Experiment-9

INTENSITY TRANSFORMATION

Student Name: Pratibha UID: 18bcs6093

Branch: CSE-AI&ML Section/Group:1(Group-2)

Semester: 5 **Date of Performance:**

Subject Name: DIP Subject Code: CSF-336

1. AIM/OVERVIEW of the Practical

In this experiment we have perform intensity transformation. In this we have used the jupyter notebook software.

2. Task to be Done

Various tasks which we have to performed in this experiment that are

- Read images
- Perform operation on images
- Display image

3. Required Libraries Or Softwares

Software – Jupyter Notebook

Libraries – numpy, matplotlib, pil, scikit Image, opencv

Steps for Experiment/Practical

1. # Linear Transformation

```
import cv2
```

img 1= cv2.imread('colors.jpg',0)

$$img 2 = 255 - img 1$$

cv2.imshow('input image',img 1)

cv2.imshow('image negative', img_2)

cv2.waitKey(0)

cv2.destroyAllWindows()

2. #Log Transformation

import cv2

import numpy as np

img_1= cv2.imread('colors.jpg',0)

```
img 2= np.uint8(np.log1p(img 1))
   thresh=1
   img 3= cv2.threshold(img 2,thresh,255,cv2.THRESH BINARY)[1]
   cv2.imshow('input image',img 1)
   cv2.imshow('log transformed image', img 3)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
3. #Power Law Transformation
   import cv2
   import numpy as np
   img 1= cv2.imread('colors.jpg',0)
   gamma=1
   img_2= np.power(img_1,gamma)
   gamma=1.5
   img 3= np.power(img 1,gamma)
   #gamma=4
   #img 4= np.power(img 1,gamma)
   \#gamma=0.7
   #img 5= np.power(img 1,gamma)
   cv2.imshow('input image',img 1)
   cv2.imshow('gamma correction_1', img_2)
   cv2.imshow('gamma correction 2', img 3)
   #cv2.imshow('gamma correction 3', img 4)
   #cv2.imshow('gamma correction 4', img 5)
   cv2.waitKey(0)
   cv2.destroyAllWindows()
4. #identity Transformation
   import cv2
   img 1= cv2.imread('imgg1.jpg')
   img 2 = img 1-255
   cv2.imshow('input image',img 1)
   cv2.imshow('image identity', img_2)
   cv2.waitKey(0)
```

```
cv2.destroyAllWindows()
```

5. Inverse Log Transformation

```
import cv2
import numpy as np
img_1= cv2.imread('imgg1.jpg',0)
img_2= np.uint8(np.expm1(img_1))
thresh=1
img_3= cv2.threshold(img_2,thresh,255,cv2.THRESH_BINARY)[1]
cv2.imshow('input image',img_1)
cv2.imshow('Inverse log transformed image', img_3)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

4. The command that we have learned today in the program:

In this program we have learnt various command for intensity transformation.

5. Output

