High-Performance LU Decomposition Section 2.5 of Parallel Scientific Computation, 2nd edition

Rob H. Bisseling

Utrecht University

High-Performance LINPACK (HPL)

Source: TOP500 June 2022 https://www.top500.org

- ► HPL performs an LU decomposition with partial row pivoting and solves a triangular system, to solve a dense linear system.
- ► HPL is used to obtain performance results for the TOP500 of supercomputers.

 Lecture 2.5 High-Performance LU Decompositi

Selective procrastination for higher performance

- Selective procrastination helps to achieve higher performance by creating bulk, i.e., large batches of work.
- ▶ Here, we postpone all updates of the submatrix $A(k_1: n-1, k_1: n-1)$ from stages k with $k_0 \le k < k_1$ of the LU decomposition.
- ▶ $b = k_1 k_0$ is the algorithmic block size
- ► The main update loop then becomes:

```
\begin{array}{l} \mbox{for } k := k_0 \mbox{ to } k_1 - 1 \mbox{ do} \\ \mbox{for } i := k_1 \mbox{ to } n - 1 \mbox{ do} \\ \mbox{for } j := k_1 \mbox{ to } n - 1 \mbox{ do} \\ \mbox{} a_{ij} := a_{ij} - a_{ik} a_{kj}; \end{array}
```

Submatrices

- ▶ Submatrices A_{00} , A_{01} , A_{02} are finished at the start of stage k_0 .
- ightharpoonup Operations on A_{11} , A_{21} are carried out immediately.
- Permutation operations on A_{10} , A_{20} and matrix update on A_{12} , A_{22} are delayed and then done in bulk. Lecture 2.5 High-Performance LU Dec

Tall-and-skinny matrices A_{21} and A_{12}

► The matrix update can be formulated as

$$A_{22} := A_{22} - A_{21}A_{12}$$
.

► Cost: $2(n-k_1)^2b$ flops for $(n-k_1)^2$ data, so potentially $b \times$ reuse of data. Cache-friendly!

Choice of algorithmic block size b

▶ Adding the cost for $k_0 = 0, b, ..., n - b$ gives:

$$T_{\text{blocks}} = \frac{2n^3}{3} - bn^2 + \frac{b^2n}{3}.$$

- ► Advantage for small *b*: more flops are performed at an increased computing rate.
- Advantage for large *b*: data reuse is higher, so the rate increase is larger.
- Empirical approach: start with b=1 and double its value until the flop rate saturates, usually in the range b=32-256.
- This is beneficial for both sequential and parallel LU decomposition.

Procrastination also reduces communication cost

- ▶ Delaying the row swaps creates more bulk: 2b rows move at the same time, instead of 2 rows.
- For $b \ge \sqrt{p}/2$, all processors are now expected to be involved in the swaps, instead of only 2 processor rows.
- This reduces the cost of the swaps by a factor of $\frac{\sqrt{p}}{2}$ from $\frac{n^2}{\sqrt{p}}g$ to $\frac{2n^2}{p}g$.
- ▶ The extra synchronization cost incurred is $\frac{2n}{b}I$.

Avoiding global synchronization

- ➤ To reduce the cost of an algorithm, we want to avoid everything: computation, communication, and synchronization.
- Minimizing and balancing flops avoids computation.
- Methods like two-phase broadcasting or 3D matrix multiplication (Exercise 2.6) avoid communication.
- ▶ BSP is based on global synchronizations. We present methods to avoid them, such as combining supersteps.
- ▶ Usually there is a trade-off between these three objectives and also the amount of memory available.

Block-cyclic distribution

The block-cyclic distribution with block size β assigns matrix elements to processors by

$$\phi_0(i) = (i \operatorname{div} \beta) \operatorname{mod} M, \quad \text{for } 0 \le i < n.$$

$$\phi_1(j) = (j \operatorname{div} \beta) \operatorname{mod} N, \quad \text{for } 0 \le j < n.$$

Using the block-cyclic distribution

$$\beta = 2$$
, $M = N = 2$, $n = 8$

- ► The block-cyclic distribution reduces the synchronization cost $\mathcal{O}(nl)$ of LU decomposition without pivoting by a factor β .
- ► The load imbalance $\mathcal{O}(\frac{n^2}{\sqrt{p}})$, however, increases by a factor β^2 .
- ▶ The communication cost does not change.
- The extreme case $\beta=1$ is best for large n, because imbalance is of a higher order than synchronization cost. Indexing is also simpler.

HPL uses the block-cyclic distribution

- ► High-Performance LINPACK (HPL) by Dongarra, Luszczek, and Petitet (2003) uses the block-cyclic distribution with $\beta = b$, requiring unnecessary compromises.
- ▶ HPL performs partial row pivoting, which causes O(nl) synchronization cost because n pivots are searched for, with a synchronization between the separate searches.
- ▶ A better choice is $\beta = 1$:
 - less imbalance:
 - simpler indexing (only one level).

Summary

- High performance can be attained for LU decomposition by delaying the bulk of the matrix update.
- ► The delayed work is carried out as the multiplication of two tall-and-skinny matrices, using the BLAS operation DGEMM.
- The algorithmic block size b and the distribution block size β need not be the same.
- ▶ It is best to use the square cyclic distribution and not the block-cyclic distribution.