第8章-2 气相色谱法

第一节 气相色谱仪

气相色谱仪

岛津GC-17A气相色谱仪

上分GC122型气相色谱仪

色-质谱联用仪

气相色谱仪操作流程

- 载气系统
- 进样系统
- 色谱柱

- 检测器
- 记录系统
- 温度控制系统

- 1-载气钢瓶;
- 2-减压阀;
- 3-净化干燥管;
- 4-针形阀;
- 5-流量计;
- 6-压力表;
- 7-进样器;
- 8-色谱柱;
- 9-热导检测器;
- 10-放大器;
- 11-温度控制器;
- 12-记录仪;

- 载气系统:
 - ▶ 包括气源、<mark>净化</mark>干燥管和载气<mark>流速控制</mark>
 - 目的: 获得连续稳定(压力、流量)气流
 - ▶ 气体种类: N₂, H₂, Ar, He
- 进样系统: 进样器及<mark>气化室; 六通阀</mark>
- 色谱柱:填充柱(填充固定相)或毛细管柱(内壁涂有固定液);
- 检测器:可连接各种检测器,以热导检测器或氢 火焰检测器最为常见;
- 记录系统: 放大器、记录仪或数据处理仪;
- 温度控制系统:柱室、气化室的温度控制。

(300 - 450 °C)

气相色谱仪进样系统: 进样器及气化室

图7-12 隔膜进样器

六通阀进样

特点:

- 进样量准确
- 注射器不与载气系统接触

第二节 气相色谱固定相

——决定分离性能的关键因素

1. 气固色谱固定相

——**活性炭**:比表面积大,非极性性质,吸附性较强

——氧化铝:弱极性。

——**硅胶**:极性性质。

——**高分子多孔微球(GDX系列),**新型的有机合成固定相(苯乙烯与二乙烯苯共聚):极性范围广。

——**应用**:气-固色谱不如气-液色谱应用广泛,主要用于永久气体和低沸点烃类的分析,在石油化工领域应用很普遍。

2. 气液色谱固定相

气液色谱固定相 = 担体(支持体,载体) + 固定液

- (1) 担体: 化学惰性的多孔性固体颗粒,具有较大的比表面积——条件:
- 比表面积大,孔径分布均匀;
- 化学惰性,表面无吸附性或弱吸附,与被分离组份不起反应
- 高的热稳定性和机械强度,不易破碎;
- · 颗粒大小均匀。一般常用60~80目、80~100目。

——常用: 硅藻土(二氧化硅+无机盐)

红色担体: 孔径小, 比表面积较大 (单位质量物料所具有的总面积), 机械强度好。表面存有活性吸附中心点。适宜分离 非极性或弱极性组分的试样。

白色担体:<mark>孔径大。表面积较小</mark>,机械强度 较差。但吸附性减小,适宜分离极性组分的试样

目数是指每平方英寸内的筛孔数 可通过100目筛的颗粒大小称为100目

目数粒度对照表

		目数料	拉度对照表		
目数	粒度 um	目数	粒度 um	目数	粒度 um
5	3900	140	104	1600	10
10	2000	170	89	1800	8
16	1190	200	74	2000	6.5
20	840	230	61	2500	5.5
25	710	270	53	3000	5
30	590	325	44	3500	4.5
35	500	400	38	4000	3.4
40	420	460	30	5000	2.7
45	350	540	26	6000	2.5
50	297	650	21	7000	1.25
60	250	800	19		
80	178	900	15		
100	150	1100	13		
120	124	1300	11		

(2) 固定液

- ——固定液:高沸点难挥发有机化合物,种类千种。
- ——对固定液的要求:
- 对被分离试样中的各组分具有适当的且不同的<mark>溶解能力</mark>
- 较好的热稳定性,<mark>使用温度下呈液体状态</mark>
- · 难挥发,以免流失
- 不与被分离组分发生化学反应

——固定液分类

▶ 固定液与分离组分的相互作用:

静电力(极-极)、诱导力(极-非)、色散力(非-非)、氢键力

▶ 固定液按化学结构分类:

脂肪烃、醇、酯、聚酯、聚硅氧烷

极性:弱 强 中强 广谱

▶ 固定液的相对极性:规定:角鲨烷(异三十烷)的相对极性为0,β,β'—氧二丙睛的相对极性为100

▶ 常用4个固定液: SE-30, DC-710, PEG-20M, DEGS

固定液	商品牌号	使用温度	溶剂	相对	麦氏	分析对象
名 称		(最高)		极性	常数	(参考)
		$^{\circ}$			总和	
1、角鲨烷	SQ	150	乙醚	0	0	烃类及非极性化合物
(异三十烷)						
2、阿皮松 L	APL	300	苯		143	非极性和弱极性各类高
						沸点有机化合物
3、硅油	OV-101	350	丙酮	+1	229	各类高沸点弱极性有机
						化合物,如芳烃
4、苯基 10%	OV-3	350	甲苯	+1	423	
甲基聚硅氧烷						
5、苯基(20%)	OV-7	350	甲苯	+2	592	
甲基聚硅氧烷						
6、苯基(50%)	OV-17	300	甲苯	+2	827	
甲基 聚硅氧烷						
7、苯基(60%)甲基	OV-22	350	甲苯	+2	1075	
聚硅氧烷						
8、邻苯二甲酸	DNP	130	乙醚	+2		
二壬酯						
9、三氟丙基甲基	OV-210	250	氯仿	+2	1500	
聚硅氧烷						
10、氰丙基(25%)	OV-225	250		+3	1813	
苯基(25%)						
甲基聚硅氧烷						
11、聚乙二醇	PEG20M	250	乙醇	氢键	2308	醇、醛酮、脂肪酸、酯
						等极性化合物
12、丁二酸二乙	DEGS	225	氯仿	氢键	3430	
二醇聚酯						

——固定液选择

- 基本原则
 - "相似相溶",选择与试样性质相近的固定相
- 一般规律
- 分离非极性物质,选非极性固定液,按沸点 次序,沸点低先出峰。
- 分离极性物质,选极性固定液,按极性次序, 极性低先出峰。
- 分离极性、非极性混合物,选极性固定液, 极性低先出峰。
 - >实际方法:实验方法

第三节 气相色谱检测器

——色谱仪的关键部件之一

——种类较多,数十种

——多为通用型检测器

1. 分类

——浓度型检测器:测量的是载气中通过检测器组分浓度 瞬间的变化,检测信号值与组分的浓度成正比。

实例:热导检测器

——质量型检测器:

测量的是载气中某组分进入检测器的速度变化,即检测信号值与单位时间内进入检测器组分的质量成正比。

实例: 氢火焰离子化检测器

2. 热导检测器 (Thermal Conductivity Detector,TCD)

(1) 热导检测器的结构

池体:一般用不锈钢制成。

热敏元件:电阻率高、电阻温度系数大、且价廉易加工的钨丝制成。

参考臂: 仅允许<mark>纯载气</mark>通过,通常连接在进样装置之前。

测量臂:需要携带被分离组分的载气流过,则连接在紧靠近分离柱出口处。

(2) 检测原理

图7-15 热导检测器的桥式电路示意图

电阻丝~温度~散热速度~气体(样品)导热系数

热敏元件 不同物质导热系数不同

- (3) 特点
- ——通用型检测器
- ——<mark>浓度型</mark>检测器
- ——不破坏样品
- ——灵敏度较低
- ——<mark>载气一般选H2</mark>,而不选N2, H2导热系数与待

测物差异大,灵敏度高

3. 氢火焰离子化检测器 Flame ionization detector, FID

(1) 氢焰检测器的结构

- a. 在发射极和收集极之间加有一定的直流电压(100—300 V)构成一个外加电场。
- b. 氢焰检测器需要用到三种 气体:

N2: 载气携带试样组分;

H₂: 为燃气;

空气:助燃气。

(3) 氢焰检测器的原理

(2) 原理:

——含碳有机物在氢火焰中<mark>燃烧</mark>时,

产生化学电离,产生离子:

C_nH_m —— CH自由基

CH + O —— CHO+ + e

CHO $^{+}$ + H₂O —— H₃O $^{+}$ + CO

——在电场作用下,正离子和电子被收集到两

极,产生电流。

(3) 特点

- ——质量型检测器
- ——对有机化合物具有很<mark>高的灵敏度</mark>,比热导检测器的灵敏 度高出近3个数量级
- ——破坏样品
- ——无机气体、水、四氯化碳等<mark>含氢少或不含氢的物质灵敏</mark> 度低或不响应。
- ——氢焰检测器结构简单、稳定性好、响应迅速。

4. 电子捕获检测器

- 高选择性检测器,β放射源,载气电离,形成电流;电负性物质捕获电子,形成中性化合物,使电流降低。
- 仅对含有卤素、磷、硫、氰等电负性物质的化合物有很高的灵敏度,检测下限10-14g/mL,对大多数烃类没有响应。
- 较多应用于农副产品、食品及环境中农药残留量的测定, 大气水质污染监测。

5. 联用技术——功能强大

色谱-质谱(GC-MS);色谱-红外联用(GC-FTIR)等

四. 检测器性能评价指标

1. 灵敏度S:

单位: m V / (mg / mL); (浓度型检测器) m V / (mg / s); (质量型检测器)

- 2. <u>检出限</u> D=3N/S
- 3. 最小检测量
- 4. 响应时间
- 5. 线性范围

灵敏度(Sensitivity)

信号(R)对进入检测器的组分量(c)的变化率.

浓度型(热导池、电子捕获):

$$S_c = \frac{\Delta R}{\Delta c}$$
 mV.mL/mg

质量型(氢火焰离子化、火焰光度):

$$S_m = \frac{\Delta R}{\Delta m} \qquad \text{mV.s/mg}$$

第四节 色谱工作条件的选择

1. 固定相的选择

气一液色谱,应根据"相似相溶"的原则

- ①**分离非极性组分时**,通常选用非极性固定相。各组分按沸点顺序出峰 ,低沸点组分先出峰。
- ② 分离极性组分时,一般选用极性固定液。各组分按极性大小顺序流出色谱柱,极性小的先出峰
- **③分离非极性和极性的(或易被极化的)混合物**,一般选用极性固定液。此时,非极性组分先出峰,极性大的(或易被极化的)组分后出峰
- ④ **醇、胺、水等强极性和能形成氢键的化合物的分离**,通常选择极性或氢键性的固定液。
- ⑤ 组成复杂、较难分离的试样,通常使用特殊固定液,或混合固定相

2. 固定液配比(涂渍量)的选择

配比:固定液在担体上的涂渍量,一般指的是固定液与 担体的百分比,配比通常在5%~25%之间。

配比越低,担体上形成的液膜越薄,传质阻力越小,柱 效越高,分析速度也越快。

配比较低时,固定相的负载量低,允许的<mark>进样量较小</mark>。 分析工作中通常倾向于使用较低的配比。

3. 柱长和柱内径的选择

增加柱长对提高分离度有利,但组分的保留时间 $t_R \uparrow$,且柱阻力 \uparrow ,不便操作。

——柱长的选用原则是在能满足分离目的的前提下,尽可能 选用较短的柱,有利于缩短分析时间。

——填充色谱柱的柱长通常为1~3米,内径3~4毫米。

4. 柱温的确定

(1) 最高使用温度 (超过该温度固定液易流失) 最低使用温度 (低于此温度固定液以固体形式存在)

(2) 柱温升高,增加传质速度

增加分子扩散

低沸点组份峰易产生重叠。

(3) 柱温降低,降低传质速度

增加分析时间

峰拖尾

(4) 使最难分离组分尽可能分离的前提下,尽量用较低的柱温

组分复杂,沸程宽的试样,采用程序升温技术

程序升温

二、载气种类和流速的选择

$$H = A + B/u + Cu$$

 H_2 , N_2 He Ar

- ——<mark>载气流速较小时,B/u主要作用</mark>,采用较大摩尔质量的载气可抑制试样的纵向扩散,提高柱效。
- ——<mark>载气流速较大时,Cu项起主要作用</mark>,采用较小摩尔质量的载气(如 H_2),可减小传质阻力,提高柱效。
- ——热导检测器需要使用热导系数较大的氢气有利于提高检测灵敏 度。<mark>在氢焰检测器中,氮气仍是首选目标</mark>。

第五节 色谱定性、定量分析方法

一、色谱定性鉴定方法

1. 利用保留值定性 (实验方法-外标、加标)

图7-23 醇溶液定性分析的色谱图

标准品: A·甲醇; B·乙醇; C·正丙醇; D·正丁醇; E·正戊醇

1.利用保留值定性 (利用文献保留值)

相对保留值 r_{21} :

- ——相对保留值 r_{21} 仅与**柱温**和固定液性质有关。
- ——在色谱手册中都列有各种物质在不同固定液上的保留数据,可以用来进行定性鉴定。

保留指数 I:

——重现性较好的定性参数

保留指数计算方法

将正构烷烃作为标准, 规定其保留指数为分子中 碳原子个数乘以100,如 正己烷的保留指数为600

其它物质的保留指数(*I*_X)是通过选定两个相邻的正构烷烃,其分别具有*Z*和*Z*+1个碳原子。被测物质*X*的调整保留时间应在相邻两个正构烷烃的调整保留值之间:

$$t'_{R(Z+1)} > t'_{R(X)} > t'_{R(Z)}$$

$$I_{X} = 100(\frac{\mathbf{lg}t'_{R(X)} - \mathbf{lg}t'_{R(Z)}}{\mathbf{lg}t'_{R(Z+1)} - \mathbf{lg}t'_{R(Z)}} + Z)$$

2. 联用定性

色质谱联用仪(GC-MS; LC-MS)

色谱-红外光谱仪联用仪;

组分的结构鉴定

二、色谱定量分析方法

1. 峰面积的测量

(1)峰高(h) **乘半峰宽**($Y_{1/2}$) **法**:近似将色谱峰当作等 腰三角形。此法算出的面积是实际峰面积的0.94倍:

$$A = 1.064 \ h \cdot Y_{1/2}$$

(2)峰高乘平均峰宽法: 当峰形不对称时,可在峰高0.15 和0.85处分别测定峰宽,由下式计算峰面积:

$$A = h \cdot (Y_{0.15} + Y_{0.85}) / 2$$

(3) 自动积分和微机处理法

2. 定量校正因子

试样中各组分质量与其色谱峰面积成正比,即:

$$m_{i} = f_{i} A_{i}$$

绝对校正因子:比例系数 f_i ,单位面积对应的物质量:

$$f_i = m_i / A_i$$

相对校正因子f'_i: 即组分的绝对校正因子与标准物质的绝对校正因子之比。

$$f_i' = \frac{f_i}{f_s} = \frac{m_i / A_i}{m_s / A_s} = \frac{m_i}{m_s} \cdot \frac{A_s}{A_i}$$

- 当 m_i 、 m_S 以摩尔为单位时,所得相对校正因子称为相对摩尔校正因子(f'_M),用表示;当 m_i 、 m_S 用质量单位时,以(f'_W),表示。
- (相对)校正因子可查表获得, TCD标准物-苯; FID-正庚烷

3. 常用的几种定量方法

(1) 归一化法:

$$c_{i}\% = \frac{m_{i}}{m_{1} + m_{2} + \dots + m_{n}} \times 100 = \frac{f'_{i} \cdot A_{i}}{\sum_{i=1}^{n} (f'_{i} \cdot A_{i})} \times 100$$

特点及要求:

- <mark>归一化法</mark>简便、准确;
- 进样量的准确性和操作条件的变动对测定结果影响不大;
- 仅适用于试样中所有组分全出峰的情况。

(2) 外标法

外标法也称为<mark>标准曲线法</mark>。

特点及要求:

外标法不使用校正因子,准确性较高,

操作条件变化对结果准确性影响较大。

对进样量的准确性控制要求较高,适用于大批量试样的快

速分析。

内标法特点

- (1) 内标法的准确性较高,操作条件和进样量的稍许变动对定量结果的影响不大。
- (2) 每个试样的分析,都要进行两次称量,不适合大批量试样的快速分析。

内标法定量通式:

内标法

一般方法

$$\frac{S_i}{S_{内标}} = k_i C_i$$

$$S_i = k_i C_i$$

方法:

试样配制:准确称取一定量的试样W,加入一定量内标物 m_s

计算式:

$$\frac{m_i}{m_s} = \frac{f_i' A_i}{f_s' A_S}; \qquad m_i = m_s \frac{f_i' A_i}{f_s' A_S}$$

$$c_{i}\% = \frac{m_{s}}{W} \times 100 = \frac{m_{s}}{W} \times 100 = \frac{m_{s}}{W} \cdot \frac{f_{i}'A_{i}}{W} \times 100 = \frac{m_{s}}{W} \cdot \frac{f_{i}'A_{i}}{f_{s}'A_{s}} \times 100$$

若将内标法中的试样取样量和内标物加入量固定,则:

$$c_i\% = k_i \frac{A_i}{A_s} \times 100$$

$$k_i = \frac{f'_i}{f'_s} \cdot \frac{m_s}{W_i}$$

$$k_{i} = \frac{f'_{i}}{f'_{s}} \cdot \frac{m_{s}}{W_{i}}$$

内标物要满足以下要求:

- (1) 试样中不含有该物质;
- (2) 与被测组分性质比较接近;
- (3) 不与试样发生化学反应;

(3) 内标法 内标法原理

(3) 内标法 内标法原理

作业:

P306, 24, 27, 35