ANALYTICS FOR HOSPITALS' HEALTH-CARE DATA PROJECT DOCUMENTATION

TEAM MEMBERS:

- P. DIVYA (TEAM LEAD)
- B. DEEKSHITHA
- B. DEEPTHA

PREETHI BASKARAN

CHAPTER 1 INTRODUCTION This project deals with the analytics for hospital's health care data using data analytics. Data analytics (DA) is the process of examining data sets in order to find trends and draw conclusions about the information they contain. Increasingly, data analytics is done with the aid of specialized systems and software. Data analytics technologies and techniques are widely used in commercial industries to enable organizations to make more-informed business decisions.

1.1 PROJECT OVERVIEW:

Recent Covid-19 Pandemic has raised alarms over one of the most overlooked areas to focus: Healthcare Management.

While healthcare management has various use cases for using data science, patient length of stay is one critical parameter to observe and predict if one wants to improve the efficiency of the healthcare management in a hospital.

This parameter helps hospitals to identify patients of high LOS-risk (patients who will stay longer) at the time of admission. Once identified, patients with high LOS risk can have their treatment plan optimized to minimize LOS and lower the chance of staff/visitor infection.

Also, prior knowledge of LOS can aid in logistics such as room and bed allocation planning.

Suppose you have been hired as Data Scientist of Health Man – a not for profit organization dedicated to manage the functioning of Hospitals in a professional and optimal manner

1.2 PURPOSE:

Data analytics in health care is vital. It helps health care organizations to evaluate and develop practitioners, detect anomalies in scans and predict outbreaks in illness, per the Harvard Business School. Data analytics can also lower costs for health care organizations and boost business intelligence. Hospital data analytics can look over patient data and any prescribed medication to alert doctors and patients of incorrect dosages or wrong prescriptions, which lessens human error and the cost to your hospital. This in turn helps in gaining better insights and also enables healthcare practitioners to make wellinformed decisions.

LITERATURE SURVEY

The main aim of this paper is to provide a deep analysis on the research field of healthcare data analytics. This paper is analyzing the previous studies and works in this research area, as well as highlighting some of guidelines and gaps. This study has used seven popular databases and selected most relevant papers, in order to conduct this paper. The paper has listed some data analytics tools and techniques that have been used to improve healthcare performance in many areas such as: medical operations, reports, decision making, and prediction and prevention system. Moreover, the systematic review has showed an interesting demographic of fields of publication, research approaches, as well as outlined some of the possible reasons and issues associated with healthcare data analytics, based on geographical distribution theme[1].

This part deals with the advanced analytical methods focused on healthcare. This includes the clinical prediction models, temporal data mining methods, and visual analytics. Integrating heterogeneous data such as clinical and genomic data is essential for improving the predictive power of the data that will also be discussed. Information retrieval techniques that can enhance the quality of biomedical search will be presented. Data privacy is an extremely important concern in healthcare. Privacy-preserving data publishing techniques will therefore be presented. [2].

One of the promises of the growing critical mass of clinical data accumulating in electronic health record (EHR) systems is secondary use (or re-use) of the data for other purposes, such as quality improvement and clinical research.1 The growth of such data has increased dramatically in recent years due to incentives for EHR adoption in the US funded by the Health Information Technology for Economic and Clinical Health (HITECH) Act.2-3 In the meantime, there has also seen substantial growth in other kinds of health-related data, most notably through efforts to

sequence genomes and other biological structures and functions.4 The analysis of this data is

usually called analytics (or data analytics). This chapter will define the terminology of this field, provide an overview of its promise, describe what work has been accomplished, and list the challenges and opportunities going forward[3].

Clinicians, healthcare providers-suppliers, policy makers and patients are experiencing exciting opportunities in light of new information deriving from the analysis of big data sets, a capability that has emerged in the last decades. Due to the rapid increase of publications in the healthcare industry, we have conducted a structured review regarding healthcare big data analytics. With reference to the resource-based view theory we focus on how big data resources are utilized to create organization values/capabilities, and through content analysis of the selected publications we discuss: the classification of big data types related to healthcare, the associate analysis techniques, the created value for stakeholders, the platforms and tools for handling big health data and future aspects in the field. We present a number of pragmatic examples to show how the advances in healthcare were made possible. We believe that the findings of this review are stimulating and provide valuable information to practitioners, policy makers and researchers while presenting them with certain paths for future research[4].

In this modern techno-world, the term data is unavoidable and certainly, nothing is possible without its usage. The trends about how to analyze the data are the need of the hour. Data analytics is becoming a future escalating tool of all industries including medicine, robotics, etc. This article briefly explains how data analytics is used in healthcare systems. Health care is the process of maintaining and improving the health of an individual by preventing, diagnosing and treating the diseases, illness and other physical and mental imbalances in people. Data analytics is classified into four types and they are descriptive, diagnostic, predictive and prescriptive analysis. Health care makes use of prescriptive analysis to arrive at the best results and make better decisions. Big data plays a major role in data analytics. It helps the data analysts to collect data

from the patients and store them efficiently. After the completion of this whole article, the reader will be able to get the collective idea about health care analytics.[5]

2.1 EXISTING PROBLEM

- > The already existing model is trained with minimal parameters
- > Low accuracy in prediction
- > No feature extraction done
- > High complexity

2.2 REFERENCES

- [1]. Mohammad Alkhatib , Amir Talaei-Khoei (University of Nevada, Reno) Amir Talaei- Khoei University of Nevada, Reno | UNR · Department of Accounting and Information Systems PhD of Information Systems-Amir Ghapanchi
- [2]. From:"Book of Data Analytics" Chandank Reddy(Wayne State University) Charu C.Aggarwal(Watson Research Center)
- [3]. From: Hoyt,RE,Yoshihashi,A,Eds.(2014).Health Informatics:Practical Guide for Healthcare and formation Technology Professionals,Sixth Edition.Pensacola,FL,Lulu.com.
- [4]. Panagiota Galetsia, Korina Katsaliakia, Sameer Kumarb,* a School of Economics, Business Administration & Legal Studies, International Hellenic University, 14th km Thessaloniki-N. Moudania, Thessaloniki, 57001, Greece b Opus College of Business,

University of St. Thomas Minneapolis Campus, 1000 LaSalle Avenue, Schulze Hall 435, Minneapolis, MN 55403, USA

- [5]. from"n book: Innovative Data Communication Technologies and Application (pp.83-96)" P. Nagaraj-Professor (Assistant) at Kalasalingam University
- [6]. Yang J.-J., Li J., Mulder J., Wang Y., Chen S., Wu H., Wang Q., Pan H. Emerginginformation technologies for enhanced healthcare. Comput. ind. 2015;69:3-
- 11.doi:10.1016/j.compimd.2015.01.012. [CrossRef] [Google Scholar]
- [7]. Cortada J.W., Gordon D., Lenihan B. The Value of Analytics in Healthcare. IBM Institute for Business Value; Armonk, NY, USA: 2012. Report No.: GBE03476- USEN-
- 00. [Google Scholar].

- [8]. Makary M.A., Daniel M. Medical error-the third leading cause of death in the US. Br. Med. J. 2016;353:i2139. doi: 10.1136/bmj.i2139. [PubMed] [CrossRef] [Google Scholar].
- [9]. Prokosch H.-U., Ganslandt T. Perspectives for medical informatics. Methods Inf. Med. 2009;48:38–44. doi: 10.3414/ME9132. [PubMed] [CrossRef] [Google Scholar].
- [10]. Simpao A.F., Ahumada L.M., Gálvez J.A., Rehman M.A. A review of analytics and clinical informatics in health care. J. Med. Syst. 2014;38:45. doi: 10.1007/s10916-014-0045-x. [PubMed] [CrossRef] [Google Scholar].
- [11]. Ghassemi M., Celi L.A., Stone D.J. State of the art review: The data revolution incritical care. Crit. Care. 2015;19:118. doi: 10.1186/s13054-015-0801-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar].
- [12]. Tomar D., Agarwal S. A survey on Data Mining approaches for Healthcare. Int. J. Bio-Sci. Bio-Technol. 2013;5:241–266. doi: 10.14257/ijbsbt.2013.5.5.25. [CrossRef] [Google Scholar]
- [13]. K. Jee and G. H. Kim, "Potentiality of big data in the medical sector: Focus on how to reshape the healthcare system," Healthc. Inform. Res., vol. 19, no. 2, pp. 79–85, Jun. 2013. doi: 10.4258/hir.2013.19.2.79.
- [14]. J. King, V. Patel, and M. F. Furukawa, "Physician adoption of electronic health record technology to meet meaningful use objectives: 2009–2012," The Office of the National Coordinator for Health Information Technology, Tech. Rep., Dec. 2012.
- [15]. V. Mayer-Schönberger and K. Cukier, Big Data: A Revolution That Will Transform How We Live, Work, and Think. Eamon Dolan, 2014.
- [16]. J. Rapoport, D. Teres, Y. Zhao, S. Lemeshow Length of stay data as a guide to hospital economic performance for icu patients Med Care, 41 (3) (2003), pp. 386-397

2.3 PROBLEM STATEMENT AND DEFINITION

- The aim is to accurately predict the Length of Stay for each patient on case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning.
- The length of stay is divided into 11 different classes ranging from 0-10 days to more than 100 days.

IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CAMPUS

3.2 IDEATION & BRAINSTORMING

3.3PROPOSED SOLUTION

Predict the length of stay of patients.

The length of the stay can be predicted using either Random forest or Decision	
Tree for more accuracy.	
Certain parameters like age, stage of the diseases, disease diagnosis, severity of illness, type of admission, facilities allocated, etc., are used for prediction.	
IBM Cognos will be used for data analytics.	
The model will be trained using colab.It predicts the length of stay (LOS) of the	

1. CUSTOMER SEGMENT(S)
Patients who are sick and who visits hospitalis our

customer

CS

5. CONSTRAINTS CUSTOMER

The goal is to accurately predict the length of stay for each patient on the case by case basis

9.Business Model (Revenue Model)

As it is an efficient method for predicting patient stay it will be sold large in market which leads to huge profit.

AS

Identify strong TR & EN

2. JOBS-TO-BE-DONE / PROBLEMS

To predict the length of stay of each customer and bed availability

6. PROBLEM ROOT CAUSE

Many people during Covid-19 struggled due to lack of beds and oxygen.we can easy reduce by looking to the availabilty and predicting the length of stay

7. BEHAVIOUR

Once the patient knows the length of stay they can be prepared in all way

Identify strong TR & EM

3. TRIGGERS

This system provides the prediction of LOS which yield a more reliable estimate of the LOS.

4. EMOTIONS: BEFORE / AFTER

Predicting length of stay (LOS) is beneficial to patients and the health service. Once the patient knows the length of stay they can be prepared in all the ways. They can be ready with hospital expenditure once they know the LOS.

8. YOUR SOLUTION

TR

The most important aspect of this work was how the patient diagnoses played a more important role than age when predicting the length-of-stay. The prediction model would become more accurate with this optimization, as there were enough admission records in the dataset to support reasonable diagnoses model training.

4

Solution Requirements (Functional & Non-functional)

Date	16 th October 2022
Team ID	PNT2022TMID44120
Project Name	Analytics for Hospital health data
Maximum Marks	4 Marks

Functional Requirements:

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	This Dashboards are designed to offer a Comprehensive overview of patient is LOS, and do so through the use of data visualization tools like charts and graphs.
NFR-2	Security	The Dashboard helps to indicate the current threat level to the Hospitals; an indication of events and incidents that have occurred; a record of authentication errors; unauthorized access
NFR-3	Reliability	This dashboard will be consistent and reliable to the users and helps the user to use in effective, efficient and reliable manner.

4.2 NON FUNCTIONAL REQUIREMENT

NFR-4	Performance	This dashboard can scan the backend users and
		analyzing the frequency in which they visit the
		dashboard helps understand how useful and helpful
		the data displayed is for tasks.

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail
FR-2	User Confirmation	Confirmation via Email Confirmation via Message
FR-3	Interoperability	Dashboard helps to share the patient's information interoperable to the hospitals in timely manner.
FR-4	Accuracy	Dashboard helps predict the patient's Health risks accurately based on LOS (Length of Stay).
FR-5	Compliance	The compliance of a dashboard is like to use very interactively in real time by the hospitals.
FR-6	Concise	These dashboards are clear, intuitive, and customizable and interactive in manner.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

NFR-5	Availability	The dashboard can available to meet user's demand in timely manner and it is also helps to provide necessary information to the user's dataset
NFR-6	Scalability	The layers used in the dashboard are a hosted feature layer, feature layer view, or hosted tile layer.

PROJECT DESIGN

5.1 DATA FLOW DIAGRAMS

5.2 SOLUTION & TECHNICAL ARCHITECTURE

5.3 USER STORIES:

User type	Functional requireme nt (epic)	User story numb er	User story/task	Acceptance criteria	Priority	Release
Customer	Registrati on	USN-1	As a user i an login to my dashboard	I can access dashboard	High	Sprint-1

	Collect data	USN-1	As a user i can provide my details	I can view my data	Medium	Sprint-1
Admin	Collect data	USN-2	As an analyst i collect the data		High	Sprint-2
	Analyze	USN-2	As an analyst i analyze the given dataset	I can analyze the dataset	High	Sprint-2
	Upload data	USN-3	As an analyst i can upload datasets	I can upload the dataset	Medium	Sprint-3
	Prediction	USN-6	As an analyst i will predict the length of stay of patient	I can predict the length of stay	High	Sprint-4
Visualization	Prepare data	USN-4	As an admin i prepare the data for visualization	I can prepare the data with visualization techniques.	High	Spint-3
	Dashboard	USN-5	As an admin i present the data that is visualized	I can present the result	High	Sprint-4

CHAPTER 6 PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional Requireme nt (Epic)	User Story Number	User Story/ Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a health care provider I can create account inIBM cloud and the data are collected.	20	High	Divya.P Deekshitha.B
sprint-2	Analyze	USN-2	As a healthcare provider all data are collected is cleaned and uploaded in the database or IBM cloud	20	medium	Deeptha.B Preethi Baskaran

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2	Data Analysis	USN-3	As a user, I will be performing analysis on the data for making predictions	4	High	B.Deekshitha P.Divya
Sprint-2	Dashboards	USN-4	As a user, I will be making visualizations and interactive dashboards from the data	10	High	B.Deeptha, Preethi Baskaran
Sprint-3	Story	USN-5	As a user, I will be making stories from the data and the dashboards	20	High	P.Divya Preethi Baskaran
Sprint-4	Report	USN-6	As a user, I will be making a report from the analysis and dashboards	20	High	B.Deeptha B.Deekshitha

CHAPTER 7
CODING &
SOLUTIONING

7.1 FEATURE 1

- The most common values of Bed Grade are 2 (38.8 %) and 3 (34.7 %), together occurring over 234 thousand times, which is 73.6 % of the total.
- ♦ The total number of results for Department, across all bed grades, is over 318 thousand.

7.2 FEATURE 2

TESTING

8.1 TEST CASES

- verify user is able to see home page
- verify user is able to see dashboard page
- verify user is able to naivigate to story page
 - verify filters are working

8.1 USER ACCEPTANCE TESTING

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	8	5	0	3	16
Duplicate	1	0	5	0	6
External	0	3	2	1	6
Fixed	13	4	3	16	36
Not Reproduced	0	1	0	0	1
Skipped	0	1	0	1	2
Won't Fix	1	4	2	1	8
Totals	23	18	12	22	75

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fall	Pass
Print Engine	9	0	0	9
Client Application	43	0	0	43
Security	1	0	0	1
Outsource Shipping	1	0	0	1

Exception Reporting	9	0	0	9
Final Report Output	10	0	0	10
Version Control	1	0	0	1

CHAPTER

9

RESULTS

9.1 PERFORMANCE METRICS

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

10

ADVANTAGES AND DISADVANTAGES

ADVANTAGES:

- > Cost-effective use of technology
- > Improved project management
- > Sustaining the improvements in the result

- > Boosting hospital capacity
- > Enhance the quality and efficiency of healthcare
- > benefit areas like emergency preparation, charting, administration, compliance, and financial management.
- > Analysing clinical data to improve medical research
- > Using patient data to improve health outcomes
- > Gaining operational insights from healthcare provider data > Improved staffing through health business management analytics
- > Early detection of disease.
- > Prevention of unnecessary doctor's visits.
- > Discovery of new drugs.
- > More accurate calculation of health insurance rates.
- > More effective sharing of patient data

DISADVANTAGES:

REPLACING MEDICAL PERSONNEL:

Application of technology in every sphere of human life is improving the way things are done. These technologies are are also posing some threat to world of works. Robotics are replacing human labour.

DATA SAFETY:

Data security is another challenge in applying big data in healthcare. Big data storage is usually targets of hackers. This endangers the safety of medical data. Healthcare organisations are very much concerned about the safety of patients' sensitive personal data. For this, all healthcare applications must meet the requirement for data security and be HIPAA compliant before they can be deployed for healthcare services.

PRIVACY:

One of the major drawbacks in the application of big data in healthcare industry is the issue of lack of privacy. Application of big data technologies involves monitoring of patient's data, tracking of medical inventory and assets, organizing collected data, and visualization of data on the dashboard and the reports. So visualization of sensitive medical data especially that of the patients creates negative impression of big data as it violets privacy

MAN POWER:

Applying big data solutions in healthcare requires special skills, and such kills are scarce. Handling of big data requires the combination of medical, technological and statistical knowledge.

CONCLUSIO

N

The impact of data analytics in healthcare has already made a substantial difference in the ability of healthcare providers to offer patients high-quality care in an efficient, cost-effective manner. However, the role of data analytics in improving patient outcomes and healthcare processes continues to grow and expand as more types of data become available and new tools are developed that make the results of the analytics clear and easy for healthcare professionals to access.

Realizing the potential of data analytics to transform the healthcare industry begins by understanding how the technology can be applied to address healthcare providers' challenges, including staff recruitment and utilization, operational efficiencies, and enhanced patient experiences. Patient-centered healthcare depends on knowing what patients want and need.

Data analytics holds the key to unlocking this vital information.

CHAPTER 12

FUTURE SCOPE

Artificial Intelligence (AI) will play a significant role in data analytics in healthcare for the next decade. For example, the field of AI-enabled clinical decision support is just emerging. This type of support can compare patients who fit similar profiles within a system, then it can alert doctors to trends in data that may have been overlooked. The use of big data in healthcare will include testing for drug interactions that small studies are unlikely to catch and prevent patients from taking harmful drug combinations.

Decisions made by physicians, like what test or treatments to give a particular patient, makeup 80-90% of all healthcare spending, so using artificial intelligence to make more educated

	CHAPTER	13		
	APPENDIX			
GitHub & Project Demo Links:				
https://github.com/I	BM-EPBL/IBM-Project-	30297-1660143653		