电子科技大学 实验报告

(2024 - 2025 - 2)

学生姓名: <u>吕俊霆</u> 学生学号: 2024270901009 指导老师: 李朝海 选课序号: 19

实验学时: 8 实验地点: 基础实验大楼 437 实验时间: 星期 二 第 五六 节课

报告目录

一、实验课程名称: 电子电路实验

二、	、实验项目名称:	号的产生和处理
三、	、实验目的:请附页	
四、	、设计任务与要求:请附页	
	(备注:设计、综合性实验要求,基础验证性实	验可不要求)
五、	、实验原理与方案设计:请附页	
	(备注:验证、基础性实验强调实验原理以及测	试方案;设计、综合性实验重在软、
硬件的设计)		
六、	、实验内容、测试数据以及结论:请	附页
七、	、思考题:请附页	
八、	、实验体会及建议:请附页	
		报告评分:

三、 实验目的

- (1) 理解函数信号的产生原理
- (2) 掌握利用继承运放单元电路进行电子电路系统设计的方法
- (3) 掌握电路调试和指标测试技术

四、设计任务与要求

用给定的运算放大器设计并制作一个信号产生与处理电路。

设计要求如图所示:设计制作一个方波产生器输出方波,再与三角波相叠加输出一个复合信号,再经过低通滤波器输出一个正弦波信号。

图 1: 实验电路图

- (1) 方波产生器输出方波信号参数要求: $V_{o1_{pp}} = 4V$, 误差为 $\pm 5\%$, f = 5kHz ± 100 Hz;
- (2) 三角波产生器输出三角波信号参数要求: $V_{o2_{pp}} = 4V$,误差为 $\pm 5\%$,f = 5kHz ± 100 Hz;
- (3) 同相加法器输出复合信号参数要求: $V_{o3_{pp}}=8V$, 误差为 $\pm 5\%$, f=5kHz ± 100 Hz;
- (4) 滤波器输出正弦波信号参数要求: $V_{o4_{pp}}=4V$,误差为 $\pm 5\%$, f=5kHz ± 100 Hz;
- (5) 预留各波形的输出端口,便于后续测试;
- (6) 设计报告需提供电路图、仿真及测试波形等内容。

五、 实验原理与方案设计

1. 实验原理

(1) RC 振荡电路

图 2: RC 振荡电路原理图

(2) 三角波产生电路

图 3: 三角波产生电路原理图

(3) 同相加法器

图 4: 同相加法器原理图

(4) 滤波器

图 5: 滤波器原理图

2. 方案设计

(此处填写你电路的设计图思路与原理框图)

六、 实验内容、测试数据以及结论

1. 实验内容

(简要说明接线、上电、测试流程等内容)

2. 实验结论

(说明是否达到设计目标,有无失真、频率是否合格等)

七、 思考题

1. 题面

(1) 你认为信号产生电路中运放主要起什么作用?

2. 回答

(1) 运放在信号产生中起到放大、电压跟随、波形生成(积分、比较)等作用。

八、 实验体会及建议

1. 实验体会

测量时应注意小心调试仪器,尽量将读数稳定在误差允许范围内进行读数。

2. 建议

注意电源正负极的接入,防止反接造成仪器损坏;注意正负电压的接入,防止反接造成仪器损坏。