

Embedded C through AVR-GCC

1

G V V Sharma*

1

1

2

CONTENTS

4	\sim	4
	lomn	anante
1	COIIID	onents

- 2 Blink
- 3 Display Control
- 4 Control LCD
- 5 Project

Abstract—This manual shows how to control hardware using AVR-GCC. AVR-GCC is a C compiler for the Atmega328p.

1 Components

Component	Value	Quantity
Breadboard		1
Resistor	$\geq 220\Omega$	1
Arduino	Uno	1
Seven Segment Display	Common Anode	1
LCD Display	16×2	1
Jumper Wires		20

TABLE 0

2 Blink

1. Install **subversion**

sudo apt update	
sudo apt install subversion	

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

2. Go to your working directory and download the folder titled **codes** using the following command.

svn checkout https://github.com/gadepall/ arduino/trunk/avr-gcc/setup/codes

- 3. Connect your arduino to the computer and open a terminal.
- 4. Open a terminal and go to the **codes** directory. Type **make**. The built in led on the arduino should be blinking.
 - 5. If you open **main.c** in **geany**, you can execute the code by **Shift+F9**.
 - 6. Now open **main.c**. Explain the following lines.

Solution: ((0 << PB5)) writes 0 to pin 13 (PB5). _delay_ms(500) introduces a delay of 500 ms.

- 7. Modify the above code to keep the led on.
- 8. Repeat the above exercise to keep the led off.

3 DISPLAY CONTROL

1. Complete Table 1 for all the digital pins using Fig. 1.

Port Pin	Digital Pin
PD2	2
PB5	13

TABLE 1

- 2. Make connections according to Table 2.
- 3. Execute the following code

wget https://raw.githubusercontent.com/gadepall/arduino/master/avr-gcc/sevenseg/codes/main.c

Arduino function Arduino function (PCINT14/RESET) PC6E PC5 (ADC5/SCL/PCINT13) reset analog input 5 digital pin 0 (RX) (PCINT16/RXD) PD0E PC4 (ADC4/SDA/PCINT12) analog input 4 (PCINT17/TXD) PD1 F PC3 (ADC3/PCINT11) digital pin 1 (TX) analog input 3 PC2 (ADC2/PCINT10) digital pin 2 (PCINT18/INT0) PD2E analog input 2 digital pin 3 (PWM) (PCINT19/OC2B/INT1) PD3E TPC1 (ADC1/PCINT9) analog input 1 (PCINT20/XCK/T0) PD4E PC0 (ADC0/PCINT8) digital pin 4 analog input 0 VCC VCCI 7 GND GND GND GNDE AREF analog reference crystal (PCINT6/XTAL1/TOSC1) PB6F TAVCC VCC (PCINT7/XTAL2/TOSC2) PB7 [T PB5 (SCK/PCINT5) crystal digital pin 13 digital pin 5 (PWM) (PCINT21/OC0B/T1) PD5[PB4 (MISO/PCINT4) digital pin 12 digital pin 6 (PWM) (PCINT22/OC0A/AIN0) PD6 [PB3 (MOSI/OC2A/PCINT3) digital pin 11(PWM) PB2 (SS/OC1B/PCINT2) digital pin 10 (PWM) (PCINT23/AIN1) PD7 digital pin 7 PB1 (OC1A/PCINT1) (PCINTO/CLKO/ICP1) PB0 [digital pin 8 digital pin 9 (PWM)

Atmega168 Pin Mapping

Digital Pins 11,12 & 13 are used by the ICSP header for MOSI, MISO, SCK connections (Atmega168 pins 17,18 & 19). Avoid low-impedance loads on these pins when using the ICSP header.

Fig. 1

	2	3	4	5	6	7	8
Arduino	PD2	PD3	PD4	PD5	PD6	PD7	PB0
Display	a	b	c	d	e	f	g
2	0	0	1	0	0	1	0

TABLE 2

- 4. Modify the above code to generate numbers between 0-9.
- 5. Repeat the above by writing a function.
- 6. Use a for loop and include a delay to implement a decade counter

4 Control LCD

- 1. Plug the LCD in Fig. 2 to the breadboard.
- 2. Connect the Arduino pins to LCD pins as per Table 2.

Fig. 2: LCD

3. Download the following directory from

svn checkout https://github.com/gadepall/arduino/trunk/avr-gcc/lcd/codes

and execute main.c

4. Modify the above code to display a string.

TABLE 2: Arduino to LCD Pin Connection.

Ar- duino Pins	LCD Pins	LCD Pin Label	LCD Pin Description
GND	1	GND	
5V	2	Vcc	
GND	3	Vee	Contrast
D8	4	RS	Register Select
GND	5	R/W	Read/Write
D9	6	EN	Enable
D10	11	DB4	Serial Connection
D11	12	DB5	Serial Connection
D12	13	DB6	Serial Connection
D13	14	DB7	Serial Connection
5V	15	LED+	Backlight
GND	16	LED-	Backlight

- 5. Modify the above code to obtain a decade counter so that the numbers from 0 to 9 are displayed on the lcd repeatedly.
- 6. Repeat the above exercises to display a string on the first line and a number on the second line of the lcd.
- 7. Write a program to implement all functions of a simple calculator and display on an LCD.

5 Project

Design a simple calculator using the AT-MEGA328P. Use push buttons for numbers and other arithmetic keys. Solder all components on a PCB and power the circuit through a micro/typeC USB port. Design and print a case for your calculator using a 3-D printer.