

NPN Silicon RF Transistor

- For highest gain low noise amplifier at 1.8 GHz
- Outstanding G_{ms} = 21 dB
 Noise Figure F = 0.9 dB
- Gold metallization for high reliability
- SIEGET 45 Line

ESD: Electrostatic discharge sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration				Package		
BFP540	ATs	1=B	2=E	3=C	4=E	ı	1	SOT343

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}	4.5	V
Collector-emitter voltage		14	
Collector-base voltage	V _{CBO}	14	
Emitter-base voltage	V _{EBO}	1	
Collector current	I _C	80	mA
Base current	I _B	8	
Total power dissipation ¹⁾	P _{tot}	250	mW
<i>T</i> _S ≤ 77°C			
Junction temperature	T_{i}	150	°C
Ambient temperature	T_{A}	-65 150	
Storage temperature	T _{stg}	-65 1 50	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ²⁾	R _{thJS}	≤ 290	K/W

 $^{^{1}\}textit{T}_{S}$ is measured on the collector lead at the soldering point to the pcb

 $^{^2\}mbox{For calculation of}\,{\it R}_{\mbox{thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	·				•
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V
$I_{\rm C}$ = 1 mA, $I_{\rm B}$ = 0					
Collector-emitter cutoff current	I _{CES}	-	-	10	μA
$V_{CE} = 14 \text{ V}, V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{CB} = 5 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	10	μA
$V_{\rm EB} = 0.5 \rm V, I_{\rm C} = 0$					
DC current gain	h _{FE}	50	110	200	-
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3.5 V					

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Electrical Characteristics at $T_A = 25^{\circ}C$, unless Parameter	Symbol		Values			
		min.	typ.	max.		
AC Characteristics (verified by random samplin	g)	T		T		
Transition frequency	f_{T}	21	30	-	GHz	
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 4 V, f = 1 GHz						
Collector-base capacitance	C _{cb}	-	0.14	0.24	pF	
$V_{\text{CB}} = 2 \text{ V}, f = 1 \text{ MHz}$						
Collector emitter capacitance	C _{ce}	-	0.33	-		
$V_{CE} = 2 \text{ V}, f = 1 \text{ MHz}$						
Emitter-base capacitance	C _{eb}	-	0.65	-		
$V_{\rm EB} = 0.5 \text{V}, f = 1 \text{MHz}$						
Noise figure	F				dB	
$I_{C} = 5 \text{ mA}, V_{CE} = 2 \text{ V}, f = 1.8 \text{ GHz}, Z_{S} = Z_{Sopt}$		-	0.9	1.4		
$I_{C} = 5 \text{ mA}, V_{CE} = 2 \text{ V}, f = 3 \text{ GHz}, Z_{S} = Z_{Sopt}$		-	1.3	-		
Power gain, maximum stable ¹⁾	G _{ms}	-	21.5	-	dB	
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,						
$Z_{\rm L} = Z_{\rm Lopt}$, $f = 1.8 {\rm GHz}$						
Power gain, maximum available ¹⁾	G _{ma}	-	16	-	dB	
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,						
$Z_{L} = Z_{Lopt}, f = 3 \text{ GHz}$						
Transducer gain	$ S_{21e} ^2$				dB	
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,						
f = 1.8 GHz		16	18.5	-		
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,						
f = 3 GHz		-	14.5	-		
Third order intercept point at output ²⁾	IP ₃	-	24.5	-	dBm	
V_{CE} = 2 V, I_{C} = 20 mA, f = 1.8 GHz,						
$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$						
1dB Compression point at output	P _{-1dB}	_	11	_		
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,						
f = 1.8 GHz						
	•				•	

 $^{^{1}}G_{\text{ma}} = |S_{21e} / S_{12e}| \text{ (k-(k^2-1)^{1/2}), } G_{\text{ms}} = |S_{21e} / S_{12e}|$

²IP3 value depends on termination of all intermodulation frequency components.

Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

Transitor Chip Data:

IS =	82.84	aA	BF =	107.5	-	NF =	1	-
VAF =	28.383	V	IKF =	0.48731	Α	ISE =	11.15	fA
NE =	3.19	-	BR =	5.5	-	NR =	1	-
VAR =	19.705	V	IKR =	0.02	Α	ISC =	19.237	аA
NC =	1.172	-	RB =	5.4	Ω	IRB =	0.72983	mΑ
RBM =	1.3	Ω	RE =	0.31111	-	RC =	4	Ω
CJE =	1.8063	fF	VJE =	0.8051	V	MJE =	0.46576	-
TF =	6.76	ps	XTF =	0.4219	-	VTF =	0.23794	V
ITF =	1	mA	PTF =	0	deg	CJC =	234	fF
VJC =	0.81969	V	MJC =	0.30232	-	XCJC =	0.3	-
TR =	2.324	ns	CJS =	0	fF	VJS =	0.75	V
MJS =	0	-	XTB =	0	-	EG =	1.11	eV
XTI =	3	-	FC =	0.73234		TNOM	300	K

All parameters are ready to use, no scalling is necessary.

Package Equivalent Circuit:

$L_{BI} =$	0.47	nH				
$L_{BO} =$	0.53	nΗ				
L _{EI} =	0.23	nΗ				
$L_{EO} =$	0.05	nΗ				
$L_{CI} =$	0.56	рН				
$L_{EO} =$	0.58	nΗ				
C_{BE} =	136	fF				
$C_{CB} =$	6.9	fF				
$C_{CE} =$	134	fF				
Valid up to 6GHz						

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G.6 syntax for all simulators.
- Simulation of the package is not necessary for frequencies < 100MHz.
 For higher frequencies please add the wiring of the package equivalent circuit around the non-linear transistor.

4

Total power dissipation $P_{tot} = f(T_S)$

Permissible Pulse Load $R_{thJS} = f(t_p)$

Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{\text{p}})$

Collector-base capacitance C_{cb} = $f(V_{CB})$ f = 1MHz

5

Transition frequency $f_T = f(I_C)$

f = 1 GHz

 V_{CE} = Parameter in V

Power Gain G_{ma} , $G_{ms} = f(f)$,

$$|S_{21}|^2 = f(f)$$

 $V_{CE} = 2V, I_{C} = 20mA$

Power gain G_{ma} , $G_{ms} = f(I_C)$

$$V_{CE} = 2V$$

f = Parameter in GHz

Power gain G_{ma} , $G_{ms} = f(V_{CE})$

 $I_{\rm C}$ = 20mA

6

f = Parameter in GHz

Noise figure $F = f(I_{\mathbb{C}})$

 V_{CE} = 2V, Z_{S} = Z_{Sopt}

Noise figure F = f(f)

$$V_{CE}$$
 = 2V, Z_{S} = Z_{Sopt}

Noise figure $F = f(I_C)$

 $V_{CE} = 2V, f = 1.8GHz$

Source impedance for min.

noise figure vs. frequency

 V_{CE} = 2V, I_{C} = 5mA / 20mA

