Aufgabe 1 (2 Punkte): Aufgabe 2 (1 Punkt): Aufgabe 3 (1 Punkt): Aufgabe 4 (1 Punkt): Aufgabe 5 (2 Punkte): Aufgabe 6 (2 Punkte): Familienname: Aufgabe 7 (3 Punkte): Aufgabe 8 (3 Punkte): Aufgabe 9 (3 Punkte): Aufgabe 10 (1 Punkt): Vorname: Aufgabe 11 (2 Punkte): Aufgabe 12 (4 Punkte): Aufgabe 13 (4 Punkte): Matrikelnummer: Aufgabe 14 (6 Punkte): Aufgabe 15 (2 Punkte): Aufgabe 16 (3 Punkte): Gesamtpunkte (40 Punkte):

Schriftlicher Test (120 Minuten) VU Einführung ins Programmieren für TM

22. Januar 2018

Hinweis. In den folgenden Aufgaben sollen Sie zunächst Teile der Funktionalität der Klasse Complex implementieren, die den elementaren Umgang mit komplexen Zahlen $z=a+bi\in\mathbb{C}$ realisiert. Dabei sollen Realteil $\mathrm{Re}(z):=a\in\mathbb{R}$ und Imaginärteil $\mathrm{Im}(z):=b\in\mathbb{R}$ als double gespeichert werden.

```
class Complex {
private:
 double re;
 double im;
public:
 Complex(double real=0, double imag=0);
 double real() const;
 double imag() const;
 double abs() const;
 const Complex operator -() const;
 const Complex operator () const;
};
const Complex operator+(const Complex&, const Complex&);
const Complex operator - (const Complex &, const Complex &);
const Complex operator*(const Complex&, const Complex&);
const Complex operator/(const Complex&, const Complex&);
const bool operator < (const Complex&, const Complex&);
```

1 / 18

Aufgabe 1 (2 Punkte). Schreiben Sie den Konstruktor der Klasse Complex, dem optional Real- und Imaginärteil von $z=a+bi$ übergeben werden können.
Lösung zu Aufgabe 1.
Aufgabe 2 (1 Punkt). Schreiben Sie die Methode real der Klasse Complex, die den Realteil Re (z) von $z \in \mathbb{C}$ zurückgibt.
Lösung zu Aufgabe 2.

Aufgabe 5 (2 Punkte). Warum dürfen bei der Klasse Complex Kopierkonstruktor, Destruktor und Zuweisungsoperator fehlen? Was ist die Funktionalität des Zuweisungsoperators, wenn er nicht explizit geschrieben wird?

Lösung zu Aufgabe 5.

Aufgabe 6 (2 Punkte). Schreiben Sie den Code für die Multiplikation $w \cdot z$ zweier komplexer Zahlen $w, z \in \mathbb{C}$. Überladen Sie dazu den * Operator. Um die entsprechende Formel herzuleiten, beachten Sie, dass $i^2 = -1$!

Lösung zu Aufgabe 6.

Aufgabe 7 (3 Punkte). Schreiben Sie den Code für die Division w/z zweier komplexer Zahlen $w, z \in \mathbb{C}$. Überladen Sie dazu den / Operator. Stellen Sie mittels assert sicher, dass $z \neq 0$ gilt. Um die entsprechende Formel herzuleiten, erweitern Sie den Bruch mit der komplex konjugierten Zahl \overline{z} .

Lösung zu Aufgabe 7.

Aufgabe 8 (3 Punkte). Überladen Sie den Vergleichsoperator < für komplexe Zahlen. Für alle $z,w\in\mathbb{C}$ definieren wir

$$z < w \iff \begin{cases} |z| < |w| & \text{oder} \\ \left(|z| = |w| \text{ und } \operatorname{Re}(z) < \operatorname{Re}(w)\right) & \text{oder} \\ \left(|z| = |w| \text{ und } \operatorname{Re}(z) = \operatorname{Re}(w) \text{ und } \operatorname{Im}(z) < \operatorname{Im}(w)\right). \end{cases}$$

Falls eine der drei Bedingungen zutrifft, soll z < w als Ergebnis true zurückgeben. Anderenfalls werde false zurückgegeben.

Lösung zu Aufgabe 8.

Hinweis. In den folgenden Aufgaben sollen Sie Teile der Funktionalität der Klasse Vector implementieren, die für die Speicherung von Vektoren $x \in \mathbb{C}^n$ verwendet werden kann.

```
class Vector {
private:
   int n;
   Complex* entry;
public:
   Vector(int n=0);
   ~Vector();
   Vector(const Vector&);
   const Vector& operator=(const Vector&);
   const Complex& operator()(int) const;
   Complex& operator()(int);
   int size() const;
   int find(const Complex& z) const;
   void sort();
};
```

Aufgabe 9 (3 Punkte). Schreiben Sie den Konstruktor der Klasse Vector, der den Nullvektor $x = (0, ..., 0) \in \mathbb{C}^n$ anlegt. Stellen Sie mittels assert sicher, dass $n \geq 0$ gilt. Für n = 0 soll der leere Vektor generiert werden, d.h. es wird kein Speicher allokiert.

Lösung zu Aufgabe 9.

Aufgabe 12 (4 Punkte). Schreiben Sie den Zuweisungsoperator = der Klasse Vector.

Hinweis. Beachten Sie den Fall, dass der gegebene Vektor leer ist.

Lösung zu Aufgabe 12.

Aufgabe 13 (4 Punkte). Schreiben Sie die Methode find der Klasse Vector, die für den Vector $x \in \mathbb{C}^n$ und eine gegebene Zahl $z \in \mathbb{C}$ den größten Index $j \in \{0, \dots, n-1\}$ zurückgibt, sodass gilt

$$|x_j - z| = \min_{k=0,\dots,n-1} |x_k - z|.$$

Lösung zu Aufgabe 13.

Aufgabe 14 (6 Punkte). Schreiben Sie die Methode sort der Klasse Vector, die den Vector $x \in \mathbb{C}^n$ aufsteigend sortiert (gemäß dem Vergleichsoperator < aus Aufgabe 8). Der gegebene Vektor x soll einfach überschrieben werden.

Beispiel. Der Vektor x = (3, 2, 1, i, 1+i, 1-i, 0) wird durch x = (0, i, 1, 1-i, 1+i, 2, 3) überschrieben.

Lösung zu Aufgabe 14.

Aufgabe 15 (2 Punkte). Bestimmen Sie den Aufwand Ihrer Funktion aus Aufgabe 14 für einen Vektor der Länge n. Falls die Funktion für $n=10^3$ eine Laufzeit von 1,5 Sekunden hat, welche Laufzeit erwarten Sie für $n=5\cdot 10^3$? Begründen Sie Ihre Antwort!

Lösung zu Aufgabe 15.

```
Aufgabe 16 (3 Punkte). Was ist der Output des folgenden Programms?
#include <iostream>
using std::cout;
\mathbf{using} \ \mathrm{std} :: \mathbf{endl} \, ;
class A {
private:
  int data;
public:
  A(int data = 0) {
     this \rightarrow data = data;
    cout << "+A: " << data << endl;
  };
  ~A() {
    cout << "-A" << endl;
};
class B {
private:
  A data;
public:
  B(int data = 1) {
    cout << "+B: " << data << endl;
  ~B() {
    \mathbf{cout} \, << \, "-\!B" \, << \, \mathbf{endl} \, ;
  }
};
class C : public A {
private:
  int data;
public:
  C(int first, int second) : A(first) {
     data = second;
     cout << "+C: " << first << "," << second << endl;</pre>
  }
  ~C() {
    cout << "-C" << endl;
  }
};
int main() {
  A \times (2);
  cout << "***" << endl;
  B y(4);
  cout << "***" << endl;
  C z(1,2);
  return 0;
}
```

Lösung zu Aufgabe 16.