

Conception of a complete OFDM communication channel

Main goal of the project

Achieve a wireless communication on a multi-path channel

Last year ...

 Narrowband communication channel: Noise was the only source of degradation

Synchronization algorithms for single carrier communications

This year ...

Wideband communication channel: Baseband channel is more complex

- Characterization and compensation of the channel
- Introduction to a new modulation: OFDM
- Adaptation of the synchronization algorithms

ULB

Planning

1	Transfer function, Impulse response, Power Delay Profile, Coherence bandwidth
2	SISO Channel model with a 20 MHz bandwidth: Statistical model of the narrowband and wideband channel
3	OFDM and channel equalization
4	Channel estimation
5	Time of Arrival estimation
6	CFO acquisition, compensation and tracking
7	Beamforming, SIMO channel model and Spatial
	Correlation
8	SIMO communication
9	Q&A
10	Evaluation

ELEC-H-422

ELEC-H-522

Multi-Path Components

Narrowband: Sampling period $T_s > \tau_3$

Wideband: Sampling period $T_s < \tau_3$

Power Delay Profile

- PDP = Mean received power in function of time
- Decay of the PDP is defined by its delay spread

Frequency domain representation &

n 😵

Narrowband:

- Samping period $T_s >> Delay Spread \sigma_s$
- Samping Frequecy f_s << Coherence bandwidt Δf_c

Wideband:

- $T_s \ll \sigma_s$
- $f_s \gg \Delta f_c$

Impact on the communication

No memory in a narrowband channel:

$$r(n) = hs(n) + w(n)$$

Memory in a wideband channel:

$$r(n) = h(n) * s(n) + w(n)$$

Interferences must be compensated on the receiver side

Experimental measurements

- Vector Network Analyzer
- 3D Positioning device
- Transmitting Antenna Tx
- Receiving antenna Rx

Experimental measurements

- Vector Network Analyzer
- 3D Positioning device
- Transmitting Antenna Tx
- Receiving antenna Rx

- For each position of Rx, a transfer function H(f) is measured
- Transfer function measured with a frequency sweep

Experimental measurements

- Evaluation of the PDP by averaging over the local area
 => Elimination of the effect of the small-scale fading
- $PDP(n) = \frac{1}{N} \sum_{i=1}^{N} |h_i(n)|^2$ where *i* is the position index

Objective

- Extract the impulse response at each position
- Evaluate the PDP, calculate its delay spread and confirm that it follows an exponential decay
- Evaluate the coherence bandwidth
- Reduce the bandwidth to 20 MHz, using a rectangular and a non-rectangular window. Interpret the impact on the impulse response, the PDP and the delay spread.