Exercise 1. An Eulerian circuit of G is a sequence of vertices $v_1v_2 \dots v_\ell$ (a vertex may appear more than once) so that every edge $uw \in E(G)$ appears as v_iv_{i+1} for some i in the sequence, and so that $v_1 = v_\ell$. A Eulerian graph is one which has a Eulerian circuit.

A Hamiltonian cycle of graph G on at least three vertices is an sequence $v_1v_2...v_n$ such that each $u \in V(G)$ appears exactly once, $v_1 = v_2$ and each $v_iv_{i+1} \in E(G)$. A graph is Hamiltonian if it has a Hamiltonian cycle.

- (a) Let \mathcal{A} be the set of Eulerian graphs. Show that \mathcal{A} is not monotone.
- (b) Let \mathcal{B} be the set of Hamiltonian graphs. Is \mathcal{B} monotone?

Exercise 2. A graph G with $n \geq 3$ vertices, denoted C_n , is a cycle if its vertices can be (re)-labelled v_1, \ldots, v_n such that $E(G) = \{v_i v_{i+1} : i \in [n]\}$ where the subscript addition is taken modulo n. For example a cycle on 3 vertices is \triangle and there are three cycles on four vertices \square , \square , \square .

A connected graph is one in which any two vertices uv are connected by a sequence of vertices $v_1 \dots v_\ell$ so that $u = v_1$, $v = v_\ell$ and each $v_i v_{i+1}$ is an edge. For example \mathfrak{r} is connected but \mathfrak{r} is not connected.

- (a) A graph with n vertices and n edges must contain a cycle as a subgraph.
- (b) A connected graph with n vertices and n edges must contain exactly one cycle.
- (c) Give an example to show that the assumption of connectivity is needed for part b.

Exercise 3. (Covered in lectures) Let \mathcal{A}_{\triangle} be the set of all graphs which contain \triangle as a subgraph.

- (a) Show that $\mathbb{P}(G(n, 1/2) \in \mathcal{A}_{\triangle}) \to 1$.
- (b) (optional) Fix a constant $0 , and show that <math>\mathbb{P}(G(n, p) \in \mathcal{A}_{\triangle}) \to 1$.

Exercise 4. (Covered in lectures) Prove the following:

Let $X_1, X_2, ...$ be a sequence of random variables each taking non-negative values. If $\mathbb{E}[X_n] \to 0$ then

$$\mathbb{P}(X_n=0)\to 1,$$

and if $\mathbb{E}[X_n] > 0$ for each n, and $\mathbb{V}[X_n]/\mathbb{E}[X_n] \to 0$ then

$$\mathbb{P}(X_n=0)\to 0.$$

Exercise 5. Show whp $np \to \infty$ implies whp G_n contains \triangle i.e. a 3-cycle¹.

Let Y_n count the number of Δ in G_n and for any 3-subset of vertices $S \subset V(G)$ let A_S be the event that G_n restricted to the vertices S is a Δ .

(a) Show by linearity of expectation that:

$$\mathbb{V}(Y_n) = \sum_{S,T \in \binom{[n]}{3}} \bigg(\mathbb{P}(A_S \& 1_{A_T}) - \mathbb{P}(A_S) \mathbb{P}(A_T) \bigg).$$

¹This exercise demonstrates a different way to prove the second part of Theorem ??. In the proof we showed that whp $e(G_n) \ge n$ for $np \to \infty$ and from this and Q 2a we concluded that $np \to \infty$ implies whp G_n has a cycle.

(b) Notice that when the sets of vertices S and T don't intersect that the events A_S and A_T are independent. What about when they intersect on one vertex? Using (a) show that:

$$\mathbb{V}(Y_n) \le \sum_{|S \cap T| = \{2,3\}} \mathbb{P}(A_S \& A_T).$$

- (c) After some case analysis and from (b) show: $\mathbb{V}(Y_n) \leq n^4 p^5 + n^3 p^3$.
- (d) From (c) conclude that whp $Y_n > 0$. Hint: use Chebyshev's inequality.

Exercise 6. Given $k \in \mathbb{N}$, let \mathcal{P}_k be the set of graphs which have a path on k vertices as a subgraph.

- (a) (Covered in lectures) Find the threshold function for \mathcal{P}_3 (notice \mathcal{P}_3 is the set of graphs containing the path Λ as a subgraph).
- (b) Find the threshold for \mathcal{P}_4 .
- (c) (optional) Let $k \in \mathbb{N}$ be a constant. Find the threshold for \mathcal{P}_k in terms of k and n.

Exercise 7. For each of the following boolean functions f, aka voting schemes, find a set S such that the function is expressible in terms of that character, i.e. $f(x) = \chi_S(x)$ or $f(x) = -\chi_S(x)$.

- (a) The dictator function, $Dict_n^1(x) = x_1$.
- (b) The parity function, Par(x).
- (c) The XOR function of the first two inputs, $f(x) = XOR(x_1, x_2)$.
- (d) The constant function f(x) = 1.

Exercise 8. We can define an interated majority function for $n = 3^k$. The base case is $\text{Imaj}_1(x_1, x_2, x_3) = \text{Maj}_3(x_1, x_2, x_3)$ and

$$\mathrm{Imaj}_k(x) = \mathrm{Maj}_3(\mathrm{Imaj}_{k-1}(x_1, \dots, x_{3^{k-1}}), \mathrm{Imaj}_{k-1}(x_{3^{k-1}+1}, \dots, x_{2\cdot 3^{k-1}}), \mathrm{IMaj}_{k-1}(x_{2\cdot 3^{k-1}+1}, \dots, x_{3^k})).$$

For example, for k = 2, $\text{Imaj}_2(x_1, \dots, x_9) = \text{Maj}_3(\text{Maj}_3(x_1, x_2, x_3), \text{Maj}_3(x_4, x_5, x_6), \text{Maj}_3(x_7, x_8, x_9))$.

- (a) Calculate the influence of the *i*-th bit $I_i(\text{Imaj}_2)$ and total influence $I^p(\text{Imaj}_2)$.
- (b) Can you calculate $I_i^p(\operatorname{Imaj}_k)$ and $I^p(\operatorname{Imaj}_k)$? You may take p=1/2 if you like.