Redes Neuronales

Ing. Juan M. Rodriguez

- diferencias de cargas entre el exterior (+) y el interior (-) de la neurona: **POLARIDAD.**
- La diferencia de carga está dada por la concentración de iones.
- Hay mayor concentración de Na⁺ fuera de la membrana y mayor concentración de K⁺ dentro de la misma
- Esto es posible gracias a la bomba de sodio-potasio (transporte activo).

EL GRADIENTE IONICO LO LOGRA GRACIAS A LA BOMBA DE SODIO-POTASIO

Función escalón

Heaviside - Función escalón

co	MPUERTA AI	ND
Α	В	Salida
0	0	0
0	1	0
1	0	0
1	1	1

$$X1 * w1 + x2*w2 + b > 0 \implies y = 1$$

$$X1 * w1 + x2*w2 + b \le 0$$
 $y = 0$

X1	X2	у
0	0	0
0	1	0
1	0	0
1	1	1

$$X1 * w1 + x2*w2 + b >= 1$$
 $y = 1$

$$X1 * w1 + x2*w2 + b < 1$$
 $y = 0$

Perceptrón simple - Conjunto etiquetado

X 1	X2	x1*w1+x2*w2 + b	Z	у
0	0	b	<0	0
0	1	w2 + b	<0	0
1	0	w1 + b	<0	0
1	1	w1 + w2 + b	>=0	1

¿w1, w2 y b?

Aleatoria

- W1 = 0.3
- W2 = 0.2
- b = -1

- W1 = 0.3
- W2 = 0.2
- b = -1

X1	X2	x1*w1+x2*w2 + b	Z	у
0	0	b	<0	0
0	1	w2 + b	<0	0
1	0	w1 + b	<0	0
1	1	w1 + w2 + b	>=0	1

Perceptrón simple - Primera Iteración

- W1 = 0.3
- W2 = 0.2
- b = -1

X 1	X2	x1*w1+x2*w2 + b	Z	y'	у	Error (y-y')
0	0	-1	-1	0	0	0
0	1	w2 + b	-0.8	0	0	0
1	0	w1 + b	-0.7	0	0	0
1	1	w1 + w2 + b	-0.5	0	1	1

Función del error

• W1 = 0.3

• W2 = 0.2

• b = -1

Escalon(w1 + w2 - 1) - 1 = error

Si $\begin{cases} w1 + w2 - 1 < 0 => 0 \\ w1 + w2 - 1 <= 0 => \end{cases}$

Función del error: Escalón

- W1 = 0.3
- W2 = 0.2
- b = -1

Escalon(w1 + w2 -1) - 1 = error

Si
$$\begin{cases} w1 + w2 - 1 < 0 => 0 \\ w1 + w2 - 1 <= 0 => 1 \end{cases}$$

Función del error:

- W1 = 0.3
- W2 = 0.2
- b = -1

Error:

Si
$$\begin{cases} w1 + w2 - 1 < 0 = > |0 - 1| = 0 \\ w1 + w2 - 1 <= 0 = > |1 - 1| \end{cases}$$

Dirección de decrecimiento

Actualización de los pesos

α = tasa de crecimiento.Valor entre 0 y 1.Suele ser 0.5

$$\alpha = 0.2$$

- W1 = 0.3 + 0.2 * error
- W2 = 0.2 + 0.2 * error
- b = -1

A medida que se acerque a cero, más pequeña será la actualización

Perceptrón simple - Segunda Iteración

- W1 = 0.5
- W2 = 0.4
- b = -1

X 1	X2	x1*w1+x2*w2 + b	Z	y'	у	Error (y-y')
0	0	-1	-1	0	0	0
0	1	w2 + b	-0.6	0	0	0
1	0	w1 + b	-0.5	0	0	0
1	1	w1 + w2 + b	-0.1	0	1	1

Perceptrón simple - Tercera Iteración

- \bullet W1 = 0.5 + 0.2 = 0.7
- W2 = 0.4 + 0.2 = 0.6
- b = -1

X 1	X2	x1*w1+x2*w2 + b	Z	y'	у	Error (y-y')
0	0	-1	-1	0	0	0
0	1	w2 + b	-0.4	0	0	0
1	0	w1 + b	-0.3	0	0	0
1	1	w1 + w2 + b	0.3	1	1	0

Perceptrón simple - AND en producción

- W1 = 0.7
- W2 = 0.6
- b = -1

X1	X2	Z	AND= y'
0.5	0.5	-0.35	0
0.5	1	-0,05	0
0.9	0.9	0.17	1

Perceptrón simple - Red entrenada - AND

- W1 = 0.7
- W2 = 0.6
- b = -1
- x1*0.7+x2*0.6 -1

Perceptrón simple - Almacenamiento

Perceptrón simple - Limitaciones

Perceptrón Multicapa

Entrenamiento

Backpropagation

Redes SOM (Kohonen)

Teuvo Kohonen

d	A	8	C	D	E
1	Country	Country	Ci Health Ex	Education E	Inflation
2	Aruba	ABW	9.418971	5.92467022	-2.13637
3	Afghanist	AFG	4.371774		-8.28308
4	Angola	AGO	5.791339		13.73145
5	Albania	ALB	6.75969		2.280502
6	Andorra	AND	4.57058	3.1638701	
7	Arab Wor	ARB	4.049924		3.524814
8	United Ar	ARE	7.634758		
9	Argentina	ARG	4.545323	4.88997984	6.282774
10	Armenia	ARM		3.84079003	3.406767
11	American	ASM	4.862062		
12	Antigua a	ATG	9.046056	2.55447006	-0.55016
13	Australia	AUS	11.19444	5.09262991	1.820112
14	Austria	AUT	5.85024	5.7674098	0.506313
15	Azerbaija	AZE	6.964187	3.22430992	1.401056
16	Burundi	801	10.39434	6.3197999	10.98147
17	Belgium	BEL	4,46431	6.41535997	-0.05315
18	Benin	BEN	7.405431	4.22204018	2.15683

Visible Input Nodes

Referencias

- https://www.researchgate.net/publication/331641249 Tutorial_sobre_Redes_Neuronales_A rtificiales_Los_Mapas_Autoorganizados_de_Kohonen
- https://www.slideshare.net/KirillEremenko/deep-learning-az-self-organizing-maps-som-module-4