ME101: Engineering Mechanics (3 1 0 8) 2019-20 (II Semester)

LECTURE: 7-8

Distributed forces: Center of Gravity

- The earth exerts a gravitational force on each of the particles forming a body. These forces can be replace by a single equivalent force equal to the weight of the body and applied at the *center of gravity* for the body.
 - The *centroid of an area* is analogous to the center of gravity of a body. The concept of the *first moment of an area* is used to locate the centroid.
 - Determination of the area of a *surface of revolution* and the volume of a *body of revolution* are accomplished with the *Theorems of Pappus-Guldinus*.

Center of Gravity of a 2D Body

• Center of gravity of a plate

• Center of gravity of a wire

$$\sum M_{y} \quad \overline{x}W = \sum x\Delta W$$

$$= \int x \, dW$$

$$\sum M_{x} \quad \overline{y}W = \sum y\Delta W$$

$$= \int y \, dW$$

Centroids & First Moments of Areas/Lines

Centroid of an area

• Centroid of a line

$$\bar{x}W = \int x \, dW$$

$$\bar{x}(\gamma A t) = \int x (\gamma t) dA$$

$$\bar{x}A = \int x \, dA = Q_y$$
= first moment with respect to y

$$\bar{y}A = \int y \, dA = Q_x$$
= first moment with respect to x

$$\bar{x}W = \int x \, dW$$

$$\bar{x}(\gamma La) = \int x (\gamma a) dL$$

$$\bar{x}L = \int x \, dL$$

$$\bar{y}L = \int y \, dL$$

First Moments of Areas and Lines

- If an area possesses a line of symmetry, its centroid lies on that axis
- If an area possesses two lines of symmetry, its centroid lies at their intersection.
- An area is symmetric with respect to a center O if for every element dA at (x,y) there exists an area dA of equal area at (-x,-y).
- The centroid of the area coincides with the center of symmetry.

Centroids of Common Shapes of Areas

Shape	BR 110 - The second Alfred South A. Mills	\overline{x}	\overline{y}	Area
Triangular area	$\frac{1}{\left \frac{b}{2}+\frac{b}{2}\right }$		$\frac{h}{3}$	$\frac{bh}{2}$
Quarter-circular area		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$rac{\pi r^2}{4}$
Semicircular area		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
Quarter-elliptical area	$C = \overline{\overline{y}} = \overline{\overline{y}} = \overline{\overline{y}}$	$\frac{4a}{3\pi}$	$\frac{4b}{3\pi}$	$\frac{\pi ab}{4}$
Semielliptical area	$ \begin{array}{c c} \hline 0 & \overline{x} & \hline \end{array} $	0	$\frac{4b}{3\pi}$	$\frac{\pi ab}{2}$

Centroids of Common Shapes of Areas

Semiparabolic area		3 <i>a</i> 8	$\frac{3h}{5}$	$\frac{2ah}{3}$
Parabolic area	$ \begin{array}{c c} \hline 0 & \overline{y} \\ \hline - \overline{x} & - \end{array} $	0	$\frac{3h}{5}$	$\frac{4ah}{3}$
Parabolic spandrel	$y = kx^{2}$ \overline{x}	$\frac{3a}{4}$	$\frac{3h}{10}$	$\frac{ah}{3}$
General spandrel	$y = kx^{n}$ $\downarrow 0$ $\downarrow \overline{x}$	$\frac{n+1}{n+2}a$	$\frac{n+1}{4n+2}h$	$\frac{ah}{n+1}$

Centroids of Common Shapes of Lines

Shape	9	\overline{x}	\overline{y}	Length
Quarter-circular arc	$C_{\overline{y}}$	$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
Semicircular arc	$O \left \frac{1}{\overline{x}} \right ^{\overline{y}} - \frac{C}{O} \left \frac{r'}{r'} \right $	0	$\frac{2r}{\pi}$	πτ
Arc of circle	$\frac{1}{\alpha}$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$ $\frac{1}{\alpha}$	$\frac{r \sin \alpha}{\alpha}$	0	2ar

Determination of Centroids by Integration

$$\overline{x}A = \int x dA = \iint x \, dx dy = \int \overline{x}_{el} \, dA$$
$$\overline{y}A = \int y dA = \iint y \, dx dy = \int \overline{y}_{el} \, dA$$

• Double integration to find the first moment may be avoided by defining *dA* as a thin rectangle or strip.

$$\bar{x}A = \int \bar{x}_{el} dA$$

$$= \int x (ydx)$$

$$\bar{y}A = \int \bar{y}_{el} dA$$

$$= \int \frac{y}{2} (ydx)$$

$$\overline{x}A = \int \overline{x}_{el} dA$$

$$= \int \frac{a+x}{2} \left[(a-x) dy \right]$$

$$\overline{y}A = \int \overline{y}_{el} dA$$

$$= \int y \left[(a-x) dy \right]$$

$$\bar{x}A = \int \bar{x}_{el} dA$$

$$= \int \frac{2r}{3} \cos \theta \left(\frac{1}{2} r^2 d\theta \right)$$

$$\bar{y}A = \int \bar{y}_{el} dA$$

$$= \int \frac{2r}{3} \sin \theta \left(\frac{1}{2} r^2 d\theta \right)$$
10

Determine by direct integration the location of the centroid of a parabolic spandrel.

SOLUTION:

- Determine the constant k.
- Evaluate the total area.
- Using either vertical or horizontal strips, perform a single integration to find the first moments.
- Evaluate the centroid coordinates.

SOLUTION:

• Determine the constant k.

$$y = k x^{2}$$

$$b = k a^{2} \implies k = \frac{b}{a^{2}}$$

$$y = \frac{b}{a^{2}} x^{2} \quad or \quad x = \frac{a}{b^{1/2}} y^{1/2}$$

• Evaluate the total area.

$$A = \int dA$$

$$= \int y \, dx = \int_0^a \frac{b}{a^2} x^2 dx = \left[\frac{b}{a^2} \frac{x^3}{3} \right]_0^a$$

$$=\frac{ab}{3}$$

dA = y dx $\overline{y}_{el} = \frac{y}{2}$ $\overline{x}_{el} = x$

• Using vertical strips, perform a single integration to find the first moments.

$$Q_{y} = \int \overline{x}_{el} dA = \int xy dx = \int_{0}^{a} x \left(\frac{b}{a^{2}} x^{2}\right) dx$$

$$= \left[\frac{b}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a} = \frac{a^{2}b}{4}$$

$$Q_{x} = \int \overline{y}_{el} dA = \int \frac{y}{2} y dx = \int_{0}^{a} \frac{1}{2} \left(\frac{b}{a^{2}} x^{2}\right)^{2} dx$$

$$= \left[\frac{b^{2}}{2a^{4}} \frac{x^{5}}{5}\right]_{0}^{a} = \frac{ab^{2}}{10}$$

• Or, using horizontal strips, perform a single integration to find the first moments.

$$Q_{y} = \int \overline{x}_{el} dA = \int \frac{a+x}{2} (a-x) dy = \int_{0}^{b} \frac{a^{2}-x^{2}}{2} dy$$

$$= \frac{1}{2} \int_{0}^{b} \left(a^{2} - \frac{a^{2}}{b} y \right) dy = \frac{a^{2}b}{4}$$

$$Q_{x} = \int \overline{y}_{el} dA = \int y(a-x) dy = \int y \left(a - \frac{a}{b^{1/2}} y^{1/2} \right) dy$$

$$= \int_{0}^{b} \left(ay - \frac{a}{b^{1/2}} y^{3/2} \right) dy = \frac{ab^{2}}{10}$$

• Evaluate the centroid coordinates.

$$\bar{x}A = Q_y$$

$$\bar{x}\frac{ab}{3} = \frac{a^2b}{4}$$

$$\bar{x} = \frac{3}{4}a$$

$$\bar{y}A = Q_x$$

$$\bar{y}\frac{ab}{3} = \frac{ab^2}{10}$$

$$\overline{y} = \frac{3}{10}b$$

Composite Plates and Areas

• Composite plates

$$\overline{X} \sum W = \sum \overline{x} W$$

$$\overline{Y} \sum W = \sum \overline{y} W$$

• Composite area

$$\overline{X} \sum A = \sum \overline{x} A$$
$$\overline{Y} \sum A = \sum \overline{y} A$$

For the plane area shown, determine the first moments with respect to the *x* and *y* axes and the location of the centroid.

SOLUTION:

- Divide the area into a triangle, rectangle, and semicircle with a circular cutout.
- Calculate the first moments of each area with respect to the axes.
- Find the total area and first moments of the triangle, rectangle, and semicircle.
 Subtract the area and first moment of the circular cutout.
- Compute the coordinates of the area centroid by dividing the first moments by the total area.

Component	A, mm ²	₹, mm	ӯ, mm	x̄A, mm³	ÿA, mm³
Rectangle	$(120)(80) = 9.6 \times 10^3$	60	40	$+576 \times 10^{3}$	$+384 \times 10^{3}$
Triangle	$\frac{1}{2}(120)(60) = 3.6 \times 10^3$	40	-20	$+144 \times 10^{3}$	-72×10^{3}
Semicircle	$\frac{1}{2}\pi(60)^2 = 5.655 \times 10^3$	60	105.46	$+339.3 \times 10^{3}$	$+596.4 \times 10^{3}$
Circle	$-\pi(40)^2 = -5.027 \times 10^3$	60	80	-301.6×10^{3}	-402.2×10^{3}
	$\Sigma A = 13.828 \times 10^3$			$\Sigma \bar{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

Find the **total area** and **first moments** of the triangle, rectangle, and semicircle. **Subtract the area and first moment of the circular cutout.**

$$Q_x = +506.2 \times 10^3 \,\text{mm}^3$$

 $Q_y = +757.7 \times 10^3 \,\text{mm}^3$

Compute the coordinates of the area centroid by dividing the first moments by the total area.

$$\overline{X} = \frac{\sum \overline{x}A}{\sum A} = \frac{+757.7 \times 10^3 \text{ mm}^3}{13.828 \times 10^3 \text{ mm}^2}$$

$$\overline{X} = 54.8 \,\mathrm{mm}$$

$$\overline{Y} = \frac{\sum \overline{y}A}{\sum A} = \frac{+506.2 \times 10^3 \,\text{mm}^3}{13.828 \times 10^3 \,\text{mm}^2}$$

$$\overline{Y} = 36.6 \,\mathrm{mm}$$

Theorems of Pappus-Guldinus

• Surface of revolution is generated by rotating a plane curve about a fixed axis.

• Area of a surface of revolution is equal to the length of the generating curve times the distance traveled by the centroid through the rotation.

$$A = 2\pi \, \overline{y} L$$

Theorems of Pappus-Guldinus

• Body of revolution is generated by rotating a plane area about a fixed axis.

• Volume of a body of revolution is equal to the generating area times the distance traveled by the centroid through the rotation.

$$V = 2\pi \, \overline{y} A$$

Determine the area of the surface of revolution shown, which is obtained by rotating a quarter-circular arc about a vertical axis.

SOLUTION

According to Theorem I of Pappus-Guldinus, the area generated is equal to the product of the length of the arc and the distance traveled by its centroid.

$$\overline{x} = 2r - \frac{2r}{\pi} = 2r\left(1 - \frac{1}{\pi}\right)$$

$$A = 2\pi \overline{x}L = 2\pi \left[2r\left(1 - \frac{1}{\pi}\right)\right]\left(\frac{\pi r}{2}\right)$$

$$A = 2\pi r^2(\pi - 1)$$

Using the theorems of Pappus-Guldinus, determine (a) the centroid of a semicircular area, (b) the centroid of a semicircular arc. We recall that the volume and the surface area of a sphere are $\frac{4}{3}\pi r^3$ and $4\pi r^2$, respectively.

SOLUTION

The volume of a sphere is equal to the product of the area of a semicircle and the distance traveled by the centroid of the semicircle in one revolution about the x axis.

$$V = 2\pi \overline{y}A \qquad \frac{4}{3}\pi r^3 = 2\pi \overline{y}(\frac{1}{2}\pi r^2) \qquad \overline{y} = \frac{4r}{3\pi} \quad \blacktriangleleft$$

Likewise, the area of a sphere is equal to the product of the length of the generating semicircle and the distance traveled by its centroid in one revolution.

$$A = 2\pi \overline{y}L$$
 $4\pi r^2 = 2\pi \overline{y}(\pi r)$ $\overline{y} = \frac{2r}{\pi}$

CG of a 3D Body: Centroid of a Volume

• Center of gravity G

$$-W\vec{j} = \sum \left(-\Delta W\vec{j}\right)$$

$$\vec{r}_G \times (-W \vec{j}) = \sum_{i} \left[\vec{r} \times (-\Delta W \vec{j}) \right]$$
$$\vec{r}_G W \times (-\vec{j}) = \left(\sum_{i} \vec{r} \Delta W \right) \times (-\vec{j})$$

$$W = \int dW \qquad \vec{r}_G W = \int \vec{r} dW$$

• Results are independent of body orientation, $\bar{x}W = \int xdW \quad \bar{y}W = \int ydW \quad \bar{z}W = \int zdW$

• For homogeneous bodies, $W = \gamma V \text{ and } dW = \gamma dV$ $\bar{x}V = \int x dV \quad \bar{y}V = \int y dV \quad \bar{z}V = \int z dV$

Centroids of Common 3D Shapes

Shape		\overline{x}	Volume				
Hemisphere		<u>3a</u> 8	$\frac{2}{3}\pi a^3$	Cone	$h \rightarrow \overline{x} \rightarrow \overline{x}$	$\frac{h}{4}$	$rac{1}{3}$ $\pi a^2 h$
Semiellipsoid of revolution	$\begin{array}{c} \uparrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \overline{x} \\ \downarrow \\ \end{array}$	$\frac{3h}{8}$	$rac{2}{3}\pi a^2 h$	Pyramid		$\frac{h}{4}$	$\frac{1}{3}abh$
Paraboloid of revolution	$\begin{array}{c} & & \\ & \\ \downarrow \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array}$	$\frac{h}{3}$	$rac{1}{2}$ $\pi a^2 h$				

Composite 3D Bodies

• Moment of the total weight concentrated at the center of gravity G is equal to the sum of the moments of the weights of the component parts.

$$\overline{X}\sum W = \sum \overline{x}W \quad \overline{Y}\sum W = \sum \overline{y}W \quad \overline{Z}\sum W = \sum \overline{z}W$$

For homogeneous bodies,

$$\overline{X}\sum V = \sum \overline{x}V \quad \overline{Y}\sum V = \sum \overline{y}V \quad \overline{Z}\sum V = \sum \overline{z}V$$

Locate the center of gravity of the steel machine element. The diameter of each hole is 1 cm.

SOLUTION:

• Form the machine element from a rectangular parallelepiped and a quarter cylinder and then subtracting two 1-in. diameter cylinders.

	V , cm ³	₮ , cm	y , cm	z , cm	x <i>V</i> , cm ⁴	ӯѴ , cm⁴	z √, cm ⁴
I II III IV	$(4.5)(2)(0.5) = 4.5$ $\frac{1}{4}\pi(2)^{2}(0.5) = 1.571$ $-\pi(0.5)^{2}(0.5) = -0.3927$ $-\pi(0.5)^{2}(0.5) = -0.3927$	0.25 1.3488 0.25 0.25	-1 -0.8488 -1 -1	2.25 0.25 3.5 1.5	1.125 2.119 -0.098 -0.098	-4.5 -1.333 0.393 0.393	10.125 0.393 -1.374 -0.589
	$\Sigma V = 5.286$				$\Sigma \overline{x}V = 3.048$	$\Sigma \overline{y}V = -5.047$	$\Sigma \overline{z} V = 8.555$

	V , cm ³	₹, cm	y , em	₹ , cm	₹ <i>V</i> , cm ⁴	ӯѴ , cm⁴	₹ <i>V</i> , cm ⁴
I II III IV	$(4.5)(2)(0.5) = 4.5$ $\frac{1}{4}\pi(2)^2(0.5) = 1.571$ $-\pi(0.5)^2(0.5) = -0.3927$ $-\pi(0.5)^2(0.5) = -0.3927$	0.25 1.3488 0.25 0.25	-1 -0.8488 -1 -1	2.25 0.25 3.5 1.5	1.125 2.119 -0.098 -0.098	-4.5 -1.333 0.393 0.393	10.125 0.393 -1.374 -0.589
	$\Sigma V = 5.286$				$\Sigma \overline{x}V = 3.048$	$\Sigma \overline{y}V = -5.047$	$\Sigma \overline{z}V = 8.555$

$$\overline{X} = \sum \overline{x}V/\sum V = (3.08 \text{ cm}^4)/(5.286 \text{ cm}^3)$$

$$\overline{X} = 0.577 \text{ cm}$$

$$\overline{Y} = \sum \overline{y}V/\sum V = \left(-5.047 \text{ cm}^4\right)/\left(5.286 \text{ cm}^3\right)$$

$$\overline{Y} = 0.577 \text{ cm}$$

$$\overline{Z} = \sum \overline{z}V/\sum V = (1.618 \text{ cm}^4)/(5.286 \text{ cm}^3)$$

$$\overline{Z} = 0.577 \,\mathrm{cm}$$

Distributed Loads on Beams

$$W = \int_{0}^{L} w dx = \int dA = A$$

• A distributed load is represented by plotting the load per unit length, w (N/m). The total load is equal to the area under the load curve.

$$(OP)W = \int x dW$$
$$(OP)A = \int_{0}^{L} x dA = \overline{x}A$$

• A distributed load can be replace by a concentrated load with a magnitude equal to the area under the load curve and a line of action passing through the area centroid.

A beam supports a distributed load as shown. Determine the equivalent concentrated load and the reactions at the supports.

SOLUTION:

- The magnitude of the concentrated load is equal to the total load or the area under the curve.
- The line of action of the concentrated load passes through the centroid of the area under the curve.
- Determine the support reactions by summing moments about the beam ends.

SOLUTION:

• The magnitude of the concentrated load is equal to the total load or the area under the curve.

$$F = 18.0 \,\mathrm{kN}$$

• The line of action of the concentrated load passes through the centroid of the area under the curve.

$$\overline{X} = \frac{63 \text{ kN} \cdot \text{m}}{18 \text{ kN}}$$

$$\overline{X} = 3.5 \text{ m}$$

Component	A, kN	<i>x</i> , m	<i>xA</i> , kN⋅m	
Triangle I Triangle II	4.5 13.5	2 4	9 54	
	$\Sigma A = 18.0$		$\Sigma \overline{x}A = 63$	

$$\sum M_A = 0$$
: $B_y (6 \text{ m}) - (18 \text{ kN})(3.5 \text{ m}) = 0$

$$B_y = 10.5 \text{ kN}$$

$$\sum M_B = 0$$
: $-A_y (6 \text{ m}) + (18 \text{ kN})(6 \text{ m} - 3.5 \text{ m}) = 0$

$$A_y = 7.5 \text{ kN}$$

Distributed forces: Pressure load on a flat plate

Distributed forces: Pressure load on a flat plate

$$F_R = \int_A p(x, y) \, dA$$

$$\bar{x} = \frac{\int_{A} xp(x, y) dA}{\int_{A} p(x, y) dA} \quad \bar{y} = \frac{\int_{A} yp(x, y) dA}{\int_{A} p(x, y) dA}$$

Distributed forces: Hydrostatic forces

Hydrostatics of submerged bodies

Sample problem: Hydrostatics

Determine the magnitude and location of the resultant hydrostatic force acting on the submerged rectangular plate AB shown in Fig. a. The plate has a width of 1.5 m; $\rho_w = 1000 \text{ kg/m}^3$.

Sample problem: Hydrostatics

The water pressures at depths A and B are

$$p_A = \rho_w g z_A = (1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(2 \text{ m}) = 19.62 \text{ kPa}$$

 $p_B = \rho_w g z_B = (1000 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(5 \text{ m}) = 49.05 \text{ kPa}$

Since the plate has a constant width, the pressure loading can be viewed in two dimensions as shown in Fig. \Box The intensities of the load at A and B are

$$w_A = bp_A = (1.5 \text{ m})(19.62 \text{ kPa}) = 29.43 \text{ kN/m}$$

 $w_B = bp_B = (1.5 \text{ m})(49.05 \text{ kPa}) = 73.58 \text{ kN/m}$

Sample problem: Hydrostatics

Consider two components of \mathbf{F}_R ,

defined by the triangle and rectangle shown in Fig. Each

force acts through its associated centroid and has a magnitude of

$$F_{Re} = (29.43 \text{ kN/m})(3 \text{ m}) = 88.3 \text{ kN}$$

 $F_t = \frac{1}{2}(44.15 \text{ kN/m})(3 \text{ m}) = 66.2 \text{ kN}$

Hence,

$$F_R = F_{Re} + F_t = 88.3 + 66.2 = 154.5 \text{ kN}$$

Ans.

The location of \mathbf{F}_R is determined by summing moments about B,

$$\zeta + (M_R)_B = \Sigma M_B; (154.5)h = 88.3(1.5) + 66.2(1)$$

 $h = 1.29 \text{ m}$

Ans.

Hydrostatic forces on curved surfaces

