=

ТЕСТ МОЖНО СДАТЬ ТОЛЬКО 1 РАЗ, НАЖАВ НА КНОПКУ "Сохранить решение"

В вопросе может быть **несколько** вариантов правильного ответа (то есть от 1 до кол-ва ответов в вопросе). Вопрос засчитывается, если выбраны ВСЕ правильные варианты и НЕ ВЫБРАНЫ ВСЕ неправильные варианты.

В тестовых заданиях первая галочка — правильный ответ, вторая галочка — выбранный ответ. Цвет обозначает, правильно ли в данном пункте поставлена галочка. Если все пункты верные (галочки совпадают / все пункты зеленые), то за задание ставится полный балл, в противном случае ставится 0 баллов.

1.	В алгоритме AdaBoost веса объектов, неправильно классифицированные текущим базовым алгоритмом,
	не изменяются
	уменьшаются
	✓ увеличиваются
	Балл: 2.0
	Комментарий к правильному ответу:
2.	Рассмотрим задачу классификации на С
	классов в листе дерева, априорные
	вероятности классов p(1),p(C) в листе
	известны. Рассмотрим 2 стратегии
	прогнозирования класса: 1) предсказывать
	всегда класс с максимальной априорной
	вероятностью 2) предсказывать класс
	случайно: 1й с вероятностью р(1), 2-й с
	вероятностью р(2), класс С с вероятностью
	р(С). Сравните эти стратегии по ожидаемой
	вероятности ошибки.
	каждая из 2х стратегий может быть лучше другой в зависимости от выбора p(1),p(C)
	🔲 🔲 вторая всегда не хуже первой
	✓ первая всегда не хуже второй
	Балл: 2.0
	Комментарий к правильному ответу:

3. Выберите критерий ветвления во внутренних вершинах дерева, позволяющий описывать произвольные кусочно линейные границы между классами (без ступенчатых аппроксимаций вдоль осей признаков)

деревьями малой глубины ($x \in \mathbb{R}^D$ - вектор

3.06.2023, 10	6:47 https://cv-g
E	признаков, x_i -отдельный признак, h,h_1,h_2 - пороги, $v_0\in\mathbb{R},v\in\mathbb{R}^D$ - настраиваемые смещение и вектор):
	$left{ } left{ } left{ } \langle x,v angle + v_0 < h$
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$\square \ \square \ x < h$
	$\ \square \ \square \ h_1 < x_i < h_2$
	Балл: 2.0
	Комментарий к правильному ответу:
4	. Высокое значение смещения при малом

- M значении разброса в разложении на смещение и разброс (bias-variance decomposition) свидетельствует, что модель в общем случае будет показывать средние потери
 - 🔲 📗 низкие на обучающей и низкие на тестовой выборке
 - 🔲 📗 низкие на обучающей и высокие на тестовой выборке
 - высокие на обучающей и высокие на тестовой выборке
 - 🔲 📗 высокие на обучающей, но низкие на тестовой выборке

Балл: 2.0

Комментарий к правильному ответу:

- 5. В алгоритме бустинга базовые алгоритмы строятся
 - ✓ Последовательно, следующий алгоритм зависит от прогнозов предыдущих
 - 🔲 📗 одновременно, каждый алгоритм зависит от прогнозов всех остальных
 - 🔲 📗 одновременно, независимо друг от друга

Балл: 2.0

Комментарий к правильному ответу:

6. В алгоритме бустинга над решающими деревьями деревья нужно брать

=

✓ малой глубины
большой глубины
Балл : 2
Комментарий к правильному ответу:
7. Рассмотрим задачу регрессии. Верно ли
утверждение, что существуют сколь угодно не
точные модели, при усреднении которых
можно получить сколь угодно точную?
Да
нет
Балл: 2.0
Комментарий к правильному ответу:
f1(x)=f(x)+eps, $f2(x)=f(x)-eps$
8. Высокое значение разброса при малом
значении смещения в разложении на
смещение и разброс (bias-variance
decomposition) свидетельствует, что модель в
общем случае будет показывать средние
потери
🔲 🔲 высокие на обучающей, но низкие на тестовой выборке
🔲 🔲 низкие на обучающей и низкие на тестовой выборке
Низкие на обучающей и высокие на тестовой выборке
🔲 🔲 высокие на обучающей и высокие на тестовой выборке
F200: 2.0

Комментарий к правильному ответу: