приложения

Приложение 1 Термодинамические константы некоторых веществ

Вещество	$\Delta H^0_{f, 298}$	$S^{0}_{298},$	$\Delta G^{0}_{f,298},$
Вещество	кДж/моль	Дж/(моль K)	кДж/моль
1	2	3	4
$Ag(\Gamma)$	284,93	172,88	246,10
Ag(κ)	0	42,55	0
$Ag^{+}(p)$	105,58	72,80	77,12
AgBr(κ)	-100,7	107,1	-97,2
AgCl(κ)	-127,1	96,11	-109,8
AgI(к)	-61,9	115,5	-66,4
AgNO ₃ (κ)	-124,5	140,9	-33,6
$Ag_2O(\kappa)$	-31,1	121,0	-11,3
$Ag_2S(\kappa)$	-32,8	144,0	-40,8
$Ag_2SO_4(\kappa)$	-717,2	199,8	-619,6
Al(Γ)	326,3	164,4	288,7
Al(κ)	0	28,35	0
$Al^{3+}(p)$	-530,0	-301	-490,5
AlBr ₃ (κ)	-513,4	180,2	-490,6
AlCl ₃ (κ)	-704,2	109,3	-628,6
Al ₂ O ₃ (κ)	-1676	50,92	-1582
$Al_2S_3(\kappa)$	-723,4	96	-492,5
Ar(Γ)	0	154,7	0
As(Γ)	288,7	175,1	142,2
AsBr ₃ (κ)	-197,5	159	-161,7
AsCl ₃ (Γ)	-305,0	212,5	-268,4
AsF ₃ (Γ)	-920,65	289,0	-907,7
AsH ₃ (κ)	66,4	223,0	68,9
As ₂ O ₅ (κ)	-924,9	165,4	-782,4
Au(Γ)	365,25	180,41	325,6
Au(κ)	0	47,40	0

91

Продолжение прил. 1

		npoe	эолжение при
1	2	3	4
AuCl(κ)	-36,4	85,17	-14,6
AuCl ₃ (κ)	-118,4	164,4	-53,6
Au(OH) ₃ (κ)	-477,8	121	-349,8
Au ₂ O ₃ (κ)	-13,0	134,3	78,7
В(к)	0	5,8	0
BBr ₃ (κ)	-	228,5	-237,5
BCl ₃ (ж)	-427,1	206	-387,2
BF ₃ (Γ)	-1137,0	254,37	-1120
В ₂ О ₃ (аморф)	-1254	80,8	-1193
H ₃ BO ₃ (к)	-1094	88,74	-968,8
$B_2S_3(\kappa)$	-252	106,3	-238,1
Ва(к)	0	67	0
BaBr ₂ (κ)	-756,5	150	-732
BaCl ₂ (κ)	-859,1	126	-811,4
BaCO ₃ (κ)	-1219	112	-1139
BaO(κ)	-558,1	70,3	-528,4
BaO ₂ (κ)	-629,7	65,7	-587,9
Ba(OH) ₂ (κ)	-950	124,0	-886
BaS(κ)	-460,5	78,3	- 456
BaSO ₄ (κ)	-1465,0	132,0	-1353,0
Be(ĸ)	0	9,5	0
BeCO ₃ (к)	-982	67,29	-944,7
BeO(κ)	-598	14,1	- 582
Bi(κ)	0	56,9	0
BiCl ₃ (κ)	-379,0	172,0	-313,1
$\mathrm{Br}_2(\Gamma)$	30,9	254,5	3,1
Br ₂ (ж)	0	152,2	0
BrF ₃ (ж)	-303,1	178,1	-242,9
HBr(Γ)	-34,1	198,6	-51,2
С(графит,к)	0	5,74	0

92

Продолжение прил. 1

		Про	должение прил
1	2	3	4
CCl ₄ (Γ)	-102,93	309,74	-60,63
CCl ₄ (ж)	-135,44	214,6	-64,7
СН ₄ (г)	-74,86	186,19	-50,79
CO(r)	-110,52	197,54	-137,14
СО ₂ (г)	-393,51	213,68	-394,38
CS ₂ (ж)	88,7	151,0	64,4
Са(к)	0	41,63	0
CaCO ₃ (κ)	-1206,9	92,9	-1128
CaCl ₂ (κ)	- 795	113,6	-750,2
CaO(κ)	-635,5	39,7	-604,2
$Ca(OH)_2(\kappa)$	-986,6	76,1	-896,8
$Ca_3(PO_4)_2(\kappa)$	-4123,6	236,0	-3887,6
CaS(ĸ)	-482,7	56,5	-477,7
$CaSO_40,5H_2O(\kappa)$	-1577,8	130,6	-1437,8
Cd(ĸ)	0	51,76	0
CdCO ₃ (κ)	-754,6	96,7	-674,5
CdO(κ)	-260,0	54,8	-229,3
$Ca(OH)_2(\kappa)$	-986,6	76,1	-896,8
$\text{Cl}_2(\Gamma)$	0	222,9	0
Cl'(p)	-167,2	56,54	-131,4
ClF ₃ (ж)	-157,7	281,5	-117,8
$Cl_2O(\Gamma)$	75,7	266,2	93
Cl ₂ O ₇ (ж)	251	_	_
HCl(Γ)	-91,8	186,8	-94,79
HCl(p)	-166,9	56,5	-131,2
$Co(OH)_3(\kappa)$	-730,53	83,68	-596,64
CoO(κ)	-239,3	43,9	-213,4
$Co_3O_4(\kappa)$	-8 79	102,9	-761,5
$\frac{\operatorname{Cr}(\kappa)}{\operatorname{Cr}^{3^+}(p)}$	0	23,6	0
$\operatorname{Cr}^{3+}(p)$	-236,1	-215,6	-223,2
CrCl ₃ (κ)	-570,3	124,7	-500,7

		IIpo	эолысские при
1	2	3	4
CrF ₃ (κ)	-1159,0	94,14	-1089,3
Cr ₂ O ₃ (к)	-1140,6	81,2	-1059
Cr(OH) ₃ (κ)	-999,98	80,33	-849,02
Cu(ĸ)	0	33,15	0
CuCl(κ)	-137,3	87,0	-120,1
CuCl ₂ (κ)	-215,6	108,1	-171,4
$Cu(NO_3)_2(\kappa)$	-305,34	192,46	-117,5
CuO(ĸ)	-162	42,63	-129,4
$Cu_2O(\kappa)$	-173,2	92,93	-150,5
CuSO ₄ (κ)	- 770,9	109	-661,8
$CuSO_45H_2O(\kappa)$	- 2279,4	300	-1879,9
$F_2(\Gamma)$	0	202,9	0
HF(Γ)	-270,9	173,7	-272,8
HF(p)	-320,08	-	-296,86
Fe(κ)	0	27,15	0
Fe ³⁺ (p)	- 46,39	-309,7	- 4,52
FeCO ₃ (κ)	- 738,15	95,4	- 665,1
FeCl ₂ (κ)	-341,75	118,0	-302,35
FeCl ₃ (κ)	-396,23	145,6	-340,16
FeO(κ)	-264,8	60,75	- 244,3
$Fe_2O_3(\kappa)$	-822,2	87,4	-740,3
$Fe_3O_4(\kappa)$	-1117,1	146,2	-1014,2
$Fe(OH)_2(\kappa)$	-561,7	88,0	-479,7
$Fe(OH)_3(\kappa)$	-826,2	105,0	-699,6
FeS(κ)	-100,4	60,29	-100,8
$Fe_2(SO_4)_3(\kappa)$	-2584	282,8	-2253
Ge(κ)	0	31,3	0
GeCl ₄ (ж)	- 569	303,0	- 497
GeO ₂ (κ)	- 554,7	55,27	-500,8
$H_2(\Gamma)$	0	130,52	0
Нg(ж)	0	75,9	0

Продолжение прил. 1

		Про	должение прил
1	2	3	4
HgCl ₂ (κ)	-228,2	140,02	-180,9
Hg ₂ Cl ₂ (κ)	-265,1	192,76	-210,8
Hg(NO ₃) ₂ (к)	-226	_	_
HgO(κ)	-90,9	70,3	-58,4
HgS(ĸ)	- 59	82	-51,4
In(κ)	0	57,82	0
К(к)	0	71,45	0
KBr(κ)	-392,5	95,85	-378,8
KBrO ₃ (κ)	-332,2	149,2	-243,5
K ₂ CO ₃ (к)	-1146,1	156,32	-1059,8
KCl(κ)	-435,9	82,56	-408
KClO ₃ (κ)	-391,2	142,97	-289,9
KClO ₄ (κ)	-430,1	151,0	-300,4
KHCO ₃ (κ)	-959,3	128,7	-860,6
KI(κ)	-327,6	110,79	-324,1
KIO ₃ (κ)	-508,4	151,46	-425,5
KNO ₂ (κ)	-370,3	117	-218,6
KNO ₃ (κ)	-493,2	132,93	-393,1
КОН(к)	-425,8	79,32	-380,2
КОН(р)	-477,3	91,6	-440,5
Kr(Γ)	0	164	0
Mg(ĸ)	0	32,7	0
MgCO ₃ (κ)	-113	65,7	-1029,3
MgCl ₂ (κ)	-641,1	89,8	-591,6
$Mg(NO_3)_26H_2O(\kappa)$	-2499,6	366	-2115,6
MgO(k)	-601,8	26,9	-569,6
Mg(OH) ₂ (κ)	-924,7	63,14	-833,7
MgSO ₄ (κ)	-1301,4	91,6	-158,7
Mn(κ)	0	32	0
MnCO ₃ (κ)	-881,7	109,5	-811,4
MnO ₂ (κ)	-521,5	53,1	-466,7

		P	onorcentic ripia
1	2	3	4
Мо(к)	0	28,6	0
MoO ₃ (κ)	-745,2	77,74	-668,1
N ₂ (Γ)	0	199,9	0
NF ₃ (Γ)	-126	260,6	-84,4
$NH_3(\Gamma)$	-46,19	192,6	-16,71
NH ₄ Cl(κ)	-314,2	95,8	-203,2
NH ₄ NO ₂ (κ)	-237,4	253,7	-116,8
NH ₄ NO ₃ (κ)	-365,4	151	-183,8
NO(Γ)	90,25	210,6	86,58
NOCl(Γ)	52,5	261,5	66,9
$NO_2(\Gamma)$	33	240,2	51,5
$N_2O_3(\Gamma)$	83,3	307,3	140,6
N ₂ O ₄ (ж)	19,05	209,3	98,0
N ₂ O ₅ (κ)	-42,7	178,4	114,2
HNO ₂ (p)	-119,2	152,7	-55,6
HNO ₃ (Γ)	-135,1	266,9	-74,8
HNO ₃ (ж)	-174,1	156,6	-80,8
Na(κ)	0	51,45	0
Na ⁺ (p)	-1142,8	188,3	-1041,8
NaAlO ₂ (κ)	-1132,2	70,4	-1066,27
NaCl(κ)	- 411,1	72,12	-384
NaClO ₃ (κ)	-365,4	129,7	-275
NaHCO ₃ (κ)	- 947,7	102	- 851,9
NaNO ₂ (κ)	-359	106	- 295
NaNO ₃ (κ)	- 466,7	116	-365,9
NaOH(к)	-425,6	64,4	-380,7
NaOH(p)	- 470	48,1	-380,7
Na ₂ CO ₃ (κ)	-1131,0	136,4	-1047,5
Na ₂ O(κ)	- 416,0	75,27	-377,1
Na ₂ O ₂ (κ)	-510,4	94,88	-446,9
Na ₂ S(κ)	-370,3	77,4	-354,8

95

Продолжение прил. 1

Прод	должение	прил.	1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 266,8 427,7 0 764,1 0 0 211,6 0 62,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	427,7 0 764,1 0 0 211,6 0 62,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 764,1 0 0 211,6 0 62,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	764,1 0 0 211,6 0 62,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 211,6 0 62,7
Ni(κ) 0 29,9 NiO(κ) -239,7 37,99 -2 O ₂ (Γ) 0 204,05 O ₃ (Γ) 142,3 238,8 1	0 211,6 0 62,7
NiO(κ) -239,7 37,99 -2 $O_2(\Gamma)$ 0 204,05 $O_3(\Gamma)$ 142,3 238,8 1	211,6 0 62,7
NiO(κ) -239,7 37,99 -2 $O_2(\Gamma)$ 0 204,05 $O_3(\Gamma)$ 142,3 238,8 1	0 62,7
O ₃ (r) 142,3 238,8 1	62,7
OH (n) -230 19 -10 86 -1	57.40
-1 250,17 10,00 -1	57,42
$H_2O(Γ)$ -241,82 188,72 -2	28,61
Н ₂ O(ж) -285,83 70,08 -2	37,24
$H_2O_2(ж)$ -187,8 109,5 -1	120,4
P(Γ) 314,64 163,1 2°	78,28
Р(к,красн) -17,6 22,8 -	11,9
	24,5
PCl ₃ (Γ) -287,02 311,7 -2	260,5
PCl ₅ (Γ) -366 364,5 -3	305,4
PF ₅ (Γ) -1593 296 -1	517,2
PH ₃ (r) 5,44 210,1 1	3,39
P ₄ O ₆ (κ) -1640 -	_
$P_4O_{10}(\kappa)$ -2984 228,8 -2	697,8
H ₃ PO ₃ (p) -964,8 167,3 -8	356,8
$H_3PO_4(p)$ -1279 110,5 -1	119,1
Ρb(κ) 0 64,8	0
PbCl ₂ (κ) -359,8 134,3 -3	14,05
Pb(NO ₃) ₂ (κ) -451,7 217,9 -2	256,9
	189,1
PbO ₂ (κ) -276,6 74,89 -2	218,3
PbS(κ) -100,4 91,2 -	98,8
Pd(κ) 0 37,7	0

		Прос	оолжение прил
1	2	3	4
RuO ₄ (κ)	-239,3	141	-150,6
S(к,ромб)	0	31,9	0
S ₂ Cl ₂ (ж)	-58,2	_	_
$\mathrm{SO}_2(\Gamma)$	-296,9	248,1	-300,2
$SO_3(\Gamma)$	-396,1	256,4	-370
SO ₃ (ж)	-439,0	122,05	-368,04
SO ₃ (κ)	-454,51	52,3	-368,98
$H_2S(\Gamma)$	-910,85	20,08	-744,93
$H_2S(p)$	-39,75	121,3	-27,9
$H_2SO_4(x)$	-814,2	156,9	-690,3
Sb(κ)	0	45,69	0
SbCl ₃ (к)	-381,2	183	-322,5
Se(ĸ)	0	42,2	0
$SeO_2(\Gamma)$	-125,8	264,8	-133,2
SeO ₂ (κ)	-225,7	66,7	-171,6
Si(ĸ)	0	18,8	0
SiCl ₄ (ж)	-687,8	239,7	-598,3
SiH ₄ (Γ)	34,7	204,56	57,2
SiO ₂ (κ)	-908,3	42,7	-854,2
SiS ₂ (ж)	-156,1	90,5	-158,6
H ₂ SiO ₃ (аморф)	-1189,1	_	-1019,1
Н ₄ SiO ₄ (аморф)	-1480	_	_
Sn(κ)	0	51,6	0
SnO(κ)	-286,0	56,5	-256,9
SnO ₂ (κ)	-580,8	52,3	-519,9
Ta(κ)	0	41,5	0
Ta ₂ O ₅ (к)	-20,45	143,01	-1909,99
Ti(κ)	0	30,6	0
TiCl ₄ (Γ)	-763,2	352,23	-726,12
TiCl ₄ (ж)	-804,2	252,4	-737,4
Tl(κ)	0	64,18	0
			·

Продолжение прил. 2

1	2	3	4
V(ĸ)	0	28,9	0
VCl ₂ (κ)	-452,17	97,1	-406,12
VCl ₃ (κ)	-582,41	130,96	-516,52
VCl ₄ (ж)	-569,8	259	-505,6
V ₂ O ₃ (к)	-1219,1	98,3	-1139,4
V ₂ O ₅ (к)	-1552	131	-1421,2
W(ĸ)	0	32,7	0
WO ₂ (κ)	-589,63	50,55	-533,87
WO ₃ (K)	-842,7	75,94	-763,9
Zn(κ)	0	41,63	0
ZnCO ₃ (κ)	-810,74	92,47	-732,48
ZnCl ₂ (κ)	-415,05	111,5	-369,4
ZnO(κ)	-350,6	43,64	-320,7
ZnS(κ)	-205,4	57,74	-200,7
$ZnSO_46H_2O(κ)$	-2780,83	363,8	-2325,56
Zr(ĸ)	0	39	0
ZrCl ₄ (κ)	-979,8	181,4	-889,3