Lecture8: Band structure

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Homework#3

- Additional Q&A session for Homework#3
 - Stern & Howard, Physical Review, 1967

Band structure of Si (1)

- Conduction band
 - Ellipsoidal model

$$E(\mathbf{k}) = \frac{\hbar^2 k_z^2}{2m_l} + \frac{\hbar^2}{2m_t} (k_x^2 + k_y^2)$$

Non-parabolicity

$$E^{NP}(\mathbf{k})(1+E^{NP}(\mathbf{k})) = E(\mathbf{k})$$

Band structure of Si (2)

- Valence band
 - Six-band k.p model (Taken from S-Band manual)

Band structure of Si (3)

Valence band

Definitions

Luttinger–Kohn:
$$P_{k} = \frac{\hbar^{2}}{2m_{0}} \gamma_{1}(k_{x}^{2} + k_{y}^{2} + k_{z}^{2})$$

$$P_{\epsilon} = -a(\epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz})$$

$$Q_{k} = \frac{\hbar^{2}}{2m_{0}} \gamma_{2}(k_{x}^{2} + k_{y}^{2} - 2k_{z}^{2})$$

$$Q_{\epsilon} = -\frac{b}{2}(\epsilon_{xx} + \epsilon_{yy} - 2\epsilon_{zz})$$

$$Q_{\epsilon} = -\frac{b}{2}(\epsilon_{xx} + \epsilon_{yy} - 2\epsilon_{zz})$$

$$R_{k} = \frac{\hbar^{2}}{2m_{0}} \sqrt{3} [-\gamma_{2}(k_{x}^{2} - k_{y}^{2}) + 2i\gamma_{3}k_{x}k_{y}]$$

$$R_{\epsilon} = \frac{\sqrt{3}}{2}b(\epsilon_{xx} - \epsilon_{yy}) - id\epsilon_{xy}$$

$$S_{\epsilon} = -d(\epsilon_{zx} - i\epsilon_{yz})$$

 $P = P_k + P_s \qquad Q = Q_k + Q_s \qquad R = R_k + R_s \qquad S = S_k + S_s$

- $\gamma_1, \gamma_2, \gamma_3$ are the Luttinger parameters.
- \bullet a, b, d are the Bir–Pikus deformation potentials.
- \bullet Δ is the spin-orbit split-off energy.

Band structure of Si (4)

Valence band

Parameters

Symbol	Parameter name	Si default value	Ge default value	Unit
γ_1	gamma1	4.306	10.536	1
γ_2	gamma2	0.345	3.107	1
γ_3	gamma3	1.44	4.397	1
$\Delta_{ m so}$	Delta	0.0434	0.297	eV

Symbol	Parameter name	Si default value	Ge default value	Unit
a	a_v	2.46	1.25	eV
b	b	-2.316	-2.067	eV
d	d	-5.514	-3.836	eV

Homework#4

- Repeat Homework#3 with realistic band structures.
 - a) Ellipsoidal model without non-parabolicity
 - $m_l = 0.914$
 - $m_t = 0.196$
 - b) Consider the non-parabolicity ($\alpha = 0.5 \text{ eV}^{-1}$)
 - How can we consider the non-parabolicity?
- Calculate the bulk hole band structure.
 - For a while, neglect the strain terms.