

proof of Ostrowski's valuation theorem

Canonical name ProofOfOstrowskisValuationTheorem

Date of creation 2013-03-22 17:58:26 Last modified on 2013-03-22 17:58:26

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 4

Author rm50 (10146)

Entry type Proof

Classification msc 13A18

This article proves Ostrowski's theorem on valuations of \mathbb{Q} , which states:

Theorem 1. (Ostrowski) Over \mathbb{Q} , every nontrivial absolute value is equivalent either to $|\cdot|_p$ for some prime p, or to the usual absolute value $|\cdot|_{\infty}$.

We start with an estimation lemma:

Lemma 2. If m, n > 1 are integers and $|\cdot|$ any nontrivial absolute value on \mathbb{Q} , then $|m| \leq \max(1, |n|)^{\log m / \log n}$.

Proof. Write $m = a_0 + a_1 n + \cdots + a_r n^r$ for $a_i \in \mathbb{Z}, 0 \le a_i \le n - 1$, and with $a_r \ne 0$. Then clearly

$$|a_i| = \left|\underbrace{1 + \dots + 1}_{a_i}\right| \le a_i |1| = a_i \le n$$

by the triangle inequality; also, $r < \frac{\log m}{\log n}$.

Thus

$$|m| = |a_0 + a_1 n + \dots + a_r n^r| \le (r+1)n \max(1, |n|)^r$$

 $\le \left(1 + \frac{\log m}{\log n}\right) n \max(1, |n|)^{\log m / \log n}$

Replace m by m^t for t a positive integer, and take $t^{\rm th}$ roots of the resulting inequality, to get

$$|m| \le \left(1 + t \frac{\log m}{\log n}\right)^{1/t} n^{1/t} \max(1, |n|)^{\log m/\log n}$$

Now let $t \to \infty$; the first two factors each approach 1, and the lemma follows.

Proof of Ostrowski's theorem:

First assume that for every n > 1 we have |n| > 1. Then by the lemma, $|m| \le |n|^{\log m/\log n}$, so that for every m, n we have

$$|m|^{1/\log m} \le |n|^{1/\log n}$$

Since this holds for every m, n > 0, after reversing the roles of m, n, we see that in fact equality holds, so that for every $m, |m|^{1/\log m} = c$ and $|m| = c^{\log m}$ for some constant c; this absolute value is obviously equivalent to $|m|_{\infty} = e^{\log m}$.

If instead, for some n>1 we have |n|<1, then by the lemma, for every $m, \ |m|\leq 1$. Thus the absolute value is nonarchimedean. Define $A=\{x\in\mathbb{Q}\ |\ |x|\leq 1\}$ and let $\mathfrak{m}\subset A$ be the (unique) maximal ideal defined by $\mathfrak{m}=\{x\in\mathbb{Q}\ |\ |x|<1\}$. Then $\mathbb{Z}\subset A$ since $|m|\leq 1$ for every m, and $\mathfrak{m}\cap\mathbb{Z}$ is nonzero since otherwise the valuation would be trivial (we would have |m|=1 for every m). Thus $\mathfrak{m}\cap\mathbb{Z}$ is prime since \mathfrak{m} is, so is equal to (p) for some rational prime p. Now, if $p\nmid a$ for an integer a, then |a| cannot be strictly less than 1 (else it would be in (p)), so |a|=1 and $a\in A^*$. But given any $x\in\mathbb{Q}$, we can write $x=\frac{ap^t}{b}$ with a,b prime to p, so that

$$|x| = \frac{|a| \cdot |p|^t}{|b|} = |p|^t$$

so that the valuation is obviously equivalent to the p-adic valuation.