Namn: Lucas Frykman

Personnummer: 0210127650

Kurskod: SF1550

Kursansvarig:: Olof Runborg

Numeriska metoder, grundkurs Laboration 1 February 18, 2023

Uppgift 1

• Hur många nollställen: 6

Figure 1: Rötter till grafen $f(x) = x^2 - 8x - 5sin(3x + 1) + 12$

Som ni ser i Figure 1 det finns 6 rötter till funktionen nämligen $x_0 \approx [1.81, 3.027, 3.56, 5.10, 5.93, 6.73]$

• Motivera varför fixpunkt:

$$f(x^*) = 0 \Leftrightarrow$$

$$x^2 - 8x - 5\sin(3x+1) + 12 = 0 \Leftrightarrow$$

$$x^2 + 4x - 5\sin(3x+1) + 12 = 12x \Leftrightarrow$$

$$(1)$$

$$\underbrace{\frac{1}{12}x^2 + \frac{1}{3}x - \frac{5}{12}\sin(3x+1) + 1}_{\phi(x)} = x \tag{2}$$

• Vilka nollställen kan det hitta: Vi vet att

$$\phi'(x) = \frac{d}{dx}(\frac{1}{12}x^2 + \frac{1}{3}x - \frac{5}{12}\sin(3x+1) + 1) = \frac{1}{6}x + \frac{1}{3} - \frac{5}{4}\cos(3x+1)$$
 (3)

som erhåller att metoden konvergerar till 3 olika punkter och divergerar till resten

konvergerar	$ \phi'(1.81) \approx 0.601 < 1$
divergerar	$ \phi'(3.027) \approx 1.8 > 1$
konvergerar	$ \phi'(3.56) \approx 0.13 < 1$
divergerar	$ \phi'(5.10) \approx 2.2 > 1$
konvergerar	$ \phi'(5.93) \approx 0.073 < 1$
divergerar	$ \phi'(6.73) \approx 2.3 > 1$

• Hur ska fel termen avta? fixpunkt iterationen ska ha linjär konvergensordning eftersom $\phi'(x^*) \neq 0$

• Uppskatta metodernas konvergensordning med hjälp av figuren. Stämmer det med teorin

Ja det syns tydligt i grafen att fixpunkt iterationen bildar en linje och newtonsmetod bildar en parabola. Det här stämmer med teorin eftersom newton har konvergens ordningen 2 och fixpunkt iterationen är 1.

Uppgift 2

• Hur många lösningr finns det? Det finns 3 lösningar.

Uppgift 3

• Plotta både tornen

Figure 2: eiffel2.mat med ändring vid nod j=261

Det går snabbare eftersom att lösa

$$Mx = b$$

har komplexitet $\mathcal{O}(n^3)$ men om matrisen är triangulär så är det $\mathcal{O}(n^2)$ Vilket kan implementeras med M=LU faktorisering genom

$$LU\mathbf{x} = b$$

som kan implementeras med koden

Listing 1: LU implementation

```
1 [L,U] = lu(A)
2 y = (L\b)
3 x = (U\y)
```

där lösningen till b har komplexitet $\mathcal{O}(2n^2)$ men komplixtet till koden ovan är faktiskt $\mathcal{O}(n^3 + 2n^2)$ som är faktiskt långsammare. Tidsvinsten visar sig om man itererar för många olika b säg j gånger. Så blir det $\mathcal{O}(n^3 + 2jn^2) < \mathcal{O}(jn^3)$ när j är tillräckligt stort.