Total No.	of Questions	: 6	1
-----------	--------------	-----	---

SEAT No.:				
[Total	No.	of Pages	:	2

P24

Oct.-16/TE/Insem.-23

T.E. (E & TC) (Semester - I)

Electromagnetics & Transmission lines (2012 Pattern)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4,Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume Suitable data if necessary.
- 5) Use of calculator is allowed.
- Q1) a) State & prove gauss law. Also write significance of gaussian surface.[5]
 - b) Derive the expression for electric field intensity \overline{E} due to uniform sheet charge ' ρ_s '. [5]

OR

- Q2) a) State & prove divergence theorem for electrostatic field. [5]
 - b) A uniform line charge of 2 μ c/m is located on z axis. Find \overline{E} at point P(1,2,3) if line charge extends from $-\infty$ to ∞ . [5]
- Q3) a) Derive the electrostatic boundary conditions for electric field at an interface between conductor & free space.[6]
 - b) Derive an expression for capacitance of spherical plate capacitor. [4]

OR

- **Q4)** a) For a parallel plate capacitor, area of plate $A = 120 \text{ cm}^2$, Spacing between plates d = 5 mm separated by dielectric of $\epsilon_r = 12$, connected to 40 volt battery. Find [5]
 - i) Capacitance
 - ii) E
 - iii) D
 - iv) Energy stored in capacitor
 - b) Write poisson's & Laplace's equations & its significance

P.T.O.

[5]

Q 5) a)	State & Prove stokes theorem of magnetostatics	[4]
b)	Give the $\overline{H} = Z_0 r^2 \overline{a}_{\phi} A/m$. Determine the current density. Explain	the
	significance of curl.	[6]

OR

Q6) a) Derive the boundary condition at an interface between two magnetic medium. [6]

b) State & prove Biot-savart's law of magnetostatics. [4]

#