

IDSC 4444 (004) Predictive Analytics: Numeric Prediction

Zihong Huang Information & Decision Sciences Carlson School of Management

huanO7O7@umn.edu

Agenda

- Methods
 - O k-NN for numeric prediction
 - Regression Trees
 - Linear Regression
- ☐ Evaluating metrics
 - Average Error
 - o MAE
 - o MAPE
 - o RMSE
 - Total SSE

An Overview

Numeric Prediction

- ☐ Predicting a **numeric outcome variable** (instead of a categorical outcome variable)
- ☐ Some classification techniques can be naturally extended to numeric prediction:
 - k-NN (Nearest-Neighbors)
 - Regression Trees (In Classification, called Decision Trees)
- Others are more tailored for numeric prediction:
 - O E.g., Linear Regression

Classification or Numeric?

- ☐ Sample Prediction Tasks:
 - Classification:
 - ✓ Will a customer buy a given product?
 - ✓ Will this team win the game?
 - O Numeric Prediction:
 - ✓ How much will a customer buy/spend?
 - ✓ How much will each team score?

k-NN for Numeric Prediction

- Process almost equivalent to what we have seen last time
- For a given observation, identify the k nearest-neighbors: k is chosen to minimize RMS errors (more details later)
- Then, we use average outcome values of the nearest neighbors as the prediction
- Can also be a weighted average, weight decreasing with distance:
 - More importance to the closet points

	(Age)	(Income)	(Gender)	Y Amount spent
А	25	55000	М	\$ 5
В	32	120000	М	\$ 25
С	43	150000	F	\$ 50

Labeled Data: We know the Y Euclidian Distance

d(D,A)	2.8489
d(D, B)	1.9545
d(D, C)	O.5285

K = 1.? Prediction: \$50

K = 3,? Prediction: (5+25+50)/3 = \$26.67

New observation —

D 40 130000 F ???

k-NN: Pros and Cons

- Both for categorical and numerical outcomes
- ☐ Pros:
 - Simple method, effective at capturing complex relationship without really building a model
 - Makes no assumption about data distribution
- ☐ Cons:
 - O If you have a lot of attributes (lots of columns), you need a lot of observations (rows) to make reasonable predictions -> Curse of dimensionality
 - O Slower learner, not good for "real-time" or timely predictions.

Regression Trees

- ☐ Trees for numeric (continuous) outcome variables: Regression Trees
- ☐ Follows the same <u>Recursive Partitioning (RPART)</u> procedure
- At each leaf (final) node, we use average of outcome values of data points in that leaf node
- "Purity" is measured using the **sum of squared deviations (SSD)** from the average outcome value at that node

	_			
Ind.	Age	Employed	Credit-rating	Loan Amount
А	23	Yes	Fair	\$ 30
В	28	No	Excellent	\$200
С	22	No	Fair	\$ 75
D	35	No	Fair	\$ 300
E	21	Yes	Fair	\$ 35
F	22	Yes	Fair	\$ 37
G	33	No	Excellent	\$ 350

Regression Trees

To predict the outcome of a new record, the attributes are tested against the regression

tree

☐ Example:

Ind.	Age	Employed	Credit-rating	Loan Amount
ZZ	23	Yes	Fair	??

- O Test on Age: Age < 25: Yes
- Test on Employed: Yes
- O Reach Leaf node:
 - Customer ZZ prediction: 34

Example: Regression Trees

Predicting Minneapolis Housing Prices: Price ~ Beds + Baths + Property Type

Regression Trees Discretize Outcomes

Note how the scales of the two histograms differ!

Regression Trees: Pros and Cons

☐ Pros:

- O No parametric assumptions, <u>no need to normalize the data before</u>
- O Good for variable selection: the tree selects what are supposed to be the most relevant attributes
- Robust to outliers

☐ Cons:

- Unstable: slightly change in the data can lead to very different splits
- Since the splits are done with one attribute one time, it can miss interesting relationship between the predictors

Linear Regression

☐ Simple Linear Regression

$$\circ Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- $\checkmark \beta$: coefficients
- $\checkmark \beta_0$: intercept
- $\checkmark \beta_1$: slope of X
- $\checkmark \mathcal{E}_i$: random noise
- Equivalent to fitting a line

☐ Multiple Linear Regression

$$\circ Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \varepsilon_i$$

- O Equivalent to fitting a plane
- Can be used for either **explanatory** or **predictive** tasks
 - O Explanatory: Explaining the average effect of attributes on an outcome
 - O **Predictive**: Predicting the outcome value for new records.

Linear Regression

- $oxedsymbol{\square}$ Objective: predict Y by finding (estimating) the values of the parameters eta
- ☐ Ordinary Least Squares (OLS):
 - \circ Find the values of the coefficients β that minimize **the sum of squared residuals**: differences between actual and predicted values of the dependent variable Y
 - The "true" linear relationship between Y and X is

$$Y_i = \beta_0 + \beta_1 X_{i1} + \dots + \beta_p X_{ip} + \varepsilon_i$$

The predictions will be based on the "estimated" relationship

$$\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_i X_{i1} + \dots + \widehat{\beta}_i X_{ip}$$

 \circ Residual: $Y_i - \widehat{Y}_i$

Assumption Checking before Linear Regression

- OLS produces "good" predictions, if the following assumptions hold:
 - The relationship between Y and Xs is linear
 - ✓ Use <u>scatterplots</u> to check this
 - The observations (records) are independent from each other
 - O The noise \mathcal{E}_i , (or, equivalently, Y) follows a normal distribution
 - ✓ Use a <u>histogram</u> to check this
 - The Xs should not be too "collinear"
 - ✓ We should NOT be able to linearly predict one attribute from the other attributes
 - ✓ Use a correlation matrix to check this

Evaluating Performance

- This is a key difference between numeric prediction and classification
- For numeric prediction: the <u>prediction error</u> is defined as the difference between <u>predicted outcome</u> and actual outcome
- Several performance metrics, defined based on prediction error:
 - O **AE:** Average Error
 - O MAE: Mean Absolute Error
 - O MAPE: Mean Absolute Percentage Error
 - o **RMSE:** Root Mean Squared Error
 - Total SSE: Total Sum of Squared Error

Prediction Error

Actual (a _i)	Predicted (p _i)	Error (e _i =p _i -a _i)
125	140	15 (overprediction)
300	225	-75 (underprediction)
75	75	0
450	250	-200 (underprediction)

- For each observation, a; is the actual (correct) value; p; is the predicted value
- ☐ Prediction Error = predicted value actual value
- ☐ If predicted value >actual value: <u>overprediction</u>
- ☐ If predicted value <actual value: <u>underprediction</u>

Average Error (AE)

 \square Average Error (Mean Error): $\sum_{i=1}^{n} \frac{e_i}{n}$

Actual (a;)	Predicted (p _i)	Error (e; =p; -a;)
125	140	15 (overprediction)
300	225	-75 (underprediction)
75	75	0
450	250	-200 (underprediction)
TOTAL		-260
AE		-260/4 = -65

It gives an indication of whether we are under-predicting or over-predicting

Mean Absolute Error (MAE)

 \square Mean Absolute Error (MAE): $\sum_{i=1}^{n} \frac{|e_i|}{n}$

Actual (a;)	Predicted (p _i)	Error (e; =p; -a;)	Error
125	140	15	15
300	225	-75	75
75	75	0	0
450	250	-200	200
TOTAL			290
MAE			290/4 = 72.5

- ☐ MAE gives the magnitude of the average absolute error (in any direction)
 - O The direction of the errors (that is, over-prediction or under-prediction) is lost

Mean Absolute Percentage Error (MAPE)

 \square Mean Absolute Percentage Error (MAPE): $100*\sum_{i=1}^{n}\frac{\left|\frac{e_{i}}{a_{i}}\right|}{n}$

Actual (a;)	Predicted (p _i)	Error (e; =p;-a;)	Error	Error / a¡
125	140	15	15	15/125 = O.12
300	225	-75	75	75/300 = 0.25
75	75	0	0	0/75 = 0
450	250	-200	200	200/450 = 0.44
TOTAL				0.81
MAPE				0.81/4*100 = 20%

MAPE is relative to the actual values: gives a percentage score of how much predictions deviate (on average) from the actual values

O E.g., a result of 20% indicates that, on average, the predictions deviate from the actual values by about 20% (in any direction)

Root Mean Square Error (RMSE)

 \square Root Mean Square Errors (RMSE): $\sqrt{\sum_{i=1}^{n} \frac{(e_i)^2}{n}}$

Actual (a;)	Predicted (p _i)	Error (e _i =p _i -a _i)	(Error) ²
125	140	15	225
300	225	-75	5625
75	75	0	0
450	250	-200	40000
TOTAL			45850
Avg			11462.5
RMSE			107.1

- ☐ RMSE <u>penalizes larger errors</u>. RMSE should be more useful when large errors are particularly undesirable.
- ☐ It has the same units of the outcome variable, e.g., If your Y is in \$, interpret the RMSE in terms of \$ amounts

Total Sum of Squares (TSS)

 \square Total Sum of Squares (TSS): $\sum_{i=1}^{n} (e_i)^2$

Actual (a;)	Predicted (p _i)	Error (e _i =p _i -a _i)	(Error) ²
125	140	15 (overprediction)	225
300	225	-75 (underprediction)	5625
75	75	0	0
450	250	-200 (underprediction)	40000
TOTAL (Error) ²			45850

☐ Useful in measuring variability of predictions

Questions?

