FORMULAIRE

Dans tout ce formulaire on ne parle pas du domaine de définition de la formule : par exemple \sqrt{a} sous-entend $a \ge 0, n \in \mathbb{N}^*, k$ est une constante.

Logarithme et Exponentielle : $e^{\ln x} = \ln(e^x) = x$

$\ln 1 = 0$	$\ln 1 = 0 \ln(ab) = \ln(a) + \ln(b)$		$\ln(a/b) = \ln(a) - \ln(b)$		$\ln(1/a) = -\ln(a)$		$\ln(\sqrt{a}) = \ln(a)$)/2	$\ln(a^{\alpha}) = \alpha \ln(a$
$e^0 = 1$			$e^{x-y} = e^x/e^y$		$e^{-x} = 1/e^x$		$\sqrt{\mathbf{e}^x} = \mathbf{e}^{x/2}$		$(e^x)^y = e^{xy}$
$\lim_{x \to -\infty} e^x = 0$		$\lim_{x \to +\infty} e^x = +\infty$	$\lim_{x \to 0} \ln(x) = -\infty$	$\lim_{x \to +\infty} \ln(x) = +\infty$		$\lim_{x \to 0} x \ln(x) = 0$		$\lim_{x \to 1}$	$\lim_{+\infty} \ln(x)/x = 0$
$\lim_{x \to -\infty} x e^x = 0$		$\lim_{x \to +\infty} e^x/x = +\infty \lim_{x \to +\infty} \ln(x)/x = 0$		$\lim_{x \to -\infty} x^n e^x = 0$		$\lim_{x \to \pm}$	$\frac{1}{1} e^x / x^n = +\infty$	li:	$\lim_{n \to \infty} \ln(x)/x^n = 0$

Dérivées

Fonctions usuelles		Fonctions usuelles		Règle	Exemples	
f(x)	f'(x)	f(x)	f'(x)			
k	0	x	1	(u+v)' = u' + v'	$(u \times v)' = u'v + uv'$	$\left(3x^2 \ln x\right)' = 6x \ln x + 3x$
$k \times x$	k	x^k	kx^{k-1}	$(k \times u)' = k \times u'$	$(u^k)' = ku'u^{k-1}$	$\left(\sin^3(x)\right)' = 3\cos x \sin^2 x$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\frac{1}{x^n}$	$-\frac{n}{x^{n+1}}$	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$	$\left(\frac{1-x^2}{1+x^2}\right)' = \frac{-4x}{(1+x^2)^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\ln x$	$\frac{1}{x}$	$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}$	$(u(v(x)))' = u'(v(x)) \times v'(x)$	$\left(\sin\left(e^{2x}\right)\right)' = 2e^{2x}\cos\left(e^{2x}\right)$
$\sin x$	$\cos x$	e^x	e^x	$(\sin u)' = u' \cos u$	$(\ln u)' = \frac{u'}{u}$	$\left(e^{-5x^3} \right)' = -15x^2 e^{-5x^3}$
$\cos x$	$-\sin x$	$\tan x$	$1 + \tan^2 x$	$(\cos u)' = -u' \sin u$	$(e^u)' = u'e^u$	$\left(\sin(x^3)\right)' = 3x^2\cos(x^3)$

Dérivées partielles

On dérive une fonction de plusieurs variables par rapport à une variable en considérant les autres variables comme constantes. $\frac{\partial}{\partial x}(-5x^2y^3) = -10xy^3 \qquad \frac{\partial}{\partial y}(-5x^2y^3) = -15x^2y^2 \qquad \frac{\partial}{\partial x}e^{-5x^2y^3} = -10xy^3e^{-5x^2y^3} \qquad \frac{\partial}{\partial y}e^{-5x^2y^3} = -15x^2y^2e^{-5x^2y^3}$

Matrice Jacobienne, Trace, Déterminant

Pour un système $\left\{ \begin{array}{l} x' = f(x,y) \\ y' = g(x,y) \end{array} \right. \text{ on définit la } \textit{Matrice Jacobienne} : A(x,y) = \left(\begin{array}{l} \frac{\partial f}{\partial x}(x,y) & \frac{\partial f}{\partial y}(x,y) \\ \frac{\partial g}{\partial x}(x,y) & \frac{\partial g}{\partial y}(x,y) \end{array} \right)$

Pour une matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on définit sa trace tr(A) = a + d et son déterminant det(A) = ad - bc.

Moyenne, Variance, Covariance

Pour une série X de n mesures x_i , on a la moyenne $\mu(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$, la variance $Var(X) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu(X))^2 = \mu(X^2) - \mu(X)^2$,

l'écart-type $\sigma(X) = \sqrt{\operatorname{Var}(X)}$. On a $\mu(aX + b) = a\mu(X) + b$, $\operatorname{Var}(aX + b) = a^2\operatorname{Var}(X)$, $\sigma(aX + b) = |a|\sigma(X)$. Pour une série de n couples de mesures (x_i, y_i) , on a le centre de gravité $G = (\mu(X), \mu(Y))$,

la covariance $\operatorname{Cov}(X,Y) = \frac{1}{n} \left(\sum_{i=1}^{n} (x_i - \mu(X))(y_i - \mu(Y)) \right) = \mu(XY) - \mu(X)\mu(Y),$

le coefficient de corrélation linéaire $\rho(x,y) = \frac{\operatorname{Cov}(x,y)}{\sqrt{\operatorname{Var}(x)\operatorname{Var}(y)}}$, la droite des moindres carrés $y = \hat{a}x + \hat{b}$, où $\hat{a} = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)}$, $\hat{b} = \mu(Y) - \hat{a}\mu(X)$.

Inertie Totale, Intraclasse, Interclasse

Pour un nuage Γ de n points M_i et de centre de gravité G on a l'inertie totale $\mathcal{I}(\Gamma) = \frac{1}{n} \left(d(M_1, G)^2 + d(M_2, G)^2 + \dots + d(M_n, G)^2 \right)$. Si ce nuage est la réunion disjointe de k sous-nuages $\Gamma_1, \dots, \Gamma_k$, de centres de gravité G_1, \dots, G_k , formés de n_1, \dots, n_k points on a l'inertie intraclasse : $\mathcal{I}_{intra} = \overline{p}_1 \mathcal{I}(\Gamma_1) + \ldots + \overline{p}_k \mathcal{I}(\Gamma_k)$ où $\overline{p}_i = n_i/n$ est le poids relatif de Γ_i dans Γ et l'inertie interclasse : $\mathcal{I}_{inter} = \overline{p}_1 d_2(G_1, G)^2 + \ldots + \overline{p}_k d_2(G_k, G)^2$, alors $|\mathcal{I}(\Gamma) = \mathcal{I}_{intra} + \mathcal{I}_{inter}|$