Computer Vision

Type of distribution (Noise) in Images	Filters
Pepper Noise (White Noise)	• Max Filter (100 th percentile filter)
Salt Noise (Black Noise)	• Min Filter (0 th percentile filter)
	 Harmonic Mean Filter
Gaussian (Normal) Noise	 Midpoint Filter
	 Arithmetic Mean Filter
	 Geometric Mean Filter
	 Gaussian Filter
	 Harmonic Mean Filter
Uniform Noise	 Midpoint Filter
	 Arithmetic Mean Filter
Impulse (Salt & Pepper) Noise	 Median Filter
	 Arithmetic Mean Filter
Erlang (Gamma) Noise	 Arithmetic Mean Filter
Rayleigh Noise	Arithmetic Mean Filter

Visualization of Noise distribution in images helps to decide which type of filter apply on it accordingly. That, ultimately helps to preprocess or removes the outlier.