PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Find LU-decomposition of the following matrix

$$R_{2} \rightarrow R_{2} - 3R_{1} \qquad \begin{cases} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 2 & 5 \end{cases}$$

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

$$R_{3} \rightarrow R_{3} - 2R_{1} \qquad \begin{cases} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{cases}$$

$$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

Problem 2.(10 points.) Given a system of linear equation $A\mathbf{x} = \mathbf{b}$, forward elimination changes $A\mathbf{x} = \mathbf{b}$ to a reduced row form $R\mathbf{x} = \mathbf{c}$: the complete solution is

$$\boldsymbol{x} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + u \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + v \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix}.$$

- 2a. (5 points) What is the 3 by 3 reduced row echelon matrix R and what is c?
- 2b. (5 points) If the process of elimination subtracted 3 times row 1 from row 2 and then 5 times row 1 from row 3, what is the matrix A and what is the vector b?

a)
$$\vec{z} \in \mathbb{R}^{3}$$
 and there are two gree variables.

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 4 + 2u + 5v \\ u \\ v \end{bmatrix} \implies x_{1} = 2x_{2} - 5x_{3} = 4.$$

$$R = \begin{bmatrix} 1 & -2 & -5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } \vec{c} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}.$$

$$EAlE\vec{b} = \begin{bmatrix} R|\vec{c} \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} A = R. \Rightarrow A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} R$$

$$\Rightarrow A = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 - 2 & -5 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -5 \\ 3 & -6 & -15 \\ 5 & -10 & -25 \end{bmatrix}$$

Problem 3.(10 points.) Let \mathcal{P}_2 be the vector space of all polynomials of degree at most 2. Let $T: \mathcal{P}_2 \to \mathbb{R}^3$ be defined by

$$T(p(t)) = \begin{bmatrix} p(1) \\ p(2) \\ p(3) \end{bmatrix}$$

for every polynomial $p(t) = a_0 + a_1 t + a_2 t^2$ in \mathcal{P}_2 .

3a. (4 points) Show that T is a linear transformation.

3b. (4 points) Find a matrix A representing T with respect to the standard bases, i.e.,

$$\{1, t, t^2\}$$
 for \mathcal{P}_2 and $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$ for \mathbb{R}^3 .

3a) For any scalar
$$e$$
 and d in IR and any polynomials $p(t)$, $g(t) \in \mathcal{P}_2$.

$$T(cp(t) + dg(t)) = \begin{bmatrix} c & p(1) + dg(2) \\ c & p(2) + dg(2) \end{bmatrix} = c \begin{bmatrix} p(1) \\ p(2) \end{bmatrix} + d \begin{bmatrix} g(1) \\ g(3) \end{bmatrix}$$

$$ep(3) + dg(3) \end{bmatrix}$$

$$= c T(\rho(t)) + d T(g(t))$$

$$= c T(\rho(t)) + d T(g(t)).$$

b)
$$T(1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$T(t) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$T(t^2) = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{9} \end{bmatrix} = 4 \begin{bmatrix} \frac{1}{0} \\ \frac{1}{0} \end{bmatrix} + 4 \begin{bmatrix} \frac{1}{0} \\ \frac{1}{0} \end{bmatrix} + 9 \begin{bmatrix} \frac{1}{0} \\ \frac{1}{0} \end{bmatrix}$$

$$\Rightarrow A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}$$

3c. (2 points) Find a polynomial $p \in \mathcal{P}_2$ such that

For any polynomial
$$p \in P_{a}$$
, $p(t) = a_{o} + a_{1}t + a_{2}t^{2}$. The vector representing $p(t)$ is $\begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix}$. Hence, if $T(p(t)) = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$,
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{2} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$$

$$\Rightarrow a_{0} = 2, a_{1} = 1, a_{2} = 0.$$
Thus, $p(t) = 2 + t$.

Problem 4.(10 points.) Let A be the following matrices

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 3 & 0 & 3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 & k \end{bmatrix}$$

where k is a fixed constant. Clearly label the statements as **TRUE** or **FALSE**. In all cases, briefly explain your claim.

4a. (2 points) For k = 1, the matrix A has 4 pivot columns.

4b. (2 points) The matrix A is invertible.

						. \
False.	A	2.1	not	G	square	matrix.
					,	

4c. (2 points) For k = 1, the vector $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ belongs to the column space of A.

False $B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ belongs to C(A) if $A\overrightarrow{x} = \overrightarrow{b}$ is solvable. Row reduction implies that $A\overrightarrow{x} = \overrightarrow{b}$ is not solvable.

$$\begin{bmatrix}
1 & 2 & 0 & 12 & 1 \\
0 & 0 & 3 & 03 & 1 \\
0 & 0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1 & 1
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 & 2 & 0 & 12 & 1 \\
0 & 0 & 3 & 0 & 3 & 1 \\
0 & 0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & -1
\end{bmatrix}$$

4d. (2 points) For $k \neq 1$, dim N(A) = 1.

Since there is I free variable.

4e. (2 points) For $k \neq 1$, dim C(A) = 4.

True
$$\lim_{A \to 0} C(A) = 5 - 1 = 4$$
.
of columns of A.

The second of the second

PID:

- Print your NAME on every page and write your PID in the space provided above.
- Show all of your work in the spaces provided. No credit will be given for unsupported answers, even if correct.
- Supporting work for a problem must be on the page containing that problem. No scratch paper will be accepted.
- No calculators, tables, phones, or other electronic devices are allowed during this exam. You may use your double-sided handwritten notes, but no books or other assistance.

DO NOT TURN PAGE UNTIL INSTRUCTED TO DO SO

(This exam is worth 40 points)

Problem 0.(1 points.) Follows the instructions on this exam and any additional instructions given during the exam.

Problem 1.(9 points.) Find LU-decomposition of the following matrix

$$A = \begin{bmatrix} 3 & 1 & 6 \\ -6 & 0 & -16 \\ 0 & 8 & -17 \end{bmatrix}.$$

$$E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{3} \rightarrow R_{3} - 4R_{2} \begin{bmatrix} 3 & 1 & 6 \\ 0 & 2 & -4 \\ 0 & 0 & -1 \end{bmatrix} \qquad E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}$$

$$E_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}$$

$$E_{2}E_{1}A = U \Rightarrow A = E_{1}^{1}E_{2}^{1}U.$$

$$L = E_{1}^{1}E_{2}^{1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

$$L = \vec{E}_1 \vec{E}_2 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

and
$$U = \begin{bmatrix} 3 & 1 & 6 \\ 0 & 2 & -4 \\ 0 & 0 & -1 \end{bmatrix}$$

Problem 2.(10 points.) Given a system of linear equation $A\mathbf{x} = \mathbf{b}$, forward elimination changes $A\mathbf{x} = \mathbf{b}$ to a reduced row form $R\mathbf{x} = \mathbf{c}$: the complete solution is

$$\boldsymbol{x} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} + u \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + v \begin{bmatrix} 6 \\ 0 \\ 1 \end{bmatrix}.$$

- 2a. (5 points) What is the 3 by 3 reduced row echelon matrix R and what is c?
- 2b. (5 points) If the process of elimination subtracted 3 times row 1 from row 2 and then 5 times row 1 from row 3, what is the matrix A and what is the vector b?

(See Ver A for explanation)

a)
$$R = \begin{bmatrix} 1 & -1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 and $\vec{c} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & -1 & 6 \\ 3 & -3 & 18 \\ 5 & -5 & 30 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 6 \\ 18 \\ 30 \end{bmatrix}$

Problem 3. (10 points.) Let \mathcal{P}_2 be the vector space of all polynomials of degree at most 2. Let $T: \mathcal{P}_2 \to \mathbb{R}^3$ be defined by

$$T(p(t)) = \begin{bmatrix} p(2) \\ p(3) \\ p(1) \end{bmatrix}$$

for every polynomial $p(t) = a_0 + a_1 t + a_2 t^2$ in \mathcal{P}_2 .

3a. (4 points) Show that T is a linear transformation.

3b. (4 points) Find a matrix A representing T with respect to the standard bases, i.e.,

$$\{1, t, t^2\}$$
 for \mathcal{P}_2 and $\left\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\1\end{bmatrix}\right\}$ for \mathbb{R}^3 .

b)
$$T(1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 1 & 1 \end{bmatrix}$$

a) See Ver. A.
b)
$$T(1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $T(+) = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$ $T(+^2) = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$

3c. (2 points) Find a polynomial $p \in \mathcal{P}_2$ such that

$$T(p(t)) = \begin{bmatrix} 4\\5\\3 \end{bmatrix}.$$

c)
$$p(t) = 2 + t$$
.

Problem 4.(10 points.) Let A be the following matrices

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 3 & 0 & 3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 & k \end{bmatrix},$$

where k is a fixed constant. Clearly label the statements as TRUE or FALSE. In all cases, brieflyexplain your claim.

4a. (2 points) For $k \neq 1$, the matrix A has 4 pivot columns.

-	T	·	_
	Н	u	6

4b. (2 points) The matrix A is invertible.

4c. (2 points) For $k \neq 1$, the vector $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ belongs to the column space of A.

AZ=B is solvable.

4d. (2 points) For $k = 1, \dim N(A) = 1$.

4e. (2 points) For $k = 1, \dim C(A) = 4$.