Introductory Notes

Machine Learning Process

Data Pre-Processing

- Import the data
- Clean the Data
- Split into training and test sets

Modelling

- Build the model
- Train the model
- Make predictions

Evaluation

- Calculate performance metrics
- Make a verdict

Training and Testing Data sets

Usually you would take 20% of the total dataset and allocate it for testing the model.
Meanwhile the remaining 80% would be used for training a machine learning model. Once model is created, we use the 20% data set to test the models by making predictions and use them to evaluate the model.

Feature Scaling

- Feature Scaling is only applied to Columns
- Two types of Feature Scaling:
 - Normalization
 - Process of taking the Minimum of the column and subtracting it from every single value in that column and than dividing by the difference of the Maximum and Minimum.
 - $X' = (X X_{Min}) / (X_{MAX} X_{MIN})$
 - Every single value in a column is adjusted this way, resulting in a new column where values [0;1].
 - Standardization
 - Process is taking the average μ of all the values in the column, and subtracting each value by the average and dividing it by the standard deviation σ

- $X' = (X \mu) / \sigma$
- Every single value in a column is adjusted this way, resulting in a new column where values are [-3;+3].
- Reason for feature scaling? Answer is simple, in a dataset you have multiple columns of numbers and data representing different contexts. For algorithms to accurately perform, we need to make sure all data is scaled, hence we apply **Normalization** and **Standardization** methods to scale data.

Next Steps -> Data Preprocessing

Data Preprocessing