

**Objetivo**: encontrar un valor x suficientemente cerca de satisfacer las condiciones de optimalidad.

La mayoría de los métodos son iterativos y descendientes, es decir, obtienen puntos  $x_0, x_1, x_2, ...$  tales que

$$f(x_{k+1}) < f(x_k), k = 0,1,2,...$$

Métodos de descenso: procedimiento iterativo básico

$$x_{k+1} = x_k + \alpha_k p_k,$$

Donde  $p_k$  es la dirección que se busca y  $\alpha_k$  es la longitud del paso que se da.



- Sea un punto inicial, para comenzar a iterar.
- Se calculan direcciones descendientes de búsqueda p<sub>k</sub>.
- Si estamos lejos de la solución, calculamos la longitud de paso  $\alpha_k > 0$ .
- El punto inicial se mueve:

$$x_{k+1} = x_k + \alpha_k p_k$$

Hasta que converge a una solución local.

Importante: lo deseable sería tener convergencia a una solución local desde cualquier punto  $x_0$ .



#### Métodos de descenso

- 1. Elegir  $x_0 \in \mathbb{R}^n$ , k = 0.
- 2. Si  $\nabla f(x_k) = 0$ , PARAR.
- 3. Test de convergencia: (por ejemplo  $\|\nabla f(x_k)\| < \epsilon$ ,  $\epsilon$  pequeño dado)
  - si se verifica, PARAR
  - si no se verifica, continuar
- 4. Elegir una dirección de descenso  $d_k$ .
- 5. Elegir un paso  $t_k > 0$  verificando  $f(x_k + t_k d_k) < f(x_k)$
- 6. Hacer  $x_{k+1} = x_k + t_k d_k$ , k = k + 1 e ir a 2



La dirección es descendiente si:  $\nabla f(x_k)p_k < 0$ 

#### Método del gradiente

En este caso,

$$p_k = -\nabla f(x_k).$$

Este es el método más simple y con menos coste computacional.

Pero, en la práctica, converge demasiado lento.



#### Método de Newton

Es el método más conocido y **converge muy rápido**, pero el coste computacional asociado puede llegar a ser muy alto (puesto que hay que calcular y almacenar el hessiano).

En este caso,

$$p_k = -\left(\nabla^2 f(x_k)\right)^{-1} \nabla f(x_k),$$

siempre que  $\nabla^2 f(x_k)$  sea no singular.



#### Método de Cuasi-Newton

Comenzamos con  $B_0$  (aproximación inicial a  $H_0 = \nabla^2 f(x_0)$ ) y entonces

$$B_{k+1} = B_k + regla de actualización$$

La dirección sería:

$$d_k = -B_k^{-1} \nabla f(x_k).$$



#### Método de Cuasi-Newton

Existen dos versiones para la regla de actualización:

$$B_{k+1} = B_k + \frac{(y_k - B_k s_k)(y_k - B_k s_k)^T}{(y_k - B_k s_k)^T s_k}$$
 (simétrica de rango 1) 
$$B_{k+1} = B_k - \frac{(B_k s_k)(B_k s_k)^T}{s_k^T B_k s_k} + \frac{y_k y_k^T}{y_k^T s_k}$$
 (BFGS)

donde 
$$s_k = x_{k+1} - x_k$$
 e  $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$ 



#### Método de Cuasi-Newton

#### **Ventajas**

- No es tan caro como el método de Newton:  $B_k$  se calcula usando sólo primeras derivadas (no son necesarias segundas derivadas).
- El sistema lineal correspondiente se resuelve en  $\mathcal{O}(n^2)$  operaciones (versus  $\mathcal{O}(n^3)$  en el método de Newton) .
- Convergencia rápida.



La longitud de paso (*steplength*)

Ahora sabemos cómo calcular  $p_k$ . Pero, ¿cómo podemos elegir el otro elemento básico para el algoritmo?

Es decir, cómo elegir  $\alpha_k$ , con  $x_{k+1} = x_k + \alpha_k p_k$ , donde  $p_k$  es una dirección descendiente.

#### Elección óptima

$$\alpha_k \equiv \min_{\alpha > 0} f(x_k + \alpha p_k)$$

La mejor, pero demasiado costosa de calcular en cada iteración.



#### **Alternativas**

- Regla de Wolfe (demasiado costosa, ya que debe calcular el gradiente para cada prueba de longitud de paso)
- Regla de Armijo
- Se empieza con  $\alpha = s, s > 0$ , y la regla continúa con  $\alpha = \beta s, \alpha = \beta^2 s$ , ...,  $(0 < \beta < 1)$ , hasta que  $\alpha$  cumple:

$$f(x_k + \alpha p_k) \le f(x_k) + \sigma \alpha p_k^T \nabla f(x_k),$$

para algún  $0 < \sigma < 1$ .

• Normalmente,  $\sigma \in [10^{-5}, 10^{-1}], \beta \in \left[\frac{1}{10}, \frac{1}{2}\right], s = 1.$ 





## 3 Ejemplos



## Problemas de regresión

Mínimos cuadrados

$$minimize_{\beta} \frac{1}{2} \sum_{i} (y_i - x_i^T \beta)^2$$

Solución explícita:  $\beta^* = (X^T X)^{-1} X^T y$ 

Mínimos cuadrados no lineales

$$minimize_{\beta} \frac{1}{2} \sum_{i} (y_i - F_i(\beta, x_i))^2$$

No tiene solución explícita: problema no lineal sin restricciones



## Problemas de regresión

#### Regresión Ridge

Cuando el problema tiene demasiadas variables, es conveniente regularizar

$$minimize_{\beta} \frac{1}{2} ||y - X\beta||_{2}^{2} + \rho ||\beta||_{2}^{2}$$

Solución explícita:  $\beta^* = (X^TX + \rho I)^{-1}X^Ty$ 

#### Regresión Lasso

$$minimize_{\beta} \frac{1}{2} ||y - X\beta||_{2}^{2} + \rho ||\beta||_{1}$$

No tiene solución explícita: problema no lineal sin restricciones



## Optimización de portfolios

Desarrollado por Harry **Markowitz** en la década de 1950: se basa en la idea de que un inversor racional siempre buscará maximizar sus retornos y asumir el menor riesgo posible, lo cual se puede lograr a través de la **diversificación** de carteras y principalmente al elegir activos que tengan correlaciones bajas o negativas.



## Optimización de portfolios

Desarrollado por Harry **Markowitz** en la década de 1950: se basa en la idea de que un inversor racional siempre buscará maximizar sus retornos y asumir el menor riesgo posible, lo cual se puede lograr a través de la **diversificación** de carteras y principalmente al elegir activos que tengan correlaciones bajas o negativas.

Un inversor tiene *n* activos disponibles donde puede invertir su dinero (comprar y retener). Markowitz mide el riesgo a partir de la varianza de los retornos de los distintos activos del portfolio.

$$\begin{aligned} & \text{maximize}_x & & \mu^T x - \frac{1}{2} \; \gamma \; x^T \Sigma x \\ & \text{subject to} & & \sum x_i = 1, \end{aligned}$$

donde  $\mu$ ,  $\Sigma$  son la esperanza y varianza de los retornos, respectivamente y  $\gamma$  es la aversión al riesgo.



## Optimización de portfolios

Desarrollado por Harry **Markowitz** en la década de 1950: se basa en la idea de que un inversor racional siempre buscará maximizar sus retornos y asumir el menor riesgo posible, lo cual se puede lograr a través de la **diversificación** de carteras y principalmente al elegir activos que tengan correlaciones bajas o negativas.

Un inversor tiene *n* activos disponibles donde puede invertir su dinero (comprar y retener). Markowitz mide el riesgo a partir de la varianza de los retornos de los distintos activos del portfolio.

$$\begin{aligned} & \text{maximize}_x & & \mu^T x - \frac{1}{2} \; \gamma \; x^T \Sigma x \\ & \text{subject to} & & \sum x_i = 1, \end{aligned}$$

donde  $\mu$ ,  $\Sigma$  son la esperanza y varianza de los retornos, respectivamente y  $\gamma$  es la aversión al riesgo.

Este modelo permite construir la llamada frontera eficiente (formada por los puntos con menor nivel de riesgo, para un retorno dado).



#### Support Vector Machines

Las SVM se usan en clasificación, para separar clases.

Se usan, por ejemplo en algoritmos para detectar riesgo de crédito y algoritmos de *credit scoring*, algoritmos de reconocimiento facial, filtros de *spam...* 

Pongamos como ejemplo la clasificación binaria.

Según los valores de las variables de entrada, definimos dos conjuntos de puntos: buenos clientes y malos clientes.

Cuando llega un cliente nuevo ¿cómo lo clasificamos?





## **Support Vector Machines**

- En este caso concreto, debemos encontrar un clasificador lineal, pero hay infinitos... ¿cuál es el mejor?
- La distancia desde un punto x al clasificador lineal se calcula como:

$$r = \frac{w^T x + b}{||w||}$$

Los vectores soporte son los puntos que están más cerca del clasificador.



## **Support Vector Machines**

- En este caso concreto, debemos encontrar un clasificador lineal, pero hay infinitos... ¿cuál es el mejor?
- La distancia desde un punto x al clasificador lineal se calcula como:

$$r = \frac{w^T x + b}{||w||}$$

Los vectores soporte son los puntos que están más cerca del clasificador.

• El margen  $\rho$  asociado al clasificador es la distancia (ancho de la banda) entre las dos clases.

Objetivo: maximizar el margen.





- The Netflix challenge: predecir el rating (1-5 estrellas) de cada usuario para cada película.
- Basándose en ratings previos, donde algunos usuarios calificaron películas, que podían haber visto o no.
- Usar la predicción para recomendar a los usuarios las películas que les gustaría ver.





- ¿Al usuario i le gustará la película j?
- Objetivo: completar la matriz basada en la información rellena parcialmente.

Netflix proporcionó un data set de entrenamiento con 100.480.507 puntuaciones, que 480.189 usuarios habían dado a 17.770 películas.



• La matriz incompleta, Y, aproximada por una matriz de rango bajo (que representa, por ejemplo, el valor cómico de la película, dramatismo, violencia ...).





• Por tanto, debemos encontrar la matrix  $X \in \mathbb{R}^{mxn}$  con un subconjunto de entradas (M) y con el rango más pequeño:

$$\min_{X} rango(X)$$
s. a.  $X_{ij} = M_{ij}, (i,j) \in I$ 

- Es un problema **NP-hard**, esto quiere decir que no admite soluciones exactas eficientes.
- Se puede aproximar el rango por:

$$||X||_* = suma de los valores singulares.$$

Por tanto, lo convertimos en un problema convexo:

$$\min_{\mathbf{X}} \left| |\mathbf{X}| \right|_* + \rho \sum_{i,j \in I} \left( X_{ij} - M_{ij} \right)^2$$



# 4 | Algoritmos para Big Data



## Optimización convexa para Big Data

- Aumento de la importancia de formulación convexa → nuevos modelos de aprendizaje estadístico.
- Internet, problemas de texto, problemas de imágenes, meteorología → gran volumen de datos (terabytes o exabytes).
- Algoritmos clásicos → problema de insolubilidad
- Nuevos enfoques basados en aleatorización de métodos de primer orden y explotación de computación paralela y distribuida.



## Optimización convexa para Big Data

- La formulación "estándar" o clásica de los algoritmos de optimización no es apropiada cuando hablamos de gran volumen de datos, ya que algunas de las operaciones son costosas: evaluaciones de gradiente, Hessianos...
- En este contexto, en ocasiones, no se necesita minimizar exactamente la función objetivo, ya que podría llevar a *overfitting*. Basta con una aproximación de la solución.
- Los algoritmos más usados son:
  - Gradiente acelerado
  - Gradiente estocástico
  - Descenso coordinado
  - Método de Newton y cuasi-Newton



#### Métodos de primer orden

#### Funciones objetivos regulares (smooth)

Consideramos el problema:

$$\min_{\{x\in\mathbb{R}^p\}}f(x)$$

donde f(x) es convexa y *Lipshitz* continua, es decir,

$$\forall x, y \in \mathbb{R}^p, \|\nabla f(x) - \nabla f(y)\|_2 \le L\|x - y\|_2$$

para alguna constante L.

Entonces, el método del gradiente

$$x^{k+1} = x^k - \alpha_k \nabla f(x)$$

necesita  $O\left(\frac{1}{\epsilon}\right)$  iteraciones para una precisión  $\epsilon$ . Los métodos *Newton-like* necesitan menos iteraciones pero tienen un mayor coste (calcular el Hessiano).



## Métodos de primer orden

Método gradiente acelerado de Nesterov.

#### Algoritmo

$$\begin{array}{l} 1: \ x^{k+1} = v^k - \alpha_k \nabla f(v^k) \\ 2: \ v^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k) \\ \\ \text{donde} \ \ \alpha_k = 1/L \ \ \text{y} \quad \beta_k = \frac{k}{k+3}. \end{array}$$

Se alcanza convergencia óptima (la mejor tasa de error posible en el peor de los casos).



## Métodos de primer orden → Aleatorización

#### Método del descenso coordinado

Se optimiza cada componente de x al mismo tiempo.





Funciones Non-smooth



## Métodos de primer orden → Aleatorización

#### Método del descenso coordinado

• Sólo se modifica  $x_i$  para mejorar la función objetivo.

#### **Algoritmo**

1. Elegir un índice 
$$i_k \in \{1, 2, \dots p\}$$

$$2. x^{k+1} = x^k - \alpha \nabla_{i_k} f(x^k) e_{i_k}$$

donde  $e_i$  es la  $i^{th}$  coordenada del vector canónico y  $\nabla_i f(x)$  es la la  $i^{th}$  coordenada del gradiente.

- ¿Cómo seleccionar i?
  - El que tiene mayor  $\nabla_i f(x)$  (alto coste computacional).
  - Recorrer todas las coordenadas (convergencia lenta).



## Métodos de primer orden → Aleatorización

#### Método del gradiente estocástico

Útil para funciones objetivos que se pueden descomponer:

$$\underset{x \in \mathbb{R}^p}{\text{minimize}} \quad f(x) = \frac{1}{n} \sum_{j=1}^n f_j(x)$$

#### **Algoritmo**

1. Elegir un índice  $j_k \in \{1,2, ... p\}$  aleatorio

$$2. x^{k+1} = x^k - \alpha_k \nabla_{j_k} f(x^k)$$

Buena relación coste/beneficio.

Útil para problemas de regresión logística, SVM, Deep Learning...



## 5 Referencias



#### Referencias

- Bubeck, S., Lee, Y. T., and Singh, M. A geometric alternative to Nesterov's accelerated gradient descent. Microsoft Research, 2015.
- Chen, Y. and Wainwright, M. J. Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees. University of California-Berkeley, 2015.
- R. Fletcher. Practical Methods of Optimization. Wiley, 1987.
- Wright, Stephen. Optimization Methods for Machine Learning. University of Wisconsin-Madison, 2017.
- D.G. LUENBERGER: Programación lineal y no lineal. Addison-Wesley Iberoamericana, 1989.
- Vitoriano, B. y Ramos, A. Programación matemática: modelos de optimización.
   Universidad complutense de Madrid, 2019.



Afi Escuela de Finanzas, 2021. Todos los derechos reservados.