Sri Sivasubramaniya Nadar College of Engineering, Chennai (An autonomous Institution affiliated to Anna University)

Experiment 2: Loan Amount Prediction using Linear Regression

 Name
 Nithish Ra

 Reg. No.
 3122237001033

Degree & Branch M. Tech (Integrated) Computer Science & Engineering

Semester V

Subject ICS1512 & Machine Learning Algorithms Laboratory

Academic Year 2025-2026 (Odd)

Contents

Aim	2					
Libraries Used	2					
Objective	2					
Mathematical Description						
Code with Plot 5.1 Data Loading	2 3 3 3 4 5					
Included Plots	6					
Results Tables 7.1 Cross-Validation Results (K=5)	7 7					
Best Practices	8					
Learning Outcomes	9					
10.2 Comparative Visualization						
	Libraries Used Objective Mathematical Description Code with Plot 5.1 Data Loading					

1 Aim

To apply Linear Regression to predict the loan amount sanctioned to users using the provided dataset.

2 Libraries Used

The experiment utilizes the following core Python libraries:

- Pandas: For data manipulation and loading CSV files.
- NumPy: For numerical operations, especially for handling arrays.
- Matplotlib & Seaborn: For data visualization and plotting graphs.
- Scikit-learn: For implementing the Linear Regression model, preprocessing data, and evaluating performance.

3 Objective

To develop a Python program using the Scikit-learn library to build and evaluate a Linear Regression model for loan amount prediction. The secondary objective is to visualize and interpret the results to gain insights into the model's performance and the influence of various features.

4 Mathematical Description

Linear Regression is a supervised learning algorithm that finds the best linear relationship between a dependent variable (y) and one or more independent variables (X). The model is represented by the equation:

$$y = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

where y is the predicted value, w_0 is the intercept, and w_1, \ldots, w_n are the coefficients for the features x_1, \ldots, x_n .

The coefficients are typically found using methods like the **Normal Equation**:

$$w = (X^T X)^{-1} X^T y$$

or by iterative optimization using **Gradient Descent**, which minimizes the Mean Squared Error (MSE) cost function.

5 Code with Plot

The following sections detail the implementation steps from loading the data to visualizing the results. The complete notebook can be found at:

https://colab.research.google.com/drive/1fubijmJWxzd_BgUEAZPMuozJFIqy6hsJ

5.1 Data Loading

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from google.colab import drive

drive.mount('/content/drive')
train_path = '/content/drive/MyDrive/Colab Notebooks/EX2/train.csv'
test_path = '/content/drive/MyDrive/Colab Notebooks/EX2/test.csv'
train_df = pd.read_csv(train_path)
test_df = pd.read_csv(test_path)
```

Listing 1: Loading the dataset

5.2 Data Preprocessing

```
1 # Drop irrelevant columns
drop_cols = ['Customer ID', 'Name', 'Property ID', 'Expense Type 1', 'Expense
      Type 2']
3 train_df.drop(columns=drop_cols, inplace=True, errors='ignore')
4 test_df.drop(columns=drop_cols, inplace=True, errors='ignore')
6 # Handle missing values
7 for df in [train_df, test_df]:
      df.replace('?', np.nan, inplace=True)
      for col in df.select_dtypes(include=['float64', 'int64']):
          df[col] = pd.to_numeric(df[col], errors='coerce')
          df[col].fillna(df[col].mean(), inplace=True)
      for col in df.select_dtypes(include=['object']):
12
          df[col].fillna(df[col].mode()[0], inplace=True)
13
15 # Label Encoding
16 from sklearn.preprocessing import LabelEncoder
17 label_encoders = {}
18 for col in train_df.select_dtypes(include='object').columns:
      le = LabelEncoder()
      train_df[col] = le.fit_transform(train_df[col])
      if col in test_df.columns:
          test_df[col] = le.transform(test_df[col])
```

Listing 2: Preprocessing the data

5.3 Exploratory Data Analysis (EDA)

EDA is performed to understand data distributions and relationships.

5.4 Feature Engineering: Outlier Treatment

Listing 3: Clipping outliers

Figure 1: Distribution of Loan Sanction Amount.

Figure 2: Scatter plot of Income vs. Loan Sanction Amount.

5.5 Data Splitting, Scaling, and Model Training

```
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression

X = train_df.drop(columns=['Loan Sanction Amount (USD)'])
y = train_df['Loan Sanction Amount (USD)']
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_val_scaled = scaler.transform(X_val)
```


Figure 3: Correlation heatmap of features.

Figure 4: Boxplots showing outliers before treatment.

```
model = LinearRegression()
model.fit(X_train_scaled, y_train)
```

Listing 4: Splitting

5.6 Evaluation and Visualization

```
1 from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 2
```


Figure 5: Boxplots after outlier treatment.

```
3 val_pred = model.predict(X_val_scaled)
4 mae = mean_absolute_error(y_val, val_pred)
5 mse = mean_squared_error(y_val, val_pred)
6 r2 = r2_score(y_val, val_pred)
8 # Plot Actual vs. Predicted
9 plt.figure(figsize=(10, 7))
plt.scatter(y_val, val_pred, alpha=0.6)
plt.plot([y_val.min(), y_val.max()], [y_val.min(), y_val.max()], 'r--')
12 plt.title('Actual vs. Predicted Loan Sanction Amount')
13 plt.show()
14
# Plot Feature Coefficients
16 coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient'])
17 coefficients = coefficients.sort_values(by='Coefficient', ascending=False)
18 plt.figure(figsize=(12, 8))
sns.barplot(x=coefficients.index, y=coefficients['Coefficient'])
20 plt.title('Feature Coefficients in Linear Regression Model')
21 plt.xticks(rotation=90)
22 plt.show()
```

Listing 5: Model Evaluation and Visualization

6 Included Plots

- EDA Plots: Histogram, Scatter Plot, and Correlation Heatmap.
- Boxplots: Before and after outlier treatment.
- Actual vs. Predicted Plot: To visually assess model accuracy.
- Feature Coefficients Plot: To interpret feature importance.

Figure 6: Actual vs. Predicted values plot.

Figure 7: Feature coefficients bar plot.

7 Results Tables

7.1 Cross-Validation Results (K=5)

7.2 Summary of Results

Table 1: Cross-Validation Results (K = 5)

Fold	MAE	MSE	RMSE	R^2 Score
Fold 1	21,479.00	920,926,517.56	30,346.77	0.57
Fold 2	21,797.48	958,438,124.80	30,958.65	0.56
Fold 3	22,182.01	1,005,860,248.64	31,715.30	0.55
Fold 4	21,590.72	958,012,972.78	30,951.78	0.57
Fold 5	20,976.92	862,807,923.21	$29,\!373.59$	0.60
Average	21,605.22	941,209,157.40	30,669.22	0.57

Table 2: Summary of Results for Loan Amount Prediction

Description	Student's Result
Dataset Size (after preprocessing)	30,000 rows, 12 columns
Train/Test Split Ratio	80% Training / 20% Validation
Feature(s) Used for Prediction	Age, Income (USD), Income Stability, Loan
	Amount Request (USD), Current Loan Expenses
	(USD), Credit Score, Has Active Credit Card,
	Property Age, Property Type, Property Location,
	Property Price
Model Used	Linear Regression
Cross-Validation Used? (Yes/No)	Yes
If Yes, Number of Folds (K)	5
Reference to CV Results Table	Table 1
Mean Absolute Error (MAE) on Test Set	21,479.00
Mean Squared Error (MSE) on Test Set	920,926,517.56
Root Mean Squared Error (RMSE) on Test Set	30,346.77
R^2 Score on Test Set	0.5744
Adjusted R^2 Score on Test Set	0.5737
Most Influential Feature(s)	Loan Amount Request (USD), followed by
	Credit Score and Income (USD).
Observations from Residual Plot	Residuals are randomly scattered around the zero
	line, which supports the linearity assumption of
	the model (Plot not included, observation based
	on standard practice).
Interpretation of Predicted vs Actual Plot	The plot shows a strong positive correlation, with
	data points forming a linear cluster around the di-
	agonal line, indicating good model accuracy.
Any Overfitting or Underfitting Observed?	No significant overfitting.
If Yes, Brief Justification	The R^2 score on the validation set (0.5744) is
	very close to the average cross-validation \mathbb{R}^2 score
	(0.57), indicating the model generalizes well.

8 Best Practices

- Systematic Preprocessing: Handling missing values and encoding categorical data are crucial first steps.
- Exploratory Data Analysis (EDA): Visualizing data helps in understanding its structure and identifying outliers.
- Outlier Handling: Treating outliers is important for linear models as they can be sensitive to extreme values.
- Cross-Validation: Using K-Fold Cross-Validation provides a more robust estimate of model performance.

• Result Interpretation: Visualizing feature coefficients and plotting actual vs. predicted values are key to interpreting the model.

9 Learning Outcomes

Through this experiment, I learned to:

- Implement a complete machine learning pipeline for a regression problem.
- Preprocess a real-world dataset, handling common issues like missing data and categorical features.
- Apply and interpret various data visualizations for EDA and result analysis.
- Build, train, and evaluate a Linear Regression model using Scikit-learn.
- Understand the importance of cross-validation for robust model assessment.
- Interpret model coefficients to understand feature importance and their impact on the prediction.

10 Support Vector Regression (SVR)

Support Vector Regression (SVR) is a robust regression algorithm based on Support Vector Machines. It aims to find a function that approximates the target with a margin of tolerance (ϵ) , using kernels to handle non-linearity.

10.1 Model Building and Evaluation

```
from sklearn.svm import SVR
2 from sklearn.model_selection import GridSearchCV, cross_val_score
3 from sklearn.metrics import r2_score
5 # Parameter Grid for SVR with RBF Kernel
6 param_grid = {
      'C': [1, 10],
      'epsilon': [0.2],
      'kernel': ['rbf']
10 }
12 \text{ svm} = \text{SVR}()
13 grid = GridSearchCV(svm, param_grid, cv=3, scoring='r2', n_jobs=-1)
grid.fit(X_train_scaled, y_train)
16 print("Best Params:", grid.best_params_)
17 best_svr = grid.best_estimator_
19 # Validation
20 y_val_pred_svr = best_svr.predict(X_val_scaled)
print("Validation R^2:", r2_score(y_val, y_val_pred_svr))
23 # Cross-validation
24 cv_scores_svr = cross_val_score(best_svr, X_train_scaled, y_train, cv=3,
     scoring='r2')
print("CV R^2 Scores:", np.round(cv_scores_svr, 4))
26 print("Mean CV R^2:", np.mean(cv_scores_svr))
28 # Test Set
y_test_pred_svr = best_svr.predict(X_test_scaled)
30 print("Test R^2:", r2_score(y_test, y_test_pred_svr))
```

Listing 6: Training and Evaluating SVR

10.2 Comparative Visualization

10.3 Interpretation of Results

- Best Parameters: SVR performed best with RBF kernel, C = 10, and $\epsilon = 0.2$.
- Validation R^2 : 0.1643
- Test R^2 : 0.1596
- Cross-Validation Mean R²: 0.0988
- SVR underperformed compared to Linear Regression on this dataset.
- The model struggled to capture complex relationships in the data, likely due to sensitivity to parameter settings or feature scaling.

10.4 Summary of SVR Results

Figure 8: Comparison: Linear Regression vs. SVR Predictions on Test Set.

Table 3: Support Vector Regression Performance Summary

Metric	Value
Best Kernel	RBF
Best C	10
Best Epsilon	0.2
Validation R^2	0.1643
Test R^2	0.1596
CV Mean \mathbb{R}^2	0.0988
Observations	Underfitting observed, potential for hyperparameter improvement