Matrix Factorization

ullet Given a matrix old X of size N imes M, approximate it as a product of two matrices

- **U**: $N \times K$ latent factor matrix
 - ullet Each row of $oldsymbol{U}$ represents a K-dim latent factor $oldsymbol{u}_n$
- **V**: $M \times K$ latent factor matrix
 - Each row of **V** represents a K-dim latent factor \mathbf{v}_n
- Each entry of **X** can be written as: $X_{nm} \approx \boldsymbol{u}_n^{\top} \boldsymbol{v}_m = \sum_{k=1}^K u_{nk} v_{mk}$
- If X_{nm} is large (small) then u_n and v_m should be similar (dissimilar)

Why Matrix Factorization?

• The latent factors can be used/interpreted as "embeddings" or "features"

- Especially useful for learning good features for "dyadic" or relational data
 - Examples: Users-Movies ratings, Users-Products purchases, etc.
- If $K \ll \min\{M, N\} \Rightarrow$ then can also be seen as dimensionality reduction or a "low-rank factorization" of the matrix \mathbf{X}

Why Matrix Factorization?

Can also predict the missing/unknown entries in the original matrix

- Note: The latent factor matrices U and V can be learned even when the matrix X is only partially observed (as we will see shortly)
- ullet After learning $oldsymbol{U}$ and $oldsymbol{V}$, any missing X_{nm} can be approximated by $oldsymbol{u}_n^ op oldsymbol{v}_m$
- $\bullet~UV^\top$ is the best low-rank matrix that approximates the full \boldsymbol{X}
- Note: The "Netflix Challenge" was won by a matrix factorization method

Interpreting the Embeddings/Latent Factors

• Embeddings/latent factors can often be interpreted. E.g., as "genres" if ${\bf X}$ represents a user-movie rating matrix. A cartoon with ${\cal K}=2$ shown below

• Similar things (users/movies) get embedded nearby in the embedding space (two things will be deemed similar if their embeddings are similar). Thus useful for computing similarities and/or making recommendations

Matrix Factorization

- Recall our matrix factorization model: $\mathbf{X} \approx \mathbf{U} \mathbf{V}^{\top}$
- Goal: learn ${\bf U}$ and ${\bf V}$, given a subset Ω of entries in ${\bf X}$ (let's call it ${\bf X}_{\Omega}$)
- Some notations:
 - $\Omega = \{(n, m)\}: X_{nm}$ is observed
 - Ω_{r_n} : column indices of observed entries in row n of **X**
 - Ω_{c_m} : row indices of observed entries in column m of X

Matrix Factorization

• We want **X** to be as close to $\mathbf{U}\mathbf{V}^{\top}$ as possible

Let's define a squared "loss function" over the observed entries in X

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (X_{nm} - \boldsymbol{u}_n^{\top} \boldsymbol{v}_m)^2$$

- Here the latent factors $\{\pmb{u}_n\}_{n=1}^N$ and $\{\pmb{v}_m\}_{m=1}^M$ are the unknown parameters
- Squared loss chosen only for simplicity; other loss functions can be used
- How do we learn $\{\boldsymbol{u}_n\}_{n=1}^N$ and $\{\boldsymbol{v}_m\}_{m=1}^M$?

Alternating Optimization

• We will use an ℓ_2 regularized version of the squared loss function

$$\mathcal{L} = \sum_{(n,m)\in\Omega} (\mathbf{X}_{nm} - \mathbf{u}_n^{\top} \mathbf{v}_m)^2 + \sum_{n=1}^{N} \lambda_U ||\mathbf{u}_n||^2 + \sum_{m=1}^{M} \lambda_V ||\mathbf{v}_m||^2$$

- A **non-convex** problem. Difficult to optimize w.r.t. u_n and v_m jointly.
- One way is to solve for \boldsymbol{u}_n and \boldsymbol{v}_m in an alternating fashion, e.g.,
 - $\forall n$, fix all variables except u_n and solve the optim. problem w.r.t. u_n

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

ullet $\forall m$, fix all variables except $oldsymbol{v}_m$ and solve the optim. problem w.r.t. $oldsymbol{v}_m$

$$\arg\min_{\mathbf{v}_m} \sum_{n \in \Omega_{Cm}} (X_{nm} - \mathbf{u}_n^\top \mathbf{v}_m)^2 + \lambda_V ||\mathbf{v}_m||^2$$

- Iterate until not converged
- Each of these subproblems has a simple, convex objective function
- Convergence properties of such methods have been studied extensively

The Solutions

• Easy to show that the problem

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{\boldsymbol{r}_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$$

.. has the solution

$$\boldsymbol{u}_{n} = \left(\sum_{m \in \Omega_{r_{n}}} \boldsymbol{v}_{m} \boldsymbol{v}_{m}^{\top} + \lambda_{U} \boldsymbol{I}_{K}\right)^{-1} \left(\sum_{m \in \Omega_{r_{n}}} X_{nm} \boldsymbol{v}_{m}\right)$$

Likewise, the problem

$$\arg\min_{\boldsymbol{v}_m} \sum_{n \in \Omega_{Cm}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_V ||\boldsymbol{v}_m||^2$$

.. has the solution

$$\mathbf{v}_m = \left(\sum_{n \in \Omega_{c_m}} \mathbf{u}_n \mathbf{u}_n^\top + \lambda_V \mathbf{I}_K\right)^{-1} \left(\sum_{n \in \Omega_{c_m}} X_{nm} \mathbf{u}_n\right)$$

- Note that this is very similar to (regularized) least squares regression
- Thus matrix factorization can be also seen as a sequence of regression problems (one for each latent factor)

Matrix Factorization as Regression

Suppose we are solving for v_m (with U and all other v_m 's fixed)

Can think of solving for u_n (with V and all other u_n 's fixed) in the same way

Matrix Factorization as Regression

- A very useful way to understand matrix factorization
- Can modify the regularized least-squares like objective

$$\arg\min_{\boldsymbol{u}_n} \sum_{m \in \Omega_{r_n}} (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U \boldsymbol{u}_n^\top \boldsymbol{u}_n$$

- .. using other loss functions and regularizers
- Some possible modifications:
 - If entries in the matrix **X** are binary, counts, etc. then we can replace the squared loss function by some other loss function (e.g., logistic or Poisson)
 - Can impose other constraints on the latent factors, e.g., non-negativity, sparsity, etc. (by changing the regularizer)
 - Can think of this also as a probabilistic model (a likelihood function on X_{nm} and priors on the latent factors u_n , v_m) and do MLE/MAP

Matrix Factorization: The Complete Algorithm

- \bullet Input: Partially complete matrix \boldsymbol{X}_{Ω}
- Initialize the latent factors $\mathbf{v}_1, \dots, \mathbf{v}_M$ randomly
- Iterate until converge
 - Update each row latent factor u_n , n = 1, ..., N (can be in parallel)

$$\boldsymbol{u}_n = \left(\sum_{m \in \Omega_{r_n}} \boldsymbol{v}_m \boldsymbol{v}_m^\top + \lambda_U \boldsymbol{\mathsf{I}}_K\right)^{-1} \left(\sum_{m \in \Omega_{r_n}} X_{nm} \boldsymbol{v}_m\right)$$

ullet Update each column latent factor $oldsymbol{v}_m,\ m=1,\ldots,M$ (can be in parallel)

$$\mathbf{v}_m = \left(\sum_{n \in \Omega_{c_m}} \mathbf{u}_n \mathbf{u}_n^\top + \lambda_V \mathbf{I}_K\right)^{-1} \left(\sum_{n \in \Omega_{c_m}} X_{nm} \mathbf{u}_n\right)$$

• Final prediction for any entry: $X_{nm} = \boldsymbol{u}_n^{\top} \boldsymbol{v}_m$

A Faster Algorithm via SGD

- Alternating optimization is nice but can be slow (note that it requires matrix inversion with cost $O(K^3)$ for updating each latent factor $\boldsymbol{u}_n, \boldsymbol{v}_m$)
- An alternative is to use stochastic gradient descent (SGD). In each round, select a randomly chosen entry X_{nm} with $(n, m) \in \Omega$
- Consider updating \boldsymbol{u}_n . For loss function $\sum_{m \in \Omega_{r_n}} (X_{nm} \boldsymbol{u}_n^\top \boldsymbol{v}_m)^2 + \lambda_U ||\boldsymbol{u}_n||^2$, the stochastic gradient w.r.t. \boldsymbol{u}_n using this randomly chosen entry X_{nm} is

$$-(X_{nm}-\boldsymbol{u}_{n}^{\top}\boldsymbol{v}_{m})\boldsymbol{v}_{m}+\lambda_{U}\boldsymbol{u}_{n}$$

• Thus the SGD update for u_n will be

$$\boldsymbol{u}_n = \boldsymbol{u}_n - \eta(\lambda_U \boldsymbol{u}_n - (X_{nm} - \boldsymbol{u}_n^\top \boldsymbol{v}_m) \boldsymbol{v}_m)$$

• Likewise, the SGD update for \mathbf{v}_m will be

$$\mathbf{v}_m = \mathbf{v}_m - \eta(\lambda_V \mathbf{v}_m - (X_{nm} - \mathbf{u}_n^\top \mathbf{v}_m)\mathbf{u}_n)$$

• The SGD algorithm chooses a random entry X_{nm} in each iteration, updates u_n , v_m , and repeats until convergece (u_n 's, v_m 's randomly initialized).