Lecture 6: Regression Part 2

GGR376

Dr. Adams

Model Interpretation: Coefficients

```
model_mpg <- lm(cty~displ+cyl, data = mpg)</pre>
summary(model_mpg)$coefficients
```

```
Estimate Std. Error
                                t value
                                            Pr(>|t|)
(Intercept) 28.288512 0.6876399 41.138555 2.721700e-108
displ -1.197882 0.3407738 -3.515181 5.287524e-04
cyl
          -1.234654 0.2731967 -4.519285 9.908652e-06
```

Model Interpretation: \(R^2\)

summary(model_mpg)\$adj.r.squared

[1] 0.66419 Assignment Project Exam Help

how do we use a linear regression model?

Add WeChat powcoder **Explanatory**

- Used to understand the relationships in existing data.
 - Coefficients, when x increases how does Y change

Predictive

- Predicting the known relationships in our data into the unknown.
 - Powerful, but requires more analysis steps.

Cross-Validation

- Leave One Out (LOO)
 - Useful for smaller data samples
- Sub-setting
 - Training Data
 - Testing Data
- Required for Predictive Models!

Cross-Validation LOO

Assignment Project Exam Help

Cross-Validation Subsetting

https://powcoder.com
Demonstration of the k-fold Cross Validation

Predictive Modelling

- 1. Split the data
 - Training Data ~80%
 - Testing Data, remaining

- 2. Fit the model to the training data.
- 3. predict() the testing data using the model.
- 4. Compare predicted vs. actual of testing data.
- 5. Repeat

Predictive Modelling Demo

- · In Class Demo
 - lm(cty~displ+cyl, data = mpg)
 - dplyr::slice

Variable Selection

How do we determine how and which variables are included in the final model.

- Manual
- Step-wise
- All subsets

Manual Selection

- Requires some expert knowledge
 Typically Seglight Householder
 <
- Strategically add and remove variables

Step-wise

https://powcoder.com

MASS::stepAIC()

• Forward selection, begin with no variables at powcoder

- Add a variable
- Test if improves model
- Repeat
- · Backward elimination, begin with all candidate variables
 - Test loss in model by removal of each variable
 - Delete variable from model if no significant difference
- Bidirectional elimination, a combination of the above
 - Testing at each step for variables to be included or excluded.

All Subsets

- Test all combinations
- · Useful for smaller sets of data

All Subsets Example I

library(caret)
data(swiss)

- Fertility, *lq*, 'common standardized fertility measure'
- Agriculture, % of males involved in agriculture as occupation
- Examination, % draftees receiving highest mark on army examination
- Education, % education beyond primary school for draftees.
- Catholic, % 'catholic' (as opposed to 'protestant').
- Infant.Mortality, live births who live less than 1 year.

All Subsets Example II

```
all <- train(Fertility ~ ., data = swiss, method = "lm")
all$finalModel
Call:
lm(formula = .outcome \sim ., data = dat)
Coefficients:
     (Intercept)
                      Agriculture
                                          Examination
                                                              Education
         66.9152
                           -0.1721
                                             -0.2580
                                                                -0.8709
        Catholic Infant.Mortality
          0.1041
                            1.0770
```

All Subsets ignment Project Exam Help

```
options(scipen = 999)
summary(all$finalModel)$coefficients[,c(1,3,4)]
```

```
(Intercept) 66.9151817 6.250229 0.00000001906051
Agriculture -0.1721140 -2.448142 0.0187271543852
Examination Education -0.258082 1.016268 0.3154617231437
Education -0.270101 40.768 92 0.0001400345COCCT
```

Catholic 0.1041153 2.952969 0.0051900785452 Infant.Mortality 1.0770481 2.821568 0.0073357153206

P-hacking

Prediction Activity

- · Five Assignment Project Exam Help
- Roll *n* dice and sum values.
- For n = 1, 2, 3, 4, 5.
- Predict the value if types rest of plow and relief.com

Spatial Correlation Add WeChat powcoder

"everything is related to everything else, but near things are more related than distant things."

Waldo Tobler

Temporal Correlation

```
set.seed(100)

# Generate a random sequence of numbers
t <- sample(100, 10)

# Vector with last value removed
t_reg <- t[-length(t)]
t_reg[1:5]

[1] 31 26 55 6 45

# Vector of lags
t_lag <- t[-1]
t_lag[1:5]

[1] 26 55 6 45 46</pre>
```

Random Values Test

Temperature dated WeChat powcoder

```
temp <- airquality$Temp
temp_reg <- temp[-length(temp)]
temp_lag <- temp[-1]</pre>
```


Correlation

```
cor(t_reg, t_lag)
[1] -0.2921794
cor.test(t_reg, t_lag)$p.value
[1] 0.4455116
cor(temp_reg, temp_lag)
[1] 0.8154956
```

Temporal Lag Plot

acf(temp, cex.lab = 1.3)

Series temp

Spatial Autocorrelation

- Time is in one dimension
- Space dealing with, at least, two dimensions
 - Less clear how to measure "near"

Simulated data values

Assignment Project Exam Help

https://powcoder.com

Measure of Spatial Autocorrelation

A measure of SA describes the degree to white Power are smilair to other nearby objects.

- Moran's I
 - Global test statistic
 - Overall test for spatial autocorrelation

ssignment Project Exam Help Moran's I

Ranges from -1 to +1

- ative 1 https://powcoder.com

 Dissimilar values are near each other Negative 1
- Positive 1
- Similar values are near each other zero, no spatial autoentelation et al. powcoder

Moran's I & Spatial Correlation

Figure 2.1: Spatial data may demonstrate a pattern of positive spatial autocorrelation (left), negative spatial autocorrelation (right), or a pattern that is not spatially autocorrelated (center). Statistical tests, such as Moran's I, should always be used to evaluate the presence of spatial autocorrelation.

(Radil 2011)

Moran's I and Spatial Weights

$$I = \frac{n}{\sum_{i=1}^{n} (y_i - \bar{y})^2} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (y_i - \bar{y}) (y_j - \bar{y})}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}$$

Moran's I Formula:

- Similar to correlation coefficient
- Spatial Weights Matrix \(w_{ij}\)

Spatial Weights

The measure of how "near" are objects in space.

- Points
 - Calculate a distance
- Polygons
 - Could use distance, centroid?
 - Based on contiguity

Figure 14 Rook's vs. Queen's Contiguity

(Tenney 2013)

Weights Matrix (Row Standardized)

object number

nr	1	2	3	4	5	6	7	8
1	0	1/3	1/3	1/3	0	0	0	0
2	1/4	0	1/4	0	0	1/4	1/4	0
3	1/5	1/5	0	1/5	1/5	1/5	0	0
4	1/3	0	1/3	0	1/3	0	0	0
5	0	0	1/5	1/5	0	1/5	1/5	1/5
6	0	1/5	1/5	0	1/5	0	1/5	1/5
7	0	1/4	0	0	1/4	1/4	0	1/4
8	0	0	0	0	1/3	1/3	1/3	0

Modified from https://pqstat.com/?mod_f=macwag

Spatial Weights Exercise

Calculate Moran's I in R

Spatial Dependence Library
library(spdep)

Moran's I Test - Analytical
moran.test()

Monte Carlo Simulation
moran.mc()

- 1. Assign values to random polygons and calculate *I*
- 2. Repeat several time to form a distribution
- 3. Calculate *I* for observed data
- 4. Is it likely the observed is a random draw

Autocorrelation: Residuals

The linear regression model requires the residuals to be independent.

- Auto-correlation violates this assumptions
- 1. Temporal Autocorrelation
- 2. Spatial Autocorrelation

Spatial Autocorrelation

Model residuals need to be tested with Moran's I for spatial autocorrelation.

What to do after?

- · Addit Assignment Project Exam Help
- Spatial Autoregressive Models
 - Spatial Lag Model
 - Spatial Hrattpos!://powcoder.com

Spatial Autoregresion Models For this course you need to be aware of these two modes.

- Their interpretation is challenging.
- When to use either model is at times unclear.
- Models are estimated with maximum liklihood

Spatial Error Model

- Captures the influence of unmeasured independent variables.
 - Examines the clustering in unexplained portion of the response variable with clustering of the error terms.

Spatial Lag Model

- Implies an influence from neighbouring variables
 - Not an artifact of unmeasured variables

The value of an outcome variable in one location affects the outcome variable in neighbouring locations.

Choosing a model

· Lagrange Multiplier diagnostics for spatial dependence in linear models

Lagrange Multiplier Output

• May need an underlying theory to support your ideas.

References

Assignment Project Exam Help

Radil, Steven M. 2011. "Spatializing Social Networks: Making Space for Theory in Spatial Analysis." Dissertation. https://powcoder.com

Tenney, Matthew. 2013. "A conceptual model of exploration wayfinding: An integrated theoretical framework and computational methodology." *ProQuest Dissertations and Theses*, no. April 2013: 172. http://prx.library.gatech.etu/logn?u/l/http://sealcd.pro.puss.ww/dcoten/1853676596? accountid=11107{\%}5Cnhttp://primo-pmtna03.hosted.exlibrisgroup.com/openurl/01GALI{\}GIT/01GALI{\}Pollongraphy SERVICES??url{\}ver=Z39.88-2004{\&}rft{\}Pollongraphy Services.