

FCC BT TEST REPORT

No. 150934-BT

For

OBI Connect FZE

Product Name: Mobile Phone

Model Name: Obi Worldphone SJ1.5

Trade Name: OBI

Issued Date: 2015-11-27

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of GCCT.

To verify test report authenticity, send full test report to Email: gaoxiaoqing0310@126.com

Test Laboratory:

GCCT, Guangdong Telecommunications Terminal Products Quality Supervision and Testing Center Technology Road, High-tech Zone, He Yuan, Guang Dong, PR China 517001

Tel:+86(0)762-3607221, Fax:+86(0)762-3603336 Email: ncctmail@126.com. www.ncct.org.cn

CONTENTS

1.	Test Laboratory	4
1.1	Testing Location	4
1.2	-	
1.3	Project Data	4
2.	Client Information	5
2.1	Applicant Information	5
2.2	••	
3.	Equipment Under Test (EUT) and Ancillary Equipment (AE)	6
3.1	About EUT	6
3.2	Internal Identification of EUT	7
3.3	Internal Identification of AE	7
4. Tes	st Results	8
4.1	Summary of Test Results	8
4.2	Statements	8
5. Tes	st Equipment Utilized	9
ANNE	EX A: EUT Photograph	10
ANNE	EX B: Detailed Test Results	19
B.1	Maximum Transmit Power	19
B.2	20dB Bandwidth	24
B.3	Band Edge Compliance	31
B.4	Carrier Frequency Separation	41
B.5	Time Of Occupancy (Dwell Time)	44
B.6	Number of Channel Hopping	51
B.7	ConductedSpurious Emissions	55
B.8	AC Conducted Emission	71
B.9	Radiated Emission	75
B.1	0 Antenna Requirements	81
ANNE	EX C: Report Revision History	82

GENERAL SUMMARY

Product Name	Mobile Phone
Model Name	Obi Worldphone SJ1.5
Trade Name	OBI
Applicant	OBI Connect FZE
Manufacturer	CK Telecom Limited
Test Laboratory	GCCT, Guangdong Telecommunications Terminal Products Quality Supervision and Testing Center
Reference Standards	FCC CFR 47 Part 15C: "Radio Frequency Devices Sub-Part C: intentional Radiators" ANSI C63.10-2013, "American National Standard for Testing Unlicensed Wireless Devices" FCC Public Notice DA 00-705, "Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems"
Test Conclusion	This portable wireless equipment has been measured in all cases requested by the relevant standards. Test results in annex B of this test report are below limits specified in the relevant standards. General Judgment: Pass Date of issue: 2015.11.27
Comment	The test results in this report apply only to the tested sample of the stated device/equipment.

Approved by: Reviewed by: Tested by:

tuo jian Dong Xias Do

Luo JianDong XiaoboGao XiaoqingManagerDeputy ManagerTest Engineer

1. Test Laboratory

1.1 Testing Location

Company Name	GCCT, Guangdong Telecommunications Terminal Products Quality Supervision and Testing Center		
Address	Technology Road, High-tech Zone, Heyuan, Guangdong Province, PR.China		
CNAS Registration No.	L4992		
FCC Registration No.	303878		
Postal Code	517001		
Telephone	+86-762-3607221		
Fax	+86-762-3603336		

1.2 Testing Environment

Environment Data	Temperature($^{\circ}$ C)	Humidity(%)
Maximum Ambient	25.8	46
Minimum Ambient	22.3	42

EUT is under testing environment.

1.3 Project Data

Project Leader	Dong Xiaobo
Testing Start Date	2015-10-23
Testing End Date	2015-11-27

2. Client Information

2.1 Applicant Information

Company Name	OBI Connect FZE		
Address	B-21, Dubai Airport Free zone, PO BOX 371475, United Arab Emirates		
City	Dubai		
Postal Code	/		
Country	United Arab Emirates		

2.2 Manufacturer Information

Company Name	CK Telecom Limited		
Address	Technology Road.High-Tech Development Zone. Heyuan,		
Address	Guangdong,P.R.China.		
City	Heyuan		
Postal Code	/		
Country	China		

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT

Model Name	Obi Worldphone SJ1.5
FCC ID	2AGBLSJ15
Tx Frequency	GSM850:824 ~ 848 MHz PCS1900: 1850 ~ 1909MHz WCDMA Band V: 826 ~ 846MHz Bluetooth& BLE: 2402 ~ 2480MHz WIFI(802.11b/g/n-20): 2412 ~ 2472MHz WIFI(802.11n-40): 2422 ~ 2462MHz
Rx Frequency	GSM850: 869 ~ 893MHz GSM1900: 1930 ~ 1989MHz WCDMA Band V: 871 ~ 891MHz Bluetooth& BLE: 2402 ~ 2480MHz WIFI(802.11b/g/n-20): 2412 ~ 2472MHz WIFI(802.11n-40): 2422 ~ 2462MHz
Number of Channels	GSM850 :25 GSM1900 : 60 WCDMA Band V: 25 Bluetooth:79 BLE:40 WIFI(802.11b/g/n-20):13 WIFI(802.11n-40):7
Modulation	GSM:GMSK WCDMA:BPSK/QPSK BLE:GFSK Bluetooth: GFSK&π/4-DQPSK&8DPSK WIFI:CCK/OFDM
Antenna Gain	GSM850&1900:-0.5dBi WCDMA Band V: -1dBi Bluetooth&BLE&WIFI: -1dBi
Normal Voltage	3.8V
Extreme Low Voltage	3.7V
Extreme High Voltage	4.2V
Extreme Low Temperature	0℃
Extreme High Temperature	40℃

Note: Photographs of EUT are shown in ANNEX A of this test report.

Note: high and low voltage values in extreme condition test are given by manufacturer

3.2 Internal Identification of EUT

EUT ID*	IMEI	HW Version	SW Version
150934-M01	/	V1.0	OBI-SJ1.5-000-Ver1.5
150934-M03	/	V1.0	OBI-SJ1.5-000-Ver1.5

^{*}EUT ID: is used to identify the test sample in the lab internally.150934-M01 and 150934-M03 are the same mobile phone.

3.3 Internal Identification of AE

AE ID*	Description	Model	Manufacturer	
150934-B01	Dottomy	OB3000CKA	DONG GUAN DRN NEW ENERGY	
130934-Б01	Battery	OBSOUCKA	CO.,LTD.	
150024 C01	Adaptar	A0D2A5V	DONG GUAN AOHAI POWER	
150934-C01	Adapter	A0D2A3 V	TECHNOLOGY CO.,LTD.	
150934-B03	Battery	OB3000CKA	DONG GUAN DRN NEW ENERGY	
130934-B03		OBSOUCKA	CO.,LTD.	
150024 C02	50024 C02 Adomton A 0D2 A 5V		DONG GUAN AOHAI POWER	
150934-C03	Adapter	A0D2A5V	TECHNOLOGY CO.,LTD.	

^{*}AE ID: is used to identify the test sample in the lab internally.150934-B01 and 150934-B03 are the same accessories, 150934-C01 and 150934-C03 are the same accessories.

4. Test Results

4.1 Summary of Test Results

No	Test cases	Sample	Verdict
1	Maximum transmit power	M01	Pass
2	20dB Bandwidth	M01	Pass
3	Band Edge Compliance	M01	Pass
4	Carrier Frequency Separation	M01	Pass
5	Time Of Occupancy (Dwell Time)	M01	Pass
6	Number Of Channel Hopping	M01	Pass
7	Conducted Spurious Emissions	M01	Pass
8	AC ConductedEmission	M03	Pass
9	Radiated Emissions	M03	Pass
10	Antenna Requirements	M01	Pass

Note: please refer to Annex B in this test report for the detailed test results.

4.2 Statements

GCCT has evaluated the test cases requested by the applicant/manufacturer as listed in section 4.1 of this report, for the EUT specified in section 3, according to the standards or reference documents listed in general summary.

5. Test Equipment Utilized

Table 1. Measurement Equipment

Hardware						
No.	Name	Model	SN	Manufacture	Cal. Date	Cal. Due Date
1	Signal Tester	MT8852B	1307002	Anritsu	2015.08.21	2016.08.20
2	Spectrum Analyzer	N9020A	MY52091261	Agilent	2015.08.21	2016.08.20
3	Switch Unit	/	E0112	/	2015.08.21	2016.08.20
Software						
Tech	Tech BT v1.0.3					

Table 2. Radiated emission test system

No.	Name	Model	SN	Manufacture	Cal. date	Cal. Due Date
1	Spectrum Analyzer	E4440A	MY48250641	Agilent	2015.08.21	2016.08.20
2	BiCoNilog Antenna	3142E	00142015	ETS-Lindgren	2015.09.15	2017.09.14
3	Horn Antenna	3117	129169	ETS-Lindgren	2015.09.15	2017.09.14
4	Signal Generator	N5183A-5 32	MY49060563	Agilent	2015.08.21	2016.08.20
5	Universal Radio Communication Tester	E5515C	MY48367105	Agilent	2015.08.21	2016.08.20
6	RF Preselector	N9039A	MY48260024	Agilent	/	/
7	Loop Antenna	HFH2	860015/00	R&S	2015.08.21	2016.08.20

ANNEX A: EUT Photograph

EUT Front View

EUT behind View

EUT Left View

EUT Right View

EUT Top View

All

Cover off

Main board Front View

Main board Rear View

Battery Front View

Battery Back View

GSM/WCDMA Antenna View

BT/WIFI Antenna View

Adapter label view

Adapter view

USB Cable

ANNEX B: Detailed Test Results

The radiated test setup is shown in each radiated test case section. The conducted test setup is shown as following:

All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

B.1 Maximum Transmit Power

B.1.1 Description

According to §15.247(b)(1),

The maximum Peak Output power shall be equal to or less than125mW≈21dBm

B.1.2Test procedures

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power The spectrum analyzer was connected to the antenna terminal.

Procedures:

- a) Place the EUT on the table and set it in transiting mode.
- b) RF output of EUT was connected to SA by a low loss cable.
- c) SA settings as follow:Span= approximately 5 times the 20 dB bandwidth, centered on a hopping channel, RBW≥the 20 dB bandwidth of the emission being measured,, VBW≥ RBW, Sweep time= auto, Detector function= Peak, Trace= Max hold
- d) Then set the EUT to transmit at low, middle and high frequency and measure the conducted output power separately

B.1.3 Test Results

Date rate	Maximu	m peak output pow	Vandina	
(Mbps)	2402MHz	2441MHz	2480MHz	Verdict
1	4.940	5.440	5.607	Pass
2	4.127	4.735	4.888	Pass

No. 150934-BT Page 20 of 82

3	4.277	4.593	4.705	Pass

B.2 20dB Bandwidth

B.2.1Description

According to §15.247(a)(1)(iii)

The bandwidth at 20 dBm down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receiver antenna while the EUT is operating in transmission mode at the appropriate frequencies.

B.2.2 Test procedures

- a) Testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
- b) RF output of EUT was connected to SA by a low loss cable.
- c) SA settings as follow:Span= approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel, RBW≥1% of 20 dB bandwidth, VBW≥ RBW, Sweep time= auto, Detector function= Peak, Trace= Max hold
- d) Set the measured low, middle and high frequency and test 20dB bandwidth with spectrum analyzer

B.2.3 Test Results

GFSK Modulation

Date rate (Mbps)	Frequency(MHz)	Test Result(MHz)		Verdict
	2402	1.117	Fig.1	Pass
1	2441	1.120	Fig.2	Pass
	2480	1.119	Fig.3	Pass

Test plot 1	2401.439453	-22.940001
Test plot 2	2402.556396	-22.950001

Fig1. 20dB Bandwidth in 2402MHz,1Mbps

Test plot 1	2440.439453	-22.150000
Test plot 2	2441.559082	-22.190001

Fig2. 20 dB Bandwidth in 2441MHz,1Mbps

Test plot 1	2479.438965	-21.719999
Test plot 2	2480.558105	-21.799999

Fig3. 20 dB Bandwidth in 2480MHz,1Mbps

$\pi/4$ -DQPSK Modulation

Date rate (Mbps)	Frequency(MHz)	Test Result(MHz)		Verdict
	2402	1.350	Fig.4	Pass
2	2441	1.354	Fig.5	Pass
	2480	1.356	Fig.6	Pass

Test plot 1	2401.324463	-23.820000
Test plot 2	2402.674561	-23.840000

Fig4. 20dB Bandwidth in 2402MHz,2Mbps

Test plot 1	2440.322021	-22.709999
Test plot 2	2441.675537	-22.709999

Fig5. 20 dB Bandwidth in 2441MHz,2Mbps

Test plot 1	2479.320557	-22.480000
Test plot 2	2480.676025	-22.430000

Fig6. 20 dB Bandwidth in 2480MHz,2Mbps

8DPSK Modulation

Date rate (Mbps)	Frequency(MHz)	Test Result(MHz)		Verdict
	2402	1.359	Fig.7	Pass
3	2441	1.360	Fig.8	Pass
	2480	1.362	Fig.9	Pass

Test plot 1	2401.325928	-23.780001
Test plot 2	2402.684570	-23.760000

Fig7. 20dB Bandwidth in 2402MHz,3Mbps

Test plot 1	2440.327393	-22.790001
Test plot 2	2441.687500	-22.959999

Fig8. 20 dB Bandwidth in 2441MHz,3Mbps

Test plot 1	2479.325928	-22.469999
Test plot 2	2480.687500	-22.219999

Fig9. 20 dB Bandwidth in 2480MHz, 3Mbps

B.3 Band Edge Compliance

B.3.1 Conducted Measurement

B.3.1.1 Description

According to §15.247(d), the Band Edges Compliance shall be equal to or less than -20 dB.

B.3.1.2Test procedures

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power The spectrum analyzer was connected to the antenna terminal.

Standard Requirement

Emissions within 2 MHz of an authorized band edge may be measured using either the marker-delta method (for peak or average emissions) or the integration method (for average emissions only), described below, provided that the OBW edge falls within 2 MHz of the band edge. Otherwise, all unwanted emissions measurements shall be performed using the standard methods.

Procedures

Peak Detection

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used.

- a) Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).
- b) Set span to 2 MHz
- c) RBW = 100 kHz.
- d) $VBW \ge 3 \times RBW$.
- e) Detector = peak.
- f) Sweep time = auto.
- g) Trace mode = max hold.
- h) Allow sweep to continue until the trace stabilizes (required measurement time mayincrease for low duty cycle applications)
- i) Compute the power by integrating the spectrum over 1 MHz using the analyzer's bandpower measurement function with band limits set equal to the emission frequency (f_{emission})±0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by f_{emission} ±0.5 MHz.

B.3.1.3 Test Results

GFSK Modulation

Date rate (Mbps)	Frequency(MHz)	Limit (dB)	Test Result(dB)		Verdict
	2400		-41.58	Fig.10	Daga
1		20	-45.09	Fig.11	Pass
1	2483.5	-20	-57.36	Fig.12	Daga
			-63.42	Fig.13	Pass

Fig10. Frequency Band Edges in CH0,1Mbps,Hopping off

Fig11. Frequency Band Edges in CH0,1Mbps,Hopping on

Fig12. Frequency Band Edges in CH78,1Mbps, Hopping off

Fig13. Frequency Band Edges in CH78,1Mbps, Hopping on

$\pi/4$ -DQPSK Modulation

Date rate (Mbps)	Frequency(MHz)	Limit (dB)	Test Result(dB)		Verdict
	2400		-31.50	Fig.14	Pass
2		20	-40.72	Fig.15	Pass
2	2483.5	-20	-52.73	Fig.16	Daga
			-58.77	Fig.17	Pass

Fig14. Frequency Band Edges in CH 0, 2Mbps, Hopping off

Fig15. Frequency Band Edges in CH 0, 2Mbps, Hopping on

Fig16. Frequency Band Edges in CH 78, 2Mbps, Hopping off

Fig17. Frequency Band Edges in CH 78, 2Mbps, Hopping on

8DPSK Modulation

Date rate (Mbps)	Frequency(MHz)	Limit (dB)	Test Result(dB)		Verdict
	2400		-31.61	Fig.18	Daga
3		-20	-37.13	Fig.19	Pass
	2483.5		-51.22	Fig.20	Pass

	61 00	F: 01	
	-61.88	Fig.21	

Fig18. Frequency Band Edges in CH0, 3Mbps, Hopping off

Fig19. Frequency Band Edges in CH0, 3Mbps, Hopping on

Fig20. Frequency Band Edges in CH 78, 3Mbps, Hopping off

Fig21. Frequency Band Edges in CH 78, 3Mbps, Hopping on

B.3.2 Radiated measurement

B.3.2.1 Procedures:

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT on the rotated table inside the anechoic chamber without connection to measurement instrument. Turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel

and High Channel within its operating range, and make sure the instrument is operated in its linear range. Repeat above procedures until all measured frequencies were complete.

- c) Set band RBW=1MHz,VBW=3MHz with a convenient frequency span from band edge.
- d) Find the highest point in edge frequency, and then calculated results.
- e) Repeat above procedures until all measured frequencies were complete.

B.3.2.2 Test Results

Only the GFSK worst case were reported.

Receiv	Receiver	Receiver	Turn	RX An	tenna	Corrected	Corrected Amplitude	Limit	Margin	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
	2400MHz									
175.68	20.32	QP	24	1.4	Н	10.52	30.84	43.50	-12.66	
175.68	20.05	QP	92	1.3	V	10.52	30.57	43.50	-12.93	
4804.00	52.22	PK	253	1.3	V	-1.05	51.17	74.00	-22.83	
4804.00	41.29	Ave	253	1.3	V	-1.05	40.24	54.00	-13.76	
7206.00	51.96	PK	215	1.6	Н	1.33	53.29	74.00	-20.71	
7206.00	41.18	Ave	215	1.6	Н	1.33	42.51	54.00	-11.49	
2326.45	46.66	PK	118	1.9	V	-13.19	33.47	74.00	-40.53	
2326.45	39.12	Ave	118	1.9	V	-13.19	25.93	54.00	-28.07	
2368.48	42.40	PK	32	1.3	Н	-13.15	29.25	74.00	-44.75	
2368.48	37.05	Ave	32	1.3	Н	-13.15	23.90	54.00	-30.10	
2400	44.55	PK	315	1.2	V	-13.12	34.13	74.00	-39.87	
2400	42.64	Ave	315	1.2	V	-13.12	29.52	54.00	-24.48	
2496.27	44.29	PK	112	2.0	V	-13.08	31.21	74.00	-42.79	
2496.27	36.41	Ave	112	2.0	V	-13.08	23.33	54.00	-30.67	
				2483.5]	MHz					
175.68	20.01	QP	174	1.6	Н	10.52	30.53	43.50	-12.97	
175.68	19.72	QP	182	1.9	V	10.52	30.24	43.50	-13.26	
4960.00	52.96	PK	2	1.9	V	-0.24	52.72	74.00	-21.28	
4960.00	43.52	Ave	2	1.9	V	-0.24	43.28	54.00	-10.72	
7440.00	51.21	PK	314	1.5	Н	2.85	54.06	74.00	-19.94	

GCCT

No. 150934-BT Page 40 of 82

7440.00	43.39	Ave	314	1.5	Н	2.85	46.24	54.00	-7.76
2348.63	45.19	PK	44	1.6	V	-13.19	32.00	74.00	-42.00
2348.63	38.65	Ave	44	1.6	V	-13.19	25.46	54.00	-28.54
2365.85	43.39	PK	71	1.7	Н	-13.15	30.24	74.00	-43.76
2365.85	36.00	Ave	71	1.7	Н	-13.15	22.85	54.00	-31.15
2483.5	43.37	PK	309	1.6	V	-13.11	30.26	74.00	-43.74
2483.5	38.69	Ave	309	1.6	V	-13.11	25.58	54.00	-28.42
2492.34	43.62	PK	173	1.6	V	-13.08	30.54	74.00	-43.46
2492.34	38.88	Ave	173	1.6	V	-13.08	25.80	54.00	-28.20

B.4 Carrier Frequency Separation

B.4.1 Description

According to §15.247(a)(1), Carrier Frequency Separation should be more than two-thirds of the 20 dB bandwidth of the hopping channel

B.4.2 Test Procedures

- a) Testing follows the guidelines in FCC Public Notice DA 00-705 Measurement Guidelines.
- b) Place the EUT on the table and set it in hopping mode
- c) EUT was connected to SA by a low loss cable.
- d) Set center frequency of spectrum analyzer=middle of hopping channel.
- e) SA setting: Span= wide enough to capture the peaks of two adjacent channels; Set RBW≥1% of span, VBW≥ RBW, sweep time- auto, detector function= peak, trace= max hold.
- f) Max hold, mark 2 perks of hopping channel and record the 2 peaks frequency.

B.4.2 Test Results

The Worst case is 1M and only 1M results are present

Worst case data rate: 1M

GFSK Modulation

Channel	Frequency(MHz)	Limit	Test Result(MHz)		Verdict
		(MHz)			
Low Channel	2402	0.7447	1.006	Fig.22	Pass
Adjacency Channel	2403	0.7447	1.000	118.22	1 455
Low Channel	2441	0.7467	1.006	E: ~ 22	Pass
Adjacency Channel	2442	0.7467	1.006	Fig.23	Pass
Low Channel	2479	0.7460	1.002	E: ~ 24	Pass
Adjacency Channel	2480	0.7460	1.002	Fig.24	Pass

Fig 22. Carrier Frequency Separation in Low channel,1Mbps

Fig 23. Carrier Frequency Separation in Middle channel,1Mbps

Fig 24. Carrier Frequency Separation in High channel,1Mbps

B.5 Time Of Occupancy (Dwell Time)

B.5.1 Description

According to §15.247(a)(1)(iii)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

B.5.2 Test Procedures

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power The spectrum analyzer was connected to the antenna terminal.

Procedures

- a) Place the EUT on the table and set it in transmitting mode and switch on frequency hopping function.
- b) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- c) Set the spectrum analyzer as Span=zero span, centered on a hopping channel, RBW=1MHz, VBW≥RBW, Sweep=as necessary to capture the entire dwell time per hopping channel, Detector function=peak, Trace=max hold.
- d) Calculate the time of occupancy in a period with time occupancy of a burst and quantity of bursts.

B.5.3 Test Results

GFSK Modulation

Date rate (Mbps)	Frequency(MHz)	Limit (ms)	Test Result(ms)		Verdict
	2402		306.46	Fig.25	Pass
1	2441	400	306.46	Fig.26	Pass
	2480		306.46	Fig.27	Pass

Fig25. Dwell Time in 2402MHz,1Mbps

Fig26. Dwell Time in 2441MHz,1Mbps

Fig27. Dwell Time in 2480MHz,1Mbps

$\pi/4$ -DQPSK Modulation

Date rate (Mbps)	Frequency(MHz)	Limit (ms)	Test Result(ms)		Verdict
	2402		306.77	Fig.28	Pass
2	2441	400	306.81	Fig.29	Pass
	2480		306.81	Fig.30	Pass

Fig28. Dwell Time in 2402MHz,2Mbps

Fig29. Dwell Time in 2441MHz,2Mbps

Fig30. Dwell Time in 2480MHz,2Mbps

8DPSK Modulation

Date rate (Mbps)	Frequency(MHz)	Limit (ms)	Test Result(ms)		Verdict
3	2402	400	307.08 Fig.31		Pass

No. 150934-BT Page 49 of 82

2441	306.99	Fig.32	Pass
2480	307.03	Fig.33	Pass

Fig31 Dwell Time in 2402MHz,3Mbps

Fig32. Dwell Time in 2441MHz,3Mbps