Digital Integrated Circuit Lecture 6 MOS Transistor Theory

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Review of Previous Lecture

Lecture 5

- Long-channel IV
 - Oxide thickness is important. (C_{OX})
 - After some manipulation, we have

Subthreshold
$$I_d = 0$$

$$I_d = \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$
 Linear
$$I_d = \frac{\beta}{2} \left(V_{gs} - V_t \right)^2$$
 Saturation

– Here,

$$\beta = \mu_n C_{OX} \frac{W}{L}$$

Subthreshold

Supplementary

- Derivation of linear IV
 - -At any x,

$$I_d = WC_{OX}(V_g - V_c(x) - V_t)\mu_n \frac{dV_c(x)}{dx}$$

-Integration from 0 to L,

$$LI_{d} = \mu_{n} C_{OX} W \int_{0}^{L} (V_{g} - V_{c}(x) - V_{t}) \frac{dV_{c}(x)}{dx} dx$$

$$= \mu_{n} C_{OX} W \int_{V_{c}}^{V_{d}} (V_{g} - V_{c} - V_{t}) dV_{c} = \mu_{n} C_{OX} W \left[(V_{g} - V_{t}) V_{ds} - \frac{1}{2} V_{ds}^{2} \right]$$

- (This slide will be used in this lecture.)

2.2 Long-channel IV

2.2. Long-channel IV (4)

- IV characteristics of an NMOSFET
 - Input characteristics

 V_{DD} = 1.0 V, W/L = 2, t_{ox} = 1 nm, μ_n = 80 cm²/V sec, and V_t is 0.3 V.

2.2. Long-channel IV (5)

- IV characteristics of an NMOSFET
 - Output characteristics

 V_{DD} = 1.0 V, W/L = 2, t_{ox} = 1 nm, μ_n = 80 cm²/V sec, and V_t is 0.3 V.

2.3 Capacitance

2.3. Capacitance (1)

- Any two conductors separated by an insulator have capacitance.
- Gate-to-channel capacitance is very important.
 - It creates channel charge which is necessary for operation.
- Source and drain have capacitance to body across the reversebiased diodes.
 - It is called the diffusion capacitance, because it is associated with source/drain diffusion regions.

2.3. Capacitance (2)

- Gate capacitance
 - It is given as $C_g = C_{OX}WL$.
- ullet Overlap capacitance, C_{gs} and C_{gd}

Fig. 2.6

2.3. Capacitance (3)

- Diffusion capacitance, C_{sb} and C_{sb}
 - Parasitic capacitance
 - Due to the PN junction between a diffusion region and the substrate

Fig. 2.8

2.3. Capacitance (4)

Total source parasitic capacitance is

$$C_{sb} = AS \times C_{jbs} + PS \times C_{jbssw}$$

- Example 2.2) (Assume that is 25 nm.)
 - -Area is $4\lambda \times 5\lambda = 20\lambda^2 = 0.0125 \,\mu\text{m}^2$.
 - -Perimeter is $2(4\lambda + 5\lambda) = 18\lambda = 0.45 \mu m$.
 - -Since $C_{jbd} = 1.2 fF/\mu m^2$, the capacitance is 0.015 fF.
 - -Assume that $C_{jbdsw} = 0.1 fF/\mu m$. However, the sidewall facing the channel is more significant, $C_{ibdswg} = 0.36 fF/\mu m$.
 - -Contribution from sidewalls is 0.071 fF (= 0.35 um X 0.1 fF/um + 0.1 um X 0.36 fF/um).
 - -The overall diffusion capacitance is 0.086 fF.

2.4 Nonideal IV

2.4. Nonideal IV (1)

• 65nm IBM

2.4. Nonideal IV (2)

- ON and OFF current (Drain currents)
 - -ON current: $V_{gs} = V_{ds} = V_{DD}$
 - -OFF current: $V_{gs}=0$ and $V_{ds}=V_{DD}$

2.4. Nonideal IV (3)

- Intel 32 nm transistor
 - Various leakage options
 - Iff in log scale
 - Ion in linear scale
 - HP (high performance)
 - -SP (standard performance/power)
 - -LP (low power)

(Intel's 2011 IEDM abstract)

2.4. Nonideal IV (4)

Intel 22 nm transistor

Table I. 22nm modular SoC transistor options and device characteristics

Transistor Type	High Speed Logic		Low Power Logic		High Voltage	
Options	High Performance (HP)	Standard Perf./ Power (SP)	Low Power (LP)	Ultra Low Power (ULP)	1.8 V	3.3 V
Vdd (Volt)	0.75 / 1	0.75 / 1	0.75 / 1	0.75/1.2	1.5/1.8/3.3	3.3 / >5
Gate Pitch (nm)	90	90	90	108	min. 180	min. 450
Lgate (nm)	30	34	34	40	min. 80	min. 280
N/PMOS Idsat/loff (mA/um)	1.08/ 0.91 @ 0.75 V, 100 nA/um	0.71 / 0.59 @ 0.75 V, 1 nA/um	0.41 / 0.37 @ 0.75 V 30 pA/um	0.35 / 0.33 @ 0.75 V 15 pA/um	0.92 / 0.8 @ 1.8 V 10 pA/um	1.0 / 0.85 @ 3.3 V 10 pA/um

(Intel's 2012 IEDM abstract)

2.4. Nonideal IV (5)

- Mobility degradation due to the verteic E-field
 - Collisions with oxide interface

$$\mu_{\text{eff}-n} = \frac{540 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \left(\frac{V_{gs} + V_t}{0.54 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}\right)^{1.85}} \qquad \mu_{\text{eff}-p} = \frac{185 \frac{\text{cm}^2}{\text{V} \cdot \text{s}}}{1 + \frac{\left|V_{gs} + 1.5V_t\right|}{0.338 \frac{\text{V}}{\text{nm}} t_{\text{ox}}}} \qquad \text{Calculate the mobilties at } |V_{gs}| = 1.0 \text{ V. Assume that } t_{ox} = 1.05 \text{ nm and } |V_t| = 0.338 \frac{\text{V}}{\text{Nm}} t_{\text{ox}}$$

– Why do we have different behaviors for electrons and holes?

2.4. Nonideal IV (6)

Experimental data ("Universal" mobility curve)

Inversion layer mobility (Sze's book)

2.4. Nonideal IV (7)

- Velocity saturation
 - Saturation velocity (Canali model)
 - Electrons: 1.07 X 10⁷ cm/sec
 - -Holes: 8.37 X 10⁶ cm/sec
 - A simple model

$$v = \begin{cases} \frac{\mu_{\text{eff}} E}{1 + \frac{E}{E_c}} & E < E_c \\ v_{\text{sat}} & E \ge E_c \end{cases}$$

$$E_c = \frac{2v_{\text{sat}}}{\mu_{\text{eff}}}$$

Fig. 2.15

2.4. Nonideal IV (8)

• When the electric field is lower than E_c ,

$$E = \frac{I_d}{\mu_n C_{OX} W(V_g - V_t - V_c) - \frac{I_d}{E_c}} = \frac{dV_c}{dx}$$

- (Note that the sign is not correct but understood.)
- -Then, the integration gives

$$LI_{d} = \int_{V_{S}}^{V_{d}} \left[\mu_{n} C_{OX} W (V_{g} - V_{t} - V_{c}) - \frac{I_{d}}{E_{c}} \right] dV_{c}$$

$$= \mu_{n} C_{OX} W \left[(V_{g} - V_{t}) V_{ds} - \frac{1}{2} V_{ds}^{2} \right] - \frac{I_{d}}{E_{c}} V_{ds}$$

2.4. Nonideal IV (9)

Drain current with the velocity saturation

$$I_{d} = \frac{1}{L + \frac{V_{ds}}{E_{c}}} \mu_{n} C_{OX} W \left[(V_{g} - V_{t}) V_{ds} - \frac{1}{2} V_{ds}^{2} \right]$$

-With
$$V_c = E_c L$$
,
$$I_d = \frac{1}{1 + \frac{V_{ds}}{V_c}} \mu_n C_{OX} \frac{W}{L} \left[(V_g - V_t) V_{ds} - \frac{1}{2} V_{ds}^2 \right]$$

- The factor, $\frac{1}{1+\frac{V_{ds}}{V_{c}}}$, describes the velocity saturation.
- -Then, when do we have the saturation?

2.4. Nonideal IV (10)

- Condition for saturation, $E = E_c \otimes x = L$
 - -In this case, $V_d = V_{dsat}$ and $I_d = I_{dsat}$

$$E_c = \frac{I_{dsat}}{\mu_n C_{OX} W(V_g - V_t - V_{dsat}) - \frac{I_{dsat}}{E_c}}$$

- The saturation current becomes

$$I_{dsat} = \frac{1}{2} \mu_n C_{OX} W (V_g - V_t - V_{dsat}) E_c$$

– What is V_{dsat} ?

2.4. Nonideal IV (11)

Equating two expressions,

$$I_{dsat} = \frac{1}{2} \mu_n C_{OX} W (V_g - V_t - V_{dsat}) E_c$$

$$I_{dsat} = \frac{1}{1 + \frac{V_{dsat}}{V_c}} \mu_n C_{OX} \frac{W}{L} \left[(V_g - V_t) V_{dsat} - \frac{1}{2} V_{dsat}^2 \right]$$

– With the gate overdrive voltage, $V_{GT} \equiv V_g - V_t$, we can find

$$V_{dsat} = \frac{V_{GT}V_c}{V_{GT} + V_c}$$

$$I_{dsat} = C_{OX}W \frac{V_{GT}^2}{V_{GT} + V_c}v_{sat}$$

Homework#2

- Due: AM08:00, September 19
- Problem#1
 - Compare three modes for the velocity saturation:
 - -1) The one studied in this lecture.

$$-2) v_{sat} = \frac{\mu_{eff}E}{\sqrt{1 + \left(\frac{E}{E_c}\right)^2}}$$

$$-3) v_{sat} = \frac{\mu_{eff}E}{1 + \frac{E}{E_c}} \text{ for any } E \text{ value}$$

-3)
$$v_{sat} = \frac{\mu_{eff}E}{1 + \frac{E}{E_c}}$$
 for any E value

– Draw the velocity-field graph in the semi-logarithmic scale. μ_{eff} is 710 cm²/V sec and E_c is 11 kV/cm. The electric field varies from 100 V/cm to 100 kV/cm.

Homework#2

• Problem#2

- Draw the output characteristics of an NMOSFET, by using two IV models. Compare them.
- -1) Long-channel IV
- -2) The one studied in this lecture.
- Parameters are: W is 100 μm. L is 1 μm. t_{ox} is 25 nm. The effective mobility is assumed to be a constant of 500 cm²/V sec, for simplicity. E_c is 11 kV/cm. Consider five values of V_{GT} : 0.5 V, 1.0 V, 1.5 V, 2.0 V, and 2.5 V. Increase the drain voltage up to 3.0 V.

Thank you!