

GTATGAGTGT CGTGCAGCCT	AACCGGTGAG TACACCGGAA	#257 AATGCCT <u>GGA_GATTTGGG</u> CG	AAAGGCCTTG TGGTACTGCC	CGTGCAATC
CATGGCGTTA	#251 TGGTCTGCGG AACCGGTGAG	CAACCCGCTC	6669TCGCG	TCTCGTAGAC C
AGCGTCTAGC	#249 GG AGAGCCATAG	TTTCTTGGAT	#263 CCGAGTAGTG TT	CCCCGGGAGG
TCACGCAGAA		GACCGGGTCC	#261 AGACTGCTAG	CTTGCGAGTG
GATTCTGTCT	CCAGGACCCC	#253 TTGCCAGGAC (#40 TGCCCCGGCA	TGATAGGGTG
Consensus:G HCV 1a - HCV 1b - HCV 2c -				

•

FIGURE 7

FIGURE 8A

FIGURE 8B

FIGURE 8C

FIGURE 9A

11/123

FIGURE 9B

FIGURE 9D


```
#80

G A

T — A

C — G

T — A

G — C

T — A

C — G

G — C

C — G

G — C

C — G

G — C

C — G
```

FIGURE 11A

#80) 5' - FI-TGCTCTCGGT TGGTCTCTCGTAAT-3'
3FD91) 3' Biotin - CGAGAGACCA-5'

G A T — G — C — C — C — C — C — C

#80) 5' - FI-TGCTCTCGGT TGGTCTCTCGTAAT-3'

#78) 3' - AGACCATTACCAGA -Biotin 5'

#4) 3' - GAGACCATTACCAGAG-Biotin 5'

#79) 3' - A G A G A C C A T T A C C A G A G A -Biotin 5'

VV

#116) 3' - A G A G A C C A A C C A G A G A -Biotin 5'

#117) 3' - T A C C A G A G A -Biotin 5'

#118) 3' - A G A G A C C A T - 5'

FIGURE 11B

FIGURE 13A

FIGURE 13B

	11020304050607080
<u>4</u>	ctggaagcaccctatcaggcagtaccacaaggcctttcgcgacccaacactactcgcctagcagcagtagcagggggggg
5	
2a/c	h
3a	TGAC
	90100110120130140150160
<u>a</u>	cccaaatctcbaggcattgagcgggtttatccaagaaaggacccggtcgtcctggcaattccggtgttccggttcc
4	
2a/c	
3a	
1	general esta est de la companda del companda de la companda del companda de la companda del companda de la companda del companda de la companda del companda del companda de la companda de la companda del companda de la companda del comp
1	J
2a/c	j
3a	J

24/123

FIGURE 17A

FIGURE 17C	7 4 7 4 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0
	TG T	5'Biotin ——TCCAA M (#81-04)3'—AGGTT

```
HCV 1a
                                              G G
G A
                                                СG
                                                СG
                                                C G
                                                ΤG
                            ТG
                                                CG
                             ТG
                                                ΤG
                                                CG
                                                GT
                             G C
                                             173 G C
T' C
                             G C
                          102C G 125
G G
A T
                                                A T 196
                                                \mathbf{T} G
                                                СG
                             G C
                           A_{CGC}^{T^{T}G}
                                                СG
                                       ΤA
                                               A<sub>G</sub> C
                                       GС
                             GC
                                       G C
                             ΑT
                              C G
                                                CG
70
90CG
TGCGGGGCACGCCCAAATCT CAATT TTCC ACGACACT— 3'
                     (179-49-01)3 · GGCCAAGG TT TGCTGTGA 5 · b
                     (192-72-01)3 · GGCCAAGG AA TGCTGTGA 5 · |
                      (192-72-02)3 · GGCCAAGGACTGCTGA 5 ·
                      (192-72-03)3 · GGCCAAGG —TGCTGTGA 5 · K
                      (192-72-04)3 · GGCCTAGG TT TGCTGTGA 5 · C
                      (192-72-05)3 · GGCCAAGG TT TGCAGTGA 5 · C
```

FIGURE 18B

```
HCV<sub>1b</sub>
                                              CG
                                              СG
              {}^{\mathrm{TCCAAG_{A}}}_{\mathrm{A}}
{}^{\mathrm{A}}_{\mathrm{T}}{}^{\mathrm{A}_{118}}
                                              СG
                                              C G
                                              ΤG
                                              СG
                  G C
                                              GT
                  G C
                                          173 G C
T C
              G C
102C G 125
GC
-AT
GCG
GCG
TGG CC
TGG C
CGC
CGC
CA
                                              A T 196
                                              ТG
                  ΑТ
                  G C
                 \mathbf{T}^{\mathbf{T}} \mathbf{G}_{\mathbf{T}}
                                              СG
                   GC
                                 GC
                   СG
     20CG 141CG156161GC205
CAAATCT CAATT TTCC ACGACACT-3'
        (179-49-01)3 \cdot GGCC\overline{AAGG}_{TT}\overline{TGCTGTGA} 5 \cdot b
        (192-72-01)3 · GGCCAAGG<sub>AA</sub>TGCTGTGA 5 · |
        (192-72-02)3 · GGCCAAGGACTGCTGA 5 · j
        (192-72-03)3 GGCCAAGG -TGCTGTGA 5 K
        (192-72-04) 3 · GGCCTAGG<sub>TT</sub>TGCTGTGA 5 · C
        (192-72-05)3 · GGCCAAGG<sub>TT</sub>TGCAGTGA 5 · C
```

FIGURE 18C

```
AAG
C
                        HCV 2a/c
                A118
                               GGA
             \mathbf{T} G
                              G G
             A T
             G C
                                C G
             G C
                                C G
             G C
                                тG
         102 T A 125
                                C G
            G_{AT}G
                                тG
             G C
                                CG
            A T
                                G C
              ΑT
                             173 G C 196
             G C
                                ^{\mathrm{T}}_{\mathrm{A}} ^{\mathrm{T}}
              GC
                                 ΤG
              G C
                                 СG
              СG
                                 CG
                     G C
            90C G
                                 CG
                     ΤΑ
              G C
                               A<sub>G</sub> C
                    G C
                                 АТ
                     G C
              A T
                   \begin{array}{ccc}
C G & C G \\
T C G & 156 & 161 G \\
T C G & T T C C
\end{array}
              AT
CACGCCCAA
 (179-49-01)3' GGCCAAGG TTTGCTGTGA 5' b
(192-72-01) 3 · GGCCAAGG AA TGCTGTGA 5 · |
 (192-72-02)3 · GGCCAAGG<sub>AC</sub>TGCTGTGA 5 ·
 (192-72-03)3 · GGCCAAGG —TGCTGTGA 5 · K
 (192-72-04)3' GGCC\overline{\text{AGG}}_{TT}\overline{\text{TGCTGTGA}} 5' C
 (192-72-05)3 · GGCCAAGG<sub>TT</sub>TGCAGTGA 5 · C
```

```
HCV 3a
             CAAG
C A
               T A
                                  GA
               T A 118
              G G
                                   СG
               TG
                                   C G
                ΤΑ
                                   C G
                G C
                G C
                                   ТG
                                    C G
                G C
            102C G 125
G G
A T
                                    G C
                \mathsf{G}\;\mathsf{C}
                                173 G C
             A_{\mathbf{T}GC}^{\mathbf{T}\mathbf{T}\mathbf{A}}C
                                    A T 196
                                    ТG
                 G C
                                   C G
A A
                 GС
                                    CG
                 ΑT
                       \mathbf{A} \mathbf{T}
                                    СG
              {}^{90}C {}^{G} {}^{G} {}^{G} {}^{G} {}^{G} {}^{G} {}^{G}
                                  ^{\mathbf{A}}_{\mathbf{G}}^{\mathbf{C}} C
                       GC
                                    ΑТ
                 ΤA
                       CG
                                    \mathbf{C} \mathbf{G}
-CACGCCCA TTCC ACGACACT -
(179-49-01)3 · GGCCAAGG<sub>TT</sub>TGCTGTGA 5 · b
(192-72-01)3 · GGCCAAGG<sub>AA</sub>TGCTGTGA 5 · |
(192-72-02)3 · GGCCAAGGACTGCTGA 5 ·
(192-72-03)3' GGCCAAGG —TGCTGTGA 5' K
(192-72-04)3 GGCCT\overline{AGG}_{TT}TGCTGTGA 5 C
(192-72-05)3 · GGCCAAGG<sub>TT</sub>TGCAGTGA 5 · C
```


FIGURE 20A

Ω

 \circ

 ∇

Φ

3 - - GGCCAAGGCGTCTGGTGA-F1 - 5 - (205-13-02) A

 3° -GGCCAAGG $_{TT}$ TGCTGTGA $^{\circ}$ ·F1 $^{\circ}$ 5 $^{\circ}$ (179-49-01)

3'-GGCCTAGG TT TGCTGTGA F1'5'(192-72-04)

3'-GGCCAAGG_{TT}TGCAGTGA F1'5'(192-72-05)

3 - - GGCCAAGG-F15 (205-27-01)

FIGURE 20B

CACGACACT - 3 $\begin{smallmatrix} \Omega^{\Omega} \cap \cap \cap H \\ \Omega_{A} \cap \Omega \cap \Omega \cap \Omega \cap \Omega \cap H \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0$


```
3'-GGCCAAGGCGTCTGGTGA-F1'S'(205-13-02) A
                                                                                                                                                   3'-GGCCAAGG<sub>TT</sub>TGCTGTGA...F1'5'(179-49-01)
                                                                                                                                                                  .3 - - GGCCAAGG-F15 (205-27-01)
                                                                                                                       S.—CAATTCCGGTGTACTCACCGGTTCC G CACGACACT — 3.
HCV 1a
```

Ω

Φ

FIGURE 23


```
3'-GGCCAAGGCGTCTGGTGA-F1'5'(205-13-02) A
                                                                                                                                                                                           3'-GGCCAAGG<sub>TT</sub>TGCTGTGA F1'5'(179-49-01)
                                                                                                                                                                                                              3'-GGCCTAGG<sub>TT</sub>TGCTGTGA" F1'5'(192-72-04)
                                                                                                                                            S'-CAATTCCGGTGTACTCACCGGTTCC G C205
ა დ
ს<sub>ტ</sub> ს
                                                                                                         4
0 0 4 0
0 1 0
                                                                                                                                                            f (192-96-01)3'-TAAGGCCACATGAGT-5'
                                                           HCV 1a
```

Ω

 \circ

 ∇

3'-GGCCAAGG $_{TT}$ TGCAGTGA \cdots F1'5'(192-72-05)

3 - - GGCCAAGG - F15 · (205-27-01)

Φ

Φ 3'-GGCCAAGGCGTCTGGTGA-F1'5'(205-13-02) A 5'-ATTCCGGTGTACTCACGGTTCCAAACGACACT-3'(205-13-01) S.T. 3'-GGCCAAGG_{TT}TGCTGTGA...F1'5'(179-49-01) $3' - \texttt{GGCCTAGG}_{TT}$ TGCTGTGA --- F1'5' (192-72-04) 3'-GGCCAAGG_{TT}TGCAGTGA F1'5'(192-72-05) 3'-GGCCAAGG-F15'(205-27-01) f (192-96-01)3'-TAAGGCCACATGAGT-5'

None	Ω	-	
S.T.	Φ		
	Ø	1	
	Q		
	ပ	1	
	م ا	1	
<u>~</u>	Φ		
<u>a</u>	σ	1	
<u>5</u>	q	5.	
4	O		
<u></u>	q	ŧ	
o C	2	:	
24/5	م أ	•	
-	2 0	;	
<u>.</u>	arget UNA Probe	33	733 √ ↑ ↑ √ ↑ ↑

FIGURE 28

٧.

```
3 - GGCCAAGGCGTCTGGTGA-F1'5'(205-13-02) A
                                                                                                                                                                                                                                                      \circ
                                                                                                                                                                                                                                                                       0
                                                                                                                                                                                                                                                                                            യ
                                                                                                                                                                                                                                                    3'-GGCCTAGG<sub>TT</sub>TGCTGTGA F1'S'(192-72-04)
                                                                                                                                                                                                                                 3'-GGCCAAGG_{TT}TGCTGTGA-F1'5'(179-49-01)
                                                                                                                                                                                                                                                                      3'-GGCCAAGG TTTGCAGTGA F1'S' (192-72-05)
FIGURE 29A
                                                                                                                                                                                                                                                                                             3'-GGCCAAGG-F15'(205-27-01)
                                                                                                                                                                                          5 - CAATTCCGGTGTACTCACCGGTTCC G CACGACACT - 3
                                                                                                                                                                                                                                                                                                        g 3'-TAAGGCCACATGAGTG<sub>TTT</sub>TT-F1'5'(192-96-02)
                               ი<sup>გ</sup> ი
   \mathcal{O}
                                                                                                                                                  A
0 D A O
0 H O
                                                                                              HCV 1a
```

FIGURE 29B

5 - ATTCCGGTGTACTCACCGGTTCCAAACGACACT-3'(205-13-01) S.T. Φ 3'-GGCCAAGGCGTCTGGTGA-F1'5'(205-13-02) A 3'-GGCCAAGG_{TT}TGCTGTGA--F1'5'(179-49-01) $3' - GGCCTAGG_{TT}TGCTGTGA$ --F1'5'(192-72-04) 3'-GGCCAAGG_{TT}TGCAGTGA--F1'5'(192-72-05) 3 - - GGCCAAGG-F15 (205-27-01)

g 3'-<u>Taaggccacatgagtg_{TTTT}</u>T_{T-F1'5'}(192-96-02)


```
3'-GGCCAAGG<sub>TT</sub>TGCTGTGA...F1'S'(179-49-01)
h (10 bp)3'-<u>cacatgagtg<sub>TT</sub></u>T<sub>T-F1'5'</sub>(205-81-01)
```

FIGURE 32

			↓ ↓ • ←	_	†
	1	3a			1003
	30	1b 2a/c	33	1	1915
Ω		Q	41	1	1918
		<u>4</u>		1	2085
	1	3a		1	1608
0	35	2a/c		1	2421
		4		1	2583
		<u>a</u>		1	2960
		3a		ţ	872
	45	2a/c	11	ł	1298
Ω		1		ŧ	1324
		<u>a</u>	1	•	1605
		3a	3		(1068)
1	0	1b 2a/c 3a	3		
•	30	£	1		
		a a			
Probe	Temp.	Target			

47/123

*,1,

435

50/123

FIGURE 37A

FIGURE 38B

1

FIGURE 43A

FIGURE 43B

FIGURE 44A

FIGURE 44B

I) Hybridization

II) Reverse Transcription

FIGURE 45A

III) PCR

IV) PAGE with Sequencing Ladder

ACGT	RT-Products		
= = =			
= -			

FIGURE 45B

FIGURE 47

70/123

FIGURE 49

FIGURE 50A

FIGURE 50B

1	ACACUUGCUU	UUGACACAAC	UGUGUUUACU	44-50 UGC AAUCCCC	CAAAACAGAC
51	64-68 AGA AUGGU GC	AUCUGUCCAG	_	88-97 UCUGCGGUCA	CUGCCCUGUG
101	GGGCAAGGUG	AAUGUGGAAG	AAGUUGGUGG	UGAGGCCCUG	GGCAGGCUGC
151	UGGUUGUCUA	CCCAUGGACC	CAGAGGUUCU	UCGAGUCCUU	UGGGGACCUG

	ISIS 1571(-) ISIS 3067(+)
Ļ	GCGCCCCAGT CGACGCTGAG CTCCTCTGCT ACTCAGAGTT
41	ISIS 1570(+) GCAACCTCAG CCTCGCTATG GCTCCCAGCA GCCCCCGGCC
81	CGCGCTGCCC GCACTCCTGG TCCTGCTCGG GGCTCTGTTC
121	CCAGGACCTG GCAATGCCCA GACATCTGTG TCCCCCTCAA
161	AAGTCATCCT GCCCCGGGGA GGCTCCGTGC TGGTGACATG
201	CAGCACCTCC TGTGACCAGC CCAAGTTGTT GGGCATAGAG
241	ACCCGTTGC CTAAAAAGGA GTTGCTCCTG CCTGGGAACA
281	ACCGGAAGGT GTATGAACTG AGCAATGTGC AAGAAGATAG
321	ISIS 1934(-) CCAACCAATG TGCTAT <u>TCAA ACTGCCCTGA TGGGCA</u> GTCA
361	ACAGCTAAAA CCTTCCTCAC CGTGTACTGG ACTCCAGAAC
401	GGGTGGA ACT GGCACCCCTC CCC TCTTGGC AGCCAGTGGG
441	CAAGAACCTT ACCCTACGCT GCCAGGTGGA GGGTGGGGCA
101	

521	AGGAGCTGAA	ACGGGAGCCA	GCTGTGGGGG	AGCCCGCTGA
561	GGTCACGACC	ACGGTGCT <u>GG</u>	as TGAGGAGAGA	
601	GCCAATTTC T	CGTGCCGCAC	TGAACTGGAC	CTGCGGCCCC
641	AAGGG CTGG A	GCTGTTTGAG	AACACCTCGG	CCCCCTACCA
681	GCTCCAGACC	TTTGTCC TGC	CAGCGACTCC	CCCACAACTT
721	GTCAGCCCCC	GGGTCCTAGA	. GGTGGACACG	CAGGGGACCG
761	TGGTCTGTTC	CC TGGACGG	CTGTTCCCAG	TCT CGGA GGC
801	CCAGGTCCAC	CTGGCACTGG	G GGGACCAGAG	GTTGAACCCC
841	ACAGTCACCT	T ATGGCAACGA	A CTCCTTCTCC	GCCAAGGCCT
881	CAGTCAGTGT	GACCGCAGA(G GACGAGGCA	A CCCAGCGGCT
921	GACGTGTGC	A GTAATACTG	G GGAA CCAGA (G CCAGGAGACA
961	. CTGCAGACA	G TGACCATCT	A CAGCTTT CC	G GCGC CCAACG
100	1 TGATTCTGA	C GAAGCCAGA	G GTCTCAGAA	G GGACCGAGGT

1041 GACAGTGAAG TGTGAGGCCC ACCCTAGAGC CAAGGTGACG 1081 CTGAATGGGG TTCCAGCCCA GCCACTGGGC CCGAGGGCCC 1121 AGCTCCTGCT GAAGGCCACC CCAGAGGACA ACGGCCGCAG 1161 CTTCTCCTGC TCTGCAACCC TGGAGGTGGC CGGCCAGCTT as 1220 (+) 1201 ATACACAAGA ACCAGACCCG GGAGCTTCGT GTCCTGTATG 1241 GCCCCGACT GGACGAGAG GATTGTCCGG GAAACTGGAC 1281 GTGGCCAGAA AATTCCCAGC AGACTCCAAT GTGCCAGGCT 1321 TGGGGGAACC CATTGCCCGA GCTCAAGTGT CTAAAGGATG ISIS 1547 (+) 1361 GCACTTTCCC ACTGCCCATC GGGGAATCAG TGACTGTCAC 1401 TCGAGATCTT GAGGCACCT ACCTCTGTCG GGCCAGGAGC 1441 ACTCAAGGGG AGGTCACCCG CGAGGTGACC GTGAATGTGC 1481 TCTCCCCCG GTATGAGATT GTCATCATCA CTGTGGTAGC 1521 AGCCGCAGTC ATAATGGCA CTGCAGGCCT CAGCACGTAC 1561 CTCTATAACC GCCAGCGGAA GATCAAGAAA TACAGACTAC as 1630 as 1630h(+++)1601 AACAGGCCCA AAAAGGGACC CCCATGAAAC CGAACACACA ISIS 1938 (+) 1641 AGCCAC GCCT CCCTGAACCT ATCCCGGGAC AGGCCCTCTT 1681 CCTCGCCTT CCCATATTGG TGGCAGTGGT GCCACACTGA 1721 ACAGAGTGGA AGACATATGC CATGCAGCTA CACCTACCGG 1761 CCCTGGGACG CCGGAGGACA GGGCATTGTC CTCAGTCAGA 1801 TACAACAGCA TTTGGGGCCCA TGGTACCTGC ACACCTAAAA 1841 CACTAGGCCA CGCATCTGAT CTGTAGTCAC ATGACTAAGC 1881 CAAGAGGAAG GAGCAAGACT CAAGACATGA TTGATGGATG ISIS 1939 (+) 1921 TTAAAGTCTA GCCTGATGAG AGGGGAAGTG GTGGGGGAGA 1961 CATAGCCCCA CCATGAGGAC ATACAACTGG GAAATACTGA 2001 AACTTGCTGC CTATTGGGTA TGCTGAGGCC CACAGACTTA

2041 CAGĂAG**AAGT G**GCCCTCCAT AGACATGTGT AGCATCAAAA

ISIS 2302 (+)

2081 CACAAAGGCC CACACTTCCT GACGGATGCC AGCTTGGGCA

2121 CTGCTGTCTA CTGACCCCAA CCCTTGATGA TATGTATTTA

ISIS 1572

2161 TTCATTTGTT ATTTACCAG CTATTTATTG AGTGTCTTTT

2201 ATGTAGGCTA AATGAACATA GGTCTCTGGC CTCACGGAGC

2241 TCCCAGTCCA TGTCACATTC AAGGTCACCA GGTACAGTTG

2281 TACAGGTTGT ACACTGCAGG AGAGTGCCTG GCAAAAAGAT

2321 CAAATGGGGC TGGGACTTCT CATTGGCCAA CCTGCCTTTC

2361 CCCAGAAGGA GTGATTTTC TA**TCGG**CACA AAAGCACTAT

2401 ATGGACTGGT AATGGTTCAC AGGTTCAGAG ATTACCCAGT

2441 GAGGCCTTAT TCCTCCCTTC CCCCCAAAAC TGACACCTTT

2481 GTTAGCCACC TCCCCACCCA CATACATTTC TGCCAGTGTT

2521 CACAATGACA CTCAGCGGTC ATGTCTGGAC ATGAGTGCCC

2561 AGGGAATATG CCCAAGCTAT GCCTTGTCCT CTTGTCCTGT

2601 TTGCATTTCA CTGGGAGCTT GCACTATTGC AGCTCCAGTT

2641 TCCTGCAGTG ATCAGGGTCC TGCAAGCAGT GGGGAAGGGG

2681 GCCAAGGTAT TGGAGGACTC CCTCCCAGCT TTGGAAGGGT

2721 CATCCGCGTG TGTGTGTGT TGTATGTGTA GACAAGCTCT

2761 CGCTCTGTCA CCCAGGCTGG AGTGCAGTGG TGCAATCATG

2801 GTTCACTGCA GTCTTGACCT TTTGGGCTCA AGTGATCCTC

2841 CCACCTCAGC CTCCTGAGTA GCTGGGACCA TAGGCTCACA

FIGURE 53A

1	CACAUUGUUC UGAUCAUCUG AAGAUCAGCU AU <u>UAGAA</u> GAG
41	site 80 AAAGAUCAGU UAAGUCCUUU GGACCUGAUC AGCUUGAUAC
81	site 120 AAGAACUACU GAUUUCAACU UCUUUGGCUU AAUUCUCUCG
121	GAAACGAUGA AAUAUACAAG UUAUAUCUUG GCUUUUCAGC
 161	UCUGCAUCGU UUUGGGUUCU CUUGGCUGUU ACUGCCAGGA
201	site 210 CCCAUAUGUA CAAGAAGC AG AAAACCUUAA GAAAUAUUU <u>U</u>
241	site 240 site 260 AAUGCAGGUC AUUCAGAUGU AGCGGAUAAU GGAACUCUUU
281	UCUUAGGCAU UUUGAAGAAU UGGAAAGAGG AGAGUGACAG
321	site 330 AAAAAUAAUG CAGAGCCAAA UUGUCUCCUU UUACUUCAAA
361	site 380 site 400 CUUU <u>UUAAAA A</u> CUU <u>UAAAGA UGACCAGAGC</u> AUC CAAAAG A
401	GUGUGGAGAC CAUCAAGGAA GACAUGAAUG UCAAGUUUUU
441	CAAUAGCAAC AAAAAGAAAC GAGAUGACUU CGAAAAGCUG

) .

481	ACUAAUUAUU CGGUAACUGA CUUGAAUGUC CAACGCAAAG
521	site 560 CAAUACAUGA ACUCAUCCAA GUGAUGGCU <u>G AACUGUCGCC</u>
561	site 570 AG CAGCUAAA ACAGGGAAGC GAAAAAG GAG UCAGAUGCUG
601	UUUCGAGGUC GAAGAGCAUC CCAGUAAUGG UUGUCCUGCC
641	UACAAUAUUU GAAUUUUAAA UCUAAAUCUA UUUAUUAAUA
681	UUUAACAUUA UUUAUAUGGG GAAUAUAUUU UUAGACUCAU
721	CAAUCAAAUA AGUAUUUAUA AUAGCAACUU UUGUGUAAUG
761	AAAAUGAAUA UCUAUUAAUA UAUGUAUUAU UUAUAAUUCC
801	UAUAUCCUGU GACUGUCUCA CUUAAUCCUU UGUUUUCUGA
841	site 850 site 860 site 880 CUAAUUAGGC AAGGCUAUGU GAUUACAAGG CUUUAUCUCA
881	site 890 site 910 GGG GCCAACU AGGCAGCCAA CCUAAGCAAG AUCCCAUGGG
921	UUGUGUGUUU AUUUCACUUG AUGAUACAAU GAACACUUAU
961	AAGUGAAGUG AUACUAUCCA GUUACUA

FIGURE 54A

FIGURE 55A

SEQ ID NO:158

460	Primer 1 GGUCUCUCUG	GUUAGACCAG	AUCUGAGCCU	GGGAGCUCUC	UGGCUAACUA
510	GGGAACCCAC	UGCUUAAGCC	UCAAUAAAGC	UUGCCUUGAG	UGCUUCAAGU
560	AGUGUGUGCC	CGUCUGUUGU	GUGACUCUGG	UAACUAGAGA	UCCCUCAGAC
610	CCUUUUAGUC	AGUGUGGAAA		ner 2 GUGGCGCCCG	AACAGGGACC
660	UGAAAGCGAA	AGGGAAACCA	GAGGAGCUCU	CUCGACGCAG	GACUCGGCUU
710	GCUGAAGCGC	GCACGGCAAG	AGGCGAGGGG	CGGCGACUGG	UGAGUACGCC
760	AAAAAUUUUG	ACUAGCGGAG	GCUAGAAGGA	GAGAGAUGGG	UGCGAGAGCG
810	UCAGUAUUAA	GCGGGGGAGA		ner 3 <u>UGGGAAAAAA</u>	UUCGGUUAAG
860	GCCAGGGGGA	AAGAAAAAU	AAAUUAAAUA	ACAUAUAGUA	UGGGCAAGCA
910	GGGAGCUAGA	ACGAUUCGCA	GUUAAUCCUG	GCCUGUUAGA	AACAUCAGAA
960	GGCUGUAGAC	AAAUACUGGG	ACAGCUACAA	CCAUCCCUUC	AGACAGGAUC
1010	AGAAGAACUU	AGAUCAUUAU	Prime AUAAUA <u>CAGU</u>	er 4 AGCAACCCUC	UAUUGUGUGC
1060	AUCAAAGGAU	AGAGAUAAAA	GACA CCAAG G	AAGCUUUAGA	CAAGAUA GAG

FIGURE 55B

1110 GAA GAGCAAA ACAAAAGUAA GAAAAAAGCA CAGCAAGCAG CAGCUGACA	С
1160 AGG ACACAGC AAUCAGGUCA GCCAAAAUUA CCCUAUAGUG CAGAACAUCO	C
Primer 5 1210 AGGGGCA AAU GGUACAUCAG GCCAUA <u>UCAC CUAGAACUUU AAAUGC</u> AUG	G
1260 GUAAAAGUAG UAGAAGAGAA GGCUUUCAGC CCAGAAGUGA UACCCAUGU	U
1310 UUCAGCAUUA UCAGAA GGAG CCA CCCCACA AGAUUUAAAC ACCAUGCUA	ĄΑ
1360 ACACAGUGGG GGGACAUCA A GCA GCCAUGC AAAUGUUAAA AGAGACCAU	С
Primer 6 1410 A AUGA GGAAG CUGCAGAAUG GGAUAG <u>AGUG</u> <u>CAUCCAGUGC</u> <u>AUGCAG</u> GGC	:C
1460 UAUUGCA CCA GGCCAGAUGA GAGA ACCAAG GG GAAGUGAC AUAGCAGGA	λA
1510 CUACUAGUAC CCUUCAGGAA CAAAUAGGAU GGAUGACAAA UAAUCCACC	ับ
1560 AUCCCAGUAG GAGAAAUUUA UAAAAGAUGG AUAAUCCUGG GAUUAAAUA	ŁΑ
Primer 7 1610 AAUAGUAAGA AUGUAUAGCC CUACCAGCAU UCUGGACAUA AGACAAGGA	ЭC
1660 CAAAGGAACC CUUUAGAGAC UAUGUAGACC GGUUCUAUAA AACUCUAAC	ΞA
1710 GCCGAGCAAG CUUCACAGGA GGUAAAAAAU UGGAUGACAG AAACCUUG	SUU

FIGURE 55C

L760	GGUCCAAAAU	GCGAACCCAG	AUUGUAAGAC	AAAAUUUUAA	GCAUU GGGAC
1810	CAGC GGCUAC	ACUAGAAGAA		ner 8 CAUGUC AGGG	AGU AGG AGGA
1860	CCCGGCCAUA	AGGCAAGAGU	UUUGGCUGAA	GCAAUGAGCC	AAGUAACAAA
1910	UUCAGCUACC	AUAAUGAUG C	agagag gcaa	UUUUAGGAAC	CAAAGAAAGA
1960	UUGUUAAGUG	UUUCAAUUGU	GGCAAAGA AG	G GCACACAGC	CAGAAAUUGC
2010	AGGGCCCCUA	GGAAAAAGGG	CUGUUGGAAA	UGUGGAAAGG	AAGGACACCA
2060	AAUGAAAGAU	UGUACUGAGA	G		

	NO:158	
11:	ID	
113 101 101 108 7 7 8 8		
GCT-1	AGCAA	
CGACTOGA CGAC CGAC CGAC CGA CGA CGA CGA CGA CG	UGGCUGAAGCAAUGAG-, VO:164) (SEC VO:165) VO:166) VO:168) VO:170) VO:170) VO:172) VO:173) VO:174) VO:175) VO:176)	
CTCAAAACCGAC CTCAAAACCGAC CTCAAAACCGA CTCAAAACCGA CTCAAAAC CTCAAAAC CTCAAAA	2000000000000	
GTTCTCAAA GTTCTCAAA GTTCTCAAA GTTCTCAAA GTTCTCAAA GTTCTCAAA GTTCTCAAA)	_
) O O O	?
CGTATTO AGGTATTO ACGCTATTO CCCGGTATTO CGCCGGTATTO AGGCCCGGTATTO ATGGCCCGGTATTO ACTGGCCCGGTATTO ACTGGCCCGGTATTO ACTGGCCCGGTATTO ACTGGCCCGGTATTO ACTGGCCCGGTATTO ACTGGCCCGGTATTO ACTGGCCCGGTATTO ACTGGCCCGGTATTO ACTGGCCCGGTATTO	CCTGGGCCGAAAAA	
2000 0000 00000 000000 000000000000000	CTGGGCC CTGGGCC CTGGGC CTGGC C	
4 t) t)	ACTCTGGGG AGUAGGAGGACCCC TCATC TCATCCT TCATCCTC TCATCCTCT TCATCCTCT TCATCCTCTGG TCATCCTCTGGGC ATCCTCTGGGC ATCCTCTGGGC ATCCTCTGGGC CCTCCTGGGC CCTCCTGGGGC	
	TCALL TCALL TCALL TCALL TCALL TCALL	
	00000000000000000000000000000000000000	
	CALLU CACUG CACUGU CACU	
	피 띠 -	

90/123

(SEQ ID NO:180)

ACTGGGCCGGTATTCCGTTCTCAAA

(SEQ ID NO:158) 5 - - CAUGUQAGGAGUAGGAGGACCCGGCCAUAAGGCAAGAGUUUUGGCUGAAGCAAUGAG-3 '

(SEQ ID NO:189)

AGGGAGUAL.
TCCCTCATCCTCCGCACTGCC-5,

5'-AGGGAGTAGGAGGAGG-3' (SEQ ID NO:190)

(SEQ ID NO:191)

(SEQ ID NO:193) E CAAC GCTTCCTCCG-3'

3'-TGGCAGTGCGGAGGTTGACGAAGAAGC-5' 5'-ccgrcacgccrcc

(SEQ ID NO:192)

FIGURE 60

FIGURE 61A

SEQ ID NO:159

	primer 1				
3300	AGCUGGACUG	UCAAUGACAU	ACAGAA GUUA	GUGG GGAAAU	UG AAUUG GGC
3350	AAGUCAGAUU	U ACCCA GGGA	UUA AAGUAA G	GCAAUUAUGU	AAACUCCUUA
3400	GAGGAACCAA	AGCACUAACA	GAAGUAAUAC	CACUAACAGA	AGAAGCAGAG
3450	CUAGAA CUG G	CAGAAAACAG	AGAGAUUCUA	AAAGAACCAG	UACAUGGAGU
3500	primer 2 GUAUUAUGAC	2 CCAUCAAAAG	ACUUAAUAGC	AGAAAU ACAG	AAGCAGGGGC
3550	A AGGCCAAUG	GACAUAUCAA	AUUUAU CAAG	AGCCAUUUAA	AAAUCUGAAA
3600	ACAGGAAAAU	AUGCAAGAAU	GAGG GGUGCC	CACACUAAUG	AUGUAAAACA
3650	AUUAACA GAG	G CAGUGCAAA	AAAUAACCAC	AGAAAGCAUA	GUAAUAUGGG
3700	primer GAAAGACUCC	3 UAAAUUUA AA	<u>cu</u> GCCCAUAC	AAAAGGAAAC	AUGGGAAACA
3750	UGGUGGACAG	AGUAUUGGCA	AGCCACCUGG	AUUCCUGAGU	GGGAGUUUGU
3800	UAAUACCCCU	CCCUUAGUGA	AAUUA UG GUA	CCAGUUAGAG	AAAGAACCCA
3850	UAGU AGG AGC	: AGAAACCUUC	UAUGUAGAU G	GG GCAGCUAA	CAGG GAGACU
3900	primer AAAUUAGGAA	4 AAGCAGGAUA	<u>UG</u> UUACUAAU	agag gaagac	AAAAAGUUGU

FIGURE 61B

3950	CACCCUAACU	GACACAACAA	AUCAGAAGAC	UGAGUUACAA	GCAAUUUAUC
4000	UAGCUUUGCA	GGAUU CGG GA	UUAGAAGUAA	ACAUAGUAAC	AGACUCACAA
4050	UAUGCAUUAG	GAAUCAUUCA	AGCACAA CCA	GAUCAAAGUG	AAUCAGAGUU
4100	primer 5	AUAAUA GAG C	<u>AG</u> UUAAUAAA	AAAGGAAAAG	GUCUAUC UGG
4150	c auggguacc	AGCACACAAA	GGA AUUGGAG	GAAAUGAACA	AGUAGAUAAA
4200	UUAGUCAGUG	CUGGAAUCAG	GAAAGUACUA	UUUUUAGAUG	GAAUAGA UAA
4250	GGC CCAAGAU	GAACAUGAGA	AAUAUCACAG	UAAUU GGAG A	GCAAUGGCUA
4300	primer GUGAUUUUAA	6 CCUGCCACCU	GUAGUAGCAA	AAGAAAUA GU	AGC CAGCUGU
4350	GAUAAAUGUC	AGCUAAAAGG	AGAAGCCAUG	CAUGGACAAG	UAGACUGUAG
4400	UCCAGGAAUA	UGGCAACUAG	AUUGUACACA	UUUAGAAGGA	AAAGUUAUCC
4450	UGGUAGCAGU	UCAUGUAGCC	AGUGGAUAUA	UA GAA GCAGA	AGUUAUUCCA
4500	primer GC AGAAA CAG	7 GGCAGGAAAC	AGCAUAUUUU	CUUUUAAAAU	UAGCAGGAAG
4550	AUGG CCAGUA	AAAACAAUAC	AUA CUGACAA	. UGG CAGCAAU	UUC ACCGG UG
4600	CUACGGUUAG	GGCCGCCUGU	J UGGUGGGCGG	GAAUCA AGCA	G GAAUUUGGA

FIGURE 61C

4650	AUUCCCUACA	AUCCCCAAAG	UC AAGGA GUA	GUAGAAUCUA	UGAAUAAAGA
4700	primer 8 AUUAAAGAAA	3 AUUAUA GGAC	<u>AG</u>G UAAGAGA	UCAGG CUGAA	CAUCUUAAGA
4750 _.	CAGCAGUACA	AAUGGCAGUA	UUCAUCCACA	AUUUUAAAAG	AAA AGGG GGG
4800	AUUGGGGGGU	ACAGUGCAGG	GGA AAGAAUA	GUAGACAUAA	UAGCAACAGA
4850	CAUACAAACU	AAAGAAUUAC	AAAAACAAAU	UACAAAAAUU	CAAAAUUUUC
4900	primer (9 CAG GGAC AGC	AGAAAUCCAC	UUUGGA AAGG	ACCAGCAAAG
4950	CUCCUCUGGA	AAGGUG AAGG	GGCAGUAGUA	AUACAAGAUA	AUAGUGACAU
5000	AAAA GUAGU G	CCAAGAAGAA	AAGCAAAGAU	CAUUAGGGAU	UAUGGAAAAC
E 0 E 0	A CALLCCCACC	ticaticatilicii	C		

(SEQ ID NO:198)

```
UACAAAAAUUCAAAAUUUUCGGGUUUAUUACAQ<mark>GGAC</mark>AGCAGAAAUCCACUUUGGA<u>AAGG</u>ACCAGCAA-3'
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (SEQ ID NO:159)
                                                                                                                                                                                                                                                                                                                                                                                                                                                              5 - - AAAUUUUCGGGUUUAUUACAG<u>GGAG</u>AGCAGAAAUCCACUUUGGA<u>AAGG</u>ACCAGCAAAGCUCCUCUGGAAAGGUQAAGGS-3 '
                                                                              AGTCGTCTTTAGGTGAAACCTTTCCT-5'
                                                                                                                                  CTCGTCTTTAGGTGAAACCTTTCCT-5'2
                                                                                                                                                        2 CCAAATAATGTCCCTGAAAA CCAAATAATGTCCCTAAAAA S (SEQ ID NO:195)
                                                                                                           (SEQ ID NO:197)
                                                       (SEQ ID NO:196)
                                                                                                                                                                                                                                                                                                                                                                                                                                            ATGGTCGTTTCGAGGAGACCT-5'4
                                                                                                                                                                                                                                                                                                                                                                                               ACTGGTCGTTTCGAGGAGACC-5'3
                                                                                                                                                                                                                                                                                                                                                                                                                                                              AGAAAUCCACUUUUU AGAAAACTTTCCAAAA SATTTAGGTGAAACCTTTCAAAA SA (SEQ ID NO:200)
                                                                                                                                                                                                                                                                                                                                                                                                                         (SEQ ID NO:202)
                                                                                                                                                                                                                                                                                                                                                                         (SEQ ID NO:201)
                                                                                                                                        ATGTTTTAAGTTTTAAAAGC
                                                                                                                                                                                                                                                                                                                                                                                                                                                4 3 - GCCCAAATAATGTCCCTGTCGTCTTTA
3 Ч-СТСТАТСТТТСАТТТСТТААТСТТТТТТТТТТ
                       5'-GACAUACAAACUAAAGAAUUACAAAAACAAAU
                                                                                                                                                                                                                                                                                                                                                                                                      3 3 - AGCCCAAATAATGTCCCTGTCGTC
                                                                                                                                                                                                                                                                                                                                                                                                                             (SEQ ID NO:204)
                                                                                                                                                                                                                                                                                                                                                                                  (SEQ ID NO:203)
                                                  (SEQ ID NO:159)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (SEQ ID NO:159)
```

4910

(SEQ ID NO:209) ACCCGTCATTATGTTCTATTATCACTGTATTTT-5' 5 (SEQ ID NO:210)	ACCGTCATTATCACTGTTATTATCATTATTATC-5' 6 AGCAAAGCUCCUCUGGAAAGGGGCCAGUAGUAAUACAAAGUGAAAAGUAC-3' 6 CTTTCCACTTCC _{AQ} 5 CCTTTCCACTTC _{QQ} 4960 AQ, S' (SEQ ID NO: 206)	3'(SEQ ID NO:205)
S 3'-TCCTGGTCGTTTCGAGGAGA (SEQ ID NO:214)	b 3'-cctggtcgtttcgaggagac 5'-ga <u>laag</u> accagcaaagcuccucugga <i>aa</i> 6 cttg 5 cctt	

5'-GA<u>AAGG</u>ACCAGCAAAGCUCCUCUGGAAAGGUG<u>AAGG</u>BGCAGUAGUAAUACAAGAUAAUAGUGACAUAAAA<u>GUAGU</u>BCCAAGAA-3' **8** TCCCCGTCATA_{AA} ACATTATGTTCTATTATCACTGTATTTTCATCACGG-5'8 CTCATTATGTTCTATTATCACTGTATTTTCATCACGG-5'7 (SEQ ID NO:212) (SEQ ID NO:211) 8 3'-TCGAGGAGACCTTTCCACT 7 3'-TCGAGGAGACCTTTCCAC (SEQ ID NO:216)

4810

4790

×

(SEQ ID NO:224) 3'-TCCCCCTAACCCCCCATG ATTTCTTATCATCTGTATTATCGTTGTCTGTATGT-5' 5'-AAGAAAAGGGGGGGUUGCAGGGGGAAAAAAAAAAAAAAA	2,4 (SEQ ID NO:225) 3'-CTGTCGTCATGTTACCGTCATAAGTAGGT S'-AGACAGCAGUACAAUGCACACAUUUUAAAAGAAAAGGGGGGGG	(SEQ ID NO:222) ACCCTAACCCCCATGTCAC-5' CATCATCTGTATTATCGTATGTTTGATTTC ACCCTAACCCCCCATGTCAC-5' CATCATCTGTATTATCGTTTGATTTC ACCCTAACGGGGGGAAAAAAAAAA
(SEQ ID NO:224) 3'-TCCCCCTAACCCCCCATG 5'-AAGAAAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2, 4 (SEQ ID NO:225) 3'-CTGTCGTCATGTTACCGTCATAAGTAGGT 5'-AGACAGCAGUACAAAUGGCAGUAUUCAUCCACAAUUU GTTAAA	4790 (SEQ ID NO:222) ACCCTAACCCCCATGTCAC-5' 5'-AAAAGGGBGGAUUGGGGGGGUAGGGGGGGGGGGGGGGGG

FIGURE 65

LIG

4790

4810

(SEQ ID NO:221)

(SEQ ID NO:224)

(177:ON DI XIX)

5'-GAAA<u>AGGG</u>GGGAUUGGGGGGUAQ<mark>AGUGCAGGGGA</mark>AAGAAUAGUAGACAUAUAGCAACAGACAUACAACUACAACUA-3' <u>AT</u>TTCTTATCATCTGTATTATCGTTGTCTGTATGT-5' 3'-TCCCCCCTAACCCCCCATG

(SEQ ID NO:159)

TCACGTCCCCC√C (SEQ ID NO:226)

5'-agrgcaggggggggg-3' (SEQ ID NO:227)

(SEQ ID NO:191)

(SEQ ID NO:193)

ÇAAC GCTTCCTCCG-3'

5'-ccgtcacgcctcc 3'-**T**GGCAGTGCGGAGGTTGACGAAG**A**AGGC-5'

(SEQ ID NO:192)

FIGURE 67

FIGURE 68

5'-GAAAAGGACCAGCAAAAGCUCCUCUGGAAAGGUGAAGGGGCCAGUAGUAAUACAAGAUAAUAGUGACAUAAAAGUAGUGC-3' 5000 ACCCGTCATCATTATGTTCTATTATCACTGTATTTT-5' (SEQ ID NO:159) (SEQ ID NO:209) JUGGAAAGGUUL CCTTTCCACTTCC77CCGC4C7GCC-S, 4960 (SEQ ID NO:228) 3'-TCCTGGTCGTTTCGAGGAGA (SEQ ID NO:213)

(SEQ ID NO:191)

CAAC GCTTCCTCCG-3'
5'-CCGTCACGCCTCC

3'-TGGCAGTGCGGAGGTTGACGAAGAAGGC-5'

(SEQ ID NO:192)

5'-GGAAAGGTGAAGGAGGC-3'

(SEQ ID NO:229)

FIGURE 70

Human PSP94

383-31-1	5'-TET-CCTGCTTATCACAATGAA-3'	(SEQ	ID	NO:230)
383-31-3	5'-TET-ACATGCACTTGCTACGAAAC-3'	(SEO	ID	NO:231)

SEQ ID NO:232

Human ubiquitin:

520-77-1 5'-TET-CCGCCACCAAAATGC-3' (SEQ ID NO:233) 520-59-2 5'-TET-GCTGGAAGATGGACG-3' (SEQ ID NO:234)

SEQ ID NO:235

HCV-la 5'-UTR:

898-28-01	5'-TET-GGGACACTCCACCATGAATCACTC-3'	(SEQ	ID	NO:236)
898-35-01	5'-TET-CGGGAGAGCCATAGTGGTCTGCGG-3'	(SEQ	ID	NO:237)
898-35-02	5'-TET-ATTTGGGCGTGCCCCGC-3'	(SEQ	ID	NO:238)
898-35-03	5'-TET-GACCGGGTCCTTTCTTGGA-3'	(SEQ	ID	NO:239)

SEQ ID NO: 240
GGGACACUCCACCAUGAAUCACUCCCCUGUGAGGAACUACUGUCUUCACGCAGAAAGCGU
CUAGCCAUGGCGUUAGUAUGAGUGUCGUGCAGCCUCCAGGACCCCCCCUCCCGGGAGAG
CCAUAGUGGUCUGCGGAACCGGUGAGUACACCGGAAUUGCCAGGACGACCGGGUCCUUUC
UUGGAUAAACCCGCUCAAUGCCUGGAGAUUUGGGCGUGCCCCCCCAAGACUGCUAGCCG
AGUAGUGUUGGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCC
CCGGGAGGUCUCGUAGACCGUGCACCAUGAG

HCV-1b 5'-UTR:

898-28-02	5'-TET-GGGACACTCCACCATAGATCACTC-3'	(SEQ	ID	NO:241)
898-35-01	5'-TET-CGGGAGAGCCATAGTGGTCTGCGG-3'	(SEQ	ID	NO:237)
898-35-02	5'-TET-ATTTGGGCGTGCCCCCGC-3'	(SEQ	ID	NO:238)
898-35-03	5'-TET-GACCGGGTCCTTTCTTGGA-3'	(SEQ	ID	NO:239)

SEQ ID NO: 242
GGGACACUCCACCAUAGAUCACUCCCCUGUGAGGAACUACUGUCUUCACGCAGAAAGCGU
CUAGCCAUGGCGUUAGUAUGAGUGUCGUGCAGCCUCCAGGACCCCCCCUCCCGGGAGAG
CCAUAGUGGUCUGCGGAACCGGUGAGUACACCGGAAUUGCCAGGACGACCGGGUCCUUUC
UUGGAUCAACCCGCUCAAUGCCUGGAGAUUUGGGCGGCCCCCGCGAGACUGCUAGCCG
AGUAGUGUUGGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCC
CCGGGAGGUCUCGUAGACCGUGCACCAUGAG

FIGURE 75

HCV 2a/c 5'-UTR:

898-28-01 5'-TET-GGGACACTCCACCATGAATCACTC-3'(SEQ ID NO:236) 898-35-01 5'-TET-CGGGAGAGCCATAGTGGTCTGCGG-3'(SEQ ID NO:237) 898-35-02 5'-TET-ATTTGGGCGTGCCCCCGC-3' (SEQ ID NO:238) 898-35-03 5'-TET-GACCGGGTCCTTTCTTGGA-3' (SEQ ID NO:239)

SEQ ID NO:243

GGGACACUCCACCAUGAAUCACUCCCCUGUGAGGAACUACUGUCUUCACGCAGAAAGCGU
CUAGCCAUGGCGUUAGUAUGAGUGUCGUACAGCCUCCAGGCCCCCCCUCCCGGGAGAG
CCAUAGUGGUCUGCGGAACCGGUGAGUACACCGGAAUUGCCGGGAAGACUGGGUCCUUUC
UUGGAUAAACCCACUCUAUGCCCGGCCAUUUGGGCGUGCCCCCGCAAGACUGCUAGCCGA
GUAGCGUUGGGUUGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCCCC
GGGAGGUCUCGUAGACCGUGCACCAUGAG

FIGURE 76

HCV 3a 5'-UTR:

898-28-03	5'-TET-GGGACACTCCACCATGGATCACTC-3'(SEQ	ID	NO:244)
898-35-01	5'-TET-CGGGAGAGCCATAGTGGTCTGCGG-3'(SEQ	ID	NO:237)
898-35-02	5'-TET-ATTTGGGCGTGCCCCCGC-3' (SEQ	ID	NO:238)
898-35-03	5'-TET-GACCGGGTCCTTTCTTGGA-3' (SEQ	ID	NO:239)

SEQ ID NO: 245

GGGACACUCCACCAUGGAUCACUCCCCUGUGAGGAACUUCUGUCUUCACGCGGAAAGCGC
CUAGCCAUGGCGUUAGUACGAGUGUCGUGCAGCCUCCAGGCCCCCCCUCCCGGGAGAG
CCAUAGUGGUCUGCGGAACCGGUGAGUACACCGGAAUCGCUGGGGUGACCGGGUCCUUUC
UUGGAACACCCGCUCAAUACCCAGAAAUUUGGGCGUGCCCCCCGCGAGAUCACUAGCCG
AGUAGUGUUGGGUCGCGAAAGGCCUUGUGGUACUGCCUGAUAGGGUGCUUGCGAGUGCC
CCGGGAGGUCUCGUAGACCGUGCACCAUGAG

FIGURE 77A

Human Antigen CD36 mRNA Oligonucleotides

726-38-01	5'-ACAAGGGAAGAGAGATGAGGAACCAG-3'	(SEQ	ID NO:246)
666-33-01	5'-TTTGCCTTCTCATCACCAATGG-3'	(SEQ	ID NO:247)
937-03-01	5'-TET- aagggaagagatgag-3'	(SEQ	ID NO:248)
937-03-02	5'-TET-aggagtttgcaagaaac-3'	(SEQ	ID NO:249)
937-03-03	5'-TET-ggtgctgtcctgg-3'	(SEQ	ID NO:250)
937-03-04	5'-TET-cagttttggatctttgatg-3'	(SEQ	ID NO:251)
937-03-05	5'-TET-aggacgctgagga-3'	(SEQ	ID NO:252)
937-03-06	5'-TET-aacaagtcaaaatcttctatg-3'	(SEQ	ID NO:253)
937-03-07	5'-TET-caatactgcagatggag-3'	(SEQ	ID NO:254)
937-03-08	5'-TET-aagccaggtattgca-3'	(SEQ	ID NO:255)
937-03-09	5'-TET-ctattgtttctgcacaga-3'	(SEQ	ID NO:256)
937-03-10	5'-TET-aaatgaagaagaacatagga-3'	(SEQ	ID NO:257)
937-03-11	5'-TET-ggtcaagccatcaga-3'	(SEQ	ID NO:258)

FIGURE 77B

Human Antigen CD36 mRNA (SEQ ID NO:259)

ACAAGGGAAGAGAUGAGGAACCAGAGCUUGUAGAAACCACUUUAAUCAUAUCCAGGA GUUUGCAAGAAACAGGUGCUUAACACUAAUUCACCUCCUGAACAAGAAAAAUGGGCUGU GACCGGAACUGUGGGCUCAUCGCUGGGCUGUCAUUGGUGCUGUCCUGGCUGUGUUUGG AGGUAUUCUAAUGCCAGUUGGAGACCUGCUUAUCCAGAAGACAAUUAAAAAGCAAGUUG UCCUCGAAGAAGUACAAUUGCUUUUAAAAAUUGGGUUAAAACAGGCACAGAAGUUUAC AGACAGUUUUGGAUCUUUGAUGUGCAAAAUCCACAGGAAGUGAUGAUGAACAGCAGCAA CAUUCAAGUUAAGCAAAGAGGUCCUUAUACGUACAGAGUUCGUUUUCUAGCCAAGGAAA AUGUAACCCAGGACGCUGAGGACAACACAGUCUCUUUCCUGCAGCCCAAUGGUGCCAUC UUCGAACCUUCACUAUCAGUUGGAACAGAGGCUGACAACUUCACAGUUCUCAAUCUGGC UGUGGCAGCUGCAUCCCAUAUCUAUCAAAAUCAAUUUGUUCAAAUGAUCCUCAAUUCAC UUAUUAACAAGUCAAAAUCUUCUAUGUUCCAAGUCAGAACUUUGAGAGAACUGUUAUGG GGCUAUAGGGAUCCAUUUUUGAGUUUGGUUCCGUACCCUGUUACUACAGUUGGUCUG UUUUAUCCUUACAACAAUACUGCAGAUGGAGUUUAUAAAGUUUUCAAUGGAAAAGAUAA CAUAAGUAAAGGUACCAUAUAAAGGUAAAAGGAAUCUGUCCUAUUGGG AAAGUCACUGCGACAUGAUUAAUGGUACAGAUGCAGCCUCAUUUCCACCUUUUGUUGAG AAAAGCCAGGUAUUGCAGUUCUUUUCUUCUGAUAUUUUGCAGGUCAAUCUAUGCUGUAUU CCUUUGCCUCUCCAGUUGAAAACCCAGACAACUAUUGUUUCUGCACAGAAAAAUUAUC UCAAAAAUUGUACAUCAUAUGGUGUGCUAGACAUCAGCAAAUGCAAAGAAGGGAGACC UGUGUACAUUUCACUUCCUCAUUUUCUGUAUGCAAGUCCUGAUGUUUCAGAACCUAUUGA UGGAUUAAACCCAAAUGAAGAAGAACAUAGGACAUACUUGGAUAUUCAACCUAUAACUG GAUUCACUUUACAAUU<mark>UGCAAAACGGCUGCA</mark>GGUCAACCUAUUGGUCAAGCCAUCAGAA AAAAUUCAAGUAUUAAAGAAUCUGAAGAGGAACUAUAUUGUGCCUAUUCUUUGGCUUAA UGAGACUGGGACCAUUGGUGAUGAGAAGGCAAA

FIGURE 78

Human Ribosomal Protein L5 mRNA

761-47-01	5'-ATGGGGTTTGTTAAAGTTG-3'	(SEQ	ID	NO:260)
761-47-02	5'-GCTGGGTTTAGCTCTCAGCAGCCCGC-3'	(SEQ	ID	NO:261)
937-05-01	5'-TET- atggggtttgttaaagtt-3'	(SEQ	ID	NO:262)
937-05-02	5'-TET- gaagacgacgagagg-3'	(SEQ	ID	NO:263)
937-05-03	5'-TET- ggatgatagttcgtgtg-3'	(SEQ	ID	NO:264)
937-05-04	5'-TET- gctgcagcatattgta-3'	(SEQ	ID	NO:265)
937-05-05	5'-TET- ctgctatttggatgca-3'	(SEQ	ID	NO:266)
937-05-06	5'-TET- gcagaagtacatcgga-3'	(SEQ	ID	NO:267)
937-05-07	5'-TET- gacatgatggaggaga-3'	(SEQ	ID	NO:268)
937-05-08	5'-TET- agaagaaggatcggg-3'	(SEQ	ID	NO:269)

SEQ ID NO:270

AUGGGGUUUGUUAAAGUUGUUAAGAAUAAGGCCUACUUUAAGAGAUACCAAGUGAAAUU UAGAAGACGACGAGAGGGUAAAACUGAUUAUUAUGCUCGGAAACGCUUGGUGAUACAAG AUAAAAAUAAAUACAACACCCAAAUACAGGAUGAUAGUUCGUGUGACAAACAGAGAU AUCAUUUGUCAGAUUGCUUAUGCCCGUAUAGAGGGGGAUAUGAUAGUCUGCGCACGUUA UGCACACGAACUGCCAAAAUAUGGUGUGAAGGUUGGCCUGACAAAUUAUGCUGCAGCAU AUUGUACUGGCCUGCUGCCCCGCAGGCUUCUCAAUAGGUUUGGCAUGGACAAGAUC UAUGAAGGCCAAGUGGAGGUGACUGGUGAUGAAUACAAUGUGGAAAGCAUUGAUGGUCAG CCAGGUGCCUUCACCUGCUAUU<mark>UGGAUGCAGGCC</mark>UUGCCAGAACUACCACUGGCAAUAA AGUUUUUGGUGCCCUGAAGGGAGCUGUGGAUGGAGGCUUGUCUAUCCCUCACAGUACCA AACGAUUCCCUGGUUAUGAUUCUGAAAGCAAGGAAUUUAAUGCAGAAGUACAUCGGAAG CACAUCAUGGCCCAGAAUGUUGCAGAUUACAUGCGCUACUUAAUGGAAGAAGAUGAAGA UGCUUACAAGAAACAGUUCUCUCAAUACAUAAAGAACAGCGUAACUCCAGACAUGAUGG AGGAGAUGUAUAAGAAAGCUCAUGCUGCUAUACGAGAGAAUCCAGUCUAUGAAAAGAAG CCCAAGAAAGAAGUUAAAAAGAAGAGGUGGAACCGUCCCAAAAUGUCCCUUGCUCAGAA GAAGGAUCGGGUAGCUCAAAAGAAGGCAAGCUUCCUCAGAGCUCAGGAGCGGGCUGCUG **AGAGCUAAACCCAGC**

FIGURE 79A

Mouse Scavenger Receptor Class B Type I mRNA Oligonucleotides

726-39-01	5'-GCTCAAGAATGTCCGCATAGACCCG-3'	(SEQ	ID I	NO:271)
666-34-01	5'-CTGGTCCCTGAGTTGTTTTTGC-3'	(SEQ	ID I	NO:272)
937-01-01	5'-TET- GCTCAAGAATGTCCG-3'	(SEQ	ID I	NO:273)
937-01-02	5'-TET- gggatgtggaaggag-3'	(SEQ	ID I	NO:274)
937-01-03	5'-TET- ggaccctatgtctacag-3'	(SEQ	ID I	NO:275)
937-01-04	5'-TET- acatcttggtcctgg-3'	(SEQ	ID 1	NO:276)
937-01-05	5'-TET- tctcaacacgtacctc-3'	(SEQ	ID 1	NO:277)
937-01-06	5'-TET- cggactcagcaaga-3'	(SEQ	ID I	NO:278)
937-01-07	5'-TET- caagggtgtttgaagg-3'	(SEQ	ID I	NO:279)
937-01-08	5'-TET- ctctgtttctctccca-3'	(SEQ	ID 1	NO:280)
937-01-09	5'-TET- gtgaagatgcagctg-3'	(SEQ	ID !	NO:281)
937-01-10	5'-TET- agctggtgctgatg-3'	(SEQ	ID :	NO:282)
937-01-11	5'-TET- caggcctactctgag-3'	(SEQ	ID	NO:283)
937-01-12	5'-TET- ggactctctcagcg-3'	(SEQ	ID	NO:284)

FIGURE 79B

Mouse Scavenger Receptor Class B Type I mRNA (SEQ ID NO:285)

GCUCAAGAAUGUCCGCAUAGACCCGAGCAGCCUGUCCUUCGGGAUGUGGAAGGAGAUCC CCGUCCCUUUCUACUUGUCUGUCUACUUCUUCGAAGUGGUCAACCCAAACGAGGUCCUC AACGGCCAGAAGCCAGUAGUCCGGGAGCGUGGACCCUAUGUCUACAGGGAGUUCAGACA AAAGGUCAACAUCACCUUCAAUGACAACGACACCGUGUCCUUCGUGGAGAACCGCAGCC IJCCAUJJJCCAGCCUGACAAGUCGCAUGGCUCAGAGAGUGACUACAUUGUACUGCCUAACA UCUUGGUCCUGGGGGGCUCGAUAUUGAUGGAGAGCAAGCCUGUGAGCCUGAAGCUGAUG AUGACCUUGGCGCUGGUCACCAUGGGCCAGCGUGCUUUUAUGAACCGCACAGUUGGUGA GAUCCUGUGGGGCUAUGACGAUCCCUUCGUGCAUUUUUCUCAACACGUACCUCCCAGACAU GCUUCCCAUAAAGGGCAAAUUUGGCCUGUUUGUUGGGAUGAACAACUCGAAUUCUGGGG UCUUCACUGUCUUCACGGGCGUCCAGAAUUUCAGCAGGAUCCAUCUGGUGGACAAAUGG AACGGACUCAGCAAGAUCGAUUAUUGGCAUUCAGAGCAGUGUAACAUGAUCAAUGGGAC UUCCGGGCAGAUGUGGGCACCCUUCAUGACACCCGAAUCCUCGCUGGAAUUCUUCAGCC CGGAGGCAUGCAGGUCCAUGAAGCUGACCUACAACGAAUCAAGGGUGUUUGAAGGCAUU CCCACGUAUCGCUUCACGGCCCCGAUACUCUGUUUGCCAACGGGUCCGUCUACCCACC CAACGAAGGCUUCUGCCCAUGCCGAGAGUCUGGCAUUCAGAAUGUCAGCACCUGCAGGUU UGGUGCGCCUCUGUUUCUCUCCCACCCCCACUUUUACAACGCCGACCCUGUGUUGUCAG AAGCUGUUCUUGGUCUGAACCCUAACCCAAAGGAGCAUUCCUUGUUCCUAGACAUCCA[U] CCGGUCACUGGGAUCCCCAUGAACUGUUCUGUGAAGAUGCAGCUGAGCCUCUACAUCAA AUCUGUCAAGGGCAUCGGGCAAACAGGGAAGAUCGAGCCAGUAGUUCUGCCGUUGCUGUG GUUCGAACAGAGCGGAGCAAUGGGUGGCAAGCCCCUGAGCACGUUCUACACGCAGCUGGU GCUGAUGCCCCAGGUUCUUCACUACGCGCAGUAUGUGCUGCUGGGGCUUGGAGGCCUCCU GUUGCUGGUGCCCAUCAUCUGCCAACUGCGCAGCCAGGAGAAAUGCUUUUUGUUUUGGA GUGGUAGUAAAAAGGGCUCCCAGGAUAAGGAGGCCAUUCAGGCCUACUCUGAGUCCCUGA UGUCACCAGCUGCCAAGGGCACGGUGCUGCAAGAAGCCAAGCUAUAGGGUCCUGAAGACA CUAUAAGCCCCCCAAACCUGAUAGCUUGGUCAGACCAGCCACCCAGUCCCUACACCCCG CUUCUUGAGGACUCUCUCAGCGGACAGCCCACCAGUGCCAUGGCCUGAGCCCCCAGAUGU CACACCUGUCCGCACGCACGCACAUGGAUGCCCACGCAUGUGCAAAAACAACUCAGGGA **CCAG**

FIGURE 80A

Rat CX3CR1 Accession No. U04808 Oligonucleotides

761-57-01	-57-01 5'-taatacgactcactatagggacggaagtccaagagcatcactg-3			actg-3'
		(SEQ	ID	NO:286)
761-57-03	5'-gcaggtacctggtccgta-3'	(SEQ	ID	NO:287)
781-65-01	5'-TET-ggaagtccaagagca-3'	(SEQ	ID	NO:288)
781-65-02	5'-TET-aatggcttctttggg-3'	(SEQ	ID	NO:289)
781-65-03	5'-TET-ggcgtcgccc-3'	(SEQ	ID	NO:290)
781-65-04	5'-TET-tacttccgcatcgtc-3'	(SEQ	ID	NO:291)
781-65-05	5'-TET-cttcttccctagttgtg-3'	(SEQ	ID	NO:292)
781-65-06	5'-TET-tgcctggccgt-3'	(SEQ	ID	NO:293)
781-65-07	5'-TET-gactctactaagaaccca-3'	(SEQ	ID	NO:294)
781-73-01	5'-TET-ccatcttagtggcgt-3'	(SEQ	ID	NO:295)
781-73-02	5'-TET-caacaagtgcctgg-3'	(SEQ	ID	NO:296)
781-85-01	5'-TET-aacacggcgtcac-3'	(SEQ	ID	NO:297)
781-85-02	5'-TET-tgattaccccgagg-3'	(SEQ	ID	NO:298)
781-85-03	5'-TET-acgctgttttcctg-3'	(SEQ	ID	NO:299)
781-85-04	5'-TET-tgagacacctgtacaa-3'	(SEQ	ID	NO:300)
781-85-05	5'-TET-gacggagacagtgg-3'	(SEQ	ID	NO:301)
781-85-06	5'-TET-caagcgagggagag-3'	(SEQ	ID	NO:302)

FIGURE 80B

Rat CX3CR1 Accession No. U04808 (SEQ ID NO:303)

GGAAGUCCAAGAGCAUCACUGACAUCUACCUCCUGAACCUGGCCUUGAGCGACCUGCUC UUUGUGGCCACUUUGCCCUUCUGGACUCACUACCUCAUCAGCCAUGAGGGCCUCCACAA CGCCAUGUGCAAGCUCACGACUGCUUUCUUCUUCAUUGGCUUCUUUGGGGGCAUAUUCU UCAUCACCGUCAUCAGCAUCGACCGGUACCUCGCCAUCGUCCUGGCCGCCAACUCCAUG AACAACCGGACAGUGCAACACGCCGUCACCAUCAGUCUGGGCGUCUGGGCGGCCGCCAU AUUACCCGAGGUCCUGCAGGAAAUCUGGCCCGUGCUCCGCAACUCGGAGGUCAACAUC CUGGGCUUCGUCCUGCCUUGCUUAUCAUGAGCUUUUGCUACUUCCGCAUCGUCCGGAC GCUGUUUUCCUGCAAGAACCGGAAGAAGGCCAGAGCCAUUAGGCUCAUCCUCUUGGUGGU UGUUGUCUUCUUCUGGACGCCUUACAACAUCGUGAUUUUCCUGGAGACUCUCA AAUUCUACAACUUCUUCCCUAGUUGUGGCAUGAAGAGGGACCUGAGGUGGGCCCUUAGU GUGACGGAGACAGUGGCGUUUAGCCACUGCUGCCUCAACCCCUUUAUCUACGCUUUCGC UGGGGAAAAGUUCAGAAGGUACCUGAGACACCUGUACAACAAGUGCCUGGCCGUCCUGU AUUCUGAGCAGCUUGACUCACUACACAAGCGAGGGAGAGGGAUCUCUCCUGCUCUGAAGG GUCUCCCGACCCCGACUCUACUAAGAACCCAGAGUUCCUGCAUCUGACUCUGUGUAAUG CUCCUCCUGCAUUUUAUGUGCAAGAAAUACGGACCAGGUACCUGC

FIGURE 81A

Human Interleukin-1 beta (IL-18) Oligonucleotides

720-82-01 5'gtaatttaatacgactcactatagggaaggtgcagttttgccaaggagtgctaaag-3' (SEQ ID NO:304) 562-15-01 5'-ctgattgaaatttatctaataaaacatcat-3' (SEQ ID NO:305) 781-50-01 5'-TET-acttccaagctggc-3' (SEQ ID NO:306) 781-50-02 (SEQ ID NO:307) 5'-TET-gagagtggaccacac-3' 781-50-03 5'-TET-gaatcagtgaagatgcc-3' (SEQ ID NO:308) 781-50-04 5'-TET-cattgtaccatgaaatatcc-3' (SEQ ID NO:309) 781-50-05 5'-TET-gaactttaatttcaggaattg-3' (SEQ ID NO:310) 781-50-06 5'-TET-ccctagtctgctagc-3' (SEQ ID NO:311) 781-50-07 5'-TET-ttcaagtgtaacttattaacc-3' (SEQ ID NO:312) 781-72-01 5'-TET-aagctggccgtg-3' (SEQ ID NO:313) 781-72-02 5'-TET-tgcagttttgccaag-3' (SEQ ID NO:314)

FIGURE 81B

Human Interleukin-1 beta (IL-1ß) (GenBank Accession #
M15330) (SEQ ID NO:315)

GGCAGAAGUACCUGAGCUCGCCAGUGAAAUGAUGGCUUAUUACAGUGGCAAUGAGGAUG ACUUGUUCUUUGAAGCUGAUGGCCCUAAACAGAUGAAGUGCUCCUUCCAGGACCUGGAC CUCUGCCCUCUGGAUGGCGGCAUCCAGCUACGAAUCUCCGACCACCACUACAGCAAGGG CUUCAGGCAGGCCGCGUCAGUUGUUGUGGCCAUGGACAAGCUGAGGAAGAUGCUGGUUC CCUGCCCACAGACCUUCCAGGAGAAUGACCUGAGCACCUUCUUUCCCUUCAUCUUUGAA GAAGAACCUAUCUUCUUCGACACAUGGGAUAACGAGGCUUAUGUGCACGAUGCACCUGU ACGAUCACUGAACUGCACGCUCCGGGACUCACAGCAAAAAAGCUUGGUGAUGUCUGGUC CAUAUGAACUGAAAGCUCUCCACCUCCAGGGACAGGAUAUGGAGCAACAAGUGGUGUUC UCCAUGUCCUUUGUACAAGGAGAAGAAAGUAAUGACAAAAUACCUGUGGCCUUGGGCCUC AAGGAAAAGAUCUGUACCUGUCCUGCGUGUUGAAAGAUGAUAAGCCCACUCUACAGCU GGAGAGUGUAGAUCCCAAAAAUUACCCAAAGAAGAAGAUGGAAAAGCGAUUUGUCUUCAA CAAGAUAGAAUCAAUAACAAGCUGGAAUUUGAGUCUGCCCAGUUCCCCAACUGGUACA GAUAUAACUGACUUCACCAUGCAAUUUGUGUCUUCCUAAAGAGAGCUGUACCCAGAGAG UCCUGUGCUGAAUGUGGACUCAAUCCCUAGGGCUGGCAGAAAGGGAACAGAAAGGUUUU UGAGUACGGCUAUAGCCUGGACUUUCCUGUUGUCUACACCAAUGCCCAACUGCCUU GGGCCAAUCCCCAGCCCUUUUGUUGAGCCAGGCCUCUCUCACCUCUCUACUCACUUAA AGCCCGCCUGACAGAAACCACGGCCACAUUUGGUUCUAAGAAACCCUCUGUCAUUCGCU UUCAUUGGUCUAAUUUAUUCAAAGGGGGCAAGAAGUAGCAGUGUCUGUAAAAGAGCCUA GUUUUUAAUAGCUAUGGAAUCAAUUCAAUUUGGACUGGUGUGCUCUCUUUAAAUCAAGU CCUUUAAUUAAGACUGAAAAUAUAUAAGCUCAGAUUAUUUAAAUGGGAAUAUUUAUAAAA UGAGCAAAUAUCAUACUGUUCA

119/123

FIGURE 82A

Human Interferon gamma Oligonucleotides

	448-59-01	5'-TET-GCATCGTTTTGGGTTCTCTT	(SEQ	ID	NO:316)		
	448-59-02	5'-TET-ACTTTAAAGATGACCAGAGC	(SEQ	ID	NO:317)		
	448-79-01	CACATTGTTCTGATCATCTG	(SEQ	ID	NO:318)		
	448-79-02	CGGTAACTGACTTGAATGTC	(SEQ	ID	NO:319)		
	448-79-03	TAGTAACTGGATAGTATCAC	(SEQ	ID	NO:320)		
	448-79-04	GACATTCAAGTCAGTTACCG	(SEQ	ID	NO:321)		
	498-20-01	AATTTAATACGACTCACTATACACATTGTTCTGA	TCATO	CTG			
			(SEQ	ID	NO:322)		
	498-20-02	AATTTAATACGACTCACTATACGGTAACTGACTT	GAAT	3TC			
			(SEQ	ID	NO:323)		
	498-20-03	5'-TET-CACATTGTTCTGATCATCTG	(SEQ	ID	NO:324)		
	498-20-04	5'-TET-CGGTAACTGACTTGAATGTC	(SEQ	ID	NO:325)		
	498-40-01	5'-					
AGTAATTTACGACTCACTATAGGGACACATTGTTCTGATCATCTGAAGA							
			(SEQ	ID	NO:326)		
	498-40-02	5'-					
	AGTAATTTACGACTCACTATAGGGACGGTAACTGACTTGAATGTCCAAC						
			(SEQ	ID	NO:327)		
	498-84-01	5'-TET-CATTCAGATGTAGCG	(SEQ	ID	NO:328)		
	498-84-02	5'-TET-GACTCATCAATCAAA	(SEQ	ID	NO:329)		
	498-84-03	5'-TET-GATTACAAGGCTTTA	(SEQ	ID	NO:330)		

FIGURE 82B

Human Interferon gamma (SEQ ID NO:141)

CACAUUGUUCUGAUCAUCUGAAGAUCAGCUAUUAGAAGAGAAGAUCAGUUAAGUCCUUU GGACCUGAUCAGCUUGAUACAAGAACUACUGAUUUCAACUUCUUUGGCUUAAUUCUCUC GGAAACGAUGAAAUAUACAAGUUAUAUCUUGGCUUUUCAGCUCUGCAUCGUUUUGGGUUC UCUUGGCUGUUACUGCCAGGACCCAUAUGUACAAGAAGCAGAAAACCUUAAGAAAUAUU UUAAUGCAGGUCAUUCAGAUGUAGCGGAUAAUGGAACUCUUUUCUUAGGCAUUUUGAAG AAUUGGAAAGAGGAGAGACAGAAAAAUAAUGCAGAGCCAAAUUGUCUCCUUUUACUU CAAACUUUUUAAAAACUUUAAAGAUGACCAGAGCAUCCAAAAGAGUGUGGAGACCAUCA AGGAAGACAUGAAUGUCAAGUUUUUUCAAUAGCAACAAAAAGAAACGAGAUGACUUCGAAA AGCUGACUAAUUAUUCGGUAACUGACUUGAAUGUCCAACGCAAAGCAAUACAUGAACUCA UCCAAGUGAUGGCUGAACUGUCGCCAGCAGCUAAAACAGGGAAGCGAAAAAGGAGUCAG AUGCUGUUUCGAGGUCGAAGAGCAUCCCAGUAAUGGUUGUCCUGCCUACAAUAUUUGAAU UUUAAAUCUAAUCUAUUUAUUAAUAUAACAUUAUUUAUAUGGGGAAUAUAUUUUUAGAC UCAUCAAUCAAAUAAGUAUUUAUAAUAGCAACUUUUGUGUAAUGAAAAUGAAUAUCUAUU AAUAUAUGUAUUAUUAUAAUUCCUAUAUCCUGUGACUGUCUCACUUAAUCCUUUGUUUU CUGACUAAUUAGGCAAGGCUAUGUGAUUACAAGGCUUUAUCUCAGGGGCCAACUAGGCA GCCAACCUAAGCAAGAUCCCAUGGGUUGUGUGUUUAUUUCACUUGAUGAUACAAUGAAC ACUUAUAAGUGAAGUGAUACUAUCCAGUUACUA

121/123

FIGURE 83A

Pneumocystis carinii (NUCLEODTIDES 84-415 OF ACCESSION #
AF236872) (SEQ ID NO:331)

GAGGGUCAUGAAAGCGGCGUGAAAACGUUAGCUAGUGAUCUGGAAUAAAUUCAGAUUGC
GACACUGUCAAAUUUGCGGGGAAGCCCUAAAGAUUCAACUACUAAGCAGUUUGUGGAAAC
ACAGCUGUGGCCGAGUUAAUAGCCCUGGGUAUAGUAACAAUGUUGAAUAUGAAUCUUUU
GCGAGAUGAAAUGGGUGAUCCGCAGCCAAGUCCUAAGGGCAUUUUUUGUCUAUGGAUGCAG
UUCAACGACUAGAUGGCAGUGGGUAUUGUAAGGAAUUGCAGUUUUCUUGCAGUGCUUAA
GGUAUAGUCUAUCCUCUUUCGAAAGAAAGAGUAUAU

Candida albicans (NUCLEOTIDES 72-418 OF ACCESSION # X74272) (SEQ ID NO:332)

122/123

FIGURE 83B

Earwig R2 element (SEQ ID NO:333)

UAGGAUGAUAGCGCACCUGGUCAUCGUCUCUCUCAGCUGCUCACUUGCUGUUCUAAGUG
AUAAUACCGUUGUUUUUUUAGUGGGUAUUCUUUUACGCUUUCGUAGGAGCGAGUCCCAC
ACUCUUGGAGCAAUCCGGGGUAGUGCCUAAACGCAUUUCUUCAACGU

Bombyx mori R2 element (SEQ ID NO:334)

GCCUUGCACAGUAGUCCAGCGGUAAGGGUGUAGAUCAGGCCCGUCUGUUUCUCCCCCGGA GCUCGCUCCCUUGGCUUCCCUUAUAUAUUUUAACAUCAGAAACAGACAUUAAACAUCUA CUGAUCCAAUUUCGCCGGCGUACGGCCACGAUCGGGAGGGUGGGAAUCUCGGGGGUCUU CCGAUCCUAAUCCAUGAUGAUGACGACCUGAGUCACUAAAGACGAUGGCAUGAUGAUCC GGCGAUG