Digital Data Processing

M. Combacau combacau@laas.fr

November 4, 2024

Objectif

Représentation des fonctions logiques

Divers types de représentation

Depuis la création de l'algèbre de Boole, de nombreuses représentations des fonctions logiques ont été élaborées

- Représentation numérique (liste de points vrais/indéterminés/faux)
- Représentation graphique dans un repère à n dimensions (réaliste uniquement si $n \le 3$)
- Représentations tabulaires
 - La table de vérité
 - La table de Karnaugh
- Représentation algébrique

Représentation numérique (1)

Soit $f^*: f*(x_{n-1}...x_0) \in B_2*$ (cas le plus général)

- Le principe : donner la liste des points vrais / indéterminés / faux sous forme de listes d'entiers naturels
- codage : combinaison X_a représentée par $k_a \in \mathbb{N}$ défini par

$$k_a = \sum_{i=1}^{n-1} N(x_i) \times 2^i$$
 (codage binaire naturel)

avec

$$\begin{cases}
N(x_i) \in \mathbb{N} \\
x_i = 0 \Leftrightarrow N(x_i) = 0 \\
x_i = 1 \Leftrightarrow N(x_i) = 1
\end{cases}$$

- Exemples : $X = (x_2, x_1, x_0)$

$$X_a = (1, 1, 0) \Leftrightarrow k_a = N(1) \times 2^2 + N(1) \times 2^1 + N(0) \times 2^0 = 2^2 + 2^1 = 6$$

Représentation numérique (2)

La forme générale d'une telle représentation est :

$$f = f_1\{k_a \dots k_h\}_b + f_*\{k_h \dots k_l\}_b[+f_0\{k_m \dots k_t\}_b]$$

- pour f* : deux listes nécessaires
- pour f : une liste nécessaire
- ne nécessite pas la connaissance de X

Exemples

- $f^* = f_1^* \{0, 4, 7\}_{10} + f_*^* \{1, 2\}_{10}$ (ou $f^* = f_1^* \{0, 4, 7\}_{10} + f_0^* \{3, 5, 6\}_{10}$)
- $f = f_1\{1, 2, 5, 6\}_{10}$ (ou $f = f_0\{0, 3, 4, 7\}_{10}$)
 - \rightarrow utilisée dans certaines méthodes de simplification

Représentation graphique ou spatiale (1)

Les points sont sur les sommets d'un hypercube dans un espace de dimension n. Limité au cas où $n \leq 3$ pour l'algèbre de Boole Exemples

- cas
$$n = 1$$

Représentation graphique ou spatiale (2)

- cas n = 2

$$f = 0$$

$$\begin{array}{c|c}
1 & \longrightarrow & 1 \\
 & \downarrow x_1 & | \\
 & \downarrow x_0 & | \\
0 & \longrightarrow & 1
\end{array}$$

$$f = x_1 + x_0$$

$$f = x_1.x_0$$

$$\begin{array}{c|c}
1 & \longrightarrow & 0 \\
 & \downarrow x_1 & \downarrow \\
0 & \longrightarrow & 1
\end{array}$$

 $f = XOR(x_1, x_0)$

- cas n = 3 (sur un cube !) pfff...
- cas n = 4 impossible sur un plan...
 - ightarrow utilisée pour les systèmes séquentiels (L3 EEA à Toulouse)

Table de vérité

- Déjà rencontré (sans réelle définition)
- Tableau avec une combinaison de X par ligne
- Ordre binaire naturel des combinaisons
- Très utilisée, en particulier en VHDL (vu en Discrete Events Systems juin 2024)

Exemples déjà rencontrés

n	x_1	<i>x</i> ₀	ET
0	0	0	0
1	0	1	0
2	1	0	0
3	1	1	1

n	x ₁	<i>x</i> ₀	NOR
0	0	0	1
1	0	1	0
2	1	0	0
3	1	1	0

	n	x ₁	x ₀	XOR
_	0	0	0	0
_	1	0	1	1
	2	1	0	1
	3	1	1	0

Rappel : ordre binaire naturel lié à la valeur associée à une combinaison X_a par

$$k_a = \sum_{i=0}^{n-1} N(x_i) \times 2^i$$

 \Rightarrow c'est l'ordre des entiers dans $\mathbb N$ défini par la relation <

Table de Karnaugh (1)

- Tableau à double entrée le plus proche possible du carré
- pour X à n composantes

```
- entrée des lignes : combinaisons des composantes n-1 à \lfloor \frac{n}{2} \rfloor - entrée des colonnes : combinaisons des composantes n-1 à \lceil \frac{n}{2} \rceil
```

- Une cellule correspond ainsi à une combinaison de X
- Ordre binaire réfléchi (code de Gray) pour les combinaisons

Code Gray

- 1 variable : 0,0
- 2 variables : 00,01,11,10
- $\ \ 3 \ variables: \ 000,001,011,010,110,111,101,100$

Propriétés : code cyclique à valeurs adjacentes

Table de Karnaugh (2)

Exemples et valeurs des combinaisons $(k_a = \sum_{i=0}^{n-1} N(x_i) \times 2^i)$

- 2 composantes $X = (x_1, x_0)$

- 3 composantes $X = (x_2, x_1, x_0)$

		x_1, x_0				
		00	01	11	10	
<i>X</i> ₂	0	0	1	3	2	
	1	4	5	7	6	

Table de Karnaugh (3)

Correspondance table de Karnaugh et valeurs des combinaisons

$$k_a = \sum_{i=0}^{n-1} N(x_i) \times 2^i$$

- 4 composantes $X = (x_3, x_2, x_2, x_0)$

	x_1, x_0				
		00	01	11	10
	00	0	1	3	2
x_3, x_2	01	4	5	7	6
	11	12	13	15	14
	10	8	9	11	10

Table de Karnaugh (4)

Exemples)

-
$$XOR$$
 $x_1 = \begin{bmatrix} x_0 \\ 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 0 \end{bmatrix}$

Représentations algébriques (1)

- f(X) est représentée par une expression algébrique Ea formée sur X telle que pour toute combinaison X; de X
 - X_i est un point faux $\Leftrightarrow Ea(X_i) = 0$
 - X_i est un point vrai $\Leftrightarrow Ea(X_i) = 1$
- Une expression algébrique ne prend jamais la valeur * de B₂*, il n'existe donc pas de représentation algébrique d'une fonction incomplètement spécifiée

Exemples

- la fonction OR est représentée par l'Ea : $x_1 + x_0$
- la fonction NAND est représentée par l'Ea : $\overline{x_1.x_0}$

Représentations algébriques (2)

- Une fonction f admettant pour représentation algébrique Ea_0 , admet aussi pour représentation algébrique toute Ea_i telle que $Ea_i = Ea_0$
- Exemple, OU est représentée par :
 - $-x_1 + x_0$
 - $-x_1.\overline{x_0} + x_0$
 - $-x_1.\overline{x_0} + \overline{x_1}.x_0 + x_1.x_0$
 - _ ..

Représentations algébriques (3)

Relation d'ordre dans les fonctions

Convenons de noter $P_1(f^*)$ (resp. $P_*(f^*)$) les ensembles de point vrais (respectivement points non spécifiés) de f^* fonction incomplètement spécifiée

Une relation d'ordre peut être définie dans l'ensemble des fonction de \boldsymbol{X} par

$$f_1 \geq f^* \Leftrightarrow P_1(f^*) \subset P_1(f_1) \subset (P_1(f^*) \cup P_*(f^*))$$

Exemple soit $f^* = f_1\{0, 4, 7\}_{10} + f_*\{1, 2\}_{10}$

- $f^a = f_1^a \{0, 1, 4, 7\}_{10} + f_*^a \{2\}_{10}$ est telle que $f^a \ge f^*$
- $f^b = f_1^b \{4,7\}_{10} + f_*^b \{0,1,2\}_{10}$ et telle que $f^* \ge f^b$

Représentations algébriques (4)

Encadrement d'une fonction incomplètement spécifiée

- Notons f_{max}^* la fonction definie par $P_1(f_{max}^*) = (P_1(f^*) \cup P_*(f^*))$ et $P_0(f_{max}^*) = P_0(f^*)$ f_{max}^* n' a pas de point non spécifé
- Notons f_{min}^* la fonction definie par $P_1(f_{min}^*) = P_1(f^*)$ et $P_0(f_{min}^*) = (P_0(f^*) \cup P_*(f^*))$ f_{min}^* n' a pas de point non spécifé
- on peut écrire

$$f_{\text{max}}^* \geq f^* \geq f_{\text{min}}^*$$

Toute fonction f entièrement spécifiée et telle que

$$f_{\max}^* \geq f \geq f_{\min}^*$$

est une représentation correcte de la fonction f^*

Représentations algébriques (5)

Représentation algébrique d'une fonction incomplètement spécifiée Du résultat précédent, on peut définir la représentation algébrique d'une fonction incomplètement spécifié f^* comme la représentation algébrique d'une fonction complètement spécifiée f telle que

$$f^*_{max} \geq f \geq f^*_{min}$$
 Exemples : soit $f*=f_1^*\{0\}_{10}+f_*^*\{1,2\}_{10}$

- $f_{max}^* = f_1^* \{0, 1, 2\}_{10} \left(\overline{x_1.x_0}\right)$ est une représentation de f^*
- $f_{min}^* = f_1^* \{0\}_{10} (\overline{x_1 + x_0})$ est une représentation de f^*
- $f_a = f_1^a \{0,1\}_{10} (\overline{x_1})$ est une représentation de f^*
- $f_b = f_1^b \{0, 2\}_{10} (\overline{x_0})$ est une représentation de f^*

