Herbst 24 Themennummer 3 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Für $n \in \mathbb{N}$ sei $f_n : [0,1] \to \mathbb{R}$ definiert durch $f_n(x) := \frac{n^3 x^2}{1 + n^4 x^4}$. Zeigen Sie, dass die Funktionenfolge $(f_n)_n$ punktweise auf [0,1] gegen 0 konvergiert und

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^\infty \frac{x^2}{1 + x^4} dx$$

gilt. (Die Existenz dieses uneigentlichen Riemann-Integrals brauchen Sie nicht zu begründen.) Entscheiden Sie, ob $(f_n)_n$ gleichmäßig auf [0,1] gegen 0 konvergiert und begründen Sie Ihre Entscheidung.

b) Skizzieren Sie für R>1 den Weg $\gamma_R:[0,2R+\frac{\pi}{2}]\to\mathbb{C},$ der definiert ist durch

$$\gamma_R := \begin{cases} t & t \in [0, R], \\ Re^{i(t-R)} & \text{für} & t \in (R, R + \frac{\pi}{2}], \\ i(2R + \frac{\pi}{2} - t) & t \in (R + \frac{\pi}{2}, 2R + \frac{\pi}{2}], \end{cases}$$

und berechnen Sie das Integral

$$\int_{\gamma_R} \frac{z^2}{1+z^4} \mathrm{d}z.$$

c) Zeigen Sie

$$\int_0^\infty \frac{x^2}{1+x^4} \mathrm{d}x = \frac{\pi}{2\sqrt{2}}.$$

Lösungsvorschlag:

a) Für x = 0 ist $f_n(x) = 0$ für alle $n \in \mathbb{N}$ und die Konvergenz gegen 0 klar. Für $x \neq 0$ gilt $f_n(x) = \frac{\frac{1}{nx^2}}{\frac{1}{n^4x^4} + 1} \xrightarrow{n \to \infty} \frac{0}{1} = 0$, also ist die punktweise Konvergenz gezeigt.

Mit der Substitution y := nx und $\frac{dy}{dx} = n \iff dx = \frac{1}{n} dy$ erhalten wir

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} \int_0^n \frac{n^2 y^2}{1 + n^4 y^4} dy = \int_0^\infty \frac{y^2}{1 + y^4} dy = \int_0^\infty \frac{x^2}{1 + x^4} dx,$$

wobei die Existenz des uneigentlichen Riemann-Integrals verwendet wurde. Die Funktionenfolge konvergiert nicht gleichmäßig, weil sonst

$$\int_0^\infty \frac{x^2}{1+x^4} dx = \lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 0 dx = 0$$

gelten würde. Das ist aber nicht der Fall, weil $f(x) = \frac{x^2}{1+x^4}$ eine nichtnegative, stetige Funktion auf $[1,2] \subset (0,\infty)$ ist, ihr Integral also strikt positiv sein muss. (Auf [1,2] ist die Funktion nach unten durch $\frac{1}{17}$ beschränkt, das Integral also ebenso.)

b) Der Weg parametrisiert den Viertelkreis mit Radius R und Mittelpunkt 0 im ersten Quadranten in positiver Umlaufrichtung. Er ist stückweise stetig differenzierbar und geschlossen. Wir berechnen das Integral mithilfe des Residuensatzes.

Die Menge \mathbb{C} ist offen und konvex und $f(z): \mathbb{C}\backslash S \to \mathbb{C}, \ f(z):=\frac{z^2}{1+z^4}$ ist holomorph. Dabei ist S die Menge der vierten Wurzeln von -1 eine endliche Menge, die nicht von der Spur des Weges geschnitten wird, weil alle Elemente Betrag 1 haben und R>1 gewählt ist. Die einzige Singularität von f, die vom Weg umwunden wird, und zwar genau einmal, ist $z_0=\frac{1+i}{\sqrt{2}}$. Daher gilt

$$\int_{\gamma_R} \frac{z^2}{1+z^4} dz = 2\pi i \operatorname{Res}_f(z_0).$$

Bei der Singularität handelt es sich um einen Pol erster Ordnung, weil der Nenner vier verschiedene Nullstellen hat und der Zähler um z_0 beschränkt ist aber nicht verschwindet. Das Residuum lässt sich also mittels

$$\operatorname{Res}_f(z_0) = \frac{(z_0)^2}{4(z_0)^3} = \frac{1}{4z_0} = \frac{1}{2\sqrt{2}(1+i)} = \frac{1-i}{4\sqrt{2}}$$

berechnen. Für das Integral erhalten wir $\int_{\gamma_R} \frac{z^2}{1+z^4} dz = \frac{\pi(1+i)}{2\sqrt{2}}$.

c) Wegen der Existenz des uneigentlichen Integrals gilt

$$\int_0^\infty \frac{x^2}{1+x^4} \mathrm{d} x = \lim_{R \to \infty} \int_0^R \frac{x^2}{1+x^4} \mathrm{d} x = \lim_{R \to \infty} \int_{\gamma_R^1} \frac{z^2}{1+z^4} \mathrm{d} z,$$

wobei γ_R^1 der erste Teilweg von γ_R ist (also $\gamma_R|_{[0,R]}$). Wir können ohne Einschränkung im Folgenden R>1 annehmen.

Für den dritten Teilweg γ_R^3 (= $\gamma_R|_{(R+\frac{\pi}{2},2R+\frac{\pi}{2}]}$) wählen wir eine andere Parametrisierung. Der Weg verläuft als Strecke von iR nach 0; dies können wir auch mit $\Gamma:[0,R]\to\mathbb{C}, \Gamma(t)=it$ parametrisieren. Der Weg Γ verläuft genau in die andere Richtung, also von 0 nach iR, weshalb wir noch das Vorzeichen ändern müssen. Da Wegintegrale unabhängig von der Parametrisierung des Weges sind, gilt

$$\int_{\gamma_R^3} \frac{z^2}{1+z^4} dz = \int_{-\Gamma} \frac{z^2}{1+z^4} dz = -\int_{\Gamma} \frac{z^2}{1+z^4} dz = -\int_0^R \frac{(it)^2}{1+(it)^4} \cdot i \, dt = i \int_0^R \frac{z^2}{1+z^4} dz.$$

Für den zweiten Teilweg schätzen wir mithilfe der Standardungleichung ab:

$$\left| \int_{\gamma_R^2} \frac{z^2}{1+z^4} \mathrm{d}z \right| \le |\gamma_r^2| \cdot \max_{z \in \text{ spur}(\gamma_R^2)} |f(z)| \le R \cdot \frac{\pi}{2} \cdot \max_{z \in \mathbb{C}, |z| = R} |f(z)|,$$

wobei wir verwendet haben, dass γ_R^2 eine Viertelkreislinie mit Radius R parametrisiert. Wir schätzen das Maximum im letzten Term weiter ab. Sei $z \in \mathbb{C}$ mit |z| = R, dann gilt mit der umgekehrten Dreiecksungleichung

$$|f(z)| = \frac{|z^2|}{|1+z^4|} = \frac{R^2}{|1+z^4|} \le \frac{R^2}{|1-|z^4|} = \frac{R^2}{R^4-1},$$

weil wir R > 1 annehmen. Oben eingesetzt folgt

$$\left| \int_{\gamma_R^2} \frac{z^2}{1 + z^4} dz \right| \le \frac{\pi}{2} \frac{R^3}{R^4 - 1},$$

was für $R \to \infty$ gegen 0 konvergiert.

Wir können nun alles zusammensetzen. Nach b) gilt

$$\frac{\pi(1+i)}{2\sqrt{2}} = \int_{\gamma_R} \frac{z^2}{1+z^4} dz = \int_{\gamma_R^1} \frac{z^2}{1+z^4} dz + \int_{\gamma_R^2} \frac{z^2}{1+z^4} dz + \int_{\gamma_R^3} \frac{z^2}{1+z^4} dz$$

$$= \int_0^R \frac{x^2}{1+x^4} dx + i \int_0^R \frac{x^2}{1+x^4} dx + \int_{\gamma_R^3} \frac{z^2}{1+z^4} dz$$

$$= (1+i) \int_0^R \frac{x^2}{1+x^4} dx + \int_{\gamma_R^3} \frac{z^2}{1+z^4} dz$$

$$\to (1+i) \int_0^\infty \frac{x^2}{1+x^4} dx,$$

für $R \to \infty$. Nach Division durch (1+i) folgt die Behauptung.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$