Project Development Phase Model Performance Test

Date	8 November 2022		
Team ID	592795		
Project Name	Project - Predicting Mental Health Illness		
	of Working Professionals Using		
	Machine Learning		
Maximum Marks	10 Marks		

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot			
1.	Metrics	Regression Model: ADABOOST CLASSIFIER MODEL	<pre># R- Square # evaluating testing accuracy print(metrics.r2_score(y_test,pred_abc))</pre>			
		MSE - 0.13066	0.47729988052568706			
		RMSE – 0.36147	# MSE (Mean square Error)			
		R2 score – 0.477299S	<pre>print(metrics.mean_squared_error(y_test,pred_abc))</pre>			
			0.130666666666665			
			<pre># RMSE (Root Mean Square Error) print(np.sqrt(metrics.mean_squared_error(y_test,pred_abc)))</pre>			
			0.36147844564602555			
		Classification Model: Confusion Matrix Accuray Score- & Classification	<pre>cf_matrix = confusion_matrix(y_test, pred_abc) sb.heatmap(cf_matrix/np.sum(cf_matrix), annot=True, fmt='.2%') plt.xlabel('Predicted') plt.ylabel('Actual')</pre>			
			Text(33.0, 0.5, 'Actual')			
			Confusion Matrix of AdaBoost Classifier -0.45 -0.40 -0.35			
			- 0.30 - 0.25 - 0.20			
			-0.15 -0.10			
			0 Predicted			

			<pre>print(classification_report(y_test,pred_abc))</pre>				
				precision	recall	f1-score	support
			0	0.90	0.82		186
			1	0.83	0.91	0.87	189
			accuracy	No. of the Control of		0.86	375
			macro avg weighted avg		0.86	0.86 0.86	375 375
			0				
2. Tune the Model Hyperparameter Tuning –	Tune the Model	Hyperparameter Tuning –	abc_tuned = AdaBoostClassifier(random_state=49,n_estimators=11, learning_rate=1.02) abc_tuned.fit(X_train,y_train) pred_abc_tuned = abc_tuned.predict(X_test) print('Accuracy of AdaBoost(tuned)=',accuracy_score(y_test,pred_abc_tuned))				
		Accuracy of AdaBoost(tuned)= 0.869333333333333					
		Validation Method - There is no greater difference between the metrics of the original model and tuned model.	Hence mode	l is valid			