

基于多用途时间投影室(MTPC)的6Li(n,t)α反应测量研究

陈宏昆 中山大学物理学院

目录

- 背景介绍
- 实验概况
- 数据分析
- 总结展望

背景介绍

• 中子核数据在核物理、核天体物理和核工程领域有重要应用

	Neutron cross section standards
Reaction	Standards incident neutron energy range
H(n,n)	1 keV to 20 MeV
3 He(n,p)	0.0253 eV to 50 keV
⁶ Li(n,t)	0.0253 eV to 1 MeV
$^{10}\mathrm{B}(\mathrm{n},\alpha)$	0.0253 eV to 1 MeV
$^{10}\mathrm{B}(\mathrm{n},\alpha_1\gamma)$	$0.0253~\mathrm{eV}$ to $1~\mathrm{MeV}$
C(n,n)	$10~\mathrm{eV}$ to $1.8~\mathrm{MeV}$
$\mathrm{Au}(\mathrm{n},\gamma)$	0.0253 eV, 0.2 to 2.5 MeV, 30 keV MACS
$^{235}U(n,f)$	$0.0253~{ m eV},7.8\mbox{-}11~{ m eV},0.15~{ m MeV}$ to $200~{ m MeV}$
²³⁸ U(n,f)	2 MeV to 200 MeV

截面标准

核反应

背景介绍

• 中国散裂中子源(CSNS)的Back-n反角白光中子源

背景介绍

- 多用途时间投影室(MTPC): 设计用于带电粒子出射反应的中子核数据测量
- 目前已进行6Li(n,t)、H(n,n)、235U(n,f)和17O(n,α)等实验的测量
- 6Li(n,t)反应作为截面标准,能很好地对探测器性能进行验证

MTPC探测器

目录

- 背景介绍
- 实验概况
 - ▶探测器系统
 - ▶ ⁶Li (n,t) α 实验设置
- 数据分析
- 总结展望

探测器系统

- MTPC分为三层结构: 阴极、丝网、阳极
- 工作时固体样品放置于阴极中心,中子束流方向垂直于阴极
- 中子能量通过阴极测量飞行时间确定,反应粒子通过阳极测量
- 电子学系统波形采样频率40MHz,采样窗1024个点,ADC位数12bit

探测器系统

- 漂移区采用场笼结构维持均匀电场,长度70mm-140mm内可调
- 气室腔体主体为钛合金,能够承受0-5bar范围的气压
- 阳极采用热压接工艺的阻性Micromegas探测器作为读出探测器:
 - ▶读出pad为六边形密堆结构,总共有1519个通道
 - ▶ 采用阻性的Ge层有效抑制打火现象,并扩大pad响应面积

气室腔体外壳设计

内部场笼结构

阻性Micromegas探测器示意图

⁶Li (n,t) α 实验设置

- ⁶LiF样品参数:
 - ▶ ⁶Li丰度 95%
 - ▶ ⁶LiF面密度 148ug/cm2、厚度 560nm、直径 66mm
 - ▶ Al衬直径 89mm、厚度 10.8um
- 束斑设置:

厅2 + 1mmGd + 6cmPb + φ30束流

- 探测器设置:
 - ▶漂移区长度 70mm
 - ➤工作气体 Ar (93%) + CO2 (7%)
- 探测条件:
 - ▶低压(50000Pa)测量α(2.05MeV,23.2mm)
 - ▶常压(93500Pa)测量T(2.70MeV,68.6mm)

样品与实验图片

⁶Li (n,t) α 实验示意图

目录

- 背景介绍
- 实验概况
- 数据分析
 - ▶实验波形分析
 - ▶事例信息重建
 - ▶计数率谱计算
- 总结展望

• 采取方法: 波形拟合+波形反演

• 对采集波形进行拟合获取基本物理信息

• 假设探测器感应电流为 δ 信号,测量信号近似表达式:

 $\overline{M}(t) = \int_0^t S(t')h(t-t') dt' \approx A\left(\frac{t-t_0}{\tau}\right)^3 e^{-\frac{t-t_0}{\tau}}\theta(t-t_0) + B$

• to可用以重建z方向位置, A可用以重建沉积能量

波形幅度

 t_0 : 起始时间

波形宽度

波形基线

• 利用幅度A-宽度 τ 联合分布可以对信号进行区分

• 拟合过程包括全峰拟合和前沿拟合

雪崩信号

1300

- t_0 精度对于TPC具有重要影响:
 - \triangleright 对于阴极信号, t_0 可用于中子能量的ToF法测量
 - \triangleright 对于阳极信号, t_0 可用以重建z方向位置
- 为进一步提升时间精度,对感应电流信号进行了反演:

重建信号
$$\hat{S}(\omega) = \frac{测量信号 M(\omega)}{$$
电子学响应 $H(\omega)$ × 滤波 $F(\omega)$

- 基于Garfield++对 θ 较大的氚事例的电子最大漂移时间进行刻度
- 波形反演在时间分辨和定时偏移上具有良好表现

阴极信号时间Tcathode

≈ Tmax -Tcathode

电子最大漂移时间≈Tmax -Tmin

刻度结果

定时方法	阴极分辨 (ns)	阳极分辨 (ns)	阴极-阳极偏移(ns)
全峰拟合	138.40	168.97	336.33
前沿拟合	308.37	131.68	32.83
波形反演	95.16	118.66	48.87

事例信息重建

- 利用波形分析获取的物理信息进一步重建事例
- Hough变换寻找径迹点,主成分分析径迹拟合
- 射程通过对能损曲线进行KDE平滑处理获取

+1 **4 0 0**0 2 6 3

能损曲线平滑结果

计数率谱计算

- 基于径迹和能量对粒子做基本的筛选
- 对于 θ 较大的事例,可以以平均能损进行区分:

粒子能量 / 径迹长度 • 对于 θ 较小的事例,可以以电离均匀性进行区分: 40 50 60 Track Length (mm) 粒子能量 / 击中pad数 径迹-能量分布 阴极 350 1400 300 1200 250 1000 200 800 丝网 150 600 100 400 阳极 50 200 00 200 300 400 5 Average Energy Loss (ADC/hit) 100 150 200 250 300 Average Energy Loss (ADC/mm) 500 600 350 电离均匀性分布 平均能损分布

计数率谱计算

- 基于筛选出的事例进行计数率谱的统计
- ToF的触发时间到中子产生时间由 γ flash进行刻度 T_{ν}
- 中子飞行L距离通过不同中子能量 E_n 下Ta的共振峰进行刻度:

$$T_n - T_{\gamma} = \frac{L}{c} \left[1 / \sqrt{1 - \left(\frac{E_n}{m_n c} + 1\right)^{-2}} - 1 \right]$$

17

总结展望

总结:

- 目前Back-n的MTPC装置进行了⁶Li (n,t) α反应的测量
- 基于实验数据对数据分析算法进行了改进,提升了程序的时间分辨
- 对实验数据进行了初步的分析, 计算了中子计数率谱

展望:

• 进行中子能谱的模拟及探测器效率的修正,进一步计算反应截面

谢谢大家!