PREDICTING INCOME LEVELS FROM U.S. CENSUS DATA

Michelle A. Caler

April 21, 2021 (updated May 13, 2021)

OVERVIEW

- Introduction
- Associations with Income
- Models
- Results
- Conclusions

INTRODUCTION

MOTIVATION AND CENTRAL QUESTION

Motivation: carry out first fully-independent data science project since earning
Data Science Career Path certificate from Codecademy

Central Question: Can I determine whether a person makes over \$50K a year?

THE DATA: WHERE AND WHY

- Income and demographics data compiled from 1994 Census Bureau database
- Downloaded from this Kaggle repository
 - Repository owner: UCI Machine Learning group
- Public Domain data; compiled by UCI Machine Learning group so a clear answer to the question likely to exist
- Modest-sized data set with a mix of quantitative and qualitative features

THE DATA: WHAT AND HOW

- Data extracted from 1994 Census Bureau database
 - Paper cited by UCI Machine Learning Group: Ron Kohavi, "Scaling Up the
 <u>Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid"</u>, Proceedings of
 the Second International Conference on Knowledge Discovery and Data
 <u>Mining</u>, 1996
- 32,561 records, 15 features
 - No null values!

THE DATA: FEATURES

^{*:} binary categorical variable

ASSOCIATIONS WITH INCOME

INCOME CATEGORIES

- Low-income: <= 50K
 - Noughly 3/4 of records

- ♦ High-income: >50K
 - ♦ Roughly 1/4 of records

SEX AND INCOME

- Sex = Biological Sex
- ♦ Roughly 2/3 of records are males
- Roughly 1/3 of records are females

SEX AND INCOME

♦ Females:

- Roughly 85% in low-income category
- Roughly 15% in high-income category

♦ Males:

- Roughly 65% in low-income category
- Roughly 35% in high-income category

AGE AND INCOME

- Low-income and high-income distributions have different shapes
 - ♦ Low-income: gradual decay from peak
 - High-income: skewed bell curve
- Low-income and high-income distributions peak at different ages
 - Low-income: peak around 25 yrs. old
 - High-income: peak around 45 yrs. old

HOURS WORKED PER WEEK AND INCOME

- Low-income: peaks at 35-40 hours per week
 - Plateau from 15-35 hours per week
 - Plateau from 40-60 hours pre week
- High-income: peaks at 35-40 hours per week and 55-60 hours per week
 - Peak at 35-40 hours per week much sharper
 - Skew left

EDUCATION AND INCOME

Of General trend: the higher the education level attained, the higher the fraction of high-income records

CAPITAL GAINS AND INCOME

♦ Low-income: Little to no capital gains

♦ High-income: Mostly little to no capital gains, but significant minority with gains > 10K

CAPITAL LOSSES AND INCOME

♦ Low-income: Little to no capital losses

High-income: Mostly little to no capital gains, but significant minority with losses > 15K

SUPERVISED MACHINE LEARNING MODELS

MODEL INPUTS

- Features used to train models:
 - Sex, converted to integers (I: Female, 0: Male)
 - Education, converted to integers (0: Preschool through 16: Doctorate)
 - Age
 - Hours Worked per Week
 - Capital gains
 - Capital losses
- Prediction labels:
 - 0: low-income record
 - I: high-income record

MODEL INPUTS

- Training and test data scaled such that all features lay on same scale
- Models without hyperparameters to tune:
 - 75% of data used to train models
 - 25% of data used to test models
- Models with hyperparameters to tune:
 - 75% of data used to train models
 - 12.5% of data used for model validation
 - 12.5% of data used to test models

MODELS TRAINED TO FEATURES

(AND USED TO PREDICT INCOME LEVEL)

- Logistic Regression Classifier
- Support Vector Machine Classifier
- K-Nearest Neighbours Classifier
- Single Decision Tree Classifier
- Random Forest Classifier

RESULTS

MODEL PRECISION, ACCURACY, RECALL

Highest precision, highest accuracy

Model	Precision	Accuracy	Recall
Logistic Regression	73.1%	82.2%	41.2%
Support Vector Machine	77.2%	83.9%	45.7%
K-Nearest Neighbours	71.7%	82.7%	44.8%
Single Decision Tree	66.8%	82.0%	50.7%
Random Forest	68.5%	82.6%	51.3%

Best balances precision and recall

CONCLUSIONS

CONCLUSIONS

- I was able to build a supervised machine learning model to predict income level with good precision and accuracy
- Best model: Support Vector Machine classifier
 - 77.2% precision
 - 83.9% accuracy
 - 45.7% recall
- Best Balanced model: Random Forest classifier
 - 68.5% precision
 - 82.6% accuracy
 - 51.3% recall

IMPROVEMENTS

- Use a machine learning classification model which accepts qualitative as well as quantitative data
 - Nominal categorical variables with clear associations with income unused
- Explore γ /C parameter space of Support Vector Machine classifier
 - Is current model a local max or a global max?

CITATIONS

- Ron Kohavi, "Scaling Up the Accuracy of Naive-Bayes Classifiers: a
 <u>Decision-Tree Hybrid</u>", Proceedings of the Second International
 Conference on Knowledge Discovery and Data Mining, 1996.
- The <u>scikit-learn Python machine learning library:</u> Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011
- After completing my project, I came across this stellar write-up from (then) UCSD students Chet Lemon, Chris Zelazo, and Kesav Mulakaluri. Their treatment of the problem no doubt influenced my own write-up of my work.