Lab1 test report

一、测试输入:

测试输入在基础 test1,test1000 的基础上,为了测试报告的准确完整性,所以添加了 test3, test5, test10, test20, test50, test70, test100, test500 等测试样例输入。(注明:测试样例名称为 testn(n代表了组数))

单线程运行时: ./sudoku testn d

二、性能结果:

- 1.Compare the performance of your "super-fast" Sudoku solving program with a simple singlethread version, using the same input and under the same environment.
- (1) singlethread 单线程时运行不同的 input,以下是部分测试的结果。

```
wyj@wyj-virtual-machine:/mnt/hgfs/Sudoku/1$ ./sudoku test1 d
69378451248751293612596387493265148756824739174139862531947526885612974<u>3</u>274836159
0.000519 sec 0.519000 ms each 1
wyj@wyj-virtual-machine:/mnt/hgfs/Sudoku/1$ ./sudoku test3 d
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
0.001801 sec 0.600333 ms each 3
wyj@wyj-virtual-machine:/mnt/hgfs/Sudoku/1$ ./sudoku test5 d
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
0.001640 sec 0.328000 ms each 5
wyj@wyj-virtual-machine:/mnt/hgfs/Sudoku/1$ ./sudoku test10 d
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
693784512487512936125963874932651487568247391741398625319475268856129743274836159
0.001128 sec 0.112800 ms each 10
```

(2) super-fast 即多线程时运行不同的 input,以下是部分测试的结果

(3) 进行对比:

	简单单线程	super-fast 即多线程
Test1	0.000519 sec 0.519000 ms each 1	0.002652 sec 2.652000 ms each 1
Test3	0.001801 sec 0.600333 ms each 3	0.003118 sec 1.039333 ms each 3
Test5	0.001640 sec 0.328000 ms each 5	0.002281 sec 0.456200 ms each 5
Test10	0.001128 sec 0.112800 ms each 10	0.006885 sec 0.688500 ms each 10
Test20	0.005862 sec 0.293100 ms each 20	0.003866 sec 0.193300 ms each 20
Test50	0.004388 sec 0.087760 ms each 50	0.006719 sec 0.134380 ms each 50
Test70	0.007009 sec 0.100129 ms each 70	0.010900 sec 0.155714 ms each 70
Test100	0.020707 sec 0.207070 ms each 100	0.011969 sec 0.119690 ms each 100
Test500	0.056145 sec 0.112290 ms each 500	0.044765 sec 0.089530 ms each 500
Test1000	0.165820 sec 0.165820 ms each 1000	0.106440 sec 0.106440 ms each 1000

我们固定输入和环境条件, 进行横向对比。

由此可见,当输入和环境条件都相同时,在一定的数据范围内单线程的速度更快,但随着数据的增多,多线程的优势显现出来,速度更快,效率更高。

对比图表如下:

可以看出前面单线程所需的时间短,速度快;后面多线程所需时间短,速度快。

- 2. Change the input (e.g., change file size) and environment (e.g., using machines with difffferent CPUs and hard drives), and draw several curves of your program's performance under various conditions.
- (1) change the input 即更改输入

根据 1 的测试输出结果来看,进行纵向对比,可以得出,随着输入样例的增多,时间变长,而且随着数据的逐渐增长,可以看出需要的时间增长的越来越快。 图表如下:

由上述图表能看出,随着输入样例的增多,所需要的时间越来越多,并且增长的幅度越来越大。