Introduction To Database Management System

Introduction to Databases

Objectives

BE ABLE TO IDENTIFY:

- Some common uses of databases
- Characteristics of file-based systems
- Problems of file-based systems
- the meaning of the term database
- the major components of a DBMS
- the advantages and disadvantages of a DBMS

Common Uses of Databases

- Try to think why each of these need to use a database:
 - Supermarkets
 - Insurance
 - Credit Cards/Banking
 - Libraries
 - Travel Agents
 - Universities
 - Engineering

File Based Systems

DEFINITION

- A collection of application programs that perform services to end users.
- Each program defines and manages its own data.

File Based Processing

Limitations of File Based Systems

- Separation & Isolation of Data
- Data Dependence
- Duplication of Data
- Incompatible file formats

• How do we resolve these problems?

The Database Approach

DEFINITION

• A shared collection of logically related data designed to meet the information requirements of an organisation

Database Processing

Database Management System (DBMS)

DEFINITION

• A software system that enables users to define, create and maintain the database and which provides controlled access to the database

Facilities of a DBMS

- Allows users to define the database (DDL)
- Allows users to insert, update, delete & retrieve data (DML)
- Provides controlled access
 - a security system
 - an integrity system
 - a concurrency control system
 - a recovery system
 - a user accessible catalogue

Components of a DBMS

- Hardware
- Software
- Data
- Procedures
- People

Advantages

- Minimal data redundancy
- Consistency of data
- Integration of data
- Improved integrity
- Consistent security
- Standards
- Increased productivity

Disadvantages

- Complexity
- Additional Hardware Costs
- Size
- Performance
- Experts -Specialised Personnel
- Potential organisational Conflict
- Higher impact of failure

Types of DBMS

Early Types of DBMS

- Hierarchical
- Network

Current Generation

Relational

Advanced Systems

Object Based

Hierarchical Model - An Example

Network Model - Example

Er. Rajan Karmacharya St. Xavier's College

Relational Database

- Relational database system devised by Codd in 1970
- An attempt to devise a standard model with a sound mathematical basis
 - why does this differ to the previous systems?
- Most successful database model
- Most use the query language SQL
- Examples include:
 - Oracle, Microsoft Access, SQL Server, MySQL

Relational Database - Example

• **BRANCH** relation

branchNo	street	city	postcode
B005	22 Deer Rd	London	SW1 4EH
B007	16 Argyll St	Aberdeen	AB2 3SU
B003	163 Main St	Glasgow	G11 9QX

• STAFF relation

StaffNo	Name	Position	Salary	branchNo
SL21	John White	Manager	30000	B005
SG37	Ann Beech	Assistant	12000	B003
SG14	David Ford	Supervisor	18000	B003

SQL

What is it?

Structured Query Language

- Used in ORACLE and other DB systems
- Non-procedural i.e. Specify what you want not how to get it
- SQL (also pronounced SEQUEL) directly related to the development of the RELATIONAL MODEL by E.F.Codd.

Example SQL Queries

- select branchNo, city from branch;
- select *
 from branch
 where branchNo = 'B003';
- select b.branchNo, name
 from branch b, staff s
 where b.branchNo = s.branchNo;

Object Databases

- Current generation systems have a need to handle complex data for complex applications such as
 - computer aided design
 - computer aided software engineering
 - geographic information systems
 - interactive web sites
- Relational systems are inadequate for these systems
 - Why do you think this is?

Object Database Types

- Object-oriented
 - extend a programming language such as Java with persistency and a query language
- Object-relational
 - extend a current RDBMS (e.g. Oracle) with object-oriented extensions
- We will revisit Object databases in a later lecture