درس اصول رباتیکز نیمسال اول ۰۲–۰۳ استاد: دکتر آرمین سلیمی بدر

دانشکده مهندسی و علوم کامپیوتر

تمرین سری اول

در موقعیت
$$\xi_1 = \begin{bmatrix} 1m \\ 2m \\ \frac{\pi}{2} rad \end{bmatrix}$$
 قرار گرفته است. میخواهیم این ربات را به موقعیت .۱

ل سوعت چرخش چرخ راست، وسیم المین ا

- ۱. کمترین دستورات موردنیاز برای رساندن ربات به موقعیت موردنظر چند تاست؟ چرا؟
 - ۲. طول کوتاهترین مسیر۲ طبق شرط ذکرشده در بخش قبلی چقدر است؟
- ۳. با چه دنبالهای از دستورات با تعداد دلخواه می توان ربات را از موقعیت اولیه به موقعیت نهایی رساند؟ حداکثر سرعت هر چرخ را v و فاصلهٔ بین دو چرخ را v در نظر بگیرید.
 - ۴. طول مسير به دست آمده در بخش قبلي چقدر است؟
- ۲. (۱۵ نمره) سرعتهای زیر را به چرخهای ربات $^{\text{re-puck}}$ اعمال کرده و در هر مورد، نمودار مسیر حرکت (X-Y) و جهت سر ربات نسبت به زمان $(\theta-t)$ را رسم کنید:
 - $\dot{arphi}_1=1rad/s, \dot{arphi}_2=1rad/s$.
 - $\dot{arphi}_1=1rad/s, \dot{arphi}_2=-1rad/s$.Y
 - $\dot{arphi}_1(t) = \sin t \; rad/s, \\ \dot{arphi}_2(t) = -\cos t \; rad/s \; .$

منظور از t، گام زمانی در شبیهساز است.

برای دسترسی به موقعیت ربات، از حسگرهای ⁶GPS و Compass استفاده کنید.

برای رسم نمودارها، استفاده از هر ابزار دلخواهی مجاز است.

¹Triplet (3-Tuple)

²Trajectory

³https://www.cyberbotics.com/doc/guide/epuck?version=cyberbotics:R2019a

⁴https://cyberbotics.com/doc/reference/gps

⁵https://cyberbotics.com/doc/reference/compass

درس اصول رباتیکز

۳. (۲۰ نمره) تابعی برای سینماتیک مستقیم ربات هدایت تفاضلی پیادهسازی کنید.

پارامترهای ورودی:

- بات مؤلفهٔ افقی موقعیت فعلی ربات x
- y: مؤلفهٔ عمودی موقعیت فعلی ربات
 - θ : زاویهٔ سر ربات
 - سرعت چرخ راست: $v_1 ullet$
 - سرعت چرخ چپ: v_2
 - نرمان هدایت $t \bullet$
 - l: فاصلهٔ بین دو چرخ ربات

مقادير خروجي:

- مؤلفهٔ افقی موقعیت نهایی ربات: x_n
- بات مؤلفهٔ عمودی موقعیت نهایی ربات y_n
 - زاویهٔ نهایی سر ربات θ_n

فرض کنید رباتی در موقعیت
$$\xi = \begin{bmatrix} 1.5m \\ 2m \\ \frac{\pi}{2} rad \end{bmatrix}$$
 قرار گرفته است. دنبالهٔ زیر از دستورات را بر روی آن اجرا میکنیم:

$$c_1 = (v_1 = 0.3m/s, v_2 = 0.3m/s, t = 3s)$$
 .

$$c_2 = (v_1 = 0.1m/s, v_2 = -0.1m/s, t = 1s)$$
 .Y

$$c_3 = (v_1 = 0.2m/s, v_2 = 0m/s, t = 2s)$$
 .

به کمک تابعی که پیادهسازی کردید، موقعیت ربات را پس اعمال هر دستور محاسبه کنید. فاصلهٔ بین دو چرخ ربات را l=0.5m

- ۴. (۱۵ نمره) مدل سینماتیک معکوس ربات هدایت تفاضلی و را در قالب تابعی به دست آورید که با دریافت سرعت خطی و سرعت زاویه ای ربات، سرعت چرخش چرخهای ربات را محاسبه کرده و برگرداند. سپس، حالتهای زیر را با استفاده از آن شبیه سازی کرده و در هر مورد، نمودار مسیر حرکت ربات (X-Y) و جهت سر ربات نسبت به زمان $(\theta-t)$ را رسم کنید:
 - $v = 3m/s, \omega = 0.1 rad/s$.
 - $v=0m/s, \omega=0.5rad/s$. Y
- 0. (۱۵ نمره) یک ربات هدایت تفاضلی را در نظر بگیرید که بر روی نقطهای از دایرهای با شعاع r=0.5m با زاویهٔ دلخواه قرار گرفته است. میخواهیم به سمت مرکز دایره حرکت کنیم. یک کنترلکنندهٔ P برای این ربات طراحی کنید و این حرکت را با استفاده از این کنترلکننده به ازای موقعیتهای اولیهٔ مختلف انجام دهید. نمودار مسیرهای موردانتظار و مسیرهای پیموده شده را نیز رسم کنید.

تصاویری از مسیرهای پیموده شده توسط ربات (با فرض این که شعاع دایره برابر با r = 50mm است) در شکلهای زیر آمده است:

⁶Differential-Drive Robot

درس اصول رباتیکز صفحه ۳ از ۴

برای حل این سؤال، مطالعهٔ بخش ۳-۶ (صفحات ۹۱ تا ۹۹) کتاب مرجع درس توصیه می شود.

⁷Introduction to Autonomous Mobile Robots, second edition

درس اصول رباتیکز

نكات مهم:

- علاوه بر موارد خواسته شده در سؤالات، تمامی کدهای نوشته شده را نیز در فایل ارسالی خود قرار دهید.
- تمامی افراد گروه باید به جزئیات تمرینها مسلط باشند. در صورت عدم رعایت این موضوع، نمره از تمامی اعضای گروه کسر خواهد شد.
 - از کپی کردن پاسخهای سایر گروهها خودداری کنید.
 - در نام و محتوای فایل ارسالی در درسافزار، حتماً نام، نام خانوادگی و شماره دانشجویی خود را ذکر کنید.
 - سؤالات خود را در گروه تلگرامي مطرح كنيد.