Answer keys for exercises in Assignment 6

5) At the center of the semi-circular arc $B = 6.3 \times 10^{-4} T$

At the center of the circular arc B = 0

6)
$$\vec{B}_{in} = \frac{\mu_0 Ir}{2\pi R^2} \hat{\varphi}$$
; $\vec{B}_{out} = \frac{\mu_0 I}{2\pi r} \hat{\varphi}$, r being the distance from the center axis of the wire.

$$(\nabla \times B)_{in} = \mu_0 \vec{J}; \ (\nabla \times B)_{out} = 0$$

7)
$$\vec{F} = -ILB\hat{z}$$

8) $F(s) = \frac{\mu_0 l^2 a^2}{2\pi s(s+a)}$, s being the distance of the arm of the square loop parallel and nearest to the wire, with the net force pointing vertically away from the wire.