AGA KHAN UNIVERSITY EXAMINATION BOARD

HIGHER SECONDARY SCHOOL CERTIFICATE

CLASS XII

MODEL EXAMINATION PAPER 2020

Mathematics Paper I

Time: 1 hour Marks: 40

INSTRUCTIONS

- 1. Read each question carefully.
- 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 40 only.
- 4. In each question, there are four choices A, B, C, D. Choose ONE. On the answer grid, black out the circle for your choice with a pencil as shown below.

Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. You may use a scientific calculator if you wish.

Page 2 of 12

- 1. Among the given functions, the odd function(s) is/ are
 - I. $f(x) = -\sqrt{x^2 1}$
 - II. $f(x) = -x^3$
 - III. $f(x) = x^3$
 - A. I only.
 - B. II only.
 - C. I and III.
 - D. II and III.
- 2. If *x* is measured in radian, then $\lim_{x\to 0} \left(\frac{\sin px}{x}\right)$ is
 - A. *p*
 - B. 0
 - C. 1
 - D. not defined.
- 3. The value of x which does NOT belong to the domain of the real valued function $f(x) = \sqrt{x^2 4}$ is

(Note:
$$x \in Z$$
)

- A. 2
- B. -1
- C. -2
- 4. For the function $f(x) = x^2$ and $g(x) = (x+1)^2$, the value of $f \circ g(-1)$ equals
 - A. 0
 - B. 2
 - C. 4
 - D. 16
- 5. For $y = x^2$, when x = 2 and $\delta x = 0.1$, the value of δy is
 - A. 0.04
 - B. 0.41
 - C. 0.44
 - D. 8.40

Page 3 of 12

6.
$$\frac{d}{dx}(a^x \times e^2)$$
 is equal to

- A. $2e \times a^x$
- B. $e^2 \times xa^{x-1}$
- C. $e^2 \times a^x \times \ln a$
- D. $2e \times xa^{x-1} \times \ln a$
- 7. The derivative of $\left(\ln \frac{a^2}{x}\right)$, with respect to x, is
 - A. $\frac{1}{x}$
 - B. $-\frac{1}{x}$
 - C. $\left(2a\ln a + \frac{1}{x}\right)$
 - D. $\left(2a\ln a \frac{1}{x}\right)$
- 8. The slope of the tangent to the curve $y = x^2 + 2x + 1$ at the point (2, 9) is
 - A 4
 - B. 6
 - C. 7
 - D (
- 9. The derivative of $f(x) = \sin(\ln x)$, with respect to x, is
 - A. $\frac{\cos(\ln x)}{x}$
 - B. $-\frac{\cos(\ln x)}{x}$
 - C. $\cos\left(\frac{\ln x}{x}\right)$
 - D. $-\cos(\ln x)$

- If x = 2t and $y = t^2$, where t is the parameter, then $\frac{dy}{dx}$ is equal to
 - A. 4t
 - B. $\frac{1}{4t}$
 - C. $\frac{1}{t}$
- If $\frac{3}{x-1}$ and $-\frac{1}{x-3}$ are the partial fractions of an algebraic expression, then the expression will be
 - $A. \qquad \frac{2x-8}{x^2-4x+3}$
 - B. $\frac{2x+8}{x^2-4x+3}$
 - C. $\frac{2x+8}{x^2+4x-3}$
 - D.
- The area bounded by the curve $y = 9 x^2$ and the x-axis can be found by

 A. $\int_0^9 (9 x^2) dx$ B. $\int_{-9}^9 (9 x^2) dx$ C. $\int_{-3}^3 (9 x^2) dx$ D. $\int_0^3 (9 x^2) dx$ 12.
- The integral of $e^{a^2x+b^2}$, with respect to x, is 13.

 - A. $e^{a^2x+b^2} + C$ B. $e^{2ax+2b} + C$ C. $\frac{1}{a^2}e^{a^2x+b^2} + C$
 - D. $\frac{1}{a^2+b^2}e^{a^2x+b^2}+C$

Page 5 of 12

- The integral of $\sqrt{ax-b}$, with respect to x, is
 - $A. \qquad \frac{2a(ax-b)^{\frac{3}{2}}}{3} + C$
 - $B. \qquad \frac{3a(ax-b)^{\frac{3}{2}}}{2} + C$
 - $C. \qquad \frac{2(ax-b)^{\frac{3}{2}}}{3a} + C$
 - D. $\frac{3(ax-b)^{\frac{3}{2}}}{2a} + C$
- A. $\frac{\sqrt{(ax-b)}}{2ae} + C$ B. $\frac{e\sqrt{(ax-b)}}{2a} + C$ C. $\frac{e\sqrt{(ax-b)}}{a} + C$ D. $\frac{2e\sqrt{(ax-b)}}{a} + C$ The value of $\int_{1}^{e} \frac{dx}{x}$ is
 A. 1B. 0C. -1D. not defined
- In the given diagram, the slope of the line segment AB is $\frac{1}{3}$. The value of x_1 will be
 - A.

 - D.

NOT TO SCALE

A(2, 3)

Page 6 of 12

- 18. The line 2x + y = 1 is perpendicular to the line l. If line l is passing through the point (0, 0), then its equation will be
 - A. y = 2x
 - B. x = 2y
 - C. y = -2x
 - D. x = -2y
- In the given triangle ABC, the slope of the median intersecting the side BC is 19.
 - A. -2
 - B.
 - C.
 - D.

B(5,8)

- NOT TO SCALE
- In the given triangle ABC, the length of altitude from vertex B to the side AC is 20.
 - A.
 - B.
 - C.
 - D.

NOT TO SCALE

- C(7,4)

Use the given information to answer Q.21, Q.22 and Q.23.

In the given diagram, triangle ABC is an isosceles triangle. Equation of the line AB is y = 1, EC is y = 5, and CB is y = -4x + 17. Line CB is parallel to line ED.

NOT TO SCALE

21. The altitude of triangle *ABC* is

- A. 3 units.
- B. 4 units.
- C. 5 units.
- D. 6 units.

22. The equation of the line ED is y = mx + 13. The value of m is

- A. -4
- B. -1
- C. 1
- D 4

23. The distance of line CD from y-axis is

- A. 1 unit.
- B. 3 units.
- C. 4 units.
- D. 5 units.

Page 8 of 12

24. The given table shows the information of a factory that produces jackets.

	Small Jacket	Medium Jacket
Quantity	x	у
Time Required (min)	50	60
Cost per Jacket (Rs)	400	500

The total labour hours available per day are at most 200 hours.

The condition for the time constraint is

- A. $60x + 50y \le 12,000$
- B. $50x + 60y \le 12,000$
- C. $60x + 50y \ge 12,000$
- D. $50x + 60y \ge 12,000$

- A. $\frac{3}{\sqrt{13}}$ units.
- B. $\frac{4}{\sqrt{13}}$ units.
- C. 3 units.
- D. 4 units.

NOT TO SCALE

- 26. The centre of the circle represented by equation $(2x+3)^2 + (2y-4)^2 = 16$, is
 - A. $\left(-\frac{3}{4},1\right)$
 - B. $\left(\frac{3}{4}, -1\right)$
 - C. $\left(-\frac{3}{2}, 2\right)$
 - D. $\left(\frac{3}{2}, -2\right)$

27. The centre of the circle $x^2 + y^2 + 8x + 18y + 5 = 0$ is

- A. (4, 9)
- B. (8, 18)
- C. (-4, -9)
- D. (-8, -18)

Use the given diagram to answer Q.28, Q.29 and Q.30.

28.

A.
$$y+4=(x-4)^2$$

B.
$$x-4=(y-4)^{-1}$$

C.
$$y-4=(x+4)^2$$

D.
$$x+4=(y+4)^2$$

29.

A.
$$\left(-\frac{17}{4}, -4\right)$$

B.
$$\left(-\frac{15}{4}, -4\right)$$

C.
$$\left(4, -\frac{17}{4}\right)$$

D.
$$\left(4, -\frac{15}{4}\right)$$

 $y - 4 = (x + 4)^{2}$ D. $x + 4 = (y + 4)^{2}$ The coordinates of the focus of the parabola is

A. $\left(-\frac{17}{4}, -4\right)$ 3. $\left(-\frac{15}{4}, -4\right)$ 4. $\left(4, -\frac{17}{4}\right)$ 6. $\left(4, -\frac{15}{4}\right)$ 7. equation of $(x + 1)^{2}$ The equation of directrix of the parabola is 30.

A.
$$x = -\frac{17}{4}$$

B.
$$x = -\frac{15}{4}$$

C.
$$y = -\frac{17}{4}$$

D.
$$y = -\frac{15}{4}$$

Page 10 of 12

- 31. The major axis of the ellipse $2x^2 + 8y^2 4 = 0$ is along
 - A. x axis and has a length of 2 units.
 - B. y axis and has a length of 2 units.
 - C. x axis and has a length of $2\sqrt{2}$ units.
 - D. y axis and has a length of $2\sqrt{2}$ units.
- 32. The vertices and co-vertices of an ellipse are $(\pm 5,0)$ and $(0,\pm 3)$ respectively. The equation of the ellipse is
 - A. $\frac{x^2}{3} + \frac{y^2}{5} = 1$
 - B. $\frac{x^2}{5} + \frac{y^2}{3} = 1$
 - C. $\frac{x^2}{9} + \frac{y^2}{25} = 1$
 - D. $\frac{x^2}{25} + \frac{y^2}{9} = 1$
- 33. The distance between foci of a hyperbola is $8\sqrt{2}$ and length of its semi transverse axis is 4. The eccentricity of the hyperbola will be
 - A. $\frac{\sqrt{2}}{2}$
 - B. $\frac{\sqrt{2}}{4}$
 - C. $\sqrt{2}$
 - D. $2\sqrt{2}$
- 34. When origin is shifted to (-1, 7), the coordinates of a point (x, y) becomes (-5, 6). With respect to origin initially the point (x, y) was equal to
 - A. (4, 1)
 - B. (4, -1)
 - C. (-6, 13)
 - D. (6, -13)
- 35. If x axis and y axis are rotated through an angle of 25°, then x coordinate of the point (6, 8) will become

 $(\mbox{\bf Note}:$ The answer is given in TWO decimal places.)

- A. 8.82
- B. 9.79
- C. 2.06
- D. 4.71

Page 11 of 12

36. The geometrical representation of vector *KL* is shown in the given diagram. The vector *KL* will be

B.
$$\mathbf{i} + 3\mathbf{j}$$

C.
$$-3\mathbf{i} + 2\mathbf{j}$$

D.
$$2\mathbf{i} - 3\mathbf{j}$$

37. If $\overrightarrow{MP} = -(-3\mathbf{i})$ and $\overrightarrow{MO} = 3\mathbf{j} + 3\mathbf{i}$, then the position vector of P will be

B.
$$-3\mathbf{j}$$

C.
$$-6i + 3j$$

D.
$$6i - 3j$$

38. Which of the following two vectors give the dot product 48?

B.
$$-12i$$
 and $-4j$

D.
$$5\mathbf{i}+\mathbf{j}$$
 and $9\mathbf{i}+3\mathbf{j}$

39. Which of the following statements is CORRECT for $\mathbf{a} - 2\mathbf{b} = \mathbf{0}$ and $\mathbf{c} + 3\mathbf{a} = \mathbf{0}$?

(Note: a, b, and c are non-zero vectors and 0 is a zero vector.)

- I. Vectors **a** and **b** are parallel and have opposite direction.
- II. Vectors **a** and **c** are parallel and have same direction.
- III. Vectors **a**, **b** and **c** are parallel to each other.
- A. I only
- B. III only
- C. I and II
- D. II and III
- 40. If a vector \mathbf{w} is perpendicular to each of the vectors \mathbf{u} and \mathbf{v} , then \mathbf{w} will be determined by the
 - A. dot product of **u** and **v**.
 - B. unit vectors of \mathbf{u} and \mathbf{v} .
 - C. projection of \mathbf{u} along \mathbf{v} .
 - D. cross product of \mathbf{u} and \mathbf{v} .

Please use this page for rough work

