Отчет о выполнении работы №2.1.6 Эффект Джоуля-Томпсона

Воейко Андрей Александрович, Б01-109 Долгопрудный, 2022

1 Аннотация.

В работе определяется изменение температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры. Также вычисляются коэффиценты a и b уравнения Ван-Дер-Ваальса.

2 Теоретические сведения.

Эффект Джоуля-Томпсона — это изменение температуры газа, медленно перетекающего из области высокого давления в область низкого давления в условиях хорошей тепловой изоляции. Возникает он из-за того, что сближаясь, молекулы (или атомы) газа начинают взаимодействовать друг с другом, а именно отталкиваться, что приводит к увеличению потенциальной энергии их взаимодействия, и, как следствие, уменьшению их кинетической энергии, то есть температуры. В разреженных газах, по своим свойствам приближающимся к идеальным, такой эффект не наблюдается. Таким образом, эффект Джоуля-Томпсона демонстрирует отличие газа от идеального.

В работе исследуется изменение температуры газа при медленном течении по трубке с пористой перегородкой. Трубка 1 хорошо изолированна. Газ из области повышенного давления P_1 проходит в область с атмосферным давлением P_2 . Перпад давления $\Delta P = P_1 - P_2$ заметно даже при небольшой скорости течения газа в трубке ввиду большого сопротивления каналов. Величина эффекта Джоуля-Томпсона может быть определена по разности температуры до и после перегородки.

Рассмотрим стационарный поток газа между двумя сечениями I и II, до и после перегородки соответственно. Для определенности рассмотрим прошедший через трубку 1 моль углекислого газа, молярная масса которого составляет μ моль. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии в сечениях I и II обозначим соответственно V_1 , P_1 , U_1 и V_2 , P_2 , U_2 . Для того, чтобы ввести газ объемом V_1 в трубку, нужно совершить работу $A_1 = P_1V_1$. При прохождении через сечение 2, газ совершает работу. Поскольку через боковые стенки не происходит обмена теплом, справедлива формула:

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

Теперь найдем изменение энтальпии. Подставляя вместо PV соотвествующую работу A, получаем:

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu (v_2^2 - v_1^2).$$
 (2)

Процесс Джоуля-Томпсона в чистом виде осуществляется только в том случае, если правой частью можно пренебречь. У нас пока нет критериев, позволяющих точно это установить, но тем не менее предположим, что это так. Тогда коэффицент Джоуля-Томпсона равен:

$$\mu_{\text{A}-\text{T}} = \frac{\Delta T}{\Delta P} \approx \frac{(2a/RT) - b}{C_p}.$$
 (3)

3 Экспериментальная установка.

3.1 Используемые приборы.

В работе используются:

- Трубка с пористой перегородкой.
- Труба Дьюара.
- Термометры.
- Дифференциальная термопара.
- Микровольтметр.
- Балластный баллон.
- Манометр.

3.2 Описание установки.

Схема установки изображена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается ииследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=33 мм, толщина стенок 0,2 мм. ПОристая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P \leq 4$ атм (расход газа составляет примерно $10 \, \frac{\text{см}^3}{\text{c}}$); при этом в результате эффекта Джоуля-Томпсона создается достаточная разность температур.

Углекислый газ поступает под повышенным давлением в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается модой и нагревает медленно протекающий через него газ до темепарутры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$ помещенном в термостате. Требуемая температура воды устанавливается и поддерживается во время эксперимента ври помощи контактного термометра

Рис. 1: Схема экспериментальной установки.

 T_{κ} . Давление газа в трубке измеряеся манометром М и регулируется вентилем В (при открытии вентиля В, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр M измеряет разность между давлием внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным двалением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$. Разность температур газа до перегородки и посде нее измеряется дифференицальной термопарой медь – коснтантан. Конастантановая проволока диаметром 0,01 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубку Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения топлоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практичеси не создает перепада давлений между внутренней полостью трубы и атмосферой.

4 Результаты измерений и обработка данных.

4.1 Измерения разности в зависимости от температуры.

Проведем четыре серии измерений зависимости изменения температуры от подаваемого давления при четырех рахных температурах. Результаты измерений приведены в таблице 1.

Серия измерений				1
No	ΔP , atm	$U_{\text{тп}}$, мкВ	ΔT , °C	T , $^{\circ}C$
1	4,0	-150 ± 1	$3,69 \pm 0,02$	$20,20 \pm 0,01$
2	3,5	-128 ± 1	$3,14 \pm 0,02$	$20,23 \pm 0,01$
3	3,0	-107 ± 1	$2,64 \pm 0,02$	$20,24 \pm 0,01$
4	2,5	-87 ± 1	$2,14 \pm 0,02$	$20,26 \pm 0,01$
5	2,0	-60 ± 1	$1,47 \pm 0,02$	$20,33 \pm 0,01$
Серия измерений			2	
№	ΔP , atm	$U_{\text{тп}}$, мкВ	ΔT , °C	T , $^{\circ}C$
1	4,0	-147 ± 1	$3,53 \pm 0,02$	$30,06 \pm 0,01$
2	3,5	-121 ± 1	$2,91 \pm 0,02$	$30,09 \pm 0,01$
3	3,0	-99 ± 1	$2,38 \pm 0,02$	$30,08 \pm 0,01$
4	2,5	-79 ± 1	$1,90 \pm 0,02$	$30,08 \pm 0,01$
5	2,0	-56 ± 1	$1,35\pm0,02$	$30,06 \pm 0,01$
ш	· ·			, ,
	L	ия измерен	ий	3
№	L	ия измерен $U_{\rm TH}, { m MKB}$	ий ΔT , ° C	3 $T, °C$
Nº 1	Сер			
	Cep ΔP , atm	$U_{\text{тп}}$, мкВ	ΔT , °C	T , $^{\circ}C$
1	$ \begin{array}{c} \text{Cep} \\ \Delta P, \text{ atm} \\ 4, 0 \end{array} $	$U_{\text{тп}}, \text{ мкВ} = -141 \pm 1$	$\Delta T, ^{\circ}C$ $3, 32 \pm 0, 02$	$T, {}^{\circ}C$ $40,07 \pm 0,01$
$\begin{array}{ c c c }\hline 1 \\ 2 \\ \end{array}$	Cep $\Delta P, atm$ $4, 0$ $3, 5$	$U_{\text{th}}, \text{ MKB}$ -141 ± 1 -122 ± 1	$ \Delta T, ^{\circ}C 3, 32 \pm 0, 02 2, 87 \pm 0, 02 $	$T, ^{\circ}C$ $40,07 \pm 0,01$ $40,07 \pm 0,01$
1 2 3	$egin{array}{c} { m Cep} \\ \Delta P, { m aTM} \\ 4, 0 \\ 3, 5 \\ 3, 0 \\ \end{array}$	$U_{\rm TH}$, мкВ -141 ± 1 -122 ± 1 -99 ± 1	$\Delta T, ^{\circ}C$ $3, 32 \pm 0, 02$ $2, 87 \pm 0, 02$ $2, 33 \pm 0, 02$	$T, °C$ $40, 07 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 08 \pm 0, 01$
1 2 3 4	Cep ΔP , atm $4,0$ $3,5$ $3,0$ $2,5$ $2,0$	U_{TH} , MKB -141 ± 1 -122 ± 1 -99 ± 1 -79 ± 1	$\Delta T, ^{\circ}C$ $3, 32 \pm 0, 02$ $2, 87 \pm 0, 02$ $2, 33 \pm 0, 02$ $1, 86 \pm 0, 02$ $1, 41 \pm 0, 02$	$T, ^{\circ}C$ $40, 07 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 08 \pm 0, 01$ $40, 07 \pm 0, 01$
1 2 3 4	Cep ΔP , atm $4,0$ $3,5$ $3,0$ $2,5$ $2,0$	U_{TH} , MKB -141 ± 1 -122 ± 1 -99 ± 1 -79 ± 1 -60 ± 1	$\Delta T, ^{\circ}C$ $3, 32 \pm 0, 02$ $2, 87 \pm 0, 02$ $2, 33 \pm 0, 02$ $1, 86 \pm 0, 02$ $1, 41 \pm 0, 02$	$T, °C$ $40, 07 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 08 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 00 \pm 0, 01$
1 2 3 4 5	$egin{array}{c} { m Cep} \\ \Delta P, { m aTM} \\ 4, 0 \\ 3, 5 \\ 3, 0 \\ 2, 5 \\ 2, 0 \\ { m Cep} \\ \end{array}$	$U_{ m TH}, { m MKB}$ -141 ± 1 -122 ± 1 -99 ± 1 -79 ± 1 -60 ± 1 ия измерен	$\Delta T,{}^{\circ}C$ $3,32\pm0,02$ $2,87\pm0,02$ $2,33\pm0,02$ $1,86\pm0,02$ $1,41\pm0,02$	$T, ^{\circ}C$ $40, 07 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 08 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 00 \pm 0, 01$
1 2 3 4 5	$egin{array}{c} { m Cep} \\ \Delta P, { m aTM} \\ 4, 0 \\ 3, 5 \\ 3, 0 \\ 2, 5 \\ 2, 0 \\ \hline { m Cep} \\ \Delta P, { m aTM} \\ \end{array}$	$U_{ m TH}, { m MKB}$ -141 ± 1 -122 ± 1 -99 ± 1 -79 ± 1 -60 ± 1 ия измерен $U_{ m TH}, { m MKB}$	$\Delta T,^{\circ}C$ $3,32\pm0,02$ $2,87\pm0,02$ $2,33\pm0,02$ $1,86\pm0,02$ $1,41\pm0,02$ ий $\Delta T,^{\circ}C$	$T, °C$ $40, 07 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 08 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 00 \pm 0, 01$ 4 $T, °C$
1 2 3 4 5 Nº 1	$\begin{array}{c} \text{Cep} \\ \Delta P, \text{ atm} \\ 4, 0 \\ 3, 5 \\ 3, 0 \\ 2, 5 \\ 2, 0 \\ \hline \text{Cep} \\ \Delta P, \text{ atm} \\ 4, 0 \\ \end{array}$	$U_{\mathrm{TH}}, \mathrm{MKB}$ -141 ± 1 -122 ± 1 -99 ± 1 -79 ± 1 -60 ± 1 ия измерен $U_{\mathrm{TH}}, \mathrm{MKB}$ -131 ± 1	$\begin{array}{c} \Delta T,^{\circ}C \\ 3,32\pm0,02 \\ 2,87\pm0,02 \\ 2,33\pm0,02 \\ 1,86\pm0,02 \\ 1,41\pm0,02 \\ \end{array}$ where $\Delta T,^{\circ}C$ $3,03\pm0,02$	$T, °C$ $40, 07 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 08 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 00 \pm 0, 01$ 4 $T, °C$ $50, 10 \pm 0, 01$
1 2 3 4 5 No 1 2	$\begin{array}{c} \text{Cep} \\ \Delta P, \text{ atm} \\ 4, 0 \\ 3, 5 \\ 3, 0 \\ 2, 5 \\ 2, 0 \\ \hline \text{Cep} \\ \Delta P, \text{ atm} \\ 4, 0 \\ 3, 5 \\ \end{array}$	$U_{ m TH}, { m MKB}$ -141 ± 1 -122 ± 1 -99 ± 1 -79 ± 1 -60 ± 1 ия измерен $U_{ m TH}, { m MKB}$ -131 ± 1 -109 ± 1	$\begin{array}{c} \Delta T, ^{\circ}C \\ 3,32\pm 0,02 \\ 2,87\pm 0,02 \\ 2,33\pm 0,02 \\ 1,86\pm 0,02 \\ 1,41\pm 0,02 \\ \end{array}$ with $\begin{array}{c} \Delta T, ^{\circ}C \\ 3,03\pm 0,02 \\ 2,51\pm 0,02 \\ \end{array}$	$T, °C$ $40, 07 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 08 \pm 0, 01$ $40, 07 \pm 0, 01$ $40, 00 \pm 0, 01$ 4 $T, °C$ $50, 10 \pm 0, 01$ $50, 06 \pm 0, 01$

Таблица 1: Зависимость изменения температуры от подаваемого давления в первой серии экспериментов.

Во всех случаях разброс температур менее одного процента, что позволяет считать её постоянной для кождой серии измерений.

4.2 Графики зависимости ΔT от ΔP .

Построим график зависимости изменения температуры от разности давлений для всех четырех серий измерений. Проведем прямые через все четыре графика.

Рисунок 2: Зависимость изменения температур от разницы давлений в первой серии измерений.

Рисунок 3: Зависимость изменения температур от разницы давлений во второй серии измерений.

Рисунок 4: Зависимость изменения температур от разницы давлений в третьей серии измерений.

Рисунок 5: Зависимость изменения температур от разницы давлений в четвертой серии измерений.

Вычислим коэффицент угла наклона графиков для каждой серии измерений методом наименьших квадратов.

$$k_1 = 1,12 \pm 0,02 \ \frac{\mathrm{K}}{\mathrm{atm}}.$$

$$k_2 = 1,07 \pm 0,02 \ \frac{\mathrm{K}}{\mathrm{atm}}.$$
 $k_3 = 0,96 \pm 0,01 \ \frac{\mathrm{K}}{\mathrm{atm}}.$
 $k_4 = 0,91 \pm 0,01 \ \frac{\mathrm{K}}{\mathrm{atm}}.$

Таким образом,

$$\mu_1 = 1, 12 \pm 0, 02 \frac{K}{a_{TM}} = 1, 10 \cdot 10^{-5} \pm 0, 02 \cdot 10^{-5} \frac{^{\circ}C}{\Pi a},$$

$$\mu_2 = 1, 07 \pm 0, 02 \frac{K}{a_{TM}} = 1, 06 \cdot 10^{-5} \pm 0, 02 \cdot 10^{-5} \frac{^{\circ}C}{\Pi a},$$

$$\mu_3 = 0, 96 \pm 0, 01 \frac{K}{a_{TM}} = 0, 95 \cdot 10^{-5} \pm 0, 01 \cdot 10^{-5} \frac{^{\circ}C}{\Pi a},$$

$$\mu_4 = 0, 91 \pm 0, 01 \frac{K}{a_{TM}} = 0, 90 \cdot 10^{-5} \pm 0, 01 \cdot 10^{-5} \frac{^{\circ}C}{\Pi a}.$$

4.3 Поиск коэффицентов *a* и *b* Ван-дер-Ваальса.

Согласно формуле 3,

$$\mu_{\mathrm{д-T}} \approx \frac{\frac{2a}{RT} - b}{C_p} = \frac{2a}{RC_p} \frac{1}{T} - \frac{b}{C_p}.$$

Таким образом, построив график $\mu_{\mathsf{д-T}}\left(\frac{1}{T}\right)$ и аппроксимировав его к прямой $\mu_{\mathsf{д-T}}=\alpha+\beta\frac{1}{T}$, мы по этим коэффицентам α и β сможем найти коэффиценты b и a, соотвественно.

Рисунок 5: Зависимость изменения температур от разницы давлений в четвертой серии измерений.

После аппроксимации получаем:

$$\alpha = -\frac{b}{C_p} = -1, 2 \cdot 10^{-5} \pm 0, 2 \cdot 10^{-5} \Rightarrow b = 36 \pm 6 \frac{\text{см}^3}{\text{моль}}.$$
$$\beta = \frac{2a}{RC_p} = 0,0069 \pm 0,0006 \Rightarrow a = 0,41 \pm 0,04 \frac{\text{H} \cdot \text{M}^4}{\text{моль}^2}.$$

5 Выводы.

В ходе работы были найдены коэффценты Джоуля-Томпсона для четырех различных температур.

$$\mu_1 = 1, 12 \pm 0, 02 \frac{K}{a_{TM}} = 1, 10 \cdot 10^{-5} \pm 0, 02 \cdot 10^{-5} \frac{^{\circ}C}{\Pi a},$$

$$\mu_2 = 1, 07 \pm 0, 02 \frac{K}{a_{TM}} = 1, 06 \cdot 10^{-5} \pm 0, 02 \cdot 10^{-5} \frac{^{\circ}C}{\Pi a},$$

$$\mu_3 = 0, 96 \pm 0, 01 \frac{K}{a_{TM}} = 0, 95 \cdot 10^{-5} \pm 0, 01 \cdot 10^{-5} \frac{^{\circ}C}{\Pi a},$$

$$\mu_4 = 0, 91 \pm 0, 01 \frac{K}{a_{TM}} = 0, 90 \cdot 10^{-5} \pm 0, 01 \cdot 10^{-5} \frac{^{\circ}C}{\Pi a}.$$

Для первой и третьей серий измерений есть табличные значения, составляющие соответственно $\mu_1^{({\rm rafn})}=1,105$ и $\mu_3^{({\rm rafn})}=0,958$ для давления порядка ≈ 1 атм, что позволяет считать наши измерения вполне точными, так как оба значения лежат в пределах погрешности.

А вот построение графика выявило, что оставшиеся два измерения (первое и третье слева на графике, выделены светлым цветом) проведены с ошибкой, в результате чего поиск коэффицентов a и b уравнения Вандер-Ваальса был произведен с большой погрешностью в 25% для a и 17% для b.

Сами значения составили:

$$a = 0,41 \pm 0,04 \ \frac{\text{H} \cdot \text{M}^4}{\text{моль}^2},$$
 $b = 36 \pm 6 \ \frac{\text{см}^3}{\text{моль}}.$

Табличные же значения этих величин составляют соответственно $a^{({\rm табл})}=0,37~\frac{{\rm H\cdot m}^4}{{\rm моль}^2}$ и $b^{({\rm табл})}=43~\frac{{\rm cm}^3}{{\rm моль}},$ что укладывается в погрешность, но это можно скорее считать счастливым стечением обстоятельств, чем подтверждением результатов вычисления.