AI Planning for Autonomy

Problem Set II: Heuristic Search Continued

1. Consider the following state space S, where $s_0 = s_1$ and $S_G = \{s_7\}$

where actions changing a state s into another state s' are given by the edges. The cost to transition from state s to s' is given by the following table:

s	s'	c(s,s')	s	s'	c(s, s')
s_1	s_2	2	s_3	s_7	10
s_1	s_3	2	s_4	s_6	1
s_1	s_4	1	s_5	s_7	3
s_2	s_5	2	s_6	s_7	4

and heuristic estimates for each state:

s	$h_1(s)$	$h_2(s)$	$h_3(s)$
s_1	4	6	6
s_2	3	5	1
s_3	5	10	1
s_4	3	5	5
s_5	2	3	3
$s_4 \\ s_5 \\ s_6 \\ s_7$	2	4	4
s_7	0	0	0

- Which heuristics are admissible?
- Which are consistent? h_1 and h_2 are consistent, h_3 is not because $h_3(s_2) < h_3(s_2) + c(s_1, s_2)$
- Does any heuristic dominate any other? $h_2 = h^*$ and therefore dominates all other admissible heuristics. $h_1(s_1) < h_3(s_1)$ and $h_3(s_2) < h_1(s_2)$ therefore neither of h_1 and h_3 dominate each other

Describe the execution of one of the following algorithms in this problem using one of the heuristics above. Fill in a table like the one below, showing the contents of the OPEN and CLOSED lists at the end of each iteration.

Choose one of: A^* , WA^* (w = 5), or Greedy Best-First Search.

Using A^* and h_2 ,	labeling each	$node n_i$	whose pare	$nt is n_p a$	as $n_i = \langle s, t \rangle$	$,g(n_i) +$	$h(s), g(n_i), n_p \rangle$
-------------------------	---------------	------------	------------	---------------	---------------------------------	-------------	-----------------------------

	Iteration 1	Iteration 2	Iteration 3	Iteration 4
Open	$n_1 = \langle s_1, 6, 0, nil \rangle *$	$n_2 = \langle s_2, 7, 2, n_1 \rangle$	n_2	n_2
		$n_3 = \langle s_3, 12, 2, n_1 \rangle$	n_3	n_3
		$n_4 = \langle s_4, 6, 1, n_1 \rangle *$	$n_5 = \langle s_6, 6, 2, n_4 \rangle *$	$n_6 = \langle s_7, 6, 6, n_5 \rangle *$
Closed		n_1	n_1	n_1
			n_4	n_4
				n_5

- Which is the path returned as a solution? $s_1 \rightarrow s_4 \rightarrow s_6 \rightarrow s_7$
- Is this the optimal plan? Has the algorithm proved this?

 Yes, since n₆ is at a goal state and has the lowest admissible cost estimate of any node in the open list in iteration 4, all other paths from any open node must be longer, given h₂ is both admissible and consistent.
- 2. Consider an $m \times m$ manhattan grid, and a set of coordinates G to visit in any order.
 - Formulate a state-based search problem to find a tour of all the desired points (i.e. define a state space, applicable actions, transition and cost functions).

$$S = \{\langle x, y, V \rangle \mid x, y \in \{0, \dots, m-1\} \land V \subseteq G\}$$

$$A(\langle x, y, V \rangle) = \{(dx, dy) \mid dx, dy \in \{-1, 0, 1\}$$

$$\land |dx| + |dy| = 1$$

$$\land x + dx \in \{0, \dots, m-1\}$$

$$\land y + dy \in \{0, \dots, m-1\}\}$$

$$t((dx, dy), \langle x, y, V \rangle) = \langle x + dx, y + dy, V \setminus \{(x + dx, y + dy)\} \rangle$$

$$c(a, s) = 1$$

- What is the branching factor of the search? approx. 4
- What is the size of the state space in terms of m and G. approx. $m^2 \cdot 2^{|G|}$
- Define an admissible heuristic function.

$$h(\langle x, y, V \rangle) = \max_{(x_g, y_g) \in V} (|x - x_g| + |y - y_g|)$$