Estimation et Identification statistiques Contrôle Année 2021-2022

Les exercices sont indépendants.

Exercice 1 On collecte une mesure z reliée à un paramètre θ par $z=\theta^2+b$. Le bruit b a une densité de probabilité uniforme sur $[0\ ,\ 2]$ et est indépendant de θ . La densité de probabilité a priori de θ est uniforme sur $[0\ ,\ 1]$.

- 1. Calculer la densité a posteriori $f_{\theta|z}$ du paramètre θ étant donnée l'observation z. On ne calculera pas l'expression de f(z) de la formule de Bayes.
- 2. Déterminer les caractéristiques de la densité a posteriori de θ dans les deux cas suivants : i) z=2.5, ii) z=0.5.

Exercice 2 Comparaison entre deux estimateurs pour une loi exponentielle.

Le tableau ci-dessous répertorie la durée de vie mesurée (en année) de n=20 capteurs indépendants.

1	0.41								
1.17	0.06	1.53	1.16	1.01	1.23	0.56	0.72	1.16	0.52

La densité de probabilité de cette durée de vie X_i , pour $i \in \{1,...,n\}$, est supposée modélisée par une loi exponentielle de paramètre θ , soit $f_{X_i}(x) = \theta e^{-\theta x} \mathbf{1}_{\mathbb{R}^+}(x)$. On souhaite estimer θ à l'aide de trois estimateurs différents.

- 1. Calculer l'espérance et la variance associées à cette loi en fonction de θ
- 2. On considère un premier estimateur $\hat{\theta}_{ME} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} X_i}$. Montrer qu'on a $E[\hat{\theta}_{ME}] = \frac{n}{n-1} \theta$. En déduire que l'estimateur $\hat{\theta}_{ME2} = \frac{n-1}{\sum_{i=1}^{n} X_i}$ est un estimateur non biaisé de θ .
- 3. En utilisant les données numériques du tableau précédent, calculer une estimation de θ basée sur l'estimateur $\hat{\theta}_{ME2}$.
- 4. Donner l'expression de la vraisemblance du n-échantillon $(X_1, ..., X_n)$ en fonction de θ . En utilisant la log-vraisemblance, déterminer l'estimateur au sens du maximum de vraisemblance $\hat{\theta}_{MV}$ de θ . Cet estimateur est il biaisé?
- 5. En utilisant les données numériques du tableau précédent, calculer une estimation de θ basée sur l'estimateur $\hat{\theta}_{MV}$.

Exercice 3 Soit un signal temporel $z(t) = \theta_1 \exp(-\theta_2 \times t) + b(t)$ où pour tout t, b(t) est une variable aléatoire gaussienne de moyenne nulle et de variance σ^2 , avec indépendance entre b(t) et b(t') pour tout $t \neq t'$. Le vecteur des paramètres que l'on cherche à estimer est $\theta = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}^T$. On souhaite obtenir une estimation de ce vecteur à partir de deux mesures $z(t_1)$ et $z(t_2)$ prises aux instants distincts t_1 et t_2 . On désire choisir les deux temps de mesure t_1 et t_2 de façon à obtenir l'estimé le plus précis du vecteur θ . Une fonction de cette précision peut être obtenue à partir des caractéristiques de la matrice d'Information de Fisher, en particulier de son déterminant. Plus le déterminant de cette matrice est grand, plus son inverse (correspondant à la borne de Cramer et Rao qui caractérise la dispersion de l'estimé) sera petit. On cherche donc t_1 et t_2 qui maximise le déterminant de la matrice d'information de Fisher (on parle de D-optimalité).

- 1. Écrire la vraisemblance puis la Log-vraisemblance du vecteur de mesures $\begin{bmatrix} z(t_1) & z(t_2) \end{bmatrix}^T$ conditionnellement à θ
- 2. Calculer l'expression de la Matrice d'information de Fisher associée.

- 3. Calculer le déterminant de cette matrice et déterminer le couple (t_1, t_2) qui le maximise en fonction des composantes de θ et des caractéristiques du bruit.
- 4. Est il possible de choisir ces temps de mesure pour réaliser l'expérience optimale, sans autre connaissance du système?

Exercice 4 Estimation des paramètres d'une loi Gamma. On considère la variable aléatoire X qui suit une loi Gamma de paramètres α et β dont la densité s'exprime sous la forme $f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\mathrm{e}^{-\beta x}\mathbf{1}_{\mathbb{R}^+}(x)$ où $\Gamma(\alpha)$ est un coefficient de normalisation. Cette loi admet comme espérance $E_{\alpha,\beta}[X] = \frac{\alpha}{\beta}$ et comme variance $Var_{\alpha,\beta}(X) = \frac{\alpha}{\beta^2}$.

1. Déterminer des estimateurs des paramètres α et β à partir des estimateurs des moments d'ordre 1 et 2 de X.

Exercice 5 On dispose d'un *n*-échantillon $X_1, \ldots, X_i, \ldots, X_n$, où pour tout $i\{1, \ldots, n\}$, la variable aléatoire X_i a pour densité $f_a(x) = \frac{(k+1)x^k}{a^{k+1}} \mathbf{1}_{[0, a]}(x)$ avec k un paramètre connu k > -1.

- 1. Calculer $E_a[X_i]$ l'espérance de X_i . En déduire un estimateur du paramètre a. S'agit-il d'un estimateur sans biais? Que dire de sa consistance (on considérera la convergence presque sûre et dans L_2)?
- 2. Quel est l'estimateur du maximum de vraisemblance de a? On justifiera bien qu'il s'agit d'un maximum
- 3. Déterminer la fonction de répartition, puis la densité de la loi de la variable aléatoire définie par $\overline{X}_n = \max_{i=1...n} X_i$ pour cet échantillon. Calculer son espérance. Déduire de ceci et de la question précédente un estimateur sans biais de a.