3D joint-likelihood analysis using Fermi-LAT and HESS

Luca Giunti, giunti@apc.in2p3.fr

July 15, 2019

The case of the Crab nebula

The data

Fermi-LAT: joint-crab paper dataset, Fermi-LAT data with Gammapy

HESS: 166 runs (stacked), ▶ 3D analysis

Source model:

- i Pulsar (freezed)
 - ► Spatial model: SkyPointSource
 - ► Spectral model: from 3FGL

ii Nebula (fitted)

- ► Spatial model: SkyPointSource
- ► Spectral model: LogParabola, or NaimaModel (IC on CMB+FIR)

Fit results: spectral residuals 🖒

Fit results: Spatial residuals (for the NaimaModel case) 🖓

This clearly needs to be improved! (Fitting the nebula position and/or describing it with a small SkyGaussian does not improve the result)

But, things are missing for sure in the HESS data reduction:

- ► Safe energy threshold (for each run)
- ► FOV background normalization

► Safe energy threshods: 10% A_{eff} at Crab position

- ► For each run:
 - i Run MapMakerObs
 - ii Apply safe energy threshold (multiply the maps by an energy mask)
 - iii Normalize the IRF background (mask known γ -ray sources and rescale the background to the observed off counts)
 - iv Fill the stacked maps

Comparison: Spatial residuals, without (left) or with (right) safe energy thresholds and FOV backround normalization:

Not a striking improvement :(

Issues / missing features <a>\text{\Lambda}

- ► Runwise background normalization
- ► Safe energy threshold handling
- Proper IRF stacking (as opposed to averaging at the source's position)
- ▶ Uncertainty estimation in the case of the Naima models
- ► Parameter linking to models
- ► Residuals plot methods (both spatial and spectral)