WHAT IS CLAIMED IS:

5

10

15

TO TO

ľħ.

30

35

- 1. An optical glass having a refractive index nd of at least 1.875, an Abbe's number vd of at least 39.5 and a glass transition point Tg of 700°C or lower.
- 2. The optical glass of claim 1, which is a borosilicate glass comprising at least one selected from La_2O_3 , Gd_2O_3 , Y_2O_3 or Yb_2O_3 and at least one selected from ZrO_2 , Ta_2O_5 or Nb_2O_5 , wherein the weight ratio of the total content of La_2O_3 , Gd_2O_3 , Y_2O_3 and Yb_2O_3 to the total content of SiO_2 and B_2O_3 is from 2 to 4 and the weight ratio of the total content of ZrO_2 , Ta_2O_5 and Nb_2O_5 to the total content of SiO_2 and B_2O_3 is from 1 to 2.
- 3. The optical glass of claim 2, which further contains ZnO whose weight ratio to the total content of SiO_2 and B_2O_3 is more than 0 but not more than 2.
- 4. The optical glass of claim 3, wherein the weight ratio of the total content of La_2O_3 , Gd_2O_3 , Y_2O_3 and Yb_2O_3 to the total content of SiO_2 and B_2O_3 is from 2 to 4, the weight ratio of the total content of ZrO_2 , Ta_2O_5 and Nb_2O_5 to the total content of SiO_2 and B_2O_3 is from 1 to 2 and the weight ratio of ZrO_2 to the total content of SiO_2 and SiO_3 is from 0.1 to 0.5.
- 5. The optical glass of claim 1, which has a glass composition comprising, by % by weight, 3 to 10 % of SiO_2 , 7 to 15 % of B_2O_3 , 0 to 5 % of GeO_2 , 0 to 15 % of ZnO, 30 to 60 % of La_2O_3 , 0 to 30 % of Gd_2O_3 , 0 to 10 % of Y_2O_3 , 0 to 5 % of Yb_2O_3 , 2 to 8 % of YO_2 and 13 to 19 % of Ta_2O_5 , wherein the total content of SiO_2 , B_2O_3 and GeO_2 is 14 to 20 % by weight, the total content of B_2O_3 and ZnO is at least 9 % by weight, the total content of La_2O_3 , Gd_2O_3 , Y_2O_3 and Yb_2O_3 is 50 to 60 % by weight and the total content of the above components is at least 95 % and further wherein the composition contains, by % by weight, 0 to 1 % of Li_2O and 0 to 3 % of Nb_2O_5 .

6. The optical glass of claim 5, which contains, by % by weight, 9 to 12 % of B_2O_3 and 1 to 7 % of ZnO and has a B_2O_3 and ZnO total content of at least 12 % by weight.

The optical glass of claim 5 or 6, which contains, by % by weight, 6 to 9 % of SiO_2 , 9 to 12 % of B_2O_3 and 0 to 5 % of GeO_2 and has an SiO_2 , B_2O_3 and GeO_2 total content of 16 to 19 % by weight.

The optical glass of claim 1, which has a glass composition comprising, by % by weight, 5 to 10 % of SiO₂, 7 to 13 % of B₂O₃, 0 to 5 % of GeO₂, 0 to 15 % of ZnO, 30 to 60 % of La₂O₃, 0 to 30 % of Gd₂O₃, 0 to 5 % of Y₂O₃, 0 to 5 % of Yb₂O₃, 2 to 8 % of ZrO₂ and 13 to 19 % of Ta₂O₅, wherein the total content of SiO₂, B₂O₃ and GeO₂ is 14 to 20 % by weight, the total content of B₂O₃ and ZnO is at least 9 % by weight and the total content of La₂O₃, Gd₂O₃, Y₂O₃ and Yb₂O₃ is 50 to 60 % by weight, and further wherein the total content of the above components exceeds 95 % by weight, the composition further contains, by % by weight, 0 to 3 % of Nb₂O₃, 0 to 3 % of WO₃, 0 to 3 % of Al₂O₃, 0 to 3 % of Bi₂O₃, 0 to 3 % of Ga₂O₃ and 0 to 1 % of Sb₂O₃, the total content of BaO, SrO, K₂O and MgO is 0 to 3 % by weight, and the total content of Na₂O₃, K₂O and Li₂O is 0 to 1 % by weight.

20 25

30

35

- 9. An optical glass which is a borosilicate glass comprising at least one selected from La_2O_3 , Gd_2O_3 , Y_2O_3 or Yb_2O_3 and at least one selected from ZrO_2 , Ta_2O_5 or Nb_2O_5 , wherein the weight ratio of the total content of La_2O_3 , Gd_2O_3 , Y_2O_3 and Yb_2O_3 to the total content of SiO_2 and B_2O_3 is from 3.2 to 5 and the weight ratio of the total content of ZrO_2 , Ta_2O_5 and Nb_2O_5 to the total content of SiO_2 and B_2O_3 is from 1.1 to 1.5, and which has a refractive index nd of at least 1.875 and an Abbe's number vd of at least 39.5.
- 10. An optical glass which is a borosilicate glass comprising at least one selected from La_2O_3 , Gd_2O_3 , Y_2O_3 or Yb_2O_3 , at least one selected from ZrO_2 , Ta_2O_5 or Nb_2O_5 and ZnO_7 ,

wherein the weight ratio of the total content of La_2O_3 , Gd_2O_3 , Y_2O_3 and Yb_2O_3 to the total content of SiO_2 and B_2O_3 is from 2 to 5, the weight ratio of the total content of ZrO_2 , Ta_2O_5 and Nb_2O_5 to the total content of SiO_2 and B_2O_3 is from 0.5 to 3 and the weight ratio of ZrO_2 to the total content of SiO_2 and B_2O_3 is at least 0.14, and which has a refractive index nd of at least 1.875 and an Abbe's number vd of at least 39.5.

- 11. The optical glass of claim 9 or 10, which has a glass composition comprising, by % by weight, 3 to 10 % of SiO₂, 7 to 15 % of B₂O₃, 0 to 5 % of GeO₂, 0 to 15 % of ZnO, 30 to 60 % of La₂O₃, 0 to 30 % of Gd₂O₃, 0 to 10 % of Y₂O₃, 0 to 5 % of Yb₂O₃, 2 to 8 % of ZrO₂ and 13 to 19 % of Ta₂O₅, wherein the total content of SiO₂, B₂O₃ and GeO₂ is 14 to 20 % by weight, the total content of B₂O₃ and ZnO is at least 9 % by weight and the total content of La₂O₃, Gd₂O₃, Y₂O₃ and Yb₂O₃ is 50 to 60 % by weight, and further wherein the total content of the above components exceeds 95 % by weight and the glass composition contains 0 to 1 % by weight of Li₂O and 0 to 3 % by weight of Nb₂O₅.
 - 12. The optical glass of claim 11, which contains, by % by weight, 9 to 12 % of B_2O_3 and 1 to 7 % of ZnO and has a total content of B_2O_3 and ZnO of at least 12 % by weight.
- The optical glass of claim 11 or 12, which contains, by % by weight, 6 to 9 % of SiO₂, 9 to 12 % of B₂O₃ and 0 to 5 % of GeO₂ and has an SiO₂, B₂O₃ and GeO₂ total content of 16 to 19 % by weight.

LΠ

2 = 1

30

14. An optical glass comprising, by % by weight, 3 to 10 % of SiO₂, 7 to 15 % of B₂O₃, 30 to 60 % of La₂O₃, 2 to 8 % of ZrO₂ and 13 to 19 % of Ta₂O₅, wherein the total content of SiO₂ and B₂O₃ is 14 to 30 % by weight, and the total content of the above components is at least 95 % by weight.

The optical glass of claim 14, wherein part of La_2O_3 is replaced with Gd_2O_3 and/or Y_2O_3 , the content of Gd_2O_3 is 0

to 30 % by weight, the content of Y_2O_3 is 0 to 10 % by weight, the optical glass containing 0 to 15 % by weight of ZnO, and further wherein the total content of ZnO and B_2O_3 is at least 9 % by weight, the optical glass having a glass transition point Tg of 700°C or lower.

5

10

30

35

- 16. The optical glass of claim 14, wherein part of La_2O_3 is replaced with Gd_2O_3 and/or Y_2O_3 , the content of Gd_2O_3 is 0 to 30 % by weight, the content of Y_2O_3 is 0 to 10 % by weight, the content of Y_2O_3 is 0 to 10 % by weight, the content of Y_2O_3 is 0 to 10 % by weight, the content of Y_2O_3 is 0 to 3 % by weight and the content of Y_2O_3 is 0 to 10 % by weight, the optical glass having a glass transition point Y_2O_3 or Y_2O_3 is 0 to 10 % by weight, the optical glass having a glass transition point Y_2O_3 or Y_2O_3 is 0 to 10 % by weight.
 - 17. A glass preform made of the optical glass recited in claim 1, 9, 10 or 14.
 - 18. An optical product made of the optical glass recited in claim 1, 9, 10 or 14.
 - 19. A process for the production of the optical product recited in claim 18, which comprises the steps of melting raw materials for a glass and directly press-molding a molten glass.
 - 20. The process of claim 19, which further comprises the step of annealing a glass molded material obtained by the press-molding, after the step of directly press-molding a molten glass.
 - 21. A process for the production of an optical product, which comprises the steps of softening the glass preform recited in claim 17 under heat and press-molding the glass preform softened under heat.
 - 22. The process of claim 21, which further comprises the step of annealing a glass molded material obtained by the press-molding, after the step of press-molding the glass

preform.

att