Chapter 4 Network Layer

These slides are based on the slides made available by Kurose and Ross.

© All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

KUROSE ROSS

Computer Networking

A Top-Down Approach

6th edition

Jim Kurose, Keith Ross

Addison-Wesley

March 2012

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Network Layer Functions

network layer protocol in every host and router

Consider transporting a segment from sender to receiver

- sending side: encapsulates segments into datagrams
- receiving side: delivers segments to transport layer
- □ Path Determination: sum of routes chosen by routers to deliver packets from source to destination.
- □ Forwarding: move packets from router's input to appropriate router's output

Routing and Forwarding

routing algorithm determines path through network

forwarding table determines local forwarding at this router

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - O ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Network Service Model

What service model can be considered for a network transporting packets from sender to receiver?

example services for individual datagrams:

- "best effort" delivery
- No constraints on delay or bandwidth

example services for a flow of packets:

- in-order delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet timespacing

Connection-oriented & connectionless

- □ Virtual Circuit-network provides link or network-layer connection-oriented service.
- Datagram-based network provides networklayer connectionless service.
- ☐ Analogous to the transport-layer services but:
 - Service: host-to-host packet delivery
 - Implementation: every router in the network

Virtual Circuit: VC

source-to-destination path behaves much like telephone "circuit"

- Performance-wise (but it is virtual circuit)
- Network actions along the source-to-destination path
- Setup: for each connection before data packets can flow
- Each packet carries VC identifier (not destination address)
- Every router on the path maintains "state" for each passing connection.

Benefit: Link & router resources (bandwidth, buffers) may be allocated to VC

(dedicated resources = predictable service)

VC: Signaling Protocols

- □ used to setup, maintain and teardown VC
- □ used in ATM, Frame-Relay, X.25
- not used in today's Internet on network layer

VC: Forwarding Table

Forwarding table in northwest router:

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87

Routers maintain connection state information!

Datagram Networks (Internet)

- no call setup to establish path through network
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address
 - packets between same source-destination pair may take different paths

Datagram: Forwarding Table

4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

Datagram or VC network: why?

Internet (datagram)

- data exchange among computers
 - "elastic" service, no strict timing requirements.
- "smart" end systems (computers)
 - can adapt, perform control, error recovery
 - simple inside network, complexity at "edge"
- many link types
 - different characteristics
 - uniform service difficult

ATM (VC)

- more complicated
- evolved from telephony
- human conversation:
 - strict timing, reliability requirements
 - need for guaranteed service
- "dumb" end systems
 - telephones
 - moves complexity to inside network

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - O ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

Router Architecture: Overview

Two key router functions:

- □ run *routing* algorithms/protocols (RIP, OSPF, BGP)
- forwarding datagrams from incoming to outgoing link

Input Port Functions

Three types of switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transferred from inputs to outputs
 - often measured as multiple of input/output line rates
 - N inputs: switching rate
 N times line rate is
 desirable

Switching via Memory

First generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- □ speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via Bus

- datagram from input port memory to output port memory via a shared bus, one packet at a time
- bus contention: switching speed limited by bus bandwidth
- □ 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Switching via Interconnection Network

- crossbar
- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection networks initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, tag and switch cells through the fabric.
- □ Cisco 12000: switches 60 Gbps through the interconnection network

Output Ports

- Buffering required when datagrams arrive from fabric faster than the transmission rate of the outgoing link
- Scheduling discipline chooses among queued datagrams for transmission

Output Port Queueing

- buffering when arrival rate via switch exceeds output line speed
- delay due to queueing and loss due to output port buffer overflow!

Input Port Queuing

- ❖ fabric slower (seldom!) than input ports combined → queueing may occur at input port
 - queueing delay and loss due to input buffer overflow!
- Head-Of-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be transferred.
lower red packet is blocked

one packet time later: green packet experiences HOL blocking

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - O ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

The Internet Network Layer

Host, router network layer functions:

IP datagram format

IP protocol version = 4

header length 32-bits blocks, 5 standard)

TOS (priority)

TTL: max number of remaining hops (decremented by one at each router)

Upper layer protocol to deliver payload to 6 for TCP 17 for UDP

how much overhead?

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

IP Addressing: Introduction

interface: connection between host/router and physical link

> routers typically have multiple active interfaces

- hosts typically have one active interface (either wired Ethernet or wireless 802.11)
- IP address associated with each interface
- IP address: 32-bit identifier for host, router interface

Subnets

☐ IP address:

- subnet part (high order bits)
- host part (low order bits)

□ What's a subnet?

- device interfaces with same subnet part of IP address
- Contains hosts that can physically reach each other without intervening router
- All other hosts are reached by sending datagrams to router interface that works as "default gateway"

network consisting of 3 subnets

Subnets

- How long should the network prefix be?
 - Depends on number of hosts on subnet
 - All hosts in subnet have same subnetwork part of the address.

Typical info given to a host:

Your address is 223.1.3.1/24 Default route via 223.1.3.27

Subnet mask: /24

24 bits belong to the network (called length of "CIDR" prefix)

Subnets

How many?

IP Addressing: CIDR

CIDR: Classless Inter-Domain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

200.23.16.0/23

Subnets, masks, calculations

Example subnet: 192.168.5.0/24

	Binary form	Dot-decimal notation
IP address	11000000.10101000.00000101.10000010	192.168.5.130
Subnet mask	11111111.11111111.00000000 24 higher order bits set to 1	255.255.255.0
Network prefix: (bitwise AND of address, mask)	11000000.10101000.00000101.00000000	192.168.5. <mark>0</mark>
Host part (similar calculation, with eg a "wild card" where the 32 – 24 lower order bits set to 1)	00000000.00000000.00000000.10000010	0.0.0.130

network Layer 4-33

IP Addressing:

Q: How does an ISP get block of addresses?

A: ICANN: http://www.icann.org/

Internet Corporation for Assigned Names and Numbers

- allocates addresses
- o manages DNS
- o assigns domain names, resolves disputes

- These services were originally performed under U.S. Government contract by the Internet Assigned Numbers Authority (IANA) and other entities.
- The IANA now is part of ICANN.

IP Address Allocation:

- ➤ ICANN is responsible for global coordination of the Internet Protocol addressing systems and other naming and numbering standards.
- Users are assigned IP addresses by Internet Service Providers (ISPs). ISPs obtain allocations of IP addresses from a Local Internet Registry (LIR) or National Internet Registry (NIR), or from their appropriate Regional Internet Registry (RIR).
- There are five RIRs :

AfriNIC, Africa

APNIC, Asia Pacific

ARIN, Canada, United States, Caribbean and North Atlantic Islands **LACNIC**, Latin America and parts of the Caribbean region **RIPE NCC**, Europe, Russia, Middle East, and Parts of Central Asia

(NIC Network Information Center)

IP addresses: How to get one?

Network (subnet) addresses are allocated from a portion of its provider ISP's address space.

Hierarchical Addressing: Route Aggregation

- ☐ Hierarchical addressing allows efficient advertisement of routing information
- The "outside" does not need to know about subnets.

Classless Address: example

- An ISP has an address block 122.211.0.0/16
- ☐ A customer needs max. 6 host addresses,
- ☐ ISP can e.g. allocate: 122.211.176.208/29
 - ☐ 3 bits enough for host part
- □ subnet mask 255.255.255.248

	Dotted Decimal	Last 8 bits	
Network	122.211.176. 208	11010000	
1st address	122.211.176. 209	11010001	
		•••••	Reserved
6th address	122.211.176. 214	11010110	
Broadcast	122.211.176. 215	11010	

CIDR Address Mask

CIDR Notation	Dotted Decimal	CIDR Notation	Dotted Decimal
/1	128.0.0.0	/17	255.255.128.0
/2	192.0.0.0	/18	255.255.192.0
/3	224.0.0.0	/19	255.255.224.0
/4	240.0.0.0	/20	255.255.240.0
/5	248.0.0.0	/21	255.255.248.0
/6	252.0.0.0	/22	255.255.252.0
/7	254.0.0.0	/23	255.255.254.0
/8	255.0.0.0	/24	255.255.255.0
/9	255.128.0.0	/25	255.255.255.128
/10	255.192.0.0	/26	255.255.255.192
/11	255.224.0.0	/27	255.255.255.224
/12	255.240.0.0	/28	255.255.255.240
/13	255.248.0.0	/29	255.255.255.248
/14	255.252.0.0	/30	255.255.255.252
/15	255.254.0.0	/31	255.255.255.254
/16	255.255.0.0	/32	255.255.255.255

Special IP Addresses

- Localhost and local loopback
 - 127.0.0.1 of the reserved 127.0.0.0 (127.0.0.0/8)
- Private IP-addresses

```
\circ 10.0.0.0 - 10.255.255.255 (10.0.0.0/8)
```

- → 172.16.0.0 − 172.31.255.255 (172.16.0.0/12)
- 192.168.0.0 − 192.168.255.255 (192.168.0.0/16)
- Link-local Addresses (stateless autoconfig)
 - → 169.254.0.0 − 169.254.255.255 (169.254.0.0/16)

IP addresses: how to get one?

- Q: How does *host* get IP address?
- manually hard-coded by system admin in a file
 - Windows:
 - **Control Panel** → **Network Connections** → **Local Area Connection**
 - → Properties → Internet Protocol (TCP/IP) → Properties
 - UNIX: /etc/rc.config
- □ DHCP: Dynamic Host Configuration Protocol (RFC 2131) dynamically gets address from a DHCP server

Dynamic Host Configuration Protocol

Goal: allows host to *dynamically* obtain its IP address from network server when it joins network.

- Host can renew its lease on address in use
- Allows reuse of addresses (only hold address while connected)
- Support for nomad users who want to join network (short time)

DHCP overview:

- host broadcasts "DHCP discover" message
- DHCP server responds with "DHCP offer" message
- o host requests IP address: "DHCP request" message
- DHCP server sends address: "DHCP ACK" message

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than an IP address

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router (default gateway)
- name and IP address of DNS sever
- network mask (indicating network portion of address)

DHCP: example

- Connecting laptop needs:
 - its IP address, subnetmask
 - address of first-hop router
 - address of DNS server
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet MAC frame

DHCP: example

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, IP address of DNS server
- encapsulation of DHCP server, frame forwarded to client
- client now knows its IP address, IP address of DNS server, IP address of its first-hop router

NAT: Network Address Translation

Router with NAT can translate network addresses

 Many internal (private) addresses translated to one (or few) external (global) addresses.

Gives freedom when configuring internal network

- fewer addresses needed from ISP or just one IP global address for all devices
- can change addresses of devices in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- o can hide internal structure (devices not visible by outside world, a security plus)
- Internal network should use non-routable (private) addresses reserved for this purpose (RFC 1918)

NAT: Network Address Translation

NAT: network address translation

implementation: NAT router must:

outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)... remote clients/servers will respond using (NAT IP address, new port #) as destination address

remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair

incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: Network Address Translation

NAT: Network Address Translation

- □ 16-bit port-number field:
 - 65,000 simultaneous connections with a single WAN-side address!
- NAT is controversial:
 - o routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by application designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

NAT: Traversal Problem

- client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can't use it as destination addr)
 - only one externally visible
 NATed address: 138.76.29.7
- □ solution1: statically configure
 NAT to forward incoming
 connection requests at given
 port to server
 - e.g., (123.76.29.7, port 2500)
 always forwarded to 10.0.0.1
 port 2500

NAT: Traversal Problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)

i.e., automate static NAT port map configuration

NAT: Traversal Problem

- solution 3: relaying (used in p2p)
 - NATed host establishes connection to relay
 - external client connects to relay
 - relay bridges packets between two connections

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - O ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

ICMP: Internet Control Message Protocol

- Control and error messages from network layer.
- All IP implementations must have ICMP support.
- □ ICMP messages carried in IP datagrams
- used by hosts & routers to communicate network-level control information and error reporting
 - Error reporting: e.g., unreachable network, host, ...
 - Example: (used by ping command)
 - Sends ICMP echo request
 - Receives ICMP echo reply
- Any ICMP error message may never generate a new one.

ICMP: message format

□ ICMP message:

- type field: 1 byte
- o code field: 1 byte
- Checksum: 2 bytes
- Os, (ID + Seq. #) or other fields: 4 bytes
- Optional data or when error reporting message always include header of IP datagram causing error plus first 8 bytes of its payload

Type 0	Code 0	description echo reply (ping)
3 3 3 3 3	0 1 2 3 6 7	dest. network unreachable dest. host unreachable dest. protocol unreachable dest. port unreachable dest. network unknown dest. host unknown
4	0	source quench
8	0	echo request (ping)
9 10 <mark>11</mark> 12	0 0 0 0	route advertisement router discovery TTL expired bad IP header

Traceroute and ICMP

- Source sends series of UDP segments to destination
 - First has TTL =1
 - Second has TTL=2, etc.
 - Unlikely port number
- When datagram sent with TTL = n arrives to n:th router:
 - TTL becomes 0
 - Router discards datagram
 - Router sends to source an ICMP message "TTL expired" (type 11, code 0)
 - Message is carried in IP datagram with the router IP address as source

- When ICMP message arrives, source measures RTT
- Traceroute does this 3 times

Stop criteria

- UDP segment eventually arrives at destination host
- Destination returns ICMP message "destination port unreachable" (type 3, code 3)
- When source gets this ICMP 3 times, traceroute stops.

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - O ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing

IPv6: motivation

- initial motivation: 32-bit address space was about to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed
- \circ 128-bit addresses (2¹²⁸ = 10³⁸ numbers)
- Standard subnet size: 64 bits

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of flow" not well defined).

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- □ ICMPv6: new version of ICMP
 - o additional message types, e.g. "Packet Too Big"
 - Neighbor and router discovery
 - multicast group management functions

More slides

- IPv4 Fragmentation
- Datagram Forwarding Table
- Getting a datagram from source to destination
- □ IPv6-IPv4 Tunneling

IP Fragmentation & Reassembly

- MTU (Maximum Transmission Unit) largest possible data amount carried by link-level frame.
 - different link types, different MTUs
- large IP datagrams will be divided ("fragmented") by host or router
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header fields used to identify, order related fragments
 - More Fragments bit
 - Datagram ID
 - Fragment Offset (in 8-byte units)

IP Fragmentation

Example 4000 I

- □ 4000 bytes datagram
- MTU = 1500 bytes

1480 bytes in data field

offset = 1480/8

One large datagram becomes several smaller datagrams

length	ID	fragflag	offset
=1040		=0	=370

Datagram forwarding table

Destination Address Range			Link Interface	
11001000 through	00010111	00010000	0000000	0
11001000	00010111	00010111	11111111	Ü
11001000 through	00010111	00011000	0000000	1
	00010111	00011000	11111111	·
11001000 through	00010111	00011001	0000000	2
	00010111	00011111	11111111	
otherwise				3

Q: but what happens if ranges don't divide up nicely?

Longest prefix matching

longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address (more on this coming soon)

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** ******	2
otherwise	3

examples:

DA: 11001000 00010111 0001<mark>0110 10100001</mark>

DA: 11001000 00010111 0001<mark>1000 10101010</mark>

which interface? which interface?

forwarding table in A

IP datagram:

misc	source	dest	مامام
fields	IP addr	IP addr	data

- Payload in datagram remains unchanged, as it travels source to destination
- addr fields of interest here

misc	000 4 4 4	000 4 4 0	4-4-
fields	223.1.1.1	223.1.1.3	data

Starting at A, given IP datagram addressed to B:

- look up net. address of B
- find B is on same net. as A (B and A are directly connected)
- link layer will send datagram directly to B (inside link-layer frame)

misc	000 4 4 4	000 4 0 0	doto
fields	223.1.1.1	223.1.2.3	data

Starting at A, dest. E:

- look up network address of E
- E on *different* network
- □ routing table: next hop router to E is 223.1.1.4
- □ link layer is asked to send datagram to router 223.1.1.4 (inside link-layer frame)
- datagram arrives at 223.1.1.4
- continued.....

misc	000 4 4 4	000 4 0 0	4 - 4 -
fields	223.1.1.1	223.1.2.3	data

Arriving at 223.1.4, destined for 223.1.2.2

- look up network address of E
- E on same network as router's interface 223.1.2.9
 - router, E directly attached
- □ link layer sends datagram to 223.1.2.2 (inside link-layer frame) via interface 223.1.2.9
- datagram arrives at 223.1.2.2!!! (hooray!)

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling (6in4 – static tunnel)

Chapter 4: Network Layer

- 4.1 Introduction
- 4.2 Virtual circuit and datagram networks
- 4.3 What's inside a router
- 4.4 IP: Internet Protocol
 - Datagram format
 - IPv4 addressing
 - O ICMP
 - o IPv6

- ☐ 4.5 Routing algorithms
 - Link state
 - Distance Vector
 - Hierarchical routing
- 4.6 Routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Broadcast and multicast routing