Project Planning Phase

Date	15 JUNE 2025
Team ID	LTVIP2025TMID41750
Project Name	transfer learning-based classification of poultry diseases for enhanced health management
Maximum Marks	5 Marks

Product Backlog, Sprint Schedule & Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1	Data Preprocessing	USN-1	As a data engineer, I can load and preprocess poultry disease images from the dataset.	3	High	Bandi Jeeshitha Radha Krishna
Sprint- 1	Model Development	USN-2	As a developer, I can build and train a CNN using transfer learning (VGG/ResNet) for classification.		High	Radha Krishna Bandi Jeeshitha
Sprint- 1	Model Saving	USN-3	As a developer, I can save the trained model in .h5 and .keras formats for later inference.	1	High	Bandi Jeeshitha Radha Krishna
Sprint- 2	Frontend Interface (HTML)	USN-4	As a user, I can interact with the prediction system via a web UI.	3	Medium	Gudi Iswarya Machupalli Abilasha
Sprint- 2	Backend Integration (Flask)	USN-5	As a user, I can upload an image and get disease predictions via Flask backend.	4	High	Machupalli Abilasha Sathish Edagottu
Sprint- 2	Model Integration	USN-6	As a developer, I can load the saved model and generate	2	High	Sathish Edagottu

			predictions from user-			Radha
			uploaded images.			Krishna
Sprint-	Deployment & Testing	USN-7	As a team, we can deploy and test the app locally and on cloud (optional) with user feedback.	4	Medium	Gudi Iswarya Sathish Edagottu

Project Tracker, Velocity & Burndown Chart (4 Marks)

m Sprint Schedule

Sprint	Total Story	Duration	Start	End Date	Story Points	Sprint
	Points		Date	(Planned)	Completed	Release Date
Sprint-	9	4 days	June 15	June 18	9	June 18
Sprint- 2	9	5 days	June 19	June 23	9	June 23
Sprint-	4	5 days	June 24	June 28	4	June 28

Velocity

- Average Velocity = Total Story Points Completed / Number of Sprints
- = (9 + 9 + 4) / 3 = **7.33** story points/sprint