

Entrega 4

$\begin{array}{c} {\rm Minimizaci\'on~de~costos~de~ERNC~en~Chile} \\ {\rm Grupo~5} \end{array}$

Diego Garcés - Catalina Huincahue

Fecha entrega: 21 de Junio de 2024

Modelación Matemática

Conjuntos

- Caso Base (2016):
 - $i \in T$: conjunto de tecnologías existentes (22, incluyendo la central de falla).
 - $d \in D$: conjunto de bloques de demanda (3).
- Escenario 2030 y Política ERNC (2030):
 - $i \in T_{ex}$: conjunto de tecnologías existentes (22).
 - $j \in T_n$: conjunto de tecnologías nuevas (20).
 - $d \in D$: conjunto de bloques de demanda (3).

Parámetros

Caso Base (2016):

- $potencia_neta_i$ [MW], $\forall i \in T$
- $disponibilidad_i$ [p.u.], $\forall i \in T$
- $costo_variable_i$ [USD/MWh], $\forall i \in T$
- $demanda_d$ [MW], $\forall d \in D$
- $duracion_d$ [h], $\forall d \in D$

Escenario 2030 y Política ERNC (2030):

- Parámetros de tecnologías existentes: los mismos que en el caso base.
- Para cada $j \in T_n$:
 - $inversion_i$ [USD/kW]
 - $vida_util_j$ [años]
 - disponibilidadⁿ_i [p.u.]
 - $max_instalacion_i$ [MW]
 - $costo_variable_i^n$ [USD/MWh]
 - $anualidad_inv_j$ [USD/(MW·año)]
- $demanda2030_d$ [MW], $\forall d \in D$

Variables de decisión

Caso Base (2016):

• $E_{i,d} \ge 0$: energía generada por tecnología existente $i \in TECH$ en bloque $d \in D$ [MWh].

Escenario 2030 y Política ERNC (2030):

- $E_{i,d} \geq 0$: energía generada por tecnología existente $i \in TECH^{ex}$ en bloque $d \in D$ [MWh].
- $PN_j \ge 0$: potencia instalada de tecnología nueva $j \in TECH^n$ [MW].
- $EN_{j,d} \ge 0$: energía generada por tecnología nueva $j \in TECH^n$ en bloque $d \in D$ [MWh].

Función Objetivo

Caso Base (2016):

$$\min Z^{2016} = \sum_{d \in D} \sum_{i \in T} costo_variable_i \cdot E_{i,d}$$

Escenario 2030:

$$\min Z^{2030} = \sum_{d \in D} \sum_{i \in T_{ex}} costo_variable_i \cdot E_{i,d} + \sum_{j \in T_n} anualidad_inv_j \cdot PN_j + \sum_{d \in D} \sum_{j \in T_n} costo_variable_j^n \cdot EN_{j,d}$$

Política ERNC (2030): Idéntica a Z^{2030} , con restricción adicional de cuota ERNC.

Restricciones

Caso Base (2016):

$$\sum_{i \in T} E_{i,d} \ge demanda_d \cdot duracion_d, \qquad \forall d \in D$$
 (1)

$$E_{i,d} \leq potencia_neta_i \cdot disponibilidad_i \cdot duracion_d, \qquad \forall i \in T, d \in D$$
 (2)

$$E_{i,d} \ge 0 \tag{3}$$

Escenario 2030:

$$\sum_{i \in T_{ex}} E_{i,d} + \sum_{j \in T_n} EN_{j,d} \ge demanda2030_d \cdot duracion_d, \forall d \in D$$
 (4)

$$E_{i,d} \leq potencia_neta_i \cdot disponibilidad_i \cdot duracion_d, \quad \forall i \in T_{ex}, \ d \in D$$
 (5)

$$EN_{j,d} \le PN_j \cdot disponibilidad_j^n \cdot duracion_d, \qquad \forall j \in T_n, d \in D$$
 (6)

$$PN_j \leq max_instalacion_j, \qquad \forall j \in T_n \qquad (7)$$

$$E_{i,d}, EN_{i,d}, PN_i \ge 0 \tag{8}$$

Política ERNC (2030):

$$\frac{\sum_{d \in D} \left(\sum_{i \in ERNC^{ex}} E_{i,d} + \sum_{j \in ERNC^{n}} EN_{j,d} \right)}{\sum_{d \in D} \left(\sum_{i \in T_{ex}} E_{i,d} + \sum_{j \in T_{n}} EN_{j,d} \right)} \ge 0.30$$

(Esta fracción puede transformarse en una desigualdad lineal multiplicando ambos lados por el denominador).