Modélisation des SED et UML

Pavol BARGER SY08 A11 cours 13

Approches SED

- Automates temporisés
 - UPPAAL
- Réseaux de Petri
 - CPN tools
- StateMate
- StateFlow
- UML

2

Objectifs UML

- représenter des systèmes entiers (non seulement le logiciel) par des concepts objet
- établir un couplage explicite entre les concepts et les artefacts exécutables
- prendre en compte les facteurs d'échelle inhérents aux systèmes complexes et critiques
- créer un langage de modélisation utilisable à la fois par les humains et les machines

3

Modèle et metamodèle

- Modèle
 - une description abstraite d'un système ou d'un processus
 - · représentation simplifiée
 - pas de solution unique
- Metamodèle
 - décrit les éléments de modélisation, la syntaxe et la sémantique
 - règles de création de modèles

4

Modélisation

- Analyse du système, processus
 - · décomposition en éléments simples
- Modélisation des états
- Modélisation des fonctions
- Modélisation des objets/entités
- Chaque modèle a une vue sur la réalité

Vues UML

- Statiques
 - diagrammes de classes
 - · diagrammes d'objets
 - · diagrammes de cas d'utilisation
 - diagrammes de composants
 - diagrammes de déploiement

Vues UML Dynamiques • diagrammes de séquence • diagrammes de collaboration · diagrammes d'états-transitions · diagrammes d'activités

Transitions, événements

- Un événement peut être associé à une transition
- Un événement n'est pas un état. C'est une information instantanée.
- A l'occurrence d'un événement, l'état peut changer

Événements

- 4 types d'événements
 - événement signal
 - envoi et réception asynchrones
 - événement appel d'une opération
 - événements création et destruction d'objet
 - création déclanche l'état initial événement temporel
 à la fin d'une temporisation

 - · relatif ou absolu
 - événement modification
 - passage d'une fonction booléenne de faux à vrai
 événement mémorisé

Actions

- Actions sont associées aux transitions ou aux états
- Chaque action est instantanée et atomique, donc ininterruptible
- Une action correspond à une génération d'un signal

13

Actions dans l'état

- Une action peut être exécutée
 - 1. à l'entrée d'un état
 - 2. à la sortie d'un état
 - 3. pendant la durée de l'état

14

Transitions composites Statique Il fait trop chaud [éte] Adrer Adrer Il fait trop chaud [hiver] Climatiser Adrer Adrer

États composites

- Un état composite est un état décomposé en sous-états
- Chaque sous-état peut être composite à son tour
- Décomposition hiérarchique
- Exemple :
 - · étudiant présent ou absent du cours
 - étudiant présent peut être attentif ou endormi

États composites

- Mélange de niveaux hiérarchiques
 - A éviter
- Chaque élément doit s'adresser exclusivement aux éléments de son niveau

19

Exemple: Annulation d'un ordre

- Modéle de gestion de stock
- Solutions
 - Transitions d'annulation de chaque état
 - Définition d'un macroétat

Remarques

- Un seul état initial est permis dans chaque état composite
- État final représente la sortie de l'état composite

26

Diagrammes d'activités Inspirés de diagrammes états-transitions Centrés sur les activités R Faire Action1 S Faire Action2 Action1 Action2

UML conclusion

- UML permet d'exprimer les systèmes à événements discrets
- Formalisme répandu
- Néanmoins cette représentation n'est pas suffisamment rigoureuse → formalisme semi-formel