Atiyah-Singer Index Theorem Seminar.

Traces & Eigenvalue Asymptotics

(Cagri Karakurt).

Let: M - closed Rien, mfld

D - Laplace on L2(M)

Last times et is a smoothing operator,

e-taf(x1)= [k/x1,x2)f(x2)docz

Asymptotic expansion

 $k_{t}(x_{1}x_{2}) \sim \frac{1}{(4\pi t)^{\gamma_{2}}} \left( \Theta_{o}(x_{1},x_{2}) + t \Theta_{1}(x_{1},x_{2}) + \cdots \right),$ 

Along the diagonal,  $\Theta_{i}(x,x)$  are alg. expressions of Metric and connection coefficients, e.g.  $\Theta_{o}(x,x)=1, \ \Theta_{i}(x,x)=\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x)+\frac{1}{6}N(x$ 

| Joday: Use the asymptotic expansion to study the spectrum                                     |
|-----------------------------------------------------------------------------------------------|
|                                                                                               |
| Recalli Spectrumof A is a discrete set O≤ \1 ≤ \2 ≤ ···.                                      |
| Want to say $Tr(e^{t\Delta}) = \sum_{i=0}^{\infty} e^{-t\lambda}i$                            |
|                                                                                               |
| We will see                                                                                   |
| $Tr(e^{-t\Delta}) = \int_{M} k_t(x,x) dx$ .                                                   |
| Use the asymptotic expansion, combine & with the , to get                                     |
| ^                                                                                             |
| (4Tt) = -tx; ~a.+a,t+a,t2+ ***                                                                |
| $a_i = \bigcap_{i \in X} (x, x) dx$ .                                                         |
| 0.1                                                                                           |
| En, ao, a, az, I determine eachother.                                                         |
| En, ao, a, az, 3 determine eachother.                                                         |
| E. 1.0-[11 \/\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                               |
| Example: $a_0 = \int_M dx = Vol(M)$ ; $a_1 = \frac{1}{6} \int_M K(x) dx = "total curvature".$ |
| Corollary:                                                                                    |
|                                                                                               |
| For n=2, the spectrum determines the topology of M.                                           |
|                                                                                               |
|                                                                                               |

## Application: Weyls Asymptotics. Define $11(\lambda) = \max\{j \mid \lambda_i \leq \lambda \}$ . Jh~: $11(\lambda) \sim \frac{1}{(4\pi)^{\frac{1}{2}}(\Gamma(\frac{\alpha}{2}+1))} vol(M) \lambda^{\frac{1}{2}} \infty \lambda \rightarrow \infty.$ Here T is Euler's Gamma function T(Z)= Stett (M)=(n-1)) $A(\lambda) \sim B(\lambda) : \int_{\mathbb{R}^{n}} \frac{A(\lambda)}{B(\lambda)} = 1$ Crude estimate for 12(2). Let $j=n(\lambda)$ , $s_1,...,s_j$ ON eigenfines with eigenvalues less than $\lambda$ . Let $S = \sum_{i=1}^{n} \alpha_i S_i$ (for some $\alpha_i$ ), and let k=min [ke22/k>n]. Fix xEM <C2(1+X)||S||<sub>W</sub><sup>2</sup>-1 < ··· < C(1+X) ||S||<sub>L</sub><sup>2</sup> $\leq C(1+\lambda)^{\frac{1}{2}} \left( \sum_{\alpha \in \mathbb{Z}} |\alpha_{\alpha}|^{2} \right)^{\frac{1}{2}}$

Choose 
$$\alpha_i = \overline{S_i}(x)$$
, so

$$\sum_{i=1}^{j} |S_i(x)|^2 \leqslant C(1+\lambda)^{\frac{1}{2}} \left(\sum_{i=1}^{j} |S_i|^2\right)^{\frac{1}{2}}$$
Divide by  $\left(\sum_{i=1}^{j} |S_i|^2\right)^{\frac{1}{2}}$  then square both sides.

$$\left(\sum_{i=1}^{j} |S_i|^2 \leqslant \int_{M} C(1+\lambda)^{\frac{1}{2}} \leqslant C^2(1+\lambda)^{\frac{1}{2}} V_0|(M)\right)$$

$$= \sum_{i=1}^{j} |S_i|_{L^2} = j = n(\lambda).$$
So:  $M(\lambda) \leqslant C^2(1+\lambda)^{\frac{1}{2}} V_0|(M)$ .

| Trace Class Operators.                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| l l                                                                                                                                         |
| Slogan: Smoothing operators are trace dass.                                                                                                 |
| Let H, H be separable Hilbert spaces, A: H-> H' a bounded operator.                                                                         |
| operator.                                                                                                                                   |
|                                                                                                                                             |
| Represent A by an infinite matrix: fix bases $\{e; \mathcal{T}\}$ for $\mathcal{H}$ , and let $C_{ij}(A) = \langle Ae_{i}, e_{i} \rangle$ . |
| = 1 lot (1) - (1) - (1)                                                                                                                     |
|                                                                                                                                             |
| Definition: The Hilbert-Schmidt norm of A is defined by                                                                                     |
| 0                                                                                                                                           |
| $\ A\ _{\operatorname{Hs}}^{2} = \sum_{i,j}  c_{ij}(A) ^{2} \in [0,\infty].$                                                                |
| A is called a Hilbert-Schmidt operator if IIAIIHS < 00                                                                                      |
| •                                                                                                                                           |
| Proposition:                                                                                                                                |
| Allys is independent of the choice of {e;} and {e;}.                                                                                        |
| TIPYIHS IS independent of the choice of (Ci) and (Ci).                                                                                      |
| Poof:                                                                                                                                       |
| \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\                                                                                                      |
| Jix i, wite Ae:= = {Ae:,e; >e; .                                                                                                            |
| Parseval's 7h= >   Ae:   2= ] (Ae: ei)2                                                                                                     |
| C <sub>ii</sub>                                                                                                                             |
| $\Rightarrow \sum_{i}   Ae_{i}  ^{2} =   A  _{HS}^{2}$                                                                                      |
| indep. of dione of Ee;1)                                                                                                                    |
|                                                                                                                                             |



| Proposition:                                                                                               |
|------------------------------------------------------------------------------------------------------------|
| (1) 11.11Hs is induced by an inner product                                                                 |
| $\langle A, B \rangle_{Hs} = \sum_{i,j} \overline{C_{ij}}(A) C_{ij}(B)$                                    |
| (2) The space of HS operators with (,) is a Hilbert space.                                                 |
| $(3) \left\  \cdot \right\  \leqslant C \left\  \cdot \right\ _{HS}$                                       |
| (4) HS operators are compact.                                                                              |
|                                                                                                            |
| (5) If A,B are HS and C is bounded, then A+B, A°C,<br>C.A are HS.                                          |
| Remark: Trace Class = HS = Compact = Bounded                                                               |
| $l_1 \subseteq l_2 \subseteq c_0 \subseteq l_\infty$                                                       |
| Def: T:H->H is said to be of trace class if there exist HS operators A,B s.t. T=AB. In this case we define |
| $Tr(T) = \langle A^*, B \rangle_{HS}$ .                                                                    |
| Fact: Tr(T) is independent of the decomposition T=AB.                                                      |
| <br>Proposition:                                                                                           |
| If T is self-adjoint and trace class then Tr(T) is the sum of eigenvalues of T.                            |

| Proposition:                                                                                               |
|------------------------------------------------------------------------------------------------------------|
|                                                                                                            |
| Let T, B:H→H be bounded operators, and suppose                                                             |
| (a) Tistrace days or (b) both T and B are HS.                                                              |
| Then: (i) Both TB and RT ame trace done                                                                    |
| Then: (i) Both TB and BT are trace dass.  (ii) Tr(TB)=Tr(BT).                                              |
| Proof (of (ii)):                                                                                           |
| 1100+ (0+(11))-                                                                                            |
| Choose an ON basis,                                                                                        |
|                                                                                                            |
| $T_r(TB) = Z \langle TBe_{i,e_i} \rangle = Z \langle Be_{i,T}^*e_{i} \rangle$                              |
| = Zīcij(B) cij(T) (by Paneval's Jh~),                                                                      |
| sum is abs. convergent & symmetric in T and B.                                                             |
| Proposition (cts kernel ⇒ H5):                                                                             |
| Let A bethe bounded operator on L2(M) defined by                                                           |
| $Au(x_1) = \int_{M} k(x_1, x_2)u(x_2)dx_2$                                                                 |
| where k is continuous on M×M. Then A is HS and                                                             |
| $\ A\ _{HS} = \int \int  \mathbf{k}(\mathbf{x}_{1}, \mathbf{x}_{2}) ^{2} d\mathbf{x}_{1} d\mathbf{x}_{2}.$ |
| · · · · · · · · · · · · · · · · · · ·                                                                      |

Proof:

Choose ON basis 
$$ee_j$$
 for  $L^2(M)$ .

$$|A|_{RS}^2 = \sum |Ae_j|^2 = \sum |Ae_j(x)|^2 dx$$

$$= \sum_j \int_M |\int_{M} k(x_j, x_k) e_j(x_k) dx_k^2 dx_k$$

$$= \int_M \int |\int_{M} k(x_j, x_k) e_j(x_k) dx_k^2 dx_k$$

$$= \int_M \int |\int_{M} k(x_j, x_k) e_j(x_k) dx_k^2 dx_k$$

$$= \int_M |\int_{M} k(x_j, x_k) dx_k^2 dx_k^2 dx_k$$

$$= \int_M |\int_{M} k(x_j, x_k) dx_k^2 dx_k^2 dx_k^2 dx_k$$

$$= \int_M |\int_{M} k(x_j, x_k) dx_k^2 dx_k^$$

operators with continuous kernels ka, kc. Then

Tr (A) = (B\*, C)<sub>HS</sub> and (,)<sub>HS</sub> is determined by 
$$\|\cdot\|_{HS}$$
 and the polarization identity

(A, B) =  $\frac{1}{4}$  ( $\|A + B\|^2 + \|A - B\|^2$ ).

So,

Tr(A) =  $\|k_0(x_1, x_2)k_c(x_1, x_2)dx_1dx_2 = \int k(x, x)dx_2$ .

Now: why should a smoothing operator be of trace class?

In [Roe, Ch. S] we saw  $B = (1 + \Delta)^N$  has continuous kernel (hence  $H$ : libert-Schridt). Hence, write

 $A = BC$ ,  $C = (1 + \Delta)^N A^N$  smoothing speator (in particular heacts kernel  $\Rightarrow HS$ )

So A is a product of two HS operators, thus is trace class.

Remark:

If general daplacian on  $M$ ,  $e^{\pm \Delta}$  has smooth kernel  $K \in \Omega^n(S \boxtimes S^n)$ .

Theorem:

If A is a smoothing operator on  $L^2(S)$  with kernel  $k \in \Omega^0(S \otimes S)$ 

$$Tr A = \int_{M} tr(Diog^*(k)) dx$$

$$= \int_{M} tr(k(x,x)) dx.$$