Indian Institute of Technology Patna MA102: Mathematics II

B. Tech. I Year End Semester Examination April- 2015

Time: 3 hours Total		ne: 3 hours Total Marks:	Marks: 50	
		e: There are Five questions. Attempt all the questions. Give precise and byer. Notations have their usual meaning. Standard formulae may be used.	rief	
Q 1.	a.	A square matrix A is said to be idempotent if $A^2 = A$		
		(i). If A is idempotent matrix of order n, show that $I_n - A$ is also idempotent (ii). If $AB = B$ and $BA = A$. Show that A and B both are idempotent.	t. [6]	
	b.	Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be the linear mapping for which $T(1,2) = (2,3)$ and $T(0,1)$ $(1,4)$, where $\{(1,2),(0,1)\}$ is a basis of \mathbb{R}^2 . Find a formula for T , i.e., find $T(0,1)$.) =	
Q2.	a.	Solve the differential equations $ (x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0. $	[3]	
	b.	Solve the differential equation $x^2(x dx + y dy) + y(x dy - y dx) = 0$	[4]	
	c.	Find the Integrating Factor (I.F.) of the following differential equation $3y \ dx - 2x \ dy + x^2y^{-1}(10y \ dx - 6x \ dy) = 0$	[3]	
Q 3.	a.	Use <u>Undetermined Coefficients Method</u> to solve $\frac{d^2y}{dx^2} + 4y = x^2 \sin 2x$	[4]	
	b.	Use D-Operator Method to solve $(D^2 + 4)y = x^3 + \sin 2x$	[5]	
	c.	Use <u>Variation of Parameter Method</u> to solve $\frac{d^2y}{dx^2} + a^2y = \tan ax$	[5]	
Q 4.	a.	Find the set of ordinary points, regular singular points and irregular singular point of the following differential equation $x^2(x-2)^2y'' + (x-2)y' + 3x^2y = 0$		
	b.	Find a Power Series Solution of the differential equation	[3]	
		$2x^2y'' - xy' + (x+1)y = 0$, about the point $x_0 = 0$	[6]	

[6]

- **Q5.** a. If J_n is Bessel's function of first kind then prove that $\frac{d}{dx}[x^nJ_n(x)] = x^nJ_{n-1}(x)$ [2]
 - b. If $P_n(x)$ denotes Legendre's polynomial then prove that $P_n(-x) = (-1)^n P_n(x)$ [2]
 - c. Obtain the approximate solution of the following problem by using Picard's method .

$$y' = 1 + ty \; ; \; y(0) = 1$$
 [2]

d. Solve: $(5+2x)^2 \frac{d^2y}{dx^2} - 6(5+2x)\frac{dy}{dx} + 8y = 8(5+2x)^2$ [3]
