Ancestry-eGenes : Differentially Expressed Genes by Ancestry and Genotype

Tae Hyun Kim

Department of Statistics, The University of Chicago

- Introduction
 - Motivation
 - Goal
- 2 Data
 - GTEx and 1000GP
 - Ancestry Inference
- Model and Methods
 - Full Model
 - Testing
- Results
 - Ancestry-eGenes
 - Interpretation

Outline

- Introduction
 - Motivation
 - Goal
- Data
 - GTEx and 1000GP
 - Ancestry Inference
- Model and Methods
 - Full Model
 - Testing
- 4 Results
 - Ancestry-eGenes
 - Interpretation

eGenes and eQTLs

- GWAS : found genetic variants that affect certain phenotypes
 ⇒ But how?
 - variants in coding area: has a role in protein synthesis
 - variants in non-coding area :
 genotypes ⇒ gene expression ⇒ phenotypes
- gene expression: measures how active a gene is ex) the amount of protein a gene produces.
- GTEx: Gene Tissue Expression Project
 - eQTLs (expression quantitative trait loci): variants that affect the gene expression
 - eGenes : genes that have at least 1 eQTL

Gene expression regulation

http://2013.igem.org/Team:XMU Software/Project/promoter

Population Admixture

- two or more populations interbreed
 - ex) African American, Latino American
- analyzing admixed population: brings together different genomes and naturally control for environmental confounders

Goal

Find ancestry-eQTLs and ancestry-eGenes

- ancestry-eQTLs: SNPs that affect gene expression level differently based on the gene's local ancestry
- ancestry-eGenes: Genes that have at least 1 ancestry-eQTLs in its cis-region (start site - 1Mb, end site + 1Mb)

This project only focuses on muscle-skeletal tissue, but the method is applicable to all other tissues.

Goal

HLA-C, rs2523578

Outline

- Introduction
 - Motivation
 - Goal
- 2 Data
 - GTEx and 1000GP
 - Ancestry Inference
- Model and Methods
 - Full Model
 - Testing
- 4 Results
 - Ancestry-eGenes
 - Interpretation

GTEx

- Subjects
 - 51 self-reported African Americans
 - 305 self-reported European Americans
 - \Rightarrow 4 of them turn out to be admixed
 - final sample: 55 African Americans, 301 European Americans
- Expression (muscle skeletal tissue)
 - pre-processed expression level data from GTEx Portal
 - truncated for having at least 0.1 RPKM
 - normalized, log-transformed, corrected for technical artifacts
 - total 22,248 genes in autosomal chromosomes
- Genotypes
 - Illumina OMNI 5M SNP array + imputation
 - minor allele frequency >5%
 - total 6,954,165 SNPs

Data

Pure population data

- 1000GP has haplotype data for pure populations including CEU, YRI, CHB etc.
- Population code
 - CEU: Central Europeans in Utah
 - YRI: Yoruban in Ibadan Nigeria (West Africa)
 - CHB: Han Chinese from Beijing
- With this information
 - (1) verify the population information of GTEx subjects through PCA
 - (2) compute pure population allele frequency

Principal Component Analysis

- CEU - CHB - YRI

200

-200

pc1

EA

-400

- 1st principal component: left: African right: European ⇒ can compute global ancestry
- 4 blue outliers

Definition of Local Ancestry

- Local ancestry of a gene: local ancestry at the locus that is closest to the gene
- L=2 : two African chromosomes
- L=1 : heterozygous
- L=0 : two European chromosomes

LAMP

- Window-based approach
- Assumes that each window comes from the same ancestry
- Allows overlapping windows, adaptive window size
- ullet Achieves \sim 98% accuracy for distinguishing YRI/CEU
- Sample Output

Global Ancestry

Compare

- average local ancestry inferred from LAMP
- the distance to YRI divided by the distance between CEU and YRI

Outline

- Introduction
 - Motivation
 - Goal
- 2 Data
 - GTEx and 1000GP
 - Ancestry Inference
- Model and Methods
 - Full Model
 - Testing
- Results
 - Ancestry-eGenes
 - Interpretation

Model

$$E(y_k) = \mu_{ks} + \mathbb{1}_{EA}\alpha_{ks} + A\beta_{ks} + L_k\gamma_{ks} + G_s\lambda_{ks} + LG_{ks}\theta_{ks} + X\nu_{ks}$$
$$H_0: \theta_{ks} = 0$$

n: sample size = 356

k: gene index, s: SNP index

 y_k : gene expression level of gene k

 μ_{ks} : intercept of this model

 $\mathbb{1}_{FA}$: mean gene expression level of European Americans

A: global ancestry vector of length n

 L_k : local ancestry vector of length n for gene k

 G_s : genotype vector of length n for SNP s

 LG_{ks} : interaction vector, element-wise product of L_k and G_s

 $\alpha, \beta, \gamma, \lambda, \theta$: scalar coefficients

Joint Modeling

 $E(y_k) = \mu_{ks} + \mathbbm{1}_{EA}\alpha_{ks} + A\beta_{ks} + L_k\gamma_{ks} + G_s\lambda_{ks} + LG_{ks}\theta_{ks} + X\nu_{ks}$ Is it statistically valid to use the same model for both African Americans and European Americans?

- Indicator variable 1_{EA}
 - $E(y_k) = \mu_k + \mathbb{1}_{EA} \alpha_k + A\beta_k + L_k \gamma_k$
 - Is assigning 0 to European Americans' global ancestry okay?
 - ⇒ No. Separate mean term for the expression of European Americans

- Constant variance test
 - $y_k = \mu_k + \mathbb{1}_{EA}\alpha_k + A\beta_k + L_k\gamma_k + \epsilon_k$
 - $\epsilon_{k,AA} \sim \mathcal{N}(0, \sigma_{k,AA}^2), \epsilon_{k,EA} \sim \mathcal{N}(0, \sigma_{k,EA}^2), H_0: \sigma_{k,AA} = \sigma_{k,EA}$

p-values are very close to uniform

$$E(y_k) = \mu_{ks} + \mathbb{1}_{EA}\alpha_{ks} + A\beta_{ks} + L_k\gamma_{ks} + \frac{X}{\lambda}\nu_{ks}$$

- Gender
- Age
- The first two principal components of expression level matrix

- Gender
- Age
- The first two principal components of expression level matrix

- Gender
- Age
- The first two principal components of expression level matrix

- Gender
- Age
- The first two principal components of expression level matrix

$$E(y_k) = \mu_{ks} + \mathbb{1}_{EA}\alpha_{ks} + A\beta_{ks} + L_k\gamma_{ks} + X\nu_{ks}$$

- Gender
- Age
- The first two principal components of expression level matrix

Test Statistic

$$E(y_k) = \mu_{ks} + \mathbb{1}_{EA}\alpha_{ks} + A\beta_{ks} + L_k\gamma_{ks} + G_s\lambda_{ks} + LG_{ks}\theta_{ks} + X\nu_{ks}$$

- Goal : find gene k where for at least one SNP s, $\theta_{ks} \neq 0$
- Problem
 - correlations due to linkage disequilibrium
 - appropriate type I error control
- Use gene-specific test statistic
 - · get $T_{ks} = t$ -value testing the correlation of interaction and expression
 - $\cdot \text{ get } t_k = \max_s(|T_{ks}|)$
 - \cdot t_k : evidence that gene k has at least one ancestry-eQTL

Permutation Test

 $T_{ks} = t$ -value testing the correlation of interaction and expression $t_k = max_s(|T_{ks}|)$

How do I get p-value of t_k ?

- Estimate null distribution of t_k through permutation test
- Compute $t_{\pi,k}$ for each gene for permutations π_1 , .., π_{1000}
- Which variables should be permuted?
 - · SNPs are correlated due to LD : must be preserved
 - don't permute genotype information
 - \Rightarrow genotype, interaction term
 - · permute everything else
 - ⇒ expression, covariates, mean term, ancestry
- Compare t_k to the estimated null distribution of $t_{\pi,k}$

Null Distribution of t_k

$$t_k = \max_s(|T_{ks}|)$$

$$p_k = Pr(x > t_k; x \sim \Gamma(\alpha_k, \beta_k))$$

Outline

- Introduction
 - Motivation
 - Goal
- Data
 - GTEx and 1000GP
 - Ancestry Inference
- Model and Methods
 - Full Model
 - Testing
- Results
 - Ancestry-eGenes
 - Interpretation

Distribution of *p*-values

- unexplained confounder
- gamma misfitting
- real signals

Distribution of *p*-values

- found 201 genes under FDR=0.05 (red)
- found 110 genes under FDR=0.01 (green)

Functional Analysis

- DAVID: extract biological functions from the gene list
- Returned enrichment of keyword 'MHC'
- Fisher exact test
 - odds ratio 12.23
 - p-value 8.56e-13
- MHC (major histocompatibility complex) region contains HLA (human leukocyte antigens) genes.
 - responsible for making receptors for pathogens
 - play a large role in immunity

	MHC	non-MHC
Signals (FDR <0.05)	14	187
Non-Signals	165	21852

LD causing interaction

- Europeans have higher LD than Africans
- This can lead to an interaction between genotype and ancestry confounded with an eQTL

Other explanations for interaction

- Africans and Europeans have different transcription factors
- Africans and Europeans have different binding sites
- A SNP interacts with another SNP that only exists in one of the populations

Summary

- Found ancestry-eGenes that have at least one SNP (ancestry-eQTL) in their cis-region that have different effects on the expression level based on local ancestry
- Significant enrichment of these genes in the MHC region
- Suggests immunological difference between Africans and Europeans
- Possible explanation : linkage disequilibrium
- Other molecular mechanisms to be studied further