

elsink 9.12.2004

E T U O I K E U S T O D I S T U S
P R I O R I T Y D O C U M E N T

Hakija
Applicant

Vaisala Oyj
Vantaa

Patentihakemus nro
Patent application no

20031672

Tekemispäivä
Filing date

18.11.2003

Kansainvälinen luokka
International class

G01D

Keksinnön nimitys
Title of invention

"Radiosondin kosteusmittaustulosten korjaaminen"

Tätten todistetaan, että oheiset asiakirjat ovat tarkkoja jäljennöksiä
Patentti- ja rekisterihallitukselle alkuaan annetuista selityksestä,
patenttivaatimuksista, tiivistelmästä ja piirustuksista.

This is to certify that the annexed documents are true copies of the
description, claims, abstract and drawings originally filed with the
Finnish Patent Office.

Marketta Tehikoski

Marketta Tehikoski
Apulaistarkastaja

BEST AVAILABLE COPY

Maksu . 50 €
Fee 50 EUR

Maksu perustuu kauppa- ja teollisuusministeriön antamaan asetukseen 1027/2001
Patentti- ja rekisterihallituksen maksullisista suoritteista muutoksineen.

The fee is based on the Decree with amendments of the Ministry of Trade and Industry No.
1027/2001 concerning the chargeable services of the National Board of Patents and
Registration of Finland.

Osoite: Arkadiankatu 6 A Puhelin: 09 6939 500 Telefax: 09 6939 5328
P.O.Box 1160 Telephone: + 358 9 6939 500 Telefax: + 358 9 6939 5328
FIN-00101 Helsinki, FINLAND

RADIOSONDIN KOSTEUSMITTAUSTULOSTEN KORJAAMINEN

Keksintö liittyy radiosondin kosteusmittaustulosten korjaukseen.

- 5 Radiosondi on mittauslaite, jota käytetään ilmasto-olosuhteiden mittauksissa. Radiosondi voidaan kuljettaa maanpinnalta ylöspäin ilmakerrosten läpi erityisellä kaasupallolla, jolloin mitattava ilmakehä ja myös mittausjärjestelyn ympäristöolosuhteet muuttuvat dynaamisesti. Radiosondissa olevilla mittalaitteilla suoritetaan meteorologisia mittauksia, jolloin mitattavia suureita ovat yleisimmin lämpötila, 10 kosteus, paine ja tuuli (ja/tai sijainti). Radiosondin sijainnin määritys voi perustua esimerkiksi GPS (Global Positioning System) tai Loran verkko -menetelmiin ja edelleen sijaintitietojen muutosten perusteella voidaan päättää tuulen nopeus ja suunta. Mittalaitteiden mittaustulokset välitetään radiosondissa olevalla radiolähettimellä maanpinnalla olevaan radiovastaanottimen kautta maakalustoon jatkokaasittelyä varten. Mittaustulosten analysointi suoritetaan esimerkiksi sopivan tietokoneohjelmiston / algoritmin avulla maanpinnalla tai radiosondissa.
- 15

Radiosondimittausten ympäristöolosuhteet ovat vaativat: mittauksia vaikeuttavat muun muassa mitatun suureen laaja skaala, sade, kosteus, jäätyminen, tiivistyminen ja ylikylläisyys. Mittausvirheitä aiheutuu myös radiosondin mittausantureiden hitaudesta (aikaviive) ja ilmakehässä esiintyvästä säteilylämmönsiirrosta, kuten auringon säteilystä (solar radiation) ja yöllä infrapunasäteilystä (IR).

20 Radiosondilla suoritettavien lämpötilamittausten tarkkuuden parantamiseksi on kehitetty menetelmiä muun muassa aikaviiveestä ja säteilylämmönsiirrosta aiheutuvien virheiden eliminoimiseksi lämpötilamittaustuloksista.

25 Kosteusmittaus on lämpötilamittausta haastavampi jo sinällään ja koska kosteusmittaus on myös lämpötilariippuva edellä mainittujen virhetekijöiden lisäksi. Kosteusmittaus kalibroidaan käytettävälle kosteus ja lämpötila-alueelle, joten mittaus sisältää lämpötilariippuvuuden korjauksen (anturi ja mitattava ilma ovat samassa

lämpötilassa). Kosteusmittauksen tunnetut korjaukset eivät kuitenkaan sisällä radiosondin kosteusmittaustulosten korjaamista erityisesti säteilylämmönsiirrosta suoraan tai epäsuorasti aiheutuvien virheiden suhteen.

- 5 Viimeikainen kehitys ilmasto-olosuhteiden muutoksiennustamisessa ja tutkimuksessa sekä traditionaalissa sääennustamisessa ovat asettaneet entistä tiukempia tarkkuusvaatimuksia kosteusmittausten tuloksille erityisesti myös ylemmässä troposfärissä ja stratosfärissä, missä alhaiset lämpötilat yhdistettynä alhaiseen vesihöyrykonsentraatioon (stratosfääri) tai korkeisiin vesihöyrypitoisuukseen (ylätroposfääri) muodostavat mittausympäristöstä erittäin haastavan. Kosteus vaihtelee myös nopeasti ajallisesti ja paikallisesti. Kosteusmittausten tarkkuus on tärkeä sääennusteen laatutekijä. Myös kasvihuoneilmiön ymmärtämisessä ja ilmakehän muutosten ennustamisessa kosteusmittaus on oleellinen tekijä.
- 10 15 Tyypillisesti eri radiosondien tuottamat kosteusmittaustulokset eivät ole olleet sellaisenaan riittävän tarkkoja esimerkiksi ilmasto-olosuhteisiin liittyvästä täsmällistä tutkimusta ja ennustamista varten. Siten on tarpeen parantaa kosteusmittaustulosten tarkkuutta.
- 20 25 Esillä olevan keksinnön eräänä päämäärenä on tuottaa menetelmä radiosondin kosteusmittaustulosten korjaamiseksi ja erityisesti säteilylämmönsiirrosta (engl. radiative heat exchange) joko suoraan tai epäsuorasti aiheutuvien kosteusmittauvirheiden korjaamiseksi. Tyypillisesti säteilylämmönsiirto aiheuttaa kosteusmittauvirheitä suoraan tai epäsuorasti lyhytaaltoisesta auringon säteilystä (solar radiation) tai kappaleen pitkä-aaltoisesta termisestä säteilystä (IR).

Keksinnön eräs perusajatus on määrittää kosteusmittauksen yhteydessä ainakin yhden niin sanotun ympäristöolosuhdeparametrin vallitseva arvo ja korjata kosteusmittauksen tulosta mainitun ympäristöolosuhdeparametrin vallitsevan arvon avulla. Lisäksi keksinnön joidenkin suoritusmuotojen perusajatuksena on korjata kosteusanturilla mitattua kosteuslukemaa laskennallisesti ja/tai sopivaan tietora-

kenteeseen tallennettujen korjausarvojen avulla.

- Keksinnön ensimmäisen aspektin mukaan toteutetaan menetelmä radiosondin kosteusmittaustulosten korjaamiseksi erityisesti säteilylämmönsiirrosta aiheutuvien virheiden osalta, radiosondin käsittäässä ainakin kosteusanturin, jossa menetelmässä
- 5 muodostetaan (10) etukäteen tietorakenne (20), joka käsittää kosteusmittaustulosten korjausarvoja erilaisissa ympäristöolosuhteissa, ympäristöolosuhteiden ollessa mainitussa tietorakenteessa määritettyä mainitun ainakin yhden ympäristöolo-
10 suhdeparametrin funktiona, tai määritetään ennalta matemaattinen funktio, jonka avulla voidaan laskea ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaava kosteusmittaustuloksen korjausarvo,
- mitataan ympäristön kosteus U_m mainitulla kosteusanturilla,
15 määritetään ainakin yhden ympäristöolosuhdeparametrin vallitseva arvo, ja lasketaan virhekorjattu kosteus U suoraan tai välillisesti mainitun mitatun ympäristön kosteuden U_m ja mainitussa tietorakenteessa mainittua ainakin yhtä vallitse-
vaa ympäristöolosuhdeparametrin arvoa vastaan korjausarvon tai mainitun ma-
temaattisen funktion avulla lasketun korjausarvon avulla.
- 20 Mitattu kosteuslukema U_m voi olla valmiaksi korjattu ja kalibroitu yhden tai use-
ammankin tekijän suhteen.
- Edellä mainittu ympäristöolosuhdeparametri voi koskea esimerkiksi jotakin kosteusmittaustulokseen vaikuttavaa suuretta, kuten painetta, lämpötilaa, kosteutta,
25 radiosondin sijaintikorkeutta, radiosondin luotaus-aikaa, auringon säteilyn intensi-
teettiä, auringon korkeuskulmaa, radiosondin sijaintia maapallolla tai radiosondin nousunopeutta.
- 30 Kosteusmittaustulosten korjausarvo voi perustua tai riippua esimerkiksi jostain kosteuteen vaikuttavasta suuresta, kuten paineesta, lämpötilasta; kosteudesta, ra-

diosondin sijaintikorkeudesta, radiosondin luotaus-ajasta, auringon säteilyn intensiteetistä, auringon korkeuskulmasta, radiosondin sijainnista maapallolla tai radiosondin nousunopeudesta. Korjausarvot voidaan määrittää esimerkiksi ilmanpaineen P ja auringon korkeuskulman h funktiona tai lämpötilasta riippuvan saturatiokosteuden ($\%rh$) ja ilmanpaineen P funktiona.

Keksinnön erään suoritusmuodon mukaan mainitut korjausarvot ovat saturatiokosteustason korjausarvoja Δrh , ja virhekorjattu kosteus U lasketaan mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan ΔU_{rh} :n ja mitatun ympäristön kosteuden U_m avulla. Vaihtoehtoisen esimerkin mukaan mainitut korjausarvot voivat olla suoraan kosteustason korjausarvoja ΔU , jolloin virhekorjattu kosteus U lasketaan mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan ΔU :n ja mitatun ympäristön kosteuden U_m avulla.

Keksinnön vielä erään suoritusmuodon mukaan mainitut korjausarvot ovat ympäristön lämpötilan ja kosteusanturin lämpötilan väliä eroja ΔT_U , mainittu radiosondi käsittää lisäksi lämpötila-anturin, ja menetelmässä mitataan ympäristön lämpötila T_T mainitulla lämpötila-anturilla, lasketaan mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan ΔT_U :n ja mainitun ympäristön lämpötilan T_T avulla kosteusanturin lämpötila T_U , ja lasketaan virhekorjattu kosteus U lasketun kosteusanturin lämpötilan T_U , ympäristön lämpötilan T_T ja mitatun ympäristön kosteuden U_m avulla. Edullisesti ympäristön lämpötilalle T_T suoritetaan virhekorjaus/virhekorjauksia ja kosteusanturin lämpötilan T_U sekä virhekorjatun kosteuden U laskemisessa käytetään virhekorjattua ympäristön lämpötilaa T_T .

Edellä mainittu tietorakenne voidaan muodostaa esimerkiksi suorittamalla sopivia vertailumittauksia. Vertailumittauksia voidaan suorittaa esimerkiksi kastepiste- tai tutkamittauksilla. Tietorakenteen korjausarvojen ollessa ympäristön lämpötilan ja

kosteusanturin lämpötilan väliä eroja ΔT_U vertailumittaukset voivat olla yksinkertaisesti ympäristön ja kosteusanturin lämpötilaa koskevia mittauksia erilaisissa ympäristöolosuhteissa. Mainitun tietorakenteen ympäristön lämpötilan ja kosteusanturin lämpötilan väiset erot ΔT_U voidaan määrittää esimerkiksi ilmanpaineen 5 P ja auringon korkeuskulman h funktiona mutta myös mitä tahansa muuta soveltuva määritystapaa voidaan käyttää. Tietorakenne voi olla esimerkiksi taulukko, lista, vektori tai jokin muu soveltuva tietorakenne.

Keksinnön toisen aspekin mukaan toteutetaan tietojenkäsittelylaite radiosondin 10 kosteusmittaustulosten korjaamiseksi erityisesti säteilylämpönsiirrosta aiheutuvien virheiden osalta, radiosondin käsittäessä ainakin kosteusanturin, tietojenkäsittelylaitteen käsittäessä ennalta muodostetun tietorakenteen (35), joka käsittää kosteusmittaustulosten korjausarvoja erilaisissa ympäristöolosuhteissa, ympäristöolosuhteiden ollessa mainitussa tietorakenteessa määritettyä mainitun ainakin yhden ympäristöolosuhdeparametrin funktiona, tai muistin käsittäen ennalta määritetyt matemaattiisen funktion, jonka avulla voidaan laskea ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaava kosteusmittaustuloksen korjausarvo, 15 vastaanottovälineet mainitulla kosteusanturilla mitatun kosteuden U_m vastaanottamiseksi ja ainakin yhden ympäristöolosuhdeparametrin vallitsevan arvon vastaanottamiseksi, ja laskentavälineet virhekorjatun kosteuden U laskemiseksi suoraan tai välillisesti 20 mainitun mitatun ympäristön kosteuden U_m ja mainituissa tietorakenteessa mainitulta ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan korjausarvojen tai mainitun matemaattisen funktion avulla lasketun korjausarvon avulla. 25

Keksinnön mukainen tietojenkäsittelylaite voi olla mikä tahansa soveltuva laite kuten esimerkiksi yleiskäytöinen tietokone, prosessori tai palvelin. Kyseinen tietojenkäsittelylaite voi sijaita myös kokonaan tai osittain radiosondissa. 30

Keksinnön kolmannen aspektin mukaan toteutetaan tietokoneohjelma, joka tuottaa rutuinin radiosondin kosteusmittaustulosten korjaamiseksi erityisesti säteilylämön siirrosta aiheutuvien virheiden osalta suoritettaessa mainittu tietokoneohjelma, radiosondin käsittäässä ainakin kosteusanturin, ja mainitun tietokoneohjelman

5 ollessa yhteydessä

ennalta muodostettuun tietorakenteeseen, joka käsittää kosteusmittaustulosten korjausarvoja erilaisissa ympäristöolosuhteissa, ympäristöolosuhteiden ollessa mainitussa tietorakenteessa määritettyä mainitun ainakin yhden ympäristöolosuhdeparametrin funktiona, tai muistiin, joka käsittää ennalta määritetyn matemaattisen funktion, jonka avulla voidaan laskea ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaava kosteusmittaustuloksen korjausarvo, mainitun tietokoneohjelman käsittäässä

10 ohjelmakoodin mainitulla kosteusanturilla mitatun kosteuden U_m vastaanottamiseksi ja ainakin yhden ympäristöolosuhdeparametrin vallitsevan arvon vastaanotamiseksi, ja

15 ohjelmakoodin virhekorjatun kosteuden U laskemiseksi suoraan tai välillisesti mitatun ympäristön kosteuden U_m ja mainitussa tietorakenteessa mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan korjausarvon tai mainitun matemaattisen funktion avulla lasketun korjausarvon avulla.

20

Keksinnön mukainen tietokoneohjelma voidaan toteuttaa esimerkiksi sopivalle muistiväligneelle tallennettuna tietokoneohjelmatuotteena tai sopivan tietojenkäsitellytaitteiston tai radiosondiin sulautettuna ohjelmistona.

25

Eväitsenäiset vaatimukset koskevat keksinnön edullisia suoritusmuotoja. Keksinnön yhteen aspektiin liittyvien eväitsenäisten vaatimusten sisältö on sovellettavissa keksinnön muihinkin aspektieihin.

Keksintöä selostetaan seuraavassa yksityiskohtaisesti esimerkkien avulla viittaa-

30 malla oheisiin kuvioihin, joissa

Kuvio 1 on keksinnön erään suoritusmuodon mukaista menetelmää havainnollistava vuokaavio;

Kuvio 2 esittää keksinnön erään suoritusmuodon mukaista taulukkoa 5 kosteusanturin ja ympäristön lämpötilojen välisistä eroista; ja

Kuvio 3 on yksinkertaistettu lohkokaavio keksinnön erään suoritusmuodon mukaisesta tietojenkäsittelylaitteesta.

10 Yleisellä tasolla keksinnön erään suoritusmuodon mukaisessa menetelmässä suoritetaan niin sanottu normaali kosteusmittaus radiosondiin sisältyväällä kosteusanturilla mitatun arvon U_m saamiseksi ympäristön kosteudelle. Samassa yhteydessä määritetään ainakin yhden ympäristöolosuhdeparametrin vallitseva arvo. Näiden mitatun ympäristön kosteuden U_m ja ympäristöolosuhdeparametrin (tai parametreiden) vallitsevan arvon avulla sitten lasketaan suoraan tai välillisesti virhekorjattu kosteus U .

20 Ympäristöolosuhdeparametri voi perustua esimerkiksi johonkin kosteusmittaustulokseen vaikuttavista suureista, kuten paineeseen, lämpötilaan, kosteuteen, radiosondin sijaintikorkeuteen, radiosondin luotaus-aikaan, auringon säteilyn intensiteettiin, auringon korkeuskulmaan, radiosondinsijaintiin maapallolla tai radiosondin nousunopeuteen.

25 Ympäristöolosuhdeparametrin arvon määrittys voidaan suorittaa suoraan tai välillisesti esimerkiksi radiosondiin sisältyväällä toisella mittausanturilla tai ympäristöolosuhdeparametrin arvo voidaan saada radiosondista riippumattomasta lähteestä. Esimerkiksi auringon korkeuskulma, jota voidaan käyttää ympäristöolosuhdeparametrina, on riippuvainen päivämäärästä ja kellonajasta ja se on siten itse radiosondista tai siinä tapahtuvista mittauksista riippumaton suure.

30 Ympäristöolosuhdeparametrin (tai -parametrien) vallitsevaa arvoa voidaan siis

- käyttää suoraan virhekorjatun kosteuden laskemiseen. Esimerkiksi sopivaa ympäristöolosuhdeparametrin arvosta ja mitatusta kosteuslukemasta riippuvaa funktiota tai laskentakaavaa voidaan käyttää tähän tarkoitukseen. Vaihtoehtoisesti ympäristöolosuhdeparametrin vallitsevaa arvoa voidaan hyödyntää välillisesti. Välillisesti 5 ympäristöolosuhdeparametrin avulla laskemisella tarkoitetaan tässä sitä, että ympäristöolosuhdeparametrin arvon perusteella voidaan esimerkiksi laskea jokin välitulos tai sen avulla voidaan identifioida jonkin lisäparametrin tai kertoimen arvo tai soveltuva laskentafunktio.
- 10 Keksinnön erään suoritusmuodon mukaisessa ratkaisussa muodostetaan etukäteen tietorakenne, joka käsittää kosteusmittaustulosten korjausarvoja erilaisissa ympäristöolosuhteissa, ympäristöolosuhteiden ollessa mainituissa tietorakenteissa määritettynä mainitun ainakin yhden ympäristöolosuhdeparametrin funktiona, ja virhekorjattu kosteus U lasketaan suoraan tai välillisesti mainitun mitatun ympäristön kosteuden U_m ja mainitussa tietorakenteessa mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan korjausarvon avulla. Mainittu korjausarvo voi olla esimerkiksi korjauskerroin, jolloin todellinen arvo saadaan kerto-laskun avulla, tai korjattavan arvon ja todellisen arvon välinen ero (korjaus), jolloin todellinen arvo saadaan yhteenlaskun avulla. Tämän suoritusmuodon yksityiskohtia käsitellään tarkemmin myöhemmin tässä selityksessä.
- 15
- 20

Keksinnön eräässä toisessa suoritusmuodossa edellä mainitun tietorakenteen si-jaan käytetään sopivaa matemaattista funktiota. Tällöin mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaava kosteusmittaustuloksen korjausarvo lasketaan ennalta määritetyn matemaattisen funktion avulla ja virhekorjattu kosteus U lasketaan suoraan tai välillisesti mainitun mitatun ympäristön kosteuden U_m ja mainitun lasketun korjausarvon avulla.

- 25
- 30 Keksinnön eräs suoritusmuoto perustuu pääasiallisesti säteilylämmönsiirrosta ai-heutuvien virheiden analysointiin ja korjaamiseen kosteusanturin ja ympäristön välisen lämpötilaeron ΔT_U avulla. Todellinen kosteus U on kosteusanturin lämpö-

tilan T_U ja anturin mittaaman kosteuden U_m funktio:

$$U = f(T_U, U_m)$$

Tunnetun tekniikan mukaisissa ratkaisuissa oletetaan tyypillisesti, että ympäristön lämpötila ja kosteusanturin lämpötila vastaavat toisiaan. Nyt on huomattu, että tästä aiheutuu oleellisesti virhettä kosteusmittaustuloksiin, koska muun muassa mittausympäristön vaikutuksesta esiintyvän säteilylämmönsiirron vaikutuksesta kosteusanturin lämpötilan ja ympäristön lämpötilan välillä voi olla huomattavia eroja. Esillä olevassa keksinnössä kosteusanturin lämpötilan ja ympäristön lämpötilan välinen ero on otettu huomioon kosteusmittaustulosten analysoinnissa ja korjaamisessa.

Kuvio 1 on keksinnön erään suoritusmuodon mukaista menetelmää radiosondin kosteusmittaustulosten korjaamiseksi havainnollistava vuokaavio.

Vaiheessa 10 muodostetaan etukäteen taulukko ympäristön lämpötilan ja kosteusanturin lämpötilan välisistä eroista ΔT_U (T_U : n korjausarvoista ympäristön lämpötilaan nähdyn) erilaisissa ympäristöolosuhteissa. Tällaisen taulukon sisältöä on käsitelty tarkemmin alla kuvion 2 yhteydessä.

Vaiheessa 11 mitataan ympäristön lämpötila T_T radiosondin lämpötila-anturilla. Mitattu ympäristön lämpötila T_T korjataan edullisesti tässä yhteydessä erilaisten virhetekijöiden, kuten esimerkiksi säteilylämmönsiirron ja/tai aikaviiveen, osalta. Lämpötilamittausten säteilyvirheenkorjausta on käsitelty esimerkiksi julkaisussa James K. Luers Temperature Error of Vaisala RS90 Radiosonde, Journal of Atmospheric and Oceanic Technology, Vol.14, Nro 6, December 1997, pp1520-1532. Käytännössä mitattu ympäristön lämpötila T_T korjataan vastaamaan mahdollisimman tarkasti todellista ympäristön lämpötilaa. Virhekorjaamatontakin mittaustulosta voidaan käyttää, mutta siinä tapauksessa lämpötilamittauksen virheet kertautuvat kosteusmittauksen virhekorjauskesssa. Seuraavaksi mitataan ympäristön kosteus U_m kosteusanturilla vaiheessa 12. Mitattu kosteus U_m on siis kos-

teusanturilla saatu niin sanottu normaali mittaustulos.

Vaiheessa 13 lasketaan kosteusanturin lämpötila T_U etukäteen vaiheessa 10 muodostetun taulukon ja ympäristön lämpötilan T_T avulla. (Tässä voidaan käyttää T_T :n virhekorjattua arvoa tarkempien lopputulosten saavuttamiseksi.) Taulukosta etsitään ΔT_U :n arvo, joka vastaa kosteusmittausta (U_m :n mittaus) suoritettaessa valinneita ympäristöolosuhteita, ja tästä arvoa käytetään T_U :n laskemiseen.

Kosteusanturin lämpötila T_U voidaan laskea esimerkiksi seuraavasti:

$$10 \quad T_U = T_T + k_U \cdot \Delta T_U, \text{ jossa}$$

T_T = ympäristön lämpötila edullisesti virhekorjattuna,

k_U = tuuletuskerroin (ventilation factor) nominaaliseen arvoon nähden, ja

ΔT_U = ympäristön lämpötilan ja kosteusanturin lämpötilan välinen ero (korjaus ympäristön lämpötilaan nähden) vallitsevissa (nominaalinen k_U) ympäristöolosuhteissa.

15

Tarvittaessa kyseistä ΔT_U arvoa voidaan korjata k_U :n lisäksi myös muiden vaikuttavien termodynäamisten tekijöiden suhteen.

20 Tuuletuskerroin k_U ilmaisee ilman ja anturin välisen lämmönsiirtokertoimen muuttumisen tuuletuksen muuttuessa. Taulukoitu (nominaalinen) ΔT_U arvo vastaa tiettyä (nominaalista) tuuletuksen arvoa ja tuuletuskerroin ilmaistaan siten tuuletkertoimen muutoksen todellisen ja nominaalisen tilanteen välillä. Sen määritely voidaan tehdä kyseisen lämmönsiirtotilanteen termodynäamisen analyysin 25 kautta erilaisia approksimaatioita käyttäen ja kokeellisia mittauksia hyödyntäen esimerkiksi seuraavasti:

$$k_U = \alpha \cdot \left(\frac{v}{v_0} \right)^b, \text{ jossa}$$

v = radiosondin todellinen nousunopeus,

v_0 = radiosondin nominaalinen nousunopeus, joka on tyypillisesti 5-6 m/s,

a = vakio (esimerkiksi noin luokkaa 1), ja

b = vakio (esimerkiksi noin luokkaa -0.5 riippuen käytetyn anturin ominaisuuksista).

- 5 Radiosondin todellinen nousunopeus voidaan määritää tietyllä aikavälillä esimerkiksi siten, että ilmanpaineen P, lämpötilan T ja kosteuden U perusteella lasketaan radiosondin korkeus määrätyllä ajanhetkellä, jolloin nousunopeus on korkeuden muutos eri ajanhetkien välillä jaettuna kyseisten ajanhetkien välisellä aikaerolla. Taulukko varten on sovittu nominaalinen radiosondin nousunopeus, joka vastaa tuuletusnopeutta sondin kulkissa ilmavirtauksen mukana, perustuen käsitykseen mittauksen kannalta edullisesta keskimääräisestä nousunopeudesta.
- 10

Tuuletuskerroin k_U voidaan määritellä myös seuraavasti (perustuen erääseen toiseen sopivan lämmönsiirtotilanteen approksimaatioon) :

$$15 \quad k_U = f(P, \frac{dt}{dP}), \text{ jossa}$$

P = ilmanpaine, ja

t = aika.

- 20 Myös muita soveltuivia tapoja voidaan käyttää tuuletuskertoimen k_U määrittämiseen. Tuuletuskertoimessa voidaan esimerkiksi ottaa huomioon, että laattamaisen (kosteusanturi) ja sylinterimäisen (lämpötila-anturi) kappaleen termodynamiikka ja lämmönvaihto ovat erilaisia, jolloin kosteusmittauksen tuuletuskerroin k_U on tyypillisesti eri kuin lämpötilamittauksen tuuletuskerroin k_T .

- 25 Tämän jälkeen kuvion 1 mukaisessa vuokaaviossa lasketaan vaiheessa 14 virhekorjattu kosteus U vaiheessa 13 määritetyn kosteusanturin lämpötilan T_U , ympäristön lämpötilan T_T ja mitatun kosteuden U_m avulla. (Myös tässä käytetään edullisesti T_T :n virhekorjattua arvoa.) Virhekorjattu kosteus voidaan laskea esimerkki seuraavasti:

Suhteellinen kosteus U lämpötilassa T määritellään

$$U = \frac{e}{e_w(T)} \cdot 100, \text{ jossa}$$

$e_w(T)$ = kylläisen vesihöyryyn osapaine (saturaatiohöyrynpaine) lämpötilassa T , ja
 e = todellinen höyryyn paine lämpötilassa T .

5

Määritelmän mukaan mitattu kosteus on

$$U_m = \frac{e}{e_w(T_U)} \cdot 100$$

Tästä voidaan laskea todellinen höyrynpaine e ja sijoittamalla edellä laskettu e perusmääritelmän mukaiseen kaavaan saadaan virhekorjattu todellinen kosteus U :

$$U = \frac{e}{e_w(T_T)} \cdot 100 = \frac{e_w(T_U)}{e_w(T_T)} \cdot U_m, \text{ jossa}$$

T_T = lämpötila-anturilla mitattu ympäristön lämpötila edullisesti virhekorjattuna,

T_U = kosteusanturin lämpötila,

U_m = mitattu kosteus,

15 $e_w(T_U)$ = kylläisen vesihöyryyn osapaine lämpötilassa T_U ,

$e_w(T_T)$ = kylläisen vesihöyryyn osapaine lämpötilassa T_T , ja

$e(T_T)$ = todellinen höyryyn paine lämpötilassa T_T .

20 Kylläisen vesihöyryyn osapaine e_w voidaan määritellä esimerkiksi meteorologian alalla yleisesti tunnetun Wexler-Hyland approksimaation avulla. Alan ammatti-miehelle on kuitenkin selvää, että muitakin approksimaatioita voidaan käyttää keksinnön puitteissa.

Kuvio 2 esittää keksinnön erään suoritusmuodon mukaista taulukkoa 20 kosteus-anturin ja ympäristön lämpötilojen välistä eroista ΔT_U (T_U : n korjausarvoista ympäristön lämpötilaan nähdyn). Päivääkaan kosteusanturin lämpötila on korkeampi kuin ilman lämpötila ja yöäkaan tilanne on päinvastainen.

Mainittu taulukko voidaan muodostaa esimerkiksi suorittamalla erilaisissa ympäristöolosuhteissa vertailumittauksia koskien ympäristön lämpötilaa ja kosteusanturin lämpötilaa, joiden avulla voidaan luonnollisesti muodostaa taulukko näiden lämpötilojen eroista.

5

Vaihtoehtoisesti taulukon muodostamisessa voidaan hyödyntää esimerkiksi soveltuivia kastepisteanturimittauksia tai ilmakehäutkan mittauksia tai muita soveltuivia menetelmiä, joilla tarvittavat suuret saadaan selville. Taulukkoon tarvittavat lämpötilaeroarvot voidaan määritellä myös epäsuorasti mittaanmallia ja vertaamalla erilaisissa ympäristöoloissa kosteutta radiosondin kosteusanturilla ja vertailuun soveltuvalla kosteusmittausmenetelmällä, joka antaa vertailukosteuden jossa huomioidaan käytettävän anturin tunnetut virhetekijät. Myös yö- ja päivääikaan tehtyjen mittausten antamia kosteusmittauseroja voidaan käyttää. Taulukon arvot voidaan sitten päättää radiosondin kosteusmittaustulosten ja todellisen kosteuden erojen perusteella. Tällainen menettely on järkevää, koska todellisen kosteuden antava mittaus on tyypillisesti vaikea ja/tai kallis suorittaa ja siten taloudellisesti kannattamaton menetelmä käytettäväksi jatkuvissa mittauksissa.

10

15

20

Edellä esitettyt ilmakehäutkalla (esimerkiksi DIAL ja RAMAN Lidar) tai kastepisteantureilla (engl. dew or frostpoint sensors) suoritettavat mittaukset ovat yleisesti tunnettuja meteorologisten mittausten alalla, joten niitä ei käsitellä täsmän yksityiskohtaisemmin.

25

30

Taulukossa 20 ympäristöolosuhteet vaihtelevat ilmanpaineen P ja auringon korkeuskulman (solar elevation angle) h funktiona. Vaaka-akselilla on esitetty ilmanpaine P ja pysty-akselilla on esitetty auringon korkeuskulma h . Auringon korkeuskulma on meteorologiassa yleisesti tunnettu suure, joka vaihtelee paikan, päivämäärän ja kellonajan funktiona, ja ilmanpaine on muutenkin radiosondissa tyypillisesti mitattava suure, joten määrätyä kosteusmittausta vastaava ΔT_U :n arvo on suoraviivaisesti saatavilla taulukosta.

Taulukon soluissa on esitetty joitakin hypoteettisia arvoja lämpötilaeroille ΔT_U . Esimerkiksi auringon korkeuskulman ollessa -7 (aurinko on 7° horisontin alapuolella eli on yö) ja ilmanpaineen ollessa 1000 hPa lämpötilaero ΔT_U on tyypillisesti 0°C (tai vähän alle 0°C yöllisen IR-säteilyn ollessa merkittävää painetasosta riippuen). Anturi voi siis olla todellisuudessa kylmempি kuin mitattu ilmalämpötila. Vastaavasti esimerkiksi auringon korkeuskulmaa 90 ja ilmanpainetta 3 hPa vastaava lämpötilaero ΔT_U voi olla 10°C . Lämpötilaero voi siis olla selvästi muuttunut. Lämpötilaero eli ΔT_U :n korjausarvo on nyt lämpimään suuntaan ilman lämpötilaan nähdien, sillä auringon säteily on lämmittänyt anturia. On huomattava, että todellisessa sovelluksessa taulukon arvot voivat luonnollisesti poiketa esitetystä arvoista, koska todellisessa sovelluksessa taulukon arvot perustuvat kyseessä olevissa ympäristöolosuhteissa suoritettuihin mittauksiin.

Kuvion 2 taulukossa 20 esitetyt arvot voidaan tallentaa myös johonkin muuhun soveltuvaan tietorakenteeseen, kuten esimerkiksi (linkitettyyn) listaan tai vektoriin.

Keksinnön erään suoritusmuodon mukaan mainitut korjaustaulukon korjausarvot ovat saturaatiokosteustason korjausarvoja ΔU_{rh} , ja virhekorjattu kosteus U laskeetaan mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaan ΔU_{rh} :n ja mitatun ympäriston kosteuden U_m avulla.

Saturaatiokosteustason korjausarvo ΔU_{rh} voidaan määrittää korjaustaulukossa esimerkiksi lämpötilasta riippuvan saturaatiokosteuden U_{rh} ja ilmanpaineen P funktiona esitettyä esimerkiksi auringon korkeuskulmalle $h = 90$. Tällöin lopullinen saturaatiokosteustason korjaus $\Delta U_{rh}'$ voidaan laskea esimerkiksi seuraavasti:

$$\Delta U_{rh}' = n \cdot k_U \cdot \Delta U_{rh}, \text{jossa}$$

k_U = tuuletuskerroin (ventilation factor) nominaaliseen arvoon nähdien,
 n = auringon korkeuskulman h ja ilmanpaineen P funktiona vaihteleva normitettu
 30 muuttuja, ja

ΔU_{rh} = taulukosta saatu saturaatiokosteustason korjausarvo vallitsevissa (nominaalinen k_U) ympäristöolosuhteissa.

Tarvittaessa kyseistä ΔU_{rh} arvoa voidaan korjata k_U :n lisäksi myös muiden vaikuttavien termodynäamisten tekijöiden suhteen.

Nyt virhekorjattu kosteus U voidaan laskea huomioimalla mitattu kosteustaso esimerkiksi kaavasta:

$$U = U_m + \frac{U_m}{U_{rh} - \Delta U_{rh}'} \Delta U_{rh}', \text{ jossa}$$

10 U_m = mitattu kosteus,

U_{rh} = saturaatiokosteustaso, ja

$\Delta U_{rh}'$ = lopullinen saturaatiokosteustason korjaus %rh.

15 Saturaatiokosteustason korjausarvon ΔU_{rh} voidaan määrittää korjaustaulukossa myös auringon korkeuskulman h ja ilmanpaineen P funktiona. Tällöin lopullinen saturaatiokosteustason korjaus $\Delta U_{rh}'$ voidaan laskea esimerkiksi seuraavasti:

$$\Delta U_{rh}' = k_U \cdot \Delta U_{rh}, \text{ jossa}$$

k_U = tuuletuskerroin (ventilation factor) nominaaliseen arvoon nähden, ja

20 ΔU_{rh} = taulukosta saatu saturaatiokosteustason korjausarvo vallitsevissa (nominaalinen k_U) ympäristöolosuhteissa.

Tarvittaessa kyseistä ΔU_{rh} arvoa voidaan korjata k_U :n lisäksi myös muiden vaikuttavien termodynäamisten tekijöiden suhteen.

Nyt virhekorjattu kosteus U voidaan laskea esimerkiksi kaavasta:

$$25 U = U_m + \frac{U_m}{U_{rh} - \Delta U_{rh}'} \Delta U_{rh}', \text{ jossa}$$

U_m = mitattu kosteus,

U_{rh} = saturaatiokosteustaso, ja

$\Delta U_{rh}'$ = lopullinen saturaatiokosteustason korjaus %rh.

Keksinnön erään suoritusmuodon mukaan mainitut korjaustaulukon korjausarvot ovat suoraan kosteustason korjausarvoja ΔU (esimerkiksi prosentteina mitatusta ympäristön kosteudesta U_m), jolloin virhekorjattu kosteus U lasketaan mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaan ΔU :n ja 5 mitatun ympäristön kosteuden U_m avulla.

Kosteustason korjausarvo ΔU voidaan määritää korjaustaulukossa esimerkiksi ilmanpaineen P ja auringon korkeuskulman h funktiona. Tällöin lopullinen kosteuskorjaus $\Delta U'$ voidaan laskea esimerkiksi seuraavasti:

$$10 \quad \Delta U' = k_U \cdot \Delta U, \text{ jossa}$$

k_U = tuuletuskerroin (ventilation factor) nominaaliseen arvoon nähden, ja

ΔU = taulukosta saatu kosteustason korjausarvo prosentteina vallitsevissa (nominaalinen k_U) ympäristöolosuhteissa.

15 Tarvittaessa kyseistä ΔU arvoa voidaan korjata k_U :n lisäksi myös muiden vaikuttavien termodynamiosten tekijöiden suhtein.

Nyt virhekorjattu kosteus U voidaan laskea esimerkiksi kaavasta:

$$U = U_m + \Delta U' \cdot \frac{U_m}{100}, \text{ jossa}$$

20 U_m = mitattu kosteus, ja

$\Delta U'$ = lopullinen kosteuskorjaus prosentteina.

Kuvio 3 on yksinkertaistettu lohkokaavio eksinnön erään suoritusmuodon mukaisesta tietojenkäsittelylaitteesta 30, joka voi olla esimerkiksi yleiskäytöinen 25 tietokone tai palvelin tai sisältyvä radiosondiin.

Tietojenkäsittelylaite 30 käsitteää prosessointiyksikön 31 ja siihen yhteydessä olevan I/O-rajapinnan 32, jonka kautta tietojenkäsittelylaite kommunikoi muiden laitteiden kanssa joko kiinteän tai langattoman tiedonsiirtoyhteyden välityksellä,

jonka kautta tietojenkäsittelylaitteelle voidaan syöttää tietoa ja jonka kautta tietojenkäsittelylaite antaa ulos tietoa. I/O rajapinta käsittää tyypillisesti myös käyttäjärajapinnan (user interface, UI, ei esitetty kuviossa) käsittäen esimerkiksi näytön ja näppäimistön sekä mahdollisesti jonkin muun ohjainvälilineen (ei esitetty kuviossa), joiden avulla kyseistä tietojenkäsittelylaitetta voidaan käyttää. Keksintöä voidaan kuitenkin hyödyntää myös laitteissa, joissa ei ole varsinaista käyttäjärajapintaa, kuten esimerkiksi radiosondissa.

10 Prosessointiyksikkö 31 käsittää prosessorin (ei esitetty kuviossa), muistin 33 ja muistiin tallennetun tietokoneohjelman 34 suoritettavaksi mainitussa prosessorissa. Prosessori ohjaa tietokoneohjelman 34 mukaisesti tietojenkäsittelylaitteen tuotamaan rutiinin radiosondin kosteusmittustulosten korjaamiseksi erityisesti säteilylämönsiirrosta aiheutuvien virheiden osalta.

15 Tietojenkäsittelylaite ohjataan vastaanottamaan kosteusanturilla mitattu kosteus U_m ja ainakin yhden ympäristöolosuhdeparametrin vallitseva arvo. Tietojenkäsittelylaite voi käsittää radiovastaanottimen radiosondin mittaustulosten vastaanottamiseksi suoraan radiosondista tai mittaustulokset voidaan syöttää tietojenkäsittelylaitteelle jollakin muulla sopivalla tavalla I/O rajapinnan 32 kautta. Edelleen tietojenkäsittelylaite ohjataan laskemaan virhekorjattu kosteus U suoraan tai välillisesti mitatun ympäristön kosteuden U_m ja vastaanotetun ainakin yhden ympäristöolosuhdeparametrin vallitsevan arvon avulla.

20 Keksinnön eräässä suoritusmuodossa muistiin 33 on tallennettu lisäksi ennalta muodostettu taulukko 35, joka käsittää kosteusmittustulosten korjausarvoja erilaisissa ympäristöolosuhteissa, ympäristöolosuhteiden ollessa määritettyä ainakin yhden ympäristöolosuhdeparametrin funktiona. Tällöin tietokoneohjelma 34 ohjaa prosessorin laskemaan virhekorjattu kosteus U suoraan tai välillisesti mitatun ympäristön kosteuden U_m ja taulukossa 35 mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaan korjausarvon avulla.

Keksinnön eräässä vaihtoehtoisessa toteutuksessa tietokoneohjelma 34 ohjaa processorin laskemaan vastaanotettua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaava kosteusmittaustuloksen korjausarvo ennalta määrityn matemaattisen funktion avulla ja käyttämään laskettua korjausarvoa virhekorjatun
5 kosteuden U laskemisessa.

Keksinnön vielä erään suoritusmuodon mukaan tietojenkäsittelylaite ohjataan vastaanottamaan radiosondissa olevalla lämpötila-anturilla mitattu ympäristön lämpötila T_T . Edelleen tietojenkäsittelylaite ohjataan laskemaan kosteusanturin lämpötila T_U ympäristön lämpötilan T_T ja taulukon 35 avulla, mainitun taulukon käsittäessä ympäristön lämpötilan ja kosteusanturin lämpötilan välisiä eroja ΔT_U erilaisissa ympäristöolosuhteissa, ja laskemaan virhekorjattu kosteus U kosteusanturin lämpötilan T_U , ympäristön lämpötilan T_T ja mitatun kosteuden U_m avulla.
10

15 Keksinnön yksityiskohtia on edellä esitelty esimerkinomaisesti edullisten suoritusmuotojen yhteydessä rajoittamatta keksintöä kuitenkaan vain näihin esimerkkeihin. Alan ammattimiehelle on selvää, ettei keksintö rajoitu esitettyihin yksityiskohtiin ja että keksintö voidaan toteuttaa muussakin muodossa poikkeamatta keksinnön tunnusmerkeistä. Keksinnön toteutus- ja käytömahdollisuksia rajoittavat ainoastaan oheistetut patenttivaatimukset. Täten vaatimusten määrittelemät erilaiset keksinnön toteutusvaihtoehdot, myös ekvivalentiset toteutukset, kuuluvat keksinnön piiriin.
20

Patenttivaatimukset:

1. Menetelmä radiosondin kosteusmittaustulosten korjaamiseksi erityisesti säteilylämönsiirrosta aiheutuvien virheiden osalta, radiosondin käsittäessä ainakin kosteusanturin, **tunnettu** siitä, että menetelmässä

5 muodostetaan (10) etukäteen tietorakenne (20), joka käsittää kosteusmittaustulosten korjausarvoja erilaisissa ympäristöolosuhteissa, ympäristöolosuhteiden ollessa mainitussa tietorakenteessa määritettyä mainitun ainakin yhden ympäristöolosuhdeparametrin funktiona, tai määritetään etukäteen matemaattinen funktio, jonka avulla voidaan laskea ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaava kosteusmittaustuloksen korjausarvo,

10 mitataan (12) ympäristön kosteus U_m mainitulla kosteusanturilla, määritetään ainakin yhden ympäristöolosuhdeparametrin vallitseva arvo, ja

15 lasketaan (14) virhekorjattu kosteus U suoraan tai välillisesti mainitun mitatun ympäristön kosteuden U_m ja mainitussa tietorakenteessa mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan korjausarvon tai mainitun matemaattisen funktion avulla lasketun korjausarvon avulla.
- 20 2. Vaatimuksen 1 mukainen menetelmä, **tunnettu** siitä, että mainittu ympäristöolosuhdeparametri koskee ainakin yhtä kosteusmittaustulokseen vaikuttavaa suuretta, kuten painetta, lämpötilaa, kosteutta, radiosondin sijaintikorkeutta, radiosondin luotaus-aikaa, auringon säteilyn intensiteettiä, auringon korkeuskulmaa, radiosondin sijaintia maapallolla tai radiosondin nousunopeutta.
- 25 3. Minkä tahansa edellä esitetyn vaatimuksen mukainen menetelmä, **tunnettu** siitä, että mainittu kosteusmittaustulosten korjausarvo perustuu ainakin yhteen kosteusmittaustulokseen vaikuttavista suureista, kuten paineeseen, lämpötilaan, kosteuteen, radiosondin sijaintikorkeuteen, radiosondin luotaus-aikaan, auringon säteilyn intensiteettiin, auringon korkeuskulmaan, radiosondinsijain-

tiin maapallolla tai radiosondin nousunopeuteen.

4. Minkä tahansa edellä esitetyn vaatimuksen mukainen menetelmä, tunnettu siitä, että mainitut korjausarvot ovat ympäristön lämpötilan ja kosteusanturin lämpötilan välisiä eroja ΔU .
 5. Minkä tahansa edellä esitetyn vaatimuksen mukainen menetelmä, tunnettu siitä, että mainittu tietorakenne (20) muodostetaan vertailumittausten perusteella.
- 10
6. Minkä tahansa edellä esitetyn vaatimuksen mukainen menetelmä, tunnettu siitä, että mainitut korjausarvot ovat saturaatiokosteustason korjausarvoja ΔU_{rh} , ja että menetelmässä lasketaan virhekorjattu kosteus U mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaan ΔU_{rh} :n ja mitatun ympäristön kosteuden U_m avulla.
 7. Minkä tahansa edellä esitetyn vaatimuksen mukainen menetelmä, tunnettu siitä, että mainitut korjausarvot ovat suoraan kosteustason korjausarvoja ΔU , ja että menetelmässä lasketaan virhekorjattu kosteus U mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaan ΔU :n ja mitatun ympäristön kosteuden U_m avulla.
- 20
8. Minkä tahansa edellä esitetyn vaatimuksen mukainen menetelmä, tunnettu siitä, että mainitussa tietorakenteessa (20) ympäristöolosuhteet on määritetty ilmanpaineen P ja auringon korkeuskulman h funktiona.
 9. Minkä tahansa edellä esitetyn vaatimuksen mukainen menetelmä, tunnettu siitä, että mainitussa tietorakenteessa (20) ympäristöolosuhteet on määritetty lämpötilasta riippuvan saturaatiokosteuden rh ja ilmanpaineen P funktiona.

10. Minkä tahansa edellä esitetyn vaatimuksen mukainen menetelmä, **tunnettua** siitä, että mainitut korjausarvot ovat ympäristön lämpötilan ja kosteusanturin lämpötilan väliä eroja ΔT_U , että mainittu radiosondi käsittää lisäksi lämpötila-anturin, ja että menetelmässä

5 mitataan (11) ympäristön lämpötila T_T mainitulla lämpötila-anturilla, lasketaan (13) mainittua ainakin yhtä vallitseavaa ympäristöolosuhdeparametrin arvoa vastaan ΔT_U :n ja mainitun ympäristön lämpötilan T_T avulla kosteusanturin lämpötila T_U , ja

10 lasketaan (14) virhekorjattu kosteus U lasketun kosteusanturin lämpötilan T_U , ympäristön lämpötilan T_T ja mitatun ympäristön kosteuden U_m avulla.

11. Vaatimuksen 10 mukainen menetelmä, **tunnettua** siitä, että menetelmässä virhekorjataan mitattu ympäristön lämpötila T_T ennen kosteusanturin lämpötilan T_U laskemista, ja

15 käytetään kosteusanturin lämpötilan T_U sekä virhekorjatun kosteuden U laskemisessa virhekorjattua ympäristön lämpötilaa T_T .

12. Vaatimuksen 10 tai 11 mukainen menetelmä, **tunnettua** siitä, että kosteusanturin lämpötila T_U lasketaan seuraavasti:

20
$$T_U = T_T + k_U \cdot \Delta T_U, \text{ jossa}$$

T_T = lämpötila-anturilla mitattu ympäristön lämpötila edullisesti virhekorjatuna,

k_U = tuuletuskerroin (ventilation factor) nominaaliseen arvoon nähden, ja

25 ΔT_U = ympäristön lämpötilan ja kosteusanturin lämpötilan välinen ero vallitsevissa ympäristöolosuhteissa.

13. Minkä tahansa vaatimuksen 10-12 mukainen menetelmä, **tunnettua** siitä, että virhekorjattu kosteus U määritellään seuraavasti:

$$U = \frac{e(T_T)}{e_w(T_T)} \cdot 100 = \frac{e_w(T_U)}{e_w(T_T)} \cdot U_m, \text{ jossa}$$

T_T = lämpötila-anturilla mitattu ympäristön lämpötila edullisesti virhekorjatuna,

T_U = kosteusanturin lämpötila,

U_m = mitattu kosteus,

5 $e_w(T_U)$ = kylläisen vesihöyryyn osapaine lämpötilassa T_U ,

$e_w(T_T)$ = kylläisen vesihöyryyn osapaine lämpötilassa T_T , ja

$e(T_T)$ = todellinen höyrynpaine lämpötilassa T_T .

14. Tietojenkäsittelylaite (30) radiosondin kosteusmittaustulosten korjaamiseksi

10 erityisesti säteilylämmönsiirrosta aiheutuvien virheiden osalta, radiosondin käsitteessä ainakin kosteusanturin, **tunnettua** siitä, että tietojenkäsittelylaite käsitää

ennalta muodostetun tietorakenteen (35), joka käsittää kosteusmittaustulosten korjausarvoja erilaisissa ympäristöolosuhteissa, ympäristöolosuhteiden ollessa mainitussa tietorakenteessa määritettyä mainitun ainakin yhden ympäristöolosuhdeparametrin funktiona, tai muistin (33) käsittäen ennalta määritetyt matemaattisen funktion, jonka avulla voidaan laskea ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaava kosteusmittaustuloksen korjausarvo,

20 vastaanottovälineet (32) mainitulla kosteusanturilla mitatun kosteuden U_m vastaanottamiseksi ja ainakin yhden ympäristöolosuhdeparametrin vallitsevan arvon vastaanottamiseksi, ja

25 laskentavälineet (31, 34) virhekorjatun kosteuden U laskemiseksi suoraan tai välillisesti mainitun mitatun ympäristön kosteuden U_m ja mainitussa tietorakenteessa mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaan korjausarvon tai mainitun matemaattisen funktion avulla lasketun korjausarvon avulla.

15. Vaatimuksen 14 mukainen tietojenkäsittelylaite, **tunnettua** siitä, että mainittu

30 tietojenkäsittelylaite sijaitsee mainitussa radiosondissa.

16. Tietokoneohjelma, joka tuottaa rutiinin radiosondin kosteusmittaustulosten korjaamiseksi erityisesti säteilylämmönsiirrosta aiheutuvien virheiden osalta suoritettaessa mainittu tietokoneohjelma, radiosondin käsittäessä ainakin kosteusanturin ja mainitun tietokoneohjelman ollessa yhteydessä

5 ennalta muodostettuun tietorakenteeseen, joka käsittää kosteusmittaustulosten korjausarvoja erilaisissa ympäristöolosuhteissa, ympäristöolosuhteiden ollessa mainitussa tietorakenteessa määritettyä mainitun ainakin yhden ympäristöolosuhdeparametrin funktiona, tai muistiin, joka käsittää ennalta määritetyyn matemaattisen funktion, jonka avulla voidaan laskea ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaava kosteusmittaustuloksen korjausarvo, mainitun tietokoneohjelman käsittäessä

10 10 ohjelmakoodin mainitulla kosteusanturilla mitatun kosteuden U_m vastaanottamiseksi ja ainakin yhden ympäristöolosuhdeparametrin vallitsevan arvon vastaanottamiseksi, ja

15 ohjelmakoodin virhekorjatun kosteuden U laskemiseksi suoraan tai välillisesti mitatun ympäristön kosteuden U_m ja mainitussa tietorakenteessa mainitua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan korjausarvon tai mainitun matemaattisen funktion avulla lasketun korjausarvon avulla.

20

17. Vaatimuksen 16 mukainen tietokoneohjelma tallennettuna muistivälineelle.

(57) Tiivistelmä

Keksintö liittyy menetelmään radiosondin kosteusmittaustulosten korjaamiseksi erityisesti säteilylämmönsiirrosta aiheutuvien virheiden osalta. Menetelmässä mitataan (12) ympäristön kosteus U_m radiosondissa olevalla kosteusanturilla, määritetään ainakin yhden ympäristöolosuhdeparametrin vallitseva arvo, ja lasketaan (14) virhekorjattu kosteus U suoraan tai välillisesti mainitun mitatun ympäristön kosteuden U_m ja mainittua ainakin yhtä vallitsevaa ympäristöolosuhdeparametrin arvoa vastaavan kosteusmittaustulosten korjausarvon avulla.

(FIG. 1)

1/2
L4

FIG 1

2/2
L4

20

h\P	1000	500	100	3
-7	0	.	0	-0,5
0	0	.	.	.
.
.
90	0	.	+3	+10

FIG 2

FIG 3

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/FI04/000691

International filing date: 17 November 2004 (17.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: FI
Number: 20031672
Filing date: 18 November 2003 (18.11.2003)

Date of receipt at the International Bureau: 04 January 2005 (04.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.