

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования.

Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет).

(МГТУ им. Н. Э. Баумана)

Методы решения задачи византийских генералов

Студент: ИУ7-55Б Талышева Олеся Николаевна

Руководитель: Кострицкий Александр Сергеевич

Формализация задачи византийских генералов

Задача византийских генералов моделирует ситуацию, где п генералов должны достичь единого решения (атаковать или отступать) при наличии ненадёжных участников (до m предателей). Генералы обмениваются приказами и информацией, чтобы минимизировать риск неблагоприятного исхода.

Возможные исходы:

- 1) Благоприятный: все верные генералы атакуют.
- 2) Промежуточный: все верные генералы отступают.
- 3) Неблагоприятный: часть генералов атакует, часть отступает.

Предатели могут искажать приказы главнокомандующего или дезинформировать других генералов. Задача заключается в нахождении алгоритма, обеспечивающего консенсус среди верных генералов, несмотря на вмешательство предателей.

Сравнение методов решения задачи византийских генералов

Критерий	Алгоритм Лэмпорта	Proof of Work (PoW)	Proof of Stake (PoS)	Delegated Proof of Stake (DPoS)
Тип системы	синхронная	асинхронная	асинхронная	асинхронная
Устойчивость к предателям	$n \ge 2*m+1$	> 50% вычислительных мощностей у честных узлов	> 50% доли у честных узлов	> 2/3 голосов доверенных делегатов
Эффективность	высокая	низкая	средняя	высокая
Масштабируемость	ограниченная n	ограниченная скоростью вычислений	высокая	очень высокая
Безопасность	высокая	высокая, но уязвима к 51%-атаке	высокая (при распределённой доле)	зависит от честности делегатов
Область применения	надёжные синхронные сети	криптовалюты, распределённые сети	криптовалюты, DeFi	высоконагруженные блокчейн-системы