Controllo della Molteplicità nei trial clinici FamilyWise Error Rate

Livio Finos

Ringrazio i professori Aldo Solari, Jelle Goeman e Florian Klinglmueller per le idee e il materiale condivisi in tutti questi anni. Questo materiale ne è una elaborazione.

Outline

Definizione

Bonferroni (single-step)

Holm (step-wise)

Closed Testing

Combinazioni Ristrette di Ipotesi (Shaffer)

Summary

FamilyWise Error Rate (FWER)

Probabilità di fare ALMENO un falso rifiuto

FWER =
$$P(p_i \leq \widetilde{\alpha} \ per \ almeno \ una \ ipotesi \ i \ nulla \ vera)$$

= $P(\bigcup_{i \in \{ipotesi \ nulle \ vere\}} \{p_i \leq \widetilde{\alpha}\})$

Correzione di Šidàk

Se voglio controllare il FWER a livello α , a quale livello individuale $\widetilde{\alpha}$ devo rifiutare i singoli test?

FWER =
$$\alpha$$
 = $P(p_i \leq \widetilde{\alpha} \ per \ almeno \ una \ ipotesi \ nulla \ vera) =$
= $P(\bigcup_{i \in \{ipotesi \ nulle \ vere\}} \{p_i \leq \widetilde{\alpha}\}) =$
= $1 - P(\bigcap_{i \in \{ipotesi \ nulle \ vere\}} \{p_i > \widetilde{\alpha}\}) =$
 $(deMorgan)$
= $1 - (1 - \widetilde{\alpha})^{m_0} = (m_0 : \#\{ipotesi \ nulle \ vere\})$
(non conosciamo m_0 , sappiamo che però $m_0 \leq m$)
 $\leq 1 - (1 - \widetilde{\alpha})^m$

Correzione di Šidàk

Da cui ricaviamo:

$$1 - \alpha = (1 - \widetilde{\alpha})^m$$
$$(1 - \alpha)^{1/m} = (1 - \widetilde{\alpha})$$
$$\widetilde{\alpha} = 1 - (1 - \alpha)^{1/m}$$

Quindi basta rifiutare ogni singola ipotesi a livello $\widetilde{\alpha} = 1 - (1 - \alpha)^{1/m}$ (cioè rifiuto i p-value per i quali $p \leq \widetilde{\alpha}$)

Correzione di Šidàk

Da cui ricaviamo:

$$1 - \alpha = (1 - \widetilde{\alpha})^m$$
$$(1 - \alpha)^{1/m} = (1 - \widetilde{\alpha})$$
$$\widetilde{\alpha} = 1 - (1 - \alpha)^{1/m}$$

Quindi basta rifiutare ogni singola ipotesi a livello $\widetilde{\alpha} = 1 - (1 - \alpha)^{1/m}$ (cioè rifiuto i p-value per i quali $p \leq \widetilde{\alpha}$)

Purtroppo questa soluzione è valida solo quando i p-value sono INDIPENDENTI. Nella maggior parte dei casi i test hanno una dipendenzza indotta dalla dipendenza tra le variabili originali.

P-values Dipendenti

Può capitare che

 $P(\text{Almeno un Falso Rifiuto di } H_0) > (!)1 - (1 - \alpha)^2$

densità congiunta

Remark: ricordate però che le distribuzioni marginali sono uniformi perchè i due test sono sotto H_0 .

Outline

Definizione

Bonferroni (single-step)

Holm (step-wise)

Closed Testing

Combinazioni Ristrette di Ipotesi (Shaffer)

Summary

Boole

Diseguagliansa di Boole

Dai due eventi A e B:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

e quindi

$$P(A \cup B) \le P(A) + P(B)$$

Generalizzando al più eventi A_1, \ldots, A_m :

$$P(\bigcup_{i=1}^{m} A_i) \le \sum_{i=1}^{m} P(A_i)$$

Equality

L'uguaglianza si verifica quando gli eventi sono disgiunti

FamilyWise Error Rate (FWER)

Probabilità di fare ALMENO un falso rifiuto

Diseguaglianza di Bonferroni

Riduce α

Rifiuta H_i se $p_i \leq \widetilde{\alpha} = \alpha/m$ (m = numero di ipotesi)

Controllo del FWER

FWER =
$$P(p_i \le \alpha/m \text{ per almeno una ipotesi i nulla vera})$$

= $P(\bigcup_{i \in \{ipotesi \text{ nulle vere}\}} \{p_i \le \alpha/m\})$
 $\le \sum_{i \in \{ipotesi \text{ nulle vere}\}} P(p_i \le \alpha/m)$
 $\le m_0 \frac{\alpha}{m} \le \alpha$

Procedura di Bonferroni

Multiplicity adjusted p-value

$$\tilde{p}_i = mp_i \ i = 1, \dots, m$$
 e rifiuta se $\leq \alpha$

Vantaggi

- Molto facile
- Controlla il FWER sotto ogni dipendenza

Svantaggi

Conservativo (Adj. p-value molto alti, pochi rifiuti)

Outline

Definizione

Bonferroni (single-step)

Holm (step-wise)

Closed Testing

Combinazioni Ristrette di Ipotesi (Shaffer)

Summary

- **1.** Primo passo: adjusted p-value: $p \cdot m$; rifiuta se $\leq \alpha$
- **2.** Dopo r rifiuti, adjusted p-value: $p \cdot (m-r)$
- 3. Stop appena non rifiuti nulla

Bonferroni

Adj. p-value: $p_A 5$ $p_B 5$ $p_C 5$ $p_D 5$ $p_E 5 \leq ?\alpha$

 $\mathcal{H} \setminus \mathcal{R}$: A B C D E

 \mathcal{R} :

- **1.** Primo passo: adjusted p-value: $p \cdot m$; rifiuta se $\leq \alpha$
- **2.** Dopo r rifiuti, adjusted p-value: $p \cdot (m-r)$
- 3. Stop appena non rifiuti nulla

Supponiamo p_A e p_C significativi

Adj. p-value: $p_A 5$ $p_B 5$ $p_C 5$ $p_D 5$ $p_E 5 \leq ?\alpha$

 $\mathcal{H} \setminus \mathcal{R}$:

 \mathcal{R} :

- **1.** Primo passo: adjusted p-value: $p \cdot m$; rifiuta se $\leq \alpha$
- **2.** Dopo r rifiuti, adjusted p-value: $p \cdot (m-r)$
- 3. Stop appena non rifiuti nulla

Adjusted p-value: $p \cdot 3$

Adj. p-value: - p_B3 - p_D3 p_E3 $\leq ?\alpha$

 $\mathcal{H} \setminus \mathcal{R}$:

 $\mathcal{R}: A$

- **1.** Primo passo: adjusted p-value: $p \cdot m$; rifiuta se $\leq \alpha$
- **2.** Dopo r rifiuti, adjusted p-value: $p \cdot (m-r)$

 $\mathcal{R}: A$

3. Stop appena non rifiuti nulla

Supponamo p_D significativo

Adj. p-value: $-p_B 3$ $-p_D 3$ $p_E 3 \leq ?\alpha$ $\mathcal{H} \setminus \mathcal{R}$:

- **1.** Primo passo: adjusted p-value: $p \cdot m$; rifiuta se $\leq \alpha$
- **2.** Dopo r rifiuti, adjusted p-value: $p \cdot (m-r)$
- 3. Stop appena non rifiuti nulla

Adjusted p-value: $p \cdot 2$

Adj. p-value: - $p_B 2$ - - $p_E 2 \leq ?\alpha$

 $\mathcal{H}\setminus\mathcal{R}$:

 $\mathcal{R}: A$

- **1.** Primo passo: adjusted p-value: $p \cdot m$; rifiuta se $\leq \alpha$
- **2.** Dopo r rifiuti, adjusted p-value: $p \cdot (m-r)$
- 3. Stop appena non rifiuti nulla

Nessun rifiuto. Stop

Adj. p-value: $-p_B2$ - $-p_E2 \leq ?\alpha$ $\mathcal{H} \setminus \mathcal{R}:$ \mathcal{B}

Outline

Definizione

Bonferroni (single-step)

Holm (step-wise)

Closed Testing

Combinazioni Ristrette di Ipotesi (Shaffer)

Summary

Insieme Chiusura delle ipotesi (tutte le possibili intersezioni)

Ipotesi iniziali

Α

В

С

Test nodo superiore (es MANOVA)

Insieme chiusura

ABC

AB AC BC

A B C

²R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Test il nodo principale a livello α

$$oxed{\mathsf{ABC}}$$
 α

AB AC

А

В

C

BC

²R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Supponiamo sia significativo

AB AC BC

A B C

²R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Avanti

ABC -

AB
$$\alpha$$
 AC α BC α

А

В

С

²R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Verifica i successivi a livello α

AB - AC - BC
$$\alpha$$

Α

В

С

²R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Avanti $ABC - BC \alpha$

²R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Identifica i significativi

С

²R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655-660.

Svantaggio: ipotesi testate diventano sono spesso troppe:

$$=2^{\#ipotesi}-1$$

Identifica i significativi

С

²R Marcus, E Peritz, KR Gabriel (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63: 655+660 ≥ ∞ < ∞

Outline

Definizione

Bonferroni (single-step)

Holm (step-wise)

Closed Testing

Combinazioni Ristrette di Ipotesi (Shaffer)

Summary

Ipotesi Logicamente relate

Combinazioni ristrette (Shaffer)

Esempio

Modello Anova. 3 campioni.

Ipothesi: Confronto a coppie dei tre campioni.

 H_{12} : $\mu_1 = \mu_2$

 H_{23} : $\mu_2 = \mu_3$

 H_{13} : $\mu_1 = \mu_3$

Relazioni

Se H_{12} è falsa, H_{23} e H_{13} non possono essere entrambe vere.

Combinazioni ristrette

Non tutte le combinazioni di ipotesi vere/false sono possibili

Procedura di Shaffer

metodo di Holm + combinazioni ristrette

Test iniziale $c=\alpha/m$ Ripeti

- **1.** Rifiuta tutte le ipotesi con p-value $\leq c$
- 2. Ricalcola $c = \alpha/s$ con s il massimo numero di ipotesi che possono essere contemporaneamente vere assumendo che tutti i rifiuti precedenti sono corretti (ipotesi H_1 vera)

Confronto con Holm

Metodo valido sotto le stessse assunzioni di Holm Meno conservativo di Holm in caso combinazioni ristrette

Shaffer: esempio

Ipotesi e p-value ($\alpha = 0.05$)

$$H_{12}$$
 : $\mu_1 = \mu_2$ $p_{12} = 0.01$

$$H_{23}$$
: $\mu_2 = \mu_3$ $p_{23} = 0.04$

$$H_{13}$$
: $\mu_1 = \mu_3$ $p_{13} = 0.53$

Procedura di Shaffer

- **1.** Rifiuta tutte H con $p \le \alpha/3 = .0167 \to \text{Rifiuta } H_{12}$
- 2. Se H_{12} è falsa, al più una tra H_{23} e H_{13} può essere contemporaneamente vera.
- **3.** Rifiuta tutte le H con $p \leq \alpha/1 \rightarrow$ Rifiuta H_{23}
- 4. Continua:... Nessuno ulteriore rifiuto è possibile.

Outline

Definizione

Bonferroni (single-step)

Holm (step-wise)

Closed Testing

Combinazioni Ristrette di Ipotesi (Shaffer)

Summary

FamilyWise Error

o Generalizza gli errori di Tipo I al caso di ipotesi multiple

FamilyWise Error

- o Generalizza gli errori di Tipo I al caso di ipotesi multiple
- o Controlla la probabilità di ALMENO un falso tra tutti i rifiuti

FamilyWise Error

- o Generalizza gli errori di Tipo I al caso di ipotesi multiple
- o Controlla la probabilità di ALMENO un falso tra tutti i rifiuti
- o corregge i p-value (adjusted p-value sempre uguale o peggiore dei p-value non aggiustati)

FamilyWise Error

- Generalizza gli errori di Tipo I al caso di ipotesi multiple
- o Controlla la probabilità di ALMENO un falso tra tutti i rifiuti
- corregge i p-value (adjusted p-value sempre uguale o peggiore dei p-value non aggiustati)

Software R

- Bonferroni e Holm: library(stats); p.adjust()
- Closed Testing library(cherry); closed()
- Post-hoc ed altro library(multcomp); glht()