Compilation and Program Analysis (#2a): Semantics

Ludovic Henrio

Master 1, ENS de Lyon et Dpt Info, Lyon1

2025-2026

Intro

Contact me:

web: lhenrio.github.io

email: ludovic.henrio@ens-lyon.fr

Credits: JC Filliâtre / JC Fernandez / Nielson-Nielson-Hankin /

Laure Gonnord

Note on organisation:

1: Course

2: exercises and proofs during the course;

3: exercises and proofs done at the end the course if we

have the time

- Generalities on semantics
- Operational semantics for mini-while
- 3 Comparing the different semantics

Semantics

We will first define an <u>abstract syntax</u> for our language.

Example: arithmetic expressions, $x \in V$ a set of variables

$$e ::= x | n | e + e | e * e | \dots$$

This is just another view of the AST obtained after parsing.

On the abstract syntax we will define one or several semantics.

Different kinds of semantics:

- axiomatic
- denotational
- by translation
- operational semantics (natural, structural)

Axiomatic Semantics (Hoare logic)

(An axiomatic basis for computer programming, 1969)

Characterisation by properties on variables, using triples of the form:

$$\{P\} \ i \ \{Q\}$$

"if P is true before the instruction i, then Q is true afterwards"

Example:

$${x \ge 0} \ x := x + 1 \ {x > 0}$$

Example of generating rule:

$$\{P[x \leftarrow E]\} \ x := E \ \{P(x)\}$$

proving properties of programs.

Denotational Semantics

Associates to an expression e its mathematical meaning $[\![e]\!]$ that represents its computation in a mathematical domain \mathcal{D} .

Example: arithmetic expressions, $x \in V$ a set of variables

$$e ::= x | n | e + e | e * e | \dots$$

You must choose a domain for the mathematical meaning with adequate operations.

Trivial example for expressions with $\mathcal{D} = \text{env} \to \mathbb{N}$.

Semantics by translation

(Definitional interpreters for higher-order programming languages, Reynolds, 1972)

We can define the semantics of a language by translation into a language whose semantics is already known.

$$\llbracket x = v + v'
rbracket = y = \operatorname{get} v;$$

 $z = \operatorname{get} v';$
 $x = y + z$

- ▶ Inherit for free the meta-theory from the host language.
- Not always very illuminating in terms of behaviour
- ▶ ... but sometimes a good specification in terms of implementation or compilation.

Operational Semantics

Describes the computation as an evaluation from the program to its computed value. Operates directly on the abstract syntax. 2 kinds:

 "natural" or "big-steps semantics", evaluates the program in one step

$$e \Downarrow v$$

 "by reduction" or "small-steps semantics", repeat the evaluation until a result is obtained:

$$e \to e_1 \to e_2 \to \cdots \to v$$

A relation describes an atomic reduction, and the semantics consider the transitive (reflexive) closure of this relation.

Results do not need to be a value.

Note: different notations (arrows) exist: $\Downarrow / \Rightarrow / ... \vdash ... \rightarrow ...$

▶ language specification and proving properties of languages.

- Generalities on semantics
- Operational semantics for mini-while
- 3 Comparing the different semantics

mini-while

$$e \in \mathcal{A} ::= x \mid n \mid e + e \mid e * e \mid \dots$$

(abstract) grammar:

```
S(Smt) ::= x := e assign |skip| do nothing |S_1; S_2| sequence |if b then S_1 else S_2| test |while b do S done| loop
```

Semantics of expressions

We denote $State = Var \rightarrow \mathbf{Z}$.

This kind of state is sometimes called "store". We denote them by σ .

Access is denoted $\sigma(x)$. Update is denoted by $\sigma[y \mapsto n]$.

Semantics of arithmetic expressions – Val: $\mathcal{A} \to State \to \mathbf{Z}$ (in each state an integer value): On board

$$Val(n, \sigma) = \mathcal{N}(n)$$

 $Val(x, \sigma) =$
 $Val(e + e', \sigma) =$
 $Val(e \times e', \sigma) =$

Note: what kind of semantics is this? big step? denotational?

Semantics of boolean expressions

```
Val: \mathcal{B} \to State \to \mathbf{Z} \text{ Not now}
(b ::= tt \mid ff \mid x \mid b \land b \mid ... \mid e < e \mid ...)
```

First properties and exercise

Semantics of arithmetic expressions

Substitution is denoted e[e'/x].

Show the two following properties (first one at the end of the course):

- Let $e \in \mathcal{A}$ a given arithmetic expression. Let σ, σ' be two states. Show that if $(\forall x \in Vars(e), \sigma(x) = \sigma'(x))$, then $Val(e, \sigma) = Val(e, \sigma')$. At the end of course?
- 2 Let $e, e' \in A$, show that:

$$Val(e[e'/x], \sigma) = Val(e, \sigma[x \mapsto Val(e', \sigma)])$$

now

Natural semantics (big step) for mini-while 1/2

In one step from the source program to the final result.

$$\Downarrow$$
: $Stm \times State \rightarrow State$

$$(x := e, \sigma) \Downarrow \sigma[x \mapsto Val(e, \sigma)]$$

$$(\mathtt{skip},\sigma) \Downarrow \sigma$$

$$\frac{(S_1,\sigma) \Downarrow \sigma' \qquad (S_2,\sigma') \Downarrow \sigma''}{\left((S_1;S_2),\sigma\right) \Downarrow \sigma''}$$

Natural semantics (big step) for mini-while 2/2

$$\frac{Val(b,\sigma)=tt \qquad (S,\sigma) \Downarrow \sigma' \qquad \text{(while b do S done, σ')} \Downarrow \sigma''}{\text{(while b do S done, σ)} \Downarrow \sigma''}$$

$$\frac{Val(b,\sigma) = ff}{(\text{while } b \text{ do } S \text{ done, } \sigma) \Downarrow \sigma}$$

Example

Compute the semantics (leaves are axioms, nodes are rules) of:

- x := 2; while x > 0 do x := x 1 done
- x := 2; while x > 0 do x := x + 1 done

Using the semantics to prove properties

Example: determinism

In mini-while there is a single way to evaluate a program.

Theorem: Determinism

For all S, for all $\sigma, \sigma', \sigma''$:

- If $(S, \sigma) \Downarrow \sigma'$ and $(S, \sigma) \Downarrow \sigma''$ then $\sigma' = \sigma''$.
- If $(S, \sigma) \Downarrow \sigma'$, there is no infinite derivation.

The Proof is by induction on the structure of the derivation tree.

WE do a proof sketch

Structural Op. Semantics (SOS = small step) for mini-while 1/2

Evaluating one statement at a time.

 \Rightarrow : $Stm \times State \rightarrow Stm \times State$ OR $Stm \times State \rightarrow State$ (we could have a **done** statement to avoid the two cases).

$$(x:=e,\sigma)
ightarrow \sigma[x \mapsto Val(e,\sigma)] \qquad (\mathtt{skip},\sigma)
ightarrow \sigma \ rac{(S_1,\sigma)
ightarrow \sigma'}{((S_1;S_2),\sigma)
ightarrow (S_2,\sigma')} \qquad rac{(S_1,\sigma)
ightarrow (S_1',\sigma')}{((S_1;S_2),\sigma)
ightarrow (S_1';S_2,\sigma')}$$

Structural Op. Semantics (SOS = small step) for mini-while 2/2

$$\frac{Val(b,\sigma)=tt}{(\text{if }b\text{ then }S_1\text{ else }S_2,\sigma)\to(S_1,\sigma)}$$

$$\frac{Val(b,\sigma) = \mathit{ff}}{(\mathsf{if}\ b\ \mathsf{then}\ S_1\ \mathsf{else}\ S_2,\sigma) \to (S_2,\sigma)}$$

 $(\texttt{while}\ b\ \texttt{do}\ S\ \texttt{done},\sigma)\to\\(\texttt{if}\ b\ \texttt{then}\ (S;\texttt{while}\ b\ \texttt{do}\ S\ \texttt{done})\ \texttt{else}\ \texttt{skip},\sigma)$

Exercises

Compute the semantics of:

- x := 2; while x > 0 do x := x 1 done
- x := 2; while x > 0 do x := x + 1 done

How to prove determinism for the SOS semantics? What is the structure of the proof? do the proof

- Generalities on semantics
- Operational semantics for mini-while
- Comparing the different semantics

Comparison: divergence

In general a program diverges if it runs forever. In mini-while, a program diverges in state σ iff:

- NAT: no successor to (S, σ) .
- SOS: infinite sequence begining with (S, σ) .

In other languages/semantics there might be other reasons to have no successor (see later in course), and you could have no successor in the SOS without reaching a final state.

Comparison: equivalence of programs

Semantics is also useful for defining program equivalence, in mini-while it is quite simple:

Two <u>mini-while</u> programs S_1 and S_2 are semantically equivalent if:

- NAT: $\forall \sigma, \sigma', (S_1, \sigma) \Downarrow \sigma' \text{ iff } (S_2, \sigma) \Downarrow \sigma'$
- SOS: ∀σ:
 - for all config (blocking or not): $(S_1, \sigma) \to^* \sigma'$ iff $(S_2, \sigma) \to^* \sigma'$
 - (S_1, σ) diverges iff (S_2, σ) diverges

Are the two semantics equivalent?

Theorem

$$S_{NS} = S_{SOS}$$

Proof: see next slides ...

Equivalence of semantics 1/2

Proposition

If $(S, \sigma) \Downarrow \sigma'$ then $(S, \sigma) \rightarrow^* \sigma'$.

Proof relies on:

Lemma

If $(S_1, \sigma) \to^k \sigma'$ then $((S_1; S_2), \sigma) \to^k (S_2, \sigma')$

Proof: structural induction on the derivation tree for $(S, \sigma) \Downarrow$.

Equivalence of semantics 2/2

Proposition

If $(S, \sigma) \to^k \sigma'$ then $(S, \sigma) \Downarrow \sigma'$.

Proof relies on:

Lemma

If $(S_1; S_2, \sigma) \to^k \sigma''$) then there exists σ', k_1 such that $(S_1, \sigma) \to^{k_1} \sigma'$ and $(S_2, \sigma') \to^{k-k_1} \sigma''$

Proof: induction on k.

Expressing parallelism

SOS can express interleaving, NAT cannot:

$$\frac{(S_1, \sigma) \to (S_1', \sigma')}{\left((S_1||S_2), \sigma\right) \to (S_1'||S_2, \sigma')} \quad \frac{(S_2, \sigma) \to (S_2', \sigma')}{\left((S_1||S_2), \sigma\right) \to (S_1||S_2', \sigma')}$$

... more later in the course.

Mini-while is not exactly mini-C

variable initialisation!

- variable declarations
 - Main problem is scope of variables (x may not refer to the same variable depending on the point in the program)
 - see course on typing
- Expression evaluation
 restricted to expressions without side-effect, the val
 function has to be encoded as a set of instructions (a more
 precise semantics would define several reduction steps)
- print-int and print-string (operational semantics not much interesting)
- Mini-C will have functions ... defined later in the course

Conclusion

We have seen different kinds of semantics and compared them briefly.

We have shown how to define operational semantics.

- For expression evaluation
- On mini-while

And how to reason on them to derive language properties (or at least properties of the semantics).

Next course on typing will illustrate more properties.

Additional exercise: repeat.

Final words: Different degrees of precision

Semi-formal specification in natural language

BRIAN W. KERNIGHAN DENNIS M. RITCHIE

PRENTICE HALL SOFTWARE SERIES

Final words: Different degrees of precision

Formal semantics

Final words: Different degrees of precision

Mechanized formal semantics in a proof assistant

Inductive step: state -> trace -> state -> Prop := | step_skip_seq: forall f s k sp e m, step (State f Sskip (Kseq s k) sp e m) E0 (State f s k sp e m) | step_skip_block: forall f k sp e m, step (State f Sskip (Kblock k) sp e m) E0 (State f Sskip k sp e m) | step_skip_call: forall f k sp e m m', Mem.free m sp 0 f.(fn_stackspace) = Some m' -> step (State f Sskip k (Vptr sp Ptrofs.zero) e m) E0 (Returnstate Vundef k m') | step_assign: forall f id a k sp e m v, eval_expr sp e m a v -> step (State f (Sassign id a) k sp e m) E0 (State f Sskip k sp (PTree.set id v e) m) | step_store: forall f chunk addr a k sp e m vaddr v m', eval expr sp e m addr vaddr -> eval expr sp e m a v -> Mem.storev chunk m vaddr v = Some m' -> step (State f (Sstore chunk addr a) k sp e m) E0 (State f Sskip k sp e m') | step_call: forall f optid sig a bl k sp e m vf vargs fd, eval expr sp e m a vf -> eval exprlist sp e m bl vargs -> Genv.find_funct ge vf = Some fd -> funsig fd = sig -> step (State f (Scall optid sig a bl) k sp e m)