Real Analysis, Chapter 3 Worksheet 6: Radon-Nikodym Derivative

Quan Nguyen

International University, VNU-HCM quannguyenuw@gmail.com

February 2022

In this worksheet, we assume the σ -finite space (X, \mathcal{M}, μ) .

Definition 3.6.1 (Absolutely Continuity)

A signed measure ν is absolutely continuous w.r.t. $\mu,$ denoted $\nu \ll \mu,$ if

$$\forall A \in \mathcal{M}$$
, if $\mu(A) = 0$ then $\nu(A) = 0$.

Lemma 3.6.1

Assume that μ and ν are finite and ν is a measure.

- (a) There are measures ν_1, ν_2 on \mathcal{M} with $\nu = \nu_1 + \nu_2, \nu_1 \ll \mu, \nu_2 \perp \mu$;
- (b) There is a function $g \in \mathcal{M}$ such that $\nu_1(A) = \int_A g \ d\mu, \forall \, A \in \mathcal{M}.$

Guidelines:

- $\bullet \ \, \mathsf{Let} \,\, \mathcal{H} = \left\{ \mathsf{f} \geq 0 : \int_{\mathsf{A}} \mathsf{f} \,\, \mathsf{d} \mu \leq \nu(\mathsf{A}), \forall \, \mathsf{A} \in \mathcal{M} \right\} \, \mathsf{and} \,\, \alpha = \sup_{\mathsf{f} \in \mathcal{H}} \int_{\mathsf{X}} \mathsf{f} \,\, \mathsf{d} \mu;$
- For each $n \in \mathbb{N}$, take $f_n \in \mathcal{M}$ such that $\int_X f_n d\mu \in [\alpha 1/n, \alpha]$;

- Let $g_n = \max_{1 \le k \le n} f_k$, then $g_n \in \mathcal{H}$ and $g_n \nearrow g \in \mathcal{H}$;
- Then $\int_X g \ d\mu = \alpha$. Set $\nu_1(A) = \int_A g \ d\mu$, $\forall A \in \mathcal{M}$ and $\nu_2 = \nu \nu_1$;
- Let (P_n, N_n) be a Hahn decomposition of $\sigma_n = \nu_2 \mu/n$;
- Set $P = \bigcup P_n$, then $g + \chi_{P_n} \in \mathcal{H}$, so $\mu(P_n) = \mu(P) = \nu_2(P^c) = 0$.

Theorem 3.6.2

The conclusion of Lemma 3.6.1 also holds if μ and ν are σ -finite only.

Guidelines: By assumption, $X = \bigcup E_n$ where $\mu(E_n) < \infty, \nu(E_n) < \infty$.

- Apply Lemma 3.6.1 on each set E_n to obtain $\nu_{1,n}, \nu_{2,n}$;
- Set $\nu_i = \sum \nu_{i,n}$, then $\nu = \nu_1 + \nu_2, \nu_1 \ll \mu, \nu_2 \perp \mu$.

Theorem 3.6.3

The conclusion of Theorem 3.6.2 also holds if ν is a signed measure only.

Hint. Use Theorem 3.6.2 on ν^+ and ν^- .

Theorem 3.6.4 (Lebesgue Decomposition Theorem)

If there are measures $\nu_1, \xi_1, \nu_2, \xi_2$ on $\mathcal M$ satisfying

$$\nu = \nu_{\mathsf{i}} + \xi_{\mathsf{i}}, \nu_{\mathsf{i}} \ll \mu, \xi_{\mathsf{i}} \perp \mu, \mathsf{i} = \overline{1,2}$$

then $\nu_1 = \nu_2$ and $\xi_1 = \xi_2$.

The pair (ν_1, ξ_1) is called the Lebesgue decomposition of ν w.r.t. μ .

Corollary 3.6.5 (Radon-Nikodym Theorem)

If $\nu \ll \mu$, then there exists uniquely μ -a.e. a function $f \in \mathcal{M}$ satisfying

$$\nu(\mathsf{A}) = \int_{\mathsf{A}} \mathsf{f} \; \mathsf{d}\mu, \forall \, \mathsf{A} \in \mathcal{M}.$$

f is called the Radon-Nikodym derivative (or density) of ν w.r.t. μ , denoted

$$f = \frac{d\nu}{d\mu} = \frac{d}{d\mu}\nu.$$