1 Grundbegriffe

Grundgesamtheit, Population (gesamte Gruppe, Bsp. Schüler einer Schule)

- 1. Umfang
 - Stichprobe/Teilerhebung (nur kleiner Teil der gesamten Gruppe untersucht)

2 Grundlagen: Wahrscheinlichkeit

Wichtiges zur Wahrscheinlichkeitsrechnung

- $P(\cup_{i=1}^n)=\sum_{i=1}^n P(A_i)$ für paarweise disjunkte Ereignisse $A_1,A_2,...,A_n\subset\Omega$
- $A \subseteq B \Rightarrow P(A) \leq P(B)$
- P(A) = 1 − P(A)
- $P(A|\overline{B}) = 1 P(\overline{A}|\overline{B})$
- $P(\overline{B} \cap A) = P(A|\overline{B}) \cdot P(\overline{B})$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ für beliebige A, B $\subset \Omega$
- $P(A \cup B) = P(A) + P(B)$ für disjunkte Ereignisse $A, B \subseteq \Omega$ (Additivität)

2.1 Bedingte Wahrscheinlichkeiten

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$

Satz der totalen Wahrscheinlichkeit

$$P(A) = \sum_{i=1}^{n} P(A|B_i) \cdot P(B_i)$$

Wichtiger Spezialfall: Multiplikationssatz

$$P(A) = P(A|B)P(B) + P(A|\overline{B})P(\overline{B})$$

2.2 Stochastische Unabhängigkeit

$$P(A|B) = P(A)\ bzw.\ P(B|A) = P(B)$$

$$P(A \cap B) = P(A) \cdot P(B)$$

2.3 Bedingte Unabhängigkeit

$$P(A \cap B|C) = P(A|C) \cdot P(B|C)$$

2.4 Satz von Bayes

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(A|B)P(B)$$

$$\Rightarrow P(A|B)P(B) = P(B|A)P(A)$$

2.5 Satz von Baves II

$$\begin{split} P(B|A) &= \frac{P(A|B)P(B)}{P(A)} = \frac{P(A|B)P(B)}{P(A|B)P(B)+P(A|\overline{B})P(\overline{B})} \\ P(B_{\hat{i}}|A) &= \frac{P(A|B_{\hat{i}})P(B_{\hat{i}})}{\sum_{i=1}^{n} P(A|B_{\hat{i}})P(B_{\hat{i}})} \end{split}$$

3 Zusammenhangsmaße diskreter Merkmale

X = Zeilen Y = Spalten

3.1 Kontigenztafeln

- Absolute Häufigkeit: n = n
- Relative Häufigkeiten: n = 1

Bedingte Häufigkeiten

$$f_{Y|X}(b_1|a_1) = \frac{h_{i1}}{h_{i\cdot}}, ..., f_{Y|X}(b_m|a_i) = \frac{h_{im}}{hi\cdot}$$

$$f_{X|Y}(a_1|b_1) = \frac{h_{1j}}{h_{\cdot j}}, \, ..., \, f_{X|Y}(a_k|b_j) = \frac{h_{kj}}{h \cdot j}$$

3.2 Empirische Unabhängigkeit

$$f_{Y|X}(b_j|a_1) = f_Y(b_j|a_2) = \ldots = f_{Y|X}(b_j|a_k) \ \forall \ j=1,\ldots,m$$
 oder halt:

 $\forall i, j : h_{i,j} = \tilde{h}_{i,j}$

3.3 χ^2 - und Kontigenzkoeffizient

Berechnung von \tilde{h}

ist erwartete Häufigkeit in einer Kontingenztafel

$$\min \ \tilde{h}_{ij} = \frac{h_i.h._j}{n}$$

χ^2 -Koeffizient

$$\chi^{2} := \sum_{i=1}^{k} \sum_{j=1}^{m} \frac{(h_{ij} - \tilde{h}_{ij})^{2}}{\tilde{h}_{ij}} = \sum_{i=1}^{k} \sum_{j=1}^{m} \frac{(h_{ij} - \frac{h_{i}, h_{\cdot j}}{n})^{2}}{\frac{h_{i}, h_{\cdot j}}{n}}$$

$$= n \sum_{i} \sum_{j} \frac{(f_{ij} - f_{i}, f_{\cdot j})^{2}}{f_{i} \cdot f_{\cdot j}}$$
mit $\tilde{h}_{i,i} = h_{i}, h_{\cdot j}$

- $y^2 \in [0, n(min(k, m) 1)]$
- $\chi^2 = 0 \Leftrightarrow X$ und Y empirisch unabhängig
- χ^2 groß, starker Zusammenhang
- r² klein, schwacher Zusammenhang

Spezialfall für 2x2-Tafel

а	b	a+b
c	d	c+d
a+c	b+d	

$$\chi^2 = \frac{n(ad - bc)^2}{(a+b)(a+c)(b+d)(c+d)}$$

Kontigenzkoeffizient

$$K:=\sqrt{\frac{\chi^2}{n+\chi^2}}\,,\;K\in\left[0,\sqrt{\frac{M\!-\!1}{M}}\right],\;M=min\{k,m\}$$

Korrigierter Koeffizient

$$K^* := \frac{K}{\sqrt{(M-1)/M}}, K^* \in [0,1]$$

4 ZVs, Verteilungen und Häufigkeiten

4.1 Zufallsvariable

$$X: \Omega \to T_X, \ T_X \subseteq \mathbb{R}$$

- ordnet jedem $\omega \in \Omega$ genau ein $x \in T_X$ zu: $X(\omega) = x$
- Mehrere Elementarereignisse können selben Zahlenwert zugeordnet sein
- Ausprägungen/Relisierungen: $x = X(\omega)$ von X

4.2 Diskreter Erwartungswert

$$\begin{split} E(X) := \sum_{x \in T_X} x \cdot P(X = x) &= \sum_{\omega \in \Omega} P(\{\omega\}) X(\omega) \\ &= \sum_{x \in T_X} x \cdot f_X(x) \end{split}$$

4.3 Eigenschaften Erwartungswert

· X=a mit Wahrscheinlichkeit 1 (determinische ZV)

$$E(X) = a$$

Linearität

$$E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$$
$$E(aX + b) = a \cdot E(X) + b$$

- symmetrisch um Punkt c: $f(c-x) = f(c+x) \forall x \in T_X$, dann E(X) = c
- für bel. $a_1,...,a_n \in \mathbb{R}$ und bel. ZV $X_1,...,X_n$

$$E\left(\sum_{i=1}^{n} a_i X_i\right) = \sum_{i=1}^{n} a_i \cdot E(X_i)$$

4.4 Transformationsregel Erwartungswert

Für reelle Funktion Y=g(X):

$$E(Y) = E[g(X)] = \begin{cases} \sum_{x \in T} g(x) f(x) & \text{X diskret} \\ \int_{-\infty}^{\infty} g(x) f(x) dx & \text{X stetig} \end{cases}$$

4.5 Varianz ZV

anstatt Var(X) geht auch σ^2

$$Var(X) = \sum_{i=1}^{n} (x_i - E(X))^2 P(X = x_i)$$

Eigenschaften Varianz

· Einfachere Berechnung mit Varianz:

$$Var(X) = E(X^2) - (E(X))^2$$

- $Var(aX + b) = a^2 Var(X) \forall a, b \in \mathbb{R}$
- unabhängige ZV X, Y: Var(X + Y) = Var(X) + Var(Y)

4.6 Standardabweichung

$$\sigma = +\sqrt{Var(X)}$$

5 Wichtige parametrische Verteilungen

5.0.1 Binomialverteilung

Modelliert Anzahl Erfolge mit fester Anzahl Versuchen E(X) = np und Var(X) = np(1-p)

$$P(X = x) = f(x) = \binom{n}{k} \cdot p^{k} (1 - p)^{n - k}, \ k \in T$$

$$X \sim \mathcal{B}(n, p), \ n \in \mathbb{N}, \ p \in [0, 1]$$

5.0.2 Negative Binomialverteilung

Verwendung: Wartezeiten/Misserfolge; älle Fehlerfolge vor Erfolgen" $T_X = \{n, n+1, n+2, ...\}$ mit $n \in \mathbb{N}^+, \pi \in (0, 1)$

$$f(x) = {x-1 \choose n-1} \pi^n (1-\pi)^{\chi-n} | (x \geq n), \pi \in (0,1), T\chi = \{n,n+1,\ldots\} \ n \in \mathbb{N}^+$$

$$X \sim \mathcal{NB}(n,\pi)$$

5.0.3 Geometrische Verteilung

Modelliert Anzahl Versuche bis A zum erster Erfolg eintritt $E(X)=\frac{1}{p} \text{ und } Var(X)=\frac{1-p}{n^2}$

$$f(x) = \underbrace{(1-p)^{x-1}}_{(x-1)-\text{mal } \overline{A}} \cdot \underbrace{p}_{1-\text{Mal } A} | (x \in T), p \in (0,1)$$

$$X \sim \mathcal{G}(p)$$

5.0.4 Normalverteilung

modelliert kontinuierliche Werte um Mittelwert mit sym. Verteilung (Körpergröße, Gewicht)

Träger $T = \mathbb{R}$ mit Parametern $\mu \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right), x \in \mathbb{R}$$

 $\mu = 0$ und $\sigma^2 = 1$ ist standardnormalverteilt.

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

5.0.5 Poisson-Verteilung

Modelliert Anzahl Ereignisse mit festen Zeit/Raumbereich \rightarrow konstante Rate, unabhängig (Anzahl Anrufe Callcenter)

$$f(x) = exp(-\lambda)\frac{\lambda^x}{x!} | (x \in T), t = \mathbb{N}^+$$

 $X \sim \mathcal{P}(\lambda)$

Approximation:

$$\mathcal{B}(n,\pi)\approx\mathcal{P}(\lambda=n\pi)$$

6 Schätzung und Grenzwertsätze

6.1 Standadisierte ZV/Z-Score

$$\begin{split} \tilde{X} &= \frac{X - \mu_X}{\sigma_X} \\ E(\tilde{X}) &= (E(X) - \mu_X) = 0 \\ Var(\tilde{X}) &= \frac{1}{\sigma_X^2} Var(X) = 1 \end{split}$$

6.2 Standadisierung summierter ZVn

$$\begin{split} E(Y_n) &= n \cdot \mu_X, \ Var(Y_n) = n \cdot \sigma_X^2 \\ Z_n &= \frac{Y_n - n\mu_X}{\sqrt{n}\sigma_X} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{X_i - \mu_X}{\sigma_X} \end{split}$$

6.3 Zentraler Grenzwertsatz

$$\mu_{\hat{p}} = p, \; SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

$$Z_n \sim \mathcal{N}(\mu = 0, \sigma^2 = 1)$$
 a :\(\times\) asymptotisch

Nett to know:

$$\mu_X = \mu, \ \sigma_X = \frac{\sigma}{\sqrt{n}}$$

6.4 Punktschätzung

- 1. Z-Score/Standadisieren
- 2. Tabellenwerk
- 3. Tabellenwert-(1-Tabellenwert)

6.5 Intervallschätzung

$$\hat{p} \pm 1.96 \cdot SE_{\hat{p}}$$