Outline

- vector spaces
- \bullet systems of m equations in n unknowns
- linear independence, basis and dimension
- fundamental subspaces related to a matrix
- graphs and incidence matrices
- linear transformations

vector spaces

- space containing vectors
- addition and multiplication by a scalar
- rules (a.k.a. axioms, see ex 2.1.5)
- familiar examples R^1, R^2, R^3
- not-so-familiar examples
 - infinite-dimensional space R^{∞}
 - the set of all matrices of a given size (vector = matrix!)
 - the set of all functions defined on an interval (vector = function)

subspaces

- a subset S of vector space satisfying
 - If $x, y \in S$, then $x + y \in S$.
 - If $x \in S$, then $cx \in S$.
- examples
 - plane (containing origin) in \mathbb{R}^3
 - lower triangular matrices, symmetric matrices
 - all functions of the form $a \sin x + b \cos x$ defined on $(0,\pi)$
 - Is the first quadrant (Q1) a subspace of \mathbb{R}^2 ? How about all points in either Q1 or Q3?

column space and nullspace of an $m \times n$ matrix

- the column space of A, denoted by $\Re(A)$
 - the set of all linear combinations of the columns of A
 - a subspace of R^m
 - if $b_1, b_2 \in \mathcal{R}(A)$, then $c_1b_1 + c_2b_2 \in \mathcal{R}(A)$
- the nullspace of A, denoted by $\mathcal{N}(A)$
 - the set of all x's such that Ax = 0
 - a subspace of \mathbb{R}^n
 - if $x_1, x_2 \in \mathcal{N}(A)$, then $c_1 x_1 + c_2 x_2 \in \mathcal{N}(A)$
- the system Ax = b is solvable iff $b \in \mathcal{R}(A)$

column space and nullspace: examples

$$\bullet \ A_1 = \begin{pmatrix} 1 & 0 \\ 5 & 4 \\ 2 & 4 \end{pmatrix}$$

$$- \Re(A) = \{x | x = c_1(152) + c_2(044)\}$$

$$- \mathcal{N}(A) = \{(0\ 0)\}\$$

$$- \mathcal{R}(A_2) = \mathcal{R}(A_1)$$

$$- \mathcal{N}(A) = \{x | x = c(1 \ 1 \ -1)\}$$

solving Ax = b, A is $m \times n$

- m equations, n unknowns
- same elimination process
- PA = LU, where L is $m \times m$ and U is $m \times n$
- row-echelon form
 - non-zero rows come first
 - below each pivot is a column of zeros
 - each pivot lies to the right of the pivots above
- modifications in the back substitution
- illustrative example

example

•
$$Ax = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & -3 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ y \end{pmatrix} = 0$$

•
$$LUx = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ y \end{pmatrix} = 0$$

homogeneous case Ax = 0

- \bullet $Ax = 0 \rightarrow Ux = 0$
- basic variables correspond to columns with pivots
- free variables correspond to columns without pivots
- systematic method to find the solution set
 - identify the basic and free variables
 - set one free variable to 1 and others to 0, and solve Ux = 0; repeat for each free variable
 - $-\mathcal{N}(A)$ = all linear combinations of these solutions
- If n > m, then Ax = 0 has non-trivial solutions

example continued

•
$$x_1 = \begin{pmatrix} u \\ 1 \\ w \\ 0 \end{pmatrix}$$
 solving $u, w \rightarrow x_1 = \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \end{pmatrix}$

•
$$x_2=\begin{pmatrix} u \\ 0 \\ w \\ 1 \end{pmatrix}$$
 solving $u,w \to x_2=\begin{pmatrix} -1 \\ 0 \\ -\frac{1}{3} \\ 1 \end{pmatrix}$

 $\bullet \ x = c_1 x_1 + c_2 x_2$

non-homogeneous case $Ax = b \neq 0$

- two equivalent conditions for b for Ax = b to be solvable
 - $-b \in \mathcal{R}(A)$ (old)
 - b must satisfy some constraints (new)
- solution $x_q = x_p + x_h$
 - x_h is the solution to the homogeneous equation
 - to find x_p , set all free variables to the value 0 (or others) and solve for the basic variables
 - $-\overline{Ax_g} = \overline{Ax_p + Ax_h} = \overline{b + 0} = b$

illustrative example

•
$$Ax = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & -3 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ y \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

•
$$Ux = \begin{pmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \\ y \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 - 2b_1 \\ b_3 - 2b_2 + 5b_1 \end{pmatrix}$$

- the last entry on the right side must be 0
- have x_h ; set the free variables to 0 to have $x_p = (-2\ 0\ 1\ 0)^T$ when $b = (1\ 5\ 5)^T$

Rank

After the elimination process, the number of pivots in U, say r, is called the rank of A.

- r = the number of basic variables
- r =the number of non-zero rows
- n r = the number of free variables
- if r = m, there is at least a solution (why?)
- if r = n, there is at most a solution (why?)

linearly dependent / independent

• a set of vectors $\{v_1, \ldots, v_n\}$ is linearly independent if

$$\sum_{i} c_{i} v_{i} = 0 \text{ iff } c_{1} = \dots = c_{n} = 0,$$

otherwise the set is linearly dependent.

- examples
 - if $v_i = 0$ for some i
 - the rows in the former example
 - columns in a diagonal matrix with non-zero diagonal entries
 - non-zero rows in a matrix in row-echelon form
 - columns with pivots in a matrix in row-echelon form
- how to check linear independence? solve Ax = 0!

spanning sets

- given a subspace V, a set of vectors $W = \{w_1, \dots, w_n\}$ is a spanning set of V if every vector $v \in V$ is a linear combination of vectors in W
- examples
 - $-\{(1,0,0),(0,1,0),(-2,0,0)\}$ spans a plane in \mathbb{R}^3
 - $\Re(A)$ is spanned by the columns of A; every vector in $\Re(A)$ can be written as Ax
- a spanning set of a vector space is apparently not unique

basis and dimension of a space

- by definition, a basis $B = \{b_1, \dots, b_n\}$ for a space V, satisfies two properties
 - 1. B is a linearly independent set
 - $\overline{2}$. B is a spanning set of V
- all bases for a given subspace contain the same number of vectors
- proof: suppose |W| = n > m = |U|. W = UA for some $m \times n$ matrix A. Then Wc = UAC = 0 for some non-zero c, contradiction to W being a basis
- this number is called the dimension of V

further properties

- ullet every linearly independent set in V can be extended to a basis of V
- ullet every spanning set of V can be reduced to a basis of V
- dimension = degree of freedom
- the rank of a matrix A = the dimension of $\Re(A)$

fundamental subspaces of a matrix A

- 1. column space $\mathcal{R}(A)$ the space spanned by the column vectors of A
- 2. nullspace $\mathcal{N}(A)$ the set of vectors $\{x|Ax=0\}$
- 3. row space $\Re(A^T)$ the space spanned by the row vectors of A
- 4. left nullspace $\mathcal{N}(A^T)$ the set of vectors $\{y|A^Ty=0\}$

Note that $\Re(A)$ and $\Re(A^T) \subset R^m$, $\Re(A)$ and $\Re(A^T) \subset R^n$.

the row space of A

- Gauss elimination = triangular factorization
- \bullet A = LU and $U = L^{-1}A$
- row space of A = row space of U
- ullet non-zero rows in U are linearly independent
- dimension (of row space) = rank

the nullspace of A

- nullspace of A = nullspace of U
- construction of basis for the nullspace of A
 - 1. Gauss elimination $Ax = 0 \rightarrow Ux = 0$
 - 2. set one free variable to 1 and others to 0, to obtain a non-zero vector in the nullspace
 - 3. repeat for each free variable
 - 4. the set of the n-r vectors thus obtained is a basis
- example
- kernel of A and nullity of A

the column space of A

- $Ux = 0 \Leftrightarrow Ax = 0$, so a linear combination of columns of U giving the zero vector also produces 0 when using the columns of A, and vice versa
- ullet if a set of column vectors of U is independent, so is the corresponding set of columns of A
- the set of columns of U with pivots is a basis for $\Re(U)$; the corresponding set of columns of A is a basis for $\Re(A)$
- FOR ANY matrix, dimension of column space = dimension of row space!

the left nullspace of A

- $A^Ty = 0 \Leftrightarrow y^TA = 0$, so the left nullspace of A is equivalent to the nullspace of A^T
- the dimension of the left nullspace is the dimension of the nullspace of ${\cal A}^T$
- dimension of column space + dimension of nullspace = number of columns
- the dimension of the left nullspace is m-r
- the last m-r rows of L^{-1} are left nullvectors of A; furthermore, they are independent

existence of inverses

- left inverse and right inverse of \overline{A}
- $r = m \Leftrightarrow \text{columns span } R^m$
- $r = n \Leftrightarrow$ columns are linearly independent
- when r = m, there exists a right inverse $AC = I_m$
- when r = m, Ax = b has at least one solution
- when r = n, there exists a left inverse $BA = I_n$
- when r = n, Ax = b has at most one solution
- $(A^T A)^{-1} A^T$ and $A^T (AA^T)^{-1}$

conditions for invertibility

- columns span \mathbb{R}^n , Ax = b has a solution for every b
- nullspace is $\{0\}$
- the rows span \mathbb{R}^n
- the rows are linearly independent
- ullet all diagonal entries in U are non-zero
- non-zero determinant
- non-zero eigenvalues
- $A^T A$ is positive definite

edge-node incidence matrices

- G = (V, E), graph = nodes + edges
- A graph with m directed edges and n nodes can be represented by an $m \times n$ matrix A, where

$$A_{ij} = \begin{cases} 1, & \text{if edge } i \text{ ends at node } j \\ -1, & \text{if edge } i \text{ starts at node } j \\ 0, & \text{otherwise} \end{cases}$$

e.g.,
$$A = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

nullspace of an incidence matrix

- let n_j denotes the column j of the incidence matrix, corresponding to node j of the graph
- \bullet $\sum_{j} n_{j} = 0 \Rightarrow (1 \ 1 \ 1 \ 1)^{T} \in \text{nullspace of } A$
- physical meaning
 - let x_j be the potential at node j, then Ax is the potential difference across the edges
 - -Ax = 0 means 0 potential differences across all edges
 - constant potentials $c(1\ 1\ 1\ 1)^T$ satisfy this condition
 - any solution to Ax = b can be added $c(1\ 1\ 1\ 1)^T$ and remains a solution

column space of an incidence matrix

- for which $b = (b_1 \ b_2 \ b_3 \ b_4 \ b_5)^T$ can we solve Ax = b?
- let e_i be row i of A, corresponding to edge i of the graph

$$-e_1 + e_2 = e_3 \Rightarrow b_1 + b_2 = b_3$$

$$-e_3 + e_4 = e_5 \Rightarrow b_3 + b_4 = b_5$$

- $-e_1 + e_2 + e_4 = e_5$ is not an independent condition
- we are given potential differences b_1, \ldots, b_5 and we want to find x to satisfy these differences
- to have a solution, potential differences around a loop must add to 0 (*Kirchhoff voltage law*)

left nullspace of an incidence matrix

- $y^T A = 0$: what combinations of the rows of A gives the zero vector?
- $y_1^T = \begin{pmatrix} 1 & 1 & -1 & 0 & 0 \end{pmatrix}, y_2^T = \begin{pmatrix} 0 & 0 & 1 & 1 & -1 \end{pmatrix}$
- each loop in G corresponds to a vector in the left nullspace of A. For example,

$$y_1^T + y_2^T = \begin{pmatrix} 1 & 1 & 0 & 1 & -1 \end{pmatrix}$$

• $y^Tb = 0$ for y in the left nullspace and b in the column space of A

row space of an incidence matrix

- the row sum is zero for each row of an incidence matrix
- a vector f in the row space is a linear combination of rows of A so it must satisfy

$$f_1 + f_2 + f_3 + f_4 = 0$$

- $f^T x = 0$ for x in the nullspace and f in the row space
- $A^Ty = f$, where y_i is the current on edge i and f_j is the current source at node j, is solvable iff f is in the row space of A (the column space of A^T)
- the net current into every node is 0 (Kirchoff current law)

linear transformations

• linear transforms are defined by the rule of linearity

$$T(cx + dy) = cT(x) + dT(y).$$

- examples in 2-D vectors
 - stretch
 - rotation
 - reflection
 - projection
- matrix multiplication ⇔ linear transformation

construction of matrix for a linear transformation

- suppose the vectors x_1, \ldots, x_n are a basis for V and y_1, \ldots, y_m are a basis for W. A linear transformation T from V to W can be represented by a matrix A, where $Tx_j = \sum_{i=1}^m a_{ij}y_i$. That is, column j of A is the vector by applying T on the jth basis vector x_j .
 - an example from R^2 to R^3

composite linear transformations

- composite linear transformation = matrix multiplication
- examples
 - rotation of a vector by angle θ and ϕ

$$Q_{\theta+\phi} = Q_{\theta}Q_{\phi}$$

repeated projections

$$P = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{pmatrix} \Rightarrow P^2 = P$$

- repeated reflections: $H = 2P - I, H^2 = I$

multiplication of block matrices

• A block matrix is a matrix defined by (smaller) matrices. That is,

$$M = \begin{bmatrix} W & X \\ Y & Z \end{bmatrix}$$
, where W, X, Y, Z are matrices.

• Let A be $m \times n$ and B be $n \times r$. If A is partitioned into a $I \times J$ block matrix (with entries A_{ij}), and B is partitioned into a $J \times K$ block matrix, then

$$AB = \begin{bmatrix} C_{11} & \dots & C_{1K} \\ \vdots & \vdots & \vdots \\ C_{I1} & \dots & C_{IK} \end{bmatrix},$$

where
$$C_{ik} = \sum_{j=1}^{J} A_{ij} B_{jk}$$
.