

MATEMÁTICA - Contabilidade e Administração MATEMÁTICA I - Comércio Internacional

	FUNIU	EXAME ÉPOCA NOR	MAL 17/0	01/2019	Duração: 2h
Nome Com	pleto:				
Nº:		Turma:	Classi	ificação: _	
Professor:					
Observaçõe	s:				
respo	stas. rigatório o pro	trega da folha de prova co			
A pro Em ca	ova é constituío ada questão só posta a cada u	tilização de máquina de ca da por 20 questões de escol uma das quatro opções est ma das questões deve ser in	ha múltipla. á correta.	ha que se ap	presenta no início do
• Se ap		deve riscar a resposta inicia do que uma resposta, a que abígua.		•	* '
	-	+ 			

Grelha de Respostas:

Em cada questão, indique a opção (A, B, C ou D) correta.

cada questão não respondida ou anulada 0 valores

1	2	3	4	

5	6	7	8

9	10	11	12

13	14	15	16

17	18	19	20

1.	O domínio da função $f(x) = 1 + \ln(4x - x^2)$ é						
	(A) $]-\infty,0]\cup[4,+\infty[$	(B)]0,4[(C) $[0,4]$	(D) $]-\infty,0[\cup]4,+\infty[$			
2.	2. Sendo $f(x) = \sqrt{x}$ e $g(x) = 2^{x+1}$, o valor de $(f \circ g)(-7)$ é						
	(A) $\frac{1}{2}$	(B) $\frac{1}{4}$	(C) $\frac{1}{16}$	(D) $\frac{1}{8}$			
3.	3. Se $f^{-1}(x) = \frac{2x+1}{x-5}$ então a expressão analítica de f é						

- **(B)** $\left\{ \frac{11}{10} \right\}$ **(C)** $\left\{ \frac{11}{10}, 11 \right\}$ (A) Ø **(D)** {11}
- 5. A função $f(x) = \begin{cases} 2 + \ln(x), & x > 1 \\ 4(1-x), & x \le 1 \end{cases}$, é contínua em
- (A) $\mathbb{R}\setminus\{1\}$ **(D)** \mathbb{R}_0^+ **(C)** ℝ⁺ **(B)** ℝ
- **6.** O declive da reta tangente ao gráfico de $f(x) = \frac{x+1}{x-1}$ no ponto $T \in -2$. A abcissa de T pode ser

(C) 2

- **(A)** 4 **(D)** -27. O valor de $\lim_{x \to -2} \frac{(x+2)^2 + \ln(x+3)}{x^2 + x - 2}$ é
- **(D)** $-\frac{1}{2}$ (A) $\frac{1}{2}$ **(B)** -3**(C)** 3
- **8.** Considere a função f, de domínio \mathbb{R} , tal que $f'(x) = x^2(x^2 4)$.

Podemos afirmar que f tem um máximo em

(B) -4

(C) x = 2**(D)** x = -2**(A)** x = -1**(B)** x = 1

- 9. Seja f uma função de domínio \mathbb{R} , $f'(x) = e^{x+3}(x+4)$ e $B(x_0, y_0)$ um ponto de inflexão do gráfico de f . Então
 - **(A)** $x_0 = -4$ **(B)** $x_0 = -5$ **(C)** $x_0 = -3$ **(D)** $x_0 = -2$

- 10. A assíntota oblíqua do gráfico da função $f(x) = \frac{2x^3 + 4x^2 9}{x^2 x}$ interseta o eixo yy no ponto
 - **(A)** (0,6)
- **(B)** (0,-2)
- (C) (0,2)
- **(D)** (0,-6)

- 11. O domínio da função $f(x,y) = \sqrt{\frac{y-2x}{x}}$ é

 - (A) $\{(x,y) \in \mathbb{R}^2 : (y > 2x \ge 0) \lor (y < 2x \le 0)\}$ (B) $\{(x,y) \in \mathbb{R}^2 : (y \ge 2x > 0) \lor (y \le 2x < 0)\}$
 - (C) $\{(x,y) \in \mathbb{R}^2 : (2x \ge y > 0) \lor (2x \le y < 0)\}$ (D) $\{(x,y) \in \mathbb{R}^2 : (2x > y \ge 0) \lor (2x < y \le 0)\}$
- 12. Se $f(x,y) = \frac{y-2x}{r}$, então $\frac{\partial f}{\partial r}(-3,2)$ é
 - (A) $\frac{3}{4}$
- **(B)** $\frac{2}{9}$
- (C) $-\frac{2}{9}$
- **(D)** $-\frac{3}{4}$
- 13. As matrizes $A = \begin{bmatrix} 2 & 1 \\ x & 2y \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ são permutáveis se e só se
 - **(A)** $x = 1 \land y = 2$

(B) $x = 1 \land y = 1$

(C) $x = 2 \land y = 2$

- **(D)** $x = 2 \land y = 1$
- **14.** Se $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{\substack{i=1,2\\j=1,2,3}} : a_{ij} = \begin{cases} i+3, & i < j\\ i \times j, & i \geq j \end{cases}$, $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{\substack{i=1,2,3\\j=1,2}} : b_{ij} = 2i+j$ e C = BA, então o valor de c_{31} é
 - **(A)** 17

(B) 23

(C) 28

(D) 32

- **15.** A inversa da matriz $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ é
 - (A) $\begin{vmatrix} -1 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ (B) $\begin{bmatrix} -1 & -2 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$ (C) $\begin{bmatrix} -1 & 1 & -1 \\ -2 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ (D) $\begin{vmatrix} -1 & 1 & -1 \\ 0 & 0 & 1 \\ -2 & 1 & -1 \end{vmatrix}$

- **16.** Admitindo que a matriz A é regular, a solução da equação $2A^{-1}XA^{T} = 4A^{-1}$ é

 - (A) $X = \frac{1}{2}A^{-1}$ (B) $X = \frac{1}{2}A^{-T}$ (C) $X = 2A^{-1}$

17.
$$\begin{vmatrix} x-4 & 1 & -1 \\ 4-x & 0 & 2 \\ x^2-16 & x+4 & x^2+4x \end{vmatrix}$$
 é igual a

(A)
$$x^2 - 16$$

(B)
$$x^2 - 4$$

(C)
$$(x^2-16)(x+1)$$

(C)
$$(x^2-16)(x+1)$$
 (D) $(x^2-4)(x+1)$

18. Sejam A e B matrizes regulares de ordem 3, tais que $\left|AB^{-1}\right| = \frac{1}{9}$. Então $\left|\frac{2}{3}A^{-1}B\right|$ é

(A)
$$\frac{3}{8}$$

(B)
$$-\frac{3}{8}$$
 (C) $\frac{8}{3}$ **(D)** $-\frac{8}{3}$

(C)
$$\frac{8}{3}$$

(D)
$$-\frac{8}{3}$$

19. Considere a seguinte matriz completa de um sistema de 3 equações e 3 incógnitas

$$\begin{bmatrix} 1 & -3 & 1 & | & -4 \ 3 & -4 & 2 & | & -6 \ 0 & 2 & -1 & | & 3 \end{bmatrix}$$
. Podemos afirmar que

- (A) o sistema é impossível
- **(B)** (1,1,-1) não é solução do sistema
- (C) (1,1,1) é solução do sistema
- **(D)** (1,2,-1) é solução do sistema
- 20. $x = \frac{\begin{vmatrix} 0 & 1 & 1 \\ 3 & -2 & -2 \\ -1 & 2 & 1 \end{vmatrix}}{3}$ é o valor da incógnita x no sistema

(A)
$$\begin{cases} 2x + y + z = 1 \\ x - 2y - 2z = -2 \\ x + 2y + z = 1 \end{cases}$$

(B)
$$\begin{cases} x + y + z = 0 \\ x - 2y - 2z = 3 \\ x + 2y + z = -1 \end{cases}$$

(C)
$$\begin{cases} x + y + z = 1 \\ x - 2y - 2z = -2 \\ x + 2y + z = 1 \end{cases}$$

(D)
$$\begin{cases} 2x + y + z = 0 \\ x - 2y - 2z = 3 \\ x + 2y + z = -1 \end{cases}$$