Package 'ForImp'

January 30, 2013

Type Package
Title Imputation of missing values through a forward imputation algorithm
Version 1.0.2
Date 2013-01-30
Author Alessandro Barbiero, Pier Alda Ferrari, Giancarlo Manzi
Maintainer Alessandro Barbiero <alessandro.barbiero@unimi.it></alessandro.barbiero@unimi.it>
Description Imputation of missing values in datasets of ordinal variables through a forward imputation algorithm
License GPL
LazyLoad yes
Depends homals, sampling, mytnorm R topics documented:
ForImp-package
ForImp
ld
meanimp
medianimp
missingmat
missingmat2
missingness
modeimp
rancatmat
transfmatcat
vcosw
Inuca 14

2 ForImp

ForImp-package

Forward Imputation

Description

The package contains a function for the imputation of missing values in matrices of ordinal data, called Forward Imputation, and other functions for generating ordinal data or imputing missing values.

Details

Package: ForImp Type: Package Version: 1.0

Date: 2013-01-30 License: GPL LazyLoad: yes

Author(s)

Alessandro Barbiero<alessandro.barbiero@unimi.it>, Giancarlo Manzi<giancarlo.manzi@unimi.it>, Pier Alda Ferrari<pieralda.ferrari@unimi.it>

Maintainer: Alessandro Barbiero<alessandro.barbiero@unimi.it>

References

Ferrari P.A., Annoni P., Barbiero A., Manzi G. (2011) An imputation method for categorical variables with application to nonlinear principal component analysis, Computational Statistics & Data Analysis, vol. 55, issue 7, pages 2410-2420

```
http://ideas.repec.org/a/eee/csdana/v55y2011i7p2410-2420.html http://www.sciencedirect.com/science/article/pii/S0167947311000521
```

Ferrari P.A., Barbiero A., Manzi G.: Handling missing data in presence of ordinal variables: a new imputation procedure. In "New Perspectives in Statistical Modeling and Data Analysis", S. Ingrassia, R. Rocci, M. Vichi, Eds., Springer, 2011

Little, R.J.A., Rubin, D.B., 2002. Statistical Analysis with Missing Data, 2nd ed. John Wiley & Sons, Inc.

ForImp

Forward Imputation procedure

Description

Forward Imputation of missing data

ForImp 3

Usage

```
For Imp (mat, p=2)
```

Arguments

mat a matrix/dataframe

p the parameter for computing the Minkowski distance used in the nearest neigh-

bor procedure for missing value imputation. p can be any positive number (p=2 gives the euclidean distance); if a negative number or Inf is entered, the procedure is a negative number of Inf is entered.

dure will use the maximum distance (or supremum norm)

Details

The function implements the Forward Imputation algorithm (see reference) on a matrix of ordinal data with missing values. The algorithm alternates NonLinear Principal Component Analysis (NLPCA) on a subset of the data with no missing data and sequential imputations of missing values by the nearest neighbor method. This sequential process starts from the units with the lowest number of missing values and ends with the units with the highest number of missing values.

Value

the imputed matrix

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

References

Ferrari P.A., Annoni P., Barbiero A., Manzi G. (2011) An imputation method for categorical variables with application to nonlinear principal component analysis, Computational Statistics & Data Analysis, vol. 55, issue 7, pages 2410-2420

```
http://ideas.repec.org/a/eee/csdana/v55y2011i7p2410-2420.html http://www.sciencedirect.com/science/article/pii/S0167947311000521
```

Ferrari P.A., Barbiero A., Manzi G.: Handling missing data in presence of ordinal variables: a new imputation procedure. In "New Perspectives in Statistical Modeling and Data Analysis", S. Ingrassia, R. Rocci, M. Vichi, Eds., Springer, 2011

See Also

modeimp, medianimp, meanimp

4 ld

```
nummissing<-100
# create the random missing values, obtaining matrix mat
mat<-missingmat(mato, nummissing, pattern="r")
# use function \code{ForImp} to impute missing values, obtaining matrix mati
mati<-ForImp(mat)
# number of correct imputations
nummissing-sum(mati!=mato)</pre>
```

ld

Listwise deletion

Description

Listwise deletion

Usage

ld(mat)

Arguments

mat

a matrix or a dataframe

Details

This function implements the listwise deletion on a given dataset, removing all the rows or units containing at least one missing value

Value

The matrix/dataframe in input with the rows/units with missing values removed

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

See Also

```
meanimp, modeimp, medianimp
```

```
n<-10
m<-4
mat<-matrix(rnorm(n*m),n,m)
mat[c(3,6),1]<-NA
mat[10,2]<-NA
mat
ld(mat)</pre>
```

meanimp 5

meanimp

Mean imputation

Description

Mean imputation

Usage

```
meanimp(mat)
```

Arguments

mat

A numerical matrix

Details

The function implements the unconditional mean imputation on a numerical matrix with missing values, substituting to each missing value the arithmetic mean of the corresponding variable

Value

The imputed matrix

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

See Also

```
modeimp, medianimp
```

```
set.seed(1)
n<-10
m<-3
mat<-matrix(rnorm(n*m),n,m)
matm<-mat
matm[1,1]<-NA
matm[2,2:3]<-NA
# matrix with missing values
matm
# imputed matrix
meanimp(mat)
# original matrix with no missing values
mat</pre>
```

6 medianimp

medianimp

Median imputation

Description

Median imputation

Usage

```
medianimp(mat)
```

Arguments

mat

A matrix of ordinal values, ordered according to the Likert scale (1, 2, 3,...)

Details

The function implements the median imputation on a matrix of ordinal data with missing values. The function substitutes to each missing value the median of the corresponding variable.

Value

The imputed matrix

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

See Also

```
modeimp, meanimp
```

```
set.seed(1)
n<-10
m<-3
mat<-matrix(ceiling(runif(n*m)*4),n,m)
matm<-mat
matm[1,3]<-NA
matm[9:10,1]<-NA
# matrix with missing values
matm
# imputed matrix
medianimp(matm)
# original matrix with no missing values
mat</pre>
```

missingmat 7

missingmat	Random generation of missing values	
------------	-------------------------------------	--

Description

Random generation of missing values in matrices of numerical data or preferably categorical data coded as integers

Usage

```
missingmat(mat, nummissing, pattern = "r", nk = 1, p = 0.1, w = 3)
```

Arguments

mat	A matrix of numerical values
nummissing	number of missing values
pattern	pattern of missing values ("r" random, "l" lowest value, "b" block, "n" not at random)
nk	category
р	percentage of missing values
W	weight for the lowest category in pps sampling (pattern "n")

Details

The function generates random missing values on a matrix of categorical data according to a specific pattern. "r" is the random pattern, "l" generates a percentage p of missing values on the lowest values of variable nk, "b" generates random blocks of missing values on the group of variables indexed by nk, "n" generates a kind of not at random missing values: specifically, lowest values are more likely to be missing, since they are assigned a weight w (greater than 1, the default is 3) and the values are sampled according to an unequal probability sampling design (pivotal, see the reference for more details)

Value

The original matrix with the desired number of values randomly substituted by missing values

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

References

Ferrari P.A., Annoni P., Barbiero A., Manzi G. (2011) An imputation method for categorical variables with application to nonlinear principal component analysis, Computational Statistics & Data Analysis, vol. 55, issue 7, pages 2410-2420, http://www.sciencedirect.com/science/article/pii/S0167947311000521

8 missingmat2

Examples

```
set.seed(1)
# correlation matrix
\# generate a n*m matrix from a multivariate normal
n<-500
matc<-rmvnorm(n, mean=rep(0,m), sigma=sigma)</pre>
# transform the numerical values into ordinal categories (Likert scale)
# obtaining matrix mato
mato<-transfmatcat(matc,c(2,3,4,5))</pre>
# set the number of desired missing values
{\tt nummissing < -150}
# create the random missing values
# random missing values
matc<-missingmat(mato, nummissing, pattern= "r")</pre>
# random blocks of missing values on variables 1,2 and 3
matc<-missingmat(mato, nummissing, pattern= "b", nk=c(2,3))</pre>
\# missing values on lowest category of variable 4
matl<-missingmat(mato, nummissing, pattern= "l", nk=4, p=0.1)
\# not at random missing values on variable 4
\verb|matn<-missingmat| (\verb|mato|, nummissing|, pattern= "n", nk=4|, w=4|)
matn
```

missingmat2

Random generation of missing values

Description

Random generation of missing values in matrices

Usage

```
missingmat2 (mat, missing)
```

Arguments

```
mat a matrix (n rows, m columns)

missing a vector: element i contains the desired number of rows with i missing values (1<=i<=m)
```

Value

a matrix with the specified pattern of missing values

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

missingness 9

See Also

```
missingmat, missingness
```

Examples

```
mat<-matrix(rnorm(500),100,5)
# if you want 20 rows with 1 missing, 10 rows with 2 missing, 4 rows with 3 missing, 1 ro
missing<-c(20,10,4,1)
matm<-missingmat2(mat, missing)
matm
# check that the function works
missingness(matm)</pre>
```

missingness

Missing values

Description

Summary for the missing values in a matrix

Usage

```
missingness (mat)
```

Arguments

mat

a matrix/dataframe with missing values

Details

The function provides a summary for the missing values in a matrix (units for variables)

Value

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

```
n<-100
m<-3
mat<-matrix(rnorm(n*m),n,m)
nummissing<-50
index<-sample(n*m,nummissing,replace=FALSE)
mat[index]<-NA
missingness(mat)</pre>
```

10 modeimp

modeimp

Mode imputation

Description

Mode imputation

Usage

```
modeimp(mat)
```

Arguments

mat

A matrix of categorical or ordinal values, coded as integer values (1, 2, 3, ...)

Details

The function implements the mode imputation on a matrix of categorical or ordinal data with missing values. The function substitutes to each missing value the mode of the corresponding variable.

Value

The imputed matrix

Author(s)

Alessandro barbiero, Giancarlo Manzi, Pier Alda Ferrari

See Also

```
medianimp, modeimp
```

```
set.seed(1)
n<-10
m<-3
mat<-matrix(ceiling(runif(n*m)*4),n,m)
matm<-mat
matm[1,3]<-NA
matm[9:10,1]<-NA
# matrix with missing values
matm
# imputed matrix
modeimp(mat)
# original matrix with no missing values
mat</pre>
```

rancatmat 11

rancatmat

Generating a random matrix of ordinal variables

Description

The function generates a random matrix of integer (ordinal) variables, with independent and uniform marginal distributions

Usage

```
rancatmat(n, m, cat = 3)
```

Arguments

n number of rows/units

m number of columns, variables

cat number of categories for each variable

Details

The function generates a random matrix of integer (ordinal) variables (coded with 1, 2, 3...), with independent and uniform marginal distributions

Value

a matrix of ordinal values

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pieralda Ferrari

See Also

```
transfmatcat
```

```
n<-500
m<-3
mat<-rancatmat(n,m,c(3,4,5))
# let's check the marginal distributions...
apply(mat,2,tabulate)
#... should be "quite" uniform</pre>
```

12 transfmatcat

Description

The function transforms a matrix of continuous numerical values into a matrix of integer (ordinal) values, with uniform marginal distributions and the desired number of categories

Usage

```
transfmatcat(mat, cat = 3)
```

Arguments

mat a matrix or a dataframe

the number of categories, one for each column/variable of the matrix/dataframe

Details

The function converts the matrix in input, containing continuous numerical values, into a matrix of ordinal values (1,2,3,... i.e.: Likert scale) according to the cat-1 normal quantiles corresponding to each variable (column) of mat.

Value

the matrix of ordinal values

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

References

Ferrari P.A., Barbiero A., Manzi G.: Handling missing data in presence of ordinal variables: a new imputation procedure. In "New Perspectives in Statistical Modeling and Data Analysis", S. Ingrassia, R. Rocci, M. Vichi, Eds., Springer, 2011

Ferrari P.A., Annoni P., Barbiero A., Manzi G. (2011) An imputation method for categorical variables with application to nonlinear principal component analysis, Computational Statistics & Data Analysis, vol. 55, issue 7, pages 2410-2420, http://www.sciencedirect.com/science/article/pii/S0167947311000521

See Also

rancatmat

vcosw 13

Examples

```
# generate a 40*3 matrix from a multivariate normal r.v.

# whose independent components have mean 10 and standard deviation 4

mat<-matrix(rnorm(40,3),10,4)

# transform the matrix of normal data into a matrix of ordinal data

transfmatcat(mat, cat=c(2,3,4,3))
```

VCOSW

Cosine of the angle between two vectors

Description

The function calculates the cosine of the angle between two vectors, defined as the inner product of the vectors divided by the product of their euclidean norms

Usage

```
vcosw(v, w)
```

Arguments

```
v a vector
w a vector, of the same length of v
```

Value

The cosine of the angle between the two vectors

Author(s)

Alessandro Barbiero, Giancarlo Manzi, Pier Alda Ferrari

See Also

Ferrari P.A., Annoni P., Barbiero A., Manzi G. (2011) An imputation method for categorical variables with application to nonlinear principal component analysis, Computational Statistics & Data Analysis, vol. 55, issue 7, pages 2410-2420, http://www.sciencedirect.com/science/article/pii/S0167947311000521

```
a<-1:10
b<-2:11
vcosw(a,b)
#
e<-c(1,2,3)
f<-c(3,-3,1)
vcosw(e,f)
# e and f are orthogonal vectors!</pre>
```

Index

```
*Topic datagen
    ForImp, 2
    ld, 4
    meanimp, 5
    medianimp, 6
    missingmat, 7
    {\tt missingmat2,8}
    missingness, 9
    modeimp, 10
    rancatmat, 11
    transfmatcat, 12
    vcosw, 13
*Topic multivariate
    ForImp, 2
    ld, 4
    meanimp, 5
    medianimp, 6
    {\tt missingmat}, {\color{red} 7}
    missingmat2,8
    missingness, 9
    modeimp, 10
    rancatmat, 11
    transfmatcat, 12
    vcosw, 13
*Topic package
    ForImp-package, 2
ForImp, 2
ForImp-package, 2
1d, 4
meanimp, 3, 4, 5, 6
medianimp, 3-5, 6, 10
missingmat, 7,9
missingmat2,8
{\tt missingness}, {\color{red} 9}, {\color{gray} 9}
modeimp, 3-6, 10, 10
rancatmat, 11, 12
transfmatcat, 11, 12
vcosw, 13
```