Física Geral I • FIS0703

Aula 21 05/12/2016

A entropia e a segunda lei da termodinâmica

- ► A alteração da entropia durante um processo é definida através do calor transferido num processo reversível.
- ► No caso dum processo irreversível, a alteração da entropia pode ser calculada através de qualquer processo reversível que liga os mesmos estados inicial e final.
- ▶ O calor transferido Q_{irr} do processo irreversível em geral é diferente do calor Q_r do processo reversível. Não se deve usar Q_{irr} para calcular ΔS !

Um sistema + a sua vizinhança = o universo

 $\Delta S_{\text{universo}} \geq 0$

Segunda lei da termodinâmica

Esta versão da segunda lei é equivalente à de Clausius e à de Kelvin-Planck.

- ► A igualdade vale apenas para processos reversíveis.
- ▶ Processos reais são irreversíveis e sempre aumentam a entropia do universo.
- ► A entropia do sistema pode diminuir, mas neste caso a entropia da vizinhança aumenta em maior medida.

A entropia na condução térmica

Exemplo: troca de calor entre um reservatório quente e outro reservatório frio. Os dois reservatórios são isolados do resto do universo.

Se o calor fosse transferido do reservatório frio para o quente, a entropia do universo teria de diminuir (proibido pela 2ª lei).

A entropia na expansão adiabática livre

Consideremos a expansão adiabática livre dum gás ideal (a experiência de Joule):

Estado inicial

Estado final

O gás não realiza trabalho durante a expansão (não há pressão externa)

$$W = 0$$

► Não há transferência de calor (adiabático)

$$Q = 0$$

A temperatura do gás não se altera ($T_i = T_f$)

$$\Delta E_{\rm int} = Q + W = 0$$

A alteração da entropia não é $\Delta S = \frac{Q}{T_i} = 0$ porque Q corresponde a um processo irreversível!

Uma escolha simples dum processo reversível é um processo isotérmico quase-estático:

$$\Delta E_{\text{int}} = 0 \qquad Q_r = -W = \int_i^f p \, dV = nRT \ln \frac{V_f}{V_i}$$

$$\Delta S = \int_i^f \frac{dQ_r}{T} = \frac{1}{T} \int_i^f dQ_r = \frac{Q_r}{T} \qquad \left[\Delta S = nR \ln \frac{V_f}{V_i} \right] \qquad V_f > V_i \longrightarrow \Delta S > 0$$

Não houve transferência de energia para a vizinhança $\longrightarrow \Delta S_U = \Delta S > 0$

Consideremos novamente a expansão adiabática livre dum gás ideal, de V_i para V_f , desta vez do ponto de vista microscópico.

- ightharpoonup O volume V_i é dividido em células de tamanho microscópico V_m .
- ightharpoonup Cada molécula pode ser situada numa das células de tamanho V_m .

$$v_{i} V_{m}$$
 $w_{i} = rac{V_{i}}{V_{m}}$ o número de lugares possíveis de uma molécula

Pressuposto: todas os lugares têm a mesma probabilidade de ocupação.

O número de maneiras de colocar uma segunda molécula no volume V_i também é w_i .

O número total de maneiras diferentes de colocar duas moléculas é $w_i w_i = w_i^2$

- ightharpoonup O número total de maneiras diferentes de colocar N moléculas é $\Omega_i=w_i^N=(V_i/V_m)^N$
- ► Cada uma destas configurações de N moléculas constitui um microestado do gás, que é compatível com o mesmo macroestado (V_i , P_i , T_i).
- Para o estado final obtém-se o número de microestados $\Omega_f = w_f^N = (V_f/V_m)^N$

A razão entre os números de microestados é $\frac{\Omega_f}{\Omega_i} = \frac{(V_f/V_m)^N}{(V_i/V_m)^N} = \left(\frac{V_f}{V_i}\right)^N$

$$\frac{\Omega_f}{\Omega_i} = \frac{(V_f/V_m)^N}{(V_i/V_m)^N} = \left(\frac{V_f}{V_i}\right)^N$$

Calcular o logaritmo e multiplicar por k_B dá

$$k_B \ln \left(\frac{\Omega_f}{\Omega_i}\right) = k_B \ln \left(\frac{V_f}{V_i}\right)^N = k_B N \ln \left(\frac{V_f}{V_i}\right) = n N_A k_B \ln \left(\frac{V_f}{V_i}\right)$$

$$k_B \ln \Omega_f - k_B \ln \Omega_i = nR \ln \left(\frac{V_f}{V_i}\right)$$

Compare com o resultado anterior para a expansão adiabática livre

$$S_f - S_i = nR \ln \left(\frac{V_f}{V_i}\right)$$

Ligação entre a entropia e o número de microestados Ω dum determinado macroestado:

$$S = k_B \ln \Omega$$

 $S=k_B\ln\Omega$ Definição microscópica da entropia

Quando maior o número de microestados compatíveis com um dado macroestado, maior é a grau de desordem do sistema.

A entropia é uma medida desta desordem.

A lápide de Ludwig Boltzmann

▶ Quando maior o número de microestados compatíveis com um dado macroestado, maior é a grau de desordem do sistema. A entropia é uma medida desta desordem.

$$S = k_B \ln \Omega$$

- ► Microestados diferentes têm a mesma probabilidade.
- Macroestados com mais desordem são <u>muito</u> mais prováveis porque têm <u>muito</u> mais microestados associados.

Exemplo: N moléculas (com movimento aleatório) numa caixa com dois lados iguais. Qual é a probabilidade de encontrar todas as moléculas no lado esquerdo?

$$N = 1$$
 $P = 1/2 = (1/2)^1$
 $N = 2$
 $P = 1/4 = (1/2)^2$
 $P = 1/8 = (1/2)^3$

N = 100: Qual é a probabilidade que as 50 moléculas mais rápidas se encontram no lado esquerdo e as 50 mais lentas no lado direito (separação espontânea para estado ordenado)?

$$P = (1/2)^{50} (1/2)^{50} = (1/2)^{100} \approx 1/10^{30}$$

 $N = N_A = 6,02 \times 10^{23}$ (1 mol de gás): a probabilidade de um estado tão ordenado é extremamente baixa (praticamente zero)

Física moderna

Relatividade restrita

A transformação de Galileu

Velocidade: derivada em ordem de t:

Partícula em A observada em dois referenciais, S e S'.

S' move-se relativamente a S com a velocidade relativa \mathbf{v}_0

$$\mathbf{r}' = \mathbf{r} - \mathbf{v}_0 t$$
 $t' = t$ $\frac{d\mathbf{r}'}{dt} = \frac{d\mathbf{r}}{dt} - \mathbf{v}_0$ Transformação de Galileu $\mathbf{v}' = \mathbf{v} - \mathbf{v}_0$

Aceleração:

$$\frac{d\mathbf{v}'}{dt} = \frac{d\mathbf{v}}{dt} - \frac{d\mathbf{v}_0}{dt}$$

$$\mathbf{v}_0$$
 constante \longrightarrow $\mathbf{a}'=\mathbf{a}$

A aceleração medida é igual em todos os referenciais que se movem com velocidades relativas constantes

O princípio de relatividade de Galileu

As leis da mecânica têm de ser as mesmas em todos os referenciais inerciais.

$$\mathbf{F} = m\mathbf{a}$$

$$\mathbf{F}' = m\mathbf{a}' = m\mathbf{a} = \mathbf{F}$$

As forças não podem depender de posições ou velocidades "absolutas"

Exemplo: a lei da gravidade universal depende da distância entre massas, não das suas posições absolutas.

(Forças resistivas não violam a relatividade de Galileu: dependem da velocidade relativa entre o corpo e o meio)

A relatividade de Galileu e o eletromagnetismo

O princípio de relatividade da mecânica de Newton pode ser estendida às leis do electromagnetismo?

Parece que não:

- Cargas em movimento geram um campo magnético, cargas em repouso não.
- Muitas equações da eletrodinâmica referem-se à "velocidade da carga", como se existisse um referencial de repouso inequívoco.

Por exemplo:
$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$

Força de Lorentz

A velocidade v tem de ser determinada em qual referencial?

A hipótese do éter luminífero

Os físicos do século XIX interpretaram campos elétricos e magnéticos como distorções num meio invisível e muito ténue que permeia todo o espaço, chamado o "éter luminífero".

Eles pensavam que:

- ► A velocidade de cargas nas leis do EM tem de ser medida relativamente ao éter
- As equações de Maxwell são válidas apenas no referencial do éter
- O éter também é o meio em que ondas de luz se propagam

Era então extremamente importante encontrar o éter.

No entanto, tornou-se evidente que os efeitos do movimento relativamente ao éter são muito pequenos e difíceis de detectar.

A experiência de Michelson e Morley

Movimento relativamente ao éter: deve-se observar o "vento do éter"

Michelson e Morley (1887):

Observação de interferência entre raios de luz que se propagam em direções perpendiculares (supostamente com velocidades diferentes)

Resultado: a velocidade da luz é exatamente a mesma em todas as direções.

Será que a Terra esteve (por acaso!) em repouso relativamente ao éter?

Repetição após meio ano deu o mesmo resultado.

Conclusão: o éter não existe!

Os postulados de Einstein

Inspirado pela evidência experimental e considerações teóricas, Einstein postulou em 1905:

- 1. As leis da física são as mesmas em todos os referenciais inerciais.
- 2. A velocidade da luz no vácuo é a mesma para todos os observadores inerciais, independente do estado de movimento da fonte de luz.

A partir destes postulados, Einstein desenvolveu a teoria de relatividade restrita. O postulado 2 contradiz a regra de adição de velocidades de Galileu (e o senso comum!)

