ANOVA

You do not need to know most calculations for ANOVA

- We'll focus on conceptual logic of ANOVA:
 - Why is it called "ANalysis Of VAriance"?
 - What are MS_{between}, MS_{within}, & F-ratio
 - What is the shape of the F-distribution?
 - What are df for ANOVA?
 - What conclusion follows from the ANOVA test?
 - What follow-up tests are generally performed?

ANOVA

- We use ANOVA when comparing more than 2 groups
 - But, ANOVA can also be used for exactly two groups
 - Decision will be the same, in fact $F = t^2$
- "One-way" ANOVA has one IV
 - Ex. Testing anti-anxiety Rx with 500mg, 1000mg, or placebo control
 - One IV with three levels

ANOVA: Factorial

- "Factorial" ANOVA has multiple IVs (Ch. 16)
 - Factor 1: <u>Dose</u> (500mg, 1000mg, placebo)
 - Factor 2: Schedule (once per day, twice per day)

"Fully" factorial = all combinations

ANOVA: Assumptions

- 1. Sampled populations are normally distributed*
- 2. DV is interval or ratio*
- Homogeneity of variance*
 - Like t-test, we will be averaging variance from different conditions

^{*}ANOVA is generally robust to violations assuming that N is relatively large and n's are relatively equal

Example: Memory SPAN

ID	Digit span	Letter span	Word Span
1	8	6	4
2	10	10	4
3	7	6	4
4	5	5	2
5	9	7	5
6	10	4	4
7	9	5	5
8	6	8	4
\overline{X}	8.000	6.375	4.000

- Why not just multiple t-tests?
 - Need 3 tests
 - Each comes with α
- Could we $(\alpha/3)$?
 - Yes! But then we greatly increase β ⊗

Example: Memory SPAN

ID	Digit span	Letter span	Word Span					
1	8	6	4					
2	10	10	4					
3	7	6	4					
4	5	5	2					
5	9	7	5					
6	10	4	4					
7	9	5	5					
8	6	8	4					
\overline{X}	8.000	6.375	4.000					

• ANOVA has family wise α

– We know $\alpha = \alpha$, & maximize power!

 Limitation: ANOVA is always non-directional

ANOVA: Hypotheses

- H_0 : $\mu_{\text{digits}} = \mu_{\text{letters}} = \mu_{\text{words}}$
- H_1 : At least one mean differs

- Conclusions are also non-directional:
 - "A one-way ANOVA revealed a significant difference in memory SPAN between the three stimulus types."

ANOVA: Formula

$$F_{\text{obt}} = \frac{n\left[(\bar{X}_{\text{digit}} - \bar{X}_{\text{G}})^2 + (\bar{X}_{\text{letter}} - \bar{X}_{\text{G}})^2 + (\bar{X}_{\text{word}} - \bar{X}_{\text{G}})^2\right]/(k-1)}{\frac{(SS_{\text{digit}} + SS_{\text{letter}} + SS_{\text{word}})}{(N-k)!}}$$
Homogeneity req.

Where X_G = Grand mean,

n = participants per level,

N = total participants

k = number of groups

ANOVA: Formula

- Conceptual elements:
 - Numerator is SS for difference between each group mean and the grand mean
 - This is known as MS_{between}
 - Remember MS (Mean Square) \sim variance (s^2)
 - Denominator is calculating SS for scores within each group
 - This is known as MS_{within}

$$F_{\text{obt}} = \frac{MS_{\text{between}}}{MS_{\text{within}}} = \frac{\sigma_{\text{groups}}^2}{\sigma_{\text{observations}}^2}$$

Translations:

- MS_{between}
 - <u>Effect</u>, systematic, groups
 - Quantifies how much DV varied as function of IV

- MS_{within}
 - Error, residual, observations
 - Quantifies how much DV varied as function of individual differences

$$F_{\text{obt}} = \frac{n\left[(\overline{X}_{\text{digit}} - \overline{X}_{\text{G}})^2 + (\overline{X}_{\text{letter}} - \overline{X}_{\text{G}})^2 + (\overline{X}_{\text{word}} - \overline{X}_{\text{G}})^2\right]/2}{(SS_{\text{digit}} + SS_{\text{letter}} + SS_{\text{word}})/(N - k)}$$

Visualization of Denominator (MS_{within})

N - k

F-ratio

•
$$F_{\text{obt}} = \frac{MS_{\text{between}}}{MS_{\text{within}}} = \frac{\text{Effect } \sigma^2 + \text{Error } \sigma^2}{\text{Error } \sigma^2}$$

•
$$t_{\rm obt} = \frac{\bar{X}_1 - \bar{X}_2}{{\rm Error}\,\sigma_{\bar{X}}} = \frac{{\rm Effect}}{{\rm Error}}$$

df for ANOVA

$$F_{\text{obt}} = \frac{MS_{\text{between}}}{MS_{\text{within}}}$$

Two sources of *df:*

- Numerator df corrects SS between groups
 - Calculate one s^2 (of k groups around grand mean) - df = k - 1
- Denominator df corrects SS within each group
 - Calculate k number of s² (one s² per group)
 df = N k

Finding F_{crit}

table F Critical values of the *F* distribution for $\alpha = 0.05$ (Roman type) and $\alpha = 0.01$ (boldface type)

The values listed in the table are the critical values of F for the degrees of freedom of the numerator of the F ratio (column headings) and the degrees of freedom of the denominator of the F ratio (row headings). To be significant, $F_{\text{obt}} \geq F_{\text{crit}}$.

Degrees of Freedom:		Degrees of Freedom: Numerator																						
Denominator	1	2	3	4	5	6	7	8	9	10	11	12	14	16	20	24	30	40	50	75	100	200	500	∞
1	161	200	216	225	230	234	237	239	241	242	243	244	245	246	248	249	250	251	252	253	253	254	254	254
	4,052	4,999	5,403	5,625	5,764	5,859	5,928	5,981	6,022	6,056	6,082	6,106	6,142	6,169	6,208	6,234	6,258	6,286	6,302	6,323	6,334	6,352	6,361	6,36 6
2	18.51	19.00	19.16	19.25	19.30	19.33	19.36	19.37	19.38	19.39	19.40	19.41	19.42	19.43	19.44	19.45	19.46	19.47	19.47	19.48	19.49	19.49	19.50	19.50
	98.49	99.00	99.17	99.25	99.30	99.33	99.34	99.36	99.38	99.40	99.41	99.42	99.43	99.44	99.45	99.46	99.47	99.48	99.48	99.49	99.49	99.49	99.50	99.5 0
3	10.13	9.55	9.28	9.12	9.01	8.94	8.88	8.84	8.81	8.78	8.76	8.74	8.71	8.69	8.66	8.64	8.62	8.60	8.58	8.57	8.56	8.54	8.54	8.53
	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.34	27.23	27.13	27.05	26.92	26.83	26.69	26.60	26.50	26.41	26.35	26.27	26.23	26.18	26.14	26.12
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.93	5.91	5.87	5.84	5.80	5.77	5.74	5.71	5.70	5.68	5.66	5.65	5.64	5.63
	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.54	14.45	14.37	14.24	14.15	14.02	13.93	13.83	13.74	13.69	13.61	13.57	13.52	13.48	13.46
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.78	4.74	4.70	4.68	4.64	4.60	4.56	4.53	4.50	4.46	4.44	4.42	4.40	4.38	4.37	4.36
	16.26	13.27	12.06	11.39	10.97	10.67	10.45	10.27	10.15	10.05	9.96	9.89	9.77	9.68	9.55	9.47	9.38	9.29	9.24	9.17	9.13	9.07	9.04	9.0 2
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.96	3.92	3.87	3.84	3.81	3.77	3.75	3.72	3.71	3.69	3.68	3.67
	13.74	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.79	7.72	7.60	7.52	7.39	7.31	7.23	7.14	7.09	7.02	6.99	6.94	6.90	6.88
7	5.59	4.47	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.63	3.60	3.57	3.52	3.49	3.44	3.41	3.38	3.34	3.32	3.29	3.28	3.25	3.24	3.23
	12.25	9.55	8.45	7.85	7.46	7.19	7.00	6.84	6.71	6.62	6.54	6.47	6.35	6.27	6.15	6.07	5.98	5.90	5.85	5.78	5.75	5.70	5.67	5.6 5
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.34	3.31	3.28	3.23	3.20	3.15	3.12	3.08	3.05	3.03	3.00	2.98	2.96	2.94	2.93
	11.26	8.65	7.59	7.01	6.63	6.37	6.19	6.03	5.91	5.82	5.74	5.67	5.56	5.48	5.36	5.28	5.20	5.11	5.06	5.00	4.96	4.91	4.88	4.8 6
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.13	3.10	3.07	3.02	2.98	2.93	2.90	2.86	2.82	2.80	2.77	2.76	2.73	2.72	2.71
	10.56	8.02	6.99	6.42	6.06	5.80	5.62	5.47	5.35	5.26	5.18	5.11	5.00	4.92	4.80	4.73	4.64	4.56	4.51	4.45	4.41	4.36	4.33	4.3 1
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.97	2.94	2.91	2.86	2.82	2.77	2.74	2.70	2.67	2.64	2.61	2.59	2.56	2.55	2.54
	10.04	7.56	6.55	5.99	5.64	5.39	5.21	5.06	4.95	4.85	4.78	4.71	4.60	4.52	4.41	4.33	4.25	4.17	4.12	4.05	4.01	3.96	3.93	3.91
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.86	2.82	2.79	2.74	2.70	2.65	2.61	2.57	2.53	2.50	2.47	2.45	2.42	2.41	2.40
	9.65	7.20	6.22	5.67	5.32	5.07	4.88	4.74	4.63	4.54	4.46	4.40	4.29	4.21	4.10	4.02	3.94	3.86	3.80	3.74	3.70	3.66	3.62	3.60
12	4.75	3.88	3.49	3.26	3.11	3.00	2.92	2.85	2.80	2.76	2.72	2.69	2.64	2.60	2.54	2.50	2.46	2.42	2.40	2.36	2.35	2.32	2.31	2.30
	9.33	6.93	5.95	5.41	5.06	4.82	4.65	4.50	4.39	4.30	4.22	4.16	4.05	3.98	3.86	3.78	3.70	3.61	3.56	3.49	3.46	3.41	3.38	3.3 6
13	4.67	3.80	3.41	3.18	3.02	2.92	2.84	2.77	2.72	2.67	2.63	2.60	2.55	2.51	2.46	2.42	2.38	2.34	2.32	2.28	2.26	2.24	2.22	2.21
	9.07	6.70	5.74	5.20	4.86	4.62	4.44	4.30	4.19	4.10	4.02	3.96	3.85	3.78	3.67	3.59	3.51	3.42	3.37	3.30	3.27	3.21	3.18	3.16
14	4.60	3.74	3.34	3.11	2.96	2.85	2.77	2.70	2.65	2.60	2.56	2.53	2.48	2.44	2.39	2.35	2.31	2.27	2.24	2.21	2.19	2.16	2.14	2.13
	8.86	6.51	5.56	5.03	4.69	4.46	4.28	4.14	4.03	3.94	3.86	3.80	3.70	3.62	3.51	3.43	3.34	3.26	3.21	3.14	3.11	3.06	3.02	3.00

ANOVA Output:

Conclusion: "A one-way ANOVA revealed a reliable difference in memory SPAN between the three stimulus types, F(2,14) = 15.86, p < 001, $\eta^2 = .537$."

Planned Comparisons vs. Corrected Post Hoc Tests

<u>Conclusion</u>: "**Tukey-corrected** post hoc tests showed that digit span and letter span did not reliably differ (t(7) = 1.84, p = .227), but that both digit span and letter span were reliably greater than word span (t(7) = 8.00, p < .001; t(7) = 3.37, p = .028, respectively)."

19

Effect Size in ANOVA

- Effect size in ANOVA is more similar to effect size in regression than to the *t*-test
 - $-R^2 \& r^2$ are used in regression
 - $-\eta^2 \& \omega^2$ are used in ANOVA
- Eta, η, is a biased estimator (it is too high)
- Omega, ω , is much better
 - Most people still use η^2 ?!???
 - Possibly bc SPSS added ω^2 in 2020

Effect Size in ANOVA

- When $\eta^2 \& \omega^2 =$
 - 0.01-0.05, "small"
 - 0.06-0.13, "medium"
 - 0.14+, "large"
- Most often you will encounter "partial Eta"
 - η_p^2 estimates the strength of different effects in factorial designs
 - η_p^2 for main effect of IV1
 - η_p^2 for main effect of IV2
 - η_p^2 for interaction of IV1 & IV2