Claim: Let $A(O_o)$ be the accept region of a level α fest $H_o: O = O_o \quad V. \quad H_a: ---$

then $C(\chi) = 50 \mid \chi \in A(0)$ }
is a 1-x confidence set.

Converse:

If $C(\chi)$ is a $1-\alpha$ confidence set then for any $0, \in G$

 $A(0_0) = \{ \chi \mid Q_0 \in C(\chi) \}$ is a \propto level test fer

Ho: 0=00 V- Ha! ---

Two worlds:

HT: Fix some O_o want to test of $\Theta \approx O_o$ (or not)

Ho: $O = O_o$ v. Ha!...

Determe some rule (R or A) to reject/accepti
based on data set of reasonble is
based on data set of reasonable χ s A(O ₀) = { set of χ where χ C χ reasonable
CI world: Fix came X want to determe which
CI world: Fix save &, want to determe which $O \in G$ are reasonable
Determe some set C of reasable Os
$C(\chi) = \{ \text{ set of leasonable } \} C(\chi)$
Test inversion: Ho troth is 0
$C(\chi) = \{0 \mid \chi \in A(0)\}$
C
why does it produce a 1-x CR for O?
Typical Steps for test inversion

(1) Defin a
$$\alpha$$
-level HT for $H_0: \theta = \theta_0$ v. $H_a: \ldots$

i.e. make some Statement about & where $P_{\theta_0}(\chi \in R(\theta_0)) \leq \alpha$

some statement

i.e. make some Statement about & where $P_{\theta_0}(\chi \in A(\theta_0)) \geq 1-\alpha$

(2) Then

$$C(\chi) = \{\theta: \chi \in A(\theta)\}$$
i.e. "insert" A by isolotry θ
i.e. $\theta \in C \implies \chi \in A(\theta)$

this works b/c

$$P(\theta \in C) = P(\chi \in A(\theta)) \geq 1-\alpha$$
So C is a $1-\alpha$ CR for θ .

Ex, $\times_n \stackrel{iid}{\sim} N(\mu_1 6^2)$ $\times_n \stackrel{iid}{\sim} N(\mu_1 6^2)$ $\times_n \stackrel{iid}{\sim} N(\mu_1 6^2)$ $A(\mu_0) = \begin{cases} \chi : \left| \frac{\overline{\chi} - \mu_0}{\overline{\zeta} / N} \right| \leq 3 \alpha / 2 \end{cases}$ $C(\chi) = \{\mu \mid \mu - 6 \text{ in } 3a_{n} \leq \chi \leq \mu + 6 \text{ in } 3a_{s}\}$ $= \{ \mu \mid \overline{X} - 5/\overline{D} 3\alpha_{12} \leq \mu \leq \overline{X} + 5/\overline{D} 3\alpha_{12} \}$

Fact: cannot generally granteer that test inversion gives an interval

Typically: two-sided test = intercel one-sided => one-sided intercel

 $\underline{E_X}$. Let $X_n \stackrel{iid}{\sim} E_X(\beta) \longrightarrow f(x) = \frac{1}{6}e^{-\frac{X_B}{\beta}}$

Ex. let
$$x_n = \beta$$
 β $\beta = \beta$ β lets invert the LIZT

Ho: $\beta = \beta$ o $\beta = \beta$ v. Ha: $\beta \neq \beta$ o

$$\lambda = \frac{L(\beta o)}{L(\beta o)} = \frac{1}{\beta o} e^{-N \frac{1}{\beta o}}$$

$$= (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$= (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o}}$$

$$A(\beta o) = \begin{cases} x : (\frac{x}{\beta o})^{\frac{1}{\beta o}} e^{-N \frac{1}{\beta o$$

Pivotel Quantities
-> Invertige LRT is difficult.
-> Alt. use pivotal quantities.
Defu: Pivotail Quantity
A RV $Q = Q(X, 0)$ is called pivotal
if the dist of Q doeat depend on O.
(dea:
I can create a CR doesn't on O $C(K) = SO : G \in A $
$C(\chi) = \{0: \emptyset \in A\}$
Q(X,0)
If I can find A so that
$\mathbb{P}(Q \in A) > 1 - \infty$
\mathcal{U} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}
then C is a 1-x CR for O.
reason: min P (GEA) > 1-x
(doewt on O depend on O
(some HO)

Partially nice for Loc-Scale familes

Ex. Loc. ferm. Shifted Exp. | Loc ferm:

 $f_{\mu}(x) = g(x - \mu)$ 9 free of u

Ex. Scale Fan. U(0,0)

Scale fan: $f_{6}(x) = \frac{1}{6}g(x/6)$ g free of 5

Ex. Loc-Scale N(4, 52)

Pivots for LS

Pivot Type Loc. X-M Scale. X/6 LOC-/Scale X-1

 $-\lambda \chi$

Ex. (et
$$X_n \stackrel{iid}{\sim} Exp(\lambda)$$
 $f(x) = \lambda e^{-\lambda x}$
 $T = \sum_{n} X_n \sim Gamma(N, \lambda)$

Q= $\frac{2T}{\lambda} \sim Gamma(N, 2) = \chi^2(2N)$

Lets find a, b

So $f(a, b) > 1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$

P($a \leq Q \leq b$) > $1 - \lambda$
P($a \leq Q \leq b$) > $1 - \lambda$
P($a \leq Q \leq b$) > $1 - \lambda$
P($a \leq Q \leq b$)

Practicul Steps for using Pivotiz

(1) get some Q(X,0) whose dist is free of 0

(2) find 9,6 s.t.

 $\mathbb{P}(a \leq Q \leq b) \geq (-\infty)$

(3) Solve statement a = Q(X, 0) = bfor 0 in middle to get L, U.

Very general way of pivoting is (in cts case)

recall that X ~ Fx then

 $Q = F_{X}(X) \sim U(0,1)$ $Q = F_{X}(X) \sim U(0,1)$ Q =

(1) let $Q = F_X(x)$ be the pivot.

 $\begin{pmatrix} 2 \end{pmatrix} (\mathbf{d}) \quad 0 = 4/2 \leftarrow b = 1 - 4/2 \leftarrow b$

0 1/ d/2 d/2

b=1-0/2 ((3) If I some $\alpha_2 \leq F_X(X) \leq |-\alpha_2|$ for 0 in the middle I can get a Lad a defing a CI. [easy of Fx invertible as a fin] (et $g(0) = F_X(x)$ as a first o then I need to some $4/2 \leq g(0) \leq 1-4/2$ if g is inc. then $g^{-1}(4_2) \leq 0 \leq g^{-1}(1-4_2) \geq 2$ of g dec. then $g(1-d/2) \leq Q \leq g(\alpha/2)$

Theorem: CDF pivot (for cts RVs) The a stat w/ CDF Fe depends on

let T be a stat u/ CDF FE depends on (et g(0) = F, as a fu of O (1) if g inc. in O then $L = \overline{g}'(\alpha/z) \quad \text{and} \quad U = \overline{g}'(1 - \alpha/z)$ 2) g dee in O then $L = 9(1-\alpha/2)$ and $U = 9(\alpha/2)$ defnes a 1-x CI fer O. Assure we have a start T w/ CDF

F_T(t) = (+e^{-(t-u)} param.

lets create a I-X CI fer M.

Notice: g(u) = 1+e teu 15 decreusny on ju

If
$$y = g(\mu) = \frac{1}{1 + e^{(t-\mu)}}$$

$$\Rightarrow \frac{1}{y} = 1 + e^{-(t-\mu)}$$

$$\Rightarrow \frac{1}{y} - 1 = e^{-(t-\mu)}$$

$$\Rightarrow \log(\frac{1}{y} - 1) = -(t-\mu)$$

$$\Rightarrow u = \left[t + \log(\frac{1}{y} - 1) = g^{-1}(y)\right]$$
Since g is decreasing then if we let
$$L = g^{-1}(1 - \frac{1}{y^2})$$

$$= t + \log(\frac{1}{y^2} - 1)$$
and $U = g^{-1}(\frac{1}{y^2})$

$$= t + \log(\frac{1}{y^2} - 1)$$

there define a $l-\propto CI$ for μ .

 $[t + log(\frac{1}{1-\alpha_{12}}-1), t + log(\frac{1}{\alpha_{12}}-1)]$ is a (-d CI for M.