

今後の説明のための記号の変更

$$E = -\frac{1}{2} \sum_{i} \sum_{j} w_{j,i} x_{i} x_{j} + \sum_{i} \theta_{i} x_{i}$$

$$= -\sum_{(i,j)} w_{j,i} x_{i} x_{j} + \sum_{i} \theta_{i} x_{i}$$

$$((i,j)) は異なるi,jの組合せ)$$

$$P(x) = Ce^{-E(x)/T}$$
 ($C = \frac{1}{\sum_{x} e^{-E(x)/T}}$)

 $P(x) = Ce^{-E(x)/T}$ $(C = \frac{1}{\sum_{x} e^{-E(x)/T}})$ ここで T = 1, $b_i = -\theta_i$, $\theta = (w, b)$, $z(\theta) = \frac{1}{c}$ と置き, $\Phi(x, \theta) = E \ \ \,$ $\ \ \,$

$$P(x|\theta) = Ce^{-E(x)/T} = \frac{1}{z(\theta)}e^{-\Phi(x,\theta)}$$

 θ をパラメータと考え, θ が与えられたときに

10

分布が正しく学習できているか?

▶最尤推定になっているかどうかで判断する

最尤推定:

データ集合 $X = \{x_1, x_2, \dots, x_N\}$ が与えられたとき, $\{x_1, x_2, \cdots, x_N\}$ が未知の確率分布 $P_g(x)$ に従って 生成されているとする.

 $P_a(x)$ を知る方法は無いので,適当な関数 $P(x|\theta)$ を用意し、尤度関数 $L(\boldsymbol{\theta}) = \prod_{n=1}^{N} P(\boldsymbol{x}_{n} | \boldsymbol{\theta})$ が最大に なる θ のとき, $P(x|\theta)$ は $P_a(x)$ に近いと考える.

データ集合 X から θ を推定する!!

11

対数尤度

$$P(x|\theta) = \frac{1}{z(\theta)} e^{-\Phi(x,\theta)} \downarrow 0$$

$$\ln P(x_n|\boldsymbol{\theta}) = -\Phi(x_n,\boldsymbol{\theta}) - \ln z(\boldsymbol{\theta})$$

$$\ln L(\boldsymbol{\theta}) = \sum_{n=1}^{N} (-\Phi(\boldsymbol{x}_n, \boldsymbol{\theta}) - \ln z(\boldsymbol{\theta}))$$

 $lue{L}$ これを最大にする $m{ heta}$ のとき $P(m{x}|m{ heta})$ と $P_g(m{x})$ は近い

このような θ を求めることが分布の学習になる ⇒勾配法で求める

12

多層ニューラルネットとボルツマンマシンの比較

	学習の方針	学習後のネットワー ク
多層ニューラル ネット	誤差関数 E の最小化	入力に対して正しい 出力を行う
ボルツマンマシン	対数尤度 ln <i>L(θ)</i> の最大化	十分に更新した時の ユニットの値 x_i の分 布が正しい

多層ニューラルネットの重みの更新式: $w \leftarrow w - \eta \frac{\partial E}{\partial w}$

ボルツマンマシンの重みの更新式: $w \leftarrow w + \eta \frac{\partial \ln L(\theta)}{\partial w}$

ボルツマンマシンのバイアスの更新式: $b \leftarrow b + \eta \frac{\partial \ln L(\theta)}{\partial h}$

期待値の効率的な求め方 $E_{\theta}[x_ix_j] = \sum_x P(x|\theta)x_ix_j$ 全てのx について加算するのは困難 $\Rightarrow x をランダムに <math>P(x|\theta)$ の確率で生成して平均値を求める. $(P(x_i = 1) = \frac{1}{1+e^{-u_i}}$ を使う.) メリット: 少ない数のx の生成で期待値の近似値が求まる

