PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 23 NOV 1999
WIPO PCT

Bescheinigung

Die Haarmann & Reimer GmbH in Holzminden/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Konstruktion von Produktionsstämmen für die Herstellung von substituierten Phenolen durch gezielte Inaktivierung von Genen des Eugenol- und Ferulasäure-Katabolismus"

am 31. Oktober 1998 beim Deutschen Patent- und Markenamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig die Symbole C 12 N, C 12 P und C 07 H der Internationalen Patentklassifikation erhalten.

München, den 5. August 1999

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

inzeichen: 198 50 242.7

Waasmaier

Konstruktion von Produktionsstämmen für die Herstellung von substituierten Phenolen durch gezielte Inaktivierungen von Genen des Eugenol- und Ferulasäure-Katabolismus

5

Die vorliegende Erfindung betrifft die Konstruktion von Produktionsstämmen und ein Verfahren für die Herstellung substituierter Methoxyphenole, insbesondere Vanillin.

10

Die DE-A 4 227 076 (Verfahren zur Herstellung substituierter Methoxyphenole und dafür geeigneter Mikroorganismus) beschreibt die Herstellung substituierter Methoxyphenole mit einer neuen *Pseudomonas* sp.. Ausgangsmaterial ist hier Eugenol und die Produkte sind Ferulasäure, Vanillinsäure, Coniferylalkohol und Coniferylaldehyd.

15

Ebenfalls 1995 erscheint ein umfangreiches Review über die Biotransformationsmöglichkeiten mit Ferulasäure von Rosazza et al. (Biocatalytic transformation of ferulic acid: an abundant aromatic natural product; J. Ind. Microbiol. 15:457-471).

20

Die Gene und Enzyme zur Synthese von Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure aus *Pseudomonas* sp. wurden in EP-A 0 845 532 beschrieben.

25

30

Die Enzyme zur Umsetzung von *trans*-Ferulasäure zu *trans*-Feruloyl-SCoA Ester und weiter zum Vanillin, sowie das Gen für die Spaltung des Esters wurden vom Institute of Food Research, Norwich, GB, in WO 97/35999 beschrieben. 1998 erscheint der Inhalt des Patents auch als wissenschaftliche Publikationen (Gasson et al. 1998. Metabolism of ferulic acid to vanillin. J. Biol. Chem. 273:4163-4170; Narbad and Gasson 1998. Metabolism of ferulic acid via vanillin using a novel CoAdependent pathway in a newly isolated strain of *Pseudomonas fluorescens*. Microbiology 144:1397 - 1405).

Die DE-A 195 32 317 beschreibt die fermentative Gewinnung von Vanillin aus Ferulasäure mit *Amycolatopsis* sp. in hohen Ausbeuten.

Die bekannten Verfahren haben den Nachteil, daß entweder nur sehr geringe Ausbeuten an Vanillin erzielt werden, oder von relativ teuren Edukten ausgegangen wird. Bei dem letztgenannten Verfahren (DE-A 195 32 317) werden zwar hohe Ausbeuten erzielt, jedoch bedingt der Einsatz von *Pseudomonas* sp. HR199 und *Amycolatopsis*

sp. HR167 für die Biotransformation von Eugenol zu Vanillin eine zweistufige Fermentationsführung und somit einen erheblichen Kosten- und Zeitaufwand.

Aufgabe der vorliegenden Erfindung ist es daher, Organismen zu konstruieren, die in der Lage sind den preiswerten Rohstoff Eugenol in einem einstufigen Prozeß zu Vanillin umzusetzen.

Diese Aufgabe wird durch die Konstruktion von Produktionsstämmen ein- oder mehrzelliger Organismen gelöst, die dadurch gekennzeichnet sind, daß Enzyme des Eugenol- und/oder Ferulasäure-Katabolismus derart inaktiviert sind, daß eine Akkumulation der Intermediate Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure erfolgt.

Der Produktionsstamm kann einzellig oder mehrzellig sein. Demgemäß können Gegenstand der Erfindung Mikroorganismen, Pflanzen oder Tiere sein. Darüber hinaus können auch Extrakte die aus dem Produktionsstamm gewonnen werden zum Einsatz kommen. Erfindungsgemäß werden vorzugsweise einzellige Organismen eingesetzt. Hierbei kann es sich um Mikroorganismen, tierische oder pflanzliche Zellen handeln. Besonders bevorzugt ist erfindungsgemäß der Einsatz von Pilzen und Bakterien. Höchst bevorzugt sind Bakterienarten. Unter den Bakterien können insbesondere *Rhodococcus-*, *Pseudomonas-* und *Escherichia-*Arten nach Veränderung des Eugenol- und/oder Ferulasäure-Katabolismus zum Einsatz kommen.

15

5

10

20

25

Die Gewinnung der erfindungsgemäß einsetzbaren Organismen kann im einfachsten Fall mittels bekannter, konventioneller mikrobiologischer Methoden erfolgen. So kann die Enzymaktivität der am Eugenol- und/oder Ferulasäure-Katabolismus beteiligten Proteine durch den Einsatz von Enzym-Hemmstoffen verändert werden. Darüber hinaus kann die Enzymaktivität der am Eugenol- und/oder Ferulasäure-Katabolismus beteiligten Proteine durch Mutation der für diese Proteine kodierenden Gene verändert werden. Derartige Mutationen können nach klassischen Methoden ungerichtet erzeugt werden, wie beispielsweise durch UV-Bestrahlung oder mutationsauslösende Chemikalien.

10

15

5

Ebenso sind gentechnische Methoden zur Gewinnung der erfindungsgemäßen Organismen geeignet, wie Deletionen, Insertionen und/oder Nukleotid-Austausche. So können beispielsweise die Gene der Organismen mit Hilfe von anderen DNA-Elementen (Ω-Elemente) inaktiviert werden. Ebenso können mittels geeigneter Vektoren Austausche der intakten Gene gegen veränderte und/oder inaktivierte Gen-Strukturen durchgeführt werden. Die zu inaktivierenden Gene und die für die Inaktivierung eingesetzten DNA-Elemente können dabei durch klassische Klonierungstechniken oder durch Polymerase-Kettenreaktionen (PCR) gewonnen werden.

20

In einer möglichen Ausgestaltung der Erfindung kann beispielsweise der Eugenolsowie der Ferulasäure-Katabolismus durch Ω-Element-Insertion oder Einführen von Deletionen in entsprechende Gene verändert werden. Hierbei können die Funktionen der Gene, die für Dehydrogenasen, Synthetasen, Hydratasen-Aldolasen, Thiolasen oder Demethylasen kodieren, mittels der oben genannten gentechnischen Methoden inaktiviert werden, so daß die Erzeugung der betreffenden Enzyme blockiert ist. Vorzugsweise handelt es sich um die Gene, die für Coniferylalkohol-Dehydrogenasen, Coniferylaldehyd-Dehydrogenasen, Ferulasäure-CoA-Synthetasen, Enoyl-CoA-Hydratasen-Aldolasen, beta-Ketothiolasen, Vanillin-Dehydrogenasen oder Vanillinsäure-Demethylasen kodieren. Ganz besonders bevorzugt sind Gene, die die in der EP-A 0845532 angegebenen Aminosäuresequenzen kodieren und/oder deren Allelvariationen kodierenden Nukleotidsequenzen.

30

Gegenstand der Erfindung sind demgemäß auch Gen-Strukturen zur Herstellung transformierter Organismen und Mutanten.

Vorzugsweise werden Gen-Strukturen zur Gewinnung der Organismen und Mutanten eingesetzt, bei denen die für Dehydrogenasen, Synthetasen, Hydratasen-Aldolasen, Thiolasen oder Demethylasen kodierenden Nukleotidsequenzen inaktiviert sind. Besonders bevorzugt sind Gen-Strukturen, bei dene die für Coniferylalkohol-

10

Dehydrogenasen, Coniferylaldehyd-Dehydrogenasen, Ferulasäure-CoA-Synthetasen, Enoyl-CoA-Hydratasen-Aldolasen, beta-Ketothiolasen, Vanillin-Dehydrogenasen oder Vanillinsäure-Demethylasen kodierenden Nukleotidsequenzen inaktiviert sind. Ganz besonders bevorzugt sind Gen-Strukturen, die die in den Figuren 1a bis 1r angegebenen Strukturen mit den in den Figuren 2a bis 2r wiedergegebenen Nukleotidsequenzen und/oder deren Allelvariationen kodierenden Nukleotidsequenzen zen aufweisen. Besonders bevorzugt sind hierbei Nukleotidsequenzen von 1 bis 18.

15

5

Die Erfindung schließt auch die Teilsequenzen dieser Gen-Strukturen sowie funktionelle Äquivalente ein. Unter funktionellen Äquivalenten sind solche Derivate der DNA zu verstehen, bei denen einzelne Nukleobasen ausgetauscht worden sind (Wobbelaustausche), ohne die Funktion zu ändern. Auch auf Proteinebene können Aminosäuren ausgetauscht werden, ohne daß eine Veränderung der Funktion die Folge ist.

20

Den Gen-Strukturen können ein oder mehrere DNA-Sequenzen vor- und/oder nachgeschaltet sein. Durch Klonierung der Gen-Strukturen sind Plasmide bzw. Vektoren erhältlich, die zur Transformation und/oder Transfektion eines Organismus und/oder zur konjugativen Übertragung in einen Organismus geeignet sind.

30

25

Gegenstand der Erfindung sind ferner Plasmide und/oder Vektoren zur Herstellung der erfindungsgemäßen transformierten Organismen und Mutanten. Diese enthalten demgemäß die beschriebenen Gen-Strukturen. Die vorliegende Erfindung betrifft

demgemäß auch Organismen, die die genannten Plasmide und/oder Vektoren enthalten.

Die Art der Plasmide und/oder Vektoren hängt von deren Einsatzzweck ab. Um z. B. die intakten Gene des Eugenol- und/oder Ferulasäure-Katabolismus in Pseudomonaden gegen die durch Omega-Elemente inaktivierten Gene austauschen zu können, benötigt man Vektoren, die einerseits in Pseudomonaden übertragen werden können (konjugativ übertragbare Plasmide), andererseits dort jedoch nicht repliziert werden

10

können und somit in Pseudomonaden instabil sind (sogenannte Suizid-Plasmide). DNA-Abschnitte, die mit Hilfe eines solchen Plasmidsystems in Pseudomonaden übertragen werden, können nur erhalten bleiben, wenn sie durch homologe Rekombination in das Genom der Bakterienzelle integriert werden.

15

5

Die beschriebenen Gen-Strukturen, Vektoren und Plasmide können zur Herstellung verschiedener transformierter Organismen oder Mutanten verwendet werden. Mittels der gennanten Gen-Strukturen können intakte Nukleinsäuresequenzen gegen veränderte und/oder inaktivierte Gen-Strukturen ausgetauscht werden. In den durch Transformation oder Transfektion oder Konjugation erhältlichen Zellen erfolgt durch homologe Rekombination ein Austausch des intakten Gens gegen die veränderte und/oder inaktivierte Gen-Struktur, wodurch die resultierenden Zellen nur noch über die veränderte und/oder inaktivierte Gen-Struktur im Genom verfügen. So können erfindungsgemäß vorzugsweise Gene derart verändert und/oder inaktiviert werden, daß die betreffenden Organismen Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure zu erzeugen vermögen.

25

20

Erfindungsgemäß derart konstruierte Produktionsstämme sind beispielsweise Mutanten des Stammes *Pseudomonas* sp. HR199 (DSM 7063) der in der DE-A 4 227 076 und der EP-A 0845532 genau beschrieben wurde, wobei sich unter anderem die entsprechenden Genstrukturen aus den Figuren 1a bis 1r in Verbindung mit den Figuren 2a bis 2r ergeben:

- Pseudomonas sp. HR199caAlΩKm, enthaltend das durch ΩKm inaktivierte calA-Gen an Stelle des intakten calA-Gens kodierend für Coniferylalkohol-Dehydrogenase (Fig. 1a; Fig. 2a).
- Pseudomonas sp. HR199calAΩGm, enthaltend das durch ΩGm inaktivierte calA-Gen an Stelle des intakten calA-Gens kodierend für Coniferylalkohol-Dehydrogenase (Fig. 1b; Fig. 2b).
- Pseudomonas sp. HR199calAΔ, enthaltend das durch Deletion inaktivierte calA-Gen an Stelle des intakten calA-Gens kodierend für Coniferylalkohol-Dehydrogenase (Fig. 1c; Fig. 2c).
- 10

15

20

30

- Pseudomonas sp. HR199calBΩKm, enthaltend das durch ΩKm inaktivierte calB-Gen an Stelle des intakten calB-Gens kodierend für Coniferylaldehyd-Dehydrogenase (Fig. 1d; Fig. 2d)
- Pseudomonas sp. HR199calBΩGm, enthaltend das durch ΩGm inaktivierte calB-Gen an Stelle des intakten calB-Gens kodierend für Coniferylaldehyd-Dehydrogenase (Fig. 1e; Fig. 2e).
- Pseudomonas sp. HR199calBΔ, enthaltend das durch Deletion inaktivierte calB-Gen an Stelle des intakten calB-Gens kodierend für Coniferylaldehyd-Dehydrogenase(Fig.1f; Fig. 2f).
- 7. Pseudomonas sp. HR199 $fcs\Omega$ Km, enthaltend das durch Ω Km inaktivierte fcs-Gen an Stelle des intakten fcs-Gens kodierend für Ferulasäure-CoA-Synthetase (Fig.1g; Fig. 2g).
- 8. Pseudomonas sp. HR199 $fcs\Omega$ Gm, enthaltend das durch Ω Gm inaktivierte fcs-Gen an Stelle des intakten fcs-Gens kodierend für Ferulasäure-CoA-Synthetase (Fig.1h; Fig. 2h).
- Pseudomonas sp. HR199fcsΔ, enthaltend das durch Deletion inaktivierte fcs-Gen an Stelle des intakten fcs-Gens kodierend für Ferulasäure-CoA-Synthetase (Fig.1i; Fig. 2i).
 - Pseudomonas sp. HR199echΩKm, enthaltend das durch ΩKm inaktivierte
 ech-Gen an Stelle des intakten ech-Gens kodierend für Enoyl-CoA-Hydratase-Aldolase (Fig.1j; Fig. 2j).

- 11. Pseudomonas sp. HR199ech Ω Gm, enthaltend das durch Ω Gm inaktivierte ech-Gen an Stelle des intakten ech-Gens kodierend für Enoyl-CoA-Hydratase-Aldolase (Fig. 1k; Fig. 2k).
- Pseudomonas sp. HR199echΔ, enthaltend das durch Deletion inaktivierte ech-12. Gen an Stelle des intakten ech-Gens kodierend für Enoyl-CoA-Hydratase-Aldolase (Fi.11; Fig. 21).
- 13. Pseudomonas sp. HR199aatΩKm, enthaltend das durch ΩKm inaktivierte aat-Gen an Stelle des intakten aat-Gens kodierend für beta-Ketothiolase (Fig. 1m; Fig. 2m).

10

15

20

25

30

- 14. Pseudomonas sp. HR199aatΩGm, enthaltend das durch ΩGm inaktivierte aat-Gen an Stelle des intakten aat-Gens kodierend für beta-Ketothiolase(Fig. 1n; Fig. 2n).
- 15. Pseudomonas sp. HR199aat\Deletion, enthaltend das durch Deletion inaktivierte aat-Gen an Stelle des intakten aat-Gens kodierend für beta-Ketothiolase (Fig. 10; 20).
- 16. Pseudomonas sp. HR199vdhΩKm, enthaltend das durch ΩKm inaktivierte vdh-Gen an Stelle des intakten vdh-Gens kodierend für Vanillin-Dehydrogenase (Fig.1p; Fig. 2p).
- 17. Pseudomonas sp. HR199vdhΩGm, enthaltend das durch ΩGm inaktivierte nase (Fig. 1q; Fig. 2q).
- vdh-Gen an Stelle des intakten vdh-Gens kodierend für Vanillin-Dehydroge-18. Pseudomonas sp. HR199vdhA, enthaltend das durch Deletion inaktivierte
- vdh-Gen an Stelle des intakten vdh-Gens kodierend für Vanillin-Dehydrogenase (Fig. 1r; Fig. 2r).
- 19. Pseudomonas sp. HR199vdhBΩKm, enthaltend das durch ΩKm inaktivierte vdhB-Gen an Stelle des intakten vdhB-Gens kodierend für Vanillin-Dehydrogenase II.
 - 20. Pseudomonas sp. HR199vdhBΩGm, enthaltend das durch ΩGm inaktivierte vdhB-Gen an Stelle des intakten vdhB-Gens kodierend für Vanillin-Dehydrogenase II.

- Pseudomonas sp. HR199vdhBΔ, enthaltend das durch Deletion inaktivierte vdhB-Gen an Stelle des intakten vdhB-Gens kodierend für Vanillin-Dehydrogenase II.
- 22. Pseudomonas sp. HR199 $adh\Omega$ Km, enthaltend das durch Ω Km inaktivierte adh-Gen an Stelle des intakten adh-Gens kodierend für Alkohol-Dehydrogenase.
- 23. Pseudomonas sp. HR199adhΩGm, enthaltend das durch ΩGm inaktivierte adh-Gen an Stelle des intakten adh-Gens kodierend für Alkohol-Dehydroge-

nase.

10

5

- 24. Pseudomonas sp. HR199adhΔ enthaltend das durch Deletion inaktivierte adh-Gen an Stelle des intakten adh-Gens kodierend für Alkohol-Dehydrogenase.
- 25. Pseudomonas sp. HR199 $vanA\Omega$ Km, enthaltend das durch Ω Km inaktivierte vanA-Gen an Stelle des intakten vanA-Gens kodierend für die α -Untereinheit der Vanillinsäure-Demethylase.
- 26. Pseudomonas sp. HR199vanAΩGm, enthaltend das durch ΩGm inaktivierte vanA-Gen an Stelle des intakten vanA-Gens kodierend für die α-Untereinheit der Vanillinsäure-Demethylase.
 - 27. Pseudomonas sp. HR199vanAΔ, enthaltend das durch Deletion inaktivierte vanA-Gen an Stelle des intakten vanA-Gens kodierend für die α-Untereinheit der Vanillinsäure-Demethylase.
 - 28. Pseudomonas sp. HR199 $vanB\Omega$ Km, enthaltend das durch Ω Km inaktivierte vanB-Gen an Stelle des intakten vanB-Gens kodierend für die β -Untereinheit der Vanillinsäure-Demethylase.
- 29. Pseudomonas sp. HR199 $vanB\Omega$ Gm, enthaltend das durch Ω Gm inaktivierte vanB-Gen an Stelle des intakten vanB-Gens kodierend für die β -Untereinheit der Vanillinsäure-Demethylase.
 - 30. *Pseudomonas* sp. HR199*vanB*Δ, enthaltend das durch Deletion inaktivierte *vanB*-Gen an Stelle des intakten *vanB*-Gens kodierend für die β-Untereinheit der Vanillinsäure-Demethylase.

20

Gegenstand der Erfindung ist außerdem ein Verfahren zur biotechnischen Herstellung von organischen Verbindungen. Insbesondere können mit diesem Verfahren Alkohole, Aldehyde und organische Säuren hergestellt werden. Vorzugsweise handelt es sich hierbei um Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und Vanillinsäure.

In dem erfindungsgemäßen Verfahren werden die oben beschriebenen Organismen eingesetzt. Zu den ganz besonders bevorzugten Organismen gehören Bakterien, ins-

besondere die *Pseudomonas*-Arten. Im einzelnen können die oben genannten *Pseudomonas*-Arten vorzugsweise für folgende Verfahren eingesetzt werden:

10

 Pseudomonas sp. HR199calAΩKm, Pseudomonas sp. HR199calAΩGm und Pseudomonas sp. HR199calAΔ zur Herstellung von Coniferylalkohol aus Eugenol.

15

5

 Pseudomonas sp. HR199calBΩKm, Pseudomonas sp. HR199calBΩGm und Pseudomonas sp. HR199calB∆ zur Herstellung von Coniferylaldehyd aus Eugenol oder Coniferylalkohol.

20

Pseudomonas sp. HR199fcsΩKm, Pseudomonas sp. HR199fcsΩGm, Pseudomonas sp. HR199fcsΔ, Pseudomonas sp. HR199echΩKm, Pseudomonas sp. HR199echΩGm und Pseudomonas sp. HR199echΔ zur Herstellung von Ferulasäure aus Eugenol oder Coniferylalkohol oder Coniferylaldehyd.

25

30

4. Pseudomonas sp. HR199vdhΩKm, Pseudomonas sp. HR199vdhΩGm, Pseudomonas sp. HR199vdhΩ GmvdhBΩKm, Pseudomonas sp. HR199vdhΩKmvdhBΩGm, Pseudomonas sp. HR199vdhΩKmvdhBΩGm, Pseudomonas sp. HR199vdhΔvdhBΩGm und Pseudomonas sp. HR199vdhΔvdhBΩKm zur Herstellung von Vanillin aus Eugenol oder Coniferylalkohol oder Coniferylaldehyd oder Ferulasäure.

5. Pseudomonas sp. HR199vanAΩKm, Pseudomonas sp. HR199vanAΩGm, Pseudomonas sp. HR199vanAΔ, Pseudomonas sp. HR199vanBΩKm, Pseudomonas sp. HR199vanBΩGm und Pseudomonas sp. HR199vanBΔ zur Herstellung von Vanillinsäure aus Eugenol oder Coniferylalkohol oder Coniferylaldehyd oder Ferulasäure oder Vanillin.

Bevorzugtes Substrat ist Eugenol. Jedoch kann der Zusatz weiterer Substrate oder sogar der Austausch des Eugenol gegen ein anderes Substrat möglich sein.

Als Nährmedium für die erfindungsgemäß eingesetzten Organismen kommen synthetische, halbsynthetische oder komplexe Kulturmedien in Betracht. Diese können kohlenstoffhaltige und stickstoffhaltige Verbindungen, anorganische Salze, gegebenenfalls Spurenelemente sowie Vitamine enthalten.

15

5

Als kohlenstoffhaltige Verbindungen können Kohlenhydrate, Kohlenwasserstoffe oder organische Grundchemikalien in Betracht kommen. Beispiele für vorzugsweise verwendbare Verbindungen sind Zucker, Alkohole bzw. Zuckeralkohole, organische Säuren oder komplexe Gemische.

20

Als Zucker kommt vorzugsweise Glucose in Betracht. Als organische Säuren können vorzugsweise Zitronensäure oder Essigsäure zum Einsatz kommen. Zu den komplexen Gemischen zählen z. B. Malzextrakt, Hefeextrakt, Casein oder Caseinhydrolysat.

25

Als stickstoffhaltige Substrate kommen anorganische Verbindungen in Betracht. Beispiele hierfür sind Nitrate und Ammoniumsalze. Ebenso können organische Stickstoffquellen zum Einsatz kommen. Hierzu zählen Hefeextrakt, Sojamehl, Casein, Caseinhydrolysat und Maisquellwasser.

Zu den einsetzbaren anorganischen Salzen zählen beispielsweise Sulfate, Nitrate, Chloride, Carbonate und Phosphate. Als Metalle enthalten die genannte Salze vorzugsweise Natrium, Kalium, Magnesium, Mangan, Calcium, Zink und Eisen.

Die Temperatur für die Kultivierung liegt vorzugsweise im Bereich von 5 bis 100°C. Besonders bevorzugt ist der Bereich von 15 bis 60°C, höchst bevorzugt sind 22 bis 37°C.

15

30

Der pH-Wert des Mediums beträgt bevorzugt 2 bis 12. Besonders bevorzugt ist der Bereich von 4 bis 8.

Grundsätzlich können für die Durchführung des erfindungsgemäßen Verfahrens alle dem Fachmann bekannten Bioreaktoren eingesetzt werden. Vorzugsweise kommen alle für Submersverfahren geeigneten Vorrichtungen in Betracht. Das heißt, es können erfindungsgemäß Gefäße ohne oder mit mechanischer Mischeinrichtung eingesetzt werden. Zu ersteren zählen z. B. Schüttelapparaturen, Blasensäulen- oder Schlaufenreaktoren. Zu letzteren gehören vorzugsweise alle bekannten Vorrichtungen mit Rührern in beliebiger Gestaltung.

Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden. Die Dauer der Fermentation bis zum Erreichen einer maximalen Produktmenge hängt von der speziellen Art des eingesetzten Organismus ab. Grundsätzlich liegen die Zeiten der Fermentation jedoch zwischen 2 und 200 Stunden.

25 Im folgenden wird die Erfindung unter Bezugnahme auf Beispiele näher erläutert:

Von dem Eugenol verwertenden Stamm *Pseudomonas* sp. HR199 (DSM 7063) wurden gezielt Mutanten erzeugt, wobei spezifisch Gene des Eugenol-Katabolismus durch Insertion von Omega-Elementen oder durch Einführen von Deletionen inaktiviert wurden. Als Omega-Elemente dienten DNA-Abschnitte die für Antibiotikaresistenzen gegen Kanamycin (ΩKm) und Gentamycin (ΩGm) codierten. Diese

Resistenzgene wurden ausgehend von Tn5 und dem Plasmid pBBR1MCS-5 mit Hilfe von Standardmethoden isoliert. Die Gene calA, calB, fcs, ech, aat, vdh, adh, vdhB, vanA und vanB, die für Coniferylalkohol-Dehydrogenase, Coniferylaldehyd-Dehydrogenase, Ferulasäure-CoA Synthetase, Enoyl-CoA Hydratase-Aldolase, beta-Ketothiolase, Vanillin-Dehydrogenase, Alkohol-Dehydrogenase, Vanillin-Dehydrogenase II und Vanillinsäure-Demethylase codieren wurden ausgehend von genomischer DNA des Stammes Pseudomonas sp. HR199 mit Hilfe von Standardmethoden isoliert und in pBluescript SK kloniert. Aus diesen Genen wurden durch Verdauung

5

15

mit geeigneten Restriktionsendonukleasen DNA-Abschnitte entfernt (Deletion), bzw durch Ω-Elemente substituiert (Insertion), wodurch das jeweilige Gen inaktiviert wurde. Die auf diese Weise mutierten Gene wurden in konjugativ übertragbare Vektoren umkloniert und anschließend in den Stamm *Pseudomonas* sp. HR199 eingeführt. Durch geeignete Selektion wurden Transkonjuganten erhalten, die das jeweils funktionsfähige wildtyp-Gen gegen das neu eingebrachte inaktivierte Gen ausgetauscht hatten. Die so erhaltenen Insertions- und Deletionsmutanten wiesen nur noch das jeweils inaktivierte Gen auf. Auf diese Weise wurden sowohl Mutanten mit nur einem defekten Gen als auch Mehrfachmutanten, in denen mehrere Gene auf diese Weise inaktiviert wurden, erhalten. Diese Mutanten wurden für die Biotransformation von

- a) Eugenol zu Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure;
- b) Coniferylalkohol zu Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure;
- c) Coniferylaldehyd zu Ferulasäure, Vanillin und/oder Vanillinsäure;
- d) Ferulasäure zu Vanillin und/oder Vanillinsäure und
 - e) Vanillin zu Vanillinsäureeingesetzt.

Material und Methoden

Wachstumsbedingungen der Bakterien.

Stämme von *Escherichia coli* wurden bei 37°C in Luria-Bertani (LB) oder M9-Mineralmedium (Sambrook, J., E. F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.) angezogen. Stämme von *Pseudomonas* sp. wurden bei 30°C in Nutrient Broth (NB, 0,8%, wt/vol) oder in Mineralmedium (MM) (Schlegel, H. G. et al. 1961. Arch. Mikrobiol. 38:209-222). bzw. HR-Mineralmedium (HR MM)

10

15

20

25

30

5

(Rabenhorst, J. 1996. Appl. Microbiol. Biotechnol. 46:470-474.) angezogen. Ferulasäure, Vanillin, Vanillinsäure und Protocatechusäure wurden in Dimethylsulfoxid gelöst, und dem jeweiligen Medium in einer Endkonzentration von 0.1% (wt/vol) zugesetzt. Eugenol wurde dem Medium direkt in einer Endkonzentration von 0.1% (vol/vol) zugesetzt, bzw. in den Deckel von MM-Agarplatten auf Filterpapier (Rundfilter 595, Schleicher & Schuell, Dassel, Deutschland) appliziert. Bei der Anzucht von Transkonjuganten und Mutanten von *Pseudomonas* sp. wurde Tetracyclin, Kanamycin, und Gentamycin in Endkonzentrationen von 25 μg/ml bzw. 100 μg/ml bzw. 7,5 μg/ml eingesetzt.

Qualitativer und quantitativer Nachweis von Stoffwechselintermediaten in Kulturüberständen.

Kulturüberstände wurden direkt, bzw. nach Verdünnung mit H2O-bidest. mittels Hochdruck-Flüssigkeits-Chromatographie (Knauer-HPLC) analysiert. Die Chromatographie erfolgte an Nucleosil-100 C18 (7 μ m, 250 x 4 mm). Als Lösungsmittel diente 0.1% (vol/vol) Ameisensäure und Acetonitril. Der verwendete Gradient zur Elution der Substanzen verlief wie folgt:

 $00:00 - 06:30 \rightarrow 26\%$ Acetonitril

 $06:30 - 08:00 \rightarrow 100\%$ Acetonitril

 $08:00 - 12:00 \rightarrow 100\%$ Acetonitril

 $12:00 - 13:00 \rightarrow 26\%$ Acetonitril

 $13:00 - 18:00 \rightarrow 26\%$ Acetonitril

Reinigung der Vanillin-Dehydrogenase-II.

Die Aufreinigung erfolgte bei 4°C.

5 Rohextrakt.

Auf Eugenol angezogene Zellen von *Pseudomonas* sp. HR199 wurden in 10 mM Natriumphosphat-Puffer, pH 6.0 gewaschen, im gleichen Puffer resuspendiert und durch zweimalige Passage einer French-Presse (Amicon, Silver Spring, Maryland,

15

USA) bei einem Druck von 1000 psi aufgeschlossen. Das Zellhomogenat wurde einer Ultrazentrifugation (1 h, 100 000 x g, 4°C) unterzogen, wodurch die lösliche Fraktion des Rohextraktes als Überstand erhalten wurde.

Anionenaustauschchromatographie an DEAE-Sephacel.

Die lösliche Fraktion des Rohextraktes wurde über Nacht gegen 10 mM Natriumphosphat-Puffer, pH 6.0 dialysiert. Das Dialysat wurde auf eine mit 10 mM Natriumphosphat-Puffer, pH 6.0 äquilibrierte DEAE-Sephacel-Säule (2,6 cm x 35 cm, Bettvolumen[BV]: 186 ml) mit einer Durchflußrate von 0.8 ml/min aufgetragen. Die Säule wurde mit zwei BV 10 mM Natriumphosphat-Puffer, pH 6.0 gespült. Die Elution der Vanillin-Dehydrogenase-II (VDH-II) erfolgte mit einem linearen Salzgradient von 0 bis 400 mM NaCl in 10 mM Natriumphosphat-Puffer, pH 6.0 (750 ml). Es wurden 10 ml-Fraktionen aufgefangen. Fraktionen mit hoher VDH-II-Aktivität wurden zum DEAE-Pool vereinigt.

Bestimmung der Vanillin-Dehydrogenase-Aktivität.

Die Bestimmung der VDH-Aktivität erfolgte bei 30°C durch einen optisch enzymatischen Test. Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0.1 mmol Kalium-Phosphat (pH 7.1), 0.125 μmol Vanillin, 0.5 μmol NAD, 1.2 μmol Pyruvat (Na-Salz), Lactat-Dehydrogenase (1 U; aus Schweineherz) und Enzymlösung. Die Oxidation von Vanillin wurde bei λ = 340 nm verfolgt (ε_{Vanillin} = 11,6 cm²/μmol).

Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 μmol Vanillin pro Minute umsetzt. Die Proteinkonzentrationen in

den Proben wurden nach Lowry et al. (Lowry, O. H., N. J. Rosebrough, A. L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.

Bestimmung der Coniferylalkohol-Dehydrogenase-Aktivität.

Die Bestimmung der CADH-Aktivität erfolgte bei 30°C durch einen optisch enzymatischen Test nach Jaeger et al. (Jaeger, E., L. Eggeling und H. Sahm. 1981. Current Microbiology. 6:333-336). Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0.2 mmol Tris/HCl (pH 9.0), 0.4 μmol Coniferylalkohol, 2 μmol NAD,

10

0.1 mmol Semicarbazid und Enzymlösung. Die Reduktion von NAD wurde bei $\lambda = 340$ nm verfolgt ($\epsilon = 6.3$ cm²/ μ mol). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 μ mol Substrat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O. H., N. J. Rosebrough, A. L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.

15

Bestimmung der Coniferylaldehyd-Dehydrogenase-Aktivität.

Die Bestimmung der CALDH-Aktivität erfolgte bei 30°C durch einen optisch enzymatischen Test. Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0.1 mmol Tris/HCl (pH 8.8), 0.08 μ mol Coniferylaldehyd, 2.7 μ mol NAD und Enzymlösung. Die Oxidation von Coniferylaldehyd zu Ferulasäure wurde bei λ = 400 nm verfolgt (ϵ = 34 cm²/ μ mol). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 μ mol Substrat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O. H., N. J. Rosebrough, A. L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.

20

25

Bestimmung der Ferulasäure-CoA-Synthetase (Ferulasäure-Thiokinase)-Aktivität.

Die Bestimmung der FCS-Aktivität erfolgte bei 30°C durch einen optisch enzymatischen Test, modifiziert nach Zenk et al. (Zenk et al. 1980. Anal. Biochem. 101:182-187). Der Reaktionsansatz mit einem Volumen von 1 ml enthielt 0.09 mmol KaliumPhosphat (pH 7.0), 2.1 μ mol MgCl₂, 0.7 μ mol Ferulasäure, 2 μ mol ATP, 0.4 μ mol Coenzym A und Enzymlösung. Die Entstehung des CoA-Esters aus Ferulasäure wurde bei $\lambda = 345$ nm verfolgt ($\epsilon = 10$ cm²/ μ mol). Die Enzymaktivität wurde in Einheiten (U) angegeben, wobei 1 U der Enzymmenge entspricht, die 1 μ mol Substrat pro Minute umsetzt. Die Proteinkonzentrationen in den Proben wurden nach Lowry et al. (Lowry, O. H., N. J. Rosebrough, A. L. Farr und R. J. Randall. 1951. J. Biol. Chem. 193:265-275) bestimmt.

Electrophoretische Methoden.

5

Die Auftrennung von proteinhaltigen Extrakten erfolgte in 7.4% (wt/vol) Polyacrylamidgelen unter nativen Bedingungen nach der Methode von Stegemann et al. (Stegemann et al. 1973. Z. Naturforsch. 28c:722-732) und unter denaturierenden Bedingungen in 11.5% (wt/vol) Polyacrylamidgelen nach der Methode von Laemmli (Laemmli, U. K. 1970. Nature (London) 227:680-685). Zur unspezifischen Proteinfärbung wurde Serva Blue R verwendet. Zur spezifischen Anfärbung der Coniferylalkohol-, Coniferylaldehyd- und Vanillin-Dehydrogenase wurden die Gele für 20 min in 100 mM KP-Puffer (pH 7.0) umgepuffert und anschließend bei 30°C im gleichen Puffer dem 0.08% (wt/vol) NAD, 0.04% (wt/vol) p-Nitroblau-Tetrazolium-chlorid, 0.003% (wt/vol) Phenazine-Methosulfat und 1 mM des jeweiligen Substrates zugesetzt worden war inkubiert, bis entsprechende Farbbanden sichtbar wurden.

20

25

30

15

Transfer von Proteinen aus Polyacrylamidgelen auf PVDF-Membranen. Proteine wurden aus SDS-Polyacrylamidgelen mit Hilfe eines Semidry-Fastblot Gerätes (B32/33, Biometra, Göttingen, Deutschland) nach Herstellerangaben auf PVDF-Membranen (Waters-Milipore, Bedford, Mass., USA) übertragen.

Bestimmung von N-terminalen Aminosäuresequenzen.

Die Bestimmung von N-terminalen Aminosäuresequenzen erfolgte mit Hilfe eines Protein Peptide Sequenzers (Typ 477 A, Applied Biosystems, Foster City, USA) und eines PTH-Analysers nach Herstellerangaben.

Isolierung und Manipulation von DNA.

Die Isolierung von genomischer DNA erfolgte nach der Methode von Marmur (Marmur, J. 1961. J. Mol. Biol. 3:208-218). Die Isolierung und Analyse von anderer Plasmid-DNA bzw. von DNA-Restriktionsfragmenten erfolgte nach Standardmethoden (Sambrook, J. E. F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York.).

Transfer von DNA.

10

15

5

Die Präparation und Transformation von kompetenten *Escherichia coli*-Zellen erfolgte nach der Methode von Hanahan (Hanahan, D. 1983. J. Mol. Biol. 166:557-580). Konjugativer Plasmidtransfer zwischen Plasmid-tragenden *Escherichia coli* S17-1-Stämmen (Donor) und *Pseudomonas* sp.-Stämmen (Rezipient) erfolgte auf NB-Agarplatten nach der Methode von Friedrich et al. (Friedrich, B. et al. 1981. J. Bacteriol. 147:198-205), oder durch eine "Minikomplementations-Methode" auf MM-Agarplatten mit 0.5% (wt/vol) Gluconat als C-Quelle und 25 μg/ml Tetracyclin oder 100 μg/ml Kanamycin. Dabei wurden Zellen des Rezipienten in einer Richtung als Impfstrich aufgetragen. Nach 5 min wurden dann Zellen der Donor-Stämme als Impfstriche aufgetragen, wobei der Rezipienten-Impfstrich gekreuzt wurde. Nach einer Inkubation für 48 h bei 30°C wuchsen die Transkonjuganten direkt hinter der Kreuzungsstelle, wohingegen weder Donor- noch Rezipienten-Stamm zum Wachstum in der Lage war.

20

Hybridisierungsexperimente.

DNA-Restriktionsfragmente wurden in einem 0.8% (wt/vol) Agarose-Gel in 50 mM Tris- 50 mM Borsäure- 1.25 mM EDTA-Puffer (pH 8.5) elektrophoretisch aufgetrennt (Sambrook, J. E. F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York.). Die Übertragung der denaturierten DNA aus dem Gel auf eine positiv geladene Nylonmembran (Porengröße: 0.45 μm, Pall Filtrationstechnik, Dreieich, Deutschland), die anschließende Hybridisierung mit biotinylierten, bzw.

Digoxigenin-markierten DNA-Sonden und die Herstellung dieser DNA-Sonden erfolgte nach Standardmethoden (Sambrook, J. E. F. Fritsch und T. Maniatis. 1989. Molecular cloning: a laboratory manual. 2. Aufl., Cold Spring Harbor Laboratory Press, Cold Spring Habor, New York.).

5

DNA-Sequenzierung.

bruch-Methode von Sanger et al. (Sanger et al. 1977. Proc. Natl. Acad. Sci. USA 74:5463-5467) "nicht-radioaktiv" mit einem "LI-COR DNA-Sequencer Modell 4000L" (LI-COR Inc., Biotechnology Division, Lincoln, NE, USA) unter Verwendung eines "Thermo Sequenase fluorescent labelled primer cycle sequencing kit with 7-deaza-dGTP" (Amersham Life Science, Amersham International pls, Little

Die Bestimmung von Nukleotidsequenzen erfolgte nach der Didesoxy-Kettenab-

Mit Hilfe von synthetischen Oligonukleotiden wurde nach der "Primer-hopping Strategie" von Strauss et al. (Strauss, E. C. et al. 1986. Anal. Biochem. 154:353-360) sequenziert.

Chalfont, Buckinghamshire, England) jeweils nach Vorschrift des Herstellers.

Chemikalien, Biochemikalien und Enzyme.

20

25

Restriktionsenzyme, T4 DNA-Ligase, Lambda-DNA und Enzyme bzw. Substrate für die optisch enzymatischen Tests wurden von C. F. Boehringer & Söhne (Mannheim, Deutschland) oder von GIBCO/BRL (Eggenstein, Deutschland) bezogen. [γ-32P]ATP kam von Amersham/Buchler (Braunschweig, Deutschland). Oligonukleotide wurden von der Firma MWG-Biotech GmbH (Ebersberg, Deutschland) bezogen. Agarose vom Typ NA wurde von Pharmacia-LKB (Uppsala, Schweden) bezogen. Alle anderen Chemikalien waren von Haarmann & Reimer (Holzminden, Deutschland), E. Merck AG (Darmstadt, Deutschland), Fluka Chemie (Buchs,, Schweiz), Serva Feinbiochemica (Heidelberg, Deutschland) oder Sigma Chemie (Deisenhofen, Deutschland).

Beispiele

Beispiel 1

Konstruktion von Omega-Elementen, die Resistenzen gegenüber Kanamycin (Ω Km) bzw. Gentamycin (Ω Gm) vermitteln.

Für die Konstruktion des ΩKm-Elements wurde das 2099 bp *Bgl*I-Fragment des <u>Transposons Tn5 (Auerswald E. A., G. Ludwig und H. Schaller. 1981. Cold Spring</u> Harb. Symp. Quant. Biol. **45:**107-113; Beck E., G. Ludwig, E. A. Auerswald, B. Reiss und H. Schaller. 1982. Gene **19:**327-336; Mazodier P., P. Cossart, E. Giraud und F. Gasser. 1985. Nucleic Acids Res. **13:**195-205.) präparativ isoliert. Das Fragment wurde durch Behandlung mit der Nuklease Bal-31 auf ca. 990 bp verkürzt. Dieses Fragment, das nur noch das Kanamycin-Resistenzgen (codierend für eine Aminoglycosid-3'-O-Phosphotransferase) umfaßte, wurde anschließend mit *Smal* geschnittener pSKsym-DNA (pBluescript SK⁻-Derivat, welches eine symetrisch aufgebaute multiple Klonierungsstelle [*Sal*I, *HindIII*, *EcoRI*, *SmaI*, *EcoRI*, *HindIII*, *Sal*I] enthält) ligiert. Aus dem resultierenden Plasmid konnte das ΩKm-Element als *Sma*I-, *EcoRI-*, *HindIII-* oder *Sal*I-Fragment reisoliert werden.

20

25

15

Für die Konstruktion des ΩGm-Elements wurde das 983 bp *Eae*I-Fragment des Plasmids pBBR1MCS-5 (Kovach M.E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Farris, R. M. Roop und K. M. Peterson. 1995. Gene 166:175-176.) präparativ isoliert und anschließend mit Mung Bean Nuklease (Abdauen von einzelsträngigen DNA-Molekülenden) behandelt. Dieses Fragment, das nur noch das Gentamycin-Resistenzgen (codierend für eine Gentamycin-3-Acetyltransferase) umfaßte, wurde anschließend mit *Sma*I geschnittener pSKsym-DNA (s.o.) ligiert. Aus dem resultierenden Plasmid konnte das ΩGm-Element als *Sma*I-, *Eco*RI-, *Hin*dIII- oder *Sal*I-Fragment reisoliert werden.

Beispiel 2

Klonierung der Gene aus *Pseudomonas* sp. HR199 (DSM7063), die durch Insertion von Ω -Elementen oder durch Deletionen inaktiviert werden sollten.

Die separaten Klonierungen der Gene fcs, ech, vdh und aat erfolgte ausgehend von den E. coli S17-1 Stämmen DSM 10439 und DSM 10440 mit den Plasmiden pE207 und pE5-1 (siehe EP-A 0845532). Aus diesen Plasmiden wurden die angegebenen Fragmente präparativ isoliert und wie im weiteren beschrieben behandelt:

5

Für die Klonierung des fcs-Gens wurde das 2350 bp große Salī/EcoRI-Fragment des Plasmids pE207 und das 3700 bp große EcoRI/Salī-Fragment des Plasmids pE5-1 zusammen in pBluescript SK in einer Weise kloniert, daß beide Fragmente über die EcoRI-Enden miteinander verbunden waren. Ausgehend von dem resultierenden Hybridplasmid wurde das 6050 bp Salī-Fragment präparativ isoliert und durch Behandlung mit der Nuklease Bal-31 auf ca. 2480 bp verkürzt. Anschließend wurden an die Fragment-Enden PstI-Linker ligiert und das Fragment nach PstI-Verdauung in pBluescript SK kloniert (pSKfcs). Nach Transformation von E. coli XL1-Blue wurden Klone erhalten, die das fcs-Gen exprimierten und eine FCS-Aktivität von 0.2 U/mg Protein aufwiesen.

20

Für die Klonierung des *ech*-Gens wurde das 3800 bp große *Hin*dIII/*Eco*RI-Fragment des Plasmids pE207 präparativ isoliert und durch Behandlung mit der Nuklease Bal-31 auf ca. 1470 bp verkürzt. Anschließend wurden an die Fragment-Enden *Eco*RI-Linker ligiert und das Fragment nach *Eco*RI-Verdauung in pBluescript SK⁻ kloniert (pSK*ech*).

25

30

15

Für die Klonierung des *vdh*-Gens wurde das 2350 bp große *Sall/Eco*RI-Fragment des Plasmids pE207 präparativ isoliert. Nach Klonierung in pBluescript SK wurde das <u>Fragment mit Hilfe</u> eines Exonuklease III/ Mung Bean Nukleasesystems einseitig um ca. 1530 bp verkürzt. Anschließend wurde an das Fragmentende ein *Eco*RI-

Linker ligiert und das Fragment nach *Eco*RI-Verdauung in pBluescript SK kloniert (pSK*vdh*). Nach Transformation von *E. coli* XL1-Blue wurden Klone erhalten, die das *vdh*-Gen exprimierten und eine VDH-Aktivität von 0.01 U/mg Protein aufwiesen.

5

Für die Klonierung des *aat*-Gens wurde das 3700 bp große *Eco*RI/*Sal*I-Fragment des Plasmids pE5-1 präparativ isoliert und durch Behandlung mit der Nuklease Bal-31 auf ca. 1590 bp verkürzt. Anschließend wurden an die Fragment-Enden *Eco*RI-

Linker ligiert und das Fragment nach *Eco*RI-Verdauung in pBluescript SK⁻ kloniert (pSK*aat*).

10

Beispiel 3

Inaktivierung der oben beschriebenen Gene durch Insertion von Ω -Elementen, bzw durch Deletion von Teilbereichen dieser Gene.

Das Plasmid pSKfcs, welches das fcs-Gen enthielt wurde mit BssHII verdaut, wodurch ein 1290 bp großes Fragment aus dem fcs-Gen herausgeschnitten wurde. Nach Religation wurde das Deletions-Derivat des fcs-Gens ($fcs\Delta$) (siehe Abb. 1i und 2i) kloniert in pBluescript SK $^-$ (pSK $fcs\Delta$) erhalten. Darüber hinaus wurden nach Herausschneiden des Fragments die Omega-Elemente Ω Km und Ω Gm an dessen Stelle einligiert. Dadurch entstanden die Ω -inaktivierten Derivate des fcs-Gens ($fcs\Omega$ Km, siehe Abb. 1g und 2g)und ($fcs\Omega$ Gm, siehe Abb. 1h und 2h) kloniert in pBluescript SK $^-$ (pSK $fcs\Omega$ Km und pSK $fcs\Omega$ Gm). In Rohextrakten der erhaltenen E. coli Klone, deren Hybridplasmide ein durch Deletion bzw. Ω -Element-Insertion inaktiviertes fcs-Gen aufwiesen, konnte keine FCS-Aktivität nachgewiesen werden.

25

30

20

15

Das Plasmid pSKech, welches das ech-Gen enthielt, wurde mit NruI verdaut, wodurch ein 53 bp und ein 430 bp großes Fragment aus dem ech-Gen herausgeschnitten wurde. Nach Religation wurde das Deletions-Derivat des ech-Gens (echΔ, siehe Abb. 11 und 21) kloniert in pBluescript SK (pSKechΔ) erhalten. Darüber

hinaus wurden nach Herausschneiden der Fragmente die Omega-Elemente Ω Km und Ω Gm an deren Stelle einligiert. Dadurch entstanden die Ω -inaktivierten Derivate des ech-Gens (ech Ω Km und ech Ω Gm) kloniert in pBluescript SK $^-$ (pSKech Ω Km und pSKech Ω Gm).

5

Das Plasmid pSKvdh, welches das vdh-Gen enthielt wurde mit BssHII verdaut, wodurch ein 210 bp großes Fragment aus dem vdh-Gen herausgeschnitten wurde. Nach Religation wurde das Deletions-Derivat des vdh-Gens (vdh Δ , siehe Abb. 10 und 20) kloniert in pBluescript SK (pSKvdh Δ) erhalten. Darüber hinaus wurden nach Herausschneiden des Fragments die Omega-Elemente Ω Km und Ω Gm an dessen Stelle einligiert. Dadurch entstanden die Ω -inaktivierten Derivate des vdh-Gens (vdh Ω Km und vdh Ω Gm) kloniert in pBluescript SK (pSKvdh Ω Km, siehe

Abb. 1m und 2m) und (pSK $vdh\Omega$ Gm, siehe Abb. 1n und 2n). In Rohextrakten der erhaltenen E.~coli Klone, deren Hybridplasmide ein durch Deletion bzw. Ω -Element-

Insertion inaktiviertes vdh-Gen aufwiesen, konnte keine VDH-Aktivität nachge-

10

15

25

wiesen werden.

Das Plasmid pSKaat, welches das aat-Gen enthielt wurde mit BssHII verdaut, wodurch ein 59 bp großes Fragment aus dem aat-Gen herausgeschnitten wurde. Nach Religation wurde das Deletions-Derivat des aat-Gens (aat Δ , siehe Abb. 1r und 2r) kloniert in pBluescript SK⁻ (pSKaat Δ) erhalten. Darüber hinaus wurden nach Herausschneiden des Fragments die Omega-Elemente Ω Km und Ω Gm an dessen Stelle einligiert. Dadurch entstanden die Ω -inaktivierten Derivate des aat-Gens (aat Ω Km, siehe Abb. 1p und 2p) und (aat Ω Gm, siehe Abb. 1q und 2q) kloniert in pBluescript SK⁻ (pSKaatZ Ω Km und pSKaat Ω Gm).

Beispiel 4

Umklonieren der durch Ω -Elemente inaktivierten Gene in das konjugativ übertragbare "Suizid-Plasmid" pSUP202.

Um die durch Ω -Elemente inaktivierten Gene in *Pseudomonas* sp. HR199 gegen die intakten Gene austauschen zu können, benötigt man einen Vektor, der einerseits in Pseudomonaden übertragen werden kann (konjugativ übertragbare Plasmide), andererseits dort jedoch nicht repliziert werden kann und somit in Pseudomonaden insta-

bil ist ("Suizid-Plasmid"). DNA-Abschnitte, die mit Hilfe eines solchen Plasmidsystems in Pseudomonaden übertragen werden, können nur erhalten bleiben, wenn sie durch homologe Rekombination (RecA-abhängige Rekombination) in das Genom der Bakterienzelle integriert werden. Im vorliegenden Fall wurde das "Suizid-Plasmid" pSUP202 (Simon et al. 1983. *In*: A. Pühler. Molecular genetics of the bacteria-plant interaction. Springer Verlag, Berlin, Heidelberg, New York, S. 98-106.) eingesetzt.

Die inaktivierten Gene $fcs\Omega$ Km und $fcs\Omega$ Gm wurden nach PstI-Verdauung aus den Plasmiden pSK $fcs\Omega$ Km und pSK $fcs\Omega$ Gm isoliert und mit PstI geschnittener pSUP202 DNA ligiert. Die Ligationsansätze wurden nach E.~coli~S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium mit Kanamycin bzw. Gentamycin. Es wurden Kanamycin-resistente Transformanden erhalten, deren Hybridplasmid (pSUP $fcs\Omega$ Km) das inaktivierte Gen $fcs\Omega$ Km enthielt. Das entsprechende Hybridplasmid (pSUP $fcs\Omega$ Gm) der Gentamycin- resistenten Transformanden enthielt das inaktivierte Gen $fcs\Omega$ Gm.

Die inaktivierten Gene $ech\Omega$ Km und $ech\Omega$ Gm wurden nach EcoRI-Verdauung aus den Plasmiden pSK $ech\Omega$ Km und pSK $ech\Omega$ Gm isoliert und mit EcoRI geschnittener pSUP202 DNA ligiert. Die Ligationsansätze wurden nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium mit Kanamycin bzw. Gentamycin. Es wurden Kanamycin-resistente Transformanden erhalten, deren

20

15

5

25

Hybridplasmid (pSUP $ech\Omega$ Km) das inaktivierte Gen $ech\Omega$ Km enthielt. Das entsprechende Hybridplasmid (pSUP $ech\Omega$ Gm) der Gentamycin- resistenten Transformanden enthielt das inaktivierte Gen $ech\Omega$ Gm.

Die inaktivierten Gene vdhΩKm und vdhΩGm wurden nach EcoRI-Verdauung aus den Plasmiden pSKvdhΩKm und pSKvdhΩGm isoliert und mit EcoRI geschnittener pSUP202 DNA ligiert. Die Ligationsansätze wurden nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium mit Kanamycin

bzw. Gentamycin. Es wurden Kanamycin-resistente Transformanden erhalten, deren Hybridplasmid (pSUP $vdh\Omega$ Km) das inaktivierte Gen $vdh\Omega$ Km enthielt. Das entsprechende Hybridplasmid (pSUP $vdh\Omega$ Gm) der Gentamycin- resistenten Transformanden enthielt das inaktivierte Gen $vdh\Omega$ Gm.

Die inaktivierten Gene $aat\Omega$ Km und $aat\Omega$ Gm wurden nach EcoRI-Verdauung aus den Plasmiden pSK $aat\Omega$ Km und pSK $aat\Omega$ Gm isoliert und mit EcoRI geschnittener pSUP202 DNA ligiert. Die Ligationsansätze wurden nach E. coli S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium mit Kanamycin bzw. Gentamycin. Es wurden Kanamycin-resistente Transformanden erhalten, deren Hybridplasmid (pSUP $aat\Omega$ Km) das inaktivierte Gen $aat\Omega$ Km enthielt. Das entsprechende Hybridplasmid (pSUP $aat\Omega$ Gm) der Gentamycin- resistenten Transformanden enthielt das inaktivierte Gen $aat\Omega$ Gm.

Beispiel 5

Umklonieren der durch Deletion inaktivierten Gene in das konjugativ übertragbare "Suizid-Plasmid" mit "sacB-Selektionssystem" pHE55.

Um die durch Deletion inaktivierten Gene in *Pseudomonas* sp. HR199 gegen die intakten Gene austauschen zu können, benötigt man einen Vektor, der die schon für pSUP202 beschriebenen Eigenschaften aufweist. Da im Gegensatz zu den durch Ω -Element inaktivierten Genen bei durch Deletion inaktivierten Genen keine Selek-

10

20

30

tionsmöglichkeit (keine Antibiotika-Resistenz) für den erfolgten Austausch der Gene in Pseudomonas sp. HR199 besteht, mußte ein anderes Selektionssystem zur Anwendung kommen. Bei dem "sacB-Selektionssystem" wird das auszutauschende, durch Deletion inaktivierte Gen in einem Plasmid kloniert, welches neben einem Antibiotika-Resistenzgen auch über das sacB-Gen verfügt. Nach konjugativer Übertragung dieses Hybridplasmids in einen Pseudomonaden wird das Plasmid durch homologe Rekombination an der Stelle in das Genom integriert, an der sich das intakte Gen befindet (erster "Cross over"). Auf diese Weise entsteht ein "heteroge-

noter" Stamm, der sowohl über ein intaktes als auch über ein durch Deletion inaktiviertes Gen verfügt, welche durch die pHE55-DNA voneinander getrennt sind. Diese Stämme weisen die durch den Vektor codierte Resistenz auf und besitzen darüber

15

5

20

25

30

Resistenz.

Das inaktivierte Gen fcs\Delta wurden nach PstI-Verdauung aus dem Plasmid pSKfcs\Delta isoliert und mit PstI geschnittener pHE55 DNA ligiert. Der Ligationsansatz wurde nach E. coli \$17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-

hinaus ein aktives sacB-Gen. Durch ein zweites homologes Rekombinationsereignis (zweiter "Cross over"), soll nun die pHE55-DNA zusammen mit dem intakten Gen aus der genomischen DNA ausgegliedert werden. Durch dieses Rekombinationsereignis entsteht ein Stamm, der nur noch über das inaktivierte Gen verfügt. Darüber hinaus kommt es zum Verlust der pHE55-codierten Antibiotika-Resistenz und des sacB-Gens. Streicht man Stämme auf Saccharose-haltigen Medien aus, werden Stämme die das sacB-Gen exprimieren im Wachstum gehemmt, da das Genprodukt Saccharose zu einem Polymer umsetzt, welches im Periplasma der Zellen akkumuliert wird. Zellen, die durch das zweite Rekombinationsereignis das sacB-Gen nicht mehr tragen, werden somit nicht im Wachstum gehemmt. Um eine phänotypische Selektionsmöglichkeit auf die Integration des durch Deletion inaktivierten Gens zu besitzen, tauscht man dieses nicht gegen ein intaktes Gen aus, sondern man bedient sich eines Stammes, in dem das auszutauschende Gen bereits durch Insertion eines Ω-Elements "markiert" vorliegt. Bei erfolgreichem Austausch verliert der resultierende Stamm die durch das Ω-Element codierte AntibiotikaMedium. Es wurden Tetracyclin-resistente Transformanden erhalten, deren Hybridplasmid (pHE $fcs\Delta$) das inaktivierte Gen $fcs\Delta$ enthielt.

Das inaktivierte Gen *ech*Δ wurden nach *Eco*RI-Verdauung aus dem Plasmid pSK*ech*Δ isoliert und mit Mung Bean Nuklease behandelt (Erzeugung von glatten Enden ["blunt ends"]). Das Fragment wurde mit *Bam*HI geschnittener und Mung Bean Nuklease behandelter pHE55 DNA ligiert. Der Ligationsansatz wurde nach *E. coli* S17-1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-

10

5

Medium. Es wurden Tetracyclin-resistente Transformanden erhalten, deren Hybridplasmid (pHE $ech\Delta$) das inaktivierte Gen $ech\Delta$ enthielt.

Das inaktivierte Gen $vdh\Delta$ wurden nach EcoRI-Verdauung aus dem Plasmid pSK $vdh\Delta$ isoliert und mit Mung Bean Nuklease behandelt. Das Fragment wurde mit BamHI geschnittener und Mung Bean Nuklease behandelter pHE55 DNA ligiert. Der Ligationsansatz wurde nach $E.\ coli\ S17-1$ transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium. Es wurden Tetracyclin-resistente Transformanden erhalten, deren Hybridplasmid (pHE $vdh\Delta$) das inaktivierte Gen $vdh\Delta$ enthielt.

20

Das inaktivierte Gen $aat\Delta$ wurden nach EcoRI-Verdauung aus dem Plasmid pSK $aat\Delta$ isoliert und mit Mung Bean Nuklease behandelt. Das Fragment wurde mit BamHI geschnittener und Mung Bean Nuklease behandelter pHE55 DNA ligiert. Der Ligationsansatz wurde nach $E.\ coli\ S17$ -1 transformiert. Die Selektion erfolgte auf Tetracyclin-haltigem LB-Medium. Es wurden Tetracyclin-resistente Transformanden erhalten, deren Hybridplasmid (pHE $aat\Delta$)das inaktivierte Gen $aat\Delta$ enthielt.

Beispiel 6

Erzeugung von Mutanten des Stammes *Pseudomonas* sp. HR199, bei denen spezifisch Gene des Eugenol-Katabolismuses durch Insertion eines Ω -Elementes inaktiviert wurden.

Der Stamm *Pseudomonas* sp. HR199 wurde als Rezipient in Konjugationsexperimenten eingesetzt, bei denen Stämme von *E. coli* S17-1 als Donoren eingesetzt wurden, die die unten aufgeführten Hybridplasmide von pSUP202 enthielten. Die

Transkonjuganten wurden auf Gluconat-haltigem Mineralmedium selektiert, welches das dem Ω -Element entsprechende Antibiotikum enthielt. "Homogenote" (Austausch des intakten Gens gegen das durch Ω -Element-Insertion inaktivierte Gen durch doppeltes "Cross over") und "heterogenote" (Integration des Hybridplasmids in das Genom durch einfachen "Cross over") Transkonjuganten konnten anhand der durch pSUP202 codierten Tetracyclin-Resistenz unterschieden werden.

15

5

Die Mutanten *Pseudomonas* sp. HR199 $fcs\Omega$ Km und *Pseudomonas* sp. HR199 $fcs\Omega$ Gm wurden nach Konjugation von *Pseudomonas* sp. HR199 mit *E. coli* S17-1 (pSUP $fcs\Omega$ Km) bzw. *E. coli* S17-1 (pSUP $fcs\Omega$ Gm) erhalten. Der Austausch des intakten fcs-Gens gegen das durch Ω Km bzw. Ω Gm inaktivierte Gen ($fcs\Omega$ Km bzw. $fcs\Omega$ Gm) wurde mittels DNA-Sequenzierung verifiziert.

20

Die Mutanten Pseudomonas sp. HR199 $ech\Omega$ Km und Pseudomonas sp. HR199 $ech\Omega$ Gm wurden nach Konjugation von Pseudomonas sp. HR199 mit E. coli S17-1 (pSUP $ech\Omega$ Km) bzw. E. coli S17-1 (pSUP $ech\Omega$ Gm) erhalten. Der Austausch des intakten ech-Gens gegen das durch Ω Km bzw. Ω Gm inaktivierte Gen ($ech\Omega$ Km bzw. $ech\Omega$ Gm) wurde mittels DNA-Sequenzierung verifiziert.

25

Die Mutanten *Pseudomonas* sp. HR199 $vdh\Omega$ Km und *Pseudomonas* sp. HR199 $vdh\Omega$ Gm wurden nach Konjugation von *Pseudomonas* sp. HR199 mit *E. coli* S17-1 (pSUP $vdh\Omega$ Km) bzw. *E. coli* S17-1 (pSUP $vdh\Omega$ Gm) erhalten. Der Austausch des

intakten vdh-Gens gegen das durch Ω Km bzw. Ω Gm inaktivierte Gen ($vdh\Omega$ Km bzw. $vdh\Omega$ Gm) wurde mittels DNA-Sequenzierung verifiziert.

Die Mutanten Pseudomonas sp. HR199 aat Ω Km und Pseudomonas sp. HR199 aat Ω Gm wurden nach Konjugation von Pseudomonas sp. HR199 mit E. coli S17-1 (pSUPaat Ω Km) bzw. E. coli S17-1 (pSUPaat Ω Gm) erhalten. Der Austausch des intakten aat-Gens gegen das durch Ω Km bzw. Ω Gm inaktivierte Gen (aat Ω Km bzw. aat Ω Gm) wurde mittels DNA-Sequenzierung verifiziert.

5

Die Mutante *Pseudomonas* sp. HR199 $fcs\Omega$ Km $vdh\Omega$ Gm wurden nach Konjugation von *Pseudomonas* sp. HR199 $fcs\Omega$ Km mit *E. coli* S17-1 (pSUP $vdh\Omega$ Gm) erhalten. Der Austausch des intakten vdh-Gens gegen das durch Ω Gm inaktivierte Gen ($vdh\Omega$ Gm) wurde mittels DNA-Sequenzierung verifiziert.

Die Mutante *Pseudomonas* sp. HR199 *vdh*ΩKm*aat*ΩGm wurden nach Konjugation von *Pseudomonas* sp. HR199 *vdh*ΩKm mit *E. coli* S17-1 (pSUP*aat*ΩGm) erhalten. Der Austausch des intakten *aat*-Gens gegen das durch ΩGm inaktivierte Gen (*aat*Ω Gm) wurde mittels DNA-Sequenzierung verifiziert.

Die Mutante Pseudomonas sp. HR199 $vdh\Omega$ Km $ech\Omega$ Gm wurden nach Konjugation von Pseudomonas sp. HR199 $vdh\Omega$ Km mit $E.~coli~S17-1~(pSUPech\Omega$ Gm) erhalten. Der Austausch des intakten ech-Gens gegen das durch Ω Gm inaktivierte Gen $(ech\Omega$ Gm) wurde mittels DNA-Sequenzierung verifiziert.

Beispiel 7

Erzeugung von Mutanten des Stammes *Pseudomonas* sp. HR199, bei denen spezifisch Gene des Eugenol-Katabolismuses durch Deletion eines Teilbereiches inaktiviert wurden.

Die Stämme Pseudomonas sp. HR199 $fcs\Omega$ Km, Pseudomonas sp. HR199 $ech\Omega$ Km, Pseudomonas sp. HR199 $vdh\Omega$ Km und Pseudomonas sp. HR199 $aat\Omega$ Km wurden als Rezipient in Konjugationsexperimenten eingesetzt, bei denen Stämme von E. coli

10

15

5

S17-1 als Donoren eingesetzt wurden, die die unten aufgeführten Hybridplasmide von pHE55 enthielten. Die "heterogenoten" Transkonjuganten wurden auf Gluconathaltigem Mineralmedium selektiert, welches neben Tetracyclin (pHE55 codierte Resistenz) das dem Ω -Element entsprechende Antibiotikum enthielt. Nach Ausstreichen auf Saccharose-haltigem Mineralmedium wurden Transkonjuganten erhalten, die durch ein zweites Rekombinationsereignis (zweiter "Cross over") die Vektor-DNA eliminiert hatten. Durch Ausstreichen auf Mineralmedium ohne Antibiotika bzw. mit dem Ω -Element entsprechenden Antibiotikum konnten die Mutanten erkannt werden, bei denen das durch Ω -Element inaktivierte Gen gegen das durch Deletion inaktivierte Gen ausgetauscht worden war (keine Antibiotika-Resistenz).

20

Die Mutante *Pseudomonas* sp. HR199 $fcs\Delta$ wurde nach Konjugation von *Pseudomonas* sp. HR199 $fcs\Omega$ Km mit *E. coli* S17-1 (pHE $fcs\Delta$) erhalten. Der Austausch des durch Ω Km inaktivierten Gens ($fcs\Omega$ Km) gegen das durch Deletion inaktivierte Gen ($fcs\Delta$) wurde mittels DNA-Sequenzierung verifiziert.

Die Mutanten *Pseudomonas* sp. HR199 echΔ wurde nach Konjugation von *Pseudomonas* sp. HR199 echΩKm mit *E. coli* S17-1 (pHEechΔ) erhalten. Der Austausch des durch ΩKm inaktivierten Gens (echΩKm) gegen das durch Deletion inaktivierte Gen (echΔ) wurde mittels DNA-Sequenzierung verifiziert.

Die Mutanten Pseudomonas sp. HR199 $vdh\Delta$ wurde nach Konjugation von Pseudomonas sp. HR199 $vdh\Omega$ Km mit E. coli S17-1 (pHE $vdh\Delta$) erhalten. Der Austausch des durch Ω Km inaktivierten Gens ($vdh\Omega$ Km) gegen das durch Deletion inaktivierte Gen ($vdh\Delta$) wurde mittels DNA-Sequenzierung verifiziert.

5

Die Mutanten *Pseudomonas* sp. HR199 $aat\Delta$ wurde nach Konjugation von *Pseudomonas* sp. HR199 $aat\Omega$ Km mit *E. coli* S17-1 (pHE $aat\Delta$) erhalten. Der Austausch des durch Ω Km inaktivierten Gens ($aat\Omega$ Km) gegen das durch Deletion inaktivierte Gen

(aatΔ) wurde mittels DNA-Sequenzierung verifiziert.

Beispiel 8

Biotransformation von Eugenol zu Vanillin mit der Mutante Pseudomonas sp. $HR199 \ vdh\Omega Km$.

Der Stamm *Pseudomonas* sp. HR199 *vdh*ΩKm wurde in 50 ml HR-MM mit 6 mM Eugenol bis zu einer optischen Dichte von ca. OD600nm = 0.6 angezogen. Nach 17 h waren 2.9 mM Vanillin, 1.4 mM Ferulasäure und 0.4 mM Vanillinsäure im Kulturüberstand nachweisbar.

25

Beispiel 9

Biotransformation von Eugenol zu Ferulasäure mit der Mutante *Pseudomonas* sp. $HR199 \ vdh\Omega Gmaat\Omega Km$.

Der Stamm Pseudomonas sp. HR199 $vdh\Omega Gmaat\Omega Km$ wurde in 50 ml HR-MM mit 6 mM Eugenol bis zu einer optischen Dichte von ca. OD600nm = 0.6 angezogen. Nach 18 h waren 1.9 mM Vanillin, 2.4 mM Ferulasäure und 0.6 mM Vanillinsäure im Kulturüberstand nachweisbar.

Beispiel 10

Biotransformation von Eugenol zu Coniferylalkohol mit der Mutante *Pseudo-monas* sp. HR199 $vdh\Omega Gmaat\Omega Km$.

Der Stamm *Pseudomonas* sp. HR199 *vdh*ΩGm*aat*ΩKm wurde in 50 ml HR-MM mit 6 mM Eugenol bis zu einer optischen Dichte von ca. OD600nm = 0.4 angezogen. Nach 15 h waren 1.7 mM Coniferylalkohol, 1.4 mM Vanillin, 1.4 mM Ferulasäure und 0.2 mM Vanillinsäure im Kulturüberstand nachweisbar.

5

15

Beispiel 11

Fermentative Produktion von natürlichem Vanillin aus Eugenol im 101 Fermenter mit der Mutante Pseudomonas sp. HR 199 vdhΩKM.

Mit 100 ml einer 24 Stunden alten Vorkultur, die auf einer Schüttelmaschine (120 Upm) bei 32°C in einem auf pH 7,0 eingestellten Medium aus 12,5 g/l Glyzerin, 10 g/l Hefeextrakt und 0,37 g/l Essigsäure angezogen wurde, wurde der Produktionsfermenter beimpft. Der Fermenter enthielt 9,9 l Medium mit folgender Zusammensetzung: 1,5 g/l Hefeextrakt, 1,6 g/l KH₂PO₄, 0,2 g/l NaCl, 0,2 g/l MgSO₄. Der pH-Wert wurde mit Natronlauge auf pH 7,0 eingestellt. Nach der Sterilisation wurde dem Medium 4 g Eugenol zugefügt. Die Temperatur betrug 32°C, die Belüftung 3 Nl/min und die Rührerdrehzahl 600 Upm. Der pH-Wert wurde mit Natronlauge bei pH 6,5 gehalten.

20

Vier Stunden nach dem Animpfen wurde mit der kontinuierlichen Zugabe von Eugenol begonnen, so daß am Ende der Fermentation nach 65 Stunden 255 g Eugenol zur Kultur gegeben worden waren. Außerdem wurden während der Fermentation 40 g Hefeextrakt zugefüttert. Die Konzentration an Eugenol lag am Ende der Fermentation bei 0,2 g/l. Der Gehalt an Vanillin betrug 2,6 g/l. Zusätzlich lagen noch 3,4 g/l Ferulasäure vor.

Das so erhaltene Vanillin kann durch bekannte physikalische Verfahren wie Chromatographie, Destillation und/oder Extraktion isoliert und zur Herstellung natürlicher Aromen verwendet werden.

5 Erläuterungen zu den Figuren:

FIG. 1a bis 1r:

Gen- Strukturen zur Gewinnung von Organismen und Mutanten

15

calA*: Teil des inaktivierten Gens der Coniferylalkohol-Dehydrogenase

calB*: Teil des inaktivierten Gens der Coniferylaldehyd-Dehydrogenase

fcs*: Teil des inaktivierten Gens der Ferulasäure-CoA Synthetase

ech*: Teil des inaktivierten Gens der Enoyl-CoA Hydratase-Aldolase

vdh*: Teil des inaktivierten Gens der Vanillin-Dehydrogenase

aat*: Teil des inaktivierten Gens der beta-Ketothiolase

Die mit "*" versehenen Restriktionsenzym-Schnittstellen kamen für die Konstruktion zum Einsatz, sind jedoch in dem resultierenden Konstrukt nicht mehr funktionsfähig.

	FIG. 2a: Nukleotidsequenz der Gen-Struktur <i>calA</i> ΩKm
	FIG. 2b: Nukleotidsequenz der Gen-Struktur calAΩGm:
	FIG. 2c: Nukleotidsequenz der Gen-Struktur calAΔ
	FIG. 2d: Nukleotidsequenz der Gen-Struktur $calB\Omega Km$
5	FIG. 2e: Nukleotidsequenz der Gen-Struktur $calB\Omega Gm$
	FIG. 2f: Nukleotidsequenz der Gen-Struktur calΒΔ
	FIG. 2g: Nukleotidsequenz der Gen-Struktur fcsΩKm
	FIG. 2h: Nukleotidsequenz der Gen-Struktur fcsΩGm
	FIG. 2i: Nukleotidsequenz der Gen-Struktur fcsΔ
10	FIG. 2j: Nukleotidsequenz der Gen-Struktur echΩKm
10	FIG. 2j: Nukleotidsequenz der Gen-Struktur $ech\Omega$ Km FIG. 2k: Nukleotidsequenz der Gen-Struktur $ech\Omega$ Gm
10	
10	FIG. 2k: Nukleotidsequenz der Gen-Struktur <i>ech</i> ΩGm
10	FIG. 2k: Nukleotidsequenz der Gen-Struktur <i>ech</i> ΩGm FIG. 2l: Nukleotidsequenz der Gen-Struktur <i>ech</i> Δ
10	FIG. 2k: Nukleotidsequenz der Gen-Struktur <i>ech</i> ΩGm FIG. 2l: Nukleotidsequenz der Gen-Struktur <i>ech</i> Δ FIG. 2m: Nukleotidsequenz der Gen-Struktur <i>vdh</i> ΩKm
	FIG. 2k: Nukleotidsequenz der Gen-Struktur echΩGm FIG. 2l: Nukleotidsequenz der Gen-Struktur echΩ FIG. 2m: Nukleotidsequenz der Gen-Struktur vdhΩKm FIG. 2n: Nukleotidsequenz der Gen-Struktur vdhΩGm
	FIG. 2k: Nukleotidsequenz der Gen-Struktur $ech\Omega$ Gm FIG. 2l: Nukleotidsequenz der Gen-Struktur $ech\Delta$ FIG. 2m: Nukleotidsequenz der Gen-Struktur $vdh\Omega$ Km FIG. 2n: Nukleotidsequenz der Gen-Struktur $vdh\Omega$ Gm FIG. 2o: Nukleotidsequenz der Gen-Struktur $vdh\Omega$ Gm

Sequenzen

	
CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCCCT	60
GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG	120
GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG	180
CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG	240
AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT	300
GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA	360
TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG	420
AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG TCC TCC Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser 1 5 10 15	472
GT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA Gly Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr 20 25 30	520
GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC Val Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe 35	568
GTT CAG GCT GAC CTG AGC CAT CCT GAA GGC ATC GAT AAG GCC ATC GGG Val Gln Ala Asp Leu Ser His Pro Glu Gly Ile Asp Lys Ala Ile 50 55 60 62	616
ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG GTAAGGTTGG GAAGCCCTGC	676
AAAGTAAACT GGATGGCTTT CTTGCCGCCA AGGATCTGAT GGCGCAGGGG ATCAAGATCT	736
GATCAAGAGA CAGGATGAGG ATCGTTTCGC ATG ATT GAA CAA GAT GGA TTG CAC Met Ile Glu Gln Asp Gly Leu His 1 5	790
GCA GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG Ala Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp 10 15 20	838
GCA CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA Ala Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser 25 30 35 40	886
GCG CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC Ala Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala 45 50 55	934
CTG AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG Leu Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr	982

							GTG Val 80									1030	
							GAA Glu									1078	
							AAA Lys									1126	
							CCG Pro									 1174	
							GCA Ala									1222	
							GAA Glu 160									1270	
							GCG Ala									1318	
							TGC Cys									1366	
							GAC Asp									1414	
							GCT Ala									1462	
			Trp		Asp		TTC Phe 240	Leu								1510	
							TTC Phe									1558	
TGAC	GCGG	GAC :	rc t g(GGT'	rc g <i>i</i>	AAT	GACCO	G ACC	CAAGO	CGAC	GCCC	P	GCC G Ala A 225			1613	
ATT Ile	GCA Ala	TTC Phe 230	Met	TGT Cys	Ala	GAG Glu	GAG Glu 235	TCA Ser	CGT Arg	TGG Trp	ATC Ile	AAC Asn 240	GGC Gly	ATA Ile	AAT Asn	1661	

ATT CCA GTG GAC GGA GGT Ile Pro Val Asp Gly Gly 245		GTG TAA GTTCGTGGAC Val 255	1710
GCCCTTTGCA CGCGCACTAT A	ATCTCTATGC AGCAGCTGAA	AGCAGCTTTG GTTTTGATCG	1770
GAGGTAGCGG GCGGAAAGGT (GCAGAATGTC TAAATAATAA	AGGATTCTTG TGAAGCTTTA	1830
GTTGTCCGTA AACGAAAATA	AAAATAAAGA GGAATGATAT	GAAAGCAAGT AGATCAGTCT	1890
GCACTTTCAA AATAGCTACC	CTGGCAGGCG CCATTTATGC	AGCGCTGCCA ATGTCAGCTG	1950
CAAACTCGAT GCAGCTGGAT	GTAGGTAGCT CGGATTGGAC	GGTGCGTTGG GGACAACACC	2010
CTCAAGTATA GCCTTGCCTC	TCGCCTGAAT GAGCAAGACT	CAAGTCTGAC AAATGCGCCG	2070
ACTGTCAATG GTTATATCCG (GATATTCAAA GTCAGGGTGA	TCGTAACTTT GACCGGGGC	2130
TTGGTATCCA ATCGTCTCGA	TATTCTGGCT GCAG		2164
FIG. 2a:			

CT	TGCAGC	CAG	GGCT	SAAAA	G G	AGGG2	ATTC	A GT	GAGG	TCAT	GAA	GGGA	GGG	GACG	GCGCCI	•	60	
GG	GCTCCA	TTA	GCTC	SATGO	C G	CCGC	GATT(G AG	TGTC	TTGG	GCG	CGGT	CTT	GGAG.	AGTTCG	;	120	
GC	CTAGGG	AGA '	TAAAT	TTTGC	T GO	GCCA'	rggto	G GC	GGCC	CCTG	ATG	GGTT	GGA	TGAT	TTTCTG	;	180	
CA	ATTCTG	CAT	CATGA	TTAAF	'C A'	rgaa	ATCA	r ca	CTTT	TCGG	GGG	GTGG	GTG	CACG	GGATTO	; ;	240	
AA	AGGTTG	CTA (GGAGA	AGTGC	A T	rgcto	CGTA	A GC	CCAG	GAAG	CAC	GCGG	GTT	TCAG	GATGGT	•	300	
GC	CATGGA	TAP	GGCAI	rgago	тт	rgcto	GGATA	A TG.	ATTA	GAGA	CAT	TAAC'	TAT	TTTG	GCGGAA		360	
TG	GGAAGC	ACG 2	ATTCC	CTCGC	c co	GTA	GAGC	G GT	AACC	GCGA	CAT	TCAG(GAC	CGTA	AAAAGG	; 4	120	
AA	AAGAGC?	ATG (CAA C	TG A	CC I	AAC A	AAG Z	AAA	ATC (GTC (STC A	ACC (GGA	GTG '	CC TC	C 4	172	
	r	1	OTH I	Jeu 1	nr A	sn i	Jys 1	.ys	iie ,	vaı v	10	rnr (GLY	Val :	ser Se 1	r 5		
	GT ATC ly Ile	GGT Gly	GCC Ala	GAA Glu 20	ACT Thr	GCC Ala	CGC Arg	GTT Val	CTG Leu 25	CGC Arg	TCT Ser	CAC His	GGC Gly	GCC Ala 30	ACA Thr	5	520	
GT V a	TG ATT	GGC Gly	GTA Val 35	GAT Asp	CGC Arg	AAC Asn	ATG Met	CCG Pro 40	AGC Ser	CTG Leu	ACT Thr	CTG Leu	GAT Asp 45	Ala	TTC Phe	5	568	
GT Va	TT CAG al Gln	GCT Ala 50	Asp	CTG Leu	AGC Ser	CAT His	CCT Pro 55	GAG	GGGA(GAG (GCGG1	rttg(CG T	ATTGO	GCGC	6	522	
AT	rgcata <i>i</i>	AAA A	ACTGI	TGTA	IT A	CAT	raago	AT:	rctg	CCGA	CATO	GGAA	GCC 2	ATCAC	CAAACG	6	82	
GC	CATGATO	SAA (CCTGA	ATCG	C CF	AGCGC	CATO	AG	CACC	TTGT	CGCC	CTTGO	CGT A	LAATA	TATTTG	7	42	
CC	CCATGGA	ACG (CACAC	CGTG	G AF	AACGO	GATGA	A AGO	GCAC	GAAC	CCAC	GTTGA	ACA	TAAGO	CTGTT	8	302	
CG	GGTTCGT	TAA A	ACTGI	AATG	C AF	AGTAC	SCGTF	A TGO	CGCT	CACG	CAAC	CTGGT	rcc i	AGAAC	CTTGA	8	862	
cc	CGAACGC	CAG (CGGTG	GTAA	C GG	GCGC	AGTGG	G CGC	STTTT	CAT	GGCT	TGTI	TAT (GACTO	STTTTT	9	22	
TT	rgtacac	STC 1	ratgo	CTCG	G GC	CATCO	CAAGO	AG0	CAAGO	CGCG	TTAC	CGCCG	STG (GGTCG	SATGTT	9	82	
TG	GATGTT <i>F</i>	ATG (GAGCA	(GCAA	C G									ACG Thr		10	33	
CA G1	AG GGC In Gly	AGT Ser	CGC Arg	CCT Pro 15	AAA Lys	ACA Thr	AAG Lys	TTA Leu	GGT Gly 20	GGC Gly	TCA Ser	AGT Ser	ATG Met	GGC Gly 25	ATC Ile	10	81	
AT Il	TT CGC le Arg	ACA Thr	TGT Cys 30	AGG Arg	CTC Leu	GGC Gly	CCT Pro	GAC Asp 35	CAA Gln	GTC Val	AAA Lys	TCC Ser	ATG Met 40	CGG Arg	GCT Ala	11	.29	
GC A1	CT CTT la Leu	GAT Asp 45	CTT_ Leu	TTC Phe	ĢGT Gly	CGT Arg	GAG Glu 50	TTC Phe	GGA Gly	GAC Asp	GTA Val	GCC Ala 55	ACC Thr	TAC Tyr	TCC Ser	11	.77	 .

				GAC Asp												1225	
				CTT Leu												1273	
				GTT Val 95												1321	
				CTC Leu												1369	
				ATC Ile												1417	
				TAC Tyr												1465	
				AAG Lys												1513	
				ACC Thr 175			TAA	CAA	rtcg:	rtc A	AAGCO	CGAGA	AT CO	GCTT	CCCT	1567	
I		la P					lu G						sn Gl		TA AAT Le Asn	1616	
		Val		GGA Gly								TAA	GTTC	CGTG(SAC	1665	
GCC	CTTT	GCA (CGCG	CACT	AT A'	rctc:	TATG	C AG	CAGC	rgaa	AGC	AGCTI	TG (STTTI	GATCG	1725	
GAG	GTAG	CGG	GCGG	AAAG	GT G	CAGA	ATGT	C TA	AATA	ATAA	AGG	TTCI	TG 1	rgaa(SCTTTA	1785	
GTT	GTCC	GTA .	AACG	AAAA	TA A	AAAT	AAAG	A GG	AATG	TATA	GAAA	AGCAA	AGT A	AGATO	CAGTCT	1845	
GCA	CTTT	CAA .	AATA	GCTA	CC C	TGGC	AGGC	G CC	ATTT	ATGC	AGC	GCTGC	CCA A	ATGTO	CAGCTG	1905	
CAA	ACTC	GAT	GCAG	CTGG.	AT G	TAGG'	TAGC'	T CG	GATT	GGAC	GGT	GCGTT	rgg (GACA	AACACC	1965	
CTC.	AAGT.	ATA	GCCT	TGCC	TC T	CGCC'	TGAA'	T GA	GCAA	GACT	CAA	STCTO	SAC A	TAAL	GCGCCG	2025	
ACT	GTCA	ATG	GTTA	TATC	CG G	тата'	TCAA	A GT	CAGG	GTGA	TCGT	TAACT	TTT (GACC	GGGGC	2085	
TTG	GTAT	CCA	ATCG	TCTC	GA T	ATTC'	TGGC	T GC.	AG							2119	v- v- =

FIG. 2b:

CTGCAGCCAG GGCTGAAAAG GAGGGATTCA GTGAGGTCAT GAAGGGAGGG GACGGCGCCT	60
GGCTCCAATT GCTCGATGGC GCCGCGATTG AGTGTCTTGG GCGCGGTCTT GGAGAGTTCG	120
GCTAGGGAGA TAAATTTGCT GGCCATGGTG GCGGCCCCTG ATGGGTTGGA TGATTTTCTG	180
CATTCTGCAT CATGAAATTC ATGAAATCAT CACTTTTCGG GGGGTGGGTG CACGGGATTG	240
AAGGTTGCTA GGAGAGTGCA TTGCTCGTAA GCCCAGGAAG CACGCGGGTT TCAGGATGGT	300
GCATGGAAAT GGCATGAGCT TTGCTGGATA TGATTAGAGA CATTAACTAT TTTGGCGGAA	360
TGGAAGCACG ATTCCTCGCC CGGTAGAGCG GTAACCGCGA CATTCAGGAC CGTAAAAAGG	420
AAAGAGCATG CAA CTG ACC AAC AAG AAA ATC GTC GTC ACC GGA GTG TCC TCC Met Gln Leu Thr Asn Lys Lys Ile Val Val Thr Gly Val Ser Ser	472
1 5 10 15	
GGT ATC GGT GCC GAA ACT GCC CGC GTT CTG CGC TCT CAC GGC GCC ACA Gly Ile Gly Ala Glu Thr Ala Arg Val Leu Arg Ser His Gly Ala Thr 20 25 30	520
GTG ATT GGC GTA GAT CGC AAC ATG CCG AGC CTG ACT CTG GAT GCT TTC Val Ile Gly Val Asp Arg Asn Met Pro Ser Leu Thr Leu Asp Ala Phe 35	568
GTT CAG GCT GAC CTG AGC CAT CCT GAA GGC ATC GATC AAC GGC ATA AAT Val Gln Ala Asp Leu Ser His Pro Glu Gly Ile Asn Gly Ile Asn 50 55 58 240	617
ATT CCA GTG GAC GGA GGT TTG GCA TCG ACC TAC GTG TAA GTTCGTGGAC Ile Pro Val Asp Gly Gly Leu Ala Ser Thr Tyr Val 245 250 255	666
GCCCTTTGCA CGCGCACTAT ATCTCTATGC AGCAGCTGAA AGCAGCTTTG GTTTTGATCG	726
GAGGTAGCGG GCGGAAAGGT GCAGAATGTC TAAATAATAA AGGATTCTTG TGAAGCTTTA	786
GTTGTCCGTA AACGAAAATA AAAATAAAGA GGAATGATAT GAAAGCAAGT AGATCAGTCT	846
GCACTTTCAA AATAGCTACC CTGGCAGGCG CCATTTATGC AGCGCTGCCA ATGTCAGCTG	906
CAAACTCGAT GCAGCTGGAT GTAGGTAGCT CGGATTGGAC GGTGCGTTGG GGACAACACC	966
CTCAAGTATA GCCTTGCCTC TCGCCTGAAT GAGCAAGACT CAAGTCTGAC AAATGCGCCG	1026
ACTGTCAATG GTTATATCCG GATATTCAAA GTCAGGGTGA TCGTAACTTT GACCGGGGGC	1086
TTGGTATCCA ATCGTCTCGA TATTCTGGCT GCAG	1120
FIG. 2c:	

FIG. 2c:

	GAAT	TCC	GCG 1	TATCG	ccce	G TI	CTAI	CAGO	GGG	CCGC	CTTT	CGA	AGTO	CAT (GGTG	TAGC	С	60	
	GGTF	AGGGT	CT 1	тттс	TTGG	C CF	ATGCI	TGTI	GCC	CTGA	ACCT	TCGT	TGA	CAT A	AGGG	CAGAG	G	120	
	TGCG	STTTC	SCC (CTTC	GCTT	'C GC	CGATO	BAACC	GC	ATCG	AGAT	GCT	SAGG	rca (GGAT	TTTC	С	180	
	TTAF	ACTCO	GCG 1	TAAGC	ATTC	T GI	CATI	TTTT	TGC	STGGC	CTTT	GAAC	CAGC	CTG A	ATGA	AAGGT	G	240	
	GTCT	CGCC	CT 1	TGAG	GCCG	T A	CTTC	GGCG	CT1	rggco	GCG	TCGA	AAGC	SAT (GCTC	CACTA	С	300	
	CGAT	CAAT	SAT A	ATTA	raaa.	'A A	GAAA	ACCGC	ATC	GTTT	CTT	ATGT	'GAA'	TTT (STCTO	GCAT	A	360	
	CTCC	CAGCI	CA A	AGGGC	PTAAT	T T	GGGC	CTATI	GGC	CTGAC	GCAG	TTGO	CTCT	TAT A	ATGGT	TATT	С	420	
	. NCNI	TAM	`AA_1	TCAC	TCCT	C.A	CAC	TCM	:-cc				~	001	TTC Leu			473	
	БGТ	GCC	CCG	GTC	GGA	GCT	GAG	CAG	CTG	_	TCG	GCT	CTT	GAT	CGC	ATG		521	
				Val															
				CAC His											_			569	
				GAT Asp														617	
				GCG Ala														665	
				TGC Cys 75														713	
T				GTG Val														761	
				GCG Ala														809	
				AGT Ser														857	
		_		ATA Ile														905	
				CCG Pro 155														953	

		Phe				GAG Glu											1001
						GCT Ala											1049
						AAG Lys 205											1097
			Val		Leu	GAA Glu		Gly		Lys							1145
						GCG Ala											1193
						CAA Gln											1241
		GAA Glu 265	GGG	ACAG(CAA (GCGA	ACCGO	A A	TTGC	CAGCT	r GGO	GCGG	CCT	CTGO)AAT	GGT	1297
	TGG	GAAGO	ccc :	rgca/	AAGTA	AA AG	CTGG	ATGGO	C TT	CTT	GCCG	CCA	AGGAI	CT (GATGO	GCGCAG	1357
	GGGI	ATCAI	AGA 1	rctg <i>i</i>	ATCA <i>i</i>	AG AC	SACA(GATO	G AGO	SATCO	STTT	CGC		ATT Ile			1412
	GAT	CCA											1				
	Asp 5					GGT Gly 10							GAG				1460
T	5 GGC	Gly TAT	Leu GAC	His TGG	Ala GCA	Gly	Ser CAG	Pro ACA	Ala	Ala GGC	Trp 15 TGC	Val TCT	GAG Glu GAT	Arg GCC	Leu GCC	Phe 20 GTG	1460 1508
V	GGC Gly	Gly TAT Tyr CGG	GAC Asp	His TGG Trp	Ala GCA Ala 25 GCG	Gly 10 CAA	Ser CAG Gln GGG	Pro ACA Thr	Ala ATC Ile	Ala GGC Gly 30 GTT	Trp 15 TGC Cys	Val TCT Ser	GAG Glu GAT Asp	Arg GCC Ala AAG	GCC Ala 35 ACC	Phe 20 GTG Val	
	GGC Gly TTC Phe	TAT Tyr CGG Arg	GAC Asp CTG Leu GGT	TGG Trp TCA Ser 40	GCA Ala 25 GCG Ala	Gly 10 CAA Gln CAG	CAG Gln GGG Gly	Pro ACA Thr CGC Arg	Ala ATC Ile CCG Pro 45 CAG	Ala GGC Gly 30 GTT Val	Trp 15 TGC Cys CTT Leu	TCT Ser TTT Phe	GAG Glu GAT Asp GTC Val	GCC Ala AAG Lys 50 CGG	GCC Ala 35 ACC Thr	Phe 20 GTG Val GAC Asp	1508

						TGG Trp										1700	
						CTT Leu										1748	
						CTG Leu										1796	
						CAT His										1844	
Sec.						CAG Gln 155										1892	
						TTC Phe										1940	
						ACC Thr										1988	
						TTT Phe										2036	
						CAG Gln										2084	
						GAA Glu 235										2132	
						TCG Ser										2180	
		GAG Glu		TGA	GCGG	GGACT	TCT (GGG'	TCGF	ra aa	GACC	CGACC	AAG	GCGAC	CGCC	2235	
	CGC	His				CTC Leu										2283	
			Arg		Pro	TAC Tyr 465										2331	

	GTC CTC CTT TCA ACG GAG TGT TAG AACCGTTGGT AGTGGTTTTG GACGGGCCCA Val Leu Ser Thr Glu Cys 475 480 481	2385
	GGAGCATGCG CTTCTGGGCC CGTTTCTTGA GTATTCATTG GATAGTCACG CGTGGTAGCT	2445
	TCGAGCCTGC ACAGCTGATG AGCACCCTGG AAGGCGCGCT GTACGCGGAC GACTGGGTTC	2505
	ATCTTCGCCA TTCATGACGG AACTCCGTTC CCCAGTACCG CGATGACTAT TTTGCCTCTT	2565
	CCGATGTCCG ATTCCACGCC GCCTGACGCT AAGCGGGGGC GGGGGCGCCC GCATCCCAGC	2625
	CCAGACAGCA ACAAATGAGT AGGCTCTTGG ATGCCGCGGC GGCTGAGATT GGTAACGGCA	2685
	ATTTESTERA TSTSACCATS GATTESATTS CCCSTSCTSC CSGCSTCTCA AAAAAAACSC	2745
	TGTACGTCTT GGTGGCGAGC AAGGAAGAAC TCATTTCCCG GTTAGTGGCT CGAGACATGT	2805
7	CCAACCTTGA GGAATTC	2822
	FIG. 2d:	

GAA'	TCCG	CG I	ATCG	CCCG	G TI	CTAT	CAGO	GGG	GCCG	TTT	CGA	AAGTO	CAT	GGTG	rtagco	60	
GGT	AGGGT	CT I	TTTC	TTGG	C CF	ATGCT	TGTI	GCC	CTGA	ACCT	TCG	rtgac	CAT A	AGGG	CAGAGO	G 120	
TGC	GTTTG	CC G	CTTC	GCTI	C GC	GATO	SAACO	GC?	ATCG/	AGAT	GCT	GAGG	rca (GGAT'	rtttco	180	
TTA	ACTCO	CG I	'AAGC	ATTC	T GI	CATI	TTTT	TGC	STGG	CTTT	GAA	CAGCO	CTG A	ATGA	AAGGTO	G 240	
GTC	rcgcc	CT I	TGAG	GCCG	TT A	CTTC	GGCG	CT1	rggc	GGCG	TCG	AAGCO	GAT (GCTC	CACTAC	300	
CGA	PAAT	AT P	ATTA	raaa.	'A AG	GAAA	ACCGC	ATC	GTT:	CTT	ATG	rgaat	TTT (GTCT	GGCATA	360	
CTC	CAGCI	CA A	AGGGC	TTAA	T T	GGGG	TATT	GGG	CTGA	GCAG	TTG	CCTCT	TAT I	ATGG	TATT	420	
<u> </u>	VPAA(<u> </u>	TGAC	Peci	·C·AC	CAC	TGA	-cc		_				TTC Leu		473	
	GCC Ala															521	
	AAG Lys 25															569	
	AGG Arg		_	-												617	
	GCC Ala															665	
	CTG Leu															713	
	GAG Glu															761	
	CCA Pro 105															809	
	GTC Val															857	
	GCC Ala															905	
	CTT Leu															953	:

		Phe		GAA Glu														1001	
				TTC Phe														1049	
				GTG Val														1097	
				ACC Thr	Leu	Glu	Leu	Gly		Lys	Ser							1145	
				GAT Asp 235														1193	
				GCC Ala												GGG		1241	
	GAG	AGGCC	GT T	rtgco	TATI	G GC	GCGCI	ATGC	A TAA	AAAA	CTGT	TGTA	TTA	CAT 7	raago	CATTC	Т	1301	
	GCCC	GACAT	rgg A	AAGCC	CATC	AC AF	AACGG	CATO	S ATC	SAACO	CTGA	ATC	GCCA	GCG (GCATO	CAGCA	C	1361	
	CTT	GTCGC	CCT T	rgcgi	'ATA	AT AT	TTGC	CCAT	GGA	ACGC	ACAC	CGT	GGAA	ACG (SATGA	AAGGC	A	1421	
	CGA	ACCCA	AGT T	FGACA)AATA	C C	TGTTC	CGGTT	r CG1)AAA1	CTGT	TAA	GCAAG	STA (GCGTA	ATGCG	С	1481	
	TCAC	CGCAA	ACT (GGTC	CAGA	AC CI	TGAC	CCGA	A CGC	CAGCO	GGTG	GTAA	ACGGG	CGC A	AGTGO	CGGT	T	1541	
	TTC	ATGG	CTT (STTAT	rgaci	rg Ti	TTTT	TGT	A CAC	STCTA	ATGC	CTC	GGC <i>I</i>	ATC (CAAGO	CAGCA	A	1601	
4	GCGG	CGTTA	ACG (CCGT	GGTC	CG AT	rgtti	(GAT)	G TTA	ATGG <i>I</i>	AGCA	GCAZ			TTA (Leu A			1656	
				GAT Asp														1704	
				AGT Ser														1752	
				TCC Ser														1800	
				GCC Ala -5:5-		Tyr	Ser			Gln								1848	
				CTC Leu														1896	

CAA GAA Gln Glu 8	ı Ala														1944
GAG CAG Glu Gli 100															1992
GAG CAG															2040
CAT GAG		Asn		Leu				Val							2088
TAC GG		Asp													2136
GAA GA Glu Gl	u Val												TAA	CAA	2184
TTCGTT	CAAG	CCGA	GATCO	G CI	TTCC	(/al (GAG :			2236
TTG GC Leu Al 46	a Met														2284
GTC CT Val Le 475				Glu		TAG	AAC	CGTT	GT 1	AGTGO	GTTT?	rg GA	ACGG(GCCCA	2338
GGAGCA	TGCG	CTTC'	rggg	cc co	GTTT	CTTG	A GTA	ATTC	ATTG	GATA	AGTC	ACG (CGTG	STAGCT	2398
TCGAGC	CTGC	ACAG	CTGA	rg ac	GCAC	CCTG	G AAG	GCG	CGCT	GTA	CGCG	GAC (GACTO	GGTTC	2458
ATCTTC	GCCA	TTCA'	rgaco	GG A	ACTC	CGTT	c cc	CAGT	ACCG	CGA	rgac:	TAT T	TTTGO	CCTCTT	2518
CCGATG	TCCG	ATTC	CACGO	CC G	CCTG	ACGC'	r aac	GCGG	GGGC	GGG	GCG	CCC (GCAT(CCCAGC	2578
CCAGAC	AGCA	ACAA	ATGA	GT A	GGCT	CTTG	G AT	GCCG	CGGC	GGC:	rgaga	ATT (GGTA	ACGGCA	2638
ATTTCG	TCAA	TGTG.	ACGA'	rg G	ATTC	GATT	G CC	CGTG	CTGC	CGG	CGTC	TCA A	AAAA	AAACGC	2698
TGTACG	TCTT	GGTG	GCGA	GC A	AGGA	AGAA	C TC	ATTT	CCCG	GTT	AGTG	GCT (CGAG	ACATGT	2758
CCAACC	TTGA	GGAA	TTC												2775
FIG. 2	e:														

	GAAT	TCC	GCG :	ratco	CCCC	G TI	CTAI	CAGO	GGG	SCCG	СТТТ	CGA	AAGTO	CAT	GGTG'	TTAGC	С	60			
	GGTA	AGGGT	CT ?	TTTTC	CTTGG	SC CF	ATGCI	TGTI	GCC	CTGA	ACCT	TCGT	TGAC	CAT A	AGGG	CAGAG	G :	120			
	TGC	STTTC	GCC (GCTT	CGCTI	C GC	CGATO	SAACO	GCI	ATCG	AGAT	GCT	SAGGT	CA (GGAT'	TTTTC	С	180			
	TTAA	ACTCO	GCG '	FAAGO	CATTO	CT GI	CATI	TTTT	TGO	STGG	CTTT	GAA	CAGCO	CTG A	ATGAZ	AAGGT	G :	240			
	GTCT	rcgco	CCT 1	rtga(GCCG	ET AS	CTTC	GGCG	CT:	rggco	GCG	TCGA	AAGC	SAT (GCTC	CACTA	C :	300			
	CGAT	OAATT	GAT A	ATTA	raaa <i>i</i>	TA AC	GAAA	ACCGC	CATO	GTTT	CTT	ATG	'GAA'	TTT (GTCT	GGCAT	Α :	360			
	CTCC	CAGC	rca i	AGGG	CAATI	TT TI	rgggd	CTATI	GG(CTGA	GCAG	TTGO	CCTCI	TAT A	ATGG'	TTATT	C	420			
	-NGAI	TAA(PTGAG	TCC	C AC	CAC	TCAC	: cc						TTC Leu			173	Marie Communication		
Y				GTC Val													!	521			
				CAC His														569			
				GAT Asp														617			
				GCG Ala													ı	665			
				TGC Cys 75														713			
T				GTG Val													•	761			
				GCG Ala													;	809			
				AGT Ser													;	357			
				ATA Ile														905			
				CEG- Pro 155														953 —		- ·	

TAC TTC GAT GAA ACT GAG CTG ACT ACA GTG CTG GGC GAC GCT GAA GTC Tyr Phe Asp Glu Thr Glu Leu Thr Thr Val Leu Gly Asp Ala Glu Val 170 180	1001
GGT GCG CTG TTC AGT GCT CAG CCT TTC GAT CAT CTG ATC TTC ACC GGC Gly Ala Leu Phe Ser Ala Gln Pro Phe Asp His Leu Ile Phe Thr Gly 185	1049
GGC ACT GCC GTG GCC AAG CAC ATC ATG CGT GCC GCG GCG GAT AAC CTA Gly Thr Ala Val Ala Lys His Ile Met Arg Ala Ala Ala Asp Asn Leu 200 205 210 215	1097
GTG CCC GTT ACC CTG GAA TTG GGT GGC AAA TCG CCG GTG ATC GTT TCC Val Pro Val Thr Leu Glu Leu Gly Gly Lys Ser Pro Val Ile Val Ser 220 225 230	1145
CGC AGT GCA GAT ATG GCG GAC GTT GCA CAA CGG GTG TTG ACG GTG AAA Arg Ser Ala Asp Met Ala Asp Val Ala Gln Arg Val Leu Thr Val Lys 235 240 245	1193
ACC TTC AAT GCC GGG CAA ATC TGT CTG GCA CC GTG GGT GAG TCG AAC Thr Phe Asn Ala Gly Gln Ile Cys Leu Ala Val Gly Glu Ser Asn 250 255 257 454 455	1240
TTG GCG ATG CGC GCA CCC TAC GGA GAA GCG ATC CAC GGA CTG CTC TCT Leu Ala Met Arg Ala Pro Tyr Gly Glu Ala Ile His Gly Leu Leu Ser 460 465 470	1288
GTC CTC CTT TCA ACG GAG TGT TAG AACCGTTGGT AGTGGTTTTG GACGGGCCCA Val Leu Leu Ser Thr Glu Cys 475 480 481	1342
GGAGCATGCG CTTCTGGGCC CGTTTCTTGA GTATTCATTG GATAGTCACG CGTGGTAGCT	1402
TCGAGCCTGC ACAGCTGATG AGCACCCTGG AAGGCGCGCT GTACGCGGAC GACTGGGTTC	1462
ATCTTCGCCA TTCATGACGG AACTCCGTTC CCCAGTACCG CGATGACTAT TTTGCCTCTT	1522
CCGATGTCCG ATTCCACGCC GCCTGACGCT AAGCGGGGGC GGGGGCGCCC GCATCCCAGC	1582
CCAGACAGCA ACAAATGAGT AGGCTCTTGG ATGCCGCGGC GGCTGAGATT GGTAACGGCA	1642
ATTTCGTCAA TGTGACGATG GATTCGATTG CCCGTGCTGC CGGCGTCTCA AAAAAAACGC	1702
TGTACGTCTT GGTGGCGAGC AAGGAAGAAC TCATTTCCCG GTTAGTGGCT CGAGACATGT	1762
CCAACCTTGA GGAATTC	1779
FIG. 2f:	

FIG. 2f:

	CTGCAGC	CGA GC	ATCGATTO	G AGCACT	TTAC CO	CAGCTGCGC	TGGCTGA	CCA TTCAGAATGG	60	
	cccccc	CAC TA	rccaatc1	r AAATC	SATCT TO	GGGCGCC	GCGGCAT	CAT GCCCGCGGCG	120	
	CTCGCCT	CAT TTO	CAATCTCI	r AACTTG	SATAA AA	ACAGAGC	GTTCTCC	GGT CTTGGTGGAT	180	
	CAAGGCC	AGT CG	CGGAGAG	r ctcgaa	AGAGG AG	SAGTACAG	GAACGCC	GAG TCCACATTGC	240	
	AACCGCA	GGC AT	CATCATGO	C TCTGCT	CAGC CA	CGCTACC	CAGTGTG	TCG ATTGGTCATC	300	
	CTCCGGT	TGA GG	rtacgca <i>i</i>	A GACGCI	TO DADD	PATTGTCC		GT TCT CTC GAG rg Ser Leu Glu 5	356	
	ece err	CTT C	e rre	ees eer	CGA ATT	CTT CAC	eer ere	GAG CAT TGG	404	
	Ala Leu	Leu P	ro Phe I 10	Pro Gly	Arg Ile	Leu Glu 15	Arg Leu	Glu His Trp 20		
		Thr A				Val Ala		GCG GCA AAT Ala Ala Asn 35	452	
								AAC GTC CGC Asn Val Arg	500	
		Ala G						GAG CGT CCG Glu Arg Pro	548	
							Leu Gln	CTG GCA TTT Leu Ala Phe 85	596	
								CCT GCT TAT Pro Ala Tyr 100	644	
1		Leu S				Leu Arg		GTA GGT CTT Val Gly Leu 115	692	
							GCA CCT Ala Pro 130	TTC CAG GGG Phe Gln 132	740	
	ACAGCAA	GCG AA	CCGGAAT	r GCCAGC	TGGG GC	GCCCTCTG	GTAAGGT'	IGG GAAGCCCTGC	800	
	AAAGTAA	ACT GG	ATGGCTT:	r CTTGCC	CGCCA AG	GATCTGAT	GGCGCAG	GGG ATCAAGATCT	860	
	GATCAAG	AGA CA	GGATGAG	G ATCGTT			u Gln Ası	F GGA TTG CAC p Gly Leu His 5	914	
		Ser P						TAT GAC TGG Tyr Asp Trp	962	

	GCA Ala 25	CAA Gln	CAG Gln	ACA Thr	ATC Ile	GGC Gly 30	TGC Cys	TCT Ser	GAT Asp	GCC Ala	GCC Ala 35	GTG Val	TTC Phe	CGG Arg	CTG Leu	TCA Ser 40	1	010	
	GCG Ala	CAG Gln	GGG Gly	CGC Arg	CCG Pro 45	GTT Val	CTT Leu	TTT Phe	GTC Val	AAG Lys 50	ACC Thr	GAC Asp	CTG Leu	TCC Ser	GGT Gly 55	GCC Ala	1	058	
	CTG Leu	AAT Asn	GAA Glu	CTG Leu 60	CAG Gln	GAC Asp	GAG Glu	GCA Ala	GCG Ala 65	CGG Arg	CTA Leu	TCG Ser	TGG Trp	CTG Leu 70	GCC Ala	ACG Thr	1	106	
	ACG Thr	Gly	GTT Val	CCT Pro	TGC Cys	GCA Ala	GCT Ala	Val	Leu	Asp	GTT Val	Val	ACT Thr	GAA Glu	GCG Ala	GGA Gly	1	.154	
•	AGG Arg	GAC Asp 90	Trp	CTG Leu	CTA Leu	TTG Leu	GGC Gly 95	GAA Glu	GTG Val	CCG Pro	GGG Gly	CAG Gln 100	GAT Asp	CTC Leu	CTG Leu	TCA Ser	1	202	
	TCT Ser 105	CAC His	CTT Leu	GCT Ala	CCT Pro	GCC Ala 110	GAG Glu	AAA Lys	GTA Val	TCC Ser	ATC Ile 115	ATG Met	GCT Ala	GAT Asp	GCA Ala	ATG Met 120	1	1250	
	CGG Arg	CGG Arg	CTG Leu	CAT His	ACG Thr 125	CTT Leu	GAT Asp	CCG Pro	GCT Ala	ACC Thr 130	TGC Cys	CCA Pro	TTC Phe	GAC Asp	CAC His 135	CAA Gln	1	L298	
	GCG Ala	AAA Lys	CAT His	CGC Arg 140	Ile	GAG Glu	CGA Arg	GCA Ala	CGT Arg 145	ACT Thr	CGG Arg	ATG Met	GAA Glu	GCC Ala 150	GGT Gly	CTT Leu		1346	
	GTC Val	GAT Asp	CAG Gln 155	GAT Asp	GAT Asp	CTG Leu	GAC Asp	GAA Glu 160	Glu	CAT His	CAG Gln	GGG Gly	CTC Leu 165	GCG Ala	CCA Pro	GCC Ala	:	1394	
9	GAA Glu	CTG Leu 170	Phe	GCC Ala	AGG Arg	CTC Leu	AAG Lys 175	Ala	CGC Arg	ATG Met	CCC Pro	GAC Asp 180	GGC Gly	GAG Glu	GAT Asp	CTC Leu		1442	
	GTC Val 185	Val	ACC Thr	CAT His	GGC Gly	GAT Asp 190	Ala	TGC Cys	Leu	Pro	AAT Asn 195	Ile	ATG Met	GTG Val	GAA Glu	AAT Asn 200		1490	
	GGC Gly	CGC Arg	TTI Phe	TCT Ser	GGA Gly 205	Phe	ATC Ile	GAC Asp	TGT Cys	GGC Gly 210	Arg	CTG Leu	GGT Gly	GTG Val	GCG Ala 215	GAC Asp		1538	
	CGC Arg	TAT Tyr	CAC Glr	G GAC Asp 220	Ile	A GCG Ala	TTG Leu	GCT Ala	ACC Thr 225	Arg	GAT Asp	ATT Ile	GCT Ala	GAA Glu 230	Glu	CTT Leu		1586	
	GG(GGC Gly	y Glu	A TGC	G GCT	GAC Asp	C CGC	TTC Phe 240	Leu	GTG Val	CTT Leu	TAC Tyr	GGT Gly 245	Ile	GCC Ala	GCT Ala		1634 —	

CCC GAT TCG CAG CGC ATC GCC TTC TAT CGC CTT CTT GAC GAG TTC TTC Pro Asp Ser Gln Arg Ile Ala Phe Tyr Arg Leu Leu Asp Glu Phe Phe 250 264	1682
TGAGCGGGAC TCTGGGGTTC GAAATGACCG ACCAAGCGAC GCCCCT GTT TTG CAA Val Leu Gln 563 565	1737
TGG CGG TCG GCG AAA GTT GAT GCG CTG TAT CGT GGT GAA GAT CAA TCC Trp Arg Ser Ala Lys Val Asp Ala Leu Tyr Arg Gly Glu Asp Gln Ser 570 575 580	1785
ATG CTG CGT GAC GAG GCC ACA CTG TGA GTTGGTCAGG GGGGGCTTAC Met Leu Arg Asp Glu Ala Thr Leu	1832
585	
TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG	1892
	1892 1952
TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG	
TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG GGTGCCCTGT CGCTGGTGTC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG	1952
TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG GGTGCCCTGT CGCTGGTGTC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG ATGCGTGCGT CGCTTGAACC ACAAATGGTC GATAGCGTAC TCGCAGGCTC TATGGCTCAA	1952 2012
TCGGCGTTTT CCGACACTGC GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG GGTGCCCTGT CGCTGGTGTC GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG ATGCGTGCGT CGCTTGAACC ACAAATGGTC GATAGCGTAC TCGCAGGCTC TATGGCTCAA GCAAGCTTTG ATGCTTACCT GCTCCCGCGG CACATTGGCT TGTACAGCGG TGTTCCCAAG	1952 2012 2072

CTG	CAGCC	GA G	CATO	GATT	G AC	CACI	TTAC	CCA	AGCTO	GCGC	TGG	CTGAC	CCA :	rtca(GAATGG	60	
ccc	CGGC	CAC T	CATCO	CAATC	T AF	ATC	SATCI	TCC	GGCC	CCG	CGGG	CATO	CAT (GCCC	GCGGCG	120	
CTC	SCCTC	CAT 1	TCAF	ATCTC	T AF	ACTTG	SATAP	AAA	ACAGA	AGCT	GTT	CTCCC	GT (CTTGO	GTGGAT	180	
CAA	GCCA	AGT (CGCGG	SAGAG	T CI	CGAF	GAGG	AG/	AGTAC	CAGT	GAAG	CGCCC	SAG 1	rccao	CATTGC	240	
AAC	CGCAG	GC P	ATCAT	CATO	C TO	CTGCT	CAGC	CAC	CGCTA	ACCG	CAG	GTGT	rcg A	ATTGO	GTCATC	300	
CTC	CGGTI	GA (GGTT <i>I</i>	ACGCP	∆A G₽	ACGCI	GGAG	GT?	ATTGT	rccg					rc GAG eu Glu 5	356	
 ccc	CTT.	CTT.	ecc	PTC.	CCG	GGT	CGA	APP	СТТ	GAG.	CGT	CTC	GAG	CAT	TGG	404	
Ala	Leu	Leu	Pro	Phe 10	Pro	Gly	Arg	Ile	Leu 15	Glu	Arg	Leu	Glu	His 20	Trp		
						CAA Gln										452	
															~~~	F 0 0	
						AGC Ser										500	
011	014	40	9	9			45		014		20	50					
GCC	ATC	GCA	CAG	AGC	TTG	CTT	ССТ	TAC	GGA	CTA	TCG	GCA	GAG	CGT	CCG	548	
Ala		Ala	Gln	Ser	Leu	Leu	Pro	Tyr	Gly	Leu		Ala	Glu	Arg	Pro		
	55					60					65						
						AAT										596	
70		TTE	val	ser	75	Asn	ASP	ьeu	GIU	80	ьeu	GIII	ьeu	Ата	85		
GGG	GCT	ATG	TAT	GCG	GGC	ATT	CCC	TAT	TGC	CCG	GTG	TCT	CCT	GCT	TAT	644	
Gly	Ala	Met	Tyr		Gly	Ile	Pro	Tyr	_	Pro	Val	Ser	Pro		Tyr		
				90					95					100			
						TTG										692	
261	ьeu	Leu	105	GIII	АЗР	Leu	нта	110	ьeu	Arg	птъ	TTG	115	GLY	Leu		
CTG	CAA	CCG	GGA	CTG	GTC	TTT	GCT	GCC	GAT	GCA	GCA	CCT	ттс	CAG	GGG	740	
		Pro				Phe	Ala					Pro		Gln	•		
		120					125					130		132			
GAG	AGGC	GGT '	TTGC	GTAT	rg go	GCGC	ATGC	A TAX	)AAA	CTGT	TGTA	ATTC	CAT 1	raago	CATTCT	800	
GCC	GACA'	rgg i	AAGC	CATC	AC A	AACG	GCATO	AT(	GAAC	CTGA	ATC	CCAC	GCG (	GCATO	CAGCAC	860	
CTT	GTCG	CCT '	TGCGʻ	'ATAT	'A T	TTTG	CCA	r GGZ	ACGC?	ACAC	CGT	GAAA	ACG (	GATGA	AAGGCA	920	
CGA	ACCC	AGT '	TGAC	AAAA	GC C	TGTT	CGGT	r CG	PAAA	CTGT	AATO	CAAC	STA C	GCGTA	ATGCGC	980	
TCA	CGCA	ACT (	GGŦC	CAGA	AC- C'	TTGA	CCGA	A CGO	CAGC	GTG	GTA	ACGGC	CGC P	AGTGC	GCGGTT	1040	
TTC	ATGG	CTT (	GTTA'	TGAC	rg T	TTTT	rtgt <i>i</i>	A CAG	STCTA	ATGC	CTCC	GGCF	ATC C	CAAGO	CAGCAA	1100	

	GCG	CGTT <i>F</i>	ACG (	CCGT	GGT	CG AT	rgtti	rgat(	G TT	ATGG	AGCA	GCA		ATG ' Met 1				1155	
					GTT Val													1203	
					ATG Met													1251	
					ATG Met	Arg												1299	 
4					ACC Thr													1347	
	GGG Gly	AAC Asn	TTG Leu 70	CTC Leu	CGT Arg	AGT Ser	AAG Lys	ACA Thr 75	TTC Phe	ATC Ile	GCG Ala	CTT Leu	GCT Ala 80	GCC Ala	TTC Phe	GAC Asp	:	1395	
					GTT Val													1443	
					AGT Ser												;	1491	
					CAG Gln 120												-	1539	
	His	Glu	Ala	Asn 135	GCG Ala	Leu	Gly	Ala	Tyr 140	Val	Ile	Tyr	Val	Gln 145	Ala	Asp	-	L587	
					CCC Pro		Val										-	1635	
	GAA Glu	GAA Glu 165	GTG Val	ATG Met	CAC His	TTT Phe	GAT Asp 170	ATC Ile	GAC Asp	CCA Pro	AGT Ser	ACC Thr 175	GCC Ala	ACC Thr 177	TAA	CAA	3	1683	
	TTC	TTC#	AAG (	CCGAC	SATCO	G CI	TCCC	V		Leu G					la I		1	1735	
	GTT Val	GAT Asp	GCG Ala	CTG Leu	TAT Tyr 575	CGT Arg	Gly	Glu	Asp	CAA Gln 580	Ser	ATG Met	CTG Leu	Arg	GAC Asp 585	Glu	]	.783	 

GCC ACA CTG TGA GTTGGTCAGG GGGGGCTTAC TCGGCGTTTT CCGACACTGC Ala Thr Leu 589	1835
GTTGGTTGCG GCAGTGCGCA CCCCCTGGAT TGATTGCGGG GGTGCCCTGT CGCTG	GTGTC 1895
GCCTATCGAC TTAGGGGTAA AGGTCGCTCG CGAAGTTCTG ATGCGTGCGT CGCTT	GAACC 1955
ACAAATGGTC GATAGCGTAC TCGCAGGCTC TATGGCTCAA GCAAGCTTTG ATGCT	TACCT 2015
GCTCCCGCGG CACATTGGCT TGTACAGCGG TGTTCCCAAG TCGGTTCCGG CCTTG	GGGGT 2075
GCAGCGCATT TGCGGCACAG GCTTCGAACT GCTTCGGCAG GCCGGCGAGC AGATT	TCCCA 2135
	0171

FIG. 2h:



CTGC	CAGCO	CGA (	GCATO	GATT	G AG	GCACT	TTAC	CCA	AGCT	GCGC	TGG	CTGA	CCA '	TTCA	GAATGG		60	
CCCG	GCGGC	CAC 1	TATCO	CAATO	T AA	ATCO	SATCI	TC	GGC	GCCG	CGG	GCAT	CAT	GCCC	GCGGCG		120	
CTC	GCCTC	CAT	TTCA	ATCTO	CT AA	ACTTO	SATA	AAA	ACAGA	AGCT	GTT	CTCC	GGT (	CTTG	GTGGAT	-	180	
CAAC	GCCF	AGT (	CGCG	SAGAC	ST CI	rcgaz	AGAGG	AGA	AGTAC	CAGT	GAAG	CGCC	GAG '	rcca	CATTGC	2	240	
AACC	CGCAC	GC 2	ATCAT	CATO	C TO	CTGCT	CAGC	CAC	CGCTA	ACCG	CAG	rgtg:	rcg i	ATTG(	GTCATC		300	
CTC	CGGTT	rga (	GGTT	ACGCA	AA GA	ACGCT	rggag	GT?	ATTG:	rccg					rc GAG eu Glu 5	;	356	
 ccc.			ccc														404	
Ala	Leu	Leu	Pro	Phe 10	Pro	Gly	Arg	Ile	Leu 15	Glu	Arg	Leu	Glu	His 20	Trp			
			CGT													4	452	
Ala	Lys	Thr	Arg 25	Pro	Glu	Gln	Thr	Cys 30	Val	Ala	Ala	Arg	Ala 35	Ala	Asn			
			CGT													į	500	
Gly	Glu	Trp 40	Arg	Arg	Ile	Ser	Tyr 45	Ala	Glu	Met	Phe	His 50	Asn	Val	Arg			
			CAG													. 5	548	
Ala	55	Ala	Gln	Ser	Leu	60	Pro	Tyr	GIA	Leu	65	Ala	Glu	Arg	Pro			
			GTC													ţ	596	
70	nea	116	Val	ser	75	ASII	ASP	теп	Giu	80	neu	GIII	теа	мта	85			
			TAT													•	644	
СТУ	AIG	Mec	Tyr	90	GIY	116	FIO	ıyı	95	PIO	val	ser	PIO	100	ıyı			
			TCG Ser													•	692	
001	Lea	LCU	105	0111	110p	neu	7114	110	БСС	nrg	1113	110	115	Oly	пец			
			GGA Gly													-	740	
Deu	O.I.I.	120	_	Deu	var	1116	125	AIG	лэр	AIG	AIG	130	THE	GIII	133			
			CAA Gln													-	788	
562	Val	neu	565	пр	ALG	Ser	ALG	570	vai	Asp	Ala	Leu	575	Arg	GLY			
			TCC Ser									TGA	GTT	GTC	AGG	8	837	
Jiu	р	580		1100	u	g	585	JIU	a	1111	589							
GGG	GGCT	ra <del>c</del>	TEGG	SGTT	FTC	CGAC	ACTGO	C-GT	rggt:	rgcg	GCAG	STGC	GCA (	cccc	TGGAT		897	
TGA'	TTGC	GGG	GGTG	CCCT	GT C	GCTG	GTGTO	GC(	CTATO	CGAC	TTAG	GGGT	CAA A	AGGTO	CGCTCG	- !	957	

CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	1017
TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	1077
TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGGT	GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	1137
GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGG	1197
CTGCAG						1203
FIG 2i.						





GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGC GGTAACTGAT  GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC  GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTCCGTGC CTTGAATCAG AAAAATAGTT  180  AATTGACAGA ACTATAGGTT CGCAGTAGCT TTGCTCACC CACCAAATCC ACAGCACTGG  GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG  MAT CAA GAA GAT ATG GTA CGAT GGC CGT TGG TCT ACC GTT GAT GTG AAG  GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG  GGT GAA GAA GAA GAT CGA GAT GGT AAC CGC CGG GAG AAG CGC  VAI Glu Gly Ile Alla TGP VAI THE LEU ASH ATG PTO Glu Lys Arg  AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG  ASH ALA MET SEP PTO THE LEU ASH ARG GLU WAI LEU GLU  ASH ALA MET SEP PTO THE LEU ASH ARG GLU WAI LEU THT GIY ALA  GTG CTG GAG CAG GAC GCA GAT CCT CGC GTG CTT GTT CTG ACT GGT GCA  VAI LEU GLU GLU ASH ASH ASH ARG ANG GAG ATG TTC CGC GAG  GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TCC GC GAG  GIY GLU SET TFP THT ALA GLY Net ASH LEU Lys GLU TYP. PHE ARG GLU  ACC GAT GCT GGC CGC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC  THT ASH ALA GLY PTO GLU ILE LEU GLU GLU LYS 114 ARG  80  AACCGAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC  THT ASH ALA GLY PTO GLU ILE LEU GLU GLU LYS 114 ARG  80  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC CAGGGAATGCA CATCTGATCA  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC CAGGGAATCA CATCTGATCA  AGAGAACAG ATC GGC GCT TGG GTG GAA GAC CTTC GAC GAG  MET ILE GLU GLU ASH ALA  1  GGT TCT CCG GCC GCT TGG GTG GAG AGC CTA TTC GGC TAT GAC TGG GCA  GLY SEP PTO ALA ALA TTP VAL GLU ATG LEU PHE GLY TYP ASH TTP ALA  10  CAA CAG ACA ATC GCC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCC  GLY SEP PTO ALA ALA TTP VAL GLU ATG LEU PHE GLY TYP ASH TTP ALA  10  CAA CAG ACA ATC GCC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCC  GLY GGC CCC GTT CTT TTT GTC AAG ACC CAC CTG TCC GGT GCC CTG  GLY ATG CAC CCC GTT CTT TTT GTC AAG ACC GAC CTG TCC GGC ACC ACC  ATG GAG CCC CCC GTT CTT TTT GTC AAG ACC GAC CTG TCC GCC ACC  ATG GAG CCC CCC GTT CTT TTT GTC AAG ACC GAC CTG TCC																				
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGS  AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGS  ACT GAG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG  Met Aan Ser Tyr Aap Gly Arg Trp Ser Thr Val Aap Val Lys  1 5 10  GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC Val Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg  AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG ASN Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu  AS 10  GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG GTT GTT CTG ACT GGT GCA  ASN Ala Met Ser Pro Thr Leu Asn Arg Val Leu Val Leu Thr Gly Ala  SO  GGC GAA TCC TGG ACC GGG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG GTG GTG GTT TTT Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu  ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CTC CGC GAG  ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC  Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg  80  AACCGGA GAATGCCAG CTGGGGCCCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT  AAACTGGAT GGC GCC GCC ATG ATG ACC GCTGATGGGAACC ATG ATG ACC GAT GACTGATGATCA  AAACTGGAT GGCTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA  AAACTGGAT GGCTTCTTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA  AGAGACAAGG ATGAGCAG CTGGGGCCCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA  AGAGACAAGA ATC GGC TGC TCG GAG GAG GTT TTC CGC TAT GAC TGG CAC  GIY Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Cly Tyr Asp Trp Ala  10  CGT TCT CCG GCC GCT TCG GTG GGC GAG GCC GTT TCC GGC TTC TCG GCC  GIN Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala  30  CAC GGG CCC CCC GTT CTT TTT GTC AAG ACC GAC CTG CCC CTG  GIN Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala  30  CAC GGG CCC CCC GTT CTT TTT GTC AAG ACC GAC CTG CCC CTG  GIN Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Cly Ala Leu  45  AAT GAA CTG CAG GAC GAC GAC GAC GCC CTG CTG CCC  ASN Glu Leu Glu Asp Glu Ala Ala Arg Leu Ser TTC Lala ATR Thr Thr		GAATT	CCC	CT G	GCGF	ACGA	AA GO	GCG	GCAG	G CC	GCAT(	GCC	ACG	GCTG	GGC	GGTA	ACTGA	ΥT	60	
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG 240  GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG Met Ash Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys 1 10  GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC Val Glu Glu Gly Ile Ala Trp Val Thr Leu Ash Arg Pro Glu Lys Arg 15  AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC CAG GTT CTG GAC ASh Ala Met Ser Pro Thr Leu Ash Arg Glu Met Val Glu Val Leu Glu 35  GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 50  GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 65  ACC GAT GCT GGC CCC GAA ATT CTC CAA GAG AAG ATT CCT CGGGGGACAGC Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 80  AACCGAACCG GAATTGCCAG CTGGGGGCGC CTCTGGTAAG GTTGGAAGC CCTGCAAAGT AAACTGGATG GCTTCTTCC CGCCAAGGAT CTGATGGGAAG CTGGAAGC AGGAGAAGAT CGT TTGG ACT GGGGGACCAG TTGGAAGCAGA GATTTGAACAA GATCTGATCA AAACTGGATG GCTTCTTCC CGCCAAGGAT CTGATGGGAAGC CCTGCAAAGT 591  AAACTGGATG GCTTCTTCC CGCCAAGGAT CTGATGGCAC AGGGATCAA GATCTGATCA 651  AGAGACAAGGA TGAGGATCGT TTCGC ATG ATT GAA GAT GAA TAG TAT GAA CAA GAT GAA TTG CAC GCA Met Ile Glu Gln Asp Gly Leu His Ala 1 10  GGT TCT CCG GCC CCT TGG GTG GAG GAG CTA TTC GGC TAT GAC TGG GCA Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 10  CAG GAG CAC ATC GCT TCT GAT GCC GCC GTT TCC GCT GCC GCC Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30  CAG GGG CCC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GCT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45  AAT GAA CTG CAG GAC GAC GAC GCG CCG TTA TCG TCC GCT GCC ACG ASN Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		GCTTG	CGT	TA A	ATCGI	TAAC	CC GT	rttG#	AAT'	r cc'	TTGC	CAAA	TTT	CGGC	GAG	AGAA	TCATO	ec.	120	
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys 1  GTT GAA GAA GGA ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg 29  AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATC GTC GAG GTT CTG GAG Asn Ala Met Ser Pro Thr Leu Asn Arg Clu Met Val Glu Val Leu Glu 35  GTG CTG GAG GAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 50  GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 65  ACC GAT GCT GGC CCC GAA ATT CTC CAA GAG AAG ATC CCT CGGGGACAGC Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 80  AACCGAACGG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG GTTGGGAAG CCTGCAAAGT AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGGCA AGGATCAA GATCTGATCA 651  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGGCA AGGATCAA GATCTGATCA 651  AAACTGGATG GCTTTCTGC ATG ATG ATG AAC AAA GAT GAA TTG CAC CAC Met Ile Glu Gln Asp Gly Leu His Ala 1  GGT TCT CCG GCC GCT TGG GAG AGG CTA TTC GGC TAT GAC TAG ATG ATA Met Ile Glu Gln Asp Gly Leu His Ala 1  GGT TCT CCG GCC GCT TGG GAG AGG CTA TTC GGC TAT GAC TGG CA GLy Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 10  CAG GAG CAC ATC GCC TCT GAT GCC CCC GTG TCC GCT TCC GCT TAG GAG CAC CCC GTT CTT TTT GTC AAA CAC GAC CTG TCC GCT TCC GCT Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30  CAG GGG CCC CCG GTT CTT TTT GTC AAA CAC GAC CTG TCC GCT GCC CTG Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 40  CAG GGG CCC CCG GTT CTT TTT GTC AAA CAC GAC CTG TCC GCT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45  AAT GAA CTG CAG GAC GAC GAC GCG CTA TCG TGC GCT GCC CTG ASN Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		GGGTA	CGC	CT I	TCC	STGC	SC TI	TGA	CTG	C GC	TTCC	GTGC	CTT	GAAT	CAG	AAAA	ATAGI	T	180	
Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys 10 5 10 5 10 5 10 6 5 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		AATTG	SACA	GA F	CTAT	'AGG'	T C	GCAG	rage:	r TT	rgcr	CACC	CAC	CAAA	TCC	ACAG	CACTO	G G	240	
Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg 20 25 30  AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu 35 40 45  GTG CTG GAG CAG GCA GCA GCT CGC GTG CTT GTT CTG ACT GGT GCA Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 50  GGG GAA TCC TGG ACC GGG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 65  ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC 531  Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 80  AAACTGGAACCG GAATTGCCAG CTGGGGGGCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT 591  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA 651  AGAGACAAGGA TGAGGATCGT TTCGC ATG ATG ATA GAA CAA GAT GGA TTG CAC GCA Met Ile Glu Gln Asp Gly Leu His Ala 1  6GT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 10  CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TCC CGG CTG TCA GCG Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30  CAG GGG CCC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45  AAT GAA CTG CAG GAC GAG GCA GCG CGC CTA TCG TGG CTG CACG ACG Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		GGTGC	ACG	Met	Asr	AGC Ser	TAC Tyı	Asp	Gl	C CG'	T TG( g Tr	G TC	r Th	r Va	T GA l As	T GT p Va	G AAG l Lys	G S	290	
Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu  45  GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA  Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala  50  GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu  65  ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC  ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC  Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg  80  AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA  AGAGAACAGGA TGAGGATCGT TTCGC ATG ATT GAA CAA GAT GGA TTG CAC GCA  Met Ile Glu Gln Asp Gly Leu His Ala  1  GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA  Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala  10  15  CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCG Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala  30  CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu  45  AAT GAA CTG CAG GAC GAC GAC GCG CGC CTA TCC TCG GCC ACG ACG Asn Glu Leu Gln Asp Glu Ala Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		GTT G Val G	AA Slu	GAA Glu	GGT Gly	Ile	Ala	Trp	GTC Val	ACG Thr	CTG Leu	Asn	CGC Arg	CCG Pro	GAG Glu	AAG Lys	Arg		338	
Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 50  GGC GAA TCC TGG ACC GGG GGC ATG GAC CTG AAG GAG TTT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 65  ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC 531  Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 80  AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT 591  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA 651  AGAGACAGGA TGAGGATCGT TTCGC ATG ATT GAA CAA GAT GGA TTG CAC GCA Met Ile Glu Gln Asp Gly Leu His Ala 1  GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 10  CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCG Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30  CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG AST GAA CAG GAC GAC GAC GAC GAC CTG TCC GGT GCC CTG AST GAA CAG ACG CAC CTG TCC GGT GCC CTG AST GAA CAG ACG CAC CAC CTG TCC GCC CTG AST GAA CAG ACG CAC CAC CTG TCC GCC CTG AST GAA CAG ACG CAC CAC CAC CAC CAC CAC CAC	<b>1</b>					Pro					Glu					Leu			386	
Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 70  ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC  ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGACAGC  Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 80  AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA  AGAGACAGGA TGAGGATCGT TTCGC ATG ATT GAA CAA GAT GGA TTG CAC GCA Met Ile Glu Gln Asp Gly Leu His Ala 1  GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 10  CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCG Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30  CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45  AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		GTG C	TG eu	GAG Glu	Gln	GAC Asp	GCA Ala	GAT Asp	GCT Ala	Arg	GTG Val	CTT Leu	GTT Val	CTG Leu	Thr	GGT Gly	GCA Ala		434	
Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 90 91  AAGCGAACCG GAATTGCCAG CTGGGGCGCC CTCTGGTAAG GTTGGGAAGC CCTGCAAAGT 591  AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA 651  AGAGACAGGA TGAGGATCGT TTCGC ATG ATT GAA CAA GAT GGA TTG CAC GCA 703  Met Ile Glu Gln Asp Gly Leu His Ala 1  GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA 751  GGT Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 20  CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TCC GGC CTG TCA GCC GIn Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30  CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG GIn Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45  AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG ACG ASp Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		GGC G	AA lu	Ser	TGG Trp	ACC Thr	GCG Ala	GGC Gly	Met	GAC Asp	CTG Leu	AAG Lys	GAG Glu	Tyr	TTC Phe	CGC Arg	GAG Glu		482	
AAACTGGATG GCTTTCTTGC CGCCAAGGAT CTGATGGCGC AGGGGATCAA GATCTGATCA  AGAGACAGGA TGAGGATCGT TTCGC ATG ATT GAA CAA GAT GGA TTG CAC GCA  Met Ile Glu Gln Asp Gly Leu His Ala  1 5  GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA  Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala  10 15 25  CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TCC GGC CTG TCA GCG  Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala  30 35 40  CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG  Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu  45 50 55  AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG ACG  Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		Thr A	sp.					Ile					Ile	Arg	CGG	GGAC	AGC		531	
AGAGACAGGA TGAGGATCGT TTCGC ATG ATT GAA CAA GAT GGA TTG CAC GCA  Met Ile Glu Gln Asp Gly Leu His Ala  1 5  GGT TCT CCG GCC GCT TGG GTG GAG AGG CTA TTC GGC TAT GAC TGG GCA Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 10 15 25  CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCG Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30 35 40  CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45 50 55  AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG ACG Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		AAGCG	AAC	CG G	AATT	'GCC#	G CI	'GGGG	GCGCC	C CTC	CTGGT	AAG	GTT	GGAZ	AGC (	CCTG	CAAAG	T	591	
Met Ile Glu Gln Asp Gly Leu His Ala  1		AAACT	'GGA'	TG G	СТТТ	CTTG	C C	CCAF	AGGAT	г сто	SATGO	CGC	AGG	GATO	CAA (	GATC'	rgatc	A	651	
Gly Ser Pro Ala Ala Trp Val Glu Arg Leu Phe Gly Tyr Asp Trp Ala 25  CAA CAG ACA ATC GGC TGC TCT GAT GCC GCC GTG TTC CGG CTG TCA GCG 799 Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30 35 40  CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG 847 Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45 50 55  AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG ACG 895 Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr	4	AGAGA	CAG	GA T	'GAGG	SATCO	тт	CGC	Met				Asp						703	
Gln Gln Thr Ile Gly Cys Ser Asp Ala Ala Val Phe Arg Leu Ser Ala 30 35 40  CAG GGG CGC CCG GTT CTT TTT GTC AAG ACC GAC CTG TCC GGT GCC CTG Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45 50 55  AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG ACG Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		Gly S	er	Pro	Ala	Ala	Trp	Val	Glu	Arg	Leu	Phe	Gly	TAT Tyr	GAC Asp	TGG Trp	Ala		751	
Gln Gly Arg Pro Val Leu Phe Val Lys Thr Asp Leu Ser Gly Ala Leu 45 50 55  AAT GAA CTG CAG GAC GAG GCA GCG CGG CTA TCG TGG CTG GCC ACG ACG 895 Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		CAA C Gln G	AG .	ACA Thr	ATC Ile	Gly	TGC Cys	TCT Ser	GAT Asp	GCC Ala	Ala	GTG Val	TTC Phe	CGG Arg	CTG Leu	Ser	GCG Ala		799	
Asn Glu Leu Gln Asp Glu Ala Ala Arg Leu Ser Trp Leu Ala Thr Thr		CAG G Gln G	GG (	CGC Arg	Pro	GTT Val	CTT Leu	TTT Phe	GTC Val	Lys	ACC Thr	GAC Asp	CTG Leu	TCC Ser	Gly	GCC Ala	CTG Leu		847	
		AAT G Asn G	AA (	Leu	Gln	Asp	Glu	GCA Ala	Ala	CGG Arg	CTA Leu	TCG Ser	TGG Trp	Leu	GCC Ala	ACG Thr	ACG Thr		895	

						GCT Ala											943	
		75		_			80		_			85		_				
						GGC Gly 95											991	
						GAG Glu										1	1039	
						GAT Asp				Cys						]	1087	 ==
40						CGA Arg										1	L135	
						GAC Asp										1	1183	
						AAG Lys 175										1	1231	
						GCC Ala										1	1279	
						ATC Ile										1	L327	
4		_				TTG Leu						_	_			1	1375	
						CGC Arg										1	1423	
						GCC Ala 255									TGA	1	1471	
	GCG	GGACT	rct (	GGGG	rtcg <i>i</i>	AA A?	rgaco	CGAC	C AAC	SCGAC	CGCC	G	SAG C Slu C 255			1	525	
				Leu		GAG Glu											.573	

AAG CGC TGA TAAATGCGCC GGGGCCCTCG CTGCGCCCCC GGCCTTCCAA TAATGACAAT Lys Arg 275 276	1632
AATGAGGAGT GCCCAATGTT TCACGTGCCC CTGCTTATTG GTGGTAAGCC TTGTTCAGCA	1692
TCTGATGAGC GCACCTTCGA GCGTCGTAGC CCGCTGACCG GAGAAGTGGT ATCGCGCGTC	1752
GCTGCTGCCA GTTTGGAAGA TGCGGACGCC GCAGTGGCCG CTGCACAGGC TGCGTTTCCT	1812
GAATGGGCGG CGCTTGCTCC GAGCGAACGC CGTGCCCGAC TGCTGCGAGC GGCGGATCTT	1872
CTAGAGGACC GTTCTTCCGA GTTCACCGCC GCAGCGAGTG AAACTGGCGC AGCGGGAAAC	1932
TGGTATGGGT TTAACGTTTA CCTGCCGCC GCCATCTTCC GGGGAATTC	1981





GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT	60
GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC	120
GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT	180
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG	240
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG  Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys  1 5 10	290
GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg	338
AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu 35 40 45	386
GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 50 55 60	434
GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 65 70 75	482
ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGGGGGAGAG Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg 80 85 90 91	531
GCGGTTTGCG TATTGGGCGC ATGCATAAAA ACTGTTGTAA TTCATTAAGC ATTCTGCCGA	591
CATGGAAGCC ATCACAAACG GCATGATGAA CCTGAATCGC CAGCGGCATC AGCACCTTGT	651
CGCCTTGCGT ATAATATTTG CCCATGGACG CACACCGTGG AAACGGATGA AGGCACGAAC	711
CCAGTTGACA TAAGCCTGTT CGGTTCGTAA ACTGTAATGC AAGTAGCGTA TGCGCTCACG	771
CAACTGGTCC AGAACCTTGA CCGAACGCAG CGGTGGTAAC GGCGCAGTGG CGGTTTTCAT	831
GGCTTGTTAT GACTGTTTTT TTGTACAGTC TATGCCTCGG GCATCCAAGC AGCAAGCGCG	891
TTACGCCGTG GGTCGATGTT TGATGTTATG GAGCAGCAAC G ATG TTA CGC AGC AGC Met Leu Arg Ser Ser 1 5	947
AAC GAT GTT ACG CAG CAG GGC AGT CGC CCT AAA ACA AAG TTA GGT GGC Asn Asp Val Thr Gln Gln Gly Ser Arg Pro Lys Thr Lys Leu Gly Gly 10 15 20	995
TCA AGT ATG GGC ATC ATT CGC ACA TGT AGG CTC GGC CCT GAC CAA GTC Ser Ser Met Gly Ile Ile Arg Thr Cys Arg Leu Gly Pro Asp Gln Val	1043

	AAA Lys	TCC Ser	ATG Met 40	CGG Arg	GCT Ala	GCT Ala	CTT Leu	GAT Asp 45	CTT Leu	TTC Phe	GGT Gly	CGT Arg	GAG Glu 50	TTC Phe	GGA Gly	GAC Asp		1091	
	GTA Val	GCC Ala 55	ACC Thr	TAC Tyr	TCC Ser	CAA Gln	CAT His 60	CAG Gln	CCG Pro	GAC Asp	TCC Ser	GAT Asp 65	TAC Tyr	CTC Leu	GGG Gly	AAC Asn		1139	
	TTG Leu 70	CTC Leu	CGT Arg	AGT Ser	AAG Lys	ACA Thr 75	TTC Phe	ATC Ile	GCG Ala	CTT Leu	GCT Ala 80	GCC Ala	TTC Phe	GAC Asp	CAA Gln	GAA Glu 85		1187	
	GCG Ala	GTT Val	GTT Val	GGC Gly	GCT Ala 90	CTC Leu	GCG Ala	GCT Ala	TAC Tyr	GTT Val 95	CTG Leu	CCC Pro	AGG Arg	TTT Phe	GAG Glu 100	CAG Gln		1235	
	CCG Pro	CGT Arg	AGT Ser	GAG Glu 105	ATC Ile	TAT Tyr	ATC Ile	TAT Tyr	GAT Asp 110	CTC Leu	GCA Ala	GTC Val	TCC Ser	GGC Gly 115	GAG Glu	CAC His		1283	
	CGG Arg	AGG Arg	CAG Gln 120	GGC Gly	ATT Ile	GCC Ala	ACC Thr	GCG Ala 125	CTC Leu	ATC Ile	AAT Asn	CTC Leu	CTC Leu 130	AAG Lys	CAT His	GAG Glu	:	1331	
										TAC Tyr							:	1379	
	GAC Asp 150	GAT Asp	CCC Pro	GCA Ala	GTG Val	GCT Ala 155	CTC Leu	TAT Tyr	ACA Thr	AAG Lys	TTG Leu 160	GGC Gly	ATA Ile	CGG Arg	GAA Glu	GAA Glu 165	-	L427	
										ACC Thr 175			TAA	CAAT	TCGT	TC	:	L476	
4	AAGO	CCGAC	GAT (	CGGC1	TCCC		u Gl			G AA		n Ph					-	1526	
	AAA Lys 265	Ser	ATC Ile	Lys	CCG Pro	Gly	Leu	CAG Gln	ACC Thr	TAC Tyr	AAG Lys 275	Arg	TGA	TAAA	TGCG	СС	1	.575	
	GGGG	CCCI	CG C	CTGCG	cccc	CC GG	CCTI	'CCAA	TAF	TGAC	CAAT	AATG	AGGA	GT G	CCCA	ATGTT	]	.635	
	TCAC	CGTGC	cc c	CTGCI	TATT	G GI	GGTA	AGCC	TTG	TTCA	GCA	TCTG	ATGA	GC G	CACC	TTCGA	3	.695	
	GCGI	CGT	AGC (	CCGCI	GACC	CG GA	GAAG	TGGT	' ATC	GCGC	GTC	GCTG	CTGC	CA G	TTTG	GAAGA	1	.755	
	TGC	GACG	SCC (	CAGI	GGCC	G CI	GCAC	AGGC	TGC	GTTT	ССТ	GAAT	GGGC	GG C	GCTT	GCTCC	]	.815	
	GAGC	CGAAC	GC C	CGTGC	CCGF	C TO	CTGC	GAGC	GGC	GGAT	СТТ	CTAG	AGGA	CC G	TTCT	TCCGA	1	.875	

GTTCACCGCC	GCAGCGAGTG	AAACTGGCGC	AGCGGGAAAC	TGGTATGGGT	TTAACGTTTA	1935
CCTGGCGGCG	GGCATGTTGC	GGGGAATTC				1964
FIG. 2k:						





GAATTCCCCT GGCGACGAAA GGGCGGCAGG CCGCATGGCC ACGGCTGGGC GGTAACTGAT	60	
GCTTGCGTTA ATCGTTAACC GTTTGAAATT CCTTGCCAAA TTTCGGCGAG AGAATCATGC	120	
GGGTACGCCT TTCCGTGCGC TTTGATCTGC GCTTCCGTGC CTTGAATCAG AAAAATAGTT	180	
AATTGACAGA ACTATAGGTT CGCAGTAGCT TTTGCTCACC CACCAAATCC ACAGCACTGG	240	
GGTGCACG ATG AAT AGC TAC GAT GGC CGT TGG TCT ACC GTT GAT GTG AAG  Met Asn Ser Tyr Asp Gly Arg Trp Ser Thr Val Asp Val Lys  1 5 10	290	
GTT GAA GAA GGT ATC GCT TGG GTC ACG CTG AAC CGC CCG GAG AAG CGC Val Glu Glu Gly Ile Ala Trp Val Thr Leu Asn Arg Pro Glu Lys Arg	338	·
AAC GCA ATG AGC CCA ACT CTC AAT CGA GAG ATG GTC GAG GTT CTG GAG Asn Ala Met Ser Pro Thr Leu Asn Arg Glu Met Val Glu Val Leu Glu 35 40 45	386	
GTG CTG GAG CAG GAC GCA GAT GCT CGC GTG CTT GTT CTG ACT GGT GCA Val Leu Glu Gln Asp Ala Asp Ala Arg Val Leu Val Leu Thr Gly Ala 50 55 60	434	
GGC GAA TCC TGG ACC GCG GGC ATG GAC CTG AAG GAG TAT TTC CGC GAG Gly Glu Ser Trp Thr Ala Gly Met Asp Leu Lys Glu Tyr Phe Arg Glu 65 70 75	482	
ACC GAT GCT GGC CCC GAA ATT CTG CAA GAG AAG ATT CGT CGC GAG CAG Thr Asp Ala Gly Pro Glu Ile Leu Gln Glu Lys Ile Arg Arg Glu Gln 80 85 90 92 255	530	
GGC ATG AAG CAG TTC CTT GAC GAG AAA AGC ATC AAG CCG GGC TTG CAG Gly Met Lys Gln Phe Leu Asp Glu Lys Ser Ile Lys Pro Gly Leu Gln 260 265 270	578	
ACC TAC AAG CGC TGA TAAATGCGCC GGGGCCCTCG CTGCGCCCCC GGCCTTCCAA Thr Tyr Lys Arg 275 276	. 633	
TAATGACAAT AATGAGGAGT GCCCAATGTT TCACGTGCCC CTGCTTATTG GTGGTAAGCC	693	
TTGTTCAGCA TCTGATGAGC GCACCTTCGA GCGTCGTAGC CCGCTGACCG GAGAAGTGGT	753	
ATCGCGCGTC GCTGCTGCCA GTTTGGAAGA TGCGGACGCC GCAGTGGCCG CTGCACAGGC	813	
TGCGTTTCCT GAATGGGCGG CGCTTGCTCC GAGCGAACGC CGTGCCCGAC TGCTGCGAGC	873	
GGCGGATCTT CTAGAGGACC GTTCTTCCGA GTTCACCGCC GCAGCGAGTG AAACTGGCGC	933	
AGCGGGAAAC TGGTATGGGT TTAACGTTTA CCTGGCGGCG GGCATGTTGC GGGGAATTC	992	
FIG. 21:		

GAAT	TCCF	AT F	ATG <i>I</i>	ACAAT	IA AT	GAGO	SAGTO	G CC				rg CI eu Le		
											TTC Phe		103	
											GCT Ala		151	
											GCG Ala		199	
											CTG Leu		247	
											GCC Ala 85		295	
											GTT Val		343	
											CAG Gln		391	
											ATG Met		439	
											AAT Asn		487	
											TGC Cys 165		535	
											CAT His		583	
											GTG Val		631	
				Ala							GAG Glu		679	

	ATT Ile	GCA Ala	AAT Asn	CCT Pro	GCG Ala 220	GTA Val	CGT Arg	CGA Arg	GTG Val	AAC Asn 225	TTC Phe	ACC Thr	GGT Gly	TCG Ser	ACC Thr 230	CAC His	727	
	GTT Val	GGA Gly	CGG Arg	ATC Ile 235	ATT Ile	GGT Gly	GAG Glu	CTG Leu	TCT Ser 240	GCG Ala	CGT Arg	CAT His	CTG Leu	AAG Lys 245	CCT Pro	GCT Ala	775	
	GTG Val	CTG Leu	GAA Glu 250	TTA Leu	GGT Gly	GGT Gly	AAG Lys	GCT Ala 255	CCG Pro	TTC Phe	TTG Leu	GTC Val	TTG Leu 260	GAC Asp	GAT Asp	GCC Ala	823	
	GAC Asp	CTC Leu 265	Asp	GCG Ala	GCG Ala	GTC Val	GAA Glu 270	GCG Ala	GCG Ala	GCC Ala	TTT Phe	GGT Gly 275	GCC Ala	TAC Tyr	TTC Phe	AAT Asn	871	
4	CAG Gln 280	GGT Gly	CAA Gln	ATC Ile	TGC Cys	ATG Met 285	TCC Ser	ACT Thr	GAG Glu	CGT Arg	CTG Leu 290	ATT Ile	GTG Val	ACA Thr	GCA Ala	GTC Val 295	919	
	GCA Ala	GAC Asp	GCC Ala	TTT Phe	GTT Val 300	GAA Glu	AAG Lys	CTG Leu	GCG Ala	AGG Arg 305	AAG Lys	GTC Val	GCC Ala	ACA Thr	CTG Leu 310	CGT Arg	967	
	GCT Ala	GGC Gly	GAT Asp	CCT Pro 315	AAT Asn	GAT Asp	CCG Pro	CAA Gln	TCG Ser 320	GTC Val	TTG Leu	GGT Gly	TCG Ser	TTG Leu 325	ATT Ile	GAT Asp	1015	
	GCC Ala	AAT Asn	GCA Ala 330	GGT Gly	CAA Gln	CGC Arg	ATC Ile	CAG Gln 335	GTT Val	CTG Leu	GTC Val	GAT Asp	GAT Asp 340	GCG Ala	CTC Leu 342	GGG	1063	
	GAC	AGCAZ	AGC (	SAACO	CGGA	AT TO	CCAC	CTG	GGG	CGCCC	CTCT	GGTA	AGGI	TG G	GAAG	CCCTG	1123	
	CAAA	AGTAA	AAC 1	'GGA'	GGCI	TT TO	CTTGC	CGCC	C AAG	GATO	TGA	TGGC	GCAG	GG G	ATCA	AGATC	1183	
4	TGAT	CAAG	SAG P	ACAGO	GATG <i>I</i>	AG GF	ATCGT	TTC					CAA G				1235	
	CAC His	GCA Ala	GGT Gly 10	TCT Ser	CCG Pro	GCC Ala	GCT Ala	TGG Trp 15	GTG Val	GAG Glu	AGG Arg	CTA Leu	TTC Phe 20	GGC Gly	TAT Tyr	GAC Asp	1283	
	TGG Trp	GCA Ala 25	CAA Gln	CAG Gln	ACA Thr	ATC Ile	GGC Gly 30	TGC Cys	TCT Ser	GAT Asp	GCC Ala	GCC Ala 35	GTG Val	TTC Phe	CGG Arg	CTG Leu	1331	
	TCA Ser 40	GCG Ala	CAG Gln	GGG Gly	CGC Arg	CCG Pro 45	GTT Val	CTT Leu	TTT Phe	GTC Val	AAG Lys 50	ACC Thr	GAC Asp	CTG Leu	TCC Ser	GGT Gly 55	1379	
	GCC Ala	CTG Leu	AAT Asn	GAA Glu	Leu	CAG Gln	Asp	Glu	Ala	Ala	Arg	CTA Leu	Ser	TGG Trp	Leu	Ala	1427	

	ACG Thr														1475	
	AGG Arg														1523	
	TCT Ser 105														1571	
	G CGG : Arg														1619	
	A GCG n Ala														1667	
	GTC Val														1715	
	C GAA a Glu														1763	
	C GTC Val 185	Val													 1811	
	r GGC n Gly )														1859	
	C CGC D Arg														1907	
	r GGC ı Gly														1955	
	r ccc Pro		Ser												2003	
TT( Pho 26		GCG	GGAC	тст	GGGG [°]	TTCG	AA A	TGAC	CGAC	C AA	GCGA(	CGCC	Ĭ	GCC ( Ala ( 421	2057	
	C GTC g Val		Ser	Gly		Cys	His	Ile	Asn	Gly					2105	

GAG GCT CAG ATG CCA TTC GGT GGG GTG AAG TCC AGC GGC TAC GGC AGC Glu Ala Gln Met Pro Phe Gly Gly Val Lys Ser Ser Gly Tyr Gly Ser 440 445 450	2153
TTC GGC AGT CGA GCA TCG ATT GAG CAC TTT ACC CAG CTG CGC TGG CTG Phe Gly Ser Arg Ala Ser Ile Glu His Phe Thr Gln Leu Arg Trp Leu 455 460 465 465	2201
ACC ATT CAG AAT GGC CCG CGG CAC TAT CCA ATC TAA ATCGATCTTC Thr Ile Gln Asn Gly Pro Arg His Tyr Pro Ile 475 480 481	2247
GGGCGCCGCG GGCATCATGC CCGCGGCGCT CGCCTCATTT CAATCTCTAA CTTGATAAAA	2307
 ACAGAGCTGT TCTCCGGTCT TGGTGGATCA AGGCCAGTCG CGGAGAGTCT CGAAGAGGAG	2367
AGTACAGTGA ACGCCGAGTC CACATTGCAA CCGCAGGCAT CATCATGCTC TGCTCAGCCA	2427
CGCTACCGCA GTGTGTCGAT TGGTCATCCT CCGGTTGAGG TTACGCAAGA CGCTGGAGGT	2487
ATTGTCCGGA TGCGTTCTCT CGAGGCGCTT CTTCCCTTCC	2539
FIG. 2m:	



	GAAT	TCCA	AT A	ATGA	ACAAT	TA AT	GAGG	AGTO	CC(		 _	_	rg CT eu Lei	55	
												TTC Phe		103	
												GCT Ala		151	
												GCG Ala		199	
•												CTG Leu		247	
												GCC Ala 85		295	
												GTT Val		343	
												CAG Gln	_	391	
												ATG Met		439	
4												AAT Asn		487	
												TGC Cys 165		535	
												CAT His		583	
												GTG Val		631	
							Gln					GAG Glu		 679	

ATT Ile																727	
GTT Val																775	
GTG Val																823	
Asp	Leu	GAT Asp	Ala	Ala		Glu	Ala	Ala								871	
		CAA Gln														919	
		GCC Ala														967	
		GAT Asp														1015	
		GCA Ala 330						GTG	GGGA	GAG (	GCGG!	TT <b>T</b> G(	CG TA	ATTGO	GGCGC	1069	
ATGO	CATA	AAA A	ACTG:	rtgt?	AA T	rcat:	TAAG	C AT	TCTG	CCGA	CAT	GGAA	GCC I	ATCA	CAAACG	1129	
GCAT	rgat(	GAA (	CCTG	AATC	GC C	AGCG	GCAT	C AG	CACC'	TTGT	CGC	CTTG	CGT A	ATAA	<b>FATTTG</b>	1189	
 CCC	ATGG	ACG (	CACA	CCGT	GG A	AACG	GATG	A AG	GCAC	GAAC	CCA	GTTG	ACA :	raago	CCTGTT	1249	
CGG	TCG	TAA A	ACTG'	TAAT	GC A	AGTA	GCGT	A TG	CGCT	CACG	CAA	CTGG	rcc A	AGAA	CCTTGA	1309	
CCG	AACG	CAG	CGGT	GGTA	AC G	GCGC	AGTG	G CG	GTTT'	TCAT	GGC'	TTGT:	TAT (	GACTO	GTTTTT	1369	
TTG	raca	GTC '	ratg(	CCTC	GG G	CATC	CAAG	C AG	CAAG	CGCG	TTA	CGCC	GTG (	GGTC	GATGTT	1429	
TGA	rgtt?	ATG (	GAGC	AGCA	AC G					AGC Ser 5						1480	
		AGT Ser														1528	
		ACA Thr	Cys	Arg	Leu	Gly	Pro	Asp	Gln		Lys	Ser		Arg		1576	

		Asp					Glu			GAC Asp		Ala				1624
										AAC Asn						1672
										GAA Glu 85						1720
										CAG Gln						1768
										CAC His						1816
										GAG Glu						1864
										GGT Gly						1912
										GAA Glu 165						1960
_			AGT Ser				TAA	CAA'	rTCG'	TTC 2	AAGC	CGAG	AT CO	GCT'	rccca	2014
L					al A					ys H					CG ACT ro Thr 435	2063
										GGG Gly						2111
				Gly											CTG Leu	2159
			Thr							CAC His		Pro		TAA		2204
ATC	GATC	TTC	GGGC	GCCG	CG G	GCAT	CATG	c cc	GCGG	CGCT	CGC	CTCA'	TTT (	CAAT	CTCTAA	2264
CTT	GATA	AAA	ACAG	AGCT	GT T	CTCC	GGTC	T ŢG	GTGG.	ATCA	AGG	CCAG'	TCG (	CGGA	GAGTCT	2324

CGAAGAGGAG	AGTACAGTGA	ACGCCGAGTC	CACATTGCAA	CCGCAGGCAT	CATCATGCTC	2384
TGCTCAGCCA	CGCTACCGCA	GTGTGTCGAT	TGGTCATCCT	CCGGTTGAGG	TTACGCAAGA	2444
CGCTGGAGGT	ATTGTCCGGA	TGCGTTCTCT	CGAGGCGCTT	CTTCCCTTCC	CGGGTGGAAT	2504
TC						2506

FIG. 2n:



	GAAT	TCCF	AT A	ATG#	ACAAT	ra ar	rgago	SAGTO	G CC			_		rg CT eu Le	
												TTC Phe			103
												GCT Ala			151
				_		_		_		_	 _	GCG Ala			199
9				_								CTG Leu			247
												GCC Ala 85			295
		_										GTT Val			343
	_											CAG Gln		_	391
	_											ATG Met			439
9												AAT Asn			487
				_				_	_			TGC Cys 165	_		535
												CAT His			583
												GTG Val			631
												GAG Glu			679

	ATT Ile	GCA Ala	AAT Asn	CCT Pro	GCG Ala 220	GTA Val	CGT Arg	CGA Arg	GTG Val	AAC Asn 225	TTC Phe	ACC Thr	GGT Gly	TCG Ser	ACC Thr 230	CAC His	727	
	GTT Val	GGA Gly	CGG Arg	ATC Ile 235	ATT Ile	GGT Gly	GAG Glu	CTG Leu	TCT Ser 240	GCG Ala	CGT Arg	CAT His	CTG Leu	AAG Lys 245	CCT Pro	GCT Ala	775	
		CTG Leu															823	
	GAC Asp	CTC Leu 265	Asp	GCG Ala	GCG Ala	GTC Val	GAA Glu 270	GCG Ala	GCG Ala	GCC Ala	TTT Phe	GGT Gly 275	GCC Ala	TAC Tyr	TTC Phe	AAT Asn	871	
•	CAG Gln 280	GGT Gly	CAA Gln	ATC Ile	TGC Cys	ATG Met 285	TCC Ser	ACT Thr	GAG Glu	CGT Arg	CTG Leu 290	ATT Ile	GTG Val	ACA Thr	GCA Ala	GTC Val 295	919	
	GCA Ala	GAC Asp	GCC Ala	TTT Phe	GTT Val 300	GAA Glu	AAG Lys	CTG Leu	GCG Ala	AGG Arg 305	AAG Lys	GTC Val	GCC Ala	ACA Thr	CTG Leu 310	CGT Arg	967	
	GCT Ala	GGC Gly	GAT Asp	CCT Pro 315	AAT Asn	GAT Asp	CCG Pro	CAA Gln	TCG Ser 320	GTC Val	TTG Leu	GGT Gly	TCG Ser	TTG Leu 325	ATT Ile	GAT Asp	1015	
	GCC Ala	AAT Asn	GCA Ala 330	GGT Gly	CAA Gln	CGC Arg	ATC Ile	CAG Gln 335	GTT Val	CTG Leu	GTC Val	GAT Asp	GAT Asp 340	GCG Ala	CTC Leu	GCA Ala	1063	
	AAA Lys	Gly	GCG Ala 346	CAAT	rgga <i>i</i>		ı Ala					Ser				CAT His 430	1113	
4		AAT Asn															1161	
	Val	AAG Lys	Ser	Ser	Gly	Tyr	Gly	Ser	Phe	Gly	Ser	Arg	Ala	Ser	ATT Ile	GAG Glu	1209	
	CAC His	TTT Phe	ACC Thr 465	CAG Gln	CTG Leu	CGC Arg	TGG Trp	CTG Leu 470	ACC Thr	ATT Ile	CAG Gln	AAT Asn	GGC Gly 475	CCG Pro	CGG Arg	CAC His	1257	
		CCA Pro 480	Ile	TAA	ATC	SATCT	TC G	GGCG	CCGC	G GG	CATC	ATGC	CCG	CGGC	GCT		1309	
	CGCC	CTCAT	TTT C	CAATO	CTCTA	AA CI	TGAT	'AAAA	ACA	GAGC	TGT	TCTC	CGGT	СТ Т	GGTG	GATCA	1369	
	AGGC	CAGT	rcg (	CGGAC	AGTO	CT CG	SAAGA	GGAG	AGT	ACAG	TGA	ACGC	CGAG	TÇ C	ACAT	TGCAA_	1429	

CCGCAGGCAT	CATCATGCTC	TGCTCAGCCA	CGCTACCGCA	GTGTGTCGAT	TGGTCATCCT	1489
CCGGTTGAGG	TTACGCAAGA	CGCTGGAGGT	ATTGTCCGGA	TGCGTTCTCT	CGAGGCGCTT	1549
CTTCCCTTCC	CGGGTGGAAT	TC				1571
FIG. 20:						



	GAA'	rtcc	GCG (	GTCG	GCGA	AA G	rtga:	rgcg	C TG	ratc:	GTGG	TGA	AGAT	'CAA	TCCA	TGCTGC	60	
	GTG	ACGA	GC (	CACA	CT G'	rg A0 et Se 1	GT TO	GG TO	CA G er G	GG GG Ly G: 5	GG G	CT T la T	AC T yr S	er A	CG T la P 10	TT TCC he Ser	112	
	GAC Asp	ACT Thr	GCG Ala 15	TTG Leu	GTT Val	GCG Ala	GCA Ala	GTG Val 20	CGC Arg	ACC Thr	CCC Pro	TGG Trp	ATT Ile 25	GAT Asp	TGC Cys	GGG Gly	160	
	GGT Gly	GCC Ala 30	CTG Leu	TCG Ser	CTG Leu	GTG Val	TCG Ser 35	CCT Pro	ATC Ile	GAC Asp	TTA Leu	GGG Gly 40	GTA Val	AAG Lys	GTC Val	GCT Ala	208	
	CGC	GAA	GTT	CTG	ATG	CGT	GCG	TCG	CTT	GAA	CCA	CAA	ATG	GTC	GAT	AGC	256	
	Arg 45	Glu	Val	Leu	Met	Arg 50	Ala	Ser	Leu	Glu	Pro 55	Gln	Met	Val	Asp	Ser 60		
D	GTA Val	CTC Leu	GCA Ala	GGC Gly	TCT Ser 65	ATG Met	GCT Ala	CAA Gln	GCA Ala	AGC Ser 70	TTT Phe	GAT Asp	GCT Ala	TAC Tyr	CTG Leu 75	CTC Leu	304	
	CCG Pro	CGG Arg	CAC His	ATT Ile 80	GGC Gly	TTG Leu	TAC Tyr	AGC Ser	GGT Gly 85	GTT Val	CCC Pro	AAG Lys	TCG Ser	GTT Val 90	CCG Pro	GCC Ala	352	
	TTG Leu	GGG Gly	GTG Val 95	CAG Gln	CGC Arg	ATT Ile	TGC Cys	GGC Gly 100	ACA Thr	GGC Gly	TTC Phe	GAA Glu	CTG Leu 105	CTT Leu	CGG Arg	CAG Gln	400	
	GCC Ala	GGC Gly 110	GAG Glu	CAG Gln	ATT Ile	TCC Ser	CAA Gln 115	GGC Gly	GCT Ala	GAT Asp	CAC His	GTG Val 120	CTG Leu	TGT Cys	GTC Val	GCG Ala	448	
	GCA Ala 125	GAG Glu	TCC Ser	ATG Met	TCG Ser	CGT Arg 130	AAC Asn	CCC Pro	ATC Ile	GCG Ala	TCG Ser 135	TAT Tyr	ACA Thr	CAC His	CGG Arg	GGC Gly 140	496	
	GGG Gly	TTC Phe	CGC Arg	CTC Leu	GGT Gly 145	GCG Ala	CCC Pro	GTT Val	GAG Glu	TTC Phe 150	AAG Lys	GAT Asp	TTT Phe	TTG Leu	TGG Trp 155	GAG Glu	544	
	GCA Ala	TTG Leu	TTT Phe	GAT Asp 160	CCT Pro	GCT Ala	CCA Pro	GGA Gly	CTC Leu 165	GAC Asp	ATG Met	ATC Ile	GCT Ala	ACC Thr 170	GCA Ala	GAA Glu	592	
	AAC Asn	CTG Leu 174	GGG	ACAGO	CAA G	CGAA	CCGG	TA A	TGCC	AGCT	' GGG	GCGC	CCT	CTGG	TAAG	GT	648	
	TGGG	AAGC	CC I	GCAA	AGTA	A AC	TGGA	TGGC	TTT	CTTG	CCG	CCAA	GGAT	CT G	ATGG	CGCAG	708	
		TCAP	GA T			AG AG							Met	ATT Ile	Glu	Gln	763	



			CAC His									811
			TGG Trp									859
			TCA Ser 40									907
			GCC Ala									955
•			ACG Thr									1003
			GGA Gly									1051
			TCA Ser									1099
			ATG Met 120									1147
			CAA Gln									1195
•			CTT Leu									1243
			GCC Ala									1291
			CTC Leu		Val							1339
			AAT Asn 200	Gly								1387
		Ala	GAC Asp	Arg	Tyr	Gln	Asp	Ile				1435

								GCT Ala								1483		
								CGC Arg								1531		
·		GAG Glu		TGA	GCGG	GACT	TCT (	GGGT	TTCG <i>I</i>	AA AI	GAC	CGAC	C AAG	GCGAC	CGCC	1586		
	3		Ala (					rgg <i>l</i> Frp 1								 1633	<u> </u>	
								GAG Glu 220								1681		
								TTG Leu								1729		
								CGA Arg								1777		
								TGT Cys								1825		
								TCT Ser								1873		
								GGG Gly 300								1921		
								CTG Leu								1969		
								GAG Glu								2017		
		Val						TTG Leu								2065		
			Gly		Ala	Ile		CTT Leu								 2113		

GGA Gly	TTG Leu	CGT Arg	CTC Leu 375	TGC Cys	ATG Met	ACC Thr	CTC Leu	GCT Ala 380	CAC His	CAA Gln	TTG Leu	CAA Gln	GCT Ala 385	AAT Asn	AAC Asn	2161
TTT Phe	CGA Arg	TAT Tyr 390	GGA Gly	ATT Ile	GCC Ala	TCG Ser	GCA Ala 395	TGC Cys	ATT Ile	GGT Gly	GGG Gly	GGA Gly 400	CAG Gln	GGG Gly	ATG Met	2209
GCG Ala	GTT Val 405	CTT Leu	TTA Leu	GAG Glu	AAT Asn	CCC Pro 410	CAC His	TTC Phe	GGT Gly	TCG Ser	TCC Ser 415	TCT Ser	GCA Ala	CGA Arg	AGT Ser	2257
Ser	Met								CCA Pro			таа	CGG	GCAT	СТС	2306
420 CTT'		GCT '	TTGA(	GGTG	GC G	CACG	AAGG	A GG	GCTC	GAAA	ATC	rctg	CTA Z	AAAA	CAAGAA	2366
GAA	GGAA	CAG	GGAA	CATG.	AT T	AGTT'	rcgc'	r cg	TATG	GCAG	AAA	GTTT	AGG 2	AGTC	CAGGCT	2426
AAA	CTTG	ccc	TTGC	CTTC	GC A	CTCG'	TATT	A TG	TGTC	GGGC	TGA	TTGT'	rac (	CGGC	ACGGGT	2486
TTC	TACA	GTG	TACA	TACC	TT G	TCAG	GGTT	G GT	GGGA.	ATTC						2526
FIG	. 2p	:														



	GAAT	TCCG	SCG (	GTCGC	SCGA	AA GI	TGAT	rgcgo	C TG	PATCO	STGG	TGA	AGAT	CAA '	rcca:	rgctgc	60	
	GTG	ACGAG	GC (	CACA										er A		IT TCC ne Ser	112	
									CGC Arg								160	
									ATC Ile								208	
	CCC Arg 45								CTT Leu							AGC Ser 60	256	
)									GCA Ala								304	
									GGT Gly 85								352	
									ACA Thr								400	
									GCT Ala								448	
									ATC Ile								496	
									GAG Glu								544	
					Pro				CTC Leu 165								592	
		CTG Leu 174		GAGA	GGC (	GGTT	rgcg:	ra ti	rggg(	CGCAI	GC#	\TAA <i>F</i>	AAAC	TGŢŢ	GTA	\TT	648	
	CAT	raag	CAT '	TCTG	CCGA	CA TO	GGAA	GCCA'	r cac	CAAA	CGGC	ATGA	ATGA <i>F</i>	ACC I	rgaat	CGCCA	708	
	GCG	GCAT(	CAG (	CACC	TTGT	CG C	CTTG	CGTA:	r aat	TATT	GCC	CATO	GACG	GCA (	CACCO	STGGAA	768	
	ACG	GATG	AAG (	GCAC	GAAC	CC A	GTTG/	ACATA	A AGO	CCTGT	TCG	GTTC	CGTAF	AAC 1	GTA <i>I</i>	ATGCAA	828	
	GTA	GCGT	ATG (	CGCT	CACG	CA AC	CTGG	rcca	G AAG	CCTT	SACC	GAAC	CGCAC	CG (	STGGT	CAACGG	888	

CGCA	GTGG	CG G	STTTI	CATO	G CI	TGTI	ATG	A CTG	TTTT	TTTT	GTAC	CAGTO	CTA	rgcci	rcgggc	948	
ATCC	AAGO	AGC	CAAGO	CGCG	TTAC	GCCG	STG (	GTCG	ATGT	TTG	ATGT	TATO	GA (	GCAG	CAACG	1007	
								ACG Thr								1055	
								GGC Gly 25								1103	
						Ser	Met	CGG Arg	Ala							1151	
								TAC Tyr								1199	
								AGT Ser								1247	
								GGC Gly								1295	
								GAG Glu 105								1343	
								GGC Gly								1391	
								CTT Leu								1439	
								GCA Ala								1487	
								TTT Phe								1535	
ACC Thr 177	TAA	CAA'	TTCGʻ	TTC I	AAGC(	CGAG	AT C	GGCT:	rccc <i>i</i>		ı Arç	_		n Glu	G GAG 1 Glu	1589	
		Ile	Asp		Glu	Ile	Val	GCT Ala								1637	

		GAG Glu 220											16	85
		TTG Leu											17	33
		CGA Arg											17	81
		TGT Cys		Val									18:	29
		TCT Ser											18	77
		GGG Gly 300											19	25
	_	CTG Leu											19	73
		GAG Glu											20	21
		TTG Leu											20	69
90		CTT Leu											21	17
		GCT Ala 380											21	65
ı		TGC Cys											22	13
		TTC Phe											22	61
		TAT Tyr	Leu				CTTT(	GTTGC	CT TI	rgago	STGG	C	 23	

GCACGAAGGA	GGGCTCGAAA	ATCTCTGCTA	AAAACAAGAA	GAAGGAACAG	GGAACATGAT	2369
TAGTTTCGCT	CGTATGGCAG	AAAGTTTAGG	AGTCCAGGCT	AAACTTGCCC	TTGCCTTCGC	2429
ACTCGTATTA	TGTGTCGGGC	TGATTGTTAC	CGGCACGGGT	TTCTACAGTG	TACATACCTT	2489
GTCAGGGTTG	GTGGGAATTC					2509
FIG. 2q:						





	GAAT	TCCG	GCG G	TCGG	CGA	AA GI	TGAT	GCGC	TGI	ATCO	STGG	TGA	AGAT(	CAA '	rcca'	rgctg	2	60
	GTGA	CGAC	GC C	CACAC										er A		TT TCC		112
						GCG Ala												160
		Ala 30	Leu	Ser	Leu	GTG Val	Ser 35	Pro	Ile	Asp	Leu	Gly 40	Val	Lys	Val			208
	Arg 45					Arg 50	-									AGC Ser 60		256
b						ATG Met												304
						TTG Leu												352
						ATT Ile												400
						TCC Ser												448
						CGT Arg 130												496
						GCG Ala												544
						GCT Ala												592
			Ala		L			la Gl					p II			AA GAO .n Glu		641
						GAT Asp												689
						-EET Pro 230												737

														CCT Pro 255		78	35
														GTG Val		83	33
														CAG Gln		88	31
														CCC Pro		92	29
														GCG Ala		97	די
														GAG Glu 335		102	25
														GAG Glu		107	73
														CCG Pro		112	21
														TTG Leu		116	59
														GGG Gly		123	17
,														TCC Ser 415		126	65
					ATT Ile								Leu		TAA	13:	13
CGG	GCAT	CTC	CTTT	GTTG	CT T	TGAG	GTGG	C GC	ACGA	AGGA	GGG	CTCG	AAA A	ATCT	CTGCT	A 13	73
AAA	ACAA	GAA	GAAG	GAAC.	AG G	GAAC.	ATGA'	т та	GTTT(	CGCT	CGT	ATGG(	CAG A	AAAG'	rttago	G 14:	33
AGT	CCAG	GCT	AAAC	TTGC	сс т	TGCC	TTCG	C AC	TCGT	ATTA	TGT	GTCG	GGC 1	rgat'	rgtta(	14	93
CGG	CACG	GGT	TTCT	ACAG	TG T	ACAT.	ACCT	T GT	CAGG	GTTG	GTG	GGAA'	rtc			15	43

FIG. 2r:

	•					
CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCCGCGATTG	AGTGTCTTGG	GCGCGGTCTT	GGAGAGTTCG	120
GCTAGGGAGA	TAAATTTGCT	GGCCATGGTG	GCGGCCCCTG	ATGGGTTGGA	TGATTTTCTG	180
CATTCTGCAT	CATGAAATTC	ATGAAATCAT	CACTTTTCGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCGGGTT	TCAGGATGGT	300
GCATGGAAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACTAT	TTTGGCGGAA	360
TGGAAGCACG	ATTCCTCGCC	CGGTAGAGCG	GTAACCGCGA	CATTCAGGAC	CGTAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGAAAAT	CGTCGTCACC	GGAGTGTCCT	CCGGTATCGG	480
TGCCGAAACT	GCCCGCGTTC	TGCGCTCTCA	CGGCGCCACA	GTGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTTCGT	TCAGGCTGAC	CTGAGCCATC	CTGAAGGCAT	600
CGATAAGGCC	ATCGGGACAG	CAAGCGAACC	GGAATTGCCA	GCTGGGGCGC	CCTCTGGTAA	660
GGTTGGGAAG	CCCTGCAAAG	TAAACTGGAT	GGCTTTCTTG	CCGCCAAGGA	TCTGATGGCG	720
CAGGGGATCA	AGATCTGATC	AAGAGACAGG	ATGAGGATCG.	TTTCCCATCA	TTGAACAAGA	780
TGGATTGCAC	GCAGGTTCTC	CGGCCGCTTG	GGTGGAGAGG	CTATTCGGCT	ATGACTGGGC	840
ACAACAGACA	ATCGGCTGCT	CTGATGCCGC	CGTGTTCCGG	CTGTCAGCGC	AGGGGCGCCC	900
GGTTCTTTTT	GTCAAGACCG	ACCTGTCCGG	TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	960
GCGGCTATCG	TGGCTGGCCA	CGACGGGCGT	TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	1020
TGAAGCGGGA	AGGGACTGGC	TGCTATTGGG	CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	1080
TCACCTTGCT	CCTGCCGAGA	AAGTATCCAT	CATGGCTGAT	GCAATGCGGC	GGCTGCATAC	1140
GCTTGATCCG	GCTACCTGCC	CATTCGACCA	CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	1200
TACTCGGATG	GAAGCCGGTC	TTGTCGATCA	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	1260
CGCGCCAGCC	GAACTGTTCG	CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	1320
CGTGACCCAT	GGCGATGCCT	GCTTGCCGAA	TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	1380
ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	1440
CCGTGATATT	GCTGAAGAGC	TTGGCGGCGA	ATGGGCTGAC	CGCTTCCTCG	TGCTTTACGG	1500
TATCGCCGCT	CCCGATTCGC	AGCGCATCGC	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	1560
AGCGGGACTC	TGGGGTTCGA	AATGACCGAC	CAAGCGACGC	CCTGGCCGCG	GTGATTGCAT	1620
TCATGTGTGC	TGAGGAGTCA	CGTTGGATCA	ACGGCATAAA	TATTCCAGTG	GACGGAGGTT	1680
TGGCATCGAC	CTACGTGTAA	GTTCGTGGAC	GCCCTTTGCA	CGCGCACTAT	ATCTCTATGC	1740
AGCAGCTGAA	AGCAGCTTTG	GTTTTGATCG	GAGGTAGCGG	GCGGAAAGGT	GCAGAATGTC	1800
AATAATAA	AGGATTCTTG	TGAAGCTTTA	GTTGTCCGTA	AACGAAAATA	AAAATAAAGA	1860
GGAATGATAT	GAAAGCAAGT	AGATCAGTCT	GCACTTTCAA	AATAGCTACC	CTGGCAGGCG	1920
CCATTTATGC	AGCGCTGCCA	ATGTCAGCTG	CAAACTCGAT	GCAGCTGGAT	GTAGGTAGCT	1980
CGGATTGGAC	GGTGCGTTGG	GGACAACACC	CTCAAGTATA	GCCTTGCCTC	TCGCCTGAAT	2040
GAGCAAGACT	CAAGTCTGAC	AAATGCGCCG	ACTGTCAATG	GTTATATCCG	GATATTCAAA	2100
GTCAGGGTGA	TCGTAACTTT	GACCGGGGGC	TTGGTATCCA	ATCGTCTCGA	TATTCTGGCT	2160
GCAG						2164

	•					
CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCCGCGATTG	AGTGTCTTGG	GCGCGGTCTT	GGAGAGTTCG	120
GCTAGGGAGA	TAAATTTGCT	GGCCATGGTG	GCGGCCCCTG	ATGGGTTGGA	TGATTTTCTG	180
CATTCTGCAT	CATGAAATTC	ATGAAATCAT	CACTTTTCGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCGGGTT	TCAGGATGGT	300
GCATGGAAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACTAT	TTTGGCGGAA	360
TGGAAGCACG	ATTCCTCGCC	CGGTAGAGCG	GTAACCGCGA	CATTCAGGAC	CGTAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGAAAAT	CGTCGTCACC	GGAGTGTCCT	CCGGTATCGG	480
TGCCGAAACT	GCCCGCGTTC	TGCGCTCTCA	CGGCGCCACA	GTGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTTCGT	TCAGGCTGAC	CTGAGCCATC	CTGAGGGGAG	600
AGGCGGTTTG	CGTATTGGGC	GCATGCATAA	AAACTGTTGT	AATTCATTAA	GCATTCTGCC	660
GACATGGAAG	CCATCACAAA	CGGCATGATG	AACCTGAATC	GCCAGCGGCA	TCAGCACCTT	720
GTCGCCTTGC	GTATAATATT	TECCCATEGA	CGCACACCGT	GGAAACGGAT	GAAGGCACGA	780
ACCCAGTTGA	CATAAGCCTG	TTCGGTTCGT	AAACTGTAAT	GCAAGTAGCG	TATGCGCTCA	840
CGCAACTGGT	CCAGAACCTT	GACCGAACGC	AGCGGTGGTA	ACGGCGCAGT	GGCGGTTTTC	900
ATGGCTTGTT	ATGACTGTTT	TTTTGTACAG	TCTATGCCTC	GGGCATCCAA	GCAGCAAGCG	960
CGTTACGCCG	TGGGTCGATG	TTTGATGTTA	TGGAGCAGCA	ACGATGTTAC	GCAGCAGCAA	1020
CGATGTTACG	CAGCAGGGCA	GTCGCCCTAA	AACAAAGTTA	GGTGGCTCAA	GTATGGGCAT	1080
CATTCGCACA	TGTAGGCTCG	GCCCTGACCA	AGTCAAATCC	ATGCGGGCTG	CTCTTGATCT	1140
TTTCGGTCGT	GAGTTCGGAG	ACGTAGCCAC	CTACTCCCAA	CATCAGCCGG	ACTCCGATTA	1200
CCTCGGGAAC	TTGCTCCGTA	GTAAGACATT	CATCGCGCTT	GCTGCCTTCG	ACCAAGAAGC	1260
GGTTGTTGGC	GCTCTCGCGG	CTTACGTTCT	GCCCAGGTTT	GAGCAGCCGC	GTAGTGAGAT	1320
CTATATCTAT	GATCTCGCAG	TCTCCGGCGA	GCACCGGAGG	CAGGGCATTG	CCACCGCGCT	1380
CATCAATCTC	CTCAAGCATG	AGGCCAACGC	GCTTGGTGCT	TATGTGATCT	ACGTGCAAGC	1440
AGATTACGGT	GACGATCCCG	CAGTGGCTCT	CTATACAAAG	TTGGGCATAC	GGGAAGAAGT	1500
GATGCACTTT	GATATCGACC	CAAGTACCGC	CACCTAACAA	TTCGTTCAAG	CCGAGATCGG	1560
CTTCCCTGAT	TGCATTCATG	TGTGCTGAGG	AGTCACGTTG	GATCAACGGC	ATAAATATTC	1620
CAGTGGACGG	AGGTTTGGCA	TCGACCTACG	TGTAAGTTCG	TGGACGCCCT	TTGCACGCGC	1680
ACTATATCTC	TATGCAGCAG	CTGAAAGCAG	CTTTGGTTTT	GATCGGAGGT	AGCGGGCGGA	1740
AAGGTGCAGA	ATGTCTAAAT	AATAAAGGAT	TCTTGTGAAG	CTTTAGTTGT	CCGTAAACGA	1800
AAATAAAAT	AAAGAGGAAT	GATATGAAAG	CAAGTAGATC	AGTCTGCACT	TTCAAAATAG	1860
CTACCCTGGC	AGGCGCCATT	TATGCAGCGC	TGCCAATGTC	AGCTGCAAAC	TCGATGCAGC	1920
TGGATGTAGG	TAGCTCGGAT	TGGACGGTGC	GTTGGGGACA		GTATAGCCTT	1980
GCCTCTCGCC	TGAATGAGCA	AGACTCAAGT	CTGACAAATG	CGCCGACTGT	CAATGGTTAT	2040
ATCCGGATAT	TCAAAGTCAG	GGTGATCGTA	ACTTTGACCG	GGGGCTTGGT	ATCCAATCGT	2100
CTCGATATTC	TGGCTGCAG					2119



CTGCAGCCAG	GGCTGAAAAG	GAGGGATTCA	GTGAGGTCAT	GAAGGGAGGG	GACGGCGCCT	60
GGCTCCAATT	GCTCGATGGC	GCCGCGATTG	AGTGTCTTGG	GCGCGGTCTT	GGAGAGTTCG	120
GCTAGGGAGA	TAAATTTGCT	GGCCATGGTG	GCGGCCCCTG	ATGGGTTGGA	TGATTTTCTG	180
CATTCTGCAT	CATGAAATTC	ATGAAATCAT	CACTTTTCGG	GGGGTGGGTG	CACGGGATTG	240
AAGGTTGCTA	GGAGAGTGCA	TTGCTCGTAA	GCCCAGGAAG	CACGCGGGTT	TCAGGATGGT	300
GCATGGAAAT	GGCATGAGCT	TTGCTGGATA	TGATTAGAGA	CATTAACTAT	TTTGGCGGAA	360
TGGAAGCACG	ATTCCTCGCC	CGGTAGAGCG	GTAACCGCGA	CATTCAGGAC	CGTAAAAAGG	420
AAAGAGCATG	CAACTGACCA	ACAAGAAAAT	CGTCGTCACC	GGAGTGTCCT	CCGGTATCGG	480
TGCCGAAACT	GCCCGCGTTC	TGCGCTCTCA	CGGCGCCACA	GTGATTGGCG	TAGATCGCAA	540
CATGCCGAGC	CTGACTCTGG	ATGCTTTCGT	TCAGGCTGAC	CTGAGCCATC	CTGAAGGCAT	600
CGATCAACGG	CATAAATATT	CCAGTGGACG	GAGGTTTGGC	ATCGACCTAC	GTGTAAGTTC	660
GTGGACGCCC	TTTGCACGCG	CACTATATCT	CTATGCAGCA	GCTGAAAGCA	GCTTTGGTTT	720
TCATCCCACC	TACCCCCCC	ANACCTCCAC	AATCTCTAAA	TANTAAACGA	TTCTTCTCAA.	780
GCTTTAGTTG	TCCGTAAACG	AAAATAAAA	TAAAGAGGAA	TGATATGAAA	GCAAGTAGAT	840
CAGTCTGCAC	TTTCAAAATA	GCTACCCTGG	CAGGCGCCAT	TTATGCAGCG	CTGCCAATGT	900
CAGCTGCAAA	CTCGATGCAG	CTGGATGTAG	GTAGCTCGGA	TTGGACGGTG	CGTTGGGGAC	960
AACACCCTCA	AGTATAGCCT	TGCCTCTCGC	CTGAATGAGC	AAGACTCAAG	TCTGACAAAT	1020
GCGCCGACTG	TCAATGGTTA	TATCCGGATA	TTCAAAGTCA	GGGTGATCGT	AACTTTGACC	1080
GGGGGCTTGG	TATCCAATCG	TCTCGATATT	CTGGCTGCAG			1120



GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCĢCTTT	CGAAAGTCAT	GGTGTTAGCC	60
GGTAGGGTCT	TTTTCTTGGC	CATGCTTGTT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
TGCGTTTGCC	GCTTCGCTTC	GCGATGAACC	GCATCGAGAT	GCTGAGGTCA	GGATTTTTCC	180
TTAACTCGCG	TAAGCATTCT	GTCATTTTTT	TGGTGGCTTT	GAACAGCCTG	ATGAAAGGTG	240
GTCTCGCCCT	TTGAGGCCGA	TTCTTGGGCG	CTTGGCGGCG	TCGAAGCGAT	GCTCCACTAC	300
CGATTAAGAT	AATTAAAATA	AGGAAACCGC	ATGGTTTCTT	ATGTGAATTT	GTCTGGCATA	360
CTCCAGCTCA	AGGGCAATTT	TTGGGCTATT	GGCTGAGCAG	TTGCCTCTAT	ATGGTTATTC	420
AGAATAACAA	TTGACTCCTC	AGGAGGTCAG	CGATGAGCAT	TCTTGGTTTG	AATGGTGCCC	480
CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
AGGGGCCTGC	AAACTTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCGTGCGATT	GCAATGCTTC	600
TGGAAAATCG	TGAAGCAATT	GCCGACGCGG	TTTCTGCTGA	CTTTGGCAAT	CGCAGCCGTG	660
AGCAAACACT	GCTTTGCGAC	ATTGCTGGCT	CGGTGGCAAG	CCTGAAGGAT	AGCCGCGAGC	720
ACCTCCCCAA	ATCCATCCAC	CCCGAACATC	ACAAGGCGAT	GTTTCCACGC	CCCCACCCAC	780
GCGTTGAGTT	TCAGCCGCTG	GGTGTCGTTG	GGGTCATTAG	TCCCTGGAAC	TTCCCTATCG	840
TACTGGCCTT	TGGGCCGCTG	GCCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
CGTCCGAGCT	TACCCCGCGG	ACTTCTGCCC	TGCTTGCGGA	GCTAATTGCT	CGTTACTTCG	960
ATGAAACTGA	GCTGACTACA	GTGCTGGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
AGCCTTTCGA	TCATCTGATC	TTCACCGGCG	GCACTGCCGT	GGCCAAGCAC	ATCATGCGTG	1080
CCGCGGCGGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAAATCG	CCGGTGATCG	1140
TTTCCCGCAG	TGCAGATATG	GCGGACGTTG	CACAACGGGT	GTTGACGGTG	AAAACCTTCA	1200
ATGCCGGGCA	AATCTGTCTG	GCACCGGACT	ATGTGCTGCT	GCCGGAAGGG	ACAGCAAGCG	1260
AACCGGAATT	GCCAGCTGGG	GCGCCCTCTG	GTAAGGTTGG	GAAGCCCTGC	AAAGTAAACT	1320
GGATGGCTTT	CTTGCCGCCA	AGGATCTGAT	GGCGCAGGGG	ATCAAGATCT	GATCAAGAGA	1380
CAGGATGAGG	ATCGTTTCGC	ATGATTGAAC	AAGATGGATT	GCACGCAGGT	TCTCCGGCCG	1440
CTTGGGTGGA	GAGGCTATTC	GGCTATGACT	GGGCACAACA	GACAATCGGC	TGCTCTGATG	1500
CCGCCGTGTT	CCGGCTGTCA	GCGCAGGGGC	GCCCGGTTCT	TTTTGTCAAG	ACCGACCTGT	1560
CCGGTGCCCT	GAATGAACTG	CAGGACGAGG	CAGCGCGGCT	ATCGTGGCTG	GCCACGACGG	1620
GCGTTCCTTG	CGCAGCTGTG	CTCGACGTTG	TCACTGAAGC	GGGAAGGGAC	TGGCTGCTAT	1680
TGGGCGAAGT	GCCGGGGCAG	GATCTCCTGT	CATCTCACCT	TGCTCCTGCC	GAGAAAGTAT	1740
CCATCATGGC	TGATGCAATG	CGGCGGCTGC	ATACGCTTGA	TCCGGCTACC	TGCCCATTCG	1800
ACCACCAAGC	GAAACATCGC	ATCGAGCGAG	CACGTACTCG	GATGGAAGCC	GGTCTTGTCG	1860
ATCAGGATGA	TCTGGACGAA	GAGCATCAGG	GGCTCGCGCC	AGCCGAACTG	TTCGCCAGGC	1920
TCAAGGCGCG	CATGCCCGAC	GGCGAGGATC	TCGTCGTGAC	CCATGGCGAT	GCCTGCTTGC	1980
CGAATATCAT	GGTGGAAAAT	GGCCGCTTTT	CTGGATTCAT	CGACTGTGGC	CGGCTGGGTG	2040
TGGCGGACCG	CTATCAGGAC	ATAGCGTTGG	CTACCCGTGA		GAGCTTGGCG	2100
GCGAATGGGC	TGACCGCTTC	CTCGTGCTTT	ACGGTATCGC	CGCTCCCGAT	TCGCAGCGCA	2160





TCGCCTTCTA	TCGCCTTCTT	GACGAGTTCT	TCTGAGCGGG	ACTCTGGGGT	TCGAAATGAC	2220
CGACCAAGCG	ACGCCCGCCA	TGCCAAGCCT	GTTCTCGTGC	AAAGTCCTGT	GGGTGAGTCG	2280
AACTTGGCGA	TGCGCGCACC	CTACGGAGAA	GCGATCCACG	GACTGCTCTC	TGTCCTCCTT	2340
TCAACGGAGT	GTTAGAACCG	TTGGTAGTGG	TTTTGGACGG	GCCCAGGAGC	ATGCGCTTCT	2400
GGGCCCGTTT	CTTGAGTATT	CATTGGATAG	TCACGCGTGG	TAGCTTCGAG	CCTGCACAGC	2460
TGATGAGCAC	CCTGGAAGGC	GCGCTGTACG	CGGACGACTG	GGTTCATCTT	CGCCATTCAT	2520
GACGGAACTC	CGTTCCCCAG	TACCGCGATG	ACTATTTTGC	CTCTTCCGAT	GTCCGATTCC	2580
ACGCCGCCTG	ACGCTAAGCG	GGGGCGGGG	CGCCCGCATC	CCAGCCCAGA	CAGCAACAAA	2640
TGAGTAGGCT	CTTGGATGCC	GCGGCGGCTG	AGATTGGTAA	CGGCAATTTC	GTCAATGTGA	2700
CGATGGATTC	GATTGCCCGT	GCTGCCGGCG	TCTCAAAAAA	AACGCTGTAC	GTCTTGGTGG	2760
CGAGCAAGGA	AGAACTCATT	TCCCGGTTAG	TGGCTCGAGA	CATGTCCAAC	CTTGAGGAAT	2820
TC						2822





	•					
GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCGCTTT	CGAAAGTCAT	GGTGTTAGCC	60
GGTAGGGTCT	TTTTCTTGGC	CATGCTTGTT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
TGCGTTTGCC	GCTTCGCTTC	GCGATGAACC	GCATCGAGAT	GCTGAGGTCA	GGATTTTTCC	180
TTAACTCGCG	TAAGCATTCT	GTCATTTTTT	TGGTGGCTTT	GAACAGCCTG	ATGAAAGGTG	240
GTCTCGCCCT	TTGAGGCCGA	TTCTTGGGCG	CTTGGCGGCG	TCGAAGCGAT	GCTCCACTAC	300
CGATTAAGAT	ATTAAAATA	AGGAAACCGC	ATGGTTTCTT	ATGTGAATTT	GTCTGGCATA	360
CTCCAGCTCA	AGGGCAATTT	TTGGGCTATT	GGCTGAGCAG	TTGCCTCTAT	ATGGTTATTC	420
AGAATAACAA	TTGACTCCTC	AGGAGGTCAG	CGATGAGCAT	TCTTGGTTTG	AATGGTGCCC	480
CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
AGGGGCCTGC	AAACTTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCGTGCGATT	GCAATGCTTC	600
TGGAAAATCG	TGAAGCAATT	GCCGACGCGG	TTTCTGCTGA	CTTTGGCAAT	CGCAGCCGTG	660
AGCAAACACT	GCTTTGCGAC	ATTGCTGGCT	CGGTGGCAAG	CCTGAAGGAT	AGCCGCGAGC	720
ACGTGGCCAA	ATGGATGGAG	CCCGAACATC	ACAAGGCGAT	<b>CTTTCCAGGG</b>	CCCCACCCAC	780
GCGTTGAGTT	TCAGCCGCTG	GGTGTCGTTG	GGGTCATTAG	TCCCTGGAAC	TTCCCTATCG	840
TACTGGCCTT	TGGGCCGCTG	GCCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
CGTCCGAGCT	TACCCCGCGG	ACTTCTGCCC	TGCTTGCGGA	GCTAATTGCT	CGTTACTTCG	960
ATGAAACTGA	GCTGACTACA	GTGCTGGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
AGCCTTTCGA	TCATCTGATC	TTCACCGGCG	GCACTGCCGT	GGCCAAGCAC	ATCATGCGTG	1080
CCGCGGCGGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAAATCG	CCGGTGATCG	1140
TTTCCCGCAG	TGCAGATATG	GCGGACGTTG	CACAACGGGT	GTTGACGGTG	AAAACCTTCA	1200
ATGCCGGGCA	AATCTGTCTG	GCACCGGACT	ATGTGCTGGG	GGAGAGGCGG	TTTGCGTATT	1260
GGGCGCATGC	ATAAAAACTG	TTGTAATTCA	TTAAGCATTC	TGCCGACATG	GAAGCCATCA	1320
CAAACGGCAT	GATGAACCTG	AATCGCCAGC	GGCATCAGCA		TTGCGTATAA	1380
TATTTGCCCA	TGGACGCACA		GGATGAAGGC	ACGAACCCAG	TTGACATAAG	1440
CCTGTTCGGT	TCGTAAACTG	TAATGCAAGT		CTCACGCAAC	TGGTCCAGAA	1500
	ACGCAGCGGT		CAGTGGCGGT	TTTCATGGCT	TGTTATGACT	1560
	ACAGTCTATG		CCAAGCAGCA		GCCGTGGGTC	1620
	GTTATGGAGC		TTACGCAGCA		TACGCAGCAG	1680
	CTAAAACAAA		TCAAGTATGG	GCATCATTCG	CACATGTAGG	1740
		ATCCATGCGG		ATCTTTTCGG	TCGTGAGTTC	1800
_			CCGGACTCCG		GAACTTGCTC	1860
		GCTTGCTGCC		AAGCGGTTGT	TGGCGCTCTC	1920
GCGGCTTACG			CCGCGTAGTG		CTATGATCTC	1980
·			ATTGCCACCG		<del>-</del>	2040
			ATCTACGTGC			2100
CCCGCAGTGG	CTCTCTATAC	AAAGTTGGGC	ATACGGGAAG	AAGTGATGCA	CTTTGATATC	2160



GACCCAAGTA	CCGCCACCTA	ACAATTCGTT	CAAGCCGAGA	TCGGCTTCCC	TGCAAAGTCC	2220
TGTGGGTGAG	TCGAACTTGG	CGATGCGCGC	ACCCTACGGA	GAAGCGATCC	ACGGACTGCT	2280
CTCTGTCCTC	CTTTCAACGG	AGTGTTAGAA	CCGTTGGTAG	TGGTTTTGGA	CGGGCCCAGG	2340
AGCATGCGCT	TCTGGGCCCG	TTTCTTGAGT	ATTCATTGGA	TAGTCACGCG	TGGTAGCTTC	2400
GAGCCTGCAC	AGCTGATGAG	CACCCTGGAA	GGCGCGCTGT	ACGCGGACGA	CTGGGTTCAT	2460
CTTCGCCATT	CATGACGGAA	CTCCGTTCCC	CAGTACCGCG	ATGACTATTT	TGCCTCTTCC	2520
GATGTCCGAT	TCCACGCCGC	CTGACGCTAA	GCGGGGGCGG	GGGCGCCCGC	ATCCCAGCCC	2580
AGACAGCAAC	AAATGAGTAG	GCTCTTGGAT	GCCGCGGCGG	CTGAGATTGG	TAACGGCAAT	2640
TTCGTCAATG	TGACGATGGA	TTCGATTGCC	CGTGCTGCCG	GCGTCTCAAA	AAAAACGCTG	2700
TACGTCTTGG	TGGCGAGCAA	GGAAGAACTC	ATTTCCCGGT	TAGTGGCTCG	AGACATGTCC	2760
AACCTTGAGG	AATTC					2775





	GAATTCCGCG	TATCGCCCGG	TTCTATCAGC	GGGCCGCTTT	CGAAAGTCAT	GGTGTTAGCC	60
	GGTAGGGTCT	TTTTCTTGGC	CATGCTTGTT	GCCTGAACCT	TCGTTGACAT	AGGGCAGAGG	120
	TGCGTTTGCC	GCTTCGCTTC	GCGATGAACC	GCATCGAGAT	GCTGAGGTCA	GGATTTTTCC	180
	TTAACTCGCG	TAAGCATTCT	GTCATTTTTT	TGGTGGCTTT	GAACAGCCTG	ATGAAAGGTG	240
	GTCTCGCCCT	TTGAGGCCGA	TTCTTGGGCG	CTTGGCGGCG	TCGAAGCGAT	GCTCCACTAC	300
	CGATTAAGAT	AATTAAAATA	AGGAAACCGC	ATGGTTTCTT	ATGTGAATTT	GTCTGGCATA	360
	CTCCAGCTCA	AGGGCAATTT	TTGGGCTATT	GGCTGAGCAG	TTGCCTCTAT	ATGGTTATTC	420
	AGAATAACAA	TTGACTCCTC	AGGAGGTCAG	CGATGAGCAT	TCTTGGTTTG	AATGGTGCCC	480
	CGGTCGGAGC	TGAGCAGCTG	GGCTCGGCTC	TTGATCGCAT	GAAGAAGGCG	CACCTGGAGC	540
	AGGGGCCTGC	AAACTTGGAG	CTGCGTCTGA	GTAGGCTGGA	TCGTGCGATT	GCAATGCTTC	600
	TGGAAAATCG	TGAAGCAATT	GCCGACGCGG	TTTCTGCTGA	CTTTGGCAAT	CGCAGCCGTG	660
	AGCAAACACT	GCTTTGCGAC	ATTGCTGGCT	CGGTGGCAAG	CCTGAAGGAT	AGCCGCGAGC	720
=	ACCTCCCCAA.	ATCENTECNE	CCCCANCATC	ACAACCCCAT	GTTTCCAGCC	CCCCACCCAC	780
	GCGTTGAGTT	TCAGCCGCTG	GGTGTCGTTG	GGGTCATTAG	TCCCTGGAAC	TTCCCTATCG	840
	TACTGGCCTT	TGGGCCGCTG	GCCGGCATAT	TCGCAGCAGG	TAATCGCGCC	ATGCTCAAGC	900
	CGTCCGAGCT	TACCCCGCGG	ACTTCTGCCC	TGCTTGCGGA	GCTAATTGCT	CGTTACTTCG	960
	ATGAAACTGA	GCTGACTACA	GTGCTGGGCG	ACGCTGAAGT	CGGTGCGCTG	TTCAGTGCTC	1020
Ì	AGCCTTTCGA	TCATCTGATC	TTCACCGGCG	GCACTGCCGT	GGCCAAGCAC	ATCATGCGTG	1080
,	CCGCGGCGGA	TAACCTAGTG	CCCGTTACCC	TGGAATTGGG	TGGCAAATCG	CCGGTGATCG	1140
	TTTCCCGCAG	TGCAGATATG	GCGGACGTTG	CACAACGGGT	GTTGACGGTG	AAAACCTTCA	1200
	ATGCCGGGCA		GCACCGTGGG	TGAGTCGAAC	TTGGCGATGC	GCGCACCCTA	1260
		ATCCACGGAC	TGCTCTCTGT	CCTCCTTTCA		AGAACCGTTG	1320
	GTAGTGGTTT	TGGACGGGCC	CAGGAGCATG	CGCTTCTGGG	CCCGTTTCTT	GAGTATTCAT	1380
	TGGATAGTCA	CGCGTGGTAG	CTTCGAGCCT	GCACAGCTGA	TGAGCACCCT	GGAAGGCGCG	1440
		ACGACTGGGT	TCATCTTCGC	CATTCATGAC	GGAACTCCGT	TCCCCAGTAC	1500
	CGCGATGACT	ATTTTGCCTC	TTCCGATGTC	CGATTCCACG	CCGCCTGACG	CTAAGCGGGG	1560
	GCGGGGGCGC	CCGCATCCCA	GCCCAGACAG	CAACAAATGA	GTAGGCTCTT	GGATGCCGCG	1620
	GCGGCTGAGA	TTGGTAACGG	CAATTTCGTC	AATGTGACGA		TGCCCGTGCT	1680
	GCCGGCGTCT	CAAAAAAAAC	GCTGTACGTC	TTGGTGGCGA	GCAAGGAAGA	ACTCATTTCC	1740
	CGGTTAGTGG	CTCGAGACAT	GTCCAACCTT	GAGGAATTC			1779



CTGCAGCCGA	GCATCGATTG	AGCACTTTAC	CCAGCTGCGC	TGGCTGACCA	TTCAGAATGG	60
CCCGCGGCAC	TATCCAATCT	AAATCGATCT	TCGGGCGCCG	CGGGCATCAT		120
CTCGCCTCAT	TTCAATCTCT	AACTTGATAA	AAACAGAGCT	GTTCTCCGGT	CTTGGTGGAT	180
CAAGGCCAGT		CTCGAAGAGG	AGAGTACAGT	GAACGCCGAG	TCCACATTGC	240
	ATCATCATGC		CACGCTACCG		ATTGGTCATC	300
	GGTTACGCAA				CTCGAGGCGC	360
	CCCGGGTCGA				ACCCGTCCAG	420
AACAAACCTG	CGTTGCTGCC	AGGGCGGCAA	ATGGGGAATG	GCGTCGTATC	AGCTACGCGG	480
	CAACGTCCGC	GCCATCGCAC	AGAGCTTGCT	TCCTTACGGA	CTATCGGCAG	540
	GCTTATCGTC	TCTGGAAATG	ACCTGGAACA	TCTTCAGCTG	GCATTTGGGG	600
	GGGCATTCCC	TATTGCCCGG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
		ATCGTAGGTC	TTCTGCAACC		TTTGCTGCCG	720
	TTTCCAGGGG		AACCGGAATT	GCCAGCTGGG	GCGCCCTCTG	780
	GAAGCCCTGC				AGGATCTGAT	840
	ATCAAGATCT	GATCAAGAGA	CAGGATGAGG	ATCGTTTCGC	ATGATTGAAC	900
	GCACGCAGGT	TCTCCGGCCG	CTTGGGTGGA	GAGGCTATTC	GGCTATGACT	960
\	GACAATCGGC	TGCTCTGATG	CCGCCGTGTT	CCGGCTGTCA	GCGCAGGGGC	1020
GCCCGGTTCT	TTTTGTCAAG	ACCGACCTGT	CCGGTGCCCT	GAATGAACTG	CAGGACGAGG	1080
	ATCGTGGCTG	GCCACGACGG	GCGTTCCTTG	CGCAGCTGTG	CTCGACGTTG	1140
	GGGAAGGGAC	TGGCTGCTAT	TGGGCGAAGT	GCCGGGGCAG	GATCTCCTGT	1200
CATCTCACCT	TGCTCCTGCC	GAGAAAGTAT	CCATCATGGC	TGATGCAATG	CGGCGGCTGC	1260
	TCCGGCTACC		ACCACCAAGC	GAAACATCGC	ATCGAGCGAG	1320
	GATGGAAGCC		ATCAGGATGA	TCTGGACGAA	GAGCATCAGG	1380
	AGCCGAACTG	TTCGCCAGGC	TCAAGGCGCG	CATGCCCGAC	GGCGAGGATC	1440
	CCATGGCGAT	GCCTGCTTGC		GGTGGAAAAT	GGCCGCTTTT	1500
	CGACTGTGGC	CGGCTGGGTG		CTATCAGGAC	ATAGCGTTGG	1560
	TATTGCTGAA			TGACCGCTTC	CTCGTGCTTT	1620
ACGGTATCGC		TCGCAGCGCA		TCGCCTTCTT	GACGAGTTCT	1680
	ACTCTGGGGT	TCGAAATGAC		ACGCCCCTGT	TTTGCAATGG	1740
	AAGTTGATGC			AATCCATGCT	GCGTGACGAG	1800
	GAGTTGGTCA			TTCCGACACT	GCGTTGGTTG	1860
	CACCCCTGG		GGGGTGCCCT	GTCGCTGGTG	TCGCCTATCG	1920
ACTTAGGGGT		CGCGAAGTTC		GTCGCTTGAA	CCACAAATGG	1980
TCGATAGCGT		TCTATGGCTC		TGATGCTTAC	CTGCTCCCGC	2040
GGCACATTGG	CTTGTACAGC	GGTGTTCCCA	AGTCGGTTCC	GGCCTTGGGG	GTGCAGCGCA	2100
TTTGCGGCAC	AGGCTTCGAA	CTGCTTCGGC	AGGCCGGCGA	GCAGATTTCC	CAAGGCGCTG	2160
ATCACGTGCT	GTGTGTCGCG	GGCTGCAG				2188

***

CTGCAGCCGA	GCATCGATTG	AGCACTTTAC	CCAGCTGCGC	TGGCTGACCA	TTCAGAATGG	60
CCCGCGGCAC	TATCCAATCT	AAATCGATCT	TCGGGCGCCG	CGGGCATCAT	GCCCGCGGCG	120
CTCGCCTCAT	TTCAATCTCT	AACTTGATAA	AAACAGAGCT	GTTCTCCGGT	CTTGGTGGAT	180
CAAGGCCAGT	CGCGGAGAGT	CTCGAAGAGG	AGAGTACAGT	GAACGCCGAG	TCCACATTGC	240
AACCGCAGGC	ATCATCATGC	TCTGCTCAGC	CACGCTACCG	CAGTGTGTCG	ATTGGTCATC	300
CTCCGGTTGA	GGTTACGCAA	GACGCTGGAG	GTATTGTCCG	GATGCGTTCT	CTCGAGGCGC	360
TTCTTCCCTT	CCCGGGTCGA	ATTCTTGAGC	GTCTCGAGCA	TTGGGCTAAG	ACCCGTCCAG	420
AACAAACCTG	CGTTGCTGCC	AGGGCGGCAA	ATGGGGAATG	GCGTCGTATC	AGCTACGCGG	480
AAATGTTCCA	CAACGTCCGC	GCCATCGCAC	AGAGCTTGCT	TCCTTACGGA	CTATCGGCAG	540
AGCGTCCGCT	GCTTATCGTC	TCTGGAAATG	ACCTGGAACA	TCTTCAGCTG	GCATTTGGGG	600
CTATGTATGC	GGGCATTCCC	TATTGCCCGG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
ATTTGGCGAA	GCTGCGTCAC	ATCGTAGGTC	TTCTGCAACC	GGGACTGGTC	TTTGCTGCCG	720
ATCCACCACC	TTTCCAGGGG	GAGAGGCGGT	TTCCGTATTC	GCCCCATGCA	TANANACTGT	780
TGTAATTCAT	TAAGCATTCT	GCCGACATGG	AAGCCATCAC	AAACGGCATG	ATGAACCTGA	840
ATCGCCAGCG	GCATCAGCAC	CTTGTCGCCT	TGCGTATAAT	ATTTGCCCAT	GGACGCACAC	900
CGTGGAAACG	GATGAAGGCA	CGAACCCAGT	TGACATAAGC	CTGTTCGGTT	CGTAAACTGT	960
AATGCAAGTA	GCGTATGCGC	TCACGCAACT	GGTCCAGAAC	CTTGACCGAA	CGCAGCGGTG	1020
GTAACGGCGC	AGTGGCGGTT	TTCATGGCTT	GTTATGACTG	TTTTTTTGTA	CAGTCTATGC	1080
CTCGGGCATC	CAAGCAGCAA	GCGCGTTACG	CCGTGGGTCG	ATGTTTGATG	TTATGGAGCA	1140
GCAACGATGT	TACGCAGCAG	CAACGATGTT	ACGCAGCAGG	GCAGTCGCCC	TAAAACAAAG	1200
TTAGGTGGCT	CAAGTATGGG	CATCATTCGC	ACATGTAGGC	TCGGCCCTGA	CCAAGTCAAA	1260
TCCATGCGGG	CTGCTCTTGA	TCTTTTCGGT	CGTGAGTTCG	GAGACGTAGC	CACCTACTCC	1320
CAACATCAGC	CGGACTCCGA	TTACCTCGGG	AACTTGCTCC	GTAGTAAGAC	ATTCATCGCG	1380
CTTGCTGCCT	TCGACCAAGA	AGCGGTTGTT	GGCGCTCTCG	CGGCTTACGT	TCTGCCCAGG	1440
TTTGAGCAGC	CGCGTAGTGA	GATCTATATC	TATGATCTCG	CAGTCTCCGG	CGAGCACCGG	1500
AGGCAGGGCA	TTGCCACCGC	GCTCATCAAT	CTCCTCAAGC	ATGAGGCCAA	CGCGCTTGGT	1560
GCTTATGTGA	TCTACGTGCA	AGCAGATTAC	GGTGACGATC	CCGCAGTGGC	TCTCTATACA	1620
AAGTTGGGCA	TACGGGAAGA	AGTGATGCAC	TTTGATATCG	ACCCAAGTAC	CGCCACCTAA	1680
CAATTCGTTC	AAGCCGAGAT	CGGCTTCCCC	TGTTTTGCAA	TGGCGGTCGG	CGAAAGTTGA	1740
TGCGCTGTAT	CGTGGTGAAG	ATCAATCCAT	GCTGCGTGAC	GAGGCCACAC	TGTGAGTTGG	1800
TCAGGGGGGG	CTTACTCGGC	GTTTTCCGAC	ACTGCGTTGG	TTGCGGCAGT	GCGCACCCCC	1860
TGGATTGATT	GCGGGGGTGC	CCTGTCGCTG	GTGTCGCCTA	TCGACTTAGG	GGTAAAGGTC	1920
GCTCGCGAAG	TTCTGATGCG	TGCGTCGCTT	GAACCACAAA	TGGTCGATAG	CGTACTCGCA	1980
GGCTCTATGG	CTCAAGCAAG	CTTTGATGCT	TACCTGCTCC	CGCGGCACAT	TGGCTTGTAC	2040
AGCGGTGTTC	CCAAGTCGGT	TCCGGCCTTG	GGGGTGCAGC	GCATTTGCGG	CACAGGCTTC	2100
GAACTGCTTC	GGCAGGCCGG	CGAGCAGATT	TCCCAAGGCG	CTGATCACGT	GCTGTGTGTC	2160
GCGGGCTGCA	G					2171

CTGCAGCCGA GCATCGATTG AGCACTTTAC CCAGCTGCGC TGGCTGACCA TTCAGAATGG 60

CTCGCCTCAT TTCAATCTCT AACTTGATAA AAACAGAGCT GTTCTCCGGT CTTGGTGGAT CAAGGCCAGT CGCGGAGAGT CTCGAAGAGG AGAGTACAGT GAACGCCGAG TCCACATTGC 240 AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC 300 CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGCAA ATGGGGAATG GCGTCGTATC AGCTACGCG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGG CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TCTCGCAAC GGGACTGGTC TTTGCTGCAG ATCGTGGTGA AGATCAATCC ATCGTAGGTC TCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AACGGGGCTC GCGGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCAC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGCC GTTCCGCCT TGGGGGTGCA GCGCATTTGC GGCACACGC TCGAACTGCT 1140 TCCGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCCATTTCC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200 CAG		CCCGCGGCAC	TATCCAATCT	AAATCGATCT	TCGGGCGCCG	CGGGCATCAT	GCCCGCGGCG	120
AACCGCAGGC ATCATCATGC TCTGCTCAGC CACGCTACCG CAGTGTGTCG ATTGGTCATC  CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGCGTTCT CTCGAGGCGC  TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG  AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG  AAAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG  AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG  CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG  ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG  ATGCAGCACC TTTCCAGCGC GCTGTTTTCC AATGGCGGTC GCGGAAAGTT GATGCGCTGT  ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840  GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCAC CCTGGATTGA 900  TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960  AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020  GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080  TCCCAAGCC GGCGAGCAGA TTTCCCAAGG CGCCTTTTCC GGCCACACGCT TCGAACTGCT 1140  TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTTGATCAC GTGCTGTGT TCGCGGGCTG 1200		CTCGCCTCAT	TTCAATCTCT	AACTTGATAA	AAACAGAGCT	GTTCTCCGGT	CTTGGTGGAT	180
CTCCGGTTGA GGTTACGCAA GACGCTGGAG GTATTGTCCG GATGCGTTCT CTCGAGGCGC 360 TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCG TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCCGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTTGTACC GTGCTGTGT TCGCGGGCTG 1200		CAAGGCCAGT	CGCGGAGAGT	CTCGAAGAGG	AGAGTACAGT	GAACGCCGAG	TCCACATTGC	240
TTCTTCCCTT CCCGGGTCGA ATTCTTGAGC GTCTCGAGCA TTGGGCTAAG ACCCGTCCAG 420 AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTTGATCAC GTGCTGTGT TCGCGGGCTG 1200		AACCGCAGGC	ATCATCATGC	TCTGCTCAGC	CACGCTACCG	CAGTGTGTCG	ATTGGTCATC	300
AACAAACCTG CGTTGCTGCC AGGGCGGCAA ATGGGGAATG GCGTCGTATC AGCTACGCGG 480 AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200		CTCCGGTTGA	GGTTACGCAA	GACGCTGGAG	GTATTGTCCG	GATGCGTTCT	CTCGAGGCGC	360
AAATGTTCCA CAACGTCCGC GCCATCGCAC AGAGCTTGCT TCCTTACGGA CTATCGGCAG 540 AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200		TTCTTCCCTT	CCCGGGTCGA	ATTCTTGAGC	GTCTCGAGCA	TTGGGCTAAG	ACCCGTCCAG	420
AGCGTCCGCT GCTTATCGTC TCTGGAAATG ACCTGGAACA TCTTCAGCTG GCATTTGGGG 600 CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGCGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCG TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200		AACAAACCTG	CGTTGCTGCC	AGGGCGGCAA	ATGGGGAATG	GCGTCGTATC	AGCTACGCGG	480
CTATGTATGC GGGCATTCCC TATTGCCCGG TGTCTCCTGC TTATTCACTG CTGTCGCAAG 660 ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720 ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGGCGGTC GGGAAAGTT GATGCGCTGT 780 ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200		AAATGTTCCA	CAACGTCCGC	GCCATCGCAC	AGAGCTTGCT	TCCTTACGGA	CTATCGGCAG	540
ATTTGGCGAA GCTGCGTCAC ATCGTAGGTC TTCTGCAACC GGGACTGGTC TTTGCTGCCG 720  ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGCGGGTC GGCGAAAGTT GATGCGCTGT 780  ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840  GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900  TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960  AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020  GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080  TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140  TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTGATCAC GTGCTGTGTG TCGCGGGCTG 1200		AGCGTCCGCT	GCTTATCGTC	TCTGGAAATG	ACCTGGAACA	TCTTCAGCTG	GCATTTGGGG	600
ATGCAGCACC TTTCCAGCGC GCTGTTTTGC AATGCGGGTC GGCGAAAGTT GATGCGCTGT 780  ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840  GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900  TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960  AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020  GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080  TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140  TCGGCAGGCC GGCGAGCAGA TTTCCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200		CTATGTATGC	GGGCATTCCC	TATTGCCCGG	TGTCTCCTGC	TTATTCACTG	CTGTCGCAAG	660
ATCGTGGTGA AGATCAATCC ATGCTGCGTG ACGAGGCCAC ACTGTGAGTT GGTCAGGGGG 840 GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200		ATTTGGCGAA	GCTGCGTCAC	ATCGTAGGTC	TTCTGCAACC	GGGACTGGTC	TTTGCTGCCG	720
GGCTTACTCG GCGTTTTCCG ACACTGCGTT GGTTGCGGCA GTGCGCACCC CCTGGATTGA 900 TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200	_	ATGCAGCACC	TTTCCAGCGC	CCTGTTTTGC	AATGGCGGTC	GGCGAAAGTT	GATGCGCTGT	780
TTGCGGGGGT GCCCTGTCGC TGGTGTCGCC TATCGACTTA GGGGTAAAGG TCGCTCGCGA 960 AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200		ATCGTGGTGA	AGATCAATCC	ATGCTGCGTG	ACGAGGCCAC	ACTGTGAGTT	GGTCAGGGGG	840
AGTTCTGATG CGTGCGTCGC TTGAACCACA AATGGTCGAT AGCGTACTCG CAGGCTCTAT 1020 GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGTG TCGCGGGCTG 1200		GGCTTACTCG	GCGTTTTCCG	ACACTGCGTT	GGTTGCGGCA	GTGCGCACCC	CCTGGATTGA	900
GGCTCAAGCA AGCTTTGATG CTTACCTGCT CCCGCGGCAC ATTGGCTTGT ACAGCGGTGT 1080 TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGT TCGCGGGCTG 1200		TTGCGGGGGT	GCCCTGTCGC	TGGTGTCGCC	TATCGACTTA	GGGGTAAAGG	TCGCTCGCGA	960
TCCCAAGTCG GTTCCGGCCT TGGGGGTGCA GCGCATTTGC GGCACAGGCT TCGAACTGCT 1140 TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGTG TCGCGGGCTG 1200		AGTTCTGATG	CGTGCGTCGC	TTGAACCACA	AATGGTCGAT	AGCGTACTCG	CAGGCTCTAT	1020
TCGGCAGGCC GGCGAGCAGA TTTCCCAAGG CGCTGATCAC GTGCTGTGTG TCGCGGGCTG 1200	ı	GGCTCAAGCA	AGCTTTGATG	CTTACCTGCT	CCCGCGGCAC	ATTGGCTTGT	ACAGCGGTGT	1080
1101011011 1101011011 11101101101 1101111101 110111101 110111101 110111101 110111101	,	TCCCAAGTCG	GTTCCGGCCT	TGGGGGTGCA	GCGCATTTGC	GGCACAGGCT	TCGAACTGCT	1140
CAG 1203		TCGGCAGGCC	GGCGAGCAGA	TTTCCCAAGG	CGCTGATCAC	GTGCTGTGTG	TCGCGGGCTG	1200



GAATTCCCCT	GGCGACGAAA	GGGCGGCAGG	CCGCATGGCC	ACGGCTGGGC	GGTAACTGAT	60
GCTTGCGTTA	ATCGTTAACC	GTTTGAAATT	CCTTGCCAAA	TTTCGGCGAG	AGAATCATGC	120
GGGTACGCCT	TTCCGTGCGC	TTTGATCTGC	GCTTCCGTGC	CTTGAATCAG	AAAAATAGTT	180
AATTGACAGA	ACTATAGGTT	CGCAGTAGCT	TTTGCTCACC	CACCAAATCC	ACAGCACTGG	240
GGTGCACGAT	GAATAGCTAC	GATGGCCGTT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
GTATCGCTTG	GGTCACGCTG	AACCGCCCGG	AGAAGCGCAA	CGCAATGAGC	CCAACTCTCA	360
ATCGAGAGAT	GGTCGAGGTT	CTGGAGGTGC	TGGAGCAGGA	CGCAGATGCT	CGCGTGCTTG	420
TTCTGACTGG	TGCAGGCGAA	TCCTGGACCG	CGGGCATGGA	CCTGAAGGAG	TATTTCCGCG	480
AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTCG	TCGGGGACAG	CAAGCGAACC	540
GGAATTGCCA	GCTGGGGCGC	CCTCTGGTAA	GGTTGGGAAG	CCCTGCAAAG	TAAACTGGAT	600
GGCTTTCTTG	CCGCCAAGGA	TCTGATGGCG	CAGGGGATCA	AGATCTGATC	AAGAGACAGG	660
ATGAGGATCG	TTTCGCATGA	TTGAACAAGA	TGGATTGCAC	GCAGGTTCTC	CGGCCGCTTG	720
CCTCCACACC	CTATTCGGCT	ATGACTGGGC	ACAACAGACA	ATCGGCTGCT	CTCATGCCGC	780
CGTGTTCCGG	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTTT	GTCAAGACCG	ACCTGTCCGG	840
TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	GCGGCTATCG	TGGCTGGCCA	CGACGGGCGT	900
TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC	TGAAGCGGGA	AGGGACTGGC	TGCTATTGGG	960
CGAAGTGCCG	GGGCAGGATC	TCCTGTCATC	TCACCTTGCT	CCTGCCGAGA	AAGTATCCAT	1020
CATGGCTGAT	GCAATGCGGC	GGCTGCATAC	GCTTGATCCG	GCTACCTGCC	CATTCGACCA	1080
CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	TACTCGGATG	GAAGCCGGTC	TTGTCGATCA	1140
GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	CGCGCCAGCC	GAACTGTTCG	CCAGGCTCAA	1200
GGCGCGCATG	CCCGACGGCG	AGGATCTCGT	CGTGACCCAT	GGCGATGCCT	GCTTGCCGAA	1260
TATCATGGTG	GAAAATGGCC	GCTTTTCTGG	ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	1320
GGACCGCTAT	CAGGACATAG	CGTTGGCTAC	CCGTGATATT	GCTGAAGAGC	TTGGCGGCGA	1380
ATGGGCTGAC	CGCTTCCTCG	TGCTTTACGG	TATCGCCGCT	CCCGATTCGC	AGCGCATCGC	1440
CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	AGCGGGACTC	TGGGGTTCGA	AATGACCGAC	1500
CAAGCGACGC	CCCGAGCAGG	GCATGAAGCA	GTTCCTTGAC	GAGAAAAGCA	TCAAGCCGGG	1560
CTTGCAGACC	TACAAGCGCT	GATAAATGCG	CCGGGGCCCT	CGCTGCGCCC	CCGGCCTTCC	1620
AATAATGACA	ATAATGAGGA	GTGCCCAATG	TTTCACGTGC	CCCTGCTTAT	TGGTGGTAAG	1680
CCTTGTTCAG	CATCTGATGA	GCGCACCTTC	GAGCGTCGTA	GCCCGCTGAC	CGGAGAAGTG	1740
GTATCGCGCG	TCGCTGCTGC	CAGTTTGGAA	GATGCGGACG	CCGCAGTGGC	CGCTGCACAG	1800
GCTGCGTTTC	CTGAATGGGC	GGCGCTTGCT	CCGAGCGAAC	GCCGTGCCCG	ACTGCTGCGA	1860
GCGGCGGATC	TTCTAGAGGA	CCGTTCTTCC	GAGTTCACCG	CCGCAGCGAG	TGAAACTGGC	1920
	ACTGGTATGG	GTTTAACGTT	TACCTGGCGG	CGGGCATGTT	GCGGGGAATT	1980
С						1981



	GAATTCCCCT	GGCGACGAAA	GGGCGGCAGG	CCGCATGGCC	ACGGCTGGGC	GGTAACTGAT	60
	GCTTGCGTTA	ATCGTTAACC	GTTTGAAATT	CCTTGCCAAA	TTTCGGCGAG	AGAATCATGC	120
	GGGTACGCCT	TTCCGTGCGC	TTTGATCTGC	GCTTCCGTGC	CTTGAATCAG	AAAAATAGTT	180
	AATTGACAGA	ACTATAGGTT	CGCAGTAGCT	TTTGCTCACC	CACCAAATCC	ACAGCACTGG	240
	GGTGCACGAT	GAATAGCTAC	GATGGCCGTT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
	GTATCGCTTG	GGTCACGCTG	AACCGCCCGG	AGAAGCGCAA	CGCAATGAGC	CCAACTCTCA	360
	ATCGAGAGAT	GGTCGAGGTT	CTGGAGGTGC	TGGAGCAGGA	CGCAGATGCT	CGCGTGCTTG	420
	TTCTGACTGG	TGCAGGCGAA	TCCTGGACCG	CGGGCATGGA	CCTGAAGGAG	TATTTCCGCG	480
	AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTCG	TCGGGGGAGA	GGCGGTTTGC	540
	GTATTGGGCG	CATGCATAAA	AACTGTTGTA	ATTCATTAAG	CATTCTGCCG	ACATGGAAGC	600
	CATCACAAAC	GGCATGATGA	ACCTGAATCG	CCAGCGGCAT	CAGCACCTTG	TCGCCTTGCG	660
	TATAATATTT	GCCCATGGAC	GCACACCGTG	GAAACGGATG	AAGGCACGAA	CCCAGTTGAC	720
=	ATAAGCCTGT	TCGCTTCCTA	AACTGTAATG	CAAGTAGCGT	ATGCGCTCAC	GCAACTGGTC	780
	CAGAACCTTG	ACCGAACGCA	GCGGTGGTAA	CGGCGCAGTG	GCGGTTTTCA	TGGCTTGTTA	840
	TGACTGTTTT	TTTGTACAGT	CTATGCCTCG	GGCATCCAAG	CAGCAAGCGC	GTTACGCCGT	900
	GGGTCGATGT	TTGATGTTAT	GGAGCAGCAA	CGATGTTACG	CAGCAGCAAC	GATGTTACGC	960
	AGCAGGGCAG	TCGCCCTAAA	ACAAAGTTAG	GTGGCTCAAG	TATGGGCATC	ATTCGCACAT	1020
۱	GTAGGCTCGG	CCCTGACCAA	GTCAAATCCA	TGCGGGCTGC	TCTTGATCTT	TTCGGTCGTG	1080
,	AGTTCGGAGA	CGTAGCCACC	TACTCCCAAC	ATCAGCCGGA	CTCCGATTAC	CTCGGGAACT	1140
	TGCTCCGTAG	TAAGACATTC	ATCGCGCTTG	CTGCCTTCGA	CCAAGAAGCG	GTTGTTGGCG	1200
	CTCTCGCGGC	TTACGTTCTG	CCCAGGTTTG	AGCAGCCGCG	TAGTGAGATC	TATATCTATG	1260
	ATCTCGCAGT	CTCCGGCGAG	CACCGGAGGC	AGGGCATTGC	CACCGCGCTC	ATCAATCTCC	1320
	TCAAGCATGA	GGCCAACGCG	CTTGGTGCTT	ATGTGATCTA	CGTGCAAGCA	GATTACGGTG	1380
	ACGATCCCGC	AGTGGCTCTC	TATACAAAGT	TGGGCATACG	GGAAGAAGTG	ATGCACTTTG	1440
	ATATCGACCC	AAGTACCGCC	ACCTAACAAT	TCGTTCAAGC	CGAGATCGGC	TTCCCCGAGC	1500
	AGGGCATGAA	GCAGTTCCTT	GACGAGAAAA		GGGCTTGCAG	ACCTACAAGC	1560
	GCTGATAAAT	GCGCCGGGGC	CCTCGCTGCG	CCCCCGGCCT	TCCAATAATG	ACAATAATGA	1620
	GGAGTGCCCA	ATGTTTCACG	TGCCCCTGCT	TATTGGTGGT	AAGCCTTGTT	CAGCATCTGA	1680
	TGAGCGCACC	TTCGAGCGTC	GTAGCCCGCT	GACCGGAGAA	GTGGTATCGC	GCGTCGCTGC	1740
	TGCCAGTTTG	GAAGATGCGG	ACGCCGCAGT	GGCCGCTGCA	CAGGCTGCGT	TTCCTGAATG	1800
	GGCGGCGCTT	GCTCCGAGCG	AACGCCGTGC	CCGACTGCTG	CGAGCGGCGG	ATCTTCTAGA	1860
	GGACCGTTCT	TCCGAGTTCA	CCGCCGCAGC		GGCGCAGCGG	GAAACTGGTA	1920
	TGGGTTTAAC	GTTTACCTGG	CGGCGGGCAT	GTTGCGGGGA	ATTC		1964



	GAATTCCCCT	GGCGACGAAA	GGGCGGCAGG	CCGCATGGCC	ACGGCTGGGC	GGTAACTGAT	60
	GCTTGCGTTA	ATCGTTAACC	GTTTGAAATT	CCTTGCCAAA	TTTCGGCGAG	AGAATCATGC	120
	GGGTACGCCT	TTCCGTGCGC	TTTGATCTGC	GCTTCCGTGC	CTTGAATCAG	AAAAATAGTT	180
	AATTGACAGA	ACTATAGGTT	CGCAGTAGCT	TTTGCTCACC	CACCAAATCC	ACAGCACTGG	240
	GGTGCACGAT	GAATAGCTAC	GATGGCCGTT	GGTCTACCGT	TGATGTGAAG	GTTGAAGAAG	300
	GTATCGCTTG	GGTCACGCTG	AACCGCCCGG	AGAAGCGCAA	CGCAATGAGC	CCAACTCTCA	360
	ATCGAGAGAT	GGTCGAGGTT	CTGGAGGTGC	TGGAGCAGGA	CGCAGATGCT	CGCGTGCTTG	420
	TTCTGACTGG	TGCAGGCGAA	TCCTGGACCG	CGGGCATGGA	CCTGAAGGAG	TATTTCCGCG	480
	AGACCGATGC	TGGCCCCGAA	ATTCTGCAAG	AGAAGATTCG	TCGCGAGCAG	GGCATGAAGC	540
	AGTTCCTTGA	CGAGAAAAGC	ATCAAGCCGG	GCTTGCAGAC	CTACAAGCGC	TGATAAATGC	600
	GCCGGGGCCC	TCGCTGCGCC	CCCGGCCTTC	CAATAATGAC	AATAATGAGG	AGTGCCCAAT	660
	GTTTCACGTG	CCCCTGCTTA	TTGGTGGTAA	GCCTTGTTCA	GCATCTGATG	AGCGCACCTT	720
2	CGAGCGTCGT	AGCCCGCTGA	CCGGAGAAGT	GGTATCGCGC	GTCGCTGCTG	CCAGTTTGGA	780
	AGATGCGGAC	GCCGCAGTGG	CCGCTGCACA	GGCTGCGTTT	CCTGAATGGG	CGGCGCTTGC	840
	TCCGAGCGAA	CGCCGTGCCC	GACTGCTGCG	AGCGGCGGAT	CTTCTAGAGG	ACCGTTCTTC	900
	CGAGTTCACC	GCCGCAGCGA	GTGAAACTGG	CGCAGCGGGA	AACTGGTATG	GGTTTAACGT	960
	TTACCTGGCG	GCGGGCATGT	TGCGGGGAAT	TC			992





	GAATTCCAAT	AATGACAATA	ATGAGGAGTG	CCCAATGTTT	CACGTGCCCC	TGCTTATTGG	60
	TGGTAAGCCT	TGTTCAGCAT	CTGATGAGCG	CACCTTCGAG	CGTCGTAGCC	CGCTGACCGG	120
	AGAAGTGGTA	TCGCGCGTCG	CTGCTGCCAG	TTTGGAAGAT	GCGGACGCCG	CAGTGGCCGC	180
	TGCACAGGCT	GCGTTTCCTG	AATGGGCGGC	GCTTGCTCCG	AGCGAACGCC	GTGCCCGACT	240
	GCTGCGAGCG	GCGGATCTTC	TAGAGGACCG	TTCTTCCGAG	TTCACCGCCG	CAGCGAGTGA	300
	AACTGGCGCA	GCGGGAAACT	GGTATGGGTT	TAACGTTTAC	CTGGCGGCGG	GCATGTTGCG	360
	GGAAGCCGCG	GCCATGACCA	CACAGATTCA	GGGCGATGTC	ATTCCGTCCA	ATGTGCCCGG	420
	TAGCTTTGCC	ATGGCGGTTC	GACAGCCATG	TGGCGTGGTG	CTCGGTATTG	CGCCTTGGAA	480
	TGCTCCGGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCG	GCAATACCGT	540
	GGTGTTGAAA	AGCTCTGAGC	TGAGTCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGTTGCA	600
	TGATGCTGGT	CTGGGGGATG	GCGTGGTGAA	TGTCATCAGC	AATGCCCCGC	AAGACGCTCC	660
	TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGAACT	TCACCGGTTC	720
	CACCCACGTT	GGACGGATCA	TTGGTGAGCT	GTCTGCGCGT	CATCTGAAGC	CTGCTGTGCT	780
	GGAATTAGGT	GGTAAGGCTC	CGTTCTTGGT	CTTGGACGAT	GCCGACCTCG	ATGCGGCGGT	840
	CGAAGCGGCG	GCCTTTGGTG	CCTACTTCAA	TCAGGGTCAA	ATCTGCATGT	CCACTGAGCG	900
	TCTGATTGTG	ACAGCAGTCG	CAGACGCCTT	TGTTGAAAAG	CTGGCGAGGA	AGGTCGCCAC	960
	ACTGCGTGCT	GGCGATCCTA	ATGATCCGCA		GGTTCGTTGA	TTGATGCCAA	1020
	TGCAGGTCAA		TTCTGGTCGA		GGGGACAGCA	AGCGAACCGG	1080
,	AATTGCCAGC	TGGGGCGCCC	TCTGGTAAGG		CTGCAAAGTA	AACTGGATGG	1140
	CTTTCTTGCC	GCCAAGGATC	TGATGGCGCA		ATCTGATCAA	GAGACAGGAT	1200
	GAGGATCGTT	TCGCATGATT	GAACAAGATG	GATTGCACGC	AGGTTCTCCG	GCCGCTTGGG	1260
	TGGAGAGGCT	ATTCGGCTAT	GACTGGGCAC	AACAGACAAT	CGGCTGCTCT	GATGCCGCCG	1320
	TGTTCCGGCT	GTCAGCGCAG	GGGCGCCCGG	TTCTTTTTGT	CAAGACCGAC	CTGTCCGGTG	1380
	CCCTGAATGA	ACTGCAGGAC	GAGGCAGCGC	GGCTATCGTG	GCTGGCCACG	ACGGGCGTTC	1440
	CTTGCGCAGC	TGTGCTCGAC		AAGCGGGAAG	GGACTGGCTG	CTATTGGGCG	1500
		GCAGGATCTC	CTGTCATCTC			GTATCCATCA	1560
			CTGCATACGC		TACCTGCCCA	TTCGACCACC	1620
	AAGCGAAACA	TCGCATCGAG	CGAGCACGTA			GTCGATCAGG	1680
		CGAAGAGCAT		CGCCAGCCGA	ACTGTTCGCC	AGGCTCAAGG	1740
	CGCGCATGCC	CGACGGCGAG		TGACCCATGG	CGATGCCTGC	TTGCCGAATA	1800
	TCATGGTGGA	AAATGGCCGC	TTTTCTGGAT	TCATCGACTG	TGGCCGGCTG	GGTGTGGCGG	1860
		GGACATAGCG	TTGGCTACCC	GTGATATTGC	TGAAGAGCTT	GGCGGCGAAT	1920
	GGGCTGACCG	CTTCCTCGTG		TCGCCGCTCC		CGCATCGCCT	1980
	TCTATCGCCT	TCTTGACGAG		CGGGACTCTG		TGACCGACCA	2040
	AGCGACGCCC	GGCCCAGCGC		GCATTTGCCA		CCGACTGTGC	2100
	ATGACGAGGC	TCAGATGCCA	TTCGGTGGGG	TGAAGTCCAG	CGGCTACGGC	AGCTTCGGCA	2160



GTCGAGCATC	GATTGAGCAC	TTTACCCAGC	TGCGCTGGCT	GACCATTCAG	AATGGCCCGC	2220
GGCACTATCC	AATCTAAATC	GATCTTCGGG	CGCCGCGGC	ATCATGCCCG	CGGCGCTCGC	2280
CTCATTTCAA	TCTCTAACTT	GATAAAAACA	GAGCTGTTCT	CCGGTCTTGG	TGGATCAAGG	2340
CCAGTCGCGG	AGAGTCTCGA	AGAGGAGAGT	ACAGTGAACG	CCGAGTCCAC	ATTGCAACCG	2400
CAGGCATCAT	CATGCTCTGC	TCAGCCACGC	TACCGCAGTG	TGTCGATTGG	TCATCCTCCG	2460
GTTGAGGTTA	CGCAAGACGC	TGGAGGTATT	GTCCGGATGC	GTTCTCTCGA	GGCGCTTCTT	2520
CCCTTCCCGG	GTGGAATTC					2539





GAATTCCAAT	AATGACAATA	ATGAGGAGTG	CCCAATGTTT	CACGTGCCCC	TGCTTATTGG	60
TGGTAAGCCT	TGTTCAGCAT	CTGATGAGCG	CACCTTCGAG	CGTCGTAGCC	CGCTGACCGG	120
AGAAGTGGTA	TCGCGCGTCG	CTGCTGCCAG	TTTGGAAGAT	GCGGACGCCG	CAGTGGCCGC	180
TGCACAGGCT	GCGTTTCCTG	AATGGGCGGC	GCTTGCTCCG	AGCGAACGCC	GTGCCCGACT	240
GCTGCGAGCG	GCGGATCTTC	TAGAGGACCG	TTCTTCCGAG	TTCACCGCCG	CAGCGAGTGA	300
AACTGGCGCA	GCGGGAAACT	GGTATGGGTT	TAACGTTTAC	CTGGCGGCGG	GCATGTTGCG	360
GGAAGCCGCG	GCCATGACCA	CACAGATTCA	GGGCGATGTC	ATTCCGTCCA	ATGTGCCCGG	420
TAGCTTTGCC	ATGGCGGTTC	GACAGCCATG	TGGCGTGGTG	CTCGGTATTG	CGCCTTGGAA	480
TGCTCCGGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCG	GCAATACCGT	540
GGTGTTGAAA	AGCTCTGAGC	TGAGTCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGTTGCA	600
TGATGCTGGT	CTGGGGGATG	GCGTGGTGAA	TGTCATCAGC	AATGCCCCGC	AAGACGCTCC	660
TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGAACT	TCACCGGTTC	720
GACCCACGTT	GGACGGATCA	TTGGTGAGCT	GTCTGCGCGT	CATCTGAAGC	CTGCTGTGCT	780
GGAATTAGGT	GGTAAGGCTC	CGTTCTTGGT	CTTGGACGAT	GCCGACCTCG	ATGCGGCGGT	840
CGAAGCGGCG	GCCTTTGGTG	CCTACTTCAA	TCAGGGTCAA	ATCTGCATGT	CCACTGAGCG	900
TCTGATTGTG	ACAGCAGTCG	CAGACGCCTT	TGTTGAAAAG	CTGGCGAGGA	AGGTCGCCAC	960
ACTGCGTGCT	GGCGATCCTA	ATGATCCGCA	ATCGGTCTTG	GGTTCGTTGA	TTGATGCCAA	1020
TGCAGGTCAA	CGCATCCAGG	TGGGGAGAGG	CGGTTTGCGT	ATTGGGCGCA	TGCATAAAAA	1080
CTGTTGTAAT	TCATTAAGCA	TTCTGCCGAC	ATGGAAGCCA	TCACAAACGG	CATGATGAAC	1140
CTGAATCGCC	AGCGGCATCA	GCACCTTGTC	GCCTTGCGTA	TAATATTTGC	CCATGGACGC	1200
ACACCGTGGA	AACGGATGAA	GGCACGAACC	CAGTTGACAT	AAGCCTGTTC	GGTTCGTAAA	1260
CTGTAATGCA	AGTAGCGTAT	GCGCTCACGC	AACTGGTCCA	GAACCTTGAC	CGAACGCAGC	1320
GGTGGTAACG	GCGCAGTGGC	GGTTTTCATG	GCTTGTTATG	ACTGTTTTTT	TGTACAGTCT	1380
ATGCCTCGGG	CATCCAAGCA	GCAAGCGCGT	TACGCCGTGG	GTCGATGTTT	GATGTTATGG	1440
AGCAGCAACG	ATGTTACGCA	GCAGCAACGA	TGTTACGCAG	CAGGGCAGTC	GCCCTAAAAC	1500
AAAGTTAGGT	GGCTCAAGTA	TGGGCATCAT	TCGCACATGT	AGGCTCGGCC	CTGACCAAGT	1560
CAAATCCATG	CGGGCTGCTC	TTGATCTTTT	CGGTCGTGAG	TTCGGAGACG	TAGCCACCTA	1620
CTCCCAACAT	CAGCCGGACT	CCGATTACCT	CGGGAACTTG	CTCCGTAGTA	AGACATTCAT	1680
CGCGCTTGCT	GCCTTCGACC	AAGAAGCGGT	TGTTGGCGCT	CTCGCGGCTT	ACGTTCTGCC	1740
CAGGTTTGAG	CAGCCGCGTA	GTGAGATCTA	TATCTATGAT	CTCGCAGTCT	CCGGCGAGCA	1800
CCGGAGGCAG	GGCATTGCCA	CCGCGCTCAT	CAATCTCCTC	AAGCATGAGG	CCAACGCGCT	1860
TGGTGCTTAT	GTGATCTACG	TGCAAGCAGA	TTACGGTGAC	GATCCCGCAG	TGGCTCTCTA	1920
TACAAAGTTG	GGCATACGGG	AAGAAGTGAT	GCACTTTGAT	ATCGACCCAA	GTACCGCCAC	1980
CTAACAATTC	GTTCAAGCCG	AGATCGGCTT	CCCAATTGGC	CCAGCGCGTC	GATTCGGGCA	2040
TTTGCCATAT	CAATGGACCG	ACTGTGCATG		GATGCCATTC		2100
AGTCCAGCGG	CTACGGCAGC	TTCGGCAGTC	GAGCATCGAT	TGAGCACTTT	ACCCAGCTGC	2160



GCTGGCTGAC	CATTCAGAAT	GGCCCGCGGC	ACTATCCAAT	CTAAATCGAT	CTTCGGGCGC	2220
CGCGGGCATC	ATGCCCGCGG	CGCTCGCCTC	ATTTCAATCT	CTAACTTGAT	AAAAACAGAG	2280
CTGTTCTCCG	GTCTTGGTGG	ATCAAGGCCA	GTCGCGGAGA	GTCTCGAAGA	GGAGAGTACA	2340
GTGAACGCCG	AGTCCACATT	GCAACCGCAG	GCATCATCAT	GCTCTGCTCA	GCCACGCTAC	2400
CGCAGTGTGT	CGATTGGTCA	TCCTCCGGTT	GAGGTTACGC	AAGACGCTGG	AGGTATTGTC	2460
CGGATGCGTT	CTCTCGAGGC	GCTTCTTCCC	TTCCCGGGTG	GAATTC		2506





GAATTCCAAT	AATGACAATA	ATGAGGAGTG	CCCAATGTTT	CACGTGCCCC	TGCTTATTGG	60
TGGTAAGCCT	TGTTCAGCAT	CTGATGAGCG	CACCTTCGAG	CGTCGTAGCC	CGCTGACCGG	120
AGAAGTGGTA	TCGCGCGTCG	CTGCTGCCAG	TTTGGAAGAT	GCGGACGCCG	CAGTGGCCGC	180
TGCACAGGCT	GCGTTTCCTG	AATGGGCGGC	GCTTGCTCCG	AGCGAACGCC	GTGCCCGACT	240
GCTGCGAGCG	GCGGATCTTC	TAGAGGACCG	TTCTTCCGAG	TTCACCGCCG	CAGCGAGTGA	300
AACTGGCGCA	GCGGGAAACT	GGTATGGGTT	TAACGTTTAC	CTGGCGGCGG	GCATGTTGCG	360
GGAAGCCGCG	GCCATGACCA	CACAGATTCA	GGGCGATGTC	ATTCCGTCCA	ATGTGCCCGG	420
TAGCTTTGCC	ATGGCGGTTC	GACAGCCATG	TGGCGTGGTG	CTCGGTATTG	CGCCTTGGAA	480
TGCTCCGGTA	ATCCTTGGCG	TACGGGCTGT	TGCGATGCCG	TTGGCATGCG	GCAATACCGT	540
GGTGTTGAAA	AGCTCTGAGC	TGAGTCCCTT	TACCCATCGC	CTGATTGGTC	AGGTGTTGCA	600
TGATGCTGGT	CTGGGGGATG	GCGTGGTGAA	TGTCATCAGC	AATGCCCCGC	AAGACGCTCC	660
TGCGGTGGTG	GAGCGACTGA	TTGCAAATCC	TGCGGTACGT	CGAGTGAACT	TCACCGGTTC	720
CACCCACCTT	CCACCCATCA	TTCCTCACCT	CTCTGCGCGT	CATCTCAAGC	CTCCTCTCCT.	780
GGAATTAGGT	GGTAAGGCTC	CGTTCTTGGT	CTTGGACGAT	GCCGACCTCG	ATGCGGCGGT	840
GGAATTAGGT CGAAGCGGCG	GGTAAGGCTC GCCTTTGGTG	CGTTCTTGGT CCTACTTCAA			ATGCGGCGGT CCACTGAGCG	900
			TCAGGGTCAA		CCACTGAGCG	
CGAAGCGGCG	GCCTTTGGTG ACAGCAGTCG	CCTACTTCAA	TCAGGGTCAA TGTTGAAAAG	ATCTGCATGT	CCACTGAGCG AGGTCGCCAC	900
CGAAGCGGCG TCTGATTGTG	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA	CCTACTTCAA CAGACGCCTT	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG	ATCTGCATGT CTGGCGAGGA	CCACTGAGCG AGGTCGCCAC	900 960
CGAAGCGGCG TCTGATTGTG ACTGCGTGCT	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA CGCATCCAGG	CCTACTTCAA CAGACGCCTT ATGATCCGCA	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG	ATCTGCATGT CTGGCGAGGA GGTTCGTTGA	CCACTGAGCG AGGTCGCCAC TTGATGCCAA	900 960 1020
CGAAGCGGCG TCTGATTGTG ACTGCGTGCT TGCAGGTCAA	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA CGCATCCAGG	CCTACTTCAA CAGACGCCTT ATGATCCGCA TTCTGGTCGA GGGCATTTGC	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG TGATGCGCTC	ATCTGCATGT CTGGCGAGGA GGTTCGTTGA GCAAAAGGCG	CCACTGAGCG AGGTCGCCAC TTGATGCCAA CGCAATGGAA	900 960 1020 1080
CGAAGCGGCG TCTGATTGTG ACTGCGTGCT TGCAGGTCAA TTGGCCCAGC	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA CGCATCCAGG GCGTCGATTC	CCTACTTCAA CAGACGCCTT ATGATCCGCA TTCTGGTCGA GGGCATTTGC GGTGAAGTCC	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG TGATGCGCTC CATATCAATG	ATCTGCATGT CTGGCGAGGA GGTTCGTTGA GCAAAAGGCG GACCGACTGT GCAGCTTCGG	CCACTGAGCG AGGTCGCCAC TTGATGCCAA CGCAATGGAA GCATGACGAG CAGTCGAGCA	900 960 1020 1080 1140
CGAAGCGGCG TCTGATTGTG ACTGCGTGCT TGCAGGTCAA TTGGCCCAGC GCTCAGATGC	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA CGCATCCAGG GCGTCGATTC CATTCGGTGG ACTTTACCCA	CCTACTTCAA CAGACGCCTT ATGATCCGCA TTCTGGTCGA GGGCATTTGC GGTGAAGTCC	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG TGATGCGCTC CATATCAATG AGCGGCTACG	ATCTGCATGT CTGGCGAGGA GGTTCGTTGA GCAAAAGGCG GACCGACTGT GCAGCTTCGG AGAATGGCCC	CCACTGAGCG AGGTCGCCAC TTGATGCCAA CGCAATGGAA GCATGACGAG CAGTCGAGCA	900 960 1020 1080 1140 1200
CGAAGCGGCG TCTGATTGTG ACTGCGTGCT TGCAGGTCAA TTGGCCCAGC GCTCAGATGC TCGATTGAGC	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA CGCATCCAGG GCGTCGATTC CATTCGGTGG ACTTTACCCA	CCTACTTCAA CAGACGCCTT ATGATCCGCA TTCTGGTCGA GGGCATTTGC GGTGAAGTCC GCTGCGCTGG GGCGCCGCGG	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG TGATGCGCTC CATATCAATG AGCGGCTACG CTGACCATTC	ATCTGCATGT CTGGCGAGGA GGTTCGTTGA GCAAAAGGCG GACCGACTGT GCAGCTTCGG AGAATGGCCC	CCACTGAGCG AGGTCGCCAC TTGATGCCAA CGCAATGGAA GCATGACGAG CAGTCGAGCA GCGGCACTAT GCCTCATTTC	900 960 1020 1080 1140 1200 1260
CGAAGCGGCG TCTGATTGTG ACTGCGTGCT TGCAGGTCAA TTGGCCCAGC GCTCAGATGC TCGATTGAGC CCAATCTAAA	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA CGCATCCAGG GCGTCGATTC CATTCGGTGG ACTTTACCCA TCGATCTTCG	CCTACTTCAA CAGACGCCTT ATGATCCGCA TTCTGGTCGA GGGCATTTGC GGTGAAGTCC GCTGCGCTGG GGCGCCGCGG CAGAGCTGTT	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG TGATGCGCTC CATATCAATG AGCGGCTACG CTGACCATTC GCATCATGCC	ATCTGCATGT CTGGCGAGGA GGTTCGTTGA GCAAAAGGCG GACCGACTGT GCAGCTTCGG AGAATGGCCC CGCGGCGCTC	CCACTGAGCG AGGTCGCCAC TTGATGCCAA CGCAATGGAA GCATGACGAG CAGTCGAGCA GCGGCACTAT GCCTCATTTC GGCCAGTCGC	900 960 1020 1080 1140 1200 1260 1320
CGAAGCGGCG TCTGATTGTG ACTGCGTGCT TGCAGGTCAA TTGGCCCAGC GCTCAGATGC TCGATTGAGC CCAATCTAAA AATCTCTAAC	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA CGCATCCAGG GCGTCGATTC CATTCGGTGG ACTTTACCCA TCGATCTTCG TTGATAAAAA GAAGAGGAGA GCTCAGCCAC	CCTACTTCAA CAGACGCCTT ATGATCCGCA TTCTGGTCGA GGGCATTTGC GGTGAAGTCC GCTGCGCTGG GGCGCCGCGG CAGAGCTGTT GTACAGTGAA GCTACCGCAG	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG TGATGCGCTC CATATCAATG AGCGGCTACG CTGACCATTC GCATCATGCC CTCCGGTCTT CGCCGAGTCC TGTGTCGATT	ATCTGCATGT CTGGCGAGGA GGTTCGTTGA GCAAAAGGCG GACCGACTGT GCAGCTTCGG AGAATGGCCC CGCGGCGCTC GGTGGATCAA ACATTGCAAC GGTCATCCTC	CCACTGAGCG AGGTCGCCAC TTGATGCCAA CGCAATGGAA GCATGACGAG CAGTCGAGCA GCGGCACTAT GCCTCATTTC GGCCAGTCGC	900 960 1020 1080 1140 1200 1320 1380 1440 1500
CGAAGCGGCG TCTGATTGTG ACTGCGTGCT TGCAGGTCAA TTGGCCCAGC GCTCAGATGC TCGATTGAGC CCAATCTAAA AATCTCTAAC GGAGAGTCTC	GCCTTTGGTG ACAGCAGTCG GGCGATCCTA CGCATCCAGG GCGTCGATTC CATTCGGTGG ACTTTACCCA TCGATCTTCG TTGATAAAAA GAAGAGGAGA GCTCAGCCAC	CCTACTTCAA CAGACGCCTT ATGATCCGCA TTCTGGTCGA GGGCATTTGC GGTGAAGTCC GCTGCGCTGG GGCGCCGCGG CAGAGCTGTT GTACAGTGAA GCTACCGCAG	TCAGGGTCAA TGTTGAAAAG ATCGGTCTTG TGATGCGCTC CATATCAATG AGCGGCTACG CTGACCATTC GCATCATGCC CTCCGGTCTT CGCCGAGTCC	ATCTGCATGT CTGGCGAGGA GGTTCGTTGA GCAAAAGGCG GACCGACTGT GCAGCTTCGG AGAATGGCCC CGCGGCGCTC GGTGGATCAA ACATTGCAAC GGTCATCCTC	CCACTGAGCG AGGTCGCCAC TTGATGCCAA CGCAATGGAA GCATGACGAG CAGTCGAGCA GCGGCACTAT GCCTCATTTC GGCCAGTCGC CGCAGGCATC	900 960 1020 1080 1140 1200 1320 1380 1440



	GAATTCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60
	GTGACGAGGC	CACACTGTGA	GTTGGTCAGG	GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	120
	GTTGGTTGCG	GCAGTGCGCA	CCCCCTGGAT	TGATTGCGGG	GGTGCCCTGT	CGCTGGTGTC	180
	GCCTATCGAC	TTAGGGGTAA	AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	240
	ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	300
	GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGGT	360
	GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	420
	AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	480
	GTATACACAC	CGGGGCGGGT	TCCGCCTCGG	TGCGCCCGTT	GAGTTCAAGG	ATTTTTTGTG	540
	GGAGGCATTG	TTTGATCCTG	CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGG	600
	GACAGCAAGC	GAACCGGAAT	TGCCAGCTGG	GGCGCCCTCT	GGTAAGGTTG	GGAAGCCCTG	660
	CAAAGTAAAC	TGGATGGCTT	TCTTGCCGCC	AAGGATCTGA	TGGCGCAGGG	GATCAAGATC	720
_	TGATCAAGAG	ACAGGATGAG	GATEGTTTCG	CATGATTGAA	CAAGATGGAT	TGCACGCAGG	780
	TTCTCCGGCC	GCTTGGGTGG	AGAGGCTATT	CGGCTATGAC	TGGGCACAAC	AGACAATCGG	840
	CTGCTCTGAT	GCCGCCGTGT	TCCGGCTGTC	AGCGCAGGGG	CGCCCGGTTC	TTTTTGTCAA	900
	GACCGACCTG	TCCGGTGCCC	TGAATGAACT	GCAGGACGAG	GCAGCGCGGC	TATCGTGGCT	960
	GGCCACGACG	GGCGTTCCTT	GCGCAGCTGT	GCTCGACGTT	GTCACTGAAG	CGGGAAGGGA	1020
	CTGGCTGCTA	TTGGGCGAAG	TGCCGGGGCA	GGATCTCCTG	TCATCTCACC	TTGCTCCTGC	1080
,	CGAGAAAGTA	TCCATCATGG	CTGATGCAAT	GCGGCGGCTG	CATACGCTTG	ATCCGGCTAC	1140
	CTGCCCATTC	GACCACCAAG	CGAAACATCG	CATCGAGCGA	GCACGTACTC	GGATGGAAGC	1200
	CGGTCTTGTC	GATCAGGATG	ATCTGGACGA	AGAGCATCAG	GGGCTCGCGC	CAGCCGAACT	1260
	GTTCGCCAGG	CTCAAGGCGC	GCATGCCCGA	CGGCGAGGAT	CTCGTCGTGA	CCCATGGCGA	1320
	TGCCTGCTTG	CCGAATATCA	TGGTGGAAAA	TGGCCGCTTT	TCTGGATTCA	TCGACTGTGG	1380
	CCGGCTGGGT	GTGGCGGACC	GCTATCAGGA	CATAGCGTTG	GCTACCCGTG	ATATTGCTGA	1440
	AGAGCTTGGC	GGCGAATGGG	CTGACCGCTT	CCTCGTGCTT	TACGGTATCG	CCGCTCCCGA	1500
	TTCGCAGCGC	ATCGCCTTCT	ATCGCCTTCT	TGACGAGTTC	TTCTGAGCGG	GACTCTGGGG	1560
	TTCGAAATGA	CCGACCAAGC	GACGCCCATT	GAGGGCGCAA	GAGGAGAAAT	GGATTGACCA	1620
	AGAGATCGTG	GCTGTTACGG	ATGAACAGTT	CGATTTAGAG	GGCTACAACA	GTCGAGCAAT	1680
	TGAACTGCCT	CGGAAGGCAA	AATTGTTGAT	CGTGACAGTC	ATCCGCGGCC	TAGCAGTCTT	1740
	TGAAGCCCTT	TCCCGATTGA	AGCCTGTTCA	TTCTGGCGGG	GTGCAGACTG	CGGGCAACAG	1800
	CTGTGCCGTA	GTGGACGGCG	CCGCGGCGGC	TTTGGTGGCT	CGAGAGTCGT	CTGCGACACA	1860
	GCCGGTCTTG	GCTAGGATAC	TGGCTACCTC	CGTAGTCGGG	ATCGAGCCCG	AGCATATGGG	1920
	GCTCGGCCCT	GCGCCCGCGA			AGTGATCTTA	GTTTGAGGGA	1980
	TATCGACCTC		ACGAGGCGCA			TACAGCATGA	2040
		GAGCACTCAA			GCCATTGCAC	TTGGACACCC	2100
	GCTTGCCGCG	ACCGGATTGC	GTCTCTGCAT	GACCCTCGCT	CACCAATTGC	AAGCTAATAA	2160

CTTTCGATAT	GGAATTGCCT	CGGCATGCAT	TGGTGGGGGA	CAGGGGATGG	CGGTTCTTTT	2220
AGAGAATCCC	CACTTCGGTT	CGTCCTCTGC	ACGAAGTTCG	ATGATTAACA	GAGTTGACCA	2280
CTATCCACTG	AGCTAACGGG	CATCTCCTTT	GTTGCTTTGA	GGTGGCGCAC	GAAGGAGGC	2340
TCGAAAATCT	CTGCTAAAAA	CAAGAAGAAG	GAACAGGGAA	CATGATTAGT	TTCGCTCGTA	2400
TGGCAGAAAG	TTTAGGAGTC	CAGGCTAAAC	TTGCCCTTGC	CTTCGCACTC	GTATTATGTG	2460
TCGGGCTGAT	TGTTACCGGC	ACGGGTTTCT	ACAGTGTACA	TACCTTGTCA	GGGTTGGTGG	2520
GAATTC						2526





		•					
	GAATTCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60
	GTGACGAGGC	CACACTGTGA	GTTGGTCAGG	GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	120
	GTTGGTTGCG	GCAGTGCGCA	CCCCCTGGAT	TGATTGCGGG	GGTGCCCTGT	CGCTGGTGTC	180
	GCCTATCGAC	TTAGGGGTAA	AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	240
	ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	300
	GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGGT	360
	GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	420
	AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	480
	GTATACACAC	CGGGGCGGGT	TCCGCCTCGG	TGCGCCCGTT	GAGTTCAAGG	ATTTTTTGTG	540
	GGAGGCATTG	TTTGATCCTG	CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGG	600
	GGAGAGGCGG	TTTGCGTATT	GGGCGCATGC	ATAAAAACTG	TTGTAATTCA	TTAAGCATTC	660
	TGCCGACATG	GAAGCCATCA	CAAACGGCAT	GATGAACCTG	AATCGCCAGC	GGCATCAGCA	720
_	CCTTGTCGCC	TTGCGTATAA	TATTTGCCCA	TGGACGCACA	CCGTGGAAAC	GGATGAAGGC	780
	ACGAACCCAG	TTGACATAAG	CCTGTTCGGT	TCGTAAACTG	TAATGCAAGT	AGCGTATGCG	840
	CTCACGCAAC	TGGTCCAGAA	CCTTGACCGA	ACGCAGCGGT	GGTAACGGCG	CAGTGGCGGT	900
	TTTCATGGCT	TGTTATGACT	GTTTTTTTGT	ACAGTCTATG	CCTCGGGCAT	CCAAGCAGCA	960
	AGCGCGTTAC	GCCGTGGGTC	GATGTTTGAT	GTTATGGAGC	AGCAACGATG	TTACGCAGCA	1020
	GCAACGATGT	TACGCAGCAG	GGCAGTCGCC	CTAAAACAAA	GTTAGGTGGC	TCAAGTATGG	1080
,	GCATCATTCG	CACATGTAGG	CTCGGCCCTG	ACCAAGTCAA	ATCCATGCGG	GCTGCTCTTG	1140
	ATCTTTTCGG	TCGTGAGTTC	GGAGACGTAG	CCACCTACTC	CCAACATCAG	CCGGACTCCG	1200
	ATTACCTCGG	GAACTTGCTC	CGTAGTAAGA	CATTCATCGC	GCTTGCTGCC	TTCGACCAAG	1260
	AAGCGGTTGT	TGGCGCTCTC	GCGGCTTACG	TTCTGCCCAG		CCGCGTAGTG	1320
	AGATCTATAT	CTATGATCTC	GCAGTCTCCG	GCGAGCACCG	GAGGCAGGGC	ATTGCCACCG	1380
	CGCTCATCAA	TCTCCTCAAG	CATGAGGCCA	ACGCGCTTGG	TGCTTATGTG	ATCTACGTGC	1440
	AAGCAGATTA	CGGTGACGAT	CCCGCAGTGG	CTCTCTATAC	AAAGTTGGGC	ATACGGGAAG	1500
	AAGTGATGCA	CTTTGATATC	GACCCAAGTA	CCGCCACCTA	ACAATTCGTT	CAAGCCGAGA	1560
				AATGGATTGA		GTGGCTGTTA	1620
	CGGATGAACA	GTTCGATTTA	GAGGGCTACA	ACAGTCGAGC		CCTCGGAAGG	1680
	CAAAATTGTT		GTCATCCGCG		CTTTGAAGCC	CTTTCCCGAT	1740
	TGAAGCCTGT	TCATTCTGGC		CTGCGGGCAA		GTAGTGGACG	1800
	GCGCCGCGGC	GGCTTTGGTG	GCTCGAGAGT	CGTCTGCGAC	ACAGCCGGTC	TTGGCTAGGA	1860
	TACTGGCTAC				GGGGCTCGGC	CCTGCGCCCG	1920
	CGATTCGCCT	GCTGCTTGCG	CGTAGTGATC	TTAGTTTGAG	GGATATCGAC	CTCTTTGAGA	1980
	TAAACGAGGC		CAAGTTCTAG			ATTGAGCACT	2040
				CACTTGGACA		GCGACCGGAT	2100
	TGCGTCTCTG	CATGACCCTC	GCTCACCAAT	TGCAAGCTAA	TAACTTTCGA	TATGGAATTG	2160



CCTCGGCATG	CATTGGTGGG	GGACAGGGGA	TGGCGGTTCT	TTTAGAGAAT	CCCCACTTCG	2220
GTTCGTCCTC	TGCACGAAGT	TCGATGATTA	ACAGAGTTGA	CCACTATCCA	CTGAGCTAAC	2280
GGGCATCTCC	TTTGTTGCTT	TGAGGTGGCG	CACGAAGGAG	GGCTCGAAAA	TCTCTGCTAA	2340
AAACAAGAAG	AAGGAACAGG	GAACATGATT	AGTTTCGCTC	GTATGGCAGA	AAGTTTAGGA	2400
GTCCAGGCTA	AACTTGCCCT	TGCCTTCGCA	CTCGTATTAT	GTGTCGGGCT	GATTGTTACC	2460
GGCACGGGTT	TCTACAGTGT	ACATACCTTG	TCAGGGTTGG	TGGGAATTC		2509





	GAATTCCGCG	GTCGGCGAAA	GTTGATGCGC	TGTATCGTGG	TGAAGATCAA	TCCATGCTGC	60
	GTGACGAGGC	CACACTGTGA	GTTGGTCAGG	GGGGGCTTAC	TCGGCGTTTT	CCGACACTGC	120
	GTTGGTTGCG	GCAGTGCGCA	CCCCCTGGAT	TGATTGCGGG	GGTGCCCTGT	CGCTGGTGTC	180
	GCCTATCGAC	TTAGGGGTAA	AGGTCGCTCG	CGAAGTTCTG	ATGCGTGCGT	CGCTTGAACC	240
	ACAAATGGTC	GATAGCGTAC	TCGCAGGCTC	TATGGCTCAA	GCAAGCTTTG	ATGCTTACCT	300
	GCTCCCGCGG	CACATTGGCT	TGTACAGCGG	TGTTCCCAAG	TCGGTTCCGG	CCTTGGGGGT	360
	GCAGCGCATT	TGCGGCACAG	GCTTCGAACT	GCTTCGGCAG	GCCGGCGAGC	AGATTTCCCA	420
	AGGCGCTGAT	CACGTGCTGT	GTGTCGCGGC	AGAGTCCATG	TCGCGTAACC	CCATCGCGTC	480
	GTATACACAC	CGGGGCGGGT	TCCGCCTCGG	TGCGCCCGTT	GAGTTCAAGG	ATTTTTTGTG	540
	GGAGGCATTG	TTTGATCCTG	CTCCAGGACT	CGACATGATC	GCTACCGCAG	AAAACCTGGC	600
	GCGCATTGAG	GGCGCAAGAG	GAGAAATGGA	TTGACCAAGA	GATCGTGGCT	GTTACGGATG	660
	AACAGTTCGA	TTTAGAGGGC	TACAACAGTC	GAGCAATTGA	ACTGCCTCGG	AAGGCAAAAT	720
-	TCTTCATCCT	CACACTGATE	CCCCCCTAC	CACTETTTCA	ACCCCTTTCC	CEMPTEMAGE	780
	TCTTCATCCT CTGTTCATTC	TGGCGGGGTG	CCCCCCTAC CAGACTGCGG	CACTOTTTCA GCAACAGCTG	ACCCCTTTCC TGCCGTAGTG	GACGGCGCCG	840
		311011010111	0000001110	-0.1010111011			
	CTGTTCATTC	TGGCGGGGTG	CAGACTGCGG	GCAACAGCTG	TGCCGTAGTG	GACGGCGCCG	840
	CTGTTCATTC CGGCGGCTTT	TGGCGGGGTG GGTGGCTCGA	CAGACTGCGG GAGTCGTCTG	GCAACAGCTG CGACACAGCC	TGCCGTAGTG GGTCTTGGCT	GACGGCGCCG AGGATACTGG	840 900
_	CTGTTCATTC CGGCGGCTTT CTACCTCCGT	TGGCGGGGTG GGTGGCTCGA AGTCGGGATC	CAGACTGCGG GAGTCGTCTG GAGCCCGAGC	GCAACAGCTG CGACACAGCC ATATGGGGCT	TGCCGTAGTG GGTCTTGGCT CGGCCCTGCG	GACGGCGCCG AGGATACTGG CCCGCGATTC	840 900 960
	CTGTTCATTC CGGCGGCTTT CTACCTCCGT GCCTGCTGCT	TGGCGGGGTG GGTGGCTCGA AGTCGGGATC TGCGCGTAGT	CAGACTGCGG GAGTCGTCTG GAGCCCGAGC GATCTTAGTT	GCAACAGCTG CGACACAGCC ATATGGGGCT TGAGGGATAT	TGCCGTAGTG GGTCTTGGCT CGGCCCTGCG CGACCTCTTT	GACGCCCC AGGATACTGC CCCGCGATTC GAGATAAACG	840 900 960 1020
	CTGTTCATTC CGGCGGCTTT CTACCTCCGT GCCTGCTGCT AGGCGCAGGC	TGGCGGGGTG GGTGGCTCGA AGTCGGGATC TGCGCGTAGT CGCCCAAGTT	CAGACTGCGG GAGTCGTCTG GAGCCCGAGC GATCTTAGTT CTAGCGGTAC	GCAACAGCTG CGACACAGCC ATATGGGGCT TGAGGGATAT AGCATGAATT	TGCCGTAGTG GGTCTTGGCT CGGCCCTGCG CGACCTCTTT GGGTATTGAG	GACGCCCC AGGATACTGC CCCGCGATTC GAGATAAACC CACTCAAAAC	840 900 960 1020 1080
	CTGTTCATTC CGGCGGCTTT CTACCTCCGT GCCTGCTGCT AGGCGCAGGC TTAATATTTG	TGGCGGGGTG GGTGGCTCGA AGTCGGGATC TGCGCGTAGT CGCCCAAGTT GGGCGGGGCC	CAGACTGCGG GAGTCGTCTG GAGCCCGAGC GATCTTAGTT CTAGCGGTAC ATTGCACTTG	GCAACAGCTG CGACACAGCC ATATGGGGCT TGAGGGATAT AGCATGAATT GACACCCGCT	TGCCGTAGTG GGTCTTGGCT CGGCCCTGCG CGACCTCTTT GGGTATTGAG TGCCGCGACC	GACGCCCG AGGATACTGG CCCGCGATTC GAGATAAACG CACTCAAAAC GGATTGCGTC	840 900 960 1020 1080 1140
	CTGTTCATTC CGGCGGCTTT CTACCTCCGT GCCTGCTGCT AGGCGCAGGC TTAATATTTG TCTGCATGAC	TGGCGGGGTG GGTGGCTCGA AGTCGGGATC TGCGCGTAGT CGCCCAAGTT GGGCGGGGCC CCTCGCTCAC	CAGACTGCGG GAGTCGTCTG GAGCCCGAGC GATCTTAGTT CTAGCGGTAC ATTGCACTTG CAATTGCAAG	GCAACAGCTG CGACACAGCC ATATGGGGCT TGAGGGATAT AGCATGAATT GACACCCGCT CTAATAACTT	TGCCGTAGTG GGTCTTGGCT CGGCCCTGCG CGACCTCTTT GGGTATTGAG TGCCGCGACC TCGATATGGA	GACGCCCCG AGGATACTGG CCCGCGATTC GAGATAAACG CACTCAAAAC GGATTGCGTC ATTGCCTCGG	840 900 960 1020 1080 1140 1200
	CTGTTCATTC CGGCGGCTTT CTACCTCCGT GCCTGCTGCT AGGCGCAGGC TTAATATTTG TCTGCATGAC CATGCATTGG	TGGCGGGGTG GGTGGCTCGA AGTCGGGATC TGCGCGTAGT CGCCCAAGTT GGGCGGGGCC CCTCGCTCAC TGGGGGACAG	CAGACTGCGG GAGTCGTCTG GAGCCCGAGC GATCTTAGTT CTAGCGGTAC ATTGCACTTG CAATTGCAAG GGGATGGCGG	GCAACAGCTG CGACACAGCC ATATGGGGCT TGAGGGATAT AGCATGAATT GACACCCGCT CTAATAACTT TTCTTTTAGA	TGCGTAGTG GGTCTTGGCT CGGCCCTGCG CGACCTCTTT GGGTATTGAG TGCCGCGACC TCGATATGGA GAATCCCCAC	GACGCCCG AGGATACTGG CCCGCGATTC GAGATAAACG CACTCAAAAC GGATTGCGTC ATTGCCTCGG TTCGGTTCGT	840 900 960 1020 1080 1140 1200 1260
	CTGTTCATTC CGGCGGCTTT CTACCTCCGT GCCTGCTGCT AGGCGCAGGC TTAATATTTG TCTGCATGAC CATGCATTGG CCTCTGCACG	TGGCGGGGTG GGTGGCTCGA AGTCGGGATC TGCGCGTAGT CGCCCAAGTT GGGCGGGGCC CCTCGCTCAC TGGGGGACAG AAGTTCGATG	CAGACTGCGG GAGTCGTCTG GAGCCCGAGC GATCTTAGTT CTAGCGGTAC ATTGCACTTG CAATTGCAAG GGGATGGCGG ATTAACAGAG	GCAACAGCTG CGACACAGCC ATATGGGGCT TGAGGGATAT AGCATGAATT GACACCCGCT CTAATAACTT TTCTTTTAGA TTGACCACTA	TGCGTAGTG GGTCTTGGCT CGGCCCTGCG CGACCTCTTT GGGTATTGAG TGCCGCGACC TCGATATGGA GAATCCCCAC TCCACTGAGC	GACGGCGCG AGGATACTGG CCCGCGATTC GAGATAAACG CACTCAAAAC GGATTGCGTC ATTGCCTCGG TTCGGTTCGT TAACGGGCAT	840 900 960 1020 1080 1140 1200 1260 1320
	CTGTTCATTC CGGCGGCTTT CTACCTCCGT GCCTGCTGCT AGGCGCAGGC TTAATATTTG TCTGCATGAC CATGCATTGG CCTCTGCACG CTCCTTTGTT	TGGCGGGGTG GGTGGCTCGA AGTCGGGATC TGCGCGTAGT CGCCCAAGTT GGGCGGGCC CCTCGCTCAC TGGGGGACAG AAGTTCGATG GCTTTGAGGT	CAGACTGCGG GAGTCGTCTG GAGCCCGAGC GATCTTAGTT CTAGCGGTAC ATTGCACTTG CAATTGCAAG GGGATGGCGG ATTAACAGAG GGCGCACGAA	GCAACAGCTG CGACACAGCC ATATGGGGCT TGAGGGATAT AGCATGAATT GACACCCGCT CTAATAACTT TTCTTTTAGA TTGACCACTA GGAGGGCTCG	TGCGTAGTG GGTCTTGGCT CGGCCCTGCG CGACCTCTTT GGGTATTGAG TGCCGCGACC TCGATATGGA GAATCCCCAC TCCACTGAGC AAAATCTCTG	GACGGCGCG AGGATACTGG CCCGCGATTC GAGATAAACG CACTCAAAAC GGATTGCGTC ATTGCCTCGG TTCGGTTCGT TAACGGGCAT CTAAAAACAA	840 900 960 1020 1080 1140 1200 1360 1320



#### Patentansprüche

 Transformierter und/oder mutagenisierter ein- oder mehrzelliger Organismus, der dadurch gekennzeichnet ist, daß Enzyme des Eugenol- und/oder Ferulasäure-Katabolismus derart inaktiviert sind, daß eine Akkumulation der Intermediate Coniferylalkohol, Coniferylaldehyd, Ferulasäure, Vanillin und/oder Vanillinsäure erfolgt.



5

15

 Organismus nach Anspruch 1, dadurch gekennzeichnet, daß der Eugenolund/oder Ferulasäure-Katabolismus durch Ω-Element-Insertion oder Einführen von Deletionen in entsprechende Gene verändert ist.

3. Organismus nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß ein oder mehrere Gene, die für die Enzyme Coniferylalkohol-Dehydrogenasen, Coniferylaldehyd-Dehydrogenasen, Ferulasäure-CoA Synthetasen, Enoyl-CoA Hydratasen-Aldolasen, beta-Ketothiolasen, Vanillin-Dehydrogenasen oder Vanillinsäure-Demethylasen Enzyme kodieren, verändert und/oder inaktiviert sind.



4. Organismus nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß er einzellig, vorzugsweise ein Mikroorganismus oder eine pflanzliche oder eine tierische Zelle ist.

5. Organismus nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß er ein Bakterium, vorzugsweise eine *Pseudomonas-*Art ist.

6. Gen-Strukturen, bei denen die für die Enzyme Coniferylalkohol-Dehydrogenasen, Coniferylaldehyd-Dehydrogenasen, Ferulasäure-CoA Synthetasen, Enoyl-CoA Hydratasen-Aldolasen, beta-Ketothiolasen, Vanillin-Dehydrogenasen oderVanillinsäure-Demethylasen oder zweier oder mehrerer dieser Enzyme kodierenden Nukleotidsequenzen verändert und/oder inaktiviert sind.

30

25

5

10

15

20

25

30

- 7. Gen-Strukturen mit den in Figur 1a bis 1r angegebenen Strukturen.
- 8. Gen-Strukturen mit den in Figur 2a bis 2r angegebenen Sequenzen.

Vektoren enthaltend wenigstens eine Gen-Struktur nach einem der Ansprüche
 6 bis 8.

- 10. Transformierter Organismus nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß er wenigstens einen Vektor gemäß Anspruch 9 enthält.
- 11. Organismus nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß er wenigstens eine Gen-Struktur nach einem der Ansprüche 6 bis 8 an Stelle des jeweiligen intakten Gens im Genom integriert enthält.
- 12. Verfahren zur biotechnischen Herstellung von organischen Verbindungen, insbesondere von Alkoholen, Aldehyden und organischen Säuren, dadurch gekennzeichnet, daß ein Organismus nach einem der Ansprüche 1 bis 5 oder 10 bis 11 eingesetzt wird.
- 13. Verfahren zur Herstellung der Organismen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Veränderung des Eugenol- und/oder Ferulasäure-Katabolismus mittels an sich bekannter mikrobiologischer Züchtungsmethoden erzielt wird.
- 14. Verfahren zur Herstellung eines Organismus nach einem der Ansprüche 1 bis 5 oder 10 bis 11, dadurch gekennzeichnet, daß die Veränderung des Eugenolund/oder Ferulasäure-Katabolismus und/oder die Inaktivierung der entsprechenden Gene mittels gentechnischer Methoden erzielt wird.

- 15. Verwendung der Organismen nach einem der Ansprüche 1 bis 5 oder 10 bis11 zur Herstellung von Coniferylalkohol, Coniferylaldehyd, Ferulasäure,Vanillin und/oder Vanillinsäure.
- 5 16. Verwendung von Gen-Strukturen nach einem der Ansprüche 6 bis 8 oder eines Vektors nach Anspruch 9 zur Herstellung transformierter und/oder mutagenisierter Organismen.





Konstruktion von Produktionsstämmen für die Herstellung von substituierten Phenolen durch gezielte Inaktivierungen von Genen des Eugenol- und Ferulasäure-Katabolismus

#### Zusammenfassung



HR 199





