Chapter 1

ε-δ論法と極限

ここまでのこの本では、極限というものを厳密に定義していなかった。また、微分と積分において、イメージで導出できることを最重視し、厳密な議論を避けた箇所が多くある。

厳密には、極限は ε - δ 論法によって定義され、微分積分の基礎理論は極限の議論に基づいている。 ε - δ 論法に踏み込んでいない私たちは、極限というものを語る言葉をまだ持ち合わせていない。

Contents

1	ε - δ	論法と	極限	1
	1.1	実数の	集合	2
		1.1.1	区間	2
	1.2	数列の	極限	5
		1.2.1	εで「一致」をどう表現するか	5
		1.2.2	ε - N 論法による数列の収束	7
		1.2.3	数列の極限の一意性	9
		1.2.4	定数数列の極限	10
		1.2.5	数列の極限の線形性	12
		1.2.6	数列の積の極限	15
		1.2.7	数列の商の極限	18

	1.2.8	数列の極限の大小関係の保存	20
	1.2.9	はさみうちの原理	20
	1.2.10	ε - N 論法による数列の発散	22
	1.2.11	追い出しの原理	22
	1.2.12	発散数列の和と積	22
	1.2.13	数列の偶数番目と奇数番目の極限による判定	22
	1.2.14	数列の極限と絶対値	23
	1.2.15	逆数の数列の発散条件	23
	1.2.16	等比数列の極限	23
	1.2.17	項の比による収束判定	23
	1.2.18	発散数列の増加速度の比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
1.3	級数.		24
1.4	関数の	極限	25
	1.4.1	ϵ - δ 論法による関数の極限	25
	1.4.2	関数の極限と数列の極限の関係	25
	1.4.3	関数の極限の性質	25
	1.4.4	はさみうち法	25
	1.4.5	合成関数の極限	25
	1.4.6	右極限と左極限	25
1.5	関数の	連続性	26

1.1 実数の集合

厳密な理論を展開する上で、知っておくべき言葉の定義を行う。

1.1.1 区間

2つの実数の間の範囲は、区間と呼ばれる。

区間は、端点を含むかどうかによって、開区間、閉区間、半開区間に分類される。

1.1. 実数の集合 3

開区間

端点を含まない区間を開区間という。

閉区間

端点を含まない区間を閉区間という。

半開区間

一方の端点を含み、他方の端点を含まない区間を半開区間という。

1.2 数列の極限

微分を定義するには関数の極限を考えるが、関数の極限の諸性質は、数列の極限から導かれる。 まずは、 $\varepsilon-\delta$ 論法(数列の場合は $\varepsilon-N$ 論法とも呼ばれる)によって数列の極限を定義し、その 性質をひとつひとつ確かめていこう。

1.2.1 εで「一致」をどう表現するか

「限りなく近づく」という表現では、「限りなく」の部分に無限という概念が含まれてしまう。 有限の値 ϵ を使って、無限を表現しようとするのが ϵ - δ 論法である。

* * *

 ε - δ 論法で極限を定義する前に、有限値 ε を使った議論の例を見てみよう。

実数は連続である(数直線には穴がない)ため、a と b が異なる実数であれば、a と b の間には無数の実数が存在する。

つまり、 $a \ge b$ が異なる限り、その間の距離 |a-b| は絶対に 0 にはならない。

|a-b| が 0 にならないということは、ここでも実数の連続性によって、|a-b| より小さい実数が存 在してしまう。

たとえば、 $a \ge b$ の間の中点 $x = \frac{|a-b|}{2}$ は、|a-b| よりも小さい。

a と b の間の中点というと $\frac{a-b}{2}$ だが、正の数 ε と比較するため、絶対値をつけて $\frac{|a-b|}{2}$ としている。

|a-b| より小さい実数が存在してしまうと、「任意の」 $\varepsilon > 0$ に対して、 $|a-b| < \varepsilon$ を成り立たせる ことができない。

 ε はなんでもよいのだから、|a-b|より小さい実数を ε として選ぶこともできてしまう。 しかし、|a-b| より小さい実数を ε としたら、 $|a-b| < \varepsilon$ は満たされない。

|a-b| が 0 でないという状況下では、あらゆる実数 ε より |a-b| を小さくすることは不可能である。 したがって、 $|a-b| < \varepsilon$ を常に成り立たせるなら、|a-b| = 0、すなわち a = b となる。

ここまでの考察から直観を取り除いて、この定理の数学的な証明をまとめておこう。

Proof: 有限値 ε の不等式による一致の表現

 $a \neq b$ と仮定する。

 $\varepsilon_0 = \frac{|a-b|}{2}$ とおくと、絶対値 |a-b| が正の数であることから、 ε_0 も正の数となる。 よって、 $|a-b| < \varepsilon_0$ が成り立つので、

$$|a-b|<rac{|a-b|}{2}$$

 $2|a-b|<|a-b|$
 $2|a-b|-|a-b|<0$
 $|a-b|<0$

絶対値が負になることはありえないので、 $a \neq b$ の仮定のもとでは矛盾が生じる。 b

なお、 $|a-b| < \varepsilon$ の右辺を定数倍し、 $|a-b| < k\varepsilon$ などとしても、この定理は成り立つ。

定理「有限値 ε の不等式による一致の表現」は、定数をkとして、次のように書き換えることもできる。

$$|a - b| < k\varepsilon \implies a = b$$

この場合、証明で $\varepsilon_0 = \frac{|a-b|}{2k}$ とおけば、まったく同様の議論が成り立つからだ。

実際に、 $|a-b| < 2\varepsilon$ とした場合のこの定理を、後に登場する数列の極限の一意性の証明で使うことになる。

1.2.2 ε-N 論法による数列の収束

 $\varepsilon - \delta$ 論法は、数列の極限に適用する場合、 $\varepsilon - N$ 論法と呼ばれることが多い。

「数列が $\{a_n\}$ が α に収束する」ことの $\varepsilon-N$ 論法による表現を、まずはイメージで掴んでみよう。

* * *

まず、 α の周りに、両側それぞれ ε だけ広げた区間を考える。

 ε は正の数ならなんでもよいとすれば、 ε を小さな数に設定し、いくらでも区間を狭めることができる。

そして、「ここから先の項はすべて区間内に収まる」といえる位置に、N という印をつけておく。

 ε を小さくしていくと、 ε による α 周辺の区間に入る項は少なくなる。

それでも、N をずらしていけば、N 以降はこの区間に収まる項だけになる。 これこそが「収束」という現象だと定義するのが、 $\varepsilon-N$ 論法の考え方である。

区間幅 (の半分) となる ε をどんなに小さくしても、[N 番目以降は区間内に収まる項だけになる」といえるような N を設定できるか?が肝心で、そのような N が存在するなら、数列は収束するといえる。

このことを、数学の言葉でまとめておこう。

 $\varepsilon - \delta$ 論法によるこの定義を用いることで、数列の収束に関する諸性質を証明できるようになる。

1.2.3 数列の極限の一意性

数列が最終的に複数の極限値に散らばるとしたら、それは収束と呼べるだろうか? $\varepsilon - \delta$ 論法による収束の定義は、そのような状況をきちんと除外するようになっている。

数列が複数の値に収束することはない。このことを示すのが、次の定理である。

光灯天	م الآ	板区	見の																				
タスノ	.ij ()	Jay 1	K VJ	1	<u>+</u> 7	+>	در ح	y .	その	\ 	711 <i>[</i> -,	ىلەر جا	<u>, , , , , , , , , , , , , , , , , , , </u>	* 4	~ 17		ナッ						
数タ	7IJ { <i>C</i>	l_n } 7	хич	果	96	ょな	らは	``	C 0,) 悭	限征	117	7こ <i>7</i> :	Z I `	つに	- 疋	まる	۰ (

Proof: 数列の極限の一意性

数列 $\{a_n\}$ が α と β の 2 つの極限値を持つと仮定する。

このとき、任意の正の数 ϵ に対して、

 $n \ge N_1 \implies |a_n - \alpha| < \varepsilon$

 $n \ge N_2 \implies |a_n - \beta| < \varepsilon$

が成り立つような自然数 N_1 と N_2 が存在する。

ここで、 $N=\max\{N_1,N_2\}$ とおくと、 $n\geq N$ のとき、 N_1 と N_2 の大きい方が n 以下に収まることから、 $n\geq N_1$ と $n\geq N_2$ がともに成り立つ。

よって、 $n \ge N$ のとき、 $|\alpha - \beta|$ を考えると、

$$|\alpha - \beta| = |\alpha - \beta + \underbrace{a_n - a_n}|$$

$$= |(\alpha - a_n) + (a_n - \beta)|$$

$$\leq |\alpha - a_n| + |a_n - \beta|$$

$$= |-(a_n - \alpha)| + |a_n - \beta|$$

$$= |a_n - \alpha| + |a_n - \beta|$$

$$< \varepsilon + \varepsilon$$

$$= 2\varepsilon$$

$$\therefore |\alpha - \beta| < 2\varepsilon$$

したがって、有限値 ε の不等式による一致の表現より、

$$\alpha = \beta$$

これで、数列 $\{a_n\}$ の極限値はただ1つに定まることが示された。

1.2.4 定数数列の極限

最も単純な数列の極限値を、 $\varepsilon - N$ 論法で考えてみよう。

ここでは、同じ数だけを並べた数列(定数数列)の極限を考える。

定数数列の極限を考えておくことで、のちに数列の定数倍の極限へと発展させることができる。

定数数列 任意のnに対して $a_n = c$ となる数列 $\{a_n\}$ を定数数列という。

定数 c を並べた数列では、n を大きくしたときの a_n の値も変わらず c なのだから、極限値も当然 c となりそうである。

このような当たり前に聞こえる事実も、 $\varepsilon-N$ 論法では「当たり前」という直観を排除して議論できる。

Proof: 定数数列の極限

 ε を任意の正の数とする。

 a_n は n の値によらず c であるから、任意の n に対して次の式が成り立つ。

$$|a_n - c| = |c - c| = 0 < \varepsilon$$

$$|a_n - c| < \varepsilon$$

したがって、

$$n \ge N \quad \Rightarrow \quad |a_n - c| < \varepsilon$$

となるような自然数 N は存在する(というか N はなんでもよい)。 よって、 $\{a_n\}$ は収束し、その極限値は c である。

1.2.5 数列の極限の線形性

数列の極限についても、線形性が成り立つ。

この線形性の式は、数列の和の極限と、数列の定数倍の極限を組み合わせたものになっている。 それぞれ証明することで、この線形性の式が成り立つことを確認しよう。

数列の和の極限

 $\{a_n\}$ の極限値を α 、 $\{b_n\}$ の極限値を β とすると、最終的に次のような関係を導くことで、この定理 が証明される。

$$n \ge N \implies |(a_n + b_n) - (\alpha + \beta)| < \varepsilon$$

 $|(a_n+b_n)-(\alpha+\beta)|$ は、 a_n+b_n と $\alpha+\beta$ がどれだけ近いか、すなわち a_n+b_n と $\alpha+\beta$ の誤差を表している。そして、この誤差を ε より小さくする必要がある。

そのためには、 a_n と α の誤差を $\frac{\varepsilon}{2}$ より小さくし、 b_n と β の誤差も $\frac{\varepsilon}{2}$ より小さくできればよい。

Proof: 数列の和の極限

 $\lim_{n\to\infty} a_n = \alpha$ 、 $\lim_{n\to\infty} b_n = \beta$ とおき、 ε を任意の正の数とする。

このとき、 $\lim_{n\to\infty}a_n=\alpha$ より、次のような自然数 N_1 が存在する。

$$n \ge N_1 \implies |a_n - \alpha| < \frac{\varepsilon}{2}$$

同様に、 $\lim_{n\to\infty} b_n = \beta$ より、次のような自然数 N_2 が存在する。

$$n \ge N_2 \implies |b_n - \beta| < \frac{\varepsilon}{2}$$

ここで、 $N = \max\{N_1, N_2\}$ とおくと、 $n \ge N$ のとき、 $n \ge N_1$ と $n \ge N_2$ がともに成り立つ。

$$n \geq N \implies |a_n - \alpha| < \frac{\varepsilon}{2} \quad \text{then } |b_n - \beta| < \frac{\varepsilon}{2}$$

よって、 $n \ge N$ のとき、三角不等式より、

$$|(a_n + b_n) - (\alpha + \beta)| = |(a_n - \alpha) + (b_n - \beta)|$$

$$\leq |a_n - \alpha| + |b_n - \beta|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

$$|(a_n + b_n) - (\alpha + \beta)| < \varepsilon$$

という不等式が成り立つことで、 $\lim_{n\to\infty}(a_n+b_n)=\alpha+\beta$ が示された。

数列 $\{a_n\}$ が α に収束するということは、 $\varepsilon-N$ 論法による数列の収束の定義より、

$$n \ge N \Longrightarrow |a_n - \alpha| < \varepsilon$$

という関係が成り立つということである。

ここでの ε は「任意の」正の数であるから、 ε の部分にどんな正の数を当てはめても、この関係が成り立つことになる。

数列の和の極限の証明では、arepsilon の部分に $\dfrac{arepsilon}{2}$ を当てはめた関係を利用している。

数列の定数倍の極限

 $\{a_n\}$ の極限値を α とすれば、 ca_n と $c\alpha$ の誤差を ε より小さくする必要がある。 あとから誤差が最大 |c| 倍されても大丈夫なように、 a_n と α の誤差は $\frac{\varepsilon}{|c|}$ より小さくできればよい。

c は正の数とは限らない。誤差は任意の正の数 ε と比較するために正の数として評価したいので、絶対値をつけている。

|c| が分母にあるので、c=0 の場合は除外して考える必要がある。 c=0 の場合は、定数数列の極限として考えることで、0 に収束することがわかる。

Proof: 数列の定数倍の極限

c = 0と $c \neq 0$ の場合に分けて証明する。

(c = 0 の場合

c=0 のとき、右辺は、

$$c \lim_{n \to \infty} a_n = 0 \cdot \lim_{n \to \infty} a_n = 0$$

また、左辺は、定数数列の極限として考えて、

$$\lim_{n\to\infty}(ca_n)=\lim_{n\to\infty}0=0$$

したがって、c=0 の場合は、 $\lim_{n\to\infty}(ca_n)=c\lim_{n\to\infty}a_n=0$ が成り立つ。

(* c ≠ 0 の場合

 $\lim_{n\to\infty} a_n = \alpha$ とおき、 ε を任意の正の数とする。

このとき、 $\lim_{n\to\infty} a_n = \alpha$ より、次のような自然数 N が存在する。

$$n \ge N \implies |a_n - \alpha| < \frac{\varepsilon}{|c|}$$

よって、 $n \ge N$ のとき、

$$|ca_{n} - c\alpha| = |c(a_{n} - \alpha)|$$

$$= |c||a_{n} - \alpha|$$

$$< |c| \cdot \frac{\varepsilon}{|c|}$$

$$= \varepsilon$$

$$|AB| = |A||B|$$

$$|a_{n} - \alpha| < \frac{\varepsilon}{|c|}$$

$$\therefore |ca_n - c\alpha| < \varepsilon$$

という不等式が成り立つことで、 $\lim_{n\to\infty} ca_n = c\alpha$ がいえる。

以上より、いずれの場合も、数列 $\{ca_n\}$ は $c\alpha$ に収束することが示された。

1.2.6 数列の積の極限

 $\{a_n\}$ の極限値を α 、 $\{b_n\}$ の極限値を β とすると、最終的に次のような関係を導くことで、この定理が証明される。

$$n \ge N \implies |a_n b_n - \alpha \beta| < \varepsilon$$

 $a_n b_n$ と $\alpha \beta$ の誤差 $|a_n b_n - \alpha \beta|$ を、三角不等式で見積もっておこう。

$$|a_n b_n - \alpha \beta| = |a_n b_n - a_n \beta + a_n \beta - \alpha \beta|$$
$$= |a_n (b_n - \beta) + \beta (a_n - \alpha)|$$
$$\le |a_n||b_n - \beta| + |\beta||a_n - \alpha|$$

ここで、 $\{a_n\}$ の極限値が α 、 $\{b_n\}$ の極限値が β であることから、任意の正の数を ε' として、 $|a_n-\alpha|<\varepsilon'$ 、 $|b_n-\beta|<\varepsilon'$ という関係を使うことができる。

ここまでで得られた不等式において、 $|a_n|$ の部分も $|\alpha|$ に置き換えたいが、このときに a_n と α の誤 $\hat{\mathcal{E}}$ を考慮する必要がある。

$$|a_n| - |\alpha| \le |a_n - \alpha| < \varepsilon'$$

 $|a_n| < |\alpha| + \varepsilon'$

これを使うことで、

$$|a_n b_n - \alpha \beta| \le |a_n| |b_n - \beta| + |\beta| |a_n - \alpha|$$

$$< (|\alpha| + \varepsilon') |b_n - \beta| + |\beta| |a_n - \alpha|$$

$$= (|\alpha| + \varepsilon') \varepsilon' + |\beta| \varepsilon'$$

$$< |\alpha| \varepsilon' + {\varepsilon'}^2 + |\beta| \varepsilon'$$

$$= (|\alpha| + |\beta| + \varepsilon') \varepsilon'$$

また、 ε' は任意の正の数であるが、結局はどんどん小さな数に狭めていくものなので、最初から1 未満に設定して $0<\varepsilon'<1$ としてもよい。

$$|a_n b_n - \alpha \beta| < (|\alpha| + |\beta| + \varepsilon')\varepsilon'$$

 $< (|\alpha| + |\beta| + 1)\varepsilon'$

以上の考察を、次のような証明として落とし込む。

Proof: 数列の積の極限

 $\lim_{n\to\infty} a_n = \alpha$ 、 $\lim_{n\to\infty} b_n = \beta$ とおき、 ε を任意の正の数とする。

極限を考えるので、 $0 < \varepsilon < |\alpha| + |\beta| + 1$ としてもよい。 そこで、

$$\varepsilon' = \frac{\varepsilon}{|\alpha| + |\beta| + 1}$$

とおくと、 $0 < \varepsilon' < 1$ である。

このとき、 $\lim_{n\to\infty} a_n = \alpha$ より、次のような自然数 N_1 が存在する。

$$n \ge N_1 \implies |a_n - \alpha| < \varepsilon'$$

同様に、 $\lim_{n\to\infty} b_n = \beta$ より、次のような自然数 N_2 が存在する。

$$n \ge N_2 \implies |b_n - \beta| < \varepsilon'$$

ここで、 $N = \max\{N_1, N_2\}$ とおくと、 $n \ge N$ のとき、 $n \ge N_1$ と $n \ge N_2$ がともに成り立つ。

$$n \ge N \implies |a_n - \alpha| < \varepsilon' \quad \beta > 0 \quad |b_n - \beta| < \varepsilon'$$

よって、 $n \ge N$ のとき、三角不等式と $0 < \varepsilon' < 1$ より、

$$|a_n b_n - \alpha \beta| \le |a_n| |b_n - \beta| + |\beta| |a_n - \alpha|$$

$$< (|\alpha| + \varepsilon') \varepsilon' + |\beta| \varepsilon'$$

$$= (|\alpha| + |\beta| + \varepsilon') \varepsilon'$$

$$< (|\alpha| + |\beta| + 1) \varepsilon'$$

$$= \varepsilon$$

$$|a_n b_n - \alpha \beta| < \varepsilon$$

という不等式が成り立つことで、 $\lim_{n\to\infty}(a_nb_n)=lpha\beta$ が示された。 \blacksquare

1.2.7 数列の商の極限

 $\{a_n\}$ の極限値を α とすると、最終的に次のような関係を導くことで、上の式は証明される。

$$n \ge N \implies \left| \frac{1}{a_n} - \frac{1}{\alpha} \right| < \varepsilon$$

ここでも、 $\frac{1}{a_n}$ と $\frac{1}{\alpha}$ の誤差 $\left|\frac{1}{a_n} - \frac{1}{\alpha}\right|$ を、三角不等式で見積もっておく。

$$\left| \frac{1}{a_n} - \frac{1}{\alpha} \right| = \left| \frac{\alpha - a_n}{a_n \alpha} \right|$$
$$= \frac{|a_n - \alpha|}{|a_n \alpha|}$$

ここで、 $0 < \varepsilon' < \frac{|\alpha|}{2}$ とすると、

$$|a_n - \alpha| < \varepsilon' < \frac{|\alpha|}{2}$$

 $\therefore |a_n - \alpha| < \frac{|\alpha|}{2}$

また、三角不等式より、

$$||a_n| - |\alpha|| \le |a_n - \alpha| < \frac{|\alpha|}{2}$$

$$-\frac{|\alpha|}{2} < |a_n| - |\alpha| < \frac{|\alpha|}{2}$$

$$|\alpha| - \frac{|\alpha|}{2} < |a_n|$$

$$\frac{2|\alpha|}{2} - \frac{|\alpha|}{2} < |a_n|$$

$$\therefore \frac{|\alpha|}{2} < |a_n|$$

が成り立つことを利用して、

$$\left| \frac{1}{a_n} - \frac{1}{\alpha} \right| < \frac{|a_n - \alpha|}{|a_n \alpha|}$$

$$< \frac{|a_n - \alpha|}{\frac{|\alpha|}{2} \cdot |\alpha|}$$

$$= \frac{2}{|\alpha|^2} |a_n - \alpha|$$

このような不等式から、次のように証明を組み立てる。

Proof: 数列の逆数の極限

 $\lim_{n\to\infty} a_n = \alpha$ 、 $\lim_{n\to\infty} b_n = \beta$ とおき、 ε を任意の正の数とする。

 $\lim_{n\to\infty} a_n = \alpha$ より、次のような自然数 N_1 が存在する。

$$n \ge N_1 \implies |a_n - \alpha| < \frac{|\alpha|}{2}$$

このとき、 $n \ge N_1$ ならば、三角不等式より次のような不等式が成り立つ。

$$\frac{|\alpha|}{2} < |a_n|$$

よって、 $n \ge N_1$ とすると、 $a_n \ne 0$ である。 このとき、次のような不等式も得られる。

$$\left| \frac{1}{a_n} - \frac{1}{\alpha} \right| < \frac{|a_n - \alpha|}{|a_n \alpha|} < \frac{2}{|\alpha|^2} |a_n - \alpha|$$

一方、 $\lim_{n\to\infty} a_n = \alpha$ より、次のような自然数 N_2 も存在する。

$$n \ge N_2 \quad \Longrightarrow \quad |a_n - \alpha| < \frac{\varepsilon}{\frac{2}{|\alpha|^2}}$$

ここで、 $N=\max\{N_1,N_2\}$ とおくと、 $n\geq N$ のとき、 $n\geq N_1$ と $n\geq N_2$ がともに成り立つ。

よって、 $n \ge N$ のとき、

$$\left| \frac{1}{a_n} - \frac{1}{\alpha} \right| < \frac{2}{|\alpha|^2} |a_n - \alpha|$$

$$< \frac{2}{|\alpha|^2} \cdot \frac{\varepsilon}{\frac{2}{|\alpha|^2}}$$

$$= \varepsilon$$

$$\therefore \left| \frac{1}{a_n} - \frac{1}{\alpha} \right| < \varepsilon$$

という不等式が成り立つことで、 $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{\alpha}$ が示された。

今示した数列の逆数の極限と、数列の積の極限を組み合わせることで、数列の商の極限も求める ことができる。

$$\lim_{n\to\infty}\frac{b_n}{a_n}=\lim_{n\to\infty}\frac{1}{a_n}\cdot\lim_{n\to\infty}b_n$$

1.2.8 数列の極限の大小関係の保存

1. 定理 2.5

1.2.9 はさみうちの原理

はさみうちの原理は、

ある数列が2つの数列に挟まれていて、その2つの数列の極限値が同じなら、挟まれた数列の極限値も同じになる。

という内容の定理である。

この定理により、直接極限を求めにくい数列でも、簡単な数列で挟むことで極限値を求めること が容易になる。

すべての自然数nに対して $a_n \le c_n \le b_n$ である必要はない。

たとえば、5以上のnに対して $a_n \le c_n \le b_n$ が成り立つ場合($n_0 = 5$ の場合)にも、はさみうちの定理は適用できる。

Proof: 数列の極限に関するはさみうちの定理

 ε を任意の正の数とする。

このとき、 $\lim_{n\to\infty}a_n=\alpha$ より、次のような自然数 N_1 が存在する。

 $n \ge N_1 \implies |a_n - \alpha| < \varepsilon$

同様に、 $\lim_{n\to\infty} b_n = \beta$ より、次のような自然数 N_2 が存在する。

 $n \ge N_2 \implies |b_n - \beta| < \varepsilon$

ここで、 $N=\max\{N_1,N_2,n_0\}$ とおくと、 $n\geq N$ のとき、 $n\geq n_0$ 、 $n\geq N_1$ 、 $n\geq N_2$ がすべて成り立つ。

よって、 $n \ge N$ のとき、

Under construction...

- 1.2.10 ε-N 論法による数列の発散
- 2. 定義 1.2
- 1.2.11 追い出しの原理
- 3. 定理 2.18
- 1.2.12 発散数列の和と積
- 4. 定理 2.18
- 1.2.13 数列の偶数番目と奇数番目の極限による判定
- 5. 命題 2.13

1.2.14 数列の極限と絶対値

6. 定理 2.15

1.2.15 逆数の数列の発散条件

7. 定理 2.16 8. 定理 2.17

1.2.16 等比数列の極限

9. 命題 3.1

1.2.17 項の比による収束判定

10. 定理 3.8

1.2.18 発散数列の増加速度の比較

11. 例題 3.9

1.3 級数

1.4. 関数の極限 25

- 1.4 関数の極限
- 1.4.1 ε-δ論法による関数の極限
- 12. 定義 1.1
- 1.4.2 関数の極限と数列の極限の関係
- 13. 定理 1.7
- 1.4.3 関数の極限の性質
- 14. 定理 1.8
- 15. 定理 1.9
- 1.4.4 はさみうち法
- 16. 定理 1.10
- 1.4.5 合成関数の極限
- 17. 定理 1.11
- 1.4.6 右極限と左極限
- 18. 定義 1.15
- 19. 定義 1.16
- 20. 定理 1.19

1.5 関数の連続性

