» Gradient Descent

Recall general iterative minimisation algorithm:

```
x=x0
for k in range(num_iters):
    step = calcStep(fn,x)
    x = x - step
```

* We know one way to choose the step, namely:

$$step = \alpha[\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)] = \alpha \nabla f(x)$$

where α is the step size or learning rate

* How to choose automate choice of α ?

- * Update x to $x \alpha \nabla f(x)$
- * Exact line search \to select α that minimises $f(\mathbf{x} \alpha \nabla f(\mathbf{x}))$ i.e. $\alpha \in \operatorname{arg\,min}_{\alpha'} f(\mathbf{x} \alpha' \nabla f(\mathbf{x}))$
- * In practice an α that makes $f(x \alpha \nabla f(x))$ decrease by a reasonable amount is good enough.
- st How to carry out this optimisation? Remember lpha is a scalar.
 - * *Grid search.* Calculate $f(x \alpha \nabla f(x))$ over a grid of values for α and pick smallest \rightarrow simple, robust, but how to choose grid when we don't know the approx magnitude of α to use?

* Iterative grid search. Select initial grid, e.g. [0.001,0.01,0.1,1,10]. Suppose $\alpha=0.01$ gives $f(\mathbf{x}-\alpha\nabla f(\mathbf{x}))$, then create a new grid around this point e.g. [0.005, 0.0075, 0.01, 0.02, 0.05, 0.075] and repeat. Again, simple and robust.

 Bracketing methods e.g. Golden-section search¹, Brents method²

- Hopefully fewer function evaluations than grid search (so faster/cheaper)
- * When there are multiple minima, may converge to local minimum.

¹https://en.wikipedia.org/wiki/Golden-section_search

²https://en.wikipedia.org/wiki/Brent's_method

* Derivative-based methods \rightarrow search for point where derivative of $\frac{df}{dx}(x - \alpha \nabla f(x)) = 0$.

st Derivative changes sign on either side of minimum ightarrow use that to bracket the solution

- * Backtracking search³. Idea: try an initial large step α and then reduce ("backtrack").
- * Recall $f(x + \delta) \approx f(x) + \nabla f(x)^T \delta$ with $\nabla f(x)^T \delta = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) \delta_i$. Choosing $\delta = -\alpha \nabla f(x)$ then

$$f(\mathbf{x} - \alpha \nabla f(\mathbf{x})) \approx f(\mathbf{x}) - \alpha \nabla f(\mathbf{x})^T \nabla f(\mathbf{x})$$

with
$$\nabla f(\mathbf{x})^T \nabla f(\mathbf{x}) = \sum_{i=1}^n \frac{\partial f}{\partial \mathbf{x}_i}(\mathbf{x})^2$$

* Idea: try to select α such that

$$f(x - \alpha \nabla f(x)) < f(x) - c\alpha \nabla f(x)^T \nabla f(x)$$

with parameter 0 < c < 1.

³https://en.wikipedia.org/wiki/Backtracking_line_search

Python implementation of backtracking linesearch:

- * Start with $\alpha=1$, if $f(\mathbf{x}-\alpha\nabla f(\mathbf{x}))$ too large then decrease α to $\beta\alpha$ (with $\beta<1$ obviously), repeat.
- * E.g. when $\beta=0.5$ then try sequence of α 's $1,0.5,0.5^2,0.5^3,0.5^4,\dots$ =1, $0.5,0.25,0.125,0.0625,\dots$
- * When $\beta = 0.8$ then try sequence of α 's $1, 0.8, 0.8^2, 0.8^3, 8^4, \dots = 1, 0.8, 0.64, 0.512, 0.4096, \dots$

» Example: Quadratic

- * $f(x) = 0.5(x_1^2 + 10x_2^2)$, $x = [x_1, x_2]$.
- * Starting value x0 = [1.5, 1.5], step size alpha = 0.15

- st Increasing lpha to 0.2 for constant step sizes causes output to diverge.
- * So exact line search gives convergence in fewer iterations, but is that actually *faster*?

» Example: Quadratic

* Time for each iteration is larger with exact line search since need to perform an optimisation to find α . Similarly for backtracking.

* When considering performance, accuracy vs #iterations is not enough, also need to take account of time taken for each iteration \rightarrow its really accuracy vs wall-clock time that we're usually interested in.

» Example: Quadratic

* Time for each iteration is larger with exact line search since need to perform an optimisation to find α . Similarly for backtracking.

 In this example, constant step size converges faster vs wall-clock time than eact line search, and about the same as backtracking. But constant step size was hand-tuned ...

» Example: Linear Regression Quadratic Loss

- * $y^{(i)}=\theta^T x^{(i)}$, $\theta=[-0.5,0.2]$, m=1000 training data points with random $x^{(i)}$, $i=1,\ldots,n$
- * Cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} \mathbf{x}^{(i)} \mathbf{y}^{(i)})^{2}$
- st Starting value lpha 0 = [1,1], step size $\emph{alpha} = 0.5$

- * Again, exact linesearch slower wrt wall-clock time.
- But remember quadratic functions/linear regression are the "easy" cases ...

» Example: Toy Neural Net Quadratic Loss

- * $\mathbf{z} = \mathbf{f}(\theta_1 \mathbf{x} + \theta_1), \hat{\mathbf{y}} = \mathbf{g}(\mathbf{z}), \theta = [1, 5], \mathbf{f}$ ReLu, \mathbf{g} sigmoid, $\mathbf{m} = 1000$ training data points with random $\mathbf{x}^{(i)}$, quadratic loss
- st Starting value lpha 0 = [1,1], step size *alpha* = 0.75

 In this "harder" problem (non-smooth, flat surfaces) exact line search is faster even though it involves more computation per iteration

» Example: Rosenbrock Function

- Another "hard" problem, although in a different way (narrow curved valley with flat valley floor).
- st Starting value lpha 0 = [-1.25, 0.5], step size alpha = 0.002

- st In this "harder" problem backtracking line search is faster
- Exact linesearch gets "stuck", constant step size slow

» Example: Rosenbrock Function

* Exact linesearch gets "stuck". Plot of function value $f(x - \alpha \nabla f(x))$ vs α at terminal point of linesearch:

 Plot of function around point (marked by '+') where exact linesearch terminates:

* Valley floor is v flat here, so direction of steepest descent is across valley and doesn't allow function to be decreased → try another direction, or perturb ourselves away from '+' point (e.g. constant step would do that)

» Example: Non-Smooth Function

- * Another "hard" problem (non-smooth), $f(x) = |x_1| + x_2^2$
- st Starting value lpha 0 = [0.02, 0.1], step size alpha = 0.005

 Linesearch methods get "stuck" away from minimum, constant step size oscillates around min (size of oscillation depends on step size) but beats linesearch methods

» Example: Non-Smooth Function

* Linesearch methods get "stuck" away from minimum. Plot of function value $f(x - \alpha \nabla f(x))$ vs α at terminal point of linesearch:

* The kink in the function has trapped the linesearch methods at a poor point o a bit like in Rosenbrock example.

» Summary

- Performance of line search depends on the function being minimised

 → no general rules (we'll see this is true for most methods for
 choosing the step size unfortunately)
- Need to take account of increased computation with linesearch →
 convergence in fewer iterations might not mean faster converges wrt
 wall-clock time (which is what usually matters)
- For quadratic-like functions a constant step size is already v good so limited gain from using line search
- * For "harder" functions line search can speed up convergence (e.g. toy neural net example), but can also lead to getting stuck at a sub-optimal point (e.g. rosenbrock and non-smooth example).