The Network Origins of Firm Dynamics

Contracting Frictions and Dynamism with Long-Term Relationships

Johannes Boehm ¹ Ezra Oberfield ² Ruairidh South ³ Mazhar Waseem ⁴ Mannheim Macro Seminar 20 February 2025

¹Geneva Graduate Institute ²Cornell ³Princeton ⁴Manchester

Weak Contract Enforcement and Long Term Relationships

Systematic differences in firm dynamics across countries (Hsieh-Klenow 2014)

Long term relationships can substitute for formal contract enforcement

- \cdot static benefit: helps incentives o lower transaction costs
- potential cost: less likely to switch to better supplier

Weak Contract Enforcement and Long Term Relationships

Systematic differences in firm dynamics across countries (Hsieh-Klenow 2014)

Long term relationships can substitute for formal contract enforcement

- \cdot static benefit: helps incentives o lower transaction costs
- potential cost: less likely to switch to better supplier

Johnson, McMillan, Woodruff (JLEO 2002):

- · Survey of firms in Eastern Europe
- · Belief in quality of courts varies across countries
- "If another firm you have never purchased from offered to supply this input for a price 10% lower than this supplier, would you purchase from the new firm instead of this supplier?"
 - \cdot Custom inputs: less confidence in courts \implies more likely to reject new offer
 - · Standard inputs: little difference

Monarch (2020): US imports from China

Firms in more contract intensive industries stay with suppliers for longer

What is the role of relationships in firm dynamics and allocative efficiency?

This paper

- 1. Motivational evidence from India/Pakistan, that contracting frictions increase relationship stickiness and reduce dynamism
- 2. Quantitative model with firm dynamics built on firm-to-firm trade
 - Contracting frictions induce relational contracting which leads to more stickiness in firm-to-firm relationships
 - \cdot Productive firms are chosen less often as suppliers \Rightarrow aggregate productivity loss
- 3. Calibrate multi-sector version of model to Indian/Pakistani setting
 - · Compare firm dynamics in model to data
 - · See how firm dynamics change with contracting frictions (in model & data)
- 4. Perform counterfactuals where we reduce contracting frictions
 - Reduces dynamic losses from misallocation
 - · Dynamic losses \approx 3x static losses (Boehm-Oberfield, 2020)

Literature

Firm Dynamics:

- Customer Capital: Luttmer (2011), Gourio Rudanko (2014), Afrouzi Drenik Kim, Argente Fitzgerald
 Moreira Priolo, Einav Klenow Levin Murciano-Goroff, Foster Haltiwanger Syverson (2016)
- Input-Switching: Gopinath Neiman (2014), Lu Mariscal Mejia (2024), Damijan Konings Polanec (2014), Monarch (2022) Baqaee Burstein Duprez Farhi (2023)
- · Kortum-Klette: Lentz Mortensen (2008), Akcigit Kerr (2018), Garcia-Macia Hsieh Klenow (2019)

· Firm-to-firm trade

- Firm heterogeneity, static: Oberfield (2018), Bernard Moxnes Ultveit-Moe (2018), Eaton Kortum Kramarz (2024), Bernard Dhyne Magerman Manova Moxnes (2022)
- Deterministic Life Cycle: Chaney (2014) and Aekka Khanna
- Dynamics with Frictions: Huneeus, Miyauchi, Martin Mejean Parenti (2023) and Fontaine Martin Mejean (2023)
- Frictions and Dynamism: Hopenhayn, Rogerson (1993), Hsieh, Klenow (2014), Akcigit Alp Peters (2021)
- Contracting frictions: Boehm (2022), Amirapu (2021), Boehm Oberfield (2020)
- · Relational contracts: Kranton (1996), Hemous, Olsen (2018), Macchiavello Morjaria (2015,2021)

Data

- Indian Annual Survey of Industries, 1989/90-2014/15 (with gaps)
 - Plant-level panel survey of manufacturing plants
 - Sales/purchases by 5-digit outputs and inputs
- · Supplement with Pakistan Value Added Tax data 2011-2019
 - · Monthly Firm-to-Firm sales transactions, aggregated to annual level
 - 4-digit industry codes

Data

- Indian Annual Survey of Industries, 1989/90-2014/15 (with gaps)
 - · Plant-level panel survey of manufacturing plants
 - Sales/purchases by 5-digit outputs and inputs
- · Supplement with Pakistan Value Added Tax data 2011-2019
 - · Monthly Firm-to-Firm sales transactions, aggregated to annual level
 - 4-digit industry codes

Contracting frictions in output market present when:

firms output is relationship-specific AND firm located in region with poor contract enforcement

- Relationship-specificity: Rauch '99, by 5-digit product (India), 4-digit industry (Pak.)
- Poor contr. enforecement: Avg. age of pending cases in states (India), districts (Pak.) For India, also use age of court as IV (Boehm & Oberfield, 2020)

Contracting friction in output markets ⇒ longer relationships (Pak)

	Dependent variable: Length of Relationship (in Years)				
	(1)	(2)	(3)	(4)	(5)
Age of pending cases (S) \times RelSpec _S	0.206* (0.086)		0.172* (0.076)		
Age of pending cases (B) \times RelSpec _S		0.187* (0.083)	0.146* (0.071)		
Age of pending cases (Min(B,S)) \times RelSpec _S				0.296** (0.038)	0.301** (0.039)
B × S 4-digit Industry FE	Yes	Yes	Yes	Yes	Yes
B District FE	Yes	Yes	Yes	Yes	
S District FE	Yes	Yes	Yes	Yes	
S District × S 4-digit Industry FE					Yes
B District × B 4-digit Industry FE					Yes
R^2	0.119	0.119	0.119	0.120	0.162
Observations	1628710	1628182	1627686	1629206	162743

Contracting frictions in output markets ⇒ lower variance of sales growth

	Dependent variable: $\sigma(\Delta \log {\sf Sales})_{d\omega}$				
	(1)	(2)	(3)	(4)	
Avg age of civil cases \times Rel. spec.	-0.0177* (0.0089)	-0.0187* (0.0088)	-0.0401* (0.016)	-0.0385* (0.016)	
$\overline{(\Delta \log \text{Sales})_{d\omega}}$		-0.273** (0.024)		-0.273** (0.024)	
State FE 5-digit Industry FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes	
Estimator	OLS	OLS	IV	IV	
R ² Observations	0.287 7574	0.302 7574	-0.000369 7574	0.0207 7574	

Regression at the state \times industry level. Only state-industry cells with more than 5 observations used.

Dependent variable: standard deviation of residualized (by age, year, state and industry) annualized sales growth in each state-industry cell

Contracting frictions in output markets ⇒ lower exit rates (across all size bins)

	Dependent variable: P(exit)				
	(1)	(2)	(3)		
Q1 Dummy	0.0739** (0.0018)				
Q2 Dummy	0.0253** (0.0016)	-0.0510** (0.0042)	-0.0493** (0.0046)		
Q3 Dummy	0.0131** (0.00091)	-0.0611** (0.0046)	-0.0636** (0.0053)		
Q4 Dummy	0.00789** (0.00062)	-0.0715** (0.0045)	-0.0770** (0.0053)		
$Q1 \times Relspec \times AvgAgeCourts$		-0.00621** (0.0024)	-0.00552* (0.0023)		
Q2 × Relspec × AvgAgeCourts		-0.00384* (0.0015)	-0.00422** (0.0015)		
Q3 × Relspec × AvgAgeCourts		-0.00469** (0.0013)	-0.00367** (0.0011)		
Q4 × Relspec × AvgAgeCourts		-0.00162 (0.0014)			
4-digit Industry × Year FE District × Year FE 4-digit Industry × District FE		Yes	Yes Yes Yes		
R ² Observations	0.0522 407189	0.0536 300384	0.0764 299802		

(Data from Pakistan)

Much of the variation in sales growth is explained by extensive margin changes

Table 2: Sales growth decomposition

	Contribution of extensive magin changes to firm sales volatility, by time aggregation								
								ial	
Order	All	Small	Large	All	Small	Large	All	Small	Large
0	0.744	0.752	0.731	0.792	0.813	0.734	0.832	0.858	0.788
1	0.741	0.748	0.73	0.79	0.814	0.731	0.839	0.867	0.794
2	0.736	0.745	0.725	0.787	0.813	0.725	0.842	0.871	0.796

Table shows coefficient in regression of EXT^k on g, where:

$$g_i = \frac{\mathsf{Sales}_{i,t+1} - \mathsf{Sales}_{i,t}}{\mathsf{Sales}_{i,t+1} + \mathsf{Sales}_{i,t}}$$

$$EXT_{i}^{0} = \frac{\sum_{\in B_{i,t+1}^{\text{new}}} Sales_{i,t+1} - \sum_{\in B_{i,t}^{\text{old}}} Sales_{i,t}}{(Sales_{i,t+1} + Sales_{i,t})/2}, \qquad EXT_{i}^{k+1} = EXT_{i}^{0} + \sum_{j \in B_{i,t}} \omega_{ij,t} EXT_{j}^{k}$$

Model: Single Industry

- Growing industry with many firms. Two types of firms: manufacturers, retailers
- Each firm produces using labor and one input:

$$y_b = A(z_{bs}x_s)^{\alpha}l^{1-\alpha}, \qquad A \equiv \alpha^{-\alpha}(1-\alpha)^{-(1-\alpha)}$$

- Single shocks process: new potential buyer-supplier matches arrive via Poisson process
 - \cdot Each new potential match: random supplier s, random match-specific productivity z_{bs}
 - · Buyer's decision: switch or not
- Large number of retailers
 - · Same production function & supplier arrival process as manufacturers
 - · Sell output to household (but not to other manufacturers or retailers)
 - · Manufacturers sell to other firms and to retailers, but not to household

Static Equilibrium

- Representative Household
 - · Dixit-stiglitz preferences across varieties sold by retailers (elast. arepsilon)
 - · Households inelastically supplies a growing quantity of labor L (growth rate γ)
 - · Labor used for production or to create new manufacturers and retailers
- · Market structure
 - Monopolistic Competition across retailers
 - · Bilateral contracts in firm-to-firm trade (quantity, transfer)
 - · Countably stable: no countable coalition wants to alter/drop contracts
 - ⇒ Efficient production within supply chains (quantities)

$$C_b = \left(\frac{C_s}{Z_{bs}}\right)^{\alpha} W^{1-\alpha}$$

- Many ways to split surplus
 - $\boldsymbol{\cdot}$ Focus on equilibrium in which surplus split proportionally to cost shares

Keeping the model tractable

- · State variable for a firm is, in principle, very large
- · We focus on one economic decision:
 - · New supplier comes along: switch or not
 - Easy if each supplier's (log) cost is random walk with the same distribution of increments: lower cost now \implies better distribution of future cost (FOSD)
- Key characteristic: no mean reversion in cost

What makes this work?

- · Productivity of new potential match inspired by current supply chain
- · No option to go back to old supplier
- · No supplier death

Productivity of new potential match inspired by current supply chain

· Productivity delivered by current chain is

$$q \equiv z_0 z_1^{\alpha} z_2^{\alpha^2} \dots$$

where $z_0, z_1, z_2, ...$ are firm's own, its supplier's, its supplier's supplier's...

match-specific prod. with new potential supplier:

$$z = \underbrace{b}_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarra$$

 \cdot The arrival rate of new suppliers with original component larger than b is

$$\kappa b^{-\beta}$$

 \implies Arrival rate of supplier that delivers cost reduction larger than x is

$$\phi X^{-\beta}$$
, $\phi \equiv \kappa \int (c_s/w)^{-\beta} dF(c_s)$

Entry and Exit

- \cdot Potential problem: Random walk for cost \implies no stationary distribution
 - Usual: Reflecting barrier (Gabaix) or endogenous exit (Hopenhayn/Luttmer)
 would give mean reversion in costs
 - · Solution: Mass of entrants grows over time
- Population grows at rate γ , $L_t = L_0 e^{\gamma t}$
- Entry
 - \cdot Free entry: unit of labor \implies flow χ of manufacturers and $\chi_{\it R}$ of retailers
 - $\cdot \implies$ Along BGP, flow of entrants grows at population growth rate, γ
 - Each entrant draws potential suppliers: The number of draws of techniques with match-specific component larger than z is Poisson with mean $\kappa_0 z^{-\beta}$
- Exit
 - · Firms never die. But if no customers, output is zero
 - · A firm "exits" when it loses its last customer
 - · May gain customers later, still draws new suppliers, etc

Changes in Cost

- 'Get a better supplier' or 'supplier gets a better supplier', or 'supplier's supplier gets...
 - · Jump process with infinite activity
 - · Along any interval with finite length, infinite number of jumps
- · MGF of change in $\log \frac{w}{cost}$ over interval with length au

$$\mathbb{E}\left[\left(\frac{\operatorname{cost}_{j,t}}{\operatorname{cost}_{j,t+\tau}}\right)^{s}\right] = e^{-\tau\phi\sum_{k=1}^{\infty}\frac{s}{\beta\alpha^{-k}+s}}$$

· Along BGP, distribution of cost has a power law left tail

$$\lim_{c \to 0} \frac{\log \text{ Fraction with cost } \le c}{\log c} = \nu$$

where ν is unique solution to $\gamma = \phi \sum_{k=1}^{\infty} \frac{\nu}{\beta \alpha^{-k} - \nu}$

Aggregate Output along BGP

Aggregate output is

$$Y_t = \left(|R_t| \int_0^\infty c^{1-\varepsilon} dF(c)\right)^{\frac{1}{\varepsilon-1}} (1-\eta) L_t$$

In special case where $\beta = \varepsilon - 1$, output per capita is

$$\frac{Y_t}{L_t} = (1 - \eta) \left(\frac{\eta \chi_R}{\gamma} L_0 \right)^{\frac{1}{\beta}} \left[\frac{\kappa_0^{\alpha} \Gamma \left(1 - \alpha \right)}{1 + \frac{\phi}{\gamma} \sum_{k=1}^{\infty} \frac{1}{1 - \alpha^{-k}}} \right]^{\frac{1}{1 - \alpha} \frac{1}{\beta}} e^{\frac{\gamma}{\beta} t}$$

- ightarrow Semi-endogenous growth
 - · Distribution of cost in cross section is constant over time
 - Growth from gains from variety
 - · Firm-level dynamics matter for level of output along BGP

Quantitative Model with Multiple Industries

Multiple Industries

• Firm b in industry ω

$$y_b = A_\omega l^{\alpha_{\omega l}} \prod_{\omega'} (z_{bs'} x_{s'})^{\alpha_{\omega \omega'}}$$
 with
$$A_\omega \equiv \alpha_{\omega l}^{-\alpha_{\omega l}} \prod_{\omega'} \alpha_{\omega \omega'}^{-\alpha_{\omega \omega'}}$$

- For each input, match-specific productivity of new potential suppliers inspired by current supply chain for that input
- · Some industries produce relationship specific goods
- · Cobb-Douglas keeps it tractable:
 - \cdot log cost is weighted sum of random walks
 - \cdot Cobb Douglas \implies weights are fixed within industry

Weak Enforcement and Relational Contracts

- Less efficient courts \implies switch suppliers of relationship-specific goods less frequently
 - $\kappa \downarrow$ uniformly for relationship-specific inputs
- · For today: Behavioral assumption
- Potential microfoundation: relational contracting as substitute for courts more

- · Repeated game, many equilibria
- · We can show equilibrium for some special cases of model
- · Working on proof for full model

Numerical Simulation

Parameter	Value	Target	Target value	Data source
Population growth (γ)	0.04	Employment share by age		Hsieh & Klenow (2014)
New technique shape (β)	3.52	Δ cost from new suppliers	-0.284	Baqaee et al. (2023)
New supplier arrival rate (ϕ)	0.58	Mean relationship length	1.72 years	Pakistan data
Observation threshold	varies	Median sales above threshold Threshold	6.36	Pakistan data
Number of retailer firms ratio	60	Annual exit probability	0.05	
Household EoS $(arepsilon)$	4.52	$\beta + 1$		

Table 3: Parameterization

- Firms per industry, Industry cost shares from Indian ASI data
- Add positive drift to cost to center distribution of $\Delta \log$ cost at zero

1 additional year of average age of pending cases \Rightarrow relationships with rel.spec. inputs last \sim 0.25 year longer

 \Rightarrow calibrate κ for products with frictions to match that (in the worst congested state)

One shock, many subtle firm dynamics patterns

Firm size depends on fundamentals (cost) but also on demand (number & size of customers)

Model explains key firm dynamics facts:

- Size-variance relationship
- Fat tails in firm growth rates
- · Exit rates declining in size
- · Existence of "gazelles"

When enforcement is worse:

- Lower variance of firm growth \rightarrow evidence: see earlier results
- · Less mean reversion in firm size
- · Less skewed size distribution
- Lower exit rate → evidence: see earlier results

Standard Deviation of Growth Rates by Size

- · Larger ⇒ lower standard deviation of growth rates (Hymer and Pashigian, 1962)
 - Usual mechanism: Large firms composed of more subunits ⇒ diversification
 - $\boldsymbol{\cdot}$ Here: Large firm tends to have more customers
- · Declines more slowly than $\sqrt{\text{size}}$
 - · Usual mechanism: correlation across subunits, granular subunits
 - Here: granular customers (also some correlation from cost changes)

Standard Deviation of Growth Rates: Frictions vs No Frictions (Model)

Lower arrival rate of shocks \Rightarrow lower variance of growth rates

Empirical Evidence: see table at beginning of talk

Distribution of Growth Rates has Fat Tails

- · Fat tails: Ashton, 1926, Laplace dist: Stanley, et al. (1996)
- Here: Mixture of getting one large customer, many small customers

Exit rates decline with size

- · Firms exit when they lose last customer
- Large firms can have one large customer
- Number of buyers is a good predictor of exit

Exit Rates: Frictions vs No Frictions (Model)

Lower arrival rate of shocks \Rightarrow lower probability of losing last customer

Empirical Evidence: see table at beginning of talk

Mean Reversion: Frictions vs No Frictions (Model)

According to the model, no mean reversion in cost But: mean reversion in sales towards a long-run level commensurate with costs With fictions (\rightarrow less turnover) slower mean-reversion in sales

Mean reversion in firm size: slower with frictions

	Dependent variable: Change in log Sales					
	(1)	(2)	(3)	(4)	(5)	(6)
log Sales _{t-1}	-0.403** (0.011)	-0.427** (0.025)	-0.555** (0.037)	-0.403** (0.012)	-0.436** (0.028)	-0.583** (0.038)
$\textbf{log} Sales_{t-1} \! \! \times Age civ. cases \times relspec$	0.00709 ⁺ (0.0037)	0.0206* (0.0096)	0.0249 ⁺ (0.015)	0.00687 (0.0044)	0.0256* (0.012)	0.0405* (0.019)
Plant × 5-digit Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
State FE	Yes			Yes		
Year × Previous Year FE	Yes			Yes		
Age FE		Yes	Yes		Yes	Yes
Industry × District × Year FE		Yes			Yes	
Industry \times District \times ($t, t - 1$) FE			Yes			Yes
Method	OLS	OLS	OLS	IV	IV	IV
R^2	0.457	0.636	0.671	0.256	0.250	0.278
Observations	204518	78053	51401	204518	78053	51401

Standard errors in parentheses, clustered at the state × industry level.

Size Distribution: less fat tails with frictions

Model simulation:

Contracting frictions in output markets ⇒ lower skewness in size distribution

	Dependent variable: Skewness of log Sales					
	(1)	(2)	(3)	(4)	(5)	(6)
Relspec x Court Congestion	-0.360*	-0.671*	-0.799**	-0.624 ⁺	-1.312*	-0.905
	(0.168)	(0.287)	(0.294)	(0.349)	(0.598)	(0.578)
<i>R</i> ²	0.540	0.435	0.554	0.001	0.000	0.007
State FE	Yes	Yes	Yes	Yes	Yes	Yes
5-digit Industry FE	Yes	Yes	Yes	Yes	Yes	Yes
Estimator	OLS	OLS	OLS	IV	IV	IV
Statistic	25-75	50-75	50-90	25-75	50-75	50-90
Observations	3008	3008	1448	3008	3008	1448

$$Skewness_{S\omega} = \frac{\log \left(Share \ of \ plants \ above \ S_1\right) - \log \left(Share \ of \ plants \ above \ S_0\right)}{\log S_1 - \log S_0}$$

 S_0 and S_1 are different quantiles of overall plant size distribution (25th, 50th, and 75th, 90th)

Similar with Pakistan data Pakistan

"Gazelles" / "rockets" / type dependence / ex ante heterogeneity

- Luttmer (2011): Need "rockets" that eventually slow to explain why largest firms are not so old
- Sedlacek, Sterk, Pugsley (2021): Hidden "ex ante heterogeneity" explains most of size dispersion at young ages, almost half of size dispersion at twenty
- Coad, Daunfeldt, Halvarsson (2018): autocorrelation of growth rates is positive for young firms and negative for older firms

Here: cost is hidden type

- · Cost determines inflow of customers
- Low cost at birth ⇒ persistent growth until inflows equals outflows
- Cost evolves over time

30

Counterfactual: reduce contracting frictions

Reducing average age of pending court cases by 1 year

 \Rightarrow 0.26 years longer relationships on average (for rel-spec. industries)

Counterfactual: change arrival rate of new suppliers κ (or ϕ) accordingly, to move from average age of pending cases of 4 years to 1 year

Reduces misallocation: firms with low cost get drawn as suppliers more often, large but unproductive firms shrink

	No friction	With friction
Mean income growth	0.015	0.015
Log real income difference	0.000	-0.162

Agg. productivity loss from dynamic misallocation \approx 3x static loss (Boehm & Oberfield, 2020)

Reducing friction \Rightarrow reduce size dispersion within each cost quantile

Thank you!

johannes.boehm@graduateinstitute.ch

Implications for Aggregate Productivity

Productivity

- · Productivity growth is $\frac{\gamma}{\varepsilon-1}$
 - · Gains from variety/Population growth
- · Weak enforcement affects level of productivity
- Misallocation: Firms use worse suppliers than they would with better enforcement

Misallocation: Dispersion in Size

Misallocation: Correlation of Log Cost and Log Employment

Model	Correlation (demeaned)	Correlation (normalized)
No friction	-0.281	-0.370
With friction	-0.260	-0.340

Aggregate Productivity

	No friction	With friction		
Mean income growth	0.015	0.015		
Log real income difference	0.000	-0.162		

- · Note: In counterfactuals, entry rate held fixed
- \cdot More severe contracting frictions \implies lower entry (impact on welfare not obvious)

Conclusion

- · One response to weak contract enforcement is to use relational contracts
- · Static benefits, but less switching
 - ⇒ Slower firm dynamics
 - ⇒ Cost penalty builds up over time
 - \cdot Not switching in past \implies large impact on current aggregate productivity
- \cdot Dynamic costs of bad enforcement are \sim 3 times the size of static costs

Appendix

Number of Buyers is Good Predictor of Exit 🖼

	Dependent variable: P(exit)							
	(1)	(2)	(3)	(4)				
Constant	0.0878** (0.00039)	0.0879** (0.00038)	0.0878** (0.00038)	0.0879** (0.00038)				
Fixed Effects	Year	Year, #Buyers	Year, Sales vingtiles	Year, #Buyers, Sales vingtiles				
R ² Observations	0.0293 501828	0.0889 501431	0.0976 501828	0.112 501431				

Standard errors in parentheses, clustered at the industry-region level. + n < 0.10 * n < 0.05 * n < 0.01

Determinants of Firm Growth Volatility

		Data (Pakistan)					Simulation				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
log(Sales)	-0.138 (0.0018)		-0.092 (0.0025)	-0.105 (0.0022)	-0.103 (0.0022)	-0.3021 (0.0007)		-0.2424 (0.0009)	-0.2259 (0.0008)	-0.2256 (0.0008)	
log(Buyers)		-0.217 (0.0031)	-0.111 (0.0042)				-0.4962 (0.0014)	-0.1845 (0.0018)			
$\overline{\log(\mathrm{HHI})}$				0.152	0.202				0.3179	0.4224	
log(HHI (weighted))				(0.0055)	(0.0067) -0.051 (0.0037)				(0.0017)	(0.0112) -0.1058 (0.0112)	
Fixed Effects Industry	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Statistics R ² R ² -within Observations	0.263 0.197 23,034	0.244 0.175 23,034	0.286 0.221 23,034	0.287 0.223 23,034	0.289 0.225 22,552	0.7667 0.2674 538,784	0.7393 0.1814 538,784	0.7713 0.282 538,784	0.781 0.3123 538,784	0.781 0.3124 538,784	

Standard errors in parentheses. The dependent variable is the log standard deviation of $log sales_{t+1} - log sales_t$.

Slow Courts

- · Contract disputes between buyers and sellers
- District courts can de-facto be bypassed, cases would be filed in high courts
- $\boldsymbol{\cdot}$ Court quality measure: average age of pending civil cases in high court

Mean Reversion: Pakistan

	Depend	Dependent variable: Change in log Sales				
	(1)	(2)	(3)			
$\log Sales_{t-1}$	-0.310**	-0.347**	-0.359**			
	(0.0053)	(0.018)	(0.022)			
$\log \text{Sales}_{t-1} \times \text{Age civ. cases} \times \text{rel.spec.}$		0.0191*	0.0216*			
		(0.0082)	(0.0095)			
Firm × 4-digit Industry FE	Yes	Yes	Yes			
District FE	Yes	Yes				
Year FE	Yes	Yes				
Age FE			Yes			
Industry × District × Year FE			Yes			
R^2	0.368	0.370	0.432			
Observations	214380	164552	154912			

Standard errors clustered at the district imes industry level. Conditions on $|\Delta \log Sales| <$ 1.

Skewness of Size Distribution: Pakistan

	Dependent variable: Skewness of log Sales					
	(1)	(2)	(3)			
Avg age of civil cases × Rel. spec.	-1.627*	-2.347**	-2.603*			
	(0.795)	(0.798)	(1.240)			
District FE	Yes	Yes	Yes			
4-digit Industry FE	Yes	Yes	Yes			
Statistic	25-75	25-90	50-90			
R^2	0.540	0.623	0.546			
Observations	854	653	653			

 $^{^{+}}$ p < 0.10, * p < 0.05, ** p < 0.01

Skewness<sub>s
$$\omega$$</sub> = $\frac{\log (\text{Share of plants above } S_1) - \log (\text{Share of plants above } S_0)}{\log S_1 - \log S_0}$

 S_0 and S_1 are different quantiles of overall plant size distribution (25th, 50th, and 75th, 90th)

Notes on Pakistan

- · 7 states, almost all economic activity is in two states, Sindh and Punjab
- · All of our data is in district courts
- · VAT data: Size threshold: varies across years. 2-3k per year 15k per year
- · Can still register for VAT
- · Small firms effectively face sales tax
- Some sectors (notably agriculture, some services, companies owned by army) excluded from VAT
- For manufacturing, sum across firms of reported VA in data of firms represents 89% manufacturing VA as reported by National Accounts (for whole economy, much lower 30-40%)
- Currently use all transactions, whether reported by one or both parties. If parties disagree on value, use geometric mean of reported transactions
- Firms reports total sales separately from transactions For size, use declared sales of firm, not sum of transactions
- · Remove invoice mills
- · For firm: age (date registered), two digit industry codes (sometimes there is a

Endogeneity: IV

- · Since independence: # judges based on state population
- \Rightarrow backlogs have accumulated over time
- But: new states have been created, with new high courts and clean slate

Aggregate Output along BGP

Output per capita along the BGP when $\beta \neq \varepsilon - 1$ is

$$\frac{\mathsf{Y}_{t}}{\mathsf{L}_{t}} = (1 - \eta)^{\frac{\beta}{\varepsilon - 1}} \left(\frac{\eta \chi_{\mathsf{R}}}{\gamma} \mathsf{L}_{0}\right)^{\frac{1}{\varepsilon - 1}} \left[\frac{\Gamma\left(1 - \frac{\alpha}{\beta}\left(\varepsilon - 1\right)\right)}{1 + \frac{\phi}{\gamma} \sum_{k=1}^{\infty} \frac{\varepsilon - 1}{\varepsilon - 1 - \beta\alpha^{-k}}}\right]^{\frac{1}{\varepsilon - 1}} \left[\frac{\kappa_{0} \Gamma\left(1 - \alpha\right)}{1 + \frac{\phi}{\gamma} \sum_{k=1}^{\infty} \frac{1}{1 - \alpha^{-k}}}\right]^{\frac{\alpha}{1 - \alpha}} e^{\frac{\gamma}{\varepsilon - 1}t}$$

Weak Enforcement and Relational Contracts

- Contract specifies level of defectiveness $\delta \in [0,1]$. Surplus maximized at $\delta = 0$.
 - Supplier can produce defective input. Saves in cost, but possibility output will be defective.
 - · Claim can be enforced in court.
 - · But delay in court reduces value of payment
 - · Cost proportional to value of transaction
- · Static Nash: Supplier makes defective input, court. Priced in, but static surplus ↓
- · Relational contract
 - Supplier chooses $\delta = 0$
 - Buyer chooses lower arrival rate of new suppliers (observable to supplier, not court)
 - · Backloads payoff, raises surplus of the relationship
 - · Enforcement: Trigger strategies
 - · If supplier does not customize, buyer does not reduce arrival of new suppliers
 - Punishment for defective inputs: Relationship ends faster + enforcement in court
 - If buyer does not reduce arrival rate, supplier stops customizing

Much of the variation in sales growth is explained by extensive margin changes

Table 4: Sales growth decomposition

	Contribution of extensive magin changes to firm sales volatility, by time aggregation									
		Quarterly	/	Annual			Biennial			
Order	All	Small	Large	All	Small	Large	All	Small	Large	
0	0.744	0.752	0.731	0.792	0.813	0.734	0.832	0.858	0.788	
1	0.741	0.748	0.73	0.79	0.814	0.731	0.839	0.867	0.794	
2	0.736	0.745	0.725	0.787	0.813	0.725	0.842	0.871	0.796	

Table shows coefficient in regression of EXT^k on g, where:

$$g_i = \frac{\text{Sales}_{i,t+1} - \text{Sales}_{i,t}}{\text{Sales}_{i,t+1} + \text{Sales}_{i,t}}$$

$$EXT_{i}^{0} = \frac{\sum_{\in B_{i,t+1}^{\text{new}}} Sales_{i,t+1} - \sum_{\in B_{i,t}^{\text{old}}} Sales_{i,t}}{(Sales_{i,t+1} + Sales_{i,t})/2}, \qquad EXT_{i}^{k+1} = EXT_{i}^{0} + \sum_{j \in B_{i,t}} \omega_{ij,t} EXT_{j}^{k}$$