Assignment1

Name:Kaichen Zhang ID:40000160

Part I: Prolog

Prolog solutions are contained in the zip file.

```
Part II: Knowledge representation Q-2.A
```

```
Answer:
```

```
A: ∀X (isProfessor(X) → isSmart(X))
B: ∀X (isProfessor(X) ∧ depCS(X) → isCrazy(X))
C: isStudent(X) ∧ hasGoodGPA(X) → onDeanList(X)
D: ∃X ∀Y ∀Z (isStudent(X) ∧ likesCourse(Y) → ¬haveAssign(Z))
E: ∃X ∀Y (¬(isProfessor(X) ∧ isSmart(X)) →¬likes(Y,X))
```

Q-2.B

```
Answer:
```

```
A.
1. X {A→X}
2. Y {X ∧ B ∧ E→Y}
3. Z {Y ∧ D→Z}
B.
Goal to prove: Z
L ∧ F→Z
```

 $C \rightarrow L$ C $Y \land D \rightarrow Z$ $X \land B \land E \rightarrow Y$ $A \rightarrow X$ A B E

Sub-goal: Ф

C.

Forward chaining method is more efficient in this case.

```
Q-3.B
```

Answer:

```
A.
```

- 1. member(Tony)
- 2. member(Simon)
- 3. member(Ellen)
- 4. \forall X member(X) \rightarrow biker(X) \vee skier(X) \vee (biker(X) \wedge skier(X))
- 5. $\forall X \text{ biker}(X) \rightarrow \neg \text{likes}(X, \text{rain})$
- 6. \forall X skier(X) \rightarrow likes(X,snow)
- 7. $\forall X \text{ likes(Tony,X)} \rightarrow \neg \text{likes(Ellen,X)}$
- 8. $\forall X \neg likes(Tony,X) \rightarrow likes(Ellen,X)$
- 9. likes(Tony,rain) \wedge likes(Tony,snow)

В.

- 1. member(Tony)
- 2. member(Simon)
- 3. member(Ellen)
- 4a. \neg member(X) \vee biker(X) \vee skier(X) \vee biker(X)
- 4b. \neg member(X) \vee biker(X) \vee skier(X) \vee skier(X)
- 4. \neg member(X) \vee biker(X) \vee skier(X)
- 5. ¬biker(X) ∨¬likes(X,rain)
- 6. \neg skier(X) \vee likes(X,snow)
- 7. ¬likes(Tony,X) ∨¬likes(Ellen,X)
- 8. likes(Tony,X) ∨ likes(Ellen,X)
- 9a. likes(Tony,rain)
- 9b. likes(Tony,snow)

C.

Goal: biker(Ellen) $\land \neg$ skier(Ellen)

Add

10. \neg biker(Ellen) \lor skier(Ellen) to the knowledge base.

Unit Resolution:

* member(Ellen) {Ellen/X} ¬member(X) \vee biker(X) \vee skier(X)

Resolution:

- * skier(Ellen) ∨ biker(Ellen) ⟨ } ¬biker(Ellen) ∨ skier(Ellen)
- * skier(Ellen)

Unit Resolution:

* likes(Tony,snow) {Tony/X} \neg likes(Tony,X) $\lor \neg$ likes(Ellen,X)

Unit Resolution:

- * ¬likes(Ellen, snow) {Ellen/X} ¬skier(X) ∨likes(X,snow)
- * ¬skier(Ellen) {} skier(Ellen)

Φ

Part III: State Space Search

Q-4.A

Answer:

a. The grey blocks are in the open list, the yellow blocks are visited.

b. A* search. Assume the heuristic is the value of direct line distance from current node to the goal.

f(x) = cost(x) + h(x), each step cost 1. The value of f is calculated in the block.

Q-4.B

Answer:

current	Open list	Closed list	
S	B22,A23 ,C27		
В	A23 ,C27,E41,D42	S	
Α	C27,E39,D42	S,B	
С	D37,E39	S,B,A	
D	E39,F45	S,B,A,C	
E	F45	S,B,A,C,D	
F	G49	S,B,A,C,D,E	
G		S,B,A,C,D,E,F	
		S,B,A,C,D,E,F,G	

Solution path is $S \rightarrow C \rightarrow D \rightarrow F \rightarrow G$, cost is 49.

Q-4.C

Answer:

Threshold=8

Open list	Closed list		
S0			
C9,B8,A10	S		
G17, C9,A10	S,B		

Threshold=9

Open list	Closed list
S0	
C9,B8,A10	S
G17,B8,A10	S,C
D16,G17, A10	S,C,B

Threshold=10

Open list	Closed list	
S0		
C9,B8,A10	S	
G17,B8,A10	S,C	
D16,G17, A10	S,C,B	
D16,G17	S,C,B,A	

Threshold=16

Open list	Closed list	
S0		
C9,B8,A10	S	
G17,B8,A10	S,C	
D16,G17, A10	S,C,B	
D16,G17	S,C,B,A	
G17	S,C,B,A,D	

Threshold=17

Open list	Closed list	
S0		
C9,B8,A10	S	
G17,B8,A10	S,C	
D16,G17, A10	S,C,B	
D16,G17	S,C,B,A	
G17	S,C,B,A,D	
	S,C,B,A,D,G	

Find the goal.

Q-4.D

Answer:

a) We consider the child of current node is the right side adjacent node, the child of the last cell is the first cell in the row below. And traverse the path cell by cell, row by row. Start from the left top corner.

Limit = 2

Limit =3

	Completeness	Optimality	Time	Space complexity
BFS	Yes	Yes	O(b ^{d+1})	O(b ^{d+1})
IDS	Yes	Yes	O(b ^d)	O(bd)
backtracking	Yes	No	O(n!)	O(n!)

Q-4.E

Answer:

- a) The initial state is starting from Madrid, the goal state is arriving Bucharest. Action is move from a city to its successors. The state space is the set of all states travelling from Madrid to Bucharest. Its size is (27-1)!.
- b) Search tree for BFS expands 17 nodes.

c) Search tree for DFS expands 22 nodes

d) Search tree for uniform cost search expands 23 nodes.

Uniform cost search Madrid
Bayalona 1471
1272 Lyon Rome 2099
753 fee 542 681/ 1043
2025 Mermon Paris Bordeany Milan Palermo 3142 458/ 444/1753 1814 /189 907
2483 Vienna london Budapert 3569 Athens 4046
2795 Prague pubin alasgon Buchavest
1 7-11
3149 /743 316/ 900 Amsterdam 3545
3892 Copenhagen Belgrade Buchenest 4138
/522 3554 /330 Good
Stockholm 4414 S884 Stia
Frontier

e) Backtracking

Madrid Barcelona Ro me Lyon Bordeaux Paris Munich London Dubin Glasgow Amsterdam Ber hin Copenhagen Prague Stockholm Vienna Budapest Belgrade Bucharest

f) Iterative deepening search.

g) BFS can always find the solution but time and space cost is high. DFS needs little space and can get the solution fast if the branching factor is acceptable. Uniform cost search is kind of the best first search, using the path cost as evaluation function, it's an exhaustive search, and the first solution maybe not the best.

For this problem, iterative deepening is the best way to solve it. Less space and efficient.

If we don't define the loop constraint for the search algorithm, the DFS will get stuck into loops, and may not get solution in reasonable time.