Jarník, Vojtěch: Scholarly works

Vojtěch Jarník O jistém problému minimálním. (Z dopisu panu O. Borůvkovi)

Práce moravské přírodovědecké společnosti 6, fasc. 4, 1930, pp. 57--63

Persistent URL: http://dml.cz/dmlcz/500726

Terms of use:

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: The Czech Digital Mathematics Library http://project.dml.cz

PRÁCE

MORAVSKÉ PŘÍRODOVĚDECKÉ SPOLEČNOSTI

SVAZEK VI., SPIS 4.

1930

SIGNATURA: F 50

BRNO, ČESKOSLOVENSKO.

ACTA SOCIETATIS SCIENTIARUM NATURALIUM MORAVICAE
TOMUS VI., FASCICULUS 4: SIGNATURA: F 50: BRNO, CECHOSLOVAKIA: 1930.

VOJTĚCH JARNÍK:

O jistém problému minimálním.

(Z dopisu panu O. BORŮVKOVI.)

Zajímavou otázku, kterou jste řešil ve své práci »() jistém problém u minimálním« (Práce moravské přírodovědecké společnosti, svazek III., spis 3), lze řešiti ještě jiným a — jak se mi zdá — jednodušším způsobem.

Dovolují si sdělití Vám v následujícím své řešení.

Budiž dáno n (\geq 2) prvků, jež označím čísly 1, 2, . . ., n. Z těchto prvků sestrojím $\frac{1}{2}$ n (n - -1) dvojic [i, k], kdež i † k; i, k = 1, 2, . . ., n; dvojici [k, i] považuji za totožnou s [i, k]. Každé dvojici [i, k] budiž přiřazeno číslo kladné $\mathbf{r}_{i, \mathbf{k}}$ ($\mathbf{r}_{i, \mathbf{k}}$ - $\mathbf{r}_{k, i}$). Tato čísla $\mathbf{r}_{i, \mathbf{k}}$ ($\mathbf{1} \leq \mathbf{i} < \mathbf{k} \leq \mathbf{n}$) v počtu $\frac{1}{2}$ n (n — 1) buďte navzájem různá.

Množství všech dvojic [i, k] označme M. Jsou-li p, q dvě přirozená čísla \le n, p \mid q, nazvu každou skupinu dvojic z M tvaru

(1)
$$[p, c_1], [c_1, c_2], [c_2, c_3], \ldots, [c_{s-1}, c_s], [c_s, q]$$

řetězcem (p, q). Také jedinou dvojíci [p, q] nazývám řetězcem (p, q).

Částečné množství H z množství M nazvu k o m pletní částí (značka kč), jestliže ke každé dvojici přirozených čísel p, q, jež jsou ≦ n a od sebe různá, existuje v H řetězec (p, q) (t. j. řetězec tvaru (1), jehož všechny dvojice patří k H). Existují kč; neboť M samo je kč.

Je-li
$$[i_1,k_1],\ [i_2,k_2],\ \dots,\ [i_t,k_t]$$

(2)

nějaké částečné množství K z množství M,1) označme

$$\sum_{i=1}^{t} r_{i_j, k_j} = R(K).$$

1) V (2) necht je každá dvojice z K napsána jen jednou.

Jestliže pro nějakou kompletní část K má R (K) hodnotu menší nebo rovnou než pro kteroukoliv jinou kompletní část, nazvu K minimální kompletní částí množství M (značka mkč).

Ježto existuje aspoň jedna kč a pouze konečný počet kč, existuje patrně aspoň jedna mkč.

Úkol, který jste řešil ve své práci, lze pak formulovati takto:

Úkol: Dokázati, že existuje jen jedna mkč a udati předpis pro jeji konstrukci.

1. pomocná věta. Budiž a_1 přirozené čislo $\leq n$;

(3)
$$r_{a_1, a_2} = \min r_{a_1, k}.$$

$$\binom{k = 1, 2, \dots, n}{k \neq a_1}.$$

Potom každá mkč. obsahuje dvojíci $[a_1, a_2]$.

Důkaz. K budiž kč, jež neobsahuje $[a_1, a_2]$. Potom obsahuje K řetězec

$$(a_1, a_2) \equiv [a_1, c_1], [c_1, c_2], \ldots, [c_t, a_2],$$

kdež $c_1 \pm a_2$. Můžeme předpokládati, že $[a_1, c_1]$ vystupuje v tomto řetězci jen jednou — jinak bychom prostě mohli vynechat všechny dvojice, jež stojí v (a_1, a_2) před posledním vystoupením dvojice $[a_1, c_1]$. Budiž K´ množství dvojic, jež vznikne z K, vynechám-li v něm $[a_1, c_1]$ a přidám $[a_1, a_2]$.

Je-li (p, q) libovolný řetězec z K, dostanu z něho řetězec (p, q) v K', nahradím-li v (p, q) dvojici $[a_1, c_1]$ po každé skupinou

$$[a_1, a_2], [a_2, c_t], [c_t, c_{t-1}], \ldots, [c_2, c_1].$$

Tedy K' je kč, ale ježto vzhledem k (3) je R (K') < R (K), není K mkč, jak bylo dokázati.

Zavedme ještě tyto definice:

Budiž

$$K \equiv [i_1, k_1], [i_2, k_2], \dots, [i_t, k_t]$$

částečné množství z množství M. Indexem množství K nazvu každé přirozené číslo, jež se rovná některému z čísel $i_1, k_1, i_2, k_2, \ldots, i_t, k_t$.

Částečné množství K z množství M nazvu so u v i s l o u č á s t í, jestliže ke dvěma libovolným navzájem různým indexům p, q množ-

ství K lze nalézti v K řetězec (p, q) (t. j. řetězec (p, q), složený výhradně z dvojic množství K).

2. pomocná věta. Budiž S souvislá část; h_1, h_2, \ldots, h_s buďte všechny indexy množství S; budiž s < n. Buďte l_1, l_2, \ldots, l_t ona z čísel $1, 2, \ldots, n$, jež nejsou indexy množství S; budiž

(4)
$$r_{a, b} = \min_{\substack{l_i, l_j \\ i = 1, 2, \dots, s \\ i = 1, 2, \dots, t}} \binom{i = 1, 2, \dots, s}{i = 1, 2, \dots, t}.$$

Tvrdim: Každá mkč, jež obsahuje S, obsahuje i dvojici [a,b].

Důkaz. Nechť K je kč, jež obsahuje S, ale neobsahuje [a, b]. Označení ve (4) volme tak, že a je indexem, b není indexem množství S. Ježto K je kč, obsahuje K řetězec ($c_0 = a$, $c_{p+1} = b$, $v \ge 1$)

$$(a, b) = [c_0, c_1], [c_1, c_2], ..., [c_n, c_{n+1}].$$

Budiž c_m poslední z čísel c_0, c_1, \ldots, c_n , jež je indexem množství S.

Vytvořme množství K', jež vznikne z K tím, že vynechám v něm dvojici $[\mathbf{c}_m, \mathbf{c}_{m+1}]$ a přidám dvojici $[\mathbf{a}, \mathbf{b}]$. Budiž (\mathbf{p}, \mathbf{q}) libovolný řetězec z K.

Potom mohou nastati dva případy:

1. $c_m=a;$ potom, nahradím-li v (p,q) dvojici $[c_m,\,c_{m+1}]==[a,\,c_{m+1}]$ skupinou

[a, b]. [b,
$$c_n$$
], $[c_n, c_{n-1}], \ldots, [c_{m+2}, c_{m+1}]$.

dostanu řetězec (p, q) z K'.

2. c, ‡ a; potom, ježto S je souvislé, existuje v S řetězec

$$[a, d_1], [d_1, d_2], \ldots, [d_n, c_m].$$

Nahradím-li v (p, q) dvojici $[c_m, c_{m+1}]$ skupinou

$$[c_m, d_x], \ldots, [d_2, d_1], [d_1, a], [a, b], [b, c_p],$$

 $[c_n, c_{n-1}], \ldots, [c_{m+2}, c_{m+1}],$

dostanu řetězec (p, q) z K'.2)

Tedy K' je kč, a vzhledem k (4) je R (K') < R (K); tedy K není mkč, jak bylo dokázati.

²) Je-li $b = c_{m+1}$, odpadne část skupiny za [a, b].

Zavedeme nyní jisté částečné množství J z množství M takto:

Definice množství J. Jest

$$J \equiv [a_1, a_2], [a_3, a_4], \ldots, [a_{2n-3}, a_{2n-2}],$$

kde a₁, a₂, ... jsou definována takto:

1. k r o k. Za a_1 zvolme kterýkoliv z prvků 1, 2, ..., n; a_2 budiž definováno vztahem

$$r_{a_1, a_2} = \min_{\substack{1 = 1, 2, ..., n \\ 1 \neq a_1}} r_{a_1, 1}$$

k-tý krok. Je-li již definováno (5) $a_1, a_2, a_3 \ldots, a_{2k-3}, a_{2k-2}$ (2 \leq k < n), definujme a_{2k-1}, a_{2k} vztahem

$$r_{a_{2k-1}, a_{2k}} = \min_{i, j}$$

kde i probíhá všechna čísla $a_1, a_2, \ldots, a_{2k-2}$; j všechna ostatní z čísel 1, 2, ..., n. Při tom budiž a_{2k-1} jedno z čísel (5), takže a_{2k} není obsaženo mezi čísly (5).

Je patrno, že při tomto postupu je mezi čísly (5) právě k čísel různých, takže pro k < n lze k-tý krok provésti.

Řešení naší úlohy je nyní dáno tímto tvrzením:

- 1. J jest mkč.
- 2. Neexistuje žádná jiná mkč.
- 3. J se skládá z n-1 dvojic.

Důkaz provedu indukcí. Tvrzení 3. je patrně správné.

1. Podle první pomocné věty musí každá mkč . obsahovati množství

$$J_2 \equiv [a_1, a_2].$$

Množství J₂ jest souvislé a má právě dva indexy.

2. Budiž pro jisté celé k (2 ≤ k < n) již dokázáno, že množství

$$J_k = [a_1, a_2], [a_3, a_4], \ldots, [a_{2k-3}, a_{2k-2}]$$

je souvislá část s k indexy, jež jest obsažena v každé mkč. Potom podle 2. pomocné věty je také množství

$$J_{k+1} = [a_1, a_2], [a_3, a_4], \ldots, [a_{2k-1}, a_{2k}]$$

obsaženo v každé mkč a má patrně k+1 indexů (neboť a_{2k-1} patří k indexům množství J_k , a_{2k} nikoliv). Dále jest J_{k+1} souvislá část; neboť buďte p, q dva různé indexy množství J_{k+1} :

- 1. Je-li $p \pm a_{3k}$, $q \pm a_{3k}$, existuje již v J_k řetězec (p, q).
- 2. Budiž p = a_{2k} a tedy q + a_{2k} ; tedy q je indexem množství J_k .
- 2α . Budiž $q = a_{2k-1}$; potom [p, q] je řetězec (p, q) z J_{k+1} .
- $2\beta.$ Budiž q \doteqdot a_{2k-1} . Potom existuje v J_k řetězec [q, b1], [b1, b2], ..., [b2, a2k-1] a tedy

$$[p, a_{2k-1}], [a_{2k-1}, b_{z}], \ldots, [b_{2}, b_{1}], [b_{1}, q]$$

je řetězec (p, q) z J_{k+1} .

Tedy pro každé k $(2 \le k \le n)$ je J_k souvislá část s k indexy, obsažená v každé mkč.

Speciálně $J = J_n$ je souvislá část s n indexy, t. j. s indexy $1, 2, \ldots, n$; jsou-li tedy p, q dvě různá přirozená čísla $\leq n$, existuje v J řetězec (p, q); to jest: J je kč.

Kdyby existovala minimální kompletní část K různá od J, musila by K obsahovati J, a tedy by bylo R (K) > R (J), což je vyloučeno, ježto J jest kč. Tím jsou naše tvrzení dokázána.

Konstrukce množství I je patrna z jeho definice.

Poznámka. Řešený problém je možno názorně interpretovati takto: Je dáno n kuliček, jež jsou očíslovány čísly $1,2,\ldots,n$, a jež jsou po dvou spojeny tyčemi v počtu $\frac{1}{2}$ n (n-1). Hmota tyče, jež spojuje kuličku a s kuličkou b, budiž r_a . Ty tyče buďte event. tak prohnuty, aby se navzájem nestýkaly. Jest odstraniti z tohoto systému tyčí některé tak, aby těch n kuliček drželo pohromadě a aby hmota zbylých tyčí byla co nejmenší.

V Praze, 12. února 1929.

VOJTĚCH JARNÍK:

Über ein Minimalproblem.

(Auszug aus einem Briefe an Herrn O. BORŮVKA.)

In dieser Note wird eine neue Lösung eines vom Herrn O. BORŮVKA behandelten Minimalproblems¹) dargestellt.

Es seien n Elemente gegeben, die mit den Ziffern 1,2,...,n bezeichnet werden. Wir bilden die $\frac{1}{2}$ n (n-1) Paare [i,k] $(i \pm k; i,k=1,2,...,n)$, wobei die Paare [i,k] und [k,i] als identisch angesehen werden. Die Menge aller dieser Paare heisse M. Jedem Paar [i,k] wird eine positive Zahl $r_{i,k}$ $(r_{i,k}=r_{k,i})$ zugeordnet; die $\frac{1}{2}$ n (n-1) Zahlen $r_{i,k}$ $(1 \le i \le k \le n)$ seien voneinander verschieden.

Wir betrachten alle Teilmengen K von M, die folgende Eigenschaft haben:

Wenn p, q natürliche Zahlen \leq n sind, p \downarrow q, so lässt sich aus den Elementen [i, k] von K eine Kette der Gestalt

$$[p, c_1], [c_1, c_2], \ldots, [c_{s-1}, c_s], [c_s, q]$$

bilden. Und wir behaupten: unter allen solchen Teilmengen gibt es genau eine, für welche die Summe

$$\Sigma r_{i,k}$$

erstreckt über alle Elemente [i, k] dieser Teilmenge, den kleinsten Wert besitzt. Und diese Teilmenge besteht aus genau n — 1 Elementen

$$[a_1, a_2], [a_3, a_4], \ldots, [a_{2n-3}, a_{2n-2}],$$

die folgendermassen definiert sind:

¹⁾ O. BORŮVKA, Über ein Minimalproblem, diese Acta, Tomus III, fasc. 3.

 a_1 ist eine beliebige unter den Zahlen 1, 2, ..., n. a_2 ist durch

$$r_{a_1, a_2} = \min r_{a_1, l}$$

$$\begin{pmatrix} l = 1, 2, ..., n \\ l \neq a_1 \end{pmatrix}$$

definiert.

Wenn $2 \le k \le n$ und wenn $[a_1, a_2], \ldots, [a_{2k-3}, a_{2k-2}]$ bereits bestimmt sind, so wird $[a_{2k-1}, a_{2k}]$ durch

$$r_{a_{2k-1}, a_{2k}} = min r_{i, j}$$

definiert, wo i alle Zahlen a_1 , a_2 , ..., a_{2k-2} , i aber alle übrigen von den Zahlen 1, 2, ..., n durchläuft.

Praha, den 12. Februar 1929.