

Unsupervised Multi-Domain Adaptation with Feature Embeddings

Yi Yang and Jacob Eisenstein

*This research was supported by National Science Foundation award 1349837.

DOMAIN ADAPTATION AND REPRESENTATION LEARNING

Overcome domain shift (Ben-David et al., 2010)

PIVOT-BASED APPROACHES

Denoising Autoencoders: Learning a projection matrix W by reconstructing pivot features (Chen et al., 2012; Yang and Eisenstein, 2014)

Pivot features:

- A small number of cross-domain features
- Each pivot leads to a new feature

Drawbacks of pivot-based approaches:

- Selection of pivots often requires task-specific heuristics
- Pivots correspond to a small subspace of the full feature co-occurrence matrix
- They are computationally expensive for learning the transformations or downstream training
- Not clear how to adapt the approaches to multidomain adaptation tasks

FEATURE EMBEDDINGS

Structured feature representation:

- Many core NLP tasks (e.g. POS tagging, NER, Chunking) exploit feature templates for extracting features
- There is exactly one active feature per template in each instance

a	sign	ОТ	а	new	tougnness	and	divisiveness	•••
	Feature te		Feature value					
	Current_		$w_i = \text{toughness}$					
Previous_token				$w_{i-1} = \text{new}$				
	Next_to		$w_{i+1} = $ and					
Suffix_4gram				$suff_4 = ness$				

Feature embeddings for domain adaptation:

• Induce low-dimension embeddings using fea-

• Predict active features of other templates itera-

tively

 $w_{i-1} = \text{new}$

 $suff_4 = ness$

 $w_i = \text{toughness}$

 $w_{i+1} = \text{and } \mathbf{u}_{f_n(3)}$

ture co-occurrence information as supervision

 $\mathbf{v}_{f_n(1)}$

 $\mathbf{v}_{f_n(2)}$

MULTI-DOMAIN ADAPTATION

Can we leverage unlabeled data from multiple domains to improve performance in the target domain?

- Prior unsupervised domain adaptation work assumes single source and target domains
- There exist valuable metadata (e.g. genres, epochs) associated with multiple domains
- Previous multi-domain adaptation work focused on supervised setting

Feature embeddings across domains:

Aggregating multiple embeddings

This "subtracts out" domain specific effects, leaving out more robust representations.

EVALUATION

Evaluation 1: POS tagging on SANCL datasets (WSJ to Web text)

Accuracy results with different latent dimensions

Evaluation 2: POS tagging on Tycho Brahe corpus (historical Portuguese texts)

Label consistency of the *Q*-most similar words:

Embedding	Q = 10	 FEMA captures more syntactic regularities 		
WORD2VEC FEMA-current FEMA-prev FEMA-next	46.17 66.93 54.18 55.78	than word2vecWords with the same most common POS		
FEMA-all	69.60	tags are similar in the embedding space		

Most similar words in the embedding space:

Objective function: $\ell_n = \frac{1}{T} \sum_{t=1}^{T} \sum_{t' = t}^{T} \left[\log \sigma(\mathbf{u}_{f_n(t)}^{\top} \mathbf{v}_{f_n(t')}) + k \mathbb{E}_{i \sim P_{t'}^{(n)}} \log \sigma(-\mathbf{u}_{f_n(t)}^{\top} \mathbf{v}_i) \right]$ Learned representations:

 $\mathbf{x}_n^{(\text{aug})} = \mathbf{x}_n \oplus \tanh[\mathbf{u}_{f_n(1)} \oplus \cdots \oplus \mathbf{u}_{f_n(T)}]$