Roll	No.:	 •	

National Institute of Technology, Delhi

Name of the Examination: B.Tech.

Branch

: EEE,

Semester

: 4th

Title of the Course

: Control Systems

Course Code

: EEB 252

Time: 3 Hours

Maximum Marks: 50

Note: 1. This question paper has 3 sections. Section A consists 10 parts of 1 mark each. Section B contains 5 questions of 5 marks each. Section C consists of 3 questions of 10 marks each.

2. All the symbols have their usual meaning. Make suitable assumptions wherever required.

Section A (All questions in this section are compulsory)

- Q1. i) The impulse response of a system is observed to be e^{-2t} . Find the transfer function of the system.
 - ii) What do you understand by the impulse response of a system?
 - iii) Define open-loop transfer function of a system.
 - iv) The forward path transfer function of a unity negative feedback system is given by $\frac{10}{(3s+1)(10s+1)}$. Determine the open-loop transfer function.
 - v) In a negative feedback system, the overall gain of the system as compared to the gain of the forward path gain is _____ (more/less).
 - vi) The poles of a system with the transfer function $G(s) = \frac{s^2 49}{\left(s^5 7s^4 30s^3\right)}$ are located at
 - vii) The steady-state error for a type-2 system subjected to a unit ramp input is _____.
 - viii) If e(t) represents the error input to the controller and m(t) represents the output of a controller, the input-output relation of a proportional control is given by _____.
 - ix) If a LTI system is subjected to a bounded input and the response has some oscillations which increase with time, then the system is said to be _____.
 - x) Each branch of the root-loci of the characteristic equation of a closed-loop control system terminates at ______.

Section B

(Answer any four (04) questions in this section)

Q2. Obtain the overall transfer function of the system represented by the block diagram shown in Fig. 1 by using the block diagram algebra.

Fig. 1

- Q3. What do you understand by frequency response? What are the various frequency response methods of analyzing the linear control systems?
- **Q4.** Apply Routh-Hurwitz criterion to determine the stability of the feedback system with the following characteristic polynomial and determine the number of poles in the right-half plane.

$$2s^4 + s^3 + 3s^2 + 5s + 10$$

- Q5. Consider a system whose output is given by $C(s) = \frac{64K}{s(s^2+8s+64)}$. Determine the following:
 - a) Damped natural frequency b) Peak time c) the output response c(t) d) Maximum overshoot
 - Q6. Determine the position, velocity and acceleration error constants of a unity feedback control system with the forward path transfer function given by $\frac{k}{s^2(s+2)(s+12)}$.

Section C

(Answer any two (02) questions in this section)

- Q7. Explain in detail the effects of feedback on
 - a) impulse response of a 1st-order system b) steady-state error of a system
- Q8. A unity feedback system has the forward path transfer function as $\frac{K}{s(Ts+1)}$. The maximum overshoot in the unit-step response of this system is to be reduced from 60 % to 20 %. Determine the change in the factor K required to achieve the aforesaid reduction.
- **Q9.** a) Determine the points of intersection of the root-loci of the following characteristic equation with the imaginary axis of the complex s-plane:

$$s^2 + 6s + K = 0$$

b) Determine the break-away points of the root-loci of a system whose characteristic equation is given by

$$1 + G(s)H(s) = 1 + \frac{K}{s(s+2)(s+4)^2} = 0$$