Word Embeddings

CS 6956: Deep Learning for NLP

Overview

- Representing meaning
- Word embeddings: Early work
- Word embeddings via language models
- Word2vec and Glove
- Evaluating embeddings
- Design choices and open questions

Overview

- Representing meaning
- Word embeddings: Early work
- Word embeddings via language models
- Word2vec and Glove
- Evaluating embeddings
- Design choices and open questions

The evaluation problem

- Suppose we have a way to convert words to vectors
 - Pick your favorite method
- The (sometimes unstated) implication here is that these vectors represent the meaning of words

How can we verify this claim?

Thoughts?

Using word embeddings

Once we have word embeddings, what can we do with them? Several possibilities:

- 1. Measure word similarities and distances
 - Eg: Cosine similarity of two words A and B = $\frac{\mathbf{a}^T \mathbf{b}}{||\mathbf{a}|| ||\mathbf{b}||}$ Other similarity functions are possible
- 2. Use this to find similar words or most dissimilar words

 Eg: Find the odd word among the following: cat, tiger, dog, table

Using word embeddings

Once we have word embeddings, what can we do with them? Several possibilities:

3. Document or short snippet similarities

Question: If we have word vectors, how do we represent documents in the same vector space?

Several answers. Most common: average or add the word embeddings

Gives natural definitions for document similarities

Two broad families of evaluations

1. Intrinsic evaluation: Evaluate the representation directly without training another model

2. Extrinsic evaluation: Evaluate the impact of the representation on another task

-

Two broad families of evaluations

- 1. Intrinsic evaluation: Evaluate the representation directly without training another model
 - Typically simple tasks where success or failure is (almost) entirely a function of the representation
 - Easy to compute, but doesn't say much about the embeddings as features
- 2. Extrinsic evaluation: Evaluate the impact of the representation on another task

-

Two broad families of evaluations

- 1. Intrinsic evaluation: Evaluate the representation directly without training another model
 - Typically simple tasks where success or failure is (almost) entirely a function of the representation
 - Easy to compute, but doesn't say much about the embeddings as features
- 2. Extrinsic evaluation: Evaluate the impact of the representation on another task
 - Typically, a neural network
 - Can be more practically useful, but slow and depends on the quality of the model for the task being tested

Word Analogies

Given an incomplete analogy of the form

a:b::c:?

Find the word that best answers fits

The famous example:

King: Queen:: Man:?

Word Analogies

Given word embeddings, one way to answer the question "a:b::c:?" is

$$\operatorname{argmax}_{i} \frac{(x_{a} - x_{b} + x_{c})^{T} x_{i}}{||x_{a} - x_{b} + x_{c}||}$$

That is, if the answer is the word d, then we have

$$x_a - x_b \approx x_c - x_d$$

Word Analogies

Given word embeddings, one way to answer the question "a:b::c:?" is

argmax_i
$$\frac{(x_a - x_b + x_c)^T x_i}{||x_a - x_b + x_c||}$$

That is, if the answer is the word d, then we have

$$x_a - x_b \approx x_c - x_d$$

Not the only way to answer the question. Instead of this additive method, we could do something multiplicative

Word analogies data sets

Several standard datasets exist for word analogies

- Some capture syntactic patterns
 - give : giving :: take : ?
- Some capture semantic patterns
 - queen: king :: tigress : ?
- Some require world knowledge
 - Utah : Salt Lake City :: Iowa : ?

General trends

- More data helps with analogy evaluations
- Skipgram and Glove are typically competitive and top the charts in general
 - But even sparse PMI vectors over the entire vocabulary is not bad!
- Very low and very high dimensional vectors don't work
 - Need a sweet spot for best results

Word similarity evaluation

Another intrinsic evaluation

- Pairs of words are hand-annotated with similarity scores
- The goal of the embeddings is to produce these scores
 - Or perhaps more reasonably, similar clusterings or rankings as the scores

 Standard software libraries exist for evaluating embeddings in this fashion