1 群の定義

問題 1.1. 次の $(1) \sim (8)$ で与えられる集合と演算 \bullet が群の定義を満たすかどうかを調べ、群になる場合はアーベル群かどうかを述べよ。また、群にならないときは群の定義のどこが成り立たないかを指摘せよ。

- (1) 集合は複素数全体 \mathbb{C} , 演算は, $a,b \in \mathbb{C}$ に対し $a \bullet b = ab$ (複素数の積).
- (2) 集合は $\mathbb{C}^{\times}=\mathbb{C}\setminus\{0\}$ (複素数全体から 0 を除いた集合), 演算 \bullet は (1) と同様に複素数の積.
 - (3) 集合は有理数全体 \mathbb{Q} , 演算は, $a,b \in \mathbb{Q}$ に対し $a \bullet b = -a b$.
- (4) W をアルファベットの小文字 1 文字以上からなる文字列 (スペースは含まない) 全体の集合とする. $a,b\in W$ に対して $a\bullet b$ は文字列 a の後に文字列 b をつなげたもの. 例えば a= daisuu, b= gaku のとき, $a\bullet b=$ daisuugaku.
- (5) 上記の (W, \bullet) に "0 文字の文字列" (便宜上, 記号 e で表す) を加えたもの. 任意の $a \in W \cup \{e\}$ に対して $e \bullet a = a \bullet e = a$ とする.
- (6) 上記にさらに別の元 d を加える. 文字列 a に対し, $a \bullet d$ は a の末尾の 1 文字を除いたもの, $d \bullet a$ は a の先頭の 1 文字を除いたものとする (ただし, e に対しては $e \bullet d = d \bullet e = e$). 例えば, a = daisuu のとき, $a \bullet d =$ daisu, $d \bullet a =$ aisuu. また, d 同士の積は $d \bullet d = d$ とする.
- (7) 集合は $T = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| \begin{array}{c} a,b,c \in \mathbb{C}, \\ ac \neq 0 \end{array} \right\}$, 演算 \bullet は, $A,B \in T$ に対して $A \bullet B = AB$ (行列の積) で定める.
 - (8) 集合は $U=\left\{\left(egin{array}{cc} 1 & a \\ 0 & 1 \end{array}
 ight) \middle| a\in\mathbb{C}
 ight\},$ 演算 ullet は行列の積で定める.

 $^{^{1}}$ ホームページ http://www.math.tsukuba.ac.jp/ $^{\sim}$ amano/lec2012-2/e-algebra-ex/index.html