Kraków 12 października 2015



## Zadanie B1: Wektor inwersji

Wektorem inwersji permutacji liczb $\{1,2,\ldots,n\}$  nazywamy ciąg, którego i-ty wyraz mówi o tym, ile wyrazów tej permutacji występujących przed i-tym jest od niego większych. Na przykład, wektor inwersji permutacji identycznościowej składa się z samych zer, zaś dla permutacji 1,5,3,2,4 wektor inwersji jest równy 0,0,1,2,1.

Twoim zadaniem jest wyznaczyć permutację na podstawie jej wektora inwersji.

## Wejście

Pierwsza linia wejścia zawiera liczbę zestawów danych całkowitą z, których opisy występują kolejno po sobie. Opis jednego zestawu jest następujący:

W pierwszej linii znajduje się długość permutacji n ( $1 \le n \le 1\,000\,000$ ). W drugiej linii znajduje się n liczb całkowitych – kolejne wyrazy wektora inwersji.

## Wyjście

Dla każdego z zestawów danych Twój program powinien wypisać w osobnej linii permutację liczb  $\{1,2,\ldots,n\}$  o zadanym wektorze inwersji. Dane testowe są tak dobrane, że rozwiązanie zawsze istnieje.

## Przykład

| Dla danych wejściowych: | Poprawną odpowiedzią jest: |
|-------------------------|----------------------------|
|                         |                            |
| 2                       | 1 2 3 4 5                  |
| 5                       | 1 5 3 2 4                  |
| 0 0 0 0 0               |                            |
| 5                       |                            |
| 0 0 1 2 1               |                            |
|                         |                            |