STUDIUL FRECVENTEI DE WOBBLING

Approach

a) Verificarea figurii 6 din draft: **este OK**. Codul pe care l-am scris in c++ verifica intocmai avea figura. Am extins pentru intreaga plaja de valori ale lui θ . Figurile pot fi vazute mai jos:

 ω si ω' ca functie de θ , pe inervalul [-180,0]

 ω si ω' ca functie de θ , pe inervalul positiv definit [0,180]

Observatie: In Fig.6 la parametrii din caption este o eroare. Curbele pentru acele energii fononice coresponde la setul de momentde inertie $\mathcal{I}_1:\mathcal{I}_2:\mathcal{I}_3=20:100:40~[\hbar^2\mathrm{MeV}^{-1}]$, si nu cel scris acolo. De asemenea, j=13/2 si I=45/2. Deci acest lucru ar trebui corectat in captionul figurii din draft.

Daca folosesc parametrii din caption-ul figurii, obtin de fapt aceasta poza:

 ω si ω' ca functie de θ , pe intervalul pozitiv definit, obtinuti intocmai cu parametrii din draft

Solutiile sistemului de ecuatii:

I_1	I_2	I_3	THETA	I	J
13.5285	101.759	52.9364	140	19/2	11/2

Din acest tabel, reiese o observatie importanta:

- Valorea spinului I=19/2 a fost fixata initial la *runtime*-ul programului de cautare al solutiilor A_1 , A_2 si A_3 pentru a putea fi introdusa in expresia lui V(q) si a evalua intreg setul de valori ale lui V pentru tot intervalul q (impreuna si cu setul de incercare al momentelor de inertie pe care programul le tot cauta).
- Oprindu-se la valorile $\mathcal I$ -urilor din tabel, inseamna ca acele solutii sunt cele mai bune pentru exact acest spin I=19/2. Deci, daca aleg momentele de inertie din tabelul de mai sus, nu ar avea sens sa plotez pe ω si ω' , decat pentru spinul fixat

I=19/2. Graficul poate fi vazut mai jos.

 ω si ω' ca functie de θ , pe tot intervalul de valori θ obtinuti cu parametrii dati de solutiile sistemului de 3 ecuatii. Punctele reprezinta acele valori ale lui ω pentru unghiul de cuplaj pe care l-am obtinut din calcul.

Frecventa de wobbling data de parametrii de fit cu care am calculat energiile de excitatie

Avand si setul de parametrii obtinuti din fitul *least squared method*, se obtine, in aceeasi maniera, figura de mai jos.

Avand in vedere ca in calculul minimului χ^2 , am luat toti spinii in calcul, plotul pentru omega poate fi intradevar facut pentru o valoare arbitrara de spin I, atata timp cat ea se afla in intervalul spinilor experimentali.

Evident, am ales acelasi spin ca si in cazul codului cu sistemul de ecuatii, pentru o comparatie mai consistenta.

 ω si ω' ca functie de θ , pe intervalul pozitiv definit, obtinuti cu parametrii din calculul functiei χ^2 . Punctele reprezinta acele valori ale lui ω pentru unghiul de cuplaj pe care l-am obtinut din calcul.

Reamintesc ca valorile acelor parametrii sunt:

I_1	I_2	I_3	THETA
89	12	48	-71