

STHGFormer

Towards integrated and fine-grained traffic forecasting:

A **S**patio-**T**emporal **H**eterogeneous **G**raph Trans**former** approach

武汉大学测绘遥感信息工程国家重点实验室 唐炉亮教授课题组

23.12.26

Presented by Yyyq

问题描述:交通流预测从"双向级"提升到"转向级"

- ▶ 道路状态与转弯状态密切相关: 十字路口拥堵会蔓延到周围路段
- ▶ 路段和交叉口之间存在复杂的时空异质性: 路段-高均值低方差,转弯-低均值高方差

> 异构路网图HRG

描述路段和交叉口转弯的特征及协同关系

➤ SpaFormer—异构空间嵌入模块HSE

从属性、重要性和相关性三个维度分析异构路网信息

➤ TempFormer—自适应软阈值Adaptive Soft Threshold(AST)

缓解高时间波动的影响

03 🔷 相关工作

固定传感器 PEMS、METR-LA 规则网格

节点: 路段

节点: 路段+转弯

方法描述:问题定义

- $m{p}$ 道路网:路段、交叉口(十字路口) $m{n}_i^{rd}, \ i \in [1, N^{rd}] \ ext{and} \ m{n}_j^{tr}, \ j \in [1, N^{tr}]$ 利用轨迹数据划分起终点
- ➤ 细粒度的速度提取 取时间t期间在路段i上行驶的所有浮动车辆的平均速度

$$s_t^{n_i^{rd}} = \frac{\sum_{k=1}^K avg\left(v_t^{k, n_i^{rd}}\right)}{K}$$

➤ 过去T步预测未来P步

$$X_{t:t+P}^{rd}; X_{t:t+P}^{tr} = F(X_{t-T:t}^{rd}; X_{t-T:t}^{tr}; G)$$

04 方法描述: 异构路网图

 $a_{v_iv_j} = \begin{cases} e_1, & \text{if } v_i \in v^{rd}, v_j \in v^{tr}, \text{ and } e_{v_iv_j} \text{ exists} \\ e_2, & \text{if } v_i \in v^{tr}, v_j \in v^{rd}, \text{ and } e_{v_iv_j} \text{ exists} \\ 0, & \text{otherwise} \end{cases}$

- ▶ 异构节点
- > 异构边

Original Road Network

方法描述: STHGFormer

$$H_1^{rd} = Conv(X_{t-T:t}^{rd}), H_1^{tr} = Conv(X_{t-T:t}^{tr})$$

- > Heterogeneous Spatial Embedding (HSE)
- > SpaFormer
- ➤ TempFormers (包含AST-adaptive soft threshold)

$$X_{t:t+P}^{rd} = FC\left(Conv\left(H_{L+1}^{rd}\right)\right), X_{t:t+P}^{tr} = FC\left(Conv\left(H_{L+1}^{tr}\right)\right)$$

Integrated Forecasting

方法描述: Heterogeneous Spatial Embedding (HSE)

- ightharpoonup 属性嵌入: $Att = E(tp_V) + E(id_V), Att \in R^{N \times d}$ 类型 (路段 or 交叉口) + id号
- ▶ 重要性嵌入 $Sig = E(deg_V^-) + E(deg_V^+), Sig \in R^{N \times d}$ 度中心性 (节点的度)
- ▶ 相关性嵌入 $Rel = FC(E(A)), Rel \in \mathbb{R}^{N \times N}$ 对一阶邻域信息进行编码(做注意力机制的mask)

方法描述: SpaFormer

> 输入:

$$H_{l,s}^e = H_l + Att + Sig, \ H_{l,s}^e \in \mathbb{R}^{N \times T \times d}$$

▶ 注意力机制: 关注流量传输的异构性

$$A_{l,i}^{s} = Softmax \left(rac{Q_{l,i}^{s} \left(K_{l,i}^{s}
ight)^{T}}{\sqrt{d}}
ight) + Rel, A_{l,i}^{s} \in R^{T imes N imes N}$$
 $Rel = FC(E(A)), Rel \in R^{N imes N}$ 对一阶邻域信息进行编码

方法描述: TempFormer

➤ One-hot编码: day-of-week 和 time-of-day

$$H_{l,t}^e = H_{l,s}^\epsilon + PE + E(TIE)$$

$$(TIE \in R^{7+12}).$$

(b) TempFormer

方法描述: Adaptive Soft Threshold

> 设置动态阈值

过滤掉绝对值低于阈值的特征

压缩绝对值超过阈值的特征

$$\alpha = Sigmoid(FC(H_l^{\epsilon})), \ \alpha \in R^{N^{\epsilon} \times 1 \times 1}$$

$$H_{l,ast}^{\epsilon} = \begin{cases} H_{l}^{\epsilon} - \alpha \times gap, H_{l}^{\epsilon} > \alpha \times gap \\ 0, H_{l}^{\epsilon} \leq \alpha \times gap \end{cases}$$

global average pooling (GAP)

实验:数据集

轨迹数据: 2018年7月1日到2018年7月31日 武昌区域内大约4000辆出租车收集的。

10min间隔

05 实验1: 预测效果对比

过去两个小时,对未来的10、20和30分钟的交通速度进行预测。

Target	Model	10min MAE	RMSE	MAPE	20min MAE	RMSE	MAPE	30min MAE	RMSE	MAPE
Road	LSTM	5.12	6.75	17.89	5.26	6.93	18.35	5.37	7.07	18.87
	STGCN	5.06	6.68	17.61	5.18	6.83	18.04	5.28	6.95	18.46
	ASTGCN	4.90	6.49	16.96	4.94	6.55	17.11	4.99	6.60	17.31
	OGCRNN	4.90	6.49	17.20	4.95	6.57	17.37	5.00	6.62	17.57
	GWNet	4.80	6.40	17.08	4.88	6.49	17.39	4.93	6.56	17.79
	HGCN	4.87	6.47	16.99	4.95	6.57	17.20	5.01	6.64	17.36
	STTN	4.86	6.42	17.59	4.87	6.44	17.85	4.94	6.54	17.97
	DDSTGCN	4.80	6.39	17.17	4.90	6.50	17.55	4.93	6.56	17.85
	STID	4.84	6.41	17.61	4.87	6.45	17.99	4.93	6.53	17.94
	PGECRN	4.85	6.45	17.62	4.94	6.56	18.04	5.03	6.64	18.08
	DDGCRN	4.70	6.29	16.83	4.71	6.32	16.96	4.73	6.34	16.93
	STHGFormer	4.41	5.81	15.62	4.29	5.65	15.30	4.50	5.95	16.00
Turn	LSTM	8.76	11.73	82.23	8.88	11.84	83.33	8.97	11.92	84.17
	STGCN	8.69	11.64	80.40	8.79	11.75	81.27	8.87	11.81	81.64
	ASTGCN	8.46	11.43	77.40	8.49	11.46	78.28	8.52	11.49	78.47
	OGCRNN	8.45	11.42	78.80	8.50	11.47	79.22	8.53	11.50	79.59
	GWNet	8.22	11.28	82.25	8.21	11.21	73.27	8.22	11.19	72.77
	HGCN	8.43	11.42	76.84	8.49	11.49	76.78	8.54	11.54	76.79
	STTN	8.37	11.21	85.31	8.36	11.20	89.41	8.42	11.28	88.06
	DDSTGCN	8.28	11.27	91.62	8.29	11.24	74.88	8.27	11.23	74.80
	STID	8.40	11.24	86.94	8.44	11.30	90.76	8.45	11.31	90.15
	PGECRN	8.44	11.45	80.40	8.53	11.56	75.19	8.59	11.59	79.73
	DDGCRN	8.00	11.00	69.59	7.93	10.92	70.18	8.04	11.07	79 21
	STHGFormer	7.32	9.70	69.92	7.22	9.58	70.82	7.84	10.44	75.89

实验1: 预测效果对比

与道路相比,转弯表现出更多不可预测的波动。

05 🗪 实验2: 消融实验

Target	Model	10min		20min		30min	
		MAE	RMSE	MAE	RMSE	MAE	RMSE
Road	STHGFormer	4.41	5.81	4.29	5.65	4.5	5.95
	STHGFormer-SF	4.48	5.92	4.38	5.77	4.55	5.60
	STHGFormer-TF	4.81	6.37	4.82	6.38	4.88	6.46
	STHGFormer-	4.59	6.07	4.46	5.89	4.60	6.09
	HSE						
	– Att	4.43	5.84	4.30	5.66	4.51	5.96
	– Sig	4.69	6.19	4.59	6.06	4.68	6.18
	– Rel	4.52	5.97	4.39	5.78	4.56	6.02
	STHGFormer-	4.78	6.34	4.78	6.34	4.84	6.43
	AST						
Turn	STHGFormer	7.32	9.70	7.22	9.58	7.84	10.44
	STHGFormer-SF	7.43	9.85	7.28	9.66	7.88	10.49
	STHGFormer-TF	8.03	10.70	8.04	10.73	8.08	10.78
	STHGFormer-	7.63	10.11	7.42	9.83	7.91	10.52
	HSE						
	– Att	7.41	9.83	7.24	9.61	7.85	10.45
	– Sig	7.93	10.53	7.76	10.34	8.03	10.70
	– Rel	7.47	9.89	7.29	9.67	7.86	10.46
	STHGFormer-	8.11	10.86	8.02	10.73	8.16	10.92
	AST						

实验3:综合模型的优势

Target	Model	10min MAE	RMSE	20min MAE	RMSE	30min MAE	RMSE
Road	STHGFormer (R)	4.53	5.99	4.40	5.81	4.55	6.03
	STHGFormer	4.41	5.81	4.29	5.65	4.50	5.95
	Improvements	2.65	3.01	2.50	2.75	1.10	1.33
		%	%	%	%	%	%
Turn	STHGFormer (T)	7.73	10.25	7.56	10.02	7.99	10.63
	STHGFormer	7.32	9.70	7.22	9.58	7.84	10.44
	Improvements	5.30	5.37	4.50	4.39	1.88	1.79
		%	%	%	%	%	%

对于STHGFormer (R),认为连通的路段是连通的。

对于STHGFormer (T),考虑同一交叉口内的转弯是连通的。

实验3:综合模型的优势

十字路口附近的道路的准确率比那些道路有了更大的提高

(a) 10-minute accuracy improvement

谢谢观看

MANY THANKS!

23.12.26

