

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C10G 67/04, 45/64		A1	(11) International Publication Number: WO 99/45085 (43) International Publication Date: 10 September 1999 (10.09.99)
(21) International Application Number: PCT/US99/02121		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 29 January 1999 (29.01.99)		Published <i>With international search report.</i>	
(30) Priority Data: 60/077,070 6 March 1998 (06.03.98) US 09/107,835 30 June 1998 (30.06.98) US			
(71) Applicant: CHEVRON U.S.A. INC. [US/US]; 555 Market Street, San Francisco, CA 94105 (US).			
(72) Inventor: MILLER, Stephen, J.; 520 45th Avenue, San Francisco, CA 94121 (US).			
(74) Agents: KLAASSEN, Alan, W. et al.; Chevron Corporation, Law Dept., P.O. Box 7141, San Francisco, CA 94120-7141 (US).			
(54) Title: PREPARING A HIGH VISCOSITY INDEX, LOW BRANCH INDEX DEWAXED OIL			
(57) Abstract			
<p>An integrated process for preparing a lubricating oil base stock includes an isomerization step followed by a solvent dewaxing step. A waxy feed is isomerized to an intermediate pour point, which is at least 6 °C above a target pour point, over a select molecular sieve having specified pore properties. The isomerized oil is then solvent dewaxed to a very low pour point. This process produces a dewaxed lubricating oil base stock which has an exceptionally high viscosity index.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republik of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

1 **PREPARING A HIGH VISCOSITY INDEX,**
2 **LOW BRANCH INDEX DEWAXED OIL**

3 This patent application claims priority from U.S. Provisional Patent
4 Application Serial No. 60/077070, filed March 6, 1998, the specification of
5 which is incorporated herein by reference for all purposes.

6 **BACKGROUND OF THE INVENTION**

7

8 The present process is a dewaxing process for producing very high
9 viscosity index, low pour point lubricating oil base stocks from a mineral oil
10 feed. When preparing a lubricating oil base stock from a mineral oil, viscosity
11 index is generally increased to a target value during an upgrading step using
12 hydrocracking, solvent refining, etc. Pour point is generally reduced to a
13 target value during a dewaxing step, using catalytic or solvent dewaxing. In
14 conventional processes, the viscosity index generally decreases during
15 dewaxing, since conventional dewaxing processes remove high viscosity
16 index wax from the lubricating oil base stock. Improvements in automotive
17 engine design is putting ever increasing pressure on the quality of motor oils.
18 Demand for low volatility oils having superior low temperature properties is
19 increasing, and refiners are constantly looking for new processes to aid them
20 in meeting current demands.

21 High quality lubricants should be, and generally are, paraffinic in
22 nature, since paraffins have a high viscosity index. However, normal
23 paraffins, in particular, are waxy in character, and contribute to a high pour
24 point in the oil. Conventional processes for removing these normal paraffins
25 reduce yield of the lubricant, and have a tendency to reduce the viscosity
26 index of the dewaxed oil. The viscosity index may be increased in the
27 lubricating oil base stock by addition of viscosity index improvers. However,
28 viscosity index improvers are expensive, and tend to fragment at conditions of
29 high temperature and high shear, both of which are commonly found in
30 modern automotive engines.

1 Synthetic lubricants may be used when very low pour point and very
2 high viscosity index lubricants are desired. But the starting materials used to
3 make the synthetic lubricants, and the processes used in manufacturing these
4 lubricants, are very expensive. The need remains for a lubricating oil base
5 stock, having synthetic-like properties but prepared from a mineral oil feed
6 using methods which are similar to those presently employed in refinery
7 processes.

8 A major breakthrough came with the discovery of new dewaxing
9 catalysts which were found to isomerize rather than crack the wax molecules.
10 Isomerization alters the molecular structure of wax molecules, and generally
11 decreases the pour point of the molecule without significantly changing its
12 boiling point. In contrast to solvent dewaxing and to wax cracking, isomerized
13 molecules are retained in the lubricating oil base stock, increasing yield of
14 lubricating oil base stock without reducing viscosity index significantly. A
15 particularly important group of isomerization catalysts include the
16 silicoaluminophosphate molecular sieves (SAPO). The preparation of
17 silicoaluminophosphate molecular sieves, including SAPO-11, SAPO-31 and
18 SAPO-41, are taught, for example, in U.S. Patent No. 4,440,871. Dewaxing
19 processes using such molecular sieves are taught in U.S. Patent
20 No. 4,859,311; U.S. Patent No. 4,867,862; U.S. Patent No. 4,921,594; U.S.
21 Patent No. 5,082,986; U.S. Patent No. 5,135,638; U.S. Patent No. 5,149,421;
22 U.S. Patent No. 5,246,566; U.S. Patent No. 5,413,695; and U.S. Patent
23 No. 4,960,504.

24 SAPO molecular sieves belong to an important class of non-zeolitic
25 molecular sieve dewaxing catalysts which are useful as isomerization
26 catalysts for converting wax and wax-like components. Non-zeolitic molecular
27 sieves are microporous compositions that are formed from AlO₂ and PO₂
28 tetrahedra which form 3-dimensional crystalline structures, and are described
29 broadly for this use in U.S. Patent No. 4,906,351 and U.S. Patent
30 No. 4,880,760.

1 These catalysts with isomerization and hydroisomerization activity have
2 been found to provide a method for preparing very high viscosity index
3 lubricating oil base stocks from waxy feedstocks in a single reaction step.
4 Producing a C₂₀⁺ lube oil from olefins, including normal alpha olefins, using an
5 intermediate pore size molecular sieve and at least one Group VIII metal, is
6 taught in U.S. Patent No. 5,082,986. In U.S. Patent No. 5,135,638, a waxy
7 feed containing greater than about 50% wax is isomerized over a catalyst
8 comprising a molecular sieve having 1-D pores having a minor axis between
9 about 4.2Å and about 4.8Å and a major axis between about 5.4Å and about
10 7.0Å and at least one Group VIII metal at a pressure of from about 15 psig
11 (103 kPa) to about 2000 psig (13.8 MPa). SAPO-11, SAPO-31, SAPO-41,
12 ZSM-22, ZSM-23 and ZSM-35 are included in U.S. Patent No. 5,135,638 as
13 intermediate pore size materials which possess the indicated pore geometry.
14 In U.S. Patent No. 5,282,958, a feed including straight chain and slightly
15 branched chain paraffins having 10 or more carbon atoms is isomerized with
16 an intermediate pore size molecular sieve having a defined pore geometry,
17 crystallite size, acidity and isomerization selectivity. Feeds which may be
18 processed by the method of U.S. Patent No. 5,282,958 include waxy feeds,
19 which contain greater than about 50% wax. Such feeds are also taught as
20 often containing greater than 70% paraffinic carbon. U.S. Patent
21 No. 5,376,260 is directed to pour point reduction of a heavy oil which contains
22 naphthenic wax, using SSZ-32. Heavy oils comprising up to 100% wax are
23 taught.

24 Large pore zeolites represent another class of catalysts which have
25 been taught for wax isomerization. EP 464546 teaches producing a high
26 viscosity index lubricant from a petroleum wax feed having a paraffin content
27 of at least 40 weight percent. The catalyst is a low acidity zeolite
28 isomerization catalyst having an alpha value of not more than 20. Zeolite
29 beta which contains boron as a framework component of the zeolite is taught
30 as being preferred. The catalyst in WO 96/26993 is a low acidity large pore
31 zeolite isomerization catalyst having a ratio of SiO₂/Al₂O₃, as synthesized, of

1 at least 200:1. WO 96/13563 teaches an isomerization process for producing
2 a high viscosity index lubricant using a low acidity large pore molecular sieve
3 having a crystal size of less than 0.1 micron, an alpha value of not more than
4 30 and containing a noble metal hydrogenation component. EP 225053
5 teaches isomerization dewaxing using a large pore, high silica zeolite
6 dewaxing catalyst, followed by a subsequent dewaxing step which selectively
7 removes the more waxy n-paraffin components. The selective dewaxing step
8 may be either a solvent or a catalyst dewaxing, preferably using highly shape
9 selective zeolite such as ZSM-22 or ZSM-23.

10 While the intermediate pore size molecular sieves have been shown to
11 be effective for producing high viscosity index lubricating oil base stocks, the
12 need remains for even higher viscosity index products which have been
13 dewaxed to a low pour point.

14 SUMMARY OF THE INVENTION

15 An object of the present invention is to provide a process for producing an oil,
16 having a very high viscosity index and a very low pour point, which is suitable
17 for use as a lubricating oil base stock. The feedstock to the present process
18 is a waxy feed which may be derived from mineral oils and mineral oil crudes.
19 The oil which is produced has lubricating oil properties that approach, and
20 may exceed, the lubricating oil properties of a synthetic lubricating oil base
21 stock. Accordingly, the present invention provides a process for preparing an
22 oil suitable for use as a lubricating oil base stock and having a viscosity index
23 of greater than 140 and a target pour point of less than or equal to -10°C
24 comprising:

25 a) contacting a waxy feed over a catalyst comprising a molecular sieve
26 having 1-D pores with a pore diameter of between about 5.0 Å and
27 about 7.0 Å, and at least one Group VIII metal, at a pressure of from
28 about 15 psig (103 kPa) to about 2500 psig (13.8 MPa) to produce an
29 isomerized oil having a pour point of at least 6°C above a target pour
30 point; and

1 b) solvent dewaxing the isomerized oil to produce a lubricating oil base
2 stock having the target pour point and a viscosity index of greater than
3 about 140.

4 A particularly preferred molecular sieve useful in the isomerization step
5 has sufficient isomerization selectivity such that, when contacting a n-C₂₄ feed
6 at a total pressure of 1000 psig (6.99 MPa), hydrogen flow equivalent to 6.7
7 MSCF/bbl (1010 std liters H₂/kg oil), and a feed rate equivalent to 0.6 hr⁻¹
8 LHSV with a catalyst comprising the molecular sieve, to produce a 316°C+
9 dewaxed product having a pour point of about +20°C and solvent dewaxing
10 the dewaxed product to a pour point of -15°C or below, an isomerized
11 product having a branching index of less than about 1.75 is formed.

12 The process is capable of producing an oil having a very high viscosity
13 index, e.g., greater than about 140 or even greater than about 150. The
14 process is further capable of producing an oil having a very low pour point,
15 e.g. less than or equal to about -10°C, or less than or equal to about -20°C, or
16 even less than or equal to about -30°C.

17 In another embodiment, the present invention provides a unique
18 lubricating oil base stock, which has a viscosity index of at least about 140,
19 preferably at least about 150 and more preferably at least about 160, a pour
20 point of less than or equal to about -10°C, and a viscosity, measured at
21 100°C, of about 3 cSt or less.

IN THE FIGURES

22 Figure 1 shows the benefit of isomerizing a waxy feed with SM-3 and
23 solvent dewaxing the isomerized oil compared to isomerizing the waxy feed
24 alone.

25 Figure 2 shows the benefit of isomerizing a waxy feed with SSZ-32 and
26 solvent dewaxing the isomerized oil compared to isomerizing the waxy feed
27 alone.

1

DETAILED DESCRIPTION OF THE INVENTION

3 Normal paraffins are a major contributor to wax and a high pour point
4 in a lubricating oil base stock. It is desirable to isomerize the normal paraffins
5 to low pour point branched paraffins which retain the boiling range of the
6 normal paraffins from which they were converted.

7 Among other factors, the present invention is based on the discovery
8 that the number of branches produced while isomerizing a normal paraffin
9 molecule significantly impacts the quality of the dewaxed oil product. For
10 example, isomerizing a normal C₂₄ paraffin, tetracosane, using a large pore
11 zeolite catalyst conventionally taught for wax isomerization, generally
12 produces a significant quantity of triply branched paraffin isomers. Even
13 medium pore catalysts taught for wax isomerization, when isomerizing a waxy
14 feed to a low pour point, produce significant quantities of the triply branched
15 isomers. While not wishing to be bound by theory, it is believed that normal
16 paraffins are first converted during wax isomerization to a singly branched
17 paraffin having a methyl (-CH₃) or ethyl (-C₂H₅), branch near the end of the
18 paraffin backbone. Additional isomerization reactions move the branch
19 toward the center of the paraffin molecule and/or add a second branch to the
20 paraffin molecule. Each of these two isomerization reaction steps reduces
21 pour point.

22 However, conventional single stage and/or large pore zeolite dewaxing
23 processes are unselective for forming branches. These unselective catalysts
24 produce triply (or even more highly) branched isomers along with the singly
25 and doubly branched isomers before reaching the target pour point. These
26 highly branched molecules have an increased tendency to crack and have a
27 lower viscosity index than do singly or doubly branched paraffins.
28 Furthermore, the addition of a third branch to a doubly branched paraffin
29 often results in relatively little additional pour point reduction. Thus, these
30 conventional processes are prevented from producing lubes with the desired
31 viscosity index and pour point properties.

1 In the present process, normal paraffins are isomerized at high
2 selectivity to singly and doubly branched paraffins using a process which
3 produces few triply branched paraffins. The shape selective catalyst of the
4 present invention, comprising a 1-D intermediate pore size molecular sieve,
5 restricts the amount of triply branched paraffins which are formed in the
6 isomerization of a waxy feed, while producing a product having an
7 intermediate pour point. The remaining wax is removed in a solvent dewaxing
8 step to produce a lubricating oil base stock with a very low pour point and a
9 viscosity index which approaches, and can exceed, the viscosity index of
10 synthetic lubricants having the same viscosity.

11 As used herein, a normal paraffin, or alkane, is a saturated aliphatic
12 hydrocarbon containing only $-CH_3$ and $-CH_2-$ groups. A branched paraffin is
13 a saturated aliphatic hydrocarbon containing one or more

or

14 groups. As used herein, each R represents a branch, where R is an alkyl
15 independently selected from $-CH_3$, $-C_2H_5$, $-C_3H_7$, or $-C_4H_9$, and preferably
16 from $-CH_3$ or $-C_2H_5$. R₁ and R₂ represent portions of the paraffin chain or
17 backbone. Thus, a singly branched paraffin has one R group per paraffin
18 molecule, a doubly branched paraffin two R groups, a triply branched paraffin
19 three R groups, etc.

20 The feedstock to the present process is a "waxy feed". The feedstock
21 will normally be a C₂₀⁺ feedstock, generally boiling above about 316°C and
22 containing paraffins, olefins, naphthenes, aromatics and heterocyclic
23 compounds and a substantial proportion of higher molecular weight

1 n-paraffins and slightly branched paraffins which contribute to the waxy
2 nature of the feedstock. Hydroprocessed stocks are a convenient source of
3 stocks of this kind and also of other distillate fractions since they normally
4 contain significant amounts of waxy n-paraffins.

5 As used herein, the term "waxy feed" includes petroleum waxes.
6 Exemplary suitable feeds for use in the process of the invention also include
7 waxy distillate stocks such as gas oils, lubricating oil stocks, synthetic oils and
8 waxes such as those by Fischer-Tropsch synthesis, high pour point
9 polyalphaolefins, foots oils, normal alpha olefin waxes, slack waxes, deoiled
10 waxes and microcrystalline waxes. Slack wax is wax recovered from a
11 conventional solvent dewaxing process. Slack wax can be obtained from
12 either a straight run gas oil, a hydrocracked lube oil or a solvent refined lube
13 oil. Hydrocracking is preferred because that process can also reduce the
14 nitrogen content to low values. With slack wax derived from solvent refined
15 oils, deoiling can be used to reduce the nitrogen content. Optionally,
16 hydrotreating of the slack wax can be carried out to lower the nitrogen content
17 thereof. Slack waxes possess a very high viscosity index, normally in the
18 range of from 120 to 200, depending on the oil content and the starting
19 material from which the wax has been prepared. Slack waxes are therefore
20 eminently suitable for the preparation of lubricating oils having very high
21 viscosity indices, i.e., from about 140 to about 180. Foots oil is prepared by
22 separating oil from the wax. The isolated oil is referred to as foots oil.

23 The feedstock employed in the process of the invention preferably
24 contains greater than about 50% wax, more preferably greater than about
25 80% wax, most preferably greater than about 90% wax. However, a highly
26 paraffinic feed having a high pour point, generally above about 0°C, more
27 usually above about 10°C, but containing less than 50% wax is also suitable
28 for use in the process of the invention. Such a feed should preferably contain
29 greater than about 70% paraffinic carbon, more preferably greater than about
30 80% paraffinic carbon, most preferably greater than about 90% paraffinic
31 carbon.

1 A catalyst useful in the present process comprises an intermediate
2 pore size molecular size and a hydrogenation component. Catalysts of this
3 type are taught in U.S. Patent No. 5,135,638, the entire disclosure of which is
4 incorporated herein by reference for all purposes. The phrase "intermediate
5 pore size", as used herein means an effective pore aperture in the range of
6 from about 5.0 to about 7.0 Å, preferably from about 5.3 to about 6.5Å, when
7 the porous inorganic oxide is in the calcined form. The effective pore size of
8 the molecular sieves can be measured using standard adsorption techniques
9 and hydrocarbonaceous compounds of known minimum kinetic diameters.
10 See Breck, Zeolite Molecular Sieves. 1974 (especially Chapter 8); Anderson
11 et al., J. Catalysis 58, 114 (1979); and U.S. Pat. No. 4,440,871, the pertinent
12 portions of which are incorporated herein by reference.

13 In performing adsorption measurements to determine pore size,
14 standard techniques are used. It is convenient to consider a particular
15 molecule as excluded if it does not reach at least 95% of its equilibrium
16 adsorption value on the molecular sieve in less than about 10 minutes
17 ($p/p_0=0.5$; 25°C).

18 Intermediate pore size molecular sieves will typically admit molecules
19 having kinetic diameters of 5.3 to 6.5Å with little hindrance. Examples of such
20 compounds (and their kinetic diameters in Å) are: n-hexane (4.3),
21 3-methylpentane (5.5), benzene (5.85), and toluene (5.8). Compounds
22 having kinetic diameters of about 6 to 6.5Å can be admitted into the pores,
23 depending on the particular sieve, but do not penetrate as quickly and in
24 some cases are effectively excluded. Compounds having kinetic diameters in
25 the range of 6 to 6.5Å include: cyclohexane (6.0), 2,3-dimethylbutane (6.1),
26 and m-xylene (6.1). Generally, compounds having kinetic diameters of
27 greater than about 6.5Å do not penetrate the pore apertures and thus are not
28 absorbed into the interior of the molecular sieve lattice. Examples of such
29 larger compounds include: o-xylene (6.8), 1,3,5-trimethylbenzene (7.5), and
30 tributylamine (8.1). While the effective pore size as discussed above is
31 important to the practice of the invention, not all intermediate pore size

1 molecular sieves having such effective pore sizes are advantageously usable
2 in the practice of the present invention. Indeed, it is essential that the
3 intermediate pore size molecular sieve catalysts used in the practice of the
4 present invention have a very specific pore shape and size as measured by
5 X-ray crystallography. First, the intracrystalline channels must be parallel and
6 must not be interconnected. Such channels are conventionally referred to as
7 1-D diffusion types or more shortly as 1-D pores. The classification of
8 intrazeolite channels as 1-D, 2-D and 3-D is set forth by R. M. Barrer in
9 *Zeolites, Science and Technology*, edited by F. R. Rodrigues, L. D. Rollman
10 and C. Naccache, NATO ASI Series, 1984 which classification is
11 incorporated in its entirety by reference (see particularly page 75). Known
12 1-D zeolites include cancrinite hydrate, laumontite, mazzite, mordenite and
13 zeolite L.

14 In general, the pores of the molecular sieve have a major axis between
15 about 5.0 Å and about 7.0 Å, i.e. the pore diameter of the molecular sieve is
16 between about 5.0 Å and about 7.0 Å. In one embodiment, the preferred
17 molecular sieves useful in the practice of the present invention have pores
18 which are oval in shape, by which is meant the pores exhibit two unequal
19 axes referred to herein as a minor axis and a major axis. The term oval as
20 used herein is not meant to require a specific oval or elliptical shape but
21 rather to refer to the pores exhibiting two unequal axes. In particular, the 1-D
22 pores of the preferred molecular sieves useful in the practice of the present
23 invention have a minor axis between about 3.9 Å and about 4.8 Å and a major
24 axis between about 5.4 Å and about 7.0 Å as determined by conventional
25 X-ray crystallography measurements, following the measurement convention
26 of W. M. Meier and D. H. Olson, *ATLAS OF ZEOLITE STRUCTURE TYPES*,
27 Butterworth-Heinemann, Third Revised Edition, 1992.

28 The present invention makes use of molecular sieve catalysts with
29 selected shape selectivity properties. These shape selectivity properties are
30 defined by carrying out standard isomerization selectivity tests for isomerizing
31 tetracosane ($n\text{-C}_{24}$). The test conditions include a total pressure of 1000 psig

1 (6.89 MPa), hydrogen flow equivalent to 6.7 MSCF/bbl (1010 std liters H₂/kg
2 oil), a feed rate equivalent to 0.6 hr⁻¹ LHSV and the use of 0.5g of catalyst
3 (impregnated with 0.5 wt% Pt and sized to 24-42 mesh [0.35 mm – 0.70 mm])
4 loaded in the center of a 3 feet long (0.91 m) by 3/16 inch (0.48 cm) inner
5 diameter stainless steel reactor tube (the catalyst is located centrally of the
6 tube and extends about 1 to 2 inches [2.54-5.08 cm] in length) with alundum
7 loaded upstream of the catalyst for preheating the feed. The reactor
8 temperature is adjusted to achieve a pour point of about +20°C in the 600°F+
9 (316°C) distillation bottoms of the reactor effluent. The 600°F+ (316°C)
10 distillation bottoms are then solvent dewaxed to a pour point of about -15°C.

11 To account for the extent of isomerization, a branching index is defined
12 to characterize the average number of branches per C₂₄ molecule.

13
$$\text{BranchingIndex} = \sum_i i * b_i / b_t$$

14 where b_i is the amount of paraffins in the product with an "i" number of
15 branches, and b_t is the total amount of paraffins in the product (both normal
16 and branched).

17 The branching index is determined by analyzing a sample of the
18 product from the standard isomerization selectivity test using carbon-13 NMR
19 according to the following four-step process. References cited in the
20 description detail the process steps.

- 21 1. Identify the CH branch centers and the CH₃ branch termination points
22 using the DEPT Pulse sequence (Doddrell, D.T.; Pegg, D. T.; Bendall,
23 M.R. J. Magn. Reson. 1982, 48, 323ff.).
- 24 2. Verify the absence of carbons initiating multiple branches (quaternary
25 carbons) using the APT pulse sequence (Patt, S.L.; Shoolery, J. N. J.
26 Magn. Reson. 1982, 46, 535ff.)
- 27 3. Assign the various branch carbon resonances to specific branch
28 positions and lengths using tabulated and calculated values

- 1 (Lindeman, L. P.; Adams, J. Q. *Anal. Chem.* **43**, 1971 1245ff; Netzel,
2 D.A. et.al. *Fuel*, **60**, 1981, 307ff.
- 3 4. Quantify the relative frequency of branch occurrence by comparing the
4 integrated intensity of its terminal methyl carbon to the intensity of a
5 single carbon (=total integral/number of carbons per molecule in the
6 mixture). For the unique case of the isopropyl branch, where both
7 methyl occur at the same resonance position, the intensity was divided
8 by two before doing the frequency of branch occurrence calculation.
- 9 All measurements were performed with Varian 300 MHz spectrometers.
10 In all cases the spectral width was limited to the saturated carbon region,
11 about 0-80 ppm vs. TMS (tetramethyl silane). 15-25% solutions by weight in
12 chloroform-d1 excited by 45° pulses followed by an 0.8 sec acquisition time.
13 In order to minimize non uniform intensity data, the proton decoupler was
14 gated off during a 10 sec delay prior to the excitation pulse and on during
15 acquisition. Total experiment times ranged from 11-80 minutes. The DEPT
16 and APT sequences were carried out according to literature descriptions with
17 minor deviations described in the Varian operating manuals.
- 18 A catalyst, if it is to qualify as a catalyst of this invention, when tested in
19 this manner, must convert sufficient normal C₂₄ paraffin to form an isomerized
20 product having a pour point of about -15°C or less and a branching index of
21 less than about 1.75. Non-zeolitic molecular sieves having the characteristics
22 of an intermediate pore size molecular sieve as described herein are useful in
23 the present process. Non-zeolitic molecular sieves are microporous
24 compositions that are formed from AlO₂ and PO₂ tetrahedra. Thus, the
25 process of the invention may be carried out using a catalyst comprising an
26 intermediate pore size non-zeolitic molecular sieve and at least one
27 Group VIII metal. Non-zeolitic molecular sieves are described, for example,
28 in U.S. Patent No. 4,861,743, the disclosure of which is completely
29 incorporated herein by reference for all purposes. Non-zeolitic molecular
30 sieves include aluminophosphates (AlPO₄) as described in U.S. Patent
31 No. 4,310,440, silicoaluminophosphates (SAPO), metalloaluminophosphates

1 (MeAPO), and nonmetal substituted aluminophosphates (EIAPO).
2 Metalloaluminophosphate molecular sieves are described in U.S. Patent
3 Nos. 4,500,651; 4,567,029; 4,544,143; 4,686,093 and 4,861,743. Nonmetal
4 substituted aluminophosphates are described in U.S. Patent No. 4,973,785.

5 Methods for forming a non-zeolitic molecular sieves may be found, for
6 example, in U.S. Patent Nos. 4,440,871; 4,710,485; and 4,973,785. Non-
7 zeolitic molecular sieves are generally synthesized by hydrothermal
8 crystallization from a reaction mixture comprising reactive sources of
9 aluminum, phosphorus, optionally one or more elements, other than
10 aluminum and phosphorous, which are capable of forming oxides in
11 tetrahedral coordination with AlO₂ and PO₂ units, and one or more organic
12 templating agents. The reaction mixture is placed in a sealed pressure vessel
13 and heated, preferably under autogenous pressure at a temperature of at
14 least about 100°C., and preferably between 100°C. and 250°C., until crystals
15 of the molecular sieve product are obtained, usually for a period of from 2
16 hours to 2 weeks.

17 A silicoaluminophosphate molecular sieve is suitable as an
18 intermediate pore size molecular sieve for the present process. The
19 silicoaluminophosphate molecular sieves belong to a class of non-zeolitic
20 molecular sieves characterized by a three-dimensional microporous
21 framework structure of AlO₂, and PO₂ tetrahedral oxide units with a unit
22 empirical formula on an anhydrous basis of:

24 wherein "x", "y", and "z" represent the mole fractions, respectively, of silicon,
25 aluminum, and phosphorus, wherein "x" has a value equal to or greater than
26 zero (0), and "y" and "z" each have a value of at least 0.01.

27 Catalytic particulates containing at least one of the intermediate pore
28 molecular sieves SAPO-11, SAPO-31 and SAPO-41 are particularly useful in
29 the present process. U.S. Patent No. 4,440,871 describes SAPO's generally
30 and SAPO-11, SAPO-31, and SAPO-41 specifically. The most preferred

1 intermediate pore size silicoaluminophosphate molecular sieve for use in the
 2 process of the invention is SAPO-11. When combined with a platinum or
 3 palladium hydrogenation component, the SAPO-11 converts the waxy
 4 components to produce a lubricating oil having excellent yield, very low pour
 5 point, low viscosity and high viscosity index.

6 SAPO-11 comprises a silicoaluminophosphate material having a
 7 three-dimensional microporous crystal framework structure of PO_2 , AlO_2 and
 8 SiO_2 tetrahedral units whose unit empirical formula on an anhydrous basis is:

10 wherein "R" represents at least one organic templating agent present in the
 11 intracrystalline pore system; "m" represents the moles of "R" present per mole
 12 of $(\text{Si}_x\text{Al}_y\text{P}_z)\text{O}_2$ and has a value of from zero to about 0.3, "x", "y" and "z"
 13 represent respectively, the mole fractions of silicon, aluminum and
 14 phosphorous, wherein "x" has a value greater than zero (0), and "y" and "z"
 15 each have a value of at least 0.01. The silicoaluminophosphate has a
 16 characteristic X-ray powder diffraction pattern which contains at least the
 17 d-spacings (as-synthesized and calcined) set forth below in Table I. When
 18 SAPO-11 is in the as-synthesized form, "m" preferably has a value of from
 19 0.02 to 0.3.

20

TABLE I

21	<u>2θ</u>	Interplanar d-spacings (Å)	Relative Intensity, I/I_0
23	9.4-9.65	9.41-9.17	m
24	20.3-20.6	4.37-4.31	m
25	21.0-21.3	4.23-4.17	vs
26	22.1-22.35	4.02-3.99	m
27	22.5-22.9 (doublet)	3.95-3.92	m-s

28 The most particularly preferred intermediate pore SAPO prepared by
 29 the present process is SM-3, which has a crystalline structure falling within
 30 that of the SAPO-11 molecular sieves. The preparation of SM-3 and its
 31 unique characteristics are described in U.S. Patent Nos. 4,943,424 and

1 5,158,665. The entire disclosure of each of these patents is incorporated
 2 herein by reference for all purposes.

3 Another intermediate pore size silicoaluminophosphate molecular
 4 sieve preferably used in the process of the invention is SAPO-31. SAPO-31
 5 comprises a silicoaluminophosphate having a three-dimensional microporous
 6 crystal framework of PO_2 , AlO_2 and SiO_2 tetrahedral units whose unit
 7 empirical formula on an anhydrous basis is:

9 wherein R represents at least one organic templating agent present in the
 10 intracrystalline pore system; "m" represents the moles of "R" present per mole
 11 of $(\text{Si}_x\text{Al}_y\text{P}_z)\text{O}_2$ and has a value of from zero to 0.3; "x", "y" and "z" represent,
 12 respectively, the mole fractions of silicon, aluminum and phosphorous,
 13 wherein "x" has a value greater than zero (0), and "y" and "z" each have a
 14 value of at least 0.01. The silicoaluminophosphate has a characteristic X-ray
 15 powder diffraction pattern (as-synthesized and calcined) which contains at
 16 least the d-spacings set forth below in Table II. When SAPO-31 is in the
 17 as-synthesized form, "m" preferably has a value of from 0.02 to 0.3.

18 TABLE II

	<u>2Θ</u>	Interplanar d-spacings (\AA)	Relative Intensity, I/I_0
21	8.5-8.6	10.40-10.28	m-s
22	20.2-20.3	4.40-4.37	m
23	21.9-22.1	4.06-4.02	w-m
24	22.6-22.7	3.93-3.92	vs
25	31.7-31.8	3.823-2.814	w-m

27 SAPO-41, also suitable for use in the process of the invention,
 28 comprises a silicoaluminophosphate having a three-dimensional microporous
 29 crystal framework structure of PO_2 , AlO_2 and SiO_2 tetrahedral units, and
 30 whose unit empirical formula on an anhydrous basis is:

32 wherein R represents at least one organic templating agent present in the
 33 intracrystalline pore system; "m" represents the moles of "R" present per mole

1 of $(Si_xAl_yP_z)O_2$ and has a value of from zero to 0.3; "x", "y" and "z" represent,
2 respectively, the mole fractions of silicon, aluminum and phosphorous,
3 wherein "x" has a value greater than zero (0), and "y" and "z" each have a
4 value of at least 0.01. SAPO-41 has characteristic X-ray powder diffraction
5 pattern (as-synthesized and calcined) which contains at least the d-spacings
6 set forth below in Table III. When SAPO-41 is in the as-synthesized form,
7 "m" preferably has a value of from 0.02 to 0.03.

8

TABLE III

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
2Θ									Interplanar d-spacings (Å)													
		13.6-13.8							6.51-6.42										w-m			
		20.5-20.6							4.33-4.31										w-m			
		21.1-21.3							4.21-4.17										vs			
		22.1-22.3							4.02-3.99										m-s			
		22.8-23.0							3.90-3.86										m			
		23.1-23.4							3.82-3.80										w-m			
		25.5-25.9							3.493-3.44										w-m			

The group of intermediate pore size zeolites useful in the present process include ZSM-22, ZSM-23, ZSM-35, ZSM-48 and SSZ-32. These catalysts are generally considered to be intermediate pore size catalysts based on the measure of their internal structure as represented by their Constraint Index. Zeolites which provide highly restricted access to and egress from their internal structure have a high value for the Constraint Index, while zeolites which provide relatively free access to the internal zeolite structure have a low value for their Constraint Index. The method for determining Constraint Index is described fully in U.S. Pat. No. 4,016,218 which is incorporated herein by reference.

One of the zeolites of the present invention, ZSM-22, is a highly siliceous material which includes crystalline three-dimensional continuous framework silicon containing structures or crystals which result when all the oxygen atoms in the tetrahedra are mutually shared between tetrahedral

1 atoms of silicon or aluminum, and which can exist with a network of mostly
2 SiO_2 , i.e., exclusive of any intracrystalline cations. The description of ZSM-22
3 is set forth in full in U.S. Pat. No. 4,556,477, U.S. Pat. No. 4,481,177 and
4 European Patent Application No. 102,716 the contents of which are
5 incorporated herein by reference.

6 As indicated in U.S. Pat. No. 4,566,477, the crystalline material
7 ZSM-22 has been designated with a characteristic X-ray diffraction pattern as
8 set forth in Table IV.

9
10 TABLE IV
Most Significant Lines of ZSM-22

11	Interplanar 12 d-spacings (\AA)	Relative Intensity (I/I_0)
13	10.9 \pm 0.2	m-vs
14	8.7 \pm 0.16	w
15	6.94 \pm 0.10	w-m
16	5.40 \pm 0.08	w
17	4.58 \pm 0.07	w
18	4.36 \pm 0.07	vs
19	3.68 \pm 0.05	vs
20	3.62 \pm 0.05	s-vs
21	3.47 \pm 0.04	m-s
22	3.30 \pm 0.04	w
23	2.74 \pm 0.02	w
24	2.52 \pm 0.02	w
25		

26 It should be understood that the X-ray diffraction pattern of Table VII is
27 characteristic of all the species of ZSM-22 zeolite compositions. Ion
28 exchange of the alkali metal cations with other ions results in a zeolite which
29 reveals substantially the same X-ray diffraction pattern with some minor shifts
30 in interplanar spacing and variation in relative intensity.

31 Furthermore, the original cations of the as-synthesized ZSM-22 can be
32 replaced at least in part by other ions using conventional ion exchange
33 techniques. It may be necessary to pre-calcine the ZSM-22 zeolite crystals
34 prior to ion exchange. In accordance with the present invention, the

1 replacement ions are those taken from Group VIII of the Periodic Table,
2 especially platinum, palladium, iridium, osmium, rhodium and ruthenium.

3 ZSM-22 freely sorbs normal hexane and has a pore dimension greater
4 than about 4Å. In addition, the structure of the zeolite provides constrained
5 access to larger molecules. The Constraint Index as determined by the
6 procedure set forth in U.S. Pat. No. 4,016,246 for ZSM-22 has been
7 determined to be from about 2.5 to about 3.0.

8 Another zeolite which can be used with the present invention is the
9 synthetic crystalline aluminosilicate referred to as ZSM-23, disclosed in U.S.
10 Pat. No. 4,076,842, the contents of which are incorporated herein by
11 reference. The ZSM-23 composition has a characteristic X-ray diffraction
12 pattern as set forth herein in Table V.

13 TABLE V

14	Interplanar <u>d-spacings (Å)</u>	Relative <u>Intensity, I/I₀</u>
16	11.2 ±0.23	m
17	10.1 ±0.20	w
18	7.87 ±0.15	w
19	5.59 ±0.10	w
20	5.44 ±0.10	w
21	4.90 ±0.10	w
22	4.53 ±0.10	s
23	3.90 ±0.08	vs
24	3.72 ±0.08	vs
25	3.62 ±0.07	vs
26	3.54 ±0.07	m
27	3.44 ±0.07	s
28	3.36 ±0.07	w
29	3.16 ±0.07	w
30	3.05 ±0.06	w
31	2.99 ±0.06	w
32	2.85 ±0.06	w
33	2.54 ±0.05	m
34	2.47 ±0.05	w
35	2.40 ±0.05	w
36	2.34 ±0.05	w
37		

1 The ZSM-23 composition can also be defined in terms of mole ratios of
2 oxides in the anhydrous state as follows:

4 wherein M is at least 1 cation and n is the valence thereof. As in the ZSM-22,
5 the original cations of as-synthesized ZSM-23 can be replaced in accordance
6 with techniques well-known in the art, at least in part by ionic exchange with
7 other cations. In the present invention these cations include the Group VIII
8 metals as set forth hereinbefore.

9 Another intermediate pore size zeolite which has been found to be
10 successful in the present invention is ZSM-35, which is disclosed in U.S.
11 Patent No. 4,016,245, the contents of which are incorporated herein by
12 reference. The synthetic crystalline aluminosilicate known as ZSM-35, has a
13 characteristic X-ray diffraction pattern which is set forth in U.S. Pat.
14 No. 4,016,245. ZSM-35 has a composition which can be defined in terms of
15 mole ratio of oxides in the anhydrous state as follows:

17 wherein R is organic nitrogen-containing cation derived from ethylenediamine
18 or pyrrolidine and M is an alkali metal cation. The original cations of the
19 as-synthesized ZSM-35 can be removed using techniques well known in the
20 art which includes ion exchange with other cations. In the present invention,
21 the cation exchange is used to replace the as-synthesized cations with the
22 Group VIII metals set forth herein. It has been observed that the X-ray
23 diffraction pattern of ZSM-35 is similar to that of natural ferrierite with a
24 notable exception being that natural ferrierite patterns exhibit a significant line
25 at 1.33Å.

26 Another intermediate pore size zeolite which has been found to be
27 successful in the present invention is SSZ-32, which is disclosed in U.S.
28 Patent No. 5,053,373, the content of which are incorporated herein by
29 reference. SSZ-32 has a characteristic X-ray diffraction pattern which is set
30 forth in U.S. Patent No. 5,053,373. The composition of SSZ-32, as

1 synthesized and in the anhydrous state, in terms of mole ratios of oxides, is
2 as follows:

3 $(0.05\text{--}2.0)\text{R}_2\text{O}:(0.1\text{--}2.0)\text{M}_2\text{O}:\text{Al}_2\text{O}_3:(20\text{--}less than 40)\text{SiO}_2$

4 where M is an alkali metal cation and R is an organic nitrogen-containing
5 cation, such as an N-lower alkyl-N-N'-isopropyl-imidazolium cation. SSZ-32
6 has a mole ratio of silicon oxide to aluminum oxide in the range of 20 to less
7 than 40, and has essentially the same X-ray diffraction pattern of ZSM-23.
8 Hydroconversion processes using SSZ-32 are disclosed, for example, in U.S.
9 Patent Nos. 5,300,210 and in 5,397,454.

10 ZSM-48 is a crystalline aluminosilicate zeolite which is suitable as a
11 dewaxing catalyst for the present invention. Zeolite ZSM-48 is disclosed in
12 U.S. Patent No. 4,585,747, the entire disclosure of which is incorporated
13 herein by reference for all purposes, and has a characteristic X-ray diffraction
14 pattern as set forth in Table VI.

15

16

Table VI

17	Interplanar	Relative
18	d-spacings (\AA)	Intensity, I/I_0
19	11.8 ± 0.2	s
20	10.2 ± 0.2	w-m
21	7.2 ± 0.15	w
22	4.2 ± 0.08	vs
23	3.9 ± 0.08	vs
24	3.6 ± 0.06	w
25	3.1 ± 0.05	w
26	2.85 ± 0.05	w

27

28 Zeolite ZSM-48 can also be identified, in terms of mole ratios of oxides and in
29 the anhydrous state, as follows:

30 $(0.1\text{--}4)\text{R}_2\text{O}:(0.01\text{--}2)\text{M}_{2/n}\text{O}:(0\text{--}0.5)\text{Al}_2\text{O}_3:(100)\text{SiO}_2$

1 wherein M is at least one cation having a valence n and R is the cation. The
2 cation taught in U.S. Patent No. 4,585,747 is derived from the monomeric,
3 diquaternary compound bis(N-methylpyridyl)ethylinium.

4 Other molecular sieves which can be used with the present invention
5 include, for example, Theta-1, as described in U.S. Pat. Nos. 4,533,649 and
6 4,836,910, both of which are incorporated in their entireties by reference,
7 Nu-10, as described in European Patent Application 065,400 which is
8 incorporated in its entirety by reference and SSZ-20 as described in U.S. Pat.
9 No. 4,483,835 which is incorporated in its entirety by reference.

10 X-ray crystallography of SAPO-11, SAPO-31, SAPO-41, ZSM-22, ZSM-23
11 and ZSM-35 shows these molecular sieves to have the following major and
12 minor axes: SAPO-11, major 6.3Å, minor 3.9Å; (Bennett, J. M., et al, Zeolites,
13 1, 160(87)), SAPO-31 and SAPO-41, believed to be slightly larger than
14 SAPO-11, ZSM-22, major 5.5Å, minor 4.5Å (Kokotailo, G. T., et al, Zeolites,
15 5, 349(85)); ZSM-23, major 5.6Å, minor 4.5Å; ZSM-35, major 5.4Å, minor
16 4.2Å. ZSM-48 is a molecular sieve having a 10-ring structure with 1-D pores
17 having a 5.23 Å major axis and a 5.11 Å minor axis. (Meier, W. M. and
18 Olsen, D. H., Atlas of Zeolite Structure Types, Butterworths, 1987).

19 It is preferred that relatively small crystal size catalyst be utilized in
20 practicing the invention. Suitably, the average crystal size is no greater than
21 about 10 microns (i.e. micrometers), preferably no more than about 5
22 microns, more preferably no more than about 1 micron and still more
23 preferably no more than about 0.5 micron.

24 The physical form of the catalyst depends on the type of catalytic
25 reactor being employed and may be in the form of a granule or powder, and is
26 desirably compacted into a more readily usable form (e.g., larger
27 agglomerates), usually with a silica or alumina binder for fluidized bed
28 reaction, or pills, prills, spheres, extrudates, or other shapes of controlled size
29 to accord adequate catalyst-reactant contact. The preferred catalyst is in the
30 form of extrudates with a cross-sectional diameter between about $\frac{1}{4}$ inch and
31 about $\frac{1}{32}$ inch. In the catalyst, the molecular sieve can be composited with

1 other material resistant to the temperatures and other conditions employed in
2 organic conversion processes. Such matrix materials include active and
3 inactive materials and synthetic or naturally occurring zeolites as well as
4 inorganic materials such as clays, silica and metal oxides. Additional porous
5 matrix materials include silica, alumina, titania, magnesia and mixtures
6 thereof. The matrix can be in the form of a cogel. Alumina and silica-alumina
7 matrix materials are preferred.

8 The intermediate pore size molecular sieve is used in admixture with at
9 least one Group VIII metal. Preferably, the Group VIII metal is selected from
10 the group consisting of at least one of platinum and palladium and optionally,
11 other catalytically active metals such as molybdenum, nickel, vanadium,
12 cobalt, tungsten, zinc and mixtures thereof. Most preferably, the Group VIII
13 metal is selected from the group consisting of at least one of platinum and
14 palladium. The amount of metal ranges from about 0.01% to about 10% by
15 weight of the molecular sieve, preferably from about 0.1% to about 5% by
16 weight and more preferably from about 0.2% to about 1% by weight of the
17 molecular sieve. The techniques of introducing catalytically active metals into
18 a molecular sieve are disclosed in the literature, and preexisting metal
19 incorporation techniques and treatment of the molecular sieve to form an
20 active catalyst such as ion exchange, impregnation or occlusion during sieve
21 preparation are suitable for use in the present process. Such techniques are
22 disclosed in U.S. Pat. Nos. 3,236,761; 3,226,339; 3,236,762; 3,620,960;
23 3,373,109; 4,202,996; 4,440,781 and 4,710,485; and in U.S. Application
24 Serial No. 08/728818; the entire disclosures of which are incorporated herein
25 by reference for all purposes.

26 The term "metal" or "active metal" as used herein means one or more
27 metals in the elemental state or in some form such as sulfide, oxide and
28 mixtures thereof. Regardless of the state in which the metallic component
29 actually exists, the concentrations are computed as if they existed in the
30 elemental state.

1 The catalyst may also contain metals which reduce the number of
2 strong acid sites on the catalyst and thereby lower the selectivity for cracking
3 versus isomerization. Especially preferred are the Group IIA metals such as
4 magnesium and calcium. The Group VIII metal utilized in the process of this
5 invention can mean one or more of the metals in its elemental state or in
6 some form such as the sulfide or oxide and mixtures thereof. As is customary
7 in the art of catalysis, when referring to the active metal or metals, it is
8 intended to encompass the existence of such metal in the elementary state or
9 in some form such as the oxide or sulfide as mentioned above, and
10 regardless of the state in which the metallic component actually exists, the
11 concentrations are computed as if they existed in the elemental state.

12 The catalytic isomerization step of the invention may be conducted by
13 contacting the feed with a fixed stationary bed of catalyst, with a fixed
14 fluidized bed, or with a transport bed. A simple and therefore preferred
15 configuration is a trickle-bed operation in which the feed is allowed to trickle
16 through a stationary fixed bed, preferably in the presence of hydrogen.

17 The catalytic isomerization conditions employed depend on the feed
18 used and the desired pour point. Generally, the temperature is from about
19 200°C to about 475°C, preferably from about 250°C and to about 450°C. The
20 pressure is typically from about 15 psig (103 kPa) to about 2500 psig (27.2
21 MPa), preferably from about 50 psig (345 kPa) to about 2000 psig (13.8
22 MPa), more preferably from about 100 psig to about 1500 psig (10.3 MPa).
23 The liquid hourly space velocity (LHSV) is preferably from about 0.1hr⁻¹ to
24 about 20 hr⁻¹, more preferably from about 0.1hr⁻¹ to about 5hr⁻¹, and most
25 preferably from about 0.1hr⁻¹ to about 1.0 hr⁻¹. Low pressure and low liquid
26 hourly space velocity provide enhanced isomerization selectivity which results
27 in more isomerization and less cracking of the feed thus producing an
28 increased yield.

29 Hydrogen is preferably present in the reaction zone during the catalytic
30 isomerization process. The hydrogen to feed ratio is typically from about 500
31 to about 30,000 SCF/bbl (standard cubic feet per barrel) (76-4540 std liters

1 H₂/kg oil), preferably from about 1,000 to about 10,000 SCF/bbl (151-1510 std
2 liters H₂/kg oil). Generally, hydrogen will be separated from the product and
3 recycled to the reaction zone. Strong acidity may also be reduced by
4 introducing nitrogen compounds, e.g., NH₃ or organic nitrogen compounds,
5 into the feed; however, the total nitrogen content should be less than 50 ppm,
6 preferably less than 10 ppm.

7 In the dewaxing process using the catalyst of the present invention, the
8 pour point of the isomerized product is lower than the pour point of the waxy
9 feed to the dewaxing process. For oils of commercial interest, the pour point
10 of the oil is generally below about 10°C, and often below 0°C. While a low
11 pour point is desired in the product from the isomerization step, excessive
12 isomerization has a detrimental effect on product viscosity index, as
13 described hereinbefore. The wax content of the isomerized oil is between
14 about 1% and about 40%, preferably between about 3% and about 20%, of
15 the wax content of the waxy feed. The isomerization step, then preferentially
16 removes between about 60% and about 99% by weight of the wax contained
17 in the waxy feedstock. Thus, the pour point of the isomerized product, while
18 being substantially lower than the pour point of the feed to the isomerization
19 process, will be at least about 6°C, and more usually at least about 12°C
20 above the target pour point set for the finished lubricating oil base stock. The
21 viscosity index of the isomerized product will be generally above about 140
22 and preferably above about 150. With some products, a viscosity index of
23 160 or above is possible.

24 The wax content of the oil set forth herein is determined from a
25 conventional solvent dewaxing method. An example method is as follows:

26 300 g of oil is diluted 50/50 with a 4:1 mixture of methyl ethyl ketone
27 and toluene which is cooled to -20°C in a refrigerator. The mixture is filtered
28 through a Coors funnel at -15 °C. using Whatman No. 3 filter paper. The wax
29 is removed from the filter and placed in a tared 2 liter flask. The solvent is
30 removed on a hot plate and the wax weighed.

1 The present integrated two-step process comprises a catalytic
2 isomerization step and a solvent dewaxing step. Following the isomerization
3 of the waxy feed, the pour point of the isomerized oil will generally be at least
4 about 6°C and preferably at least about 12°C above a target pour point of the
5 finished oil. Continued isomerization results in unselective isomerization and
6 the formation of increased numbers of triply branched paraffins, resulting in a
7 reduced viscosity index. Thus, the isomerized oil is solvent dewaxed to a
8 desired target pour point, which is determined by the particular grade of oil
9 which is being produced. The target pour point will generally be less than or
10 equal to about -10°C. For high quality oils, a pour point less than or equal to
11 about -20°C or even less than or equal to about -30°C may be preferred.
12 Depending on the dewaxing conditions and the feeds used for the dewaxing
13 process, a viscosity index above 140 can be achieved. Lubricating oil stocks
14 will generally boil above 230°C (450°F), more usually above 315°C (600°F).

15 Conventional solvent dewaxing processes which are commonly used in
16 the preparation of a lubricating oil base stock are suitable for the present
17 integrated process. Such processes include crystallization of the wax from a
18 chilled mixture of waxy oil and a solvent such as a blended methyl ethyl
19 ketone/toluene solvent. The slack wax and/or the foots oil recovered as the
20 residual oil remaining in the slack wax may be recovered or recycled to the
21 isomerization reaction zone. The isomerized oil which is the feed to the
22 solvent dewaxing step of the present process will generally have a pour point
23 of less than about 40°C, and a viscosity index of greater than about 125 and
24 preferably greater than about 140, and more preferably greater than about
25 150.

26 Feed to the isomerization process may require pretreatment before it
27 can be satisfactorily processed in the isomerization step. The pretreatment
28 steps remove heteroatoms such as nitrogen and sulfur which might poison
29 the isomerization catalyst, or low viscosity index components such as
30 aromatics and polycyclic naphthalenes. A typical hydrocracking process is

1 described, for example, in U.S. Patent No. 5,158,665, the entire disclosure of
2 which is already incorporated by reference.

3 It may further be desired to hydrofinish the dewaxed oil in a mild
4 hydrogenation process to produce more stable lubrication oils. The
5 hydrofinishing can be conventionally carried out in the presence of a metallic
6 hydrogenation catalyst, for example, platinum on alumina. The hydrofinishing
7 can be carried out at a temperature of from about 190°C to about 340°C and
8 a pressure of from about 400 psig to about 3000 psig (2.76-20.7 MPa). A
9 description of a typical hydrofinishing process and catalyst which is useful in
10 the present process is taught in U.S. Patent No. 5,158,665. Hydrofinishing in
11 this manner is also described in U.S. Pat. 3,852,207, both of which are
12 incorporated herein by reference for all purposes.

13 The present process is suitable for preparing very high viscosity index
14 lubricating oil base stocks having a wide range of viscosities, including base
15 stocks having a viscosity, measured at 100°C, of 10 cSt or higher. These
16 base oils have a viscosity index of at least about 140 (preferably at least
17 about 150 and more preferably at least about 160), and a pour point of less
18 than or equal to about -10°C (preferably less than or equal to about -20°C,
19 and more preferably less than or equal to about -30°C). A particularly
20 important base oil prepared in the present process has a viscosity, measured
21 at 100°C, of about 3 cSt or less, preferably less than about 3 cSt, and a
22 viscosity index of at least about 140, preferably at least about 150, and more
23 preferably at least about 160. This relatively light oil prepared in the present
24 process has a viscosity index higher than that produced even in synthetic oils
25 having a viscosity, measured at 100°C, of about 3 cSt or less.

26

EXAMPLES

27

Comparative Example A

28 Tetracosane (n-C₂₄, purchased from Aldrich), which had a pour point of
29 +50 C and a viscosity at 100 C of about 2.5 cSt, was isomerized over SM-3
30 impregnated with 0.5 wt% Pt. The catalyst was pelleted, then crushed to 24-

1 42 mesh for testing. The catalyst was sulfided in situ prior to testing by
2 injecting H₂S through a septum into the hydrogen line ahead of the reactor.
3 Isomerization was carried out in a continuous feed high pressure pilot plant
4 with once-through hydrogen gas. Run conditions were 1000 psig total
5 pressure (6.89 MPa), 0.6 hr⁻¹LHSV, and 6.7 MSCF/bbl H₂ (1010 std liters
6 H₂/kg oil) At a pour point of -25°C, the viscosity index of the 316°C+
7 distillation bottoms was 132 (Table VII).

Example 1

9 Tetracosane was isomerized over the same Pt/SM-3 catalyst as in
10 Comparative Example A, but to a pour point of +20 °C. The 316 °C+
11 distillation bottoms were then solvent dewaxed (SDW) to a pour point of -29
12 °C. The viscosity index of the oil was 148 (Table VII), much higher (about 18
13 numbers) than obtained with isomerization only to the same pour point
14 (Figure I). In addition, the isomerized and solvent dewaxed oil had a much
15 lower average number of branches per molecule.

1

2

TABLE VII
ISOMERIZATION OF n-C₂₄ OVER Pt/SM-3 AT
1000 PSIG (6.99 MPa), 0.6 hr⁻¹ LHSV,
AND 6.7 MSCF/BBL H₂ (1010 std liters H₂/kg oil)

		<u>Comparative Example A</u>	<u>Example 1</u>
8	Temperature, °C	321 332	324
9	n-C ₂₄ Conversion, wt%	99.1 99.6	95.1
10	Yield, Wt%		
11	C4-	0.5 0.9	0.2
12	C5-82 °C	1.9 2.3	0.5
13	82-177 °C	2.8 3.2	1.7
14	177-316°C	8.2 12.3	4.3
15	316 °C+	86.6 81.3	93.3
16	316°C+ Distillation Yield, wt%	87.4 82.2	92.1
17	Solvent Dewax	No No	Yes
18	Oil, wt%		65.6
19	Wax, wt%		32.4
20	Pour Point Before SDW, °C		+20
21	316°C+ Lube Yield, wt%	86.6 81.3	61.2
22	316 °C+ Lube Inspections		
23	Pour Point, °C	-15 -25	-29
24	Cloud Point, °C	-1 -8	-9
25	Viscosity, 40 °C, cSt	8.636 8.372	8.313
26	100 °C, cSt	2.579 2.507	2.556
27	VI	137 132	148
28	Avg. Branches/Molecule	1.83 1.97	1.63
29	Simulated Distillation, LV%, °C		
30	St/5	277/358 294/357	304/369
31	30/50	368/379 368/379	374/382
32	50	384 384	385
33	70/90	388/392 388/391	388/391
34	95/EP	392/394 393/394	392/398

1
2

Comparative Example B

3 An extrudate catalyst containing 85 wt% SM-3 sieve and 15 wt%
4 Catapal alumina binder was impregnated with 0.4 wt% Pt and crushed to 24-
5 42 mesh (0.35-0.70 mm). It was used to isomerize a 7.8 cSt heavy neutral
6 slack wax (Table VIII) at 0.5 LHSV hr⁻¹, 1000 psig (6.99 MPa), and 8
7 MSCF/bbl H₂ (1210 std liters H₂/kg oil). Results are given in Table IX,
8 showing a 144 VI at a pour point of -12°C.

9

Example 2

10 Comparative Example B was repeated, except in this case, the feed
11 was isomerized over the SM-3 catalyst to a pour point of 0°C, followed by
12 solvent dewaxing to -18°C. The viscosity index (143, Table IX) was about the
13 same as in the comparative example, but the pour point was lower. In
14 addition, the cloud point was considerably lower.

15
16
17
18
19
20
21
22
23
24
25
26
27

TABLE VIII
INSPECTIONS OF HEAVY NEUTRAL SLACK WAX

Sulfur, ppm 7.0

Viscosity, 100 °C, cSt 7.818

Simulated Distillation, LV%, °C

St/5	198/371
30/50	392/439
50	476
70/90	522/594
95/EP	628/696

		Comparative Example B	Example 2
7	Temperature, °C	349	332
8	343°F+ Conversion, wt%	27.4	21.9
9	Wax Conversion, wt%	100	84.1
10	Selectivity to Lube, wt%	67.4	72.6
11	Pour Point before SDW, °C		0
12	Solvent Dewax	No	Yes
13	Oil, wt%		86.2
14	Wax, wt%		13.8
15	650 F+ Lube Yield, wt%	67.4	61.1
16	Pour Point, °C	-12	-18
17	Cloud Point, °C	+9	-17
18	Viscosity, 40 °C, cSt	41.42	37.50
19	100 °C, cSt	7.367	6.836
20	VI	144	143
21	Simulated Distillation, LV%, °C		
22	St/5	193/357	226/358
23	30/50	378/425	377/419
24	50	464	456
25	70/90	511/585	500/579
26	95/FP	617/717	629/747

37 Comparative Example C

38 An SM-3 catalyst similar to that of Comparative Example B was used
39 to isomerize a hydrotreated 4.5 cSt slack wax (Table X) at 0.5 hr^{-1} LHSV, 800
40 psig total pressure (5.61 MPa), and 3 MSCF/bbl H₂ (454 std liters H₂/kg oil).
41 Results are given in Table XI, showing a 140 VI at a pour point of -7°C.

1

Example 3

2 Comparative Example C was repeated, except in this case, the feed
3 was isomerized at 1100 psig (7.58 MPa) over the SM-3 catalyst to a pour
4 point of -3°C, followed by solvent dewaxing to -14°C. The viscosity index
5 (144, Table XI) was higher than in the comparative example, and the pour
6 point was lower.

7

TABLE X
INSPECTIONS OF HYDROTREATED SLACK WAX

8

9

Density 0.84 g/cm³

10

Sulfur, ppm 33

11

Nitrogen, ppm 0.3

12

13

Pour Point, °C +39

14

15

Viscosity, 70 °C, cSt 8.120

16

100 °C, cSt 4.465

17

Wax, wt% 58.2

18

19

Dewaxed Oil Properties

20

Pour Point, °C -8

21

Cloud Point, °C -8

22

23

Viscosity, 40 °C, cSt 21.82

24

100 °C, cSt 4.609

25

VI 130

26

TABLE XI
ISOMERIZATION OF HYDROTREATED SLACK WAX
AT 0.5 hr⁻¹ LHSV AND 3 MSCF/BBL H₂ (450 std liters H₂/kg oil)
OVER Pt/SM-3 CATALYST

		Comparative Example C	Example 3
6	Temperature, °C	327	327
7	Pressure, MPa	5.61	7.68
8	Conversion <371°C, wt%	28.9	23.7
9	Yields, Wt%		
10	C4-	2.2	2.0
11	C5-82 °C	3.8	3.3
12	180-371 °C	31.7	27.8
13	371°C+	62.8	67.3
14	371°C+ Yield, Wt%	62.6	66.8
15	Pour Point before SDW, °C		-3
16	Solvent Dewax	No	Yes
17	Oil, wt%		96
18	Wax, wt%		4
19	371°C+ Lube Yield, wt%	62.6	64
20	Pour Point, °C	-7	-14
21	Cloud Point, °C	-4	-11
22	Viscosity, 40 °C, cSt	22.0	21.98
23	100 °C, cSt	4.746	4.785
24	VI	140	144
25	Simulated Distillation, LV%, °C		
26	ST/5	287/368	294/371
27	30/50	436/452	738/454
28	95/99	486/501	488/502

1

Comparative Example D

2 An extrudate catalyst containing 65 wt% SSZ-32 zeolite and 35 wt%
3 Catapal alumina binder was impregnated with 0.35 wt% Pt and crushed to 24-
4 42 mesh (0.35-0.70 mm). After pre-sulfiding with H₂S, it was used to
5 isomerize tetracosane at 0.6 hr⁻¹ LHSV, 1000 psig (6.99 MPa), and 6.7
6 MSCF/bbl H₂ (1010 std liters H₂/kg oil). Results are given in Table XII,
7 showing a 152 VI at a pour point of -9°C and a 143 VI at a pour point of -
8 33°C.

9

Example 4

10 Comparative Example D was repeated, except in this case, the feed
11 was isomerized over the SSZ-32 catalyst to a pour point of +4°C, followed by
12 solvent dewaxing to -21°C. The viscosity index (156, Table XII) was higher
13 than in the comparative example by an estimated 8-9 numbers at the same
14 pour point.

1

2

TABLE XII

3

ISOMERIZATION OF n-C₂₄
 AT 1000 PSIG (6.99 MPa), 0.6 hr⁻¹ LHSV,
 AND 6.7 MSCF/BBL H₂ (1010 std liters h⁻²/kg oil)
 OVER Pt/SSZ-32 CATALYST

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

		Comparative Example D	Example 4
Temperature, °C	307	324	310
n-C ₂₄ Conversion, wt%	98.9	99.8	87.9
Yields, Wt%			
C1-C2	0.3	0.4	0.3
C3-C4	4.7	5.4	1.8
C5-82 °C	7.4	8.4	2.7
82-177 °C	11.9	12.0	2.8
177-316 °C	12.2	14.8	8.8
316 °C+	63.5	59.0	82.7
316 °C+ Distillation Yield, Wt%	64.4	68.5	88.9
Solvent Dewax	No	No	Yes
Oil, Wt%			86.1
Wax, Wt%			11.5
Pour Point before SDW, °C			+4
316 °C+ Lube Yield, Wt%	63.5	59.0	52.9
316 °C+ Lube Inspections			
Pour Point, °C	-9	-33	-21
Cloud Point, C	+2	-13	-7
Viscosity, 40 °C, cSt	8.028	6.414	7.669
100 °C, cSt	2.506	2.121	2.445
VI	152	143	156
Avg. Branches/Molecule	1.60		
Simulated Distillation, LV%, °C			
St/5	273/333	156/240	218/294
30/50	371/383	278/373	373/385
50	387	380	389
70/90	390/393	383/387	391/394
95/EP	393/395	388/391	394/394

1

2 Comparative Example E

3 A boron-Beta zeolite was prepared according to Example 18 of US
4 Patent No. 5,558,851. This zeolite, which had a SiO₂/B₂O₃ mole ratio of
5 about 60, was NH₄-exchanged and then impregnated with 0.5 wt% Pt. The
6 catalyst was pelleted and crushed to 24-42 mesh (0.35-0.70 mm). After pre-
7 sulfiding with H₂S, the catalyst was used to isomerize tetracosane at 1000
8 psig (6.99 MPa), 0.6 hr⁻¹ LHSV, and 6.7 MSCF/bbl H₂ (1010 std liters H₂/kg
9 oil) to a pour point of +16°C, then solvent dewaxed to a pour point of -18°C.
10 The viscosity index after solvent dewaxing was considerably lower than for
11 the catalysts of this invention (Table XIII).

12

Comparative Example F

13 0.5 wt% Pt was impregnated on an amorphous cogelled SiO₂-alumina
14 base extrudate (31 wt% SiO₂, 69 wt% Al₂O₃). The catalyst was crushed to
15 24-42 mesh (0.35-0.70 mm) for testing. After pre-sulfiding with H₂S, it was
16 used to isomerize tetracosane at 1000 psig (6.99 MPa), 0.6 LHSV, and 6.7
17 MSCF/bbl H₂ (1010 std liters H₂/kg oil) to a pour point of +22°C, then solvent
18 dewaxed to a pour point of -15°C. The viscosity index after solvent dewaxing
19 was considerably lower than for the catalysts of this invention (Table XIII and
20 Figure 2). In addition, the isomerized and solvent dewaxed oil had a much
21 higher average number of branches per molecule.

1

2

3

4

5

6

TABLE XIII
 ISOMERIZATION OF n-C₂₄
 AT 1000 PSIG (6.99 MPa), 0.6 hr⁻¹ LHSV,
 AND 6.7 MSCF/BBL H₂ (1010 std liters H₂/kg oil)

	Catalyst	Comparative Example E Pt/B-Beta	Comparative Example F Pt/SiO ₂ -Al ₂ O ₃	Example 1 Pt/SM-3
11	Temperature, °C	319	329	324
12	n-C ₂₄ Conversion, Wt%	95.2	92.4	95.1
14	Yields, Wt%			
15	C4-	2.8	0.3	0.2
16	C5-82 °C	5.4	1.3	0.5
17	82-177 °C	7.3	2.0	1.7
18	177-316 °C	16.6	6.7	4.3
19	316 °C+	67.9	89.7	93.3
21	316 °C+ Dist. Yield, Wt%	69.0	90.3	92.1
23	Solvent Dewax	Yes	Yes	Yes
24	Oil, wt%	86.4	86.1	65.6
25	Wax, wt%	13.1	11.5	32.4
26	Pour Point before SDW, °C	+16	+22	+20
28	316 °C+ Lube Yield, Wt%	58.7	77.2	61.2
30	316 °C+ Lube Inspections			
31	Pour Point, °C	-18	-15	-29
32	Cloud Point, °C	-13	-11	-9
34	Viscosity, 40 °C, cSt	8.354	8.364	8.313
35	100 °C, cSt	2.517	2.481	2.556
36	VI	136	126	148
38	Avg. Branches/Molecule	1.86	2.02	1.63
40	Simulated Dist., LV%, °C			
41	St/5	298/343	316/360	304/369
42	30/50	364/375	365/375	374/382
43	50	381	375	385
44	70/90	385/389	385/390	388/391
45	95/EP	390/392	391/392	392/398

1 WHAT IS CLAIMED IS:

- 2 1. A process for preparing an oil suitable for use as a lubricating oil base
3 stock and having a viscosity index of greater than 140 and a target pour
4 point of less than or equal to -10°C comprising:
 - 5 a) contacting a waxy feed over a catalyst comprising a molecular sieve
6 having 1-D pores with a pore diameter of between about 5.0 Å and
7 about 7.0 Å, and at least one Group VIII metal, at a pressure of from
8 about 15 psig (103 kPa) to about 2500 psig (13.8 MPa) to produce an
9 isomerized oil having a pour point of at least 6°C above a target pour
10 point; and
 - 11 b) solvent dewaxing the isomerized oil to produce a lubricating oil base
12 stock having the target pour point and a viscosity index of greater than
13 about 140.
- 14 2. The process according to Claim 1 for preparing a lubricating oil base
15 stock having a target pour point of less than about -20°C.
- 16 3. The process according to Claim 1 for preparing a lubricating oil base
17 stock having a viscosity index of greater than 150.
- 18 4. The process according to Claim 1 wherein the waxy feed contains more
19 than about 50% wax.
- 20 5. The process according to claim 4 wherein the waxy feed contains more
21 than about 80% wax.
- 22 6. The process according to Claim 1 wherein the waxy feed contains more
23 than about 70% paraffinic carbon.
- 24 7. The process according to Claim 1 wherein the waxy feed is selected from
25 the group consisting of synthetic oils and waxes such as those by
26 Fischer-Tropsch synthesis, high pour point polyalphaolefins, foot oils,
27 normal alpha olefin waxes, slack waxes, deoiled waxes and
28 microcrystalline waxes.

- 1 8. The process according to Claim 4 wherein the waxy feed is selected from
2 the group consisting of synthetic oils and waxes such as those by
3 Fischer-Tropsch synthesis, high pour point polyalphaolefins, foot oils,
4 normal alpha olefin waxes, slack waxes, deoiled waxes and
5 microcrystalline waxes.
- 6 9. The process according to Claim 1 wherein the isomerized oil has a pour
7 point of greater than about 0°C.
- 8 10. The process according to Claim 1 wherein between about 60% and about
9 99% by weight of the wax contained in the waxy feedstock is removed in
10 step a).
- 11 11. The process according to Claim 1 wherein the medium pore molecular
12 sieve has 1-D pores having a minor axis between about 3.9Å and about
13 4.8Å and a major axes between about 5.4Å and about 7.0Å.
- 14 12. The process according to Claim 1 wherein the medium pore molecular
15 sieve is selected from the group consisting of SAPO-11, SAPO-31 and
16 SAPO-41.
- 17 13. The process according to Claim 12 wherein the medium pore molecular
18 sieve is SM-3.
- 19 14. The process according to Claim 1 wherein the medium pore molecular
20 sieve is selected from the group consisting of ZSM-22, ZSM-23, ZSM-35
21 and SSZ-32.
- 22 15. The process according to Claim 14 wherein the medium pore molecular
23 sieve is SSZ-32.
- 24 16. The process according to Claim 1 wherein the medium pore molecular
25 sieve is ZSM-48.
- 26 17. The process according to Claim 1 wherein the hydrogenation component
27 is a Group VIII metal selected from the group consisting of platinum,
28 palladium or mixtures thereof.

- 1 18. The process according to claim 17 wherein the catalyst contains from
2 about 0.2% to about 1% by weight of the hydrogenation component.
- 3 19. The process of claim 1 wherein the catalyst comprising the molecular
4 sieve has sufficient isomerization selectivity such that, when contacting a
5 n-C₂₄ feed at a total pressure of 1000 psig (6.99 MPa), hydrogen flow
6 equivalent to 6.7 MSCF/bbl (1010 std liters H₂/kg oil), and a feed rate
7 equivalent to 0.6 hr⁻¹ LHSV with the catalyst, to produce a 316°C+
8 dewaxed product having a pour point of about +20°C and solvent
9 dewaxing the dewaxed product to a pour point of -15°C or below, an
10 isomerized product having a branching index of less than about 1.75 is
11 formed.
- 12 20. A process for preparing an oil suitable for use as a lubricating oil base
13 stock comprising:
 - 14 a) contacting a waxy feed over a catalyst comprising a molecular sieve
15 having 1-D pores with a pore diameter of between about 5.0 Å and
16 about 7.0 Å, and at least one Group VIII metal, at a pressure of from
17 about 15 psig (103 kPa) to about 2500 psig (13.8 MPa) to produce an
18 isomerized oil having a pour point of greater than about 0°C; and
 - 19 b) solvent dewaxing the isomerized oil to produce a lubricating oil base
20 stock having a pour point of less than or equal to -10°C, a viscosity
21 index of greater than about 140 and a viscosity, measured at 100°C, of
22 about 3 cSt or less.
- 23 21. The process according to Claim 20 wherein the viscosity of the lubricating
24 oil base stock, measured at 100°C, is less than about 3 cSt and the pour
25 point is less than or equal to -20°C.
- 26 22. The process according to Claim 20 wherein the viscosity index of the
27 lubricating oil base stock is greater than 150 and the pour point is less
28 than -20°C.
- 29 23. The process according to Claim 20 wherein the molecular sieve is
30 SSZ-32.

- 1 24. The process according to Claim 20 wherein the molecular sieve is SM-3.
- 2 25. A lubricating oil base stock having a viscosity index of at least about 140,
3 a pour point of less than or equal to -10°C, and a viscosity, measured at
4 100°C, of about 3 cSt or less.
- 5 26. The lubricating oil base stock of Claim 25 having a viscosity index of at
6 least about 150 and a pour point of less than or equal to -20°C.

7

Figure 1

Figure 2

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 99/02121

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C10G67/04 C10G45/64

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C10G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4 919 788 A (CHEN NAI Y ET AL) 24 April 1990 see claims 1-9	1-10, 17-22, 25,26
Y	---	11-16, 23,24
Y	US 5 282 958 A (SANTILLI DONALD S ET AL) 1 February 1994 see column 8, line 29 - line 32; claims 1-14 ---	11-16, 23,24
A	US 5 037 528 A (GARWOOD WILLIAM E ET AL) 6 August 1991 see the whole document ---	1-24 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "A" document member of the same patent family

Date of the actual completion of the international search

26 April 1999

Date of mailing of the international search report

06/05/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Michiels, P

INTERNATIONAL SEARCH REPORT

International Application No.
PCT/US 99/02121

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5 643 440 A (BORGHARD WILLIAM S ET AL) 1 July 1997 see the whole document -----	1-24

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 99/02121

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 4919788	A 24-04-1990	AU 584143 B AU 5080585 A BR 8506420 A CA 1274204 A EP 0188898 A JP 1912339 C JP 6039589 B JP 61179294 A AT 78048 T AU 603344 B AU 6399086 A BR 8605401 A CA 1307487 A DE 3685943 A EP 0225053 A JP 1944921 C JP 6062960 B JP 62112691 A KR 9311924 B US 4911821 A US 4975177 A US 5037528 A		18-05-1989 26-06-1986 02-09-1986 18-09-1990 30-07-1986 09-03-1995 25-05-1994 11-08-1986 15-07-1992 15-11-1990 07-05-1987 11-08-1987 15-09-1992 13-08-1992 10-06-1987 23-06-1995 17-08-1994 23-05-1987 22-12-1993 27-03-1990 04-12-1990 06-08-1991
US 5282958	A 01-02-1994	AT 164571 T AU 646064 B AU 8224491 A CA 2087029 A,C DE 69129197 D DE 69129197 T EP 0540590 A ES 2113887 T SG 48075 A WO 9201657 A		15-04-1998 03-02-1994 18-02-1992 21-01-1992 07-05-1998 30-07-1998 12-05-1993 16-05-1998 17-04-1998 06-02-1992
US 5037528	A 06-08-1991	US 4975177 A AT 78048 T AU 603344 B AU 6399086 A BR 8605401 A CA 1307487 A DE 3685943 A EP 0225053 A JP 1944921 C JP 6062960 B JP 62112691 A KR 9311924 B US 4919788 A US 4911821 A		04-12-1990 15-07-1992 15-11-1990 07-05-1987 11-08-1987 15-09-1992 13-08-1992 10-06-1987 23-06-1995 17-08-1994 23-05-1987 22-12-1993 24-04-1990 27-03-1990
US 5643440	A 01-07-1997	AU 699046 B AU 4466396 A EP 0796304 A JP 10510565 T WO 9617902 A US 5885438 A		19-11-1998 26-06-1996 24-09-1997 13-10-1998 13-06-1996 23-03-1999

