrame(datos_estandarizados, columns	RMSE (Root Mean Squared Error): distancia promedio entre los valores predichos y los reales; menor RMSE=mejor modelo	plt.figure(figsize = (n,m))			pred_cest)	<pre>X_down, y_down = down_sampler.fit_resample(X,y)</pre>	el parámetro 'param' y best_estimator_ devuelve la
= df_num_sin_VR.columns)	<pre>np.sqrt(mean_squared_error(y_train,y_predict_train))</pre>	<pre>sns.heatmap(mat_lr, square=True, annot=True=</pre>			ot=True=	<pre>df_balanceado = pd.concat([X_down, y_down], axis = 1)</pre>	major combinacion encontrado
Sklearn RobustScaler	<pre>np.sqrt(mean_squared_error(y_test,y_predict_test))</pre>	plt.xlabel('valor predicho')				Método Tomek	<pre>1. Definimos un diccionario de los hiperparametros param = {"max depth": [n,m,l], "max features":</pre>
from sklearn.preprocessing import RobustScaler	Linear Degression, Madala	plt.ylabel('valor real')				x = df.drop('col_VR', axis=1)	[a,b,c,d], "min_samples_split": [x,y,z],
<pre>scaler = RobustScaler() scaler.fit(df num sin VR)</pre>	Linear Regression: Modelo		plt.show()			y = df['col_VR']	<pre>"min_samples_leaf": [r,s,t]} from sklearn.model selection import GridSearchCV</pre>
datos_estandarizados = scaler.transform (df_num_sin_VR)	1. separar los datos de las variables predictoras (x) de la	Métricas from sklearn.metrics import confusion matrix,			n matrix.	<pre>x_train, x_test, y_train, y_test = train_test_split(x, y, test size = 0.2, random state = 42)</pre>	2. Iniciamos el modelo con GridSearch
df_datos_esta = pd.DataFrame(datos_estandarizados, columns	<pre>variable respuesta (y) X = df.drop('col VR', axis=1)</pre>	accuracy_score, precision_score, recall_score,				<pre>tomek_sampler = SMOTETomek()</pre>	gs = GridSearchCV(estimator =
= df_num_sin_VR.columns)	y = df['col VR']	f1_score , cohen_kappa_score, roc curve,roc auc score				<pre>X_train_res, y_train_res = tomek_sampler.fit_resample(X_train, y_train)</pre>	DecisionTreeRegressor(), param_grid = param, cv=10,
Encoding	 dividimos los datos en datos de entrenamiento y datos de test con train_test_split() 	Accuracy (exactitud): porcentaje de los valores predichos están bien predichos			los valores	Upsampling	<pre>verbose=-1, return_train_score = True, scoring = "neg_mean_squared_error")</pre>
Variables categóricas	<pre>from sklearn.model_selection import train_test_split</pre>	<pre>accuracy_score(y_train,y_predict_train)</pre>				ajustar la cantidad de datos de la categoría minoritaria a	3. Ajustamos el modelo en el GridSearch
Ordinaria: no requiere números pero sí consta de un orden	x_train, x_test, y_train, y_test = train_test_split(X, y,	accuracy_score(y_test,y_predict_test) Recall: porcentaie de casos positivos canturados				la mayoritaria Método manual	gs.fit(x_train, y_train)
o un puesto; diferencias de medianas entre categorías Nominal: variable que no es representada por números, no	<pre>test_size = 0.2, random_state = 42) 3. Ajustamos el modelo</pre>	Recall: porcentaje de casos positivos capturados *si preferimos FP, queremos recall alta*				df mayoritaria = df[df['col'] == valor may]	4. Aplicamos el método de best_estimator_ mejor modelo = gs.best estimator
tiene algún tipo de orden, y por lo tanto es	from sklearn.linear_model import LinearRegression	recall_score(y_train,y_predict_train)				<pre>df_muestra = df[df['col'] == valor_min].sample</pre>	devuelve la mejor combinación de hiperparámetros
matemáticamente menos precisa; no habrá grandes diferencias de medianas entre categorías	<pre>lr = LinearRegression(n_jobs=-1)</pre>	recall_score(y_test,y_predict_test)			,	(num_mayoritarias, random_state = 42)	5. Volvemos a sacar las predicciones
Binaria: dos posibilidades; puede tener orden o no	<pre>lr.fit(x_train, y_train)</pre>	Precisión (sensibilidad): porcentaje de predicciones positivas correctas			de	<pre>df_balanceado = pd.concat([df_mayoritaria, df muestra],axis = 0)</pre>	<pre>y_pred_test_dt2 = mejor_modelo.predict(x_test)</pre>
Variables sin orden: creamos una columna nueva por valor	<pre>4. Hacemos las predicciones y predict train = lr.predict(x train)</pre>	*si preferimos FN, queremos precisión alta*			n alta*	Método RandomOverSample	<pre>y_pred_train_dt2 = mejor_modelo.predict(x_train)</pre>
único, asignando unos y zeros	y predict test = lr.predict(x test)	<pre>precision_score(y_train,y_predict_train)</pre>				import imblearn	Importancia de los predictores
One-Hot Encoding from sklearn.preprocessing import OneHotEncoder	5. Guardamos los resultados en dataframes y los concatenamos	<pre>presicion_score(y_test,y_predict_test)</pre>			t)	X = df.drop('col_VR', axis=1)	<pre>importancia_predictores = pd.DataFrame(</pre>
oh = OneHotEncoder()	train_df = pd.DataFrame({'Real': y_train, 'Predicted':	Especificidad: porcentaje de los casos negativos capturados			os negativos	<pre>y = df['col_VR'] down sampler = RandomUnderSampler()</pre>	{'predictor': x_train.columns, 'importancia':
<pre>df_transformados = oh.fit_transform(df[['columna']])</pre>	<pre>y_predict_train, 'Set': ['Train']*len(y_train)}) test_df = pd.DataFrame({'Real': y_test, 'Predicted':</pre>		F1: la media de la precisión y el recall			<pre>X_down, y_down = down_sampler.fit_resample(X,y)</pre>	mejor_modelo.feature_importances_})
<pre>oh_df = pd.DataFrame(df_transformados.toarray())</pre>	y_predict_test, 'Set': ['Test']*len(y_test)})	f1_score(y_train,y_predict_train)				<pre>df_balanceado = pd.concat([X_down, y_down], axis = 1)</pre>	<pre>importancia_predictores.sort_values(by=["importanci a"], ascending=False, inplace = True) crea un</pre>
oh_df.columns = oh.get_feature_names_out()	resultados = pd.concat([train_df,test_df], axis = 0)	<pre>f1_score(y_test,y_predict_test)</pre>				Lagistia Dagrassian, Madala	dataframe con la relativa importancia de cada VP
<pre>df_final = pd.concat([df, oh_df], axis=1) get dummies</pre>	6. creamos una columna de los residuos: la diferencia entre los valores observados y los de la predicción	kappa: una medida de concordancia que se basa en comparar la concordancia observada en un conjunto				Logistic Regression: Modelo	- para los variables categóricas nominales a los
<pre>df_dum = pd.get_dummies(df['col'], prefix='prefijo', dtype=int)</pre>	resultados['residuos'] = resultados['Real'] - resultados['Predicted']	de datos, respecto a la que podría ocurrir por mero azar				seguir los mismos pasos como para la Regresión Lineal pero con LogisticRegression()	cuales se ha aplicado encoding, hay que sumar los resultados de las columnas divididas:
<pre>df[df_dum.columns] = df.dum</pre>	Cross-validation	- <0 No acuerdo - 0.0-0.2 Insignificante				from sklearn.linear_model import LogisticRegression	<pre>df_sum = importancia_predictores_esta.iloc[[n, m]]</pre>
<pre>df.drop('col', axis=1, inplace=True)</pre>	<pre>from sklearn.model_selection import cross_val_score</pre>	- 0.0-0.2 - 0.2-0.4	· ·	ite	Dec	Decision Tree: Modelo	<pre>importancia_predictores_esta.drop(df_sum.index,</pre>
Variables que tienen orden: Label Encoding asigna un número a cada valor único de una	from sklearn.model_selection import cross_validate	- 0.4-0.6	•				inplace = True)
variable	<pre>cv_scores = cross_val_score(estimator = LinearRegression(), X = X, y = y, scoring = 'neg_root_mean_squared_error', cv =</pre>	- 0.6-0.8 Bueno				from sklearn.model_selection import train_test_split	<pre>importancia_predictores_esta.loc[n] = ["nombre_col", df_sum["importancia"].sum()]</pre>
from sklearn.preprocessing import LabelEncoder	10)	- 0.8-1.0 Muy bueno				<pre>from sklearn.ensemble import DecisionTreeRegressor from sklearn import tree</pre>	
le = LabelEncoder()	cv_scores.mean()	<pre>cohen_kappa_score(y_train,y_predict_train)</pre>			-	seguir los mismos pasos como para la Regresión Lineal pero	Random Forest: Modelo
<pre>df['col_VR_le'] = le.fit_transform(df[col_VR']) map() asigna el valor que queramos según el mapa que</pre>	<pre>calcula la media de los resultados de CV de una métrica cv scores = cross validate(estimator = LinearRegression(), X</pre>	<pre>cohen_kappa_score(y_test,y_predict_test) curva ROC: forma gráfica de ver la kappa; la</pre>				<pre>con DecisionTreeRegressor() o DecisionTreeClassifier()</pre>	seguir los mismos pasos como para el Decision Tree
creamos	= X, y = y, scoring ='r2', 'neg_root_mean_squared_error', cv = 10)	sensibilidad vs. la especificidad AUC (área under curve): la área bajo la curva ROC;				<pre>arbol = DecisionTreeRegressor(random_state=42) Para dibujar el árbol:</pre>	pero con RandomForestRegressor() o RandomForestClassifer()
<pre>df['col_VR_map'] = df[col_VR'].map(diccionario) Ordinal-Encoding asignamos etiquetas basadas en un orden o</pre>	cv_scores["test_r2"].mean()	cuanto más cerca a 1, mejor será nuestro modelo				<pre>fig = plt.figure(figsize = (10,6))</pre>	from sklearn.ensemble import RandomForestRegressor
jerarquía	<pre>cv_scores["test_neg_root_mean_squared_error"].mean() calcula</pre>	clasificando los VP				<pre>tree.plot_tree(arbol, feature_names = x_train.columns, filled = True)</pre>	- se puede usar los mismos hiperparámetros del
from sklearn.preprocessing import OrdinalEncoder	las medias de los resultados de validación de múltiples métricas					plt.show()	best_estimator_ o volver a ejecutar el GridSearch