SC627 Assignment 2 Report

Mitalee Oza 180100067

In this code I have exactly followed the steps as given in the slides. The path obtained is as follows:

	0	1	
815	5.08253	3.26917	
816	5.00494	3.20608	
817	5.07115	3.28102	
818	5.16708	3.30927	
819	5.09612	3.23881	
820	5.15164	3.32198	
821	5.088	3.24484	
822	4.9899	3.22544	
823	5.00278	3.32461	
824	5.00093	3.22462	
825	5.07432	3.29255	
826	5.174	3.28464	
827	5.0927	3.22642	

The trajectory converges to (5.0927, 3.22642). We note that exact convergence is not to be expected since the goal point is not the minima of our combined potential function. At the goal, the repulsive potential also exists. We note that in the last few iterations, the object moves

around in a small space around the minima. This may be due to the smaller values of gradient close to the minima. The value obtained at the end is not the minima either since the condition used in the code only requires the gradient norm to be less than 0.01.