

C++-based MASQUE-Proxying for Lower OSI-Layer Protocol Traffic

Intermediate talk for the IDP by

Christoph Rotte

advised by Lion Steger and Richard von Seck

Wednesday 19th April, 2023

Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich

ПП

Current Status

- Idea: Adapt general approach of HTTP CONNECT for HTTP/3
- HTTP CONNECT: TCP/IP tunnel over HTTP
- HTTP CONNECT-UDP (MASQUE): UDP/IP tunnel over HTTP
- HTTP CONNECT-IP (MASQUE): IP tunnel over HTTP

ПІП

Current Status

- Idea: Adapt general approach of HTTP CONNECT for HTTP/3
- HTTP CONNECT: TCP/IP tunnel over HTTP
- HTTP CONNECT-UDP (MASQUE): UDP/IP tunnel over HTTP
- HTTP CONNECT-IP (MASQUE): IP tunnel over HTTP
- MASQUE Working Group
- Current Status:
 - CONNECT-UDP: rfc9298
 - CONNECT-IP: draft-ietf-masque-connect-ip-10
- Early stage regarding implementation

Background TCP Proxying

- Many proxy protocols (SOCKS, PEPs, HTTP CONNECT) are based on TCP
- HTTP CONNECT: several logical streams over one TCP connection
- → performance problems like head-of-line blocking

Figure 1: HTTP/2 Proxying via CONNECT [5]

Background

ПЛ

QUIC and QUIC Datagrams

- QUIC: UDP-based TCP alternative (used for HTTP/3)
- Logical streams consist of reliable STREAM frames [1]
- RFC9221: Unreliable QUIC Datagram Extension [2]

Figure 2: QUIC Streams Using Unreliable QUIC Datagrams

MASQUE-Proxying CONNECT-UDP Method

Figure 3: Proxying via QUIC and CONNECT-UDP [4]

ПШ

CONNECT-IP Method (DRAFT)

Figure 4: Proxying via QUIC and CONNECT-IP [3]

Motivation: Research Questions

- RQ 1 What are the implications of using CONNECT-IP in the context of overhead caused by encapsulation?
- RQ 2 How does CONNECT-IP behave in the context of transmission performance compared to CONNECT-UDP?
- RQ 3 What areas may cause library-specific differences and which challenges may occur because of this?

Research Questions: Preliminary Analysis

Encapsulation Overhead (CONNECT-IP)

- Reduced available packet size due to headers and MTU
 - Typical MTU: 1500B ↔ Minimum required MTU for Masque: 1200B
 - Overhead for encapsulated packets: 49B 94B
 - HTTP/3 Datagram Frame header: 1B 8B
 - QUIC Datagram Frame header: 1B 9B
 - QUIC (short) header: 2B 25B
 - QUIC MAC: 16B

Context ID: 1B - 8B

- QUIC MAC: 16E
- UDP header: 8B
- IPv4 header: 20B

Research Questions: Preliminary Analysis

Encapsulation Overhead (CONNECT-IP)

- Reduced available packet size due to headers and MTU

 - Overhead for encapsulated packets: 49B 94B
 - HTTP/3 Datagram Frame header: 1B 8B
 - QUIC Datagram Frame header: 1B 9B
 - QUIC (short) header: 2B 25B
 - QUIC MAC: 16B

Context ID: 1B - 8B

- UDP header: 8B
- IPv4 header: 20B
- ightarrow Conservative bound for multi-hop setups: 3 CONNECT-IP connections
- Preliminary measurement (proxy on the same host):
 - \$ curl https://speed.hetzner.de/10GB.bin --interface tun0

CONNECT-IP: \sim 18.1 MiB/s

w/o CONNECT-IP: \sim 19 MiB/s

Research Questions: Preliminary Analysis

CONNECT-IP vs. CONNECT-UDP

- Only difference in terms of packet structure:
 Absence of IP header + UDP header (20B + 8B)
- → Expected similar performance characteristics in relative terms of latency and absence of head-of-line blocking
- → Logical streams theoretically **scale on one** QUIC connection

Research Questions: Preliminary Analysis

Library-Specific Differences

- Parameterization, i.e. exchanging proxy configuration information (like available IP routes)
- Implementations following different draft versions
 - \rightarrow transport parameter sizes, different handling of methods like CONNECT, etc.
- Example (QUIC):
 - facebookincubator/mvfst¹ seems to be based on draft-ietf-quic-transport version ≤ 23
 - google/quiche² seems to be based on the finalized RFC 9000
 - → Sending a datagram size of 2¹⁶ leads to an overflow in mvfst

¹ https://github.com/facebookincubator/myfst

² https://github.com/google/quiche

Implementation

Motivation:

Library

- Evaluation / measurements (→ RQs)
- · Current MASQUE implementations do not contain all features
- facebook/proxygen³ (HTTP/3 Library)
- facebookincubator/mvfst⁴ (QUIC Library)

³ https://github.com/facebook/proxygen

⁴ https://github.com/facebookincubator/mvfst

Implementation

ТИП

Library

- Motivation:
 - Evaluation / measurements (→ RQs)
 - · Current MASQUE implementations do not contain all features
- facebook/proxygen³ (HTTP/3 Library)
- facebookincubator/mvfst⁴ (QUIC Library)

Figure 5: Architectural Overview

 $³_{\substack{\text{https://github.com/facebook/proxygen}}}$

⁴ https://github.com/facebookincubator/mvfst

Next Steps

ПІΠ

Progress + Planned

- CONNECT-UDP implementation (client + server) √
- CONNECT-IP implementation (client + server) √
- CONNECT-UDP implementation cross-tested √
- CONNECT-IP Implementation cross-tested
- Evaluation / Analysis of the theoretic assumptions
 - Testbed
 - Multihop setup
 - ...
- Library Comparison (Cross-Evaluation)
 - Google QUICHE⁵
 - ...

⁵ https://github.com/google/guiche

Bibliography

[1] J. Iyengar and M. Thomson.

QUIC: A UDP-Based Multiplexed and Secure Transport, 2021.

http://tools.ietf.org/html/rfc9000.

[2] T. Pauly, E. Kinnear, and D. Schinazi.

An Unreliable Datagram Extension to QUIC, 2022.

http://tools.ietf.org/html/rfc9221.

[3] T. Pauly, D. Schinazi, A. Chernyakhovsky, M. Kühlewind, and M. Westerlund.

Proxying UDP in HTTP, 2023.

https://www.ietf.org/archive/id/draft-ietf-masque-connect-ip-10.html.

[4] D. Schinazi.

Proxying UDP in HTTP, 2022.

http://tools.ietf.org/html/rfc9298.

[5] M. Thomson and C. Benfield.

HTTP/2, 2022.

http://tools.ietf.org/html/rfc9113.

Appendix

ПЛ

CONNECT-IP Implementation

Figure 6: CONNECT-IP Implementation Overview

Appendix Multithreading

Figure 7: Proxygen Multithreading Overview for CONNECT-IP