作业讲解

1-1.电路如图 1-1 所示,求图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。

1-2.电路如图 1-2 所示,求电感电流和电容电压。

1-3. 电路如图1-3所示,各个元件的电压和电流参考方向如图所示,其中 $P_1 = 100$ W, $P_2 = -10$ W, $P_3 = 50$ W, $P_4 = 20$ W,求 P_5 ,元件5是电源还是负载?

1-4. 电路如图 1-4 所示,为某电路的部分电路,已知的电流及元件值已标出在图中,求I 、 U_s 、R 。

1-5. 图 1-5 所示电路中,已知 I=1A,求 R2的值。

1-6. 求图 1-6 所示电路中的电压 U1 和 i_I 。

1-7. 求图 1-7 所示电路中的电压Ux。

1-8. 图 1-8 所示电路中, 求 2 Ω 电阻上消耗的功率。

2-1. 写出题 2-1 图所示各电路的端口电压电流的伏安特性方程。

2-2. 电路如图 2-2(a)、(b)所示, 试计算 a、b 两端的电阻。

2-3. 求图2-3所示电路中的电流I.

2-4. 利用电源等效变换,化简图2-3(a)和(b)所示的一端口网络。

2-5. 利用等效变换法求图示 2-5 电路中的电流 I。

2-6. 利用等效变换法求图 2-6 电路中的电压 U1,进一步求受控电流源的功率。

2-7. 求图 2-7 所示电路中的电流 I。

2-8. 求图 2-8 各电路的输入电阻 R in 。

3-1. 用支路电流法求图 3-1 所示电路中各支路电流。

3-2. 用网孔电流分析法求图 3-2 电路的各支路电流。

3-3. 用回路电流法求图 3-3 中的电压 U1。

3-4. 如图 3-4 所示电路,用回路电流法求电流 I_A 。

3-5. 用结点法求图 3-5 电路中的电压 U_1 。

3-6. 如图 3-6 所示电路,取 5号结点为参考结点,求电压 Ux 和电流 Ix。

4-1. 试用叠加定理求图 4-1 电路中的电压 U_2 。

4-2. 图 4-2 电路中 N_0 为无源电阻网络。当 u_1 = 1 V, u_2 = 2 V 时, i_x = 12 A; 又当 u_1 = -1 V, u_2 = 2 V, i_x = 0 A。 若将 N_0 变换为含有独立电源的网络后,在 u_1 = u_2 = 1 V 时, i_x = -1 A,试求当 u_1 = u_2 = 4 V 时的电流 i_x 。

$$\frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{12} = \frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

$$\frac{1}{12} = \frac{1}{12} = \frac{1}{12}$$

4-3. 试求图 4-3 含源一端口网络的戴维宁和诺顿等效电路。

4-4. 利用戴维宁定理求图 4-4 电路中的电流 I_2 。

4-5. 图 4-5 电路中的负载电阻 R_x 可变,试问: (1) 当 $R_x = 5\Omega$ 时,电流 I_x 等于多少? (2) I_x 等于多少时,可吸收最大功率? 并求此功率。

4-6. 图 4-6 所示直流电路中,当电流 $I_L=2A$ 时,负载电阻 R_L 消耗的功率最大,试求 U_S 。

- 4-7. 某黑匣子内部电路连接未知,外部接有一可变电阻,并用理想电压表(无限大内阻)与理想电流表(内阻)0)测取端电压与电流,如图 4-7 所示。测得结果如表 1 所示,求:
 - (a) 当 $R = 4\Omega$ 时, 电流i多大?
 - (b) 该黑匣子输出的最大功率是多少?

5-4. 在图 5-4 所示的电路中,除 A_0 和 V_0 外,其余电流表和电压表的读数在图上都已标出(均为有效值),试求电流表 A_0 或电压表 V_0 的读数。

6-1. 求图 6-1 所示电路的输入阻抗 Z 和导纳 Y。

6-4. 图 6-4 中 $i_s=14\sqrt{2}\cos(\omega t+\phi)mA$,调节电容,使电压 $\mathcal{C}=U\angle\phi$ V,电流表 A₁ 的读数为 50mA。

求电流表 A2 的读数。

6-5. 图 6-5 中已知 us= $200\sqrt{2}$ cos($314t+\pi/3$)V,电流表 A 的读数为 2A,电压表 V_1 、 V_2 的读数均为 200V 求参数 R、L、C,并作出该电路的相量图(提示:可先作相量图辅助计算)。

$$\begin{bmatrix}
2 = 5 & \sqrt{3} \\
- \frac{27}{727}
\end{bmatrix}$$

$$\begin{bmatrix}
60^{\circ} \\
0 \\
0
\end{bmatrix}$$

$$\begin{bmatrix}
0 \\
0
\end{bmatrix}$$

6-7. 图 6-7 所示电路中已知: $\frac{1}{\omega C_2}$ =1.5ωL₁,R=1Ω,ω=10⁴rad/s,电压表的读数为 15V,电流表 A₁的读

数为 45A。求图中电流表 A2、功率表 W 的读数和电路的输入阻抗 Zin。

6-8. 图6-8所示电路,设 $\dot{U} = 100 \angle 0^{-}$ V,求网络 N 的平均功率、无功功率、功率因数和视在功率。

6-9. 电路如图所示,问负载 Z 取何值时可获最大功率?最大功率是多少? (电源电压为 6∠0°V)

6-10. 如图 6-10 所示电路, 当 S 闭合时, 各表读数如下: V: 220V; A: 10A; W: 1000W。当 S 打开时各表读数依次为: 220V, 12A 和 1600W。求阻抗 Z₁ 和 Z₂, Z₁ 为感性。

$$Z_{1}=1-11+j5,25$$
 $Z_{1}=1-11+j5,25$
 $Z_{1}=1-11+j5,25$
 $Z_{2}=10-j19.6$
 $Z_{2}=10-j19.6$
 $Z_{2}=10-j19.6$
 $Z_{1}=10-j19.6$
 $Z_{2}=10-j19.6$
 $Z_{1}=10-j19.6$
 $Z_{2}=10-j19.6$
 $Z_{1}=10-j19.6$
 $Z_{2}=10-j19.6$
 $Z_{1}=10-j19.6$
 $Z_{2}=10-j19.6$
 $Z_{1}=10-j19.6$
 $Z_{2}=10-j19.6$
 $Z_{1}=10-j19.6$
 $Z_{2}=10-j19.6$

7-1. 试求图 7-1 所示电路的输入阻抗 $Z(\omega=1 \text{rad/s})$ 。

7-2. 电路如图 7-2 所示,已知输入阻抗 Zab 在 $\omega = 1 rad / s$ 时为无穷大,在 $\omega = 2 rad / s$ 时为零,试求 C 和 M。

$$\frac{1}{2}\omega^{2} = \frac{1}{2}(1 + \frac{1}{2zz})^{2}$$

$$w = \frac{1}{2}(1 + \frac{1}{2}zz)^{2}$$

$$w = \frac{1}{2}(1 + \frac{1}{2}zz)^{2}$$

$$\Rightarrow \frac{1}{2}(1 + \frac{1}{2}z)^{2}$$

$$\Rightarrow \frac{1}{2}(1 + \frac{1}{2}z)$$

7-3. 电路如图 7-3 所示, (1) 求该一端口网络的戴维宁等效电路。(2) 若在 ab 端接上负载(阻抗 Z), 求 Z 为多少时能获得最大功率,并求该最大功率。

$$000 = 300$$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 $000 = 300$
 000

7-4. 电路如图 7-4 所示,已知电感 L_1 =6H, L_2 =4H, 两个电感反接串联时,电路谐振频率是顺接串联时谐振频率的 2 倍,求互感 M。

7-5. 电路如图 7-5 所示, $u_s(t)$ 与i(t) 同相 $u_s(t)=10\cos\omega tV$,求电源 $u_s(t)$ 的角频率 ω 和功率表

求图中理想变压器的参数n。

$$-j+n^{2}(jk)=0$$

$$N=2$$

7-7. 图 7-7 所示电路中电源电压 $U_z=100$ V,内阻 $R_z=5\Omega$,负载阻抗 $Z_L=(16+j12)\Omega$,问理想变压器的变比》为多少时, Z_L 可获得最大功率?试求此最大功率。

$$\frac{1}{1} = \frac{1}{1} = \frac{1$$

- 8-1. 对称三相电路的线电压 U₁=380V, 负载阻抗 Z= (12+j16) Ω。试求:
 - (1) 星形连接负载时的线电流及吸收的总功率: (25 8
 - (2) 三角形连接负载时的线电流、相电流和吸收的总功率;
- 8-2. 图 8-2 所示电路,三相电源线电压 380V,对两组对称负载供电。Y 联接负载每相复阻抗 Z_1 =12+j16 Ω , Δ 联接负载每相复阻抗 Z_2 =48+j36 Ω ,每根传输导线的复阻抗 Z_L =2+ $j\Omega$ 。试求流过端线阻抗的电流及三相电源的功率。

8-3. 三相电路如图 8-3 所示,三相对称负载作三角形联接,线电压 UAB=380V,当 S1、S2 均闭合时,各电流表读数均为 17.3A,三相功率 P=6kW,试求:(1)每相负载的电阻和感抗;(2)当 S1 闭合、S2 断开时,各电流表读数和三相有功功率 P;(3)当 S1 断开、S2 闭合时,各电流表读数和三相有功功率 P。

- 8-6. 对称三相电路的负载吸收的功率为 2.4kW, 功率因数为 0.6 (感性)。试求:
 - (1) 两个功率表的读数 (用二瓦计法测量功率时);
 - (2) 怎样才能使负载端的功率因数提高到 0.9? 再求出两个功率表的读数。

(3) 当 S1 断开、S2 闭合时, 各电流表达》

$$J_{A}=J_{c}=15A$$
 $P=3KW$.

(2) 怎样才能使负载端的功率因数提高到 0.9? 再求出两个功率表的读数。

P_= ve le ~ (9-10') = 2123.76

B= ve le ~ (9+10°) = 276. vp w

- 8-4. 图 8-4 所示电路中,对称三相电源端的线电压 U_i =380V,Z=(50+j50) Ω , Z_i =(100+j100) Ω , Z_A 为 R、L、C 串联组成,R=50 Ω , X_L =314 Ω , X_C =-264 Ω 。试求:
 - (1) 开关 S 打开时的线电流;
 - (2) 若用二瓦计法测量电源端三相功率,试画出接线圈,并求两个功率表的读数(S闭合时)。

8-5. 图 8-4 所示对称三相电路中,负载消耗功率为 3kW,电路功率因数为 0.866(负载为

9-1. 图9-1所示电路中, N 为无独立源网络,

$$u = [100\cos(t - 45^{\circ}) + 50\cos 2t + 25\cos(3t + 45^{\circ})]V$$

$$i = (80 \cos t + 20 \cos 2t + 10 \cos 3t) \text{mA}$$

(1) 求电压"和电流"的有效值; (2) 求网络 N 吸收的平均功率; (3)求三种频率下网络 N 的等效阻抗。

$$\frac{1}{\sqrt{2}} = \frac{100/-40}{\sqrt{2}}$$

9-2 已知图9-2所示电路中, $R_1 = 1\Omega$, $R_2 = 3\Omega$, L = 2H, $I_3 = 4A$, $u_3 = 4\sqrt{2}\cos 2tV$ 求电流 / 的有效值。

$$\lambda = 1 + 6$$

$$I = \frac{16}{2}$$

9-3. 图 9-3 所示含有理想变压器的电路,已知电源 $u_s = \sqrt{2}\cos t + 15\sin 2t$ (V),电流 $i = 3\sin 2t$ (A),电感 L=1H。试求:

 100Ω

- (1) 电容 C 的参数值;
- (2) X 应是什么元件? 求出其参数;
- (3) 电流 $i_c(t)$ 的有效值。

$$\begin{array}{c|c}
i & 5\Omega \\
+ & i_c
\end{array}$$

$$\begin{array}{c|c}
i & 5\Omega \\
i_c
\end{array}$$

10-1. 在图 10-1 电路中,开关 S 原来打开,在 t=0 时合上,开关动作前电路已达稳态,试求当开关 S 闭合后一瞬间的 $u_c(0_+)$ 、 $i_L(0_+)$ 、 $u_R(0_+)$ 、 $u_L(0_+)$ 和 $i_C(0_+)$ 。

10-2. 如图 10-2 所示电路, t=0时开关 S 位于 1,电路已处于稳态。当 t=0时开关 S 闭合 2, 求 $t\geq 0$ 时电流 $i_L(t)$ 和电压 u(t) 。

$$\frac{2}{100} = \frac{3}{100} = \frac{2}{100} = \frac{2}$$

10-3 电路如图 10-3 示,电路原来已达稳态, $u_c(\theta_-) = 16$ V ,t=0 时开关闭合。求 t ≥ 0 时的电容电压 u_C 和 5Ω电阻上的电压 u_c

10-4. 电路如图 10-4 所示, 开关 S 在 t=0 时闭合, 开关动作之前电路处于稳定状态, 试求开关闭合后的 $i_L(t)$ 。

10-5. 求图 10-5 所示电路的 $u_c(t)$ 和 $i_c(t)$, 其中 $C = 400 \mu F$, $u_c(0_-) = 30 \text{ V}$ 。

$$1.00 = 0000 = 500$$
 $1.20 = 50 - 0$
 $7 = 0025$
 $1.11 = 50 - 200 = 501$
 $1.11 = 0000 = 000$
 $1.11 = 0000 = 000$

10-6. 在图 10-6 电路中,开关 S 在 t=0 时由位置 1 倒向位置 2,开关动作之前电路已处于稳态,求换路后电流 i(t)。

4
$$\lambda'(0+) + 4\lambda'(0+) = 30$$

$$2'(0+) = \frac{30}{8} A$$

$$3\lambda'(00) + 2\lambda'(00) = 30$$

$$2'(00) = 6A$$

$$|2e_{5}=2.5 \wedge$$

$$= \frac{1}{2.5} \times 5$$

$$= \frac{1}{2.5} \times 5$$

$$= \frac{1}{4} \times 6 \times 6$$

$$= \frac{1}{4} \times 6 \times 6$$

10-7 如图 10-7 所示电路,t<0已处于稳态。当t=0时,受控源的控制系数 t 突然由 10 Ω 变为 5Ω ,求 $t\geq0$ 时的电压 $u_c(t)$ 。

$$U_{CU+1} = 5 \times \frac{20}{25} = 4A$$
 $U_{CU+1} = 5 \times \frac{20}{25} = 5A$
 $25C = 2A$
 $25C = 2A$
 $129 = \frac{5}{2}5$
 $T = 129 = 15$
 $U_{CI+1} = 5 - e^{-t}$

12-1. 求图 12-1 所示二端口的 Y、Z 、T 和 H 参数矩阵。

$$Y = \begin{bmatrix} 2 & -1 \\ -1 & 4 \end{bmatrix} \quad Z = \begin{bmatrix} 3 & -1 \\ 0 & -1 \end{bmatrix}$$

$$X = \begin{bmatrix} 4 & 1 \\ 6 & 2 \end{bmatrix} \quad (1 - 1) \quad (2 - 1) \quad (3 - 1) \quad (4 - 1) \quad (5 - 1) \quad (5 - 1) \quad (7 - 1)$$

12-2. 己知二端口的参数矩阵为

(1)
$$Z = \begin{bmatrix} 6\theta & 4\theta \\ 4\theta & 1\theta\theta \end{bmatrix} \Omega$$

$$(2) \quad Y = \begin{bmatrix} 5 & -2 \\ 0 & 3 \end{bmatrix} S$$

试问该二端口是否有受控源,并求它的等效电路。

12-3. 求图 12-3 所示二端口的 T 参数矩阵,设内部二端口 P₁的 T 参数矩阵为

$$T_{1} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

12-4. 图 12-4 正弦电路中,双口网络的 Z 参数矩阵为 $Z = \begin{bmatrix} 10 & 3 \\ 20 & 6 \end{bmatrix}$ Ω ,求电压源发出的功率。

飞哥的学生 绝不轻易认输

预祝大家

AGO www.quanjing.com

考出好成绩

加油!