Sprawozdanie z układów logicznych Temat ćwiczenia: Synteza układu synchronicznego 2. Imię i nazwisko – student 1: Bartosz Dusza Grupa laboratoryjna nr (u prowadzącego): 8 Dzień tygodnia:² wtorek Płyta montażowa nr (z tyłu zadajnika): Godziny zajęć (od-do):13:15-14:45

- I. Wnioski umieścić na odwrocie ostatniej kartki z rysunkami.
- II. Wyniki, potwierdzenie wykonania ćwiczenia wraz ze schematami realizowanych układów umieszczamy na ostatniej stronie

² Np. poniedziałek, środa itd.

³ Numery grup lab. (niezmienne w trakcie semestru) oraz numery płyt montażowych są zazwyczaj identyczne. Będą się różnić w sytuacjach, gdy ćwiczenie jest wykonywane na innym stanowisku niż zwykle bądź udostępniono płytę dodatkową.

⁴ Np. 7.30-9.00

1. Synteza układu Moore'a

Dla podanej sekwencji wartości wejścia i wyjścia nasz układ Moore'a wygląda następująco:

W tym układzie wartości na wyjściach Z1 i Z2 mogą zmienić swoją wartość tylko w momencie narastającego zbocza zegarowego, a zmiana wartości na wejściu nie ma bezpośredniego wpływu na wartości wyjść.

Graf stanów-wyjść dla podanego układu wygląda następująco:

Zakodowane stany:

Stan	Q1Q2
A	00
В	10
С	01
D	11

Tablica stanów-wyjść dla układu:

ruonea stanow wyjse ala akiada.		
Stan		X
bieżący	0	1
A	A/00	B/10
В	D/11	C/01
С	A/00	B/10
D	D/11	C/01

W powyższej tabeli można zauważyć, że stany A i C oraz B i D mają takie same wartości w tabeli stanów-wyjść, więc możemy je uprościć i zapisać jako jeden stan otrzymując wtedy:

Stan	X					
bieżący	0	1				
A	A/00	B/10				
В	B/11	A/01				

Otrzymywanie funkcji wzbudzających wejścia przerzutników:

	Q_1Q_2	X=0	X=1
	00	0	1
D1	10	1	0
D1	11	1	0
	01	0	1
	Q_1Q_2	X=0	X=1
	00	0	0
D2	10	1	1
	11	1	1
	01	0	0

Stąd możemy otrzymać $D1 = \overline{X}Q_1 + X\overline{Q_1}$ oraz $D2 = Q_1$.

Funkcje wyjść

Q1Q2	Z1	Z2
00	0	0
01	1	0
11	0	0
10	0	1

Możemy otrzymać następujące funkcje wyjść:

$$Z1 = \overline{Q_1}Q_2$$

$$Z2 = Q_1 \overline{Q_2}$$

2. Synteza układu Mealy`ego.

Dla podanej sekwencji wartości wejścia i wyjścia nasz układ Moore'a wygląda następująco:

W tym układzie wartości na wyjściach Z1 i Z2 mogą zmienić swoją wartość także w momencie zmiany wartości wejściowej, a więc zmiana wartości na wejściu ma bezpośredni wpływ na wartości wyjść.

Graf stanów-wyjść dla podanego układu wygląda następująco:

Zakodowane stany:

Stan	Q1Q2
A	00
В	10
С	01
D	11

Otrzymywanie funkcji wzbudzających przerzutniki:

	Q_1Q_2	X=0	X=1
	00	0	1
D1	10	1	0
D1	11	1	0
	01	0	1
	Q_1Q_2	X=0	X=1
	00	0	0
D2	10	1	1
	11	1	1
	01	0	0

Stąd możemy otrzymać $D1 = \overline{X}Q_1 + X\overline{Q_1}$ oraz $D2 = Q_1$.

Funkcje wyjść:

3 33	0102	71	770
X	Q1Q2	ZI	Z2

1	00	0	0
1	01	1	0
1	11	0	0
1	10	0	1
0	00	0	0
0	01	0	0
0	11	0	0
0	10	0	0

Możemy otrzymać następujące funkcje wyjść:

$$Z1 = \overline{Q_1}Q_2X$$

$$Z2 = XQ_1\overline{Q_2}$$

3. Schematy zsyntezowanych układów wraz z diagramami czasowymi Układ Moore'a:

Przebiegi czasowe:

Nazwa sygnału	Wartość sygnału	0 71.5	20,0 µs	40,0 µs		50,0 µs	80,0 µ	s .	100,0 µ	45	130,0	µз .	140,0	μз	160,0 μs	186	, 0 μs	199999712
Zegar(150,320)	1	0 1 0	$\int 1 \ 0 \ \int 1 \ 0$	1 0	1 0 /1	0 1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0 1 0	1 0	1 0 1	
	0	0	1		0	1		0	1		0	1		0	Į,	0		
D Flip-Flop(64	0	0	1	0	1		0	1		0	1		0	1		0		
D Flip-Flop(64	0	0		1	0 1			0	1		0	1		0	1		0	
D Flip-Flop(65	0	0	1	0	1		0	1		0	1		0	1		0		
D Flip-Flop(65	0	0		1	0 1			0	1		0	1		0	1		0	
© Z1MOORE	0	0	1	0	1 0			1	0		1	0		1	0			
© Z2MOORE	0	0		1	0		1	0	Į.	1	0		1	0		1	0	
Z1MEALY	0	0	1	0	1 0									1 0				
© Z2MEALY	0	0		/1	0		1	0		1	0		1	0		1 _0		

Jak można zauważyć, układ Moore'a zmieniał wartości wyjścia tylko w momentach taktowania zegara, natomiast układ Mealy'ego zmieniał je także pod wpływem zmiany wartości wejścia.