Electrical Engineering Department University of Delaware Technical Report 90-9-1 September 1990

Highball: a High Speed, Reserved-Access, Wide Area Network

David L. Mills, Charles G. Boncelet, John G. Elias, Paul A. Schragger and Alden W. Jackson

Abstract

This document describes a network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds or end-end protocols. The end systems, nodes and links can operate at any speed up to the limits imposed by the physical facilities.

This document presents an overview of an initial design approach and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolve in continuing stages of this project.

Keywords: supercomputer networks, gigabit networks, reservation-TDMA, Highball architecture.

Sponsored by: Defense Advanced Research Projects Agency under NASA Ames Research Center contract number NAG 2-638 and National Science Foundation grant number NCR-89-13623.

Table of Contents

1.	Introduction
1.1.	Overview
1.2.	Traffic Models
1.3.	Design Approach
2.	Network Architecture
2.1.	Network Protocols
2.1.1.	Slotted-ALOHA Mode
2.1.2.	Fixed-TDMA Mode
2.1.3.	R-TDMA Mode
2.2.	Scheduling Algorithms
2.2.1.	Breadth-First Algorithms
2.2.2.	Incremental Algorithms
2.2.3.	Other Algorithms
2.3.	Burst Formatting and Framing
2.4.	Scheduling Operations
2.5.	Node Synchronization
3.	Hardware Overview
3.1.	Crossbar Switch, Controller and Interfaces
3.2.	Data Transceiver and Controller
3.3.	Master Clock
3.4.	Node Processor
3.5.	Link Simulator
4.	Software Overview
4.1.	Normal Operation
4.2.	Link and Node Synchronization
4.3.	Network Synchronization
4.4.	Schedule Synchronization
5.	Scheduling Algorithms
6.	Simulation
6.1.	A Special-Purpose Simulator
6.2.	Preliminary Simulation Results
7.	Development Beyond the Initial Prototype Network
7.1.	Getting Fast
7.2.	Reducing Processing Requirements
7.3.	Reducing Reservation Delays
8.	References
	List of Figures
Figure	1. NSFNET Backbone Network
	2. Reservation TDMA Network
	3. Burst Schedules
	4. Burst Format
_	5. Node Controller
	6. Switch Controller

Figure 7. Transceivers and Input/Output Controller	9		
Figure 8. Master Clock	20		
Figure 9. Node Processor	21		
Figure 10. Link Simulator	22		
Figure 11. Link Simulator Detail	22		
Figure 12. Software Queues	23		
Figure 13. Throughput-Delay	30		
List of Tables			
Table 1. Scheduling Times	28		