Unit 10: Convolutional Codes

EL-GY 6013: DIGITAL COMMUNICATIONS

PROF. SUNDEEP RANGAN

Learning Objectives

- ☐ Encode data using a convolutional code for given a generator polynomial
- □ Compute the rate of the code including tail bits
- ☐ Represent the code via a trellis diagram and finite state machine
- □ Compute the branch metrics of a code for a memoryless channel
- ☐ Decode the code via the Viterbi algorithm

This Unit

Outline

Convolutional codes: encoding and representations

- ☐Tree, trellis and state diagrams
- ☐ Decoding with branch metrics
- ■Viterbi decoding

Convolutional Codes History

- ☐ Generates a stream of coded bits from uncoded bits
 - Block codes form by terminating the stream
- □Output stream created by binary FIR filters
- □ Developed originally by Elias (1955)
 - Key challenge was decoders. Much study in 1960s.
 - Practical, optimal decoders developed by Viterbi,1967.
- □Can perform within 2-3 dB of Shannon limit.
- ☐ Instrumental in Pioneer Space program (along with RS codes)
- ☐ Most widely-used code in industry today: WiFi, cellular
 - In the mid 1990s, longer block length cellular codes were replaced with Turbo codes,
 - But, these use convolutional codes as basis

Convolutional Codes

- ☐ Encode data through parallel binary (usu. FIR) filters
- Example convolutional code:
 - Rate = $\frac{1}{2}$ (two output bits $(c_1[t], c_2[t])$ for each input bit b[t].
 - Constraint length K=3 (size of shift register)

$$c_1[t] = b[t] + b[t-1] + b[t-2]$$

 $c_2[t] = b[t] + b[t-2]$

Convolutional Codes

Block Implementation

$$c_1[t] = b[t] + b[t-1] + b[t-2]$$

 $c_2[t] = b[t] + b[t-2]$

- ☐ To implement as block code:
 - Start with L input bits b[0],b[1],...,b[L-1]
 - Append K-1 zero b[L]=b[L+1]=...=b[L+K-2]=0 (called tail bits)
 - Generate output bits from each branch
 - \circ c_i[0], c_i[1], ..., c_i[L+K-2], j=1,...,N where N = number of branches
 - Final codeword is concatenation of branch output
 - c=(c₁[0], c₁[1], ..., c₁[L+K-2],..., c_N[0], c_N[1], ..., c_N[L+K-2])
- □ Effective rate: $R = \frac{L}{N(L+K-1)} \approx \frac{1}{N}$ for large L

Convolutional Codes

Encoding Example

- \square Encode message **b** = [1 0 1]
- ☐ Branch outputs **c**1=[11011] c2=[11001]
- \square Final output $\mathbf{c}=[11,10,00,10,11]$ (interleaved)
- \square Rate = 3/10

t	b[t]	c1[t]	c2[t]
0	1	1	1
1	0	1	0
2	1	0	0
3	0	1	0
4	0	1	1

$$c_1[t] = b[t] + b[t-1] + b[t-2]$$

 $c_2[t] = b[t] + b[t-2]$

Tail

bits

Generator Polynomials: Binary Form

Rate 1/3, K=3 example:

$$c_1[t] = b[t]$$

 $c_2[t] = b[t] + b[t - 1]$
 $c_2[t] = b[t] + b[t - 1] + b[t - 2]$

□Code polynomials: Binary vector of filter coefficients

$$g_1 = [100]$$

$$g_2 = [101]$$

$$g_3 = [111]$$

Generator Polynomials: Octal Form

- ☐ For large constraint lengths (large K), binary form is inefficient
 - Engineers often use octal form
 - Base 8, each digit 0...7
 - Each digit represents three bits
- **■**Example:

$$g_1 = [1 \ 011]$$
 $g_2 = [1 \ 101]$ $g_2 = [15]$ $g_3 = [1 \ 010]$ $g_3 = [12]$ Binary Octal

Multiple Inputs

- ☐ Examples up to now are R=1/n
- ☐ Can extend to rate R=k/n
 - Add k bits at a time

Outline

- □ Convolutional codes: encoding and representations
- Tree, trellis and state diagrams
- □ Decoding with branch metrics
- ■Viterbi decoding

Convolutional Codes as State Machines

- □ Convolutional codes have memory
 - Stored in contents of shift registers
 - Each input bit changes memory contents
 - Output bits are a function of memory and input
- ☐ Three common ways to represent evolution of the memory:
 - Tree diagram
 - Trellis diagram
 - State diagram

Encoder States

- ☐State of the encoder determined by contents of shift register
- □Only need to look at most recent K-1 bits
 - Last bit will be shifted out
 - \circ There are 2^{K-1} states

State label	<i>b</i> [<i>t</i>]	b[t-1]
а	0	0
b	0	1
С	1	0
d	1	1

Tree Diagram

- ☐ Two branches for each input bit 0 or 1.
- ☐ Branches labeled by output bits (n bits)
- □ Difficult to use since branches infinitely grow

Trellis Diagram

- ☐ Show trajectory through the states
- □Solid lines: paths with b[t]=0, Dash lines: b[t]=1

Labels are the outputs along each path

State Diagram

- ☐One node per state
- Solid lines:
 - Transitions with b[t]=0
- ☐ Dashed lines:
 - Transitions with b[t]=1
- ☐ Labels indicate outputs on each state

State Machine Functional Description

- ☐ Finite state machine:
 - x[t]: Sequence of states, $x[t] \in \{0, ..., 2^{K-1} 1\}$
 - \circ b[t]: Input sequence
 - \circ c[t]: Output sequence
- ☐ Iterative generating sequence:

$$x[t+1] = f(x[t], b[t])$$
 State function $c[t] = h(x[t], b[t])$ Output function

 \blacksquare Initial condition: x[0]

Outline

- □ Convolutional codes: encoding and representations
- ☐ Tree, trellis and state diagrams
- Decoding with branch metrics
- ■Viterbi decoding

ML Estimation

- ☐ Assume the following dimensions:
 - *N* outputs per time steps: $c[t] = (c_1[t], ..., c_N[t])$
 - *T* time steps (including tail bits!)
- ☐ Channel model:
 - For each bit $c_i[t]$, we make some observation $r_i[t]$
 - Output is probabilistic $P(r_i[t]|c_i[t])$
 - Assume all outputs are independent:

$$P(r|c) = \prod_{t=0}^{T-1} \prod_{i=1}^{N} P(r_i[t]|c_i[t])$$

☐ Find ML estimate:

$$\hat{c} = \arg\max_{c} P(r|c)$$

Maximum over all codewords

Branch Metrics

☐ Perform ML estimation in log domain

$$\hat{c} = \arg\max_{c} \sum_{t=0}^{T-1} \sum_{i=1}^{N} \log P(r_i[t]|c_i[t])$$

□ Define the branch metric:

$$\mu_t(x_{t+1}, x_t) = \sum_{i=1}^{N} \mu_{t,i}(x_{t+1}, x_t),$$

$$\mu_{t,i}(x_{t+1}, x_t) = \log P(r_i[t]|c_i[t])$$

- \circ c[t] is the output whenever there is a transition from x_t to x_{t+1}
- ☐ Sometimes use a negative log likelihood.

Trellis Diagram Interpretation

- ☐ The ML estimate is the shortest path on the trellis diagram.
- ☐ Each branch labeled with the metric

Scaling and Shifting Branch Metrics

□Up to now we have used branch metric

$$\mu_{t,i}(x_{t+1}, x_t) = \log P(r_i[t]|c_i[t])$$

□Can scale and shift branch metrics

$$\mu_{t,i}(x_{t+1}, x_t) = A\log P(r_i[t]|c_i[t]) + B_i[t]$$

- Does not affect the arg max
- Constant *A* must be positive
- \circ Constant $B_i[t]$ cannot depend on $c_i[t]$ (Although it can depend on $r_i[t]$)

Example 1: Binary Symmetric Channel

- \square Binary symmetric channel: Output $r_i = 0$ or 1
- \square Error probability p < 1/2

$$P(r_i|c_i) = \begin{cases} 1-p & \text{if } c_i = r_i \text{ (no error)} \\ p & \text{if } c_i \neq r_i \text{ (error)} \end{cases}$$

☐ Branch metric: After appropriate shifting:

$$\mu_{ti} = \begin{cases} L & \text{if } c_i = r_i \text{ (no error)} \\ 0 & \text{if } c_i \neq r_i \text{ (error)} \end{cases}, \qquad L = \log \frac{1-p}{p}$$

- \square Scaling: Can take L=1
 - Computes path with minimum Hamming distance

Example 2: AWGN Channel

☐ Binary modulation

$$r_i = s_i + w_i,$$

$$r_i = s_i + w_i$$
, $w_i \sim N(0, N_0/2)$, $s_i = \pm 1$

$$s_i = \pm 1$$

□ Log likelihood ratio

$$LLR_i = -\frac{(r_i - s_i)^2}{N_0}$$

☐ Branch metric: After appropriate shifting:

$$\mu_i = \frac{2}{N_0} r_i s_i$$

 \square Scaling: Can take $N_0 = 1$

Computes path with maximum correlation

Example 3: General LLRs

- \square Consider general memoryless channel $P(r_i[t]|c_i[t])$
- □ Take constant $B_i[t] = -\log P(r_i[t]|c_i[t] = 0)$
- ☐ Then, branch metric given by LLR:

$$\mu_{t,i}(x_{t+1}, x_t) = \begin{cases} LLR_i[t] & c_i[t] = 1\\ 0 & c_i[t] = 0 \end{cases}$$

☐ Log likelihood ratio

$$LLR_{i}[t] = \log \frac{P(r_{i}[t]|c_{i}[t] = 1)}{P(r_{i}[t]|c_{i}[t] = 0)}$$

Summary

Channel type	Unscaled branch metric (decoding maximizes metric)	Scaled branch metric
BSC error probability p	$L = \log\left(\frac{1-p}{p}\right)$ when $c_i = r_i$ 0 when $c_i \neq r_i$	-# bit errors
AWGN with binary modulation and noise N_0	$\frac{r_i c_i}{N_0}$	$r_i c_i$
General binary channel	$L = \log \frac{P(r_i c_i=1)}{P(r_i c_i=0)}$ when $c_i = 1$ 0 when $c_i = 0$	

Examples

☐ Simple two state problem on board.

Outline

- □ Convolutional codes: encoding and representations
- ☐ Tree, trellis and state diagrams
- ☐ Decoding with branch metrics
 - Viterbi decoding
- ☐ Practical considerations

Two Variable Optimization (1)

□ Consider two variable optimization problem:

$$(\hat{x}_0, \hat{x}_1) = \underset{x_0, x_1}{\arg \min} f(x_1, x_0)$$

☐ This is equivalent to a nested minimization:

$$\hat{x}_1 = \arg\min_{\mathbf{x}_1} \left[\min_{x_0} f(x_0, x_1) \right]$$

- Minimize over x_0
- Then minimize over x_1
- \square Hence, we can write the minimum over x_1 as:

$$\hat{x}_1 \coloneqq \underset{\mathbf{x}_1}{\operatorname{arg \, min}} V(x_1), \qquad V(x_1) = \underset{\mathbf{x}_0}{\operatorname{min}} f(x_0, x_1)$$

Two Variable Optimization (2)

 \Box To obtain \hat{x}_0 define:

$$P(x_1) := \arg \min_{\mathbf{x}_0} f(x_1, x_0)$$

- ☐ Then, we obtain three step procedure:
- \square Step 1: Minimization over x_0 :

• Compute
$$V(x_1) = \min_{x_0} f(x_0, x_1)$$
 and $P(x_1) = \arg\min_{x_0} f(x_1, x_0)$

- □ Step 2: Minimization over x_1 : Compute $\hat{x}_1 = \underset{x_1}{\operatorname{arg min}} V(x_1)$
- □ Step 3: Go back and find x_0 : Select $\hat{x}_0 = P(\hat{x}_1)$.

Example (Calculations on Board)

□Binary example: $x_0, x_1 \in \{0,1\}$:

	x ₁ = 0	x ₁ = 1
$x_0 = 0$	4	6
$x_0 = 1$	3	2

Values for $f(x_0, x_1)$

☐ Quadratic example

$$f(x_0, x_1) = x_0^2 + 2x_1^2 + x_0x_1 + x_1$$

Convolutional Decoding Problem

Recall convolutional code is a finite state machine:

$$x[t+1] = f(x[t], \boldsymbol{b}[t]) \leftarrow$$
 State update $\boldsymbol{c}[t] = g(x[t], \boldsymbol{b}[t]) \leftarrow$ Output

□ Decoding problem is to find path with minimum path metric:

$$\boldsymbol{b} = \min_{b[0:T-1]} \sum_{t=0}^{T-1} \mu_t(c[t])$$

- $\mu_t(c(t))$ is the branch metric
- Write the branch metric as a function of the output instead of the state transition (x[t], x[t+1])

Iterative Solution

- \square Define partial solutions up to time $t \leq T$:
- lacksquare Minimum partial value ending at state \mathcal{X}_t

$$V_t(x_t) = \min_{b[0:t-1]} \sum_{s=0}^{t-1} \mu_s(c[s]) \text{ s.t. } x[t] = x_t$$

☐ Minimum path

$$P_t(x_t) = \underset{b[0:t-1]}{\arg\min} \sum_{s=0}^{t-1} \mu_s(c[s]) \ s.t.. \ x[t] = x_t$$

□ Initial conditions: $V_0(x_0) = 0$, $P_0(x_0) =$ empty set.

Value Function Recursion

□ Value function obeys simple recursive rule:

$$V_{t+1}(x_{t+1}) = \min_{b[0],\dots,b[t]} \sum_{s=0}^{t} \mu_s(c[s]) \quad s.t. \quad x[t+1] = x_{t+1}$$

$$= \min_{b(t)} \left[\mu_t(c[t]) + \min_{b(0),\dots,b(t-1)} \sum_{s=0}^{t-1} \mu_s(c[s]) \right]$$

$$= \min_{b(t),x_t} \left[\mu_t(c[t]) + V_t(x_t) \right]$$

- Last minimization is subject to: $x_{t+1} = f(x_t, \boldsymbol{b}[t]), \boldsymbol{c}[t] = g(x_t, \boldsymbol{b}[t])$
- ☐ Minimization over previous state and current input

Path Recursion

□To update path, first solve minimization:

$$\widehat{\boldsymbol{b}}(t), \widehat{x}_t = \underset{\boldsymbol{b}(t), x_t}{\operatorname{arg min}} \left[\mu_t(c[t]) + V_t(x_t) \right]$$

• Subject to: $x_{t+1} = f(x_t, b[t]), c[t] = g(x_t, b[t])$

☐Then, append bits to path:

$$P_{t+1}(x_{t+1}) = \{\hat{b}(t), P_t(\hat{x}_t)\}$$

New path has t bits.

Trellis Diagram Interpretation

- □ Value function and path associated with each node.
 - Minimum value and path to get to that node.
- □ Updated left to right from inputs

Consider example node

$$V_5(d) = \min\{$$

$$V_4(c) + \mu_4(110),$$

$$V_4(d) + \mu_4(101) \}$$

Take min path from two possible incoming nodes

Example 1: HD Decoding

□ A very simple rate ½, K=2 convolutional code (too simple to be useful):

$$c_1(t) = b(t),$$
 $c_{2(t)} = b(t) + b(t-1)$

□Suppose received hard-decision decoded bits are:

$$r = \{01,10,11,10,...\}$$

☐ Draw state diagram and complete table (on board)

	t=0	1	2	3
$V_t(x=0)$				
$P_t(x=0)$				
$V_t(x=1)$				
$P_t(x=1)$				

Example 2: SD Decoding

□ Consider a recursive code

$$c_1(t) = b(t),$$
 $c_2(t) = b(t) + c_2(t-1)$

■Suppose received soft-decision decoded bits are:

$$r = \{(0.1,0.8), (-0.3,1.5), (-1,-2), \dots\}$$

☐ Draw state diagram and complete table (on board)

	t=0	1	2	3
$V_t(x=0)$				
$P_t(x=0)$				
$V_t(x=1)$				
$P_t(x=1)$				

Outline

- □ Convolutional codes: encoding and representations
- ☐ Tree, trellis and state diagrams
- ☐ Decoding with branch metrics
- ■Viterbi decoding

Practical considerations

Complexity

- \square Update of each node requires maxima over 2^k branches
- ☐ There are $2^{k(K-1)}$ states, so complexity / time is $O(2^{kK})$
- \square Total complexity is $O(T2^{kK})$
- \square Storage is also $O(T2^{kK})$. (From the paths)
- **□**Summary:
 - Viterbi algorithm is linear in block length.
 - Can have very long block lengths (often T in the 1000s)
 - But, complexity is exponential in constraint length
 - \circ Practical decoders limited to K=7 or K=9.

Terminating the Trellis

☐ Recall tail bits are zero:

$$b(L) = \cdots = b(L + K - 2) = 0.$$

- ☐ Limits the paths at the end of the trellis
- ☐ Viterbi algorithm should only be done on the zero path.
- □ Very important to not forget the bits at the end.
- □Otherwise, final bits are not protected.

Pruning the Path Memory

- \square In current algorithm, path $P_t(x_t)$ grows to full block length.
- \square Adds storage: Storage is $O(T2^{kK})$. Linear in T
- □Adds delay. No bits can be determined until code is fully decoded.
- Many practical implementations:
 - \circ Store some finite length δ of each surviving path.
 - Can make decision on bit input b(t) after $\mathbf{r}(t + \delta)$.
 - Rule of thumb: Good performance if $\delta \geq 5K$.

Rate Matching Convolutional Codes

- □Convolutional codes have limited rates, usu. ½ or 1/3.
- □Obtain other rates through
 - Puncturing: Remove coded bits to increase rate
 - Repetition: Repeat coded bits to decrease rate
- ☐ Puncture / repeat pattern is important (see Proakis)
 - Try to spread out modified bits
- ☐ For punctured bits, set corresponding LLRs to zero
 - Viterbi decoder just ignores those bits
- ☐ For repeated bits, add the corresponding LLRs
 - Viterbi decoder will increase confidence on that branch

High Order Constellations

- ☐ Higher order constellations (eg. 16- or 64-QAM)
- ☐ Each constellation is a point is a function of multiple bits.
- ☐ Likelihood does not factorize
 - Each symbol r(t) depends on multiple bits
- Example 4-PAM (or one dimension of 16-QAM):
 - \circ Each symbol likelihood depends on two bits: $p(r|c_1,c_2)$

High Order Constellations

☐ To create LLRs for individual bits use total probability rule:

$$p(r|c_1) = \frac{1}{2} (p(r|c_1, c_2 = 0) + p(r|c_1, c_2 = 1))$$

☐ Resulting bitwise LLR:

LLR for
$$c_1 = \log \frac{p(r|c_1, c_2 = 1,0) + p(r|c_1, c_2 = 1,1)}{p(r|c_1, c_2 = 0,0) + p(r|c_1, c_2 = 0,1)}$$

High Order Constellations

- □ LLRs can have irregular shapes
- □ Not simple linear function as in BPSK / QPSK case
- ☐ Often use approximations
- ☐ More info: Caire, Taricco and Biglieri, "Bit-Interleaved Coded Modulation," 1998.

LLR for c2 LLR for c1

Convolutional Codes in WiFi

- ■802.11 uses R=1/2 K=7 code.
- ☐ Length adjusted to packet size
- ☐ Higher rates (R=2/3 and ¾) achieved through puncturing
- ☐ Enables decoding as data arrives for ACK fast turnaround

Convolutional Codes in LTE

- □ Convolutional codes in LTE used for:
 - Control channels (payload typ 20-40 bits +CRC), and
 - Short (< 128 bit) data frames
- □ Larger payloads encoded with turbo codes (discussed later)
- ☐ Uses rate=1/3 base convolutional code with K=7.
- ☐ Higher rates achieved via puncturing
- □ Control channels use a sophisticated technique called tail biting to reduce loss on the tail bits

Decoding Performance

- ☐ Hard decision loses approximately 1.5 to 2 dB
- □ Constraint length K=7 is sufficient for very sharp error performance

Different Constraint Lengths

- □Approximate 1 dB improvement between K=3, 5 and 7
- ☐ Higher constraint lengths become computationally intractable
- ☐ Recall decoding complexity is exponential in K

LLR Quantization

- ☐ Minimal gains after 16 bit quantization of branch metrics
- ☐ Recall HD is equivalent to 1 bit quantization
- ☐ Most commercial implementations use 6-bit LLRs

