

Università degli Studi di Firenze Scuola di Ingegneria Dipartimento di ingegneria dell'informazione

Fraudsters detection in the international IP telephony market: an approach based on analysis of reputation

Relatore:

Candidato:

Ing. Francesco Chiti Ing. Tommaso Pecorella Francesco Ermini

Firenze, 3 aprile 2019

Index

- Problem
 - Fraud workflow
 - Frauds detection
 - Fraudsters detection
- Idea
- Solution
 - Trust Overlay Network
 - Reputation based routing
 - Simulation
- Results
 - Detection error & delay
 - Benefit costs analysis
- Conclusion

Fraud workflow

Interconnect bypass fraud

Fraud detection

Interconnect bypass fraud detection

Fraudster detection

 Lack of transparency in the signaling protocol hides identities of transit operators

 Absence of proven evidences inhibit pinpointing the truth fraudster (without forensic investigations)

Idea (1): Cooperative design

Idea (2): Guilty assumption & behavioral analysis

Trust Overlay Network (1)

 $m_{ij} = \text{calls from Telco } i \text{ to Telco } j \text{ in period } t$

$$M_{t} = \begin{bmatrix} n.a & \begin{pmatrix} pos = 10 \\ neg = 5 \end{pmatrix} & \cdots & \begin{pmatrix} pos = 15 \\ neg = 7 \end{pmatrix} \\ \begin{pmatrix} pos = 3 \\ neg = 1 \end{pmatrix} & n.a & \cdots & \begin{pmatrix} pos = 0 \\ neg = 0 \end{pmatrix} \\ \vdots & & \ddots & \vdots \\ \begin{pmatrix} pos = 0 \\ neg = 0 \end{pmatrix} & \begin{pmatrix} pos = 0 \\ neg = 0 \end{pmatrix} & \cdots & n.a \end{bmatrix}_{N \times N}$$
 (1)

$$M'_{t} = \sum_{0 \le c \le c_{max}} M_{t-c} \lambda_{c} \qquad \lambda_{c} = \frac{c_{max} - c}{c_{max}}$$
 (2)

Trust Overlay Network (2)

Problem

Trust Network Analysis with Subjective Logic¹

Opinion:
$$\omega_x^A \triangleq (b, d, u, a)$$
 with $b, d, u, a \in [0, 1]$ (3)

Solution

$$\omega_x^A = \begin{cases} b = \frac{p}{p+n+2} \\ d = \frac{n}{p+n+2} \\ u = \frac{2}{p+n+2} \\ a = \text{base rate of } x \end{cases}$$

discount:
$$\omega_T^{A:B} = \omega_A^T \bigotimes \omega_T^B$$
 (4)

consensus:
$$\omega_F^{A \circ B} = \omega_A^B \bigoplus \omega_F^B$$
 (5)

¹Trust Network Analysis with Subjective Logic, Josang, Audun & Hayward, Ross & Pope, Simon. (2006).

Trust Overlay Network (3)

Reputation score of A against B

Reputation:
$$R(\omega_A^B) = b + au$$
, $R \in [0, 1.0]$ (6)

$$R(\omega_A^B) = \begin{cases} \text{fraudster} & \textit{if} \quad R < 0.5\\ \text{honest} & \textit{if} \quad R > 0.8\\ \text{suspect} & \textit{if} \quad 0.5 < R \leq 0.8\\ \text{missing} & \textit{if} \quad R = 0.5 \end{cases}$$

Reputation based routing

Telcos with R < 0.5 added to a temporary blacklist

Emulate daily Telcos interconnection

- 145 MOs ² & 368 VoIP carriers ³ 1% Fraudsters
- 3000 daily calls/simbox 5% Frauds ⁴ 240k daily calls rate
- 10% MOs, 5% VoIP carriers cooperate

¹2017 Global Fraud Loss Survey, CFCA

²ITU, MNC & MCC codes, 2016

³voipproviderslist.com

⁴slideshare.net/AkhilRawat/sim-box

Simulation

Figure: UML conceptual model

 $^{{\}bf ^1} github.com/FrancescoErmini/FraudDetectorSimulator$

Detection error & delay

Detection statistics by changing feedback collection period

Figure: More delay, less errors

Benefit costs analysis

Evaluate fraud profit loss when blacklisted

Disguised fraud strategy

Detection statistics in case of frauds reduction from 5% to 2.5% (a) and 1% (b)

Figure: (a) Partially detected

Figure: (b) Fully undetected

Benefit costs analysis with disguised strategy

Evaluate fraud profit loss when blacklisted

Conclusion

Validation in the emulated scenario

 Detection error: A priori accusations against honest nodes do not compromise the correct classification.

 Time delay: One week delay is acceptable because is the time taken by Telcos to share CDR.

Future directions

Validation in the real scenario

 Lack of comparison data: There is a practical difficulty in obtaining call traces (all traces, not only frauds) from multiple Telcos that have some common callID and contains proven fraudsters (Suspended CICs licenses or blacklisted SIP IDs).

Università degli Studi di Firenze Scuola di Ingegneria Dipartimento di ingegneria dell'informazione

Fraudsters detection in the international IP telephony market: an approach based on analysis of reputation

Relatore:

Candidato:

Ing. Francesco Chiti Ing. Tommaso Pecorella Francesco Ermini

Firenze, 3 aprile 2019