CHEN Ziyuan CHEN Zhirong 28 July 2022

Autoencoded Quantification Unsupervised Representative Shapelets Net

Net

Problem Analysis Methodology Features Experiment

Problem Analysis

Methodology

Features

Experiment

convention of Time2Graph.

The phrase "t-v distance" will frequently appear.

A QOURS Net

Problem Analysis

Methodology

Features

Experiment

THE TIME 2 GRAPH MODEL IS, ESSENTIALLY, A FINITE STATE MACHINE.

with transition probabilities as weights.

constitute the <u>nodes</u> in a State Transition Diagram,

subsequence shapes

A finite number of

Problem Analysis

Methodology

Features

Experiment

TRADITIONAL APPROACHES.

"We select the subsequences that perform well on classification tasks as potential shapelets."

"We learn, from the series, shapelets that perform well on classification tasks."

Ye, 2009 (S) Lines, 2012 (ST) Rakthanmanon, 2013 (FS) Wistuba, 2015 (UFS) and almost everyone else before 2016

Grabocka, 2014 (LS) Ma, 2020 (ADSN) etc.

Core idea: Good shapelets are good classifiers.

But running classification can be time-consuming. Let's avoid this!

A QOURS Net

Problem Analysis

Methodology

Features

Experiment

PROPOSAL #1.

Maybe "SELF-SUPERVISED" makes more sense.....

UNSUPERVISED LABELLING

Map shapelets to subsequences. Calculate t-v distances as labels u.

UNSUPERVISED TRAINING

Contrastively train an embedding network U to extract features.

SUPERVISED LABELLING

Feed t and v into U.
Use E.D. of <u>outputs</u> as labels v.

SUPERVISED TRAINING

Concatenate an MLP V after U. Use the labels v for fine-tuning.

THE MODEL IS READY!

For each series, transfer its subsequences into possibility vectors and construct the FSM Diagram.

Problem Analysis

Methodology

Features

Experiment

PROBLEMS OF PROPOSAL #1.

At the beginning epochs, these labels for fine-tuning (v) come from the unsupervised model.

They can be unreliable!

SUPERVISED LABELLING

Feed t and v into U.

Use E.D. of <u>outputs</u> as labels v.

SUPERVISED TRAINING

Concatenate an MLP V after U.
Use the labels v for fine-tuning.

But turning to the classification task means retreating to the old path

Problem Analysis

Methodology

Features

Experiment

SHAPELET-BASED MODEL

VS.

TIME2GRAPH

Finds "signature" subsequences.

Good shapelets should classify the time series accurately.

Uses shapelet transfer for embedding.

Good shapelets should express the subsequences accurately.

CONCLUSION.

"Selection by classification" is possibly not the optimal solution!

A Q O U R S Net

Problem Analysis

Methodology

Features

Experiment

PROPOSAL #2.

AIM FOR REPRESENTATIVENESS INSTEAD OF DISTINCTIVENESS.

Sounds rather subtle, huh.....

THE MORE DIVERSE, THE MORE EXPRESSIVE.

Ma, 2020 (ADSN) Li, 2021 (ShapeNet) etc.

- 1. Use KMeans to cluster all the subsequences.
- 2. For each cluster, use the subsequence closest to the center as our "anchor".

A QOURS Net

Problem Analysis

Methodology

Features

Experiment

PROPOSAL #2.

THE MORE DIVERSE, THE MORE EXPRESSIVE.

- 1. Use KMeans to cluster all the subsequences.
- 2. For each cluster, use the subsequence closest to the center as our "anchor".

THE KMEANS FACTSHEET.

- KMeans is fast it runs in O(n) time
- KMeans outperforms random picking Wistuba, 2015 (Ultra-fast) Karlsson, 2016 (Rnd. spl. forest)
- KMeans encourages representativeness
- KMeans does NOT always encourage diversity

(Choosing centroids in the TS2Vec-embedded space would help)

Problem Analysis

Methodology

Features

Experiment

DIAGRAM OF SIMPLEKMEANS

FEATURES. KMeans

Problem Analysis

Methodology

Features

Experiment

DIAGRAM OF TIME 2 GRAPH

FEATURES. KMeans Veličković, 2017 Brody, 2021 GAT / GATv2

Problem Analysis

Methodology

Features

Experiment

DIAGRAM OF AQOURSNET

FEATURES.

KMeans
GAT / GATv2

Meyer, 2018
Kazemi, 2019
TS2Vec
DTW

A Q O U R S Net

Problem Analysis

Methodology

Features

Experiment

SIMPLEKMEANS VS. SHAPENET

COLOR CODE: TOP 3, BOTTOM 7 AMONG A TOTAL OF 16 MODELS

Dataset	RotF	DTW_Rn	ST	LS	FS	SD	COTE	₽JS	ResNet	Random	BSP00VER	Kmeans SVM	Kmeans MLP		Kmeans MLPHer	Kmeans ResHer
BeetleFly	90.00	65.00	90.00	80.00	70.00	75.00	80.00	85.00	85.00	80.00	90.00	95.00	<u>100.00</u>	95.00	50.00	<u>100.00</u>
Coffee	<u>100.00</u>	<u>100.00</u>	96.43	<u>100.00</u>	9286	96.10	<u>100.00</u>	96.43	<u>100.00</u>	93.47	<u>100.00</u>	<u>100.00</u>	<u>100.00</u>	<u>100.00</u>	53.57	96.43
DistalPhalanxOutline	75.72	7246	7 7.54	77.90	75.00	71.70	76.09	57.83	77 .10	77.52	<u>83.17</u>	77.90	80.07	78.62	58.33	73.19
Earthquakes	74.82	7266	74.10	74.10	70.50	63.60	74.82	77.64	71.20	75.49	<u>81.68</u>	74.82	74.82	7 8.42	74.82	74.82
ECG200	85.00	88.00	83.00	88.00	81.00	81.80	88.00	80.00	87.40	85.00	<u>9200</u>	83.00	64.00	91.00	64.00	64.00
ECCFiveDays	90.82	79.67	98.37	<u>100.00</u>	99.77	95.30	99.88	95.45	97.50	89.95	<u>100.00</u>	96.28	93.96	97.68		85.02
FordA	84.47	66.52	<u>97.12</u>	95.68	78.71	77.60	95.68	67.60	92.00	90.12	96.31	7 5.53	52.88	65.45	51.59	65.61
Ham	71.43	60.00	68.57	66.67	64.76	61.90	64.76	63.81	75.70	71.87	<u>76.19</u>	71.43	72.38	73.33	51.43	66.67
ShapeletSim	41.11	69.44	95.56	95.00	<u>100.00</u>	67.20	96.11	<u>100.00</u>	77.90	79.25	84.44	<u>100.00</u>	82.22	96.11	53.33	87.78
SonyAlBORobotSurface1	80.87	69.55	84.36	81.03	68.55	85.00	84.53	87.85	<u>95.80</u>	80.06	88.35	9218	9235	78.87	57.07	68.22
SonyAlBORobotSurface2	80.80	85.94	93.39	87.51	79.01	78.00	95.17	93.17	<u>97.80</u>	79.93	93.49	91.71	84.7 8	9297	61. 7 0	75.55
Strawberry	97.30	94.59	96.22	91.08	90.27	88.40	95.14	83.85	<u>98.10</u>	89.57	94.29	93.24	86.49	96.76	64.32	83.51
ToeSegmentation1	53.07	75.00	96.49	93.42	95.61	88.20	97.37	<u>98.24</u>	96.30	81.71	96.49	9211	90.79	94.74	55.26	80.70
TwoLeadECG	97.01	86.83	99.74	99.65	92.45	86.70	99.30	99.82	<u>100.00</u>	9219	99.65	96.14	92.80	92.01	50.04	78.58
Wafer	99.45	99.59	<u>100.00</u>	99.61	99.68	99.30	99.98	99.43	99.90	96.49	99.81	98.91	89.21	99.43	89.21	89.21
WormaTwoClass	68.83	58.44	<u>83.12</u>	7273	7273	64.10	80.52	71.82	74.70	71.24	74.59	81.82	81.82	<u>83.12</u>	57.14	76.62
Yoga	82.43	84.30	81.77	83.43	69.50	62.50	87.67	83.90	87.00	81.27	<u>88.20</u>	75.23	73.30	85.07	53.57	65.33

Why do they

Li, Guozhong, et al. "ShapeNet: A Shapelet-Neural Network Approach for Multivariate Time Series Classification." AAAI Conference on Artificial Intelligence, vol. 35, pp. 8375-8383, 2021. https://ojs.aaai.org/index.php/AAAI/article/view/17018.

Problem Analysis

Methodology

Features

Experiment

SIMPLEKMEANS VS. TIME 2 GRAPH

COLOR CODE: TOP, MIDDLE, BOTTOM

Model	KMean	s SVM	KMean	s MLP	KMeans ResNet		
Best Parameters	Number	Length	Number	Length	Number	Length	
BeetleFly	30	30%	30	15%	20	20%	
Coffee	20	10%	25	20%	20	25%	
DistalPhalanxOutline	30	20%	30	30%	30	15%	
Earthquakes	10	20%	25	20%	25	15%	
ECG200	30	30%	20	25%	30	30%	
ECGFiveDays	30	30%	25	30%	25	30%	
FordA	30	20%	20	25%	20	15%	
Ham	30	20%	25	20%	25	30%	
ShapeletSim	10	5%	30	15%	20	15%	
SonyAlBORobotSurface1	20	20%	30	25%	25	25%	
SonyAlBORobotSurface2	30	10%	25	20%	30	15%	
Strawberry	20	5%	20	25%	30	25%	
ToeSegmentation1	30	20%	30	15%	30	30%	
TwoLeadECG	20	30%	25	30%	20	30%	
Wafer	30	30%	25	25%	30	30%	
WormsTwoClass	30	10%	30	15%	30	20%	
Yoga	30	10%	30	15%	30	20%	

Method	EQS	WTC	STB
RotF	74.82	97.30	68.83
DTW_Rn	72.66	94.59	58.44
ST	74.10	96.22	83.12
SD	63.60	88.40	64.10
COTE	74.82	95.14	80.52
ELIS	77.64	83.85	71.82
ResNet	71.20	98.10	74.70
Random	75.49	89.57	71.24
BSPCOVER	81.68	94.29	74.59
NN-ED	68.22	62.41	95.60
NN-DTW	70.31	68.16	95.53
NN-WDTW	69.50	67.74	95.44
NN-CID	69.41	69.56	95.51
DDTW	70.79	70.92	95.60
XGBoost Origin	74.82	62.34	95.92
XGBoost Feature	75.54	64.94	<i>97.03</i>
BoP	74.80	74.42	96.45
TSF	74.67	68.51	96.27
EE	73.50	71.74	95.88
SAXVSM	73.76	72.10	96.97
LS	74.22	73.57	92.49
FS	74.66	70.58	91.66
LPS	66.78	74.26	96.35
MLP	70.29	59.86	96.58
LSTM	74.82	42.86	63.84
VAE	71.22	62.34	71.35
Shapelet-Seq	75.53	55.84	78.10
Time2Graph	79.14	72.73	96.76
Time2Graph+ Static	76.98	70.13	95.95
Time2Graph+	77.70	71.43	96.49
KMeans SVM	74.82	93.24	81.82
KMeans MLP	74.82	86.49	81.82
KMeans ResNet	78.42	96.76	83.12

Cheng, Ziqiang, et al. "Time2Graph+: Bridging Time Series and Graph Representation Learning via Multiple Attentions."

Journal of IEEE Transactions on Knowledge and Data Engineering, 2021. https://doi.org/10.1109/TKDE.2021.3094908.

Problem Analysis

Methodology

Features

Experiment

AQOURSNET VS. SHAPENET

COLOR CODE: TOP, MIDDLE, BOTTOM

			A	QOURSNet			ShapeNet Baselines		
	Dataset	Number of Shapelets	Number of Segments	Graph Embedding Dimension	Train Accuracy	Test Accuracy	ResNet	BSPCOVER	
	Earthquakes	60	10	128	88.82	75.54	71.20	<u>81.68</u>	
	Strawberry	60	10	256	92.50	87.57	89.57	<u>93.24</u>	
	WormsTwoClass	40	10	128	100.00	66.23	<u>74.70</u>	74.59	
TS2Vec	BeetleFly	60	20	64	100.00	80.00	85.00	<u>90.00</u>	
OFF	Coffee	60	10	256	100.00	<u>100.00</u>	<u>100.00</u>	<u>100.00</u>	
	DistalPhalanx	60	40	256	78.83	76.81	77.10	<u>83.17</u>	
	ECG200	80	20	64	100.00	<u>94.00</u>	87.40	92.00	
	ECGFiveDays	40	40	128	100.00	95.01	97.50	<u>100.00</u>	
	Earthquakes	80	40	128	81.99	74.82	71.20	<u>81.68</u>	
	Strawberry	80	20	128	64.27	64.32	89.57	<u>93.24</u>	
	WormsTwoClass	80	40	128	88.95	58.44	<u>74.70</u>	74.59	
TS2Vec	BeetleFly	80	20	128	100.00	65.00	85.00	<u>90.00</u>	
ON	Coffee	80	20	128	50.00	53.57	<u>100.00</u>	<u>100.00</u>	
	DistalPhalanx	80	40	128	79.83	74.28	77.10	<u>83.17</u>	
	ECG200	80	40	128	100.00	<u>92.00</u>	87.40	<u>92.00</u>	
	ECGFiveDays	80	40	128	100.00	97.10	97.50	<u>100.00</u>	

Problem Analysis

Methodology

Features

Experiment

AQOURSNET VS. TIME2GRAPH

COLOR CODE: TOP, MIDDLE, BOTTOM

		AQOU	RSNet	Time2Graph Baselines			
Dataset	Number of Shapelets	Number of Segments	Train Accuracy	Test Accuracy	Time2Graph	Time2Graph+ Static	Time2Graph+
Earthquakes	40	20	95.96	74.82	<u>79.14</u>	76.98	77.70
Strawberry	50	20	98.69	96.49	<u>96.76</u>	95.95	96.49
WormsTwoClass	60	20	98.90	70.13	<u>72.73</u>	70.13	71.43

Problem Analysis

Methodology

Features

Experiment

FUTURE WORKS.

XGBOOST JOINT LEARNING WITH PYTORCH

MIXEDPRECISION FINE-TUNING OF (HYPER)PARAMETERS

TIME2VEC FUNCTIONALITY VERIFICATION

DATA PARALLEL DISTRIBUTED ON MULTIPLE CUDAS

Problem Analysis

Methodology

Features

Experiment

RECEIVE UPDATES.

AllenHeartcore/AQOURSNet_rsch22su

rong-hash/Time2GraphRework

- Complete docs
- Full "args" interface
- Prerequisite materials
- Releases

- Fine-tuned GAT
- Out-of-the-box TS2Vec
- Updated experiments

Thanks for Listening

Autoencoded Quantification Unsupervised Representative Net