

RAJARATA UNIVERSITY OF SRILANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree
Second Year Semester I Examination – September/October 2014

MAA 2201 - MATHEMATICAL METHODS II

Answer FOUR Questions Only

Time allowed: Two Hours

1.

- (a) If $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ is the position vector of a variable point, with respect to the origin O show that, the integral $\oint_C \underline{r} \times d\underline{r} = 2\pi ab\underline{k}$, where C is the ellipse: $x = a\cos\theta$, $y = b\sin\theta$, z = 0, $0 \le \theta < 2\pi$. Hence find the area enclosed by C.
- (b) Evaluate the integral $\int_C (y + xy^{-1} + 2yz) ds$, taken along the curve C, defined in terms of a parameter t, by $\underline{r} = (t^2, t, 1)$, $0 < t \le 1$, where s is the arc length.
- (c) Given a vector field $\underline{F} = 2xy^3z^4\underline{i} + 3x^2y^2z^4\underline{j} + 4x^2y^3z^3\underline{k}$, show that $curl\underline{F} = \underline{0}$, and find a scalar field $\phi(x, y, z)$ such that $\underline{F} = grad\phi$.

2.

- (a) Find, by double integration, the area of the region in the (x, y) -plane lying between the two parabolas $x^2 = 4ay$ and $y^2 = 4ax$.
- (b) Evaluate the integral $\underline{J} = \int_{S} \underline{r} dS$ taken over the surface S of the hemisphere

r = a, $0 \le \theta \le \pi/2$. Hence find the position vector of the centroid of area of S.

(c) Find by double integration, using polar coordinates (r, θ) , the area enclosed by the cardiod $r = a(1 - \cos \theta)$

- 3.
 - (a) Find the integral $I = \int_{V} dV$, giving the volume of the sector of the sphere defined by $0 \le r \le a, 0 \le \theta \le \alpha$. Also evaluate the volume integral $\underline{J} = \int_{V} \underline{r} \, dV$, over the same sector, and hence show that, if the sphere is of uniform density ρ , position vector, $\hat{\mathbf{r}}$ of its center of mass, defined by $\hat{\mathbf{r}} = \underline{J}/I$,

is $\frac{3a\mathbf{k}}{8}(1+\cos\alpha)$, where \mathbf{k} is a unit vector in the direction of the Oz-axis.

(b) Using the divergence theorem of Gauss, show that the volume of the **segment** of the solid sphere: $x^2 + y^2 + z^2 \le a^2$, $-\frac{a}{2} \le z \le \frac{a}{2}$, is $\frac{11}{12}\pi a^3$.

4.

Differentiating $f(s) = \int_{0}^{\infty} e^{-st} F(t) dt = L\{F(t)\}$ with respect to parameter s show that $L\{t F(t)\} = -\frac{df(s)}{ds}$. Hence find $L\{t \cos at\}$, $L\{\sin at - at \cos at\}$.

Deduce the values of the integrals $\int_{0}^{\infty} t e^{-2t} \cos t \, dt$, $\int_{0}^{\infty} e^{-3t} (\sin 2t - 2t \cos 2t) dt$.

Using Laplace transform method solve the differential equation

$$\frac{d^2y}{dt^2} + y = t\cos 2t$$
, subject to the initial conditions: $y(0) = 0, y'(0) = 0$.

5.

Use Laplace transform method to solve the differential equations

(a)
$$\frac{d^2y}{dt^2} - \frac{dy}{at} - 6y = 2$$
, subject to the initial conditions: $y(0) = 1, y'(0) = 0$.

(b)
$$\frac{d^2y}{dt^2} + 2\frac{dy}{at} + 5y = e^{-t}\sin t$$
 subject to the initial conditions: $y(0) = 0, y'(0) = 1$.