Nonparametric Curve Estimation

This typically refers to estimating a density or regression function

- We want to fit a curve to data
- We want to fit a "smooth" curve to the data because we assume the true underlying curve is smooth
- This deals with the bias-variance tradeoff
 - A smoother curve leads to higher bias, but lower variance around each point

We consider a true function g and its estimator \hat{g}

- Denoted as $g(\cdot) \rightsquigarrow \hat{g}(\cdot)$
- Bias: $b(x) = \mathbb{E}\left[\hat{g}(x)\right] g(x)$
- Variance: $v(x) = \operatorname{Var}\left[\hat{g}(x)\right]$
- MSE: $ext{MSE}(\hat{g}(x)) = b^2(x) + v(x)$

MISE

The mean integrated square error (MISE) is defined as:

$$R(\hat{g},g) = \int ext{MSE}(\hat{g}(x)) dx = \int b(x)^2 dx + \int v(x) dx$$

Density Estimation with Histograms

Suppose we observe samples $X_i \sim p$, where p is a probability density on the unit interval

- We want to construct a histogram estimator \hat{p} of p
 - \circ We create m equally spaced bins B_j of width h=1/m and count the proportion of observations in each bin
 - \circ $\hat{p}(x) = \sum_{j=1}^m rac{\#\{i: X_i \in B_j\}}{nh} \mathbb{1}(x \in B_j)$
 - The 1/h is to normalize to make sure \hat{p} integrates to 1 and can be ignored if just using for visualization

Bias of \hat{p} :

- If p is smooth, we can do the calculation to find that the bias at any point x is 0 as h goes to 0
- The same can be said for the integrated square bias
- ullet As h decreases, the bias decreases

Variance of \hat{p} :

- We can do the calculation to find that when *h* is small, we have that:
- $v(x) \approx \frac{1}{nh}p(x)$
- Therefore, the smaller the bin width, the larger the variance

This gives the idea that there is some intermediate point with an optimal h

- ullet However, finding this depends on the true, unknown density p
- Cross validation with a testing set can help to find this value of *p*

Kernel Density Estimators

Previously, we were estimating a function by a discontinuous step function

• We want to estimate via another smooth function

Kernel

A kernel K is a function satisfying $K(x) \geq 0$, $\int K(x) dx = 1$, and $\int x K(x) dx = 0$

• This is true of any pdf symmetric about the origin (i.e. the Gaussian pdf)

■ Kernel Density Estimator

A kernel density estimator (KDE) of p with kernel K is the estimator:

$$\hat{p}(x) = rac{1}{nh} \sum_{i=1}^n K\left(rac{x-X_i}{h}
ight)$$

- ullet For the rectangular kernel, \hat{p} will not be smooth, but we will get a smooth function if K(x) itself is smooth
- ullet In the contxt of KDEs, h is called the bandwidth

■ 2D Kernel Density Estimator

$$\hat{p}(x) = rac{1}{nh^2} \sum_{i=1}^n K\left(rac{x-X_i}{h}
ight) K\left(rac{y-Y_i}{h}
ight)$$