Lecture 8 : Performance Evaluation

Why Performance Evaluation?

- Picking the manager of our money
 - Recall choice of portfolio manager plays big role in returns
- Compensation
 - Don't want to pay "too much" for given factor risk; or for passive management
 - Incentives matter designing compensation on poor measurement may induce poor behavior
- Evaluating performance identifies the "value-add" of a manager or fund

Risk adjustments

- Focus on three basic measures of risk-adjustment
 - 1. Sharpe ratio
 - 2. Information ratio
 - 3. Treynor ratio
- Each of these represent a rescaling / reinterpretation of alpha, so we begin there...

Single Factor / CAPM alpha

We construct our portfolio alpha as

$$\alpha_p = \bar{r}_p - \left[\bar{r}_f + \beta_p(\bar{r}_m - \bar{r}_f)\right]$$

where

- \bar{r}_p : average return on the portfolio
- β_p : portfolio Beta (risk loading on the market factor)
- \bar{r}_f : average risk free rate
- \bar{r}_m : average return on market index portfolio

Multifactor alpha

$$\alpha_i = \overline{r_i - r_f} - \beta_i (\overline{r_m - r_f}) - s_i \overline{SMB} - h_i \overline{HML}$$

- r_m : monthly return on market index portfolio
- r_f : monthly return on risk free asset portfolio
- SMB: monthly return on Fama-French small minus big portfolio
- *HML*: monthly return on Fama-French high minus low portfolio

Or, just run the regression and extract the α_i :

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{m,t} - r_{f,t}) + s_i SMB_t + h_i HML_t + \epsilon_{it}$$

Running regression is doubly useful b/c also provides a way to identify factor weights that a portfolio is constructing – e.g. manager strategy.

Risk Adjusted Performance: Sharpe

Sharpe Ratio

$$SR = \frac{\overline{r}_p - \overline{r}_f}{\sigma_p}$$

- \bar{r}_p : average return on the portfolio
- \bar{r}_f : average risk-free rate
- σ_p : portfolio standard deviation

Risk Adjusted Performance: M²

- Sharpe ratio tells us the optimal risky portfolio
- M^2 provides an economic interpretation the Sharpe Ratio for portfolio p
 - Blend r_p with r_f to form the complete portfolio return (call it r_p^{blend}) with the same standard deviation as the market r_m
 - Given equivalent risk characteristics, r_m and r_p^{blend} can now be compared:

$$M^2 = r_p^{blend} - r_m$$

where
$$r_p^{blend} = (\sigma_m/\sigma_p)r_p + (1 - (\sigma_m/\sigma_p))r_f$$

Sharpe ratio of an active portfolio

• The Sharpe ratio of an optimally formed active+passive portfolio is

$$SR_{A+P} = \sqrt{SR_m^2 + \frac{\alpha_A^2}{\sigma_A^2(e)}}$$

where SR_m is the Sharpe ratio of the market, α_A and $\sigma_A^2(e)$ are the alpha and residual variance of the active portfolio

• Active funds should be evaluated on the basis of their contribution to the Sharpe ratio

Risk Adjusted Performance: Information Ratio

$$IR = \alpha_p / \sigma(e_p)$$

 α_p : portfolio alpha

 $\sigma(e_p)$: Residual standard deviation from CAPM regression

$$r_{i,t} - r_f = \alpha_i + \beta_i (r_{m,t} - r_f) + \epsilon_{i,t}$$

• Note: idiosyncratic risk matters... assumes you will not fully diversify away

Risk Adjusted Performance: Treynor

Treynor Measure

$$T = \frac{\overline{r}_p - \overline{r}_f}{\beta_p}$$

- \bar{r}_p = Average return on the portfolio
- \bar{r}_f : Average risk free rate
- β_p portfolio beta

Risk Adjusted Performance: Treynor

 Notice, adding the market variance to the denominator preserves the ranking of Treynor measures across portfolios/stocks

$$\frac{\overline{r}_p - \overline{r}_f}{\beta_p \sigma_m^2} = \frac{\overline{r}_p - \overline{r}_f}{Cov(r_m, r_p)}$$

- Recall, this is a portfolio's contribution to the "Reward/Risk" ratio of the market portfolio (see CAPM lecture notes)
- Big assumption: idiosyncratic risk is diversified away

Performance Evaluation Summary

- Sharpe Ratio/ M^2 : the optimal measure of our overall risky portfolio
- Information ratio give the contribution to overall Sharpe ratio of an active portfolio
 - Assumes active portfolio risk is not diversified away (and is significant)
- Treynor measure considers the contribution of a stock (or one of many funds) to portfolio Sharpe ratio
 - Assumes idiosyncratic risk will be diversified away

Brimson's Decomposition

- Suppose we want to compare a fund/fund manager to a benchmark portfolio
- Allocate exceptional performance to three buckets
 - Asset Allocation
 - Stock Selection
 - Interaction

Brinson's Decomposition

• If we know weights and returns in each asset class, difference in portfolio returns and benchmark can be written as

$$r_p - r_b = \sum_{i} \underbrace{(w_{i,p} - w_{i,b})r_{i,b}}_{\text{Asset Allocation}} + \sum_{i} \underbrace{(r_{i,p} - r_{i,b})w_{i,b}}_{\text{"Stock" Selection}} + \sum_{i} (w_{i,p} - w_{i,b})(r_{i,p} - r_{i,b})$$

Interpretation for last term?

