Definition (Cartesian product of categories)

Given two categories \mathbf{C} and \mathbf{D} , their *cartesian product* $\mathbf{C} \times \mathbf{D}$ is the category specified as follows:

- 1. Objects: Objects are pairs (X, Y), with $X \in Ob_{\mathbb{C}}$ and $Y \in Ob_{\mathbb{D}}$.
- 2. *Morphisms*: Morphisms are pairs of morphisms $\langle f, g \rangle : \langle X, Z \rangle \rightarrow \langle Y, U \rangle$, with $f: X \rightarrow_{\mathbf{C}} Y, g: Z \rightarrow_{\mathbf{D}} U$.
- 3. *Identity morphisms*: Given objects $X \in \mathrm{Ob}_{\mathbf{C}}$ and $Y \in \mathrm{Ob}_{\mathbf{D}}$, the identity morphism on $\langle X, Y \rangle$ is the pair $\langle \mathrm{Id}_X, \mathrm{Id}_Y \rangle$.
- 4. *Composition of morphisms*: The composition of morphisms is given by composing each component of the pair separately:

$$\langle f, g \rangle \, \, _{\mathbf{C} \times \mathbf{D}} \, \langle h, k \rangle = \langle f \, \, _{\mathbf{C}} \, h \, , \, g \, \, _{\mathbf{D}} \, k \rangle.$$