Ch 10.1: Neural Nets

Lecture 30 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Nov 20, 2023

Announcements

Last time:

SVM

This lecture:

Feed Forward Neural Nets

Announcements:

- Homework #7 due tonight
- No class wednesday. Virtual office hours by request.

2/17

Dr. Munch (MSU-CMSE) Mon, Nov 20, 2023

Section 1

Neural Nets

The idea

Dr. Munch (MSU-CMSE

Feed Forward Neural Network: The cartoon

A very simple example

Computing A_k for (1,0)

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

A very simple example

Computing Y for (1,0)

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

Dr. Munch (MSU-CMSE)

A very simple example

Computing Y for (0,1)

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj} X_j), \qquad f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

A different example

- Draw the diagram for a neural net with input data points with p = 3 (i.e., (X_1, X_2, X_3)) and two units in the hidden layer.
- Using the ω and β matrices, what is the output predicted Y for the point (2,0,1)?

$$\omega = \begin{pmatrix} 1 & 0 & -2 & 2 \\ -3 & 1 & 0 & -1 \end{pmatrix} \qquad \beta = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

Use the activation function

$$g(z) = (z)_+ =$$

$$\begin{cases} 0 & \text{if } z < 0 \\ z & \text{else.} \end{cases}$$

Dr. Munch (MSU-CMSE)

Extra space

Dr. Munch (MSU-CMSE)

What if there's no activation function?

$$\omega = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \qquad \beta = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$

Choices for activation function

Sigmoid:

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

ReLU: Rectified linear unit

$$g(z) = (z)_+ = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{else.} \end{cases}$$

Matrix version: First layer

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

$$A = g(\mathbf{W} \cdot \mathbf{X})$$
 $\mathbf{X}^T = (1 \ X_1 \ X_2 \ \cdots \ X_p)$

Matrix version: Output

$$f(X) = \beta_0 + \sum_{k=1}^K \beta_k A_k$$

$$Y = \beta \cdot \mathbf{A}$$
 $\mathbf{A}^T = (1 \ A_1 \ A_2 \ \cdots \ A_K)$

Now what?

Choose parameters by minimizing RSS, $\sum_{i=1}^{n} (y_i - f(x_i))^2$

Chosen in advance:

Tuned by the model:

Coding

Dr. Munch (MSU-CMSE) Mon, No

Next time

Lec#	0	ate		Reading	Homeworks
20	Fri	Oct 27	Dimension Reduction		
21	Mon	Oct 30	More dimension reduction; High dimensions	6.4	
22	Wed	Nov 1	Polynomial & Step Functions	7.1,7.2	
23	Fri	Nov 3	Step Functions; Basis functions; Start Splines	7.2 - 7.4	
24	Mon	Nov 6	Regression Splines	7.4	HW #6 Due
25	Wed	Nov 8	Decision Trees	8.1	HW #6 Due
26	Fri	Nov 10	Random Forests	8.2.1, 8.2.2	
27	Mon	Nov 13	Maximal Margin Classifier	9.1	
28	Wed	Nov 15	SVC	9.2	
29	Fri	Nov 17	SVM	9.3, 9.4	
30	Mon	Nov 20	Single layer NN	10.1	HW #7 Due
31	Wed	Nov 22	Virtual: Project office hours		
	Fri	Nov 24	No class - Thanksgiving		
	Mon	Nov 27	Review		
	Wed	Nov 29	Midterm #3		
32	Fri	Dec 1	Multi Layer NN	10.2	
33	Mon	Dec 4	CNN	10.3	
34	Wed	Dec 6	Unsupervised Learning & Clustering	12.1, 12.4	
35	Fri	Dec 8	Virtual: Project office hours		Project due

Dr. Munch (MSU-CMSE) Mon, Nov 20, 2023