

REMARKS/ARGUMENTS

Claims 1-7 are pending in the application with claims 5-7 new; reexamination and reconsideration are hereby requested.

Claims 1 and 3-4 were rejected as anticipated by Aguilar. The Examiner pointed to module 422, alignment processor 425, and alignment algorithm in column 15, lines 15 et seq.

Applicants reply that Aguilar apparently estimates an alignment phase with the cited algorithm and modules; however, the claims require an encoded alignment phase. Indeed, in Aguilar Fig.1B the outputs have no suggestion of an alignment phase encoding; rather, frg_q is the frame gain, pv_q is the voicing, lsf_q is the LSF vector, pr_q is the pitch period, fcbi is the fixed codebook index, gp_q is the adaptive codebook gain, and gc_q is the fixed codebook gain. And decoder Fig.2B has module 240 which computes (not decodes) fundamental phase fo_ph and phase offset beta from inputs pr_q, pv_q, and sq(n) which is the decoding of gc_q, gp_q, fcbi, pr_q, and lsf_q. In contrast, see application page 7 which shows 6 bits being allocated to the alignment phase encoding for that preferred embodiment.

Claim 2 was rejected as unpatentable over Aguilar in view of Thomson.

Applicants rely on the patentability of parent claim 1.

Formal drawings are enclosed. Applicants propose to replace the flow diagram of current Fig.3 with a flow diagram corresponding to the steps on pages 13-17; current Fig.3 appears to be just a part of a frame classification method.

Respectfully submitted,

Carlton H. Hoel
Reg. No. 29,934
Texas Instruments Incorporated
PO Box 655474, M/S 3999
Dallas, Texas 75265
972.917.4365