

THOMAS CALCULO UNA VARIABLE Decimosegunda edición

PEARSON

CAPÍTULO 11

Sección 11.1, pp. 616-618

1.

3.

5.

7.

9.

11.

15.

17.

- 19. (a) $x = a \cos t$, $y = -a \sin t$, $0 \le t \le 2\pi$
 - (b) $x = a \cos t$, $y = a \sin t$, $0 \le t \le 2\pi$
 - (c) $x = a \cos t$, $y = -a \sin t$, $0 \le t \le 4\pi$
 - (d) $x = a \cos t$, $y = a \sin t$, $0 \le t \le 4\pi$
- **21.** Posible respuesta: x = -1 + 5t, y = -3 + 4t, $0 \le t \le 1$
- 23. Posible respuesta: $x = t^2 + 1$, y = t, $t \le 0$
- 25. Posible respuesta: x = 2 3t, y = 3 4t, $t \ge 0$
- 27. Posible respuesta: $x = 2 \cos t$, $y = 2 |\sin t|$, $0 \le t \le 4\pi$
- 29. Posible respuesta: $x = \frac{-at}{\sqrt{1+t^2}}$, $y = \frac{a}{\sqrt{1+t^2}}$, $-\infty < t < \infty$
- 31. Posible respuesta: $x = \frac{4}{1 + 2 \tan \theta}$, $y = \frac{4 \tan \theta}{1 + 2 \tan \theta}$, $0 \le \theta < \pi/2$ y x = 0, $y = 2 \sin \theta = \pi/2$
- 33. Posible respuesta: $x = 2 \cos t$, $y = \sin t$, $0 \le t \le 2\pi$
- 35. $x = 2 \cot t$, $y = 2 \sin^2 t$, $0 < t < \pi$
- 37. $x = a \operatorname{sen}^2 t \tan t$, $y = a \operatorname{sen}^2 t$, $0 \le t < \pi/2$ 39. (1, 1)

1. $y^2 = 8x$, F(2,0), directriz: x = -2

Sección 11.6, pp. 645-648

3. $x^2 = -6y$, F(0, -3/2), directriz: y = 3/2

5.
$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$
, $F(\pm \sqrt{13}, 0)$, $V(\pm 2, 0)$, asintotas: $y = \pm \frac{3}{2}x$

5.
$$\frac{4}{4} - \frac{9}{9} = 1$$
, $F(\pm \sqrt{13}, 0)$, $V(\pm 2, 0)$, asintotas: $y = \pm \frac{3}{2}x$

asintotas:
$$y = \pm \frac{1}{2}x$$

7. $\frac{x^2}{2} + y^2 = 1$, $F(\pm 1, 0)$, $V(\pm \sqrt{2}, 0)$

35.
$$y^2 - x^2 = 1$$
 37. $\frac{x^2}{9} - \frac{y^2}{16} = 1$

39. (a) Vértice:
$$(1, -2)$$
; foco: $(3, -2)$; directriz: $x = -1$

41. (a) Foco:
$$(4 \pm \sqrt{7}, 3)$$
; vértices: (8, 3) y (0, 3); centro: (4, 3) (b)

43. (a) Centro: (2, 0); foco: (7, 0) y (-3, 0); vértices: (6, 0) y (-2, 0); asintotas:
$$y = \pm \frac{3}{4}(x - 2)$$

45.
$$(y + 3)^2 = 4(x + 2)$$
, $V(-2, -3)$, $F(-1, -3)$, directriz: $x = -3$

47.
$$(x-1)^2 = 8(y+7)$$
, $V(1,-7)$, $F(1,-5)$, directriz: $y = -9$

49.
$$\frac{(x+2)^2}{6} + \frac{(y+1)^2}{9} = 1$$
, $F(-2, \pm \sqrt{3} - 1)$,

$$V(-2, \pm 3 - 1), C(-2, -1)$$

 $(x - 2)^2, (y - 3)^2$

51.
$$\frac{(x-2)^2}{3} + \frac{(y-3)^2}{2} = 1$$
, $F(3,3) y F(1,3)$, $V(\pm\sqrt{3}+2,3)$, $C(2,3)$

53.
$$\frac{(x-2)^2}{4} - \frac{(y-2)^2}{5} = 1$$
, $C(2,2)$, $F(5,2)$ y $F(-1,2)$, $V(4,2)$ y $V(0,2)$; asintotas: $(y-2) = \pm \frac{\sqrt{5}}{2}(x-2)$

55.
$$(y + 1)^2 - (x + 1)^2 = 1$$
, $C(-1, -1)$, $F(-1, \sqrt{2} - 1)$
 $y F(-1, -\sqrt{2} - 1)$, $V(-1, 0) y V(-1, -2)$;
asintotas $(y + 1) = \pm (x + 1)$

57.
$$C(-2, 0)$$
, $a = 4$ 59. $V(-1, 1)$, $F(-1, 0)$
61. Elipse: $\frac{(x + 2)^2}{5} + y^2 = 1$, $C(-2, 0)$, $F(0, 0)$ y
 $F(-4, 0)$, $V(\sqrt{5} - 2, 0)$ y $V(-\sqrt{5} - 2, 0)$

63. Elipse:
$$\frac{(x-1)^2}{2} + (y-1)^2 = 1$$
, $C(1,1)$, $F(2,1)$ y
$$F(0,1)$$
, $V(\sqrt{2}+1,1)$ y $V(-\sqrt{2}+1,1)$

65. Hipérbola:
$$(x-1)^2 - (y-2)^2 = 1$$
, $C(1,2)$, $F(1+\sqrt{2},2)$ y $F(1-\sqrt{2},2)$, $V(2,2)$ y $V(0,2)$: asintotas: $(y-2) = \pm (x-1)$

$$V(0, 2)$$
: asintotas: $(y - 2) = \pm (x - 1)$
67. Hipérbola: $\frac{(y - 3)^2}{6} - \frac{x^2}{3} = 1$. $C(0, 3)$, $F(0, 6)$ y $F(0, 0)$. $V(0, \sqrt{6} + 3)$ y $V(0, -\sqrt{6} + 3)$; asintotas: $y = \sqrt{2}x + 3$ o $y = -\sqrt{2}x + 3$

69. (b) 1:1 73. Longitud =
$$2\sqrt{2}$$
, ancho = $\sqrt{2}$, area = 4 75. 24π 77. $x = 0$, $y = 0$: $y = -2x$; $x = 0$, $y = 2$: $y = 2x + 2$; $x = 4$, $y = 0$: $y = 2x - 8$

$$x = 4, y = 0; y = 79.$$
 $\bar{x} = 0, \ \bar{y} = \frac{16}{3\pi}$

Sección 11.7, pp. 653-654

1.
$$e = \frac{3}{5}$$
, $F(\pm 3, 0)$;

3.
$$e = \frac{1}{\sqrt{2}}$$
; $F(0, \pm 1)$;

las directrices son
$$x = \pm \frac{25}{3}$$
.

5.
$$e = \frac{1}{\sqrt{3}}$$
; $F(0, \pm 1)$;
las directrices son $y = \pm 3$.

7.
$$e = \frac{\sqrt{3}}{3}$$
; $F(\pm\sqrt{3}, 0)$;
las directrices son $x = \pm 3\sqrt{3}$.

9.
$$\frac{x^2}{27} + \frac{y^2}{36} = 1$$
 11. $\frac{x^2}{4851} + \frac{y^2}{4900} = 1$

13.
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 15. $\frac{x^2}{64} + \frac{y^2}{48} = 1$

17.
$$e = \sqrt{2}$$
; $F(\pm \sqrt{2}, 0)$; 19. $e = \sqrt{2}$; $F(0, \pm 4)$;

las directrices son $x = \pm \frac{1}{\sqrt{2}}$. las directrices son $y = \pm 2$.

21.
$$e = \sqrt{5}$$
; $F(\pm\sqrt{10}, 0)$;

21. $e = \sqrt{5}$; $F(\pm\sqrt{10}, 0)$; 23. $e = \sqrt{5}$; $F(0, \pm\sqrt{10})$; las directrices son $x = \pm \frac{2}{\sqrt{10}}$, las directrices son $y = \pm \frac{2}{\sqrt{10}}$

25.
$$y^2 - \frac{x^2}{8} = 1$$
 27. $x^2 - \frac{y^2}{8} = 1$ 29. $r = \frac{2}{1 + \cos \theta}$
31. $r = \frac{30}{1 - 5 \sin \theta}$ 33. $r = \frac{1}{2 + \cos \theta}$ 35. $r = \frac{10}{5 - \sin \theta}$

43.

37.

41.

45. y = 2 - x

49. $r\cos\left(\theta - \frac{\pi}{4}\right) = 3$ **51.** $r\cos\left(\theta + \frac{\pi}{2}\right) = 5$

