PART - 1

Dataset

Dataset Selection:

Dataset: Healthcare Dataset (https://www.kaggle.com/datasets/prasad22/healthcare-dataset/data)

Format: Available in CSV format, suitable for importing into PostgreSQL.

Description: This dataset is a synthetic healthcare dataset designed for data science, machine learning, and data analysis enthusiasts. It serves as a valuable resource to practice and showcase data manipulation and analysis skills within the context of a healthcare system.

Here's a breakdown of the key points about the dataset:

<u>Content:</u> It consists of 10,000 records, each representing a synthetic patient healthcare record. <u>Data Elements:</u> The records include various attributes related to patient demographics, medical conditions, admission details, diagnoses, medications, and more. This provides a comprehensive overview of simulated patient healthcare encounters.

<u>Synthetic Nature:</u> It's important to note that the data is synthetic, meaning it's artificially generated to resemble real-world healthcare data. While it offers valuable practice opportunities, it may not perfectly mirror real patient information.

PART - 2

Use case description

This section details 15 Use Cases, highlighting their connections:

Use Case 1: Register a New Patient (One patient - One record)

Description: Captures basic patient information for new registrations. **Relevance:** Establishes the foundation for patient data within the system.

Interconnection: Links to future admissions, diagnoses, and medication records.

Use Case 2: Update Patient Information (One patient - Many updates)

Description: Allows modifying existing patient details (e.g., address change).

Relevance: Ensures patient information remains accurate for better care.

Interconnection: Updates patient information across all linked records (admissions, medications).

Use Case 3: Search for Patients (Many search criteria - Many patients)

Description: Finds patients based on specific criteria (name, date of birth).

Relevance: Expedites locating patients for treatment or record retrieval.

Interconnection: Provides access points to specific patient data based on search parameters, leveraging information from Patient, Insurance Provider (if applicable), and potentially Admissions (for recent interactions).

Use Case 4: Admit a Patient (One patient - One admission)

Description: Records details when a patient enters the healthcare facility, including assigning a doctor and admission type.

Relevance: Initiates a new episode of care and links to subsequent actions.

Interconnection: Creates an admission record tied to the patient, doctor (from Use Case 13: Assign Doctor to Admission), and admission type. Allows for further data collection (diagnoses, medications, billing).

Use Case 5: Record Discharge Information (One admission - One discharge record)

Description: Captures details when a patient is discharged, finalizes the billing process, and closes the admission record.

Relevance: Finalizes the admission cycle, tracks patient flow, and generates billing information. **Interconnection:** Completes the admission cycle, triggers billing record creation and allows for analysis of length of stay (Use Case 8: Analyze Length of Stay).

Use Case 6: Diagnose a Patient (One patient - Many diagnoses)

Description: Links patients to diagnosed conditions during admissions.

Relevance: Documents health issues for treatment planning and future reference.

Interconnection: Connects diagnoses to specific admissions and facilitates tracking patient health history.

Use Case 7: Track Vital Signs (One admission - Many vital sign records)

Description: Records vital signs (temperature, blood pressure) measured at intervals.

Relevance: Monitors patient health status during admission.

Interconnection: Provides detailed data points for assessing patient progress within an admission.

Use Case 8: Analyze Length of Stay (Admission - Additional data for grouping)

Description: Studies how long patients from various categories stay admitted.

Relevance: Analyzes healthcare resource utilization and potential areas for improvement. **Interconnection:** Leverages admission data along with patient group information for broader analyses.

Use Case 9: View Patient Medical History (One patient - Many diagnoses)

Description: Retrieves past diagnoses for a patient.

Relevance: Provides a comprehensive view of a patient's health history for informed decision-

making.

Interconnection: Connects past diagnoses to a specific patient for continuity of care.

Use Case 10: Track Patient Allergies (One patient - Many allergies)

Description: Records allergies a patient may have.

Relevance: Ensures patient safety by preventing allergic reactions during treatment.

Interconnection: Flags potential risks associated with medications or procedures for a specific

patient.

Use Case 11: Prescribe Medications (One admission - Many medications)

Description: Records medications prescribed for a patient during admission.

Relevance: Documents treatment plans and tracks medication use.

Interconnection: Links medications to a specific admission and patient for medication history and

potential interaction checks.

Use Case 12: Check for Medication Interactions (Many medications - Analysis result)

Description: Analyzes potential interactions between prescribed medications.

Relevance: Ensures patient safety by identifying and flagging potentially harmful interactions.

Interconnection: Leverages medication data from admissions to analyze potential risks.

Use Case 13: Assign Doctor to Admission (One admission - One doctor)

Description: Links a doctor to a specific patient admission.

Relevance: Assigns responsibility for care and tracks doctor involvement.

Interconnection: Connects admissions to doctors for managing patient care and tracking doctor

workload.

Use Case 14: Schedule Appointments for Admissions (Admission - Doctor - Appointment schedule)

Description: Assign doctors with available time slots to upcoming admissions based on their schedule.

Relevance: Ensures continuity of care by assigning qualified doctors with available time for upcoming admissions.

Interconnection: Connects admissions to doctors with appropriate schedules, leveraging Use Case 13 ("Assign Doctor to Admission") for doctor assignment during scheduling.

Use Case 15: Generate Patient Reports (Patient - Report)

Description: This use case allows healthcare providers to generate comprehensive reports summarizing patient information.

Relevance: Provides a consolidated view of patient data for informed decision-making, treatment planning, and recordkeeping.

Interconnection: Leverages data from various entities (admissions, diagnoses, medications, allergies) to generate reports specific to a patient. Reports can be customized to include relevant details from linked Use Cases.

ERD

Entities:

- 1. Patient:
 - a. Attributes:
 - i. PatientID (Primary Key)
 - ii. BloodTypeID (Foreign Key references Patient)
 - iii. Name
 - iv. Age
 - v. Gender
- 2. BloodGroup:
 - a. Attributes:
 - BloodTypeID (Primary Key)
 - ii. BloodType
- 3. InsuranceProvider:
 - a. Attributes:
 - i. InsuranceProviderID (Primary Key)
 - ii. PatientID (Foreign Key references Patient)
 - iii. InsuranceNumber (Candidate Key)
 - iv. InsuranceProviderName
- 4. Admission:
 - a. Attributes:
 - i. AdmissionID (Primary Key)
 - ii. PatientID (Foreign Key references Patient)
 - iii. DoctorID (Foreign Key references Doctor)
 - iv. HospitalID (Foreign Key references Hospital)
 - v. MedicationID (Foreign Key references Medication)
 - vi. AdmissionDate
 - vii. DischargeDate
- 5. AdmissionType:
 - a. Attributes:
 - AdmissionTypeID (Primary Key)
 - ii. AdmissionID (Foreign Key references Admission)
 - iii. AdmissionType (Emergency, Elective, Urgent)
- 6. Billing:
 - a. Attributes:
 - i. BillingID (Primary Key)
 - ii. AdmissionID (Foreign Key references Admission)
 - iii. BillingAmount
- 7. Test:
 - a. Attributes:
 - i. TestID (Primary Key)

- ii. TestName
- 8. TestResult:
 - a. Attributes:
 - i. AdmissionID (Foreign Key references Admission)
 - ii. TestID (Foreign Key references Test)
 - iii. TestResults
- 9. Hospital:
 - a. Attributes:
 - i. HospitalID (Primary Key)
 - ii. HospitalName
- 10. Room:
 - a. Attributes:
 - i. RoomID (Primary Key)
 - ii. HospitalID (Foreign Key references Hospital)
 - iii. RoomNumber
- 11. Doctor:
 - a. Attributes:
 - i. DoctorID (Primary Key)
 - ii. HospitalID (Foreign Key references Hospital)
 - iii. DoctorName
- 12. Medication:
 - a. Attributes:
 - i. MedicationID (Primary Key)
 - ii. DiagnosisID (Foreign Key references Diagnosis)
 - iii. MedicineName
- 13. Diagnosis:
 - a. Attributes:
 - i. DiagnosisID (Primary Key)
 - ii. MedicalCondition
- 14. DiagAdm (Associative Entity):
 - a. Attributes:
 - i. AdmissionID (Foreign Key references Admission) Primary Key part 1
 - ii. DiagnosisID (Foreign Key references Diagnosis) Primary Key part 2
 - b. Participation: Links one Admission to many Diagnoses, and one Diagnosis to many admissions (Many-to-Many)

Participation:

- 1. Patient Can have many Admissions
 - a. one-to-many
 - b. Total Participation Every patient must have at least one admission record
 - c. Total Participation Every admission must be associated with a patient
- 2. Patient can have many insurances providers
 - a. one-to-many

- b. Partial Participation A patient may or may not have an insurance provider
- c. Partial Participation An insurance provider <u>may or may not have</u> associated with many patients
- 3. Patient can have only one blood type, but a single blood type can be associated with many patients
 - a. many-to-one
 - b. Total Participation Every patient must be having exactly one blood type
 - c. Partial Participation The blood type <u>may or may not be</u> associated with the patient
- 4. Many admissions can have one medication
 - a. many-to-one
 - b. Partial Participation An admission <u>may or may not</u> have a specific medication prescribed
 - c. Partial Participation One medication may or may not be prescribed in an admission
- 5. An admission can only assign one doctor, but one doctor can be assigned to multiple admissions
 - a. many-to-one
 - b. Total Participation Every admission <u>must be</u> assigned to one doctor
 - c. Partial Participation A specific doctor may or may not be assigned to an admission
- 6. An admission can have many Diagnoses, and one Diagnosis to many admissions
 - Many-to-Many linked through a separate entity "DiagAdm" (Short of "DiagnosisAdmission")
 - b. Total Participation Every admission must have <u>at least</u> one diagnosis associated with it
 - c. Partial Participation One diagnosis (medical condition) <u>may or may not</u> be associated with an admission
- 7. An admission has one Billing record
 - a. one-to-one
 - b. Total Participation Every admission must have a corresponding billing record
 - c. Total Participation Every billing record must be associated with an admission
- 8. An admission has one or more tests to be performed
 - a. one-to-many
 - b. Partial Participation An admission may or may not have tests performed
 - c. Partial Participation A test may or may not be performed on the admission
- 9. An admission has one specific admission type but there can be many admissions with the same admission type
 - a. many-to-one
 - b. Total Participation Every admission must have a specific admission type assigned
 - c. Partial Participation An admission type <u>may or may not</u> be associated with an admission
- 10. A hospital can have many admissions
 - a. one-to-many
 - b. Total Participation Every admission must occur in a specific hospital
 - c. Partial Participation A hospital may or may not have admissions
- 11. A hospital can employ many doctors

- a. one-to-many
- b. Partial Participation A doctor may or may not be employed by a specific hospital
- c. Total Participation Every hospital must have a doctor
- 12. A hospital contains many rooms
 - a. one-to-many
 - b. Total Participation Every hospital must have at least one room
 - c. Total Participation Every room <u>must be</u> in a hospital
- 13. A room can be assigned to many admissions over time
 - a. one-to-many
 - b. Partial Participation A room <u>may or may not be</u> assigned to an admission at a particular time
 - c. Partial Participation An admission may or may not be assigned a room
- 14. A medical condition can be treated with multiple medicine
 - a. one-to-many
 - b. Total Participation Every diagnosis (medical condition) <u>must be</u> having associated medications
 - c. Partial Participation A medication <u>may or may not</u> be used for treating the medical condition
- 15. Many tests can have same test result, but one test result is associated with only one test
 - a. one-to-many
 - b. Partial Participation A test may or may not have the test result at a particular time
 - c. Total Participation Every test result <u>must be</u> linked to the specific test performed

Write-Up: NewSQL Databases and the Evolving Landscape of DBMS

Issue: The Rise of Big Data and Limitations of Traditional DBMS

Traditional relational databases (RDBMS) have been the cornerstone of data management for decades. However, the ever-growing volume, variety, and velocity of data, especially with the rise of big data, challenges their capabilities. RDBMS can struggle with scaling efficiently and handling complex data structures like semi-structured or unstructured data.

Impact and Significance:

<u>Data Explosion:</u> Organizations across industries are generating massive datasets that RDBMS weren't built to handle effectively.

<u>New Data Types:</u> Big Data often includes unstructured data (e.g., sensor data, social media posts) that doesn't fit neatly into the rigid schema of RDBMS.

<u>Performance Bottlenecks:</u> Traditional RDBMS can struggle with real-time analytics and complex queries on large datasets, impacting decision-making agility.

Existing Approaches:

<u>Vertical Scaling (Upsizing Hardware):</u> Scaling RDBMS by adding more powerful hardware can be expensive and eventually reach a limit.

<u>Sharding:</u> Dividing a large database into smaller, more manageable chunks can improve scalability but introduces complexity in managing distributed data.

<u>NoSQL Databases:</u> These non-relational databases offer greater flexibility and scalability for handling diverse data types and structures. However, they often lack the strong data consistency guarantees of RDBMS.

Chosen Approach: NewSQL Databases

NewSQL databases emerge as a promising solution by combining the scalability and flexibility of NoSQL databases with the ACID (Atomicity, Consistency, Isolation, Durability) transaction guarantees traditionally associated with RDBMS.

Justification:

<u>Bridges the Gap:</u> NewSQL offers the best of both worlds, handling diverse data structures while maintaining strong data consistency for reliable transactions.

<u>Scalability and Performance:</u> NewSQL databases can scale horizontally, adding more nodes to handle increasing data volumes and query workloads efficiently.

<u>Real-Time Analytics:</u> NewSQL can handle complex queries on large datasets faster, facilitating real-time data analysis and decision support.

Challenges and Future Directions:

<u>Complexity:</u> Implementing and managing NewSQL databases can be more complex than traditional RDBMS.

<u>Maturity:</u> NewSQL is a relatively new technology, and ongoing development is needed to optimize performance and explore advanced features.

Conclusion:

The data landscape is constantly evolving, and traditional RDBMS may not always suffice for big data needs. NewSQL databases offer a promising solution that combines scalability, flexibility, and data consistency. As NewSQL technology matures and offers more user-friendly tools, it will likely play a significant role in the future of data management for large-scale, complex data environments.

Reference:

<u>NewSQL Databases:</u> https://en.wikipedia.org/wiki/SQL This Wikipedia article provides a comprehensive overview of NewSQL databases, including their functionalities, limitations, and a list of popular NewSQL database products.

What is NewSQL? https://www.g2.com/compare/dremio-vs-sql-server-2019 This resource offers a clear explanation of NewSQL databases, highlighting their key features and how they address the limitations of traditional RDBMS in the context of big data.