AMENDMENTS TO THE SPECIFICATION

Please amend the paragraph numbered [0009] on page 5 as follows:

The present invention provides a method for producing fullerenes, wherein the gas flow at an entrance of the first filter preferably have a temperature falling within a range of between more than 600 to and 900 °C, and more preferably within a range of 700 to 800 °C. As a result, the fullerenes in the gas flow are evaporated to flow through the first filter. However, gas flow having temperatures of greater than 900 °C requires the use of heat-resistant peripherals such as heat-resistant piping passages in addition to the heat-resistant filtering member. This results in higher equipment costs.

Please amend the paragraph numbered [0014] on pages 6-7 as follows:

Fullerene-manufacturing equipment 10 embodying a method for producing fullerenes according to an embodiment of the present invention is now described. As illustrated in Fig. 1, the fullerene-manufacturing equipment 10 includes a reactor 11, a first temperature-regulating unit 12, a first filter 13, a second temperature-regulating unit 14, and a second filter 15. The reactor 11 is operable to produce fullerenes in accordance with a combustion method. The first temperature-regulating unit 12 is operable to regulate the temperature of a high-temperature gas flow containing the fullerenes and soot (hereinafter sometimes simply called "exhaust gas") generated in the reactor 11 within a range of greater between more than 600 to and 900 °C. The first filter 13 is operable to separate the soot from the exhaust gas that has just flowed through the first temperature-regulating unit 12. The soot is in the form of a solid or rather powder when the exhaust gas is at the temperatures of 600 to 900 °C. The second temperature-regulating unit 14 is

operable to further lower the temperature of the exhaust gas that has just flowed through the first filter 13 to a range of 300 to 600 °C. The second filter 15 is operable to collect the fullerenes from the exhaust gas that has just passed through the second temperature-regulating unit 14. The following discusses details of each of the above components.

Please amend the paragraph numbered [0018] on page 9 as follows:

The first temperature-regulating unit 12 cools down the exhaust gas from the reactor 11 to the temperatures within a range of, e.g., greater between more than 600 to and 900 °C (more preferably within a range of 600 to 700 °C). The temperatures can be regulated in accordance with an adjustment in length of the piping passage 18 and adjustments in supply amount and temperature of coolant (e.g., water).

Please amend the paragraph numbered [0022] on page 11 as follows:

The second temperature-regulating unit 14 is provided at the gas exit 25 to span between the first filter 13 and the second filter 15. The second temperature-regulating unit 14 is substantially identical in construction to the first temperature-regulating unit 12, and includes a piping passage 30 and a coolant pipe 31 that extends around the exterior of the piping passage 30. The second temperature-regulating unit 14 lowers the temperature (in the range of greater between more than 600 to and 900 °C) of the exhaust gas containing the fullerenes from the first filter 13 to a range of 300 to 600 °C (more preferably a range of 300 to 400 °C). As a result, the polycyclic aromatic compounds contained in the exhaust gas are retained in a gaseous state, while the fullerenes are solidified to form powder.

Please amend the first full paragraph on page 16 (lines 8-17) as follows:

The gas flow containing the fullerenes and soot (the exhaust gas) provided by the first process usually has temperatures ranging from 1500 to 2000 °C, and is too high in temperature to be fed through the first filter 13. The first temperature-regulating unit 12 lowers the temperature of the gas flow containing the fullerenes and soot (the exhaust gas) to temperature in a range of between more than 600 to and 900 °C. At such predetermined temperatures, the fullerenes are held in a gaseous state. The cooled gas flow containing the fullerenes and soot (the exhaust gas) is allowed to flow through the first filter 13. As a result, the soot is collected from the exhaust gas. The rest of the exhaust gas is a gas that includes the fullerenes and a small amount of monocyclic or polycyclic aromatic compounds.