

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4 : C12N 7/100, G01N 33/53, 33/554 G01N 33/569	A1	(11) International Publication Number: WO 90/02173 (43) International Publication Date: 8 March 1990 (08.03.90)
(21) International Application Number: PCT/US89/03580 (22) International Filing Date: 18 August 1989 (18.08.89) (30) Priority data: 239,106 31 August 1988 (31.08.88) US (71) Applicant: RESEARCH DEVELOPMENT CORPORATION [US/US]; 402 North Divison Street, Carson City, NV 89703 (US). (72) Inventors: EVINGER-HODGES, Mary, Jean ; 1030 Margate, Pearland, TX 77584 (US). BRESSER, Joel ; 2830 South Bartell, Building 3, Apartment 34, Houston, TX 77054 (US). (74) Agent: GOODMAN, Rosanne; Fulbright & Jaworski, 1301 McKinney Street, Houston, TX 77010 (US).	(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK, FI, FR (European patent), GB (European patent), IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, SE (European patent). Published <i>With international search report.</i>	

(54) Title: ONE-STEP IN SITU HYBRIDIZATION ASSAY

(57) Abstract

A quantitative, sensitive, one-step *in situ* hybridization assay is provided which detect as few as 1-5 copies of target biopolymer per cell and may be accomplished in 5 minutes to 5 hours. There is provided a simultaneous assay for detecting multiple biopolymers within the same cell.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Gabon	MW	Malawi
BF	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BJ	Benin	IT	Italy	RO	Romania
BR	Brazil	JP	Japan	SD	Sudan
CA	Canada	KP	Democratic People's Republic of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SN	Senegal
CG	Congo	LI	Liechtenstein	SU	Soviet Union
CH	Switzerland	LK	Sri Lanka	TD	Chad
CM	Cameroon	LU	Luxembourg	TG	Togo
DE	Germany, Federal Republic of	MC	Monaco	US	United States of America
DK	Denmark				

1

5

-1-

10

ONE-STEP IN SITU HYBRIDIZATION ASSAY

15

BACKGROUND OF THE INVENTION

1. Field of the invention.

The present invention relates to the field of in situ hybridization assays useful for detecting as few as 1-5 copies of target nucleic acid per cell. This assay method significantly increases the sensitivity of detection of nucleic acids over other known methods. In addition, this hybridization method is accomplished with far greater speed than has been reported for other in situ assays. This present invention also provides a method for the rapid and sensitive detection of nucleic acids and proteins in the same cell. A kit is provided for a simple one step fixation/hybridization in situ assay.

2. Description of the prior art.

In situ hybridization provides a technique for the determination and quantitation of biopolymers such as nucleic acids (DNA and RNA) and proteins in tissues at the single cell level. Such hybridization techniques can detect the presence or absence of specific genes in tissues at the single cell level. In situ hybridization

35

1 procedures may also be utilized to detect the expression
of gene products at the single cell level.

5 By the use of specific nucleic acid (RNA or DNA) probes, genetic markers for infection and other disease states may be detected. Certain genetic diseases are characterized by the presence of genes which are not present in normal tissue. Other diseased conditions are characterized by the expression of RNAs or RNA translation products (i.e. peptides or proteins) which are not expressed in normal cells. Some disease states are characterized by the absence of certain genes or gene portions, or the absence or alteration of expression of gene products or proteins. Antibody probes specific for target antigenic biopolymers have also been used to identify the presence of viral proteins or gene products.

10 Current methods allow the detection of these markers but are relatively time consuming and of limited sensitivity. Hybridization techniques are based on the ability of single stranded DNA or RNA to pair (or hybridize) with a complementary nucleic acid strand. This hybridization reaction allows the development of specific probes that can identify the presence of specific genes (DNA), or polynucleotide sequences or the transcription and expression of those genes (mRNA).

15 Solution hybridization methods which require the destruction of the cell and the isolation of the nucleic acids from the cell prior to carrying out the hybridization reaction sacrifice the cellular integrity, spatial resolution and sensitivity of detection. In situ hybridization allows the detection of RNA or DNA sequences within individual cells. In situ hybridization yields greater sensitivity than solution hybridization by means of eliminating the dilution of a particular target gene, nucleic acid, or protein by the surrounding and extraneous RNA and DNA of other cells. In situ hybridization also

1 allows for the simultaneous detection of multiple
substances, i.e. genes, nucleic acids or proteins within
individual cells, permitting the identification of a
particular cell expressing a cellular gene or viral
5 sequence. In addition, since in situ hybridization
analysis is performed and quantitated for single cells,
minimal sample and reagents are required.

10 Prior to the present invention, in situ
hybridization procedures were only capable of detecting
nucleic acids present at greater than ten copies per
cell. Such procedures required multiple steps and at
least 4 hrs. to over 14 days to perform.

15

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a fast, sensitive in situ hybridization procedure capable of detecting polynucleotides when present at a concentration as low as 1-5 copies per cell.

20

It is a further object of the present invention to provide a fast and sensitive in situ hybridization procedure capable of detecting more than one target molecule in an individual cell.

25

It is a further object of the present invention to provide an in situ hybridization procedure that could be carried out within about 5 minutes to four hours.

30

It is a further object of the present invention to provide an in situ hybridization procedure that could be quantitative for as few as 1-5 molecules of target nucleic acid per cell.

It is a further object of the present invention to provide an in situ hybridization procedure that could simultaneously detect multiple biopolymers.

35

It is a further object of the present invention to provide an in situ hybridization procedure that could

1 be carried out in one step.

It is a further object of the present invention
to provide an in situ hybridization procedure that could
be carried out on cells in suspension.

5 It is a further object of the present invention
to provide an in situ hybridization procedure that could
eliminate the need for immobilization of cells or tissues
onto a solid support before analysis.

10 It is a further object of the present invention
to provide an in situ hybridization procedure which could
deliver a probe to living cells, maintain the viability of
the cells and record the occurrence of hybridization by
chemical or physical means or by an effect on one or more
biological properties of the cell or its components.

15 It is a further object of the present invention
to be able to simultaneously detect and discriminate
between the DNA, RNA and protein for the same gene in the
same cell using the process of in situ hybridization.

20 It is a further object of the present invention
to provide an assay kit for one step in situ hybridization.

25 The present invention provides a method for the
detection of biopolymers within individual cells or tissue
sections either in solution or after being deposited on a
solid support. Optimization of each component of the
procedure as provided by the present invention allows a
rapid, sensitive hybridization assay which may be
accomplished in one step. Target biopolymer molecules may
be quantitated at a level of as few as 1-5 molecules per
cell. This hybridization assay may be used to detect
30 levels of polynucleotides in cells such as bone marrow and
peripheral blood, in tumors, in tissue sections or in
tissue cultured cells. The hybridization procedure of the
present invention can detect polynucleotides in single
cells with the sensitivity as few as 1-5 molecules per
35 cell in as little as 5 minutes to 4 hours. This procedure

1 also allows simultaneous detection of more than one
different polynucleotide sequence in an individual cell.
The present invention also allows detection of proteins
and polynucleotides in the same cell.

5 Briefly, cells, either as single cell suspensions
or as tissue slices may be deposited on solid supports
such as glass slides. Alternatively, cells are placed
into a single cell suspension of about 10^5 - 10^6 cells
per ml. The cells are fixed by choosing a fixative which
10 provides the best spatial resolution of the cells and the
optimal hybridization efficiency.

The hybridization is then carried out in the same
solution which effects fixation. This solution contains
both a fixative and a chaotropic agent such as formamide.
15 Also included in this solution is a hybrid stabilizing
agent such as concentrated lithium chloride or ammonium
acetate solution, a buffer, low molecular weight DNA
and/or ribosomal RNA (sized to 50 bases) to diminish
non-specific binding, and a pore forming agent to
facilitate probe entry into the cells. Nuclease
20 inhibitors such as vanadyl ribonucleoside complexes may
also be included.

To the hybridization solution is added a probe,
25 to hybridize with a target polynucleotide. The most
preferable probe is a single-stranded anti-sense probe.
For hybridization to cellular RNA, a probe of
approximately 75 to 150 bases in length is used. For
hybridization to cellular DNA, a probe of approximately
30 15-50 bases is used. An antibody probe may be utilized to
bind to a target protein or antigen. The hybridization
solution containing the probe is added in an amount
sufficient to cover the cells when using immobilized
cells. When utilizing cells in suspension, a 3X
concentrate of hybridization cocktail is added to the
35 cells. Alternatively, the cells may be resuspended in the

1 hybrid solution. The cells are then incubated at the
prescribed temperature for at least 5 minutes. The probe
is utilized at a high concentration of at least about
1 ug/ml of hybrid mix in order to give optimal results in
5 this time frame.

10 The probes may be detectably labeled prior to the
hybridization reaction. Alternatively, a detectable label
may be selected which binds to the hybridization product.
Probes may be labeled with any detectable group for use in
practicing the invention. Such detectable group can be
any material having a detectable physical or chemical
property. Such detectable labels have been well-developed
in the field of immunoassays and in general most any label
useful in such methods can be applied to the present
invention. Particularly useful are enzymatically active
groups, such as enzymes (see Clin. Chem., 22:1243 (1976)),
enzyme substrates (see British Pat. Spec. 1,548,741),
coenzymes (see U.S. Patents Nos. 4,230,797 and 4,238,565)
and enzyme inhibitors (see U.S. Patent No. 4,134,792);
fluorescers (see Clin. Chem., 25:353 (1979); chromophores;
luminescers such as chemiluminescers and bioluminescers
(see Clin. Chem., 25:512 (1979)); specifically bindable
ligands; proximal interacting pairs; and radioisotopes
such as ³H, ³⁵S, ³²P, ¹²⁵I and ¹⁴C.

25 The invention of the present application provides
a means of carrying out the fixation, prehybridization,
hybridization and detection steps normally associated with
in situ hybridization procedures all in one step. By
modifying the components of this "one-step" solution, a
convenient temperature may be used to carry out the
hybridization reaction. Furthermore, this application
provides a hybridization assay which can be accomplished
with viable or non-viable cells in solution. In either
case, the assay is rapid, requiring as little as 1 to 5

1 minutes to complete, and sensitive, detecting as few as
1-5 molecules of polynucleotide within a cell.

5 The superior results of the invention of the present application are postulated to occur by preventing precipitation of cellular constituents onto mRNA or the covalent modification of mRNA, the destabilization of ribosomal RNA subunit binding, and promotion of accessibility of full length mRNA for hybrid formation by inducing single-strandedness in cellular RNA and/or DNA.
10 The present invention arose out of the applicant's discovery of the strong correlation between cellular RNA single-strandedness and the rapid kinetics of hybridization which yielded a highly sensitive assay procedure.

15 In one aspect, the present invention provides a simple method to determine the optimal fixation/prehybridization/hybridization/detection conditions for any tissue type so that: (1) single molecules may be detected, (2) cellular morphology will be preserved and
20 (3) the total reaction time will be reduced to 5 minutes to 4 hours.

25 Briefly, in order to predict the optimal conditions to achieve this rapid and sensitive hybridization, a cellular specimen in multiple samples, either in suspension or deposited on glass slides, are exposed first to a fixative and subsequently to a hybridization solution.

30 The fixative is selected from the group consisting of 95% ethanol/5% acetic acid, 75% ethanol/20% acetic acid, 50% methanol/50% acetone and 10% formaldehyde/90% methanol (all v/v). Other useful fixatives will be obvious to one skilled in the art as long as the fixative selected allows at least a 70% shift of double stranded to single stranded cellular polynucleotides while maintaining cellular spatial
35

relationships. The duration of exposure to the fixative is from 1 to 180 min. Preferably, 1 to 30 min., and most preferably 20 min. The temperature of the fixation procedure is preferably -20°C to 50°C and most preferably 20°C. A subsequent exposure to 70% ethanol/30% water for 0.5 min. to 20 min. at -20°C to 30°C may be utilized if samples are to be stored prior to hybridization.

The hybridization solution consists of a chaotropic denaturing agent, a buffer, a pore forming agent, a hybrid stabilizing agent, non-specific nucleotides, and a target specific probe.

The chaotropic denaturing agent (Robinson, D. W. and Grant, M. E. (1966) J. Biol. Chem. 241: 4030; Hamaguchi, K. and Geiduscheck, E. P. (1962) J. Am. Chem. Soc. 84: 1329) is selected from the group consisting of formamide, urea, thiocyanate, guanidine, trichloroacetate, tetramethylamine, perchlorate, and sodium iodide. Any buffer which maintains pH at least between 7.0 and 8.0 may be utilized.

The pore forming agent is for instance, a detergent such as Brij 35, Brij 58, sodium dodecyl sulfate, CHAPSTM, Triton X-100. Depending on the location of the target biopolymer, the pore-forming agent is chosen to facilitate probe entry through plasma, or nuclear membranes or cellular compartmental structures. For instance, 0.05% Brij 35 or 0.1% Triton X-100 will permit probe entry through the plasma membrane but not the nuclear membrane. Alternatively, sodium desoxycholate will allow probes to traverse the nuclear membrane. Thus, in order to restrict hybridization to the cytoplasmic biopolymer targets, nuclear membrane pore-forming agents are avoided. Such selective subcellular localization contributes to the specificity and sensitivity of the assay by eliminating probe hybridization to complimentary nuclear sequences when the target biopolymer is located in

1 the cytoplasm. Agents other than detergents such as
fixatives may serve this function. Furthermore, a
biopolymer probe may also be selected such that its size
is sufficiently small to traverse the plasma membrane of a
5 cell but is too large to pass through the nuclear membrane.

10 Hybrid stabilizing agents such as salts of mono-
and di-valent cations are included in the hybridization
solution to promote formation of hydrogen bonds between
complimentary sequences of the probe and its target
biopolymer. Preferably lithium chloride or ammonium
acetate at a concentration from .15M to 1.5M is used; most
preferably, the concentration of lithium chloride 0.8M.

15 In order to prevent non-specific binding of
nucleic acid probes, nucleic acids unrelated to the target
biopolymers are added to the hybridization solution at a
concentration of 100. fold the concentration of the probe.

20 Specimens are removed after each of the above
steps and analyzed by observation of cellular morphology
as compared to fresh, untreated cells using a phase
contrast microscope. The condition determined to maintain
the cellular morphology and the spatial resolution of the
various subcellular structures as close as possible to the
fresh untreated cells is chosen as optimal for each step.

25 In addition, cellular nucleic acids were stained
with about 50 ug/ml propidium iodide dye. This dye has a
specific characteristic fluorescent emission (about 480
nm, green) when the nucleic acid is single-stranded and
emits at a different wave length (about 615 nm, red) when
the nucleic acid is double-stranded. The dye utilized may
30 be dependent upon whether the target sequence for the
particular assay is RNA or DNA. If the assay is to detect
low copy numbers of DNA, then a DNA detecting dye such as
acridine orange, tetrahydrofuran, methyl green, pyronin Y
and azure B is used, and the nuclear DNA is analyzed for
35 the amount of single or double-strandedness. If instead,

1 the assay is to be used to detect low copy numbers of RNA,
then RNA dyes such as Acridines, Azines, Xanthenes,
Oxazines, and Thiazines are used and the cytoplasmic RNA
is analyzed for the amount of single or
5 double-strandedness. Regardless of whether the assay is
used to analyze RNA or DNA, the optimal conditions are
reached when the nucleic acid to be detected has undergone
a 70% shift from double-strandedness to
single-strandedness. When the shift of the secondary
10 structure of the nucleic acid from double-strandedness to
single-strandedness has reached at least 70%, and there is
no decrease in the total amount of fluorescence, then the
conditions have been adjusted according to the present
invention and will permit optimal hybridization and
15 detection of as few as 1-5 molecules of target nucleic
acid within a single cell. Furthermore, the time required
for optimal hybridization can be determined from the
amount of time necessary for at least 70% of the cellular
nucleic acid to become single-stranded.

20 In the most preferred embodiment, the
hybridization assay of the present invention provides a
method for assaying biopolymers in a cell sample having
substantially intact membranes comprising a single step of
incubating the cells with a fixation/hybridization
25 solution containing a single-stranded RNA probe, and
subsequently detecting the amount of probe hybridized to
the target nucleic acid. The samples are then washed and
the amount of target nucleic acids are determined by
quantitation either photographically through a microscope
30 with fluorescent capabilities or by direct reading of the
fluorescence with an image analysis system such as a
Meridian ACAS 470 work station (Meridian Instruments,
Okemos, Michigan).

1 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 demonstrates the optimal temperatures of one-step In Situ Hybridization.

5 Figure 2 demonstrates the kinetics of the One-Step In Situ Hybridization reaction.

Figure 3 demonstrates the changes in secondary structure of cellular RNA as a function of efficiency of the In Situ Hybridization reaction.

10 Figure 4 demonstrates the detection of oncogenes in normal peripheral blood by One-Step In Situ Hybridization.

Figure 5 demonstrates the detection of oncogenes in solid tissue samples by One-Step In Situ Hybridization.

15 Figure 6 demonstrates the detection of HIV in a seronegative, asymptomatic, high risk individual by One-Step In Situ Hybridization.

Figure 7 demonstrates the automated digital analysis of the fluorescense within cells after One-Step In Situ Hybridization.

20 Figure 8 demonstrates a quantitative analysis of One-Step In Situ Hybridization data.

Figure 9 demonstrates the One-Step In Situ Hybridization reaction performed on cells in solution.

Figure 10 demonstrates a Southern Blot.

25 Figure 11 demonstrates an RNA dot blot.

Figure 12 demonstrates the detection by One-Step In Situ Hybridization of the Human Immune Deficiency Syndrome Virus (HIV) or Cytomegalovirus (CMV) in the peripheral blood of a patient with Kaposi's Sarcoma.

30 Figure 13 demonstrates the detection by One-Step In Situ Hybridization of oncogenes in the cell line K562.

1 DETAILED DESCRIPTION OF THE INVENTION

Treatment of Sample

1 1. Cells/Tissues on Solid Support

In one embodiment of this version of the One-Step
5 in situ hybridization procedure of the present invention
the specimen may be deposited onto a solid support.
Specimens constitute any material which is composed of or
contains cells or portions of cells. The cells may be
10 living or dead, so long as the target biopolymer (DNA, RNA
or protein) is unaltered and undamaged and capable of
detection. The specimen should contain cells with
substantially intact membranes. Although it is not
necessary that all membranes of the cellular structure be
15 intact, the membranes must be sufficiently preserved to
allow: retention of the target biopolymer, introduction
of the detecting probe to the site of the target
biopolymer and preservation of antigenicity of any target
membrane components.

Techniques for depositing the specimens on the
20 solid support will depend upon the cell or tissue type and
may include, for example, standard sectioning of tissue or
smearing or cytocentrifugation of single cell
suspensions.

Many types of solid supports may be utilized to
25 practice the invention. Supports which may be utilized
include, but are not limited to, glass, Scotch tape (3M),
nylon, Gene Screen Plus (New England Nuclear) and
nitrocellulose. Most preferably glass microscope slides
are used. The use of these supports and the procedures
30 for depositing specimens thereon will be obvious to those
of skill in the art. The choice of support material will
depend upon the procedure for visualization of cells and
the quantitation procedure used. Some filter materials
are not uniformly thick and, thus, shrinking and swelling
35 during in situ hybridization procedures is not uniform.

1 In addition, some supports which autofluoresce will
interfere with the determination of low level
fluorescence. Glass microscope slides are most
preferable as a solid support since they have high
5 signal-to-noise ratios and can be treated to better retain
tissue.

The present invention may also be utilized to
detect biopolymers in cells in suspension.

Irregardless of whether the cell specimen is in
10 suspension or on solid supports, the hybridization
procedure is carried out utilizing a single hybridization
solution which also fixes the cells. This fixation is
accomplished in the same solution and along with the
hybridization reaction. The fixative may be selected from
15 the group consisting of any precipitating agent or
cross-linking agent used alone or in combination, and may
be aqueous or non-aqueous. The fixative may be selected
from the group consisting of formaldehyde solutions,
alcohols, salt solutions, mercuric chloride, sodium
20 chloride, sodium sulfate, potassium dichromate, potassium
phosphate, ammonium bromide, calcium chloride, sodium
acetate, lithium chloride, cesium acetate, calcium or
magnesium acetate, potassium nitrate, potassium
dichromate, sodium chromate, potassium iodide, sodium
25 iodate, sodium thiosulfate, picric acid, acetic acid,
paraformaldehyde, sodium hydroxide, acetones, chloroform,
glycerin, thymol, etc. Preferably, the fixative will
comprise an agent which fixes the cellular constituents
through a precipitating action and has the following
30 characteristics: the effect is reversible, the cellular
morphology is maintained, the antigenicity of desired
cellular constituents is maintained, the nucleic acids are
retained in the appropriate location in the cell, the
nucleic acids are not modified in such a way that they
35 become unable to form double or triple stranded hybrids,

1 and cellular constituents are not affected in such a way
so as to inhibit the process of nucleic acid hybridization
to all resident target sequences. Choice of fixatives and
fixation procedures can affect cellular constituents and
5 cellular morphology; such effects can be tissue specific.
Preferably, fixatives for use in the invention are
selected from the group consisting of ethanol,
ethanol-acetic acid, methanol, and methanol-acetone which
fixatives afford the highest hybridization efficiency with
10 good preservation of cellular morphology.

Fixatives most preferable for practicing the
present invention include 10-40% ethanol, methanol,
acetone or combinations thereof. These fixatives provide
good preservation of cellular morphology and preservation
15 and accessibility of antigens, and high hybridization
efficiency.

Simultaneously, the "fixative" component of the
solution may contain a compound which fixes the cellular
components by cross-linking these materials together, for
20 example, glutaraldehyde or formaldehyde. While this
cross-linking agent must meet all of the requirements
above for the precipitating agent, it is generally more
"sticky" and causes the cells and membrane components to
be secured or sealed, thus, maintaining the
25 characteristics described above. The cross linking agents
when used are preferably less than 10% (v/v).

Cross-linking agents, while preserving
ultrastructure, often reduce hybridization efficiency;
they form networks trapping nucleic acids and antigens and
rendering them inaccessible to probes and antibodies.
30 Some also covalently modify nucleic acids preventing later
hybrid formation.

Typically, 20%-30% ethanol, 5% formalin and 5%
acetone are used as a fixative for most tissues including
35

1 peripheral blood, bone marrow, breast, lung, cervical
sections, cardiac and skeletal muscle, and eye.

Prehybridization Treatments

5 According to the present invention no prehybridization step is necessary. Blocking nonspecific binding of probe and facilitating probe entry can be accomplished in the fixation/hybridization solution.

Hybridizations

10 Nucleic acid hybridization is a process where two or more mirror images or opposite strands of DNA, RNA, oligonucleotides, polynucleotides, or any combination thereof recognize one another and bind together through the formation of some form of either spontaneous or induced chemical bond, usually a hydrogen bond. The
15 degree of binding can be controlled based on the types of nucleic acids coming together, and the extent of "correct" binding as defined by normal nucleic acids coming together, and the extent of "correct" binding as defined by normal chemical rules of bonding and pairing. For example, if the binding of two strands forms 9 out of 10 correct matches along a chain of length 10, the binding is said to be 90% homologous.

25 Cellular nucleic acid sequences are detected by the process of molecular hybridization. The probe must be "labeled" in some way so to allow "detection" of any complementary cellular nucleic acid sequences present within the individual cells.

30 In the present invention, the term "hybridization" also means the binding of an antibody to a target antigen.

Types of Probes

35 A probe is defined as genetic material DNA, RNA, or oligonucleotides or polynucleotides comprised of DNA or RNA and antibodies. The DNA or RNA may be composed of the bases adenine, uridine, thymidine, guanine, cytosine, or

any natural or artificial chemical derivatives thereof. The probe is capable of binding to a complementary or mirror image target cellular genetic sequence through one or more types of chemical bonds, usually through hydrogen bond formation. The extent of binding is referred to as the amount of mismatch allowed in the binding or hybridization process; the extent of binding of the probe to the target cellular sequences also relates to the degree of complementarity to the target sequences. The size of the probe is adjusted to be of such size that it forms stable hybrids at the desired level of mismatch; typically, to detect a single base mismatch requires a probe of approximately 12-50 bases. Larger probes (from 50 bases up to tens of thousands of bases) are more often used when the level of mismatch is measured in terms of overall percentage of similarity of the probe to the target cellular genetic sequence. The size of the probe may also be varied to allow or prevent the probe from entering or binding to various regions of the genetic material or of the cell. Similarly, the type of the probe (for example, using RNA versus DNA) may accomplish these objectives. The size of the probe also affects the rate of probe diffusion, probability of finding a cellular target match, etc. Typically, double-stranded DNA (dsDNA), single-stranded DNA (ssDNA) or RNA probes are used in a hybridization reaction when oligonucleotide sequences are the target.

Nucleic acid probes can be prepared by a variety of methods known to those of skill in the art. Purified double-stranded sequences of DNA (dsDNA) can be labeled intact by the process of nick translation or random primer extension. The ability of double-stranded probes to hybridize to nucleic acids immobilized within cells is compromised by the ability of the complementary strands to hybridize to each other in solution prior to hybridization

1 with the cellular nucleic acids. Single-stranded DNA
2 (ssDNA) probes do not suffer this limitation and may be
3 produced by the synthesis of oligonucleotides, by the use
4 of the single-stranded phage M13 or plasmid derivatives of
5 this phage, or by reverse transcription of a purified RNA
6 template. The use of single-stranded RNA (ssRNA) probes
7 in hybridization reactions potentially provides greater
8 signal-to-noise ratios than the use of either double or
9 single-stranded DNA probes. Regardless of whether a
10 dsDNA, a ssDNA, or a ssRNA probe is used in the
11 hybridization reaction, there must be some means of
12 detecting hybrid formation. The means of detecting hybrid
13 formation utilizes a probe "labeled" with some type of
14 detectable label.

15 Antibody probes are known to those of skill in
16 the art. The term "antibody probe" means an antibody that
17 is specific for and binds to any target antigen. Such a
18 target antigen may be peptide, protein, carbohydrate or
19 any other biopolymer to which an antibody will bind with
20 specificity.

Detection Systems

21 Detectable labels may be any molecule which may
22 be detected. Commonly used detectable labels are
23 radioactive labels including, but not limited to, ^{32}P ,
24 ^{14}C , ^{125}I , ^3H and ^{35}S . Biotin labeled nucleotides
25 can be incorporated into DNA or RNA by nick translation,
26 enzymatic, or chemical means. The biotinylated probes are
27 detected after hybridization using avidin/streptavidin,
28 fluorescent, enzymatic or colloidal gold conjugates.
29 Nucleic acids may also be labeled with other fluorescent
30 compounds, with immunodetectable fluorescent derivatives
31 or with biotin analogues. Nucleic acids may also be
32 labeled by means of attaching a protein. Nucleic acids
33 cross-linked to radioactive or fluorescent histone H1,
34 enzymes (alkaline phosphatase and peroxidases), or

1 single-stranded binding (ssB) protein may also be used.
To increase the sensitivity of detecting the colloidal
gold or peroxidase products, a number of enhancement or
amplification procedures using silver solutions may be
5 used.

An indirect fluorescent immunocytochemical procedure may also be utilized (Rudkin and Stollar (1977) *Nature* 265: 472; Van Prooijen, et al (1982) *Exp.Cell.Res.* 141: 397). Polyclonal antibodies are raised against
10 RNA-DNA hybrids by injecting animals with poly(rA)-poly(dT). DNA probes were hybridized to cells in situ and hybrids were detected by incubation with the antibody to RNA-DNA hybrids.

According to the present invention single-stranded probes are preferable. Probes may be directly labeled by attachment of an intercalating detectable molecule with fluorescers or by covalently-binding to the probe such fluorescers. The probe may be labeled with more than one molecule of the detectable label.

20 Probe Size and Concentration

The length of a probe affects its diffusion rate, the rate of hybrid formation, and the stability of hybrids. According to the present invention, to detect cellular target RNA, small probes (50-150 bases) yield the most sensitive, rapid and stable system. A mixture of short probes (50-150 bases) are prepared which span the entire length of the target biopolymer to be detected. For example, if the target biopolymer were 1000 bases long, about 10-20 "different" probes of 50-100 bases would be used in the hybrid solution to completely cover all regions of the target biopolymer.

30 To detect cellular target DNA, even smaller probes (15-50 bases) are utilized.

35 The concentration of the probe affects several parameters of the in situ hybridization reaction. High

1 concentrations are used to increase diffusion, to reduce
the time of the hybridization reaction, and to saturate
the available cellular sequences. According to the
present invention, the reaction is complete after about 5
5 minutes. To achieve rapid reaction rates while
maintaining high signal-to-noise ratios, probe
concentrations of 1-10 ug/ml are preferable. Most
preferable is use of probes at a concentration of 2.5
ug/ml.

10 Hybridization Solution and Temperature

The fixation/hybridization solution of the
present invention consists of a fixative (described above)
and a chaotropic agent, typically, 0.8 M LiCl, about 0.1M
Tris-acetate, pH 7.4, about 50 ug/ml low molecular weight
15 DNA, and 50 ug/ml ribosomal RNA sized to about 50 bases
and 0.1% Triton X-100. A single-stranded RNA probe is
added to this solution prior to the incubations with the
target cells. The probe may be at least 15-20 bases,
preferably, 75-150 bases, and labeled with a detectable
20 label such as a fluorescer. The most preferable optimal
temperature of hybridization is 50°-55°C. However,
temperatures ranging from 15°C to 80°C may be used,
depending on the constituents and concentrations of the
fixation/ hybridization solution.

25 Post-Hybridization Treatments and Detections

The present invention does not require wash steps
prior to hybrid detections. If probes are labeled with
Photobiotin™, then avidin or streptavidin fluorescent,
enzymatic or colloidal gold complexes may be added
30 directly to the slides containing hybridization cocktail
and incubated for 20 minutes at room temperature, or 10
minutes at 37°C or 5 minutes at 55°C. This step
constitutes a significant advantage over prior
hybridization techniques due to the time saved by
35 eliminating several post-hybridization washing steps and

1 the necessary re-blocking of non-specific
avidin/streptavidin binding sites; it results in no
decrease in signal or increase in noise. If probes are
directly labeled with fluorescers, no additional detection
5 step is necessary.

Following a streptavidin/avidin detection step or
directly after the reaction is complete, the specimen is
washed in large volumes of 2x SSC/0.1% Triton X-100. The
solution may contain RNase A and T1 at room temperature.
10 This wash can be very short (about 5 minutes)-as long as a
continuous gentle circulation or stream of sufficient
volume (about 200 ml per cm² area of cells) of solution
passes over the cells. This may be followed by washes at
15 higher stringency (lower salt concentrations such as at
least 0.1x SSC and/or higher temperatures up to 65° C.).
Leaving the cell area moist, supports are then dried and
coverslipped by any conventional method.

2. Cells or Tissues in Suspension

Cells are Prepared

20 Tissue samples are broken apart by physical,
chemical or enzymatic means into single cell suspension.
Cells are placed into a PBS solution (maintained to
cellular osmolality with bovine serum albumin (BSA) at a
concentration of 10⁵ to 10⁶ cells per ml. Cells in
25 suspension may be fixed and processed at a later time,
fixed and processed immediately, or not fixed and
processed in the in situ hybridization system of the
present invention.

Fixation/Hybridization is accomplished

30 A single solution is added to the cells/tissues
(hereafter referred to as the specimen). This solution
contains the following: a mild fixative, a chaotrope, a
nucleic acid probe (RNA or DNA probe which is prelabeled)
and/or antibody probe, salts, detergents, buffers, and

1 blocking agents. The incubation in this solution is
carried out at 55°C for 20 minutes.

5 The fixative is one which has been found to be
optimal for the particular cell type being assayed (eg.,
there is one optimal fixative for bone marrow and
peripheral blood even though this "tissue" contains
numerous distinct cell types). The fixative is usually a
10 combination of precipitating fixatives (such as alcohols)
and cross-linking fixatives (such as aldehydes), with the
concentration of the cross-linking fixatives kept very low
(less than 10%). Typically, the solution contains 10-40%
ethanol, and 5% formalin. The concentration and type of
precipitating agent and crosslinking agent may be varied
depending upon the probe and the stringency requirements
15 of the probe, as well as the desired temperature of
hybridization. Typical useful precipitating and
cross-linking agents are specified in Table 1.

TABLE 1

20

25

30

35

1 The hybridization cocktail contains a denaturing
agent, usually formamide at 30% (v/v), but other
chaotropic agents such as NaI, urea, etc. may also be
used. Furthermore, several precipitating and/or
5 cross-linking fixatives also have mild denaturing
properties; these properties can be used in conjunction
with the primary denaturant in either an additive or
synergistic fashion. The hybridization cocktail may be
constructed to preferentially allow only the formation of
10 RNA-RNA or RNA-DNA hybrids. This is accomplished by
adjusting the concentration of the denaturing agents along
with the concentration of salts (primarily monovalent
cations of the Group I series of metals along with the
ammonium ion) and along with the temperature of
15 hybridization which is used. This allows for the selective
hybridization of probe to either cellular RNA or DNA or
both RNA and DNA simultaneously with distinct probes.
This further allows the probes to be supplied in a
premixed solution which presents the optimal conditions
20 for generating a signal and minimizing noise while
simultaneously optimally "fixes" the morphology of the
cells/tissues.

Hybrids are detected.

25 The probe in the hybridization cocktail may be
labeled before the hybridization reaction. The label may
be one of the many types described above. If the probe is
labeled with Photobiotin™, the hybrids may be detected
by use of a Streptavidin/Avidin (S/A) conjugated to a
fluorescent molecule such as FITC, rhodamine, Texas
Red™, etc. or to S/A conjugated to an enzyme or to S/A
30 labeled with a heavy metal such as colloidal gold.
Specifically, a solution containing the streptavidin
conjugate is added directly to the hybridization cocktail
over the cells after the end of the hybridization
reaction. The cells are incubated in this solution for 5

1 minutes at 55°C. Longer times of hybridization may be
used along with both higher or lower temperatures. The
time of hybridization reaction will vary depending on the
composition of the hybridization cocktail containing the
5 fixative (type and concentrations of precipitating agents
and/or cross-linking agents), buffering agents, pore
forming agents, denaturing agents and hybrid stabilizing
agents. Similarly, the temperature may be varied as
described above.

10 Alternatively, the probes may be directly labeled
with the fluorescent dye or molecules such as Pontamine
Sky Blue™ by incubating the nucleic acid probe and dye
together (1:10 weight:weight proportions) and allowing the
dye to bind/intercalate. The probe is then precipitated
15 out of solution and the excess unbound dye is removed by
repeated washing with 70% ethanol. Probes are also
labeled directly and covalently by incubation of double
stranded molecules (RNA-RNA, RNA-DNA, or DNA-DNA) with
labels which will covalently bind to nucleic acids. After
20 incubation conditions under which the reaction will take
place, the strands are separated and each separate strand
is used as a probe. The concentration of the probe in the
solution is typically 2.5 ug/ml although a range of
0.01-10 ug/ml is useful. The probe concentration will
25 affect the reaction kinetics and may affect the
sensitivity of the assay along with the signal-to-noise
ratio.

30 If the probe is labeled directly with an
enzymatic label or is detected using an enzymatic or
secondary detectable system, then this reaction may be
carried out before any wash steps. Following the
incubation of the specimen with the appropriate buffer for
the enzyme, the slide is incubated with the substrates for
35 the enzyme under conditions specified by the manufacturer
or supplier of the enzyme.

1 Noise is Washed Away.

Cells may be deposited onto slides or centrifuged into a pellet following the fixation/hybridization/detection reaction(s). Next, the unbound probe is washed away from the cells by one wash step using a solution of 0.1 x SSC (1 x SSC = 0.15M NaCl and 0.015 M sodium citrate, pH 7.4) with 0.1% Triton X-100™. A total of 1-200 ml of wash solution may be used per microscope slide (i.e., per about 100,000 separated cells or per tissue section of about 1 square centimeter). The concentration and type of the hybrid stabilizing/denaturing agents and pore forming agents may be varied depending on the type of cells, the type of probe and the acceptable level of mismatch of the hybrid.

15 Results are obtained.

When cells are deposited onto slides, results are visualized manually on a fluorescent microscope when direct or indirectly labeled fluorescent probes are utilized. Alternatively, the results may be automatically analyzed on a fluorescence-based image analysis system such as the ACAS 470 Workstation™ which is produced by Meridian Instruments. If other types of labels are utilized on the probes, the means of detection is varied accordingly.

25 When cells are maintained in solution, results may be obtained using a flow cytometer to record the amount of fluorescence per cell, which represents the amount of hybrid per cell. Alternatively, the total signal within a cellular sample may be determined using a device such as a liquid scintillation counter (for radioactivity) or a chemiluminescent/fluorescent microtiter plate reader for these labels.

1 Analysis of the Results of In Situ
5 Hybridizations Speed, Sensitivity and
10 Quantitation of In Situ Hybridizations

15 The method of the present invention requires 5 minutes to 4 hours to complete with a sensitivity of as few as 1-5 molecules of target biopolymers per cell. This results from the combination of at least three factors: 1) cellular constituents are not irreversibly precipitated onto the nucleic acids, 2) the fixation was optimized for the particular tissue used, and 3) the kinetics of the reaction proceed more rapidly at high probe concentrations, simultaneously with the fixation process and at elevated temperatures.

20 The number of copies of mRNA per cell can be estimated from the number of grains over cells when radioactive probes are used. With fluorescent or enzymatic detections a relative estimate of fluorescence or precipitated colored products allows estimation of mRNA copy number. Usually, the approximation of copy number is easier after manual photography, film processing and comparisons of photographic prints.

25 The quantitation of radioactive or fluorescent signals obtained after in situ hybridizations may be automated by use of an image analysis system such as the Meridian ACAS 470 Workstation™.

30 Simultaneous Detection of Multiple Biopolymers

35 The present invention allows simultaneous detection of different substances (such as mRNAs and proteins) within the same cells. This may be accomplished in one of two ways. First, multiple probes each containing a unique label (for example, fluorescent tags "A", "B" and "C" which each emit light at a different detectable wave length) are all added together in the hybridization solutions. Alternatively, a hybridization and detection reaction may be carried out with one probe

1 and label, residual unreacted probe and label washed away under nuclease-free conditions, and another hybridization reaction is carried out. This process is repeated as many times as desired.

5 Simultaneous Detection of DNA and RNA for the Same Gene

The present invention allows the simultaneous detection of DNA and RNA (and protein) for the same gene discriminately and concurrently within the same cell. This was accomplished in one of two ways. First, multiple probes each containing a unique label (for example, fluorescent tags "A", "B" and "C" which emit light at different detectable wavelengths) were all added together in the fixation/hybridization solution. Alternatively, a fixation/hybridization/detection reaction was carried out with one probe and label, residual unreacted probe and label was washed away under nuclease free conditions and another fixation/hybridization reaction was carried out. This process was repeated as many times as desired.

When DNA and RNA were both detected, the selection of the type of probe became important. When the cellular target biopolymer is RNA, an anti-sense, single stranded DNA probe was used in the assay. If the cellular target DNA is the biopolymer to be detected, a sense-strand, single-stranded RNA probe would be used in the assay. This probe selection, and the selection and concentration of components of the fixation/hybridization solution would allow only RNA-DNA hybrids to be formed. Therefore, the probe could only bind to the desired target cellular biopolymer; other nucleic acids would inherently be prevented from interfering with the reaction assay.

The present invention may be provided in the form of a kit. The kit of the present invention is used to detect the presence of a specific target biopolymer in a specimen. Such a kit includes the following:

1. A solution containing a
fixation/hybridization cocktail and one or
more labeled probes. Preferably, this
solution will contain 15-40% ethanol, 25-40%
5 formamide, 0-10% formaldehyde, 0.1-1.5 M
LiCl, 0.05-0.5 M Tris-acetate (pH 7-8),
0.05%-0.15% Triton X-100, 20 ug/ml-200 ug/ml
of a non-specific nucleic acid which does
not react with the probe(s), and 0.1 ug/ml
10 to 10 ug/ml of a single stranded probe
directly labeled with a reporter molecule.
Most preferably, this solution will contain
30% ethanol, 30% formamide, 5% formaldehyde,
0.8M LiCl, 0.1M Tris-acetate (pH 7.4), 0.1%
15 Triton X-100, 50 ug/ml of ribosomal RNA
sheared and sized to about 50 bases, and 2.5
ug/ml of a single stranded probe directly
labeled with a fluorescent reporter molecule.
This solution and the probes would have
measurable predefined and identified
20 characteristics and reactivities with cells
and target sequences.
2. Means and instructions for performing the
said in situ hybridization reaction of the
present invention.

- 25 Alternatively, the kit may also include:
1. A second detectable reporter system which
would react with the probe or the
probe-target hybrid.
 2. Concentrated stock solution(s) to be diluted
sufficiently to form wash solution(s).
 3. Any mechanical components which may be
necessary or useful to practice the present
invention such as a solid support (e.g. a
35 microscope slide), an apparatus to affix

1 cells to said support, or a device to assist
with any incubations or washings of the
specimens.

4. A photographic film or emulsion with which
5 to record results of assays carried out with
the present invention.

Another version of this kit may include a solution of
probes encapsulated in liposomes or microspheres, as
described in Examples 10 and 11.

10 The following examples are offered by way of
illustration and are not intended to limit the invention
in any manner. In all examples, all percentages are by
weight if for solids and by volume if for liquids, and all
temperatures are in degrees Celcius unless otherwise
15 noted.

EXAMPLE 1

Preparation of Probes.

A. General.

20 RNA or DNA probes useful in the present
invention may be prepared according to methods known to
those of skill in the art or may be obtained from any
commercial source. RNA probes may be prepared by the
methods described by Green et al. (1981) Cell 32:681. DNA
25 probes may be prepared by methods known to those of skill
in the art such as described by Rigby et al. (1977) J.
Mol. Biol. 113:237. Synthetic oligonucleotide probes may
be prepared as described by Wallace et al (1974) Nucleic
Acids Res. 6: 3543. The probes useful in the present
30 invention must have the following characteristics:

1. Specific for the target molecule.
2. At least 15 base pairs in length
and preferably 75-150 base pairs.

1 B. Preparation of RNA probes.

Sub genomic fragments of the c-myc, c-sis, or c-abl genes were obtained from Amersham Inc. (Catalogue nos. RPN.1315X, RPN.1324X, and RPN.1325X, respectively).
5 In one embodiment of the present invention, sense strand probe of the c-myc, c-abl and c-sis genes were utilized. The c-myc probe used was a 1.3 kb ClaI/EcoRI genomic clone from the 3' end of the c-myc gene (Dalla-Favera, et al. (1983) Science 219:963). The c-abl probe was derived from
10 a subclone of the human c-abl gene, an EcoRI/Bam HI fragment corresponding to the 5' c-abl hybridizing region (de Klein et al. (1982) Nature 300:765). The c-sis probe was a Bam HI fragment of clone L33 corresponding to the 3' end of c-sis (Josephs et al. (1983) Science 219:503). The HIV and EBV probes were obtained from and prepared as
15 described in Dewhurst, et al. (1987) FEBS Lett. 213:133. The CMV probe was described in Gronczol, et al. (1984) Science 224:159. These template plasmid DNAs were transcribed as described by Green et al. (1981) Cell 32:
20 681. The size and quantity of the RNA were confirmed by electrophoresis through a denaturing agarose gel as described by Thomas (1980) Proc. Nat. Acad. Sci. USA 77:
5201 and by spectrophotometric measurement performed at A₂₆₀ and A₂₈₀. A DNA beta-actin probe, prepared as
25 described in Cleveland, et. al. (1980) Cell 20:95, and the RNA probes were labeled with Photobiotin™ as described by Bresser and Evinger-Hodges (1987) Gene Anal. Tech. 4:
89, incorporated herein by reference. Alternatively,
30 probes were labeled directly with a fluorescent intercalating compound such as ethidium bromide, mithramycin, Pontamine Sky Blue™, or propidium iodide by incubating the nucleic acid and dye together overnight at room temperature in 1:10 (w/w) proportions (nucleic acid/dye).

1 In either labeling method, low-molecular weight
DNA was added at a concentration of 100 times that of the
probe, and all polynucleotides were precipitated by the
addition of 1/3 vol. 10M ammonium acetate and 2-1/2 vol.
5 of 95% ethanol. The nucleic acids were recovered by
centrifugation and resuspended in water at a concentration
of 1 ug/ul of probe and stored at -70°C until used.

C. Preparation of Antibody Probes

10 Antibody probes specific for antigens such as
viruses or specific determinants thereof, peptides and
proteins derived from a variety of sources, carbohydrate
moieties and a wide variety of biopolymers are known to
those of skill in the art. The methods for preparation of
such antibodies are also known to those of skill in the
15 art.

Briefly, polyclonal antibodies may be prepared by
immunization of an animal host with an antigen.
Preferably, the antigen is administered to the host
subcutaneously at weekly intervals followed by a booster
20 dose one month after the final weekly dose. Subsequently,
the serum is harvested, antibodies precipitated from the
serum and detectably labeled by techniques known to those
of skill in the art.

25 Monoclonal antibodies may be prepared according
to any of the methods known to those in the art. Fusion
between myeloma cells and spleen cells from immunized
donors has been shown to be a successful method of
producing continuous cell lines of genetically stable
hybridoma cells capable of producing large amounts of
30 monoclonal antibodies against target antigens such as, for
instance, tumors and viruses. Monoclonal antibodies may
be prepared, for instance, by the method described in U.S.
Patent No. 4,172,124 to Koprowski, et al. or according to
U.S. Patent No. 4,196,265 to Koprowski, et al.

1 Procedures for labeling antibodies are known to
those of skill in the art.

EXAMPLE 2

5 Temperature effect on Hybridization.

K562 cells (ATCC # CCL 243) were grown in Hank's
Balanced Salt Solution (HBSS) supplemented with 10% fetal
calf serum. Dividing cells were deposited onto glass
slides by cytocentrifugation. Cells were fixed/hybridized
10 with various concentrations of ethanol (10%, 15%, 20%,
25%, and 30%), 5% glacial acetic acid, 35% formamide, 5%
formalin, 0.8M LiCl, 0.1% Triton X-100, 100 ug/ml low
molecular weight DNA (sheared herring sperm DNA obtained
from Sigma Chemical Company) and 2.5 ug/ml of either
15 c-myc, c-abl or c-sis anti-sense RNA or DNA probes labeled
with Photobiotin™. The anti-sense RNA probes were
prepared as described in Example 1. The hybridization
reactions were carried out at various temperatures ranging
from 4° to 80° C. After incubation at the desired
20 temperatures for two hours, hybrid formation was
detected. To detect hybridization, streptavidin
fluorescein or rhodamine complexes at 2x the manufacturer's
recommended concentration was added to this specimen.
After incubation at room temperature for 30 min the
25 specimens were then gently washed (1 to 200 ml per
centimeter square of cell area) with 0.1x SSC containing
0.1% Triton X-100. One drop of a 50/50 (v/v) 100%
glycerol/2x PBS solution was added to each specimen.
Using a Nikon fluorescent microscope with photomultipler
30 tube attachments the fluorescence emitted per cell was
recorded on each slide hybridized at a different
temperature. Approximatley 300 to 800 cells were analyzed
per slide. Numerical results obtained indicating the
amount of fluorescence from each cell were graphically

1 represented as relative fluorescence verses the
temperature of hybridization.

5 The results shown in Figure 1A demonstrate that
hybridization temperatures of 25°C to 55°C yield the most
relative fluorescence corresponding to the most hybrid
formation in the present *in situ* hybridization invention,
with the above specified reagents and concentrations
thereof when RNA-DNA hybrids were formed within the
cells.

10 The results shown in Fig. 1B demonstrate that
hybridization temperatures of 25°-55° may be used in the
hybridization reaction when DNA-DNA hybrids are formed
within the cells.

15

EXAMPLE 3

Kinetics of In Situ Hybridization.

20 K562 cells (ATCC # CCL 243) were grown in Hank's
Balanced Salt Solution (BSS) supplemented with 10% fetal
calf serum. Dividing cells were deposited onto glass
slides by cytocentifugation. Cells were fixed/hybridized
with 30% ethanol, 35% formamide, 5% formalin, 0.8M LiCl,
0.1% Triton X-100, 100 ug/ml low molecular weight DNA
(sheared herring sperm DNA obtained from Sigma Chemical
Company) and 2.5 ug/ml of either c-myc, c-abl or c-sis
25 anti-sense RNA probe labeled with Photobiotin™. The
anti-sense RNA probes were prepared as described in
Example 1.

30 Figure 2 shows the relationship between the time
of hybridization and the amount fluorescence signal seen
over cells. The hybridization reactions were carried out
at various times ranging from 5 minutes to 96 hours.
After incubation at 55°C for the desired time, hybrid
formation was detected. To detect hybridization,
streptavidin fluorescein or rhodamine complexes at 2x the
35 manufacturer's recommended concentration were added to the

specimen. After incubation at room temperature for 30 minutes the specimens were then gently washed with 0.1x SSC/0.1% Triton X-100 at 1-200 ml per cm² of cell area. One drop of a 50/50 (v/v) 100% glycerol/2x PBS solution was added to each specimen. Using a Nikon fluorescent microscope with photomultiplier tube attachments, the fluorescence emitted per cell was recorded on each slide hybridized at each different time point. Approximately 300 to 800 cells were analyzed per slide. Numerical results obtained indicating the amount of fluorescence from each cell were graphically represented as relative fluorescence versus the time of hybridization. Figure 2 demonstrates that the hybridization reaction is essentially complete after 5-10 minutes under the conditions of the present invention.

EXAMPLE 4

Changes in Secondary Structure Of Cellular RNA.

HL60 cells (ATCC # CCL 240) were grown in Hank's BSS supplemented with 10% fetal calf serum. Cells were harvested and deposited onto glass microscope slides by cytocentrifugation. Cells were air dried on glass slides and stored at room temperature until used. Cells are fixed in one of any number of fixatives for this type of experiment. Typical fixatives would include 70% ethanol, 95% ethanol/5% glacial acetic acid, 75% ethanol, 20% glacial acetic acid, 100% methanol, 100% acetone, 50% acetone, 50% methanol, 4% paraformaldehyde, 2% paraformaldehyde, 10% formaldehyde/90% methanol. After cells were fixed in these fixatives at the appropriate time and temperature, slides were removed from the fixative and stained with Wright Giemsa or hematoxylin and eosin by standard laboratory methods. Cell morphology was assessed by comparing the degree of preservation of morphology after fixation to the morphology prior to

fixation. Fixatives which did not effectively retain visual morphology were arbitrarily rated as +1. Fixatives which effectively retained cellular morphology were arbitrarily rated as between +1 and +4 with the most effective morphologic preservation of cellular morphology rated as +4. A second evaluation as to the effective preservation of cells by these fixatives was carried out when it was desirable to detect cellular antigens. In this case, cells were removed from the fixatives and incubated with an antibody specific for a particular target cellular antigen. Again fixatives which effectively maintain antigenicity of cellular components were arbitrarily rated as +4, while fixatives which did not effectively maintain perservation of cellular antigens were rated lower, the worst as +1. Fixatives which scored as +3 or +4 in terms of preservation of cellular morphology and/or preservation of cellular antigenicity were then used in the following steps. Fresh slides containing untreated cells were fixed in these fixatives and were incubated in hybridization solution containing 50% formamide, 4x SSC, 0.1 M sodium phosphate, (pH 7.4), 0.1% Triton X-100, 100 ug/ml low molecular DNA (sheared herring sperm DNA obtained from Sigma Chemical Company). No biopolymer probe was included in this solution. The cells were incubated in hybridization solution at 50°-55°C for 5, 10, 15, 20, 30, 45, 60, 90, and 120 minutes. After the completion of this hybridization step, cell samples were washed gently with 1-200 ml per square centimeter of cell area with each of the following solutions containing 0.1% Triton X-100: 2x SSC, 1x SSC, 0.5x SSC, 0.1x SSC. The cellular sample was then evaluated as above for preservation of cellular morphology and/or preservation of cellular antigenicity. The cell sample was then further evaluated by staining the cells with 50 ug/ml of propidium iodide. The propidium iodide will stain double stranded

1 and single stranded nucleic acids within the cell. When
this dye stains double stranded or single stranded nucleic
acids it has a different characteristic emission spectra
upon ultraviolet excitation. An untreated cell sample on
5 a slide is also stained. The total amount of emitted
fluorescence is determined on the untreated cell sample
using a Nikon fluorescence microscope with a
photomultiplier tube attachment. 300-1000 cells are
recorded as to the total amount of fluorescence generated
10 from cytoplasmic double stranded RNA content. This
measurement then represents a base line level for the
total fluorescence in the cytoplasm; that is, the total
RNA in the cytoplasm and that RNA being present in a 100%
state of double strandedness. The slides which have been
15 taken through the various fixation and hybridization
procedures and times are similarly analyzed. In all cases
it is important to chose a fixation and hybridization
condition and time which will maintain the same quantity
of fluorescence in the cytoplasm of the cell. During
20 hybridization, the fluorescence emitted from the RNA of
the cytoplasm of the cell due to the staining of the
propidium iodide will change. The emission pattern
decreases relative to the double strandedness of the RNA.
Simultaneously, the wave length emisson which is
25 reflective of the amount of single stranded RNA in the
cytoplasm will begin to increase. When the total
fluorescence in the cytoplasm due to RNA has remained the
same and the amount of fluorescence due to the amount of
double stranded RNA in the cytoplasm has decreased
30 approximately 70% while the amount of fluorescence
corresponding to the single stranded RNA within the
cytoplasm has increased an equal value, then conditions
have been obtained which will allow the detection of 1-5
molecules of RNA within the cytoplasm. The time of the
35 hybridization reaction which was required to obtained this

1 shift from double stranded to single strandedness of the
RNA in the cytoplasm is reflective of the time necessary
for an actual hybridization reaction to detect 1-5
molecules per cell of RNA.

5 Specifically, in Figure 3 the relative amount of
double stranded RNA content is graphically represented on
the bottom scale. As the RNA in the cytoplasm becomes
more double stranded, the curves will shift to the right.
The greater the shift in the amount of double strandedness
10 to single strandedness of RNA in the cytoplasm, the
greater the shift of the curves will be from the right to
the left. The vertical axis represents the cell numbers
that were counted. In other words if 300-1000 cells were
counted, the vast majority of them fell within a
15 particular area of double strandedness. While some cells
had more double strandedness and some had less double
strandedness, the analysis can be represented as a bell
shape curve. On the right hand side of the figure is
shown the various treatments carried out. The result of
staining untreated cells with propidium iodide is not
20 shown. However, after treating HL60 cells with various
fixatives the amount of double strandedness of cellular
RNA remained essentially the same. Even if a
prehybridization treatment is carried out which includes a
25 protease treatment there is essentially no change in the
amount of RNA double strandedness. The curve in Figure 3
corresponding to the protease treatment is in the same
location as the curve for the fixation treatment. It has
shifted neither left nor right. However, after fifteen
30 minutes in a hybridization solution, the curve
representing the amount of RNA double strandedness has
shifted at least 70% to the left. This corresponds to a
change in at least 70% of the amount of material in the
cytoplasm of the cell becoming single stranded. Comparing
35 this graph to Figure 2 indicates that after 15 min in the

1 hybridization cocktail, not only is 70% of the RNA in the
cytoplasm of the cell single stranded, but as seen in
Figure 2, 70% of the hybridization reaction is complete.

5

EXAMPLE 5Detection of Oncogenes in
Peripheral Blood Cells

Ten ml of human peripheral blood cells were
incubated at 37°C in a 1.2% (215 mOs) ammonium oxalate
10 solution to lyse the red blood cells. The white blood
cells were centrifuged at 3,000 rpm for 10 minutes in a
clinical centrifuge. The cell pellet was subsequently
washed with 10 ml. PBS and the pellet was resuspended in
15 PBS. Cells were deposited by cytocentrifugation onto
precleaned glass slides and air dried for 5 min. The
cells were then fixed and hybridized in a solution
consisting of 30% ethanol/1% glacial acetic acid, 30%
formamide, 0.8M LiCl, 0.1M Tris-acetate (pH 7.4), 0.1%
20 Triton X-100, 100 ug/ml low molecular weight DNA (sheared
herring sperm DNA obtained from Sigma Chemical Co.) and
2.5 ug/ml of either c-myc, c-sis, c-abl, anti-sense RNA
probes labeled with Pontamine Sky Blue™. The antisense
RNA probes were prepared as described in Example 1. After
incubation for 10 min. at 55°C, hybrid formation was
25 detected.

The specimens were then gently washed (1-200 ml
per cm² of cell area) with a solution containing 0.1%
Triton X-100, 0.1x SSC. One drop of a 50/50 (v/v) 100%
glycerol/2x PBS solution was added to each specimen.
30 Specimens were photographed with high speed film (Kodak
EES135, PS 800/1600) at 1600 ASA for 5 sec. exposure on a
Nikon Photophot microscope at 400x magnification using a
standard filter combination for transmission of
fluorescent light.

35

1 Figure 4 depicts the results from in situ
hybridization studies on the expression of three different
oncogenes in peripheral blood (PB). Fig. 4A demonstrates
the detection of the c-abl gene. Panel B shows the
5 results of in situ hybridization with a c-sis probe.
Panel C presents a typical result when the cells were
hybridized with the c-myc probe.

10

EXAMPLE 6

Oncogene Detection in Solid Tissue.

15 Four micron thick frozen sections of human
breast tissue obtained from surgically removed biopsy
samples were mounted on precleaned glass slides.

20 Tissue was fixed and hybridized for 20 minutes by
incubation at 55°C with a fixation/hybridization (One
Step) cocktail, containing 20% ethanol, 30% formamide,
0.8M LiCl, 0.1M Tris-acetate (pH 7.4), 50 ug/ml of low
molecular weight denatured herring sperm DNA, 50 ug/ml of
ribosomal RNA sheared and sized to 50 bases, and 0.1%
25 Triton X-100. Pontamine Sly Blue™ labeled RNA probes (as
described in Example 1) were added to the hybridization
cocktail at a concentration of 2.5 ug/ml. No probe was
added to the "blanks". Slides were washed at room
temperature in 2x SSC containing 0.1% Triton X-100, 100
ug/ml RNase A (Sigma), and sequentially diluted SSC
solutions until the final wash in 0.1x SSC (1-200 ml per
CM² of cell area).

30 Detection of the labeled probes was performed by
photography with a Nikon Photophot microscope with
fluorescence capabilities using Kodak Ektachrome EES-135
(PS 800/1600) film, exposed and push processed at 1600
ASA. A 10 second exposure time was consistently used to
allow direct comparison of one photograph to another.

35 Figure 5 demonstrates the results of the mRNA in
situ hybridization assay and the localization of

1 SIS/PDGF-B expression in the epithelial components of
breast carcinoma (Fig. 5, panel SIS-AS). An in situ
hybridization reaction with the anti-sense c-myc RNA probe
was used as positive control (Fig. 5 Panel MYC); in situ
5 hybridization with the sense strand c-sis RNA probe (Fig.
5 panel SIS-S) was used as a negative control. Comparable
histologic features are shown in the far right panel. Two
cases of infiltrating ductal carcinoma are illustrated.

10

EXAMPLE 7Detection of HIV in Human Peripheral Blood.

Ten ml of human peripheral blood was incubated at
37°C in a 1.2% ammonium oxalate solution to lyse the red
blood cells. The white blood cells were centrifuged at
15 3,000 rpm for 10 minutes in a clinical centrifuge. The
cell pellet was subsequently washed with 10 ml PBS and the
pellet was resuspended in PBS. Cells were deposited by
cytocentrifugation onto precleaned glass slides and air
dried for 5 min. The cells were then fixed and hybridized
20 in a solution consisting of 25% ethanol, 30% formamide, 5%
formalin, 0.8 M LiCl, 0.1M Tris-acetate (pH 7.4), 0.1%
Triton X-100, 100 ug/ml low molecular weight DNA (sheared
herring sperm DNA obtained from Sigma Chemical Co.) and
2.5 ug/ml of either HIV anti-sense or sense strand RNA
25 probes labeled with Pontamine "Sky Blue". The RNA probes
were prepared as described in Example 1. After incubation
for 10 min. at 55°C, hybrid formation was detected.

The specimens were then gently washed (1-200 ml
30 per cm² of cell area) with the following solution: 0.1%
Triton X-100/ 0.1x SSC. One drop of a 50/50 (v/v) 100%
glycerol/2x PBS solution was added to each specimen prior
to coverslipping the specimen and microscopic
examination. Specimens were photographed with high speed
film (Kodak EES135, PS 800/1600) at 1600 ASA for 5 sec.
35 exposure on a Nikon Photophot microscope at 400x

1 magnification using a standard filter combination for
transmission of fluorescent light. Fig. 6 demonstrates
the detection of HIV sequences in human peripheral blood.
Fig. 6, panel AS-HIV demonstrates hybridization with a
5 cocktail containing anti-sense HIV RNA probes; Fig. 6
panel S-HIV demonstrates that no hybridization is
detectable using sense HIV RNA probes. The present in
situ hybridization invention detected HIV in a virus
infected patient, while the negative controls were blank.

10

EXAMPLE 8

Quantitation of the Number of Target Biopolymer Molecules.

K562 Cells (ATCC #CCL 243) were grown in Hank's
BSS supplemented with 10% fetal calf serum. Three days
15 after the last change in media, the cells were split to a
density of about 10^5 cells per 0.3 ml. of fresh media.
One hour later, 60 replica slides were made by depositing
50,000-100,000 cells onto a slide by cytocentrifugation.
The remainder of the cells were harvested and RNA and DNA
20 was extracted from the cells by the guanidium cesium
chloride method (GuSCN/CsCl) (Chirgwin, et al. (1979)
Biochemistry 18: 5294).

Since the cell line was a relatively homogeneous
population, the extracted RNA was purified and used to
determine copy number estimates for each RNA species
25 analyzed; i.e., an estimate could be made of the number of
molecules of each gene present within each cell from a
series of control experiments well known to those with
knowledge and skill in the art. These control experiments
30 to determine the number of molecules per cell included the
following: Northern blots, RNA dot blots, Quick-blots™,
Cytodots™, single copy saturation experiments, and
solution concentration versus time hybridization
experiments ($\text{Rot}_{1/2}$ analysis) (Hames, B.D. and Higgins,

35

1 S.J. (1986) in Nucleic Acid Hybridization: a practical
approach, IRL Press, Oxford-Washington, D.C.).

5 Cells on slides were fixed and hybridized in a solution consisting of 25% ethanol, 30% formamide, 5% formalin, 0.8 M LiCl, 0.1 M Tris-acetate (pH 7.4), 0.1% Triton X-100, 100 ug/ml low molecular weight DNA (sheared herring sperm DNA obtained from Sigma Chemical Co.) and 2.5 ug/ml of an anti-sense RNA probe labeled with Pontamine Sky Blue™. Probes used were either the sense or anti-sense RNA strands of the following genes: c-abl, c-sis, c-myc, or Epstein Barr Virus (EBV). The probes were prepared as described in Example 1. After incubation for 10 min. at 55°C, hybrid formation was detected.

10 The specimens were then gently washed (1-200 ml. per cm² of cell area) with 0.1x SSC containing 0.1% Triton X-100. One drop of a 50/50 (v/v) 100% glycerol/2x PBS solution was added to each specimen and a #1 coverslip was placed over the cells before microscopic examination.

15 Fluorescence emitted from each cell is a reflection of the number of fluorescent molecules which reacted with and attached to the probe; the amount of reacted probe within a cell is indicative of the number of target biopolymers present within the cell. To measure the fluorescence within each cell, slides were analyzed using the ACAS 470 Workstation™ from Meridian Instruments (Okemos, MI). The Meridian instrument, like most image processing systems, excites the fluorescers present within a sample and then captures the emitted light as either a digital or analog signal. This signal is digital on the Meridian instrument. The quantity of the signal can be represented by different colors. In Figure 7, this is illustrated by the colors the instrument assigns to emitted signals of different intensities. When these colors are represented over a cell, as in Figure 7,

1 the amount and subcellular location of the target cellular
biopolymer and the hybridized probe can be seen.

5 The total amount of fluorescent signal per cell
can also be detected and analyzed. From the control
experiments carried out above to determine the number of
molecules of mRNA corresponding to different genes within
the K562 cells, known values (minimums, maximums, averages
and standard deviations) are obtained for the number of
molecules of each type of RNA per cell. These values are
10 used as inputed data in the Meridian instrument's analysis
of data, and are seen as the horizontal axis of Figure 8.
The vertical axis is the number of cells. The different
columns represent the number of cells (vertical axis)
possessing a given number of molecules (horizontal axis)
15 of the target biopolymer. Figure 8 demonstrates that the
c-myc gene mRNA was present at the lowest level in the
K562 cells (about 1-10 molecules). The c-sis gene mRNA
was present at about 1-20 molecules. The c-abl gene mRNA
was present in a much higher number of molecules per cell
20 ranging from about 20-55 molecules.

EXAMPLE 9

In Situ Hybridization of mRNA Within Cells in Suspension

25 K562 cells (ATCC # CCL 243) were grown in Hank's
Balanced Salts Solution (HBSS) supplemented with 10% fetal
calf serum. Three days after the last medium change, the
cells were split to a density of about 10^5 cells per 0.3
ml of fresh medium. One hour later, cells were pelleted
30 at 3000 rpm in a clinical centrifuge and resuspended at a
concentration of 10^5 to 10^6 cells per ml in HBSS
without serum. The cells were then processed by one of
the following methods:

1 1. Cells were fixed.

Cells were fixed in solution consisting of 45% ethanol/5% formalin. This was done by adding an equal volume of a solution of 90% ethanol/10% formalin to the cell sample. Cells may be stored in this solution at 4°C for at least several days. To carry out the in situ hybridization reaction, an equal volume of a solution consisting of 60% formamide, 4 M ammonium acetate, 0.2 M Tris-acetate (pH 7.4), 100 ug/ml of ribosomal RNA sheared and sized to 50 bases, and 5 ug/ml of an RNA probe directly labeled with fluorescein, prepared and labeled as described in Example 1, was added to the cell suspension. After incubation at 55°C for 30 minutes, the cells were pelleted by centrifugation at 3000 rpm in a clinical centrifuge. The cell pellet was washed three times with HBSS. In the final wash, the cells were resuspended at about 75,000 cells per 0.3 ml. The detection of hybrid formation was accomplished after the cells were deposited onto glass slides by cytocentrifugation. One drop of a 50/50 (v/v) 100% glycerol/2x PBS solution was added to each specimen and a #1 coverslip was placed over the cells before microscopic examination. Alternatively, flow cytometer instrumentation could also be used for the detection of hybrid formation.

Fluorescence emitted from each cell is a reflection of the number of fluorescent molecules which reacted with or were attached to the probe; the amount of reacted probe within the cells was therefore visualized and recorded through photomicroscopy using a Nikon Photophot fluorescence microscope. Specimens were photographed with high speed film (Kodak EES135, PS 800/1600) at 1600 ASA for 10 seconds exposure time and a 400x magnification using standard filter combinations for transmission of fluorescent light.

1 The results are demonstrated in Fig. 9, panels
1-4. It is known that K562 cells express mRNA target
nucleic acid sequences corresponding to the c-abl, c-sis,
5 and c-myc oncogenes. The detection of the c-abl gene is
shown in panel 1, as the light emitted from the cells; the
detection of the c-sis gene is shown in panel 2, and the
detection of the c-myc gene in panel 3. Panel 4 shows
that the background is negative when no probe is included
in the in situ hybridization reaction.

10 2. Cells were not fixed before the in situ
hybridization assay.

15 To carry out the in situ hybridization reaction,
an equal volume of the following solution was added to the
cell suspension: a solution consisting of 35% ethanol,
55% formamide, 5% formalin, 4 M ammonium acetate, 0.2 M
Tris-acetate (pH 7.4), 100 ug/ml of ribosomal RNA sheared
and sized to 50 bases, and 5 ug/ml of an anti-sense RNA
probe directly labeled with fluorescein, prepared and
labeled as described in Example 1. After incubation at
20 37° C for 20 minutes, the cells were pelleted by
centrifugation at 3000 rpm in a clinical centrifuge. The
cell pellet was washed three times with HBSS. In the
final wash, the cells were resuspended at about 75,000
cells per 0.3 ml. The detection of hybrid formation was
25 accomplished after the cells were deposited onto glass
slides by cytocentrifugation. One drop of a 50/50 (v/v)
100% glycerol/2x PBS solution was added to each specimen
and a #1 coverslip was placed over the cells before
microscopic examination. Alternatively, instrumentation
30 could also be used for the detection of hybrid formation
such as a flow cytometer.

35 Fluorescence emitted from each cell is a
reflection of the number of fluorescent molecules which
reacted with probe; the amount of reacted probe within the
cells was therefore visualized and recorded through

1 photomicroscopy using a Nikon Photophot fluorescence
microscope. Specimens were photographed with high speed
film (Kodak EES135, PS 800/1600) at 1600 ASA for 10
seconds exposure time and at 400x magnification using
5 standard filter combinations for transmission of
fluorescent light.

The results are demonstrated in Figure 9, panels
5-8. It is known that K562 cells express mRNA target
nucleic acid sequences corresponding to the c-abl, c-sis,
10 and c-myc oncogenes. The detection of the c-abl gene is
shown in panel 5, as the light emitted from the cells; the
detection of the c-sis gene is shown in panel 6, and the
detection of the c-myc gene in panel 7. Panel 8 shows
that the background is negative when no probe is included
15 in the in situ hybridization assay.

EXAMPLE 10

In Situ Hybridization of mRNA within Cells in Suspension: Hybridization to HIV Sequences Within Viable Cells

20 The T-cell derived cell line H9 (ATCC # CRL 8543)
containing the pBH10 strain of HIV, the cell line K562 and
the cell line HL60 were separately grown in medium
consisting of Hank's Balanced Salt Solution supplemented
25 with 10% fetal calf serum. Three days after the last
change in media, the cells were split to a density of
about 10^5 cells per 0.3 ml of fresh media. One hour
later, cells were pelleted at 3000 rpm in a clinical
centrifuge and resuspended at a concentration of 10^5 to
30 10^6 cells per ml in HBSS without serum.

HIV anti-sense or sense RNA probes were prepared
as described in Example 1 and labeled with
Photobiotin™. The probes were then encapsulated into
reverse evaporation phase liposome vesicles (REVs)
35 according to the method of Szoka (1978) Biochemistry 75:

1 4194. The liposomes were sterile filtered and stored at
4°C for up to four weeks before use.

5 To carry out the in situ hybridization reaction,
the REVs were added to the cell sample and a 30 minute or
60 minute incubation was carried out at 55°C or 37°C,
respectively. The cells were then pelleted by
centrifugation at 3000 rpm for 10 minutes. The cell
pellet was washed once with HBSS, pelleted again, and
resuspended in HBSS supplemented with 10% serum; the cells
10 were then allowed to continue to grow at 37°C in an
atmosphere of 5% CO₂ in air.

15 If the probes which were added to the cells had
recognized and bound to a specific target cellular gene
corresponding to the HIV virus, the function of that
cellular target gene should be altered. To assay for the
successfulness of the probe binding to a target viral
sequence within a living cell, specific biological
properties associated with the presence of active virus
within a cell were assayed. The results of these
20 biological assays are summarized on Table 2. H9 cells
containing the pBH10 isolate of HIV were used as positive
controls (HIV+). Uninfected H9 cells, HL60 cells and K562
cells were all used as negative controls (HIV-). No
differences were seen between the 3 negative control cell
25 lines with respect to any property tested. Syncytia
formation was scaled after microscopic examination on a
relative basis: -, no detectable syncytia; +, some
detectable syncytia; +++, many syncytia seen. Changes in
viral reverse transcriptase activity were measured
relative to cells receiving no probe. HIV viral antigens
30 were detected by indirect immunofluorescence. Antibodies
directed to these antigens were supplied by Cellular
Products, Inc. RNA and DNA were prepared by the
GuSCN/CsCl method. Dot blots were prepared and hybridized
35 to ³²P-labeled double stranded DNA (ds-DNA) full length

1 genomic probes. Hybridizations and wash conditions were
stringent enough only to exclude detection of rRNA and
other human endogenous retroviral sequences. Filters were
exposed to film for a sufficient period of time to detect
5 single copy sequences. Scoring was based on an arbitrary
scale with infected H9 cells as an upper level control
(+++).

10 The REVs containing the anti-sense HIV probes are
referred to on the table as "Drug". The REVs containing
negative control sense strand HIV probes are referred to
on the table as "Drug Analog". REVs which contained no
probe are referred to on the table as "No Drug".

TABLE 2

15

20

25 Table 2 summarizes the results demonstrating that the in
situ hybridization procedure can introduce and cause
hybrid formation between a probe and a specific target
mRNA sequence and that the introduced anti-sense probe
will inhibit the activity of the target mRNA. These
30 biological assays included the inhibition of syncytia
formation, the inhibition of viral enzymes and proteins as
well as the detection of viral RNA and DNA. Syncytia
formation is a process wherein virus infected cells will
tend to clump together into very large apparently
35 multinucleated masses. The absence of syncytia formation

1 in the "Drug" treated cells indicated that the probe was
delivered to and hybridized with the specific cellular
target sequences, thereby blocking the formation of
syncytia. The enzyme reverse transcriptase is a virus
5 specific enzyme. The greater than 99% decrease in the
activity of this enzyme in virus infected cells, along
with the lack of production of other viral proteins also
demonstrates the successful inhibition of the expression
of the viral phenotype by the hybridization of the
10 anti-sense RNA probe to the cellular mRNA of the infected
cells.

EXAMPLE 11

15 In Situ Hybridization of mRNA within
Cells in Suspension: Hybridization to HIV
Sequences Within Cells from Virus Infected Patients.

20 Ten ml of human peripheral blood from patients
with AIDS, AIDS-related complex (ARC) or asymptomatic
sero-positive individuals was diluted with twenty ml of
HBSS and layered over a Ficoll-Hypaque™ solution. The
sample was centrifuged to separate the mononuclear cells.
These cells were removed and placed into sterile culture
with growth medium consisting of HBSS supplemented with
10% human serum/5% fetal calf serum. The medium was
25 replaced after three days in culture. The cell lines K562
and HL60 were each grown in culture in HBSS containing 10%
fetal calf serum. Three days after the last change in
media, the cells were split to a density of about 10^5
cells per 0.3 ml of fresh medium. One hour later, cells
30 were pelleted at 3000 rpm in a clinical centrifuge and
resuspended at a concentration of 10^5 to 10^6 cells per
ml in HBSS without serum.

35 HIV anti-sense or sense RNA probes were prepared
as described in Example 1 and labeled with
Photobiotin™. The probes were then encapsulated into

1 reverse evaporation phase liposome vesicles (REVs)
according to the method of Szoka (1978) Biochemistry 75:
4194. The liposomes were sterile filtered and stored at
4°C for up to four weeks before use.

5 To carry out the in situ hybridization reaction,
the REVs were added to the cell sample and a 30 minute or
a 60 minute incubation was carried out at either 55°C or
37°C, respectively. The cells were then pelleted by
centrifugation at 3000 rpm for 10 mintues. The cell
10 pellet was resuspended in HBSS supplemented with 10% serum
and the cells were allowed to continue to grow.

When the probes are added to cells and bind to a
specific target cellular gene within the cells
corresponding to the HIV virus, the function of that
15 cellular target gene is altered. To assay for the
successfulness of the probe binding to a target viral
sequence within a living cell, specific biological
properties associated with the presence of active virus
within a cell were assayed. The results of these
biological assays are summarized on Table 3. The REVs
20 containing the anti-sense HIV probes are referred to on
the table as "Drug". The REVs containing negative control
sense strand HIV probes are referred to on the table as
"Drug Analog". REVs which contained no probe are referred
25 to on the table as "No Drug". Table 3 summarizes the
biological observation which documented that the present
invention was capable of introducing and causing hybrid
formation between a probe and a specific target mRNA
sequence. These biological assays included the
30 observation of whether cells formed syncytia. Since HIV
realted viruses tend to inhibit cell proliferation, the
increase in cell proliferation with the "Drug" treatment
further demonstrated the success of delivery of the RNA
probes to and hybridization with the mRNA in viable
35 cells. The enzyme reverse transcriptase is a virus

1 specific enzyme. The greater than 93% decrease in the
activity of this enzyme in virus infected cells, along
with the lack of production of other viral proteins also
demonstrates the successful inhibition of the viral
5 phenotype expression.

Fig. 10 demonstrates that cells which do not
contain the matching target sequences for the REV
contained probe are not altered as to their DNA content by
the present invention. Fig. 10 shows the results of a
10 Southern blot of K562 cells treated with the REVs
containing sense strand probes (Lanes A1 and B1) or REVs
containing anti-sense strand probes (Lanes A2 and B2).
The third lane on both the A and B columns is a positive
15 control known to contain sequences which would react with
either the sense or anti-sense strand probes. This
demonstrates that the probe was degraded and does not
cause a change in the cellular DNA when the REV delivered
the probe to a cell which did not contain a matching
target sequence.

20 Fig. 11 demonstrates that cells which do not
contain the matching target sequences for the REV
contained probe were not altered as to their RNA content.
In the top (HIV) panel, K562 cells which were treated with
the sense probe (Lane A) or with the anti-sense probe
25 (Lane B) did not contain any new cellular RNA
corresponding to the probe or its complementary match.
The third lane (C) demonstrates a positive control known
to contain sequences which would react with either the
sense or anti-sense strand probes, demonstrating that the
probe is degraded and does not cause a change in the
30 cellular RNA when the REV delivered the probe to a cell
which did not contain a matching target sequence.

TABLE 3

1

5

10

EXAMPLE 12Detection of HIV and CMV in Human Peripheral Blood

Ten ml of human peripheral blood from a patient with Kaposis Sarcoma was incubated at 37°C in a 1.2% ammonium oxalate solution to lyse the red blood cells. The white blood cells were centrifuged at 3,000 rpm for 10 minutes in a clinical centrifuge. The cell pellet was subsequently washed with 10 ml PBS and the pellet was resuspended in PBS. A number of replica slides were prepared by depositing 50,000-100,000 cells by cytocentrifugation onto precleaned glass slides. To these cells was added 20 ul of hybridization solution consisting of 30% ethanol, 30% formamide, 5% formaldehyde, 0.8M LiCl, 0.1M Tris-acetate (pH 7.4), 100 ug/ml low molecular weight DNA, 0.1% Triton X-100 and 2.5 ug/ml hybrid mix of either four HIV anti-sense or sense RNA probes or a CMV anti-sense RNA probe directly labeled with Pontamine Sky Blue™. The RNA probes were prepared as described in Example 1. After incubation for 10 min. at 55°C, the specimens were gently washed (1-200 ml per cm² of cell area) with 0.1x SSC containing 0.1% Triton X-100. One drop of a 50/50 (v/v) 100% glycerol/2x PBS solution was added to each specimen. Specimens were photographed with high speed film (Kodak EES135, PS 800/1600) for 5 sec. exposure on a Leitz microscope at 400x magnification using

35

1 a standard filter combination for transmission of
fluorescent light.

5 Figure 12, panel "BLANK" represents the results when no probe was added to the hybridization solution; panel "HIV", when four anti-sense strand HIV probes were added; panel "SENSE", when four sense strand HIV probes were added; and panel "CMV", when an anti-sense CMV probe was added. Two viruses (HIV and CMV) associated with HIV infection in Kaposi's sarcoma were detected by the one-step
10 in situ hybridization of the present invention.

EXAMPLE 13

Detection of Oncogenes in the K562 Cell Line

15 K562 cells (ATCC #CCL 243) were grown in HBSS supplemented with 10% fetal calf serum. One hour after the medium was changed, a number of replica slides were prepared by depositing 50,000-100,000 cells onto a slide by cytocentrifugation. To these cells was added twenty ul of hybridization solution consisting of 20% ethanol, 30%
20 formamide, 5% formaldehyde, 0.8M LiCl, 0.1M Tris-acetate (ph 7.4), 100 ug/ml low molecular weight DNA, 0.1% Triton X-100 and 2.5 ug/ml of either a c-myc, c-sis, or c-abl anti-sense RNA probe labeled directly with Pontamine Sky Blue™. The probes were prepared as described in Example I.
25 After incubation for 10 minutes at 55°C, the specimens were gently washed (1-200 ml per cm² of cell area) with 0.1x SSC containing 0.1% Triton X-100. One drop of a 50/50 (v/v) 100% glycerol/2x PBS solution was added to each specimen and a #1 coverslip was placed over the cells
30 before microscopic examination. Photographs were obtained as described in Example 12.

Figure 13, panel D demonstrates the results when no probe was added to the hybridization solution; panel A, when c-abl anti-sense probe was added; panel C, when c-myc anti-sense probe was added; and panel B, when c-sis

1 anti-sense probe was added. The one-step in situ
hybridization procedure of the present invention detected
3 oncogenes known to be expressed in this cell line. The
negative control (panel D) is blank.

5 One skilled in the art will readily appreciate
that the present invention is well adapted to carry out
the objects and obtain the ends and advantages mentioned,
as well as those inherent therein. The components,
methods, procedures and techniques described herein are
10 presently representative of the preferred embodiments, are
intended to be exemplary, and are not intended as
limitations on the scope of the present invention.
Changes therein and other uses will occur to those skilled
in the art which are encompassed within the spirit of the
15 invention and are defined by the scope of the appended
claims.

What is claimed is:

20

25

30

35

1 1. A method for assaying biopolymers in a specimen having substantially intact membranes comprising the steps of:

5 contacting said sample with a medium comprising a precipitating agent, a cross-linking agent, a denaturing agent, a hybrid stabilizing agent, a buffering agent, a selective membrane pore-forming agent and at least one probe having a nucleotide sequence at least substantially complementary to a specific nucleotide sequence to be detected, said contacting being under hybridizing conditions,

10 incubating said sample with said medium in the presence of at least one energy emitting label,

15 detecting duplex formation by means of said label, wherein said method is capable of detecting at least 1 to at least 5 biopolymers per cell.

20 2. The method of Claim 1 wherein said label is attached to said probe.

25 3. The method of Claim 1 wherein said label is added after the duplex formation is complete.

4. The method of Claim 1 wherein said label is selected from the group consisting of fluorescers, chemiluminescers, enzyme labels, and radiolabels.

30 5. The method of Claim 3 wherein said label is selected from the group consisting of avidin and streptavidin.

1 6. The method of Claim 1 wherein said precipitating agent is selected from the group consisting of ethanol, methanol, acetone, formaldehyde and combinations thereof.

5

7. The method of Claim 1 wherein said cross-linking agent is selected from the group consisting of paraformaldehyde, formaldehyde, dimethylsilserimidate, and ethyldimethylamino-propylcarbodiimide.

10

8. The method of Claim 1 wherein said denaturing agent is selected from the group consisting of formamide, urea, sodium iodide, thiocyanate, guanidine, perchlorate, trichloroacetate, and tetramethylamine.

15

9. The method of Claim 1 wherein said hybrid stabilizing agent is selected from the group consisting of sodium chloride, lithium chloride, magnesium chloride, ferric sulfate and ammonium acetate.

20

10. The method of Claim 1 wherein said pore forming agent is selected from the group consisting of Brij 35, Brij 58, Triton X-100, CHAPS™, desoxycholate and sodium dodecyl sulfate.

25

11. The method of Claim 1 wherein said biopolymer is RNA.

30

12. The method of Claim 1 wherein said biopolymer is DNA.

35 13. The method of Claim 1 wherein said biopolymer is an antigen.

1 14. The method of Claim 1 wherein at least two
biopolymers are assayed simultaneously in the same
sample.

5 15. The method of Claim 14 wherein at least one
biopolymer is a polynucleotide and a second biopolymer is
an antigen.

10 16. The method of Claim 1 wherein said
temperature is 15°C- 80°C.

17. The method of Claim 16 wherein said
temperature is 50°C to 55°C.

15 18. The method of Claim 1 wherein said method is
accomplished within about 4 hours.

20 19. The method of Claim 1 wherein said
biopolymer is selected from the group consisting of a RNA,
a DNA, a viral gene, an oncogene, and an antigen.

25 20. The method of claim 1, wherein said
biopolymer is an oncogene.

21. The method of claim 1, wherein said
biopolymer is a virus.

30 22. A kit for assaying the presence of a
biopolymer in a suspect cell sample comprising,
a hybridization solution comprising a
precipitating agent, a cross-linking agent, a
denaturing agent, a hybrid stabilizing agent, a
buffering agent, and a selective membrane
pore-forming agent.

1 23. The kit of claim 22 also comprising,
a supply of a probe selected so that it will
hybridize with said suspect biopolymer if it is
present, to form a hybridized complex.

5 24. The kit of claim 23 also comprising,
means for contacting said suspect sample
with said probe to form said hybridized complex,
and
10 means for measuring for the presence and/or
extent of the presence of such labeled probe.

25. The kit of claim 23 where in said probe is
detectably labelled.

15 26. The kit of claim 23 also comprising,
a detectable label capable of detecting hybrid
formation.

20 27. A kit for assaying the presence of a
biopolymer in a suspect cell sample comprising,
a hybridization solution comprising 30% ethanol,
30% formamide, 5% formaldehyde, 0.8M LiCl, 0.1M
Tris-acetate (pH 7.4), 0.1% Triton X-100,
25 50 ug/ml of ribosomal RNA sheared and sized to
about 50 bases, and 2.5 ug/ml of a single
stranded probe directly labeled with a
fluorescent reporter molecule.

30 28. The kit of claim 27 also comprising,
a supply of a probe selected so that it will
hybridize with said suspect biopolymer if it is
present, to form a hybridized complex.

1 29. The kit of claim 28 wherein said probe is
detectably labeled.

5 30. The kit of claim 28 also comprising,
a detectable label capable of detecting hybrid
formation.

10 31. The method of claim 1 wherein said detecting
of hybrid formation is quantitative.

15

20

25

30

35

1 / 14

Effect of Temperature on Hybridizations
in Fixation/Hybridization Cocktail

FIG. 1A

SUBSTITUTE SHEET

2/14

**Effect of Temperature on Hybridizations
in Fixation/Hybridization Cocktail**

FIG. 1B

SUBSTITUTE SHEET

CGK00010483

Kinetics of Hybridization with DNA or RNA Probes in Fixation/Hybridization Cocktail

FIG. 2

SUBSTITUTE SHEET

4 / 14

SECONDARY STRUCTURE OF CELLULAR RNA**FIG. 3****SUBSTITUTE SHEET**

5/14

FIG. 4A

FIG. 4B

FIG. 4C

SUBSTITUTE SHEET

6/14

SUBSTITUTE SHEET

FIG. 5

7/14

FIG. 6

SUBSTITUTE SHEET

8/14

FIG. 7

SUBSTITUTE SHEET

FIG. 8

SUBSTITUTE SHEET

10/14

FIG. 9

SUBSTITUTE SHEET

FIG. 10A

FIG. 10B

SUBSTITUTE SHEET

SUBSTITUTE SHEET

13 / 14

BLANK

SENSE

FIG. 12
SUBSTITUTE SHEET

14/14

FIG.13
SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US89/03580

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) and both National Classification and IPC
IPC (4) C12N 7/100; G01N 33/53, 33/554, 33/569.
U.S. C1 435/5,7; 436/501,518; 424/1.1,3; 536/26-28

II. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System	Classification Symbols
US	435/5,7,810; 436/501,518,519,800,808; 937/77,78; 536/26-28; 424/1.1,3.

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched 8

III. DOCUMENTS CONSIDERED TO BE RELEVANT 9

Category *	Citation of Document, 11 with indication, where appropriate, of the relevant passages 12	Relevant to Claim No. 13
Y	The EMBO Journal, volume 5 No. 8 issued 1986 August (Oxford, England), C. Ruppert et.al., "Proto-oncogene c-myc is Expressed in Cerebellar Neurons at Different Developmental Stages", pages 1897-1901, see the Abstract.	20
Y	L.H. Tecott, et. al. "Methodological Considerations in the Utilization of In Situ Hybridization" in "In Situ Hybridization: Applications to Neurobiology", published 1987, by Oxford University, pages 3-24, see pages 5, 9-10, 15, and 18.	1-31

* Special categories of cited documents: 10

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

20 November 1989.

Date of Mailing of this International Search Report

08 DEC 1989

International Searching Authority

ISA/US

Signature of Authorized Officer

Jack Spiegel