Lay 4.7

Question 1 True/False: If \mathcal{B} and \mathcal{C} are both bases of the vector space V, then the $n \times n$ matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$ sends vectors in \mathcal{B} -coordinates to the corresponding vectors in \mathcal{C} -coordinates.

Multiple Choice:

- (a) True ✓
- (b) False

Question 2 Consider two bases $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2\}$ for a vector space V. Suppose that $\vec{b}_1 = 3\vec{c}_1 + 2\vec{c}_2$ and $\vec{b}_2 = -\vec{c}_2$.

(a) What is the 2×2 change-of-coordinates matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$?

$$\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = \begin{bmatrix} \boxed{3} & \boxed{0} \\ \boxed{2} & \boxed{-1} \end{bmatrix}$$

(b) If $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$ is a vector in \mathcal{B} -coordinates, what is the corresponding vector in \mathcal{C} -coordinates?

$$[\vec{x}]_{\mathcal{C}} = \begin{bmatrix} 9 \\ 10 \end{bmatrix}$$

(c) What is the 2 × 2 change-of-coordinates matrix $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$?

Hint:
$$P_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{pmatrix} P \\ \mathcal{C}\leftarrow\mathcal{B} \end{pmatrix}^{-1}$$

Question 3 Consider two bases $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2\}$ for a vector space V. Suppose that $\vec{c}_1 = 2\vec{b}_1 - 2\vec{b}_2$ and $\vec{c}_2 = \vec{b}_1 + 3\vec{b}_2$. Which change-of-coordinates matrix is $\begin{bmatrix} 2 & 1 \\ -2 & 3 \end{bmatrix}$?

Lay 4.7

Math~2210Q

Multiple Choice:

(a)
$$\underset{\mathcal{C} \leftarrow \mathcal{B}}{P}$$

(b)
$$\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}\checkmark$$

Question 4 Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ and $\mathcal{C} = \{\vec{c}_1, \vec{c}_2\}$ be bases for \mathbf{R}^2 . Find both change-in-coordinates matrices.

$$\vec{b}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad \vec{b}_2 = \begin{bmatrix} 0 \\ 4 \end{bmatrix}, \qquad \vec{c}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \quad \vec{c}_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$P_{C \leftarrow \mathcal{B}} = \begin{bmatrix} -1 & \boxed{12} \\ 5 & \boxed{5} \\ \boxed{3} & \boxed{4} \\ \boxed{5} & \boxed{5} \end{bmatrix}$$

$$\begin{array}{ccc}
P \\
\mathcal{B} \leftarrow \mathcal{C} & \boxed{3} & \boxed{3} \\
\boxed{3} & \boxed{1} \\
\boxed{8} & \boxed{8}
\end{array}$$

Hint:
$$\begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \vec{b}_1 & \vec{b}_2 \end{bmatrix} \sim \begin{bmatrix} I & P \\ C \leftarrow \mathcal{B} \end{bmatrix}$$