6.5 SMO算法详解

6.5.1 概论

(一) 概念

支持向量机的学习问题可以形式化为求解凸二次规划问题. 这样的凸二次规划问题具有全局最优解, 并且有许多最优化算法可以用于这一问题的求解. 但是当训练样本容量很大时, 这些算法往往变得非常低效, 以致无法使用.

所以,如何高效地实现支持向量机学习就成为一个重要的问题.目前人们已提出许多快速实现算法.本节讲述其中的序列最小最优化 (sequential minimal optimization, SMO) 算法,这种算法1998年由Platt提出.

(二)目标问题--软间隔对偶问题

首先, 软间隔的对偶问题前面已经说过了, 也就是 (6.40)

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$

$$s. t. \sum_{i=1}^{m} \alpha_i y_i = 0$$

$$(6.40)$$

 $0 \leqslant \alpha_i \leqslant C, \quad i = 1, 2, \dots, m$

同时,对软间隔支持向量机,KKT条件要求

$$\left\{egin{aligned} lpha_i \geqslant 0, & \mu_i \geqslant 0 \ y_i f\left(oldsymbol{x}_i
ight) - 1 + \xi_i \geqslant 0 \ lpha_i \left(y_i f\left(oldsymbol{x}_i
ight) - 1 + \xi_i
ight) = 0 \ \xi_i \geqslant 0, & \mu_i \xi_i = 0 \end{aligned}
ight.$$

接下来, 我们变换一下, 先把max变换为min, 然后把 $m{x}_i^{\mathrm{T}}m{x}_j$ 用核函数表示为 $K(m{x}_i, m{x}_j)$, 关于核函数可参考 6.3.2 小节知识.

那么, 就可以变换为:

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\boldsymbol{x}_i, \boldsymbol{x}_j) - \sum_{i=1}^{N} \alpha_i$$

$$(7.98)$$

$$\text{s.t.} \quad \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{7.99}$$

$$0 \leqslant \alpha_i \leqslant C, \quad i = 1, 2, \cdots, N \tag{7.100}$$

在这个问题中, 变量时拉格朗日乘子, 一个变量 α_i 对应一个样本点 (x_i, y_i) ; 变量的总数等于训练样本容 量.

(三) SMO算法的思路

SMO算法是一种启发式算法, 其基本思路是: 如果所有变量的解都满足此最优化问题的KKT条件 (Karush-Kuhn-Tucker conditions), 那么这个最优化问题的解就得到了. 因为KKT条件是该最优化问 题的充分必要条件. 否则, 选择两个变量, 固定其他变量, 针对这两个变量构建一个二次规划问题. 这个二 次规划问题关于这两个变量的解应该更接近原始二次规划问题的解, 因为这会使得原始二次规划问题的 目标函数值变得更小. 重要的是, 这时子问题可以通过解析方法求解, 这样就可以大大提高整个算法的计 算速度. 子问题有两个变量, 一个是违反KKT条件最严重的那一个, 另一个由约束条件自动确定. 如此, SMO算法将原问题不断分解为子问题并对子问题求解, 进而达到求解原问题的目的.

注意, **子问题的两个变量中只有一个是自由变量**, 假设 α_1, α_2 为两个变量, $\alpha_3, \alpha_4, \cdots, \alpha_N$ 固定, 那么由 等式约束 (7.99) 可知:

$$lpha_1 = -y_1 \sum_{i=2}^N lpha_i y_i$$

如果 α_2 确定, 那么 α_1 也随之确定. 所以子问题中同时更新两个变量.

整个SMO算法包括两个部分: 求解两个变量二次规划的解析方法和选择变量的启发式方法

6.5.2 两个变量二次规划的求解方法

(一) 优化问题的改写

不失一般性, 假设选择的两个变量是 α_1, α_2 , 其他变量 $\alpha_i (i=3,4,\cdots,N)$ 是固定的. 于是SMO的最优 化问题(7.98)~(7.100)的子问题可以写成:

$$\min_{\alpha_{1},\alpha_{2}} W(\alpha_{1},\alpha_{2}) = \frac{1}{2}K_{11}\alpha_{1}^{2} + \frac{1}{2}K_{22}\alpha_{2}^{2} + y_{1}y_{2}K_{12}\alpha_{1}\alpha_{2} \\
- (\alpha_{1} + \alpha_{2}) + y_{1}\alpha_{1}\sum_{i=3}^{N} y_{i}\alpha_{i}K_{i1} + y_{2}\alpha_{2}\sum_{i=3}^{N} y_{i}\alpha_{i}K_{i2}$$
(7.101)

s.t.
$$\alpha_1 y_1 + \alpha_2 y_2 = -\sum_{i=3}^{N} y_i \alpha_i = \zeta$$
 (7.102)

$$0 \leqslant \alpha_i \leqslant C, \quad i = 1, 2, \dots, N \tag{7.103}$$

其中, $K_{ij}=K\left(x_{i},x_{j}\right),i,j=1,2,\cdots,N$, ζ 是常数, 目标函数式 (7.101) 中省略了不含 α_{1},α_{2} 的常数 项.

注: (7.101)的推导过程

直接带入即可化简, 可得到结果, 但是需要注意以下两个计算过程:

- 但是要注意一个是 $K_{12}=K_{21}$, $y_1\alpha_1\sum_{i=3}^Ny_i\alpha_iK_{i1}$ = $y_1\alpha_1\sum_{j=3}^Ny_j\alpha_iK_{1j}$, 所以可以合并在一起.

(二) 约束条件

为了求解两个变量的二次规划问题(7.101)~(7.103),首先分析约束条件,然后在此约束条件下求极小.

图 7.8 二变量优化问题图示

注: 观察约束条件 (7.102) 和 (7.103) , 因为 y_1 和 y_2 的取值只有{-1,1}, 所以当 $y_1 \neq y_2$ 时, 也就变为图 7.8 左边图, $y_1 = y_2$ 时, 也就时图 7.8 右边图

不等式约束 (7.103) 使得 (α_1,α_2) 在盒子 $[0,C] \times [0,C]$ 内, 等式约束 (7.102) 使 (α_1,α_2) 在平行于盒子 $[0,C] \times [0,C]$ 的对角线的直线上. **因此要求的是目标函数在一条平行于对角线的线段上的最优值**. 这 使得两个变量的最优化问题成为**实质上的单变量的最优化问题**, 不妨考虑为变量 α_2 的最优化问题.

假设问题 (7.101) ~ (7.103) 的初始可行解为 $\alpha_1^{\rm old}$, $\alpha_2^{\rm old}$, 最优解为 $\alpha_1^{\rm new}$, $\alpha_2^{\rm new}$, 并且假设在沿着约束方向未经剪辑时 α_2 的最优解为 $\alpha_2^{\rm new,unc}$.

由于 α_2^{new} 需满足不等式约束 (7.103), 所以最优值 α_2^{new} 的取值范围必须满足条件

$$L \leqslant \alpha_2^{\text{new}} \leqslant H$$

其中, L 和 H 是 α_2^{new} 所在的对角线段端点的界. 如果 $y_1 \neq y_2$, 即图 7.8 左边图, 则有:

$$L = \max \left(0, lpha_2^{ ext{old}} - lpha_1^{ ext{old}}
ight), \quad H = \min \left(C, C + lpha_2^{ ext{old}} - lpha_1^{ ext{old}}
ight)$$

如果 $y_1 = y_2$, 即图 7.8 右边图, 则

$$L = \max \left(0, lpha_2^{ ext{old}} \ + lpha_1^{ ext{old}} \ - C
ight), \quad H = \min \left(C, lpha_2^{ ext{old}} \ + lpha_1^{ ext{old}}
ight)$$

注: L 和 H 的推导过程

首先根据原问题的约束条件和初始解,最优解有:

$$lpha_1^{new}y_1 + lpha_2^{new}y_2 = lpha_1^{old}y_1 + lpha_2^{old}y_2 = \zeta$$
 $0 \leqslant lpha_i \leqslant C, \quad i = 1, 2, \cdots, N$

第一种情况, 当 $y_1 \neq y_2$, 即图 7.8 左边图, 那么有:

$$\alpha_1^{old} - \alpha_2^{old} = \alpha_1^{new} - \alpha_2^{new} = \zeta$$

进行如下推导:

$$\alpha_2^{new} = \alpha_1^{new} - (\alpha_1^{old} - \alpha_2^{old}) \tag{I}$$

这里需要注意的一点是, α_2^{new} 是待求解的, α_1^{new} 是变化的.

又 $0\leqslant \alpha_2^{new}\leqslant C$, $0\leqslant \alpha_1^{new}\leqslant C$, 那么 α_2^{new} 的最小值最小只能到0 , 什么时候取 0 呢, 就是 $(\alpha_1^{old}-\alpha_2^{old})<0$ 时, 当 $(\alpha_1^{old}-\alpha_2^{old})>0$ 时, 最小值就是 在 $\alpha_1^{new}=0$ 时, I 式变为:

$$lpha_2^{new}=-(lpha_1^{old}-lpha_2^{old})$$
 , 因此, L的取值范围就是 $L=\max\left(0,lpha_2^{old}-lpha_1^{old}
ight)$

同理可以求得 H 的取值范围:

$$H = \min \left(C, C + lpha_2^{ ext{old}} - lpha_1^{ ext{old}}
ight)$$

具体可以参见下图:

第二种情况, 如果 $y_1=y_2$, 即图 7.8 右边图,

可以根据同样的方法,推导得到 L 和 H 的取值范围:

$$L = \max \left(0, lpha_2^{ ext{old}} \ + lpha_1^{ ext{old}} \ - C
ight), \quad H = \min \left(C, lpha_2^{ ext{old}} \ + lpha_1^{ ext{old}} \
ight)$$

取值范围如下图:

(三)两个变量的解

首先求沿着约束方向未经剪辑**即未考虑不等式约束(7.103)时** α_2 的最优解 $\alpha_2^{\rm new,unc}$, 然后再求剪辑后 α_2 的解 $\alpha_2^{\rm new}$

为了后面公式的简洁, 记:

$$g(x) = \sum_{i=1}^{N} \alpha_i y_i K(x_i, x) + b$$
 (7.104)

\$

$$E_{i}=g\left(x_{i}
ight)-y_{i}=\left(\sum_{j=1}^{N}lpha_{j}y_{j}K\left(x_{j},x_{i}
ight)+b
ight)-y_{i},\quad i=1,2$$

当 i=1,2 时, g(x) 为 x 的预测值, E_i 为函数 g(x) 对输入 x_i 的预测值与真实输出 y_i 之差.

定理 7.6 两个变量的解

最优化问题 (7.101)~(7.103) 沿着约束方向未经剪辑时的解是:

$$\alpha_2^{
m new, \ unc} = \alpha_2^{
m old} + \frac{y_2 (E_1 - E_2)}{\eta}$$
(7.106)

其中,

$$\eta = K_{11} + K_{22} - 2K_{12} = \|\Phi(x_1) - \Phi(x_2)\|^2$$
 (7.107)

 $\Phi(x_1)$ 是输入空间到特征空间的映射, E_i , i=1,2, 由式 (7.105) 给出.

经剪辑后 α_2 的解是

$$\alpha_{2}^{\text{new}} = \begin{cases} H, & \alpha_{2}^{\text{new,unc}} > H \\ \alpha_{2}^{\text{new,unc}}, & L \leqslant \alpha_{2}^{\text{new,unc}} \leqslant H \\ L, & \alpha_{2}^{\text{new,unc}} < L \end{cases}$$
(7.108)

由 α_2^{new} 求得 α_1^{new} 是:

$$\alpha_1^{\text{new}} = \alpha_1^{\text{old}} + y_1 y_2 \left(\alpha_2^{\text{old}} - \alpha_2^{\text{new}} \right) \tag{7.109}$$

注: 关于定理的推导过程.

1. 关于未经剪辑时的解的推导过程:

请参考李航<统计学习方法> p127-128的证明

2. 经剪辑后的解 (7.108) 的解释:

要使其满足不等式约束必须将其限制在区间 [L,H]内,从而得到 α_2^{new} 的表达式 (7.108)

3. α_1^{new} 的解 (7.109) 的解释:

由等式约束 (7.102), 得到 α_1^{new} 的表达式 (7.109)

6.5.3 变量的选择方法

SMO算法在每个子问题中选择两个变量优化,其中至少一个变量是违反KKT条件的.

(一) 第1个变量的选择

SMO称选择第1个变量的过程为外层循环. 外层循环在训练样本中选取违反 KKT 条件最严重的样本点, 并将其对应的变量作为第1个变量. 具体地, 检验训练样本点 (x_i, y_i) 是否满足KKT条件, 即

$$\alpha_i = 0 \Leftrightarrow y_i g\left(x_i\right) \geqslant 1 \tag{7.111}$$

$$0 < \alpha_i < C \Leftrightarrow y_i g(x_i) = 1 \tag{7.112}$$

$$\alpha_i = C \Leftrightarrow y_i g(x_i) \leqslant 1 \tag{7.113}$$

其中, $g\left(x_{i}
ight)=\sum_{j=1}^{N}lpha_{j}y_{j}K\left(x_{i},x_{j}
ight)+b$.

注1:关于(7.111)~(7.113)的推导:

1.
$$\alpha_i = 0$$

由(6.39) 知: $C = \alpha_i + \mu_i$, 可得:

$$\mu_i = C$$

再由对偶问题的 kkt 条件 (6.41) 中的 $\mu_i \xi_i = 0$ 可知:

$$\xi_i = 0$$

再由 kkt 条件中的 $y_i f(x_i) - 1 + \xi_i \ge 0$ (或者原始问题的约束条件, 是一样的), 有:

$$y_i g(x_i) \geqslant 1$$

2.
$$0 < \alpha_i < C$$

若 $\alpha_i>0$, 则必有 $y_if(x_i)=1-\xi_i$, 即该样本是支持向量, 由式 (6.39), 即 $C=\alpha_i+\mu_i$ 可知, 若 $\alpha_i< C$, 则 $\mu_i>0$, 根据 $\mu_i\xi_i=0$, 进而有 $\xi_i=0$, 即该样本恰在最大间隔边界上; 所以有, $y_if(x_i)=1$, 即 $y_ig(x_i)=1$

3.
$$\alpha_i = C$$

首先, $\xi_i\geqslant 0$, 同时, 由于 $\alpha_i=C$, 那么由 $\alpha_i\left(y_if\left(\boldsymbol{x}_i\right)-1+\xi_i\right)=0$ 可得, $\left(y_if\left(\boldsymbol{x}_i\right)-1+\xi_i\right)=0$, 所以 $y_if\left(\boldsymbol{x}_i\right)\leqslant 1$

注2: 其实 (7.111)~(7.113) 就是 kkt 条件 (6.41) 的充要条件, 两者可以互相推出.

检验是在精度 ε 范围内进行的. 在检验过程中, 外层循环首先遍历所有满足条件 $0 < \alpha_i < C$ 的样本点, 即在间隔边界上的支持向量点, 检验它们是否满足KKT条件. 如果这些样本点都满足KKT条件, 那么遍历整个训练集, 检验它们是否满足KKT条件.

(二)第2个变量的选择

SMO称选择第2个变量的过程为内层循环. 假设在外层循环中已经找到第1个变量 α_1 , 现在要在内层循环中找第2个变量 α_2 . 第2个变量选择的标准是希望能使 α_2 有足够大的变化. 由式 (7.106) 和式(7.108) 可知, 是依赖于 $|E_1-E_2|$ 的, 为了加快计算速度, 一种简单的做法是选择 α_2 , 使其对应的 $|E_1-E_2|$ 最大. 因为 α_1 已定, E_1 也确定了. 如果 E_1 是正的, 那么选择最小的 E_i 作为 E_2 ; 如果 E_1 是负的, 那么选择最大的 E_i 作为 E_2 . 为了节省计算时间, 将所有 E_i 值保存在一个列表中. 在特殊情况下, 如果内层循环通过以上方法选择的 α_2 不能使目标函数有足够的下降, 那么采用以下启发式规则继续选择 α_2 . 遍历在间隔边界上的支持向量点, 依次将其对应的变量作为 α_2 试用, 直到目标函数有足够的下降. 若找不到合适的 α_2 , 那么遍历训练数据集; 若仍找不到合适的 α_2 , 则放弃第1个 α_1 , 再通过外层循环寻求另外的 α_1

(三) 计算阈值 b 和差值 E_i

在每次完成两个变量的优化后, 都要重新计算阈值b。 当 $0 < \alpha_1^{\rm new} < {\rm C}$ 时, 由 KKT 条件 (7.112) 可知:

$$\sum_{i=1}^N lpha_i y_i K_{i1} + b = y_1$$

注: (x_1, y_1) 也满足(7.112), 两边同乘以 y_1 , 有:

$$y_1^2 g(x_i) = y_1$$

又 $y_1^2=1$,即可得到上述结论

于是,可得:

$$b_1^{\text{new}} = y_1 - \sum_{i=3}^{N} \alpha_i y_i K_{i1} - \alpha_1^{\text{new}} y_1 K_{11} - \alpha_2^{\text{new}} y_2 K_{21}$$
 (7.114)

由 E_1 的定义式 (7.105) 有:

$$E_1 = \sum_{i=3}^N lpha_i y_i K_{i1} + lpha_1^{
m old} y_1 K_{11} + lpha_2^{
m old} y_2 K_{21} + b^{
m old} - y_1$$

式 (7.114) 的前两项可以通过 E_1 改写为:

$$y_1 - \sum_{i=3}^N lpha_i y_i K_{i1} = -E_1 + lpha_1^{
m old} y_1 K_{11} + lpha_2^{
m old} y_2 K_{21} + b^{
m old}$$

带入式 (7.114), 可得:

$$b_1^{\text{new}} = -E_1 - y_1 K_{11} \left(\alpha_1^{\text{new}} - \alpha_1^{\text{eld}} \right) - y_2 K_{21} \left(\alpha_2^{\text{new}} - \alpha_2^{\text{old}} \right) + b^{\text{old}}$$
 (7.115)

那么, 同样的, 如果 $0 < \alpha_2^{\mathrm{new}} < C$, 则有:

- 如果 $lpha_1^{
 m new}$, $lpha_2^{
 m new}$ 同时满足条件 $0<lpha_i^{
 m new}< C, i=1,2$ (也就是 $b_1^{
 m new}$ 和 $b_2^{
 m new}$ 都有效的时候), 他们是相等的, 即 $b^{
 m new}=b_1^{
 m new}=b_2^{
 m new}$
- 如果 $\alpha_1^{\rm new}$, $\alpha_2^{\rm new}$ 是 0 或者 C , 那么 $b_1^{\rm new}$ 和 $b_2^{\rm new}$ 以及他们两者之间的数都是符合 KKT 条件的阈值,这时选择它们的中点作为 $b^{new}=\frac{b_1^{new}+b_2^{new}}{2}$

6.5.4 SMO算法总结

算法 7.5 (SMO算法)

输入: 训练数据集 $T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}$, 其中, $x_i\in\mathcal{X}=\mathbf{R}^n$, $y_i\in\mathcal{Y}=\{-1,+1\},\quad i=1,2,\cdots,N$, 精度 \mathcal{E}

输出: 近似解 $\hat{\alpha}$

- (1) 取初值 $\alpha^{(0)} = 0$, 令 k = 0 ;
- (2) 按照 6.5.3 变量的选择方法中第一个变量选择, 选择第一个变量 $\alpha_1^{(k)}$, 按照第二个变量选择方法 选择第二个变量 $\alpha_2^{(k)}$, 根据式 (7.106) , 求出新的 $\alpha_2^{\rm new,\;unc}$,

$$lpha_2^{ ext{new, unc}} \ = lpha_2^{(k)} + rac{y_2 \left(E_1 - E_2
ight)}{\eta}$$

• (3) 按照下式 (即式 (7.108)) 求出 $\alpha_2^{(k+1)}$

$$lpha_2^{(k+1)} = egin{cases} H, & lpha_2^{ ext{new,unc}} > H \ lpha_2^{ ext{new,unc}}, & L \leqslant lpha_2^{ ext{new,unc}} \leqslant H \ L, & lpha_2^{ ext{new,unc}} < L \end{cases}$$

• (4) 利用 $\alpha_2^{(k+1)}$ 和 $\alpha_1^{(k+1)}$ 的关系(即式 (7.109)) , 求出 $\alpha_1^{(k+1)}$

$$lpha_1^{(k+1)} = lpha_1^{(k)} + y_1 y_2 \left(lpha_2^{(k)} - lpha_2^{(k+1)}
ight)$$

- (5) 按照 6.5.3 变量的选择方法中的 (三) 计算阈值 b 和差值 E_i , 计算 b^{k+1} 和 E_i
- (6) 在精度 \mathcal{E} 范围内检查是否满足如下的终止条件:

$$\sum_{i=1}^N lpha_i y_i = 0$$

$$0 \leqslant \alpha_i \leqslant C, \quad i = 1, 2, \cdots, N$$

$$egin{aligned} lpha_{i}^{k+1} &= 0 \Rightarrow y_{i}g\left(x_{i}
ight) \geq 1 \ &0 < lpha_{i}^{k+1} < C \Rightarrow y_{i}g\left(x_{i}
ight) = 1 \ &lpha_{i}^{k+1} &= C \Rightarrow y_{i}g\left(x_{i}
ight) \leq 1 \end{aligned}$$

• (7) 如果满足则结束, 返回 α_i^{k+1} , 否则转到步骤 (2)