OBJECTIVE QUESTIONS DETERMINENT

1.
$$\begin{vmatrix} \cos 70 & \sin 20 \\ -\sin 70 & \cos 20 \end{vmatrix} = ?$$

- (c) cos 50 (d) sin 50

- (a) 1 (b) 0 2. $\begin{vmatrix} \cos 15 & \sin 15 \\ \sin 15 & \cos 15 \end{vmatrix} = ?$

- (a) 1 (b) $\frac{1}{2}$ (c) $\frac{\sqrt{3}}{2}$ (d) none of these

3.
$$\begin{vmatrix} \sin 23 & -\sin 7 \\ \cos 23 & \cos 7 \end{vmatrix}$$

- (a) $\frac{\sqrt{3}}{2}$ (b) $\frac{1}{2}$ (c) $\sin 16$ (d) $\cos 16$

4.
$$\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix} = ?$$

- (a) $(a^2 + b^2 c^2 d^2)$
- (b) $(a^2 b^2 + c^2 d^2)$ (c) $(a^2 + b^2 + c^2 + d^2)$

(a) (a) + b = c = d)

(b) none of these
$$\begin{vmatrix}
1^2 & 2^2 & 3^2 \\
2^2 & 3^2 & 4^2 \\
3^2 & 4^2 & 5^2
\end{vmatrix} = ?$$

- - (a) 8 (b) -8
- (c) 16 (d) 142

6.
$$\begin{vmatrix} 1! & 2! & 3! \\ 2! & 3! & 4! \\ 3! & 4! & 5! \end{vmatrix} = ?$$

- (a) 2 (b) 6
- (c) 24
 - (d) 120

7.
$$\begin{vmatrix} a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = ?$$

- (a) (a + b + c) (b) 3(a + b + c) (c) 3abc
- (d) 0

8.
$$\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 1+3p+2q \\ 3 & 6+3p & 1+6p+3q \end{vmatrix} = ?$$

- (a) 0 (b)1

- (c) -1
- (d) none of these

9.
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = ?$$

- (a) (a-b)(b-c)(c-a) (b) -(a-b)(b-c)(c-a) (c) (a-b)(b-c)(c-a)(a+b+c)
- (d) abc(a-b)(b-c)(c-a)
- $|\sin \varpi \quad \cos \varpi \quad \sin(a+b)|$ $\begin{vmatrix} \sin \delta & \cos \delta & \sin(\beta + \delta) \\ \sin \gamma & \cos \gamma & \sin(\gamma + \delta) \end{vmatrix} = ?$ 10.
 - (a) 0
- (b) 1
- (c) $\sin(\sigma + \delta) + \sin(\beta + \delta) + \sin(\gamma + \delta)$ (d) none of these
- If a,b,c be distinct positive real numbers then the value of $\begin{vmatrix} c & c & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is 11.
- (a) positive (b) negative (c) a perfect square (d) 0

12.
$$\begin{vmatrix} x+y & x & x \\ 5x+4y & 4x & 2x \\ 10x+8y & 8x & 3x \end{vmatrix} = ?$$

- (a) 0 (b) x^3 (c) y^3 (d) none of these

13.
$$\begin{vmatrix} a^2 + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = ?$$

- (a) (a-1) (b) $(a-1)^2$ (c) $(a-1)^3$ (d)none of these

14.
$$\begin{vmatrix} a & a+2b & a+2b+3c \\ 3a & 4a+6b & 5a+7b+9c \\ 6a & 9a+12b & 11a+15b+18c \end{vmatrix} = ?$$

- (a) a^3 (b) $-a^3$

- (c) 0 (d) none of these

15.
$$\begin{vmatrix} b+c & a & b \\ c+b & c & a \\ a+b & b & c \end{vmatrix} = ?$$

(a)
$$(a+b+c)$$
 $(a-c)$ (b) $(a+b+c)(b-c)$ (c) $(a+b+c)(a-c)^2$ (d) $(a+b+c)(b-c)^2$

16.
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix} = ?$$

(a)
$$(x+y)$$
 (b) $(x-y)$ (c) xy (d) none of these

17.
$$\begin{vmatrix} bc & b+c & 1 \\ ca & c+a & 1 \\ ab & a+b & 1 \end{vmatrix} = ?$$

(a)
$$(a-b)(b-c)(c-a)$$
 (b) $-(a-b)(b-c)(c-a)$ (c) $(a+b)(b+c)(c+a)$ (d) none of these

18.
$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = ?$$

(a)
$$4abc$$
 (b) $2(a+b+c)$ (c) $(ab+bc+ca)$ (d) none of these

19.
$$\begin{vmatrix} a & 1 & b+c \\ b & 1 & c+a \\ c & 1 & a+b \end{vmatrix} = ?$$

(a)
$$a+b+c$$
 (b) $2(a+b+c)$ (c) $4abc$ (d) $a^2b^2c^2$

20.
$$\begin{vmatrix} x+1 & x+2 & x+4 \\ x+3 & x+5 & x+8 \\ x+? & x+10 & x+14 \end{vmatrix} = ?$$

(a) -2 (b) 2 (c)
$$x^2-2$$
 (d) x^2+2

21. If
$$\begin{vmatrix} 5 & 3 & -1 \\ -7 & x & 2 \\ 9 & 6 & -2 \end{vmatrix} = 0$$
 then $x = ?$

22. The solution set of the equation
$$\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = 0$$
 is

(a) (2,-3,7) (b)

(2,7,-9) (c) (-2,3,-7)

3x-4

(d) none of these

The solution set of the equation |x-4| 2x-9 |3x-16| = 0 is 23.

|x-8| 2x-27 3x-64

2x-3

{4} (a)

(b)

{2,4}

|x-2|

(c) {2,8}

(d)

{4,8}

 $|a+x \quad a-x \quad a-x|$ The solution set of the equation |a-x| = a+x + a-x = 0 is 24. $\begin{vmatrix} a-x & a-x & a+x \end{vmatrix}$

> {a, 0} (a)

(b)

{3a,0} (c) {a, 3a}

(d) none of these

|3x-8| 3 The solution set of the equation $\begin{vmatrix} 3 & 3x-8 & 3 \\ 3 & 3 & 3x-8 \end{vmatrix} = 0$ is 25.

(a) $\left\{\frac{2}{3}, \frac{8}{3}\right\}$ (b) $\left\{\frac{2}{3}, \frac{11}{3}\right\}$ (c) $\left\{\frac{3}{2}, \frac{8}{3}\right\}$ (d) none of these

5

26. The vertices of a ABC are A(-2,4), B(2,-6) and C(5,4). The area of a ABC is

(a) 17.5 sq units

(b) 35 sq units

(c) 32 sq units

(d) 28 sq units

27. If the points A(3, -2), B(k, 2) and C(8, 8) are collinear then the value of k is

(a) 2 (b) -3

(c)

(d) -4

OBJECTIVE QUESTIONS DETERMINENT-answers

1.	b	2.	С	3.	b	4.	С	5.	b	6.	С	
7.	d	8.	b	9.	С	10.	а	11.	b	12.	b	
13.	С	14.	b	15.	С	16.	С	17.	а	18.	а	
19.	С	20.	а	21.	С	22.	b	23.	а	24.	b	
25.	b	26.	b	27	С							