Листок №ТАЗ

Нумерация

Определение. Символом \simeq обозначим следующее отношение:

$$a \simeq b = \begin{cases} \top, (Defined(a) \land Defined(b) \land a = b) \lor (\neg Defined(a) \land \neg Defined(b)), \\ \bot, \text{ иначе.} \end{cases}$$

Для дальнейших результатов нам понадобится пронумеровать все вычислимые функции в виде φ_i^m так, что верно следующее:

- 1. Для любого $m \in \mathbb{N}$ верно, что $\varphi_i^m \colon \mathbb{N}^m \to \mathbb{N}$.
- 2. При фиксированном т универсальная функция

$$u^m(i, x_1, \dots, x_m) \simeq \varphi_i^m(x_1, \dots, x_m)$$

вычислима.

3. Нумерация выдерживает обощённое каррирование: для всех $m, n \ge 1$ существует тотальная вычислимая функция $s: \mathbb{N}^{m+1} \to \mathbb{N}$ такая, что при всех $k, x_1, \dots, x_m, y_1, \dots, y_n \in \mathbb{N}$:

$$\varphi_k^{m+n}(x_1,\ldots,x_m,y_1,\ldots,y_n)\simeq \varphi_{s(k,\vec{x})}^n(\vec{y}).$$

Задача ТАЗ.1. а. Докажите, что множество всех вычислимых функций m-арных функций φ_i перечислимо. б. Докажите, что множество всех вычислимых функций перечислимо.

Задача ТАЗ.2. Докажите, что требуемая нумерация существует.

Задача ТАЗ.3. Доказать, что существует тотальная вычислимая функция $h \colon \mathbb{N}^2 \to \mathbb{N}$ такая, что $\varphi^1_{h(i,j)}(x) \simeq \varphi^1_i(x) + \varphi^1_j(x)$.

Задача ТАЗ.4. Доказать, что существует тотальная вычислимая функция $h \colon \mathbb{N}^2 \to \mathbb{N}$ такая, что $\varphi^1_{h(i,j)}(x) \simeq \varphi^1_i(\varphi^1_i(x))$.

Задача ТА3.5. Доказать, что существует тотальная вычислимая функция $h \colon \mathbb{N}^3 \to \mathbb{N}$ такая, что $\varphi^1_{h(i,j,k)}(x) \simeq \varphi^1_k(x)? \varphi^1_i(x) : \varphi^1_j(x)$ (условная операция в C).

Задача ТАЗ.6. Доказать, что существует тотальная вычислимая функция $h\colon \mathbb{N}^2 \to \mathbb{N}$ такая, что

$$\begin{split} \varphi^1_{h(i,j)}(x) &\simeq \{\\ & while(\varphi^1_i(x)>0) \ \ x = \varphi^1_j(x);\\ & return \ x;\\ \} \end{split}$$

Задача ТАЗ.7 (Свойство главности нумерации φ_i^1). Пусть у нумерации $\psi_0(x), \psi_1(x), \dots$ некоторого семейства вычислимых функций универсальная функция $v(i,x) \simeq \psi_i(x)$ вычислима*. Доказать, что существует тотальная вычислимая функция h такая, что $\psi_i(x) \simeq \varphi_{h(i)}^1(x)$. Задача ТАЗ.8. Пусть $g \colon \mathbb{N} \to \mathbb{N}$ фиксированная вычислимая функция, ζ — нигде не определенная функция, $A \subseteq \mathbb{N}$ — перечислимое множество. Доказать, что существует тотальная вычислимая функция h такая, что

$$\varphi_{h(i)}^1 = \{g, i \in A, \zeta, i \ni A.$$

Задача ТАЗ.9. Говорят, что множество $A \subset \mathbb{N}^k$ m-сводится к множеству $B \subset \mathbb{N}^l$ (обозначается $A \leq_m B$), если существует тотальная вычислимая функция $f \colon \mathbb{N}^k \to \mathbb{N}^l$ такая, что $x \in A \Leftrightarrow f(x) \in B$. Доказать, что

^{*}такие нумерации называются вычислимыми

Листок №ТА3

- 1. отношение \leq_m рефлексивно и транзитивно;
- 2. если $A \leq_m B$ и B разрешимо (перечислимо), то A тоже разрешимо (перечислимо).

Задача ТАЗ.10. Доказать, что каждое перечислимое множество $A \subseteq \mathbb{N}$ *m*-сводится к множествам:

- 1. $\{i \mid \varphi_i^1(i)\};$
- 2. $\{i \mid \varphi_i^1(5) = 25\};$
- 3. $\{i \mid \varphi_i^1(i) = 99\};$
- 4. $\{i \mid \varphi_i^1 \text{ тотальна}\}.$

Задача ТАЗ.11. Доказать, что каждое коперечислимое множество m-сводится к $\{i \mid \varphi_i^1 \mid \text{нигде не определена}\}.$

Негативные результаты

Задача ТАЗ.12. а.[†] Доказать, что функция $f(x) \simeq \varphi_x^1(x) + 1$ вычислима, но не имеет вычислимых тотальных продолжений. **б.** Доказать, что множество $K = \{x \mid \varphi_x^1(x) \text{ определена}\}$ перечислимо, но не разрешимо. **в.** Доказать, что множество $STOP = \{(i,x) \mid \varphi_i^1(x) \text{ определена}\}$ перечислимо, но не разрешимо.

Задача ТАЗ.13. а. Доказать, что функция

$$f(x) = \begin{cases} 179, \varphi_x^1(x) = 57\\ 57, \text{ иначе.} \end{cases}$$

не вычислима. **б.** Доказать, что множество $\{x \mid \varphi_x^1(x) = 179\}$ перечислимо, но не разрешимо. **Задача ТАЗ.14.** Пусть фиксирована машина Тьюринга M вычисления универсальной функции $u^1(i,x)$ и $T_M(i,x)$ — время (число шагов) ее работы на входе i,x.

- 1. Проверить, что функция T вычислима;
- 2. Проверить, что (T(i,x) определено) $\Leftrightarrow (i(x)$ определено);
- 3. Проверить, что $\{(i, x, t) \mid T(i, x) \leq t\}$ разрешимо.
- 4. Пусть $h: \mathbb{N} \to \mathbb{N}$ тотальная вычислимая функция. Доказать, что тотальная функция

$$f(x) = \begin{cases} \varphi_x^1(x) + 1, T(i, x) \leqslant h(x) \\ 0. \end{cases}$$

вычислима, но не вычислима за время h, т.е. $\forall i \; \exists x \; f = \varphi_i \to T(i, x) > h(x)$.

5. Построить тотальную вычислимую функцию со значениями $\{0,1\}$, которая также не вычислима за время h.

Задача ТА3.15 (*Теорема Райса*). Пусть \mathcal{P} — семейство одноместных вычислимых функций, $\mathcal{P} \neq \emptyset$ и существует одноместная вычислимая функция $f \notin \mathcal{P}$. Доказать, что его индексное множество $\{i \mid \varphi_i^1 \in \mathcal{P}\}$ неразрешимо.

Задача ТАЗ.16. Доказать неразрешимость множеств:

- 1. $\{i \mid \varphi_i^1 \text{ тотальна}\};$
- 2. $\{i \mid \varphi_i^1 \text{ нигде не определена}\};$
- 3. $\{i \mid \varphi_i^1(5) = 25\};$
- 4. $\{i \mid \varphi_i^1(5) \text{ определено}\};$
- 5. $\{i \mid \varphi_i^1 \text{ монотонна}\};$
- 6. $\{i \mid \varphi_i^1 \text{ тотальна}\};$

Задача ТАЗ.17. Доказать неперечислимость множеств:

1. $\{i \mid \varphi_i^1(5) \text{ не определено}\};$

 $^{^{\}dagger}$ Подсказка: попытатьс найти значение g(k), где g — кандидат на продолжение, а k — его номер

Листок №ТАЗ 21.10.2019

- 2. $\{i \mid \varphi_i^1(5) \mid \text{ не определено или } \neq 25\};$
- 3. $\{i \mid \varphi_i^i \}$ не принимает значений $> 25\};$
- 4. $\{i \mid \neg(\exists x \ \varphi_i^1(x) = x)\};$

Задача ТАЗ.18. Доказать неразрешимость множеств:

- 1. $\{(i,j) \mid \varphi_i^1 \quad \text{есть продолжение } \varphi_j^1\};$

- 2. $\{(i,j) \mid \text{Dom}(\varphi_i^1) \cup \text{Dom}(\varphi_j^1) = \mathbb{N}\};$ 3. $\{(i,j) \mid \text{Dom}(\varphi_i^1) \cap \text{Dom}(\varphi_j^1) = \emptyset\};$ 4. $\{(i,j) \mid \varphi_i^1, \varphi_j^1 \text{ тотальны и } \forall x \quad \varphi_i^1(x) = 2\varphi_j^1(x)\};$