Section 2.4 and 2.5

Weak Convergence and Empirical Processes

Lasse Vuursteen

Today's program

We will discuss chapter's 2.4 and 2.5, in order. These chapters are respectively concerned with:

- What condition on F guarantees that it is P-Glivenko-Cantelli?
- What condition on F guarantees that it is P-Donsker?

Glivenko-Cantelli Classes

A function class F is called P-Glivenko-Cantelli if

$$||\mathbb{P}_n - P||_{\mathscr{F}} \to 0$$
 in outer probability

where $||\cdot||_{\mathscr{F}}$ denotes the uniform norm.

Conditions on F

Showing $||\mathbb{P}_n - P||_{\mathscr{F}} \to 0$ is generally not straightforward.

- sup over F of infinite cardinality are generally nasty.
- Measurability issues.

A way to deal with these issues is through entropy conditions on \mathscr{F} : "sup smells like entropy"

Two flavours of entropy conditions:

- Bracketing entropy
- Metric entropy

Bracketing entropy based Glivenko-Cantelli

Theorem

Let \mathscr{F} be a class of measurable functions such that $N_{||}(\varepsilon,\mathscr{F},L_1(P))<\infty$ for every $\varepsilon>0$. Then, \mathscr{F} is Glivenko-Cantelli.

Proof: Fix $\varepsilon > 0$, choose a finite amount of brackets $[l_i, u_i]$ such that $P(u_i - l_i) < \varepsilon$.

Every $f \in \mathcal{F}$ lives in one of these brackets so

$$(\mathbb{P}_n - P)f \leq (\mathbb{P}_n - P)u_i + P(u_i - f) \leq (\mathbb{P}_n - P)u_i + \varepsilon.$$

This means

$$\sup_{f \in \mathscr{F}} (\mathbb{P}_n - P)f \leq \max_i (\mathbb{P}_n - P)u_i + \varepsilon$$

which is measurable. A similar argument can be made for the inf. We conclude that $\limsup_{n} ||\mathbb{P}_n - P||_{\mathscr{Z}}^* \leq \varepsilon$.

(Random semi) metric entropy based Glivenko-Cantelli

Theorem

Let \mathscr{F} be a P-measurable class with envelope F such that $P^*F < \infty$. Let \mathscr{F}_M be the class of functions $f1\{F \leq M\}$ when $f \in \mathscr{F}$.

Then, $||\mathbb{P}_n - P||_{\mathscr{F}}^* \to 0$ almost surely if and only if $n^{-1} \log N(\varepsilon, \mathscr{F}_M, L_1(\mathbb{P}_n)) \to 0$ in outer probability.

In the above case, the convergence is also in outer mean.

Proof: ←

Assume $n^{-1} \log N(\varepsilon, \mathscr{F}_M, L_1(\mathbb{P}_n)) \to 0$ in outer probability.

Recall the Symmetrization Lemma (2.3.1): For every nondecreasing,

convex $\Phi : \mathbb{R} \to \mathbb{R}$ and measurable \mathscr{F} ,

$$E^*\Phi(||\mathbb{P}_n-P||_{\mathscr{F}})\leq E^*\Phi\left(2||n^{-1}\sum_{i=1}^n\varepsilon_i f(X_i)||_{\mathscr{F}}\right).$$

Proof: ←

This yields

$$|E^*||\mathbb{P}_n - P||_{\mathscr{F}} \leq 2E_X E_{\varepsilon} ||\frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i)||_{\mathscr{F}}.$$

which we can bound further using our envelope:

$$2E_X E_{\varepsilon} || \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i) ||_{\mathscr{F}_M} + 2P^* F\{F > M\}.$$

The first term can be dealt with using a maximal inequality.

Maximal inequality (Lemma 2.2.2)

Let $\psi: \mathbb{R} \to \mathbb{R}$ convex, nondecreasing and nonzero except for in the point 0. Recall that *the Orlicz-norm* for ψ is defined as

$$||X||_{\psi} := \inf \left\{ C > 0 : E\left(\frac{|X|}{C}\right) \leq 1 \right\}.$$

Suppose $\limsup_{x,y\to\infty}\psi(x)\psi(x)/\psi(cxy)<\infty$ for some $c\in\mathbb{R}$. Then,

$$||\max_{1 \le i \le m} X_i||_{\psi} \le K \psi^{-1}(m) \max_{1 \le i \le m} ||X_i||_{\psi}$$

for K > 0 depending only on ψ .

Proof: ←

To apply this, note that we can choose a net \mathscr{G} of cardinality $\log N(\varepsilon, \mathscr{F}_M, L_1(\mathbb{P}_n))$ such that

$$2E_X E_{\varepsilon} || \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i) ||_{\mathscr{F}_M} \leq \sqrt{1 + \log |\mathscr{G}|} \sup_{f \in \mathscr{G}} || \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i) ||_{\psi_2}$$

where we note that the L_1 -norm on the right is bounded by the $\psi_2(x) := e^{x^2} - 1$ Orlicz-norm.

Proof: ←

We have the Hoeffding increment bound for this choice of Orlicz norm from Chapter 2.2:

$$||X_s-X_t||_{\psi_2}\leq \sqrt{6}d(s,t).$$

We can apply this for the $L_2(\mathbb{P}_n)$ distance. By the envelope condition, $\mathbb{P}_n f^2 \leq M^2$ for all $f \in \mathscr{F}$. This gives us

$$\begin{split} |E^*||\mathbb{P}_n - P||_{\mathscr{F}} &\leq 2E_X E_{\varepsilon} ||\frac{1}{n} \sum_{i=1}^n \varepsilon_i f(X_i)||_{\mathscr{F}_M} + \varepsilon \\ &\leq E_X \sqrt{1 + \log N(\varepsilon, \mathscr{F}_M, L_1(\mathbb{P}_n))} \frac{1}{n} \sqrt{6} M + \varepsilon. \end{split}$$

Since ε can be chosen arbitrarily small and $n^{-1} \log N(\varepsilon, \mathscr{F}_M, L_1(\mathbb{P}_n)) \to 0$ in outer probability.

Proof: \Longrightarrow

For the other direction, assume $||\mathbb{P}_n - P||_{\mathscr{E}}^* \to 0$ almost surely.

Desymmetrization (Lemma 2.3.6) then implies

$$\frac{1}{2}E^*||\frac{1}{n}\sum_{i=1}^n\varepsilon_i(f(X_i)-Pf)||_{\mathscr{F}}\leq E^*||\mathbb{P}_n-P||_{\mathscr{F}}^*\to 0.$$

We can take $\varepsilon_i = Z_i \sim \mathcal{N}(0,1)$.

The link with entropy is provided by Sudakov's inequality.

Sudakov's inequality

For a centered, separable Gaussian process X indexed by T,

$$\sup_{\varepsilon>0} \varepsilon \sqrt{\log N(\varepsilon, T, \rho)} \leq \sqrt{2\pi \log 2} E \sup_{t \in T} X_t$$

where
$$\rho(s,t) = \sigma(X_s - X_t)$$
.

The symmetrized process $\{n^{-1}\sum_{i=1}^n Z_i f(X_i) : f \in \mathscr{F}\}$ is centered and Gaussian and ρ here is the $L_2(\mathbb{P}_n)$ norm!

Proof: \Longrightarrow

We obtain that $n^{-1/2}\sqrt{\log N(\varepsilon, \mathscr{F}, L_2(\mathbb{P}_n))} \to 0$ in outer expectation.

Note also that $N(\varepsilon, \mathscr{F}_M, L_2(\mathbb{P}_n)) \leq N(\varepsilon, \mathscr{F}_M, L_\infty(\mathbb{P}_n)) \leq (\frac{2M}{\varepsilon})^n$.

We finalize our proof:

$$\frac{1}{n}\log N(\varepsilon,\mathscr{F}_M,L_2(\mathbb{P}_n)) \leq \frac{1}{n}\sqrt{\log[(\frac{2M}{\varepsilon})^n]}\sqrt{\log N(\varepsilon,\mathscr{F},L_2(\mathbb{P}_n))} \to 0$$

in outer expectation.

Addendum to the theorem

Recall the last claim of the theorem:

Theorem

Let \mathscr{F} be a P-measurable class with envelope F such that $P^*F < \infty$. Let \mathscr{F}_M be the class of functions $f1\{F \leq M\}$ when $f \in \mathscr{F}$.

Then, $||\mathbb{P}_n - P||_{\mathscr{F}}^* \to 0$ almost surely if and only if $n^{-1} \log N(\varepsilon, \mathscr{F}_M, L_1(\mathbb{P}_n)) \to 0$ in outer probability.

In the above case, the convergence is also in outer mean.

This shown via a martingale argument.

Hoffmann-Jorgensen inequality for moments (colloquial version)

Let $X_1, ..., X_n$ independent stochastic processes indexed by T. Then there exist C > 0 and 0 < v < 1 such that

$$\mathbb{E}^* \max_{k \leq n} || \sum_{i=1}^k X_k ||_T \leq C \left(\mathbb{E}^* \max_{k \leq n} || X_k ||_T + F^{-1}(v) \right)$$

where F^{-1} denotes the quantile function of $\max_{k \le n} ||\sum_{i=1}^k X_k||_T$.

Multiplier inequality (Lemma 2.9.1, colloquial version)

Let $Z_1, ..., Z_n$ iid standard normals and let $X_1, ..., X_n$ iid stochastic processes indexed by T, jointly independent.

$$\mathbb{E}^* \max_{k \leq n} || \sum_{i=1}^k X_k ||_T \leq C \left(\mathbb{E}^* \max_{k \leq n} ||X_k||_T + F^{-1}(v) \right)$$

where F^{-1} denotes the quantile function of $\max_{k \le n} ||\sum_{i=1}^k X_k||_T$.

Desymmetrization Lemma (2.3.1)

Bracketing numbers of \mathscr{F}

A function class \mathscr{F} is called *P-Donsker* if

$$\mathbb{G}_n := n^{-1/2}(\mathbb{P}_n - P) \rightsquigarrow \ell^{\infty}(\mathscr{F}).$$

Weak convergence in $\ell^{\infty}(\mathscr{F})$

Recall: X_{α} converges weakly to a tight limit taking values in $\ell^{\infty}(\mathscr{F})$ if and only if X_{α} is asymptotically tight and its maringals converge weakly.

By the CLT, we already have marginal convergence, so asymptotic tightness of \mathbb{G}_n is what we are after.

Asymptotic tightness

Recall that a net X_{α} is asymptotically tight if for every $\varepsilon > 0$ there exists a compact set K such that

$$\liminf P_*(X_\alpha \in K^\delta) \ge 1 - \varepsilon \ \text{ for every } \delta > 0.$$

This is hard to show directly for \mathbb{G}_n , but we can use a characterization: asymptotic equicontinuity.

Asymptotic equicontinuity

A net $X_{\alpha}: \Omega \to \ell^{\infty}(T)$ is asymptotically uniformly ρ -equicontinuous in probability if for every $\varepsilon, \eta > 0$ there exists a $\delta > 0$ such that

$$\limsup_{\alpha} P^* \left(\sup_{
ho(s,t) < \delta} |X_{lpha}(s) - X_{lpha}(t)| > arepsilon
ight) < \eta.$$

Theorem 1.5.7: X_{α} is asymptotically tight if and only if $X_{\alpha}(t)$ is asymptotically tight in \mathbb{R} for every t and there exists a semimetric ρ on T such that (T,ρ) is totally bounded and X_{α} is asymptotically uniformly ρ -equicontinuous in probability.

The Donsker theorems come in two flavours (two types of conditions on \mathscr{F}):

Based on the uniform entropy condition

$$\int_0^\infty \sup_Q \sqrt{\log N(\varepsilon||F||_{Q,2},\mathscr{F},L_2(Q))} d\varepsilon < \infty.$$

Based on bracketing entropy

$$\int_0^\infty \sqrt{\log N_{[]}(\varepsilon,\mathscr{F},L_2(P))}d\varepsilon < \infty.$$

These conditions are generally not comparable. Examples of function classes satisfying either or both are given in Chapter 2.7.

Donsker Theorem's based on bracketing

Theorem

Any class F of measurable functions satisfying

$$\int_0^\infty \sqrt{\log N_{[]}(\varepsilon, \mathscr{F}, L_2(P))} d\varepsilon < \infty$$

is P-Donsker.

This result is a consequence of the following more general theorem.

First, let's define a norm

Define the $L_{2,\infty}$ -"norm" on \mathscr{F} as

$$||f||_{P,2,\infty} = \sup_{x>0} \left(x^2 P(|f|>x)\right)^{1/2}.$$

This norm is weaker than the the $L_2(P)$ norm.

Donsker Theorem's based on bracketing

Theorem

Any class F of measurable functions satisfying

$$\int_0^\infty \sqrt{\log N_{[]}(\epsilon,\mathscr{F},L_{2,\infty}(P))}d\epsilon + \int_0^\infty \sqrt{\log N(\epsilon,\mathscr{F},L_2(P))}d\epsilon < \infty$$

is P-Donsker.

This is more general than the previous result (why?).

The proof relies on applying the following result (Theorem 1.5.6) for proving asymptotic tightness:

A net X_{α} taking values in $\ell^{\infty}(T)$ is asymptotically tight if and only if $X_{\alpha}(t)$ is asymptotically tight in \mathbb{R} for very $t \in T$ and if there exist a finite partition $T = \dot{\cup} T_i$ such that asymptotic equiconintuity holds uniformly over these partitions in the following sense:

$$\limsup P^* \left(\sup_i \sup_{s,t \in T_i} |X_{\alpha}(s) - X_{\alpha}(t)| > \varepsilon \right) < \eta.$$

The statement " $X_{\alpha}(t)$ is asymptotically tight in \mathbb{R} for very $t \in T$ " holds already in our situation..

The "joint entropy" condition

$$\int_0^\infty \sqrt{\log N_{[]}(\epsilon,\mathscr{F},L_{2,\infty}(P))}d\epsilon + \int_0^\infty \sqrt{\log N(\epsilon,\mathscr{F},L_2(P))}d\epsilon < \infty$$

is used to construct the partition for which the second condition of 1.5.6 is satisfied. That is, a partition $\bigcup \mathscr{F}_i = \mathscr{F}$ for which we can show $E^*\max_i ||\mathbb{G}_n||_{\mathscr{F}_i} \to 0$, which yields asymptotic equicontinuity through

$$P^*(\max_i ||\mathbb{G}_n||_{\mathscr{F}_i} > x) \leq \frac{1}{x} E^* \max_i ||\mathbb{G}_n||_{\mathscr{F}_i}.$$

In order to show $E^*\max_i ||\mathbb{G}_n||_{\mathscr{F}_i} \to 0$, we will aim to use the maximal inequality of Lemma 2.2.10:

Let X_1, \ldots, X_n satisfy the tailbound

$$P(|X_i| > x) \le 2e^{-\frac{1}{2}\frac{x^2}{b+ax}}$$

for all x, i and fixed a, b > 0. Then,

$$||\max_{i} X_{i}||_{\psi_{1}} \leq K\left(a\log(1+m)+\sqrt{b}\sqrt{\log(1+m)}\right).$$

As a consequence of Bernstein's inequality, the condition of Lemma 2.2.10 is satisfied:

$$P(|\mathbb{G}_n f| > x) \le 2e^{-\frac{1}{2} \frac{x^2}{Pf^2 + 2/3||f||_{\infty} x/\sqrt{n}}},$$

which holds for square integrable, uniformly bounded $f \in \mathcal{F}$.

So, if we partition $\mathscr{F} = \cup \mathscr{F}_i$ such that we can consider $||\mathbb{G}_n||_{\mathscr{F}_i}$ as (bounded by something) that runs over a finite amount of functions (say m functions) we obtain

$$|E^*||\mathbb{G}_n||_{\mathscr{F}_i} \lesssim \max_{f_1,\dots,f_m} \frac{||f||_{\infty}}{\sqrt{n}} \log(1+m) + \max_{f_1,\dots,f_m} ||f||_{P,2} \sqrt{\log(1+m)}.$$

The partitions follow from the "joint" entropy condition and

$$\sqrt{\log N_{[]}(\epsilon,\mathscr{F},L_{2,\infty}(P))} \leq \sqrt{\log N(\epsilon,\mathscr{F},L_{2}(P))}$$

(note that the latter norm is stronger).

For a natural number $q \in \mathbb{N}$ we obtain $N_q^1 - L_2(P)$ balls of radius 2^{-q} and similarly $N_q^2 - L_{\infty,2}(P)$ balls of radius 2^{-q} such that

$$2 e^{-q} \sqrt{logN_q} < \infty$$

for
$$N_q = N_q^1 N_q^2$$
.

The intersection and disjointification of our balls form the partitions $\mathscr{F} = \cup \mathscr{F}_{i}^{q}$.

A (lengthy) chaining argument based on these partitions one can show that for all big enough q_0 ,

$$|E^*\max_i ||\mathbb{G}_n||_{\mathscr{F}_i^q} \lesssim \sum_{\infty}^{q_0} [2^{-q} \sqrt{\log N_q}]$$

which is finite by construction and hence goes to 0 as $q_0 \rightarrow \infty$, finishing the proof.

Thanks for listening!