Avaliação 2 de Mecânica Aplicada

Hiago Riba Guedes RGU:11620104 Lucas Priori RGU:11311093

Data limite: 20/04/2017

Questão 3.48

Passos:

- 1. Desenhar uma conexão entre os pontos A e B, o que irá formar os pontos A_1B_1 , A_2B_2 , A_3B_3 mostrados abaixo
- 2. Desenhar linhas entre os pontos A_1A_2 e A_2A_3
- 3. Achar o ponto médio das retas geradas e traçar uma perpendicular as duas e marcar o ponto de interseção entre elas, chamar de O_1
- 4. Repetir o mesmo porcesso da 2 e da 3 para as linhas B_1B_2 e B_2B_3 , chamar o ponto de O_2
- 5. Conectar O_1 com A_1 e O_2 com B_2
- 6. Note que se formou um poligono O_1ABO_2 e que tem como valores Conexão terra: O_1O_2 =20.895mm

AB=52mm

 $AO_1 = 127.051 \text{mm}$

 $BO_2 = 120.234 \text{mm}$

7. Verificar a condição de Grashof

 $127.051 + 20.895 \le 52 + 120.234$

O que atende a classe 1 de Grashof

- 8. Selecione um ponto na linha O_2B
- 9. Escolher um ponto a uma distancia considerável de O_2 e este será nosso pivô
- 10. Desenhe um circulo com centro em O_2 e com final na direção de O_1
- 11. Traçar uma reta entre C_1 e C_3 (ponto formado pelo limite angular do movimento nescessário estabelecido pelo projeto,e formando uma extensão dessa reta pois ela será nosso eixo motor
- 12. Selecionar um ponto O_3 arbitrário nessa reta formada,no caso ele foi escolhido 20 unidades após o começo da base principal
- 13. Desenhar um círculo com centro em O_3 com raio igual a metade da distância da reta C_1C_3 , após isso marque os pontos D_1 e D_2 que são os extremos desse círculo e D_1 e D_2 são os pontos limites da manivela

Figura feita com a escala de 1:20

Considerando o ponto (0,0) como a base inferior esquerda da base principal temos a lista de pontos achados logo abaixo:

```
A_1 = (2.875, 11.15).....D_1 = (-0.96, 8.2686)
```

$$A_2 = (10.306, 10.329) \dots D_2 = (3.312, 6.2114)$$

 $A_3 = (12.375, 5.2)$

 $B_1 = (5.475, 11.15)$

 $B_2 = (12.144, 8.4905)$

 $B_3 = (12.375, 2.6)$

 $O_1 = (6.019, 5.63)$

 $O_2 = (7.023, 5.341)$

 $O_3 = (1.176, 7.24)$

 $C_1 = (8.791, 3.573)$

 $C_3 = (4.519, 5.63)$