Изображение графа на плоскости, грань.

Определение

Граф называется **планарным**, если его можно изобразить на плоскости так, чтобы его рёбра не пересекались во внутренних точках. Вершины изображаются точками, а рёбра — ломаными. Внутренние точки любой ломаной, изображающей ребро графа, не должны быть вершинами графа.

Грань плоского графа

- Изображение плоского графа делит плоскость на части грани. Это ключевой объект для плоского графа, отличающий его от абстрактного планарного графа. Ниже мы дадим формальное определение граней.
- На плоскости изображен плоский граф G. Пусть M множество всех точек плоскости, не входящих в изображение G.
- Пусть запись A \sim B означает, что точки A,B \in M можно

соединить ломаной, не пересекающей изображение графа G. Укажем три важных свойства \sim .

Утверждение

~ - отношение эквивалентности.

Доказательство.

- Рефлексивность. А ~ А
- Симметричность. Если $A \sim B$, то $B \sim A$.
- Транзитивность. Если $A \sim B$ и $B \sim C$, то $A \sim C$.

Определение

Грани плоского графа G — классы эквивалентности по отшению \sim .

- Таким образом, все точки плоскости, не лежащие на изображении графа G, разбиты на грани.
- Множество всех граней графа G обозначается через F(G), а их количество через f(G).
- Две точки из одной грани графа G могут быть соединены ломаной, не пересекающей изображение G.
- Любая ломаная, соединяющая две точки из разных граней, пересекает изображение G

Теорема Жордана для замкнутой ломаной.

Теорема 1 Жордана

(C.Jordan, 1887.) Замкнутая несамопересекающаяся ломаная Р делит точки плоскости, не лежащие на Р, на две такие части, что выполнены следующие условия:

- 1. любые две точки из одной части можно соединить ломаной, не пересекающей Р;
- 2. любая ломаная, соединяющая две точки из разных частей, пересекает Р.

Доказательство

- ullet Пусть $P_1...P_m$ вершины P в порядке обхода по часовой стрелке. Обозначим через M множество всех точек плоскости, не лежащих на P.
- ullet Зафиксируем на плоскости вектор ℓ , не параллельный ни одной из сторон P. Из каждой точки $A \in M$ выпустим луч $\ell(A)$ в направлении ℓ .
- ullet В случае, если $\ell(A)$ содержит вершину P_i многоугольника P, но стороны $P_{i-1}P_i$ и P_iP_{i+1} лежат в одной полуплоскости относительно содержащей $\ell(A)$ прямой, мы будем говорить, что многоугольник P в вершине P_i касается $\ell(A)$
- ullet Посчитаем число p(A) точек пересечения $\ell(A)$ с P, не являющихся касаниями. Очевидно, что p(A) конечно.
- ullet Часть M_0 будет состоять из всех точек $A\in M$, для которых p(A) четно, а часть M_1 будет состоять из всех точек $B\in M$, для которых p(B) нечетно.

Утверждение M_0 и M_1 непусты

Доказательство

- Рассмотрим прямую ℓ_0 , параллельную вектору ℓ , и проходящую через внутреннюю точку ломаной P (то есть точку, не являющуюся ее вершиной).
- ullet При движении по ℓ_0 в направлении вектора ℓ отметим последнее пересечение с ℓ во внутренней точке пусть это точка X.
- ullet Рассмотрим содержащий X малый отрезок [Y,Z] на этом ℓ_0 , не пересекающий P в отличных от X точках, пусть Y лежит перед X при движении в направлении ℓ .
- ullet Тогда p(Y)=1 (единственное пересечение в точке X), а p(Z)=0.

Утверждение

Пусть $A,B\in M$ и отрезок [A,B] не пересекает P. Тогда p(A) и p(B) имеют одинаковую четность. В частности, выполнено условие (2).

- ullet Если $AB \| \ell$, то утверждение очевидно.
- ullet Если нет, то отметим на отрезке AB все такие точки $A_1,...,A_k$ в направлении от A к B, что $\ell(A_i)$ касается P (если они есть). Положим $A_0=A$ и $A_{k+1}=B$.
- ullet Тогда для каждого $i \in [0..k]$, все точки отрезка $[A_i,A_{i+1}]$ имеют, очевидно, одинаковое значение функции p, а при переходе на соседний отрезок функция p может иметь четный скачок (каждое касание $\ell(A_i)$ многоугольника P добавляет точкам с одной стороны от A_i двойку к количеству пересечений, см. рис.а).
- ullet В любом случае, на всем отрезке [A,B] функция p имеет одинаковую четность.

Рисунок а:

Докажем (1).

- Пусть $A, B \in M_i$. Если отрезок [A, B] не пересекает P, то все понятно. Пусть пересекает, причем A_1 и B_1 ближайшие к A и B соответственно точки пересечения.
- ullet Отметим на отрезке $[A,A_1]$ точку $A\prime$ очень близко к A_1 , а на отрезке $[B_1,B]$ точку $B\prime$ очень близко к B_1 , пусть $|A1A\prime|$ = $|B1B\prime|$ = δ (см. рис. b). Тогда $p(A)=p(A\prime)$ и $p(B)=p(B\prime)$. Рисункок b:

• Проведем вдоль каждой стороны многоугольника P две параллельных прямых на расстоянии δ с разных сторон, выбрав это число столь малым, чтобы в результате получились два "очень близких" к P многоугольника P и P так, чтобы стороны P и P не пересекали сторон P. (Достаточно выбрать δ меньше, чем минимальное расстояние от стороны P до вершины, на ней не лежащей.)

- НУО $A\prime$ лежит на $P\prime$. Если и $B\prime$ лежит на $P\prime$, то мы построили от $A\prime$ до $B\prime$ ломаную, не пересекающую P, тогда такая ломаная построена и от A до B.
- Пусть $B\prime$ лежит на $P\prime\prime$, тогда обозначим через B^* точку пересечения $P\prime$ с прямой AB, лежащую около B (разумеется, на расстоянии δ).
- ullet Несложно понять, что $p(B*)-p(B*)=\pm 1$ (разница состоит в том, что ровно для одной из этих точек учитывается пересечение около точки B_1).
- ullet Однако применив доказанное выше утверждение, получим $p(B^*) \equiv p(A\prime) \equiv p(B) \equiv p(B\prime) (mod 2)$, противоречие.

Изображение графа на плоскости и сфере, их соответствие. Внешняя грань.

Плоскость и сфера

- Плоскость и сфера переводятся друг в друга стереографической проекцией.
- ullet Поставим сферу на плоскость, точку касания назовём южным полюсом, противоположную точку северным полюсом N. Каждая точка A
 eq N сферы перейдёт в точку пересечения плоскости и луча NA

Утверждение

Граф является планарным тогда и только тогда, когда его можно изобразить на сфере без пересечения рёбер во внутренних точках.

Доказательство.

- Переводя изображение графа со сферы на плоскость нужно лишь выбрать северный полюс так, чтобы он не совпадал ни с одной из вершин графа и не попадал на рёбра
- Плоское изображение планарного графа ограничено (его можно поместить в большой круг).
- Поэтому в плоском изображении планарного графа есть ровно одна неограниченная внешняя грань, которая визуально сильно отличается от всех остальных, а в сферическом изображении такой грани нет.
- Грань сферического изображения графа, содержащая северный полюс будет соответствовать при стереографической проекции внешней грани плоского изображения.
- Таким образом, перемещая северный полюс на разные грани, можно любую грань сферического изображения сделать внешней гранью в плоском изображении графа. Это лишний раз подчеркивает, что на самом деле внешняя грань не отличается от остальных.

Граница грани. Свойства.

Граница грани

- Рассмотрим ребро e плоского графа G. Либо по разные стороны от e расположены разные грани (тогда ребро е **граничное** ребро этих двух граней), либо по обе стороны от e одна и та же грань, тогда назовем ребро e **внутренним** ребром этой грани. Обозначим через E_d множество всех граничных и внутренних рёбер грани d.
- ullet Граничные вершины грани d это концы ребер из E_d . Обозначим множество граничных вершин грани d через V_d .
- ullet Граничные и внутренние рёбра грани d это в точности те рёбра, до которых от внутренней точки грани d можно дойти по ломаной, не пересекая изображение графа.
- \bullet Граничные вершины грани d это в точности те вершины, до которых можно дойти по ломаной от внутренних точек этой грани, не пересекая её граничных и внутренних рёбер.
- ullet Граница грани d это подграф B(d) графа G с множеством вершин V_d и множеством рёбер E_d .
- **Размер границы** грани d мы определим, как количество граничных рёбер этой грани плюс удвоенное количество внутренних рёбер. Обозначать эту величину будем через b(d).

Свойство 1

Если сложить размеры границ всех граней, получится удвоенное количество рёбер.

Доказательство

Внутреннее ребро грани два раза считается в размере границы этой грани. Граничное ребро двух граней по разу считается в их размерах.

Свойство 2

Любые две точки на границе грани d можно соединить ломаной, проходящей в d.

Доказательство.

Пусть A — внутренняя точка грани d. От нее можно провести ломаные, не пересекающие изображение G до любых двух граничных. Все точки на этих ломаных лежат в d.

Свойство 3

Если две точки A и B на изображении графа G можно соединить ломаной L, не пересекающей изображения G, то A и B лежат на границе некоторой грани.

А и В лежат на границе грани d, содержащей все внутренние точки L (см. рисунок a).

Циклический обход границы грани.

Определение

Рассмотрим любую вершину a плоского графа G и упорядочим выходы ребер из a по часовой стрелке. Два ребра, выходы которых — соседние в этом порядке, будем называть **соседними в вершине a**.

Свойство 4

Пусть ab_1 и ab_2 — два соседних ребра в вершине а. Тогда рёбра ab_1 и ab_2 лежат в границе некоторой грани.

Вершины b_1 и b_2 можно соединить ломаной вдоль b_1ab_2 , не пересекающей изображения G (см. рисунок b). Поэтому, рёбра ab_1 и ab_2 лежат в границе некоторой грани.

- ullet Пусть G плоский граф, $d\in F(G)$, а $x_1x_2\in E_d$.
- Пройдем по ребру x_1x_2 от x_1 к x_2 . НУО справа по ходу движения расположена грань d. Повернем в вершине x_2 направо до выхода соседнего ребра x_2x_3 . (Если $d_G(x_2)=1$, то $x_3=x_1$, это нам не мешает.) Очевидно, $x_2x_3\in E_d$. Пойдем по этому ребру от x_2 к x_3 , справа опять будет расположена грань d. И так далее. В конечном итоге мы вернемся на ребро x_1x_2 (в вершину x_1 мы можем вернуться и раньше!). Получился замкнутый циклический маршрут (см. рис.а).

• Пусть получился циклический маршрут $Z = x_1 x_2 ... x_k$. Рассмотрим вершину x_i . по построению, Z обходит вокруг x_i — скажем, против часовой стрелки. Пусть мы вышли из вершины x_i по ребру $x_i x_{i+1}$, а следующий раз вернулись в эту вершину

по ребру $x_{j-1}x_j$ (в этом случае хi=xj, см. рис.b).

b

- Тогда сектор между выходами рёбер $x_i x_{i+1}$ и $x_j x_{j-1}$ из вершины $x_i = x_j$ не принадлежит грани d. Следовательно, Z проходит все рёбра из E_d , инцидентные вершине x_i . Поскольку это верно для любой вершины Z, этот маршрут обходит все рёбра одной из компонент графа B(d).
- ullet Обозначим через Z(U) такой маршрут для компоненты U, а через Z(d) объединение построенных маршрутов для всех компонент B(d).
- ullet Если маршрут Z(d) проходит ребро e дважды, то, очевидно, в разных направлениях. Значит, по обе стороны от e расположена грань d, то есть e внутреннее ребро d.
- ullet Пусть e внутреннее ребро грани d (см. ребро $x_2x_3=x_6x_7$ на рисунке). Тогда при проходе по e в любом из направлений справа будет расположена грань d. Поэтому, маршрут Z(d) дважды пройдет e в обоих направлениях.

Несвязная граница грани у несвязного графа.

Лемма 1

Для плоского графа G выполнены следующие утверждения.

- 1. Если $d \in F(G)$ и B(d) несвязна, то разные компоненты связности графа B(d) лежат в разных компонентах связности графа G.
- 2. Граф G несвязен, если и только если он имеет грань с несвязной границей.

- 1. Пусть B_1 и B_2 две компоненты B(d). Изображение компоненты B_1 ограничено и не пересекает других компонент B(d). Следовательно, изображение B_1 можно отделить от изображения B_2 замкнутой ломаной в грани d, не пересекающей ребер G (такую ломаную можно построить, почти повторив маршрут $Z(B_1)$: вместо каждого прохода по ребру, проведем его копию на малом расстоянии δ в грани d, как в доказательстве теоремы Жордана).
 - ullet Значит, между B_1 и B_2 нет пути в графе G.
- 2. Очевидно, можно обойти все грани графа G, каждый раз переходя в грань имеющую с предыдущей общую сторону или вершину (достаточно отметить по внутренней точке на каждой грани и проложить на плоскости маршрут, все эти точки обходящий).
 - Тогда, если граница каждой грани связна, то связно и их объединение, а это граф G, противоречие. Значит, несвязный граф имеет грань с несвязной границей.
 - Если G имеет грань с несвязной границей, то G несвязен по пункту 1.

Внутренние рёбра граней — мосты. Границы граней графа без мостов — циклы.

Лемма 2

Внутренние рёбра граней плоского графа G — в точности все мосты графа G.

- ullet Пусть внутреннее ребро e грани d не мост, тогда оно лежит в простом цикле C. По <u>теореме Жордана</u> цикл делит плоскость на две области, а грань d может лежать только в одной из них.
- ullet Наоборот, пусть e=ab мост. Тогда граф G-e имеет две компоненты G_a и G_b , содержащие a и b соответственно.
- Изображение компоненты G_a ограничено и не пересекает G_b , значит, существует замкнутая ломаная P в грани d, отделяющая G_a от G_b (см. рис.а). Очевидно, P пересекает ребро e, а значит, по обе стороны от моста e расположена одна и та же грань.

Лемма 3

Пусть d — грань реберно двусвязного графа G. Тогда B(d) — цикл (не обязательно простой).

Доказательство.

- Так как G связен, B(d) связный граф по <u>Лемме 1</u>. Значит, и Z(d) связен. Так как внутренних рёбер у d нет (граф не имеет мостов), Z(d) цикл.
- Докажем, что граница грани почти всегда однозначно задает эту грань.

Если есть две грани с одинаковой границей, то граф — простой цикл.

Лемма 4

Если две разные грани f и $f\prime$ плоского графа G имеют одинаковые границы, то G — простой цикл.

- Пусть B общая граница этих граней, $e \in E(B)$. По <u>Лемме 2</u> тогда е не мост графа G, а значит, существует простой цикл Z, содержащий е.
- ullet Тогда Z делит плоскость на две области $-\,O\supset f$ и $O\prime\supset f\prime$
- ullet Пусть $e' \in B \setminus Z$. Тогда e' лежит внутри одной из областей O и O' —скажем, в O'. В этом случае, e' не может быть граничным ребром грани $f \subset O$, противоречие.
- ullet Докажем, что G=Z, тогда G простой цикл.
- ullet Если f=O и $f\prime=O\prime$, то G=Z, что нам и нужно.
- ullet Пусть, скажем, f
 eq O.
- ullet Так как каждая грань целиком лежит в одной из областей, O разбивается на грани.
- ullet Значит, существует еще одна грань $f^*\subset O$.
- ullet Пусть $X\in f$ и $X^*\in f^*$.
- ullet Так как точки X и X^* лежат в области O, их можно соединить ломаной L, проходящей в O.
- ullet Пойдем по ломаной L от точки X. В некоторый момент мы перейдем из f в другую грань. Значит, мы пересечем изображение графа G скажем, ребро e.
- ullet Тогда e граничное ребро грани f. Но при этом e изображено внутри O (там проходит ломаная E), следовательно, $e
 ot\in E(Z)$. Противоречие с доказанным выше.

Границы граней двусвязного графа.

Лемма 5

- 1. Если грань d и ее граничная вершина a таковы, что B_1 и B_2 разные компоненты графа B(d)-a, то B_1 и B_2 лежат в разных компонентах графа G-a. В частности, a точка сочленения графа G.
- 2. Граф G без петель вершинно двусвязен, если и только если границы его граней простые циклы.

Доказательство.

- 1. Аналогично доказательству $\underline{\mathsf{Леммы 1}}$, плоское изображение B_1 можно отделить от изображения B_2 ломаной, не пересекающей ребер G-a (см. рис.b), а значит, между B_1 и B_2 нет рёбер в графе G-a.
 - Следовательно, а точка сочленения графа G

b

- 2. Пусть a точка сочленения графа G. Рассмотрим плоское изображение несвязного графа G—a, полученное из G удалением вершины a.
 - ullet В силу <u>Леммы 1</u>, граф G-a имеет несвязную грань d, а граф G не имеет. Значит, a лежит на грани d и смежна со всеми компонентами ее границы.
 - Упорядочим выходы ребер из a по часовой стрелке. Тогда есть два соседних ребра, выходящих к разным компонентам графа B(d) скажем, ребро ab_1 к компоненте B_1 и ребро ab_2 к компоненте B_2 (см. рис.с).

- ullet Точка сочленения а отделяет b_1 от b_2 в графе G. Существует грань f графа G, граница которой содержит a,b_1 и b_2 . Тогда а точка сочленения B(f).
- ullet Наоборот, если грань d такова, что B(d) имеет точку сочленения, то по пункту 1 граф G также имеет точку сочленения.