

#### POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

# Costruzione di motori per aeromobili

Collegamenti Filettati – Esercizio 2

Docenti:

Daniele Botto

Christian Maria Firrone

Studenti:

Francesco Doronzo – s256693

Francesco Messina – s331702

Maria Laura Uva – s323835

## OUTLINE

- ➤ OBIETTIVI E DATI DEL PROBLEMA
- > SCELTA DELLA VITE
- **MONTAGGIO**
- > CEDEVOLEZZE PEZZO/VITE
- > EFFETTO DELLA TEMPERATURA
- > VERIFICHE
- **CONCLUSIONI**

#### OBIETTIVI E DATI DEL PROBLEMA



Collegamento filettato tra due dischi di uno stadio di turbina di bassa pressione flangiati sull'albero.

- Dimensionamento del collegamento filettato:
  - Scelta della vite;
  - Numero di viti, Z.
- Rispetto dei vincoli:
  - Dimensione massima testa della vite = 14 mm;
  - Passo bullonatura  $\geq 2.5 \cdot d_{fori}$ .
- Diagramma di forzamento e confronto a temperature diverse.
- Verifica:
  - Statica;
  - A fatica;
  - A carico minimo.

 Potenza stadio 1:
 4433 kW

 Potenza stadio 2:
 5452 kW

 Ω di coppia max:
 11330 rpm

Forza aerodin. assiale: 10% F aerodin. tangenziale

 Materiale:
 INCONEL 718

 R<sub>P02</sub>:
 950 MPa

 E (T amb):
 208 GPa

 E (400 °C)
 185 GPa

 E (530 °C)
 176 GPa

 Coefficiente utilizzo vite:
 0.8 R<sub>P02</sub>

 $0.4 \div 0.5$ Coeff. attrito tra flange ( $\mu$ ): Coeff. attrito vite  $(\mu_v)$ :  $0.1 \div 0.2$ Coeff. sicurezza carico tangenziale (St): 1.5 1.6 Incertezza di serraggio α<sub>A</sub>: 400-530 °C T temperatura di esercizio: 112 mm Raggio dei centri dei fori (rfori): Raggio del centro di pressione delle pale (rcp) 215 mm Spessore delle flange: 3.6 mm Lunghezza radiale delle flange 16 mm Dimensione massima testa della vite 14 mm



#### SCELTA DELLA VITE

- Calcolo forze tangenziali necessarie per trasmettere all'albero le coppie dei due stadi;
- Calcolo forza assiale totale necessaria per trasmettere per attrito la coppia massima;
- Scelta della vite rispettando i vincoli;
- Scelta del numero di viti rispettando i vincoli.

$$C_1 = \frac{S_t P_1}{\omega}$$
;  $C_2 = \frac{S_t P_2}{\omega}$ 

$$F_{t1,aero} = \frac{C_1}{r_{CP,1}} = 26067 N$$

$$F_{t2,aero} = \frac{C_2}{r_{CP,2}} = 32059 N$$

$$F_{t,fori} = \frac{C}{r_{fori}}$$
;  $F_{ax} = \frac{F_{t,fori}}{\mu_{flange}}$ 

$$F_{ax,min} = \max(F_{ax,1}, F_{ax,2}) = 153855 N$$



$$\begin{cases} d_w = d_T = 13 \ mm \le 14 \ mm \\ \frac{2\pi r_{fori}}{Z} = 22.7 \ mm \ge 2.5 \cdot d_{fori} = 22.5 \ mm \end{cases}$$



#### **DATI VITE M8:**

## MONTAGGIO

| d [mm] | d <sub>2</sub> [mm] | d <sub>3</sub> [mm] | A <sub>d3</sub> [mm <sup>2</sup> ] | p [mm] |
|--------|---------------------|---------------------|------------------------------------|--------|
| 8      | 7.188               | 6.466               | 32.48                              | 1.25   |

- Calcolo del carico assiale del singolo bullone necessario per garantire la trasmissione della coppia;
- Calcolo dello stato di tensione della vite al montaggio;
- Calcolo della coppia di serraggio che permette di realizzare la forza necessaria al montaggio

$$F_{Kerf} = \frac{F_{ax,min}}{Z} = 4963.05 N$$

$$k = \frac{\tau}{\sigma} = \frac{d_2}{2} \left( \frac{\mu_G}{\cos \beta'} + \frac{p}{\pi d_2} \right) \cdot \frac{1}{2d_3} = 0.38$$

$$\sigma_{M,max} = \frac{0.8R_{p0.2}}{\sqrt{1+3k^2}} = 634.94 \, MPa$$

$$M_A = \frac{d_2}{2} \left( \frac{\mu_G}{\cos \beta'} + \frac{p}{\pi d_2} + \frac{D_{k,m}}{d_2} \mu_K \right) \sigma_{M,max} A_{d_3} = 24003.68 N \cdot mm$$

#### CEDEVOLEZZE: VITE

- Il sistema considerato è quello vite + dado
- ❖ Il modulo elastico è quello dell'INCONEL 718 a temperatura ambiente: 208 GPa



#### Interamente filettata

$$l = 20 mm$$

TESTA: 
$$l_{SK}=0.5\cdot d_{nom}=4~mm$$
 FILETTI MADREVITE:  $l_M=0.4\cdot d_{nom}=3.2~mm$  FILETTI VITE  $l_G=0.5\cdot d_{nom}=4~mm$  VITE NON AVVITATA:  $l_{Gew}=3\cdot s_{flange}=10.8~mm$   $A_{SK}=A_M=50.26~mm^2$   $A_G=A_{Gew}=32.48~mm^2$ 

$$\delta_i = \frac{l_i}{E_i A_i}$$



$$\delta_S = \delta_{SK} + \delta_{Gew} + \delta_{GM} = 2.88 \cdot 10^{-6} \, mm/N$$

## CEDEVOLEZZE: PEZZO



$$\tan \phi = 0.362 + 0.032 \cdot \ln \left( \frac{3s_{flange}}{2d_T} \right) + 0.153 \cdot \ln \left( \frac{D_A}{d_T} \right) = 0.3519$$

$$D_A = 16 \ mm$$

$$D_{A,lim} = d_T + 3 \cdot s_{flange} \cdot \tan \phi = 16.95 \ mm$$

$$d_T < D_A < D_{A,lim}$$



$$\delta_P = \frac{\frac{2}{d_{fori}\tan\phi}\ln\left(\frac{\left(d_T+d_{fori}\right)\left(D_A-d_{fori}\right)}{\left(d_T-d_{fori}\right)\left(D_A+d_{fori}\right)}\right) + \frac{4}{D_A^2-d_{fori}^2}\left(3\cdot s_{flange} - \frac{\left(D_A-d_T\right)}{\tan\phi}\right)}{\pi E_P}$$

$$\delta_P = 4.92 \cdot 10^{-7} \ mm/N$$

# EFFETTO DELLA TEMPERATURA

| Te         | Temperatura ambiente        |  |  |  |  |  |
|------------|-----------------------------|--|--|--|--|--|
| $\delta_S$ | $2.88 \cdot 10^{-6} \ mm/N$ |  |  |  |  |  |
| $\delta_P$ | $4.92 \cdot 10^{-7} \ mm/N$ |  |  |  |  |  |

|            | T = 400°C                   |
|------------|-----------------------------|
| $\delta_S$ | $3.24 \cdot 10^{-6} \ mm/N$ |
| $\delta_P$ | $5.54 \cdot 10^{-7} \ mm/N$ |

|              | T = 530°C                   |
|--------------|-----------------------------|
| $\delta_{S}$ | $3.40 \cdot 10^{-6} \ mm/N$ |
| $\delta_P$   | $5.82 \cdot 10^{-7} \ mm/N$ |













#### VERIFICHE

#### **CARICO MINIMO**

$$F_{p,min} \geq F_{Kerf}$$

 $12729 N \ge 4963 N$ 



$$F_{ax1,aero} = 0.1 \cdot F_{t1,aero}$$
  
$$F_{ax2,aero} = 0.1 \cdot F_{t2,aero}$$

$$F_A = \frac{F_{ax1,aero} + F_{ax2,aero}}{Z} = 187.5 N$$

$$F_{p,min} = \frac{F_{M,max}}{\alpha} - \frac{\delta_s}{\delta_s + \delta_p} F_A = 12729 N$$

#### **VERIFICA STATICA**

$$\sigma_{SA} \le 0.1 \cdot R_{p0,2}$$



$$F_{SA} = \frac{\delta_P}{\delta_P + \delta_S} F_A = 24.04 N$$

$$\sigma_{SA} = \frac{F_{SA}}{A_{d3}} = 0.84 \, MPa$$

$$10\% R_{p,02} = 95 MPa$$



#### **VERIFICA A FATICA**



$$\sigma_a \le 0.9 \cdot \sigma_m$$

$$\sigma_a = \frac{\sigma_{SA}}{2} = 0.42 MPa$$

$$\sigma_m = \sigma_{M,max} + \frac{\sigma_{SA}}{2} = 635.36 MPa$$

$$\frac{\sigma_m}{R_{p02}} = 0.67$$

## CONCLUSIONI

- Si è dimensionato un collegamento filettato tra due dischi di turbina flangiati sull'albero.
- La scelta delle viti (tipo e numero) è stata fatta tenendo conto del vincolo geometrico e verificando che sopportassero i carichi.
- Il diagramma di forzamento cambia all'aumentare della temperatura. In particolare:
  - la pendenza delle curve diminuisce, a causa della riduzione del modulo elastico;
  - Per una stessa forza applicata, si ha un allungamento maggiore → la curva si sposta verso valori di spostamento più alti;
  - Il sistema risulta complessivamente meno rigido.
- Il collegamento filettato dimensionato soddisfa tutte e tre le verifiche richieste (carico minimo, statica e a fatica).





#### POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

# Costruzione di motori per aeromobili

Solidi Assialsimmetrici – Esercizio 1

Docenti:

Daniele Botto

Christian Maria Firrone

Studenti:

Francesco Doronzo – s256693

Francesco Messina – s331702

Maria Laura Uva – s323835

#### OUTLINE

- ➤ OBIETTIVI E DATI DEL PROBLEMA
- > INTERFERENZE E TOLLERANZE
- > ANDAMENTO TENSIONI RADIALI E CIRCONFERENZIALI
- > CALCOLO TENSIONE EQUIVALENTE E SCELTA DEL MATERIALE
- > EFFETTI DOVUTI AD UN RISCALDAMENTO DI 30°C
- > CONCLUSIONI

## OBIETTIVI E DATI DEL PROBLEMA

- Dimensionamento di un accoppiamento forzato albero-mozzo.
- Calcolo e verifica delle tensioni nell'albero e nella puleggia.
- Scelta della lega d'alluminio della puleggia.
- Valutazione dell'effetto del riscaldamento sull'accoppiamento.

| $D_{m,i} = d_{a,e} [mm]$ | $D_{m,e}$ $[mm]$ | $D_p [mm]$ | $L\left[mm ight]$ |
|--------------------------|------------------|------------|-------------------|
| 50                       | 90               | 600        | 25                |

#### **MATERIALI:**

- PULEGGIA → Alluminio:  $E = 7 \cdot 10^4 MPa$ ,  $\nu = 0.3$ ,  $\alpha^* = 23 \cdot 10^{-6} \, ^{\circ}C^{-1}$
- $\circ$  ALBERO  $\rightarrow$  Acciaio:  $E=2\cdot 10^5~MPa,~\nu=0.3,~\alpha^*=11\cdot 10^{-6}~^{\circ}C^{-1}$

#### PULEGGIA DI ALLUMINIO MONTATA SU UN ALBERO PIENO IN ACCIAIO



- $\circ$  Rugosità:  $R_a=R_m=4~\mu m$
- Coppia trasmessa: M = 150 Nm
- $\circ$  Coefficiente d'attrito: f = 0.2
- O Qualità foro: H7
- O Qualità di lavorazione albero: 6

#### INTERFERENZE E TOLLERANZE

#### INTERFERENZA EFFETTIVA E NOMINALE

- $\clubsuit$  Si calcola la tensione tangenziale al contatto  $\to \tau = \frac{2 \cdot C \cdot M}{\pi \cdot L \cdot d^2} = 2.29 \, MPa$
- $\clubsuit$  Si calcola la pressione di calettamento sapendo che  $p_c = \frac{\tau}{\mu} = 11.46~MPa$
- ❖ Per il calcolo dell'interferenza effettiva è necessario conoscere i coefficienti di deformabilità e gli spostamenti di albero e mozzo:

$$\delta_{m,i}(D_c) = \frac{1}{E_m} \frac{(1+v_m) + (1-v_m) \frac{D_c^2}{D_{m,e}^2}}{1-\frac{D_c^2}{D_{m,e}^2}}$$

$$\delta_{a,e}(D_c) = \frac{1-v_a}{E_a}$$
(Ipotesi di albero **pieno**)

Per il calcolo dell'interferenza nominale si inverte la formula che la lega all'interferenza effettiva mediante le rugosità.

$$i = 2(|u_{a,e}| + |u_{m,i}|)$$

$$i_{eff} = p_c [\delta_{m,i}(D_c) + \delta_{a,e}(D_c)] D_c$$

$$i_{eff} = 19.95 \ \mu m$$

$$i_{nom} = i_{eff} + 2 \cdot 0.4 \left( R_a + R_m \right)$$

$$i_{nom} = 26.35 \ \mu m$$

#### INTERFERENZE E TOLLERANZE

#### TOLLERANZE ACCOPPIAMENTO

- Il sistema foro base ha tolleranza H7  $\rightarrow$  EI = 0  $\mu m$ ; ES = 25  $\mu m$
- $\clubsuit$  Si ricava lo scostamento inferiore minimo dell'albero  $\to e_{i,min} = 51.4~\mu m$
- lacktriangledows Si trova in tabella una tolleranza per l'albero che abbia scostamento minimo maggiore o uguale a quello appena calcolato, considerando una qualità di lavorazione pari a blacktriangledows
- ❖ Si calcola la pressione massima al contatto: —

| Nom   | inal size           |           |           |         |         |          |           |          |          | ı        | Н         |          |
|-------|---------------------|-----------|-----------|---------|---------|----------|-----------|----------|----------|----------|-----------|----------|
|       | mm                  | 1         | 2         | 3       | 4       | 5        | 6         | 7        | 8        | 9        | 10        | 11       |
| Above | Up to and including |           |           |         |         |          | μm        |          |          | Devia    | ations    |          |
| 10    | 18                  |           |           |         |         |          | +11<br>0  | +18<br>0 | +27<br>0 | +43<br>0 | +70<br>0  | +11      |
| 18    | 30                  |           |           |         |         |          | +13       | +21      | +33<br>0 | +52<br>0 | +84<br>0  | +13      |
| 30    | 50                  | +1.5<br>0 | +2.5<br>0 | +4<br>0 | +7<br>0 | +11<br>0 | +16<br>0  | +25<br>0 | +39<br>0 | +62<br>0 | +100<br>0 | +16<br>0 |
| 50    | 80                  |           |           |         |         |          | - 19<br>0 | .30      | +46<br>0 | +74<br>0 | +120<br>0 | +19<br>0 |

| Nominal size<br>mm  |              |     | t*  |     | l   | ı   | x    |  |  |
|---------------------|--------------|-----|-----|-----|-----|-----|------|--|--|
| Above               | Up to<br>and | 5   | 6   | 7   | 6   | 7   | 7    |  |  |
| Above and including |              |     |     | μ   | μm  |     |      |  |  |
| 30                  | 40           | +59 | +64 | +73 | +76 | +85 | +105 |  |  |
| 30                  | 40           | +48 | +48 | +48 | +60 | +60 | +80  |  |  |
| 40 50               | 50           | +65 | +70 | +79 | +86 | +95 | +122 |  |  |
| 40                  | 30           | +54 | +54 | +54 | +70 | +70 | +97  |  |  |

 $i_{eff,MAX} = 63.6 \, \mu m$ 

$$p_{MAX} = \frac{i_{eff,MAX}}{\left[\delta_{m,i}(D_c) + \delta_{a,e}(D_c)\right]D_c}$$

$$p_{MAX} = 36.5 MPa$$

# ANDAMENTO TENSIONI RADIALI E CIRCONFERENZIALI

- $\bullet$  L'albero è pieno  $\rightarrow \sigma_r = \sigma_c = -p_c$
- ❖ Il mozzo è assimilabile ad un disco.
- Le tensioni si calcolano con le seguenti formule:

$$\sigma_r(D_{m,i}) = -p_{c,MAX} \frac{\frac{D_{m,i}^2}{D^2} - \frac{D_{m,i}^2}{D_{m,e}^2}}{1 - \frac{D_{m,i}^2}{D_{m,e}^2}}$$

$$\sigma_c(D_{m,i}) = p_{c,MAX} \frac{\frac{D_{m,i}^2}{D^2} + \frac{D_{m,i}^2}{D_{m,e}^2}}{1 - \frac{D_{m,i}^2}{D_{m,e}^2}}$$

#### Il punto più sollecitato è il raggio interno del disco (mozzo)



# CALCOLO TENSIONE EQUIVALENTE E SCELTA DEL MATERIALE

La tensione equivalente di Tresca nel punto di progetto della puleggia (ossia il suo raggio interno) è pari a 106.7 MPa

|                  |                                         |        | D           | imensioni |                 | Caratteristiche neccaniche |                                  |                   |                                     |         |                           |           |                    |
|------------------|-----------------------------------------|--------|-------------|-----------|-----------------|----------------------------|----------------------------------|-------------------|-------------------------------------|---------|---------------------------|-----------|--------------------|
| Designazione     | Tipo Stato<br>di fisico<br>semilavorato |        |             |           | Sezione         | unit                       | Carico<br>unitario<br>di rottura |                   | nitario di<br>nto dalla<br>ionalità | A       | Allungament<br>A min<br>% | :0        | Durezz:<br>Brinell |
|                  |                                         |        | s           | đ         | A<br>max.       | 1                          | R<br>in.                         | R <sub>p0,2</sub> | (min.)                              | aminati | estrusi<br>fuc/stamp      | trafilati | HB<br>min.         |
|                  |                                         |        | mm          | mm        | mm <sup>2</sup> | N/mm <sup>2</sup>          | kg/mm <sup>2</sup>               | N/mm <sup>2</sup> | kg/mm <sup>2</sup>                  |         |                           |           |                    |
| P-AI Si 1 Mg Mn  | Laminati                                | R      | tutti       | - 1       | -               | 90                         | 9                                | 40                | 4                                   | 25      | -                         | 25        | 30                 |
| UNI 3571         | e                                       | ΤN     | da 0,8 a 4  | -         | -               | 205                        | 21                               | 110               | 11                                  | 22      | -                         | 20        | 50                 |
|                  | trafilati                               | T A 14 | da 0,8 a 4  | -         | -               | 235                        | 24                               | 135               | 14                                  | 20      | -                         | 18        | 70                 |
|                  |                                         | T A 16 | da 0,8 a 4  | -         | -               | 295                        | 30                               | 245               | 25                                  | 11      | -                         | 10        | 90                 |
|                  |                                         | R      | -           | -         | 12000           | 110                        | 11                               | 60                | 6                                   | -       | 20                        | -         | 30                 |
|                  | Estrusi                                 | TA 14  | -           | -         | 12000           | 235                        | 24                               | 135               | 14                                  | -       | 16                        | -         | 70                 |
|                  |                                         | T A 16 | _           |           | 12000           | 315                        | 32                               | 265               | 27                                  |         | 10                        | _         | 90                 |
|                  | Fucinati e                              | T A 14 | ≤ 100       | -         | -               | 215                        | 22                               | 120               | 12                                  | -       | 16                        | -         | 70                 |
|                  | stampati                                | T A 16 | ≤ 100       | -         | -               | 295                        | 30                               | 245               | 25                                  | -       | 6                         | -         | 90                 |
| P-AI Mg 1 Si Cu  | Laminati                                | K      | tuttı       | - 1       | -               | 100                        | 10                               | 50                | ٥                                   | 16      | -                         | 15        | 30                 |
| UNI 6170         | e                                       | ΤN     | da 0,8 a 6  | -         | -               | 205                        | 21                               | 110               | 11                                  | 15      | -                         | 13        | 50                 |
|                  | trafilati                               | T A 16 | da 0,8 a 6  | -         | -               | 295                        | 30                               | 245               | 25                                  | 10      | -                         | 8         | 90                 |
|                  |                                         | R      | -           | -         | 12000           | 110                        | 11                               | 60                | 6                                   | -       | 16                        | -         | 30                 |
|                  | Estrusi                                 | ΤN     | -           | -         | 12000           | 175                        | 18                               | 110               | 11                                  | -       | 16                        | -         | 50                 |
|                  |                                         | T A 16 | -           | -         | 12000           | 265                        | 27                               | 235               | 24                                  | -       | 9                         | -         | 80                 |
|                  | Fucinati e<br>stampati                  | T A 16 | ≤ 100       | -         | -               | 265                        | 27                               | 235               | 24                                  | -       | 8                         | -         | 80                 |
| P-I Zn 5,8 Mg Cu | Laminati                                | R      | ≤ 20        | -         | -               | 185                        | 19                               | 90                | 9                                   | 9       |                           | 9         | 50                 |
| UNI 3735         | e trafilati                             | TΑ     | da 0,5 a 20 | -         | -               | 520                        | 53                               | 445               | 45,5                                | 6       |                           | 6         | 145                |
|                  | Estrusi                                 | R      | tutti       | -         | -               | 185                        | 19                               | 90                | 9                                   | -       | 9                         | -         | 50                 |
|                  |                                         | 1 TA   | ≤ 38        | -         | -               | 540                        | 55                               | 480               | 49                                  | -       | 7                         | -         | 145                |
|                  | Fucinati e<br>stampati                  | ТА     | -           | -         | 11 000          | 500                        | 51                               | 425               | 43,5                                | -       | 7                         | -         | 145                |

Applicando Tresca la tensione circonferenziale è maggiore di quella radiale

$$\sigma_{eq} = \sigma_c - \sigma_r$$

\* Per la scelta del materiale si deve entrare in tabella imponendo che  $R_{p0.2} \geq 1.5 \; \sigma_{eq}$ 

$$\sigma_{MAX} = S \cdot \sigma_{eq} = 158.49 \, MPa$$

- La categoria scelta è quella dei fucinati e stampati, cioè quella che indica i processi produttivi tipici delle pulegge
- La scelta del materiale ricade su P-Al Si1 Mg Mn UNI 3571 (T A 16)

# EFFETTI DOVUTI AD UN RISCALDAMENTO DI 30°C

#### CALCOLO NUOVE TOLLERANZE

Un riscaldamento uniforme di 30°C cambia i valori di spostamento di albero e mozzo. Il mozzo, avendo un coefficiente di dilatazione termica maggiore, si espande più dell'albero causando una diminuzione di interferenza.

$$u_{m,i_T} = D_{m,i} \cdot \alpha_m \cdot \Delta T$$

$$u_{a,e_T} = D_{a,e} \cdot \alpha_a \cdot \Delta T$$

$$\Delta i_T = u_{a,e_T} - u_{m,i_T} = -18 \ \mu m$$

- \* L'accoppiamento adesso deve garantire un'interferenza nominale  $i_{nom,T}=i_{nom}+\Delta i_T=26.25~\mu m+18\mu m=44.25~\mu m$
- Lo scostamento inferiore dell'albero ora è  $ei_{min,T}=69.3~\mu m$ , maggiore del valore trovato senza riscaldamento.
- È necessario cambiare la classe di tolleranza dell'albero; considerando sempre un sistema foro base H7 si sceglie la classe u6

|       | inal size<br>mm |     | t*  |     | ι   |     | X    |
|-------|-----------------|-----|-----|-----|-----|-----|------|
| Above | Up to<br>and    | 5   | 6   | 7   | 6   | 7   | 7    |
| Above | including       |     |     | μ   | m   |     |      |
| 30    | 40              | +59 | +64 | +73 | +76 | +85 | +105 |
| 30    | 40              | +48 | +48 | +48 | +60 | +60 | +80  |
| 40 50 |                 | +65 | +70 | +79 | +86 | +95 | +122 |
| 40    | 30              | +54 | +54 | +54 | +70 | +70 | +97  |

# EFFETTI DOVUTI AD UN RISCALDAMENTO DI 30°C

Con le nuove tolleranze la pressione massima aumenta e quindi è necessario valutare se la nuova tensione equivalente nel punto di progetto è gestibile dalla puleggia senza snervarsi:

$$\sigma_{eq,T} = 132.24 MPa$$

$$\sigma_{MAX,T} = S \cdot \sigma_{eq,T} = 198.4 MPa$$

Il materiale regge anche in questo caso, quindi non è necessario cambiarlo.



## CONCLUSIONI

- È stato effettuato il dimensionamento di un accoppiamento albero-mozzo, valutandone le interferenze e le tensioni, a diverse temperature.
- In assenza di carico termico, per garantire la coppia di  $150~N\cdot m$  (con coefficiente di sicurezza 1.5) è sufficiente un accoppiamento H7-t\*6 e un'interferenza effettiva di circa  $20~\mu m$ .
- La scelta del materiale è stata fatta calcolando la tensione equivalente nel punto più sollecitato e scegliendo un materiale e un processo produttivo adeguati.
- Le tensioni radiale e circonferenziale nel mozzo hanno concavità opposte. La tensione assiale è nulla ovunque. Il punto più sollecitato è il raggio interno del disco.
- ❖ Quando soggetto a carico termico, a causa dei differenti coefficienti di espansione termica, l'accoppiamento subisce una perdita di interferenza che necessita di un cambio delle tolleranze di lavorazione; in questo caso il nuovo accoppiamento è H7-u6.
- Con le nuove tolleranze cambia il valore dell'interferenza effettiva; si sono quindi ricalcolate le tensioni nel mozzo, e si è verificato che la lega scelta regga il carico anche in questo caso.



#### POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

# Costruzione di motori per aeromobili

Solidi Assialsimmetrici – Esercizio 2

Docenti:

Daniele Botto

Christian Maria Firrone

Studenti:

Francesco Doronzo - s256693

Francesco Messina - s331702

Maria Laura Uva - s323835

## OUTLINE

- > OBIETTIVI E DATI DEL PROBLEMA
- > SUDDIVISIONE DEL DISCO IN SETTORI
- > METODO DI GRAMMEL
- > ANDAMENTO DELLE TENSIONI E DELLO SPOSTAMENTO
- > VELOCITÀ DI BURST
- > CONCLUSIONI

## OBIETTIVI E DATI DEL PROBLEMA

- Calcolo, attraverso il metodo di Grammel e in funzione del raggio r del disco, degli andamenti di:
  - spostamento radiale u;
  - tensione radiale  $\sigma_r$ ;
  - tensione circonferenziale  $\sigma_c$ ;
  - tensione ideale  $\sigma_{id}$ .
- Singoli contributi dovuti a:
  - forza centrifuga dovuta a pale e slot;
  - carico di volume centrifugo del disco;
  - distribuzione di temperatura;
  - tutti i carichi agenti contemporaneamente.
- Calcolo della velocità di burst (criterio di Robinson)

| !_!!!!!!!!!!!!                                              |        |
|-------------------------------------------------------------|--------|
| velocità angolare n<br>[giri/min]                           | 3646   |
| massa pala $m_p$ [kg]                                       | 0.7369 |
| massa slot $m_{\scriptscriptstyle S}$ [kg]                  | 0.1205 |
| raggio baricentro pala $z_p \ [\mathrm{m}]$                 | 0.5263 |
| raggio baricentro slot $z_{\scriptscriptstyle S}$ [m]       | 0.4040 |
| numero di pale e di slot ( $n_p=n_{\scriptscriptstyle S}$ ) | 68     |
|                                                             |        |

#### QUINTO STADIO DI UNA TURBINA DI BASSA PRESSIONE



DISCO: INCONEL 718  $(\rho = 8219.8 \, kg/m^3)$ 

## SUDDIVISIONE DEL DISCO IN SETTORI

- Si suddivide il disco in 5 settori a spessore costante.
- Per ogni settore si calcola lo spessore equivalente:

$$b = \frac{b_i + b_e}{r_i + r_e} \left( r_i + \frac{r_e - r_i}{3} \cdot \frac{b_i + 2b_e}{b_i + b_e} \right)$$

| Blocco | $b_i[m]$ | $b_e[m]$ | $r_i[m]$ | $r_e[m]$ | <b>b</b> [ <b>m</b> ] |
|--------|----------|----------|----------|----------|-----------------------|
| 1      | 0.022    | 0.022    | 0.2165   | 0.2386   | 0.022                 |
| 2      | 0.022    | 0.0045   | 0.2386   | 0.2812   | 0.013                 |
| 3      | 0.0045   | 0.0045   | 0.2812   | 0.3732   | 0.0045                |
| 4      | 0.0045   | 0.0484   | 0.3732   | 0.3887   | 0.0266                |
| 5      | 0.0484   | 0.0484   | 0.3887   | 0.397    | 0.0484                |



## METODO DI GRAMMEL

- Per ogni blocco k-esimo si scrivono gli spostamenti radiali totali al raggio interno  $u_i$  e al raggio esterno  $u_e$  in funzione dei carichi per unità di linea ( $n=\sigma\cdot b$ )
- $\diamond$  Si riscrivono le equazioni precedenti, scrivendo per ogni blocco gli spostamenti radiali u e i carichi per unità di linea n al bordo esterno in funzione di quelli al bordo interno.

$${u_e \brace n_e}_k = [T]_k {u_i \brace n_i}_k + \{V\}_k$$

- Le condizioni al contorno sono:  $\begin{cases} (n_i)_1 = 0 \\ (n_e)_5 = \frac{F_c}{2\pi(r_e)_5} = \frac{N_p(m_p r_p + m_s r_s)\omega^2}{2\pi(r_e)_5} \end{cases}$

#### METODO DI GRAMMEL

- L'andamento di  $(n_e)_5$  con  $(u_i)_1$ , cioè lo spostamento causato dalla tensione radiale  $\sigma_r$ , è lineare. Vengono prima valutati  $(n_e)_5$  per  $(u_i)_1 = 0$  m e per  $(u_i)_1 = \frac{D_e}{1000}$ ; si traccia quindi la retta che passa per i 2 punti trovati e viene valutato il valore di  $(u_i)_1$  per  $(n_e)_5$  reale che è noto.
- ightharpoonup Valutato il valore di  $(u_i)_1$  è quindi possibile inizializzare il metodo di Grammel poiché adesso sono noti i valori del vettore dei termini al raggio interno per il primo settore ed è possibile risolvere il sistema lineare ad esso associato:



## CALCOLO DELLE TENSIONI

Si calcola la tensione radiale

$$\sigma_r = n_i \cdot b$$

Si calcola la tensione circonferenziale invertendo la relazione della relativa deformazione

$$\varepsilon_c = \frac{1}{E}(\sigma_c - v\sigma_r) + \alpha^* \Delta T$$

- Si calcola la tensione equivalente di von Mises, considerando che:
  - $\sigma_c = \sigma_1$  (tensione maggiore)
  - $\sigma_r = \sigma_3$  (tensione minore)
  - $\sigma_a = \sigma_2 = 0$  (nel disco la tensione assiale è nulla)

$$\sigma_{VM} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_3 - \sigma_2)^2 + (\sigma_3 - \sigma_1)^2}$$

## ANDAMENTO DELLE TENSIONI









## ANDAMENTO DELLO SPOSTAMENTO RADIALE









#### **LEGENDA:**

- Rosso Temperatura
- Verde Pale e slot
- Blu Disco
- Nero Totale

## CRITERIO DI ROBINSON

- ullet Criterio semi-empirico: si suppone che la rottura del disco (burst) avvenga quando la tensione circonferenziale media  $\sigma_{c,m}$  eguaglia la tensione di rottura  $R_m$ .
- lacktriangle La tensione di rottura  $R_m$  varia a causa del gradiente di temperatura; per tenerne conto, si considera il valore medio calcolato sulle diverse sezioni del disco.
- lacktriangle La tensione circonferenziale media  $\sigma_{c,m}$  è valutata da:

$$F_c^k = 2(r_e - r_i) \frac{\sigma_c(r_e) \cdot b(r_e) + \sigma_c(r_i) \cdot b(r_i)}{2}$$

$$\sigma_{c,m} = \frac{\sum F_c^k}{\sum A^k}$$

$$A^{k} = 2(r_{e} - r_{i}) \frac{b(r_{e}) + b(r_{i})}{2}$$

La velocità di burst risulta essere quindi:

$$\omega_b = \omega \sqrt{\frac{R_m}{\sigma_{c,m}}} = 5899 \, rpm$$

## CONCLUSIONI

- Le stato implementato il metodo di Grammel per valutare numericamente gli spostamenti e le tensioni di un disco di turbina di bassa pressione a sezione variabile. In seguito si è calcolata la velocità di burst del disco con il criterio di Robinson.
- ❖ Il maggior contributo allo stress assiale e circonferenziale è dovuto alla forza centrifuga delle pale.
- Il settore maggiormente sollecitato è il primo, al raggio interno del disco, dove le tensioni dovute a tutti i contributi sono maggiori.
- Il contributo del gradiente termico sulla tensione circonferenziale è negativo oltre un certo raggio, quindi la dilatazione termica ha un effetto alleviante.
- La tensione circonferenziale media dovuta alla temperatura è nulla in quanto le tensioni dovute al gradiente di temperatura sono autoequilibrate.
- Gli spostamenti dovuti alla dilatazione termica sono superiori di un ordine di grandezza rispetto a quelli dovuti agli altri contributi, il che comporta che l'andamento complessivo degli spostamenti radiali sia lo stesso di quelli dovuti al solo gradiente di temperatura.



#### POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

# Costruzione di motori per aeromobili

Contatti Hertziani

Docenti:

Daniele Botto

Christian Maria Firrone

Studenti:

Francesco Doronzo – s256693

Francesco Messina – s331702

Maria Laura Uva – s323835

## OUTLINE

- ➤ OBIETTIVI E DATI DEL PROBLEMA
- > SCELTA CLASSE DI GIOCO
- **ACCOSTAMENTI**
- > MASSIMO CARICO RADIALE
- > CONCLUSIONI

## OBIETTIVI E DATI DEL PROBLEMA

- Cuscinetto a rulli cilindrici a una corona (z = 24, numero di rulli)
- ❖ Il cuscinetto è montato con forzamento su un albero cavo e soggetto ad un riscaldamento disuniforme tra anello interno ed esterno → perdita di gioco radiale.

#### Obiettivi:

- Scegliere la classe di gioco radiale del cuscinetto in modo da garantire la presenza di gioco radiale tra corpi volventi e piste;
- Diagrammare il carico sul rullo più sollecitato, la pressione Hertziana massima e il carico radiale in funzione dell'accostamento radiale;
- Ricavare il massimo carico radiale per la pressione di contatto massima e per lo snervamento.

#### **MATERIALE:**

 $\circ$  Acciaio:  $E=2\cdot 10^5~MPa,~~ \nu=0.3, 
ho~=7800 rac{kg}{m^3}$ ,  $lpha^*=12\cdot 10^{-6} \circ {
m C}^{-1}$ 

| DATI                             |                 |
|----------------------------------|-----------------|
| Diametro nominale esterno (D)    | 1 <i>5</i> 0 mm |
| Diametro pista interna ( $d_i$ ) | 113 mm          |
| Diametro pista esterna ( $d_e$ ) | 137 mm          |
| Diametro rullo $(d_r)$           | 12 mm           |
| Diametro nominale foro $(d)$     | 100 mm          |
| Ingombro assiale $(B)$           | 19 mm           |
| Lunghezza efficace rullo $(l_r)$ | 13.6 mm         |
| Velocità di rotazione $(\omega)$ | 8000 rpm        |

## SCELTA CLASSE DI GIOCO

- La perdita di gioco totale è la somma delle perdite per forzamento e carico termico
- La perdita di gioco totale deve essere minore del gioco minimo previsto nella classe scelta
- $\clubsuit$  La classe scelta, dal catalogo SKF, è quella **C4** (105  $\mu m$ , 140  $\mu m$ ).

| Diametro<br>foro<br>d |        | Gioco interno radiale<br>C2 Normale |     | ile | C3  |     | C4  |     | C5  |     |     |
|-----------------------|--------|-------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| oltre                 | fino a | min                                 | max | min | max | min | max | min | max | min | max |
| mm                    |        | μm                                  |     |     |     |     |     |     |     |     |     |
| -                     | 24     | 0                                   | 25  | 20  | 45  | 35  | 60  | 50  | 75  | 65  | 90  |
| 24                    | 30     | 0                                   | 25  | 20  | 45  | 35  | 60  | 50  | 75  | 70  | 95  |
| 30                    | 40     | 5                                   | 30  | 25  | 50  | 45  | 70  | 60  | 85  | 80  | 105 |
| 40                    | 50     | 5                                   | 35  | 30  | 60  | 50  | 80  | 70  | 100 | 95  | 125 |
| 50                    | 65     | 10                                  | 40  | 40  | 70  | 60  | 90  | 80  | 110 | 110 | 140 |
| 65                    | 80     | 10                                  | 45  | 40  | 75  | 65  | 100 | 90  | 125 | 130 | 165 |
| 80                    | 100    | 15                                  | 50  | 50  | 85  | 75  | 110 | 105 | 140 | 155 | 190 |
| 100                   | 120    | 15                                  | 55  | 50  | 90  | 85  | 125 | 125 | 165 | 180 | 220 |
| 120                   | 140    | 15                                  | 60  | 60  | 105 | 100 | 145 | 145 | 190 | 200 | 245 |



#### CARICO SU RULLO PIÙ SOLLECITATO

L'anello interno ruota ad alta velocità, pertanto si considera la forza centrifuga applicata dai rulli sull'anello esterno.

$$v_{R} = \frac{r_{i} + r_{e}}{2}$$

$$v_{R} = \frac{\omega r_{i}}{2}$$

$$\omega_{R} = \frac{v_{R}}{r_{R}}$$

$$\omega_{R} = \frac{v_{R}}{r_{R}}$$

| $v_R[m/s]$                       | 23.67  |
|----------------------------------|--------|
| $r_R[m]$                         | 0.063  |
| $m_r [kg]$                       | 0.012  |
| $\omega_R [rad/s]$               | 378.67 |
| $\delta_{oc} \left[\mu m\right]$ | 0.0635 |

$$F_c = m_r r_R \omega_R^2 = 110.68 N$$

- I rulli sono cilindrici quindi  $n = \frac{10}{9} = 1.11$
- Si considerano i seguenti parametri utili al calcolo della forza sul rullo più sollecitato:

$$K_e = K_i = \left(\frac{B^{0.8}}{3.84 \cdot 10^{-5}}\right)^n$$

$$\delta_{oc} = \left(\frac{F_c}{K_e}\right)^{\frac{1}{n}}$$

#### CARICO SU RULLO PIÙ SOLLECITATO

lacktriangle Per il rullo in presa con angolo  $\psi$  vale la seguente relazione:

$$\left(\frac{F_{\psi}}{K_i}\right)^{\frac{1}{n}} + \left(\frac{F_{\psi} + F_c}{K_e}\right)^{\frac{1}{n}} = \delta_r \cos \psi - \frac{1}{2}g$$

lacktriangle L'accostamento radiale  $\delta_r$  vale:

$$\delta_r = \frac{\frac{1}{2}g + \delta_{oc}}{\cos \psi_{max}}$$

 $\clubsuit$  Il rullo più sollecitato è quello per cui  $\psi_i=0^\circ$ , pertanto, il carico  $F_0$  che agisce sullo stesso viene valutato risolvendo la seguente equazione non lineare:

$$\left(\frac{F_0}{K_i}\right)^{\frac{1}{n}} + \left(\frac{F_0 + F_c}{K_e}\right)^{\frac{1}{n}} = \delta_r - \frac{1}{2}g$$

| $z_r$              | 1    | 3    | 5     | 7    | 9    | 11   |
|--------------------|------|------|-------|------|------|------|
| $\psi_{max}$ [°]   | 0    | 15   | 30    | 45   | 60   | 75   |
| $\delta_r [\mu m]$ | 1.06 | 1.10 | 1.23  | 1.50 | 2.13 | 4.11 |
| $F_0[N]$           | 0    | 32.4 | 157.3 | 456  | 1193 | 3796 |



#### CARICO RADIALE

La forza radiale totale agente sul cuscinetto è data dalla sommatoria delle componenti radiali di tutte le forze applicate dai rulli in presa:

$$F_r = \sum_{\psi = -\psi_{max}}^{\psi = \psi_{max}} F_{\psi} \cos \psi = F_0 \sum_{\psi = -\psi_{max}}^{\psi = \psi_{max}} \left( \frac{\cos \psi - \cos \psi_{max}}{1 - \cos \psi_{max}} \right)^n \cos \psi$$



$$F_r = \frac{F_0 \cdot z}{2\pi} \int_{-\psi_{max}}^{\psi_{max}} \left( \frac{\cos \psi - \cos \psi_{max}}{1 - \cos \psi_{max}} \right)^n \cos \psi \, d\psi = F_0 \cdot z \cdot J_s$$

 $\bullet$  Dove  $J_S$  è l'integrale di Stribeck, ma nel caso di  $g \neq 0$  e nei valori tipici del gioco nei cuscinetti la relazione viene così approssimata:



| 1—1 I M = | 31 M — 11     |
|-----------|---------------|
| F —       | $F_0 \cdot z$ |
| $F_r =$   | 5             |
|           |               |

| $z_r$ | $F_r[N]$ |
|-------|----------|
| 1     | 0        |
| 3     | 155.5    |
| 5     | 755      |
| 7     | 2189     |
| 9     | 5728     |
| 11    | 18220    |

#### PRESSIONE HERTZIANA MASSIMA

Sui due anelli agiscono carichi differenti poiché sull'anello esterno agisce anche la forza centrifuga pertanto:

$$F^{(i)} = F_0$$

$$F^{(e)} = F_0 + F_c$$

❖ Nel caso di contatto cilindro-cilindro la pressione massima
Hertziana è funzione delle curvature dei due anelli ed è data da:

$$p_{max}^{(i/e)} = \frac{2F^{(i/e)}}{\pi l_r b^{(i/e)}}$$

| $z_r$                 | 1   | 3      | 5     | 7     | 9     | 11   |
|-----------------------|-----|--------|-------|-------|-------|------|
| $p_{max}^{i}$ [MPa]   | 0   | 123.93 | 273.1 | 465   | 752.3 | 1342 |
| $p_{max}^{(e)}$ [MPa] | 208 | 236.5  | 323.7 | 470.8 | 714.2 | 1236 |

$$\begin{cases} \alpha_X = \frac{1}{d_r} \\ \beta_X = \pm \frac{1}{d_{i/e}} \end{cases}$$

$$b^{(i/e)} = \sqrt{\frac{4F^{(i/e)}}{\pi l_r} \cdot \frac{1}{\left(\alpha_X + \beta_X^{(i/e)}\right)} \cdot \left(\frac{1 - \nu^2}{E}\right)}$$

## MASSIMO CARICO RADIALE

- Il massimo carico radiale è stato valutato per via grafica tenendo in considerazione:
  - o la pressione di contatto limite pari a 1200 MPa
  - o la condizione di incipiente snervamento, che avviene in profondità quando  $p_{max}\cong \frac{R_{p_{0.2}}}{0.6}=2000~MPa$

$$|F_{r,1200}| = 15.2 \text{ kN}$$

- Nel caso considerato, ovvero quello di gioco minimo, le pressioni sugli anelli interni ed esterni non causano incipiente snervamento in profondità.
- \* Nel caso di gioco massimo, con g =  $g_{max}$   $\Delta g$  = 37  $\mu m$ , si arriva a incipiente snervamento con una forza radiale pari a:

 $\left| F_{r,2000} = 42.2 \text{ kN} \right|$ 





## CONCLUSIONI

Sono stati valutati gli accostamenti radiali, le forze e le conseguenti pressioni agenti sugli anelli così da determinare i massimi carichi radiali.

Poiché il rullo opera ad alta velocità ed è presente del gioco, si genera una forza centrifuga per cui, anche in assenza di carico radiale, sull'anello esterno la pressione non è nulla neanche nel caso

di un solo rullo in contatto.

La pressione limite di contatto nel caso di gioco minimo viene raggiunta per valori di carico radiale nel caso del massimo numero di rulli in presa considerato.

La condizione di incipiente snervamento viene raggiunta nel caso di gioco massimo a causa dei maggiori valori di accostamenti radiali.

