

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 265 820
A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87115379.7

(51) Int. Cl.4: C09C 1/22 , C09C 1/40 ,
C09C 1/24 , C09C 1/00 ,
C01G 49/00

(22) Anmeldetag: 21.10.87

(30) Priorität: 24.10.86 DE 3636156

(71) Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
D-6700 Ludwigshafen(DE)

(43) Veröffentlichungstag der Anmeldung:
04.05.88 Patentblatt 88/18

(72) Erfinder: Ostertag, Werner, Dr.
Oberer-Bergel-Weg 2
D-6718 Gruenstadt(DE)

(84) Benannte Vertragsstaaten:
BE DE FR GB IT NL

(54) Plättchenförmige Pigmente der allgemeinen Formel MnX-AlY-Fe2-(X+Y)03.

(57) Plättchenförmige Pigmente auf Basis von Eisenoxid der allgemeinen Formel $Mn_xAl_yFe_{2-(x+y)}O_3$, in der X einen Wert von 0,01 bis 0,06 und Y einen Wert von 0 bis 0,2 hat. Die Pigmente werden durch hydrothermale Behandlung von wäßrigen Suspensionen, die Eisenhydroxide bzw. -oxidhydrate sowie Alkalihydroxide und/oder Alkalicarbonate in Gegenwart von im Reaktionsmedium löslichen Manganverbindungen und gegebenenfalls Aluminiumverbindungen hergestellt.

Die Pigmente finden Verwendung für die Pigmentierung von Anstrichen, Druckfarben, Lacken, Kunststoffen, keramischen Oberflächen, Gläsern und von kosmetischen Produkten.

EP 0 265 820 A1

Plättchenförmige Pigmente der allgemeinen Formel $Mn_xAl_yFe_{2-(x+y)}O_3$

Die vorliegende Erfindung betrifft plättchenförmige Pigmente vom Typ $Mn_xAl_yFe_{2-(x+y)}O_3$, die der Gruppe der Effekt- oder Glanzpigmente zuzuordnen sind.

Die optische Wirkung der Effekt- oder Glanzpigmente, beruht auf gerichteter Reflexion an flächig ausgebildeten und ausgerichteten stark lichtbrechenden Pigmentpartikeln. Die Farbigkeit der Pigmente spielt eine untergeordnete Rolle. Der mittlere Partikeldurchmesser der Effekt- bzw. Glanzpigmente ist weit größer als derjenige von Pigmenten deren Wirkung auf Streuung und Absorption beruht. Er bestimmt die Art des Effektes, der für Plättchen mit kleinerem Durchmesser "seidig weich" erscheint, für Plättchen mit größerem Durchmesser in charakteristischer Weise glitzert.

Effektpigmente können metallischer, oder oxidischer Natur sein. Altbekannt sind plättchenförmige Aluminiumpigmente. Effektpigmente auf oxidischer Basis finden neuerdings zunehmendes Interesse, beispielsweise für Automobilrücklackierungen, wo sie eine optisch attraktive Alternative zu den seit langem bekannten Aluminiumpigmenten darstellen. Auch für Kunststoffefarfärbungen, beim Druck oder in der Kosmetik, d.h. in allen Bereichen in denen hoher Glanz erwünscht ist, finden oxidische Effektpigmente Verwendung. Solche oxidischen Effektpigmente sind beispielsweise auf hydrothermalen Wege hergestellte plättchenförmige Eisenoxid- bzw. Eisenoxidmischphasen-Pigmente, bei denen die Pigmentpartikel Einkristallcharakter haben.

Die Entwicklung der üblicherweise hydrothermal hergestellten plättchenförmigen Eisenoxid- bzw. Eisenoxidmischphasen für Effektpigmentanwendungen kann man anhand zahlreicher Patente verfolgen: Die Patente FR-A Nr. 63 8200, DE-C Nr. 541 768, 658 020, DE-A Nr. 20 56 042, GB-A Nr. 20 28 784 und DE-A Nr. 30 19 404 beschreiben die Herstellung von plättchenförmigen $\alpha\text{-Fe}_2\text{O}_3$ Pigmenten durch Hydrothermalbehandlung von Eisenhydroxid bzw. Eisenoxidhydrat, wobei Plättchenpigmente je nach den Bedingungen in unterschiedlicher Partikelgeometrie und -größe, in Farbtönen von gelbrot bis violett, anfallen.

Die Nachteile solcher reinen Haematitpigmente liegen im ungenügend hohen Durchmesser zu Dickenverhältnis der Produkte und in langwierigen Produktionsverfahren für Haematitpigmente mit größerem, mittleren Partikeldurchmesser. Die besonders in DE-A 20 56 042 herausgestellte Möglichkeit über sehr hohe Alkalikonzentrationen größerer Plättchen zu erzeugen, ist aus Korrosionsgründen für die Praxis ohne Bedeutung.

In der EP-A Nr. 0014 382 sind plättchenförmige Eisenoxid-Pigmente und deren Herstellung über Hydrothermalverfahren beschrieben, die 0,1 - 12 Gew.% mindestens einer der Oxide der Elemente der IV., V. und/oder VI. Haupt- und Nebengruppe und/oder der II. Nebengruppen des Periodensystems der Elemente enthalten. Eine zentrale Bedeutung kommt hierbei dem Siliciumdioxid zu, das wie die übrigen oben genannten Elemente es ermöglichen soll, das Schichtdickenwachstum und das Wachstum der Plättchen separat zu steuern. Das Wachstum des Plättchendurchmessers wird vor allem durch den pH-Wert der Suspension bestimmt, während die Schichtdicke von den genannten Oxiden beeinflusst wird. Trotz eines verbesserten Durchmesser-zu-Dickenverhältnisses der so hergestellten Pigmente können aber nur relativ kleine mittlere Durchmesser der plättchenförmigen Produkte erhalten werden.

In der EP 068 311 und der US 4 373 963 werden plättchenförmige Mischphasen-Pigmente der Zusammensetzung $Al_xFe_{2-x}O_3$ beschrieben. Auch diese Pigmente werden in einer hydrothermalen Reaktion aus einer wässrigen Suspension von EisenIII-hydroxid, bzw. -Oxidhydrat, Natriumaluminat und Natronlauge hergestellt. Die Pigmente zeichnen sich gegenüber den bisher beschriebenen plättchenförmigen Haematitpigmenten durch ihren aufgehellten Überfärbungen ermöglichten Farbton und durch vergleichsweise größere Durchmesser und höhere Durchmesser-zu-Dickenverhältnisse der Einzelpartikel aus. Außerdem ist der mittlere Teilchendurchmesser dieser Pigmente auf maximal etwa 12 μm begrenzt, wenn man nicht bei der hydrothermalen Behandlung extrem lange Verweilzeiten bei sehr hohen Alkaligehalten in Kauf nehmen will. Ersteres ist aus produktionstechnischer Sicht wegen geringer Raum-Zeit-Ausbeuten, letzteres aus werkstofftechnischer Sicht problematisch.

EP 0180 881 beschreibt ein Verfahren zur Herstellung von plättchenförmigem $\alpha\text{-Fe}_2\text{O}_3$ Pigment mit einem mittleren Partikeldurchmesser von bis zu 20 μ und einen mittleren Durchmesser-zu-Dickenverhältnis von 20 - 100, dessen besonderes Merkmal der Zusatz von aktiven besonders hergestellten $\alpha\text{-Eisenoxidkeimen}$ plättchenförmiger Gestalt zur EisenIIIhydroxidhaltigen Ausgangssuspension vor der hydrothermalen Behandlung ist. Nachteilig bei diesem Verfahren ist der besondere, der Hydrothermalreaktion vorgeschaltete Verfahrensschritt der Herstellung aktiver $\alpha\text{-Eisenoxidkeime}$, der technisch anspruchsvoll ist und das Gesamtverfahren erheblich kompliziert.

In der JA-A 80 16 978 werden plättchenförmige α -Eisenoxide, die ihrerseits aus einer hydrothermalen Reaktion stammen als Keime für die Herstellung von größerem plättchenförmigem Pigment eingesetzt. Diese Arbeitsweise führt jedoch zur Bildung zahlloser unerwünschter Agglomerate, so daß deratig hergestellte Pigmente für anspruchsvolle Anwendungen nicht infrage kommen.

Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, plättchenförmige Pigmente auf Basis von Eisenoxiden oder eisenoxidhaltiger Mischphasenoxide zur Verfügung zu stellen, die die Nachteile der bekannten Pigmente nicht haben und die auf einfache Weise in kurzen Verweilzeiten in einem einstufigen Verfahren hergestellt werden können und deren mittlerer Teilchendurchmesser gezielt einstellbar ist.

Diese Aufgabe wird gelöst durch plättchenförmige Pigmente auf Basis von Eisenoxid der allgemeinen Formel $Mn_xAl_yFe_{2-(x+y)}$, in der X einen Wert von 0,01 bis 0,06 und Y einen Wert von 0 bis 0,2 hat.

Die erfindungsgemäßen Pigmente lassen sich auf einfache Weise in einem hydrothermalen Verfahren herstellen, indem man eine wäßrige Suspension von Eisen(III)-hydroxid bzw. -oxidhydrat in Gegenwart von Alkalihydroxiden oder -carbonaten und in Gegenwart von im Reaktionsmedium löslichen Manganverbindungen einer Behandlung bei Temperaturen oberhalb von 120°C unterwirft. Überraschenderweise wird hierbei Mangan in das sich bildende plättchenförmige ternäre Oxidmischphasenpigment der allgemeinen Formel $Mn_xAl_yFe_{2-(x+y)}O_3$ eingebaut.

Als im Reaktionsmedium lösliche Manganverbindungen kommen die Verbindungen des sechs-wertigen und insbesondere des siebenwertigen Mangans, z.B. Kaliumparamanganat in Betracht.

Als Eisenhydroxid bzw. -oxidhydrat kommt neben dem gelartigen $Fe(OH)_3$ auch das α - $FeOOH$ und γ - $FeOOH$ in Frage. Die Konzentration bzw. der Feststoffgehalt der Suspension wird zweckmäßig so gewählt, daß die Suspensionen sich ohne Schwierigkeiten technisch handhaben lassen; im allgemeinen enthalten die Suspensionen, bezogen auf Wasser 1 bis 20, vorzugsweise 1 bis 10 Gew.% Eisenhydroxid bzw. -oxidhydrate.

Die Mengen der im Reaktionsmedium löslichen Manganverbindungen werden so gewählt, daß das Atomverhältnis Mn:Fe mindestens dem Atomverhältnis des herzustellenden Pigmentes entspricht. Grundsätzlich ist festzustellen, daß mit steigender Mangankonzentration in der Suspension - sonst gleiche Reaktionsbedingungen vorausgesetzt - nicht nur der Mangangehalt im fertigen Pigment steigt, sondern auch der mittlere Teilchendurchmesser der Pigmente bei etwa gleich bleibenden Durchmesser-Dicken-Verhältnis steigt. Man hat es

so in der Hand durch Wahl der Konzentration der Manganverbindung in der Suspension gezielt Pigmente mit einem jeweils gewünschten Teilchendurchmesser herzustellen, der zwischen 6 und 65 μm variiert werden kann. .

Ein wesentlicher Vorteil ist, daß bei der Herstellung der erfindungsgemäßen Pigmente nicht in stark alkalischem Reaktionsmedium gearbeitet werden muß. Es genügt daher, daß die Normalität der Suspensionen am Alkalihydroxid und/oder Alkalicarbonat nicht höher als 2 N sein muß, um die Pigmente in vertretbaren Reaktionszeiten zu erhalten.

Die Temperatur bei der hydrothermalen Umsetzung soll vorteilhaft über 170°C liegen, besonders vorteilhaft wählt man Temperaturen von 250 bis 360°C.

Für den Fall, daß die erfindungsgemäßen Pigmente auch Aluminium enthalten sollen, setzt man Suspensionen ein, die Alkalialuminat enthalten. Selbstverständlich muß dieses nicht als solches eingesetzt werden, sondern es können auch Aluminiumoxid, das unter den hydrothermalen Bedingungen in Alkalialuminat übergeführt wird, sowie Aluminiumoxidhydrate eingesetzt werden. Das Al:Fe-Atomverhältnis, in den einzusetzenden Reaktanden muß', wie beim Mn/Fe-Verhältnis mindestens ebenfalls dem Al/Fe-Atomverhältnis des herzustellenden Pigmentes entsprechen. Zweckmäßigerweise wählt man einen Überschuß an Al, wobei das überschüssige Al nach erfolgter Reaktion in Lösung bleibt.

Enthält die Ausgangssuspension kein Aluminium, so genügen geringere Mangan-Zusätze um entsprechend große Plättchen zu erzeugen. Die Plättchendicke wächst mit steigendem Plättchendurchmesser, wobei sich im $Mn_xAl_yFe_{2-(x+y)}O_3$ System das Durchmesser-zu Dickenverhältnis nicht wesentlich ändert. Nur für den Fall der Abwesenheit von Aluminium nimmt das Durchmesser-zu Dickenverhältnis mit steigender Mangan-Konzentration der Suspension ab, was dadurch erklärt werden kann, daß plättchenförmiges hydrothermal hergestelltes aluminiumfreies Eisenoxidpigment von vornherein viel dickere Plättchen als hydrothermal hergestelltes aluminiumhaltiges Eisenoxidpigment hat. Insgesamt ist das Durchmesser-zu Dickenverhältnis der manganhaltigen hydrothermal hergestellten Oxidpigmente sehr hoch. Beim $Mn_xAl_yFe_{2-(x+y)}$ -System liegt es bei Werten um 100 + 20. Die Möglichkeit besonders dünne Plättchen herzustellen ist ein herausragender Vorteil der erfindungsgemäßen Pigmente.

Die Dauer der hydrothermalen Behandlung, d.h. die Aufheizzeit auf die jeweils vorgegebene Temperatur sowie die Verweilzeit bei dieser Temperatur einschließlich einer eventuellen Abkühlung

auf Temperaturen unter 100°C beträgt im allgemeinen 30 bis 90 min. Längere Verweilzeiten sind möglich, jedoch führen sie i.a. zu einer Abnahme des Durchmesser/Dickenverhältnisses der Pigmente.

Die erfindungsgemäßen Mischphasenoxidpigmente kristallisieren im Gitter des Hämatits. Die Phasenbreite, d.h. die Bereiche für X und Y in der allgemeinen Formel $Mn_xAl_yFe_{2-x-y}O_3$ ist mit maximal 0,06 und 0,2 wenig groß. Erhöhung der Mangan-bzw. Aluminiumkonzentrationen in den hydrothermal zu behandelnden Suspensionen führen zu Inhomogenitäten der erhaltenen Pigmente, d.h. zu kristallinen Verunreinigungen im Endprodukt, die die optischen Eigenschaften der plättchenförmigen Effektpigmente aufgrund ihres Streuverhaltens beeinträchtigen.

Die erfindungsgemäßen, metallisch glänzenden Pigmente haben bei kleinen Partikeldurchmessern um 10µm eine rötlich-gelbe Farbe, die sich mit steigendem Durchmesser nach violett verschiebt. Sie finden zur Pigmentierung von Lacken, Druckfarben, Kunststoffen, Anstrichen, keramischen Oberflächen, Gläsern und von kosmetischen Produkten Anwendung.

Die in den folgenden Beispielen enthaltenen Prozentangaben sind, wenn nichts anderes vermerkt ist, Gewichtsprozente.

Beispiel 1

Eine gut gerührte Suspension aus 6,25 g α -FeOOH, das durch Oxidation von FeSO₄ mit Luft in einem Zweistufenverfahren hergestellt worden ist und dessen BET-Oberfläche 42 m²/g beträgt, 6,98 g Al(OH)₃, 6,05 g NaOH und 150 g H₂O wird mit 0,23 g/l KMnO₄ versetzt und in einem 300 ml fassenden elektrisch beheizten Rührautoklaven unter Röhren in 30 min auf 220 °C (Aufheizphase) und dann in weiteren 30 min auf 305 °C (Reaktionsphase) gebracht. Anschließend wird unterhalb von 10 Minuten auf Temperaturen unter 100°C abgekühlt. Das feste Reaktionsprodukt wird von der alkalischen Lösung abgetrennt, mit heißem Wasser gewaschen und im Trockenschrank bei 110 °C getrocknet. Das erhaltene Pigment hat eine dunkelviolette Farbe, starken Glanz und besteht aus plättchenförmigen Kristallen mit glatten Kristallflächen wie aus rasterelektronenmikroskopischen Aufnahmen hervorgeht. Über Cilas Laserstrahlbeugungs-Granulometrie wird der mittlere Partikeldurchmesser mit 18 µ bestimmt. Die mittlere Plättchendicke wird aus Messungen der spezifischen freien Oberfläche (BET-Wert) des Pigmentes mit 0,2 µ bestimmt. Hieraus errechnet sich ein Durchmesser zu Dickenverhältnis der Plättchen von 90.

Naßchemische analytische Untersuchungen ergeben, daß das Pigment einen Mn-Gehalt von 1,2 %, einen Al-Gehalt von 2,2 % und einen Fe-Gehalt von 65,6 % aufweist. Hieraus errechnet sich eine Pigmentzusammensetzung entsprechend der Formel $Mn_{0,034} Al_{0,128} Fe_{1,838} O_3$. Aus Röntgenaufnahmen geht hervor, daß das Produkt einphasig vorliegt und Hämatitstruktur hat.

Mit einem Alkyd/Melaminharz nach DIN-Entwurf 53 238 auf einer Tellerausreibemaschine angeriebenes Pigment ergibt, nachdem die Dispersion auf einer Unterlage abgerakelt ist, einen pigmentierten Lackfilm, der einen deutlichen Metall-Effekt (Sparkle und Flop) zeigt. Ein auf einem Blech durch Spritzen hergestellter deckender Lacküberzug zeigt folgende nach dem Cielab-Farbsystem gemessenen Werte:

Helligkeit L* = 37,0, Buntheit C_{ab} = 14,5, Farbwinkel H° = 33,2 (Meßgerät: Hunterlab Modell D-25, Normlichtwert C, Beobachtungswinkel 2°, Meßwinkel 0°, Beleuchtungswinkel 45° unter Ausschluß des Glanzanteils).

Beispiel 2

Eine Mischung aus 6,33g α -FeOOH mit einer BET Oberfläche von 45 m²/g, das durch Oxidation einer wässrigen FeSO₄-Lösung in einem Zweistufenverfahren hergestellt worden war, 8,48 g NaAlO₂, 4,2 g KOH, 0,15 g KMnO₄ und 150 g H₂O wird in einem 300 ml fassenden elektrisch beheizten Autoklaven unter Röhren in 30 min auf 310 °C erhitzt. Nach einer Verweilzeit von 10 min wird wie in Beispiel 1 beschrieben, abgekühlt. Das plättchenförmige feste Reaktionsprodukt wird von der wässrigen Lösung abgetrennt, mit heißem Wasser gewaschen und bei 105 °C im Trockenschrank getrocknet.

Das erhaltene Pigment hat eine braungelbe Farbe, zeigt metallischen Glanz und besteht aus plättchenförmigen Kristallen. Rasterelektronenmikroskopische Aufnahmen zeigen glatte, saubere Kristallflächen der Einzelkristalle. Der mittlere Durchmesser der Kristallinen Partikel beträgt 10 µ die spezifische Oberfläche (BET-Wert) 3,8 m²/g woraus sich eine mittlere Partikel-dicke von 0,1 µ errechnet.

Analytische Untersuchungen ergaben eine chemische Zusammensetzung des Produktes entsprechend der Formel $Mn_{0,02} Al_{0,18} Fe_{1,80} O_3$. Aus Röntgenaufnahmen geht hervor, daß das Produkt einphasig vorliegt und die Röntgenlinien von Hämatit aufweist.

Mit einem Alkyd-/Melaminharz nach DIN-Entwurf 53 238 auf einer Tellerausreibemaschine angeriebenes Pigment ergibt, nachdem die Dispersion aberakelt und getrocknet ist, einem Film der

einen Metallic Effekt, der einen besonders gut ausgeprägten Flop zeigt. Ein auf einem Blech durch Spritzen hergestellter deckender Lacküberzug zeigt folgende nach dem Cielab-Farbsystem mit dem Hunter Farbmeßgerät gemessenen Werte:

$$L^* = 46,5, C_{ab}^* 27,79 \text{ und } H^* 47,79.$$

Beispiel 3

Eine Mischung aus 6,67 g α -FeOOH, das durch Oxidation einer wässrigen FeSO_4 -Lösung mit Luft nach dem Zweistufenverfahren hergestellt worden war und eine BET-Oberfläche von $43 \text{ m}^2/\text{g}$ aufweist, wird mit 7,0 g Al(OH)_3 , 6,0 g NaOH , 0,40 g KMnO_4 und 155 ml H_2O innig gemischt und in einem 300 ml Rührautoklaven unter Rühren über 30 min auf 225°C und in weiteren 30 min auf 310°C erhitzt. Anschließend wird wie in Beispiel 1 beschrieben, abgekühlt. Das Reaktionsprodukt wird durch Filtrieren von der wässrigen Lösung abgetrennt, mit heißem Wasser gewaschen und bei 105°C im Trockenschrank getrocknet. Das erhaltene Pigment hat eine dunkelviolette Farbe. Für das unbewaffnete Auge sind im Pulver die glitzernden Einzelkristalle erkennbar. Rasterelektronenmikroskopische Aufnahmen zeigen wohlkristallisierte Plättchen mit einem hohen Durchmesser-zu Dickenverhältnis. Silas-Messungen ergeben einen mittleren Durchmesser der Partikel von $34,1 \mu$. Aus dem BET-Wert von $0,95 \text{ m}^2/\text{g}$ errechnet sich eine mittlere Dicke der Partikel von $0,4 \mu$.

Analytische Untersuchungen ergaben eine Zusammensetzung des Pigmentes, die der Formel $\text{Mn}_{0,05}\text{Al}_{0,15}\text{Fe}_{1,80}\text{O}_3$. Röntgenaufnahmen zeigen ein einphasig kristallisierendes Produkt, das die Beugungslinien des Haematis zeigt.

Pigmentierte Lackfilme, die wie in Bsp. 2 hergestellt werden, lassen einen ausgeprägten Metallic-Effekt mit dem optischen Eindruck von "großer Tiefe" erkennen. Auf einem Blech durch Spritzen hergestellter deckender Lacküberzug hat folgende nach dem Cielab-Farbsystem gemessene Werte: $L^* = 34,14, C_{ab}^* = 6,90$ und $H^* = 12,81$

Beispiel 4 bis 20

Die Beispiele 4 - 20 werden analog Beispiel 1 durchgeführt. Hierbei wird bei allen Beispielen in 30 min von Raumtemperatur auf 220°C hochgeheizt. In den Beispielen 4 - 16 wird anschließend - wie in Beispiel 1 - über weitere 30 min auf 305°C aufgeheizt und dann wie in Beispiel 1 beschrieben, abgekühlt. In den Beispielen 17 - 20 wird nach der 30 minütigen Aufheizzeit auf 305°C eine Verweildauer von 30 min bei 305°C vor dem Abkühlen

eingehalten. Die Ergebnisse der Versuche sind in Tabelle 1 zusammengefaßt. Sämtliche Reaktionsprodukte sind plättchenförmig wie aus REM-Aufnahmen hervorgeht und haben das Röntgenbild von Haematit.

5

10

15

20

25

30

35

40

45

50

55

5

Herstellung plättchenförmiger $Mn_X Al_Y Fe_{2-(X+Y)} O_3$ -Pigmente unter Verwendung von MnO_4^- -Ionen.

Einwage in g

Bei- spiel	Fe00H	Al(OH) ₃	NaOH	KMnO ₄	H ₂ O	Produkt-Zusammensetzung	β (μ) ¹	$d(\mu)$ ²	β / d
4	6,25	6,98	6,0	0,08	150	$Mn_0,012 Al_0,16 Fe_1,82 O_3$	8,0	0,08	100
5	6,25	6,98	6,0	0,10	150	$Mn_0,015 Al_0,17 Fe_1,815 O_3$	9,3	0,09	103
6	6,25	6,98	6,0	0,12	150	$Mn_0,018 Al_0,18 Fe_1,802 O_3$	9,3	0,085	109
7	6,25	6,98	6,0	0,14	150	$Mn_0,020 Al_0,19 Fe_1,790 O_3$	9,9	0,103	96
8	6,25	6,98	6,0	0,16	150	$Mn_0,024 Al_0,18 Fe_1,796 O_3$	10,1	0,108	93
9	6,25	6,98	6,0	0,18	150	$Mn_0,028 Al_0,17 Fe_1,802 O_3$	13,2	0,140	94
10	6,25	6,98	6,0	0,22	150	$Mn_0,034 Al_0,16 Fe_1,806 O_3$	17,5	0,19	92
11	6,25	6,98	6,0	0,30	150	$Mn_0,042 Al_0,15 Fe_1,808 O_3$	25,0	0,26	96
12	6,25	6,98	6,0	0,40	150	$Mn_0,050 Al_0,15 Fe_1,800 O_3$	35,2	0,38	93
13	6,25	6,98	6,0	0,50	150	$Mn_0,057 Al_0,14 Fe_1,803 O_3$	44,0	0,44	100
14	6,25	6,98	6,0	0,56	150	$Mn_0,060 Al_0,14 Fe_1,800 O_3$	49,2	0,51	96
15	6,25	4,31	6,0	0,12	150	$Mn_0,020 Al_0,08 Fe_1,900 O_3$	12,2	0,30	41
16	6,25	0,20	6,0	0,11	150	$Mn_0,019 Al_0,005 Fe_1,976 O_3$	10,1	0,39	26
17	6,25	0	6,0	0,11	150	$Mn_0,018 Fe_1,982 O_3$	10,0	0,39	26
18	6,25	0	6,0	0,20	150	$Mn_0,032 Fe_1,968 O_3$	41,2	0,42	98
19	6,25	0	6,0	0,30	150	$Mn_0,041 Fe_1,959 O_3$	58,0	0,53	109
20	6,25	0	6,0	0,40	150	$Mn_0,053 Fe_1,947 O_3$	62,6	0,55	114
Vergl. - ver- such	6,25	6,98	6,0	0		$Al_0,18 Fe_1,82 O_3$	8,0	0,086	93

1 Plättchendurchmesser über Laserstrahlbeugungsmessungen mit einem CILAS-Granulometer

2 Plättchendicke aus BET-Oberfläche errechnet.

Ansprüche

1. Plättchenförmige Pigmente auf Basis von Eisenoxid der allgemeinen Formel $Mn_xAl_yFe_{2-x-y}O_3$ in der X einen Wert von 0,01 - 0,06 und Y einen Wert von 0 - 0,2 hat. 5

2. Verfahren zur Herstellung der plättchenförmigen Pigmente nach Anspruch 1, dadurch gekennzeichnet, daß man eine Eisen(III)-hydroxid bzw. -oxidhydrat enthaltende wäßrige Suspension in Gegenwart von Alkalihydroxid und/oder -carbonat und in Gegenwart von im Reaktionsmedium löslichen Manganverbindungen bei Temperaturen oberhalb von 170°C einer hydrothermalen Behandlung unterzieht, anschließend das erhaltene Pigment von der Reaktionslösung trennt, wäscht und trocknet. 10

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man als im Reaktionsmedium lösliche Manganverbindungen Alkalipermanganate einsetzt. 15

4. Verfahren nach den Ansprüchen 2 bis 3, dadurch gekennzeichnet, daß der Gehalt der Suspensionen am Alkalihydroxid und/oder -carbonat 2N nicht überschreitet. 20

5. Verfahren nach den Ansprüchen 2 bis 4, dadurch gekennzeichnet, daß man bei der hydrothermalen Behandlung Temperaturen von 250 bis 360°C einhält. 25

6. Verfahren nach den Ansprüchen 2 bis 5, dadurch gekennzeichnet, daß die Suspension Natriumaluminat enthält. 30

7. Verwendung der Pigmente nach den Ansprüchen 1 bis 6 für die Pigmentierung von Anstrichen, Lacken, Kunststoffen, Druckfarben, keramischen Oberflächen, Gläsern und von kosmetischen Produkten. 35

40

45

50

55

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 87 11 5379

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betritt Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A	EP-A-0 004 643 (BAYER AG) ---		C 09 C 1/22
A	DE-A-3 324 400 (BAYER AG) ---		C 09 C 1/40
A	CHEMICAL ABSTRACTS, Band 97, Nr. 12, 20. September 1982, Seite 152, Zusammenfassung Nr. 94822x, Columbus, Ohio, US; & JP-A-82 49 667 (TITAN KOGYO K.K.) 23-03-1982 ---		C 09 C 1/24
A,D	US-A-4 373 963 (TOSHIAKI UENISHI et al.) -----		C 09 C 1/00
			C 01 G 49/00
			RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
			C 09 C
			C 01 G
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenort	Abschlußdatum der Recherche	Prüfer	
DEN HAAG	28-01-1988	VAN BELLINGEN I.C.A.	
KATEGORIE DER GENANNTEN DOKUMENTE			
X : von besonderer Bedeutung allein betrachtet	T : der Erfindung zugrunde liegende Theorien oder Grundsätze		
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie	E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist		
A : technologischer Hintergrund	D : in der Anmeldung angeführtes Dokument		
O : nichtschriftliche Offenbarung	L : aus andern Gründen angeführtes Dokument		
P : Zwischenliteratur	& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument		