

6-(Aminocarbonyl-phenyl)-Triazolopyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Schadpilzen sowie sie enthaltende Mittel

Beschreibung

5

Die vorliegende Erfindung betrifft substituierte Triazolopyrimidine der Formel I

in der die Substituenten folgende Bedeutung haben:

10 R¹, R² unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₃-C₈-Cycloalkyl, C₃-C₈-Halogencycloalkyl, C₂-C₈-Alkenyl, C₂-C₈-Halogenalkenyl, C₃-C₆-Cycloalkenyl, C₃-C₆-Halogencycloalkenyl, C₂-C₈-Alkinyl, C₂-C₈-Halogenalkinyl oder Phenyl, Naphthyl, oder ein fünf- oder sechsgliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S,

15

R¹ und R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein fünf- oder sechsgliedriges Heterocycl oder Heteroaryl bilden, welches über N gebunden ist und ein bis drei weitere Heteroatome aus der Gruppe O, N und S als Ringglied enthalten und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Halogenalkenyloxy, (exo)-C₁-C₆-Alkylen und Oxy-C₁-C₃-alkylenoxy tragen kann;

20

25 R¹ und/oder R² können eine bis vier gleiche oder verschiedene Gruppen R^a tragen:

R^a Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₂-C₈-Alkenyl, C₂-C₈-Halogenalkenyl, C₃-C₆-Cycloalkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Halogenalkenyloxy, C₂-C₆-Alkinyl, C₂-C₆-Halogenalkinyl, C₃-C₆-Alkinyloxy, C₃-C₆-Halogenalkinyloxy, C₃-C₆-Cycloalkoxy, C₃-C₆-Cycloalkenyloxy, Oxy-C₁-C₃-alkylenoxy, Phenyl, Naphthyl, fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S,

30

35

wobei diese aliphatischen, alicyclischen oder aromatischen Gruppen ihrerseits partiell oder vollständig halogeniert sein oder eine bis drei Gruppen R^b tragen können:

5 R^b Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Amino-carbonyl, Aminothiocarbonyl, Alkyl, Haloalkyl, Alkenyl, Alkenyloxy, Alkinyloxy, Alkoxy, Halogenalkoxy, Alkylthio, Alkylamino, Dialkylamino, Formyl, Alkylcarbonyl, Alkylsulfonyl, Alkylsulfoxyl, Alkoxy carbonyl, Alkylcarbonyloxy, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylaminothiocarbonyl, Dialkylaminothiocarbonyl, wobei die Alkylgruppen in diesen Resten 1 bis 6 Kohlenstoffatome enthalten und die genannten Alkenyl- oder Alkinylgruppen in diesen Resten 2 bis 8 Kohlenstoffatome enthalten;

15 und/oder einen bis drei der folgenden Reste:

Cycloalkyl, Cycloalkoxy, Heterocyclyl, Heterocyclyloxy, wobei die cyclischen Systeme 3 bis 10 Ringglieder enthalten; Aryl, Aryloxy, Arylthio, Aryl-C₁-C₆-alkoxy, Aryl-C₁-C₆-alkyl, Hetaryl, Hetaryloxy, Hetarylthio, wobei die Arylreste vorzugsweise 6 bis 10 Ringglieder, die Hetarylreste 5 oder 6 Ringglieder enthalten, wobei die cyclischen Systeme partiell oder vollständig halogeniert oder durch Alkyl- oder Haloalkylgruppen substituiert sein können.

25 L Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder C₁-C₄-Alkoxy carbonyl;

 m 1, 2, 3 oder 4, wobei die Gruppen L verschieden sein können wenn m größer als 1 ist;

30 X Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkoxy.

35 Außerdem betrifft die Erfindung Verfahren und Zwischenprodukte zur Herstellung dieser Verbindungen, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von pflanzenpathogenen Schadpilzen.

Aus EP-A 71 792, EP-A 550 113 sind 5-Chlor-6-phenyl-7-amino-triazolopyrimidine allgemein bekannt. In WO 03/080615 werden 6-Phenyl-Triazolopyrimidine allgemein vor-

geschlagen, deren Phenylgruppe in para-Stellung eine Alkylamid-Gruppe tragen kann. Diese Verbindungen sind zur Bekämpfung von Schadpilzen bekannt.

Die erfindungsgemäßen Verbindungen unterscheiden sich von den in WO 03/080615 beschriebenen durch die Carbonsäureamid-Gruppe als Substituent des 6-Phenylringes.

Die Wirkung der bekannten Verbindungen ist jedoch in vielen Fällen nicht zufriedenstellend. Davon ausgehend, liegt der vorliegenden Erfindung die Aufgabe zugrunde, Verbindungen mit verbesserter Wirkung und/oder verbreitertem Wirkungsspektrum bereitzustellen.

Demgemäß wurden die eingangs definierten Verbindungen gefunden. Des weiteren wurden Verfahren und Zwischenprodukte zu ihrer Herstellung, sie enthaltende Mittel sowie Verfahren zur Bekämpfung von Schadpilzen unter Verwendung der Verbindungen I gefunden.

Die erfindungsgemäßen Verbindungen können auf verschiedenen Wegen erhalten werden. Vorteilhaft werden sie durch Umsetzung von 5-Aminotriazol der Formel II mit entsprechend substituierten Phenylmalonaten der Formel III, in der R für Alkyl, bevorzugt für C₁-C₆-Alkyl, insbesondere für Methyl oder Ethyl steht, dargestellt.

Diese Umsetzung erfolgt üblicherweise bei Temperaturen von 80°C bis 250°C, vorzugsweise 120°C bis 180°C, ohne Solvens oder in einem inerten organischen Lösungsmittel in Gegenwart einer Base [vgl. EP-A 770 615] oder in Gegenwart von Essigsäure unter den aus Adv. Het. Chem. Bd. 57, S. 81ff. (1993) bekannten Bedingungen.

Geeignete Lösungsmittel sind aliphatische Kohlenwasserstoffe, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe, Ether, Nitrile, Ketone, Alkohole, sowie N-Methylpyrrolidon, Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid. Besonders bevorzugt wird die Umsetzung ohne Lösungsmittel oder in Chlorbenzol, Xylol, Dimethylsulfoxid, N-Methylpyrrolidon durchgeführt. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

Als Basen kommen allgemein anorganische Verbindungen wie Alkalimetall- und Erdalkalimetallhydroxide, Alkalimetall- und Erdalkalimetalloxide, Alkalimetall- und Erdalkalimetallhydride, Alkalimetallamide, Alkalimetall- und Erdalkalimetallcarbonate sowie Alkalimetallhydrogencarbonate, metallorganische Verbindungen, insbesondere Alkalimetallalkyle, Alkylmagnesiumhalogenide sowie Alkalimetall- und Erdalkalimetallalkoholate und Dimethoxymagnesium, außerdem organische Basen, z.B. tertiäre Amine wie Trimethylamin, Triethylamin, Tri-isopropylethylamin, Tributylamin und N-Methylpiperidin, N-Methylmorpholin, Pyridin, substituierte Pyridine wie Collidin, Lutidin und 4-Dimethylaminopyridin sowie bicyclische Amine in Betracht. Besonders bevorzugt werden tertiäre Amine wie Tri-isopropylethylamin, Tributylamin, N-Methylmorpholin oder N-Methylpiperidin.

Die Basen werden im allgemeinen in katalytischen Mengen eingesetzt, sie können aber auch äquimolar, im Überschuss oder gegebenenfalls als Lösungsmittel verwendet werden.

Die Edukte werden im allgemeinen in äquimolaren Mengen miteinander umgesetzt. Es kann für die Ausbeute vorteilhaft sein, die Base und das Malonat III in einem Überschuss bezogen auf das Triazol einzusetzen.

Phenylmalonate der Formel III werden vorteilhaft aus der Reaktion entsprechend substituierter Brombenzole mit Dialkylmalonaten unter Cu(I)-Katalyse erhalten [vgl. Chemistry Letters, S. 367-370, 1981; EP-A 10 02 788].

Die Dihydroxytriazolopyrimidine der Formel IV werden unter den aus WO-A 94/20501 bekannten Bedingungen in die Dihalogenpyrimidine der Formel V überführt, in der Hal ein Halogenatom, bevorzugt ein Brom oder ein Chloratom, insbesondere ein Chloratom bedeutet. Als Halogenierungsmittel [HAL] wird vorteilhaft ein Chlorierungsmittel oder ein Bromierungsmittel, wie Phosphoroxybromid oder Phosphoroxychlorid, ggf. in Anwesenheit eines Lösungsmittels, eingesetzt.

Diese Umsetzung wird üblicherweise bei 0°C bis 150°C, bevorzugt bei 80°C bis 125°C, durchgeführt [vgl. EP-A 770 615].

Dihalogenpyrimidine der Formel V werden mit Aminen der Formel VI,

in der R¹ und R² wie in Formel I definiert sind, zu Verbindungen der Formel I, in der X für Halogen steht, weiter umgesetzt.

5 Diese Umsetzung wird vorteilhaft bei 0°C bis 70°C, bevorzugt 10°C bis 35°C durchgeführt, vorzugsweise in Anwesenheit eines inerten Lösungsmittels, wie Ether, z. B. Dioxan, Diethylether oder insbesondere Tetrahydrofuran, halogenierte Kohlenwasserstoffe, wie Dichlormethan und aromatische Kohlenwasserstoffe, wie beispielsweise Toluol [vgl. WO-A 98/46608].

10 Die Verwendung einer Base, wie tertiäre Amine, beispielsweise Triethylamin oder anorganische Basen, wie Kaliumcarbonat ist bevorzugt; auch überschüssiges Amin der Formel VI kann als Base dienen.

15 Verbindungen der Formel I, in der X Cyano, C₁-C₆-Alkoxy oder C₁-C₂-Halogenalkoxy bedeutet, können vorteilhaft aus der Umsetzung von Verbindungen I, in der X Halogen, bevorzugt Chlor bedeutet, mit Verbindungen M-X' (Formel VII) erhalten werden. Verbindungen VII stellen je nach der Bedeutung der einzuführenden Gruppe X' ein anorganisches Cyanid, ein Alkoxylat oder ein Halogenalkoxylat dar. Die Umsetzung erfolgt 20 vorteilhaft in Anwesenheit eines inerten Lösungsmittels. Das Kation M in Formel VII hat geringe Bedeutung; aus praktischen Gründen sind üblicherweise Ammonium-, Tetraalkylammonium- oder Alkali- oder Erdalkalimetallsalze bevorzugt.

Üblicherweise liegt die Reaktionstemperatur bei 0 bis 120°C, bevorzugt bei 10 bis 40°C 25 [vgl. J. Heterocycl. Chem., Bd.12, S. 861-863 (1975)].

Geeignete Lösungsmittel umfassen Ether, wie Dioxan, Diethylether und, bevorzugt Tetrahydrofuran, halogenierte Kohlenwasserstoffe wie Dichlormethan und aromatische Kohlenwasserstoffe, wie Toluol.

30 Verbindungen der Formel I, in denen X für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl steht, können vorteilhaft durch folgenden Syntheseweg erhalten werden:

6

Ausgehend von den Ketoestern IIIa werden die 5-Alkyl-7-hydroxy-6-phenyltriazolopyrimidine IVa erhalten. In Formeln IIIa und IVa steht X¹ für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl. Durch Verwendung der leicht zugänglichen 2-Phenylacetessigestern (IIIa mit

5 X¹=CH₃) werden die 5-Methyl-7-hydroxy-6-phenyltriazolopyrimidine erhalten [vgl. Chem. Pharm. Bull., 9, 801, (1961)]. Die Herstellung der Ausgangsverbindungen IIIa erfolgt vorteilhaft unter den aus EP-A 10 02 788 beschriebenen Bedingungen.

Die so erhaltenen 5-Alkyl-7-hydroxy-6-phenyltriazolopyrimidine werden mit Halogenierungsmitteln [HAL] unter den weiter oben beschriebenen Bedingungen zu den 7-Halogenotriazolopyrimidinen der Formel Va umgesetzt. Bevorzugt werden Chlorierungs- oder Bromierungsmittel wie Phosphoroxybromid, Phosphoroxychlorid, Thionylchlorid, Thionylbromid oder Sulfurylchlorid eingesetzt. Die Umsetzung kann in Substanz oder in Gegenwart eines Lösungsmittels durchgeführt werden. Übliche Reaktionstemperaturen 15 betragen von 0 bis 150°C oder vorzugsweise von 80 bis 125°C.

Die Umsetzung von Va mit Aminen VI erfolgt unter den weiter oben beschriebenen Bedingungen.

20 Verbindungen der Formel I in der X C₁-C₄-Alkyl bedeutet, können alternativ auch aus Verbindungen I, in der X Halogen, insbesondere Chlor, bedeutet und Malonaten der Formel VIII hergestellt werden. In Formel VIII bedeuten X" Wasserstoff oder C₁-C₃-Alkyl und R C₁-C₄-Alkyl. Sie werden zu Verbindungen der Formel IX umgesetzt und zu Verbindungen I decarboxyliert [vgl. US 5,994,360].

Die Malonate VIII sind in der Literatur bekannt [J. Am. Chem. Soc., Bd. 64, 2714 (1942); J. Org. Chem., Bd. 39, 2172 (1974); Helv. Chim. Acta, Bd. 61, 1565 (1978)] oder können gemäß der zitierten Literatur hergestellt werden.

- 5 Die anschließende Verseifung des Esters IX erfolgt unter allgemein üblichen Bedingungen, in Abhängigkeit der verschiedenen Strukturelemente kann die alkalische oder die saure Verseifung der Verbindungen IX vorteilhaft sein. Unter den Bedingungen der Esterverseifung kann die Decarboxylierung zu I bereits ganz oder teilweise erfolgen.
- 10 Die Decarboxylierung erfolgt üblicherweise bei Temperaturen von 20°C bis 180°C, vorzugsweise 50°C bis 120°C, in einem inerten Lösungsmittel, gegebenenfalls in Gegenwart einer Säure.

Geeignete Säuren sind Salzsäure, Schwefelsäure, Phosphorsäure, Ameisensäure, Essigsäure, p-Toluolsulfonsäure. Geeignete Lösungsmittel sind Wasser, aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Cyclohexan und Petrolether, aromatische Kohlenwasserstoffe wie Toluol, o-, m- und p-Xylol, halogenierte Kohlenwasserstoffe wie Methylenchlorid, Chloroform und Chlorbenzol, Ether wie Diethylether, Diisopropyl-ether, tert.-Butylimethylether, Dioxan, Anisol und Tetrahydrofuran, Nitrile wie Acetonitril und Propionitril, Ketone wie Aceton, Methylethylketon, Diethylketon und tert.-Butylmethylketon, Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol und tert.-Butanol, sowie Dimethylsulfoxid, Dimethylformamid und Dimethylacetamid, besonders bevorzugt wird die Reaktion in Salzsäure oder Essigsäure durchgeführt. Es können auch Gemische der genannten Lösungsmittel verwendet werden.

- 25 Verbindungen der Formel I, in denen X für C₁-C₄-Alkyl steht, können auch durch Kupplung von 5-Halogentriazolopyrimidinen der Formel I, in der X Halogen bedeutet, mit metallorganischen Reagenzien der Formel X erhalten werden. In einer Ausführungsform dieses Verfahrens erfolgt die Umsetzung unter Übergangsmetallkatalyse, wie Ni- oder Pd-Katalyse.
- 30

- In Formel X steht M für ein Metallion der Wertigkeit Y, wie beispielsweise B, Zn oder Sn und X'' für C₁-C₃-Alkyl. Diese Reaktion kann beispielsweise analog folgender Methoden durchgeführt werden: J. Chem. Soc. Perkin Trans. 1, 1187 (1994), ebenda 1, 2345 (1996); WO-A 99/41255; Aust. J. Chem., Bd. 43, 733 (1990); J. Org. Chem., Bd. 43, 358 (1978); J. Chem. Soc. Chem. Commun. 866 (1979); Tetrahedron Lett., Bd. 34, 8267 (1993); ebenda, Bd. 33, 413 (1992).

Verbindungen der Formel I können alternativ auch ausgehend von substituierten 6-Cyanophenyl-Triazolopyrimidinen der Formel XI hergestellt werden.

Diese Umsetzung kann in Anwesenheit von Schwefelsäure bei 0 bis 60°C, insbesondere 5 20 bis 25°C erfolgen [vgl. Synthetic Commun., 1999, S. 547ff.], alternativ kann die Umsetzung in dem Polyethylenglycol / NaOH – System bei 0 bis 60°C, insbesondere 20 bis 25°C in Anwesenheit eines Lösungs- oder Verdünnungsmittels erfolgen [vgl. Synthetic Commun., 2000, S. 1713ff.], oder mit Harnstoff / Wasserstoffperoxid bei 0 bis 10 60°C, insbesondere 20 bis 25°C in Anwesenheit eines Lösungs- oder Verdünnungsmittels erfolgen [vgl. Org. Lett. 1999, S. 189ff.].

Verbindungen der Formel XI sind aus WO 03/080615 bekannt, bzw. können gemäß der zitierten Literatur hergestellt werden.

15 Außerdem können die Verbindungen der Formel I durch Pd-katalysierte Aminocarbonylierung [vgl.: Tetrahedron Lett. Bd. 39, 2835-2838 (1998); J. Org. Chem. Bd. 66, 4311 ff (2001); WO 00/37428; DE 35 25 564; J. Org. Chem. Bd. 62, 8640-8653 (1997); JP 2000191612] der entsprechenden Halogenverbindungen XII [vgl. EP-A 550113] oder Triflate XIII hergestellt werden.

XII: Y = Cl, Br, I
XIII: Y = OSO₂CF₃

20 Die Reaktionsgemische werden in üblicher Weise aufgearbeitet, z.B. durch Mischen mit Wasser, Trennung der Phasen und gegebenenfalls chromatographische Reinigung der Rohprodukte. Die Zwischen- und Endprodukte fallen z.T. in Form farbloser oder schwach bräunlicher, zäher Öle an, die unter verminderter Druck und bei mäßig erhöhte Temperatur von flüchtigen Anteilen befreit oder gereinigt werden. Sofern die Zwischen- und Endprodukte als Feststoffe erhalten werden, kann die Reinigung auch durch Umkristallisieren oder Digerieren erfolgen.

Sofern einzelne Verbindungen I nicht auf den voranstehend beschriebenen Wegen zugänglich sind, können sie durch Derivatisierung anderer Verbindungen I hergestellt werden.

5 Sofern bei der Synthese Isomerengemische anfallen, ist im allgemeinen jedoch eine Trennung nicht unbedingt erforderlich, da sich die einzelnen Isomere teilweise während der Aufbereitung für die Anwendung oder bei der Anwendung (z.B. unter Licht-, Säure- oder Baseneinwirkung) ineinander umwandeln können. Entsprechende Umwandlungen können auch nach der Anwendung, beispielsweise bei der Behandlung von Pflanzen in
10 der behandelten Pflanze oder im zu bekämpfenden Schadpilz erfolgen.

Bei den in den vorstehenden Formeln angegebenen Definitionen der Symbole wurden Sammelbegriffe verwendet, die allgemein repräsentativ für die folgenden Substituenten stehen:

15 Halogen: Fluor, Chlor, Brom und Jod;

Alkyl: gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 4, 6 oder 8 Kohlenstoffatomen, z.B. C₁-C₆-Alkyl wie Methyl, Ethyl, Propyl, 1-Methylethyl,

20 Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Tri-
25 methylpropyl, 1-Ethyl-1-methylpropyl und 1-Ethyl-2-methylpropyl;

Halogenalkyl: geradkettige oder verzweigte Alkylgruppen mit 1 bis 2, 4 oder 6 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt

30 sein können: insbesondere C₁-C₂-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl oder 1,1,1-Trifluorprop-2-yl;

35 Alkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 4, 6 oder 8 Kohlenstoffatomen und einer oder zwei Doppelbindungen in beliebiger Position, z.B. C₂-C₆-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl,
40 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-but-

enyl, 2-Methyl-1-butenyl, 3-Methyl-1-butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl,
 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl,
 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-
 1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hex-
 5 enyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1-pent-
 10 enyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pent-
 15 enyl, 1-Methyl-3-pentenyl, 2-Methyl-3pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pent-
 enyl, 1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pent-
 enyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Di-
 methyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-bu-
 tenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Di-
 20 methyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-bu-
 tenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1-butenyl, 2-Ethyl-
 2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl,
 15 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl;

Halogenalkenyl: ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 8 Kohlenstoffatomen und einer oder zwei Doppelbindungen in beliebiger Position (wie vorstehend genannt), wobei in diesen Gruppen die Wasserstoffatome teilweise oder vollständig gegen Halogenatome wie vorstehend genannt, insbesondere Fluor, Chlor und Brom, ersetzt sein können;

Alkinyl: geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 4, 6 oder 8 Kohlenstoffatomen und einer oder zwei Dreifachbindungen in beliebiger Position, z.B.
 25 C₂-C₆-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-2-butinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 3-Methyl-1-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl, 2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl,
 30 3-Methyl-1-pentinyl, 3-Methyl-4-pentinyl, 4-Methyl-1-pentinyl, 4-Methyl-2-pentinyl, 1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl, 1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-1-butinyl, 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und 1-Ethyl-1-methyl-2-propinyl;

35 Cycloalkyl: mono- oder bicyclische, gesättigte Kohlenwasserstoffgruppen mit 3 bis 6 oder 8 Kohlenstoffringgliedern, z.B. C₃-C₈-Cycloalkyl wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl und Cyclooctyl;

fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyc-
 40 Ius, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S:

- 5- oder 6-gliedriges Heterocycl, enthaltend ein bis drei Stickstoffatome und/oder ein Sauerstoff- oder Schwefelatom oder ein oder zwei Sauerstoff- und/oder Schwefelatome, z.B. 2-Tetrahydrofuranyl, 3-Tetrahydrofuranyl, 2-Tetrahydrothienyl,

5 3-Tetrahydrothienyl, 2-Pyrrolidinyl, 3-Pyrrolidinyl, 3-Isoxazolidinyl, 4-Isoxazolidinyl, 5-Isoxazolidinyl, 3-Iothiazolidinyl, 4-Iothiazolidinyl, 5-Iothiazolidinyl, 3-Pyrazolidinyl, 4-Pyrazolidinyl, 5-Pyrazolidinyl, 2-Oxazolidinyl, 4-Oxazolidinyl, 5-Oxazolidinyl, 2-Thiazolidinyl, 4-Thiazolidinyl, 5-Thiazolidinyl, 2-Imidazolidinyl, 4-Imidazolidinyl, 2-Pyrrolin-2-yl, 2-Pyrrolin-3-yl, 3-Pyrrolin-2-yl, 3-Pyrrolin-3-yl, 2-Piperidinyl, 3-Piperidinyl, 4-Piperidinyl, 1,3-Dioxan-5-yl, 2-Tetrahydropyran, 4-Tetrahydropyran, 2-Tetrahydrothienyl, 3-Hexahydropyridazinyl, 4-Hexahydropyridazinyl, 2-Hexahydropyrimidinyl, 4-Hexahydropyrimidinyl, 5-Hexahydropyrimidinyl und 2-Piperazinyl;

- 5-gliedriges Heteroaryl, enthaltend ein bis vier Stickstoffatome oder ein bis drei

15 Stickstoffatome und ein Schwefel- oder Sauerstoffatom: 5-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis vier Stickstoffatome oder ein bis drei Stickstoffatome und ein Schwefel- oder Sauerstoffatom als Ringglieder enthalten können, z.B. 2-Furyl, 3-Furyl, 2-Thienyl, 3-Thienyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, und 1,3,4-Triazol-2-yl;

- 6-gliedriges Heteroaryl, enthaltend ein bis drei bzw. ein bis vier Stickstoffatome: 6-Ring Heteroarylgruppen, welche neben Kohlenstoffatomen ein bis drei bzw. ein bis vier Stickstoffatome als Ringglieder enthalten können, z.B. 2-Pyridinyl, 3-Pyridinyl, 4-Pyridinyl, 3-Pyridazinyl, 4-Pyridazinyl, 2-Pyrimidinyl, 4-Pyrimidinyl, 5-Pyrimidinyl und 2-Pyrazinyl;

Alkylen: divalente unverzweigte Ketten aus 3 bis 5 CH₂-Gruppen, z.B. CH₂, CH₂CH₂, CH₂CH₂CH₂ und CH₂CH₂CH₂CH₂;

30 Oxyalkylen: divalente unverzweigte Ketten aus 2 bis 4 CH₂-Gruppen, wobei eine Valenz über ein Sauerstoffatom an das Gerüst gebunden ist, z.B. OCH₂CH₂, OCH₂CH₂CH₂ und OCH₂CH₂CH₂CH₂;

35 Oxyalkylenoxy: divalente unverzweigte Ketten aus 1 bis 3 CH₂-Gruppen, wobei beide Valenzen über ein Sauerstoffatom an das Gerüst gebunden ist, z.B. OCH₂O, OCH₂CH₂O und OCH₂CH₂CH₂O;

In dem Umfang der vorliegenden Erfindung sind die (R)- und (S)-Isomere und die Ra-
40 zemate von Verbindungen der Formel I eingeschlossen, die chirale Zentren aufweisen.

Die besonders bevorzugten Ausführungsformen der Zwischenprodukte in Bezug auf die Variablen entsprechen denen der Reste L und R³ der Formel I.

5 Im Hinblick auf ihre bestimmungsgemäße Verwendung der Triazolopyrimidine der Formel I sind die folgenden Bedeutungen der Substituenten, und zwar jeweils für sich allein oder in Kombination, besonders bevorzugt:

Verbindungen der Formel I werden bevorzugt, in denen R¹ nicht Wasserstoff bedeutet.

10 Verbindungen I werden besonders bevorzugt, in denen R¹ für C₁-C₆-Alkyl, C₂-C₆-Alkenyl oder C₁-C₈-Halogenalkyl steht.

Verbindungen I sind bevorzugt, in denen R¹ für eine Gruppe A steht:

15

worin

Z¹ Wasserstoff, Fluor oder C₁-C₆-Fluoroalkyl,

Z² Wasserstoff oder Fluor, oder

20 Z¹ und Z² bilden gemeinsam eine Doppelbindung;

q 0 oder 1 ist; und

R³ Wasserstoff oder Methyl bedeuten.

Außerdem werden Verbindungen I bevorzugt, in denen R¹ für C₃-C₆-Cycloalkyl steht,

25 welches durch C₁-C₄-Alkyl substituiert sein kann.

Insbesondere werden Verbindungen I bevorzugt, in denen R² Wasserstoff bedeutet.

Gleichermaßen bevorzugt sind Verbindungen I, in denen R² für Methyl oder Ethyl steht.

30

Sofern R¹ und/oder R² Halogenalkyl oder Halogenalkenylgruppen mit Chiralitätszentrum beinhalten, sind für diese Gruppen die (S)- Isomere bevorzugt. Im Fall halogenfreier Alkyl oder Alkenylgruppen mit Chiralitätszentrum in R¹ oder R² sind die (R)-konfigurierten Isomere bevorzugt.

35

Weiterhin werden Verbindungen I bevorzugt, in denen R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Piperidinyl-, Morpholinyl- oder Thiomorpholinylring bilden, insbesondere einen Piperidinylring, der ggf. durch eine bis drei

13

Gruppen Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiert ist. Besonders bevorzugt sind die Verbindungen, in denen R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 4-Methylpiperidinring bilden.

5 Ein weiterer bevorzugter Gegenstand der Erfindung sind Verbindungen I, in denen R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen Pyrazolering bilden, der ggf. durch eine oder zwei Gruppen Halogen, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl, insbesondere durch 3,5-Dimethyl oder 3,5-Di-(trifluormethyl) substituiert ist.

10 Daneben sind auch Verbindungen der Formel I besonders bevorzugt, in denen R¹ CH(CH₃)-CH₂CH₃, CH(CH₃)-CH(CH₃)₂, CH(CH₃)-C(CH₃)₃, CH(CH₃)-CF₃, CH₂C(CH₃)=CH₂, CH₂CH=CH₂, Cyclopentyl oder Cyclohexyl; R² Wasserstoff oder Methyl; oder R¹ und R² gemeinsam -(CH₂)₂CH(CH₃)(CH₂)₂-, -(CH₂)₂CH(CF₃)(CH₂)₂- oder -(CH₂)₂O(CH₂)₂- bedeuten.

15

Verbindungen I werden bevorzugt, in denen X Halogen, C₁-C₄-Alkyl, Cyano oder C₁-C₄-Alkoxy, wie Chlor, Methyl, Cyano, Methoxy oder Ethoxy, besonders Chlor oder Methyl, insbesondere Chlor bedeutet.

20 Eine bevorzugte Ausführungsform der Verbindungen der Formel I betrifft Verbindungen der Formel I.1:

in der

25 G C₂-C₆-Alkyl, insbesondere Ethyl, n- und i-Propyl, n-, sek-, tert- Butyl, und C₁-C₄-Alkoxymethyl, insbesondere Ethoxymethyl, oder C₃-C₆-Cycloalkyl, insbesondere Cyclopentyl oder Cyclohexyl;

R² Wasserstoff oder Methyl; und

X Chlor, Methyl, Cyano, Methoxy oder Ethoxy bedeuten.

30 Eine weitere bevorzugte Ausführungsform der Verbindungen der Formel I betrifft Verbindungen, in denen R¹ und R² zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein fünf- oder sechsgliedriges Heterocycl oder Heteroaryl bilden, welches über N gebunden ist und ein weiteres Heteroatom aus der Gruppe O, N und S als

35 Ringglied enthalten und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl,

14

$C_1\text{-}C_6\text{-Halogenalkyl}$, $C_2\text{-}C_6\text{-Alkenyl}$, $C_2\text{-}C_6\text{-Halogenalkenyl}$, $C_1\text{-}C_6\text{-Alkoxy}$, $C_1\text{-}C_6\text{-Halogenalkoxy}$, $C_3\text{-}C_6\text{-Alkenyloxy}$, $C_3\text{-}C_6\text{-Halogenalkenyloxy}$, $C_1\text{-}C_6\text{-Alkylen}$ und $Oxy\text{-}C_1\text{-}C_3\text{-alkylenoxy}$ tragen kann. Diese Verbindungen entsprechen insbesondere Formel I.2.

5 in der

D zusammen mit dem Stickstoffatom ein fünf- oder sechsgliedriges Heterocycl oder Heteroaryl bildet, welches über N gebunden ist und ein weiteres Heteroatom aus der Gruppe O, N und S als Ringglied enthalten und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, $C_1\text{-}C_4\text{-Alkyl}$, $C_1\text{-}C_4\text{-Alkoxy}$ und

10 $C_1\text{-}C_2\text{-Halogenalkyl}$ tragen kann; und

X Chlor, Methyl, Cyano, Methoxy oder Ethoxy bedeuten.

Eine weitere bevorzugte Ausführungsform der Verbindungen der Formel I betrifft Verbindungen der Formel I.3.

15

in der Y für Wasserstoff oder $C_1\text{-}C_4\text{-Alkyl}$, insbesondere für Methyl und Ethyl, und X für Chlor, Methyl, Cyano, Methoxy oder Ethoxy steht.

20

Verbindungen der Formel I sind besonders bevorzugt, in denen mindestens ein Substiuient L ortho-ständig zu der Bindung mit dem Triazolo[4,3-d]pyrimidin-Gerüst steht, insbesondere ein Substituent aus Chlor, Fluor oder Methyl.

25 Formel I.A.

Eine weitere bevorzugte Ausführungsform der Erfindung betrifft Verbindungen der Formel I, in der die Gruppe C(O)NH₂ in 3-Position steht; die Verbindungen entsprechen Formel I.B.

5

I.B

Besonders bevorzugt sind Verbindungen der Formel I.A, in der die Phenylgruppe

der Gruppe A entspricht:

10

A

in der

L¹ Halogen, Halogenmethyl oder C₁-C₄-Alkyl, insbesondere Cl, F oder Methyl;

L², L³, L⁴ Wasserstoff oder Halogen, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder C₁-C₄-Alkoxy bedeuten,

15 wobei # die Verknüpfungsstelle zu dem Triazolopyrimidin-Gerüst kennzeichnet.

Insbesondere sind im Hinblick auf ihre Verwendung die in den folgenden Tabellen zusammengestellten Verbindungen I bevorzugt. Die in den Tabellen für einen Substituenten genannten Gruppen stellen außerdem für sich betrachtet, unabhängig von der

20 Kombination, in der sie genannt sind, eine besonders bevorzugte Ausgestaltung des betreffenden Substituenten dar.

Tabelle 1

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor und die Kombination von

25 R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 2

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 3

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 4

10 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 5

15 Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 6

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 7

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 8

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 9

30 Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor-6-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 10

35 Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor-6-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 11

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor-6-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 12

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor-6-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 13

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,6-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 14

10 Verbindungen der Formel I.A, in denen X Cyano, L_m 2,6-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 15

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,6-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 16

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,6-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 17

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,6-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 18

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,6-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 19

30

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,6-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 20

35

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,6-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 21

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 22

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 23

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 24

10 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 25

15 Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 26

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 27

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 28

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 29

30 Verbindungen der Formel I.A, in denen X Chlor, L_m 2,5-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 30

35 Verbindungen der Formel I.A, in denen X Cyano, L_m 2,5-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 31

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,5-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 32

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,5-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 33

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,3,6-difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 34

10 Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,3,6-difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 35

15 Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,3,6-difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 36

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,3,6-difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 37

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,5,6-difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 38

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,5,6-difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 39

30 Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,5,6-difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 40

35 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,5,6-difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 41

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,6-Dichlor,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 42

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,6-Dichlor,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 43

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,6-Dichlor,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 44

10 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,6-Dichlor,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 45

15 Verbindungen der Formel I.A, in denen X Chlor, L_m 2,3,6-Trifluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 46

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,3,6-Trifluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 47

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,3,6-Trifluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 48

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,3,6-Trifluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 49

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Methyl,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 50

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Methyl,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 51

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Methyl,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 52

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Methyl,5-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 53

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,5-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 54

10 Verbindungen der Formel I.A, in denen X Cyano, L_m 2,5-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 55

15 Verbindungen der Formel I.A, in denen X Methyl, L_m 2,5-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 56

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,5-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 57

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Fluor,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 58

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Fluor,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 59

30 Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Fluor,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 60

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Fluor,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 61

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,3-Dichlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 62

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,3-Dichlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 63

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,3-Dichlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 64

10 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,3-Dichlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 65

15 Verbindungen der Formel I.A, in denen X Chlor, L_m 2,5-Dichlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 66

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,5-Dichlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 67

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,5-Dichlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 68

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,5-Dichlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 69

30 Verbindungen der Formel I.A, in denen X Chlor, L_m 2,3,6-Trichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 70

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,3,6-Trichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 71

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,3,6-Trichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 72

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,3,6-Trichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 73

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,6-Difluor,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 74

10 Verbindungen der Formel I.A, in denen X Cyano, L_m 2,6-Difluor,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 75

15 Verbindungen der Formel I.A, in denen X Methyl, L_m 2,6-Difluor,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 76

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,6-Difluor,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 77

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Methyl,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 78

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Methyl,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 79

30 Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Methyl,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 80

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Methyl,5-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 81

35 Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,5-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 82

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,5-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 83

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,5-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 84

10 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,5-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 85

15 Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Fluor,5-methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 86

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Fluor,5-methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 87

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Fluor,5-methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 88

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Fluor,5-methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 89

30 Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,5-methyl,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 90

35 Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,5-methyl,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 91

40 Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,5-methyl,6-fluor und die

Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 92

5 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,5-methyl,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 93

10 Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,3-methyl,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 94

15 Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,3-methyl,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 95

20 Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,3-methyl,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 96

25 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,3-methyl,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 97

30 Verbindungen der Formel I.A, in denen X Chlor, L_m 2,6-Dichlor,5-methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 98

35 Verbindungen der Formel I.A, in denen X Cyano, L_m 2,6-Dichlor,5-methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 99

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,6-Dichlor,5-methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

spricht

Tabelle 100

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,6-Dichlor,5-methyl und die

5 Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 101

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,6-Difluor,3-methyl und die Kom-

10 bination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 102

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,6-Difluor,3-methyl und die Kom-
bination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 103

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,6-Difluor,3-methyl und die Kom-
bination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 104

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,6-Difluor,3-methyl und die
Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A ent-
spricht

25

Tabelle 105

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,5-Dimethyl und die Kombination
von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 106

30

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,5-Dimethyl und die Kombination
von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 107

35

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,5-Dimethyl und die Kombina-
tion von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 108

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,5-Dimethyl und die Kombinati-
on von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 109

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 110

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 111

10 Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 112

15 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 113

20 Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Fluor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 114

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Fluor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 115

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Fluor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30 **Tabelle 116**

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Fluor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35 **Tabelle 117**

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,3-methoxy,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 118

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,3-methoxy,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 119

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,3-methoxy,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 120

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,3-methoxy,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 121

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Chlor,5-methoxy,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 122

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Chlor,5-methoxy,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 123

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Chlor,5-methoxy,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 124

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Chlor,5-methoxy,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 125

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,6-Dichlor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 126

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,6-Dichlor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5

Tabelle 127

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,6-Dichlor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

10

Tabelle 128

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,6-Dichlor,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15

Tabelle 129

Verbindungen der Formel I.A, in denen X Chlor, L_m 2,6-Difluor,3-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 130

Verbindungen der Formel I.A, in denen X Cyano, L_m 2,6-Difluor,3-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 131

Verbindungen der Formel I.A, in denen X Methyl, L_m 2,6-Difluor,3-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

30

Tabelle 132

Verbindungen der Formel I.A, in denen X Methoxy, L_m 2,6-Difluor,3-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

35

Tabelle 133

Verbindungen der Formel I.A, in denen X Chlor, L_m 2-Methyl,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 134

Verbindungen der Formel I.A, in denen X Cyano, L_m 2-Methyl,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 135

Verbindungen der Formel I.A, in denen X Methyl, L_m 2-Methyl,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 136

10 Verbindungen der Formel I.A, in denen X Methoxy, L_m 2-Methyl,5-methoxy und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

15 Tabelle 137

Verbindungen der Formel I.B, in denen X Chlor, L_m 2-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 138

20 Verbindungen der Formel I.B, in denen X Cyano, L_m 2-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 139

25 Verbindungen der Formel I.B, in denen X Methyl, L_m 2-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 140

Verbindungen der Formel I.B, in denen X Methoxy, L_m 2-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 141

Verbindungen der Formel I.B, in denen X Chlor, L_m 2-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 142

Verbindungen der Formel I.B, in denen X Cyano, L_m 2-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 143

Verbindungen der Formel I.B, in denen X Methyl, L_m 2-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 144

10 Verbindungen der Formel I.B, in denen X Methoxy, L_m 2-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 145

15 Verbindungen der Formel I.B, in denen X Chlor, L_m 2-Chlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 146

Verbindungen der Formel I.B, in denen X Cyano, L_m 2-Chlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 147

Verbindungen der Formel I.B, in denen X Methyl, L_m 2-Chlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 148

Verbindungen der Formel I.B, in denen X Methoxy, L_m 2-Chlor,6-fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 149

30 Verbindungen der Formel I.B, in denen X Chlor, L_m 2,6-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 150

35 Verbindungen der Formel I.B, in denen X Cyano, L_m 2,6-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 151

Verbindungen der Formel I.B, in denen X Methyl, L_m 2,6-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 152

Verbindungen der Formel I.B, in denen X Methoxy, L_m 2,6-Dichlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 153

Verbindungen der Formel I.B, in denen X Chlor, L_m 2,6-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 154

10 Verbindungen der Formel I.B, in denen X Cyano, L_m 2,6-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 155

15 Verbindungen der Formel I.B, in denen X Methyl, L_m 2,6-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 156

Verbindungen der Formel I.B, in denen X Methoxy, L_m 2,6-Difluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 157

Verbindungen der Formel I.B, in denen X Chlor, L_m 2-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 158

Verbindungen der Formel I.B, in denen X Cyano, L_m 2-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 159

30 Verbindungen der Formel I.B, in denen X Methyl, L_m 2-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 160

Verbindungen der Formel I.B, in denen X Methoxy, L_m 2-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 161

Verbindungen der Formel I.B, in denen X Chlor, L_m 6-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 162

Verbindungen der Formel I.B, in denen X Cyano, L_m 6-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 163

Verbindungen der Formel I.B, in denen X Methyl, L_m 6-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 164

10 Verbindungen der Formel I.B, in denen X Methoxy, L_m 6-Chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 165

Verbindungen der Formel I.B, in denen X Chlor, L_m 6-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 166

Verbindungen der Formel I.B, in denen X Cyano, L_m 6-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle 167

Verbindungen der Formel I.B, in denen X Methyl, L_m 6-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

25

Tabelle 168

Verbindungen der Formel I.B, in denen X Methoxy, L_m 6-Fluor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 169

30 Verbindungen der Formel I.B, in denen X Chlor, L_m 2-Fluor,6-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 170

Verbindungen der Formel I.B, in denen X Cyano, L_m 2-Fluor,6-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 171

Verbindungen der Formel I.B, in denen X Methyl, L_m 2-Fluor,6-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

40

Tabelle 172

Verbindungen der Formel I.B, in denen X Methoxy, L_m 2-Fluor,6-chlor und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

5 Tabelle 173

Verbindungen der Formel I.B, in denen X Chlor, L_m 6-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 174

10 Verbindungen der Formel I.B, in denen X Cyano, L_m 6-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 175

15 Verbindungen der Formel I.B, in denen X Methyl, L_m 6-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

Tabelle 176

Verbindungen der Formel I.B, in denen X Methoxy, L_m 6-Methyl und die Kombination von R¹ und R² für eine Verbindung jeweils einer Zeile der Tabelle A entspricht

20

Tabelle A

Nr.	R ¹	R ²
A-1	H	H
A-2	CH ₃	H
A-3	CH ₃	CH ₃
A-4	CH ₂ CH ₃	H
A-5	CH ₂ CH ₃	CH ₃
A-6	CH ₂ CH ₃	CH ₂ CH ₃
A-7	CH ₂ CF ₃	H
A-8	CH ₂ CF ₃	CH ₃
A-9	CH ₂ CF ₃	CH ₂ CH ₃
A-10	CH ₂ CCl ₃	H
A-11	CH ₂ CCl ₃	CH ₃
A-12	CH ₂ CCl ₃	CH ₂ CH ₃
A-13	CH ₂ CH ₂ CH ₃	H
A-14	CH ₂ CH ₂ CH ₃	CH ₃
A-15	CH ₂ CH ₂ CH ₃	CH ₂ CH ₃
A-16	CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃

Nr.	R ¹	R ²
A-17	CH(CH ₃) ₂	H
A-18	CH(CH ₃) ₂	CH ₃
A-19	CH(CH ₃) ₂	CH ₂ CH ₃
A-20	CH ₂ CH ₂ CH ₂ CH ₃	H
A-21	CH ₂ CH ₂ CH ₂ CH ₃	CH ₃
A-22	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₃
A-23	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃
A-24	CH ₂ CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₂ CH ₃
A-25	(±) CH(CH ₃)-CH ₂ CH ₃	H
A-26	(±) CH(CH ₃)-CH ₂ CH ₃	CH ₃
A-27	(±) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃
A-28	(S) CH(CH ₃)-CH ₂ CH ₃	H
A-29	(S) CH(CH ₃)-CH ₂ CH ₃	CH ₃
A-30	(S) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃
A-31	(R) CH(CH ₃)-CH ₂ CH ₃	H
A-32	(R) CH(CH ₃)-CH ₂ CH ₃	CH ₃
A-33	(R) CH(CH ₃)-CH ₂ CH ₃	CH ₂ CH ₃
A-34	(±) CH(CH ₃)-CH(CH ₃) ₂	H
A-35	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-36	(±) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-37	(S) CH(CH ₃)-CH(CH ₃) ₂	H
A-38	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-39	(S) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-40	(R) CH(CH ₃)-CH(CH ₃) ₂	H
A-41	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₃
A-42	(R) CH(CH ₃)-CH(CH ₃) ₂	CH ₂ CH ₃
A-43	(±) CH(CH ₃)-C(CH ₃) ₃	H
A-44	(±) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-45	(±) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-46	(S) CH(CH ₃)-C(CH ₃) ₃	H
A-47	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-48	(S) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-49	(R) CH(CH ₃)-C(CH ₃) ₃	H
A-50	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₃
A-51	(R) CH(CH ₃)-C(CH ₃) ₃	CH ₂ CH ₃
A-52	(±) CH(CH ₃)-CF ₃	H
A-53	(±) CH(CH ₃)-CF ₃	CH ₃

Nr.	R ¹	R ²
A-54	(±) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-55	(S) CH(CH ₃)-CF ₃	H
A-56	(S) CH(CH ₃)-CF ₃	CH ₃
A-57	(S) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-58	(R) CH(CH ₃)-CF ₃	H
A-59	(R) CH(CH ₃)-CF ₃	CH ₃
A-60	(R) CH(CH ₃)-CF ₃	CH ₂ CH ₃
A-61	(±) CH(CH ₃)-CCl ₃	H
A-62	(±) CH(CH ₃)-CCl ₃	CH ₃
A-63	(±) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-64	(S) CH(CH ₃)-CCl ₃	H
A-65	(S) CH(CH ₃)-CCl ₃	CH ₃
A-66	(S) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-67	(R) CH(CH ₃)-CCl ₃	H
A-68	(R) CH(CH ₃)-CCl ₃	CH ₃
A-69	(R) CH(CH ₃)-CCl ₃	CH ₂ CH ₃
A-70	CH ₂ CF ₂ CF ₃	H
A-71	CH ₂ CF ₂ CF ₃	CH ₃
A-72	CH ₂ CF ₂ CF ₃	CH ₂ CH ₃
A-73	CH ₂ (CF ₂) ₂ CF ₃	H
A-74	CH ₂ (CF ₂) ₂ CF ₃	CH ₃
A-75	CH ₂ (CF ₂) ₂ CF ₃	CH ₂ CH ₃
A-76	CH ₂ C(CH ₃)=CH ₂	H
A-77	CH ₂ C(CH ₃)=CH ₂	CH ₃
A-78	CH ₂ C(CH ₃)=CH ₂	CH ₂ CH ₃
A-79	CH ₂ CH=CH ₂	H
A-80	CH ₂ CH=CH ₂	CH ₃
A-81	CH ₂ CH=CH ₂	CH ₂ CH ₃
A-82	CH(CH ₃)CH=CH ₂	H
A-83	CH(CH ₃)CH=CH ₂	CH ₃
A-84	CH(CH ₃)CH=CH ₂	CH ₂ CH ₃
A-85	CH(CH ₃)C(CH ₃)=CH ₂	H
A-86	CH(CH ₃)C(CH ₃)=CH ₂	CH ₃
A-87	CH(CH ₃)C(CH ₃)=CH ₂	CH ₂ CH ₃
A-88	CH ₂ -C≡CH	H
A-89	CH ₂ -C≡CH	CH ₃
A-90	CH ₂ -C≡CH	CH ₂ CH ₃

Nr.	R ¹	R ²
A-91	Cyclopentyl	H
A-92	Cyclopentyl	CH ₃
A-93	Cyclopentyl	CH ₂ CH ₃
A-94	Cyclohexyl	H
A-95	Cyclohexyl	CH ₃
A-96	Cyclohexyl	CH ₂ CH ₃
A-97	CH ₂ -C ₆ H ₅	H
A-98	CH ₂ -C ₆ H ₅	CH ₃
A-99	CH ₂ -C ₆ H ₅	CH ₂ CH ₃
A-100	-(CH ₂) ₂ CH=CHCH ₂ -	
A-101	-(CH ₂) ₂ C(CH ₃)=CHCH ₂ -	
A-102	-CH(CH ₃)CH ₂ -CH=CHCH ₂ -	
A-103	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -	
A-104	-(CH ₂) ₃ CHFCH ₂ -	
A-105	-(CH ₂) ₂ CHF(CH ₂) ₂ -	
A-106	-CH ₂ CHF(CH ₂) ₃ -	
A-107	-(CH ₂) ₂ CH(CF ₃)(CH ₂) ₂ -	
A-108	-(CH ₂) ₂ O(CH ₂) ₂ -	
A-109	-(CH ₂) ₂ S(CH ₂) ₂ -	
A-110	-(CH ₂) ₅ -	
A-111	-(CH ₂) ₄ -	
A-112	-CH ₂ CH=CHCH ₂ -	
A-113	-CH(CH ₃)(CH ₂) ₃ -	
A-114	-CH ₂ CH(CH ₃)(CH ₂) ₂ -	
A-115	-CH(CH ₃)-(CH ₂) ₂ -CH(CH ₃)-	
A-116	-CH(CH ₃)-(CH ₂) ₄ -	
A-117	-CH ₂ -CH(CH ₃)-(CH ₂) ₃ -	
A-118	-(CH ₂)-CH(CH ₃)-CH ₂ -CH(CH ₃)-CH ₂ -	
A-119	-CH(CH ₂ CH ₃)-(CH ₂) ₄ -	
A-120	-(CH ₂) ₂ -CHOH-(CH ₂) ₂ -	
A-121	-(CH ₂) ₆ -	
A-122	-CH(CH ₃)-(CH ₂) ₅ -	
A-123	-(CH ₂) ₂ -N(CH ₃)-(CH ₂) ₂ -	
A-124	-N=CH-CH=CH-	
A-125	-N=C(CH ₃)-CH=C(CH ₃)-	
A-126	-N=C(CF ₃)-CH=C(CF ₃)-	

Die Verbindungen I eignen sich als Fungizide. Sie zeichnen sich aus durch eine hervorragende Wirksamkeit gegen ein breites Spektrum von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der *Ascomyceten*, *Deuteromyceten*, *Oomyceten* und *Basidiomyceten*. Sie sind zum Teil systemisch wirksam und können im Pflanzenschutz als
5 Blatt- und Bodenfungizide eingesetzt werden.

Besondere Bedeutung haben sie für die Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Weizen, Roggen, Gerste, Hafer, Reis, Mais, Gras, Bananen, Baumwolle, Soja, Kaffee, Zuckerrohr, Wein, Obst- und Zierpflanzen und Gemüsepflanzen wie Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen, sowie an den Samen dieser Pflanzen.
10

Speziell eignen sie sich zur Bekämpfung folgender Pflanzenkrankheiten:

- *Alternaria*-Arten an Gemüse und Obst,
- 15 • *Bipolaris*- und *Drechslera*-Arten an Getreide, Reis und Rasen,
- *Blumeria graminis* (echter Mehltau) an Getreide,
- *Botrytis cinerea* (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben,
- *Erysiphe cichoracearum* und *Sphaerotheca fuliginea* an Kürbisgewächsen,
- *Fusarium*- und *Verticillium*-Arten an verschiedenen Pflanzen,
- 20 • *Mycosphaerella*-Arten an Getreide, Bananen und Erdnüssen,
- *Phytophthora infestans* an Kartoffeln und Tomaten,
- *Plasmopara viticola* an Reben,
- *Podosphaera leucotricha* an Äpfeln,
- *Pseudocercospora herpotrichoides* an Weizen und Gerste,
- 25 • *Pseudoperonospora*-Arten an Hopfen und Gurken,
- *Puccinia*-Arten an Getreide,
- *Pyricularia oryzae* an Reis,
- *Rhizoctonia*-Arten an Baumwolle, Reis und Rasen,
- *Septoria tritici* und *Stagonospora nodorum* an Weizen,
- 30 • *Uncinula necator* an Reben,
- *Ustilago*-Arten an Getreide und Zuckerrohr, sowie
- *Venturia*-Arten (Schorf) an Äpfeln und Birnen.

Die Verbindungen I eignen sich außerdem zur Bekämpfung von Schadpilzen wie *Paecilomyces variotii* im Materialschutz (z.B. Holz, Papier, Dispersionen für den Anstrich, Fasern bzw. Gewebe) und im Vorratsschutz.
35

Die Verbindungen I werden angewendet, indem man die Pilze oder die vor Pilzbefall zu schützenden Pflanzen, Saatgüter, Materialien oder den Erdboden mit einer fungizid

wirksamen Menge der Wirkstoffe behandelt. Die Anwendung kann sowohl vor als auch nach der Infektion der Materialien, Pflanzen oder Samen durch die Pilze erfolgen.

Die fungiziden Mittel enthalten im allgemeinen zwischen 0,1 und 95, vorzugsweise zwischen 5 0,5 und 90 Gew.-% Wirkstoff.

Die Aufwandmengen liegen bei der Anwendung im Pflanzenschutz je nach Art des gewünschten Effektes zwischen 0,01 und 2,0 kg Wirkstoff pro ha.

10 Bei der Saatgutbehandlung werden im allgemeinen Wirkstoffmengen von 1 bis 1000 g/100 kg Saatgut, vorzugsweise 1 bis 200 g/100 kg, insbesondere 5 bis 100 g/100 kg verwendet.

Bei der Anwendung im Material- bzw. Vorratsschutz richtet sich die Aufwandmenge an 15 Wirkstoff nach der Art des Einsatzgebietes und des gewünschten Effekts. Übliche Aufwandmengen sind im Materialschutz beispielsweise 0,001 g bis 2 kg, vorzugsweise 0,005 g bis 1 kg Wirkstoff pro Kubikmeter behandelten Materials.

20 Die Verbindungen I können in die üblichen Formulierungen überführt werden, z.B. Lösungen, Emulsionen, Suspensionen, Stäube, Pulver, Pasten und Granulate. Die Anwendungsform richtet sich nach dem jeweiligen Verwendungszweck; sie soll in jedem Fall eine feine und gleichmäßige Verteilung der erfindungsgemäßen Verbindung gewährleisten.

25 Die Formulierungen werden in bekannter Weise hergestellt, z.B. durch Verstrecken des Wirkstoffs mit Lösungsmitteln und/oder Trägerstoffen, gewünschtenfalls unter Verwendung von Emulgiermitteln und Dispergiermitteln. Als Lösungsmittel / Hilfsstoffe kommen dafür im wesentlichen in Betracht:

- Wasser, aromatische Lösungsmittel (z.B. Solvesso Produkte, Xylol), Paraffine (z.B. Erdölfraktionen), Alkohole (z.B. Methanol, Butanol, Pentanol, Benzylalkohol), Ketone (z.B. Cyclohexanon, gamma-Butyrolacton), Pyrrolidone (NMP, NOP), Acetate (Glykoldiacetat), Glykole, Dimethylfettsäureamide, Fettsäuren und Fettsäureester. Grundsätzlich können auch Lösungsmittelgemische verwendet werden,
- Trägerstoffe wie natürliche Gesteinsmehle (z.B. Kaoline, Tonerden, Talkum, Kreide) und synthetische Gesteinsmehle (z.B. hochdisperse Kieselsäure, Silikate); Emulgiermittel wie nichtionogene und anionische Emulgatoren (z.B. Polyoxyethylen-Fettalkohol-Ether, Alkylsulfonate und Arylsulfonate) und Dispergiermittel wie Lignin-Sulfitablaugen und Methylcellulose.

Als oberflächenaktive Stoffe kommen Alkali-, Erdalkali-, Ammoniumsalze von Ligninsulfonsäure, Naphthalinsulfonsäure, Phenolsulfonsäure, Dibutylnaphthalinsulfonsäure, Alkylarylsulfonate, Alkylsulfate, Alkylsulfonate, Fettalkoholsulfate, Fettsäuren und sulfatierte

5 tierte Fettalkoholglykolether zum Einsatz, ferner Kondensationsprodukte von sulfoniertem Naphthalin und Naphthalinderivaten mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalinsulfonsäure mit Phenol und Formaldehyd, Polyoxyethylenoctylphenolether, ethoxyliertes Isooctylphenol, Octylphenol, Nonylphenol, Alkylphenolpolyglykolether, Tributylphenylpolyglykolether, Tristerylphenylpolyglykolether, Alkyl-

10 arylpolyetheralkohole, Alkohol- und Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether, ethoxyliertes Polyoxypropylen, Laurylalkoholpolyglykoletheracetal, Sorbitester, Ligninsulfatblaugen und Methylcellulose in Betracht.

Zur Herstellung von direkt versprühbaren Lösungen, Emulsionen, Pasten oder Öldispersionen kommen Mineralölfractionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Toluol, Xylool, Paraffin, Tetrahydronaphthalin, alkylierte Naphthaline oder deren Derivate, Methanol, Ethanol, Propanol, Butanol, Cyclohexanol, Cyclohexanon, Isophoron, stark polare

20 Lösungsmittel, z.B. Dimethylsulfoxid, N-Methylpyrrolidon oder Wasser in Betracht.

Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermahlen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.

25 Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate, können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind z.B. Mineralerden, wie Kieselgele, Silikate, Talkum, Kaolin, Attaclay, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie z.B. Ammoniumsulfat,

30 Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte, wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver und andere feste Trägerstoffe.

35 Die Formulierungen enthalten im allgemeinen zwischen 0,01 und 95 Gew.-%, vorzugsweise zwischen 0,1 und 90 Gew.-% des Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.

Beispiele für Formulierungen sind: 1. Produkte zur Verdünnung in Wasser

A Wasserlösliche Konzentrate (SL)

10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Wasser oder einem
5 wasserlöslichen Lösungsmittel gelöst. Alternativ werden Netzmittel oder andere Hilfs-
mittel zugefügt. Bei der Verdünnung in Wasser löst sich der Wirkstoff.

B Dispergierbare Konzentrate (DC)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Cyclohexanon unter
10 Zusatz eines Dispergiermittels z.B. Polyvinylpyrrolidon gelöst. Bei Verdünnung in Was-
ser ergibt sich eine Dispersion.

C Emulgierbare Konzentrate (EC)

15 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von
15 Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Bei der Verdün-
nung in Wasser ergibt sich eine Emulsion.

D Emulsionen (EW, EO)

40 Gew.-Teile einer erfindungsgemäßen Verbindung werden in Xylol unter Zusatz von
20 Ca-Dodecylbenzolsulfonat und Ricinusölethoxylat (jeweils 5 %) gelöst. Diese Mischung
wird mittels einer Emulgiermaschine (Ultraturax) in Wasser eingebracht und zu einer
homogenen Emulsion gebracht. Bei der Verdünnung in Wasser ergibt sich eine Emul-
sion.

25 E Suspensionen (SC, OD)

20 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Disper-
gier- und Netzmitteln und Wasser oder einem organischen Lösungsmittel in einer
Rührwerkskugelmühle zu einer feinen Wirkstoffssuspension zerkleinert. Bei der Verdün-
nung in Wasser ergibt sich eine stabile Suspension des Wirkstoffs.

30

F Wasserdispergierbare und wasserlösliche Granulate (WG, SG)

50 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Disper-
gier- und Netzmitteln fein gemahlen und mittels technischer Geräte (z.B. Extrusion,
Sprühturm, Wirbelschicht) als wasserdispergierbare oder wasserlösliche Granulate
35 hergestellt. Bei der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lö-
sung des Wirkstoffs.

G Wasserdispergierbare und wasserlösliche Pulver (WP, SP)

75 Gew.-Teile einer erfindungsgemäßen Verbindung werden unter Zusatz von Disper-
40 gier- und Netzmitteln sowie Kieselsäuregel in einer Rotor-Strator Mühle vermahlen. Bei

der Verdünnung in Wasser ergibt sich eine stabile Dispersion oder Lösung des Wirkstoffs.

2. Produkte für die Direktapplikation

5

H Stäube (DP)

5 Gew. Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95 % feinteiligem Kaolin innig vermischt. Man erhält dadurch ein Stäubemittel.

10 I Granulate (GR, FG, GG, MG)

0.5 Gew.-Teile einer erfindungsgemäßen Verbindung werden fein gemahlen und mit 95.5 % Trägerstoffe verbunden. Gängige Verfahren sind dabei die Extrusion, die Sprühtröcknung oder die Wirbelschicht. Man erhält dadurch ein Granulat für die Direktapplikation.

15

J ULV- Lösungen (UL)

10 Gew.-Teile einer erfindungsgemäßen Verbindung werden in einem organischen Lösungsmittel z.B. Xylol gelöst. Dadurch erhält man ein Produkt für die Direktapplikation.

20

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, z.B. in Form von direkt versprühbaren Lösungen, Pulvern, Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln, Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder

25

Gießen angewendet werden. Die Anwendungsformen richten sich ganz nach den Verwendungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten.

30

Wässrige Anwendungsformen können aus Emulsionskonzentraten, Pasten oder netzbaren Pulvern (Spritzpulver, Öldispersionen) durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Substanzen als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate hergestellt werden, die zur Verdünnung mit Wasser geeignet sind.

35

Die Wirkstoffkonzentrationen in den anwendungsfertigen Zubereitungen können in größeren Bereichen variiert werden. Im allgemeinen liegen sie zwischen 0,0001 und 10%, vorzugsweise zwischen 0,01 und 1%.

40

Die Wirkstoffe können auch mit gutem Erfolg im Ultra-Low-Volume-Verfahren (ULV) verwendet werden, wobei es möglich ist, Formulierungen mit mehr als 95 Gew.-% Wirkstoff oder sogar den Wirkstoff ohne Zusätze auszubringen.

5

Zu den Wirkstoffen können Öle verschiedenen Typs, Netzmittel, Adjuvants, Herbizide, Fungizide, andere Schädlingsbekämpfungsmittel, Bakterizide, gegebenenfalls auch erst unmittelbar vor der Anwendung (Tankmix), zugesetzt werden. Diese Mittel können zu den erfindungsgemäßen Mitteln im Gewichtsverhältnis 1:10 bis 10:1 zugemischt

10 werden.

Die erfindungsgemäßen Mittel können in der Anwendungsform als Fungizide auch zusammen mit anderen Wirkstoffen vorliegen, der z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln. Beim Vermischen der 15 Verbindungen I bzw. der sie enthaltenden Mittel in der Anwendungsform als Fungizide mit anderen Fungiziden erhält man in vielen Fällen eine Vergrößerung des fungiziden Wirkungsspektrums.

Die folgende Liste von Fungiziden, mit denen die erfindungsgemäßen Verbindungen 20 gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:

- Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl,
- Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph
- Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyrodinyl,
- Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin oder Streptomycin,
- Azole wie Bitertanol, Bromoconazol, Cyproconazol, Difenoconazole, Dinitroconazol, Enilconazol, Epoxiconazol, Fenbuconazol, Fluquiconazol, Flusilazol, Flutriafol, Hexaconazol, Imazalil, Metconazol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Tebuconazol, Triadimefon, Triadimenol, Triflumizol, Triticonazol,
- Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin,
- Dithiocarbamate wie Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamat, Thiram, Ziram, Zineb,
- Heterocyclische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim, Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenamidon, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nuarimol,

Probenazol, Proquinazid, Pyrifenoxy, Pyroquilon, Quinoxyfen, Silthiofam, Thiaben-dazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine,

- Kupferfungizide wie Bordeaux Brühe, Kupferacetat, Kupferoxychlorid, basisches Kupfersulfat,

5 • Nitrophenylderivate, wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl

- Phenylpyrrole wie Fenpiclonil oder Fludioxonil,
- Schwefel
- Sonstige Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlothalonil, Cyflufenamid, Cymoxanil, Dazomet, Diclofenvin, Diclofenvin, Diethofencarb, Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminium, Iprovalicarb, Hexachlorbenzol, Metrafenon, Pencycuron, Propamocarb, Phthalid, Toloclofos-methyl, Quintozene, Zoxamid

10 • Strobilurine wie Azoxytrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxytrobin, Pyraclostrobin oder Trifloxytrobin,

15 • Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolyfluanid

- Zimtsäureamide und Analoge wie Dimethomorph, Flumetover oder Flumorph.

Synthesebeispiele

20 Die in den nachstehenden Synthesebeispielen wiedergegebenen Vorschriften wurden unter entsprechender Abwandlung der Ausgangsverbindungen zur Gewinnung weiterer Verbindungen I benutzt. Die so erhaltenen Verbindungen sind in der anschließenden Tabelle mit physikalischen Daten aufgeführt.

25 Beispiel 1 – Herstellung von 5-Chlor-6-(2,6-difluor-4-aminocarbonylphenyl)-7-(4-methylpiperidin-1-yl)-[1,2,4]-triazolo[1,5-a]primidin

Durch eine Lösung von 1,5 mmol 5-Chlor-6-(2,6-difluor-4-cyanophenyl)-7-(4-methylpiperidin-1-yl)-[1,2,4]-triazolo[1,5-a]primidin [vgl. WO 03/80615] in 20 ml Methanol wurde bis zur Sättigung HCl-Gas eingeleitet. Nach 24 Std. röhren bei etwa 20-25°C wurde der entstandene Niederschlag abfiltriert und in Dichlormethan aufgelöst. Nach Waschen mit Wasser und Trocknung wurde das Lösungsmittel entfernt. Nach Chromatographie an Kieselgel wurden 140 mg der Titelverbindung vom Fp. 197°C und 200 mg des entsprechenden Methylesters vom Fp. 176°C erhalten.

35 Beispiel 2 – Herstellung von 5-Methyl-6-(2,6-difluor,4-aminocarbonylphenyl)-7-(4-methylpiperidinyl)-1,2,4-triazolo[1,5a]pyrimidin

Stufe 2a: 5-(Dimethylmalon-2-yl)-6-(2,6-difluor,4-cyanophenyl)-7-(4-methylpiperidinyl)-40 1,2,4-triazolo[1,5a]pyrimidin

Eine Lösung von 1 g (2,7 mmol) 5-Chlor-6-(2,6-difluor,4-cyanophenyl)-7-(4-methylpiperidinyl)-1,2,4-triazolo[1,5a]pyrimidin [vgl. WO 03/80615] und 1 g Natrium-dimethylmalonat (6,5 mmol) in 10 ml Acetonitril wurden 4 Stunden bei 70-80°C und 2,5

5 Tage bei 20-25°C gerührt. Dabei fiel ein gelber Festkörper aus. Man filtrierte die Reaktionsmischung über Kieselgur ab und rührte den Niederschlag mit einer Mischung aus verd. Salzsäure und Methylenchlorid bis zur Entfärbung. Nach Phasentrennung extrahierte man die wässrige Phase mit Methylenchlorid. Nach Trocknung der vereinigten organischen Phasen und Abdestillieren des Lösungsmittels blieb 1 g der Titelverbindung zurück.

10 $^1\text{H-NMR}$ (CDCl_3 , δ in ppm): 8,4 (s, 1H); 7,4 (d, 2H); 4,65 (s, 1H); 3,7 /s, 6H); 3,55 (d, breit, 2H); 3,8 (t, breit, 2H); 1,65 (d, breit, 2H); 1,55 (m, 1H); 1,3 (m, 2H); 0,95 (d, 3H).

15 Stufe 2b: 5-Methyl-6-(2,6-difluor,4-aminocarbonylphenyl)-7-(4-methylpiperidinyl)-1,2,4-triazolo[1,5a]pyrimidin

Eine Lösung von 0,5 g (1,03 mmol) 5-(Dimethylmalon-2-yl)-6-(2,6-difluor,4-cyanophenyl)-7-(4-methylpiperidinyl)-1,2,4-triazolo[1,5a]pyrimidin und 0,3 g (3,8 mmol)

20 50 %ige Natronlauge in 6 ml Methanol/Wasser (5:1) wurde 3 Std. refluxiert. Nach Verdünnen mit Methyl-t-butylether (MTBE) und verdünnter Salzsäure wurde die organische Phase abgetrennt und die wässrige Phase mit MTBE extrahiert. Die vereinigten organischen Phasen wurden getrocknet und vom Lösungsmittel befreit. Der Rückstand wurde mittels präparativer MPLC über Kieselgel RP-18 mit Acetonitril/Wasser-Gemischen gereinigt. Aus dem Eluat blieben nach Abtrennung des Lösungsmittels 0,11 g der Titelverbindung als gelbes Harz zurück.

25 $^1\text{H-NMR}$ (CDCl_3 , δ in ppm): 8,35 (s, 1H); 7,8 (d, 2H); 7,7 (s, breit, 1H); 6,75 (s, breit, 1H); 3,65 (d, 2H); 2,8 (t, 2H); 2,35 (s, 3H); 1,6 (d, 2H); 1,5 (m, 1H); 1,3 (m, 2H); 0,9 (d, 3H).

30

Tabelle I – Verbindungen der Formel I

Nr.	R ¹	R ²	X	L _m	Position CONH ₂	Phys. Daten (Fp [°C]; ¹H-NMR δ [ppm]))
I-1	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2,6-F ₂	4	197
I-2	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		CH ₃	2,6-F ₂	4	(Bsp. 2b)
I-3	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-F	4	8,4 (s); 7,7 (m); 7,4 (t); 0,95 (d)
I-4	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2,5-(CH ₃) ₂	4	130
I-5	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-CH ₃	4	162-164
I-6	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2,5-(CH ₃) ₂	4	240-241
I-7	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-CH ₃	4	184
I-8	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-Cl,5-OCH ₃	4	190-191
I-9	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2,5-Cl ₂	4	198-199
I-10	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-CH ₃ ,5-F	4	215-216
I-11	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-CH ₃ ,5-F	4	214-215
I-12	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-CH ₃ ,5-Cl	4	223-225
I-13	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-CH ₃ , 5-OCH ₃	4	2 Atropisomere: 8,45; 8,4 (2s, 1H); 8,3; 8,35 (2s, 1H); 7,25; 7,1 (2s, 1H); 1,1; 1,0 (2d, 3H)
I-14	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-Cl	4	247-249
I-15	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-Cl	4	2 Atropisomere: 8,35 (s, 1H); 8,15 (d, 1H); 7,95 (m, 1H); 7,55; 7,5 (2d, 1H); 1,05; 0,9 (2d, 3H)
I-16	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-CH ₃ ,5-Cl	4	2 Atropisomere: 8,35 (s, 1H); 7,95; 7,9 (2s, 1H); 7,4; 7,35 (2s, 1H); 1,0 (d, 3H)

Nr.	R ¹	R ²	X	L _m	Position CONH ₂	Phys. Daten (Fp [°C]; ¹ H-NMR δ [ppm]))
I-17	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-Cl,5-CH ₃	4	205-208
I-18	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-Cl,5-CH ₃	4	> 250
I-19	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-CH ₃	5	> 250
I-20	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-Cl	5	8,3 (s); 8,0 (s); 7,9 (d); 7,5 (d); 0,9 (d)
I-21	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-CH ₃	5	223
I-22	-(CH ₂) ₂ -CH(CH ₃)-(CH ₂) ₂ -		Cl	2-CH ₃ , 4-OCH ₃	5	246-247
I-23	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-Cl	5	2 Atropisomere: 8,4; 8,3 (2s, 1H); 8,2 (2s, 1H); 8,1; 8,03 (2d, 1H; 7,65 (d, 1H); 1,05; 0,95 (2d, 3H)
I-24	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-CH ₃ , 4-OCH ₃	5	Polares (HPLC) A- trop-Isomer: 8,35 (s, 1H); 8,1 (s, 1H); 7,0 (s, 1H); 0,95 (d, 3H)
I-25	(R) CH(CH ₃)C(CH ₃) ₃	H	Cl	2-CH ₃ , 4-OCH ₃	5	Unpolares (HPLC) Atrop-Isomer: 8,35 (s, 1H); 8,15 (s, 1H); 7,0 (s, 1H); 0,95 (d, 3H)

Beispiele für die Wirkung gegen Schadpilze

5 Die fungizide Wirkung der Verbindungen der Formel I ließ sich durch die folgenden Versuche zeigen:

Die Wirkstoffe wurden als eine Stammlösung aufbereitet mit 0,25 Gew.-% Wirkstoff in Aceton oder DMSO. Dieser Lösung wurde 1 Gew.-% Emulgator Uniperol® EL (Netz-
10 mittel mit Emulgier- und Dispergierwirkung auf der Basis ethoxylierter Alkylphenole) zugesetzt und entsprechend der gewünschten Konzentration mit Wasser verdünnt.

Anwendungsbeispiel 1 - Wirksamkeit gegen die Netzfleckenkrankheit der Gerste verursacht durch *Pyrenophora teres*

Blätter von in Töpfen gewachsenen Gerstenkeimlingen der Sorte „Hanna“ wurden mit
5 wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. 24 Stunden nach dem Antrocknen des Spritzbelages wurden die Versuchspflanzen mit einer wässrigen Sporensuspension von *Pyrenophora [syn. Drechslera] teres*, dem Erreger der Netzfleckenkrankheit inkuliert. Anschließend wurden die Versuchspflanzen im Gewächshaus bei Temperaturen zwischen 20 und 24°C und 95
10 bis 100 % relativer Luftfeuchtigkeit aufgestellt. Nach 6 Tagen wurde das Ausmaß der Krankheitsentwicklung visuell in % Befall der gesamten Blattfläche ermittelt.

In diesem Test zeigten die mit 63 ppm der Verbindungen I-1, bzw. I-25 behandelten Pflanzen nur etwa 3 % Befall, während die unbehandelten Pflanzen zu 90 % befallen
15 waren.

Anwendungsbeispiel 2 - Wirksamkeit gegen Rebenperonospora verursacht durch *Plasmopara viticola*

20 Blätter von Topfreben der Sorte "Riesling" wurden mit wässriger Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am folgenden Tag wurden die Unterseiten der Blätter mit einer wässrigen Zoosporenaufschwemmung von *Plasmopara viticola* inkuliert. Danach wurden die Reben zunächst für 48 Stunden in einer wasserdampfgesättigten Kammer bei 24°C und anschließend für
25 5 Tage im Gewächshaus bei Temperaturen zwischen 20 und 30°C aufgestellt. Nach dieser Zeit wurden die Pflanzen zur Beschleunigung des Sporangienträgerausbruchs abermals für 16 Stunden in eine feuchte Kammer gestellt. Dann wurde das Ausmaß der Befallsentwicklung auf den Blattunterseiten visuell ermittelt.
30 In diesem Test zeigten die mit 250 ppm der Titelverbindung aus Beispiel 1 behandelten Pflanzen keinen Befall, während die unbehandelten Pflanzen zu 90 % befallen waren.

Anwendungsbeispiel 3 - Wirksamkeit gegen den Grauschimmel an Paprikablättern verursacht durch *Botrytis cinerea* bei protektiver Anwendung

35 Paprikasämlinge der Sorte "Neusiedler Ideal Elite" wurden, nachdem sich 2 bis 3 Blätter gut entwickelt hatten, mit einer wässrigen Suspension in der unten angegebenen Wirkstoffkonzentration bis zur Tropfnässe besprüht. Am nächsten Tag wurden die behandelten Pflanzen mit einer Sporensuspension von *Botrytis cinerea*, die $1,7 \times 10^6$ Sporen/ml in einer 2 %igen wässrigen Biomalzlösung enthielt, inkuliert. Anschließend
40

wurden die Versuchspflanzen in eine Klimakammer mit 22 bis 24°C, Dunkelheit und hoher Luftfeuchtigkeit gestellt. Nach 5 Tagen konnte das Ausmaß des Pilzbefalls auf den Blättern visuell in % ermittelt werden.

- 5 In diesem Test zeigten die mit 63 ppm der Verbindungen I-2, I-14, I-23, I-24, bzw. I-25 behandelten Pflanzen nicht mehr als 30 % Befall, während die unbehandelten Pflanzen zu 75 % befallen waren.

Patentansprüche

1. Triazolopyrimidine der Formel I

5 in der die Substituenten folgende Bedeutung haben:

R¹, R² unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl, C₃-C₈-Cycloalkyl, C₃-C₈-Halogencycloalkyl, C₂-C₈-Alkenyl, C₂-C₈-Halogenalkenyl, C₃-C₈-Cycloalkenyl, C₃-C₈-Halogencycloalkenyl, C₂-C₈-Alkinyl, C₂-C₈-Halogenalkinyl oder Phenyl, Naphthyl, oder ein fünf- oder sechsgliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S,

10

15 R¹ und R² können auch zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein fünf- oder sechsgliedriges Heterocycl oder Heteraryl bilden, welches über N gebunden ist und ein bis drei weitere Heteroatome aus der Gruppe O, N und S als Ringglied enthalten und/oder einen oder mehrere Substituenten aus der Gruppe Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Halogenalkenyloxy, (exo)-C₁-C₆-Alkenyl und Oxy-C₁-C₃-alkylenoxy tragen kann;

20

25 R¹ und/oder R² können eine bis vier gleiche oder verschiedene Gruppen R^a tragen:

30

35 R^a Halogen, Cyano, Nitro, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkylcarbonyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkoxy carbonyl, C₁-C₆-Alkylthio, C₁-C₆-Alkylamino, Di-C₁-C₆-alkylamino, C₂-C₆-Alkenyl, C₂-C₆-Halogenalkenyl, C₃-C₆-Cycloalkenyl, C₂-C₆-Alkenyloxy, C₃-C₆-Halogenalkenyloxy, C₂-C₆-Alkinyl, C₂-C₆-Halogenalkinyl, C₃-C₆-Alkinyloxy, C₃-C₆-Halogenalkinyloxy, C₃-C₆-Cycloalkoxy, C₃-C₆-Cycloalkenyloxy, Oxy-C₁-C₃-alkylenoxy, Phenyl, Naphthyl, fünf- bis zehngliedriger gesättigter, partiell ungesättigter oder aromatischer Heterocyclus, enthaltend ein bis vier Heteroatome aus der Gruppe O, N oder S,

wobei diese aliphatischen, alicyclischen oder aromatischen Gruppen ihrerseits partiell oder vollständig halogeniert sein oder eine bis drei Gruppen R^b tragen können:

5 R^b Halogen, Cyano, Nitro, Hydroxy, Mercapto, Amino, Carboxyl, Aminocarbonyl, Aminothiocarbonyl, Alkyl, Haloalkyl, Alkenyl, Alkenyloxy, Alkinyloxy, Alkoxy, Halogenalkoxy, Alkylothio, Alkylamino, Dialkylamino, Formyl, Alkylcarbonyl, Alkylsulfonyl, Alkylsulfoxyl, Alkoxycarbonyl, Alkylcarbonyloxy, Alkylaminocarbonyl, Dialkylaminocarbonyl, Alkylaminothiocarbonyl, Dialkylaminothiocarbonyl, wobei die Alkylgruppen in diesen Resten 1 bis 6 Kohlenstoffatome enthalten und die genannten Alkenyl- oder Alkinylgruppen in diesen Resten 2 bis 8 Kohlenstoffatome enthalten;

10 und/oder einen bis drei der folgenden Reste:

15 Cycloalkyl, Cycloalkoxy, Heterocyclyl, Heterocyclyloxy, wobei die cyclischen Systeme 3 bis 10 Ringglieder enthalten; Aryl, Aryloxy, Arylothio, Aryl-C₁-C₆-alkoxy, Aryl-C₁-C₆-alkyl, Hetaryl, Hetaryloxy, Hetarylthio, wobei die Arylreste vorzugsweise 6 bis 10 Ringglieder, die Hetarylreste 5 oder 6 Ringglieder enthalten, wobei die cyclischen Systeme partiell oder vollständig halogeniert oder durch Alkyl- oder Haloalkylgruppen substituiert sein können;

20 L Halogen, Cyano, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyloxy oder C₁-C₄-Alkoxycarbonyl;

25 m 1, 2, 3 oder 4, wobei die Gruppen L verschieden sein können, wenn m größer als 1 ist;

30 X Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkoxy.

35 2. Verbindungen der Formel I gemäß Anspruch 1, in der R¹ nicht Wasserstoff bedeutet.

3. Verbindungen der Formel I.A:

in der die Variablen gemäß Anspruch 1 definiert sind.

5 4. Verbindungen der Formel I.A gemäß Anspruch 3, in der die Phenylgruppe

der Gruppe A entspricht:

wobei

10 L¹ Halogen, Halogenmethyl oder C₁-C₄-Alkyl;
 L², L³, L⁴ Wasserstoff oder Halogen, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl oder
 C₁-C₄-Alkoxy bedeuten.

5. Verfahren zur Herstellung der Verbindungen der Formel I gemäß Anspruch 1, in
 15 der X für Halogen, Cyano, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkoxy
 steht, durch Umsetzung von 5-Aminotriazol der Formel II,

II

mit Phenymalonaten der Formel III,

20 in der R für Alkyl steht, zu Dihydroxytriazolopyrimidinen der Formel IV,

53

IV

Halogenierung zu den Dihalogenverbindungen der Formel V,

V

und Umsetzung von V mit Aminen der Formel VI

VI

5

zu Verbindungen der Formel I, in der X für Halogen steht, gewünschtenfalls zu Herstellung von Verbindungen I, in denen X für Cyano, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkoxy steht, Umsetzung von Verbindungen I, in denen X Halogen bedeutet, mit Verbindungen der Formel VII,

M-X'

VII

10

die, je nach der einzuführenden Gruppe X', ein anorganisches Cyanid, ein Alkoxylat oder ein Halogenalkoxylat darstellen und in der M für ein Ammonium-, Tetraalkylammonium-, Alkali- oder Erdalkalimetallkation steht und, gewünschtenfalls, zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1, in der X für Alkyl steht, durch Umsetzung der Verbindungen I, in denen X für Halogen steht, mit Malonaten der Formel VIII,

VIII

15

in der X'' Wasserstoff oder C₁-C₃-Alkyl und R C₁-C₄-Alkyl bedeuten, zu Verbindungen der Formel IX

IX

20

und Decarboxylierung zu Verbindungen I, in denen X für Alkyl steht.

6. Verfahren zur Herstellung der Verbindungen der Formel I gemäß Anspruch 1, in der X für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl steht, durch Umsetzung von 5-Aminotriazol der Formel II gemäß Anspruch 5 mit Ketoestern der Formel IIIa,

25

54

in der X^1 für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl und R für C₁-C₄-Alkyl steht, zu 5-Alkyl-7-hydroxy-6-phenyltriazolopyrimidinen der Formel IVa

5 Halogenierung von IVa zu 7-Halogenotriazolopyrimidinen der Formel Va

und Umsetzung von Va mit Aminen der Formel VI gemäß Anspruch 5 zu Verbindungen I, in denen X für C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl steht.

10 7. Verbindungen der Formeln IV, IVa, V und Va gemäß Ansprüchen 5 und 6.

8. Verfahren zur Herstellung von Verbindungen der Formel I gemäß Anspruch 1, durch Umsetzung von 6-Cyanophenyl-Triazolopyrimidinen der Formel XI

XI

15 in Anwesenheit von Schwefelsäure oder im Polyethylenglycol / NaOH -System oder mit Harnstoff / Wasserstoffperoxid.

9. Fungizides Mittel, enthaltend einen festen oder flüssigen Träger und eine Verbindung der Formel I gemäß Anspruch 1

20 10. Saatgut, enthaltend 1 bis 1000 g einer Verbindung der Formel I gemäß Anspruch 1 pro 100 kg.

11. Verfahren zur Bekämpfung von pflanzenpathogenen Schadpilzen, dadurch gekennzeichnet, dass man die Pilze, oder die vor Pilzbefall zu schützenden Materi-

25

55

alien, Pflanzen, den Boden oder Saatgüter mit einer wirksamen Menge einer Verbindung der Formel I gemäß Anspruch 1 behandelt.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/014393

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D487/04 A01N43/90
//(C07D487/04, 249:00, 239:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D A01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 03/080615 A (BASF AKTIENGESELLSCHAFT; TORMO I BLASCO, JORDI; BLETTNER, CARSTEN; MUE) 2 October 2003 (2003-10-02) cited in the application page 18, line 45 – page 19, line 1; claims -----	1-11
A	WO 03/080614 A (BAYER CROPSCIENCE AKTIENGESELLSCHAFT; BOIE, CHRISTIANE; DUNKEL, RALF;) 2 October 2003 (2003-10-02) claims; table 1 -----	1-7, 9-11
A	WO 99/41255 A (AMERICAN CYANAMID COMPANY) 19 August 1999 (1999-08-19) cited in the application claims ----- -/-	1-7, 9-11

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

17 May 2005

27/05/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Hass, C

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP2004/014393

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 98/46608 A (AMERICAN CYANAMID COMPANY) 22 October 1998 (1998-10-22) cited in the application claims -----	1-7,9-11
A	EP 0 071 792 A (BASF AKTIENGESELLSCHAFT) 16 February 1983 (1983-02-16) cited in the application claims 1,6 -----	1,9
A	US 5 994 360 A (PFRENGLE ET AL) 30 November 1999 (1999-11-30) cited in the application claims 1,4 -----	1,9
A	EP 0 770 615 A (AMERICAN CYANAMID COMPANY; BASF AKTIENGESELLSCHAFT) 2 May 1997 (1997-05-02) cited in the application the whole document -----	5
P,X	WO 2004/041824 A (BASF AKTIENGESELLSCHAFT; TORMO I BLASCO, JORDI; BLETTNER, CARSTEN; MUE) 21 May 2004 (2004-05-21) Seite 33, Nr. I-61 und I-62; claims 1,6-10 -----	1-5,7,9, 11

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/014393

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 03080615	A 02-10-2003	AU 2003215664 A1 BR 0308529 A CA 2479766 A1 WO 03080615 A1 EP 1490372 A1 HR 20040985 A2		08-10-2003 01-02-2005 02-10-2003 02-10-2003 29-12-2004 31-12-2004
WO 03080614	A 02-10-2003	DE 10212886 A1 AU 2003212322 A1 WO 03080614 A2 EP 1490370 A2		02-10-2003 08-10-2003 02-10-2003 29-12-2004
WO 9941255	A 19-08-1999	US 6020338 A AT 255110 T AU 750489 B2 AU 2595299 A BR 9907863 A CA 2320304 A1 CN 1114606 C CZ 20002933 A3 DE 69913104 D1 DE 69913104 T2 DK 1054888 T3 EP 1359150 A2 EP 1054888 A1 ES 2212527 T3 HU 0100885 A2 JP 3423290 B2 JP 2002503664 T NZ 506247 A PL 342576 A1 PT 1054888 T SI 1054888 T1 WO 9941255 A1		01-02-2000 15-12-2003 18-07-2002 30-08-1999 24-10-2000 19-08-1999 16-07-2003 17-04-2002 08-01-2004 17-06-2004 05-04-2004 05-11-2003 29-11-2000 16-07-2004 28-06-2001 07-07-2003 05-02-2002 28-03-2003 18-06-2001 27-02-2004 30-04-2004 19-08-1999
WO 9846608	A 22-10-1998	AT 239727 T AU 735730 B2 AU 6867198 A BG 64197 B1 BG 103805 A BR 9808531 A CA 2287470 A1 CN 1104433 C CZ 9903596 A3 DE 69814375 D1 DE 69814375 T2 DK 975635 T3 EA 2906 B1 EE 9900486 A EP 0975635 A1 ES 2199436 T3 HU 0001993 A2 ID 24182 A IL 132238 A JP 2001520650 T NO 994973 A NZ 500143 A OA 11203 A		15-05-2003 12-07-2001 11-11-1998 30-04-2004 30-06-2000 23-05-2000 22-10-1998 02-04-2003 17-05-2000 12-06-2003 24-12-2003 02-06-2003 31-10-2002 15-06-2000 02-02-2000 16-02-2004 28-10-2000 13-07-2000 29-05-2003 30-10-2001 13-10-1999 29-06-2001 21-05-2003

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP2004/014393

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9846608	A	PL PT SI SK TR TW WO ZA	336164 A1 975635 T 975635 T1 141499 A3 9902552 T2 460476 B 9846608 A1 9803054 A	05-06-2000 30-09-2003 31-10-2003 11-09-2001 22-05-2000 21-10-2001 22-10-1998 11-10-1999
EP 0071792	A 16-02-1983	DE AT AU AU CA CS DD DE DK EP GR HU IE JP JP JP US ZA	3130633 A1 11539 T 553663 B2 8665982 A 1180329 A1 226748 B2 202093 A5 3262143 D1 341682 A ,B, 0071792 A2 76193 A1 188325 B 53269 B1 1634879 C 2061955 B 58043974 A 4567263 A 8205498 A	17-02-1983 15-02-1985 24-07-1986 10-02-1983 01-01-1985 16-04-1984 31-08-1983 14-03-1985 02-02-1983 16-02-1983 03-08-1984 28-04-1986 28-09-1988 20-01-1992 21-12-1990 14-03-1983 28-01-1986 27-07-1983
US 5994360	A 30-11-1999	NONE		
EP 0770615	A 02-05-1997	AT BR CA DE DE DK EP ES HU IL JP PT RU SG SI SK TR US ZA	243211 T 9605258 A 2188905 A1 69628712 D1 69628712 T2 770615 T3 0770615 A1 2202419 T3 9602957 A2 119496 A 9124651 A 770615 T 2147584 C1 55239 A1 770615 T1 137796 A3 970386 A2 5808066 A 9608957 A	15-07-2003 21-07-1998 28-04-1997 24-07-2003 29-04-2004 14-07-2003 02-05-1997 01-04-2004 30-06-1997 24-07-2001 13-05-1997 31-10-2003 20-04-2000 21-12-1998 31-12-2003 07-05-1997 21-05-1997 15-09-1998 24-04-1998
WO 2004041824	A 21-05-2004	AU WO	2003279353 A1 2004041824 A2	07-06-2004 21-05-2004

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2004/014393

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C07D487/04 A01N43/90
//(C07D487/04, 249:00, 239:00)

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07D A01N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, CHEM ABS Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 03/080615 A (BASF AKTIENGESELLSCHAFT; TORMO I BLASCO, JORDI; BLETTNER, CARSTEN; MUE) 2. Oktober 2003 (2003-10-02) in der Anmeldung erwähnt Seite 18, Zeile 45 – Seite 19, Zeile 1; Ansprüche	1-11
A	WO 03/080614 A (BAYER CROPSCIENCE AKTIENGESELLSCHAFT; BOIE, CHRISTIANE; DUNKEL, RALF;) 2. Oktober 2003 (2003-10-02) Ansprüche; Tabelle 1	1-7, 9-11
A	WO 99/41255 A (AMERICAN CYANAMID COMPANY) 19. August 1999 (1999-08-19) in der Anmeldung erwähnt Ansprüche	1-7, 9-11

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldeatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweitelfhaft erschließen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldeatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldeatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist

"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

17. Mai 2005

27/05/2005

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Hass, C

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP2004/014393

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 98/46608 A (AMERICAN CYANAMID COMPANY) 22. Oktober 1998 (1998-10-22) in der Anmeldung erwähnt Ansprüche -----	1-7, 9-11
A	EP 0 071 792 A (BASF AKTIENGESELLSCHAFT) 16. Februar 1983 (1983-02-16) in der Anmeldung erwähnt Ansprüche 1, 6 -----	1, 9
A	US 5 994 360 A (PFRENGLE ET AL) 30. November 1999 (1999-11-30) in der Anmeldung erwähnt Ansprüche 1, 4 -----	1, 9
A	EP 0 770 615 A (AMERICAN CYANAMID COMPANY; BASF AKTIENGESELLSCHAFT) 2. Mai 1997 (1997-05-02) in der Anmeldung erwähnt das ganze Dokument -----	5
P, X	WO 2004/041824 A (BASF AKTIENGESELLSCHAFT; TORMO I BLASCO, JORDI; BLETTNER, CARSTEN; MUE) 21. Mai 2004 (2004-05-21) Seite 33, Nr. I-61 und I-62; Ansprüche 1, 6-10 -----	1-5, 7, 9, 11

INTERNATIONALE RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/014393

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 03080615	A	02-10-2003	AU	2003215664 A1 BR 0308529 A CA 2479766 A1 WO 03080615 A1 EP 1490372 A1 HR 20040985 A2		08-10-2003 01-02-2005 02-10-2003 02-10-2003 29-12-2004 31-12-2004
WO 03080614	A	02-10-2003	DE	10212886 A1		02-10-2003
			AU	2003212322 A1		08-10-2003
			WO	03080614 A2		02-10-2003
			EP	1490370 A2		29-12-2004
WO 9941255	A	19-08-1999	US	6020338 A		01-02-2000
			AT	255110 T		15-12-2003
			AU	750489 B2		18-07-2002
			AU	2595299 A		30-08-1999
			BR	9907863 A		24-10-2000
			CA	2320304 A1		19-08-1999
			CN	1114606 C		16-07-2003
			CZ	20002933 A3		17-04-2002
			DE	69913104 D1		08-01-2004
			DE	69913104 T2		17-06-2004
			DK	1054888 T3		05-04-2004
			EP	1359150 A2		05-11-2003
			EP	1054888 A1		29-11-2000
			ES	2212527 T3		16-07-2004
			HU	0100885 A2		28-06-2001
			JP	3423290 B2		07-07-2003
			JP	2002503664 T		05-02-2002
			NZ	506247 A		28-03-2003
			PL	342576 A1		18-06-2001
			PT	1054888 T		27-02-2004
			SI	1054888 T1		30-04-2004
			WO	9941255 A1		19-08-1999
WO 9846608	A	22-10-1998	AT	239727 T		15-05-2003
			AU	735730 B2		12-07-2001
			AU	6867198 A		11-11-1998
			BG	64197 B1		30-04-2004
			BG	103805 A		30-06-2000
			BR	9808531 A		23-05-2000
			CA	2287470 A1		22-10-1998
			CN	1104433 C		02-04-2003
			CZ	9903596 A3		17-05-2000
			DE	69814375 D1		12-06-2003
			DE	69814375 T2		24-12-2003
			DK	975635 T3		02-06-2003
			EA	2906 B1		31-10-2002
			EE	9900486 A		15-06-2000
			EP	0975635 A1		02-02-2000
			ES	2199436 T3		16-02-2004
			HU	0001993 A2		28-10-2000
			ID	24182 A		13-07-2000
			IL	132238 A		29-05-2003
			JP	2001520650 T		30-10-2001
			NO	994973 A		13-10-1999
			NZ	500143 A		29-06-2001
			OA	11203 A		21-05-2003

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP2004/014393

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9846608	A	PL 336164 A1 PT 975635 T SI 975635 T1 SK 141499 A3 TR 9902552 T2 TW 460476 B WO 9846608 A1 ZA 9803054 A	05-06-2000 30-09-2003 31-10-2003 11-09-2001 22-05-2000 21-10-2001 22-10-1998 11-10-1999
EP 0071792	A 16-02-1983	DE 3130633 A1 AT 11539 T AU 553663 B2 AU 8665982 A CA 1180329 A1 CS 226748 B2 DD 202093 A5 DE 3262143 D1 DK 341682 A ,B, EP 0071792 A2 GR 76193 A1 HU 188325 B IE 53269 B1 JP 1634879 C JP 2061955 B JP 58043974 A US 4567263 A ZA 8205498 A	17-02-1983 15-02-1985 24-07-1986 10-02-1983 01-01-1985 16-04-1984 31-08-1983 14-03-1985 02-02-1983 16-02-1983 03-08-1984 28-04-1986 28-09-1988 20-01-1992 21-12-1990 14-03-1983 28-01-1986 27-07-1983
US 5994360	A 30-11-1999	KEINE	
EP 0770615	A 02-05-1997	AT 243211 T BR 9605258 A CA 2188905 A1 DE 69628712 D1 DE 69628712 T2 DK 770615 T3 EP 0770615 A1 ES 2202419 T3 HU 9602957 A2 IL 119496 A JP 9124651 A PT 770615 T RU 2147584 C1 SG 55239 A1 SI 770615 T1 SK 137796 A3 TR 970386 A2 US 5808066 A ZA 9608957 A	15-07-2003 21-07-1998 28-04-1997 24-07-2003 29-04-2004 14-07-2003 02-05-1997 01-04-2004 30-06-1997 24-07-2001 13-05-1997 31-10-2003 20-04-2000 21-12-1998 31-12-2003 07-05-1997 21-05-1997 15-09-1998 24-04-1998
WO 2004041824	A 21-05-2004	AU 2003279353 A1 WO 2004041824 A2	07-06-2004 21-05-2004