6.1 Mathematical Induction-Reading

Notebook: Discrete Mathematics [CM1020]

Created: 2019-10-07 2:31 PM Updated: 2019-12-03 4:26 PM

Author: SUKHJIT MANN

Cornell Notes

Topic:

6.1 Mathematical Induction-Reading

Course: BSc Computer Science

Class: Discrete Mathematics-

Reading

Date: December 03, 2019

Essential Question:

What is mathematical induction?

Questions/Cues:

- What is Mathematical induction?
- What is the intuition behind induction?
- What is the structure of induction?
- What is steps/template for proofs by mathematical induction
- What is strong induction?
- What is strong induction sometimes otherwise known as?
- What is the well-ordering property?

Notes

Mathematical Induction

In general, mathematical induction " can be used to prove statements that assert that P(n) is true for all positive integers n, where P(n) is a propositional function. A proof by mathematical induction has two parts, a basis step, where we show that P(1) is true, and an inductive step, where we show that for all positive integers k, if P(k) is true, then P(k+1) is true.

PRINCIPLE OF MATHEMATICAL INDUCTION To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

To complete the inductive step of a proof using the principle of mathematical induction, we assume that P(k) is true for an arbitrary positive integer k and show that under this assumption, P(k+1) must also be true. The assumption that P(k) is true is called the inductive hypothesis. Once we complete both steps in a proof by mathematical induction, we have shown that P(n) is true for all positive integers, that is, we have shown that $\forall n P(n)$ is true where the quantification is over the set of positive integers. In the inductive step, we show that $\forall k (P(k) \rightarrow P(k+1))$ is true, where again, the domain is the set of positive integers.

Expressed as a rule of inference, this proof technique can be stated as

$$(P(1) \land \forall k (P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n),$$

when the domain is the set of positive integers. Because mathematical induction is such an important technique, it is worthwhile to explain in detail the steps of a proof using this technique. The first thing we do to prove that P(n) is true for all positive integers n is to show that P(1) is true. This amounts to showing that the particular statement obtained when n is replaced by 1 in P(n) is true. Then we must show that $P(k) \rightarrow P(k+1)$ is true for every positive integer k. To prove that this conditional statement is true for every positive integer k, we need to show that P(k+1) cannot be false when P(k) is true. This can be accomplished by assuming that P(k) is true and showing that under this hypothesis P(k+1) must also be true.

Remark: In a proof by mathematical induction it is not assumed that P(k) is true for all positive integers! It is only shown that if it is assumed that P(k) is true, then P(k+1) is also true. Thus, a proof by mathematical induction is not a case of begging the question, or circular reasoning.

When we use mathematical induction to prove a theorem, we first show that P(1) is true. Then we know that P(2) is true, because P(1) implies P(2). Further, we know that P(3) is true, because P(2) implies P(3). Continuing along these lines, we see that P(n) is true for every positive integer n.

EXAMPLE 1 Show that if *n* is a positive integer, then

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

Solution: Let P(n) be the proposition that the sum of the first n positive integers, $1+2+\cdots n=\frac{n(n+1)}{2}$, is n(n+1)/2. We must do two things to prove that P(n) is true for $n=1,2,3,\ldots$. Namely, we must show that P(1) is true and that the conditional statement P(k) implies P(k+1) is true for $k=1,2,3,\ldots$

BASIS STEP: P(1) is true, because $1 = \frac{1(1+1)}{2}$. (The left-hand side of this equation is 1 because 1 is the sum of the first positive integer. The right-hand side is found by substituting 1 for n in n(n+1)/2.)

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) holds for an arbitrary positive integer k. That is, we assume that

$$1+2+\cdots+k=\frac{k(k+1)}{2}$$
.

Under this assumption, it must be shown that P(k+1) is true, namely, that

$$1+2+\cdots+k+(k+1) = \frac{(k+1)[(k+1)+1]}{2} = \frac{(k+1)(k+2)}{2}$$

is also true. When we add k + 1 to both sides of the equation in P(k), we obtain

$$1 + 2 + \dots + k + (k+1) \stackrel{\text{iii}}{=} \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k(k+1) + 2(k+1)}{2}$$
$$= \frac{(k+1)(k+2)}{2}.$$

This last equation shows that P(k+1) is true under the assumption that P(k) is true. This completes the inductive step.

We have completed the basis step and the inductive step, so by mathematical induction we know that P(n) is true for all positive integers n. That is, we have proven that $1 + 2 + \cdots + n = n(n+1)/2$ for all positive integers n.

EXAMPLE 2 Conjecture a formula for the sum of the first n positive odd integers. Then prove your conjecture using mathematical induction.

Solution: The sums of the first n positive odd integers for n = 1, 2, 3, 4, 5 are

$$1 = 1,$$
 $1 + 3 = 4,$ $1 + 3 + 5 = 9,$ $1 + 3 + 5 + 7 = 16,$ $1 + 3 + 5 + 7 + 9 = 25.$

From these values it is reasonable to conjecture that the sum of the first n positive odd integers is n^2 , that is, $1 + 3 + 5 + \cdots + (2n - 1) = n^2$. We need a method to prove that this conjecture is correct, if in fact it is.

Let P(n) denote the proposition that the sum of the first n odd positive integers is n^2 . Our conjecture is that P(n) is true for all positive integers. To use mathematical induction to prove this conjecture, we must first complete the basis step; that is, we must show that P(1) is true. Then we must carry out the inductive step; that is, we must show that P(k+1) is true when P(k) is assumed to be true. We now attempt to complete these two steps.

BASIS STEP: P(1) states that the sum of the first one odd positive integer is 1^2 . This is true because the sum of the first odd positive integer is 1. The basis step is complete.

INDUCTIVE STEP: To complete the inductive step we must show that the proposition $P(k) \rightarrow P(k+1)$ is true for every positive integer k. To do this, we first assume the inductive hypothesis. The inductive hypothesis is the statement that P(k) is true for an arbitrary positive integer k, that is,

$$1+3+5+\cdots+(2k-1)=k^2$$
.

(Note that the kth odd positive integer is (2k-1), because this integer is obtained by adding 2 a total of k-1 times to 1.) To show that $\forall k(P(k) \rightarrow P(k+1))$ is true, we must show that if P(k) is true (the inductive hypothesis), then P(k+1) is true. Note that P(k+1) is the statement that

$$1 + 3 + 5 + \cdots + (2k - 1) + (2k + 1) = (k + 1)^2$$
.

So, assuming that P(k) is true, it follows that

$$1+3+5+\cdots+(2k-1)+(2k+1) = [1+3+\cdots+(2k-1)]+(2k+1)$$

 $\stackrel{\text{Id}}{=} k^2+(2k+1)$
 $= k^2+2k+1$
 $= (k+1)^2$.

This shows that P(k + 1) follows from P(k). Note that we used the inductive hypothesis P(k) in the second equality to replace the sum of the first k odd positive integers by k^2 .

We have now completed both the basis step and the inductive step. That is, we have shown that P(1) is true and the conditional statement $P(k) \rightarrow P(k+1)$ is true for all positive integers k. Consequently, by the principle of mathematical induction we can conclude that P(n) is true for all positive integers n. That is, we know that $1+3+5+\cdots+(2n-1)=n^2$ for all positive integers n.

Often, we will need to show that P(n) is true for n = b, b + 1, b + 2, ..., where b is an integer other than 1. We can use mathematical induction to accomplish this, as long as we change the basis step by replacing P(1) with P(b). In other words, to use mathematical induction to show that P(n) is true for n = b, b + 1, b + 2, ..., where b is an integer other than 1, we show that P(b) is true in the basis step. In the inductive step, we show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for k = b, b + 1, b + 2, Note that b can be negative, zero, or positive. Following the domino analogy we used earlier, imagine that we begin by knocking down the bth domino (the basis step), and as each domino falls, it knocks down the next domino (the inductive step). We leave it to the reader to show that this form of induction is valid (see Exercise 83).

We illustrate this notion in Example 3, which states that a summation formula is valid for all nonnegative integers. In this example, we need to prove that P(n) is true for n = 0, 1, 2, ... So, the basis step in Example 3 shows that P(0) is true.

EXAMPLE 3 Use mathematical induction to show that

$$1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$$

for all nonnegative integers n.

Solution: Let P(n) be the proposition that $1 + 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$ for the integer n.

BASIS STEP: P(0) is true because $2^0 = 1 = 2^1 - 1$. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis, we assume that P(k) is true for an arbitrary nonnegative integer k. That is, we assume that

$$1+2+2^2+\cdots+2^k=2^{k+1}-1$$
.

To carry out the inductive step using this assumption, we must show that when we assume that P(k) is true, then P(k+1) is also true. That is, we must show that

$$1 + 2 + 2^2 + \cdots + 2^k + 2^{k+1} = 2^{(k+1)+1} - 1 = 2^{k+2} - 1$$

assuming the inductive hypothesis P(k). Under the assumption of P(k), we see that

$$1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1} = (1 + 2 + 2^{2} + \dots + 2^{k}) + 2^{k+1}$$

$$\stackrel{\text{III}}{=} (2^{k+1} - 1) + 2^{k+1}$$

$$= 2 \cdot 2^{k+1} - 1$$

$$= 2^{k+2} - 1.$$

Note that we used the inductive hypothesis in the second equation in this string of equalities to replace $1 + 2 + 2^2 + \cdots + 2^k$ by $2^{k+1} - 1$. We have completed the inductive step.

Because we have completed the basis step and the inductive step, by mathematical induction we know that P(n) is true for all nonnegative integers n. That is, $1 + 2 + \cdots + 2^n = 2^{n+1} - 1$ for all nonnegative integers n.

The formula given in Example 3 is a special case of a general result for the sum of terms of a geometric progression (Theorem 1 in Section 2.4). We will use mathematical induction to provide an alternative proof of this formula.

EXAMPLE 4 Sums of Geometric Progressions Use mathematical induction to prove this formula for the sum of a finite number of terms of a geometric progression with initial term a and common ratio r:

$$\sum_{j=0}^{n} ar^{j} = a + ar + ar^{2} + \dots + ar^{n} = \frac{ar^{n+1} - a}{r-1} \quad \text{when } r \neq 1,$$

where n is a nonnegative integer.

Solution: To prove this formula using mathematical induction, let P(n) be the statement that the sum of the first n + 1 terms of a geometric progression in this formula is correct.

BASIS STEP: P(0) is true, because

$$\frac{ar^{0+1}-a}{r-1} = \frac{ar-a}{r-1} = \frac{a(r-1)}{r-1} = a.$$

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, where k is an arbitrary nonnegative integer. That is, P(k) is the statement that

$$a + ar + ar^2 + \dots + ar^k = \frac{ar^{k+1} - a}{r-1}.$$

To complete the inductive step we must show that if P(k) is true, then P(k+1) is also true. To show that this is the case, we first add ar^{k+1} to both sides of the equality asserted by P(k). We find that

$$a + ar + ar^{2} + \dots + ar^{k} + ar^{k+1} \stackrel{\text{iii}}{=} \frac{ar^{k+1} - a}{r - 1} + ar^{k+1}$$

Rewriting the right-hand side of this equation shows that

$$\begin{split} \frac{ar^{k+1}-a}{r-1}+ar^{k+1} &= \frac{ar^{k+1}-a}{r-1} + \frac{ar^{k+2}-ar^{k+1}}{r-1} \\ &= \frac{ar^{k+2}-a}{r-1} \; . \end{split}$$

Combining these last two equations gives

$$a + ar + ar^{2} + \cdots + ar^{k} + ar^{k+1} = \frac{ar^{k+2} - a}{r - 1}$$

This shows that if the inductive hypothesis P(k) is true, then P(k+1) must also be true. This completes the inductive argument.

We have completed the basis step and the inductive step, so by mathematical induction P(n) is true for all nonnegative integers n. This shows that the formula for the sum of the terms of a geometric series is correct.

As previously mentioned, the formula in Example 3 is the case of the formula in Example 4 with a = 1 and r = 2. The reader should verify that putting these values for a and r into the general formula gives the same formula as in Example 3.

EXAMPLE 5 Use mathematical induction to prove the inequality

$$n < 2^n$$

for all positive integers n.

Solution: Let P(n) be the proposition that $n < 2^n$.

BASIS STEP: P(1) is true, because $1 < 2^1 = 2$. This completes the basis step.

INDUCTIVE STEP: We first assume the inductive hypothesis that P(k) is true for anarbitrary positive integer k. That is, the inductive hypothesis P(k) is the statement that $k < 2^k$. To complete the inductive step, we need to show that if P(k) is true, then P(k+1), which is the statement that $k+1 < 2^{k+1}$, is true. That is, we need to show that if $k < 2^k$, then $k+1 < 2^{k+1}$. To show that this conditional statement is true for the positive integer k, we first add 1 to both sides of $k < 2^k$, and then note that $1 < 2^k$. This tells us that

$$k + 1 < 2^k + 1 < 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$$

This shows that P(k+1) is true, namely, that $k+1 < 2^{k+1}$, based on the assumption that P(k) is true. The induction step is complete.

Therefore, because we have completed both the basis step and the inductive step, by the principle of mathematical induction we have shown that $n < 2^n$ is true for all positive integers n.

EXAMPLE 6 Use mathematical induction to prove that 2ⁿ < n! for every integer n with n ≥ 4. (Note that this inequality is false for n = 1, 2, and 3.)</p>

Solution: Let P(n) be the proposition that $2^n < n!$.

BA518 STEP: To prove the inequality for $n \ge 4$ requires that the basis step by P(4). Note that P(4) is true, because $2^4 - 16 < 24 - 4$!

INDUCTIVE STEP: For the inductive step, we assume that P(k) is true for an arbitrary integer k with $k \geq 4$. That is, we assume that $2^k < k!$ for the positive integer k with $k \geq 4$. We must show that under this hypothesis, P(k+1) is also true. That is, we must show that if $2^k < k!$ for an arbitrary positive integer k where $k \geq 4$, then $2^{k+1} < (k+1)!$. We have

$$2^{k+1} = 2 \cdot 2^k$$
 by definition of exponent
 $< 2 \cdot k!$ by the inductive bypothesis
 $< (k+1)k!$ because $2 < k+1$
 $= (k+1)!$ by definition of factorial function.

This shows that P(k = 1) is true when P(k) is true. This completes the inductive step of the proof.

We have completed the basis step and the inductive step. Hence, by mathematical induction P(n) is true for all integers n with $n \geq 4$. That is, we have proved that $2^n < n!$ is true for all integers n with $n \geq 4$.

An important inequality for the sum of the reciprocals of a set of positive integers will be proved in Example 7.

EXAMPLE 7 An Inequality for Harmonic Numbers The harmonic numbers H_j , j = 1, 2, 3, ..., are defined by

$$H_j = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{j}$$

For instance,

$$H_4 = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{25}{12}$$

Use mathematical induction to show that

$$H_{2^n} \ge 1 + \frac{n}{2}$$

whenever n is a nonnegative integer.

Solution: To carry out the proof, let P(n) be the proposition that $H_{2^n} \ge 1 + \frac{n}{2}$.

BASIS STEP: P(0) is true, because $H_{20} = H_1 = 1 \ge 1 + \frac{0}{2}$.

INDUCTIVE STEP: The inductive hypothesis is the statement that P(k) is true, that is, $H_{2^k} \ge 1 + \frac{k}{2}$, where k is an arbitrary nonnegative integer. We must show that if P(k) is true, then P(k+1), which states that $H_{2^{k+1}} \ge 1 + \frac{k+1}{2}$, is also true. So, assuming the inductive hypothesis, it follows that

$$\begin{split} H_{2k+1} &= 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^k} + \frac{1}{2^k+1} + \dots + \frac{1}{2^{k+1}} & \text{ by the definition of Paramonic introduct} \\ &= H_{2^k} + \frac{1}{2^k+1} + \dots + \frac{1}{2^{k+1}} & \text{ by the definition of Paramonic introduct} \\ &\geq \left(1 + \frac{k}{2}\right) + \frac{1}{2^k+1} + \dots + \frac{1}{2^{k+1}} & \text{ by the inductive hypothesis.} \\ &\geq \left(1 + \frac{k}{2}\right) + 2^k \cdot \frac{1}{2^{k+1}} & \text{ because there are } 2^k \text{ terms} \\ &\geq \left(1 + \frac{k}{2}\right) + \frac{1}{2} & \text{ canceling a common factor of } \\ &\geq \left(1 + \frac{k+1}{2}\right). \end{split}$$

This establishes the inductive step of the proof.

We have completed the basis step and the inductive step. Thus, by mathematical induction P(n) is true for all nonnegative integers n. That is, the inequality $H_{2^n} \ge 1 + \frac{n}{2}$ for the harmonic numbers holds for all nonnegative integers n.

Remark: The inequality established here shows that the harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

is a divergent infinite series. This is an important example in the study of infinite series.

EXAMPLE 8 Use mathematical induction to prove that n⁸ - n is divisible by 3 whenever n is a positive integer. (Note that this is the statement with p = 3 of Fermat's little theorem, which is Theorem 3 of Section 4.4.)

Solution: To construct the proof, let P(n) denote the proposition: " $n^3 - n$ is divisible by 3."

BASIS STEP: The statement P(1) is true because $1^3 - 1 = 0$ is divisible by 3. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true; that is, we assume that $k^3 - k$ is divisible by 3 for an arbitrary positive integer k. To complete the inductive

step, we must show that when we assume the inductive hypothesis, it follows that P(k+1), the statement that $(k+1)^3 - (k+1)$ is divisible by 3, is also true. That is, we must show that $(k+1)^3 - (k+1)$ is divisible by 3. Note that

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$

= $(k^3 - k) + 3(k^2 + k)$.

Using the inductive hypothesis, we conclude that the first term $k^3 - k$ is divisible by 3. The second term is divisible by 3 because it is 3 times an integer. So, by part (i) of Theorem 1 in Section 4.1, we know that $(k + 1)^3 - (k + 1)$ is also divisible by 3. This completes the inductive step.

Because we have completed both the basis step and the inductive step, by the principle of mathematical induction we know that $n^3 - n$ is divisible by 3 whenever n is a positive integer.

EXAMPLE 9 Use mathematical induction to prove that 7ⁿ⁺² | 8²ⁿ⁺¹ is divisible by 57 for every nonnegative integer n.

Solution: To construct the proof, let P(n) denote the proposition: " $7^{n+2} + 8^{2n+1}$ is divisible by 57."

BASIS STEP: To complete the basis step, we must show that P(0) is true, because we want to prove that P(n) is true for every nonnegative integer. We see that P(0) is true because $7^{0+2} + 8^{2\cdot 0+1} = 7^2 + 8^1 = 57$ is divisible by 57. This completes the basis step.

INDUCTIVE STEP: For the inductive hypothesis we assume that P(k) is true for an arbitrary nonnegative integer k; that is, we assume that $7^{k+2} + 8^{2k+1}$ is divisible by 57. To complete the inductive step, we must show that when we assume that the inductive hypothesis P(k) is true, then P(k+1), the statement that $7^{(k+1)+2} + 8^{2(k+1)+1}$ is divisible by 57, is also true.

The difficult part of the proof is to see how to use the inductive hypothesis. To take advantage of the inductive hypothesis, we use these steps:

$$7^{(k+1)+2} + 8^{2(k+1)+1} = 7^{k+3} + 8^{2k+3}$$

$$= 7 \cdot 7^{k+2} + 8^2 \cdot 8^{2k+1}$$

$$= 7 \cdot 7^{k+2} + 64 \cdot 8^{2k+1}$$

$$= 7(7^{k+2} + 8^{2k+3}) + 57 \cdot 8^{2k+1}$$

We can now use the inductive hypothesis, which states that $7^{k+2} + 8^{2k+1}$ is divisible by 57. We will use parts (i) and (ii) of Theorem 1 in Section 4.1. By part (ii) of this theorem, and the inductive hypothesis, we conclude that the first term in this last sum, $7(7^{k+2} + 8^{2k+1})$, is divisible by 57. By part (ii) of this theorem, the second term in this sum, $57 - 8^{2k+1}$, is divisible by 57. Hence, by part (i) of this theorem, we conclude that $7(7^{k+2} + 8^{2k+1}) + 57 - 8^{2k+1} = 7^{k+3} + 8^{2k+3}$ is divisible by 57. This completes the inductive step.

Recause we have completed both the basis step and the inductive step, by the principle of mathematical induction we know that $7^{n+2} + 8^{2n+1}$ is divisible by 57 for every nonnegative integer n.

EXAMPLE 15 Find the error in this "proof" of the clearly false claim that every set of lines in the plane, no two of which are parallel, meet in a common point.

> "Proof:" Let P(n) be the statement that every set of n lines in the plane, no two of which are parallel, meet in a common point. We will attempt to prove that P(n) is true for all positive integers $n \ge 2$.

> BASIS STEP: The statement P(2) is true because any two lines in the plane that are not parallel. meet in a common point (by the definition of parallel lines).

> PNDLETIVE STEP. The inductive hypothesis is the statement that P(k) is true for the positive integer k, that is, it is the assumption that every set of k lines in the plane, no two of which are parallel, meet in a common point. To complete the inductive step, we must show that if P(k) is true, then P(k+1) must also be true. That is, we must show that if every set of k lines in the plane, no two of which are parallel, meet in a common point, then every set of k + 1 lines in the plane, no two of which are parallel, most in a common point. So, consider a set of k + 1 distinct lines in the plane. By the inductive hypothesis, the first k of these lines meet in a common point p₁. Moreover, by the inductive hypothesis, the last k of these lines meet in a common point p₂. We will show that p_1 and p_2 must be the same point. If p_1 and p_2 were different points, all lines containing both of them must be the same line because two points determine a line. This contradicts our assumption that all these lines are distinct. Thus, p₁ and p₂ are the same point. We conclude that the point $p_1 = p_2$ lies on all k + 1 lines. We have shown that P(k + 1) is true assuming that P(k) is true. That is, we have shown that if we assume that every $k, k \ge 2$, distinct lines meet in a common point, then every k+1 distinct lines meet in a common point, This completes the inductive step.

> We have completed the basis step and the inductive step, and supposedly we have a correct proof by mathematical induction.

Solution: Examining this supposed proof by mathematical induction it appears that everything is in order. However, there is an error, as there must be. The error is rather subtle. Carefully looking at the inductive step shows that this step requires that $k \geq 3$. We cannot show that P(2)implies P(3). When k = 2, our goal is to show that every three distinct lines meet in a common point. The lirst two lines must meet in a common point p1 and the last two lines must meet in a common point p_2 . But in this case, p_1 and p_2 do not have to be the same, because only the second line is common to both sets of lines. Here is where the inductive step fails.

Template for Proofs by Mathematical Induction

- I. Express the statement that is to be proved in the form "for all $n \ge b$, P(n)" for a fixed integer b.
- Write out the words "Basis Step." Then show that P(b) is true, taking care that the correct value of b is used. This completes the first part of the proof.
- Write out the words "Inductive Step."
- State, and clearly identify, the inductive hypothesis, in the form "assume that P(k) is true for an arbitrary fixed integer k > b."
- 5. State what needs to be proved under the assumption that the inductive hypothesis is true. That is, write out what P(k+1) says.
- Prove the statement P(k+1) making use the assumption P(k). Be sure that your proof is valid for all integers k with k > b, taking care that the proof works for small values of k, including k = b.
- Clearly identify the conclusion of the inductive step, such as by saying "this completes the inductive step."
- 8. After completing the basis step and the inductive step, state the conclusion, namely that by mathematical induction, P(n) is true for all integers n with $n \geq b$.

STRONG INDUCTION To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that the proposition P(1) is true.

INDUCTIVE STEP: We show that the conditional statement $[P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

Note that when we use strong induction to prove that P(n) is true for all positive integers n, our inductive hypothesis is the assumption that P(j) is true for j = 1, 2, ..., k. That is, the inductive hypothesis includes all k statements P(1), P(2), ..., P(k). Because we can use all k statements P(1), P(2), ..., P(k) to prove P(k+1), rather than just the statement P(k) as in a proof by mathematical induction, strong induction is a more flexible proof technique. Because of this, some mathematicians prefer to always use strong induction instead of mathematical induction, even when a proof by mathematical induction is easy to find.

You may be surprised that mathematical induction and strong induction are equivalent. That is, each can be shown to be a valid proof technique assuming that the other is valid. In particular, any proof using mathematical induction can also be considered to be a proof by strong induction because the inductive hypothesis of a proof by mathematical induction is part of the inductive hypothesis in a proof by strong induction. That is, if we can complete the inductive step of a proof using mathematical induction by showing that P(k + 1) follows from P(k) for every positive integer k, then it also follows that P(k + 1) follows from all the statements P(1), $P(2), \ldots, P(k)$, because we are assuming that not only P(k) is true, but also more, namely, that the k - 1 statements $P(1), P(2), \ldots, P(k - 1)$ are true. However, it is much more awkward to convert a proof by strong induction into a proof using the principle of mathematical induction. (See Exercise 42.)

Strong induction is sometimes called the second principle of mathematical induction or complete induction. When the terminology "complete induction" is used, the principle of mathematical induction is called incomplete induction, a technical term that is a somewhat unfortunate choice because there is nothing incomplete about the principle of mathematical induction; after all, it is a valid proof technique.

Examples of Proofs Using Strong Induction

Now that we have both mathematical induction and strong induction, how do we decide which method to apply in a particular situation? Although there is no cut-and-dried answer, we can supply some useful pointers. In practice, you should use mathematical induction when it is straightforward to prove that $P(k) \rightarrow P(k+1)$ is true for all positive integers k. This is the case for all the proofs in the examples in Section 5.1. In general, you should restrict your use of the principle of mathematical induction to such scenarios. Unless you can clearly see that the inductive step of a proof by mathematical induction goes through, you should attempt a proof by strong induction. That is, use strong induction and not mathematical induction when you see how to prove that P(k+1) is true from the assumption that P(j) is true for all positive integers j not exceeding k, but you cannot see how to prove that P(k+1) follows from just P(k). Keep this in mind as you examine the proofs in this section. For each of these proofs, consider why strong induction works better than mathematical induction.

We will illustrate how strong induction is employed in Examples 2–4. In these examples, we will prove a diverse collection of results. Pay particular attention to the inductive step in each of these examples, where we show that a result P(k + 1) follows under the assumption that P(j) holds for all positive integers j not exceeding k, where P(n) is a propositional function.

EXAMPLE 1 Suppose we can reach the first and second rungs of an infinite ladder, and we know that if we can reach a rung, then we can reach two rungs higher. Can we prove that we can reach every rung using the principle of mathematical induction? Can we prove that we can reach every rung using strong induction?

Solution: We first try to prove this result using the principle of mathematical induction.

BA515 STEP: The basis step of such a proof holds; here it simply verifies that we can reach the first rung.

ATTEMPTED INDUCTIVE STEP. The inductive hypothesis is the statement that we can reach the kth rung of the ladder. To complete the inductive step, we need to show that if we assume the inductive hypothesis for the positive integer k, namely, if we assume that we can reach the kth rung of the ladder, then we can show that we can reach the (k + 1)st rung of the ladder. However, there is no obvious way to complete this inductive step because we do not know from the given information that we can reach the (k+1)st rung from the kth rung. After all, we only know that if we can reach a rung we can reach the rung two higher.

Now consider a proof using strong induction.

BASIS STEP: The basis step is the same as before; it simply verifies that we can reach the first

INDUCTIVE STEP. The inductive hypothesis states that we can reach each of the first k rungs, To complete the inductive step, we need to show that if we assume that the inductive hypothesis is true, that is, if we can reach each of the first k rungs, then we can reach the (k + 1)st rung. We already know that we can reach the second rung. We can complete the inductive step by noting that as long as $k \ge 2$, we can reach the $(k \pm 1)$ st rung from the (k - 1)st rung because we know we can climb two rungs from a rung we can already reach, and because $k-1 \le k$, by the inductive hypothesis we can reach the (k-1)st rung. This completes the inductive step and finishes the proof by strong induction.

We have proved that if we can reach the first two rungs of an infinite ladder and for every positive integer k if we can reach all the first k rungs then we can reach the (k + 1)st rung, then we can reach all rungs of the ladder.

EXAMPLE 2 Show that if n is an integer greater than 1, then n can be written as the product of primes.

Solution: Let P(n) be the proposition that n can be written as the product of primes.

BASIS STEP: P(2) is true, because 2 can be written as the product of one prime, itself. (Note that P(2) is the first case we need to establish.)

INDUCTIVE STEP: The inductive hypothesis is the assumption that P(j) is true for all integers j with $2 \le j \le k$, that is, the assumption that j can be written as the product of primes whenever j is a positive integer at least 2 and not exceeding k. To complete the inductive step, it must be shown that P(k+1) is true under this assumption, that is, that k+1 is the product of primes.

There are two cases to consider, namely, when k + 1 is prime and when k + 1 is composite. If k+1 is prime, we immediately see that P(k+1) is true. Otherwise, k+1 is composite and can be written as the product of two positive integers a and b with $2 \le a \le b < k + 1$. Because both a and b are integers at least 2 and not exceeding k, we can use the inductive hypothesis to write both a and b as the product of primes. Thus, if k + 1 is composite, it can be written as the product of primes, namely, those primes in the factorization of a and those in the factorization

Remark: Because 1 can be thought of as the empty product of no primes, we could have started the proof in Example 2 with P(1) as the basis step. We chose not to do so because many people find this confusing.

Example 2 completes the proof of the fundamental theorem of arithmetic, which asserts that every nonnegative integer can be written uniquely as the product of primes in nondecreasing order. We showed in Section 4.3 that an integer has at most one such factorization into primes. Example 2 shows there is at least one such factorization.

Next, we show how strong induction can be used to prove that a player has a winning strategy in a game.

THE WELL-ORDERING PROPERTY Every nonempty set of nonnegative integers has a least element.

EXAMPLE 6 In a round-robin tournament every player plays every other player exactly once and each match has a winner and a loser. We say that the players $p_1, p_2, ..., p_m$ form a cycle if p_1 beats p_2, p_2 beats p_1, \dots, p_{m-1} beats p_m , and p_m beats p_1 . Use the well-ordering principle to show that if there is a cycle of length m ($m \ge 5$) among the players in a round-robin tournament, there must he a cycle of three of these players.

> Solution: We assume that there is no cycle of three players. Because there is at least one cycle in the round-robin tournament, the set of all positive integers n for which there is a cycle of length n is nonempty. By the well-ordering property, this set of positive integers has a least element k, which by assumption must be greater than three. Consequently, there exists a cycle of players $p_1, p_2, p_3, \dots, p_k$ and no shorter cycle exists.

> Because there is no cycle of three players, we know that k > 3. Consider the first three elements of this cycle, p1, p2, and p3. There are two possible outcomes of the match between p_1 and p_2 , if p_3 heats p_1 , it follows that p_1 , p_2 , p_3 is a cycle of length three, contradicting our assumption that there is no cycle of three players. Consequently, it must be the case that p_1 heats p_3 . This means that we can omit p_2 from the cycle $p_1, p_2, p_3, \dots, p_k$ to obtain the cycle $p_1, p_2, p_4, \dots, p_k$ of length k-1, contradicting the assumption that the smallest cycle has length k. We conclude that there must be a cycle of length three.

Summary

In this week, we learned what mathematical induction is. Also we looked a different form of induction called strong induction, the structure of induction & the well-ordering property.