ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

ОТЧЕТ О ВЫПЛОНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ «АНИМАЦИЯ СИСТЕМЫ» ПО ДИСЦИПЛИНЕ «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА И ОСНОВЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ» ВАРИАНТ ЗАДАНИЯ №12

Выполнил(а) студент группы М8О-207Б-22	
Брюханов З. Д	
	подпись, дата
	Проверил и принял
Вав. каф. 802, Бардин Б.С.	
	подпись, дата
с оценкой	

<u>Задание:</u> построить анимацию движения системы с помощью Python.

К ползуну A массы m_1 , помещенному между вертикальными направляющими, прикреплены две пружины жесткости c каждая, расположенные в вертикальной плоскости (рис. 12). Невесомый стержень AB длины ℓ , на конце которого укреплен груз B массы m_2 , соединен шарнирно с ползуном A. Стержень AB и груз B движутся в вертикальной плоскости. Концы пружин D и E расположены на одной горизонтали, причем DO = OE = a. Когда ползун A находится на линии DE (в точке O), пружины не напряжены.

Текст программы

import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation from matplotlib.patches import Rectangle import sympy as sp """Определение параметров""" а = 10 # Длина маятника lAB = 5 # Длина линии AB sA = 1 # Размер объекта A t = sp.Symbol('t') # Время как символьная переменная

```
# Определение s и phi
xA = 4 * sp.cos(3 * t)
phi = 4 * sp.sin(t - 10)
# Движение объекта В
xB = xA + lAB * sp.sin(phi)
yB = lAB * sp.cos(phi)
# Модули скорости и ускорения объекта В
VmodB = sp.sqrt(sp.diff(xB, t) ** 2 + sp.diff(yB, t) ** 2)
WmodB = sp.sqrt(sp.diff(xB, t, 2) ** 2 + sp.diff(yB, t, 2) ** 2)
"""Построение функций"""
countOfFrames = 200
T start, T stop = 0, 12
T = np.linspace(T start, T stop, countOfFrames)
# Лямбда-функции для численных значений
XA def = sp.lambdify(t, xA)
XB def = sp.lambdify(t, xB)
YB def = sp.lambdify(t, yB)
V mod B def = sp.lambdify(t, V mod B)
WmodB def = sp.lambdify(t, WmodB)
XA = XA \operatorname{def}(T)
XB = XB \operatorname{def}(T)
YB = YB \operatorname{def}(T)
VB = VmodB def(T)
WB = WmodB def(T)
"""Построение графика"""
fig = plt.figure(figsize=(10, 7))
# Один подграфик на всю ширину
ax1 = fig.add subplot(1, 1, 1)
ax1.axis('equal')
ax1.set(ylim=[-a, XA.max() + a], xlim=[min(-lAB, -a), max(lAB, a)])
ax1.set xlabel('ось у')
ax1.set ylabel('ось x')
ax1.invert vaxis()
# Исходные точки D и Е
ax1.plot(-a, XA.min(), marker='o', color='black')
ax1.plot(a, XA.min(), marker='o', color='black')
# Линии, между которыми находится А
ax1.plot([-sA / 2, -sA / 2], [XA.min() - sA, XA.max() + sA], linestyle='-.',
color='black')
ax1.plot([sA / 2, sA / 2], [XA.min() - sA, XA.max() + sA], linestyle='-.',
color='black')
# Начальные положения
# A
PA = ax1.add_patch(Rectangle(xy=[-sA / 2, XA[0] - sA / 2], width=sA, height=sA,
color='green'))
```

```
# B
PB, = ax1.plot(YB[0], XB[0], marker='o', color='r', markersize=10)
# Линия АВ
PAB_{,} = ax1.plot([0, YB[0]], [XA[0], XB[0]], 'black')
# Линии DA и EA
PDA, = ax1.plot([-a, 0], [XA.min(), XA[0]], linestyle='--', color='m')
PEA, = ax1.plot([a, 0], [XA.min(), XA[0]], linestyle='--', color='m')
# Функция для обновления положения
def anima(i):
  PA.set(xy=[-sA/2, XA[i] - sA/2])
  PB.set data(YB[i], XB[i])
  PAB.set data([0, YB[i]], [XA[i], XB[i]])
  PDA.set data([-a, 0], [XA.min(), XA[i]])
  PEA.set data([a, 0], [XA.min(), XA[i]])
  return PAB, PDA, PEA, PA, PB
# Анимационная функция
anim = FuncAnimation(fig, anima, frames=countOfFrames, interval=100,
blit=True)
plt.show()
```

Описание

Программа моделирует движение маятника, состоящего из объектов A и B, и визуализирует его анимацию. Основные шаги включают в себя определение параметров маятника, таких как длина и размеры объектов, а также символьное описание их движения в зависимости от времени.

С использованием библиотеки SymPy производится вычисление координат объектов, их скоростей и ускорений. Полученные выражения используются для построения лямбда-функций, которые численно оценивают значения координат, скоростей и ускорений в течение заданного времени.

Графическое представление осуществляется с использованием библиотеки Matplotlib. Анимация отображает движение объектов А и В, а также линии связи между ними. Визуализация позволяет наглядно изучить динамику маятника, его начальные положения и изменения во времени.

Рассмотрим, что делает каждый блок кода.

В первом блоке кода задаются параметры маятника, такие как длина, размеры объектов и время, представленное символьной переменной.

Во втором блоке выражается движение объекта А с использованием тригонометрических функций.

Третий блок описывает движение объекта B, который связан с объектом A и движется в соответствии с углом наклона маятника.

Четвертый блок выражает модули скорости и ускорения объекта B, используя производные по времени от координат.

Пятый блок создает лямбда-функции для численного вычисления значений координат, скоростей и ускорений на временной сетке.

Шестой блок инициализирует массивы значений координат, скоростей и ускорений объекта В на основе полученных лямбда-функций.

В седьмом блоке строится график, представляющий движение маятника и его динамические характеристики. Объекты А и В отображаются в начальных положениях, после чего начинают анимироваться. Линии связи и маятник анимируются с течением времени.

Результат работы программы

Вывод

В ходе выполнения этой работы я научился моделировать и визуализировать движение маятника с использованием символьных выражений и численных методов. Я познакомился с основами работы с библиотеками SymPy, NumPy и Matplotlib в контексте создания анимации для механической системы. Кроме того, я научились формулировать уравнения движения, рассчитывать скорость и ускорение объектов, а также строить анимации для визуализации динамических процессов.