

App Serial # 09/714,883 Turner & Mathur

Exhibit P LEX-0092-USA Novel Human Secreted Proteins and Polypeptides Encoding The Same US 6,340,583 B1

Jan. 22, 2002

(12) United St Yan et al.

(54)	ISOLATED HUMAN KINASE PROTEINS,
	NUCLEIC ACID MOLECULES ENCODING
	HUMAN KINASE PROTEINS, AND USES
	THEREOF

(75) Inventors: Chunhua Yan, Boyds; Karen A. Ketchum, Germantown; Valentina Di

Francesco, Rockville; Ellen M. Beasley, Darnestown, all of MD (US)

Assignce: PE Corporation (NY), Norwalk, CT (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/813,817

(22) Filed: Mar. 22, 2001

(51) Int. Cl.⁷ C12N 9/12; C12N 1/20; C12N 15/00; C12N 5/00; C07H 21/04

U.S. Cl. 435/194; 435/320.1; 435/252.3; (52)435/325; 536/23.2

435/325, 320.1; 536/23.2 (56)

(45) Date of Patent:

References Cited

PUBLICATIONS

GenEmbl Database, Accession No. D45906, Feb. 1999.* Sambrook et al., Molecular Cloning Manual, 2nd edition, Cold Spring Harbor Laboratory Press, 1989.*

* cited by examiner

Primary Examiner-Rebecca E. Prouty Assistant Examiner—M. Monshipouri (74) Attorney, Agent, or Firm-Celera Genomics; Robert A. Millman; Justin D. Karjala

ABSTRACT

The present invention provides amino acid sequences of peptides that are encoded by genes within the human genome, the kinase peptides of the present invention. The present invention specifically provides isolated peptide and nucleic acid molecules, methods of identifying orthologs and paralogs of the kinase peptides, and methods of identifying modulators of the kinase peptides.

9 Claims, 41 Drawing Sheets

1 CCCAGGGCCC GAGAGCGGC CGGCAGGAGC TGAGGGGAGT TGTAGGGAACT 51 TCCCGCGCCCT GAGGCGGCGG CGGCAGGAGC TGAGGGGAGT TGTAGGGAACT 101 TGAGGGGACCA CATTGCTCCC CCCCCCCTCT CCTCCCCATT 151 CGGGACCATG TCCGCCGCTGG CGGGTGAAGA TGTCTGGAGG TGTCCAGGCT 201 GTGGGACCAC CATTGCTCCA AGCCAGATAT GGTACAGGAC TGTCAACGAA 251 ACCTGGCACG GCTCTTCCTT CCGGTGGAAGA TGTCTGGAGG TGTCCAACGAA 251 ACCTGGCACG GCTCTTCCTT CCGGTGGAAGA TGTCTGGAGG CTTGACCAC 301 CCCAATGTCC CTACAGTTCAT TGGTGTGCTG TACAAGGATA AGAAGCTGAA 351 CCTGCTGACA GAGTACATTG AGGGGGGCAC ACTGAAGGAC TTTCTGCGCA 401 GTATGGATCC GTTCCCCTGG CAGCAGAGGG TCAAGGACAC TTTCTGCGCAA 401 GTATGGATCC GTTCCCCTGG CAGCAGAGGG TCAAGGACAC TTTCTGCGCAA 401 GTATGGATCC GTTCCCCTGG CAGCAGAGGG TCAAGGACTTTTG GCTCCTCGGAA TGGACAAGAC TGTGGTGTG GCAGACTTTTG GCTTCACGCAAG AACGACCCCA AGAAGCGCTA CACGGTGGTG 501 GGCAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGACCACCA 551 AGAAACGCAC CTTGCCGCAAG AACGACCCCA AGAAGCGCTA CACGGTGGTG 601 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGACCACCA 561 TGAGACGGTG GATATCTTCT CCTTTTGGGAT CGTTCTCTGT GAGATCATTG 701 GGCAGGTGTA TGCAGATCCT GACTGCCTTC CCGCAACCT GACCTTGTC 751 CTCAACGTGA AGCTTTTCTG GAGACACTCT TTTCTGCCCAGA 851 GACCAGCATT CTCGAAATTG GAGACTCCT TTCTCTGT GAGCTTTTGC 761 CTCAACGTGA AGCTTTTCTG GAGACCCCT TGACCGACC 851 GACCAGCATT CTCGAAATTG GAGACCTCT TTCTCTGT GAGCTCTTC 761 CTCAACGGAC ATGCAGATTG GAGACCTCT TTCTCTGCAACGAC 851 GACCAGCCC CTTGCAAGGG CCTGCCCTCCA GAGCCCCT CTCCCTGAC 851 GACCAGCCC CTTGCAAGGG GTGTTCTAC AGCCAGCACT CCCTTGAC 851 GACCAGCCC CTTGCAAGGG GTGTTCTAC AGCCAGCACT CCCTTGAC 851 GACCAGCCC CTTGCAAGGG GTGTTCTAC AGCCAGCCCT CTCCTGACAC 1001 GGCCCAGCCC CTGCCAGGGA AACCATTCCT TTAACCTCCC CAGGAGGCAC 1101 GAATGTTTAG AACCCAGGGA AACCATTCCT ATTACCTCCC CAGGAGGCAG 1101 GAATGTTTTAC AACCAGCAC AGCACCACCAGGAA AACCATTCTA TTTACCTCCC CAGGAGCACA 1101 CCCTGGCCAT AATATGTGG GAGACTCTTT CACAGGGG ACCCCTGCAC 1101 GAATGTTTTAC AACCAGGG TGAACAGAC ACCATCTAA 1401 GTCACTAGT CACCTGGGTG GAGACAGAC TTCAAGGGT CCCCTTGAAAGA 1451 AAGACTGAT CACCTGCTC CTGAGAGGG ACCACCTCTAC 1551 TACTCCAGGA ACCTCCTC CTGAGCAGGA ACCTTCAAAACA 1751 GCACAGGAAA AACCATCCT TCTGGAC						
101 TGAGGGGACE TGCTGTGTC CCCCCCCTCT CCTCCCCATT TCCGCCCTCC 151 CGGGACCATG TCCGCCCTGG CGGGTGAAGA TGTCTGGAGG TGTCCAGGCT 151 CGGGACCA CATTGCTCCA ACCCAGATAT GGTACAGGAC TGTCAACGAC 251 ACCTGGCACG CCTCTTGCTT CCGGTGAAGA TGTCTGAAGGA CTTCAACGAC 251 ACCTGGCACG CCTCTTCCTT CCGGTGAAGA TGATGCGCAG CCTGGACCAC 301 CCCAATGTGC TCAAGTTCAT TGGTGTCATG TACAAGGATA AGAACCTGAA 351 CCTGCTGACA GAGTACATTG AGGGGGGCCA ACTGAAGGAC TTTCTGCCCA 401 GTATGGATCC GTTCCCCTGG CACCAGAAGG TCAAGGACT TTTCTGCCCA 401 GCTCATAGTG GAAGAGACA TGTGGTGTGG GCAGACTTTG GGCTGTCACG 401 GCTCATAGTG GAAGAGACA TGTGGTGTGG GCAGACTTTG GGCTGTCACG 401 GCTCATAGTG GAAGAGACA AACGACCCCA AGAACGCCTA ACAGGAAGT 401 GCAAACCCCT ACTGGATGGC CCCTGAGAGG CCACCACCA 401 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGACCCTA ACAGGTGGTG 401 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGACCACTA ACAGGTGGTG 401 GGAAACCCCT ACTGGATGCC CCCTGAGATG CTGAACGGAA AGACCACTA 402 GGAACCCCT ACTGGATGCC CCCTGAGATG CTGAACGGAA AGACCACTA 403 GGCCATCTCTC CCCCTGGCCG CCATCTGCTG CAGACCGAA AGACCACTA 404 GGCCATCTCTC CCCCTGGCCG CCATCTGCTG CAGACCGAA ATTGCCCCC 405 GGCCTTCTTC CCCCTGGCCG CCATCTGCTG CAGACTGAG CCTGAACGACA 406 GCCCTCTCTTC CCCCTGGCCG CCATCTCCTG CAGACTGAG CCTGAACGACA 401 GCCCACACCT TCCCGCAACTTG GAGGACTCCT TTCAACGTGAA 401 CGCCCCATCCC CTGCAAGTTG GAGGACTCCT TTCAGCCCT CCCCTGACC 402 CCCCATCTC CCCTGCAAGGAG ATTGTCCCC CAGACCACTT CCCCTTGAC 403 CCCCCATTCC TCCTGTGACA AGCCACCACT CCCCTCTGAC 404 CCCCCTTGTAC 405 CCCCCATTCC TCCTGTGACA AGCCACCACTT CCCCTCTGAC 406 CCCCCATTCC TCCTGTGACA AACCATCCT TTTAACCTCC CAGAGGCAA 406 CCCCCATTCC TCCTGTGACA AACCATCCT ATTACCTCC CAGAGGCAA 407 CACAGGAACA AACCATCCT TCCTGAACAA AACCATCCT CCCTTCAC 407 CCCCCTTGTAA AACCAACAA AACCATCCTT ACTCGAACAA AACCATCCAACAA 406 TACTCTGACA TCCTGTGTG CAGACGAACA AACCATCAA CCAGGAACAAAAAAAAAA	1	CCCAGGGCGC	CGTAGGCGGT	GCATCCCGTT	CGCGCCTGGG	GCTGTGGTCT
101 TGAGGGAGCA TGCTGTGTCC CCCGCCTCCT CCTCCCCATT TCCGCCGCTCC 151 CGGGACCATG TCCGCGCTGG CGGGTGAGA TGTTCTGAGGC TGTCCAGGAT 201 GTGGGGACCA CATTGCTTCA AGCCAGATAT GGTACAGGAC TGTCAACGAA 251 ACCTGGCACG GCTCTTGCTT CCGGTGAAAG TGATGCGCAG CCTGGACCAC 301 CCCAATGTGC TCAAGTTCAT TGGTGTGCTG TACAAGGATA AGAAGCTGAA 301 CCCAATGTGC TCAAGTTCAT TGGTGTGCTG TACAAGGATA AGAAGCTGAA 301 CCTGCTGACA GAGTACATTG AGGGGGGCAC ACTGAAGGAC CTTTGCGCAA 401 GTATGGATCC GTTCCCCTGG CAGCAGAAGG TCAGGATTTGC CAAAGGAATC 401 GTATGGATCC GTTCCCCTGG CAGCAGAAGG TCAGGTTTGC CAAAGGAATC 401 GCTCATAGTG GAAGAGAGGA AAAGGGCCCC CATGGAGGAG GCCACCACCA 401 GCTCATAGTG GAAGAGAGGA AAAGGGCCCC CATGGAGGAA GCCACCACCA 401 GCTCATAGTG GAACAGAGGA AAAGGGCCCC CATGGACGGAA AGAGCCTAG 401 GGAAACCCCT ACTGGATGGC CCTTTTGTGTGTG GCAACGGAA AGAGCCTATG 401 GGCAAGCGTG AGCTTTCTC CCTTTTGGGAT CGTGAACGGAA AGAGCTATG 401 GGCAAGCGTG AGCTTTCTC CCTTTTGGGAT CGTGAACGGAA AGAGCTATG 401 GGCAGGTGTA TGCAGATCCT GACTGCCTC CCCGAACACT GGACTTTGGC 401 GGCCTTCTTC CCGCTGGCC CCATCTGCTG CAGACTGAA AGACCATTG 401 GGCCCACTTCTC CCGCTGGCC CCATCTGCTG CAGACTGAA CTTGGACGCAA 402 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACTGAA GATTGTCCCCC 403 GGCCTTCTTC CCGCTGACCGA GAGCTGCAGAG ATTGTCCCCC 403 GCCCCATCCC CTGCAAGTAC GCCTGCACCGA GACCTGGAG AGTTGGACCA 404 GGCCCCATTCC TGCTGTGAGC AGGGACTCCT TTGAGGCCCT CTCCCTGTAC 405 GCCCCATTCC TGCTGTGAGC AGGGACTCCT TTGAGGCCCT CCCCTTGTAC 406 GCCCCATTCC TGCTGTGAGC AGGGACTCCT TTGAGGCCCT CCCTTGTAC 407 GCCCCATTCC TGCTGTGAGC AGGGCCTCC GGCCTTCCTG TGGATTGGAC 408 AGCATCATTA AACCAATAC TTGCCTGAAAAAAA ACCATTCCT TCCAGACTA ACCAGGAAAAAAAC 409 CCCCCATTTCT TGGCCAGGAG GAACCAGGAACA ACCATCATA TCAGCGTGAC 401 ACTGTCTGTA AATCAGATAC TTGCCCTGAAAAAAA ACCATTCCT TCAGAACTA ACCAGGAAAAAAAAC 401 GCCCCAAGCC CCAGGGAGACCACACACACACACACACA						
201 GTGGGGACCA CATTGCTTCA AGCCAGATAT GGTACAGGAC TGTCAACGAA 251 ACCTGGCACG GCTCTTGCTT CCGGTGAAAG TGATGCGCAG CCTGGACCAC 301 CCCAATGTGC TCAAGTTCAT TGTGTGTGT TACAAGGATA AGAAGCTGAA 351 CCTGCTGACA GAGTACATTG AGGGGGGCAC ACTGAAGGAC TTTCTCGCGCA 401 GTATGGATCC GTTCCCCTGG CAGCAGAAGG TCAGGTTTGC CAAAGGAATC 451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG GCAGACTTTG GGCTGTCACG 501 GCTCATAGTG GAAGAGAGGA AAAGGGCCCC CATGGACAAG GCCACCACA 551 AGAAACGCAC CTTGCGCAGA AAAGGGCCCC CATGGACAAG GCCACCACA 651 TGAGACGGTG GATATCTTCT CCTTTGGGAT CTGAACGGAA AGAGCCTTA CACGGTGGTG 601 GGAAACCCCT ACTGGATGCC CCCTGAGATG CTGAACGGAA AGAGCCTTA CACGGTGTG 601 GGAAACCCCT ACTGGATCCT GACTGCCTTC CCCGAACACT GACATCATTG 601 GGAAGCGTGA AGCTTTTCTT CCTTTTGGGAT CTGAACGGAA AGAGCCTATGA 601 TGAGACGGTG AGCTTTTCTT CCTTTTGGGAT CTGAACGGAA AGAGCCTATGA 601 GGACAGGTGTA TGCAGAATCCT GACTGCCTTC CCCGAACACT GACATCTGTG 601 GGCAGGTGTA TGCAGAATCCT GACTGCCTTC CCCGAACACT GACATCTGTG 601 GGCAGGTGAA AGCTTTTCTG GGAGAAGTTT GTTCCACAG ATTGTCCCCC 801 GGCCTTCTTC CCGCTGGCCG CCATCTCCTG CAGACTGGAG CCTGAGAGCA 851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 851 GACCAGCACC CCTGCAGGGG GGTGTTCTAC AGCCAGCAGA ATTGTCCCC 901 CTGGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGAAG AGTTGGACCA 951 CACTTGTAG ATGCAGTACG AGCCCTTCTAC GGGCCTCTCTT 1001 GCCCCATTCC TCCTGAGGGG GTGTTCTAC AGCCAGCATT GCCCCTTCTT 1001 GCCCCATTCC TCCTGAGGGG GTGTTCTAC AGCCAGCATT GCCCCTTCTT 1001 GCCCCATTCC TCCTGAGAACA AACCATTCCT ATTACCTCCC CAGGAGCCAA 1101 TCCCTGGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGCTGTG GACTTCTG GGACTAGAT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGCCTGT GAACTCTGAA 1301 TCCCTGGCAG CACCAGGGAT CCACGGGATCACA ACCACTGCTGT GAACTCTGAA 1301 TCCCTGCAGT CGCAGGAT CCACGGGATC CCACGGGATCACA 1501 TACCCCAGGA AGCCTCCAC CCAGGGGGG GTTGAACAAAAAAAAAA	101	TGAGGGGAGC	TGCTGTGTCC	CCCGCCTCCT	CCTCCCCATT	TCCGCGCTCC
251 ACCTGGCACG GCTCTTGCTT CCGGTGAAAG TGATGCGCAG CCTGGACCAC 301 CCCAATGTGC TCAAGTTCAT TGGTGTGCTT TACAAGGATA AGAAGCTGAA 351 CCTGCTGACA GAGTACATTG AGGGGGGCAC ACTGAAGAC TTTCTGCGCA 401 GTATGGATCC GTTCCCCTGG CAGCAGAAGG TCAGGTTTTG CAAAGGAATC 451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG 451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG 501 GCTCATAGTG GAAGAGAGA AAAGGACCCCA CATGGAGAAG GCCACCACA 551 AGAAACCCCC ACTGGCCAG AACGACCGCA AGAAGCGCTA CACGGTTGGTG 601 GGAAACCCCCT ACTGGATGCC CCCTGAGATG 601 GGAAACCCCCT ACTGGATGCC CCCTGAGATG 601 GGACACCGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GACACCTATG 601 GGACAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GACACCTATG 601 GGCCTTCTTC CCCCTGGCCG CCATCTGCTTC CCCGAACACT GACACTATTG 601 GGCCTTCTTC CCCCTGGCCG CCATCTGCTG 601 GGCCTTCTTC CCCCTGGCCG CCATCTGCTG 601 GGCCTTCTC CCCCTGCAGATG 602 GCCCAGCCC CCTCCAAATTG GAGACACCAT TGCACCACACACACACACACAT TCCGAAATTG GAGACACCAC 603 CACCTGGCAG TGCAGCACCACCACACACACACACACACACACACACACAC						
251 ACCTGGCACG GCTCTTGCTT CCGGTGAAAG TGATGCGCAG CCTGGACCAC 301 CCCAATGTGC TCAAGTTCAT TGGTGTGCTT TACAAGGATA AGAAGCTGAA 351 CCTGCTGACA GAGTACATTG AGGGGGGCAC ACTGAAGAC TTTCTGCGCA 401 GTATGGATCC GTTCCCCTGG CAGCAGAAGG TCAGGTTTTG CAAAGGAATC 451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG 451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG 501 GCTCATAGTG GAAGAGAGA AAAGGACCCCA CATGGAGAAG GCCACCACA 551 AGAAACCCCC ACTGGCCAG AACGACCGCA AGAAGCGCTA CACGGTTGGTG 601 GGAAACCCCCT ACTGGATGCC CCCTGAGATG 601 GGAAACCCCCT ACTGGATGCC CCCTGAGATG 601 GGACACCGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GACACCTATG 601 GGACAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GACACCTATG 601 GGCCTTCTTC CCCCTGGCCG CCATCTGCTTC CCCGAACACT GACACTATTG 601 GGCCTTCTTC CCCCTGGCCG CCATCTGCTG 601 GGCCTTCTTC CCCCTGGCCG CCATCTGCTG 601 GGCCTTCTC CCCCTGCAGATG 602 GCCCAGCCC CCTCCAAATTG GAGACACCAT TGCACCACACACACACACACAT TCCGAAATTG GAGACACCAC 603 CACCTGGCAG TGCAGCACCACCACACACACACACACACACACACACACAC	201	GTGGGGACCA	CATTGCTCCA	AGCCAGATAT	GGTACAGGAC	TGTCAACGAA
301 CCCAATGTGC TCAAGTTCAT TGGTGTGCTG TACAAGGATA AGAAGCTGAA 351 CCTGCTGACA GAGTACATTG AGGGGGCAC ACTGAAGGAC TITTCTGCGCA 401 GTATGGATCC GTTCCCCTGG CAGCAGAAGG TCAGGTTTGC CAAAGGAATC 451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG GCAGCATTTG GGCTGTCACG 451 GCCTCATAGTG GAAGAGAGAC TGTGGTGGTG GCAGACTTTG GGCTGTCACG 451 GCCTCATAGTG GAAGAGAGAC AAAGGGCCCC CATGGAGAAG GCCACCACCA 451 AGAAACGCAC CTTGCGCAAG AAAGGACCGCA AGAAGCGCTA CACGGTGGTG 451 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGAGCTATGA 451 TGAGACGGTG GATTATCTTCT CCTTTTGGAT CGTTCTCTGT GAACTATGA 451 TGAGACGGTG AGTATCTTCT CCTTTTGGAT CGTTCTCTGT GAACTATTG 451 TGAGACGGTG AGTATCTTCT GACTGCCTTC CCCGAACACCT GGACTTTTGC 451 TGAGACGGTG AGCTTTTCTG GAGGAGTTT TGTCCCACC 451 TGAGACGGTG AGCTTTTCTG GAGGACTCCT TTGAGGCCCT CCCGAACACT 451 CACAGCGGA AGCTTTTCTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 451 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 452 CACTGTGAC ATGCAGTTCC GCTGCCTGCA GACCTGCAGAG AGTTGCACCA 453 CACTGTAGC ATGCAGTTCC GCTGCCTGCA GACCTGCAGAG AGTTGCACCA 451 CACTGTAGC ATGCAGTACG GCTTCACCAG GACTCACCT CCCTAGCCCT 451 CACTGTAGC ATGCAGTACG GCTGACCAG GACCACCT CCCTAGCCCT 451 CACTGTAGC ATGCAGTACG GCTGACCAG GACCTACCCC CCTGCACCC 455 CACTGTAGC ATGCAGTACG AGCCTGCCTCC ACCAGCACT 451 GACCATTCA TACCAATAC TTGCCTGCAAA GCCAGCATT GCCCCTTCTT 451 CCCTGGCCTT TGGGCCAGGA ATGTTATCTCC ACCAGGATC ACCAGGACAA 451 CCCTGGCCTT TGGGCCAGGA ATGTTATCTCC ACCAGGAACA 451 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTGCAATCC ACCCAGGAAC 451 CCCTGGCCTT TGGGCCAGGA CGAACAGTCTGT ACTGCAATCC ACCCAGGAAC 451 CCCTGGCCTT TGGGCCAGGA CGAACAGTCTGT ACCTGCATCA ACCAGGAACA 451 CCCTGGCCTT TGGGCCAGGA CGAACAGTCTGT CTAACACTAA TCAGCGTGAC 451 CCCTGGCCTT TGGGCCAGGA CGAACAGTCTA ACCTGAATCC ACCCAGGAACA 451 CAGGTTGCTT AATTTGGT GAGGACAGCC AGGAGTTAGA ACCTCTTGA 451 CAGGACTGCT AAACAGGG TCTGGAACAGCC AGGAGTTAGA ACCTCCTTTC 451 CCCTGGAGAACT TACGGACAGC AGGAGTTGGA GAACAGCC AGGAGTTAGA ACCTCTTGAAACCT 451 TACTCCAGAAC ACCCTCTTCT TCTACACTTAA CAGGGAGTAGACCC TCAGAGTTTGAA 451 CAGGAGAACA TTTTGCTCC ACCCTGGTG GTCAAAGCC TCAGAGTTGC TCTAGAGTCT TACGGCAACA ACCCTCTTCT CTAAGAGCT CTCAAACCTG 451 C	251	ACCTGGCACG	GCTCTTGCTT	CCGGTGAAAG	TGATGCGCAG	CCTGGACCAC
351 CCTGCTGACA GAGTACATTG AGGGGGGCAC ACTGAAGGAC TITCTGCGCA 401 GTATGGATCC GTTCCCCTGG CAGCAGAAGG TCAGGTTTGC CAAAGGAATC 451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG GCAGACTTTG GCCTGTCACG 501 GCTCATAGTG GAAGAGAGAC TGTGGTGGTG GCAGACTTTG GCCTACCAGA 501 AGAAACGCAC CTTGCGCAAG AAAGGGCCCC CATGGAGAAG GCCACCACCA 551 AGAAACGCAC CTTGCGCAAG AACGACCGCA AGAAGCACTA CACGGTGGTG 601 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGAGCTATGA 651 TGAGACGGTG GATATCTTC CCTTTGGGAT CGTTCTCTG GACACTATGA 651 TGAGACGGTG AGATTTCTTC CCTTTTGGGAT CCCCGAACACT GACTTTTGC 701 GGCAGGTGTA TGCAGATTCT GAGAGGTTT CCCCGAACACT GACTTTTGC 751 CTCAACGTGA AGCTTTTCTG GAGAGAGTTT GTTCCCACAC ATTGTCCCCC 801 GGCCTTCTTC CCGCCTGGCCG CCATCTGCTG CAGACTGAGAG ATTGTCCCCC 801 GGCCCACTT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGGAG TGGGCATCCC GCTGCCTGCA GAGCTGGAGG ACTTGGACCA 851 CACTGTGAGC ATGCAGTTACG GCCTGACCCG GGACTCACCT CCCTAGACCA 851 CACTGTGAGC ATGCAGTTACG GCCTGACCCG GGACTCACCT CCCTAGACCA 851 CACTGTGAGC ATGCAGTTACG GCCTGACCCG GGACTCACCT CCCTAGACCA 851 CACTGTGAGC ATGCAGTTACG GCTGTTCTAC AGCAGCACT GCCCCTCTGT 1001 GGCCCCATTCC TGCTGTGAGC AGCGGCGTCC GGGCTTCACCT CCCTAGCCCT 1001 GGCCCCATTCC TGCTGTGAGC AGCGGCGTCC GGGCTTCACCT GCCCTCTGT 1001 GACCTATTCA AACCCAACAAC AACCATTCCT ATTACCTCC CAGGAGGCAA 1151 GTGGGCCCGA CACCAGGGAA ATGTATCTCC ACAGGTTCTG TGCAATTGCCG 1101 ACTGCTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGCAACAAAAA 1251 CCCTGGCCTT TGGGCCAGGA GGAACTGTT ACTCAACCTAA TCAGCGTGGA 1401 ACTGCTCGCTT TGGGCCAGGAT CGCAGGAACTGTT ACTCAACCTAA TCAGCGTGAC 1301 TCCCTGGCCT TGGGCAGGAT CCCAGGGGTA ACCTGCACTGA ACCTGCACTGAA 1401 GTCACTAGTC CAGCTGGGTG GAGCCTCTTG CTAACACTAA TCAGCGTGAC 1401 TACTCACAACT CACCTGCTCC CTGGACCAAGG TCACAGACA ACCACTCTAA 1401 GTCACTAGTC CAGCTGGGG GAGCCTCTTG CTTAACACTAA TCAGCTTGAA 1401 GTCACTAGTT ACTCTCAC TGGCTCTTCTC CTGGACCAAGG TCACACGACACCACCATCAA 1401 TACGCACACT AACCTCCAC CTCATGTTTTC CACACCACCACCATCAA 1401 TACGCACACCACCACCACCACCACCACCACCACCACCACCA	301	CCCAATGTGC	TCAAGTTCAT	TGGTGTGCTG	TACAAGGATA	AGAAGCTGAA
451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG GCAGACTTTG GGCTGTCACG 501 GCTCATAGTG GAAGAGAGCA AAAGGGCCCC CATGGAGAAG GCCACCACCA 551 AGAAACGCAC CTTGCGCAAG AACGACCGCA AGAAGCGCTA CACGGTGGTG 601 GGAAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGAGCTATGA 651 TGAGACGGTG GATATCTTCT CCTTTGGGAT CGTTCTCTTG GAGATCATTG 701 GGCAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GGACTTTGGC 751 CTCAACGTGA AGCTTTTCTG GGAGAAGTTT GTTCCCACAG ATTGTCCCCC 801 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACCACT GACTTTGGC 801 GGCCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGGAC TGGGCATCCC GCTGCCTGC GGACTCACCT CCCCTGACCA 901 CACTGTGACC ATGCAGTACG GCCTGACCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CCTGCAGGG GCTGTCCTG GGACTCACCT CCCTAGCCT 1001 GGCCCAGCCC CCTGCAGGG GCTGTCCTG GGACTCACCT CCCTAGCCT 1001 GACTGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCCAGG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GGACTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGAGC TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGAGC CCTGGGTG CAGGAGCACT TCAGTGTTG GAACTCTGAA 1401 GTCACTAGTC CACCTGGGTG CAGGAGCACT TCAGTGTTG GAACTCTGAA 1401 GTCACTAGTT CACCTGCTC CTGGAGCAAG TCAGGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAAAAAA 1451 AAGACTGATG GCTCAAAAGGG TGTGAAAAAAA TCAGGCTGAA 1451 AAGACTGATG GCTCCACC TGGGCCAAG GTTGAAAAAAAAAA	351	CCTGCTGACA	GAGTACATTG	AGGGGGCAC	ACTGAAGGAC	TTTCTGCGCA
451 GCCTCCGGAA TGGACAAGAC TGTGGTGGTG GCAGACTTTG GGCTGTCACG 501 GCTCATAGTG GAAGAGAGCA AAAGGGCCCC CATGGAGAAG GCCACCACCA 551 AGAAACGCAC CTTGCGCAAG AACGACCGCA AGAAGCGCTA CACGGTGGTG 601 GGAAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGAGCTATGA 651 TGAGACGGTG GATATCTTCT CCTTTGGGAT CGTTCTCTTG GAGATCATTG 701 GGCAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GGACTTTGGC 751 CTCAACGTGA AGCTTTTCTG GGAGAAGTTT GTTCCCACAG ATTGTCCCCC 801 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACCACT GACTTTGGC 801 GGCCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGGAC TGGGCATCCC GCTGCCTGC GGACTCACCT CCCCTGACCA 901 CACTGTGACC ATGCAGTACG GCCTGACCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CCTGCAGGG GCTGTCCTG GGACTCACCT CCCTAGCCT 1001 GGCCCAGCCC CCTGCAGGG GCTGTCCTG GGACTCACCT CCCTAGCCT 1001 GACTGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCCAGG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GGACTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGAGC TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGAGC CCTGGGTG CAGGAGCACT TCAGTGTTG GAACTCTGAA 1401 GTCACTAGTC CACCTGGGTG CAGGAGCACT TCAGTGTTG GAACTCTGAA 1401 GTCACTAGTT CACCTGCTC CTGGAGCAAG TCAGGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAAAAAA 1451 AAGACTGATG GCTCAAAAGGG TGTGAAAAAAA TCAGGCTGAA 1451 AAGACTGATG GCTCCACC TGGGCCAAG GTTGAAAAAAAAAA	401	GTATGGATCC	GTTCCCCTGG	CAGCAGAAGG	TCAGGTTTGC	CAAAGGAATC
551 AGAAACGCAC CTTGCGCAAG AACGACCGCA AGAAGCGCTA CACGGTGGTG 601 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGAGCTATGA 651 TGAGACGGTG GATATCTTCT CCTTTGGGAT CGTTCTCTGT GAGATCATTG 701 GGCAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GGACTTTGGC 751 CTCAACGTGA AGCTTTTCTG GAGAGAGTTT GTTCCCCCACAG ATTGTCCCCC 801 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACTGGAG CCTGAGAGCA 851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGGAGC TGGGCATCCC GCTGCCTGC GAGACTGGAG AGTTGGACCA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCCTGAGCCA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCCTGTAC 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCCTGCTGA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCCTGCTGA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCCTGCCTGT 1001 GGCCCAGCCC CCTGCAGGGG GTGTTCTAC AGCCAGCATT GCCCCTTGT 1051 GCCCCATTCC TGCTGTGACC AGGGCGTCC GGGCTTCCTG TGGATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCGCAG CACCAGGGAA AGCAATTCCT ATTACCTCCC CAGGAGGCAA 1251 CTCGTGTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAA 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTGGAAGA AGAAAAAAA 1251 CTCGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCATGT ACTGGACTAC TAGGGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACCAGAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAA TCAAGTGTGT GGACCAGAT 1501 TACTCCAGAT CCTGCTCTC CTGGAGCAAG GTTGAGGAGA TAGGTTTTGA 1601 GCTTCTGTTT ACCTGCTCAC TGGACCAGG CAGGCCCAGGG TAGGTTAGA 1651 TGTGAGAGAAC TACGGCTCACC TCATGTTTTCT CTGAACACA ACCACTCAA 1751 GCCACAGGAA AGCCTCCACC TCATGTTTTCT CTGAACACA TCAGATCAA 1751 GCCACAGGAA AGCCTCCACC TCATGTTTTCT CTGAACACA ACCACTCAA 1751 GCTGAGAACT TACGGAACAC ATCCTTTCTTC TCTGAACACA TCAGATCAA 1751 GCTGAGAACA TTTTGCCTAA AGCTTGTTT CAAGTGGCT CTCACACATCAA 1751 GCTGAGAACA ACCATCCAC TCATGTTTTCT CTGAACACAA ACAGTCAAA 1751 GCTAAAAACA TTTTGCCTAA AGCTCGCC CTGCCC TCTAGAGCTC 1701 TTGGAGAACA ACCTCCACC TCATGTTTTCTG TCTGAACACAA ACAGTCAAA 1751 GCTAAAAACA TTTTGCCTAA ACCTCTCTC CTGAGAGCT CTCAAGAGCT CTCACACTCAC TCTTGAGCACACA	451	GCCTCCGGAA	TGGACAAGAC	TGTGGTGGTG	GCAGACTTTG	GGCTGTCACG
601 GGAAACCCCT ACTGGATGGC CCCTGAGATG CTGAACGGAA AGAGCTATGA 651 TGAGACGGTG GATATCTTCT CCTTTGGGAT CGTTCTCTGT GAGATCATTG 701 GGCAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GGACTTTGGC 751 CTCAACGTGA AGCTTTTCTG GGAGAAGTTT GTTCCCACAG ATTGTCCCCC 801 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACTGGAG CCTGAGAGCA 851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 891 CTGGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA 991 CTGGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CCTGCAGGGG GGTGTTCTAC AGCCAGCATT GCCCCTCTGT 1051 GCCCCATTCC TGCTGTGAGC AGGGCCTCCC GGCCTTCCTG TGGATTGGCC 1101 GAATGTTTAG AACCAGAACA AACCATTCCT ATTACCTCC CAGGAGGCAA 1151 GTGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCCAT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCCAT TGGGCCAGGA GCATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCCAT TGGGCCAGGA GCATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCCATT CCGCCAGGA CCCTGAAAAAAAAAAA	501	GCTCATAGTG	GAAGAGAGGA	AAAGGGCCCC	CATGGAGAAG	GCCACCACCA
651 TGAGACGGTG GATATCTTCT CCTTTGGGAT CGTTCTCTGT GAGATCATTG 701 GECAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GGACTTTGGC 751 CTCAACGTGA AGCTTTTCTG GGAGAAGTTT GTTCCCACAG ATTGTCCCCC 801 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACTGGAG CCTGAGAGCA 851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA 951 CACTGTGAGC ATGCAGGTACG GCCTGACCCG GGACTCACCT CCCTAGCCCT 1001 GCCCCAGCCC CTCCCAGGGG GTGTTCTAC AGCCAGCATT GCCCCTTGT 1001 GCCCCAGCCC CTCCCAGGGG GTGTTCTAC AGCCAGCATT GCCCCTTGT 1001 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCC CAGGAGGCAA 1151 GTGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGATTCTGT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCCTT TGGGCCAGGA GGATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCCTT CAGCTGGGTG CAGGAGGGAC TCAGTGTGTG GGACCTTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGGAC TCAGTGTGTG GGACCAAAGA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGGAC TCAGTGTGTG GGACCAAAGA 1451 AAGACTGATG CCTCAAAGGG TGTGAAAAAA TCAGTGATC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGACCAAG GTTGAGAGGAG TAGGTTTTGA 1501 TACTCCAGAT CCTGTCCTTC CTGGACCAAG GTTGAGAGAG ACAGCTGAA 1551 CGCACAGGAA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGAAGA 1651 TGTGAGAGAGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACA TTCCGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAAAGC 1801 TCAGAATCTTG GCTTCATGC AACCACTCAC TCTGAAACAA ACAGTCCACA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTTC TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTTC TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTTC TCTGAAACAA ACAGTCACA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTTC TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGCCTCCACC TCCTCACC TCTGAGACCAC TCATGAACAC ACCACTCTAAC 1851 TGTGAGAACA ACCCCTCCC TCTGAGCTG GCCCCTCCC TCTAAGCTGC 1901 TTGTCACAGG AGGATAGCT CCTCATGGC GGAGAGGTG GTGCCAGCTT CCAAAGCTG 1901 TTGGCACAG GGTATGGA AACCCTCCT CTTGAGCAGCT CCTCAAAGCTG 201 A	551	AGAAACGCAC	CTTGCGCAAG	AACGACCGCA	AGAAGCGCTA	CACGGTGGTG
701 GGCAGGTGTA TGCAGATCCT GACTGCCTTC CCCGAACACT GGACTTTGGC 751 CTCAACGTGA AGCTTTTCTG GGAGAAGTTT GTTCCCACAG ATTGTCCCCC 801 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACTGAGG CCTGAGAGCA 851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CTGCAGGGG GCGTGCCCG GGACTCACCT CCCTAGCCCT 1051 GCCCCATTCC TGCTGTGAGC AGGCGGCCTCCC GGGCTTCCTG TGCATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCC CAGGAGGCAA 1151 GTGGGCCCAG CACCAGGAA AGCAATCCT ATTACCTCC CAGGAGGCAA 1151 GTGGGCCCAG CACCAGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAGA AGAAAAAAA 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CACCTGAGGG TGTGAAAAAG TCAGTGTGT GGACCTGAA 1401 GTCACTAGTC CACCTGAGGG TGTGAAAAAA TCAGCGTGAC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TCCCCCCTTTGA 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TCCCCCCTTTGA 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TCCCCCCTTTAG 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TCCCCCCTTAA 1510 GCCCAAGAGAA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGAAGG 1501 GCTTCTGTTT ACCTGCTAA AGCCTCACC GGGGGGTTAGAACAA ACAGTCCAAA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTTC TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTTC TCTGAAACAA ACAGTCCAAA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTCT TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGCCTTCGGC ACCCACGCT CCCCCCC TTAGGACTG 1001 TTGGCACAGC CTTCATGGC ACCCACGCT CCCCCACCC CTCAAGCTTG 101 TTAGGCACACA TTCCCCCACC TCATGACTGC TCCACCCTTCAA CATGCCTGC 101 TTAGGCACACA ACCCTTCATC TCTCACCCC TCTAACCTC 102 TAGAGCTTGC AGCATCTGC TCTCACCCA	601	GGAAACCCCT	ACTGGATGGC	CCCTGAGATG	CTGAACGGAA	AGAGCTATGA
751 CTCAACGTGA AGCTTTTCTG GGAGAAGTTT GTTCCCACAG ATTGTCCCCC 801 GGCCTTCTTC CCGCTGCCG CCATCTGCTG CAGACTGAG CCTGAGAGCA 851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGAGG AGTTGACCA 901 CATGTGAGC ATGCAGTAGG GCCTGACCCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CCTGCAGGGG GGTTTCTAC AGCCAGCATT 1001 GCCCCATTCC TGCTGTGAGC AGGGCCTCC GGGCTTCCTG TGGATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCGCAG CACCAGGAA ATGTATCTCC ACAGGTTCTG GGCCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAA 1251 CCCTGGCCTT TGGGCCAGGA GGAGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCCTT TGGGCCAGGA GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCCTT TGGGCCAGGA GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAGTGTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAGTGTGT GAACCTCGAA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATG GAACCTTGAA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATG 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAGG TAGGTTTTGA 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TCCCCCTTTC 1501 TACTCCAGAT TATATGTGGT GAAAAAGG TCAGTGATGA GAAAGGGCTG 1501 GCTTGTTTT ACCTGCTCAC TCATGTTTTC AAACTTAATA CTGGAGACTG 1501 GCTTGAGAAACA TTTTGCCTCAC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACA TTTTGCCTCAC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACA TTTTGCCTCAC TCATGTTTCT CTGAAACAA ACAGTCACAA 1751 GCACAGGAAC AGCCTCCACC TCATGTTTCT CTGAAACAA ACAGTCACAA 1751 GCACAGGAAC AGCCTCAGGC ACCACTGCC TTAGGACCTG 1901 TTGGCACAGG AGCCTCAGGC AACCACTGCT TCAGAAACA 1751 GCACAGGAAC AGCCTCACC TCATGTTTCT CTAGAACAC ACCTGCT TCAGCAACTG 1901 TTGGCTCTTG GCTTCATGGC ACCACTGCT TCAGCACGT CTCACCCTTCAC CTCAGAGTCT TCAGCAACTGC AACCACTGCT TCAGCAACTGT CTCACCAACTGGC AACCACTGCT TCAGCAACTG TCAGCAACTGC TCAGAGCT TCAGCAACTGC AACCATGTTAA AACCATGCTC TCAGAACTGC AACCACTGCT TCAGCAACTGC AACCATCTC	651	TGAGACGGTG	GATATCTTCT	CCTTTGGGAT	CGTTCTCTGT	GAGATCATTG
801 GGCCTTCTTC CCGCTGGCCG CCATCTGCTG CAGACTGGAG CCTGAGAGCA 851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CCTGCAGGGG GGTGTTCTAC AGCCAGCATT GCCCCTTGT1 1051 GCCCCATTCC TGCTGTGAGC AGGGCCGTCC GGGCTTCCTG TGGATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGCCCTAGT1 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GAGACTCTGT CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1311 CCCTGGCCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1312 CTGGAACTGC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAGGTGTGT GAACCTCTGA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAGGTGTG GAACCACACA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTC CTGGAGCAAG GTTGAGGGAGG ACCACATCAA 1651 TGTGAGAGAGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAC AGGCTCTGGC ACCACTCTC TCTGAAACAA 1751 GCACAGGAAC AGGCTCTGGC ACCACGC TCTAGAACCA 1751 GCTGACACGC CTTCATGTC CTCATCTTC TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAC ATCCTTCTTC TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAC AGGCTCTGGC ACCACTGCC TTAGTCACCAA 1851 CTTGGTCTTG GCTTCATGGC ACCACTGCT TCAGCAAGTCT 1761 TTAGGCACAC GCTTCAGGC ACCACTGCT TCAGCACGT CTCACCCTTCAC CTCCACCTTCAC CTCCACCTTCACC CTCCACC	701	GGCAGGTGTA	TGCAGATCCT	GACTGCCTTC	CCCGAACACT	GGACTTTGGC
851 GACCAGCATT CTCGAAATTG GAGGACTCCT TTGAGGCCCT CTCCCTGTAC 901 CTGGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CCTGCAGGGG GGTGTTCTAC AGCCAGCATT GCCCCTCTGT 1051 GCCCCATTCC TGCTGTGAGC AGGGCCGTCC GGGCTTCCTG TGGATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGGAA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGGTG GGACGAAAGA 1451 AAGACTGATG CCTGCACAGGG TGTGAAAAAAA TCAGCGTGAA 1451 AAGACTGATG CCTGCACAGGG TGTGAAAAAAA TCAGCGTGAA 1451 AAGACTGATG CCTGCTCTC CTGGACCAGG TCCAGTGTGT GGACGAAAGA 1451 AAGACTGATG CCTCCACC TGGGCAGGAC TCCAGTGATG TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGACCAGGC AGGAGTAGA GAAAAGGACT 1551 AGAGTCCCTT AACTGTCTCT CTGGACCAGGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA ACCTGCCCC TCATGTTTTC ACCTCCAGCT 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGAC ATCCTGCCCC TCATGTTTTC TCTGAAACAA ACACTACACA 1651 TGTGAGAGAC ACCTCCACC TCATGTTTTC TCTGAAACAA ACCTCACAT 1751 GCACAGGAAC TCCTGCTCACC TCATGTTTTC TCTGAAACAA ACCTCACCACT 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1811 TCAGACTCTG GCTTCATGGC ACCCCTTCAG CTCCACCT TCAGACTGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGG AGTGGGAGTC TCAAAGCTG 1901 TTGTCACAGG AGAGATAGCT CCCTGAGCTG GTTCTGCACC TCCAAAGCTG 1901 TTGTCACAGG AGAGATAGCT CCCTGAACTG GGCCATCTGA CTTCAAACCT 1951 CTTGGTCTTG GCTTCATGGC ACCCCTGCC TCAAAGCTG 1901 TTGTCACAGG AGAGATAGCT CCCTGAACTG GGCCATCTGA CTTCAAACCTC 1951 CACATGTTTC TCTCTCTGAC TCCCTGACCT TGGCCCCC TCAAAGCTG 1901 TTGGCCACA GCTTGGGCTG GGAAGAGGTG GTGGCAACAT CCTCCAAACCTC 1951 CACATGTTTC TCTCCCAACT CATTAGCTCC TGGGCAACCAT CCTCCAAACCTGC 111 CCATGTTTC TCTCCCAACT CATTAGCTCC TGAGCTTC ACCCTTCAACCTC 111 CCATGTTTAC TCCCCAACT CATTAGCTCC TCAAGGCTTC AGGCCATCTG	751	CTCAACGTGA	AGCTTTTCTG	GGAGAAGTTT	GTTCCCACAG	ATTGTCCCCC
901 CTGGGGGAGC TGGGCATCCC GCTGCCTGCA GAGCTGGAGG AGTTGGACCA 951 CACTGTGAGC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CCTGCAGGGG GGTGTTCTAC AGCCAGCATT GCCCCTCTGT 1051 GCCCCATTCC TGCTGTGAGC AGGGCCGTCC GGGCTTCCTG TGGATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACCAAAGA 1451 AAGACTGATG CCTGCCTTC CTGGAGCAAG TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGCGCAGGGA TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGCCCAGGGG ACCACATCAA 1651 TGTGAGAGAGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTCGACA ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAC TTACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAC AGGCTCGAC ACCCTTCCTC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GTTCTGGAGG ACCACATCAA 1751 CTTGGTCTTG GCTTCATGGC ACCACTCCT CACCCTTCAA CATGCCCGT 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAAAACCT 1951 CTTGGTCTTG GCTTCATGGC ACCACTCCT CACCCTTCAA CATGCCTGGC 1901 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTCCGCAAGCT CTCAAAACTT 1951 CTTGGTCTTG CTTCCTCACC CCTTGAGCTG GGCCATCTGA CTTCAAACCTC 1951 CACATGTTTC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CTCCAAAGCTG 201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTC AGGCCATCTGA 201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2101 CCATGTTTCA CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
951 CACTGTGACC ATGCAGTACG GCCTGACCCG GGACTCACCT CCCTAGCCCT 1001 GGCCCAGCCC CCTGCAGGGG GGTGTTCTAC AGCCAGCATT GCCCCTCTGT 1051 GCCCCATTCC TGCTGTGAGC AGGGCCGTCC GGGCTTCCTG TGGATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACCTCGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACCAAAGA 1451 AAGACTGATG GCTCAAAAGG TGTGAAAAAA TCAGTGTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTCAA AGCCTGGTGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAAAACAA 1751 CCCTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG GTGCGAGAGT CTCAAAACA 1751 CACATGTTCG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGC 1901 TTAGGCAGCA GCTTCGGAAA AACCACTGCT CACCCTTCAA CATGCCTGGC 1901 TTAGGCAGCA GCTTCGGAA AACCACTGCT CACCCTTCAA CATGCCTGGC 1901 TAGGCAGCA GCTTCGGAA AACCACTGCT CACCCTTCAA CATGCCTGGC 1901 TAGGCAGCA GCTCCAACTAGA TTTGCCTCTT CACAGGTTCT ATGAGCTTCC 1911 CACATGTTCA CACACTAGA TTTGCCTCCTT CTAAGTGTCT ATGAGCTTCC 1911 CACATGTTAA AAA	851	GACCAGCATT	CTCGAAATTG	GAGGACTCCT	TTGAGGCCCT	CTCCCTGTAC
1001 GCCCCATTCC CCTGCAGGGG GGTGTTCTAC AGCCAGCATT GCCCCTCTGT 1051 GCCCCATTCC TGCTGTGAGC AGGGCGTCC GGGCTTCCTG TGGATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAAGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGAGCAAG GTTGAGGGAG TAGGTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACACTCAA 1651 TGTGAGAAGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGACAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTCGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCT 1951 CACATGTTGC TCCCCAACT CACCTCCTC TCGGCCAGCT CTCAAAGCT 1951 CACATGTTGC TCCCCAACT CCCTGAGCT TGGCCAGCAT CTCAAAGCTG 1901 TTAGGCAGCA GCTTCGGCAA ACCCTCCATC TGGCCAGCAT CTCAAAGCTG 201 ACCTCTTCAT CACAACTAGA TTTGCCTCTT TTGGCTCCCA GAGCTCTCAC 2101 CCATGTTTGC TCCCCAACT CACTAGCTCT TTGGCTCCCA GAGCTCTAGC 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT TTGGCTCCCA GAGCTCTCAC 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT TTGGCTCCCA GAGCTCTAGC 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT TTGGCTCCCA GAGCTCTAGA						
1051 GCCCCATTCC TGCTGTGAGC AGGGCCGTCC GGGCTTCCTG TGGATTGGCG 1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCGAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAAGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 1901 TTGTCACAGG CCTAGAGTCT CAGGGAGGGG AGTGGGAGTC TCAGACATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 1901 TTGGCCCAA GCTTGGGCTG GAAGAGGTG GTGGCAGAGT CTCAAAGCTG 1901 TAGGCAGCA GCTTGGGCTG GAAGAGGTG GTGGCAGAGT CTCAAAGCTG 1901 TAGGCAGCA GCTTGGGCTG GAAGAGGTG GTGGCAGAGT CTCAAAGCTG 1901 TAGGCAGCA GCTTGGGCTG GAAGAGGTG GTGGCAGCAT CTCAAAGCTG 1901 TAGGCAGCA GCTTGGGCTG GAACAGGTG GTGGCAGCAT CTCCAAACCTC 1901 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 1901 ACCATGTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 1901 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGGTTCT ATGAGCTTGC 1901 AACTCTTCAT CA	951	CACTGTGAGC	ATGCAGTACG	GCCTGACCCG	GGACTCACCT	CCCTAGCCCT
1101 GAATGTTTAG AAGCAGAACA AACCATTCCT ATTACCTCCC CAGGAGGCAA 1151 GTGGGCGAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACA TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTC 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTC 2001 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CTCCAAAGCTG 2011 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	1001	GGCCCAGCCC	CCTGCAGGGG	GGTGTTCTAC	AGCCAGCATT	GCCCCTCTGT
1151 GTGGGCGCAG CACCAGGGAA ATGTATCTCC ACAGGTTCTG GGGCCTAGTT 1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGAGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCCTCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCCTC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG ACTGGAGGT CTCAAAGCT 1951 CTTGGTCTTG GCTTCATGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2011 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCCAGCAT CCTCCAAAGCTG 2011 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCCAGCAT CCTCCTGAGC 2151 CACATGTTCA GGAACACTAGA TTTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1201 ACTGTCTGTA AATCCAATAC TTGCCTGAAA GCTGTGAAGA AGAAAAAAAC 1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGAGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCCTCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG ACTGGAGGT CTCAGACATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2011 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCCAGCAT CCTCCAAAGCTG 2011 CACATGTTGC GGTACTGGAA AACCTCCATC TTGGCCCCA GAGCTCTAGCC 2151 CACATGTCCA GGTACTGGAA AACCTCCATC TTGGCCCCA GAGCTCTAGGC 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1251 CCCTGGCCTT TGGGCCAGGA GGAATCTGTT ACTCGAATCC ACCCAGGAAC 1301 TCCCTGGCAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTCGGCT GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2011 CCATGTTTGC TCTCCCCAACT CATTAGCTCC TGGGCAGCAT CCTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCAAAGCTG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1301 TCCCTGECAG TGGATTGTGG GAGGCTCTTG CTTACACTAA TCAGCGTGAC 1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGT CTCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGCAGAGT CTCAAAGCTG 2011 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CTCCAAAGCTG 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CTCCAAGCTG 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTTGTT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	1201	ACTGTCTGTA	AATCCAATAC	TTGCCTGAAA	GCTGTGAAGA	AGAAAAAAAC
1351 CTGGACCTGC TGGGCAGGAT CCCAGGGTGA ACCTGCCTGT GAACTCTGAA 1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2011 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCAAAGCTG 2151 CACATGTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	1251	CCCTGGCCTT	TGGGCCAGGA	GGAATCTGTT	ACTCGAATCC	ACCCAGGAAC
1401 GTCACTAGTC CAGCTGGGTG CAGGAGGACT TCAAGTGTGT GGACGAAAGA 1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TCAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TCAGCAATCT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2011 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGGAT CTCAAAGCTG 2151 CACATGTTGC GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	1301	TCCCTGGCAG	TGGATTGTGG	GAGGCTCTTG	CTTACACTAA	TCAGCGTGAC
1451 AAGACTGATG GCTCAAAGGG TGTGAAAAAG TCAGTGATGC TCCCCCTTTC 1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2011 TCAGATGTTGC TCTCCCAACT CCTTGAGCTCG TCCACAGCTC 2151 CACATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCCAGCAT CCTCCTCAGC 2251 ACCATGTTTAA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1501 TACTCCAGAT CCTGTCCTTC CTGGAGCAAG GTTGAGGGAG TAGGTTTTGA 1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2011 TCAGATGTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTTGC GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1551 AGAGTCCCTT AATATGTGGT GGAACAGGCC AGGAGTTAGA GAAAGGGCTG 1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1601 GCTTCTGTTT ACCTGCTCAC TGGCTCTAGC CAGCCCAGGG ACCACATCAA 1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	1501	TACTCCAGAT	CCTGTCCTTC	CTGGAGCAAG	GTTGAGGGAG	TAGGTTTTGA
1651 TGTGAGAGGA AGCCTCCACC TCATGTTTTC AAACTTAATA CTGGAGACTG 1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1701 GCTGAGAACT TACGGACAAC ATCCTTTCTG TCTGAAACAA ACAGTCACAA 1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1751 GCACAGGAAG AGGCTGGGGG ACTAGAAAGA GGCCCTGCCC TCTAGAAAGC 1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	1651					
1801 TCAGATCTTG GCTTCTGTTA CTCATACTCG GGTGGGCTCC TTAGTCAGAT 1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA		GCTGAGAACT	TACGGACAAC	ATCCTTTCTG	TCTGAAACAA	ACAGTCACAA
1851 GCCTAAAACA TTTTGCCTAA AGCTCGATGG GTTCTGGAGG ACAGTGTGGC 1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	1751	GCACAGGAAG	AGGCTGGGGG	actagaaaga	GGCCCTGCCC	TCTAGAAAGC
1901 TTGTCACAGG CCTAGAGTCT GAGGGAGGG AGTGGGAGTC TCAGCAATCT 1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
1951 CTTGGTCTTG GCTTCATGGC AACCACTGCT CACCCTTCAA CATGCCTGGT 2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
2001 TTAGGCAGCA GCTTGGGCTG GGAAGAGGTG GTGGCAGAGT CTCAAAGCTG 2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
2051 AGATGCTGAG AGAGATAGCT CCCTGAGCTG GGCCATCTGA CTTCTACCTC 2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
2101 CCATGTTTGC TCTCCCAACT CATTAGCTCC TGGGCAGCAT CCTCCTGAGC 2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA						
2151 CACATGTGCA GGTACTGGAA AACCTCCATC TTGGCTCCCA GAGCTCTAGG 2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	2051	AGATGCTGAG	AGAGATAGCT	CCCTGAGCTG	GGCCATCTGA	CTTCTACCTC
2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	2101	CCATGTTTGC	TCTCCCAACT	CATTAGCTCC	TGGGCAGCAT	CCTCCTGAGC
2201 AACTCTTCAT CACAACTAGA TTTGCCTCTT CTAAGTGTCT ATGAGCTTGC 2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	2151	CACATGTGCA	GGTACTGGAA	AACCTCCATC	TTGGCTCCCA	GAGCTCTAGG
2251 ACCATATTTA ATAAATTGGG AATGGGTTTG GGGTATTAAA AAAAAAAA	2201	AACTCTTCAT	CACAACTAGA	TTTGCCTCTT	CTAAGTGTCT	ATGAGCTTGC
2301 AAAAAAAAA AAAAAAAAA (SEQ ID NO:1)	2251	ACCATATTTA	ATAAATTGGG	AATGGGTTTG	GGGTATTAAA	AAAAAAAAA
	2301	AAAAAAAAA	AAAAAAAAA	(SEQ ID N	0:1)	

```
FEATURES:
5'VTR:
             1-228
Start Codon:
             229
Stop Codon:
             994
3'UTR:
             997
Homologous proteins:
Top 10 BLAST Hits
                                                                 Score
CRA|1000682328847 /altid=gi|8051618 /def=ref|NP_057952.1| LIM d...
                                                                   485 e-136
CRA 18000005015874 /altid=gi|5031869 /def=ref|NP 005560.1| LIM ...
                                                                   485 e-136
CRA|88000001156379 /altid=gi|7434382 /def=pir||JC5814 LIM motif...
                                                                   469 e-131
CRA|88000001156378 /altid=gi|7434381 /def=pir||JC5813 LIM motif...
                                                                   469 e-131
CRA|18000005154371 /altid=gi|7428032 /def=pir||JE0240 LIM kinas...
                                                                   469 e-131
CRA|18000005126937 /altid=gi|6754550 /def=ref|NP 034848.1| LIM ...
                                                                   469 e-131
CRA 18000005127186 /altid=gi 2804562 /def=dbj BAA24491.1 (AB00...
CRA 18000005127185 /altid=gi 2804553 /def=dbj BAA24489.1 (AB00...
                                                                   469 e-131
                                                                   469 e-131
468 e-131
CRA|18000005004415 /altid=gi|1708825 /def=sp|P53670|LIK2 RAT LI...
                                                                   468 e-131
BLAST dbEST hits:
                                                                          Ε
                                                                 Score
gi | 10950740 /dataset=dbest /taxor=96...
                                                                  1049 0.0
gi 10156485 /dataset=dbest /taxon=96...
                                                                   975 0.0
gi | 5421647 / dataset=dbest / taxon=9606 ...
                                                                   952 0.0
gi | 10895718 /dataset=dbest /taxon=96...
                                                                   757 0.0
714 0.0
gi | 519615 /dataset=dbest /taxor=9606 /...
                                                                   531 e-149
gi | 11002869 /dataset=dbest /taxon=96...
                                                                   511 e-143
EXPRESSION INFORMATION FOR MODULATORY USE:
<u>library source:</u>
From BLAST dbEST hits:
```

From tissue screening panels: Fetal whole brain

gi|11002869 thyroid gland

gi|10950740 teratocarcinoma

testis gi 10895718 nervous normal

infant brain

gi|10156485 ovary

gi | 13043102 bladder

gi | 5421647

gi | 519615

FIG.1B

```
1 MVQDCQRNLA RLLLPVKVMR SLDHPNVLKF IGVLYKDKKL NLLTEYIEGG
```

51 TLKDFLRSMD PFPWQQKVRF AKGIASGMDK TVVVADFGLS RLIVEERKRA

101 PMEKATTKKR TLRKNDRKKR YTVVGNPYWM APEMLNGKSY DETVDIFSFG

151 IVLCEIIGQV YADPDCLPRT LDFGLNVKLF WEKFVPTDCP PAFFPLAAIC

201 CRLEPESRPA FSKLEDSFEA LSLYLGELGI PLPAELEELD HTVSMQYGLT

251 RDSPP (SEQ ID NO:2)

FEATURES:

Functional domains and key regions:
[1] PDOC00004 PS00004 CAMP_PHOSPHO_SITE
cAMP- and cGMP-dependent protein kinase phosphorylation site

Number of matches: 2

1 108-111 KKRT

2 119-122 KRYT

[2] PDOC00005 PS00005 PKC PHOSPHO_SITE Protein kinase C phosphorylation site

Number of matches: 4

1 51-53 TLK

2 106-108 TTK

3 107-109 TKK

4 111-113 TLR

[3] PDOC00006 PS00006 CK2 PHOSPHO_SITE Casein kinase II phosphorylation site

Number of matches: 4

1 51-54 TLKD

2 76-79 SGMD

3 139-142 SYDE

4 212-215 SKLE

[4] PDOCO0008 PS00008 MYRISTYL N-myristoylation site

Number of matches: 4

1 73-78 GIASGM

FIG.2A

```
2
             77-82 GMDKTV
      3
           150-155 GIVLCE
           158-163 GQVYAD
Membrane spanning structure and domains:
  Helix Begin
               End
                      Score Certainty
         142
                162
                      0.872 Putative
     1
     2
                      0.652 Putative
         184
                204
BLAST Alignment to Top Hit:
>CRA|1000682328847 /altid=gi|8051618 /def=ref|NP_057952.1| LIM domain kinase 2 isoform 2b [Homo sapiens] /org=Homo
           sapiens /taxon=9606 /dataset=nraa /length=617
          Length = 617
 Score = 485 \text{ bits (1235)}, Expect = e-136
 Identities = 241/265 (90%), Positives = 241/265 (90%), Gaps = 22/265 (8%)
Query: 13 LLPVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 72
           L VKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK
Sbjct: 353 LTEVKVMRSLDHPNVLKFIGVLYKDKKLNLLTEYIEGGTLKDFLRSMDPFPWQQKVRFAK 412
Query: 73 GIASGM-------DKTVVVADFGLSRLIVEERKRAPMEKATTKKR 110
           GIASGM
                                        DKTVVVADFGLSRLIVEERKRAPMEKATTKKR
Sb.ict: 413 GIASGMAYLHSMCIIHRDLNSHNCLIKLDKTVVVADFGLSRLIVEERKRAPMEKATTKKR 472
Query: 111 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 170
           TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT
Sb.ict: 473 TLRKNDRKKRYTVVGNPYWMAPEMLNGKSYDETVDIFSFGIVLCEIIGQVYADPDCLPRT 532
Ouery: 171 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 230
           LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI
Sbjct: 533 LDFGLNVKLFWEKFVPTDCPPAFFPLAAICCRLEPESRPAFSKLEDSFEALSLYLGELGI 592
Query: 231 PLPAELEELDHTVSMQYGLTRDSPP 255
            PLPAELEELDHTVSMQYGLTRDSPP
Sbjct: 593 PLPAELEELDHTVSMQYGLTRDSPP 617 (SEQ ID NO:4)
```

THISIC SCALCITICS AT TO A TAME	Himmer	search	result	s (Pfam):	:
--------------------------------	--------	--------	--------	-----------	---

I HIVING! SC	architecures (ritamy)		_	
Mode1	Description	Score	E-value	<u>N</u>
	Eukaryotic protein kinase domain	100.1	1.1e-26	2
	CE00031 VEGFR	4.9	0.14	1
	CE00204 FIBROBLAST GROWTH RECEPTOR	4.7	1	1
CE00359	E00359 bone morphogenetic_protein_receptor	1.8	7.9	1
	CE00022 MAGUK subfamily d	1.5	2.5	1
	CE00287 PTK_Eph_orphan_receptor	-48.4	3.8e-05	1
	CE00292 PTK membrane span	-61.8	2.1e-05	1

CE00291	CE00291 PTK fgf receptor	-11	3.0 0.027	1
CE00286	E00286 PTK EGF receptor	-12	5.1 0.0021	1
	CE00290 PTK Trk family	-15	1.3 6.5e-05	1
CE00288	CE00288 PTK_Insulin_receptor	-21	0.4 0.014	1

Parsed for domains:

rai scu i	or aoilla i	115.					
Model	Domain	seq-f	seq-t	hmm-f	hmm-t	score	<u>E-value</u>
PF00069	1/2	16	79	41	105 .	. 52.1	2.3e-13
CE00022	1/1	124	153	187	216 .	. 1.5	2.5
PF00069	2/2	81	156	129	182 .	. 48.0	3.1e-12
CE00031	1/1	129	156	1114	1141 .	. 4.9	0.14
CE00204	1/1	129	156	705	732 .	. 4.7	1
CE00359	1/1	79	157	287	356 .	. 1.8	7.9
CE00290	1/1	9	218	1	282 [] -151.3	6.5e-05
CE00287	1/1	1	218 [.	1	260 [j -48.4	3.8e-05
CE00291	1/1	1	218 [.	1	285 [] -113.0	0.027
CE00292	1/1	1	218 [.	1	288 [] -61.8	2.1e-05
CE00288	1/1	1	218 [.	1	269 [] -210.4	0.014
CE00286	1/1	6	218	1	263] -125.1	0.0021

FIG.2C

1	TCATCCTTGC	GCAGGGGCCA	TGCTAACCTT	CTGTGTCTCA	GTCCAATTTT
51	AATGTATGTG	CTGCTGAAGC	GAGAGTACCA	GAGGTTTTTT	TGATGGCAGT
101	GACTTGAACT	TATTTAAAAG	ATAAGGAGGA	GCCAGTGAGG	GAGAGGGGTG
151	CTGTAAAGAT	AACTAAAAGT	GCACTTCTTC	TAAGAAGTAA	GATGGAATGG
201	GATCCAGAAC	AGGGGTGTCA	TACCGAGTAG	CCCAGCCTTT	GTTCCGTGGA
251	CACTGGGGAG	TCTAACCCAG	AGCTGAGATA	GCTTGCAGTG	TGGATGAGCC
301	AGCTGAGTAC	AGCAGATAGG	GAAAAGAAGC	CAAAAATCTG	AAGTAGGGCT
351	GGGGTGAAGG	ACAGGGAAGG	GCTAGAGAGA	CATTTGGAAA	GTGAAACCAG
	GTGGATATGA				
451	TTAACCCAAA	GCAGGTACTA	AAGTATGTGT	TGATTGAATG	TCTTTGGGTT
501	TCTCAAGACT	GGAGAAAGCA	GGGCAAGCTC	TGGAGGGTAT	GGCAATAACA
	AGTTATCTTG				
	TGGAAATAGA				
	GTGGTCAGGT				
		TCTAAAATAA			
	TCATAAACTG				
	CCAAAACTTG				
	CTAATTCATT				
	AGTGAGTCTC				
	CTCTGTGACC				
	GTCTGAGGAT				
	CTATTACTGA				
	TAAGGCCTCT				
	AACTGTGTAC				
	CAGGAGCTGT				
	TCGGTGACTG				
	AAAGCTGCAT				
	GCTTTCTAGG				
	TATTTCAAGA				
	TGAGGCCTCT				
		TGAGCTCACA			
	ATAGGTAAGT				
	TCTACAAAGA				
	TGGTAGAATG				
	AATGCTAGAT				
	TTAATTTTCC				
	TATTTTGAGA				
	CTTGGCATAT				
	CCATTACTTT				
	AATAACATCC				
2001	GTGGATTTGC CATACAAAGA	CCTTTCTATC	TACAACACCC	CTCCCCACCC	CCTCCACCCC
	CAACTGGTAC				
	GTGAGCGGCG				
2201	ATCAGTGGTG	GCATTAGATT	CICATAGGAG	CTTATCACCA	ATTGTGAACT
	GCACATGCAA				
	GGCTGATGAT				
2351	CCCCAACCCC	CAGCUTAGGG	TOCGIGGAAA	AATTGGCCCC	IGGIGCCAAA
					TGTTGGTTGA
2451	GTAAATGAGC	ICTIGGATTA	GGTGATGGAA	AAATCTGAAA	AAACAGGGCT

2501	TTTGAGGAAT	AGGAAAAGGC	AGTAACATGT	TTAACCCAGA	GAGAAGTTTC
2551	TGGCTGTTGG	CTGGGAATAG	TCATAGGAAG	GGCTGACACT	GAAAAGAAGG
2601	AGATTGTGTT	CGTTTCTTCT	TCTCAGAGCT	ATAAGCAAAG	GCTGAAAGTT
2651	CTAGAAAAAG	GCAAGTTTTG	TTTCAGTAGA	AAAAAGGATA	ATCAGAACCA
2701	TTTTTAGAAA	ATGGAATGAG	ACTACTTTTG	AGGCCATGAG	TTCCTTGTCC
2751	CTGGAGAGAT	GAGCAGAGGT	TGGACAAGTG	CTTACCAGAG	ATCTTGTGGA
2801	GGCAGAAACT	GTGCATCTAG	CAGAGCATTG	GCCTAACCCT	TTCAAATGAG
2851	ATGCTGTTAA	CTCAGTCTTA	TTCTACATGG	TAGGAATCCT	GTCCCTTTGC
2901	CTCCTGCTAC	TTTGGGCCTC	TCAACCTCTT	GGTTTTGTGT	GCAGGTGAAG
2951	ATGTCTGGAG	GTGTCCAGGC	TGTGGGGACC	ACATTGCTCC	AAGCCAGATA
3001				GGCTCTTGCT	
3051		TCCCATCTTT		TATGGGCCAA	
3101				TCTGAGTTGA	
3151				AGAGCTCATG	
	AAGTGTGGCC				
3251				AGCCCTTTCC	
3301				GAGGCCCAGG	
3351				TACTTCAAGA	
3401				ATTTATTTT	
3451				GCAGTGGTGC	
3501				GATTTTTCTG	
3551				CCATGCGCAG	
3601			TTTCAACATG		TGGTCTTGAA
3651				ACCTCCCAAA	
3701				AGTTGTTTTT	
3751				GCCTCCCTAG	
3801				ATTATTATTA	
3851				CTCTGTCGCC	
3901				CCTCTGCCTC	
3951			CCCCGAGTAG		AGGCGCCTGC
4001				GTAGAGACGG	
4051			AGCTCCTGAC		TGCTAGAATC
4101			CCAGCCAAGA		GTGTGGTTGG
4151		TCTTCCTCAC		CTCCCTAGGT	TCCTACTTTT
4201			CTACATTATT		TATTATTATT
4251		TCTCGCTCTG			TGATGTGATC
4301				TCAAGCAATT	
	AGCCCCCCTA				
	TTTTGTATT				
	CTCAAACTCC				
	TGGGATTACA				
	TGTAGGCAGC				
	TTCCTGCTGT				
	ATCTTGTTGA				
	TAGACACCCA				
	AAGGGTGGGA				
	TTGTTGGTGG				
	TGGCCCCCAA				
	GATAGACTAG				
	CTCTTGTTGT				
7731	Sicration	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TUTUUTIAIA	COMMITTALL	

Jan. 22, 2002

Sheet 8 of 41

	TTAAACACTT				
	CGTCTGGCCT				
	TTTCAGCTAT				
	TTGGTTCTTG				
	TCCATTTAGT				
	TAGTTAAAGC				
	TAACGTCAAA				
	ACCCATATGT				
5401	ATCCAAAATA	AGCAGGACAG	GGTAGAGCAA	GTTAATCTTT	GGAATTTCTG
	GATTCTCTTA				
	ATGGTATAAC				
5551	GCTCAGGCCA	TGGATGACAA	GAGCTGGCCC	TAGCACTGAA	CTCTTGGGTC
	ATTTGTAGGT				
5651	TGTGTGTGTG	TGTGTGTGTG	TGTGTGAGAT	AGAGACAGAA	AGATAACATA
	TGTACACAAA				
5751	AGTACAGGCA	GGCCAGGCGT	GGTGGCTCAC	GCCTGTAATC	CCAGCACTTT
5801	GGGAGGCCAA	GGCAGGTGGA	TCACCTGAGG	TCAGGAATTC	GAGACCAGCC
5851	TGACCAACAT	GGTGAAACCC	CATCTCTACT	AAATACAGAA	AAAAATTAGC
5901	TTGGCATGGT	GGCACATGCC	TGTAATCCCA	GCTACTTGGG	AAGCTGAAGC
5951	AGGAGAATCG	CTTGAATCCG	GGAAGCAGAA	GTTGCAGTGA	GCCGAGATTG
6001	TGCCATTACA	GTCTAGCCTG	GGCAACAAGA	GGGAAACTCC	ATCGCAAAAA
6051	AACAACCACC	ACCAAGAGTA	CAGGCTATGG	AATGAGACTA	TGGTTTTAAA
6101	TCCTGGCTTT	GCAATTTATT	AACTAGCCTT	AAGTGACTTC	CCTGAGCTTC
6151	AGGCACCAAT	CTGTAAAATG	AGGATAAGAA	TATTACTCAT	GCCACATGGT
6201	TGTTAGGGAG	GATTAAATGT	GATAACCTAT	ATAAAGTGGC	TAGCATAGCA
6251	TCTGACATAT	AGAAAACTCT	TAATAGGGCC	GGACGTGGTG	GCTTATGCCT
6301	GTAATCCTAG	CACTCTGGGA	GGCCGAGGCA	GAAGGATCGC	TTGAGCCCAT
6351	GAGCCCAGGA	GTTTGAGACC	AGCCTGGCCA	ACATGGCAAA	ACTCCACCTC
6401	TACAAAAAAT	ACAAAAATAT	TAGCCAGGCG	TGATGGCACA	CACCTGTAGT
6451	CCCAGCTACT	TGGGAAGCTG	AGGAGCGATG	ATTACCTGAG	CCCAGGGATA
	TCAAGGCTGT				
6551	GGACAGAGTG	AAACCCCTGT	CTCAAAACAA	AACAAATGAA	AAAAAAAACC
6601	CTTAATAATC	AGTAACTGTC	ACTITATATT	ATGTTGTGAG	TGTGTGTCTA
6651	TATACACCTA	TATGTATACA	TTTCTCTTAT	TACACATTCA	TTGGTGATCT
	GATGTGGAGC				
	CAAGCCAAAT				
	CCTAGTTGCA				
6851	AAGGAGCACA	TCTCCTGACT	TCTGAGCTTT	CCCCTGGTAA	ATTCAAACTG
					TGGGGAGAGT
	GACTGTCTTT				
	TCAGGGCTAG				
	TTGAGGAACA				
	GCCAGCTTGC				
	GGCCTGCTGG				
	CTTCAAGGCC				
	AATAAAGGAA				
					CTGGGGTCCA
	TCCTAAACTC				
					CAGACCCTCA
					CAGACTGTGC
		v v .	2011/01/17/01		J. 14 15 14 140

Jan. 22, 2002

Sheet 9 of 41

	AATGGAGGCC				
	GTGCGATTAG				
	TGACTAGTCC				
	тстттстт				
	GCTAGTGAAG				
	CTGGTAGTGA				
	TAGGCCTTTT				
	TGCCATTAAT				
	GGCTCTCTCT				
	TTGTAGCTGA				
8001	GCATGTTAGC	AAGCCAGAGG	ACCTTGACAA	CTTTTTTGAT	GATTGTCCGT
	TCACCCTGAT				
	CTATTAGTCT				
8151	CTAGCAGCAT	TATCAGAAGG	AAAATCCACC	GCTCTTAAGG	CTCCTGGGAA
8201	CTTTCAGGAC	TTCCTTTCTC	AGGATTGCAA	ACATAAGACT	ATTTGAGCTT
8251	TCACTTTTGA	AAAGCGGTTA	CTAATACCTA	TACTCTGGGA	AAGGGCTAAT
8301	GCAGATAGAA	GACTGTGGTC	ACTGCATCAG	GCAACAGACC	ATTTCCGCTA
8351	AATTTAGTGA	CTCCAGGAAG	GCCAGTGAAG	AAATAACACA	CGTAGCAACC
8401	AGAGACTGTG	TTGTAATATG	TTGGCTGACA	GCAGGGTACT	TTCTGTGATG
8451	CTGAAAGCCA	CATTCATTTT	CTCTCCCCTC	ATCCCCATCT	AAGCAAGCCT
8501	GGTAGAATCA	TAATTACAGT	AATAGGTACC	ACTTATTGAG	TACTCTGTGC
	CAGACACCCT				
8601	TGACTTAATA	AAATGTAGTA	CTAGTCTTAC	CTACTTCGAG	AATAGGGAAA
	TGGAGGTTAC				
	TTTGAACTCA				
	TTGAATGCAA				
	ATAATATGGG				
	CAGATAACAT				
	TCAACAAAAG				
	AGTCAGTGGA				
	CACACTTACT				
	GTGTTTACTC				
	ATCATTAAGG				
	AAGGAAGGGC				
	CCTGACCACA				
	AATGTGCCTT				
	ACAGATGTTT				
	GATGAGGCCA				
	CCTCACTTAG				
	CCTTTTTTG				
	GGTACAATCA				
	TCCCACCTCA				
	TTGCCATTTT				
	TTGCCCAGGC AAGTGCTTGG				
	CACCCTCACA				
	CAGGGTCACA				
	AGTCTGCTTT				
	AGACTTGGAG		,		
9951	TGTGTAACTG	I GGGCAAG IT	CCTTAGCCCC	TGTGAGCCTC	AGTECLIAL

Jan. 22, 2002

Sheet 10 of 41

10001	CTGTAAAATG	TCATAAAAGA	AATCCATCTC	ATGGAGTAGT	TGTGATGATC
10051	AAGGACTCTG	AAAACATTAG	AATGGTTTAA	TGTGAAGGAT	TAGCAGCAGC
10101	ACATGGCAAC	ATTGTGCATC	TTATATTAAC	TATCCAAATA	TATCAAGCGT
10151	CATTTGCTAT	ATATAAAAGT	CATCAAATTA	GGCACTGTGG	GGGATACGGA
10201	GTTGGCATAC	TAGCCTGGCC	TCTTAATTAA	TTCATTAATT	AGCTTATTTA
10251	TTTTTGAGAT	AGGTCTTGCT	CTATTGCCCA	GGCTGGAGTG	CAGTGGCATG
10301	ATGATAGCTT	ACTATAGCCT	CAATCTCCCA	GGCTTAAACA	ATCCTCCTGA
	GTAGCTGGGA				
	ATTTTTTGTA				
10451	TCCTGGGCTC	GAGATCCTCC	CACCTGGGCC	TCACAAAGTG	TTGGGATTAC
10501	AGGTATGAGC	CACGGCACCT	GGCCTGGTCT	CTTAACTGGT	TCCCTAAGAC
	AGCTGGAAAT				
	TGGCTTTCAT				
	CGAATAACAG				
	TTATATGACC				
	AAAGTTCGGA				
	CCACCTGACC				
	GTCTATGAAA				
10901	TTCAATCATG	TATTCAAAGT	CCTGAGCAGA	ATGTCTGGCC	ATGACTGGGA
10951	CTTAACAGAT	GTTAGCATTT	ATTATTAGTA	TCTGTCAGTC	TTGAAATGTT
	CTCTTCCCTT				
	CTCTCTGGTA				
11101	TTACCATTCC	TTCAGGCGTG	CTGTTTTCTC	CTTAGGCAGT	CTTACACACA
11151	CTCATGACTT	CCTTCCATTG	TCCTCCACAC	ACTGATGACC	CTAAAATCAG
11201	TATCTCCAGC	CTAAACCTTT	CCACTGAGTT	CTAGACCCAT	ATGTTGTACT
	ATCAACCTGG				
11301	TCTCTAGACT	TTGCTGGACT	TTCACTCTTC	CCCCTAAAAC	TGGCTCCTCT
	TCCACTGAAA				
	TAAGCCAGAA				
	ATCCAAGCCT				
	сттссттт				
	TGGATGTCTG				
	CTGTTCTCTA				
11651	TTTGTTTTAG	ACAGAGTCTC	ACTCTGTTCC	CCAAGGCTGG	AGTGCAGTGG
11701	CACAATTTCG	GCTCACTGCA	ACTTCTGCCT	CCCGGGTTTA	AGCAATTCTC
11751	CTGCCTCAGC	CTCCCAAGTA	GCTGGGATTA	AGGCACCGGC	CCCCATACCC
	AGCTAATTTT				
					CGGCCTCCCA
11901	AAGTGCTGGG	ATTACAGGTG	TGAGCCACTG	CACCTGGCTG	GAAGGAGTGA
11951	TCTTAAAAAA	AAAAAAAACA	AAAAAAAAACT	TGACTGTGTC	ACTCTGTGTT
12001	GTCTCTCCTA	CCTTGTATAC	TTCCACAACT	TCCCAGTGTT	CTTGGATAAA
12051	GACCAAAATC	CTTAACTTGG	CCAGGCGCGG	TGGCTCACAC	CTATCATCTC
12101	AGCACTTTGG	GAGGCCGAGG	CAGGCAGATC	ATGAAGTCAA	GAGATTGAGA
	CCATCCTGGC				
					TGGGAGGCTG
					GTGAGCCCAG
12301	ATCACGCCAC	TGCACTCCAG	CCTGGTGACA	GAGTAAGACT	CCATCTCAAA
12351	AAAAAAAAA	AAAAAAAAA	TTCCTTAATT	TGGCCTACAG	TAGAGCCCTC
					CCCTGCACTT
12451	CAGCCTCACC	TCTCTTCTGG	ACAGGCCCTC	CTTCTGACAA	GGGCTTTGTT

12501	CATTCTGCTC	CCTCTGCCTA	GAATGCCCCC	TTACTCTGTT	CACTTAACTC
12551	CTGCTTATCG	TTTAGATCTT	TACCTGGATG	GCTCAGAGAA	ATATAGAAGT
12601	AATTCCTCAC	CCTGAAAAAT	AGGTTAGGTC	CCTGTTTTAT	GTTTTCATAG
12651	ACCTTTCCTT	TGAGGCTTTT	TTTAAAAAAG	TAGTTTTAAT	CTCACATTTA
12701	TTCATGTGAT	CATCTCCTTA	ATGATATCTT	AAGACCTCTA	ATAGAACAAT
12751	TTGGTCATGG	ACTGTGGGGT	TTTTGCCCCT	CATTGTGTCA	GCACTGAGCA
12801	TATTGTTGGC	ATAGGAGGA	TATTTGTTGA	ATGAATTGCT	AGAGGTGGCC
12851	AAGAGATATG	ATGTAAGTCA	GGCTTTTCCC	TGCCCTTCCC	CTTCCCCTTC
	CCCACATCCT				
	AAGACGGAAT				
13001	GTGTCAGGGT	GATAAGTTAA	AGCTTTGTCT	TTTGCCCTCA	GAGGAGCTAT
	CCCATAGTGA				
	AGCAGCAGGT				
	CAAGCCCTAG				
	AGCTACTCTA				
	TTTCAATTCC				
	GTATATTTGA				
	GAAAAAATGG				
	TGGGGAGTGG				
	AGTTTGTCCT				
	GTATTGTGTT				
	AAATCCTGGT				
	CCCTTTGTGT				
	AGTGGCTCAT				
	TCACCTGAGG				
	TGTCTCTACA				
	AATCCCAGCT				
	GGCAGAGGTT				
	GACAAGAGCT				
	TACAGGCTGG				
	CTAGGCGGGA				
	ACAGAGCAAG				
	GTGGCTCATG				
	TGCTTGAGCC				
	CATGCCAGCC				
	AAAGAAACGA				
	GGAGGCCAAG				
	GGCCAACATG				
	GCATGGTGGC				
	ACGAGAATCG				
	TGTCACTGCA				
	TAAATAAACA				
	TGGAGGCCAG				
	AGGCCGAGGG				
	AACACAGTGA				
	TGGTGGCAGG				
	ATGGCGTGAA				
	TGCAGTCCAG				
	AAAAATGGAG				
14901	GGAGGTCGAG	コレロロロロロロス	CACCIGAGGI	CAGGAGIICC	AGACCAGCCI

	GGCCAACATG				
	GCACGATGGC				
	AGAATAGCTT				
	CACTGCCCTC				
	GAAATGGAGA				
	GTATTACTGT				
	GCACTCATGA				
15351	CTGCCAGGGC	TGAATAATAT	GTGTGAATTG	GTGATTGTCG	CACATATCTA
	AAGAAGTAGT				
15451	GGCCGAGCGC	AGTGGCTCAC	ACCTGTAATC	CCAGCACTTT	GGGAGGCCGA
	GGTGGGCAGA				
	GGTGAAACCC				
	AGGCATGATG				
	GGAGAATTGC				
15701	GCCACTGCAC	TTCAGCCTGG	GTGACAGAGG	GAGACACTGT	CTCAAAAAAA
15751	AAAAAAAAA	ACCAAAACCA	AAATAATAA	TAAGTGGCCA	GCAATGAAAC
15801	AGAAAGTGAA	AAGTTAGTGA	AGCAAAACTA	GTACTGTATT	CAGATAAAGA
15851	TGCTGAATCT	AGATTTGGTC	ACCAGAATAG	GGTCCTTTGT	GGCAACCTGG
15901	GCTAGTTTGG	CTGACTCACC	ACTGCCAGGA	TGAAATTTCT	TTCAGTGGCT
15951	ACTCATTTCC	CTTTATTTTA	AGTCCATGCT	CACAGAGCAA	CCTTCTGATG
16001	CCTAATTCAG	CTTCCTGGGA	TACTTAATAA	CAGGAAGGGT	CTGGAAGTAG
16051	TACCTGTATA	GGGGATATGA	GTGTTCTGAT	TTTAATAGTC	AATTCATAAG
16101	TGTACAGAGG	GTTTGATAAA	TGGTTAGGTC	AGAACCATCA	CAGAATGTCT
16151	ACACCTCTTT	GGACATTAGG	AAGGTCAAAA	ACCTGAAAGG	CCAAAAGCTA
16201	GGCCTAGATT	AGGGTCATTC	ACCAAGAAAA	CATCAGCCTT	GAAGAGTTCT
16251	CTGGGTGGTC	CACCAGTCAA	CCTTCCTTTG	ATCACACCTC	CTTCCTCGTT
16301	GCTTCTTTAA	GCATTGACCT	GTAATGGGTA	TGGAATTTTT	TGCTCACCTA
16351	ACTCCTTCCT	TTTACAGAGG	AAGAAGTTGA	AGCCCAGAGA	GATTTAATGG
	CTTGCCTAAG				
16451	GTGTTCCCTG	CCAGACGAGG	GCTTTTTCC	TTGAATTGCC	TAGAGATTTC
	TTGAGATATC				
	TGTCAACACA				
	GTATCATGGA				
	GCTTATGTGC				
	AGGCAGTAGA				
	ACACTAGTTG				
	GACTTTAGGC				
					AATCACTGCT
	TGCTTAAATA				
	CTAGCAGACT				
	GGCCTCCTGT				
	ACCTGCTCAG				
	TTGCACATGT				
	AGCCTATTAG				
	CGCCAAATCC				
	TTGTTATTCT				
	TATTTGTTTA				
	GTGGAGCCGT				
	TAGAATGTAG				
	TGAACGACTC				
47 101	, a, v 10 a/10 1 0	. I I da torto I	·wviiivviul	JUNIOURUIN	- GONOON IN

Jan. 22, 2002

Sheet 13 of 41

17501 CCATCTCTTC	GCTCTACAAT	ATTCTTTTAG	GCAAGAGCTT	ATCTTTTGAG
17551 GTGATAAGAT				
17601 GTCATCCCTA	AGTCTTAAAC	CATCAAAACC	AGGGCCTCAA	GGAATGGCAT
17651 GCCTTCTGCA				
17701 TTTTCCCCC				
17751 GTGCTAACAA				
17801 CAGCATCTCA	TGCCAGACTT	GAGTTAAGGT	TGTTTCTTT	TGTGTGTCAG
17851 CTGTATTCTG				
17901 GATCAGAGGG				
17951 CCGTTTCTGA				
18001 TIGTTTTAGT				
18051 AATCACTTTT				
18101 GGAGTGCAGT				
18151 CAAGTGATTC				
18201 CACCCCCACT				
18251 CCGTGTTGGC				
18301 TCAGCCTCCC				
18351 TAGAATCACC				
18401 GGAAAGAGAG				
18451 CAGGAAGGTG				
18501 CCAAACATTT				
18551 ATCTGTACAT				
	TCTGAGGGTT			
18651 AAGCACTTAG				
18701 AGAAACACTG				
	CTGTATATCT			
	AGAGGGTCCA			
18851 AAATATTACT				
18901 TTTTAGTATG				
18951 TGTCAGTTCC				
19001 TAGTTCCCTC				
19051 ACTCACCACA				
19101 CTCCTTTTAC				
19151 TTTCCAGGCC				
19201 CTTCAATGTG				
19251 ATCTGTCTAT	CACCAGATCA	AACTACGTGA	AGGCAGGCAC	TAGGTACTGT
19301 CAGTGCCCAG				
19351 AAAGAAACCT	ATGATTCAGG	ACCCCCATGA	TGAGCAACTA	TAGCACTAGA
19401 ACAGTGATAA	TAACTAATGT	TTATAATGCA	TCTTCAGTTT	ACAGAGGGCT
19451 TTTGTACTCA	TCATCTAGTT	TAGTTCCTGC	AACAACCTCT	TGAGGAATAT
19501 AGCACAAGCA	GGACAAGGGA	AGCCCAGAGA	TGTTAAATAA	TTTATCCAAG
19551 TTTATGCTGC				
19601 GCTCAAATCC				
19651 GAATCCTGCC				
19701 CTTGTATCTG				
19751 ATCAGGAAAG				
19801 TGATGAGTAA				
19851 ATTTCACTAC				
19901 TGTCCACTTA				
19951 AAAAGGATCA				
TARANAMA TORET	IAAGGCIICC	TITICCAGI	AIGHTIICC	ICCITITICA

20001 AAACTGGGCC AGTTAGCTAT CTCCATTTTT ATTTCATGAA TACATCCCCA 20051 GCGCCTGGTA TATAGTAGAT ATGGAACATT ACACTTTGGA GATATTGCAC 20101 CCATTCTCCA GTTTCTCCAA AGTTACTAAC AATGGTTCCA TCACTGTGCC 20151 AACATATTTT CTTTTTCAA TATATTGGGA AATAATTCTC CCAGTCTGAA 20201 AATCTGAACA CATTTCATGT GACTTGGTAT CCTCATATGT CTTGGGCTTC 20251 CAATTCTCCA TTCCTAGTTT CAAGTTCATG AACTGTAAAA CAAAGGATTA 20301 GACTAAATCT CTAAAGTTCT ATCCAGATGC CAAATTCTTT TCTCTTTCCA 20351 TGATACCTAA GATAGATGCC AAATATTGTC TTTTACCTGG TGTTTGTGAA 20401 CATGACATCA CATTACAGGA GTAGCAGATA CTAAACTCTC ACTCTGTAAA 20451 ACACTGACTG AGTTCCATGA GCCAGATACT GAAGTGAGCT TGTTCACATA 20501 TGTTCTCATT TAATGCTCAT AACCCTGTGA AGCTGGGAAT TGCTGGGACA 20551 TITTATTTAT TTATTTATTG AGACGGAGTC TGGCTCTGTC ACCTAGGCTG 20601 GTGTGCAATG GCATGATCTT GGCTCACCGC AACCTCCGCC TCCCGGGTTC 20651 AAGCGATTCT CTTGCCTCAG CCTCCGCAGT AGCTGGGATT ACGGGGCACA 20701 CACCACCACA TCCAGCTAAT TITGTATTIT TAGCAGAGAT GGAGTTTCTC 20751 CATGTTGGCC AGGTTGGTCA CGAACACTTG ACCTCAAGTG ATCTGCCTGC 20801 CTCAGCCTCC CAAAGTGCTG GGATTACAGG CATGAGCCAC CATGCCTGCC 20851 CGGGACCCTT GTTTTAGAAG GATGACTGCT GCTATAATGT AGAAAGTGAT 20901 TTGGAAGAGG GGAGGAGTGG GGCACGAAAG ATGGTTAGTA GATGGGGGTG 20951 GTAATGCTTA CCTTTCAGTA TTTGGAGGCT TCGGAGTCCT CAAAAATTCT 21001 CTTCCTTGAT TGGAGTCCTC CCAGCCAATA GAGGGCTTCA CACAAACAGT 21051 TTCTTGGGTT TTGAATTGTT TGACCAGAGC TTTCTTCCGA CAAAAGGTTG 21101 GGGTGATTCA TTCACTTACC ACACCTTGCC TGAACATTCA CTTGGGGCTG 21151 CCGGTTATGA AGGCTATTGT TCTCCAGCCT GTCACAGACG CTTTGAAGAC 21201 CTGTGCCTCA GCTGGTTCTA AGGAGTCAGT TTGTTCAGCT CCGTGCCAGG 21251 TTTCCAACTT ATGAAATGTG CTGGAGATTA ACACCTCTCC TGCCATTTTA 21301 TCCCTACTAT AATTGCCAGT CAAAGGATTC CTGCAGTTGC CTCTGGCAGC 21351 CATAACTGAT GAATGTTCTG CCAGCTGCTC TGAGGACCTA GAAGAGCAGT 21401 TTTCTATCCA GGACCAGTTT CCAAGGGTGG GAGGGTGAAA TATATCCTCC 21451 AGTGTGACAT TTCATCTCCC AGTGATGGGT GGCTTGGGCC CTTTGAAGTT 21501 GGCTCTGAGG AACCACACA TTGGGTCTGA GCAGCCAGCA GCTTATCACA 21551 TCTGGTGATC AATCCTTCAA AGGTTCCTCC TGAAGTCTGA ATTTTTGGAG 21601 GTCAAATGGA TTCCACCTGG GAGGGGCTTC TGCTTCAACT CAGGACATGG 21651 GGAGAAGGCT GTTCCTCTTC CAGGGGGAGG CAGTTTTCAT GGCATTGAGA 21701 TGTCCTCTCA CTTATTCCCC ACCCACCCAC CAAGTCCTTT GTAAGAGGAG 21751 TAGGGGGAGA GGAGAGCGCC TGCAGCCTCC TGCTCACATT CCTAGACACC 21801 GACTCACTGA GCCCGTCGCC GCTGGAACAG CAGAGCTGTG TGAAATGTCA 21851 AGAGGAGTTA TGCTCATAGG CTCCCTGGCC TCAGTCTCTT TGTGGCTTGC 21901 ATATTCTTCC ATTAGTACTG TGTTCATCAC ATGGAAATCA GAGGGTACAA 21951 TTAAAAGATA ATTTGCTAGT CCCAGACTTA ATTTGGGGCC CCCTTCTTGC 22001 CTGATTGAAT TACAGGGGAA CATAATAGAT TTTTGGTGAG AAATAGTTGT 22051 CTGTGTGGCT GGGAGAAAGA TTGCTCCCAG CTCTCCAGCT GGGCAGCCCT 22101 TTCAGTATCC CGTATGTTAT TTCCCCACTT CCAGCCCACC TCACCTCCTC 22151 TGTGGCCCTT GTGTGTCCCC TCGGCTAGGA TCCTGACCTC CTGCTCAAGA 22201 GTTTAAACTC AACTTGAGAC CCAAGGAAAA TAGAGAGCCC TCTGCAACCT 22251 CATAGGGGTG AAAAATGTTG ATGCTGGGAG CTATTTAGAG ACCTAACCAA 22301 GGCCCAGACA GAGAGAGTGA CTTGCTAAAG GCCACATAGC TAGCCCACAG 22351 TAGTTGTAAC AATAGTCTTA ATGATATTAA TGGCTAACAT TTATCAACCT 22401 TTAATGTGTC CCAGACTTTG TGCCAAGGGC TTACATGCAG TGCATTGTCG 22451 CATTCAAACC CAGACAGTCT GGCTCTGGGC CCAGGCTGAG CTTTGGTATA

22501 GCATGGTAGA	ACGTTGTCTA	TAATGTCTAG	TCTGGGTTCA	AATCCTGGCT
22551 TCACTTCTCA	CATTTACAGC	TGAGTGACCT	CAGGCAAGTG	ATTTAACCTC
22601 CCTGTACCTC	AGTTGCTTTA	TCTGTAAAGA	GAAAAATCAC	AGCACTGTGG
22651 AATAGTGGGG	GTTAAAATTC	ATTCATACAA	GTAGTGCTGC	AAGCAATGTT
22701 TAATACAGGG	TGAGCACCTG	TTCAGTGCTT	CCTTCTTCTG	GCTGCCTCTG
22751 GGGCTAGAGT	GTGGTGTCTT	CGTGGTATAG	ATAGATAGAT	ATGGCTGAGC
22801 TCTGCACAAA	CACCAAGAGC	TGTTCTTCAC	TATTAGAGGT	AGTAAACAGA
22851 GTGGTTGAGC	TCTGTGGTTC	TAGAACAGAG	GCCGGCAAGC	TATGGCCCAT
22901 TGCCTATTTT				
22951 GACAGAGTTT	CACTCTTGTT	GCCCAGGCTG	GAATGCAATG	GCACGAACTC
23001 AGCTCACCGC	AACCTCTGCC	TCCTGGGTTC	AAGCGATTCT	CCTGTCTCAG
23051 CCTCTCGAGT	AGCTGGGATT	ACAGGCATGT	GCCACCACGC	CTGGCTAATT
23101 TTTGTATTTT				
23151 CGAACTTCCA	ACCTCAGGTG	ATCTGCCCGC	CTCAGCCTTC	CAAAGTGCTG
23201 GGATTACAGG				
23251 GTAGAGATAG				
23301 TTCAAGCAGT				
23351 GAGCCACTAT				
23401 AAAAAAGCAA				
23451 ATATCAGTGT				
23501 AATAAAAAA				
23551 TCAGCACTTT				
23601 AAGACCAGCC				
23651 AAATTAGCCG				
23701 GCTGAGACAA				
23751 CAAGATCGCG				
23801 ACACGCACGC				
23851 TGGTGGCCAG				
23901 GATCACTTGA				
23951 CTGCACTTTA				
24001 AAAAAAAAAA				
24051 CATGTCCCTT				
24101 CACAATTGAG				
24151 TTGCTCTCTG				
24201 CATATGTACC				
24251 CATCTGTAGT				
24301 TCCAGAAGGT				
24351 CTCCAGCCTG				
24401 AAAAAAAAA				
24451 ACATAACCCC				
24501 GTTTCCTCCT				
24551 CACTTAACAC				
24601 CTTAACAGTA				
24651 GTGTCCAGTT				
24701 TCTTTATCAG				
24701 TCTTTATCAG				
24801 AGAGCTGATG				
24851 TTTCCTCCAG				
24901 CAAGGGCTTT				
24951 GGCTGTTCAG	שוטטטווענ	ATTUCAGATA	CCIAGGCIIA	TURATULUT

Jan. 22, 2002

Sheet 16 of 41

	TTGGCACCCC				
25051	AGCATGGTTA	TCACAGGACA	AGTAGAAGAA	GCTCCACTGT	CCACTGAGGC
	CAATGGATGG				
	GAGTAACCTG				
	CTCCTTAAAG				
	GAGTCACATG				
	TTGACCTTGA				
25351	GTAGAGTGGG	AATAATTCCT	GTCTCAGAGA	AATAAAAGAG	TGCATATAGT
25401	GTTTGCCACA	TGGAGACACA	TCAGGTGTAG	GTTAATACTC	TGGGCCTTGT
25451		GCAACACAGC			
25501	TTGGTCAGCT	CTTGAGGCTG	TCCCCAGGAC	AGGCAGAGGG	AGGGAATGAA
25551	TGGGAGCCCT	AGTGCCAGGA	CAGAACAGAT	GGCAGCTCAG	AGCTAGGATG
	GCTCTCTGGA				
	CTTCCTGGAC				
25701	GAATTACTGT	CCTGTAGGCA	GCTCCTCTGC	TTGAGGACAT	CTGGGGCCAG
25751	ATATGTTCAC	ACTCTATCCT	GCCTTGCCCT	TCCCTGAGCT	CAGGATGGAC
25801	GCTCAATTGG	TCCCAGTTAT	TGTCTGCAGC	GCCTGCCTGC	AGCCTCGATC
25851	CAGCCCAGCT	CCACCCCTTG	CCTGCAAGGT	CTGTTTCCTA	ACAGCTGCTC
25901	CAACCACACA	CCTCGGTTCT	GCGGGAGCCC	CTCCTCTTCC	TCCCTCCCTC
25951	CCTCATTCAG	GGGTGGGACT	GAAGAAGAAG	GCTAACTTGA	CAGCAGCGCT
26001	TCTTTCTTAG	CTAGTCACCG	GCCCCTGCTC	AAGAATGCCA	GTGTGTGTGT
26051	AGCCTCCACA	GAGAGGTCGT	TTTCTCGGAG	TCCAGAGGGG	CCGCCTGAGC
26101	TTCTGAGAAC	TAGGGAGGAG	CCATCCCAGC	CATGAGCCCC	TGTGGGAATC
26151	TGCTGGGGGC	CAAGTGGCCT	GGAGTCCTCA	GGCTCCCGCA	GCTGCTCCGG
26201	AGGGAGAGGT	GAGCTCAGGG	CAGCCTGCCT	GCAGCCAGAG	GTGCCGGGAG
26251	CCCCGGGCCT	GTCATGGTGG	CCATCTACAG	CCGGCCTGAG	GCAGTCACAG
26301	ACGGATTTGC	AGCTGAGCCT	GTCTATCTGG	TGTGGGAAGA	AGATGGGGAG
26351	TTACTTGTCA	GTCCCGGCTT	ACTTCACCTC	CAGAGACCTG	TTTCGGTGAG
26401	TTGGTCTCCG	AGTTCCCCTC	TCCATCTCTC	CTGGCCCCTG	GTCCTGAGAG
26451	GAGGGTGGTC	TCCCTAAATC	TCCTTCTCAC	TTAGTCCTTT	ACCATCGGTT
26501	CTGCCGGGCA	GAAGCCAGCG	GAGGTTATAC	CCAAGGAGAA	TCGGCCTTGT
26551	GAGGTACCCC	CATTATGTCC	TGGAAGTGGT	GAGGGGAGGG	ATATACCCAG
26601	AAGGAACTTC	TTAGGGAGCT	CCAGCTCCCC	TTCTATCCCA	GACAAACCTG
26651	AAGGAGCCTC	CAAAAGATGC	CACTGACCTG	CCCATTGTAG	ATGTTACTGC
26701	TTCCGGGGGG	AATAGCCCAA	ATAGAGTGCT	GTTTCCAGCT	CTCACATGTC
26751	TTACCTGCGG	GCCATGCTGC	CTGCCCAGGA	ATTTGTCCCA	ACAAGCAGGA
26801	TGGGCAGGTT	TTGCCAAACT	GTGGAAACTG	GCAAGTCCTG	GGTGTGGGTA
26851	GCCTGGTACA	CAGTAGGCAC	CTTATAAACG	TTTGTTCTCT	TAATGGCAGG
26901	CACATTTGCC	TCTGGCCTTG	AAGGGCTTCT	GAGCTCCCAG	GTGAATGTAG
26951	TTGCTGGGGA	AAGACCTGGG	CGAGTGCTTC	TAAGACTGGA	GCAATGGGCT
	TTAGAGTGTT				
27051	AGGCCTAAGT	ACCTCCACGA	GCCTCTCTCT	GTGGGGCTTC	TCAGAGGGAG
27101	ATGTGGAAAC	TCTACCTCTA	ACCTGGCTTT	CTTTGCTCAT	TGCCCCACTC
27151	CACCTCCCAT	AGAAACTCCC	CAGGGGGTTT	CTGGCCCTCT	GGGTCCCTTC
	TGAATGGAGC				
	GCAGCCTGTT				
	CGACTTTTCC				
	CTGCCGGGAT				
	CCATGTGGTT				
	CTGGACAGGG				
	•	= *	_		

27501	LAAGCGCCCTG	CTAGACACTT	TATCCTTTAA	TCTCTCAACA	GCCTAAAGAG
27551	ATTATATATC	CCCATTITAC	AGATGAGGCA	ACCAGTTTCA	ACAGAGTTAA
27601	. CATATGGAGC	CTCACTGGGC	AGCTTTTTCT	GTCTTCCTGA	CTTTCTCTCA
27651	. TCCTTCAGGG	GGCTGCAGGT	TTGTTTTCTT	CTCCTAGTGG	AGAGGAAATT
27701	CTCAGGTTTG	TTTTCCTCTC	CTAGCAGAGA	GTAAAAAAAG	GGATAGTTTG
27751	. CCTGACTTGT	TGAAGGTGTG	GCTGAGATTG	TTTTCTAAAG	AGCCAATGGA
27801	. AATTGATCTT	GAGTTTAGGA	GAAAGCTTTT	ACATGTGGAA	TTAAGATGCC
27851	. AAGTGTTGAA	GTAGCCACAT	TTCAGGTCCT	CATTAATTTC	TCTTAATCCT
27901	GGGAAGGCAG	CTTAGGAGAA	GGGTTGTTCC	TTTAGGAGCC	AGGAACTATA
27951	CCCCTTTTAC	CCTTGGAGAG	GCAGGGAAGC	CAGGGAGGAC	ACAACTTCTC
	AGGAAGAGGA				
28051	AGGGCCAGAC	CACTAATGCC	ACCCAAGTCC	ACCTGCCGTT	TGTCTTGTTC
28101	TGTCCCAGGC	TTTCTGGAGA	ACCTGATCTT	CTTGCCCCTA	CCCCCAAGCT
28151	CCGTTTGCCC	AGCTAGAGTC	TGGGGGGTAC	TGACTGACTT	TCGTAGACAT
28201	TCTTCCCTTC	CCCAAATAAG	AGGCCACATT	CCTGAAGTCA	CTTCTGAAGA
	GATAGCTGCC				
	CTCTGCTCTC				
	GTTTCTGCCA				
	TCCTCTTTGG				
28451	CTTGGGCTCC	TCAACACCCT	CCTTCCTCCA	TTCTCTCAAA	CAAATTAACT
28501	TCTTGACCCT	AGGCCTCTGG	CCCTGCTGGA	ACTCTATCCC	ACTTOTOCOC
28551	CTGTGGTTGC	AAGCAAAGTG	ACCC AACCAC	ATTCCATCCC	CACATCATCA
	GGCGTGACAT				
28651	TTCTGTGTCC	CATACACCCC	TECCTEACAG	CCCATACATA	CTCACCACAC
28701	AATGCACTGT	CTTTCCTACC	ACACTACCCT	CACCACTCAC	CTCCAATTAC
28751	CACTGTGCTT	CONNCTACE	ALACTACCTCA		TACABAACAC
20731	CTARATTACC	CACTCCCTTT	TOTOCOACAT	CTTTAAACCA	TACAAAAGAG
20001	GTAAATTAGG	CACTTAATCT	CCAATACTCA	CITIAAAGCA	TTOOCTTAG
20031	TATAGAATTT	TTCAACAAA	CAATACIGA	TITAATGAGC	IIGGIIIAC
20001	ACATTATCTC	AAAAAAAAA	LAAATGAACU	TIGIGITE	AAAGCAATCC
20001	ATGTTTAAAG	GGAAAAAA I I	AIGCAIAACI	CTGCCCAGCT	TCACAGTAAC
29001	CTTTGGCAGG	CCATCACCTO	CCTCTGGGAC	1CTTTTCCTT	ATCTGAAAAA
20101	TGAAGGACTT	CACACAACCA	AATGGTTCCC	AGUTUTGUAA	CHAIGIGGC
29101	TCCTCAGAGG	CACACAAGCI	CITTICCATI	ATTIGCCAAA	TAATGGAGGC
29151	CCTGTCTTTA	ACTGCAGTAC	AACTACACAA	AATACTIGAA	ACTACAGTCT
29201	TCCTGGTTTT	IGGIIGGAAC	IGAATCAGTG	CACTCTAGCA	ACACTTATTT
29251	CTTGCTGTTC	GTAGGCTTCA	TTATGTGTTT	GGTTAATTTT	
29301	AATAACATAT	TCCATAATAA	TTACAGCTTA	ATTGGCAGAC	TGTTTCAGTC
29351	TATAGGATCT	GCAGGAAGGA	GGAGTAATAA	AGGGATTTTT	GACTGAGCTC
29401	TTATGGAACA	GAGTCTCTCT	AGGCCCCTGT	CATATCTGCC	CTTCTGGGCC
29451	CTGGGGAAAA	GTTGGCATCC	CCAGTTGTGG	TGCTCTCCAG	GTGCCCTCAG
29501	GCTGTGGTGG	AGGGAGCTTC	CCATTCTCTC	CTTCAGCCCA	CTCAATTCAG
29551	AGGCTAGGGG	CTGAAAGAAG	CTTCTCTACA	ACTGGCTGTT	CACTGGGAGG
29601	TTAAGGGATG	ACCATCCAGC	CAGGCCTTCC	TCAGGACATG	GGAGGGCTTA
29651	TGCTTTAACA	TGTGTAAATC	CACTGCAATA	ATGACTGGTT	CTTTTACCCC
29701	ATAAGGTTGA	GAATTTACCT	GTAAACATTT	TTGTCTGAAG	AATTTGGATG
29751	TAAGTGAGGG	CTGGGCCTCT	ATCTTATCTC	ACTTGGCTTC	TCTCAGCACA
29801	GCACCTTGCC	TGCTTGTTCT	TACACATCCT	AGATGCACAG	TAACTATTTC
29851	CTAATTATTA	GAAATCTATT	AGAATCAATT	GATTTCAGCT	GGGCTTGGTG
29901	GCTCCTTCCT	GTAATCCCAG	CACTTTGGGA	GGCTAAGGCT	GGAGGATCAC
29951	CTGAGTCCAG	GAGTTTAAGA	CCAGCCTGGG	CAACATAGGG	AGACCCTGTC

Jan. 22, 2002

Sheet 18 of 41

30001 TCTACAAA				
30051 CCAGCTAC	TC AGGAGGCTGA	GGCAGGAGGA	TCTCTTGAGC	CTGGGAGGTC
30101 AGACTACA	GT GAGCAATGAT	TGTGCCACTG	CACTCCAGCC	TGGGTGACAG
30151 AGTAAGAC	TC TGTCTCTTAA	AAAAAAAAA	AAAAAAGTTG	ATTTCTATTT
30201 GGATAGAT	AA ATAATTCATT	TTAGGACCTT	TCTTTTTCAC	TTACAGAAAT
30251 CTGTTTCA	TT CTGGGCTGAG	AAGCAGGTCC	ATATTGCTAG	GCATAGGAGA
30301 AAAAGGGG	TC TGTCTGCATT	TGCCCTTGGT	GGTCTCAAAT	TGGGGAGGGA
30351 AAGAAATG	AA CACTTACTGG	CTACCTTCTG	TGAGCCAGGC	ATCATGCAAG
30401 ACATCTGT	AC ATAATTTAAT	TCTCATAACC	CCATAAGATA	TTATTAGCAA
30451 TGTACAAG	TG AGGAAACTGA	GGCTCAGAGT	CATGAAGTAA	CTGGCCTTGG
30501 GTGACACA	GA TGGTAAATGG	CAGAGAAGGA	ATATGGATCC	AGGTCTTGAA
30551 AGAGAAAA	TC TCAACTGATT	ATCTTTTTTA	AAAAACTCAT	ATGTTCTCTG
30601 CTGACTCA				
30651 ATCAGGGT				
30701 TAATGTTT				
30751 CGTATGTA				
30801 TTCACTCT				
30851 TACCACCT				
30901 ACTITCAC				
30951 TTTGGGAA				
31001 ATGTTCGA				
31051 TAAAAGAA				
31101 AGGAGAAT				
31151 CACGAAGT				
31201 CTTATTTT				
31251 CTCACTCC				
31301 ATAGCTTC				
31351 ATGATTTG				
	CG TAGGGTTGTC			
	AC CTGGATTATG			
31501 TGATAGCT				
	CC CAGTTGTGTT			
31601 CCCAGCCC				
31651 GGCAGTGA				
31701 GACACAGA				
31751 CAGCAGGC				
31801 TGCTCCCT				
31851 GATATTGG				
31901 GCGCACAT				
31951 GCAAATAA				
32001 ATGGAACC	CT TGTGCTCCCC	TACCTGGGCT	ACTGGTTCTT	GCCACTCCTA
32051 CCATTTTC	AG TTTGGAAATA	TTTGTTAAGG	CTTTGCTCTT	CCAGGTCCTT
32101 TGCTTGGT	GC TGAGTCTACC	AAGAGTAAGT	GGGATGCTGT	TTTTGTCCTC
32151 AGGGAGCT	AA CAGTCTAGTG	AAGAAGAAAG	ATGGTTGCCC	AGGAACTTCT
32201 AAGTCAGA				
32251 CTCTGTTG				
32301 AGGCCAGG				
32351 AGGCGGGC				
32401 TGGGGAAA				
32451 GCATGCGC				
		- · - · · - ·	· ·- · · -	

32501 TTGAACTCGG	GAAGCAGAGG	TTGCAGTGAG	CCGAGATTGT	GCCACTGCAC
32551 TCCAGCCTGG	GCGATAAGAG	CAAAATTCCA	TCTCAAAAAA	AAAAAGAAAA
32601 AAGAAAAAAT	CCTCACTGCT	ACCTTGAAAG	TAGGTGATGA	CATTGCCATT
32651 TCACAAATGA	GAAGTGAAGG	GGCTAGCCCA	AGATCACTTA	GGTGGTAAAT
32701 GGTGGTGCTA	AGATTAGAAC	CTCAGATCAT	CTAGGGAAAA	ACACAGATAT
32751 GCACAGAGTT	AAGGGGACCC	AGGGTATTGT	TTGTCCTCTT	GTTTCACAGG
32801 TGGGGAAACA				
32851 CCCAAGAACT				
32901 ACATGTATCT				
32951 TCCCCTCTGC				
33001 TACTCTTCAT				
33051 AAGACAAGTA				
33101 AGCACCCAGG				
33151 ACTTGCTTCT				
33201 CCTCTTCTCT	ACCTCCCGCA	GTGCTCAGAA	GTAGTAGAAC	TCACTGTGGC
33251 CTCTCACCTT	GCATTGTTGA	GTTTTATTTA	GACTTTCTCT	TCCTCAACTC
33301 TTCATAAGCT	CATGAAAGGT	GAAGTAGGGT	GCCCTGTGTA	TTTATCTTTT
33351 ATATCTGCAG	TGCTTAGCAA	GTTATAATAA	TGCACTTGCC	TGGCAAAAGG
33401 CTTTCTCTCA	TACATTAGCT	TATTTCCTCT	TCACATTGGC	TCTTTGTAGT
33451 AATAGGATGC	TATTAGTTAT	TTTCAATGAG	AGAAAGCTAC	TAAGAGAAGT
33501 TGTCCAGCTA				
33551 GTCATCATCT				
33601 GTCTTTTTT				
33651 TGTCCAGGCT				
33701 TTCCCAGGTT				
33751 TACCAGTGCA				
33801 CAGGGTTTCA				
33851 TCTGCCCGCC				
33901 GCGCCCTGCC	TATATTAGGA	CTTTTATATA	AGCTATCTCT	AGCTAGCTAG
33951 CTAGCTAGCT				
34001 CTGGAGTGCA				
34051 TTCCAGTGAT				
34101 CATGCCACCA				
34151 ACCATGTTGG				
34201 GCCTCGGCCT				
34251 GCTGCTCTCT				
34301 GTTCATTTTA				
34351 CAAGATGATG				
34401 GTTCAAACCT				
34451 CTTGACAACA				
34501 TGGGCTCAGC				
34551 AAGGGAGGAA				
34601 TTTTGAGAGG				
34651 TAGATTTTTT				
34701 TTACTATGTT				
34751 CCACCTCAGC				
34801 CAGCGAGCTA				
34851 TTGGGTTTCT				
34901 AAAAGTTGAA				
34951 TTCATGATTT	GITAATGTTA	IGCCACTITG	IAIAIAICIC	TOTOCCTCCT

Jan. 22, 2002

Sheet 20 of 41

35001	ATCTGTATAC	TTTTATTTAT	TTATTTTTGC	TGAACTATTT	CAGAGTAACT
35051	TAAAGGCATC	TTGATTTTAC	CCTTGAACAG	TTCAATATGT	TTCTGCTAAG
35101	AATTCTCCTA	TATAAGTCAG	ATATCATTAC	ATCTAAGAAA	ATTCACGGCA
	ATTITACAAT				
35201	AAAAAATGTT	CATGGCTGTT	TCCTTTTTTA	ATCTAAATTT	GAATCCAAGT
	TTGAGGCATT				
	CCTTTTCTTC				
	ATAGAATAAC				
	CGTATTTTTG				
	GTTTTGAAGA				
	TCAAGACCAG				
	TTTATATATA				
35601		TTTCTAGGGG			
	GGGCCCCAAG				
	AGGCAACACA				
	CCTTGGGGAG				
	TCAAAGAGGA				
	TATGTGGCCT				
	TTTCAGGTGT				
	AGGATGGGAA				
	TTCTGTCATG				
	ATCCCTTCAT				
	CCAGTTCCCT				
36151		TITATTCATT			
36201		AAGGTAAGAT			
36251		AGGAGAGGCA			
	AGGACCTCCA				
	GTCTTTAGGG				
	GGGCTACCTC				
	GATTTGCCAA				
	TACTTCTGGG				
	TCTCAGAAAT				
	GGGCAGAGAG				
	TTCACCCACC				
	CTCCCTTTGT				
	CAAGTACCAC				
	AGGATGGGGA				
30851	GATAGTGGTC	CITIGICIAI	TOOOGLOAD	ATAAGAGTGG	CIGGCGGGA
36901	GGGACAGTGG	CAGGIGAGI	IGGGCAGAAG	GAGIGITAGG	GIAGICAGAG
	CATTGGATTC				
3/001	GCAGAATGAT	TACACATGI	CICIACCCII	TTTCCTTACC	AACCTIGAAA
3/051	ATGTCTTCAC	TOTGCCCTGC	AATCCTCCCA	GTGGGAGGCA	CTCTTCAAGG
	ACGATCCCAG				
	ACCACCTTGG				
	GTACAAGGGC				
	CAGACCATCT				
	GCTGCAGATC				
	GGCTCCTCAT				
3/401	TGAGACTATG	GGTACTGTTG	CTTAAAGCCA	CATGGTGCAG	TGGTTGCTGG
37451	GGGGCTTCTG	IGTGGGACTC	TAGCATCTTA	TTCCCCCCTG	TGCCCTCTCC

37501	CCAGTGGGAA	GTGCCACAAT	GAGGTGGTGC	TGGCACCCAT	GTTTGAGAGA:
37551	CTCTCCACAG	AGTCTGTTCA	GGAGCAGCTG	CCCTACTCTG	TCACGCTCAT
37601	CTCCATGCCG	GCCACCACTG	AAGGCAGGCG	GGGCTTCTCC	GTGTCCGTGG
37651	AGAGTGCCTG	CTCCAACTAC	GCCACCACTG	TGCAAGTGAA	AGAGTAAGTA
37701	TTTTGAGAAC	CCTTCAGCAG	GGGTTCTTGA	GCAGAGTCTG	TAAATGGGCC
37751	TCAGAGGGCT	TAGACCTCCA	AAGTCTCATG	CAGAACTCCC	TTTATTCTCA
37801	TCTCATATCT	TTCTCCTGGA	CCCCACTATG	CTGTAACCGT	ACCTGGGCCT
37851	TGGCACTTAC	TGTTCTCTCT	GCCCAGGCTA	CTTCCTACCC	GATACTTAAG
37901	GCAAGAATCA	CTCACCTTTC	AGGTGTCAGG	TTTCAGGTCA	TGTTTGCTCT
37951		CTGGCTTGAT			
38001	CTCCACTAGA	ATGTAAATTC	CAGAAGAAAC	TTGCTGTCTT	ATTCAGTGCT
38051	GCATGCCCAG	GGCTTGGAAG	AGTACCTGGC	ATATAGTAGG	AGTTGATTGA
		GTCAGTCGAG			
38151	CCAAAAGAAG	TTAAGACCCT	ATCCTAGATT	CAGGCCAGAG	ACCAGATGGA
38201	GAAAGAGTCT	GTGTCTATCT	AATACCAGTA	ATGTCGTACC	TCTGGCCGCT
38251	TACCATGTAA	ATATTGATTG	TGTATCTACC	ATGTGTTGGA	CACTAGGCTA
38301	GTGCTTGCAC	AGCAGGTGAA	AGATACTAGA	GTTTGGGAAG	TCAGGAGGAG
38351	CTAAGGTCTG	TTCTACAACC	TTATTAGATG	AAGAGGAGAG	GGAATTGTGT
38401	TCAGGGCAGA	GGGAGAAGCA	TTTCTCCAAA	AGTAGGAGTC	TTAATCATGT
		TTGAGTGTGG			
38501	CTGGATTATG	AAAATCCAGC	AGATCCATTG	AGAGTTTAAG	CAGCAAGGTG
		GTTAACATTT			
38601	GGAGAGGGGA	AAGCCTAAAG	GTATAGAGAC	TAGTTAGGAA	GCTATTGTAG
38651	GCTGGGCATG	GTGGTTCATG	CCTGTAATCT	CAGCACTTTG	GGAGGCTGAG
38701	GTGGGAGGAT	TGCTTGAGGC	CAGGAGTTGA	AGACCAACCT	GGCCAACATA
38751	GCAAGACCCC	GTCTCTGTTT	TTCTTAATTA	AAAGAAAAGT	CCAGACGTAG
38801	ACATAGTGGC	TCACGCCTGT	AATGCCAGCA	CTTTGGGAGG	CCAAGGTGGG
38851	CAGATTGCTT	GAGGTCAAGA	GTTTGGGATT	AGGCCAGGCG	CAGTGGCTCA
38901	CGCCTGTAAT	CCCAGCACTT	TGGGAGGCCG	AGGTGGGCGG	ATCACAAGGT
38951	CAGGAGATCA	AGACCATCCT	GGCTAACACA	ATGAAACCCC	GTCTCTACTA
39001	AAAGTACAAA	AATTAGCCGG	GCATGGTGGC	GGACGCCTGT	AGTCCCAGCT
39051	ACTCGGGAGG	CTGAGGCAGG	AGAATGGCGT	GAACCTAGGA	GGCGGAGCTT
39101	GCTGTGAGCA	GAGATCACGC	CACTGCACTC	CAGCCTGAGC	GACAGAGCGA
39151	GACTCCATCT	CAAAAAAAA	AAAGAGTTTG	GGATTAGCCT	GGCCAACATG
39201	GCAAAACCCC	ATCTCTACAA	AAAGTACAAA	AAAATTAGCT	GGGTATGGTG
39251	GTGCGCGCCT	GTAATCCCAG	TTACTCAGGA	GGCTGAGGCA	TGAGAATTGC
		GAGGTGGAGG			
39351	TCCAGCCTGG	ATGACAGAGT	AAGATGCCAT	CTCAAATAAA	AATTAAAAAC
39401	AAAGTTTAAA	AAAAAAATAG	AAGCTATTAC	CGTGATCCAG	GTAAGAGATG
39451	TGAATAACTA	CAATGATGGA	AAGAAGGCAG	AGTTCTTAGA	GATGGGAGTA
39501	GGAGAGATGA	GGGAACTCCA	GATTGGGAAG	ATGATGTTCA	AGTTTCTGGC
39551	TTAGGCCACA	GGGTGAGTGG	CAATTCCCTT	CACTGAGATG	GGGCATCCTG
39601	GAAAAGGTGT	TGCCTTTCTG	TGTGGGTATC	CTGGGCCCCT	TAGGGGCCAC
39651	TGGTGGCCTG	GGACCTGGTA	AACCTTCCCT	GCACAAGCAG	AATTGGTCAA
		AGGACATCTT			
		TGCACATCAG			
		CTGGAGATCA			
		GTGTGTGTCT			
39901	AGATCCTCTG	GGAAATCAGG	CTGTAGCCTT	TACCTTTTCC	TACCCCCAGC
		GTCTTAGCAT			
_					

Jan. 22, 2002

Sheet 22 of 41

40001	GCGTAACAGG	TTCCCAGGGT	AGCAGGGATG	GTTGATGGAC	GGGAGAGCTG
40051	ACAGGATGCC	AGGCAGAGGG	CACTGTGAGG	CCACTGGCAG	CTAAAGGCCA
40101	CCATTAGACA	AGTTGAGCAC	TGGCCACACT	GTGCCTGAGT	CATCTGGGTT
		GGCCTGGGAT			
		GTGGAGGATG			
		ACATGACCCC			
		TCGCTCCTCA			
		GACACCAAGG			
		CCACCTCCCA			
		GCTGAGCTGG			
		CAGGGACAGA			
		ACAGTTTACA			
		TAGAAACCTG			
40651		AGGCAGTGAT			
		GGAGCTCAGA			
		AGAAAGACTT			
		GACTTGAGGG			
		GGAAGGAGAA			
		AAAGAAGTCA			
		GGGCTTCAGG			
		CTGTTTCTGC			
		CCAATTATGT			
41101	TGTATAGTGC	TGCCATAGGG	ACAGTGTTCA	GTAAACGTGA	CACATTCTTA
41151	GTATCACTAA	GAATCAGGTT	CTTGGCCAGG	CACCGTGGCT	CATGCCTGTA
41201	ATCCCAACAC	TCTGGGAGGC	CTAGGTCGGA	GGATGGCTTG	AACACAGGAG
41251	TTTGAGACCA	GCCTGAGCAA	CATAGTGAGA	CACTGTCTCT	ACAAAAAAA
41301	AATAATAA	ATAATTGTTT	TTAATTAGAT	GGGCAGGGCA	CTGTGGCTCA
41351	CACCTGTAAT	CCCAGCACTT	TGGGAGGCCA	AGGCCGGAGG	ATTGCTTGAG
		CAGGAGCAGC			
		ACTGGGCATG			
		GAGGAGGATT			
		ACACCACTGT			
		AAAAAAGTTT			
		AGTTAGAGCC			
		AAGTGCTGCC			
		ATTAGTGGGA			
		GCCTGGAAAA			
		TGCAGAGGAG			
		CAGGAGGCAG			
		AGCCAAGAGC			
		GGAGCATACC			
		TGGACTTCAA			
		TGACCATGAC			
		ATTGCTGTAA			
		GACAGGTACA			
42251	TTGCTGGCC	AGGCACGGTG	GCTCACGCCT	GTAATCCCAG	CACATTGGGA
		GGCAAATCAC			
		AAACCCTATC			
		ACGCCTATAA			
42451	AATCACAAGG	TCAGGAGTTT	GAGACTAGCC	TGGCCAATAT	GGTGAAACCC

Jan. 22, 2002

Sheet 23 of 41

42501		AAAAATACAA			
	TGTAATCCCA				
	AGTTCGAGAC				
	AATACAAAAA				
	TTGGGAGGCT				
	AGTGAGTGAAA				
	CTCCATCAAA				
	CGTGCACCTCCA				
	TGAACCTGGA				
	TCAGCCTGGG AATAACTAGC				
	AGGCGGAGGC				
	GCCAAGATCA				
	TCTCAAAAAA				
	CTATCACTCT				
	TGAATTACCA AGCTAGTAGA				
	CATTITGAAT				
	CCCCAAAATG				
	TCTAAACTAT				
	CAGGGTTTCT				
	TCCTCATCTT				TGGCCCCAGC
	TCCCCAAAGG				GCTCAGAATC
	CCTTCGTTGT				CCCTGTGACC
	TAATCCATGG				
	GTGAGCGCAG				TCCCTCTGTC
	ACTGTCTTTC				
	GATGCCAGGC				
	CACCCCCACC				
	TGGACCTGGA				CCCTCCTGCC
	TCCAGTCAGT				TACCGGGCAT
	GCTACAAGGA				GTGAACAGTC
	TCAGGGACTA				TCTGCTGAGA
	ACTGGGAGGG				
	GGCTGGAGAG	•			CATGTCTTTG
	GCACTGACCT				
	TATGCCAAAT				
	CTTCTTCCCC				
	CCAGCTCTCC				
	CACGCTGCAT				
	TGCCCTCCAA				
	CTCCAGAACT				
	GGTGACACAC				
	GATGTGATGA				
	AGGGGGCCCG				
	ATAATGGCTT				
	AGCAGAAAAG				
	AATTATTTGT				
	GGGATGCAGT				
	GGATGATGGA				
		S. I. G. F. F. TON	2100/4/1117	A I NO AND LON	MULINIAN

Jan. 22, 2002

Sheet 24 of 41

45001	CCTCACCTGA	ACGCCCTGCT	AAGGGAGCCT	GGAGGGGAGC	TCCCTGAGCA
45051	CTCACACTCC	TTGGGCATTT	ACAGTTTTCA	CTACCCCTCC	CAAGTTACTT
45101	CATGGAGTAA	CTTAAGTTGG	GGACACCTGT	GGTCTGGGTA	TTGCCCTCCA
45151	AGCCACTTGG	CCACTCCCAC	CCCAGTTCTC	CCAATGCAGT	TCCAAGGGTA
	AGGCCTATGA				
	GATCTTAGTG				
	GTAACACTTG				
	GAGAAGTTAA				
	TGATGCGCAG				
	TACAAGGATA				
	ACTGAAGGAC				
	AGGAGCCTTG				
	TTAAAGGGCA				
	GACTGAGCAT				
	GGCCTGGACC				
	CCATTCTGCA				
	GGAATCGCCT				
	GAGAGTAGGG				
	CCCTTCCTAT				
	TGTCTGTGTC				
	CTGTTTTCAA				
	-				
	GCAAACTGGA				
	CAGGTATTCA				
	CTAGGAAATC				
	AGAATTGGAT				
	AGGAGCAAAG				
	AAACAAATGA				
	GCCCTCTATA				
	TTTATTCCTC				
	ACAGAGCTGG				
	TAGCCACTGC				
	CAGTTTGGGG				
46601	CTATAGGAGA	CAAATGTAAA	AGAGTTTTT	GGTTGACTGG	CTTTTTGGTT
46651	TTTTGTTTG	TTTGTTTGTT	TGTTTGTTTG	TTTGTTTGTT	TTTTCCTGTT
46701	TCTGGGGCTT	GAATCAGGAA	GGAGGTTTTT	TTGTTGTTGT	TGTTTTGAGA
46751	AAGGATATTG	CTCTGTTGCC	CAGACTGGAG	TGCAGTGGCA	CGATCATGGC
46801	TCACTACAGC	TTCGACCTCC	TGGGCTCAAG	CAATCCTCCT	GCCTTAGCCT
46851	CCCAAGTAGC	TGGACTACAG	GTGTGTACCA	CCACACCTAA	TTTTTGAAT
46901	ППППСТ	ПППППП	ППППП	GGTAGAGACA	GGTTCTCACT
46951	TTGTTGCCCA	GGCCTGAATC	TCAAACTCCT	GGGCTCAAGC	ATTCCTCCTG
	CCTCGCCCTC				
	CAGGAAAAGA				
	ATGAGTCTGG				
	TGGGAGGCCG				
	CTGGCCAACT				
	TTAGCTGGGC				
	GAGGCAGGAG				
	GATCACACCA				
	AAAAAAAAA				
	CGGAGGGTCC				
7/401	caanaaaict	AUUUAA I UUA	GCCC IGCATA	uddddc i AA i	GAMACATTIC

	AGATTTCTGA				
	GGTGGAGTCA				
	AGGAGGAGGA				
	GGATGGGGGA				
	ATTGATCCCT				
	AGGAAACTGG				
47801	ATCTGCAGAG	AAGGGGCAGC	TGGAGCTGTG	GGACAGAAGA	GGCATCCATG
47851	TAGCTGGTGG	GGGTGTCTCA	GCTTGTGAAG	AGGAGATGGC	TTTGAGCAGG
	GCTGACACTG				
47951		CATAGGAAAG	TTGTGGACAG	TCTTTGAGGA	GCACTCCCTC
	AGGCAGGCAG				
	CTGGGTGTGT				
	GGGGGCTGGA				
	AAAGGAAGTT				
	AGGAGACATA				
	AGAGCTTAAA				
	TGTCTGAAAG				
	GCAGGAAGGA				
	AGGGAGCAGC				
	CAACGGCCAG				
	GCTTTGGCCA				
	AGATGGCAGC				
	ACAAGGGAGA				
	TGAAGCTGGG				
	CCAGATTCAG				
	TTCTGTTCCA				
	AACTCGCACA				
48851		GTCCTATCCT			
48901		CTGGCTAGAG			
	TTCCCTTCCT				
49001		GACATAATTT			
	ATTTGATTAG				
49101		CCTGCTTTTG			
	GCTGACCCCA				
	CGAGCTAGTA				
	GCCCCTCAGC				
49301	CTGGCTTCCT	GGGTGTCTAC	CGGCTGGCCC	TGGCTCTGCC	CTCTAGACCC
49351	ACACCACGCA	ATCTICATIC	CTITCCCACA	TGAC TGCCC T	GIAGCTATTC
	AAAGAGCTTG				
	TTTTCTGTCT				
	AAGACAGGAC				
	CCACTCTCCA				
49601	ATGAACCCAC	TGTGGGCTGG	GAGTCTGCTG	IGCACAGATA	CCAGACCCTC
49651	AGAAACACAA	ATGCCAAGTG	TGTCTGTTTT	THIGHTIGT	TTIGTTTTGT
	TTTTTAGATG				
	ATCTTGGCTT				
	TTCAGCCTCC				
	AATTTTTTTA				
	TGTTGGCCAG				
49951	TGGCCTCCCA	AAGTICTGGG	ATTACAGGTG	GAAGCCACCG	TGCCTGGCCT

Jan. 22, 2002

Sheet 26 of 41

50001	GAGTGTGTCT	ATTTGATAGA	GCTTTCTGCT	CTGATTCTCC	CTTGCTATAC
		CCCTTCTCAG			
		GAGAACATCC			
50151	CCAGGACAAG	ACTGTGGTGG	TGGCAGACTT	TGGGCTGTCA	CGGCTCATAG
		GAAAAGGGCC			
50251	ACCTTGCGCA	AGAACGACCG	CAAGAAGCGC	TACACGGTGG	TGGGAAACCC
		GCCCCTGAGA			
		CAGAGGGAGG			
		GGAGGCCTGT			
50451	GATATTTTC	CCTTGCCAGG	TGGGGCCTCA	CGATTTAGCT	CCTGAGCTCA
50501	GGGGGCTGGG	AACTGATCAG	TGTCCCATCA	TGGGGGATAA	GGTGAGTTCT
		TTTGTGCCTC			
		CTTCTCTCTC			
		GCTCAAACCA			
		AGGCCTCAGA			
		AGAAGTTCAG			
		TAGATGAACC			
		TAGGCAGTGT			
		AGGAAGGACT			
		CCCTACAGAA			
		CCTAGACCCA			
		TCCTGTGTTC			
		CTTTGGGATC			
		AGGCAGCAGG			
		CCTAGGGATG			
		GTTTATAACG			
		AAGAGAAGGA			
		TGCCCAGGCT			
		CTTCTGGGTT			
		TACCGGCACA			
		CAGGGTTTCA			
		GATCCGCCTG			
		ACCTCGCCCG			
		GGCTTGGAAG			
		ACTCAGAATT			
		CTAGCTCTTG			
		AGCCACTCTA			
		GAGGAATCTT			
		ATATCTCAGC			
		ACAAAGTTGT			
52001	CCTTACCATA	ATGAAGGAAT	CTTTCTTT	TOTTTTCTT	TTTCACATCC
52051	ACTITCACTO	TGTCACCCAG	CCTCCACTCC	ACACCTCCAA	TOTTCCCTCA
52101	CTCCACCCTC	CGCCTCCCAG	CTTCAACCAA	TOTTOTOTO	TCACCCTCCC
		GACTACAGGT			
		AGACAGGGTT			
52201	CACCCATCAC	GGTGATACAC	TOCCOATORA	CCAACATTTC	GC I GAGATIA
52251	TTCTTTTCTT	CTACCGTGCC	TCAACACCTC	TOTTOACACC	ACTOCOCTOC
52351	TCCCACACCC	TAATATTAAT	CAATCACATC	CACCACCATCA	ACTUGUCTUG
		TTTCAGACAT			
J2451	ATCTGGCACA	CACACACAGC	CACAAGGAGA	CACAGACAAG	GCAGGGTAGG

52501	ATGAGTGGAA	GCTAGGAGCA	GATGCTGATT	TGGAACACTT	GGCTTCTGCA
	GTGAAGCCCC				
	GGTCTGGATT				
	TCTAACCTAT				
	CCAGCATCCC				
	AAACAGCTGT				
	CTGACTGCCT				
	TGGGAGAAGT				
	CGCCATCTGC				
	TTCTCCCAGC				
	CCTGAGCCCT				
	GTGGCTGTCA				
	AAGAGAGAGG				
	CACAGCCATT				
	GAATACAGTA				
	CATATACTTT				
	CTTGTGTTTA				
	AAATTCTATT				
	TTTTCCAGTT				
	TGCATTTAGC				
	TTCTTCTCAG				
	CAAGTGTGTG				
	CTGTAATCCC				
	TGGAGTTCGA				
	AAATACAAAA				
	CTTGGGAGGC				
	AGTGAGCCGA				
	ACTCTGTCTC				
	TTTTAAAAAC				
53951	TCTTCTGTAA	TCTCCCTTAA	CCAATATATC	CCTCAACATT	CTCCTCACCC
54001	CCAACTCCAC	CCTCCCAGGA	TAACCAGTTG	GGACATAATC	TTTATTTAAA
54051	AATGGTTTCC	GGATAGAGAA	AGCGCTTCGG	CGGCGGCAGC	CCCGGCGGCG
54101	GCCGCAGGGG	ACAAAGGGCG	GGCGGATCGG	CGGGGAGGG	GCGGGGCGCG
54151	ACCAGGCCAG	GCCCGGGGGC	TCCGCATGCT	GCAGCTGCCT	CTCGGGCGCC
	CCCGCCGCCG				
	CGGGCGTCAC				
	GCCCCGGAGG				
	GGCGGCCCCG				
	GCATCTACTT				
	GGCGGATGAT				
	ATGACCCCAA				
	GAGCAGCTCA				
5/601	AGAGATTGAC	CTCCATCACC	TOTTOTAL	CCACACTCAC	CATCCCTCCC
	CTTCCAGGGT				
	TTCATCTCTG				
	ACCCCAGAAG				
	GGACAATCGC				
	TGCGGCCAGG				
	GGGTCTCTTC				
54951	TTATTAAACT	GA I GGGACTT	IGIGITITA	TATIGACTCT	GUGGCACGGG

55001	CCCTTTAATA	AAGCGAGGTA	GGGTACGCCT	TTGGTGCAGC	TCAAAAAAA
55051	TAAAAAAAA T	GATTTCCAGC	GGTCCACATT	AGAGTTGAAA	TTTTCTGGTG
55101	GGAGAATCTA	TACCTTGTTC	CTTTATAGGC	CAAGGACCGC	AGTCCTTCAG
55151	TAACACCAGT	GTAAAAGCTT	GAGGAGAAAT	TGTGAAGCTA	CACAGTATTT
55201	GTTTTCTAAT	ACCTCTTGTC	ATTCTAAATA	TCTTTAATTT	TAAAAAAT
55251	ATATATATAC	AGTATTGAAT	GCCTACTGTG	TGCTAGGTAC	AGTTCTAAAC
	ACTTGGGTTA				
55351	TAGATTCTAG	CATGGTATCT	ACTGTATCAT	ACAGTAGATA	CAATAAGTAA
55401	ACTATATTGA	ATATTAGAAT	GTGGCAGATG	CTATGGAAAA	AGAGTCAAGA
55451				TGCAATTTTA	
55501	TCAGAGCAGG	CCTCACTGAG	GTGACATGAC	ATTTAAGCAT	AAACATGGAG
55551					
55601	TTCCGTGGCA				
55651	ATTITCTCTA				
	TTAACTCCAG				
	AAATATATGA				
	CTAGGTGAAG				
	TAGATCCCTT				
	AATTTACCTC				
	TTTGAGGCCC				
	AGAGCTGGAG				
	GGGACTCACC				
	CAGCCAGCAT				
	CGGGCTTCCT				
	TATTACCTCC				
	CACAGGTTCT				
	AGCTGTGAAG				
	TACTCGAATC				
56401					
	AACCTGCCTG				
56501				GGCTCAAAGG	
56551	GTCAGTGATG				
56601				TAATATGTGG	
56651				TACCTGCTCA	
	CCAGCCCAGG				
	CAAACTTAAT				
	GTCTGAAACA				
	AGGCCCTGCC				
	GGGTGGGCTC				
	GGTTCTGGAG				
	GAGTGGGAGT				
	TCACCCTTCA				
	GGTGGCAGAG				
	GGGCCATCTG				
	CTGGGCAGCA				
	CTTGGCTCCC				
	TCTAAGTGTC				
	GGGGTATTAA				
	AAAGGAGAGT				
	AAATATTGTA				
2/421	MAINITUIA	CATAGACCTG	AIGAGIIGIG	UUACCAGA I G	ICAICICIGG

Jan. 22, 2002

Sheet 29 of 41

US 6,340,583 B1

57501 TCAGAGTTTA CTTGCTATAT AGACTGTACT TATGTGTGAA GTTTGCAAGC
57551 TTGCTTTAGG GCTGAGCCCT GGACTCCCAG CAGCAGCACA GTTCAGCATT
57601 GTGTGGCTGG TTGTTTCCTG GCTGTCCCCA GCAAGTGTAG GAGTGGTGGG
57651 CCTGAACTGG GCCATTGATC AGACTAAATA AATTAAGCAG TTAACATAAC
57701 TGGCAATATG GAGAGTGAAA ACATGATTGG CTCAGGGACA TAAATGTAGA
57751 GGGTCTGCTA GCCACCTTCT GGCCTAGCCC ACACAAACTC CCCATAGCAG
57801 AGAGTTTTCA TGCACCCAAG TCTAAAACCC TCAAGCAGAC ACCCATCTGC
57851 TCTAGAGAAT ATGTACATCC CACCTGAGGC AGCCCCTTCC TTGCAGCAGG
57901 TGTGACTGAC TATGACCTTT TCCTGGCCTG GCTCTCACAT GCCAGCTGAG
57951 TCATTCCTTA GGAGCCCTAC CCTTTCATCC TCTCTATATG AATACTTCCA
58001 TAGCCTGGGT ATCCTGGCTT GCTTTCCTCA GTGCTGGGTG CCACCTTTGC
58051 AATGGGAAGA AATGAATGCA AGTCACCCCA CCCCTTGTGT TTCCTTACAA
58101 GTGCTTGAGA GGAGAAGACC AGTTTCTTCT TGCTTCTGCA TGTGGGGGAT
58151 GTCGTAGAAG AGTGACCATT GGGAAGGACA ATGCTATCTG GTTAGTGGGG
58201 CCTTGGGCAC AATATAAATC TGTAAACCCA AAGGTGTTTT CTCCCAGGCA
58251 CTCTCAAAGC TTGAAGAATC CAACTTAAGG ACAGAATATG GTTCCCGAAA
58301 AAAACTGATG ATCTGGAGTA CGCATTGCTG GCAGAACCAC AGAGCAATGG
58351 CTGGGCATGG GCAGAGGTCA TCTGGGTGTT CCTGAGGCTG ATAACCTGTG
58401 GCTGAAATCC CTTGCTAAAA GTCCAGGAGA CACTCCTGTT GGTATCTTTT
58451 CTTCTGGAGT CATAGTAGTC ACCTTGCAGG GAACTTCCTC AGCCCAGGGC
58501 TGCTGCAGGC AGCCCAGTGA CCCTTCCTCC TCTGCAGTTA TTCCCCCTTT
58551 GGCTGCTGCA GCACCACCCC CGTCACCCAC CACCCAACCC CTGCCGCACT
58601 CCAGCCTTTA ACAAGGGCTG TCTAGATATT CATTTTAACT ACCTCCACCT
58651 TGGAAACAAT TGCTGAAGGG GAGAGGATTT GCAATGACCA ACCACCTTGT
58701 TGGGACGCCT GCACACCTGT CTTTCCTGCT TCAACCTGAA AGATTCCTGA
58751 TGATGATAAT CTGGACACAG AAGCCGGGCA CGGTGGCTCT AGCCTGTAAT
58801 CTCAGCACTT TGGGAGGCCT CAGCAGGTGG ATCACCTGAG ATCAAGAGTT
58851 TGAGAACAGC CTGACCAACA TGGTGAAACC CCGTCTCTAC TAAAAATACA
58901 AAAATTAGCC AGGTGTGGTG GCACATACCT GTAATCCCAG CTACTCTGGA
58951 GGCTGAGGCA GGAGAATCGC TTGAACCCAC AAGGCAGAGG TTGCAGTGAG
59001 GCGAGATCAT GCCATTGCAC TCCAGCCTGT GCAACAAGAG CCAAACTCCA
59051 TCTCAAAAAA AAAAA (SEQ ID NO:3)

FEATURES:

Start: 3000 Exon: 3000-3044 3045-45393 Intron: Exon: 45394-45525 Intron: 45526-45761 Exon: 45762-45818 Intron: 45819-50154 50155-50329 Exon: 50330-51076 Intron: 51077-51132 51133-52775 52776-52933 Exon: Intron: Exon:

52934-55922

55923-56064 56065 Stop:

Intron:

Exon:

CHROMOSOME MAP POSITION: Chromosome 22

ALLELIC VARIANTS (SNPs):

DNA			
<u>Position</u>	Major	Minor	Domain
941	Α	T	Beyond ORF(5')

<u>Position</u>	<u> Major</u>	<u>Minor</u>	Domain
941	Α	T	Beyond ORF(5')
2612	G	Α	Beyond ORF(5')
5080	G	Α	Intron
6599	-	A C	Intron
6983	С	G	Intron
9885	Α	-	Intron
12538	G	T	Intron
17707	T	С	Intron
18219	•	Α	Intron
19670	С	T	Intron
21153	G	T	Intron -
24566	С	•	Intron
26604	G	Α	Intron
27255	С	G	Intron
27399	T	С	Intron
28088	G	Α	Intron
28734	G	Α	Intron
29246	•	T	Intron
29490	G	Α	Intron
29934	T	С	Intron
34480	Α	G	Intron
38812	T	С	Intron
40731	С	G	Intron
41303	T	Α	Intron
41305	-	Α	Intron
41457	G	С	Intron
43168	Α	- T	Intron
43357	T	G	Intron
45664	T	С	Intron
47549	Α	С	Intron
47908	С	Α	Intron
52267	С	Α	Intron
54654	Т	С	Intron
54679	С	G	Intron
54693	Α		Intron
54706	Τ .	C.	Intron
54712	T	C C C	Intron
54799	T	С	Intron
54819	G	Ā	Intron
55499	С	T	Intron
56825	Č	À	Beyond ORF(3')
58871	Ť	Ä	Beyond ORF(3')
	-	• •	, -iid

Context:

Jan. 22, 2002

Sheet 31 of 41

US 6,340,583 B1

DNA Position 941

GAGTAAGTGGGTGGTCAGGTTACAGACTTAATTTTGGGTTAAAAAAGTAAAAACAAGAAAC
AAGGTGTGGCTCTAAAATAATGAGATGTGCTGGGGGTGGGGCATGGCAGCTCATAAACTG
ACCCTGAAAGCTCTTACATGTAAGAGTTCCAAAAATATTTCCAAAACTTGGAAGATTCAT
TTGGATGTTTGTGTTCATTAAAATCTCTCACTAATTCATTGTCTTGTCCACTGTCCGTAA
CCCAACCTGGGATTGGTTTGAGTGAGTCTCTCAGACTTTCTGCCTTGGAGTTTTGTGAGAG
[A.T]

TGAGTTGGAACAGTTTGATACCAAAACCATCCCCCGCCCCCCAACCCCCAGCCTAGGGT
CCGTGGAAAAATTGGCCCCTGGTGCCAAAAAGGTTGAGGACTGCTGATCTAGAGGACCAA
TTTATTCAATGTTGGTTGAGTAAATGAGCTCTTGGATTAGGTGATGAAAAAAATCTGAAAA
AACAGGGCTTTTGAGGAATAGGAAAAGGCAGTAACATGTTTAACCCAGAGAGAAGTTTCT
GGCTGTTGGCTGGGAATAGTCATAGGAAGGGCTGACACTGAAAAGAAGGAGATTGTGTTC
[G, A]

TTTCTTCTCTCAGAGCTATAAGCAAAGGCTGAAAGTTCTAGAAAAAGGCAAGTTTTGTT
TCAGTAGAAAAAAGGATAATCAGAACCATTTTTAGAAAAATGGAATGAGACTACTTTTGAG
GCCATGAGTTCCTTGTCCCTGGAGAGATGAGCAGAGGTTGGACAAGTGCTTACCAGAGAT
CTTGTGGAGGCAGAAACTGTGCATCTAGCAGAGCATTGGCCTAACCCTTTCAAATGAGAT
GCTGTTAACTCAGTCTTATTCTACATGGTAGGAATCCTGTCCCTTTGCCTCCTGCTACTT

ACAACGTAAAATAGTTGAAATTTGTTGGTGGAAAGAAGACAGTCCACTCCAGAGGCTGG
ATGGGCATGCCTGGCCCCCAAGGTCTGAAGTGGTAGGCTGTGCCTATATCCTGAGAATG
AGATAGACTAGGCAGGCACCTTGTGCTGTAGATTCCAGCTCCTGCACATAGCTCTTGTTG
TAAAACATCCCTGTGCTTATACCAAGTAATTGAGTTGACCTTTAAACACTTGCCTCTTCC
CTGGGAACCATATAGGGGATTGGCCTGGAGACGTCTGGCCTCTGGAAGAGTTGGAAAGCA
[G,A]
CCATCATTATTATCCTTTCCCCCCTTTTACTCCCAGGGAACTTGATTCTGTGTGAA

CCATCATTATTATCCTTTCCTTTCAGCTATAACTCAGAGCTCTCAAGTCTTTTCTGTGGA
TCTTATTGCCTTGGTTCTTGCCCCTTTTACTCCCAGGGAAGTTGATTCTGTCTTTTCTGT
TCCATTTAGTATGACAGGAGCAGAGAATGTCAGAGCTGTAAGGGACCTTATAGTTAAAGC
CTTTGGCTGGTCCTTTCATTTTATAGCTGGGACTAATAAGTAACGTCAAAACCCAATGAG
TTCACAGATTGGGTCTCGCCTTGGCATGTAACCCCATATGTTCATATTCTTGCTGTTTTTCC

> CCTTAATAATCAGTAACTGTCACTTTATATTATGTTGTGAGTGTGTCTCTATATACACCT ATATGTATACATTTCTCTTATTACACATTCATTGGTGATCTGATGTGGAGCCCCAGGGAT TAAGGGCAACTTTGAACTACCCTGACACAATCAAGCCAAATATCATTCCCGTGGAGGAAG TAGAGTATCTAGGTTCTGTCTCCTAGTTGCAGCTTTACCTTGAGGACAGAGACTCTAATC CAGCTGTGCTGAAGGAGCACATCTCCTGACTTCTGAGCTTTCCCCTGGTAAATTCAAACT

Jan. 22, 2002

Sheet 32 of 41

US 6,340,583 B1

6983

CACATTCATTGGTGATCTGATGTGGAGCCCCAGGGATTAAGGGCAACTTTGAACTACCCT GACACAATCAAGCCAAATATCATTCCCGTGGAGGAAGTAGAGTATCTAGGTTCTGTCTCC TAGTTGCAGCTTTACCTTGAGGACAGAGACTCTAATCCAGCTGTGCTGAAGGAGCACATC TCCTGACTTCTGAGCTTTCCCCTGGTAAATTCAAACTGGATGTCACGGCGCCCTCAGATA GAGCCTGGTAATTTGCCCTGGGGAGAGTGACTGTCTTTTGGATCTAATTTGACTTTTGCC IC. G1

CAGTTGGAGGAAAATCTTCAGGGCTAGGAAGGATTGTATTTGTCTGACCCCAGAGATAAC
CTGGGTTTTGAGGAACATGGGGCATCAACCTGAATGGTCTTGTAAGATCTCTCCCACGCC
AGCTTGCCAGTGTTTCTCTGATGAATTTAGAGTACCTGAGTAGTGCAGGCCTGCTGGGAG
GAGGACTCTCCCTCTGTGCTACTCAGAGAAATTCATTCTTCAAGGCCCCCTTCCAGCCTT
GCTCTTACCCAGCTGGGCTACAGTTACAATAAAGGAAATGACTTTTCTTCTCCCCTTCCC

9885

GGCGTGCCACCACCCTTGCCATTTTTTTTTATTTTAAGTAGAAACAAGGTCTTATTAAT
ACTATGTTGCCCAGGCTGGTCTTGAACTCCAGCGATCCTCCTGCCCCAGCCTCCCAAAGT
GCTTGGGATTACGGAAGTAAGCCACTGTGCCTGGCCAGTGCAACCCCCATTTTATACTAA
AACAGGAAGGCCCAGAAAGGTTTGGAGTAACTTGTCCAGGGTCACACAGATGATATTTGA
ACTCAGGTCTCCCTGGCTCCCAAGAGAGTCTGCTTTCCACTAGGACTCCCAGGAGAAAAA

12538

17707

Jan. 22, 2002

Sheet 33 of 41

US 6,340,583 B1

18219

19670

GACCCCCATGATGAGCAACTATAGCACTAGAACAGTGATAATAACTAATGTTTATAATGC
ATCTTCAGTTTACAGAGGGCTTTTGTACTCATCTAGTTTAGTTCCTGCAACAACCTC
TTGAGGAATATAGCACAAGCAGGACAAGGGAAGCCCCAGAGATGTTAAATAATTTATCCAA
GTTTATGCTGCTGGGAAGGGCAGCACTGAAATTAAAAGAAAAGTTTTCTGAGCTCAAATC
CCATGCCCTTTCCTCAATGTGAGCTCTAGCAAGGTATTCAGGAATCCTGCCTCTACAGTT
[C,T]

AGAGCCTCAAATTGCTGGGTATGTTGAGTTCTTGTATCTGATTTTTCTAGATTTCCTGCC CACATTCTTACTGTCTGGATATCAGGAAAGAGTTTATCAAATGCCTGTGGAAATCCAAGA TAAGGTCTCATGATGAGTAACCCAGTGAAAACATGAAGTCAAGTCTAACTAGTCACTACT ATTTCACTACTGCTGACTCCTGATGATCAGCTCCTTTTCTAAGTGCTTACTGTCCACTTA TTCCATCATCTGCCTAGAATTTATGTGAAGGAATCAAAGCAAAAGGATCATAAGGCTTCC

21153

GGACCCTTGTTTTAGAAGGATGACTGCTGCTATAATGTAGAAAGTGATTTGGAAGAGGGG AGGAGTGGGGCACGAAAGATGGTTAGTAGATGGGGGTGGTAATGCTTACCTTTCAGTATT TGGAGGCTTCGGAGTCCTCAAAAATTCTCTTCCTTGATTGGAGTCCTCCCAGCCAATAGA GGGCTTCACACAAACAGTTTCTTGGGTTTTGAATTGTTTGACCAGAGCTTTCTTCCGACA AAAGGTTGGGGTGATTCATTCACTTACCACACCTTGCCTGAACATTCACTTGGGGCTGCC LG. TJ

GTTATGAAGGCTATTGTTCTCCAGCCTGTCACAGACGCTTTGAAGACCTGTGCCTCAGCT GGTTCTAAGGAGTCAGTTTGTTCAGCTCCGTGCCAGGTTTCCAACTTATGAAATGTGCTG GAGATTAACACCTCTCCTGCCATTTTATCCCTACTATAATTGCCAGTCAAAGGATTCCTG CAGTTGCCTCTGGCAGCCATAACTGATGAATGTTCTGCCAGCTGCTCTGAGGACCTAGAA GAGCAGTTTTCTATCCAGGACCAGTTTCCAAGGGTGGGAGGGTGAAATATATCCTCCAGT

24566

TAGAAGATATTAACTGCTCAATAAATGGTAGCTTCTTAACAGTATTCAAACCCATGTGCT CTTATCACATGCATTGTTGTCCCTGTGTCCAGTTGGTGGAATGGGAAAAGGCTCCCTTGT AACCCCATCTACCATCTTTATCAGACTTTCCTGCCATGGTTCACAGTAAGAGATAGAAGC TGCACGGTGACTTCTGGCTCTTTACAATGGTGAGCGGTGTGTGCCTGGTAAGGGAGAGCT GATGTCACTGCCCCAAATCCAGTAGTGAGATCTGAGTGTTCCTGGTTTCCTCCAGCAGCCT

Jan. 22, 2002

Sheet 34 of 41

US 6,340,583 B1

26604

27255

CTGTTGTTCCAAAAAGGCTGCCTCCCCCTCACCAGTGGTCCTCGCCGACTTTTCCCTTCT GGCTTCTCTAAGCTAGGTCCAGTGCCCAGATCTTGCTGCCGGGATACTAGTCAGGTGGCC AGGCCCTGGGCAGAAAAGCAGTGTACCATGTGGTTTTGTGGAATGACCGGACCCTGGTAG ATTGCTGGGAAGTGTCTGGACAGGGGGAAGGGGAACTGGTCCTCAATGCTGACT CTACCAAGCGCCCTGCTAGACACTTTATCCTTTAATCTCTCAACAGCCTAAAGAGATTAT

27399

AGATGTGGAAACTCTACCTCTAACCTGGCTTTCTTTGCTCATTGCCCCACTCCACCTCCC
ATAGAAACTCCCCAGGGGGTTTCTGGCCCTCTGGGTCCCTTCTGAATGGAGCCATTCCAG
GCTAGGGTGGGGTTTGTTTTCATTCTTTGGGAGCAGCCTGTTGTTCCAAAAAGGCTGCCT
CCCCCTCACCAGTGGTCCTGGTCGACTTTTCCCTTCTGGCTTCTCTAAGCTAGGTCCAGT
GCCCAGATCTTGCTGCCGGGATACTAGTCAGGTGGCCAGGCCCTGGGCAGAAAAGCAGTG
LT.Cl

28088

AAGAGCCAATGGAAATTGATCTTGAGTTTAGGAGAAAGCTTTTACATGTGGAATTAAGAT GCCAAGTGTTGAAGTAGCCACATTTCAGGTCCTCATTAATTTCTCTTAATCCTGGGAAGG CAGCTTAGGAGAAGGGTTGTTCCTTTAGGAGCCAGGAACTATACCCCTTTTACCCTTGGA GAGGCAGGGAAGCCAGGGAGGACCAACTTCTCAGGAAGAGGAGAAGCTAGAGCAGATAG TGAACTCTCAACCTGAACCTTTAAGGGCCAGACCACTAATGCCACCCAAGTCCACCTGCC LG.AT

Jan. 22, 2002

Sheet 35 of 41

US 6,340,583 B1

28734

AAGTAGAAGCTAGACTTCTTGGGCTCCTGAACAGGGTCCTTGCTGGATTCTGTGAAACAA
ATTAAGTTCTTGACCCTAGGCCTCTGGGGGAGTACAAAGTCTATGGGAGTTCTGGGGCTG
TGGTTGCAAGGAAAGTGACGCAACCAGATTCCATGGGGACATGATCAGGCGTGACATGTG
AGGGAGGAAGAGGGAACCAAGGGAATGAAGAATACAACTTCTGTGTCCCATACACCCCTGC
CTGACAGGCCATACATACTCAGCAGAGAATGCACTGTCTTTCCTACCACACTAGCGTGAG
[G,A]

AGTGAGCTGCAATTACCACTGTGCTTCCAAGTAAGAAAATACCTCAAATTGGAATTTACA
AAAGAGGTAAATTAGGGAGTGGCTTTTGTCGGACATCTTTAAAGCATTTTTCTTTTTATA
GAATTTCACTTAATGTCCAATACTGATTTAATGAGCTTGGGTTTACACATTATCTCTTGA
AGAAAACAAATGAACCTTTGTGTTCCAAAGCAATCCATGTTTAAAGGGAAAAAATTATGC
ATAACTCTGCCCAGCTTCACAGTAACCTTTGGCAGGTGCCTTAGGTCCTCTGGGACTCTT

29246

AATCCATGTTTAAAGGGAAAAAATTATGCATAACTCTGCCCAGCTTCACAGTAACCTTTG GCAGGTGCCTTAGGTCCTCTGGGACTCTTTTCCTTATCTGAAAAATGAAGGACTTGGATC AGGTGAATGGTTCCCAGCTCTGCAACTTATGTGGCTCCTCAGAGGCACACAAGCTCTTTT CCATTATTTGCCAAATAATGGAGGCCCTGTCTTTAACTGCAGTACAACTACACAAAATAC TTGAAACTACAGTCTTCCTGGTTTTTGGTTGGAACTGAATCAGTGCACTCTAGCAACACT

ÄTTTÖTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAATAAC
ATATTCCATAATAATTACAGCTTAATTGGCAGACTGTTTCAGTCTATAGGATCTGCAGGA
AGGAGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCC
CTGTCATATCTGCCCTTCTGGGCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCT
CCAGGTGCCCTCAGGCTGTGGTGGAGGGAGCTTCCCATTCTCTCCTTCAGCCCACTCAAT

29490

AACTACAGTCTTCCTGGTTTTTTGGTTGAACTGAATCAGTGCACTCTAGCAACACTTATT
TCTTGCTGTTCGTAGGCTTCATTATGTGTTTGGTTAATTTTTTAAAACAACAATAACATA
TTCCATAATAATTACAGCTTAATTGGCAGACTGTTTCAGTCTATAGGATCTGCAGGAAGG
AGGAGTAATAAAGGGATTTTTGACTGAGCTCTTATGGAACAGAGTCTCTCTAGGCCCCTG
TCATATCTGCCCTTCTGGGCCCTGGGGAAAAGTTGGCATCCCCAGTTGTGGTGCTCTCCA
[G,A]

ĞTĠCCCTCAGGCTGTGGTGGAGGGAGCTTCCCATTCTCCCTTCAGCCCACTCAATTCAG AGGCTAGGGGCTGAAAGAAGCTTCTCTACAACTGGCTGTTCACTGGGAGGTTAAGGGATG ACCATCCAGCCAGGCCTTCCTCAGGACATGGGAGGGCTTATGCTTTAACATGTGTAAATC CACTGCAATAATGACTGGTTCTTTTACCCCCATAAGGTTGAGAATTTACCTGTAAACATTT TTGTCTGAAGAATTTGGATGTAAGTGAGGGCTGGGCCTCTATCTTATCTCACTTGGCTTC

29934

CTGACTTCAAGTGATCCACCCGCCTCGGCCTCCCAAAGTGCTGGGATTATAAGCATAAGC CACTGTGCCCAGCTGCTCTCTATATTTTTAATACATATTATTTCCATTAATTTTCACAGC AGTTCATTTTATAGATGAGGAAACTAGGCCAGAGAAGTAAAATATCTTGCCCAAGATGAT GTAACTAGTAAGTGGCAGGATCAAGATTCAAACCAAGCAATGTTCAAACCTCTTGGAAGC AAGAATGTGGCCACTGTGGAAGGTGCAAGGCCTTGACAACAAGAATAGGGAAAAGAAGAA [A,G]

38812

ÄCGCČTGTAATGCCAGCACTTTGGGAGGCCAAGGTGGGCAGATTGCTTGAGGTCAAGAGT TTGGGATTAGGCCAGGCGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAG GTGGGCGGATCACAAGGTCAGGAGATCAAGACCATCCTGGCTAACACAATGAAACCCCGT CTCTACTAAAAGTACAAAAATTAGCCGGGCATGGTGGCGGACGCCTGTAGTCCCAGCTAC TCGGGAGGCTGAGGCAGGAGAATGGCGTGAACCTAGGAGGCGGAGCTTGCTGTGAGCAGA

40731

GGGCACAGATAGGATTGAATAAATTGTGTAGAAAAGACTTTGAAAACAATAAAGCAAAAGA TGAATGAACGTTTTTTTTAGACTTGAGGGACCAACACCCCCAAACCCCCAGATTCTGCCA GGTCCATGGGGAAGGAGAAGTTGCCTTGAGTGGAAGCCCCCAAGTAGGGAGACTTACAGAA AAGAAGTCAAGAGCACTGGCTCCCAGGCAGAAATACTGATACCCTACTGGGGCTTCAGGC TGAGCTCCTCCCTTCACAAATCACTTCATCTCTCTGAGCCTGTTTCTGCATCTGTGACAT

41303

AATAATAATAATTGTTTTTAATTAGATGGGCAGGGCACTGTGGCTCACACCTGTAATCCC
AGCACTTTGGGAGGCCAAGGCCGGAGGATTGCTTGAGGCCAGGAGTTCAGGAGCAGCCTG
GGCCACATTCCTGTCTCTACAAAGAATAAAAAAGTTAACTGGGCATGGTGGCACATGCCT
GTAATCCCAGCTACTCAAGAGGCTGAGGAGGAGGATTGCCTGAGCCCAGGAGTTCAAGAC
TGCAGTGAGCCTTGATCACACCACTGTACTACAGCTTGGGCAACAGAGTGAGACCTTGTC

TAATAATAATTGTTTTTAATTAGATGGCAGGGCACTGTGGCTCACACCTGTAATCCCAG CACTTTGGGAGGCCAAGGCCGGAGGATTGCTTGAGGCCAGGAGTTCAGGAGCAGCCTGGG CCACATTCCTGTCTCTACAAAGAATAAAAAAGTTAACTGGGCATGGTGGCACATGCCTGT AATCCCAGCTACTCAAGAGGCTGAGGAGGAGGATTGCCTGAGCCCAGGAGTTCAAGACTG CAGTGAGCCTTGATCACACCACTGTACTACAGCTTGGGCAACAGAGTGAGACCTTGTCTC

41457

43168

CCCATTTGCTCATTTTTTGGATACTAGTATAACTATCACTCTAAACCAGTTAGTACTTAA ATCAAGCAGATATGGGAGATGGTGAATTACCATCTACAGTGTTGTCATATATGTCACATA CTGAGCATTATCAGCTAGTAGAATCTAGTTAATTGTTCTATGTGTGATGATGCAGAGTT CCCATTTTGAATGTGTTTTTACTATGCTTAAATAAATGACTGATGTCAGCAACCCCCAAAA TGATACATCTGATGTAAGAGCCCCTGTTCCCCAATAATAACATCTAAACTATAGACATTG

43357

AATGTGTTTTTACTATGCTTAAATAAATGACTGATGTCAGCAACCCCAAAATGATACATC
TGATGTAAGAGCCCCTGTTCCCCAATAATAACATCTAAACTATAGACATTGGAATGAACA
GGTGCCCCTAAGTTTCCTCCCTCCAGGGTTTCTTGGCCGGTCTCTGAGGACTACACATCC
CTACTCCCGTCTTTCCTCATCTTCAGGCGCAGTAACAGTATCTCCAAGTCCCCTGGCCCC
AGCTCCCCAAAGGAGCCCCTGCTGTTCAGCCGTGACATCAGCCGCTCAGAATCCCTTCGT

AGGAGGCTTCACTGGGAGACCACATTGACCCATGGGGCCTGGACCACGAGTGGGACAGG GCTCAACAGCCTCTGAAAATCATTCCCCATTCTGCAGGATCCGTTCCCCTGGCAGCAGAA GGTCAGGTTTGCCAAAGGAATCGCCTCCGGAATGGTGAGTCCCACCAACAAACCTGCCAG CAGGGCGAGAGTAGGGAGAGGTGTGAGAATTGTGGGCTTCACTGGAAGGTAGAGACCCCT TCCTATGCAACTTGTGTGGGCTGGGTCAGCAGCTATTCATTGAGTTTGTCTGTGTCACTG

47549

47908

GGAGTTACGAGTGGCTTGAGGTGTCACTTACCAGACATTTGGGGGGATGGGGGATAGCCGT GATTGTTGAGCAACTGGTTTGGGAAGAGCTAGCATTGATCCCTGCTGTTCTGTGCTAGCA GAACCTATCAGCATCTTCTGGGCAGGAAACTGGCTCCATGAGACTGGCTTAGGGAGAGGC TGCTAGTCACCTAATCTGCAGAGAAGGGGCAGCTGGAGCTGTGGGACAGAAGAGGCATCC ATGTAGCTGGTGGGGGTGTCTCAGCTTGTGAAGAGGGAGATGGCTTTGAGCAGGGCTGACA

52267

TTGTGAGGGGTAGAGGAGAGAGAGAGAGAGACAAGGGATGGTTAGGATAATGAAGGAATGTTTTG
TTTTTGTTTTTTGAGATGGAGTTCACTCTGTCACCCAGGCTGGAGTGCAGAGGT
GCAATCTTGGCTCACTGCAGCCTCCGCCTCCCAGGTTCAAGCAATCCTCCTGCCTCAGCC
TCCCAAGTAGCTGGGACTACAGGTGTGCCCACCACGCCTGGCTAATTTTTGTATTTTCA
GTAGAGACAGGGTTTCGCCATATTGGCCAGGCTGGTCTCAAATGCCTGACCTCAGGTGAT
[C.A]

CACCCGCTTCAGCCTCCCAAAGTGCTGAGATTACAGGCATGAGCTACCGTGCCTGGCCAT GAAGGAAGATTTGTTTTAAAAAATTGTTTTCTTTAATATTAATTGAACACCTCTGTTCAG AGCACTGGGCTGGTGCCAGAGGGTTTCAGACATGAATCAGATCCAGCACCTCATAGAGCC TTAATCTGGCACACACACACACCACAAGGAGACACAGACAAGGCAGGGTAGGATGAGTG GAAGCTAGGAGCAGATGCTGATTTGGAACACTTGGCTTCTGCAGTGAAGCCCCTTCTTAG

U.S. Patent

Jan. 22, 2002

Sheet 39 of 41

US 6,340,583 B1

54654

GGCCCCGGCCCCCAGGCCAGGCAGTGGCGGCCAAGGACCACGCATCTACTTTCA
GAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGGCCCAGTGA
GGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCACCTCAACC
TAGAGGAGTGGATCCTGGAGCAGCTCACGCGCCTCTACGACTGCCAGGAAGAGGAGATCT
CAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGCCTGGGCTT
IT.C1

CAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCATCTCTGGCCT GCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCC GACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGTAGCAACAG CAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCCTG GCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTTGGATTTTTTATTGTTAT

54679

GGCAGTGGCGGCCAAGGACCACGCATCTACTTTCAGAGCCCCCCCGGGGCCGCAGGAGA GGGCCCGGGCTGGGCGGATGATGAGGGCCCAGTGAGGCGCCCAAGGGAAGGTCACCATCAA GTATGACCCCAAGGAGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCT CACGCGCCTCTACGACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGA GCTCCTGGACATGGAGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGA [C.G]

54693

AGGACCACGCATCTACTTTCAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGG CGGATGATGAGGGCCCAGTGAGGCCCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGG AGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGGCCTCTACG ACTGCCAGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGG AGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCA

AGAGGCCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACC CCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTAC CCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGA GCAGGGCTCCTCGTGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACT TTTGGATTTTTTATTGTTATTAAACTGATGGGACTTTTGTGTTTTTTATATTGACTCTGCG

54706

TACTTTCAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGG CCCAGTGAGGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCA CCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGCCCTCTACGACTGCCAGGAAGA GGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTGACGATGC CTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCAT [T,C]

TCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGA GGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGT AGCAACAGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCG TGCCCCTGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTGGATTTTTTT ATTGTTATTAAACTGATGGGACTTTGTGTTTTTTATATTGACTCTGCGGCACGGGCCCTTT

FIG. 3-34

U.S. Patemt

Jan. 22, 2002

Sheet 40 of 41

US 6,340,583 B1

CAGAGCCCCCCCGGGGCCGCAGGAGAGGGCCCGGGCTGGGCGGATGATGAGGGCCCAGT
GAGGCGCCAAGGGAAGGTCACCATCAAGTATGACCCCAAGGAGCTACGGAAGCACCTCAA
CCTAGAGGAGTGGATCCTGGAGCAGCTCACGCGCCTCTACGACTGCCAGGAAGAGAGGAGAT
CTCAGAACTAGAGATTGACGTGGATGACTCCTGGACATGAGAGTGACGATGCCTGGGC
TTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGGCCTTCATCTCTGG
[T,C]

CTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCC CCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCCGACCTCGTAGCAAC AGCAATACCGGGGGACCCTGCGGCCAGGCCTGGTTCCATGAGCAGGGCTCCTCGTGCCCC TGGCCCAGGGGTCTCTTCCCCTGCCCCCTCAGTTTTCCACTTTTGGATTTTTTATTGTT ATTAAACTGATGGGACTTTGTGTTTTTATATTGACTCTGCGGCACGGGCCCTTTAATAAA

GTATGACCCCAAGGAGCTACGGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCT
CACGCGCCTCTACGACTGCCAGGAAGAGAGAGATCTCAGAACTAGAGATTGACGTGGATGA
GCTCCTGGACATGGAGAGTGACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGA
CTGTTACAAACCCACAGAGGCCTTCATCTCTGGCCTGCACAAGATCCGGGCCATGCA
GAAGCTGAGCACACCCCAGAAGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCA
[T,C]
AGGACAATCGCTACCCCCCGACCTCGTAGCAACAGCAATACCGGGGGACCCTGCGGCCAG

GGAAGCACCTCAACCTAGAGGAGTGGATCCTGGAGCAGCTCACGCGCCTCTACGACTGCC
AGGAAGAGGAGATCTCAGAACTAGAGATTGACGTGGATGAGCTCCTGGACATGGAGAGTG
ACGATGCCTGGGCTTCCAGGGTCAAGGAGCTGCTGGTTGACTGTTACAAACCCACAGAGG
CCTTCATCTCTGGCCTGCTGGACAAGATCCGGGCCATGCAGAAGCTGAGCACACCCCAGA
AGAAGTGAGGGTCCCCGACCCAGGCGAACGGTGGCTCCCATAGGACAATCGCTACCCCCC

GTCAGAGCAGGCCTCACTGAGGTGACATGACATTTAAGCATAAACATGGAGGAGGAGGAG TAAGCCTGAGCTGTCTTAGGCTTCCGGGGCAGCCAAGCCATTTCCGTGGCACTAGGAGCC TGGTGTTTCCGATTCCACCTTTGATAACTGCATTTTCTCTAAGATATGGGAGGAAGTTT TTCTCCTATTGTTTTTAAGTATTAACTCCAGCTAGTCCAGCCTTGTTATAGTGTTACCTA ATCTTTATAGCAAATATATGAGGTACCGGTAACATTATGCCCATTTCTCACAGAGGCACT

FIG.3-35

58871

CGTCACCACCACCCAACCCCTGCCGCACTCCAGCCTTTAACAAGGGCTGTCTAGATATT
CATTTTAACTACCTCCACCTTGGAAACAATTGCTGAAGGGGAGAGGATTTGCAATGACCA
ACCACCTTGTTGGGACGCCTGCACACCTGTCTTTCCTGCTTCAACCTGAAAGATTCCTGA
TGATGATAATCTGGACACAGAAGCCGGGCACGGTGGCTCTAGCCTGTAATCTCAGCACTT
TGGGAGGCCTCAGCAGGTGGATCACCTGAGATCAAGAGTTTGAGAACAGCCTGACCAACA
LT.A1

FIG.3-36

ISOLATED HUMAN KINASE PROTEINS, NUCLEIC ACID MOLECULES ENCODING **HUMAN KINASE PROTEINS, AND USES** THEREOF

FIELD OF THE INVENTION

The present invention is in the field of kinase proteins that are related to the serine/threonine kinase subfamily, recombinant DNA molecules, and protein production. The present invention specifically provides novel peptides and proteins that effect protein phosphorylation and nucleic acid molecules encoding such peptide and protein molecules, all of which are useful in the development of human therapeutics and diagnostic compositions and methods.

BACKGROUND OF THE INVENTION

Protein Kinases

Kinases regulate many different cell proliferation, 20 differentiation, and signaling processes by adding phosphate groups to proteins. Uncontrolled signaling has been implicated in a variety of disease conditions including inflammation, cancer, arteriosclerosis, and psoriasis. controlling activities of eukaryotic cells. It is estimated that more than 1000 of the 10,000 proteins active in a typical mammalian cell are phosphorylated. The high energy phosphate, which drives activation, is generally transferred from adenosine triphosphate molecules (ATP) to a particular 30 protein by protein kinases and removed from that protein by protein phosphatases. Phosphorylation occurs in response to extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc), cell cycle checkpoints, and environmental or nutritional stresses and is roughly analo- 35 gous to turning on a molecular switch. When the switch goes on, the appropriate protein kinase activates a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.

The kinases comprise the largest known protein group, a 40 superfamily of enzymes with widely varied functions and specificities. They are usually named after their substrate, their regulatory molecules, or some aspect of a mutant phenotype. With regard to substrates, the protein kinases may be roughly divided into two groups; those that phos- 45 phorylate tyrosine residues (protein tyrosine kinases, PTK) and those that phosphorylate serine or threonine residues (serine/threonine kinases, STK). A few protein kinases have dual specificity and phosphorylate threonine and tyrosine residues. Almost all kinases contain a similar 250-300 50 amino acid catalytic domain. The N-terminal domain, which contains subdomains I-IV, generally folds into a two-lobed structure, which binds and orients the ATP (or GTP) donor molecule. The larger C terminal lobe, which contains subdomains VI A-XI, binds the protein substrate and carries out 55 the transfer of the gamma phosphate from ATP to the hydroxyl group of a scrine, threonine, or tyrosine residue. Subdomain V spans the two lobes.

The kinases may be categorized into families by the different amino acid sequences (generally between 5 and 60 100 residues) located on either side of, or inserted into loops of, the kinase domain. These added amino acid sequences allow the regulation of each kinase as it recognizes and interacts with its target protein. The primary structure of the kinase domains is conserved and can be further subdivided 65 into 11 subdomains. Each of the 11 subdomains contains specific residues and motifs or patterns of amino acids that

are characteristic of that subdomain and are highly conserved (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Books, Vol I:7-20 Academic Press, San Diego, Calif.).

The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic-ADPribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The cyclic-AMP dependent protein kinases (PKA) are important members of the STK family. Cyclic-AMP is an intracellular mediator of hormone action in all prokaryotic and animal cells that have been studied. Such hormoneinduced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glyco-15 gen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cyclic-AMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K. J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York, N.Y., pp. 416-431, 1887)

Calcium-calmodulin (CaM) dependent protein kinases are Reversible protein phosphorylation is the main strategy for 25 also members of STK family. Calmodulin is a calcium receptor that mediates many calcium regulated processes by binding to target proteins in response to the binding of calcium. The principle target protein in these processes is CaM dependent protein kinases. CaM-kinases are involved in regulation of smooth muscle contraction (MLC kinase), glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM kinase I phosphorylates a variety of substrates including the neurotransmitter related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO Journal 14:3679-86). CaM II kinase also phosphorylates synapsin at different sites, and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. Many of the CaM kinases are activated by phosphorylation in addition to binding to CaM. The kinase may autophosphorylate itself, or be phosphorylated by another kinase as part of a "kinase

> Another ligand-activated protein kinase is 5'-AMPactivated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol Chem. 15:8675-81). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in nonlipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.

> The mitogen-activated protein kinases (MAP) are also members of the STK family. MAP kinases also regulate intracellular signaling pathways. They mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S. E. and Weinberg, R. A. (1993) Nature 365:781-783). MAP kinase signaling

pathways are present in mammalian cells as well as in yeast. The extracellular stimuli that activate mammalian pathways include epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS), and pro-inflammatory cytokines such as 5 tumor necrosis factor (TNF) and interleukin-1 (IL-1).

PRK (proliferation-related kinase) is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakaroytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-8). PRK is related to 10 the polo (derived from humans polo gene) family of STKs implicated in cell division. PRK is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation. Altered MAP kinase expression is implicated in 15 a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development.

The cyclin-dependent protein kinases (CDKs) are another group of STKs that control the progression of cells through the cell cycle. Cyclins are small regulatory proteins that act by binding to and activating CDKs that then trigger various phases of the cell cycle by phosphorylating and activating selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to the binding of cyclin, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue.

Protein tyrosine kinases, PTKs, specifically phosphorylate tyrosine residues on their target proteins and may be divided into transmembrane, receptor PTKs and nontransmembrane, non-receptor PTKs. Transmembrane protein-tyrosine kinases are receptors for most growth factors. Binding of growth factor to the receptor activates the transfer of a phosphate group from ATP to selected tyrosine side chains of the receptor and other specific proteins. Growth factors (GF) associated with receptor PTKs include; epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.

Non-receptor PTKs lack transmembrane regions and, instead, form complexes with the intracellular regions of cell surface receptors. Such receptors that function through non- 45 Gene 236 (2), 259-271 (1999). receptor PTKs include those for cytokines, hormones (growth hormone and prolactin) and antigen-specific receptors on T and B lymphocytes.

Many of these PTKs were first identified as the products of mutant oncogenes in cancer cells where their activation 50 was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs, and it is well known that cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Carbonneau H and Tonks NK (1992) Annu. Rev. 55 Cell. Biol. 8:463-93). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.

LIM Domain Kinases

The novel human protein, and encoding gene, provided by the present invention is related to the family of serine/c threonine kinases in general, particularly LIM domain kinases (LIMK), and shows the highest degree of similarity to LIMK2, and the LIMK2b isoforn (Genbank gi8051618) 65 in particular (see the amino acid sequence alignment of the protein of the present invention against LIMK2b provided in

FIG. 2). LIMK proteins generally have serine/threonine kinase activity. The protein of the present invention may be a novel alternative splice form of the art-known protein provided in Genbank gi805161; however, the structure of the gene provided by the present invention is different from the art-known gene of gi8051618 and the first exon of the gene of the present invention is novel, suggesting a novel gene rather than an alternative splice form. Furthermore, the protein of the present invention lacks an LIM domain relative to gi8051618. The protein of the present invention does contain the kinase catalytic domain.

Approximately 40 LIM proteins, named for the LIM domains they contain, are known to exist in eukaryotes. LIM domains are conserved, cystein-rich structures that contain 2 zinc fingers that are thought to modulate protein-protein interactions. LIMK1 and LIMK2 are members of a LIM subfamily characterized by 2 N-terminal LIM domains and a C-terminal protein kinase domain. LIMK1 and LIMK2 mRNA expression varies greatly between different tissues. The protein kinase domains of LIMK1 and LIMK2 contain a unique sequence motif comprising Asp-Leu-Asn-Ser-His-Asn in subdomain VIB and a strongly basic insert between subdomains VII and VIII (Okano et al., J. Biol. Chem. 270 (52), 31321-31330 (1995)). The protein kinase domain present in LIMKs is significantly different than other kinase domains, sharing about 32% identity.

LIMK is activated by ROCK (a downstream effector of Rho) via phosphorylation. LIMK then phosphorylates cofilin, which inhibits its actin-depolymerizing activity, thereby leading to Rho-induced reorganization of the actin cytoskeleton (Maekawa et al., Science 285: 895-898, 1999).

The LIMK2a and LIMK2b alternative transcript forms are differentially expressed in a tissue-specific manner and are generated by variation in transcriptional initiation utilizing 35 alternative promoters. LIMK2a contains 2 LIM domains, a PDZ domain (a domain that functions in protein-protein interactions targeting the protein to the submembranous compartment), and a kinase domain; whereas LIMK2b just has 1.5 LIM domains. Alteration of LIMK2a and LIMK2b regulation has been observed in some cancer cell lines (Osada et al., Biochem. Biophys. Res. Commun. 229: 582-589, 1996).

For a further review of LIMK proteins, see Nomoto et at,

Kinase proteins, particularly members of the serine/ threonine kinase subfamily, are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown members of this subfamily of kinase proteins. The present invention advances the state of the art by providing previously unidentified human kinase proteins that have homology to members of the serine/ threonine kinase subfamily.

SUMMARY OF THE INVENTION

The present invention is based in part on the identification of amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, as well as allelic variants and other mammalian orthologs thereof. These unique peptide sequences, and nucleic acid sequences that encode these peptides, can be used as models for the development of human therapeutic targets, aid in the identification of therapeutic proteins, and serve as targets for the development of human therapeutic agents that modulate kinase activity in cells and tissues that express the kinase. Experimental data as provided in FIG. 1

indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

DESCRIPTION OF THE FIGURE SHEETS

FIG. 1 provides the nucleotide sequence of a cDNA molecule that encodes the kinase protein of the present invention. (SEQ ID NO:1) In addition, structure and functional information is provided, such as ATG start, stop and tissue distribution, where available, that allows one to readily determine specific uses of inventions based on this molecular sequence. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

FIG. 2 provides the predicted amino acid sequence of the kinase of the present invention. (SEQ ID NO:2) In addition structure and functional information such as protein family, function, and modification sites is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence.

FIG. 3 provides genomic sequences that span the gene encoding the kinase protein of the present invention. (SEQ ID NO:3) In addition structure and functional information, such as intron/exon structure, promoter location, etc., is provided where available, allowing one to readily determine specific uses of inventions based on this molecular sequence. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

DETAILED DESCRIPTION OF THE INVENTION

General Description

The present invention is based on the sequencing of the human genome. During the sequencing and assembly of the human genome, analysis of the sequence information revealed previously unidentified fragments of the human genome that encode peptides that share structural and/or 40 sequence homology to protein/peptide/domains identified and characterized within the art as being a kinase protein or part of a kinase protein and are related to the serine/ threonine kinase subfamily. Utilizing these sequences, additional genomic sequences were assembled and transcript 45 and/or cDNA sequences were isolated and characterized. Based on this analysis, the present invention provides amino acid sequences of human kinase peptides and proteins that are related to the serine/threonine kinase subfamily, nucleic acid sequences in the form of transcript sequences, cDNA 50 sequences and/or genomic sequences that encode these kinase peptides and proteins, nucleic acid variation (allelic information), tissue distribution of expression, and information about the closest art known protein/peptide/domain that has structural or sequence homology to the kinase of the 55 present invention.

In addition to being previously unknown, the peptides that are provided in the present invention are selected based on their ability to be used for the development of commercially important products and services. Specifically, the present 60 peptides are selected based on homology and/or structural relatedness to known kinase proteins of the serine/threonine kinase subfamily and the expression pattern observed. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous 65 tissue, bladder, infant and fetal brain, and thyroid gland. The art has clearly established the commercial importance of

6

members of this family of proteins and proteins that have expression patterns similar to that of the present gene. Some of the more specific features of the peptides of the present invention, and the uses thereof, are described herein, particularly in the Background of the Invention and in the annotation provided in the Figures, and/or are known within the art for each of the known serine/threonine kinase family or subfamily of kinase proteins.

Specific Embodiments

Peptide Molecules

The present invention provides nucleic acid sequences that encode protein molecules that have been identified as being members of the kinase family of proteins and are related to the serine/threonine kinase subfamily (protein sequences are provided in FIG. 2, transcript/cDNA sequences are provided in FIG. 1 and genomic sequences are provided in FIG. 3). The peptide sequences provided in FIG. 20 2, as well as the obvious variants described herein, particularly allelic variants as identified herein and using the information in FIG. 3, will be referred herein as the kinase peptides of the present invention, kinase peptides, or peptides/proteins of the present invention.

The present invention provides isolated peptide and protein molecules that consist of, consist essentially of, or comprise the amino acid sequences of the kinase peptides disclosed in the FIG. 2, (encoded by the nucleic acid molecule shown in FIG. 1, transcript/cDNA or FIG. 3, genomic sequence), as well as all obvious variants of these peptides that are within the art to make and use. Some of these variants are described in detail below.

As used herein, a peptide is said to be "isolated" or "purified" when it is substantially free of cellular material or free of chemical precursors or other chemicals. The peptides of the present invention can be purified to homogeneity or other degrees of purity. The level of purification will be based on the intended use. The critical feature is that the preparation allows for the desired function of the peptide, even if in the presence of considerable amounts of other components (the features of an isolated nucleic acid molecule is discussed below).

In some uses, "substantially free of cellular material" includes preparations of the peptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the peptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of the peptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the kinase peptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

The isolated kinase peptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods. Experimental data as

provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. For example, a nucleic acid molecule encoding the kinase peptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Many of these techniques are described in detail below.

Accordingly, the present invention provides proteins that consist of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genornic sequences provided in FIG. 3 (SEQ ID NO:3). The amino acid sequence of such a protein is provided in FIG. 2. A protein consists of an amino acid sequence when the amino acid sequence is the final amino acid sequence of the protein.

The present invention further provides proteins that consist essentially of the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein consists essentially of an amino acid sequence when such an amino acid sequence is present with only a few additional amino acid residues, for example from about 1 to about 100 or so additional residues, typically from 1 to about 20 additional residues in the final protein.

The present invention further provides proteins that com- 30 prise the amino acid sequences provided in FIG. 2 (SEQ ID NO:2), for example, proteins encoded by the transcript/ cDNA nucleic acid sequences shown in FIG. 1 (SEQ ID NO:1) and the genomic sequences provided in FIG. 3 (SEQ ID NO:3). A protein comprises an amino acid sequence 35 when the amino acid sequence is at least part of the final amino acid sequence of the protein. In such a fashion, the protein can be only the peptide or have additional amino acid molecules, such as amino acid residues (contiguous encoded sequence) that are naturally associated with it or heterologous amino acid residues/peptide sequences. Such a protein can have a few additional amino acid residues or can comprise several hundred or more additional amino acids. The preferred classes of proteins that are comprised of the kinase peptides of the present invention are the naturally 45 occurring mature proteins. A brief description of how various types of these proteins can be made/isolated is provided below.

The kinase peptides of the present invention can be attached to heterologous sequences to form chimeric or 50 fusion proteins. Such chimeric and fusion proteins comprise a kinase peptide operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the kinase peptide. "Operatively linked" indicates that the kinase peptide and the heterologous protein are 55 fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the kinase peptide.

In some uses, the fusion protein does not affect the activity of the kinase peptide per se. For example, the fusion protein can include, but is not limited to, enzymatic fusion 60 proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions, MYC-tagged, HI-tagged and Ig fusions. Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant kinase peptide. In certain host cells (e.g., mammalian 65 host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel et al., Current Protocols in Molecular Biology, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A kinase peptide-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the kinase peptide.

As mentioned above, the present invention also provides and enables obvious variants of the amino acid sequence of the proteins of the present invention, such as naturally occurring mature forms of the peptide, allelic/sequence variants of the peptides, non-naturally occurring recombinantly derived variants of the peptides, and orthologs and paralogs of the peptides. Such variants can readily be generated using art-known techniques in the fields of recombinant nucleic acid technology and protein biochemistry. It is understood, however, that variants exclude any amino acid sequences disclosed prior to the invention.

Such variants can readily be identified/made using molecular techniques and the sequence information disclosed herein. Further, such variants can readily be distinguished from other peptides based on sequence and/or structural homology to the kinase peptides of the present invention. The degree of homology/identity present will be based primarily on whether the peptide is a functional variant or non-functional variant, the amount of divergence present in the paralog family and the evolutionary distance between the orthologs.

To determine the percent identity of two amino acid sequences or two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and nonhomologous sequences can be disregarded for comparison purposes). In a preferred embodiment, at least 30%, 40%, 50%, 60%, 70%, 80%, or 90% or more of the length of a reference sequence is aligned for comparison purposes. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid "identity" is equivalent to amino acid or nucleic acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G.,

eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991). In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. 20 Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

The nucleic acid and protein sequences of the present 25 invention can further be used as a "query sequence" to perform a search against sequence databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul, et al. (J. Mol. 30 Biol. 215:403-10 (1990)). BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to the nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST 35 program, score=50, wordlength=3 to obtain amino acid sequences homologous to the proteins of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (Nucleic Acids Res. 25(17):3389-3402 (1997)). When uti-40 lizing BLAST and gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.

Full-length pre-processed forms, as well as mature processed forms, of proteins that comprise one of the peptides 45 of the present invention can readily be identified as having complete sequence identity to one of the kinase peptides of the present invention as well as being encoded by the same genetic locus as the kinase peptide provided herein. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

Allelic variants of a kinase peptide can readily be identified as being a human protein having a high degree (significant) of sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by the same genetic locus as the kinase peptide provided herein. Genetic locus can readily be determined based on the genomic information provided in FIG. 3, such as the genomic sequence mapped to the reference human. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is 65 supported by multiple lines of evidence, such as STS and BAC map data. As used herein, two proteins (or a region of

the proteins) have significant homology when the amino acid sequences are typically at least about 70–80%, 80–90%, and more typically at least about 90–95% or more homologous. A significantly homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under stringent conditions as more fully described below.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Paralogs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide, as being encoded by a gene from humans, and as having similar activity or function. Two proteins will typically be considered paralogs when the amino acid sequences are typically at least about 60% or greater, and more typically at least about 70% or greater homology through a given region or domain. Such paralogs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions as more fully described below.

Orthologs of a kinase peptide can readily be identified as having some degree of significant sequence homology/identity to at least a portion of the kinase peptide as well as being encoded by a gene from another organism. Preferred orthologs will be isolated from mammals, preferably primates, for the development of human therapeutic targets and agents. Such orthologs will be encoded by a nucleic acid sequence that will hybridize to a kinase peptide encoding nucleic acid molecule under moderate to stringent conditions, as more fully described below, depending on the degree of relatedness of the two organisms yielding the proteins.

Non-naturally occurring variants of the kinase peptides of the present invention can readily be generated using recombinant techniques. Such variants include, but are not limited to deletions, additions and substitutions in the amino acid sequence of the kinase peptide. For example, one class of substitutions are conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a kinase peptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amide residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al., Science 247:1306-1310 (1990).

Variant kinase peptides can be fully functional or can lack function in one or more activities, e.g. ability to bind substrate, ability to phosphorylate substrate, ability to mediate signaling, etc. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. FIG. 2 provides the result of protein analysis and can be used to identify critical domains/ regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution. insertion, inversion, or deletion in a critical residue or critical region.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al., Science 244:1081-1085 (1989)), particularly using the results provided in FIG. 2. The latter procedure introduces 10 single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as kinase activity or in assays such as an in vitro proliferative activity. Sites that are critical for binding partner/substrate binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al., J. Mol. Biol. 224:899-904 (1992); de Vos et al. Science 255:306-312 (1992)).

The present invention further provides fragments of the kinase peptides, in addition to proteins and peptides that comprise and consist of such fragments, particularly those comprising the residues identified in FIG. 2. The fragments to which the invention pertains, however, are not to be construed as encompassing fragments that may be disclosed publicly prior to the present invention.

As used herein, a fragment comprises at least 8, 10, 12, 14, 16, or more contiguous amino acid residues from a kinase peptide. Such fragments can be chosen based on the ability to retain one or more of the biological activities of the kinase peptide or could be chosen for the ability to perform a function, e.g. bind a substrate or act as an immunogen. Particularly important fragments are biologically active fragments, peptides that are, for example, about 8 or more amino acids in length. Such fragments will typically comprise a domain or motif of the kinase peptide, e.g., active site, a transmembrane domain or a substrate-binding domain. Further, possible fragments include, but are not limited to, domain or motif containing fragments, soluble peptide fragments, and fragments containing immunogenic structures. Predicted domains and functional sites are readily identifiable by computer programs well known and readily available to those of skill in the art (e.g., PROSITE analysis). The results of one such analysis are provided in FIG. 2.

Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in kinase peptides are described in basic texts, detailed monographs, and the research literature, and they are well identified in FIG. 2).

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide 60 derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, 65 glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pro-

teolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gammacarboxylation of glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as Proteins-Structure and Molecular Properties, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter et al. (Meth. Enzymol. 182: 626-646 (1990)) and Rattan et al. (Ann. N.Y. Acad. Sci. 663:48-62 (1992)).

Accordingly, the kinase peptides of the present invention also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature kinase peptide is fused with another compound, such as a compound to increase the half-life of the kinase peptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature kinase peptide, such as a leader or secretory sequence or a sequence for purification of the mature kinase peptide or a pro-protein sequence.

Protein/Peptide Uses

The proteins of the present invention can be used in substantial and specific assays related to the functional information provided in the Figures; to raise antibodies or to 35 elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its binding partner or ligand) in biological fluids; and as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state). Where the protein binds or potentially binds to another protein or ligand (such as, for example, in a kinase-effector protein interaction or kinase-ligand interaction), the protein can be used to identify 45 the binding partner/ligand so as to develop a system to identify inhibitors of the binding interaction. Any or all of these uses are capable of being developed into reagent grade or kit format for commercialization as commercial products.

Methods for performing the uses listed above are well processes, such as processing and other post-translational 50 known to those skilled in the art. References disclosing such methods include "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning known to those of skill in the art (some of these features are 55 Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

> The potential uses of the peptides of the present invention are based primarily on the source of the protein as well as the class/action of the protein. For example, kinases isolated from humans and their human/mammalian orthologs serve as targets for identifying agents for use in mammalian therapeutic applications, e.g. a human drug, particularly in modulating a biological or pathological response in a cell or tissue that expresses the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant

brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. A large percentage of pharmaceutical agents are being developed that modulate the activity of kinase proteins, particularly members of the serine/threonine kinase subfamily (see Background of the Invention). The structural and functional information provided in the Background and Figures provide specific and substantial uses for the molecules of the present invention, particularly in combination with the expression information provided in FIG. 1. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Such uses can readily be determined using the information provided herein, that which is known in the art, 15 and routine experimentation.

The proteins of the present invention (including variants and fragments that may have been disclosed prior to the present invention) are useful for biological assays related to kinases that are related to members of the serine/threonine 20 kinase subfamily. Such assays involve any of the known kinase functions or activities or properties useful for diagnosis and treatment of kinase-related conditions that are specific for the subfamily of kinases that the one of the present invention belongs to, particularly in cells and tissues 25 that express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In 30 addition, PCR-based tissue screening panels indicate expression in fetal brain.

The proteins of the present invention are also usefull in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native, i.e., cells that normally 35 express the kinase, as a biopsy or expanded in cell culture. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. In an alternate embodiment, cell-based assays involve recombinant host cells expressing the kinase protein.

The polypeptides can be used to identify compounds that modulate kinase activity of the protein in its natural state or an altered form that causes a specific disease or pathology associated with the kinase. Both the kinases of the present invention and appropriate variants and fragments can be used in high-throughput screens to assay candidate compounds for the ability to bind to the kinase. These compounds can be further screened against a functional kinase to determine the effect of the compound on the kinase activity. Further, these compounds can be tested in animal or invertebrate systems to determine activity/effectiveness. Compounds can be identified that activate (agonist) or inactivate (antagonist) the kinase to a desired degree.

Further, the proteins of the present invention can be used 55 to screen a compound for the ability to stimulate or inhibit interaction between the kinase protein and a molecule that normally interacts with the kinase protein, e.g. a substrate or a component of the signal pathway that the kinase protein normally interacts (for example, another kinase). Such 60 assays typically include the steps of combining the kinase protein with a candidate compound under conditions that allow the kinase protein, or fragment, to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the kinase protein and the target, such as any of the associated effects of signal

transduction such as protein phosphorylation, cAMP turnover, and adenylate cyclase activation, etc.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam et al., Nature 354:82–84 (1991); Houghten et al., Nature 354:84–86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L-configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang et al., Cell 72:767–778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, antidiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitopebinding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble fragment of the receptor that competes for substrate binding. Other candidate compounds include mutant kinases or appropriate fragments containing mutations that affect kinase function and thus compete for substrate. Accordingly, a fragment that competes for substrate, for example with a higher affinity, or a fragment that binds substrate but does not allow release, is encompassed by the invention.

The invention further includes other end point assays to identify compounds that modulate (stimulate or inhibit) kinase activity. The assays typically involve an assay of events in the signal transduction pathway that indicate kinase activity. Thus, the phosphorylation of a substrate, activation of a protein, a change in the expression of genes that are up- or down-regulated in response to the kinase protein dependent signal cascade can be assayed.

Any of the biological or biochemical functions mediated by the kinase can be used as an endpoint assay. These include all of the biochemical or biochemical/biological events described herein, in the references cited herein, incorporated by reference for these endpoint assay targets, and other functions known to those of ordinary skill in the art or that can be readily identified using the information provided in the Figures, particularly FIG. 2. Specifically, a biological function of a cell or tissues that expresses the kinase can be assayed. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Binding and/or activating compounds can also be screened by using chimeric kinase proteins in which the amino terminal extracellular domain, or parts thereof, the entire transmembrane domain or subregions, such as any of the seven transmembrane segments or any of the intracellular or extracellular loops and the carboxy terminal intracellular domain, or parts thereof, can be replaced by heterologous domains or subregions. For example, a substrate-binding region can be used that interacts with a different substrate then that which is recognized by the native kinase. Accordingly, a different set of signal transduction components is available as an end-point assay for activation. This allows for assays to be performed in other than the specific host cell from which the kinase is derived.

The proteins of the present invention are also useful in competition binding assays in methods designed to discover compounds that interact with the kinase (e.g. binding part-

ners and/or ligands). Thus, a compound is exposed to a kinase polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble kinase polypeptide is also added to the mixture. If the test compound interacts with the soluble kinase polypeptide, it decreases the amount of complex formed or activity from the kinase target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the kinase. Thus, the soluble polypeptide that competes with the target kinase region is designed to contain peptide sequences corresponding to the region of interest.

To perform cell free drug screening assays, it is sometimes desirable to immobilize either the kinase protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that 20 allows the protein to be bound to a matrix. For example, glutathione-S-transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., 35S-25 labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of kinase-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For 35 example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a kinase-binding protein and a candidate compound are incubated in the kinase protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods 45 for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the kinase protein target molecule, or which are reactive with kinase protein and compete with the target molecule, as well 50 as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Agents that modulate one of the kinases of the present invention can be identified using one or more of the above assays, alone or in combination. It is generally preferable to 55 use a cell-based or cell free system first and then confirm activity in an animal or other model system. Such model systems are well known in the art and can readily be employed in this context.

Modulators of kinase protein activity identified according 60 to these drug screening assays can be used to treat a subject with a disorder mediated by the kinase pathway, by treating cells or tissues that express the kinase. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 65 and fetal brain, and thyroid gland. These methods of treatment include the steps of administering a modulator of

kinase activity in a pharmaceutical composition to a subject in need of such treatment, the modulator being identified as described herein.

In yet another aspect of the invention, the kinase proteins can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693/1696; and Brent WO94110300), to identify other proteins, which bind to or interact with the kinase and are involved in kinase activity. Such kinase-binding proteins are also likely to be involved in the propagation of signals by the kinase proteins or kinase targets as, for example, downstream elements of a kinase-mediated signaling pathway. Alternatively, such kinase-binding proteins are likely to be kinase inhibitors.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNAbinding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a kinase protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming a kinase-dependent complex, the DNAbinding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the protein which interacts with the kinase protein.

This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein (e.g., a kinase-modulating agent, an antisense kinase nucleic acid molecule, a kinase-specific antibody, or a kinase-binding partner) can be used in an animal or other model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal or other model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.

The kinase proteins of the present invention are also useful to provide a target for diagnosing a disease or predisposition to disease mediated by the peptide. Accordingly, the invention provides methods for detecting the presence, or levels of, the protein (or encoding mRNA) in a cell, tissue, or organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method involves contacting a biological sample with a compound capable of interacting with the kinase protein such that the interaction can be detected. Such an assay can be provided in a single detection format or a multi-detection format such as an antibody chip array.

One agent for detecting a protein in a sample is an antibody capable of selectively binding to protein. A bio-

logical sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The peptides of the present invention also provide targets for diagnosing active protein activity, disease, or predisposition to disease, in a patient having a variant peptide, particularly activities and conditions that are known for other members of the family of proteins to which the present one belongs. Thus, the peptide can be isolated from a biological sample and assayed for the presence of a genetic 10 mutation that results in aberrant peptide. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide 15 digest, altered kinase activity in cell-based or cell-free assay, alteration in substrate or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein. Such an assay can be provided in a 20 single detection format or a multi-detection format such as an antibody chip array.

In vitro techniques for detection of peptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence using a detection reagent, such as an antibody or protein binding agent. Alternatively, the peptide can be detected in vivo in a subject by introducing into the subject a labeled anti-peptide antibody or other types of detection agent. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods that detect the allelic variant of a peptide expressed in a subject and methods which detect fragments of a peptide in a sample.

The peptides are also useful in pharmacogenomic analysis. Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (Clin. Exp. Pharmacol. Physiol. 40 23(10-11):983-985 (1996)), and Linder, M. W. (Clin. Chem. 43(2):254-266 (1997)). The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. 45 Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the 50 individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do 55 not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer. Accordingly, genetic polymorphism may 60 lead to allelic protein variants of the kinase protein in which one or more of the kinase functions in one population is different from those in another population. The peptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, 65 polymorphism may give rise to amino terminal extracellular domains and/or other substrate-binding regions that are

more or less active in substrate binding, and kinase activation. Accordingly, substrate dosage would necessarily be modified to maximize the therapeutic effect within a given population containing a polymorphism. As an alternative to genotyping, specific polymorphic peptides could be identified.

The peptides are also useful for treating a disorder characterized by an absence of, inappropriate, or unwanted expression of the protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Accordingly, methods for treatment include the use of the kinase protein or fragments.

Antibodies

The invention also provides antibodies that selectively bind to one of the peptides of the present invention, a protein comprising such a peptide, as well as variants and fragments thereof. As used herein, an antibody selectively binds a target peptide when it binds the target peptide and does not significantly bind to unrelated proteins. An antibody is still considered to selectively bind a peptide even if it also binds to other proteins that are not substantially homologous with the target peptide so long as such proteins share homology with a fragment or domain of the peptide target of the antibody. In this case, it would be understood that antibody binding to the peptide is still selective despite some degree of cross-reactivity.

As used herein, an antibody is defined in terms consistent with that recognized within the art: they are multi-subunit proteins produced by a mammalian organism in response to an antigen challenge. The antibodies of the present invention include polyclonal antibodies and monoclonal antibodies, as well as fragments of such antibodies, including, but not limited to, Fab or F(ab')2, and Fv fragments.

Many methods are known for generating and/or identifying antibodies to a given target peptide. Several such methods are described by Harlow, Antibodies, Cold Spring Harbor Press, (1989).

In general, to generate antibodies, an isolated peptide is used as an immunogen and is administered to a mammalian organism, such as a rat, rabbit or mouse. The full-length protein, an antigenic peptide fragment or a fusion protein can be used. Particularly important fragments are those covering functional domains, such as the domains identified in FIG. 2, and domain of sequence homology or divergence amongst the family, such as those that can readily be identified using protein alignment methods and as presented in the Figures.

Antibodies are preferably prepared from regions or discrete fragments of the kinase proteins. Antibodies can be prepared from any region of the peptide as described herein. However, preferred regions will include those involved in function/activity and/or kinase/binding partner interaction. FIG. 2 can be used to identify particularly important regions while sequence alignment can be used to identify conserved and unique sequence fragments.

An antigenic fragment will typically comprise at least 8 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 10, 12, 14, 16 or more amino acid residues. Such fragments can be selected on a physical property, such as fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions or can be selected based on sequence uniqueness (see FIG. 2).

Detection on an antibody of the present invention can be facilitated by coupling (i.e., physically linking) the antibody

to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, 5 β -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine 10 fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and acquorin, and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^{3}H .

Antibody Uses

The antibodies can be used to isolate one of the proteins of the present invention by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural protein from cells and recombinantly produced protein expressed in host cells. In addition, such antibodies are useful to detect the presence of one of the proteins of the present invention in cells or tissues to determine the pattern of expression of 25 the protein among various tissues in an organism and over the course of normal development. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant 30 brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Further, such antibodies can be used to detect protein in situ, in vitro, or in a cell lysate or supernatant in order to evaluate the abundance and 35 pattern of expression. Also, such antibodies can be used to assess abnormal tissue distribution or abnormal expression during development or progression of a biological condition. Antibody detection of circulating fragments of the full length protein can be used to identify turnover.

Further, the antibodies can be used to assess expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to the protein's function. When a disorder is caused by an inappropriate tissue distribution, developmental expression, level of expression of the protein, or expressed/processed form, the antibody can be prepared against the normal protein. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. If a disorder is characterized by a specific mutation in the protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various 55 tissues in an organism. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting expression level or the presence of aberrant sequence and aberrant tissue distribution or developmental expression, antibodies directed against the protein or relevant fragments can be used to monitor therapeutic efficacy.

Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic

proteins can be used to identify individuals that require modified treatment modalities. The antibodies are also useful as diagnostic tools as an immunological marker for aberrant protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. Thus, where a specific protein has been correlated with expression in a specific tissue, antibodies that are specific for this protein can be used to identify a tissue type.

The antibodies are also useful for inhibiting protein function, for example, blocking the binding of the kinase peptide to a binding partner such as a substrate. These uses can also be applied in a therapeutic context in which treatment involves inhibiting the protein's function. An antibody can be used, for example, to block binding, thus modulating (agonizing or antagonizing) the peptides activity. Antibodies can be prepared against specific fragments containing sites required for function or against intact protein that is associated with a cell or cell membrane. See FIG. 2 for structural information relating to the proteins of the present invention.

The invention also encompasses kits for using antibodies to detect the presence of a protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable antibody and a compound or agent for detecting protein in a biological sample; means for determining the amount of protein in the sample; means for comparing the amount of protein in the sample with a standard; and instructions for use. Such a kit can be supplied to detect a single protein or epitope or can be configured to detect one of a multitude of epitopes, such as in an antibody detection array. Arrays are described in detail below for nuleic acid arrays and similar methods have been developed for antibody arrays.

Nucleic Acid Molecules

The present invention further provides isolated nucleic acid molecules that encode a kinase peptide or protein of the present invention (cDNA, transcript and genomic sequence). Such nucleic acid molecules will consist of, consist essentially of, or comprise a nucleotide sequence that encodes one of the kinase peptides of the present invention, an allelic variant thereof, or an ortholog or paralog thereof.

As used herein, an "isolated" nucleic acid molecule is one that is separated from other nucleic acid present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB, 4KB, 3KB, 2KB, or 1KB or less, particularly contiguous peptide encoding sequences and peptide encoding sequences within the same gene but separated by introns in the genomic sequence. The important point is that the nucleic acid is isolated from remote and unimportant flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the nucleic acid sequences.

Moreover, an "isolated" nucleic acid molecule, such as a transcript/cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

For example, recombinant DNA molecules contained in a 5 vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vivo or in vitro RNA transcripts of the 10 isolated DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Accordingly, the present invention provides nucleic acid molecules that consist of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists of a nucleotide sequence when the nucleotide sequence is the complete nucleotide 20 sequence of the nucleic acid molecule.

The present invention further provides nucleic acid molecules that consist essentially of the nucleotide sequence shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID NO:3, genomic sequence), or any nucleic acid molecule that encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule consists essentially of a nucleotide sequence when such a nucleotide sequence is present with only a few additional nucleic acid residues in the final nucleic acid molecule.

The present invention further provides nucleic acid molecules that comprise the nucleotide sequences shown in FIG. 1 or 3 (SEQ ID NO:1, transcript sequence and SEQ ID encodes the protein provided in FIG. 2, SEQ ID NO:2. A nucleic acid molecule comprises a nucleotide sequence when the nucleotide sequence is at least part of the final nucleotide sequence of the nucleic acid molecule. In such a fashion, the nucleic acid molecule can be only the nucleotide sequence or have additional nucleic acid residues, such as nucleic acid residues that are naturally associated with it or heterologous nucleotide sequences. Such a nucleic acid molecule can have a few additional nucleotides or can comprises several hundred or more additional nucleotides. A 45 brief description of how various types of these nucleic acid molecules can be readily made/isolated is provided below.

In FIGS. 1 and 3, both coding and non-coding sequences are provided. Because of the source of the present invention, humans genomic sequence (FIG. 3) and cDNA/transcript 50 sequences (FIG. 1), the nucleic acid molecules in the Figures will contain genomic intronic sequences, 5' and 3' noncoding sequences, gene regulatory regions and non-coding intergenic sequences. In general such sequence features are either noted in FIGS. 1 and 3 or can readily be identified 55 using computational tools known in the art. As discussed below, some of the non-coding regions, particularly gene regulatory elements such as promoters, are useful for a variety of purposes, e.g. control of heterologous gene expression, target for identifying gene activity modulating 60 compounds, and are particularly claimed as fragments of the genomic sequence provided herein.

The isolated nucleic acid molecules can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature peptide 65 (when the mature form has more than one peptide chain, for instance). Such sequences may play a role in processing of

a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ, the additional amino acids may be processed away from the mature protein by cellular enzymes.

As mentioned above, the isolated nucleic acid molecules include, but are not limited to, the sequence encoding the kinase peptide alone, the sequence encoding the mature peptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature peptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the nucleic acid molecule may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Isolated nucleic acid molecules can be in the form of RNA, such as mRNA, or in the form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (antisense strand).

The invention further provides nucleic acid molecules that 30 encode fragments of the peptides of the present invention as well as nucleic acid molecules that encode obvious variants of the kinase proteins of the present invention that are described above. Such nucleic acid molecules may be naturally occurring, such as allelic variants (same locus), para-NO:3, genomic sequence), or any nucleic acid molecule that 35 logs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to nucleic acid molecules, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

> The present invention further provides non-coding fragments of the nucleic acid molecules provided in FIGS. 1 and 3. Preferred non-coding fragments include, but are not limited to, promoter sequences, enhancer sequences, gene modulating sequences and gene termination sequences. Such fragments are useful in controlling heterologous gene expression and in developing screens to identify genemodulating agents. A promoter can readily be identified as being 5' to the ATG start site in the genomic sequence provided in FIG. 3.

> A fragment comprises a contiguous nucleotide sequence greater than 12 or more nucleotides. Further, a fragment could at least 30, 40, 50, 100, 250 or 500 nucleotides in length. The length of the fragment will be based on its intended use. For example, the fragment can encode epitope bearing regions of the peptide, or can be useful as DNA probes and primers. Such fragments can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of gene.

A probe/primer typically comprises substantially a purified oligonucleotide or oligonucleotide pair. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 20, 25, 40, 50 or more consecutive nucleotides.

Orthologs, homologs, and allelic variants can be identified using methods well known in the art. As described in the Peptide Section, these variants comprise a nucleotide sequence encoding a peptide that is typically 60-70%, 70-80%, 80-90%, and more typically at least about 90-95% or more homologous to the nucleotide sequence shown in the Figure sheets or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under moderate to stringent conditions, to the nucleotide sequence shown in the Figure sheets or a 15 fragment of the sequence. Allelic variants can readily be determined by genetic locus of the encoding gene. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is 20 supported by multiple lines of evidence, such as STS and BAC map data.

FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences encoding a peptide at least 60-70% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 60%, at least about 70%, or at least about 80% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6x 40 sodium chloride/sodium citrate (SSC) at about 45C, followed by one or more washes in 0.2xSSC, 0.1% SDS at 50-65C. Examples of moderate to low stringency hybridization conditions are well known in the art.

Nucleic Acid Molecule Uses

The nucleic acid molecules of the present invention are useful for probes, primers, chemical intermediates, and in biological assays. The nucleic acid molecules are useful as a hybridization probe for messenger RNA, transcript/cDNA and genomic DNA to isolate full-length cDNA and genomic clones encoding the peptide described in FIG. 2 and to isolate cDNA and genomic clones that correspond to variants (alleles, orthologs, etc.) producing the same or related peptides shown in FIG. 2. As illustrated in FIG. 3, SNPs were identified at 42 different nucleotide positions.

The probe can correspond to any sequence along the entire length of the nucleic acid molecules provided in the Figures. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions. 60 However, as discussed, fragments are not to be construed as encompassing fragments disclosed prior to the present invention.

The nucleic acid molecules are also useful as primers for PCR to amplify any given region of a nucleic acid molecule 65 and are useful to synthesize antisense molecules of desired length and sequence.

The nucleic acid molecules are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the peptide sequences. Vectors also include insertion vectors, used to integrate into another nucleic acid molecule sequence, such as into the cellular genome, to alter in situ expression of a gene and/or gene product. For example, an endogenous coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The nucleic acid molecules are also useful for expressing antigenic portions of the proteins.

The nucleic acid molecules are also useful as probes for determining the chromosomal positions of the nucleic acid molecules by means of in situ hybridization methods. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data.

The nucleic acid molecules are also useful in making vectors containing the gene regulatory regions of the nucleic acid molecules of the present invention.

The nucleic acid molecules are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from the nucleic acid molecules described herein.

The nucleic acid molecules are also useful for making vectors that express part, or all, of the peptides.

The nucleic acid molecules are also useful for constructing host cells expressing a part, or all, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful for constructing transgenic animals expressing all, or a part, of the nucleic acid molecules and peptides.

The nucleic acid molecules are also useful as hybridization probes for determining the presence, level, form and distribution of nucleic acid expression. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. Accordingly, the probes can be used to detect the presence of, or to determine levels of, a specific nucleic acid molecule in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the peptides described herein can be used to assess expression and/or gene copy number in a given cell, tissue, or organism. These uses are relevant for diagnosis of disorders involving an increase or decrease in kinase protein expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detecting DNA includes Southern hybridizations and in situ hybridization.

'Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a kinase protein, such as by measuring a level of a kinase-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or determining if a kinase gene has been mutated. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by

virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate kinase nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the kinase gene, particularly biological and pathological processes that are mediated by the kinase in cells and tissues that express it. Experimental data as provided in FIG. 1 indicates expression in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland. The method typically includes assaying the ability of the compound to modulate the expression of the kinase nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired kinase nucleic acid expression. The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the kinase nucleic acid or recombinant cells genetically engineered to express 20 specific nucleic acid sequences.

The assay for kinase nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway. Further, the expression of genes that are up- or down-regulated in response to the kinase protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase.

Thus, modulators of kinase gene expression can be iden- 30 tified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of kinase mRNA in the presence of the candidate compound is compared to the level of expression of kinase mRNA in the absence of the candi-35 date compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in 40 the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound than in its absence, the candidate compound is 45 identified as an inhibitor of nucleic acid expression.

The invention further provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to modulate kinase nucleic acid expression in cells and tissues that 50 express the kinase. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, 55 PCR-based tissue screening panels indicate expression in fetal brain. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) or nucleic acid expression.

Alternatively, a modulator for kinase nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the drug or small molecule inhibits the kinase nucleic acid expression in the cells and tissues that express the protein. Experimental data as provided in FIG. 1 indicates expression in humans in 65 teratocarcinoma, ovary, testis, nervous tissue, bladder, infant and fetal brain, and thyroid gland.

The nucleic acid molecules are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the kinase gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a desirable level, administration of the compound could be commensurately decreased.

The nucleic acid molecules are also useful in diagnostic assays for qualitative changes in kinase nucleic acid expression, and particularly in qualitative changes that lead to pathology. The nucleic acid molecules can be used to detect mutations in kinase genes and gene expression products such as mRNA. The nucleic acid molecules can be used as hybridization probes to detect naturally occurring genetic mutations in the kinase gene and thereby to determine whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement, such as inversion or transposition, modification of genomic DNA, such as aberrant methylation patterns or changes in gene copy number, such as amplification. Detection of a mutated form of the kinase gene associated with a dysfunction provides a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a kinase protein.

Individuals carrying mutations in the kinase gene can be detected at the nucleic acid level by a variety of techniques. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription. The gene encoding the novel kinase protein of the present invention is located on a genome component that has been mapped to human chromosome 22 (as indicated in FIG. 3), which is supported by multiple lines of evidence, such as STS and BAC map data. Genomic DNA can be analyzed directly or can be amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way. In some uses, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al., Science 241:1077-1080 (1988); and Nakazawa et al., PNAS 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya et al., Nucleic Acids Res. 23:675-682 (1995)). This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the amplified product compared to the normal

genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a kinase gene can be directly identified, for example, by alterations in restriction enzyme 5 digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site. Perfectly matched sequences can be distinguished from 10 mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease protection assays such as RNase and S1 protection or the chemical cleavage method. Furthermore, sequence differences between a mutant kinase gene and a wild-type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W., (1995) Biotechniques 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al., Adv. Chromatogr. 36:127-162 (1996); and Griffin et al., Appl. Biochem. Biotechnol. 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers etal., Science 230:1242 (1985)); Cotton et al., PNAS 85:4397 (1988); Saleeba et al., Meth. Enzymol. 21 7:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita et al., PNAS 86:2766 (1989); Cotton et al., Mutat. Res. 285:125-144 (1993); and Hayashi et al., Genet. Anal. Tech. Appl. 9:73-79 (1992)), and movement of mutant or wild-type fragments in 35 polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers et al., Nature 313:495 (1985)). Examples of other techniques for detecting point mutations include selective oligonucleotide hybridization, selective amplification, and $_{40}$ nRNA or DNA. selective primer extension.

The nucleic acid molecules are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). Accordingly, the nucleic acid molecules described herein can be used to assess the mutation content of the kinase gene in an individual in order 50 to select an appropriate compound or dosage regimen for treatment. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different outside the ORF and in introns, may affect gene transcrip-

Thus nucleic acid molecules displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the 60 production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The nucleic acid molecules are thus useful as antisense constructs to control kinase gene expression in cells, tissues, 65 and organisms. A DNA antisense nucleic acid molecule is designed to be complementary to a region of the gene

involved in transcription, preventing transcription and hence production of kinase protein. An antisense RNA or DNA nucleic acid molecule would hybridize to the mRNA and thus block translation of mRNA into kinase protein.

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of kinase nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired kinase nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the kinase protein, such as substrate binding.

The nucleic acid molecules also provide vectors for gene therapy in patients containing cells that are aberrant in kinase gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered ex vivo and returned to the patient, are introduced into an individual where the cells produce the desired kinase protein to treat the individual.

The invention also encompasses kits for detecting the presence of a kinase nucleic acid in a biological sample. Experimental data as provided in FIG. 1 indicates that the kinase proteins of the present invention are expressed in humans in teratocarcinoma, ovary, testis, nervous tissue, bladder, infant brain, and thyroid gland, as indicated by virtual northern blot analysis. In addition, PCR-based tissue screening panels indicate expression in fetal brain. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting kinase nucleic acid in a biological sample; means for determining the amount of kinase nucleic acid in the sample; and means for comparing the amount of kinase nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect kinase protein

Nucleic Acid Arrays

The present invention further provides nucleic acid detection kits, such as arrays or microarrays of nucleic acid Thus, the nucleic acid molecules can be used to study the 45 molecules that are based on the sequence information provided in FIGS. 1 and 3 (SEQ ID NOS:1 and 3).

As used herein "Arrays" or "Microarrays" refers to an array of distinct polynucleotides or oligonucleotides synthesized on a substrate, such as paper, nylon or other type of membrane, filter, chip, glass slide, or any other suitable solid support. In one embodiment, the microarray is prepared and used according to the methods described in U.S. Pat. No. 5,837,832, Chee et al., PCT application W095/11995 (Chee et al.), Lockhart, D. J. et al. (1996; Nat. Biotech. 14: nucleotide positions. Some of these SNPs, which are located 55 1675-1680) and Schena, M. et al. (1996; Proc. Natl. Acad. Sci. 93: 10614-10619), all of which are incorporated herein in their entirety by reference. In other embodiments, such arrays are produced by the methods described by Brown et al., U.S. Pat. No. 5,807,522.

> The microarray or detection kit is preferably composed of a large number of unique, single-stranded nucleic acid sequences, usually either synthetic antisense oligonucleotides or fragments of cDNAs, fixed to a solid support. The oligonucleotides are preferably about 6-60 nucleotides in length, more preferably 15-30 nucleotides in length, and most preferably about 20-25 nucleotides in length. For a certain type of microarray or detection kit, it may be

preferable to use oligonucleotides that are only 7-20 nucleotides in length. The microarray or detection kit may contain oligonucleotides that cover the known 5', or 3', sequence, sequential oligonucleotides which cover the full length sequence; or unique oligonucleotides selected from particular areas along the length of the sequence. Polynucleotides used in the microarray or detection kit may be oligonucleotides that are specific to a gene or genes of interest.

In order to produce oligonucleotides to a known sequence for a microarray or detection kit, the gene(s) of interest (or 10 an ORF identified from the contigs of the present invention) is typically examined using a computer algorithm which starts at the 5' or at the 3' end of the nucleotide sequence. Typical algorithms will then identify oligomers of defined length that are unique to the gene, have a GC content within a range suitable for hybridization, and lack predicted secondary structure that may interfere with hybridization. In certain situations it may be appropriate to use pairs of oligonucleotides on a microarray or detection kit. The "pairs" will be identical, except for one nucleotide that preferably is located in the center of the sequence. The 20 second oligonucleotide in the pair (mismatched by one) serves as a control. The number of oligonucleotide pairs may range from two to one million. The oligomers are synthesized at designated areas on a substrate using a light-directed chemical process. The substrate may be paper, nylon or 25 other type of membrane, filter, chip, glass slide or any other suitable solid support.

In another aspect, an oligonucleotide may be synthesized on the surface of the substrate by using a chemical coupling procedure and an ink jet application apparatus, as described 30 in PCT application W095/251116 (Baldeschweiler et al.) which is incorporated herein in its entirety by reference. In another aspect, a "gridded" array analogous to a dot (or slot) blot may be used to arrange and link cDNA fragments or oligonucleotides to the surface of a substrate using a vacuum system, thermal, UV, mechanical or chemical bonding procedures. An array, such as those described above, may be produced by hand or by using available devices (slot blot or dot blot apparatus), materials (any suitable solid support), and machines (including robotic instruments), and may contain 8, 24, 96, 384, 1536, 6144 or more oligonucleotides, or any other number between two and one million which lends itself to the efficient use of commercially available instrumentation.

In order to conduct sample analysis using a microarray or detection kit, the RNA or DNA from a biological sample is 45 made into hybridization probes. The mRNA is isolated, and cDNA is produced and used as a template to make antisense RNA (aRNA). The aRNA is amplified in the presence of fluorescent nucleotides, and labeled probes are incubated with the microarray or detection kit so that the probe 50 sequences hybridize to complementary oligonucleotides of the microarray or detection kit. Incubation conditions are adjusted so that hybridization occurs with precise complementary matches or with various degrees of less complementarity. After removal of nonhybridized probes, a scanner 55 is used to determine the levels and patterns of fluorescence. The scanned images are examined to determine degree of complementarity and the relative abundance of each oligonucleotide sequence on the microarray or detection kit. The biological samples may be obtained from any bodily fluids (such as blood, urine, saliva, phlegm, gastric juices, etc.), cultured cells, biopsies, or other tissue preparations. A detection system may be used to measure the absence, presence, and amount of hybridization for all of the distinct sequences simultaneously. This data may be used for largescale correlation studies on the sequences, expression 65 patterns, mutations, variants, or polymorphisms among samples.

Using such arrays, the present invention provides methods to identify the expression of the kinase proteins/peptides of the present invention. In detail, such methods comprise incubating a test sample with one or more nucleic acid molecules and assaying for binding of the nucleic acid molecule with components within the test sample. Such assays will typically involve arrays comprising many genes, at least one of which is a gene of the present invention and or alleles of the kinase gene of the present invention. FIG. 3 provides information on SNPs that have been found in the gene encoding the kinase protein of the present invention. SNPs were identified at 42 different nucleotide positions. Some of these SNPs, which are located outside the ORF and in introns, may affect gene transcription.

Conditions for incubating a nucleic acid molecule with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid molecule used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or array assay formats can readily be adapted to employ the novel fragments of the Human genome disclosed herein. Examples of such assays can be found in Chard, T, An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, Fla. Vol. 1 (1 982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985).

The test samples of the present invention include cells, protein or membrane extracts of cells. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing nucleic acid extracts or of cells are well known in the art and can be readily be adapted in order to obtain a sample that is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the nucleic acid molecules that can bind to a fragment of the Human genome disclosed herein; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound nucleic acid.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers, strips of plastic, glass or paper, or arraying material such as silica. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not crosscontaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the nucleic acid probe, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound probe. One skilled in the art will readily recognize that the previously unidentified kinase gene of the present invention can be routinely identified using the sequence information disclosed herein can be readily incorporated into one of the established kit formats which are well known in the art, particularly expression arrays.

Vectors/host Cells

The invention also provides vectors containing the nucleic acid molecules described herein. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, which can transport the nucleic acid molecules. When the vector is a nucleic acid molecule, the nucleic acid molecules are covalently linked to the vector nucleic acid. With this aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the nucleic acid molecules. Alternatively, the vector may integrate into the host cell 15 genome and produce additional copies of the nucleic acid molecules when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the nucleic acid molecules. The vectors can 20 function in prokaryotic or eukaryotic cells or in both (shuttle

Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the nucleic acid mol-molecules such that transcription of the nucleic acid mol-25 ecule can be introduced into an appropriate host cell for that are operably linked in the vector to the nucleic acid ecules is allowed in a host cell. The nucleic acid molecules can be introduced into the host cell with a separate nucleic acid molecule capable of affecting transcription. Thus, the second nucleic acid molecule may provide a trans-acting factor interacting with the cis-regulatory control region to allow transcription of the nucleic acid molecules from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself It is understood, however, that in some embodiments, transcription and/or translation of the nucleic acid molecules can occur in a cell-free system.

The regulatory sequence to which the nucleic acid molecules described herein can be operably linked include promoters for directing mRNA transcription. These include, but are not limited to, the left promoter from bacteriophage λ, the lac, TRP, and TAC promoters from E. coli, the early 40 and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats

In addition to control regions that promote transcription, expression vectors may also include regions that modulate 45 transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

In addition to containing sites for transcription initiation 50 and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory sequences are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., (1989).

A variety of expression vectors can be used to express a nucleic acid molecule. Such vectors include chromosomal, episomal, and virus-derived vectors, for example vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, includ- 65 ing yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia

viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage genetic elements, e.g. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor,

The regulatory sequence may provide constitutive expres-DNA viral vector, or artificial chromosome, such as a BAC, 10 sion in one or more host cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

> The nucleic acid molecules can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

> propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, E. coli, Streptomyces, and Salmonella typhimurium. Eukaryotic cells include, but are not limited to, yeast, insect cells such as Drosophila, animal cells such as COS and CHO cells, and

As described herein, it may be desirable to express the peptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the peptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired peptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith et al., Gene 67:31-40 (1988)), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., Gene 69:301-315 (1988)) and pET 11 d (Studier et al., Gene Expression Technology: Methods in Enzymology 185:60-89 (1990)).

Recombinant protein expression can be maximized in host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128). Alternatively, the sequence of the nucleic acid molecule of interest can be altered to provide preferential codon usage for a specific host cell, for example E. coli. (Wada et al., Nucleic Acids Res. 20:2111-2118 (1992)).

The nucleic acid molecules can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., S. cerevisiae include pYepScc1 (Baldari, ct al., EMBO J. 6:229-234 (1987)), pMFa (Kurjan et al., Cell 30:933-943(1982)), pJRY88 (Schultz et al., Gene 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, Calif.).

The nucleic acid molecules can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., Mol. Cell Biol. 3:2156-2165 (1983)) and the pVL series (Lucklow et al., Virology 170:31-39 (1989)).

In certain embodiments of the invention, the nucleic acid molecules described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. Nature 329:840(1987)) and pMT2PC (Kaufman et al., EMBO J. 6:187–195 (1987)).

The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the nucleic acid molecules. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the nucleic acid molecules described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permnits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the nucleic acid molecule sequences described herein, including both coding and non-coding regions. Expression of this antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore 35 include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by 40 techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the nucleic acid molecules can be introduced either alone or with other nucleic acid molecules that are not related to the nucleic acid molecules such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the nucleic acid molecule vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus ⁶⁰ by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the nucleic acid molecules described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for cukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the peptide is desired, which is difficult to achieve with multi-transmembrane domain containing proteins such as kinases, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the peptides or heterologous to these peptides.

Where the peptide is not secreted into the medium, which is typically the case with kinases, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The peptide can then be recovered and purified by well-known purification methods including ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production of the peptides described herein, the peptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the peptides may include an initial modified methionine in some cases as a result of a host-mediated process.

Uses of Vectors and Host Cells

The recombinant host cells expressing the peptides described herein have a variety of uses. First, the cells are useful for producing a kinase protein or peptide that can be further purified to produce desired amounts of kinase protein or fragments. Thus, host cells containing expression vectors are useful for peptide production.

Host cells are also useful for conducting cell-based assays involving the kinase protein or kinase protein fragments, such as those described above as well as other formats known in the art. Thus, a recombinant host cell expressing a native kinase protein is useful for assaying compounds that stimulate or inhibit kinase protein function.

Host cells are also useful for identifying kinase protein mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant kinase protein (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native kinase protein.

Genetically engineered host cells can be further used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for

studying the function of a kinase protein and identifying and evaluating modulators of kinase protein activity. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, and amphibians.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal. Any of the kinase protein nucleotide sequences can be 10 introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation signals, if not already included. A tissue-specific regulatory sequence (s) can be operably linked to the transgene to direct expression of the kinase protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such 20 as mice, have become conventional in the art and are described, for example, in U.S. Pat. Nos. 4,736,866 and 4,870,009, both by Leder et al, U.S. Pat. No. 4,873,191 by Wagner et al. and in Hogan, B., Manipulating the Mouse Embryo, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals 30 carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recom- 35 binant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system, see, e.g., Lakso et al. PNAS 89:6232–6236 (1992). Another example of a recombinase system is the FLP recombinase system of S. cerevisiae (O'Gorman et al. Science 251:1351–1355 (1991). If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recom-

binase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. et al. Nature 385:810–813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and induced to exit the growth cycle and enter G_o phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring born of this female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the peptides described herein are useful to conduct the assays described herein in an in vivo context. Accordingly, the various physiological factors that are present in vivo and that could effect substrate binding, kinase protein activation, and signal transduction, may not be evident from in vitro cell-free or cell-based assays. Accordingly, it is useful to provide non-human transgenic animals to assay in vivo kinase protein function, including substrate interaction, the effect of specific mutant kinase proteins on kinase protein function and substrate interaction, and the effect of chimeric kinase proteins. It is also possible to assess the effect of null mutations, that is, mutations that substantially or completely eliminate one or more kinase protein functions.

All publications and patents mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described method and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the above-described modes for carrying out the invention which are obvious to those skilled in the field of molecular biology or related fields are intended to be within the scope of the following claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 4

<210> SEQ ID NO 1
<211> LENGTH: 2320
<212> TYPE: DNA
<213> ORGANISM: Human

<400> SEQUENCE: 1

cccagggcgc cgtaggcggt gcatcccgtt cgcgcctggg gctgtggtct tcccgcgcct 60
gaggcggcgg cggcaggagc tgaggggagt tgtagggaac tgaggggagc tgctgtgtcc 120
cccgcctcct cctccccatt tccgcgctcc cgggaccatg tccgcgctgg cgggtgaaga 180
tgtctggagg tgtccaggct gtggggacca cattgctcca agccagatat ggtacaggac 240

-continued

tgtcaacgaa acctggcacg	gctcttgctt	ccggtgaaag	tgatgcgcag	cctggaccac	300
cccaatgtgc tcaagttcat	tggtgtgctg	tacaaggata	agaagctgaa	cctgctgaca	360
gagtacattg aggggggcac	actgaaggac	tttctgcgca	gtatggatcc	gttcccctgg	420
cagcagaagg tcaggtttgc	caaaggaatc	gcctccggaa	tggacaagac	tgtggtggtg	480
gcagactttg ggctgtcacg	gctcatagtg	gaagagagga	aaagggcccc	catggagaag	540
gccaccacca agaaacgcac	cttgcgcaag	aacgaccgca	agaagcgcta	cacggtggtg	600
ggaaacccct actggatggc	ccctgagatg	ctgaacggaa	agagctatga	tgagacggtg	660
gatatettet cetttgggat	cgttctctgt	gagatcattg	ggcaggtgta	tgcagatcct	720
gactgccttc cccgaacact	ggactttggc	ctcaacgtga	agcttttctg	ggagaagttt	780
gttcccacag attgtccccc	ggccttcttc	ccgctggccg	ccatctgctg	cagactggag	840
cctgagagca gaccagcatt	ctcgaaattg	gaggactcct	ttgaggccct	ctccctgtac	900
ctgggggagc tgggcatccc	gctgcctgca	gagctggagg	agttggacca	cactgtgagc	960
atgcagtacg gcctgacccg	ggactcacct	ccctagccct	ggcccagccc	cctgcagggg	1020
ggtgttctac agccagcatt	gcccctctgt	gccccattcc	tgctgtgagc	agggccgtcc	1080
gggcttcctg tggattggcg	gaatgtttag	aagcagaaca	aaccattcct	attacctccc	1140
caggaggcaa gtgggcgcag	caccagggaa	atgtatctcc	acaggttctg	gggcctagtt	1200
actgtctgta aatccaatac	ttgcctgaaa	gctgtgaaga	agaaaaaaac	ccctggcctt	1260
tgggccagga ggaatctgtt	actcgaatcc	acccaggaac	tccctggcag	tggattgtgg	1320
gaggetettg ettacactaa	tcagcgtgac	ctggacctgc	tgggcaggat	cccagggtga	1380
acctgcctgt gaactctgaa	gtcactagtc	cagctgggtg	caggaggact	tcaagtgtgt	1440
ggacgaaaga aagactgatg	gctcaaaggg	tgtgaaaaag	tcagtgatgc	tccccctttc	1500
tactccagat cctgtccttc	ctggagcaag	gttgagggag	taggttttga	agagtccctt	1560
aatatgtggt ggaacaggcc	aggagttaga	gaaagggctg	gcttctgttt	acctgctcac	1620
tggctctagc cagcccaggg	accacatcaa	tgtgagagga	agcctccacc	tcatgttttc	1680
aaacttaata ctggagactg	gctgagaact	tacggacaac	atcctttctg	tctgaaacaa	1740
acagtcacaa gcacaggaag	aggctggggg	actagaaaga	ggccctgccc	tctagaaagc	1800
tcagatcttg gcttctgtta	ctcatactcg	ggtgggctcc	ttagtcagat	gcctaaaaca	1860
ttttgcctaa agctcgatgg	gttctggagg	acagtgtggc	ttgtcacagg	cctagagtct	1920
gagggagggg agtgggagtc	tcagcaatct	cttggtcttg	gcttcatggc	aaccactgct	1980
caccetteaa catgeetggt	ttaggcagca	gcttgggctg	ggaagaggtg	gtggcagagt	2040
ctcaaagctg agatgctgag	agagatagct	ccctgagctg	ggccatctga	cttctacctc	2100
ccatgtttgc tctcccaact	cattagctcc	tgggcagcat	cctcctgagc	cacatgtgca	2160
ggtactggaa aacctccatc	ttggctccca	gagctctagg	aactcttcat	cacaactaga	2220
tttgcctctt ctaagtgtct	atgagcttgc	accatattta	ataaattggg	aatgggtttg	2280
gggtattaaa aaaaaaaaaa	aaaaaaaaa a	aaaaaaaaa			2320

<210> SEQ ID NO 2 <211> LENGTH: 255 <212> TYPE: PRT <213> ORGANISM: Human

<400> SEQUENCE: 2

Met Val Gln Asp Cys Gln Arg Asn Leu Ala Arg Leu Leu Pro Val

-continued

1				5					10					15		
Lув	Val	Met	Arg 20	Ser	Leu	Авр	His	Pro 25	Asn	Val	Leu	Lys	Phe 30	Ile	Gly	
Val	Leu	Tyr 35	Lys	Авр	Lys	Lув	Leu 40	Asn	Leu	Leu	Thr	Glu 45	Tyr	Ile	Glu	
Gly	Gly 50	Thr	Leu	Lys	Asp	Phe 55	Leu	Arg	Ser	Met	Asp 60	Pro	Phe	Pro	Trp	
Gln 65	Gln	Lys	Val	Arg	Phe 70	Ala	Lys	Gly	Ile	Ala 75	Ser	Gly	Met	Asp	Lув 80	
Thr	Val	Val	Val	Ala 85	Asp	Phe	Gly	Leu	Ser 90	Arg	Leu	Ile	Val	Glu 95	Glu	
Arg	Lys	Arg	Ala 100	Pro	Met	Glu	Lув	Ala 105	Thr	Thr	Lys	Lys	Arg 110	Thr	Leu	
Arg	Lув	Asn 115	Asp	Arg	Lys	Lys	Arg 120	Tyr	Thr	Val	Val	Gly 125	Asn	Pro	Tyr	
Trp	Met 130	Ala	Pro	Glu	Met	Leu 135	Asn	Gly	Lys	Ser	Tyr 140	Asp	Glu	Thr	Val	
Asp 145	Ile	Phe	Ser	Phe	Gly 150	Ile	Val	Leu	аұЭ	Glu 155	Ile	Ile	Gly	Gln	Val 160	
Tyr	Ala	Asp	Pro	Asp 165	Cys	Leu	Pro	Arg	Thr 170	Leu	Asp	Phe	Gly	Leu 175	Asn	
Val	Lув	Leu	Phe 180	Trp	Glu	Lуs	Phe	Val 185	Pro	Thr	Asp	Сув	Pro 190	Pro	Ala	
Phe	Phe	Pro 195	Leu	Ala	Ala	Ile	С у в 200	Сув	Arg	Leu	Glu	Pro 205	Glu	Ser	Arg	
Pro	Ala 210	Phe	Ser	Lys	Leu	Glu 215	qaA	Ser	Phe	Glu	Ala 220	Leu	Ser	Leu	Tyr	
Leu 225	Gly	Glu	Leu	Gly	11e 230	Pro	Leu	Pro	Ala	Glu 235	Leu	Glu	Glu	Leu	Asp 240	
His	Thr	Val	Ser	Met 245	Gln	Tyr	Gly	Leu	Thr 250	Arg	Asp	Ser	Pro	Pro 255		
<211 <212 <213	> LE !> TY !> OR	Q ID NGTH PE: GANI	DNA	065 Huma	ın											
tcat	cctt	ge g	gcago	ggco	a to	ctas	acctt	ctq	tgto	tca	gtco	aati	tt (aatgt	atgtg	6
ctgo	tgaa	ige g	jagag	taco	a ga	ggtt	tttt	: tga	tggo	agt	gact	tga	act ·	tattt	aaaag	12
ataa	ıggaç	ıga ç	ccag	jtgaç	gg ge	gagg	ggtg	, ct	taas	gat	aact	aaa	igt (gcact	tcttc	18
taag	jaagt	aa g	gatgo	jaato	gg ga	tcc	gaac	agg	ggtg	jtca	taco	gagt	ag	cccaç	ccttt	24
gtto	cgtg	ga c	acto	19994	g to	taac	ccaç	ago	tgaç	ata	gctt	gcag	gtg 1	tggat	gagcc	30
agct	gagt	ac a	gcag	atac	g ga	aaag	gaago	cas	aaat	ctg	aagt	aggg	jct (ggggt	gaagg	36
acag	ggaa	igg g	ctag	agag	ja ca	tttq	gaaa	gtg	aaac	cag	gtgg	atat	ga	gagga	gagag	42

tagagggtct tgatttcggg tctttcatgc ttaacccaaa gcaggtacta aagtatgtgt

tgattgaatg tctttgggtt tctcaagact ggagaaagca gggcaagctc tggagggtat

ggcaataaca agttatettg aatateetea tggtggaaag teetgateet gtttgaattt

tggaaataga aatcattcag agccaagaga ttgaattgtt gagtaagtgg gtggtcaggt

tacagactta attttgggtt aaaaagtaaa aacaagaaac aaggtgtggc tctaaaataa

480

540

600

660

720

tgagatgtgc	tgggggtggg	gcatggcagc	tcataaactg	accctgaaag	ctcttacatg	780	
taagagttco	aaaaatattt	ccaaaacttg	gaagattcat	ttggatgttt	gtgttcatta	840	
aaatctctca	ctaattcatt	gtcttgtcca	ctgtccgtaa	cccaacctgg	gattggtttg	900	
agtgagtctc	tcagactttc	tgccttggag	tttgtgagag	agatggcata	ctctgtgacc	960	
actgtcacco	taaaaccaaa	aaggcccctc	ttgacaagga	gtctgaggat	tttagaccca	1020	
ggaagaatga	gtgatgggca	tatatatatc	ctattactga	ggcatgagaa	gagtggaatg	1080	
ggtgggttga	ggtggtgttt	taaggcctct	tgccagcttg	tttaactctt	ctctggggaa	1140	
cgagggggac	aactgtgtac	attggctgct	ccagaatgat	gttgagcaat	cttgaagtgc	1200	
caggagctgt	gctttgtcta	ttcatggccc	ctgtgcctgt	gaaacagggt	tcggtgactg	1260	
tcactgtgcc	tgtggcagtc	tgtagttacc	cagagagaac	aaagctgcat	acacagagcg	1320	
cacaagggag	tcttgtaaca	accttgtcct	gctttctagg	gctgagtcag	gtaccacagc	1380	
ttgatctcag	ctgtcctctt	tatttcaaga	agttgacatc	tgagccatac	caggagtatt	1440	
gtattttgtt	tgaggcctct	ctttttggag	gaacatggac	cgactctgtg	cttttgtcta	1500	
tgctggtctc	tgagctcaca	caacccttca	ccctcctttc	tcagccagtg	ataggtaagt	1560	
cttccctatc	ttgcaaggct	cagctcaagt	gtcagcttcc	tctacaaaga	ctttcctggt	1620	
tcccctcatt	ggagtgaaca	agagttgaca	tggtagaatg	gaaagagcag	aagctttaga	1680	
atgagccaga	cctgagtatg	aatgctagat	ccaccactta	gctagtcaac	cctgccccct	1740	
gcctcaagtt	ttaattttcc	tatccattaa	gtgaatataa	taatacctgt	gtcacaggat	1800	
tattttgaga	attaaatgag	attaggtcta	tgaaagcacc	tagcagagtt	cttggcatat	1860	
aggaggcatt	cattaaatat	ttgttcttcc	ccttttatac	ccattacttt	tctttttctg	1920	
aactaaaata	atacttggtt	ctatctctga	aataacatcc	aagtgaaaaa	tcaacaacat	1980	
gaaagagcag	ttcttttcca	gtggatttgc	ttcttaagga	gcagagatta	tgtaatctaa	2040	
cagootocaa	catacaaaga	gctttgtatc	tagaacaggg	gtccccagcc	cctggaccgc	2100	
caactggtac	gggtctgtag	cctgttagga	accaggetge	acagcaggag	gtgagcggcg	2160	
ggccagtgag	cattgctgcc	tgagctctgc	ctcctgtcag	atcagtggtg	gcattagatt	2220	
ctcataggag	tgtgaaccct	attgtgaact	gcacatgcaa	gggatctggg	ttgcatgctc	2280	
cttatgagaa	tctcactaat	ggctgatgat	ctgagttgga	acagtttgat	accaaaacca	2340	
tececeegee	ccccaacccc	cagcctaggg	tccgtggaaa	aattggcccc	tggtgccaaa	2400	
aaggttgagg	actgctgatc	tagaggacca	atttattcaa	tgttggttga	gtaaatgagc	2460	
tcttggatta	ggtgatggaa	aaatctgaaa	aaacagggct	tttgaggaat	aggaaaaggc	2520	
agtaacatgt	ttaacccaga	gagaagtttc	tggctgttgg	ctgggaatag	tcataggaag	2580	
ggctgacact	gaaaagaagg	agattgtgtt	cgtttcttct	tctcagagct	ataagcaaag	2640	
gctgaaagtt	ctagaaaaag	gcaagttttg	tttcagtaga	aaaaaggata	atcagaacca	2700	
tttttagaaa	atggaatgag	actacttttg	aggccatgag	ttccttgtcc	ctggagagat	2760	
gagcagaggt	tggacaagtg	cttaccagag	atcttgtgga	ggcagaaact	gtgcatctag	2820	
cagagcattg	gcctaaccct	ttcaaatgag	atgctgttaa	ctcagtctta	ttctacatgg	2880	
taggaatcct	gtccctttgc	ctcctgctac	tttgggcctc	tcaacctctt	ggttttgtgt	2940	
gcaggtgaag	atgtctggag	gtgtccaggc	tgtggggacc	acattgctcc	aagccagata	3000	
tggtacagga	ctgtcaacga	aacctggcac	ggctcttgct	tccggtaggt	gggcctatcc	3060	
tcccatcttt	accagtgtac	tatgggccaa	gcactatttc	atgttctgat	ggaaaacaca	3120	

gaaacaagct	tctgagttga	gaatttcaat	cttagggtgg	ggaaaggaat	gtaccaagga	3180
agagctcatg	accasacete	aagtgtggcc	cccctgaacc	caggttaaat	tggaagagcc	3240
ataaatgggc	cagctggagg	cagggtgggg	ggatgagagg	agccctttcc	agggttgtcc	3300
catatecete	actttatggg	tgaggaaact	gaggcccagg	aagagtgact	ttcctgtggc	3360
tgcactacag	attatgcagg	tacttcaaga	gttgtttgta	ttcttatttt	attttatttt	3420
attttatttt	attttattt	attttatgag	agggattctt	gctgttgccc	aggctggagt	3480
gcagtggtgc	aatctcggct	cactgcaatc	tetgeetget	gggttcaagt	gatttttctg	3540
cttagcttc	ctgagtagct	gagatgacag	gcacctgcca	ccatgcgcag	ctaatttttg	3600
tattttagtg	gagacggggg	tttcaacatg	ttggtcaggc	tggtcttgaa	ctcctgacct	3660
caaatgatgc	acccacctcg	acctcccaaa	gtgctggaat	tacaggcgtg	aaccactgtg	3720
ccagccaag	agttgtttt	agtgtggttg	gcagagccag	ctcttccttc	accacaggat	3780
gcctccctag	gttcctactt	tttgttacta	gcttttatta	tagctatatt	attattatta	3840
tattattat	tattattatt	attattgaga	cagagtctcg	ctctgtcgcc	caggctggtg	3900
acagtggtg	cgatcccggg	ctcactgcaa	cctctgcctc	ccgagttcaa	gcagttctcc	3960
gcctcagcc	ccccgagtag	gtgggactac	aggcgcctgc	caccacaccc	ggctaatttt	4020
gtatttta	gtagagacgg	ggtttcacct	tgttgaccag	gctggtctgg	agetectgae	4080
tcaggtaag	tgctagaatc	acaggcgtga	accactgcgc	ccagccaaga	gttgttttta	4140
jtgtggttgg	cagagecage	tcttcctcac	cacaggttgc	ctccctaggt	tcctactttt	4200
gttactagc	tttattatag	ctacattatt	attattattg	ttattattat	tgagacagag	4260
ctcgctctg	tcgcccaggc	tggtgtacag	tgatgtgatc	ttggctcact	gcaacctctg	4320
cccccgagt	tcaagcaatt	ctcctgcttc	agccccccta	gtaggtggga	ctccaggcac	4380
tgccaccac	gcccagctaa	tttttgtatt	tttagtagag	gcggggtttc	accttgttgg	4440
caggctggt	ctcaaactcc	tgacctcagg	tgatccgcct	gcctcggcct	cccaaaatgt	4500
gggattaca	ggcatgagcc	accgcgccct	gcctatagct	acattattt	tgtaggcagc	4560
cagtttctt	aaaaattata	cagacttcaa	atcagatttg	ttcctgctgt	ctgaggctca	4620
jtttcttcat	ctggaaaatg	gatggtaata	atcttgttga	gattgaatga	aataatatat	4680
cagtgtatc	cagtacatgg	tagacaccca	gtgaatggtt	attccttcct	cccatcggat	4740
ggaattctc	aagggtggga	acttgtcttt	atattcttca	caacgtaaaa	tagttgaaat	4800
tgttggtgg	aaagaagagc	agtccactcc	agaggctgga	tgggcatgcc	tggcccccaa	4860
gtctgaagt	ggtagggctg	tgcctatatc	ctgagaatga	gatagactag	gcaggcacct	4920
gtgctgtag	attccagctc	ctgcacatag	ctcttgttgt	aaaacatccc	tgtgcttata	4980
caagtaatt	gagttgacct	ttaaacactt	gcctcttccc	tgggaaccat	ataggggatt	5040
gcctggaga	cgtctggcct	ctggaagagt	tggaaagcag	ccatcattat	tatcctttcc	5100
ttcagctat	aactcagagc	tctcaagtct	tttctgtgga	tcttattgcc	ttggttcttg	5160
cccttttac	tcccagggaa	gttgattctg	tcttttctgt	tccatttagt	atgacaggag	5220
agagaatgt	cagagctgta	agggacctta	tagttaaagc	ctttggctgg	tcctttcatt	5280
tatagctgg	gactaataag	taacgtcaaa	acccaatgag	ttcacagatt	gggtctcgcc	5340
tggcatgta	acccatatgt	tcatattctt	gctgttttcc	tatgtgtatg	aatattttct	5400
tccaaaata	agcaggacag	ggtagagcaa	gttaatcttt	ggaatttctg	gattctctta	5460

				-0011011	iueu	
gagctaaaaa	acttcagaac	tagaagaaac	cacccactat	atggtataac	ccattcatat	5520
cacagatgag	gcctgaaacc	aaaaagactt	gctcaggcca	tggatgacaa	gagetggeee	5580
tagcactgaa	ctcttgggtc	atttgtaggt	ctagtcagat	gctagcttgt	tagctctgtg	5640
cgtgcgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgagat	agagacagaa	agataacata	5700
tgtacacaaa	tacataaaga	ggaagtagac	acgttagcat	ggtagataag	agtacaggca	5760
ggccaggcgt	ggtggctcac	gcctgtaatc	ccagcacttt	gggaggccaa	ggcaggtgga	5820
tcacctgagg	tcaggaattc	gagaccagcc	tgaccaacat	ggtgaaaccc	catctctact	5880
aaatacagaa	aaaaattagc	ttggcatggt	ggcacatgcc	tgtaatccca	gctacttggg	5940
aagctgaagc	aggagaatcg	cttgaatccg	ggaagcagaa	gttgcagtga	gccgagattg	6000
tgccattaca	gtctagcctg	ggcaacaaga	gggaaactcc	atcgcaaaaa	aacaaccacc	6060
accaagagta	caggctatgg	aatgagacta	tggttttaaa	tcctggcttt	gcaatttatt	6120
aactagcctt	aagtgacttc	cctgagcttc	aggcaccaat	ctgtaaaatg	aggataagaa	6180
tattactcat	gccacatggt	tgttagggag	gattaaatgt	gataacctat	ataaagtggc	6240
tagcatagca	tctgacatat	agaaaactct	taatagggcc	ggacgtggtg	gcttatgcct	6300
gtaatcctag	cactctggga	ggccgaggca	gaaggatcgc	ttgagcccat	gagcccagga	6360
gtttgagacc	agcctggcca	acatggcaaa	actccacctc	tacaaaaaat	acaaaaatat	6420
tagccaggcg	tgatggcaca	cacctgtagt	cccagctact	tgggaagctg	aggagcgatg	6480
attacctgag	cccagggata	tcaaggctgt	agtgagctgt	gatcatgcca	ctgtactcca	6540
tccagctggg	ggacagagtg	aaacccctgt	ctcaaaacaa	aacaaatgaa	aaaaaaaacc	6600
cttaataatc	agtaactgtc	actttatatt	atgttgtgag	tgtgtgtcta	tatacaccta	6660
tatgtataca	tttctcttat	tacacattca	ttggtgatct	gatgtggagc	cccagggatt	6720
aagggcaact	ttgaactacc	ctgacacaat	caagccaaat	atcattcccg	tggaggaagt	6780
agagtatcta	ggttctgtct	cctagttgca	gctttacctt	gaggacagag	actctaatcc	6840
agctgtgctg	aaggagcaca	tctcctgact	tctgagcttt	cccctggtaa	attcaaactg	6900
gatgtcacgg	cgccctcaga	tagagcctgg	taatttgccc	tggggagagt	gactgtcttt	6960
tggatctaat	ttgacttttg	ccccagttgg	aggaaaatct	tcagggctag	gaaggattgt	7020
atttgtctga	ccccagagat	aacctgggtt	ttgaggaaca	tggggcatca	acctgaatgg	7080
tcttgtaaga	tctctcccac	gccagcttgc	cagtgtttct	ctgatgaatt	tagagtacct	7140
gagtagtgca	ggcctgctgg	gaggaggact	ctccctctgt	gctactcaga	gaaattcatt	7200
cttcaaggcc	cccttccagc	cttgctctta	cccagctggg	ctacagttac	aataaaggaa	7260
atgacttttc	ttctcccctt	ccccagtac	ctttgttttc	ctagtcacag	ggtggggctg	7320
gatattgaat	ggagaaattg	ctggggtcca	tcctaaactc	ctccctcat	ctctccctta	7380
cattacccca	ttcttctgtc	tgcagccaca	tccataatcc	tgcctctgtt	agccttccga	7440
cagaccctca	ggtgcccagg	acaacaggaa	gctacttaaa	gctggaacct	cagactgtgc	7500
aatggaggcc	agtgacaaaa	ctgaaagtag	ctctgtcagt	aattgtgctg	gtgcgattag	7560
gcagctggcc	agaatctttt	ggatctcctg	gacatatggc	tgactagtcc	teccaageet	7620
tcccaacagg	cctcttttt	ttccttttt	tcttttcttt	ttttcttc	tttctttctt	7680
tcttttttt	tttttttag	gctagtgaag	tgaaattgtg	ggagtggaaa	aggaacaaag	7740
aaatcggtaa	ctggtagtga	tcaattactt	gtaaacacta	ttgtacttgg	accagcccag	7800
taggcctttt	ttaaaactct	gagttacctc	tctttccttt	ccttgagcag	tgccattaat	7860

tctgtatctg	gggcaatcct	ttctgatgtt	ctctggacct	ggctctctct	ccttaggaga	7920
ggccaggaga	gtagccagag	agcatgtcat	ttgtagctga	ggttaaagtg	tggagctatc	7980
aatggtgacc	tggcctcttg	gcatgttagc	aagccagagg	accttgacaa	cttttttgat	8040
gattgtccgt	tcaccctgat	caaaggtgtt	tggcttagga	ggagggaaga	aaagctaccc	8100
ctattagtct	tgatggcccc	agcgtgggtc	tctattgctt	gacctggttc	ctagcagcat	8160
tatcagaagg	aaaatccacc	gctcttaagg	ctcctgggaa	ctttcaggac	ttcctttctc	8220
aggattgcaa	acataagact	atttgagctt	tcacttttga	aaagcggtta	ctaataccta	8280
tactctggga	aagggctaat	gcagatagaa	gactgtggtc	actgcatcag	gcaacagacc	8340
atttccgcta	aatttagtga	ctccaggaag	gccagtgaag	aaataacaca	cgtagcaacc	8400
agagactgtg	ttgtaatatg	ttggctgaca	gcagggtact	ttctgtgatg	ctgaaagcca	8460
cattcatttt	ctctcccctc	atccccatct	aagcaagcct	ggtagaatca	taattacagt	8520
aataggtacc	acttattgag	tactctgtgc	cagacaccct	cctgagcata	cgacatgcat	8580
agcacattta	atccttacaa	tgacttaata	aaatgtagta	ctagtcttac	ctacttcgag	8640
aatagggaaa	tggaggttac	ttgtttaaag	tcacagagct	aataggtagc	atagctgaga	8700
tttgaactca	ggcattctta	ctccttgcct	gcaagagtct	cttggcattc	ttgaatgcaa	8760
gcatatttct	taacctcact	gaggctcagt	ttcctcttat	ataatatggg	gtaaagagcc	8820
ctcaccctgc	ctgccacaca	ctggtagtgt	cagataacat	tgaagggtgt	tagtttaaag	8880
gcttcatgga	ctctataatg	tcaacaaaag	tgctgttaac	tttcttctgg	gtctcaggct	8940
cctgatgtag	agtcagtgga	gcaaccctgc	catctgctgt	tatgctgttg	atgttgctgc	9000
cacacttact	aacctaaacc	tttgattctg	gctgtggcct	tctccagaag	gtgtttactc	9060
atttgtccag	tttatctttt	aggaaacagc	cagcccgtag	atcattaagg	ctggctattg	9120
gacagggggc	tggggcctgc	ctgacagagg	aaggaagggc	agacatctgg	ttcttcctct	9180
gcccctacaa	gagactccag	cctgaccaca	gagtggtact	cctaggatgt	agcagcagca	9240
tatgagcttg	aatgtgcctt	aatcctgctc	tttactttga	gaagagaa	ctaaggaccc	9300
acagatgttt	cacagettet	ataggaggca	gaggtagaaa	aatggagaga	gatgaggcca	9360
gagatagata	actgatatta	attaaacgtt	gtattaagaa	cctcacttag	attatctgat	9420
tcaatcttca	taataaccct	gcaaccccca	ccttttttg	agaacagggt	cttgctctgt	9480
tgtccaggct	acagtgcact	ggtacaatca	tagttcactg	cagtgtcaac	ctcctgagct	9540
caagcaatcc	teccacetea	gccttgcaag	cagcttggac	tacaggcgtg	ccaccacacc	9600
ttgccatttt	ttttatttt	aagtagaaac	aaggtcttat	taatactatg	ttgcccaggc	9660
tggtcttgaa	ctccagcgat	cctcctgccc	cagcetecca	aagtgcttgg	gattacggaa	9720
gtaagccact	gtgcctggcc	agtgcaaccc	ccattttata	ctaaaacagg	aaggcccaga	9780
aaggtttgga	gtaacttgtc	cagggtcaca	cagatgatat	ttgaactcag	gtctccctgg	9840
ctcccaagag	agtctgcttt	ccactaggac	tcccaggaga	0000000000	aaaaaacagt	9900
agacttggag	acagaaaatc	tgatttgagt	cttagttgag	ctaggctaac	tgtgtaactg	9960
tgggcaagtt	ccttagcccc	tgtgagcctc	agtttcttat	ctgtaaaatg	tcataaaaga	10020
aatccatctc	atggagtagt	tgtgatgatc	aaggactctg	aaaacattag	aatggtttaa	10080
tgtgaaggat	tagcagcagc	acatggcaac	attgtgcatc	ttatattaac	tatccaaata	10140
tatcaagcgt	catttgctat	atataaaagt	catcaaatta	ggcactgtgg	gggatacgga	10200

gttggcatac	tagcctggcc	tcttaattaa	ttcattaatt	agcttattta	tttttgagat	10260
aggtcttgct	ctattgccca	ggctggagtg	cagtggcatg	atgatagett	actatageet	10320
caatctccca	ggcttaaaca	atcctcctga	gtagctggga	ctacaggcac	acactaccat	10380
gcccagctaa	tttttttta	attttttgta	gagacagggt	cttgctctgt	tgcccaggct	10440
ggtctcaaac	tcctgggctc	gagatectee	cacctgggcc	tcacaaagtg	ttgggattac	10500
aggtatgagc	cacggcacct	ggcctggtct	cttaactggt	tccctaagac	agctggaaat	10560
agagaatgtc	atggagcatt	cctaaccatg	ggctccagcc	tggctttcat	tctgtttctc	10620
ccctgaaaca	acattccttt	agtaatattc	cgaataacag	cttcatcagt	ctgtctaccg	10680
accactcttc	aggcttcatc	ttatatgacc	tcccaaactg	cactaagggt	tgtattagag	10740
aaaagtggat	aaagttcgga	gtcaggctgc	ttgagcttaa	atgccagctt	cacttaccag	10800
ccacctgacc	atgagtcagc	tgcttaacca	ttctttgcca	cagtttcctt	gtctatgaaa	10860
agggaaatgg	ctcccacctc	aaaaagttgt	taacattaaa	ttcaatcatg	tattcaaagt	10920
cctgagcaga	atgtctggcc	atgactggga	cttaacagat	gttagcattt	attattagta	10980
tctgtcagtc	ttgaaatgtt	ctcttccctt	ggctttcatg	acattccaca	ctctcctggt	11040
tttctcttac	ctctctggta	atacctgttt	gcttatcctt	ctttgtccag	ctctgggatg	11100
ttaccattcc	ttcaggcgtg	ctgttttctc	cttaggcagt	cttacacaca	ctcatgactt	11160
ccttccattg	tcctccacac	actgatgacc	ctaaaatcag	tatctccagc	ctaaaccttt	11220
ccactgagtt	ctagacccat	atgttgtact	atcaacctgg	cttgtccatt	tgaatgtctt	11280
ccaggcactt	cagactctct	tctctagact	ttgctggact	ttcactcttc	ccctaaaac	11340
tggctcctct	tccactgaaa	catgtatgtc	attgagaggc	accaccatcc	acccagtgcc	11400
taagccagaa	acctaggaat	ccttgatacc	tgttctctct	catcctgcat	atccaagcct	11460
atcagtttta	tctctaaatt	atattttggt	aggtttactt	ctttcctttt	ctcccaccac	11520
caccctgctc	caagctacca	tcatctcacc	tggatgtctg	caatagcctc	atctcccaca	11580
gccactctgc	accccctaat	ctgttctcta	tagagcagtt	ggaaggagtg	atttttgttg	11640
tttgttttgt	tttgttttag	acagagtete	actctgttcc	ccaaggctgg	agtgcagtgg	11700
cacaatttcg	gctcactgca	acttctgcct	cccgggttta	agcaattctc	ctgcctcagc	11760
ctcccaagta	gctgggatta	aggcaccggc	ccccataccc	agctaatttt	tatatttta	11820
gtagagatgg	ggttttgcca	tgttggccaa	gctagtctcg	aactcctgac	ctcaagtgat	11880
ccacctgcct	cggcctccca	aagtgctggg	attacaggtg	tgagccactg	cacctggctg	11940
gaaggagtga	tcttaaaaaa	aaaaaaaaca	aaaaaaaact	tgactgtgtc	actctgtgtt	12000
gtctctccta	ccttgtatac	ttccacaact	tcccagtgtt	cttggataaa	gaccaaaatc	12060
cttaacttgg	ccaggcgcgg	tggctcacac	ctatcatctc	agcactttgg	gaggccgagg	12120
caggcagatc	atgaagtcaa	gagattgaga	ccatcctggc	caacatggtg	aaaccccatc	12180
tctactaaaa	atacaaaaat	tagctggtcg	tggtggcgtg	tgcctgtagt	cccagctact	12240
tgggaggctg	aggcaggaga	atcacttgaa	cctgggaggc	agaggttgca	gtgagcccag	12300
atcacgccac	tgcactccag	cctggtgaca	gagtaagact	ccatctcaaa	aaaaaaaaa	12360
aaaaaaaaa	ttccttaatt	tggcctacag	tagagccctc	cgtaatgtgg	cctctctcca	12420
catctccaca	acctcctgct	ccctgcactt	cageeteace	tctcttctgg	acaggccctc	12480
cttctgacaa	gggctttgtt	cattctgctc	cctctgccta	gaatgccccc	ttactctgtt	12540
cacttaactc	ctgcttatcg	tttagatctt	tacctggatg	gctcagagaa	atatagaagt	12600

aattcctcac	cctgaaaaat	aggttaggtc	cctgttttat	gttttcatag	acctttcctt	12660
tgaggctttt	tttaaaaaag	tagttttaat	ctcacattta	ttcatgtgat	catctcctta	12720
atgatatctt	aagacctcta	atagaacaat	ttggtcatgg	actgtggggt	ttttgcccct	12780
cattgtgtca	gcactgagca	tattgttggc	ataggaggga	tatttgttga	atgaattgct	12840
agaggtggcc	aagagatatg	atgtaagtca	ggcttttccc	tgcccttccc	cttccccttc	12900
cccacatcct	tcctatagca	gccaccgtgg	ctgcagttac	tgtaaatggc	aagacggaat	12960
cagttccgga	cattgggttg	ttttagaaaa	ttgcctgcaa	gtgtcagggt	gataagttaa	13020
agctttgtct	tttgccctca	gaggagctat	cccatagtga	gtagaagcca	gagaagctga	13080
ccccaggagt	ccttctttcc	agcagcaggt	cttgagctgc	acttctctgt	agctacaatc	13140
caggcaggaa	caagccctag	gtacctccgg	agaggagggc	aagagaggaa	gaatgagttc	13200
agctactcta	gccaccaaac	tgattatgaa	ttgccctgaa	atctgaaaaa	tttcaattcc	13260
aatcgtaagt	ttgttttgtt	tcattttgtt	ttcttaaatt	gtatatttga	aagatggcat	13320
taactaaaga	tatatattca	atatagagtg	gaaaaaatgg	aatacttgca	tagtatcttt	13380
tacttatagg	tgatttatga	tggggagtgg	ggtggatagg	ttggcagttc	ccccaagaag	13440
ttggaaatga	agtttgtcct	ctgtgagttg	aactaattag	atccacaagt	aatgaaagca	13500
gtattgtgtt	gtagttaaga	gcacactcta	gaaccagatt	gcttagtttc	aaatcctggt	13560
tctgcctttt	attatctgtg	tactttgggc	aagttacttg	ccctttgtgt	gcttcatttt	13620
tctcatctag	aaaatggaga	ggccaggcgt	agtggctcat	gcctataatc	ccagcacttt	13680
gggaggccga	ggcgggcaga	tcacctgagg	tgagaagttc	aagaccagcc	tggccaacat	13740
ggtgaaaccc	tgtctctaca	aaaatacaaa	aattagccag	gcatgatggc	gggtgcctgt	13800
aatcccagct	acccaggagc	ctgaggcggg	agaaacactt	gaacctggaa	ggcagaggtt	13860
gtagtgagcc	aggattgcac	cactgcactc	cagcctgggt	gacaagagct	agactcagtc	13920
taaaaaaaaa	aaaaaaaac	aaactggaga	tacaggctgg	gtgcagggct	tacacttata	13980
atatcagcac	tttgggaggc	ctaggcggga	ggattgcttg	aactcaggag	tttcaagatc	14040
agtctgggta	acagagcaag	acctcatccc	cacaaaaaat	caaaaattta	gccaggcatg	14100
gtggctcatg	cctgtggtcc	cagctactca	ggaggctgag	gcgagaggat	tgcttgagcc	14160
caggaggttg	aggctgcagt	gaaccatgac	tgcaccacta	catgccagcc	tggatgacag	14220
agcaagaccc	tatctcaaaa	aaaaaaaaa	aaagaaacga	gccaggcgcg	tttgctcacg	14280
ccagtaatcc	cagcactttg	ggaggccaag	gcaggtggat	cacttgaggt	caggagatcg	14340
			atctcaactg			14400
gcatggtggc	atgctcctgt	agtcccagct	actcacttgg	aggctgaggc	acgagaatcg	14460
cttgaaccca	ggaggcggag	gttgcagtgg	gccaacatca	tgtcactgca	ctccagcctg	14520
ggagacagag	cgagactctg	tctcaataaa	taaataaaca	taaaataaaa	taaaataaaa	14580
taaaataaaa	taaaaaaata	tggaggccag	caggcacggt	ggctcacgca	tgtaatccca	14640
gcactttggg	aggccgaggg	gggcggatca	caaggtcagg	agatogagac	catcctggct	14700
aacacagtga	aaccgcgtct	ctactaaaaa	tacacaaaat	tagccaggca	tggtggcagg	14760
cacctgtagt	ccctgctact	caggaggctg	aggcaggaga	atggcgtgaa	cccgggaggc	14820
ggagcttgca	gtgagctgag	atcgcgccac	tgcagtccag	cctgggcgac	agagcaagac	14880
tctgtctcaa	aaaaaaaaa	aaaaatggag	gttgggcgcg	gtggctcgcg	cctgtaatcc	14940

cagcactttg	ggaggtcgag	gcgggcggat	cacctgaggt	caggagttcc	agaccagcct	15000
ggccaacatg	gtgaaacctt	gtctctacta	aaattacaaa	aattagccag	gcacgatggc	15060
aggcacctgt	aatcccagct	acttaggaga	ctaaggcagg	agaatagctt	gaacctggga	15120
gatggaggtt	gcagtgtgct	gagatcgcgc	cactgccctc	cagtagagtg	agattccgtc	15180
tcaaaaaaaa	aaaaaaagaa	gaaatggaga	tacaaactta	ctacctacct	ccttacaacc	15240
taccctcaca	gtattactgt	gaataaaagt	gtgtgtagca	ctgggaacac	tattcacaga	15300
gcactcatga	atgtttgttc	tttgttatta	gttactagag	aggcaaatgt	ctgccagggc	15360
tgaataatat	gtgtgaattg	gtgattgtcg	cacatatcta	aagaagtagt	tattttttc	15420
aattaaaact	tagtttaaaa	accaatataa	ggccgagcgc	agtggctcac	acctgtaatc	15480
ccagcacttt	gggaggccga	ggtgggcaga	tcatttgagg	tcaggagttc	gagactagcc	15540
tggccaacat	ggtgaaaccc	tgtctctgct	***************************************	aaaaagtaca	aaaattagcc	15600
aggcatgatg	gcaggtccct	gtaatcccag	ctacttggga	ggccgaggca	ggagaattgc	15660
ttgaacccag	gaggtggagg	ttgtagtgag	ccgagtttgt	gccactgcac	ttcagcctgg	15720
gtgacagagg	gagacactgt	ctcaaaaaaa	000000000	accaaaacca	atataataaa	15780
taagtggcca	gcaatgaaac	agaaagtgaa	aagttagtga	agcaaaacta	gtactgtatt	15840
cagataaaga	tgctgaatct	agatttggtc	accagaatag	ggtcctttgt	ggcaacctgg	15900
gctagtttgg	ctgactcacc	actgccagga	tgaaatttct	ttcagtggct	actcatttcc	15960
ctttatttta	agtccatgct	cacagagcaa	ccttctgatg	cctaattcag	cttcctggga	16020
tacttaataa	caggaagggt	ctggaagtag	tacctgtata	ggggatatga	gtgttctgat	16080
tttaatagtc	aattcataag	tgtacagagg	gtttgataaa	tggttaggtc	agaaccatca	16140
cagaatgtct	acacctcttt	ggacattagg	aaggtcaaaa	acctgaaagg	ccaaaagcta	16200
ggcctagatt	agggtcattc	accaagaaaa	catcagcctt	gaagagttct	ctgggtggtc	16260
caccagtcaa	ccttcctttg	atcacacctc	cttcctcgtt	gcttctttaa	gcattgacct	16320
gtaatgggta	tggaattttt	tgctcaccta	actccttcct	tttacagagg	aagaagttga	16380
agcccagaga	gatttaatgg	cttgcctaag	atcacacgca	gattttctgt	taaccagggt	16440
gatttttcag	gtgttccctg	ccagacgagg	gctttttcc	ttgaattgcc	tagagatttc	16500
ttgagatatc	cgaagcattt	ttcccagtgc	agcctggaga	aggatgtccc	tgtcaacaca	16560
gcatttgtta	ctcaatgtta	gacattcaat	tttctaatta	gtatcatgga	gcaacagtgg	16620
atgattatct	ataaggggtt	gcaattccat	gcttatgtgc	ttacagccca	tatagacaaa	16680
tatcagctgt	taaaatgaca	aggcagtaga	gatgtggccc	caggacaaag	gcatactctg	16740
ctgttagtga	acactagttg	gccagcaaat	ttcacatggg	catatacacg	gccaactgta	16800
gactttaggc	atttataccc	attcagagag	ccaaactggc	aactaaagat	cagcattctc	16860
tttggcattt	cagctttgcg	ttctgttaaa	aatcactgct	tgcttaaata	cctctgatag	16920
ctcttcactg	cctgtaggca	actctttagc	ctagcagact	tggtctttag	tgctctgccc	16980
ctactctctt	ccaccattct	ggcctcctgt	ctaattgctg	cccatatgtg	ccatgcacta	17040
gagcttacag	acctgctcag	cgttatatga	gcataccata	ctctttatgc	ctcagtgcat	17100
ttgcacatgt	tgttccttca	ggccagaatg	cctgttactg	cctggcaatc	agcctattag	17160
agtctgccaa	taccatccca	tcttctgtgg	aggagccccc	cgccaaatcc	acccatacct	17220
ctccccacca	atcagagact	tcttctctct	ttgttattct	cttcgttatt	ctcttcatac	17280
ctcagttata	tccatttcag	tatttgttta	cacatctagc	atcactctta	gagtgtgaaa	17340

ttctccaagt	gtggagccgt	atctagtttg	tctttgtatc	ccagagetta	gcaaagtgcc	17400
tagaatgtag	tgggtgctca	gagtgtttgc	tgggtgaatg	atgtatttgt	tgaacgactc	17460
tttggacact	tgaataaagt	ccatccagta	tgcaccatta	ccatctcttc	gctctacaat	17520
attcttttag	gcaagagctt	atcttttgag	gtgataagat	aagctcaaac	ttatgtagac	17580
taagacctca	gtctgtaaat	gtcatcccta	agtcttaaac	catcasascc	agggcctcaa	17640
ggaatggcat	gccttctgca	actgtagcaa	cctgctgtgc	ttattttgcc	gtgttttca	17700
ttttccccc	aaaagctaga	gtcccttctc	ccatgggcag	tgctggaagt	gtgctaacaa	17760
attctttctc	catactgctt	acgattacaa	aaaaaaccct	cagcatctca	tgccagactt	17820
gagttaaggt	tgttttcttt	tgtgtgtcag	ctgtattctg	gtcatgactt	cctgatgatg	17880
ccctatagag	attttgctga	gatcagaggg	tgctccactg	ccatcagtag	cactgactct	17940
tgcagaagca	ccgtttctga	agttggctaa	tgtcatccct	cacgtttgtt	tgtttgaaat	18000
ttgttttagt	tccagagata	gcactttcat	ggaatgacgc	tatcttctag	aatcactttt	18060
tttttttt	tgagttggag	tctcgctgtg	tcgccaggct	ggagtgcagt	ggcacaatct	18120
cagctcactg	caatctccac	cttccgggtt	caagtgattc	ccctgcctca	gcctcccgag	18180
gagctgttac	tacaggcgca	cacccccact	cctggctaat	tttatgtgtt	ttagtagaga	18240
cggggtttca	ccgtgttggc	caggatggtc	tcgatctcct	gactttgtga	totgootgot	18300
tcagcctccc	aaagtgctgg	gattacaggt	gtgagtcacc	gcgcctggcc	tagaatcacc	18360
tttttatacc	ataacgtgag	caccactgcc	gcgtcaccaa	ggaaagagag	aggcagctac	18420
tgtggggtta	caaatgggta	agagtggcac	caggaaggtg	aaagtctcta	cttagccaag	18480
gcttaacaaa	atgtcaatca	ccaaacattt	atttattaag	ctacgttcag	gataagaaga	18540
tgaacaagct	atctgtacat	tcattttctc	gtttgtaaca	aggtaatgat	agtgatctat	18600
cctgcctgcc	tctgagggtt	attgtgagaa	taaaatgaaa	tcaagtggaa	aagcacttag	18660
gaaaaagaaa	agcattggtt	ttcaattgtt	agtgtggatc	agaaacactg	gggcttgttt	18720
aaaatgcaga	ttcttagccc	cagtctcagc	gattctgatt	ctgtatatct	gaagtgggac	18780
tcaggaatct	tgattttcaa	caagctgacc	agagggtcca	atgctgctat	tcctttagtt	18840
acactttcag	aaatattact	gtaaatcaaa	tggcaagaat	aaaatagtta	tttgaggcag	18900
ttttagtatg	ttggacctgg	agtccaaaga	cttgggtcaa	actccagctt	tgtcagttcc	18960
tagacctgtg	accttaaaca	gcaaccttct	ctgtgaacct	tagttccctc	aggaacggct	19020
ctggtcacct	cctgctgtac	tccattgatg	actcaccaca	taaggctccc	tgggagtccc	19080
ccaaaccttt	gctctcttaa	ctccttttac	agcctcctac	atctcctgca	ggtgctgtct	19140
tctcctcctt	tttccaggcc	ctgctctgac	acagcattca	ttctcctctg	ggaagggttc	19200
cttcaatgtg	tctccaagca	catcacaccc	aggaaggacc	ctgtggccat	atctgtctat	19260
caccagatca	aactacgtga	aggcaggcac	taggtactgt	cagtgcccag	cataggcctg	19320
gcccatacca	ggtgtccaca	gatgcctagt	aaagaaacct	atgattcagg	acccccatga	19380
tgagcaacta	tagcactaga	acagtgataa	taactaatgt	ttataatgca	tcttcagttt	19440
acagagggct	tttgtactca	tcatctagtt	tagttcctgc	aacaacctct	tgaggaatat	19500
agcacaagca	ggacaaggga	ageceagaga	tgttaaataa	tttatccaag	tttatgctgc	19560
tgggaagggc	agcactgaaa	ttaaaagaaa	agttttctga	gctcaaatcc	catgcccttt	19620
cctcaatgtg	agctctagca	aggtattcag	gaatcctgcc	tctacagttc	agagcctcaa	19680

19740 1974							
tyatagataa ccaqtqaaa acatqaagte aagtetaat agtectaat attecatea 19920 tyoctagaat ttatgtqaag gaateaaage aaaaggatea taaggettee ttttecagt 19980 atgttttee teettttya aaactgggee agttagetat etecatttt attecatga 20040 tacateccca gegeetggta tatagtagat atggaacatt acacttgga gatattgee 20100 ccatteteca gtttetecaa agttactaac aatggteea teatgtgee aacatattt 20160 cttttteaa tatattggga aataattee ccagteegaa aatetgaaca cattecatgt gacttggtat ceteatatg ettgggette caatteeea teactggee aacatattt 20160 catteteca gtteeteeaa gatagatgee caatteeea teectggee aacatattet 20180 cattgetaaa caaaggatta geetaaatee etaagteet atecatggee caaatteete 20100 catgacatea cattacagga gtageagata etaaactee acetetgge gatteggaa 20400 catgacatea cattacagga gtageagata etaaactee acetetga ggetgtggaa 20400 catgacatea cattacagga gtageagata etaaactee acetetga ggetgetggaa 20520 aaccetgtga agetgggaat tgetgggaca ttttattat tattattat gagacggagte 20520 aaccetgtga agetggggat tgetggaata geatgactet ggeteacege aaccteegee 20640 teccgggtte aacgagtag tgetgeaatg geatgatett ggeteacege aaccteegee 20700 caccacaca tecagetaat tttgtattt tageagaag ggagtteet caagtgeege 20700 caccacaca tecagetaat tttgtattt tageagaag ggagtteete caaagtgeet 20820 ggattacagg catgaagcac catgeetgee egggacetet gtttagaag gatgactget 20820 ggattacagg catgaagcac catgeetgee egggacett gtttagaag gatgactget 20820 ggattacagg catgaagcac catgeetgee egggacett gtttagaag gatgategte 20820 ggattacagg catgaagcac catgeetgee egggacett gtttagaag gatgategte 20820 ggattgggggg gtaatgetta cettecagtg acetgaagt gggagaggaa atggttagta 20940 gatggggggg gtaatgate cetteggagg caggagaggaggaggaggagggggggggggggg	attgctgggt	atgttgagtt	cttgtatctg	atttttctag	atttcctgcc	cacattetta	19740
tycctagaate taagtaacag cteetttet aagtgettae tytecaetta tecaetacta 19920 tycctagaat taagtgaag gaatecaaage aaaaggatea taaggettee tetteteaga 20040 tacatececa gegeetygta tatagtagat atggaacat acaettyga gatattyca 20100 ccatteeteca getteetecaa agttactaac aatggteea tecaettyga gatattyca 20100 ccatteeteca getteetecaa agttactaac aatggteea tecaetygee aacatattet 20160 cttttteaa tatattygga aataattee eeagteegaa aatetyaaca cattecaty 20220 gacttygtat eeteaaty ettygggette caatteetea tecetygee caaatteett 20140 catgacataa caaaggatta gactaaatee etaaagtee acaetteega getygaaca gatagatyee caatteetea gatagaagge aaatattyee tettacetyg tyttetygaa 20400 catgacatea cattacagga gtagaagaga etaaactee acettygaa acaetgaetg 20460 agtteeatya gecagatace gaagtgaget tyteacata tyteeteat taatgetea 20520 aaccetyga agetyggaat tyetyggaaca tettattat etattatty agacggaget 20580 tygeetetyte acetaggety gtytgeaaty geatyateet gyetaacege aaceteegee 20640 tecegygtte aageggate ettygaagaa geaggate gyaggatta agggggaca 20700 caccaccaca tecagetaat tetyactea geatyateet gyetaacaga aceteggee 20700 caccaccaca tecagetaat tetyacteet taggaagaat gyaggattee caaggetyg 20820 ggattacagg catgageca catgeetygee egggacett gettiagaag gatgactyge 20820 ggattacagg catgageca catgeetygee egggacett gettiagaag gatgactyge 20820 ggattacagg catgageca catgeetygee egggacett gettiagaag gatgactyge 20820 ggattacagg catgagecat catgeetygee egggacett gettiagaag gatgateget 20880 gettataatyt agaaagtyat tetygaagagg gyaggaggty gyaggatea atggttagta 20940 gatggggytg gtaatgetta cetteegaa tetiggagget teggagteet caaaacagt teettigggtt 20100 ctteettyat tygagacaate actgaggatg eggagaagggggggggggggggggggggggg	ctgtctggat	atcaggaaag	agtttatcaa	atgcctgtgg	aaatccaaga	taaggtctca	19800
atgetteque accessor e consecuence consecuence analysate atasgette tittecage 19980 atgettete tecetitte a anaectgogoc agetageta etecatitte attecage 20040 tacatecoca gegectigata atasgengat atgganacatt acaetttiga gatattgana 20100 centeteca gegectigata tatagengat atgganacatt acaetttiga gatattgana 20100 centeteca gegectigata anaeattete congetegan anteciganac cattetaget 20220 gaettggiat ecteatatge etigggette cantecea tectagette cangetteat 20220 gaettggiat ecteatatge etigggette canteteca tectagette cangetteatage 20340 tecteteca gatageana gaetagatage anaeattge etitacetgg tigtitigana 20400 catgacatea eatacaga gatagataga etigatagete etitacetig tigtitigana 20400 agetecaga geogatact gatageagata etinacetete accetigana accaetgactig 20460 agetecatga geogatact ganagagaget tigtiticatat taatigeteat 20520 aaccetigga agetigganat tigtigganat getigganat tittattat tiatitatig agacgagate 20700 eticegigite anagegatet etigecteag ecteogeagt agetiggata accidigate agetiggata tetigatitit tageagagat gagetitete eatigtiggee 20700 eaccacaca tecagetaat titigatatit tageagagat gagetitete eatigtiggee 20820 aggitigata egaacactig accidiagat accidigate etigganatiga gaggatitete eatigtiggee 20880 getiatacagg catganacat titiganagagg gagaggaggg geacganam atgitigata 20940 aggitiggica egaacactig accidiagata titigganggigg geacganam atgitigata 20940 gatggggggggggggggggggggggggggggggggggg	tgatgagtaa	cccagtgaaa	acatgaagtc	aagtctaact	agtcactact	atttcactac	19860
adgittitico toctititga aaactgggoc agitagciat otocatitti atticatgaa 20100 tacatococa gogoctggia tatagiagat atggacatt acactitga gatattgoca 20100 cocattotoca gittotocaa agitactaac aatggitoca toccigigoc aacatatti 20160 cittittocaa tatattggga aataatoto cocagitogaa aatocigaaca catitocatgi 20220 gactiggiat octocatatgi citigggotic caattotoca ticocagiti caagitocatgi 20280 aacagitaaaa caaaggatta gactaaatot otaaagitot atecagiti caagitocatgi 20280 aacagitaaaa caaaggata gacagagata otaaactota actocigaa gacagatac 20400 catgacatca cattacaga gaaggagata caaaatatgi tittacotgi gittigtigaa 20400 catgacatca cattacagag gaaggagata otaaactota actocigaaa acactigaca 20460 agitocatga gocagatact gaagigagat tittattat titattatig agacggagic 20580 agottogia agotgggaat tigotgggaa tittattat titattatig agacggagic 20580 tigoctotic aagotgatat titgiaatit tagoagagat agotgggata accicogoc 20700 caccaccaca tocagotaat titgiaatit tagoagagat agotgggata acgggica aagotgggoca 20700 caccaccaca tocagotaat titgiaatit tagoagagat gagagitoto caaagitgig 20880 gotaaaagi cagaacactig accicaagig atotgocigo cicagocico caaagigig 20880 gotaaaagi agaaggaga titgiaagaga gagagagaga agaggaggig gaaggagaga atggitaga 20940 gaaggaggig gaaadgaca catgocigoc caggaccett gittiagaag gatgacgaca 20800 citicottigat tiggaagaga titogaagaga gagagaggig gacagaaag atggitaga 20940 gaaggaggig gaaadgacat ticacagaa titocagaa titocagaa catgacagaagagat titogaagaga gagagagagaga agagagagat ticacacagaa accitigac caaaaagat titocagaa caaacacaga titocagaca catgococaca agagagagat titogaagaa agagatagat titocacaacaa citigaagaa citigaagaa citigacaagaagaagaagat titocacacaa caaaacagat titocagaacagaagaagaagaagaagaagaagaagaagaagaa	tgctgactcc	tgatgatcag	ctccttttct	aagtgcttac	tgtccactta	ttccatcatc	19920
ccattctcca gegectggta tatagtagat atggaacatt acactttgga gatattgcac 20100 ccattctcca gtttctccaa agttactaac aatggttcca tcactgtgca acactatttt 20160 cttttttcaa tatattggga aataattctc ccagtctgaa aatctgaaca catttcatgt 20220 gacttggtat ccctaatagt cttgggett caattctcca ttcctagtt caagtccat 20230 aactgtaaaa caaaggatta gactaaaatct ctaaagttct atccagtgc caaattcttt 20340 tcctttcca tgatacctaa gatagatgac aaatattgtc ttttacctgg tgtttgtgaa 20400 catgacatca cattacagga gtagcagata ctaaactctc actctgtaaa acactgactg 20460 agttccatga gccagatact gaagtgagat tgttcacata tgttctcatt taatgctcat 20520 aaccctgtga agctgggaat tgctgggaca tttattatt ttatttattg agacggagtc 20580 tggctctgtc acctaggctg gtgtgcaatg gcatgatctt ggctcaccg aacctccgcc 20640 tcccgggttc aagcgatact cttgcatcag cctcagcagt agctgggata acggggaca 20700 caccaccaca tccagctaat tttgtatttt tagcagagat ggagttctc catgttggcc 20760 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctc caaagtgctg 20820 ggattacagg catgaacga tttgtaattt tagcagagat ggagttctc catgttggcc 20760 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctc caaaattct 21000 cttccttgat tggagcac catgcctgcc cgggaccctt gttttagaag gatgacgct 20880 gctataatgt agaaagtgat ttggaagagg ggagggggggg	tgcctagaat	ttatgtgaag	gaatcaaagc	aaaaggatca	taaggcttcc	tttttccagt	19980
ccatteteca gettetecaa agetactaac aatgeteca teaetgege aacatattt 20160 ctttttteaa tatattggga aataattete ceagtetgaa aatetgaaca cattetatgt 20220 gacttggtat ceteatatgt ettgggette caatteteca teetagtte caagtetatg 20280 aactgtaaaa caaaggatta gactaaatet etaaagtet atecagatge caaattettt 20340 teetetteca tgatacetaa gatagatgee aaatattgee tettacetgg tgettgtgaa 20400 catgacatea cattacagga gtagcagata etaaactete actetgaaa acactgaetg 20460 agttecatga gecagatact gaagtgaget tgtteacata tgtteteatt taatgeteat 20520 aaccetgtga agetgggaat tgetgggaca tettattat ttattattg agaeggagte 20580 tggetetgte acetaggetg gtgtgcaatg geatgatett ggeteacege aaceteegee 20640 teeegggtte aagegatete ettgeeteag ceteagegat agetgggat aeggggeaca 20700 caccaccaca tecagetaat tttgtatttt tageagagat ggagttete catgsteggee 20760 aggttggtea egaacacttg aceteaagtg atetgeetge etcagectee caaagtegg 20820 ggattacagg catgagecae catgeetgee egggaceett gttttagaag gatgactget 20880 getataatgt agaaagtgat ttggaagagg ggaggagggg ggacagaaag atggttagta 20940 gatgggggtg gtaatgetta cettteagta tttggaaggt teggagteet caaaaattet 21000 ctteettgat tggagteet ecagecaata gagggettea cacaaacagt teettgggtt 21060 ttgaattgtt tgaccagage tttetteega caaaaggttg gggtgattea tecactace 21120 acaccttgee tgaacatea ettggggetg eeggtata acaccteece tgecattta 21200 ctteettgat tgaccagage tteetteega cacaaaggttg gggtgattea tecactace 21240 cegtgecagg tttecaactt atgaaatgtg etggagatta acaccteece tgecattta 21300 tecetactat aattgecagt caaaggatee etggagate acaccacca 21240 cegtgecagg tetecaactt atgaaatgtg etggagatta acaccteece tgecattta 21300 tecetactat aattgecagt eaaaggate etggagate teetagee 21240 ceaagggggg gagggtgga gagggtgaa tataccteea aggacagt ttettacca 21240 ceaagggtgg gagggtgaa atateceea aggacate teagageaggee 21240 ceaaagggtgg gagggtgaa atateceea aggacacac tegggeeagaca 21540 gettateaca teegggaga gagggeeaga aggagacage tegageetee 21780 gettateaca teegggaga gaggggeeagaagagagagagagagagagag	atgtttttcc	tcctttttga	aaactgggcc	agttagctat	ctccattttt	atttcatgaa	20040
gactigata cotcataty citigagetic canticical tectagitic canticity 20280 aactigata cotcataty citigagetic canticitical tectagitic canticitical 20280 aactigataa cananggatia gactaanici citaanitici atecagaty canantetti 20340 tetetitea tyaacetaa gatagatyo anatatity tittaccigi tyttigaa 20400 catgacatea cattacaga gatagata citaanici actitacaga gatagata citaanici actitacaga geografia citaanici actitatica tatatici actitacaga geografia citaanici actitatita tattatia gacagagic 20520 aaccetigiga agetiggaani tyetigacaati geografiaci agetigagaa agetiggaani gadagateti georgagia agetiggaca 20700 caccaccaca tecagetig gigigaani gadagateti ggeorgaga agetiggaca 20700 caccaccaca tecagetig acetigacagi aceticagagi acetigagia aceticagagi acetigagia aceticagagi acetigagia aceticagagi acetigagia aceticagagia aceticagagia aceticagagia aceticagagi gagagagia gagagiatica canagigagia 20880 aggitigata agaangagaa titiganigagi gagagagigi gagacaganag atigitigagia 20940 gatagagigi gatanigetia cetitoagia titiganigagi gagagagigi gagacaganag atigitigata 20940 gatagagigi gianigatia cetitoagia titigagagia titigaatigat 2000 citicatigat tigagagiac cetigagagia titicacaga cananagiti agaacattica citigaggia cananaggitig gigagatica titicacagaci 21120 acacatigae titigaaga citigagiaca cananaggitig gigagatica titicacagaci 21240 cegigecaggi titiccanacti atganatiga citigagagia agagagaagi titicanaca acetigagagi titicanaca acetigagagiaca atatacetica agagagagagi titicanaca acetigagagi cananggatic citigagaga titigaga gaagagaga 21340 gaatigaga atatacaca titigagaga agaagaga 21340 gataatagaa titicagaga aacetacaa aggitigaga atatacacaa acetagagagagagagagagagagagagagagagagagagag	tacatcccca	gcgcctggta	tatagtagat	atggaacatt	acactttgga	gatattgcac	20100
aactggaaa caaaggatta gactaaatct ctaaagttct atccagatg caaatcttt 20340 tetetteca tgatactaa gatagatgc aaatattgte ttttacetgg tgtttgtgaa 20400 catgacatca cattacagga gtagcagata ctaaactct acctegaaa acactgactg 20460 agttecatga gecagatact gaagtgaget tgttecacata tgtteteatt taatgetcat 20520 aaccetgtga agetgggaat tgetgggaca ttttattat ttattattg agacggaget 20580 tggetetgte acctaggetg gtgtgcaatg geatgatett ggeteacege aaceteegee 20640 teecgggtte aagegatet ettgeetaa geatgagat agetgggat acggggget 20700 caccaccaca teeaggetg gtgtgcaatg geatgatett ggeteacege aaceteegee 20700 caccaccaca teeaggetg gtgtgcaatg ettgeegga agetgggat acgggggeca 20700 caccaccaca teeaggetg acctagagtg atetgeetge etcagectee caaggtggg 20700 aggttggtea eggaacactt gacteaagg atetgeetge etcagectee caaagtggg 20700 aggttggtea eggaacactt gacteaagg ggaggaggg ggaaggatea teggggget 20880 gctataatgt agaaaggat tttggaaggag ggaggagggg ggaaggaggg ggaaggagg	ccattctcca	gtttctccaa	agttactaac	aatggttcca	tcactgtgcc	aacatatttt	20160
aactgtaaaaa caaaggatta gactaaatct ctaaagttct atccagatgc caaattcttt 20340 tctctttcca tgatacctaa gatagatgcc aaattattgtc ttttacctgg tgtttgtgaa 20400 catgacatca cattacagga gtagcagata ctaaactcc actctgaaaa acactgaccg 20460 agttccatga gccagatact gaagtgagct tgttcacata tgttctcatt taatgccat 20520 aaccctgtga agctgggaat tgctgggaca ttttattat ttattattg agacggggc 20580 tggctctgtc acctaggctg gtgtgcaatg gcatgatctt ggctcaccgc aacctccgcc 20640 tcccggggttc aagcggttg gtgtgcaatg gcatgatctt ggctcaccgc aacctccgcc 20700 caccaccaca tccagctaat tttgtattt tagcagagat ggagttctc catgstggcc 20700 caccaccaca tccagctaat tttgtattt tagcagagat ggagttctc catgstggcc 20700 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctcc caaagtgctg 20820 ggattacagg catgagccac catgcctgcc cgggaccctt gttttagaag gatgactgct 20880 gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggcacgaaag atggttagta 20940 gatgggggtg gtaatgctta cctttcagta tttggaggct tcggagtcct caaaaattct 21000 cttccttgat tggagtcct ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttctccga caaaaggttg gggtgatca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg cggttatga aggctattg tctccagcct 21180 gtcacagaag ctttcaaactt atgaaatgtg ctgggagatta acacctctcc tgccattta 21300 tccctactat aatgccagt caaaaggattc ctgaagatca acacctccc tgccattta 21300 tccctactat aatgccagt caaaaggattc ctgaagata acacctccc tgccatttta 21300 tccctactat aatgccagt caaaaggattc ctgaagata ttcatccca ggagcagttt 21420 ccaagggggg gagggtgaaa tatatcctcc agtggagcat ttctatcca agtgatgggt 21480 ggcttgggc ctttgaagt ggagggtgaaa tatatcctcc agtggacat ttcatccca agtgatgggt 21600 gtcaaaatgga ttccacctgg gaggggctc tgctgaga accacacac ttgggtctga gcagccagca 21540 gcttacacat cctggggag cagtttcaa aaccctcca caagtcctt gaaggagg tagggggaga ggaggagagg cagtttcaa ccacacacac caagtcctt gaagaggggaga agggggaga gagggggaga gaggggaga cagcacacac ctggagagagc 21600 gtcaaaatgga ttccacctgg gaagggggaga aggaggaga cagcacacac caaggactgg 21800 gtcaaaatgca aagaggagag cagctcacacacac caaggactac ccaagaccac caagaccacac gaccacacac caagaccacac caagaccac caagaccacac caagaccacac caag	ctttttcaa	tatattggga	aataattctc	ccagtctgaa	aatctgaaca	catttcatgt	20220
catgacatca cattacagga gtagcagata ctaaactete actetgtaaa acactgaceg 20460 agttecatga gecagatact gaagtagact tgtteacata tgtteteatt taatgeteat 20520 aaccetgtga agctgggaat tgetgggaca ttttattat ttattattg agacggagte 20580 tggetetgte acctaggetg gtgtgcaatg geatgatett ggeteacege aaceteegee 20640 tecegggtte aagegattet ettgeeteag ceteegeagt agetgggatt aeggggacae 20700 caccaccaca tecagetaat tttgtatttt tagcagagat ggagttete catgttggee 20760 aggttggtea egaacaettg accteaggtg atetgeetge etcageetee caaagtgetg 20820 ggattacagg catgagecae catgeetgee egggaceett gtttagaag gatgaetget 20880 gctataatgt agaaagtgat ttggaagagg ggaggagtg ggeacgaaag atggttagta 20940 gatgggggtg gtaatgetta cettteagta tttggagget teggagteet caaaaattet 21000 ctteettgat tggagteete ceagecaata gagggettea ecacaacagt ttettgggtt 21060 ttgaattgtt tgaccagage tttetteega caaaaggttg gggtgatea tteacattace 21120 acaccttgee tgaacattea ettggggetg eeggttatga aggetatgt tetteaget 21180 gteacagaeg ettgaagae etgggetee geggtteta aggagteagt ttgtteaget 21240 cegtgecagg tttecaactt atgaaatgtg etggagatta acaccteee tgecattta 21360 gaatgttetg ceagetgeet tgaggaceta gaagageagt tteetacag 21420 ceaagggtgg gagggggaaa tatateetee agtgagatt tteetacea ggaccagtt 21420 ceaagggtgg gaggggaaa tatateetee agtgtgeaca tteateece agtgatggg 21480 ggettgggee etttgaagt ggeteetgag aaccacaca ttgggtetga geagecagea 21540 gettateaca tetggggate aateetteaa aggtteetee tgaagtetga atttttggag 21600 gteaaatgga ttecacctgg gaggggette tgeteaact caggacatgg ggagaagget 21660 gtteetette eaggggagg cagttteat ggeattgag tgeeteetea ettateece 21720 acccacccac caagteett gtaagagga tagggggaa ggagageee tgeageetee 21780 tgeteacatt ectagacace gactecatag ecceptegee etgagacag cagactgtg 21840 tgaaatgtea agaggggtta tgeteataag eteceetgee tegagacet tgeageetee 21780 ttgeteacatt ectagacace gactecatag ecceptegee etgagacag cagactgtg 21840 tgaaatgtea agaggagtta tgeteataag eteceetgee teagectee tgeageetee 21780 atatteetee attagtact gttecatcac atggaaata gagggtacaa ttaaaagata 21960 atatteetee attagtact gttecatcac atggaaatca gagggtacaa tacaagggaa 22020	gacttggtat	cctcatatgt	cttgggcttc	caattctcca	ttcctagttt	caagttcatg	20280
catgacatca cattacagga gtagcagata ctaaactcc actetgtaaa acactgactg agttecatga gccagatact gaagtgaget tytteacata tytteteatt taatgeteat 20520 aaccetgga agctgggaat tyctgggaca ttttattat ttattattg agacggagte 20580 tggetetgte acctaggetg gtgtgcaatg gcatgatett ggeteacege aaceteegee 20640 tecegggtte aagegattet ettgeeteag ceteegeagt agetgggatt aeggggeaca 20700 caccaccaca tecagetaat tttgtatttt tagcagagat ggagttete catgttggee 20760 aggttggtea eggacacttg accteagetg acttgeetge etcageetee caaagtgetg 20820 ggattacagg catgagecae catgeetgee egggaceett gttttagaag gatgaetget 20880 gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggeacgaaag atggttagta 20940 gatgggggtg gtaatgetta cettecagta tttggagget teggagteet caaaaattet 21000 ctteettgat tggagteete ceagecaata gagggettea eacaaacagt tteettgggtt 21060 ttgaattgtt tgaccagage tttetteega caaaagggtg gggtgatea tteacettaee 21120 acacettgee tgaacattea ettggggetg eeggttatga aggetatgt tetteegeet 21180 gteacagaeg etttgaagae etgggeetge egggtteta aggagteagt ttgtecageet 21240 cegtgecagg tttecaactt atgaaatgtg etggagatta acaceteete tgecattta 21360 gaatgttetg ecagetgete tgaggaceta gaagageagt tttettaeca ggaccagtt 21420 cegaggeggg gagggggaaa taatecetee agtgagate tteatecee agtgatggg 21640 gaatgttetg ecagetgete tgaggaceta gaagacagt ttteateca ggaccagtt 21420 ceaaggggtgg gaggggaaa taatecetee agtgagaca tteatecee agtgatggg 21640 gettateaca tetggtgate aatecetteaa aggteecee tgaageege 21540 gettateaca tetggtgate aatecetteaa aggteecee tgaageege 21660 gtteetette eaggggagg cagtttteat ggeattgaga tgeeceeee 21720 acccacccac caagteett gtaagaggag tagggggag ggaggagee tgeageetee 21720 acccacccac caagteett gtaagaggag tagggggag ggaggagee tgeageetee 21780 tgeteacatt ectagacace gactecatag ecceptegee getggaacag cagagetgg 21840 tgaaatgtea agaggggtta tgeteataag etcacetge egeggacaa tacaagate 21900 atattettee attagtactg tgtteataca atggaaatea gagggtacaa ttaaaagata 21960 atattettee attagtactg tgtteataca atggaaatea gagggtacaa tacaagggaa 22020	aactgtaaaa	caaaggatta	gactaaatct	ctaaagttct	atccagatgc	caaattcttt	20340
agttccatga gccagatact gaagtgagct tyttcacata tyttctcatt taatyctcat 20520 aaccctgtga agctgggaat tyctgggaca ttttattat ttattatty agacggagtc 20580 tygctctgtc acctaggctg gtgtgcaatg gcatgatctt ggctcaccgc aacctccgcc 20640 tcccgggttc aagcgattct cttgcctcag cctccgcagt agctgggatt acggggcaca 20700 caccaccaca tccagctaat tttgatttt tagcagagat ggagtttctc catgttggcc 20760 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctcc caaagtgctg 20820 ggattacagg catgagccac catgcctgcc cgggaccctt gttttagaag gatgactgct 20880 gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggcacgaaag atggttagta 20940 gatgggggtg gtaatgctta cctttcagta tttggaggct tcggagtcct caaaaatctt 21000 cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgatca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctatgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaacct atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctacca ggaccagtt 21420 ccaaagggtgg gagggtgaaa tatatcctcc agtgtgcaat ttcatcccc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgag aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga atttttggag 21600 gtcaaatgga ttccacctgg gaggggctc tgcttcaact caggacatgg gagaaggcc 21780 gctcaccac caagtccttt gtaagaggg tagggggaga gagagagcc tgcagcccc 21780 ttgctcaccat cctagacacc gactcactga gcccgccgc gctggaacag cagagctgt 21840 ttgaaatgtca agaggagtta tgctcatagg ctccctgcc tcagtcctct tgtggcttgc 21900 atattctcc attagtacct tgttcatcac atgggaaaca gaggggaaa ttaaaaggata 21960 atttgctagt cccagactta atttgggcc cccttcttgc ctcagtctct tgtggcttgc 21900 atattctcc attagtacct tgttcatcac atgggaaaca gaggggaaa ttaaaaagata 21960	tctctttcca	tgatacctaa	gatagatgcc	aaatattgtc	ttttacctgg	tgtttgtgaa	20400
aaccctgtga agctgggaat tgctgggaca ttttatttat ttatttattg agacggagtc 20580 tggctctgtc acctaggctg gtgtgcaatg gcatgatctt ggctcaccgc aacctccqcc 20640 tcccgggttc aagcgattct cttgcctcag cctccgcagt agctgggatt acggggcaca 20700 caccaccaca tccagctaat tttgatttt tagcagagat ggagtttcc catgttggcc 20760 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctcc caaagtgctg 20820 ggattacagg catgagccac catgcctgc cgggaccctt gttttagaag gatgactgt 20880 gctataatgt agaaagtgat ttggaagag ggaggagtgg ggcacgaaag atggttagta 20940 gatgggggg gtaatgctta ccttcagta tttggaggct tcggagtcct caaaaatct 21000 cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgt tgaccagag ttcttccaga caaaagtgtg gggtgatca ttcacttacc 21120 acaccttgcc tgaacattca cttggggct ccggttatga aggctattg tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgtccagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaaggatc ctgcagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaaggatc ctgcagttgc ctctggcagc cataactgat 21420 ccaagggggg gagggtgaaa tatatcctcc agtgtgacat ttcatcccc agtgatgggt 21480 ggcttatcaca tctggtgac aatcctcaa aggtccagca 21540 gcttatcaca tctggtgac aatcctcaa aggtccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatcctcaa aggtccccc tgaagtctgg gaggaggg cagtttcaa aggtccccc tgaagtctg aatcctccc tgcaatttgag 21600 gtcaaatgga ttccacctgg gagggggctc tgcttcaact caggacagg ggagaaggcc 21780 gctcacccca caagtccttt gtaagaggg tagggggaga ggagagcgcc tgcagccccc 21780 tgctcaccat cctaggacac gaccaccac gaccaccac caagtccttt gtaagagag taggggaga gagagagcc tgcagccccc 21780 tgctcacatt cctagacacc gaccaccac gaccaccac gaccaccac gaccaccac gaccaccac aatggggaga tgcccacaccac caagtccttt gtaagagag ccccccccac caagtccttt gtaagagag ccccccccaccaccaccaccaccaccaccaccaccacca	catgacatca	cattacagga	gtagcagata	ctaaactctc	actctgtaaa	acactgactg	20460
tggctctgtc acctaggctg gtgtgcaatg gcatgatctt ggctcaccgc aacctccgcc 20640 tcccgggttc aagcgattct cttgcctcag cctccgcagt agctgggatt acggggcaca 20700 caccaccaca tccagctaat tttgtatttt tagcagagat ggagtttctc catgttggcc 20760 aggttggtca cgaacacttg acctcaagtg atctgcctgc ctcagcctcc caaagtgctg 20820 ggattacagg catgagccac catgcctgcc cgggaccctt gttttagaag gatgactgct 20880 gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggcacgaaag atggttagta 20940 gatgggggtg gtaatgctta cctttcagta tttggaaggct tcggagtcct caaaaaattct 21000 cttccttgat tggagctctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagage tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcaccagac ctttgaagac ctgggcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccatttta 21300 tccctactat aattgccagt caaaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt ttctatccca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatcccc agtgatgggt 21480 ggcttgggg gagggtgaaa tatatcctcc agtgtgacat ttcatcccc agtgatgggt 21640 gctacaactgg tccctggagg cagtttcaa ggagggctca ctttggag 21600 gtcaaaatgga ttccacctgg gaggggctc tgctcaaact caggacatgg ggaggaggc 21660 gttcctctc caaggcgggg cagtttcat ggcattgaga tgccctcca cttattcccc 21720 acccacccac caagccttt gtaagaggg tagggggaga ggaggaggcc tgcagcctcc 21780 tgcccaccac caagccttt gtaagagag tagggggaga ggagagagcc tgcagcctcc 21780 tgcccaccac caagccttt gtaagagag tagggggaga ggagagagcc tgcagcctcc 21780 tgcccaccac caagccttt gtaagaagg caccaccac gaccaccac caagccttt gtaagagag taggggaga taggggaga cagacagct tgcagcctcc 21780 tgcccacaccac caagccttt gtaagagag caccaccac gaccaccac gaccaccac gaccaccac gaccaccac gaccaccac gaccaccac gaccaccac aggagagta tgccctcca atggagagac 21640 tgaaaatgca agaggagta tgcccacaccac caagagacta tgcccacaccac agaggagata tgcccacaccac agaggagata tgcccacaccac agaggagata tgcccacaccac agaggagata tgcccacaccac agaggagata tgcccacaccac atggagacac accacacac atggagacac accacac	agttccatga	gccagatact	gaagtgagct	tgttcacata	tgttctcatt	taatgctcat	20520
tecegggtte aagegattet ettgeeteag eeteegagt agetgggatt aegggeaca 20700 caccaccaca tecagetaat titgtatitt tageagagat ggagtitete eatgitggee 20760 aggitggiea egaacactig aceteaagig atetgeetge eteageetee eaagigetgg 20820 ggattacagg catgageac eatgeetgee egggacett gittlagaag gatgaetget 20880 getataatgi agaaagigat titggaagagg ggaggagtgg ggeacgaaag atggitagta 20940 gatgggggig gtaatgetta cetticagia titggaagget teggagetee eaaaaateet 21000 etteetigat titggagetee eaaaagigtig ggaggagtgg gtaatgetee eeageeaata gagggettea eaaaaacagi tiettigggti 21060 titgaatigit tigaecagage tittetteega eaaaagigtig gggtgattea tieaettace 21120 acacettgee tgaacattea ettggggetg eeggitatga aggetatigi tetteageet 21180 gteacagaeg ettigaagae ettggeetea getggiteta aggagteagi tigticaaget 21240 eegigeeagg titeeaacit atgaaatgig etggagatta acaceteee tgeeatitta 21300 teectactat aattgeeagi eaaaggatte etgeagitge etetggage eataacigat 21360 gaatgitetig eeagetgeete tgaggaceta gaagageagi titetateea ggaecagtit 21420 eeaagggigg gagggigaaa tatateetee agtgigacat ticaateee agtgatgggi 21480 ggettgggee ettgaagti ggettegaag aaceacacae titggitetga geageeagea 21540 gettateaca tetggigate aateetteaa aggiteetee tgaagtetga attitiggag 21600 gteaaatgga titeeacetig gaggggette tieetteace etgaageetg 21660 gteectete eaageeetig gaaggggite tigetteaace eaageeetig 21720 acceaceceae eaagteetti gtaagaggag tagggagaag aggaggagee tigeageetee 21780 tigeteacati eetagacee gaeteactga geeetgeee getggaacag eagageetge 21840 tigeaatigea agagggagta tigeteetee eteagaeetee 21780 acceaceceae eaagteetti gtaagaggag eeceeteegee eetageeteet tigtigeetige 21900 atatteetee ataagagatta tigeteataag eeceetigee teagteetet tigtigeetige 21900 atatteetee ataagageta attiggggee eeceteetee eeggeeetee 21900 atatteetee ataagageta attiggggee eeceteetee eeggeeetee eeggeeetee 21900 atatteetee ataagageta attiggggee eeceteetee eeggeeetee eeggeeetee eeggeeetee 21900 atatteetee attaagageta attiggggee eeceteetee eeggeeetee e	aaccctgtga	agctgggaat	tgctgggaca	ttttatttat	ttatttattg	agacggagtc	2058 0
caccaccaca tocagetaat titgtattit tageagagat ggagittete eatgitigee 20760 aggitiggtea egaacactig aceteaagig atetgeetge eteageetee caaagigetig 20820 ggattacagg catgageeae catgeetgee egggaceett gittiagaag gatgaetgee 20880 getataatgi agaaagigat tiggaagagg ggaggagigg ggeacgaaag atggitagta 20940 gatgggggig gtaatgetta eetiteagia tittggagget teggagieet caaaaattee 21000 etteetigat tiggagieete eeageeaata gagggettee cacaaacagi tietigggit 21060 tigaatigit tigaccagage tittetteega eaaaagiitig gggigattea tieaettace 21120 acacettigee tigaacattea etigggget eeggitatga aggetatigi tetecageet 21180 gteacagaeg etitgaagae etiggeetea getiggiteta aggageagi tigiteagee 21240 eegigeeagi titeeaacii atgaaatigi etigaagata acaceteee tigeeatitta 21300 teeetactat aatigeeagi eaaaggatte etigeagige eataactigat 21420 eegageeagi titeeaacii atgaaatigi etigaagata acaceteee tigeeatitta 21300 teeetactat aatigeeagi eaaaggatte etigeagige etictigeage eataactigat 21420 eeaagggigg gaggigaaa tatateetee agigtigaeat tietateee agigaeeagi 21480 ggettiggee etitgaagii ggettegag aaceacacae tigggietiga geageeagea 21540 gettateaca teetggigate aateetteaa agiteetee tigaagietiga attittiggag 21600 gteaaatigga tieeaeetig gaggggette tigetteaaet eaggaeatig ggagaaggee 21660 gteecetee eagggggagg eagitticat ggeatigaga tigeeteetea etiateeee 21720 acceaceeca eaagteetti gtaagaggag taggggagaa ggagageee tigaageetee 21780 tigeteacati eetagaeee gaeteactga geeegteee getiggaacaa eagagetig 21840 tigaaatgea agaggagtia tigeteetaag eecegteeee getiggaacaa eaaagaetig 21840 tigaaatgea agaggagtia tigeteataag eecegteeee teagteetet tigtigeetige 21900 atatteetee attagtaeet tigticateae attiggaaatea gagggtaeaa tiaaaagata 21960 attigetagt eecaagaetaa attiggggee eecetteetee eegaacaa tiaaaagaata 21960 attigetagt eecaagaetaa attiggggee eecettige etigtigaat taaaaggaaa 22020	tggctctgtc	acctaggctg	gtgtgcaatg	gcatgatctt	ggctcaccgc	aacctccgcc	20640
aggitiggica cgaacactig accicaagig atcigcing cicagcinco caaagigcing 20820 ggattacagg catgagccac catgccingc cgggacccti gittiagaag gatgactigci 20880 gctataatgi agaaagigat tiggaagagg ggaggagigg ggcacgaaag atggitagta 20940 gatgggggig gtaatgcina cciticagia tittiggaggci teggagicci caaaaattet 21000 citicctigat tiggagicci ccaacacaa gagggetica cacaaacagi tictigggit 21060 tigaatigit tigaccagag titeticciga caaaaaggtig gggtgatica ticactiacc 21120 acacctigce tigaacatica citiggggeig ccigitatga aggciatigi teteccagcet 21180 gicaccagac citigaagac citiggggeig ccigitatga aggatatgi teteccagcet 21240 ccigicaggi titeccaacti atgaaatigi citigagita acaccicicc tigacattia 21300 tecciactat aatigccagi caaaaggatic citigagitigi citiggagi cataactigat 21360 gaatgitetig ccagcigci tigaggaccia gaagagcagi titectacca ggaccagtit 21420 ccaaggiggig gagggigaaa tatatecticc agtigiacat ticatecca aggaccagti 21480 ggctiggig gagggigaaa tatatectica aggitigacat ticatecca aggaccagca 21540 gctaaacaa tetiggigata aaticciticaa aggiticcic tigaagiccia atititiggag 21600 gicaaaatgga ticcaccigg gaggggiga cagtiticat ggcatigaga tigaccica citaaticca 21720 acccaccac caagicciti giaagagga tagggggaga ggagaggcc tigaagccicc 21780 tigaccacti cetagacacc gactcactaga gcccgiccac gctggaacaa cagagcigtig 21840 tigacactic citagacacc gactcactaga gcccgiccac gctggaacaa cagagcigtig 21840 tigacactic citagacacc gactcactaga gcccgiccac gctggaacaa cagagcigtig 21840 tigacactic attagtacti tigticatcac attaggagata tigcccacac caagicciti tigticacacti cotagacacc gactcactaga cccciticcic citigiccitic tigtigactig 21900 ataticcic attagtacti tigticatcac attaggagaa attiggagaa ccccitictic citigiccitic tigtigaaa 22020	tcccgggttc	aagcgattct	cttgcctcag	cctccgcagt	agctgggatt	acggggcaca	20700
ggattacagg catgagccac catgcctgcc cgggaccett gttttagaag gatgactgct 20880 gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggacagaaag atggttagta 20940 gatgggggtg gtaatgctta cctttcagta tttggaggct tcggagtcct caaaaattct 21000 cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaaggacagt ttctatcca ggaccagtt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcca agtgatgggt 21480 ggcttgggcc ctttgaagt ggcctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga atttttggag 21600 gtcaaaatgga ttccacctgg gaggggctc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggag cagtttcat ggcattgaga tgccctcta cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagta tgctcatagg ctccctgcc tcagtctct tgtggcttgc 21900 atattctcc attagtactg tgttcatcac attggaaatca gaggggaaa ttaaaaagata 21960 atttgctagt cccagacctta atttggggcc cccttcttgc ctgattgaat tacaagggaa 22020	caccaccaca	tccagctaat	tttgtatttt	tagcagagat	ggagtttctc	catgttggcc	20760
gctataatgt agaaagtgat ttggaagagg ggaggagtgg ggcacgaaag atggttagta 20940 gatgggggtg gtaatgctta cctttcagta tttggaggct tcggagtcct caaaaattct 21000 cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga agggtattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt ttctatcca ggaccagtt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctccc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggcctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga atttttggag 21600 gtcaaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctctc caaggcgagg cagtttcat ggcattgaga tgccctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac attggaaatca gaggggaaa ttaaaaggaa 22020	aggttggtca	cgaacacttg	acctcaagtg	atctgcctgc	ctcagcctcc	caaagtgctg	20820
gatggggtg gtaatgctta cettteagta titggagget teggagteet caaaaattet 21000 etteettgat tggagteet eeagecaata gagggettea eacaaacagt titettgggtt 21060 titgaatigit tgaccagage titetteega caaaaggitg gggtgattea titeacitace 21120 acacettgee tgaacattea ettggggetg eeggttatga aggetatigit tetecageet 21180 gteacagaeg ettigaagae etgggetea getggtteta aggagteagt tigiteaget 21240 eeggeeagg titecaacit atgaaatgig etggagatta acaceteee tgecatitta 21300 teectacita aattgeeagt eaaaggatte etgeagtige etetggeage eataactgat 21360 gaatgitetg eeagetgee tgaggaeeta gaagageagt titetateea ggaccagtit 21420 eeaagggigg gagggtgaaa tatateetee aggigtgaeat tieateeee aggaeeaget 21480 ggettgggee etitggaggig gagggtgaaa tatateetee aggigtgaeat tieateeee aggaeeagea 21540 gettateaca tetgggaae aateetteaa aggiteetee tgaagteega geageeagea 21600 gteaaatgga tieeeeega aateetteaa aggiteetee tgaagteega attitiggag 21660 gteeetee eagggggggggggggggggggggggggggg	ggattacagg	catgagccac	catgcctgcc	cgggaccctt	gttttagaag	gatgactgct	20880
cttccttgat tggagtcctc ccagccaata gagggcttca cacaaacagt ttcttgggtt 21060 ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccattta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctccc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgctcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagttttcat ggcattgaga tgtcctctca cttatcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatcag ctccctggcc tcagtctctt tgtggcttgc 21900 atattctcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	gctataatgt	agaaagtgat	ttggaagagg	ggaggagtgg	ggcacgaaag	atggttagta	20940
ttgaattgtt tgaccagagc tttcttccga caaaaggttg gggtgattca ttcacttacc 21120 acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccatttta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatcag ctccctggcc tcagtctctt tgtggcttgc 21900 atattctcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	gatgggggtg	gtaatgctta	cctttcagta	tttggaggct	tcggagtcct	caaaaattct	21000
acaccttgcc tgaacattca cttggggctg ccggttatga aggctattgt tctccagcct 21180 gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccatttta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatcctcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgctcaact caggacatgg ggagaaggct 21660 gttcctctc cagggggagg cagtttcat ggcattgaga tgcctctca cttatcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agagggtta tgctcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttctctc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	cttccttgat	tggagtcctc	ccagccaata	gagggcttca	cacaaacagt	ttcttgggtt	21060
gtcacagacg ctttgaagac ctgtgcctca gctggttcta aggagtcagt ttgttcagct 21240 ccgtgccagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccatttta 21300 tccctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	ttgaattgtt	tgaccagagc	tttcttccga	caaaaggttg	gggtgattca	ttcacttacc	21120
cogtgocagg tttccaactt atgaaatgtg ctggagatta acacctctcc tgccatttta 21300 tocctactat aattgccagt caaaggattc ctgcagttgc ctctggcagc cataactgat 21360 gaatgttctg ccagctgctc tgaggaccta gaagagcagt tttctatcca ggaccagttt 21420 ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctcc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgctcaact caggacatgg ggagaaggct 21660 gttcctctc cagggggagg cagtttcat ggcattgaga tgcctctca cttattcccc 21720 acccaccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agagggtta tgctcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttctcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaaggggaa 22020	acaccttgcc	tgaacattca	cttggggctg	ccggttatga	aggctattgt	tctccagcct	21180
tecetactat aattgecagt caaaggatte etgeagttge etetggeage cataactgat 21360 gaatgttetg ceagetgete tgaggaceta gaagageagt titetateea ggaceagtit 21420 ceaagggtgg gagggtgaaa tatateetee agtgtgacat ticateteee agtgatgggt 21480 ggettgggee etitgaagti ggetetgagg aaceacaca tigggtetga geageeagea 21540 gettateaca tetggtgate aateetteaa aggiteetee tgaagtetga attitiggag 21600 gteaaatgga ticeacetgg gaggggette tgeteeaaet eaggacatgg ggagaagget 21660 gtteetette eagggggagg eagititeat ggeattgaga tgiceteea etiateecee 21720 acceacecae eaagteetti gtaagaggag tagggggaag ggagagegee tgeageetee 21780 tgeteacatt eetagacace gaeteactga geeegtegee getggaacag eagagetgg 21840 tgaaatgtea agaggagta tgeteatagg eteeetggee teageeteet tgtggettge 21900 atateettee attagtactg tgiteateae atggaaatea gagggtacaa tiaaaagata 21960 attigetagt eecagactta attiggggee eeetteetge etgattgaat tacaggggaa 22020	gtcacagacg	ctttgaagac	ctgtgcctca	gctggttcta	aggagtcagt	ttgttcagct	21240
gaatgttetg ceagetgete tgaggaceta gaagageagt tteetateea ggaceagttt 21420 ceaagggtgg gagggtgaaa tatateetee agtgtgacat tteeteteee agtgatgggt 21480 ggettgggee etttgaagtt ggetetgagg aaceacaeae ttgggtetga geageeagea 21540 gettateaea tetggtgate aateetteaa aggtteetee tgaagtetga attttggag 21600 gteaaatgga tteeacetgg gaggggette tgetteaaet eaggacatgg ggagaagget 21660 gtteetette eagggggagg eagttteat ggeattgaga tgteeteea ettatteeee 21720 acceaceae eaagteettt gtaagaggag tagggggaga ggagagegee tgeageetee 21780 tgeteacatt eetagacaee gaeteaetga geeegtegee getggaacag eagagetgtg 21840 tgaaatgtea agaggagtta tgeteatagg eteeetggee teagteetet tgtggettge 21900 atatteetee attagtaetg tgtteateae atggaaatea gagggtacaa ttaaaagata 21960 atttgetagt eecagaceta atttggggee eeetteetge etgattgaat tacaggggaa 22020	ccgtgccagg	tttccaactt	atgaaatgtg	ctggagatta	acacctctcc	tgccatttta	21300
ccaagggtgg gagggtgaaa tatatcctcc agtgtgacat ttcatctccc agtgatgggt 21480 ggcttgggcc ctttgaagtt ggctctgagg aaccacacac ttgggtctga gcagccagca 21540 gcttatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttatcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	tccctactat	aattgccagt	caaaggattc	ctgcagttgc	ctctggcagc	cataactgat	21360
ggcttgggcc ctttgaagtt ggctctgagg aaccacaca ttgggtctga gcagccagca 21540 gottatcaca tctggtgatc aatccttcaa aggttcctcc tgaagtctga attttggag 21600 gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagttttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaaggta 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	gaatgttctg	ccagctgctc	tgaggaccta	gaagagcagt	tttctatcca	ggaccagttt	21420
gettateaca tetggtgate aateetteaa aggtteetee tgaagtetga attittggag 21600 gteaaatgga tteeacetgg gaggggette tgetteaact caggacatgg ggagaagget 21660 gtteetette cagggggagg cagttiteat ggeattgaga tgteetetea ettateecee 21720 acceacecae caagteetti gtaagaggag tagggggaga ggagagegee tgeageetee 21780 tgeteacatt cetagacace gacteactga geeegtegee getggaacag cagagetgg 21840 tgaaatgtea agaggagta tgeteatagg etceetggee teagteetet tgtggettge 21900 attetettee attagtactg tgtteateae atggaaatea gagggtacaa ttaaaaggta 21960 attigetagt eccagacita attiggggee ecettetige etgattgaat tacaggggaa 22020	ccaagggtgg	gagggtgaaa	tatatcctcc	agtgtgacat	ttcatctccc	agtgatgggt	21480
gtcaaatgga ttccacctgg gaggggcttc tgcttcaact caggacatgg ggagaaggct 21660 gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	ggcttgggcc	ctttgaagtt	ggctctgagg	aaccacacac	ttgggtctga	gcagccagca	21540
gttcctcttc cagggggagg cagtttcat ggcattgaga tgtcctctca cttattcccc 21720 acccacccac caagtccttt gtaagaggag tagggggaga ggagagcgcc tgcagcctcc 21780 tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaaggta 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	gcttatcaca	tctggtgatc	aatccttcaa	aggttcctcc	tgaagtctga	atttttggag	21600
acceaceae caagteett gtaagaggag tagggggaga ggagagegee tgeageetee 21780 tgeteacatt ectagacaee gaeteaetga geeegtegee getggaacag cagagetgtg 21840 tgaaatgtea agaggagtta tgeteatagg etceetggee teagtetett tgtggettge 21900 atattettee attagtactg tgtteateae atggaaatea gagggtacaa ttaaaagata 21960 atttgetagt eccagaetta atttggggee ecettettge etgattgaat tacaggggaa 22020	gtcaaatgga	ttccacctgg	gaggggcttc	tgcttcaact	caggacatgg	ggagaaggct	21660
tgctcacatt cctagacacc gactcactga gcccgtcgcc gctggaacag cagagctgtg 21840 tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaaggta 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	gttcctcttc	cagggggagg	cagttttcat	ggcattgaga	tgtcctctca	cttattcccc	21720
tgaaatgtca agaggagtta tgctcatagg ctccctggcc tcagtctctt tgtggcttgc 21900 atattcttcc attagtactg tgttcatcac atggaaatca gagggtacaa ttaaaagata 21960 atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020	acccacccac	caagtccttt	gtaagaggag	tagggggaga	ggagagcgcc	tgcagcctcc	21780
atattettee attagtactg tgttcateae atggaaatca gagggtacaa ttaaaaggata 21960 atttgctagt cecagaetta atttggggee eeettettge etgattgaat tacaggggaa 22020							21840
atttgctagt cccagactta atttggggcc cccttcttgc ctgattgaat tacaggggaa 22020							21900
							21960
cataatagat ttttggtgag aaatagttgt ctgtgtggct gggagaaaga ttgctcccag 22080	atttgctagt	cccagactta	atttggggcc	cccttcttgc	ctgattgaat	tacaggggaa	22020
	cataatagat	ttttggtgag	aaatagttgt	ctgtgtggct	gggagaaaga	ttgctcccag	22080

ctctccagct	gggcagccct	ttcagtatcc	cgtatgttat	ttccccactt	ccageccace	22140
tcacctcctc	tgtggccctt	gtgtgtcccc	toggotagga	tcctgacctc	ctgctcaaga	22200
gtttaaactc	aacttgagac	ccaaggaaaa	tagagagccc	tctgcaacct	cataggggtg	22260
aaaaatgttg	atgctgggag	ctatttagag	acctaaccaa	ggcccagaca	gagagagtga	22320
cttgctaaag	gccacatagc	tagcccacag	tagttgtaac	aatagtotta	atgatattaa	22380
tggctaacat	ttatcaacct	ttaatgtgtc	ccagactttg	tgccaagggc	ttacatgcag	22440
tgcattgtcg	cattcaaacc	cagacagtct	ggctctgggc	ccaggctgag	ctttggtata	22500
gcatggtaga	acgttgtcta	taatgtctag	tctgggttca	aatcctggct	tcacttctca	22560
catttacage	tgagtgacct	caggcaagtg	atttaacctc	cctgtacctc	agttgcttta	22620
tctgtaaaga	gaaaaatcac	agcactgtgg	aatagtgggg	gttaaaattc	attcatacaa	22680
gtagtgctgc	aagcaatgtt	taatacaggg	tgagcacctg	ttcagtgctt	ccttcttctg	22740
gctgcctctg	gggctagagt	gtggtgtctt	cgtggtatag	atagatagat	atggctgagc	22800
tctgcacaaa	caccaagagc	tgttcttcac	tattagaggt	agtaaacaga	gtggttgagc	22860
tctgtggttc	tagaacagag	gccggcaagc	tatggcccat	tgcctatttt	aatacggcct	22920
gtgattgatt	gattttttt	ttctttttga	gacagagttt	cactcttgtt	gcccaggctg	22980
gaatgcaatg	gcacgaactc	ageteacege	aacctctgcc	teetgggtte	aagcgattct	23040
cctgtctcag	cctctcgagt	agctgggatt	acaggcatgt	gccaccacgc	ctggctaatt	23100
tttgtatttt	tagtagagac	agggtttctc	catgttggtc	aggctagtct	cgaacttcca	23160
acctcaggtg	atctgcccgc	ctcagccttc	caaagtgctg	ggattacagg	cgtgagccac	23220
catgactggc	ctgattgact	gatttttta	gtagagatag	ggtcttggtt	tgttacccag	23280
gctggtctca	aacttctggc	ttcaagcagt	cctccctcct	tggcctctcg	aatgctggga	23340
ttataggcat	gagccactat	gcctggccta	tatgacctgt	gattttaat	ggttagggga	23400
aaaaaagcaa	aagaatgctt	tgtgacatgt	ggaaattaca	tgaaactcaa	atatcagtgt	23460
cccagcctgg	gcaacaaagt	gagaccctgt	ctctacaaaa	aataaaaaaa	aataagccag	23520
ggccgggcgc	agtggctcac	acctataatc	tcagcacttt	gggaggccga	ggcaagtgga	23580
tcacctgagg	tcaggagttc	aagaccagcc	tgaccaatat	ggtgaaaccc	tgtctgtact	23640
aaaaacacaa	aaattagccg	agcatggtgg	catgcgcctg	tagtcccagc	tacttgggag	23700
gctgagacaa	gagaattgct	tgaacctggg	aggcggaggt	tgcagtgagc	caagatcgcg	23760
acactacact	gcagcctggg	caacagagcg	agactccgac	acacgcacgc	acgcacacac	23820
acacacacac	acacacacac	acgctgggta	tggtggccag	cacgtgtggt	cccaggatgc	23880
actggaggct	taggtaggag	gatcacttga	gcttaggtgg	ttgagactac	aatgaaccat	23940
gtttatacca	ctgcacttta	gccagggcaa	cagtgtgaga	ctgaatctca	aaagaaaaaa	24000
aaaaaaaaga	aaaaaatctt	tccataagta	aatatctgtt	ggaacatagc	catgtccctt	24060
agtttatgtt	ttatatatgg	ctgcttttgc	cctataatga	cacaattgag	tggccacgac	24120
agtctgtatg	gcctgcagag	cctaagatat	ttgctctctg	gccctttaca	gaaaaagtgc	24180
cttgacctgt	gctctagagc	catatgtacc	aggtttgaaa	ctcagcctca	cagctgggtg	24240
tgatggcacg	catctgtagt	cccagctact	ctggaggctg	aggtgagagg	atcacttgag	24300
tccagaaggt	cgaggtcaag	attgtagtga	gccatgatgg	catcaccgca	ctccagcctg	24360
agtgacagag	agagaccctg	actcaaaaaa	aaaaaaacaa	aaaaaaaaa	caccctcacc	24420

acttatcage	tatttgtctt	gagaatagtg	acataacccc	tcagaaccta	tttcctaatc	24480
tgttaaatga	ggctgatgac	gtttcctcct	tttactggca	atttaaacat	gatggataat	24540
aaatgctaag	cacttaacac	agggcctaga	agatattaac	tgctcaataa	atggtagctt	24600
cttaacagta	ttcaaaccca	tgtgctctta	tcacatgcat	tgttgtccct	gtgtccagtt	24660
ggtggaatgg	gaaaaggctc	ccttgtaacc	ccatctacca	tctttatcag	actttcctgc	24720
catggttcac	agtaagagat	agaagctgca	cggtgacttc	tggctcttta	caatggtgag	24780
cggtgtgtgc	ctggtaaggg	agagctgatg	tcactgcccc	aaatccagta	gtgagatctg	24840
agtgttctgg	tttcctccag	cagccttgct	ttttccttta	caatcctgca	ggcagggaga	24900
caagggcttt	ctacatggta	ggctctggtt	tggtcatcgt	cacaactggg	ggctgttcag	24960
gtgggctccc	attccagata	cctaggctta	tcaatccctt	ttggcacccc	aggccttttt	25020
ctccctcatg	ccccatttt	cagtttgaaa	agcatggtta	tcacaggaca	agtagaagaa	25080
gctccactgt	ccactgaggc	caatggatgg	tgttctgcat	gtgaacactc	agtgaatagt	25140
gagtgaatga	gagtaacctg	ggctccatcc	tatttgcaga	gagctttgga	aaagattttt	25200
ctccttaaag	agccagaatg	aagcctggta	gtgggagagc	tccagctcta	gagtcacatg	25260
agcctacatt	taaattccag	ccctgccact	gactcccttt	ttgaccttga	gtgagttacc	25320
taatctctct	gtacctcact	tttcttgtct	gtagagtggg	aataattcct	gtctcagaga	25380
aataaaagag	tgcatatagt	gtttgccaca	tggagacaca	tcaggtgtag	gttaatactc	25440
tgggccttgt	ttccttattt	gcaacacagc	cctgccctgg	agtggaagtg	gcacctccca	25500
ttggtcagct	cttgaggctg	tccccaggac	aggcagaggg	agggaatgaa	tgggagccct	25560
agtgccagga	cagaacagat	ggcagctcag	agctaggatg	gctctctgga	cctgtctctc	25620
ctaccagagg	tccccccgtc	tggtgtggct	cttcctggac	ctggcatcct	ctgcttttt	25680
ttttttcca	cctccaagca	gaattactgt	cctgtaggca	gctcctctgc	ttgaggacat	25740
ctggggccag	atatgttcac	actctatcct	gccttgccct	tccctgagct	caggatggac	25800
gctcaattgg	tcccagttat	tgtctgcagc	gcctgcctgc	agcctcgatc	cageceaget	25860
ccaccccttg	cctgcaaggt	ctgtttccta	acagctgctc	caaccacaca	cctcggttct	25920
gcgggagccc	ctcctcttcc	tccctccctc	cctcattcag	gggtgggact	gaagaagaag	25980
gctaacttga	cagcagcgct	tctttcttag	ctagtcaccg	gcccctgctc	aagaatgcca	26040
gtgtgtgtgt	agcctccaca	gagaggtcgt	tttctcggag	tccagagggg	ccgcctgagc	26100
ttctgagaac	tagggaggag	ccatcccagc	catgagcccc	tgtgggaatc	tgctgggggc	26160
caagtggcct	ggagtcctca	ggctcccgca	gctgctccgg	agggagaggt	gagctcaggg	26220
cagcctgcct	gcagccagag	gtgccgggag	ccccgggcct	gtcatggtgg	ccatctacag	26280
ccggcctgag	gcagtcacag	acggatttgc	agctgagcct	gtctatctgg	tgtgggaaga	26340
agatggggag	ttacttgtca	gtcccggctt	acttcacctc	cagagacctg	tttcggtgag	26400
ttggtctccg	agttcccctc	tccatctctc	ctggcccctg	gtcctgagag	gagggtggtc	26460
tccctaaatc	tccttctcac	ttagtccttt	accatcggtt	ctgccgggca	gaagccagcg	26520
gaggttatac	ccaaggagaa	tcggccttgt	gaggtacccc	cattatgtcc	tggaagtggt	26580
gaggggaggg	atatacccag	aaggaacttc	ttagggagct	ccageteece	ttctatccca	26640
gacaaacctg	aaggagcctc	caaaagatgc	cactgacctg	cccattgtag	atgttactgc	26700
ttccgggggg	aatagcccaa	atagagtgct	gtttccagct	ctcacatgtc	ttacctgcgg	26760
gccatgctgc	ctgcccagga	atttgtccca	acaagcagga	tgggcaggtt	ttgccaaact	26820

-continued

gtggaaactg	gcaagtcctg	ggtgtgggta	gcctggtaca	cagtaggcac	cttataaacg	26880
tttgttctct	taatggcagg	cacatttgcc	tctggccttg	aagggcttct	gageteccag	26940
gtgaatgtag	ttgctgggga	aagacctggg	cgagtgcttc	taagactgga	gcaatgggct	27000
ttagagtgtt	cctgagctgc	tgggccagcc	cccacacctc	ctcagtccct	aggcctaagt	27060
acctccacga	gcctctctct	gtggggcttc	tcagagggag	atgtggaaac	tctacctcta	27120
acctggcttt	ctttgctcat	tgccccactc	cacctcccat	agaaactccc	cagggggttt	27180
ctggccctct	gggtcccttc	tgaatggagc	cattccagge	tagggtgggg	tttgttttca	27240
ttctttggga	gcagcctgtt	gttccaaaaa	ggctgcctcc	ccctcaccag	tggtcctggt	27300
cgacttttcc	cttctggctt	ctctaagcta	ggtccagtgc	ccagatettg	ctgccgggat	27360
actagtcagg	tggccaggcc	ctgggcagaa	aagcagtgta	ccatgtggtt	ttgtggaatg	27420
accggaccct	ggtagattgc	tgggaagtgt	ctggacaggg	ggaagggga	agggaactgg	27480
tcctcaatgc	tgactctacc	aagcgccctg	ctagacactt	tatcctttaa	tctctcaaca	27540
gcctaaagag	attatatatc	cccattttac	agatgaggca	accagtttca	acagagttaa	27600
catatggagc	ctcactgggc	agctttttct	gtcttcctga	ctttctctca	tccttcaggg	27660
ggctgcaggt	ttgttttctt	ctcctagtgg	agaggaaatt	ctcaggtttg	ttttcctctc	27720
ctagcagaga	gtaaaaaaag	ggatagtttg	cctgacttgt	tgaaggtgtg	gctgagattg	27780
ttttctaaag	agccaatgga	aattgatctt	gagtttagga	gaaagctttt	acatgtggaa	27840
ttaagatgcc	aagtgttgaa	gtagccacat	ttcaggtcct	cattaatttc	tcttaatcct	27900
gggaaggcag	cttaggagaa	gggttgttcc	tttaggagcc	aggaactata	cccctttac	27960
ccttggagag	gcagggaagc	cagggaggac	acaacttctc	aggaagagga	gaagctagag	28020
cagatagtga	actctcaacc	tgaaccttta	agggccagac	cactaatgcc	acccaagtcc	28080
acctgccgtt	tgtcttgttc	tgtcccaggc	tttctggaga	acctgatctt	cttgccccta	28140
cccccaagct	ccgtttgccc	agctagagtc	tggggggtac	tgactgactt	tcgtagacat	28200
tcttcccttc	cccaaataag	aggccacatt	cctgaagtca	cttctgaaga	gatagctgcc	28260
acacagggct	ctttccccc	agggagggac	cacccagacc	ctctgctctc	ccaggtatcc	28320
gttaccacat	cactacctgg	tcagaaagct	gtttctgcca	ttagcccctc	cctcttttat	28380
tataggatat	cctcaagggc	tcctctttgg	gcctcagttt	catccttggc	agaaagtaga	28440
agctagactt	cttgggctcc	tgaacagggt	ccttgctgga	ttctgtgaaa	caaattaagt	28500
tcttgaccct	aggcctctgg	gggagtacaa	agtctatggg	agttctgggg	ctgtggttgc	28560
aaggaaagtg	acgcaaccag	attccatggg	gacatgatca	ggcgtgacat	gtgagggagg	28620
aagagggagc	aagggaatga	agaatacaac	ttctgtgtcc	catacacccc	tgcctgacag	28680
gccatacata	ctcagcagag	aatgcactgt	ctttcctacc	acactagcgt	gaggagtgag	28740
ctgcaattac	cactgtgctt	ccaagtaaga	aaatacctca	aattggaatt	tacaaaagag	28800
gtaaattagg	gagtggcttt	tgtcggacat	ctttaaagca	tttttcttt	tatagaattt	28860
cacttaatgt	ccaatactga	tttaatgagc	ttgggtttac	acattatctc	ttgaagaaaa	28920
caaatgaacc	tttgtgttcc	aaagcaatcc	atgtttaaag	ggaaaaaatt	atgcataact	28980
ctgcccagct	tcacagtaac	ctttggcagg	tgccttaggt	cctctgggac	tcttttcctt	29040
atctgaaaaa	tgaaggactt	ggatcaggtg	aatggttccc	agctctgcaa	cttatgtggc	29100
tcctcagagg	cacacaagct	cttttccatt	atttgccaaa	taatggaggc	cctgtcttta	29160

actgcagtac	aactacacaa	aatacttgaa	actacagtct	tcctggtttt	tggttggaac	29220
tgaatcagtg	cactctagca	acacttattt	cttgctgttc	gtaggcttca	ttatgtgttt	29280
ggttaatttt	ttaaaacaac	aataacatat	tccataataa	ttacagctta	attggcagac	29340
tgtttcagtc	tataggatct	gcaggaagga	ggagtaataa	agggatttt	gactgagctc	29400
ttatggaaca	gagtctctct	aggcccctgt	catatctgcc	cttctgggcc	ctggggaaaa	29460
gttggcatcc	ccagttgtgg	tgctctccag	gtgccctcag	gctgtggtgg	agggagcttc	29520
ccattctctc	cttcagccca	ctcaattcag	aggctagggg	ctgaaagaag	cttctctaca	29580
actggctgtt	cactgggagg	ttaagggatg	accatccage	caggccttcc	tcaggacatg	29640
ggagggctta	tgctttaaca	tgtgtaaatc	cactgcaata	atgactggtt	cttttacccc	29700
ataaggttga	gaatttacct	gtaaacattt	ttgtctgaag	aatttggatg	taagtgaggg	29760
ctgggcctct	atcttatctc	acttggcttc	tctcagcaca	gcaccttgcc	tgcttgttct	29820
tacacatcct	agatgcacag	taactatttc	ctaattatta	gaaatctatt	agaatcaatt	29880
gatttcagct	gggcttggtg	gctccttcct	gtaatcccag	cactttggga	ggctaaggct	29940
ggaggatcac	ctgagtccag	gagtttaaga	ccagcctggg	caacataggg	agaccctgtc	30000
tctacaaaaa	ataaaaaatt	agccaggcat	ggtggtgtgc	acctgtagtc	ccagctactc	30060
aggaggctga	ggcaggagga	tctcttgagc	ctgggaggtc	agactacagt	gagcaatgat	30120
tgtgccactg	cactccagcc	tgggtgacag	agtaagactc	tgtctcttaa	aaaaaaaaa	30180
aaaaaagttg	atttctattt	ggatagataa	ataattcatt	ttaggacctt	tcttttcac	30240
ttacagaaat	ctgtttcatt	ctgggctgag	aagcaggtcc	atattgctag	gcataggaga	30300
aaaaggggtc	tgtctgcatt	tgcccttggt	ggtctcaaat	tggggaggga	aagaaatgaa	30360
cacttactgg	ctaccttctg	tgagccaggc	atcatgcaag	acatctgtac	ataatttaat	30420
tctcataacc	ccataagata	ttattagcaa	tgtacaagtg	aggaaactga	ggctcagagt	30480
catgaagtaa	ctggccttgg	gtgacacaga	tggtaaatgg	cagagaagga	atatggatcc	30540
aggtcttgaa	agagaaaatc	tcaactgatt	atctttttta	aaaaactcat	atgttctctg	30600
ctgactcaaa	aggtctctgt	gtggatctgg	gttgacccac	tgaactgacc	atcagggttc	30660
catgcacttt	gtatctgccc	aagccctcag	aacccctcag	taatgttttg	gaagatgagt	30720
tttggaggtt	gtccttaggc	atagcctcag	cgtatgtagg	cctctaggtg	atctccccta	30780
acctgaggat	ttcagctcaa	ttcactctgg	ctcctcagga	cagtgggatg	actggttcag	30840
acctcagctt	taccacctcc	cagctgggta	ctcttctacc	tacagccagg	gcagattttg	30900
actttcactt	gaaacttcca	aaaattgaaa	ggtagaaaaa	cagccttggc	tttgggaaga	30960
acgtatgatg	tccatggcct	ctaagcatct	gaggtgggac	atgttcgagt	agcaccttac	31020
agttccaaag	tgtgttctgg	gttctttgtt	taaaagaaca	gagactgctg	gggaattgaa	31080
cactgtgaag	tatatgaagg	aggagaattg	tgctatttaa	cattcagtac	ttgggctaaa	31140
ggagaagcat	cacgaagtgt	taacactcaa	agggtcttga	gctgtcaggg	ctccagcttc	31200
cttattttca	caggtgagaa	tcctgaggct	cagctgttga	gatgtgctgt	ctcactccgg	31260
tgacatagta	cagtggatgt	ggctttgcag	ccaagcacac	atagcttcac	attccagctc	31320
catcaattat	gtattgggca	gctttgcaga	atgatttgac	tttaactctg	cttttcagtc	31380
ttctgtaaaa	cagggataat	cctgctaccg	tagggttgtc	aggattagag	ataatataaa	31440
taaggtacct	catataggac	ctggattatg	gctggcattc	aataaatagt	agctgttaat	31500
tgatagctaa	gctagaactc	tgaagtctac	catggcaact	tcttaagtgg	tctgagaacc	31560

cagttgtgtt	ctgtggcaaa	acacagetta	gggatccata	cccagecete	ctgtcagctg	31620
ttcaccttcc	agttcttcag	agacatgtgt	ggcagtgact	ttggccacat	agctggctgt	31680
gccctttaaa	ggcattcctt	gacacagata	tgtggactgg	tgacgttgct	ctccagccag	31740
gtgttcttcc	cagcaggctg	gcctggctgt	ctcctgcatg	cctgtacttg	tttgtctccc	31800
tgctccctct	cctgggcctg	gccagagcta	cttgcagcaa	acaaaagcag	gatattggca	31860
atggaaagga	gggtgtgttc	tggtgctccc	atgccctgcg	gcgcacatac	cattgcaagg	31920
gcgtaacaga	gcccaggcct	gcatttgggt	gcaaataagt	ctgcacacag	aagaaaagaa	31980
ggacctggtg	accaggagcc	atggaaccct	tgtgctcccc	tacctgggct	actggttctt	32040
gccactccta	ccattttcag	tttggaaata	tttgttaagg	ctttgctctt	ccaggtcctt	32100
tgcttggtgc	tgagtctacc	aagagtaagt	gggatgctgt	ttttgtcctc	agggagctaa	32160
cagtctagtg	aagaagaaag	atggttgccc	aggaacttct	aagtcagaag	gcaggaggca	32220
agaaggaagc	ccctgctcct	actgccagcc	ctctgttggg	caccccatag	ttcttcagaa	32280
ccacatttaa	tcctcactgc	aggccaggca	tagtggctca	cacctgtaat	cgcagcactt	32340
cgggaggcca	aggcgggcag	atcacttgag	gtcgggagtt	cgagaccagc	ctcaccaaca	32400
tggggaaacc	ccgtctctac	taaaaataga	aaaattagcc	gggtgtggtg	gcatgcgcca	32460
gtaatcccag	ctactcagga	ggctgaggtg	ggaaaatcac	ttgaactcgg	gaagcagagg	32520
ttgcagtgag	ccgagattgt	gccactgcac	tccagcctgg	gcgataagag	caaaattcca	32580
tctcaaaaaa	aaaaagaaaa	aagaaaaaat	cctcactgct	accttgaaag	taggtgatga	32640
cattgccatt	tcacaaatga	gaagtgaagg	ggctagccca	agatcactta	ggtggtaaat	32700
ggtggtgcta	agattagaac	ctcagatcat	ctagggaaaa	acacagatat	gcacagagtt	32760
aaggggaccc	agggtattgt	ttgtcctctt	gtttcacagg	tggggaaaca	acccagagag	32820
ggaaaggggc	ttgtccaagg	caatttagca	cccaagaact	tgaacccata	tctctctct	32880
cctcatttag	agctcatccc	acatgtatct	tatattgaga	ggagtgtgag	ccacatacca	32940
agaacagtct	tcccctctgc	ctccaacctc	actgtgcagt	tttgagacac	ttcacagcca	33000
tactcttcat	gccataccca	gcccttaaga	ccctgaagtt	ccccttccat	aagacaagta	33060
ggaaaagcta	tagggtaaaa	atagccatca	gtgtttgttg	agcacccagg	aggaattggg	33120
cactccagaa	agataaaggg	attctcaggg	acttgcttct	ctagacttcc	ctagctcagc	33180
tgcttcaact	cattcctgcc	cctcttctct	acctcccgca	gtgctcagaa	gtagtagaac	33240
tcactgtggc	ctctcacctt	gcattgttga	gttttattta	gactttctct	tcctcaactc	33300
ttcataagct	catgaaaggt	gaagtagggt	gccctgtgta	tttatctttt	atatctgcag	33360
tgcttagcaa	gttataataa	tgcacttgcc	tggcaaaagg	ctttctctca	tacattagct	33420
tatttcctct	tcacattggc	tctttgtagt	aataggatgc	tattagttat	tttcaatgag	33480
agaaagctac	taagagaagt	tgtccagcta	gtgacagtaa	gtggctgata	aagtgagctg	33540
ccattacatt	gtcatcatct	ttaatagaag	ttaacacata	ctgagtttct	actatattgg	33600
gtctttttt	tttttttt	tttttttta	gagacggaat	cttgctctgt	tgtccaggct	33660
ggaacgcagt	ggtgcaattt	tgggtcacca	caacctccgc	ttcccaggtt	caagcgattc	33720
tcctgcctca	gcctcctgag	tagctgggac	taccagtgca	cgccaccacg	cccggctaat	33780
ttttgtattt	ttagtagaga	cagggtttca	ccatgttggc	caggctggtc	ttgaactcct	33840
gaccttgtga	tctgcccgcc	tcagcctccc	aaagtgctgg	gattacaggt	gtgagccacc	33900

gcgccctgcc	tatattagga	cttttatata	agctatctct	agctagctag	ctagctagct	33960
ataatgtttt	ttgagacaga	gtctgactct	gtcacccagg	ctggagtgca	gtggcgtgat	34020
ctcgactcac	tgcaacctcc	acctcctggg	ttccagtgat	tetectgeet	cagcctcccg	34080
agtagctggg	attataggtg	catgccacca	cgcccagcta	attttttgta	tttttagtag	34140
accaggtttc	accatgttgg	ccaggctggt	ctcgaactcc	tgacttcaag	tgatccaccc	34200
gcctcggcct	cccaaagtgc	tgggattata	agcataagcc	actgtgccca	gctgctctct	34260
atattttaa	tacatattat	ttccattaat	tttcacagca	gttcatttta	tagatgagga	34320
aactaggcca	gagaagtaaa	atatcttgcc	caagatgatg	taactagtaa	gtggcaggat	34380
caagattcaa	accaagcaat	gttcaaacct	cttggaagca	agaatgtggc	cactgtggaa	34440
ggtgcaaggc	cttgacaaca	agaataggga	aaagaaggaa	ctagaaggaa	agagatggca	34500
tgggctcagc	aggccaggga	gctcttagct	gtgtgtgttg	ggaagctcag	aagggaggaa	34560
gaggttgtct	gtgcaggtaa	gtcctgagaa	cacaccagac	ttttgagagg	tggagcttca	34620
tagccaggtc	attaggggag	aagggagcta	tagattttt	tttttttt	tttttttt	34680
tttttttag	agacggggtc	ttactatgtt	gcccaggctg	gtcttgaact	cctgggctca	34740
agtgatcctc	ccacctcage	ctcccaaagt	gctgggatta	gaggcatcag	ccaccccgcc	34800
cagcgagcta	tggatctaac	atgtacatct	tacacagtgc	taatagaatg	ttgggtttct	34860
tccccaatat	tttattttga	aaaaaaattc	aaatatatag	aaaagttgaa	aaatgtagtt	34920
caaagaacac	ctacatacct	ttcacataga	ttcatgattt	gttaatgtta	tgccactttg	34980
tatatatctc	tetecetect	atctgtatac	ttttatttat	ttatttttgc	tgaactattt	35040
cagagtaact	taaaggcatc	ttgattttac	ccttgaacag	ttcaatatgt	ttctgctaag	35100
aattctccta	tataagtcag	atatcattac	atctaagaaa	attcacggca	attttacaat	35160
ataatattat	agtccaaatc	catatttcct	cagttgttcc	aaaaaatgtt	catggctgtt	35220
tcctttttta	atctaaattt	gaatccaagt	ttgaggcatt	gtatttggtt	gctgtgtctc	35280
tagggttttt	aaaatctgtg	ccttttcttc	tccccatgac	tttttagaag	agtcaagacc	35340
ggttattctt	atagaataac	ccacattcta	gatttgcctg	attagttttt	ttatacttaa	35400
cgtatttttg	gcaagaacat	tacattggta	acgctgttgg	tgatgggtca	gttttgaaga	35460
gtggagatga	ttaaactgct	tttgttcatt	gaagtatctg	tcaagaccag	agatoottaa	35520
ctggtgccat	aaataggttt	cagagaatcc	tttatatata	caccctgtcc	cccacctaaa	35580
ttatatacac	atcttcttta	tatattcatt	tttctagggg	aggcttcttg	gcttttatca	35640
aattctcaga	gggccccaag	acccaaagag	gttatgaaac	actagtctgt	ccactgaggc	35700
aggcaacaca	gagctggttt	ctggggcctt	gttcagtctg	aaccagcttc	ccttggggag	35760
atagcacaag	gctgtaactt	tgccccatct	tggctttgga	tcaaagagga	ctgtccattt	35820
tgttgtcata	cctaggaacc	agggacagct	tatgtggcct	ggttccaggg	atccaggaga	35880
atttcagttc	ttgtcttgcc	tttcaggtgt	tcagaatgcc	aggattccct	caccaactgg	35940
tactatgaga	aggatgggaa	gctctactgc	cccaaggact	actgggggaa	gtttggggag	36000
ttctgtcatg	ggtgctccct	gctgatgaca	gggcctttta	tggtgagtga	atcccttcat	36060
atctgcccct	cttggtcttc	agagtccatt	gacagtgctt	ccagttccct	gtggcctgtt	36120
aatcttttag	tctttccatc	agccagggca	tctcccttta	tttattcatt	cattcaacta	36180
gcaggtatca	attgagcacc	tactaagtga	aaggtaagat	ccttccctca	aagacttaat	36240
agttgaacgt	tgggagtggg	aggagaggca	ggcagagagg	agacacaata	tagttggata	36300

aggacctcca	aggagagtgt	tacaggctga	gaggaggata	tacttaggtt	gtctttaggg	36360
aatcagaaaa	ggagactctg	gaataggctg	gcagagagag	gggctacctc	ctatacctgc	36420
tctggacaaa	cgactttaag	catagtgaca	gatttgccaa	ccctgtattg	gaagaactga	36480
tctttttag	tggggatgat	tacttctggg	gatttcttct	cataactgag	accaaaacag	36540
ttttgtgcag	tctcagaaat	gacaggaggt	accaatctga	cacttccttt	ggaagctcta	36600
gggcagagag	tgaaagagtg	gattttgacg	ggggccttgc	ttggaggtca	ttcacccacc	36660
cctgtcctca	ctccagcaac	agtgataact	cacttccttc	ctccctttgt	acacccttct	36720
ccccacctgc	tcacaggtgg	ctggggagtt	caagtaccac	ccagagtgct	ttgcctgtat	36780
gagctgcaag	gtgatcattg	aggatgggga	tgcatatgca	ctggtgcagc	atgccaccct	36840
ctactggtaa	gatagtggtc	ctttgtctat	cctctcccat	ataagagtgg	ctggcgggga	36900
gggacagtgg	cagggtgagt	tgggcagaag	gagtgttagg	gtagtcagag	cattggattc	36960
ttaccacagc	agtgctctta	accagctctt	taacttgtaa	gcagaatgat	ttacacatgt	37020
ctctaccctt	tttccttacc	aaccttgaaa	atgtcttcac	tctgccctgc	aatcctccca	37080
gtgggaggca	ctcttcaagg	acgatcccag	aacattaaag	tcaaagaccc	cttagagctc	37140
accctgtcca	accaccttgg	ttgataaaag	aagtcagcct	ggggcccatg	gaatagaata	37200
gtacaagggc	aaggttctca	ttgtgagtca	aaggtagagt	gaagagaacc	cagaccatct	37260
Caccccaacc	caggccagtg	tttttccaaa	tataccactt	gctgcagatc	tagctcagca	37320
ccccagtcc	cagcccaccc	tgagaaccca	ggctcctcat	tctgagcagc	cagctagaat	37380
catgacaaag	agggtggtag	tgagactatg	ggtactgttg	cttaaagcca	catggtgcag	37440
tggttgctgg	ggggcttctg	tgtgggactc	tagcatctta	ttcccccctg	tgccctctcc	37500
ccagtgggaa	gtgccacaat	gaggtggtgc	tggcacccat	gtttgagaga	ctctccacag	37560
agtctgttca	ggagcagctg	ccctactctg	tcacgctcat	ctccatgccg	gccaccactg	37620
aaggcaggcg	gggcttctcc	gtgtccgtgg	agagtgcctg	ctccaactac	gccaccactg	37680
tgcaagtgaa	agagtaagta	ttttgagaac	ccttcagcag	gggttcttga	gcagagtctg	37740
taaatgggcc	tcagagggct	tagacctcca	aagtctcatg	cagaactccc	tttattctca	37800
tctcatatct	ttctcctgga	cccactatg	ctgtaaccgt	acctgggcct	tggcacttac	37860
tgttctctct	gcccaggcta	cttcctaccc	gatacttaag	gcaagaatca	ctcacctttc	37920
aggtgtcagg	tttcaggtca	tgtttgctct	ttgaaatcat	ctggcttgat	tatgtgtatt	37980
agttgtttat	cttctatccc	ctccactaga	atgtaaattc	cagaagaaac	ttgctgtctt	38040
attcagtgct	gcatgcccag	ggcttggaag	agtacctggc	atatagtagg	agttgattga	38100
ttattatttt	gtcagtcgag	agaatgaatg	gagaaaatgt	ggtccatggc	ccaaaagaag	38160
ttaagaccct	atcctagatt	caggccagag	accagatgga	gaaagagtct	gtgtctatct	38220
aataccagta	atgtcgtacc	tetggeeget	taccatgtaa	atattgattg	tgtatctacc	38280
atgtgttgga	cactaggcta	gtgcttgcac	agcaggtgaa	agatactaga	gtttgggaag	38340
tcaggaggag	ctaaggtctg	ttctacaacc	ttattagatg	aagaggagag	ggaattgtgt	38400
tcagggcaga	gggagaagca	tttctccaaa	agtaggagtc	ttaatcatgt	ctgatgtagg	38460
ttgagtgtgg	ccagaaaagg	ggctgttaag	tatagagggc	ctggattatg	aaaatccagc	38520
agatccattg	agagtttaag	cagcaaggtg	ttgtgaccaa	gttaacattt	tagaaggatc	38580
actggtatgg	aggttggatt	ggagagggga	aagcctaaag	gtatagagac	tagttaggaa	38640

				00		
gctattgtag	gctgggcatg	gtggttcatg	cctgtaatct	cagcactttg	ggaggctgag	38700
gtgggaggat	tgcttgaggc	caggagttga	agaccaacct	ggccaacata	gcaagacccc	38760
gtctctgttt	ttcttaatta	aaagaaaagt	ccagacgtag	acatagtggc	tcacgcctgt	38820
aatgccagca	ctttgggagg	ccaaggtggg	cagattgctt	gaggtcaaga	gtttgggatt	38880
aggccaggcg	cagtggctca	cgcctgtaat	cccagcactt	tgggaggccg	aggtgggcgg	38940
atcacaaggt	caggagatca	agaccatcct	ggctaacaca	atgaaacccc	gtctctacta	39000
aaagtacaaa	aattagccgg	gcatggtggc	ggacgcctgt	agtcccagct	actcgggagg	39060
ctgaggcagg	agaatggcgt	gaacctagga	ggcggagctt	gctgtgagca	gagatcacgc	39120
cactgcactc	cagcctgagc	gacagagcga	gactccatct	caaaaaaaaa	aaagagtttg	39180
ggattagcct	ggccaacatg	gcaaaacccc	atctctacaa	aaagtacaaa	aaaattagct	39240
gggtatggtg	gtgcgcgcct	gtaatcccag	ttactcagga	ggctgaggca	tgagaattgc	39300
ttgagcctgg	gaggtggagg	ttgcagtgag	cccagatcat	gccactgcac	tccagcctgg	39360
atgacagagt	aagatgccat	ctcaaataaa	aattaaaaac	aaagtttaaa	aaaaaaatag	39420
aagctattac	cgtgatccag	gtaagagatg	tgaataacta	caatgatgga	aagaaggcag	39480
agttcttaga	gatgggagta	ggagagatga	gggaactcca	gattgggaag	atgatgttca	39540
agtttctggc	ttaggccaca	gggtgagtgg	caattccctt	cactgagatg	gggcatcctg	39600
gaaaaggtgt	tgcctttctg	tgtgggtatc	ctgggcccct	taggggccac	tggtggcctg	39660
ggacctggta	aaccttccct	gcacaagcag	aattggtcaa	gcaggtttt	aggacatctt	39720
taccctgcct	caactcttgt	ctggcccagg	gtcaaccgga	tgcacatcag	tcccaacaat	39780
cgaaacgcca	tccaccctgg	ggaccgcatc	ctggagatca	atgggacccc	cgtccgcaca	39840
cttcgagtgg	aggaggtaga	gtgtgtgtct	aatctgtctt	gtgagggtgg	gacatggaac	39900
agatcctctg	ggaaatcagg	ctgtagcctt	taccttttcc	tacccccagc	ccatctcttt	39960
gtcttagcat	tgagcctgtg	accactggtg	acctatttca	gcgtaacagg	ttcccagggt	40020
agcagggatg	gttgatggac	gggagagctg	acaggatgcc	aggcagaggg	cactgtgagg	40080
ccactggcag	ctaaaggcca	ccattagaca	agttgagcac	tggccacact	gtgcctgagt	40140
catctgggtt	ggccatgggt	ggcctgggat	ggggcagcct	gtgggagctt	tatactgctc	40200
ttggccacag	gtggaggatg	caattagcca	gacgagccag	acacttcagc	tgttgattga	40260
acatgacccc	gtctcccaac	gcctggacca	gctgcggctg	gaggcccggc	togotootca	40320
catgcagaat	gccggacacc	cccacgccct	cagcaccctg	gacaccaagg	agaatctgga	40380
ggggacactg	aggagacgtt	ccctaaggtg	ccacctccca	ccctggctct	gttctgtcct	40440
atgtctgtct	ctcggatgaa	gctgagctgg	ctttcagaag	cctgcagagt	taggaaagga	40500
accagctggc	cagggacaga	ctatgaggat	tgtgctgacc	cagctgcccc	tgtggggatc	40560
acagtttaca	gccagagcct	gtgcggaccc	agctgtctgc	caggtttcct	tagaaacctg	40620
agagtcagtc	tctgtccact	gaactcctaa	gctggacagg	aggcagtgat	gctaaaccct	40680
gaagggcaac	atggcctatg	gagaaagcat	ggagctcaga	gcctggagta	cgggcacaga	40740
taggattgaa	taaattgtgt	agaaagactt	tgaaaacaat	aaagcaaaag	atgaatgaac	40800
gttttttta	gacttgaggg	accaacaacc	cccaaacccc	agattctgcc	aggtccatgg	40860
ggaaggagaa	gttgccttga	gtggaagece	caagtaggga	gacttacaga	aaagaagtca	40920
agagcactgg	ctcccaggca	gaaatactga	taccctactg	gggcttcagg	ctgagctcct	40980
cccttcacaa	atcacttcat	ctctctgagc	ctgtttctgc	atctgtgaca	taagatggta	41040

agataaaggt	ggctgtctca	ccaattatgt	aaggattaaa	tgtggaaaag	gacataaagt	41100
tgtatagtgc	tgccataggg	acagtgttca	gtaaacgtga	cacattetta	gtatcactaa	41160
gaatcaggtt	cttggccagg	caccgtggct	catgcctgta	atcccaacac	tctgggaggc	41220
ctaggtcgga	ggatggcttg	aacacaggag	tttgagacca	gcctgagcaa	catagtgaga	41280
cactgtctct	acaaaaaaa	aataataata	ataattgttt	ttaattagat	gggcagggca	41340
ctgtggctca	cacctgtaat	cccagcactt	tgggaggcca	aggccggagg	attgcttgag	41400
gccaggagtt	caggagcagc	ctgggccaca	ttcctgtctc	tacaaagaat	aaaaaagtta	41460
actgggcatg	gtggcacatg	cctgtaatcc	cagctactca	agaggctgag	gaggaggatt	41520
gcctgagccc	aggagttcaa	gactgcagtg	agccttgatc	acaccactgt	actacagett	41580
gggcaacaga	gtgagacctt	gtctccaaaa	aaaaaagttt	gtttttttt	atccactctc	41640
ctcaccaaac	aaactgagta	agttagagcc	ctctcagctg	gcatgtgttg	gaaacagtgc	41700
cctctcatta	aagtgctgcc	ctcactccca	ttgcctcttg	gccttggtca	gtatgatgaa	41760
attagtggga	ggcagggcaa	cagagggcag	ggaagagcta	gaaatccatg	gcctggaaaa	41820
gggaagattt	gggagtggcc	aggtatctgt	agagccacca	tgcagaggag	gggggcagct	41880
agccttgtgt	gctctggtgg	gcatggtcag	caggaggcag	agcaaaagga	caagggtaag	41940
taaacctgta	ggtcgggaca	agccaagagc	catccagcgt	cagteetete	tgggtagccc	42000
aagtaaagca	ggagcatacc	ccagagagaa	agttcgcagg	gctgttcacc	tgcagtgctg	42060
tggacttcaa	ccttcttgtt	ccttcttcag	taagtgaaaa	taacagtcat	tgaccatgac	42120
tattatcgac	cgcttttgaa	aatgtaaaca	tagtgacttt	attgctgtaa	asatcatacg	42180
tgtttatcat	cttaaaattc	aggaaacatg	gacaggtaca	aagatgtgca	asatatcatc	42240
caaaatccca	tttgctggcc	aggcacggtg	gctcacgcct	gtaatcccag	cacattggga	42300
ggccgaggcg	ggcaaatcac	ttgaggtcag	gagtttgaga	ccagcctggc	caacatggtg	42360
aaaccctatc	tctactaaaa	atacaataat	taggctgggc	gcagtggctc	acgcctataa	42420
tcccagcact	ttgggaggcc	gaggtgggcg	aatcacaagg	tcaggagttt	gagactagcc	42480
tggccaatat	ggtgaaaccc	catctctact	aaaaatacaa	aaattagggc	cgggtgtggt	42540
ggctcacgcc	tgtaatccca	gcacttaggg	aggccgagac	agatggatcg	cgagatcagg	42600
agttcgagac	caacctagcc	aacatggtga	aaccccatct	ctactaaaaa	aatacaaaaa	42660
ttattcggtt	gtggtggcac	acgcctgtaa	tcccagctac	ttgggaggct	gaggcaggag	42720
aatctcttga	acctgggagg	cagaggttgc	agtgagtgga	gatcccgccg	ttgcactcca	42780
gcctgggcga	cagagtgaga	ctccatcaaa	aaaaaaaaa	*****	aaattagccg	42840
ggcgtggtgg	cgtgcaccta	tactcccagc	tacttgggag	gctgaggcag	gagaatcgct	42900
tgaacctgga	aggcggaggt	cgcagtgagc	cgagatcgtg	ccattgcact	tcagcctggg	42960
cgacagagcg	agactctgtc	tcaaaaataa	taataataac	aataactagc	cgggcctggt	43020
ggcacatgcc	tgtagtccca	gttactcagg	aggcggaggc	atgagactca	ggtgaactag	43080
ggagacagag	gttgcagtga	gccaagatca	caccactgca	ctccagcctg	gttgacagag	43140
cgagactctg	tctcaaaaaa	aaaaaaatcc	catttgctca	ttttttggat	actagtataa	43200
ctatcactct	aaaccagtta	gtacttaaat	caagcagata	tgggagatgg	tgaattacca	43260
tctacagtgt	tgtcatatat	gtcacatact	gagcattatc	agctagtaga	atctagttaa	43320
ttgttctatg	tgtgatgtat	gcagagttcc	cattttgaat	gtgttttac	tatgcttaaa	43380

taaatgactg	atgtcagcaa	ccccaaaatg	atacatctga	tgtaagagcc	cctgttcccc	43440
aataataaca	tctaaactat	agacattgga	atgaacaggt	gcccctaagt	ttcctccctc	43500
cagggtttct	tggccggtct	ctgaggacta	cacateceta	ctcccgtctt	tcctcatctt	43560
caggcgcagt	aacagtatct	ccaagtcccc	tggccccagc	tccccaaagg	agcccctgct	43620
gttcagccgt	gacatcagcc	gctcagaatc	ccttcgttgt	tccagcagct	attcacagca	43680
gatetteegg	ccctgtgacc	taatccatgg	ggaggtcctg	gggaagggct	tctttgggca	43740
ggctatcaag	gtgagcgcag	gcaacaattg	ctttgctctt	ctgcccccag	tccctctgtc	43800
actgtctttc	ggggatttct	catcacttgg	ccccacccca	caccatgcag	gatgccaggc	43860
ctccttcctg	gctttgggtg	ttggtgtgag	aggtatcctt	cacccccacc	caggccacct	43920
aaggtcaatg	ttgctgttac	agtgagcttg	tggacctgga	gatccaggtt	gggttgagct	43980
gtgcctgtgg	ccctcctgcc	tccagtcagt	gggtgtttgt	taggtgcctg	cagacctcag	44040
taccgggcat	gctacaagga	gcacacaggg	gaatggctcc	tgcctccctg	gtgaacagtc	44100
tcagggacta	acctctctct	ttctctcctc	ctcctcctct	tctgctgaga	actgggaggg	44160
ggggtcaggt	aagacgtgtg	tctcagcttg	ggggcagcag	ggctggagag	ctcacccccg	44220
atccacccag	ctccctggtg	catgtctttg	gcactgacct	tectgecece	agacttctgt	44280
tcactcagga	gactcacttc	tatgccaaat	gaccagagcc	cctgcttggc	ttggcagcat	44340
cccctcctgc	cttcttcccc	acttcccttt	tctgggttct	tgcctgtcct	ctgtgcatgc	44400
ccagctctcc	aggaaagagg	gtttgcttcc	gtgtgagtcc	catgttgctc	cacgctgcat	44460
cttccacaca	tgaactctgt	cattctgacc	cggctcagtg	tgccctccaa	gggatgggat	44520
ggccagctgc	atagattttc	tcaaacagtt	ctccagaact	tcctctggtc	tcagcaccat	44580
taacagtcac	cctccctgta	ggtgacacac	aaagccacgg	gcaaagtgat	ggtcatgaaa	44640
gagttaattc	gatgtgatga	ggagacccag	aaaacttttc	tgactgaggt	aagaagatgg	44700
agggggcccg	ggaggttggt	gtcaccattg	gaagagagaa	gaccttacaa	ataatggctt	44760
caagagaaaa	tacagtttgg	aattactgtc	ttaaagacta	agcagaaaag	agccctagag	44820
gaatatccca	ctccctctaa	attacagcgt	aattatttgt	tcaatgaaca	cttactaaaa	44880
gcaacacaaa	cagggtacaa	gggatgcagt	aacaaaagat	acagggttca	gaagagctct	44940
caggttatga	ggatgatgga	catgaaaaca	ctccaattta	gtacaactca	atgttataat	45000
cctcacctga	acgccctgct	aagggagcct	ggaggggagc	tccctgagca	ctcacactcc	45060
ttgggcattt	acagttttca	ctacccctcc	caagttactt	catggagtaa	cttaagttgg	45120
ggacacctgt	ggtctgggta	ttgccctcca	agccacttgg	ccactcccac	cccagttctc	45180
ccaatgcagt	tccaagggta	aggcctatga	agccatctcc	atctatatgg	tggtggtctt	45240
ccctcatcct	gatcttagtg	ccctgtcata	tcacaagata	ggaggtagga	gatacaggtg	45300
gtaacacttg	tcaagctgat	tccttggagg	gaagaggtaa	ggaagacagt	gagaagttaa	45360
ccaccagett	tccttggctt	ccccacccc	caggtgaaag	tgatgcgcag	cctggaccac	45420
cccaatgtgc	tcaagttcat	tggtgtgctg	tacaaggata	agaagctgaa	cctgctgaca	45480
gagtacattg	aggggggcac	actgaaggac	tttctgcgca	gtatggtgag	cacaccaccc	45540
catagtetee	aggagccttg	gtgggttgtc	agacacctat	gctatcacta	ccctaggagc	45600
ttaaagggca	gaggggccct	gctttgcctc	caaaggacca	tgctgggtgg	gactgagcat	45660
acatagggag	gcttcactgg	gagaccacat	tgacccatgg	ggcctggacc	acgagtggga	45720
cagggctcaa	cagcctctga	aaatcattcc	ccattctgca	ggatccgttc	ccctggcagc	45780

agaaggtcag	gtttgccaaa	ggaatcgcct	ccggaatggt	gagteccace	aacaaacctg	45840
ccagcagggc	gagagtaggg	agaggtgtga	gaattgtggg	cttcactgga	aggtagagac	45900
cccttcctat	gcaacttgtg	tgggctgggt	cagcagctat	tcattgagtt	tgtctgtgtc	45960
actgaaactg	accccagcca	actgttctca	gttcacagcc	ctgttttcaa	agaattacac	46020
atctctaaag	gcaaacaggg	cacggacaag	gcaaactgga	gaggcaaact	gtagcctgag	46080
atggcctggg	cttgccatca	caggtattca	ggtgctgagg	gcccttagac	caactagagc	46140
acctcactgc	ctaggaaatc	aatgaagggg	aaatgagttc	tagcggagcc	ctgaaggatc	46200
agaattggat	aaagttctta	ttggcagaga	ggcaccagga	ttgaagtgac	aggagcaaag	46260
acctgggagg	aaagaggaga	aaatcatcta	tttcacctgg	aaacaaatga	ttccaagcat	46320
agaaataata	acagctgaca	agtactgagt	gccctctata	tgctaggcac	tgggctgagg	46380
gattaacatg	catgtgcatg	tttattcctc	atgacaacct	tggtttccag	ataagctgga	46440
ctggaaaggg	acagagctgg	gatcctgggc	taatcagtct	ggtcgccaag	cctgagactt	46500
tagccactgc	ccttcacatg	ggggtccatg	aaaatagtag	tagtctggaa	cagtttgggg	46560
gtacatcaag	gtcgctgtgt	tttaagctat	ggagtctgga	ctataggaga	caaatgtaaa	46620
agagttttt	ggttgactgg	ctttttggtt	tttttgtttg	tttgtttgtt	tgtttgtttg	46680
tttgtttgtt	ttttcctgtt	tctggggctt	gaatcaggaa	ggaggtttt	ttgttgttgt	46740
tgttttgaga	aaggatattg	ctctgttgcc	cagactggag	tgcagtggca	cgatcatggc	46800
tcactacage	ttcgacctcc	tgggctcaag	caatcctcct	gccttagcct	cccaagtagc	46860
tggactacag	gtgtgtacca	ccacacctaa	ttttttgaat	tttttttct	tttttttt	46920
tttttttt	ggtagagaca	ggttctcact	ttgttgccca	ggcctgaatc	tcaaactcct	46980
gggctcaagc	attcctcctg	cctcgccctc	ccaaagtgtt	gggattacag	ttgtgagcca	47040
ccatgcccgg	caggaaaaga	tttttaagca	agaaagctta	agagctgtgg	tttttccaaa	47100
atgagtctgg	gctggcacag	tggctcatgc	ctgtaatccc	agcactttt	tgggaggccg	47160
aggtgagtgg	atcacttgag	gtcaggagtt	tgagaccagc	ctggccaact	ggtgaaaccc	47220
ctgtttctac	taaagaaaaa	aatgcaaaaa	ttagctgggc	gtggtggtgc	acgcctgtag	47280
tcccagctac	tcaggaggcc	gaggcaggag	aatagcttga	acctgggagg	cagaagttgc	47340
agtgagccaa	gatcacacca	ctgcattcca	gcctgggtga	cagagtgaga	cttcatctca	47400
**********	aaaagagaga	ctgatatggt	tagtacattg	gggtggaatg	cggagggtcc	47460
agggaatgga	gccctgcata	gggggctaat	gaaacatttc	agatttctga	attaaggtag	47520
tggctgtggg	gacaggagcc	tgggaggcag	ggtggagtca	gaatggagag	actggttggc	47580
aatgagggaa	caggaggagg	aggaggagga	gttacgagtg	gcttgaggtg	tcacttacca	47640
gacatttggg	ggatgggga	tagccgtgat	tgttgagcaa	ctggtttggg	aagagctagc	47700
attgatccct	gctgttctgt	gctagcagaa	cctatcagca	tcttctgggc	aggaaactgg	47760
ctccatgaga	ctggcttagg	gagaggetge	tagtcaccta	atctgcagag	aaggggcagc	47820
tggagctgtg	ggacagaaga	ggcatccatg	tagctggtgg	gggtgtctca	gcttgtgaag	47880
aggagatggc	tttgagcagg	gctgacactg	aaaaggctgg	aagaaaaaaa	cagacacaca	47940
agagtctcag	gatcaggtag	cataggaaag	ttgtggacag	tctttgagga	gcactccctc	48000
aggcaggcag	gcaggcaggt	catgagctat	agcgattcag	gaagagctcc	ctgggtgtgt	48060
gagcagctcc	aggagcctaa	gggatgaaag	tagtattgca	gggggctgga	gagcaaggag	48120

tggctccttc	tacatttgca	agggaaggag	aaaggaagtt	gctcctgaga	gtggtaagag	48180
tcagtggtgg	aggcctggag	aggagacata	acaaacaaat	ttgttgacaa	acattttggt	48240
aggaaggggg	agagcttasa	gtttagacag	tggggaaggt	ggagtcttag	aggaggtgaa	48300
tgtctgaaag	acagagctag	ctggagcaag	aagtcacttc	tctgttgcag	gcaggaagga	48360
tccaaagtgg	ctcaagccag	agattgggag	agtggggagg	agggagcagc	ctggatctaa	48420
gtaaaatggg	tagaggtgga	gggggtgctg	caacggccag	ggttttctga	agttggggac	48480
attaggagag	agctgtgagg	gctttggcca	gccactgtgc	tagtgattgg	tgaaccaaag	48540
gatgggcagg	agatggcagc	agggaagcag	aggaagtcca	ggcttcctgt	tggtattggg	48600
acaagggaga	ggccatagga	ggccctggcc	ctgttgtcca	ggttgggttc	tgaagctggg	48660
tgggcatggc	ctggtaggag	agcatctatg	gcgcccaatt	ccagattcag	ggtctagttg	48720
atttgctggc	cctgtagcct	cagctcatgc	ttctgttcca	ggcctatttg	cactctatgt	48780
gcatcatcca	ccgggatctg	aactcgcaca	actgcctcat	caagttggta	tgtcccactg	48840
ctctgggcct	ggcctccagg	gtcctatcct	tcctggcttc	cttgtcacaa	aggaggctga	48900
cttgtcccct	ctggctagag	ggcagaggtg	ttgcctagga	gctcctatct	ttcccttcct	48960
gcttcttcca	atgcccttct	ctgtcctctg	ggagctccga	gacacacaca	gacataattt	49020
caccttctct	cattagcaac	ctttgaaata	atttgattag	aagggacttc	agaagtttgt	49080
tgactatatg	tagaaaaccc	tgtcatttta	cctgcttttg	ccccatagta	gtcttgtaaa	49140
acagttcatt	gctgacccca	ttttacagtg	gtggcacctg	aagcctcagc	ctgaggccac	49200
cgagctagta	aatttacagg	gaccagtttg	agaccagcat	tcctcccact	gcccctcagc	49260
tgtggtggtt	acaatgttgt	ttgtcttact	gacttgctat	ctggcttcct	gggtgtctac	49320
cggctggccc	tggctctgcc	ctctagaccc	acaccacgca	atcttcattc	ctttcccaca	49380
tgactgccct	gtagctattc	aaagagcttg	tctcccccaa	gtctccccat	ctactgcctc	49440
caccttgcct	ttttctgtct	tatcctggtt	ctagccactg	cctgaaatca	ttttaggaat	49500
aagacaggac	agggaaaaac	aaaagcaacc	ccctgtccca	cctctgagtt	ccactctcca	49560
agtccctgag	cctcacctcc	agggctccag	tggctctgcc	atgaacccac	tgtgggctgg	49620
gagtctgctg	tgcacagata	ccagaccctc	agaaacacaa	atgccaagtg	tgtctgtttt	49680
tttgttttgt	tttgttttgt	tttttagatg	gagtctcatt	ctgtttccca	ggctggagtg	49740
cagtggtgca	atcttggctt	actgcagcct	ctacctcccg	ggttctagtg	attgttctgc	49800
ttcagcctcc	cagtagctag	gactacagge	gtgtgccacc	acgcccagct	aattttttt	49860
tttttttt	tgtattttta	gtagagacag	ggttttgcca	tgttggccag	gctggtcttg	49920
aactcctgac	ctcaggtgat	tcacccgcct	tggcctccca	aagttctggg	attacaggtg	49980
gaagccaccg	tgcctggcct	gagtgtgtct	atttgataga	gctttctgct	ctgattctcc	50040
cttgctatac	accttttctc	cccttctcag	tggcttctct	tgcctatgct	tcctccccag	50100
ggccaggttt	gagaacatcc	ccatgaagtc	ctgacctgtc	ttttatccta	ccaggacaag	50160
actgtggtgg	tggcagactt	tgggctgtca	cggctcatag	tggaagagag	gaaaagggcc	50220
cccatggaga	aggccaccac	caagaaacgc	accttgcgca	agaacgaccg	caagaagcgc	50280
tacacggtgg	tgggaaaccc	ctactggatg	gcccctgaga	tgctgaacgg	tgagtcctga	50340
agccctggag	gggacacccg	cagagggagg	acagatgctg	cccttgcatc	agagccctgg	50400
gaattccagg	ggaggcctgt	gaagcgtagg	accggatacc	cagagctgag	gatatttttc	50460
ccttgccagg	tggggcctca	cgatttagct	cctgagctca	gggggctggg	aactgatcag	50520

tgtcccatca	tgggggataa	ggtgagttct	gactgtggca	tttgtgcctc	agggatcgct	50580
aagagctcag	gctattgtcc	cagctttagc	cttctctctc	catggtgaga	actgaagtgt	50640
ggtgccctct	ggtggataat	gctcaaacca	accagagatg	ctggttggga	ttcttgaaat	50700
cagggttgtg	aggcctcaga	aatggtctga	atacaatcca	ttttggagtc	tgaggcccag	50760
agaagttcag	tgaattgcct	aggagcatac	agctgcctaa	tggcagaggc	tagatgaacc	50820
ctagtctggt	tcttttccac	tttaacgtgc	agtttcatcc	taggcagtgt	tatgttataa	50880
gggctctcca	aggcagttca	cctacggctg	aggaaggact	attttcaggt	ggtgtctgcg	50940
caggacagcc	tgtggggtgt	ccctacagaa	cctgttctag	ccctagttct	tagctgtggc	51000
ttagattgac	cctagaccca	gtgcagagca	ggtaagggat	gtaaacttaa	cagtgtgctc	51060
tcctgtgttc	cccaaggaaa	gagctatgat	gagacggtgg	atatcttctc	ctttgggatc	51120
gttctctgtg	aggtgagctc	tggcaccaag	gccatgcccg	aggcagcagg	cctagcagct	51180
ctgccttccc	tcggaactgg	ggcatctcct	cctagggatg	actagcttga	ctaaaatcaa	51240
catgggtgta	gggttttatg	gtttataacg	catctgcaca	tctttgccac	gttcgtgttt	51300
cattggtctt	aagagaagga	ctggcagggt	ttttttgttt	tagatggagc	ctcacttcgt	51360
tgcccaggct	ggagtgcagt	ggcacaatct	gggctcactg	caacctctgc	cttctgggtt	51420
caagtgattc	tcctgcctca	gcctcccaag	tagctgggac	taccggcaca	caccaccatg	51480
cccggctaat	ttttgtattt	ttagtagaga	cagggtttca	ccatgttggc	caggctggtc	51540
ttgaactccg	gacctcaggt	gatccgcctg	cctcagcctc	taaaagtgct	ggaattaata	51600
ggcgtgagct	acctcgcccg	gccaggtttt	tttttttt	tttttagttg	aggaaactga	51660
ggcttggaag	agggcagtgg	cttgcacatg	gtcgataagg	ggcagatgag	actcagaatt	51720
ccagaaggaa	gggcaagaga	ctgttcatgt	ggctgtctag	ctagctcttg	ggccaaatgt	51780
agcccttctc	agttcccttc	aagtagaagt	agccactcta	ggaagtgtca	gccctgtgcc	51840
aggtaccacg	tggacagagt	gaggaatctt	ggaaagattc	ctacctttag	gagtttagtc	51900
aggtgacagc	atatctcagc	gactcaaaca	cacacacatt	caaagccttc	tgtaattcct	51960
acaaagttgt	gaggggtaga	ggagaggaga	gacaagggat	ggttaggata	atgaaggaat	52020
gttttgttt	tgtttttgtt	tttgagatgg	agtttcactc	tgtcacccag	gctggagtgc	52080
agaggtgcaa	tcttggctca	ctgcagcctc	cgcctcccag	gttcaagcaa	tcctcctgcc	52140
tcagcctccc	aagtagctgg	gactacaggt	gtgcgccacc	acgcctggct	aatttttgta	52200
ttttcagtag	agacagggtt	tcgccatatt	ggccaggctg	gtctcaaatg	cctgacctca	52260
ggtgatacac	ccgcttcagc	ctcccaaagt	gctgagatta	caggcatgag	ctaccgtgcc	52320
tggccatgaa	ggaagatttg	tttaaaaaa	ttgttttctt	taatattaat	tgaacacctc	52380
tgttcagagc	actgggctgg	tgccagaggg	tttcagacat	gaatcagatc	cagcacctca	52440
tagagcctta	atctggcaca	cacacacage	cacaaggaga	cacagacaag	gcagggtagg	52500
atgagtggaa	gctaggagca	gatgctgatt	tggaacactt	ggcttctgca	gtgaagcccc	52560
ttcttagtcc	tcttcagtaa	cccagctctc	agtggataca	ggtctggatt	agtaagattt	52620
ggagagatga	ttggggattg	gggagagctc	tctaacctat	tttaccacct	cctcttctgc	52680
cattcttcct	gtccacatcc	ccagcatece	tttcccttgc	caagtatctg	tggcctctgt	52740
agtoctttgt	aaacagctgt	cttcttaccc	tacagatcat	tgggcaggtg	tatgcagatc	52800
ctgactgcct	tccccgaaca	ctggactttg	gcctcaacgt	gaagcttttc	tgggagaagt	52860

ttgttcccac	agattgtccc	ccggccttct	tcccgctggc	cgccatctgc	tgcagactgg	52920
agcctgagag	caggttggta	tcctgccttt	ttctcccagc	tcacagggtc	ctgggacgtt	52980
tgcctctgtc	taaggccacc	cctgagccct	ctgcaagcac	aggggtgaga	gaagccttga	53040
ggtcaagaat	gtggctgtca	acccctgage	catctgacaa	cacatatgta	caggttggag	53100
aagagagagg	taaagacata	gcagcaagta	atctggatag	gacacagaaa	cacagccatt	53160
aaaagaaagt	ttaaaagaag	gaaattcacc	caaaccattt	gaatacagta	agtgtattca	53220
tctttcgata	ttcccctgtc	catatctaca	catatacttt	tttttatagt	aaatagttct	53280
gtattttgcc	ctgcatttcc	cttgtgttta	ctatccagtc	ttcctgttta	tcatttttgt	53340
cgacaacatg	aaattctatt	gagagactgt	ctgaacatat	tgtaatgtag	atgttcaggt	53400
ttttccagtt	tctctttaca	ataggtattt	aactacagtg	agcagtttta	tgcatttagc	53460
taatttctcc	tttgaggaag	tattttcaaa	attaccttta	ttcttctcag	gtaataattt	53520
cattattacc	aaagttaccc	taggtctttt	caagtgtgtg	gttaaaaaac	gagaatctgg	53580
ctgggcgcga	tggctcacac	ctgtaatccc	agcactttgg	gaggctgagg	ctggtggatc	53640
acctgaggtc	tggagttcga	gaccagcctg	gccaacatgg	tgaaacccca	tctctactaa	53700
aaatacaaaa	cttagccagg	catggtggca	ggtgcctgta	accccagcta	cttgggaggc	53760
tgaggcagga	gaattgcttg	aacccagggg	cggaggttgc	agtgagccga	tatcacgcca	53820
ttgcactcca	gcctcggcaa	caagagtgaa	actctgtctc	aaaaatgggg	ttcttttcct	53880
gccatcaaaa	atcatgtttc	ttttaaaaac	aagttcaaac	attaccaaag	tttatagcac	53940
aggaaatacg	tcttctgtaa	tctcccttaa	ccaatatatc	cctcaacatt	ctcctcaccc	54000
ccaactccac	cctcccagga	taaccagttg	ggacataatc	tttatttaaa	aatggtttcc	54060
ggatagagaa	agcgcttcgg	cggcggcagc	cccggcggcg	gccgcagggg	acaaagggcg	54120
ggcggatcgg	cggggaggg	gcggggcgcg	accaggccag	gcccgggggc	tccgcatgct	54180
gcagctgcct	ctcgggcgcc	cccgccgccg	ccctcgccgc	ggageeggeg	agctaacctg	54240
agccagccgg	cgggcgtcac	ggaggcggcg	gcacaaggag	gggccccacg	cgcgcacgtg	54300
gccccggagg	ccgccgtggc	ggacagcggc	accgcggggg	gcgcggcgtt	ggcggccccg	54360
geceeggeee	ccaggccagg	cagtggcggc	caaggaccac	gcatctactt	tcagagcccc	54420
ccccggggcc	gcaggagagg	gcccgggctg	ggcggatgat	gagggcccag	tgaggcgcca	54480
agggaaggtc	accatcaagt	atgaccccaa	ggagctacgg	aagcacctca	acctagagga	54540
gtggatcctg	gagcagetca	cgcgcctcta	cgactgccag	gaagaggaga	tctcagaact	54600
agagattgac	gtggatgagc	teetggacat	ggagagtgac	gatgcctggg	cttccagggt	54660
caaggagetg	ctggttgact	gttacaaacc	cacagaggcc	ttcatctctg	gcctgctgga	54720
caagatccgg	gccatgcaga	agctgagcac	accccagaag	aagtgagggt	ccccgaccca	54780
ggcgaacggt	ggctcccata	ggacaatcgc	taccccccga	cctcgtagca	acagcaatac	54840
cgggggaccc	tgcggccagg	cctggttcca	tgagcagggc	tectegtgee	cctggcccag	54900
gggtctcttc	ccctgccccc	tcagttttcc	acttttggat	ttttttattg	ttattaaact	54960
gatgggactt	tgtgtttta	tattgactct	gcggcacggg	ccctttaata	aagcgaggta	55020
gggtacgcct	ttggtgcagc	tcaaaaaaaa	aaaaaaaaat	gatttccage	ggtccacatt	55080
agagttgaaa	ttttctggtg	ggagaatcta	taccttgttc	ctttataggc	caaggaccgc	55140
agtccttcag	taacaccagt	gtaaaagctt	gaggagaaat	tgtgaagcta	cacagtattt	55200
gttttctaat	acctcttgtc	attctaaata	tctttaattt	attaaaaaaat	atatatatac	55260

agtattgaat	gcctactgtg	tgctaggtac	agttctaaac	acttgggtta	cagcagcgaa	55320
caaaataaag	gtgcttaccc	tcatagaaca	tagattctag	catggtatct	actgtatcat	55380
acagtagata	caataagtaa	actatattga	atattagaat	gtggcagatg	ctatggaaaa	55440
agagtcaaga	caagtaaaga	cgattgttca	gggtaccagt	tgcaatttta	aatatggtcg	55500
tcagagcagg	cctcactgag	gtgacatgac	atttaagcat	aaacatggag	gaggaggagt	55560
aagcctgagc	tgtcttaggc	ttccggggca	gccaagccat	ttccgtggca	ctaggagcct	55620
ggtgtttccg	attccacctt	tgataactgc	attttctcta	agatatggga	gggaagtttt	55680
tctcctattg	tttttaagta	ttaactccag	ctagtccagc	cttgttatag	tgttacctaa	55740
tctttatagc	aaatatatga	ggtaccggta	acattatgcc	catttctcac	agaggcacta	55800
ctaggtgaag	gagtttgcct	gacgttatac	aaccaggaag	tagctgagcc	tagatccctt	55860
ccacccaccc	catggccctg	ctcatgttcc	acctgcctct	aatttacctc	ttttccttct	55920
agaccagcat	tctcgaaatt	ggaggactcc	tttgaggccc	tctccctgta	cctgggggag	55980
ctgggcatcc	cgctgcctgc	agagctggag	gagttggacc	acactgtgag	catgcagtac	56040
ggcctgaccc	gggactcacc	tecetagece	tggcccagcc	ccctgcaggg	gggtgttcta	56100
cagccagcat	tgcccctctg	tgccccattc	ctgctgtgag	cagggccgtc	cgggcttcct	56160
gtggattggc	ggaatgttta	gaagcagaac	aagccattcc	tattacctcc	ccaggaggca	56220
agtgggcgca	gcaccaggga	aatgtatctc	cacaggttct	ggggcctagt	tactgtctgt	56280
aaatccaata	cttgcctgaa	agctgtgaag	aagaaaaaa	cccctggcct	ttgggccagg	56340
aggaatctgt	tactcgaatc	cacccaggaa	ctccctggca	gtggattgtg	ggaggctctt	56400
gcttacacta	atcagcgtga	cctggacctg	ctgggcagga	tcccagggtg	aacctgcctg	56460
tgaactctga	agtcactagt	ccagctgggt	gcaggaggac	ttcaagtgtg	tggacgaaag	56520
aaagactgat	ggctcaaagg	gtgtgaaaaa	gtcagtgatg	ctccccttt	ctactccaga	56580
tcctgtcctt	cctggagcaa	ggttgaggga	gtaggttttg	aagagtccct	taatatgtgg	56640
tggaacaggc	caggagttag	agaaagggct	ggcttctgtt	tacctgctca	ctggctctag	56700
ccagcccagg	gaccacatca	atgtgagagg	aagcctccac	ctcatgtttt	caaacttaat	56760
actggagact	ggctgagaac	ttacggacaa	catcetttet	gtctgaaaca	aacagtcaca	56820
agcacaggaa	gaggctgggg	gactagaaag	aggccctgcc	ctctagaaag	ctcagatctt	56880
ggcttctgtt	actcatactc	gggtgggctc	cttagtcaga	tgcctaaaac	attttgccta	56940
aagctcgatg	ggttctggag	gacagtgtgg	cttgtcacag	gcctagagtc	tgagggaggg	57000
gagtgggagt	ctcagcaatc	tcttggtctt	ggcttcatgg	caaccactgc	tcacccttca	57060
acatgcctgg	tttaggcagc	agcttgggct	gggaagaggt	ggtggcagag	tctcaaagct	57120
gagatgctga	gagagatagc	tccctgagct	gggccatctg	acttctacct	cccatgtttg	57180
ctctcccaac	tcattagctc	ctgggcagca	tcctcctgag	ccacatgtgc	aggtactgga	57240
aaacctccat	cttggctccc	agagetetag	gaactcttca	tcacaactag	atttgcctct	57300
tctaagtgtc	tatgagcttg	caccatattt	aataaattgg	gaatgggttt	ggggtattaa	57360
tgcaatgtgt	ggtggttgta	ttggagcagg	gggaattgat	aaaggagagt	ggttgctgtt	57420
aatattatct	tatctattgg	gtggtatgtg	aaatattgta	catagacctg	atgagttgtg	57480
ggaccagatg	tcatctctgg	tcagagttta	cttgctatat	agactgtact	tatgtgtgaa	57540
gtttgcaagc	ttgctttagg	gctgagccct	ggactcccag	cagcagcaca	gttcagcatt	57600

gtgtggctgg	ttgtttcctg	gctgtcccca	gcaagtgtag	gagtggtggg	cctgaactgg	57660
gccattgatc	agactaaata	aattaagcag	ttaacataac	tggcaatatg	gagagtgaaa	57720
acatgattgg	ctcagggaca	taaatgtaga	gggtctgcta	gccaccttct	ggcctagccc	57780
acacaaactc	cccatagcag	agagttttca	tgcacccaag	tctaaaaccc	tcaagcagac	57840
acccatctgc	tctagagaat	atgtacatcc	cacctgaggc	agccccttcc	ttgcagcagg	57900
tgtgactgac	tatgaccttt	tcctggcctg	gctctcacat	gccagctgag	tcattcctta	57960
ggagccctac	cctttcatcc	tctctatatg	aatacttcca	tagcctgggt	atcctggctt	58020
gctttcctca	gtgctgggtg	ccacctttgc	aatgggaaga	aatgaatgca	agtcacccca	58080
ccccttgtgt	ttccttacaa	gtgcttgaga	ggagaagacc	agtttcttct	tgcttctgca	58140
tgtgggggat	gtcgtagaag	agtgaccatt	gggaaggaca	atgctatctg	gttagtgggg	58200
ccttgggcac	aatataaatc	tgtaaaccca	aaggtgtttt	ctcccaggca	ctctcaaagc	58260
ttgaagaatc	caacttaagg	acagaatatg	gttcccgaaa	aaaactgatg	atctggagta	58320
cgcattgctg	gcagaaccac	agagcaatgg	ctgggcatgg	gcagaggtca	tctgggtgtt	58380
cctgaggctg	ataacctgtg	gctgaaatcc	cttgctaaaa	gtccaggaga	cactcctgtt	58440
ggtatctttt	cttctggagt	catagtagtc	accttgcagg	gaacttcctc	agcccagggc	58500
tgctgcaggc	agcccagtga	cccttcctcc	tctgcagtta	ttcccccttt	ggctgctgca	58560
gcaccacccc	cgtcacccac	cacccaaccc	ctgccgcact	ccagccttta	acaagggctg	58620
tctagatatt	cattttaact	acctccacct	tggaaacaat	tgctgaaggg	gagaggattt	58680
gcaatgacca	accaccttgt	tgggacgcct	gcacacctgt	ctttcctgct	tcaacctgaa	58740
agattcctga	tgatgataat	ctggacacag	aagccgggca	cggtggctct	agcctgtaat	58800
ctcagcactt	tgggaggcct	cagcaggtgg	atcacctgag	atcaagagtt	tgagaacagc	58860
ctgaccaaca	tggtgaaacc	ccgtctctac	taaaaataca	aaaattagcc	aggtgtggtg	58920
gcacatacct	gtaatcccag	ctactctgga	ggctgaggca	ggagaatcgc	ttgaacccac	58980
aaggcagagg	ttgcagtgag	gcgagatcat	gccattgcac	tccagcctgt	gcaacaagag	59040
ccaaactcca	tctcaaaaaa	aaaaa				59065

<210> SEQ ID NO 4

<211> LENGTH: 265 <212> TYPE: PRT

<213> ORGANISM: Human

<400> SEQUENCE: 4

Leu Thr Glu Val Lys Val Met Arg Ser Leu Asp His Pro Asn Val Leu 1 5 10 15

Lys Phe Ile Gly Val Leu Tyr Lys Asp Lys Lys Leu Asn Leu Thr $20 \ \ \,$ 25

Glu Tyr Ile Glu Gly Gly Thr Leu Lys Asp Phe Leu Arg Ser Met Asp 35 40

Pro Phe Pro Trp Gln Gln Lys Val Arg Phe Ala Lys Gly Ile Ala Ser 50

Gly Met Ala Tyr Leu His Ser Met Cys Ile Ile His Arg Asp Leu Asn 65 70 70 80

Ser His Asn Cys Leu Ile Lys Leu Asp Lys Thr Val Val Val Asp 85 $90 \ \mbox{90}$

Phe Gly Leu Ser Arg Leu Ile Val Glu Glu Arg Lys Arg Ala Pro Met 100 \$105\$

Glu	Lys	Ala 115	Thr	Thr	Lys	Lys	Arg 120	Thr	Leu	Arg	Lys	Asn 125	Asp	Arg	Lys
Lys	Arg 130	Tyr	Thr	Val	Val	Gly 135	Asn	Pro	Tyr	Trp	Met 140	Ala	Pro	Glu	Met
Leu 145	Asn	Gly	Lys	Ser	Tyr 150	Asp	Glu	Thr	Val	Авр 155	Ile	Phe	Ser	Phe	Gly 160
Ile	Val	Leu	Сув	Glu 165	Ile	Ile	Gly ·	Gln	Val 170	Tyr	Ala	Asp	Pro	Авр 175	Сув
Leu	Pro	Arg	Thr 180	Leu	Авр	Phe	Gly	Leu 1.85	Asn	Val	Lys	Leu	Phe 190	Trp	Glu
Lys	Phe	Val 195	Pro	Thr	Asp	Сув	Pro 200	Pro	Ala	Phe	Phe	Pro 205	Leu	Ala	Ala
Ile	Сув 210	Сув	Arg	Leu	Glu	Pro 215	Glu	Ser	Arg	Pro	Ala 220	Phe	Ser	Lys	Leu
Glu 225	Авр	Ser	Phe	Glu	Ala 230	Leu	Ser	Leu	Tyr	Leu 235	Gly	Glu	Leu	Gly	Ile 240
Pro	Leu	Pro	Ala	Glu 245	Leu	Glu	Glu	Leu	Asp 250	His	Thr	Val	Ser	Met 255	Gln
Tyr	Gly	Leu	Thr 260	Arg	Asp	Ser	Pro	Pro 265							

That which is claimed is:

- 1. An isolated nucleic acid molecule consisting of a 30 sequence set forth in SEQ ID NO:1. nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence that encodes an amino acid sequence shown in SEQ ID NO:2;
 - sequence of SEQ ID NO:1;
 - (c) a nucleic acid molecule consisting of the nucleic acid sequence of SEQ ID NO:3; and
 - (d) a nucleotide sequence that is completely complementary to a nucleotide sequence of (a)-(c).
- 2. A nucleic acid vector comprising a nucleic acid molecule of claim 1.
 - 3. A host cell containing the vector of claim 2.
- 4. A process for producing a polypeptide comprising culturing the host cell of claim 3 under conditions sufficient 45 sequence. for the production of said polypeptide, and recovering the peptide from the host cell culture.

- 5. An isolated polynucleotide consisting of a nucleotide
- 6. An isolated polynucleotide consisting of a nucleotide sequence set forth in SEQ ID NO:3.
- 7. A vector according to claim 2, wherein said vector is (b) a nucleic acid molecule consisting of the nucleic acid 35 selected from the group consisting of a plasmid, virus, and bacteriophage.
 - 8. A vector according to claim 2, wherein said isolated nucleic acid molecule is inserted into said vector in proper orientation and correct reading frame such that the protein of SEQ ID NO:2 may be expressed by a cell transformed with said vector.
 - 9. A vector according to claim 8, wherein said isolated nucleic acid molecule is operatively linked to a promoter