```
In [1]: import pandas as pd
    from matplotlib import pyplot as plt
    %matplotlib inline
```

In [2]: df=pd.read_csv(r"C:\Users\Mastan Reddy\Downloads\Income.csv")
 df

Out[2]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

200 rows × 3 columns

In [3]: df.head()

Out[3]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	? Female	20	16
3	B Female	23	16
4	Female	31	17

In [4]: df.tail()

Out[4]:

	Gender	Age	Income(\$)
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

```
In [5]: | df.shape
Out[5]: (200, 3)
In [6]: plt.scatter(df["Age"],df["Income($)"])
         plt.xlabel("Age")
         plt.ylabel("Income($)")
Out[6]: Text(0, 0.5, 'Income($)')
             140
             120
             100
          Income($)
              80
              60
              40
              20
                                              40
                      20
                                  30
                                                          50
                                                                      60
                                                                                 70
                                                  Age
In [7]: from sklearn.cluster import KMeans
In [8]: kM=KMeans()
         kΜ
```

Out[8]: KMeans()

```
In [9]: |y_predicted = kM.fit_predict(df[["Age","Income($)"]])
       y_predicted
Out[9]: array([1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1,
             2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 4, 2, 4, 2, 4,
             2, 4, 2, 4, 4, 4, 2, 4, 4, 2, 2, 2, 2, 7, 4, 2, 7, 4, 7, 2, 7, 4,
             2, 7, 4, 4, 7, 2, 7, 7, 7, 4, 0, 0, 4, 0, 7, 4, 7, 0, 4, 0, 7, 4,
             4, 0, 7, 4, 0, 0, 4, 4, 0, 4, 0, 4, 0, 7, 4, 0, 4, 7, 0, 7, 7,
             7, 4, 0, 4, 4, 4, 7, 0, 0, 0, 6, 0, 0, 6, 6, 0, 0, 0, 6, 6, 0, 0,
             0, 6, 6, 6, 6, 6, 0, 6, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 5, 6,
             3, 3])
In [10]: df["cluster"]=y predicted
```

df.head()

Out[10]:

	Gender	Age	Income(\$)	cluster
0	Male	19	15	1
1	Male	21	15	1
2	Female	20	16	1
3	Female	23	16	1
4	Female	31	17	1

```
In [11]: df1 = df[df.cluster == 0]
    df2 = df[df.cluster == 2]
    df3 = df[df.cluster == 3]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[11]: Text(0, 0.5, 'Income(\$)')

Out[12]:

	Gender	Age	Income(\$)	cluster
0	Male	19	0.000000	1
1	Male	21	0.000000	1
2	Female	20	0.008197	1
3	Female	23	0.008197	1
4	Female	31	0.016393	1

```
In [13]: scaler.fit(df[["Age"]])
    df["Age"]=scaler.transform(df[["Age"]])
    df.head()
```

Out[13]:

```
        Gender
        Age
        Income($)
        cluster

        0
        Male
        0.019231
        0.000000
        1

        1
        Male
        0.057692
        0.000000
        1

        2
        Female
        0.038462
        0.008197
        1

        3
        Female
        0.096154
        0.008197
        1

        4
        Female
        0.250000
        0.016393
        1
```

```
In [14]: km=KMeans()
```

```
In [16]: df["New Cluster"] = y_predicted
df.head()
```

Out[16]:

	Gender	Age	Income(\$)	cluster	New Cluster
0	Male	0.019231	0.000000	1	3
1	Male	0.057692	0.000000	1	3
2	Female	0.038462	0.008197	1	3
3	Female	0.096154	0.008197	1	3
4	Female	0.250000	0.016393	1	0

```
In [17]: df1=df[df["New Cluster"]==0]
    df2=df[df["New Cluster"]==1]
    df3=df[df["New Cluster"]==2]
    plt.scatter(df1["Age"],df1["Income($)"],color="red")
    plt.scatter(df2["Age"],df2["Income($)"],color="green")
    plt.scatter(df3["Age"],df3["Income($)"],color="blue")
    plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",maplt.xlabel("Age")
    plt.ylabel("Income($)")
```

Out[17]: Text(0, 0.5, 'Income(\$)')


```
In [19]: k rng=range(1,10)
         sse=[]
         for k in k rng:
             km=KMeans(n clusters=k)
             km.fit(df[["Age","Income($)"]])
             sse.append(km.inertia_)
             print(sse)
         [23.583906150363607]
         [23.583906150363607, 13.028938428018286]
         [23.583906150363607, 13.028938428018286, 7.49210786858601]
         [23.583906150363607, 13.028938428018286, 7.49210786858601, 6.055697956177862
         61
         [23.583906150363607, 13.028938428018286, 7.49210786858601, 6.055697956177862
         6, 4.713416604872824]
         [23.583906150363607, 13.028938428018286, 7.49210786858601, 6.055697956177862
         6, 4.713416604872824, 3.8591087368887145]
         [23.583906150363607, 13.028938428018286, 7.49210786858601, 6.055697956177862
         6, 4.713416604872824, 3.8591087368887145, 3.0701267041545526]
         [23.583906150363607,\ 13.028938428018286,\ 7.49210786858601,\ 6.055697956177862]
         6, 4.713416604872824, 3.8591087368887145, 3.0701267041545526, 2.6535016786291
         081
         [23.583906150363607, 13.028938428018286, 7.49210786858601, 6.055697956177862
         6, 4.713416604872824, 3.8591087368887145, 3.0701267041545526, 2.6535016786291
         08, 2.329176554466517]
```

```
In [20]: plt.plot(k_rng,sse)
    plt.xlabel("K")
    plt.ylabel("Sum of squared error")
```

Out[20]: Text(0, 0.5, 'Sum of squared error')


```
In [ ]:
```