From Raw HEAT

VENTILATION

AIR CONDITIONING Signals

to Predictive Insights

Melahat Tayli 5 August 2025

<class 'pandas.core.frame.DataFrame'> RangeIndex: 408000 entries, 0 to 407999

Data columns (total 45 columns):

Column Non-Null Count Dtype

timestamp 408000 non-null object 405616 non-null float64 indoor temp 2 supply temp 405615 non-null float64 407974 non-null float64 3 hvac control airflow 407999 non-null float64 power usage 407999 non-null float64 6 outdoor temp 408000 non-null float64 7 solar radiation 408000 non-null float64 408000 non-null float64 occupancy price 408000 non-null float64 405616 non-null float64 10 temp error 408000 non-null float64 11 cooling demand 12 heating demand 405616 non-null float64 13

memory usage: 140.1+ MB

> As I began exploring the dataset, I quickly noticed its scale: it contains 408,000 data points spread across 45 features. This richness offers a great opportunity to uncover meaningful patterns but also calls for careful preprocessing to manage the complexity.

- Fix The Data Types (object->timestamp)
- Removing Non-Informative Features
- Analyze Correlations
- Feature Selection
- Remove Missing Values

Analysis indicate that the HVAC data is recorded at 15-minute intervals, spanning from 2020-01-01 00:00:00 to 2031-08-20 23:45:00. This suggests a consistent and regular sampling frequency throughout the dataset

```
Removing the following zero-variance columns: 8 columns have

['hvac_control', 'cooling_demand', 'hvac_controconstant'
constant values
```

Most variables are multiple transformed versions of the same original features, including Savitzky-Golay, Simple Moving Average, Exponential Moving Average), Robust filtering, and Min-Max scaling.

Consecutive missing (NaN) values are dropped!

Histogram of Features

Exploring the Target Variable: Power Usage

Trend

Is there a long-term increase or decrease in power consumption over time?

Seasonality

Are there recurring patterns (e.g., daily, weekly, yearly cycles)?

Autocorrelation

Does current power usage depend on previous values?

Exploring the Predictor variable: Seasonality

 Gives us hints about how to treat them: categorical, numerical....

Modeling Strategy Based on Data Characteristics

- No Autocorrelation in Power Usage
- \rightarrow Use standard models:
- · Linear Regression, Gradient Descent, Tree-Based Models...
- Autocorrelation Detected
- \rightarrow Time Series Models

Seasonality in Power Usage?

- ➤ Use models designed for seasonal patterns:
- → SARIMA, Facebook Prophet......

Non-Stationarity in the Series?

- ➤ Address trends or variance shifts using:
- → Differencing , Log / Power Transformations..

Time Series of Key HVAC Variables

- Outdoor temperature exhibits clear annual seasonality:
 - $\hfill\Box$ It $\mbox{{\bf rises}}$ during the first half of the year
 - ☐ And **falls** during the second half
- This pattern is **less apparent** in other variables (e.g., heating demand)
- To reveal potential seasonal effects in those variables, consider analyzing data at a coarser time granularity:
 - ☐ Daily or hourly averages

Seasonal Decomposition: Shifting to Daily Resolution for Analysis

daily_data = hvac_raw_data.resample('D').mean()

Seasonal Decomposition: Shifting to Daily Resolution for Analysis

daily_data = hvac_raw_data.resample('D').mean()

Diagnostic Tests for Autocorrelation

PACF, ACF, and the Ljung-Box test indicate no significant autocorrelation or partial autocorrelation in the data.

The Ljung-Box test

lb_stat lb_pvalue 40 34.87208 0.699994

The Ljung-Box test returned a **p-value of 0.70**, which is well above the 0.05 threshold, suggesting that the null hypothesis of no autocorrelation cannot be rejected.

Seasonality in predictors

Outdoor temperature exhibits a clear annual seasonal pattern, characterized by high values in summer and low values in winter.

Seasonality in predictors

Seasonality in predictors

Seasonality in predictors

Stable Long-Term Trends Across Variables

- **Supply Temperature:** Very stable, ranging from -0.825 to -0.775
- **Airflow:** Minimal trend variation (0.9000 to 0.9005)
- Solar Radiation: Steady trend between 190.5 and 191.5
- **Heating Demand:** Consistently between 16 and 17; trend remains around 16.8

Conclusion: Daily Power Usage Analysis

- No clear trend or strong seasonality in daily power usage; minor fluctuations (~±2.5 units) likely reflect HVAC response to temperature extremes
- ACF, PACF, and Ljung-Box tests show no significant autocorrelation daily values largely independent
- Predictors like supply temperature, solar_radiation and airflow are stable; only outdoor temperature shows annual seasonality. Price and occupancy shows slight weekly seasonality.
- Next step: analyze **hourly data** to detect intra-day patterns and short-term dependencies

Feature Engineering

```
# Seasonal encoding for outdoor temperature (annual cycle)

daily_data['day_of_year'] = daily_data.index.dayofyear

daily_data['sin_day'] = np.sin(2 * np.pi * daily_data['day_of_year'] / 365)

daily_data['cos_day'] = np.cos(2 * np.pi * daily_data['day_of_year'] / 365)
```

```
# Rolling mean of price and occupancy over last 7 days
daily_data['price_roll_7'] = daily_data['price'].rolling(window=7).mean()
daily_data['occupancy_roll_7'] = daily_data['occupancy'].rolling(window=7).mean()
```

Modelling

Linear Regression, Gradient Boosting Regressor, Random Forest

Models could detect the daily power consumption with MAE of ~3.4!

What is next?

What insights emerge when the dataset is analyzed at multiple granularities?

•••••

Questions & Discussion

Any Questions?

Thank you for Listening!

Tayli

Melahat