What Do You See? Evaluation of Explainable Artificial Intelligence(XAI) Interpretability through Neural Backdoors

Yi-Shan, Wen-Chuan, Z.Berkay Celik

2021.07.08

세종대학교 무인이동체공학과 신우정

eXplainable Artificial Intelligence (XAI)

Trojaned model misclassification

XAI evaluation framework

36가지 패턴 (색상, 모양, 질감, 위치, 크기...)

VGG16 ResNet-50 AlexNet

XAI evaluation framework

XAI method

1. BackPropagation(BP)

2. Guided BackPropagation(GBP)

3. Gradient-weighted
Class Activation Mapping(GCAM)

4. Guided GCAM(GGCAM)

XAI method

5. Occlusion Sensitivity(OCC)

6. Feature Ablation(FA)

7. Local Interpretable Model Agnostic Explanations(LIME)

Saliency Map for 7 XAI methods

XAI evaluation framework

Evaluation Metrics

1. Intersection over Union (IOU)

3. Recovering Difference (RD)

4. Computation Cost (CC)

2. Recovering Rate (RR)

5. Misclassification Rate (MR)

6. Classification Accuracy (CA)

Questions for evaluating the interpretability results of an XAI method

1. XAI 방법이 saliency map에서 trigger를 완전히 발견하는지

2. 감지된 영역이 잘못된 분류로 이어지는 중요한 기능을 하는지

3. XAI 방법이 saliency map을 생성하는데 얼마나 걸리는지

Model

Size

GBP

GCAM

Location

IOU RR

Recovering Rate (RR)

GCAM

GGCAM

		20.70	034	0.00	U.20	U.03	U. 44	0.42	0.36	U. 75	U.00	0.00	0.00	0.00	0.94	0.96
VGG16	corner	40*40	0.32	0.34	0.17	0.37	0.39	0.56	0.49	0.45	0.40	0.13	0.45	0.34	0.71	0.75
		60*60	0.27	0.28	0.22	0.37	0.54	0.50	0.43	0.24	0.36	0.24	0.37	0.45	0.64	0.60
		20*20	0.53	0.61	0.23	0.55	0.37	0.31	0.36	0.92	0.91	0.51	0.82	0.68	0.68	0.93
	random	40*40	0.46	0.53	0.42	0.62	0.27	0.42	0.35	0.89	0.81	0.58	0.86	0.45	0.53	0.89
		60*60	0.47	0.58	0.23	0.70	0.10	0.38	0.42	0.84	0.82	0.22	0.91	0.09	0.35	0.68
		20*20	0.26	0.50	0.16	0.62	0.50	0.40	0.57	0.56	0.67	1.00	0.82	0.93	0.99	0.97
Resnet50	corner	40*40	0.20	0.74	0.59	0.80	0.24	0.65	0.39	0.79	0.91	1.00	0.98	0.34	0.94	0.68
		60*60	0.64	0.29	0.74	0.29	0.54	0.29	0.50	0.97	0.92	0.92	0.91	0.92	0.92	0.81
	random	20*20	0.27	0.49	0.17	0.51	0.68	0.21	0.31	0.45	0.77	0.97	0.85	0.92	0.46	0.98
		40*40	0.40	0.52	0.63	0.60	0.20	0.34	0.43	0.55	0.65	0.91	0.82	0.32	0.67	0.98
		60*60	0.49	0.55	0.40	0.65	0.11	0.40	0.43	0.71	0.75	0.47	0.87	0.15	0.52	0.69
		20*20	0.60	0.39	0.35	0.53	0.55	0.38	0.43	0.98	0.72	0.49	0.82	0.95	0.94	0.86
Alexnet	corner	40*40	0.47	0.37	0.40	0.45	0.39	0.48	0.52	0.73	0.64	0.63	0.64	0.62	0.78	0.86
		60*60	0.46	0.26	0.18	0.29	0.53	0.43	0.38	0.71	0.40	0.57	0.45	0.72	0.69	0.60
	random	20*20	0.57	0.53	0.02	0.08	0.36	0.32	0.39	0.88	0.86	0.44	0.36	0.78	0.78	0.91
		40*40	0.67	0.59	0.26	0.54	0.28	0.43	0.36	0.94	0.87	0.61	0.73	0.62	0.68	0.88
		60*60	0.74	0.61	0.15	0.57	0.23	0.23	0.42	0.98	0.85	0.40	0.69	0.55	0.52	0.64

Intersection over Union (IOU)

GGCAM

Intersection over Union (IOU) Recovering Rate (RR) Model Location Pattern GBP BP GGCAM OCC LIME GBP LIME GCAM FA BP GCAM GGCAM EA 0.57 0.26 0.620.70 0.45 0.89 0.44 0.70 0.49 texture 0.54 0.630.691.00 color 0.68 0.54 0.66 0.76 0.86 0.96 0.86 corner 0.670.670.57 0.620.89 0.54 1.00 0.95

Multi

Single

VGG16			600-F00	CL 27	OLL)	0.54	500 CO-95	0.00	0.10	100,000	0.47	400,000	40.474	1.00	0.70	1.00
· crcrio		texture	0.50	0.65	0.54	0.69	0.42	0.47	0.30	0.79	0.81	0.83	0.85	0.85	0.81	1.00
	random	color	0.50	0.56	0.53	0.60	0.41	0.45	0.57	0.82	0.88	0.89	0.93	0.88	0.90	1.00
		shape	0.32	0.75	0.15	0.48	0.36	0.29	0.17	0.75	0.75	1.00	0.25	0.75	0.75	0.75
		texture	0.48	0.58	0.15	0.65	0.70	0.64	0.37	0.86	0.72	0.96	0.82	1.00	0.86	1.00
	corner	color	0.18	0.43	0.14	0.58	0.52	0.41	0.70	0.65	0.59	0.84	0.70	1.00	0.99	0.96
Resnet50		shape	0.29	0.38	0.14	0.52	0.64	0.54	0.17	0.87	0.63	0.89	0.79	1.00	0.97	1.00
recorde to o		texture	0.34	0.57	0.27	0.66	0.30	0.18	0.21	0.81	0.92	0.97	0.89	0.81	0.81	1.00
	random	color	0.29	0.52	0.30	0.57	0.41	0.45	0.38	0.56	0.73	0.93	0.85	0.80	0.85	0.96
		shape	0.29	0.34	0.30	0.48	0.38	0.37	0.17	1.00	0.14	0.86	0.43	0.86	0.86	0.86
		texture	0.38	0.29	0.45	0.48	0.70	0.40	0.37	0.52	0.21	0.18	0.43	1.00	0.93	1.00
	corner	color	0.54	0.38	0.33	0.49	0.67	0.40	0.66	0.92	0.81	0.64	0.89	0.97	0.99	0.97
Alexnet		shape	0.46	0.27	0.29	0.42	0.59	0.44	0.18	0.74	0.41	0.26	0.35	0.85	0.83	1.00
Alexhet		texture	0.47	0.42	0.26	0.43	0.42	0.45	0.18	0.69	0.35	0.46	0.43	0.46	0.53	1.00
	random	color	0.34	0.47	0.06	0.35	0.38	0.30	0.32	0.81	0.64	0.44	0.47	0.61	0.61	0.97
		shape	0.60	0.40	0.23	0.38	0.35	0.40	0.13	0.85	0.63	0.30	0.61	078	0.85	0.97

1.00

0.99

- XAI 방법은 트리거 감지에 한계
- 남아있는 픽셀이 잘못된 분류를 유발
- 여러 트리거의 경우 전부 하나의 트리거로 인식하는 문제

Trojan trigger detection에 대해 XAI 방법의 한계

감사합니다