Q1. Business Case: Target SQL

1. Usual Exploratory Analysis:

1.1 Datatype of all columns in "customers" table

Query:

```
select column_name,data_type from
```

`businesscase24.Target.INFORMATION_SCHEMA.COLUMNS` where table_name="customers"

Output:

Row /	column_name ▼	/ data_type ▼
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

Insights:

Have the personal unique id of customer besides customer consumer id.

1.2 Get the time range between which orders placed

Query:

```
SELECT min(order_purchase_timestamp) as `orders_startdate`,
    max(order_purchase_timestamp) as `orders_enddate`
    FROM `Target.orders`
```

Output:

Row /	orders_startdate ▼	1,	orders_enddate ▼	11
1	2016-09-04 21:15:19 UTC		2018-10-17 17:30:18 UTC	

Insights:

The orders present in the data are placed between september 4,2016 and october 17,2018

1.3 Count the cities and states of customers who ordered during the given period Query:

```
select count(distinct customer_city) as `Number of Cities`,
    count(distinct customer_state) as `Number of States`
    from `Target.customers` c join `Target.orders` o on
    c.customer_id=o.customer_id
```

Output:

Insights:

Orders have been placed from 27 states and 4119 different cities

2. In-depth exploration:

2.1 Is there a growing trend in the no.of orders placed over the past years

```
with cte as
(select
  extract(year from order_purchase_timestamp) as `year`,
  extract(month from order_purchase_timestamp) as `month`,
  count(distinct order_id) as `totalordersplaced`
```

```
from `Target.orders`
group by 1,2
order by 1,2
)

select *,
    lag(totalordersplaced) over(order by year,month)as `prev_monthorders`,
    (
        (100*(totalordersplaced - lag(totalordersplaced) over(order by
    year,month)) )/ lag(totalordersplaced) over(order by year,month)
    ) as `percentage`
    from cte
    order by 1,2
```

percentage ▼	prev_monthorders /	totalordersplaced	month ▼	year ▼	Row /
null	nuli	4	9	2016	1
8000.0	4	324	10	2016	2
-99.6913580246	324	1	12	2016	3
79900.0	1	800	1	2017	4
122.5	800	1780	2	2017	5
50.67415730337	1780	2682	3	2017	6
-10.3653989560	2682	2404	4	2017	7
53.91014975041	2404	3700	5	2017	8
-12.2972972972	3700	3245	6	2017	9
24.06779661016	3245	4026	7	2017	10

Insights:

Yes, it's a clear growing trend of orders when we compare between totalcountoforders related to years from 2016 to 2017 and from 2017 to 2018...while, it might be a rising curve over all but it has it's ups and downs in months and there is a huge increase jan 2017 and Nov 2017 when compared to other months. And after Nov 2017, there is a little less growth in orders comparitively and after nov 2018, the count of orders dropped drastically. The reasons can be investigated further

Recommendations:

Need to check any competitors or any potential/technical reasons as there is a major downfall of orders at the end and maintain extra stocks to be accessible during peak order months and also good time for sales and discounts

2.2 Can we see some kind of monthly seasonality in terms of the number of orders being placed Query:

```
with cte as
  (select
    extract(year from order_purchase_timestamp) as `year`,
    extract(month from order_purchase_timestamp) as `month`,
    count(distinct order_id) as `totalordersplaced`

from `Target.orders`
group by 1,2
order by 1,2
```

```
)
select *,
    lag(totalordersplaced) over(order by year,month)as `prev_monthorders`,
    (
        (100*(totalordersplaced - lag(totalordersplaced) over(order by
    year,month)) )/ lag(totalordersplaced) over(order by year,month)
    ) as `percentage`
    from cte
    order by 5 desc
```

Row / year	· ✓ // mor	nth ▼ // tota	lordersplaced > prev	_monthorders	percentage ▼
1	2017	1	800	1	79900.0
2	2016	10	324	4	8000.0
3	2017	2	1780	800	122.5
4	2017	11	7544	4631	62.90218095443
5	2017	5	3700	2404	53.91014975041
6	2017	3	2682	1780	50.67415730337
7	2018	1	7269	5673	28.13326282390
8	2017	7	4026	3245	24.06779661016
9	2017	10	4631	4285	8.074679113185
10	2017	8	4331	4026	7.575757575757

Insights:

Main peak orders are in November, January and in any one of summer month like March, May but there is a drastic fall of orders from August 2018- September 2018

Recommendations:

Need to check any competitors or any potential/technical reasons as there is a major downfall of orders at the end and maintain extra stocks to be accessible during peak order months and also good time for sales and discounts

2.3 During what time of the day, do the brazilian customers mostly place their orders?(Dawn,Morning,Afternoon,Night)

```
select
(count(order_id)) as `orders_purchased`,
(
    CASE
    WHEN extract(hour from order_purchase_timestamp) between 0 and 6
    then 'Dawn'
    WHEN extract(hour from order_purchase_timestamp) between 7 and 12
    then 'Morning'
    when extract(hour from order_purchase_timestamp) between 13 and 18
    then 'Afternoon'
    else 'Night'
    END
) as `time_of_day`
from
```

```
`Target.orders`
group by 2
order by 1 desc
```

Row	orders_purchased	time_of_day ▼
1	38135	Afternoon
2	28331	Night
3	27733	Morning
4	5242	Dawn

Insights:

As per UTC time, the most number of orders are placed in afternoon followed by night

Recommendations:

Since most orders are placed in afternoon times, good to check there will be no concurrency/technical issues while placing the order and multiple instances bandwidth ready and getting updated accordingly

3. Evolution of E-Commerce Orders in the Brazil region:

3.1 Get the month on month no.of orders placed in each state Query:

```
select
extract(year from order_purchase_timestamp) as `year`,
extract(month from order_purchase_timestamp) as `month`,
customer_state,
count(order_id) as `count`
from `Target.customers` c join `Target.orders` o on
c.customer_id=o.customer_id
group by 1,2,3
order by 4 desc
```

Output:

Row /	year ▼	month ▼	customer_state ▼	count ▼
1	2018	8	SP	3253
2	2018	5	SP	3207
3	2018	4	SP	3059
4	2018	1	SP	3052
5	2018	3	SP	3037
6	2017	11	SP	3012
7	2018	7	SP	2777
8	2018	6	SP	2773
9	2018	2	SP	2703
10	2017	12	SP	2357

Insights:

The more number of orders are clearly coming from SP state most of the months.

Recommendations:

Since most of the orders are from SP state, good to have extra stock places to decrease the delivery time and increase the ease for customers and the marketing amount of that state can be decreased to some extent and can use that in states of less orders like RR,AP..

3.2 How are customers distributed across all states

Query:

```
select
customer_state,
count(o.customer_id) as `count`
from `Target.customers` c join `Target.orders` o on
c.customer_id=o.customer_id
group by 1
order by 2 desc
```

Output:

o arpati	-	
Row	customer_state ▼	count ▼
1	SP	41746
2	RJ	12852
3	MG	11635
4	RS	5466
5	PR	5045
6	SC	3637
7	BA	3380
8	DF	2140
9	ES	2033
10	GO	2020

Insights:

The state 'SP' has more number of active customers and 'RR' has least

Recommendations:

Marketing techniques about the quality of products and ease of buying from the target retailers can be improved in RR to attract more customers so orders.

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order_prices, freight and others
- 4.1 Get the % increase in the cost of orders from year 2017 to 2018 (include months between Jan to Aug only).

You can use the "payment_value" column in the payments table to get the cost of orders.

```
with cte as
(select
  extract(year from order_purchase_timestamp) as `year`,
(
```

```
sum(payment_value)
) as `cost_of_orders`
from `Target.orders` o join `Target.payments` p on o.order_id = p.order_id
where extract(month from order_purchase_timestamp) between 1 and 8
group by 1
order by 1)

select *,
(
    round(100 *( cost_of_orders - lag(cost_of_orders) over(order by year) )/
lag(cost_of_orders) over(order by year))
) as `percentage`
```

Row /	year ▼	cost_of_orders ▼/	percentage ▼
1	2017	3669022.119999	nuli
2	2018	8694733.839999	137.0

Insights:

There is a 137% of increase in cost of orders from year 2017 -18 when only months from january to august are included

4.2 Calculate the Total & Average value of order price for each state.

Query:

```
select
  customer_state,
   sum(price) as `totalprice`,
  avg(price) as `avgprice`
  from `Target.customers` c join `Target.orders` o on c.customer_id=o.customer_id
      join `Target.order_items` i on o.order_id = i.order_id
  group by customer_state
  order by 2 desc,3 desc
```

Output:

Row /	customer_state ▼	totalprice 🕶	avgprice ▼
1	SP	5202955.050001	109.6536291597
2	RJ	1824092.669999	125.1178180945
3	MG	1585308.029999	120.7485741488
4	RS	750304.0200000	120.3374530874
5	PR	683083.7600000	119.0041393728
6	SC	520553.3400000	124.6535775862
7	BA	511349.9900000	134.6012082126
8	DF	302603.9399999	125.7705486284
9	GO	294591.9499999	126.2717316759
10	ES	275037.3099999	121.9137012411

Insights:

Highest total price of orders are recorded in `SP` and lowest total price of orders are recorded in `RR` from the data given between 2016-18

Recommendations:

The potential reasons to increase orders in the low total price states can be investigated further while extra stock can be placed to decrease delivery time for customers

4.3 Calculate the Total & Average value of order freight for each state.

Query:

```
select
  customer_state,
  sum(freight_value) as `totalfreight_value`,
  avg(freight_value) as `avgfreight_value`
  from `Target.customers` c join `Target.orders` o on c.customer_id=o.customer_id
      join `Target.order_items` i on o.order_id = i.order_id
  group by customer_state
  order by 2 desc,3 desc
```

Output:

-			
Row /	customer_state ▼	totalfreight_value 🍃	avgfreight_value 🔻
1	SP	718723.0699999	15.14727539041
2	RJ	305589.3100000	20.96092393168
3	MG	270853.4600000	20.63016680630
4	RS	135522.7400000	21.73580433039
5	PR	117851.6800000	20.53165156794
6	BA	100156.6799999	26.36395893656
7	SC	89660.26000000	21.47036877394
8	PE	59449.65999999	32.91786267995
9	GO	53114.97999999	22.76681525932
10	DF	50625.49999999	21.04135494596

Insights:

The total freight value is more in the states of higher price of orders I.e., SP,RJ..

Recommendations:

In the places of getting bulk orders, the freight charges can check and can try to decrease if possible by proper planning of shipping and delivery of orders.

5. Analysis based on sales, freight and delivery time

5.1 Find the no. of days taken to deliver each order from the order's purchase date as delivery time.

Also, calculate the difference (in days) between the estimated & actual delivery date of an order.

```
select
    order_id,
    o.customer_id,
    c.customer_state,
    DATE_DIFF(
        order_delivered_customer_date, order_purchase_timestamp, day
            ) as `time_to_deliver`,
    DATE_DIFF(
        order_delivered_customer_date, order_estimated_delivery_date, day
            ) as `diff_estimated_delivery`
```

```
from `Target.orders` o join `Target.customers` c on o.customer_id=c.customer_id
where order_status = "delivered"
order by 4 desc,5 desc
```

Row /	order_id ▼	customer_id ▼ //	customer_state ▼	time_to_deliver 🕶	diff_estimated_deliv
1	ca07593549f1816d26a572e06	75683a92331068e2d281b11a	ES	209	181
2	1b3190b2dfa9d789e1f14c05b	d306426abe5fca15e54b645e4	RJ	208	188
3	440d0d17af552815d15a9e41a	7815125148cfa1e8c7fee1ff79	PA	195	165
4	285ab9426d6982034523a855f	9cf2c3fa2632cee748e1a59ca9	SE	194	166
5	0f4519c5f1c541ddec9f21b3bd	1a8a4a30dc296976717f44e78	PI	194	161
6	2fb597c2f772eca01b1f5c561b	217906bc11a32c1e470eb7e08	PI	194	155
7	47b40429ed8cce3aee9199792	cb2caaaead400c97350c37a3f	SP	191	175
8	2fe324febf907e3ea3f2aa9650	65b14237885b3972ebec28c0f	SP	189	167
9	2d7561026d542c8dbd8f0daea	8199345f57c6d1cbe9701f924	SE	188	159
10	c27815f7e3dd0b926b5855262	f85e9ec0719b16dc4dd0edd43	MG	187	162

Insights/Recommendations:

The longest delivery time(209 d) is taken for orders showing above which are for states ES,RJ,PA,SE which is far more time to estimated date.. need to correct/check the estimation date and see why the estimation is that bad besides the investigation of reasons for that delay. The shortest delivery is within a day for few orders to SP,RJ... here it is delivered before estimated which sounds good but it is better to keep the estimatedate accurate or atleast close to the actual delivery for proper knowledge and availability of customer.

5.2 Find out the top 5 states with the highest & lowest average freight value.

```
(select
customer_state,
avg(freight_value) as avg
  from `Target.customers` c join `Target.orders` o on c.customer_id =
 o.customer_id
  join `Target.order_items`i on o.order_id=i.order_id
  group by customer_state
 order by 2 desc
  Limit 5)
union all
(select
 customer_state,
 avg(freight_value) as avg
  from `Target.customers` c join `Target.orders` o on c.customer id =
 o.customer id
  join `Target.order_items`i on o.order_id=i.order_id
group by customer_state
order by 2 asc
Limit 5)
order by avg asc
```

Row	customer_state ▼	avg ▼
1	SP	15.14727539041
2	PR	20.53165156794
3	MG	20.63016680630
4	RJ	20.96092393168
5	DF	21.04135494596
6	PI	39.14797047970
7	AC	40.07336956521
8	RO	41.06971223021
9	PB	42.72380398671
10	RR	42.98442307692

Insights:

The lowest average freight value states are SP,PR,MG,RJ,DF The highest average freight value states are RR,PB,RO,AC,PI

5.3 Find out the top 5 states with the highest & lowest average delivery time. Query:

```
(select
  customer_state,
  avg(
      DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,day)
      ) as `deliverytime`
    from `Target.customers` c join `Target.orders` o on c.customer_id =
 o.customer_id
 group by 1
 order by 2 desc
 Limit 5)
union
all
(select
  customer_state,
  avg(
      DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,day)
      ) as `deliverytime`
    from `Target.customers` c join `Target.orders` o on c.customer_id =
 o.customer_id
group by customer state
order by 2 asc
Limit 5)
order by deliverytime asc
```

Row	customer_state ▼	deliverytime ▼
1	SP	8.298061489072
2	PR	11.52671135486
3	MG	11.54381329810
4	DF	12.50913461538
5	SC	14.47956019171
6	PA	23.31606765327
7	AL	24.04030226700
8	AM	25.98620689655
9	AP	26.73134328358
10	RR	28.97560975609

Insights:

The lowest average delivery value(high speed of delivery) states are SP,PR,MG,DF,SC The highest average delivery value(low speed of delivery) states are RR,AP,AM,AL,PA

5.4 Find out the top 5 states where the order delivery is really fast as compared to the estimated date of delivery

Query:

```
select
customer_state,
avg (
    DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp,day)
) as `estimated_delivery`,
avg(
  DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,day)
) as `actual_delivery`,
(avg (
    DATE_DIFF(order_estimated_delivery_date,order_purchase_timestamp,day)
)- avg(
  DATE_DIFF(order_delivered_customer_date,order_purchase_timestamp,day)
)
)
as `deliveryspeed`
from `Target.customers` c join `Target.orders` o on c.customer_id = o.customer_id
group by 1
order by 4 desc
Limit 5
```

Output:

Row /	customer_state ▼	estimated_delivery	actual_delivery ▼	deliveryspeed ▼
1	AC	40.76543209876	20.63750000000	20.12793209876
2	RO	38.40711462450	18.91358024691	19.49353437759
3	AP	45.70588235294	26.73134328358	18.97453906935
4	AM	44.75675675675	25.98620689655	18.77054986020
5	RR	46.17391304347	28.97560975609	17.19830328738

Insights:

The delivery is more quicker than estimated in AC,RO,AP,AM,RR states

6. Analysis based on the payments:

6.1 Find the month on month no. of orders placed using different payment types.

Query:

```
select
payment_type,
extract(year from order_purchase_timestamp) as `year`,
extract(month from order_purchase_timestamp) as `month`,
count(distinct p.order_id) as `totalorders`
from `Target.orders` o join `Target.payments` p on o.order_id=p.order_id
group by 1,2,3
order by 2,3
```

Output:

Row /	payment_type ▼ //	year ▼	month ▼	totalorders 🕶
1	credit_card	2016	9	3
2	credit_card	2016	10	253
3	UPI	2016	10	63
4	voucher	2016	10	11
5	debit_card	2016	10	2
6	credit_card	2016	12	1
7	credit_card	2017	.1	582
8	UPI	2017	1	197
9	voucher	2017	1	33
10	debit_card	2017	1	9

Insights:

From the results, it can be noted that creditcard payment type have been used by most of customers followed by UPIs, debitcard and vouchers.

6.2 Find the no. of orders placed on the basis of the payment installments that have been paid. Query:

```
select
payment_installments,
count(distinct p.order_id) as `totalorders`
from `Target.orders` o join `Target.payments` p on o.order_id=p.order_id
where payment_installments >=1 and payment_value>0
group by payment_installments
order by 1
```

Row	payment_installment	totalorders 🕶
1	1	49057
2	2	12389
3	3	10443
4	4	7088
5	5	5234
6	6	3916
7	7	1623
8	8	4253
9	9	644
10	10	5315

Insights:

More payments of orders done in one installment.