群、环、域

84.1 代数运算

习题 4.1

- 1. 判断下列集合对所给的二元运算是否封闭。
- (1) 集合 $n\mathbf{Z} = \{n \times z \mid z \in \mathbf{Z}\}$ 关于普通的加法和普通乘法运算,其中 n 是一个正整数。
- (2) 集合 $S = \{x \mid x = 2n-1, n \in \mathbb{Z}^+\}$ 关于普通的加法和普通的乘法运算。
- (3) 集合 $S = \{0, 1\}$ 关于普通的加法和普通的乘法运算。
- (4) 集合 $S = \{x \mid x = 2^n, n \in \mathbb{Z}^+\}$ 关于普通的加法和普通的乘法运算。
- (5) 所有n阶 $(n \ge 2)$ 实可逆矩阵集合 $\hat{M}_n(\mathbf{R})$ 关于矩阵加法和矩阵乘法运算。

对于封闭的二元运算,判断它们是否满足交换律、结合律和分配律,并在存在的情况下求出它们的单位元、零元和所有可逆元素的逆元。

解: (1) 任意 $a,b \in \mathbb{Z}$.

 $n \times a + n \times b \in nZ$,所以对普通的加法运算封闭。 $n \times a \times (n \times b) = n^2 \times a \times b \in nZ$,所以对普通的乘法运算封闭。

(2)

- 2. 判断下列集合对所给的二元运算是否封闭。
- (1) 正实数集合R⁺和*运算, 其中*运算定义为:

$$\forall a, b \in \mathbf{R}^+, a*b = ab-a-b$$

(2) $A = \{a_1, a_2, \dots, a_n\}, n \ge 2$ 。*运算定义为:

$$\forall a, b \in A, a*b=b$$

对于封闭的二元运算,判断它们是否满足交换律、结合律和等幂律,并在存在的情况下求出它们的单位元、零元和所有可逆元素的逆元。

- 解: (1) 不封闭。例如 $3*1=3\times1-1-3=3-1-3=-1$, $-1\notin R^+$ 。
 - (2) 封闭。 $\forall a, b \in A, a*b=b \in A$,所以*运算在A上是封闭的。

 $\forall a, b, c \in \mathbf{R}^+,$ f:

a*b=b,而b*a=a,因为a=b不恒成立,即 $a*b\neq b*a$,所以*不满足交换律。

因为(a*b)*c=a*c=a, a*(b*c)=a*b=a,

所以(a*b)*c = a*(b*c), 所以*满足结合律。

又因为a*a=a,所以*满足等幂律。

设e 为单位元,则因有 $\forall a \in A$, a*e=e*a=a,即 a=e=a,由a 的任意性可知,单位元不存在。

- 3. 设 $S = \mathbf{Q} \times \mathbf{Q}$,这里 \mathbf{Q} 是有理数集合,*为S上的二元运算, $\forall < u$,v > , < x, $y > \in S$, < u,v > * < x,y > = < ux, $u \cdot y + v >$
 - (1) *运算在S 上是否可交换、可结合? 是否为等幂的?
 - (2) *运算是否有单位元、零元? 如果有,请指出,并求S中所有可逆元素的逆元。
 - (3)*运算在 S 上是否满足消去律?
- 解: (1) $\forall < u, v > , < x, v > \in S$,

$$< u, v>* < x, y> = < ux, u \cdot y + v>$$

< x, y > * < u, v > = < xu, xv + y >

所以 $< u, v>*< x, y> \neq < x, y> *< u,v>$, 故*运算在S上不可交换。

又 \forall <u, v>,<x, y>,<a,b> \in S, 有

(< a, b > * < u, v >)* < x, y > = < au, av + b > * < x, y > = < aux, auy + av + b >

< a, b > *(< u, v > * < x, y >) = < a, b > * < ux, uy + v > = < aux, auy + av + b >

所以(< a,b>*< u,v>)*< x,y>=< a,b>*(< u,v>*< x,y>),故*运算在<math>S上可结合。

又 $< x, y>*< x, y>=< xx, xy+y>\neq< x, y>$, 所以*运算在S上不等幂。

- (2)*运算在S上的单位元是<1,0>,存在逆元的元素< x,y>的逆元是 $< x^{-1},-x^{-1}y>$,且< x,y>的可逆条件是 $x \neq 0$,不存在零元。

即 $\langle au, av + b \rangle = \langle ax, av + b \rangle$,

也即 au = ax,且av + b = ay + b,所以 u = x, v = y,也就是 < u, v > = < x, y >,故 < a, b > * < u, v > = < a, b > * < x, y > ⇒ < u, v > = < x, y >,所以 * 满足左消去律,同理可证 * 满足右消去律,故 * 满足消去律。

4. **R**为实数集合,定义以下六个函数 f_1 , …, f_6 。 $\forall x$, $y \in \mathbf{R}$ 有

$$f_1(\langle x, y \rangle) = x + y,$$
 $f_2(\langle x, y \rangle) = x - y,$

$$f_3(\langle x, y \rangle) = |x - y|, \qquad f_4(\langle x, y \rangle) = xy,$$

$$f_5(\langle x, y \rangle) = \min(x, y),$$
 $f_6(\langle x, y \rangle) = \max(x, y)$

- (1) 指出哪些函数是**R**上的二元运算。
- (2) 若是**R**上的二元运算,说明是否可交换的、可结合的、等幂的?

- (3) 若是**R**上的二元运算,求单位元、零元以及每一个可逆元素的逆元。
- (4) 若是R上的二元运算,说明是否满足消去律。
- 解:(1)这6个都是R上的二元运算。
 - (2) 它们的可交换性、可结合性、等幂性、单位元、零元判断如下:

函数	交换	结合	等幂	单位元	零元
f_1	√	1	×	为 0	×
f_2	×	×	×	×	×
f_3	✓	×	×	×	×
f_4	✓	1	×	为 1	为 0
f_5	1	1	1	×	×
f_6	1	1	1	×	×

- (3) x+y的逆元为-x-y, xy的逆元为1/(xy)。
- (4) 略
- 5. 设 $G = \{1, 2, ..., 10\}$,问下面定义的运算在G上是否封闭?对于封闭的二元运算,请说明运算*是否满足交换律、结合律,并在存在的情况下求出运算*的单位元、零元和所有可逆元素的逆元。
 - (1) x*y = gcd(x, y), gcd(x, y)是 x = y 的最大公因数。
 - (2) x*y = lcm(x, y), lcm(x, y)是 x 与 y 的最小公倍数。
 - (3) x*y=大于等于x和y的最小整数。
 - (4) x*y = 质数 p 的个数,其中 $x \le p \le y$ 。
- **解:** (1) 封闭。因为 $\forall x, y \in G$,gcd(x, y)为x与y的因数,故 $gcd(x, y) \in G$ 。交换律和结合律都满足。单位元没有,1是零元。
 - (2) 不封闭。例如, lcm(2,7) = 14, $14 \notin G$ 。
 - (3) 封闭。交换律和结合律满足。单位元是1,零元是10。
 - (4) 不封闭。例如,8*10=0, $0 \notin G$ 。

※4.2 半群与群

1. 设G是所有形如

$$\begin{pmatrix} a_{11} & a_{12} \\ 0 & 0 \end{pmatrix}$$

的矩阵组成的集合,*表示矩阵乘法。试问<G,*>是半群吗?是有么半群吗?这里 a_{11} 、 a_{12} 是实数。

解: 任取**G** 的 2 个元素
$$A = \begin{pmatrix} a_{11} & a_{12} \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} \\ 0 & 0 \end{pmatrix}$

$$\therefore A * B = \begin{pmatrix} a_{11} & a_{12} \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} b_{11} & b_{12} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} \\ 0 & 0 \end{pmatrix} \in G$$

 \therefore < G, * > 是一个代数系统。又因为矩阵的乘法满足结合律,所以< G, * > 是一个半群。

又因为,只要 $a_{11}=1$,则

$$A*B = \begin{pmatrix} a_{11} & a_{12} \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} b_{11} & b_{12} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ 0 & 0 \end{pmatrix} = B,$$

对任何 $B \in G$ 成立,即 $\begin{pmatrix} 1 & a_{12} \\ 0 & 0 \end{pmatrix}$ 是左单位元(不论 a_{12} 取何值)。因此单位元不存在(若单位

元则左右单位元都存在且相等还唯一),即<G,*>不是有么半群。事实上,右单位元确实不存在,因为不论 b_1 , b_1 ,取何值

$$A * B = \begin{pmatrix} a_{11} & a_{12} \\ 0 & 0 \end{pmatrix} * \begin{pmatrix} b_{11} & b_{12} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{11} \\ 0 & 0 \end{pmatrix} = A$$

不可能对任何 $A \in G$ 成立,所以右单位元不存在。

因此单位元不存在<G,*>不是有么半群。

2. 在正实数集合R+上定义运算*如下

$$x * y = \frac{a+b}{1+ab}$$

试问 < R⁺, *>是半群吗?是有么半群吗?

解: 任取 \mathbf{R}^+ 中的3个元素 $a,b,c \in \mathbf{R}^+$

$$\therefore a*b = \frac{a+b}{1+ab} \in R^+$$
, 所以**+, *>是一个代数系统。**

$$\therefore (a*b)*c = \frac{a+b}{1+ab}*c = \frac{\frac{a+b}{1+ab}+c}{1+\frac{a+b}{1+ab}c} = \frac{a+b+c+abc}{1+ab+ac+bc}$$

$$a*(b*c) = a*\frac{b+c}{1+bc} = \frac{a+\frac{b+c}{1+bc}}{1+a\frac{b+c}{1+bc}} = \frac{a+b+c+abc}{1+ab+ac+bc}$$

$$\therefore (a*b)*c = a*(b*c), 即 < \mathbf{R}^+, *> 是一个半群。$$

如果存在单位元e,则 $\forall x \in R^+$, $e*x = \frac{e+x}{1+ex} = x$,可得 $e=0 \notin R^+$,所以没有单位元,所以不是有幺半群。

3. 对自然数集合N定义运算 > 和 < 如下:

$$a \lor b = \max\{a, b\},$$
 $a \land b = \min\{a, b\}$

试问 < N, V > 和 < N, A > 是半群吗? 是有么半群吗?

解:显然都满足运算的封闭性,所以<N, >>和<N, ^>都是代数系统。显然都满足运算的结合律,所以<N, >>和<N, ^>都是半群。
<N, <>有单位元"1",所以是有么半群。
<N, ^>没有单位元,所以不是有么半群。

4. 设<G, *>是一个半群, 它有一个左零元 θ , 令

$$G_{\theta} = \{ x * \theta \mid x \in G \}$$

证明 $< G_{\theta}$, *>也构成一个半群。

5. 在一个多于一个元素的有么半群中,证明一个右零元不可能有右逆元。

证: 有么半群中的么元 e 显然不可能等于任一个右零元。

设有一个右零元 θ_r ,它的右逆元为 θ_r^{-1} ,则 $\theta_r^{-1}*\theta_r=e$,因为 $\theta_r*\theta_r=\theta_r$,

所以 $\theta_r^{-1}*\theta_r*\theta_r=\theta_r^{-1}*\theta_r$,即 $e*\theta_r=e$, $\theta_r=e$,导致矛盾,因此一个右零元不可能有右逆元。

- 6. 设G是一个多于一个元素的集合, G^G 是G上所有函数组成的集合,证明有么半群 $< G^G$,。>有多于一个的右零元,但没有左零元。这里。表示复合运算。
- 证: 因G至少含有2个元,不妨设 $a,b \in G$,且 $a \neq b$,定义如下两个映射 $f_1,f_2 \in G^G$:

$$f_1(x) = a, \forall x \in G,$$
 $f_2(x) = b, \forall x \in G$

则因为

$$f \circ f_1(x) = f_1(f(x)) = a$$
, $f \circ f_2(x) = f_2(f(x)) = b$

所以 $f\circ f_1=f_1$, $f\circ f_2=f_2$,即 f_1 和 f_2 是< G^G , $\circ>$ 的右零元,所以说< G^G , $\circ>$ 有多于一个的右零元。

下面证明无左零元,用反证法,设有左零元 f_0 ,则 $\forall x \in G$ 有:

$$f_0(x) = f_0 \circ f_1(x) = f_1(f_0(x)) = a$$

$$f_0(x) = f_0 \circ f_2(x) = f_2(f_0(x)) = b$$

这与a≠b矛盾,所以< G^G , \circ >无左零元。

7. 设 Z 为整数集合, 在 Z 上定义二元运算*如下:

$$x * y = x + y - 2$$
, $\forall x$, $y \in \mathbf{Z}$

问 Z 关于*运算能否构成群? 为什么?

解:易证Z关于*运算是封闭的,且对任意 $x,v,z\in Z$ 有

$$(x * y) * z = (x + y) - 2 + z - 2 = x + y + z - 4$$

$$x*(y*Z) = x*(y+z-2) = x+(y+z-2)-2 = x+y+z-4$$

结合律成立。2 是*运算的么元。 $\forall x \in Z$,4-x是x关于*运算的逆元。纵上所述, $\langle Z,* \rangle$ 够成群。

8. $G = \{f(x) = ax + b \mid a \neq 0, a, b \in \mathbb{R}\}$,证明 $< G, \circ >$ 是一个群,这里 \circ 是复合运算。

证: $\forall a,b,c,d \in R$, 且 $a,c \neq 0$, 对于任意的 $x \in G$, 有

$$(f_{c,d} \circ f_{a,b})(x) = f_{a,b}(cx+d) = a(cx+d) + b = acx + ad + b$$

又 $ac \neq 0$, ac, $ab + b \in G$, 得 $f_{c,d} \circ f_{a,b} = f_{ac,ad+b} \in G$, 故运算 \circ 在 G 上是封闭的。

恒等变换 $I = f_{1,0} \in G$,从而G有单位元I。

$$f_{a,b} \circ f_{a^{-1}.-a^{-1}b} = f_{aa^{-1}.-aa^{-1}b+b} = f_{1,0}$$

$$f_{a^{-1}.-a^{-1}b}\circ f_{a,b}=f_{a^{-1}a.a^{-1}b-a^{-1}b}=f_{1.,0}$$

故 $f_{a,b}$ 可逆,且 $f_{a,b}^{-1} = f_{a^{-1},-a^{-1}b}$ 。所以< G, $\circ >$ 是一个群。

9. 设 $G = \{r, 1/r, 1-r, 1/(1-r), (r-1)/r, r/(r-1)\}$, 证明< G, *>是一个群, 这里, 运算a*b表示将b 代换到a中r所在位置。证:

*	r	$\frac{1}{r}$	1-r	$\frac{1}{1-r}$	$\frac{r-1}{r}$	$\frac{r}{r-1}$
r	r	$\frac{1}{r}$	1-r	$\frac{1}{1-r}$	$\frac{r-1}{r}$	$\frac{r}{r-1}$
$\frac{1}{r}$	$\frac{1}{r}$	r	$\frac{1}{1-r}$	1-r	$\frac{r}{r-1}$	$\frac{r-1}{r}$
1-r	1-r	$\frac{r-1}{r}$	r	$\frac{r}{r-1}$	$\frac{1}{r}$	$\frac{1}{1-r}$
$\frac{1}{1-r}$	$\frac{1}{1-r}$	$\frac{r}{r-1}$	$\frac{1}{r}$	$\frac{r-1}{r}$	r	1-r
$\frac{r-1}{r}$	$\frac{r-1}{r}$	1- <i>r</i>	$\frac{r}{r-1}$	r	$\frac{1}{1-r}$	$\frac{1}{r}$
$\frac{r}{r-1}$	$\frac{r}{r-1}$	$\frac{1}{1-r}$	$\frac{r-1}{r}$	$\frac{1}{r}$	1-r	r

从运算表上可以看出,运算具有封闭性,满足结合律,单位元为r,每个元都有逆元, 所以构成一个群。

10. 设 $A = \{x \mid x \in \mathbb{R} \land x \neq 0, 1\}$ 。在A上定义六个函数如下:

$$f_1(x) = x$$
,

$$f_2(x) = x^{-1}$$
,

$$f_3(x) = 1 - x$$
,

$$f_A(x) = (1-x)^{-1}$$
,

$$f_5(x) = (x-1)x^{-1}$$
,

$$f_6(x) = x(x-1)^{-1}$$

 $\Diamond G$ 为这六个函数构成的集合, \circ 是复合运算。

- (1) 给出<G, \circ >的运算表。
- (2) 验证< G, $\circ >$ 是一个群。

证: (1) 建造如下 < G, \circ > 的运算表

0	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$
$f_1(x)$	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$	$f_5(x)$	$f_6(x)$
$f_2(x)$	$f_2(x)$	$f_1(x)$	$f_4(x)$	$f_3(x)$	$f_6(x)$	$f_5(x)$
$f_3(x)$	$f_3(x)$	$f_5(x)$	$f_1(x)$	$f_6(x)$	$f_2(x)$	$f_4(x)$
$f_4(x)$	$f_4(x)$	$f_6(x)$	$f_2(x)$	$f_5(x)$	$f_1(x)$	$f_3(x)$
$f_5(x)$	$f_5(x)$	$f_3(x)$	$f_6(x)$	$f_1(x)$	$f_4(x)$	$f_2(x)$
$f_6(x)$	$f_6(x)$	$f_4(x)$	$f_5(x)$	$f_2(x)$	$f_3(x)$	$f_1(x)$

(2) 从表上可以看出,函数的复合运算。在 G 上具有封闭性,有可结合性,有么元 $f_1(x)$, $f_2(x)$ 的逆元为 $f_2(x)$, $f_3(x)$ 的逆元为 $f_3(x)$, $f_6(x)$ 的逆元为 $f_6(x)$, $f_4(x)$ 与 $f_5(x)$ 互为逆元。故 G,。>是一个群。

11. 在群 < R, +>中计算下列元素的幂:

$$0.5^{2} = ?$$
, $0.5^{10} = ?$, $\sqrt{4}^{2} = ?$, $\sqrt{4}^{0} = ?$, $\sqrt{4}^{0} = ?$

M:
$$0.5^2 = 1$$
, $0.5^{10} = 5$, $0.5^0 = 0$,

$$\sqrt{4}^2 = 2\sqrt{4}$$
, $\sqrt{4}^{10} = 10\sqrt{4}$, $\sqrt{4}^0 = 0$

12 设<G, *>是一个群,证明

$$x^m * x^n = x^{m+n}$$
, $(x^m)^n = x^{m \times n}$, $\forall m, n \in \mathbf{Z}$

13. 设 $G = \{1, 2, 3, 4, 5, 6\}$, 对于G上的二元运算"模7乘法 \times_7 ":

$$i \times_7 j = (i \times j) \pmod{7}$$

 $\langle G, \times_{7} \rangle$ 构成一个群。请

- (1) 给出<G, \times_7 >的运算表。
- (2) 给出每个元的逆元。
- (3) 给出每个元的次数。

解: (1)

× ₇	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	3
4	4	1	5	2	6	3

5	5	3	1	6	4	2
6	6	5	4	3	2	1

- (2) $\dot{\mathbb{Z}}$: $1^{-1} = 1$, $2^{-1} = 4$, $3^{-1} = 5$, $4^{-1} = 2$, $5^{-1} = 2$, $6^{-1} = 6$.
- (3) 元素 1, 2, 3, 4, 5, 6的次数分别为 1, 11, 5, 2, 3, 6。
- 14. 设 $G = \{1, 2, 4, 7, 8, 11, 13, 14,\}$,对于G上的二元运算"模 15 乘法 \times_{15} ": $i \times_{15} j = (i \times j) \pmod{15}$

 $\langle G, \times_{15} \rangle$ 构成一个群。请

- (1) 给出<G, \times_{15} >的运算表。
- (2) 给出每个元的逆元。

(3)给出每个元的次数。

解: (1)

× ₁₅	1	2	4	7	8	11	13	14
1	1	2	4	7	8	11	13	14
2	2	4	8	14	1	7	11	13
4	4	8	1	13	2	14	7	11
7	7	14	13	4	11	2	1	8
8	8	1	2	11	4	13	14	7
11	11	7	14	2	13	1	8	4
13	13	11	7	1	14	8	2	2
14	14	13	11	9	7	4	2	1

- (2) 逆元: $1^{-1} = 1$, $2^{-1} = 8$, $4^{-1} = 4$, $7^{-1} = 13$, $8^{-1} = 2$, $11^{-1} = 11$, $13^{-1} = 7$, $14^{-1} = 14$
- (3) 元素 1, 2, 4, 7, 8, 11, 13, 14 的次数分别为 1, 4, 2, 4, 4, 2, 4, 2。

§4.3 群的性质、循环群

1. 设< G, * > 为群, 若 $\forall x \in G$ 有 $x^2 = e$, 证明< G, * > 为交换群。

证: $\forall x \in G$, 因为有 $x^2 = e$, 所以有 $x = x^{-1}$,

因为 $x^2 = x * x = x * x^{-1} = x^{-1} * x$, 即 $x * x^{-1} = x^{-1} * x$, 又因为< G, * > 为群, 所以< G, * > 为交换群。

2. 设 < G, * > 是群,证明 G 是交换群的充要条件是 $\forall a$, $b \in G$ 有 $(a*b)^2 = a^2*b^2$ 。

证: 充分性:

条件已知 $(a*b)^2=a^2*b^2$,由于是群,运算满足结合律和消去律,有 $a*(b*a)*b=a*(a*b)*b \qquad , 故 a*b=b*a , 所以 <math>G$ 是

交换群。

必要性:

条件已知G是交换群,运算满足结合律和交换律,有

$$(a*b)^2 = (a*b)*(a*b) = a*(b*a)*b = a*(a*b)*b = (a*a)*(b*b) = a^2*b^2$$
,
 $(a*b)^2 = a^2*b^2$

证毕。

3. 设 <G, *> 为 群 , 并 且 对 任 意 的 a, $b \in G$ 都 有 $(a*b)^3 = a^3*b^3$, $(a*b)^5 = a^5*b^5$,证明 G 是交换群。

证: $\forall a,b \in G$

因为<G,*>为群,所以运算满足消去律和结合律,又有 $(a*b)^5=a^5*b^5$,所以

$$(b*a)^4 = a^4*b^4$$

即 $a^4*b^4=(a*b)^4=(a*b)*(a*b)^3=(a*b)*a^3*b^3$ 对上式使用消去律,有

$$a^3 * b = b * a^3 \tag{1}$$

$$a^5 * b^5 = (a*b)^5 = (a*b)^5 = (a*b)^5 = a*b*a^4*b^4$$
 (2)

由(1)和(2)可推出:

$$a^4 * b = a * (a^3 * b) = a * (b * a^3) = b * a^4$$

对 $a*(a^3*b)=b*a^4$ 使用消去律,则有a*b=b*a。

所以G是交换群。

4. 设<G, *>为有限半群,且满足消去律,证明G是群。证:对于 $\forall a \in G$,考虑集合

$$G_a = \{a, a^2, a^3, \dots, a^m, \dots\}$$

由封闭性可知 $G_a \subseteq G$,又由G的有限性,所以 G_a 也是有限集。故

必有n,k>0, 使得

$$a^n = a^{n+k}$$
 \mathbb{R} $a^n * e = a^n * a^k$

由消去律可得 $a^k = e$,即有

$$a^{k-1} * a = a * a^{k-1} = a^k = e$$

可见, a的逆元 $a^{-1} = a^{k-1}$ 。

因此, <G, *>是群。

5. 设<G,*>为群 $,a,b,c\in$ G,证明

$$|a*b*c| = |b*c*a| = |c*a*b|$$

6. 设<G,*>是群,a, $b\in$ G且a*b=b*a。如果|a|=n,|b|=m且n与m互质,证明 $|a*b|=n\times m$ 。

证: | a*b | = d, 由 a*b = b*a 可知

$$(a*b)^{n\times m} = (a^n)^m (b^m)^n = e^m *e^n = e$$

从而有 $d \mid n \times m$ 。

又由 $a^d * b^d = (a * b)^d = e$ 。可知

$$a^d = b^{-d}$$

即 $|a^d|=|b^{-d}|=|b^d|$ 。再根据

$$(a^d)^n = (a^n)^d = e^d = e$$

得 $|a^d||n$ 。同理有 $|b^d||m$,又 $|a^d|=|b^d|$ 。从而知道 $|a^d|$ 是n和m的公因子。因为n与m互质,

所以 $|a^d|=1$ 。这就证明了 $a^d=e$ 和n|d

同理可证 $m \mid d$, 即d是n和m的公倍数。由于n与m互质,必有 $n \times m \mid d$ 。

综合前边的结果得 $d = n \times m$ 。即 $|a*b| = n \times m$ 。

7. 证明循环群一定是交换群,举例说明交换群不一定是循环群。

证: 若<G,*>为循环群,则 $\exists a \in G$,使得 $G = \{a^k \mid k \in Z\}$,

所以 $\exists b, c \in G$, 使得 $b = a^m, c = a^n$, $m, n \in Z$

所以 $b*c=a^m*a^n=a^{m+n}=a^{n+m}=a^n*a^m=c*b$,即<G,*>满足交换律,也即

< G, * > 是交换群。

不是所有的交换群都是循环群,例如: Klein 四元群是交换群,但不是循环群。

8. 证明由 1 的 n 次复根的全体所组成的集合与复数的乘法构成一个 n 阶循环群。

证:由代数的知识可知, $\frac{1}{2k\pi}$ 的n次复根的全体所组成的集合为

$$G = \{e^{\frac{2p\pi}{n}i}, e^{\frac{2q\pi}{n}i} \in G, p, q \in \{0,1,2,\cdots,n-1\}, e^{\frac{2p\pi}{n}i} \times e^{\frac{2q\pi}{n}i} = e^{\frac{2(p+q)\pi}{n}i} \in G, p, q \in \{0,1,2,\cdots,n-1\}, e^{\frac{2p\pi}{n}i} \times e^{\frac{2q\pi}{n}i} = e^{\frac{2(p+q)\pi}{n}i} \in G;$$

若
$$p+q>=n,$$
 则存在 $k\in\{0,1,2,\cdots,n-1\}$,使得 $p+q=n+k$,而 $e^{\frac{2(n+k)\pi}{n}i}=e^{\frac{2(n+k)\pi}{n}i}=e^{\frac{2k\pi}{n}i}\in G$ 。 因此 G 关于数的乘法是封闭的。数的乘法运算

满足结合律, $\frac{1}{1} = e^{-n}$,是G 的么元,因为 $\forall e^{-n} \in G$, $\frac{2k\pi_i}{1}$,是 e^{-n} ,是 e^{-n} ,是 e^{-n} ,是 e^{-n} ,这 e^{-n} ,是 e^{-n} ,是是 e^{-n} ,是是 e^{-n} ,是是 e^{-n} ,是是 e^{-n} ,是是 e^{-n} ,是是是 e^{-n} ,是是是是 e^{-n} ,是是是 e^{-n} ,是是是是 e^{-n} ,是是是 e^{-n} ,是是是是 e^{-n} ,是是是是 e^{-n} ,是是是 e^{-n} ,是是 e^{-n} ,是是 e^{-n} ,是是 e^{-n} ,是是 e^{-n} ,是是 e^{-n} 。是 e^{-n} ,是是 e^{-n} 。是 e^{-n} 。是 e^{-n} ,是 e^{-n} 。是 e^{-n} 。 e^{-n} 。是 e^{-n} 。是 e^{-n} 。是 e^{-n} 。是 e^{-n} 。 e^{-n} 。 e^{-n} 。 e^{-n} 。是 e^{-n} 。 e^{-n} 。

9. 阶数为5、6、14、15的循环群的生成元分别有多少个?

解: 设a是阶数为 5 的循环群的生成元,则因在比 5 小的正整数中有且仅有 2,3,4 与 5 互质,所以 a^2 , a^3 , a^4 也是生成元,因此生成元个数为 4。

设a是阶数为6的循环群的生成元,则因在比6小的正整数中有且仅有5与6互质,所以 a^5 也是生成元,因此生成元个数为2。

设a是阶数为 14 的循环群的生成元,则因在比 14 小的正整数中有且仅有 3, 5, 9, 11, 13 与 14 互质,所以 a^3 , a^5 , a^9 a^{11} a^{13} 也是生成元,因此生成元个数为 6。

设a是阶数为 15 的循环群的生成元,则因在比 15 小的正整数中有且仅有 2, 4, 8, 11, 13, 14 与 15 互质,所以 a^2 , a^4 , a^8 a^{11} a^{13} a^{14} 也是生成元,因此生成元个数为 7。

10. 设 $G = \{1, 5, 7, 11\}$, 对于G上的二元运算"模 12 乘法 \times_{12} ":

$$i \times_{12} j = (i \times j) \pmod{12}$$

- (1) 证明< G, \times ₁, >构成一个群。
- (2) 求G 中每个元素的次数。
- (3) $< G, \times_{12} >$ 是循环群吗?
- (1) 证: $\forall i, j, k \in G$,

$$(i \times_{12} j) \times_{12} k = (i \times j) \pmod{12} \times_{12} k = (i \times j \times k) \pmod{12}$$

 $i \times_{12} (j \times_{12} k) = i \times_{12} ((j \times k) \pmod{12}) = (i \times j \times k) \pmod{12}$

所以 $(i \times_{12} j) \times_{12} k = i \times_{12} (j \times_{12} k)$ 即 \times_{12} 满足结合律。

又由下表

× ₁₂	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

得单位元 1, $1 \in G$,

而且每个元素都存在逆元, $1^{-1}=1$, $5^{-1}=5$, $7^{-1}=7$, $11^{-1}=11$,

综上可知<G, \times ₁,>构成一个群。

- (2) 1,5,7,11 的次数分别为 1, 5, 7, 11。
- (3)

§4.4 子群、置换群

1. 给出群 $<\mathbf{Z}_{s}$, $+_{s}>$ 的全部子群。

解: 群
$$<$$
 \mathbf{Z}_8 , $+_8$ $>$ 的平凡子群两个: $<$ $\{[0]\}$, $+_8$ $>$ 和 $<$ \mathbf{Z}_8 , $+_8$ $>$ 非平凡子群两个: $<$ $\{[0],[2],[4],[6]\}$, $+_8$ $>$ $<$ $\{[0],[4]\}$, $+_8$ $>$

子群{[0]}的左陪集有8个:

$$\{[0]\}, \{[1]\}, \{[2]\}, \{[3]\}, \{[4]\}, \{[5]\}, \{[6]\}, \{[7]\}$$

这8个左陪集构成了 Z_8 的一个划分。

子群 Z_8 的左陪集有1个: Z_8

这1个左陪集构成了 Z_8 的一个划分。

子群{[0], [2], [4], [6]}的左陪集有2个:

$$\{[0], [2], [4], [6]\}, \{[1], [3], [5], [7]\}$$

这2个左陪集构成了 Z_8 的一个划分。

子群{[0], [4]}的左陪集有 4 个:

$$\{[0], [4]\}, \{[1], [5]\}, \{[2], [6]\}, \{[3], [7]\}$$

这 4 个左陪集也构成了 Z_8 的一个划分。

2. 设 $G = \{1, 5, 7, 11\}$, 对G上的二元运算"模 12 乘法×₁。":

$$i \times_{12} j = (i \times j) \pmod{12}$$

 $\langle G, \times_{12} \rangle$ 构成一个群,请求出 $\langle G, \times_{12} \rangle$ 的所有子群。

3. 设<G, *>是群, H是其子群, 任给 $a \in H$, 令

$$aHa = \{a * h * a^{-1} \mid h \in H\}$$

证明 aHa^{-1} 是G的子群(称为H的共轭子群)

证:由于H非空,可知 aHa^{-1} 非空。

 $\forall b, c \in aHa^{-1}$, 即存在 $h_1, h_2 \in H$ 使得 $b = ah_1a^{-1}, c = ah_2a^{-1}$, 有

$$bc^{-1} = (ah_1a^{-1})(ah_2a^{-1})^{-1} = ah_1a^{-1}(a^{-1})^{-1}h_2a^{-1} = a(h_1h_2^{-1})a^{-1}$$

因为H为子群,有 $h_1h_2^{-1}$ $\Delta h \in H$,从而 $bc^{-1}=aha^{-1}\in aHa^{-1}$ 。 所以 aHa^{-1} 是G的子群。

4. 设<G,*>是群,H和K是其子群,证明HK和KH是<G,*>的子群当且仅当HK=KH,其中

$$HK = \{h * k \mid h \in H \land k \in K\},$$
 $KH = \{k * h \mid k \in K \land h \in H\}$

证: (1) 充分性。假设 HK = KH,需要证明 HK 是子群。因 $e \in H$,使 $e \in K$,故 $e = ee \in HK$,从而 HK 非空。 $\forall x = hk$, $y = h_1k_1 \in HK$,这里 $h,h_1 \in H$, $k,k_1 \in K$,有

$$xy^{-1} = (hk)(h_1k_1)^{-1} = h(kk_1^{-1})h_1^{-1}, \quad \forall k_2 = kk_1^{-1} \in K$$

由 HK = KH 可知, $\exists h_3 \in H, k_3 \in K$, 使得 $k_2 h_1^{-1} = h_3 k_3$, 从而

$$xy^{-1} = h(h_3k_3) = (hh_3)k_3 \in HK$$

由子群的判定定理, HK 是<G, *>的子群。

(2) 必要性。已知HK是< G, *>的子群,需要证明HK = KH。

对于 $\forall x \in HK$,因 HK 是子群,故 $x^{-1} \in HK$ 。于是 $\exists h \in H, k \in K$, 使得 $x^{-1} = hk$,从而 $x = k^{-1}h^{-1}$ 。因 $k^{-1} \in K, h^{-1} \in H$,故 x = KH 。证得 $HK \subseteq KH$ 。

同理可证 $KH \subset HK$ 。

从而有HK = KH。

故 HK 是 < G, * > 的子群当且仅当 HK = KH。

同理可证 KH 是 < G, * > 的子群当且仅当 HK = KH。

5. 设 < G, *> 是 群 , H 是 G 的 子 集 , 证 明 H 是 G 的 子 群 当 且 仅 当 $H^2 = H$, $H^{-1} = H$, 这里

$$H^2 = \{h_1 * h_2 \mid h_1, h_2 \in H\}, H^{-1} = \{h^{-1} \mid h \in H\}$$

证: (1) 根据 H^2 , H^{-1} 的定义:

$$H^2 = \{h_1 * h_2 \mid h_1, h_2 \in H\}, H^{-1} = \{h^{-1} \mid h \in H\}$$

因为H 是G 的子集,所以显然有: $H^2 \subseteq H$, $H^{-1} \subseteq H$ 。又因为H 中任意元素H 可以写成e*h,所以 $H \subset H^2$,还因为H 中任意元素H 可以写成H0、所以 $H \subset H^{-1}$,因此

$$H^2 = H$$
, $H^{-1} = H$

(2) $\forall h_1, h_2 \in H$, 因为 $H^2 = H$, $H^{-1} = H$, 所以

$$h_1 * h_2^{-1} = h_1 * h_3 = h_4 \in H$$

由子群的判定定理知, $H \in G$ 的子集。

6. 某一通讯编码的码字 $x = (x_1, x_2, \dots, x_7)$, 其中 x_1, x_2, x_3 和 x_4 为数据位, x_5, x_6 和 x_7 为校验位(x_1, x_2, \dots, x_7 都是 0 或 1),并且满足

$$x_5 = x_1 +_2 x_2 +_2 x_3$$
, $x_6 = x_1 +_2 x_2 +_2 x_4$, $x_7 = x_1 +_2 x_3 +_2 x_4$

这里 $+_2$ 是模2加法。设H是所有这样的码字构成的集合。在H上定义二元运算如下:

$$\forall x, y \in H, x * y = (x_1 +_2 y_1, x_2 +_2 y_2, \dots, x_7 +_2 y_7)$$

证明< H,*>构成一个群,且是< G,*>的子群,其中G是长度为7的位串构成的集合。

- 7. 设H和K分别是群<G, *>的r, s阶子群, 若r, s互质, 证明 $H \cap K = \{e\}$ 。证: 假设不然,则存在 $x \in H \cap K$,且 $x \neq e$ 。于是x也是H的生成元,从而 $(x) = H \subseteq K$,所以与r, s互质矛盾。
- 8. 设 $G=\langle a\rangle$ 是 循 环 群 , $H=\langle a^s\rangle$ 和 $K=\langle a^t\rangle$ 是 它 的 两 个 子 群 。 证 明 $H\cap K=\langle a^u\rangle$, 这里 $u=\gcd(s,t)$ 是 s 和 t 的最小公倍数。
 - 9. 设5阶置换为

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}$$

计算 $\alpha\beta$, $\beta\alpha$, α^{-1} , $\alpha^{-1}\beta\alpha$, $\beta^{-1}\alpha\beta$ 。

解:
$$\alpha\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 2 & 5 \end{pmatrix}$$
$$\beta\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 5 & 4 & 3 \end{pmatrix}$$
$$\alpha^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$$

$$\alpha^{-1}\beta\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 1 & 3 & 4 \end{pmatrix}$$

$$\beta^{-1}\alpha\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

- 10. 设 $S = \{1, 2, 3, 4\}$, 写出S上的所有4元置换。
- 11. 列出 4 元对称群 $<S_4$, $\circ>$ 的运算表,求出单位元,每个元的逆元,每个元的次数以及它的所有子群。

84.5 陪集与商群

习题 4.5

- 1. 集合 $\mathbf{Z}_{20} = \{0, 1, 2, \dots, 19\}$ 在"模 20 加法 $+_{20}$ "下构成一个群。设 H 是由 5 生成的 \mathbf{Z}_{20} 的一个子群。
 - (1) 求出H的每个元素及其次数。 (2) 求
- (2) 求H在 \mathbf{Z}_{20} 中的所有左陪集。
 - 2. 求 12 阶循环群 $G = \{e, a, a^2, a^3, a^4, \dots, a^{11}\}$ 的子群 $H = \{e, a^4, a^8\}$ 在G中的所有左陪集。
- 证: H = eH 是一个左陪集; 取 $c \in G$ 且 $c \notin H$,则 $cH = \{c, c^5, c^9\}$ 又是一个左陪集; 取不属于 $H \cup cH$ 的 G 中的元素,如 c^2 ,则 $c^2H = \{c^2, c^6, c^{10}\}$ 又是左陪集; 取不属于 $H \cup cH \cup c^2H$ 在 G 中元素,如 c^3 ,则 $c^3H = \{c^3, c^7, c^{11}\}$ 又是左陪集。于是 $G = H \cup cH \cup c^2H \cup c^3H$,即 H 在 G 中的所有左陪集有 H ,CH , C^2H 。
 - 3. 设H 是群<G, *>的子群,证明H 的所有不同左陪集(右陪集)中有且仅又一个在 *下构成<G, *>的子群。

证:设G中的么元为e。因为eH=H,所以H是一个陪集。

若另一个陪集aH 也是G 的子群,那么 $e \in aH$,故必有 $h_1 \in H$,使得 $a*h_1 = e$,即有 $a = h_1^{-1}$ 。对于 $\forall a*h \in aH$,有 $a*h = h_1^{-1}*h \in H$,所以 $aH \subseteq H$;反之,对于 $\forall h \in H$,有

$$h = a * a^{-1} * h = a * (a^{-1} * h) = a * ((h_1^{-1})^{-1} * h) = a * (h_1 * h) \in aH$$

因此, $aH \subseteq H$ 。这就表明左陪集只有一个是子群,即H本身。

同理可证右陪集只有一个是子群,即 H 本身。

4. 证明 6 阶群必含有 3 次元。

证: 设G 是 6 阶群。根据推论 1, G 中只可能存在 1 阶, 2 阶, 3 阶和 6 阶元。

若G含有6阶元,比如说是a,则 a^2 就是G中的3阶元。

若G中不含有6阶元,则G中的非单位元只可能为2阶或3阶元。下面用反证法证明G中必含有3阶元。若不然,则G中的所有元素a都满足 $a^2=e$,即 $a=a^{-1}$ 。任取 $a,b\in G$,则有

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba$$

所以G是交换群。取G中非单位元a和b,令 $H = \{e,a,b,ab\}$,易证H是G的子群。但|H|/|G|,与拉格朗日定理矛盾。

5. 证明偶数阶群必含2次元。

证:由下一题(第6题)可知有限群中,周期大于2的元素的个数是偶数。群的么元周期为1,群的阶又是偶数,因此,至少存在一个周期为2的元素。

6. 证明在有限群中次数大于2的元素的个数必定是偶数。

证:有限群为G, e为其么元, $a,b,c \in G$, 对 $\forall k \in \mathbb{Z}$, $a^k = e$, 则 $(a^{-1})^k = e$,

由此可知a的是无限的当且仅当 a^{-1} 的周期是无限的。又可知,若a的周期为n, a^{-1} 的周期

为m,由定理得,m|n,n|m,所以,n=m。如果b的周期大于2的元素,则 $b^{-1} \neq b$,因

为如果 $b^{-1}=b$,从而 $b^2=e$,这与b的周期大于 2 矛盾。由于群的元素的逆元是唯一的,故不同的元素有不同的逆元。因此,周期大于 2 的元素与它的逆元成对出现,所以有限群中,次数大于 2 的元素的个数是偶数。

7. 设<G,*>是一个阶数为p的有限群,其中p是质数,证明G是循环群并求它的所有子群。

证: 由 $p \ge 2$, G 中必存在 $a \in G$, $a \ne e$ 。令H = < a >,则 $H \not\in G$ 的子群,根据拉格朗日定理|H|=1或|H|=p。

若|H|=1,则|a|=|H|=1,与 $a\neq e$ 矛盾,所以|H|=p。又由于|G|=p,必有H=G,G是循环群。

下略。

8. 证明循环群的子群仍是循环群。

证:设循环群G=(a),a是生成元。H是G的子群。当 $H=\{e\}$ 时,H是循环群。 设 $H\neq\{e\}$ 。注意到 $a^n\in H\Leftrightarrow a^{-n}\in H$,又知 $\{n\mid n\in Z^+, a^n\in H\}$ 非空,故可令 $k=\min\{n\mid n\in Z^+, a^n\in H\}$

下面证明 $H = (a^k)$ 。

首先, $a^k \in H$, 则有 $(a^k) \subseteq H$ 。

其次,对于任 $-a^n \in H$,设 $n = sk + l, 0 \le l \le k$ 。于是

$$a^{l} = a^{n-sk} = a^{n} (a^{k})^{-s}$$

又因

$$a^n, a^k \in H \Rightarrow a^l \in H$$

根据k的定义,必有l=0。证得 $k\mid n \Rightarrow a^n \in (a^k)$ 。从而 $H\subseteq (a^k)$,故有 $H=(a^k)$ 。故H为循环群。所以循环群的子群仍是循环群。

9. 设i为虚数单位,即 $i^2 = -1$,令

$$G = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \ \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\}$$

则 G 与矩阵乘法构成群 < G, $\times >$, 请

(1) 给出G的运算表。

- (2) 试找出G的所有子群。
- (3) 证明G的所有子群都是正规子群。

解: (1) 略

(2) 它的子群除了两个平凡群外还有:

$$H_1 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\};$$

$$H_2 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \right\}$$

$$H_3 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\}$$

$$H_4 = \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

(3) 尽管G不是交换群,因为

$$\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},$$

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$$

单它的所有子群都是正规子

10. 设<G,*>是群,H和 K是其子群,若 H 或 K是正规子群,则 HK = KH ,其中 $HK = \{h*k \mid h \in H \land k \in K\}$, $KH = \{k*h \mid k \in K \land h \in H\}$

证:不妨假设H为正规子群。

对于 $h*k \in HK, h \in H, k \in K$, 因为H是正规子群, 所以必存在 $h \in H$ 使得

$$k^{-1} * h * k = h_1$$
, 于是就有

$$h * k = k * k^{-1} * h * k = k * h_1 \in KH$$

故有 HK $\subseteq KH$ 。

同理可证 $KH \subset HK$ 。

因此, HK = KH。

11. 设<G,*>是群,H是其子群,证明H是正规子群当且仅当对任意的 $a\in G$,都有 $aHa^{-1}=H$ 。

证: 若 H 是正规子群,则 aH = Ha, $\forall a \in G$ 。有 $aHa^{-1} = H$,则

$$\forall h \in H, aha^{-1} \in H$$

若对于 $\forall a \in G, h \in H$, $aha^{-1} \in H$, 则有 $aHa^{-1} \subset H$ 。

另一方面,对于 $\forall h \in H$,有

$$h = a(a^{-1}ha)a^{-1}$$

其中 $a \in G$,从而 $a^{-1} \in G$,根据条件有 $a^{-1}ha \in H$,从而

$$h = a(a^{-1}ha)a^{-1} \in aHa^{-1}$$

有 $H \subseteq aHa^{-1}$ 。证得 $aHa^{-1} = H$ 。H是正规子群。

12. 令 $G = \langle \mathbf{Z}, + \rangle$ 是整数加群。求商群 $\mathbf{Z}/4\mathbf{Z}$, $\mathbf{Z}/12\mathbf{Z}$ 和 $4\mathbf{Z}/12\mathbf{Z}$, 其中,集合 $4\mathbf{Z} = \{4 \times z \mid z \in \mathbf{Z}\}$, $12\mathbf{Z} = \{12 \times z \mid z \in \mathbf{Z}\}$ 。

解: 4Z 是 Z 的 正 规 子 群 , 左 陪 集 有 4 个 : $\{ \times z = \{ (4 \times z) | z \in Z \}, \{ (4 \times z + 1) | z \in Z \}, \{ (4 \times z + 2) | z \in Z \}, \{ (4 \times z + 2) | z \in Z \}, \{ (4 \times z + 2) | z \in Z \}, \{ (4 \times z + 2) | z \in Z \} \}$

12Z 是 4Z 的正规子群, 左陪集有:

 $0(12Z) = \{12 \times z \mid z \in \mathbf{Z}\}, 4(12Z) = \{12 \times z + 4 \mid z \in \mathbf{Z}\}, 8(12Z) = \{12 \times z + 8 \mid z \in \mathbf{Z}\},$ 所以 **4Z**/12**Z** = $\{0(12Z), 4(12Z), 8(12Z)\}$

84.6 同态与同构

- 1. 对以下各小题给定的群 G_1 和 G_2 以及 φ ,说明 φ 是否为群 G_1 到 G_2 的同态。如果是,说明是否为单同态,满同态和同构,并求同态像 $\varphi(G_1)$ 和同态核 $\ker(\varphi)$ 。
- (1) $G_1 = \langle \mathbf{Z}, + \rangle$, $G_2 = \langle \mathbf{R}^*, \times \rangle$, 其中 \mathbf{R}^* 为非零实数的集合,十和 \times 分别表示数的加法和乘法。

$$\varphi$$
: $\mathbf{Z} \to \mathbf{R}^*$, $\varphi(x) = \begin{cases} 1 & x$ 是偶数 $-1 & x$ 是奇数

(2) $G_1 = \langle \mathbf{Z}, + \rangle$, $G_2 = \langle A, \times \rangle$,其中 $A = \{x \mid x \in \mathbf{C} \land |x| = 1\}$, \mathbf{C} 为复数集合, + 和 ×分别表示数的加法和乘法。

$$\varphi$$
: $\mathbf{Z} \to A$, $\varphi(x) = \cos x + i \sin x$

(3) $G_1 = <\mathbf{R},+>$, $G_2 = < A, \times>$,其中A,十和×的定义同(2)。

$$\varphi$$
: $\mathbf{R} \to A$, $\varphi(x) = \cos x + i \sin x$

2. $\langle \mathbf{Z}, \times \rangle$, $\langle \mathbf{A}, \times \rangle$ 都是有么半群,其中 $\mathbf{A} = \{0, 1\}$, \times 表示数的乘法。

$$\varphi$$
: **Z** \rightarrow A , $\varphi(x) = \begin{cases} 1 & \exists x = 2^k (k \in \mathbf{N}) \text{时} \\ 0 & 其它情况 \end{cases}$

证明 φ 是从Z到A的同态映射。

证:显然 φ 是从**Z**到A的映射, $\forall x, y \in Z$, 下面分两种情况讨论:

- (1) 当 $x = 2^m$, $y = 2^n (m, n \in N)$ 时,有 $\varphi(x) = 1$, $\varphi(y) = 1$, 于是 $\varphi(x \times y) = 1 = 1 \times 1 = \varphi(x) \times \varphi(y)$ 。
- (2) 当x,y至少有一个不能表示为 2^k ($k \in N$) 时, $x \times y$ 就不能表示为 2^k ($k \in N$) 的形式, $\varphi(x)$, $\varphi(y)$ 至少有一个为0,于是

$$\varphi(x \times y) = 0 = \varphi(x) \times \varphi(y)$$
.

因此, $\forall x, y \in \mathbb{Z}$, $\varphi(x \times y) = \varphi(x) \times \varphi(y)$, 即 φ 是从**Z**到A的同态映射。

3. < R,+>, < R,×>都是有么半群, +和×分别表示数的加法和乘法。

$$\varphi$$
: $\mathbf{R} \to \mathbf{R}$, $\varphi(x) = 10^x$

证明 φ 是从 $<\mathbf{R},+>$ 到 $<\mathbf{R},\times>$ 的单同态,但不是同构。

证: 对 $\forall x, y \in R$, 有 $\varphi(x+y) = 10^{x+y} = 10^x \times 10^y = \varphi(x) \times \varphi(y)$,

所以 φ 是<**R**,+>到<**R**,×>的同态映射。

对 $\forall x, y \in R$, 若 $x \neq y$, 显然有 $10^x \neq 10^y$, 即 $\varphi(x) \neq \varphi(y)$,

从而 φ 是R上的单射; 然而对 $-1 \in R$, 不存在满足 $\varphi(x) = -1$ 的 $x \in R$,

从而 φ 不是R上的满射;因此 φ 不是R的双射。

故, φ 是从< R, +>到 $< R, \times>$ 的单同态, 但不是同构。

- 4. $<\mathbf{Z},+>$ 是整数加法群, $<\mathbf{G},*>$ 是任意一个群,对于 \mathbf{G} 中的任一固定元素a,令 $g(n)=a^n(n\in\mathbf{Z})$,证明 g 是从 \mathbf{Z} 到 \mathbf{G} 的同态映射,并求同态核。
- 5. $<\mathbf{R},+>$ 是实数加法群, $<\mathbf{C}_1,\times>$ 是模为 1 的复数对于乘法运算的群,这两个群同态吗? 同构吗?请说明理由。
- 6. $<\mathbf{Z}^+,+>$ 和 $<\mathbf{Z}^+,\times>$ 分别是正整数对于加法和乘法构成的半群,问从 $<\mathbf{Z}^+,+>$ 到 $<\mathbf{Z}^+,\times>$,和从 $<\mathbf{Z}^+,\times>$ 到 $<\mathbf{Z}^+,+>$ 都存在同态映射吗?说明理由。
- 7. 设f是从群<G, *>到群<H, •>的同态映射,g是从群<H, •>到群<K, \diamond >的同态映射,证明复合函数 $f \circ g$ 是从群<G, *>到群<K, \diamond >的同态映射。
- 8. 设<G, *>、<H, \bullet >是代数系统, *, \bullet 都是二元运算, ϕ 是从G到H的同态映射,则
 - (1) 是 $\phi(G)$ 上的运算,即< $\phi(G)$, > 是代数系统。
 - (2) 如果*在G上满足交换律,则•在 $\phi(G)$ 上也满足交换律。
 - (3) 如果*在G上满足结合律,则 \bullet 在 $\phi(G)$ 上也满足结合律。
 - (4) 如果*在G上满足等幂律,则●在 $\phi(G)$ 上也满足等幂律。
 - (5) 如果 θ 是<G, *>的零元,则 $\phi(\theta)$ 是< $\varphi(G)$, •>的零元。
- 9. 设<G, *,*'>、<H, \bullet , \bullet '>是代数系统, *,*', \bullet , \bullet '都是二元运算, ϕ 是从G到H的同态映射,证明如果在G上,*和*'满足吸收律,则在 $\phi(G)$ 上, \bullet 和 \bullet '也满足吸收律。
- 10. 设<G,*>是一个群,定义映射 φ : G \rightarrow G为 $\varphi(x)=x^{-1}$,证明 φ 是G的自同构 当且仅当G是交换群。
- 11. 设 φ 是从群<G,*>到群<H,◆>的同态映射,证明若G是循环群,则 φ (G)也是循环群。
 - 证:因为G是循环群,于是对于 $\forall a^n, a^m \in G$,都有

$$\varphi(a^n \bullet a^m) = \varphi(a^n) * \varphi(a^m)$$

对于n=1时,有 $\varphi(a)=\varphi(a)$ 。

对于n=2时,有 $\varphi(a^2)=\varphi(a \bullet a)=\varphi(a)*\varphi(a)=\varphi(a)^2$ 。

若n=k-1时,有 $\varphi(a^{k-1})=\varphi(a)^{k-1}$,那么,对n=k时有

$$\varphi(a^{k}) = \varphi(a^{k-1} \bullet a) = \varphi(a^{k-1}) * \varphi(a) = \varphi(a)^{k-1} * \varphi(a) = \varphi(a)^{k}$$

这表明, $\varphi(G)$ 中的每一个元素都可以表示为 $\varphi(a)^n$, 所以 $\varphi(G)$ 是以生成元为 $\varphi(a)$ 的循环群。

12. 设<G,*>和<H, \bullet >分别是<math>m阶群和n阶群,若从G到H存在单同态,证明 $m \mid n$,即m是n的因子。

证: 设g 是群G 到H 的单一同态,则g 的同态象g(G) 是H 的子群,显然g 是G 到g(G) 的双射,于是g(G) 是一个m 阶群,由拉格朗日定理可知, $m \mid n$ 。

13. 设 φ 是从群<G, *>到群<H, \bullet >的同态映射,对任意的 $a \in G$,记 $b = \varphi(a)$,试问b 和a 的次数是否一定相同?如果不同,它们之间有何关系?

14. 给出群 $< \mathbf{Z}_{6}, +_{6} >$ 的全部自同态。

解: 若 f 是一个自同态映射,则 $\forall [x],[y] \in Z_6$,有:

$$f([x] +_{6} [y]) = f([x]) +_{6} f([y])$$
(1)

$$f([x] \times_6 [y]) = f([x]) \times_6 f([y])$$
 (2)

- (1) 令[x]=[y]=[0],则由(1)式可得: $f([0]) = f([0]) + _6 f([0])$,因为< \mathbf{Z}_6 ,+ $_6$ >是群,所以消去律成立,所以有f([0]) = [0]。
- (2) $\phi[x] = [y] = [1]$, igcap igcup [a] = f([1]) 则由 2 式得: $[a] = [a^2]$,

即 $a^2 = 6k + a, k \ge 0$ 为整数。

$$a=0$$
 : 即 $f([1])=[0]$, 再加上 (1) 式, 推出: $f([x])=[0]$, $x=1,2,3,4,5$;

$$a=1$$
 : 即 $f([1])=[1]$, 再加上 (1) 式, 推出: $f([x])=[x], x=1,2,3,4,5$;

a=2 : 推出k=1/3与k是整数矛盾;

$$a=3$$
 : 即 $f([1])=[3]$, 再加上 (1) 式, 推出: $f([1])=[3]$, $f([2])=[0]$

$$f([3]) = [3], f([4]) = [0], f([5]) = [3];$$

$$a=4$$
 : 即 $f([1])=[4]$, 再加上 (1) 式, 推出: $f([1])=[4]$, $f([2])=[2]$

$$f([3]) = [0], f([4]) = [4], f([5]) = [2];$$

a=5: 推出k=10/3与k是整数矛盾;

由上面的(1)和(2),我们得到如下4个自同态映射:

 $f([x]) = [0], \forall [x] \in Z_6$

 $f([x]) = [x], \forall [x] \in Z_6$

$$f([0]) = [0], f([1]) = [3], f([2]) = [0], f([3]) = [3], f([4]) = [0], f([5]) = [3]$$

$$f([0]) = [0], f([1]) = [4], f([2]) = [2], f([3]) = [0], f([4]) = [4], f([5]) = [2]$$

84.7 环与域

- 1. 设 $A = \{a + bi \mid a, b \in Z, i^2 = -1\}$ 。证明A 关于复数的加法和乘法构成环,称为高斯整数环。
- 2. 设 $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, a_1 , a_2 , …, a_n 为实数, 称 f(x) 为实数域上的 n 次多项式,令

$$A = \{f(x) \mid f(x)$$
为实数域上的 n 次多项式, $n \in N\}$ 。

证明A关于多项式的加法和乘法构成环,称为**实数域上的多项式环**。

- 3. 判断下列集合和给定运算是否构成环、整环和域,如果不能构成,请说明理由。
- (1) $A = \{a + bi \mid a, b \in \mathbf{Q}, i^2 = -1\}$, 运算为复数的加法和乘法。
- (2) $A = \{2z+1 | z \in \mathbf{Z}\}$, 运算为实数的加法和乘法。
- (3) $A = \{2z \mid z \in \mathbf{Z}\}$, 运算为实数的加法和乘法。
- (4) $A = \{x \mid x \ge 0 \land x \in \mathbf{Z}\}$, 运算为实数的加法和乘法。
- (5) $A = \{a + b\sqrt[4]{5} \mid a, b \in \mathbf{Q}\}$, 运算为实数的加法和乘法。
- 4. 设< R, +, \times > 是环, 证明
- (1) $\forall a \in R, \ a0 = 0a = 0$
- (2) $\forall a, b \in R, (-a)b = a(-b) = -(ab)$
- (3) $\forall a, b, c \in \mathbb{R}, a(b-c) = ab ac, (b-c)a = ba ca$
- 5. 设 < *R*, +, × > 是环, 令

$$C = \{x \mid x \in R \land \forall a \in R(xa = ax)\}$$

C称作环R的中心,证明C是R的子环。

- 6. 设a和b是含么环中的两个逆元,证明:
- (1) -a 也是可逆元,且 $(-a)^{-1} = -a^{-1}$
- (2) ab 也是可逆元,且 $(ab)^{-1} = b^{-1}a^{-1}$
- 7. 在域 $< \mathbf{Z}_5, +_5, \times_5 >$ 中解下列方程和方程组:
- (1) 3x = 2

(2)
$$\begin{cases} x + 2z = 1\\ y + 2z = 2\\ 2x + y = 1 \end{cases}$$

8. 类似于子环,给出**子整环**和**子域的**定义。