

Rzeszów, 2023

ZARZĄDZANIE DANYMI

LABORATORIUM nr 5 (część 1)

Temat: Przetwarzanie danych wejściowych dla metod sztucznej inteligencji / uczenia maszynowego (moduł *scikit-learn*)

Laboratorium obejmuje implementację skryptów w języku *Python*, umożliwiających wstępne przetwarzanie danych wyjściowych, w celu ich dalszego wykorzystania w procesie uczenia klasyfikatorów *AI/ML* (ang., *Artificial Intelligence / Machine Learning*). Zadania obejmują kolejno:

- obsługę brakujących wartości,
- kodowanie wartości atrybutów (dwu- lub wielowartościowych),
- podział zbioru wejściowego na zbiór danych treningowych (uczących) i testowych, oraz
- skalowanie wartości/cech,

przy pomocy biblioteki scikit-learn z poziomu środowiska Jupyter Notebook/LAB.

Samodzielne wykonanie zadań z laboratorium będzie wymagane z zastosowaniem środowiska *Jupyter Notebook* oraz/lub *Jupyter LAB* (pliki *.*ipynb*).

1. Import bibliotek oraz wczytywania zbioru danych wejściowych

	Country	Age	Salary	Purchased
0	France	44.0	72000.0	No
1	Spain	27.0	48000.0	Yes
2	Germany	30.0	54000.0	No
3	Spain	38.0	61000.0	No
4	Germany	40.0	NaN	Yes
5	France	35.0	58000.0	Yes
6	Spain	NaN	52000.0	No
7	France	48.0	79000.0	Yes
8	Germany	50.0	83000.0	No
9	France	37.0	67000.0	Yes

Rys. 1. Źródłowy zbiór danych wejściowych (z brakującymi wartościami)

```
[['France' 44.0 72000.0]
['Spain' 27.0 48000.0]
['Germany' 30.0 54000.0]
['Spain' 38.0 61000.0]
['Germany' 40.0 nan]
['France' 35.0 58000.0]
['Spain' nan 52000.0]
['France' 48.0 79000.0]
['Germany' 50.0 83000.0]
['France' 37.0 67000.0]]
```

Rys. 2.A. Źródłowy zbiór danych wejściowych – atrybuty warunkowe (X)

```
['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes' 'No' 'Yes']
```

Rys. 2.B. Źródłowy zbiór danych wejściowych – atrybut decyzyjny (y)

2. Obsługa brakujących wartości

```
[['France' 44.0 72000.0]
['Spain' 27.0 48000.0]
['Germany' 30.0 54000.0]
['Spain' 38.0 61000.0]
['Germany' 40.0 63777.7777777778]
['France' 35.0 58000.0]
['Spain' 38.7777777777778 52000.0]
['France' 48.0 79000.0]
['Germany' 50.0 83000.0]
['France' 37.0 67000.0]]
```

Rys. 3. Zbiór danych z uzupełnionymi (zastąpionymi) wartościami

3. Kodowanie (dekodowanie) danych

```
[[1.0 0.0 0.0 44.0 72000.0]

[0.0 0.0 1.0 27.0 48000.0]

[0.0 1.0 0.0 30.0 54000.0]

[0.0 0.0 1.0 38.0 61000.0]

[0.0 1.0 0.0 40.0 63777.77777777778]

[1.0 0.0 0.0 35.0 58000.0]

[0.0 0.0 1.0 38.7777777777778 52000.0]

[1.0 0.0 0.0 48.0 79000.0]

[0.0 1.0 0.0 50.0 83000.0]

[1.0 0.0 0.0 37.0 67000.0]]
```

Rys. 4.A. Zamiana (kodowanie) wartości dla atrybutu z lokalizacjami (kolumna Country)

```
print(y)
['No' 'Yes' 'No' 'No' 'Yes' 'Yes' 'No' 'Yes']

le = LabelEncoder()
y = le.fit_transform(y)

print(y)

[0 1 0 0 1 1 0 1 0 1]
```

Rys. 4.B. Zamiana (kodowanie) wartości dla atrybutu decyzyjnego (kolumna **Purchased**)

4. Podział zbioru danych na zbiór treningowy oraz zbiór testowy

Rys. 5.A. Podział wejściowego zbioru danych na część treningową i testową (kolumny dla atrybutów warunkowych)

```
y_train
array([0, 1, 0, 0, 1, 1, 0, 1])

y_test
array([0, 1])
```

Rys. 5.B. Podział wejściowego zbioru danych na część treningową i testową (kolumna z atrybutem decyzyjnym)

5. Skalowanie cech (wartości)

X_train Country	Age	Salary	
[1.0, 0.0, 0.0, [0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0,	-0.014117293757057777 0.566708506533324, 0. -0.30453019390224867,	, -0.07013167641635372], 533562432710455], -0.30786617274297867], -1.420463615551582], .232653363453549], .5749910381638885],	
X_test			
array([[0.0, 1.0, 0.0, [1.0, 0.0, 0.0, dtype=object)	-1.4661817944830124, -0.44973664397484414,		

Rys. 5.B. Przykład kolumn z atrybutami decyzyjnymi) po procesie skalowania wartości / cech