

Overview

Definition – NIH:

Metagenomics is the study of the structure and function of entire nucleotide sequences isolated and analyzed from all the organisms (typically microbes) in a bulk sample. Metagenomics is often used to study a specific community of microorganisms, such as those residing on human skin, in the soil or in a water sample.

Wylezich et al., 2018 Scientific Reports

Metagenomics vs. Metabarcoding

Omics approach to eDNA

Metagenomics:

- Untargeted
- Higher taxonomic resolution
- Functional annotation possible
- More costly
- Computationally more intensive

eDNA Metabarcoding Applications

Diet

Analysis

Invasive

Species

Detection

Plant-

Pollinator

Interactions

Ancient

Ecosystems

Air Quality

Monitoring

Pollution

Response

Metagenomics vs. Metabarcoding taxonomic resolution

Metagenomics:

- Untargeted
- Higher taxonomic resolution

iNaturalist

FIGURE 1

A comparison of the proportion of reads from putative prey families found in the feces of the two pipefish species; (A) metabarcoding data; (B) metagenomic data. In each case, species with a number of reads <1% of the total number of reads per fecal samples were excluded. The Hexanauplia (copepod) families found in the metagenomic data of S. watermeyeri are grouped together by black boxes.

Metagenomics vs. Metabarcoding taxonomic resolution & database bias

Applications

- Microbiology
 - analysis of microbial communities that can't be cultured
- Environmental monitoring
 - Which organisms are present in a particular environment?
 - How does the microbial community of an environment react to e.g., pollution?
- Medical research
 - microbiome analysis
 - pathogen detection
 - How does the microbiome influence different medical conditions?
- Agriculture
 - Are our soils healthy?
 - Which microbes help our agricultural plants grow?

Applications in Zoology

- Lineage-specific microbiomes Integrative zoology: holobionts
- Symbiotic relationships
- Trophic interactions
- Gut microbiome adaptations
- Wildlife monitoring
- Paleo-metagenomics

Phylosymbiosis

Current limitations

• Reference databases limited reference datasets for genomic data

Associated costs

Shotgun metagenomic seq: \$139/sample Amplicon sequencing: \$10 (library prep) + \$8 per 0.1M reads

Computational intensity
 larger datasets more complex to handle

Requirements – What do you need?

- Samples
- DNA extractions e.g. Qiagen PowerSoil Pro
- Funding
- Computational infrastructure
- Analysis tools
 - Kraken2 + Bracken
 - Centrifuge
 - MetaPhiAn
 - Kaiju

Wylezich et al., 2018 Scientific Reports

Kraken2 and Bracken

Kraken (taxonomic assignment)

- Fast and memory efficient
- K-mer based approach
- K-mers in a query sequence mapped to lowest common ancestor (LCA) of all genomes that contain this k-mer
 - Unique hit -> taxonomic assignment (L. meliae/ L. delicatula)
 - Multiple hits -> taxonomic assignment to LCA (Lycorma)

Bracken

 Estimates relative abundances of species or genera based on estimation data from kraken

Lycorma meliae iNaturalist

Lycorma delicatula iNaturalist

Kraken reference databases

- Based on Refseq but now switching to NCBI core_nt DB
- 16S RNA DBs also available

	Index size (GB)	Viral	Bacteria	Archaea	Plasmids	Protozoa	Plants	Human	UniVec _Core	All (Genbank, Refseq, TPA & PDB)
Viral	0.6	X								
Standard	80	X	X	X	X			X	X	
Different combinations	7.5- 188	X	x	x	x	x	X	x	x	
EuPathBD46	11									
Core_nt DB	233.3	х	x	X	X	X	X	X	X	X

Analysis workflow with Kraken2 and Bracken

- Download Kraken2 database
 Optional: Customize the database by adding specific sequences
- 2) Build Kraken2 and Bracken dbs
- 3) Run Kraken
- 4) Run Bracken
- 5) Calculate alpha-Div
- 6) Calculate beta-Div
- 7) Visualize in Pavian

