

Leibniz Universität Hannover Fakultät für Mathematik und Physik Institut für Algebraische Geometrie

in Kooperation mit
Technische Universität Kaiserslautern
Fraunhofer-Institut für Techno- und
Wirtschaftsmathematik

Computation of the GIT-fan using a massively parallel implementation

Masterarbeit

Hannover, 11.01.2018

Christian Reinbold

Matrikelnr.: 2942360

Erstprüfer: apl. Prof. Dr. Anne Frühbis-Krüger

Zweitprüfer: Dr. Janko Böhm

Betreuer: apl. Prof. Dr. Anne Frühbis-Krüger

Dr. Janko Böhm Dr. Mirko Rahn

Abstract

Fancy, english text.

Kurzzusammen fassung

Brillierender, deutscher Text.

Acknowledgements

Syn, Ack...

Contents

1	Introduction	1
2	Preliminaries	3
	2.1 algebraic group actions	3
	2.2 Categorical quotients	3
	2.3 GIT quotients & fans	3
	2.4 Mori dream spaces, movable divisor classes?	3
3	Concept of the algorithm	5
	3.1 Computing orbit cones	5
	3.2 Traversing the GIT fan	5
	3.3 Exploiting symmetry	5
4	Implementation	7
	4.1 GPI-Space	7
	4.2 Integration of Singular	7
	4.3 Application flow & Concurrency	7
	4.4 Input & Output structure	7
	4.5 Additional Features	7
	4.6 Software testing	7
5	Applications	9
	5.1 Grassmanian $\mathbb{G}(2,5)$	9
	5.2 Moduli space of stable curves of genus 0	9
6	Conclusion	11
Α	Something appendixable	13
Bi	bliography	15
Ind	dev	17

1 Introduction

Well, skip this and just read the rest. Less work for me.

2 Preliminaries

2.1 algebraic group actions

Torus as special case

2.2 Categorical quotients

2.3 GIT quotients & fans

Reduction of arbitrary groups to the torus case

2.4 Mori dream spaces, movable divisor classes?

3 Concept of the algorithm

3.1 Computing orbit cones

Monomial containment test Moving Cone

- 3.2 Traversing the GIT fan
- 3.3 Exploiting symmetry

4 Implementation

4.1 GPI-Space

4.2 Integration of Singular

drawbacks

4.3 Application flow & Concurrency

insbesondere beschreiben, wo die Unterschiede zwischen Single-Node und Clusterenabled sind

4.4 Input & Output structure

4.5 Additional Features

an Kommandozeilenparameter entlanghangeln

4.6 Software testing

5 Applications

- 5.1 Grassmanian G(2,5)
- 5.2 Moduli space of stable curves of genus 0

6 Conclusion

Let
$$p = x_1 x_3 + x_2 x_4 + x_5 \in \mathbb{K}[x_1, x_2, x_3, x_4, x_5] =: \mathbb{K}[\mathbf{x}]$$
. Set
$$\mathfrak{a} := \langle x_3, x_4 \rangle \cdot \langle p \rangle,$$

$$Q = (q_1, q_2, q_3, q_4, q_5) := \begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix}.$$

Note that Q defines a \mathbb{Z}^3 grading on $\mathbb{K}[x_1, x_2, x_3, x_4, x_5]/\mathfrak{a}$ since p and therefore \mathfrak{a} is homogenous with respect to the grading $\deg(x_i) = q_i$. Thus, we obtain a torus action of $(\mathbb{K}^*)^3$ on $V(\mathfrak{a})$.

The \mathfrak{a} -faces with full dimensional image in $Q(\gamma)$, $\gamma = \mathbb{Q}^5_{\geq 0}$, are given by

$$\gamma_{1} := \langle e_{1}, e_{2}, e_{5} \rangle
\gamma_{2} := \langle e_{1}, e_{2}, e_{3}, e_{5} \rangle
\gamma_{3} := \langle e_{1}, e_{2}, e_{4}, e_{5} \rangle
\gamma_{4} := \langle e_{1}, e_{3}, e_{4}, e_{5} \rangle
\gamma_{5} := \langle e_{2}, e_{3}, e_{4}, e_{5} \rangle
\gamma_{6} := \langle e_{1}, e_{2}, e_{3}, e_{4} \rangle
\gamma_{7} := \langle e_{1}, e_{2}, e_{3}, e_{4}, e_{5} \rangle$$

This is easily seen by sending all variables x_i with $e_i \notin \gamma_j$ in a to zero and check that the new ideal does not contain any monomials. (details see below)

The orbit cones $Q(\gamma_j) \in \mathbb{Q}^3_{z_1,z_2,z_3}$ have the following form when intersecting them with the $\{z_3 = 1\}$ -plain (vice versa, the orbit cones are recovered by expanding the polytopes in z_3 -direction to cones in \mathbb{Q}^3):

A Something appendixable

Theorem A.1 (Great theorem) Problem in appendix.

Proof: by intimidation.

Bibliography

[DKV16] Arnaud Durand, Juha Kontinen, and Heribert Vollmer. 'Expressivity and complexity of dependence logic'. In: *Dependence Logic: Theory and Applications*. Birkhäuser, 2016, pp. 5–32. DOI: 10.1007/978-3-319-31803-5_2.

Index

Erklärung zu dieser Arbeit
Hiermit erkläre ich, die vorliegende Masterarbeit selbstständig erstellt zu haben. Weiterhin versichere ich, dass sämtliche von mir verwendeten Hilfsmittel und Quellen im Literaturverzeichnis aufgeführt sind.
Christian Reinbold, Hannover, den 11.01.2018