The Abstract Domain of Piecewise-Defined Ranking Functions

Caterina Urban

AVDCPS 2013 Changsha, China

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers⁴

¹Floyd - Assigning Meanings to Programs (1967)

Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers⁴

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

²Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers⁴

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2018

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions **over ordinal numbers**⁴

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

[&]quot;Urban&Miné - *An Abstract Domain to Infer Ordinal-Valued Ranking Functions* (to appear)

- ranking functions¹
 - functions that strictly decrease at each program step...
 - ...and that are bounded from below
- idea: computation of ranking functions by abstract interpretation²
- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
 - sufficient conditions for termination
- instances based on ranking functions over natural numbers³
- instances based on ranking functions over ordinal numbers⁴

¹Floyd - Assigning Meanings to Programs (1967)

²Cousot&Cousot - An Abstract Interpretation Framework for Termination (POPL 2012)

³Urban - The Abstract Domain of Segmented Ranking Functions (SAS 2013)

⁴Urban&Miné - An Abstract Domain to Infer Ordinal-Valued Ranking Functions (to appear)

Example

int:
$$x$$

while ${}^{1}(x \le 10)$ do
if ${}^{2}(x > 6)$ then
 ${}^{3}x := x + 2$
fi
od⁴

the program gives the correct result if and when it terminates

Program Total Correctness

Example

int: xwhile ${}^{1}(x \le 10)$ do if ${}^{2}(x > 6)$ then ${}^{3}x := x + 2$ fi od⁴

Total Correctness = Partial Correctness + **Termination**

Program Total Correctness

Floyd - Assigning Meanings to Programs (1967)

Concrete Semantics

 $\mathsf{program} \mapsto \mathsf{trace} \ \mathsf{semantics} \mapsto \mathbf{termination} \ \mathbf{semantics}$

Example

Theorem (Soundness and Completeness)

Theorem (Soundness and Completeness)

Example

int : x

x := ?

while $(x \ge 0)$ do

$$x := x - 1$$

od

Example

int : x

x := ?

while $(x \ge 0)$ do

$$x := x - 1$$

od

Example

int: x

x := ?

while $(x \ge 0)$ do

x := x - 1

od

Piecewise-Defined Ranking Functions

- States Abstract Domain
 - Intervals Abstract Domain⁵
- Functions Abstract Domain F
 - Affine Ranking Functions
- ullet Piecewise-Defined Ranking Functions Abstract Domain V(S,F)

⁵Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

⁵Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

⁵Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Abstract Termination Semantics Implementation

⁵Cousot&Cousot - Static Determination of Dynamic Properties of Programs (1976)

Natural-Valued Ranking Functions

Natural-Valued Ranking Functions Domain

•
$$\mathcal{F}^{\#} \triangleq \{\bot_{\mathsf{F}}\} \cup \{f^{\#} \mid f^{\#} \in \mathbb{Z}^n \to \mathbb{N}\} \cup \{\top_{\mathsf{F}}\}$$

where $f^{\#} \equiv y = f(x_1, \dots, x_n) = m_1 x_1 + \dots + m_n x_n + q$

• join: □_V

ullet widening: ∇_V

ullet backward assignments: ASSIGN_{V}

- segmentation unification
- join⁶: □_V

- widening: ∇_V
- backward assignments: ASSIGN_V

⁶Cousot&Halbwachs - Automatic Discovery of Linear Restraints Among Variables of a Program (POPL 1978)

join: □√

ullet widening: ∇_V

 \bullet backward assignments: ASSIGN_{V}

join: □√

ullet widening: ∇_V

ullet backward assignments: ASSIGN_{V}

join: □V

widening: ∇_V

 \bullet backward assignments: ASSIGN_{V}

join: □V

widening: ∇_V

 \bullet backward assignments: ASSIGN_{V}

segmentation unification

• join: □_V

widening: ∇_V

backward assignments: ASSIGN_V

segmentation unification

join: □V

widening: ∇_V

ullet backward assignments: ASSIGN_{V}

int :
$$x$$

while $^{1}(x > 0)$ do
 $^{2}x := x - 1$
od³

we map each point to a function of x giving an upper bound on the steps before termination

 $\begin{array}{c} \text{we take into account} \\ x \leq 0 \text{ and we have} \\ 1 \text{ step to termination} \end{array}$

Example

int:
$$x$$

while $^{1}(x > 0)$ do
 $^{2}x := x - 1$
od³

we start at the end with 0 steps before termination

we consider x > 0 and we do the join

Example

while
$$^{1}(x > 0)$$
 do

$$^{2}x := x - 1$$

 od^3

we consider the assignment x := x - 1 and we are at 2 steps to termination

int : xwhile $^{1}(x > 0)$ do $^{2}x := x - 1$ od³

we do the widening

Example

int : x

while $^{\mathbf{1}}(x>0)$ do

$$^{2}x := x - 1$$

 od^3

 od^3

int : xwhile $^{1}(x > 0)$ do $^{2}x := x - 1$

int : x

while $^{\mathbf{1}}(x>0)$ do

 $^{2}x := x - 1$

 od^3

the analysis gives true as sufficient precondition for termination

$$\bullet \ \mathcal{P}^{\#} \triangleq \{\bot_{\mathsf{P}}\} \ \cup \ \{p^{\#} \mid p^{\#} \in \mathbb{Z}^n \to \mathbb{O}\} \ \cup \ \{\top_{\mathsf{P}}\}$$

•
$$\mathcal{P}^{\#} \triangleq \{\bot_{\mathsf{P}}\} \cup \{p^{\#} \mid p^{\#} \in \mathbb{Z}^{n} \to \mathbb{O}\} \cup \{\top_{\mathsf{P}}\}$$

= $\{\bot_{\mathsf{P}}\} \cup \{p^{\#} \mid p^{\#} = \sum_{i} \omega^{i} \cdot f_{i}^{\#}, f_{i}^{\#} \in \mathcal{F}^{\#}\} \cup \{\top_{\mathsf{P}}\}$

•
$$\mathcal{P}^{\#} \triangleq \{\bot_{P}\} \cup \{p^{\#} \mid p^{\#} \in \mathbb{Z}^{n} \to \mathbb{O}\} \cup \{\top_{P}\}$$

= $\{\bot_{P}\} \cup \{p^{\#} \mid p^{\#} = \sum_{i} \omega^{i} \cdot f_{i}^{\#}, f_{i}^{\#} \in \mathcal{F}^{\#}\} \cup \{\top_{P}\}$
where $f^{\#} \equiv y = f(x_{1}, \dots, x_{n}) = m_{1}x_{1} + \dots + m_{n}x_{n} + q$

backward assignments: ASSIGN_V

join: □V

Example

Example

- join: □_V
- ullet backward assignments: ASSIGN_{V}

$$\omega$$

$$\cdot \quad x_1 \quad + \quad x_2$$

$$\psi$$
 $x_1 := ?$

$$p^{\#} \triangleq ?$$

- join: □_V
- ullet backward assignments: ASSIGN_{V}

- join: □_V
- \bullet backward assignments: ASSIGN_{V}

$$p^{\#} \triangleq \omega \cdot x_1 + x_2$$
 $\psi x_1 := ?$ $p^{\#} \triangleq + x_2 + 1$

- join: □_V
- ullet backward assignments: ASSIGN_{V}

$$p^{\#} \triangleq \qquad \qquad \qquad \omega \qquad \cdot \quad \mathbf{x}_1 + \mathbf{x}_2$$

$$\downarrow \quad \mathbf{x}_1 := ?$$

$$p^{\#} \triangleq \qquad \qquad ^1 + \qquad \omega \qquad \cdot \quad \mathbf{0} \quad + \quad \mathbf{x}_2 \quad + \quad \mathbf{1}$$

- join: □_V
- ullet backward assignments: ASSIGN_{V}

$$\rho^{\#} \triangleq \omega \cdot x_1 + x_2$$

$$\downarrow x_1 := ?$$

$$\rho^{\#} \triangleq \omega^2 \cdot 1 + \omega \cdot 0 + x_2 + 1$$

- join: □_V
- ullet backward assignments: ASSIGN_{V}

$$p^{\#} \triangleq \omega \cdot x_1 + x_2$$
 $\psi x_1 := ?$ $p^{\#} \triangleq \omega^2 + x_2 + 1$

Theorem (Soundness)

the abstract termination semantics is **sound** to prove the termination of programs

Simple Loops

```
int : x_1, x_2

while {}^1(x_1 \ge 0 \land x_2 \ge 0) do

if {}^2(?) then

{}^3x_1 := x_1 - 1

else

{}^4x_2 := x_2 - 1

fi

od<sup>5</sup>
```


Lexicographic Ranking Functions

```
int : x_1, x_2 while {}^1(x_1 \ge 0 \land x_2 \ge 0) do if {}^2(?) then {}^3x_1 := x_1 - 1 {}^4x_2 := ? else {}^5x_2 := x_2 - 1 fi od{}^6
```

$$f(x_1, x_2) = \begin{cases} 1 & x_1 \le 0 \lor x_2 \le 0 \\ 3x_2 + 2 & x_1 = 1 \\ \omega + 3x_2 + 9 & x_1 = 2 \\ \omega \cdot (x_1 - 1) + 7x_1 + 3x_2 - 5 & \text{otherwise} \end{cases}$$

Sufficient Preconditions for Termination

int :
$$x$$
 while $^1(x < 10)$ do $^2x := 2 * x$ od 3

$$f(x) = \begin{cases} 3 & 5 \le x \le 9\\ 1 & 10 \le x \end{cases}$$

$$f(x) = \begin{cases} 9 & x = 1 \\ 7 & x = 2 \\ 5 & 3 \le x \le 4 \\ 3 & 5 \le x \le 9 \\ 1 & 10 \le x \end{cases}$$

Sufficient Preconditions for Termination

int :
$$x$$
 while $^{1}(x < 10)$ do $^{2}x := 2 * x$ od 3

$$f(x) = \begin{cases} 3 & 5 \le x \le \\ 1 & 10 \le x \end{cases}$$

$$f(x) = \begin{cases} 9 & x = 1 \\ 7 & x = 2 \\ 5 & 3 \le x \le 4 \\ 3 & 5 \le x \le 9 \\ 1 & 10 \le x \end{cases}$$

Non-Linear Computational Complexity

int:
$$x_1, x_2$$
 $^1x_1 := N$
while $^2(x_1 \ge 0)$ do
 $^3x_2 := N$
while $^4(x_2 \ge 0)$ do
 $^5x_2 := x_2 - 1$
od
 $^6x_1 := x_1 - 1$
od⁷

$$f(x_1,x_2) = egin{cases} 1 & x_1 \leq 0 \ \omega + 2 & ext{otherwise} \end{cases}$$

http://www.di.ens.fr/~urban/FuncTion.html

- written in OCaml
- implemented on top of Apron⁶
- forward reachability analysis to improve precision

Example int:
$$x_1, x_2$$
 $^1x_2 := 1$ while $^2(x_1 < 10)$ do $^3x_1 := x_1 + x_2$ od 4

⁶http://apron.cri.ensmp.fr/library/

Natural-Valued Ranking Functions Ordinal-Valued Ranking Functions Abstract Termination Semantics Implementation

http://www.di.ens.fr/~urban/FuncTion.html

- written in OCaml
- implemented on top of Apron⁶
- forward reachability analysis to improve precision

Example int: x_1, x_2 $^1x_2 := 1$ while $^2(x_1 < 10)$ do $^3x_1 := x_1 + x_2$ od⁴

⁶http://apron.cri.ensmp.fr/library/

Experiments

Benchmarks: 38 programs

- 25 always terminating programs
- 13 conditionally terminating programs
- 9 simple loops
- 7 nested loops
- 13 non-deterministic programs

Results: proved 30 out of 38 programs

- proved 8 out of 9 simple loops
- proved 4 out of 7 nested loops
 - proved 2 out of 4 using ordinals
- proved 10 out of 13 non-deterministic programs
 - proved 5 out of 10 using ordinals

Conclusions

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
- instances based on natural-valued functions
 - analysis not limited to simple loops
 - sufficient conditions for termination
- instances based on ordinal-valued functions
 - ordinals remove the burden of finding lexicographic orders
 - analysis not limited to programs with linear computational complexity

Future Work

- more abstract domains
- other liveness properties
- complexity analysis

Conclusions

- family of abstract domains for program termination
 - piecewise-defined ranking functions
 - backward invariance analysis
- instances based on natural-valued functions
 - analysis not limited to simple loops
 - sufficient conditions for termination
- instances based on ordinal-valued functions
 - ordinals remove the burden of finding lexicographic orders
 - analysis not limited to programs with linear computational complexity

Future Work

- more abstract domains
- other liveness properties
- complexity analysis

Thank You!

Questions?

Example int :
$$x$$
 while x

x > 10

 od^4

if $^{2}(x > 6)$ then $x^3 = x + 2$

we map each point to a function of x giving an upper bound on the steps before termination

Example

int: x while $^{\mathbf{1}}(x \leq 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$ od^4

we start at the end with 0 steps before termination

Example

 od^4

int : xwhile $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$

we take into account x > 10 and we have now 1 step to termination

Example

int: xwhile $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then

 $^{3}x := x + 2$

od⁴

Example

int: x while $^{1}(x \leq 10)$ do

if $^{2}(x > 6)$ then

 $^{3}x := x + 2$

 od^4

or the test $x \le 6$ and we are now

10

and we do the join

Example

int: x

 od^4

while $^{1}(x \leq 10)$ do

if $^{2}(x > 6)$ then

 $^{3}x := x + 2$

 $\begin{array}{l} \text{we consider } x \leq 10 \\ \text{and we do the join} \end{array}$

Example

 od^4

int : xwhile $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$

10

Example

int : xwhile $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then $^{3}x := x + 2$

fi od⁴ we do the widening

Example

int: x while $^{1}(x \leq 10)$ do

if $^{2}(x > 6)$ then $^{3}x := x + 2$

 od^4

6 8 10

Example

 od^4

int : x while $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then

x := x + 2 fi

the analysis provides x > 6 as sufficient precondition for termination

Example

int : x

while $^{1}(x \le 10)$ do if $^{2}(x > 6)$ then

 $x^{2}(x > 6)$ then $x^{3}x := x + 2$

fi od⁴

6 8 10