1

B.2 Results for AW2

In this section, we describe the results for RQ1, RQ2 and RQ4 (i.e., Sections B.2.1–Section B.2.3 respectively) for use case AW2.

B.2.1 Experiment Results for RQ1

This section describes the results for RQ1.

B.2.1.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 1. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, AUM))

TD	A1 '11 A	A1 '(1 D	P	ET	P	TR	A	UM	О	FV	I	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 2. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, PUS))

TD	A1 '11 A	A1 '(1 D	P	ET	P	TR	P	US	О	FV	F	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 1 1	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 0 0	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.3 Problem 3: This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 3. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	P	ET	P'	ΓR	A	NU	О	FV	I	IV	IC	GD
10	AigontilliA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

			P	ET	P	TR	A	NU	O	FV	I	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
TD000	SPEA2	SimpleRS	<0.1	<0.01	>0.9	<0.01	<0.1	<0.01	>0.5	<0.01	>0.9	<0.01	<0.1	<0.01
TB020	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 4. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, PUU))

ТВ	AlcorithmA	AlgorithmB	P	ET	P'	TR	P	UU	О	FV	H	IV	IC	GD
1 D	AlgorithmA	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	р
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10050	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	AlgorithmA	AlgorithmB	P	ET	P	TR	P	UU	О	FV	H	IV	IC	GD
10	AiguittiliiA	Aigoriumb	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 5. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, AUM, PUS))

тр	A 1: (1 A	A 1: (1 D	P	ET	P'	TR	A	UM	P	US	О	FV	H	IV	IC	GD
TB	AlgorithmA	Algorithmb	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 00/0	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Algorithm A	AlgorithmB	P	ET	P'	ΓR	A	UM	P	US	О	FV	H	IV	IC	GD
1 1 1	AigontiiliA	Aigontillio	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
TB070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 100	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.6 Problem 6: This section describes the results for prioritization problem f(PET, PTR, AUM, ANU).

TABLE 6. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, AUM, ANU))

NSGA2								1						ı			
NSGA2 SimpleRS O.5 O.01 O.9 O.01 O.1 O.01 O.5 O.01 O.9 O.01 O.1 O.01 O.5 O.01 O.9 O.01 O.01 O.01 O.05 O.01 O.9 O.01 O.01 O.01 O.01 O.05 O.01 O.9 O.01 O.01 O.01 O.01 O.01 O.05 O.01 O.9 O.01	ТВ	AlgorithmA	AlgorithmB						UM								
MoCell SimpleRS 0.5 0.01 0.9 0.01 0.5 0.01																	_
SPEA2 SimpleRS 0.5 0.01 0.9 0.01				1	l							1	l				
SPEA2 SimpleRS 0.5 0.01 0.9 0.01 0.1 0.01	TB010			1								1					
TB020	12010		1									1					
TB020 MoCell SimpleRS 0.5 0.01 0.9 0.01 0.5 0.01 0.05 0.01 0.05 0.01 0.09 0.01 0.0			SimpleRS		< 0.01												
SPEA2			1	1						1		1	1				1 1
SPEA2 SimpleRS Col. Col. Sol. Col. Co	TB020		SimpleRS	>0.5	< 0.01		< 0.01	l	< 0.01		< 0.01	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2	1 0020		SimpleRS	< 0.5	< 0.01		< 0.01		< 0.01		< 0.01	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SimpleRS 0.5 0.01 0.9 0.01 0.5 0.01 0.5 0.01 0.5 0.01 0.0 0.01		CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS Co.5 Co.01 Co		NSGA2	SimpleRS	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
CellDE SimpleRS Co. Co	TROSO	MoCell	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 SimpleRS Co.5 Co.01 Co.01 Co.5	1 0030	SPEA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MoCell SimpleRS Co.5 So.05 So.9 Co.01 Co.5 Co.01 Co.		CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS Co.1 Co.01 Co		NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050 CellDE SimpleRS Col.	TD040	MoCell	SimpleRS	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2	1 5040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050 MoCell SimpleRS <0.5 <0.01 >0.9 <0.01 <0.5 <0.01 <0.1 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS Co.1 Co.01 Co		NSGA2	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070 SimpleRS Co.1 Co.01 Co	TROFO	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060 MoCell SimpleRS <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.1 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080 SPEA2 SimpleRS Co.1 Co.01 Co		NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	TPOCO	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 SimpleRS <0.5 <0.01 >0.9 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.05 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070 MoCell SimpleRS <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.1 <0.01 <0.5 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01		CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090 SPEA2 SimpleRS <0.1 <0.01 <0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0		NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	TP070	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
NSGA2 SimpleRS <0.1 <0.01 >0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	1 00/0	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080 MoCell SimpleRS <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0		CellDE	SimpleRS	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0		NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.0	TDOOO	MoCell	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MSGA2 SimpleRS <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <th< td=""><td>1 6080</td><td>SPEA2</td><td></td><td>< 0.1</td><td>< 0.01</td><td>>0.9</td><td>< 0.01</td><td>< 0.1</td><td>< 0.01</td><td>< 0.1</td><td>< 0.01</td><td>< 0.1</td><td>< 0.01</td><td>>0.9</td><td>< 0.01</td><td>< 0.1</td><td>< 0.01</td></th<>	1 6080	SPEA2		< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
MSGA2 SimpleRS <0.1 <0.01 <0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <th< td=""><td></td><td>CellDE</td><td>1</td><td>< 0.5</td><td>>0.05</td><td>>0.9</td><td>< 0.01</td><td>< 0.5</td><td>< 0.01</td><td>< 0.5</td><td>< 0.01</td><td>< 0.5</td><td>>0.05</td><td>>0.9</td><td>< 0.01</td><td>< 0.1</td><td>< 0.01</td></th<>		CellDE	1	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
TB090 MoCell SimpleRS <0.5 <0.01 >0.5 <0.01 <0.5 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 >0.9 <0.01 <0.1 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0		NSGA2	1		< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
SPEA2 SimpleRS <0.1 <0.01 >0.9 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.01 <0.1 <0.	TDOGG		1	< 0.5		>0.5				< 0.1			< 0.01	>0.9		I	
	1 B090							l		< 0.1		1				I	
1 1 1 2 1 22 1 22 1 22 1 23 2 1 24 2 1 25 2 1 25 2 1 25 2 1 25 2 1 25 2 1 25 2 1 25 2 1 25 2 1 25 2 1 25 2 1		CellDE	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01

TR	AlgorithmA	AlgorithmR	P	ET	P	TR	Αl	JM	A.	NU	О	FV	Н	IV	IC	GD
10	AigontiiliA		AIZ	p	A12	p	A12	p	A12	р	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	1								< 0.01						
10100	SPEA2	1								< 0.01						
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU).

TABLE 7. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, AUM, PUU))

TD	A.1 '-1 A	41 'd D	P	ET	P'	TR	A	UM	P	UU	О	FV	H	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р								
	NSGA2	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD010	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.8 Problem 8: This section describes the results for prioritization problem f(PET, PTR, PUS, ANU).

TABLE 8. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, PUS, ANU))

TD	A 1: (1 A	A1::1D	P	ET	P	TR	P	US	A	NU	О	FV	I	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TP010	MoCell	SimpleRS	< 0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 Booo	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	<0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU).

TABLE 9. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	AlgorithmB	P	ET	P'	TR	P	US	P	UU	О	FV	Н	IV	IC	GD
1 1 1	AiguilliliA	Aiguillilli	A12	p	A12	p	A12	p								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Alaarithm A	A loosith m D	P	ET	P	TR	P	US	P	UU	О	FV	Н	IV	IC	GD
1 D	AlgorithmA	Aigorithmb	A12	р	A12	р	A12	р								
TDOO	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	MoCell	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU).

TABLE 10. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics between Multi-Objective Algorithms and RS (AW2, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmR	P	ET	P	ΓR	A	NU	Pl	UU	О	FV	H	IV	IC	GD
1 1 1	AigoiitiiiiA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9		>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	SPEA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TROAD	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	SPEA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	AlgorithmA	AlgorithmR	P	ET	P'	TR	A	NU	P	UU	О	FV	H	IV	IC	GD
1 1 1	AigontiiliA	Aigoriumib	A12	p	A12	p	A12	p								
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0070	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB090	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TP100	MoCell	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB100	SPEA2	SimpleRS	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	CellDE	SimpleRS	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

B.2.1.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 11. Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Multi-Objective Algorithms and RS for HV and IGD (AW2)

Problem	ТВ	Adjusted_p	Reject
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.1 f(PET,PTR,AUM)	TB050	< 0.01	Y
F100.1 J(FL1,F1K,Adivi)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.2 f(PET,PTR,PUS)	TB050	< 0.01	Y
F100.2 J(FL1,F1K,FU3)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB040	< 0.01	Y
1100.5 J(FL1,F1K,ANU)	TB050	< 0.01	Y
	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y

Problem	ТВ	Adjusted_p	Reject
DI. 2 ((DET DED ANUI)	TB090	< 0.01	Y
Prob.3 f(PET,PTR,ANU)	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D 1.4 ((DET DED DILLI)	TB050	< 0.01	Y
Prob.4 f(PET,PTR,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
D. A. F. ((DET DED ALIM DIC)	TB050	< 0.01	Y
Prob.5 f(PET,PTR,AUM,PUS)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Dual (WDET DTD ALIM ANIL)	TB050	< 0.01	Y
Prob.6 f(PET,PTR,AUM,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Drob 7 f(DET DTD ALIM DILLI)	TB050	< 0.01	Y
Prob.7 f(PET,PTR,AUM,PUU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
	TB030	< 0.01	Y
	TB040	< 0.01	Y
Prob.8 f(PET,PTR,PUS,ANU)	TB050	< 0.01	Y
1 100.0 J(TL1,F1K,FU3,ANU)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB020	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB030	< 0.01	Y
1100.0 1/1 [11,1 [13,1 [43,1 [44]]	TB040	< 0.01	Y
	TB050	< 0.01	Y
	TB060	< 0.01	Y

Problem	TB	Adjusted_p	Reject
	TB070	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB080	< 0.01	Y
F100.9 J(FL1,F1K,FU3,FUU)	TB090	< 0.01	Y
	TB100	< 0.01	Y
	TB010	< 0.01	Y
	TB010 < 0.01 TB020 < 0.01 TB030 < 0.01	< 0.01	Y
		< 0.01	Y
	TB040	< 0.01	Y
Prob.10 f(PET,PTR,ANU,PUU)	TB050	< 0.01	Y
1700.10 j(1 L1,1 1 K,211 Va,1 Ua)	TB060	< 0.01	Y
	TB070	< 0.01	Y
	TB080	< 0.01	Y
	TB090	< 0.01	Y
	TB100	< 0.01	Y

^{*} Note that **Adjusted_p** refers to all adjusted p-value results. If **Adjusted_p** < 0.05 (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If **Adjusted_p** > 0.05, it means there is at least one adjusted p-value that is greater than 0.05.
* **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.2.2 Experiment Results for RQ2

This section describes the results for Experiment Results for RQ2.

B.2.2.1 Problem 1: This section describes the results for prioritization problem f(PET, PTR, AUM).

TABLE 12. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM))

TB	Metric	ChiSq	DF	p
	ET	14175.51	3	< 0.01
	CTR	7346.05	3	< 0.01
TB010	UM	16673.09	3	< 0.01
1 DO10	OFV	2284.46	3	< 0.01
	HV	200.72	3	< 0.01
	IGD	203.61	3	< 0.01
	ET	16882.99	3	< 0.01
	CTR	9691.58	3	< 0.01
TB020	UM	24380.91	3	< 0.01
1 0020	OFV	1679.71	3	< 0.01
	HV	292.89	3	< 0.01
	IGD	323.4	3	< 0.01
	ET	23556.3	3	< 0.01
	CTR	8053.2	3	< 0.01
TB030	UM	28379.06	3	< 0.01
1 0000	OFV	2891.6	3	< 0.01
	HV	338.97	3	< 0.01
	IGD	348.48	3	< 0.01
	ET	28315.35	3	< 0.01
	CTR	7131.72	3	< 0.01
TB040	UM	30339.75	3	< 0.01
1 D040	OFV	13812.71	3	< 0.01
	HV	346.26	3	< 0.01
	IGD	365.24	3	< 0.01
	ET	31182.54	3	< 0.01
	CTR	6179.64	3	< 0.01
TB050	UM	31007.91	3	< 0.01
1 0000	OFV	25353.43	3	< 0.01
	HV	349.04	3	< 0.01
	IGD	363.52	3	< 0.01
	ET	32786.06	3	< 0.01
TB060	CTR	5624.89	3	< 0.01
1 0000	UM	31065.72	3	< 0.01
	OFV	29899.55	3	< 0.01

TB	Metric	ChiSq	DF	p
TB060	HV	352.67	3	< 0.01
1 0000	IGD	357.3	3	< 0.01
	ET	32231.22	3	< 0.01
	CTR	3523.93	3	< 0.01
TB070	UM	30035.55	3	< 0.01
1 D07 0	OFV	31139.4	3	< 0.01
	HV	357.02	3	< 0.01
	IGD	362.34	3	< 0.01
	ET	31014.42	3	< 0.01
	CTR	3233.77	3	< 0.01
TB080	UM	29064.14	3	< 0.01
1 DUOU	OFV	30596.86	3	< 0.01
	HV	351.33	3	< 0.01
	IGD	357.44	3	< 0.01
	ET	27440.64	3	< 0.01
	CTR	1870.72	3	< 0.01
TB090	UM	25028.22	3	< 0.01
1 DU9U	OFV	27061.46	3	< 0.01
	HV	351.08	3	< 0.01
	IGD	358.03	3	< 0.01
	ET	18297.92	3	< 0.01
	CTR	960.39	3	< 0.01
TB100	UM	17593.49	3	< 0.01
1 D100	OFV	18091.92	3	< 0.01
	HV	333.16	3	< 0.01
	IGD	340.61	3	< 0.01

TABLE 13. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM))

ТВ	Alcorithm A	AlgorithmB	I	ET	C	TR	U	M	О	FV	F	ΙV	I	GD
1 D	AlgorithmA	Aigoriumib	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01

			T	ET	C	TR	T	J M		FV	T	IV	10	13 GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	CellDE	<0.1	<0.01	>0.5	<0.01	<0.1	<0.01	<0.1	<0.01	>0.9	<0.01	<0.1	<0.01
	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
TB050	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01
TED 0.40	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 00/0	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 14. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, AUM))

ТВ	Metric		Rai	nk			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB010	UM	2	3	1	4	20%	30%	10%	40%
10010	OFV	2	2	3	1	25%	25%	38%	12%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB020	UM	2	3	1	4	20%	30%	10%	40%
1 0020	OFV	3	2	4	1	30%	20%	40%	10%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB030	UM	2	3	1	4	20%	30%	10%	40%
	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	20%	40%	10%

TD	Matria		Rank NSGA2 MoCell				Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB030	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB040	UM	2	3	1	4	20%	30%	10%	40%
1 0040	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
TB050	UM	2	3	1	4	20%	30%	10%	40%
1 0000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
TB060	UM	2	3	1	4	20%	30%	10%	40%
1 0000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
TB070	UM	2	3	1	4	20%	30%	10%	40%
1 0070	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
TB080	UM	2	3	1	4	20%	30%	10%	40%
1 0000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
TB090	UM	2	3	1	4	20%	30%	10%	40%
1 0090	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
TB100	UM	2	3	1	4	20%	30%	10%	40%
10100	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.2.2.2 Problem 2: This section describes the results for prioritization problem f(PET, PTR, PUS).

TABLE 15. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	1501.45	3	< 0.01
	CTR	19.47	3	< 0.01
TB010	USP	17.53	3	< 0.01
10010	OFV	8.4	3	< 0.05
	HV	174.36	3	< 0.01
	IGD	304.75	3	< 0.01
	ET	1566.03	3	< 0.01
TB020	CTR	116.75	3	< 0.01
	USP	0.47	3	>0.05

ТВ	Metric	ChiSq	DF	p
	OFV	279.32	3	< 0.01
TB020	HV	293.98	3	< 0.01
	IGD	335.57	3	< 0.01
	ET	1244.62	3	< 0.01
	CTR	31.24	3	< 0.01
TB030	USP	15.58	3	< 0.01
1 0030	OFV	830.77	3	< 0.01
	HV	336.11	3	< 0.01
	IGD	335.46	3	< 0.01
	ET	946.73	3	< 0.01
	CTR	94.25	3	< 0.01
TB040	USP	5.85	3	>0.05
10040	OFV	865.54	3	< 0.01
	HV	342.23	3	< 0.01
	IGD	342.04	3	< 0.01
	ET	920.58	3	< 0.01
	CTR	141.41	3	< 0.01
TB050	USP	8.64	3	< 0.05
10000	OFV	908.48	3	< 0.01
	HV	346.7	3	< 0.01
	IGD	346.56	3	< 0.01
	ET	930.37	3	< 0.01
	CTR	152.37	3	< 0.01
TB060	USP	7.57	3	>0.05
10000	OFV	917.87	3	< 0.01
	HV	343.83	3	< 0.01
	IGD	343.75	3	< 0.01
	ET	998.18	3	< 0.01
	CTR	111.74	3	< 0.01
TB070	USP	9.74	3	< 0.05
10070	OFV	991.53	3	< 0.01
	HV	342.54	3	< 0.01
	IGD	342.35	3	< 0.01
	ET	888.28	3	< 0.01
	CTR	96.55	3	< 0.01
TB080	USP	2.76	3	>0.05
12000	OFV	883.78	3	< 0.01
	HV	348.61	3	< 0.01
	IGD	348.47	3	< 0.01
	ET	922.38	3	< 0.01
	CTR	107.91	3	<0.01
TB090	USP	8.36	3	< 0.05
	OFV	921.68	3	< 0.01
	HV	344.02	3	< 0.01
	IGD	344.06	3	< 0.01
	ET	765.19	3	< 0.01
	CTR	82.34	3	< 0.01
TB100	USP	12.11	3	< 0.01
	OFV	762.77	3	< 0.01
	HV	343.9	3	< 0.01
	IGD	343.99	3	< 0.01

TABLE 16. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS))

ТВ	AlgorithmA	AlgorithmB	ET		CTR		USP		OFV		HV		IGD		
	1 b Algoriti	AigonumiA	Aigoriumib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	TB010	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01

ТВ	AlgorithmA	AlgorithmB		ET		TR		SP		FV		IV		GD
10			A12	p	A12	p	A12	p	A12	p	A12	p	A12	p
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.5	<0.01	>0.5	< 0.01
TD010	NSGA2	CellDE	<0.1	< 0.01	>0.5	<0.01	>0.5	<0.05	>0.5	>0.05	>0.5	< 0.01	<0.1	< 0.01
TB010	MoCell MoCell	SPEA2 CellDE	>0.5	<0.01 <0.01	>0.5 >0.5	> 0.0 5 <0.01	<0.5 >0.5	>0.05 < 0.01	>0.5	> 0.05 <0.01	<0.5 >0.5	<0.01	>0.9	<0.01 <0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.01	>0.5	>0.01	<0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.5	$\frac{>0.05}{>0.05}$	>0.5	<0.01	<0.5	< 0.01	>0.1	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	<0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	<0.1	< 0.01	< 0.5	< 0.01	<0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	<0.5	>0.05	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	<0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	<0.01
	NSGA2 NSGA2	MoCell SPEA2	<0.1 >0.5	<0.01	<0.5 >0.5	>0.05	>0.5 >0.5	>0.05 < 0.01	<0.1 >0.5	<0.01	>0.9	<0.01 <0.01	<0.1 >0.5	<0.01
	NSGA2 NSGA2	CellDE	<0.1	< 0.01	<0.5	> 0.05 <0.01	>0.5	>0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	<0.01
TB050	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.5	$\frac{>0.05}{>0.05}$	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	>0.05	<0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TDOGO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	<0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	<0.1	<0.01	<0.5	<0.01	<0.5	< 0.05	<0.1	< 0.01	>0.9	<0.01	<0.1	<0.01
	SPEA2	CellDE	<0.1	<0.01	<0.5	<0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2 NSGA2	SPEA2 CellDE	>0.5	<0.01 <0.01	>0.5 <0.5	> 0.05 <0.01	<0.5 <0.5	>0.05 >0.05	>0.5	<0.01 <0.01	<0.5 >0.9	<0.01 <0.01	>0.5	<0.01
TB080	MoCell	SPEA2	>0.1	< 0.01	>0.5	>0.01	<0.5	>0.05	>0.1	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	<0.01	<0.5	<0.01	<0.1	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.1	< 0.01	<0.5	>0.05	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	<0.5	>0.05	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01
EED COC	NSGA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	<0.5	< 0.05	>0.9	< 0.01	<0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	<0.1	< 0.01	<0.5	< 0.01	<0.5	>0.05	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TD100	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
				-										

ТВ	AlgorithmA	AlgorithmA A	AlgorithmB	F	ET	C'	TR	U	SP	О	FV	I	IV	IC	GD
10	AigonumiA	Aigontillib	A12	p	A12	p	A12	p	A12	p	A12	p	A12	p	
TB100	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	
10100	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	

TABLE 17. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, PUS))

TD	36.1		Rai	nk			Confidence					
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	2	1	29%	29%	29%	14%			
TB010	USP	2	2	2	1	29%	29%	29%	14%			
1 0010	OFV	1	1	1	1	25%	25%	25%	25%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB020	USP	1	1	1	1	25%	25%	25%	25%			
1 D020	OFV	2	2	1	3	25%	25%	12%	38%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TROOO	USP	1	1	2	1	20%	20%	40%	20%			
TB030	OFV	1	3	2	4	10%	30%	20%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TD040	USP	2	1	1	2	33%	17%	17%	33%			
TB040	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	2	1	3	14%	29%	14%	43%			
TROFO	USP	1	1	1	1	25%	25%	25%	25%			
TB050	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TDOGO	USP	1	1	2	2	17%	17%	33%	33%			
TB060	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TDOTO	USP	1	1	2	2	17%	17%	33%	33%			
TB070	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TDOOO	USP	1	1	1	2	20%	20%	20%	40%			
TB080	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
TB090	ET	3	2	4	1	30%	20%	40%	10%			

ТВ	Metric		Rai	nk		Confidence						
1 1 1	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	CTR	1	2	1	3	14%	29%	14%	43%			
	USP	1	1	2	2	17%	17%	33%	33%			
TB090	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB100	USP	1	1	2	2	17%	17%	33%	33%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			

B.2.2.3 Problem 3: This section describes the results for prioritization problem f(PET, PTR, ANU).

TABLE 18. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, ANU))

TB	Metric	ChiSq	DF	p
	ET	26429.48	3	< 0.01
	CTR	10522.79	3	< 0.01
TD010	NU	20857.29	3	< 0.01
TB010	OFV	8151.06	3	< 0.01
	HV	257.56	3	< 0.01
	IGD	334.65	3	< 0.01
	ET	20228.29	3	< 0.01
	CTR	15042.94	3	< 0.01
TB020	NU	27523.18	3	< 0.01
1 DUZU	OFV	10884.49	3	< 0.01
	HV	305.76	3	< 0.01
	IGD	345.02	3	< 0.01
	ET	26612.7	3	< 0.01
	CTR	9314.68	3	< 0.01
TB030	NU	28482.28	3	< 0.01
1 DU3U	OFV	661.85	3	< 0.01
	HV	341.17	3	< 0.01
	IGD	353.98	3	< 0.01
	ET	28325.89	3	< 0.01
	CTR	5442.15	3	< 0.01
TB040	NU	30574.39	3	< 0.01
1 DU4U	OFV	6176.36	3	< 0.01
	HV	340.22	3	< 0.01
	IGD	350.81	3	< 0.01
	ET	28698.19	3	< 0.01
	CTR	5251.9	3	< 0.01
TB050	NU	30198.4	3	< 0.01
1 0000	OFV	17694.11	3	< 0.01
	HV	344.68	3	< 0.01
	IGD	351	3	< 0.01
	ET	27025.75	3	< 0.01
	CTR	4090.53	3	< 0.01
TB060	NU	27973.81	3	< 0.01
1 0000	OFV	21441.55	3	< 0.01
	HV	347.34	3	< 0.01
	IGD	356.8	3	< 0.01
	ET	25886.09	3	< 0.01
	CTR	4690.48	3	< 0.01
TB070	NU	26294.92	3	< 0.01
	OFV	24583.63	3	< 0.01
	HV	350.17	3	< 0.01

ТВ	Metric	ChiSq	DF	p
TB070	IGD	356.34	3	< 0.01
	ET	25119.92	3	< 0.01
	CTR	5015.73	3	< 0.01
TB080	NU	25070.7	3	< 0.01
1 0000	OFV	25162.86	3	< 0.01
	HV	355.02	3	< 0.01
	IGD	360.75	3	< 0.01
	ET	20861.68	3	< 0.01
	CTR	4385.86	3	< 0.01
TB090	NU	19924.75	3	< 0.01
1 D090	OFV	21044.79	3	< 0.01
	HV	350.73	3	< 0.01
	IGD	355.22	3	< 0.01
	ET	11542.22	3	< 0.01
	CTR	1831.93	3	< 0.01
TB100	NU	11085.62	3	< 0.01
1 D100	OFV	11686.15	3	< 0.01
	HV	333.7	3	< 0.01
	IGD	340.41	3	< 0.01

TABLE 19. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, ANU))

ТВ	AlgorithmA	AlgorithmB	I	ET	C	TR	N	NU	О	FV	F	IV	I	GD
1 D	AigoriumA	Aigoriumb	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 10010	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	A 1 a t la A	A loonith no D	F	ET	С	TR	N	IU	О	FV	I	IV	IC	GD
1 D	AlgorithmA	AlgorithmB	A12	р										
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
TB060	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 1 0 0	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 20. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, ANU))

тр	Matria		Rai	ık		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	3	1	25%	25%	38%	12%			
TB010	NU	2	3	1	4	20%	30%	10%	40%			
1 0010	OFV	2	3	4	1	20%	30%	40%	10%			
	HV	3	2	2	1	38%	25%	25%	12%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB020	NU	2	3	1	4	20%	30%	10%	40%			
1 0020	OFV	3	2	4	1	30%	20%	40%	10%			
	HV	4	2	3	1	40%	20%	30%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	4	1	30%	20%	40%	10%			
TB030	NU	2	3	1	4	20%	30%	10%	40%			
1 0000	OFV	2	4	3	1	20%	40%	30%	10%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	4	3	2	1	40%	30%	20%	10%			
TB040	NU	2	3	1	4	20%	30%	10%	40%			
1 0040	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			

тр	Makeia		Rai	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB050	NU	2	3	1	4	20%	30%	10%	40%			
1 0000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB060	NU	2	3	1	4	20%	30%	10%	40%			
1 0000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	4	1	2	30%	40%	10%	20%			
TB070	NU	2	3	1	4	20%	30%	10%	40%			
1 0070	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	4	1	3	20%	40%	10%	30%			
TB080	NU	2	3	1	4	20%	30%	10%	40%			
1 0000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	4	1	3	20%	40%	10%	30%			
TB090	NU	2	3	1	4	20%	30%	10%	40%			
10000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	3	22%	33%	11%	33%			
TB100	NU	2	3	1	4	20%	30%	10%	40%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			

B.2.2.4 Problem 4: This section describes the results for prioritization problem f(PET, PTR, PUU).

TABLE 21. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, PUU))

TB	Metric	ChiSq	DF	p
	ET	1870.96	3	< 0.01
	CTR	119.19	3	< 0.01
TB010	NUU	143.47	3	< 0.01
10010	OFV	266.77	3	< 0.01
	HV	254.03	3	< 0.01
	IGD	305.78	3	< 0.01
	ET	1433.8	3	< 0.01
	CTR	170.4	3	< 0.01
TB020	NUU	76.16	3	< 0.01
1 0020	OFV	631.12	3	< 0.01
	HV	314.3	3	< 0.01
	IGD	333.2	3	< 0.01
	ET	1197.63	3	< 0.01
TB030	CTR	146.14	3	< 0.01
1 0000	NUU	97.64	3	< 0.01
	OFV	963.56	3	< 0.01

TB	Metric	ChiSq	DF	p
TB030	HV	344.31	3	< 0.01
1 0000	IGD	344.16	3	< 0.01
	ET	992.19	3	< 0.01
	CTR	151.6	3	< 0.01
TB040	NUU	180.62	3	< 0.01
10040	OFV	962.37	3	< 0.01
	HV	342.26	3	< 0.01
	IGD	342.3	3	< 0.01
	ET	944.37	3	< 0.01
	CTR	125.25	3	< 0.01
TB050	NUU	111.93	3	< 0.01
1 0000	OFV	899.67	3	< 0.01
	HV	345.97	3	< 0.01
	IGD	345.93	3	< 0.01
	ET	937.09	3	< 0.01
	CTR	160.71	3	< 0.01
TB060	NUU	142.66	3	< 0.01
1 DUOU	OFV	936.96	3	< 0.01
	HV	344.12	3	< 0.01
	IGD	344.12	3	< 0.01
	ET	894.03	3	< 0.01
	CTR	102.02	3	< 0.01
TD070	NUU	118.13	3	< 0.01
TB070	OFV	887.55	3	< 0.01
	HV	339.63	3	< 0.01
	IGD	339.58	3	< 0.01
	ET	822.49	3	< 0.01
	CTR	264.47	3	< 0.01
TDOOO	NUU	91.6	3	< 0.01
TB080	OFV	823.6	3	< 0.01
	HV	341.09	3	< 0.01
	IGD	341.07	3	< 0.01
	ET	861.27	3	< 0.01
	CTR	142.77	3	< 0.01
TD000	NUU	112.46	3	< 0.01
TB090	OFV	861.43	3	< 0.01
	HV	344.14	3	< 0.01
	IGD	344.12	3	< 0.01
	ET	790.53	3	< 0.01
	CTR	109.13	3	< 0.01
TD100	NUU	63.33	3	< 0.01
TB100	OFV	789.16	3	< 0.01
	HV	348.34	3	< 0.01
	IGD	348.3	3	< 0.01

TABLE 22. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, PUU))

ТВ	AlgorithmA	AlgorithmB	F	ET	C	CTR		UU	0	FV	ŀ	IV	IGD	
10	AigoriumA	Aigontillio	A12	p										
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01

TD	A1 ':1 A	A1 '(1 D	I	ET	С	TR	N	UU	О	FV	I	IV	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р										
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
10020	MoCell	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	< 0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.05	< 0.5	< 0.05	>0.5	>0.05	>0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
12000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	<0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	1	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
15070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
12100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	<0.5	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01

TABLE 23. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, PUU))

	25.4		Ra	nk		Confidence						
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	2	25%	38%	12%	25%			
TB010	NUU	2	3	1	3	22%	33%	11%	33%			
10010	OFV	2	3	1	3	22%	33%	11%	33%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	3	1	3	22%	33%	11%	33%			
TB020	NUU	2	2	1	3	25%	25%	12%	38%			
1 0020	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	3	1	33%	22%	33%	11%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	4	2	3	1	40%	20%	30%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB030	NUU	2	2	1	3	25%	25%	12%	38%			
12000	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	3	1	33%	22%	33%	11%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB040	NUU	2	2	1	3	25%	25%	12%	38%			
12010	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB050	NUU	1	1	1	2	20%	20%	20%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
TB060	NUU	2	3	1	4	20%	30%	10%	40%			
	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	1	1	1	2	20%	20%	20%	40%			
TB070	NUU OFV	2	3	1	2	20% 20%	20% 30%	20% 10%	40% 40%			
	HV			1	4							
	IGD	3 3	2	4	1	30% 30%	20% 20%	40% 40%	10%			
	ET		2	4	1				10%			
	CTR	3 2	2	4	1	30% 25%	20% 25%	40% 12%	10% 38%			
	NUU	1	2 1	1 1	3 2	25%	25%	20%	38% 40%			
TB080	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	ET	3	2	3	1	33%	20%	33%	10%			
	CTR	2	2	1	3	25%	25%	12%	38%			
	NUU	1	1	1	2	25%	25%	20%	40%			
TB090	OFV	1	2	1	3	14%	20%	14%	40%			
	HV	3	2		1	30%	29%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			
	IGD			4	1	JU /0	ZU /0	± U /0	10 /0			

ТВ	Metric		Rai	nk		Confidence						
10	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE			
	ET	3	2	4	1	30%	20%	40%	10%			
	CTR	3	2	1	4	30%	20%	10%	40%			
TB100	NUU	2	1	1	3	29%	14%	14%	43%			
10100	OFV	2	3	1	4	20%	30%	10%	40%			
	HV	3	2	4	1	30%	20%	40%	10%			
	IGD	3	2	4	1	30%	20%	40%	10%			

B.2.2.5 Problem 5: This section describes the results for prioritization problem f(PET, PTR, AUM, PUS).

TABLE 24. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUS))

ТВ	Metric	ChiSq	DF	p
	ET	13433.1	3	< 0.01
	CTR	9243.85	3	< 0.01
	UM	15659.97	3	< 0.01
TB010	USP	8843.92	3	< 0.01
	OFV	6887.61	3	< 0.01
	HV	196.63	3	< 0.01
	IGD	230.74	3	< 0.01
	ET	16992.87	3	< 0.01
	CTR	10812.77	3	< 0.01
	UM	22727.58	3	< 0.01
TB020	USP	10315.08	3	< 0.01
	OFV	6598.47	3	< 0.01
	HV	268.42	3	< 0.01
	IGD	237.41	3	< 0.01
	ET	22280.68	3	< 0.01
	CTR	10152.52	3	< 0.01
	UM	26869.3	3	< 0.01
TB030	USP	9903.45	3	< 0.01
	OFV	1031.74	3	< 0.01
	HV	265.52	3	< 0.01
	IGD	329.41	3	< 0.01
	ET	25115.85	3	< 0.01
	CTR	8685.7	3	< 0.01
	UM	27006.32	3	< 0.01
TB040	USP	8940.18	3	< 0.01
	OFV	1077.6	3	< 0.01
	HV	261.96	3	< 0.01
	IGD	316.75	3	< 0.01
	ET	28503.27	3	< 0.01
	CTR	6317.7	3	< 0.01
	UM	27655.86	3	< 0.01
TB050	USP	6532.82	3	< 0.01
	OFV	9840.46	3	< 0.01
	HV	298.37	3	< 0.01
	IGD	345.8	3	< 0.01
	ET	30290.52	3	< 0.01
	CTR	6910.37	3	<0.01
	UM	27922.18	3	<0.01
TB060	USP	6755.43	3	<0.01
	OFV	16988.69	3	<0.01
	HV	313.7	3	<0.01
	IGD	352.24	3	<0.01
	ET	31002.19	3	<0.01
	CTR	6288.31	3	<0.01
TB070	UM	28522.02	3	<0.01
	USP	6340.42	3	<0.01

ТВ	Metric	ChiSq	DF	p
	OFV	24480.57	3	< 0.01
TB070	HV	312.9	3	< 0.01
	IGD	352.19	3	< 0.01
	ET	31768.59	3	< 0.01
	CTR	6200.84	3	< 0.01
	UM	30075	3	< 0.01
TB080	USP	5890.82	3	< 0.01
	OFV	28060.85	3	< 0.01
	HV	323.52	3	< 0.01
	IGD	355.94	3	< 0.01
	ET	30684.56	3	< 0.01
	CTR	4674.96	3	< 0.01
	UM	30215.06	3	< 0.01
TB090	USP	4284.48	3	< 0.01
	OFV	27865.74	3	< 0.01
	HV	321.72	3	< 0.01
	IGD	350.41	3	< 0.01
	ET	26111.32	3	< 0.01
	CTR	2218.18	3	< 0.01
	UM	25857.3	3	< 0.01
TB100	USP	1712.72	3	< 0.01
	OFV	24652.15	3	< 0.01
	HV	321.06	3	< 0.01
	IGD	335.14	3	< 0.01

TABLE 25. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUS))

ТВ	Algorithm A	AlgorithmB	E	ET	С	TR	U	M	U	SP	О	FV	ŀ	IV	IC	GD
1 D		Aigoriumb	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.05
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5			< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5		< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0030	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
TB050	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
1 0030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01

	A 1 1.1 A	4.1 1:1 D	I	ET	С	TR	U	M	U	SP	О	FV	Н	I V	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	p	A12	р								
TROFO	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB050	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	> 0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
-	SPEA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	> 0.5	< 0.01	>0.5		1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TDOOG	MoCell	SPEA2	>0.9	< 0.01	> 0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	
TB090	NSGA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.9	< 0.01	> 0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1		< 0.5	>0.05	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	> 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
15100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01		< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	,	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 26. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUS))

ТВ	Metric		Rai	nk			Confic	lence	
1 1 1	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	20% 40% 20% 40% 30% 10% 20% 40% 25% 38% 30% 20% 25% 25% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%	CellDE	
	ET	3	2	4	1	30%	20%	MoCell SPEA2 C 20% 40% 0 20% 40% 0 30% 10% 0 20% 40% 0 25% 38% 0 25% 25% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0 20% 40% 0	10%
	CTR	3	2	4	1	30%	20%		10%
	UM	2	3	1	4	20%	30%	10%	40%
TB010	USP	3	2	4	1	30%	20%	40%	10%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	4	3	2	1	40%	30%	20%	10%
	IGD	3	2	2	1	38%	25%	25%	12%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB020	USP	3	2	4	1	30%	20%	40%	10%
	OFV	3	2	4	1	30%	20%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
TB030	UM	2	3	1	4	20%	30%	10%	40%
	USP	3	2	4	1	30%	20%	40%	10%
	OFV	2	2	3	1	25%	25%	38%	12%

TD	Matri		Ra	nk			Confi	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB030	HV	4	2	3	1	40%	20%	30%	10%
1 0030	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB040	USP	3	2	2	1	38%	25%	25%	12%
	OFV	2	3	1	3	22%	33%	11%	33%
	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	3	2	1	33%	33%	22%	11%
	UM	2	3	1	4	20%	30%	10%	40%
TB050	USP	3	3	2	1	33%	33%	22%	11%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB060	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB070	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB080	USP	3	4	2	1	30%	40%	20%	10%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	UM	2	3	1	4	20%	30%	10%	40%
TB090	USP	2	3	1	1	29%	43%	14%	14%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
I	CTR	2	3	1	1	29%	43%	14%	14%
UM 2		3	1	4	20%	30%	10%	40%	
TB100	USP	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
ŀ	HV	3	2	4	1	30%	20%	40%	10%
1	111								

 $\mbox{B.2.2.6} \quad \mbox{Problem 6: This section describes the results for prioritization problem } f(PET, PTR, AUM, ANU). \\$

TABLE 27. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, ANU))

ТВ	Metric	ChiSq	DF	p
TB010	ET	2065.44	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	8615.69	3	< 0.01
	UM	324.74	3	< 0.01
TTP 0.1.0	NU	14283.14	3	< 0.01
TB010	OFV	5196.09	3	< 0.01
·	HV	175.27	3	< 0.01
	IGD	242.89	3	<0.01
	ET	3662.44	3	<0.01
	CTR	11372.44	3	<0.01
	UM	794.33	3	<0.01
TB020	NU	19406.44	3	<0.01
10020	OFV	5156.67	3	<0.01
	HV	311.04	3	<0.01
	IGD	244.15	3	<0.01
	ET	1		
		8887.6	3	<0.01
	CTR	7674.68	3	<0.01
	UM	2265.69	3	< 0.01
TB030	NU	25387.54	3	< 0.01
	OFV	690.94	3	< 0.01
	HV	313.62	3	< 0.01
	IGD	274.17	3	< 0.01
	ET	12937.5	3	< 0.01
	CTR	4518.8	3	< 0.01
	UM	4971.07	3	< 0.01
TB040	NU	25048.32	3	< 0.01
	OFV	7616.31	3	< 0.01
ļ	HV	246.68	3	< 0.01
ŀ	IGD	332.73	3	< 0.01
	ET	16742.92	3	< 0.01
	CTR	2567.12	3	<0.01
	UM	6155.25	3	<0.01
TB050	NU	24414.5	3	<0.01
12000	OFV	14514.24	3	<0.01
}	HV	236.54	3	<0.01
	IGD	347.97	3	<0.01
	ET	17776.55	3	<0.01
	CTR	2203.29	3	<0.01
	UM	7452.83	3	<0.01
TP060				
TB060	NU OFV	23925.09 17293.23	3	<0.01 <0.01
	HV	246.11	3	<0.01
		1		
	IGD	359.03	3	<0.01
	ET	18273.72	3	<0.01
	CTR	1335.61	3	<0.01
FD 0 F 0	UM	8120.36	3	<0.01
TB070	NU	24758.02	3	< 0.01
	OFV	19254.31	3	< 0.01
	HV	256.28	3	< 0.01
	IGD	359.83	3	< 0.01
	ET	19414.65	3	< 0.01
	CTR	693.21	3	< 0.01
	UM	8692.15	3	< 0.01
TB080	NU	24156	3	< 0.01
	OFV	20670.64	3	< 0.01
	HV	269.6	3	< 0.01
	IGD	359.02	3	< 0.01
	ET	20214.73	3	< 0.01
TB090	CTR	522.92	3	<0.01
	UM		3	<0.01

TB	Metric	ChiSq	DF	p
	NU	23444.02	3	< 0.01
TB090	OFV	21396.08	3	< 0.01
1 0090	HV	269.73	3	< 0.01
	IGD	356.74	3	< 0.01
	ET	20201.52	3	< 0.01
	CTR	538.43	3	< 0.01
	UM	11662.41	3	< 0.01
TB100	NU	24322.81	3	< 0.01
	OFV	21089.12	3	< 0.01
	HV	226.88	3	< 0.01
	IGD	353.27	3	< 0.01

TABLE 28. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, ANU))

ТВ	AlgorithmA	AlgorithmR	I	ET	С	TR	U	M	N	IU	О	FV	F	IV	I	GD
1 D			A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TB010	NSGA2	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	1	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	1	>0.05	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05
TB020	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01
	MoCell	CellDE	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	1	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01
TB030	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	1	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	1	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0040	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	1	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	1	< 0.01	>0.9	< 0.01
TB050	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	1	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01
TB060	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10000	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
_	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	1	< 0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01
TB070	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
1 00/0	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.05	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	Algorithm A	AlgorithmB	I	ET	С	TR	U	M	N	IU	О	FV	ŀ	IV	IC	GD
1 1 1	AigoriumA	Aigonniii	A12	p	A12	р										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB080	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	> 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB090	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01
	NSGA2	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB100	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
1 1 100	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 29. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, ANU))

TD	Matria		Raı	nk			Confic	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	2	1	4	3	20%	10%	40%	30%
	CTR UM NU OFV HV IGD ET CTR UM NU OFV HV IGD IGD	2	2	3	1	25%	25%	38%	12%
	UM	1	2	2	3	12%	25%	25%	38%
TB010	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	2	3	1	1	29%	43%	14%	14%
		4	2	3	1	40%	20%	30%	10%
		3	1	4	2	30%	10%	40%	20%
	CTR	2	2	3	1	25%	25%	38%	12%
		2	3	1	4	20%	30%	10%	40%
TB020		2	3	1	4	20%	30%	10%	40%
		2	3	4	1	20%	30%	40%	10%
		3	4	2	1	30%	40%	20%	10%
		3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
		2	2	3	1	25%	25%	38%	12%
		2	3	1	4	20%	30%	10%	40%
TB030		2	3	1	4	20%	30%	10%	40%
		2	4	1	3	20%	40%	10%	30%
		3	4	2	1	30%	40%	20%	10%
		4	2	3	1	40%	20%	30%	10%
		3	2	4	1	30%	20%	40%	10%
		2	3	4	1	20%	30%	40%	10%
		2	3	1	4	20%	30%	10%	40%
TB040		2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	4	2	1	30%	40%	20%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
TB050	UM	2	3	1	4	20%	30%	10%	40%
	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%

TD	M-1		Raı	ık			Confid	lence	
ТВ	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB050	HV	2	3	3	1	22%	33%	33%	11%
1 0000	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB060	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	2	3	4	1	20%	30%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	UM	2	3	1	4	20%	30%	10%	40%
TB070	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	2	3	4	1	20%	30%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	3	2	1	33%	33%	22%	11%
	UM	2	3	1	4	20%	30%	10%	40%
TB080	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	2	3	4	1	20%	30%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	UM	2	3	1	4	20%	30%	10%	40%
TB090	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	2	2	3	1	25%	25%	38%	12%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	3	2	1	33%	33%	22%	11%
	UM	2	3	1	4	20%	30%	10%	40%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	2	3	4	1	20%	30%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.2.2.7 Problem 7: This section describes the results for prioritization problem f(PET, PTR, AUM, PUU). TABLE 30. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUU))

TB	Metric	ChiSq	DF	p
	ET	14105.9	3	< 0.01
	CTR	10306.54	3	< 0.01
	UM	17038.39	3	< 0.01
TB010	NUU	7851.25	3	< 0.01
	OFV	5508.21	3	< 0.01
	HV	187.9	3	< 0.01
	IGD	232.9	3	< 0.01
	ET	17694.67	3	< 0.01
	CTR	11244.03	3	< 0.01
	UM	22588.3	3	< 0.01
TB020	NUU	9082.5	3	< 0.01
	OFV	4682.61	3	< 0.01
	HV	236.45	3	< 0.01
	IGD	234.8	3	< 0.01
TB030	ET	23912.56	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	10454.53	3	< 0.01
	UM	28070.08	3	< 0.01
TB030	NUU	8297.36	3	< 0.01
1 0000	OFV	197.42	3	< 0.01
	HV	270.19	3	< 0.01
	IGD	334.71	3	< 0.01
	ET	25692.54	3	< 0.01
	CTR	8791.7	3	< 0.01
	UM	29694.16	3	< 0.01
TB040	NUU	7429.35	3	< 0.01
	OFV	2807.67	3	< 0.01
	HV	299.23	3	< 0.01
	IGD	350.32	3	< 0.01
	ET	30447.4	3	< 0.01
	CTR	7612.15	3	< 0.01
	UM	28305.25	3	< 0.01
TB050	NUU	7004.07	3	< 0.01
	OFV	12989.4	3	< 0.01
	HV	327.93	3	< 0.01
	IGD	353.7	3	< 0.01
	ET	31706.48	3	< 0.01
	CTR	7786.44	3	< 0.01
	UM	30595.15	3	< 0.01
TB060	NUU	8071.41	3	< 0.01
	OFV	22497.82	3	< 0.01
	HV	337.66	3	< 0.01
	IGD	354.63	3	< 0.01
	ET	31400.1	3	< 0.01
	CTR	8310.06	3	< 0.01
	UM	29791.39	3	< 0.01
TB070	NUU	8896.1	3	< 0.01
	OFV	28077.22	3	< 0.01
	HV	321.82	3	< 0.01
	IGD	346.22	3	< 0.01
	ET	32606.62	3	< 0.01
	CTR	6735.09	3	< 0.01
TTD 0.00	UM	30969.04	3	< 0.01
TB080	NUU	7644.67	3	< 0.01
	OFV	29937.83	3	<0.01
	HV	338.57	3	<0.01
	IGD	352.46	3	<0.01
	ET	31475.8	3	<0.01
	CTR	6970.17	3	<0.01
TROOG	UM NUU	29983	3	<0.01
TB090		7184.67	3	<0.01
	OFV	29603.06	3	<0.01
	HV IGD	347.57 358.58	3	<0.01 <0.01
	ET		3	
		23183.22	3	<0.01
	CTR	2496.81	3	<0.01
TD100	UM	21107.07	3	<0.01
TB100	NUU	2909.46	3	<0.01
	OFV HV	22415.54	3	<0.01
		332.32	3 3	<0.01
	IGD	338.64	3	< 0.01

TABLE 31. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUU))

TD	A 1: 11 A	A1	I	ET	С	TR	U	M	N	UU	О	FV	I	IV	I	GD
TB	AlgorithmA	Algorithmb	A12	p	A12	р	A12	p	A12	р	A12	р	A12	р	A12	р
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5		>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
TD010	NSGA2	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB010	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TD000	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB020	MoCell	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05		< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	1	>0.05		>0.05	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	>0.5		>0.9	< 0.01	< 0.1	< 0.01
TB030	MoCell	SPEA2	>0.5	< 0.01		< 0.01	>0.9	< 0.01	< 0.5	>0.05			< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	>0.5	< 0.01			>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	>0.5	< 0.01		< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01
	NSGA2	CellDE	<0.1	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB040	MoCell	SPEA2	>0.5	< 0.01		< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	1	< 0.01	<0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	> 0.01	<0.5	< 0.01	>0.5	>0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB050	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5			< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	<0.5	< 0.01	<0.5	> 0.01	<0.5	< 0.01	>0.5	>0.01			>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5	< 0.03	>0.5	< 0.01	<0.5	< 0.01	>0.1 >0.5	< 0.01
	NSGA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01
TB060	MoCell	SPEA2	>0.1	< 0.01	>0.5	< 0.01	>0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	<0.1	< 0.01	>0.1	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	<0.1	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.1	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01		< 0.01	<0.1	< 0.01	>0.5	< 0.01		< 0.01	>0.9	< 0.01	<0.1	< 0.01
												< 0.01				
	NSGA2 NSGA2	MoCell SPEA2	<0.5 >0.5	< 0.01								< 0.01				
	NSGA2	CellDE	<0.1	< 0.01						< 0.01						
TB070	MoCell	SPEA2	>0.1	< 0.01	1		1	< 0.01						< 0.01		
	MoCell	CellDE	<0.1	< 0.01	1		<0.1	< 0.01								
	SPEA2	CellDE	<0.1	< 0.01				< 0.01			1			< 0.01	<0.1	
	NSGA2	MoCell	<0.1	< 0.01		<0.01	<0.1							< 0.01	<0.1	
	NSGA2 NSGA2	SPEA2	< 0.1 > 0.5	< 0.01		< 0.01	>0.5			< 0.01					>0.1	
	NSGA2	CellDE		< 0.01	1		<0.1	l		< 0.01	1			< 0.01	1	
TB080	MoCell	SPEA2	<0.1 > 0.9		1					< 0.01		< 0.01			1	< 0.01
															1	
	MoCell SPEA2	CellDE CellDE	<0.1	<0.01		<0.01 > 0.05	<0.1	<0.01 <0.01						<0.01 <0.01		
	NSGA2 NSGA2	MoCell	<0.1	<0.01			<0.1	< 0.01						< 0.01		
		SPEA2	>0.5			< 0.01		< 0.01			1			<0.01		
TB090	NSGA2	CellDE	<0.1	< 0.01	1	< 0.01	<0.1	<0.01							1	
	MoCell	SPEA2	>0.9	< 0.01				< 0.01						< 0.01		
	MoCell	CellDE	<0.1		1		<0.1			< 0.01						
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	< 0.5	< 0.01	<0.1	< 0.01	>0.9	< 0.01	< U.1	< 0.01

ТВ	AlgorithmA	AlgorithmB	ET		CTR		UM		NUU		OFV		HV		IGD	
			A12	p												
TB100	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 32. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, AUM, PUU))

ТВ	Metric		Ra	nk		Confidence				
1 B		NSGA2 MoCell SPEA2 Celll				NSGA2	MoCell	SPEA2	CellDE	
TB010	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	4	1	30%	20%	40%	10%	
	UM	2	3	1	4	20%	30%	10%	40%	
	NUU	3	2	4	1	30%	20%	40%	10%	
	OFV	2	2	3	1	25%	25%	38%	12%	
	HV	3	2	2	1	38%	25%	25%	12%	
	IGD	4	2	3	1	40%	20%	30%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	2	4	1	30%	20%	40%	10%	
TD000	UM	2	3	1	4	20%	30%	10%	40%	
TB020	NUU	3	2	4	1	30%	20%	40%	10%	
	OFV	2	2	3	1	25%	25%	38%	12%	
	HV	3	2	2	1	38%	25%	25%	12%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET CTR	3 2	2 2	4	1	30%	20% 25%	40%	10%	
		2		3	1	25%		38%	12%	
TD020	UM	2	3	1 2	4	20%	30%	10%	40%	
TB030	NUU	2	2	2	1	29%	29%	29%	14%	
	OFV HV	3	3 2	3	1	25% 33%	38% 22%	25% 33%	12% 11%	
	IGD	3	2	4	1 1	30%	20%	40%	10%	
	ET	3	2		1	30%	20%	40%	10%	
	CTR	4	3	2	1	40%	30%	20%	10%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB040	NUU	4	3	2	1	40%	30%	20%	10%	
10040	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	3	1	33%	22%	33%	11%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	3	2	1	33%	33%	22%	11%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB050	NUU	3	3	2	1	33%	33%	22%	11%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	3	2	1	33%	33%	22%	11%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB060	NUU	3	3	2	1	33%	33%	22%	11%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
TB070	CTR	2	3	1	1	29%	43%	14%	14%	
	UM	2	3	1	4	20%	30%	10%	40%	

ТВ	Metric		Rai	nk		Confidence				
1 D		NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE	
TB070	NUU	3	4	1	2	30%	40%	10%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	2	3	1	1	29%	43%	14%	14%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB080	NUU	3	4	1	2	30%	40%	10%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	1	2	30%	40%	10%	20%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB090	NUU	3	4	1	2	30%	40%	10%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	
	ET	3	2	4	1	30%	20%	40%	10%	
	CTR	3	4	1	2	30%	40%	10%	20%	
	UM	2	3	1	4	20%	30%	10%	40%	
TB100	NUU	3	4	1	2	30%	40%	10%	20%	
	OFV	2	3	1	4	20%	30%	10%	40%	
	HV	3	2	4	1	30%	20%	40%	10%	
	IGD	3	2	4	1	30%	20%	40%	10%	

 $\mbox{B.2.2.8} \quad \mbox{Problem 8: This section describes the results for prioritization problem } f(PET, PTR, PUS, ANU). \\$

TABLE 33. Results for the Kruskal-Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, ANU))

TB	Metric	ChiSq	DF	p
	ET	23577	3	< 0.01
	CTR	13237.58	3	< 0.01
	USP	12319.66	3	< 0.01
TB010	NU	21178.43	3	< 0.01
	OFV	11782.63	3	< 0.01
	HV	332.02	3	< 0.01
	IGD	326.93	3	< 0.01
	ET	22418.37	3	< 0.01
	CTR	16322.81	3	< 0.01
	USP	15275.95	3	< 0.01
TB020	NU	22918.86	3	< 0.01
	OFV	13720.88	3	< 0.01
	HV	306.75	3	< 0.01
	IGD	226.48	3	< 0.01
	ET	26173.65	3	< 0.01
	CTR	12551.9	3	< 0.01
	USP	12547.29	3	< 0.01
TB030	NU	27697.7	3	< 0.01
	OFV	4462.69	3	< 0.01
	HV	266.36	3	< 0.01
	IGD	336.14	3	< 0.01
	ET	28031.87	3	< 0.01
	CTR	8415.87	3	< 0.01
TB040	USP	9943.55	3	< 0.01
I DU I U	NU	27982.13	3	< 0.01
	OFV	3654.44	3	< 0.01
	HV	282.99	3	< 0.01

TB	Metric	ChiSq	DF	p
TB040	IGD	349.11	3	< 0.01
	ET	28558.5	3	< 0.01
	CTR	8416.69	3	< 0.01
	USP	10213.56	3	< 0.01
TB050	NU	29255.45	3	< 0.01
	OFV	10326.06	3	< 0.01
	HV	303.21	3	< 0.01
	IGD	316.68	3	< 0.01
	ET	28822.11	3	< 0.01
	CTR	8672.05	3	< 0.01
	USP	9653.19	3	< 0.01
TB060	NU	28155.51	3	< 0.01
	OFV	17719.99	3	< 0.01
	HV	303.32	3	< 0.01
	IGD	338.58	3	< 0.01
	ET	30679.82	3	< 0.01
	CTR	9185.72	3	< 0.01
	USP	9001.34	3	< 0.01
TB070	NU	30426.7	3	< 0.01
	OFV	25234.84	3	< 0.01
	HV	328.22	3	< 0.01
	IGD	359.51	3	< 0.01
	ET	30836.55	3	< 0.01
	CTR	9019.01	3	< 0.01
	USP	7175.66	3	< 0.01
TB080	NU	31082.6	3	< 0.01
	OFV	28464.99	3	< 0.01
	HV	328.71	3	< 0.01
	IGD	359.18	3	< 0.01
	ET	30580.75	3	< 0.01
	CTR	8672.65	3	< 0.01
	USP	6412.38	3	< 0.01
TB090	NU	29338.45	3	< 0.01
	OFV	29573.36	3	< 0.01
	HV	334.69	3	< 0.01
	IGD	360.19	3	< 0.01
	ET	25915.72	3	< 0.01
	CTR	5390.02	3	< 0.01
	USP	3153.01	3	< 0.01
TB100	NU	25572.36	3	< 0.01
	OFV	26580.67	3	< 0.01
	HV	315.92	3	< 0.01
	IGD	332.64	3	< 0.01

TABLE 34. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, ANU))

TB	Algorithm A	AlgorithmB	F	ET	C	TR	U	SP	N	IU	О	FV	H	IV	IC	GD
10	Aigonumia	Aigontimib	A12	p	A12	p	A12	p								
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0010	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB020	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.5	>0.05
	NSGA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TD	A.1 '(1 A	A1 '(1 D	I	ET	С	TR	U	SP	N	NU	О	FV	Н	V	IC	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р	A12	р
	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5		< 0.5	< 0.01		< 0.01	>0.5	< 0.05
TB020	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5			>0.05	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5						>0.5	< 0.01
TD 0 0 0	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1		>0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB030	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	<0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1		>0.5			< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1		>0.5			< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5			< 0.01		< 0.01	>0.5	< 0.01
FD 0 40	NSGA2	CellDE	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1					< 0.01	< 0.1	< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01		< 0.01	>0.5	< 0.01	>0.9		>0.5	< 0.01		< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1			< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	< 0.1		< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5		< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5		>0.5	< 0.01		< 0.01	>0.5	< 0.05
	NSGA2	CellDE	< 0.1	< 0.01	1	< 0.01	>0.5	< 0.01	< 0.1		< 0.5			< 0.01	< 0.1	< 0.01
TB050	MoCell	SPEA2	>0.9	< 0.01		< 0.01	>0.5	< 0.01	>0.9		>0.5			< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1		< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01		< 0.01	< 0.5	< 0.01	< 0.5		< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5		>0.5	< 0.01		< 0.01	>0.5	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1		< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9		>0.5	< 0.01		< 0.01	>0.9	< 0.01
	MoCell	CellDE	<0.1	< 0.01		< 0.01	>0.5	< 0.01	<0.1		< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1		< 0.1	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5		< 0.5	< 0.01		< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5		>0.5	< 0.01		$\frac{< 0.01}{< 0.01}$	>0.1	< 0.01
	NSGA2	CellDE	<0.1	< 0.01		< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.1	< 0.01		< 0.01	<0.1	< 0.01
TB070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9		>0.9	< 0.01		$\frac{< 0.01}{< 0.01}$	>0.9	< 0.01
	MoCell	CellDE	<0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	<0.5	< 0.01		< 0.01	<0.1	< 0.01
	SPEA2	CellDE	<0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	<0.1	< 0.01	< 0.1	< 0.01		< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	<0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01		< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5		>0.5	< 0.01		< 0.01	>0.9	< 0.01
	NSGA2	CellDE	< 0.1	< 0.01		< 0.01	>0.5	< 0.01	<0.1					< 0.01	< 0.1	< 0.01
TB080	MoCell	SPEA2										< 0.01				
	MoCell	CellDE		< 0.01								< 0.01				
	SPEA2	CellDE	<0.1									< 0.01				
	NSGA2	MoCell	< 0.5									< 0.01			ı	
	NSGA2	SPEA2	>0.5		1		ı					< 0.01			ı	< 0.01
	NSGA2	CellDE	l	< 0.01	1							< 0.01			ı	
TB090	MoCell	SPEA2	l	< 0.01	1							< 0.01				< 0.01
	MoCell	CellDE	l	< 0.01	1		ı					< 0.01			ı	
	SPEA2	CellDE	<0.1		1		<0.5					< 0.01			ı	< 0.01
	NSGA2	MoCell	<0.5				<0.5			< 0.01					ı	< 0.01
	NSGA2	SPEA2	>0.5				>0.5			< 0.01						< 0.01
	NSGA2	CellDE	l	1	1							< 0.01				
TB100	MoCell	SPEA2				< 0.01						< 0.01				
	MoCell	CellDE				< 0.01						< 0.01				
	SPEA2	CellDE		< 0.01								< 0.01				
	SI EAZ	CeliDE	<0.1	<0.01	<u> </u>	\U.U1	<0.3	\U.U1	<0.1	<0.01	<0.1	<0.01	/0.9	<u> √0.01</u>	<0.1	\0.01

TABLE 35. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, ANU))

	25.4		Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	4	1	20%	30%	40%	10%
	USP	2	2	3	1	25%	25%	38%	12%
TB010	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	4	1	20%	30%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	USP	3	2	3	1	33%	22%	33%	11%
TB020	NU	2	3	1	4	20%	30%	10%	40%
	OFV	3	2	4	1	30%	20%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	2	3	1	40%	20%	30%	10%
	USP	4	3	2	1	40%	30%	20%	10%
TB030	NU	2	3	1	4	20%	30%	10%	40%
	OFV	3	3	2	1	33%	33%	22%	11%
	HV	4	2	3	1	40%	20%	30%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	3	2	1	33%	33%	22%	11%
	USP	3	4	2	1	30%	40%	20%	10%
TB040	NU	2	3	1	4	20%	30%	10%	40%
	OFV	3	4	1	2	30%	40%	10%	20%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
	USP	3	4	2	1	30%	40%	20%	10%
TB050	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	2	1	30%	40%	20%	10%
TTD 0.40	USP	3	4	2	1	30%	40%	20%	10%
TB060	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
TDOTO	USP	3	4	2	1	30%	40%	20%	10%
TB070	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TDOO	CTR	3	4	1	2	30%	40%	10%	20%
TB080	USP	2	3	1	1	29%	43%	14%	14%
	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%

ТВ	Metric		Ra	nk			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
TB080	HV	3	2	4	1	30%	20%	40%	10%
1 0000	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	USP	3	4	1	2	30%	40%	10%	20%
TB090	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	2	25%	38%	12%	25%
	USP	3	4	1	2	30%	40%	10%	20%
TB100	NU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.2.2.9 Problem 9: This section describes the results for prioritization problem f(PET, PTR, PUS, PUU). TABLE 36. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, PUU))

TB	Metric	ChiSq	DF	p
	ET	2422.93	3	< 0.01
	CTR	323.3	3	< 0.01
	USP	10.28	3	< 0.05
TB010	NUU	170.86	3	< 0.01
	OFV	274.42	3	< 0.01
	HV	165.3	3	< 0.01
	IGD	154.79	3	< 0.01
	ET	1926.56	3	< 0.01
	CTR	152.62	3	< 0.01
	USP	13.07	3	< 0.01
TB020	NUU	138.76	3	< 0.01
	OFV	560.12	3	< 0.01
	HV	279.38	3	< 0.01
	IGD	253.94	3	< 0.01
	ET	1636.72	3	< 0.01
	CTR	51.83	3	< 0.01
	USP	9.96	3	< 0.05
TB030	NUU	63.8	3	< 0.01
	OFV	1211.88	3	< 0.01
	HV	315.61	3	< 0.01
	IGD	319.62	3	< 0.01
	ET	1513.98	3	< 0.01
	CTR	253.64	3	< 0.01
	USP	1.48	3	>0.05
TB040	NUU	118.44	3	< 0.01
	OFV	1443.83	3	< 0.01
	HV	334.92	3	< 0.01
	IGD	335.47	3	< 0.01
	ET	1416.18	3	< 0.01
	CTR	256.92	3	< 0.01
	USP	7.27	3	>0.05
TB050	NUU	173.87	3	< 0.01
	OFV	1392.58	3	< 0.01
	HV	330.11	3	< 0.01
	IGD	329.78	3	< 0.01
TB060	ET	1465.13	3	< 0.01

TB	Metric	ChiSq	DF	p
	CTR	232.27	3	< 0.01
	USP	51.93	3	< 0.01
TB060	NUU	117.56	3	< 0.01
1 0000	OFV	1457	3	< 0.01
	HV	335.12	3	< 0.01
	IGD	334.95	3	< 0.01
	ET	1586.13	3	< 0.01
	CTR	204.69	3	< 0.01
	USP	4.76	3	>0.05
TB070	NUU	195.03	3	< 0.01
	OFV	1588.84	3	< 0.01
	HV	340.08	3	< 0.01
	IGD	339.88	3	< 0.01
	ET	1541.84	3	< 0.01
	CTR	233.19	3	< 0.01
	USP	8.59	3	< 0.05
TB080	NUU	136.45	3	< 0.01
	OFV	1536.71	3	< 0.01
	HV	336.27	3	< 0.01
	IGD	336.18	3	< 0.01
	ET	1454.03	3	< 0.01
	CTR	200.59	3	< 0.01
	USP	10.5	3	< 0.05
TB090	NUU	121.08	3	< 0.01
	OFV	1449.85	3	< 0.01
	HV	341.76	3	< 0.01
	IGD	341.55	3	< 0.01
	ET	1327.4	3	< 0.01
	CTR	130.84	3	< 0.01
	USP	0.75	3	>0.05
TB100	NUU	96.61	3	< 0.01
	OFV	1328.7	3	< 0.01
	HV	329.28	3	< 0.01
	IGD	329.01	3	< 0.01

TABLE 37. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, PUU))

ТВ	Algorithm A	AlgorithmB	I	ET	С	TR	U	SP	N	UU	О	FV	I	łV	I	GD
10	AiguittiiiiA	Aigoriumb	A12	p												
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	>0.5	>0.05
	NSGA2	SPEA2	>0.5	>0.05	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01
10010	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	>0.05	>0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.05	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

			I	ET	С	TR	T)	SP	N	UU	0	FV	F	IV	I	GD
TB	AlgorithmA	AlgorithmB	A12	р	A12	р										
	NSGA2	MoCell	<0.1	<0.01	>0.5	> 0.05	< 0.5	> 0.05	>0.5	> 0.05	< 0.1	<0.01	>0.9	$\frac{P}{<0.01}$		<0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	
	NSGA2	CellDE	<0.1	< 0.01	<0.5	< 0.01	ı	>0.05	< 0.5	< 0.01	<0.1	< 0.01		< 0.01	1	< 0.01
TB040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5		>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	-	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		< 0.01
	NSGA2	MoCell	<0.1	< 0.01	>0.5	< 0.05	< 0.5		>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.5	>0.05	>0.5	>0.05		< 0.01	>0.5	
	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01		>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01		< 0.01
TB050	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	< 0.01	< 0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01		
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	<0.1	< 0.01
	NSGA2	SPEA2	< 0.5	>0.05	>0.5	< 0.05	>0.5	< 0.01	>0.5	< 0.05	>0.5	>0.05	< 0.5	< 0.01	>0.5	< 0.01
TED 0 60	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB060	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	>0.5	< 0.01	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	< 0.05	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TDOTO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.05	>0.5	>0.05	>0.5	< 0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	< 0.5	>0.05	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	>0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01		< 0.01
TROSO	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
TB080	MoCell	SPEA2	>0.9	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05	< 0.1	< 0.01		< 0.01		< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB090	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0090	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01		< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	>0.5	< 0.05	< 0.5	>0.05	>0.5	< 0.05	< 0.1	< 0.01	>0.9	< 0.01		< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	>0.05	< 0.5	>0.05	>0.5	>0.05		< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 1 1 1 0 0	MoCell	SPEA2	>0.9	< 0.01	< 0.5	>0.05	>0.5	>0.05	< 0.5	>0.05	>0.9	< 0.01		< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	<0.5	>0.05	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 38. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, PUS, PUU))

ТВ	Metric		Rai	nk			Confid	lence	
1 1	Wietric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	3	1	33%	22%	33%	11%
	CTR	2	3	1	3	22%	33%	11%	33%
	USP	1	2	2	1	17%	33%	33%	17%
TB010	NUU	2	2	1	3	25%	25%	12%	38%
	OFV	2	3	1	3	22%	33%	11%	33%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	2	2	3	1	25%	25%	38%	12%
TB020	ET	3	2	3	1	33%	22%	33%	11%
1 0020	CTR	2	3	1	4	20%	30%	10%	40%

			Rai	nk			Confid	lence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	USP	1	1	2	2	17%	17%	33%	33%
	NUU	2	2	1	3	25%	25%	12%	38%
TB020	OFV	2	3	1	4	20%	30%	10%	40%
12020	HV	3	2	3	1	33%	22%	33%	11%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	2	3	14%	14%	29%	43%
	USP	1	1	1	2	20%	20%	20%	40%
TB030	NUU	1	1	2	3	14%	14%	29%	43%
1 0000	OFV	1	3	2	4	10%	30%	20%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	USP	1	1	1	1	25%	25%	25%	25%
TB040	NUU	1	1	1	2	20%	20%	20%	40%
1 0040	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	3	1	33%	22%	33%	11%
	CTR	3	2	1	4	30%	20%	10%	40%
	USP	1	2	1	2	17%	33%	17%	33%
TB050	NUU	2	1	2	3	25%	12%	25%	38%
1 0000	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	3	1	33%	22%	33%	11%
	CTR	1	1	1	2	20%	20%	20%	40%
	USP	2	2	1	3	25%	25%	12%	38%
TB060	NUU	1	1	1	2	20%	20%	20%	40%
1 2000	OFV	1	2	1	3	14%	29%	14%	43%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	1	3	25%	25%	12%	38%
	USP	1	2	2	2	14%	29%	29%	29%
TB070	NUU	3	2	1	4	30%	20%	10%	40%
10070	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	1	2	20%	20%	20%	40%
	USP	1	1	1	1	25%	25%	25%	25%
TB080	NUU	1	1	1	2	20%	20%	20%	40%
12000	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	1	1	2	3	14%	14%	29%	43%
	USP	1	2	1	2	17%	33%	17%	33%
TB090	NUU	1	1	2	3	14%	14%	29%	43%
12070	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
TB100	CTR	2	1	2	3	25%	12%	25%	38%
	USP	1	1	1	1	25%	25%	25%	25%
	= =	1							

ТВ	Metric		Rar	ık			Confic	lence	
10	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	NUU	2	1	2	3	25%	12%	25%	38%
TB100	OFV	2	3	1	4	20%	30%	10%	40%
1 1 1 1 1 1 1	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.2.2.10 Problem 10: This section describes the results for prioritization problem f(PET, PTR, ANU, PUU). TABLE 39. Results for the Kruskal–Wallis Test among Multi-Objective Algorithms (AW2, f(PET, PTR, ANU, PUU))

ТВ	Metric	ChiSq	DF	р
	ET	28182.85	3	< 0.01
	CTR	13282	3	< 0.01
	NU	21717.67	3	< 0.01
TB010	NUU	11802.52	3	< 0.01
	OFV	10828.58	3	< 0.01
	HV	292.9	3	< 0.01
	IGD	304.94	3	< 0.01
	ET	24953.24	3	< 0.01
	CTR	16683.23	3	< 0.01
	NU	24011.16	3	< 0.01
TB020	NUU	15210.63	3	< 0.01
	OFV	13080.3	3	< 0.01
	HV	280.82	3	< 0.01
	IGD	249.49	3	< 0.01
	ET	28751.27	3	< 0.01
	CTR	9960.68	3	< 0.01
	NU	27179.11	3	< 0.01
TB030	NUU	9482.99	3	< 0.01
	OFV	3100.14	3	< 0.01
	HV	294.1	3	< 0.01
	IGD	326.61	3	< 0.01
	ET	28780.1	3	< 0.01
	CTR	10328.68	3	< 0.01
	NU	28382.16	3	< 0.01
TB040	NUU	10100.4	3	< 0.01
	OFV	8230.37	3	< 0.01
	HV	324.15	3	< 0.01
	IGD	340.64	3	< 0.01
	ET	29500.97	3	< 0.01
	CTR	10391.5	3	< 0.01
	NU	29243.94	3	< 0.01
TB050	NUU	10253.99	3	< 0.01
	OFV	15436.04	3	< 0.01
	HV	320.01	3	< 0.01
	IGD	357.78	3	< 0.01
	ET	29901.44	3	< 0.01
	CTR	12915.78	3	< 0.01
	NU	29767.85	3	< 0.01
TB060	NUU	12440	3	< 0.01
	OFV	21029.57	3	< 0.01
	HV	329.83	3	<0.01
	IGD	343.69	3	< 0.01
	ET	30501.74	3	<0.01
	CTR	11484.71	3	<0.01
TB070	NU	31079.42	3	<0.01
	NUU	11686.19	3	<0.01
	OFV	27930.91	3	<0.01
	HV	334.43	3	< 0.01

TB	Metric	ChiSq	DF	p
TB070	IGD	360.8	3	< 0.01
	ET	31109.9	3	< 0.01
	CTR	10283.08	3	< 0.01
	NU	30642.76	3	< 0.01
TB080	NUU	9885.11	3	< 0.01
	OFV	30869.73	3	< 0.01
	HV	341.65	3	< 0.01
	IGD	360.49	3	< 0.01
	ET	30269.12	3	< 0.01
	CTR	9891.15	3	< 0.01
	NU	30674.98	3	< 0.01
TB090	NUU	8639.5	3	< 0.01
	OFV	30663.45	3	< 0.01
	HV	339.37	3	< 0.01
	IGD	359.09	3	< 0.01
	ET	20680.48	3	< 0.01
	CTR	5757.92	3	< 0.01
	NU	20623.66	3	< 0.01
TB100	NUU	5244.3	3	< 0.01
	OFV	21420.1	3	< 0.01
	HV	328.54	3	< 0.01
	IGD	347.85	3	< 0.01

TABLE 40. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Multi-Objective Algorithms (AW2, f(PET, PTR, ANU, PUU))

ТВ	AlgorithmA	AlgorithmR	I	ET	С	TR	N	IU	N	UU	О	FV	I	łV	I	GD
1 1 1	_	Aigoriumb	A12	p	A12	р										
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	>0.05	< 0.5	< 0.01	< 0.5	>0.05	< 0.5	>0.05	>0.5	< 0.01	<0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5		< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
TB010	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10010	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5		< 0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	>0.05
TB020	NSGA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10020	MoCell	SPEA2	>0.9	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01
	MoCell	CellDE	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.5		>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	>0.9	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB030	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01		< 0.01	< 0.5	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5		>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB040	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10040	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB050	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10030	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	>0.05	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

ТВ	A 1 4 1 A	A la a sui the see D	I	ET	С	TR	N	IU	N	UU	О	FV	H	IV	I	GD
1 D	AlgorithmA	Aigorithmb	A12	р												
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB060	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB070	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10070	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01		< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01		< 0.01		< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01
TB080	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 0000	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	1	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.9	
TB090	NSGA2	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
1 00 90	MoCell	SPEA2	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	NSGA2	MoCell	< 0.5	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	1	< 0.01	>0.5	< 0.01	< 0.1	< 0.01
	NSGA2	SPEA2	>0.5	< 0.01		< 0.01	>0.5	< 0.01	>0.5	< 0.01	>0.5	< 0.01	< 0.5	< 0.01	>0.5	< 0.01
TB100	NSGA2	CellDE	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
10100	MoCell	SPEA2	>0.9	< 0.01	l .	< 0.01	>0.9	< 0.01	>0.5	< 0.01	>0.9	< 0.01	< 0.1	< 0.01	>0.9	< 0.01
	MoCell	CellDE	< 0.1	< 0.01		< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01
	SPEA2	CellDE	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	< 0.5	< 0.01	< 0.1	< 0.01	>0.9	< 0.01	< 0.1	< 0.01

TABLE 41. Rank Results for each Multi-Objective Algorithms (AW2, f(PET, PTR, ANU, PUU))

ТВ	Metric		Rai	nk			Confic	lence	
1 D	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	2	3	1	25%	25%	38%	12%
	NU	2	3	1	4	20%	30%	10%	40%
TB010	NUU	2	2	3	1	25%	25%	38%	12%
	OFV	2	2	3	1	25%	25%	38%	12%
	HV	4	3	2	1	40%	30%	20%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	2	4	1	30%	20%	40%	10%
	NU	2	3	1	4	20%	30%	10%	40%
TB020	NUU	3	2	4	1	30%	20%	40%	10%
	OFV	3	2	4	1	30%	20%	40%	10%
	HV	4	3	2	1	40%	30%	20%	10%
	IGD	3	2	3	1	33%	22%	33%	11%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	4	3	2	1	40%	30%	20%	10%
	NU	2	3	1	4	20%	30%	10%	40%
TB030	NUU	4	3	2	1	40%	30%	20%	10%
	OFV	4	3	2	1	40%	30%	20%	10%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

TD	3.6.1.		Rai	nk			Confid	dence	
TB	Metric	NSGA2	MoCell	SPEA2	CellDE	NSGA2	MoCell	SPEA2	CellDE
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB040	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	4	1	3	20%	40%	10%	30%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	1	29%	43%	14%	14%
	NU	2	3	1	4	20%	30%	10%	40%
TB050	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB060	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB070	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB080	NUU	3	4	1	2	30%	40%	10%	20%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	3	4	1	2	30%	40%	10%	20%
	NU	2	3	1	4	20%	30%	10%	40%
TB090	NUU	2	4	1	3	20%	40%	10%	30%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%
	ET	3	2	4	1	30%	20%	40%	10%
	CTR	2	3	1	4	20%	30%	10%	40%
	NU	2	3	1	4	20%	30%	10%	40%
TB100	NUU	2	3	1	4	20%	30%	10%	40%
	OFV	2	3	1	4	20%	30%	10%	40%
	HV	3	2	4	1	30%	20%	40%	10%
	IGD	3	2	4	1	30%	20%	40%	10%

B.2.2.11 Holm-Bonferroni method: This section describes the results of the Holm-Bonferroni method.

TABLE 42. Results of the Holm–Bonferroni method among Multi-Objective Algorithms for HV and IGD (AW2)

Problem	ТВ	Kruskal-Wal	lis Test	Mann-Whitney U Test		
Tiobiem	1 D	adjusted_p	reject	adjusted_p	reject	
Prob.1 f(PET,PTR,AUM)	TB010	< 0.01	Y	< 0.01	Y	
1700.1 j(1 L1,1 1 K,21 ClV1)	TB020	< 0.01	Y	< 0.01	Y	

Problem	ТВ	Kruskal-Wa	ıllis Test	Mann-Whitne	y U Test
1 Toblem		adjusted_p	reject	adjusted_p	reject
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
	TB050	< 0.01	Y	< 0.01	Y
Prob.1 f(PET,PTR,AUM)	TB060	< 0.01	Y	< 0.01	Y
- · · · · · · · · · · · · · · · · · · ·	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
<i>Prob.2 f(PET,PTR,PUS)</i>	TB050	< 0.01	Y	< 0.01	Y
170012 ((1 21)1 110/1 010)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
<i>Prob.3 f(PET,PTR,ANU)</i>	TB050	< 0.01	Y	< 0.01	Y
1700.5 j(1 £1,1 1 K,2 H V G)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.4 f(PET,PTR,PUU)	TB050	< 0.01	Y	< 0.01	Y
F100.4 J(FL1,F1K,FUU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.05	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.5 f(PET,PTR,AUM,PUS)	TB050	< 0.01	Y	< 0.01	Y
FIOU.3 J(FEI,FIK,AUIVI,FUS)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.6 f(PET,PTR,AUM,ANU)	TB050	< 0.01	Y	< 0.01	Y
<i>y</i> . , , , , , , , , , , , , , , , , , , ,	TB060	< 0.01	Y	< 0.05	Y
	TB070	< 0.01	Y	< 0.05	Y
	TB080	<0.01	Y	<0.01	Y
	TB090	< 0.01	Y	<0.01	Y

Problem	ТВ	Kruskal-Wa	llis Test	Mann-Whitne	ey U Test
	10	adjusted_p	reject	adjusted_p	reject
Prob.6 f(PET,PTR,AUM,ANU)	TB100	< 0.01	Y	< 0.05	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
Prob.7 f(PET,PTR,AUM,PUU)	TB050	< 0.01	Y	< 0.01	Y
F100.7 J(FE1,F1K,AUM,FUU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.05	Y
	TB030	< 0.01	Y	< 0.05	Y
	TB040	< 0.01	Y	< 0.01	Y
D. J. O. ((DET DED DIJC ANIII)	TB050	< 0.01	Y	< 0.05	Y
<i>Prob.8 f(PET,PTR,PUS,ANU)</i>	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.05	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
D. J. O. ((DET DTD, DIJC, DIJI))	TB050	< 0.01	Y	< 0.01	Y
Prob.9 f(PET,PTR,PUS,PUU)	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y
	TB010	< 0.01	Y	< 0.01	Y
	TB020	< 0.01	Y	< 0.01	Y
	TB030	< 0.01	Y	< 0.01	Y
	TB040	< 0.01	Y	< 0.01	Y
DI. 10 ((DET DTD AND DID)	TB050	< 0.01	Y	< 0.01	Y
<i>Prob.10 f(PET,PTR,ANU,PUU)</i>	TB060	< 0.01	Y	< 0.01	Y
	TB070	< 0.01	Y	< 0.01	Y
	TB080	< 0.01	Y	< 0.01	Y
	TB090	< 0.01	Y	< 0.01	Y
	TB100	< 0.01	Y	< 0.01	Y

^{*} Note that **Adjusted_p** refers to all adjusted p-value results. If **Adjusted_p** < 0.05 (0.01), it means that all adjusted p-values are less than 0.05 (0.01). If **Adjusted_p** > 0.05, it means there is at least one adjusted p-value that is greater than 0.05.

* **Reject** is **Y**, meaning rejecting the null hypothesis, and **N** means not rejecting the null hypothesis.

B.2.3 Experiment Results for RQ4

This section describes the results for RQ4.

TABLE 43 Results for the Kruskal-Wallis Test among Test Case Prioritization Problems (AW2)

Metric	ChiSq	DF	p
ANOU	38769.12	9	< 0.01

TABLE 44. Results for the Mann-Whitney U Test and Vargha and Delaney Statistics among Test Case Prioritization Problems (AW2)

ProblemA	ProblemB	BestAlgorithmA	BestAlgorithmB	A12	р
Prob.1 f(PET,PTR,AUM)	Prob.2 f(PET,PTR,PUS)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.3 f(PET,PTR,ANU)	SPEA2	SPEA2	< 0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	< 0.5	< 0.01
Prob.1 f(PET,PTR,AUM)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	>0.5	>0.05
Prob.1 f(PET,PTR,AUM)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.1 f(PET,PTR,AUM)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.3 f(PET,PTR,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	< 0.5	>0.05
Prob.2 f(PET,PTR,PUS)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.6 f(PET,PTR,AUM,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.2 f(PET,PTR,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.5	< 0.05
Prob.2 f(PET,PTR,PUS)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.4 f(PET,PTR,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	>0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	>0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.5	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.3 f(PET,PTR,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.5 f(PET,PTR,AUM,PUS)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.7 f(PET,PTR,AUM,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	< 0.5	< 0.01
Prob.4 f(PET,PTR,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	SPEA2	SPEA2	< 0.1	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	>0.5	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.5 f(PET,PTR,AUM,PUS)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
<i>Prob.5 f(PET,PTR,AUM,PUS)</i>	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.6 f(PET,PTR,AUM,ANU)	<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	SPEA2	SPEA2	>0.9	< 0.01
<i>Prob.6 f(PET,PTR,AUM,ANU)</i>	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.6 f(PET,PTR,AUM,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.6 f(PET,PTR,AUM,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.7 f(PET,PTR,AUM,PUU)	Prob.8 f(PET,PTR,PUS,ANU)	SPEA2	SPEA2	< 0.1	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
<i>Prob.7 f(PET,PTR,AUM,PUU)</i>	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.9 f(PET,PTR,PUS,PUU)	SPEA2	SPEA2	>0.9	< 0.01
Prob.8 f(PET,PTR,PUS,ANU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	>0.5	>0.05
Prob.9 f(PET,PTR,PUS,PUU)	Prob.10 f(PET,PTR,ANU,PUU)	SPEA2	SPEA2	< 0.1	< 0.01

TABLE 45
Results of the Holm-Bonferroni method for the Mann-Whitney U Test among Test Case Prioritization Problems (AW2)

Metric	Adjusted_p	Reject
ANOU	<0.05	Ý

^{*} Note that ${\bf Adjusted_p}$ refers to all adjusted p-value results. If ${\bf Adjusted_p} < 0.05$, it means that all adjusted p-values are less than 0.05. **Reject** is ${\bf Y}$, meaning rejecting the null hypothesis.