We have this table:

Dependency	Possible(Yes/No)	Explain
A -> B	No	A1 = B1, B2
A-> C	No	A1 = C1, C3
A-> D	No	A1 = D3, D4
B ->A	No	B2 = A1, A2
B -> C	Yes	C is uniquely defined by B(B1 -> C1, B2 -> C3, B3 -> C5)
B -> D	No	B2 = D2, D4
C -> A	No	C3 = A1, A2
C -> B	Yes	B is uniquely defined by C(C1 -> B1,C3-> B2, C5 -> B3)
C -> D	No	C3 = D2, D4
{A, B} -> C	Yes	${A1,B2} = {A2, B2} = $ $C3, {A1, B1} = C1,$ ${A3,B3} = C5$
{A,B} -> D	Yes	${A2,B2} = {A3, B3} = $ D4, ${A1, B1} = D3,$ ${A1,B2} = D2$
$\{A,C\} \rightarrow B$	Yes	${A1,C3} = {A2,C3} =$ B2; ${A1,C1} = B1, {A3,C5} = B3$
{A,C} -> D	Yes	${A3,C5} = {A2, C3} = D4; {A1, C1} = D3, {A1, C3} = D2$
{B,C} -> A	No	${B2,C3} = A1, A2$
{B,C} -> D	No	$\{B2,C3\} = D2, D4$
{C,D} → A	Yes	{C1,D3} = {C3, D2} = A1, {C3, D4} = A2, {C5, D4} = A3
{C, D} → B	Yes	{C3, D2} = {C3, D4} = B2, {C1, D3} = B1, {C5, D4} = B3

From this table, it can be seen that while B and C are functionally dependent, they are not dependent to other attributes, and so are other single attribute. Therefore, a single key cannot be a primary key, and it is necessary for a composite key to become primary key(as regarded to {A,B}, {A, C} and {C, D}).