Measure Theory and Integration

Luc Veldhuis

25 September 2017

Semi-ring \mathcal{S}

- \bullet $\emptyset \in \mathcal{S}$
- $S, T \in S \Rightarrow S \cap T \in S$
- $S, T \in S \Rightarrow S \setminus R = \bigcup_{j=1}^{m} S_j, S_j \in S$

Example

Rectangles in \mathbb{R}^n , $[a_1, b_1) \times \cdots \times [a_n, b_n)$

Theorem (aratheodory)

 \mathcal{S} a semi ring, with $\mu: \mathcal{S} \to [0, \infty]$ such that:

- $\mu(\emptyset) = 0$
- if $S_j \in \mathcal{S}$ disjoint and $\bigcup_{j=1}^{\infty} S_j \in \mathcal{S}$, then $\mu(\bigcup_{j=1}^{\infty} S_j) = \sum_{j=1}^{\infty} \mu(S_j)$.

THEN μ has an extension to a measure on $\sigma(S)$. By last weeks theorem, it is also unique.

Example

 ${\cal S}$ rectangles.

$$\mu([a_1,b_1) \times \cdots \times [a_n,b_n)]) = \prod_{i=1}^{\infty} (b_i - a_i)$$
 ('volume')

Claim (1 dimension)

Suppose $\bigcup_{i=1}^{\infty} [a_i, b_i) = [a, b)$ With $[a_i, b_i) = I_i$, and $I_i \cap I_j = \emptyset \ \forall i \neq j$, show that $\sum_{i=1}^{\infty} \mu(I_i) = \mu([a, b))$

Proof of claim

Watch out for ∞ in the sum and let $I_j^{O(\epsilon)} = (a_j - \frac{\epsilon}{2^j}, b_j)$.

Then we have $[a, b - \epsilon] \subseteq \bigcup_j I_j^{O(\epsilon)}$.

By properties of compactness (topology) there exists a finite open subcover.

$$\exists N = N(\epsilon) \text{ such that } [a, b - \epsilon] \subseteq \bigcup_{j=1}^{N} I_j^{O(\epsilon)}.$$

Note that
$$\bigcup_{j=1}^{N} I_j \subseteq [a, b)$$
.

$$0 \le \mu([a,b)) - \sum_{j=1}^{N} \mu(I_j) =$$

$$\mu([a,b-\epsilon)) + \epsilon - \sum_{j=1}^{N} \mu(I_j^{O(\epsilon)}) + \sum_{j=1}^{N} \frac{\epsilon}{2^j} \leq 2\epsilon.$$

(Because
$$\mu([a, b - \epsilon)) \leq \sum_{j=1}^{N} \mu(I_j^{O(\epsilon)})$$
.

First let $N \to \infty$ and then $\epsilon \to 0$, because N depends on ϵ .

So
$$0 \le \mu([a,b)) - \sum_{j=1}^{\infty} \mu(I_j) \le 2\epsilon$$
 then

$$0 \leq \mu([a,b)) - \sum_{j=1}^{\infty} \mu(I_j) \leq 0.$$

$$\mu([a,b)) = \sum_{j=1}^{\infty} \mu(\overline{l_j})$$

Lebesque measure

A Lebesque measure on $\mathbb{B}(\mathbb{R}^n)$ is denoted λ^n and $\lambda^1 = \lambda$.

$$[a,b)\subseteq [a,b]\subseteq [a,b+\epsilon)$$

$$\lambda([a,b)) \leq \lambda([a,b]) \leq \lambda([a,b+\epsilon))$$

$$b-a \leq \lambda([a,b]) \leq b-a+\epsilon$$

So
$$\lambda([a, b]) = b - a$$
. $\lambda(\{3\}) = 0$.

$$\lambda(\mathbb{Q}) = 0$$
, countable union of points.

All countable sets have Lebesque measure 0.

Example

Uncountable set C with $\lambda(C) = 0$.

Cantor set: iterative take out the range $\frac{1}{3}$ to $\frac{2}{3}$ from all intervals.

Then $C = \bigcap_{i=1}^{\infty} C_1$.

 $\lambda(C) = \lim_{n \to \infty} \lambda(C_n) = \lim_{n \to \infty} (\frac{2}{3})^{n-1} = 0$. (Using continuity from above because measure is finite on the sets.)

Cantor set is in $\mathbb{B}(\mathbb{R})$ because it is a intersection of closed intervals.

Cantor set uncountable

Suppose $C = \{x_1, x_2, x_3, \dots\}.$

 C_n has 2^n intervals. A decreasing sequence of closed intervals is non empty. Then there must be a point $y \in C$ not equal to any x_i , but this is not possible if $C = \{x_1, x_2, x_3, \dots\}$. So C is uncountable.

Proof

- Lebesque measure is invariant under translations. That is for all $B \in \mathbb{B}(\mathbb{R}^n)$, $\lambda^n(B) = \lambda^n(x+B)$.
- If μ is a measure on $\mathbb{B}(\mathbb{R}^n)$ which is invariant under translations, and $\mu((0,1)^n) = \kappa < \infty$ then $\mu(B) = \kappa \lambda^n(B)$