Def 3. $Ciag(x_n)_n$ w przestrzeni metrycznej (X,d) nazywamy ciągiem Cauchy'ego, gdy: $((\forall \varepsilon > 0))$ $0)(\exists N_0)(\forall n, m > N_0)d(x_n, x_m) < \varepsilon)$ Mówimy, że prz.m. jest **zupełna**, jeśli każdy ciąg Cauchy'ego jest zbieżny. Tw 1. Banach, o punkcie stałym, $\stackrel{-}{k}$ ontrakcji Niech (X,d) zupełna prz.m., $f: X \rightarrow X$ będzie **kontrakcją/o**dwzorowaniem zwężającym ze stałą $\alpha < 1. (\forall x, y \in X) d(f(x), f(y)) <$ $lpha \cdot d(x,y)$. Wtedy f ma dokładnije jeden punkt stały x^* , $f(x^*) = x^*$. Jeśli $x_0 \in X$ jest dowolnym elementem X, to ciąg $x_{n+1} = f(x_n)$, zbiega do x^* . Def 4. Podzbiór przestrzeni topologicznej (X,\mathcal{D}) nazywamy **zwartym**, jeśli z dowolnego pokrycia $\{U_t\}_{t\in T}$ X zbiorami otwartmi, można wybrać podpokrycie $\{U_{t_i}\}_{i=1}^n$ skończone. ${f F}$ 1. W przestrzeni ${\mathbb R}^k$ z naturalną topologią, zwartość podprzestrzeni jest równowazna z jej domkniętością i ograniczoniością. **F 2.** W prz.m. zwartość zbioru K jest równoznaczna z tym, że dla każdego ciągu w K, istnieje podciąg zbieżny $\overline{
m do}$ pewnego punktu $x \in K$. F 3. W prz.m. każdy zbiór zwarty jest zupełny. **Tw 2.** Niech K, będzie zbiorem zwartym. Każda funkcja ciągła $f:K\to R$ osiąga swoje kresy (maksima i minima o ile istnieją). **Def 5.** W przestrzeni liniowej V nad ciałem \mathbb{R} , niech $n \in \mathbb{N}, x_i \in \mathbb{V}$ i $\lambda_i \in K$, dla $i \in [n]$, będą takie, że $\sum_{i=1}^{n} \lambda_i = 1$, gdzie $(\forall i \in [n])(\lambda_i \int [0,1])$. Mówimy wtedy, że punkt postaci $\sum_{i=0}^{n} \lambda_i x_i \in$ $\mathbb V$ jest **kobinacją wypukłą** punktów $(x_i)_{i=1}^n$ z wagami $(\lambda_i)_{i=1}^n$. **Def 6.** Podzbiór prz. l. $X \subset \mathbb{V}$ jest wypukły, jeśli kombinacja wypukład dwóch doowlnych punktów z X jest elementem X. W przeciwnym razie, jest wklęsły. **Def 7.** $X \subset \mathbb{V}$. $f: X \to \mathbb{R}$ jest wyp u**kła** $gdy: (\forall x, y \in X)(\forall \lambda \in [0, 1])((\lambda x +$ $(1 - \lambda)y \in X) \Rightarrow ((\lambda f(x) + (1 - \lambda)f(y)) \geqslant f(\lambda x + (1 - \lambda)y)))$ **Def 8.** Zbiór wektorów $(x_i)_{i=0}^k$ w prz.l. $\mathbb V$ jest afnicznie niezależny wzlędem x_0 jeśli $(x_i - x_0)_{i=0}^k$ jest liniowo neizależny od \mathbb{V} . Def 9. Sympleksem wymiarowym nazywamy najmniejszy możliwy podzbiór prz.l. V nad ciałem R taki, że zawiera wszystkie możliwe kombinacje wypukłe pewnych elem. $(x_i)_{i=0}^k \subset \mathbb{V}$, afnicznie niezależny wzgl. x_0 . Elementy te nazywamy wierzchołkami sympleksu. \mathbf{Tw} 3. Jeśli S jest sympleksem, a f: $S \rightarrow S$ jest odwzorowaniem ciągłym, to f ma punkt stały. **Def 10.** W prz. m. (X,d), średnicą **zbioru** $A \subset X$ nazywamy diam(A) := $\sup \{ d(x,y) : x, y \in A \}$ **Def 11.** Mówimy, że $f: X \to \mathbb{R}$ ma własność **wykresu domkniętego**, jeśli dla ciągu $(x_i)_{i=1}^{\infty}$, zbieżnego do x^* , dowolny ciąg $(y_i)_{i=1}^{\infty}$, zbieżny do y^* , spełnienie warunku $(\forall i \in \mathbb{N})(y_i \in f(x_i))$, pociaga za soba, że $u^* \in f(x^*)$

domkniętymi.

gła $\Leftrightarrow \forall_{(\mathcal{U} \in \mathcal{O})} (f^{-1}[\mathcal{U}] \in \mathcal{O}).$

