

Àlex Arenas, Sergio Gómez

Universitat Rovira i Virgili, Tarragona

- Definicions
 - □ Sigui $\{a_n\}_{n\geq 0}$ una successió. Una sèrie de potències és una sèrie del tipus

$$\sum_{n=0}^{\infty} a_n x^n$$

□ Sigui $\{a_n\}_{n\geq 0}$ una successió. Una sèrie de potències centrada en el punt x=a és una sèrie del tipus

$$\sum_{n=0}^{\infty} a_n (x-a)^n$$

- Observacions
 - L'índex comença en n = 0 per a incloure el terme $a_0(x-a)^0 = a_0$
 - $x \in \mathbb{R}$
 - Els valors de a_n no depenen de x
 - Cal estudiar la convergència pels diferents valors de x

Teorema

- \square Sigui la sèrie de potències de termes $a_n x^n$. Aleshores
 - Si $a_n x^n$ sumable per $x = c \neq 0 \implies a_n x^n$ absolutament sumable $\forall x : |x| < |c|$
 - Si $a_n x^n$ no sumable per $x = d \implies a_n x^n$ no sumable $\forall x: |x| > |d|$

Observació

- Aquest teorema permet definir radis de convergència |x| < R de les sèries
- Per a sèries centrades en punts x = a, el radi de convergència és de la forma |x a| < R

Teorema

- Demostració
 - Com $a_n c^n$ sumable, tendeix a zero, i per tant, escollint $\epsilon = 1$, $\exists N : \forall n > N$ tenim $|a_n c^n| < 1$. Aleshores

$$|a_n x^n| = |a_n c^n| \left| \frac{x}{c} \right|^n < \left| \frac{x}{c} \right|^n$$

- Pel criteri de comparació, i com el terme de la dreta és una progressió geomètrica, la sèrie convergeix absolutament ∀x: |x| < |c|</p>
- Si $a_n d^n$ no sumable, no pot ser que $a_n x^n$ ho sigui per un x amb |x| > |d|, ja que entraria en contradicció amb el cas anterior

- □ Conversió de sèries de potències en funcions
 - Opció 1: Sigui D ⊆ R el conjunt de valors x on una sèrie de potències és convergent. Aleshores, es podria definir la funció f: D → R que assigna a cada valor de x el valor de la sèrie

$$f(x) \equiv \sum_{n=0}^{\infty} a_n (x-a)^n$$
, $\forall x \in D$

- □ Conversió de sèries de potències en funcions
 - Opció 2: Defineixo els monomis

$$f_n(x) \equiv a_n(x-a)^n$$

i faig la suma de tots ells

$$f(x) \equiv \sum_{n=0}^{\infty} f_n(x)$$

- □ Conversió de sèries de potències en funcions
 - Opció 3: Defineixo els polinomis que corresponen a les sumes parcials

$$s_n(x) \equiv \sum_{k=0}^n a_k (x - a)^k$$

i faig el límit

$$f(x) \equiv \lim_{n \to \infty} s_n(x)$$

- □ Conversió de sèries de potències en funcions
 - Les tres opcions són vàlides
 - Es posa de manifest la necessitat de fer
 - □ Sumes d'infinites funcions
 - □ Límits sobre successions de funcions
 - Les sumes d'infinites funcions es poden considerar un cas particular de límits, definint les funcions de sumes parcials

- □ Sigui $\{f_n\}$ una successió de funcions definides sobre un conjunt $D \subseteq \mathbb{R}$, és dir, $f_n: D \to \mathbb{R}$, i sigui $f: D \to \mathbb{R}$ una altra funció. Aleshores
 - $\{f_n\}$ convergeix puntualment a f en D si

$$f(x) \equiv \lim_{n \to \infty} f_n(x)$$
, $\forall x \in D$

• $\{f_n\}$ convergeix uniformement a f en D si

$$\forall \epsilon > 0 \ \exists N > 0 \colon \forall x \in D, \forall n \geq N \Rightarrow |f_n(x) - f(x)| < \epsilon$$

- Observacions
 - Convergència uniforme ⇒ Convergència puntual
 - En convergència puntual, *N* pot dependre de *x*

- □ Observacions
 - Una successió de funcions contínues pot convergir a una funció discontínua

$$f_n(x) = \begin{cases} x^n, & 0 \le x \le 1\\ 1, & x > 1 \end{cases}$$

$$\lim_{n\to\infty} f_n(x) = \begin{cases} 0, & 0 \le x \le 1\\ 1, & x > 1 \end{cases}$$

- □ Observacions
 - Una successió de funcions diferenciables pot convergir a una funció discontínua

$$f_n(x) = \begin{cases} -1, & x \le -\frac{1}{n} \\ \sin \frac{n\pi x}{2}, & -\frac{1}{n} \le x \le \frac{1}{n} \\ 1, & \frac{1}{n} \le x \end{cases}$$

Teorema

□ Sigui $\{f_n\}$ una successió de funcions contínues definides en un interval I = [a, b], que convergeixen uniformement a f en I. Aleshores f també és contínua en I

□ La successió $\{f_n\}$ és uniformement sumable si la successió $\{s_n\}$ de funcions de suma parcial convergeix uniformement, amb

$$s_n(x) \equiv \sum_{k=0}^n f_k(x)$$

 \square Sigui $p_n(x)$ un polinomi de grau n

$$p_n(x) \equiv \sum_{k=0}^n a_k x^k = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

□ Observem que

$$p'_n(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$$

$$p_n''(x) = 2a_2 + 2 \cdot 3a_3x + 3 \cdot 4a_4x^2 + \dots + (n-1) \cdot na_nx^{n-2}$$

- $p_n(0) = a_0$
- $p'_n(0) = a_1$
- $p_n''(0) = 2a_2$

$$p_n^{(k)}(0) = k! \, a_k, \quad k = 0, 1, \dots, n \quad \Rightarrow \quad a_k = \frac{p_n^{(k)}(0)}{k!}$$

□ Sigui $p_n(x)$ un polinomi de grau n centrat en x = a

$$p_n(x) \equiv \sum_{k=0}^n a_k (x - a)^k$$

- □ De forma anàloga
 - $p_n(a) = a_0$
 - $p'_n(a) = a_1$
 - $p_n''(a) = 2a_2$
 - $p_n^{(k)}(a) = k! \, a_k, \quad k = 0, 1, \dots, n \quad \Rightarrow \quad a_k = \frac{p_n^{(k)}(a)}{k!}$
- □ Podem escriure

$$p_n(x) \equiv \sum_{k=0}^n \frac{p_n^{(k)}(a)}{k!} (x-a)^k$$

- □ Sigui f(x) una funció diferenciable n vegades en un interval obert I, i sigui $a \in I$
 - El polinomi centrat en x = a

$$P_{n,a,f}(x) \equiv \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k$$

s'anomena el polinomi de Taylor de grau n de la funció f en el punt a, i compleix

$$P_{n,a,f}^{(k)}(a) = f^{(k)}(a), \qquad k = 0,1,...,n$$

■ El polinomi de Taylor $P_{n,a,f}(x)$ és una aproximació de la funció f(x) al voltant de x=a

Teorema de Taylor

□ Sigui f(x) una funció diferenciable n + 1 vegades en un interval obert I, i sigui $a \in I$. Aleshores, $\forall x \in I$ es compleix

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + R_{n,a,f}(x)$$

on $R_{n,a,f}(x)$ és el residu, que admet diverses formes

□ El residu de Lagrange pren la forma

$$R_{n,a,f}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

on ξ és un número situat entre x i a

Teorema de Taylor

- □ Demostració
 - Suposem x > a, i definim

$$R(x) = f(x) - P_{n,a,f}(x)$$

$$G(x) = (x - a)^{n+1}$$

- Aquestes funcions satisfan R(a) = G(a) = 0
- Pel teorema del valor mig de Cauchy, $\exists \xi_1 \in (a, x)$ tal que

$$\frac{R(x)}{G(x)} = \frac{R(x) - R(a)}{G(x) - G(a)} = \frac{R'(\xi_1)}{G'(\xi_1)}$$

■ Com R'(a) = G'(a) = 0, podem tornar a aplicar el mateix teorema del valor mig de Cauchy, $\exists \xi_2 \in (a, \xi_1) \subset (a, x)$ tal que

$$\frac{R'(\xi_1)}{G'(\xi_1)} = \frac{R'(\xi_1) - R'(a)}{G'(\xi_1) - G'(a)} = \frac{R''(\xi_2)}{G''(\xi_2)}$$

Teorema de Taylor

- □ Demostració
 - Repetint el procés s'arriba a que $\exists \xi \in (a, x)$ tal que

$$\frac{R(x)}{G(x)} = \frac{R^{(n+1)}(\xi)}{G^{(n+1)}(\xi)}$$

- Com la derivada (n+1)-èssima d'un polinomi de grau n és zero, aleshores $R^{(n+1)}(\xi) = f^{(n+1)}(\xi)$
- D'altra banda, $G^{(n+1)}(\xi) = (n+1)!$
- Per tant

$$R(x) = \frac{R^{(n+1)}(\xi)}{G^{(n+1)}(\xi)}G(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$$

- □ Sigui f(x) una funció diferenciable infinites vegades en el punt x = a
- □ S'anomena sèrie de Taylor d'aquesta funció a la sèrie

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

- \square En el cas a=0 s'anomena sèrie de Maclaurin
- □ En els cassos en que el residu tendeix a zero en un cert domini A, amb $a \in A$, es pot escriure

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n, \qquad \forall x \in A$$

Exemples

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots, \quad \forall x \in \mathbb{R}$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \qquad \forall x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, \qquad \forall x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \forall x \in (-1,1]$$

Exemples

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \qquad \forall x \in \mathbb{R}$$

