§ 1 場合の数 (p.208~p.209)

練習問題 1-A

1. 往路について

 $A \longrightarrow B$ の行き方は,5 通り

B → C の行き方は,4通り

復路は,往路と同じ道は通らないので

 $C \longrightarrow B$ の行き方は , 3 通り

B → A の行き方は,4 通り

よって、積の法則より、 $5 \times 4 \times 3 \times 4 = 240$ 通り

- 2. 目の出方を(大の目,小の目)で表す.
 - i) 目の和が5のとき (1, 4),(2, 3),(3, 2),(4, 1)の4通り
 - ii) 目の和が 10 のとき

(4, 6),(5, 5),(6, 4) の 3 通り

よって,和の法則より,4+3=7通り

3. (1) 最高位(千の位)の数字の選び方は,0以外の 7通りあり,残りの3つの位については他の7つ の数字から4つをとる順列になるので

$$7 \times {}_{7}P_{4} = 7 \times 7 \cdot 6 \cdot 5 = 1470$$
 個

(2) 最高位(千の位)の数字の選び方は,0以外の 7通りあり,残りの3つの位については8つの 数字の重複順列になるので

$$7 \times 8^3 =$$
3584 個

4. (1) 与式 = $\frac{n(n-1)\cdots 2\cdot 1}{(n+1)n(n-1)\cdots 2\cdot 1}$ = $\frac{1}{n+1}$

(2) 与式 = $\frac{(n+1)n(n-1)(n-2)\cdots 2\cdot 1}{(n-1)(n-2)\cdots 2\cdot 1}$ = n(n+1)

(3) 与式

$$= \frac{(n-r+1)(n-r)(n-r-1)\cdots 2\cdot 1}{(n-r-1)(n-r-2)\cdots 2\cdot 1}$$
$$= (n-r)(n-r+1)$$

5. 8 個のボールそれぞれについて,入れる箱の選び方は3 通りずつあるので

$$3^8 = 6561$$
 通り

6. 横方向の線分の中から2本,縦方向の線分の中から2本を選ぶと1つの平行四辺形ができる.

横方向7本の中から2本の線分の選び方は

$$_{7}$$
 $\mathrm{C}_{2}=rac{7\cdot 6}{2\cdot 1}=21$ 通り

縦方向6本の中から2本の線分の選び方は

$$_6 {
m C}_2 = rac{6 \cdot 5}{2 \cdot 1} = 15$$
 通り

よって,平行四辺形の個数は, $21 \times 15 = 315$ 個

7.

最初に,6個の位の中から,1を置く3個の位を選ぶ

ے

$$_{6}\mathrm{C}_{3}=rac{6\cdot5\cdot4}{3\cdot2\cdot1}=20$$
 通り

残りの位は,2と3の2つの数字の重複順列であるから,

$$20 \times 2^3 =$$
160 個

- 8. (1) 3 が 3 個 , 4 が 2 個 , 5 が 1 個あるので $\frac{6!}{3!\,2!\,1!} = \frac{6\cdot 5\cdot 4\cdot 3\cdot 2\cdot 1}{3\cdot 2\cdot 1\cdot 2\cdot 1\cdot 1} = \mathbf{60}$ 個
 - (2) 偶数は,1の位が4のときである.残りの位に 並べる数字は,3が3個,4が1個,5が1個で あるから

$$\frac{5!}{3!1!1!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 1 \cdot 1} = 20$$
個

9. この展開式の一般項は

$${}_{6}C_{r}(2x)^{6-r} \left(-\frac{1}{x}\right)^{r} = {}_{6}C_{r}2^{6-r}(-1)^{r}x^{6-r} \cdot \frac{1}{x^{r}}$$
$$= {}_{6}C_{r}2^{6-r}(-1)^{r} \cdot \frac{x^{6-r}}{x^{r}}$$
$$= {}_{6}C_{r}2^{6-r}(-1)^{r}x^{6-2r}$$

(1) $x^{6-2r}=x^4$ となるのは,6-2r=4 より,r=1 のときであるから, x^4 の係数は ${}_6\mathrm{C}_12^{6-1}(-1)^1=6\cdot32\cdot(-1)=-192$

- (2) $x^{6-2r}=rac{1}{x^2}$ となるのは , 6-2r=-2 より , r=4 のときであるから , $rac{1}{x^2}$ の係数は $_6\mathrm{C}_42^{6-4}(-1)^4=15\cdot 4\cdot 1=\mathbf{60}$
- (3) 定数項は , 6-2r=0 として , r=3 のときであるから

$${}_{6}C_{3}2^{6-3}(-1)^{3} = 20 \cdot 8 \cdot (-1) = -160$$

練習問題 1-B

1. (1)8人の円順列なので

$$(8-1)! = 7! = 5040$$
 通り

(2) 女子3人を1組として,男子5人と女子1組 での円順列の数は

$$(6-1)!=5!=120$$
 通り
この各に対して,女子の並び方は $3!=6$ 通り
よって, $120\times 6=720$ 通り

(3) まず,男子5人だけが座ると

$$(5-1)!-4!=24$$
 通り

の座り方があり,女子3人が,5カ所ある男子の間に順に座っていけばよいので

$$24 \times {}_{5}P_{3} = 24 \times 5 \cdot 4 \cdot 3 = 1440$$
 通り

2. (1) 図の最短経路を - | | - - | - と表すことにすると, A から B までの最短経路の数は,縦棒3本,横棒4本を横1列に並べたときの並べ方の総数と一致する.

したがって
$$\frac{7!}{3!4!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$
= 35

(2) A 地点から C 地点までの最短の通路の数は 4! c

$$\frac{4!}{2!2!} = 0$$

C 地点から B 地点までの最短の通路の数は

$$\frac{3!}{1!2!} = 3$$

よって, C 地点を通る通路の数は

 $6 \times 3 = 18$ であるから,C 地点を通らない 通路の数は

$$35 - 18 = 17$$

3. (1) 8 個の頂点の中から 3 個を選べば 1 つの三角 形ができるので

$$_{8}\mathrm{C}_{3}=rac{8\cdot7\cdot6}{3\cdot2\cdot1}=$$
56 個

(2) 図のように,正八角形と2辺を共有する三角 形は,1個の頂点に対して1個ずつできるので8

(3) 図のように,正八角形と 1 辺を共有する三角 形は,1 個の辺に対して 4 個ずつできるので $4\times 8=32$ 個

(4) 以上より,正八角形と辺を共有しない三角形 の個数は

$$56 - (8 + 32) = 16$$
 個

4. (1) まず,0が最高位にある場合も含めた数字の列の総数を求めると,1が3個,2が2個,0,3が1個ずつあるので

$$\frac{7!}{3!2!1!1!} = 420$$

次に , 最高位が 0 のときの数字の列の総数は $\frac{6!}{3!2!1!} = 60$

よって ,
$$420-60=$$
 360 個

- (2) 1の位が0の場合と2の場合に分けて考える.
 - i) 1 の位が 0 のとき

0 以外の 6 個の数字を並べればよいので $\frac{6!}{3!2!1!} = 60$

ii) 1 の位が 2 のとき

0 が最高位にある場合も含めた数字の列の総数は0 が1 個1 が3 個1 が1 個1

$$3$$
 が 1 個ずつあるので

$$\frac{6!}{1!3!1!1!} = 120$$

最高位が0のときの数字の列の総数は,1

が
$$3$$
 個 , 2 が 1 個 , 3 が 1 個ずつあるので
$$\frac{5!}{3!1!1!} = 20$$
 よって , 1 の位が 2 のときの偶数の数は , $120-20=100$

以上より,
$$60 + 100 = 160$$
 個

5. 二項定理を用いて,
$$(1+x)^n$$
 を展開すると
$$(1+x)^n = {}_n\mathrm{C}_01^n + {}_n\mathrm{C}_11^{n-1}x$$

$$+ {}_n\mathrm{C}_21^{n-2}x^2 + \cdots + {}_n\mathrm{C}_nx^n$$

$$= {}_n\mathrm{C}_0 + {}_n\mathrm{C}_1x + {}_n\mathrm{C}_2x^2 + \cdots + {}_n\mathrm{C}_nx^n$$
 ここで, $x=1$ を代入すると
$$(1+1)^n$$

$$= {}_n\mathrm{C}_0 + {}_n\mathrm{C}_1 \cdot 1 + {}_n\mathrm{C}_2 \cdot 1^2 + \cdots + {}_n\mathrm{C}_n \cdot 1^n$$

$$= {}_n\mathrm{C}_0 + {}_n\mathrm{C}_1 \cdot 1 + {}_n\mathrm{C}_2 + \cdots + {}_n\mathrm{C}_n$$
 すなわち
$$2^n = {}_n\mathrm{C}_0 + {}_n\mathrm{C}_1 + {}_n\mathrm{C}_2 + \cdots + {}_n\mathrm{C}_n$$

6. 問題集 p.92 の三項定理を参照のこと.

$$(x^2+x+1)^5$$
 の展開式の一般項は
$$\frac{5!}{p!\,q!\,r!}(x^2)^p x^q \cdot 1^r = \frac{5!}{p!\,q!\,r!} \cdot x^{2p+q}$$

である.ただし,p+q+r=5

$$\left(\begin{array}{c} 1 \end{array}
ight) x^9 = x^{2p+q}$$
 となるのは $\left\{\begin{array}{cccc} 2p+q=9 & \cdots & 0 \\ p+q+r=5 & \cdots & 2 \end{array}
ight)$ が成り立つときである. $\left(\begin{array}{ccccc} 0-2 \end{array}
ight) , p-r=4 \\ また,②より, $q=5-(p+r) \\ q\geq 0$ であるから $5-(p+r)\geq 0$ すなわち, $p+r\leq 5$ よって $\left\{\begin{array}{ccccc} p-r=4 \\ p+r\leq 5 \end{array}
ight.$ これを満たす p , r の組を求めると $(p,\ r)=(4,\ 0)$ したがって $(p,\ q,\ r)=(4,\ 1,\ 0)$ 以上より, x^9 の係数は $\frac{5!}{-5!}=5$$

$$\left(\begin{array}{c} 2 \right) x^7 = x^{2p+q}$$
 となるのは
$$\left\{ \begin{array}{c} 2p+q=7 \\ p+q+r=5 \end{array} \right.$$
 が成り立つときであるから
$$\left\{ \begin{array}{c} p-r=2 \\ p+r \leq 5 \end{array} \right.$$
 これを満たす p , r の組を求めると
$$\left(p,\ r \right) = \left(3,\ 1 \right)$$
 , $\left(2,\ 0 \right)$ したがって
$$\left(p,\ q,\ r \right) = \left(3,\ 1,\ 1 \right)$$
 , $\left(2,\ 3,\ 0 \right)$ 以上より , x^7 の係数は
$$\frac{5!}{3!1,!1!} + \frac{5!}{2,!3,!0!} = 20 + 10 = \textbf{30} \right.$$
 $\left(\begin{array}{c} 3 \end{array}\right) x^5 = x^{2p+q}$ となるのは
$$\left\{ \begin{array}{c} 2p+q=5 \\ p+q+r=5 \end{array} \right.$$
 が成り立つときであるから
$$\left\{ \begin{array}{c} p-r=0 \end{array} \right.$$

これを満たすp,rの組を求めると

(p, r) = (2, 2), (1, 1), (0, 0)

 $\frac{5!}{2!1,!2!} + \frac{5!}{1,!3,!1!} + \frac{5!}{0,!5,!0!}$

= (2, 1, 2), (1, 3, 1), (0, 5, 0)

 $p+r \leq 5$

したがって

(p, q, r)

=30+20+1=51

以上より, x^5 の係数は