

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2022

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 21 pages. *Hierdie nasienriglyne bestaan uit 21 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die nasienriglyne van toepassing.

QUESTION1/VRAAG1

1.1.1	(3x-6)(x+2)=0	$\checkmark x = 2$
	x = 2 or $x = -2$	$\checkmark x = -2 \tag{2}$
1.1.2	$2x^2 - 6x + 1 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$x = \frac{6 \pm \sqrt{(-6)^2 - 4(2)(1)}}{2(2)}$	✓ correct substitution into
	$x = {2(2)}$	correct formula
		√ 2,82
	x = 2.82 or $x = 0.18$	✓ 0,18 (3)
1.1.3	$x^2 - 90 > x$	
	$x^2 - x - 90 > 0$	✓ standard form
	(x+9)(x-10) > 0	
	CV: $x = -9$ or $x = 10$	✓ critical values
	-9 10	
	x < -9 or $x > 10$	$\checkmark \checkmark x < -9 \text{ or } x > 10$
	OR/OF	(4)
	$(-\infty; -9)$ or $(10; \infty)$	

1 1 1	$x - 7\sqrt{x} = -12$		
1.1.4			
	$x + 12 = 7\sqrt{x}$	✓ isolating the root	
	$(x+12)^2 = \left(7\sqrt{x}\right)^2$	✓ squaring both sides	
	$x^2 + 24x + 144 = 49x$		
	$x^2 - 25x + 144 = 0$	✓ standard form	
	(x-16)(x-9) = 0		
	x = 16 or x = 9	✓ both answers	(4)
	OR/OF	OR/OF	
	$x - 7\sqrt{x} + 12 = 0$	✓ standard form	
	$(\sqrt{x} - 3)(\sqrt{x} - 4) = 0$ or let $\sqrt{x} = k$ $\sqrt{x} = 3$ or $\sqrt{x} = 4$	✓ factors	
	$\sqrt{x} = 3 \text{ or } \sqrt{x} = 4$	✓ answers	
	x = 9 or x = 16	✓ both answers for x	(4)
1.2	2x - y = 2		
	$y = 2x - 2 \qquad \dots (1)$	✓ eq 1	
	$xy = 4 \qquad \dots (2)$		
	(1) in (2):		
	x(2x-2) = 4	✓ substitution	
	$2x^2 - 2x - 4 = 0$	✓ standard form	
	$x^{2} - x - 2 = 0$ (x - 2)(x + 1) = 0		
	x = 2 or x = -1	✓ x-values	
	$y = 2 \qquad y = -4$	✓ y-values	(5)

OR/OF	OR/OF
2x - y = 2	
$x = \frac{1}{2}y + 1$ (1)	✓ eq 1
$xy = 4 \qquad \qquad \dots (2)$	
(1) in (2):	
$y\left(\frac{1}{2}y+1\right) = 4$	✓ substitution
$\frac{1}{2}y^2 + y - 4 = 0$	✓ standard form
$y^2 + 2y - 8 = 0$	
(y+4)(y-2) = 0	
y = -4 or $y = 2$	✓ y-values
x = -1 $x = 2$	✓ x-values
OR/OF	OR/OF
$2x - y = 2 \dots (1)$	
$y = \frac{4}{x} \qquad \dots (2)$	✓ eq 2
(2) in (1):	
$2x - \frac{4}{x} = 2$	✓ substitution
$2x^2 - 2x - 4 = 0$ $x^2 - x - 2 = 0$	✓ standard form
$x^{2} - x - 2 = 0$ $(x-2)(x+1) = 0$	
x = 2 or $x = -1$	✓ x-values
$y = 2 \qquad y = -4$	✓ y-values

	OR/OF	OR/OF	
	$2x - y = 2 \dots (1)$		
	$x = \frac{4}{y} \qquad \dots (2)$	✓ eq 2	
	(2)in (1):		
	$2\left(\frac{4}{y}\right) - y = 2$	✓ substitution	
	$8 - y^2 - 2y = 0$		
	$y^{2} + 2y - 8 = 0$ $(y+4)(y-2) = 0$	✓ standard form	
	(y+4)(y-2)=0		
	y = -4 or $y = 2$	✓ y-values	
	x = -1 $x = 2$	✓ x-values	(5)
1.3	$2.5^{n} - 5^{n+1} + 5^{n+2} = 2.5^{n} - 5^{n}.5^{1} + 5^{n}.5^{2}$	✓ exp law	
	$=5^{n}(2-5+25)$		
	$=5^{n}(22)$	✓ common factor	
	$2(5^n(11))$	✓answer/explanation	(3)
	07.107		
	OR/OF		
	Any integer multiplied by an even number will be even		
1.4	Any integer multiplied by an even number will be		
1.4	Any integer multiplied by an even number will be even	$\checkmark \frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}}$	
1.4	Any integer multiplied by an even number will be even $\frac{3^{y+1}}{32} = \sqrt{96^x}$	$\checkmark \frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}}$ $\checkmark 3^{y+1} \cdot 2^{-5} = 2^{\frac{5x}{2}} \cdot 3^{\frac{x}{2}}$	
1.4	Any integer multiplied by an even number will be even $ \frac{3^{y+1}}{32} = \sqrt{96^x} $ $ \frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}} $ $ 3^{y+1} \cdot 2^{-5} = 2^{\frac{5x}{2}} \cdot 3^{\frac{x}{2}} $ $ -5 = \frac{5x}{2} $		
1.4	Any integer multiplied by an even number will be even $\frac{3^{y+1}}{32} = \sqrt{96^x}$ $\frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}}$ $3^{y+1} \cdot 2^{-5} = 2^{\frac{5x}{2}} \cdot 3^{\frac{x}{2}}$		
1.4	Any integer multiplied by an even number will be even $ \frac{3^{y+1}}{32} = \sqrt{96^x} $ $ \frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}} $ $ 3^{y+1} \cdot 2^{-5} = 2^{\frac{5x}{2}} \cdot 3^{\frac{x}{2}} $ $ -5 = \frac{5x}{2} $ $ \therefore x = -2 $	$\checkmark 3^{y+1}.2^{-5} = 2^{\frac{5x}{2}}.3^{\frac{x}{2}}$	
1.4	Any integer multiplied by an even number will be even $ \frac{3^{y+1}}{32} = \sqrt{96^x} $ $ \frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}} $ $ 3^{y+1} \cdot 2^{-5} = 2^{\frac{5x}{2}} \cdot 3^{\frac{x}{2}} $ $ -5 = \frac{5x}{2} $ $ \therefore x = -2 $ $ y+1 = \frac{x}{2} $ $ y+1 = \frac{-2}{2} $	$\checkmark 3^{y+1}.2^{-5} = 2^{\frac{5x}{2}}.3^{\frac{x}{2}}$	
1.4	Any integer multiplied by an even number will be even $ \frac{3^{y+1}}{32} = \sqrt{96^x} $ $ \frac{3^{y+1}}{2^5} = (96)^{\frac{x}{2}} $ $ 3^{y+1} \cdot 2^{-5} = 2^{\frac{5x}{2}} \cdot 3^{\frac{x}{2}} $ $ -5 = \frac{5x}{2} $ $ \therefore x = -2 $ $ y+1 = \frac{x}{2} $	$\checkmark 3^{y+1}.2^{-5} = 2^{\frac{5x}{2}}.3^{\frac{x}{2}}$	(4)

OR/OF	OR/OF
$\frac{3^{y+1}}{32} = \sqrt{96^x}$	$(2^{y+1})^2$
$\left(\frac{3^{y+1}}{2^5}\right)^2 = \left(\sqrt{(96)^x}\right)^2$	$\checkmark \left(\frac{3^{y+1}}{2^5}\right)^2 = \left(\sqrt{(96)^x}\right)^2$
$\frac{3^{2y+2}}{2^{10}} = 2^{5x} \cdot 3^x$	
$3^{2y+2} \cdot 2^{-10} = 2^{5x} \cdot 3^x$ $-10 = 5x$	$\checkmark 3^{2y+2}.2^{-10} = 2^{5x}.3^x$
$\therefore x = -2$	$\checkmark x = -2$
$2y+2=-2$ $\therefore y=-2$	$\checkmark y = -2 \tag{4}$
	[25]

QUESTION 2/VRAAG 2

1		I
2.1.1	a = 14	/T 14.5 440
	$T_6 = 14r^5 = 448$	$\checkmark T_6 = 14r^5 = 448$
	$r^5 = 32$ Answer only: full marks	$\checkmark r = 2 \tag{2}$
2.1.2	$\therefore r = 2$ $T_n = 14(2)^{n-1}$	
2.1.2	n V	
	$S_n = \frac{14(2^6 - 1)}{2 - 1}$	✓ substitution into correct formula
	$S_6 = 882$	$\checkmark S_6 = 882$
	114 674 – 882 = 113 792	
	$113792 = 896(2^n - 1)$	
	$128 = 2^n$	$\checkmark 128 = 2^n$
	n = 7	√ 7 (4)
	OD/OF	, ,
	OR/OF	OR/OF
	$S_n = \frac{a(r^n - 1)}{r - 1}$	
	$114\ 674 = \frac{14(2^n - 1)}{2 - 1}$	✓ substitution into correct formula
	$8191 = 2^n - 1$	
	$2^n = 8192$	$\checkmark 2^n = 8192$
	$n = \log_2 8192$	
	n=13	$\checkmark n = 13$
	7 more terms must be added to the first 6 terms.	√ 7 (4)
2.1.3	$r = \frac{1}{2}$ OR $448r^5 = 14$	$\checkmark r = \frac{1}{2}$
	$\therefore r = \frac{1}{2}$	_
	_	
	$S_{\infty} = \frac{1-r}{1-r}$	
	$S_{\infty} = \frac{448}{1}$	✓ substitution
	$1-\frac{1}{2}$	
	$S_{\infty} = \frac{a}{1 - r}$ $S_{\infty} = \frac{448}{1 - \frac{1}{2}}$ $S_{\infty} = 896$	✓ answer (3)
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	

2.2	$\sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6} \right) = 20 \frac{1}{6}$		
	$T_1 = \frac{1}{6} \qquad T_2 = \frac{1}{3} + \frac{1}{6} = \frac{3}{6}$ $d = \frac{3}{6} - \frac{1}{6} = \frac{1}{3}$	$\checkmark T_1 = \frac{1}{6}$ $\checkmark d$	
	$d = \frac{3}{6} - \frac{1}{6} = \frac{1}{3}$	✓ d	
	$\frac{121}{6} = \frac{n}{2} \left[2 \left(\frac{1}{6} \right) + \left(n - 1 \right) \left(\frac{1}{3} \right) \right]$	✓ substitution	
	$\frac{121}{3} = n \left[\frac{1}{3} + \frac{1}{3}n - \frac{1}{3} \right]$		
	$\frac{121}{3} = \frac{1}{3}n^2$ $121 = n^2$		
	$n = 11$ $\therefore k = 10$	✓ value of n ✓ value of k	(5)
	OR/OF	OR/OF	
	$\sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6} \right) = 20 \frac{1}{6}$		
	$a = \frac{1}{6}$	$\checkmark a = \frac{1}{6}$	
	$a = \frac{1}{6}$ $l = \frac{1}{3}k + \frac{1}{6}$	$\checkmark a = \frac{1}{6}$ $\checkmark l$	
	n = k + 1	$\checkmark n = k + 1$	
	$S_n = \frac{n}{2} [a+l]$		
	$\frac{121}{6} = \frac{k+1}{2} \left[\frac{1}{6} + \frac{1}{3}k + \frac{1}{6} \right]$		
	$\frac{121}{6} = \frac{k+1}{2} \left[\frac{1}{3}k + \frac{1}{3} \right]$		
	$\frac{121}{6} = \frac{k+1}{2} \left[\frac{k+1}{3} \right]$		
	$\frac{121}{6} = \frac{(k+1)^2}{6}$	$\checkmark \frac{121}{6} = \frac{(k+1)^2}{6}$	
	$k+1 = \pm \sqrt{121} k+1 = 11$		(5)
	k = 10		(3) [14]

QUESTION 3/VRAAG 3

			[10]
	\therefore Between T_{76} and T_{77}	$\checkmark T_{76}$ and T_{77}	(3)
	n = 76	✓ n = 76	
	2n = 152		
	$n^2 + 2n + 1 + 4n + 4 + 9 - n^2 - 4n - 9 = 157$		
	$(n+1)^2 + 4(n+1) + 9 - (n^2 + 4n + 9) = 157$		
	$T_{n+1} - T_n = 157$	$\checkmark T_{n+1} - T_n = 157$	
	OR/OF	OR/OF	
	\therefore Between T_{76} and T_{77}	$\checkmark T_{76}$ and T_{77}	(3)
	p = 76	✓ p = 76	
3.4	157 = 2p + 5	$\checkmark 157 = 2p + 5$	
	$T_p = 2p + 5$	$\checkmark 2p+5$	(3)
	$T_p = 7 + (p-1)(2)$	✓ 2	
	$T_n = a + (n-1)d$, mst difference	
	OR/OF First difference: 7; 9; 11;	OR / <i>OF</i> ✓ first difference	
	$T_p = 2p + 5$ Answer only: full marks	$\int \sqrt{2p+5}$	(3)
	Common 2 nd difference: 2	7 2	
	First difference: 7; 9; 11;	✓ first difference	
3.3	= 3849 14; 21; 30; 41;	v answer	(2)
	$T_{60} = (60)^2 + 4(60) + 9$ = 3849 Answer only: full marks	✓ substitution ✓ answer	(2)
3.2	$T_n = n^2 + 4n + 9$	√ and attention	
2.0	b=4		
	4+2b+9-(1+b+9)=7	✓ substitution	(2)
	$ \begin{array}{l} \mathbf{OR/OF} \\ T_2 - T_1 = 7 \end{array} $	$\checkmark T_2 - T_1 = 7$	
	OD/OF	OR/OF	
	b=4		(2)
3.1	3+b=7	$\checkmark 3 + b = 7$	(2)
3.1	3a + b = 7	$\checkmark 3a+b=7$	

QUESTION 4/VRAAG 4

4.1.1	p = -1 and $q = 2$		$\checkmark p = -1 \checkmark q = 2$	(2)
4.1.2	$\frac{1}{x-1} + 2 = 0$		✓ = 0	
	$\begin{vmatrix} x-1 \\ -2x+2=1 \end{vmatrix}$			
	$x = \frac{1}{2}$			
	_			
	$\left(\frac{1}{2};0\right)$		✓ answer	(2)
4.1.3	$x = \frac{1}{2} - 3$		√ -3	
	$= \frac{-5}{2}$ Answer only: full mark	ΚS	$\checkmark x = \frac{-5}{2}$	(2)
4.1.4	y = x + t $2 = 1 + t$		✓subst (1; 2)	
	t=1		$\checkmark t = 1$	(2)
4.1.5	$-2 \le \frac{1}{x-1}$ Answer only: full mark	KS		
	$\frac{1}{x-1} + 2 \ge 0$		$\sqrt{\frac{1}{x-1}} + 2 \ge 0$ $\sqrt{x} \le \frac{1}{2}$ $\sqrt{x} > 1$	
	$\therefore x \le \frac{1}{2}$ or $x > 1$		$\checkmark x > 1$	(3)
	OR/OF			
	$x \in \left(-\infty; \frac{1}{2}\right] \text{ or } (1; \infty)$			
4.2.1	$y = -5$ $x = \frac{-b}{2} = \frac{-(-4)}{2} = 2$		✓ answer	(1)
4.2.2	$x = \frac{-b}{2a} = \frac{-(-4)}{2(1)} = 2$		$\checkmark x = 2$	
	$f(2) = 2^2 - 4(2) - 5 = -9$		$\checkmark y = -9$	(2)
	$\therefore D(2;-9)$			
	OR/OF		OR/OF	
	f'(x) = 2x - 4			
	2x - 4 = 0			
	x = 2		$\checkmark x = 2$ $\checkmark y = -9$	(2)
	$f(2) = 2^2 - 4(2) - 5 = -9$:: D(2; -9)		- y = - j	(4)
	(-, /)		1	

11 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

4.2.3	q = -5	✓ q = -5	
	$-9 = a(2)^2 - 5$ $-4 = 4a$	✓ substitution of (2;-9)
	-4=4a		
	a = -1	$\checkmark a = -1$	(2)
	$\therefore g(x) = -2^x - 5$		(3)
4.2.4	$y \in (-\infty; -5)$ OR $y < -5; y \in R$	✓answer	(1)
4.2.5	k < -9	√ −9	
		✓ k < -9	(2)
			[20]

QUESTION 5/VRAAG 5

5.1	g(x) = 2x + 6		
	y = 6	$\checkmark y = 6 $	1)
5.2	y = 2x + 6 x = 2y + 6 Answer only: Full marks	\checkmark swop x and y	
	$y = \frac{1}{2}x - 3$	✓ equation (2	2)
5.3	$\frac{1}{2}x - 3 = 2x + 6$	✓equating	
	x - 6 = 4x + 12		
	3x = -18	$\checkmark x = -6$	
	x = -6 $A(-6; -6)$	$\checkmark x = -6$ $\checkmark y = -6$ (3)	3)
	OR/OF	OR/OF	
	$ \begin{aligned} 2x+6 &= x \\ x &= -6 \end{aligned} $	✓equating	
	y = -6	$ \begin{array}{c} \checkmark x = -6 \\ \checkmark y = -6 \end{array} \tag{3} $	3)
F 1	$AB = \sqrt{(6)^2 + (12)^2}$		<i>))</i>
5.4		✓substitution	
	$=\sqrt{180}=6\sqrt{5}=13,42$	✓answer ((2)
	B(0;6) C(6;0) x		

(5)

$BC = \sqrt{6^2 + 6^2} = \sqrt{72} = 6$	$5\sqrt{2}$	✓ BC
$AB = AC = \sqrt{180}$	symmetry of g and g^{-1}	✓ $AB = AC / midpoint (3; 3)$
$\perp h = (\sqrt{180})^2 - \left(\frac{\sqrt{72}}{2}\right)^2$		✓ ⊥ h (A)
$=\sqrt{162}=9\sqrt{2}$		
	$AB = AC = \sqrt{180}$ $\perp h = (\sqrt{180})^2 - \left(\frac{\sqrt{72}}{2}\right)^2$	$\perp h = (\sqrt{180})^2 - \left(\frac{\sqrt{72}}{2}\right)^2$

area of
$$\triangle ABC = \frac{1}{2}BC \times h$$

= $\frac{1}{2} \times \sqrt{72} \times \sqrt{162} = 54 \text{ units}^2$

OR/OF

$$\tan B\hat{D}C = 2$$

$$\therefore \hat{BDC} = 63,43^{\circ}$$

$$\tan D\hat{C}A = \frac{1}{2}$$

$$\therefore \hat{DCA} = 26,57^{\circ}$$

(ext angle triangle)

Area of
$$\triangle ABC = \frac{1}{2} (\sqrt{180}) (\sqrt{180}) \sin 36,86^{\circ}$$

= 53,99 units²

\checkmark DÂC = 36,86°

✓ $\hat{BDC} = 63,43^{\circ}$

$$\checkmark$$
AC = $\sqrt{180}$

OR/OF

✓ substitution into the correct formula

OR/OF

Area of
$$\triangle ABC$$
 = Area of $\triangle BDC$ + Area of $\triangle ADC$
= $\frac{1}{2}DC.BO + \frac{1}{2}DC.height$
= $\frac{1}{2}(9)(6) + \frac{1}{2}(9)(6)$
= 54 units²

✓ Areas (∆BDC+∆ADC)

$$\checkmark \frac{1}{2}DC.BO$$

$$\checkmark \frac{1}{2}DC.height$$

✓ substitution

(5) 13

(5)

QUESTION 6/VRAAG 6

6.1	$A = P(1+i)^n$	
	$13459 = 12000 \left(1 + \frac{m}{400}\right)^{8}$ $\left(1 + \frac{m}{400}\right)^{8} = 1,121$	✓ 8 ✓ subst into correct formula
	$1 + \frac{m}{400} = \sqrt[8]{1,121}$ $\frac{m}{400} = 0,0144$	$\checkmark 1 + \frac{m}{400} = \sqrt[8]{1,121}$
	$\therefore m = 5,78\%$	✓ 5,78 % (4)
6.2	$F = \frac{x[(1+i)^n - 1]}{i}$ $F = \frac{1000\left[\left(1 + \frac{0,075}{12}\right)^{12} - 1\right]}{\frac{0,075}{12}}$	$\begin{array}{c} \checkmark \frac{0,075}{12} \\ \checkmark 12 \end{array}$
	= R12 421,22 He won't be able to buy the computer because R13 000 – R12 421,22 = R578,78 OR/OF	✓ answer ✓ conclusion (4)
	He won't be able to buy the computer because R12 421,22 < R13 000	
6.3.1	Loan amount = 85% × R250 000 = R212 500	✓ answer (1)
	OR/OF Loan amount = $R250\ 000 - (15\% \times R250\ 000)$	OR/OF
6.3.2	$= R212 500$ $A = 212 500 \left(1 + \frac{0.13}{12}\right)^{5}$ $A = 224 262,53$	✓ answer (1) ✓ A = 212 500 $\left(1 + \frac{0.13}{12}\right)^5$ ✓ answer
	$P = \frac{x\left[1 - \left(1 + i\right)^{-n}\right)}{i}$	
	$224\ 262,53 = \frac{x\left[1 - \left(1 + \frac{0,13}{12}\right)^{-67}\right)\right]}{\frac{0,13}{12}}$	✓ substitution into correct formula ✓ – 67
	$\therefore x = R4724,96$	✓ answer (5) [14]
L		[17]

QUESTION 7/VRAAG 7

7.1	c() 2 .	
/.1	$f(x) = x^2 + x$	
	$\int_{h}^{\infty} f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$\int_{h\to 0}^{\pi} \frac{(x+h)^2 + (x+h) - (x^2 + x)}{h}$	✓ substitution into
	••	the formula
	$\int_{h\to 0}^{\pi} \frac{x^2 + 2xh + h^2 + x + h - x^2 - x}{h}$	$\checkmark x^2 + 2xh + h^2 + x + h$
	$=\lim_{h\to 0}\frac{2xh+h^2+h}{h}$	$\checkmark 2xh + h^2 + h$
	$=\lim_{h\to 0}\frac{h(2x+h+1)}{h}$	✓ common factor
	$\therefore f'(x) = 2x + 1$	✓answer (5)
	$ \mathbf{OR}/\mathbf{OF} \\ f(x) = x^2 + x $	OR/OF
	$\int (x) = x + x$ $f(x+h) = (x+h)^2 + (x+h) = x^2 + 2xh + h^2 + x + h$	$\checkmark x^2 + 2xh + h^2 + x + h$
	$f(x+h)-f(x) = x^2 + 2xh + h^2 + x + h - x^2 - x$	
	$=2xh+h^2+h$	$\checkmark 2xh + h^2 + h$
	$\int_{h\to 0}^{\pi} \frac{f(x+h) - f(x)}{h}$	
	$=\lim_{h\to 0}\frac{2xh+h^2+h}{h}$	✓ substitution into the formula
		the formula
	$=\lim_{h\to 0}\frac{h(2x+h+1)}{h}$	✓ common factor
	$\therefore f'(x) = 2x + 1$	✓answer (5)
7.2	$f(x) = 2x^5 - 3x^4 + 8x$	$\checkmark 10x^4$
	$f'(x) = 10x^4 - 12x^3 + 8$	\checkmark -12 x^3
		✓ 8 (3)
7.3	$g(x) = ax^3 + 3x^2 + bx + c$	$\checkmark g'(x) = 3ax^2 + 6x + b$
	$g'(x) = 3ax^2 + 6x + b$	✓
	g''(x) = 6ax + 6	g''(-1) = 6a(-1) + 6 = 0
	g''(-1) = 6a(-1) + 6 = 0	$\checkmark a = 1$
	$\therefore a = 1$	
	For concave up $g''(x) > 0$	
	6x + 6 > 0	$ \checkmark x > -1 \tag{4} $
	x > -1	

OR/OF

Min gradient at (-1; -7) implies:

at x = -1 - point of inflection and g will be positive cubic hence a > 0

Since g is concave up

$$x > -1$$

OR/OF

Since *g* is concave up x > -1

(-1; y)

Since *g* is concave up x > -1

Answer only:

OR/OF

Min gradient at (-1; -7) implies:

at x = -1 - point of inflection and g will be positive cubic hence a > 0

Since g is concave up

$$x > -1$$

OR/OF

Since g is concave up x > -1

(-1; y)

Since g is concave up

$$x > -1$$

Answer only:

QUESTION 8/VRAAG 8

8.1	$f'(x) = mx^2 + nx + k$	
	$\int f'(x) = m\left(x + \frac{1}{3}\right)(x-1)$	\checkmark substitution of $\left(-\frac{1}{3};0\right)$
		and (1; 0)
	$1 = m\left(0 + \frac{1}{3}\right)(0 - 1)$	\checkmark substitution of $(0;1)$
	$1 = -\frac{1}{3}m$	
	$\therefore m = -3$	$\checkmark m = -3$
	$\therefore m = -3$ $f'(x) = -3\left(x + \frac{1}{3}\right)(x - 1)$	
	$f'(x) = -3\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)$	$f'(x) = -3\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)$
	$f'(x) = -3x^2 + 2x + 1$	
	$\therefore n = 2$ $\therefore k = 1$	$ \begin{array}{l} \checkmark n = 2 \\ \checkmark k = 1 \end{array} \tag{6} $
	$\ldots \kappa - 1$	$\kappa = 1$ (0)
	OR/OF	OR/OF
	k=1	$\checkmark k = 1$
	$0 = m + n + 1$ and $\frac{1}{9}m - \frac{1}{3}n + 1 = 0$	
	$m+n=-1 \qquad (1)$	$\checkmark m+n=-1$
	$m - 3n = -9 \tag{2}$	$\checkmark m-3n=-9$
	(1) - (2)	
	4n = 8	$\checkmark 4n = 8$
	$\therefore n = 2$	$\checkmark n = 2$
	$m+2=-1$ $\therefore m=-3$	$\checkmark m = -3 \tag{6}$
8.2.1	$f(x) = -x^3 + x^2 + x + 2$	· · · · · · · · · · · · · · · · · · ·
	$f\left(-\frac{1}{3}\right) = \frac{49}{27} = 1,81$	✓ <i>x</i> -coordinates of the TP
	$T.P\left(-\frac{1}{3};\frac{49}{27}\right)$	(1 49)
		$\checkmark \text{T.P}\left(-\frac{1}{3}; \frac{49}{27}\right)$ $\checkmark \text{T.P}(1; 3) \tag{3}$
	f(1) = 3 T.P(1; 3)	
	T.P(1; 3)	$\checkmark T.P(1;3) $ (3)

8.2.2	$f(x) = -x^3 + x^2 + x + 2$		
	$-x^3 + x^2 + x + 2 = 0$		
	$(x-2)(-x^2-x-1)=0$		
	x = 2 or no solution	$\checkmark x = 2$	
	$ \begin{array}{c c} \hline & (1;3) \\ \hline & (-\frac{1}{3};1,81) \\ \hline & 2 \end{array} $	✓ one x-intercept ✓ two turning points ✓ y-intercept	
		✓ shape: neg cubic	(5)
8.3.1	$a = \frac{-\frac{1}{3} + 1}{2}$		
	$=\frac{1}{3}$	✓ answer	(1)
	OR/OF	OR/OF	
	$f'(x) = -3x^2 + 2x + 1$		
	$f^{\prime\prime}(x) = -6x + 2$		
	$f^{\prime\prime}(a) = -6a + 2 = 0$		
	-6a = -2		
	$a = \frac{1}{3}$	✓ answer	(1)
8.3.2	$b < \frac{4}{3}$ units	$\checkmark \frac{4}{3}$ $\checkmark b < \frac{4}{3}$	
		$\checkmark b < \frac{4}{3}$	(2)
			[17]

NSC/NSS - Marking Guidelines/Nasienriglyne

QUESTION9/VRAAG9

9.1	Any point on $f:(x;x^2)$	$\checkmark(x;x^2)$	
	distance = $\sqrt{(x-10)^2 + (x^2-2)^2}$	✓ substitution	
	$= \sqrt{x^2 - 20x + 100 + x^4 - 4x^2 + 4}$	✓ simplification	
	$=\sqrt{x^4 - 3x^2 - 20x + 104}$	✓ answer	
	For min distance		
	$\frac{d}{dx}\left(x^4 - 3x^2 - 20x + 104\right) = 0$		
	$4x^3 - 6x - 20 = 0$	$\checkmark 4x^3 - 6x - 20$	
	$(x-2)(4x^2+8x+10)=0$	✓ derivative = 0	
	$\Delta = 8^2 - 4(4)(10) = -96$: no roots		
	$\therefore x = 2$	$\checkmark x = 2$	
	$d = \sqrt{2^4 - 3(2)^2 - 20(2) + 104} = 2\sqrt{17} = 8,25$	✓answer (A) (8)	

QUESTION 10/VRAAG 10

10.1.1(a)	y = 1 - 0.893 = 0.107 (0.11)	$\checkmark y = 1 - 0.893$
		(1)
10.1.1(b)	x = 0.893 - 0.733	$\checkmark x = 0.893 - 0.733$
	= 0,16	(1)
10.1.2	P(at least 2 events) = $0.1 + 0.15 + 0.16 + 0.2$	✓ values
	= 0,61 Answer only: Full Marks	✓ answer (2)
10.1.3	P(B) = 0.643	$\checkmark P(B) = 0.643$
10.1.5	P(C) = 0.56	$\checkmark P(C) = 0.56$
	P(B and C) = 0.36	✓ $P(B \text{ and } C) = 0.36$
	$P(B) \times P(C) = 0.643 \times 0.56 = 0.36$	$\checkmark P(B) \times P(C) = 0.36$
	$\therefore P(B \text{ and } C) = P(B) \times P(C)$	✓ independent because
	∴ B and C are independent	$P(B \text{ and } C) = P(B) \times P(C)$
	1	(5)
10.2.1	$7 \times 6 \times 5 \times 4 = 840$	√ 4 √ 7
		$\checkmark 7 \times 6 \times 5 \times 4 = 840$
		(3)
10.2.2	start with 5, 7, 9 or start with 6 or start with 8	$\checkmark (3 \times 5 \times 1 \times 3) = 45$
	$(3\times5\times1\times3)+(1\times5\times1\times2)+(1\times5\times1\times2)$	$\checkmark (1 \times 5 \times 1 \times 2) = 10$
	=45+10+10	$\checkmark (1 \times 5 \times 1 \times 2) = 10$
	= 65	√ 65
	p 65 13 0.00	✓ answer
	$P = \frac{65}{840} = \frac{13}{168} = 0.08$	(5)
	OR/OF	OR/OF
	ends in 4 or ends in 6 or ends in 8	$\checkmark (5 \times 5 \times 1 \times 1) = 25$
	$(5\times5\times1\times1)+(4\times5\times1\times1)+(4\times5\times1\times1)$	$\checkmark (4 \times 5 \times 1 \times 1) = 20$
	=25+20+20	$\checkmark (4 \times 5 \times 1 \times 1) = 20$
	= 65	√ 65
	$P = \frac{65}{3.00} = \frac{13}{10.00} = 0.08$	✓ answer
	$P = \frac{1}{840} = \frac{1}{168} = 0.08$	(5)
		[17]
<u> </u>		

TOTAL/TOTAAL: 150