ABE 201 Biological Thermodynamics 1

Module 12: 2nd Law Balances

Review

Entropy is <u>not</u> conserved (s_{gen} ≥ 0)

Entropy balances

• Steady state/flow: $\frac{dS_{sys}}{dt} = 0$

• Isentropic: $\Delta S = S_2 - S_1 = 0$, closed system $S_{gen} = 0$, open system

Entropy Balance

Accumulation=In-Out + Generation - Consumption

$$\Delta E_{sys} = E_{in} - E_{out} \longrightarrow \Delta U + \Delta E_K + \Delta E_P = Q - W \quad \text{1st Law!}$$

$$\Delta S_{sys} = S_{in} - S_{out} + S_{gen} \quad \text{2nd Law!}$$

$$dS \qquad \qquad \vdots \qquad \qquad \vdots$$

$$\frac{dS_{sys}}{dt} = \dot{S}_{in} - \dot{S}_{out} + \dot{S}_{gen} \quad \text{(rate form)}$$

$$S_{gen} \ge 0 \qquad S_{gen} = 0 \quad \text{for a reversible process}$$

$$then, \quad S_{in} - S_{out} = \Delta S_{sys}$$

S_{in} and S_{out}

1. Entropy transfer associated with heat transfer

$$S_{heat} = \frac{Q}{T}$$
 (T=constant) for adiabatic, $S_{heat} = 0$

$$S_{heat} = \int_{1}^{2} \frac{\delta Q}{T} \approx \sum \frac{Q_k}{T_k}$$
 (when T is not constant)

2. Entropy transfer associated with mass flow

$$\dot{S}_{mass} = \dot{m}\hat{s}$$

$$\dot{S}_{mass} = \dot{m}\hat{s} = 0$$
 (for no mass flow, closed system)

Entropy Balance for Closed Systems

Closed system=no mass flow

$$S_{in} - S_{out} + S_{gen} = \Delta S_{sys}$$

$$\sum \frac{Q_k}{T_k} + \sum m_{in} \hat{s} - \sum m_{out} \hat{s} + S_{gen} = \Delta S_{sys}$$

$$\left(\frac{Q_{in}}{T_{in}} + m_{in}\hat{s}_{in}^{0}\right) - \left(\frac{Q_{out}}{T_{out}} + m_{out}\hat{s}_{out}^{0}\right) + S_{gen} = \Delta S_{sys}$$

Entropy Balance for Open Systems with Control Volumes

$$S_{in} - S_{out} + S_{gen} = \Delta S_{sys}$$

Control vol.= a fixed vol. in space through which fluid flows.

$$\sum \frac{\dot{Q}_k}{T_k} + \sum \dot{m}_{in} \hat{s}_{in} - \sum \dot{m}_{out} \hat{s}_{out} + \dot{S}_{gen} = \frac{dS_{sys}}{dt}$$

$$\left(\frac{\dot{Q}_{in}}{T_{in}} + \dot{m}_{in} S_{in}\right) - \left(\frac{\dot{Q}_{out}}{T_{out}} + \dot{m}_{out} S_{out}\right) + \dot{S}_{gen} = \Delta \dot{S}_{sys}$$

Example 1

Consider steady heat transfer through a brick wall of a house. Outdoor temperature is 0C and indoor is at 20C. The temperatures of the inner and outer surfaces of the brick wall are measured to be 15C and 5 C, respectively. The rate of heat transfer through the wall is 100 kW. Determine the rate of entropy generation in the wall ($S_{gen\ wall}$) and the rate of total entropy generation associated with this heat transfer process ($S_{gen\ total}$).

$$\sum \frac{\dot{Q}_k}{T_k} + \dot{S}_{gen} = \frac{dS_{sys}}{dt}$$

$$\frac{dS_{sys}}{dt} = 0 \text{ (steady flow)}$$

$$\frac{\dot{Q}_{in}}{T_{in}} - \frac{\dot{Q}_{out}}{T_{out}} + \dot{S}_{gen} = 0$$

$$\dot{S}_{gen} = \frac{\dot{Q}_{out}}{T_{out}} - \frac{\dot{Q}_{in}}{T_{in}} = \frac{100kW}{278K} - \frac{100kW}{288K} = 0.013kW / K$$

$$\Delta U + \Delta E_k + \Delta E_p = Q - W$$

$$Q_{in} = Q_{out}$$

$$\frac{dS_{sys}}{dt} = \dot{S}_{in} - \dot{S}_{out} + \dot{S}_{gen}$$

$$- \dot{O}_{out} + \dot{S}_{gen}$$
0 (steady)

Sgen

 $T_2 = 278K$

$$S_{out} = \frac{Q_{out}}{T_2} = \frac{100kW}{278K} = 0.360kW / K$$

 $S_{gen} = 0.013kW / K$

$$0 = S_{in} - S_{out} + S_{gen} = 0.347 - 0.360 + S_{gen}$$

$$S_{in} = \frac{Q_{in}}{T_1} = \frac{100kW}{288K} = 0.347kW / K$$

 $\sum \frac{\dot{Q}_k}{T_{\iota}} + \dot{S}_{gen} = \frac{dS_{sys}^{0}}{dt}$

Example 2

A 50 kg block of iron at 500 K is thrown into a large lake that is at 285K. The iron block eventually reaches thermal equilibrium with the lake water. Assuming an average specific heat of 0.45 kJ/kg K for the iron, determine:

- (a) How much heat leaves the block?
- (b) What is the entropy change of the iron block?
- (c) What is the entropy change of the lake?
- (d) Is this process reversible or irreversible?

$$\Delta U_{iron} + \Delta E_{k,iron} + \Delta E_{P,iron} = Q - W$$

$$\Delta U_{iron} = Q$$

$$\Delta U_{iron} = \int mc_P dT = mc_P \int dT = mc_P (T_2 - T_1)$$

$$\Delta U_{iron} = 50 \cdot 0.45 \cdot (285 - 500) = -4838kJ$$

$$dS_{iron} = \frac{Q}{T} = \frac{\int m_{iron} * C_p dt}{T} = \int \frac{m_{iron} * C_p}{T_{iron}} dt$$

$$dS_{iron} = m_{iron} * C_p \int \frac{1}{T_{iron}} dt = m_{iron} * C_p \ln \left(\frac{T_2}{T_1}\right)$$

$$dS_{iron} = (50)(0.45) \ln \left(\frac{285}{500}\right) = -12.65 \frac{kJ}{K}$$

$$\begin{split} \Delta U_{\textit{universe}} + \Delta E_{k, \text{universe}} + \Delta E_{P, \text{universe}} &= Q - W \\ \Delta U_{\textit{universe}} &= 0 \\ \Delta U_{\textit{iron}} &= \Delta U_{\textit{lake}} \end{split}$$

Assume that T_{lake} does not change!

$$dS_{lake} = \frac{Q_{lake}}{T_{lake}} = \left(\frac{4838kJ}{285K}\right) = 16.97 \frac{kJ}{K}$$

$$\Delta S_{\textit{universe}} = \Delta S_{\textit{lake}} + \Delta S_{\textit{iron}}$$

$$0 = 16.97 - 12.65$$

$$\Delta S_{universe} = 4.32kJ/K > 0$$
 Irreversible

Example 3

At one inlet to an adiabatic mixing chamber maintained at 800 kPa steam enters with a quality of 90%. At the second inlet water enters at 30°C. At the exit the temperature is 150°C, pressure is 800 kPa, and mass flow rate is 2kg/s. Ignore height and velocity changes. Determine the rate of entropy production for this steady-flow, mixing process, in kJ/s.K.

$$\Delta H + \Delta E_K + \Delta E_P = Q - W_S$$

$$\Delta E_K = \Delta E_P = Q = W_S = 0$$

$$(\dot{m}_1 \hat{H}_1 + \dot{m}_2 \hat{H}_2) - \dot{m}_3 \hat{H}_3 = 0$$

$$\hat{H}_{1,\text{water}} = 720.87 kJ / kg$$

$$\hat{H}_{1,steam} = 2768.30kJ / kg$$

$$\hat{H}_1 = 0.9 * 2768.30 + 0.1 * 720.87 = 2563.56kJ / kg$$

$$\hat{H}_2 = 125.74kJ/kg$$

$$\hat{H}_3(T_{sat} = 170 @ 0.8 \text{ MPa}) = 632.18 kJ / kg$$

$$(\dot{m}_1 \hat{H}_1 + \dot{m}_2 \hat{H}_2) - \dot{m}_3 \hat{H}_3 = 0$$

$$(\dot{m}_1 + \dot{m}_2) - \dot{m}_3 = (\dot{m}_1 + \dot{m}_2) - 2 = 0$$

$$((2-\dot{m}_2)(2563.56) + \dot{m}_2(126.47)) - 2(632.18) = 0$$

$$\dot{m}_2 = 1.58kg / s$$
 $\dot{m}_1 = 2 - \dot{m}_2 = 0.42kg / s$

$$\sum \frac{\dot{Q}_{k}}{T_{k}} + \sum \dot{m}_{in} \hat{s}_{in} - \sum \dot{m}_{out} \hat{s}_{out} + \dot{S}_{gen} = \frac{dS_{sys}}{dt}$$
$$0 + (\dot{m}_{1} \hat{s}_{1} + \dot{m}_{2} \hat{s}_{2}) - \dot{m}_{3} \hat{s}_{3} + \dot{S}_{gen} = 0$$

$$\left((0.42)(0.9*6.6615+0.1*2.0460)+(1.58)(0.4366)\right)-2(1.8416)+\dot{S}_{gen}=0$$

 $\dot{S}_{gen} = 0.3894kW / K$

Example 4: Throttling

A valve can be used to reduce the pressure of steam without extracting work. Steam at 0.2 MPa and 200 C is throttled to 0.1 MPa.

Assume:

- adiabatic operation
- steady-state/steady-flow
- insignificant velocity changes in the steam
- a) What is the temperature of the steam leaving the throttle?
- b) At what rate is the throttle generating entropy?

BUTTERFLY VALVE

Flow Characteristics of Valve

Butterfly valves, in addition to serving as shutoffs, can also be used for throttling applications. An index of the excellent throttling characteristics of the butterfly valve is the fact that it has a control rangeability of 45 to 1. A rubber-seat butterfly valve can be used for throttling service and, when required, can be moved to the full closed position to give tight shutoff.

Table 3. Compressed Water and Superheated Steam (continued)

0.16		0.18 MPa $(t_s = 116.911 ^{\circ}\text{C})$					0.20 MPa $(t_s = 120.210 ^{\circ}\text{C})$						
ν	ρ	h	S	t, °C	ν	ρ	h	S	t, °C	ν	ρ	h	S
1.054 40	948.41	475.38	1.4551	<i>t</i> _s (L)	1.057 56	945.57	490.70	1.4945	$t_s(L)$	1.060 52	942.94	504.70	1.5302
1091.4	0.916 29	2696.0	7.2014	$t_s(V)$	977.47	1.0230	2701.4	7.1621	$t_s(V)$	885.68	1.1291	2706.2	7.1269
1.000 13	999.87	0.12	-0.000 14	0	1.000 12	999.88	0.14	-0.000 14	0	1.000 11	999.89	0.16	-0.000 14
1.000 00	1000.00	21.18	0.076 25	5	0.999 99	1000.01	21.20	0.076 25	5	0.999 98	1000.02	21.22	0.076 25
1.000 27	999.73	42.18	0.151 07	10	1.000 26	999.74	42.20	0.151 07	10	1.000 25	999.75	42.22	0.151 07
1.000 87	999.13	63.13	0.224 44	15	1.000 86	999.14	63.15	0.224 44	15	1.000 85	999.15	63.17	0.224 43
1.001 77	998.23	84.06	0.296 45	20	1.001 76	998.24	84.08	0.296 45	20	1.001 75	998.25	84.10	0.296 44
				l I									
1353.5	0.738 83	2872.6	7.6141	200	1201.8	0.832 07	2871.7	7.5582	200	1080.5	0.925 51	2870.7	7.5081
1383.1	0.723 04	2892.6	7.6559	210	1228.2	0.814 21	2891.7	7.6002	210	1104.3	0.905 56	2890.8	7.5501
1412.6	0.707 94	2912.6	7.6968	220	1254.5	0.797 14	2911.8	7.6412	220	1128.0	0.886 50	2910.9	7.5913
1442.0	0.693 49	2932.5	7.7369	230	1280.7	0.780 81	2931.8	7.6814	230	1151.7	0.868 28	2931.0	7.6316
1471.4	0.679 64	2952.5	7.7762	240	1306.9	0.765 17	2951.8	7.7208	240	1175.3	0.850 83	2951.1	7.6712
1500.7	0.666 35	2972.5	7.8148	250	1333.0	0.750 17	2971.9	7.7595	250	1198.9	0.834 10	2971.2	7.7100
1530.0	0.653 59	2992.6	7.8528	260	1359.1	0.735 76	2991.9	7.7975	260	1222.4	0.818 05	2991.3	7.7480
1559.3	0.641 32	3012.6	7.8901	270	1385.2	0.721 92	3012.1	7.8349	270	1245.9	0.802 62	3011.5	7.7855
1588.5	0.629 52	3032.7	7.9267	280	1411.2	0.708 61	3032.2	7.8716	280	1269.4	0.787 78	3031.6	7.8223
1617.7	0.618 16	3052.9	7.9628	290	1437.2	0.695 79	3052.4	7.9078	290	1292.8	0.773 50	3051.8	7.8584

Table 3. Compressed Water and Superheated Steam (continued)

0.10		0.11 MPa $(t_s = 102.292 ^{\circ}\text{C})$					0.12 MPa $(t_s = 104.784 ^{\circ}\text{C})$						
ν	ρ	h	S	t, °C	ν	ρ	h	S	t, °C	v	ρ	h	S
1.043 15	958.63	417.50	1.3028	t _s (L)	1.045 27	956.69	428.84	1.3330	t _s (L)	1.047 27	954.86	439.36	1.3609
1693.9	0.590 34	2674.9	7.3588	$t_s(V)$	1549.5	0.645 39	2679.2	7.3269	$t_s(V)$	1428.4	0.700 10	2683.1	7.2977
1.000 16	999.84	0.06	-0.000 15	0	1.000 15	999.85	0.07	-0.000 15	0	1.000 15	999.85	0.08	-0.000 15
1.000 03	999.97	21.12	0.076 25	5	1.000 03	999.97	21.13	0.076 25	5	1.000 02	999.98	21.14	0.076 25
1.000 33	999.70	42.12	0.151 08	10	1.000 03	999.71	42.13	0.151 08	10	1.000 02	999.71	42.14	0.151 08
1.000 90	999.10	63.08	0.224 45	15	1.000 89	999.11	63.09	0.224 45	15	1.000 89	999.11	63.09	0.224 45
1.001 80	998.21	84.01	0.296 46	20	1.001 79	998.21	84.02	0.296 46	20	1.001 79	998.22	84.02	0.296 46
				ı	I				ı	I			
2054.9	0.486 64	2826.1	7.7284	175	1866.9	0.535 66	2825.5	7.6834	175	1710.2	0.584 74	2824.9	7.6422
2078.5	0.481 13	2836.0	7.7503	180	1888.3	0.529 57	2835.4	7.7054	180	1729.9	0.578 08	2834.9	7.6643
2102.0	0.475 74	2845.8	7.7719	185	1909.8	0.523 63	2845.3	7.7271	185	1749.6	0.571 58	2844.8	7.6860
2125.5	0.470 48	2855.7	7.7934	190	1931.2	0.517 82	2855.2	7.7486	190	1769.2	0.565 22	2854.7	7.7076
2149.0	0.465 34	2865.6	7.8146	195	1952.5	0.512 15	2865.1	7.7698	195	1788.8	0.559 02	2864.6	7.7289
2172.4	0.460.21	2075 5	7.0256	200	1072.0	0.506.61	2075.0	7 7000	200	1000.5	0.550.06	2074.5	7.7400
2172.4	0.460 31	2875.5	7.8356	200	1973.9	0.506 61	2875.0	7.7908	200	1808.5	0.552 96	2874.5	7.7499
2219.3	0.450 59	2895.2	7.8769	210	2016.6	0.495 89	2894.8	7.8322	210	1847.6	0.541 23	2894.3	7.7914
2266.1	0.441 29	2915.0	7.9174	220	2059.2	0.485 63	2914.6	7.8728	220	1886.7	0.530 01	2914.2	7.8320
2312.8	0.432 37	2934.8	7.9572	230	2101.7	0.475 80	2934.4	7.9126	230	1925.8	0.519 27	2934.1	7.8719
2359.5	0.423 82	2954.6	7.9962	240	2144.2	0.466 37	2954.3	7.9517	240	1964.8	0.508 96	2953.9	7.9111

$$\Delta H + \Delta E_K + \Delta E_P = Q - W_S$$

$$\Delta E_K = \Delta E_P = Q = W_S = 0$$

$$\hat{H}_{in} = \hat{H}_{out}$$

$$\hat{H}_{in} = 2870.7 kJ / kg$$

$$P_{out} = 0.1 \text{MPa}$$

$$H_{195C} = 2865.6, H_{200C} = 2875.5$$

$$\frac{2865.6 - 2870.7}{195 - T_{out}} = \frac{2875.5 - 2870.7}{200 - T_{out}}$$

$$T_{out} = 197.6^{\circ}C$$

$$\hat{s}_{in} = 7.5081kJ / kgK$$

$$\hat{s}_{0.1MPa,195C} = 7.8146kJ / kgK$$

$$\hat{s}_{0.1MPa,200C} = 7.8356kJ / kgK$$

$$\hat{s}_{0.1MPa,197.6C} = 7.8255kJ / kgK$$

$$\sum \frac{\dot{Q}_k}{T_k} + \sum \dot{m}_{in} \hat{s}_{in} - \sum \dot{m}_{out} \hat{s}_{out} + \dot{S}_{gen} = \frac{dS_{sys}}{dt}$$

$$\dot{m}\hat{s}_{in} - m\hat{s}_{out} + \dot{S}_{gen} = 0$$

$$7.5081 - 7.8255 + \dot{S}_{gen} = 0$$

$$\dot{S}_{gen} = 0.3174kJ / kg K$$