156 Discussion Problems, Week 4

<u>Recall</u>: a function $k: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is called a *kernel* if there is some function $\phi: \mathbb{R}^n \to \mathbb{R}^m$ with $m \in \mathbb{N} \cup \{\infty\}$ such that $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^\top \phi(\mathbf{x}')$.

Problem 1: Let $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$, $k'(\mathbf{x}, \mathbf{x}') = \phi'(\mathbf{x})^{\top} \phi'(\mathbf{x}')$ be two kernels, and let c > 0. Show that each of the following is also a kernel:

(a)
$$k_1(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}') + k'(\mathbf{x}, \mathbf{x}')$$
.

(b)
$$k_2(\mathbf{x}, \mathbf{x}') = ck(\mathbf{x}, \mathbf{x}').$$

Problem 2: Show that $k(\mathbf{x}, \mathbf{x}') = -\mathbf{x}^{\top}\mathbf{x}'$ is not a kernel.

Problem 3: Let $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$ be a kernel. Show that each of the following is also a kernel.

- (a) $k_1(\mathbf{x}, \mathbf{x}') = f(\mathbf{x}) f(\mathbf{x}') k(\mathbf{x}, \mathbf{x}')$, where f is any real-valued function.
- (b) $k_2(\mathbf{x}, \mathbf{x}') = k(\mathbf{x}, \mathbf{x}')k'(\mathbf{x}, \mathbf{x}')$, where k' is any other kernel.
- (c) $k_3(\mathbf{x}, \mathbf{x}') = q(k(\mathbf{x}, \mathbf{x}'))$, where q is any polynomial with nonnegative coefficients.
- (d) $k_4(\mathbf{x}, \mathbf{x}') = \exp(k(\mathbf{x}, \mathbf{x}')).$

Problem 4 (Suggested problem 3 from assignment 4). We reproduce the statement:

Consider the soft-margin SVM problem:

minimize
$$\frac{1}{2} \|\mathbf{w}\|_2^2 + C \sum_{n=1}^N \xi_n$$
 s.t.
$$t_n(\mathbf{w}^\top \phi(x_n) + b) \ge 1 - \xi_n \quad \forall n$$

$$\xi_n \ge 0 \quad \forall n$$

Sketch a two-dimensional two-class toy example and answer the following geometrically:

- (a) Where does a data point lie relative to where the decision hyperplane and the maximum-margin hyperplanes are when $\xi_n = 0$? Is this data point classified correctly?
- (b) Where does a data point lie relative to where the decision hyperplane and the maximum-margin hyperplanes are when $0 < \xi_n \le 1$? Is this data point classified correctly?
- (c) Where does a data point lie relative to where the decision hyperplane and the maximum-margin hyperplanes are when $\xi_n >$? Is this data point classified correctly?