Chapitre

Suites réelles

2. Généralités

2.1. Variations

Soit $u \in S(\mathbb{R})$ et $n_0 \in \mathbb{N}$.

La suite est croissante à partir du rang n_0 si $\forall n \geq n_0, u_{n+1} \geq u_n$ et u est stictement croissante à partir de n_0 si $n \geq n_0$ on a $u_{n+1} > u_n$.

Théorème 1.2 : Suite décroissante

La suite est décroissante à partir du rang n_0 si $\forall n \geq n_0, u_{n+1} \leq u_n$ et u est stictement croissante à partir de n_0 si $n \geq n_0$ on a $u_{n+1} < u_n$.

Exemple : $(n^2)_{n\in\mathbb{N}}$ croissante

 $(\frac{1}{n})_{n\in\mathbb{N}}$ décroissante

 $\neg(u_n \text{ est croissante à partir du premier terme}) = (\exists n \in \mathbb{N}, u_{n+1} < u_n)$

Théorème 1.3: Majoré et minorant

La suite est majorée si $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.

La suite est minorée si $\exists m \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \geq m$.

La suite est bornée si elle est minorée et majorée.

u bornée $\iff \exists M \in \mathbb{R}^+, \forall n \in \mathbb{N}, |u_n| \leq M.$

Valeur absolue

|x| = x si x > 0 et -x si x < 0.

|x-y| mesure la distance e x à y.

|xy| = |x||y|

 $|x+y| \le |x| + |y|$ (inégalité triangulaire)

 $|x| = 0 \rightarrow x = 0$

2.2imites d'une suite

Soit u une suite réelle.

Théorème 2.1: Définition

On dit que la suite u est convergente (CV) si existe $l \in \mathbb{R}$ tel que $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow |u_n - l| < \epsilon$. On dit que l'est une limite de (U_n) .

Théorème 2.2 : Unicité d'une limite d'une suite convergente

Si (U_n) est convergente, sa limite l'est unique on note $l=\lim_{n \to \infty} u_n$.

Théorème 2.3 : Borne d'une suite convergente

Toute suite convergente est bornée

2.1 imites

2.3. Limites et monotonie

Utilisation

On utilise Valeur absolue d'une expression pour la majorer par une valeur. Il vaut mieux dire que $|(-1)^n| \le 1$ que $-1 \le |(-1)^n| \le 1$. Utiliser ensuite l'inégalité triangulaire.

π Théorème 3.1 :

Toute suite croissante et majorée converge vers son plus petit majorant

Toute suite décroissante et minorée converge vers son plus grand minorant.

2.3. Suites adjacentes

π Théorème 3.2 : Définition

2 suites (U_n) et (V_n) sont adjacentes si

- (U_n) est décroissante
- \cdot (V_n) est croissante
- $\cdot \lim_{n \to \infty} U_n V_n = 0$
- · $u_n \ge v_n, \forall n \in \mathbb{N}$.

Théorème 3.3 : Définition

Si les suites (U_n) et (V_n) sont adjacentes, alors elles sont convergentes de même limite.

2.3. Bimites infinies

Soit (u_n) une suite réelle.

π Théorème 3.4 : définition

Elle a pour limite $+\infty$ si $\forall A > 0, \exists N_A \in \mathbb{N}, \forall n, n \geq N_A \Rightarrow u_n \geq A$.

Elle a pour limite $-\infty$ si $\forall A>0, \exists N_A\in\mathbb{N}, \forall n,n\geq N_A\Rightarrow u_n\leq -A.$

2.3. \$uites et opérations

On considère 2 suites réelles (u_n) et (v_n) . On suppose que $\lim_{t \to \infty} = l/\pm \infty$.

Somme des limites

Limite (v_n)	$-\infty$	ι	$+\infty$
$-\infty$	$-\infty$	$-\infty$	FI
ľ	$-\infty$	[+['	$+\infty$
$+\infty$	FI	$+\infty$	$+\infty$

Produit des limites

Limite (v_n) et (u_n)	$-\infty$	l	О	+∞
$-\infty$	$+\infty$	signe de $l imes - \infty$	FI	$-\infty$
l'	signe de $l' imes - \infty$	ll'	0	signe de $l' \times + \infty$
0	FI	0	0	FI
$+\infty$	$-\infty$	signe de $l' \times + \infty$	FI	$+\infty$

2.3. Limites et inégalités

Théorème 3.5 : Inégalités

Supposons que $u_n \leq v_n$. On a : $\lim_\infty u_n = +\infty \Rightarrow \lim_\infty v_n = +\infty$ et $\lim_\infty v_n = -\infty \Rightarrow \lim_\infty u_n = -\infty$

Si les 2 suites sont convergentes, $\lim_{\infty} u_n \leq \lim_{\infty} v_n$. \mathbf{x}

Théorème 3.6 : Théorème des gendarmes

Si on a 3 suites réelles avec $u_n \leq w_n \leq v_n$. Si u_n et v_n sont convergentes de même limite l, alors w_n est convergente vers l.

Si une suite est encadrée, la limite de la suite l'est aussi. La limite est un point fixe de (u_n) .

Partie entière

 $\forall x \in \mathbb{R}, \exists ! n \in \mathbb{N}$, tel que $n \leq x < n+1$. C'est noté E(x) = n.

× Difficulté

Les inégalités strictes deviennent larges quand on passe à la limite. Par exemple, $\forall n \in \mathbb{N}, u_n > 0$ et u_n converge, alors $\lim_{\infty} u_n \geq 0$.