Pattern Classification

11. Backpropagation & Time-Series Forecasting

AbdElMoniem Bayoumi, PhD

Recap: Multi-Layer Networks

N(I) is the number of nodes is layer I

Recap: Gradient Descent

 It can be shown that the negative direction of the gradient gives the steepest descent

• When we approach the min, the steps become very small because close to the min we find $\frac{\partial E}{\partial W} \approx 0$

 It is an algorithm based on the steepest descent concept

Used to train a general multi-layer network

•
$$X_i^{(l)} = \sum_{j=1}^{N(l-1)} w_{ij}^{(l-1)} Y_j^{(l-1)}$$

Output of hidden node before applying the activation function

$$Y_i^{(l)} = f\left(X_i^{(l)}\right)$$

Output of layer

Error, i.e., cost fn.

•
$$E = \frac{1}{M} \sum_{m=1}^{M} E_m$$

•
$$E_m = \sum_{i=1}^{N(L)} \left[Y_i^{(L)}(m) - d_i(m) \right]^2$$
 Loss (i.e., for regression)

- $Y_i^{(L)}(m) \equiv i^{th}$ output of the NN for the training pattern m
- $d_i(m) \equiv \text{target o/p}$
- $N(L) \equiv \text{no. of outputs (i.e., nodes of the output layer)}$
- We need to compute the gradient, i.e., $\frac{\partial E}{\partial w_{ij}^{(l)}}$

Chain Rule

• $Y = f(y_1, y_2, y_3)$

• $y_1 = g_1(Z)$, $y_2 = g_2(Z)$, $y_3 = g_3(Z)$

•
$$\frac{\partial Y}{\partial Z} = \frac{\partial Y}{\partial y_1} * \frac{\partial y_1}{\partial Z} + \frac{\partial Y}{\partial y_2} * \frac{\partial y_2}{\partial Z} + \frac{\partial Y}{\partial y_3} * \frac{\partial y_3}{\partial Z}$$

•
$$E_m = \sum_{i=1}^{N(L)} \left[Y_i^{(L)}(m) - d_i(m) \right]^2$$

- $Y_i^{(L)} = f\left(X_i^{(L)}\right)$
- $X_i^{(L)} = \sum_{j=1}^{N(L-1)} w_{ij}^{(L-1)} Y_j^{(L-1)}$

$$\frac{\partial E_m}{\partial w_{IJ}^{(L-1)}} = \frac{\partial E_m}{\partial Y_I^{(L)}} * \frac{\partial Y_I^{(L)}}{\partial X_I^{(L)}} * \frac{\partial X_I^{(L)}}{\partial w_{IJ}^{(L-1)}}$$

$$= \frac{\partial E_m}{\partial Y_I^{(L)}} * \frac{\partial Y_I^{(L)}}{\partial X_I^{(L)}} * \frac{\partial \left(\sum_{j=1}^{N(L-1)} w_{Ij}^{(L-1)} Y_j^{(L-1)}\right)}{\partial w_{IJ}^{(L-1)}}$$

$$= \frac{\partial E_m}{\partial Y_I^{(L)}} * \frac{\partial Y_I^{(L)}}{\partial X_I^{(L)}} * Y_J^{(L-1)}$$

$$= \frac{\partial E_m}{\partial Y_I^{(L)}} * \frac{\partial Y_I^{(L)}}{\partial X_I^{(L)}} * Y_J^{(L-1)}$$

• Note that the other $X_i^{(L)}$'s are not taken into account, because they do not depend on $w_{II}^{(L-1)}$ at all

• To get $\frac{\partial E_m}{\partial w_{ij}^{(l)}}$ for any general layer l

$$\frac{\partial E_m}{\partial X_I^{(l+1)}} = \sum_{i=1}^{N(l+2)} \frac{\partial E_m}{\partial X_i^{(l+2)}} * \frac{\partial X_i^{(l+2)}}{\partial X_I^{(l+1)}} = \sum_{i=1}^{N(l+2)} \frac{\partial E_m}{\partial X_i^{(l+2)}} * \frac{\partial X_i^{(l+2)}}{\partial Y_I^{(l+1)}} * \frac{\partial Y_I^{(l+1)}}{\partial X_I^{(l+1)}}$$

- 1. Initialize all weights to small randomly chosen values, e.g. [-1,1]
- 2. Let u(m) & d(m) be the training input/output examples
- 3. For m=1 to M:
 - Present u(m) to the network and compute the hidden layer outputs and final layer outputs
 - ii. Use these outputs in a backward scheme to compute the partial derivatives of error fn. w.r.t. to the weights of each layer
 - iii. Update weights: $w_{ij}^{[l]}(new) = w_{ij}^{[l]}(old) \alpha \frac{\partial E_m}{\partial w_{ij}^{[l]}}$
- 4. Compute total error (stop in case of convergence)

Note: l refers to layer l

10

Disadvantages of Back propagation

- Can often be slow in reaching the min (i.e., sometimes tens of thousands of iterations)
 - Especially close to min
 - Too small $\alpha \rightarrow$ very small steps & slow to reach min
 - − Too large α → leads to oscillations & possibly not converging at all
 - Use variable α (start large then decrease it)

Disadvantages of Back propagation

- Prone to get stuck in local minima
 - This problem could be alleviated to some extent by repeating the training many times, each time from a different set of initial weights

Types of Weight Update

- Batch or epoch update, i.e, Gradient
 Descent:
 - Present full set of training examples (batch of examples)
 - Compute the error of each example
 - Compute gradient of the batch (based on cost function of the whole batch)
 - Update weights based on this batch gradient
 - Do another iteration ... and so on
 - Advantages:
 - Optimization is more consistent
 - Disadvantages:
 - Slow (too long per iteration)

Types of Weight Update

- Sequential update, i.e., Stochastic Gradient Descent:
 - Present a training pattern, then update the weights (according to $\frac{\partial E_m}{\partial w}$), then present the next one ... and so on
 - After finishing all patterns, do another iteration starting from m = 1
 - Advantages:
 - Faster compared to gradient descent, i.e., full-batch
 - Disadvantages:
 - Hard to converge: "stochastic" since it depends on every single example; however, in practice being close to minimum is reasonably good
 - Loss speedup from vectorization
 - In practice for large datasets SGD is preferred to GD

Types of Weight Update

- Mini-Batch :
 - Present **subset** of training examples (minibatch of examples)
 - Compute the error of each example
 - Compute gradient of the mini-batch (based on cost function of this mini-batch)
 - Update weights based on this mini-batch gradient
 - Move to another mini-batch & after finishing all mini-batches do another iteration ... and so on
 - Advantages:
 - Fast

Other Optimization Algorithms

- Gradient descent with momentum
 - Smooth-out the steps of the gradient descent using a moving average of the derivatives
 - Get faster learning in the intended direction & avoid oscillations

$$W = W - \alpha DW$$

Other Optimization Algorithms

- RMSProp
 - Slow-down learning in unintended directions
 - Avoid oscillations

$$Sw_i = \beta Sw_i + (1 - \beta) \left[\frac{\partial E}{\partial w_i} \right]^2$$
 sn

$$Sw_{j} = \beta Sw_{j} + (1 - \beta) \left[\frac{\partial E}{\partial w_{i}} \right]^{2}$$

small

$$\frac{\partial E}{\partial w_i} < \frac{\partial E}{\partial w_j}$$

large

$$w_{j} = w_{j} - \alpha \frac{\frac{\partial E}{\partial w_{j}}}{\sqrt{Sw_{j}} + \varepsilon}$$

Other Optimization Algorithms

Adam (combines both RMSProp & momentum)

$$Dw_{i} = \beta_{1}Dw_{i} + (1 - \beta_{1})\frac{\partial E}{\partial w_{i}} \qquad Sw_{i} = \beta_{2}Sw_{i} + (1 - \beta_{2})\left[\frac{\partial E}{\partial w_{i}}\right]^{2}$$

$$w_i = w_i - \alpha \frac{Dw_i}{\sqrt{Sw_i} + \varepsilon}$$

Regularization

- Used to prevent overfitting
 - Intuition: set the weights of some hidden nodes to zero to simplify the network, i.e., smaller network
- L₂ regularization (aka weight decay): $J = \frac{1}{M} \sum_{m=1}^{M} E_m + \frac{\lambda}{2M} \left\| \underline{W} \right\|_2^2 \left\| \underline{W} \right\|_2^2 = \sum_j w_j^2 = \underline{W}^T \underline{W}$
- L₁ regularization: $J = \frac{1}{M} \sum_{m=1}^{M} E_m + \frac{\lambda}{2M} \| \underline{W} \|_1$ $\| \underline{W} \|_1 = \sum_{j} |w_j|$
- \underline{W} is the weights vector, thresholds not necessary to be included
- L₂ regularization is used more often
- λ is the regularization parameter (hyper-parameter to be tuned)

Dropout Regularization

Used to prevent overfitting

• Intuitions:

- Eliminate some nodes to simplify the network based on some probability, i.e., smaller network
- As if you train smaller networks on individual training examples
- Cannot rely on any one feature, so spread weights
- For each layer set a dropout probability
 - Each node within that layer may get eliminated based on that probability

Guidelines for Training

- Learning rate α :
 - Too small. Convergence will be slow.
 - Too large: we will oscillate around the minimum.
 - Some methods propose varying rate. i.e., learning rate decay.
 - When learning does not go well, consider using smaller learning rate.

Learning Rate Decay

Gradient descent with small mini-batch size

Source: Andrew Ng

Input and Output Normalization

- Input and Output normalization
 - Inputs have to be approximately in the range of 0 to 1 or -1 to 1

$$-x = (u - u_{min})/(u_{max} - u_{min})$$

$$-x = (u - Mean(u)) / st dev(u)$$

Train/Dev/Test Partition

- Best practice:
 - Training: 60%, Validation (Dev): 20% & Test: 20%
 - In case of big data, e.g., 10^6, then 98%, 1% & 1%

 Test set should be used only once, at the very end of the design

Machine Learning Recipe

- Train the network and evaluate first on the training data
 - If bias is high, i.e., underfitting (performance is bad on the training set itself), then:
 - Bigger network (more hidden nodes or more hidden layers) → works most of the time
 - Train longer → works sometimes
 - Check for bias again and keep changing until a good bias is reached
- Check for variance, i.e., performance on Dev set
 - If variance is high, i.e., overfitting (performance is bad on the validation set), then:
 - More data (if possible)
 - Regularization
 - Check again for bias first, then after that check for variance and so on until you reach a good bias & good variance
- Search for better NN architecture that better suits the problem (sometimes may work)

Hyper-Parameters Tuning

• Learning rate α

1st in importance

- Momentum parameter $\beta \approx 0.9$
- Number of hidden nodes

Mini-batch size

2nd in importance

- Num of layers
- Learning-rate decay

3rd in importance

• Adam parameters $\beta_1 \approx 0.9$, $\beta_2 \approx 0.999$, $\epsilon \approx 10^{-8}$

Not likely to make change!

Tuning Process

- Try random values: don't use a grid
 - Better exploration of important parameters
 - Consider the example on the board
- Coarse to fine scheme
 - Focus more on good regions
- Use appropriate scale
 - Do not sample uniformly
 - Use logarithmic scale
 - E.g., α range is [0.0001,1] linear scale scaling will give more weight to the values between 0.1 & 1, however, logarithmic scale:

Tuning Process

- Use appropriate scale
 - More example: let β range is [0.9,0.999]
 - Sample from 1β , i.e., [0.1,0.001], using log scale

- Sensitivity of β approaching has huge impact on the performance, i.e., momentum corresponds to averaging over the last $\frac{1}{1-\beta}$ examples
 - $\beta \sim [0.900, 0.9005] \rightarrow$ averaging over last 10 examples
 - $\beta \sim [0.999, 0.9995] \rightarrow 1000$ to 2000 examples

K-Fold Cross Validation

- For parameter tuning over the training data
- Apply K-fold validation to the training set (usually k= 5).
- Example K=4

$$E_{VAL} = E_1 + E_2 + E_3 + E_4$$

Repeat for every parameter value, minimize E_{VAL}

K-Fold Cross Validation

- Better than convention train-validation-test split
 - Just split not training and test (no need for validation set)
 - Not biased to the nature of splitting of the training and validation

Multi-Class Classification

 E.g., an image is either of a cat, or dog, or duck or otherwise

Multi-Class Classification

 Use sigmoid activation function in the output only in case of binary classification, i.e., two classes

For multi-class classification use soft-max regression:

Multi-Class Classification

For multi-class classification use soft-max regression:

- $z_i^{[L]}$ output of node i at the output layer before applying any activation function
- y_i is the output after applying soft-max

$$y_i = \frac{e^{z_i}}{\sum_j e^{z_j^{[L]}}}$$

Convolutional Neural Networks (CNN)

Mostly applied to imagery problems

 Layers extract features from input images, e.g., edge detection

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN)

- Mostly applied to imagery problems
- Layers extract features from input images, e.g., edge detection
 - Convolution layer, i.e., filtering
 - Pooling Layer, i.e., reduce input (avg or max)
 - Fully Connected Layer, i.e., as in multi-layer NN, at the final layers

Vertical Edge Detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

convolution

Convolutional Neural Networks (CNN)

Output channels

Max Pooling

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

10	10	0
10	10	0
10	10	0

What about average pooling?

Global Max Pooling

What about global average pooling?

Convolutional Neural Networks (CNN)

 Learn filters' parameters and weights of fully connected layers

Source: Andrew Ng's Lectures

Convolutional Neural Networks (CNN)

- Convolution leads to less memory footprint due to:
 - Parameter sharing (compared to fully connected layers)
 - Sparsity of connections (at each layer output depends on limited number of inputs)

Recurrent Neural Networks (RNN)

 Sequence models, e.g., speech recognition, sentiment classification, ... etc.

Inputs & outputs can have different lengths within the same dataset

Recurrent Neural Networks (RNN)

y is output at one time step from a NN

a is an activation passed from one step to another also from a NN

Autoencoder Network

Source: Lilian Weng's Github blog

Autoencoder Network

- Unsupervised network
- Gives embedding
 - Better embeddings using supervised

Generative Adversarial Network (GAN)

Create a generative model of artificial data

Siamese Networks

The **Distance Function**decides if the output
vectors are close enough
to be similar

The Neural Network transforms the input into a properties vector

Input Data (image, text, features...)

Source: Guy Ernest, AWS Amazon Blogs

Siamese Networks

The **Distance Function**decides if the output
vectors are close enough
to be similar

The Neural Network transforms the input into a properties vector

Input Data (image, text, features...)

Source: Guy Ernest, AWS Amazon Blogs

Deep Learning

- Subset of machine learning
- Multi-layered neural networks
- Raw data, i.e., end-to-end solution
- Requires big data & high computational power

Machine Learning vs Deep Learning

Machine Learning

Deep Learning

Machine Learning vs Deep Learning

Source: Hannes Schulz and Sven Behnke, 2012

Machine Learning vs Deep Learning

When to use Deep Learning?

- Big amount of data expensive!
- Availability of high computational power expensive!
- Lack of domain understanding
- Complex problems (vision, NLP, speech recognition)

Scalability with Data Amount

Scalability with Data Amount

Andrew Ng

Potentials of AI

"If a typical person can do a mental task with less than one second of thought, we can probably automate it using AI either now or in the near future."

Andrew Ng

Currently, there are some limitations!

Lots of achievements in vision field

- Not a magic tool!
 - Lack of adaptability and generality compared to human-vision system
 - Not able to build general-intelligent machine

Source: Gartner Hype Cycle for AI, 2019

Why cannot fit all real-world scenarios?

Source: Google

Source: Boston Dynamics

- Large amount of labeled data
 - Impressive achievements correspond to supervised learning
 - Expensive!
 - Sometimes experts & special equipment are needed

- Datasets may be biased
 - Deep Networks become biased against rare patterns
 - Serious consequences in some real-world applications (e.g., medical, automotive, ... etc.)
 - Researchers should consider synthetic generation of data to mitigate the unbalanced representation of data

Datasets may be biased

- Classification may be sensitive to viewpoint
 - if one of the viewpoints is under-represented

- Sensitive to standard adversarial attacks
 - Datasets are finite and just represent a fraction of all possible images

- Add extra training, i.e., "adversarial training"

- Over-sensitive to changes in context
 - Limited number of contexts in dataset, i.e., monkey in jungle
 - Combinatorial Explosion!

- Combinatorial Explosion
 - Real world images are combinatorial large
 - Application dependent (e.g., medical imaging is an exception)
 - Considering compositionality may be a potential solution
 - Testing is challenging (consider worst case scenarios)

- Visual understanding is tricky
 - Mirrors
 - Sparse Information
 - Physics
 - Humor

Unintended results from fitness functions

1. Categorize the problem:

Input: supervised, unsupervised, ... etc.

Output: numerical → regression, class → classification, set of input groups → clustering

- 2. Understand your data:
 - a) Analyze the data:
 - Descriptive statistics
 - Data visualization
 - b) Process the data:
 - Pre-processing, cleansing, ... etc.
 - c) Feature Engineering

- 3. Determine the possible algorithms:
 - Based on categorization & data understanding
 - May have a look at the literature
 - Determine: desired accuracy, interpretability, scalability, complexity, training & testing time, runtime, ... etc.

- 4. Implement Machine Learning Algorithms:
 - Setup a pipeline
 - Compare algorithms
 - Select an evaluation criteria
- 5. Tune hyperparameters

Time Series Prediction

- Time series contains:
 - Trend
 - Seasonality

- De-seasonalization:
 - Remove the seasonal periodicities

How to deseasonalize?

Removing the seasonal periodicities

Usually seasonal cycle length is 12 months

How to deseasonalize?

Obtain average of TS values over this window

$$a(year) = \frac{1}{12} \sum_{window} x(t)$$

- Normalization step: $Z(i) = \frac{x(i)}{a(year)}$
- Seasonal average
 = avg of Z(i)'s of the different years for month i

$$u(i) = \frac{\sum_{j} Z_{j}(i)}{\# years}$$

How to deseasonalize?

Seasonal average
 = avg of Z(i)'s of the different years for month i

$$u(i) = \frac{\sum_{j=1}^{\# years} Z_j(i)}{\# years}$$

Deseasonalization Step

 Divide time series value by the corresponding seasonal average

$$x_{deseasonal}(t) = \frac{x(t)}{u(month(t))}$$

After that focus on predicting the trend

Recover Seasonality

 After trend prediction, seasonality can be recovered via multiplication by the corresponding seasonal average

Acknowledgment

 These slides have been created relying on lecture notes of Prof. Dr. Amir Atiya