Homework 1

1.12

```
a) Take a = 4 and b = 2
   1) Set u = 1, g = a = 4, x = 0, and y = b = 2
   2) Y is not zero
   3) 4 = 2 * 2 + 0
   4) S = 1 - 2*0 = 1
   5) U = 0 and g = 2
   6) X = 1 and y = 0
   7) Y is zero, go v = (2-4*0)/2 = 1
   Therefore, au + bv = gcd(a, b) is true because 4*0 + 1*2 = 2
b) Implement with Java
c)
   i) (1258*13) + (527*-31) = 17; g = 17, u = 13, v = -31
   ii) (1056*8) + (228*-37) = 12; g = 12, u = 8, v = -37
   iii) (167181*-4430) + (163961*4517) = 7; g = 7, u =-4430, v = 4517
   iv) (239847*59789) + (3892394*-970295) = 1; g = 1, u = 59789, v = -970295
d) If b = 0, then a is the gcd and u = 1 and v = 0.
e)
   i) (1258*-18) + (527*43) = 17; g = 17, u = -18, v = 43
   ii) (1056*51) + (228*-11) = 12; g = 12, u = 51, v = -11
   iii) (167181*4517) + (163961 *-4430) = 7; g = 7, u = 4517, v = -4430
```

iv) (239847*59789) + (3892394*-970295) = 1; g = 1, u = 59789, v = -970295

1.23

```
    a) X = 31
    b) X = 5764
    c) X = 221
    d) X = a + my

            a + mk = b (mod n)

    a + mk - b = nj
    mk - nj = b - a
    since gcd(m, n) = 1, then mu + nv = 1
    then, mu(b - a) + nv(b - a) = b - a
    x = a + mu(b - a) = a + (1 - nv)(b - a) = b + nv(b - a)
```

This shows that $x \equiv a \mod m$ and $x \equiv v \mod n$

1.25

a).17¹⁸³(mod 256)

183 in binary = 10110111

Х	17 ^{2°}	17 ²¹	17 ^{2²}	17 ²⁴	17 ²⁵	17 ²⁷
X(mod 256)	17	33	65	1	1	1

17*33*65*1*1*1 (mod 256) = **113**

b.)2⁴⁷⁷mod(1000)

477 in binary = 111011101

Х	2 ²⁰	2^{2^2}	2^{2^3}	224	2^{2^6}	2^{2^7}	2^{2^8}
X(mod	2	16	256	536	616	456	936
256)							

2*16*256*536*616*456*936 (mod 1000) = **272**

c.) 11^{507} (mod 1237)

507 in binary = 111111011

Х	11 ²⁰	11 ²¹	11 ^{2³}	11 ²⁴	11 ^{2⁵}	11 ²⁶	11 ²⁷	11 ²⁸
X(mod	11	121	388	867	830	1128	748	380
256)								

11*121*388*867*830*1128*748*380 (mod 1237) = **322**