3/52
Fig.1(ii)
5/52
Fig.1(iv)

	Le			G GT p Va			p Se			49
	CAT His	s Al	C AAG a Ly:	G TG(s Tr _I	G TCO Sei	C CAC C Glr 25	n Ala	r gca a Ala	.	97
	AA7 Asr	CAT His	Γ CA(5 His	C GAA S Glu	GTC Val	. Val	AA(Lys	G TTC S Phe		145
	TGC Cys	CAT His	CCA Pro	ATC Ile 55	GAG Glu	ACC Thr	CTG Leu	GTG Val		193
				TAC Tyr						241
			Cys	TGC Cys				Gly		289
5				ACC Thr						337
				GAG Glu				CTA Leu		385

Fig.1(ii)

:	1	TCGGCCTCC GAAACC ATG AAC TTT CTG Met Asn Phe Leu 1
12 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	50	CTT GCC TTG CTG CTC TAC CTC CAC Leu Ala Leu Leu Leu Tyr Leu His 15
	98	CCC ATG GCA GAA GGA GGA GGG CAG Pro Met Ala Glu Gly Gly Gln 30
	146	ATG GAT GTC TAT CAG CGC AGC TAC Met Asp Val Tyr Gln Arg Ser Tyr 45
	194	GAC ATC TTC CAG GAG TAC CCT GAT Asp Ile Phe Gln Glu Tyr Pro Asp 60 65
	242	TCC TGT GTG CCC CTG ATG CGA TGC Ser Cys Val Pro Leu Met Arg Cys 80
	290	CTC GAG TGT GTG CCC ACT GAG GAG Leu Glu Cys Val Pro Thr Glu Glu 95
	338	CGG ATC AAA CCT CAC CAA GGC CAG Arg Ily Lys Pro His Gln Gly Gln 110

Fig.1(i)

386	CAG CAC AAC AAA TGT GAA TGC AGA Gln His Asn Lys Cys Glu Cys Arg 125 130
434	GAA AAT CCC TGT GGG CCT TGC TCA Glu Asn Pro Cys Gly Pro Cys Ser 140
482	CAA GAT CCG CAG ACG TGT AAA TGT Gln Asp Pro Gln Thr Cys Lys Cys 160
530	TGC AAG GCG AGG CAG CTT GAG TTA Cys Lys Ala Arg Gln Leu Glu Leu 175
578	AAG CCG AGG CGG TGAGCCGGGC AGGAG Lys Pro Arg Arg 190
630	GAACCAGATC TCTCACCAGG

Fig.1(iii)

CCA AAG AAA GAT AGA GCA AGA CAA Pro Lys Lys Asp Arg Ala Arg Gln 135	433
GAG CGG AGA AAG CAT TTG TTT GTA Glu Arg Arg Lys His Leu Phe Val 150	481
TCC TGC AAA AAC ACA GAC TCG CGT Ser Cys Lys Asn Thr Asp Ser Arg 165	529
AAC GAA CGT ACT TGC AGA TGT GAC Asn Glu Arg Thr Cys Arg Cys Asp 180	577
GAAGG AGCCTCCCTC AGCGTTTCGG	629
	649

Fig.1(iv)

7/52	8/52
Fig.2(i)	Fig.2(ii)
9/52	10/52
Fig 2(iii)	Fig 2(iv)
11/52	12/52
Fig 2(v)	Fig 2(vi)

1	CC ATG AGC CCT CTG CTC CGC CGC Met Ser Pro Leu Leu Arg Arg 1 5
48	CTG GCC CCC GCC CAG GCC CCT GTC Leu Ala Pro Ala Gln Ala Pro Val 20
96	CAG AGG AAA GTG GTG TCA TGG ATA Gln Arg Lys Val Val Ser Trp Ile 35
144	CAG CCC CGG GAG GTG GTG CCC Gln Pro Arg Glu Val Val Pro 50
192	GTG GCC AAA CAG CTG GTG CCC AGC Val Ala Lys Gln Leu Val Pro Ser 65 70
240	GGC TGC TGC CCT GAC GAT GGC CTG Gly Cys Cys Pro Asp Asp Gly Leu 80 85
288	CAA GTC CGG ATG CAG ATC CTC ATG Gln Val Arg Met Gln Ile Leu Met 100
336	GGG GAG ATG TCC CTG GAA GAA CAC Gly Glu Met Ser Leu Glu Glu His 115

Fig. 2(i)

ı			u Ala				G CAG u Gln 15		47
		n Pro					C CAC / His		95
GAT Asp 40	Val	TAT Tyr	ACT Thr	CGC Arg	GCT Ala 45	Thr	TGC Cys		143
TTG Leu	ACT Thr	GTG Val	GAG Glu	CTC Leu 60	ATG Met	GGC Gly	ACC Thr		191
TGC Cys	GTG Val	ACT Thr	GTG Val 75	CAG Gln	CGC Arg	TGT Cys	GGT Gly		239
			CCC Pro					-	287
			CCG Pro					3	335
			GAA Glu					3	883

Fig. 2(ii)

384		AAG GA(.ys Asi 13(Ser				
432	Arg P	ro Gln 45					
480		CC CCA er Pro					
528	GCC CA	AC GCT is Ala	GCA Ala	CCC Pro 180	AGC Ser	ACC Thr	ACC Thr
576		CC GCT .a Ala					

Fig. 2(iii)

1					 ·				
			GCC Ala		Pro				431
			TCT Ser 155						479
CCC Pro	ACT Thr	CCA Pro 170	GCC Ala	CCA Pro	GGC Gly	CCC Pro	TCT Ser 175		527
AGC Ser	GCC Ala 185	CTG Leu	ACC Thr	CCC Pro	GGA Gly	CCT Pro 190	GCC Ala		575
TCC Ser 200	TCC Ser	GTT Val	GCC Ala	AAG Lys	GGC Gly 205	GGG Gly	GCT Ala	T	624

Fig. 2(iv)

625	AGAGCTCAAC CCAGACACCT GCAGGTGCCG
685	GACTCAGCAG GGTGACTTGC CTCAGAGGCT
745	GGTAAAAAAC AGCCAAGCCC CCAAGACCTC
805	GCCTCTCAGA GGGCTCTTCT GCCATCCCTT
865	GAGTTGGAAG AGGAGACTGG GAGGCAGCAA
825	GGAGTACTGT CTCAGTTTCT AACCACTCTG
985	CTCCCCTCAC TAAGAAGACC CAAACCTCTG
1045	CTGTGACCCC CAACCCTGAT AAAAGAGATG

Fig. 2(v)

GAAGCTGCGA AGGTG	ACACA TGGCTTTT	CA 684
ATATCCCAGT GGGGGA	AACAA AGGGGAGCC	CT 744
AGCCCAGGCA GAAGCT	TGCTC TAGGACCTG	G 804
GTCTCCCTGA GGCCAT	CATC AAACAGGAC	A 864
GAGGGGTCAC ATACCA	GCTC AGGGGAGAA	T 924
TGCAAGTAAG CATCTT	ACAA CTGGCTCTT	C 984
CATAATGGGA TTTGGG	CTTT GGTACAAGA	A 1044
GAAGGAAAAA AAAAAA	AAAA	1094

Fig.2(vi)

14/52	15/52
Fig. 3(i)	Fig.3(ii)

>VEGF_HUMAN VEGF_HUMAN VASCULAR ENDOTHELIAL (VASCULAR 215 AA. LENGTH = 215

SCORE = 181 (92.4 BITS), EXPECT = 6.4e-20, IDENTITIES = 33/75 (44%), POSITIVES = 48/75

QUERY: 31 HQRKVVSWIDVYTRATCQPREVVVPLTVEL

+++ VV +DVY R+ C+P E +V + E

SBJCT: 36 NHHEVVKFMDVYQRSYCHPIETLVDIFQEY

QUERY: 91 PTGQHQVRMQILMIR 105

PT + MQI + I +

SBJCT: 96 PTEESNITMQIMRIK 110

SCORE = 76 (38.8 BITS), EXPECT = 0.0011, IDENTITIES = 12/19 (63%), POSITIVES = 16/19

QUERY: 110 QLGEMSLEEHSQCECRPKK 128

++GEMS +H+ CECRPKK

SBJCT: 116 HIGEMSFLQHNKCECRPKK 134

SCORE = 72 (36.8 BITS), EXPECT = 0.0046, IDENTITIES = 14/21 (66%), POSITIVES = 15/21

QUERY: 202 RCQGRGLELNPDTCRCRKLRR 222

RC +R LELN TCRC K RR

SBJCT: 195 RCKARQLELNERTCRCDKPRR 215

SCORE = 46 (23.5 BITS), EXPECT = 47., IDENTITIES = 6/10 (60%), POSITIVES = 9/10

QUERY: 187 DPRTCRCRCR 196

DP+TC+C C+

SBJCT: 181 DPQTCKCSCK 190

Fig.3(i)

SUBSTITUTE SHEET (RULE 26)

GROWTH FACTOR PRECURSOR (VEGF)

$$P = 6.4e-20$$
 (64%)

MGTVAKQLVPSCVTVQRCGGCCPDDGLECV 90 + PSCV + RCGGCC D+GLECV PDEIEYIFKPSCVPLMRCGGCCNDEGLECV 95

POISSON
$$P(2) = 9.1e-12$$
 (84%)

POISSON P(3) = 3.6e-18 (71%)

POISSON P(4) = 7.3e-10 (90%)

Fig. 3(i)

17/52	18 /52
Fig.4(i)	Fig.4(ii)
19/52	20/52
Fig.4(iii)	Fig.4(iv)

Length Wei Qual Ra Percent	Length: 739 Lengts: 30 Gaps: 30
28	ATGAGCCCTCTGCTCCGCCGCCTGC
17	ATGAACTTTCTGCTGTCT
68	TGCAGCTGGCCCCGCCCAGGCCCC
57	TGCTGCTCTACCTCCACCATGCCAA
118	CACCAGAGGA
106	AGAAGGAGGAGGGCAGAATCATCAC
140	GTGTATACTCGC.GCTACCTGCCAG
152	GTCTATCAGCGCAGCTA.CTGCCAT
194	TGACTGTGGAGCTCAT
201	TCCAGGAGTACCCTGATGAGATCGA
235	CCCAGCTGCGTGACTGTGCAGCGCT
239	CCATCCTGTGTGCCCCTGATGCGAT
285	CCTGGAGTGTGCCCACTGGGCAG
289	CCTGGAGTGTGCCCACTGAGGAG

Fig.4(i)

TGCTCGCCGCACTCC	67
TGGGTGCATTGGAGCCTTGCCT	56
TGTCTCCCAGCCTGATGCCCCTGGC	117
GTGGTCCCAGGCTGCA.CCCATGGC	105
AAGTGGTGTCATGGATAGAT	147
GAAGTGGTGAAGTTCATGGAT	151
CCCCGGGAGGTGGTGGTGCCCT	193
CCAATCGAGACCCTGGTGGACATCT	200
GGGCACCGTGGCCAAACAGCTGGTG	234
GTACATCTTCAA	238
GTGGTGGCTGCCCTGACGATGG	284
GCGGGGCTGCTGCAATGACGAGGG	288
CACCAAGTCCGGATGCAGAT	329
TCCAACATCACCATGCAGATTATGC	338

Fig. 4 (ii)
SUBSTITUTE SHEET (RULE 26)

330	·····CCTCATGATCCGGTACC
339	GGATCAAACCTCAC
369	GTCCCTGGAAGAACACAGCCAGTGT
376	GAGCTTCCTACAGCACAACAATGT
419	GTGCTGTGAAGCCAGACAGGGCTGC
423	GAGCAAGACAAG
469	CGTTCTGTTCCGGGCTGGGACTCTG
443	
519	CATCACCCATCCCACTCCAGCCCCA
468	••••••••••••••••••
569	GCACCACCAGCGCCC
469	GCATTTGTTGTACAA
609	TGCCGACGCCGCAGCTTCCTCCGTT
509	TG.CAAAAACACAGACTCGCGTT
657	AACCCAGACACCTGCAGGTGCCGGA
554	AACGAACGTACTTGCAGATGTGACA
	Fig.4(iii)

SUBSTITUTE SHEET (Rule 26)

CGAGCAGTCAGCTGGGGGAGAT	368
CAAG. GCCAGCACATAGGAGAGAT	375
GAATGCAGACCTAAAAAAAAGGACA	418
GAATGCAGACCAAAGAAAGATA	422
CACTCCCCACCACCGTCCCCAGCCC	468
····· AAAATCCC	442
CCCCCGGAGCACCCTCCCCAGCTGA	518
GCGGAGAA	467
GGCCCTCTGCCCACGCTGCACCCA	568
· · · · · · ·	468
TGACCCCGGACCTGCCGC	608
GATCCGCAGACGTGTAAATGTTCC	508
GCCAAGGGCGGGCTTAGAGCTC	656
GCAAGGCGAGGCAGCTTGAGTTA	553
AGCTGCGAAGGTGA	695
AGCCGAGGCGGTGA	592

Fig.4(iv)

SUBSTITUTE SHEET (RULE 26)

22/52		23/52	24/52
	Fig.5(i)	Fig.5(ii)	Fig.5(iii)
	25/52	26/52	27/52
	Fig.5(iv)	Fig.5(v)	Fig.5(vi)

165SOMSQ.MSF.msf MSF:687

Type: D Tuesday, June 20, 1995

Check: 3140

1

VEGF165 ATGAACTTTCTGCTGTCTTGGGTG
SOM175 ATGAGCCCTCTGCTCCGCCGCCTG
ATGAGCCCTCTGCTCCGCCGCCTG
SOM175-e6&7 ATGAGCCCTCTGCTCCGCCGCCTG
SOM175-e4 ATGAGCCCTCTGCTCCGCCGCCTG

81

VEGF165 CACCCATGGCAGAAGGAGGAGGGC
SOM175 TGCCCCTGGCCACCAGAGGAAAGT
SOM175-e6 TGCCCCTGGCCACCAGAGGAAAGT
SOM175-e6&7 TGCCCCTGGCCACCAGAGGAAAGT
SOM175-e4 TGCCCCTGGCCACCAGAGGAAAGT

161

VEGF165 CCAATCGAGACCCTGGTGGACATC
SOM175 GTGGTGGTGCCCTTGACTG.TGGA
SOM175-e6 GTGGTGGTGCCCTTGACTG.TGGA
SOM175-e6&7 GTGGTGCCCTTGACTG.TGGA
SOM175-e4 GTGGTGGTGCCCTTGACTG.TGGA

241

VEGF165 GATGCGATGCGGGGGCTGCTGCAA
SOM175 GCAGCGCTGTGGTGGCTGCCC
SOM175-e6 GCAGCGCTGTGGTGGCTGCCC
SOM175-e6&7 GCAGCGCTGTGGTGGCTGCCC
SOM175-e4 GCAGCGCTGTGGTGGCTGCCC

Fig.5(i)

SUBSTITUTE SHEET (RULE 26)

CATTGGAGCCTTGCCTTGCTGCTCTACC CTGCTCGCCGCACTCCTGCAGCTGGCCC CTGCTCGCCGCACTCCTGCAGCTGGCCC CTGCTCGCCGCACTCCTGCAGCTGGCCC CTGCTCGCCGCACTCCTGCAGCTGGCCC

AGAATCATCACGAAGTGGTGAAGTTCAT GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC GGTGTCATGGATAGATGTGTATACTCGC

TTCCAGGAGTACCCTGATGAGATCGAGT GCTCATGGGCACCGTGGCCAAAC..AGC GCTCATGGGCACCGTGGCCAAAC..AGC GCTCATGGGCACCGTGGCCAAAC..AGC GCTCATGGGCACCGTGGCCAAAC..AGC

TGACGAGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT TGACGATGGCCTGGAGTGTGTGCCCACT

Fig.5(ii)

8	0
TCCACCATGCCAAGTGGTCCCAGGCT	G
CCGCCCAGGCCCTGTCTCCCAGCCT	GĀ
CCGCCCAGGCCCTGTCTCCCAGCCTG	G <i>I</i>
CCGCCCAGGCCCTGTCTCCCAGCCTC	$\Im Z$
CCGCCCAGGCCCTGTCTCCCAGCCTC	3Z
	•
16	_
GGATGTCTATCAGCGCAGCTACTGCCA	$\Gamma \ell$
GCTACCTGC.CAGCC.CCGGGA	4G
GCTACCTGC.CAGCC.CCGGGA	ιG
GCTACCTGC.CAGCC.CCGGGA	ιG
GCTACCTGC.CAGCC.CCGGGA	G
24	_
ACATCTTCAAGCCATCCTGTGTGCCCC	
TGGTGCCCAGCTGCGTGACTG	T
TGGTGCCCAGCTGCGTGACTG	${ m T}$
TGGTGCCCAGCTGCGTGACTG	\mathbf{T}
TGGTGCCCAGCTGCGTGACTG	${f T}$
32	_
GAGGAGTCCAACATCACCATGCAGATT.	Α
GGGCAGCACCAAGTCCGGATGCAGATC	C
GGGCAGCACCAAGTCCGGATGCAGATC	C
GGGCAGCACCAAGTCCGGATGCAGATC	С
GGGCAGCACCAAGTCCGGATGCAGA	

Fig.5(iii)

	25/52 Table 1753
VEGF165 SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4	321 TGCGGATCAAACCTCACCAAGGCC TCATGATCCGGTACCCGAGCA TCATGATCCGGTACCCGAGCA TCATGATCCGGTACCCGAGCA
VEGF165 SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4	401 AAGAAAGATAGAGCAA AAAAAGGACAGTGCTGTGAAGCCA AAAAAGGACAGTGCTGTGAAGCCA AAAAAGGACAGTGCTGTGAAGCCA AAAAAGGACAGTGCTGTGAAGCCA AAAAAGGACAGTGCTGTGAAGCCA
VEGF165 SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4	481AAGCA CTCTGCCCCCGGAGCACCCTCCCC CTCTGCCCCCGGAGCACCCTCCCC
VEGF165 SOM175 SOM175-E6 SOM175-e6&7 SOM175-e4	AGATCCGCA GCACCACCAGCGCCCTGACCCCCG GCACCACCAGCGCCCTGACCCCCG GCACCACCAGCGCCCTGACCCCCG
VEGF165 SOM175 SOM175-e6 SOM175-e6&7 SOM175-e4	TTGAGTTAAACGAACGTACTTGCA TAGAGCTCAACCCAGACACCTGCA TAGAGCTCAACCCAGACACCTGCA TAGAGCTCAACCCAGACACCTGCA TAGAGCTCAACCCAGACACCTGCA TAGAGCTCAACCCAGACACCTGCA

AGCACATAGGAGAGATGAGCTTCCTACA GTCAGCTGGGGGAGATGTCCCTGGAAGA GTCAGCTGGGGGAGATGTCCCTGGAAGA GTCAGCTGGGGGAGATGTCCCTGGAAGA
GACAAGAAAATCCCTGTGG GACAGGGCTGCCACTCCCCACCACCGTC GATAG
AGCTGACATCACCCATCCCACTCCAGCC
GACGTGTAAATGTTCCTGCAAAAAC.AC GACCTGCCGCTGCCGCTGCCGACGCCGC GACCTGCCGCTGCCGACGCCGC
GATGTGACAAGCCGAGGCGGTGA GGTGCCGGAAGCTGCGAAGGTGA GGTGCCGGAAGCTGCGAAGGTGA .GTGCCGGAAGCTGCGAAGGTGA GGTGCCGGAAGCTGCGAAGGTGA Fig.5(V)

SUBSTITUTE SHEET (Rule 26)

	400
GCACAACAAATGTGAATGCAGACCACACACAGCCAGTGTGAATGCAGACCACACAGCCAGTGTGAATGCAGACCACACAGCCAGTGTGAATGCAGACCACACAGCCAGTGTGAATGCAGACCACACACCAGCCAG	TAAA TAAA TAAA
CCCAGCCCCGTTCTGTTCCGGGCTG	GGGA ···
TTTGTTTGTAC CCAGGCCCCTCTGCCCACGCTGCAC CCAGGCCCCTCTGCCCACGCTGCAC	CCA CCA
AGACTCGCGTTGCAAGGCGAGGCA AGCTTCCTCCGTTGCCAAGGGCGGGC AGCTTCCTCCGTTGCCAAGGGCGGGC	GCT .
······································	 ЭСТ

Fig.5(vi)

Fig 6(i)	29/52	Fig	n 6(ii)	30/52
Fig 6(iii)	31/52			

工

29/52

Д

Þ

Д

Ø

Zд

 $\overline{\mathcal{O}}$

 \bigcirc

 \mathcal{O}

Д \geq Д 工 X X Ø K $\overline{\mathcal{O}}$ \Box Ø \bigcirc \bigcirc でり S \bigcirc \mathcal{O} K \mathcal{O} S 3 C E K × O K 召 K 召 召 K K Σ Ø 口 Д 口 二 Д 耳 K Д E X 1 > > 口 Ø \mathcal{O} Ø S S D Д Д K Þ 又 Д D X 又 \mathcal{O} X Д S Д 民 3 K K П 召 S \mathcal{O} K 口 口 S 召 \mathcal{O} \mathcal{O} S 区 X Д Σ Ø П \mathbb{Z} S \mathcal{O} S 口 耳 田 S Д Д 口 Ø \mathbf{z} Ω 口 K Σ 耳 VEGF₁₆₅ SOM175_{Short} VEGF₁₆₅ SOM175_{Short} SOM175 Short SOM175 Short ${
m VEGF}_{165}$ VEGF₁₆₅

The true for the state of the s

Ø Q S \geq × Ø Ø Ø Д 工 出 K 口 Ø Ø A S 3 二 П 3 召 S 区 口 口 ഥ Д ${
m Z}$ Ω Ξ \mathbf{Z} SOM175_{Long} ${
m VEGF}_{165}$

 \bigcirc \mathcal{O} α 召 Σ Q \Box Д \vdash \supset \mathcal{O} S S Д Д × K 口 C Д Σ П \succ 口 口 SOM175_{Long} ${\tt VEGF}_{165}$

Ø K K 召 区 Д Ø S X \bowtie X X Д Д 区 K \mathcal{C} 口 口 \mathcal{C} \mathcal{O} × Q Z Ω 出 工 \bigcirc 口 口 SOM175_{Long} ${\tt VEGF}_{165}$

 Ω L S \vdash K Z 公 α S $\overline{\mathcal{O}}$ X α $\overline{\mathcal{O}}$ \mathcal{O} Ε. \vdash \bigcirc 召 Д Д \Box Д \Box 口 召 Q \bowtie 召 出 K \mathbb{H} 口 Q S \vdash ひ \mathcal{O} Д α \mathcal{O} 175 Long ${
m VEGF}_{165}$ SOM1

מוווס ביות הבים מיווים מווים

OR...

0 \vdash 2 0 S 0 5 2 9 2 2 \sim \vdash [\mathcal{Q} 0 9 _ \sim \vdash 9 \sim 7 \sim \Box Д Ω Ω E-Ø Д Ω Ω \mathcal{O} > Σ Σ 0 5 >> Σ Σ 口 П >口 口 д д \Box >田田 Д E >5 G \vdash > \bigcirc \bigcirc \bigcirc [T]口 Н \Box ОД 口 [T]Н \vdash Д α HO K α 二 Q K Д Д O OД Д Д $\alpha \alpha$ Д 工 \mathcal{O} U W ſτι \vdash 工 Ø C) C) \vdash \mathcal{C} \bigcirc ОД \Box Д \mathcal{O} \mathcal{O} Q A Д \vdash 工 田 二 \vdash 二 \rightarrow 工 Ω K Д X H S Ø Д \vdash 民民 以 民 K K K 好 民 Н Q F H α \circ \vdash H α K \succ K \mathbf{Z} H E \succ 召 \mathbb{X} C \simeq \mathbb{Z} Ξ 口 S Д \gt \mathbf{Z} Д Д 口 O \mathbf{H} S × \bowtie Σ \bigcirc Ø Д Д ⋈ Н α Д \Box K H \geq Σ \mathbf{Z} \mathcal{Q} K ĹΤ \geq \mathbf{Z} Σ Ø \mathcal{O} \mathcal{O} Ω E K G \mathcal{O} 区 S \vdash α \mathcal{O} 民民 > \vdash >Д Д \gt • Д \mathcal{C} \bigcirc > \mathbb{Z} Ø Z K \gt z Q Ø \Box H \bowtie Ŋ 耳 田の X S 工 · W K 田民 口 α QQ团 召 口 α 田口 田 \bigcirc [T] \mathcal{O} \propto 3 工 \circ 口 \mathcal{O} 3 \mathbf{Z} \mathbb{Z} 出 二 \vdash \vdash \mathcal{O} HH E \vdash \bigcirc 口 \vdash Z \bigcirc Д Д Д \mathbf{Z} \mathcal{O} Д Д Д 田 田 ОР \Rightarrow \gt ВР \gt > \Box \vdash Ω K \mathcal{O} S \mathcal{O} K \mathcal{O} Ω Q \mathcal{O} 闰 口 召 \mathcal{O} 口 田 Д K 民 区 \mathcal{O} Д \Box 口 Д \mathcal{O} Д 니 니 Д Z K \mathcal{O} 田 Ø Ω \mathcal{O} K Ø T \bigcirc Ω 口 Q X Q K S О 口 Д \mathcal{O} Ø S 口 Д ОР \mathcal{O} \mathcal{O} Σ > \Box <u>년</u> 5 $\cdot \, \simeq$ \mathbf{Z} \gt 召 区 α K

82

æ

Cysteines-81

Glycine-80,

Valine-74

Areas of 100% homology are boxed and conserved residues thought of which gives rise to mature VEGF_{165}) giving depicted includes the 26 amino acid leader to be involved in homodimerisation are underlined. 191 amino acids. The VEGF sequence sequence (removal total length of ಹ

including those thought to be involved in homodimerisation at the protein level, however within this are blocks of 100% homology are conserved Homology of SOM175 to $VEGF_{165}$ is 27% (33%) In particular, many structural residues of VEGF (by comparison with PDGF). Cysteine-47

Proline-70, Cysteine-72, Arginine-77, Cystein-78, Proline-91 & 124 122 Cysteine-89, Cysteines

~1*q.6(1111)*

SUBSTITUTE SHEET (RULE 26)

SPLICE VARIANTS OF SOM175

9 9 SOM175 MINUS EXON 6 & 7 SOM175 MINUS EXON 4 SOM175 MINUS EXON 6 **SOM175** Fig. 7 2 ß EXON 1

34/52									
GGCCAG gtacqtqaqq	GGAAAG aatacttaca	gtccgagatg	ATGCAG gtgtcaggca	gtgagtcttt	cacagaccc	acacctgtag	AGG TGA 3'UTR		
GGCCAG		ATGCAG	ATGCAG	AGACAG	CTCCAG	ACCCAG	AGG TGA		
(dq09)	(43bp)	(187bp)	(73bp)	(34bp)	(101bp)	Exon 7 (1.09bp)	(22bp)		
*Exon 1	Exon 2	Exon 3	Exon 4	Exon 5	Exon 6	Exon 7	*Exon 8		
5'UTR atg agg	, tctcccacag GCCCCT	tctgctccca TGGTGT	ctgaatacag ATCCTC	acttttcaag ACCTAA	ctcctccgta GGCTGC	cccactccag CCCCAG	ccctgctcag GTGCCG		

F19.8B

36/52	37/52
Fig. 9(i)	Fig. 9(ii)
38/52	39/52
Fig.9(iii)	Fig. 9(iv)

-163 -103 -43	95	9999	3000	3cac	gago	gago	cad	dad	a + c	eget geged caced	_
16	CG R	TCG R	CCT L	GCT L		TGT V				GCAG Q	7
76	TT F	TGA D	TGG G	CCC P	CAG' S	TCA(CCA Q	GAA K	GAA K	AGTG V	
136	AC2 T	ATG(C	CCA(Q	GCC(P	CAGO R	GAC E	GT(V	GGT(V	GGT(V	GCCT P	
196	AAZ K	ACA <i>z</i> Q	ACT <i>A</i> L	AGTO V	GCCC P	CAGC S	TGI C	TGTO V	SACI T	GTG V	
256	GGC G	CTG L	GAA E	TGT C	GTG V	CCC P	ACT T	'GGG G	CAA Q	CAC H	
316	TAC Y	CCG P	AGC S	AGT S	CAG Q	CTG L	GGG G	GAG E	ATG M	TCC S	
376	CCT. P	AAA K	AAA K	AAG(K	GAGZ E	AGT(S	GCT A	GTG. V	AGG R	CCA P	
436	<u>CAG(</u>	CCC(P - · -	CGC' R	<u>rct</u> (GTT(V	CCGC P	G G	<u>rgg</u> W	GACT D	<u>rct</u> s	

Fig.9(i)

cgttgcgctgcctgcgcccagggctcggga											
	ccgcccgggtcccgggtccgcgcatgg										
	ccgggctagggcccgATGAGCCCCTGCTG										
						M	S	P	L	L	-17
	C m		ma.~	~		V					
1	C I	<u> </u>			CCA	GGC	CCC.	rgt(GTC	CCAG	
1	L	А	R	${ m T}$	Q	А	P	V	S	Q	4
	CTC		n ma	~ » m -							
	V	P	W W		_			GCZ	ACGI	GCC	
	V	Г	VV	I	D	V	Y	A	R	A	24
	СТС	AGC	^ጉ	<u> </u>	\ Cmc	7 7 CT C					
1	L	S	M	GA <i>P</i> E	I.					GTC	
			1.7	نيد	L	M	G	N	V	V	44
	CAG	CGC	'TGT	'GGT	'CCC	יתיככ	mcc.	a a m	~ ~ ~	~	
	Q	R	C	G	G	C	C		_	GAT	
	~			O		1		P	D	D	64
	CAA	GTC	CGA	ATG	CAG) Δጥር	ርጥሮ :	۸ m.C	n mæ	~ ~ ~	
1	Q	V	R	M	Q	I	L	M		_	0.4
					×		Ţ	141	I	Q	84
	CTGGGAGAACACAGCCAATGTGAATGCAGA										
	L	G	E	Н	S	Q	C	E		R	1 0 4
		ļ				×	C	1.	C	K	104
G	GACAGGGTTGCCATACCCCACCACCGTCCC										
	D	R	V	A	I	P	H	<u>и </u>	R	P	124
						_			11	F	124
ACCCCGGGAGCACCCTCCCCAGCTGACATC											
	${f T}$	P	G	A	P	S		<u>стс</u> А	D	I	144
							-		ב	_	T T T

Fig.9(ii)

496	ATCCATCCCACTCCAGCCCCAGGATCCTCT I H P T P A P G S S S P R I L
556	CTGACCCCGGACCTGCCGTTGCCGCTGTA L T P G P A V A A V P D P R T C R C R C
616	GGGGCT <u>TAG</u> AGCTCAACCCAGACACCTGTA G A * R G L E L N P D T C
676 736 796 856 916 976 1036	ctttccagactccacgggcccggctgcttt agcacaggcgtaacctcctcagtctgggag gagctctctcgccatcttttatctcccaga atgtctcacctcaggggccagggtactctc ttctggctggctgtctcccctcactatgaa gggttctgttatgataactgtgacacacac gacactaaaaaaaaaa

Fig.9(iii)

	GCCCGCCTTGCACCCAGCGCCCAACGCC A R L A P S A A N A C P P C T Q R R Q R	164 130
!	GACGCCGCCGCTTCCTCCATTGCCAAGGGC D A A A S S I A K G R R R R F L H C Q G	184 150
	GGTGCCGGAAGCCGCGAAAG <u>TGA</u> caagctg	
	RCRKPRK*	186 167

Fig.9(iv)

А	
hVRF167	-21 MSPLLRRLLLAALLQLAPAQAP
mVRF167	-21 MSPLLRRLLLVALLQLARTQAP
hVRF167	30 EVVVPLTVELMGTVAKQLVPSC
mVRF167	:
hVRF167	80 ILMIRYPSSQLGEMSLEEHSQC
mVRF167	: 80 ILMIQYPSSQLGEMSLGEHSQC
hVRF167	130 RPDPRTCRCRCRRRSFLRCQGR
mVRF167	
В	
hVRF186	116 RAATPHHRPQPRSVPGWDSAPG
mVRF186	
hVRF186	166 TPGPAAAAADAAASSVAKGGA*
mVRF186	: 166 TPGPAVAAVDAAASSIAKGGA*

Fig.10(i)

VSQPDAPGHQRKVVSWIDVYTRATCQPR : :	29
VSOEDCDCHORRETTER	29
VTVQRCGGCCPDDGLECVPTGQHQVRMQ	79
VITTOPCCCCCDDDCT TOTTO	79
ECRPKKKDSAVKPDSPRPLCPRCTQHHQ 12	39
ECRPKKKESAVRPDSPRILCPPCTQRRQ 12	9
GLELNPDTCRCRKLRR* 167	
GLELNPDTCRCRKPRK* 167	
APSPADITHPTPAPGPSAHAAPSTTSAL 16	_
APSPADIIHPTPAPGSSARLAPSAANAL 16	5
186	
186	

Fig.10(ii)

Fig 11(ii) Fig 11(iii)	44/52	45/52
	Fig 11(i)	Fig 11(ii)

mVRF167	-21 MSPLLRRLLLVALLQL :: : -26 MNFLLSWVHWTLALLLYLHH
mVRF167	25 TCQPREVVVPLSMELMGNVV
mVEGF188	: : ::: 24 YCRPIETLVDIFQEYPDEIE
mVRF167	75 QVRMQILMIQYPSSQ.LGEM
mVEGF188	: : : 74 NITMQIMRIKPHQSQHIGEM
mVRF167	119ILCPPC
mVEGF188	: 124 QKRKRKKSRFKSWSVHCEPC
mVRF167	152 GLELNPDTCRCRKPRK
mVEGF188	: 173 QLELNERTCRCDKPRR

Fig.11(i)

. •	
AR.TQAPVSQFDGPSHQKKVVPWIDVYARA	24
AKWSQAAPTT.EGEQKSHEVIKFMDVYQRS	23
KQLVPSCVTVQRCGGCCPDDGLECVPTGQH : : :: ::	74
YIFKPSCVPLMRCAGCCNDEALECVPTSES	73
SLGEHSQCECRPKKKESAVRPDSPR	118
SFLQHSRCECRPKKDRTKPEKKSVRGKGKG	123
TQRRQRPDPRTCRCRCRRRRFLHCQGR : : :	151
SERRKHLFVQDPQTCKCSCKNTDS.RCKAR	172
	167
	188

Fig. 11 (ii)

Fig.13

Fig.14

CT POSSIA.

DOULSON DYDDG

