JP6217110

Publication Title:

IMAGE CONVERTING METHOD

Abstract:

Abstract of JP6217110

PURPOSE: To facilitate a data processing and to enable an image conversion processing such as the enlargement/reduction and work of images without restoring information by encoding the binary data of images with a run length in the unit of a byte. CONSTITUTION: An image converting means calculates the run length by successively extracting the binary data from a pixel string for one line. When the run is the first run of the line and the black run, the run length of white run is turned to '0' and the '0' of one byte is written so as to arrange the picture elements from the biginning of the line in the order of white run and black run. Next, it is discriminated whether the run length exceeds a length 255 for expressing it with one byte or not, when the run length exceeds it, '255' is written and the '0' of one byte is continuously written. Then, the '255' is subtracted from the run length, it is discriminated again whether the run length exceeds the value or not and when the run length does not exceed it, the run length is written. When there is the next run, it is extracted and similarly processed, when processing for one line is completed, the '0' of two bytes is written as a line end code, and the encoding processing is performed to all the lines. Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-217110

(43)公開日 平成6年(1994)8月5日

(51) Int.Cl. ⁵ H 0 4 N H 0 3 M H 0 4 N	1/387 7/46 1/411 1/419	識別記号	庁内整理番号 4226-5C 8522-5J 9070-5C 9070-5C	FΙ	技術表示箇所
				審査請求	未請求 請求項の数3 FD (全 6 頁)
(21)出願番号	}	特願平5-24693		(71)出願人	000113115 プロセス資材株式会社
(22)出願日		平成5年(1993)1月20日			東京都中央区銀座7丁目10番5号
				(71)出願人	000005201
					富士写真フイルム株式会社 神奈川県南足柄市中沼210番地
				(72)発明者	野瀬 人治
					東京都中央区銀座7丁目10番5号 プロセ
					ス資材株式会社内
				(72)発明者	
					東京都中央区銀座7丁目10番5号 プロセ
				(7.4) (ISTELL	ス資材株式会社内
				(74)代理人	介理士 安形 雄三

(54) 【発明の名称】 画像変換方法

(57)【要約】

【目的】 画像の拡大縮小,加工等の画像変換を行なう 画像変換方法において、ランレングスデータのままでの 画像変換処理がパーソナルコンピュータクラスでも容易 にかつ高速に行なえるようにする。

【構成】 入力画像の2値データを読込み(ステップS 1)、1バイト単位でライン最初から白ラン,黒ランの順に並べてランレングスで符号化する(ステップS10 2)。そして、符号化されたバイト単位のランレングスデータを読込み(ステップS103)、情報の復元過程を経ずに直接このランレングスデータに基づいて画像の拡大縮小,加工等の画像変換処理を行なう(ステップS 104)。

1

【特許請求の範囲】

【請求項1】 画像の拡大縮小、加工等の画像変換を行なう画像変換方法において、入力画像の2値データをバイト単位のランレングスで符号化し、符号化されたバイト単位のランレングスデータに基づいて前記画像変換を行なうようにしたことを特徴とする画像変換方法。

【請求項2】 前記ランレングスデータの符号化は、ライン最初から白ラン,黒ランの順に並べ、並べる際に、ライン最初が黒ランの場合は白ランを"0"として2パイト目に黒ランを並べ、ラン長が1バイトで表現される 10 長さ"255"を越える場合は"255"の次に"0"を置いてから残りのラン長を置き、1ライン終了後は行末符号として"0"を2つ置くことにより前記2値データの1ライン分の符号化処理を行ない、前記符号化処理をラインごとに繰返すことにより行なうようになっている請求項1に記載の画像変換方法。

【請求項3】 前記ランレングスデータに基づく画像の太らせ処理による加工は、前記ランレングスデータの加工対象ラインの黒画素のラン長のみを対象とし、画素の左右の太らせに対しては±X座標軸方向に太らせ幅アパ 20一チャーに相当する画素分拡大することにより行ない、上下の太らせに対しては±Y座標軸方向にラインを順次シフトしながら前記左右の太らせ処理が成された2つのラインの論理和を取ることにより行なうようになっている請求項1に記載の画像変換方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、画像の拡大縮小、加工等の画像変換を行なう画像変換方法に関し、特に、ランレングスで符号化された画像データに基づいて画像変換30を行なう画像変換方法に関する。

[0002]

【従来の技術】 2 値画像 (擬似中間調を含む) の圧縮技 術は、ファクシミリによる中間調画像や新聞画像のデー 夕の伝送に利用されている。これは、画像データが膨大 であるため、そのままデータ転送したりメモリに格納す ることは効率が悪いからである。そして、ファクシミリ のデータ伝送では効率良くデータを伝送するために、一 般的には、白、黒画素のそれぞれ続く長さ(ラン長)を 符号化するランレングス符号化法が利用されている。ラ 40 ンレングス符号化には具体的には国際規格となったMH (Modified Huffman) 符号化やMR (ModifiedRead) 符号化など多くの方法が あり、いずれもランの各長さに対する発生頻度の偏りを 考慮した可変長符号化を行なうものであり、その符号語 の割当て方法によって差がある(特開昭64-4937 3号公報参照)。また、画像の拡大や縮小を行なう際、 圧縮情報の復元過程を経ずに、ランレングス符号によっ て圧縮符号化された画像データに基づいて直接拡大縮小 処理を行なう方法が提案されている(特開昭 56-13 50 8356号公報参照)。

【0003】一方、文字画像と割付台紙(版下台紙,ラ フ指定紙等)の絵柄の画像とを読取って後にレイアウト して出力する画像処理システムでは、ファクシミリ等で 必要となる画像の拡大縮小処理の他に、文字の装飾(白 ふち文字、袋文字等)など複雑な画像加工の処理を行な う必要がある。そのためワークステーション側で画像加 工処理を行なわず、例えば、イメージ処理を行なう装置 が、ワークステーション側で指示された文字加工等の属 性情報と画像データに基づいて白ふち文字や袋文字等の 画像加工処理を行なうようになっている。これは、ワー クステーション間のデータ転送効率の向上や記憶媒体上 のデータ格納領域の縮小化のために画像データは圧縮率 に重点をおいてデータ圧縮されているので、ワークステ ーション側で文字加工等の画像変換を行なうにはプログ ラムが複雑になるとともに処理効率上の問題が発生する からである(特開平3-108073号公報参照)。

2

[0004]

【発明が解決しようとする課題】上述のように、ランレングスデータを符号化する際に通常はデータ圧縮率に重点をおくので、画像の拡大縮小、加工等の画像変換を行なう際の処理が複雑になり、ランレングスデータを扱って画像変換処理を行なうのはパーソナルコンピュータクラスのコンピュータでは処理効率上の問題があった。そのため、文字加工等の画像加工処理が簡便に行なえ、かつパーソナルコンピュータクラスでも高速に画像変換処理が行なえる画像変換方法の実現が強く望まれていた。本発明は上述した事情より成されたものであり、本発明の目的は、ランレングスデータのままでの画像の拡大縮小、加工等の画像変換処理がパーソナルコンピュータクラスでも容易にかつ高速に行なうことができる画像変換方法を提供することにある。

[0005]

【課題を解決するための手段】本発明は、画像の拡大縮小、加工等の画像変換を行なう画像変換方法に関するものであり、本発明の上記目的は、入力画像の2値データをバイト単位のランレングスで符号化し、符号化されたバイト単位のランレングスデータに基づいて上記画像変換を行なうようにすることによって達成される。

[0006]

【作用】本発明にあっては、画像データをバイト単位のランレングスで符号化するので、ソフトウエアやハードウエアで扱いやすくなり、また、データがラン長を表わしているので、ランレングスデータのまま画像の拡大縮小、加工等の画像変換処理が容易にかつ高速に行なえるようになる。さらに、画像の太らせ処理は意味のある画素(黒画素)のみ演算して行なうので、画像変換処理をより高速に行なうことが可能となる。

[0007]

【実施例】本発明では、ランレングスデータを符号化す

る際、対象画像をイラスト等の線画と想定し、データの 圧縮率よりは処理の簡便さ、ランレングスデータでの画 像処理のしやすさに重点をおいて符号化を行なう。そし て、符号化されたランレングスデータに基づいて、画像 の拡大縮小や加工等の画像変換を行なう。図1は本発明 の画像変換方法での画像変換処理の流れを示すフローチ ャートであり、入力画像の2値データを読込み(ステッ プS1)、ランレングス符号化法により2値データをバ イト単位のランレングスで符号化する(ステップS10 2)。この符号化は、1バイト単位でライン最初から白 10 ラン、黒ランの順に並べる方法で行なう。そして、上記 の符号化されたバイト単位のランレングスデータを読込 み(ステップS103)。情報の復元過程を経ずに直接 このランレングスデータに基づいて画像の拡大縮小,加 工等の画像変換処理を行ない(ステップS104)、処 理を終了する。

【0008】以下、本発明の画像変換方法でのランレングス符号化法とランレングス領域における画像変換方法について、それぞれ詳細を説明する。先ず、本発明の画像変換方法でのランレングス符号化法の一例を、図2の20 コローチャートに従って説明する。入力画像の2値データは、画像変換手段(図示せず)によって1ライン毎に読込まれ(ステップS201)、ライン毎に以下のランレングス符号化処理が行なわれる。画像変換手段は1ラインの画素列から2値データを順次取出し(ステップS202)、白画素又は黒画素の継続する長さ(画素数)であるラン長RLを算出する(ステップS203)。そして、そのランがライン最初のランでかつ黒ランの場合、ライン最初から白ラン、黒ランの順に並べるために白ランのラン長を0とし、1バイトの"0"を書込む30(ステップS204、S205)。

【0009】次に、ラン長RLが1バイトで表現できる 長さ"255"を越えるか否かを判別し(ステップS2 06)、"255"を越える場合は"255"を書込 み、続いて1バイトの"0"を書込む(ステップS20 7)。そして、ラン長RLから"255"を減算し(ス テップS208)、ステップS206に戻り、再度ラン 長RLが"255"を越えるか否かを判別し、越えてい ない場合は、ラン長RLを書込む(ステップS20 9)。そして、処理中のライン内に次のランがあればス 40 テップS202に戻ってランを取出し、同様にステップ S203からステップS209までの処理を行ない、1 ライン分の処理が終了したら、行末符号として2バイト の"0"を書込み(ステップS210, S211)、ス テップS201に戻って次の1ライン分の符号化処理を 行ない、全ラインの符号化処理が終了したのであれば全 ての処理を終了する(ステップS212)。

【0010】図3は、上記のランレングス符号化法によ 像の数って符号化されたデータの一例を示す図であり、同図 倍率を(A)がライン最初が白ランの場合の例、同図(B)が 50 きる。

ライン最初が黒ランの場合の例、同図(C)がラン長が 1バイトで表現される長さ"255"を越える場合の例 をそれぞれ示している。そして、それぞれ入力画像の2 値データ1が符号化されて結果2に示されるランレング スデータとなる。

【0011】次に、ランレングス領域における画像変換方法の例として、画像に太らせを施す場合の太らせ処理の一例を説明する。文字の装飾(白ふち文字,袋文字等)にはその画像の太らせ(膨張)処理が必要不可欠であり、その方法としては、周波数などに変換された領域ではなく画像の領域で画素の融合を行なうものがあるが、本発明では画像をランレングスで表現し、この領域で画素の太らせ処理を行なう。太らせ画素数をPとした場合、ランレングス領域における画像の太らせ処理は、次のステップ①~③で行なう。

①画像変換のための作業領域として、 $(2 \times P + 1)$ 行のラインバッファを用意する。

②黒画素のラン長のみ、アパーチャー(太らせ幅)に相当する画素分、±×座標軸方向に拡大する。

③黒画素のラン長のみ、±Y座標軸方向にそれぞれP行の論理和(OR)をとる。このラングスデータの論理和 (OR)演算は、2つの行の黒画素の位置座標で行なっ。

【0012】ここで、具体例として太らせ画素数Pが2 画素の場合の太らせ処理の例を、図4を参照して説明する。まず、同図(A)に示すように5行(ラインL2~ ラインL-2)のラインバッファ3を用意する。そして、中心となる行(ラインL0)を順次ずらしながら、 以下の処理を行なう。ラインL0を±X座標軸方向にア 30 パーチャー4に示される2画素分太らせる。

- (a) アパーチャー4の設定は、例えば、幅がNミリメートルで丸みを帯びた白ふちを付けるという指示により行なう。そして、指示された情報に基づいて同図(A)のアパーチャー4の内容が生成される。
- (b) ライン L_1 を $\pm X$ 座標軸方向にアパーチャー4 に示される2 画素分太らせる。
- (c) 太らせた、ラインL $_0$ とラインL $_1$ との論理和 (OR) 処理を行ない、新たなラインL $_0$ とする(論理和処理を示す同図(B)参照)。
- (d) そして、上記(a) 及び(b) の処理を、ライン L₀ を除く全てのラインバッファ3上のラインについて 行なう。

【0013】上記の処理によって、図4(A)の黒画素BPが同図の黒画素BP′に変換される。なお、図4では丸味のついた太らせを行なう場合の例を示したが、アパーチャー4の設定によって、角ばった太らせや部分的に丸みを帯びた太らせを行なうことができる。また、画像の拡大や縮小は、データがラン長を表しているので、倍率を乗じることによって容易に変換を行なうことができる。

5

[0014]

【発明の効果】以上のように本発明の画像変換方法によ れば、画像の2値データをバイト単位のランレングスで 符号化するので、データが1バイト単位となりソフトウ エアやハードウエアで処理しやすくなる。また、データ がラン長を表わしているので、情報の復元過程を経ずに ラングスデータのままで簡単に画像の拡大縮小、加工等 の画像変換処理が行なえるようになり、パソコンクラス でも画像変換処理を容易かつ高速に行なうことが可能と なる。また、画像の太らせ等の画像変換処理は意味のあ 10 変換方法の一例を説明するための図である。 る画像(黒画素)のみ演算して行なうので画像変換処理 がより高速になる。従って、処理効率を維持したままで パーソナルコンピュータクラスで画像変換処理が行なう ことが可能になるので画像加工のための専用装置が不要 になり、画像変換処理を必要とするシステムでのコスト

低減化を図ることができる。

【図面の簡単な説明】

【図1】本発明の画像変換方法での画像変換処理の流れ を示すフローチャートである。

【図2】本発明方法でのランレングス符号化法の一例を 示すフローチャートである。

【図3】本発明方法でのランレングス符号化法によって 符号化されたデータの一例を示す図である。

【図4】木発明方法でのランレングス領域における画像

【符号の説明】

- 1 入力画像の2値データ
- 2 符号化結果
- 3 ラインバッファ
- 4 アパーチャー

【図2】

