画像情報システム

第3回 空間フィルタ

木更津高専情報工学科 和崎

1. 空間フィルタ

- ある注目画素とその近傍画素で演算を行う
 - オペレータの種類によって様々な効果
 - 画素値の更新は原画像を保存しながら行うこと!

例:3×3の近傍領域について

g[i,j]:注目画素の更新値, f[i+k,j+l]:更新前の濃度値, a[k,l]:オペレータ

$$g[i, j] = \sum_{l=-1}^{1} \sum_{k=-1}^{1} f[i+k, j+l] \cdot a[k, l]$$

f[i-1, j-1]	f[i, j-1]	f[i+1, j-1]					
f[i-1,j]	f[i,j]	f[i+1,j]					
f[i-1, j+1]	f[i, j+1]	$f\left[i+1,j+1\right]$					

原画像の注目画素と近傍画素

a[-1,-1]	a[0,-1]	a[1,-1]
a[-1,0]	a[0,0]	a[1,0]
a[-1,1]	a[0,1]	a[1,1]

作用させるオペレータ

2. フィルタリング時の注意点

- 原画像を保存しつつ、処理画像を生成する
 - 原画像を変更しながら処理をすると、処理手順で結果が異なってしまうので注意
- フィルタウィンドウ内に画像外領域が含まれるとき
 - 適当な値を仮定してフィルタリング(単調な画像の場合)
 - 一定値にする,端の画素を延長する,…など
 - ウィンドウを小さくして対応する(合理的)
 - 3×3なら、角は2×2、端は2×3または3×2
 - 処理をあきらめる
 - 3×3なら、1画素分内側しかフィルタリングを行わない

3. ノイズの種類

- 画像に重畳するノイズは様々(以下は一例)
 - インパルス性ノイズ(ごま塩ノイズ)
 - ランダムな位置に大振幅(最大値や最小値)のノイズ
 - モノクロでは白と黒の点として知覚。
 - メディアンフィルタが基本
 - ランダムノイズ
 - ランダムな位置にランダムな振幅のノイズ
 - 除去が難しい
 - ガウス性ノイズ
 - 全ての画素にのる
 - ノイズの振幅はガウス分布(正規分布)に従う
 - 平均値フィルタが基本

ガ ウ ス 性

原 画 像 \rightarrow

4. 平滑化フィルタ(1)

- 平均値フィルタ
 - 注目画素と周辺画素の荷重平均をとる
 - ・ aの各要素値が荷重を表す
 - 代表的なパターンはすべて1
 - 画像が全体的にぼやける
 - ごま塩ノイズには無力

1	1	1				
n+N	n+N	n+N				
1	n	1				
n+N	n+N	n+N				
1	1	1				
n+N	n+N	n+N				

N \downarrow 周辺の 画素数

対ガウス性ノイズ

n=8

n=1対インパルス性ノイズ

5. 平滑化フィルタ(2)

- メディアンフィルタ
 - 濃度値順に並べて、その中央値をとる
 - 画素数が偶数のときは、中央の2値の平均
 - インパルス性ノイズに有効
 - ガウス性ノイズには大きな効果はない

インパルス性 🗸 ノイズ

ガウス性ノイズ

6. 画像の微分

- ・ 画像の微分は特徴抽出の基本
 - 境界(エッジ)、方向(縦、横、斜め)、平面(等輝度、等 色)など
- ・ 画像の微分
 - X方向の微分: $\Delta_x f = f[i+1,j]-f[i-1,j]$
 - Y方向の微分: $\Delta_y f = f[i, j+1] f[i, j-1]$
 - 勾配の大きさ: $g[i,j] = \sqrt{(\Delta_x f)^2 + (\Delta_y f)^2}$ または $g[i,j] = |\Delta_x f| + |\Delta_y f|$ $g[i,j] = \max(|\Delta_x f|, |\Delta_y f|)$
 - 勾配の方向: $\theta[i,j] = T \operatorname{an}^{-1} \left(\frac{\Delta_y f}{\Delta_x f} \right)$
 - 斜め方向の微分: $\Delta_u f = f[i-1, j-1] f[i+1, j+1]$ (Robertsフィルタ) $\Delta_v f = f[i-1, j+1] - f[i+1, j-1]$

7. 微分フィルタ

- オペレータによるフィルタ
 - エッジ検出フィルタ
 - Prewitt(プレビット)フィルタ、Sobel(ゾーベル)フィルタ
 - 近傍領域まで拡張してノイズ耐性を向上
 - 線検出フィルタ
 - ・ 調べたい形状に1を並べれば、任意の形状検出ができる

	1	0	-1	1	1	1	1		0	-1	1	2	1		-1	1	-1	-1	-1	-1
	1	0	-1	0	0	0	2		0	-2	0	0	0		-1	1	-1	1	1	1
	1	0	-1	-1	-1	-1	1		0	-1	-1	-2	-1		-1	1	-1	-1	-1	-1
	Δ_x Δ_y						Δ_x Δ_y						縦線 横線							
Prewittフィルタ						Sobelフィルタ							線検出フィルタ							

8. ラプラシアンフィルタ

関数 f(x,y) に対するラプラシアン

$$\nabla^{2} f = \frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}}$$

$$\nabla^{2} f = f [i-1, j] + f [i+1, j] + f [i, j-1] + f [i, j+1] - 4f [i, j]$$

- エッジの下端と上端で正と負のピーク、エッジの上でゼロクロスする
- 先鋭化
 - ラプラシアンによりエッジを強調

$$\nabla^{2} f = 5 f [i, j] - (f [i-1, j] + f [i+1, j] + f [i, j-1] + f [i, j+1])$$

0	1	0			
1	-4	1			
0	1	0			

ラプラシアン オペレータ

9. 各フィルタの実行例

標準画像(Lighthouse)

先鋭化

Prewittフィルタ

ラプラシアンフィルタ

Sobelフィルタ

課題

- 課題9
 - 入力画像を平均値フィルタ処理する(n=5、Nは領域の大きさで変化)
- 課題10
 - 入力画像をメディアンフィルタ処理する
- 課題11
 - 入力画像をPrewittフィルタ処理する(大きさ: $g[i,j] = \sqrt{(\Delta_x f)^2 + (\Delta_y f)^2}$)
- 課題12
 - 入力画像をSobelフィルタ処理する(大きさ: $g[i,j] = \sqrt{(\Delta_x f)^2 + (\Delta_y f)^2}$)
- 課題13
 - 入力画像をラプラシアンフィルタ処理する(出力値に128を加えること)
- 課題14
 - 入力画像を先鋭化する

※注意

- ・全ての課題の処理ウィンドウサイズは3×3とする
- ・課題9、10は画像領域内の値だけで処理を行う
- ・課題11~14は画像領域外の値を0として処理を行う
- ・出力値は0~255となるように処理すること

追加課題

- 追加1:雑音検出器によるノイズ除去(入力画像はNo.10)
 - 局所領域(5×5)のメディアン値をm(x,y)、処理画素の濃度値をd(x,y)とすると、以下でノイズ判別

$$\begin{cases} m(x,y) - T < d(x,y) < m(x,y) + T : ノイズでない \\ \text{others} : ノイズ \end{cases}$$

- 雑音検出画像を作成せよ(雑音でない:黒、雑音:白)
- 雑音検出画像をもとにして、雑音検出画素のみメディアンフィルタ (3×3)で雑音を除去した画像を作成せよ
- 追加2: ガウシアンフィルタの作成(入力画像はNo.9)
 - d(x,y)周辺領域N内の濃度値をd(x',y')とすると

$$\int d(x,y) = \frac{1}{C} \sum_{N} \exp\left(\frac{-\left\{(x'-x)^2 + (y'-y)^2\right\}}{2\sigma_d^2}\right) d(x',y')$$

$$C = \sum_{N} \exp\left(\frac{-\left\{(x'-x)^2 + (y'-y)^2\right\}}{2\sigma_d^2}\right)$$

- 但し、σd=2として領域Nの大きさは13×13とする
- 画像領域外は処理から外すこと