Метод Куттера-Джордана-Боссена (М. Kutter, F. Jordan, F. Bossen) [25] относится к группе вероятностных методов стеганографического скрытия, реализующих встраивание битов сообщения в выбранные элементы пространственной области контейнеров-изображений, представленных в цветовой модели RGB. Пространство сокрытия в данном методе формируется из значений синих цветовых компонент выбранного множества пикселей контейнера. Для встраивания данных выбирается синий цветовой канал, поскольку изменения в данном канале являются перцептивно наименее заметными.

Встраивание бита сообщения m_i в синюю цветовую компоненту пикселя $I_{x,y}^{(B)}$ осуществляется по следующему правилу:

$$\widetilde{I}_{x,y}^{\,(B)} = \begin{cases} I_{x,y}^{\,(B)} + \lambda L_{x,y}, & ecnu \ m_i = 0, \\ I_{x,y}^{\,(B)} - \lambda L_{x,y}, & ecnu \ m_i = 1, \end{cases}$$

где $L_{x,y} = 0.299 I_{x,y}^{(R)} + 0.587 I_{x,y}^{(G)} + 0.114 I_{x,y}^{(B)}$ – яркость пикселя с координатами (x,y), λ – константа, определяющая энергию встраиваемого сигнала, величина которой зависит от предназначения схемы скрытия (чем больше λ , тем выше робастность вложения, но тем сильнее его заметность), $\widetilde{I}_{x,y}^{(B)}$ – измененное значение синего цвета пикселя.

После встраивания всех бит сообщения итоговый заполненный контейнер \tilde{I} будет содержать неизменные значения красных и зеленых компонент пикселей и модифицированные значения синих компонент отдельных пикселей, выбор которых в частном случае может осуществляться в псевдослучайном порядке равномерно по всему изображению.

Извлечение бит встроенного сообщения реализуется по следующему правилу

$$\begin{split} \widetilde{m}_{i} = & \begin{cases} 1, \ ecnu & \widetilde{I}_{x,y}^{(B)} > I_{x,y}^{*(B)}, \\ 0, \ ecnu & \widetilde{I}_{x,y}^{(B)} \leq I_{x,y}^{*(B)}, \end{cases} i = \overline{1,N}, \\ I_{x,y}^{*(B)} = & \frac{1}{4\sigma} \left[\sum_{j=1}^{\sigma} \left(I_{x,y+j}^{(B)} + I_{x,y-j}^{(B)} + I_{x+j,y}^{(B)} + I_{x-j,y}^{(B)} \right) \right], \end{split}$$

где $I_{x,y}^{*(B)}$ — оценка значения синей компоненты модифицированного при встраивании данных пикселя, полученная путем усреднения значений синих компонент немодифицированных соседних пикселей, $\sigma = 1,2,3,...$ — число пикселей сверху (снизу, слева, справа) от оцениваемого пикселя, N — длина скрытого сообщения (в битах).

На рис. 7 приведен пример работы метода Куттера-Джордана-Боссена.

	$I_{x,}^{(i)}$	B) = 1	120		$m_i = 0, \ \widetilde{I}_{x,y}^{(B)} = 110$							$m_i = 1$, $\widetilde{I}_{x,y}^{(B)} = 133$				
116	119	159	119	109		116	119	159	119	109		116	119	159	119	109
114	120	146	114	109		114	120	146	114	109		114	120	146	114	109
112	117	120	114	110		112	117	110	114	110		112	117	133	114	110
112	115	107	114	112		112	115	107	114	112		112	115	107	114	112
112	116	109	114	111		112	116	109	114	111		112	116	109	114	111
			a)		1			б)			1		в)			

Рис. 7. Пример работы метода Куттера-Джордана-Боссена

Значения синих компонент пикселей фрагмента исходного контейнера представлены на рис. 7а. Для модификации выбирается центральный пиксель со значением 120. Результаты встраивания нулевого и единичного бита сообщения представлены на рис. 7б,в. Также на рис. 7б,в цветом выделены пиксели окрестности, используемые для прогнозирования значения синей компоненты модифицированного пикселя. В данном примере $\sigma=2$ и прогнозируемое значение пикселя $I_{x,y}^{*(B)}=121.75$.

Основными достоинствами метода Куттера-Джордана-Боссена являются достаточно высокая пропускная способность, устойчивость к разрушению младших бит контейнера и устойчивость к атаке сжатия. Среди недостатков метода можно отметить вероятностный характер процедуры извлечения данных, основанной на прогнозировании значений пикселей по их окрестности, ограничивающий применение данного метода при встраивании данных в изображения отличные от естественных фотографических (имеющих слабую корреляцию между соседними пикселями).