Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

1. (presently amended) The present invention relates to a variety of compounds which are useful according to the present invention. These compounds are A method of treating glaucoma or lowering or controlling intraocular pressure in a subject comprising administering to the subject a compound represented by the following Formula A:

$$R^7$$
 R^1
 R^2
 R^3
 R^4

wherein R, R¹ and R² are independently chosen from hydrogen, C₁₋₄alkyl;

 R^3 is selected from hydrogen, C_{1-4} alkyl, or R^2 and R^3 can complete a pyrrolidine or piperidine ring, which can be substituted with C_{1-4} alkyl;

R⁴ is hydrogen, halogen, C₁₋₄alkyl;

 \mathbf{R}^{5} and \mathbf{R}^{6} are independently chosen from hydrogen, halogen, C_{1-6} alkyl, C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfoxide, nitrile, C_{1-6} alkyl substituted with halogen;

R⁷ is chosen from

C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, OC(=O)C₁₋₈, CO₂H,

CO₂C₁₋₆alkyl, C(=O)NR¹²R¹³, S(O)_mNR¹²R¹³, NR¹⁴R¹⁵, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl, phenyl or pyridinyl; or R⁷ can be chosen from a heterocyclic ring selected from oxazol-2-yl; 4,5-dihydro-oxazol-2-yl; er-benzoxazol-2-yl; 5,6-dihydro-[1,3]oxazin-2-yl; thiazol-2-yl; 4,5-dihydro- thiazol-2-yl; er-benzothiazol-2-yl; imidazol-2-yl; imidazol-2-yl; imidazol-3-yl; [1,2,4]oxadiazol-3-yl; [1,2,4]thiadiazol-5-yl; or [1,2,4]thiadiazol-3-yl, each of which can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, phenyl, pyridinyl, or C₁₋₆alkyl substituted with phenyl or pyridinyl;

but **R**⁷ cannot be hydrogen, lower alkyl, hydroxyl, lower alkoxy, amino, mono- or di-loweralkyl amino, lower alkanoylamino, or halogen;

 R^8 is selected from C_{1-6} alkyl, phenyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, $NR^1(C=O)C_{1-6}$ alkyl, or halogen;

 R^9 is chosen from hydroxyl; $C_{1\text{-}6}$ alkoxy; $C_{1\text{-}6}$ alkoxy substituted with phenyl or pyridinyl which can be substituted with $C_{1\text{-}4}$ alkoxy or halogen; $NR^{16}R^{17}$; $C_{1\text{-}6}$ alkyl; or $C_{1\text{-}6}$ alkyl substituted with hydroxyl, $C_{1\text{-}6}$ alkoxy, $NR^{12}R^{13}$, CO_2H , $CO_2C_{1\text{-}6}$ alkyl, $S(O)_mNR^{12}R^{13}$, halogen, or phenyl or a heterocyclic ring selected from pyrrolidinyl, imidazoyl, morpholinyl, oxazolyl, isoxazolyl, thiazolyl, or tetrazolyl, or pyridinyl which can be unsubstituted or substituted with $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halogen, halo $C_{1\text{-}4}$ alkyl;

 R^{10} is chosen from $NR^{12}R^{13}$; C_{1-6} alkyl; CH_2 phenyl or CH_2 pyridinyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; or C_{2-6} alkyl substituted with hydroxyl, C_{1-6} alkoxy, $NR^{12}R^{13}$, CO_2H , CO_2C_{1-6} alkyl, phenyl, pyridinyl or imidazolyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, halo C_{1-4} alkyl;

 R^{11} is NH₂; NR¹R²; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl;

 R^{12} and R^{13} are independently selected from hydrogen; $C_{1\text{-}6}$ alkyl; CH_2Z , where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halogen, or halo $C_{1\text{-}4}$ alkyl; $C_{2\text{-}6}$ alkyl substituted with hydroxyl, $C_{1\text{-}6}$ alkoxy, CO_2H , $CO_2C_{1\text{-}6}$ alkyl, $NR^1COC_{1\text{-}6}$ alkyl, or halogen; or R^{12} , R^{13} , and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with $C_{1\text{-}4}$ alkyl or $C_{1\text{-}4}$ alkyl substituted with hydroxy, $C_{1\text{-}4}$ alkoxy or halogen;

 R^{14} and R^{15} are independently selected from hydrogen, C_{1-6} alkyl, hydroxyl, C_{1-6} alkoxy, $(C=O)-R^{11}$, $S(O)_mR^8$, phenyl or pyridinyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; or R^{14} , R^{15} and the nitrogen atom to which they are attached can form a heterocyclic ring selected from pyrrolidine, piperazine, or piperidine, which can be substituted with C_{1-6} alkyl, phenyl, or pyridinyl;

 R^{16} and R^{17} are independently selected from hydrogen; C_{1-6} alkyl; hydroxyl; C_{1-6} alkoxy; CH_2Z , where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; C_{2-6} alkyl substituted with hydroxyl, C_{1-6} alkoxy, halogen, $NR^1(C=O)C_{1-6}$ alkyl, or a phenyl or a heterocyclic ring selected from a pyrrole, such as pyrrolidin-2-yl; an imidazole such as imidazo-2-yl; or imidazo-4-yl; a morpholine such as morpholin-3-yl; a piperidine such as piperidin-4-yl; oxazolyl; isoxazolyl; thiazolyl; tetrazolyl; pyridinyl; each of which can be unsubstituted or substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, halo C_{1-4} alkyl, phenyl C_{1-4} alkyl, oxo

(=O); or R^{16} , R^{17} , and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with C_{1-4} alkyl or C_{1-4} alkyl substituted with hydroxy, oxo (=O), C_{1-4} alkoxy, or phenyl; \mathbf{m} is 0-2;

A is N or CH; and

X and **Y** are either **N** or **C**, wherein **X** and **Y** cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.

2. (presently amended) The method of claim 1, wherein for the compound of Formula A:

R, R¹ and R² are independently chosen from hydrogen, C₁₋₄alkyl;

 ${f R}^3$ is selected from hydrogen, $C_{1\text{-}4}$ alkyl, or ${f R}^2$ and ${f R}^3$ can complete a pyrrolidine or piperidine ring, which can be substituted with $C_{1\text{-}4}$ alkyl;

R⁴ is hydrogen, C₁₋₄alkyl;

 R^5 and R^6 are independently chosen from hydrogen, halogen, C_{1-6} alkyl, C_{1-6} alkylsulfonyl, C_{1-6} alkylsulfoxide, nitrile, C_{1-6} alkyl substituted with halogen;

R⁷ is chosen from

 $C=OR^9$;

C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, OC(=O)C₁₋₈, CO₂H, CO₂C₁₋₆alkyl, C(=O)NR¹²R¹³, S(O)_mNR¹²R¹³, NR¹⁴R¹⁵, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl, phenyl or pyridinyl; or R⁷ can be chosen from a heterocyclic ring selected from oxazol-2-yl; 4,5-dihydro-oxazol-2-yl; benzoxazol-2-yl; 5,6-dihydro-[1,3]oxazin-2-yl; thiazol-2-yl; 4,5-dihydro-thiazol-2-yl; benzothiazol-2-yl; imidazol-2-yl; imidazolidin-2-yl;

[1,2,4]oxadiazol-5-yl; [1,2,4]oxadiazol-3-yl; [1,2,4]thiadiazol-5-yl; or [1,2,4]thiadiazol-3-yl, each of which can be unsubstituted or substituted with C_{1-6} alkyl, C_{1-6} alkoxy, phenyl, pyridinyl, or C_{1-6} alkyl substituted with phenyl or pyridinyl;

but **R**⁷ cannot be hydrogen, lower alkyl, hydroxyl, lower alkoxy, amino, mono- or di-loweralkyl amino, lower alkanoylamino, or halogen;

 \mathbf{R}^8 is selected from C_{1-6} alkyl, phenyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, $\mathbf{NR}^1(C=O)C_{1-6}$ alkyl, or halogen;

 R^9 is chosen from hydroxyl; C_{1-6} alkoxy; C_{1-6} alkoxy substituted with phenyl or pyridinyl which can be substituted with C_{1-4} alkoxy or halogen; $NR^{16}R^{17}$; C_{1-6} alkyl; or C_{1-6} alkyl substituted with hydroxyl, C_{1-6} alkoxy, $NR^{12}R^{13}$, CO_2H , CO_2C_{1-6} alkyl, $S(O)_mNR^{12}R^{13}$, halogen, or phenyl or a heterocyclic ring selected from pyrrolidinyl, imidazoyl, morpholinyl, oxazolyl, isoxazolyl, thiazolyl, or tetrazolyl, or pyridinyl which can be unsubstituted or substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, halo C_{1-4} alkyl;

 R^{11} is NH₂; NR¹R²; C₁₋₆alkyl substituted with hydroxyl, C₁₋₆alkoxy, CO₂H, CO₂C₁₋₆alkyl, phenyl or a saturated or unsaturated 5 or 6-membered heterocyclic ring which can contain 1-4 heteroatoms selected from N, O, or S and can be unsubstituted or substituted with C₁₋₆alkyl, C₁₋₆alkoxy, halogen, haloC₁₋₄alkyl;

 R^{12} and R^{13} are independently selected from hydrogen; $C_{1\text{-6}}$ alkyl; CH_2Z , where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with $C_{1\text{-6}}$ alkyl, $C_{1\text{-6}}$ alkoxy, halogen, or halo $C_{1\text{-4}}$ alkyl; $C_{2\text{-6}}$ alkyl substituted with hydroxyl, $C_{1\text{-6}}$ alkoxy, CO_2H , $CO_2C_{1\text{-6}}$ alkyl, $NR^1COC_{1\text{-6}}$ alkyl, or halogen; or R^{12} , R^{13} , and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with $C_{1\text{-4}}$ alkyl or $C_{1\text{-4}}$ alkyl substituted with hydroxy, $C_{1\text{-4}}$ alkoxy or halogen;

 R^{14} and R^{15} are independently selected from hydrogen, C_{1-6} alkyl, hydroxyl, C_{1-6} alkoxy, $(C=O)-R^{11}$, $S(O)_mR^8$, phenyl or pyridinyl which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; or R^{14} , R^{15} and the nitrogen atom to which they are attached can form a heterocyclic ring selected from pyrrolidine, piperazine, or piperidine, which can be substituted with C_{1-6} alkyl, phenyl, or pyridinyl;

 R^{16} and R^{17} are independently selected from hydrogen; C_{1-6} alkyl; hydroxyl; C_{1-6} alkoxy; CH_2Z , where Z is selected from phenyl, pyridinyl, furanyl, thiophenyl, pyrimidinyl, pyrazinyl, or pyridazinyl, and which can be substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, or halo C_{1-4} alkyl; C_{2-6} alkyl substituted with hydroxyl, C_{1-6} alkoxy, halogen, $NR^1(C=O)C_{1-6}$ alkyl, or a phenyl or a heterocyclic ring selected from a pyrrole, such as pyrrolidin-2-yl $_{7_1}$ an imidazole such as imidazo-2-yl $_{7_2}$ or imidazo-4-yl $_{7_2}$ a morpholine such as morpholin-3-yl $_{7_2}$ a piperidine such as piperidin-4-yl $_{7_2}$ oxazolyl $_{7_2}$ isoxazolyl $_{7_2}$ thiazolyl $_{7_2}$ tetrazolyl $_{7_2}$ pyridinyl $_{7_2}$ each of which can be unsubstituted or substituted with C_{1-6} alkyl, C_{1-6} alkoxy, halogen, halo C_{1-4} alkyl, phenyl C_{1-4} alkyl, oxo (=O); or R^{16} R^{17} , and the intervening nitrogen atom can form a heterocyclic ring selected from morpholine, thiomorpholine, thiomorpholine 1-oxide, thiomorpholine 1,1-dioxide, azetidine, pyrrolidine, piperidine, piperazine, unsubstituted or substituted with C_{1-4} alkyl or C_{1-4} alkyl substituted with hydroxy, oxo (=O), C_{1-4} alkoxy, or phenyl; m is 0-2;

A is N; and

X and **Y** are either N or C, wherein X and Y cannot be the same; and the dashed bonds denote a suitably appointed single and double bond.

- 3. (original) The method of claim 2, wherein the compound of Formula A is:
- 1-((S)-2-aminopropyl)-1*H*-furo[2,3-*g*]indazole-7-carboxylic acid amide;

1-((S)-2-aminopropyl)-1*H*-furo[2,3-*g*]indazole-7-carboxylic acid methyl amide fumarate;

1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (1-hydroxy-cyclopropylmethyl)-amide; or

1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (3-hydroxy-2,2-dimethyl-propyl)-amide.

4. (original) The method of claim 3, wherein the compound of Formula A is 1-((S)-2-aminopropyl)-1H-furo[2,3-g]indazole-7-carboxylic acid (3-hydroxy-2,2-dimethyl-propyl)-amide.

5-9. (Cancelled).