De Cifris Trends in Cryptographic Protocols

University of Trento and De Componendis Cifris
October 2023

Lecture 3

Zero-Knowledge Protocols

Luisa Siniscalchi

Technical University of Denmark

Verifier

Two parties for a protocol

- Prover has unbounded resources
- Verifier has limited resources

Theorem x

Prover

The proof is efficient: x is an NP statement that π is its certificate/witness/proof

Graph Isomorphism

An isomorphism of graphs G and H is a bijection (permutation) f between the vertex sets of G and H π : V(G) —> V(H)

such that any two vertices u and v of G are adjacent in G if and only if $\pi(u)$ and $\pi(v)$ are adjacent in H.

Two parties for a protocol

 π

G	Н
1	2
2	4
3	3
5	1
4	5

э Э

Graph Isomorphism

We do not know if it is in P: best-known algorithm is quasi-polynomial time

The problem belongs to NP

Graph Isomorphism

Interactive Proofs

- Suppose now that I want to prove that two graphs are <u>not</u> isomorphic.
- A proof is described as a game between a prover and a verifier
- The theorem is true if and only if the prover wins the game always.
- If the theorem is false then the prover loses the game with 50% probability

•Introduced by Goldwasser, Micali and Rackoff

Interactive Proofs

Example

- If the pencils are both red, then the prover convinces the verifier with 50% probability
- We can repeat the proof many times to make this probability small

Interactive Proofs

Interactive Proofs (formal definition)

Definition 4.2.6 (Generalized Interactive Proof): Let $c, s : \mathbb{N} \to \mathbb{R}$ be functions satisfying $c(n) > s(n) + \frac{1}{p(n)}$ for some polynomial $p(\cdot)$. An interactive pair (P, V) is called a (generalized) interactive proof system for the language L, with **completeness bound** $c(\cdot)$ and **soundness bound** $s(\cdot)$, if

• (modified) completeness: for every $x \in L$,

$$\Pr[\langle P, V \rangle(x) = 1] \ge c(|x|)$$

• (modified) soundness: for every $x \notin L$ and every interactive machine B,

$$\Pr\left[\langle B, V \rangle(x) = 1\right] \le \mathfrak{s}(|x|)$$

In the previous example c(|x|)=1 and s(|x|)=1/2

Zero-Knowledge Proofs

- •How much knowledge is transmitted to the verifier?
- •We would like to transmit only one bit: 1 if the theorem is true and 0 otherwise.
- •E.g. For the case of graph isomorphism the prover does not want to disclose the witness

Zero-Knowledge Proofs

Thm:

G ≈ H

 $C \approx G \approx H$

G < □

(Honest-Verifier) Zero-Knowledge Proofs

- •The notion of (honest-verifier) zero-knowledge requires the existence of a simulator S that:
 - generates a transcript that is distributed similarly* to the real one (when the verifier is honest)
 - knows only that the theorem is true
 - is efficient (expected polynomial time)

(Honest-Verifier) Zero-Knowledge Proofs

Thm:

Zero-Knowledge Proofs (formal definition)

Definition 4.3.2 (Computational Zero-Knowledge): Let (P, V) be an interactive proof system for some language L. We say that (P, V) is **computational zero-knowledge** (or just **zero-knowledge**) if for every probabilistic polynomial-time interactive machine V^* there exists a probabilistic polynomial-time algorithm M^* such that the following two ensembles are computationally indistinguishable:

- $\{\langle P, V^* \rangle(x)\}_{x \in L}$ (i.e., the output of the interactive machine V^* after it interacts with the interactive machine P on common input x)
- $\{M^*(x)\}_{x\in L}$ (i.e., the output of machine M^* on input x)

*Machine M** is called a simulator for the interaction of V^* with P.

ZK Application: Authentication

Password₁ Password₂

. . . .

ZK Application: Authentication

De Componendis Cifris

https:/www.decifris.it