Customer Acquisition

Yuecheng Fang Kevin Gardner

Agenda

- Executive Summary
- Data Dictionary and ERD
- Code Flowchart
- Model Performance
- Prediction

Executive Summary

Pay more attention to those companies:

- Shorter duration of registrations
- Registered more recently
- Larger number of registrations

Data Dictionary

customers

Customer ID Customer ID

ContactName Contact Name

Company Name Company Name

CompanyAddress Where the company is located

Phone Number Phone number for contact name

purchases

Customer ID Customer ID

PurchaseDate Purchase date

Number Users Number of users given access

PurchasePrice Total price that was paid

registrations

ContactName Contact name

Company Name Company name

CompanyAddress Where the company is located

Phone Number Phone number for contact name

RegistrationDate When the user registered

ERD

customers

CustomerID

ContactName

CompanyName

CompanyAddress

PhoneNumber

purchases

CustomerID

PurchaseDate

NumberUsers

PurchasePrice

registrations

ContactName

CompanyName

CompanyAddress

PhoneNumber

RegistrationDate

Flowchart

Create Model

AUC = 0.85

Top Decile Lift = 2.18

Function Length = 112 lines

Running Time = 10.5 seconds

Positively Related Variables

Number of Registration Dates

Number of Registrations

Variance of Registration Date

Negatively Related Variables

Recency of Registration

Duration of Registrations

Deploy Model

Function Length = 80 lines

Running Time = 3.7 seconds

Highest propensity leads:

- 1. Rainbow Polar
- 2. Seashell Consignment 7. Mushroom Leopard
- 3. Raisin Fire
- 4. Warrior Mania
- 5. Mango Videos

- 6. Mango Dolphin
- 8. Sunny Room
- 9. Myth Days
- 10. Mango Casting Call

Questions?

Appendix

Function calls

AUROC

Variable importance plot

Partial dependence plots

Function Calls

```
system.time(result <- create_model(start_ind="2014-05-31", # Earliest registration date
                                   end_ind="2015-07-30", # Operational period be 1 day
                                   start_dep="2015-07-31", # Dependent period be 32 days
                                   end_dep="2015-08-30" # The maximum purchase date
))
# Loading data..
# Creating basetable...
# Creating train and test set...
# Fitting random forest...
# user system elapsed
# 5.863 0.142 10.485
system.time(result2 <- deploy_model(start_ind="2014-07-03",
                                    end_ind="2015-08-30",
                                    model=result$model))
# Loading data..
# Creating basetable...
# Scoring prospects...
# user system elapsed
# 3.862 0.032 3.738
```

AUROC

Variable Importance

Recency of registrations

Duration of registrations

Number of registrations

