Lamperti Optimization

Renzo Miguel Caballero Rosas

April 4, 2020

Description:

Let $\{\Delta V_i\}_{i=1}^n$ be the set of all error transitions, and $\psi(\theta_0, \alpha, \Delta V)$ the Lamperti transform. Notice that the Lamperti transitions $\{\Delta Z_i\}_{i=1}^n$ depend on (θ_0, α) because

$$\{\Delta Z_i\}_{i=1}^n = \psi(\theta_0, \alpha, \{\Delta V_i\}_{i=1}^n).$$

Then, if we compute

$$\min_{(\theta_0,\alpha)} \textbf{L}(\theta_0,\alpha,\{\Delta Z_i\}_{i=1}^n),$$

we are NOT computing a MLE in the classical sense. However, we can try to find (θ_0^*, α^*) such that

$$(\boldsymbol{\theta}_0^*, \boldsymbol{\alpha}^*) = \arg\min_{(\boldsymbol{\theta}_0, \boldsymbol{\alpha})} \mathbf{L}\left(\boldsymbol{\theta}_0, \boldsymbol{\alpha}, \boldsymbol{\psi}(\boldsymbol{\theta}_0^*, \boldsymbol{\alpha}^*, \{\Delta V_i\}_{i=1}^n)\right).$$

In this point, the likelihood has a maximum for the data set corresponding to that point.