A JOURNEY

IN

PURE MATHEMATICS

A JOURNEY

IN

PURE MATHEMATICS

MAT3006 & 3040 & 4002 Notebook

Prof. Daniel Wong

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	owledgments	i۶
Notat	tions	X
1	Week1	. 1
1.1	Monday for MAT3040	1
1.1.1	Introduction to Advanced Linear Algebra	. 1
1.1.2	Vector Spaces	. 2
1.2	Monday for MAT3006	5
1.2.1	Overview on uniform convergence	. 5
1.2.2	Introduction to MAT3006	. 6
1.2.3	Metric Spaces	. 7
1.3	Monday for MAT4002	10
1.3.1	Introduction to Topology	. 10
1.3.2	Metric Spaces	. 11
1.4	Wednesday for MAT3040	14
1.4.1	Review	. 14
1.4.2	Spanning Set	. 14
1.4.3	Linear Independence and Basis	. 16
1.5	Wednesday for MAT3006	20
1.5.1	Convergence of Sequences	. 20
1.5.2	Continuity	. 24
1.5.3	Open and Closed Sets	. 25
1.6	Wednesday for MAT4002	27
1.6.1	Forget about metric	. 27
1.6.2	Topological Spaces	. 30

1.6.3	Closed Subsets	31
2	Week2	33
2.1	Monday for MAT3040	33
2.1.1	Basis and Dimension	33
2.1.2	Operations on a vector space	36
2.2	Monday for MAT3006	39
2.2.1	Remark on Open and Closed Set	39
2.2.2	Boundary, Closure, and Interior	43
2.3	Monday for MAT4002	46
2.3.1	Convergence in topological space	46
2.3.2	Interior, Closure, Boundary	48
2.4	Wednesday for MAT3040	52
2.4.1	Remark on Direct Sum	52
2.4.2	Linear Transformation	53
2.5	Wednesday for MAT3006	60
2.5.1	Compactness	60
2.5.2	Completeness	65
2.6	Wednesday for MAT4002	67
2.6.1	Remark on Closure	67
2.6.2	Functions on Topological Space	69
2.6.3	Subspace Topology	71
2.6.4	Basis (Base) of a topology	73
3	Week3	7 5
3.1	Monday for MAT3040	75
3.1.1	Remarks on Isomorphism	75
312	Change of Basis and Matrix Representation	76

3.2	Monday for MAT3006	83
3.2.1	Remarks on Completeness	83
3.2.2	Contraction Mapping Theorem	84
3.2.3	Picard Lindelof Theorem	87
3.3	Monday for MAT4002	89
3.3.1	Remarks on Basis and Homeomorphism	89
3.3.2	Product Space	92
3.4	Wednesday for MAT3040	94
3.4.1	Remarks for the Change of Basis	94
3.5	Wednesday for MAT3006	100
3.5.1	Remarks on Contraction	100
3.5.2	Picard-Lindelof Theorem	101
3.6	Wednesday for MAT4002	105
3.6.1	Remarks on product space	105
3.6.2	Properties of Topological Spaces	108
4	Week4	111
4.1	Monday for MAT3040	111
4.1.1	Quotient Spaces	111
4.1.2	First Isomorphism Theorem	114
4.2	Monday for MAT3006	117
4.2.1	Generalization into System of ODEs	117
4.2.2	Stone-Weierstrass Theorem	119
4.3	Monday for MAT4002	123
4.3.1	Hausdorffness	123
4.3.2	Connectedness	124
4.4	Wednesday for MAT3040	128
441	Dual Space	133

4.5	Wednesday for MAT3006	136
4.5.1	Stone-Weierstrass Theorem	137
4.6	Wednesday for MAT4002	142
4.6.1	Remark on Connectedness	142
4.6.2	Completeness	144
5	Week5	147
5.1	Monday for MAT3040	147
5.1.1	Remarks on Dual Space	148
5.1.2	Annihilators	150
5.2	Monday for MAT3006	154
5.2.1	Stone-Weierstrass Theorem in ${\mathbb C}$	155
5.2.2	Baire Category Theorem	157
5.3	Monday for MAT4002	159
5.3.1	Continuous Functions on Compact Space	159

Acknowledgments

This book is from the MAT3006, MAT3040, MAT4002 in spring semester, 2018-2019.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

5.2. Monday for MAT3006

Our first quiz will be held on this Wednesday.

Reviewing. We have shown that the algebra $\mathcal{A} \subseteq \mathcal{C}(X)$ with separation, non-vanishing property implies $\overline{\mathcal{A}} = \mathcal{C}(X)$.

Now we show that if $\overline{\mathcal{A}} = \mathcal{C}(X)$, then the algebra \mathcal{A} has separation, non-vanishing property:

1. Suppose on the contrary that \mathcal{A} is not separating, i.e., there exists $x_1, x_2 \in X$ such that $\phi(x_1) = \phi(x_2)$, $\forall \phi \in \mathcal{A}$.

By the defintion of closure, it's clear that for given $S \subseteq (X,d)$, $\forall x \in \overline{S}$, there exists a sequence $\{S_n\}$ in S such that $S_n \to x$.

Construct $f \in C(X)$ defined by $f(x) = d(x, x_1)$. It follows that

$$f(x_1) = 0$$
, $f(x_2) = d(x_2, x_1) := k > 0$

Now we claim that $f \notin \overline{A}$, since otherwise there exists $\{\phi_n\}$ in A such that $\phi_n \to f$, i.e.,

$$\phi_n(x_1) \to f(x_1), \quad \phi_n(x_2) \to f(x_2), \quad \phi_n(x_1) = \phi_n(x_2), \forall n,$$

i.e.,
$$0 = f(x_1) = f(x_2) > 0$$
.

- 2. Suppose on the contrary that \mathcal{A} is not non-vanishing, i.e., there exists some $x_0 \in X$ such that $\phi(x_0) = 0, \forall \phi \in \mathcal{A}$. Construct $g \in \mathcal{C}(X)$ defined by $g(x) = d(x, x_0) + 1$. Following the similar idea, we can show that there does not exist $\phi_n \in \mathcal{A}$ such that $\phi_n \to g$, i.e., $g \notin \overline{\mathcal{A}}$, which is a contradiction.
- Example 5.4 1. Let $X \subseteq \mathbb{R}^n$ be a compact space. Then the polynomial ring

$$\mathbb{R}[x_1,\ldots,x_n] = \{\text{Polynomials in } n \text{ variables with coefficients in } \mathbb{R}\}$$

forms a dense set in C(X).

It's clear that the set $\mathbb{R}[x_1,\ldots,x_n]$ satisfies the separating and non-vanishing property.

For the special case n=1 and X=[a,b], we get the Weierstrass Approximation Theorem.

2. In particular, when $X=S^1\subseteq \mathbb{R}^2$, we imply $\mathbb{R}[x,y]$ is dense in $\mathcal{C}(S^1)$.

5.2.1. Stone-Weierstrass Theorem in C

Consider the circle $S^1 \subseteq \mathbb{C}$ and the mappings

$$c:S^1 \to \mathbb{R}$$
 $s:S^1 \to \mathbb{R}$ with $e^{i\theta} \to \cos\theta$ with $e^{i\theta} \to \sin\theta$

are both continuous.

The algebra formed by s and c is given by

$$\mathcal{J} := \langle c, s \rangle = \operatorname{span} \{ \cos^m \theta \sin^n \theta \mid m, n \in \mathbb{N} \}$$

- 1. The $\mathcal J$ satisfies both separating and non-vanishing property, which implies $\overline{\mathcal J}=\mathcal C(S^1).$
- 2. Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous, 2π -periodic mapping. It's easy to construct a continuous mapping $\tilde{f}: S^1 \to \mathbb{R}$ such that the diagram below commutes:

Or equivalently, $f(\theta) = \tilde{f}(e^{i\theta})$ for some $\tilde{f} \in \mathcal{C}(S^1)$. Since $\overline{\mathcal{J}} = \mathcal{C}(S^1)$, we can approximate $\tilde{f} \in \mathcal{C}(S^1)$ by $\langle \cos \theta, \sin \theta \rangle$, which implies that the $f(\theta)$ can be approximated

by

$$\sum_{m,n\in\mathbb{N}} a_{m,n}\cos^m\theta\sin^n\theta.$$

Since span $\{\cos^m \theta \sin^n \theta\}_{m,n\in\mathbb{N}} = \text{span}\{\cos(m\theta),\sin(n\theta),1\}_{m,n\in\mathbb{N}}$, we imply $f(\theta)$ can be approximated by

$$\sum_{m,n\in\mathbb{N}} a_m \cos(m\theta) + b_n \sin(n\theta).$$

Or equivalently, for any $\varepsilon > 0$, there exists N > 0 and $a_m, a_n \in \mathbb{R}$ such that

$$\left| f(\theta) - \left(a_0 + \sum_{m=1}^N a_m \cos(m\theta) + \sum_{n=1}^N b_n \sin(n\theta) \right) \right| < \varepsilon, \quad \forall \theta \in [0, 2\pi].$$
 (5.1)

The natural question is that do we have the following equation hold:

$$f(\theta) = a_0 + \sum_{m=1}^{\infty} a_m \cos(m\theta) + \sum_{n=1}^{\infty} b_n \sin(n\theta)$$
 (5.2)

It seems that Eq.(5.2) above is equivalent to the expression in (5.1). However, unlike the Taylor expansion, the values of a_m , a_n , M, N may change once we switch the number $\varepsilon > 0$.

Therefore, Eq.(5.2) does not hold for most functions, but only for some functions with nice structure.

Fourier Analysis. Given the condition that the Eq.(5.2) holds. How can we get the values of a_m and b_n ? The way is to take "inner product" between $f(\theta)$ and trigonometric functions. For example, by taking the inner product with $\cos(k\theta)$ for Eq.(5.2) both sides, we have

$$\int_{-\pi}^{\pi} f(\theta) \cos(k\theta) d\theta = \frac{a_0}{2} \int_{-\pi}^{\pi} \cos(k\theta) d\theta + \sum_{m=1}^{\infty} a_m \int_{-\pi}^{\pi} \cos(m\theta) \cos(k\theta) d\theta + \sum_{m=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin(n\theta) \cos(k\theta) d\theta$$
$$= \pi \cdot a_k$$

Following the same trick, we obtain:

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(k\theta) d\theta$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(k\theta) d\theta$$
(5.3)

Naturally, we define the fourier expansion for general $f(\theta)$, even though we don't verify whether (5.2) holds or not:

$$g_N(\theta) = \frac{a_0}{2} + \sum_{n=1}^{N} a_m \cos(m\theta) + \sum_{n=1}^{N} b_n \sin(n\theta),$$

where the term a_m and b_n follow the definition in (5.3). The natural question is that whether $g_N(\theta) \to f(\theta)$ as $N \to \infty$?

5.2.2. Baire Category Theorem

Motivation. The set $\mathcal{P}[a,b] \subseteq \mathcal{C}[a,b]$ is dense by Weierstrass Approximation. However, it is not "abundant" in $\mathcal{C}[a,b]$, just like $\mathbb{Q} \subseteq \mathbb{R}$ is dense in \mathbb{R} . (Every $r \in \mathbb{R}$ is a limit of a sequence in \mathbb{Q})

The set $\mathbb Q$ is countable yet $\mathbb R\setminus \mathbb Q$ is uncountable, i.e., there are many more holes in $\mathbb R\setminus \mathbb Q.$

Definition 5.2 [Nowhere Dense] A subset $S\subseteq (X,d)$ is **nowhere dense** if \overline{S} does not contain any open ball, i.e.,

$$X \setminus \overline{S}$$
 is dense in X

For example, a single point is nowhere dense.

Theorem 5.1 Let $\{E_i\}_{i=1}^{\infty}$ be a collection of nowhere dense sets in a complete metric space (X,d). Then the set

$$\bigcup_{i=1}^{\infty} \overline{E_i}$$

also does not contain any open ball.

Proof. I have no time to review and modify the proof during the lecture. Therefore, we encourage the reader to go through the proof in the note

W,Ni & J. Wang (January, 2019). Lecture Notes for MAT2006. Retrieved from https://walterbabyrudin.github.io/information/information.html

Of course, I will also add the proof in this note during this week.