الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2016

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 سا و 30 د

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأوّل

يحتوي الموضوع الأول على 04 صفحات (من الصفحة 1 من 8 إلى 4 من 8)

التمرين الأول: (04) نقاط)

يتفاعل محلول حمض كلور الهيدروجين $(H_3O^+(aq) + Cl^-(aq))$ مع الألمنيوم وفق تفاعل تام منتجا غاز ثنائي الهيدروجين وشوارد الألمنيوم (Al^{3+}) .

في اللحظة t=0 ندخل عينة كتلتها g=0.810 من حبيبات الألمنيوم في بالون (دورق) يحتوي على حجم V=60mL من محلول حمض كلور الهيدروجين تركيزه المولي t=0.180 t=0.180 it illimits مزودة مؤلف بالنون بسدادة مزودة بأنبوب انطلاق موصول بمقياس غاز مدرج ومنكس في حوض مائي لجمع الغاز الناتج وقياس حجمه في لحظات مختلفة. النتائج المتحصل عليها مكنتنا من رسم البيان الممثل لتطور حجم الغاز المنطلق بدلالة الزمن V=0.180 الشكل V=0.180

 $\cdot (1-1$ الشكل) $V_{H_2} = f(t)$

ننمذج التحول الكيميائي الحادث بالمعادلة الكيميائية التالية:

$$2Al(s)+6H_3O^+(aq)=2Al^{3+}(aq)+3H_2(g)+6H_2O(l)$$

1- اكتب المعادلتين النصفيتين الإلكترونيتين للأكسدة والإرجاع مع تحديد الثنائيتين Ox/Red المشاركتين في

التفاعل.

2- أ. أنشئ جدولا لتقدم التفاعل الكيميائي الحادث.

ب. جِد قيمة التقدم الأعظمي x_{max} ثم حدّد

المتفاعل المحد.

x(t) وحجم التفاعل x(t) وحجم التفاعل علاقة بين تقدم التفاعل وحجم

 $V_{H_2}(t)$ غاز ثنائي الهيدروجين الناتج

. $V_f(H_2)$ ب. استنج حجم غاز ثنائي الهيدروجين المنطلق عند نهاية التفاعل

ج. بيّن أن حجم غاز ثنائي الهيدروجين المنطلق في زمن نصف التفاعل $t_{1/2}$ يعطى بالعلاقة:

 $.t_{1/2}$ قيمة استتج قيمة $V_{H_2}(t_{1/2}) = \frac{V_f(H_2)}{2}$

 $v=rac{1}{3V_M}\cdotrac{dV_{H_2(t)}}{dt}$: تعطى بالعلاقة: t اللحظة النفاعل في اللحظة المحظة المحظ

t = 300 s ب. احسب قيمة هذه السرعة في اللحظة

 $V_M = 24 \ L \cdot mol^{-1}$ الحجم المولى في شروط التجربة $M(Al) = 27 \ g \cdot mol^{-1}$: المعطيات

التمرين الثاني: (04) نقاط)

تتألف الدارة الكهربائية المبينة في الشكل-2 من مكثفة فارغة سعتها R=100~n، ناقل أومي مقاومته E=5~V مولد مثالى قوته المحركة الكهربائية E=5~V و بادلة R=10~k

I- نضع البادلة في الوضع (1) بغية شحن المكثفة.

 u_{AB} ومثل بسهم كل من التوترين الكهربائيين u_{BD} و u_{BD} و u_{BD}

-2 باستعمال قانون جمع التوترات الكهربائية، جِد المعادلة التفاضلية $u_{BD}(t)$ لتطور التوتر الكهربائي $u_{BD}(t)$ بين طرفي المكثفة.

 $u_{BD}(t) = E + Ae^{-bt}$: المعادلة التفاضلية تقبل حلا من الشكل حلا من الشكل -3

4- أعط عبارة ثابت الزمن للدارة المدروسة، ماذا يمثل عمليا؟ احسب قيمته.

مثل على الشكل كيفية ربط راسم اهتزاز ذي ذاكرة بالدارة لمشاهدة تطور التوتر $u_{BD}(t)$ ، ثم مثل $u_{BD}(t)$. $u_{BD}=f(t)$. شكلا تقريبيا لـ $u_{BD}=f(t)$.

II- بعد شحن المكثفة كليا، نضع البادلة K في الوضع (2).

1- احسب قيمة الطاقة الكهربائية المخزنة في المكثفة في بداية التفريغ وعلى أي شكل تستهلك في الدارة؟

(1) بعد تفريغ المكثفة كليا، نربط معها مكثفة أخرى فارغة سعتها C' ثم نعيد البادلة إلى الوضع -2

أ. كيف يجب ربطها مع المكثفة السابقة حتى تكون قيمة الطاقة الكهربائية المخزنة في مجموعة المكثفتين
 عند نهاية الشحن Joules 10-6 Joules ؟ برّر إجابتك.

ب. ما قيمة سعتها 'C'

 $InF = 10^{-9} F$: يعطى

التمرين الثالث: (04) نقاط)

. $^{40}_{20}$ Ca لنظير البوتاسيوم $^{40}_{19}$ نشاط إشعاعي حيث يتفكك إلى كالسيوم

1- أ. ما هي خصائص ظاهرة النشاط الإشعاعي؟

ب. اكتب معادلة تفكك البوتاسيوم 40 مع تحديد نمط الإشعاع.

2-المنحنيان الممثلان في الشكل-3 يعبران عن تغيّر عدد أنوية كل من البوتاسيوم 40 والكالسيوم 40 بدلالة الزمن لعينة تحتوي في البداية على البوتاسيوم 40 فقط.

أ. أي المنحنيين يمثل تغيرات عدد أنوية الكالسيوم 40 ؟ علّل.

ب. ما المقدار الفيزيائي الذي تمثله فاصلة نقطة تقاطع المنحنيين؟ علّل، حدّد قيمته.

ج. احسب قيمة النشاط الإشعاعي الابتدائي للعينة المشعة.

-3 أ. عين بيانيا اللحظة t_1 التي يكون فيها عدد أنوية البوتاسيوم 40 مساويا لربع عدد أنوية الكالسيوم 40.

ب. تأكد من قيمة t_1 حسابيا.

يعظى: 1an = 365,25 jours

التمرين الرابع: (04) نقاط)

 $g = 9.8 \, m \cdot s^{-2}$ نهمل تأثير الهواء ونأخذ

شاحنة تسير على طريق مستقيم أفقي، في لحظة نعتبرها مبدأ لقياس الأزمنة t=0 تقذف العجلة الخلفية للشاحنة نحو $\alpha=37^\circ$ الأرض حجرًا نعتبره نقطيا بسرعة ابتدائية $v_0=12\ m\cdot s^{-1}$ يصنع حاملها زاوية t=0 من سطح الأرض حجرًا نعتبره نقطيا بسرعة ابتدائية وفي نفس جهة حركتها بسرعة ثابتة قدرها مع الأفق فيرتطم بالنقطة t=0 من الزجاج الأمامي لسيارة تسير خلف الشاحنة وفي نفس جهة حركتها بسرعة ثابتة قدرها t=0 عانت المسافة الأفقية بين النقطة t=0 والنقطة t=0 انظر الشكل t=0 عانت المسافة الأفقية بين النقطة t=0 والنقطة الأفقية المسافة الأفقية بين النقطة ولم المسافة الأفقية بين المسافة الأفقية بين النقطة ولم المسافة الأفقية بين النقطة ولم المسافة المس

- 1- ادرس حركة الحجر في المعلم (O,\vec{t},\vec{k}) ثم استخرج العبارتين الحرفيتين للمعادلتين الزمنيتين للحركة z(t) و z(t)
 - z = f(x) اكتب معادلة مسار الحجر -2
 - $x_M(t)$ النقطة المعادلة الزمنية $x_M(t)$ لحركة M النقطة M في المعلم ($0,\vec{t},\vec{k}$).
 - 4 احسب قيمة t_M لحظة ارتطام الحجر بالزجاج الأمامي للسيارة واستتج الارتفاع h للنقطة M عن سطح الأرض.

5- باستعمال معادلة انحفاظ الطاقة احسب قيمة سرعة ارتطام الحجر بزجاج السيارة.

التمرين التجريبي: (04 نقاط)

لمعرفة صنف كحول A صيغته المجملة C_3H_7OH ، نشكل في اللحظة t=0 مزيجا متكافئا في كمية المادة يتكون من الكحول A وحمض الإيثانويك صيغته المجملة C_3COOH ونسخن المزيج بطريقة التقطير المرتد. في لحظات معينة نأخذ نفس الحجم V من المزيج التفاعلي ونبرده ثم نعاير الحمض المتبقي بمحلول مائي لهيدروكسيد الصوديوم V_{be} نفس الحجم V_{be} تركيزه المولي $v_{be} = 1 \mod \cdot L^{-1}$ فيلزم لبلوغ التكافؤ إضافة حجم v_{be} ثم نستنج الحجم اللازم لمعايرة الحمض المتبقى الكلي. دوَّنا النتائج ورسمنا البيان $v_{be} = f(t)$ الممثل في الشكل $v_{be} = 0$

- 1- ما الهدف من التسخين بطريقة التقطير المرتد؟
 - 2- بالاستعانة بالبيان جد ما يلى:
 - أ. كمية المادة الابتدائية للحمض المستعمل.
- ب. كمية مادة الحمض المتبقى عند حالة التوازن الكيميائي.
- 3- أ. اكتب معادلة التفاعل الكيميائي المنمذج لتحول الأسترة.
- ب. أنشئ جدولا لتقدم التفاعل ثم استنتج التركيب المولي للمزيج عند بلوغ حالة التوازن الكيميائي.
 - ج. احسب ثابت التوازن الكيميائي K لهذا التفاعل.
 - 4- أ. احسب مردود التفاعل واستنتج صنف الكحول المستعمل.
- ب. أعط الصيغة نصف المفصلة لكل من الكحول A والإستر المتشكل، مع ذكر اسم كل منهما.
- 5- عند بلوغ التوازن، نضيف للمزيج السابق 0,02 mol من حمض الإيثانويك و 0,08 mol من الإستر السابق.
 - أ. احسب كسر التفاعل الابتدائي.
 - ب. استنتج جهة تطور التفاعل.

انتهى الموضوع الأول

الموضوع الثاني

يحتوي الموضوع الثاني على 04 صفحات (من الصفحة 5 من 8 إلى 8 من 8)

التمرين الأول: (04 نقاط)

لدراسة حركية تحول كيميائي تام، غمرنا في لحظة t=0 صفيحة من النحاس كتلتها $m=3,175\,g$ في حجم قدره لدراسة حركية تحول كيميائي تام، غمرنا في لحظة t=0 صفيحة من النحاس كتلتها $m=3,175\,g$ من محلول نترات الفضة $m=3,175\,g$ الفضة $m_{Ag}^+(aq)+NO_3^-(aq)$ تركيزه المولي $m_{Ag}=f$ من محلول نترات الفضة $m_{Ag}=f$ (t) من رسم البيان الممثل في الشكل-1 الذي يعبر عن تغيرات كتلة الفضة المتشكلة بدلالة الزمن $m_{Ag}=f$ (t) معادلة التفاعل المنمذج لهذا التحول هي: $m_{Ag}=f$ (t) صفيحة معادلة التفاعل المنمذج لهذا التحول هي: $m_{Ag}=f$ (t) صفيحة من رسم البيان المنافذ على المن

-1 هل التحول الحادث سريع أم بطيء؟ برر إجابتك.

−2 حدد الثنائيتين 0x / Red المشاركتين في التفاعل واكتب عندئذ المعادلتين النصفيتين للأكسدة والإرجاع.

-4 احسب c_0 التركيز المولى الابتدائى لمحلول نترات الفضة.

5- جد التركيب المولى (حصيلة المادة) في الحالة النهائية.

 $t_{1/2}$ وحدد قيمته بيانياً.

7- أ. بين أن السرعة اللحظية لتشكل الفضة تعطى بالعبارة:

$$v_{Ag}(t) = \frac{1}{M_{Ag}} \cdot \frac{dm_{Ag}(t)}{dt}$$

حيث : M_{Ag} الكتلة المولية للفضة.

t=0 ب. احسب سرعة التفاعل في اللحظة

 $M(Cu) = 63.5 \text{ g.mol}^{-1}$ ، $M(Ag) = 108 \text{ g.mol}^{-1}$: يعطى

التمرين الثاني: (04 نقاط)

البلوتونيوم Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم الطبيعة، يتم اصطناع أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم الطبيعة، يتم الطبيعة أحد نظائره Pu عنصر مُشِّع، نادر الوجود في الطبيعة، يتم الطبيعة أحد نظائره أحد المعادلة أحد نظائره أحد المعادلة أح

. β^- عَرَفْ ما يلى: النظائر ، النواة المشعة ، جسيمات -1

y بتطبیق قانونی الإنحفاظ.

. eta^- تتفكك نواة البلوتونيوم Pu تلقائياً معطيةً نواة امريكيوم Am وجسيمات B^-

 $\, \cdot \, Z \,$ المنمذج لهذا التحول النووي، وعيّن قيمة كل من $\, A \,$ و $\, Z \,$

 $\frac{A_0}{A(t)} = f(t)$ بدلالة الزمن ($\frac{A_0}{A(t)}$) بدلالة الزمن ($\frac{A_0}{A(t)}$) مكننا من رسم بيان تغيرات النسبة بدلالة الزمن ($\frac{A_0}{A(t)}$) بدلالة الزمن ($\frac{A_0}{A(t)}$)

-2- ديث: A(t) يمثل نشاط العينة في اللحظة A_0 , t يمثل نشاط العينة في اللحظة A(t) . الشكل

أ. اكتب عبارة النسبة $\frac{A_0}{A(t)}$ بدلالة λ و t حيث:

٨ ثابت التفكك.

 $t_{1/2}$ عمر البيان قيمة $t_{1/2}$ نصف عمر البيان قيمة λ .

$$\frac{A(t)}{A_0} = g(t)$$
 :ج. مثل كيفياً البيان

التمرين الثالث: (04 نقاط)

نرید دراسة تأثیر مقاومة ناقل أومي علی تطور التوتر الکهربائي بین طرفي مکثفة $u_c(t)$ ، باستخدام راسم اهتزاز بذاکرة. من اجل ذلك نحقق دارة کهربائیة تتألف من العناصر التالیة مربوطة علی التسلسل: مکثفة فارغة سعتها C قیمتها مجهولة، ناقل أومی مقاومته C متغیرة، مولد ذي توتر ثابت C قاطعة C.

1-ارسم مخطط الدارة موضحا كيفية ربط راسم الاهتزاز لمتابعة تطور التوتر بين طرفي كل من: المكثفة والمولد.

t = 0 s في اللحظة K في القاطعة -2

من أجل قيمة معينة لمقاومة الناقل الأومي $R = R_1$ ، يظهر على شاشة راسم الاهتزاز المنحنيين الموضحين في الشكل-3.

أ. جد المعادلة التفاضلية التي تعبر عن تطور التوتر الكهربائي بين طرفي المكثفة.

ب. المعادلة التفاضلية السابقة تقبل حلا من الشكل: $u_C(t) = A(1-e^{-Bt})$. جِد عبارة كل من: A و B واحسب قيمتيهما بالاستعانة ببيان الشكل-3.

 $R > R_1$ من أجل $u_C = f(t)$ من عليه كيفيا ومثل عليه ورقة إجابتك ومثل عليه كيفيا

-3نغير من قيمة R مقاومة الناقل الأومي ونحسب ثابت الزمن (τ) الموافق، باستخدام برمجية مناسبة حصلنا على المنحنى البياني الموضّع بالشكل-4.

أ. بالاعتماد على منحنيي الشكل-3 والشكل-4، استنتج قيمة C سعة المكثفة و R_1 مقاومة الناقل الأومي.

ب. في الحقيقة المكثفة السابقة مكافئة لمكثفتين سعتيهما $C_1 = 1 \, \mu F$ و C_2 مجهولة القيمة مربوطتين ربطا مجهولاً. بيّن كيفية الربط واستنتج قيمة C_2 .

التمرين الرابع: (04 نقاط)

 $\pi^2 \approx 10$ نأخذ:

يتكون نواس مرن من نابض حلقاته غير متلاصقة، ثابت مرونته k وكتلته مهملة، مثبت من إحدى نهايتيه في نقطة ثابتة ومرتبط من النهاية الأخرى بجسم نقطي (S) كتلته m=100g ، يمكنه الحركة دون احتكاك على مستو أفقي وفق ثابتة ومرتبط من النهاية الأخرى بجسم نقطي (S) كتلته X X ، الشكل X ، الشكل X . الشكل X

999999999999999

الشكل-5

في حالة توازن الجسم (S) يكون النابض في وضع الراحة.

المختار كمبدأ للفواصل في الاتجاه الموجب بمقدار X، ثم نتركه حراً دون X نزيح الجسم X عن وضع توازنه X المختار كمبدأ للفواصل في الاتجاه الموجب بمقدار X، ثم نتركه حراً دون X سرعة ابتدائية.

1-مثّل في لحظة كيفية t القوى المؤثرة على الجسم (S). -1-بتطبيق القانون الثانى لنيوتن، بين أن المعادلة التفاضلية -2

 $\frac{d^2x(t)}{dt^2} + Ax(t) = 0$: للحركة تكتب على الشكل

حيث A مقدار ثابت يُطْلَبُ تعيين عبارته.

x = f(t) سمحت برمجية إعلام آلي برسم المنحنى x = f(t) الممثل لتغير x فاصلة مركز عطالة x بدلالة الزمن x

الموضح في الشكل-6.

أ. اعتماداً على البيان عين قيمة كل من:

X سعة الحركة، T_0 الدور الذاتي للحركة، φ الطور الابتدائي، ω_0 نبض الحركة، X ثابت مرونة النابض. ب. اكتب المعادلة الزمنية للحركة.

x = g(t) في حالة وجود احتكاكات ضعيفة، مثل كيفيا البيان X = g(t)

التمرين التجريبي: (04 نقاط)

 $M\left(C_6H_5COOH\right)=122\ g\ /mol$ وتعطى: $25^{\circ}C$ وتعطى الدرجة كان القياسات مأخوذة في الدرجة كان C_6H_5COOH

اساسه المرافق C_6H_5COOH البنزويك جسم صلب أبيض اللون يستعمل كحافظ للمواد الغذائية صيغته C_6H_5COOH أساسه المرافق شاردة البنزوات C_6H_5COO .

نحضّر منه محلولا مائيا (S_1) حجمه $v_1 = 50$ سر التجاري ذي $c_1 = 0.01$ سائيا $c_1 = 0.01$ سر التجاري ذي $c_1 = 0.01$ التركيز $c_1 = 0.025$ سائيا $c_2 = 0.025$ سائيا التركيز $c_2 = 0.025$ سائيا التركيز $c_3 = 0.025$

أ. ما هو حجم المحلول التجاري V_0 الواجب استعماله للتحضير؟

ب. اكتب البروتوكول التجريبي لتحضير المحلول (S1) مبينا الزجاجيات المستعملة من بين ما يلي:

- حوجلات عيارية (50 mL , 100 mL , 500 mL) -

- ماصات عيارية (5 mL , 10 mL , 20 mL) -

ج. ماذا يعنى مصطلح "عيارية" المقترن بالماصات والحوجلات المذكورة في السؤال 1-ب؟

pH المحلول (S₁) اعطى القيمة pH المحلول -2

أ. اكتب معادلة تشرد حمض البنزويك في الماء موضحا الثنائيتين أساس/حمض المشاركتين في هذا التحول.

. $Q_{r,f}$ ب. احسب كسر التفاعل النهائي

3-نسكب 10 mL من المحلول (S1) في بيشر ونضع هذا الأخير فوق مخلاط مغناطيسي ونضيف له كل مرة حجما من الماء ثم نقيس pH المحلول الناتج فنحصل على النتائج المدونة في الجدول التالي:

$V_{H_2O}(mL)$ حجم الماء المضاف	0	10	40
c (mol/L)			
pH	3,12	3,28	3,49
$ au_f$			

أ. ما الفائدة من استعمال المخلاط المغناطيسي في هذه العملية؟

 au_f و c واستنتج تأثير إضافة الماء للمحاليل الحمضية على c و t

انتهى الموضوع الثاني

	العلامة			()	الإجابة (الموضوع الأو	عناصرا		
مجموع	مجزأة							
01	0.25 0.25 2×0.25	$Al(s) = Al^{3+}(aq) + 3e^{-}$ -1 $2H_3O^{+}(aq) + 2e^{-} = H_2(g) + 2H_2O(1)$ $(H_3O^{+}(aq)/H_2(g))$; $(Al^{3+}(aq)/Al(s))$: $(H_3O^{+}(aq)/H_2(g)) + 2H_2O(1)$ $(H_3O^{+}(aq)/H_2(g)) + 2H_2O(1)$ $(H_3O^{+}(aq)/H_2(g)) + 2H_2O(1)$ $(H_3O^{+}(aq) + 2Al(s) + 6H_3O^{+}(aq) = 2Al^{3+}(aq) + 3H_2(g) + 6H_2O(1)$						
		ء ح	التقدم	277 772	دة باك : mol	ميات الما	<u>S</u>	
	0.5	ح إ	0	0.03	1,08.10-2	0	0	
		ے ہ ح و	X	0.03 -2 x	1,08.10 ⁻² - 6x	2x	3x	نزارة
01		عن	Xf	0.03 -2 x _f	1,08.10 ⁻² - 6x _f	$2x_{\rm f}$	$3x_{\rm f}$	10
	0.25 0.25					= 1,8.10	H_3C	ب- المتفاعل المحد: +(
	0.25			G)	$V_{f(H_2)}:$ $x(t_{\frac{1}{2}}) =$	$= \frac{V_{H_2}}{3V_M} = 0.13$	L	-١-3 ب
1.25	0.25		_($x(t_{\frac{1}{2}}) =$	$=\frac{x_{max}}{2}$		- - -
	0.5		0	$V_{H_2}\left(t_{\frac{1}{2}}\right)$	$= x \left(t_{\frac{1}{2}}\right).3V_M = \frac{31}{2}$	V _M x _{mo}	$\frac{ux}{x} = \frac{V_{j}}{x}$	f(H ₂) 2
	0.25					$t_{\frac{1}{2}}$	= 350 s	$rac{t_1}{2}$ قيمة
0.75	0.25				v = v =	Same 281	/ _{H₂}	-1-4
	0.25						dt O ⁻⁶ mol/s	ب-

		التمرين الثاثى: (04) نقاط)
		I- البادلة في الوضع (1) 1- جهة التوترات والتيار في الدارة
		1- جهة التوترات والتيار في الدارة
0.25		
	0.25	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
0.25	0.25	2- المعادلة التفاضلية التي يحققها التوتر بين طرفي المكثفة:
0.5	2× 0.25	$\frac{\ddot{d}U_{\rm BD}}{\rm dt} + \frac{U_{\rm BD}}{\rm RC} = \frac{\rm E}{\rm RC}$
		$b = \frac{1}{RC} A = -E -3$
	0.25	
0.75	0.25	au = RC ثابت الزمن $ au = RC$ $ au$: الزمن اللازم لبلوغ التوتر بين طرفي المكثفة $ au$ 63% من قيمته
	0.25	العظمى أثناء الشحن. $ au = 10^{-3} \mathrm{s}$ قيمته: $ au = 10^{-3} \mathrm{s}$
	0.25	قيمت. ١٥٠٥ - ٢ - ١٥٠٥ - ٢ - ١٥٠٥ - ٢ - ١٥٠٥ - ٢ - ٢٠٠٥ - ٢ - ٢٠٠٥ - ٢ - ٢٠٠٥ - ٢ - ٢٠٠٥ - ٢ - ٢٠٠٥ - ٢ - ٢٠٠٥ - ٢ - ٢٠٠٥ - ٢٠٠ - ٢٠٠٥
0.5		
	0.25	
	100	1-/
1		0 1 (ms)
		II- 1- تستهلك الطاقة على شكل حرارة في الناقل الأومي بفعل جول.
0.75	0.25	قيمتها
	0.25	$E_{(c)} = \frac{1}{2} C E^2$
	0.25	$E_{(c)} = 1,25.10^{-6} J$

1		$E'_{(c)} = \frac{1}{2} C_{eq} E^2$ -2
		$C_{eq} = \frac{2E'(c)}{F^2} = 0.3 \times 10^{-6}F = 300nF$
	2×0.25	$C_{eq} = \frac{1}{E^2} = 0.5 \times 10^{-6} F = 300 RF$
	0.25	نستنتج أن الربط تم على التفرع. $C_{eq} > C$
01	0.23	$C_{eq} = C + C'$
0.1		إذن:
	0.25	$C' = C_{eq} - C = 200 nF$
		التمرين الثالث: (04) نقاط)
		e stete star fill
	0.5	1- أ- عشوائي ، تلقائي و حتمي 0 40rz 40c 0
	0. 25	40 K → 40 Ca + 0 e -ب
01		نمط الإشعاع: β-
01	0.25	2- أ- المنحنى (1) يمثل تغير عدد أنوية الكالسيوم بدلالة الزمن
	0.25	$N_0(^{40}_{20}Ca)=0$ التعليل: لأن نواة $^{40}_{20}Ca$ نواة ابن و بالتالي البيان ينطلق من الصفر أي أن
	0.25 0.25	t = t _{1/2} -ب
	0.23	$N_0(^{40}_{19}K) = N_t(^{40}_{19}K) + N_t(^{40}_{20}Ca)$: :: :: :: :: :: :: :: :: :: :: :: ::
	0. 5	110(1911) 111(2000)
	0. 3	$N_0(^{40}_{19}K) = 2 N_t(^{40}_{19}K)$
02		$N_t(^{40}_{19}K) = \frac{N_0(^{40}_{19}K)}{2}$
		$t = t_{1/2}$ إذا
	0.25	$t_{1/2} = 1.3 \cdot 10^9 \text{ ans}$
		تقبل الأجوبة الصحيحة الأخرى.
	- ($A_0 = \lambda N_0(^{40}_{19}K)$ $- \Rightarrow$
	0.25	$A_0 = \frac{\ln 2}{t_{1/2}} N_0(^{40}_{19}K)$
7	0.25	$A_0 = 1,69.10^6 \text{ Bq}$
	0.25	$t_1 = 3.10^9 \text{ ans}$ ابیانیا: $t_1 = 3.10^9 \text{ ans}$
	0.25	$N(_{19}^{40}K) = \frac{1}{4} N(_{20}^{40}Ca):$
(141°4'	0.25	$N_0(^{40}K) e^{-\lambda t_1} = \frac{1}{4} N_0(^{40}K) (1 - e^{-\lambda t_1})$
01		$t_1 = \frac{ln5}{ln2} t_{1/2}$
	0.25	$t_1 = 3.10^9 \text{ ans}$

		التمرين الرابع: (04 نقاط)
		1- دراسة حركة الحجر و كتابة المعادلات الزمنية للحركة
		$\sum \overrightarrow{F_{ext}} = m\vec{a}$
		$\vec{P}=m\vec{a}$
	0.25	$a_x = 0$
	0.25	$a_z = -g$
	0.25	$V_{x} = V_{0} \cos \alpha$ $V_{x} = at + V \sin \alpha$
241 247	0.25	$V_z = -gt + V_0 \sin \alpha$ $x = V_0 (\cos \alpha) t$
1.5	0.25	$z = -\frac{1}{2}gt^2 + V_0(\sin \alpha)t$
	0.25	L
	Z.J.T.To	2- معادلة المسار:
0.5	0.5	$z = -\frac{g}{2 V_0^2 \cos^2 \alpha} x^2 + (\tan \alpha) x$
		M المعادلة الزمنية $X_{M}(t)$ لحركة النقطة $X_{M}(t)$
0.5	0.5	$x_{M}(t) = -Vt + d$
0.5	0.5	-4
		$t_M = \frac{a}{V_0 \cos \alpha + V}$
	0.25	$t_M = 1.27 s$
0.75		$Z(t)$ في المعادلة t_M نعوض قيمة t_M نعوض قيمة ألى المعادلة ألى
0.75	0.25	h = 1.27 m
	0.25	-5
	Pathway Surfregues	$V_{M} = \sqrt{V_{0}^{2} - 2gh}$
0.75	0. 5	
0.75	0.25	$V_M = 10.9 m/s$
	110210000000	التمرين التجريبي: (04 نقاط)
0.25	0.25	1- الهدف تسريع التفاعل بالتسخين دون فقدان كمية المادة .
(AMELINE)		
	1	$n_0(a) = C_bV'_{be}(t=0)$ -1 -2 = 1x 0.2 = 0.2 mol
9	0.25	- 1x 0.2 - 0.2 1101 ب- عند التوازن:
0.5		$n_f(a) = C_b V'_{be}$
0.0	0.25	= 1x0,08 = 0,08 mol
	0.25	
	0.25	$CH_3COOH(1) + C_3H_7OH(1) = CH_3COO-C_3H_7(1) + H_2O(1)$ -1-3

الإجابة النموذجية لموضوع امتحان البكالوريا دورة: 2016 اختبار مادة: العلوم الفيزيائية الشعبة: علوم تجريبية المدة: ثلاث ساعات و 30 دقيقة

							ب- جدول التقدم	
	0.25	لتفاعل	معادلة ا	CH ₃ COOH(1)	$+ C_3H_7OH(1) =$	= CH ₃ COO-C ₃ H ₇ (1) +	- H ₂ O(1)	
		ح٠ج	التقدم		کمیات المادة ب: mol			
		ح.إ	0	0,2	0,2	0	0	
		ح.و	X	0,2 - x	0,2- x	X	X	
01		ح∙ن	X_f	0,2 - x _f	0,2 - X _f	X_f	Xf	
						لمولي للمزيج التفاعلي:	التر کرر یا	
	0.25		الماء	لأستر		عريج الحمض الحمض	الكحول	
	0.23	0.12	mol	0.12 mc	-		8 mol	
	0.25					• 0	. 13	
	0.25	$k = 2,25$ $r = \frac{x_f}{x_{max}} \times 100 = \frac{0,12}{0,2} \times 100 = 60\%$ $r = \frac{x_f}{x_{max}} \times 100 = \frac{0,12}{0,2} \times 100 = 60\%$ $r = \frac{x_f}{x_{max}} \times 100 = \frac{0,12}{0,2} \times 100 = 60\%$						
	2×0.25		r =	${x_{max}} \times 100 = -$	$\frac{1}{0.2} \times 100 = 6$		4- أ- مردود	
	0.25					ري	كحول ثانو	
1.75				ОН				
	2×0.25		CH ₃	-CH-CH₃		propan-	ب - 2-0ا	
				,0				
	2×0.25		CH ₃ —	-c"				
				O-CH-CH₃	E	tanoate de meth	ylethyl	
				CH ₃				
	0.25		0		$Q_{ri} = \frac{0.2 \times 0.1}{1}$	$\frac{2}{8} = 3$ لتفاعل الابتدائي	5- أ - كسر ا	
0.5	0.25		27		0.1×0.0 لي اتجاه الإماهة.	۔ < k يتطور التفاعل في	Q_{ri} - \rightarrow	
	110000000000		0				\$ PC-24 (2-94)	
		M.						

اختبار مادة: العلوم الفيزيائية

الشعبة/السلك (*): علوم تجريبية

امة	العلا	The state of the s								
مجموع	Storie Table	عناصر الإجابة (الموضوع الثاني)								
0.25	0.25 0.25	التمرين الأول: (40) نقاط)								
0.75		المعادلة النصفية للأكسدة ؛ المعادلة النصفية للإرجاع								
	0.5	$2Ag^{+} + 2e^{-} = 2Ag$! $Cu = Cu^{2+} + 2e^{-}$								
0.75	0.5	$Cu + 2Ag^{+} = Cu^{2+} + 2Ag$:- جدول النقدم: $n_{1} + n_{2} = 0$ $n_{1} = 0$ الحالة الابتدائية $n_{1} - x = n_{2} - 2x = x$ الحالة الإنتقالية $n_{1} - x = n_{2} - 2x = x = 2x$ الحالة النهائية $n_{1} - x_{f} = n_{2} - 2x_{f} = x_{f}$								
	0.25	$n_f(Ag) = 2x_{\text{max}}$: حساب التقدم الأعظمي: لدينا من جدول التقدم : $n_f(Ag) = 2x_{\text{max}}$ عند البيان نجد: $n_f(Ag) = \frac{4.32}{108} = 0.04 mol$ و من البيان نجد: $n_f(Ag) = \frac{4.32}{108} = 0.04 mol$								
0.5	0.25	$n_f(Cu) = 0.03 mol$ بالتعویض نجد: $n_f(Cu) = n_0(Cu) - x_{\max} = \frac{m}{M_{Cu}} - x_{\max}$								
0.5	0.25	و منه: Cu لیس متفاعل محد إذن: $+g$ متفاعل محدو منه تصبح: $C_0 = \frac{2x_{\text{max}}}{V} = \frac{2 \times 0.02}{0.2} = 0.2 \ mol/L$ نجد: $C_0 = \frac{2x_{\text{max}}}{V} = \frac{2 \times 0.02}{0.2} = 0.2 \ mol/L$ نجد: $C_0 = \frac{2x_{\text{max}}}{V} = \frac{2 \times 0.02}{0.2} = 0.2 \ mol/L$ نجد: $C_0 = \frac{2x_{\text{max}}}{V} = \frac{2 \times 0.02}{0.2} = 0.2 \ mol/L$								
0.5	0.5	Ag^+ Cu Ag Cu^{2+} O								
0.5	0.25 0.25	وتعيين $t_{1/2}$: هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي. $t_{1/2}$ مع توضيح الطريقة.								
0.75	0.25	$v(Ag) = \frac{dn(Ag)}{dt}$: بالتعويض نجد $v(Ag) = \frac{dn(Ag)}{dt}$: بالتعويض نجد $v(Ag) = \frac{dn(Ag)}{dt}$: لاينا : $v(Ag) = \frac{dn(Ag)}{dt}$: بالتعويض نجد $v(Ag) = 2.v$: لاينا : $v(Ag) = 2.v$: الدينا : $v(Ag) = 0.0$: $v($								

		احتبار ماده: العلوم الفيريانية
		التمرين الثاني: (04 نقاط) 1- تعريفات
	0.25	- النظائر : هي ذرات من نفس العنصر لها نفس عدد البروتونات وتختلف في عدد النيترونات .
0.75	0.25	- النواة المشعة: هي نواة غير مستقرة تتفكك تلقائيا لتعطي نواة أكثر استقرار ا
	0.25	- جسيمات β^- : هي عبارة عن إلكترونات ناتجة من تحول نيترونات إلى بروتونات
0.5	0.5	y = 2 ، $x = 3$ ايجاد قيمتي كل من x, y : بتطبيق قانونا الإنحفاظ
0.5	0.5	$^{241}_{94}Pu \longrightarrow^{A}_{Z}Am+^{0}_{-1}e$ عادلة التفكك: -3
0.5	0.5	Z=95 , $A=241$: بتطبيق قانونا الانحفاظ نجد
		$^{241}_{94}Pu \rightarrow ^{241}_{95}Am + ^{0}_{-1}e$
	0.25	$A(t) = A_0 e^{-\lambda t}$ 4 -4 العلاقة: حسب قانون تناقص النشاط الإشعاعي -4
	0.25	$\frac{A_0}{A(t)} = e^{\lambda . t}$
		$\frac{A_0}{A(t_{1/2})} = 2$ ومنه: $A(t_{1/2}) = \frac{A_0}{2}$ ومنه:
	0.25	$A(t_{1/2}) = \frac{A(t_{1/2})}{2} = \frac{A(t_{1/2})}{2}$
	0.5	$t_{1/2} = 5.5 \times 2.5 = 13.75~ans$: بالإسقاط على البيان نجد
	200	
2,25	0.5	$\lambda = \frac{\ln 2}{t_{1/2}} = 0.05 \ ans^{-1}$ استنتاج قیمهٔ ثابت التفکك:
		$rac{A(t)}{A_0} = f(t)$ جـ/ تمثیل بیان $rac{A(t)}{A_0} = f(t)$ جـ/ تمثیل بیان
		$1 \overline{A_0}$
	0.5	
		t(ans
		التمرين الثالث: (04 نقاط)
	\mathbb{Z}_{2}	E (200 04). (20
0.5	0.5	2.أ- المعادلة التفاضلية للتوتر بين طرفي المكثفة:
	1	$u_{R1} + u_{C} = E$:حسب قانون التوترات
		$uR_1 = R_1.i , i = \frac{dq}{dt} , q = C.u_C$
	0.75	
	0.75	ومنه نجد $\frac{du_C}{dt} + \frac{1}{R_1.C}u_C = \frac{E}{R_1.C}$: ونخلص إلى: $R_1.C \frac{du_C}{dt} + u_C = E$
		: بيجاد عبارتي B ، A : B ، A هو حل للمعادلة التفاضلية $u_C(t) = A(1-e^{-Bt})$

الشعبة/السلك (*): علوم تجريبية

اختبار مادة: العلوم الفيزيائية

$$ABe^{-Bt} + \frac{A}{R_1C} - \frac{A}{R_1C}e^{-Bz} = \frac{E}{R_1C} : 2.3 + 2.3$$

			ك الضعيف	جود الاحتكا	II البيان المتوقع: سعة الحركة تتناقص لو				
			•	3,0					
0.5	0.5	$ \begin{array}{c} x(cm) \\ \hline \\ t(s) \end{array} $							
	0.5	$V_0 = \frac{0.01 \times 50}{0.025} = 20 \ mL$:	: C ₁ .V ₁ وم	$=C_0.V_0$ فيف	التمرين التجريبي: (04) نقاط) 1.أ- حجم المحلول التجاري: من علاقة التخا				
	0.25				ب- البروتوكول التجريبي.				
1.25	0.25	ية (20mL)	اصة عياريا	ر (50mL	الزجاجيتان المستعملتان: حوجلة عيارية (ر				
	0.25				جـ معنى مصطلح عيارية: خط دائري في				
	0.25				$00^- + H_3O^+$:اـ معادلة التشرد في الماء				
	0.25		H_3O^+/H_2O ، C_6H_5COOH / $C_6H_5COO^-$: الثنائيتان						
01				$Qr = C_6$	$[H_5COO^-][H_3O^+]$: ب- کسر التفاعل: لدینا $[C_6H_5COOH]$				
	0.5	$K = Q_{rf} = \frac{\left[C_6 H_5 COO^{-}\right]_f \cdot \left[H_5 COOH^{-}\right]_f}{\left[C_6 H_5 COOH^{-}\right]_f}$	$\frac{{}_{3}O^{+}]_{f}}{]_{f}} = \frac{1}{0}$	$\frac{(10^{-3.12})^2}{01-10^{-3.12}} =$	[C ₆ H ₅ COOH] - كسر التفاعل النهائي: 5-6.23				
	0.25				3.أ- يستعمل المخلاط المغناطيسي لجعل الم				
	0.23	حجم الماء المضاف (mL)	0	10	ب- الجدول:				
	01	C(mol/L)	0,01	0,005	0,002				
1,75	01	pH	3,12	3,28	3,49				
		$ au_f$	0,076	0,105	0,162				
	0.25	 يقل تركيز المحلول بإضافة الماء 							
	0.25				- تزداد نسبة التقدم بإضافة الماء				
	1								