Politecnico di Bari Analisi Matematica – modulo B – Corso C A.A. 2018/2019 Prova parziale 11 aprile 2019 Traccia A

Cognomo	_Nome
Cognome	_1101116

1) Calcolare

$$\int_{A} \frac{y}{x^2 + y^2} dx dy,$$

dove $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4; y \ge 1\}.$

7 pts.

2) Determinare e rappresentare sul piano il dominio della funzione

$$f(x,y) = \frac{\sin(x+y)}{\cos(xy)}.$$

Dire se esso è o meno un insieme aperto, chiuso, limitato, connesso per archi. Stabilire se esiste $\lim_{(x,y)\to(0,0)} f(x,y)$ e, in caso affermativo, calcolarlo. Stabilire infine se esiste $\frac{\partial f}{\partial v}(0,0)$, $v=(-\frac{1}{\sqrt{7}},\sqrt{\frac{6}{7}})$ e, in caso affermativo, calcolarla.

9 pts.

3) Determinare le soluzioni singolari e l'integrale generale in forma implicita dell'equazione differenziale

$$y' = \frac{x^2(e^y - 1)}{e^y + 1}$$

8 pts.

4) Siano $A \subset \mathbb{R}^n$ aperto, $\bar{x} = (\bar{x}_1, \dots, \bar{x}_n) \in A$ ed $f : A \to \mathbb{R}$. Scrivere quando f si dice derivabile in \bar{x} parzialmente rispetto ad x_i , $i \in \{1, \dots, n\}$. Se f è derivabile parzialmente rispetto ad x_i , per ogni $i \in \{1, \dots, n\}$, cos'è il gradiente di f in \bar{x} ? Ricordare infine quando f si dice differenziabile in \bar{x} .

(gli studenti immatricolati precedentemente all'AA 2018/19 possono limitarsi a considerare il caso in cui A sia un aperto di \mathbb{R}^2).

6 pts.