STA 414/2104: Machine Learning

Russ Salakhutdinov

Department of Computer Science Department of Statistics rsalakhu@cs.toronto.edu

http://www.cs.toronto.edu/~rsalakhu/

Lecture 2

Linear Least Squares

From last class: Minimize the sum of the squares of the errors between the predictions $y(\mathbf{x}_n, \mathbf{w})$ for each data point \mathbf{x}_n and the corresponding real-valued targets \mathbf{t}_n .

Loss function: sum-of-squared error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n^T \mathbf{w} - t_n)^2$$
$$= \frac{1}{2} (\mathbf{X} \mathbf{w} - \mathbf{t})^T (\mathbf{X} \mathbf{w} - \mathbf{t}).$$

Linear Least Squares

If X^TX is nonsingular, then the unique solution is given by:

- At an arbitrary input \mathbf{x}_0 , the prediction is $y(\mathbf{x}_0, \mathbf{w}) = \mathbf{x}_0^T \mathbf{w}^*$.
- The entire model is characterized by d+1 parameters w*.

Example: Polynomial Curve Fitting

Consider observing a training set consisting of N 1-dimensional observations: $\mathbf{x} = (x_1, x_2, ..., x_N)^T$, together with corresponding real-valued targets: $\mathbf{t} = (t_1, t_2, ..., t_N)^T$.

Goal: Fit the data using a polynomial function of the form:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{j=0}^{M} w_j x^j.$$

Note: the polynomial function is a nonlinear function of x, but it is a linear function of the coefficients $\mathbf{w} \to \mathbf{Linear} \; \mathbf{Models}$.

Example: Polynomial Curve Fitting

• As for the least squares example: we can minimize the sum of the squares of the errors between the predictions $y(x_n, \mathbf{w})$ for each data point \mathbf{x}_n and the corresponding target values \mathbf{t}_n .

Loss function: sum-of-squared error function:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y(x_n, \mathbf{w}) - t_n)^2.$$

• Similar to the linear least squares: Minimizing sum-of-squared error function has a unique solution \mathbf{w}^* .

Probabilistic Perspective

- So far we saw that polynomial curve fitting can be expressed in terms of error minimization. We now view it from probabilistic perspective.
- Suppose that our model arose from a statistical model:

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon,$$

where ϵ is a random error having Gaussian distribution with zero mean, and is independent of **x**.

Thus we have:

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}),$$

where β is a precision parameter, corresponding to the inverse variance.

I will use probability distribution and probability density interchangeably. It should be obvious from the context.

Maximum Likelihood

If the data are assumed to be independently and identically distributed (i.i.d assumption), the likelihood function takes form:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{i=1}^{N} \mathcal{N}(t_n|y(\mathbf{x}_n, \mathbf{w}), \beta^{-1}).$$

It is often convenient to maximize the log of the likelihood function:

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} (y(\mathbf{x}_n, \mathbf{w}) - t_n)^2 + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi).$$

$$\beta E(\mathbf{w})$$

- Maximizing log-likelihood with respect to w (under the assumption of a Gaussian noise) is equivalent to minimizing the sum-of-squared error function.
- Determine \mathbf{w}_{ML} by maximizing log-likelihood. Then maximizing w.r.t. β : $\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n} (y(\mathbf{x}_n, \mathbf{w}_{ML}) t_n)^2.$

Predictive Distribution

Once we determined the parameters \mathbf{w} and β , we can make prediction for new values of \mathbf{x} :

$$p(t|\mathbf{x}, \mathbf{w}_{ML}, \beta_{ML}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}_{ML}), \beta_{ML}^{-1}).$$

Later we will consider Bayesian linear regression.

Bernoulli Distribution

• Consider a single binary random variable $x \in \{0,1\}$. For example, x can describe the outcome of flipping a coin:

Coin flipping: heads = 1, tails = 0.

• The probability of x=1 will be denoted by the parameter μ , so that:

$$p(x = 1|\mu) = \mu$$
 $0 \le \mu \le 1$.

• The probability distribution, known as Bernoulli distribution, can be written as:

$$\operatorname{Bern}(x|\mu) = \mu^{x} (1-\mu)^{1-x}$$

$$\mathbb{E}[x] = \mu$$

$$\operatorname{var}[x] = \mu(1-\mu)$$

Parameter Estimation

- ullet Suppose we observed a dataset $\mathcal{D} = \{x_1, ..., x_N\}$
- We can construct the likelihood function, which is a function of μ .

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

• Equivalently, we can maximize the log of the likelihood function:

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1-x_n) \ln(1-\mu)\}$$

• Note that the likelihood function depends on the N observations x_n only through the sum $\sum x_n$ Sufficient

Statistic

Parameter Estimation

ullet Suppose we observed a dataset $\mathcal{D} = \{x_1,...,x_N\}$

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1-x_n) \ln(1-\mu)\}$$

ullet Setting the derivative of the log-likelihood function w.r.t μ to zero, we obtain:

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n = \frac{m}{N}$$

where m is the number of heads.

Binomial Distribution

- We can also work out the distribution of the number m of observations of x=1 (e.g. the number of heads).
- The probability of observing m heads given N coin flips and a parameter μ is given by:

$$p(m \text{ heads}|N,\mu) =$$

$$Bin(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$

• The mean and variance can be easily derived as:

$$\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m|N,\mu) = N\mu$$
$$\operatorname{var}[m] \equiv \sum_{m=0}^{N} (m - \mathbb{E}[m])^{2} \operatorname{Bin}(m|N,\mu) = N\mu(1-\mu)$$

Example

• Histogram plot of the Binomial distribution as a function of m for N=10 and μ = 0.25.

Beta Distribution

• We can define a distribution over $\mu \in [0,1]$ (e.g. it can be used a prior over the parameter μ of the Bernoulli distribution).

Beta
$$(\mu|a,b)$$
 = $\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1}$
 $\mathbb{E}[\mu]$ = $\frac{a}{a+b}$
 $\operatorname{var}[\mu]$ = $\frac{ab}{(a+b)^2(a+b+1)}$

where the gamma function is defined as:

$$\Gamma(x) \equiv \int_0^\infty u^{x-1} e^{-u} du.$$

and ensures that the Beta distribution is normalized.

Beta Distribution

Multinomial Variables

- Consider a random variable that can take on one of K possible mutually exclusive states (e.g. roll of a dice).
- We will use so-called 1-of-K encoding scheme.
- If a random variable can take on K=6 states, and a particular observation of the variable corresponds to the state $x_3=1$, then **x** will be resented as:

$$\mathbf{x} = (0, 0, 1, 0, 0, 0)^{\mathrm{T}}$$

• If we denote the probability of $x_k=1$ by the parameter μ_k , then the distribution over \mathbf{x} is defined as:

$$p(\mathbf{x}|oldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{x_k} ~~orall k: \mu_k \geqslant 0 ~~ ext{and}~~ \sum_{k=1}^K \mu_k = 1$$

Multinomial Variables

 Multinomial distribution can be viewed as a generalization of Bernoulli distribution to more than two outcomes.

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

• It is easy to see that the distribution is normalized:

$$\sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu}) = \sum_{k=1}^{K} \mu_k = 1$$

and

$$\mathbb{E}[\mathbf{x}|\boldsymbol{\mu}] = \sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu})\mathbf{x} = (\mu_1, \dots, \mu_K)^{\mathrm{T}} = \boldsymbol{\mu}$$

Maximum Likelihood Estimation

- ullet Suppose we observed a dataset $\mathcal{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$
- ullet We can construct the likelihood function, which is a function of $\mu.$

$$p(\mathcal{D}|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{(\sum_n x_{nk})} = \prod_{k=1}^{K} \mu_k^{m_k}$$

• Note that the likelihood function depends on the N data points only though the following K quantities:

$$m_k = \sum x_{nk}, \quad k = 1, ..., K.$$

which represents the number of observations of $x_k=1$.

These are called the sufficient statistics for this distribution.

Maximum Likelihood Estimation

$$p(\mathcal{D}|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{(\sum_n x_{nk})} = \prod_{k=1}^{K} \mu_k^{m_k}$$

- To find a maximum likelihood solution for μ , we need to maximize the log-likelihood taking into account the constraint that $\sum_k \mu_k = 1$
- Forming the Lagrangian:

$$\sum_{k=1}^{K} m_k \ln \mu_k + \lambda \left(\sum_{k=1}^{K} \mu_k - 1 \right)$$

$$\mu_k = -m_k/\lambda$$
 $\mu_k^{\mathrm{ML}} = \frac{m_k}{N}$ $\lambda = -N$

which is the fraction of observations for which $x_k=1$.

Multinomial Distribution

• We can construct the joint distribution of the quantities $\{m_1, m_2, ..., m_k\}$ given the parameters μ and the total number N of observations:

$$\operatorname{Mult}(m_1, m_2, \dots, m_K | \boldsymbol{\mu}, N) = \binom{N}{m_1 m_2 \dots m_K} \prod_{k=1}^K \mu_k^{m_k}$$

$$\mathbb{E}[m_k] = N \mu_k$$

$$\operatorname{var}[m_k] = N \mu_k (1 - \mu_k)$$

$$\operatorname{cov}[m_j m_k] = -N \mu_j \mu_k$$

- The normalization coefficient is the number of ways of partitioning N objects into K groups of size $m_1, m_2, ..., m_K$.
- Note that

$$\sum_{k} m_k = N.$$

Dirichlet Distribution

• Consider a distribution over μ_k , subject to constraints:

$$orall k: \mu_k \geqslant 0$$
 and $\sum_{k=1}^K \mu_k = 1$

• The Dirichlet distribution is defined as:

$$Dir(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1}$$

$$\alpha_0 = \sum_{k=1}^K \alpha_k$$

where $\alpha_1,...,\alpha_k$ are the parameters of the distribution, and $\Gamma(\mathbf{x})$ is the gamma function.

• The Dirichlet distribution is confined to a simplex as a consequence of the constraints.

Dirichlet Distribution

• Plots of the Dirichlet distribution over three variables.

Gaussian Univariate Distribution

• In the case of a single variable x, the Gaussian distribution takes form:

The Gaussian distribution satisfies:

$$\mathcal{N}(x|\mu, \sigma^2) > 0$$
$$\int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) dx = 1$$

Multivariate Gaussian Distribution

• For a D-dimensional vector **x**, the Gaussian distribution takes form:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

which is governed by two parameters:

- μ is a D-dimensional mean vector.
- Σ is a D by D covariance matrix.

and $|\Sigma|$ denotes the determinant of Σ .

 Note that the covariance matrix is a symmetric positive definite matrix.

Central Limit Theorem

- The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.
- Consider N variables, each of which has a uniform distribution over the interval [0,1].
- Let us look at the distribution over the mean:

$$\frac{x_1 + x_2 + \dots + x_N}{N}$$

• As N increases, the distribution tends towards a Gaussian distribution.

• For a D-dimensional vector **x**, the Gaussian distribution takes form:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

• Let us analyze the functional dependence of the Gaussian on **x** through the quadratic form:

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

• Here Δ is known as Mahalanobis distance.

• The Gaussian distribution will be constant on surfaces in x-space for which Δ is constant.

• For a D-dimensional vector **x**, the Gaussian distribution takes form:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

• Consider the eigenvalue equation for the covariance matrix:

$$\Sigma \mathbf{u}_i = \lambda_i \mathbf{u}_i$$
, where $i = 1, ..., D$.

• The covariance can be expressed in terms of its eigenvectors:

$$\mathbf{\Sigma} = \sum_{i=1}^{D} \lambda_i \mathbf{u}_i \mathbf{u}_i^T.$$

The inverse of the covariance:

$$\mathbf{\Sigma}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$

• For a D-dimensional vector **x**, the Gaussian distribution takes form:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

• Remember:

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \qquad \mathbf{\Sigma}^{-1} = \sum_{i=1}^D \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$

• Hence:

$$\Delta^2 = \sum_{i=1}^D rac{y_i^2}{\lambda_i} \quad y_i = \mathbf{u}_i^{\mathrm{T}}(\mathbf{x} - oldsymbol{\mu})$$

 \bullet We can interpret $\{y_i\}$ as a new coordinate system defined by the orthonormal vectors u_i that are shifted and rotated .

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
$$\Delta^{2} = \sum_{i=1}^{D} \frac{y_{i}^{2}}{\lambda_{i}} \qquad y_{i} = \mathbf{u}_{i}^{\mathrm{T}} (\mathbf{x} - \boldsymbol{\mu})$$

- Red curve: surface of constant probability density
- The axis are defined by the eigenvectors u_i of the covariance matrix with corresponding eigenvalues.

• The expectation of **x** under the Gaussian distribution:

$$\mathbb{E}[\mathbf{x}] = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \int \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\} \mathbf{x} \, \mathrm{d}\mathbf{x}$$

$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \int \exp\left\{-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{z}\right\} (\mathbf{z} + \boldsymbol{\mu}) \, \mathrm{d}\mathbf{z}$$
The term in z in the factor $(\mathbf{z} + \boldsymbol{\mu})$ will vanish by symmetry.

Fig. 1

$$\mathbb{E}[\mathbf{x}] = oldsymbol{\mu}$$

• The second order moments of the Gaussian distribution:

$$\mathbb{E}[\mathbf{x}\mathbf{x}^{\mathrm{T}}] = \boldsymbol{\mu}\boldsymbol{\mu}^{\mathrm{T}} + \boldsymbol{\Sigma}$$

• The covariance is given by:

$$ext{cov}[\mathbf{x}] = \mathbb{E}\left[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\mathrm{T}}\right] = \mathbf{\Sigma}$$
 $\mathbb{E}[\mathbf{x}] = \mathbf{\mu}$

ullet Because the parameter matrix Σ governs the covariance of x under the Gaussian distribution, it is called the covariance matrix.

• Contours of constant probability density:

Partitioned Gaussian Distribution

- Consider a D-dimensional Gaussian distribution: $p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Let us partition x into two disjoint subsets x_a and x_b:

$$\mathbf{x} = egin{pmatrix} \mathbf{x}_a \ \mathbf{x}_b \end{pmatrix} \qquad \qquad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix} \qquad \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}$$

• In many situations, it will be more convenient to work with the precision matrix (inverse of the covariance matrix):

$$oldsymbol{\Lambda} \equiv oldsymbol{\Sigma}^{-1} \qquad \qquad oldsymbol{\Lambda} = egin{pmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{pmatrix}$$

ullet Note that $arLambda_{aa}$ is not given by the inverse of $arLambda_{aa}$.

Conditional Distribution

• It turns out that the conditional distribution is also a Gaussian distribution:

$$p(\mathbf{x}_a|\mathbf{x}_b) = \mathcal{N}(\mathbf{x}_a|\boldsymbol{\mu}_{a|b}, \boldsymbol{\Sigma}_{a|b})$$

Covariance does not depend on x_h . $oldsymbol{\Sigma}_{a|b} = oldsymbol{\Lambda}_{aa}^{-1} = oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab} oldsymbol{\Sigma}_{ba}^{-1} oldsymbol{\Sigma}_{ba}$ $oldsymbol{\mu}_{a|b} = oldsymbol{\Sigma}_{a|b} \left\{ oldsymbol{\Lambda}_{aa} oldsymbol{\mu}_{a} - oldsymbol{\Lambda}_{ab} (\mathbf{x}_{b} - oldsymbol{\mu}_{b})
ight\}$ $= \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (\mathbf{x}_b - \boldsymbol{\mu}_b)$ $= \boldsymbol{\mu}_a + \boldsymbol{\Sigma}_{ab} \boldsymbol{\Sigma}_{bb}^{-1} (\mathbf{x}_b - \boldsymbol{\mu}_b)$ Linear function of x_h .

Marginal Distribution

• It turns out that the marginal distribution is also a Gaussian distribution:

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b$$
$$= \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$

• For a marginal distribution, the mean and covariance are most simply expressed in terms of partitioned covariance matrix.

$$\mathbf{x} = egin{pmatrix} \mathbf{x}_a \ \mathbf{x}_b \end{pmatrix} \qquad \qquad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix} \qquad \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}$$

Conditional and Marginal Distributions

- ullet Suppose we observed i.i.d data $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}.$
- We can construct the log-likelihood function, which is a function of μ and Σ :

$$\ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{ND}{2} \ln(2\pi) - \frac{N}{2} \ln|\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu})$$

• Note that the likelihood function depends on the N data points only though the following sums:

Sufficient Statistics

$$\sum_{n=1}^{N} \mathbf{x}_n \qquad \qquad \sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}}$$

• To find a maximum likelihood estimate of the mean, we set the derivative of the log-likelihood function to zero:

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ln p(\mathbf{X}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}) = 0$$

and solve to obtain:

$$oldsymbol{\mu}_{\mathrm{ML}} = rac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}.$$

• Similarly, we can find the ML estimate of Σ :

$$\mathbf{\Sigma}_{\mathrm{ML}} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathrm{T}}.$$

 Evaluating the expectation of the ML estimates under the true distribution, we obtain:

$$\mathbb{E}[oldsymbol{\mu}_{ ext{ML}}] = oldsymbol{\mu}$$
 $\mathbb{E}[oldsymbol{\Sigma}_{ ext{ML}}] = rac{N-1}{N}oldsymbol{\Sigma}.$ Biased estimate

- ullet Note that the maximum likelihood estimate of Σ is biased.
- We can correct the bias by defining a different estimator:

$$\widetilde{\Sigma} = \frac{1}{N-1} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}}) (\mathbf{x}_n - \boldsymbol{\mu}_{\mathrm{ML}})^{\mathrm{T}}.$$

Sequential Estimation

- Sequential estimation allows data points to be processed one at a time and then discarded. Important for on-line applications.
- Let us consider the contribution of the Nth data point x_n:

$$\begin{array}{lll} \boldsymbol{\mu}_{\mathrm{ML}}^{(N)} & = & \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \\ & = & \frac{1}{N} \mathbf{x}_{N} + \frac{1}{N} \sum_{n=1}^{N-1} \mathbf{x}_{n} \\ & = & \frac{1}{N} \mathbf{x}_{N} + \frac{N-1}{N} \boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)} \\ & = & \boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)} + \frac{1}{N} (\mathbf{x}_{N} - \boldsymbol{\mu}_{\mathrm{ML}}^{(N-1)}) & \text{the only reason} \\ & & \text{we do this is to release} \\ & & \text{correction given } \mathbf{x}_{\mathrm{N}} \\ & & \text{correction weight} \\ & & \text{old estimate} \end{array}$$

Consider Student's t-Distribution

$$\begin{split} p(x|\mu,a,b) &= \int_0^\infty \mathcal{N}(x|\mu,\tau^{-1}) \mathrm{Gam}(\tau|a,b) \,\mathrm{d}\tau \\ &= \int_0^\infty \mathcal{N}\left(x|\mu,(\eta\lambda)^{-1}\right) \mathrm{Gam}(\eta|\nu/2,\nu/2) \,\mathrm{d}\eta \\ &= \frac{\Gamma(\nu/2+1/2)}{\Gamma(\nu/2)} \left(\frac{\lambda}{\pi\nu}\right)^{1/2} \left[1 + \frac{\lambda(x-\mu)^2}{\nu}\right]^{-\nu/2-1/2} \\ &= \mathrm{St}(x|\mu,\lambda,\nu) \end{split}$$
 Infinite mixture of Gaussians

where

$$\lambda = a/b$$
 $\eta = \tau b/a$ $\nu = 2a$.

Sometimes called the precision parameter.

Degrees of freedom

- Setting ν = 1 recovers Cauchy distribution
- The limit $\nu \to \infty$ corresponds to a Gaussian distribution.

• Robustness to outliners: Gaussian vs. t-Distribution.

• The multivariate extension of the t-Distribution:

$$\operatorname{St}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Lambda},\nu) = \int_0^\infty \mathcal{N}(\mathbf{x}|\boldsymbol{\mu},(\eta\boldsymbol{\Lambda})^{-1})\operatorname{Gam}(\eta|\nu/2,\nu/2)\,\mathrm{d}\eta$$
$$= \frac{\Gamma(D/2+\nu/2)}{\Gamma(\nu/2)} \frac{|\boldsymbol{\Lambda}|^{1/2}}{(\pi\nu)^{D/2}} \left[1 + \frac{\Delta^2}{\nu}\right]^{-D/2-\nu/2}$$

where $\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda} (\mathbf{x} - \boldsymbol{\mu})$

• Properties:

$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}, \qquad \text{if } \nu > 1$$
 $\operatorname{cov}[\mathbf{x}] = \frac{\nu}{(\nu - 2)} \boldsymbol{\Lambda}^{-1}, \quad \text{if } \nu > 2$
 $\operatorname{mode}[\mathbf{x}] = \boldsymbol{\mu}$

Mixture of Gaussians

- When modeling real-world data, Gaussian assumption may not be appropriate.
- Consider the following example: Old Faithful Dataset

Mixture of Gaussians

• We can combine simple models into a complex model by defining a superposition of K Gaussian densities of the form:

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \quad p(x)$$
 Component
$$\mathbf{Mixing\ coefficient}$$

$$\forall k: \pi_k \geqslant 0 \qquad \sum_{k=1}^K \pi_k = 1$$

- Note that each Gaussian component has its own mean μ_k and covariance Σ_k . The parameters π_k are called mixing coefficients.
- Mote generally, mixture models can comprise linear combinations of other distributions.

Mixture of Gaussians

• Illustration of a mixture of 3 Gaussians in a 2-dimensional space:

(a) Contours of constant density of each of the mixture components, along with the mixing coefficients

(b) Contours of marginal probability density $p(\mathbf{x}) = \sum \pi_k \mathcal{N}(\mathbf{x}|m{\mu}_k, m{\Sigma}_k)$

(c) A surface plot of the distribution p(x).

• Given a dataset D, we can determine model parameters μ_k . Σ_k , π_k by maximizing the log-likelihood function:

$$\ln p(\mathbf{X}|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

Log of a sum: no closed form solution

• **Solution**: use standard, iterative, numeric optimization methods or the Expectation Maximization algorithm.

The Exponential Family

• The exponential family of distributions over **x** is defined to be a set of destructions for the form:

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right\}$$

where

- η is the vector of natural parameters
- u(x) is the vector of sufficient statistics
- The function $g(\eta)$ can be interpreted the coefficient that ensures that the distribution $p(\mathbf{x} \mid \eta)$ is normalized:

$$g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} d\mathbf{x} = 1$$

Bernoulli Distribution

• The Bernoulli distribution is a member of the exponential family:

$$\begin{split} p(x|\mu) &= \operatorname{Bern}(x|\mu) = \mu^x (1-\mu)^{1-x} \\ &= \exp\left\{x \ln \mu + (1-x) \ln(1-\mu)\right\} \\ &= \left(1-\mu\right) \exp\left\{\ln \left(\frac{\mu}{1-\mu}\right) x\right\} \quad \text{rewrite} \\ &= \inf\left\{\operatorname{such} \operatorname{form} \left(\frac{\mu}{1-\mu}\right) x\right\} \end{split}$$

• Comparing with the general form of the exponential family:

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\}$$

we see that

$$\eta = \ln\left(rac{\mu}{1-\mu}
ight)$$
 and so $\mu = \sigma(\eta) = rac{1}{1+\exp(-\eta)}.$ Logistic sigmoid

Bernoulli Distribution

• The Bernoulli distribution is a member of the exponential family:

$$p(x|\mu) = \operatorname{Bern}(x|\mu) = \mu^{x} (1 - \mu)^{1 - x}$$

$$= \exp \left\{ x \ln \mu + (1 - x) \ln(1 - \mu) \right\}$$

$$= (1 - \mu) \exp \left\{ \ln \left(\frac{\mu}{1 - \mu} \right) x \right\}$$

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x}) g(\boldsymbol{\eta}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\}$$

• The Bernoulli distribution can therefore be written as:

where
$$p(x|\eta)=\sigma(-\eta)\exp(\eta x)$$
 where
$$u(x)=x$$

$$h(x)=1$$

$$g(\eta)=1-\sigma(\eta)=\sigma(-\eta).$$

generalization of Bern (2-value) Multinomial Distribution (k-value)

• The Multinomial distribution is a member of the exponential family:

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp\left\{\sum_{k=1}^{M} x_k \ln \mu_k\right\} = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right)$$
 where $\mathbf{x} = (x_1, \dots, x_M)^{\mathrm{T}}$ $\boldsymbol{\eta} = (\eta_1, \dots, \eta_M)^{\mathrm{T}}$ and
$$\eta_k = \ln \mu_k$$
 NOTE: The parameters η_k are not independent since the corresponding μ_k must satisfy
$$h(\mathbf{x}) = 1$$

$$g(\boldsymbol{\eta}) = 1.$$

NOTE: The parameters η_k are not independent since the corresponding μ_k must satisfy M $\sum_{k=1}^{m} \mu_k = 1.$

 In some cases it will be convenient to remove the constraint by expressing the distribution over the M-1 parameters.

Multinomial Distribution

• The Multinomial distribution is a member of the exponential family:

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp\left\{\sum_{k=1}^{M} x_k \ln \mu_k\right\} = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right)$$

- Let $\mu_M = 1 \sum_{k=1}^{M-1} \mu_k$
- This leads to:

$$\eta_k = \ln \left(rac{\mu_k}{1 - \sum_{j=1}^{M-1} \mu_j}
ight) \ \ ext{and} \ \ \mu_k = rac{\exp(\eta_k)}{1 + \sum_{j=1}^{M-1} \exp(\eta_j)}.$$

Softmax function

- Here the parameters η_k are independent.
- Note that:

$$0 \leqslant \mu_k \leqslant 1$$
 and $\sum_{k=1}^{M-1} \mu_k \leqslant 1$.

Multinomial Distribution

• The Multinomial distribution is a member of the exponential family:

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp\left\{\sum_{k=1}^{M} x_k \ln \mu_k\right\} = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right)$$

• The Multinomial distribution can therefore be written as:

$$p(\mathbf{x}|\boldsymbol{\mu}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right)$$

where

$$\boldsymbol{\eta} = (\eta_1, \dots, \eta_{M-1}, 0)^{\mathrm{T}}$$

 $\mathbf{u}(\mathbf{x}) = \mathbf{x}$

$$h(\mathbf{x}) = 1$$

$$g(\boldsymbol{\eta}) = \left(1 + \sum_{k=1}^{M-1} \exp(\eta_k)\right)^{-1}.$$

Gaussian Distribution (not surprisingly)

The Gaussian distribution can be written as:

$$p(x|\mu, \sigma^{2}) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right\}$$

$$= \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}x^{2} + \frac{\mu}{\sigma^{2}}x - \frac{1}{2\sigma^{2}}\mu^{2}\right\}$$

$$= h(x)g(\eta) \exp\left\{\eta^{T}\mathbf{u}(x)\right\}$$

where

$$\begin{split} \boldsymbol{\eta} &= \begin{pmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix} \qquad h(\mathbf{x}) = (2\pi)^{-1/2} \\ \mathbf{u}(x) &= \begin{pmatrix} x \\ x^2 \end{pmatrix} \qquad g(\boldsymbol{\eta}) = (-2\eta_2)^{1/2} \exp\left(\frac{\eta_1^2}{4\eta_2}\right). \end{split}$$

ML for the Exponential Family

• Remember the Exponential Family:

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right\}$$

• From the definition of the normalizer $g(\eta)$:

$$g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} d\mathbf{x} = 1$$

• We can take a derivative w.r.t η :

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right\} d\mathbf{x} + g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d\mathbf{x} = 0$$

$$1/g(\boldsymbol{\eta})$$

$$\mathbb{E}[\mathbf{u}(\mathbf{x})]$$

Thus

$$-\nabla \ln g(\boldsymbol{\eta}) = \mathbb{E}[\mathbf{u}(\mathbf{x})]$$

ML for the Exponential Family

• Remember the Exponential Family:

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right\}$$

• We can take a derivative w.r.t η :

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right\} d\mathbf{x} + g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d\mathbf{x} = 0$$

$$1/g(\boldsymbol{\eta})$$

$$\mathbb{E}[\mathbf{u}(\mathbf{x})]$$

• Thus

$$-\nabla \ln g(\boldsymbol{\eta}) = \mathbb{E}[\mathbf{u}(\mathbf{x})]$$

• Note that the covariance of $\mathbf{u}(\mathbf{x})$ can be expressed in terms of the second derivative of $\mathbf{g}(\eta)$, and similarly for the higher moments.

ML for the Exponential Family

- ullet Suppose we observed i.i.d data $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}.$
- We can construct the log-likelihood function, which is a function of the natural parameter η .

$$p(\mathbf{X}|\boldsymbol{\eta}) = \left(\prod_{n=1}^{N} h(\mathbf{x}_n)\right) g(\boldsymbol{\eta})^N \exp\left\{\boldsymbol{\eta}^T \sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n)\right\}.$$

Therefore we have

$$-\nabla \ln g(\boldsymbol{\eta}_{\mathrm{ML}}) = \underbrace{\frac{1}{N} \sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n)}_{}$$

Sufficient Statistic

 $p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right\}$