MÉTODOS E MODELOS AVANÇADOS EM CIÊNCIA DE DADOS

Aula 06 - Ensembles

Prof. Rafael G. Mantovani

Roteiro

- 1 Introdução
- 2 Voting
- 3 Boosting
- 4 Bagging
- 5 Random Forest
- 6 Síntese / Próximas Aulas
- 7 Referências

Roteiro

- 1 Introdução
- 2 Voting
- 3 Boosting
- 4 Bagging
- 5 Random Forest
- 6 Síntese / Próximas Aulas
- **7** Referências

Ensembles/Comitês

- Problema?
 - duas cabeças pensam melhor do que uma
 - mais cabeças ainda pensa melhor do que duas
 - decisão baseada em conjunto (comitês)
 - para ML os resultados são impressivos

Ensembles

- Random Forest (RF)
 - é um dos algoritmos de AM mais poderosos/robustos atualmente
 - funcionamento/implementação relativamente simples
- Ensembles s\u00e3o solu\u00e7\u00f3es vencedoras em competi\u00e7\u00f3es de AM
 - Netflix Prize Competition
 - alguém gostar de um filme → gostos

Ideia geral

- ter vários algoritmos, cada um deles com resultados levemente diferentes em um mesmo dataset
 - alguns aprendem alguns padrões muito bem
 - outros aprendem bem outros padrões
- colocar todos eles juntos
 - resultado do conjunto é melhor do que suas performances isoladas

Problema original

Problema original

diferentes superfícies

- Algumas questões que carecem de respostas?
 - Q1: quais algoritmos usamos como base learners?
 - Q2: como podemos garantir que esses base learners aprendem coisas diferentes?
 - Q3: como podemos combinar esses resultados?

Roteiro

- 1 Introdução
- 2 Voting
- 3 Boosting
- 4 Bagging
- 5 Random Forest
- 6 Síntese / Próximas Aulas
- 7 Referências

- Uma forma simples de combinar diferentes learners
- predição
 - votação majoritária (classificação)
 - média/mediana (regressão)
- classificador baseado no voto majoritário é comumente dito ser "hard voting"

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

Características

- algoritmos também podem prever probabilidades
 - predição é a média das probabilidades entre os diferentes base learners (soft voting)
- tende a alcançar melhores performances, pois probabilidades mais "fortes" (com mais certeza) tendem a ter um peso maior/confiante no voto do comitê

Roteiro

- 1 Introdução
- **2** Voting
- 3 Boosting
- 4 Bagging
- 5 Random Forest
- 6 Síntese / Próximas Aulas
- 7 Referências

Boosting

- um dos métodos mais populares para Ensembles
 - coleção de base learners fracos
 - cada um tem desempenho um pouco superior do que um palpite aleatório
 - colocando todos eles em um mesmo algoritmo é possível criar um learner com boas predições
- Ideia geral: treinar alguns classificadores sequencialmente, cada um deles tentando corrigir os erros do predecessor

Boosting

- vários algoritmos dentro desse supergrupo (Boosting)
 - primeiras ideias → <u>Freund & Schapire</u> (1999)
 - ainda é um dos algoritmos mais usados em Aprendizado de Máquina (AM)
 - comitês iterativos
 - corrigir os erros das predições anteriores
 - mais famoso: AdaBoost

- AdaBoost (Adaptive Boosting)
 - inovação → é usar pesos para cada uma das amostras classificadas
 - pesos são inputs do algoritmo e atualizados frequentemente
 - atualizar os pesos das amostras classificadas erradamente pelos classificadores anteriores
 - é um algoritmo iterativo e sequencial
 - o base learner de uma iteração depende dos resultados da iteração anterior

Figura de: Aurélien Gerón (2019)

learner (C1)

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019)

Como funciona?

- N é o tamanho do conjunto de treinamento (exemplos)
- pesos de cada amostra são inicializados com o mesmo valor: 1 / N
- A cada iteração uma estimativa de erro (arepsilon) é computada
 - soma dos pesos das amostras classificadas erradamente
 - os pesos das amostras classificadas erradamente são ajustados por um fator α :

$$\alpha = (1 - \epsilon) / \epsilon$$

- pesos das amostras classificadas corretamente não são modificados
- o conjunto total de pesos é normalizado, de forma que a soma de todos eles = 1
- Treinamento termina quando:
 - ou um número de iterações (base learners) é satisfeito
 - ou todas as amostras são corretamente classificadas
 - ou uma das amostras tem peso > 0.5

Input:

- 1. Inicializar todos os pesos w com 1/N
- 2. Enquanto $0 < \varepsilon_t < 1/2$, e t < T, T é o número máximo de iterações
 - 2.1 treinar o classificador em $\{S, w_t\}$
 - 2.2 computar o erro de treinamento
 - 2.3 calcular o peso da iteração (α_t)
 - 2.4 atualizar o peso das amostras classificadas erradamente
 - 2.5 normalizar o vetor dos pesos, de forma que a soma = 1

Output:

- T classificadores: comitê/ensemble
- α : vetor de pesos das iterações

- Predições (pós-treinamento)
 - computa as predições de todos os base learners (iterações) e as pondera usando os valores de $\alpha_{\rm i}$ computados em cada uma das iterações
 - classe predita pelo ensemble → classe que recebe a maior parte dos votos ponderados

$$\hat{y}(x) = \underset{k}{\operatorname{argmax}} \sum_{j=1}^{M} \alpha_{j}$$

$$\hat{y}(x) = k$$

Roteiro

- 1 Introdução
- 2 Voting
- 3 Boosting
- 4 Bagging
- 5 Random Forest
- 6 Síntese / Próximas Aulas
- Referências

Bagging

- Proposto por <u>Breiman (1996)</u>
- Ideia geral:
 - algoritmo simples
 - treinar o mesmo base learner em diferentes subamostras do problema/dataset original
 - amostragens com reposição (sampling with replacement)
 - mesmo exemplo pode ser amostrado várias vezes
 - Bagging (bootstrap aggregation)

Bagging

Figura de: Aurélien Gerón (2019)

Bagging

Figura de: Aurélien Gerón (2019)

Figura de: Aurélien Gerón (2019) dataset: moon, Bagging com 500 DTs

Figura de: Aurélien Gerón (2019) dataset: moon, Bagging com 500 DTs

- Bagging (ensemble) generaliza melhor
- superfície de decisão é menos irregular
- □ frequentemente: Bagging > DT

Características

- amostragem é igual ao tamanho do conjunto de treinamento
- realiza um número finito de amostras (B)
- beneficia de ser composto de muitos base learners que aprendem padrões levemente diferentes

Input:

- B: quantidade de amostras/classificadores no comitê
 - 1. Realizar B amostragens com reposição
 - 2. Treinar um classificador para cada amostra b ∈ B
 - 3. Combinar a saída dos classificadores
 - voto majoritário (classificação)
 - mediana (regressão)

Output:

- B classificadores treinados nas amostras de treinamento

Roteiro

- 1 Introdução
- 2 Voting
- 3 Boosting
- 4 Bagging
- 5 Random Forest
- 6 Síntese / Próximas Aulas
- **7** Referências

- Proposto por <u>Breiman (2001)</u>
 - □ Random Forest → Floresta Aleatória
 - Ensemble de árvores de decisão
- Ideia geral:
 - algoritmo melhorado a partir do Bagging
 - adiciona mais um nível de aleatoriedade na criação do ensemble
 - limita a quantidade de features usadas para gerar cada árvore de decisão
 - selecionadas aleatoriamente

Características

- incrementar a aleatoriedade (subset de features) torna o treinamento do algoritmo mais rápido
 - poucas features para cada árvore
- introduz um novo hiperparâmetro:
 - quantidade de features na subamostra
 - literatura reporta que RF não são sensíveis a essa escolha
 - comum: \sqrt{F} , com F = número de features do dataset

Características

- segundo hiperparâmetro é o número de árvores (T)
 - s1: definir T a priori
 - s2: adicionar árvores enquanto o erro de treinamento não para de reduzir
- bootstrap + subset de features
 - reduz a variância do algoritmo sem afetar o bias
 - não há necessidade em podar as árvores

Input:

- dataset: com N exemplos, e F features
- T: quantidade de árvores
 - 1. Para cada uma das T árvores
 - 1.1 Realizar uma amostragem de tamanho **N** dos exemplos fazendo reposição (bootstrap with replacement)
 - **1.2**. Aleatoriamente, selecionar apenas \sqrt{F} features da amostra
 - 1.3. Treinar um classificador com esse subset gerado
 - 2. Combinar a saída dos classificadores
 - voto majoritário (classificação)
 - mediana (regressão)

Output:

- T classificadores treinados nas amostras de treinamento

- Importância relativa dos atributos
 - Gini index
 - quanto de impureza é reduzido em média (sobre todas as árvores) quando um atributo específico (feature) está na árvore
 - quais os atributos mais importantes/descritivos para um problema

Comparativo Geral

- RF | Bagging são algoritmos que podem ser executados em paralelo
- Boosting é sequencial (dependência dos modelos)
- Para um mesmo número de árvores
 - Boosting tende a ser melhor
 - mas RF consegue criar um ensemble maior com o mesmo custo computacional (e ser melhor)
- RF é robusto e tem desempenhos bons em datasets pequenos e grandes

Hands on

Vamos exercitar:)

[Google Colab - Exemplo 01]

[Google Colab - Exemplo 02]

Roteiro

- 1 Introdução
- 2 Voting
- 3 Boosting
- 4 Bagging
- 5 Random Forest
- 6 Síntese / Próximas Aulas
- 7 Referências

Síntese

- Comitês / Ensembles
 - Voting
 - Boosting
 - Bagging
 - Random Forest

Próxima aula

- Inteligência de Enxame
 - PSO
 - ACO

Roteiro

- 1 Introdução
- **2** Voting
- 3 Boosting
- 4 Bagging
- 5 Random Forest
- 6 Síntese / Próximas Aulas
- 7 Referências

Literatura Sugerida

(Marsland, 2014)

(Géron, 2019)

Obrigado:)

Rafael G. Mantovani

rafaelmantovani@utfpr.edu.br