

N83 10519

110-40

Technology Sessions

FLAT-PLATE COLLECTOR RESEARCH AREA

Silicon Material Task

R. Lutwack, Chairman

Reports of progress in research on processes for making silicon (Si) and in supporting studies were presented by three contractors and JPL.

Union Carbide Corp. reviewed its research on silane decomposition in a fluidized-bed reactor (FBR) process development unit (PDU) to make semiconductor-grade Si. The PDU, reactivated in late 1981 after having been shut down in May 1981 because of funding revisions, was modified by installation of a new heating system to provide the required temperature profile and better control, and testing was resumed. In one test, at 6.3% silane concentration, 100% conversion to Si was achieved.

Solarelectronics, Inc., reported on its investigation of a process for making trichlorosilane by the hydrochlorination of metallurgical-grade Si and silicon tetrachloride. Fabrication and installation of the test system employing a new 2-in.-dia reactor was completed, and tests were conducted to compare reactor performance with that of the earlier 1-in.-dia reactor. Good agreement was obtained. A corrosion test was also carried out on various candidate materials of construction for the reactor. All samples tested showed a weight gain, attributed to formation of metal silicide films that prevent further corrosion.

Hemlock Semiconductor Corp. described progress in the program to develop a process that converts trichlorosilane to dichlorosilane (DCS), which is reduced by hydrogen to make Si by a chemical vapor deposition step in a Siemens-type reactor. Testing of the DCS PDU integrated with Si deposition reactors continued, and semiconductor-grade Si is being made. It was found that hydrogen chloride can be used after a deposition run to remove selectively the Si deposited on the inside surfaces of the reactor bell jar, thereby preventing deposit build-up and bell-jar breakage.

In the JPL in-house program on conversion of silane to Si in an FBR, experiments in a 2-in.-dia reactor to define the operating window and to investigate the Si deposition kinetics were completed. Even with silane concentration as high as 65% in hydrogen, excessive formation of Si fines as well as bed agglomeration can be prevented by proper choice of operating conditions.

SILANE-TO-SILICON PROCESS

UNION CARBIDE CORP.

TECHNOLOGY POLYCRYSTALLINE SILICON R&D	REPORT DATE APRIL 22, 1982
APPROACH SILANE DECOMPOSITION IN A FLUID BED REACTOR TO MAKE SEMICONDUCTOR-GRADE POLYSILICON	STATUS <ul style="list-style-type: none"> • FLUID BED REACTOR PDU WAS MODIFIED WITH A NEW HEATING SYSTEM • PDU IS OPERATIONAL & EXPERIMENTS ARE IN PROGRESS
CONTRACTOR UNION CARBIDE CORPORATION	
GOALS <ul style="list-style-type: none"> • INVESTIGATE PROCESS FEASIBILITY • DETERMINE OPERATING WINDOW • DEMONSTRATE STEADY STATE OPERATION • DEMONSTRATE SILICON PURITY FOR PV APPLICATION 	

Fluid-Bed Silane Decomposition R&D Summary

- 6-INCH DIAMETER FLUID BED PDU WAS ASSEMBLED & STARTED UP IN EARLY 1981 UNDER PREVIOUS CONTACT-PHASE
- R&D WORK WAS TEMPORARILY SUSPENDED & REACTIVATED IN 4TH Q 1981
- PDU MODIFICATIONS INVOLVING INSTALLATION OF A NEW HEATING SYSTEM WERE COMPLETED
- FLUIDIZATION & BED HEATING TESTS IN HYDROGEN ATMOSPHERE WERE CONDUCTED
- PDU WAS RESTARTED WITH SILANE & 3 EXPERIMENTAL RUNS HAVE BEEN CONDUCTED

Fluid-Bed Reactor Heating System

SILICON MATERIAL TASK

FBR Temperature & Pressure Tap Locations

CHART 10
CROSS SECTION IS
OF POOR QUALITY

SILICON MATERIAL TASK

CHUMBAK FABRIC IS
OF POOR QUALITY

FBR Run Summary

RUN NO.	SILANE FEED DURATION HRS.	MAXIMUM SILANE IN FEED, %	SILANE CONVERSION, %	BED TEMP., °C	DISTRIBUTOR TEMP., °C	U/U _{MF}	COMMENTS
1	4.5	6.3	100	700-730	340-375	5.5	<ul style="list-style-type: none"> ● COMPLETE CONVERSION ● GRADUAL INCREASE OF ΔP ACROSS DISTRIBUTOR
2	2.0	18.6	99.2	500-645	300-335	3.5	<ul style="list-style-type: none"> ● GOOD CONVERSION WITH HIGH SILANE FEED CONCENTRATION ● PARTIAL PLUGGING OF DISTRIBUTOR AT THE END OF RUNS 1 & 2
3	3.0	12.0	<90	500-560	310-325	6	<ul style="list-style-type: none"> ● INCOMPLETE CONVERSION SINCE BED TEMP. WAS LOW. ● DISTRIBUTOR ΔP CONSTANT ● PRODUCT WITHDRAWAL & SEED INJECTION TESTED

FBR Test Temperature Profile

ORIGINAL PAGE IS
OF POOR QUALITY

Problems and Concerns

- GAS DISTRIBUTOR OVER-HEATING & PLUGGING
- AGGLOMERATION OF SILICON PARTICLES IN FLUID BED REACTOR
- INSUFFICIENT BED HEIGHT IN THE CURRENT PDU
- POSSIBLE SILICON CONTAMINATION DUE TO IMPURE FEED/IMPROPER MATERIALS

SILICON MATERIAL TASK

Plans

- FINISH CURRENT EXPERIMENTS TO DETERMINE OPERATING WINDOW.
- CONDUCT LONG RUN TO INVESTIGATE STEADY STATE OPERATION.
- EVALUATE PARTICLE GROWTH RATE & MORPHOLOGY.
- PROVIDE SAMPLES TO JPL FOR ANALYSIS.

SILICON MATERIAL TASK

CRITICAL ISSUE IS
OF POOR QUALITY

HYDROCHLORINATION PROCESS

SOLARELECTRONICS, INC.

TECHNOLOGY POLYCRYSTALLINE SILICON METAL	REPORT DATE APRIL 22, 1982. 20TH PIM
APPROACH HYDROCHLORINATION OF METALLURGICAL GRADE SILICON TOGETHER WITH SILICON TETRACHLORIDE AND HYDROGEN TO FORM TRICHLOROSILANE FOR PRODUCING SILICON METAL	STATUS JPL CONTRACT NO. 956061 (JULY 9, 1981 - JULY 8, 1982.) $3 \text{ SiCl}_4 + 2 \text{ H}_2 + \text{ Si} = 4 \text{ SiHCl}_3$ <ul style="list-style-type: none"> ● NEW TWO INCH REACTOR OPERATIVE; RESULTS CHECKED OUT WITH PREVIOUS EXPERIMENTS ● EFFECT OF PRESSURE: HIGHER PRESSURE GIVES A HIGHER SiHCl_3 CONVERSION BUT AT A SLOWER REACTION RATE ● HCL ANALYSIS: 0.1 - 0.5% HCL PRESENT ● CORROSION TESTS: CARBON STEEL, NICKEL, COPPER, STAINLESS STEEL, INCOLOY 800H, HASTELLOY B-2 ● CORROSION MECHANISM STUDY: THE NATURE OF THE SILICIDE PROTECTIVE FILM, ELEMENTAL ANALYSIS, SEM ANALYSIS ● MILESTONE CHECK POINT, PROGRAM REVIEW, REVISED PROGRAM PLAN.
CONTRACTOR SOLARELECTRONICS, INC.	
GOALS TO CARRY OUT A BASIC RESEARCH PROGRAM ON THE HYDROCHLORINATION REACTION OF SiCl_4 , <ul style="list-style-type: none"> ● REACTION KINETICS MEASUREMENTS: AS A FUNCTION OF T, P AND C ● EFFECT OF PRESSURE ● REACTION MECHANISM: STEP-WISE REACTION, INTERMEDIATE AND BY-PRODUCT ● CORROSION MECHANISM OF METALS AND ALLOYS IN THE HYDROCHLORINATION REACTION ENVIRONMENT. 	

SILICON MATERIAL TASK

Hydrochlorination of SiCl_4 and mgSi to SiHCl_3

ORIGINATED BY
OF POOR QUALITY

Effect of Pressure on Hydrochlorination of SiCl_4 and mgSi

ORIGINAL PAGE IS
OF POOR QUALITY

SILICON MATERIAL TASK

HCl Analysis in the Hydrochlorination of SiCl₄

AT 500°C, 300 PSIG AND H₂/SiCl₄ RATIO OF 2.0

SAMPLE NO.	RESIDENCE TIME SECOND	REACTION PRODUCT COMPOSITION, AREA%			SiCl ₄
		HCl	SiH ₂ Cl ₂	SiHCl ₃	
A	207	0.5970	0.7512	32.66	64.04
B	207	0.5875	0.7611	31.64	66.05
1	96	0.1235	0.4878	26.69	71.98
2	96	0.1388	0.5163	26.75	71.92
3	138	0.3326	0.7961	31.75	66.57
4	138	0.4343	0.3325	31.84	66.80
5	207	0.5962	0.7303	31.95	65.82
6	207	0.5735	0.8337	31.93	66.05

Corrosion Tests on Metals and Alloys

(87 HOURS @ 500°C, 300 PSIG, H₂/SiCl₄ = 2.0)

METALS, ALLOYS	APPROXIMATE COMPOSITION
CARBON STEEL	BASICALLY IRON, + 95% FE
NICKEL	PURE
COPPER	PURE
STAINLESS STEEL (TYPE 304)	68% FE, 19% CR, 10% NI, 2% MN, 1% SI
ALLOY 400 (MONEL)	2/3 NICKEL, 1/3 COPPER
INCOLOY 800H	45% FE, 30% NI, 23% CR, 1% MN, 0.6% SI
HASTELLOY B-2	68% NI, 28% MO, 2% FE, 1% CR, 1% MN

SILICON MATERIAL TASK

Corrosion Test on Pure Nickel, 87 Hours

AT 500°C, 300 PSIG AND H₂/SiCl₄ OF 2.0

SAMPLE NO.	DISTANCE FROM GRID PLATE INCH	TOTAL SURFACE AREA CM ²	WEIGH BEFORE REACTION G.	WEIGH AFTER REACTION G.	WEIGH GAIN M.G.	WEIGH GAIN PER UNIT AREA M.G./CM ²
1	31.3	20.4	4.8807	4.9017	21.2	1.04
2	28.0	20.7	4.9450	4.9676	22.6	1.09
3	23.2	19.7	4.7197	4.7576	37.9	1.92
4	20.0	20.8	4.9888	5.0921	103.3	4.97
5	16.2	20.3	4.8710	5.0639	192.9	9.50
6	13.0	20.4	4.8850	5.1481	261.3	12.8
7	9.5	20.8	4.9808	5.3098	329.0	15.8
8	6.2	20.3	4.8638	5.2190	355.2	17.5
9	2.5	20.8	4.9680	5.2502	282.2	13.6

- THE SILICON METAL BED IS ABOUT 18 INCHES HIGH.

NOTE: UNLIKE INCOLOY 800H AND STAINLESS STEEL, THE SILICIDE FILM ON
PURE NICKEL IS NOT REACTIVE TOWARD AIR AND MOISTURE

ORIGINALLY
OF POOR QUALITY

Corrosion Test on Incoloy 800H: 238 h at 500°C, 300 atm, H₂/SiCl₄ = 2
SEM Analysis of Cross-Sectional Area

SILICON MATERIAL TASK

ORIGINAL PRINT IS
OF POOR QUALITY

Corrosion Mechanism Study

FORMATION OF THE SILICIDE PROTECTIVE FILM: CHEMICAL REACTIONS

(1) CHEMICAL VAPOR DEPOSITION OF SILICON

(2) REACTION WITH HCL

VAPOR PRESSURE
OF METAL CHLORIDE

(3) REACTION OF METAL CHLORIDE WITH SILICON

QUESTION: INCOLOY 800H, 87 HOURS = 1.78 M.G./CM², 238 HOURS = 2.71 M.G./CM²

FORMATION OF THE SILICIDE PROTECTIVE FILM: PHYSICAL PROCESS

(1) MELTING POINTS OF THE BASE METAL

Cu = 1083°, Mn = 1260°, Si = 1420°, Ni = 1453°, Fe = 1535°,
Cr = 1890°, Mo = 2620°

(2) METAL-SILICON PHASES (SILICIDES)

Cu ₃ Si	558°, 802°	VERSUS REACTION
Ni ₃ Si ₂	845°, 964°; NiSi 992°	TEMPERATURE = 500°
Cu ₃ Ni	1185°	
Fe ₅ Si ₃	825°, 1030°; FeSi ₂ 1220°	
Mn ₃ Si	1075°; MnSi 1275°	
CrSi ₂	1550°; CrSi 1600°	
MoSi ₂	1870°; Mo ₃ Si ₂ 2190°	

Cr, Mo SILICIDES ARE FORMED AT HIGHER TEMPERATURES THAN THOSE OF Cu, Ni. THIS MAY EXPLAIN THE LARGE DIFFERENCES ON THE AMOUNT OF Si DEPOSITED ON THE TEST SAMPLES.

Corrosion Test Results: Weight Gain by Test Samples

(87 HOURS AT 500°C, 300 PSIG, H₂/SiCl₄ = 2.0)

MEALS, ALLOYS	TOTAL SURFACE AREA CM ²	WEIGH BEFORE REACTION G.	WEIGH AFTER REACTION G.	WEIGH GAIN M.G.	WEIGH GAIN PER UNIT AREA M.G./CM ²
CARBON STEEL	15.6	3.6100	3.7435	133.5	8.56
PURE NICKEL	20.8	4.9808	5.3098	329.0	15.8
PURE COPPER	23.1	8.2623	8.5986	336.3	14.6
ALLOY 400 (MONEL)	31.2	21.3424	21.4448	101.9	3.27
S.S. (TYPE 304)	20.0	12.2397	12.2972	57.5	2.88
INCOLOY 800H	28.7	13.4049	13.4561	51.2	1.78
HASTELLOY B-2	32.2	23.1987	23.2417	43.0	1.34

QUESTION: WILL THE SILICIDE FILM CONTINUE TO GROW ?

Corrosion Mechanism Study

IS THERE ANY CORROSION ?

(1) THE SILICIDE PROTECTIVE FILM

- ALL TEST SAMPLES SHOW A WEIGH GAIN
- A SILICIDE FILM IS FORMED ON THE SURFACE OF ALL TEST SAMPLES
- NO SIGNIFICANT CORROSION IS EXPECTED WITH A STABLE SILICIDE PROTECTIVE FILM

(2) SCALING: UNLIMITED GROWTH OF THE SILICIDE FILM

- THICK SILICIDE SCALE CAN WEAKEN THE REACTOR WALL DUE TO THE POOR MECHANICAL PROPERTY OF SILICIDES
- A THICK SILICIDE SCALE CAN BE BROKEN OFF DUE TO MECHANICAL AND THERMAL STRESS - EROSION BY SCALING

CASE I NICKEL: 110 MICRONS FILM AFTER 87 HOURS, CA. 50% NICKEL

$$\frac{0.5 \times 365 \times 24 \times 110 \times 10^{-4}}{87 \times 2.54 \times 10^{-3}} = 218 \text{ MILS/YEAR}$$

CASE II INCOLOY 800H: 238 HOURS, SILICIDE FILM WITH 8.6 MICRON BASE METAL

$$\frac{365 \times 24 \times 8.6 \times 10^{-4}}{238 \times 2.54 \times 10^{-3}} = 12 \text{ MILS/YEAR}$$

SILICON MATERIAL TASK

ORIGINAL PAGE IS
OF POOR QUALITY

CONCLUSION:

(1) MECHANISM

- CHEMICAL VAPOR DEPOSITION OF Si
- ✓ INTERACTION OF Si WITH BASE METALS - CHEMICAL PROCESS
- INTERACTION OF Si WITH BASE METALS - PHYSICAL PROCESS
- DEVELOPMENT OF METAL-SILICON PHASES
- FORMATION OF THE SILICIDE FILM OF COMPLEX COMPOSITION
- ALLOYS WITH HIGH Ni, Cr, Mo CONTENTS DESIRABLE

(2) FURTHER EXPERIMENTAL STUDIES RECOMMENDED

- TIME DEPENDENCY: GROWTH OF THE SILICIDE FILM AS A FUNCTION OF TIME, LIMITED OR UNLIMITED GROWTH,
- GROWTH OF THE SILICIDE FILM AS A FUNCTION OF TEMPERATURE - ACCELERATED TEST AT HIGHER TEMPERATURES, UPPER TEMP. LIMIT,
- COMPOSITIONS OF THE BASE ALLOYS.

Other Forms of Corrosion to Consider

CORROSION MECHANISM OF METAL ALLOYS IS BY FAR A ELECTRO-CHEMICAL PROCESS IN THE PRESENCE OF A ELECTROLYTE, SUCH AS, WATER. IN THIS OXYGENATED ENVIRONMENT (ACID OR BASE), THE ALLOY RELIES ON A STABLE OXIDE FILM FOR PROTECTION. THE STABLE NICKEL AND CHROMIUM OXIDE FILM IS THE BASIS FOR THE CORROSION RESISTANCE OF MANY Ni, Cr BASED ALLOYS. STILL MORE STABLE OXIDE FILMS ARE THOSE OF TITANIUM, ZIRCONIUM AND TANTALUM. THE PROTECTIVE MECHANISM IS DIFFERENT FROM THAT OF THE SILICIDE PROTECTIVE FILM FORMED UNDER THE HYDROCHLORINATION REACTION ENVIRONMENT, WHICH DOES NOT APPEAR TO INVOLVE THE PRESENCE OF AN OXIDE FILM.

Potential Corrosions Other Than the Reaction Environment

- (1) MANUFACTURING PROCESS: METALLURGICAL HISTORY OF THE METAL ALLOY
- (2) FABRICATION: MECHANICAL AND THERMAL PROCESS (FORMING, WELDING, ETC.)
"SENSITIZATION" OF AUSTENITIC STAINLESS STEEL: PRECIPITATION OF CHROMIUM CARBIDE (Cr_{23}C_6) AND DEPLETION OF CHROMIUM AT GRAIN BOUNDARY BY HEATING.
- (3) TESTING, STORAGE, TRANSPORTATION: CONTAMINATION
- (4) ATMOSPHERIC ENVIRONMENT: PLANT ENVIRONMENT IS CORROSIVE (HCl, CHLORIDE PRESENT)
"CHLORIDE STRESS CORROSION CRACK" OF STAINLESS STEEL DUE TO INTERGRANULAR ATTACK BY CHLORIDE ACCELERATED BY INTERNAL STRESS (316L OR HIGH Ni)
- (5) HIGH TEMPERATURE ENVIRONMENT: OXIDATION, CHLORIDE, SULFUR (GAS-FIRED)
- (6) SERVICE, REPAIR: SILICIDE PROTECTIVE FILM IS REACTIVE TOWARD MOISTURE.

Optimum Material of Construction for the Reactor

- (1) CARBON STEEL: POOR
 - POTENTIAL PROBLEMS: HYDROGEN EMBRITTLEMENT, SCALING
 - LOW CORROSION RESISTENCE IN GENERAL
 - LOWER COST
- (2) STAINLESS STEEL: GOOD
 - SATISFACTORY UNDER THE HYDROCHLORINATION REACTION ENVIRONMENT
 - GOOD CORROSION RESISTENCE IN GENERAL, CHLORIDE STRESS CORROSION CRACK
 - MEDIUM COST
- (3) HIGH NICKEL, CHROMIUM, MOLYBDENUM ALLOYS: BETTER
 - GOOD CORROSION RESISTENCE ALL-ROUND
 - HIGH CREEP RESISTANCE (STRENGTH AT HIGH TEMPERATURES)
 - HIGHER COST

ALLOYS	APPROXIMATE COMPOSITION						PRICE \$/LB.	PRICE RATIO CORRECTED FOR DESIGN STRENGTH
	Ni	Cr	Mo	Fe	Co	Mn		
S.ST. (TYPE 316L)	12	17	2.5	66	-	1.5	0.5	2.09
INCOLOY 800H	31	22	-	45	-	1.0	0.6	-
HASTELLOY 6	20	22	6	36	2.5	1.5	0.5	7.86
HAYNES ALLOY 625	62	22	9	5	1.0	0.5	0.5	11.37
HASTELLOY B-2	67	1	28	2	1.0	1.0	-	19.95
								5.18

DICHLOROSILANE CVD PROCESS

HEMLOCK SEMICONDUCTOR CORP.

TECHNOLOGY POLYCRYSTALLINE SILICON	REPORT DATE APRIL, 1982
APPROACH CHEMICAL VAPOR DEPOSITION OF POLY-SILICON FROM DICHLOROSILANE (DCS)	STATUS • 5" Ø REDISTRIBUTION REACTOR EVALUATION COMPLETED
CONTRACTOR HEMLOCK SEMICONDUCTOR CORPORATION	• CATALYST LIFE >98% ORIGINAL CAPACITY AFTER 2 MONTHS OPERATION AT CAPACITY • QUARTZ TUBE DEPOSITION REACTOR CONSTRUCTION COMPLETED • HCl ETCH LINES INSTALLED TO INTERMEDIATE REACTOR • MODEL 110 REACTOR STARTED UP AND EVALUATION IN PROGRESS • SILICON PURITY FROM REDISTRIBUTED TCS IS SEMICONDUCTOR GRADE QUALITY
GOALS <ul style="list-style-type: none"> • ESTABLISH PROCESS FEASIBILITY THROUGH LABORATORY EXPERIMENTS AND COMPONENT TESTING • INVESTIGATE CRITICAL ELEMENTS OF PROCESS VIA OPERATION OF PROCESS DEVELOPMENT UNIT • POLYSILICON PRICE OF LESS THAN \$21/KG (1980 \$, 1000-MT/YR, 20% ROI) AND PURITY APPROACHING OR EQUALLING SEMICONDUCTOR-GRADE POLYSILICON 	

SILICON MATERIAL TASKORIGINAL PAGE IS
OF POOR QUALITY**Schedule of Effort by Phases**

Project	Time (Mo.)	3	6	9	12	15	18	21	24	27	30	33	36	39
Phase 1	Oct. 1979													
Feasibility/EPSDU														
Preliminary Design														
Phase 2	June 25, 1981													
Redistribution Rx														
and Decomposition														
Rx PDU Evaluation														
EPSDU Design														
(Deleted)														
Phase 3 (Curtailed)														
EPSDU Detailed														
Design and														
Construction														

SILICON MATERIAL TASK

ORIGINAL PAGE IS
OF POOR QUALITY

Activities

- PDU START UP
- PDU CLEAN UP
- PDU START UP AND OPERATION
- EVALUATION OF 5" DIAMETER REDISTRIBUTION REACTOR
- QUARTZ TUBE DEPOSITION REACTOR CONSTRUCTED
- INTERMEDIATE REACTOR OPERATION USING DICHLOROSILANE FEED STOCK WITH POST HCL ETCH
- POLYCRYSTALLINE SILICON PURITY EVALUATION (BORON, DONOR, CARBON)
- START-UP OF MODEL 11D DICHLOROSILANE DECOMPOSITION REACTOR
- SAMPLES OF DCS POLYSILICON SENT TO JPL AND WESTINGHOUSE FOR EVALUATION

December Shutdown

Scheduled shutdown
before Christmas

Flush system with TCS

Purge out with Nitrogen

Pressure with Nitrogen

SILICON MATERIAL TASK

ORIGINAL PLATE IS
OF POOR QUALITY

Startup Problems

PROBLEM: Filter plugging

CAUSE: Catalyst support screen
separated from plate

ACTION: Redesign support plates
Dual filter system

** MAJOR CLEAN UP EFFORT **

DCS PDU Flow Diagram

SILICON MATERIAL TASK

ORIGINAL PAGE IS
OF POOR QUALITY

PDU Cleanup

PDU pressure checked &
purged out with nitrogen

Redistribution reactor repacked
with DOWEX

Steam tracing turned on column &
purged out with nitrogen

Moisture check showed no sign of water

PDU Startup Plan

Load in new DOWEX catalyst
3/9

Purge with hot nitrogen
3/9 to 3/10

Start-up
3/11

Safety review for Model 11 reactor
& updated SOP for PDU complete

SILICON MATERIAL TASK**ORIGINAL PAGE IS
OF POOR QUALITY****Si Production by DCS Decomposition****A. DICHLOROSILANE PRODUCTION****(CATALYZED REDISTRIBUTION OF TRICHLOROSILANE)****B. SILICON PRODUCTION****(DICHLOROSILANE DECOMPOSITION)****C. TRICHLOROSILANE PRODUCTION****(HYDROGENATION OF SILICON TETRACHLORIDE)****PDU Objectives**

- DCS PRODUCTION 70 LB/HR
- REDISTRIBUTION CONVERSION >10%; DETERMINE TEMPERATURE AND RESIDENCE TIME TO ACHIEVE THIS
- PRESSURE DROP vs. VELOCITY IN CATALYST BED
- CATALYST LIFE >90% ORIGINAL CAPACITY AFTER 2 MONTHS OPERATION AT CAPACITY
- DETERMINE IF CATALYST MIGRATION OCCURS

SILICON MATERIAL TASK

ORIGINAL PAGE IS
OF POOR QUALITY

5-in.-Dia Redistribution Reactor

PDU Conditions at Capacity

SILICON MATERIAL TASK

ORIGINAL PRODUCTION
OF POOR QUALITY

DCS Production From PDU

MONTH	# DCS PRODUCED	% ON-LINE TIME	REDISTRIBUTION REACTOR SIZE (Q)
JUNE	11,000	96	3"
JULY	7,000	36	3"
AUGUST	10,000	45	3"
SEPTEMBER	6,200	27	5"
OCTOBER	18,400	95	5"
NOVEMBER	14,350	70	5"
DECEMBER	16,000	66	5"
JANUARY	0	0	5"
FEBRUARY	0	0	5"
MARCH	7,840	46	5"

Kinetic Evaluation for 5-in. Redistribution Reactor

Redistribution Reactor at Bottom of DCS Column I

Stream	Flow #/Mr.	Weight Percent		
		MCS	DCS	TCS
201	2070	12.1	55.2	32.7
206	18350	.6	25.1	74.3
207	17907			100.0
213	28656	8.7	91.3	
214	26153	.2	7.5	78.5
215	26153			100.0
219	2508	2.8	91.5	5.7

**Thermodynamic Redistribution Data:
TCS-STC Mixed-Feed System**

Redistribution Reactor at Bottom of DCS Column II

SILICON MATERIAL TASK

Low-Cost Silicon Process

Decomposition Goals

- DEPOSITION RATE 2.0 G/H/CM
- CONVERSION EFFICIENCY 40%+
- POWER CONSUMPTION <60 KWH/KG
- RUN TIME 100H+

Quartz Tube Deposition Reactor Unit

DCS Process Data: Intermediate Reactor

Run No.	Feed Type	Run Time (hours)	Rod Diameter (mm)	Silicon Fed ($\text{gh}^{-1}\text{cm}^{-1}$)	Silicon Deposition ($\text{gh}^{-1}\text{cm}^{-1}$)	Conversion (Mole %)	Power Consumption (kWh/kg)
324-481	DCS	40.7	48-51	2.9	1.07	36.3	N.A.
324-482	*DCS	75.1	60-65	2.9	0.96	32.5	N.A.
324-483	*DCS	67.5	63-68	2.9	1.12	38.1	N.A.
325-514	*DCS	78.0	84-89	3.9	1.63	41.9	N.A.
325-515	DCS	31.7	44-46	3.7	1.19	32.4	N.A.

* 5 Hour etch after run completed

SILICON MATERIAL TASK

Intermediate Decomposition Reactor Summary

- DICHLOROSILANE REACTOR OPERATION SIMILAR TO TRICHLOROSILANE OPERATION
- NO VAPOR PHASE NUCLEATION IN THE REACTOR
- ROD SURFACE ACCEPTABLE
- PURITY IS SEMICONDUCTOR GRADE QUALITY
- POST HCL ETCH SELECTIVELY REMOVES SILICON FROM THE BELL JAR

QUESTION:

- CAN DECOMPOSITION GOALS BE ATTAINED USING MIXED FEED?
- CAN CONVERSION AND POWER CONSUMPTION GOALS BE ACHIEVED IN A LARGER DECOMPOSITION REACTOR ?

Purity Data

RXR 324 PURITY DATA FOR ELECTRICALLY ACTIVE ELEMENTS
(Boron, Phosphorus, Carbon)

Run No.	Boron (ppma)	Donor (ppma)	Carbon (ppma)
324-419	.08	2.88	0.88
324-420	.08	3.94	0.4
324-421	.08	0.38	
324-422	.06	0.37	
324-423	.06	1.18	
324-424	.06	1.19	
324-425	.06	1.27	
324-426	.06	0.73	0.1
324-427	.06	0.99	
324-428	.05	0.68	0.5
324-429	.07	1.24	
324-430	.07	1.02	
324-431	.07	0.23	0.2
324-432	.07	0.43	0.1
324-433	.07	0.24	
324-434	.04	0.4	0.2
324-435	.04	0.29	0.3
324-436	.30	0.85	
324-437	.10	0.48	
324-438	.10	1.20	0.2
324-439	.08	0.42	0.1
324-440	.04	0.20	0.1
324-441	.04	0.30	
324-442	.06	0.20	0.3
324-443	.06	0.34	0.1
324-444	.04	0.44	0.3
324-445	.06	0.62	
324-446	.06	1.11	
324-447	.06	10.46	
324-450	.05	0.21	
324-451	.05	0.13	0.3
324-452	.05	0.32	0.6
324-453	.06	1.17	
324-454	.06	0.35	0.2
324-455	.06	5.79	0.6
324-456	.07	0.32	0.5
324-457	N.E.	N.E.	
324-458	.06	0.17	0.5
324-459	.06	0.28	0.5
324-460	N.E.	N.E.	
324-461	.10	0.33	0.7
324-462	.10	0.27	0.3
324-463	.10	0.56	
324-464	.10	0.72	
324-465	8.0	7.41	0.5
324-466	.10	0.18	0.3
324-467	.10	0.20	0.6
324-468	.10	0.23	0.5
324-469	N.E.	N.E.	
324-470	1.0	1.21	0.1
324-471	.06	0.69	0.1
324-472	.06	0.24	0.1
324-473	.06	0.73	0.2
324-474	.06	0.25	0.4
324-475	.06	0.39	0.9
324-476	.06	1.83	
324-477	.06	0.87	0.1
# Runs-49	.09 (Avg.)	0.58 (Avg.)	0.3 (Avg.)

SILICON MATERIAL TASK

ORIGINAL PAGE IS
OF POOR QUALITY

**RXR 325 PURITY DATA FOR ELECTRICALLY ACTIVE ELEMENTS
(Boron, Phosphorus, Carbon)**

<u>Run No.</u>	<u>Boron (ppba)</u>	<u>Donor (ppba)</u>	<u>Carbon (ppma)</u>
325-449	.6	30.0	
325-450	.09	0.25	0.7
325-451	.06	1.30	
325-452	.06	0.26	
325-453			
325-454	.07	0.40	0.6
325-455	.10	4.70	
325-456	.51	0.74	
325-457	.19	0.37	0.1
325-458	.19	0.63	0.2
325-459	.08	0.49	
325-460	.06	1.60	0.2
325-461	.08	0.37	0.1
325-462	.06	0.76	
325-463	.06	0.77	
325-464	.06	0.86	
325-465	.06	1.05	
325-466	.06	10.16	
325-467	.06	0.56	0.3
325-468	.05	0.26	0.6
325-469	.06	0.38	0.2
325-470	.06	3.79	0.1
325-471	.04	0.48	0.2
325-472	.06	0.53	0.2
325-473	.06	0.77	0.4
325-476	.04	0.24	0.4
325-477	.04	0.22	0.1
325-478	.04	0.30	
325-479	.03	0.46	0.2
325-480	.08	0.15	0.3
325-481	.10	0.36	0.1
325-482	.10	0.69	0.2
325-483	.10	0.32	0.7
325-484	.06	0.29	0.5
325-485	.06	0.18	0.1
325-486	.10	3.24	
325-487	.10	0.77	0.6
325-488	.10	0.48	0.3
325-489	.10	0.27	0.1
325-490	N.E.	N.E.	
325-491	N.E.	N.E.	
325-492	.06	0.24	0.4
325-493	.10	2.6	0.1
325-494	.10	0.51	0.1
325-495	.10	0.48	0.1
325-496	N.E.	N.E.	
325-497	N.E.	N.E.	
325-498	N.E.	N.E.	
325-499	1.0	0.07	0.1
325-500	.10	0.29	0.3
325-501	.06	0.43	0.1
325-502	.06	0.28	0.8
325-503	.06	0.39	0.1
325-504	.06	0.51	0.1
325-505			
325-506			
325-507	.06	0.34	
325-508	.06	0.20	0.2
Runs-44	.10 (Avg.)	0.48 (Avg.)	0.3 (Avg.)

Reaction Products vs Reaction Temperature

DCS Purity Summary

REACTOR 324

# OF RUNS	DONOR PPBA	BORON PPBA	CARBON PPMA
49	0.58	0.09	0.3
3	0.67	0.04	N.A.

REACTOR 325

44	0.48	0.10	0.3
2	0.38	0.03	N.A.

REACTOR 382

2	1.41	0.07	N.A.
---	------	------	------

Intermediate Decomposition Reactor Results

PARAMETER	OBJECTIVE	ACHIEVED
• DEPOSITION RATE (GH ⁻¹ CM ⁻¹)	2.0	1.6 - 2.1
• CONVERSION EFFICIENCY (MOLE %)	>40	43.6
• POWER CONSUMPTION (KWH/KG)	<60	80 - 100
• RUN TIME	100	87
• ROD SURFACE	CZ QUALITY	CZ QUALITY
• PURITY	SEMICONDUCTOR QUALITY	SEMICONDUCTOR QUALITY
• VAPOR PHASE NUCLEATION	N.A.	NONE OBSERVED

SILICON MATERIAL TASK

Problems and Concerns

- ACHIEVING 40 PERCENT CONVERSION EFFICIENCY
- ACHIEVING A POWER CONSUMPTION AT THE REACTOR OF 60 KWH/KG
- QUARTZ BELL JAR INTEGRITY
- ECONOMICS AND FEASIBILITY OF HYDROGENATION PROCESS

SILICON MATERIAL TASK

IN-HOUSE MATERIAL RESEARCH PROGRAM
Si Deposition in FBR System

JET PROPULSION LABORATORY

G.C. Hsu

2-in. FBR Program

VARIABLES

- TEMPERATURE - 650°C, 700°C, 750°C
- SILANE CONC. - 20%, 50%, 65%
(SiH_4 , H_2)
- U/U_{mf} - 1 TO 6

FIXED PARAMETERS:

- SEED PARTICLE SIZE - $335 \mu\text{m}$ (AVERAGE)
(POLY SI - SEMICONDUCTOR GRADE)
- INITIAL BED WEIGHT ~400 gm
~6 inch HEIGHT
- DISTRIBUTOR: 200 MESH SCREEN ON S.S. SUPPORT WITH
1/16" HOLES
- DURATION OF RUN: UP TO 1 hour (16 RUNS)

SILICON MATERIAL TASK

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

FBR Si Deposition

SILICON MATERIAL TASK

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

SEED

POLY Si PARTICLE ($\sim 335\mu\text{m}$)

PRODUCT

CONDITIONS: 2" FBR
650°C, 50% SiH₄/H₂, U/U_{mf} = 6
DEPOSITION RATE: >1 $\mu\text{m}/\text{min}$
DENSE FREE-FLOWING PARTICLES

Growth Mechanism

Color of Si Fines

- Si FINES - SUBMICRON POWDERS SAME AS CFP Si FINES
- COLOR CHANGES AT DIFFERENT TEMPERATURES
 - SIZE AT DIFFERENT TEMPERATURES
 - HYDROGEN CONTENT SiH_x
(E.G., SiH_{0.2} STABLE AT ROOM TEMPERATURE AND DOES NOT DECOMPOSE IN AIR)
E.G.,
AT 650°C - DULL BLACK (FINELY-DISPersed Si)
AT 750°C - DARK BROWN
- COLOR IS REFLECTED IN FBR PRODUCT PARTICLES (FBR COATING IS COHERENT AND WITH SMALL POROSITY)

Heat and Mass Transfer in Fluidized Bed

SILICON MATERIAL TASK

Dust Formation

- LESS THAN 10% DUST, FOR PROPER FLUIDIZED BED OPERATION
- TO MAINTAIN THE SAME U/U_{mf} FOR SIMILAR FLUIDIZATION QUALITY,
 $U_{650^\circ C} > U_{750^\circ C}$

AT $650^\circ C$, REACTION ABOVE THE BED LED TO HIGHER DUST FORMATION (e.g. UP TO 17%)

- DUST LEVEL INCREASES MODERATELY WITH SILANE CONCENTRATION
- DUST COLLECTION INCREASES MODERATELY WITH U/U_{mf}

Bed Agglomeration

- NO BED AGGLOMERATION FOR PROPER FLUIDIZATION
 - DISTRIBUTOR: FLOW PATTERN AND GAS BUBBLE SIZE
 - VIGOROUS AGITATION: $U/U_{mf} \geq 3$
 - FAST HEATING AT THE REACTOR BOTTOM (REACTION) REGION

Key FBR Design Parameters

- DISTRIBUTOR
- HEATER

Key Operating Parameters

- TEMPERATURE ($650^\circ C \leq T \leq 750^\circ C$)
- FLUIDIZATION QUALITY (e.g. $3 \leq U/U_{mf} \leq 6$)
- BED HEIGHT ($L/D \geq 3$ FOR 2" FBR)

Kinetic Model
Overall Growth, Chemical and Physical

$$\frac{dc_B}{dt} = k_s c_{A0}$$

ASSUME N (No. OF SEED PARTICLES/UNIT BED VOLUME) IS CONSTANT

$$S = 4\pi r^2 N$$

$$c_B = \frac{4}{3} \pi r^3 N \rho / M_B, \quad w_B = \frac{4}{3} \pi r^3 N \rho$$

$$S = \left[4\pi N (3M_B/\rho)^2 \right]^{1/3} c_B^{2/3} = b c_B^{2/3}$$

$$\therefore \frac{1}{b c_{A0}} \int_{c_{B0}}^{c_B} \frac{dc_B}{c_B^{2/3}} = kt, \quad k = 3 \left(c_B^{1/3} - c_{B0}^{1/3} \right) / b c_{A0} t$$

EQUIVALENT GROWTH MODEL (SEM)

$$\frac{dr}{dt} = k c_{A0} M_B / \rho, \quad k = (r - r_0) \rho / c_{A0} M_B t$$

First-Order Heterogeneous Deposition Model

SILICON MATERIAL TASK

ORIGINAL PAGE IS
OF POOR QUALITY

FBR Si Particle Growth by SEM
(2-in. FBR, 650°C, 50% SiH₄/H₂, U/U_{mf} = 6)

t = 30 min
X = 200/1000

t = 45 min
X = 200

t = 60 min
X = 200

SILICON MATERIAL TASK

Particle Growth

I VIA KINETIC MODEL:

- MODEL ASSUMES
- UNIFORM DEPOSITION ACROSS THE BED
 - NO COATING POROSITY
 - CONSTANT VOLUME IN BED

ILLUSTRATION: (TYPICAL VALUES IN THE OPERATING RANGE)

$$S = 94 \text{ cm}^2/\text{cm}^3, C_{A0} = 0.01 \text{ g mole/l}$$

$$\frac{dC_B}{dt} = 0.5 C_{A0} = 0.005, \frac{dr}{dt} = 0.3 \mu\text{m/min}$$

- DEPOSITION RADIUS FROM KINETIC MODEL IS THE LOWER LIMIT FOR ACTUAL GROWTH

II VIA SEM MEASUREMENTS

$$\left. \begin{array}{l} \text{AT } 650^\circ\text{C } \Delta r_{60 \text{ min}} = 62 \mu\text{m} \\ \text{AT } 700^\circ\text{C } \Delta r_{50 \text{ min}} = 70 \mu\text{m} \\ \text{AT } 750^\circ\text{C } \Delta r_{60 \text{ min}} = 100 \mu\text{m} \end{array} \right\} \left(\frac{\Delta r}{\Delta t} \right)_{750^\circ\text{C}} = 1.67 \mu\text{m/min}$$

- DEPOSITION RADIUS FROM SEM MEASUREMENTS IS THE UPPER LIMIT FOR ACTUAL GROWTH

Mass Balance Deposition Rate

(2" FBR, T = 700°C, CONC. = 50% SILANE, U/U_{mf} = 6)

$$\begin{aligned} \text{DEPOSITION RATE} &\equiv 8.24 \text{ gm/min} \\ &\equiv 0.5 \text{ kg/hr} \end{aligned}$$

PROJECTION:

FOR 6" FBR AT 50% SILANE, RATE ~ 4.5 kg/hr

FOR 6" FBR AT 100% SILANE, RATE ~ 9 kg/hr

(ASSUME 70% ON STREAM TIME, DEPOSITION RATE ~ 55 MT/yr)

~ TWO 6" FBR's FOR 100 MT/yr

COMPARISON:

SIEMENS TYPE OF REACTOR (HSiCl₃)

0.3 - 0.5 kg/hr (LENGTH 40 in., dia 3 in., 6 rods)

DEPENDING ON ROD DEPOSITION QUALITY

(e.g. 20 in. DIAMETER x 4 ft BELL JAR REACTOR)

Status of FBR Program

- IN 2 inch FBR SYSTEM:
 - ESTABLISHED CHEMISTRY AND PRODUCT MORPHOLOGY
 - IDENTIFIED OPERATING WINDOW AND DESIGN PARAMETERS
 - DETERMINED DEPOSITION KINETICS
- IN 6 inch FBR SYSTEM:
 - STUDY DISTRIBUTOR FOR PRACTICAL FLOW (MINIMIZING WALL EFFECT)
 - STUDY BED DEPTH FOR INCREASING FINE COLLECTION EFFICIENCY
 - STUDY THE LIMIT OF SILANE CONCENTRATION
 - STUDY SEED PARTICLE SIZE EFFECT
 - STUDY PRODUCT PURITY

Basic JPL 6-in. FBR Experimental Plan
Current Phase (From May 1982)

COMMON CONDITIONS: 700°C, U/U_{mf} = 5, PARTICLE SIZE RANGE: 150-250 μ (MESH No. 60-100)

BASIC RUN No.	PURPOSE	TYPE (OR REMARK)	SILANE CONC.	BED DEPTH	DURATION
1	ESTABLISH BASELINE CONDITION	POROUS CARBON DISTRIBUTOR	20%	6 in	1 hr.
2	BED DEPTH TEST	POROUS CARBON DISTRIBUTOR	20%	12 in.	1 hr.
3	DISTRIBUTOR TESTS	SINTERED METAL (1" THICK)	20%	6 in.	1 hr.
4	DISTRIBUTOR TESTS	CHOSEN FROM COLD FLOW TEST, METAL PLATE POROUS SCREEN	20%	6 in.	1 hr.
5	DISTRIBUTOR TESTS	NOZZLE-CONE DISTRIBUTOR	20%	6 in.	1 hr.
6	REPRODUCIBILITY AND LONG DURATION RUN	DISTRIBUTOR SELECTED FROM DISTRIBUTOR TESTS (FROM RUN No. 6 ON)	20%	6 in.	3 hr. (SAMPLES: 0, 30 min., 1 hr., 2 hr., 3 hr.*)
7	CONCENTRATION LIMIT TEST	DISTRIBUTOR SELECTED FROM DISTRIBUTOR TESTS (FROM RUN No. 6 ON)	0-100% (10% INCRE)	6 in.	TIME AS REQUIRED
8	DEPOSITION KINETICS	CONTROL RUN FOR PURITY ANALYSIS (ALSO WITH PARTICLE DISTRIBUTION ANALYSIS*)	50%	6 in.	1 hr. (0, 15, 30, 45, 60 min*)
9	PARTICLE DEPOSITION DISTRIBUTION	SIMULATED SEED SIZE ADDED (** 10% SEED 44-74 μ , MESH No. 325-200)	50%	6 in.	1 hr. (0, 15, 30, 45, 60 min*)
10	HIGH CONCENTRATION TEST	(COULD USE 12" BED DEPTH, IF NEEDED)	100%	6 in.	30 min.
11	PURITY EVALUATION	USE QUARTZ LINER (NEUTRON ACTIVATION)	50%	6 in.	1 hr.