

CFR 47 FCC PART 15 SUBPART C ISED RSS-247 ISSUE 2

TEST REPORT

For

Kami Wire-Free Outdoor Camera

MODEL NUMBER: YWS.1029

FCC ID: 2AFIB-YWS1029 IC: 20436-YWS1029

PROJECT NUMBER: 4789135124

REPORT NUMBER: 4789135124-1

ISSUE DATE: Oct. 16, 2019

Prepared for

Shanghai Xiaoyi Technology Co., Ltd.

Prepared by

UL-CCIC COMPANY LIMITED

No. 2, Chengwan Road, Suzhou Industrial Park, People's Republic of China

Tel: +86 512 6808 6400 Fax: +86 512 6808 4099 Website: www.ul.com

Page 2 of 128

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	10/16/2019	Initial Issue	

Page 3 of 128

Summary of Test Results							
Clause	Test Items	FCC/IC Rules	Test Results				
1	6dB Bandwidth and 99% Occupied Bandwidth	FCC Part 15.247 (a) (2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass				
2	Peak Conducted Output Power	FCC Part 15.247 (b) (3) RSS-247 Clause 5.4 (e)	Pass				
3	Power Spectral Density	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass				
4	Conducted Bandedge and Spurious Emission	FCC Part 15.247 (d) RSS-247 Clause 5.5	Pass				
5	Radiated Bandedge and Spurious Emission	FCC Part 15.247 (d) FCC Part 15.209 FCC Part 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass				
6	Conducted Emission Test For AC Power Port	FCC Part 15.207 RSS-GEN Clause 8.8	N/A				
7	Antenna Requirement	FCC Part 15.203 RSS-GEN Clause 8.3	Pass				

Remark:

2) The product is powered by battery.

¹⁾ The measurement result for the sample received is <Pass> according to < ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15C> when <Accuracy Method> decision rule is applied.

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	6
2.	TE	ST METHODOLOGY	7
3.	FA	CILITIES AND ACCREDITATION	7
4.	CA	LIBRATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	
	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EQ	UIPMENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	MAXIMUM OUTPUT POWER	9
	5.3.	CHANNEL LIST	10
	5.4.	TEST CHANNEL CONFIGURATION	10
	5.5.	THE WORSE CASE CONFIGURATIONS	10
	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.7.	THE WORSE CASE CONFIGURATIONS	11
	5.8.	DESCRIPTION OF TEST SETUP	12
6.	ME	ASURING INSTRUMENT AND SOFTWARE USED	13
7.	ME	ASUREMENT METHODS	14
8.	AN	TENNA PORT TEST RESULTS	15
ě	8.1.	ON TIME AND DUTY CYCLE	15
ě	8.2.	6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH	18
ě	8.3.	PEAK CONDUCTED OUTPUT POWER	32
ě	8.4.	POWER SPECTRAL DENSITY	34
ć	8.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	42
9.	RA	DIATED TEST RESULTS	74
,		RESTRICTED BANDEDGE	
	9.1 9.1		
	9.1		
	9.1		
,	9.2.	'	
	9.2 9.2	2.1. 802.11b MODE	
	9.2	.3. 802.11n HT20 MODE	109
	9.2	.4. 802.11n HT40 MODE	115

Page 5 of 128

	1 agc 5 01 120
9.3. SPURIOUS EMISSIONS (18~26GHz)	121
9.3.1. 802.11n HT20 MODE	
9.4. SPURIOUS EMISSIONS (0.03 ~ 1 GHz)	123
9.4.1. 802.11n HT20 MODE	
9.5. SPURIOUS EMISSIONS BELOW 30M	
9.5.1. 802.11n HT20 MODE	125
0 ANTENNA REQUIREMENTS	128

Page 6 of 128

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Shanghai Xiaoyi Technology Co., Ltd.

Address: 6F, Building E, No. 2889, Jinke Road Shanghai, China

Manufacturer Information

Company Name: Shanghai Xiaoyi Technology Co., Ltd.

Address: 6F, Building E, No. 2889, Jinke Road Shanghai, China

EUT Description

EUT Name: Kami Wire-Free Outdoor Camera

Model: YWS.1029 Sample Status: Normal

Sample Received Date: August 9, 2019

Date of Tested: August 19~ September 30, 2019

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C	PASS				
ISED RSS-247 Issue 2	PASS				
ISED RSS-GEN Issue 5	PASS				

Tested By: Tom Tang	Reviewed By: Clinis Zhong		
Tom Tang	Chris Zhong		
Engineer Project Associate	Senior Project Engineer		

Authorized By:

Scholl Zhang Laboratory Leader

Scholl Zhang

Page 7 of 128

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, CFR 47 FCC Part 2, CFR 47 FCC Part 15, ANSI C63.10-2013, ISED RSS-247 Issue 2 and ISED RSS-GEN Issue 5.

3. FACILITIES AND ACCREDITATION

Accreditation Certificate	A2LA (Certificate No.: 4829.01) UL-CCIC COMPANY LIMITED has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1247) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules. IC (IC Designation No.: 25056) UL-CCIC COMPANY LIMITED has been recognized to perform compliance testing on equipment subject to the Commission's Declaration of Conformity (DoC) and Certification rules.
------------------------------	---

Note 1: All tests measurement facilities use to collect the measurement data are located at No. 2, Chengwan Road, Suzhou Industrial Park, Suzhou 215122, People's Republic of China

Note 2: For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. These measurements below 30MHz had been correlated to measurements performed on an OFS.

Note 3: The test anechoic chamber in UL-CCIC COMPANY LIMITED had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Page 8 of 128

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty
Conduction emission	3.00dB
Radiation Emission test(include Fundamental emission) (9kHz-30MHz)	3.32dB
Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	3.27dB
Radiation Emission test (1GHz to 26GHz)(include Fundamental emission)	3.80dB (1GHz-18Gz)
(13.12 to 200112)(morage i direction embolicity	4.11dB (18GHz-26.5Gz)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 9 of 128

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Kami Wire-Free Outdoor Camera
Model	YWS.1029
Radio Technology	IEEE802.11b/g/n HT20&HT40
Operation frequency	IEEE 802.11b: 2412MHz—2462MHz IEEE 802.11g: 2412MHz—2462MHz IEEE 802.11n HT20: 2412MHz—2462MHz IEEE 802.11n HT40: 2422MHz—2452MHz
Modulation	IEEE 802.11b: DSSS(CCK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK) IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
Power Supply	DC 3.7V * 4

5.2. MAXIMUM OUTPUT POWER

Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)
1	IEEE 802.11b	2412-2462	1-11[11]	14.35
1	IEEE 802.11g	2412-2462	1-11[11]	22.10
1	IEEE 802.11nHT20	2412-2462	1-11[11]	22.37
1	IEEE 802.11nHT40	2422-2452	3-9[7]	21.40

Page 10 of 128

5.3. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	2412	4	2427	7	2442	10	2457		
2	2417	5	2432	8	2447	11	2462		
3	2422	6	2437	9	2452	1	/		

Channel List for 802.11n (40 MHz)								
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
3	2422	5	2432	7	2442	9	2452	
4	2427	6	2437	8	2447	/	/	

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
WiFi TX(802.11b)	LCH, MCH, HCH	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11g)	LCH, MCH, HCH	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT20)	LCH, MCH, HCH	2412MHz, 2437MHz, 2462MHz
WiFi TX(802.11n HT40)	LCH, MCH, HCH	2422MHz, 2437MHz, 2452MHz

5.5. THE WORSE CASE CONFIGURATIONS

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band								
Test Softw	/are			Smar	rtTools			
	Transmit			Test C	Channel			
Modulation Mode	Antenna	1	NCB: 20MHz			NCB: 40MHz		
Wiode	Number	LCH	MCH	HCH	LCH	MCH	HCH	
802.11b	1	N/A	N/A	N/A				
802.11g	1	N/A	N/A	N/A	/			
802.11n HT20	1	N/A	N/A	N/A				
802.11n HT40	1		/		N/A	N/A	N/A	

Page 11 of 128

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	Dipole Antenna	2.35

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

5.7. THE WORSE CASE CONFIGURATIONS

For the product, there is only one transmission antenna, so only the worst data for the antenna1 is recorded in the report.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11b mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	E550c	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB to TTL	USB to TTL	USB	1	N/A
2	USB	N/A	N/A	1	N/A

ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

REPORT No.: 4789135124-1 Page 13 of 128

6. MEASURING INSTRUMENT AND SOFTWARE USED

		Cor	nducte	ed Emis	sions (Ins	strun	ment)		
Used	Equipment	Manufacturer	Mod	del No.	Serial N	lo.	Upper Last Cal.	Last Cal.	Next Cal.
V	EMI Test Receiver	R&S	Е	SR3	126700)	2017-12-14	2018-12-13	2019-12-12
V	Two-Line V-Network	R&S	EN	IV216	126701	1	2017-12-14	2018-12-13	2019-12-12
V	Artificial Mains Networks	R&S	Εl	NY81	126711	1	2017-12-14	2018-12-13	2019-12-12
				Soft	ware				
Used	Des	cription		Ma	nufacture	r	Name	Version	
$\overline{\checkmark}$	Test Software for 0	Conducted distur	bance		R&S		EMC32	Ver. 9.25	
		Ra	diate	d Emiss	ions (Inst	rum	ent)		
Used	Equipment	Manufacturer	Mod	del No.	Serial N	lo.	Upper Last Cal.	Last Cal.	Next Cal.
$\overline{\checkmark}$	Spectrum Analyzer	Keysight	N9	010B	MY57110	128	2018-05-30	2019-05-29	2020-05-28
V	EMI test receiver	R&S	ES	SR26	126760	3	2017-12-14	2018-12-13	2019-12-22
V	Receiver Antenna (9kHz-30MHz)	Schwarzbeck	FMZ	ß 1513	513-26	5	2018-06-17	2019-06-16	2020-06-15
V	Receiver Antenna (30MHz-1GHz)	SunAR RF Motion	,	JB1	126704	1	N/A	2019-01-28	2022-01-27
	Receiver Antenna (1GHz-18GHz)	R&S	Н	F907	126705	5	2018-01-27	2019-01-26	2020-01-26
V	Receiver Antenna (18GHz-26.5GHz)	Schwarzbeck	BBH	IA9170	126706	6	2018-02-07	2019-02-06	2020-02-05
V	Receiver Antenna (26.5GHz-40GHz)	TOYO	HAP	26-40W	0000001	12	2018-07-25	2019-07-24	2020-07-23
V	Pre-amplification (To 1GHz)	R&S	SC	U-03D	134666	6	2018-02-07	2019-02-06	2020-02-05
	Pre-amplification (To 18GHz)	Compliance Direction System Inc.	PAP-	1G18-50	14140-134	467	N/A	2019-03-18	2020-03-17
V	Pre-amplification (To 26.5GHz)	R&S		U-26D	134668	3	2018-02-07	2019-02-06	2020-02-05
V	Band Reject Filter	Wainwright	2350 2483.5	CJV8- 0-2400- 5-2533.5- 0SS	1		2018-05-30	2019-05-29	2020-05-28
V	Highpass Filter	Wainwright	2700	IKX10- 0-3000- 10-40SS	2		2018-05-30	2019-05-29	2020-05-28
	Software								
Used	Descr	ription		Manufac	turer	1	Name	Version	
V	Test Software for R	adiated disturbar	nce	Tonsce	end		JS32	V1.0	
			C	Other ins	truments	<u> </u>			
Used	Equipment	Manufacturer	Mod	del No.	Serial N	lo.	Upper Last Cal.	Next Cal.	
\checkmark	Spectrum Analyzer	Keysight	N9	010B	MY57110	128	2018-05-30	2019-05-29	2020-05-28
V	Power Sensor	Keysight	U20	021XA	MY57110	002	2018-06-13	2019-06-12	2020-06-11

Page 14 of 128

7. MEASUREMENT METHODS

No.	Test Item	KDB Name	Section
1	6dB Bandwidth	KDB 558074 D01 15.247 Meas Guidance v05r02	8.2
2	Peak Output Power	KDB 558074 D01 15.247 Meas Guidance v05r02	8.3.1.3/8.3.2.3
3	Power Spectral Density	KDB 558074 D01 15.247 Meas Guidance v05r02	8.4
4	Out-of-band emissions in non- restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.5
5	Out-of-band emissions in restricted bands	KDB 558074 D01 15.247 Meas Guidance v05r02	8.6
6	Band-edge	KDB 558074 D01 15.247 Meas Guidance v05r02	8.7
7	99% Bandwidth	ANSI C63.10-2013	6.9.3

Page 15 of 128

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only

PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V * 4

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)	Final setting For VBW (KHz)
11B	16.410	16.455	0.9973	99.73%	0.012	0.061	0.1
11G	2.726	2.767	0.9852	98.52%	0.065	0.367	1
11N20	2.522	2.563	0.9840	98.40%	0.070	0.397	1
11N40	1.227	1.266	0.9692	96.92%	0.136	0.815	1

Note:

Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be used.

8.2. 6 dB DTS BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2						
Section	Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2) 6 dB Bandwidth		≥ 500KHz	2400-2483.5			
ISED RSS-Gen Clause 6.7	99% Occupied Bandwidth	For reporting purposes only.	2400-2483.5			

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	For 6dB Bandwidth :100K For 99% Occupied Bandwidth :1% to 5% of the occupied bandwidth	
VBW	For 6dB Bandwidth : ≥3 × RBW For 99% Occupied Bandwidth : approximately 3×RBW	
Trace	Max hold	
Sweep	Auto couple	

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

Page 19 of 128

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V * 4

RESULTS

Test Mode	Test Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result
	LCH	9.091	11.047	Pass
11B	MCH	9.095	10.983	Pass
	HCH	9.099	11.034	Pass
	LCH	16.37	16.535	Pass
11G	MCH	16.37	16.517	Pass
	HCH	16.37	16.518	Pass
	LCH	17.59	17.624	Pass
11N20	MCH	17.59	17.605	Pass
	HCH	17.60	17.627	Pass
11N40	LCH	35.68	35.988	Pass
	MCH	35.55	35.959	Pass
	HCH	35.44	36.032	Pass

Test Graphs 6dB bandwidth

Test Mode **Test Channel** Verdict LCH **PASS** 11N20 ٥ + KEYSIGHT INDUT RE Input Z: 50 0 Corrections: Off Freq Ref. Int (5) Center Freq 2.413000000 GHs Augirkold 10/10 Radio Std None 2.412000000 GHz Mkr1 2.4195 GHz 40 000 MHz Graph Ref Lvi Offset 8.55 dB Ref Value 30.00 dBm 0.58 dBm Scale/Div 10.0 dB CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz Span 40 MHz Sweep Time 4.27 ms (8001 pts) Center 2.412 GHz ≢Res BW 100.00 kHz #Video BW 300.00 kHz Occupied Bandwidth 17.597 MHz Total Power 18.2 dBm Transmit Freq Error 10.941 kHz % of OBW Power 99,00 % -6.00 dB 17.59 MHz

.:: ₹

1 9 P 25, 2019 9 55224 PM

Test Mode Test Channel Verdict **PASS** 11N40 **MCH** ٥ + KEYSIGHT least RE Input Z 50 (3 Corrections, Ciff Fring Raif, Int (5) Curter Freq 2 457000000 GHz Center Frequency 2 437000000 GHz Augitickt 10/10 Radio Stif Nome Mkr1 2.4483 GHz f Graph 80,000 MHz Ref Lvi Offset 8.12 dB Ref Value 30.00 dBm -0.91 dBm Scale/Div 10.0 dB CF Step 8.000000 MHz Auto Man Freq Offset 0 Hz Center 2.437 GHz #Res BW 100.00 kHz #Video BW 300.00 kHz Span 80 MHz Sweep Time 8.00 ms (8001 pts) Occupied Bandwidth 35.874 MHz Total Power 19.7 dBm Transmit Freq Error 7.108 kHz % of OBW Power 99.00 % 6.00 € 35.55 MHz # 5 C ? Sep 25, 2019 @ .:: ¥

99% bandwidth

Test Mode Test Channel Verdict **PASS** 11B **HCH** ٥ + KEYSIGHT Input RE input Z 50 0 Corrections Off DWI Freq Ref Int (5) Augitoid 10/10 Radio Std None 2.462000000 GHz Graph 40 000 MHz Ref Lvi Offset 8.51 dB Ref Value 30.00 dBm Scale/Div 10.0 dB CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz Span 40 MHz Sweep Time 1.07 ms (8001 pts) Center 2.452 GHz #Res BW 200.00 kHz #Video BW 620.00 kHz Occupied Bandwidth 11.034 MHz Total Power 17.0 d8m 99,00 % -6.00 dB Transmit Freq Error 68.301 kHz % of OBW Power 9 232 MHz

.:: ₹

€ 549.25,2019 @ 5.43.28 PM

1961

Test Mode Test Channel Verdict **PASS** 11N40 **MCH** Ö + KEYSIGHT Insut RE Imput Z: 50 D CC Connetions Off Month Freq Ref. let (S) Center Freq 2.437000000 CH 2.437000000 GHz 1 Graph 80 000 MHz Ref Lvi Offset 8.12 dB Ref Value 30.00 dBm Scale/Div 10.0 dB CF Shep 8.000000 MHz Auto Man Freq Offset D Hz Spen 80 MHz Sweep Time 1.07 ms (8001 pts) Center 2.437 GHz #Res BW 510.00 kHz #Video BW 2,0000 MHz 35.959 MHz 19.8 dBm Transmit Freq Error 34.845 kHz 99.00% 36 02 MHz -6.00 dB

.:: 🐧

Page 32 of 128

8.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (e)	Peak Output Power	1 watt or 30dBm (See note1)	2400-2483.5	

Note:

1. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

TEST PROCEDURE

Place the EUT on the table and set it in the transmitting mode.

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor.

Measure the power of each channel.

Peak Detector use for Peak result.

AVG Detector use for AVG result.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V * 4

RESULTS

Test Mode	Test Channel	Maximum Peak Conducted Output Power(dBm)	Result
	LCH	11.54	Pass
11B	MCH	12.98	Pass
	HCH	14.35	Pass
	LCH	19.58	Pass
11G	MCH	20.89	Pass
	HCH	22.10	Pass
	LCH	19.75	Pass
11N20	MCH	21.12	Pass
	HCH	22.37	Pass
	LCH	19.94	Pass
11N40	MCH	21.33	Pass
	HCH	21.40	Pass

Page 34 of 128

8.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2				
Section Test Item Limit Frequency Ran (MHz)				
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm/3 kHz (See note1)	2400-2483.5	

Note:

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	3 kHz ≤ RBW ≤100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V * 4

^{1.} If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

RESULTS

Test Mode	Test Channel	Maximum Peak power spectral density (dBm/30kHz)	Result
	LCH	-3.78	Pass
11B	MCH	-1.95	Pass
	HCH	-0.91	Pass
	LCH	-4.16	Pass
11G	MCH	-3.00	Pass
	HCH	-1.67	Pass
	LCH	-4.68	Pass
11N20	MCH	-2.70	Pass
	HCH	-1.93	Pass
11N40	LCH	-6.95	Pass
	MCH	-5.63	Pass
	HCH	-5.75	Pass

Test Graphs:

Res BW 30 kHz

? Sep 25, 2019 @

Test Mode **Test Channel** Verdict **PASS** 11B **HCH** ø + KEYSIGHT Input RE Input 2:50 D Connections: Of Freq Ref. Int (S) 2.462000000 GHz Mkr1 2.460 500 9 GHz 18 1980000 MHz Ref Lvi Offset 8.51 dB Ref Level 30.00 dBm -0.91 dBm Scale/Div 10 dB Full Span Start Freq 2.452901000 GHz AUTO TUNE CF Shep 1.819800 MHz Auto Man req Offset #Video BW 100 kHz Span 18.20 MHz Sweep 19.2 ms (8001 pts) ter 2.462000 GHz

.:: 🐧

Test Mode Test Channel Verdict **PASS** 11N40 **MCH** ø + KEYSIGHT Insut RE Input 2:50 D Connections: Of Freq Ref. Int (S) 2.437000000 GHz Mkr1 2.442 626 GHz 71.1000000 MHz Ref Level 30.00 dBm -5.63 dBm Scale/Div 10 dB Full Span Start Freq 2.401450000 GHz AUTO TUNE CF Step 7.110000 MHz Auto Man Freq Offset #Video BW 100 kHz Span 71.10 MHz Sweep 75.2 ms (8001 pts) nter 2.43700 GHz Res BW 30 kHz

.:: 🐧

8.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test	
Detector	Peak	
RBW	100K	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V * 4

REPORT No.: 4789135124-1

Page 44 of 128

Part I : Conducted Bandedge

RESULTS

Test Mode	Test Channel	Carrier Power [dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	-0.2915	-41.77	-20.29	PASS
ПВ	MCH	2.627	-39.98	-17.37	PASS
11G	HCH	0.3932	-40.96	-19.61	PASS
116	LCH	2.642	-40.29	-17.36	PASS
11N20	MCH	0.2909	-40.10	-19.71	PASS
TINZU	HCH	2.543	-39.46	-17.46	PASS
11N40	LCH	-1.694	-38.64	-21.69	PASS
111140	MCH	-0.6744	-39.34	-20.67	PASS

TEST GRAPHS

Test Mode **Test Channel** Verdict LCH **PASS** 11G ٥ + KEYSIGHT Input RE Corrections: Citi Freq Ref. Int (5) 2.400000000 GHz Mkr4 2.387 600 0 GHz 100 000000 MHz Ref Lvi Offset 8.55 dB Ref Level 30.00 dBm -40.96 dBm Scale/Div 10 dB Full Span 43 AUTO TUNE #Video BW 300 kHz Span 100.0 MHz Sweep 9.60 ms (8001 pts) ter 2,40000 GHz CF Step 10.000000 MHz Auto Mari Function Width Function Value 0.3932 dBm -39.19 dBm req Offset X Axis Scale Log 1 5 C ? Sep 25, 2019 @ .:: ₹

Test Mode Test Channel Verdict LCH **PASS** 11N20 ٥ + KEYSIGHT Input RE Corrections: Citi Freq Ref. Int (5) 2.400000000 GHz Mkr4 2.386 525 0 GHz Ref Lvi Offset 8.55 dB Ref Level 30.00 dBm 100.000000 MHz -40.10 dBm Scale/Div 10 dB Full Span 2.350000000 GHz AUTO TUNE #Video BW 300 kHz Span 100.0 MHz Sweep 9.60 ms (8001 pts) ter 2,40000 GHz CF Step 10.000000 MHz Auto Mari Function Width Function Value req Offset X Axis Scale Log

.:: ₹

1 553.42 PM

Part II :Conducted Emission

Test Result Table

Test Mode	Channel	Pref(dBm)	Puw(dBm)	Verdict
	LCH	-0.36	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	1.24	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	2.53	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	0.14	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	1.46	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	2.66	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	0.47	<limit< td=""><td>PASS</td></limit<>	PASS
11N20	MCH	1.49	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	2.96	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	-2.36	<limit< td=""><td>PASS</td></limit<>	PASS
11N40	MCH	-0.82	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	-0.90	<limit< td=""><td>PASS</td></limit<>	PASS

Test Plots

Test Mode	Channel	Verdict
11B	LCH	PASS

Test Mode Channel Verdict PASS 11B MCH

Test Mode Channel Verdict
11B HCH PASS

Test Mode Channel Verdict
11G LCH PASS

1 age 50 of 120

Test Mode	Channel	Verdict
11G	MCH	PASS

Test Mode Channel Verdict
11G HCH PASS

Test Mode Channel Verdict 11N20 LCH **PASS**

Test Mode Channel Verdict 11N20 MCH **PASS**

Page 66 of 128

Test Mode	Channel	Verdict
11N20	HCH	PASS

Test Mode Channel Verdict
11N40 LCH PASS

1 age 70 01 120

Test Mode	Channel	Verdict
11N40	MCH	PASS

Test Mode Channel Verdict
11N40 HCH PASS

Puw test Plot

REPORT No.: 4789135124-1

Page 74 of 128

9. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209

Please refer to ISED RSS-GEN Clause 8.9 (Transmitter)

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

REPORT No.: 4789135124-1

Page 75 of 128

Radiation Disturbance Test Limit for FCC (Above 1G)

Frequency (MHz)	dB(uV/m) (at 3 meters)		
Frequency (Miriz)	Peak	Average	
Above 1000	74	54	

IC Restricted bands please refer to ISED RSS-GEN Clause 8.10 FCC Restricted bands of operation:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			•

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Detector	Peak/QP/ Average
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector
- 6. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Below 1G

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 0.8 meter above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1m height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

ABOVE 1G

The setting of the spectrum analyser

RBW	1M
IVBW	PEAK: 3M AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 8.1.ON TIME AND DUTY CYCLE.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	20°C	Relative Humidity	56%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.7V * 4

Page 80 of 128

9.1. RESTRICTED BANDEDGE

Test Result Table

Test Mode	Channel	Puw(dBm)	Verdict
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N20	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS
11N40	LCH	<limit< td=""><td>PASS</td></limit<>	PASS
	MCH	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	<limit< td=""><td>PASS</td></limit<>	PASS

9.1.1. 802.11b MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

	No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
Ι		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Ι	1	2379.6412	39.41	14.01	53.42	74.00	-20.58	peak
Γ	2	2390.0000	38.51	14.09	52.60	74.00	-21.40	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2380.1288	38.40	14.02	52.42	74.00	-21.58	peak
2	2390.0000	37.18	14.09	51.27	74.00	-22.73	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	37.86	13.88	51.74	74.00	-22.26	peak
2	2540.6661	39.30	14.30	53.60	74.00	-20.40	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	37.55	13.88	51.43	74.00	-22.57	peak
2	2505.8686	39.76	14.15	53.91	74.00	-20.09	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

9.1.2. 802.11g MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2346.5935	45.19	13.65	58.84	74.00	-15.16	peak
		33.36	13.65	47.01	54.00	-6.99	average
2	2374.1782	42.20	13.93	56.13	74.00	-17.87	peak
		28.92	13.93	42.85	54.00	-11.15	average
3	2390.0000	44.75	14.09	58.84	74.00	-15.16	peak
		30.21	14.09	44.30	54.00	-9.70	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2378.4232	41.63	13.97	55.60	74.00	-18.40	peak
		28.01	13.97	41.98	54.00	-12.02	average
2	2390.0000	42.68	14.09	56.77	74.00	-17.23	peak
		27.97	14.09	42.06	54.00	-11.94	average

Note: 1. Measurement = Reading Level + Correct Factor.

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

	No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Γ	1	2483.5000	38.42	13.88	52.30	74.00	-21.70	peak
Γ	2	2586.5707	39.37	14.47	53.84	74.00	-20.16	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	36.90	13.88	50.78	74.00	-23.22	peak
2	2546.6607	39.17	14.37	53.54	74.00	-20.46	peak

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

9.1.3. 802.11n HT20 MODE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Reading Level	Correct Factor	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
1	2347.6348	45.03	13.67	58.70	74.00	-15.30	peak
'		32.25	13.67	45.92	54.00	-8.08	average
2	2382.4204	43.47	14.07	57.54	74.00	-16.46	peak
		29.86	14.07	43.93	54.00	-10.07	average
3	2390.0000	47.09	14.09	61.18	74.00	-12.82	peak
		30.97	14.09	45.06	54.00	-8.94	average

- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst case emission was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.