On the Indifferentiability of the Grøstl Hash Function

Bart Mennink (K.U.Leuven)

Joint work with: Elena Andreeva and Bart Preneel

Security and Cryptography for Networks Amalfi, Italy

September 13, 2010

Outline

Preliminaries

- Differentiability of Grøstail
- Indifferentiability of Grøstl
- Conclusions

Outline

Preliminaries

- 2 Differentiability of Grøstail
- 3 Indifferentiability of Grøst
- 4 Conclusions

- Grøstl: a second round SHA-3 candidate
- Grøstl supports digests of length n = 224, 256, 384 or 512 bits
- State size / larger than output size $n: l \ge 2n$

- Grøstl: a second round SHA-3 candidate
- Grøstl supports digests of length n = 224, 256, 384 or 512 bits
- State size / larger than output size $n: l \ge 2n$
- ullet Messages of arbitrary length injectively padded into (M_1,\ldots,M_k)

- Grøstl: a second round SHA-3 candidate
- Grøstl supports digests of length n = 224, 256, 384 or 512 bits
- State size / larger than output size $n: l \ge 2n$
- ullet Messages of arbitrary length injectively padded into (M_1,\ldots,M_k)
- f and Ω are based on two I-bit permutations P, Q
 - Compression function: $f(h, m) = P(h \oplus m) \oplus Q(m) \oplus h$
 - Final transformation: $\Omega(h) = P(h) \oplus h$

- Grøstl: a second round SHA-3 candidate
- Grøstl supports digests of length n = 224, 256, 384 or 512 bits
- State size / larger than output size $n: l \ge 2n$
- ullet Messages of arbitrary length injectively padded into (M_1,\ldots,M_k)
- f and Ω are based on two I-bit permutations P, Q
 - Compression function: $f(h, m) = P(h \oplus m) \oplus Q(m) \oplus h$
 - Final transformation: $\Omega(h) = P(h) \oplus h$

Grøstail

• Grøstail: last compression function with the final transformation (i.e., Grøstail is the 'tail' of Grøstl)

$$F(h,m) = P(f(h,m)) \oplus f(h,m)$$

Indifferentiability

• Distinguisher \mathcal{D} tries to differentiate a function C from a random oracle RO. \mathcal{D} is allowed to know the underlying structure of C

Indifferentiability

• Distinguisher $\mathcal D$ tries to differentiate a function $\mathcal C$ from a random oracle RO. $\mathcal D$ is allowed to know the underlying structure of $\mathcal C$

• C with oracle access to G is indifferentiable from RO if there exists a simulator S such that for any $\mathcal D$ these games are indistinguishable

Indifferentiability

• Distinguisher $\mathcal D$ tries to differentiate a function $\mathcal C$ from a random oracle RO. $\mathcal D$ is allowed to know the underlying structure of $\mathcal C$

- C with oracle access to G is indifferentiable from RO if there exists a simulator S such that for any \mathcal{D} these games are indistinguishable
- ullet Throughout: G denotes (P,Q), and C is either Grøstl or Grøstail

Assumption: P, Q are independent random permutations

• For f a random function (chop-Merkle-Damgård) [CDMP05]

• For f a random function (chop-Merkle-Damgård) [CDMP05]

Application to Grøstl:

• For f a random function (chop-Merkle-Damgård) [CDMP05]

Application to Grøstl:

ullet For f a random function (chop-Merkle-Damgård) [CDMP05]

Application to Grøstl:

• However, for Grøstl, f is non-random (fixed-points f(h, m) = h)

ullet For f 'preimage aware' and g a random function [DRS09]

ullet For f 'preimage aware' and g a random function [DRS09]

Application to Grøstl:

• For f 'preimage aware' and g a random function [DRS09]

Application to Grøstl:

• For f 'preimage aware' and g a random function [DRS09]

Application to Grøstl:

• However, for Grøstl, Ω is non-random (fixed-points $\Omega(h) = h$)

• For f 'preimage aware' and g a random function [DRS09]

Application to Grøstl:

- However, for Grøstl, Ω is non-random (fixed-points $\Omega(h) = h$)
- Second attempt: consider $g := \operatorname{chop} \circ \Omega \circ f = \operatorname{chop} \circ F$

Outline

Preliminaries

- Differentiability of Grøstail
- Indifferentiability of Grøst
- 4 Conclusions

• Design a distinguisher that tricks any simulator

- Design a distinguisher that tricks any simulator
- Distinguisher is based on fixed-points for Grøstail

- Design a distinguisher that tricks any simulator
- Distinguisher is based on fixed-points for Grøstail
 - Inverse query 0 to Q^{-1} and obtain $x = Q^{-1}(0)$

- Design a distinguisher that tricks any simulator
- Distinguisher is based on fixed-points for Grøstail
 - Inverse query 0 to Q^{-1} and obtain $x = Q^{-1}(0)$
 - Inverse query x to P^{-1} and obtain $y = P^{-1}(x)$

- Design a distinguisher that tricks any simulator
- Distinguisher is based on fixed-points for Grøstail
 - Inverse query 0 to Q^{-1} and obtain $x = Q^{-1}(0)$
 - Inverse query x to P^{-1} and obtain $y = P^{-1}(x)$

- Design a distinguisher that tricks any simulator
- Distinguisher is based on fixed-points for Grøstail
 - Inverse query 0 to Q^{-1} and obtain $x = Q^{-1}(0)$
 - Inverse query x to P^{-1} and obtain $y = P^{-1}(x)$

- Design a distinguisher that tricks any simulator
- Distinguisher is based on fixed-points for Grøstail
 - Inverse query 0 to Q^{-1} and obtain $x = Q^{-1}(0)$
 - Inverse query x to P^{-1} and obtain $y = P^{-1}(x)$

- Design a distinguisher that tricks any simulator
- Distinguisher is based on fixed-points for Grøstail
 - Inverse query 0 to Q^{-1} and obtain $x = Q^{-1}(0)$
 - Inverse query x to P^{-1} and obtain $y = P^{-1}(x)$
 - For Grøstail, we have $F(x \oplus y, x) = x \oplus y$

- Design a distinguisher that tricks any simulator
- Distinguisher is based on fixed-points for Grøstail
 - Inverse query 0 to Q^{-1} and obtain $x = Q^{-1}(0)$
 - Inverse query x to P^{-1} and obtain $y = P^{-1}(x)$
 - For Grøstail, we have $F(x \oplus y, x) = x \oplus y$
- The simulator answers queries to Q^{-1} and P^{-1} such that the same relation holds for the random oracle: $RO(x \oplus y, x) = x \oplus y$
 - ightarrow fixed-point for RO

Outline

- Preliminaries
- 2 Differentiability of Grøstai
- Indifferentiability of Grøstl
 - How to Prove Indifferentiability?
 - Design of the Simulator
- 4 Conclusions

- Construct a simulator S that mimics behavior of P, Q
- Answers from simulator need to be consistent with RO:

any relation between Grøstl and P, Q, also holds between RO and S

Simulator has access to RO

• Simulator maintains a graph (V, E): edges represent evaluations of f

- Simulator maintains a graph (V, E): edges represent evaluations of f
- Suppose $P(x_1) = y_1$ and $Q(x_2) = y_2$ Then $f(x_1 \oplus x_2, x_2) = x_1 \oplus x_2 \oplus y_1 \oplus y_2$

• Edge denoted by $x_1 \oplus x_2 \xrightarrow{x_2} x_1 \oplus x_2 \oplus y_1 \oplus y_2$

- Simulator considers tree (r(V), E) starting from IV
- Suppose $IV \xrightarrow{M_1} v_1 \xrightarrow{M_2} v_2 \cdots v_{k-1} \xrightarrow{M_k} v_k$ is in the tree

- Simulator considers tree (r(V), E) starting from IV
- Suppose $V \xrightarrow{M_1} v_1 \xrightarrow{M_2} v_2 \cdots v_{k-1} \xrightarrow{M_k} v_k$ is in the tree

$$f(IV, M_1) = v_1$$

How to Prove Indifferentiability?

- Simulator considers tree (r(V), E) starting from IV
- Suppose $V \xrightarrow{M_1} v_1 \xrightarrow{M_2} v_2 \cdots v_{k-1} \xrightarrow{M_k} v_k$ is in the tree

$$f(IV, M_1) = v_1$$
 $f(v_1, M_2) = v_2$... $f(v_{k-1}, M_k) = v_k$

How to Prove Indifferentiability?

- Simulator considers tree (r(V), E) starting from IV
- Suppose $V \xrightarrow{M_1} v_1 \xrightarrow{M_2} v_2 \cdots v_{k-1} \xrightarrow{M_k} v_k$ is in the tree

$$f(IV, M_1) = v_1$$
 $f(v_1, M_2) = v_2$... $f(v_{k-1}, M_k) = v_k$

• Suppose $(M_1, ..., M_k) = \operatorname{pad}(M)$ for some $M \to P(v_k)$ should satisfy $\operatorname{chop}_{l-n}(P(v_k) \oplus v_k) = RO(M)$

How to Prove Indifferentiability?

- Simulator considers tree (r(V), E) starting from IV
- Suppose $V \xrightarrow{M_1} v_1 \xrightarrow{M_2} v_2 \cdots v_{k-1} \xrightarrow{M_k} v_k$ is in the tree

$$f(IV, M_1) = v_1$$
 $f(v_1, M_2) = v_2$... $f(v_{k-1}, M_k) = v_k$

• Suppose $(M_1, ..., M_k) = \operatorname{pad}(M)$ for some $M \to P(v_k)$ should satisfy $\operatorname{chop}_{l-n}(P(v_k) \oplus v_k) = RO(M)$

Simulator can only guarantee this if v_k is queried to P after path to v_k is paved!

ullet Denote $ar{r}(V)$: nodes in r(V) labeled by a correctly padded message

- Denote $\overline{r}(V)$: nodes in r(V) labeled by a correctly padded message
- Simulator mimics P,Q o four interfaces $\mathsf{S}_P,\mathsf{S}_Q,\mathsf{S}_{P^{-1}},\mathsf{S}_{Q^{-1}}$
- Simulator increases $\overline{r}(V) \cap \text{dom}(P)$ and r(V) as little as possible
 - $\overline{r}(V) \cap \text{dom}(P)$: if $IV \xrightarrow{M} v$, we require $\text{chop}_{I-n}(P(v) \oplus v) = RO(M)$
 - r(V): each path in r(V) may eventually lead to a node in $\bar{r}(V)$

- Denote $\overline{r}(V)$: nodes in r(V) labeled by a correctly padded message
- ullet Simulator mimics P,Q o four interfaces $\mathsf{S}_P,\mathsf{S}_Q,\mathsf{S}_{P^{-1}},\mathsf{S}_{Q^{-1}}$
- Simulator increases $\overline{r}(V) \cap \text{dom}(P)$ and r(V) as little as possible
 - $\overline{r}(V) \cap \operatorname{dom}(P)$: if $IV \xrightarrow{M} v$, we require $\operatorname{chop}_{I-n}(P(v) \oplus v) = RO(M)$
 - r(V): each path in r(V) may eventually lead to a node in $\bar{r}(V)$
- Sometimes, simulator may be forced to increase these sets

	S _P	S_{Q}	$S_{P^{-1}}$	$S_{Q^{-1}}$
$\overline{r}(V) \cap \mathrm{dom}(P)$	$ \begin{array}{c} assure \\ chop(P(v) \oplus v) \\ = RO(M) \end{array} $	_	_	_
r(V)	assure min increase	assure min increase	_	

```
On query S_P(x_1) \rightarrow y_1:
y_1 \stackrel{\$}{\leftarrow} \mathbb{Z}_2^I \backslash \operatorname{rng}(P)
if S is forced to increase r(V):
       assure minimal increase
if S is forced to increase \overline{r}(V) \cap \text{dom}(P):
       assure \operatorname{chop}_{I-n}(y_1 \oplus x_1) = RO(M)
On query S_Q(x_2) \rightarrow y_2:
y_2 \stackrel{\$}{\leftarrow} \mathbb{Z}_2^I \backslash \operatorname{rng}(Q)
if S is forced to increase r(V):
       assure minimal increase
avoid increasing \bar{r}(V) \cap dom(P)
```

On query
$$S_{P^{-1}}(y_1) \to x_1$$
:
$$x_1 \stackrel{\xi}{\leftarrow} \mathbb{Z}_2^I \backslash \text{dom}(P)$$
avoid increasing $r(V)$
avoid increasing $\overline{r}(V) \cap \text{dom}(P)$
On query $S_{Q^{-1}}(y_2) \to x_2$:
$$x_2 \stackrel{\xi}{\leftarrow} \mathbb{Z}_2^I \backslash \text{dom}(Q)$$
avoid increasing $r(V)$

In every 'assure' and 'avoid', there is a GOTO-statement

	Sp	S Q	S _P -1	$S_{Q^{-1}}$
$\bar{r}(V) \cap \mathrm{dom}(P)$	$\begin{array}{c} assure \\ chop(P(v) \oplus v) = RO(M) \end{array}$	_	_	_
r(V)	assure min increase	assure min increase	-	_

Proof (idea)

- \bullet R_1 is a relay algorithm
- S₁ is S with **GOTO**-statements removed

$$Adv(\mathcal{D}) = O(Pr(GOTO \text{ is executed})) = O\left(\frac{(Kq)^4}{2^l}\right)$$

($\mathcal D$ makes at most q queries of length at most K message blocks)

$$Adv(\mathcal{D}) = O\left(\frac{(Kq)^4}{2^I}\right)$$

 $(\mathcal{D} \text{ makes at most } q \text{ queries of length at most } \mathcal{K} \text{ message blocks})$

• Grøstl behaves like a random oracle up to $2^{n/2}$ queries (recall $l \geq 2n$)

$$Adv(\mathcal{D}) = O\left(\frac{(Kq)^4}{2^l}\right)$$

(${\mathcal D}$ makes at most q queries of length at most K message blocks)

- Grøstl behaves like a random oracle up to $2^{n/2}$ queries (recall $l \geq 2n$)
- Other second round SHA-3 candidates, like JH, Keccak and Shabal, have recently also been proven indifferentiable

	bound for $n = 256$
Grøstl	$O(q^4/2^{512})$
JH	$O(q^3/2^{512})$
Keccak	$O(q^2/2^{512})$
Shabal	$O(q^2/2^{896})$

$$Adv(\mathcal{D}) = O\left(\frac{(Kq)^4}{2^I}\right)$$

(${\mathcal D}$ makes at most q queries of length at most K message blocks)

- Grøstl behaves like a random oracle up to $2^{n/2}$ queries (recall $l \geq 2n$)
- Other second round SHA-3 candidates, like JH, Keccak and Shabal, have recently also been proven indifferentiable

	bound for $n = 256$	state size
Grøstl	$O(q^4/2^{512})$	l = 512
JH	$O(q^3/2^{512})$	<i>l</i> = 1024
Keccak	$O(q^2/2^{512})$	<i>l</i> = 1600
Shabal	$O(q^2/2^{896})$	<i>l</i> = 1408

$$Adv(\mathcal{D}) = O\left(\frac{(Kq)^4}{2^l}\right)$$

(${\mathcal D}$ makes at most q queries of length at most ${\mathcal K}$ message blocks)

- Grøstl behaves like a random oracle up to $2^{n/2}$ queries (recall $l \geq 2n$)
- Other second round SHA-3 candidates, like JH, Keccak and Shabal, have recently also been proven indifferentiable

	bound for $n = 256$	state size
Grøstl	$O(q^4/2^{512})$	I = 512
JH	$O(q^3/2^{512})$	<i>l</i> = 1024
Keccak	$O(q^2/2^{512})$	/ = 1600
Shabal	$O(q^2/2^{896})$	l = 1408

• Would Grøstl have state size 1024, we would have $O(q^4/2^{1024})$

Outline

Preliminaries

- 2 Differentiability of Grøstail
- Indifferentiability of Grøst
- Conclusions

Conclusions

- We proved the indifferentiability of Grøstl, under the assumption that $P,\,Q$ are two independent random permutations
- Grøstl behaves like a random oracle up to $2^{n/2}$ queries
- Existing results could not be carried over to Grøstl:
 - Compression function and final transformation are differentiable
 - We additionally demonstrated that Grøstail is differentiable
- Open problem: improving the bound

Thank you for your attention!

SUPPORTING SLIDES!!!

- Black = old edges, Red = newly added edges in a certain query
- When adding edges to tree, make sure that:
 - End node of edge has no outgoing edge in the updated graph

- Black = old edges, Red = newly added edges in a certain query
- When adding edges to tree, make sure that:
 - 1 End node of edge has no outgoing edge in the updated graph
 - 2 End node of edge has no incoming edge in the updated graph (except for the edge itself, of course)

- Black = old edges, Red = newly added edges in a certain query
- When adding edges to tree, make sure that:
 - 1 End node of edge has no outgoing edge in the updated graph
 - 2 End node of edge has no incoming edge in the updated graph (except for the edge itself, of course)
 - 3 $\overline{r}(V)$ is never increased with a node in the updated dom(P)

- Black = old edges, Red = newly added edges in a certain query
- When adding edges to tree, make sure that:
 - 1 End node of edge has no outgoing edge in the updated graph
 - End node of edge has no incoming edge in the updated graph (except for the edge itself, of course)
 - $\overline{r}(V)$ is never increased with a node in the updated dom(P)
- In general: r(V) and $\bar{r}(V) \cap \text{dom}(P)$ should be increased as little as possible

• In inverse queries, the simulator can always avoid increasing r(V) and $\overline{r}(V) \cap \text{dom}(P)$

- In inverse queries, the simulator can always avoid increasing r(V) and $\overline{r}(V) \cap \text{dom}(P)$
- In forward queries, the simulator may be *forced* to increase r(V) or $\overline{r}(V) \cap \text{dom}(P)$
 - Simulator is forced to increase r(V)
 - Make sure that 1.-3. (of previous slide) are satisfied

- In inverse queries, the simulator can always avoid increasing r(V) and $\overline{r}(V)\cap \mathrm{dom}(P)$
- In forward queries, the simulator may be *forced* to increase r(V) or $\overline{r}(V) \cap \text{dom}(P)$
 - Simulator is forced to increase r(V)
 - Make sure that 1.-3. (of previous slide) are satisfied
 - Simulator is forced to increase $\bar{r}(V) \cap \text{dom}(P)$
 - This only happens if \mathcal{D} queries P(v) for $v \in \overline{r}(V)$
 - Simulator uses RO to output P(v) such that $\operatorname{chop}_{I-n}(P(v) \oplus v) = RO(M)$
- Notice that $\overline{r}(V)$ only increases if r(V) increases

 $\Pr\left(\mathcal{D}^{RO,S^{RO}}=1\right)=\Pr\left(\mathcal{D}^{G_1}=1\right)$

Proof (idea)

$$\begin{split} \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{1}}}=1\right) &= \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{2}}}=1\right) \\ \left|\Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{2}}}=1\right) - \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{3}}}=1\right)\right| &\leq \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{2}}}\text{ sets bad}\right) + \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{3}}}\text{ sets bad}\right) \\ &\Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{3}}}=1\right) = \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{4}}}=1\right) \\ \left|\Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{4}}}=1\right) - \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{5}}}=1\right)\right| &\leq \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{4}}}\text{ sets bad}\right) \\ \left|\Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{5}}}=1\right) - \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{6}}}=1\right)\right| &\leq \frac{r_{P}^{2}}{2^{I}} \\ &\Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{6}}}=1\right) = \Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{7}}P,Q},(P,Q)=1\right) \\ \\ \left|\Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{7}}P,Q},(P,Q)=1\right) - \Pr\left(\mathcal{D}^{RO,S^{RO}}=1\right)\right| &\leq 3\Pr\left(\mathcal{D}^{\textbf{G}_{\textbf{4}}}\text{ sets bad}\right) + \frac{r_{P}^{2}}{2^{I}} \\ &= O\left(\frac{(Kq)^{4}}{2^{I}}\right) \end{split}$$