Transformaciones Lineales

UTN FRLP Álgebra y Geometría Analítica

Ing. Viviana CAPPELLO

Sea $T:R2 \rightarrow R2$, la función que a cada (x,y) de R2 le hace corresponder el vector (x,-y) de R2, es decir:

$$T(x,y) = (x,-y)$$

Sean V y W espacios vectoriales, se dice que una T.L., T de V en W es una función que asigna a cada vector $v \in V$, un único vector T(v) $\in W$ y para el cual se cumple:

$$T(u+v) = T(u) + T(v)$$
$$T(\alpha v) = \alpha T(v)$$

Sea una T. L. de V en W. Se llama imagen de T al conjunto:

$$/ \exists v \in V \text{ con } T(v)=w$$

Se llama núcleo de T al conjunto / T(v)=0}

Se verifica que: dim(V)=dim (ker T)+ dim (lm T)

Cambio de base

En R^2 y R^3 se expresa cualquier vector en términos de base canónica, para R^2 :

$$e_1$$
= (1,0) y e_2 =(0,1);

para R^3 :

$$e_1$$
= (1,0,0), e_2 = (0,1,0) y: e_3 = (0,0,1)

Evidentemente, existen infinitas bases de espacios vectoriales de dimensión n, ya que en un espacio vectorial n, n vectores linealmente independientes forman base.

Sean
$$e_1$$
= (1,0) y e_2 =(0,1) y B={ e_1 , e_2 }

Sean v_1 = (1,3) y v_2 = (-1,2) . v_1 y v_2 son linealmente independientes

B={
$$v_1$$
, v_2 } es base de R^2

Sea $x=(x_1;x_2)$ un vector de R^2

$$x = x_1(1,0) + x_2(0,1)$$
$$x = x_1e_1 + x_2e_2$$
$$(x)_{B1} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Como B_2 es otra base de R^2 , \exists escalares C_1 y C_2 , tal que:

$$x = c_1 e_1 + c_2 e_2$$

$$(x)_{B2} = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

$$\overline{e}_1 = (1,0) = \frac{2}{5}(1,3) - \frac{3}{5}(-1,2) = \frac{2}{5}v_1 - \frac{3}{5}v_2$$

$$e_2 = (0,1) = \frac{1}{5}(1,3) + \frac{1}{5}(-1,2) = \frac{1}{5}v_1 + \frac{1}{5}v_2$$
y

$$(e_1)_{B1} = \begin{pmatrix} \frac{2}{5} \\ -\frac{3}{5} \end{pmatrix}$$

$$(e_2)_{B2} = \begin{pmatrix} \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}$$

Entonces $x = x_1e_1 + x_2e_2$

$$x = x_1(\frac{2}{5}v_1 - \frac{3}{5}v_2) + x_2(\frac{1}{5}v_1 + \frac{1}{5}v_2)$$

$$x = (\frac{2}{5}x_1 + \frac{1}{5}x_2)v_{1+}(-\frac{3}{5}x_1 + \frac{1}{5}x_2)v_2$$

Por lo tanto:

$$C_1 = \frac{2}{5}x_1 + \frac{1}{5}x_2$$

$$C_2 = -\frac{3}{5}x_1 + \frac{1}{5}x_2$$

La matriz $\begin{pmatrix} \frac{2}{5} & \frac{1}{5} \\ -\frac{3}{5} & \frac{1}{5} \end{pmatrix}$ se llama matriz de transición de B1 a B2

Ó

matriz de cambio de base.

Teorema

Sea V un espacio vectorial de dimensión n y sea W un espacio vectorial de dimensión m.

Sean
$$B_1 = \{v_1, v_2, \dots, v_n\}$$
 y
$$B_2 = \{w_1, w_2, \dots, w_n\} \Rightarrow \exists \text{ una única matriz } A_T \text{ de}$$

 $A_T(x)_{B1} \Rightarrow \text{matriz asociada a la T. L.}$

 $mxn / (T(x))_{B2} = A_T(x)_{B1}$

Ejercicio:

Sea T:
$$R^3 \rightarrow R^2$$
, dada por:
T(x,y,z)=(2x + y + z; y - 3z)
B₁={(1,0,1); (1,1,0); (1,1,1)}
B₂={(1,-1); (2,3)}

Hallar A_T respecto a B₁ y B₂

<u>Autovalores y Autovectores</u>

Sea A una matriz de nxn. El número λ (real o complejo) se llama **autovalor** de A, si y sólo si existe un vector $v \in (v \lambda v)$, donde v es una matriz columna.

El vector v se llama **autovector** de A correspondiente al autovalor λ .

Ejemplo:

Sea
$$A = \begin{pmatrix} 10 & -18 \\ 6 & -11 \end{pmatrix}$$

$$A\binom{2}{1} = \binom{10}{6} - \binom{-18}{-11} \cdot \binom{2}{1} = \binom{2}{1}$$

 $\lambda_1 = 1$ es el autovalor de A correspondiente al autovector (2,1).

$$A\binom{3}{2} = \binom{10}{6} - \binom{-18}{-11} \cdot \binom{3}{2} = \binom{-6}{-4} = -2\binom{3}{2}$$

 $\lambda_2 = -2$ es el autovalor de A correspondiente al autovector (3,2).

Teorema

Sea A una matriz de nxn. Entonces λ es autovalor de A si y solo si: $P(\lambda)=det(A-\lambda I)=0$

Donde $P(\lambda)=det(A-\lambda I)=0$ recibe el nombre de ecuación característica de A

 $P(\lambda)$ =polinomio característico.

Procedimiento para calcular autovalores y autovectores

- 1)Hallar $P(\lambda) = det(A \lambda I)$
- 2) Hallar las raíces de P
- 3) Resolver el sistema homogéneo (A-I).v=0 con i=1....m

Ejemplo

Sea
$$A = \begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$$

 $P(\lambda)=det(A-\lambda I)=$

$$\begin{pmatrix} 4 - \lambda & 2 \\ 3 & 3 - \lambda \end{pmatrix} = (4 - \lambda)(3 - \lambda) - 6$$
$$= \lambda^2 - 7\lambda + 6$$

de donde $\lambda_1 = 6$ y $\lambda_2 = 1$

• para $\lambda_1 = 6$

(A-6I).v=0
$$\Rightarrow$$
 $\begin{pmatrix} -2 & 2 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$
$$\begin{cases} -2x_1 + 2x_2 = 0 \\ 3x_1 - 3x_2 = 0 \end{cases}$$
 $\therefore x_1 = x_2$

 $v_{1=(1,1)}$ es un autovector correspondiente a $\lambda_1 = 6$

• para $\lambda_2 = 1$

(A-I).v=0
$$\Rightarrow$$
 $\begin{pmatrix} 3 & 2 \\ 3 & 2 \end{pmatrix}$ $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ = 0
$$\begin{cases} 3x_1 + 2x_2 = 0 \\ 3x_1 + 2x_2 = 0 \end{cases}$$
 $\therefore x_1 = -\frac{2}{3}x_2$

 $v_{2=(2,-3)}$ es un autovector correspondiente a $\lambda_1=1$

Ejercicio:

Hallar para la matriz $A = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$ los autovectores y autovalores correspondientes si los tuviera.

