Tutorial 05 - Midterm, UDFS

CS2040S Semester 1 2023/2024

Set real display name

https://pollev.com/rezwanarefin430

Midterm Review

- Given array of **n** integers **A**[1...**n**]. Find place of each **A**[i] in sorted order.
- Constraints:
 - o n ≤ 200000.
 - -100000 ≤ A[i] ≤ 99999.
 - All the A[i] are distinct.
- Example: A = [5, -1, 4]. Output = [3, 1, 2].
 - Let's see the examples from Midterm.

- O(n log n) Solution:
 - Sort A and store in B.
 - For each A[i], binary search to find where it appears in B.

• O(n log n) Solution:

- Sort A and store in B.
- For each A[i], binary search to find where it appears in B.

• O(n) Solution:

- Use counting sort to sort A.
 - Offset each element by 100000. So $0 \le A[i] < 200000$.
 - Offsetting doesn't affect answer.
- Note that you can deduce the output in the last step of counting sort.

• O(n log n) Solution:

- Sort A and store in B.
- For each A[i], binary search to find where it appears in B.

• O(n) Solution:

- Use counting sort to sort A.
 - Offset each element by 100000. So $0 \le A[i] < 200000$.
 - Offsetting doesn't affect answer.
- Note that you can deduce the output in the last step of counting sort.

 Implement a Stack than supports standard peek(), push(), pop(), and additionally findMin() operation all in O(1).

• Idea is to maintain a second stack that contains all the elements that may be returned by a future findMin() question.

- Idea is to maintain a second stack that contains all the elements that may be returned by a future findMin() question.
- The second stack should not contain any element that will never be answer to a findMin() query.

- Idea is to maintain a second stack that contains all the elements that may be returned by a future findMin() question.
- The second stack should not contain any element that will never be answer to a findMin() query.

- Suppose X is being pushed in the Main stack.
- If X is bigger than top element in Min stack, it will never be answer of a findMin() query.
- Otherwise it will be, so we push it in Min stack as well.

- Notice that top of the Min stack is the answer to findMin() now.
- What is the meaning of 2nd top element of Min stack?

- Notice that top of the Min stack is the answer to findMin() now.
- What is the meaning of 2nd top element of Min stack?
 - Second minimum element.

- Therefore the popping algorithm should be as follows:
 - If top of Main stack and top of Min stack is same, pop them both.
 - Else pop only Main stack.

• Given **n** integers. Cost of adding **A** and **B** is (**A** + **B**). Find minimum cost to sum all the integers.

- Given **n** integers. Cost of adding **A** and **B** is (**A** + **B**). Find minimum cost to sum all the integers.
- Intuition is:
 - We will always perform exactly **n 1** additions.

• Given **n** integers. Cost of adding **A** and **B** is (**A** + **B**). Find minimum cost to sum all the integers.

Intuition is:

- We will always perform exactly **n 1** additions.
- We will try to minimize cost of each of the additions.
- How to minimize cost of the current addition?

• Given \mathbf{n} integers. Cost of adding \mathbf{A} and \mathbf{B} is $(\mathbf{A} + \mathbf{B})$. Find minimum cost to sum all the integers.

Intuition is:

- We will always perform exactly n 1 additions.
- We will try to minimize cost of each of the additions.
- How to minimize cost of the current addition?
 - Take the smallest two A and B available and add them.

• Given **n** integers. Cost of adding **A** and **B** is (**A** + **B**). Find minimum cost to sum all the integers.

Intuition is:

- We will always perform exactly n 1 additions.
- We will try to minimize cost of each of the additions.
- How to minimize cost of the current addition?
 - Take the smallest two A and B available and add them.
- Techniques for proving that this eventually gives the smallest possible cost will be taught in later courses (eg. CS3230).
- You can figure this out from doing the sample test cases.
 - Let's see examples in the Midterm.

- So our algorithm is this:
 - Find and remove two smallest integers A and B from the array.
 - Cost += A + B.
 - Insert A + B back into the array.

- So our algorithm is this:
 - Find and remove two smallest integers A and B from the array.
 - Cost += A + B.
 - Insert A + B back into the array.
- To make this fast, use a priority queue to store the array.
- Complexity: O(n log n).

Questions?

Union Find

Union Find: The Problem

- We have **n** sets initially: **{1}**, **{2}**, **{3}**, ..., **{n}**.
- Need to support these two type of queries:
 - Merge the sets containing u and v.
 - o If u and v in the same set?

- Initial Set:
 - {1}, {2}, {3}, {4}, {5}
- Union(1, 3)
 - {1, 3}, {2}, {4}, {5}
- Union(2, 5)
 - o {1, 3}, {2, 5}, {4}
- IsSameSet(2, 5) = False
- IsSameSet(1, 3) = True

Union Find: The Data Structure

- We will represent each set as a tree.
 - Note that the structure of the tree has nothing to do with the semantics of the operations we are supporting.
- For our algorithm, we will also elect a leader in each set. The leader will be root of the tree.
- Then merging two sets is equivalent to attaching leader of one set as a child of leader of another set.

Initial State Union(1, 3)

1 2 3 4 5

Previous State Union(2, 5)

Previous State

Union(3, 5)

Union Find: Find(u)

- Finding the leader set is a critical operation.
- Let's define Find(u) operation which returns the leader of u's set.

Union Find: Find(u)

- Finding the leader set is a critical operation.
- Let's define Find(u) operation which returns the leader of u's set.
- Implementation:
 - o Define p[u] = parent of u in the tree. If p[u] = u, then u itself is a leader.
 - o Initially everyone is a leader, so p[i] = i for all i.

Union Find: Find(u)

- Finding the leader set is a critical operation.
- Let's define Find(u) operation which returns the leader of u's set.
- Implementation:
 - o Define p[u] = parent of u in the tree. If p[u] = u, then u itself is a leader.
 - o Initially everyone is a leader, so p[i] = i for all i.
 - When leader u becomes subordinate of v, we will change p[v] = u.
 - How to implement Find(u) using this p[] array?

Union Find: Find(u) Implementation

Keep following p[u] pointers until we find a leader.

```
public static int Find(int u) {
    while (p[u] != u) u = p[u];
    return u;
}
```

Union Find: IsSameSet(u,v) Implementation

How to check if two element are in the same set?

Union Find: IsSameSet(u,v) Implementation

- How to check if two element are in the same set?
- They must have the same leader.

```
public static boolean IsSameSet(int u, int v) {
    return Find(u) == Find(v);
}
```

Union Find: Union(u,v) Implementation

- Find leaders of set containing u and v.
- If they are the same, then nothing to do.
- Otherwise, attach one of them as child of another.

```
public static void Union(int u, int v) {
    u = Find(u);
    v = Find(v);
    if (u == v) return;
    p[u] = v;
}
```

Union Find: Complexity

- Current implementation complexity is O(n).
- Suppose we do Union(1, 2), Union(2, 3), Union(3, 4), ..., Union(n-1, n).
- Then we will have the following tree:

Now if we do IsSameSet(1, 2), both the calls Find(1) and Find(2) will take
 O(n) to find the leader.

Union Find: Path Compression

- Note that we don't care about the structure of the tree, as long as all elements in same set are in the same tree.
- So, whenever we call Find(u), we will compress the path from u to root.

• Find(1) call should return n and change the structure as follows:

Union Find: Path Compression Implementation

```
public static int Find(int u) {
    if (p[u] == u) {
        return u;
    } else {
        p[u] = Find(p[u]);
        return p[u];
    }
}
```

- Complexity is still worst case O(n).
- But it can be proven than over n calls to Find, the total complexity cannot exceed O(n log n).
- So we say that the complexity is amortized O(log n).

Union Find: Union by Rank

- (Assume we don't have path compression)
- In Union(u, v), we blindly attached u's leader as child of v's leader.
- If u's tree has height 5, and v's tree has height 4:
 - Attaching u's tree to v's tree results in a tree of height 6.
 - Attaching v's tree to u's tree results in tree of height 5.
- Attaching lower height tree to higher height tree results in a lower height.

Union Find: Union by Rank

Union(2, 3) Attach 1 to 3 Attach 1 to 3

Union Find: Union by Rank Implementation

- Define rank[u] = height of subtree rooted at u.
 - Initially everyone has rank 0.
- When merging two trees, only the leader's rank may change. Update accordingly.

```
public static void Union(int u, int v) {
    u = Find(u);
    v = Find(v);
    if (u == v) return;
    if (rank[u] > rank[v]) swap(u, v); // ensure rank[u] <= rank[u]
    p[u] = v; // v is the new leader
    if (rank[u] == rank[v]) ++rank[v]; // rank increases only if before merging both tree had same rank
}</pre>
```

Union Find: Union by Rank Complexity

- With only Union by Rank, every operation is worst case O(log n).
- If Union by Rank and Path Compression both are used, then every operation is amortized $O(\alpha(n))$ where α is the inverse ackermann function.
 - Ackermann function is VERY fast growing function.
 - It inverse for any realistic value of n is < 4.
 </p>
- Note that here amortized O(1) is special. The total cost over n operation is O(n). Normal amortized complexity would allow one single operation to be O(n). But here Union by Rank guarantees that one single operation doesn't exceed O(log n).

Union Find: Union by Rank + Path Compression

 After Path Compression, the rank values may not correspond to height of the current structure. They will represent height of the tree assuming the tree was never compressed.

Tutorial Questions

Question 3: NumDisjointSets()

How to quickly query number of disjoint sets?

Question 3: NumDisjointSets()

- How to quickly query number of disjoint sets?
- Keep a counter. Initially there are n disjoint sets.
- Whenever two sets are merged, decrease the counter by 1.
- NumDisjoinSets just returns that counter in O(1).

Question 4: SizeOfSet(u)

 How to augment the data structure to query size of set containing u efficiently?

Question 4: SizeOfSet(u)

- How to augment the data structure to query size of set containing u efficiently?
- Similar to rank, define size[u] = size of set containing u.
 - This value will only be correct for leaders.
- Initially everyone is a leader, and size[i] = 1 for all i.
- When attaching leader u to leader v, do size[v] += size[u].
- SizeOfSet(u) should return size[Find(u)].

Break Attendance Questions

$\frac{https://visualgo.net/training?diff=Medium\&}{n=5\&tl=5\&module=ufds}$

PS4 Discussion

PS4A: /swaptosort

- Given a reverse sorted array A.
- You have a list of (a, b) pairs.
- Pair (a, b) means that you are allowed to swap(A[a], A[b]).
- Can you sort the array using only allowed operations?

PS4A: <u>/swaptosort</u>

- Think like the midterm question.
- Where should **A[i]** go in the final array?

PS4A: /swaptosort

- Think like the midterm question.
- Where should A[i] go in the final array?
 - \circ n-i+1.
- If you need to swap indices a and b, there must be a sequence of valid swaps: (a, x), (x, y), (y, z),, (*, w), (w, b).
- Which data structure we've learnt let us query if a and b are reachable like this?

PS4B: /kaploeb

- A simulation question.
- Use a hash table to keep track of timings, since the ids are too big.
- Parse the floating point number carefully.

Hand-On

Hands-On: /speedrun

- Given some tasks, i-th of them needs the time period [l_i, r_i].
- Two tasks cannot be active at the same time.
 - Cannot do both [1, 3] and [2, 5].
 - Can do both [1, 3] and [3, 5].
- Can you do at least G tasks?

Hands-On: /speedrun

- Should you choose the first task you can start?
 - No! What if it takes too long?
 - Example: [1, 24000], [2, 2], [3, 3], [4, 4],
- But you can prove that choosing the task that ends first always lets you finish maximum number of tasks.
 - If choosing the task T that ends first was not optimal, then there is another more optimal solution
 - But in that optimal solution, you can ignore the first task and do T instead.
 - So choosing T first is also as optimal as the other solution.

- You have **c** coworkers.
- Coworker i is initially has a annoyance level.
- If you ask coworker i a question, the annoyance level increases by d_i.
- You need to ask h questions.
- Minimize the maximum annoyance level of any coworker after asking h
 questions.

Should you ask the least annoyed person first?

- Should you ask the least annoyed person first?
 - No! What if his temper is infinite?
 - Remember you are trying to minimize the resulting max annoyance level.

- Should you ask the least annoyed person first?
 - No! What if his temper is infinite?
 - Remember you are trying to minimize the resulting max annoyance level.
- Choose the person whose resulting annoyance level will be the smallest.

- Should you ask the least annoyed person first?
 - No! What if his temper is infinite?
 - Remember you are trying to minimize the resulting max annoyance level.
- Choose the person whose resulting annoyance level will be the smallest.
- Use a priority queue to store the persons, sorted by their resulting annoyance level if you were to ask them a question.

Thank You!

Anonymous Feedback:

https://forms.gle/MkETeXdUT53Vhh896