Calculus (Differentiation)

Rolle's Theorem

- ullet Basic Requirements for applying Rolle's theorem, For $f(x)
 ightarrow \, Real
 ightarrow \, [a,b]$
 - $a \le x \le b$ (f is continuous)
 - a < x < b (f is differentiable)
 - f(a) = f(b)
- Then we can say, There exist a $c \in (a.\,b)$ such that f'(x)=0 i.e whose tangent is $|\ |$ to the x-axis.

Example for Rolle's theorem

- $f(x) = sin \; x$ in the range $[0,\pi]$
 - f(0) = 0
 - $f(\pi) = 0$
 - $f'(x) = \cos x$
 - For what value of x, f'(x) is 0.
 - $cos\frac{\pi}{2} = 0$
 - Therefore,

$$c=\frac{\pi}{2}$$

• The tangent of the slope at this point is 0.

Lagrange's Mean Value Theorem

- For f:[a,b] o R
 - f is continuous on [a,b]
 - f is differentiable on [a,b]
 - ullet There exists $c\in(a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

• Or tangent drawn at c is || to the line connecting a & b.

Example For Lagrange's theorem

•
$$f(x) = x^2 - 2x + 3$$
 in [0,3]

$$\bullet \ f(3)=6 \ \text{and} \ f(0)=3$$

$$f'(x)=2x-2$$

•
$$f'(c) = rac{f(3) - f(0)}{3 - 0} = 1$$

•
$$2x - 2 = 1$$

•
$$x=rac{3}{2}$$

#question Verify Rolle's Theorem for function $f(x) = x^2 - 5x + 6$ in range [2,3]

- We know f(x) is continuous in [2,3] because it is a polynomial.
- f'(x) exists in [0,1]

$$f'(x) = 2x - 5$$

$$f(2) = 2^2 - 5 \cdot 2 + 6$$
 $f(3) = 3^2 - 5 \cdot 3 + 6$ $= 0$ $f(2) = f(3)$

• Therefore there exists c where f'(c) = 0.

$$f'(c) = 0 \ 2c - 5 = 0 \ c = rac{5}{2} = 2.5$$

• At c = 2.5, the slope of the equation will be 0.

#question Verify LMVT for $f(x)=2x-x^2$ in [0,1]

- ullet We know that f(x) is continuous in [0,1]
- f'(x) exists in [0,1]

$$f'(x) = 2 - 2x$$

ullet There exists $c\in(0,1)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$2-2c=rac{f(1)-f(0)}{1-0}$$

$$2(1-c) = \frac{1}{1}$$

$$1 - c = \frac{1}{2}$$

$$\Rightarrow c = \frac{1}{2}$$

• c lies between [0,1].

#question Verify LMVT in $f(x)=x^2+2x+3$ in the range $4\leq x\leq 6$

$$f(4) = 16 + 8 + 3 = 27$$

$$f(6) = 36 + 12 + 3 = 51$$

$$f'(c) = 2c + 2 = rac{51 - 24}{6 - 4} \Rightarrow 2(c + 1) = rac{24}{2} \Rightarrow c = 5$$

Cauchy Mean Value Theorem

- f(x) & g(x) are continuous
- f(x) & g(x) are differentiable
- $g'(c) \neq 0$
- Therefore,

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

 ${\mathfrak S}$ If g(x)=x then the resultant condition gives us LMVT.

#question Verify CMVT for functions $\dfrac{f(x)=e^x}{g(x)=e^{-x}}$ in range [a,b]

$$f'(x) = e^x$$
 $g'(x) = -e^{-x}$

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$$

$$\frac{e^b - e^a}{e^{-b} - e^{-a}} = \frac{e^c}{e^{-c}}$$

$$rac{e^b-e^a}{rac{e^a-e^b}{e^a+b}}=-e^{2c}$$

$$e^{a+b} = e^{2c}$$

$$2c = a + b$$

$$c=rac{a+b}{2}$$

• C lies between (a,b).

) The Slope/gradient of the sample line above is an heta

• A function f(x) has maximum or minimum when the gradient is 0.

$$an heta=rac{df}{dx}=0$$

• When gradient is 0, the tangent from that point is parallel to the X axis.

artheta At a point, the function f(x) has maximum value when $rac{d^2f}{dx^2} < 0$

 ${\mathfrak S}$ At a point, the function f(x) has minimum value when ${d^2f\over dx^2}>0$

#question Find the Critical points of the function $f(x)=x^3-9x^2+24x-12$. Also find maximum or minimum value at those points.

$$f(x) = x^3 - 9x^2 + 24x - 12$$

$$f'(x) = 3x^2 - 18x + 24$$

ullet The function has maximum and minimum values at, $rac{d\,f(x)}{dx}=0$

$$3x^{2} - 18x + 24 = 0$$
$$x^{2} - 6x + 8 = 0$$
$$(x - 4)(x - 2) = 0$$

$$x=2$$
 OR $x=4$

• The critical points are x=2 and x=4

$$f''(x) = 6x - 18$$

• At x=2

$$\left|rac{d^2f}{dx^2}
ight|_{x=2}=6 imes2-18=-6$$

- $rac{d^2f}{dx^2} < 0$ Therefore, Maximum value can be found from x=2.
- At x=4,

$$\left|rac{d^2f}{dx^2}
ight|_{x=4}=6 imes 4-18=6$$

- $rac{d^2f}{dx^2}>0$ Therefore, Minimum value can be found from x=4.
- ullet Maximum Value is $f(2)=2^3-9 imes 2^2+24 imes 2-12=8$
- ullet Maximum Value is $f(4) = 4^3 9 imes 4^2 + 24 imes 4 12 = 64 144 + 96 12 = 4$

#question Find Maximum and Minimum of $f(x)=x^3-3x^2+5$

$$f(x)=x^3-3x^2+5$$

$$f'(x)=3x^2-6x$$

• For Critical points,

$$f'(x) = 3x^2 - 6x = 0$$
 $x^2 - 2x = 0$ $x(x-2) = 0$ $x = 0$ $x = 0$

$$f''(x) = 6x - 6$$

- At x=0, f''(0) = -6 which is < 0. Therefore, Maximum value can be found from x=0.
- At x=2, f''(2)=6 which is > 0. Therefore, Minimum value can be found from x=2.
- Maximum value = f(0) = 5
- Minimum value = f(2) = 1

2024-08-22

#question f'(c) = ?

$$(a)0$$
 $(b)c$ $(c)a+b$ $(d)\frac{f(b)-f(a)}{b-a}$

• Correct option is (d).

#question The value of c of Rolle's Theorem in [-1,1] for function $f(x)=x^2-x$ is _.

$$f'(c) = 2c - 1 = 0$$
 $c = \frac{1}{2}$

#question Verify Rolle's Theorem For $f(x) = x^2 - 5x + 6$ is [2,3]

- f(x) o Continuous
- f'(x) o exists

$$f'(c) = 2c - 5 = 0$$
$$c = \frac{5}{2}$$

• c lies between (2,3) such that f'(c) is 0.

#question Find local maxima and minima points of $f(x) = x^3 - 9x^2 + 24x - 12$

$$f'(x)=3x^2-18x+24=0 \ x^2-6x+8=0 \ (x-4)(x-2)=0 \ or x=2 \ f(4)=64-144+96-12 \ =4 f(2)=8-36+48-12 \ =8$$

• The Points are (4,4) and (2,8).

Taylor's Theorem

ullet f(x) and it's First (n-1) derivatives be continuous in [a,a+h]

- $f^n(x)$ exists for every value of x in (a, a+h)
- Then there exists, atleast one number heta (0 < heta < 1) such that,

$$f'(a+h)=f(a)+hf'(a)+rac{h^2}{2!}f''(a)+\ldots+rac{h^n}{n!}f^n(a+ heta h)$$

• This is called Taylor's Theorem with Lagrange's form remainder, the remainder R_n being $rac{h^n}{n!}f^n(a+ heta h)$

 $\operatorname{\mathscr{O}}$ Putting a=0 and h=x, we get,

$$f(x) = f(0) + x f'(0) + rac{x^2}{2!} f''(0) + \ldots + rac{x^n}{n!} f^n(heta x)$$

- Which is known as Maclaurin's Theorem with Lagrange's form of remainder.
- Maclaurin's Series

$$f(x) = f(0) + xf'(0) + rac{x^2}{2!}f''(0) + rac{x^3}{3!}f'''(0) + \ldots \infty$$

#question Using Maclaurin's Series, Expand an x up to term containing x^3

$$Let \ f(x) = \tan x \qquad \qquad f(0) = 0$$

$$f'(x) = sec^2 x \qquad \qquad f'(0) = 1$$

$$f''(x) = 2 \tan x \cdot \sec^2 x$$

= $2 \tan x (1 + tan^2 x)$ $f''(0) = 0$

$$f'''(x) = 2\sec^2 x + 6\tan^2 x \cdot \sec^2 x \qquad f'''(0) = 2$$

Now using Maclaurin's Series, we get,

$$egin{aligned} f(x) &= an x &= 0 + x \cdot 1 + rac{x^2}{2!} \cdot 0 + rac{x^3}{3!} \cdot 2 \ &= x + rac{x^3}{6} \cdot 2 \ &= x + rac{x^3}{3} \end{aligned}$$