

RECEIVED

JUL 18 2001

TECH CENTER 1600/2900

SEQUENCE LISTING

<110> Zinselmeier, Chris
Habben, Jeff
Tomes, Dwight

<120> Regulated Expression of Genes in Plant
Seeds

<130> 0803

<140> US 09/545,334
<141> 2000-04-07

<150> US 60/129,844
<151> 1999-04-16

<160> 12

<170> FastSEQ for Windows Version 3.0

A¹
<210> 1
<211> 1608
<212> DNA
<213> Zea mays

<220>
<221> CDS
<222> (1) ... (1605)

<400> 1

atg gcg gtg gtt tat tac ctg ctg gcc ggg ctg atc gcc tgc tct
48
Met Ala Val Val Tyr Tyr Leu Leu Leu Ala Gly Leu Ile Ala Cys Ser
1 5 10 15

cat gca cta gcg gca ggc acg ctt gcg ctc gga gaa gat cgc ggc cgt
96

His Ala Leu Ala Ala Gly Thr Leu Ala Leu Gly Glu Asp Arg Gly Arg
20 25 30

ccc tgg cca gcc ttc ctc gcc gcg ctg gcc ttg gac ggc aag ctc cgg
44 1

Pro Trp Pro Ala Phe Leu Ala Ala Leu Asp Gly Lys Leu Arg

35	40	45	
acc gac agc aac gcg acg gcg gcg gcc tcg acg gac ttc ggc aac atc 92			1
Thr Asp Ser Asn Ala Thr Ala Ala Ala Ser Thr Asp Phe Gly Asn Ile 50	55	60	
acg tcg gcg ctc ccg gcg gcg gtc cta tac ccg tcg tcc acg ggc gac 40			2
Thr Ser Ala Leu Pro Ala Ala Val Leu Tyr Pro Ser Ser Thr Gly Asp 65	70	75	80
ctg gtg gcg ctg ctg agc gcg gcc aac tcc acc ccg ggg tgg ccc tac 88			2
Leu Val Ala Leu Leu Ser Ala Ala Asn Ser Thr Pro Gly Trp Pro Tyr 85		90	95
acc atc gcg ttc cgc ggc cgc cac tcc ctc atg ggc cag gcc ttc 36			3
Thr Ile Ala Phe Arg Gly Arg Gly His Ser Leu Met Gly Gln Ala Phe 100		105	110
gcc ccc ggc ggg gtg gtc gtc aac atg gcg tcc ctg ggc gac gcc gcc 84			3
Ala Pro Gly Gly Val Val Val Asn Met Ala Ser Leu Gly Asp Ala Ala 115		120	125
gcc gcc gcg ccg ccg cgc gtc aac gtg tcc gcg gac ggc cgc tac gtg 32			4
Ala Ala Ala Pro Pro Arg Val Asn Val Ser Ala Asp Gly Arg Tyr Val 130		135	140
gac gcc ggc gag cag gtg tgg atc gac gtg ctg cgc gcg tct ctg 80			4
Asp Ala Gly Gly Glu Gln Val Trp Ile Asp Val Leu Arg Ala Ser Leu 145		150	155
160			
gcg cgc ggc gtg gcg ccg cgc tcc tgg acc gac tac ctc tac ctc acc 28			5
Ala Arg Gly Val Ala Pro Arg Ser Trp Thr Asp Tyr Leu Tyr Leu Thr 165		170	175
gtc ggc ggc acg ctg tcc aac gca ggc atc agc ggc cag gcg ttc cgc 76			5
Val Gly Gly Thr Leu Ser Asn Ala Gly Ile Ser Gly Gln Ala Phe Arg 180		185	190

cac ggc cca cag ata tct aac gtg ctg gag atg gac gtt atc acc ggc 6
 24 His Gly Pro Gln Ile Ser Asn Val Leu Glu Met Asp Val Ile Thr Gly
 195 200 205

 cat ggg gag atg gtg acg tgc tcc aag cag ctg aac gcg gac ctg ttc 6
 72 His Gly Glu Met Val Thr Cys Ser Lys Gln Leu Asn Ala Asp Leu Phe
 210 215 220

 gac gcc gtc ctg ggc ggg ctg ggg cag ttc gga gtg atc acc cgg gcc 7
 20 Asp Ala Val Leu Gly Gly Leu Gly Gln Phe Gly Val Ile Thr Arg Ala
 225 230 235 240

 cg¹ gatc gcg gtg gag ccg gcg ccg gcg cgg tgg tgg gtg cgg ctc 7
 68 Arg Ile Ala Val Glu Pro Ala Pro Ala Arg Ala Arg Trp Val Arg Leu
 245 250 255

 gtg tac acc gac ttc gcg gcg ttc agc gcc gac cag gag cgg ctg acc 8
 16 Val Tyr Thr Asp Phe Ala Ala Phe Ser Ala Asp Gln Glu Arg Leu Thr
 260 265 270

 gcc ccg cgg ccc ggc ggc ggc gcg tcg ttc ggc ccg atg agc tac 8
 64 Ala Pro Arg Pro Gly Gly Gly Ala Ser Phe Gly Pro Met Ser Tyr
 275 280 285

 gtg gaa ggg tcg gtg ttc gtg aac cag agc ctg gcg acc gac ctg gcg 9
 12 Val Glu Gly Ser Val Phe Val Asn Gln Ser Leu Ala Thr Asp Leu Ala
 290 295 300

 aac acg ggg ttc ttc acc gac gcc gac gtc gcc cgg atc gtc gcg ctc 9
 60 Asn Thr Gly Phe Phe Thr Asp Ala Asp Val Ala Arg Ile Val Ala Leu
 305 310 315 320

 gcc ggg gag cgg aac gcc acc acc gtg tac agc atc gag gcc acg ctc 10
 08 Ala Gly Glu Arg Asn Ala Thr Thr Val Tyr Ser Ile Glu Ala Thr Leu
 325 330 335

 aac tac gac aac gcc acg gcg gcg gcg gtg gac cag gag ctc gcg 10
 56

Asn Tyr Asp Asn Ala Thr Ala Ala Ala Val Asp Gln Glu Leu Ala
 340 345 350

tcc gtg ctg ggc acg ctg agc tac gtg gaa ggg ttc gcg ttc cag cgc 11
 04

Ser Val Leu Gly Thr Leu Ser Tyr Val Glu Gly Phe Ala Phe Gln Arg
 355 360 365

gac gtg tcc tac acg gcg ttc ctt gac cgg gtg cac ggc gag gag gtg 11
 52

Asp Val Ser Tyr Thr Ala Phe Leu Asp Arg Val His Gly Glu Glu Val
 370 375 380

gcg ctc aac aag ctg ggg ctg tgg cgg gtg ccg cac ccg tgg ctc aac 12
 00

Ala Leu Asn Lys Leu Gly Leu Trp Arg Val Pro His Pro Trp Leu Asn
 385 390 395 400

atg ttc gtg ccg cgc tcg cgc atc gcc gac ttc gac cgc ggc gtc ttc 12
 48

Met Phe Val Pro Arg Ser Arg Ile Ala Asp Phe Asp Arg Gly Val Phe
 405 410 415

aag ggc atc ttg cag ggc acc gac atc gtc ggc ccg ctc atc gtc tac 12
 96

Lys Gly Ile Leu Gln Gly Thr Asp Ile Val Gly Pro Leu Ile Val Tyr
 420 425 430

ccc ctc aac aaa tcc atg tgg gac gac ggc atg tcg gcg gcg acg ccg 13
 44

Pro Leu Asn Lys Ser Met Trp Asp Asp Gly Met Ser Ala Ala Thr Pro
 435 440 445

tcg gag gac gtg ttc tac gcg gtg tcg ctg ctc ttc tcg tcg gtg gcg 13
 92

Ser Glu Asp Val Phe Tyr Ala Val Ser Leu Leu Phe Ser Ser Val Ala
 450 455 460

ccc aac gac ctg gcg agg ctg cag gag cag aac agg agg atc ctg cgc 14
 40

Pro Asn Asp Leu Ala Arg Leu Gln Glu Gln Asn Arg Arg Ile Leu Arg
 465 470 475 480

ttc tgc gac ctc gcc ggg atc cag tac aag acc tac ctg gcg cgg cac 14
 88

Phe Cys Asp Leu Ala Gly Ile Gln Tyr Lys Thr Tyr Leu Ala Arg His
 485 490 495

acg gac cgc agt gac tgg gtc cgc cac ttc ggc gcc gag tgg aat 15
 36
 Thr Asp Arg Ser Asp Trp Val Arg His Phe Gly Ala Ala Glu Trp Asn
 500 505 510

 cgc ttc gtg gag atg aag aac aag tac gac ccc aag agg ctg ctc tcc 15
 84
 Arg Phe Val Glu Met Lys Asn Lys Tyr Asp Pro Lys Arg Leu Leu Ser
 515 520 525

 ccc ggc cag gac atc ttc aac tga 16
 08
 Pro Gly Gln Asp Ile Phe Asn
 530 535

A²
 <210> 2
 <211> 535
 <212> PRT
 <213> Zea mays

 <400> 2
 Met Ala Val Val Tyr Tyr Leu Leu Leu Ala Gly Leu Ile Ala Cys Ser
 1 5 10 15
 His Ala Leu Ala Ala Gly Thr Leu Ala Leu Gly Glu Asp Arg Gly Arg
 20 25 30
 Pro Trp Pro Ala Phe Leu Ala Ala Leu Ala Leu Asp Gly Lys Leu Arg
 35 40 45
 Thr Asp Ser Asn Ala Thr Ala Ala Ala Ser Thr Asp Phe Gly Asn Ile
 50 55 60
 Thr Ser Ala Leu Pro Ala Ala Val Leu Tyr Pro Ser Ser Thr Gly Asp
 65 70 75 80
 Leu Val Ala Leu Leu Ser Ala Ala Asn Ser Thr Pro Gly Trp Pro Tyr
 85 90 95
 Thr Ile Ala Phe Arg Gly Arg Gly His Ser Leu Met Gly Gln Ala Phe
 100 105 110
 Ala Pro Gly Gly Val Val Val Asn Met Ala Ser Leu Gly Asp Ala Ala
 115 120 125
 Ala Ala Ala Pro Pro Arg Val Asn Val Ser Ala Asp Gly Arg Tyr Val
 130 135 140
 Asp Ala Gly Gly Glu Gln Val Trp Ile Asp Val Leu Arg Ala Ser Leu
 145 150 155 160
 Ala Arg Gly Val Ala Pro Arg Ser Trp Thr Asp Tyr Leu Tyr Leu Thr
 165 170 175
 Val Gly Gly Thr Leu Ser Asn Ala Gly Ile Ser Gly Gln Ala Phe Arg
 180 185 190

His Gly Pro Gln Ile Ser Asn Val Leu Glu Met Asp Val Ile Thr Gly
 195 200 205
 His Gly Glu Met Val Thr Cys Ser Lys Gln Leu Asn Ala Asp Leu Phe
 210 215 220
 Asp Ala Val Leu Gly Gly Leu Gly Gln Phe Gly Val Ile Thr Arg Ala
 225 230 235 240
 Arg Ile Ala Val Glu Pro Ala Pro Ala Arg Ala Arg Trp Val Arg Leu
 245 250 255
 Val Tyr Thr Asp Phe Ala Ala Phe Ser Ala Asp Gln Glu Arg Leu Thr
 260 265 270
 Ala Pro Arg Pro Gly Gly Gly Ala Ser Phe Gly Pro Met Ser Tyr
 275 280 285
 Val Glu Gly Ser Val Phe Val Asn Gln Ser Leu Ala Thr Asp Leu Ala
 290 295 300
 Asn Thr Gly Phe Phe Thr Asp Ala Asp Val Ala Arg Ile Val Ala Leu
 305 310 315 320
 Ala Gly Glu Arg Asn Ala Thr Thr Val Tyr Ser Ile Glu Ala Thr Leu
 325 330 335
 Asn Tyr Asp Asn Ala Thr Ala Ala Ala Val Asp Gln Glu Leu Ala
 340 345 350
 Ser Val Leu Gly Thr Leu Ser Tyr Val Glu Gly Phe Ala Phe Gln Arg
 355 360 365
 Asp Val Ser Tyr Thr Ala Phe Leu Asp Arg Val His Gly Glu Glu Val
 370 375 380
 Ala Leu Asn Lys Leu Gly Leu Trp Arg Val Pro His Pro Trp Leu Asn
 385 390 395 400
 Met Phe Val Pro Arg Ser Arg Ile Ala Asp Phe Asp Arg Gly Val Phe
 405 410 415
 Lys Gly Ile Leu Gln Gly Thr Asp Ile Val Gly Pro Leu Ile Val Tyr
 420 425 430
 Pro Leu Asn Lys Ser Met Trp Asp Asp Gly Met Ser Ala Ala Thr Pro
 435 440 445
 Ser Glu Asp Val Phe Tyr Ala Val Ser Leu Leu Phe Ser Ser Val Ala
 450 455 460
 Pro Asn Asp Leu Ala Arg Leu Gln Glu Gln Asn Arg Arg Ile Leu Arg
 465 470 475 480
 Phe Cys Asp Leu Ala Gly Ile Gln Tyr Lys Thr Tyr Leu Ala Arg His
 485 490 495
 Thr Asp Arg Ser Asp Trp Val Arg His Phe Gly Ala Ala Glu Trp Asn
 500 505 510
 Arg Phe Val Glu Met Lys Asn Lys Tyr Asp Pro Lys Arg Leu Leu Ser
 515 520 525
 Pro Gly Gln Asp Ile Phe Asn
 530 535

<210> 3

<211> 51

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthesized based on sequence from Agrobacterium tumefaciens

<400> 3
caucaucauc auggatccac caatggatct acgtctaatt ttcggtccaa c
51

<210> 4
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthesized based on sequence from Agrobacterium tumefaciens

<400> 4
cuacuacuac uagttaactc acattcgaaa tggtggtcct tc
42

<210> 5
<211> 29
<212> DNA
<213> Zea mays

<400> 5
catgccatgg cggtggttta ttacctgct
29

<210> 6
<211> 31
<212> DNA
<213> Zea mays

<400> 6
cgggatcctc atcatcagtt gaagatgtcc t
31

<210> 7
<211> 5622
<212> DNA
<213> Artificial Sequence

<220>

<223> Promoter and terminator from Zea mays as found in
 Genbank Accession #S78780; gene from Agrobacterium
 tumefaciens as found in Molecular and General
 Genetics 216:388-394 (1989).

<400> 7

gctctagatt atataattta taagctaaac aacccggccc taaagcacta tcgtatcacc	
60	
tatctaaata agtcacggga gttcgaacg tccacttcgt cgcacggaat tgcatgttc	1
20	
tttgttggaaag catattcacg caatctccac acataaaggt ttatgtataa acttacattt	1
80	
agctcagttt aattacagtc ttatttggat gcatatgtat gttctcaat ccatataagt	2
40	
tagagtaaaa aataagttta aattttatct taattcactc caacatatat ggatctacaa	3
00	
tactcatgtg catccaaaca aactacttat attgaggtga atttggtaga aattaaacta	3
60	
acttacacac taagccaatc tttactatat taaagcacca gtttcaacga tcgtcccgcg	4
20	
tcaatattat taaaaaactc ctacatttct ttataatcaa cccgcactct tataatctct	4
80	
tctctactac tataataaga gagtttatgt acaaaataag gtgaaattat ctataagtgt	5
40	
tctggatatt ggttgttggc tcccatattc acacaaccta atcaatagaa aacatatgtt	6
00	
ttattaaaaac aaaatttattc atatatcata tatatatata tatcatatat atatataaac	6
60	
cgttagcaatg cacgggcata taactagtgc aacttaatac atgtgtgtat taagatgaat	7
20	
aagagggtat ccaaataaaa aacttggc ttacgtatgg atcgaaagg gttggaaacg	7
80	
attaaacgat taaatctttt cctagtcaaa attgaataga aggagattt atatatccca	8
40	
atccccctcg atcatccagg tgcaaccgta taagtcctaa agtggtgagg aacacgaaag	9
00	
aaccatgcat tggcatgtaa agctccaaga atttggc ttacgtatgg atcgaaagg gttggaaacg	9
60	
atcaacaaaa attgcacgtc aagggtattt ggtaaaggaaac aatcaaacaa atcctctctg	10
20	
tgtgcaaaga aacacgggtga gtcatgccga gatcataactc atctgatata catgcttaca	10
80	
gctcacaaga cattacaaac aactcatatt gcattacaaa gatcggttca tgaaaaataaa	11
40	
aataggccgg acaggacaaa aatccttgac gtgtaaagta aatttacaac aaaaaaaaaag	12
00	

ccatatgtca agctaaatct aattcgaaaa acgttagatca acaacacctgta gaaggcaaca	12
60	
aaactgagcc acgcagaagt acagaatgat tccagatgaa ccatcgacgt gctacgtaaa	13
20	
gagagtgacg agtcatatac atttggcaag aaaccatgaa gctgcctaca gccgtatcgg	13
80	
tggcataaga acacaagaaa ttgtgttaat taatcaaagc tataaataac gctcgcatgc	14
40	
ctgtgcaccc ctccatcacc accactgggt cttagcggat ttagctttat ctactccaga	15
00	
gcbcagaaga acccgatcga caccatggat ctacgtctaa ttttcggtcc aacttgcaca	15
60	
ggaaagacat cgactgcgat agctcttgcc cagcagactg gcctcccagt cctctcgctc	16
20	
gatcgcgtcc aatgctgtcc tcaactatca accggaagcg ggcgaccaac agtggaaagaa	16
80	
ctgaaaggaa cgactcgtct gtaccttgat gatgcgcctt tggtaaaggg tattcattaca	17
40	
gccaaagcaag ctcatgaacg gtcattgcg gaggtgcaca atcacgaggc caaaggcggg	18
00	
cttattcttgc agggaggatc tatctcggttgc ctcaggtgca tggcgcaaaag tcgttattgg	18
60	
aacgcggatt ttctttggca tattattcgc aacgagttag cagacgagga gagcttcatg	19
20	
agcgtggcca agaccagagt taagcagatg ttacgcctt ctgcaggatct ttcttattatc	19
80	
caagagttgg ttcaactttgc gagggaggct cggctgaggc ccatactgga agggatcgat	20
40	
ggatatcgat atgcctgct atttgctacc cagaaccaga tcacgccccga tatgctatttgc	21
00	
cagctcgacg cagatatggaa gaataaatttgc attcacggta tcgctcaggaa gtttctaatttgc	21
60	
catgcgcgtc gacaggaaca gaaattccct ttgggtggcg cgacagctgt cgaagcggtt	22
20	
gaaggaccac catttcgaat gtgagttgat ccccgccgggt gtccccccact gaagaaacta	22
80	
tgtgctgttag tatacgccgt ggctagctag ctatgttgcgtt catttcggcgg cgatgatttgc	23
40	
gtataataatgt gtcacgcattc accatgcattt ggtggcagtc tcagtgttgcgtt caatgacccgtt	24
00	
aatgaacaat tgaaatgaaa agaaaaaaagt attgttccaa attaaacgtt ttaaccttttgc	24
60	
aataggttta tacaataattt gatataatgtt ttctgttatat gtctaaatttgc ttatcatccat	25
20	
tttagatata gacaaaaaaa aatctaagaa ctaaaacaaa tgctaaatttgc aaatgaaggg	25
80	
agtatataattt gggataatgtt cgttgcgtt cctcgtaata tcaccgcacat cacacgtgttc	26

40
 cagttaatgt atcagtgata cgtgtattca catttgggcgc acccaacaat 27
 00
 tttgatcgac tatcagaaag tcaacggaag cgagtcgacc tcgagggggg gcccggtacc 27
 60
 aagatatacaa ccgcggaaag atctaagcat gcaagggccc aagtcgacct gcagaagctt 28
 20
 gcatgcctgc agtgcagcgt gaccggcgt tgccctctc tagagataat gaggattgca 28
 80
 tgtctaagtt ataaaaaaatt accacatatt tttttgtca cacttgggg aagtgcagtt 29
 40
 tatctatctt tatacatata tttaaacttt actctacgaa taatataatc tatagtacta 30
 00
 caataatatc agtggggtag agaatcatat aaatgaacag ttagacatgg tctaaaggac 30
 60
 aatttagtat tttgacaaca ggactctaca gtttatctt ttagtgtgc atgtgttctc 31
 20
 ctttttttt gcaaatacgct tcacctatat aataacttcat ccattttatt agtacatcca 31
 80
 ttagggttt agggttaatg gttttatag actaattttt ttagtacatc tattttattc 32
 40
 tatttttagcc tctaaattaa gaaaactaaa actctatttt agttttttt ttaataatt 33
 00
 tagatataaaa atagaataaaa ataaagtgac taaaaattaa acaaataccc tttaagaaat 33
 60
 taaaaaaaaact aaggaaacat ttttcttgc tcgagtagat aatgccagcc tgttaaacgc 34
 20
 cgtcgatcga cgagtctaac ggacaccaac cagcgaacca gcagcgtcgc gtcggccaa 34
 80
 gcgaagcaga cggcacggca tctctgtcgc tgcctctgga cccctctcga gagttccgct 35
 40
 ccaccgttgg acttgctccg ctgtcgcat ccagaaattt cgtggcggag cggcagacgt 36
 00
 gagccggcac ggcaggcggc ctcctctcc tctcacggca cggcagctac gggggattcc 36
 60
 tttcccaccc ctccttcgct ttcccttcct cggccggcgt aataaataga cacccccgccc 37
 20
 acacccttt tccccaaacct cgtgtgttc ggagcgcaca cacacacaac cagatctccc 37
 80
 ccaaatccac ccgtcggcac ctccgcttca aggtacgccc ctcgtcctcc ccccccccccc 38
 40
 ctctctacct tctctagatc ggcggtccgg tccatggta gggccggta gttctacttc 39
 00
 tggcatgtt tgtgttagat ccgtgtttgt gttagatccg tgctgctagc gttcgtacac 39
 60
 ggatgcgacc tgtacgtcag acacgttctg attgctaact tgccagtgtt tctctttggg 40
 20

gaatcctggg atggctctag ccgttccgca gacgggatcg atttcatgtat	ttttttgtt	40
80		
tcgttgcata gggtttggtt tgccctttc ctttatttca atatatgccg tgcacttgg		41
40		
tgtcgggtca tcttttcatg ctttttttgc ttgtgggtgt gatgtatgtgg tctgggttggg		42
00		
cggtcgttct agatcggagt agaattctgt ttcaaactac ctggtgatttattaatttt		42
60		
ggatctgtat gtgtgtgcca tacatattca tagttacgaa ttgaagatga tggatggaaa		43
20		
tatcgatcta ggataggat acatgttgc gcggtttta ctgatgcata tacagagatg		43
80		
cttttggttc gcttgggtgt gatgtatgtgg ttgtgggttggg cggtcgttca ttgcgttctag		44
40		
atcggagtag aatactgttt caaactacct ggtgtattta ttaattttgg aactgtatgt		45
00		
gtgtgtcata catcttcata gttacgagtt taagatggat ggaaatatcg atctaggata		45
60		
ggtatacatg ttgtatgtggg ttttactgtat gcatatacat gatggcatat gcagcatcta		46
20		
ttcatatgct ctaaccttga gtacccatct attataataa acaagtatgt tttataatta		46
80		
ttttgatctt gatataacttg gatgtatggca tatgcagcag ctatatgtgg attttttag		47
40		
ccctgccttc atacgctatt tatttgccttgc gtactgttgc ttttgcgtat gctcacccctg		48
00		
ttgtttgggtt ttacttctgc aggtcgaccg ccggggatcc acacgacacc atgtcccccg		48
60		
agcggccccc cgtcgagatc cgccggcca ccggccggca catggccgcc gtgtgcgaca		49
20		
tctgtgaacca ctacatcgag acctccaccg tgaacttccg caccgagccg cagaccccg		49
80		
aggagtggat cgacgacctg gagcgctcc aggaccgcta cccgtggctc gtggccgagg		50
40		
tggagggcgt ggtggccggc atcgccctacg ccggcccggtg gaaggcccgc aacgcctacg		51
00		
actggaccgt ggagtccacc gtgtacgtgt cccaccgcca ccagcgctc ggcctcggct		51
60		
ccaccctcta cacccaccc tcataagagca tggaggccca gggcttcaag tccgtgggtgg		52
20		
ccgtgatcgg cctcccgaaac gacccgtccg tgccctcca cgaggccctc ggctacaccg		52
80		
cccgccggcac cctcccgcc gcccgtaca agcacggcgg ctggcacgac gtcggcttct		53
40		
ggcagcgcga ctgcgagctg ccggcccccgc cgccgcccgtt ggcggccgtt acgcagatct		54
00		
gagtcgaccc tcgtggcatgc cgctgaaatc accagtctct ctctacaaat ctatctct		54

60						
ctataataat	gtgtgagtag	ttcccgagata	aggaaattag	ggttcttata	gggttcgct	55
20						
catgtgtga	gcataataaga	aacccttagt	atgtatttgt	atttgtaaaa	tacttctatc	55
80						
aataaaaattt	ctaattccta	aaacccaaat	ccagtggcga	gc		56
22						

<210> 8
 <211> 2722
 <212> DNA
 <213> Artificial Sequence

<220>

<223> Promoter from *Hordeum vulgare*, Plant Journal 6:849-860
 (1994); gene from *Agrobacterium tumefaciens*, Molecular
 and General Genetics 216:388-394 (1989); terminator
 from *Zea mays*, Genbank Accession #S78780.

<400> 8
 cggccgcctct agaacttagtg gatctcgatg tgttagtctac gagaagggtt aaccgtctct
 60
 tcgtgagaat aaccgtggcc taaaaataag ccgatgagga taaataaaat gtggtggtac
 120
 agtacttcaa gaggttact catcaagagg atgctttcc gatgagctct agtagtacat
 180
 cggacccac atacctccat tgtggtaaaa tattttgtgc tcatttagtg atggtaaat
 240
 tttgttatg tcactctagg ttttgacatt tcagtttgc cactcttagg tttgacaaaa
 300
 taatttccat tccggggcaa aagcaaaaca attttatccc actttacca ctcttagctt
 360
 tcacaatgtta tcacaaatgc cactctagaa attctgttta tgccacagaa tgtaaaaaaa
 420
 aacactcact tatttgaagc caaggtgttc atggcatgga aatgtgacat aaagtaacgt
 480
 tcgtgtataa gaaaaaattt tactcctcgta aacaagagac ggaaacatca tgagacaatc
 540
 gcgtttggaa ggcttgcatt caccttgga tgatgcgcatt gaatggagtc gtctgcttgc
 600
 tagccttcgc ctaccgcccc ctgagtcgg gcggcaacta ccatggcga acgaccgc
 660
 tgacctctac cgaccggact tgaatgcgc accttcgtca ggcacgtgg ccgcgtacgc
 720
 tggcgacgtg ccccccgcattt catggcgca catggcgagc tcagaccgtg cgtggctggc
 780
 tacaaatacg taccgggtga gtgccttagc tagaaactta cacctgcaac tgcgagagcg

840 agcgtgtgag ttagccgag tagatcccc gggctgcagc ttattttac aacaattacc
 900 aacaacaaca aacaacaaac aacattacaa ttactattta caattacagt cgacggatca
 960 agtcaaagg tccgccttgt ttctcctctg tctcttgc tgactaatct tggtttatga 1
 020 ttcgttgagt aattttgggg aaagcttcgt ccacagttt ttttcgatg aacagtgccg 1
 080 cagtggcgct gatcttgtat gctatcctgc aatcgtggtg aacttatgtc ttttatatcc 1
 140 ttcactacca tgaaaagact agtaatctt ctcgatgtaa catcgccag cactgctatt 1
 200 accgtgtggt ccatccgaca gtctggctga acacatcata cgatattgag caaagatcga 1
 260 tctatcttcc ctgttcttta atgaaagacg tcatttcat cagtatgatc taagaatgtt 1
 320 gcaacttgca aggaggcggt tctttcttg aatttaacta actcgttgag tggccctgtt 1
 380 tctcggacgt aaggccttg ctgctccaca catgtccatt cgaattttac cgtgtttagc 1
 440 aaggcgaaa agtttgcattt ttgatgattt agcttgacta tgcgattgtt ttccctggacc 1
 500 cgtgcagctg cggacggatc caccatggat ctacgtctaa tttcggtcc aacttgcaca 1
 560 ggaaagacat cgactgcgt agctcttgcc cagcagactg gcctcccagt cctctcgctc 1
 620 gatcgctcc aatgctgtcc tcaactatca accggaagcg ggcgaccaac agtggaaagaa 1
 680 ctgaaaggaa cgactcgtct gtaccttgat gatgcccatt tggtaaaggg tatcattaca 1
 740 gccaaagcaag ctcatgaacg gtcattgcg gaggtgcaca atcacgaggc caaaggcg 1
 800 cttattcttgcg aggaggatc tatctcggtt ctcaggtgca tggcgcaaag tcgttattgg 1
 860 aacgcggatt ttgttggca tattattcgc aacgagttag cagacgagga gagttcatg 1
 920 agcgtggcca agaccagatg taagcagatg ttacgcccct ctgcaggtct ttctattatc 1
 980 caagagttgg ttcaactttg gaggagcct cggctgaggc ccatactgga agggatcgat 2
 040 ggatatcgat atgcctgtt atttgctacc cagaaccaga tcacgcccga tatgctattg 2
 100 cagctcgacg cagatatgga gaataaattt attcacggta tcgctcagga gtttctaattc 2
 160 catgcgcgtc gacaggaaca gaaattccct ttgggtggcg cgacagctgt cgaagcg 2
 220

gaaggaccac catttcgaat gtgagttgat ccccgccggt gtccccact gaagaaaacta	2
280	
tgtgctgtag tatagccgct ggctagctag ctagttgagt catttagcgg cgatgattga	2
340	
gtaataatgt gtcacgcac accatgcattt ggtggcagtc tcagtgtgag caatgacctg	2
400	
aatgaacaat tgaaatgaaa agaaaaaaagt attgttccaa attaaacggtt ttaaccttt	2
460	
aataggtttatacaataatt gatatatgtt ttctgtatat gtctaatttg ttatcatcca	2
520	
tttagatata gacgaaaaaa aatctaagaa ctAAAacaaa tgctaatttg aaatgaagg	2
580	
agtatatattt gggataatgt cgatgagatc cctcgtaata tcaccgacat cacacgtgtc	2
640	
cagttaatgt atcagtgata cgtgtattca catttggcgc gcgttaggcgt acccaacaat	2
700	
tttgatcgac tatcagaaag tc	2
722	

<210> 9
 <211> 2722
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Promoter from Zea mays, U.S. patent application 09/377,648
 ;
 gene from Agrobacterium tumefaciens, Molecular and General
 Genetics 216:388-394 (1989); terminator from Solanum
 tuberosum, Plant Cell 1(1):115-122 (1989).

<400> 9
 cggccgctct agaacttagtg gatctcgatg tgttagtctac gagaagggtt aaccgtctct
 60
 tcgtgagaat aaccgtggcc taaaaataag ccgatgagga taaataaaat gtggtggtac
 120
 agtacttcaa gaggtttact catcaagagg atgctttcc gatgagctct agtagtacat
 180
 cggacctcac atacctccat tgtggtaaa tattttgtgc tcatttagtg atggtaaat
 240
 tttgtttatg tcactctagg tttgacatt tcagtttgc cactcttagg tttgacaaa
 300
 taatttccat tccgcggcaa aagcaaaaca attttatttt actttacca ctcttagctt
 360
 tcacaatgta tcacaaatgc cactctagaa attctgttta tgccacagaa tgtaaaaaaa
 420
 aacactcact tatttgaagc caaggtgttc atggcatgga aatgtgacat aaagtaacgt

480 tcgtgtataa gaaaaattt tactcctcgtaacaagagac ggaaacatca tgagacaatc
 540 gcgtttggaa ggcttgcatacccttgatgatgcgcataaatggatgcgttc
 600 tagccttcgc ctaccgcccactgagtcggcgcaactaccatcgccga acgaccgc
 660 tgacctctac cgaccggact tgaatgcgcaccttcgtca ggcgcgtatgg ccgcgtacgc
 720 tggcgacgtg cccccgcataatggcgcatgcataatggcgact tcagaccgtgcgtggc
 780 tacaatatacg taccctgtatgccttagctaaaacttacacctgcaac tgcgagagcg
 840 agcgtgtgag tgttagccgag tagatccccggctgcaggttattttac aacaattacc
 900 aacaacaaca aacaacaaac aacattacaa ttactatttacaattacagt cgacggatca
 960 agtgc当地 tccgc当地 ttctc当地tgc当地tgc当地tgc当地tgc当地
 1020 ttc当地tgc当地tgc当地tgc当地tgc当地tgc当地tgc当地
 1080 cagtc当地tgc当地tgc当地tgc当地tgc当地tgc当地tgc当地
 1140 ttc当地tgc当地tgc当地tgc当地tgc当地tgc当地tgc当地
 1200 accgtgtggccatccgc当地gtctggctgaaatcgtggtaaacttatgtc
 1260 tctatcttcc ctgttcttta atgaaagacgtcattttcatcagtatgtc
 1320 gcaacttgca aggaggcggttcttcttg aatttaacta actcggtgag tggccctgtt
 1380 tctcggacgt aaggccttg ctgc当地tgc当地tgc当地tgc当地
 1440 aaggc当地tgc当地tgc当地tgc当地tgc当地tgc当地tgc当地
 1500 cgtgc当地tgc当地tgc当地tgc当地tgc当地tgc当地tgc当地
 1560 ggaaagacat cgactgc当地tgc当地tgc当地tgc当地tgc当地
 1620 gatcg当地tgc当地tgc当地tgc当地tgc当地tgc当地tgc当地
 1680 ctgaaaggaa cgactcgtctgtaccttgc当地tgc当地tgc当地tgc当地
 1740 gccaaggcaag ctc当地tgc当地tgc当地tgc当地tgc当地tgc当地
 1800 cttattcttg agggaggatctatctcgatgc当地tgc当地tgc当地tgc当地
 1860

aacgcggatt ttcgttgca tattattcgc aacgagttag cagacgagga gagttcatg	1
920	
agcgtggcca agaccagagt taagcagatg ttacgcccct ctgcaggtct ttctattatc	1
980	
caagagttgg ttcaactttg gagggagcct cggctgaggc ccatactgga agggatcgat	2
040	
ggatatcgat atgccctgct atttgctacc cagaaccaga tcacgcccga tatgctattg	2
100	
cagctcgacg cagatatgga gaataaattt attcacggta tcgctcagga gtttctaattc	2
160	
catgcgcgtc gacaggaaca gaaattccct ttgggtggcg cgacagctgt cgaagcgttt	2
220	
gaaggaccac catttcgaat gtgagtttat ccccgccgt gtccccact gaagaaacta	2
280	
tgtgctgttag tatagccgt ggctagctat ctagttgagt cattttagcgg cgatgattga	2
340	
gtaataatgt gtcacgcatt accatgcattt ggtggcagtc tcagtgttag caatgacctg	2
400	
aatgaacaat tgaaatgaaa agaaaaaaagt attgttccaa attaaacgtt ttaaccttt	2
460	
aataggttta tacaataattt gatatatgtt ttctgtatat gtctaatttg ttatcatcca	2
520	
tttagatata gacaaaaaaaaa aatctaagaa ctaaaacaaa tgctaatttg aaatgaagg	2
580	
agtatatattt gggataatgtt cgatgagatc cctcgtaata tcaccgacat cacacgtgtc	2
640	
cagttaatgtt atcagtgata cgtgtattca catttggttgc gcgtaggcgt acccaacaat	2
700	
tttgatcgac tattcagaaag tc	2
722	

<210> 10
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthesized based on sequence from Agrobacterium
 tumefaciens

<400> 10
 gcgtccaaatg ctgtcctcaa cta
 23

<210> 11
 <211> 23
 <212> DNA

<213> Artificial Sequence

<220>

<223> Synthesized based on sequence from Agrobacterium tumefaciens

<400> 11

gctctccctcg tctgctaact cgt
23

<210> 12

<211> 3017

<212> DNA

<213> Artificial Sequence

<220>

<223> Promoter from Zea mays, Genbank Accession #L22344;
Gene from Agrobacterium tumefaciens, Molecular and
General Genetics 216:388-394 (1989); terminator from
Zea mays, Genbank Accession #L22345.

<400> 12

ttgccgagtgcacatccttgg acactcgata aagtatattttat tttttttt attttgccaa
60
ccaaaccttttgtggtatgttcctacactatgttagatctacatgtaccat tttggcacaa
120
ttacatatttacaaaaatgtttctataaaa tattagattt agttcggtta tttgaatttc
180
ttcggaaaat tcacatcaaactgcaagtc actcgaaaca tggaaaaccg tgcatgcaaa
240
ataaatgata tgcatgttatctagcacaag ttacgaccga tttcagaagc agaccagaat
300
cttcaaggcacatgctcaactaaacatgaccgtgaacttgttatctagttttaaaaaatt
360
gtataaaaaca caaataaaagt cagaaattaa tgaaacttgtccacatgtca tgatatcata
420
tatagagggttgataaaaatttgcataatgtttcggtaaa gttgtgacgt actatgtgta
480
gaaacctaag tgacctacacataaaatcatagatccaa tgcacatgtcac tcgacaaaga
540
ctttgtcaagtgtccgataaaagtgactcgacaaagaagc cgttgtcgat gtactgtcg
600
tcgagatctcttgcgatgtcacactag gcaaaagtctt tacggagtgttttcaggct
660
ttgacactcg gcaaaagcgctcgattccagt agtgacagta atttgcataaaaatagctg
720
agagatttag gccccgtttcaatctcacgg gataaagttt agcttcctgc taaactttag

780 ctatatgaat tgaagtgcta aagtttagtt tcaattacca ccattagctc tcctgttag
 840 attacaaaatg gctaaaagta gctaaaaaat agctgctaaa gtttatctcg cgagattgaa
 900 acagggcctt aaaatgagtc aactaataga ccaactaatt attagctatt agtcgttagc
 960 ttcttaatc taagctaaaa ccaactaata gcttatttg tgaattacaa ttagctaac 1
 020 ggaattctct gttttctaa aaaaaaactg cccctcttt acagcaaatt gtccgctgcc 1
 080 cgtcgccag atacaatgaa cgtacctagt aggaactctt ttacacgctc ggtcgctcgc
 140 cgcggatcgg agtccccgga acacgacacc actgtggaac acgacaaagt ctgctcagag 1
 200 gcggccacac cctggcgtgc accgagccgg agcccgata agcacggtaa ggagagtacg
 260 gcgggacgtg gcgaccctgt tgctgctgc cacgcacgt tcctccacgt agccgcgcgg 1
 320 ccgcgcacg taccaggccc cggcgctggt ataaatgcgc gccaccccg cttagttct 1
 380 gcatacagcc aacccaagga tccaacaatg gatctacgtc taatttcgg tccaacttgc
 440 acaggaaaga catcgactgc gatagctttt gcccagcaga ctggcctccc agtcctctcg 1
 500 ctcgatcgcg tccaatgctg tcctcaacta tcaaccggaa gcgggcccacc aacagtggaa
 560 gaaactgaaag gaacgactcg tctgtacctt gatgatcgcc otgggtaaa gggtattcatt 1
 620 acagccaaagc aagctcatga acggctcatt gcggaggtgc acaatcacga ggccaaaggc
 680 gggcttattt tcgagggagg atctatctcg ttgctcaggt gcatggcgca aagtcgttat 1
 740 tggAACGCGG atttcgttg gcatattatt cgcaacgagt tagcagacga ggagagcttc
 800 atgagcgtgg ccaagaccag agttaagcag atgttacgcc cctctgcagg tctttctatt 1
 860 atccaagagt tggttcaact ttggagggag cctcggtga ggcccataact ggaaggatc
 920 gatggatatac gatatgccct gctatttgc acccagaacc agatcacgcc cgatatgcta
 980 ttgcagctcg acgcagatataa ggagaataaa ttgattcagc gtatcgctca ggagttctta
 1040 atccatgcgc gtcgacagga acagaaattt cctttgggtgg ggcgcacagc tgtcgaagcg
 1100 tttgaaggac caccatttcg aatgtgagtt aactatgtac gtaagcggca ggcagtgcaa
 1160

taagtgtggc tctgttagtat gtacgtgcgg gtacgatgct gtaagctact gaggcaagtc 2
 220
 cataaaataaa taatgacacg tgcgtgttct ataatctttt cgcttcttca tttgtccct 2
 280
 tgccggagttt ggcattccatt gatgccgtta cgctgagaac agacacagca gacgaaccaa 2
 340
 aagttagttc ttgtatgaaa ctatgaccct tcatacgctag gctcaaacag caccggtagc 2
 400
 gaacacagca aattagtcat ctaactatta gccctacat gtttcagacg atacataaat 2
 460
 atagcccatc ctttagcaatt agctattggc cctgcccattt ccaagcaatg atctcgaagt 2
 520
 attttaata tatagtattt ttaatatgtt gctttaaaaa tttagaagata attttgagac 2
 580
 aaaaatctcc aagtattttt ttgggtattt ttactgcct ccgttttct ttatttctcg 2
 640
 tcaccttagtt taattttgtt ctaatcggtt ataaacgaaa cagagagaaa agttactcta 2
 700
 aaagcaactc caacagatta gatataaattt ttatattcctt ccttagagctt ttaaaaagat 2
 760
 agacaacttt agtggatttttgtatgcac aaactctcca aatttaagta tcccaactac 2
 820
 ccaacgcata tcgttccattt ttcattggcg cacgaacttt cacctgctat agccgacgta 2
 880
 catgttcgtt ttttttgggc ggcgttact ttcttccccg ttcttttttca gcatcgcaac 2
 940
 tcaatttggtt atggcggaga agcccttgcata tccctaggtag taatgcacag atatgcatta 3
 000
 ttatttattca taaaaga 3
 017