Package 'corncob'

January 10, 2024

Beta-Binomial

Version 0.4.1

Description Statistical modeling for correlated count data using the beta-binomial distribution, described in Martin et al. (2020) <doi:10.1214/19-AOAS1283>. It allows for both mean and overdispersion covariates.

Title Count Regression for Correlated Observations with the

URL https://github.com/statdivlab/corncob,
 https://statdivlab.github.io/corncob/

BugReports https://github.com/statdivlab/corncob/issues

Depends R (>= 3.2)

License GPL (>= 2)

Imports stats, utils, VGAM, numDeriv, ggplot2, trust, dplyr, magrittr, detectseparation, scales, rlang

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests knitr, rmarkdown, testthat, covr, limma, slam, R.rsp, optimx, phyloseq

VignetteBuilder knitr

NeedsCompilation no

Author Bryan D Martin [aut],

Daniela Witten [aut],

Sarah Teichman [ctb],

Amy D Willis [aut, cre],

Thomas W Yee [ctb] (VGAM library),

Xiangjie Xue [ctb] (VGAM library)

Maintainer Amy D Willis <adwillis@uw.edu>

Repository CRAN

Date/Publication 2024-01-10 21:03:05 UTC

R topics documented:

corncob-package	3
bbdml	3
checkNested	5
clean_taxa_names	6
contrastsTest	6
convert_phylo	8
coth	9
dbetabin	9
dbetabinom_cts	10
dbetabin_neg	11
differentialTest	11
doBoot	14
fishZ	15
genInits	15
getRestrictionTerms	16
gr_full	17
HDIbetabinom	18
hessian	18
	19
ibd_phylo_otu	
ibd_phylo_sample	20
ibd_phylo_taxa	20
invfishZ	21
invlogit	21
logit	22
Irtest	22
objfun	23
otu_to_taxonomy	24
pbLRT	24
pbRao	25
pbWald	26
plot.bbdml	26
plot.differentialTest	28
print.bbdml	29
print.differentialTest	29
print.summary.bbdml	30
qbetabinom	31
raotest	32
sandSE	32
sand_vcov	33
score	34
simulate.bbdml	34
soil_phylo_otu	35
soil_phylo_sample	36
soil_phylo_taxa	36
soil_phylum_contrasts_otu	37
soil nhylum contrasts sample	38

corncob-package 3

corn	cob-package	Corne	ob	ра	cka	ge	do	си	тe	ent	ati	ion	ı.									
Index																					4	5
	waldchisq waldchisq_test waldt warn_phyloseq .	 													 					 	 4.	4
	soil_phylum_small soil_phylum_small soil_phylum_small summary.bbdml .	_otu1 . _sample					 				 				 	 			 	 	 39	1

Description

Corncob provides methods for estimating and plotting count data. Specifically, corncob is designed to account for the challenges of modeling sequencing data from microbial abundance studies.

Details

For details on the model implemented in this package, see Martin et al. (2020) <doi:10.1214/19-AOAS1283>.

The development version of the package will be maintained on https://github.com/statdivlab/corncob.

Value

No return value. Created for documentation.

bbdml

Maximum Likelihood for the Beta-binomial Distribution

Description

Maximum Likelihood for the Beta-binomial Distribution

```
bbdml(
  formula,
  phi.formula,
  data,
  link = "logit",
  phi.link = "logit",
  method = "trust",
```

4 bbdml

```
control = list(maxit = 1000, reltol = 1e-14),
numerical = FALSE,
nstart = 1,
inits = NULL,
allow_noninteger = FALSE,
robust = FALSE,
...
)
```

Arguments

formula an object of class formula: a symbolic description of the model to be fitted to the abundance phi.formula an object of class formula without the response: a symbolic description of the model to be fitted to the dispersion a data frame or phyloseq object containing the variables in the models data link link function for abundance covariates, defaults to "logit" phi.link link function for dispersion covariates, defaults to "logit" optimization method, defaults to "trust", or see optimr for other options method control optimization control parameters (see optimr) Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian numerical (not recommended). Integer. Defaults to 1. Number of starts for optimization. nstart inits Optional initializations as rows of a matrix. Defaults to NULL. allow_noninteger Boolean. Defaults to FALSE. Should noninteger W's and M's be allowed? This behavior was not permitted prior to v4.1, needs to be explicitly allowed. Should robust standard errors be returned? If not, model-based standard arras robust are used. Logical, defaults to FALSE.

Optional additional arguments for optimr or trust

Value

. . .

An object of class bbdml.

Examples

```
# data frame example
data(soil_phylum_small_otu1)
bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)

# phyloseq example (only run this if you have phyloseq installed)
## Not run:
data(soil_phylum_small_sample)
```

checkNested 5

```
data(soil_phylum_small_otu)
data_phylo <- phyloseq::phyloseq(phyloseq::sample_data(soil_phylum_small_sample),
phyloseq::otu_table(soil_phylum_small_otu, taxa_are_rows = TRUE))
bbdml(formula = Proteobacteria ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = data_phylo)
## End(Not run)</pre>
```

checkNested

Check for nested models

Description

Check for nested models

Usage

```
checkNested(mod, mod_null)
```

Arguments

mod an object of class bbdml mod_null an object of class bbdml

Value

TRUE if mod_null is nested within mod, otherwise it throws an error.

Examples

```
data(soil_phylum_small_otu1)
mod1 <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)

mod2 <- bbdml(formula = cbind(W, M - W) ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small_otu1)

checkNested(mod1, mod2)</pre>
```

6 contrastsTest

clean_taxa_names

Rename taxa

Description

Renames taxa to have short human-readable names

Usage

```
clean_taxa_names(x, name = "OTU")
```

Arguments

x Object of class phyloseq

name

Character, defaults to "OTU". Optional. String to use in every taxa name.

Details

The original taxa names are saved as the original_names attribute. See the example for an example of how to access the original names.

Value

Object of class phyloseq, with taxa renamed (defaults to OTU1, OTU2, ...), with the original taxa names saved as an attribute.

contrastsTest

Identify differentially-abundant and differentially-variable taxa using contrasts

Description

Identify differentially-abundant and differentially-variable taxa using contrasts

```
contrastsTest(
  formula,
  phi.formula,
  contrasts_DA = NULL,
  contrasts_DV = NULL,
  data,
  link = "logit",
  phi.link = "logit",
  sample_data = NULL,
  taxa_are_rows = TRUE,
```

contrastsTest 7

```
filter_discriminant = TRUE,
fdr_cutoff = 0.05,
fdr = "fdr",
inits = NULL,
try_only = NULL,
...
)
```

Arguments

formula	an object of class formula without the response: a symbolic description of the model to be fitted to the abundance
phi.formula	an object of class formula without the response: a symbolic description of the model to be fitted to the dispersion
contrasts_DA	List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within formula. Note that this is only available with "Wald" value for test. Must include at least one of contrasts_DA or contrasts_DV.
contrasts_DV	List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within phi.formula. Note that this is only available with "Wald" value for test. Must include at least one of contrasts_DA or contrasts_DV.
data	a data frame containing the OTU table, or phyloseq object containing the variables in the models
link	link function for abundance covariates, defaults to "logit"
phi.link	link function for dispersion covariates, defaults to "logit"
sample_data	Data frame or matrix. Defaults to NULL. If data is a data frame or matrix, this must be included as covariates/sample data.
taxa_are_rows	Boolean. Optional. If data is a data frame or matrix, this indicates whether taxa are rows. Defaults to TRUE.
filter_discrimi	
	Boolean. Defaults to TRUE. If FALSE, discriminant taxa will not be filtered out.
fdr_cutoff	Integer. Defaults to 0.05. Desired type 1 error rate
fdr	Character. Defaults to "fdr". False discovery rate control method, see p. adjust for more options.
inits	Optional initializations for model fit using formula and phi. formula as rows of a matrix. Defaults to NULL.
try_only	Optional numeric. Will try only the try_only taxa, specified either via numeric input or character taxa names. Useful for speed when troubleshooting. Defaults to NULL, testing all taxa.
	Optional additional arguments for bbdml

Details

This function uses contrast matrices to test for differential abundance and differential variability using a Wald-type chi-squared test. To use a formula implementation, see differentialTest.

8 convert_phylo

Value

An object of class contrastsTest. List with elements p containing the p-values for each contrast, p_fdr containing the p-values after false discovery rate control, significant_taxa containing the taxa names of the statistically significant taxa, contrasts_DA containing the contrast matrix for parameters associated with the abundance, contrasts_DV containing the contrast matrix for parameters associated with the dispersion, discriminant_taxa_DA containing the taxa for which at least one covariate associated with the abundance was perfectly discriminant, discriminant_taxa_DV containing the taxa for which at least one covariate associated with the dispersion was perfectly discriminant, and data containing the data used to fit the models.

Examples

```
# data frame example
data(soil_phylum_contrasts_sample)
data(soil_phylum_contrasts_otu)
da_analysis <- contrastsTest(formula = ~ DayAmdmt,</pre>
                              phi.formula = ~ DayAmdmt,
                              contrasts_DA = list("DayAmdmt21 - DayAmdmt11",
                                                   "DayAmdmt22 - DayAmdmt21"),
                              data = soil_phylum_contrasts_otu,
                              sample_data = soil_phylum_contrasts_sample,
                              fdr_cutoff = 0.05,
                              try_only = 1:5)
# phyloseq example (only run if you have phyloseq installed)
## Not run:
contrasts_phylo <- phyloseq::phyloseq(phyloseq::sample_data(soil_phylum_contrasts_sample),</pre>
phyloseq::otu_table(soil_phylum_contrasts_otu, taxa_are_rows = TRUE))
da_analysis <- contrastsTest(formula = ~ DayAmdmt,</pre>
                              phi.formula = ~ DayAmdmt,
                              contrasts_DA = list("DayAmdmt21 - DayAmdmt11",
                                                   "DayAmdmt22 - DayAmdmt21"),
                              data = contrasts_phylo,
                              fdr_cutoff = 0.05,
                              try_only = 1:5
## End(Not run)
```

convert_phylo

Function to subset and convert phyloseq data

Description

Function to subset and convert phyloseq data

```
convert_phylo(data, select)
```

coth 9

Arguments

data a phyloseq object

select Name of OTU or taxa to select, must match taxa name in data

Value

A data.frame object, with elements W as the observed counts, M as the sequencing depth, and the sample data with their original names.

coth

Hyperbolic cotangent transformation

Description

Hyperbolic cotangent transformation

Usage

coth(x)

Arguments

Χ

Value

Hyperbolic cotangent transformation of x

data

Examples

```
x <- .5
coth(x)</pre>
```

dbetabin

Betabinomial density

Description

Betabinomial density

```
dbetabin(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)
```

10 dbetabinom_cts

Arguments

theta	Numeric vector. Parameters associated with X and X_star
W	Numeric vector of counts
М	Numeric vector of sequencing depth
Χ	Matrix of covariates associated with abundance (including intercept)
X_star	Matrix of covariates associated with dispersion (including intercept)
np	Number of covariates associated with abundance (including intercept)
npstar	Number of covariates associated with dispersion (including intercept)
link	ink function for abundance covariates
phi.link	ink function for dispersion covariates
logpar	Boolean. Defaults to TRUE. Indicator of whether to return log-likelihood.

Value

Negative beta-binomial (log-)likelihood

dbetabinom_cts	Densities of beta binomial distributions, permitting non integer x and size

Description

In some cases we may not have integer W and M's. In these cases, we can still use corncob to estimate parameters, but we need to think of them as no longer coming from the specific beta binomial parametric model, and instead from an estimating equations framework.

Usage

```
dbetabinom_cts(x, size, prob, rho = 0, log = FALSE)
```

Arguments

X	the value at which defined the density
size	number of trials
prob	the probability of success
rho	the correlation parameter
log	if TRUE, log-densities p are given

Author(s)

Thomas W Yee Xiangjie Xue Amy D Willis dbetabin_neg 11

eg Negative betabinomial density

Description

Created as a convenient helper function for optimization. Not intended for users.

Usage

```
dbetabin_neg(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)
```

Arguments

theta	Numeric vector. Parameters associated with X and X_star
W	Numeric vector of counts
М	Numeric vector of sequencing depth
X	Matrix of covariates associated with abundance (including intercept)
X_star	Matrix of covariates associated with dispersion (including intercept)
np	Number of covariates associated with abundance (including intercept)
npstar	Number of covariates associated with dispersion (including intercept)
link	ink function for abundance covariates
phi.link	ink function for dispersion covariates
logpar	Boolean. Defaults to TRUE. Indicator of whether to return log-likelihood.

Value

Negative beta-binomial (log-)likelihood

differentialTest	Identify differentially-abundant and differentially-variable taxa

Description

Identify differentially-abundant and differentially-variable taxa

12 differentialTest

Usage

```
differentialTest(
  formula,
  phi.formula,
  formula_null,
  phi.formula_null,
  data,
  link = "logit",
  phi.link = "logit",
  test,
  boot = FALSE,
 B = 1000,
  sample_data = NULL,
  taxa_are_rows = TRUE,
  filter_discriminant = TRUE,
  fdr_cutoff = 0.05,
  fdr = "fdr",
  full_output = FALSE,
  inits = NULL,
  inits_null = NULL,
  try_only = NULL,
  verbose = FALSE,
  robust = FALSE,
)
```

Arguments

formula an object of class formula without the response: a symbolic description of the

model to be fitted to the abundance

phi.formula an object of class formula without the response: a symbolic description of the

model to be fitted to the dispersion

formula_null Formula for mean under null, without response

phi.formula_null

Formula for overdispersion under null, without response

data a data frame containing the OTU table, or phyloseq object containing the vari-

ables in the models

link link function for abundance covariates, defaults to "logit" phi.link link function for dispersion covariates, defaults to "logit"

test Character. Hypothesis testing procedure to use. One of "Wald", "LRT" (likeli-

hood ratio test), or "Rao".

Boolean. Defaults to FALSE. Indicator of whether or not to use parametric boot-

strap algorithm. (See pbWald and pbLRT).

B Optional integer. Number of bootstrap iterations. Ignored if boot is FALSE.

Otherwise, defaults to 1000.

differentialTest 13

sample_data	Data frame or matrix. Defaults to NULL. If data is a data frame or matrix, this must be included as covariates/sample data.
taxa_are_rows	Boolean. Optional. If data is a data frame or matrix, this indicates whether taxa are rows. Defaults to TRUE.
filter_discrim	inant
	Boolean. Defaults to TRUE. If FALSE, discriminant taxa will not be filtered out.
fdr_cutoff	Integer. Defaults to 0.05. Desired false discovery rate.
fdr	Character. Defaults to "fdr". False discovery rate control method, see p.adjust for more options.
full_output	Boolean. Opetional. Defaults to FALSE. Indicator of whether to include full bbdml model output for all taxa.
inits	Optional initializations for model fit using formula and phi.formula as rows of a matrix. Defaults to NULL.
inits_null	Optional initializations for model fit using formula_null and phi.formula_null as rows of a matrix. Defaults to NULL.
try_only	Optional numeric. Will try only the try_only taxa, specified either via numeric input or character taxa names. Useful for speed when troubleshooting. Defaults to NULL, testing all taxa.
verbose	Boolean. Defaults to FALSE; print status updates for long-running analyses
robust	Should robust standard errors be used? If not, model-based standard errors are used. Logical, defaults to FALSE.
	Optional additional arguments for bbdml

Details

See package vignette for details and example usage. Make sure the number of columns in all of the initializations are correct! inits probably shouldn't match inits_null. To use a contrast matrix, see contrastsTest.

Value

An object of class differentialTest. List with elements p containing the p-values, p_fdr containing the p-values after false discovery rate control, significant_taxa containing the taxa names of the statistically significant taxa, significant_models containing a list of the model fits for the significant taxa, all_models containing a list of the model fits for all taxa, restrictions_DA containing a list of covariates that were tested for differential abundance, restrictions_DV containing a list of covariates that were tested for differential variability, discriminant_taxa_DA containing the taxa for which at least one covariate associated with the abundance was perfectly discriminant, discriminant_taxa_DV containing the taxa for which at least one covariate associated with the dispersion was perfectly discriminant, data containing the data used to fit the models. If full_output = TRUE, it will also include full_output, a list of all model output from bbdml.

Examples

data frame example

14 doBoot

```
data(soil_phylum_small_sample)
data(soil_phylum_small_otu)
da_analysis <- differentialTest(formula = ~ DayAmdmt,</pre>
                                 phi.formula = ~ DayAmdmt,
                                 formula_null = \sim 1,
                                 phi.formula_null = ~ DayAmdmt,
                                 test = "Wald", boot = FALSE,
                                 data = soil_phylum_small_otu,
                                 sample_data = soil_phylum_small_sample,
                                 fdr_cutoff = 0.05,
                                 try_only = 1:5)
# phyloseq example (only run if you have phyloseq installed)
## Not run:
data_phylo <- phyloseq::phyloseq(phyloseq::sample_data(soil_phylum_small_sample),</pre>
phyloseq::otu_table(soil_phylum_small_otu, taxa_are_rows = TRUE))
da_analysis <- differentialTest(formula = ~ DayAmdmt,</pre>
                                phi.formula = ~ DayAmdmt,
                                formula_null = \sim 1,
                                phi.formula_null = ~ DayAmdmt,
                                test = "Wald", boot = FALSE,
                                data = data_phylo,
                                fdr_cutoff = 0.05,
                                try_only = 1:5)
## End(Not run)
```

doBoot

Function to run a bootstrap iteration

Description

Internal function. Not intended for users.

Usage

```
doBoot(mod, mod_null, test, robust = FALSE)
```

Arguments

mod an object of class bbdml mod_null an object of class bbdml

test Character. Hypothesis testing procedure to use. One of "Wald" or "LRT" (like-

lihood ratio test).

robust Should robust standard errors be used? If not, model-based standard arras are

used. Logical, defaults to FALSE.

fishZ

Value

test statistic from one bootstrap iteration

fishZ

Fisher's z transformation

Description

Fisher's z transformation

Usage

fishZ(x)

Arguments

Χ

data

Value

Fisher's z transformation of x

Examples

```
x <- .5
fishZ(x)</pre>
```

genInits

Generate initialization for optimization

Description

Generate initialization for optimization

```
genInits(W, M, X, X_star, np, npstar, link, phi.link, nstart = 1, use = TRUE)
```

16 getRestrictionTerms

Arguments

W	Numeric vector of counts
М	Numeric vector of sequencing depth
Χ	Matrix of covariates associated with abundance (including intercept)
X_star	Matrix of covariates associated with dispersion (including intercept)
np	Number of covariates associated with abundance (including intercept)
npstar	Number of covariates associated with dispersion (including intercept)
link	ink function for abundance covariates
phi.link	ink function for dispersion covariates
nstart	Integer. Defaults to 1. Number of starts for optimization.
use	Boolean. Defaults to TRUE. Indicator of whether to use deterministic intialization.

Value

Matrix of initializations

Examples

getRestrictionTerms

Get index of restricted terms for Wald test

Description

Created as a convenient helper function. Not intended for users.

```
getRestrictionTerms(
  mod,
  mod_null = NULL,
  restrictions = NULL,
  restrictions.phi = NULL
)
```

gr_full 17

Arguments

mod an object of class bbdml

mod_null Optional. An object of class bbdml. Defaults to NULL

restrictions Optional. Defaults to NULL. Numeric vector indicating the parameters associated

with the abundance to test, or character vector with name of variable to test. Note

that 1 is the intercept associated with the abundance.

restrictions.phi

Optional. Defaults to NULL. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note

that 1 is the intercept associated with the dispersion.

Value

A list with mu representing the index of the restricted covariates associated with abundance and phi representing the index of the restricted covariates associated with the dispersion

gr_full Parameter Gradient Vector

Description

Used for internal optimization. Not intended for users.

Usage

```
gr_full(theta, W, M, X, X_star, np, npstar, link, phi.link, logpar = TRUE)
```

Arguments

theta	Numeric vector. Parameters associated with X and X_star
W	Numeric vector of counts
М	Numeric vector of sequencing depth
X	Matrix of covariates associated with abundance (including intercept)
X_star	Matrix of covariates associated with dispersion (including intercept)
np	Number of covariates associated with abundance (including intercept)
npstar	Number of covariates associated with dispersion (including intercept)
link	ink function for abundance covariates
phi.link	ink function for dispersion covariates
logpar	Boolean. Defaults to TRUE. Indicator of whether to return log-likelihood.

Value

Gradient of likelihood with respect to parameters

18 hessian

HDIbetabinom

Get highest density interval of beta-binomial

Description

Get highest density interval of beta-binomial

Usage

```
HDIbetabinom(percent, M, mu, phi)
```

Arguments

percent Numeric. Percent interval desired.

M Numeric vector of sequencing depth
mu Numeric vector of abundance parameter
phi Numeric vector of dispersion parameter

Value

List where lower represents the lower bound and upper represents the upper bound

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
HDIbetabinom(.95, M = mod$M[1], mu = mod$mu.resp[1], phi = mod$phi.resp[1])</pre>
```

hessian

Compute Hessian matrix at the MLE

Description

Compute Hessian matrix at the MLE

Usage

```
hessian(mod, numerical = FALSE)
```

Arguments

mod an object of class bbdml

numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian

(not recommended).

ibd_phylo_otu 19

Value

Hessian matrix at the MLE. In this setting, it's hard to compute expectations to calculate the information matrix, so we return the consistent estimate using sample moments: $\hat{A}(\hat{\theta}) = \sum_i \frac{\partial^2}{\partial \theta \partial \theta^T} l(\theta, W_i)$ evaluated at $\theta = \hat{\theta}$.

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
hessian(mod)</pre>
```

ibd_phylo_otu

IBD data, OTU count data frame.

Description

OTU data frame from a phyloseq object from an IBD microbiome study.

Usage

```
ibd_phylo_otu
```

Format

A data frame of OTU counts.

References

Papa, E., Docktor, M., Smillie, C., Weber, S., Preheim, S. P., Gevers, D., Giannoukos, G., Ciulla, D., Tabbaa, D., Ingram, J., Schauer, D. B., Ward, D. V., Korzenik, J. R., Xavier, R. J., Bousvaros, A., Alm, E. J. & Schauer, D. B. (2012). *Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease*. PloS One, 7(6), e39242. <doi.org/10.1371/journal.pone.0039242>.

Duvallet, C., Gibbons, S., Gurry, T., Irizarry, R., & Alm, E. (2017). *MicrobiomeHD: the human gut microbiome in health and disease [Data set]*. Zenodo. <doi.org/10.5281/zenodo.1146764>.

20 ibd_phylo_taxa

ibd_phylo_sample

IBD data, sample data frame.

Description

Sample data from a phyloseq object from an IBD microbiome study.

Usage

ibd_phylo_sample

Format

A data frame of sample data.

References

Papa, E., Docktor, M., Smillie, C., Weber, S., Preheim, S. P., Gevers, D., Giannoukos, G., Ciulla, D., Tabbaa, D., Ingram, J., Schauer, D. B., Ward, D. V., Korzenik, J. R., Xavier, R. J., Bousvaros, A., Alm, E. J. & Schauer, D. B. (2012). *Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease*. PloS One, 7(6), e39242. <doi.org/10.1371/journal.pone.0039242>. Duvallet, C., Gibbons, S., Gurry, T., Irizarry, R., & Alm, E. (2017). *MicrobiomeHD: the human gut*

ibd_phylo_taxa

IBD data, taxonomy data frame.

microbiome in health and disease [Data set]. Zenodo. <doi.org/10.5281/zenodo.1146764>.

Description

Taxonomy data from a phyloseq object from an IBD microbiome study.

Usage

ibd_phylo_taxa

Format

A data frame of taxonomy data.

References

Papa, E., Docktor, M., Smillie, C., Weber, S., Preheim, S. P., Gevers, D., Giannoukos, G., Ciulla, D., Tabbaa, D., Ingram, J., Schauer, D. B., Ward, D. V., Korzenik, J. R., Xavier, R. J., Bousvaros, A., Alm, E. J. & Schauer, D. B. (2012). *Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease*. PloS One, 7(6), e39242. <doi.org/10.1371/journal.pone.0039242>. Duvallet, C., Gibbons, S., Gurry, T., Irizarry, R., & Alm, E. (2017). *MicrobiomeHD: the human gut microbiome in health and disease [Data set]*. Zenodo. <doi.org/10.5281/zenodo.1146764>.

invfishZ 21

invfishZ

Inverse Fisher's z transformation

Description

Inverse Fisher's z transformation

Usage

```
invfishZ(x)
```

Arguments

Χ

data

Value

Inverse Fisher's z transformation of x

Examples

```
x <- .5
invfishZ(x)</pre>
```

invlogit

Inverse logit transformation

Description

Inverse logit transformation

Usage

```
invlogit(x)
```

Arguments

Χ

data

Value

Inverse logit transformation of x

Examples

```
x <- .5
invlogit(x)</pre>
```

22 Irtest

logit

Logit transformation

Description

Logit transformation

Usage

logit(x)

Arguments

Х

data

Value

logit of x

Examples

x <- .5
logit(x)</pre>

lrtest

Likelihood ratio test

Description

Likelihood ratio test

Usage

```
lrtest(mod, mod_null)
```

Arguments

mod

an object of class bbdml

 mod_null

an object of class bbdml, should be nested within mod

Value

P-value from likelihood ratio test.

objfun 23

Examples

```
data(soil_phylum_small_otu1)
mod1 <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)

mod2 <- bbdml(formula = cbind(W, M - W) ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small_otu1)
lrtest(mod1, mod2)</pre>
```

objfun

Objective function

Description

Used for internal optimization. Not intended for users.

Usage

```
objfun(theta, W, M, X, X_star, np, npstar, link, phi.link)
```

Arguments

theta	Numeric vector. Parameters associated with X and X_star
W	Numeric vector of counts
М	Numeric vector of sequencing depth
Χ	Matrix of covariates associated with abundance (including intercept)
X_star	Matrix of covariates associated with dispersion (including intercept)
np	Number of covariates associated with abundance (including intercept)
npstar	Number of covariates associated with dispersion (including intercept)
link	ink function for abundance covariates
phi.link	ink function for dispersion covariates

Value

List of negative log-likelihood, gradient, and hessian

24 pbLRT

otu_to_taxonomy	
-----------------	--

Description

Transform OTUs to their taxonomic label

Usage

```
otu_to_taxonomy(OTU, data, level = NULL)
```

Arguments

OTU String vector. Names of OTU labels in data data phyloseq object with a taxonomy table

level (Optional). Character vector. Desired taxonomic levels for output.

Value

String vector. Names of taxonomic labels matching labels of OTU.

pbLRT Parametric bootstrap likelihood ratio test
--

Description

Parametric bootstrap likelihood ratio test

Usage

```
pbLRT(mod, mod_null, B = 1000)
```

Arguments

mod an object of class bbdml

mod_null an object of class bbdml, should be nested within mod

B Integer. Defaults to 1000. Number of bootstrap iterations.

Value

P-value from parametric bootstrap likelihood ratio test.

pbRao 25

Examples

```
data(soil_phylum_small_otu1)
mod1 <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)

mod2 <- bbdml(formula = cbind(W, M - W) ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small_otu1)
pbLRT(mod1, mod2, B = 50)</pre>
```

pbRao

Parametric bootstrap Rao test

Description

Parametric bootstrap Rao test

Usage

```
pbRao(mod, mod_null, B = 1000)
```

Arguments

mod an object of class bbdml
mod_null an object of class bbdml, should be nested within mod

B Integer. Defaults to 1000. Number of bootstrap iterations.

Value

P-value from parametric bootstrap Rao test.

Examples

```
data(soil_phylum_small_otu1)
mod1 <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)

mod2 <- bbdml(formula = cbind(W, M - W) ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small_otu1)
pbRao(mod1, mod2, B = 10)</pre>
```

26 plot.bbdml

				_	
-	L	1A	a		ᆈ
- []	I)	Vν	\boldsymbol{A}		(1

Parametric bootstrap Wald test

Description

Parametric bootstrap Wald test

Usage

```
pbWald(mod, mod_null, B = 1000, robust = FALSE)
```

Arguments

mod an object of class bbdml

mod_null an object of class bbdml, should be nested within mod

B Integer. Defaults to 1000. Number of bootstrap iterations.

robust Should robust standard errors be used? If not, model-based standard arras are

used. Logical, defaults to FALSE.

Value

P-value from parametric bootstrap Wald test.

Examples

```
data(soil_phylum_small_otu1)
mod1 <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)

mod2 <- bbdml(formula = cbind(W, M - W) ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small_otu1)
pbWald(mod1, mod2, B = 50)</pre>
```

plot.bbdml

Plotting function

Description

Plotting function

plot.bbdml 27

Usage

```
## S3 method for class 'bbdml'
plot(
    x,
    total = FALSE,
    color = NULL,
    shape = NULL,
    facet = NULL,
    title = NULL,
    B = 1000,
    sample_names = TRUE,
    data_only = FALSE,
    ...
)
```

Arguments

×	Object of class bbdml.
total	(Optional). Default FALSE. Boolean indicator for whether to plot on total counts scale
color	(Optional). Default NULL. The sample variable to map to different colors. Can be a single character string of the variable name in sample_data or a custom supplied vector with length equal to the number of samples. Use a character vector to have ggplot2 default.
shape	(Optional). Default NULL. The sample variable to map to different shapes. Can be a single character string of the variable name in sample_data or a custom supplied vector with length equal to the number of samples.
facet	(Optional). Default NULL. The sample variable to map to different panels in a facet grid. Must be a single character string of a variable name in sample_data.
title	(Optional). Default NULL. Character string. The main title for the graphic.
В	(Optional). Default 1000. Integer. Number of bootstrap simulations for prediction intervals. Use $B=0$ for no prediction intervals.
sample_names	(Optional). Default TRUE. Boolean. If FALSE, remove sample names from the plot.
data_only	(Optional). Default FALSE. Boolean. If TRUE, only returns data frame.
	There are no optional parameters at this time.

Value

Object of class ggplot. Plot of bbdml model fit with 95

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,</pre>
```

28 plot.differentialTest

```
data = soil_phylum_small_otu1)
# Here we use B = 50 for quick demonstration purposes.
# In practice, we recommend a higher value for B for more accurate intervals
plot(mod, color = "DayAmdmt", B = 50)
```

```
plot.differentialTest differentialTest plot function
```

Description

differentialTest plot function

Usage

```
## S3 method for class 'differentialTest'
plot(x, level = NULL, data_only = FALSE, ...)
```

Arguments

X	Object of class differentialTest
level	(Optional). Character vector. Desired taxonomic levels for taxa labels.
data_only	(Optional). Default FALSE. Boolean. If TRUE, only returns data frame.
	No optional arguments are accepted at this time.

Value

Object of class ggplot. Plot of coefficients from models for significant taxa from differentialTest

Examples

print.bbdml 29

print.bbdml

Print function

Description

Print function

Usage

```
## $3 method for class 'bbdml'
print(
    x,
    digits = max(3L, getOption("digits") - 3L),
    signif.stars = getOption("show.signif.stars"),
    ...
)
```

Arguments

```
    x Object of class bbdml
    digits the number of significant digits to use when printing.
    signif.stars logical. If TRUE, 'significance stars' are printed for each coefficient.
    ... No optional arguments are accepted at this time.
```

Value

NULL. Displays printed model summary.

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
print(mod)</pre>
```

print.differentialTest

differentialTest print function

Description

differentialTest print function

print.summary.bbdml

Usage

```
## S3 method for class 'differentialTest' print(x, ...)
```

Arguments

- x Object of class bbdml
- ... No optional arguments are accepted at this time.

Value

NULL. Displays printed differentialTest summary.

Examples

print.summary.bbdml

Print summary function

Description

Print summary function

```
## S3 method for class 'summary.bbdml'
print(
    x,
    digits = max(3L, getOption("digits") - 3L),
    signif.stars = getOption("show.signif.stars"),
    ...
)
```

qbetabinom 31

Arguments

X	Object of class bbdml
digits	the number of significant digits to use when printing.
signif.stars	logical. If TRUE, 'significance stars' are printed for each coefficient.
	No optional arguments are accepted at this time.

Value

NULL. Displays printed model summary.

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
print(summary(mod))</pre>
```

qbetabinom

Get quantiles of beta binom

Description

Get quantiles of beta binom

Usage

```
qbetabinom(p, M, mu, phi)
```

Arguments

р	Numeric. Probability for quantile
М	Numeric vector of sequencing depth
mu	Numeric vector of abundance parameter
phi	Numeric vector of dispersion parameter

Value

quantile

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
qbetabinom(.5, M = mod$M[1], mu = mod$mu.resp[1], phi = mod$phi.resp[1])</pre>
```

32 sandSE

raotest

Rao-type chi-squared test (model-based or robust)

Description

Rao-type chi-squared test (model-based or robust)

Usage

```
raotest(mod, mod_null)
```

Arguments

mod an object of class bbdml

mod_null an object of class bbdml, should be nested within mod

Value

P-value from likelihood ratio test.

Examples

```
data(soil_phylum_small_otu1)
mod1 <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)

mod2 <- bbdml(formula = cbind(W, M - W) ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small_otu1)
raotest(mod1, mod2)</pre>
```

sandSE

Compute sandwich standard errors. Legacy function. Use sand_vcov instead.

Description

Compute sandwich standard errors. Legacy function. Use sand_vcov instead.

```
sandSE(mod, numerical = FALSE)
```

sand_vcov 33

Arguments

mod an object of class bbdml

numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian

and score (not recommended).

Value

Sandwich variance-covariance matrix

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
sandSE(mod)</pre>
```

sand_vcov

Compute sandwich estimate of variance-covariance matrix

Description

Compute sandwich estimate of variance-covariance matrix

Usage

```
sand_vcov(mod, numerical = FALSE)
```

Arguments

mod an object of class bbdml

numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian

and score (not recommended).

Value

Sandwich variance-covariance matrix. $\hat{A}^{-1}\hat{B}\hat{A}^{-1}$.

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
sand_vcov(mod)</pre>
```

34 simulate.bbdml

score

Compute score at the MLE

Description

Compute score at the MLE

Usage

```
score(mod, numerical = FALSE, get_score_covariance = FALSE)
```

Arguments

mod an object of class bbdml

numerical Boolean. Defaults to FALSE. Indicator of whether to use the numeric Hessian

and score (not recommended).

get_score_covariance

Boolean. Defaults to FALSE. Should we return a robust estimate of variance of score: $\hat{B}(\hat{\theta}) = \sum_i G(\hat{\theta}; W_i) G(\hat{\theta}; W_i)^T$. This parameter is not intended for

users.

Value

Score at the MLE. For $G(\theta,w)$ score function, returns $\sum_i G(\hat{\theta},W_i)$ if get_score_covariance = FALSE.

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
score(mod)</pre>
```

simulate.bbdml

Simulate from beta-binomial model

Description

Simulate from beta-binomial model

```
## S3 method for class 'bbdml'
simulate(object, nsim, seed = NULL, ...)
```

soil_phylo_otu 35

Arguments

object an object of class bbdml

nsim Integer. Number of simulations

seed Optional integer to set a random seed

... There are no additional parameters at this time.

Value

nsim simulations from object

soil_phylo_otu

Soil data, otu table as data frame.

Description

A data frame made from a soil 'phyloseq' object with only otu count data.

Usage

```
soil_phylo_otu
```

Format

A phyloseq-class experiment-level object with an OTU table.

otu_table OTU table with 7,770 taxa and 119 samples

References

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., Lehmann, J. (2016). *Dynamics of microbial community composi-tion and soil organic carbon mineralization in soil following addition of pyrogenic andfresh organic matter*. The ISME journal, 10(12):2918. <doi: 10.1038/ismej.2016.68>.

36 soil_phylo_taxa

soil_phylo_sample

Soil data, sample data.

Description

A data frame made from a soil 'phyloseq' object with only sample data.

Usage

```
soil_phylo_sample
```

Format

A phyloseq-class experiment-level object with sample data.

sam_data sample data with the following covariates:

- Plants, values 0 and 1. Index for different plants
- Day, values 0 (initial sampling point), 1 (12 days after treatment additions), and 2 (82 days after treatment additions). Index for different days of measurement
- Amdmt, values 0 (no additions), 1 (biochar additions), and 2 (fresh biomass additions).
 Index for different soil additives.
- DayAmdmt, values 00, 01, 02, 10, 11, 12, 20, 21, and 22. A single index for the combination of Day and Amdmt with Day as the first digit and Amdmt as the second digit.
- ID, values A, B, C, D, and F. Index for different soil plots.

References

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., Lehmann, J. (2016). *Dynamics of microbial community composi-tion and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter*. The ISME journal, 10(12):2918. <doi: 10.1038/ismej.2016.68>.

soil_phylo_taxa

Soil data, taxa table as data frame.

Description

A data frame made from a soil 'phyloseq' object with only taxonomy data.

```
soil_phylo_taxa
```

Format

A phyloseq-class experiment-level object with an OTU table.

tax_table taxonomy table

References

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., Lehmann, J. (2016). *Dynamics of microbial community composi-tion and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter*. The ISME journal, 10(12):2918. <doi: 10.1038/ismej.2016.68>.

soil_phylum_contrasts_otu

Small soil phylum data for contrasts examples, otu table as data frame

Description

A small subset of soil_phylo_otu used for examples of testing contrasts. A data frame made from the 'phyloseq' object with only otu counts.

Usage

soil_phylum_contrasts_otu

Format

A phyloseq-class experiment-level object with an OTU table.

otu_table OTU table with 39 taxa and 56 samples

References

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., Lehmann, J. (2016). *Dynamics of microbial community composi-tion and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter*. The ISME journal, 10(12):2918. <doi: 10.1038/ismej.2016.68>.

soil_phylum_contrasts_sample

Small soil phylum data for contrasts examples, sample data as data frame

Description

A small subset of soil_phylo_sample used for examples of testing contrasts. A data frame made from the 'phyloseq' object with only sample data.

Usage

soil_phylum_contrasts_sample

Format

A phyloseq-class experiment-level object with sample data.

sam_data sample data with the following covariates:

- Plants, values 0 and 1. Index for different plants
- Day, values 0 (initial sampling point), 1 (12 days after treatment additions), and 2 (82 days after treatment additions). Index for different days of measurement
- Amdmt, values 0 (no additions), 1 (biochar additions), and 2 (fresh biomass additions).
 Index for different soil additives.
- DayAmdmt, values 00, 01, 02, 10, 11, 12, 20, 21, and 22. A single index for the combination of Day and Amdmt with Day as the first digit and Amdmt as the second digit.
- ID, values A, B, C, D, and F. Index for different soil plots.

References

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., Lehmann, J. (2016). *Dynamics of microbial community composi-tion and soil organic carbon mineralization in soil following addition of pyrogenic andfresh organic matter*. The ISME journal, 10(12):2918. <doi: 10.1038/ismej.2016.68>.

Description

A small subset of soil_phylo_otu used for examples. A data frame made from the 'phyloseq' object with only otu counts.

```
soil_phylum_small_otu
```

Format

A phyloseq-class experiment-level object with an OTU table.

otu_table OTU table with 39 taxa and 32 samples

References

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., Lehmann, J. (2016). *Dynamics of microbial community composi-tion and soil organic carbon mineralization in soil following addition of pyrogenic andfresh organic matter*. The ISME journal, 10(12):2918. <doi: 10.1038/ismej.2016.68>.

```
soil_phylum_small_otu1
```

Small soil phylum data for examples, sample data as data frame combined with counts for OTU 1 and sequencing depth.

Description

A small subset of soil_phylo_sample used for examples. A data frame made from the 'phyloseq' object with only sample data and counts for OTU 1.

Usage

```
soil_phylum_small_otu1
```

Format

A phyloseq-class experiment-level object with sample data and OTU 1 counts.

sam_data sample data with the following covariates:

- Plants, values 0 and 1. Index for different plants
- Day, values 0 (initial sampling point), 1 (12 days after treatment additions), and 2 (82 days after treatment additions). Index for different days of measurement
- Amdmt, values 0 (no additions), 1 (biochar additions), and 2 (fresh biomass additions).
 Index for different soil additives.
- DayAmdmt, values 00, 01, 02, 10, 11, 12, 20, 21, and 22. A single index for the combination of Day and Amdmt with Day as the first digit and Amdmt as the second digit.
- ID, values A, B, C, D, and F. Index for different soil plots.
- W, counts for OTU1 in each sample. This OTU corresponds with the phylum Proteobacteria.
- M, the sequencing depth for each sample.

References

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., Lehmann, J. (2016). *Dynamics of microbial community composi-tion and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter*. The ISME journal, 10(12):2918. <doi: 10.1038/ismej.2016.68>.

soil_phylum_small_sample

Small soil phylum data for examples, sample data as data frame

Description

A small subset of soil_phylo_sample used for examples. A data frame made from the 'phyloseq' object with only sample data.

Usage

```
soil_phylum_small_sample
```

Format

A phyloseq-class experiment-level object with sample data.

sam_data sample data with the following covariates:

- Plants, values 0 and 1. Index for different plants
- Day, values 0 (initial sampling point), 1 (12 days after treatment additions), and 2 (82 days after treatment additions). Index for different days of measurement
- Amdmt, values 0 (no additions), 1 (biochar additions), and 2 (fresh biomass additions). Index for different soil additives.
- DayAmdmt, values 00, 01, 02, 10, 11, 12, 20, 21, and 22. A single index for the combination of Day and Amdmt with Day as the first digit and Amdmt as the second digit.
- ID, values A, B, C, D, and F. Index for different soil plots.

References

Whitman, T., Pepe-Ranney, C., Enders, A., Koechli, C., Campbell, A., Buckley, D. H., Lehmann, J. (2016). *Dynamics of microbial community composi-tion and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter*. The ISME journal, 10(12):2918. <doi: 10.1038/ismej.2016.68>.

summary.bbdml 41

summary.bbdml

Summary function

Description

Summary function

Usage

```
## S3 method for class 'bbdml'
summary(object, ...)
```

Arguments

object

Object of class bbdml

... No optional arguments are accepted at this time.

Value

Object of class summary.bbdml. Displays printed model summary.

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
summary(mod)</pre>
```

waldchisq

Wald-type chi-squared test

Description

Wald-type chi-squared test

```
waldchisq(
  mod,
  mod_null = NULL,
  restrictions = NULL,
  restrictions.phi = NULL,
  contrasts_DA = NULL,
  contrasts_DV = NULL,
  robust = FALSE
)
```

42 waldchisq

Arguments

mod an object of class bbdml

mod_null Optional. An object of class bbdml, should be nested within mod. If not included,

need to include restrictions or restrictions.phi.

restrictions Optional. Defaults to NULL. Numeric vector indicating the parameters associated

with the abundance to test, or character vector with name of variable to test. Note

that 1 is the intercept associated with the abundance.

restrictions.phi

Optional. Defaults to NULL. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note

that 1 is the intercept associated with the dispersion.

contrasts_DA List. Optional. Constructs a contrast matrix. List elements should be characters

specifying contrasts in the parameters within formula. Note that this is only

available with "Wald" value for test.

contrasts_DV List. Optional. Constructs a contrast matrix. List elements should be characters

specifying contrasts in the parameters within phi.formula. Note that this is

only available with "Wald" value for test.

robust Should robust standard errors be used? If not, model-based standard arras are

used. Logical, defaults to FALSE.

Value

Matrix with wald test statistics and p-values. Only performs univariate tests.

P-value from Wald test.

Examples

```
data(soil_phylum_small_otu1)
mod1 <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)

mod2 <- bbdml(formula = cbind(W, M - W) ~ 1,
phi.formula = ~ 1,
data = soil_phylum_small_otu1)

# Example using mod_null
waldchisq(mod = mod1, mod_null = mod2)
waldchisq(mod = mod1, mod_null = mod2, robust = TRUE)

# Example using restrictions and restrictions.phi
waldchisq(mod = mod1, restrictions = 2, restrictions.phi = 2)
waldchisq(mod = mod1, restrictions = "DayAmdmt", restrictions.phi = "DayAmdmt")
waldchisq(mod = mod1, restrictions = 2, restrictions.phi = "DayAmdmt")
waldchisq(mod = mod1, restrictions = 2, restrictions.phi = "DayAmdmt")
waldchisq(mod = mod1, restrictions = 2, restrictions.phi = 2, robust = TRUE)</pre>
```

waldchisq_test 43

waldchisq_test

Wald-type chi-squared test statistic (model-based or robust)

Description

This is a helper function and not intended for users

Usage

```
waldchisq_test(
  mod,
  restrictions = NULL,
  restrictions.phi = NULL,
  contrasts_DA = NULL,
  contrasts_DV = NULL,
  robust = FALSE
)
```

Arguments

mod an object of class bbdml

restrictions Optiona

Optional. Defaults to NULL. Numeric vector indicating the parameters associated with the abundance to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the abundance.

restrictions.phi

Optional. Defaults to NULL. Numeric vector indicating the parameters associated with the dispersion to test, or character vector with name of variable to test. Note that 1 is the intercept associated with the dispersion.

contrasts_DA

List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within formula. Note that this is only available with "Wald" value for test.

contrasts_DV

List. Optional. Constructs a contrast matrix. List elements should be characters specifying contrasts in the parameters within phi.formula. Note that this is only available with "Wald" value for test.

robust

Should robust standard errors be used? If not, model-based standard arras are used. Logical, defaults to FALSE.

Value

Test statistic for Wald test.

44 warn_phyloseq

waldt

Wald-type t test (model-based or robust)

Description

Wald-type t test (model-based or robust)

Usage

```
waldt(mod)
```

Arguments

mod

an object of class bbdml

Value

Matrix with wald test statistics and p-values. Only performs univariate tests.

Examples

```
data(soil_phylum_small_otu1)
mod <- bbdml(formula = cbind(W, M - W) ~ DayAmdmt,
phi.formula = ~ DayAmdmt,
data = soil_phylum_small_otu1)
waldt(mod)</pre>
```

warn_phyloseq

Function to throw error if the 'phyloseq' package is called but it is not installed

Description

Function to throw error if the 'phyloseq' package is called but it is not installed

```
warn_phyloseq()
```

Index

* datasets ibd_phylo_otu, 19 ibd_phylo_sample, 20 ibd_phylo_taxa, 20 soil_phylo_otu, 35 soil_phylo_sample, 36 soil_phylo_taxa, 36 soil_phylum_contrasts_otu, 37 soil_phylum_contrasts_sample, 38 soil_phylum_small_otu, 38 soil_phylum_small_otu1, 39 soil_phylum_small_sample, 40	<pre>invfishZ, 21 invlogit, 21 logit, 22 lrtest, 22 objfun, 23 optimr, 4 otu_to_taxonomy, 24 p.adjust, 7, 13 pbLRT, 12, 24</pre>
bbdml, 3, 7, 13	pbRao, 25 pbWald, 12, 26 plot.bbdml, 26
checkNested, 5 clean_taxa_names, 6 contrastsTest, 6, 13 convert_phylo, 8 corncob (corncob-package), 3 corncob-package, 3 coth, 9	plot.bbdm1, 20 plot.differentialTest, 28 print.bbdm1, 29 print.differentialTest, 29 print.summary.bbdm1, 30 qbetabinom, 31 raotest, 32
<pre>dbetabin, 9 dbetabin_neg, 11 dbetabinom_cts, 10 differentialTest, 7, 11 doBoot, 14 fishZ, 15 genInits, 15 getRestrictionTerms, 16 gr_full, 17 HDIbetabinom, 18 hessian, 18</pre>	sand_vcov, 33 sandSE, 32 score, 34 simulate.bbdml, 34 soil_phylo_otu, 35, 37, 38 soil_phylo_sample, 36, 38-40 soil_phylo_taxa, 36 soil_phylum_contrasts_otu, 37 soil_phylum_contrasts_sample, 38 soil_phylum_small_otu, 38 soil_phylum_small_otu, 39 soil_phylum_small_sample, 40 summary.bbdml, 41
<pre>ibd_phylo_otu, 19 ibd_phylo_sample, 20 ibd_phylo_taxa, 20</pre>	trust,4 waldchisq,41

46 INDEX

```
waldchisq_test, 43
waldt, 44
warn_phyloseq, 44
```