ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 09

WANG YUNLEI

Remark. Let $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$ be subvarieties, $X \times Y$ does not lie rationally in some projective space. Thus we need to find an embedding $\sigma : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ to denote the products of quasi-projective varieties.

Definition 1 ([Segre Embedding).] We put $N := (n+1) \cdot (m+1) - 1$, let x_0, \ldots, x_n be coordinates on \mathbb{P}^n , y_0, \ldots, y_m be coordinates on \mathbb{P}^m . Let $z_{ij}, i = 0, \ldots, n, j = 0, \ldots, m$ be coordinates on \mathbb{P}^N . Define a map

$$\sigma: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N ([x_0, \dots, x_n], [y_0, \dots, y_m]) \to [z_{ij}] = [x_i y_j]$$

 σ is called the Segre embedding.

Definition 2. We define the image of σ as

$$\Sigma := \sigma(\mathbb{P}^n \times \mathbb{P}^m) \subset \mathbb{P}^N.$$

For $i = 0, \ldots, n$, put

$$U_i := \{ [x_0, \dots, x_n] \in \mathbb{P}^n | x_i \neq 0 \}.$$

For $j = 0, \ldots, m$, put

$$U_i := \{ [y_0, \dots, y_m] \in \mathbb{P}^m | y_i \neq 0 \}.$$

And for i = 0, ..., n, j = 0, ..., m, put

$$U_{ij} := \{ [z_{kl}] \in \mathbb{P}^N | z_{ij} \neq = 0 \}.$$

there are isomorphisms:

$$\mathbb{A}^{n} \quad \stackrel{u_{i}}{\underset{\varphi_{i}}{\rightleftarrows}} U_{i}$$

$$\mathbb{A}^{m} \quad \stackrel{u_{j}}{\underset{\varphi_{j}}{\rightleftarrows}} U_{j}$$

$$\mathbb{A}^{N} \quad \stackrel{u_{ij}}{\underset{\varphi_{ij}}{\rightleftarrows}} U_{ij}.$$

Since $\mathbb{P}^N = \bigcup_{i,j} U_{ij}$, we get $\Sigma = \bigcup_{i,j} (\Sigma \cap U_{ij})$, define

$$\Sigma^{ij} = \Sigma \cap U_{ij}$$
.

Define the map σ^{ij}

$$\sigma^{ij}: \mathbb{A}^{n+m} \longrightarrow U_{ij}
(p,q) \longrightarrow \sigma(u_i(p), u_j(q)).$$

By definition we know $\sigma^{ij}(\mathbb{A}^{n+m}) = \Sigma^{ij}$.

Date: June 19, 2017.

(1) $\sigma: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N$ is injective and Σ is closed in \mathbb{P}^N : Theorem 1.

(0.1)
$$\Sigma = Z\left(\left\{z_{ij}z_{kl} - z_{il}z_{kj} \middle| \begin{array}{ll} i, k & = 0, \dots, n \\ j, l & = 0, \dots, m \end{array}\right\}\right).$$

- (2) $\sigma^{ij}: \mathbb{A}^{n+m} \to \Sigma^{ij}$ is an isomorphism
- (3) $\forall q \in \mathbb{P}^m$, the map

$$\begin{array}{ccc} \bar{i_q}: \mathbb{P}^n & \to \mathbb{P}^N \\ p & \to \sigma(p,q) \end{array}$$

is a morphism. Similarly, $j_p = \sigma(p,q) : \mathbb{P}^m \to \mathbb{P}^N$ is a morphism.

(4) Let $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$ be quasi-projective varieties, then $\sigma(X \times Y) \subset \mathbb{P}^N$ is also a quasi-projective variety. What's more, if X and Y are both projective varieties, then $\sigma(X \times Y)$ is a projective variety.

Proof. (1) If $\sigma([a_0, ..., a_n], [b_0, ..., b_m]) = \sigma([a'_0, ..., a'_n], [b'_0, ..., b'_m])$, then $\exists \lambda \in k \setminus \{0\}$, s.t. $\lambda a'_i b'_j = \lambda a_i b_j \ \forall i, j$. Choose i_0, j_0 s.t. $a_{i_0} b_{j_0} \neq 0$, then $\forall i = 0, ..., n$, $a_i b_{j_0} = \lambda a'_i b'_{j_0} \Rightarrow a_i = \left(\frac{\lambda b'_{j_0}}{b_{j_0}}\right) a'_i \Rightarrow [a_0, ..., a_n] = [a_0', ..., a_n']$. The same way can be used to prove $[b_0, \ldots, b_m] = [b_0', \ldots, b_m']$. Let W be the zero set on the right hand side of the equation 0.1, clearly we have the relation $\Sigma \subset W$. Now let $[a_{ij}] \in W$, choose i_0, j_0 s.t. $a_{i_0,j_0} \neq 0$, then we get $[a_{ij}] = [a_{i_0,j_0} a_{ij}] = [a_{i_0,j_0} a_{ij_0}] = [a_{i_0,j_0} a_$ $[a_{ij_0}a_{i_0j}] = \sigma([a_{0j_0}, \dots, a_{nj_0}], [a_{i_00}, \dots, a_{i_0m}]) \subset \Sigma.$ (2) Assume i = j = 0, then

$$\varphi_{00} \circ \sigma^{00}(a_1, \dots, a_n, b_1, \dots, b_m) = \varphi_{00}(\sigma([1, a_1, \dots, a_n], [1, b_1, \dots, b_m]))$$

$$= (z_{ij})_{(i,j) \neq (0,0)}$$

where $z_{i0}=a_i$ for $i=1,\ldots,n,$ $z_{0j}=b_j$ for $j=1,\ldots,m,$ $z_{ij}=a_ib_j$ for $i,j\geq 1$. These are all regular functions, so $\varphi_{00}\circ\sigma^{00}$ is a morphism, so σ^{00} is a morphism. Finally, σ^{00} is an isomorphism because the inverse map is

$$(\sigma^{00})^{-1} = \left(\frac{z_{10}}{z_{00}}, \dots, \frac{z_{n0}}{z_{00}}, \frac{z_{01}}{z_{00}}, \dots, \frac{z_{0m}}{z_{00}}\right).$$

Remark. In fact, Σ^{ij} is a quasi-projective variety. Because \mathbb{A}^{n+m} is irreducible, Σ^{ij} is irreducible, hence a quasi-projective variety.

- (3) Let $q = [b_0, \ldots, b_m]$, then $i_q = [x_i b_j]$, $x_i b_j$'s are homogeneous polynomials, so it is a morphism.
- (4) Let $X \subset \mathbb{P}^n, Y \subset \mathbb{P}^m$ be projective varieties. We can decompose the map into the following:

$$\sigma(X \times Y) = \bigcup_{i,j} \sigma(X \times Y) \cap U_{ij}$$
$$= \bigcup_{i,j} \sigma^{ij} (\varphi_i(X \cap U_i) \times \varphi_j(Y \cap U_j))$$

 $\varphi_i(X \cap U_i)$ and $\varphi_j(Y \cap U_j)$ are closed subsets of \mathbb{A}^n and \mathbb{A}^m respectively, thus $\varphi_i(X \cap U_i) \times \varphi_j(Y \cap U_j)$ is closed in \mathbb{A}^{n+m} . Since σ^{ij} is an isomorphism, then $\sigma^{ij}(\varphi_i(X \cap U_i) \times \varphi_j(Y \cap U_j))$ is closed in $\Sigma^{ij} = \Sigma \cap U_{ij}$. So $\sigma(X \times Y)$ is closed in Σ , hence closed in \mathbb{P}^N because Σ itself is closed. To show its irreducible, we use the lemma 1. Since σ is injective we can endow $\mathbb{P}^n \times \mathbb{P}^m$ with the topological structure of \mathbb{P}^N , hence we can identify $\mathbb{P}^n \times \mathbb{P}^m$ with Σ provided with the topology induced from \mathbb{P}^N . Now we can use the lemma 1, we have known i_q and j_p are continuous, so $\sigma(X \times Y)$ is irreducible. For quasi-projective conditions , we just get the conclusion by simply difference two projective varieties.

Remark. For $X \subset \mathbb{P}^n$ and $Y \subset \mathbb{P}^m$ we can now identify $X \times Y$ with $\sigma(X \times Y) \subset \mathbb{P}^N$. In particular we can identify $\mathbb{P}^n \times \mathbb{P}^m$ with Σ .

From this perspective, part (2) of the theorem just says $U_i \times U_j \subset \mathbb{P}^n \times \mathbb{P}^m$ is open and $\varphi_i \times \varphi_j : U_i \times U_j \to \mathbb{A}^{n+m}$ is an isomorphism.

Proposition 1 (Universal Property). Let X, Y be quasi-projective varieties, then

(1) The projections

$$p_1 = (x_1, \dots, x_n) : X \times Y \to X$$

$$p_2 = (y_1, \dots, y_m) : X \times Y \to Y$$

are morphisms.

(2) Let Z be a variety. The morphism $\varphi: Z \to X \times Y$ are precisely the

$$(f,g): Z \to X \times Y, \quad p \to (f(p),g(p)) \quad \forall p \in Z$$

where $f: Z \to X$ and $g: Z \to Y$ are morphisms. In other words, $\varphi: Z \to X \times Y$ is a morphism if and only if both $p_1 \circ \varphi$ and $p_2 \circ \varphi$ are morphisms.

Proof. (1) It is enough to show $p_1|_{U_i \times U_j}$ is a morphism from $U_i \times U_j$ to U_i . Identify $U_i \times u_j$ with \mathbb{A}^{n+m} and U_i with \mathbb{A}^n , then we can see that p_1 is the same as the projection defined by the proposition ??, so it is a morphism.

(2) \Rightarrow : Let $\varphi: Z \to X \times Y$ be a morphism. Then $f:=p_1 \circ \varphi$ and $g:=p_2 \circ \varphi$ are morphisms.

 \Leftarrow : Let $f: Z \to X$ and $g: Z \to Y$ be morphisms. Define

$$Z^{ij} := f^{-1}(U_i) \cap g^{-1}(U_j).$$

Then (f,g) is a morphism $\Leftrightarrow (f,g)|_{Z^{ij}}$ is a morphism for $i=1,\ldots,n, j=1,\ldots,m$. Consider the following mapping chain

$$Z^{ij} \xrightarrow{(f,g)} (X \times Y) \cap (U_i \times U_j) \xrightarrow{\varphi_i \times \varphi_j} \varphi_i(X \cap U_i) \times \varphi_j(Y \cap U_j) \subset \mathbb{A}^{n+m}.$$

the whole chain $(\varphi_i \circ f, \varphi_j \circ g) : Z^{ij} \to \mathbb{A}^{n+m}$ is a morphism, so (f,g) is a morphism.

Corollary 1. Let X_1, X_2, Y_1, Y_2 be varieties. If $f: X_1 \to Y_1$ and $X_2 \to Y_2$ are morphisms, then the map:

$$\begin{array}{ccc} f \times g : X_1 \times X_2 & \to Y_1 \times Y_2 \\ (p,q) \to (f(p),g(q)) & \end{array}$$

is a morphism. In particular, if X_1 is isomorphic to Y_1 and X_2 is isomorphic to Y_2 , then $X_1 \times X_2$ is isomorphic to $Y_1 \times Y_2$

Proof. We can write $f \times g$ as $f \circ p_1$ and $g \circ p_2$, both $f \circ p_1$ and $g \circ p_2$ are morphisms, so $f \times g = (f \circ p_1, g \circ p_2)$ is a morphism.

1. Conclusions We Need From Previous Lectures

In Lecture 09:

Lemma 1. Let X, Y be irreducible topological spaces. Assume we have a topology on the product $X \times Y$ s.t.:

$$\begin{array}{ll} y_p: & Y \to X \times Y, & q \to (p,q) \ is \ continuous \ \forall p \in X; \\ l_q: & X \to X \times Y, & p \to (p,q) is \ continuous \ \forall q \in Y. \end{array}$$

Then $X \times Y$ is irreducible.

E-mail address: wcghdpwyl@126.com