MODEL SELECTION

Evgeny Burnaev

Skoltech, Moscow, Russia

OUTLINE

- OVERFITTING. BIAS-VARIANCE DECOMPOSITION
- 2 Model Quality Criteria
- 3 Linear Regression Model Selection
- 4 REGULARIZATION
- **5** FEATURE SELECTION

- OVERFITTING. BIAS-VARIANCE DECOMPOSITION
- 2 Model Quality Criteria
- 3 LINEAR REGRESSION MODEL SELECTION
- 4 REGULARIZATION
- **5** FEATURE SELECTION

Overfitting: KNN

OVERFITTING: REGRESSION

ERROR DECOMPOSITION I

ERROR DECOMPOSITION II

ML

ERROR DECOMPOSITION III

BURNAEV ML

ERROR DECOMPOSITION IV

- Approximation/Modeling Error
 - You approximated reality with a model
- Estimation Error
 - You tried to learn model with finite data
- Optimization Error
 - You were lazy and couldnt/didnt optimize to completion
- Bayes Error
 - Reality just sucks (i.e. there is a lower bound on error for all models, usually non-zero)

THE BIAS-VARIANCE DECOMPOSITION

Using regression as model, assume that

$$y = f(\mathbf{x}) + \varepsilon,$$

where
$$\mathbb{E}\varepsilon = 0$$
, $\mathrm{Var}(\varepsilon) = \sigma_{\varepsilon}^2$

ullet Then at an input point ${f x}={f x}_0$

$$\begin{split} Err(\mathbf{x}_0) &= \mathbb{E}\left[(y - \hat{f}(\mathbf{x}_0))^2 | \mathbf{x} = \mathbf{x}_0 \right] \\ &= \sigma_{\varepsilon}^2 + \left[\mathbb{E}\hat{f}(\mathbf{x}_0) - f(\mathbf{x}_0) \right]^2 + \mathbb{E}\left[\hat{f}(\mathbf{x}_0) - \mathbb{E}\hat{f}(\mathbf{x}_0) \right]^2 \\ &= \sigma_{\varepsilon}^2 + \operatorname{Bias}^2\left(\hat{f}(\mathbf{x}_0) \right) + \mathbb{V}\left(\hat{f}(\mathbf{x}_0) \right) \\ &= \operatorname{Irreducible} \operatorname{Error} + \operatorname{Bias}^2 + \operatorname{Variance} \end{split}$$

BIAS-VARIANCE TRADEOFF

- Bias: difference between what you expect to learn and the truth
 - Measures how well you expect to represent true solution
 - Decreases with more complex model
- Variance: difference between what you expect to learn and what you learn from a from a particular dataset
 - Measures how sensitive learner is to specific dataset
 - Increases with more complex model

LINEAR REGRESSION

 \bullet Example: polynomial regression $h(x) = \sum_{m=0}^M w_m x^m$

• Value of the optimal (ML) regression coefficients

	- `	, -		
	m = 0	m = 1	m = 3	m = 9
w_0^*	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
$w_3^{\colone{\pi}}$			17.37	48568.31
w_4^*				-231639.30
w_5^*				640042.26
w_6^*				-1061800.52
w_7^*				1042400.18
$w_{\mathbf{s}}^{*}$				-557682.99
w_0^*				125201.43

K-NN REGRESSION EXAMPLE

Assume average of k nearest neighbors

$$Err(\mathbf{x}_0) = \mathbb{E}\left[(y - \hat{f}(\mathbf{x}_0))^2 | \mathbf{x} = \mathbf{x}_0 \right]$$
$$= \sigma_{\varepsilon}^2 + \left[f(\mathbf{x}_0) - \frac{1}{k} \sum_{\mathbf{x} \in \text{kNN}(\mathbf{x}_0)} f(\mathbf{x}) \right]^2 + \frac{\sigma_{\varepsilon}^2}{k}$$

- For small k, good fit (small bias), larger variance. For big k, more bias, less variance
- This is a model selection problem

WHAT IS MODEL SELECTION?

- Given a set of models $\mathcal{H} = \{H_1, \dots, H_K\}$, choose the model expected to do the best on the test data
- ullet ${\cal H}$ may consist of
 - 1. Same learning model with different complexities of hyperparameters
 - Nonlinear regression: polynomials with different degress
 - $-\ k$ -Nearest Neighbors: Different choices of k
 - Decision Trees: Different choices of the number of levels/leaves
 - SVM: Different choices of the misclassification penalty hyperparameter C
 - Regularized Models: Different choices of the regularization parameter
 - Kernel based Methods: Different choices of kernels, etc.
 - 2. Different learning models (e.g., SVM, KNN, DT, etc.)
- Note: Usually considered in supervised learning contexts but unsupervised learning also faces this issue (e.g., "how many clusters" when doing clustering)

MODEL SELECTION

- Occam's razor: among competing hypotheses, the one with the fewest assumptions should be selected
- Too much variables/parameters ⇒ significant prediction variance and small bias on the training sample, and vice versa
- We have two interrelated problems
 - to estimate value of a target function, characterizing generalization ability of the considered model
 - select an optimal model w.r.t. to the constructed accuracy criterion

- OVERFITTING. BIAS-VARIANCE DECOMPOSITION
- 2 Model Quality Criteria
- 3 Linear Regression Model Selection
- 4 REGULARIZATION
- **5** FEATURE SELECTION

Model Selection Problem Statement

- Input:
 - Training sample $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, $\mathbf{x} \in X$, $y \in Y$
 - $-H_n=\{h:X\to Y\}$ is a hypothesis set, $n=1,2,\ldots$
 - $-\mathcal{L}_n:(X\times Y)^m\to H_n$ is a learner, $n=1,2,\ldots$
- Output: obtain a learner with the best generalization ability
- Examples:
 - Select the best model H_n (model selection)
 - Select the best learner \mathcal{L}_n for a given model H (e.g. hyperparameters tuning)
 - Select subset of features $\mathbf{x}_J = (x_j, j \in J)$ from the available features $\mathbf{x} = (x_1, \dots, x_N)$, i.e. the learner \mathcal{L} uses only features \mathbf{x}_J

EMPIRICAL ERROR

- ullet $L(h(\mathbf{x}),y)$ is a loss for a pair (\mathbf{x},y) and a model h
- $\hat{R}(h; S_m) = \frac{1}{m} \sum_{i=1}^m L(h(\mathbf{x}_i), y_i)$ is a loss of h on S_m
- Empirical Training Error

$$\hat{R}_{\mathcal{L}}(S_m) = \hat{R}(h; S_m), \ h(\cdot) = \mathcal{L}(S_m)$$

This error is a biased estimate of the generalization risk

ullet Empirical Test Error is estimated using a hold-out test sample S^t

$$\hat{R}_{\mathcal{L}}(S_m; S^t) = \hat{R}(h; S^t), \ h(\cdot) = \mathcal{L}(S_m)$$

- either we need an additional test set S^t
- or we have to divide S_m into a train and a validation sets (results depend on this division)

TRAIN VS. TEST ERROR

- Train Error decreases w.r.t. increasing model complexity
- Test Error increases w.r.t. increasing model complexity

HOLD-OUT DATA

- \bullet Set aside a fraction (say 10%-20%) of the training data
- This part becomes our hold-out data (validation or development data)

- Remember: hold-out data is NOT the test data
- Train each model using the remaining training data
- Evaluate error on the hold-out data
- Choose the model with the smallest hold-out error
- Problems:
 - Wastes training data, so typically used when we have plenty of training data
 - Hold-out data may not be good if there was an unfortunate split (use random splitting!)

CROSS-VALIDATION

K-fold Cross-Validation

- ullet Create K equal sized partitions of the training data
- Each partition has m/K examples
- ullet Train using K-1 partitions, validate on the remaining partitions
- ullet Repeat the same K times, each with a different validation partition

- Finally, choose the model with smallest average validation error
- Usually K is chosen as 10

CROSS-VALIDATION

$M \times K$ -fold Cross-Validation

- ullet We divide the training sample M times into K equal sized partitions
- Results of all M K-fold cross-validations are aggregated (e.g. averaged)
- ullet By increasing M we can improve accuracy
- ullet Each object is used in a test set M times
- \bullet We can construct confidence intervals using results of M repetitions

BOOTSTRAPPING

- ullet Given: a set of m examples
- ullet Idea: Sample m elements from this set with replacement
 - An already sampled element could be picked again
- Use this new sample as the training data
- Use the set of examples not selected as the validation data
- \bullet For large m, training data consists of about only 63% unique examples
- ullet Training data is inherently small o error estimate may be pessimistic
- Use the following equation to compute the expected model error

$$\hat{R} = 0.632 \times R_{test} + 0.368 \times R_{train}$$

Model Consistency

- If a hypothesis set H is appropriate, then models $h = \mathcal{L}(S)$, constructed for different subsets $S \subset S_m$ should be "similar"
- E.g. we can divide S_m M-times into two parts $\{S_m^{1,i} \cup S_m^{2,i}\}$, $i=1,2,\ldots,M$ and calculate

$$\Delta_M(H, \mathcal{L}; S_m) = \frac{1}{M} \sum_{i=1}^M \frac{1}{m} \sum_{j=1}^m |\mathcal{L}(S_m^{1,i})(\mathbf{x}_j) - \mathcal{L}(S_m^{2,i})(\mathbf{x}_j)|$$

- Problems:
 - Sample size is two times smaller
 - Computational complexity is two times bigger

- OVERFITTING. BIAS-VARIANCE DECOMPOSITION
- 2 Model Quality Criteria
- 3 Linear Regression Model Selection
- 4 REGULARIZATION
- **5** FEATURE SELECTION

NOTATIONS

- Training sample $S_m = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, $\mathbf{x} \in X$, $y \in Y$
- $\mathbf{X} = \{\mathbf{x}_i, i = 1, \dots, m\}$ is a design matrix
- We consider a linear model $h(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \cdot \mathbf{x} + b$, $\mathbf{w} \in \mathbb{R}^{N}$, $\mathbf{x} \in \mathbb{R}^{N}$ in a stochastic white noise setting
- Let $J \subseteq \{1, \dots, N\}$ be a subset of features from ${\bf x}$ we use to construct a linear model
- We denote by
 - \mathbf{X}_J a submatrix of the full feature matrix \mathbf{X} , selected according to the specified subset of feature
 - \mathbf{w}_J linear model coefficients, corresponding to \mathbf{X}_J , $\hat{\mathbf{w}}_J$ are their estimates by the least squares method
 - $-\hat{h}_J(\mathbf{x}) = \hat{\mathbf{w}}_J^{\mathrm{T}} \cdot \mathbf{x}_J + \hat{b} \text{ a regression function,}$ $\hat{y}_i(J) = \hat{h}_J(\mathbf{x}_i)$

Regression Risk

Risk of a prediction (in-sample error)

$$R(J) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}(\hat{y}_i(J) - y_i^*)^2,$$

where y_i^* is a newly randomly generated y_i (with independently generated noise value) for the same \mathbf{x}_i

- The problem is to select J, such that R(J) is small
- Risk estimate on the training set is equal to

$$\hat{R}_{tr}(J) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i(J) - y_i)^2$$

• Theorem: $\mathbb{E}(\hat{R}_{\mathrm{tr}}(J)) < R(J)$ and

$$\operatorname{bias}(\hat{R}_{\operatorname{tr}}(J)) = \mathbb{E}(\hat{R}_{\operatorname{tr}}(J)) - R(J) = -\frac{2}{m} \sum_{i=1}^{m} \operatorname{Cov}(\hat{y}_i, y_i)$$

C_p Mallow

It can be proved, that in the linear case

$$2\sum_{i=1}^{m} \operatorname{Cov}(\hat{y}_i, y_i) \sim 2|J|\hat{\sigma}^2,$$

where $\hat{\sigma}^2$ is an estimate of an output noise standard deviation σ^2 , obtained using residuals on the training set, calculated by fitting the model

ullet Thus, we get C_p Mallow statistics, representing asymptotically unbiased estimate of the regression risk

$$\hat{R}(J) = \hat{R}_{tr}(J) + 2\frac{\hat{\sigma}^2}{m}|J|$$

The second term here penalizes complexity

AIC & BIC

 AIC (Akaike Information Criterion) provides estimate of the risk in case of more general models. It has the form

$$L_J-|J|,$$

where

- $-L_{J}$ is a model log-likelihood
- |J| is a number of model parameters
- ullet AIC is equivalent to Mallow C_p in case of linear regression model with a Gaussian noise
- BIC (Bayesian Information Criterion) is equal to

$$L_J - |J| \log m$$

LOO CV

Another possibility to estimate risk: leave-one-out cross-validation

$$\hat{R}_{CV}(J) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_{(-i)})^2,$$

where $\hat{y}_{(-i)}$ is a prediction, obtained by a model, constructed using a sample $S_m \setminus \{(\mathbf{x}_i, y_i)\}$

Increase computational efficiency using formula

$$\hat{R}_{CV}(J) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{y_i - \hat{y}_i(J)}{1 - U_{ii}(J)} \right)^2$$
$$U(J) = \mathbf{X}_J (\mathbf{X}_J^{\mathrm{T}} \mathbf{X}_J)^{-1} \mathbf{X}_J^{\mathrm{T}}$$

BURNAEV ML

- OVERFITTING. BIAS-VARIANCE DECOMPOSITION
- 2 Model Quality Criteria
- 3 Linear Regression Model Selection
- 4 REGULARIZATION
- **5** FEATURE SELECTION

LEARNING GUARANTEES

• Upper bound on a probability of over-training, valid for any sample S_m , rather general hypothesis class H and learner \mathcal{L} :

$$\mathbb{P}\left(\hat{R}(h; S^t) - \hat{R}(h; S_m) \ge \varepsilon\right) \le \delta(\varepsilon, H), \ h(\cdot) = \mathcal{L}(S_m)$$

• Then for any S_m , H and \mathcal{L} , and $\delta \in (0,1)$ with a probability not less than $(1-\delta)$ we get that

$$\hat{R}(h; S^t) \le \hat{R}(h; S_m) + \varepsilon(\delta, H)$$

Corrected Empirical Risk

$$\hat{R}(h; S_m) + \varepsilon(\delta, H) \to \min_{h, H}$$

REGULARIZATION

Regularization penalizes complex models H

$$\hat{R}_{pen}(h; S_m) = \hat{R}(h; S_m) + pen(H)$$

- Let us consider linear models $H = \{h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathrm{T}} \cdot \mathbf{x})\}$ (classification) or $H = \{h(\mathbf{x}) = (\mathbf{w}^T \cdot \mathbf{x})\}$ (regression)
- Then
 - A) L_2 -regularization $pen(H) = \lambda \sum_{i=1}^{N} w_i^2$
 - B) L_1 -regularization $pen(H) = \lambda \sum_{i=1}^{N} |w_i|$
 - C) L_0 -regularization $pen(H) = \lambda \sum_{i=1}^{N} 1_{w_i \neq 0}$
- AIC & BIC are special cases of L_0 -regularization

Burnaev

BAYESIAN INTERPRETATION OF REGULARIZATION

- We consider linear regression model with a Gaussian i.i.d. noise
- Log-likelihood of S_m has the form

$$l(\mathbf{w}) = m \log \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y_i - \mathbf{w}^{\mathrm{T}} \mathbf{x}_i)^2$$

Let us assume that

$$\mathbf{w} \sim \mathcal{N}(0, \tau^2 \mathbb{I})$$

Posterior distribution of w has the form

$$p(\mathbf{w}|S_m) \propto p(S_m|\mathbf{w})p(\mathbf{w})$$

$$= \mathbf{C} \cdot \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i)^2\right\} \exp\left\{-\frac{\mathbf{w}^T \mathbf{w}}{2\tau^2}\right\}$$

BAYESIAN INTERPRETATION OF REGULARIZATION

Log-posterior

$$l_{MAP}(\mathbf{w}|S_m) = -\frac{1}{2\sigma^2} \sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i)^2 - \frac{1}{2\tau^2} \sum_{k=1}^N w_k^2$$

$$= -\frac{m}{2\sigma^2} \left(\frac{1}{m} \sum_{i=1}^m (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \frac{\sigma^2}{m\tau^2} \sum_{k=1}^N w_k^2 \right)$$

$$= -\frac{m}{2\sigma^2} \left(\hat{R}(h; S_m) + \lambda ||\mathbf{w}||^2 \right), \ \lambda = \frac{\sigma^2}{m\tau^2}$$

ullet Thus MAP estimate is the same as L_2 -regularized estimate

BURNAEV ML

- 2 Model Quality Criteria
- 3 Linear Regression Model Selection
- **5** FEATURE SELECTION

FEATURE SELECTIONS

Why Feature Selection?

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- Reduces data set and resulting model size
- Note: Feature Selection is different from Feature Extraction
 - The latter transforms original features to get a small set of new features
 - Dimensionality Reduction is a type of Feature Extraction

FEATURE SELECTION METHODS

- Methods agnostic to the learning algorithm
 - Preprocessing based methods
 - A) E.g., remove a binary feature if it's ON in very few or most examples
 - Filter Feature Selection methods
 - A) Use some ranking criteria to rank features
 - B) Select the top ranking features
 - Wrapper Methods (keep the learning algorithm in the loop)
 - A) Requires repeated runs of the learning algorithm with different set of features
 - B) Can be computationally expensive

SCHEME OF FEATURE SELECTION METHODS

Filters, Wrappers, and Embedded methods

FILTER FEATURE SELECTION

Uses heuristics but is much faster than wrapper methods

 Correlation Critera: Rank features in order of their correlation with the labels

$$r(x_d, y) = \frac{\text{cov}(x_d, y)}{\sqrt{\text{var}(x_d)\text{var}(y)}}$$

Mutual Information Criteria:

$$MI(x_d, y) = \sum_{x_d} \sum_{y} p(x_d, y) \log \frac{p(x_d, y)}{p(x_d)p(y)}$$

Wrapper Methods

Two types: Forward Search and Backward Search

- Forward Search
 - Start with no features
 - Greedily include the most relevant feature and estimate model's error on a renewed feature set
 - Stop when selected the desired number of features
- Backward Search
 - Start with all the features
 - Greedily remove the least relevant and estimate model's error on a renewed feature set
 - Stop when selected the desired number of features
- Inclusion/Removal criteria uses cross-validation