TransNet: Translation-Based Network Representation Learning for Social Relation Extraction 用于社交关系提取的基于转移的网络表示学习

Cunchao Tu^{1,2}, Zhengyan Zhang¹, Zhiyuan Liu^{1,2*}, Maosong Sun^{1,2}

¹Department of Computer Science and Technology, State Key Lab on Intelligent Technology and Systems, National Lab for Information Science and Technology, Tsinghua University, Beijing, China
²Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou, China

What Does "Translation" Mean?

We may familiar with:
Network Representation Learning

What Does "Translation" Mean?

"Translation"

here means the movement that changes the position of a vector in representation space.

What Is Social Relation Extraction?

What Is Social Relation Extraction?

Formally, we define the problem of SRE as follows. Suppose there is a social network G = (V, E), where V is the set of vertices, and $E \subseteq (V \times V)$ are edges between vertices. Besides, the edges in E are partially labeled, denoted as E_L .

What Is Social Relation Extraction?

Formally, we define the problem of SRE as follows. Suppose there is a social network G = (V, E), where V is the set of vertices, and $E \subseteq (V \times V)$ are edges between vertices. Besides, the edges in E are partially labeled, denoted as E_L .

Finally, given the overall network structure and the labeled edges in E_L , SRE aims to predict the labels over unlabeled edges in E_U , where $E_U = E - E_L$ represents the unlabeled

What We Have Got here?

Now, We have already got a baby step for :

TransNet: Translation-Based Network Representation Learning for Social Relation Extraction

What We Have Got here?

Now, we have already got a baby step for :

TransNet: Translation-Based Network Representation Learning for Social Relation Extraction

Then, let's go for a more detail about "main work"

Main Work

In this work, we focus on the problem of incorporating rich relation information on edges into NRL.

Main Work

Specifically, for each edge e=(u,v) and its corresponding label set l, the representation of vertex v is expected to be close to the representation of vertex u plus the representation of edge e.

Specifically, for each edge e=(u,v) and its corresponding label set l, the representation of vertex v is expected to be close to the representation of vertex u plus the representation of edge e.

the translation mechanism among u, v and e can be formalized as

$$\mathbf{u} + \mathbf{l} \approx \mathbf{v}'.$$
 (1)

Specifically, for each edge e=(u,v) and its corresponding label set l, the representation of vertex v is expected to be close to the representation of vertex u plus the representation of edge e.

We employ a distance function $d(\mathbf{u} + \mathbf{l}, \mathbf{v}')$ to estimate the degree of (u, v, l) that matches the Eq. (1). In practice, we simply adopt L_1 -norm.

Specifically, for each edge e=(u,v) and its corresponding label set l, the representation of vertex v is expected to be close to the representation of vertex u plus the representation of edge e.

We employ a distance function $d(\mathbf{u} + \mathbf{l}, \mathbf{v}')$ to estimate the degree of (u, v, l) that matches the Eq. (1). In practice, we simply adopt L_1 -norm.

With the above definitions, for each (u, v, l) and its negative sample $(\hat{u}, \hat{v}, \hat{l})$, the translation part of TransNet aims to minimize the hinge-loss as follows:

$$\mathcal{L}_{trans} = \max(\gamma + d(\mathbf{u} + \mathbf{l}, \mathbf{v}') - d(\hat{\mathbf{u}} + \hat{\mathbf{l}}, \hat{\mathbf{v}}'), 0), \quad (2)$$

where $\gamma > 0$ is a margin hyper-parameter

Edge Representation Construction

we employ a deep autoencoder to con-struct the edge representations.

Edge Representation Construction

we employ a deep autoencoder to construct the edge representations.

Reconstruction Loss

Reconstruction Loss: Autoencoder aims to minimize the distance between inputs and the reconstructed outputs. The reconstruction loss is shown as:

$$\mathcal{L}_{rec} = ||\mathbf{s} - \hat{\mathbf{s}}||. \tag{5}$$

Reconstruction Loss

Reconstruction Loss: Autoencoder aims to minimize the distance between inputs and the reconstructed outputs. The reconstruction loss is shown as:

$$\mathcal{L}_{rec} = ||\mathbf{s} - \hat{\mathbf{s}}||. \tag{5}$$

However, due to the sparsity of the input vector, the number of zero elements in s is much larger than that of non-zero elements.

Reconstruction Loss

$$\mathcal{L}_{rec} = ||\mathbf{s} - \hat{\mathbf{s}}||. \tag{5}$$

However, due to the sparsity of the input vector, the number of zero elements in s is much larger than that of non-zero elements.

$$\mathcal{L}_{ae} = ||(\mathbf{s} - \hat{\mathbf{s}}) \odot \mathbf{x}||, \tag{6}$$

where \mathbf{x} is a weight vector and \odot means the Hadamard product. For $\mathbf{x} = {\{\mathbf{x}_i\}}_{i=1}^{|T|}$, $\mathbf{x}_i = 1$ when $\mathbf{s}_i = 0$ and $\mathbf{x}_i = \beta > 1$ otherwise.

Overall Cost

$$\mathcal{L} = \mathcal{L}_{trans} + \alpha [\mathcal{L}_{ae}(l) + \mathcal{L}_{ae}(\hat{l})] + \eta \mathcal{L}_{reg}. \tag{7}$$

Here, we introduce two hyper-parameters α and η to balance the weights of different parts. Besides, \mathcal{L}_{reg} is an L2-norm regularizer to prevent overfitting, which is defined as

$$\mathcal{L}_{reg} = \sum_{i=1}^{K} (||W^{(i)}||_2^2 + ||b^{(i)}||_2^2). \tag{8}$$

One More Thing

Thanks for Listening

Preferences

- [1] 《 TransNet: translation-based network representation learning for social relation extraction[C]International Joint Conference on Artificial Intelligence. AAAI 》
- [2]