Organic Computing 2

Lösungsvorschlag Blatt03

Lukas Huhn Qiang Chang Victor Gerling 28. Mai 2019

Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing

Gliederung

1. Aufgabe 01

2. Aufgabe 04

Aufgabe 01

Attribut City

- Beispiele: 0, 1, 2(Cities sind mit 0 bis n durchnummeriert)
- n

Attribut Route

- Beispiele: [(0,1),(1,2),(2,3),(3,0)], [(0,2), (2,1), (1,3), (3,0)], [(0,3), (3,1), (1,2), (2,0)]
- · (n-1)!

Attribut Pheromone

- · Beispiele: 0.000002, 0.0002, 0.0000001
- Kontinierlicher Wertebereich, unendlich ⇒ wir quantisieren! Wähle Minimum=0 und Maximum=0.0004 mit Step=1000 ⇒ 0.0000004 als Quantisierungsschritt

1.3 Routenlängen

1.3 Emergenz

1.3 Emergenz Kiviat-Graph

Aufgabe 04

Emergenz vorhanden

- · Route: gut, weil sich Ants auf ähnliche Route einigen
- Pheromone: gut, weil sich mit der Zeit Pheromonenstärkste Straße herausbildet

Emergenz nicht vorhanden

• City: Eventuell durch die verschiedenen Startstädte, ist jedoch eher weniger interessant