Numéro anonymat:

Calculabilit'e/Complexit'e-07/01/2020

Lire les questions. Répondre dans le cadre. Écrire au stylo (pas de crayon). Une page A4 manuscrite autorisée de documents.

Une variabDe la form	le, ou bien	$\cdots ((y E_1) E_2)$	orme normale (sa E_i en forme nor	
	·			

λ -calcul et combinateurs

On considère le système de combinateurs \mathbf{S} , \mathbf{K} , \mathbf{I} défini comme suit : — \mathbf{I} est le combinateur identité : $(\mathbf{I} \ x)$ se réduit en x , — \mathbf{K} est le combinateur de première projection : $((\mathbf{K} \ x) \ y)$ se réduit en x , — \mathbf{S} est le combinateur d'application : $(((\mathbf{S} \ x) \ y) \ z)$ se réduit en $((x \ z) \ (y \ z))$. L'ensemble des termes de combinateurs est défini inductivement par : une variable est un terme teur, un combinateur "primitif" $(\mathbf{S}, \mathbf{K} \ \text{ou} \ \mathbf{I})$ est un terme combinateur, une application notée $(T_1 \ T_2)$ termes de combinateurs T_1 et T_2 est un terme combinateur. Question 2. Donner des λ -termes se comportant comme \mathbf{S} , \mathbf{K} , \mathbf{I} (cà-d. donnant les mêmes résult mêmes paramètres).	2) de deux
•	
Question 3. Montrer que $((\mathbf{S} \mathbf{K}) \mathbf{K})$ se comporte comme \mathbf{I} (et donc que \mathbf{I} n'est pas nécessaire).	
Question 4. On rappelle qu'une variable libre dans un terme est une variable qui apparaît non liée dans ce terme. On peut écrire un terme combinateur de comportement équivalent à n'importe que Pour convertir un λ -terme en une application de combinateurs ayant le même comportement, on pe l'interprétation ϕ suivante : $1. \ \phi(x) = x$	el λ -terme.
2. $\phi((E_1 E_2)) = (\phi(E_1) \phi(E_2))$	
3. (a) $\phi(\lambda x.E) = (\mathbf{K} \phi(E))$ si x n'est pas libre dans E , sinon : (b) $\phi(\lambda x.x) = \mathbf{I}$	
(c) $\phi(\lambda x.\lambda y.E) = \phi(\lambda x.\phi(\lambda y.E))$ (si x est libre dans E)	
(d) $\phi(\lambda x.(E_1 \ E_2)) = ((\mathbf{S} \ \phi(\lambda x.E_1)) \ \phi(\lambda x.E_2))$ (si x est libre dans E_1 ou dans E_2). Donner un terme combinateur de comportement équivalent à $\lambda x.\lambda y.(y\ x)$.	

Numéro anonymat :

ment comme	her par calcul que $\lambda x.\lambda y.(y x)$.	le terme combinateur obtenu à la question précédente se comporte effe
Un terme our question	combinateurs C_1 ,	ité ou non du problème ayant pour données :
Un terme our question	combinateurs C_1 , -il une forme norm	ité ou non du problème ayant pour données : ale, c'est-à-dire une forme irréductible par les 3 règles données en déb
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	
Un termeour questionC_1 adme	combinateurs C_1 , -il une forme norm	

NP-complétude

guestion 7. Soit P_1 un problème NP-complet. Proposer une methode faisant intervenir P_1 pour montrer qu'un nutre problème P_2 est NP-complet.
•
Question 8. On suppose que CLIQUE, la recherche d'existence d'un sous-graphe complet (ensemble de nœuds l'un graphe qui sont tous voisins entre eux deux à deux) de taille k dans un graphe est NP-complète.
On considère le problème Ensemble indépendant qui a pour données : — Un graphe G ,
— Un entier k , et pour question :
— Existe-t-il un ensemble de k nœuds de G dont aucun n'est voisin d'un autre? Ce problème est dans NP, montrer qu'il est NP-complet.