${\it Math 1080} \\ {\it Unit 1 Formula reference sheet}$

 $\it Note : Let \ f(x) \ and \ g(y)$ represent the area between 2 functions where appropriate.

Velocity	$F(b) - F(a) = \int_a^b f(x) dx \implies v(t) = v(0) + \int_0^t a(x) dx$			
Disk/Washer πr^2	$ \begin{aligned} x - axis \\ y = 0 \end{aligned} $	$\int_{a}^{b} \pi (R^2 - r^2) dx$	y - axis $x = 0$	$\int_{c}^{d} \pi (R^2 - r^2) dy$
	y = c	$\int_{a}^{b} \pi ((R-c)^{2} - (r-c)^{2}) dx$	x = c	$\int_{c}^{d} \pi \left((R-c)^{2} - (r-c)^{2} \right) dy$
				d y c
Shell method $2\pi r \cdot h$	$ \begin{aligned} x - axis \\ y = 0 \end{aligned} $	$\int_{c}^{d} 2\pi y \cdot g(y) dy$	y - axis $x = 0$	$\int_{a}^{b} 2\pi x \cdot f(x) dx$
	c < a $y = c$	$\int_{c}^{d} 2\pi (y-c) \cdot g(y) dy$	c < a $x = c$	$\int_{a}^{b} 2\pi (x-c) \cdot g(x) dx$
	b < c $y = c$	$\int_{c}^{d} 2\pi (c - y) \cdot g(y) dy$	b < c $x = c$	$\int_{a}^{b} 2\pi (c-x) \cdot g(x) dx$
		x $y=0$		$a = \sum_{x_k} f(x_k^*)$
Arc length $\sqrt{\left(\frac{dx}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^2}$	I	$L = \int_{a}^{b} \sqrt{1 + \left[f'(x)\right]^2} dx$		
Surface area $2\pi r \cdot h$	$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'(x)]^{2}} dx$			
$\begin{array}{c} \overline{\text{Mass}} \\ \rho \cdot d \end{array}$	$m = \int_{a}^{b} \rho dx$			
Work $F \cdot d$	$W = \int_{a}^{b} F(x) dx$			
Chain with load	$W = \int_0^L \rho g(L - y) dy + mgL$			
Pumping	$W = \int_{a}^{b} \rho g A(y)(h - y) dy$			
Force-on-dam	F	$T = \int_0^a \rho g \underbrace{(a-y)}_{\text{depth}} \underbrace{w(y)}_{\text{width}} dy$		