STATS 2107 Statistical Modelling and Inference II

Workshop 11: From ANOVA to ANCOVA

Matt Ryan

School of Mathematical Sciences, University of Adelaide

Semester 2 2022

The data

Where to get it

```
install.packages("datarium")
data("stress", package = "datarium")
stress <- as_tibble(stress) %>%
  mutate(treatment = fct_rev(treatment))
```

What do we have here?

Variable	Description	Туре
id	A unique identifier	ID variable
score	Stress score out of 100	Continuous numeric (response variable)
treatment	Are they in the treatement group?	Categorical nominal
exercise	What level of exercise do they do?	Categorical nominal
age	Age of participant	Continuous numeric

score

treatment

treatment	n
no	30
yes	30

exercise

exercise	n
low	20
moderate	20
high	20

age

What to consider

Let's suppose that there is a relationship between stress levels and exercise:

$$score_{ik} = \mu + \alpha_i + \varepsilon_{ik}$$

where α_i is the effect of each exercise group

Is this supported by EDA

Fit it in R

We fit using the 1m command:

stress_anova <- lm(score ~ exercise, data = stress)

```
summary(stress_anova)
##
## Call:
## lm(formula = score ~ exercise, data = stress)
##
## Residuals:
      Min
               10 Median
                                     Max
## -11.090 -4.674 -1.107 4.628 14.810
##
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    88.725
                               1.361 65.186 < 2e-16 ***
## exercisemoderate -0.610
                              1.925 -0.317
                                                0.752
## exercisehigh
                   -11.835 1.925 -6.148 8.21e-08 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
## Residual standard error: 6.087 on 57 degrees of freedom
## Multiple R-squared: 0.4568, Adjusted R-squared: 0.4378
## F-statistic: 23.97 on 2 and 57 DF, p-value: 2.791e-08
```

Do the ANOVA

```
anova(stress_anova)

## Analysis of Variance Table

##

## Response: score

## Df Sum Sq Mean Sq F value Pr(>F)

## exercise 2 1776.3 888.13 23.97 2.791e-08 ***

## Residuals 57 2112.0 37.05

## ---

## ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


What to do

- Based on the ANOVA output, would you reject or retain the null hypothesis that all exercise groups have the same mean pain score.
- 2. Look at the model summary. What does the intercept term represent?
- 3. Does this data meet the assumptions of ANOVA?

What to consider

Now, we know there is a treatment group, so let's suppose that there is a relationship between stress levels, exercise and treatment:

$$score_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \varepsilon_{ijk}$$

where α_i is the effect of each exercise group, β_j is the effect of each treatment group, and γ_{ij} is an interaction between the exercise and treatment.

Do we have the data for an interaction?

treatment	low	moderate	high
no	10	10	10
yes	10	10	10

Is this model supported by EDA - a treatment effect

Is this model supported by EDA - an interaction

Fit it in R

We fit using the 1m command:

```
stress two way anova <- lm(score ~ exercise * treatment, data = stress)
summary(stress_two_way_anova)
##
## Call:
## lm(formula = score ~ exercise * treatment. data = stress)
##
## Residuals:
     Min
            10 Median
##
                          30
                                Max
## -8.910 -3.797 -0.240 3.062 10.590
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               89.590
                                           1.690 52.995 < 2e-16 ***
                               -0.180 2.391 -0.075 0.94026
## exercisemoderate
                               -7.600 2.391 -3.179 0.00245 **
## exercisehigh
                               -1.730 2.391 -0.724 0.47243
## treatmentyes
## exercisemoderate:treatmentyes -0.860 3.381 -0.254 0.80019
## exercisehigh:treatmentves
                             -8.470 3.381 -2.505 0.01529 *
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.346 on 54 degrees of freedom
## Multiple R-squared: 0.6031, Adjusted R-squared: 0.5663
## F-statistic: 16.41 on 5 and 54 DF, p-value: 8.005e-10
```


What to do

- 1. Look at the model summary. What does the intercept term represent?
- Interpret the exercisehigh coefficient.
- 3. Perform the ANOVA. Is the interaction term significant? Interpret this in context.

What to consider

But wait, there's more! Remember we have the age covariate. It is perfectly reasonable to believe there is a relationship between age and stress, as well as some interaction with the treatment and exercise regime. Things get a little more hairy in two-way ANCOVA, so we will start big, and then select the best model. We will consider the model

score \sim age * treatment * exercise

Is this supported by EDA

Fit it in R

We fit using the lm command:

```
stress_2way_ancova <- lm(score ~ age * treatment * exercise, data = stress)
summary(stress_2way_ancova)</pre>
```

```
##
## Call:
## lm(formula = score ~ age * treatment * exercise, data = stress)
##
## Residuals:
      Min
              1Q Median
                                    Max
## -9.2940 -3.4969 0.3342 2.2295 10.2988
##
## Coefficients:
                                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                   67.59947 24.92019 2.713 0.00924 **
                                   0.35411 0.40042 0.884 0.38091
## age
                                  -8.41860 33.82489 -0.249 0.80451
## treatmentves
## exercisemoderate
                                  -19.50719 30.73047 -0.635 0.52858
## exercisehigh
                                  -3.55340 38.80691 -0.092 0.92742
## age:treatmentyes
                                  0.11070 0.54501 0.203 0.83990
                                  0.31881 0.49536 0.644 0.52290
## age:exercisemoderate
## age:exercisehigh
                                -0.04420 0.65077 -0.068 0.94613
## treatmentyes:exercisemoderate 18.45149 55.34236 0.333 0.74028
                                  -12.85565 63.49342 -0.202 0.84040
## treatmentves:exercisehigh
## age:treatmentves:exercisemoderate -0.30217 0.91128 -0.332 0.74164
## age:treatmentyes:exercisehigh
                                 0.08848 1.08428 0.082 0.93530
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
##
## Residual standard error: 5.204 on 48 degrees of freedom
## Multiple R-squared: 0.6657, Adjusted R-squared: 0.5891
## F-statistic: 8.689 on 11 and 48 DF, p-value: 3.358e-08
```

Can we simplify?

Yes we can!

```
stress\_2way\_ancova <- \ update(stress\_2way\_ancova, . \ \ - \ age:treatment:exercise) \\ summary(stress\_2way\_ancova)
```

```
##
## Call:
## lm(formula = score ~ age + treatment + exercise + age:treatment +
      age:exercise + treatment:exercise, data = stress)
##
##
## Residuals:
##
      Min
              10 Median
                                    Max
## -9 5637 -3 3982 0 4173 2 3827 10 3907
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               65.15197
                                          21.12371 3.084 0.00332 **
                               0.39353 0.33916 1.160 0.25144
## age
## treatmentves
                              -3.89781 24.16324 -0.161 0.87250
## exercisemoderate
                             -14.81619 24.97471 -0.593 0.55569
## exercisehigh
                              -3.90658 30.22926 -0.129 0.89769
## age:treatmentves
                              0.03769 0.38851 0.097 0.92311
## age:exercisemoderate
                            0.24286 0.40215 0.604 0.54864
## age:exercisehigh
                             -0.03524 0.50722 -0.069 0.94488
## treatmentyes:exercisemoderate 0.20723 3.35949 0.062 0.95106
## treatmentves:exercisehigh
                               -8.12783 3.72077 -2.184 0.03365 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.106 on 50 degrees of freedom
## Multiple R-squared: 0.6647, Adjusted R-squared: 0.6043
## F-statistic: 11.01 on 9 and 50 DF, p-value: 3.181e-09
```


What to do

- 1. Finish the model selection process. What is the final model?
- 2. Interpret the coefficient of age in your final model.