20250605 BD BPT SFR.md

Be careful with 1e-20 and 10^{20} , not 10e-20!!!

Balmer decrement

At first, I use a threadhold that $\mathrm{flux}/\mathrm{flux}_\mathrm{err}>5$ for both $\mathrm{H}\alpha$ and $\mathrm{H}\beta$ lines, but for the outer region, a few bins have $\frac{H_\alpha}{H_\beta}<2.86$. After tweaking, I decide to use the threadhold at 15 so that only two bins have negative $E(B-V)_{BD}<0$.


```
Lowest Balmer Decrement: 1.0401808450211778

Highest Balmer Decrement: 9.36650837704988

Lowest 5 unique non-NaN Balmer Decrement values: [1.04018085
2.65574445 2.82774723 3.09627082 3.22428465]
```

Below is the histogram of SNR for all emission lines:

In fact, at least 22 can get rid of these two bin:

But for now, I choose 15.

Then I can recreate the gas E(B-V) map using Balmer decrement (same as Belfiore et al. 2023)

$$E(B-V)_{BD} = \frac{2.5}{k_{H_{\beta}} - k_{H_{\alpha}}} \log_{10} \left[\frac{L_{H\alpha}/L_{H_{\beta}}}{2.86} \right]$$
 (1)

with $k_{H_{eta}}=3.609~k_{H_{lpha}}=2.535$ from Cardelli et al. 1989

As a comparison, here i show the E(B-V) map from stellar continuum and the ratio between them:

BPT diagram

Here I apply the same mask (flux/flux $_{\rm err}>5$ for Hlpha and Heta) for $O[III]\lambda5007$, Hlpha, [NII] $\lambda6584$, and [SII] $\lambda\lambda6717$, 6731, and adopt the diagnostic from Kewley et al. 2006


```
Number of spaxels in [N II] BPT regions:
HII: 13943, Comp: 1157, AGN: 0
Number of spaxels in [S II] BPT regions:
HII: 15100, Seyfert: 0, LINER: 0
```

Here I define a conservative SF by double-pass the ke01 citeria (red curves) in both BPT diagram. Thus, in the case that $flux/flux_{err} \geq 15$ for $H\alpha$ and $H\beta$, all the $H\alpha$ spaxels in IC3392 are driven by SF.

SFR

Below is the raw $H\alpha$ map

First I apply the extinction correction for Hlpha flux (same as Belfiore et al. 2023):

$$L_{H_{\alpha,corr}} = L_{H_{\alpha}} 10^{0.4k_{H_{\alpha}}E(B-V)} \tag{2}$$

Now assume the distance at 16.5 Mpc, I can construct the ${\rm H}\alpha$ luminosity map:

Total corrected H α Luminosity for purely SF spaxels: 2.70e+40 erg / s

To convert H_{α} luminosity to SFR, I adopt the same approach as equation 3 in Belfiore et al. 2023:

$$SFR[M_{\odot}/yr] = C_{H_{lpha}} L_{H_{lpha,corr}}[erg/s]$$
 (3)

with $C_{H_lpha}=5.3 imes10^{-42}$ from Calzetti et al. 2007.

Total SFR from corrected $H\alpha$ Luminosity for purely SF spaxels: 0.14 M sun/yr or log(SFR) = -0.84 M sun/yr

Check

By table 7 of Koopmann 2001, IC3392 have ${\rm H}_{\alpha}$ flux in $\log(-12.60)~erg/s/cm^2$, while I have $\log(-12.08)~erg/s/cm^2$ for extinction corrected SF region and $\log(-12.70)~erg/s/cm^2$ for raw data.

In Leroy et al. 2019, the SFR of IC3392 is $\log(-1.30)M_{\odot}/yr$ from UV + IR emissions, while I have $\log(-0.84)M_{\odot}/yr$ from H α emissions.