Sistema de ecuaciones lineales

CM4F1

Ángel Enrique Ramírez Gutiérrez

aramirezg@uni.edu.pe

Escuela Profesional de Matemática Universidad Nacional de Ingeniería

3 de mayo de 2022

Cromer X

- 2. Métodos directos
 - 2.1. Eliminación de Gauss
 - 2.2. Método de Gauss-Jordan
 - 2.3. Pivoteo parcial
 - 2.4. Pivoteo total

Sistema de ecuaciones lineales

a incognitas

Tiene la forma:

$$E_1: \quad a_{11}x_1+a_{12}x_2+\ldots+a_{1,n-1}x_{n-1}+a_{1n}x_n = b_1 \\ E_2: \quad a_{21}x_1+a_{22}x_2+\ldots+a_{2,n-1}x_{n-1}+a_{2n}x_n = b_2 \\ \vdots \\ E_m: \quad a_{m1}x_1+a_{m2}x_2+\ldots+a_{m,n-1}x_{n-1}+a_{mn}x_n = b_m \\ \text{donde } a_{ij}, b_i \in \mathbb{R} \text{ para todo } i=1,\ldots,m \text{ y } j=1,\ldots,n.$$

A. Ramírez (UNI) Sistema de ecuaciones lineales 3 de mayo de 2022

Sistemas de ecuaciones lineales

El sistema lineal puede ser escrito en forma matricial como sigue:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1,n} \\ a_{21} & a_{22} & & a_{2,n-1} & a_{2,n} \\ & & \ddots & & & \\ a_{m-1,1} & a_{m-1,2} & & a_{m-1,n-1} & a_{m-1,n} \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n-1} & a_{m,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_{m-1} \\ b_m \end{pmatrix}$$

Definiendo $A=(a_{ij})\in\mathbb{R}^{m\times n}$ y $b=(b_i)\in\mathbb{R}^m$ resulta:

$$Ax = b (1)$$

Definición

Dado el sistema lineal (1), definimos la matriz aumentada M asociada al sistema lineal de la forma siguiente:

(2)

Teorema del rango

1. Número de variables

O también conocido como **Teorema de Frobenius**. Este Teorema garantiza la <u>existen</u>cia y unicidad de solución de un sistema de ecuaciones lineales.

- 1. Si rango(A) = rango(M) entonces el sistema tiene solución. Se subdividen en dos casos:
 - 1.1 Si rango(A) = rango(M) < n entonces el sistema tiene infinitas soluciones.
 - 1.2 Si rango(A) = rango(M) = n entonces el sistema tiene única solución.
- 2. Si $rango(A) \neq rango(M)$ entonces el sistema no tiene solución.

En esta primera parte nos centraremos en sistemas que tienen única solución, es decir:

$$rango(A) = rango(M) = n.$$

Contenido

1. Motivación

2. Métodos directos

- 2.1. Eliminación de Gauss
- 2.2. Método de Gauss-Jordan
- 2.3. Pivoteo parcial
- 2.4. Pivoteo total

Métodos directos

Estamos interesados en resolver el sistema Ax = b, donde $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$ y $x \in \mathbb{R}^n$. Además el sistema tiene solución única, es decir: $det(A) \neq 0$.

Para determinar la solución exacta del sistema haremos uso de las operaciones elementales fila:

Definición

Dada una matriz $A \in \mathbb{R}^{n \times n}$, definimos como operaciones elementales fila para la matriz A a cualquiera de las siguientes operaciones:

- 1. Intercambiar la fila i con la fila j, denotado por F_{ij} .
- 2. Asignar a la fila i la misma fila i pero multiplicada por un número no nulo λ . Esto es denotado por $F_i(\lambda)$.
- 3. Asignar a la fila i la misma fila i y sumándole λ veces la fi<u>la j</u> donde $\lambda \neq 0$. Esto es denotado por $F_{ij}(\lambda)$.

Métodos directos (cont.)

Observe que un sistema lineal es fácil de resolver cuando es de la forma:

$$Ux = b \tag{3}$$

donde U es una matriz triangular superior cuyos elementos $u_{ii} \neq 0$ (i = 1, ..., n). Para calcular la solución x se usa el Algoritmo 1 descrito a continuación.

$$\begin{pmatrix}
0 & u_{22} & u_{13} & \dots & u_{2n} \\
0 & u_{22} & u_{23} & \dots & u_{2n}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix}$$
Se conocc comparison the do de sust it to do the gressian and the gressian and

 $u_n x_1 + u_n x_2 + \dots + u_n x_n = b_1 = x_1 = b_1 - \sum_{j=2}^n u_{2j} x_j$

Algoritmo 1: Sustitución Regresiva

Entrada: Ingresar una matriz triangular superior $U \in \mathbb{R}^{n \times n}$.

para $i \leftarrow n$ a 1 hacer

para
$$i \leftarrow n$$
 a 1 hace

$$\mathbf{3} \qquad b_i - \sum_{j=i+1}^n u_{ij} x_j \\ x_i \leftarrow \frac{1}{2^{n+1}}$$

devolver Solución del sistema lineal
$$x = (x_1, \dots, x_n)$$
.

Es claro que de forma analoga se prede aplicar a m Sistema LX=b donde L es ma metoiz tirangular

Eliminación de Gauss

Dado el sistema lineal Ax = b, el método consiste en aplicar operaciones elementales fila a la matriz aumentada M asociada al sistema lineal de forma tal que la matriz A sea transformada a una matriz triangular superior.

Ejemplo

Resuelva el sistema lineal siguiente mediante eliminación gaussiana.

$$\begin{pmatrix} -1 & 3 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & -2 & 2 \\ 3 & -1 & 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -8 \\ 4 \\ 4 \\ 16 \end{pmatrix}.$$

Resolución:

Algoritmo de Eliminación Gaussiana I

Entrada: Número de ecuaciones.

Matriz aumentada $M=(m_{ij})$ donde $i=1,\ldots,n$ y $j=1,\ldots,n+1$

Salida: Solución x_i $(i=1,\ldots,n)$ o mensaje que el sistema no tiene solución.

Paso 1: Para i = 1, ..., n-1 hacer los Pasos del 2 al 4.

Paso 2: Sea \underline{p} el menor entero tal que $i \le p \le n$ y $\underline{m_{pi} \ne 0}$. Si no puede encontrarse p entonces **PARAR**.

No existe solución.

Paso 3: Si $p \neq i$ entonces calcule $F_{ip}M$.

Paso 4: Para $j = i + 1, \dots, n$ hacer los Pasos 5 y 6.

Paso 5: Calcule $f_{ji} = \frac{m_{ji}}{m_{ii}}$.

Paso 6: Calcule $\underline{F_{ji}(f_{ji})M}$ Si $m_{nn}=0$ entonces **PARAR**.

No existe solución.

Paso 8: Calcule $\underline{x_n} = \frac{m_{n,n+1}}{m_{nn}}$

Paso 7:

Paso 9: Para $i = n - 1, \dots, 1$ calcule:

Algoritmo de Eliminación Gaussiana II

Paso 10:

$$x_i = \frac{m_{i,n+1} - \sum\limits_{j=i+1}^n m_{ij} x_j}{a_{ii}}$$
 Solución encontrada. $x = (x_1, x_2, \dots, x_n)$. PARAR

A. Ramírez (UNI) Sistema de ecuaciones lineales 3 de mayo de 2022 12 | 53

$$\underbrace{\begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix}}_{1} = \underbrace{\begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}}_{1}$$

$$det(A) \neq 0 \Rightarrow A es no singular$$

$$M = (A1b) = \begin{pmatrix} 0 & 1 & 1 & 1 & 2 \\ 1 & 2 & 3 & 1 & 4 \\ 2 & 0 & 1 & 0 \end{pmatrix}$$

$$P = 2 \quad || 1 = 0$$

$$P = 2 \quad || 1 = 0$$

$$P_{0.0.3} \left\{ \begin{array}{l} A_{p} |_{icor} \\ M_{1} \end{array} \right\} = \left(\begin{array}{ccc} 1 & 2 & 3 & 1 & 4 \\ 0 & 1 & 1 & 2 \\ 2 & 0 & 1 & 0 \end{array} \right)$$

$$P_{0,0} = 1$$

$$\begin{cases}
1 & 0 \\
0 & 0 \\
0 & 0
\end{cases}$$

$$\begin{cases}
P_{0,0} = 0 \\
0 & 0
\end{cases}$$

$$\begin{cases}
P_{0,0} = 0 \\
0 & 0
\end{cases}$$

$$F_{21}(0)M_{1} = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 1 & 1 \\ 2 & 0 & 1 & 1 \end{pmatrix}$$

Porch
$$i = 1, 2$$
 $P_{0,0} = 1$
 P

Paso 2:
$$P = 2$$

Paso 3: $P = 2 = 1$ No se hace node

Paso 4: $J = 3$

$$J = 3 \begin{cases} Paso 5: & f_{32} = \frac{m_{32}}{m_{21}} = -\frac{4}{2} = -4 \\ Paso 6: & f_{32} = \frac{m_{32}}{m_{21}} = -\frac{4}{2} = -4 \\ Paso 6: & f_{32} = \frac{m_{32}}{m_{21}} = -\frac{4}{2} = -4 \\ Paso 6: & f_{32} = \frac{m_{32}}{m_{21}} = -\frac{4}{2} = -4 \\ Paso 6: & f_{32} = \frac{m_{32}}{m_{21}} = -\frac{4}{2} = -$$

$$\frac{F_{32(4)}M_{2}}{M_{3}} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

$$\chi^3 = \frac{m^{33}}{m^{34}} = \frac{-1}{0} = 0$$

Paso 9:
$$X_2 = \frac{m_{24} - \sum_{j=3}^{3} m_{2j} X_j}{m_{22}} = \frac{2 - (1)(6)}{2} = 2$$

$$X' = \frac{1}{2} \frac{1}{2}$$

Algoritmo de Eliminación Gaussiana III

Análisis del algoritmo:

Siguiendo [1], las operaciones aritméticas aparecen en los pasos 5 y 6.

En el Paso 5 se realizan n-i divisiones.

En el Paso 6, para realizar la operación elemental $F_{ji}(f_{ji})$ se requiere que f_{ji} multiplique a cada elemento de E_{i} , lo que requiere de (n-i)(n-i+1) multiplicaciones. Posteriormente, restamos el valor resultante del correspondiente término de la fila E_{j} . Esto requiere de (n-i)(n-i+1) sustracciones. Para obtener el total, se suma los valores correspondientes para cada $i=1,2,\ldots,n-1$. Es decir:

1. Total de multiplicaciones/divisiones:

$$(n-i) + (n-i)(n-i+1) = (n-i)(n-i+2)$$

2. Total de sumas/restas:

$$(n-i)(n-i+1)$$

Algoritmo de Eliminación Gaussiana IV

El total de operaciones para los pasos 5 y 6 se obtiene al sumar para todo i, resultando para el total de multiplicaciones/divisiones:

$$\sum_{i=1}^{n-1} (n-i)(n-i+2) = \frac{2n^3 + 3n^2 - 5n}{6}$$

y el total de sumas/restas es:

$$\sum_{i=1}^{n-1} (n-i)(n-i+1) = \frac{n^3 - n}{3}.$$

Nos falta agregar las multiplicaciones/divisiones y sumas/restas que ocurren en los pasos 8 y 9(que corresponde a la sustitución regresiva). En el Paso 8 se realiza una división. En el Paso 9 se realiza $(\underline{n-i})$ multiplicaciones y $(\underline{n-i-1})$ sumas para término de la sumatoria, además de una sustracción y una división. Por tanto, el número total de operaciones que se realizan en los pasos 8 y 9 son:

Algoritmo de Eliminación Gaussiana V

1. Multiplicaciones/divisiones:

$$1 + \sum_{i=1}^{n-1} ((n-i) + 1) = \frac{n^2 + n}{2}.$$

2. Sumas/restas:

$$\sum_{i=1}^{n-1} ((n-i-1)+1) = \frac{n^2-n}{2}.$$

Ahora sumamos el número de multiplicaciones/divisiones y sumas/restas obtenidos para los pasos 5, 6, 8 y 9, resultando para las multiplicaciones/divisiones:

$$\frac{2n^3 + 3n^2 - 5n}{6} + \frac{n^2 + n}{2} = \frac{n^3}{3} + n^2 - \frac{n}{3},$$

Algoritmo de Eliminación Gaussiana VI

y para las sumas/restas se obtiene:

$$\frac{n^3 - n}{3} + \frac{n^2 - n}{2} = \frac{n^3}{3} + \frac{n^2}{2} - \frac{5n}{6}.$$

observando así que para n grande se tiene que el número total de multiplicaciones/divisiones y sumas/restas es aproximadamente $\frac{n^3}{3}$.

Algoritmo de Eliminación Gaussiana VII

Así, la cantidad de cálculo y tiempo requerido crece según el valor de n proporcional a n^3 según se muestra en la siguiente Tabla.

multiplicaciones/divisiones	sumas/restas
<u>17</u>	11
<u>430</u>	375
4 <u>4</u> 150	42 875
343 300	338 250
	17 430 4 <u>4</u> 150

Para n=25, realizando 10^6 operaciones por segundo se tardaría:

- Por Gauss: $\frac{4\times25^3+9\times25^2-7\times25}{6}=11325$ operaciones. Por tanto: $\frac{11325}{10^6}=0.011325$ segundos.
- Por Cramer: 1.00822×10^{28} operaciones. Luego sería en años: $\frac{1.00822 \times 10^{22}}{36 \times 24 \times 60 \times 60} = 3.197 \times 10^{14}$ años.

	Algunos costes del método de Cramer		
1	n	Coste del Método de Cramer	Tiempo (10^6 oper/s)
	5	≈ 3600	3,6 milisegundos
1	10	$\approx 4 \times 10^8$	6 minutos 39 segundos
$\boxed{2}$	20	$\approx 1.02 \times 10^{21}$	32,4 millones de años

Ejemplo

¿Es posible usar el método de eliminación Gaussiana para el siguiente sistema lineal?

$$\begin{pmatrix} 2 & 2 & -1 & 3 & -1 \\ 2 & 2 & 3 & -4 & 1 \\ 1 & -1 & 1 & -2 & 1 \\ -1 & 8 & -2 & 3 & -1 \\ 3 & -2 & 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -9 \\ 11 \\ 5 \\ 0 \\ 7 \end{pmatrix}$$

Resolución

Ejemplo

Considere el sistema lineal siguiente:

$$\begin{array}{rcl}
 10^{-4}x_1 + x_2 & = & 1 \\
 x_1 + x_2 & = & 3
 \end{array}$$

cuya solución exacta es $\overline{x}=2.00020002...$ e y=0.99979997... Halle la solución del sistema en un computador donde la aritmética en punto flotante usa 3 dígitos en la mantisa y redondeo.

Resolución:

La matriz aumentada del sistema viene dado por:

$$M = \begin{pmatrix} 0.100 \times 10^{-3} & 0.100 \times 10^{1} & 0.100 \times 10^{1} \\ 0.100 \times 10^{1} & 0.100 \times 10^{1} & 0.300 \times 10^{1} \end{pmatrix}$$

Realizamos la operación elemental:

$$F_2 \leftarrow F_2 - \left(\frac{1}{0.1 \times 10^{-3}}\right) F_1$$

es decir: $m_{21} = 0.1 \times 10^1 + \left(-\frac{0.1 \times 10^{-3}}{0.1 \times 10^{-3}}\right)$

$$m_{22} = 0.1 \times 10^1 + \left(-\frac{0.1 \times 10^1}{0.1 \times 10^{-3}}\right) = 0.1 \times 10^1 - 10^4$$
 $= 0.1 \times 10^1 - 0.1 \times 10^5$ (expresando en punto flotante)
 $= 0.00001 \times 10^5 - 0.1 \times 10^5$ (igualando exponentes)
 $= (0.00001 - 0.1) \times 10^5$ (restando mantisas)
 $= -0.09999 \times 10^5 = -0.9999 \times 10^4$ (expresando en punto flotante)
 $= -1.000 \times 10^4$ (redondeo al tercer dígito)
 $= 0.3 \times 10^1 + \left(-\frac{0.1 \times 10^1}{0.1 \times 10^{-3}}\right) = 0.3 \times 10^1 - 10^4$
 $= 0.3 \times 10^1 - 0.1 \times 10^5$ (expresando en punto flotante)

(expresando en punto flotante) $= 0.00003 \times 10^5 - 0.1 \times 10^5$ (igualando exponentes) (restando mantisas)

 $= 0.1 \times 10^1 - 1 = 0$

3 de mayo de 2022

Por lo que la matriz aumentada ${\cal M}$ queda de la forma siguiente:

$$M = \left(\begin{array}{cc|c} 10^{-4} & 1 & 1\\ 0 & -10^4 & -10^4 \end{array}\right)$$

Por tanto, el sistema resultante es:

$$\left(\begin{array}{cc} 10^{-4} & 1\\ 0 & -10^4 \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right) = \left(\begin{array}{c} 1\\ -10^4 \end{array}\right)$$

aplicamos ahora el Algoritmo 1 al sistema anterior, resulta:

$$i=2: \quad x_2 = \frac{b_2}{u_{22}} \qquad \qquad = \frac{-10^4}{-10^4} = 1$$

$$i = 1: \quad x_1 = \frac{b_1 - \sum_{j=2}^2 u_{2j} x_j}{u_{11}} = \frac{1-1}{10^{-4}} = 0$$

obteniendo la solución x = (0, 1).

Método de Gauss-Jordan

Este método se describe como sigue: Use la i-ésima ecuación para eliminar no eliminar únicamente x_i de las ecuaciones $E_{i+1}, E_{i+2}, \ldots, E_n$ como fue realizado en la eliminación gaussiana, sino también de las ecuaciones $E_1, E_2, \ldots, E_{i-1}$. De esta forma resulta una matriz de la forma siguiente:

$$\begin{pmatrix} m_{11}^{(1)} & 0 & \dots & 0 & m_{1,n+1} \\ 0 & m_{22}^{(2)} & \ddots & \vdots & m_{2,n+1}^{(2)} \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & m_{nn}^{(n)} & m_{n,n+1}^{(n)} \end{pmatrix}$$

así la solución del sistema se obtiene como:

$$x_i = \frac{m_{i,n+1}^{(i)}}{a_{ii}^{(i)}}.$$

Pivoteo parcial

Los inconvenientes observados en el Ejemplo 2 y Ejemplo 3 pueden ser superados si consideramos la siguiente variación al método de eliminación gaussiana.

Dada la matriz aumentada M del sistema lineal Ax=b, definimos la matriz $M^{(1)}=M$ y los elementos de $M^{(1)}$ son denotados por $m^{(1)}_{ij}$. Ahora se localiza la fila i_1 tal que en $m^{(1)}_{i_11}$ se obtiene $\max_{1 \le i \le n} |m_{i1}|$. Realizamos operaciones elementales para obtener una matriz de la forma:

$$\left(\begin{array}{c|cccc}
m_{i_11}^{(1)} & m_{i_12}^{(1)} & \dots & m_{i_1n}^{(1)} \\
\hline
0_{n-1,1} & M^{(2)}
\end{array}\right)$$

donde $0_{n-1,1} \in \mathbb{R}^{(n-1)\times 1}$ y $M^{(2)} \in \mathbb{R}^{(n-1)\times (n-1)}$.

Pivoteo parcial (cont.)

Repetimos el proceso, es decir, se localiza la fila i_2 tal que en $m_{i_21}^{(2)}$ se obtiene $\max_{1 \le i \le n-1} |m_{i_1}^{(2)}|$. Realizamos operaciones elementales para obtener una matriz de la forma:

$$\begin{pmatrix}
m_{i_11}^{(1)} & m_{i_12}^{(1)} & \dots & m_{i_1n}^{(1)} \\
0 & m_{i_22}^{(2)} & \dots & m_{i_2n}^{(2)} \\
\hline
0_{n-2,1} & 0_{n-2,1} & M^{(3)}
\end{pmatrix}$$

donde $0_{n-2,1} \in \mathbb{R}^{(n-2)\times 1}$ y $M^{(3)} \in \mathbb{R}^{(n-2)\times (n-2)}$.

Se repite este proceso hasta que se obtiene una matriz triangular superior y se procede a resolver usando sustitución regresiva.

Ejemplo 1

Se explica este método usando el Ejemplo 2 cuya matriz aumentada es:

$$M = (A \mid b) = \begin{pmatrix} 2 & 2 & -1 & 3 & -1 & -9 \\ 2 & 2 & 3 & -4 & 1 & 11 \\ 1 & -1 & 1 & -2 & 1 & 5 \\ -1 & 8 & -2 & 3 & -1 & 0 \\ 3 & -2 & 1 & -3 & 2 & 7 \end{pmatrix}$$

El máximo en valor absoluto de la primera columna de M es $m_{51}=3$. Por tanto, realizamos la operación elemental F_{15} :

$$M = \begin{pmatrix} 3 & -2 & 1 & -3 & 2 & 7 \\ 2 & 2 & 3 & -4 & 1 & 11 \\ 1 & -1 & 1 & -2 & 1 & 5 \\ -1 & 8 & -2 & 3 & -1 & 0 \\ 2 & 2 & -1 & 3 & -1 & -9 \end{pmatrix}$$

26 | 53

Con las operaciones elementales: $F_{21}(-2/3), F_{31}(-1/3), F_{41}(1/3), F_{51}(-2/3)$ resulta:

El máximo en valor absoluto de la primera columna de $M^{(2)}$ es $m_{42}=\frac{22}{3}$. Con las operaciones elementales: $F_{24}, F_{32}(1/22), F_{42}(-10/22), F_{52}(-10/22)$ resulta:

El máximo en valor absoluto de la primera columna de $M^{(3)}$ es $m_{43}=\frac{34}{11}$. Con las operaciones elementales: $F_{34},F_{43}(-13/68),F_{53}(10/34)$ resulta:

El máximo en valor absoluto de la primera columna de $M^{(4)}$ es $m_{54}=\frac{55}{17}$. Con las operaciones elementales $F_{45},F_{54}(6/55)$ resulta:

$$M = \begin{pmatrix} 3 & -2 & 1 & -3 & 2 & 7 \\ 0 & \frac{22}{3} & -\frac{5}{3} & 2 & -\frac{1}{3} & \frac{7}{3} \\ 0 & 0 & \frac{34}{11} & -\frac{32}{11} & -\frac{2}{11} & \frac{58}{11} \\ 0 & 0 & 0 & \frac{55}{17} & -\frac{38}{17} & -\frac{224}{17} \\ 0 & 0 & 0 & 0 & \frac{6}{55} & \frac{18}{55} \end{pmatrix}$$

aplicamos ahora el Algoritmo 1 al sistema anterior, resulta:

$$i = 5: \quad x_5 = \frac{b_5}{u_{55}} = 3$$

$$i = 4: \quad x_4 = \frac{b_4 - \sum_{j=5}^5 u_{4j} x_j}{u_{44}} = -2$$

$$i = 3: \quad x_3 = \frac{b_3 - \sum_{j=4}^5 u_{3j} x_j}{u_{33}} = 0$$

$$i = 2: \quad x_2 = \frac{b_2 - \sum_{j=3}^{5} u_{2j} x_j}{u_{22}} = 1$$

$$i = 1: \quad x_1 = \frac{b_1 - \sum_{j=2}^{5} u_{1j} x_j}{u_{11}} = -1$$

obteniendo la solución x = (-1, 1, 0, -2, 3).

Algoritmo 2: Proceso de pivoteo parcial

```
Entrada: Ingresar una matriz A \in \mathbb{R}^{n \times n}.
```

```
1 inicio
```

para
$$j \leftarrow 1$$
 a n hacer $| maxc \leftarrow |A_{jj}|;$

para $i \leftarrow j+1$ a n hacer

si
$$|A_{ij}| > maxc$$
 entonces $|maxc \leftarrow |A_{ij}|;$

$$\begin{array}{c|c}
 & maxc \leftarrow |A_{ij}|, \\
 & p \leftarrow i
\end{array}$$
fin para

biar las filas
$$j$$
 y p ;

$$A_{ik} \leftarrow A_{ik} - A_{ij} \left(\frac{A_{jk}}{A_{ii}} \right)$$

devolver Matriz triangular superior U v vector b

fin para fin para fin para

Haciendo ceros los elementos de cada fila
$$i$$
 en la columna j para $k \leftarrow 1$ a n hacer

$$\leftarrow j+1$$
 a n hacer

$$\leftarrow j+1$$
 a n hacer

Intercambiar las filas
$$j$$
 y p ;
para $i \leftarrow j + 1$ a n hacer

$$-j+1$$
 a n hacer

8

6 7 fin

Pivoteo total

Definición

Dada una matriz $A \in \mathbb{R}^{n \times n}$, definimos como operaciones elementales columna para la matriz A a cualquiera de las siguientes operaciones:

- 1. Intercambiar la columna i con la columna j, denotado por C_{ij} .
- 2. Asignar a la columna i la misma columna i pero multiplicada por un número no nulo λ . Esto es denotado por $C_i(\lambda)$.
- 3. Asignar a la columna i la misma columna i y sumándole λ veces la columna j donde $\lambda \neq 0$. Esto es denotado por $C_{ij}(\lambda)$.

Ejemplo

Resolución

A. Ramírez (UNI) Sistema de ecuaciones lineales

Pivoteo total (cont.)

Dada la matriz aumentada M del sistema lineal Ax=b, definimos la matriz $M^{(1)}=M$ y los elementos de $M^{(1)}$ son denotados por $m^{(1)}_{ij}$. Ahora se localiza la fila i_1 y columna j_1 tal que en $m^{(1)}_{i_1j_1}$ se obtiene $\max_{1\leq i,j\leq n}|m_{ij}|$. Realizamos operaciones elementales filas y columnas para obtener una matriz de la forma:

$$\left(\begin{array}{c|cccc}
m_{i_1j_1}^{(1)} & * & \dots & * \\
\hline
0_{n-1,1} & & M^{(2)}
\end{array}\right)$$

donde $0_{n-1,1} \in \mathbb{R}^{(n-1) \times 1}$ y $M^{(2)} \in \mathbb{R}^{(n-1) \times (n-1)}$.

Pivoteo total (cont.)

Repetimos el proceso, es decir, se localiza la fila i_2 y columna j_2 tal que en $m_{i_2j_2}^{(2)}$ se obtiene $\max_{1 \le i,j \le n-1} |m_{ij}^{(2)}|$. Realizamos operaciones elementales para obtener una matriz de la forma:

$$\begin{pmatrix}
m_{i_1j_1}^{(1)} & * & \dots & * \\
0 & m_{i_2j_2}^{(2)} & \dots & * \\
\hline
0_{n-2,1} & 0_{n-2,1} & M^{(3)}
\end{pmatrix}$$

donde $0_{n-2,1} \in \mathbb{R}^{(n-2)\times 1}$ y $M^{(3)} \in \mathbb{R}^{(n-2)\times (n-2)}$.

Se repite este proceso hasta que se obtiene una matriz triangular superior y se procede a resolver usando sustitución regresiva.

Ejemplo 2

Consideremos el sistema del Ejemplo 2 cuya matriz aumentada es dada por:

$$M = (A \mid b) = \begin{pmatrix} 2 & 2 & -1 & 3 & -1 & -9 \\ 2 & 2 & 3 & -4 & 1 & 11 \\ 1 & -1 & 1 & -2 & 1 & 5 \\ -1 & 8 & -2 & 3 & -1 & 0 \\ 3 & -2 & 1 & -3 & 2 & 7 \end{pmatrix}$$

Resolución:

Primero, denotemos por Ind el vector de índices de las variables x_i (i=1,2,3,4,5), es decir:

$$Ind = (1 \ 2 \ 3 \ 4 \ 5).$$

Tener en cuenta, cuando realizamos una operación elemental columna, entonces cambia el orden de los elementos del vector Ind.

El máximo elemento de A_1 en valor absoluto es dado por $m_{42}=8$. Por tanto, realizamos las operaciones elementales:

$$F_1 \leftrightarrow F_4, \quad C_1 \leftrightarrow C_2,$$

luego:

$$Ind = (\ 2 \ 1 \ 3 \ 4 \ 5 \),$$

$$M = \begin{pmatrix} 8 & -1 & -2 & 3 & -1 & 0 \\ 2 & 2 & 3 & -4 & 1 & 11 \\ -1 & 1 & 1 & -2 & 1 & 5 \\ 2 & 2 & -1 & 3 & -1 & -9 \\ -2 & 3 & 1 & -3 & 2 & 7 \end{pmatrix}$$

Ahora hacemos cero los elementos m_{i1} (i=2,3,4,5) mediante las operaciones elementales:

$$F_{2} \leftarrow F_{2} + \left(-\frac{2}{8}\right) F_{1},$$

$$F_{3} \leftarrow F_{3} + \left(\frac{1}{8}\right) F_{1},$$

$$F_{4} \leftarrow F_{4} + \left(-\frac{2}{8}\right) F_{1},$$

$$F_{5} \leftarrow F_{5} + \left(\frac{2}{8}\right) F_{1},$$

resultando:

$$M = \begin{pmatrix} 8 & -1 & -2 & 3 & -1 & 0 \\ 0 & \frac{9}{4} & \frac{7}{2} & -\frac{19}{4} & \frac{5}{4} & 11 \\ 0 & \frac{7}{8} & \frac{3}{4} & -\frac{13}{8} & \frac{7}{8} & 5 \\ 0 & \frac{9}{4} & -\frac{1}{2} & \frac{9}{4} & -\frac{3}{4} & -9 \\ 0 & \frac{11}{4} & \frac{1}{2} & -\frac{9}{4} & \frac{7}{4} & 7 \end{pmatrix}$$

El máximo elemento de A_2 en valor absoluto es dado por $m_{24}=-\frac{19}{4}$. Por tanto, realizamos las operaciones elementales: $C_2\leftrightarrow C_4$, luego:

$$Ind = (2 \ 4 \ 3 \ 1 \ 5),$$

$$M = \begin{pmatrix} 8 & 3 & -2 & -1 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{7}{2} & \frac{9}{4} & \frac{5}{4} & 11 \\ 0 & -\frac{13}{8} & \frac{3}{4} & \frac{7}{8} & \frac{7}{8} & 5 \\ 0 & \frac{9}{4} & -\frac{1}{2} & \frac{9}{4} & -\frac{3}{4} & -9 \\ 0 & -\frac{9}{4} & \frac{1}{2} & \frac{11}{4} & \frac{7}{4} & 7 \end{pmatrix}$$

Ahora hacemos cero los elementos m_{i2} (i=3,4,5) mediante las operaciones elementales:

$$F_3 \leftarrow F_3 + \left(-\frac{13}{38}\right) F_2,$$

$$F_4 \leftarrow F_4 + \left(\frac{9}{19}\right) F_2,$$

$$F_5 \leftarrow F_5 + \left(-\frac{9}{19}\right) F_2,$$

resultando:

$$M = \begin{pmatrix} 8 & 3 & -2 & -1 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{7}{2} & \frac{9}{4} & \frac{5}{4} & 11 \\ 0 & 0 & -\frac{17}{38} & \frac{2}{19} & \frac{17}{38} & \frac{47}{38} \\ 0 & 0 & \frac{22}{19} & \frac{63}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & -\frac{22}{19} & \frac{32}{19} & \frac{22}{19} & \frac{34}{19} \end{pmatrix}$$

El máximo elemento de A_3 en valor absoluto es dado por $m_{44}=\frac{63}{19}.$

Por tanto, realizamos las operaciones elementales: $F_3 \leftrightarrow F_4$, $C_3 \leftrightarrow C_4$, luego:

$$Ind = (2 \ 4 \ 1 \ 3 \ 5),$$

$$M = \begin{pmatrix} 8 & 3 & -1 & -2 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{9}{4} & \frac{7}{2} & \frac{5}{4} & 11 \\ 0 & 0 & \frac{63}{19} & \frac{22}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & \frac{2}{19} & -\frac{17}{38} & \frac{17}{38} & \frac{47}{38} \\ 0 & 0 & \frac{32}{19} & -\frac{22}{19} & \frac{22}{19} & \frac{34}{19} \end{pmatrix}$$

Ahora hacemos cero los elementos m_{i3} (i=4,5) mediante las operaciones elementales:

$$F_4 \leftarrow F_4 + \left(-\frac{2}{63}\right) F_3,$$

$$F_5 \leftarrow F_5 + \left(-\frac{32}{63}\right) F_3,$$

resultando:

$$M = \begin{pmatrix} 8 & 3 & -1 & -2 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{9}{4} & \frac{7}{2} & \frac{5}{4} & 11 \\ 0 & 0 & \frac{63}{19} & \frac{22}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & 0 & -\frac{61}{126} & \frac{19}{42} & \frac{19}{14} \\ 0 & 0 & 0 & -\frac{110}{63} & \frac{26}{21} & \frac{26}{7} \end{pmatrix}$$

El máximo elemento de A_4 en valor absoluto es dado por $m_{54}=-\frac{110}{63}.$

Por tanto, realizamos las operaciones elementales:

$$F_4 \leftrightarrow F_5$$
,

luego:

$$M = \begin{pmatrix} 8 & 3 & -1 & -2 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{9}{4} & \frac{7}{2} & \frac{5}{4} & 11 \\ 0 & 0 & \frac{63}{19} & \frac{22}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & 0 & -\frac{110}{63} & \frac{26}{21} & \frac{26}{7} \\ 0 & 0 & 0 & -\frac{61}{126} & \frac{19}{42} & \frac{19}{14} \end{pmatrix}$$

Ahora hacemos cero los elementos m_{i4} (i=5) mediante las operaciones elementales:

$$F_5 \leftarrow F_5 + \left(-\frac{61}{220}\right) F_4,$$

resultando el vector de índices de las variables:

$$Ind = (\ 2 \ \ 4 \ \ 1 \ \ 3 \ \ 5 \),$$

y la matriz aumentada queda:

$$M = \begin{pmatrix} 8 & 3 & -1 & -2 & -1 & 0 \\ 0 & -\frac{19}{4} & \frac{9}{4} & \frac{7}{2} & \frac{5}{4} & 11 \\ 0 & 0 & \frac{63}{19} & \frac{22}{19} & -\frac{3}{19} & -\frac{72}{19} \\ 0 & 0 & 0 & -\frac{110}{63} & \frac{26}{21} & \frac{26}{7} \\ 0 & 0 & 0 & 0 & \frac{6}{55} & \frac{18}{55} \end{pmatrix}$$

aplicamos ahora el Algoritmo 1 al sistema anterior, resulta:

$$i = 5: \quad x_{Ind(5)} = \frac{b_5}{u_{55}}$$

$$= 3 \quad \Rightarrow \quad x_5 = 3$$

$$i = 4: \quad x_{Ind(4)} = \frac{b_4 - \sum_{j=5}^5 u_{4j} x_{Ind(j)}}{u_{44}} = 0 \quad \Rightarrow \quad x_3 = 0$$

$$i = 3: \quad x_{Ind(3)} = \frac{b_3 - \sum_{j=4}^5 u_{3j} x_{Ind(j)}}{u_{33}} = -1 \quad \Rightarrow \quad x_1 = -1$$

A. Ramírez (UNI) Sistema de ecuaciones lineales 3 de mayo de 2022

$$i = 2: \quad x_{Ind(2)} = \frac{b_2 - \sum_{j=3}^{5} u_{2j} x_{Ind(j)}}{u_{22}} = -2 \quad \Rightarrow \quad x_4 = -2$$

$$i = 1: \quad x_{Ind(1)} = \frac{b_1 - \sum_{j=2}^{5} u_{1j} x_{Ind(j)}}{u_{11}} = 1 \quad \Rightarrow \quad x_2 = 1$$

obteniendo la solución x = (-1, 1, 0, -2, 3).

Bibliografía

R. L. Burden, J. D. Faires, R. Iriarte Balderrama, et al., Análisis numérico. 1996.

Otras referencias

- Numerical Analysis: Mathematics of Scientific Computing, Third Edition David Kincaid: University of Texas at Austin, Austin, TX, Ward Cheney.
- Numerical Methods Using Matlab, 4th Edition John H. Mathews, California State University, Fullerton, Kurtis K. Fink, Northwest Missouri State University
- Numerical Lineal Algebra. Lloyd N. Trefethen and David Bau, III xii+361 pages. SIAM, 1997
- Elementary Numerical Analysis, 3rd Edition Kendall Atkinson, Weimin Han