

Lecture 38

Multiple Regression

Announcements

lab10 release delayed

Prediction

Techniques so far:

- Linear regression: predict quantitative variable using one quantitative variable
- Nearest neighbor: predict categorical variable using several quantitative variables

Today: predict quantitative variable using several quantitative variables

Multiple Linear Regression

With multiple attributes x1, x2, ..., xn, predict y = a1*x1 + a2*x2 + ... + an*xn + b where weights a1, a2, ..., an and b minimize RMSE

If there's just one attribute, simplifies to $y = a^*x + b$

Minimize RMSE

With multiple attributes x1, x2, ..., xn, predict y = a1*x1 + a2*x2 + ... + an*xn + b where weights a1, a2, ..., an and b minimize RMSE

Minimization

```
minimize(f)
returns the x value that minimizes f(x)

minimize(f, array=True, start=a)
returns the array x that minimizes f(x)
where a is an array of the same length as x
```

Nearest Neighbor Regression

- Given new point (x1, x2, ..., xn),
- Find k nearest neighbors to that point, each with a y value
- Predict the mean of those y values

Also Nearest Neighbor Regression

