

Data Augmentation and CNN

M.Tech. Data Science, Second Year, NMIMS

Ву,

Bilal Hungund, Data Scientist, Halliburton

Convolution & operation

414

(Step size)

With Padding N-2p-f+1 ~ Padding filter 4x4 -> 6x6 4×4

Stride = 2 (Recommended) for Pooling)

Ī	25	48	
A	192	10	

			N 1.
_ (T)	58	Pooling
>	20	110	\rightarrow

1	9	31
I	23	47

Max	Poolin g
100	110

192	110
50	47

1	69	50
	22	28

Average Pooling

Convolution Neural Network (CNN) for Classification

- 1) Convolution: Filters to generate feature maps
- 2) Non-linearity: Often velu
- 3) Backpropagation 4) Pooling: Downsampling feature maps

tf keras layers Conv2

tf keras activations

🏗 tf.keras.layers.MaxPool2

Image Augmentation -> Simple and powerful tool to help you awould over titling -> If data and its scope is limited then chance of potential future prediction is also limited -> Example: You have a dataset of cats but in testing Set you have a cat lying down. Thus making difficult for model to recognize Solution: Rotating the images

Tensorthon Image Data Gen	erator
-> rotation_range	[0-180]
-> width_shift_range } shift height_shift_range	fing [0-1] portion of shifting
-> Shear_ Tange	[0-1]
-> Zoom - range	
-> horizontal_flip	[True, False]
(rescale, fill_mode)	

Momentum:

$$V_{dw} = \beta V_{dw} + (1-\beta) dw$$

$$V_{dB} = \beta V_{dB} + (1-\beta) dB$$

$$S_{dw} = \beta S_{dw} + (1 - \beta)(dw)^{2}$$

$$S_{dB} = \beta S_{dB} + (1 - \beta)(d\beta)^{2}$$

Adam:

Momentum B will be B1 RMS prop B will be B2

