Untere Schranke

- jedes vergleichsbasierte [[Sortierverfahren]] braucht im worst-case zumindest
 - -c*n*log(n)
 - $-\Omega(n*log(n))$

Die Höhe eines Binärbaums mit n! Blättern ist Ω(n log n)

- $\Rightarrow \Omega(n \log n)$ ist eine untere Schranke für die Anzahl der im worst case zum Sortieren notwendigen Vergleiche
- \Rightarrow Die worst case Laufzeit vergleichsorientierter Sortierverfahren ist $\Omega(n \log n)$
- MergeSort ist worst-case optimal

Entscheidungsbaum von vergleichsbasierten Sortierverfahren

Beispiel: InsertionSort auf a_1 , a_2 , a_3 : alle möglichen Programmverzweigungen $a_1 \leq a_2$ nein ja Innere Knoten: Vergleiche zwischen Elementen $a_2 \leq a_3$ $a_1 \le a_3$ Blätter: Sortierte Reihenfolge des Inputs ⇒ Wie viele Blätter gibt es mindestens? $a_1 \le a_3$ $a_2 \le a_3$ $a_1 \, a_2 \, a_3$ $a_2 \, a_1 \, a_3$ Kontrollfluss für best. Input $a_1 a_3 a_2$ $a_3 a_1 a_2$ $a_2 \, a_3 \, a_1$ $a_3 a_2 a_1$ Ast für $a_1=5$, $a_2=8$, $a_3=4$

- worst-case Verhalten = längste Ast
 - |Knoten| = |Vergleiche|
- längste Ast kürzestmöglich, wenn alle Äste möglich lang
- idealer Algorithmus
 - vollständiger Binärbaum mit n! Blätter