10_Flights_Challenge

September 4, 2021

Flights Chalenge

1 Flights Data Exploration Challenge

```
[2]: import pandas as pd
     df_flights = pd.read_csv('flights.csv')
     df_flights.head()
[2]:
        Year
                      DayofMonth
                                   DayOfWeek Carrier
                                                        OriginAirportID
              Month
        2013
                   9
                                                                   15304
                               16
                                            1
                                                   DL
        2013
                                            1
     1
                   9
                               23
                                                   WN
                                                                   14122
     2 2013
                   9
                                7
                                            6
                                                   AS
                                                                   14747
     3 2013
                   7
                                            1
                                                   00
                               22
                                                                   13930
        2013
                               16
                                            4
                                                   DL
                                                                   13931
                    OriginAirportName
                                        OriginCity OriginState
                                                                  DestAirportID \
     0
                  Tampa International
                                                                           12478
                                              Tampa
                                                              FL
     1
                                                                           13232
            Pittsburgh International
                                        Pittsburgh
                                                              PA
     2
        Seattle/Tacoma International
                                            Seattle
                                                              WA
                                                                           11278
     3
        Chicago O'Hare International
                                            Chicago
                                                              IL
                                                                           11042
                Norfolk International
                                            Norfolk
                                                              VA
                                                                           10397
                                   DestAirportName
                                                        DestCity DestState
                                                                             CRSDepTime
                                                        New York
     0
                    John F. Kennedy International
                                                                                    1539
     1
                     Chicago Midway International
                                                         Chicago
                                                                         IL
                                                                                     710
     2
                Ronald Reagan Washington National
                                                      Washington
                                                                         DC
                                                                                     810
     3
                  Cleveland-Hopkins International
                                                       Cleveland
                                                                                     804
                                                                         OH
        Hartsfield-Jackson Atlanta International
                                                         Atlanta
                                                                         GA
                                                                                     545
                   DepDel15
                                                      ArrDel15
                                                                Cancelled
        DepDelay
                              {\tt CRSArrTime}
                                           ArrDelay
                                                             0
     0
                4
                        0.0
                                    1824
                                                 13
                                                                         0
     1
                3
                        0.0
                                     740
                                                 22
                                                             1
                                                                         0
     2
               -3
                                                 -7
                                                             0
                        0.0
                                    1614
                                                                         0
     3
               35
                        1.0
                                    1027
                                                 33
                                                             1
                                                                         0
                        0.0
                                     728
                                                 -9
                                                             0
                                                                         0
               -1
```

```
[4]: len(df_flights.columns) df_flights.shape
```

[4]: (271940, 20)

1.1 Finding Missing Data

- 1. Start by cleaning the data.
 - Identify any null or missing data, and impute appropriate replacement values.
 - Identify and eliminate any outliers in the **DepDelay** and **ArrDelay** columns.

```
[5]: missing_data = df_flights.isnull().sum() missing_data
```

[5]:	Year	0
	Month	0
	DayofMonth	0
	DayOfWeek	0
	Carrier	0
	OriginAirportID	0
	${\tt OriginAirportName}$	0
	OriginCity	0
	OriginState	0
	${ t DestAirportID}$	0
	${\tt DestAirportName}$	0
	DestCity	0
	DestState	0
	CRSDepTime	0
	DepDelay	0
	DepDel15	2761
	CRSArrTime	0
	ArrDelay	0
	ArrDel15	0
	Cancelled	0
	dtype: int64	

2761 data points are missing from the DepDel15 feature which indicates if departure is delayed by more than 15 minutes

```
[7]: missing_data=missing_data.to_frame()
missing_data=missing_data.rename(columns={0:'Empty Cells'})
print(missing_data)
```

	Empty	${\tt Cells}$
Year		0
Month		0
DayofMonth		0
DayOfWeek		0
Carrier		0

OriginAirportID	0
OriginAirportName	0
OriginCity	0
OriginState	0
DestAirportID	0
${\tt DestAirportName}$	0
DestCity	0
DestState	0
CRSDepTime	0
DepDelay	0
DepDel15	2761
CRSArrTime	0
ArrDelay	0
ArrDel15	0
Cancelled	0

1.2 checking for zeros

```
[18]: df_flights.isnull().any(axis=1)
```

```
[18]: 0
                 False
                 False
      1
      2
                 False
      3
                 False
                 False
      271935
                 False
      271936
                 False
      271937
                 False
      271938
                 False
                 False
      271939
      Length: 271940, dtype: bool
```

since only DepDel15 has missing value, lets describe the subset of dataset that has missing value, thus we are picking 2761 rows with NaN seen in DepDel15

```
[21]: df_flights[df_flights.isnull().any(axis=1)].describe()
```

[21]:		Year	Month	${\tt DayofMonth}$	DayOfWeek	OriginAirportID	\
	count	2761.0	2761.000000	2761.000000	2761.000000	2761.000000	
	mean	2013.0	6.455632	15.572619	3.604853	12757.763129	
	std	0.0	1.759942	8.092708	1.748487	1426.462196	
	min	2013.0	4.000000	1.000000	1.000000	10140.000000	
	25%	2013.0	5.000000	10.000000	2.000000	11298.000000	
	50%	2013.0	6.000000	16.000000	4.000000	12892.000000	
	75%	2013.0	8.000000	22.000000	5.000000	13930.000000	
	max	2013.0	10.000000	31.000000	7.000000	15376.000000	

	${ t DestAirportID}$	CRSDepTime	DepDelay	DepDel15	CRSArrTime	ArrDelay	\
count	2761.000000	2761.000000	2761.0	0.0	2761.000000	2761.0	
mean	12708.952553	1431.354944	0.0	NaN	1587.419051	0.0	
std	1408.166022	457.450773	0.0	NaN	485.236232	0.0	
min	10140.000000	5.000000	0.0	NaN	5.000000	0.0	
25%	11298.000000	1050.000000	0.0	NaN	1229.000000	0.0	
50%	12892.000000	1500.000000	0.0	NaN	1645.000000	0.0	
75%	13930.000000	1815.000000	0.0	NaN	2003.000000	0.0	
max	15376.000000	2359.000000	0.0	NaN	2359.000000	0.0	

	ArrDel15	Cancelled
count	2761.0	2761.0
mean	1.0	1.0
std	0.0	0.0
min	1.0	1.0
25%	1.0	1.0
50%	1.0	1.0
75%	1.0	1.0
max	1.0	1.0

Appart from DepDel15, notice DepDelay has 0 as min, max and mode, but DepDel15 is same but has NaN instead. > **DepDelay** is the number of minutes departure was delayed >> **DepDel15** feature which indicates if departure is delayed by more than 15 minutes >> Since Since there is no delay showing 0 in DepDelay, there is no 15 minutes delay. >> Replay all NaN in DepDel15 with 0.

```
[22]: df_flights.DepDel15 = df_flights.DepDel15.fillna(0)
df_flights.isnull().sum()
```

```
[22]: Year
                             0
                             0
      Month
      DayofMonth
                             0
      DayOfWeek
                             0
      Carrier
                             0
      OriginAirportID
                             0
      OriginAirportName
                             0
                             0
      OriginCity
      OriginState
                             0
      DestAirportID
                             0
      DestAirportName
                             0
      DestCity
                             0
      DestState
                             0
      CRSDepTime
                             0
      DepDelay
                             0
      DepDel15
                             0
      CRSArrTime
                             0
      ArrDelay
                             0
      ArrDel15
                             0
```

```
Cancelled 0 dtype: int64
```

```
[23]: df_flights['DepDelay'].name # shows the name of the column
```

[23]: 'DepDelay'

• dentify and eliminate any outliers in the **DepDelay** and **ArrDelay** columns.

1.3 Clean outliers

View the distribution and summary for the DepDelay and ArrDelay columns.

```
[24]: def show_distribution(var_data):
          from matplotlib import pyplot as plt
          # Get statistics
          min_val = var_data.min()
          max_val = var_data.max()
          mean_val = var_data.mean()
          med_val = var_data.median()
          mod_val = var_data.mode()[0]
          print(var_data.name, '\nMinimum: \{:.2f}\nMedian: \{:.2f}\nMode: \{:.
       \rightarrow 2f\nMaximum:{:.2f}\n'.format(min_val,
                                                                                      Ш
                    mean_val,
                    med_val,
                    mod_val,
                    max_val))
          # Create a figure for 2 subplots (2 rows, 1 column)
          fig, ax = plt.subplots(2, 1, figsize = (10, 4))
          # Plot the histogram
          ax[0].hist(var_data)
          ax[0].set_ylabel('Frequency')
          # Add lines for mean, median, and mode
          ax[0].axvline(x=min_val, color = 'gray', linestyle='dashed', linewidth= 2)
          ax[0].axvline(x=mean_val, color = 'cyan', linestyle='dashed', linewidth = 2)
          ax[0].axvline(x=med_val, color = 'red', linestyle='dashed', linewidth = 2)
          ax[0].axvline(x=mod_val, color = 'yellow', linestyle='dashed', linewidth =_
       →2)
          ax[0].axvline(x=max_val, color = 'gray', linestyle='dashed', linewidth = 2)
```

```
# Plot the boxplot
ax[1].boxplot(var_data, vert=False)
ax[1].set_xlabel('Value')

# Add a title to the Figure
fig.suptitle(var_data.name)

# Show the figure
fig.show()
```

```
[25]: # Call the function for each delay field
delayFields = ['DepDelay', 'ArrDelay']
for col in delayFields:
    show_distribution(df_flights[col])
```

DepDelay

Minimum:-63.00 Mean:10.35 Median:-1.00 Mode:-3.00 Maximum:1425.00

C:\Users\aduzo\Anaconda3\lib\site-packages\ipykernel_launcher.py:39:
UserWarning: Matplotlib is currently using

module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure.

ArrDelay

Minimum:-75.00 Mean:6.50 Median:-3.00 Mode:0.00

Maximum: 1440.00

C:\Users\aduzo\Anaconda3\lib\site-packages\ipykernel_launcher.py:39:

UserWarning: Matplotlib is currently using

module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure.

There are a outliers at the lower and upper ends of both variables - particularly at the upper end. Let's trim the data so that we include only rows where the values for these fields are within the 1st and 90th percentile.

90% percentile is 38.0

-33 is at 1% while 38 is at 90% of the data

```
[27]: df_flights.shape
[27]: (271940, 20)
[28]: df_flights = df_flights[df_flights.ArrDelay < ArrDelay_90pcntile]
      df_flights = df_flights[df_flights.ArrDelay > ArrDelay_01pcntile]
[29]: df_flights.shape
[29]: (241916, 20)
[30]: # Trim outliers for DepDelay based on 1% and 90% percentiles
      DepDelay_01pcntile = df_flights.DepDelay.quantile(0.01)
      DepDelay_90pcntile = df_flights.DepDelay.quantile(0.90)
      df_flights = df_flights[df_flights.DepDelay < DepDelay_90pcntile]</pre>
      df_flights = df_flights[df_flights.DepDelay > DepDelay_01pcntile]
[31]: # View the revised distributions
      for col in delayFields:
          show_distribution(df_flights[col])
     DepDelay
     Minimum:-11.00
     Mean: -0.92
     Median:-2.00
     Mode: -3.00
     Maximum: 16.00
     C:\Users\aduzo\Anaconda3\lib\site-packages\ipykernel_launcher.py:39:
     UserWarning: Matplotlib is currently using
     module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot
     show the figure.
     ArrDelay
     Minimum: -32.00
     Mean:-5.03
     Median:-6.00
     Mode: 0.00
     Maximum: 37.00
     C:\Users\aduzo\Anaconda3\lib\site-packages\ipykernel_launcher.py:39:
     UserWarning: Matplotlib is currently using
     module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot
     show the figure.
```


[32]: df_flights.shape

[32]: (214397, 20)

That looks a bit better

- 2. Explore the cleaned data.
 - View summary statistics for the numeric fields in the dataset.
 - Determine the distribution of the **DepDelay** and **ArrDelay** columns.
 - Use statistics, aggregate functions, and visualizations to answer the following questions:
 - What are the average (mean) departure and arrival delays?
 - How do the carriers compare in terms of arrival delay performance?
 - Are some days of the week more prone to arrival days than others?

- Which departure airport has the highest average departure delay?
- Do late departures tend to result in longer arrival delays than on-time departures?
- Which route (from origin airport to destination airport) has the most late arrivals?
- Which route has the highest average arrival delay?

1.3.1 Explore the data

Let's start with an overall view of the summary statistics for the numeric columns.

[33]:		Year	Month	${\tt DayofMonth}$	DayOfWeek	OriginAirportID	\
	count	214397.0 21	4397.000000	214397.000000	214397.000000	214397.000000	
	mean	2013.0	7.018368	15.794703	3.902737	12757.827661	
	std	0.0	2.006398	8.859118	1.997744	1510.058629	
	min	2013.0	4.000000	1.000000	1.000000	10140.000000	
	25%	2013.0	5.000000	8.000000	2.000000	11292.000000	
	50%	2013.0	7.000000	16.000000	4.000000	12892.000000	
	75%	2013.0	9.000000	23.000000	6.000000	14100.000000	
	max	2013.0	10.000000	31.000000	7.000000	15376.000000	
		D . A		n. D. D.		. 145 \	
		DestAirportI	-	_		el15 \	
	count	214397.00000					
	mean	12726.27614				.8116	
	std	1506.25175				33371	
	min	10140.00000				00000	
	25%	11292.00000				00000	
	50%	12892.00000				00000	
	75%	14057.00000				00000	
	max	15376.00000	0 2359.000	0000 16.00	00000 1.00	00000	
		CRSArrTim	e ArrDe	.] \rr[el15 Cance	llod	
	count	214397.00000		v			
		1461.40659				.3228	
	mean	485.67645				.4249	
	std						
	min	1.00000				00000	
	25%	1054.00000				00000	
	50%	1445.00000				00000	
	75%	1845.00000				00000	
	max	2359.00000	0 37.000	0000 1.00	00000 1.00	00000	

[34]: delayFields

[34]: ['DepDelay', 'ArrDelay']

What are the mean departure and arrival delays?

[35]: df_flights[delayFields].mean()

Boxplot grouped by Carrier

Boxplot grouped by Carrier

As seen above, for DepDelay most carriers has mean with no delay or departs earlier on average thus no delay, but delays occurs, but in some instances, departure was delayed by more than 5 minutes. Carriers such as 9E, AS,HA 75% of their times departs earlier than slated time.

For ArrDelay All carriers Arrive on time on the average.

Are some days of the week more prone to arrival days than others?

[42]: df_flights.DayOfWeek.unique()

[42]: array([1, 6, 4, 7, 2, 5, 3], dtype=int64)

DayOfWeek: The day of the week on which the flight departed - from 1 (Monday) to 7 (Sunday)

```
[41]: for col in delayFields: df_flights.boxplot(column=col, by='DayOfWeek', figsize=(8,8))
```

Boxplot grouped by DayOfWeek

Boxplot grouped by DayOfWeek

All days of the week has on average same arrival time. But Thursday is slighly more prone, but this is negligible.

Which departure airport has the highest average departure delay?

```
[44]: print(f'There are {len(df_flights.OriginAirportName.unique())} departure

→airports')
```

There are 70 departure airports

```
[45]: departure_airport_group = df_flights.groupby(df_flights.OriginAirportName)
```

[45]:		DepDelay
	OriginAirportName	
	Chicago Midway International	2.365960
	Dallas Love Field	2.148798
	William P Hobby	1.561927
	Metropolitan Oakland International	0.964853
	Denver International	0.807272
		•••
	Memphis International	-2.962737
	Tucson International	-2.989154
	Ted Stevens Anchorage International	-3.149758
	Richmond International	-3.198073
	Long Beach Airport	-3.447844

[70 rows x 1 columns]

Do late departures tend to result in longer arrival delays than on-time departures?

```
[47]: df_flights.DepDel15.unique()

[47]: array([0., 1.])
      0 if no delay by 15 minutes or more, 1 if so

[50]: df_flights.boxplot(column='ArrDelay', by='DepDel15', figsize=(12,12))
```

[50]: <AxesSubplot:title={'center':'ArrDelay'}, xlabel='DepDel15'>

Boxplot grouped by DepDel15

Yes as seen in the above box plot,

```
[51]: df_flights.groupby(by='DepDel15').ArrDelay.mean()
```

```
[51]: DepDel15
0.0 -5.299464
1.0 9.559732
```

Name: ArrDelay, dtype: float64

As seen from the above graph, late depareture influences arrival time as shown in there mean, early departure arrives 5 minutes earlier on average, while late departure arrives 10 minutes later than scheduled.

Which route (from origin airport to destination airport) has the most late arrivals?

Note: no column named route, rather there is Origin and Destination columns, so route is by combining these two columns.

```
[53]:
                                                            ArrDel15
      Route
      San Francisco International->Los Angeles Intern...
                                                                 90
      Los Angeles International->San Francisco Intern...
                                                                 69
      LaGuardia->Hartsfield-Jackson Atlanta Internati...
                                                                 68
      Los Angeles International->John F. Kennedy Inte...
                                                                 52
      LaGuardia->Charlotte Douglas International
                                                                  51
      Logan International->Austin - Bergstrom Interna...
                                                                 0
      Logan International->Memphis International
                                                                    0
      Logan International->Port Columbus International
      San Diego International->Cincinnati/Northern Ke...
      Louis Armstrong New Orleans International->San ...
                                                                  0
```

[2479 rows x 1 columns]

Which route has the highest average arrival delay?

```
[54]: pd.DataFrame(route_group['ArrDelay'].mean()).sort_values('ArrDelay', ⊔

→ascending=False)
```

[54]:		ArrDelay
Route		
Louis Armstron	g New Orleans International->Rona	24.500000
Cleveland-Hopk	ins International->Palm Beach Int	18.000000
John F. Kenned	y International->Louisville Inter	18.000000
Cleveland-Hopk	ins International->Philadelphia I	12.800000
Memphis Intern	ational->Denver International	9.758621
•••		•••
Lambert-St. Lo	uis International->Cleveland-Hopk	-20.000000
Eppley Airfield	d->LaGuardia	-20.750000
Denver Interna	tional->Kahului Airport	-22.666667
Jacksonville I	nternational->Chicago Midway Inte	-24.125000
Indianapolis I	nternational->Logan International	-26.000000

[2479 rows x 1 columns]