决策树作业

学号: 2017211594 班级: 2017211301 姓名: 袁子麒

1. 请使用最大信息增益算法为课件 73 页的数据构建决策树,写出计算过程并画出决策树。(30分)

答: 我们将数据集记作 D ,将属性集合记为 $A = \{A_1, \cdots, A_{10}\}$ 其中 $A_1 - A_{10}$ 依次表示数据集中从左到右的属性,(即 A_1 表示 是否为男性, A_5 表示是否为 80 后, A_{10} 表示 是否为演员)

首先,进行根结点划分属性选择:

我们计算各个属性在全体数据集上的条件熵:利用公式(1)

$$H(D|A_i) = P(A_i = \mathbb{E}) \cdot H(D|A_i = \mathbb{E}) + P(A_i = \overline{\Delta}) \cdot H(D|A_i = \overline{\Delta})$$
 (1)

依次求得 $H(D|\mathcal{B}) \approx 3.09$, $H(D|运动\mathcal{B}) \approx 3.11$, $H(D|70\mathcal{E}) \approx 3.30$,

 $H(D|\mathcal{H}\mathcal{Y}) \approx 3.56$, $H(D|80 后) \approx 3.11$, $H(D|离婚) \approx 3.42$, $H(D|\mathcal{L}\mathcal{F}) \approx 3.42$,

H(D| 篮球 $) \approx 3.56$,H(D| 内地 $) \approx 3.15$,H(D| 演员 $) \approx 3.11$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性。故根结点的划分属性为 男

然后进入第二层节点划分属性选择

我们记数据集中 (B = E) 的子集为 D_1 ,记数据集中 (B = E) 的子集为 D_2 。仍然利用公式 (1),分别计算除 男 属性以外的属性在 D_1 上的条件熵:

依次求得 $H(D_1|运动员) \approx 2.18$, $H(D_1|70后) \approx 2.18$, $H(D_1|\mathcal{X}\mathcal{A}) \approx 2.41$,

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 运动员

仍然利用公式 (1),分别计算除 男 属性以外的属性在 D_2 上的条件熵:

依 次 求 得 $H(D_2|\overline{z}$ 动员) ≈ 2.05 , $H(D_2|70 后) \approx 3$, $H(D_2|\mathcal{X}\mathcal{Y}) \approx 3$,

 $H(D_2|80 后) \approx 2$, $H(D_2|离婚) \approx 2.19$, $H(D_2|选秀) \approx 2.19$, $H(D_2|篮球) \approx 3$,

 $H(D_2|$ 内地) ≈ 2.19 , $H(D_2|$ 演员) ≈ 2.05

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同

的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **80 后 然后进入第三层节点划分属性选择**

我们记数据集中 $\mathcal{B}=\mathcal{L}\&$ \mathcal{L} \mathcal{L} \mathcal{L} 的子集为 \mathcal{L} \mathcal{L} 0. 记数据集中 \mathcal{L} \mathcal{L} \mathcal{L} 0. 记数据集中 \mathcal{L} \mathcal{L} 0. \mathcal{L}

仍然利用公式 (1),分别计算除 男 运动员 属性以外的属性在 D_3 上的条件熵: 依 次 求 得 $H(D_3|70 \ \emph{E}) \approx 1.19$, $H(D_3|\cancel{X}\cancel{X}\cancel{X}) \approx 1.19$, $H(D_3|80 \ \emph{E}) \approx 1.19$,

 $H(D_3|$ 离婚 $) \approx 1.19$, $H(D_3|$ 选秀 $) \approx 2$, $H(D_3|$ 篮球 $) \approx 1$, $H(D_3|$ 内地 $) \approx 1$, $H(D_3|$ 演员 $) \approx 2$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **篮球**

仍然利用公式 (1),分别计算除 男 运动员 属性以外的属性在 D_4 上的条件熵: 依 次 求 得 $H(D_4|70~\emph{E}) \approx 1.35$, $H(D_4|\mathcal{H}\mathcal{H}) \approx 1.6$, $H(D_4|80~\emph{E}) \approx 2.32$,

 $H(D_4|$ 离婚 $) \approx 2.32$, $H(D_4|$ 选秀 $) \approx 1.6$, $H(D_4|$ 篮球 $) \approx 2.32$, $H(D_4|$ 内地 $) \approx 1.35$, $H(D_4|$ 演员 $) \approx 1.6$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为70后

我们记数据集中 $\mathcal{B}=$ \mathcal{E} 80 $\mathcal{E}=\mathcal{E}$ 的子集为 \mathcal{D}_5 ,记数据集中 $\mathcal{B}=\mathcal{E}$ & 80 $\mathcal{E}=\mathcal{E}$ 的子集为 \mathcal{D}_6 。

仍然利用公式 (1),分别计算除 男 80 后 属性以外的属性在 D_5 上的条件熵: 依 次 求 得 $H(D_5|\bar{z} \to D_5) \approx 1.19$, $H(D_5|70 \, f) \approx 2$, $H(D_5|\mathcal{X} \to D_5) \approx 1.19$, $H(D_5|\mathcal{B}) \approx 1.19$, $H(D_5|\mathcal{B}) \approx 1.19$, $H(D_5|\mathcal{B}) \approx 1.19$, $H(D_5|\mathcal{B}) \approx 1$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为**演员**

仍然利用公式 (1),分别计算除 男 80 后 属性以外的属性在 D_6 上的条件熵: 依次求得 $H(D_6|运动员) \approx 1$, $H(D_6|70 后) \approx 2$, $H(D_6|\mathcal{H}\mathcal{H}) \approx 2$, $H(D_6|\mathcal{B}\mathcal{B}) \approx 1.19$ 我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 运动员

然后进入第四层节点划分属性选择

我们记数据集中 $B = \mathcal{L} \& \overline{\omega} \Delta \mathcal{J} = \mathcal{L} \& \underline{\omega} \Delta \mathcal$

仍然利用公式(1),分别计算除 男 运动员 篮球 属性以外的属性在 D_7 上的条件 熵:

依次求得 $H(D_7|70 后) \approx 0$, $H(D_7|\mathcal{X}\mathcal{Y}) \approx 0$, $H(D_7|80 后) \approx 0$, $H(D_7|\mathcal{B}\mathcal{B}) \approx$

1, $H(D_7|$ 选秀) ≈ 1 , $H(D_7|$ 内地) ≈ 0 , $H(D_7|$ 演员) ≈ 1

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 70 后

在 70 后节点下,根据属性 男=是 运动员=是 篮球=是 70 后=是 判断人物为科比, 根据属性 男=是 运动员=是 篮球=是 70 后=否,判断人物为姚明,结束

仍然利用公式(1),分别计算除 男 运动员 篮球 属性以外的属性在 D_8 上的条件 熵:

依次求得 $H(D_8|70~\textit{E}) \approx 1$, $H(D_8|\mathcal{X}\mathcal{Y}) \approx 1$, $H(D_8|80~\textit{E}) \approx 1$, $H(D_8|\textit{B}\textit{B}) \approx 1$

0, $H(D_8|$ 选秀 $) \approx 1$, $H(D_8|$ 内地 $) \approx 0$, $H(D_8|$ 演员 $) \approx 1$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **离婚**

在 离婚 节点下,根据属性 男=是 运动员=是 篮球=是 离婚=是 判断人物为刘翔, 根据属性 男=是 运动员=是 篮球=是 离婚=否,判断人物为 C 罗,结束

我们记数据集中 $\mathcal{B}=\mathcal{L}\&$ 运动 $\mathcal{D}=\mathcal{E}\&$ 0 后 = \mathcal{L} 的子集为 \mathcal{D}_9 ,记数据集

仍然利用公式(1),分别计算除 男 运动员 70 后 属性以外的属性在 D_9 上的条件熵:

依次求得 $H(D_9|\mathcal{X}\mathcal{A})\approx 0.66$, $H(D_9|80后)\approx 1.58$, $H(D_9|\mathcal{B}^{\underline{a}})\approx 1.58$,

 $H(D_9|$ 选秀) ≈ 1.58 , $H(D_9|$ 篮球) ≈ 1.58 , $H(D_9|$ 内地) ≈ 0.66 , $H(D_9|$ 演员) ≈ 1.58

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 光头

在 光头 节点下,根据属性 男=是 运动员=否 70 后=是 光头=是 判断人物为徐峥

仍然利用公式 (1),分别计算除 男 运动员 70 后 属性以外的属性在 D_{10} 上的条件熵:

依次求得 $H(D_{10}|\mathcal{X}\mathcal{Y}) \approx 1$, $H(D_{10}|80 \ \textit{E}) \approx 1$, $H(D_{10}|\textit{B婚}) \approx 1$, $H(D_{10}|\mathcal{L}\mathcal{F}) \approx 1$

0, $H(D_{10}|$ 篮球 $) \approx 1$, $H(D_{10}|$ 内地 $) \approx 0$, $H(D_{10}|$ 演员 $) \approx 0$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **选秀**

在 选秀 节点下,根据属性 男=是 运动员=否 70 后=否 选秀=是 判断人物为毛不易, 根据属性 男=是 运动员=否 70 后=否 选秀=否,判断人物为刘德华,结束

仍然利用公式(1),分别计算除 男 80 后 演员 属性以外的属性在 D_{11} 上的条件 熵:

依 次 求 得 $H(D_{11}|\bar{z}$ 动员) ≈ 1 , $H(D_{11}|70 \, \bar{E}) \approx 1$, $H(D_{11}|\mathcal{X}\mathcal{Y}) \approx 1$,

 $H(D_{11}|$ 离婚 $) \approx 0$, $H(D_{11}|$ 选秀 $) \approx 1$, $H(D_{11}|$ 篮球 $) \approx 1$, $H(D_{11}|$ 内地 $) \approx 1$,

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **离婚**

在 离婚 节点下,根据属性 男=否 80 后=是 演员=是 离婚=是 判断人物为杨幂, 根据属性 男=否 80 后=是 演员=是 离婚=否,判断人物为赵丽颖,结束

仍然利用公式(1),分别计算除 男 80 后 演员 属性以外的属性在 D_{12} 上的条件 熵:

依次求得 $H(D_{12}|运动员)\approx 0$, $H(D_{12}|70后)\approx 1$, $H(D_{12}|\mathcal{H}\mathcal{X})\approx 1$,

 $H(D_{12}|$ 离婚 $) \approx 1$, $H(D_{12}|$ 选秀 $) \approx 0$, $H(D_{12}|$ 篮球 $) \approx 1$, $H(D_{12}|$ 内地 $) \approx 0$,

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **运动员**

在运动员 节点下,根据属性 男=否 80 后=是 演员=否 运动员=是 判断人物为张怡宁, 根据属性 男=否 80 后=是 演员=否 运动员=否,判断人物为徐佳莹,

结束

我们记数据集中 $\mathcal{B}=$ \mathcal{E} \mathcal{E} 80 \mathcal{E} \mathcal{E} \mathcal{E} 60 \mathcal{E} 60 \mathcal{E} 61 \mathcal{E} 61 \mathcal{E} 62 \mathcal{E} 61 \mathcal{E} 62 \mathcal{E} 62 \mathcal{E} 63 \mathcal{E} 63 \mathcal{E} 64 \mathcal{E} 64 \mathcal{E} 65 \mathcal{E} 75 \mathcal{E} 76 \mathcal{E} 77 \mathcal{E} 77 \mathcal{E} 76 \mathcal{E} 77 \mathcal{E} 78 \mathcal{E} 79 \mathcal{E}

中 $\mathcal{B} = \mathcal{E} \otimes \mathcal{B} \otimes \mathcal{E} = \mathcal{E} \otimes \mathcal{E} \otimes \mathcal{E} \otimes \mathcal{E} = \mathcal{E} \otimes \mathcal{E}$

仍然利用公式(1),分别计算除 男 80 后 运动员 属性以外的属性在 D_{13} 上的条件熵:

依次求得 $H(D_{13}|70 后) \approx 1$, $H(D_{13}|\mathcal{X}\mathcal{Y}) \approx 1$, $H(D_{13}|\mathcal{B}\mathcal{B}) \approx 0$, $H(D_{13}|\mathcal{B}\mathcal{F}) \approx 0$

1, $H(D_{13}|$ 篮球 $) \approx 1$, $H(D_{13}|$ 内地 $) \approx 1$, $H(D_{13}|$ 演员 $) \approx 1$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **离婚**

在 离婚 节点下,根据属性 男=否 80 后=是 运动员=是 离婚=是 判断人物为郎平, 根据属性 男=否 80 后=是 运动员=是 离婚=否,判断人物为朱婷,结束

仍然利用公式 (1),分别计算除 男 80 后 运动员 属性以外的属性在 D_{14} 上的条件熵:

依次求得 $H(D_{14}|70 后) \approx 1$, $H(D_{14}|\mathcal{X}\mathcal{Y}) \approx 1$, $H(D_{14}|\mathcal{B}\mathcal{B}) \approx 1$, $H(D_{14}|\mathcal{B}\mathcal{B}) \approx 1$

 $0, H(D_{14}|$ 篮球 $) \approx 1, H(D_{14}|$ 內地 $) \approx 0, H(D_{14}|$ 演员 $) \approx 0$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **选秀**

在 选秀 节点下,根据属性 男=否 80 后=是 运动员=是 选秀=是 判断人物为杨超越, 根据属性 男=否 80 后=是 运动员=否 选秀=否,判断人物为邓紫棋,结束

然后进入第五层节点划分属性选择: (男=是 运动员=否 70 后=是 光头=否)

我们记数据集中 $\mathcal{B}=\mathcal{L}\&\ \mathbb{Z}$ 运动 $\mathcal{B}=\mathcal{E}\&\ \mathbb{Z}$ 6 $\mathcal{B}=\mathcal{E}$ 8 \mathcal{B} 6 \mathcal{B} 70 $\mathcal{B}=\mathcal{E}$ 8 的子集为 \mathcal{B}_{15} 70 利用公式 (1),分别计算除 \mathcal{B} 运动员 70 后 光头 属性以外的属性在 \mathcal{B}_{15} 上的条件熵:

依次求得 $H(D_{11}|80 \ \textit{E}) \approx 1$, $H(D_{11}|\textit{B}\textit{I}\textit{B}) \approx 1$, $H(D_{11}|\textit{LEF}) \approx 1$, $H(D_{11}|\textit{EEF}) \approx 1$

1, $H(D_{11}|$ 内地 $) \approx 0$, $H(D_{11}|$ 演员 $) \approx 1$

我们选择信息增益最大的属性即条件熵最小的属性作为划分属性(如果存在相同的最小值,选择属性下标最小的属性)。故根结点的划分属性为 **内地**

在 内地 节点下,根据属性 男=是 运动员=否 70 后=是 光头=否 内地=是 判断

人物为黄渤, 根据属性 男=是 运动员=否 70 后=是 光头=否 内地=否,判断人物为周杰伦,结束

决策树绘制如下:

2. 假定数据库有N个人,第n个人的先验概率 γ_n ,有K个问题,假定第n个人对第k个问题答案为"是"的概率为 α_{nk} ,请给出给定第k个问题条件下,数据集的条件熵的计算公式。(20 分)

解题思路: 首先这是一个将数据库中每一个体分成一类的问题。首先分析不考虑先验概率(对应与 $\forall n \in \{1,2,\cdots,N\}, \gamma_n = \frac{1}{N}$)并假设每个人对每个问题答案为"是"的概率取值属于 $\{0,1\}$ 的情况。

对于答案只有"是"或"否"的问题k,我们只要确定对于问题k有多少个成员答案为"是",多少个成员答案为"否"即可确定给定第k个问题条件下数据集的条件熵。我们不妨设对于问题k,回答"是"的人数为m,回答"否"的人数为n(n=N-m)。则该问题在数据集上的条件熵为

$$H(D|k) = \frac{n}{m+n}\log_2 n + \frac{m}{m+n}\log_2 m.$$

基于此公式,在有先验概率(bias)和回答概率属于[0,1]的问题中,我们只需要给出回答为"是"和"否"的人数的广义定义即可。

首先根据先验概率重新分配个体i所占权重。基于以下两点:

- 1. 保持总人数不变 $\sum_{i=1}^{N} s_i = N$
- 2. 保持每个人权重 $s_i \propto \gamma_i$

故此有 $s_i = N \times \gamma_i$ 。

然后,根据第n个人对第k个问题答案为"是"的概率为 α_{nk} ,将第n个人的权重 s_n 分配到"是","否"两类。使用"贡献法",第n个人对"是"类的贡献为 $s_n \times a_{nk}$,对"否"类贡献为 $s_n \times (1-a_{nk})$.

根据此重新计算"是""否"两类的虚拟总人数m',n'(m'+n'=N)

$$m' = \sum_{i=1}^{N} s_i \times a_{ik} = N \sum_{i=1}^{N} a_{ik} \times \gamma_i$$
$$n' = \sum_{i=1}^{N} s_i \times (1 - a_{ik}) = N \sum_{i=1}^{N} \gamma_i \times (1 - a_{ik})$$

将m', n'带入公式 $H(D|k) = \frac{n'}{m'+n'}\log_2 n' + \frac{m'}{m'+n'}\log_2 m'$ 即可。

以下两道题目,二选一即可。(50分)

- 3. 请选择一个你认为有意义或有趣味的领域,收集一个可以用作 20 问读心游戏的数据集。角色数不小于 100 个,问题数不小于 20 个。请写出你选择该领域的理由和数据集的收集方法。(数据集列出角色和问题,角色对问题的答案仅选择 20 个角色和 10 个问题即可)
- 4. 请编程实现题目 1,要求代码运行能够直接打印出决策树。代码只能包含一个文件,文件名为**学号_姓名.py**。编程环境要求如下:
 - > Python 3.6
 - > python standard library
 - \triangleright numpy == 1.16.2
 - \triangleright scipy == 1.2.1
 - \rightarrow pandas == 0.24.2