MATH 241

Chapter 5

SECTION 5.1: AREA BETWEEN CURVES

Contents

Non Intersecting Regions	2
Intersecting Regions	3
Regions Bounded By Functions of y	6

Created by: Pierre-Olivier Parisé Fall 2022

NON INTERSECTING REGIONS

<u>Desmos</u>: https://www.desmos.com/calculator/o7vvfgfwzy

Given two functions f(x) and g(x) such that

$$g(x) \le f(x)$$
 $a \le x \le b$,

the area of the region S enclosed by f(x), g(x), x = a and x = b is

AREA
$$(S) = \int_a^b f(x) - g(x) dx$$
.

EXAMPLE 1. Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on the sides by x = 0 and x = 1.

Area (s) =
$$\int_{0}^{b} f(x) - g(x) dx$$

= $\int_{0}^{1} x^{2} + 1 - x dx$
= $\left(\frac{x^{3}}{3} + x - \frac{x^{2}}{2}\right)\Big|_{0}^{1}$
= $\frac{1}{3} + 1 - \frac{1}{2} - \left(\frac{0^{3}}{3} + 0 - \frac{0^{2}}{2}\right)$
= $\frac{5}{b}$

EXAMPLE 2. Find the area of the region enclosed by the functions $y = x^2$ and y = x + 2.

$$x^2 = x+2$$

$$\chi^{2} = \chi + 2$$

$$\Rightarrow \chi^{2} - \chi - 2 = 0$$

$$\chi + 2 - \chi^{2}$$

$$\Rightarrow$$
 $(x+1)(x-2)=0$

$$\Rightarrow$$
 $x=-1$ or $x=z$

2) Integrate

Area(S) =
$$\int_{-1}^{2} x + 2 - x^{2} dx$$

= $\left(\frac{x^{2}}{2} + 2x - \frac{x^{3}}{3}\right)\Big|_{-1}^{2}$

= $\left(\frac{4}{2} + 4 - \frac{8}{3}\right) - \left(\frac{1}{2} - 2 + \frac{1}{3}\right)$

= $2 + 4 - \frac{8}{3} - \frac{1}{2} + 2 - \frac{1}{3}$

= $8 - 3 - \frac{1}{2}$

= $\left(\frac{9}{2}\right)$

General Steps:

- 1. Find the intersection between the two curves.
- 2. Draw a picture.
- 3. Set up the definite integral.
- 4. Evaluate the definite integral.

EXAMPLE 3. Find the area of the region enclosed by the line y = x - 1 and the parabola

$$x = \frac{y^2}{3} - 3$$

$$(y = \frac{2c^2}{2} - 3)$$

$$0 = \frac{1}{2} - 3 \Rightarrow y = \frac{1}{2} \sqrt{6}$$

2 Intersections.

(a)
$$y+1=x=\frac{y^2}{3}-3$$
 => $y+1=\frac{y^2}{3}-3$ => $0=\frac{y^2}{3}-y-4$

(b)
$$x = y^{-1} \Rightarrow (x - i)^2 = 2x + 6$$

 $\Rightarrow x = 5 + x = -1$

(3) Integrate

Area (5) =

Supper - lower clac

r not right.

Regions Bounded By Functions of y

EXAMPLE 4. Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

$$x_{R} = \frac{1}{3} + 1$$

$$x_{L} = \frac{y^{2}}{2} - 3$$

$$\Rightarrow_{\chi} Area(S) = \int_{C}^{d} x_{R} - x_{L} dy$$

(2) Intersections

3 Area

Area(s) =
$$\int_{-2}^{4} y+1 - (\frac{y^2}{2} - 3) dy$$

= $\int_{-2}^{4} -\frac{y^2}{2} + y + 4 dy$
= 18