

LOUISIANA STATE UNIVERITY

College of Agriculture School of Plant, Environmental, and Soil Sciences AGRO 7075 Prediction-based Breeding

Population Genomics

Prof. Roberto Fritsche-Neto

rfneto@agcenter.lsu.edu

Baton Rouge, Jan 30th, 2023

Population parameters

Whole population

- Markers (p, q, MAF, Ho, He, F, GD, PIC, EHW)
- **Genotypes** (Heterozygosity / Endogamy)
- **Population** (MAF, He, Ho, GD, PIC)
- Variability (Ne, Va, Vd)
- **Subpopulations**
- The same parameters, plus
- **Fixed alleles**
- **Exclusive alleles**

$$F_{IS}$$
 F_{ST}
 F_{IT} can be partitioned into F_{ST} due to the Wahlund effect and F_{IS} due to inbreeding.

 $p = \frac{H + 2D}{2(D + H + R)}$ $Ho = \frac{H}{(D + H + R)}$ $F = 1 - \frac{Ho}{2na}$

$$q = MAF = 1 - p$$
 $He = 2pq$

$$GD = 1 - \sum_{i=1}^{k} pi^2$$

$$GD = 1 - \sum_{i=1}^{k} pi^{2}$$
 $PIC = 1 - \sum_{i=1}^{k} pi^{2} - \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} 2pi^{2}pj^{2}$

$$\chi_{calc}^{2} = \sum_{i=1}^{j} \left(\frac{Obs - Exp}{Exp} \right)$$

$$Ne = \frac{1}{2F} \qquad Va = 2pq \quad Vd = 4p^2q^2$$

Inbreeding coefficient of individual (I), subpopulation (S), and total (T) population

$$Fst = \frac{var(p)}{p(1-p)} \qquad 1 - Fit = (1 - Fis)(1 - Fst)$$

snp2 snp5 snp6 snp7 snp8 snp9 snp10

	•	•	•	•	•	•	•	
gid 1	1	1	1	1	0	0	0	
gid 2	1	1	0	1	0	0	0	
gid 4	2	0	0	2	0	0	0	
gid 5	2	2	0	2	2	2	2	
gid 6	2	2	2	0	2	2	2	
gid 7	0	2	1	2	2	2	2	
gid 8	0	1	1	1	2	2	2	
gid 9	1	2	2	1	2	2	2	
gid 10	2	1	2	2	2	1	1	