UECS2344 Software Design: Lecture 8

Database Design: Mapping Entity Classes to Database Tables

Exercise A

From each of the examples given below, generate a general mapping rule that is applicable.

Note: <u>primary key</u> ; f.k.=foreign ke	у
Account(<u>number</u> , balance)	
Sample Data	
number balance	
1234 398.05	
5678 436.70	
1287 8555.85	
	Account(number, balance) Sample Data number balance 1234 398.05 5678 436.70

Example 2

Customer Account
id 1 1 number
name balance

Customer(<u>id</u>, name)

Sample Data

id	name
111	Orlie
222	George
333	Shaw

Account(<u>number</u>, balance, customerid)

f.k.

Sample Data

number	balance	customerid
1234	398.05	111
5678	436.70	333
1287	8555.85	222

OR

 $Customer(\underline{id}, name\ account Number)$

f.k.

Sample Data

id	name	accountNumber
111	Orlie	1234
222	George	1287
333	Shaw	5678

Account(<u>number</u>, balance)

number	balance
1234	398.05
5678	436.70
1287	8555.85

Example 3

Customer(id, name)

Sample Data

id	name
111	Orlie
222	George
333	Shaw

CreditCard(<u>number</u>, limit, customerid)

f.k.

Sample Data

number	limit	customerid
5555111122223333	25000	111
5555666677778888	20000	333

Example 4

Customer(id, name)

Sample Data

id	name
111	Orlie
222	George
333	Shaw

Account(<u>number</u>, balance, customerid)

f.k.

Sample Data

number	balance	customerid
1234	398.05	111
5678	436.70	333
1287	8555.85	222
6677	446.90	111
5544	9432.00	222

Example 5

Employee(empld, name)

empld	name
E1	John
E2	Grace
E3	Harry
	-

Sample Data

	projld	title
	P1	Payroll System
	P2	HR System

Allocation(empld, projld)

Sample Data

empld	projID
E1	P1
E1	P2
E2	P1
E3	P1
E3	P2

Example 6

Can be interpreted as:

Employee(empld, name)

Sample Data

empld	name
E1	John
E2	Grace
E3	Harry

Project(projld, title)

Sample Data

	-
projld	title
P1	Payroll System
P2	HR System

Allocation(empId, projID, hoursWorked)

empld	npld projID hoursWork			
E1 P1 10		10		
E1 P2 30		30		
E2 P1		40		
E3 P1		25		
E3	P2	15		

Example 7

Faculty(name, dean)

Sample Data

name	dean
Science	Prof Andrew
Engineering	Prof Francis
Arts	Prof Janet

Department(<u>name</u>, head, faculty

f.k.

Sample Data

name	head	faculty
Biology	Dr Kenny	Science
Chemistry	Dr Jacob	Science
Electrical	Dr Janet	Engineering
Humanities	Dr Opal	Arts

Example 8

Faculty(name, dean)

Sample Data

name	dean
Science	Prof Andrew
Engineering	Prof Francis
Arts	Prof Janet

Office(<u>location</u>, manager, faculty)

f.k.

Sample Data

location	manager	faculty
A101 Ms Agnes Scie		Science
A201	Mr David	Engineering
B101	Ms Rena	Arts

OR

Faculty(name, dean, officeLocation

f.k.

Sample Bata			
name	dean	office	
		Location	
Science	Prof Andrew	A101	
Engineering	Prof Francis	A201	
Arts	Prof Janet	B101	
•	•		

Exercise B

Given the database tables below that represent student data based on version 1, illustrate how the data will be represented in database tables based on the other 2 versions listed in Example 9.

Student

regNum	name
111	Sally
222	Charlie
333	Mili
444	Henry

ForeignStudent

Torcignotaacht		
regNum country		
222	England	
333	France	

LocalStudent

regNum	state	
111	Johor	
444	Penang	

Exercise C

Given the data below that represents course and student data, design the classes and database tables needed to represent the entities and their relationships.

course	course	student	student	grade
code	title	id	name	
C1	Java	111	Alice	Α
C2	PHP	111	Alice	В
C1	Java	222	Bob	В
C2	PHP	222	Bob	Α
C1	Java	333	Cindy	Α