MATH 644

CHAPTER 1

SECTION 1.1: COMPLEX NUMBERS

Contents

Definitions	2
Basic Arithmetic	3
Other Operations	4
Metric Important Subsets	5

Created by: Pierre-Olivier Parisé Spring 2023

DEFINITIONS

- $\mathbb{C} := \{(a,b) : a,b \in \mathbb{R}\}.$
- $i \sim (0,1)$ and $1 \sim (1,0)$, so that

$$z \in \mathbb{C} \iff z = a + ib.$$

• Polar representation:

$$z = a + ib \iff a = r \cos \theta, b = r \sin \theta \iff z \simeq (r, \theta),$$

where
$$r = \sqrt{a^2 + b^2}$$
 and $\tan \theta = b/a$.

Note: θ is not defined for z = 0.

• Exponential form:

$$z = re^{i\theta}$$

where
$$e^{i\theta} = \cos \theta + i \sin \theta$$
 and $r = \sqrt{a^2 + b^2}$.

- z = a + ib, then
 - $-\operatorname{Re}z:=a;$
 - $-\operatorname{Im} z := b.$

Basic Arithmetic

Let $z = a + ib \simeq (r, \theta)$ and $w = c + id \simeq (\rho, \psi)$, then

- Addition: z + w := (a + c) + i(b + d);
- Multiplication: $z \cdot w := (ac bd) + i(ad + bc)$;
- Equal: $z = w \iff a = c \text{ and } b = d$;
- Mult. in Polar form: $z \cdot w \simeq (r\rho, \theta + \psi)$;
- Equal in Polar form: $z = w \iff r = \rho \text{ and } \theta = \psi + 2k\pi, \quad k \in \mathbb{Z};$
- Mult. in Exponential form: $zw = r\rho e^{i(\theta+\psi)}$;
- $(\mathbb{C}, +, \cdot)$ is a commutative field with
 - Additive zero is z = 0;
 - Multiplicative identity is z = 1.

Example 1.

a) Compute (2+2i)(-1+i).

- c) Compute (a+ib)(a-ib).
- **b)** Find r, θ for 2 + 2i, find ρ, ψ for -1 + i, and compute (2 + 2i)(-1 + i) using polar coordinates.
- d) Find an expression for the inverse of a + ib.

OTHER OPERATIONS

Let $z = a + ib \simeq (r, \theta)$ and $w = c + id \simeq (\rho, \psi)$.

- Absolute Value or modulus: $|z| := \sqrt{a^2 + b^2}$.
- Argument: $\arg z := \theta$. Common convention is to choose $\arg z \in (-\pi, \pi]$.
- Complex Conjugate: $\overline{z} := a ib$.
- Conjugate and Modulus: $|z|^2 = z\overline{z}$.
- Division revisited:

$$\bigstar \ \frac{1}{w} = \frac{\overline{w}}{w\overline{w}} = \frac{\overline{w}}{|w|^2} = \frac{1}{r}e^{-i\theta};$$

$$\bigstar \ \frac{z}{w} = \frac{z\overline{w}}{|w|^2} = \frac{r}{\rho}e^{i(\theta - \psi)}.$$

e) Im $z = \frac{z - \overline{z}}{2i}$;

 $\mathbf{g)} \ \overline{zw} = \overline{zw};$

 $\mathbf{h)} \ \overline{\overline{z}} = z;$

 $\mathbf{f)} \ \overline{z+w} = \overline{z} + \overline{w};$

THEOREM 2. For $z, w \in \mathbb{C}$, then

- a) |zw| = |z||w|;
- **b)** |z/|z|| = 1;
- c) $|e^{i\theta}| = 1;$
- d) Re $z = \frac{z + \overline{z}}{2}$;
- $\mathbf{i)} \ |z| = |\overline{z}|;$
- j) $arg(zw) = arg(z) + arg(w) \pmod{2\pi}$;
- **k)** $\arg(\overline{z}) = -\arg(z) = 2\pi \arg z \pmod{2\pi}$.

Proof. Prove some of the above properties.

For $z, w \in \mathbb{C}$, we define a function $d: \mathbb{C} \times \mathbb{C} \to [0, \infty)$ by

$$d(z, w) := |z - w|.$$

THEOREM 3. (\mathbb{C}, d) is a complete metric space.

Proof. Prove this assertion in two lines.

Important Subsets

• Open disc: For $a \in \mathbb{C}$ and $r \in [0, \infty)$, an open disc is the set

$$\{z \in \mathbb{C} : |z - a| < r\}.$$

• Closed disc: For $a \in \mathbb{C}$ and $r \in [0, \infty)$, a closed disc is the set

$$\{z \in \mathbb{C} : |z - a| \le r\}.$$

• Circles: For $a \in \mathbb{C}$ and $r \in [0, 1)$, a circle is the set

$$\{z \in \mathbb{C} : |z - a| = r\} = \partial\{z \in \mathbb{C} : |z - a| < r\}.$$

• Open unit disc: We denote by \mathbb{D} the open unit disc, meaning

$$\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \}.$$

• Unit circle: We denote by \mathbb{T} the unit circle, meaning

$$\mathbb{T} := \partial \mathbb{D} = \{ z \in \mathbb{C} : |z| = 1 \}.$$

Note: The topology of \mathbb{C} is generated by the family of all open discs.