

Fiche outil

Équations différentielles

 $Extrait \ du \ programme \ officiel \ de \ PTSI: appendice \ 2 \ « \ Outils \ math\'ematiques \ », \ bloc \ 2 \ « \ \'equations \ diff\'erentielles \ ».$

Notions et contenus	Capacités exigibles
Équations différentielles linéaires à coefficients constants.	Identifier l'ordre. Mettre l'équation sous forme canonique.
Équations différentielles linéaires du premier ordre à coefficients constants : $y' + ay = f(t)$.	Trouver la solution générale de l'équation sans second membre (équation homogène).
	Trouver l'expression des solutions lorsque $f(t)$ est constante ou de la forme $A\cos(\omega t + \phi)$ en utilisant la notation complexe.
Équations différentielles linéaires du deuxième ordre à coefficients constants : $y'' + ay' + by = f(t)$.	Utiliser l'équation caractéristique pour trouver la solution générale de l'équation sans second membre.
	Prévoir le caractère borné ou non de ses solutions (critère de stabilité).
	Trouver l'expression des solutions lorsque $f(t)$ est constante ou de la forme $A e^{\lambda t}$ avec λ complexe.
	Trouver la solution de l'équation complète correspondant à des conditions initiales données.
	Représenter graphiquement cette solution.
Autres équations différentielles d'ordre 1 ou 2.	Obtenir une intégrale première d'une équation de Newton $x'' = f(x)$ et l'exploiter graphiquement.
	Séparer les variables d'une équation du premier ordre à variables séparables.
	Faire le lien entre les conditions initiales et le graphe de la solution correspondante.

En **gras**, les points devant faire l'objet d'une approche expérimentale.

