Final Project: Reproducible Research

Xinyi Zhou, and Wuzhen Han 2024-11-28

```
import pandas as pd
import altair as alt
import geopandas as gpd
import json
import os
from vega_datasets import data
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from PyPDF2 import PdfReader
import spacy
from spacytextblob.spacytextblob import SpacyTextBlob

import warnings
warnings.filterwarnings('ignore')
alt.renderers.enable("png")
```

RendererRegistry.enable('png')

What is CARES Act

data was from "https://home.treasury.gov/system/files/136/Two-Year-ARP-Anniversary-Report.pdf"

```
pdf_path = '/Users/cynthia/Desktop/final-project-xy-wz/data/Extra credit.pdf'
output_path =
    '/Users/cynthia/Desktop/final-project-xy-wz/data/nlp_analysis.txt'
```

```
reader = PdfReader(pdf_path)
text = ""
for page in reader.pages:
    text += page.extract_text()
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    import os
    os.system("python -m spacy download en_core_web_sm")
    nlp = spacy.load("en_core_web_sm")
nlp.add_pipe('spacytextblob')
doc = nlp(text)
with open(output_path, 'w', encoding='utf-8') as f:
    f.write("\n=== Sentiment Analysis ===\n")
    f.write(f"Overall Polarity: {doc._.blob.polarity}\n")
    f.write(f"Overall Subjectivity: {doc._.blob.subjectivity}\n")
    f.write("\nSentence-level Sentiment Analysis:\n")
    for sent in doc.sents:
        f.write(f"Sentence: {sent.text}\n")
        f.write(f"Polarity: {sent._.blob.polarity}\n")
        f.write(f"Subjectivity: {sent._.blob.subjectivity}\n")
        f.write("\n")
    f.write("\n=== Named Entity Recognition (NER) ===\n")
    for ent in doc.ents:
        f.write(f"Entity: {ent.text}, Label: {ent.label_}\n")
    f.write("\n=== Tokenization and POS tagging ===\n")
    for token in doc[:20]:
        f.write(f"Token: {token.text}, POS: {token.pos_}\n")
    f.write("\n=== Sentences ===\n")
    sentences = list(doc.sents)
    for sent in sentences[:5]:
        f.write(f"{sent}\n")
```

Merge Data

Data Preprocessing and Static graph

1.Bar chart of state-level CARES Act funding distribution

```
data_cleaned = data_raw.dropna(subset=['State', 'Award Funding'])
print(f"Number of Grants after dropping NaNs: {len(data_cleaned)}")
total_funding_dollars = data_cleaned['Award Funding'].sum()
print(
    f"Total Award Funding for all grants (Dollars):
    # Group by State and sum the Award Funding, converting to millions
state_funding = data_cleaned.groupby(
    'State')['Award Funding'].sum().reset index()
state_funding['Award Funding'] = state_funding['Award Funding'] / 1e6
# Sort states by funding amount in descending order
state_funding = state_funding.sort_values(
    by='Award Funding', ascending=False).reset_index(drop=True)
chart = alt.Chart(state_funding).mark_bar(color='skyblue').encode(
    y=alt.Y('State:N', sort='-x', title='State'),
    x=alt.X('Award Funding:Q', title='Total Award Funding (Millions $)'),
    tooltip=['State', 'Award Funding']
).properties(
    title='Total Funding Amount by State',
    width=600,
   height=500
).configure_axis(
   labelAngle=0
print("Top 3 states with the highest funding (in millions):")
print(state_funding.head(3))
chart
Original Number of Grants: 1389
Number of Grants after 'Award Funding' conversion: 1389
Number of Grants after dropping NaNs: 1387
Total Award Funding for all grants (Dollars): 1,316,374,135
Top 3 states with the highest funding (in millions):
  State Award Funding
    CA
           193.072106
```

1 TX 76.701360 2 NY 76.696605

2. Economic Trends During COVID-19: Real GDP and Unemployment Rate (2018–2024)

```
import pandas as pd
import altair as alt
```

```
# Create a line chart for Real GDP
gdp_chart = alt.Chart(merged_data).mark_line(color='blue').encode(
    alt.X('DATE:T', title='Date', axis=alt.Axis(format='%Y/%m/%d',

    grid=False)),
    alt.Y('GDPC1:Q', title='Real GDP (Billion $)', axis=alt.Axis(grid=False),
          scale=alt.Scale(domain=[merged_data['GDPC1'].min(),
→ merged_data['GDPC1'].max()]))
# Create a line chart for Unemployment Rate
unrate_chart = alt.Chart(merged_data).mark_line(color='orange').encode(
    alt.X('DATE:T', title='Date', axis=alt.Axis(format='%Y/%m/%d',

    grid=False)),
   alt.Y('UNRATE:Q', title='Unemployment Rate (%)',

¬ axis=alt.Axis(grid=False),
          scale=alt.Scale(domain=[0, merged_data['UNRATE'].max()]))
).properties(
    title="Time Trends: Real GDP and Unemployment Rate (2018-2024)"
# Add a dashed vertical line on March 27, 2020 (CARES Act implementation

    date)

vertical_line = alt.Chart(pd.DataFrame({'DATE': ['2020-03-27']})).mark_rule(
    color='red', strokeDash=[6, 3], strokeWidth=2
).encode(
    x=alt.X('DATE:T')
# Add text label for CARES Act
text_label = alt.Chart(pd.DataFrame({'DATE': ['2020-03-27'], 'label': ['CARES
→ Act Begins: 2020-03-27']})).mark_text(
    align='left',
   baseline='middle',
   dx=5,
   dy = -190,
    color='red'
).encode(
    x=alt.X('DATE:T'),
   text='label'
)
```

```
chart = alt.layer(
    gdp_chart, unrate_chart, vertical_line, text_label
).resolve_scale(
    y='independent'
).properties(
    width=550,
    height=400
)
```


3. State-Level Unemployment Rate: Dynamic Heatmap by Time getting data

Download the required unemployment rate documentation https://dlt.ri.gov/media/15101/download?language=en .lt is then processed manually to extract key information from the file, such as the year, state name, etc

a. Create static maps of unemployment rates by state

```
unemp_state = os.path.join(data_path, 'anunemp.csv')
unemployment_data = pd.read_csv(unemp_state)
unemployment_data_filtered = unemployment_data.loc[unemployment_data['State']
unemployment_data_filtered['State'] =

    unemployment_data_filtered['State'].str.strip(
).str.title()
data_path_shp =
'/Users/cynthia/Desktop/final-project-xy-wz/cb_2018_us_state_500k'
shapefile_path = os.path.join(data_path_shp, 'cb_2018_us_state_500k.shp')
gdf_states = gpd.read_file(shapefile_path)
gdf_states['NAME'] = gdf_states['NAME'].str.strip().str.title()
gdf_merged = gdf_states.merge(
   unemployment_data_filtered, how='left', left_on='NAME', right_on='State'
gdf_merged['Rate_2024'] = gdf_merged['Rate_2024'].fillna(0)
geojson = gdf_merged.to_json()
geojson_data = json.loads(geojson)
```

```
states = alt.Data(values=geojson_data['features'])
unemployment_chart_2024 = alt.Chart(states).mark_geoshape(
    stroke='black',
    strokeWidth=1
).encode(
    color=alt.Color('properties.Rate_2024:Q',
                    scale=alt.Scale(domain=[0, 10], scheme='orangered'),
                    title='Unemployment Rate in 2024 (%)'),
    tooltip=[
        alt.Tooltip('properties.NAME:N', title='State'),
        alt.Tooltip('properties.Rate_2024:Q', title='Unemployment Rate (%)')
).project(
   type='albersUsa'
).properties(
   width=400,
   height=300,
    title='Unemployment Rate by State (2024)'
unemployment_chart_2024.display()
# Top 3 states with highest unemployment rate
top_3_states = gdf_merged.nlargest(3, 'Rate_2024')[['NAME', 'Rate_2024']]
print(top_3_states)
```

Unemployment Rate by State (2024)

			NAME	Rate_2024
28			Nevada	5.7
36	District	Of	${\tt Columbia}$	5.7
16		Ca	alifornia	5.4

```
gdf_merged_2023 = gdf_states.merge(
    unemployment_data_filtered, how='left', left_on='NAME', right_on='State'
)
gdf_merged_2023['Rate_2023'] = gdf_merged_2023['Rate_2023'].fillna(0)

geojson = gdf_merged_2023.to_json()
geojson_data = json.loads(geojson)

states = alt.Data(values=geojson_data['features'])

unemployment_chart_2023 = alt.Chart(states).mark_geoshape(
    stroke='black',
    strokeWidth=1
).encode(
```

```
color=alt.Color('properties.Rate_2023:Q',
                    scale=alt.Scale(domain=[0, 10], scheme='orangered'),
                    title='Unemployment Rate in 2023 (%)'),
    tooltip=[
        alt.Tooltip('properties.NAME:N', title='State'),
        alt.Tooltip('properties.Rate_2023:Q', title='Unemployment Rate (%)')
    ٦
).project(
    type='albersUsa'
).properties(
    width=400,
    height=300,
    title='Unemployment Rate by State (2023)'
)
unemployment_chart_2023.display()
top_3_states_2023 = gdf_merged_2023.nlargest(
    3, 'Rate_2023')[['NAME', 'Rate_2023']]
print(top_3_states_2023)
```

Unemployment Rate by State (2023)

NAME Rate_2023 Nevada 5.3

```
29 Illinois 5.3
16 California 5.1
```

```
gdf_merged_2022 = gdf_states.merge(
    unemployment_data_filtered, how='left', left_on='NAME', right_on='State'
gdf_merged_2022['Rate_2022'] = gdf_merged_2022['Rate_2022'].fillna(0)
geojson_2022 = gdf_merged_2022.to_json()
geojson_data_2022 = json.loads(geojson_2022)
states_2022 = alt.Data(values=geojson_data_2022['features'])
unemployment_chart_2022 = alt.Chart(states_2022).mark_geoshape(
    stroke='black',
    strokeWidth=1
).encode(
    color=alt.Color('properties.Rate_2022:Q',
                    scale=alt.Scale(domain=[0, 10], scheme='orangered'),
                    title='Unemployment Rate in 2022 (%)'),
    tooltip=[
        alt.Tooltip('properties.NAME:N', title='State'),
        alt.Tooltip('properties.Rate_2022:Q', title='Unemployment Rate (%)')
    ]
).project(
    type='albersUsa'
).properties(
    width=400,
    height=300,
    title='Unemployment Rate by State (2022)'
)
unemployment_chart_2022.display()
top 3 states 2022 = gdf merged 2022.nlargest(3, 'Rate 2022')[['NAME',
→ 'Rate 2022']]
print(top_3_states_2022)
```

Unemployment Rate by State (2022)

			NAME	Rate_2022
28			Nevada	5.2
36	District	Of	Columbia	4.7
29			Illinois	4.6

```
gdf_merged_2021 = gdf_states.merge(
    unemployment_data_filtered, how='left', left_on='NAME', right_on='State')
gdf_merged_2021['Rate_2021'] = gdf_merged_2021['Rate_2021'].fillna(0)

geojson_2021 = gdf_merged_2021.to_json()
geojson_data_2021 = json.loads(geojson_2021)

states_2021 = alt.Data(values=geojson_data_2021['features'])

unemployment_chart_2021 = alt.Chart(states_2021).mark_geoshape(
    stroke='black',
    strokeWidth=1
).encode(
    color=alt.Color('properties.Rate_2021:Q',
```

Unemployment Rate by State (2021)

NAME Rate_2021 16 California 7.3

```
12 New Mexico 7.1
25 New York 7.1
```

2020 2019 2018

```
gdf_merged_2020 = gdf_states.merge(
    unemployment_data_filtered, how='left', left_on='NAME',

¬ right_on='State').copy()

gdf_merged_2020['Rate_2020'] = gdf_merged_2020['Rate_2020'].fillna(0)
geojson_2020 = gdf_merged_2020.to_json()
geojson_data_2020 = json.loads(geojson_2020)
states_2020 = alt.Data(values=geojson_data_2020['features'])
unemployment_chart_2020 = alt.Chart(states_2020).mark_geoshape(
    stroke='black',
    strokeWidth=1
).encode(
    color=alt.Color('properties.Rate_2020:Q',
                    scale=alt.Scale(domain=[0, 10], scheme='orangered'),
                    title='Unemployment Rate in 2020 (%)'),
    tooltip=[
        alt.Tooltip('properties.NAME:N', title='State'),
        alt.Tooltip('properties.Rate_2020:Q', title='Unemployment Rate (%)')
    ]
).project(
    type='albersUsa'
).properties(
    width=400,
    height=300,
    title='Unemployment Rate by State (2020)'
)
unemployment_chart_2020.display()
top_3_states_2020 = gdf_merged_2020.nlargest(
    3, 'Rate_2020')[['NAME', 'Rate_2020']]
print(top_3_states_2020)
```

```
gdf_merged_2019 = gdf_states.merge(
    unemployment_data_filtered, how='left', left_on='NAME',

    right_on='State').copy()

gdf_merged_2019['Rate_2019'] = gdf_merged_2019['Rate_2019'].fillna(0)
geojson_2019 = gdf_merged_2019.to_json()
geojson_data_2019 = json.loads(geojson_2019)
states 2019 = alt.Data(values=geojson data 2019['features'])
unemployment chart 2019 = alt.Chart(states 2019).mark geoshape(
    stroke='black',
    strokeWidth=1
).encode(
    color=alt.Color('properties.Rate_2019:Q',
                    scale=alt.Scale(domain=[0, 10], scheme='orangered'),
                    title='Unemployment Rate in 2019 (%)'),
    tooltip=[
        alt.Tooltip('properties.NAME:N', title='State'),
        alt.Tooltip('properties.Rate_2019:Q', title='Unemployment Rate (%)')
).project(
    type='albersUsa'
).properties(
    width=500,
   height=500,
    title='Unemployment Rate by State (2019)'
)
unemployment_chart_2019.display()
top_3_states_2019 = gdf_merged_2019.nlargest(
    3, 'Rate_2019')[['NAME', 'Rate_2019']]
print(top_3_states_2019)
gdf_merged_2018 = gdf_states.merge(
    unemployment_data_filtered, how='left', left_on='NAME',

¬ right_on='State').copy()

gdf_merged_2018['Rate_2018'] = gdf_merged_2018['Rate_2018'].fillna(0)
geojson_2018 = gdf_merged_2018.to_json()
geojson_data_2018 = json.loads(geojson_2018)
```

```
states_2018 = alt.Data(values=geojson_data_2018['features'])
unemployment_chart_2018 = alt.Chart(states_2018).mark_geoshape(
    stroke='black',
    strokeWidth=1
).encode(
    color=alt.Color('properties.Rate_2018:Q',
                    scale=alt.Scale(domain=[0, 10], scheme='orangered'),
                    title='Unemployment Rate in 2018 (%)'),
    tooltip=[
        alt.Tooltip('properties.NAME:N', title='State'),
        alt.Tooltip('properties.Rate_2018:Q', title='Unemployment Rate (%)')
    ]
).project(
    type='albersUsa'
).properties(
    width=400,
    height=300,
    title='Unemployment Rate by State (2018)'
)
unemployment_chart_2018.display()
top_3_states_2018 = gdf_merged_2018.nlargest(
    3, 'Rate_2018')[['NAME', 'Rate_2018']]
print(top_3_states_2018)
```

Unemployment Rate by State (2020)

	NAME	Rate_2020
28	Nevada	13.5
42	Hawaii	11.7
16	California	10.1

Unemployment Rate by State (2019)

		NAME	Rate_2019
27		Alaska	5.6
0		Mississippi	5.5
36	District	Of Columbia	5.5

Unemployment Rate by State (2018)

		NAME	Rate_2018
27		Alaska	6.0
36	District Of	Columbia	5.7
4	West	Virginia	5.1

```
output_path = '/Users/cynthia/Desktop/final-project-xy-wz/picture/dynamic_1'
unemployment_chart_2018.save(os.path.join(
    output_path, 'unemployment_rate_2018.png'))
unemployment_chart_2019.save(os.path.join(
    output_path, 'unemployment_rate_2019.png'))
unemployment_chart_2020.save(os.path.join(
    output_path, 'unemployment_rate_2020.png'))
unemployment_chart_2021.save(os.path.join(
    output_path, 'unemployment_rate_2021.png'))
unemployment_chart_2022.save(os.path.join(
    output_path, 'unemployment_rate_2022.png'))
unemployment_chart_2023.save(os.path.join(
    output_path, 'unemployment_rate_2023.png'))
unemployment_chart_2024.save(os.path.join(
    output_path, 'unemployment_rate_2024.png'))
```

b. Create the dynamic maps of unemployment rates by state in app.py file

For a detailed view of how these figures were generated, please refer to the code in app.py. The dynamic trends presented here are the final output of our detailed data processing and visualization pipeline.

```
dynamic_1_path =
    '/Users/cynthia/Desktop/final-project-xy-wz/picture/dynamic_1'

image_path_1 = os.path.join(dynamic_1_path, 'p1.png')

img_1 = mpimg.imread(image_path_1)
plt.figure(figsize=(10, 8))
plt.imshow(img_1)
plt.axis('off')
plt.show()
```

Unemployment Rate by State


```
image_path_2 = os.path.join(dynamic_1_path, 'p2.png')

img_2 = mpimg.imread(image_path_2)

plt.figure(figsize=(10, 8))

plt.imshow(img_2)

plt.axis('off')

plt.show()
```

Unemployment Rate by State

Unemployment Rate by State (2019)

	NAME	Rate_2019
Alaska		5.6
Mississippi		5.5
District Of Co	lumbia	5.5

```
image_path_3 = os.path.join(dynamic_1_path, 'p3.png')
img_3 = mpimg.imread(image_path_3)
plt.figure(figsize=(10, 8))
plt.imshow(img_3)
plt.axis('off')
plt.show()
```


California 10.1

4. Dynamic Trends of Real GDP and Unemployment Rate Under CARES Act

For a detailed view of how these figures were generated, please refer to the code in app.py. The dynamic trends presented here are the final output of our detailed data processing and visualization pipeline.

```
dynamic_2_path =
    '/Users/cynthia/Desktop/final-project-xy-wz/picture/dynamic_2'

screenshot_path_1 = os.path.join(dynamic_2_path, 'All_period.png')
screenshot_path_2 = os.path.join(dynamic_2_path, 'Pre_Cares.png')
screenshot_path_3 = os.path.join(dynamic_2_path, 'Implementation_period.png')
screenshot_path_4 = os.path.join(dynamic_2_path, 'After_Implementation.png')

def show_image(image_path, figsize=(10, 8)):
```

Trends in Real GDP and Unemployment Rate During the Implementation of the CARES Act

Trends in Real GDP and Unemployment Rate During the Implementation of the CARES Act

Trends in Real GDP and Unemployment Rate During the Implementation of the CARES Act

