1. Introducción

Julio Vega

julio.vega@urjc.es

Sensores y actuadores

(CC) Julio Vega

Este trabajo se entrega bajo licencia CC BY-NC-SA.

Usted es libre de (a) compartir: copiar y redistribuir el material en
cualquier medio o formato; y (b) adaptar: remezclar, transformar
y crear a partir del material. El licenciador no puede revocar estas
libertades mientras cumpla con los términos de la licencia.

Contenidos

- Introducción
- Variables y magnitudes físicas
- 3 Transductores
- 4 Principios de transducción
- Sensores
- 6 Actuadores

- Toda la historia: obtener energía de la naturaleza y transformarla.
 - Ha propiciado el desarrollo tecnológico.
 - Y los métodos actuales de conversión de energía.
 - En sistema integral, variables físicas son observadas y cuantificadas.
- Desde creación de máguinas automatizadas: SyA fundamentales.
 - En estos sistemas que requieren interfaz con mundo real.
 - E.g., usuario ingrese un dato, medir una variable física, realizar acción.

- Variable física: representación de un parámetro de un fenómeno físico.
- Magnitud física: resultado de cuantificar un atributo físico.
 - Asignando números a estos a través de una variable/constante física.
- Sistema de ingeniería moderno: sensor + CPU + actuador.
 - Sensor: dispositivo que permite cuantificar una variable física.
 - Actuador: según magnitud de la variable medida, realiza una acción.
 - Funcionamiento basado en el llamado principio de transducción.

- Convierten una variable física en otra que tiene un dominio diferente.
- Forman parte de un sensor o de un actuador. Diferencias:
 - Transductor: simplemente cambia el dominio de la variable.
 - Sensor: vierte una salida útil para usarse de entrada en una CPU.
 - Actuador: ejecuta acción determinada por la CPU.
- Simplificación: convierten variable física medida a señal eléctrica.
 - Pero no siempre es así; e.g.: báscula electrónica vs. báscula mecánica.
- Corolario: convierten variable física en...
 - ...movimiento, presión, flujo, señal eléctrica, etc.

- De entrada: se usa como parte de un sistema de sensado.
 - Se usa para medir una variable física cuya salida es usada por CPU.
- De salida: se usa como parte de un sistema de actuación.
 - Convierte la señal dada por la CPU en acción tangible en entorno.
 - E.g., movimiento de un motor, activación de una válvula.
- Para realizar su función se basan en algún principio de transducción.
 - Principio físico de transformación de energía.

Conceptos

- Piezorresistividad: relación entre resistencia eléctrica y deformación.
 - Material piezorresistivo: (1) material en reposo (átomos en equilibrio).
 - (2) Si sufre deformación, movimiento átomos, modifican su resistividad.
 - Resistencia vs. resistividad de un material.
 - Resistencia: depende del volumen del material a tratar.
 - Resistividad: caracti intrínseca relacionada con colocación de átomos.

Coeficiente de resistividad

- Uso: material se conecta en forma de resistencia en circuito.
 - Al aplicar d.d.p. se mide voltaje entre terminales del material.
 - D.d.p. cte. = voltaje entre terminales varia si se deforma el material.
 - E.g., sensor de presión.
- Coeficiente de resistividad (π):

$$\pi = \frac{\frac{\Delta\rho}{\rho}}{E\varepsilon} \tag{1}$$

donde:

: cambio de resistividad

 $\frac{\Delta \rho}{\rho}$: cambio de resistividad E: módulo de Young $\left[\frac{N}{m^2}\right]$

: deformación

Resistencia de un material

• Si material piezorresistivo se deforma, cambia su resistencia eléctrica.

$$R = \rho \frac{I}{A} \tag{2}$$

donde:

R: resistencia del material $[\Omega]$

 ρ : resistividad $\left\lceil \frac{MC\cdot\Omega}{pie}\right\rceil$ Explicación unidades siguiente diapo. y ejerc.

/ : longitud [pie]

A : área de sección transversal [MC]

• El cambio de resistencia se obtiene a partir de:

$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} = \frac{\Delta A}{A} = \frac{\Delta I}{I} \tag{3}$$

• Otra forma de medir el efecto piezorresistivo: el factor de deformación.

$$GF(Gauge\ Factor) = \frac{\frac{\Delta R}{R}}{\varepsilon} = \frac{\frac{\Delta R}{R}}{\frac{\Delta I}{L}}$$
 (4)

Calibre de alambres/láminas estadounidense

- En inglés, AWG (American Wire Gauge): n.º refer. de calibres.
- Para especificar espesor de elem. metálicos como alambres o láminas.
- Establecido en 1857. Entonces, rango $\emptyset = [0.46 0.005]in$
 - \exists 39 saltos entre \varnothing , cuyo factor dif. $=\sqrt[39]{\frac{0.46}{0.005}} = \sqrt[39]{92} = 1{,}1229.$
 - $\varnothing_{AWG=6} = 0.1620$ in $\implies \varnothing_{AWG=5} = \varnothing_{AWG=6} * 1.1229 = 0.1819$ in
- Años después, rangos > 0,46in siguen sistema inglés de medida Mil.
 - Para diámetros: $1Mil = \frac{1}{1000} pulg$. $\implies 1000Mil = 1pulg$..
 - Para áreas: MC = Mil Circular =área del círculo con $\varnothing = 1Mil$.
 - $A = d^2$, donde A: área de sección transversal [MC], $d: \varnothing$ [Mils]
 - Múltiplos: 1KCMil (o MCM o KCM) = 1000MC.

[Ejercicio: manejo de calibre AWG y la sección transversal de un alambre] [Ejercicio: area de sección transversal de un alambre]

Grandes ventajas frente al piezorresistivo

- Resolución infinita.
- Bajo consumo de energía.
- Detecta casi cualquier tipo de material.
- Baja dependencia a la temperatura.
- Fácilmente aislable de ruido de campos eléctricos.
- Aunque también tiene alguna desventaja.
 - Requiere de circuitos de lectura muy especializados.
 - Acoplamiento difícil (en fábrica) entre circuitos y estructura capacitiva.

Funcionamiento

- Según el tipo.
 - Sensor de proximidad: medir cambio de capacitancia...
 - ...inducido por el movimiento relativo entre sensor y objeto.
 - Sensor inerciales: desplazamiento de estructura móvil frente a una fija.
- Para utilizar el principio de transducción capacitivo se necesita...
 - ...estructura formada por uno o varios capacitores o condensadores.
 - Capacitor: formado por dos electrodos (o placas) y medio dieléctrico.

- Se da en materiales que con presión generan carga eléctrica (y vcsa.).
 - Piezoelectricidad: electricidad derivada de la presión.
- Se basa en el cambio de polarización del material debido a la presión.
- Estos materiales son un subconjunto de los ferroeléctricos.
 - Ferroeléctricos: polarización neta incluso sin campo aplicado.
- Empleados comúnmente en los sónares (figura).

- Onda ultrasónica: aquella por encima de la frecuencia audible.
- Vs. electromagnéticas: -atenuación en metales y cuerpo humano.
 - Muy usado en el área médica, detección metales y caracterizar material.

 (IS 200 m = 5M 1000000 m)
- Vs. electromagnéticas (EM): +lenta (US: $300 \frac{m}{s}$ vs. EM: $1000000 \frac{m}{s}$).
 - US se detecta más fácilmente y depende del medio propagador.
 - ullet +++Vel.: sólidos y metales. ++Vel.: líquidos. +Vel.: gaseosos.
- Ppio. basado en conversión de e. mecánica de onda en otro tipo.
 - Si rebota en objeto, tres partes: absorbida, reflejada y transmitida.

Efecto Doppler y transd. piezoeléctrico. Aplicaciones

- US se basa en efecto Doppler: aparente cambio en frec. de onda...
 - ...debido a mvto. entre emisor de onda y receptor (+cerca = +frec.).

- Además del efecto, transd. US necesitan transd. piezoeléctrico (PE).
 - Onda mecánica excita (comprime/tensa) al PE, y produce señal eléctr.
 - Configuraciones sensor US: emisor y receptor contiguos o enfrentados.
- Aplicaciones de los transductores ultrasónicos:
 - Diagnóstico médico.
 - Sonar (Sound Navigation and Ranging).
 - Detección de fallas (grietas, fisuras, etc.) en metales.
 - Mecanizado, soldadura y limpieza.

Basado en el efecto Hall

- Corriente I en presencia de campo magnét. B, surge F. transversal...
 - ...que busca equilibrar el efecto de ese campo, produciendo tensión V_H .

- Ventaja ppal.: inmune a suciedad o agua, excepto ruido magnético.
- Desventaja: corriente I calienta material, cambiando propiedades.
- Usos: en industria automotriz ppalmente.
 - Sensor de posición.
 - Detección de arrangue de motor.
 - Cierre de puertas.

Basado en la ley de Faraday

- Si existe corriente en un conductor, se genera campo magnético.
- Inductancia (L) del conductor: capacidad para almacenar energía EM.
 - Por ello, en este ppio. se necesita inductor = bobina + núcleo.

• Estos transd. se usan mucho, dada su implementación de bajo coste.

Ecuación de inductancia

$$L = \frac{N^2 \mu A}{I} \tag{5}$$

donde:

L: inductancia [H, henrio]

N : número de vueltas

I : longitud del núcleo [m]

A: área de sección transversal $[m^2]$

 μ : permeabilidad absoluta del medio [H/m]

Basado en corrientes de Foucault

- Si alrededor de bobina hay material conductor, impedancia cambia...
 - ...generando en ese material el fenómeno de corrientes de Foucault.
 - También llamadas corrientes de Eddy o corrientes de remolino.
- Uso (poca influencia de ruido, suciedad): detectar objetos metálicos.

Efecto Joule

- Si la corriente aumenta, los portadores de carga colisionan.
 - Estas colisiones son apreciables en forma de calor disipado.
- Efecto Joule: calor producido por una corriente sigue esta fórmula.

$$Q = I^2 Rt (6)$$

donde:

Q : calor [J, joules]

I : corriente eléctrica [A]

R: resistencia eléctrica $[\Omega]$

t: tiempo [s]

- Fotón: partícula elemental de luz o "cuanto de energía EM".
- Efecto fotoeléctrico: incide un fotón en un material y este emite e^- .
 - Ppio. transd. FE: conversión de luz a señal eléctrica.
 - ullet Depende de energía de fotón y energía requiere material para emitir e^- .
 - ullet Energía fotón depende de su long. onda: -long. = +energía.
- Ventajas: alta sensitividad, apto para todo tipo de ambientes.
 - Usos: medir dimensiones, desplazamientos, deformaciones, torque, etc.

- Idea: generar señal eléctr. manipulable a partir de actividad química.
 - Dependiendo del fenómeno químico, así se lleva a cabo el proceso.
- Afectados por temperatura o concentración de diversos componentes.
- Lado receptor no debe reaccionar químicamente a fenómeno a medir.

- Si material tiene resistencia eléctrica es porque se opone a corriente.
 - No confundir este ppio. (A) con el piezorresistivo (B).
 - A = se basa en cambio resistencia presente; B = cambio de resistividad.
 - A = depende cuánto material presente; B = fenómeno cambia resistiv.
- Resistencia de material (R) depende del volumen de este.
 - Vs. resistividad = característica intrínseca depende de su naturaleza.

$$R = \rho \frac{I}{A} = \frac{V}{I} \tag{7}$$

donde:

R: resistencia eléctrica $[\Omega]$

 ρ : resistividad $[\Omega m]$

1 : longitud del material [m]

A: área del material $[m^2]$

V: voltaje [V]

1 : corriente eléctrica [A]

- Sensor siempre hace uso de transductor, además con salida útil.
 - Transductor: cambia dominio de variable física medida.
- Salida suele ser señal eléctrica (dominio +usado), analógica o digital.
- Clasificación: lo +común, según variable a medir o ppio. transducción.
 - Nosotros los estudiaremos clasificados según la variable física a medir:
 - De posición, velocidad y aceleración.
 - De nivel y proximidad.
 - De humedad y temperatura.
 - De fuerza y deformación.
 - De flujo y presión.
 - De color, luz v visión.
 - De gas y pH.
 - Biométricos.
 - De corriente.

- Sensitividad: entrada mínima requiere para provocar salida detectable.
- Rango: intervalo [min., max.] que puede medir.
- Precisión: grado de repetitividad; mismo valor medido = misma salida.
- Linealidad estática: desviación comportamiento curva fábrica vs. real.
- Offset: desplazamiento en eje Y de curva de salida bajo condiciones.
- Resolución: cambio más pequeño en variable que puede registrar.
- Error estático: error (humano) cometido en la lectura del sensor.

- Tiempo de respuesta: entre cambio en variable y el sensor lo registra.
- Histéresis: capacidad del sensor para seguir la curva de salida ideal.
- Linealidad dinámica: capacidad del sensor para seguir curva de salida.
- Error dinámico: debido a cómo se usa sensor (e.g. cargas inducidas).

- Tendencia en electrónica: reducción de tamaño y minimizar costes.
 - Sensor inteligente: integrar funciones de varios dispositivos en uno.
- Sensor MEMS (Sist. Micro-Electro-Mecánico), compont. tamaño μm .
 - Núcleo: (sensor o actuador) + transductor.
 - Tecnologías usadas: PolyMUMPs, SOI MEMS, LIGA, CMOS-MEMS.
- Los sensores de estado sólido son un ejemplo de sensor MEMS.

- Dispositivo que genera fuerza sobre elemento y cambia su estado.
 - Y todo ello mediante la transformación de energía.
- Clasificación:
 - Por tipo de energía empleada: neumático, hidráulico y eléctrico.
 - Por tipo de movto. generado: lineal y rotatorio.

- Transforma E acumulada en aire compdo. en trabajo mecánico (W).
 Presión de aire comprimido en recipiente se usa para generar fuerza.
- Cilindro neumát.: induce movto. lineal (A efecto simple o B doble).

• Motor neumát.: induce mvto. rotación.

- Semejante a neumático; ambos transforman E almacenada en fluido.
 - Hidrául.: el fluido a presión es aceite mineral por tubos y mangueras.
 - Se basan en Ppio. Pascal: $P = \frac{F}{S}$
 - $P_1 = \frac{F_1}{S_1}, P_2 = \frac{F_2}{S_2}; P_1 = P_2; F_2 = F_1 \frac{S_2}{S_1}$
- Aceite poco compresible = poco error posición y soporta +presión.
 - Presión de aire comprimido en recipiente se usa para generar fuerza.
- Inconvenientes: fugas por alta presión, instalaciones +complejas.
- Cilindro hidrául. similar a neumát. (y se puede usar la gravedad).

- Actuado
- Transforma la energía eléctrica en energía mecánica.
 Los más usados; es +fácil disponer de electricidad que de compresor.
- Conductor en campo magnético se induce dzmto. ppclar. al campo.
 - Por ello, actuador eléct. formado por varios hilos (espiras)
 - Mayor fuerza de movto. circular en el eje (rotor) del actuador.

• Se componen de rotor (parte móvil) y estator (parte fija).

Tipos

- Motor de CC: requiere flujo eléctrico de corriente en un sentido.
 - $Vel_{rot.} = K \cdot V_{in}$. Al variar V_{in} , se varia velocidad del eje.
- Motor de CA: requiere flujo eléctrico que cambia de dirección.
 - Velocidad depende de la frecuencia de operación de V_{in} .
 - Motor paso a paso de imán permanente: estator es imán permanente.
 - En ausencia de electricidad, el eje del motor permanece en posición.
 - Motor paso a paso de reluctancia variable: estator son bobinas.
 - En reposo no existe par motor; el motor gira con libertad.
 - Motor paso a paso híbrido: combina cualidades de los dos.

1. Introducción

Julio Vega

julio.vega@urjc.es

Sensores y actuadores