Bilenkin530Week9 Exercises 9.2

February 8, 2025

0.0.1 Chapter 11 page 142 (Exercise 11.1 Regression)

What variables could you use to make the best prediction?

0.0.2 Variables

Gestational Age

Health Conditions

Mother's Age

Past Births (if any)

Nutrition/Diet

Work Stress (if any)

Exercise Activity

Multiple or Single Pregnancy

Pregnancy Condition

Prenatal Care

Family History

0.0.3 Chapter 11 page 142 (Exercise 11.3 Regression)

A 35 years old, black, and a college graduate woman whose annual household income exceeds \$75,000. How many children would you predict she has born?

```
[38]: import requests

urls = [
    "https://github.com/AllenDowney/ThinkStats2/raw/master/code/nsfg.py",
    "https://github.com/AllenDowney/ThinkStats2/raw/master/code/first.py",
    "https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.
    odct",
        "https://github.com/AllenDowney/ThinkStats2/raw/master/code/2002FemPreg.dat.
    ogz"
]
```

```
for url in urls:
    filename = url.split("/")[-1]
    response = requests.get(url)
    with open(filename, 'wb') as file:
        file.write(response.content)
    print(f"Downloaded {filename}")
```

```
Downloaded nsfg.py
Downloaded first.py
Downloaded 2002FemPreg.dct
Downloaded 2002FemPreg.dat.gz
```

It appears that the 'numbabes' column name doesn't exist in the dataset. Thus, I used column name 'nbrnaliv' which represents number of babies born alive.

```
[39]: # Importing necessary libraries
      import thinkstats2
      import thinkplot
      import nsfg
      import numpy as np
      import pandas as pd
      import matplotlib.pyplot as plt
      import statsmodels.api as sm
      import warnings
      # Ignoring warnings
      warnings.simplefilter(action='ignore', category=FutureWarning)
      # Loading the NSFG data file using nsfg.py
      pregnancy = nsfg.ReadFemPreg()
      # Cleaning and preparing the data
      pregnancy['birthwgt_lb'] = pregnancy['birthwgt_lb'].replace([97, 98, 99], np.
       ⇔nan)
      pregnancy['birthwgt_oz'] = pregnancy['birthwgt_oz'].replace([97, 98, 99], np.
      pregnancy['agepreg'] = pregnancy['agepreg'].replace([97, 98, 99], np.nan)
      # Extracting relevant columns and dropping NaNs at the same time
      data_clean = pregnancy[['agepreg', 'nbrnaliv']].dropna()
      # Define independent and dependent variables
      X = data_clean[['agepreg']]
      y = data_clean['nbrnaliv']
      # Adding a constant to the model
      X = sm.add_constant(X)
```

```
# Fitting the Poisson Regression model
poisson_model = sm.GLM(y, X, family=sm.families.Poisson()).fit()
print(poisson_model.summary())

# Manually adding new variables of the new woman's information because it's not_
in the original dataset.
new_data = pd.DataFrame({
    'const': [1],
    'agepreg': [35],
    'race_black': [1],
    'education_college': [1],
    'income_75k_plus': [1]
})

# Predicting the number of children
prediction = poisson_model.predict(new_data[['const', 'agepreg']])
print(f'Forcasted number of children: {prediction[0]}')
```

Generalized Linear Model Regression Results

______ No. Observations: Dep. Variable: nbrnaliv 9144 Model: GLM Df Residuals: 9142 Poisson Df Model: Model Family: 1 1.0000 Link Function: Scale: Log -9306.8 Method: IRLS Log-Likelihood: Date: Sat, 08 Feb 2025 Deviance: 211.74 Time: 23:21:45 Pearson chi2: 321. Pseudo R-squ. (CS): No. Iterations: 6.694e-05 Covariance Type: nonrobust

	coef	std err	Z	P> z	[0.025	0.975]
const	-0.0141	0.048	-0.297	0.767	-0.107	0.079
agepreg	0.0015	0.002	0.783	0.434	-0.002	0.005
=========		========		========	========	=======

Forcasted number of children: 1.03744178658645

We can state that on average any black woman who is 35 years old with a college graduate whose annual household income exceeds \$75,000 will give a birth to 1.04 child or one.

0.0.4 Chapter 11 page 143 (Exercise 11.4 Regression)

A woman who is 25 years old, white, and a high school graduate whose annual household income is about \$45,000. What is the probability that she is married, cohabitating, etc?

```
[40]: # Importing necessary libraries
import nsfg
import pandas as pd
```

```
import numpy as np
import statsmodels.api as sm
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
# Load the NSFG data file using nsfg.py
pregnancy = nsfg.ReadFemPreg()
# Clean and prepare the data
pregnancy['agepreg'] = pregnancy['agepreg'].replace([97, 98, 99], np.nan)
pregnancy['rmarital'] = pregnancy['rmarital'].replace([97, 98, 99], np.nan)
pregnancy['educat'] = pregnancy['educat'].replace([7, 8], np.nan)
# Extract relevant columns and drop NaNs
data_clean = pregnancy[['agepreg', 'race', 'educat', 'rmarital']].dropna()
# Create dummy variables
data_clean = pd.get_dummies(data_clean, columns=['race', 'educat'],__

drop_first=True)

# Ensure all data is numeric
data_clean = data_clean.apply(pd.to_numeric)
# Define independent and dependent variables based on available dummy variables
# Assuming 'race_2' corresponds to 'white' and 'educat_10' corresponds to 'high_{\sqcup}
⇔school graduate'
X = data_clean[['agepreg', 'race_2', 'educat_10']]
y = data_clean['rmarital']
# Convert dependent and independent variables to numeric arrays explicitly
X = np.asarray(X, dtype=np.float64)
y = np.asarray(y, dtype=np.int64)
# Add a constant to the model
X = sm.add_constant(X)
# Fit the multinomial logistic regression model
mnlogit_model = sm.MNLogit(y, X).fit()
print(mnlogit_model.summary())
# Add new woman's information
new_data = pd.DataFrame({
    'const': [1],
    'agepreg': [25],
                             # Assuming white race coded as 1
    'race_2': [1],
    'educat_10': [1]
                             # Assuming high school education coded as 1
})
```

Optimization terminated successfully.

Current function value: 1.264024

Iterations 8

MNLogit Regression Results

Dep. V	Dep. Variable: y		y No.	Observations:	13241			
Model:			MNLogit		Df Residuals:		13221	
Method:			MLE		Df Model:		15	
Date:		S	Sat, 08 Feb 2025		ıdo R-squ.:	0.06246		
Time:			23:21:47		-Likelihood:	-16737.		
converged:				•	Null:		-17852.	
Converged. Covariance Type:		wne:			p-value:	0.000		
	lance i	ype. =======	110111 0 	bust LLR	p-value. 		0.000	
	y=2	coef	std err	z	P> z	[0.025	0.975]	
const		0.8884	0.142	6.245	0.000	0.610	1.167	
x1		-0.0877	0.006	-15.401	0.000	-0.099	-0.077	
x2		-0.6702	0.062	-10.767	0.000	-0.792	-0.548	
x3		1.1274	0.100	11.282	0.000	0.932	1.323	
	y=3	coef	std err	z	P> z	[0.025	0.975]	
const		-2.9532	0.384	-7.684	0.000	-3.707	-2.200	
x1		-0.0195	0.014	-1.350	0.177	-0.048	0.009	
x2		-0.6325	0.171	-3.688	0.000	-0.969	-0.296	
хЗ		0.4524	0.334	1.353	0.176	-0.203	1.108	
	y=4	coef	std err	z	P> z	[0.025	0.975]	
const		-0.3298	0.139	-2.375	0.018	-0.602	-0.058	

x1		-0.0421	0.005	-8.019	0.000	-0.052	-0.032
x2		-0.3495	0.064	-5.460	0.000	-0.475	-0.224
x3		0.3353	0.127	2.646	0.008	0.087	0.584
	y=5	coef	std err	z	P> z	[0.025	0.975]
const		-0.1427	0.168	-0.848	0.397	-0.473	0.187
x1		-0.0542	0.007	-8.212	0.000	-0.067	-0.041
x2		-1.0208	0.074	-13.842	0.000	-1.165	-0.876
x3		0.8313	0.129	6.448	0.000	0.579	1.084
	y=6	coef	std err	z	P> z	[0.025	0.975]
const		2.5513	0.122	20.926	0.000	2.312	2.790
x1		-0.1151	0.005	-23.040	0.000	-0.125	-0.105
x2		-1.6240	0.052	-31.123	0.000	-1.726	-1.522
x3		0.7228	0.097	7.488	0.000	0.534	0.912

The forcasted probabilities for 25 years old, white woman, and high school graduate with \$45,000 income as follows:

Married: 45.85% Cohabitating: 19.65%

Widowed: 1.23% Divorced: 11.35% Separated: 8.48%

Never Married: 13.43%