l camino más Corto Árbol Recubridor Minimal

Ciencias de la Computación l Optimización y Emparejamiento

Eduardo Contrera Schneider

Universidad de la Frontera

21 de noviembre de 2016

1 El camino más Corto

Árbol Recubridor Minimal

El camino más Corto Árbol Recubridor Minimal

El camino más Corto

Consideremos un grafo dirigido conexo sin lazos G=(V,E). A cada arista e=(a,b) de este grafo le asignamos un número real positivo llamado el **peso** de e, que denotamos con p(e) o p(a,b), Si $x,y\in V$ pero $(x,y)\notin E$, definimos $p(x,y)=\infty$. Un grafo con asignaciones de peso en sus aristas se dice que es un **grafo ponderado**.

Para cualesquiera dos vértices $a,b\in V$ escribimos d(a,b) como la distancia más corta de a a b. Si no existe tal camino de a a b, definimos $d(a,b)=\infty$. Para determinar la distancia más corta de un vértice fijo v_0 a los demás, así como un camino simple dirigido más corta para hacia cada uno de estos vértices, aplicamos el algoritmo de Dijkstra.

Algoritmo de Dijkstra

Algoritmo del camino más corto

- Hacemos el contador i=0 y $S_0=\{v_0\}$. Etiquetamos v_0 con (0,-) y cada $v\neq v_0$ con $(\infty,-)$. Si n=1, entonces $V=\{v_0\}$ y el problema está resuelto. Si n>1, continuamos con el paso 2.
- ② Para cada $v \in \overline{S}_i$, reemplazmos (cuando sea posible), la etiqueta de v por la nueva etiqueta final (L(v), y), donde

$$L(v) = \min_{u \in S_i} \{L(v), L(u) + p(u, v)\}$$

y y es un vértice en S_i que produce el L(v) mínimo.

Algoritmo del camino más corto

- ③ Si cada vértice de \bar{S}_i , para algún $0 \le i \le n-2$, tiene la etiqueta $(\infty, -)$, entonces el grafo contiene la información que estamos buscando. Si no, existe al menos un vértice $v \in \bar{S}_i$ que no está etiquetado como $(\infty, -)$, y hacemos lo siguiente:
 - Seleccionamos un vértice v_{i+1} , tal que $L(v_{i+1})$ sea mínimo (para todo v de este tipo). Puede haber varios de estos vértices, en cuyo caso podemos elegir culquiera de los posibles candidatos. El vértice v_{i+1} es un elemento de \bar{S}_i que es el más cercano a v_0 .
 - **2** Asignamos $S_i \cup \{v_{i+1}\}$ a S_{i+1}
 - **3** Incrementamos el contador i en 1. Si i = n 1, el grafo etiquetado contiene la información deseada. Si i < n 1, regresamos al paso 2.

Árbol Recubridor Minimal

Sea G = (V, E) un grafo no dirigido conexo sin lazos tal que |V| = n y cada arista e tiene asignado un número real positivo p(e).

Algoritmo de Kruskal

- Hacemos el contador i = 1 y seleccionamos un arista e_1 en G tal que $p(e_1)$ sea lo más pequeño posible.
- **2** Para $1 \le i \le n-2$, si hemos seleccionado las aristas $e_1, e_2, ..., e_i$, entonces seleccionamos la arista e_{i+1} de las aristas restantes en G de modo que
 - $p(e_{i+1})$ sea lo más pequeño posible.
 - El subgrafo de G determinado por las aristas $e_1, e_2, ..., e_i, e_{i+1}$ (y los vértices incidentes) no contenga ciclos.
- **③** Reemplazamos i con i+1. Si i=n-1, el subgrafo de G determinado por las aristas $e_1, e_2, ..., e_{n-1}$ es conexo con vértices y n-1 aristas, y es un árbol recubridor óptimo para G. Si i < n-1, regresamos al paso 2.

Algoritmo de Prim

Algoritmo de Prim

- Hacemos el contador i = 1 y colocamos un vértice arbitrario $v_1 \in V$ en el conjunto P. Definimos $N = V \{v_1\}$ y $T = \emptyset$.
- ② Para $1 \le i \le n-1$, donde |V| = n, sean $P = \{v_1, v_2, ..., v_i\}$, $T = \{e_1, e_2, ..., e_{i-1}\}$ y $N = V \setminus P$. Añadimos a T la arista más corta (la arista de peso minimal) de G que conecta un vértice $x \in P$ con un vértice $y(=v_{i+1})$ en N. Colocamos y en P y lo eliminamos de N.
- Incrementamos el contador en 1.
 - Si i=n, el subgrafo de G determinado por las aristas $e_1,e_2,...,e_{n-1}$ es conexo, con n vértices y n-1 aristas y es un árbol óptimo para G.

Si i < n, regresamos al paso 2.

Complejidad Computacional

Analizar los tiempos de corrida de los algoritmos de Prim y de Kruskal es interesante, debido a que dependiendo de las condiciones del problema, un algoritmo va a ser más eficiente que el otro.

Tiempo de Corrida

- El algoritmo de Kruskal corre en tiempo O(|E|log(|E|)).
- ② El algoritmo de Prim corre en tiempo $O(|V|^2)$.

No es difícil establecer qué algoritmo usar en cada caso.