Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen

11. Dezember 2020

Inhalt

1. Task I - Vorhersage der Datenrate

Gradient Boosted Trees

Regression mit ARMA-Fehlern

Modellvergleich

Task II - Handover Vorhersage und Link Lifetime Feature Importance

1

Task I - Vorhersage der

Datenrate

Task I - Vorhersage der Datenübertragungsrate

- Ziel: Evaluation von neuen *anticipatory vehicular communication* systems durch möglichst realitätsnahe Simulationen [2]
 - ⇒ Ansatz: Data-Driven Network Simulation
- Durch Machine Learning Modelle sollen möglichst realistische Vorhersagen der Datenraten generiert werden
- Hoffnung: Bessere Aussagekraft der Simulationen durch Einsatz echten Datenmaterials

Task I - Vorhersage der Datenrate

Gradient Boosted Trees

Gradient Boosted Trees

- Kann man aus vielen "schwachen" Lernern einen starken Lerner konstruieren?
 - ⇒ Ja, Boosting ist eines der mächtigsten Konzepte des Machine Learning [1]
- Kombination von einfachen CART Bäumen zu einem starken Ensemble
 - ⇒ Ähnlich zu Random Forest
- Der Unterschied zum Random Forest liegt im Training!

Training von Gradient Boosted Trees

- Bäume werden nacheinander zum Ensemble hinzugefügt
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger "auszubügeln"
 - ⇒ Additives Training
- Je mehr Bäume aufgenommen werden, desto geringer wird der Training-Error (das Modell wird aber komplexer)
 - ⇒ Kontrolle des Bias-Variance Tradeoffs
 - ⇒ Zusätzlich gibt es Regularisierungs-Parameter

Task I - Vorhersage der Datenrate

Datenrate

Regression mit ARMA-Fehlern

Regression mit ARMA-Fehlern

Gegeben:

- Beobachtungen $(y_1, ..., y_T)$ der Zeitreihe $(y_t)_t$
- Beobachtungen $(x_1^{(i)},...,x_T^{(i)})$ der Zeitreihen $(x_t^{(i)})_t$ für i=1,...,k

Modellgleichung: Regression mit ARMA(p, q)-Fehlern

$$\begin{aligned} y_t &= c + \sum_{j=1}^k \beta_j x_t^{(j)} + \eta_t \text{ mit} \\ \eta_t &= \sum_{\substack{k=1 \\ \text{vergangene Fehler: LM}}}^p \phi_p \eta_{t-p} + \sum_{\substack{l=1 \\ \text{vergangene Fehler: ARMA}}}^q \theta_l \epsilon_{t-q} + \epsilon_t \end{aligned}$$

Task I - Vorhersage der Datenrate

Modellvergleich

Modellvergleich Uplink - Kennzahlen

Modellvergleich Downlink - Kennzahlen

Modellvergleich Uplink - Feature Importance

Methodenvergleich XGBoost - Uplink

Modellvergleich Downlink - Feature Importance

Methodenvergleich XGBoost - Downlink

Task II - Handover Vorhersage

und Link Lifetime

Datentransformation

Idee: Prädiktionsmodell XGBoost für Link Lifetime mit Einfluss des RSRP/RSRQ der verbundenen sowie der Nachbarzellen

- \rightarrow Datentransformation
 - RSRP/RSRQ Nachbarzellen :
 - ightarrow mehrere Messungen Filtern des besten Wertes zum aktuellen Zeitpunkt
 - ightarrow keine Messungen Übernehmen des letzten Wertes
 - ullet eNodeB Wechsel o Response Variable Link Lifetime

Features

- link_lifetime : Link-Lifetime
- rsrp_dbm/rsrq_db : Signalstärke/Signalqualität (RSRP/RSRQ) der verbundenen Zellen
- rsrp_neighbor/rsrq_neighbor : Signalstärke/Signalqualität (RSRP/RSRQ) der Nachbarzellen
- rssnr_db : Signal-Rausch-Verhältnis (RSSNR)
- eNodeB : Funkmasten im LTE-Netzwerk
- velocity_mps : Geschwindigkeit des mobilen Endgeräts
- ta: Timing Advance (TA) Wert zur Synchronisation zwischen Upund Downlink
- cqi : Channel Quality Indicator (CQI)

Vorgehen

Wichtige Schritte:

- Aufsplitten der Daten Training/ Test
- Zufälliger Grid-Search
- Tunen der Parameter Zeitreihenkreuzvalidierung
- Validieren des Modells auf dem Testdatensatz

$\rightarrow \textbf{Analog zu Task I}$

Ergebnisse - Zeitreihenplot O2

Ergebnisse - Zeitreihenplot T-Mobile

Ergebnisse - Zeitreihenplot Vodafone

Ergebnisse - Scatterplot

Ergebnisse - Kennzahlen

Task II - Handover Vorhersage

und Link Lifetime

Feature Importance

Feature Importance

Literatur i

T. Hastie, R. Tibshirani, and J. Friedman.

The elements of statistical learning: data mining, inference and prediction.

Springer, 2 edition, 2009.

B. Sliwa and C. Wietfeld.

Data-driven network simulation for performance analysis of anticipatory vehicular communication systems.

IEEE Access, 7:172638-172653, 2019.

Regression mit ARMA-Fehlern

h-Schritt Punktvorhersage

- Ersetze Beobachtungen zu zukünftigen Zeitpunkten mit deren Vorhersagen
- Ersetze Fehler an vergangenen Zeitpunkten durch das entsprechende Residuum
- Ersetze Fehler an zukünftigen Zeitpunkten durch 0

Beispiel:
$$h = 2, k = 1, p = 2, q = 2$$

$$\begin{aligned} y_t &= c + \beta_1 x_t + \epsilon_t \text{ mit} \quad \epsilon_t = \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + e_t \\ \widehat{y_{t+1}} &= c + \beta_1 x_t + \widehat{\epsilon_{t+1}} \text{ mit } \widehat{\epsilon_{t+1}} = \phi_1 \epsilon_t + \phi_2 \epsilon_{t-1} + \theta_1 e_t + \theta_2 e_{t-1} + \underbrace{\widehat{e_{t+1}}}_{=0} \end{aligned}$$

$$\widehat{y_{t+2}} = c + \beta_1 x_t + \widehat{\epsilon_{t+2}} \text{ mit } \widehat{\epsilon_{t+2}} = \phi_1 \widehat{\epsilon_{t+1}} + \phi_2 \epsilon_t + \theta \underbrace{\widehat{e_{t+1}}}_{=0} + \theta e_t + \underbrace{\widehat{e_{t+2}}}_{=0}$$