

(11)Publication number:

11-157860

(43) Date of publication of application: 15.06.1999

(51)Int.CI.

CO3B 33/027 B26F 3/00

B28D 1/00

(21)Application number: 10-101967

(71)Applicant : BELDEX:KK

THK CO LTD

(22)Date of filing:

30.03.1998

(72)Inventor: SHIMOTOYOTOME AKIRA

(30)Priority

Priority number: 09278054

Priority date: 25.09.1997

Priority country: JP

(54) SCRIBING DEVICE AND METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To deeply form a scribing line and to suppress the chipping and peeling near the scribing line with a scribing device for forming the scribing line on a work surface prior to work breakage. SOLUTION: A body 10 is held perpendicularly slidably at a supplying table. A holder 20 is supported to allow slight sliding in a perpendicular direction on the body 10. A vibration actuator 40 is arranged between the receiving part 21 of the holder 20 and the receiving part 15 of the body 10. An energizing member 23 imparts elastic force on the vibration actuator 40 via the holder 20. A cutter 30 (contact member) is mounted at the bottom end of the holder 20. While vibration is imparted to the cutter 30 by driving the vibration actuator 40 in the state that the cutter 30 is pressed to the work surface by the own weight of the body 10 and the holder 20, the cutter 30 is moved relatively along the work surface, by which the scribing line is formed on the work surface.

LEGAL STATUS

[Date of request for examination]

05.08.1998

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2954566

THIS PAGE BLANK (USPTO)

[Date of registration]

16.07.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-157860

(43)公開日 平成11年(1999)6月15日

(51)	Int	CI 6
(DI)	шь	Ų.

B 2 6 F

識別記号

FΙ

C 0 3 B 33/027

B 2 6 F · 3/00

1/00 B 2 8 D

C 0 3 B 33/027

3/00

1/00 B 2 8 D

> 請求項の数21 FD (全 16 頁) 審査請求 有

(21)出願番号

特廢平10-101967

(22) 出願日

平成10年(1998) 3月30日

(31) 優先権主張番号 特願平9-278054

(32) 優先日

平9 (1997) 9月25日

(33)優先権主張国 日本(JP)

(71) 出願人 390019046

株式会社ベルデックス

東京都豊島区北大塚1丁目12番15号

(71) 出願人 390029805

テイエチケー株式会社

東京都品川区西五反田3丁目11番6号

下豊留 暁 (72)発明者

東京都豊島区北大塚1丁目12番15号 株式

会社ベルデックス内

(74)代理人 弁理士 渡辺 昇

(54) 【発明の名称】 スクライブ装置および方法

(57)【要約】

【課題】 ワーク破断に先立ってワーク面に刻線を形成 するスクライブ装置において、刻線を深く形成でき、刻 線近傍での欠損や剥離を抑制できるようにする。

【解決手段】 ボディ10が支持台1に垂直方向スライ ド可能に支持されている。ボデイ10には、ホルダ20 が垂直方向に微少量のスライドを可能にして支持されて いる。ホルダ20の受部21とボデイ10の受部15と の間には、振動アクチュエータ40が配置されている。 付勢部材23がホルダ20を介して振動アクチュエータ 40に弾性力を付与している。ホルダ20の下端部には カッタ30 (当接部材)が取り付けられている。ボディ 10とホルダ20の自重でカッタ30をワーク面に押し 付けられた状態で、振動アクチュエータ40を駆動して、 カッタ30に振動を付与しながら、カッタ30をワーク 面に沿って相対的に移動させることにより、ワーク面に 刻線を形成する。

【特許請求の範囲】

【請求項1】(イ)受部を有するボディと、(ロ)上記 ボディに、ワーク面と交差するスライド軸方向に微少量 スライド可能に支持され、かつ上記ボデイの受部から上 記スライド軸方向に離間した受部を有するホルダと、

(ハ) 上記ボディとホルダの受部に挟まれ、上記スライ ド軸方向の振動を上記ホルダに付与する振動アクチュエ ータと、(二)上記ホルダに保持され、ホルダに付与さ れた振動をワークに伝える硬性の当接部材と、(ホ)上 記ホルダを、その受部が振動アクチュエータに向かうよ 10 とのエア通路の一端開口がエア圧源に接続され、他端開 うに付勢する付勢部材と、

を備えたことを特徴とするスクライブ装置。

【請求項2】上記ボデイを、ワークに対してワーク面に 沿う方向に相対的に移動させることにより、上記カッタ をワーク面に対して同方向に相対的に移動させる移動機 構を備えたととを特徴とする請求項1 に記載のスクライ ブ装置。

【請求項3】 ガイドと、このガイドに上記スライド軸 方向にスライド可能に支持されたスライダとを有するス ライド機構を備え、上記ボデイがこのスライダに設けら れていることを特徴とする請求項1に記載のスクライブ 装置。

【請求項4】 上記スライダと上記ボデイとが、弾性を 有する振動緩衝部材を介して連結されていることを特徴 とする請求項3に記載のスクライブ装置。

【請求項5】 上記振動緩衝部材が板パネからなること を特徴とする請求項4 に記載のスクライブ装置。

【請求項6】 上記ボディまたはスライダに振動センサ が取り付けられていることを特徴とする請求項3~5の いずれかに記載のスクライブ装置。

【請求項7】 上記スライド軸が略垂直に延び、上記ボ デイ、ホルダ、スライダの自重で上記当接部材をワーク 面に押し付けることを特徴とする請求項3~5のいずれ かに記載のスクライブ装置。

【請求項8】 上記スライダには、重りを着脱可能に取 り付けることを特徴とする請求項7に記載のスクライブ

【請求項9】 上記重りに振動センサが取り付けられて いることを特徴とする請求項8に記載のスクライブ装

【請求項10】 上記スライダを押し上げて、上記当接 部材をワーク面から離すための押上機構を備えていると とを特徴とする請求項7に記載のスクライブ装置。

【請求項11】 上記スライダをワーク面に向かって付 勢して上記当接部材をワーク面に押し付ける付勢機構を 備えていることを特徴とする請求項3~5のいずれかに 記載のスクライブ装置。

【請求項12】 上記ホルダの一端に上記当接部材が取 り付けられ、その他端に上記スライド軸方向に延びるロ ッドが連結され、とのロッドがボデイを貫通してボデイ 50 【0001】

から突出しており、このロッドの突出部に上記付勢部材 が設けられているととを特徴とする請求項1に記載のス クライブ装置。

【請求項13】 上記付勢部材が弾性材料のボールから なり、このボールが一対の球面受座によって挟持されて おり、これらボール、一対の球面受座を上記ロッドが貫 通していることを特徴とする請求項12に記載のスクラ イブ装置。

【請求項14】 上記ボディにはエア通路が形成され、 口が上記振動アクチュエータに臨んでいることを特徴と する請求項1に記載のスクライブ装置。

【請求項15】 上記ボデイには、上記振動アクチュエ ータを覆うカバーが設けられ、このカバーと振動アクチ ュエータとの間に、上記エア通路と連なる隙間が形成さ れていることを特徴とする請求項14に記載のスクライ ブ装置。

【請求項16】 上記ホルダには収容空間が形成され、 この収容空間に上記振動アクチュエータが収容され、と 20 れらホルダと振動アクチュエータの軸線が一致するとと もに上記スライド軸方向に延びていることを特徴とする 請求項1に記載のスクライブ装置。

【請求項17】 上記スライド軸が、上記ワークの相対 的移動方向の反対側に傾いていることを特徴とする請求 項1 に記載のスクライブ装置。

【請求項18】 上記ホルダにはアタッチメントが上記 スライド軸に対して角度調節可能に取り付けられてお り、このアタッチメントに上記当接部材が固定されてい るととを特徴とする請求項1または17に記載のスクラ 30 イブ装置。

【請求項19】 上記ホルダにはアタッチメントが取り 付けられており、とのアタッチメントは把持部を有し、 との把持部は平行をなす一対の片を有して断面U字形を なし、との把持部の一対の片の間に上記当接部材を収容 した状態で、一対の片の先端部をねじで近づけることに より、上記当接部材が固定されることを特徴とする請求 項1に記載のスクライブ装置。

【請求項20】 請求項1 に記載のスクライブ装置を用 い、ワークをボデイに対して相対的に移動させ、上記ス クライブ装置の当接部材をワーク面に押し当て、しか も、上記スクライブ装置のスライド軸を、ワークの相対 的移動方向の反対側に傾斜させ、との状態で振動アクチ ュエータを駆動することを特徴とするスクライブ方法。 【請求項21】 請求項6または9に記載のスクライブ 装置を用い、振動センサで検出される振幅が極大になる のを回避するように、振動アクチュエータへ供給する高 周波電圧の周波数を決定することを特徴とするスクライ ブ方法。

【発明の詳細な説明】

1

【発明の属する技術分野】との発明は、板ガラス等の硬質材料のワークの面に刻線を形成するスクライブ装置および方法に関する。

[0002]

【従来の技術】一般に、板ガラス等のワークを破断する場合には、ワークの面に予め刻線を形成し、この刻線に沿って破断するようにしている。この刻線の形成に用いられる従来のスクライブ装置は、例えば実開平1-110234号に開示されている。詳述すると、図19に示すように、周縁が尖った円盤形状のカッタ90(当接部材)と、このカッタ90を回転自在に支持するホルダ91と、このホルダ91を介してカッタ90を板ガラス100(ワーク)の面に押しつけるとともに、板ガラス100の面に沿って移動させる押圧、移動機構(図示しない)とを備えている。

[0003] 【発明が解決しようとする課題】上述のように、カッタ 90を板ガラス100に押し付けた状態で移動させると とにより形成された刻線105は、図19(A)に示す ように、刃先進入部105aと、リブマーク105b。 と、垂直クラック105cとを含んでいる。板ガラス1 00の破断を容易にするためには、垂直クラック105 cを深く形成する必要がある。そのためには、カッタ9 0を板ガラス100に押し付ける押圧力を大きくすれば よい。ところが、カッタ90を板ガラス1.00に大きな 押圧力で押し付けると、図19(B)に示すように、板・・ ガラス100には垂直クラック105cを含む刻線10 5のみならず、との刻線105から左右方向に延びる水 平クラック106が発生し、との水平クラック106に よって刻線105近傍に欠けまたは剥離等が発生すると 30 いう問題が生じる。上記カッタ90の板ガラス100へ の押圧力を小さくすれば水平クラック106が発生する ことはないが、そのようにすると垂直クラック105 c の深さが浅くなってしまい、板ガラス100の破断を良 好に行えなくなる。

[0004]

【課題を解決するための手段】上記の問題を解決するために、請求項1の発明は、スクライブ装置において、

(イ) 受部を有するボデイと、(ロ) 上記ボデイに、ワーク面と交差するスライド軸方向に微少量スライド可能 40 に支持され、かつ上記ボデイの受部から上記スライド軸方向に離間した受部を有するホルダと、(ハ)上記ボディとホルダの受部に挟まれ、上記スライド軸方向の振動を上記ホルダに付与する振動アクチュエータと、(ニ)上記ホルダに保持され、ホルダに付与された振動をワークに伝える硬性の当接部材と、(ホ)上記ホルダを、その受部が振動アクチュエータに向かうように付勢する付勢部材と、を備えたことを特徴とする。

【0005】 請求項2の発明は、請求項1に記載のスク 助アクチュエータを覆うカバーが設けられ、このカバー ライブ装置において、上記ボデイを、ワークに対してワ 50 と振動アクチュエータとの間に、上記エア通路と連なる

一ク面に沿う方向に相対的に移動させることにより、上 記カッタをワーク面に対して同方向に相対的に移動させ る移動機構を備えたととを特徴とする。請求項3の発明 は、請求項1に記載のスクライブ装置において、ガイド と、このガイドに上記スライド軸方向にスライド可能に 支持されたスライダとを有するスライド機構を備え、上 記ボデイがこのスライダに設けられていることを特徴と する。請求項4の発明は、請求項3に記載のスクライブ 装置において、上記スライダと上記ボデイとが、弾性を 有する振動緩衝部材を介して連結されていることを特徴 とする。請求項5の発明は、請求項4に記載のスクライ ブ装置において、上記振動緩衝部材が板バネからなると とを特徴とする。請求項6の発明は、請求項3~5のい ずれかに記載のスクライブ装置において、上記ボデイま。 たはスライダに振動センサが取り付けられていることを 特徴とする。

【0006】請求項7の発明は、請求項3~5のいずれ かに記載のスクライブ装置において、上記スライド軸が 略垂直に延び、上記ボデイ、ホルダ、スライダの自重で 上記当接部材をワーク面に押し付けることを特徴とす る。請求項8の発明は、請求項7に記載のスクライブ装 置において、上記スライダには、重りを着脱可能に取り 付けることを特徴とする。請求項9の発明は、請求項8 に記載のスクライブ装置において、上記重りに振動セン サが取り付けられていることを特徴とする。請求項1.0 の発明は、請求項7に記載のスクライブ装置において、 上記スライダを押し上げて、上記当接部材をワーク面か ら離すための押上機構を備えていることを特徴とする。 請求項11の発明は、請求項3~5のいずれかに記載の スクライブ装置において、上記スライダをワーク面に向 かって付勢して上記当接部材をワーク面に押し付ける付 勢機構を備えていることを特徴とする。

【0007】請求項12の発明は、請求項1に記載のス クライブ装置において、上記ホルダの一端に上記当接部 材が取り付けられ、その他端に上記スライド軸方向に延 びるロッドが連結され、とのロッドがボディを貫通して ボディから突出しており、このロッドの突出部に上記付 勢部材が設けられていることを特徴とする。請求項13 の発明は、請求項12に記載のスクライブ装置におい て、上記付勢部材が弾性材料のボールからなり、このボ ールが一対の球面受座によって挟持されており、これら ボール,一対の球面受座を上記ロッドが貫通しているこ とを特徴とする。請求項14の発明は、請求項1に記載 のスクライブ装置において、上記ボデイにはエア通路が 形成され、とのエア通路の一端開口がエア圧源に接続さ れ、他端開口が上記振動アクチュエータに臨んでいると とを特徴とする。請求項15の発明は、請求項14に記 載のスクライブ装置において、上記ボデイには、上記振 助アクチュエータを覆うカバーが設けられ、とのカバー

隙間が形成されていることを特徴とする。請求項18の 発明は、請求項1に記載のスクライブ装置において、上 記ホルダには収容空間が形成され、との収容空間に上記 振動アクチュエータが収容され、これらホルダと振動ア クチュエータの軸線が一致するとともに上記スライド軸 方向に延びていることを特徴とする。

【0008】請求項17の発明は、請求項1に記載のス クライブ装置において、上記スライド軸が、上記ワーク の相対的移動方向の反対側に傾いていることを特徴とす る。請求項18の発明は、請求項1または17に記載の スクライブ装置において、上記ホルダにはアタッチメン トが上記スライド軸に対して角度調節可能に取り付けら れており、このアタッチメントに上記当接部材が固定さ れていることを特徴とする。請求項19の発明は、請求 項1に記載のスクライブ装置において、上記ホルダには アタッチメントが取り付けられており、このアタッチメ ントは把持部を有し、この把持部は平行をなす一対の片 を有して断面U字形をなし、との把持部の一対の片の間 に上記当接部材を収容した状態で、一対の片の先端部を ねじで近づけることにより、上記当接部材が固定される ことを特徴とする。

【0009】請求項20の発明は、スクライブ方法にお いて、請求項1に記載のスクライブ装置を用い、ワーク をボディに対して相対的に移動させ、上記スクライブ装 置の当接部材をワーク面に押し当て、しかも、上記スク ライブ装置のスライド軸を、上記ワークの相対的移動方 向の反対側に傾斜させ、この状態で振動アクチュエータ を駆動することを特徴とする。請求項21の発明は、ス クライブ方法において、請求項6または9に記載のスク ライブ装置を用い、振動センサで検出される振幅が極大 30 になるのを回避するように、振動アクチュエータへ供給 する高周波電圧の周波数を決定することを特徴とする。 [0010]

[発明の実施の形態]以下、との発明の第1の実施形態 を図1~図11に基づいて説明する。図1、図2に示す ように、スクライブ装置は、移動台1(支持台)と、こ の移動台1を水平方向に移動させる移動機構2と、との 移動台1に設けられたスライド機構3と、とのスライド 機構3により垂直方向に移動可能に支持されたボデイ1 能にして支持されたホルダ20と、とのホルダ20の下 端に設けられたカッタ30(当接部材)と、ホルダ20 に垂直方向の振動を付与するピエゾアクチュエータ40 (振動アクチュエータ)と、を備えている。

【0011】以下、上記構成要素について順を追って説 明する。上記移動機構2は、上記移動台1を、図1にお いて左右方向、図2において紙面と直交する方向に水平 に移動するようになっている。上記スライド機構3は、 ガイド4とスライダ5とを備えている。ガイド4は、四 角形の取付板6を介して移動台1に固定されている。ガ 50 に嵌まっている。これにより、ホルダ20は、垂直方向

イド4は、垂直方向に延びるガイド溝4aを有してい る。縦長のスライダ5はガイド溝4aに入り込む凸部5 aを有しており、これにより、スライダ5は、ガイド4 **に垂直方向にスライド可能に支持されている。なお、と** のスライダ5は、ガイド4に設けられたストッパ(図示 しない) により下限位置を決定されている。

【0012】図2、図3に示すように、上記スライダ5 には、上下一対の水平をなす板バネ7a, 7b (弾性を 有する振動緩衝部材)を介して上記ボディ10が取り付 10 けられている。詳述すると、スライダ5には、上下にブ ラケット8a, 8bが1つずつ固定されており、これら ブラケット8a, 8bに、上記板バネ7a, 7bの中央 がそれぞれ固定されている。他方、上記ボディ10に は、上下に一対ずつブラケット9a,9bが固定されて いる。上側の一対のブラケット9aは、このブラケット 8aから離れてブラケット8aの両側に配置されてお り、上記板パネ7aの両端に固定されている。同様に、 下側の一対のブラケット9bも、ブラケット8bから離 れてとのブラケット8bの両側に配置されており、上記 20 板バネ7 bの両端に固定されている。なお、板バネ7 a. 7bの一方または両方が、中央をボデイ10側に固 定され、両端をスライダ5側に固定されるようにしても

[0013]上記ブラケット8aは上方に突出してお り、その上端面には、重り50が着脱可能に取り付けら れている。すなわち、この重り50には、垂直に貫通孔 50aが形成されている。ネジ51を、この貫通孔50 aに通しブラケット8aの上端面に形成されたネジ穴8 xにねじ込むととにより、重り50が取り付けられてい

【0014】上記重り50には、円筒形状の振動センサ 55が着脱可能に取り付けられている。すなわち、重り 50の横面には収容穴50bが形成されており、との収 容穴50bに振動センサ55が収容されている。重り5 0には、垂直にネジ穴50cが形成されており、とのネ ジ穴50cにネジ56(図3にのみ示す)をねじ込んで その先端を振動センサ55の外周面に押し付けることに より、振動センサ55が固定される。

【0015】上記ボデイ10は、垂直方向に細長い四角 0と、このボディ10に微小量の垂直方向スライドを可 40 形のプレート11と、このプレート11の上部の正面側 に固定されたケース部材12と、ブレート11の下部正 面に固定されたガイド13とを有している。プレート1 1とケース部材12とで、収容空間14が形成されてい る。上記ケース部材12の下端には、上記ピエゾアクチ ュエータ40のための浅い凹部からなる受部15が形成 されている。

> 【0016】上記ホルダ20は、垂直方向に延びた幅の 狭い平板形状をなしている。このホルダの中間部は、上 記ガイド13に形成された垂直に延びるガイド溝13a

に微少量のスライドを可能にして、ボデイ10に支持さ れている。本実施形態では、ホルダ20の中心軸 L b は、スライド軸と平行をなし、垂直に延びている。 【0017】上記ホルダ20の長手方向の中間部の正面 には受部材21 (ホルダ20の受部)が固定されてい る。上記ピエソアクチュエータ40は、断面四角形で垂 直方向に細長い形状をなし、その上端はボデイ10の受 部15に嵌められるようにして受けられ、その下端はホ ルダ20の受部材21で受けられている。換言すれば、 ピエゾアクチュエータ40の中心軸Laはホルダ20の 10 中心軸しbと平行をなして垂直に延び、垂直方向に対峙 した上記受部15と受部材21との間に挟まれるように して配置されている。ピエゾアクチュエータ40は、髙 周波交流電圧を受けて垂直方向へ周期的に伸縮するもの。 であり、その周期的伸縮によってホルダ20を垂直方向 に振動させるようになっている。

【0018】なお、ピエゾアクチュエータ40の下端に は、下面が凸球面をなす支持部材45が固定されてお り、との支持部材45の下面は、受部材21に形成され た円錐面または球面をなす受面21aに接している。と 20 れにより、ビエゾアクチュエータ40の振動を偏りなく ホルダ20の中心軸Lb方向、すなわちスライド軸方向 に付与することができる。 こうしい ロー

【0019】上記ホルダ20の上端には、垂直に上方に 延びるロッド22がピン22xを介して連結されてい る。上記ロッド22は、ボディ10のケース部材12の 上壁を貫通して上方に突出している。ケース部材12の 上壁には、ゴムや樹脂等の弾性材料からなるボール23 (球形状の付勢部材)と、その上下の球面受座24,2 5が配置されており、これらは上記ロッド22に貫通さ 30 れた状態で支持されている。

【0020】上記ロッド22の上端部には、雄ネジ22 aが形成されており、この雄ネジ22aに上側の球面受 座24が螺合されている。この球面受座24を締め付け るととによりこ下側の球面受座25がケース部材12の 上面に当たった状態で、球面受座24,25で上記ボー 。 ル23を挟み付けて弾性変形させる。とのボール23の、 復元力が、ホルダ20をボデイ10に対して上方へ付勢 する力となり、ひいてはホルダ20の受部材21を介し て常時ピエゾアクチュエータ40に付与される弾性力と なる。上記雄ネジ22aには、さらにロックナット26 が螺合されており、上側の球面受座24の緩みを防止し ている。なお、上側の受座24がロッド22と螺合せず にロッド22を貫通させるだけでもよい。 この場合、ロ ックナット26の締め付けによりボール23を弾性変形 させる。

【0021】上記ホルダ20は、上記ボール23の弾性 により上方に付勢され、との付勢力をもって受部材21 がピエゾアクチュエータ40を押し付けているので、ビ エゾアクチュエータ40は、ボデイ10に安定して支持 50 ジ65を、把持部62の一方の片62aの先端部を貫通

されている。ホルダ20は、このボール23の弾性変形 の範囲で垂直方向にスライド可能(移動可能)である。 上述した「微少量のスライド可能」の表現は、このこと を意味している。

【0022】次に、上記ピエゾアクチュエータ40のた めのエア冷却構造について詳述する。図4に最も良く示 されているように、上記ボデイ10のケース部材12に は、エア通路16が形成されている。エア通路16の一 端開口16aは、ケース部材12の側面に位置し、この 開口16aには、継手17を介して圧縮エア源18(エ ア圧源) が接続されている。上記エア通路16は、一端 開口16aから水平に延びるとともに2つに別れて下方 に延び、その他端開口16bが、ケース部材12の下面 に位置している。より詳しくは、受部15の2つの隅に 位置している。上記ピエゾアクチュエータ40の上端 は、2つの他端開口16bを部分的に塞ぐようになって 4 いる。

【0023】上記ケース部材12の下端部の外面には、 ピエゾアクチュエータ40の正面と両側面を覆う横断面 コ字形のカバー19が取り付けられている。このカバー 19とピエゾアクチュエータ40との間には隙間19a が形成されている。この隙間 1.9 a の上端は上記エア通 路16の他端開口16.bに連なり、下端は開放されてい S 11 / 2 る。 . . .

【0024】次に、上記カッタ30の取付構造について 説明する。上記ホルダ20の下端部には、アタッチメン ト60を介して上記カッタ30が取り付けられている。 図5に示すように、アタッチメント60は、上側の取付 部61と、下側の把持部62とを有している。上記アタ ッチメント60の取付部61は、2つの起立壁61a, 61bを有して縦断面がU字形をなしている。図2に示 すように、これら起立壁61a,61b間にホルダ20 の下端部が入り込むようになっている。取付部61の一 方の起立壁61aとホルダ20の下端部を貫通するネジ 63を、他方の起立壁61bにねじ込むことにより、ア タッチメント60がホルダ20の下端部に連結される。 【0025】上記ネジ63が緩められた状態では、アタ ッチメント60はネジ63を中心としてホルダ20に対 して回動可能である。とのネジ63を締めるとともに、 上記起立壁61 a にねじ込まれたネジ64の先端をホル ダ20の下端部に押し付けることにより、アタッチメン ト60はホルダ20に対して固定される。このように、 アタッチメント60はホルダ20の中心軸Lb(スライ ド軸) に対して角度調節可能である。

【0026】上記アタッチメント60の把持部62は、 図5、図6に示すように、2つの平行をなす片62a、 62bを有して横断面U字形をなしており、これら片6 2a,62b間にカッタ30の断面四角形をなすベース 部31を受け入れるようになっている。との状態で、ネ

させ、他方の片62bの先端部にねじ込んで、両片62 a、62bを互いに近づけるようにし、この両片62 a. 62bでベース部31を締め付けることにより、カ ッタ30がアタッチメント60に着脱可能に固定され る。上記把持部62は、水平をなす係止壁62cを有し ており、カッタ30の固定状態において、この係止壁6 2 c にベース部31の上面が当たるようになっている。 【0027】上記カッタ30は、上記ベース部31と、 とのベース部31の下面中央に固定されたチップ部32 とを有している。チップ部32の中心軸LcはホルダL 10 ダ5等の自重に起因するものである。 bと平行をなして垂直に延び、その下端(先端)が円錐 形状をなして尖っている。なお、このチップ部32の下 端は角錐形状であってもよい。カッタ30の下端には、 角錐形状をなすダイヤモンド粒が固着されている。との ダイヤモンド粒の頂点が真下を向いて、後述する板ガラ ス100の面に当たるようになっている。

【0028】上記アタッチメント60には、ガイド板3 5 (ガイド部材)が取り付けられている。このガイド板 35は、U字形のバネ材からなり、両端部が平坦な固定 部35aとなり、中央部が凸に湾曲したガイド部35b となっている。とれら一対の固定部35aが、アタッチ メント60の取付部62の両側面に固定されている。図 1. 図7に示されているように、上記ガイド部35bの 中央部には、穴35cが形成されている。上記カッタ3 0のチップ部32は、Cの穴35cを通って、ガイド部 35 bより所定量 (図8においてHで示す) だけ下方に 突出している。なお、図においてとの突出量は誇張して 示されている。

【0029】図1、図3に示すように、上記取付板6に はエアシリンダ70 (押上機構)が垂直に取り付けられ 30 ている。他方、ボデイ10のケース部材12の側面には L字形のプラケット75が固定されており、Cのプラケ ット75には、垂直をなす短ロッド76が螺合されてい る。この短ロッド76と、上記エアシリンダ60のロッ ド71の上端が対峙している。

【〇〇3〇】上記構成をなすスクライブ装置の作用を説 明する。図8に示すように、水平の設置台80に板ガラ ス100(ワーク)を位置決めして水平にセットする。 初期状態では、スクライブ装置のカッタ30は、板ガラ ス100の縁から水平方向に離れており、下限位置(ス 40 い。 ライダ5の下限位置に対応する位置)にある。この状態 で、移動機構2を駆動させて、移動台1を水平方向(図 8における矢印方向) に移動させると、ボデイ10, ホ ルダ20、カッタ30が一緒になって同方向に移動す る。すると、図8(A)に示すように、ホルダ20に取 り付けられたガイド板35の湾曲したガイド部35b が、板ガラス100の端縁に当たる。さらに移動台1を 移動させると、ガイド部35bが板ガラス100の端縁 **に擦接しながら、その傾斜に沿って押し上げられ、ひい** てはスライダ5、ボデイ10、ホルダ20、カッタ30 50 に伝達することができ、共振の可能性を減じることがで

も押し上げられる。やがて、図8(B)に示すようにカ ッタ30が板ガラス100の端縁に達する。さらに若干 量矢印方向に移動させるととにより、カッタ30のチッ プ部32のテーパを介して、チップ部32の下端が板ガ ラス100の上面に載る。

【0031】上述したように、カッタ30を板ガラス1 00の上面の端縁近傍に載せた状態で、カッタ30には 板ガラス100の上面に対する押圧力が常に付与されて いる。この押圧力は、ボデイ10,ホルダ20,スライ

【0032】上記のように、ボディ10等の自重でカッ タ30を板ガラス100の面に押し付けた状態で、スク ライブを実行する。すなわち、移動機構2の駆動により 移動台1を移動させてカッタ30を図8において矢印方 向(図9において祇面と直交する方向)に移動させると ともに、ピエゾアクチュエータ40に高周波電圧を印加 させて、ピエゾアクチュエータ40を周期的に伸縮させ る。すると、との周期的伸縮に伴うホルダ20の振動が カッタ30を介して板ガラス100に伝達される。換言 20 すれば、図10に示すように、カッタ30を介して板ガ ラス100k付与される押圧力Pは、上記ボデイ10等 の自重に起因する静圧P1を下限値とし、ピエゾアクチ ュエータ40の振動に起因して周期的に変動する。した がって押圧力Pは、周期的に非常に大きな力となり、カ ッタ30の尖った下端を介して板ガラス100に衝撃を 付与することになり、図11に示すように深い垂直クラ ック105cを有する刻線105を形成することができ る。しかし、静圧P1が比較的小さいので、従来装置の ような水平クラックの発生をほとんど皆無にすることが できる。ちなみに、本実施形態によって形成される刻線 105は、図11に示すように、従来とは異なった髭状 のリブマーク105bを有する。

【0033】上記押圧力Pの周期、換言すればピエゾア クチュエータ40に印加する高周波電圧の周波数は、板 ガラス100の材質、硬度、厚さ等に応じて、3~30 KHz程度に設定し、ピエゾアクチュエータ40の伸縮 量、つまり振幅は数 μ m~20 μ m程度に設定する。ま た、カッタ30の送り速度は、上の周波数を採用する場 合、100~250mm/sec程度に設定するのがよ

【0034】上記刻線105の形成工程において、カッ タ30はボデイ10等の自重に伴う押圧力をもって常に 板ガラス100の面に接した状態であり、との面から瞬 間的に離れることがないので、刻線105の近傍の欠損 をなくし、きれいな刻線105を形成することができ る。また、ホルダ20が剛体でありカッタ30が弾性体 を介在せずにホルダ20に取り付けられているので、カ ッタ30はホルダ20と一体となって振動し、ピエゾア クチュエータ40の振動エネルギーを良好にカッタ30

き、カッタ30の跳ね上げの可能性を減じることができる。

【0035】しかも、本実施形態では、ボデイ10とスライダ5との間に板バネ7a、7bが介在されていて、振動を緩衝するので、共振の可能性をより一層減じることができる。また、付勢部材としてボール23を用いているので、耐久性が良く、確実にピエゾアクチュエータ40に弾性力を付与することができる。

【0036】本実施形態では、重り50を着脱可能にスライダ5に取り付けたので、上記静圧P1を、必要に応じて、すなわち板ガラス100の材質、硬度、厚さ等に応じて、増大させることができる。しかも、との重り50を変更することにより、静圧P1を変更することができる。上記スライダ5と重り50の自重は、板バネ7。a、7bを介してカッタ30に付与されるものである。換言すれば、ピエゾアクチュエータ40の振動や、カッタ30が受ける板ガラス100からの反力は、板バネ7a、7bにより緩衝されるため、スライダ5および重り50に起因する静圧P1を安定させることができる。【0037】重り50に装着された振動センサ55は、20

10037】重り50に装着された振動センサ55は、20スライダ5に伝達された振動を検出し、これを図示しないモニターに送る。モニターには、振動波形が表示される。操作者は、この振動波形の振幅が共振に起因して極大となるのを避けるように、好ましくは極小ないしは最小になるように、ピエゾアクチュエータ40に印加される高周波電圧の周波数を調節する。これにより、共振の可能性をより一層確実に防止することができる。上記ピエゾアクチュエータ40の振動は板バネ7a、7bにより減衰されて振動センサ55に伝達されるので、振動センサ55では、共振に伴う振幅の増大分を確実に検出す、30ることができる。なお、振動センサ55はボディ10に設けてもよい。

【0038】上記ピエゾアクチュエータ40を駆動させている期間は、圧縮エア源19からボデイ10のエア通路16に圧縮エアが供給される。これにより、エア通路16の開口16bからピエゾアクチュエータ40に向かってエアが吹き出し、このエアはピエゾアクチュエータ40とカバー19との隙間19aを通り、この隙間19。aの下端から排出される。この際、エアはピエゾアクチュエータ40の正面と両側面に沿って流れるので、ピエ 40ゾアクチュエータ40を冷却することができ、ピエゾアクチュエータ40の過熱による故障を防止することができる。

【0039】上記カッタ30による板ガラス100への刻線形成が完了したら、ピエゾアクチュエータ40に対する通電を停止するとともに、エアシリンダ70を駆動させて、ボデイ10を上方に押し上げ、カッタ30をワック100から離す。そして、板ガラス100を設置台80から取り外す。その後、移動台1を初期位置に戻すとともに、エアシリンダ70を逆方向に駆動させて図1

の状態、すなわちエアシリンダ50のロッドの上端が短ロッド56から離れた状態に戻すことにより、ボデイ10を下限位置まで戻す。そして、上記と同様にして次の新しい板ガラス100を設置台80にセットし、再び、刻線形成の工程を実行する。

【0040】 ここで、アタッチメント60の作用について説明する。前述したように、アタッチメント60は角度調節可能である。板ガラス100の硬度が高い場合には、図示のようにカッタ30のビット部32の中心軸してを垂直にし板ガラス100の面と直交させる。これにより深い垂直クラックを形成できる。板ガラス100の硬度が低い場合には、アタッチメント60の角度調節により、ビット部32の中心軸してをカッタ30の移動方向に傾斜させる。換言すれば板ガラス100のカッタ30に対する相対的移動方向と反対側に傾斜させる。これにより、ビット部32の板ガラス100へのめり込み量を浅くして、板ガラス100への引っ掛かりを防止する。

【0041】上記カッタ30のビット部32のダイヤモ ンド粒が摩耗した時には、ネジ65を緩めてカッタ30 をアタッチメント60から取り外し、簡単に新しいカッ タ30と取り替えることができる。 [0042] 参考までに、上記のようにして刻線105 が形成された板ガラス100は、図12に示す破断装置。 を用いて破断する。この破断装置は、載置台150と、 真空吸引装置160とから構成されている。 載置台15 0の上面150aには、浅い凹部151が形成されてい る。との凹部151は紙面と直交する方向に延び、その 長さは刻線105の全長より若干短く設定されている。 【0043】上記載置台150の上面150aには、凹 部151を囲むようにして溝152が形成され、この溝 152には、〇リング153が装着されている。 載置台 15.0には、凹部151に連なる真空引き孔154が形 成されており、との真空引き孔154に、上記真空吸引 装置160の連通管165の一端が接続されている。連 通管165の他端には、第1の電磁バルブV1を介して 大気に開放される大気開放管166と、第2の電磁バル ブV2を介して真空タンク167に通じる吸引管168・ とが接続されている。真空タンク167は真空ポンプ・ (図示せず) に接続され、常時高い真空度に維持されて The first a like a source of the first at the

[0044] との破断装置を用いて板ガラス100を破断する場合は、板ガラス100を載置台150の上面150aのリング153に密着するように載せる。との際、刻線105を、下に向けるとともに凹部151の幅方向中央に位置決めする。次に、第1の電磁バルブV1元よび第2の電磁バルブV2を交互に繰り返し短い周期で開閉操作し、刻線105を形成してある板ガラス100の下面に衝撃的な吸引力を繰り返し作用させる。これにより、板ガラス100を刻線105に沿って破断する

ことができる。上述したように、刻線105は、深くき れいに形成されているので、上記破断を容易にかつ確実 に刻線105に沿って行うことができる。

[0045]次に、本発明の他の実施形態を説明する。 これら実施形態において、第1実施形態に対応する構成 部には同番号を付してその詳細な説明を省略する。図1 3は、本発明の第2の実施形態を示す。との第2実施形 態が前述した第1実施形態と大きく異なるのは、ビエゾ アクチュエータ40の中心軸Laが、ホルダ20の中心 軸しりと一致し、一直線をなすことである。詳述する と、ホルダ20には、厚み方向に貫通する穴20a(収 容空間)が形成されている。との穴20 aは、ホルダ2 0の長手方向に延びた細長い四角形をなし、この穴20 aにピエゾアクチュエータ40が収容されている。

【0046】上記穴20aの下縁の中央部が受部21' となっており、この受部21'が、ピエゾアクチュエー タ40の下端に取り付けれた支持部材45を受けるため に、円錐面ないしは球面をなしている。他方、ボデイ1 0のケース部材12の下端には、上記穴20aの上端部 に入り込む突出部15 が設けられており、この突出部 20 15' がピエゾアクチュエータ40の上端を受けるため の受部となっている。上記第2実施形態では、ピエゾア クチュエータ40の中心軸Laが、ホルダ20の中心軸 Lbと一致するため、ピエゾアクチュエータ40の振動 を効率良くホルダ20に伝達することができる。

【0047】図14は、本発明の第3の実施形態を示 す。との実施形態では、取付板6がブラケット85を介 して支持台86に固定されている。ブラケット85は、 平面形状が L字形をなし、その一方の板部 8 5 a が上下 2本ずつのネジ87により支持台86に固定されてお り、他方の板部85bには、取付板6が固定されてい る。上記一方の板部85aと支持台86との間にはワッ シャ88が介在されており、このワッシャ88により板 部85aは垂直面に対して傾いている。ワッシャ88に は上側のネジ87が挿通しており、このワッシャ88の 厚さでブラケット85の傾きを調節している。なお、図 14では、傾きを誇張して示す。

【0048】上記ブラケット85の傾きは、取付板6に 設けられた構成要素すなわち、スライド機構3のガイド 4, スライダ5, ボデイ10, ホルダ20の傾斜をもた 40 らす。すなわち、ホルダ20の中心軸Lbが傾斜してお り、この中心軸Lbと平行をなすホルダ20のスライド 軸, スライダ5のスライド軸, ピエゾアクチュエータ4 0の振動軸も傾斜するととになる。

【0049】上記第3実施形態では、設置台80が移動 機構2により移動され板ガラス100のカッタ30に対 する水平移動がなされるようになっている。上記ホルダ 20の中心軸Lb (スライド軸)は、板ガラス100の 相対的移動方向の反対側に傾斜している。すなわち、図 14に示すように板ガラス100が水平に左方向に進む 50 よい。この場合には、前述した実施形態の場合とエアの

場合には、ホルダ20の中心軸しbは垂直軸(ワッシャ 100の移動方向と直交する軸)より右に倒れている。 【0050】上記第3実施形態では、ホルダ20の中心 軸Lbが傾斜しており、カッタ30から板ガラス100 への押圧力Pおよび振動エネルギーが図15に誇張して 示すように傾斜した方向から付与される。換言すれば、 既に形成された刻線105の垂直クラック105cに向 けて供給され、との垂直クラック105cを成長させる ように働くので、より一層確実に深い垂直クラック10 10 5 cを形成することができる。

【0051】上記第3実施形態において、アタッチメン ト60の角度調節により、板ガラス100に対するカッ タ30のピット部32の中心軸しc (角錐または円錐の 中心軸)の傾斜を、調節することができる。すなわち、 板ガラス100の硬度が高い場合には、ピット部32の 中心軸Lcとホルダ20の中心軸Lbとの交差角度を大 きくすることにより、図14に示すようにピット部32 の中心軸しcを板ガラス100の面と直角またはそれに 近い角度にする。また、板ガラス100の硬度が低い場 合には、ビット部32の中心軸してとホルダ20の中心 軸し b との交差角度を小さくし、板ガラス100 に対す る傾斜を大きくする。なお、上記第3実施形態におい て、ブラケット86を傾斜させる代わりに、取付板6に 固定されるガイド4(図1参照)を傾斜させてもよい。 【0052】図16には、本発明の第4実施形態の要部 を示す。との実施形態では、エアシリンダ59(付勢機 構, 押圧手段)が、例えば支持台1に直接または取付板 6を介して間接的に固定されており、そのロッド先端が スライダ5に連結または当接されている。 とのエアシリ 30 ンダ59の駆動により、スライダ5ひいてはボデイ10 をワーク面に向けて付勢する。このエアシリンダ59を 用いれば、図1に示すボデイ10、ホルダ20を水平に 倒し、ワーク面を垂直にした状態でスクライブを行うと ともできる。

【0053】上記第1, 第2, 第4実施形態において、 ボディ10を支持する支持台1を水平移動させずに所定 位置に固定し、移動機構2を設置台80に連結して、と の設置台80に設置された板ガラス100を移動させて もよい。また、第3実施形態において、支持台85を図 14において右方向に移動させてもよい。上記の実施の 形態においては、円錐状または角錐状をなすカッタ30 を用いているが、図19に示すような円盤状のカッタ9 0を用いてもよい。との場合、カッタ90の周縁の一部 が、ワークに当たる尖った先端として提供される。付勢 部材として、ボール23の代わりに、重ねられた多数の 皿パネ等を用いてもよい。

【0054】ボデイ10は板パネ7a,7bを介さずに スライダ5に固定してもよいし、スライダ5と一体であ ってもよい。エア圧源としてパキューム機構であっても

٠.

流れが逆になる。ボディ10のワークに対する移動またはワークのボディ10に対する移動は、操作者の手で行ってもよいし、カッタ30への押圧力の付与を操作者の手によりボディ10を介して行ってもよい。

15

【0055】図17の実施形態では、設置台80に凹部 80aが形成されている。そして、板ガラス100の刻 線予定部位をこの凹部80aに一致させるようにして、 板ガラス100を設置台80に載せ、スクライブを行 う。とのようにすれば、板ガラス100の平坦度や設置 台80の平坦度が悪くても、安定して振動エネルギーを 10 板ガラス100に付与することができる。図18に示す。 ように、板ガラス100には厚み方向の中央部に圧縮層 100a (内部応力として圧縮応力が存在する層)が存 在している。板ガラス100が薄い場合には、この圧縮 層100aを垂直クラック105cが横切るように刻線 を形成するのが好ましい。そうすると、刻線形成後に、 破線で示すように自然に垂直クラックが成長するので、 前述したような破断工程を必要とせずに、ワークを破断 することができる。ワークとしては、板ガラスに限ら ず、セラミック製の板、シリコンウエハー等であっても 20 よい。

[0056]

【発明の効果】以上説明したように、請求項1の発明に よれば、振動アクチュエータの振動を利用することによ り、刻線をワークに深く形成することができ、しかも水・ 平クラックの発生を防止することができるという効果が 得られる。しかも、付勢部材によりボディとホルダの受 部間で振動アクチュエータを挟圧するので、振動アクチ ュエータの振動エネルギーをホルダを介して効率良く当 接部材に伝達でき、良好に刻線を形成することができ る。 請求項2の発明によれば、移動機構を用いることに より、スクライブ作業の自動化を促進することができ る。請求項3の発明によれば、スライド機構を用いると とにより、当接部材への押圧力の付与を容易に行うこと ができる。請求項4の発明によれば、振動緩衝部材によ り共振の可能性を減じることができ、刻線形成をより一 層確実なものとすることができる。請求項5の発明によ れば、振動緩衝部材として板バネを用いることにより、 構成の簡略化を図るととができる。請求項6の発明によ れば、振動センサを用いることにより、共振を避けて確 実にスクライブを行うことができるようになる。請求項 7の発明によれば、ボディ等の自重により特別な付勢機 ... 構を用いずに当接部材を押圧することができる。また、 押圧力を付与するので、当接部材は安定してワーク面に 押し付けられ、跳ね上がるととがないので、ワーク面に おける刻線近傍の欠損を抑制することができ、より一層 髙精度に刻線を形成することができる。請求項8の発明 によれば、着脱可能な重りを用いることにより、当接部 材への押圧力を調節することができる。 請求項9の発明 によれば、重りに振動センサを用いることにより、共振 50 ある。 16

を避けて確実にスクライブを行うことができるようにな るとともに、振動センサの装着が容易となる。請求項1 0の発明によれば、スクライブ終了後に自動的に当接部 材をワークから離すことができる。請求項11の発明に よれば、付勢機構を用いることにより、ワークやボデ イ、、ホルダ、当接部材がどのような姿勢であっても、、 確実に当接部材に押圧力を付与することができる。ま た、押圧力を付与するので、当接部材は安定してワーク 面に押し付けられ、跳ね上がることがないので、ワーク 面における刻線近傍の欠損を抑制することができ、より 一層高精度に刻線を形成することができる。請求項12 の発明によれば、ロッドを用いて振動アクチュエータを、 確実に挟圧することができる。請求項13の発明によれ は、ボールをなす付勢部材を用いることにより、耐久性 が向上するとともに、確実に振動アクチュエータに弾性 力を付与することができる。:請求項14の発明によれ は、振動アクチュエータを冷却することができるので、 振動アクチュエータの過熱による故障を防止することが できる。請求項15の発明によれば、カバーを用いると とにより、エア冷却効果をより一層高めることができ る。請求項16の発明によれば、ホルダと振動アクチュ エータの中心軸を一致させることにより、振動アクチュ エータの振動エネルギーを効率良くホルダを介して当接 部材に伝達することができる。請求項17の発明によれ は、ホルダのスライド軸を傾斜させることにより、垂直 クラックの成長を促し、効率良く深く垂直クラックを形 成することができる。請求項18の発明によれば、アタ ッチメントの角度調節により、ワークの硬度等に応じて 当接部材のワークに対する当たり角度を調節することが できる。 請求項19の発明によれば、 当接部材が摩耗し た時に、容易に交換することができる。請求項20の発 明によれば、ホルダのスライド軸を傾斜させることによ り、垂直クラックの成長を促し、効率良く深く垂直クラ ックを形成することができる。請求項21の発明によれ は、振動センサからの振動情報に基づいて、共振を確実 に防止することができる。

・【図面の簡単な説明】・

【図-1】との発明の一実施形態をなすスクライブ装置の 正面図である。

【図2】図1においてIIーII線に沿うスクライブ装置の 縦断面図である。

【図3】同スクライブ装置の平面図である。

【図4】同スクライブ装置のボディのケース部材を示し、(A)は一部断面にして示す正面図、(B)は(A)においてIV-IV線に沿う断面図、(C)は底面図である。

【図5】同スクライブ装置において、カッタを保持するアタッチメントを示し、(A)は正面図、(B)は(A)においてV→V線に沿う断面図、(C)は底面図である。

【図6】図1においてVIーVI線に沿う横断面図である。 【図7】同スクライブ装置のカッタとガイド板の底面図

17

である。

【図8】(A), (B)はカッタを板ガラスの端縁まで 案内する過程を順を追って示す拡大断面図である。

[図9] カッタと、ガイド板と、刻線を形成された板ガラスとを示す拡大断面図である。

[図10] カッタの板ガラスに対する押圧力を示す図である。

【図11】板ガラスの刻線に沿う各台断面図である。

【図12】刻線を形成した板ガラスを破断する装置の概略構成を示す図である。

【図13】本発明の第2の実施形態をなすスクライブ装置の縦断面図である。

【図14】本発明の第3の実施形態をなすスクライブ装置を一部断面にして示す正面図である。

【図15】上記第3実施形態において、押圧力,振動エネルギーの付与方向と、ワークの移動方向との関係を示す図である。

【図16】本発明の第4の実施形態をなすスクライブ装 20 置の要部断面図である。

【図17】スクライブ装置を用いて刻線を形成する工程 の他の態様を示す図である。

【図18】スクライブ装置を用いて刻線を形成する工程 のさらに他の態様を示す図である。

【図19】従来のスクライブ装置の説明図であって、

(A)は一部断面にして示す正面図(B)は側面図である。

【符号の説明】

2 移動機構

- *3 スライド機構
 - 4 ガイド
 - 5 スライダ

7a, 7b 板バネ(振動緩衝部材)

- 10 ボデイ
- 15, 15' 受部
- 16 エア通路
- 16a, 16b 開口
- 18 圧縮エア源(エア圧源)
- 10 19 カバー
 - 19a 隙間
 - 20 ホルダ
 - 20a 穴(収容空間)
 - 21 受部材(受部)
 - 21' 受部
 - 22 ロッド
 - 23 ボール (付勢部材)
 - 24, 25 (球面受座)
 - 30 カッタ(当接部材)
 -) 40 ピエゾアクチュエータ (振動アクチュエータ)
 - 50 重り
 - 55 振動センサ
 - 59 エアシリンダ(付勢機構)
 - 60 アタッチメント
 - 62 把持部
 - 62a, 62b 片
 - 65 ネジ
 - 70 エアシリンダ(押上機構)
 - 100 板ガラス(ワーク)
- *30 105 刻線

[図3]

【図4】

[図6]

【図8】

【図12】

[図15]

[図11]

[図13]

·【図14】

【図17】

【図19】

【手続補正書】

【提出日】平成10年8月5日。

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】請求項2

【補正方法】変更

【補正内容】

【請求項2】上記ボデイを、ワークに対してワーク面に 沿う方向に相対的に移動させることにより、上記<u>当接部</u> 材をワーク面に対して同方向に相対的に移動させる移動 機構を備えたことを特徴とする請求項 l に記載のスクライブ装置。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0005

【補正方法】変更

【補正内容】

【0005】 請求項2の発明は、請求項1 に記載のスクライブ装置において、上記ボデイを、ワークに対してワ

ーク面に沿う方向に相対的に移動させることにより、上記当接部材をワーク面に対して同方向に相対的に移動させる移動機構を備えたことを特徴とする。請求項3の発明は、請求項1に記載のスクライブ装置において、ガイドと、このガイドに上記スライド軸方向にスライド可能に支持されたスライダとを有するスライド機構を備え、上記ボデイがこのスライダに設けられていることを特徴とする。請求項4の発明は、請求項3に記載のスクライ*

* ブ装置において、上記スライダと上記ボデイとが、弾性を有する振動緩衝部材を介して連結されていることを特徴とする。請求項5の発明は、請求項4に記載のスクライブ装置において、上記振動緩衝部材が板パネからなることを特徴とする。請求項6の発明は、請求項3~5のいずれかに記載のスクライブ装置において、上記ボディまたはスライダに振動センサが取り付けられていることを特徴とする。

【手続補正書】

【提出日】平成11年1月18日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】(イ)受部を有するボディと、(ロ)上記ボディに、ワーク面と交差するスライド軸方向に微少量スライド可能に支持され、かつ上記ボディの受部から上記スライド軸方向に離間した受部を有するホルダと、

(ハ)上記ボディとホルダの受部に挟まれ、上記スライド軸方向の振動を上記ホルダに付与する振動アクチュエータと、(二)上記ホルダに保持され、ホルダに付与された振動をワークに伝える硬性の当接部材と、

を備えたスクライブ装置において、上記ホルダの受部は、上記ボデイの受部とワークとの間に配置され、さらに付勢部材を備え、との付勢部材は、上記ホルダの受部がワークから遠ざかるようにかつ振動アクチュエータに向かうように、ホルダを弾性力をもって付勢することを特徴とするスクライブ装置。

【請求項2】上記ボデイを、ワークに対してワーク面に 沿う方向に相対的に移動させることにより、上記カッタ をワーク面に対して同方向に相対的に移動させる移動機 構を備えたことを特徴とする請求項1に記載のスクライ ブ装置。

【請求項3】 ガイドと、このガイドに上記スライド軸方向にスライド可能に支持されたスライダとを有するスライド機構を備え、上記ボデイがこのスライダに設けられていることを特徴とする請求項1に記載のスクライブ装置。

【請求項<u>4</u>】 上記ボデイまたはスライダに振動センサが取り付けられていることを特徴とする請求項<u>3</u>に記載のスクライブ装置。

【請求項<u>5</u>】 上記スライド軸が略垂直に延び、上記ボデイ、ホルダ、スライダの自重で上記当接部材をワーク面に押し付けることを特徴とする請求項<u>3</u>に記載のスクライブ装置。

【請求項6】 上記スライダには、重りを着脱可能に取

り付けるととを特徴とする請求項<u>5</u>に記載のスクライブ 装置。

【請求項 $\underline{7}$ 】 上記重りに振動センサが取り付けられていることを特徴とする請求項 $\underline{6}$ に記載のスクライブ装置。

【請求項<u>8</u>】 上記スライダを押し上げて、上記当接部材をワーク面から離すための押上機構を備えていることを特徴とする請求項<u>5</u> に記載のスクライブ装置。

【請求項<u>9</u>】 上記スライダをワーク面に向かって付勢して上記当接部材をワーク面に押し付ける付勢機構を備えているととを特徴とする請求項<u>3</u>に記載のスクライブ装置。

【請求項<u>10</u>】 上記ホルダの一端に上記当接部材が取り付けられ、その他端に上記スライド軸方向に延びるロッドが連結され、このロッドがボデイを貫通してボデイから突出しており、このロッドの突出部に上記付勢部材が設けられていることを特徴とする請求項1に記載のスクライブ装置。

【請求項<u>11</u>】 上記付勢部材が弾性材料のボールからなり、このボールが一対の球面受座によって挟持されており、これらボール、一対の球面受座を上記ロッドが貫通しているととを特徴とする請求項<u>10</u>に記載のスクライブ装置。

【請求項<u>12</u>】 上記ボデイにはエア通路が形成され、 とのエア通路の一端開口がエア圧源に接続され、他端開 口が上記振動アクチュエータに臨んでいることを特徴と する請求項1に記載のスクライブ装置。

【請求項<u>13</u>】 上記ボデイには、上記振動アクチュエータを覆うカバーが設けられ、このカバーと振動アクチュエータとの間に、上記エア通路と連なる隙間が形成されていることを特徴とする請求項<u>12</u>に記載のスクライブ装置。

【請求項<u>14</u>】 上記ホルダには収容空間が形成され、 この収容空間に上記振動アクチュエータが収容され、これらホルダと振動アクチュエータの軸線が一致するとと もに上記スライド軸方向に延びていることを特徴とする 請求項1に記載のスクライブ装置。

【請求項<u>15</u>】 上記ホルダにはアタッチメントが上記 スライド軸に対して角度調節可能に取り付けられてお り、このアタッチメントに上記当接部材が固定されていることを特徴とする請求項<u>1</u>に記載のスクライブ装置。 【請求項<u>16</u>】 上記ホルダにはアタッチメントが取り付けられており、このアタッチメントは把持部を有し、この把持部は平行をなす一対の片を有して断面U字形をなし、この把持部の一対の片の間に上記当接部材を収容した状態で、一対の片の先端部をねじで近づけることにより、上記当接部材が固定されることを特徴とする請求項1に記載のスクライブ装置。

【請求項<u>17</u>】 請求項<u>4</u>または<u>7</u>に記載のスクライブ 装置を用い、振動センサで検出される振幅が極大になる のを回避するように、振動アクチュエータへ供給する高 周波電圧の周波数を決定することを特徴とするスクライ ブ方法。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0004

【補正方法】変更

【補正内容】

[0004]

【課題を解決するための手段】上記の問題を解決するために、請求項1の発明は、スクライブ装置において、

(イ) 受部を有するボデイと、(ロ) 上記ボデイに、ワーク面と交差するスライド軸方向に微少量スライド可能に支持され、かつ上記ボデイの受部から上記スライド軸方向に離間した受部を有するホルダと、(ハ) 上記ボディとホルダの受部に挟まれ、上記スライド軸方向の振動を上記ホルダに付与する振動アクチュエータと、(ニ)上記ホルダに保持され、ホルダに付与された振動をワークに伝える硬性の当接部材と、を備えたスクライブ装置において、上記ホルダの受部は、上記ボデイの受部とワークとの間に配置され、 さらに付勢部材を備え、この付勢部材は、上記ホルダの受部がワークから遠ざかるようにかつ振動アクチュエータに向かうように、ホルダを弾性力をもって付勢することを特徴とする。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0005

【補正方法】変更

【補正内容】

【0005】 請求項2の発明は、請求項1 に記載のスクライブ装置において、上記ボデイを、ワークに対してワーク面に沿う方向に相対的に移動させることにより、上記カッタをワーク面に対して同方向に相対的に移動させる移動機構を備えたことを特徴とする。 請求項3 の発明は、 請求項1 に記載のスクライブ装置において、ガイドと、このガイドに上記スライド軸方向にスライド可能に支持されたスライダとを有するスライド機構を備え、上記ボデイがこのスライダに設けられていることを特徴とする。 請求項4 の発明は、 請求項3 に記載のスクライブ

装置において、上記ボデイまたはスライダに振動センサ が取り付けられていることを特徴とする。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0006

【補正方法】変更

【補正内容】

【0006】請求項5の発明は、請求項3に記載のスクライブ装置において、上記スライド軸が略垂直に延び、上記ボデイ、ホルダ、スライダの自重で上記当接部材をワーク面に押し付けることを特徴とする。請求項6の発明は、請求項5に記載のスクライブ装置において、上記スライダには、重りを着脱可能に取り付けることを特徴とする。請求項7の発明は、請求項6に記載のスクライブ装置において、上記重りに振動センサが取り付けられていることを特徴とする。請求項8の発明は、請求項5に記載のスクライブ装置において、上記スライダを押し上げて、上記当接部材をワーク面から離すための押上機構を備えていることを特徴とする。請求項9の発明は、請求項3に記載のスクライブ装置において、上記スライダをアーク面に向かって付勢して上記当接部材をワーク面に押し付ける付勢機構を備えていることを特徴とす

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0007

【補正方法】変更

【補正内容】

【0007】請求項10の発明は、請求項1に記載のス クライブ装置において、上記ホルダの一端に上記当接部 材が取り付けられ、その他端に上記スライド軸方向に延 びるロッドが連結され、とのロッドがボディを貫通して ボディから突出しており、このロッドの突出部に上記付 勢部材が設けられていることを特徴とする。請求項11 の発明は、請求項10 に記載のスクライブ装置におい て、上記付勢部材が弾性材料のボールからなり、このボ ールが一対の球面受座によって挟持されており、これら ボール、一対の球面受座を上記ロッドが貫通していると とを特徴とする。請求項12の発明は、請求項1に記載 のスクライブ装置において、上記ボデイにはエア通路が 形成され、このエア通路の一端開口がエア圧源に接続さ れ、他端開口が上記振動アクチュエータに臨んでいると とを特徴とする。請求項13の発明は、請求項12に記 載のスクライブ装置において、上記ボデイには、上記振 助アクチュエータを覆うカバーが設けられ、このカバー と振動アクチュエータとの間に、上記エア通路と連なる 隙間が形成されているととを特徴とする。請求項14の 発明は、請求項1に記載のスクライブ装置において、上 記ホルダには収容空間が形成され、この収容空間に上記 振動アクチュエータが収容され、これらホルダと振動ア

THIS PAGE BLANK (USPTO)