#### **Combinational Circuit**

- A combinational circuit is a connected arrangement of logic gates with a set of inputs and outputs. To design combinational circuit following procedure is involved:
  - > The problem is stated.
  - > The input and output variables are assigned letter symbols.
  - The truth table that defines the relationship between inputs and outputs is derived.
  - > The simplified Boolean functions for each output are obtained.
  - > The logic diagram is drawn

#### **Half Adder**

A combinational circuit that performs the arithmetic addition of two bits is called a half-adder.

| Input |   | Outp | Output    |  |  |
|-------|---|------|-----------|--|--|
| X     | Υ | Sum  | Sum Carry |  |  |
| 0     | 0 | 0    | 0         |  |  |
| 0     | 1 | 0    | 1         |  |  |
| 1     | 0 | 0    | 1         |  |  |
| 1     | 1 | 1    | 0         |  |  |



Carry: x.y Sum: x'y + xy' (or)  $x \oplus y$ 



# **Logic Diagram**

# Full Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits

Number of inputs: 3 Number of Output: 2



### **Truth Table:**

| Inputs |   | Outputs |       |     |
|--------|---|---------|-------|-----|
| Х      | Y | Z       | CARRY | SUM |
| 0      | 0 | 0       | 0     | 0   |
| 0      | 0 | 1       | 0     | 1   |
| 0      | 1 | 0       | 0     | 1   |
| 0      | 1 | 1       | 1     | 0   |
| 1      | 0 | 0       | 0     | 1   |
| 1      | 0 | 1       | 1     | 0   |
| 1      | 1 | 0       | 1     | 0   |
| 1      | 1 | 1       | 1     | 1   |

Carry = 
$$x'yz + xy'z + xyz' + xyz$$

$$=z(x'y + xy')+xy(z'+z)$$

$$=z(x \oplus y)+xy$$

$$Sum = x'y'z+x'yz'+xy'z'+xyz$$

$$= x'(y'z+yz')+x(y'z'+yz)$$

$$= x \oplus y \oplus z$$



## **Half Subtractor**

The half subtractor is a combinational circuit which is used to perform subtraction of two bits. [X:Minuend; Y:Subtrahend]

Difference:  $x \oplus y$  Borrow: x'.y

| Input |   | Outp | Output |  |
|-------|---|------|--------|--|
| X     | Υ | Diff | Borrow |  |
| 0     | 0 | 0    | 0      |  |
| 0     | 1 | 1    | 1      |  |
| 1     | 0 | 1    | 0      |  |
| 1     | 1 | 0    | 0      |  |



# **Logic Diagram**

#### Full Subtractor

A full subtractor is a **combinational circuit** that performs subtraction of two bits, one is minuend and other is subtrahend, considering borrow of the previous adjacent lower minuend bit. This circuit **has three inputs and two outputs**. The three inputs A, B and Bin, denote the minuend, subtrahend, and previous borrow, respectively. The two outputs, D and Bout represent the difference and output borrow, respectively.

| Inputs |   | Outputs         |   |                  |
|--------|---|-----------------|---|------------------|
| Х      | Υ | B <sub>in</sub> | D | B <sub>out</sub> |
| 0      | 0 | 0               | 0 | 0                |
| 0      | 0 | 1               | 1 | 1                |
| 0      | 1 | 0               | 1 | 1                |
| 0      | 1 | 1               | 0 | 1                |
| 1      | 0 | 0               | 1 | 0                |
| 1      | 0 | 1               | 0 | 0                |
| 1      | 1 | 0               | 0 | 0                |
| 1      | 1 | 1               | 1 | 1                |

Difference = 
$$x'y'$$
  $B_{in}$ +  $x'y$   $B_{in}$ '+  $xy'$   $B_{in}$ '+  $xy$   $B_{in}$ 

Difference = 
$$x'(y' B_{in} + y B_{in}') + x(y' B_{in}' + y B_{in})$$

Difference = 
$$x \oplus y \oplus B_{in}$$

Borrow = 
$$x'y'$$
  $B_{in}+x'y$   $B_{in}'+x'y$   $B_{in}+xy$   $B_{in}$ 

Borrow = 
$$B_{in}(x'y'+xy) + x'y(B_{in}'+B_{in})$$

Borrow =
$$B_{in}(x \oplus y)' + x'y$$



**Logic Diagram**