The First Provably Robust and Interpretable Pixel-Level Explanations

Colored pixels are provably important for predicting "eagle" under bounded input noise

Pixel-Level Certified Explanations via Randomized Smoothing

Alaa Anani^{1,2} Tobias Lorenz² Mario Fritz¹ Bernt Schiele²

2. Randomized Smoothing

Proving model output stability by evaluating it on an input distribution [1,2].

Certified segmentation [2]

Given a segmentation model $f: \mathbb{R}^{c \cdot N} \to \mathcal{Y}^N$, threshold $\tau \in [\frac{1}{2}, 1)$, and sampling error rate α , the smoothed (certified) version is defined as

$$g_i^{\tau}(x) = \begin{cases} c_{A,i} & \text{if } \mathbf{P}(f_i(\mathcal{N}(x,\sigma^2I)) = c_{A,i}) > \tau \\ \emptyset \text{, otherwise} \end{cases}$$

With probability $1 - \alpha$, all non-abstain indices $\{i \mid g_i^{\tau}(x) \neq \emptyset\}$ remain the same $g_i^{\tau}(x) = g_i^{\tau}(x + \delta)$, for $\delta \in \mathbb{R}^{m \cdot N}$ with $| |\delta| |_2 \leq R := \sigma \Phi^{-1}(\tau)$.

3. Method Given any How can v

With high probability $1-\alpha$, for all non-abstain indices $\{i\mid h_i^{\tau,k}(x)\neq \emptyset\}$, the certified attribution output remains the same $h_i^{\tau,K}(x)=h_i^{\tau,K}(x+\delta)$, within an ℓ_2 -radius around the input: $|\mid \delta\mid\mid_2 \leq R:=\sigma\Phi^{-1}(\tau)$.

4. Evaluation Setup

We evaluate 12 attribution methods from 3 families (gradient, perturbation, activation) on 5 models using 3 novel metrics:

5. Results

SIC Saarland Informatics

MAX PLANCK INSTITUTE

Certified attributions are interpretable and of high-quality. LRP offers the most detail.

Certified Robustness

LRP and RISE are the most robust.

Certified Localization

LRP, RISE and Occlusion localize best.

Faithfulness

LRP and RISE are the most faithful.

[1] Cohen et al. ICML, 2019. [2] Fischer et al. ICML, 2021

The First Provably Robust and Interpretable Pixel-Level Explanations

Colored pixels are provably important for predicting "eagle" under bounded input noise

Pixel-Level Certified Explanations via Randomized Smoothing

Alaa Anani^{1,2} Tobias Lorenz² Mario Fritz² Bernt Schiele¹

2. Randomized Smoothing

Proving model output stability by evaluating it on an input distribution [1,2].

Certified segmentation [2]

Given a segmentation model $f: \mathbb{R}^{c \cdot N} \to \mathcal{Y}^N$, threshold $\tau \in [\frac{1}{2}, 1)$, and sampling error rate α , the smoothed (certified) version is defined as

$$g_i^{\tau}(x) = \begin{cases} c_{A,i} & \text{if } \mathbf{P}(f_i(\mathcal{N}(x,\sigma^2I)) = c_{A,i}) > \tau \\ \emptyset \text{, otherwise} \end{cases}$$

With probability $1 - \alpha$, all non-abstain indices $\{i \mid g_i^{\tau}(x) \neq \emptyset\}$ remain the same $g_i^{\tau}(x) = g_i^{\tau}(x + \delta)$, for $\delta \in \mathbb{R}^{m \cdot N}$ with $||\delta||_2 \leq R := \sigma \Phi^{-1}(\tau)$.

3. Method

With high probability $1-\alpha$, for all non-abstain indices $\{i\mid h_i^{\tau,k}(x)\neq\emptyset\}$, the certified attribution output remains the same $h_i^{\tau,K}(x)=h_i^{\tau,K}(x+\delta)$, within an ℓ_2 -radius around the input: $|\mid\delta\mid\mid_2\leq R:=\sigma\Phi^{-1}(\tau)$.

4. Evaluation Setup

We evaluate 12 attribution methods from 3 families (gradient, perturbation, activation) on 5 models using 3 novel metrics:

5. Results

SIC Saarland Informatics

MAX PLANCK INSTITUTE

Certified Localization LRP, RISE and Occlusion localize best.

LRP and RISE are the most faithful.

Faithfulness

lity $1-\alpha$, all non-abstain indices $\{i\mid g_i^{\tau}(x)\neq\emptyset\}$ rema

[1] Cohen et al. ICML, 2019. [2] Fischer et al. ICML, 2021