FinalProject-DataWrangling

```
library(tidyverse)
## -- Attaching packages -----
## v ggplot2 3.3.0
                       v purrr
                                 0.3.3
## v tibble 3.0.0
                                 0.8.5
                       v dplyr
## v tidyr
            1.0.3
                       v stringr 1.4.0
## v readr
             1.3.1
                       v forcats 0.5.0
## -- Conflicts -----
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                     masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:dplyr':
##
##
       intersect, setdiff, union
## The following objects are masked from 'package:base':
##
##
       date, intersect, setdiff, union
library(zoo)
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(gridExtra) # for plotting side by side
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
       combine
library(scales) # for previewing colors
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
##
       discard
```

```
## The following object is masked from 'package:readr':
##
## col_factor

# paci <- read_tsv("pacifier.tsv")
# micro <- read_tsv("microwave.tsv")
# # head(micro)
# dryer <- read_tsv("hair_dryer.tsv")
# # head(dryer)
# glimpse(paci)
# glimpse(micro)
# glimpse(dryer)

dryer <- read_csv("hair_dryer.csv")
paci <- read_csv("pacifier.csv")
micro <- read_csv("microwave.csv")</pre>
```

1) Dates should be a datetime format for comparison

```
paci$review_date <- as.Date(paci$review_date, "%m/%d/%Y")
dryer$review_date <- as.Date(dryer$review_date, "%m/%d/%Y")
micro$review_date <- as.Date(micro$review_date, "%m/%d/%Y")
head(micro)
## # A tibble: 6 x 24</pre>
```

```
marketplace customer_id review_id product_id product_parent product_title
                       <dbl> <chr>
                                                           <dbl> <chr>
##
     <chr>
                                       <chr>>
                   21879631 RY52KZAB~ B0052G14E8
## 1 us
                                                       423421857 danby 0.7 cu~
## 2 us
                  14964566 R3GCOEV4~ B0055UBB40
                                                       423421857 danby 0.7 cu~
## 3 us
                  13230389 R1V2OPPN~ B0052G14E8
                                                       423421857 danby 0.7 cu~
## 4 us
                  43655888 R9Q0QDTL~ B004ZU09QQ
                                                       423421857 danby 0.7 cu~
## 5 us
                     117794 R3DL7HYC~ B005GSZB7I
                                                       827502283 whirlpool st~
                   16018452 R3M88678~ B004ZU09QQ
## 6 us
                                                       423421857 danby 0.7 cu~
## # ... with 18 more variables: product_category <chr>, star_rating <dbl>,
## #
      helpful_votes <dbl>, total_votes <dbl>, vine <chr>,
      verified_purchase <chr>, review_headline <chr>, review_body <chr>,
## #
## #
      review_date <date>, type <chr>, helpful_ratio <dbl>, helpful <lgl>,
      has_votes <lgl>, impact_pos <dbl>, impact_neg <dbl>, cum_star_rating <dbl>,
      review_month <date>, impact_star <chr>
## #
```

2) Fix incosistent capitalization in pacifier and microwave data -> make uniform

```
dryer$marketplace <- tolower(dryer$marketplace)
paci$marketplace <- tolower(paci$marketplace)
paci$product_category <- tolower(paci$product_category)
micro$marketplace <- tolower(micro$marketplace)
micro$product_category <- tolower(micro$product_category)</pre>
```

do same for review headline and body

```
paci$review_headline <- tolower(paci$review_headline)
paci$review_body <- tolower(paci$review_body)
micro$review_headline <- tolower(micro$review_headline)</pre>
```

```
micro$review_body <- tolower(micro$review_body)
dryer$review_headline <- tolower(dryer$review_headline)
dryer$review_body <- tolower(dryer$review_body)</pre>
```

and vine + verified

```
paci$vine <- tolower(paci$vine)
paci$verified_purchase <- tolower(paci$verified_purchase)
micro$vine <- tolower(micro$vine)
micro$verified_purchase <- tolower(micro$verified_purchase)
dryer$vine <- tolower(dryer$vine)
dryer$verified_purchase <- tolower(dryer$verified_purchase)</pre>
```

3a) Create helpful votes/total votes ratio column (lots of 0s and 1s, meaning this isn't best metric)

```
helpful_ratio <- function(df){
   df$helpful_ratio <- df$helpful_votes / df$total_votes
   return(df)
}
dryer <- helpful_ratio(dryer)
paci <- helpful_ratio(paci)
micro <- helpful_ratio(micro)</pre>
```

3b) Create indicator for whether review has any votes

```
vote_indicator <- function(df){
  df$has_votes <- df$total_votes > 0
  return(df)
}

dryer <- vote_indicator(dryer)
paci <- vote_indicator(paci)
micro <- vote_indicator(micro)</pre>
```

3c) Create indicator for whether review was helpful or not

```
# no votes -> NA
# > 1 total votes and > 0.5 helful ratio -> TRUE
# else -> F
helpful_indicator <- function(df){
   dummy1 <- ifelse(df$total_votes > 1,T,NA) # reviews with 0 or 1 total votes are NA
   dummy2 <- df$helpful_ratio > 0.5 # stays NA if NA
   df$helpful <- dummy1 & dummy2
   return(df)
}
dryer <- helpful_indicator(dryer)
paci <- helpful_indicator(paci)
micro <- helpful_indicator(micro)</pre>
```

3d) Create an impact pos and impact neg column

```
# impact_pos indicates whehter a review is helpful and >= 4
is_impact_pos <- function(df){
    df$impact_pos <- ifelse(!(df$helpful %in% c(FALSE,NA)) & df$star_rating >= 4,1,0) # 1 = positive + impact_neg indicates whehter a review is helpful and <= 3
is_impact_neg <- function(df) {
    df$impact_neg <- ifelse(!(df$helpful %in% c(FALSE,NA)) & df$star_rating <= 3,1,0) # 1 = positive + impact_neg <- is_impact_pos(dryer)
paci <- is_impact_pos(dryer)
paci <- is_impact_pos(micro)
dryer <- is_impact_neg(dryer)
paci <- is_impact_neg(dryer)
paci <- is_impact_neg(dryer)
paci <- is_impact_neg(dryer)
paci <- is_impact_neg(micro)</pre>
```

3e) Create impact star rating

```
impact_star <- function(df){
   df %>% mutate(impact_star = ifelse(helpful,paste("helpful",star_rating,"star"),NA))
}
dryer <- impact_star(dryer)
paci <- impact_star(paci)
micro <- impact_star(micro)</pre>
```

3f) Create a cumulative avg star rating

```
cum_rtg <- function(df){
   df %>% mutate(cum_star_rating = cummean(star_rating))
}

dryer <- cum_rtg(dryer)
paci <- cum_rtg(paci)
micro <- cum_rtg(micro)</pre>
```

3g) Create new review_month column

```
month_only <- function(df){
   df$review_month <- format(df$review_date, format="%Y-%m")
   df$review_month <- as.Date(as.yearmon(df$review_month, "%Y-%m"))
   df
}
dryer <- month_only(dryer)
paci <- month_only(paci)
micro <- month_only(micro)</pre>
```

4a) combine dfs into one for comparison purposes, adding type column

```
dryer$type <- "hair_dryer"
paci$type <- "pacifier"
micro$type <- "microwave"
all <- rbind(dryer,paci,micro)

write.csv(paci,"pacifier.csv", row.names = FALSE)
write.csv(micro,"microwave.csv", row.names = FALSE)
write.csv(dryer,"hair_dryer.csv", row.names = FALSE)
write.csv(all,"all_products.csv", row.names = FALSE)</pre>
```

4b) Filtered for verified users

```
paci_verified <- paci[paci$verified_purchase == "y",]
micro_verified <- micro[micro$verified_purchase == "y",]
dryer_verified <- dryer[dryer$verified_purchase == "y",]
all_verified <- all[all$verified_purchase == "y",]
write.csv(paci_verified, "pacifier_verif.csv", row.names = FALSE)
write.csv(micro_verified, "microwave_verif.csv", row.names = FALSE)
write.csv(dryer_verified, "hair_dryer_verif.csv", row.names = FALSE)
write.csv(all_verified, "all_verif.csv", row.names = FALSE)</pre>
```

4c) Filtered for vine reviews

```
paci_vine <- paci[paci$vine == "y",]
micro_vine <- micro[micro$vine == "y",]
dryer_vine <- dryer[dryer$vine == "y",]
all_vine <- all[all$vine == "y",]
write.csv(paci_vine, "pacifier_vine.csv", row.names = FALSE)
write.csv(micro_vine, "microwave_vine.csv", row.names = FALSE)
write.csv(dryer_vine, "hair_dryer_vine.csv", row.names = FALSE)
write.csv(all_vine, "all_vine.csv", row.names = FALSE)</pre>
```

5a) Group data by month and find monthly stats

Define custom color set

Find stats for each month

5b) Group data by day and find daily stats

First filter out years where not enough reviews

We can see that the bulk of the reviews for: Dryer are after 2010 -> filter fro days starting from 2010-03-11 (day with 34 reviews) Pacifier are after 2012 -> filter for days starting from 2011-12-04 (first day with > 50 reviews) Microwave are consistent at all times -> no filtering needed

```
dryer_daily <- dryer %>% group_by(review_date) %>% summarise(reviews_per_day = n())
paci_daily <- paci %>% group_by(review_date) %>% summarise(reviews_per_day = n())
micro_daily <- micro %>% group_by(review_date) %>% summarise(reviews_per_day = n())

dy1 <- ggplot(dryer_daily,aes(x=review_date,y=reviews_per_day)) + geom_col(fill=cbp[2]) +
    geom_vline(xintercept = mean(dryer_daily$review_date, na.rm = T), color = "red") +
    ggtitle("Hair Dryer") + theme_bw() + theme(text = element_text(size=15))

dy2 <- ggplot(paci_daily,aes(x=review_date,y=reviews_per_day)) + geom_col(fill=cbp[3]) +
    geom_vline(xintercept = mean(paci_daily$review_date, na.rm = T), color = "red") +
    ggtitle("Pacifier") + theme_bw() + theme(text = element_text(size=15))

dy3 <- ggplot(micro_daily,aes(x=review_date,y=reviews_per_day)) + geom_col(fill=cbp[4]) +
    geom_vline(xintercept = mean(micro_daily$review_date, na.rm = T), color = "red") +
    ggtitle("Microwave") + theme_bw() + theme(text = element_text(size=15))

# summary(dryer_daily$review_date)
# summary(dryer_daily$review_date)
# summary(paci_daily$review_date)
dy1; dy2; dy3</pre>
```


Warning: Removed 1 rows containing missing values (position_stack).

Microwave

Create new subsetted data -> reviews are much denser now

```
dryer2 <- dryer %>% filter(review_date >= "2010-03-11")
paci2 <- paci %>% filter(review_date >= "2011-12-04")
dryer_daily2 <- dryer2 %>% group_by(review_date) %>% summarise(reviews_per_day = n())
paci_daily2 <- paci2 %>% group_by(review_date) %>% summarise(reviews_per_day = n())

dy2a <- ggplot(dryer_daily2,aes(x=review_date,y=reviews_per_day)) + geom_col(fill=cbp[2]) +
    ggtitle("Hair Dryer") + theme_bw() + theme(text = element_text(size=15))

dy2b <- ggplot(paci_daily2,aes(x=review_date,y=reviews_per_day)) + geom_col(fill=cbp[3]) +
    ggtitle("Pacifier") + theme_bw() + theme(text = element_text(size=15))

dy2a; dy2b</pre>
```


Pacifier

Then find stats for each day

```
# combine titles and reviews for each month
daily_stats <- function(df){</pre>
df_daily <- df %>% group_by(review_date) %>% summarise(review_count = n(),
                                                         product_titles = paste0(product_title, collapse
                                                          review_headlines = pasteO(review_headline, collar
                                                          review_bodies = paste0(review_body, collapse = "
                                                          star_ratings = paste0(star_rating, collapse = "
                                                          avg_rating = mean(star_rating),
                                                          impact_pos = sum(impact_pos),
                                                          impact_neg = sum(impact_neg)
df_daily <- df_daily %>% mutate(impact_overall = impact_pos - impact_neg, cum_rating = cummean(avg_rating)
df_daily
}
daily_dryer <- daily_stats(dryer2)</pre>
daily_paci <- daily_stats(paci2)</pre>
daily_micro <- daily_stats(micro)</pre>
write.csv(daily_paci, "daily_paci.csv", row.names = FALSE)
write.csv(daily_micro, "daily_micro.csv", row.names = FALSE)
write.csv(daily_dryer, "daily_dryer.csv", row.names = FALSE)
```