Distribution assumptions

GARCH MODELS IN PYTHON

Chelsea Yang
Data Science Instructor

Why make assumptions

- Volatility is not directly observable
- GARCH model use residuals as volatility shocks

$$r_t = \mu_t + \epsilon_t$$

Volatility is related to the residuals:

$$\epsilon_t = \sigma_t * \zeta(WhiteNoise)$$

Standardized residuals

• Residual = predicted return - mean return

$$residuals = \epsilon_t = r_t - \mu_t$$

• Standardized residual = residual / return volatility

$$std\,Resid = rac{\epsilon_t}{\sigma_t}$$

Residuals in GARCH

```
gm_std_resid = gm_result.resid / gm_result.conditional_volatility
```

```
plt.hist(gm_std_resid, facecolor = 'orange',label = 'standardized residuals')
```


Fat tails

 Higher probability to observe large (positive or negative) returns than under a normal distribution

Skewness

• Measure of asymmetry of a probability distribution

Student's t-distribution

u parameter of a Student's t-distribution indicates its shape

GARCH with t-distribution

```
arch_model(my_data, p = 1, q = 1,
    mean = 'constant', vol = 'GARCH',
    dist = 't')
```

GARCH with skewed t-distribution

```
arch_model(my_data, p = 1, q = 1,
    mean = 'constant', vol = 'GARCH',
    dist = 'skewt')
```

Let's practice!

GARCH MODELS IN PYTHON

Mean model specifications

GARCH MODELS IN PYTHON

Chelsea Yang
Data Science Instructor

Constant mean by default

constant mean: generally works well with most financial return data

```
arch_model(my_data, p = 1, q = 1,
    mean = 'constant', vol = 'GARCH')
```

```
Constant Mean - GARCH Model Results
                                 R-squared:
                                                            -0.001
Dep. Variable:
                     Return
Mean Model:
                   Constant Mean Adj. R-squared:
                                                      -0.001
                                 Log-Likelihood:
                                                -2771.96
Vol Model:
Distribution:
                          Normal
                                                          5551.93
                                  AIC:
                Maximum Likelihood
                                  BIC:
                                                         5574.95
Method:
                                  No. Observations:
                                                              2336
                 Fri, Dec 20 2019 Df Residuals:
                                                              2332
Date:
Time:
                        05:26:46
                                 Df Model:
                           Mean Model
                            t P>|t|
                     std err
                                                 95.0% Conf. Int.
              coef
          0.0772 1.445e-02 5.345 9.031e-08 [4.892e-02, 0.106]
```

Zero mean assumption

• zero mean: use when the mean has been modeled separately

```
arch_model(my_data, p = 1, q = 1,
    mean = 'zero', vol = 'GARCH')
```

Zero Mean - GARCH Model Results

```
0.000
Dep. Variable:
                                      R-squared:
                              Return
Mean Model:
                                      Adj. R-squared:
                                                                    0.000
                           Zero Mean
                                      Log-Likelihood:
                                                                   -2786.65
Vol Model:
                               GARCH
                                                                    5579.30
Distribution:
                              Normal
                                      AIC:
              Maximum Likelihood
                                      BIC:
                                                                     5596.57
Method:
                                      No. Observations:
                                                                       2336
                    Fri, Dec 20 2019 Df Residuals:
                                                                       2333
Date:
Time:
                            05:36:28 Df Model:
```

Autoregressive mean

• AR mean: model the mean as an autoregressive (AR) process

```
arch_model(my_data, p = 1, q = 1,
    mean = 'AR', lags = 1, vol = 'GARCH')
```

```
AR - GARCH Model Results
Dep. Variable:
                                           R-squared:
                                                                          0.001
                                   Return
Mean Model:
                                      AR Adj. R-squared:
                                                                         0.000
                                    GARCH Log-Likelihood:
                                                                    -2690.07
Vol Model:
Distribution:
                Standardized Student's t
                                           AIC:
                                                                        5392.13
                                                                        5426.66
Method:
                       Maximum Likelihood
                                           BIC:
                                           No. Observations:
                                                                           2335
                         Fri, Dec 20 2019 Df Residuals:
Date:
                                                                           2329
                                 05:39:58
                                           Df Model:
Time:
                                Mean Model
                                              P>|t|
                coef
                       std err
                                                          95.0% Conf. Int.
             0.0877 1.293e-02 6.783 1.181e-11 [6.234e-02, 0.113]
Const
             -0.0541 2.060e-02 -2.625 8.670e-03 [-9.444e-02,-1.369e-02]
Return[1]
```

Let's practice!

GARCH MODELS IN PYTHON

Volatility models for asymmetric shocks

GARCH MODELS IN PYTHON

Chelsea Yang

Data Science Instructor

Asymmetric shocks in financial data

News impact curve:

Leverage effect

- Debt-equity Ratio = Debt / Equity
- Stock price goes down, debt-equity ratio goes up
- Riskier!

GJR-GARCH

$$\sigma_t^2 = \omega + (\alpha + \gamma I_{t-1})\varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

$$I_{t-1} := \begin{cases} 0 & \text{if } r_{t-1} \ge \mu \\ 1 & \text{if } r_{t-1} < \mu \end{cases}$$

GJR-GARCH in Python

```
arch_model(my_data, p = 1, q = 1, o = 1,
    mean = 'constant', vol = 'GARCH')
```

```
Constant Mean - GJR-GARCH Model Results
______
Dep. Variable:
                                                        -0.000
                                 R-squared:
                           Return
                                 Adj. R-squared:
                                                       -0.000
Mean Model:
                     Constant Mean
Vol Model:
                        GJR-GARCH
                                 Log-Likelihood:
                                                       -2641.12
Distribution:
             Standardized Student's t AIC:
                                                       5294.23
                  Maximum Likelihood BIC:
Method:
                                                       5328.77
                                 No. Observations:
                                                          2336
                   Tue, Dec 10 2019 Df Residuals:
                                                          2330
Date:
Time:
                         11:19:41 Df Model:
                        Mean Model
______
                                   P>|t|
                                           95.0% Conf. Int.
                           4.521 6.163e-06 [3.141e-02,7.949e-02]
           0.0554 1.227e-02
                      Volatility Model
_____
                                   P>|t|
                                            95.0% Conf. Int.
                           5.317 1.054e-07 [1.883e-02,4.082e-02]
          0.0298 5.609e-03
omega
alpha[1] 0.0000 2.338e-02 0.000 1.000 [-4.583e-02,4.583e-02]
          0.3267 4.852e-02 6.733 1.663e-11 [ 0.232, 0.422]
qamma[1]
          0.8121 2.257e-02 35.978 1.835e-283 [ 0.768, 0.856]
beta[1]
```


EGARCH

- A popular option to model asymmetric shocks
- Exponential GARCH
- Add a conditional component to model the asymmetry in shocks similar to the GJR-GARCH
- No non-negative constraints on alpha, beta so it runs faster

EGARCH in Python

```
arch_model(my_data, p = 1, q = 1, o = 1,
mean = 'constant', vol = 'EGARCH')
```

Constant Mean - EGARCH Model Results ______ Dep. Variable: -0.000 Return R-squared: Adj. R-squared: -0.000 Mean Model: Constant Mean Vol Model: EGARCH Log-Likelihood: -2628.40 Distribution: Standardized Student's t AIC: 5268.79 Method: Maximum Likelihood BIC: 5303.33 No. Observations: 2336 Tue, Dec 10 2019 Df Residuals: 2330 Date: Time: 11:19:42 Df Model: Mean Model ______ 95.0% Conf. Int. 5.146 2.663e-07 [3.051e-02,6.806e-02] 0.0493 9.578e-03 Volatility Model std err 95.0% Conf. Int. -0.0202 7.350e-03 -2.743 6.094e-03 [-3.457e-02,-5.753e-03] omega 0.1707 2.279e-02 7.490 6.874e-14 [0.126, 0.215] alpha[1] -0.2360 2.598e-02 -9.087 1.019e-19 [-0.287, -0.185] gamma[1] 0.9547 9.191e-03 0.000 [0.937, 0.9731 beta[1] 103.869

Which model to use

GJR-GARCH or EGARCH?

Which model is better depends on the data

Let's practice!

GARCH MODELS IN PYTHON

GARCH rolling window forecast

GARCH MODELS IN PYTHON

Chelsea Yang

Data Science Instructor

Rolling window for out-of-sample forecast

An exciting part of financial modeling: predict the unknown

Rolling window forecast: repeatedly perform model fitting and forecast as time rolls forward

Expanding window forecast

Continuously add new data points to the sample

Motivations of rolling window forecast

- Avoid lookback bias
- Less subject to overfitting
- Adapt forecast to new observations

Implement expanding window forecast

Expanding window forecast:

Fixed rolling window forecast

New data points are added while old ones are dropped from the sample

Implement fixed rolling window forecast

Fixed rolling window forecast:

How to determine window size

Usually determined on a case-by-case basis

- Too wide window size: include obsolete data that may lead to higher variance
- Too narrow window size: exclude relevant data that may lead to higher bias

The optimal window size: trade-off to balance bias and variance

Let's practice!

GARCH MODELS IN PYTHON

