JDY-25M 组网可配置成路由与端终角色,其中路由角色除中继外,还支持代理与朋友节点等功能,终端角色无中继功能,主要应用于低功耗设备,网络内任意节点可与网络内所有节点之间通信(除终端睡眠节点)。

注意: 双箭头表示是双向通信, 单向箭头表示是单向通信

MESH 短地址表(MADDR)

地址	功能	说明
0XFFFF	广播地址	设备短地址不能配置成 OXFFFF
0X0002 到 0XFF00	单播地址	设备地址(用户设置短地址可在这个范围内)
0X0001 中心机地址		中心机
0xFF01 到 0XFFFE	系统地址	一般不建议使用

说明: 短地址在网络内相当于设备 ID 号

广播发数据,网络内所设备都可以接收得到

单播发数据,只有指定地址的设备可以接收得到数据

一般不建议打开中心机

CMD 命令表

命令名	地址	说明
DATA_NO_ACK	0x00	向目标设备发 数据无应答
DATA_ACK	0x01	向目标设备发 数据有应答
IO_NO_ACK	0x10	控制目标设备 IO 无应答
IO_ACK	0x11	控制目标设备 IO 有应答
PWM_NO_ACK		无功能
PWM_ACK		无功能
READ_ACK	0x31	读目标设备参数
CONFIG_NO_ACK	0x40	无功能
CONFIG_ACK	0x41	向目标设备发配置参数(NETID、MADDR、PIN、KEY、TYEP)
FRIEND1_DATA_ACK	0xA1	向所有朋友一对一发数据
FRIEND2_DATA_ACK	0xA2	只向私密朋友一对一发数据

说明: MESH 通信数据包括包头 + CMD +MADDR +DATA, 此表格为 CMD 指令表,需要发串口通信有返回数 据时,指令地址是 0x01,需要发 IO 有返回控制指令时,指令地址是 0x11。

IO 动作指令表

10 指令	功能说明					
AAB1E7	表示单路 IO 设置,IO 动作并串口不输出					
AAB2E7	表示单路 IO 设置,IO 动作并串口有输出					
ABB1E7	表示全路 IO 设置,IO 动作并串口不输出					
ABB2E7	表示全路 IO 设置,IO 动作并串口有输出					
A1B1E7	表示单路 IO 电平翻转设置,IO 动作并串口不输出					
A1B2E7	表示单路 IO 电平翻转设置,IO 动作并串口输出					
A2B1E7	表示全路 IO 电平翻转设置,IO 动作并串口不输出					
A2B3E7	表示全路 IO 电平翻转设置,IO 动作并串口输出					

说明: MESH 控制目标设备 IO 电平时,需要参考此 IO 动作指令表,功能分为接收端收到指令的动作方式 (IO 动作串口不输出,IO 动作串口同时输出,IO 高低电平单路设置,IO 电平全路设置,IO 电平单路翻转,IO 电平全路翻转)

串口向 MESH 发数据通信格式

HEAD 7byte	CMD 1byte	目标 MADDR 2byte	数据 (1-12)byte	结束符 2byte
41 54 2b 4d 45 53 48	参考	参考	1 到 12 数据内容	0D 0A
	CMD 指令表	短地址表		

注意:只要是向 MESH 发数据都需要遵循此数据格式,否则不识别

串口 MESH 通信数据格式

1、串口向目标设备发送 MESH 串口数据

例	HEAD	CMD	目标 MADDR	数据	结束符
子	7byte	1byte	2byte	(1-12)byte	1byte
1			FFFF	112233445566	
2	41 54 2b 4d 45 53 48	00	0005	1122	0D0A
3		01	0008	88990055	

例子 1: 表示向网络内所有设备发广播串口数据,网络内所有设备串口输出 112233445566 完整指令: 41 54 2b 4d 45 53 48 00 FF FF 11 22 33 44 55 66 0D0A

例子 2: 向网络内 0005 设备发串口数据,数据内容为 1122

例子 3: 向网络内 0008 设备发串口数据有应答,数据内容为 88990055,当 CMD 为 01,表示有应答通信,发射端可以知道数据是否被接收端接收到

说明:1到3例子已经说明在组网下,设备之间发送串口通信数据,注意数据为:十六进制格式

2、串口向目标设备发送 MESH IO 控制指令

例	HEAD	CMD	目标 MADDR	į	数据(1-12)by	te	结束符
子	7byte	1byte	2byte	10 指令	IO-NUMB	IO-LEVE	2byte
				3byte	1byte	1byte	
1		10	0005	AAB1E7	01	01	
2		11	0008	AAB1E7	01	00	
3		10	FFFF	AAB1E7	01	01	
4		10	FFFF	AAB2E7	05	00	
5		11	0009	AAB2E7	03	01	
6		10	0005	ABB1E7	FF	03	
7	41 54 2b 4d 45 53 48	11	0005	ABB2E7	FF	10	0D0A
8		10	1008	A1B1E7	01	хх	
9		11	1009	A1B2E7	05	хх	
10		10	5000	A2B1E7	FF	ХХ	
11		11	5000	A2B2E7	FF	хх	

说明: 例子1到例子5为单路IO电平高低电平设置

例子 1:表示向 0005 设备发送 IO 无应答指令 CMD=01,不串口输出,IO1 为高电平

例子 2:表示向 0008 设备发送有应答指令(CMD=11),不串口输出,设置 IO1 为低电平

例子 3: 表示广播发指令,将网络内所有设备的 IO1 设置为高电平

例子 4:表示广播发指令,将网络内所有设备的 IO5 设置为低电平

例子 5:表示向 0009 设备发送 IO 有应答指令(CMD=11),串口输出,并设置 IO3 为高电平

说明: 例子6与例子7例子可以一次设置所有IO电平

例子 6:表示向 0005 设备发送 IO 无应答指令,串口不输出,将 IO1 与 IO2 设置为高电平,IO3、IO4、IO5 设置为低电平,

例子 7:表示向 0005 设备发送 IO 有应答指令,串口有输出,将 IO5 设置为高电平,其余全部设置成低电平

说明: 例子 8 与例子 9 为单路 IO 电平翻转功能

例子 8:表示向 1008 设备发送 IO 电平翻转无应答指令,串口不输出,将 IO1 电平翻转

例子 9:表示向 1009 设备发送 10 电平翻转有应答指令,串口有输出,将 IO5 电平翻转

说明: 例子 10 与例子 11 为全路 IO 电平翻转功能

例子 10:表示向 5000 地址的设备,发送全 IO 电平翻转无应答指令,串口不输出,将 IO1 到 IO5 所有 IO 电平进行翻转

例子 11:表示向 5000 地址的设备,发送全 IO 电平翻转有应答指令,串口有输出,并将 IO1 到 IO5 所有 IO 引脚电平翻转

3、串口向 MESH 网络内设备读取指令表

例	HEAD	CMD	目标	数据	结束符	指令说明
子	7byte	1byte	MADDR	读指令	2byte	(不是指令,只是说明)
			2Byte	3byte		
1		31	1090	F0B100		读取目标 1090 设备 5 路 IO 输出电平
2		31	0005	F1B101		读取目标 0005 设备 5 路输入电平
3		31	0008	F2B102		读取目标 0008 设备短地址
4		31	0008	F3B103		读取目标 0008 设备组网 ID 号
5	41 54 2b	31	0008	F4B104		读取目标 0008 设备 PIN 码
6	4d 45 53	31	0008	F5B105	0D0A	读取目标 0008 设备 PIN 码类型
7	48	31	0008	F6B105		读取目标 0008 设备按键 5 按键参数
8		31	0008	F7B107		读取目标 0008 设备 MCLSS 类型
9		31	0008	F8B108		读取目标 0008 设备朋友地址
10		31	8000	F9B109		读取目标 0008 设备朋友类型

例子 1: 表示向 1090 目标设备读取 5 路输出 IO 的电平

例子 2: 表示读取目标 0005 目标设备的 5 路输入 IO 电平

例子 3: 表示读取目标 0008 短地址

例子 4: 表示读取目标 0008 组网 ID 号

例子 5: 表示读取目标 0008 设备连接密码

例子 6: 表示读取目标 0008 设备密码类型

例子 7: 表示读取目标 0008 设备按键 5 参数

例子 8: 表示读取目标 0008 设备 MCLSS 类型

例子 9: 表示读取目标 0008 设备朋友 MAC 地址

例子 10:表示读取目标 0008 设备朋友类型

4、串口向 MESH 网络内设备配置参数指令表

例	HEAD	CMD	目标	指令	参数	结束	指令说明
子	7byte	1byte	MA	3byte		符	
			DDR			2byte	
1		41	0008	E2F102	1122		配置 0008 设备 NETID 为 1122
2		41	0008	E3F103	0102		配置 0008 设备 MADDR 为 0102
3		41	0008	E4F104	01010202		配置 0008 设备密码为 1122
4		41	0008	E5F105	01		配置 0008 设备密码类型为 1
5	41 54						配置0008设备按键1目标地址为
	2b 4d	41	0008	E6F106	01022255	0D0A	2255,向目标 2 号输出引脚通信,
	45 53				00		00 接收数据不串口输出
6	48	41	0008	E7F107	00		00 表示配置为路由器
							01 表示为配置成低功耗遥控器
7		41	0008	E8F108	11223344		添加 112233445566 地址的 GATT
					5566		设备作为朋友
8		41	0008	E9F109	00		表示设置朋友为私密朋友

- 例子 1: 完整串口指令为 41542b4d455348410008E2F10211220D0A, 功能表示向 0008 目标 设备配置组网 ID 号, 新的组网 ID 号为 1122
- 例子 2: 完整串口指令为 41542b4d455348410008E3F10301020D0A, 功能表示向 0008 目标 设备配置组网短地址,新的 MADDR 组网地址为 0102
- 例子 3: 完整串口指令为 4 542b4d455348410008E4F104010102020D0A, 功能表示向 0008 目标设备配置连接密码为 1122
- 例子 4: 完整串口指令为 41542b4d45 53 48410008E5F105010D0A, 功能表示向 0008 目标设备配置连接密码类型为 1, 有密码连接
- 例子 5: 完整串口指令为 41542b4d455348410008E6F10601225502000D0A, 功能表示向 0008 目标设备配置按键 1 地址, 地址为按键 1 目标地址为 2255, 向目标 OU2 引脚通信
- 例子 6: 完整串口指令为 41542b4d4553 48410008E7F107000D0A, 功能表示向 0008 目标设备配置 MLCSS 组网类型为路由器
- 例子 7: 完整串口指令为 41542b4d455348410008E8F1081122334455660D0A, 功能表示向 0008目标设备添加朋友,添加的朋友的 MAC 地址是 112233445566
- 例子 8: 完整串口指令为 41542b4d455348410008E9F109000D0A, 功能表示向 0008 目标设备配 置朋友类型为: 私密朋友

5、MESH 向串口返回数据指令表

例	HEAD	Len	MADDR	数据	数据说明
子	2byte	1byte	2byte		
1	F000	07	0021	0100010001	表示 5 个输出串口的电平
2	F001	07	0021	0100010001	表示 5 个输入口的电平
3	F002	04	0021	0023	0023 表示目标设备的短地址
4	F003	04	0021	1189	1189 表示目标设备的组网 ID 号
5	F004	06	0021	01020304	表示连接密码为 1234
					00 表示连接无密码,
6	F005	07	0021	00	01表示每次连接需要密码,
					02 表示连接只需要输入一次密码,后面不需要
					03 表示 APP 连接密码
					01 表示按键号(1-5)
	F006	07	0021	01AACC 01 00	AACC 表示目标设备短地址
7					01 表示按键要控制的目标输出 IO 的 ID 号(1-5)
					00表示是否不串口打印输出
8	F007	03	0021	00	00 表示 0021 设备为路由器
9	F008	8	0021	112233445566	表示目前 0021 设备朋友地址 112233445566
					如返回的地址都为0,表示无朋友功能

- 例子 1:表示收到 0021 发过来的数据,数据长度是 7 字节,减掉 2 字节地址位,剩下 5 字节为输出 IO 电平状态,00 表示低电平,01 表示高电平
- 例子 2: 表示收到 0021 发过来的数据,数据长度为 7 字节,减掉 2 字节地址位,剩下 5 字节为输入 IO 电平状态,00 表示低电平,01 表示高电平
- 例子 3:表示收到 0021 发过来的数据,数据长度 4 字节,减掉 2 字节地址位,剩下 2 字节 为设备短地址
- 例子 4: 表示收到 0021 发过来的数据,数据长度为 4 字节,减掉 2 字节地址位,剩下 2 字节为设备组网 ID 号
- 例子 5: 表示收到 0021 发过来的数据,数据长度为 6 字节,减掉 2 字节地址位,剩下 4 字节为设备连接密码
- 例子 6: 表示收到 0021 发过来的数据,数据长度为 3 字节,减掉 2 字节,剩下 1 字节为设备密码连接类型
- 例子 7:表示收到 0021 发过来的数据,数据长度为 7 字节,减掉 2 字节,剩下 5 字节为设备的按键参数值
- 例子 8: 表示收到 0021 发过来的数据,数据长度为 3 字节,减掉 2 字节,剩下 1 字节为 MCLSS 类型,00 表示设置为路由器
- 例子 9:表示收到 0021 发过来的数据,数据长度为 8 字节,减掉 2 字节,剩下 6 字节为朋友地址

6、APP 特征 FFE3 接收 MESH 数据格式

HEAD (2byte)+LEN (1byte) + ADDR1(2byte) + ADDR2(2byte) + data(1-13byte)

例子 1: F1 DD 07 11 8B FF FF 31 32 33

说明: F1DD 表示数据透、07 表示后面数据长度、118B 表示此数据由 118B 设备发过来、FFFF 表示此数据为广播类型,313233 表示为数据内容

7、MESH 串口与 APP 接收数据格式

例	HEAD	LEN	发送者	目标	数据内容
子	2byte	1byte	短地址	短地址	1 到 12byte
			2byte	2byte	
1	F1DD	10	8101	FFFF	11 22 33 44 55 66 77 88 99 00 AA BB
2	F1DD	07	8101	8100	31 32 33
3	F2E1	09	74BE	FFFF	AA B2 E7 03 01
4	F2E1	09	74BE	FFFF	A1 B2 E7 02 01

例子1

串口接收数据内容: F1 DD 10 81 01 FF FF 11 22 33 44 55 66 77 88 99 00 AA BB 说明: F1DD 数据头, 10 数据长度,表示接收到 8101 短地址设备发过来的广播数据,数据内容是 11 22 33 44 55 66 77 88 99 00 AA BB

例子 2

串口接收数据内容: F1 DD 07 81 01 81 00 31 32 33

说明: F1DD 数据头, 07 数据长度,表示接收到 8101 短地址设备发过来的单播数据,数据内容是 31 32 33

例子 3

串口接收数据内容: F2 E1 09 74 BE FF FF AA B2 E7 03 01

说明: F2E1 数据头,09 数据长度,表示接收到 74BE 短地址设备发过来的 IO 控制广播, IO 控制数据内容是 AA B2 E7 03 01 表示 74 BE 设备控制网络内所有设备 IO3 为高电平例子 4

串口接收数据内容: F2 E1 09 74 BE FF FF A1 B2 E7 02 01

说明: F2E1 数据头,09 数据长度,表示接收到 74BE 短地址设备发过来的 IO 控制广播,IO 控制数据内容是 A1 B2 E7 02 01 表示 74 BE 设备控制网络内所有设备 IO3 电平翻转

提示: IO 控制数据 AA B2 E7 03 01 与 A1 B2 E7 02 01 等

请查看"串口向目标设备发送 MESH IO 控制指令"表格