Theoretische Informatik

Übungsblatt 9 (für die 50. Kalenderwoche)

zur Vorlesung von Prof. Dr. Till Mossakowski im Wintersemester 2016/2017

Magdeburg, 5. Dezember 2016

- 1. Beweisen oder widerlegen Sie: Die Sprache $L = \{a^k b a^{2k} b a^{3k} \mid k \ge 0\}$ ist kontextfrei.
- 2. Beweisen oder widerlegen Sie: Die Sprache $L = \{a^j b^k c^\ell \mid 0 \le j \le k \le \ell\}$ ist kontextfrei.
- 3. Es sei $G = (V, \Sigma, R, S)$ eine kontextfreie Grammatik in Chomsky Normalform, für die die erzeugte Sprache $\mathcal{L}(G)$ endlich ist.
 - a) Wie lang sind die Wörter in $\mathcal{L}(G)$ höchstens? Begründen Sie Ihre Antwort.
 - b) Wie viele Wörter enthält $\mathcal{L}(G)$ höchstens? Begründen Sie Ihre Antwort.

Hinweis: Betrachten Sie die Syntaxbäume die Wörter aus $\mathcal{L}(G)$. Die gesuchten Zahlen in der Teilaufgabe b) lauten für Grammatiken G mit $|\Sigma| = 3$ und |V| = 5 genau 64 570 081 und für Grammatiken G mit $|\Sigma| = 1$ und |V| = 5 genau 17.

- 4. Es seien die Sprache $L = \{(ab)^n c^n \mid n \ge 0\}$ sowie der Homomorphismus $h: \{a, b, c\}^* \to \{0, 1\}^*$ mit h(a) = 00, h(b) = 01 und h(c) = 10 gegeben.
 - a) Geben Sie eine kontextfreie Grammatik G mit $\mathcal{L}(G) = L$ an.
 - b) Geben Sie eine Grammatik G' mit $\mathcal{L}(G') = h(L)$ an.
- 5. Es ist die Turing-Maschine

$$M = (\{z_0, z_1, z_2, z_q, z_q', z_u, z_t, z_r, z_r', q_a, q_r\}, \{a, b\}, \{a, b, \bot\}, \delta, z_0, q_a, q_r\})$$

mit δ durch folgende Tabelle gegeben.

δ	z_0	z_1	z_2	z_g	z_g'	z_r	z_r'	z_t	z_u
Ш	(z_0, \sqcup, N)	(z_1,\sqcup,N)	(q_a, \sqcup, N)	(z'_g, \sqcup, R)	(z_r, a, L)	(z'_r, \sqcup, L)	(z_t, \sqcup, R)	(z_0, \sqcup, R)	(z_u, \sqcup, N)
a	(z_1,\sqcup,R)	(z_2,\sqcup,R)	(z_g, a, R)	(z_g, a, R)	(z'_g, a, R)	(z_r, a, L)	(z_r', a, L)	(z_u, \sqcup, R)	(z_g, \sqcup, R)

- a) Geben Sie die Berechnung von M bei der Eingabe aaaa an.
- b) Geben Sie an, welche Wörter aus der Menge $\{\varepsilon, a, aa, aaa, aaaa, aaaaa\}$ von M akzeptiert werden.
- c) Geben Sie an, welche Sprache von M akzeptiert wird.
- d) Wird die Sprache $\mathcal{L}(M)$ von M entschieden? Begründen Sie Ihre Antwort kurz.