Warm-Up

Combining Like Terms to Solve Equations

Lesson Question

Lesson Goals Identify like terms. Combine terms. Use the properties of to solve linear equations.

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

addition property	the property stating that adding the	quantity to	
of equality	both sides of an equation does not change the solution set		
division property	the property stating that dividing both sides of an equation by the		
of equality	same number does not ch	ange the equation	
inverse operations	operations that "each other, such as addition and subtraction or multiplication and division		
multiplication property of equality	the property stating that multiplying sides of an equation by the same value does not change the equation		
subtraction property of equality	the property stating that subtracting the same quantity from		
	both sides of an equation does	change the equation	

© Edgenuity, Inc.

Instruction

Combining Like Terms to **Solve Equations**

Slide

Inverse Operations and Properties of Equality

Inverse operations are operations that "undo" each other: addition and subtraction, multiplication and division.

Addition Property of Equality

$$a + \boxed{} = b + c$$

• Solve: x - 4.3 = 0.55

• Subtraction Property of Equality • Solve: $x + \frac{2}{5} = 8$

$$a-c=b$$

$$-\frac{2}{5}$$
 $-\frac{2}{5}$

$$x =$$

More Properties of Equality

Inverse operations are operations that "undo" each other: addition and subtraction, multiplication and division.

$$a \times c = b \times$$

• Multiplication Property of Equality Solve: $x \div 3 = 6$ or $\frac{x}{3} = 6$

$$3(x \div 3) = 3(6)$$

$$X =$$

Division Property of Equality

$$a \div c = b \div c \text{ for } c \neq$$

Solve: 5.5x = 33

$$\frac{5.5x}{5.5} = \frac{33}{5.5}$$

$$x =$$

Instruction

Combining Like Terms to Solve Equations

Slide 5

Combine Like Terms to Solve an Equation

PROCEDURE

- 1. Identify and like terms.
- 2. Use the properties of and inverse operations to solve the equation.
- 3. Check your answer.

5x + 6x = 66

x = 6

Check:
$$5() + 6(6) = 66$$

66 = 66 ✓

Instruction

Combining Like Terms to Solve Equations

Slide

5

Writing and Solving an Equation

REAL-WORLD CONNECTION

Mrs. Garner needs to arrange 28 desks into rows on each side of her classroom with an aisle in the middle. There is room for 4 rows on the left side, but only 3 rows on the right side. How many desks should be in each row on the right?

1. Write an equation.

x = number of desks in each row

$$+3x=$$

2. Identify and combine like terms.

Use the properties of equality
 and operations
 to solve the equation.

$$\frac{7x}{2} = \frac{28}{7}$$

$$x = 4$$

 $28 = 28 \checkmark$

4. Check your answer.

$$4(4) + 3(4) = 28$$

$$+ 12 = 28$$

There should be 4 desks in each row on the right.

Instruction

Combining Like Terms to Solve Equations

Slide

8

Equations Algebra Tiles Interactive

Solve using Algebra tiles:

$$4x - 3 = 5$$

- 1. Model the equation using algebra tiles.
- 2. Use the addition property of equality. Drag 3 orange square tiles to each side to add 3 to both sides of the equation.

$$4x - 3 = 5$$

$$+3$$

$$4x = 4x = 4x$$

3. Click the button to divide both groups by 4.

$$\frac{4x}{4} = \frac{8}{4}$$

Instruction

Combining Like Terms to Solve Equations

How to Solve Two-Step Equations

PROCEDURE

- Undo or subtraction to isolate the variable term.
- Undo multiplication or to isolate the variable.
- 3. Check your answer.

Solve 3.25x - 4 = 15.5 for *x*.

3.25x - 4 = 15.5

+4

3.52x =

Check: 3.25(6) - 4 = 15.5 19.5 - 4 = 15.5 $= 15.5 \checkmark$

So x = 6 is the correct answer.

Instruction

Combining Like Terms to Solve Equations

Using an Equation to Solve a Word Problem

Morgan wants to buy a new smartphone that costs \$172. She has already saved \$70. She makes \$8.50 per hour babysitting. How many hours will Morgan have to babysit to earn the rest of the money?

1. Write an equation.

+70=

2. Undo addition or subtraction.

$$8.50h = 102$$

3. Undo multiplication or division.

$$\frac{8.50h}{1} = \frac{102}{8.50}$$

$$h =$$

4. Check your answer.

$$172 = 172 \checkmark$$

Morgan will have to work 12 hours to save up for her new smartphone.

Instruction

Combining Like Terms to Solve Equations

How to Solve Multi-Step Equations

PROCEDURE

Solve the equation for *x*.

- 1. Identify and combine like terms.
- 2. Undo addition or subtraction to isolate the variable term.
- 3. Undo multiplication or division to isolate the variable.
- 4. Check your answer.

$$-3x + 6x + 4 = 13$$

$$\frac{3x}{3} = \frac{9}{3}$$

$$X =$$

$$-3(3) + 6(3) + 4 = 13$$

9 + 4 = 13

Summary

Combining Like Terms to Solve Equations

Lesson
Question

How can you solve linear equations by combining like terms?

Use this space to write any questions or thoughts about this lesson.