Tarea VIII

Román Contreras

13 de mayo de 2018

0.1. Vectores propios

Sea $\beta = \{\vec{w}_1, \vec{w}_2, \vec{w}_3\}$ una base ortonormal y T una transformación lineal.

Ejercicio 0.1. Sea T una transformación lineal cuya matríz es:

$$[T]_{\beta} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Demuestra que si \vec{v} es un vector propio de valor propio λ de la transformación T, entonces $\lambda = 1$ y además \vec{v} es un múltiplo escalar del vector \vec{w}_1

 $Calcula\ la\ dilataci\'on\ de\ T\ y\ encuentra\ su\ transformaci\'on\ inversa.$

Ejercicio 0.2. Demuestra que si T es una transformación lineal y $\vec{v}_1, \vec{v}_2, \vec{v}_3$ son tres vectores propios de valores propios $\lambda_1, \lambda_2, \lambda_3$ que además son linealmente independientes, entonces $dil(T) = \lambda_1 \lambda_2 \lambda_3$.

Ejercicio 0.3. Sea T una transformación lineal. Sean \vec{v}_1, \vec{v}_2 dos vectores propios de valores propios λ_1, λ_2 .

Demuestra que si Π es el plano generado por \vec{v}_1 y \vec{v}_2 entonces $T(\Pi) \subseteq \Pi$.

Ejercicio 0.4. Sea T una isometría lineal.

Demuestra que si \vec{v} es un vector propio de T con valor propio λ , entonces $\lambda = \pm 1$.

0.2. Transformaciones autoadjuntas

Recordemos la siguiente definición:

Definicion 0.1. Una transformación lineal T es autoadjunta si satisface que para cualesquiera dos vectores \vec{v} y \vec{w} se cumple que:

$$\langle T(\vec{v}), \vec{w} \rangle = \langle \vec{v}, T(\vec{w}) \rangle$$

En clase demostramos la siguiente proposición:

Proposicion 0.1. Sean T una transformación lineal. Entonces T es autoadjunta si y solo si la matríz $M = [T]_{\beta}$ es simétrica, es decir $M = M^T$

Ejercicio 0.5. Demuestra que si T es una transformación autoadjunta, \vec{v} es un vector arbitrario y \vec{w} es un vector que satisface que $T(\vec{w}) = 0$, entonces los vectores $T(\vec{v})$ y \vec{w} son ortogonales.

Ejercicio 0.6. Demuestra que si T es una proyección ortogonal sobre un plano o sobre una recta, entonces T es autoadjunta, sus valores propios son 0 o 1 y existe una base ortonormal de vectores propios.

Inversamente, si T es una transformación autoadjunta, y existen tres vectores propios linealmente independientes, de valores propios 0 o 1, entonces T es una proyección ortogonal sobre un plano, una recta, o bien es la transformación identidad, o bien es la transformación 0.

Ejercicio 0.7. Sea T una transformación autoadjunta y sea R una isometría lineal. Demuestra que la transformación $R^{-1} \circ T \circ R$ es una transformación autoadjunta.

Ejercicio 0.8. Sea T una transformación autoadjunta y \vec{v} un vector propio. Sea \vec{w} un vector que es ortogonal a \vec{v} . Demuestra que $T(\vec{w})$ también es ortogonal a \vec{v} .