Model Documentation of the Permanent Magnet DC Motor

1 Nomenclature

Nomenclature for Model Equations

motor constant $c\phi$

moment of inertia

 L_A armature inductance

armature resistance

armature current

angular velocity

armature voltage u_A

load moment

2 **Model Equations**

State Vector and Input Vector:

$$\underline{x} = (\omega \ i_A)^T = (x_1 \ x_2)^T$$

$$\underline{u} = (u_A \ \xi_L)^T = (u_1 \ u_2)^T$$

System Equations:

$$\dot{x}_1 = \frac{c\phi}{I} x_2 - \frac{1}{I} u_2 \tag{1a}$$

$$\dot{x}_1 = \frac{c\phi}{J} x_2 - \frac{1}{J} u_2$$

$$\dot{x}_2 = -\frac{R_A}{L_A} x_2 - \frac{c\phi}{L_A} x_1 + \frac{1}{L_A} u_1$$
(1a)

Parameters: $c\phi J L_A R_A$

Output: ω

Exemplary parameter values

Parameter Name	Symbol	Value	Unit
motor constant	c_{ϕ}	0.169	Vs
moment of inertia	J	0.0017	Ws^3
armature inductance	La	0.0256	\mathbf{H}
armature resistance	Ra	3.2	Ω

3 Derivation and Explanation

The function of the electrical motor is based on the interaction between the electromechanical power law and Faraday's law of induction.

$$\xi(t) = c\phi i_A(t) \tag{2}$$

$$u(t) = c\phi\omega(t) \tag{3}$$

The following applies to the voltage drops in the electrical armature circuit:

$$u_A(t) = u(t) + R_A i_A(t) + L_A \frac{di_A(t)}{dt}.$$
 (4)

For the mechanical system, Newton's law for rotational motion provides

$$\frac{\omega(t)}{dt} = \frac{1}{J}\xi_b(t). \tag{5}$$

Furthermore:

$$\xi_b(t) = \xi(t) - \xi_L(t). \tag{6}$$

4 Simulation

Figure 1: Simulation of the permanent magnet DC motor.

References

[1] TU Dresden – Institut für Regelungs- und Steuerungstheorie: Regelungstechnikpraktikum, Praktikumsanleitung, published on OPAL April 2022. (not publicly accessible)