PRD - Product Requirements Document

Introdução & objetivo

O controle de temperatura em bombas industriais é um aspecto crítico para garantir o bom funcionamento, a segurança e a durabilidade do equipamento. Em muitas indústrias, as bombas são utilizadas para a movimentação de fluidos em sistemas essenciais, como processos de resfriamento, aquecimento ou pressurização. A falha na operação de uma bomba, devido ao superaquecimento, pode causar paradas inesperadas na produção, danos permanentes ao equipamento e até mesmo riscos de acidentes. Esse sistema será integrado a sensores instalados no motor, e as informações serão enviadas via HTTP para o back-end e armazenadas em um banco de dados. Em caso de sobreaquecimento, um alerta será enviado ao supervisor.

Por que implementar isto?

"A manutenção preditiva, baseada em dados de monitoramento contínuo, pode reduzir os custos com reparos e aumentar a vida útil dos equipamentos, melhorando a eficiência operacional." - General Electric (GE)

Ou seja, como explicitado previamente, sistemas de monitoramento avançados não apenas detectam falhas, mas também otimizam a operação de máquinas, ajustando parâmetros conforme a interpretação do operador. A visualização personalizada dos dados e condições do equipamento, assim, auxiliam a prevenção a falhas e defeitos eficientemente de acordo com o histórico dos insights levantados pela interface através de uma determinada amostragem de tempo. Portanto, a atualização em tempo real das referências materiais e físicas é fundamental para a performance plena do motor em condições rígidas da linha de produção.

Manutenção inteligente: **reduz** custos, **previne** falhas e **maximiza** a performance operacional.

Público alvo

Visto a necessidade do monitoramento dos dados do motor para garantir o correto funcionamento do sistema de produção, faz-se preciso a liberação de tais dados ao pessoal qualificado da administração e controle da produção, mantendo, dessa forma, um controle mais firme e seguro quando, por exemplo, ocorrerem falhas devido ao sobreaquecimento dos motores. É válido também ressaltar que torna-se possível até mesmo prever quando falhas hão de ocorrer, possibilitando manutenções preditivas.

Perfil de usuário	Descrição, necessidades e interesses.
Supervisor de produção	Responsável por policiar a execução plena da linha de produção, deverá, através do sistema, verificar o estado de funcionamento do motor via visualização do monitoramento de sua temperatura, podendo acionar uma manutenção quando necessário.
Equipe de manutenção	Deve também ter acesso aos dados de temperatura do motor em um intervalo maior de tempo para avaliar sua condição de forma mais precisa, definindo os métodos a serem tomados.

Personas

- 1. **João Pires:** Supervisor de manutenção, responsável por garantir o funcionamento contínuo da linha de produção e por gerenciar projetos de automação e melhorias nas máquinas e equipamentos.
- 2. **Ana Clara:** Eletricista de manutenção, responsável pela manutenção preventiva e preditiva das máquinas, além de verificar a limpeza das máquinas e dos painéis elétricos.
- 3. **Renata Almeida:** Eletricista de manutenção, responsável pela manutenção corretiva, com o objetivo de minimizar as paradas das máquinas, e também encarregado de emitir e gerenciar as Ordens de Serviço.

Requisitos Funcionais

- Medição de Temperatura em Tempo Real: O sistema deve medir continuamente a temperatura da bomba, utilizando sensores adequados. P1
- 2. Alarmes e Notificação Automática: O sistema deve emitir alertas automaticamente se a temperatura ou vibração ultrapassarem limites prédefinidos, enviando notificações via SMS, e-mail ou push. P2
- **3. Armazenamento e Histórico de Dados** Os dados de temperatura e vibração devem ser armazenados para análise histórica e geração de relatórios. **P1**
- 4. Visualização de Dados em Dashboards: O sistema deve fornecer uma

interface para visualização em tempo real dos dados coletados, apresentando gráficos e dashboards fáceis de interpretar. **P1**

P1 = Crítico | P2 = Importante | P3 = Bom ter

Casos de uso e/ou User story

Caso de uso 1: Como um supervisor de produção, quero ter acesso à informações críticas de elementos cruciais da produção para evitar possíveis falhas no sistema.

Caso de uso 2: Como um membro da equipe de manutenção, quero verificar dados relacionados aos elementos da linha de produção ao longo do tempo para avaliar quando a manutenção será realizada.

Requisitos Não Funcionais

1. Desempenho: O sistema deve manter o gráfico de temperatura atualizado em tempo real. **P2**

2. Acurácia dos dados: Garantir que os dados estejam corretos e precisos para a posterior análise e modelagem. **P1**

3. Sensores: Assegurar que os dispositivos de entrada dos dados estejam em bom funcionamento para, consequentemente, gerar insights nas análises.
P1

- **4. Acessibilidade do sistema:** Apesar da necessidade da usabilidade nas mais diversas condições físicas e psicológicas, devem ser contadas previamente para o desenvolvimento de funcionalidades individuais de cada usuário. **P3**
- **5. Compatibilidade do sistema:** O sistema deve ser compatível com os principais navegadores para garantir o acesso ao monitoramento. **P2**

P1 = Crítico | P2 = Importante | P3 = Bom ter

Diagrama de atividade

Diagrama de Contexto

