Computer Architecture

Fall, 2022 Week 15 2022.12.19

組別:	簽名:	
<u> </u>	•	

Group10

In this exercise, we will look at the different ways capacity affects overall performance. Assume that main memory accesses take 70 ns and that 36% of all instructions access data memory. The following table shows data for L1 caches attached to each of two processors, P1 and P2.

	L1 Size	L1 Miss Rate	L1 Hit Time	= 1 cycle
P1	2 KiB	8.0%	0.66 ns	
P2	4 KiB	6.0%	0.90 ns	

What is the Average Memory Access Time for P1 and P2 (in cycles)?

Ans:

$$AMAT \geqslant P_1 = 0.66 + 70\times0.08\times0.36 = 2.676$$

$$P_2 = 0.9 + 70\times0.06\times0.36 = 2.4/2$$

$$\begin{aligned} & \rho_1 = & | + \left(\frac{70}{0.66}\right) \times 0.08 = 9.56 \\ & \rho_2 = & | + \left(\frac{90}{0.9}\right) \times 0.06 = 5.68 \end{aligned}$$

Which option(s) is/are true? Explain if it's false.

- (a) We can access and transfer data in every memory bank <u>simultaneously</u> using interleaved memory organization.
- $\sqrt{(b)}$ Swap space is a program's virtual memory space in disk.
- Using dynamically scheduled CPU, we can pend the load/store instruction and proceed to execute every other instruction when encountering a cache miss. 有些特色 dependent 就可以
- √ (d) We can improve the performance of caches by increasing its associativity or using multilevel caches.
- We can implement speculation about data from multi-way associative caches.
 - √(f) For a processor with clock rate of 2GHz and base CPI of 1, its D-cache miss rate is 8%, I-cache miss rate is 3%, and hit time of both is 1 cycle. If main memory access time is 50ns, and there are 100 load/save instructions in a 400-instruction program without jumps/branches, its effective CPI is 6 for this program.
- (g) With the statement in (f), its AMAT is 3ns for this program.
 - (h) If we add a secondary D-cache into (f) with a miss rate of 2% to main memory and hit time = 10ns, its effective CPI becomes 3.9.

Please select the correct options and explain the incorrect ones.

- \sqrt{a} . When CPU performance increased, miss penalty becomes more significant.
- √ b. The fully associative cache searches all entries in a given set at once.
 - c. The number of virtual pages is always equal to the number of physical pages.
 - d. Increasing associative will reduce miss rate and hit time, maybe increase
- ✓ e. Virtual memory "block" is called a page.
 - The design of an interleaved memory organization allows data inside different memory banks' can be sent to the cache at the same time.
 - g. When calculating average memory access time, hit time is not important.

Ans: a be

smaller or equal C.每个program 的 translator 都不一樣

d. hit time 不會變

f、只能穿一个到 cache

g, hit time 都野樓

Choose the correct answers and explain wrong ones

- (A) In a multi-level cache system, the lower level should have lower miss rate.
- (B) We can increase the miss penalty to improve the cache performance.
- (C) The minimum unit of the cache is called "page" and the minimum unit of the virtual memory is called "block".
- (Q) If we increase associativity, miss rate will increase too.
- (E) The performance of fully associative cache is always better than direct mapped cache, so we don't need direct mapped cache at all.

The n-way set associative cache is better than the fully associative cache because the n-way set associative cache has the best hit rate. Assume send the address: 1 memory bus clock; full better than n-way each DRAM access initiated: 15 memory bus clocks;

send a word of data: 1 memory bus clock;

A cache block: 4 words.

Miss penalty of a four-word-wide bank of DRAMs = 1 + 15 (+1) = 17

)(K)](H)₁

- . Transfer time overlap with cycle time
- 2. 1 memory bus clock to send the address
- 3. 10 memory bus clocks for each DRAM access initiated
- 4. 1 memory bus clock to send a word of data
- 5. 4 words/per cache block

1+2×10= 2/

For a two-word-wide bank of DRAM, the miss penalty is 1+10+1=12

Ans:

Please calculate the effective CPI with the given conditions.

L1 miss rate to main memory or L2 = 1.5%

L2 miss rate to main memory = 0.01%

access time to main memory = 80ns

access time to L2 = 10ns

b. Use two caches(L1 \cdot L2)
$$\frac{1}{5x_{10}^{3}} = \alpha_{1} ns$$

Ans:
$$\alpha_{i}$$
 penalty to access memory = $\frac{80}{0.2}$ = 400 eyeles

Group14

Assume we are using a fully associative 4-block cache with an LRU replacement policy. Given the following ordered reference addresses, fill out the cache table and note if each step is a hit or miss:

	0	1	7	7	6	5	8	7	4	0		4	(5)		4	8	4	3	2	0
Blocks Cache																				
1st	0	O	υ	U	V	5	5	5	5	0	0	U	0	7	7	7	7	7	2	2
2nd		l	1	1	1	1	8	8	8	8		l	1	1	1	8	8	8	8	D
3rd			7	7	7	7	7	7	7	7	7	7	5	5	5	5	5	3	3	3
4th					6	6	6	6	4	4	4	4	4	4	4	4	4	4	4	4
H/M	Μ	M	Μ	Н	M	M	Μ	Н	N	Μ	M	Н	М	М	Н	М	Н	Μ	Μ	Μ

Ans:

Offset

lo bits

Consider a 8-way set associative mapped cache of size 512 KB with block size 1 KB. There are 7 bits in the tag. Find Size of main memory and Tag directory size.

- Set size = 8
- Cache memory size = $512 \text{ KB} = 2^{19} \text{B}$
- Block size = Frame size = Line size = 1 KB = Z^{l} β
- Number of bits in tag = 7 bits

Block size = 210 B -> Number of bits for block size = 10

Number of bits in physical address = Number of bits in tag + Number of bits in set number + offset = 9+ 6+ 10= 23 bits

Thus Main memory = 223 bytes = 8 MB

Tag directory size = Num. tags x tag size = 1um, of lines in cache x Num. of bits in tag = 512 y bits = 3584 bits = 448 bytes