```
Download from finelybook www.finelybook.com
original_w = [...] # Load the weights from the other framework
original b = [...] # Load the biases from the other framework
X = tf.placeholder(tf.float32, shape=(None, n inputs), name="X")
hidden1 = fully connected(X, n hidden1, scope="hidden1")
[...] # # Build the rest of the model
# Get a handle on the variables created by fully_connected()
with tf.variable_scope("", default_name="", reuse=True): # root scope
    hidden1 weights = tf.get variable("hidden1/weights")
    hidden1 biases = tf.get variable("hidden1/biases")
# Create nodes to assign arbitrary values to the weights and biases
original weights = tf.placeholder(tf.float32, shape=(n inputs, n hidden1))
original biases = tf.placeholder(tf.float32, shape=(n hidden1))
assign_hidden1_weights = tf.assign(hidden1_weights, original_weights)
assign hidden1 biases = tf.assign(hidden1 biases, original biases)
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    sess.run(assign_hidden1_weights, feed_dict={original_weights: original w})
    sess.run(assign_hidden1_biases, feed_dict={original_biases: original_b})
    [...] # Train the model on your new task
```

Freezing the Lower Layers

It is likely that the lower layers of the first DNN have learned to detect low-level features in pictures that will be useful across both image classification tasks, so you can just reuse these layers as they are. It is generally a good idea to "freeze" their weights when training the new DNN: if the lower-layer weights are fixed, then the higher-layer weights will be easier to train (because they won't have to learn a moving target). To freeze the lower layers during training, the simplest solution is to give the optimizer the list of variables to train, excluding the variables from the lower layers:

The first line gets the list of all trainable variables in hidden layers 3 and 4 and in the output layer. This leaves out the variables in the hidden layers 1 and 2. Next we provide this restricted list of trainable variables to the optimizer's minimize() function. Ta-da! Layers 1 and 2 are now frozen: they will not budge during training (these are often called *frozen layers*).

Download from finelybook www.finelybook.com

Caching the Frozen Layers

Since the frozen layers won't change, it is possible to cache the output of the topmost frozen layer for each training instance. Since training goes through the whole dataset many times, this will give you a huge speed boost as you will only need to go through the frozen layers once per training instance (instead of once per epoch). For example, you could first run the whole training set through the lower layers (assuming you have enough RAM):

```
hidden2_outputs = sess.run(hidden2, feed_dict={X: X_train})
```

Then during training, instead of building batches of training instances, you would build batches of outputs from hidden layer 2 and feed them to the training operation:

```
import numpy as np

n_epochs = 100
n_batches = 500

for epoch in range(n_epochs):
    shuffled_idx = rnd.permutation(len(hidden2_outputs))
    hidden2_batches = np.array_split(hidden2_outputs[shuffled_idx], n_batches)
    y_batches = np.array_split(y_train[shuffled_idx], n_batches)
    for hidden2_batch, y_batch in zip(hidden2_batches, y_batches):
        sess.run(training_op, feed_dict={hidden2: hidden2_batch, y: y_batch})
```

The last line runs the training operation defined earlier (which freezes layers 1 and 2), and feeds it a batch of outputs from the second hidden layer (as well as the targets for that batch). Since we give TensorFlow the output of hidden layer 2, it does not try to evaluate it (or any node it depends on).

Tweaking, Dropping, or Replacing the Upper Layers

The output layer of the original model should usually be replaced since it is most likely not useful at all for the new task, and it may not even have the right number of outputs for the new task.

Similarly, the upper hidden layers of the original model are less likely to be as useful as the lower layers, since the high-level features that are most useful for the new task may differ significantly from the ones that were most useful for the original task. You want to find the right number of layers to reuse.

Try freezing all the copied layers first, then train your model and see how it performs. Then try unfreezing one or two of the top hidden layers to let backpropagation tweak them and see if performance improves. The more training data you have, the more layers you can unfreeze.

If you still cannot get good performance, and you have little training data, try dropping the top hidden layer(s) and freeze all remaining hidden layers again. You can