CRPL-F72
Mational Bureau of Standards
Library, N. W. Bldg.
SEP 8 1950

Reference book not to be taken from the Library.

IONOSPHERIC DATA

ISSUED AUGUST 1950

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

IONOSPHERIC DATA

CONTENTS

			Page
Symbols, Terminology, Conventions	• •	•	2
World-Wide Sources of Ionospheric Data		•	5
Hourly Ionospheric Data at Washington, D. C.	• •	•	6, 12, 19, 46
Ionospheric Storminess at Washington, D. C.	• •	•	7. 31
Sudden Ionosphere Disturbances	• •	•	7. 32
Radio Propagation Quality Figures	• •	•	7. 36
Relative Sunspot Numbers	o •	•	8, 37
Observations of the Solar Corona	• •	•	9, 38
Observations of Solar Flares	0 0	6	10, 44
Indices of Geomagnetic Activity		•	10. 45
Tables of Ionospheric Data		٠	12
Graphs of Ionospheric Data	0 •	•	46
Index of Tables and Graphs of Ionospheric De	ata		
in CRPL-172	9 0	•	66

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1949, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Fifth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Stockholm, 1948, and given in detail on pages 2 to 10 of the report CRPL-F53, "Ionospheric Data," issued January 1949.

For symbols and terminology used with data prior to January 1949, see report IRPL-C61, "Report of International Radio Propagation Conference, Washington, 17 April to 5 May, 1944," previous issues of the F series, in particular, IRPL-F5, CRPL-F24, F33, F50, and report CRPL-7-1, "Preliminary Instructions for Obtaining and Reducing Manual Ionospheric Records."

Following the recommendations of the Washington (1944) and Stockholm (1948) conferences, beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

In addition to the conventions for the determination of medians given in Appendix 5 of Document No. 293 E of the Stockholm conference, which are listed on pages 9 and 10 of CRPL-F53, the following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given on pages 2-9 of CRPL-F53 (Appendixes 1-4 of Document No. 293 E referred to above).

a. For all ionospheric characteristics:

Values missing because of A, B, C, F, L, M, N, Q, R, S, or T (see terminology referred to above) are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count. See CRPL-F38, page 9.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

1. For foF2, as equal to or less than foF1.

2. For h'F2, as equal to or greater than the median.

Values missing because of W are counted:

- For foF2, as equal to or less than the median when it is apparent that h'F2 is unusually high; otherwise, values missing because of W are omitted from the median count.
- 2. For h'F2, as equal to or greater than the median.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of G (no Es reflections observed, the equipment functioning normally otherwise) are counted as equal to or less than the median foE, or equal to or less than the lower frequency count of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread echoes are present.
- b. Omission of values when for is less than or equal to for, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CEPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month		Predi	cted Suns	pot Numbe	E.	
	1950	1949	1948	1947	1946	1945
December		108	114	126	85	38
November		112	115	124	83	36
October		114	116	119	81	23
September		115	117	121	79	22
August		111	123	122	77	20
July	101	108	125	116	73	
June	103	108	129	112	67	
May	102	108	130	109	67	
April	101	109	133	107	62	
March	103	111	133	105	51	
February	103	113	133	90	46	
January	105	112	130	88	42	

WORLD + WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 40 and figures 1 to 80 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics: Watheroo, West Australia

French Ministry of Naval Armaments (Section for Scientific Research):
Dakar, French West Africa
Fribourg, Germany

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany: Lindau/Harz, Germany The Boyal Netherlands Meteorological Institute: De Bilt. Holland

All India Radio (Government of India). New Delhi, India:
Bombay, India
Delhi, India
Madras, India
Tiruchy (Tiruchirapalli), India

Radio Regulatory Agency, Tokyo, Japan:
Akita, Japan
Tokyo, Japan
Wakkanai, Japan
Tamagawa, Japan

Radio Wave Research Laboratories, Mational Taiman University, Taipeh, Formesa, China:
Formesa, China

New Zealand Department of Scientific and Industrial Research: Christchurch, New Zealand (Canterbury University College Observatory) Rarotonga I.

Morwegian Defense Research Establishment, Kjeller per Lillestrom, Worway: Oslo, Norway

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

National Bureau of Standards (Central Radio Propagation Laboratory):
Baton Rouge, Louisiana (Louisiana State University)
Guam I.
Huancayo, Peru (Instituto Geofisico de Huancayo)
Naui, Hawaii
San Francisco, California (Stanford University)
San Juan, Puerto Rico (University of Puerto Rico)
Trinidad, British West Indies
Washington, D. C.
White Sands, New Mexico

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 41 to 52 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined

by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at a new location, Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 53 presents ionosphere character figures for Washington, D. C., during July 1950, as determined by the criteria given in the report IEPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

SUDDEN IONOSPHERE DISTURBANCES

Tables 54 through 59 list the sudden ionosphere disturbances observed at Ft. Belvoir, Virginia, July 1950; Brentwood and Somerton, England, July 1950; Point Reyes, California, July 1950; Colombo, Ceylon, May 1950; Riverhead, New York, July 1950; and Lindau/Harz, Germany, June 1950, respectively.

RADIO PROPAGATION QUALITY FIGURES

Table 60 gives provisional radio propagation quality figures for the North Atlantic and North Pacific areas, for 01 to 12 and 13 to 24 GCT, June 1950, compared with the CRPL daily radio disturbance warnings, which are primarily for the North Atlantic paths, the CRPL weekly radio propagation forecasts of probable disturbed periods, and the half-day Cheltenham, Maryland, geomagnetic K-figures.

The radio propagation quality figures are prepared from radio traffic and ionospheric data reported to the CRPL, in a manner basically the same as that described in IRPL-R31, "North Atlantic Radio Propagation Disturbances, October 1943 through October 1945," issued February 1, 1946. The scale conversions for each report are revised for use with the data beginning January 1948, and statistical weighting replaces what was, in effect, subjective weighting. Separate master distribution curves of the type described in IRPL-R31 were derived for the part of 1946 covered by each report; data received only since 1946 are compared with the master curve for the period of the available data. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. Each report is given a statistical weight which is the reciprocal

of the departure from linearity. The half-daily radio propagation quality figure, beginning January 1948, is the weighted mean of the reports received for that period.

These radio propagation quality figures give a consensus of opinion of actual radio propagation conditions as reported by the half day over the two general areas. It should be borne in mind, however, that though the quality may be disturbed according to the CRPL scale, the cause of the disturbance is not necessarily known. There are many variables that must be considered. In addition to ionospheric storminess itself as the cause. conditions may be reported as disturbed because of seasonal characteristics such as are particularly evident in the pronounced day and night contrast over North Pacific paths during the winter months, or because of improper frequency usage for the path and time of day in question. Insofar as possible. frequency usage is included in rating the reports. Where the actual frequency is not shown in the report to the CRPL, it has been assumed that the report is made on the use of optimum working frequencies for the path and time of day in question. Since there is a possibility that all disturbance shown by the quality figures is not due to ionospheric storminess alone, care should be taken in using the quality figures in research correlations with solar, auroral, geomagnetic, or other data. Nevertheless, these quality figures do reflect a consensus of opinion of actual radio propagation conditions as found on any one half day in either of the two general areas.

RELATIVE SUNSPOT NUMBERS

Table 61 presents the daily American relative sunspot number, RA. computed from observations communicated to CHPL by observers in America and abroad. Beginning with the observations for January 1948, a new method of reduction of observations is employed such that each observer is assigned a scale-determining "observatory coefficient," ultimately referred to Zurich observations in a standard period, December 1944 to September 1945, and a statistical weight, the reciprocal of the variance of the observatory coefficient. The daily numbers listed in the table are the weighted means of all observations received for each day. Details of the procedure are given in the Publication of the Astronomical Society of the Pacific, issued February 1949, in an article entitled "Reduction of Sunspot-Number Observations. The American relative sunspot number computed in this way is designated RA. It is noted that a number of observatories abroad, including the Zurich observatory, are included in RA. The scale of RA was referred specifically to that of the Zurich relative sunspot numbers in the standard comparison period; since that time, RA is influenced by the Zurich observations only in that Zurich proves to be a consistent observer and receives a high statistical weight. In addition this table lists the daily provisional Zurich sunspot numbers, Rz.

OBSERVATIONS OF THE SOLAR CORONA

Tables 62 through 64 give the observations of the solar corona during July 1950 obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 65 through 67 list the coronal observations obtained at Sacramento Peak, New Mexico, during June 1950, derived by the High Altitude Observatory from spectrograms taken by Harvard University as a part of its performance of an Air Materiel Command research and development contract administered by the Air Force Cambridge Research Laboratories. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 62 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 63 gives similarly the intensities of the first red (6374A) coronal line; and table 64, the intensities of the second red (6702A) coronal line; all observed at Climax in July 1950.

Table 65 gives the intensities of the green (5303A) coronal line; table 66, the intensities of the first red (6374A) coronal line; and table 67, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in June 1950.

The following symbols are used in tables 62 through 67: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

Coronal tables in this series through F69, May 1950, designated the nominal wave length of the far red coronal line as 6704A; however, 6702A appears to be a more reliable value and is used in later issues. The two are found almost interchangeably in the literature.

OBSERVATIONS OF SOLAR FLARES

Table 68 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U.S. Naval, Wendelstein, Kanzel, and High Altitude at Boulder, Colorado. The remainder report to Meudon (Paris), and the data are taken from the Paris URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Boulder, Colorado are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total projected area, and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 69 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary mean 3-hourly K-indices, Kw; (2) preliminary international character-figures, C; (3) geomagnetic planetary three-hour-range indices, Kp; (4) magnetically selected quiet and disturbed days.

Kw is the arithmetic mean of the K-indices from all reporting observatories for each three hours of the Greenwich day, on a scale 0 (very quiet) to 9 (extremely disturbed). The C-figure is the arithmetic mean of the subjective classification by all observatories of

each day's magnetic activity on a scale of O (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme cutlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity.

Ep is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 to 9, expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5 to 12 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K. 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Micctricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44 and 1949, in these CEPL-F reports, F65-67; for 1950, monthly in F68 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterisation of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles Nw, C and selected days. The Chairman of the Committee computes the planetary index.

Table 1

Washing	ton, D.	c. (38.7 ⁰	N. 77.1	DW)				July 1950
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	5.2					3.0	2.8
01	280	4.8						2.9
02	280	4.5					2.5	2.9
03	280	3.9					2.3	2.9
04	280	3.5					2.6	2.9
05	280	3.7			(120)	(1.7)	1.8	3.0
06	300	4.7	230	3.5	(110)	2.3	4.3	3.0
07	380	5.3	230	4.2	110	2.7	4.1	2.9
08	360	5.7	220	4.5	110	3.1	4.8	2.9
09	370	5.9	200	4.6	100	3.3	5.4	2.9
10	380	6.0	200	4.8	(100)	3.4	6.8	8.8
11	400	6.0	200	4.8	(100)	3.5	5.4	2.8
12	420	6.0	200	4.8	(100)	3.6	5.5	2.7
13	400	6.1	200	4.8	(100)	3.5	5.1	2.7
14	380	6.2	200	4.8	(100)	(3.5)	4.2	2.8
15	400	6.4	210	4.7	(110)	3.4	4.6	2.8
16	360	6.4	220	4.6	110	3.2		2.8
17	340	6.6	220	4.3	110	3.0		2.8
18	300	6.8	240	(3.8)	110	2.5	3.8	2.9
19	270	6.9			(120)	1.7	4.2	2.9
20	260	(7.1)					3.5	(2.9)
21	270	(6.6)					3.8	(2.8)
22	280	(6.0)					3.0	(2.8)
23	290_	(5.5)						(2.8)

Time: 75.00W.
Swesp: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 3

ian Fr	ancisco,	Californ	ia (37.4	°N, 122.	SoM)			Juns 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	5.9					4.4	2.8
01	300	5.6					3.0	2.8
02	300	5.4					2.8	2.7
03	290	5.1					2.9	2.8
04	300	4.8					3.1	2.8
Oō	300	5.0					3.2	2.8
06	340	5.7	250	3.7	120	2.3	3.7	2.9
07	380	6.2	240	4.4	120	2.8	5.0	2.8
08	380	6.6	230	4.6	120	3.9	5.3	2.7
09	400	7.1	210	4.8	120	3.9	5.2	2.7
10	420	7.1	210	5.0	120	4.0	5.5	2.6
11	410	7.3	210	5.0	120	4.0	5.4	2.6
12	410	7.4	250	5.0	120	4.0	5.6	2.6
13	380	7.6	230	5.0	150	4.0	4.8	2.6
14	380	7.5	220	5.0	120	3.8		2.8
15	350	7.4	230	4.9	120	3.9		2.8
16	340	7.2	240	4.7	120	3.6	4.4	2.9
17	340	7.2	240	4.5	120	2.9	4.4	2.9
18	300	7.4	240	4.0	120	2.5	4.1	3.0
19	260	7.2					3.8	3.1
50	240	6.8					3.6	3.0
21	260	6.6					3.8	2.9
22	280	6.0					5.3	2.8
23	300	5.8					4.9	2.8

Tims: 120.0°W. Swsep: 1.3 Mc to 18.0 Mc in 4 minutss.

Table 5

Baton 1	Bouge, Lo	uisiana	(30.5°N,	91.2°W)				June 1950
Time	h'F2	foF2	h'Fl	foFl	h [®] E	foE	fEs	(M3000)F2
00	330	6.1						2.7
01	310	6.0						2.8
0.2	320	5.6						2.8
03	320	5.2						2.8
04	320	4.8						2.8
0.5	310	4.7						2.9
06	300	5.8	270					2.9
07	330	6.4	240		130	2.8	4.0	2.8
08	360	6.6	240	4.8	120	(3.2)	4.5	2.8
09	390	7.7	230	5.0	120	(3.4)	4.3	2.7
10	390	8.0	230	5.1	120	(3.5)	4.2	2.7
11	410	8.2	230	5.2	120	(3.6)		2.6
12	420	8.2	230	5.2		(3.5)		2.6
13	430	8.7	250	5.2		(3,5)		2.6
14	390	8.7	260	5.1		(3.6)		2.7
15	380	8.6	270	4.9	120	(3.5)		2.6
16	370	8.4	250	4.7	120	3.3		2.7
17	350	8.2	260		120	(3.0)		2.7
18	310	8.3	270		130		3.9	2.8
19	280	8.0					3.2	2.8
20	280	7.6					3.7	2.8
21	290	7.0						2.8
22	300	6.4						2.7
23	320	6.0						2.7

Time: 90.00 %. Swsep: 2.12 Mc to 14.1 Mc in 5 minutss. smtomatic operation.

Table 2

Oelo, N	iorway (60	0.0°N, 1	1.0°E)					June 1950
Time	h¹F2	foF2	h'Fl	foFl	h t E	foE	fEs	(M3000)F2
00	270	6.5					2.4	(2.8)
01	280	6.2					2.7	(2.8)
02	280	5.8					2.9	(2.8)
03	295	5.9	275	2.5	150	1.5	3.3	(2.7)
04	300	5.9	250	3.2	120	1.9	3.5	2.8
05	330	6.1	230	3.8	110	2.3	3.4	2.8
06	360	6.0	230	4.1	105	2.6	3.5	2.8
07	340	6.4	550	4.4	105	2.9	3.6	2.8
08	360	6.4	210	4.7	100	3.1	3.7	2.8
09	350	7.0	205	4.8	100	3.3	3.8	2.8
10	335	6.9	205	4.9	100	3.3	4.8	2.8
11	350	6.7	205	5.0	100	3.4	5.0	2.9
12	380	6.6	200	5.0	100	3.4	3.9	2.8
13	365	6.6	200	5.0	100	3.4	4.0	2.8
14	370	6.7	200	5.0	100	3.4	3,8	2.8
15	350	6.5	210	5.0	100	3.3	3.8	2.8
16	355	6.4	210	4.7	100	3.2	3.8	2.9
17	350	6.5	215	4.5	105	3.0	3.6	2.9
18	310	6.7	230	4.3	105	2.8	3.6	2.9
19	305	6.8	240	3.9	110	2.4	3.6	3.0
20	265	6.8	245	(3.3)	115	2.0	3.9	3.0
21	260	7.0	****		120	1.6	3.4	(3.0)
22	250	6.7					2.4	(2.9)
23	260	6.8					2.1	(8.8)

Time: 15.0°E.

Sweep: 1.3 Mc to 14.0 Mc in 8 minutes, automatic operation; supplementary recorder, 1.6 Mc to 10.0 Mc.

Table 4

White	Sands, New	Мвжісо	(32.3°N,	106.50	W)			June 1950
Time	h¹F2	foF2	h'Fl	foFl	h¹E	f'oE	fEs	(M3000)F2
00	300	6.0					4.2	2.6
01	290	5.9					3.5	2.7
02	280	5.7					3.8	2.7
03	280	5.4					3.0	2.7
04	280	5.1					3.2	2.7
05	280	5.0				make or	4.3	2.8
06	240	5.9	240		120	(2.3)	5.2	2.8
07	330	6.7	230	4.4	(110)	(8.8)	5.6	2.7
80	330	7.4	550	4.7	110	(3.1)	6.4	2.7
09	340	7.6	210	4.9	110	(3.4)	5.7	2.7
10	380	7.8	210	5.1	110	(3.7)	5.7	2.6
11	400	8.0	210	5.2	110	(3.8)	5.4	2.5
12	400	8.2	550	5.2	110	(3.9)	5.5	2.6
13	380	8.7	550	5.2	110	(3.9)	5.0	2.6
14	360	8.6	550	5.1	110	3.8	5.4	2.6
15	360	8.4	220	5.0	110	3.6	5.4	2.6
16	340	8.3	550	4.8	110	3.3	5.0	2.7
17	320	8.1	240	4.4	110	(3.0)	4.8	2.8
18	300	8.0	240	- mage	(110)	(2.4)	4.2	2.8
19	260	8.0					3.8	2.9
20	240	7.7					3.0	2.9
21	270	6.8					3.6	2.7
22	280	6.0					3.9	2.7
23	300	6.0					3.6	2.6

Time: 105.0°W. Swesp: 0.8 Mc to 14.0 Mc in 2 minutes.

Table 6

Maui, i	Hawaii (2	0.8°N, 156	5.5°W)					June 1950
Time	h!F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	290	8.6						2.8
01	280	8.4						2.9
02	260	8.0						3.0
03	260	7.0						3.0
04	260	6.2						2.9
05	280	6.0						2.8
06	260	6.3			130			2.9
07	240	6.6	230		120	(2.7)	4.0	2.8
08	340	7.8	550	4.9	110	(3.0)	5.2	2.6
09	390	8.6	210	4.9	110	3.4	4.9	2.4
10	420	9.3	210	5.1	110	3.6	5.3	2.4
11	410	10.0	210	5.2	110	3.7	5,6	2.5
12	400	10.6	310	5.2	110	(3.8)	5.4	2.6
13	370	11.2	210	5.2	110	(3.8)	4.6	2.6
14	360	11.6	210	5.1	110	3.8	5.0	2.7
15	350	11.8	220	5.0	110	3.6	5.0	2.8
16	320	11.9	550	4.8	110	3.4	4.9	2.9
17	300	12.0	230	4.4	110	3.0	4.4	2.9
18	270	11.4	240		110	(2.3)	3,9	3.0
19	260	10.4					3,2	3.0
50	260	9.8					3.0	2.9
21	280	9.3					2.7	2.8
55	290	9.2						2.8
23	300	8.8						2.8

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 7

Sen Jua	an, Puert	o Rico	(18.4°N,	66.1°W)				June 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
OC	260	9.4						2.8
01	240	8.9						2.9.
02	250	8.0						2.8
03	250	(7.3)						2.8
04	260	7.2						2.8
05	250	6.4						2.9
06	240	6.2						2.9
07	230	(7.2)						(2.9)
08	280	8.1		4.7		(3.3)	4.2	2.9
09	300	8.8		5.0		3.5	4.4	2.9
10	330	9.5		5.3			4.1	2.8
11	330	10.0		(5,3)			5.0	2.8
12	320	10.5		5.3			4.9	2.9
1.3	(340)	(11.2)		(5.2)			5.3	(2.7)
14	300	11.5		5.3			5.6	2.8
15	300	11.7		5.1		3.7	5,2	2.9
16	290	11.3		4.9		3.5	4.9	3.0
17	280	(10.2)					4.6	2.8
18	250	10.0					4.2	5.8
19	240	(9.8)						(2.8)
20	260	(9.4)						(8.8)
21	260	(9.2)						(2.8)
22	270	(9.3)						(2.8)
23	270	9.4						2.8

Time: 60.0°W.
Sweep: 2.8 Mc to 13.0 Mc in 9 minutes, automatic operation; supplemented by manual operation.

Table 9

					_			
Нимпсар	yo, Peru	(13.0°S,	75.3°W)					June 1950
Time	h!F2	foF2	h'Fl	foFl	h ^r E	foE	f`Es	(M3000)F2
00	230	7.0						3,0
01	230	6.6						3.0
02	220	6.1						3.1
03	240	5.4						3.1
04	230	4.8						3.1
05	240	4.0						3.1
06	290	4.4			100	1.2	3.0	2.9
07	240	7.0			100	2.3	4.3	2.9
08	270	8.6	230	4.9	100	2.9	4.9	2.8
09	300	9.0	210	5.0	100		8.7	2.5
10	310	9.0	210	5.1	100		10.6	2.5
11	320	8.8	200	5.0	100		10.7	2.4
12	320	8.7	200	5.0	100		10.8	2.4
13	320	8.8	200	5.0	100		10.8	2.4
14	310	8.9	200	4.8	100		10.7	2.4
15	300	8.9	210	4.8	100		9.9	2.4
16	240	8.9	230	4.8	100	2.7	6.2	2.4
17	250	9.1			100	2.0	4.2	2.5
18	500	8.8						2.4
19	300	8.4						2.4
20	280	8.4						2.5
21	250	8.4						2.7
22	230	7.8						2.8
23	230	7.3						2.9

Time: 75.0°%. Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation.

Table 11

				14020				
Lindau	/Harz, Ge	rmany (5	1.6°N. 1	0.1°E)				May 1950
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	280	6.1					2.0	
01	290	5.9					2.2	
02	300	5.5					2.2	
03	290	5.2					2.1	
04	280	5.0				E	2.5	
05	270	5.5	270		110	1.8	3.2	
06	270	5.9	250	3.9	100	2.4	4.2	
07	310	6.2	230	4.2	100	3.8	4.4	
08	330	6.6	230	4.6	100	3,1	4.5	
09	360	7.0	220	4.7	100	3.3	4.7	
10	350	7.4	210	4.9	100	3.4	4.9	
13.	340	7.6	210	5.0	100	3.5	4.6	
12	370	7.7	220	5.1	100	3.6	4.6	
13	360	7.6	210	5.1	100	3.6	5.2	
14	360	7.6	220	5.1	100	3.5	4.6	
15	320	7.6	220	4.9	100	3.4	4.1	
16	310	7.8	220	4.8	100	3.3	4.0	
17	290	7.8	230	4.4	100	3.0	3.5	
18	260	8.0	250		100	2.6	3.6	
19	260	8.3			100	2.1	3.7	
20	250	8.1				E	3.0	
21	250	7.7					2.6	
22	260	7.1					2.5	
23	280	6.7					2.2	

Time: 15.0°E. Sweep: 1.0 Mc to 16.0 Mc in 8 minutes.

Table 8

Trinida	d. Brit.	West In	dies (10	.6°N, 61	.2°W)			June 1950
Time	h¹F2	foF2	h'Fl	foFl	h'E	fcE	fEs	(M3000)F2
00	240	10.5						3.2
01	230	9.4						3.1
02	240	8.5						3.1
03	240	8.0						3.2
04	220	7.4						3.2
05	240	6.9						3.2
06	240	6.4			100	1.8	2.6	3.1
07	220	7.4	210		100	2.6	3.4	3.2
08	250	8.0	200	4.7	100	3.2	4.3	3.0
09	300	8.8	200	5.1	100	3.6	4.6	2.8
10	320	9.8	200	5.2	100	3.8	4.8	2.7
11	340	10.8	220	5.3	100	3.9	5.0	2.8
12	340	11.4	210	5.3	100	4.0	5.1	2.8
13	320	12.0	200	5.2	100	3.9	5.2	2.9
14	320	12.4	210	5.2	100	3.8	5.5	2.9
15	320	12.2	200	5.1	100	3.6	5.0	2.9
16	300	12.2	320	5.0	100	3.3	5.4	2.9
3.7	270	11.6	320	4.4	100	2.8	4.4	2.9
1.8	240	11.2			300	2.3	4.1	2.9
19	260	10.8					4.2	2.9
20	270	10.9					3.0	2.8
21	260	11.4					2.0	2.9
22	260	11.3					2.3	3.0
23	240	11.0					2.0	3.1

Time: 60.0°W. Sweep: 1.2 Mc to 18.0 Mc, manual operation.

Table 10

Time h'F2 foF2 h'F1 foF1 h'D fo5 fB5 (h 00 305 6.2 01 310 5.7 02 300 5.4 03 305 5.2 04 300 5.4 300 2.9 175 1.8 3.3 2 05 300 5.9 250 3.5 120 2.1 3.6 2 06 310 6.2 230 4.0 105 2.6 3.9 2 07 340 6.9 220 4.5 100 3.0 4.6 2 08 350 6.9 220 4.7 100 3.2 4.7 09 350 7.3 220 5.0 100 3.5 4.9 2 10 385 7.6 210 5.0 100 3.5 4.9 2 11 380 7.6 220 5.2 100 3.5 4.9 2 12 390 7.3 210 5.2 100 3.5 4.9 2	1950 3000)F2 .5 .5
00	.5 .5
01	.5 .6
02	, 6
03 305 5,2 2,7 2 04 300 5,4 300 2,9 175 1,8 3,3 2 05 300 5,9 250 3,5 120 2,1 3,6 2 06 310 6,2 230 4,0 105 2,6 3,9 2 07 340 6,9 220 4,5 100 3,0 4,6 2 08 350 6,9 220 4,7 100 3,2 4,7 2 09 350 7,3 220 5,0 100 3,4 4,6 2 10 385 7,6 210 5,0 100 3,5 4,9 2 11 380 7,6 220 5,2 100 3,5 4,9 2 12 390 7,3 210 5,2 100 3,5 4,6 2	
05 300 5,4 300 2,9 175 1.8 3.3 2 05 300 5,9 250 3,5 120 2,1 3,6 2 06 310 6,2 330 4,0 105 2,6 3,9 2 07 340 6,9 220 4,5 100 3,0 4,6 2 08 350 6,9 220 4,7 100 3,2 4,7 2 09 350 7,3 220 5,0 100 3,4 4,6 2 10 385 7,6 210 5,0 100 3,5 4,9 2 11 380 7,6 220 5,2 100 3,5 4,9 2 12 390 7,3 210 5,2 100 3,5 4,9 2	~
05 300 5.9 250 3.5 120 2.1 3.6 2 06 310 6.2 230 4.0 105 2.6 3.9 2 07 340 6.9 220 4.5 100 3.0 4.6 2 08 350 6.9 220 4.7 100 3.2 4.7 2 09 350 7.3 220 5.0 100 3.5 4.6 2 10 385 7.6 210 5.0 100 3.5 4.9 2 11 380 7.6 220 5.2 100 3.5 4.9 2 11 390 7.3 210 5.2 100 3.5 4.7 2	. 0
06	7
07 340 6.9 220 4.5 100 3.0 4.6 2 08 350 6.9 220 4.7 100 3.2 4.7 2 09 350 7.3 220 5.0 100 3.4 4.6 2 10 385 7.6 210 5.0 100 3.5 4.9 2 11 380 7.6 220 5.2 100 3.5 4.7 2 12 390 7.3 210 5.2 100 3.5 4.6 2	8
08	. 8
09 350 7,3 220 5,0 100 3,4 4,6 2 10 385 7,6 210 5,0 100 3,5 4,9 2 11 380 7,6 220 5,2 100 3,5 4,7 2 12 390 7,3 210 5,2 100 3,5 4,6 2	. 8
10 385 7,6 210 5,0 100 3,5 4,9 2 11 380 7,6 220 5,2 100 3,5 4,7 2 12 390 7,3 210 5,2 100 3,5 4,6 2	. 8
11 380 7.6 220 5.2 100 3.5 4.7 2 12 390 7.3 210 5.2 100 3.5 4.6 2	. 8
12 390 7.3 210 5.2 100 3.5 4.6 2	.7
	.7
13 350 7.6 220 5.0 100 3.5 4.2 2	,7
	.7
	.7
15 325 8.0 225 4.8 100 3.3 3.9 2	. 8
	. 8
	. 8
18 285 8.4 250 3.5 110 2.3 3.6 2	. 8
	.9
	. 8
	.7
	. 6
23 300 6.4 2.1 2	.6

Time: 0.0°. Sweep: 1.4 Mc to 16.0 Mc in 7 minutes, automatic operation.

Table 12

Formosa	, China	(25.0°N,	121.0°E)				May 1950
Time	h+F2	foF2	h'Fl	foFl	h1E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
0.5								
06								
07								
08	280	9.4	240	4.9	120	3.3	5.4	3.0
09	300	9.8	240	5.8	720	3.5	5.6	2.8
10	320	11.8	250	5.8	120	4.0		2.3
11	330	12.8	550	5,8	120	3.3	5.4	2.5
12	320	14.3	220	6.J	110	3.8	4.8	2.8
13	320	14.4	210	6.0	120	3.6		2.7
14	320	14.4	240	5.7	120	3.7	5,2	2.8
15	320	14.4	550	5.4	120	4.0	4.8	2.9
16	320	14.4	240	5.7	120	3.8		2.9
17	280	14.4	240	4.9	120	3,3		3.2
18	280	14.4		5.6	120		5.4 4.5	3.2 3.2
19	260	14.4					4.5	0,2
20								
25								
23								

Time: 120.0°E. Sweep: 2.5 Mc to 14.5 Mc in 15 minutes, manual operation.

Ta	ъl	е	1	3

			-					
Guam I	. (13.6°	N. 144.9°	E)					May 1950
Time	h'F2	foF2	n'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	(10.9)						(2.7)
01	260	(10.7)						(2,9)
02	250	9.8						3.0
03	250	9.3						3.1
04	240	8.3					4.0	3.1
05	230	6.2					4.0	3.1
06	250	6.7					5.5	3.0
07	250	8.4			110	2.9	7.3	3.0
08	250	9.5	250	~	110	(3,2)	8.8	2,9
09	260	10.8	220		110	(3.5)	8.5	2.6
10	300	10.8	220		110	3.8	8.8	2.5
11	320	11.1	550		110	(4.0)	8.5	2.4
12	340	12.0	250	5.3	110	(4.0)	8.8	2.5
13	340	(12.6)	210	~~~	110	(4.0)	8.7	(2.4)
14	340	12.8	550		110	3.9	7.0	2.4
15	340	(13.0)	550	fire againsts	110	3.7	4.9	(2.5)
16	340	(13.0)	230		110	3,4	6.0	(2.4)
17	250	(13.0)	240	-	110	2.9	7.0	(2.4)
18	270	(13.0)			120		6.2	(2.4)
19	310	(12.4)					4.6	(2.4)
50	350	(11.6)					1.7	(2.2)
21	360	(11.1)						(2.3)
22	350	(10.8)					3.6	(2.4)
23	350	(10.4)					2.1	(2.5)

Time: 150.0°E. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

Table 15 Capatown, Union of S. Africa $(34.3^{\circ}5, 18.3^{\circ}2)$ May 1950										
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	May 1950 (M3000)F2		
00		2,6	11 2 2	1011	11 2	200	120			
01	(280)	2.8						2.8		
02	(300)	2,8						2.8 (8.S)		
03	(380)	(3.0)								
04	(280)	(3.1)						(2.8) (2.9)		
05	(270)	(3,1)						(3.0)		
06	(250)	(3.0)						2.9		
07	(240)	(3.1)				B		3.0		
08	220	6,5			130	(2.1)		3.4		
09	230	8.7	240		110	(2.7)		3.4		
10	240	(10.0)	230		110	(3,1)		(3.3)		
11	240	(10.5)	220		110	(3,4)		(3,2)		
12	240	(11.1)	550		110	(3.5)		(3.2)		
13	240	(11.0)	230		110	(0,0)		(3.1)		
14	250	(11.6)	230		110	(3,4)		(3.0)		
15	250	(12.0)	240		110	(3.2)		(3.0)		
16	240	(11.9)	240		110	(3.0)		(3.1)		
17	230	(10.9)			120	2.4		(3.1)		
18	550	(10.0)			110	(1.8)		(3.2)		
19	210	7.5			~~~			3.2		
50	550	5.4						3.3		
SJ	220	(3.8)						3.4		
\$5	(240)	(2.8)						(3.3)		
23	(260)	(2.6)						(3.1)		

Time: 30.0°E, Sweep: 1.0 Mc to 15.0 Mc in 7 seconde.

Table 17

Tokyo,	Japan (3	5.7°N, 1	39.5°E)					April 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	7.5					2.4	2.8
01	280	7.4					2.2	2.8
02	260	7.0					2.2	2.9
03	250	6.6					2.0	2.8
04	260	6.2					2.0	2.7
05	260	6.5			120	1.4		2.9
06	230	8.3			100	2.4		3,2
07	230	9.4			100	2.9		3,3
08	230	9.9	220		100	3,4		3,2
09	250	10.5	220		100	3.5	4.8	3.1
10	260	11.4	210	~	100	3.7	4.5	2.9
11	280	12.2	210	no de un	100	3.8	4.8	2,9
12	290	12.6	550	-	100	3.8	4.6	2.9
13	290	12.7	220		100	3.8	4.6	2.9
14	280	12.6	220		100	3.6		2.9
15	280	12.6	220		100	3,5		3.0
16	260	12.2	230		100	3.2	3.8	3.0
17	240	11.8			100	2.6	3.5	3.1
18	230	11.2			110	1.9	3,2	3,2
19	220	9.2					3.0	3,2
50	230	7.9					2.6	3.0
21	270	7.4					2.4	2.7
22	290	7.8					2.0	2.8
23	290	7.8					2.4	2,8

Time: 135,0°E, Sweep: 1.0 Me to 17.0 Me in 15 minutes, manual operation.

Johanne	sburg. Un	ion of	S. Africa	(26.20	8, 28.0	°E)		May 1950
Time	h'F2	foF2	h'Fl	foFl	h E	foE	fEs	(M3000)F2
00	(280)	2.9						8.8
01	(300)	3.0						2.8
02	(280)	3.0						2.9
03	(260)	3.1						3.0
04	(250)	3.0						3.0
05	(230)	3.0					1.9	2.9
06	(240)	3.0						2.9
07	230	6.7				2.1		3.3
08	230	9.1			110	2.7		3.4
09	240	10.3	550	~	110	(3.1)		3.2
10	250	11.4	220		110	3.4		3.2
13	250	11.3	550	-	110	(3.6)		3.1
12	250	11.4	550		110	(3.6)	3.7	3.0
13	260	11.5	550		110	3.6	3.8	2.9
14	260	11.5	550	4.3	310	(3.6)	3.6	2.9
15	250	11.8	\$30		110	(3.2)	3.7	2.9
16	240	11.4	230		120	(2.8)	3.0	3.0
17	230	11.0			100	2.1		3.1
18	280	9.7						3.2
19	220	7.3						3.2
50	230	5.7						3,2
21	230	4.4						3.3
22	230	3.2						3.2
23	(260)	3.0						2.9

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 eeconds.

Table 16

Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F
			II. E.T.	1011	II. E	100		
00	300	7.3					2,2	2,6
01	300	7.2					2, 2	2.6
02	280	7.0						2.7
03	270	6.7						2.7
04	270	6.2						2.6
05	280	6.6			150	1.6		2.8
06	240	8.4			120	2.4		3.1
07	230	9.2			110	3.0		3.1
08	250	9.6	240		110	3,3		3.0
09	260	10.5	230		110	3,5		3.0
10	260	11.0	230		110	3.6		2.9
11	290	11.6	220	~	110	3.7		2.8
12	290	12.2	550		110			2,8
13	300	12.0	240		110	3.6		2.8
14	290	12.0	240		110	3.6		8.8
15	290	11.7	250		110	3.4		2.9
16	260	11.6	240		110	3.1		3.0
17	250	11.0			110	2.7		3.0
18	250	10.7			120	1.9	2.4	3.0
19	240	9.4				- 30	2.8	3.0
50	250	8.0					2.4	2.8
21	280	7.4					2.6	2.7
22	590	7.6					2.4	2,6
23	300	7.5					2.3	2.6

Time: 135.0°E. Sweep: 1.0 Me to 17.0 Me in 15 minutes, manual operation.

Table 18

					•			
Yanagaw	a. Japan	(31.2°W,	130.60	E)				Apr il 1950
Time	h F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	310	8.6					3.0	2.7
01	300	8.4					2.2	2.8
02	280	8.4					2.6	2.8
03	270	7.5					2.4	2.9
04	270	6.4					2.2	8.8
05	280	5.8						2,8
06	280	7.0			150	1.8		3.0
07	250	8.9			120	2.6		3.2
08	250	9.6	230		120	3.2	4.1	3.1
09	260	10.3	240	~~~	110	3.4	4.6	2.9
10	270	11.2	230		110	3.7	4.9	2.8
11	300	12.4	230		110	3.8	4.9	2.8
12	380	13.2	240		110	3.9	4.8	2.8
13	300	13.7	240		110	3.8	5.0	2.8
14	300	14.0	340		120	3.8	4.4	2.8
15	300	13.9	240		110	3.6	4.8	2.8
16	290	13.9	240		110	3.4	4.2	2.8
17	280	13.4	260		120	3.0	4.0	2.9
18	270	12.9			110	2.3	3.4	3.0
19	250	11.7				1.7	3.4	3.0
S0	240	9.8					3.2	2.8
21	270	9.0					2.6	2.7
22	300	8.8					2.4	2.6
23	310	8.6					2.8	2.7

Time: 135,0°E. Sweep: 1.2 Mc to 18,5 Mc in 15 minutes, manual operation.

Formosa.	China	(\$6.0°N.	121.0°E)					April 1950
Time	h'F2	foF2	h'Fl	foFl	h!E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07								
08	280	12.4	220	5.8	100	3.3	3.9	2.7
09	280	13.3	230	6.1	300	3.9	4.3	2.8
10	300	14.3	220	6.2	100	3,8	4.6	2.7
11	300	14.4	200	6.1	100	3.8	4.4	2.8
12	320	14.4	200	6.4	100	3.9	3.9	2.8
13	320	14.4	200	5.8	100	3.9	4.4	2.9
14	280	14.4	200	6.0	100	4.0	4.5	3.0
15	300	14.4	200	6.4	100	3.9	4.4	3.0
16	300	14.4	240	5.6	100	4.0		.3.2
17	260	14.4	200	6.0	100	3.4	3.2	3.3
18	240	14.4			100		3.0	3,3
19	240	14.3					2.7	3.3
20								
21								
22								
93								

Tims: 120.0°E.

Sweep: 2.5 Mc to 14.5 Mc in 15 minutes, manual operation.

Table 21

Christo	hurch, N	ew Zealan	nd (43.6°	s. 172.7	POE)		, and a	pril 1950
Time	h F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	5.6					2.0	2.6
01	300	5.5					2,2	2.6
02	290	5.3					2.2	2.6
03	290	5.2					1.6	2.7
04	280	5.2					1.8	2.7
05	260	4.7					2.7	2.8
06	260	4.2					1.8	2.9
07	240	6.2				1.6	2.0	3.2
08	250	8.2	240	3.8		2.4		3.2
09	250	9.7	240	4.3		2.8		3.2
10	250	10.2	230	4.4		3.2	3,5	3.1
11	250	10.8	230	4.7		3,3		3.0
12	260	11.0	230	4.8		3.3		3.0
13	250	11.2	230	4.7		3.3		3.0
14	250	10.8	240	4.6		3, 2	3.4	3.0
15	250	10.6	240	4.1		3.0	3.1	3.0
16	250	10.6	250	3.5		2.5	2.8	3.0
17	240	10.2				1.9	2.0	3.0
18	240	9.4				1.4	2.0	3.0
19	250	8.2					1.7	2.9
20	250	7.4					1.5	2.8
21	260	6.6					1.8	2.8
22	270	6.4					1.8	2.8
23	270	6.0					1.3	2.7

Time: 172.5°E.

Sweep: 1.0 Mc to 13.0 Mc.

Table 23

Delhi,	India	(28.6°N,	77.1°E)				Fel	ruary 1950
Time	+	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	320	5.0						3.0
01	320	4.7						
02								
03								
04								3.0
05	300	4.3						
06	300	5.0						
07	280	6.8						
08	280	8.9						3.2
09	300	10.5						-
10	300							
11	300	12.5						
12	320							3.0
13	320	13.2						
14	310							
15	300	13.2						
16	300	12.8						3.0
17	300	12.0						
18	300	11.3						
19	300	10.9						
50	300	9.2						3.0
SJ	320							
22	320							3.1
23	320	5.8						-

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes. manual operation.
*Height at 0.83 foF2.
**Average values; other columns. median values.

Table 20

Watheroo, W. Australia (30.3°S, 115.9°E) Apr 11 1950 h'Fl foFl h'E Time foF2 h!F2 fEs 2.7 2.8 00 270 5.1 2.8 01 5.1 5.1 270 260 5.8 2.9 03 04 05 250 4.9 3.0 3.0 3.0 4.4 240 250 4.2 2.5 2,8 06 07 7.0 2.4 2.9 250 2.0 2.7 3.1 3.3 3.4 240 3.2 3.4 3.7 3.8 3.8 9.5 10.7 11.2 08 09 10 11 12 240 3,4 4.8 250 230 3.2 250 230 4.8 3.3 11.5 11.6 \$30 250 260 \$30 3.6 3.6 3.3 13 270 11.8 230 4.9 3.4 3.0 14 15 5.0 240 260 11.8 260 11.8 3.3 3.8 16 17 240 240 11.4 2.8 3.0 18 19 220 2.4 3.1 230 240 8.1 7.2 2.9 55 50 19 2.6 3.0 240 250 6.0 5.5 5.2 2, 9 3.0 2,4 2.9 23

Time: 120.0°E.

Sweep: 16.0 Mc to 0.5 Mc in 15 minutes, automatic operation,

Table 22

Raroto	nga I.(21	.3°S, 15	9.8°W)				Ma	rch 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F
00	280	7.8						3.0
01	300	8.0						2.9
02	300	7.8						2.9
03	280	7.4						3.0
04	300	7.8						2.9
05	280	6.7					2.9	3.0
06	290	7.6					2.5	3.1
07	250	9.3	250	5.5	110	2.3	3.3	3.1
08	250	10.7	240	6.0	110	2.9	3.8	3.3
09	250	10.9	240	5.4	110	3.5	3.9	3.2
10	290	11.2	240	6.0	110	3.6	4.4	3.1
11	290	11.3	240	6.3	110	3.8	4.3	3.1
12	300	11.6	250	6.1	110	3.9	4.6	3.1
13	300	11.8	250	6.3	110	4.0	4.4	3.1
14	300	11.8	250	5.8	110	3.8	4.3	3.0
15	300	11.8	250	5.8	310	3,7	4.5	3.0
16	290	11.2	250	5.5	110	3.5	4.6	3.0
17	300	11.3	250	5.6	110	3.1	4.4	3.0
18	260	10.3	260				3.8	3.2
19	270	10.2					3.6	3.1
20	270	9.5					3.5	3.1
21	270	9.2					2.9	3.0
22	280	8.2						3.0
23	280	9.0						2.9

Time: 157.5° W.
Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Table 24

Bombay,	India	(19.0°N,	73.0°E)				Febr	uary 1950
Time	4	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
ΘO								
01	1							
02								
03								
04	ĺ							
05								
06								
07	270	7.4						
08	360	10.6						2.9
09	390	12.4						
10	420	13.2						
11 12	420 420	13.9 14.2						2.7
13	420	14.2						2. 1
14	(420)	(13.9)						
16	420	14.2						
16	420	14.0						2,7
17	420	14.0						
18	420	13.9						
19	390	13.9						
20	390	13.8						2.7
21	390	12.7						
22	(390)	(11.9)						2.9
23								

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
"Height at 0.83 fPF2.

**Average values; other columns, median values.

Madrae,	lndia	(13.0°N,	80.2°E)				Febr	nary 1950
Time	#	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	360	9.3						
08	390	10.5						2.8
09	420	11.2						
10	480	11.4						
11	480	11.4						
12	480	11.4						2.5
13	480	11.3						
14	480	11.4						
15	480	11.7						
16	500	12.2						2.5
17	480	12.3						
18	480	12.2						
19	480	12.1						
20	480	12.0						2.7
21	(480)							
23	(480)	(11.2)						2.6

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 6 minutee, manual operation.

"Height at 0.83 foF2.

"Average values; other columne, median values.

Table 27

Walckan	ai, Japan	(45.4°N,	141.70	E)			Jan	uary 1950
Time	h F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	310	3.6					1.6	2,6
01	320	3.6						2.6
02	320	3.6					1.2	2.5
03	320	3.6						2.6
04	300	3.6						2.6
05	290	3.3						2.7
06	280	3.3				E		2.9
07	260	5.6			110	1.5	1.8	3.0
09	240	7.8	320		100	2.2	2.4	(3.1)
09	250	9.7	230		110	2.7		3.1
10	250	10.8	240		100	3.0		(3.1)
11	260	10.6	230		100	3.2		(3.1)
12	250	10.2	240		110	3.2		(3.0)
13	260	9.8	550		110	3.1		(3.0)
14	270	9.7	250		110	3.0		(3.0)
16	260	9.0	240		110	2.6		(3.0)
16	230	7.7			100	2.1		3,1
17	240	6.4				1.2	1.6	3.0
18	250	5.5					1.6	3.0
19	250	4.6					1.6	2.9
20	280	3.6					2.0	2.8
21	300	3.6						2.7
22	310	3.6						2,6
23	300	3.7						2.6

Time: 135,0°E, Sweep: 1.0 Mc to 14.0 Mc in 15 minutes, manual operation.

Table 29

Tokyo.		(35.7°N,		0.73	1.15			muary 1950
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	3.5					2.2	2.9
01	280	3.6					2.4	2.9
02	270	3.6					2.4	2.9
03	250	3.4					2.2	2.9
04	250	3.3					2.0	2.8
05	280	3.2					1.7	2.8
06	240	3.4				E	1.8	3.1
07	210				130	1.8	2.4	3.4
80	220	8.6			100	2.4	3.0	3,6
09	220	10.0	550		100	3.0	3.5	3.4
10	220		250		100	3.2	3,5	3.3
11	230	12.0	210		100	3.4	-,0	3.3
12	240	11.4	220		100	3.6	3.6	3.2
13	240	11.1	220	-	100	3.4	3.6	3.2
14	240	10.1	220		100	3.2	3.4	3.3
15	230		220	-	100	2.8	3.2	3.3
16	520	8.8			100	2.3	2.6	3.4
17	210	7.4			110	1.8	2.8	3.3
18	210	6.4				1.0	2.6	3.2
19	220	5.4					2.6	3.3
50	220	4.4					2.3	3.3
21	240	3.7					6.0	
22	270	3.6						2.9
23	260							2,8

Time: 135.0°E.

Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Firuchy	. India	(10.8°N,	78.8°E)				Febr	uary 1950
Time	*	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00								
01	1							
02	1							
03	1							
04]							
05								
06								
07	360	7.0						
08	420	9.8						
09	450	9.9						
10	480	10.7						
11	510	10.9						
12	540	11.0						
13	540	11.4						
14	540	11.2						
15	570	11.3						
16	540	11.4						
17	580	11.6						
18	600	11.2						
19	600	11.0						
50	600	10.0						
21	(600)	(10.4)						
22								
23								

Time: Local. Sweep: 1.8 Mc to 16.0 Mc in 6 minutee, manual operation. "Height at 0.83 foF2.

Table 28

Akita,	Japan	(39.7°N,	140.1°E)				Jam	ery 1950	
Time	h'F2	foF2	h'Fl	foFl	h [†] E	foE	fEs	(M3000)F2	
00	300	3,6						2.7	
01	300	3.7						2.7	
02	290	3.6						2.8	
03	280	3.5						2.8	
04	280	3.5						2.8	
06	280	3.3						2.7	
06	250	3.3				E		3.0	
07	230	6.0			120	1.6		3,1	
08	220	8.4	210		120	2.4		3.4	
09	230	9.6	550		110	3.0		3.3	
10	240	10.9	220		110	3.2		3.2	
11	230		220		110	3.3		3.2	
12	240	10.7	230		110	3.4		3.2	
13	230		220		110	3.2		3.2	
14	230	9.6	230		110	3.1		3.2	
15	230		220		110	2.8		3,2	
16	220	8.4	550		110	2.3		3.3	
17	550	7.0			110	1.7		3.2	
18	\$50	6.2						3.1	
19	230	5.2						3.1	
20	230	4.0						3.0	
21	280	3.5						2.8	
22	290	3.7						2.8	
23	290	3.7						2.8	

Time: 135.0°E. Sweep: 1.0 Mc to 17.0 Mc in 15 minutes, manual operation.

Table 30

m.1	T 1.170	0-722	1, 1, 1777	0 - 177	1.17	C - D	057-	(Manon) E
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	3001	3.8					1.8	2.8
01	300	3.7					1.7	2.8
02	300	3.6						2.7
03	300	3.6						2.8
04	280	3.3						2.9
05	300	3.0						2.8
06	300	3.0				E		2.7
07	280	4.4		-	-	1.3	1.9	2.9
08	250	8.2		***	120	2.2	2.6	3.2
09	250	10.2	230		110	2.9	3.7	3.2
10	250	11.1	230		110	3.2	3.8	3.1
11	270	12.1	230		110	3.6	4.5	3.1
12	270	13.0	230		110	3.6	4.2	3.0
13	280	13.0	230		110	3.6	4.2	3.0
14	280	12.3	240		110	3.4	4.3	2.9
16	280	11.7	240		110	3.2	4.2	3.0
16	260	11.2	240		110	8.5	3.6	3.0
17	250	10.4			120	2.1	3.1	3.1
18	230	9.0					3.0	3.1
19	230	7.4					2.4	3.1
20	240	7.0					2.4	3.1
21	240	5.9						3.0
22	260	4.5						2.9
23	290	4.2						2.8

Time: 135.0°E. Sweep: 1.2 Mc to 18.5 Mc in 15 minutes, manual operation.

Table 31

Dolhi.	India	(28,6°N.	77.1°E)				Jan	January,) 950		
Time	a	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2		
00	300	4.0						3.0		
Ol	300	4.1								
03										
03										
04								3.3		
05	280	4.4								
06	280									
07	270									
08	260							3.4		
09	280									
10	280	1).5								
11	280	12.0								
12	300	12.7						3.0		
13	300	12.6								
14	300	12.8								
15	300	12,2								
16	300	12,2						3.1		
17	280	10.6								
18	280	9.8								
19	270	7.8								
20	280	7.5						3.2		
21	280	6.0								
22	280	5.6								
23	300	4.8								

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, menual operation.
*Height at 0.83 foF2.
*Average values; other columns, median values.

Table 32

Madras,	India	(13.0°N,	80.2°E)				Je	nuary 1950
Time	4	foF2	h'Fl	fcFl	h!E	foE	fEs	(M3000)F2
00								
01								
cs								
03								
04								
05								
06	2.00							
07	360	9.7						
08	390 420	10.7						8.8
09 10	480	12.1						
11	480	12.0						
12	480	11.8						2.5
13	510	11.8						6.0
14	510	11.9						
16	510	11.9						
16	540	12.2						2.8
17	510	12.2						
18	510	13.0						
19	520	12.0						
SO	430	(11.9)						2.6
21		(11.5)						
55		(11.2)						
23								

Time: Local.
Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.
**Raight at 0.83 foF2.
**Average values; other columns, median values.

Pribour	g. Germa	Dace	December 1949					
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	3.7					2,2	2,7
01	310	3,7					2,1	2.7
02	310	3.8					2.2	2,8
03	290	3.7						2.8
04	275	3.6					3.0	2.9
05	250	3.4					1.9	3.0
06	235	3,2					2.1	2.9
07	240	3.9						2.9
98	\$50	7.8				Xi.	2.3	3.4
09	350	10.8			126	8.8	8.0	3.4
10	220	11.5			115	2.7	2,7	3.3
32	\$50	11.8			115	2.9		3.3
13	220	11.7			115	3.0	2.0	3.2
13	225	11.6			115	3.8		3,2
14	225	11.4			115	2,6		3,2
15	220	11.0			120	2.2	2.4	3.3
16	220	9.9			**********	E	2.2	3,3
17	215	8.2					2.0	3.3
18	220	6.1						3,2
19	225	5.0					8.8	3.2
20	340	4.2					2,1	3,1
21	260	3.9					8.8	2.9
23	\$90	3.8						2.8
28	\$30	3,7					1.9	2.8

Time: Local, Sweeg: 1.6 Mc to 17.6 Mc in 10 minutes, automatic operation.

Table 32

					ne .			
Bombay,	India	(19.0°N.	73.0°E)				Jar	mary 1950
Time	a	foF2	h:Fl	foFl	h'E	foE	fEs	(M3000)F2
00								
01								
02								
03								
04								
05								
06								
07	300	7.5						
08	360	10.6						8.8
09	390	11.9						
10	430	12.9						
11	430	13.4						
1.2	480	14.1						2.6
13								
14	480	14.6						
15	480	14.6						
16	480	14.6						8.6
17	480	14.7						
18	450	14.5						
19	420	13.9						
20	420	13.7						2.6
21	390	12.9						
22	390	11.7						2.8
23	360	11.1						

Time: Local.

Sweep: 1.8 Mc to 16.0 Mc in 5 minutes, manual operation.

*Height at 0.83 foF2.

**Average values; other columns, median values.

Table 35

Table 34

			Last					
Tiruchy,	India	(10.8°N.	78.8°E)				Jan	uary 1950
Time		foF2	h'Fl	foFi	n'E	foE	fEs	(M3000)F2
00								
01								
0.5								
03								
04								
05								
06								
07	350	6.8						
08	450	9.4						
C9	420	10.2						
10	510	10.6						
11	500	10.2						
15	540	10.4						
13	540	10.4						
14	540	10.3						
15	(540)	(11.4)						
16	590	11.2						
17	600	11.2						
18	600	10.8						
19	600	10.1						
50	600	10.2						
21	550	10.0						
23								

Time: Local.
Sweep: 1.8 Mu to 16.7 Mc in 5 minutes, zamual operation.
"Height at 0.83 foF2.

vakar,	Franca	Wast Afric	DE (14.6	N 17.4	- 14)		2000	ember 1949
Time	high	foF2	h'Fl	foFl	h†E	foE	fEs	(M3000)F
00	255							
01	250							
92	340	(7.0)						
03	255	6.8						
04	280	6.2						
05	260	4.7					3.3	
06	290	5.6					4.0	
07	265	10.2			140	2.3	4.1	
08	270	13.9	255	****	125	3.0	4.7	
09	280	16.0	245		120	3.4	5.6	
10	310	14.5	235		120	3.7	5.0	
11	350	14.3	235		3.20	3.9	4.7	
32	395	(>14.7)	250	der ein der	120	4.0	4.8	
13	(380)	14.6	235	4.4	120	3,9	4.8	
14	(415)	(>14.3)	240		180	3.7	4.5	
15	(390)	(>14.3)	250		120	3.4	4.8	
2.6	315	(>14.3)	270	m 6 m	1 20	2.9	4.5	
17	260	(>14.3)	que ante esco	the Manager	130	2.3	4.5	
18	320	(>14.3)				E	5.0	
19	360	(>14.0)					4.0	
20	300						3.8	
53	275	-					3.9	
22	260	~ ******					2.8	
23	260							

Time: Local, Sweep: 1.25 Me to 20.0 Me in 10 minutes, sutomatic operation.

Fribour	rg, Germa	ny (48.1	on, 7.80	E)	37		Rave	mber 1949
Time	h†F2	foF2	h'Fl	foF1	h¹E	foE	fEs	(M3000)F
00	300	4.3					2.1	2.7
01	300	4.2					2.3	2.6
02	315	4.2					2.3	2,6
03	310	3.9					2.3	2.6
04	275	3.8					2.0	8.8
05	260	3.4						2.8
06	270	3.4						2,8
07	240	6.0				E		2.9
08	230	9.1			125	1.9	3.0	3.2
09	230	31.6			115	2,5	3.7	3,2
10	230	12.5			110	2.9	3.8	3.1
31	325	12.9			110	3.1	3.8	3.1
12	225	12.8			110	3.1	3.3	3.1
13	230	12.6			110	3.1	2.7	3.0
14	235	12.8			110	2.9		3.0
15	230	12.3			120	2,5	2.5	3.1
16	225	11.4			135	1,7	2.4	3.1
17	215	9.7					2.3	3,1
18	225	8.0					2,2	3.0
19	230	6.4					1.7	3.0
50	240	5.4					2.2	2.9
21	270	4.8					2.3	8.8
22	285	4.5					2.1	2,7
23	305	4.2						2.6

23 305 4.2

Time: Local.
Sweeg: 1.6 Mc to 17,6 Wc in 10 minutes, automatic operation.

				Table	39			
Fribou	rg, Germa	ny (48.1	°E, 7.8°	E)			0	ctober 1949
Time	h'F2	foF2	h'F1	foFl	h B	foE	LE3	(M3000)P2
00	310	5.0					2.0	2.9
01	300	4,9					2.5	2.9
02	320	4.8					2,5	2.9
03	330	4.6					2.3	2.8
04	290	4.3					2.4	3.0
0.5	270	4.0					2.4	3.1
06	260	5.0			mit 64840		2.3	3.2
07	240	7.2		of the state of the	130	2.0	2.6	3.5
08	230	9.7		sterille.	115	2.6	3.8	3.4
09	236	10.3	230	the way or	110	2.9	4.0	3.4
10	240	11.7	226	400.000.000	110	3,2	4.3	3.2
11	240	12.2	230	01 10.75	110	3.2	4.4	3.2
12	230	12.0	530		0.10	3.2	4.2	3.3
13	230	11.8	230	9.66770	705	3,3	3.4	3,1
14	240	12.0	dument.	-0.00	110	3.1	3.8	3.1
15	235	12.0	*******		115	2.9	2.6	3,2
16	240	11.8	-	\$150.00 per	115	2.4	3.2	3.4
17	230	10.2			110	7.9	3.1	3.4
18	240	9.6					2,6	3.3
19	530	8.2					2.5	3.3
20	240	6.6					2.6	3,2
21	260	5,8	~~~				2.2	3.0
22	280	5.6					2.3	3.0
23	290	5.2					2 2	2 0

Z3 1 620 Variable: Local, Sweep: 1.6 Mc to 17.6 Mc in 10 minutes, automatic operation.

Dokar,	Franch W	est Afri	ea (14.6	Table :			Nove	ember 1949
Time	h¹F2	foF2	h'Fl	foFl	h [†] E	foE	fEs	(M3000)F2
00	255	ma tide Lan						
01	250	475 Test \$100					2.4	
SO	250							
03	250	6,6						
04	265	5.0						
05	280	4.6						
06	306	7.1				-	3.8	
07	280	12.4			135	2.6	4.0	
08	280	14.8	266		130	3.3	4.2	
09	290	15,8	290		125	3.6	4.5	
10	350	16.2	250		130	3.9	4.6	
11	(380)	16.5	250		130	4.1	4.6	
13	(380)	15.4	250		130	4.1		
23	400	(16.6)	250		130	4.0		
14	410	(16.2)	250	100 000 000	125	3.7	4.3	
15	406	(17.0)	265		130	3.6	3.7	
16	305	(16.8)	270		130	3.0	4.6	
17	300	~				2.8	4.3	
18	360						4.2	
19	400						4.0	
20	320	-					3.8	
21	295	PT 080000					3.9	
SS	270						3.6	
23	250						3.2	

Time: Local. Sweep: 1.25 Mc to 20,0 Mc in 10 winutes, automatic operation.

				Table	40			
Dakar,	French W	est Arric	a (14.6	N, 17,4	~W}		Oct	tober 1949
Time	P, 2,5	foF2	h'Fl	foF1	h'E	foB	LEs	(M3000)F2
00	(270)							
01	(265)	also disease o						
02	(240)	en-un-e-						
03	(256)							
04	(260)	(6.5)						
05	(250)	4.9						
06	(280)	8.0					4.0	
07	(250)	12.6			125	2.6	4.0	
08	(260)	14.9	-	9-60-4	125	des Silver -	4.0	
09	(300)	16.0	240	the effects	120	3.7		
10	(310)	16.6	-		125	-		
71	nor Malana	17,0	des des ser		125	-		
12	(360)	(17,0)	230		125	4.1		
13	(380)	17.0	260		125			
14	(350)	16.8		or one day	120			
16		16.8	270	40.004	130		4.3	
16	(325)	16.7	270		120	-	3.8	
17	(280)	(16.4)					4.5	
18	(345)	(15.8)					4.2	
19	(370)	-					4.0	
50	(330)	400mm p.s.					3.0	
21	(300)						3.6	
22	(300)	40.00						
23	(270)							

Fime: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

TABLE 41

Form adopted June 1946

B.EB.

McC

National Bureau of Standards

Centrol Radia Propagation Labaratary, Natianol Bureou of Stondards, Washington 25, D.C.

Washington, D.C.

DATA IONOSPHERIC

Manual [] Autamatic [3]

National Bureau of Standards

McC

Central Radia Prapagatian Lobaratary, Natianal Bureau af Stondords, Washington 25, D C.

ONOSPHERIC DATA

950

July (Month)

Mc

Washington, D.C.

9

Θ 0 0

_ 2 <u>m</u>

4 5 91 17 8

BEB 6.07 (5.2) (58) 7 O X (62) × (5.6) 5(2.4)5 5(09) 5(0.9) 1.7 5.47 (5.9) (55) (63) (6.0) 5 (7.4.)5 (70) 5 (8.8) (S. 2) 5,57 5.4 (55) 5.6 5.7 5.3 x (4.9) 6 5 4 (% (V) 5.8 F (5.0) (59) \$ (55) \$ K(+8) \$ K43 (3.9 × (5.8) 5 (4.5) 45 £ KK (44) 5 K(4.0) 5 K(3.9) (57)3 (5.2) 5 4.7 5.7 J 30 (6.1) 5 (5.9) 5 (57) (5.7) \$ (56) (6.2) (6.4) 5 (4.0) (63) (60) 69 (0 1) d(+ 1) (6.0) (0 0) (8.8) 50 6.3 3/ (5.9) 29 (58) (7.3) 7.7 x (8.9) \$ x (9.5)\$ x (9.5) \$ x (9.4) \$ (68)5 58, (5.9) (6.4) (6.0) (9.9) (0.9) e e 6.6 2 600 6.0 (5/6) 00 ē 68 5 (22) 5 5 (8 7) (6.3) (4.9) 1034 g (2 7) (2.4) (77) 00 (7.7) (7.1) (7.3) (2.4) (7.7) 800 Calcufated by (18) (54) 6.4 79 (73) 9 72 7.4 (67) 60 6 3/ 20 73 (70) 5(67) (8.2) 3 5.8 K (108) X (59)x 5.0 KK (51) \$ (7.1) 7 (66)3 22 63 7.2 (6.1) (8.9) 7 7.5 e) ق 4.9 69 7.3 7. 9.00 5.9 7.3 7.3 6 ñ (2 1) (·) × 100x (4.8) S (100)P 72 6.5 6.4. 7.9 0.9 6.7 2.0 6.8 7.7 6.8 i 7.5 7:7 2.8 2.0 7. 7.7 30 C 4.7 × (6.6) 5 × 6.00 x (4.5) & (4.7) x 500 63 73 4.2 6.01 7.7 7.3 7.9 7.6 73 5.7 6.7 3 9 6.9 7.4 1.9 0 00 e e 1.7 1:3 0.0 500 7.1 ic 8 2 U (6.2) 7 2 K (77) (4.7) x 5.0 % F6.47A (6.8) 8.0 x 5.8 5.2 1 (5.8) 6.0 6.5 2 5 5 72 7.5 4.9 63 4.9 4:0 0.9 5.6 2.0 62 20 2.0 3. 7.4 3(87 9 5 (07) (77) 2 . 4.8 A 5(63) 6.9 4 (9 9) 5.4 x (4.5 K (5.7)R 5 4 7 6.0 0.9 (42 6/42) \$ (44) \$ (45 6) (44 6 445 6 (45) (5.7) 0 7.3 (5.5) 7.7 7 9 7 64 19 6.3 7.4 83 5.3 30 5 [7.3]4 62 4 60 St. X (65)3 (62)5 0 x + + > 0 x 7 + > (59) 62 2.0 6.9 5 6.7 0.0 6.7 6.5 P Oc 2.0 6.5 7.9 4 6 9 0 6.0 x.9 x 0 ? 3 6.0 22 C U U [6.0] 5 (2.2) 7.3 44.8 63 2.0 6.2 4.9 0 1.9 1.9 5.0 4.5 S 45 99 4.9 1: 6.3 6.9 35 170 9.47 J J 5.8 8 (5.2) (6.1) # 4416 (426 (446 (45k (45) 9 49 x 4.5 x (4.5) 9 4.3 x 4.5 x (4.5 x 4.5 x 4 (63) (5.3) 5 (8 2) (57) [6.6] (0.7) (5.5) 5.7 0 7.1 6.0 6.5 7.7 50 66 6.0 6.9 6.0 6.6 6.5 Nº51 000 0 6.9 S. 2 (57)5 (5.3)P (59) (6.3) 6.3 (5.7)" 5.3 K (6.0) 6.37 5.2 0.9 00 0.0 0 9 0 9.9 6.0 30 40 7.7 6 00 69 e 3 6.6 = 5.5 [5.7] (5.9) H (61) × o [5.4] 5.47 (58)5 5.5 65 X 00 4.3 t e 0.9 0.0 0 9 (0) 6 8 5.0 9 6.7 2 7 6.6 Ŕ Ţ ş 0 T [5.4] H(87) X(8.5) 4.4 x (4.3 & 57 F 5.4.7 1 (T.7) (59) (1) 50.00 (6 3) 3 6 62 57 6.7 6.5 ر د ج 6.7 5.0 5.6 5.8 6.2 9 7. 9 4.9 6:3 60 Ţ 3 69 42 T [49]6 (5.9) # [5.2]W (51) # [5.4] N (5.5) 5.0 H 650 5.2 Z 5 (1 7) 0.9 9 50 0.0 67 5.7 50 54 57 6 + 6.0 9 5.6 5.5 0.4× 7:7 5.9 08 6 ć. 3 59 54 5 (1.3) 4.5 [55] (4.7)3 (3.7% (5.2) K 5.0 29 K 435 G 436 B (27) 5 (3.3 F (3.9)x (+5) 3 ((4.2) 5 8 7 5.4 5.4 0 6.7 5.3 5.4 8 5.0 5.0 54 5 5.7 9. 4.5 6.3 07 7 7 بر هـ 3 3 5 4 5.1 (50) 5 4.7 F y (0 +) (4.7) 8 (4.5) 14 32 7 454 4.7 4.7 47 4.5 4.4 4.7 4.7 43 7 4.7 90 X 8 7 4 7 5 19 9 4 7.7 5 20 σ, 10. S. (4 0) J [+ 3] c x(+1) 3 3.4 * 37 6 4.2 1 (41) 3 34 (3.9)7 0 7 (3 4) (3 4) 0 1 (0 x) 37 (o *) 3.7 (2 7) 4.7 0 2 3.9 37 3 3.7 30 1 + 7 36 3 ω O 'n ر س (4.1) S (3.9)5 (x.+)x 3.87 (4.2) (40)3 (37) 3 [22]R 33 € 6° € 4.8 K 20,00 (25) (3.9) 3.4 3,5 Wol 77 10W 04 ر ا ri G ñ 3 3 3,3 E) 3.4 7 t 3 3.7 4.0 (49)K K(3.7) 1 [30] K (2.4) K (3.9) 3 38 7 377 (39)2 (x.x) 3 (4.9) (52) = (47) 5 (42) 5 3.5 1 (40)3 200 3.5 7 (3.9) 3 187 4.3 1 (4.7) x K(4.4)3 (3.9) 6 7 30 30 39 4.5 6 7 03 2.6 4.3 (2.7) 456 38 4.5 7 <u>w</u> 3.5 (4 1) S (5.1) 5 [2.8] S 43 F (4.1)3 3.8 7 (3.8) 5 5.2 F 164 Lat 38.7°N 53 200 3.0 1 (+:4)F 4.76 r (1.4) 4.2 4.5 45 50 0.5 50 7.6 0 7 رى 4.0 87 (56) FI 34 × x (4.3) \$ 4.7 1 484 (4 5)x 3.2 7 5 5 1(6.4) 67 ッナ (x x) 7 9 3 57 4.9 5.4 39) 5K(2.9) 6 7 4.8 ō 7.4 8.7 4.9 4.4 6 46 (50) (57) (54) 5 (47) (36) 1 (8 X) 6.04 404 (5.1) (52) 5 7 (5 4) 1 9 x (29) Observed of 4.2 ,05 0 6.3 0 9 5.3 56 (3.8) 5 5.2 50 2 5.7 3 8.7 5 7 60 56 ŝ

50

2

22 23 25 26

27 28 29 8 3

24

6

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual | Autamatic |

Median Caunt

43 TABLE

Form adopted June 1946

McC. Standards

tution)

National Bureau of (Institute)

Scoled by:

Central Rodio Propogation Laboratory, National Bureau of Standards, Washington **25**, D.C.

ONOSPHERIC DATA

920

July (Month)

Mc (Unit)

foF2

Washington, D.C.

Observed of _

a ш a [4.3] 7. 00 5(4.9) (5.5) (5.5) 47 17 (4.0) \$ (5.4) S.4 F 42 F K(40) 3 K(3.8) 5 5.2 F 5(1,2) 5(9:5) 5.9 F 5.2 F 1.1 T (4.5) \$ 5.45 (6.2)5 2330 5.3 4 5.4 5.9 5. 5.7 5.8 F [6.2] A (5.6) & 17.6 F (5.8)5 5(47) 5(4.9) 6.0 F * (8.8) 5 K (7.8) 4 K (7.2) 5 5(5.9) S.4 F (6.1) 5 (90)5 × (6.3)5 × (6.4)5 5.3 7 (8.8) (6.2) 3 5(6:5) 500 (6.3) [5.6] (4.9) \$ 5.3 5 (53) 1 K(5.8) \$ K(5.2) \$ (8.8) (8:3) (1.6) (7.5) 6.0 F 5.4 " K (5.6) 5 (8.5) (8.9) (8.9) 5.3 (6.1) 3 2130 2230 6.3 5.6 -McC (6.3) 5(5-9) 5(07) (6.6) (6.3) (6.3) (7.2)5 (5.9)8 16 (5.3) \$ (5:7) 5(4.9) 5(5.6) (6.0)3 (58)5 (5.8)5 (7.0)5 (7.5) RK(6.0) 4.0 F(5.9)3 و (6.6)5 (7.2) (4.7) (5.3) (5.2)×) (8:8) (6.5) (72)5 (62) ((09) (7.0)5 (7.0) よって 6.0 K (8.9) 2030 Colculoted by 2.0 ٠ اف 7.0 1.0 6.5 1.0 80 9.9 200 2 (10.2)5 (23)5 738 5.2 (8.8) (7.6)5 (7.2)5 00 X (7.5)5 (8.3)5 (99) (5.8) (6.1)5 (6.0) 16.9) (1.6)5 (59) F(5.8)3 × (5.8)5 (0.1) K (5:0)\$ (0.8 (7.0) 1930 65 89 7.6 9.9 9.9 50 7.4 ف 3 (9.5)× [7.3] (23)5 (5.0) (1.1)5 (8.0) S. J. X (9.5) 6.0 x (6.0) (8.9) 10.6 K 7.0 F (0.0) (6.3) 9.0 9 6.3 7.5 6.6 6.2 9.9 7.6 و 6.8 6.7 J 30 47× 8.0 × (4.6)8 (6.9) 6.25 (6.3) 10.0 K (6.0) [6.7] A (9.6)× 5(65) 1730 4.9 6.6 9.9 6.3 0.0 64 6.51 6.7 2.0 9. 6 9. 9 6.9 6.7 7.3 6.5 7.4 7.2 30 6.9 00 7.8 85 X (5.9) 47 × [4.6] 7.0 K 5.2 K 1630 9.0 6.0 7-9 9.9 7.5 30 62 8 7.0 4.9 6.7 2.4 6.3 کی ف 3 و و 500 65 ب ق ०० ७ 16.47A (6.1)5 4.7 K (6.0) 59 m S.6 K (6.8) (4.7) 5.7# (5.8) 5.1 K K(49) 3 1530 0.0 K(4.6)} 1.0 و د 7.5 6.2 7.0 7.2 6.2 6.3 7.3 6.2 6.0 6.7 63 ~ ×449,6 (5.4)5 (5.7)R (5.8)5 6.2 K (2.0) 6.1 K <4.5 G (6.6) (5.4)5 5.4 K ((0)) (5.4)5 (6.2) (4.1.) 6.2 60 6.7 1330 1430 60 9.0 ۇ. ۋ 6.5 (.) 0.0 6.5 7.3 6.2 U Meon Time 6.1 F (6.0) ((3)) 6.3 X <458<4456 (6.3)5 B x <458 <436 <#6 g (5.6) (7.0) 5 5.8 F (5.9) } (53) 705 5.4 x 77 C 9 6.5 9.0 5.7 9 90 و ف 6.2 6 6.2 6.9 J 1.0 37 00 e (6.3) \(\(\rangle\)\(\rangle\) 6.0 K 6.0 F 5.1.8 (5.5) 60.00 (5.6) 4.7 5 444 8 44.5 8 44.7 8 44.68 9.0 1230 5.6 5.2 7.3 3:8) 6.6 6.7 9.0 6.4 6.4 5.7 8.0 6.9 6.3 3 6.4 29 75°W [8.8]A S.7 H <4.5 G 6.3 × <5.0 G 5.3 (5.5) (8.8) (6.5) 5.6 5 (9:9) 5(0.9) 0 (6.4)> 1130 9 6.5 5.0 5.9 30 2.0 و ف ڊ ف 5.7 6.3 59 5:0 0 5.8 5.9 <u>-</u> ق 5.6 F [6.4]" (S.7) H H (57) <4.2 8 443 G 5.4 K [6.2]F (6.1)5 5.9 K 5.6 K 4478 (8.8)H <4.1 g <4.3 g <4.5 g 6.3 H (71)5 1030 5.7 5.0 3 6.4 9 9.0 ر د 9 6.9 6.6 5.6 ρο 163 00 6.5 0.9 30 ∢ [5.9]A (6.1)5 255 9 (62) (6.9) R(2.2) Z Z S.6] X 5.0 F (5.5)P (62) A 0930 (00) 6.5 0.0 6.7 58 0.0 53 5.0 000 _ و 6.3 6.7 20 500 4 T ⋖ F5.87A (7.0)3 (5:3) <4.0 G [5:8] 5.4 (5.2) R(S.8)3 6.0 F 0830 6.0 5.4 و و 5.8 50 33 ۶۶ و 3 28 5.7 3 9.9 0.9 6 \$ \$ T S.1 H ((,,)) (5.8) 5.5 F 6.3 H 5.2 F 16 4.6 (6.0 M < 3.8 × (5.4)珠 (5.1)P < 3.5 G < 3.9 G < 3.3 g < 3.8 g (4.9) 5.6 × (5.3) 00 0730 500 5.4 5.4 2.6 2.5 5.8 15 3 9 500 (4.7) 6.3 5.9 5 31 7.8 F (4.4)F [5.6]A S.0 K ひって ×67 4.75 4.6 × 4.6 ~ (5.0) 5.4 1 15:7) (5:4)R 5.3 4.5 (5.2) 0630 4.5 5.5 ري کا 4.5 4.9 4.7 0.9 4.9 4.5 4.9 4.7 5 -5, 4.6 H 4.5F 3,2 (30) × 4.3% (4.3) 4.3 K 40F (4.3)% (4.4) (4.8) (4.0) (4.7)5 (5.0) 0530 4.2 4.0 4.5 1.4 F.S 4.5 4.4 4.2 47 4.2 43 7.00 ナン 43 ŝ 3.56 [3.7]5 375 (3.6)5 (2.2) × 23 \$(2.5)} 5. 5. 7.7 33 2.6× 3.4F (3.8) \$ (3.5) 3.75 3.8 F 3.7 F (3.5) [3.97A (4 5)⁵ 23.7× 3 0430 3.5 3.6 3.0 Lat 38.7°N , Long 77.1°W 8 'n 3.4F (3.7)5 3.8 F 435 3.5F 2.2 375 0130 0230 0330 (3.8) 345 (42) 4.75 3.5 K 3.7 K 40.4 4.0 3.9 5 (3.6) 2.7 2 3.4 5 4.4 (4.4) 4.5 K 36 4.2 3.9 7.8 3.7 3 404 4.8 F (4.3)\$ (4.1) \$ (3.3) \$ (42)8 39F 2 (1.4) 00 2. TX 475 (4.4) 4.6 F 4.7 F (4.6)5 (2.7) E 4.2 5 (5.0)A (45)F 4 9 1 5.1 1 4.7 K 3.0 5.0 0 F (4.0)3 4.4 4.6 4.0 3.9 4.3 <u>16</u> (4.7) 4.2 80 00 17 X (5.1)5 4.55 4.7 8 (3.2) 1 5.8 % 45F 4.9 4 (5.5) 5 7.87 (4.7) \$ 476 494 4.6 F 4.8 F (4.5) 5.3 (2.9) = 4.00 3.4 5.5 4.7 4.5 4.9 5.2 4.0 3 (43)5 1(5.2) 3 50 5.9F 5.3 8 5.0 2 4.65 (5.5) 6.6 5 4.0 % W. 00 17.50 (3.7) % S. S. 5.15 7. 00 7.X (5.4) 7 K (4.4) 5 5.7. 505 3.5 502 10.0 $(5.5)^{6}$ 44 5 0030 5 3 5:0 53 15 か Ē Medion Count М 4 9 00 6 Day ഗ 7 0 24 = 2 10 4 2 9 1 <u>ი</u> 20 ~ 23 25 56 8 22 27 2B 29 30 т П

Sweep 1 0 Mc to 25.0 Mc in 0.25 min

Monuol

Automotic

M

Form adopted June 1946

B.E.B.

Scaled by:

National Bureau of Standards

Central Radia Prapagatian Laboratory, National Bureau of Standards, Washington 25, D.C

IONOSPHERIC DATA

July

Washington, D.C.

(Characteristic)

23 22 B.E.B. 2 Calculoted by: 20 6 Θ 240K 2104 230k 220K 230K (260) 23× × 230× × 240K ¥ ∢ 220K 220K 250 200 220# 220 240 250 220H 230 240 220 240 9 ∢ <u>@</u> ∢ ∢ Ø ∢ ∢ Þ Ł 320K 2204 (210)5 (230)5 210K 220K 220K 210K 210K 210 H 220K 228K 220 × 220 210 230 230 230 210 210 220 230 230 200 [220]9 220 200 H 220 220 25 ગ ₹ 2 T 4 [220]A 220 22 O.K 200 H 210K 200 220K 200 H 220 200 220 210 190H 200 200H 200 (200) (210) A 200 220 230 200 200 x 230 K 210 210 A 2004 2004 230 76 210 230 200H 200 Þ 9 ∢ ⋖ A K 200 K 210 K 230 K 200 K 180 K [210] \$ 230 K [240] K (250) 200H 210 200H (230) 200 K 200 K (210) A 210 K 230 K 220 K 220 K 220 220 [220] 220 C 200 210 190 (200) 200 (220) (240) A 200 200 9/8 200 200 200 210 25 200 2004 210 200 [200] 200 190 208 200 210H 230 190 200 (210) (220) A 210 20 2 T Þ 210 200 200# A T ⋖ 210 210# 210 200H 220 A K 200K 200K ગ ₹ 4 ۹ 77 Ţ ∢ (200) (200)A 200 H 200 H J 200 200 H 220 ∢ [210] 220 Þ 210 4 ∢ 430 260 H 190 H [200]A (200) C 2 A 200 H (220)A (210)A 2004 (210)A 180 8(000) 200 H (230)A 210 × 200 200 ⋖ 4 75°W 2 ⋖ ∢ ∢ ř T P(012) P(012) 3204 200 x 200K 200K 210 200 H (220) (200)A 220 210 200 × 210 K AK 210K ¥ **∀** 210H 200H 200H 200 200 200 220 200 200 220 H [210]A 200 200 200 200 310 200 200 200 200 210 200 H 200 ∢ ⋖ 74 = Þ ⋖ ∢ ⋖ [210]A 220 220 > (190) A 200 300 210 77 ∢ [210]A (220)A 200 ∢ 0 ∢ ⋖ ¥ K Æ [220]A (210)A 210 200 210 200 (210)A (330)A (200)A 220 K 200K A × 200 K 220 220 230 (250) 200 ₹ ∢ ∢ [120]A 200 220 200 79 æ ٧ 60 ∢ ∢ ∢ ⋖ ¥ (230)A 200 H 2007 (230) / [230] A 230 H 200 H 220 210 34 220 |V 230 90 ₹ ∢ ⋖ ₹ T [320]A 210 X 200 250K 270K A(625) 210 X 130 230 260K 240K 210 H 220 210H 230K 210 H 220 230 250 220 230 240 230 250 230 (200) 230 240 240 200 220 07 ∢ ⋖ ∢ ⋖ ∢ × 0/2 230 220 230 230 220 K 240 230 250 250 90 T ¢ O ∢ ∢ a T. 4 < ∢ Ø O Q 0.5 Let 38.7°N , Lang 77.1°W 04 03 02 0 00 Observed at ρg Caunt 0 М 4 Median 9 7 00 თ 2 -33 S = 2 4 5 9 9 20 22 23 58 59 8 _ 8 12 24 25 26 27 3

Sweep 1.0 Mc to 25.0 Mc In 0.25 min

Manual

Autamatic

Manual

TABLE 45
Central Rodio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

Form adopted June 1946

B.E.B.

National Bureau of Standards

McC.

Scaled by:

IONOSPHERIC DATA

950

Woshington, D.C. Mc

00

Day

N

4 Ŋ 9 2 ω 0 0

(Characteristic)

Observed at

McG. 23 22 B.E.B. 2 Colculoted by: 20 <u>ග</u> (3.7) 3.8 (3.8) (39)8 9(65) (3.8)\$ (3.8) 1 7 1 1 T V 4 4.5K 42K 4.34 (4.4) 4.1 K 42× (41) (4.5)P 4.5 K (4.4)P (42)P (4.5) T (4.3)P (4.3) P (43) 46 7.7 43 44 4.3 42× 43 3.9 43 4.3 42 1 26 T ⋖ d(8 h) 43K 47 K 4.6 H 43× (4.5)H (4.7)H (42) S d(8 t) H 8 7 (4.6)5 × 9.4 465 (4S)H 7 7 X 7.6 40 7. 4.6 4.5 47 44 8.4 49 4.5 30 4.6 4.7 9 V ∢ [46]5 4.8 K (6.6) (4.7) (4.7)H H(6:4) (4.7)A (84) 48K 4.7 K + 6 x 4.4K (44) A 4.5K 4.5K 5.0 [5.0]A (5.0)H H(84) H(0.5) (44) 4.6 0.0 47 47 4.8 47 6.4 49 4.8 50 47 4.7 4.9 29 5 484 (4.8) (4.9)5 (4.8) 5 7.8.7 5.1.8 4.5% 47 F 7 8 4.8 49 4.7 4.7 4.9 5.0 50 8.4 4.8 48 4.8 4.0 J J 78 4 S 49 5.0 H +8+ [4.8]A 4.6 K 48F [4.9] H(67) (48)5 オケガ H(0.5) 48 X (5.0)5 4.6 H 7.8 × 5.0 4.7 4.7 4.8 8.4 6.4 4.8 8 7 1.5 5.0 64 5.0 28 J J <u>m</u> 4.8 (4.5)8 47K (4.7)P F4.7]A [4.8]F H(4.2) (5.3)5 (4.8) (4.8)5 (8.4) 475 (4.8) 4.9 5.0 (S.D)H 4.5 X 4.8 4.9 5.0 5.0 S.0 X 5.0 4.8 5.0 5.0 5.0 00 T 4.9 6.1 47 75°W 30 2 474 45K 5.2 H 4.5 K H(P.H) H(8.4) [4.6]A (4.7) F (4.9)F 5.0 × 4.7.× 0(8%) 475 (4.8)4 47 W[8.4] S(9.4) 49 (5.0)4 (42) (4.4) (4.9)A 7. 47 8.4 4.6 5.0 5.0 49 47 0.5 4.9H 5.2 7.7 30 4.7 4.9 4.9 = 5.0 H スセナ (4.4)P [4.6]A (4.7)P 477 4.3 K 4.5 K 1.7 4.6 K (48)4 [4.8]A 5.0 A (S.4)H (4.7) [46]W > 5.0 4.0 4.7 48 ≺ 4.9 4.9 ₹ 4.9 49 38 4.7 0 4.2 K オスス 4.8 4.5× 45 K (5.3)4 4.5 % 7.7 76 4.6 7.6 4.6 4.7 7.8 48 4.7 4.4 4.7 40 20 4.6 4.7 4.9 4.7 47 4.6 47 T V A (4.4)A (4.4)P [4.2]A 4.1 K [4.3]c (4.4)A (4.5) (4.7) P 4.5 H 40 K P(17) 4.2 K 747 40 × 4.5 K 4.4 4.5 4.4 4.4 4.8 4.5 4.5 4.5 47 4.7 54 4.6 4.6 7.6 4.5 30 90 Œ (3.8)P (44) 4.3 H 3.6 K 3.7K (4.2) (42)3 (45) エオオ (43) (4.4)P 7 5 7 3.7 K Υ (4.5) 4.5 4.0 40 7 4.3 43 4.2 4.2 7:1 44 T T 07 1 _ (3.8)A ((3.9) 3.5 K 3.3 × (3.5) (3.7) 300 3.0 K 1 × 3.5 3.0 3.5 90 A 1 O ⋖ _1 10 O Þ O ala Q 1 05 0 4 Lot 38.7°N , Long 77.1°W 03 02 ō

9

1

= 2 50 4 5 80

20

2

23 24 25 26 27 28 29 30

22

9

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual

Automatic

Manual

Medion Count

ъо _

Form adopted June 1946

Notional Bureau of Standards

BEB

Scaled by:

TABLE 46

Central Radia Prapagation Labaratary, National Bureau af Standards, Washingtan 25, D.C.

IONOSPHERIC DATA

950

July (Month)

Woshington, D.C.

(Chorocteristic)

Observed at __

Day

Ø

4 0 9 6 0 =

5 4 5

2

19 19 20

9

23

25 26 27 28 29 30 31

22

B.E.B. 23 22 McC 2 Calculated by: 20 (100) (100) X N N (110) (00/) (00/) (//o) A (00) 110 (120) (081) (00/) 110 (000) (110) (110) (100) (110) (0/1) (00) 1000 6 6 n S 110 K 110 4 (110) 110 4 120 × (110) (100) (110) (000) [100] (120)A (100) 4 (110) 4 (100) 011 770 110 100 677 ge Ge 110 100 110 011 130 0// 110 0/ 8 (/20) 100 4 [100] 6,1075 4(011) × 0// (110)4 (110) (110)4 1,001 110 0// (0/1) 0// 0// 011 011 110 110 0/ 110 100 110 <u>-</u> 6 1001 BA (100) 110 x (120) (110) (051) (1,0) 110 (//o^A [110] (110) (100) 0// 0// 011 110 110 0// 00 011 0// 011 011 100 110 ŝ 110 9// 9 (100) x (100) A A(011) (100) (100) (110) 1001 110 (110) P(01) P(011) P(011) (100) (100) (100) A (100) 4 (100) 4 (100) (100) (100) [110] E (120) A (100) (110) 110 (100) K (110) K (110) (100) (100) (100) 011 100 110 110 (1,20) (100) (100) (100) (100) (100) 110 100 110 4/0 110 ₩ 0 5 (100)A 110 x 1001 (100) 400/ (110) 4 4(011) (100) (100) A (100)K 100 (100) (011) 100 (110) 100 e q 4 110 100 100 110 - Mean Time 100 4 (110)4 (110)4 (610)# (100) (100) 100 x (100) (100) ٧٥٥/ A(001) (100) [100] P(001) P(011) 100 (100) (0//) 110 (100) 4 (110) 100 00/ 001 100 100 5 d U 110 4 (110) [1107 * 017 (011) (110) (110) 1110/2 (110) (110)K (100) A (100) (110) 1001 (01) (110) (100) x (100) x (100) x (100) x (100) (001) 100 100 100 000 75°W 100 2 (010)4 (100) 100 A (100) (110) A (110) (100)x [100] (110) A (110) 100 (100) (10) A (100) P(01) (100) 4 (100) (110) A (110) A (110) 110 (110) (110) (001) (001) (100) (0//) 100 011 (100) 4 (100) 10 (100) 110 100 100 100 100 110 100 10 = (100) 1001 1000 (100)A (017) 1104 (110) (110) A(011) A(011) (110) A (110) A 110 (110) (110) A (110) A 100 (100) 100 100 100 100 100 00/ 077 100 0 ē (110) 1001 1001 110)4 (100) 4(017) (100) A 1100) 110 (110) 100 (011) 100 100 100 001 100 ~ 110 100 100 100 100 110 60 (110) A ((10) (00) (110) (110) 100 (110) 001 011 110 100 100 011 100 110 100 100 100 011 100 110 100 0// 110 0// 011 ē 90 (100) 110 x (110) A(011) x 001 (110) 4 (110) 4 (00/) (110) A (110) A 110 # (110) # 110 (130) (10) 110 100 100 (110) (110) 0// 110 0// 011 110 100 0// 3 07 100 1030 110 011 (120)A (110)4 +011 (100) (110)4 (120) (110) S * (100)A (110)7 (110) A (011) (011) 100 0// 1030 0// 100 0// 90 130 ě 130 (100)4 (120) (120) (001) 0// 130 05 T (D ₫ ∢ D Q 3 Lat 38.7°N , Lang 77.1°W 04 03 02 5 00

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Manual □ Automatic 🗵

Median

Caunt

 $\begin{tabular}{ll} $TABLE 47 \\ \end{tabular} \begin{tabular}{ll} 4 \\ \end{tabular} \begin{tabular}{ll} C Central Rodio Propagation Loboratory, National Bureou of Standards, Washington 25, D.C. \\ \end{tabular}$

Form adopted June 1946

B. E.B.

National Bureau of Standards

IONOSPHERIC DATA

950 1950

July (Month)

Washington, D.C.

McC. 23 B.E.B. 22 2 Calculated by: 20 (16) x (9.1) (1.5) 6 17 Ţ S 4 1.7 T Ŧ T T V A T (2.5)F (2.7)4 (2.6) 5 2.47 (2.8) x (2.5)x 8.0 ż ک. دم 8.5 4.8 2.4 ک. کہ 8 2.7 3 8 л С, 3 4.4 8. t 3.4 3 n 4 2 U T (3.0) 304 4.67 2.8 A (2.9) A (3.0) 3.1 F 0.8 3.0 (3.0) 3.0 ω 0 3.0 3.1 20 3.1 3.0 3.0 3.2 8.0 8 J 53 8 7 Ţ T V 5× 5 (3.2) £ 6.€ 50.00 3.2 3.3 べら 3.3 3.3 ς γ 3,7 3, 87 33 9 7 T 13.3 A (34)X 34/2 m m 3.00 3 (3.3) 3 i Z (3.3) 3.5 3,0 3.3 3 3.4 3.6 3.5 23 3 35 ιζ ω 5 Ţ Ţ J Ţ Ţ T T (3.4)A 1 [33]4 (3.5) [3.3] (3.3)B 4 (3.7) (35)7 w) S 3.5 (3.4) 3 4 36 ς, γ) 4 3.7 4 J Ţ 13 ∢ Ţ T T T U O Ţ V 3.5 K (3 E) (36)4 Y Y (3 4) (36) ω β 3.4 3 3.6 5 T T T Ţ J U T V 4 T Ţ 7 T (3.6) A (3.E) [3.4]B ¥ (3.3) A 3.6 (3 6) 3.6 (3+1y 3 3.7 3.4 3.6 (r) 3.6 75°W $\overline{\sim}$ Ţ P PQ. T Ţ T T ¥ ∢ ∢ 7 (3 5) B 35 x 3.5 (3.3) (3.3) (3.4) 3 3.6 305 3.6 ω̈́ 3.4 ω, γ 3 3.5 3.4 ---5 5 00 3.6 3.6 T T Ţ ₹ T T Ţ 9 19 (3.4)A (3.3) (3.3) A × (3.4)X (3.4)A [3.3] (34)A 1 3.41A (3.2) 7 3.6 34 1341 3. 3.4 w G 3 5 3.6 3.4 3.4 رن س 0 3 3.4 رب ن 9 T 25 Ţ T T (3.4)4 3.3 (3 3)A [31]A × 3.1 × 3.4 3.4 [3.1] ξ, M 3 3.4 32 3.6 3.2 2 60 7 3 (L) $\widetilde{\omega}$ 3.3 (r) 3 3.3 5. E. 3.1 T 7 (33) 3.0 x (8.8) 7 . o 3.0 (3.2) 9 0.0 3.0 0 0 ر ص 3.0 3.2 (4.9) 3./ 8.8 3. 3.1 3 32 32 3.2 3 3.1 3./ 08 8.9 3. 3. 3.1 29 Ţ (2.9)A 2.67 2.54 [2.7] A 2.6 X 22 x (2.2) x (2.1) x (2.6) x 2.14 254 8 2.7 27 200 3 27 7 8 2.7 2.7 8 87 8.9 8 3.0 3.0 7 20 8 مې 8,00 2.6 cl ò 30 P (x.4)A (23) (22) 5 (2.3) (23)A 237 7 4 3 90 8 7 8 3, 25 3.3 S. E. K 3 3 23 T T T Y T T (1.7) \$ (7.7) .6 0.5 (7.7) 5 T T T T T T Ţ T T T J T Lat 38.7°N , Lang 77.1°W 04 03 02 5 Observed at __ 00 Medion 30 Count Day N m 4 2 9 7 00 6 0 2 -3 4 5 9 80 6 20 Ξ 7 2 22 23 24 25 27 28 3

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Manual
Automatic (3) 1946

Form adopted June

B. E. B.

National Bureau of Standards

Scoled by:

8

Centrol Rodio Propagation Loborotary, National Bureau of Standords, Woshington 25, D.C TABLE

DATA IONOSPHERIC

056

July (Month)

Mc,Km

(Characteristic)

Observed of

Washington, D.C.

5.2110 2.3110 27/10 100 3.6/10 3.1 110 (3.5)30 3.84,30 2.01,30 3.6130 110 43,00 2.5/10 3.0/10 53/10 6.0/10 30 23 Y ** 6 Ġ Ġ P Y P 7.6 7.20 7.05 7.45 (4.8)2 // 0 9.000 (25) 70,10 (6.0)5,0 6.01,0 (6.0) \$ 0.8 (30) 110 5.0110 3.54110 (5.2)5 36,60 3.04,20 (58)5 73110 3.3,20 2.81,10 (4.3)\$ 5.8,10 43110 5.8 110 5.4/100 5.3,10 11.6,10 10.900 3.3/10 37/110 38 120 52110 87110 53/10 36110 22 3 2 011(8.2) 2.0 190 264110 (3.1)5 30120 1.8120 (3.6)50 œ 21 3 y (20)5 56/10 3.8 4.4 110 18110 (40)5 (5.6)3 2.71/00 130,110 01107 2.5/10 3.1/120 (7.0)s (6.8) (6.8) (5:3)5 4.3 120 5.7 110 284120 Y Colculated by: 3.5 G Y 31 2.4/20 5.0,20 4.5,20 3.7/20 6.4 110 44 33/20 01196 45,10 82120 (11.4)3 9.0110 8.2110 5.0,30 6.0,10 59 120 9.5110 41,120 5.5/10 5.5 100 4.2 110 8811050110 Y 305,10 22,10 48,100 Y 6 Y b 43 Y 2 (3.8)3 5.2,20 43/20 4.2/20 3.0/30 4 145,20 4.2/30 9.7/10 Y J P Y P w) 00 J B P 0 00 4.9 120 3.4 /30 116/30 9.14 110 44/20 5.81/10 36/20 6.2,00 011/6 4.4/30 4.84110 3.4120 Y Y G 161 P Y Ġ S J 30 B ঙ 6 9 J Y * -10.4 8.0/20 6 6 1/00 7.2 /20 011861 9.4 120 437,00 3.0100 100/ 7# 7.04,110 6.7/30 9.0 110 Y હ હ G B Y J ** 5 J Y હ G 9 Y G B 6.6/00 6.6 100 5.6 100 # (11.4)5 6.01/10 3.9/20 41/00 8.0120 5.0/00 6.6/20 4.47,10 6.0 110 72,20 3.0 100 30/00 60/100 5.01/10 5.4,10 5.4110 7.81/20 60,10 S.9 400 3.7.100 4.100 5.1,00 37,000 42,000 3.6,00 4.0 100 5.3,00 3.7,00 49,20 6.+4,110 6.4 110 7.6F110 9.71,0 5.5/10 5.8110 100 (3.7)50 (4.8)50 (5.8)5 48,00 હ P Ġ Y 4.6 5 b B P 3 16.91.0 9.0 1.10 6.7 1.10 5.67,00 355 3.3 100 4.01,00 3.7 100 521,00 3.1/00 23.0110 4.74110 4.47110 50120 7.2 100 10.6 120 5-2110 128,10 8.3,00 4.8,100 5.8110 3.9120 J Y J 5 4.2 b 13 Ġ 38 G Mean Time 5.1100 30,00 7.0100 11.011 6.5/10 8.8,30 5.0,00 47,100 3.3,00 3.8110 3.4100 U 6 15 b G 27 U 440 404 536 5.0100 7.54,20 5.3 11.9,00 (6.4)5 5.4 110 5:0110 6.0 100 8.0/30 7.3,20 7.2 100 9.5 110 5 100 Ġ 30 <u>C</u>i 5.85 9.5 7.34100 5.0 110 70,00 5.0 100 5.0110 5.4 110 17.74,00 5.6,100 7.67,20 39,20 9.45 110 7.4.00 9.8 110 5.49110 6.34,30 844 140 100 11.0110 9.6 110 9.8110 55110 7.6110 5.4110 6.6100 6.84,00 5.6,10 100110 13.8,10 8.01,0 58,110 3.5,20 4.67,10 5.34,10 5.3,10 5.2 110 48 110 9.2 110 32.0/140 3.5,20 6.4110 6.4100 5.4 3 G = 6.8F,10 7.0F 10.5.01 4.74 ,20 5.4 110 00/67 5.8 F110 3 8 3.7 110 \$ 00/06 0118.9 5:4110 9:5110 G 8.8 0 3 3.6,20 5.4110 6.2/10 11.4 58/120 4 8.2/20 011811 9.4100 4.9 120 38 120 5.2 110 4.2/120 8.2 120 36110 5.6,00 5.05 3.4 110 7.8 130 5.0 115 4.7 120 92110 7.6120 4.7 120 5.47 110 647,10 4.1/120 34 110 564,10 43,20 3.27/20 5.4 110 5.0 110 7.6 100 607,10 3.5 60 31 8.87,00 444 15.9 497 120 9.6110 7.6 110 4.4 8.8F 110 2.8 10.2110 4.8 110 Y Ġ G Y Y b 48 08 G Ġ Ē 16.67,130 15,00 4.2 110 4.1 120 4.1 120 7.2 110 5.9 120 G 5.3 120 38130 4.21/20 4.1 120 5.57,00 3.74 120 120 3.74,20 6.6,40 304100 3.75,10 33,110 13.67,20 367,20 3.3 110 2.0 110 5.3 110 43/20 76 120 5.6110 6.64110 6.0110 5.3120 7.6120 4.5/10 9.4/10 2.84,20 5.65 110 6.3510 5.84 110 58 120 4.57,40 32 110 2.0 120 10.3 110 8.4 110 Ġ ტ 4.7 4.3,10 G Y 07 31 3,2 6.5 130 3.8 110 3.47 110 9.9 2.3 /20 3.4 /30 106 2.4 100 18 110 2.0 110 1.8 130 947 100 1.8/20 36/30 b G b 90 4.3 31 5.7/00 2.8/100 16.9430 1.7 100 2.0/10 3.24 140 3.0/30 7.0 100 1.8 130 32/ 110 30 130 Y b 0.5 B b Y Y b 30 Q U Y b 3.47 110 3.01100 267,10 8.1 120 2.87/10 40 5 30/55) 6.4 100 4.3 /20 98v 100 43 110 U 120 G 3.6 , Lang 77.1° W 0 4 J P G Y Ġ Ġ ტ P b 2 Y 2.7 (28 15) 001 29 (3.0)5 100 1034 100 2.7 y 100 5.2 (3.4)2 7.9 120 3.3 /20 7.84 ,00 110 14.0 100 110 1.1 120 130 2.87 100 2.47 110 100 3.2 120 7.4 110 5.0 100 3.0 110 10 Y 2.3 03 Ġ Ġ Ġ Ġ ئەن -G Ġ Ġ S Ġ 2.9 al Li 6.J 1.8 120 1.4 3.7 110 3.67 3.1y 100 3.8 130 011 3.8 110 3.7V 110 2.54 110 130 7.0 100 4.57 100 2.8 100 2.2 100 Lot 38.7°N 110 100 100 6.7 100 4.7 100 120 100 2.5 020 ტ G 31 Ġ ৬ ტ S G S b Q G L 2.7 3.61,20 4.3 100 110 120 G U ৬ હ y Ġ P 110 (3.7)5 Ŀ 0 Ġ Ġ Ġ S b B J ** 7 b 2.4 (2.7)s (6.9)5 (2.7)5 110 267 120 237 110 6.34 100 3.0 110 110 110 100 1001 00 Ġ ... N G b Ġ Ġ J G G G ৬ 7.335 3.8/35 11.11 3.5 100g 3.0 3.3 4 2 m 9 Medion Count Day S ~ 600 0 25 27 29 O = 2 -3 4 2 9 <u>∞</u> 0 20 24 56 _ 2 22 23 28 30 31

** MEDIAN FES LESS THAN MEDIAN FOE, OR LESS THAN LOWER FREQUENCY LIMIT OF RECORDER

Sweep 1.0 Mc to 25.0 Mc in 0.25 min Monuol

Automotic

Monuol 49 TABLE

Form adopted June 1946

National Bureau of Standards

nstitution)

BEB

Scaled by:

McC.

Central Radia Prapagatian Labaratary, Natianal Bureau of Standards, Washingtan 25, D C.

ONOSPHERIC DATA

026

July

Washington, D.C.

Observed at

(Unit)

(M1500)F2

B.E.B. 1.9 5 1.8 F 5 (8) 5(61) x (19)5 3(87) (19)5 x (19)5 0,61) (4.8) 1.8 K (81) 1.813 (4.7)81 (1.8) 2(8.7) 8(6.1) 2.0) 2(00) (61) 1.7 1 (0.0) 5 1.8 x 1 x (1.8) 5 x (1.8) 5 x (1.8) 3 6.1 9 4.2 80 6. 9 23 (8.7) 1.9 5 (0.0) (0.0) 5 (67) (1.9) 5 x x (1.718 (1.2) (8) 2(6.1) (8.7) (0.0) (1.8) (8)3 30 4 (19)5 (1.8)5 K(1.8)3 (2.0) \$ (1.9) \$ (2.0) 5 2.0 F (1.9) S (1.8) F (1.9)8 (1.8)3 (8.7) 1.2 K (6.7) 6.7 7 ۵۰ ò 22 McC. (8.7) (1.8) (1.8) (61) (1.9)3 (8.7) 1.9 % (1.9)5 6(6.1) (6.1) 20 (1.8)3 (19)5 (8.7) (0.0) \$ (1.9) \$ K(1.8) 5 K(1.8) 5 67 (6.1) 90 'n 0. 6.1 6. 6:1 6.1 6. 5 7(67) (05.1) 5 \$(0.0) (000) \$ (000) 4.8 (10)3 (1.9)5 (10) (020) (8.1) 200 (1.915 (1.8) 1.7 4 (1.9) 5 (20) 5 (6.7) 9(0:0) (1.9) Calculated by: (61) o. 6.1 6:7 6. 6. 20 'n 5(1.5) 4(67) (0.0) (6.4) 2000) (/ 8)] (0.0) 9(61) 2(6.1) (0.0) 101 10% 6.9 Q O (1.8)x (6.9) 6. 0.0 0.00 0.0 0. 9 0 6 0. 6: <u>თ</u> 3 00 6 (1.9) 1.8 5(0.00) 6.7 6 0.0 0.0 6:1 9 0.0 0.0 6.1 20 0.0 0.0 6: 0 0.0 6. 6.1 6. 6. 200 6 <u>∞</u> U 101 (8.1) 1.9 % 0.0 6.7 0. 0 8. 0.0 0 89 6. 1.6 6.1 6. 0.0 8 18 0 6. 0 6.1 6. 00 6. 6. 6.1 6.1 _ (4.8) × 6. 1.7 x (1.2)K 3(000) 2(-5.1) (1.8)F (6%) (1.2) 9 0 0.50 0.0 0 00 0 6.1 4 6. 6.9 00 67 0 0 8 00/ 9 6. 00 0 Q (4.2)8 (87) 1.7 4 (0.0) (1.6)3 (4.2) (1.8)3 1.8 1.7 (1.8) 87 0 80 00 0. to G 8 61 8 00 6.1 5 U 1.7 0 d ψ 1.6 x (1.8) (1.8)5 4 4 (1.7) 8. 00 0 6.1 00 0 4 1.2 00 6 6.1 0. O 1.7 9 ر. ص 3 U U ◁ Mean Time (0.0) 1.00 6.1 ر. م 1.7 0 2 9. 00 61 1.7 1.7 6. 0. 1.8 1.00 00 6. 5 O v 1.6 O J (25) 5(61) (1.913 (1.6)" (1.7) (1.7) 00, (0.00) (1.6) 5 00 75°W 8 1.7 1. 00 1.2 9 0 6.7 1.7 6 do J 6 9 0 2 D ŋ U (81) (6.7) (6.1) (1.8) 8 (8.1) 0.0 00 0. 0.0 0 6.7 0 00/ 6. (6.1) 00 O 9. 0, O Ó O + 6.7 5(81) (9.7) (1,2) (0,0) (3.8) 00. 0 0.0 6.1 8 6.9 0.0 0.0 ∞. 6. 1.7 00. 0 6. 1.7 6. 0 Z 9 0 > å O D O T U 1.9 11 (60) (8%) (6.9) (1.2) 1 (ca) X (C C) 6.7 9.02 60 0 9 0,0 0.0 6. 1.7 6.7 60 8 8 O Ţ G T Ü (0.0) 1.9 x 2000 1.45 8.0 4 7 3.0 Ł (8) 0.0 6. 6.1 0 0.0 0 00 13 0.0 do G (000) 98 > છ O > (1.4)5 2(7%) (6.7) 3 4.7 30 (0.7) 0.0 6.1 6.9 9 6.1 0.0 6:1 3 0 5 ò 0. 6. 0. 60 07 67 T G 5 (رت ته) F(0.59) 1.97 \$ (0.00) 1.9 (0.1) 7 (0.1) 5 2.6 3 6.0 0.0 90 6. 0.0 G 33 6. 0.0 1.9 3 6. 9 3 3 ě 3 3 8 0 17 17 R (0.0) x 19 4 500 2(0.0) (0.0) (0.0) 2.0 V (1.8) F (0.00) 5(0.50) 4 4 (19)3 (19) x 00 D. 1. K 0,0 0.0 0 0 0 05 67 0 0 0. 6 0 80 a 1.9 5 (1.9) F (19) 161 7(87) 20 x (19)5 (19)5 (8.7) (1.8) 0 8 , Lang. 77.1°W 6. 0 4 6. 6. 6. 6. 6:1 6. 9 6.1 1 6.3 9 1.9 5 1191 1(0.0) 5(61) 19% 5000 3(67) 7(8.1) (1.9) 5 (2.0) 5 (2.0) 1. B 5 (00)7 1.00 8(0.0) (1.7)x (1.8)x (1.8) 3 S & (1.7) x (0:0) ,6 000 0,0 8 0. 6. 03 6 6 6. 6 6. 6. 0 6. -1.9 2 1.01 (1.8)5 (1.8) 5 3(6.1) 510.00 (0.0) 1.9 5 (0.0) F (1.9) V (1.9) S 1.9 4 1.8 x 6.6 2(61) (1.9)5 Lat 38.7°N 000 20 6. 0 6. 02 6 67 φ, <u>ر</u> 00 6.9 G. × 0.50 (1.9)5 1.0% (16) 5 1.00 1.9 8 (10)5 (1.9)5 16/01 4 4 0, 1.2 6: 0.1 (8.7) 6. 67 0 6.9 0 <u>۱</u> 87 0 0 ٠, 00 ō ro 5 (67) (1.8) 5 (1.9)5 (1.8) 2(0) (1.8) 5 1.8 × 1.6 4 (6:1) 2 (8.1) 00/ 00 00 67 6.1 6.1 8 13 oo ' S 8 m Median 20 22 Count N 9 25 Ö 3 4 Ŋ 9 ~ œ 6 0 13 4 15 _ 8 6 Ξ 24 27 2 2 23 28 29 30 3

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min Manual

Autamatic

Manual

ONOSPHERIC DATA

056

July (Month)

(M3000)F2

Long 77.1°W

(31) 7

(29) F 788 30 6 200

(28)

2 ю 4 S

286 3

27

28 7

200

9

7

275 30 €

(28x)

8

7 8

r v

σ

œ 0

30

8

(29)5

(3.0) 5 X

298

8.0

= 2 5

(4 K)

r v (2.C)X

2.95 200

30 ×

(28) F/(28) F

4 15

3

2

2.8 F (2.7) 5 2.8 7

(28)

9

(29) 5 (2.9) 5

02

0

Doy

Washington, D.C.

Observed at

BEB National Bureau of Standards

75°W

2 4 <u>m</u>

(2.9) S (2.9) F (2.8) F (3.0) F (8 8) E 74 (x.7) 75 (8 8) V (4.7) r (28)5 (2.7)5 (x 8) F A. SO. Y (x) K(3.0) 5 K (2. P) (2.9) 2.9 (2.6) x (2.7) x 2.7 x (3.3) 23 3.00 4 (4.4) (2.9) F (2.7) F 2.9 2.0 49 Ų 8 (30) 5 (28) 5 (28) 4 (8 8) (2.8) S (29)3 (3.1) 5 (3.0) (29)5 (28)5 204 (29)5 (29) 5 (29) 5 (3.2) 3 (3.6) 2.6 x x(2.7) 5 3.0 % (3.1) S (28) S (28) S (8.E) (2.8) (2.8) (2.8) 2.0.8 (S. E) (A. P) 3 8 8 3.0 F (2.9) F (30)3 8.00 (2.9)5 (3.1) 3 (4 9) 5 (28) 400 (x.7) x (2 K) X (2, 2) Y 8 4.9 (2.2) (22) 5 (2.9) 2.9 2 R (8.9) x.8 K (3.0) } (3.0) 5 (30) (28) 5 (28) (3 0) 5 (8.8) 3. 2 0 X (8.7) 4 (x.9)3 2.9 0.0 3.0 0 4 را 60 3/ (27) 5 N(2.8) 5 2.6 * (2.9) 5 2.9 x (2.9) x 3(0.8) (30) (2.7) \$ x 8.x (28) (30) 5 (28) 5 (3.0)P (6.5) (3 1) (2.9) 7 9 2 (2.5) 2.9 F 2.9.8 ص ۲ ر ص 8 3.6 49 2.9 o O 5.1 څ <u>6</u> 4.9 ~ ري ه. 4.9 3 × 00 × 4 (4 x) 7 w. 2.9 4.9 3.0 3.0 ص 0 2 8 3.0 30 8.9 0 ر م 67 e.k 0-0 2 m o 8.9 8.8 3. J 8.9 J. 3. 30 2. 5x 2.74 2.97 (88) 3.0 0.0 2 4 8. 3 Š (25) io o 3.0 8.8 4.9 رم ص 8.0 3 8.8 8 7 7 8 8.9 00 ck Oio 300 _ 8 8 9 8 8 9 30 300 (2.9) 5 (26)5 (2 C) } 2.8 4 (2.3) 5 ر م + * 2.75 8 (30) 295 29 3. 8 8.9 0 °, 4 2 3 49 8 8 3 ŝ 8.0 9 8.8 3.9 V 3. 4 5 (8.4) X (2.C)R (2.4)" (3.0) (& x) 2.5 4 2.7 4 (2.8) 22 4 4 6.6 4 9 8 8 (27) Š 27 3.7 3 8 2.7 80 400 c, 00 8 8 8 c S X, 00 × R Ġ 2. c. z. (27) 2 2 2000 2.7 2.8 3 28 š c,k (2.8) S. 8.9 7 8.0 5 8 2.2 23 4 ų, 00 8 Ġ 47 J 800 P S Ţ x + x 8.6 X (2.9) х (b ¥ 2 2.7 7 2.7 8 3, 8.00 2.7 30 2 8.7 9. ż 27 2 4 e z 27 ~ √ Ġ J O G 2.5 X (3.0)H (2.5)x (2 C) x (2.5) H (2.6) X (2 8) 3 (2.3) 8 2.7 8.3 8 30 8 8 e 7 28 e 8 7.7 8. 2 49 3 oo V 5.8 ~ 800 b 8 Ġ Ţ 7 X.X X (29)5 (2 B) # x.5 x 8.6 x (28) 2 (27) 3 (2.9) (2 g) P (8 8) 8.5 4.9 8 3 2.7 (2.5)H 2.7 3 S S c.< 2.9 800 = (27) H 30 8 2 7 8 2.7 500 γ 00 ŝ b C y T x.8 K (2.8)5 (3.1)F J. × 5 N X 28 X 3.0 X 8.8 8 3 8 3.6 9 3.6 3.0 0 T 2.8 3.7 2.7 2.9 2.9 # 2.9 Z P T 3, 8.9 ç 7 30 V (2.8) (33) # (3.1) # (28) 5 e . Y P 7(2.2) 00 3.0 (30) 29 8 8 9 می ص 2 9.0 60 3. 3.0 ψ ω ر. ز. S T 27 800 T 9 Ţ G * 6 4 4.7 (4.9.X) (48)# 1 x (3.0) 5 202 × (30)5 79 6 3.12 2.9 3 200 27 . . 3.0 3.0 3.0 ω 0 8 08 2 3.1 3 3.0 8 4 ₩ .. 8 J u ó 2 9 37 (3.1) × 00. X P G * (21)3 3.1 * S. & K (2 C) S **∀** 3.2 x (2.9) H 4.9 0 . 0 3 3.5 3 8 07 30 49 2 8 3, 3 2.9 8 4.00 3. Å ó 2.7 3.3 6 7 P 8 49 3. T 2.9 3.2 (3.0) 5 (32) S S 0.0 ₹ (F) 3.0 0.0 (3 4) 5 3.1× 3.0 % (3.0) 30 3.0 0 90 8 ~ 8 3. 3. 3.5 3.2 3 3.4 8 3.0 is is Š (30) 3 (3.1) (2 2) F (4 9) 5 3.0 ₹ 30 3.0 € (3.1) 3 3.0 F 2.97 2.9 x (2.9) 3 2.4. x (2.9) x (3.0) S x (2.9) x (3.0) ņ 3. 3.0 30 05 8 2.9 ~ 3 9 ς οο 9 20 2 8.0 3. 30 J (x 9) 3 30 % (29) 1 (2.2) (28) 5 2.9 F 3.0 (2 8) C 3.0 4 7.0.7 8 B 2.0% 04 30 295 (2.9) 8 o, 2.9 2 9 23 *ي* ج 8 pa 20 T n (31) R x 9 F (29) F (29) F (31) F (29)5 3.1 F 2.3 F 2.9 F 295 (A. P) 2 2.9 F (A.B) F 2.8 M x 7 x (29) 7.9 × (3.0) 5 2.7 F (3)3 (J. C.) x (4.9) (2.7) 5 2.9 F (2.8) r 2 8.8 3.0 03 7 7 3 200 oo Y 6.2 8

2.9 F

8.7

(2.7) F

7

8 8

(29) 5

2.0.

200 (2 2) F 187

27

2.9 F

8.9 S 3

28

59

2.9 %

ا ا ا

(27) 3

S

(2.5) 5/4 (2 x) F

2.7 x (2.6) x (2.7) x

(2.9)

300

5

4.9 7.0

5.9

8

Median Count

~

<u>_</u>

200.

2.7

2.7

30

5.0

2.9.2

(A.7)F

(3.0) 5

3.0

(6.2)

4.9

7 9

o-

8

29 5

17 80 6 20 2 22 23 24 25 56

30 N

8

3

Sweep 1.0 Mc ta 250 Mc in 0.25 min

Manual

Autamatic

Manual

Form adopted June 1946

National Bureau of Standards (Institution)

BEB

Scaled by:_

McC.

TABLE 51
Central Rodio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Washington, D.C.

Observed at __

(M3000)FI

B.E.B. 23 22 McC. 5 Calculated by: 20 <u>6</u> 3.5)P (3.6) x (3 4) x (3.3) x (33) 1 T T (3.5)P (3.6) 3.5x 3.44 (3 4)P 3 5 3 (3.6) 4.0 (30) (30) 30 3.6 4.4 3.7 3.6 3 0 7 (3.6)4 3.4 Ţ 1(2.6) (3.6)7 (3.3)7 3.64 3.3 # (3.7)# (3.7) 36 3 4 34 3.7 3.6 is S 3.5 3.4 3.6 3.7 9 ¢ 77 T Ţ (3.7)4 35 K 3.8 K (3.6) 3.8 4 (3.7) 3.6 (3.6) 3 3 (3.5) w oo J 3.7 2 3.6 3 34 35 **%** 36 T T T (3.8)5 (3.6) 4 3.51 3.8 H 35K 3.9 1 0 E (3.7) (38) 3.7 3.7 3.6 37 3.6 L) S) 3.7 3.7 3.7 3.6 4 3.6 25 Ţ T T Mean Time (d o +) H(8.E) 35 X * 0 X (39) 3.9 x 3.00 1.7 3.00 3 €. 90 9 <u>10</u> 3.9 36 3.6 1:4 w) 00 27 3 00 M 52 J T U T J (3.6) H 3.6 X (3.7) 5 (38) 4(17) 3.6 X (39)5 5 (8.€) 3.9 40 3 15°W 4.0 7.0 3 7 300 3.7 3.7 3.0 3.6 3.7 4.0 30 5.7 77 2 T pa T T P 404 (3.7)H 200 (3.3)# 35 K w. 00 404 35 # (4.1) x (3.6) x 39 3.8 3.2 # 3.6 3.0 w oo = 0.7 w) 00 3.9 4.2 3 (3.7) 3.7 المن المن 3 W S 39 T d T \geq T (39)8 3.3 H (4.2)F (38)4 4.0 37 3 3.7 3.7 (3 8) 3.6 3.7 9 3 T T T Ţ T \geq 7 T \geq (3.4)" 3.7 K 3.9 × 3.6 4 x 0 x 9.9 3.7 40 3.7 37 3.6 300 3.7 3 60 3.00 07 3 3.6 77 T T 3 T T T T T T Ţ 3 5× 3.4 X 3.4 4 3 % (36)7 3.0 (37)3 (3.4)P 3.5 y. (3.5) 3 ري م 3.5 3.5 (3.4) 3 4.0 9.3 3.4 3, 3.6 08 m m 3.6 5.7 3.6 2 U Þ Ţ T T (32)P (3 4)P (34)7 (3.3) 5 (3.8) A (3.6)P 3 2 3.4 (3.3) (3.7) 3 3 (J. F) 3.6 3 w M 3 4 3 3.4 ι.j ω 07 3 Ţ 7 T 3. J. M. 3.4 7 (3.3) (3.2) 3.2 3.4 90 T 4 B T a C Q 0 0.5 Lot 38.7°N , Long 77.1°W 4 03 02 ō 00 3 24 Day Median 4 9 Count ß 9| 7 œ σ 0 = 2 10 4 5 _ 8 6 20 -2 22 23 24 24 25 25 26 27 29 30 30 31

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Monual

Automotic

Monual

Form adopted June 1946

National Bureau of Standards

TABLE 52

Central Radia Prapagatian Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

056

July (Month)

(Unit)

(M1500)E

E B m 8.5 23 22 McC McG. 2 Calculated by: 20 Scaled by: (4.0)K (4.2)3 3.74 6.0 6.0 6 0 Q Q 1 T \triangleleft D O \triangleleft 6 10 D € (1) 4.1 4 m) 00 € 1.13 (3.8) 4.0 1.0 4.0 (4.0) 4.0 4.0 0.0 0.14 (is 9 30 5 T $\underline{\varpi}$ 3.9 4 (4.3)A (4.3)5 (4.0) 4.1 11.0 K 4.0 (4.0) 00 4.0 (A) 4.0 23 7.7 4.1 7 2 8 U D 1.1× (4.1)A 4.04 (3.9) 4. U. 4.0 4.0 4.0 3.6 4.3 4.2 4.0 1.02 6.0 4. 1 4:1 4:1 9 4.1 4. 7. 4.1 <u>(0</u> Q Ţ (4.0)7 4.2 % (4.1) A (3.9) 4.63 4.0 1 4.5 4.0 4.03 3.0 0 4.0 4:0 1 4.0 4.3 4.1 e, Q 10 9 8 ∢ 4 Q T Q (4.3)K (4.2) (4.1) (4.0)A (4.4) F (4.3) K 4.1 U 4.0 4.02 6 40 Q 4 Q O T Q 1.7 Ø D Mean Time (4.1) 40x (4.0)A (4.2) 5.0 4.8 4.1 4.3 4.3 (1) T Q U 10 U T U D T T U T V Q 7.03 K (4.2) Ā (4.0) 4.2 40 4.0 4.4 (4.3) 4.7 75°W Q V Q ú Ţ QQ $\overline{2}$ 0 D T A D A T T T D (4.3) 1 (41) B ¥ (4.3) 4.00 4.07 4.3 1.1 4.4 4.2 4.2 4.02 4.2 3.3 4.3 llo 4.1 ----4 T T ∢ Q (4,3)A (4,3) (4.2)A (4.5) (4.3) (4,4)A 14.2) (4.4) 14.3 (4.2) 3. 9 17 4.0 1.7 4.02 4.3 4.3 V 9 T D Q D A T (4.3)A \$ 00 m (4.1) 4.3 4.2 4.2 4. s 4.0 4 6 4.2 4.5 4.6 4.4 7. 1 4.4 4.7 60 T 11 d D Þ Q. (4,1) A 4.37 (4.3) A ×0.5 (4.3)4 4.3 4.3 1.3 4.2 4.3 4.7 6 4.3 4.3 4.0 4.3 4.2 1. 4 4.0 4.52 90 08 T Q (N.012 (4.2) x (4/1) 4.5 4.0 4.3 39 0.0 4.00 3.9 (g. 6) 4.1 3,9 4.0 00 18 4.5 4.03 3.7 4.2 4.2 20 4.1 07 4.1 1 7 T D (4.1) A (3.7) (4.2) (4.2) A (3.8) 3.9 4 3.2 x × 0 × (3.9) 3.9 24.63 4.3 4.0 4.0 90 4.3 3.9 7.3 00 Fr 7.7 4.0 5 0 3.6 3.0 ◁ A T D (38) (3.9) 0.5 6.0 ţ_o 4 < < T 1 < 0 4 77.1°W 40 , Lang 03 Washington, Lat 38.7°N 02 0 Observed at 00 4 Median Day 2 M 4 9 00 0 = -2 5 5 9 -Caunt 5 ~ Õ 00 20 22 22 23 24 25 25 26 26 30 27 28 59 3

Sweep 1.0 Mc to 25.0 Mc In 0.25 min

Manual [] Autamatic 33

Table 53

Ionospheric Storminess at Washington, D. C.

July 1950

Day	Ionospheric cl	maracter* 2-24 GCT	Principal Beginning GCT		Geomagnetic	character** 12-24 GCT
1	2	3	+++	0300	3	3
2	2	**		_	2	2
2 3 4	1	3	2100	@ 60 to 60	1	4
	4	1	C2 400 €20 €20	0600	Ls.	3
<i>5</i>	1	3 2			3	3 3 3 2 2
6	1	2			3	3
7	1	1			2	3
7 8	2	1			2	2
9	2	1			3	2
10	1	2			2	3
11	1	3	1900	-	2	
12	4	*	quality dates onto calap	-	6	3
13	Ţ.	4	-	Minima on the	5	3
14	4	2		1200	5 3 3 3 3	3 3 3 2
15	2	3 2			3	2
16	2				3	2
17	2	1			3	2
18	1	1				2 2
19	0	1			1	2
20	0	1			2	2
21	2	3			2	2
22	2	2			3	2
23	1	1			1	1
24	4	4	0500		4	3 2
25 26	5 4	#	@ @ @ @ @	CORPORATION ACCORDANGE	5	2
		A.	(a) (b) (c) (c)	1111	1	2
27	3 2	2			2	3 2
28	2	2			2	
29	2	0			2	2
30	2	4	1200		3	3 3
31	4	1	***************************************	0600	3	3

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9. 9 representing the greatest disturbance.

**Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

***No readable record. Refer to table 42 for detailed explanation. --- Dashes indicate continuing storm.

#No I-figure owing to insufficient data. Conditions probably disturbed.

##Time of ending unknown because of lack of record. ###Storm began at 1500 GCT on June 29, 1950.

Table 54
Sudden Ionosphere Disturbances Observed at Washington, D, C.

July 1950

1950 Day	GC1 Beginnir		Location of transmitters	Relative intensity at minimum*	Other phenomena
July 12	1604	1700	Ohio, D. C., England	0.0	Terr.mag.pulse** 1608-1620 Solar flare*** 1620
15	1829	1905	Ohio, D. C., England	0.1	
17	1335	1400	Ohio. D. C., England	0.1	
17	2110	2120	Ohio, D. C.	0.2	
18	1312	1340	Ohio, D. C., England	0.1	Solar flare*** 1320
21	1315	1340	Ohio, D. C., England	0.3	Terr.mag. pulse** 1313-1320 Solar flare*** 1315
22	1548	1605	Ohio, D. C., England	0.05	Solar flare*** 1550
29	1720	1840	Ohio, D. C., England	0.0	×) () (

*Ratio of received field intensity during SID to average field intensity before and after, for station KQ2XAU (formerly W8XAL), 6080 kilocycles, 600 kilometers distant.

***Time of observation at the McMath-Hulbert Observatory, Michigan.

^{**}As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

Table 55

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief,

Cable and Wireless, Ltd., as Observed in England

1950 Day	GCT Beginning End						
July 12	1610	1620	Brentwood	Austria, Barbados, Canary Is., Co- lombia, Few York, Portugal, Thailand, Uruguay, Venezuela, Yugoslavia	Terr.mag.pulse* 1608-1620 Solar flare**		
12	1610	1630	Somerton	Argentina, Brazil, Canada, New York	Terr.mag.pulse* 1608-1620 Solar flare**		
21	1314	1335	Somerton	Argentina, Brazil, Canada, New York	Terr.mag.pulse* 1313-1320 Solar flare** 1315		

^{*}As observed on Cheltenham magnetogram of the United States Coast and Geodetic Survey.

Suiden Ionosphere Disturbances Reported by BCA Communications, Inc.,
as Observed at Point Reyes, California

1950 Day	GO: Beginni		Location of transmitters
July 13	0200	0400	Australia, China, French Indo-China, Hawaii, Japan, Java, Philippine Is.
19	0040	0100	Australia, China, Hawaii, Japan, Java, Philippine Is.

^{**}Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan,

Sudden Ionosphere Disturbances Reported by Engineer-in-Chief
Cable and Wireless, Ltd., as Observed at Colombo, Ceylon

1950 Day	Beginnin		Location of transmitters	Other phenomena		
May 3	0940	1035	England	0950	flare*	
5 22	0615 0945	0650 1030	China, England England		flare	

Time of observation:

Sudden Ionosphere Disturbances Reported by RCA Communications, Inc.,
as Observed at Riverhead, New York

1950	GCT		Location of transmitters	Other	
Day	Beginning End			phenomena	
July 12	1608	1640	Argentina, California, Canada, Eng- land, Italy, Morocco, Panama	Terr.mag.pulse ⁹ 1608-1620 Solar flare ⁶⁹ 1620	

^{*}As observed on Cheltenhan magneogram of the United States Coast and Geodetic Survey.

Meudon Observatory, France.

^{**}Stockholm Observatory, Sweden.

^{***}Prague Observatory, Czechoslovakia.

^{**}Time of observation at McMath-Hulbert Observatory, Pontiac, Michigan.

Sudden Ionosphere Disturbances Reported by Institut für Ionosphärenforschung.

as Observed at Lindau, Harz, Germany

Day	GC1 Beginnin		Location of transmitters	Relative intensity at minimum*	Other phenomena
June 1	950				
8	1200	1210	Lindau***, Minchen**	0.2	
20	1230	1300	Lindau***, München**	0.1	

^{*}Ratio of received field intensity during SID to average field intensity before and after, for station Voice of America, 6078.9 kilocycles, 400 kilometers distant.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, Mational Bureau of Standards, Washington 25, D. C.

^{**}Station Voice of America, 6078.9 kilocycles.

^{***}Lindau station, 1780 kilocycles, pulse, transmitter and receiver at Lindau.

Table 60

Provisional Radio Propagation Quality Figures

(Including Comparisons with CRPL Warnings and Forecasts) June 1950

	North	CRPL*	CRPL**	North	Geo-	
	Atlantic	Warning	Forecasts	Pacific	mag-	
	quality	0	(J-reports)	quality	netic	
Day	figure		, , ,	figure	K _{Ch}	
	Half day	Half day		Half day	Half day	Scales:
	GCT	GCT		GC T	GCT	Quality Figures
1	(1) (2)	(1) (2)		(1) (2)	(1) (2)	(1)- Useless (2)- Very poor
						(3)- Poor
1	5 5			5 6	3 3	(4)- Poor to fair 5 - Fair
2	6 6			7 6	3 2	6 - Fair to good
3	6 6		X	7 6	2 3	7 - Good 8 - Very good
4	5 6		X	7 7	3 2	9 - Excellent
5	7 7			7 6	3 2	
						Geomagnetic K _{Ch} - 0 to 9, 9 representing the greatest
6	(4) 5	W		6 6	(5) (4)	disturbance; Kch > 4 indicates
7	5 6	U		8 7	1 2	significant disturbance, enclosed in () for emphasis.
8	7 6			8 7	1 3	enclosed in () for emphasis.
9	5 5	W W		7 6	(4) 3	2
10	(4) 5	U		7 7	3 3	Symbols: W Disturbed conditions
						expected
11	6 6			7 7	2 2	U Unstable conditions
12	7 7			7 7	2 2	expected
13	7 6			7 7	2 2	·
14	6 7			7 7	2 2	N No disturbance expected
15	7 6		X	6 6	2 1	X Probable disturbed date
	0 0		_			
16	8 6		X	7 7	1 3	Scoring:
17	6 6	Ŭ (m)	X	7 6	3 3	H Storm (Q € 4) hit
18	6 6	U (U)	X	7 6	3 2	(M) Storm severer than
19	7 6			8 7	1 2	predicted
20	7 6			8 7	1 2	M Storm missed
21	7 6			8 7	2 2	G Good day forecast
22	6 6			8 6	3 3	O Overwarning
23	6 5		X	8 7	3 (4)	
24	(3) 5	W W		7 6	(5) 3	Scoring by half day according to following table:
25	5 5	U		6 5	3 2	Quality Figure
					ļ	<u>€3 4 5 > 6</u>
26	6 5			6 6	3 2	W H H O O
27	7 7			7 6	1 2	U (M) H H O
28	7 6			7 7	2 1	0 (m) H H O
29	7 5	107 107		7 6	2 (4)	N M G G
30	(3) (4)	W W		6 6	(5) 3	х н н о о
Score:		MI a service of				
2001.4:		Warning N.A. N.P.	Forecast			
н		N.A. N.P. 6 0	N.A. N.P.			
(M)		0 0	0 0			
M		1 0	5 0			
G		46 47	41 46			
ŏ		7 13	14 14			
_		. 10	17 17			

^{*}Broadcast on WWV, Washington, D. C. Times of warnings recorded to nearest half day as broadcast.

() broadcast for one-quarter day. Blanks signify N.

**In addition to dates marked X, the following were designated as probable disturbed days on forecast more than eight days in advance of said dates: June 19, 20, and 24.

Table 61

American and Zürich Provisional Relative Sunspot Numbers

July 1950

Date	R _A ≠	R _Z **	Date	R _A *	RZ **
	80	70	27	115	96
2	68	58	18	99	83
3	59	58	19	111	102
4	58	66	20	127	130
5	63	75	21	129	108
6	101	88	22	139	125
7	104	98	23	133	115
8	90	77	24	136	108
9	86	67	25	130	96
10	96	68	26	150	118
11	92	78	27	144	112
12	81	68	28	142	110
13	88	67	29	134	112
14	92	98	30	117	106
15	90	75	31	91	100
16	100	89	Mean:	104.7	91.0

^{*}Combination of reports from 43 observers; see page 8.
**Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 62a

Coronal observations at Climax, Colorado (5303A), east limb

ete GCT																			100																		
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	9
9 50																																					
ul. 1.6	_	_	_	_	_	_	_	_	_	2	4	4	5	7	10	13	12	9	5	4	3	2	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-
3.6	_	_	_	_	_	_	_	_	1	3	3	4	7	5	6	9	10	4	3	3	2	2	3	7	9	6	3	4	3	-	-		-		-	-	
4.7	_	_	_	_	_	_	_	-	_	_	3	4	4	5	5	6	4	2	-	2	3	7	10	11	8	3	2	3	-	-	603	430	-	•	-	-	
5.7	_	_	_	_	_	_	_	2	3	4	3	3	4	4	5	4	3	3	4	-	8	10	9	10	9	4	4	3	-	-	-	-	-	•	-	-	
6.6	_	_	_	_	_	_	_	2	3	4	3	3	2	5	4	4	3	2	2	3	4	10	13	13	10	4	6	4	2	-	-	-	-	-	-	-	
9.9	_	_	_	_	_	_	_	_	_	_	2	3	4	10	9	10	6	4	-	4	4	7	9	4	3	-	-	•	-	-	-	-	-	-	-	-	
10.6	_	_	_	_	_	_	3	4	2	1	6	9	12	14	17	15	11	8	4	4	5	11	12	11	10	8	7	4	2	4	3	1	-	-	-	-	
11.7	χ	χ	X	х	Х	Х	X	Х	2	3	5	9	13	18	14	17	1€	13	9	6	9	9	7	ಶ	5	4	5	3	χ	X	Х	Х	χ	Х	X	Х	
12.6	î	î	2	_	ï	ī	3	3	3	3	4	9	11	12	11	16	14	12	10	8	8	5	ϵ	4	1	2	3	2	2	-	-	2	-	-	-	-	
13.6	1	ī	1	1	2	ī	3	3	4	4	5	3	9	11	11	16	19	16	14	11	9	10	10	9	2	-	3	4	3	3	3	3	3	-	-	•	
14.7a	-	_	_	_	_	_	_	-	_	2	2	4	4	4	7	13	14	12	9	8	4	5	5	3	2	-	-	-	-	-	-	-	-	-	-	*	
15.8	-	_	_	_	_	_	_	-	-	-	3	3	5	9	10	13	14	13	7	5	9	10	8	8	3	-	-	-	-	Х	Ä	X	χ	λ	Х	Х	
16.7a	-	-	_	_	-	_	_	_	_	-	_	3	4	6	10	12	12	10	7	5	6	9	8	8	4	4	2	-	-	-	~	-	-	-	-	-	
17.6a	X	χ	χ	χ	χ	χ	Х	1	_	2	4	5	5	8	12	14	15	13	13	9	8	9	10	12	5	3	4	-	-	Х	X	Х	Х	X	X	X	
18.6a	-	î	2	2	2	2	2	3	4	5	5	8	6	7	12	14	17	17	13	11	11	11	13	14	10	5	3	2	-	-	-	-	-	-	•	-	
19.6	-	_	_	_	_	2	3	2	4	7	9	9	7	5	9	12	13	14	ÞΟ	9	12	14	13	11	7	5	5	3	3	-	-	-	-	-	-	-	
20.8	-	_	-	_	-	_	_	3	3	3	4	4	6	5	7	9	10	10	8	6	4	9	12	7	4	4	3	-	-	-	-	-	-	-	•	-	
21.6	_	_	_	_	2	2	3	4	4	5	5	5	4	y	9	11	11	13	9	8	8	7	9	7	4	2	-	•	-	-	-	-	-	-	-	-	
22.6	-	_	-	-	-	-	-	2	4	4	3	5	4	3	9	7	9	10	9	9	9	12	9	5	2	-	-	-	-	-	-	-	-	•	-	-	
23.8	-	_	_	-	-	-	-	3	4	4	6	6	7	8	11	13	12	7		þο	10	12	9	4	4	-	-	-	-	-	-	-	-	-	-	-	
24.6	-	-	÷	-	-	-	-	-	5	5	9	8	9	8	11	11		9	7	5	6	8	9	5	3	-	-	-	-	-	-	-	-	-	-	-	
25.6	-	-	-	-	_	-	-	2	4	7	6	4	5	9	10	12			8	5	4	4	4	ь	3	3	-	-	-	-	-	-	-	-	-	-	
26.6	-	-	~	-	-	-	-	-	-	2	3	2	3	5	- 8	11		12	10	4	3	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	
27.6	-	ete .	_	-	-	-	-	-	-	3	3	4	4	4	7	9	12		9	3	3	4	3	-	-	-	-	-	-	-	-	-	-	•	•	663	
28.7a	2	2	2	-	-	-	-	2	3	2	2	2	4	5	9				12	12	13	15	4	2	2	2	-	-	-	2	2	2	2	-	-	-	
29.6	-		-	-	-	-	-	3	2	-	-	2	3	3	8	9			10	9	12	12	12	4	3	2	2	-	2	2	-	-	-	-	-	-	
30.8	X	Х	X	Х	Х	Х	-	-	-	-	-	-	-	3	3	4		_	4	2	4	4	4	2	-	-	-	-	X	Х	X	Х	X	χ	Х	Х	
31.7	-	-	-	2	2	2	3	3	3	4	4	4	4	5	4	: 5	6	4	6	4	8	11	15	14	13	8	5	3	3	-	-	-		-	-	-	

Table 63a

Coronal observations at Climax, Colorado (6374A), east limb

GCT	00				200	9 11	OT. C	u o	և և	ue	80.	Lar	equ	n c	T				100	ď			net	ree	38 S	out	n c	JI T	ne	SOT	ar	603	ыто	r			
	90	85	80 ′	75	70	65	ort 60	55	50	45	40	35	30	25	20	15	10	5	1	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1950																																					
Jul. 1.6	-	-	-	-	40	-	-	-	-	-	-	5	6	6	-	11	6	3	-	-	-	-	-	-	-	-	-	-	-	-	44	-	-	-	-	-	-
3.6	•	-	-	-	**	-	-	-	-	-	-	-	•	-	-	-	-	4	4	4	4	5	4	2	-	-	-	-	•	-	-	-	-		-	•	-
4.7	-	-	-	-	-	-	-	-	-	-	-	-	-	4.2	-	-	-	-	-	2	13	9	11	10	-	-	-	-	-	-	-	-	*	-	-	-	-
5.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	6	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
6.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	5	5	7	-	-	~	43	-	~	-	-	-	-	-	-	-
9.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	49
10.6	-	-	-	-	-	-	-	-	-	-	-	-	-	8	12	10	9	8	4	5	-	_	3	3	2	-	-	-	-	-	-	-	-	-	•	-	-
11.7	X	X	Х	χ	X	Х	Х	Х	_	-	_	_	-	-	4	4	6	-	-	-	-	-	-	3	-	-	-	-	X	X	Х	X	X	Х	X	X	Х
12.6	-	2	1	-	1	1	1	3	3	3	1	3	2	3	1	4	6	4	-	-	-	_	_	4	4	5	2	-	-	3	-	3	-	-	-	2	2
13.6	-	_	-	3	-	1	3	4	3	2	2	3	3	2	3	6	10	5	5	10	-	3	1	-	3	4	3	4	-	2	-	-	1	1	-	3	2
14.7a	-	-	-	-	-	-	-	_	-	_	_	_	_	_	3	6	6	7	14	11	4	3	3	_	_	-	_	-	-	-	-	_	-	_	-	-	-
15.8	-	-	_	-	-	-	-	-	-	-	-	_	-	1	7	8	8	12	4	-	3	8	-	-	-	-	_	-	-	X	Х	Х	Х	Х	X	Х	Х
16.7a	-	-	-	_	_	-	-	_	-	_	_	-	-	-	_	2	5	9	3	4	4	10	-	_	-	-	_	-	_	-	-	-	-	_	-	#3	-
17.6a	X	X	X	X	Х	Х	Х	_	_	_	-	_	-	-	-	2	6	13	4	5	9	11	8	6	3	2	_	-	-	X.	X	Х	X	Х	Х	X	X
18.6a	2	3	3	3	3	-	-	4	2	-	-	-	_	-	-	3	2	9	13	5	12	13	14	10	10	5	3	2	2	3	-	-	-	-	-		-
19.6	3	3	2	2	_	_	_	_	_	_	_	_	-	_	_	_	3	3	10	4		19	14	13	9	3	3	_	_	4	3	3	-		-	-	_
20.8	-	-	_	_	_	_	_	_	_	_	_	-	_	-	-	-	8	9	3	4	4	11	14	-8	8	5	-	-	-	_	_	-	-	-	-	-	-
21.6	-	-	_	_	-	_	_	_	-	_	_	_	-	2	2	2	4	5	3	3	4	5	8	8	2	2	-	_	_	_	_	-	_	-	_	_	
22.6	-	_	-	-	-	_	_	_	_	-	-	_	_	_	4	7	4	5	3	-	4	3	3	3	3	_	_	-		-	-	-	_	-	-		_
23.8	-	_	_	_	-	_	-	_	-	_	_	_	_	_	_	5	10	7	3	-	5	9	4	_	_	_	_	_	_	_		_	_	_	-	-	
24.6	-	-	-	_	_	_	-	-	_	_	-	-	-	_	_	4	12	10	3	-	-	9	7	3	-	-	_	_	_	_	-	_	_	_	_	-	
25.6	-	_	-	_	_	-	-	-	_	-	_	_	_	-	_	3	5	5	3	3	3	4	7	12	5	3	3	3	2	2	-	_	_	-	-	_	-
26.6	-	_	-	_	-	-	_	_	-	_	3	3	3	-	-	_	10	3	3	4	3	2	5	5	5	-	-	-	_	_	_	-		_	-		-
27.6	-	-	_	_	_	-	_	_	-	_	-	-	40	_	_	3	9	4	3	3	3	7	3	4	4	4	-	_	_	-	-	_	_	_	-	_	-
28.7a	-	-	2	2	2	-	_	_	-	_	_	_	_	_	_	-	_	11	6	ho	8	ů	5	3	4	4	2	3	-	-		_	_	_	-		
29.6	2	2	2	_	-	_	_	_	_	_	4	2	3	2	3	-	5	4	2	3	-	10	8	4	4	2	_	2			-	_	-	-	-	-	90
30.8	X	X	x	Х	х	χ	-	-	_	_	-	~	-	-	-	_	-	_	1	3	4	5	-	-	-	-	_	_	Y	Y	Y	X	x	X	X	X	Х
31.7	2	2	_	-	_	-	-	2	_	3	5	5	4	2	_	_	-		2	3	5	10	13	9	4	_	2	2	2	2	_	_	-	2	2	3	3

Table 62b

Coronal observations at Climax, Colorado (5303A), west limb

GCT	00	Ar																					De													
	70	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85
950																																				
ul. 1.6	_	_	_	_	_	_	_	_	_	_	_	2	3	4	6	6	6	3	9	13	13	11	10	8	4	4	3	5	5	2	_	-	-	-	_	_
3.6	_	_	_	_	_	_	_	_	3	3	4	2	4	6	10	13	12	9	10	11	15	16	19	12	8	9	7	6	4	3	3	2	-	-	-	-
4.7	-	_	_	_	-	_	-	_	_	_	-	4	6	9	12	13	11	7	11	13	13	16	14	12	8	8	6	10	3	-	X	X	Х	X	X	X
5.7	-	X	Х	X	Х	X	Х	X	-	-	-	-	-	3	3	5	7	4	4	5	4	5	6	3	3	3	-	-	-	400	X	λ	λ	Х	λ	X
6.6	_	_	~	_	-	_	_	_	-	-	-	2	3	4	9	10	8	5	7	10	11	13	10	8	5	6	7	6	7	4	3	-	-	-	_	-
9.9	_	_	_	_	-	_	_	no.	_	-	3	3	3	4	3	4	8	6	4	3	4	8	9	8	5	2	1	1	-	49	-	Х	Х	X	X	Х
10.6	-	-	_	_	-	-	-	-	-	-	-	-	3	5	6	7	7	7	6	7	11	15	15	13	9	7	7	11	11	4	-	-	-	-	***	-
11.7	х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	X	Х	X	Х	X	X	X	X	X	X	Х	Х	Χ	X	Х	Х	Х	Х	Х	χ	λ	X
12.6		-	_	1	1	2	-	-	1	1	1	2	4	10	7	5	6	7	14	18	25	31	34	17	13	10	8	9	10	8	3	1	1	-	463	-
13.6a	-	_	_	_	_	2	1	2	1	1	2	3	3	3	4	5	5	5	12	16	21	22	32	18	15	9	5	7	9	4	4	2	-	1	1	-
14.7	-	_	_	-	_	_	_	_	-	-	-	-	2	3	3	3	2	4	5	16	13	13	12	10	4	5	3	-	_	-	_	-	-	***	-	-
15.8	Х	Х	X	X	Х	Х	X	X	Х	X	Х	X	Х	Х	Х	X	X	X	X	X	Х	X	X	X	X	X	X	X	Х	X	Х	X	Х	X	Х	X
16.7	-	_	_	_	_	3	3	2	5	4	6	8	9	8	4	3	8	10	2	5	4	5	7	10	5	4	3	3	-	asp.	-	-	-	-	-	-
17.6	х	Х	Х	Х	Х	X.	Х	Х	X	X	Х	Х	Х	Х	X	X	X	Х	X	X	Х	Х	X	λ	Х	X	Х	Х	X	X	Х	Х	X	Х	Х	Х
18.6a	-	_	-	_	_	5	5	4	2	5	10	12	13	20	19	15	10	8	4	4	4	4	7	9	10	8	6	4	3	2	2	dip.	· m	-	-	***
19.6	-	-	_	_	3	3	3	4	2	4	10	10	13	17	20	18	10	5	5	6	7	8	9	11	12	9	9	4	2	4	2	-	***	-	-	rips.
20.8	-	_	_	_	_	_	-	-	-	-	4	4	11	15	15	15	10	4	4	5	4	7	8	7	8	9	4	4	4	2	-	-	_	-	_	429
21.6	_	_	_	-	-	-	_	_	_	-	3	5	10	15	14	14	14	10	5	9	10	13	14	17	13	12	11	5	4	4	4	2	-	-	-	-
22.6	-	-	-	-	-	3	3	3	2	3	6	7	9	10	11	12	12	9	5	5	9	10	13	16	11	10	5	4	4	5	3	50	-	150	-	-
23.8	-	_	-	-	-	_	_	-	-	-	3	4	9	6	8	10	11	9	9	6	4	9	16	14	13	9	4	4	3	3	3	5	-	-	-	-
24.6	-	-	-	_	-	-	-	-	-	-	3	4	3	3	5	5	7	5	5	6	9	9	13	13	12	11	3	-		-	-	cm.	_	-	Rep.	-
25.6	-	-	-	_	-	-	-	-	_	_	-	-	3	4	5	6	7	6	6	10	12	13	13	12	10	8	6	3	_	-	-	ter	100	-	-	_
26.6	-	_	_	-	_	_	_	-	-	-	_	3	3	3	1	3	3	4	6	9	11	12	13	8	6	4	2	5	4	3	190	_	-	-	-	-
27.6	X	X	Х	Х	Х	X	-	-	cp	2	3	3	3	-	3	4	4	5	4	5	9	13	9	5	3	_	2	3	3	3	-	-	-	-	-	-
28.7	-	_	-	-	-	-	_	-	_	-	-	2	4	4	6	8	7	9	9	9	14	18	17	10	5	3	2	1	3	4	2	3	2	-	-	-
29.6	-	-	-	_	-	-	n _a	_	-	-	-	3	7	9	10	10	13	10	12	11	12	16	17	16	9	4	4	3	2	2	-	-	-	-	-	_
30.8	-	-	-	_	-	_	-	_	_	-	-	_	5	10	10	14	12	7	6	5	7	8	8	6	3	4	-	_	-	-	_	-	-	-	_	-
31.7	_	_	_	_	-	_	-	_	-	_	-	3	8	11	14			15	15	27	30	18	14	12	9	9	10	7	4	3	-	-	-		-	-

Note: Observation low weight: July 14.7 at \$45-\$90 and N50-N90.

Table 63b

Coronal observations at Climax, Colorado (6374A), west limb

שע	egrees south of	the solar	aquator	00	D D	egrees n	orth of the	solar	equato)T	
90 85 80 75	75 70 65 60 55 5	50 45 40 35	30 25 20 15 10 5	;] "	5 10 15 20	25 30	35 40 45 50	55 60	65 70	75 80	85 9
5			- 2 4 4 6 3	3 12	16 10 9	3					-
6				- 9	13 12 7	3				- ~	-
7			3 11 17 11 11 9	9 4 9	12 7 5	4		- X	X X	XX	X
7 - X X .	X X X X		10 8 4 -	- -	5 10 7			- X	X X	XX	X
ŝ 			2 4 8 4 4 -	- -	2 4 2						-
9			3 2 8	B -	- 4 4	2			X X	X X	X
3			6 4 7 -	- [-]	2 10 10	3 9 -					-
7 X X X .	X X X X	X X X X	X X X X X X	x x	X X X	х х х	XXXX	. x x	XX	X X	X
5 1 1 1	1 2 1	1 3 4 4	4 8 7 5 11 9	9 4	2 14 15 1	5 4 3	1 -	2 3	2 -		2
Sa 2 2 1	2 2 2 3 2	3 2 3 3	4 7 5 4 5 7	7 5	4 9 13 1	2 5 2					-
7				- -	4 9 12					-	-
3 X X X	X X X X	X X X X	X X X X X X	x x	XXX	х х х	XXXXX	. X X	X X	X X	X
7		4 -	- 2 - 5 8 10	o -							_
S X X X	X X X X	X X X X	XXXXXX	x x	X X X	X X X	X X X X	. X X	х х	X X	X
6a		4 4 4 3	6 9 13 10 9 3	3 -	4	4 5 4	4 - 3 -	- 2		- 2	2
S	3 5 3 - 4	5 5 4 4	4 5 5 9 4 3	3 2		2 5 5	5 2 2 2	2 -		- 2	2
3		4 4 2 -	- 4 11 2 3 2	2 -				40 00	ton clay	900 Cg	
3		2 4 2 -	3 8 8 5	5 3	- 4 10	9 7 4					-
3	3 2	2 2 4 2	- 2 5 10 8 8	8 5	4 9 12 1	2 13 -				~ -	-
3			4 5 4	4 3	2 5 13	8 12 4			~ -		-
ŝ			2 .2 2 2	2 -	- 3 4	684	2 4				-
3			- 4 5 3		4 14 10	4 3 5					-
î				- -	- 13 10	4					-
6 X X X .	x x x			- -	3 3 8	4 4 -					-
7		3 3	2 2 4 3 - 4	1 11	13 6 10	8				- 3	40
3		3 3 4 9	9 10 5 5 5 4	4 5	5 3 5	4 2 2				- 2	2
3			3 3 11 5 4 4	4 4							_
7 3 3 2	2 2 4 5 4	3 2 2 5	6 9 15 20 18 11	1 -	12 11 -					- 2	2
	2 2	4 5 4	2 4 5 4 3 2 2 5	0 0 11 0 1	0 0 11 0 1 1 1	0 0 11 0 1 1 2	0 0 11 0 1 1 1	0 0 11 0 1 1 1	0 0 11 0 1 1 1 1	0 0 11 0 1 1 1 1	0 0 11 0 1 1 1 1

Note: Observation low weight: July 14.7 at S45-S90 and N50-N90.

Table 64a

Coronal observations at Člimax, Colorado (6702A), east limb

Date				Deg	ree	S n	ort	th (of 1	the	30]	ar	891	ato	or				00				nea	ree	3 S	out	h_o	r t	ne.	SOL	ar	e qu	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5_		5	10	15	20	25	30	35	40	f t	50	55	60	65	70	75	80	85	90
1950																																					
Jul. 1.6	_	_	_	_	_	_	_	-		_	_	2	3	4	4	5	3	2	_	-	_		_	_		_	_	_	_	-	_	_		_		-	
3.6	_	_	_	_	_	-	_	_	_	-	-	_	_	2	3	3	2	2	12	-	-	_	_	_	_	_	_	-	_	-	_	-	_	-	_	_	_
4.7	-	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	1	2	2	3	3	-	-	-	_	-	-	_	-	-	_	_	_	_	_	_
5.7	-	_	_	_	_	_	_	-	_	-	-	_	-	_	-	-	_	_	-	-	3	2	2	-	-	-	-	-	-	-	_	-	-	٠	-	-	-
6.6	-	_	-	_	-		-	-	_	-	_	_	1	1	1	1	-	_	-	-	-	2	3	2	2	-	-	-	-	-	_	-	_	-	-	-	40
9.9	-	_	-	-	_	_	-	-	-	-	-	-	2	3	4	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
10.6	-	_	-	-	-	-	-	-	-	-	-	-	2	4	4	3	1	-	-	-	-	2	2	3	1	-	-	-	-	-	-	-	-	-	_	-	-
11.7	Х	Х	Х	Х	X	Х	Х	Х	-	-	-	1	3	3	3	2	3	-	-	-	-	-	-	-	-	-	-	Х	Х	Х	X	Х	Х	Х	Х	X	Х
12.6	-	_	-	-	-	-	-	-	-	-	-	-	1	2	2	2	4	3	-	-	2	1		-	-	-	-	-	-	-	-	-	-	-	-	-	-
13.6	-	-	-	-	-	-	-	-	-	-	-	-	1	2	3	4	4	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
14.7a	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15.8	-	-	-	-	-	-	-	-	-	-	2	2	1	1	3	3	3	5	-	-	-	-	-	-	-	-	-	-	-	X	Х	X	X	Х	X	X	Х
16.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17.6a	Х	Х	X	Х	X.	Х	X	-	-	-	-	2	2	-	2	1	1	2	1	+	2	-	3	3	2	-	**	-	-	X	Х	Х	X	X	X	X	X
18.6a	-	-	-	-	-	-	-	-	-	-	-	3	2	2	2	3	4	4	4	4	4	3	3	3	2	3	-	-	-	-	-	-	-	-	-	-	-
19.6	-	-	-	-	-	-	-	-	-	-	-	3	2	-	-	2	2	2	-	2	2	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
20.8	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3	3	3	2	-	-	-	2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
21.6	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	3	2	-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-	•
22.6	-	-	-	-	-	-	-	-	-	-	2	3	3	3	3	3	2	2	3	3	4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
23.8	-	-	-	-	-	-	-	-	-	-	2	2	4	2	2	-	-	-	-	2	3	3	2	-	-	-	-	-	-	-	•	-	-	-	-	-	-
24.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25.6	-	-	-	-	-	-	-	-	-	2	2	2	4	4	4	4	3	3	3	2	2	-	-	-	-	-	-	-	*	-		•	-	-	-	-	-
26.6	-	-	-	-	-	-	-	-	-	-	2	1	2	3	3	-	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	-
27.6	-	-	-	-	-	-	-	-	-	-	-	-	-		-	4	4	3	4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28.7a	-	-	-	-	-	-	-	-	-	-	2	2	2	3	3	3	4	5	4	4	3	3	3	2	1	-	-	-	-	-	-	-	-	-	•	•	
29.6	-	-	-	-	-	-	-	-	-	-	2	2	3	3	2	2	3	3	4	4	4	3	3	2	3	4	-	-	-	-	-	-	-	-	-	-	•
30.8	Х	Х	X	λ	χ	Х	-	-	-	-	-	-	-	-	-	-	-	-	**	-	-	-	-	-	-	-	-	-	X	Х	χ	X	X	X	X	X	X
31.7	-	**	-	-	-	-	**	-	-	-	-	-	-	-	2	2	1	1	2	3	2	1	2	2	3	2	1	1	-	-	-	-	•	-	-	-	•

Table 65a

Coronal observations at Sacramento Peak, New Mexico, (5303A) east limb

ate				Deg	ree	s n	ort	h c	of 1	the	sol	ar	equ	ato	M.				00				Deg	ree	3 3	out	h d	of t	the	so]	ar	eq	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15											70		80	85	90
9 50																																					
Jun. 2.8	-	-	-	-	-	-	-	-	10	10	10	11	12	12	23	30	35	38	36	25	20	9	_	-	-	_	-	-	-	-	-	-	-	-	-	-	
5.0	-	-	-	_	-	-	-	-	-	-	8	8	9				25			12		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	
5.6	-	-	-	-	-	4	5	5	8	12	14	15	18	27	34		41				18	15	12	12	10	9	8	8	6	5	4	4	3		-	-	
6.8	-	-	-	-	-	-	-	-	-	8	10	12	18	24	24	27	31	25	18	12	10	9	8	10	.14	9	8	-	-	-	-	-	-		-	-	
7.7	-	-	-	-	-	-	-	-	7	7	9	16	14	16				11	10	9	6	13	15	14	13	11	12	10	7	4	-	7	7	5	3	-	
8.6	-	-	-	-	3	3	3	5	9	11	10	12	14	16	17	15	14	13	10	10	9	8	14	13	14	11	15	14	7	7	5	7	8	4	-	-	
9.8	-	-	-	-	-	-	4	6	9	10	11	13	15	15	15	13	13	11	12	10	10	11	25	24	19	16	17	14	11	9	5	4	4	8	-	-	
10.7	-	-	-	-	-	-	-	3	8	9	5	10	11	12	16	15	13	12	10	10	12	16	24	22	18	15	10	8	4	3	-		3	3	3	-	
11.8	-	-	-	-	-	-	_	4	5	6	6	7	9	12	18	17	12	10	9	5	6	13	17	25	13	11	10	9	5	3	-	-	-	-	-	•	
12.8	-	-	-	-	-	-	5	6	8	9	9	11	13	23	25	20	14	15	11	9	14	16	27	20	14	15	10	8	3	-	-	-	-	-	-	-	
13.8	-	-	-	-	-	-	2	3	5	6	7	9	14	23	22	21	18	17	18	9	9	11	15	16	14	13	9	3	-	-	-	-	-	-	-	-	
14.7	-	-	-	-	-	**	-	3	3	3	-	-	5	16	15	14	13	12	12	11	10	10	13	12	11	8	8	3	-	-	-	-		-	-	-	
15.7	-	-	-	-	-	-	-	-	_	-	-	5	6	18	15	16	18	17	13	12	12	12	12	11	10	5	-	-	-	-	-	-	-	-	-	-	
16.7	-	-	-	-	-	-	-	3	5	9	9	8	11	12	13	18	20	17	15	13	12	10	9	10	9	3		-		-	-	-	•		-	-	
17.7	-	-	-	-	-	-	3	3	5	10	9	9	11	13	14	17	16	18	17	13	12	10	11	10	10	10	3		-	-	-	_	-	•	-	•	
18.9	-	-	-	-	-	-	-	-	-	4	4	5	6	10	10	11	13	12	12	10	10	9	10	11	10	8	-	-	-	-	-	-	-	-	-	-	
20.8	-	-	-	-	-		-	-	5	7	9	11	13	14	17	33	37	34	31	26	18	12	11	13	12	9	5	-	-	-	-	-	-	-	-	-	
21.9	-	-	-	-	-	-	_	-	5	7	7	10	11	11	12	14	15	18	20	23	13	10	9	10	5	-	-	•	-	-	-	_	-	-	-	-	
23.8	-	-	-	-	-	-	-	-	_	5	10	13	12	12	10	9	8	14	13	12	9	9	10	9	7	5	-	-	-	-	-		-		-	-	
24.7	-	-	-	-	-	-	-	2	4	7	17	17	15	14	13	13					16	20	15	13	10	9	8	7	3	-		-	-	-		-	
28.7	-	-	-	-	-	-	-	-	-	8	13	14	12	13	18							18	5	_	_	_	_	-	-	-	-			-	-	-	
																						_															

Table 64b

Coronal observations at Climax, Colorado-(6702A), west limo

Date			40	Deg	ree	8 8	sout	h c	of :	the	80	lar	eq	nto	r				00	_			De	ree	8 1	nort	h c	of t	he	30]	ar	equ	etc)I'		-	
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	L	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	9%
950																																					
Jul. 1.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	3	3	3	3	2	_	-	-	cor	-	-	-	-	•	-	-	-	9
3.6	-	-	-	-	-	-	-	-	-	•	-	1	2	2	3	3	2	1	-	-	2	3	5	2	-	-	-	-	-	-	-	400		-	-	-	-
4.7	-	_	_	-	-	-	-	-	-	-	-	-	2	2	-	2	1	-	-	1	3	2	1786	-	-	-	-	-	-	-	3	X	X	Ж.	X	Х	X
5.7	-	Х	Х	Х	Х	Х	Х	Χ	Х	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-		-	-	-	X	X	Х.	X	X	λ	-
6.6	-	-	-	_	-	-	-	_	-	-	-	2	1	1	1	1	_	-	-	1	1	-	-	-	-	-	-	-	-	-	-44	-	-	-	439	-	
9.9	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	4.	-	-	-	-	-	-	-		100	-	100	-	-	-	-	X	Х.	X	Х	Х	-
10.6	-	-	_	_	_	_	-	-	_	-	-	-	-	_	-	_	-	-		-	3	2	2	2	-	_	-	-	-	-	-	-	_	Plan.	-	-	a
11.7	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	X	Х	X	X	X	X.	X	Х	Х	Х	X.	X	A	X	X	X	X	X	- 2
12.6	_	_	-	-	-	-	-	-	-	-	-	-	-	-	2	1	-	-	1	3	7	4	11	6	3	3	2	2	1	2	-	-	-	-	-	-	
13.6a	_	_	_	_		_	-	-	-	-	-	-	-	-	_	_	-	-	2	2	3	3	10	5	3	1	2	-	-	-	-	-	-	-	-	-	
14.7	_	_	_	_	_	_	-	-	-	-	-	_	_	-	-	-	_	-	_	-	-	8.0	-	_	-	-	-	_	_	_	-	-	-	-	-	-	
15.8	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	X	Х	Х	х	X	Х	Х	Х	Х	X.	Х	Х.	X	X	X	X.	Х	Х	Х	Х	X	
16.7	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	-	_	_	_	-	-	-	-	-	-	-	_	-	-	-	-	-	
17.6	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	χ	λ	Х	Х	x	Х	Х	Х	Х	X	X	Х	Х	Х	X	Х	Х	X	Х	X	Х	2
18.6a	-	_	_	_	-	_	_	_	_	_	_	2	3	4	5	6	_	_	-	-	_	_	_	-	_	-	_	_	_	-	che	-	-	-	-	-	
19.6	_	-	_	_	_	_	_	_	_	-	-	1	3	5	4	5	3	_	-	-	-	-	2	3	2	2	2	-	_	-	400	-	-	-	-	-	4
20.8	-	-	_	_	_	_	_	_		_	_	2	3	3	3	3	3	-	-	_	3	4	4.	3	2	2	-	_	_	-	-	-	-	-	-	-	
21.6	-	_	_	-	-	-	_	_	_	_	_	_	2	3	3	3	4	2	_	-	2	2	3	3	2	-	-	-	_	-	-		-	700	-	-	-
22.6	_	-	_	_	_	_	_	_	_	_	_	2	3	3	3	4	2	3	12	12	3	3	3	4	3	2	_	-	-	-	-		-	-	_	-	
23.8	-	-	_	_	_	_	_	_	-	_	_	_	_	_	-	_	_	_	-	_	_	2	4	3	2	-	-	-	_	_	_	-		-	æ	-	
24.6	_	_	_	_	_	_	_	œ	_	_	_	_	-	-	_	_	_	_	_		_	3	3	3	2	2	2	-	_	_	-	-	-	_	-	-	
25.6	_	_	_	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	-	_	3	2	3	2	3	_	_	-	-	-	_	-	-	984	_	-	
26.6	_	_	_	_	_	_	_	-	-	_	_	-	-	_	_	_	_	_	-	_	_	_	_	_	_	-	-	_	_	_	_	_	-	_	-	-	
27.6	X	Х	Y	Y	х	Y	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	-	-	-	40	_	-	_	_	_	-	n.	-	-	-	
28.7	-	-	-	_	-	-	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_		-	_	_	-	-	_	_	-	-	_	-	-	
29.6	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	-	2	3	4	5	2	3	_	-	con.	_	-	-	-	_	-		_	
30.8		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	-	_	_	_	-	_	-	_	_	-	_	
31.7		_	_	_	_	_	_	_	_	_	_	_	_	2	2	3	3	4	3	3	4	2		_	_	_	_	-	_	-	_	_	-	-	_	_	

Note: Observation low weight: July 14.7 at S45-S90 and N50-N90.

Table 65b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date	- 1				De	TO	98	sou	th .	of t	the	80	lar	egi	nte	ar a				no				Deg	ree	98 I	ori	th o	of t	he	sol	er	egi	ato	77"			
GCT		90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	100	5	10											65			80	85	90
1950	-																			1																		
Jun.	2.8	_	_	_	_	_	-	-	_	-	-	-	5	7	10	14	21	21	22	21	18	31	31	3.)	17	13	12	5	6	7	10	5	-	-	-	-	-	-
	5.0	-	-	_	_	_	-	-	_	-	-	-	_	-	8	10	15	12	10	10	10	11	11	12	12	11	10	8	-	-	-	-	-	-	cm.	-	80	-
	5.6	_	_	-	_	_	_	_	_	_	-	5	8	11	16	28	30	21	15	13	16	20	25	35	28	21	21	22	23	16	14	7	4	-	-	-	-	-
	6.8	_		_	_	_	_	-	_	_	-	_	_	-	13	14	16	13	-	14	15	18	21	26	20	17	16	15	15	-	-	-	70	-	-	-	-	-
	7.7	_	_	_	_	_	_	_	_	-	-	_	3	7	9	11	14	12	13	15	17	27	25	25	24	19	20	22	20	18	14	10	-	-	-	-	-	-
	8.6	_	_	-	_	4	5	5	_	-	_	_	4	10	10	10	11	11	12	17	22	30	30	28	25	24	25	25	23	22	15	12	5	-	~	-	-	-
	9.8	_	_	-	_	_	_	_	_	_	-	-	_	8	10	11	12	13	12	12	11	12	22	19	14	15	19	17	16	16	17	10	-	-	-	-	-	-
	0.7	_	_	_	_	_	2	3	_	_	-	_	_	3	6	9	13	13	12	11	11	13	14	13	14	14	14	13	14	13	4	3	-	-	***	-	-	-
	1.8	-	-	_	_	-	_	_	_	-	_	_	_	5	7	9	13	13	15	12	12	13	14	13	13	12	12	12	12	12	9	3	-	-	-	-	-	-
	2.8	_	_	-	-	_	-	_	_	_	_	_	_	5	9	13	15	17	26	25	23	19	26	23	20	14	8	12	14	14	12	7	-	-	-	-	-	-
	3.8	_	_	-	_	_	_	_	_	_	-	_	-	-	4	5	10	13	14	19	25	24	26	22	23	16	9	5	13	15	10	-	-	-	-	-	-	-
	4.7	_	-	_	_	-	_	_	_	_		-	-	40	-	3	5	7	13	25	28	26	23	24	23	18	13	9	8	10	12	5	-	-		-	-	-
	5.7	_	_	_	_	_	_	_	-	-	_	_	_	-	3	4	9	8	6	16	27	33	30	30	33	18	14	11	8	15	12	5	-	-	-	-	-	-
	6.7	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	4	10	16	23	23	40	37	28	13	13	11	10	10	10	5	-	-	-	-	-	-
	7.7	_	_	_		-	-	-	_	-	_	_	-	_	-	3	5	5	8	9	16	20	38	30	22	17	10	9	7	6	4	3	-	-	-	-	-	-
	8.9	-	_	-	-	-	-	-	-	-	_	-	_	_	-	-	-	-	-	8	9	12	17	15	14	14	13	9	5	-	-	-	-	-	-	-	-	-
	0.8	-	_	-	-	-	-	3	4	3	4	9	12	. 13	13	23	25	17	13	9	9	8	8	12	17	15	19	13	12	12	11	10	7	3	-	-	-	***
	1.9		_	_	_	_	_	_	_	100	_	_	7	8	9	12	18	14	12	11	5	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3.8	-	_	-	_	-	_	-	_	_	3	5	10	13	12	16	17	16	14	12	5	-	-	6	11	13	10	10	8	6	4	3	3	-	-	-	-	-
	4.7	-	_	_	_	_	_	3	4	4	6	9	14	19	20	30				11	12	12	13	15	22	25	17	14	13	12	11	12	11	3	-	-	-	-
	8.7	_	-	a.	-	_	_	_	_	_	-	_	-	4	5	7	9	13	9	9	14	13	13	15	14	16	16	17	8	4	-	-	-	-	-	-	re	-
_																																						

Table 66a

Coronal observations at Sacramento Peak, New Mexico. (63744). east limb

ate				Deg	ree	s n	ort	h c	of t	he	sol	er	equ	ato	T.				100				Deg	700	3 S	out	h o	f th	he	sol	530	ure	ato	ji.			am v
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	_	5	10	15	20	25	30	35	40	45	50	55	60	<u>05</u>	70	75	80	8.5	90
1950																																					
Jun. 2.8	-	-	_	-	-		40	-	-	-	-	-	to .	-	4	7	11	8	6	12	15	14	8	3	.3	5	4	·m	mo.	-	-	-	-	-	46.	144	
5.0	-	_	40	Car	-	-	-	-	-	-	-	-	-	-	-	-	-	494	-	6	10	- 7	-	-	~	-30	**	~	-	477	~ P	m	tor	-	-	-	-
5.6	2	-	-	-	-	2	3	4	ь	2	-	-	-	3	6	11	9	12	6	3	12	- S	2	- 57	7	2	2	-	the	~	-	419	ete	-	-	-	-
5.8	-	-	-	-	-	-	-	_	-	-	-	-	-	-	42	9	10	12	2	3	5	4	3	3	i.	co	-	-	-	-	-	-	401	, *	-	464	
7.7	-	_	_	-	-	-	-	-	~	-	-	-	3	-	-	-	9	7	3	-	63	1.	1)	4	3	1	40	-	~	cm	-	1	1	1	1	1	
8.6	3	1	1	1	1	2]	1	1	1	1	1	1	1	1	3	4	1	2		-	-	8	-1	.,	-	4	3	2	1	1	-	-	1	1	1	
9.8	1	1	1	-	-	-	-	-	-	-	-	5.0	1	1	4	7	5	1	1	-	-	1	12	5	3	1	-	1	1	î.	0.0	-	tion	40	-	-	
10.7	-	-	-	-	_	-	-	-	-	-	-	-	1	3	3	20	8	~	1 1	1	2	6	9	5	4	- 5	2	2	7	3	-	-	4.00	-	e.	-	
11.8	-	-	-	-	-	-	-	-	-	_	-	-	-	1	3	17	7		-	1	- 2	11	9	4	5	945	-	1	1	1	-	-	-	-	-	-	
12.8	-	_	_	-	1	1	-	-	-	-	-	-	-	3	12	17	16	12	7	6	-	11	9	5	-	***	-	-	-	-	-	-	-	40	dm	-	
13.8	_	-	-	-	1	1	1	1	-	-	-	-	-	4	5	10	13	12	8	3	em	6	8	4.0	40	-	4.0	-	-	-	-	Eu	6.0	***	-	-	
14.7	-	_	_	-	-	-	_	_		-	-	-	_	-	-	2	4	9	11	3	2	3	2	2	~	-	-	-	**	639	-	-	-	-	-	-	
15.7	-	-	_	-	-	-	-	-	-	-	-	-	-	1	3	-	-	5	14	1	1	-	+ 10		66		-	-	-	~	-	-	6-		44	-	
16.7	-	_	-	2	2	2	1	1	-	-	-	-	-	_	_	-	2	17	2	1	-	~	2	3	-	-	- 79	-	-	-	-	-	-	m.	-	-	
17.7	-	-	-	-	-	-	-	_	-	-	-	-	-	1	1	-	1	3	11	-	0.0	~	-	the .	805	-		-		-	-	-	-	-	-	-	
18.9	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	2	5	- 8	2	-	~	~	**		-	-	-	44	~	*	-	-	44.	the	-	· ·	
20.8	-	-	-	_	-	-	_	-	**	_	-	-	atra	4	-	1	17	13	112	20	5	sch	3	-6	7	4	1	4	1	1	-	-	439	-	-	1.0	
21.9	-	-	~	-	-	-	-	-	-	_	-	-	_	-	-	5	12	13	117	126	10	-	~	er.	410	~	-	~	-	-	-	-	•	-	-	-	
23.8	-	-	-	-	-	-	-	-	-	-	-	-	-	_	9	1	1	-	-		der		-	-		-	**	1989	-	- in	-	-	-	-	-	-	
24.7	1	1	1	1	1	1	1	-	-	1	2	1	_	_	~	3	-	3	-	-	2	10	co	1.	1	1	***	1	1	1	1	-	-	-	-	-	
28.7	-	400.	-	-	-	_	-	_	-	-	-	-	_	-	10	9	9	4	1	-	-	-10*	140	-	-	-	140	-		**	-	~	-	-	um	-	
																				}																	

Table 67a

Coronal observations at sacraments Peak, New Mexico, (6702A), sust limb

Date					Deg	ree	28	nor	th	of	th	18	COE	ar	อาน	ato	r				- 0				Dag	ree:	S 90	nith	0	e th	ie.	sola	r e	equ	ato	r			
GCT	90	8	5	80	75	70	65	60	5	5 5	0 4	15	40	35	30	25	20	15	10	5	00	5	1.0	1.5	20	25	30	35	40 .	45 5	0	55 6	×0 (55	70 '	75	80	85	90
1950																																							
Jun. 2.8		_	_	_	_	_				_	_		_	_	_		_	4	4	5	5	4		_	_	_	_	_	_	_		_	_	-	-	_	-		
5.0		_	_	_	-	_			_	_	_	_	_	_	_	_	4	â	4	_	Ĭ	Î	_	_	_	_	_	_	_	-	_	_	con	-	m.	all I	_		
5.6		_	_	_	_	_					_		_	_	_	3	3	4	5	4	2		_	_	_			_	-	_	-	-	_	_	_	_	-	-	
6.8		_	_	_	_	_			-	_	_	_	-	_		2	3	3	3	3	2	_	_	_	-	_	_	-	_	_	-	40	_	_	-	es:	_	-	
7.7		_	_	_	_	_			-	_	_	_	-	_	_	1	1	1	1	1	1	1	1	1	1	-	_	***	_	_	-	ch		_	_	-	-	_	
8.6		-	_	_	-	-			-	_	_	-	_	_	_	1	1	ī	1	_	_	-	_	-	_	_		-	~		470	-	-	_	_	-		_	
9.8		_	_	-	-	_	-		_	_	_	_	-	_	-	_	-	_	_	-	-	-	_	1	1	1	1	1	-	-	-	-	-	-	601	ere	-	-	
10.7		-	-	ents.	-	-				_	_	-	~	-	_	_	_	_	-	-	-	_	_	_	_	-	-	-	-	-	_	~	-	-	-	_	-	~	
11.8		the contract of	-	the contract of	-	-	-		_	_	_	_	_	-	_	-		_	_	-	-	-	-	_	-	-	_		-	-	_	***	-	-	-	_	-		
12.8		-	_	-	-	-			-	-	-		-	-	-	1	1	1	1	-	-	-	_	-	1	1	-	_	-	cm	-	-	-	-	-	**	-	-	
13.8			-	-	-	-			_	-	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-00	-	-	-	-	-	-	-	
14.7	Н	-	ra	-	-	-			_	-	-	-	-	_	-	1	1	1	1	1	-	-	-	dis	400	_	-	-	_		-	-	-	-	-	-	0.0	-	
15.7	М	-	-	-	-	-			-	-	-	-	-	-	-	-	_	~	~	_	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	ca	-	~	
16.7		-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	w	-	-	-	-	-	8.0	-	-	-	-0	
17.7		-	-	-	-	-			Char	-	-	-	-	-	-	-	_	-	-	-		-	-	-	-	-	-	-	-	-	~	-	-	~	-	-	-		
18.9		-	-	-	-	-			-	-	-	-	~	-	-	-	-	~	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
20.8		-	-	-	-	-			ter	-	-	~	-	~	-	rb	1	1	1	1	1	1	-	-	-	-	-	-	-	-	_	-	mo	-	4.9	***	-	60	
21.9		-	-	-	_	-	-		-	uto .	-	-	-	-	_	-	-	-	1	2	2	1	-	-	Carr	-	~	-	-	-	60	-	-	-	-	-	-	-	
23.8		-	-	-	-	-	-		-	-	-	-	ete	-00	-	-	2	1	1	2	6	3	-	1	2	60	~	~	-	-	-	-	-	40	-	-	-	46-	
24.8		ene	***	-	-	-	-		-	-	Gir	-	***	-	-	-	·	-	~	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	~	~	
28.7		an .	-	-	-	~	-		100	-	-	-	-	-	-	-	1	2	2	1	1	-	-	-	-	-	-	-	-	•	40.2		-	-	-	-	-	35	
	-																																						

Table 66b

Coronal observations at Sacramento Peak, New Mexico, (6374A), west limb

ate				Deg	ree	3 8	out	h c	f 1	the	so.	ar	equ	ato	r				00	4			Des	ree	8 r	ort	h o	f t	he	sol	ar	equ	иto	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
L950																																					
Jun. 2.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	4	4	4	6	7	15	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5.0	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	5	6	8	8	5	-	-	-	-	-	-	-	-	-	-	-	-	
5.6	-	_	_	_	-		-	4	-	-	-	-	-	4	10	12	6	8	5	4	11	12	12	4	3	3	-	-	-	-	-		2	4	4	3	- 2
6.8	-	_	**	_	-	-	-	-	-	-	-	-	-	6	10	9	6	8	9	9	7	-	8	8	6	-	-	-	-	-	-	-	-	3	4	3	
7.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	7	11	8	7	12	10	16	13	14	1	-	-	-	-	-	-	en.	-	-	- Car	-	
8.6	1	1	1	1	1	1	1	1	1	1	1	1	1	-	4	10	- 8	8	8	13	16	20	2	9	1	1	-	5	1	-	-	-	1	2	3	4	;
9.8	-	-	-	-	-	-	-	1	ì	1	-	-	-	-	-	-	8	1	1	1	-	10	17	10	14	1	-	1	1	-	-	-	-	-	2	2	
10.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	**	-	-	-	-	1	2	4	3	5	1	-	-	7	-	-	-	-	-	-	-	-	
11.8	-	-	-	-	-		-	-	-	-	-	-	-	-	1	1	5	4	-	1	2	5	1	-	-	-	-	-	mp	-	-	-	-	-	-	-	
12.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	13	6	8	10	17	5	14	-	6.0	-	-	-	-	-	-	-	-	-	-	
13.8	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	2	4	12	10	8	9	10	12	-	-	-	-	-	-	-	-	-	-	-	-	
14.7	-	-	-	-	-	-	-	-	-	-	-	-	1	5	4	1	1	9	14	15	10	9	8	4	1	-	-	-	-	-	-	-	-	-	-	-	
15.7	-	-	_	-	-	-	-	-	-	-	-	-	3	5	4	10	9	12	11	11	12	12	12	7	1	-	-	-	-	1	2	2	2	2	3	3	
16.7	-	-	-	-	-	-	-	-	-	-	-	1	2	2	2	1	5	11	1	-	1	8	12	12	1	-		-	-	100	-	-	-	-	47	-	
17.7	-	-	-	-	-	-	-	-	-	-	-	1	1	2	2	2	1	8	1	-	-	10	13	7	-	-	-	-	-	-	-	-	-	-	-	-	
18.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	***	-	8	10	-	-	-	-	equi	-	-	-	-	-	400	-	
20.8	-	-	-	-		-	-	-	-	476	-	3	-	-	1	21	10	6	4	1	-	3	3	-	-	-	-	-	-	00	-	des	-	-	-	-	
21.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	12	8	10	-	-	-	-	140	10	-	-	-	de	-	dri.	-	-	-	-	-	-	
23.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
24.7	-	-	-	-	-	-	-	-	1	3	2	1	1	1	5	14	8	12	3	an	5	2	2	13	8	4	3	1	-	-	-	-	-	1	1	1	
28.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	10	11	1	-	-	-	-	-	-	-	-	-	-	-	-	
																				1																	

Table 67b

Coronal observations at Sacramento Peak, New Mexico, (6702A), west limb

ate				Des	ree	3 3	out	th o	\circ f	the	30	lar	eq1	uate	or				00				Deg	res	3 1	ort	h	of t	he	so.	lar	eq	nte	or			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	100	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
950																																					
Jun. 2.8	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	2	2	2	2	3	2	_	-	-	_	_	-	-	_	_	-	-	-	-
5.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	+4.0	-	***	-	-
5.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	4	4	3	-	-	-	-	-	-	-	_	-	-	-	-
6.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	603	-	-	-	-	-	-		-
7.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	-	-	-	-	-		-	-	-
8.6	-	da	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	1	1	1	1	1	1	1	1	1	1	1	40.	-	-	des	-	-	
9.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	con	40	-	n.	-	-	-	-	-	-	-	-	-	49	-	-	~	-	-	-	-	
10.7	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
11.8	-	-	-	-	_	-	_	-	-	-	-	603	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
12.8	-	-	-	-	-	-	-	-	-	-	-	-	œ	-	1	1	1	1	1	-	-	1	1	1	-	-	ec.	-	-	-	-	-	-	-	-	-	-
13.8	-	-	-	-	-	-	-	-	_	-	-	-	_	_	-	-	-	-	-	-	1	1	1	1	1	1	_	_	-	-	-	-	-	-	-	-	
14.7	-	_	-	-	-	-	-	-	_	-	_	-	_	_	_	-	-	-	-	-	1	1	1	1	1	1	1	1	1	1	-		-	-	-	-	
15.7	-	-	-	-	-	-	_	-	-	-	_	-	-	-	_	-	-	-	-	1	2	2	3	3	3	1	-	-	-	_	-	-	-	-	40	-	
16.7	-	-	-	-	-	-	_	_	-	-	_	-	_	-	_	-	-	-	1	2	3	3	3	3	1	-	-	-	-	-	-	-	-	_	1	-	
17.7	-	_	-	_	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	_	3	3	2	2	-	-	-	-	-	-	-	-	-	007	43	
18.9	-	_	-	_	-	_	_	_	-	_	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	-	•	-	-	-	-	-	-	-	_	
20.8	-	-	-	_	-	-	_	_	-	_	-	-	_	-	1	3	2	1	-	au.	_	_	-	-	-	-	_	_	-	-	_	_	-	cor	_	_	
21.9	-	_	_	-	_	_	_	_	-	_	_	-	_	_	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	_	
23.8	-	_	_	-	-	-	-	_	_	_	-	1	1	2	2	1	1		-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	
23.8 24.7	-	-	_	-	-	-	_	_	_	-	_	40	1	1	1	1	1	-	-	-	-	-	-	-	439	-	-	-	_	-	-	de		Oppo	-	-	
28.7	-	-	_	-	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	1	1	1	-	-	-	-	-	-	-	_	_	-	-	an-

Table 68 Outstanding Solar Flares, April 1950

Observa- tory	Date 1950	Obser Begin- ning (GCT)		Duration (Min)	Area (Mill) (of) (Sun's) (Disk)	Fosi Long- itude (Deg)	tion Lati- tude (Deg)	Time of Maxi- mum (GCT)	Int. of Maxi- mum (GCT)	Rela- tive Area of Max (Tenths)	_Import- ance	SID Obse wed
Boulder McMath	Apr 1	20	005	μO	530	N14 N28	E 36 W38	1616	10	3	2	Yes Yes
Boulder	11 1			35	220	s 06	W33	2118	12	5	_	-05
II II	11 5			40	610	N29	W22	1710	20	Ĺ		Yes
11	11 7			10	260	NO2	E73	1922	15	6		
Wendelstein	II ģ	0548	0633		873**	N13	E70	0551			1-2	
McMath	11 g	1	510			N15	E 68				14	
Boulder	11 10			45 .	7100	NIS	EL13	1935	15	3		
10	" 11			< 35	380	NIS	E43	0000	10	3 14		
11	11 11			200	9,40	N15	E26	2020	20	4		Yes
11	11 12	-1		<25	2200	N15	E26	0003	15	3 4		97 -
11	11 12	1456	1605	69	1600	NO 6	E09	1457	30 10	2		Yes
	1.5-	1550	1611	27	200 19lı*≠	NII	EO7	1555	TO	2	1	
Wendelstein	7.0		1608	00		N17	E16 E03	1556	15	7	1	
Boulder (14	1713	1739	20	396 28 0 0	N14	E14	1724 1856	15 25	3		Yes
11	# 12	18hh 23h5	2303 21105	25 9 20	2800 15b	N16	E0 6	2350	20	3	!	168
11	11 13	1515	1528	13	265	N14	E05	1521	5	2		
11	11 13	1605	1623	18	135	NO9	E01	1614	9	Ö		
11	11 13	1724	1737	13	7 0	NIT	E00	1726	7	ŏ		Yes
11	11 13	1729	1740	11	7 5	N1 3	EO7	1731	g	g		Yes
11	11 13	1752	1801	12	140	WLZ	EO 3	1754	g	3		
11	11 13	1850	1912	22	176	N15	E02	1856	g	Ó	i	
11	" 13	2008	2020	12	176	NIS	EO1	2012	6	0		
t1	" 13	2009	2054	45	180	MIS	ECO	2029	12	1		Yes
11	" 13	2029	2054	25	320	NOS	EOF	2030	9	0		Yes
18	11 13	2159	2222	23	430	NJJ	EOl	2202	10	1		Yes
II	u J7:	1433	1456		770	N13	Wll	1433	10	2		
Я.	114	1527	1552	25	95	N16	W13	1530	7	5		
11	14	1605	1620	15	115	M16	W15	1607	6	3		
11	11 12	1649	1719	30	200	NJ_{\uparrow}	W12	1652	8	1	ì	Yes
11	757	1652	1720	28	150	N13	W12	1700	6	Ð 0		***
11	" 14 " 14	1756	1801	5	66	NJ J	Wll	1758	5 8	2		Yes
11	n 14	1800 18 1 4	1811 1836	11 12	150 110	N14 N13	W12 W11	1814	6	0	-	ies
II.	11 17	1857	1923	26	66	N15	W13	1905	. 9	5		
McMath	11 15		加5	20	00	N19*	E58*	1309	. 9	9	1-	
Boulder	11 16	2237	2246	9	135	NO7	W53	2237	5	0	-	
11	" 16	2240	2245	5	45	N14	W41	2241	7	3		
18	11 20	1805	1900	55 55	858	SO4	w07	1825	g	í		
II	11 21	1725	1744	19	220	\$13	E48	1739	6	ō		
Wendelstein	11 22	0614	0626	12	291**	s16	E47	0618	-	-	1	
Boulder	11 26	1528	1537	11	100	S11	E1 6	1530	8	0		
ถ	11 26	1615	1619	74	154	S11	E04	1616	6	0		
11	" 26	1619	1626	7	130	\$12	E1 5	1622	5	0		
18	11 26	1632	1640	g	165	\$11	E1 5	1634	10	0		
Wendelstein	11 26		1644		145**	S11	El4	1633			1	
Boulder	11 26	1747	1758	11	304	S11	E15	1750	20	1		Yes
11	1 27	1625	1670	15	770	\$15	W26	1633	10	1		Yes

**Area corrected for foreshortening.

Table 69

Indices of Geomagnetic Activity for June 1950

Preliminary values of mean K-indices, Kw, from 34 observatories;
Preliminary values of international character-figures, C;
Geomagnetic planetary three-hour-range indices, Kp;
Magnetically selected quiet and disturbed days

Gr. Day	Values Kw	Sum	C	Values Kp	Sum	Final Sel. Days
1 2 3 4 5	2.5 2.7 2.1 3.2 2.5 3.9 1.9 3.4 4.1 4.0 2.0 1.9 1.2 2.7 2.5 3.9 2.6 2.5 1.8 3.4 3.4 3.4 3.1 2.2 1.9 2.7 1.7 0.9 2.1 2.3 1.2 1.1 2.6 2.1 2.3 2.0 1.8 1.8 1.9 1.9	22.2 22.3 22.4 13.9 16.4	0.8 1.0 0.8 0.4 0.5	2+302+4- 3-5-2-4- 4+4+2+2- 1-3-305- 303-2-4- 404-303- 2+30201- 202+1010 3-2+3-20 1+202-2-	240 24= 24+ 14+ 16+	Five Quiet 7
6 7 8 9	3.7 4.6 3.9 3.6 4.4 4.9 3.2 2.5 1.9 0.9 0.8 1.6 1.9 1.8 0.9 0.7 0.9 0.6 0.8 1.6 1.9 2.0 2.3 3.6 3.9 4.3 2.5 3.4 3.6 2.6 2.6 2.9 3.7 3.7 2.8 3.4 3.1 2.7 2.8 2.7	30.8 10.5 13.7 25.8 24.9	1.3 0.2 0.5 1.0 0.8	4-5+4+40 5+603+3-201-1-1+ 202-1-1-1-0+101+ 2-202040 5-5+3-40 4030303+404-3+40 3+3-3+30	35~ 10~ 130 300 27+	15 19 20
11 12 13 14 15	3.1 1.5 1.4 1.7 1.8 1.8 1.5 2.2 2.2 1.2 2.2 1.9 2.1 1.6 2.1 1.8 1.1 0.9 1.2 1.1 1.2 0.8 1.0 0.8 1.3 1.9 1.9 1.6 1.7 1.6 1.2 0.8 1.4 1.1 1.1 1.2 1.0 0.8 0.8 0.9	15.0 15.1 8.1 12.0 8.3	0.5 0.4 0.0 0.2 0.0	302-201+ 202-102+ 2+1+3-20 201+2+2- 101-1+10 100+1-1- 1020201+ 2-1+1010 1+10101+ 100+0+1=	150 16 7 11+ 70	Five Dist,
16 17 18 19 20	0.5 0.4 0.4 1.1 1.5 2.5 2.9 1.6 2.2 3.6 2.9 2.2 2.1 2.9 2.5 2.1 1.7 2.2 2.3 2.1 1.1 1.7 1.4 0.6 1.6 1.6 0.7 0.8 0.9 1.6 1.6 1.0 0.6 0.9 0.8 1.1 1.6 1.8 1.7 1.2	10.9 20.5 13.1 9.8 9.7	0.4 0.6 0.4 0.2 0.2	0+0000lo 2=3=4=1+ 2+40302+ 2+30303= 202+302+ 102=1+10 2=2=1=1= 1=1+2=1= 0+101=10 2=202=1+	11° 23° 15° 90	24 29 30
21 22 23 24 25	0.8 1.2 0.7 1.2 1.1 3.0 2.2 2.7 1.7 2.7 2.1 2.9 3.1 2.4 2.0 2.3 2.8 2.4 1.5 2.1 2.0 2.0 4.7 4.5 4.3 5.3 4.8 4.6 4.0 2.4 3.6 2.9 3.1 2.1 3.3 3.6 2.6 1.6 2.4 3.6	12.9 19.2 22.0 31.9 22.3	0.4 0.6 1.2 1.6 0.9	1-2-0+10 103+2+3+ 2-302030 4-2+202+ 3+3-2-2+ 20206-5+ 5-6+6050 5-2+4030 3+2+4-5- 301+3-4-	14= 200 250 360 25=	7 13 14 15
26 27 28 29 30	3.6 2.9 1.5 2.0 2.0 1.2 1.7 1.6 1.1 0.9 1.1 1.2 1.8 2.3 1.8 1.8 2.1 1.2 1.2 1.7 1.1 0.8 1.1 1.3 0.8 1.1 1.8 2.4 4.0 5.2 4.9 4.7 4.9 5.6 2.8 2.8 3.1 3.5 2.9 3.4	16.5 12.0 10.5 24.9 29.0	0.7 0.3 0.2 1.5 1.4	4030202- 2+1-1+1+ 10101+10 2-202-2- 201+102- 100+1-10 101+2-2- 5-60606- 607-303+ 4-403+4-	16+ 11+ 90 280 34-	16 18 19 20 27 28
Mean	2.29 1.88 2.19 2.21 2.29 2.14 2.32 2.22	2,19	0.63			

Index of Tables and Graphs of Ionospheric Data

in CRPL-172

	Table page	Figure page
Akita, Japan		
April 1950	14	53
January 1950		59
Baton Rouge, Louisiana		
June 1950	12	48
Bombay, India		
February 1950	15	57
January 1950	17	6i
Capetown, Union of S. Africa		
May 1950	14	53
Christchurch, New Zealand		
April 1950	15	56
Dakar, French W. Africa		
December 1949	17	63
Movember 1949	. 18	64
October 1949	18	65
De Bilt, Holland		
May 1950	13	50
Delhi, India		
February 1950	15	57
January 1950	17	6i
Formosa, China		
May 1950	13	51
April 1950	15	55
Fribourg, Germany		
December 1949	17	63
November 1949	18	64
October 1949	18	65
Guan I.		
May 1950	. 14	52
Huancayo, Peru		
June 1950	13	50
Johannesburg, Union of S. Africa	>	, ,
May 1950	. 14	52
Lindau/Harz, Germany) -
May 1950	13	51
Madras, India	• • ->)
February 1950	16	58
January 1950	17	62
Maui, Hawaii	1	-
June 1950	. 12	48
m 1 9 2 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	an one	1 40

Index (CRPL-F72, continued)

Table page	Figure page
Oslo, Norway	
June 1950	46
Rarotongo I.	
March 1950 15	56
San Francisco, California	
June 1950	47
San Juan, Puerto Rico	
June 1950	49
Tiruchy, India	
February 1950 16	58
January 1950 17	62
Tokyo, Japan	
April 1950 14	54
January 1950 16	60
Trinidad, British West Indies	1.0
June 1950	49
Wakkanai, Japan	46
January 1950 16	59
Washington, D. C.	1. /
July 1950 12	46
Watheroo, W. Australia	
April 1950 15	55
White Sands, New Mexico	l. o
June 1950 12	47
Yamagawa, Japan	al.
April 1950 14	54
January 1950 16	60

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily:
Radio disturbance warnings, every half hour from broadcast station WWV of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

CRPL-J. Radio Propagation Forecast (of days most likely to be disturbed during following month).

CRPL-Ja. Semimonthly Frequency Revision Factors for CRPL Basic Radio Propagation Prediction Reports.

CRPL-D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC-13-1 (), monthly supplements to DNC-13-1.

CRPL-F. Ionospheric Data.

Quarterly:

*IRPL-A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.

*IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions. IRPL-R. Nonscheduled reports:

R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies

R5. Criteria for Ionospheric Storminess.

R6.

Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

An Automatic Instantaneous Indicator of Skip Distance and MUF. R7.

R9. R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere.
§R11. A Nomographic Method for Both Prediction and Observation Correlation of Ionosphere Characteristics.
§R12. Short Time Variations in Ionospheric Characteristics.
R14. A Graphical Method for Calculating Ground Reflection Coefficients.
§R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.
§R17. Japanese Ionospheric Data—1943.
R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.
§R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)
§R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena

§R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.
§R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.
R26. The Ionosphere as a Measure of Solar Activity.
R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped

R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots Grouped by Distance From Center of Disc.
§R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.
R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.
§R32. Ionospheric Data on File at IRPL.
§R34. The Interpretation of Recorded Values of fEs.
R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc

3 Mc.

IRPL-T. Reports on tropospheric propagation:
T1. Radar operation and weather. (Superseded by JANP 101.)
T2. Radar coverage and weather. (Superseded by JANP 102.)

CRPL-T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC-14 series. Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request.

