AD-A059 636

HONEYWELL INC HOPKINS MINN
MINI-REFRACTION SONDE FIELD TESTS. (U)
DEC 77 C D MOTCHENBACHER

NADC-76128-30-8

NADC-76128-8

NADC-76128-8

NADC-76128-8

NADC-76128-8

NADC-76128-8

NADC-76128-8

NADC-76128-8

NADC-76

P057416 [[VEL]

12

Report NADC-76128-30-B

MINI-REFRACTION SONDE FIELD TESTS

Curtis D. Motchenbacher Honeywell Incorporated 600 Second Street N.E. Hopkins, Minnesota 55343

DOC FILE COPY

30 December 1977

Final Report

Prepared for

NAVAL AIR DEVELOPMENT CENTER Warminster, Pennsylvania 18974

Sponsored by

NAVAL AIR SYSTEMS COMMAND (AIR-370) Washington, D.C. 20631

OCT 11 1978

OCT 11 1978

F

This document has been approved for public releases and sale; its distribution is unlimited.

78 10 05 058

SECURITY CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)	DEAD INSTRUCTIONS
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPUT NUMBER 2. GOV'T ACCESSION NUM	BER 3. RECIPIENT'S CATALOG NUMBER
NADC-76128-30-B	
4. TITLE (AND SUBTITLE)	5. TYPE OF REPORT/PERIOD COVERED
MINI-BEFRACTION SONDE	Final Summary Report
FIELD TESTS	6, PERFORMING ORG. REPORT NUMBER
7. AUTHOR(S)	8. CONTRACT OR GRANT NUMBER(S)
C. Motchenbacher	N62269-76-C-0368/P00002
9. PERFORMING ORGANIZATIONS NAME/ADDRESS Honeywell Incorporated	10. PROGRAM ELEMENT PROJECT, TASK AREA
Honeywell Incorporated	
600 Second Street, N.E. Hopkins, Minnesota 55343	62759N F52-551 WF52551734 RG701
11. CONTROLLING OFFICE NAME/ADDRESS	12 REPORT DATE
Commander	30 December 1977
Naval Air Development Center Warminster, Pa. 18974	13. NUMBER OF PAGES
warminster, Fa. 18974 14. MONITORING AGENCY NAME/ADDRESS (IF DIFFERENT FROM CONT. OF	
14. MONITORING AGENCY NAME/ADDRESS (IF DIFFERENT FROM CONT. OF	UNCLASSIFIED
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (OF THIS REPORT)	
Approved for Public Release; Distribution Unlin	nited.
(16) F52557 (11) WF525557	
17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20	, IF DIFFERENT FROM REPORT)
10 Euxtis D. Motchenbac	her/ (2)60p
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTI	FY BY BLOCK NUMBER)
Sonde, Meteorological, Balloon, Barometer, Hy	
Battery Transmitter	
CO. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFE The purpose of this program is to demonstrate the	nat it is feasible to build a small light-
weight meteorological sonde capable of measuring	g index of refraction (Mini-Refraction
Sonde), which can be launched with a 30-gram, Pi	
thermistor for temperature and a carbon hygisto	or for humidity measurement. For
pressure measurement, a Honeywell silicon dia	phragm barometer was used. This sens
uses a silicon diaphragm on an evacuated chamb	er with strain-sensitive resistor sensing
The sensors are electronically time-commutate	
weight telemetry transmitter provides 1/2 watts	at 400 megahertz Power is from a

170 270

DD FORM

1473 EDITION OF 1 NOV 55 IS OBSOLETE

(continued)

SECURITY	CLASSIFICATION OF THIS PAGE (WHEN DATA ENTERED)	
20.	lithium battery.	
1	Laboratory measurements demonstrate an rms accuracy of 0.5°C temperature and 0.8 millibar pressure. Flight tests show good operation and good agree	ire ement
	with radar and Rawinsonde measurements.	

Table of Contents

Section		Page
I.	INTRODUCTION	1
II	FLIGHT TESTS	2
	A. Test Facility B. Test Equipment C. Flight Conditions	2 2 8
III	TEST RESULTS	13
	A. Flight Number OneB. Flight Number TwoC. Flight Number ThreeD. Data Reduction	14 25 36 49
IV	CONCLUSIONS	52
APPENI	DIX A ACKNOWLEDGEMENTS	53

List of Illustrations

Figure		Page
1	Mini-Refraction Sonde Used in Field Tests	3
2	Exploded View of Minisonde Showing Subassemblies	4
3	Support Equipment at NASA Met-Ops Facility	5
4	Meteorological Data Reduction Facility	6
5	Telemetry Antenna Mounting	7
6	Honeywell Ground Support Equipment in the Met-Ops Building	9
7	Sonde Launch Flight Train	10
8	Radar Corner Reflector	11
9	Plot of Altitude versus Time Measured with Mini-Refraction Sonde — Flight Number 1	18
10	Plot of Altitude versus Time Measured with NWS Rawinsonde — Flight Number 1	19
11	Plot of Altitude versus Time Measured with NASA Radar — Flight Number 1	20
12	Plot of Difference in Altitude Reading of the MRS and Rawinsonde versus Radar — Flight Number 1	21
13	Plot of Free-Air Temperature versus Altitude for the MRS and Rawinsonde — Flight Number 1	22
14	Plot of Relative Humidity versus Altitude for the MRS and Rawinsonde — Flight Number 1	23
15	Plot of Modified Refractive Index, N, and M-Units versus Altitude Read by Mini-Refraction Sonde — Flight Number 1	24
16	Plot of Altitude versus Time Measured with Mini-Refraction Sonde — Flight Number 2	30
17	Plot of Altitude versus Time Measured with NWS Rawinsonde — Flight Number 2	31
18	Plot of Altitude versus Time Measured with NASA Radar — Flight Number 2	32
19	Plot of Free-Air Temperature versus Altitude for the MRS and Rawinsonde — Flight Number 2	33

List of Illustrations (Concluded)

Figure		Page
20	Plot of Relative Humidity versus Altitude for the MRS and Rawinsonde — Flight Number 2	34
21	Plot of Modified Refractive Index, N, and M-Units versus Altitude Read by Mini-Refraction Sonde — Flight Number 2	35
22	Plot of Altitude versus Time Measured with Mini-Refraction Sonde — Flight Number 3	40
23	Plot of Altitude versus Time Measured with NWS Rawinsonde — Flight Number 3	41
24	Plot of Altitude versus Time Measured with NASA Radar — Flight Number 3	42
25	Plot of Difference in Altitude Reading of the MRS and Rawinsonde versus Radar — Flight Number 3	43
26	Plot of Altitude versus Time for Flight Number 3 Measured with MRS	44
27	Plot of Free-Air Temperature versus Altitude for the MRS and Rawinsonde — Flight Number 3	45
28	Plot of Relative Humidity versus Altitude for the MRS and Rawinsonde — Flight Number 3	46
29	Plot of Modified Refractive Index, N, and M-Units versus Altitude Read by Mini-Refraction Sonde — Flight Number 3	47
30	Plot of N and M versus Altitude with an Expanded Scale to Illustrate Resolution	48
31	Plot of N and M versus Altitude for the First 1000 Meters of Flight Number 1 — Data Plotted at Switch Points Only	50
32	Plot of N and M versus Altitude for the First 1000 Meters of Flight Number 1	51

List of Tables

Table		Page
1	Launch Data	12
2	Flight Data for Flight Number 1, Sonde Number 11	15
3	Flight Data for Flight Number 2, Sonde Number 10	26
4	Flight Data for Flight Number 2, Sonde Number 10	29
5	Flight Data for Flight Number 3, Sonde Number 9	37

I. Introduction

The Navy has a requirement to measure the vertical profile of index of refraction from sea level to above 15,000 feet. It is necessary to make these measurements from many sizes and classes of ships. Further, these measurements must be made under typical operating conditions of calm or high winds and from stopped to full operational speed.

The purpose of this program is to demonstrate that it is feasible to build a small, lightweight meteorological sonde capable of measuring index of refraction (Mini-Refraction Sonde), which can be launched with a 30-inch diameter, 30-gram pibal balloon. In many field applications, it is difficult to fill and launch a very large balloon, either because of space limitations or because of high winds or other environmental conditions. It is very useful to have a balloon no larger than 30 inches in diameter so that it can be filled within a room and carried out through a standard ship's door for launching. Tests show that a 30-gram latex balloon, when inflated to 30 inches in diameter, will lift a 100-gram minisonde, including battery, at an ascent rate of 800 feet per minute.

During the previous section of this program, it was demonstrated that a 100-gram sonde capable of measuring temperature, pressure and humidity, could be built. This minisonde used a rod thermistor for temperature and a carbon hygristor for humidity measurement. For pressure measurement, a Honeywell silicon diaphragm barometer was used. This pressure sensor consists of a small silicon chip with strain-sensitive resistors diffused into the surface. This sensor is mounted on an evacuated tube so that changes in absolute pressure can be measured.

To commutate between the temperature, pressure, and humidity sensors and encode the meteorological data measurements, a set of meteorological electronics was developed using commercially available integrated circuits. By use of integrated circuits, it is possible to achieve all the commutation functions in a small and particularly lightweight package. The sensors are commutated on a time basis, with a complete cycle every 400 milliseconds. At a rise rate of 1000 feet per minute, this gives a complete set of data every 7 feet of altitude. A special lightweight telemetry transmitter, providing an output of 1/2 watt at 400 to 406 megahertz, was designed and constructed by the Honeywell Defense Electronics Division (DEL-D), Annapolis, Maryland. Power for the transmitter and minisonde electronics was provided by a small lithium battery consisting of 5-1/2 A cells.

The purpose of this phase of the development is to conduct flight tests of the Mini-Refraction Sonde. Three sondes were launched at the NASA facility at Wallops Island, Virginia, and tracked with radar. The sondes operated well and telemetered the meteorological data to the ground. Minisonde data agreed well with the radar height and with measurements of the National Weather Service (NWS) Rawinsonde flight.

II. Flight Tests

The purpose of this contract was to perform flight tests on the Mini-Refraction Sonde. A photo of the Mini-Refraction Sonde is shown in Figure 1. The sonde is small and weighs less than 100 grams with the batteries installed. Temperature, humidity and pressure sensors are mounted in the upper section, while the meta-cological electronics, battery and transmitter are in the lower section. An exploded view of the sonde is shown in Figure 2. A rod thermistor is used for temperature measurement and a carbon hygristor for humidity. For pressure measurement, a Honeywell silicon diaphragm barometer is used. This pressure sensor consists of a small silicon chip with strain-sensitive resistors diffused into the surface. This sensor is mounted on an evacuated tube so that changes in absolute pressure can be measured.

To commutate between the temperature, pressure, and humidity sensors and encode the meteorological data measurements, a set of meteorological electronics was developed by using commercially available integrated circuits. With integrated circuits, it is possible to achieve all the commutation functions in a small and particularly lightweight package. The sensors are commutated on a time basis, with a complete cycle every 400 milliseconds. At a rise rate of 1000 feet per minute, this gives a complete set of data every 7 feet of altitude. A special, lightweight telemetry transmitter providing an output of 1/2 watt at 400 to 406 megahertz was designed and constructed by the Honeywell Defense Electronics Division (DEL-D), Annapolis, Maryland. Power for the transmitter and minisonde electronics was provided by a small lithium battery consisting of five A cells.

A. TEST FACILITY

Flight tests were performed at the NASA launch and tracking facility at Wallops Island, Virginia. Mini-Refraction Sonde launches were performed at the Met-Ops Building. The NASA facility is excellent for flight tests. It provides balloon filling, handling and launching, has radar to track the balloon train and read out altitude, and there are GMD antennas for tracking the 1680-MHz sonde. In addition, skilled personnel are available to give advice on launching and tracking. Some of the support equipment at Met-Ops is shown in Figure 3. Figure 4 shows the facility for reducing NWS sonde data.

B. TEST EQUIPMENT

Ground station equipment was set up in the Met-Ops building. The ground station receives and records the telemetered signals from the Mini-Refraction Sonde. A UHF corner reflector antenna was mounted on the roof as shown in Figure 5. Since the antenna is broadly directional, it is aimed in the direction of the sonde flight. A preamplifier was used at the antenna to compensate for losses on the long cable.

Figure 1. Mini-Refraction Sonde Used in Field Tests

Figure 2. Exploded View of Minisonde Showing Subassemblies

Figure 3. Support Equipment at NASA Met-Ops Facility

Figure 4. Meteorological Data Reduction Facility

Figure 5. Telemetry Antenna Mounting

The signal was carried down to the control room through RG/59 coaxial cable, and a Nems-Clarke 400-406 MHz FM receiver was used to receive and demodulate the telemetry signal. The sonde signal is monitored on an oscilloscope and recorded on a four-channel Tanberg tape recorder, as shown in Figure 6. The signal from the NWS sonde was also recorded on the tape to provide a time comparison during the flight. Three launches were made at Wallops Island. The flight train included a 600- to 2000-gram balloon, a parachute, a MHz NWS sonde, a radar reflector, and the Mini-Refraction Sonde. A photo of the flight train after launch is shown in Figure 7. A closeup of the radar reflector is shown at the right in Figure 8. The corner reflector is composed of three aluminum foil-covered cardboard sheets mounted at right angles to each other. This reflector makes a good target so that the radar can easily lock on and track. The Mini-Refraction Sonde was tethered 25 feet below the reflector.

C. FLIGHT CONDITIONS

The three Mini-Refraction Sonde launches were on November 22-23, 1977. The sky was overcast with ground fog or heavy haze. Low altitude wind was from the east (from the ocean). After launch, the flight train went inland slowly until it reached 10,000 feet when the wind reversed to the west. The sonde came back over the station and went out to sea. Winds aloft were 100 to 150 knots. Near the end of the flight, the sonde was only 6 to 8 degrees above the horizon because of the strong winds aloft. There was severe fading of the telemetry signal, probably due to multipath interference over the ocean. Launch data is shown in Table 1.

Figure 6. Honeywell Ground Support Equipment in the Met-Ops Building

Figure 7. Sonde Launch Flight Train

Figure 8. Radar Corner Reflector

Table 1. Launch Data

Flight Number	1_	2	3
Sonde Serial Number	11	10	9
Launch Date	11-22-77	11-23-77	11-23-77
Launch Time (EST)	2:30 p.m.	10:20 a.m.	2:00 p.m.
Balloon Size (gms)	600	2000	600
Transmitter Frequency (MHz)	404.3	404.5	403.6
Record Tape Number	1	2 and 3	4 and 5
Launch Pressure (mB)	1031.3	1024.9	1020.4
Launch Temperature (°C)	6.7	9.4	11.1

III. Test Results

The purpose of this test was to make a preliminary demonstration of operation of the Mini-Refraction Sonde under actual flight conditions. The three flights were very successful and much was learned. All three sondes operated and continued to transmit data for one to two hours. This corresponds to an altitude greater than 100,000 feet and temperatures below -60°C.

Since there was no on-line processor available to reduce the sonde data, the received telemetry signals were recorded on a four-channel, analog, FM magnetic tape recorder for later processing. These five tapes were returned to Honeywell's Hopkins, Minnesota, facility for processing. The Honeywell Data Laboratory facilities were used as described in the previous report, NADC 76129-30, "Miniature Meteorological Balloonsonde." This laboratory system consists of a digitizer to measure the period of the telemetered data and a Honeywell 516 Minicomputer to calculate temperature, pressure and humidity.

The flights were also tracked with radar to provide a measurement of altitude versus time.

Each minisonde was attached to the flight train of a NWS Rawinsonde launch, and a copy of the Rawinsonde data was provided to us by NASA. Since the Rawinsonde telemetry signal was recorded on one channel of the tape recorder, it was possible to compare altitude measurements of the Mini-Refraction Sonde with the contact numbers of the Rawinsonde.

A listing of this total data set is shown in the table in each flight section. Time is the common baseline of comparison. The tables list radar altitude, Rawinsonde readings and Mini-Refraction Sonde (MRS) readings.

During the early part of the first flight, telemetry difficulties were encountered because of the remote placement of the dipole antenna and high cable loss. When the receiver was switched to the UHF antenna with an antenna-mounted preamplifier, the signal cleared. This problem reduced the quality of the recorded Mini-Refraction Sonde signal for flight one.

The second launch was in conjunction with an ozone sonde launch. To measure ozone, a Rawinsonde was modified to time commutate a frequency signal from the ozone sensor. This made it impossible to identify the exact contact points of the Rawinsonde. It was not possible to make exact comparison between the Mini-Refraction Sonde and Rawinsonde pressure and altitude data.

Because of the difficulties with the first two flights, only flight number three represents the best flight comparison. Results of flight three should be representative of the present sonde performance.

A. FLIGHT NUMBER ONE

A listing of all the flight data is shown in Table 2. Greenwich Mean Time (GMT) is shown in column one to compare with the radar track. Column two gives time after launch in minutes and seconds. Column three lists the NWS Rawinsonde baroswitch contact points and column seven shows the pressure corresponding to each contact number. In columns four, five and six are shown the sonde altitude versus time as tracked by radar, read by the NWS sonde and read by the Mini-Refraction Sonde. Columns 7 through 12 give the readings of pressure, temperature and humidity read by the NWS Rawinsonde and the Mini-Refraction Sonde. The last four columns on the right, 13 through 16, show the calculated values of N and M for the modified refractive index. All of this data is plotted in the following figures.

Plots of sonde altitude versus time are shown in Figures 9 through 11 for the Mini-Refraction Sonde (MRS), National Weather Service Rawinsonde (NWS) and radar. These three plots follow so closely to each other that they cannot be plotted on a single graph and still be separated. To illustrate the variation between altitude readings, the NWS altitude and the MRS altitude were subtracted from the NASA radar-measured altitude and plotted in Figure 12. Over the first 7 kilometers (20,000 feet) the readings agree within 60 meters.

There is no apparent reason for the deviation in altitude reading by the Mini-Refraction Sonde above 7 kilometers. This does not appear in the other two flights.

A plot of free-air temperature versus altitude for the NWS Rawinsonde and the Mini-Refraction Sonde (MRS) is shown in Figure 13. The two readings agree closely. There is no systematic error apparent. Note that there are two inversion layers indicated in the data at 1 and 3 kilometers. For some reason, the minisonde responded to the 3 kilometer inversion more quickly than the NWS sonde.

The measured humidity profile is plotted in Figure 14. The humidity readings by the NWS sonde and minisonde agree within the hygristor accuracy. The readings differ by 10 percent relative humidity above 9 kilometers, but the free-air temperature at this level is below -40° C, causing the hygristor response to fall off.

The modified refractive index, N, and M-units are plotted versus altitude in Figure 15. Although the data is plotted to 12 kilometers, most of the index variations are at 3 kilometers and below.

Table 2. Flight Data for Flight Number 1, Sonde Number 11

Index
2
Index
R. H. R. H.
2
D _o gqm
9qm
AltM
AltM
Radar AltM
Baro.
T° + M S

Table 2. Flight Data for Flight Number 1, Sonde Number 11 (Continued)

	_	_							_						_				_	_					_							_	_	_	
MRS Refr. Index	M	810.4	828.8	845.1	862.5	880.6	897.3	915.1	931.2	949.2	966.5	984.5	1001.0	1018, 1	1036.9	1054.4	1070.2	1089.7	1107.3	1124.7	1143,7	1164.7	1182,5	1201.3	1219.5	1238.2	1256.5	1275.3	1295.7	1313,5	1331,9	1350,5	1370.2	1389.8	1409.2
MRS Re Index	N	180.4	177.6	175.3	173.0	170.8	168.9	167.2	164.2	161.6	159.4	157.2	155.0	153.0	150.8	148.8	147.0	144.6	142.7	140.8	138,5	136.1	134.1	132.1	130.0	127.9	126.1	124.2	122.1	120.5	118.7	117.0	115.0	113.2	111.4
Refr.	M	819.0	837.5	853.9	871.3	889.5	906.4	924.3	941.0	959.1	976.5	994.9	1011.7	1028.9	1048.0	1065.9	081.7	1101.7	1119.6	1137.2	1156.6	1178.1	1195.8	1215.0	1233, 4	1252.5	1271.2	1290.4	1311.0	1328.9	1347.9	1366.8	1386.8	1406.7	1426.4
NWS Refr.	N	181,2	178.2	175.7	173.2	170.8	168,9	167.0	164.0	161.5	_	_	-	_	_	_	-	_		_	_	135.9	-	-	_	-	_	-		_	-	-	6	113, 1	4
MRS R. H.	%	7.0	7.9	8.5	9,3	6.6	10.8	13.9	10.5	10.3	10.3	10.7	10.4	10,3	10.6	11.1	10.9	11.3	12.3	12.9	12.9	12.9	12.5	12.7	12.1	12.3	11.7	11.8	12.5	12.6	13,2	13.1	12.9	13.6	13.7
NWS R.H.	%	<10.0	<10.0		<10.0	<10.0	11.0	13.0		10.0	10.0	10.0	10.0		<10.0	10.0	10.0	11.0		12.0	12.0	12.0	12.0		12.5	12.0	12.0	12.0		12.5	12.5	13.0	12.5		13.0
MRS Temp.	°C	- 1.7	- 1.6	- 2.0	- 2.6	- 4.0	- 5.2	- 6.3	8.9 -	- 7.4	- 8.2	- 9.3	-10.2	-11.3	-12.7	-13.9	-15.0	-15.6	-16.5	-17.6	-18.1	-19,1	-20.2	-21.1	-21.8	-22.3	-23.5	-24.8	-25.7	-27.1	-28.1	-29.3	-30.0	-31.2	-32.3
NWS Temp.	သ	- 2.7	- 2.6	- 3.0	- 3.8	- 5.0	- 6.1	- 7.0	9.1 -	. 8 3	0.6 -	-10,1	-11,1	-12.3	-13.1	-14.5	-15.7	-16.4	-17.4	-18.2	-18.7	-19.6	-20.9	-22.0	-22.6	-23, 1	-24.4	-25.8	-26.8	-27.9	-29.1	-30.2	-31,0	-32.2	-33.1
MRS Press.	mp	624.4	614.0	604.7	594.9	584.5	575.1	565.5	556.5	547.0	538.0	528.5	520.0	511.3	501.7	493.0	485.2	476.2	468.0	459.9	451.5	442.2	434.4	426.3	418.7	411.2	403.5	395.7	387.7	380.5	373.3	366.1	359.0	351.7	344.7
NWS Press.	mp	629.0	619.0	609.4	599.6	589.8	580.2	570.6	561.4	552.2	543.2	533.4	525.0	516.4	507.4	498.8	490.4	481.8	473.6	465.4	457.0	448.8	441.0	433.0	425.2	417.4	410.4	402.2	394.8	387.2	380,2	372.8	365,6	358,4	351.4
	Alt-M	4087.2	4210.3	4360.9	4470.9	4599.0	4725.2		5000.9	5129.5	5259.6	5396.4	5511.0	5643.3		5930, 3	6051.5	6201.0		6461.2	6591.6	6736.5	6880.6	7019.3		7284.9		7566.1	7721.6	7843.1	7986.6	8125.9	8265.8	8412.1	8554.2
NWS	Alt-M		4156							5054																									
NASA Radar	Alt-M	4088	4215	4334	4479	4614	4745	4865	4884	5119	5241	5377	5520	5659	5794	5910	6047	6189	6309	6453	6588	6725	6848	6869	7135	7266	7404	7554	7677	7814	1959	8101	8230	8348	8206
NWS Baro.	Cont.	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57	58	59	09	61	62	63	64	65	99	29	89	69	70	71
TIME To +	M S	14:36	15:00	15:24	15:51	16:18	16:45	17:09	17:36	18:00	18:27	18:54	19:24	19:51	20:18	20:42	21:09	21:36	22:03	22:33	22:57	23:21	23:45	24:12	24:36	25:00	25:27	25:54	26:21	26:51	27:21	27:48	28:15	28:42	29:12
TIME	M M S	19:52:04	19:52:28	19:52:52	19:53:19	19:53:46	19:54:13	19:54:37	19:55:04	19:55:28	19:55:55	19:56:22	19:56:52	19:57:19	19:57:46	19:58:10	19:58:37	19:59:04	19:59:31	20:00:01	20:00:25	20:00:49	20:01:13	20:01:40	20:02:04	20:02:28	20:02:55	20:03:22	20:03:49	20:04:19	20:04:49	20:05:16	20:05:43	20:06:10	20:06:40

Table 2. Flight Data for Flight Number 1, Sonde Number 11 (Concluded)

_		_	-	-	_	_	-	_	_	_	-	_	_	_	_	-	-	_	_	_	-	-	_	-	-	-	_	-
Refr.	M	1429.0	1451.1	1469,9	1491.3	1510.0	1529,4	1549.9	1570,8	1590.7	1608.9	1630,2	1653,2	1672.5	1693, 5	1715.7	1735.2	1757.2	1772.4	1796.4	1816.4	1837.3	1859,1	1887, 3	1911.6	1935, 2	1956.4	1981
MRS Refr. Index	N	109.5	107.5	105.8	103.9	102.4	100.9	99,3	97.7	96.1	94.6	93.0	91.1	89.6	87.9	86.2	84.8	83.2	82.2	86.4	79,1	77.6	76.1	74.1	72.4	70.9	69.5	68.0
efr. x	M	1446.5	1468.8	1488.0	1510.0	1528.9	1549.0	1569.3	1590,7	1610.4	1632, 9	1650.8	1674.5	1693.8	1714.9	1737.4	1757.9	1780.3	1795.5	1820.0	1840.4	1861.6	1883.9	1912.4	1936.8	1960.8	1981.3	9 2006
NWS Refr. Index	Z	109.5	107.5	105.8	103.9	102.4	100.9	99.4	97.7	96.1	94.3	92.9	91.0	89.5	87.9	86.2	84.7	83.1	82.2	80.4	79.0	77.5	76.0	74.0	72.4	70.9	9.69	68.0
MRS R. H.	%	13.2	13,3	14.4	14.0	16.5	22.0	34.6	45.6	51,4	53,3	56.5	57.3	57.2	56.2	56,7	53.6	50.5	49.3	47.9	47.2	46.8	46.4	46.4	45.8	45.5	44.9	44 9
R.H.	%	13.0	13.0	13.5	,	17.0	27.0	40.5	47.5	,	51.0	53.0	52.5	52.4	,	52.5	48.0	46.0	45.0		42.5	42.0	42.0	42.0	,	41.0	40.0	40 0
MRS Temp.	သို	-32.9	-34.0	-34.8	-35.7	-37.1	-38.4	-39.2	-40.1	-41.1	-42.1	-43.5	-44.6	-45.5	-46.2	-47.4	-48.7	-49.7	-51.7	-52.5	-53.7	-54.5	-55.3	-55.3	-55.8	-56.2	-57.2	-57 7
NWS Temp.	J.	-33.8	-34.7	-35.7	-36.7	-38.0	-39.0	-40.0	-41.1	-42.1	-43.2	-44.2	-45.5	-46.5	-47.6	-48.6	-50.0	-51.2	-52,3	-53,5	-54.9	-55.7	-56.5	-56.5	-56.9	-57.6	-58.3	-59 3
MRS	qm	338.0	330.4	324.1	317.1	310.7	304.2	298.0	291.6	285.6	280.0	273.6	267.0	261.6	256.0	249.9	244.4	238.7	234.0	228.2	223.1	218.2	213.2	207.6	202.6	197.8	193,3	188.5
NWS Press.	gm	344.2	337.6	330.8	324.2	317.6	311.0	304.2	298.2	292.0	285.8	279.6	273.6	267.6	261.8	256.2	250.4	244.6	238.8	233,6	228.2	223.0	217.8	212.8	207.8	202.8	198.0	193.0
MRS	Alt-M	8707.1	8853.7	9001.4		9267.2	9419.7	9554.8	9716.3	9877.4		0.449.0		0461.6		10781.3	10900.2	0.19011	11197.8	11346.9	11486.7	11636.4	11784.0	11954.1	12101.9	12261.2	12413.4	2573.0
NWS	Ait-M					1606		-	_			9926																
NA SA Radar	Alt-M	8647	8764	8915	9046	9193	9353	9497	9635	6946	9904	10025	10162	10318	10439	10648	10747	10895	11028	11178	11315	11460	11592	11752	11903	12048	12202	12344
NWS Baro.	Cont.	72	73	74	75	92	77	78	42	80	81	82	83	84	85	98	87	88	83	06	91	92	93	94	95	96	97	86
TIME T° +	M S	29:39	30:06	30:33	30:57	31:24	31:54	32:21	32:48	33:15	33:42	34:06	34:33	35:00	35:21	35:51	36:21	36:51	37:18	37:48	38:15	38:45	39:15	39:48	40:18	40:48	41:21	41:51
TIME	M M S	20:07:07	20:07:34	20:08:01	20:08:25	20:08:52	20:00:02	64:60:02	91:01:02	20:10:43	20:11:10	20:11:34	20:12:01	20:12:28	20:12:49	20:13:29	20:13:49	61:41:02	20:14:46	20:15:16	20:15:43	20:16:13	20:16:43	50:17:16	20:17:46	50:18:16	20:18:49	20:19:19

Figure 9. Plot of Altitude versus Time Measured with Mini-Refraction Sonde — Flight Number 1

Figure 10. Plot of Altitude versus Time Measured with NWS Rawinsonde — Flight Number 1

Figure 11. Plot of Altitude versus Time Measured with NASA Radar — Flight Number 1

Figure 12. Plot of Difference in Altitude Reading of the MRS and Rawinsonde versus Radar — Flight Number 1

Figure 13. Plot of Free-Air Temperature versus Altitude for the MRS and Rawinsonde — Flight Number 1

Figure 14. Plot of Relative Humidity versus Altitude for the MRS and Rawinsonde — Flight Number 1

Figure 15. Plot of Modified Refractive Index, N, and M-Units versus Altitude Read by Mini-Refraction Sonde — Flight Number 1

B. FLIGHT NUMBER TWO

A listing of all the flight number 2 data is shown in Table 3. The flight was an ozone-Rawinsonde sounding which inserted ozone readings into the Rawinsonde data stream. These periodic interruptions to the regular barometric commutation made it impossible to exactly correlate the Rawinsonde pressure readings with the Mini-Refraction Sonde readings. The rest of the columns are as described in Table 2. A separate listing of Rawinsonde altitude versus radar-tracked altitude is shown in Table 4.

Plots of altitude versus time are shown in Figures 16 through 18 for the MRS, NWS and radar. These plots are very close, as can be seen from the data in Tables 3 and 4.

A plot of measured free-air temperature versus altitude for the Rawinsonde and MRS is shown in Figure 19. The Mini-Refraction Sonde is reading about 3°C higher in temperature than the Rawinsonde. Both indicate the same temperature trend and show a small inversion at 2800 meters. This offset could be caused by self-heating or a thermal lag in the MRS thermistor mounting chamber. It could also be due to a calibration error in one of the thermistors.

The measured humidity profile is plotted in Figure 20. Although the trend of the curves agrees well, the Rawinsonde indicates significantly lower humidities when reading less than 33 percent. At these humidities, the carbon hygristor has minimum resistance. Possibly the MRS hygristor mount was not making good contact with the hygristor. The mounts could be gold- or silverplated in future models. It is also possible that the hygristor was damaged while being inserted due to operator inexperience.

The modified refractive index, N, and M-units are plotted versus altitude in Figure 21. The curves are almost straight, indicating no significant ducting.

Table 3. Flight Data for Flight Number 2, Sonde Number 10

	_						_					_	_		_	_		_				_	_			_	_	_	_	_	_				
efr.	M	352.1	379.2	378.5	389.6	401.3	413.8	431.0	443.8	454.9	464.5	477.3	486.9	496.7	509.1	521.5	532.2	543.2	555.6	566.5	577.9	589.9	602.2	615.8	625.8	640.8	654.7	650.5	657.7	682.0	690.4	703.7	721.7	733.7	748.8
MRS Refr. Index	Z	333.3	334.8	330.3	326.9	322.8	320.8	323,4	319.9	315.1	312.0	307.1	302.2	298.3	292.7	288.6	284.5	279.3	275.7	271.4	267.2	262.3	258.9	255.1	251.8	247.6	244.2	225.2	215.6	222.3	210.0	206.4	208.0	202.5	199.7
tefr.	M																																		
NWS Refr. Index	Z								7						Y .																				
MRS R.H.	%	90,3	91.4	90.4	90.4	90.5	90.3	90.7	90.6	90.6	90.4	90.4	90.5	90.6	90.4	90.6	90.6	90.7	90.7	90.7	8.06	8.06	8.06	90.9	91.0	91.0	91.1	51.7	31.3	49.4	31.9	30.1	39.4	33.2	33, 4
NWS R.H.	%																																		
MRS Temp.		12.0	13.5	13.2	13.1	12.7	13.1	14.9	14.8	14.2	14.1	13.5	12.7	12.2	11.4	10.9	10.4	9.4	9.1	8.3	9.7	9.9	6.2	5.8	5.2	4.6	4.2	3.0	9.9	7.7	6.7	6.2	5.8	5.5	4.7
NWS Temp.								12.6																				-2.2	3.8						
MRS Press.	qu	1010.5	998.7	987.9	8.946	964.9	954.2	943.8	932.0	920. 5	911.5	899.0	888.8	879.3	866.9	855.8	845.7	834.8	824.4	814.4	804.2	793.3	783.5	772.7	764.4	752.7	742.4	733.0	725.0	715.7	703.5	694.0	685.0	675.4	665,6
NWS Press.	qm	1012.2	1000.6	988.8	977.6	0.996	955.2	943.6	932.8	921.6	910.4	0.006	889.0	878.2	867.6	856.6	846.4	835.6	825.2	815.2	805.0	794.8	784.0	774.0	764.4	754.2	744.4	734.6	725.0	715.2	705.4	0.969	686.2	8.929	667.2
MRS	Alt - M	123.9	230.0	304.8	403.0	506.7				6.006	988.6	1104.2	1193.8	1275.8	1423.4	1516.5	1599.5	1738.3	1835.6	1947.1		2156.0	2263.9	2373.3	2452.0	2577.8	2695.7	2804.1	2880.8	2997.7	3129.1	3258.7	3349.7	3461.1	3599,6
NWS	Alt -M							692																				2756	2866						
NASA Radar	Alt -M																																		
NWS Baro.	Cont.	5	9	7	8	6	10	11	12	13	14	15	16	17	.18	19	20	21	.55	23	24	25	26	27	28	29	30	.31	32	•33	34	35	36	37	38
Time To +	M S	00:36					02:30	02:54				04:36					06:12					07:42					08:57	09:18	10:06			11:39			
Time	H M S	15:20:21					15:22:15	15:22:39				15:24:21					15:25:57					15:27:27					15:28:42	15:29:03	15:29:51			15:31:24			

Table 3. Flight Data for Flight Number 2, Sonde Number 10 (Continued)

lefr.	761.5	789.2	807.4	836.0	852.4	864.6	884.2	914.6	932.7	948.1	961.3	977.4	992.3	1012.6	1029.2	1044. /	1074 3	1093.3	1113.3	1134.1	1150.5	1170.2	1189.2	1207.2	1223.6	1241.6	1256.6	1274.6	1291.2	1310.4
MRS Refr. Index N	195.6 192.8	190.0	188.0	183.4	180.3	177.8	175.2	169.9	167.1	165.3	163.2	161.2	159.0	1.001	153.3	1.101	147 8	146.0	144.8	143.9	142.9	141.1	139.6	133.9	131.4	129.4	126.7	124.6	122.6	120.4
NWS Refr. Index N M										_																				
MRS R.H.	29.9	28.3	30.7	31.9	31.2	29.5	30.8	29.1	29.5	31.0	30.5	31.9	31.5	31.8	29.3	4.97	31.5	35.9	45.1	58.5	68.0	76.3	83.4	53.5	47.8	48.1	39.5	38.6	37.1	35.3
NWS R.H.																														
MRS Temp.	3.1	2.6	2.5	0.6	-0.2	-0.5	-0.9	6.1-	-3.1	-4.0	-4.7	-5.3	-6.4	9.7-	-8.3	4.6	20.1	-10.8	-11.7	-13.0	-14.0	-15.2	-15.4	-16.2	-15.6	-15.8	-16.2	-17.6	-18.2	-18.8
NWS Temp.																			-15.5					-19.4						
MRS Press. mb	656.5	638.6	628.5	611.1	601.3	594.1	583.5	566.5	556.4	548.3	541.1	532.9	525.0	514.4	506.0	498.7	484.7	476.0	467.3	458.3	451.2	442.5	435.0	426.0	419.9	413.0	406.7	399.1	392.6	385,3
NWS Press. mb	657.8	639.6	630.4	612.4	603.2	594.2	585.4	568 4	559.6	551.2	542.4	534.2	525.8	517.4	509.2	501.2	485.0	477.0	469.0	460.2	452.6	444.8	437.2	429.6	422.2	414.8	408.0	400.6	393.2	386.2
MRS Alt - M	3697.6	3913.5	4047.8	4268.8	4406.0	4506.7	4647.4	4859 3	5013.6	5150.6	5243.0	5366.6	5488.8	5643.3	5774.7	5889.9	6101.3	6258.2	6387.4	6531.9	6651.6	6797.5	6927.3	7084.9	7196.0	7311.9	7443.5	7576.6	7695.1	7839.4
NWS Alt - M																			6292					6942						
NASA Radar Alt - M													0000	0096																
NWS Baro Cont.	• 39	41	42	5 4 4	45	46	47	40	20	51	52	53	54	22	26	20	0 0	09	61	62	63	64	65	99	29	89	69	20	71	72
Time To + M S	13:33				15:39				17:54					20:00				22:03	22:24				24:03	24:36				26:18		
Time GMT H M S								• •																						

Table 3. Flight Data for Flight Number 2, Sonde Number 10 (Concluded)

ifr.	M	1331.8	1350.1	1370.0	1387.0	1405.2	1422.4	1443.2	1460.1	1474.1	1498.2	1518.1	1539.1	1558.3	1577.5	1596.6	1617.6	1631.5	1651.6	1673.2	1694.5	1716.6	1732.0	1756.4	1777.2	
MRS Refr.	N	118.0	116.3	114.4	112.8	110.8	109.3	107.3	105.9	104.7	102.5	100.7	8.86	97.2	95.8	94.4	92.7	91.6	90.1	88.4	86.8	85.1	84.0	82.3	9.08	
NWS Refr.	N M																									
NN	Z																									
MRS	и. н. %	33.2	35.3	36.5	37.9	34.8	35.9	35.6	36.2	38.8	36.9	36.2	33.8	34.6	39.6	45.5	45.8	44.5	44.8	45.8	44.4	43.2	43.8	44.3	39.0	
NWS	%. u.																									
MRS	уС	-20.0	-21.8	-22.4	-24.0	-24.6	-25.8	-26.9	-28.5	-29.2	-30.4	-31.7	-32.2	-33.2	-35.1	-36.1	-37.5	-38.0	-39.9	-41.0	-42.0	-43.2	-44.2	-45.4	-45.2	
NWS	°C																									
MRS	mb mb	377.0	369.6	362.5	355.8	349.5	343.2	335.9	329.7	325.0	317.0	310.4	304.1	298.1	291.6	285.8	279.4	275,5	269.1	263.0	257.1	251.1	246.8	240.5	236.0	
NWS	mb mb	379.0	372.0	365.2	358.6	351.6	345.0	338.2	332.0	325.4	319.0	312.6	306.2	300.4	294.0	288.2	282.2	276.4	270.6	264.8	259.2	253.6	248.0	242.6	237.2	•
Supe	MRS Alt - M	7731.1	7858.2	7997.4	8115.9	8244.2	8363.8	8508.5	8625.8	8722.5	8888.8	9027.7	9173.8	9306.4	9437.5	9567.8	9712.7	9808.2	9945.7	10093.7	10240.4	10391.4	10496.7	10663.3	10805.8	
MING	Alt - M	8001.2	8140.5	8299.6	8426.1	8560.1	8691.9	8846.6	8978.7	9080.3	9258.4	9402.8	9539.3	9692.0	9848.6	9984.9	10145.1	10232.9	10403.2	10559.1	10716.3	10869.0	11000.8	11161.3	11388.0	
NASA	Radar Alt - M																									
NWS	Cont.	73	74	75	92	77	78	42	80	81	82	83	84	85	98	87	88	88	90	91	92	93	94	95	96	
Time	M S			28:39					30:57					33:15					35:12					38:06		
Time	H M S																									

1

-

Table 4. Flight Data for Flight Number 2, Sonde Number 10

		_	_		_	_	_	_	_			_								_
MRS Refr. Index	M																			
MRS	z																			
NWS Refr. Index	M																			
NWS Re Index	N																			
MRS	%																			
NWS	9%	10.01	91.7	92.2	92.3	93.4	38.0	26.5	<10.0	<10.0	22.5	73.2	17.5	15.0	12.5	10.0	10.0	10.0	10.0	10.0
MRS	°C																			
NWS	S.C.	0 4	10.9	12.6	8.3	1.8	-2.2	3.8	4.3	-12.1	-15.5	-18.6	-19.4	-21.3	-37.7	-47.7	-58.1	-69.2	-68.5	-72.3
MRS	mb																			
NWS	mb	1024 9	1000.0	944.0	850.0	741.0	735.0	725.0	700.0	500.0	469.0	443.0	430.0	400.0	300.0	250.0	200.0	157.0	150.0	126.0
MRS	ALT-M																			
NWS	ALT-M	4	209	692	1568	2691	2756	2866	3151	5806	6292	6721	6942	7478	9531	10762	12202	13688	13961	14996
NASA	ALT-M	-				2675	2758	2898	3176	5847	6331	6754	7029	7519	9589	10813	12241		1	
NWS	Cont.	3 0	6.05	11.0	19.65	30.3	31.0	32.0	34.57	57.15	61.0	64.3	0.99	80.07	85.06	93.64	103.28	112.9	114.6	120.8
Time T, +	M S	00.00	00:54	02:54	90:90	00:60	09: 18	10:06	11:24	20:54	22:24	23: 42	24:36	26:18	33: 18	37:24	42: 12	46: 48	47:36	50:54
Time	н м ѕ	15.19.45	15: 20: 39	15: 22: 39	15:25:51	15: 28: 45	15: 29: 03	15:29:51	15:31:09	15:40:39	15: 42: 09	15: 43: 27	15:44:21	15: 46: 03	15:53:03	15:57:09	16:01:57	16:06:33	16:07:21	16:10:39

Figure 16. Plot of Altitude versus Time Measured with Mini-Refraction Sonde — Flight Number 2

Figure 17. Plot of Altitude versus Time Measured with NWS Rawinsonde — Flight Number 2

Figure 18. Plot of Altitude versus Time Measured with NASA Radar — Flight Number 2

Figure 19. Plot of Free-Air Temperature versus Altitude for the MRS and Rawinsonde — Flight Number 2

Figure 20. Plot of Relative Humidity versus Altitude for the MRS and Rawinsonde — Flight Number 2

Figure 21. Plot of Modified Refractive Index, N, and M-Units versus Altitude Read by Mini-Refraction Sonde — Flight Number 2

C. FLIGHT NUMBER THREE

The data for flight three is tabulated in Table 5. This was a smooth flight with good data reception over the flight. With the solid telemetry data, it was possible to compare flight data closely. All of the data in Table 5 are plotted in the following figures.

Plots of sonde altitude versus time are shown in Figures 22 through 24 for the MRS, NWS and radar. Since these three plots are almost identical, a difference plot is shown in Figure 25. To illustrate the variation between altitude readings, the NWS altitude and MRS altitude were subtracted from the NASA radar-measured altitude and plotted in Figure 25. All of the readings agree within ± 50 meters and the rms variation is ± 30 meters. This is very good agreement on altitude measurement.

An illustration (Figure 26) of the resolution obtained from 0.4-second time commutation of data is shown by plotting all the altitude points for the first minute of the flight. This illustrates the data scatter before and after launch. The point-to-point variation is ± 35 feet. A linear regression curve fit will improve this accuracy.

A plot of free-air temperature versus altitude for the Rawinsonde and MRS is shown in Figure 27. Note the inversion at 1.5 kilometers. During the first portion of the flight, the MRS sonde indicated a temperature 2.5°C warmer than that of the NWS sonde, but during the rest of the flight the temperature was the same or lower. Possibly this relative warmup of the NWS measurement later in the flight was caused by increased solar radiation as the sondes rose above the clouds. Note from Figure 28 that the humidity was high up to 6.5 kilometers, indicating cloud layers. This shows the advantage of a shaded sensor as used in the MRS sonde. The MRS thermistor is mounted in the air duct to shield it from solar radiation. The NWS Rawinsonde thermistor is mounted on an arm extended from the sonde body to minimize heating from the sonde. This exposes the thermistor to sunlight, which raises the thermistor temperature.

The measured humidity profile versus altitude is shown in Figure 28. As before, the shape of the humidity profiles agrees well between the NWS sonde and the Mini-Refraction Sonde. The NWS sonde indicates a wider range of humidities with values above 90 percent and less than 20 percent. This could indicate a defective hygristor mount. The hygristor mount should be investigated for conductivity and leakage during the next phase of the development.

A plot of modified refractive index, N, and the M-units versus altitude are shown in Figure 29. The values are plotted for each contact switch point of the NWS sonde. Note the small inversion layer at two kilometers.

To show the fine structure of this inversion layer, the high resolution data from the Mini-Refraction Sonde was plotted on an expanded scale in Figure 30. This fully defines the layer.

Table 5. Flight Data for Flight Number 3, Sonde Number 9

	-	_	_	_	_	_				_	_	_	_	_	_	_	_			_		_		_	_	_	_	_		_	_			_	
defr.	M		361.7	375.8	388.5	402.0	414.3	427.3	439.8	451.8	461.9	472.9	483.6	493.5	505.1	516.5	527.3	531.1	540.6	545.7	556.9	581.6	613.2	626.6	638.8	620.9	663.2	676.4	688.6	704.0	714.8	728.5	740.8	754.0	772.3
MRS Refr. Index	z	338.4	338.0	335.4	331.9	330.2	327.0	324.2	321.1	317.6	312.9	307.0	302.1	296.5	292.1	287.6	283.0	270.8	263.9	250.8	246.7	254.6	269.3	265.8	262.2	257.6	253.5	249.7	246.0	241.3	234.8	230.4	227.0	222.6	222.0
Refr.	M	353.8	366.8	381.4	393.4	408.8	420.8	434.0	447.3	458.9	469.1	480.3	490.8	501.1	512.8	525.7	529.8	535.5	543.0	543.8	558.3	590.1	623.1	636.4	648.7	661.2	673.5	687.0	700.1	715.2	724.6	739.1	751.5	729.4	785.2
NWS Refr. Index	Z	343.8	342.7	340.3	336.8	335.2	331.7	328.8	326.1	322.0	317.2	311.0	305.6	300.2	295.4	292.1	280.5	270.0	260.8	243.2	241.3	256.7	272.1	268.4	264.4	259.8	255.5	251.6	247.4	243.1	235.0	231.0	227.5	188.3	223.7
MRS	٣٠. ا	90.2	91.2	91.3	91.4	91.4	91.4	91.5	91.5	91.6	91.4	91.1	8.06	89.0	868	8.68	89.9	74.9	68.3	49.0	45.6	63.9	95.6	93.5	92.8	92.2	92.9	93.0	93.0	92.8	88.1	86.9	86.9	85.9	93.7
NWS	9%		97.7	87.8	97.7	87.8		97.5	97.5	8.76	97.9	,	0.96	94.8	95.0	97.5	,	73.5	63.0	36.0	37.0		97.5	98.3	97.3	96.3	,	97.0	97.2	6.96	88.7		88.3	92.6	87.8
MRS	SC C	13.7	14.3	14.6	14.5	14.9	14.9	15.0	14.9	14.8	14.2	13.4	12.8	12.2	11.4	10.8	10.0	9.7	9.5	10.3	10.8	10.7	10.8	10.3	10.1	9.5	8.7	8.2	7.7	7.0	6.2	5.6	5.1	4.2	3.7
NWS	Scmb.	11.2	12.5	12.8	12.5	13.0	13.0	13.2	13.2	12.8	12.0	11.3	10.4	9.5	9.2	8.3	7.5	6.2	5.9	6.2	7.6	8.3	8.5	7.9	7.6	7.0	6.5	5.7	5.0	4.2	3.7	3.2	2.3	1.6	8.0
MRS	mb	1013.6	1002.8	0.066	977.7	966.3	954.8	943.3	932.0	920.9	910.4	898.4	887.5	876.8	865.7	854.9	844.5	833.9	823.2	811.9	802.4	792.1	781.9	771.6	762.0	751.9	742.1	732.0	722.8	711.2	701.2	691.0	682.3	672.4	662.3
NWS	mb	1015.0	1001.8	990.2	977.4	0.996	954.4	943.2	932.0	920.6	9.606	898.4	887.2	876.2	865.0	854.0	843.6	833.0	822.2	811.8	801.4	791.0	8.087	770.6	760.4	750.4	740.6	730.8	720.8	711.0	701.2	691.6	682.2	673.0	663.4
MRS	ALT-M	61.3	153.8	266.7	360.4	467.7	563.2	6.49	9.777	874.7	973.5	1070.9	1185.0	1290.7	1393.9	1502.2	1581.7	1703.9	1802.9	1937.7	2009.9	2138.4	2246.1	2347.4	7458.4	2572.5	2668.6	2804.0	2929.3	3037.0	3153.4	3276.9	3375.0	3493.6	3608.7
NWS	ALT-M							670														2128	2233												
NASA	ALT-M					1										,	1604	1719	1821	1933	20:14	2130	2236	2353	2452	2568	2690	2797	2921	3055	3163	3283	3410	3512	3624
NWS	Cont.	2	9	7	80	6	10	111	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
Time T, +	M S	90:00	00:03	00:57	01:21	01:45	02:12	02:36	03:00	03: 24	03:45	04:09	04:33	04:57	05:18	05:42	90 90	06:30	06:51	07:15	07:36	08:00	08:24	08:51	09: 15	09:39	10:03	10:27	10:54	11:21	11:42	12: 06	12:33	12:57	13:21
Time	H M S	07:	07:	08:	08:	.60	.60	10:	19:10:24	10:	Ξ	11:	=	12.	12:	13.	13.	13:	14	14	15.	15.	15.	16:	16.	17:	17:	17:	18:	18	19.	19.	19	20:	20.
			_	_			_		_					_			_	_	_				_			_		_	_	_	_				

Table 5. Flight Data for Flight Number 3, Sonde Number 9 (Continued)

			_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_			_	-	_	_			_	_	_	_	_	_	_	_
MRS Refr. Index	M	784.9	795.3	810.4	825.2	840.4	820.9	868.4	881.5	890.1	909.2	927.1	943.0	958.3	973.7	988.7	1004.1	1018.8	1034.8	1050.1	1065.9	1080.5	1095.8	1109.7	1123.7	1155.4	1172.5	1189.4	1205.2	1221.9	1238.6	1253.7	1271.7	1288.8
MRS Re Index	Z	218.2	211.9	209,1	206.5	204.4	201.4	197.3	192.9	182.8	184.2	184.3	182.4	179.2	176.4	173.4	170.8	167.8	164.9	162.3	157.6	155.2	153.1	1.651	130 4	137.0	134.8	132.8	130.7	128.6	127.0	125.2	123.5	121.5
NWS Refr. Index	M	197.8	811.2	822.4	839.7	854.7	869.3	881.7	895.1	901.4	925.4	942.8	959.4	975.4	991.1	1006.6	1022.0	1037.0	1053.3	1068.4	1084.3	1100.1	1110.8	1127.0	1157 9	1173.6	1191.7	1209.1	1225.5	1242.7	1260.3	1276.4	1294.0	1311.7
NWS Re Index	z	219.5	214.7	210.0	208.3	205.7	201.8	197.1	192.5	179.6	185.6	184.6	182.6	180.2	177.4	174.4	171.5	168.5	165.3	162.3	158.0	155.4	149.0	142.5	136.9	134.5	132.6	130.7	128.9	127.0	125.4	123.8	122.0	120.3
MRS R.H.	%	92 7	83.9	86.1	8.68	93.2	93.0	92.3	87.9	62.2	78.4	8.06	94.3	94.5	94.5	94.6	94.5	94.3	94.2	93.7	80.6	80.6	82.9	4.0.4	20.0	32.0	31.0	30.9	28.2	26.0	28.1	26.7	29.3	26.5
NWS R.H.	%	96.5	1	87.9	95.1	97.5	8.96		86.8	20.0	83.8	92.0		6.86	99.4	8.66	0.66		6.96	94.4	81.8	82.3		29.0	2.5	13.0		12.5	11.0	10.0	11.5	,	10.0	10.2
MRS Temp.	. o	3.1	2.7	2.0	1.1	0.5	-0.3	6.0-	-1.6	-2.4	-2.9	-3.6	-4.0	-4.8	-5.4	2.9-	9.9-	-7.5	-8.3	-8.8	-8.8	9.6-	-10.4	9.0	-10.3	-11.9	-12.9	-13.8	-14.8	-15.8	-16.7	-17.7	-18.6	-19.6
NWS Temp.	۰۵	0.2	0	9.0-	-1.6	-2.4	-3.4	-4.0	-4.7	-5.0	-5.7	-6.7	-7.0	-7.6	-8.3	-8.7	-9.3	-10.0	-10.7	-11.4	-11.7	-12.7	-13.5	-14.1	14.0	-16.7	-17.4	-18.3	-19.0	-19.8	-20.2	-21.5	-22.5	-23.4
MRS Press.	qm	653.4	644.6	635.1	626.0	617.2	610.1	599.4	590.6	581.3	572.9	564.4	556.3	547.6	539.3	531.0	523.1	515.2	6.906	499.2	491.0	483.7	476.4	468.5	461.3	447.0	439.3	431.9	424.9	417.9	411.0	404.6	397.5	390.6
NWS Press.	qm	654.2	645.2	635.8	626.6	617.8	0.609	0.009	591.2	581.4	573.0	564.4	556.0	547.6	539.4	531.0	523.0	515.0	8.909	499.0	491.2	483.4	475.6	467.2	450.2	445.6	437.4	430.2	423.2	416.0	409.0	402.0	395.2	388.4
MRS	ALI-M	3727.1	3831.4	3957.0	4074.0	4192.8		4431.2	4540.4	4660.6	4772.6	4894.1	5026.7	5137.9	5252.0	5378.2	5507.0	5625.7	5738.4	5862.1	5978.8	6105.5	6232.6	6354.6	6574 6	6704.8	6854.1	6973.6	7101.4	7219.1	7355.3	7449.1	7601.0	7732.8
NWS	ALI-M								4484													6046	1000	6305										
NASA	ALT-M	3733	3828	3949	4068	4180	4295	4399	4531	4658	4766	4871	5010	5126	5250	5345	5490	5655	5714	5846	5970	6609	6223	6339	6400	1000	6831	0669	7111	7233	7367	7494	7626	7742
NWS Baro.	Cont.	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99	57	58	29	09	10	70	64	65	99	29	89	69	70	71	72
Time To+	M S	13: 45	14:09	14:36	15:00	15:24	15:51	16:15	16:42	17:09	17:33	17:57	18:27	18:51	19:18	19,39	20:06	20:33	20:57	21:24	21:51	22: 18	22: 42	23:06	93.57	24:18	24:45	25:12	25:36	26:03	26:27	26:54	27:24	27:51
Time	H M S	19:21:09	19:21:33	19: 22: 00	19. 22: 24	19:22:48	19:23:15	19:23:39	19:24:06	19:24:33	19:24:57	19:25:21	19.25.51	19, 26, 15	19:26:42	19.27:03	19: 27: 30	19.27:57	19:28:21	19:28:48	19.29.15	19: 29: 42	19:30:06	19:30:30	19:30:34	19:31:42	19:32:09	19:32:36	19:33:00	19:33:27	33:	19:34:18	19:34:48	19:35:15
			_		_	_		_						_	_	_			_				_	_		_	_		_	_			_	_

13

-

Table 5. Flight Data for Flight Number 3, Sonde Number 9 (Concluded)

_	_	_	-	_	_	_	_	_	_	_	-	-	_	_	_	_		_	_	_		_		_			_	_	_	_	_	_	_	_	_
Refr.	M	1307.0	1322,5	1338,7	1357.9	1373.3	1391,5	1408.3	1425.1	1443.4	1460.4	1475.6	1494.4	1513.0	1529.8	1547,8	1565,5	1582.7	1601.2	1620.2	1636.8	1654.5	1672.5	1694.1	1709.0	1731.8	1751,6	1767.1	1785.2	1806.4	1823, 3	1840.4	1859,2	1877.6	1895,9
MRS Refr.	Z	119.7	118.1	116.6	114.7	113.3	111.5	109.9	108,3	106.7	105.4	104.1	102.5	100.8	9.66	98.0	9.96	95.3	63.8	92.4	91.2	86.8	88.4	9.98	85.6	83.8	82,3	81.3	80.0	78,5	77.4	76.3	75.2	74.0	72.8
Refr. ex	M	1329.9	1346.8	1363,8	1384.0	1399.5	1416.8	1435.2	1452.6	1471.3	1488.6	1504.9	1524.1	1543.5	1559.8	1578.9	1596.0	1614.9	1633.0	1653,5	1671.1	1688.3	1707.4	1729.5	1745.3	1768.5	1788.5	1804.2	1823.0	1844.9	1862.1	1879.7	1899.4	1918.5	1937.0
NWS Refr.	Z	118.6	117.0	115.6	114.3	112,5	110.8	109.2	107.8	106.2	104.9	103.6	102.1	100.4	99.2	9.76	96.4	95.1	93.8	92.3	91.1	89.8	88.3	86.5	85,5	83.6	82.2	81.2	6.62	78.4	77.4	76.3	75, 1	73.9	72.8
MRS	ж.н.	26.6	26.4	26.8	27.5	27.4	26.3	25.3	25.5	26.4	28.5	29.3	31.5	32.0	32.4	32,3	34.8	37.6	42.6	45.4	50.1	48.3	45.1	43.3	40.8	37.2	33.6	32.7	32.5	32.2	31.3	33,5	34.7	35,4	35,8
NWS	% %	10.3	10.1	1	12.0	12.0	10.0	10.1	!	11.0	12.5	13.0	15.0	!	15.0	15,1	18.0	24.0	1	39.0	47.5	42.0	36.0	!	28.0	18.0	16.5	16.0	:	15.0	15,5	17.5	18.0	1	21.0
MRS	°C	-20.6	-21.4	-22.8	-23.5	-24.9	-25.8	-26.8	-27.7	-29.0	-30,3	-31,3	-32,5	-32.9	-34.8	-35.4	-36.6	-37.7	-38.6	-39.8	-40.8	-42.0	-43.2	-43.6	-45.2	-45.4	-46.0	-47.3	-48.3	-49.2	-20.6	-51,8	-53,3	-54.4	-55.4
NWS	°C	-24.4	-25.5	-26.5	-27.6	-28.5	-29.5	-30.5	-31.5	-32.6	-33.6	-34.6	-35.7	-36.7	-37.8	-38.7	-40.0	-41.0	-42.6	-43.5	-44.7	-45.5	-46.5	-47.8	-48.3	-48.6	-49.8	-51.0	-52,3	-53.2	-54.5	-55.7	-56.8	-57.9	-59.0
MRS	mb mb	383,5	377.5	371.0	364.1	358.0	351.5	345.4	339.5	333.0	327.0	321,7	315,4	309.7	303.7	298.3	292.6	287.3	281.8	276.1	271.1	265.9	260.6	255.2	250.6	245.1	240.3	235.9	231,3	226.2	221.7	217.4	212.6	208.2	204.0
NWS	mb	381.8	375.2	368,4	362.0	355,4	349.0	342.8	336.6	330.4	324.4	318.4	312.4	306.6	300.8	295.0	289.4	283.6	278.0	272.4	267.2	261.8	256.6	251.4	246.2	241.0	236.0	231.0	226.2	221.2	216.6	212.0	207.2	202.6	198.2
MRS	ALT-M																															11799.9		12083.6	2
NWS	ALT-M																										11119								
NASA	ALT-M	7882	8000	8106	8263	8381	8520	8655	6928	8899	9052	9180	9536	9438	9567	9700	9833	9957	10108	10230	10348	10495	10607	10744	10871	11018	11163	11282	11394	11562	11708	11857	11974	12093	12210
NWS	Cont.	73	74	75	92	77	18	19	80	81	82	83	84	85	98	87	88	68	06	91	92	93	94	92	96	97	86	66	100	101	102	103	104	105	106
Time T +	w s	28:21	28:48	29, 15	29.45	30:08	30,36	31:03	31:27	31:54	32:21	32:45	33:12	33:36	34:00	34:27	34:54	35:18	35:51	36:24	36:51	37:24	37:51	38:24	38:54	39:27	39:54	40:21	40:48	41:21	41:48	42:15	42:42	43:12	43:39
Time	H M S	19:35:45	19:36:12	19:36:39	19:37:09	19:37:33	19:38:00	19:38:27	19:38:51	19:39:18	19:39:45	19:40:09	19:40:36	19:41:00	19:41:24	19:41:51	19:42:18	19:42:42	19:43:15	19:43:48	19:44:15	19:44:48	19:45:15	19:45:48	19:46:18	19:46:51	19:47:18	19:47:45	19:48:12	19:48:45	19:49:12	19:49:39	19:50:06	19:50:36	19:51:03

Figure 22. Plot of Altitude versus Time Measured with Mini-Refraction Sonde — Flight Number 3

Figure 23. Plot of Altitude versus time Measured with NWS Rawinsonde — Flight Number 3

Figure 24. Plot of Altitude versus Time Measured with NASA Radar — Flight Number 3

Figure 25. Plot of Difference in Altitude Reading of the MRS and Rawinsonde versus Radar — Flight Number 3

Figure 26. Plot of Altitude versus Time for Flight Number 3 Measured with MRS. Each data point at 2-1/2 per second is plotted to show resolution.

Figure 27. Plot of Free-Air Temperature versus Altitude for the MRS and Rawinsonde — Flight Number 3

Figure 28. Plot of Relative Humidity versus Altitude for the MRS and Rawinsonde — Flight Number 3

Figure 29. Plot of Modified Refractive Index, N, and M-Units versus Altitude Read by Mini-Refraction Sonde — Flight Number 3

Figure 30. Plot of N and M versus Altitude with an Expanded Scale to Illustrate Resolution

D. DATA REDUCTION

The Mini-Refraction Sonde has two significant advantages for the measurement of refractive index. The first is the small size and light weight of the sonde which simplifies field operation. A second advantage is the high vertical resolution of data due to the use of fast time commutation of the sensors.

A 0.1-second switching rate is used to commutate each of the temperature, pressure and humidity sensors. A complete cycle is completed every 400 milliseconds. At a balloon ascent rate of 800 feet per minute, this gives a vertical resolution of 5.33 feet. In other words, the temperature, humidity, altitude and refractive index are sampled every 5.33 feet of ascent. This gives a very fine resolution to the analysis of refractive layers.

As an illustration of this resolution, refer to Figure 15. A weak inversion layer was located at 600 meters during the first flight. This layer can be detected by the slight inflection or bump in the N and M curves. It is difficult to see much of the character of the refractive index at this scale; therefore, the N and M values were replotted for the first 1000 meters of the flight as shown in Figure 31. This plot shows the refractive index at each of the contact points of the NWS Rawinsonde. Although this shows the refractive layer more clearly, it is still hard to see the fine structure.

A plot of the N and M values, measured with the Mini-Refraction Sonde for the first 1000 meters of flight, is shown in Figure 32. This plot shows the 2-meter altitude resolution of the MRS. The refractive layer can clearly be seen. It starts at 460 meters and ends at 770 meters. This demonstrates the value of the high data rate available from the time-commutated Mini-Refraction Sonde.

Figure 31. Plot of N and M versus Altitude for the First 1000 Meters of Flight Number 1 — Data Plotted at Switch Points Only

Figure 32. Plot of N and M versus Altitude for the First 1000 Meters of Flight Number 1 — Data Plotted for most of the Outputs of the Mini-Refraction Sonde at 2-1/2 Samples Per Second

IV. Conclusions

This series of three sonde launches was both successful and useful, successful because the total system functioned and useful for what was learned about the method for meteorological soundings.

All sondes operated—sensing, commutating, encoding and telemetering the signals—the batteries performed well, and the transmitters were accurate and stable over the temperature and voltage range encountered. The sonde packages did not break despite lightweight construction.

These tests were very useful in experiencing the meteorological measurement environment, and potential telemetry problems were observed. We noticed short term fading due to multipath fading at low reception angles, which can affect both the telemetry receiver and processor.

An indication of measurement accuracy can be determined by comparing the output of the Mini-Refraction Sonde with the NWS Rawinsonde. On temperature measurement it appears that the MRS sonde reads a few degrees warm, perhaps due to self-heating or because of the thermal lag of the mounting. This needs to be investigated during the next phase.

The pressure readings were very close on flights number 2 and number 3 but were offset by 5 mB on flight number 1. There is no apparent reason for the offset. This does not appear to be caused by the telemetry difficulties in flight number 1, as reported on page 13. It has been pointed out by Honeywell's MICRO SWITCH Division that the pressure transducer chip is sensitive to light. Although the transducer used in the minisonde was shielded, it may not have been light-tight. The future devices will be shielded from light. It is also possible that the thick film electronics were damaged after calibration during final assembly. This could have caused the calibration offset.

Humidity measurements with the Mini-Refraction Sonde did not show the same range as with the NWS Sonde. Since the signal encoding was operating properly, this must be a sensing problem. The hygristor mount should be investigated during the next phase to determine if it is causing high contact resistance and/or shunt leakage.

The data reduction hardware should be optimized for operating with the Mini-Refraction Sonde equipment to reduce data scatter. An on-line real time reduction system would greatly improve field measurements.

Appendix A Acknowledgements

We wish to thank the personnel of NASA for their guidance and assistance as well as the excellent facilities support at Wallops Island, Virginia. We also wish to acknowledge the following personnel from NADC for their capable assistance in the performance of these flight tests.

NASA

Bill Lord Ray Atkins Joe Paranzino

NADC

Ed Schmidt Ralph Sellitsch