STATISTICAL INFERENCES (2cr)

Chapter 9 One- and Two-Sample Estimation Problems

Zhong Guan

Math, IUSB

Outline

1 9.12 Estimating a Variance

9.13 Estimating Ratio of Variances

Outline

1 9.12 Estimating a Variance

2 9.13 Estimating Ratio of Variances

- Assume that X_1, \ldots, X_n is a random sample from normal population with mean μ and variance σ^2 .
- ullet Both μ and σ^2 are unknown.
- The point estimator is the sample variance $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$. This is an unbiased and consistent estimator.

- Assume that X_1, \ldots, X_n is a random sample from normal population with mean μ and variance σ^2 .
- Both μ and σ^2 are unknown.
- The point estimator is the sample variance $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$. This is an unbiased and consistent estimator.

- Assume that X_1, \ldots, X_n is a random sample from normal population with mean μ and variance σ^2 .
- Both μ and σ^2 are unknown.
- The point estimator is the sample variance $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$. This is an unbiased and consistent estimator.

- Assume that X_1, \ldots, X_n is a random sample from normal population with mean μ and variance σ^2 .
- Both μ and σ^2 are unknown.
- The point estimator is the sample variance $S^2 = (n-1)^{-1} \sum_{i=1}^{n} (X_i \bar{X})^2$. This is an unbiased and consistent estimator.

- $X^2 = (n-1)S^2/\sigma^2$ has a chi-squared distribution with n-1 degrees of freedom.
- There exist a and b such that

$$1 - \alpha = P(a \leqslant X^2 \leqslant b) = P(a \leqslant (n-1)S^2/\sigma^2 \leqslant b)$$
$$= P((n-1)S^2/b \leqslant \sigma^2 \leqslant (n-1)S^2/a)$$

• For convenience we choose $a=\chi^2_{1-\alpha/2}$ and $b=\chi^2_{\alpha/2}$. Thus we have a 100(1 $-\alpha$)% confidence interval for σ^2

$$\Big[\frac{(n-1)S^2}{\chi^2_{\alpha/2}},\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}}\Big]$$

- $X^2 = (n-1)S^2/\sigma^2$ has a chi-squared distribution with n-1 degrees of freedom.
- There exist a and b such that

$$1 - \alpha = P(a \leqslant X^2 \leqslant b) = P(a \leqslant (n-1)S^2/\sigma^2 \leqslant b)$$
$$= P((n-1)S^2/b \leqslant \sigma^2 \leqslant (n-1)S^2/a)$$

• For convenience we choose $a=\chi^2_{1-\alpha/2}$ and $b=\chi^2_{\alpha/2}$. Thus we have a 100(1 $-\alpha$)% confidence interval for σ^2

$$\Big[\frac{(n-1)S^2}{\chi^2_{\alpha/2}},\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}}\Big]$$

- $X^2 = (n-1)S^2/\sigma^2$ has a chi-squared distribution with n-1 degrees of freedom.
- There exist a and b such that

$$1 - \alpha = P(a \leqslant X^2 \leqslant b) = P(a \leqslant (n-1)S^2/\sigma^2 \leqslant b)$$
$$= P((n-1)S^2/b \leqslant \sigma^2 \leqslant (n-1)S^2/a)$$

• For convenience we choose $a = \chi^2_{1-\alpha/2}$ and $b = \chi^2_{\alpha/2}$. Thus we have a 100(1 – α)% confidence interval for σ^2 :

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}}\right]$$

Find Critical Value χ^2_{α}

- Using Table A.5.
- Using TI 8x:
 - (1) graph cdf curve $y = \chi^2 cdf(0, X, df)$ and horizontal line $y = 1 \alpha$;
 - (2) the *x*-coordinate of the intersection is χ^2_{α} .

Find Critical Value χ^2_{α}

- Using Table A.5.
- Using TI 8x:
 - (1) graph cdf curve $y = \chi^2 cdf(0, X, df)$ and horizontal line $y = 1 \alpha$;
 - (2) the *x*-coordinate of the intersection is χ^2_{α} .

- Enter equation for χ^2 cdf : Y= -> Y1= χ^2 cdf(0, X, 19)
- Enter equation: Y2=1-.025=0.975.

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{025} = 32.85$.

- Enter equation for χ^2 cdf : Y= -> Y1= χ^2 cdf(0, X, 19)
- Enter equation: Y2=1-.025=0.975.

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{.025} = 32.85$.

- Enter equation for χ^2 cdf : Y= -> Y1= χ^2 cdf(0, X, 19)
- Enter equation: Y2=1-.025=0.975.

```
Plots Plots Plots

.VIBX2cdf(0,X,19

.V28.9758

.V3=

.V4=

.V5=

.V6=
```

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{.025} = 32.85$.

- Enter equation for χ^2 cdf : Y= -> Y1= χ^2 cdf(0, X, 19)
- Enter equation: Y2=1-.025=0.975.

```
Plott Plot2 Plot3
\Y18X2cdf(0,X,19
\Y28.9758
\Y3=
\Y4=
\Y5=
\Y6=
```

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{.025} = 32.85$.

- Enter equation for χ^2 cdf : Y= -> Y1= χ^2 cdf(0, X, 19)
- Enter equation: Y2=1-.025=0.975.

```
Plott Plot2 Plot3
\Y18X2cdf(0,X,19
\Y28.9758
\Y3=
\Y4=
\Y5=
\Y6=
```

- Press GRAPH and adjust WINDOW if needed.
- Press 2ND and CALC to find intersection of the two graphs. We can obtain $\chi^2_{.025} = 32.85$.

Challenging Problems

Find a and b so that

$$1 - \alpha = P((n-1)S^2/b \leqslant \sigma^2 \leqslant (n-1)S^2/a)$$

and $\frac{1}{a} - \frac{1}{b}$ is minimized.

• If μ is known, how do you estimate σ^2 using point estimator and confidence interval?

- Assume that X_{11}, \ldots, X_{1n_1} is a random sample from normal population with unknown mean μ_1 and variance σ_1^2 , and
- X_{21}, \ldots, X_{2n_2} is a random sample from normal population with unknown mean μ_2 and variance σ_2^2 , and that
- the two samples are independent
- The sample variances and sample means are

$$S_i^2 = (n_i - 1)^{-1} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2,$$

 $\bar{X}_i = n_i^{-1} \sum_{j=1}^{n_i} X_{ij}, \quad i = 1, 2.$

- Assume that X_{11}, \ldots, X_{1n_1} is a random sample from normal population with unknown mean μ_1 and variance σ_1^2 , and
- X_{21}, \ldots, X_{2n_2} is a random sample from normal population with unknown mean μ_2 and variance σ_2^2 , and that
- the two samples are independent.
- The sample variances and sample means are

$$S_i^2 = (n_i - 1)^{-1} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2,$$

$$\bar{X}_i = n^{-1} \sum_{j=1}^{n_i} X_{ii}, \quad i = 1, 2.$$

- Assume that X_{11}, \ldots, X_{1n_1} is a random sample from normal population with unknown mean μ_1 and variance σ_1^2 , and
- X_{21}, \ldots, X_{2n_2} is a random sample from normal population with unknown mean μ_2 and variance σ_2^2 , and that
- the two samples are independent.
- The sample variances and sample means are

$$S_i^2 = (n_i - 1)^{-1} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2,$$

$$\bar{X}_i = n_i^{-1} \sum_{j=1}^{n_i} X_{ij}, \quad i = 1, 2.$$

- Assume that X_{11}, \ldots, X_{1n_1} is a random sample from normal population with unknown mean μ_1 and variance σ_1^2 , and
- X_{21}, \ldots, X_{2n_2} is a random sample from normal population with unknown mean μ_2 and variance σ_2^2 , and that
- the two samples are independent.
- The sample variances and sample means are

$$S_i^2 = (n_i - 1)^{-1} \sum_{i=1}^{n_i} (X_{ij} - \bar{X}_i)^2,$$

$$\bar{X}_i = n_i^{-1} \sum_{j=1}^{n_i} X_{ij}, \quad i = 1, 2.$$

- Assume that X_{11}, \ldots, X_{1n_1} is a random sample from normal population with unknown mean μ_1 and variance σ_1^2 , and
- X_{21}, \ldots, X_{2n_2} is a random sample from normal population with unknown mean μ_2 and variance σ_2^2 , and that
- the two samples are independent.
- The sample variances and sample means are

$$S_i^2 = (n_i - 1)^{-1} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2,$$

$$\bar{X}_i = n_i^{-1} \sum_{j=1}^{n_i} X_{ij}, \quad i = 1, 2.$$

- Assume that X_{11}, \ldots, X_{1n_1} is a random sample from normal population with unknown mean μ_1 and variance σ_1^2 , and
- X_{21}, \ldots, X_{2n_2} is a random sample from normal population with unknown mean μ_2 and variance σ_2^2 , and that
- the two samples are independent.
- The sample variances and sample means are

$$S_i^2 = (n_i - 1)^{-1} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_i)^2,$$

$$\bar{X}_i = n_i^{-1} \sum_{j=1}^{n_i} X_{ij}, \quad i = 1, 2.$$

- $X_1^2 = (n_1 1)S_1^2/\sigma_1^2$ and $X_2^2 = (n_2 1)S_2^2/\sigma_2^2$ are independent and have chi-squared distributions with $v_1 = n_1 1$ and $v_2 = n_2 1$ degrees of freedom, respectively.
- So $F = \frac{X_1^2/v_1}{X_2^2/v_2} = \frac{S_1^2\sigma_2^2}{S_2^2\sigma_1^2}$ has an F distribution with numerator and denominator degrees of freedom $v_1 = n_1 1$ and $v_2 = n_2 1$, respectively.

- $X_1^2 = (n_1 1)S_1^2/\sigma_1^2$ and $X_2^2 = (n_2 1)S_2^2/\sigma_2^2$ are independent and have chi-squared distributions with $v_1 = n_1 1$ and $v_2 = n_2 1$ degrees of freedom, respectively.
- So $F = \frac{X_1^2/v_1}{X_2^2/v_2} = \frac{S_1^2\sigma_2^2}{S_2^2\sigma_1^2}$ has an F distribution with numerator and denominator degrees of freedom $v_1 = n_1 1$ and $v_2 = n_2 1$, respectively.

- $X_1^2 = (n_1 1)S_1^2/\sigma_1^2$ and $X_2^2 = (n_2 1)S_2^2/\sigma_2^2$ are independent and have chi-squared distributions with $v_1 = n_1 1$ and $v_2 = n_2 1$ degrees of freedom, respectively.
- So $F = \frac{X_1^2/v_1}{X_2^2/v_2} = \frac{S_1^2\sigma_2^2}{S_2^2\sigma_1^2}$ has an F distribution with numerator and denominator degrees of freedom $v_1 = n_1 1$ and $v_2 = n_2 1$, respectively.

Confidence Interval(Cont.)

There exist a and b such that

$$1 - \alpha = P(a \leqslant F \leqslant b) = P(a \leqslant \frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} \leqslant b)$$
$$= P(\frac{S_1^2}{bS_2^2} \leqslant \frac{\sigma_1^2}{\sigma_2^2} \leqslant \frac{S_1^2}{aS_2^2})$$

• For convenience we choose $a = F_{1-\alpha/2}$ and $b = F_{\alpha/2}$. Thus we have a 100(1 - α)% confidence interval for $\frac{\sigma_1^2}{\sigma_2^2}$.

$$\left[\frac{S_1^2}{F_{\alpha/2}S_2^2}, \frac{S_1^2}{F_{1-\alpha/2}S_2^2}\right]$$

Confidence Interval(Cont.)

There exist a and b such that

$$1 - \alpha = P(a \leqslant F \leqslant b) = P(a \leqslant \frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} \leqslant b)$$
$$= P(\frac{S_1^2}{bS_2^2} \leqslant \frac{\sigma_1^2}{\sigma_2^2} \leqslant \frac{S_1^2}{aS_2^2})$$

• For convenience we choose $a = F_{1-\alpha/2}$ and $b = F_{\alpha/2}$. Thus we have a 100(1 - α)% confidence interval for $\frac{\sigma_1^2}{\sigma_2^2}$:

$$\left[\frac{S_1^2}{F_{\alpha/2}S_2^2}, \frac{S_1^2}{F_{1-\alpha/2}S_2^2}\right]$$

Find Critical Value F_{α}

- Using Table A.6.
- Using TI 8x:
 - (1) graph Fcdf $Y = Fcdf(0, X, v_1, v_2)$ and horizontal line $Y = 1 \alpha$;
 - (2) the *x*-coordinate of the intersection is F_{α} .

Find Critical Value F_{α}

- Using Table A.6.
- Using TI 8x:
 - (1) graph Fcdf $Y = Fcdf(0, X, v_1, v_2)$ and horizontal line $Y = 1 \alpha$;
 - (2) the *x*-coordinate of the intersection is F_{α} .

The F Critical Value using Technology

- In Excel: F_{.025}=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the x-coordinate of the intersection is F_{0.25}=5.2852369.

• In R: $F_{.975}$ = "qf(.975,5,7)=5.285237".

The F Critical Value using Technology

- In Excel: F_{.025}=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the x-coordinate of the intersection is F_{.025}=5.2852369.

• In R: F_{.975}= "qf(.975,5,7)=5.285237".

The F Critical Value using Technology

- In Excel: F_{.025}=F.INV.RT(0.025,5,7)=5.285236852, or =F.INV(1-0.025,5,7)=5.285236852.
- In TI-8x: Graph Y1=Fcdf(0, X, 5,7) and Y2=1-.025=0.975, the x-coordinate of the intersection is F_{.025}=5.2852369.

• In R: F_{.975}= "qf(.975,5,7)=5.285237".

Challenging Problems

Find a and b so that

$$1 - \alpha = P(\frac{S_1^2}{bS_2^2} \leqslant \frac{\sigma_1^2}{\sigma_2^2} \leqslant \frac{S_1^2}{aS_2^2})$$

and $\frac{1}{a} - \frac{1}{b}$ is minimized.

• If μ_1 and μ_2 are known, how do you estimate σ_1^2/σ_2^2 using point estimator and confidence interval?