Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: M32131	К работе допущен
Студентка: Зыонг Тхи Хуэ Линь	Работа выполнена
Преподаватель: Александр Алольфон	- вич Зинчик Отчет принят

Рабочий протокол и отчет по лабораторной работе № 5.04

ОПРЕДЕЛЕНИЕ ПОСТОЯННОЙ РИДБЕРГА ДЛЯ АТОМНОГО ВОДОРОДА

1. Цель работы.

Получение численного значения постоянной Ридберга для атомного водорода из экспериментальных данных и его сравнение с рассчитанной теоретически.

2. Задачи, решаемые при выполнении работы.

- Снятие необходимых измерений с помощью монохроматора.
- Построить градировочную кривую и определить по ней длины волн линий спектра водорода.
- Найти постоянную Ридберга двумя способами.
- Определить (на основе обобщенной формулы Бальмера) энергию ионизации атома водорода, находящегося в основном состоянии.

3. Объект исследования.

- Атом водорода.

4. Метод экспериментального исследования.

- При помощи монохроматора измерить положение m' по барабану спектральных линий, освещая щель монохроматора ртутной лампой и водородной лампой. Обработать полученные значения.

5. Рабочие формулы и исходные данные.

Рабочие формулы:

(1)
$$\lambda = B \frac{n^2}{n^2 - 4}$$
,

(2)
$$\widetilde{\nu_0} = \frac{1}{\lambda} = \frac{1}{B} \cdot \frac{n^2 - 4}{n^2} = \frac{4}{B} \left(\frac{1}{4} - \frac{1}{n^2} \right)$$

(3)
$$\widetilde{\nu_0} = R \cdot \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$
,

(4)
$$\widetilde{\nu} = R \cdot \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right),$$

$$(5) h\nu = E_i - E_l,$$

(6)
$$E_n = -\frac{2\pi^2 m e^4}{h} \cdot \frac{1}{n^2} = -hcR\frac{1}{n^2},$$

(7)
$$R = \frac{2\pi^2 m e^4}{ch^3}$$
 (СГС) или $R = \frac{m e^4}{8ch^3\epsilon_0^2}$ (СИ).

(8)
$$\widetilde{\nu} = \frac{En_2}{hc} - \frac{En_1}{hc} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

(9)
$$\widetilde{\nu} = \left(\frac{R}{4} - \frac{R}{n^2}\right)$$
,

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Монохроматор УМ-2	Оптический	-	-

7. Схема установки.

8. Результаты прямых измерений.

Таблица 1.

Цвет линии в спектре ртути	λ, нм	α, делений
Красный	690,7	2547
Красный	671,7	2514
Оранжевый	623,4	2185
Желтый	597	2065
Желтый	576,9	2049
Зелёный	546	1850
Голубой	491,6	1455
Сине-Фиолетовый	435,8	1120
Фиолетовый	407,8	1010
Фиолетовый	404,7	790

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

По данным из Таблицы 1. построим график градуировочной кривой и аппроксимируем его. Для определения длины волны в Таблице 2. применяем функцию аппроксимации с аргументом – α

Таблица 2.

Цвет линии в спектре водорода	λ, нм	α, делений
Красный	670	2464
Голубой	490	1483
Фиолетовый	390	767

Из соотношения (2) считаем значение \tilde{v} для красного (650.21 нм), голубого (480.29 нм), фиолетового (391.77 нм) цвета. Значения n-3, 4, 5. По полученным значениям заполняем Таблицу 3. и строим график зависимости ($\tilde{v}=1/\lambda$) от $\frac{1}{n^2}$.

Таблица 3.

$ ilde{m{v}},{}_{ m M}^{-1}$	$\frac{1}{n^2}$
1492537.313	0.11
2040816.327	0.06
2564102.564	0.04

Уравнение аппроксимирующей функции: y = -1447297987*x + 3045593.99

По графику определяем значения постоянной Ридберга. Точка пересечения аппроксимирующей прямой с осью ординат — значение $\frac{R}{4}$ = 3045593.99. Следовательно, получаем: $R = 1,22 * 10^7 \ M^{-1}$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Сравнение экспериментального значения и теоретического, полученного из соотношения (7):

$$R = \frac{9.11 * 10^{-31} * (1.6 * 10^{-19})^4}{8 * 3 * 10^8 * (6.63 * 10^{-34})^3 * (8.85 * 10^{-12})^2} = 1.10 * 10^7 \text{ m}^{-1}$$

Таблица 4

Значение	R, M^{-1}
Экспериментальное	$1,22*10^7$
Теоретическое	$1,10 * 10^7$
Погрешность, %	9.09%

11.Графики

Рис 1. Градуировочная кривая монохроматора – ртутная лампа

Рис. 2. Зависимость \tilde{v} от $\frac{1}{n^2}$.

12. Вывод

Изучив спектр ртути, сняли градировочную кривую монохроматора. Определили длины волн спектра атома водорода. Построив зависимость \tilde{v} от $\frac{1}{n^2}$ графически определили экспериментальное значение постоянной Ридберга, сравнили его с теоретическим. Погрешность между значениями составила 9.09%