Devoir à la maison n° 22

À rendre le 13 juin

Étant donnés trois nombres complexes x, y, z, on pose

$$M = M(x, y, z) = \begin{pmatrix} x & y & z \\ y & z & x \\ z & x & y \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

Soit d'autre part la matrice $J=\begin{pmatrix}1&1&1\\1&j&j^2\\1&j^2&j\end{pmatrix}$, où $j=e^{i\frac{2\pi}{3}}=-\frac{1}{2}+i\frac{\sqrt{3}}{2}$. On note \overline{J} la

matrice dont les coefficients sont les conjugués de ceux de la matrice J.

- 1) Calculer directement le déterminant de la matrice M.
- 2) Calculer le produit $J\overline{J}$. Calculer le produit $JM\overline{J}$ et montrer que cette matrice s'écrit sous la forme DS, où D est une matrice diagonale et S une "matrice de permutation" (c'est-à-dire une matrice obtenue par une permutation de colonnes à partir de la matrice-unité I_3).
- 3) En déduire une expression factorisée de det(M).
- 4) Donner une condition nécessaire et suffisante sur les nombres complexes x, y, z pour que M soit inversible. Exprimer alors M^{-1} à l'aide de J, \overline{J} , D^{-1} et S. À partir de maintenant, le corps des scalaires est le corps des réels.
- 5) Soit $\Gamma = \{(x, y, z) \in \mathbb{R}^3 \mid M(x, y, z) \text{ non inversible } \}$. Montrer que Γ est la réunion d'un plan vectoriel Π et d'une droite vectorielle δ de \mathbb{R}^3 que l'on précisera (on se souviendra que x, y, z sont des réels).
- 6) Soit E_1 l'ensemble des endomorphismes f de \mathbb{R}^3 laissant stable le plan Π (c'est-à-dire tels que $f(\Pi) \subset \Pi$).
 - a) Montrer que E_1 est un sous-espace vectoriel de $\mathcal{L}(\mathbb{R}^3)$.
 - b) Montrer qu'une matrice $A = (a_{ij}) \in \mathcal{M}_3(\mathbb{R})$ représente canoniquement un endomorphisme f de E_1 si et seulement si $\sum_{i=1}^3 a_{ij}$ est indépendant de j. En déduire la dimension de E_1 .
- 7) Soit $E_2 = \{ f \in \mathcal{L}(\mathbb{R}^3) \mid f(\delta) \subset \delta \}$. Caractériser les matrices représentant canoniquement les endomorphismes de E_2 . En déduire la dimension de l'espace vectoriel E_2 .