Solutions to Part A of Problem Sheet 7

Solution (7.1) First of all, note that the function is only defined for x such that $Ax \leq b$. This is the *domain* of the function.

We introduce new variables y and derive the dual to the problem

minimize
$$-\sum_{i=1}^{m} \log(y_i)$$

subject to $y = b - Ax$.

Note that by restricting to the domain of the problem, we don't have to explicitly ask for y to be non-negative: the objective function wouldn't make sense for negative values.

The Lagrangian to this problem is

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\mu}) = -\sum_{i=1}^{m} \log(y_i) + \boldsymbol{\mu}^{\top} (\boldsymbol{y} - \boldsymbol{b} + \boldsymbol{A}\boldsymbol{x})$$
$$= \sum_{i=1}^{m} -\log(y_i) + \mu_i (y_i - b_i + \boldsymbol{a}_i^{\top} \boldsymbol{x}).$$

The dual function is

$$g(\boldsymbol{\mu}) = \inf_{\boldsymbol{x}, \boldsymbol{y}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{\mu}),$$

where the infimum is taken over the domain of \mathcal{L} (in particular, this requires $y \geq 0$). The infimum is $-\infty$ if $\mu^{\top} A \neq 0$. If μ has negative terms, then the infimum is also $-\infty$ (we could then choose an arbitrary large value for the corresponding y variable).

If $\mu > 0$, then we can determine the minimum by computing the gradient. For the partial derivative in y_i we get

$$\frac{\partial \mathcal{L}}{\partial u_i} = -\frac{1}{u_i} + \mu_i = 0,$$

so at the minimum we have $y_i = \frac{1}{\mu_i}$. For the gradient in the x variables we get $\nabla_x \mathcal{L} = \mathbf{A}^\top \mu = \mathbf{0}$. It follows that the dual function is

$$g(\boldsymbol{\mu}) = \begin{cases} \sum_{i=1}^{m} \log(\mu_i) + m - \boldsymbol{b}^{\mathsf{T}} \boldsymbol{\mu} & \text{if } \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\mu} = \boldsymbol{0}, \ \boldsymbol{\mu} > 0, \\ -\infty & \text{else,} \end{cases}$$

where we used that $\log(y_i) = \log(1/\mu_i) = -\log(\mu_i)$.

Solution (7.2) The problem is not convex since the equality constraint is not linear, and the inequality constraint is not convex. We can formulate an equivalent convex optimization problem as

minimize
$$x_1^2 + x_2^2$$
 subject to $x_1 \le 0$, $x_1 + x_2 = 0$.

Solution (7.3) Write

$$P(\lambda) = P + \sum_{i=1}^{m} \lambda_i P_i, \ q(\lambda) = q + \sum_{i=1}^{m} \lambda_i q_i, \ r(\lambda) = r + \sum_{i=1}^{m} \lambda_i r_i.$$

With this notation, we can express the Lagrangian as

$$\mathcal{L}(oldsymbol{x},oldsymbol{\lambda}) = rac{1}{2}oldsymbol{x}^ op oldsymbol{P}(\lambda)oldsymbol{x} + oldsymbol{q}(\lambda)^ op oldsymbol{x} + oldsymbol{r}(\lambda).$$

We can now approach this minimization problem just as we would approach any such problem with a positive semidefinite matrix: compute the gradient in x, $P(\lambda) + q(\lambda)$, and set this to zero. Plugging in the result, $x = -P(\lambda)^{-1}q(\lambda)$, into the equation for the Lagrangian, we get for $\lambda \geq 0$

$$g(\lambda) = \inf_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \lambda) = -\frac{1}{2} q(\lambda)^{\top} P(\lambda)^{-1} q(\lambda) + r(\lambda).$$

The Lagrange dual is then given by

maximize
$$-\frac{1}{2}q(\boldsymbol{\lambda})^{\top}\boldsymbol{P}(\boldsymbol{\lambda})^{-1}q(\boldsymbol{\lambda}) + r(\boldsymbol{\lambda})$$
 subject to $\boldsymbol{\lambda} \geq \mathbf{0}$.

This function looks simpler at first sight, since it only involves non-negativity constraints, but it requires the inverse of a linear combination of the matrices P_i , which makes things less straight-forward.