Recherche opérationnelle

DUT Info 2e année, parcours A

Méta-heuristiques

Florent Foucaud

Heuristiques et méta-heuristiques

Définition (Algorithme heuristique)

Algorithme qui calcule une solution d'un problème sans garantie de qualité.

Exemple : algorithme glouton pour la couverture par sommets (vidéo précédente)

Heuristiques et méta-heuristiques

Définition (Algorithme heuristique)

Algorithme qui calcule une solution d'un problème sans garantie de qualité.

Exemple : algorithme glouton pour la couverture par sommets (vidéo précédente)

Définition (Méta-heuristique)

Algorithme heuristique générique, défini pour un grand nombre de problèmes.

Heuristiques et méta-heuristiques

Définition (Algorithme heuristique)

Algorithme qui calcule une solution d'un problème sans garantie de qualité.

Exemple : algorithme glouton pour la couverture par sommets (vidéo précédente)

Définition (Méta-heuristique)

Algorithme heuristique générique, défini pour un grand nombre de problèmes.

Deux grandes familles de méta-heuristiques sont utilisées en RO :

- Méta-heuristiques de recherche locale : gradient, recuit simulé, tabou...
- Méta-heuristiques à population : algos génétiques, colonies de fourmis, essaims de particules...

Méta-heuristiques de recherche locale

Principe de la descente de gradient :

On parcourt l'espace de solutions par des transformations successives jusqu'à trouver un optimum local.

Méta-heuristiques de recherche locale

Principe de la descente de gradient :

On parcourt l'espace de solutions par des transformations successives jusqu'à trouver un optimum local.

Méta-heuristiques de recherche locale

Principe de la descente de gradient :

On parcourt l'espace de solutions par des transformations successives jusqu'à trouver un optimum local.

On définit une opération de transformation d'une solution en une autre, proche. Pour une solution S, soit N(S) l'ensemble des solutions "voisines".

Algorithme de recherche locale par descente de gradient :

1. On génère une première solution S_0 $S \leftarrow S_0$

2. Tant que N(S) contient une solution meilleure que S:

- choisir une nouvelle solution S' dans N(S)
 S ← S'
- S ← S'

3. Retourner S

#solution courante

Algorithme de recherche locale par descente de gradient :

1. On génère une première solution S_0 $S \leftarrow S_0$

#solution courante

- **2.** Tant que N(S) contient une solution meilleure que S:
 - choisir une nouvelle solution S' dans N(S) $S \leftarrow S'$
 - S ← Sⁿ
- 3. Retourner S

Algorithme de recherche locale par descente de gradient :

1. On génère une première solution S_0

 $S \leftarrow S_0$

- **2.** Tant que N(S) contient une solution meilleure que S:
 - ► choisir une nouvelle solution S' dans N(S)
 - S ← S'
- 3. Retourner S

Variantes:

#solution courante

Algorithme de recherche locale par descente de gradient :

1. On génère une première solution S_0

 $S \leftarrow S_0$

#solution courante

- **2.** Tant que N(S) contient une solution meilleure que S:
 - choisir une nouvelle solution S' dans N(S)
 - S ← S'
- 3. Retourner S

Variantes:

ullet Solution initiale S_0 : aléatoire, algo glouton, solution triviale...

Algorithme de recherche locale par descente de gradient :

1. On génère une première solution S_0

 $S \leftarrow S_0$

- #solution courante 2. Tant que N(S) contient une solution meilleure que S:
 - choisir une nouvelle solution S' dans N(S)
 - S ← S'
- Retourner S

Variantes:

- Solution initiale S_0 : aléatoire, algo glouton, solution triviale...
- Sélection de la nouvelle solution : meilleur voisin, premier voisin améliorant, voisin aléatoire...

Algorithme de recherche locale par descente de gradient :

1. On génère une première solution S_0

 $S \leftarrow S_0$ 2. Tant que N(S) contient une solution meilleure que S: #solution courante

choisir une nouvelle solution S' dans N(S)

S ← S'

3. Retourner S

Variantes:

- ullet Solution initiale S_0 : aléatoire, algo glouton, solution triviale...
- Sélection de la nouvelle solution : meilleur voisin, premier voisin améliorant, voisin aléatoire...

Passer à une solution non-améliorante pour quitter un mauvais optimum local (diversification).

Algorithme de recherche locale par descente de gradient :

On génère une première solution S₀
S ← S₀

#solution courante

- 2. Tant que N(S) contient une solution meilleure que S :
 - choisir une nouvelle solution S' dans N(S)
 - \triangleright $S \leftarrow S'$
- 3. Retourner S

Variantes:

- ullet Solution initiale S_0 : aléatoire, algo glouton, solution triviale...
- Sélection de la nouvelle solution : meilleur voisin, premier voisin améliorant, voisin aléatoire...

Passer à une solution non-améliorante pour quitter un mauvais optimum local (diversification).

→ Variante du recuit simulé (1983) :

On définit une température qui décroit lentement au cours de l'algorithme. La probabilité de diversification dépend de la température.

Le recuit, un technique métallurgique

Scott Kirkpatrick

C. Daniel Gelatt

Mario P. Vecchi

Méta-heuristiques à populations de solutions

Idée générale : on fait évoluer des ensembles de solutions (populations)

- Algorithmes génétiques (J. H. Holland, 1975)
 - Population initiale : ensemble de solutions
 - On "croise" des paires de solutions pour obtenir la population suivante
 - Des "mutations" apparaissent aléatoirement

Méta-heuristiques à populations de solutions

Idée générale : on fait évoluer des ensembles de solutions (populations)

- Algorithmes génétiques (J. H. Holland, 1975)
 - Population initiale : ensemble de solutions
 - On "croise" des paires de solutions pour obtenir la population suivante
 - Des "mutations" apparaissent aléatoirement

- Algorithmes de colonies de fourmis (M. Dorigo, 1992)
 - Des "fourmis" se déplacent plus ou moins aléatoirement dans l'instance et laissent des phéromones
 - Les fourmis suivantes vont là où il y a le plus de phéromones
 - Les phéromones disparaissent après un certain temps

John H. Holland (1929-2015)

