Introducere în teoria fasciculelor

Seminar 2

Luni, 24.02.2014.

- 1. (Pregătiri pentru introducerea conceptelor de fibră a unui fascicul și de spațiu etalat) Fie Xun spațiu topologic și \mathcal{F} un prefascicul de bază X.
- a) Demonstrați că \sim (definită prin $(U, s_U) \sim (V, s_V)$, cu $U, V \in \mathcal{V}(x), s_U \in \mathcal{F}(U), s_V \in \mathcal{F}(V) \Leftrightarrow$ există $W \subset U \cap V$ astfel ca $\rho_W^U(s_U) = \rho_W^V(s_W)$) este o relație de echivalență.
 - b) Fie $V \subset U$ doi deschişi, $s \in \mathcal{F}(U)$. Dacă $t = \rho_V^U(s)$, atunci $t_x = s_x$, pentru orice $x \in V$.
 - c) Fie $s \in \mathcal{F}(U), t \in \mathcal{F}(V)$ secțiuni ale lui \mathcal{F} . Demonstrați că $\{x \in X | s_x = t_x\}$ este o mulțime deschisă.
- (Verificarea proprietăților de spațiu etalat) Fie X un spațiu topologic, $\mathcal F$ un prefascicul. Fie $\pi: \widehat{\mathcal{F}} \to X$ aplicația naturală. Demonstrați că π este: (i) surjectivă; (ii) continuă; (iii) homeomorfism local.
- 3. (Inelul de germeni de funcții \mathcal{C}^{∞}) Fie X o varietate diferențiabilă și fie $\mathscr{E}:=\mathcal{C}^{\infty}_{X}$ fasciculul (de germeni) de funcții \mathcal{C}^{∞} pe X. Demonstrați că, pentru orice $x \in X$, fibra \mathscr{E}_x este un inel local, descriind unicul ideal
- 4. (Prefasciculul asociat unui spațiu etalat) Fie (S, π) un spațiu etalat. Detaliați construcția prefasciculului de secțiuni S' asociat și verificați axiomele de prefascicul.
- 5. (Morfism de prefascicule de la un prefascicul la fasciculul de secțiuni asociat) Fie \mathcal{F} un prefascicul, $\widetilde{\mathcal{F}}'$ fasciculul de secțiuni asociat și fie $\Phi=(\Phi_U)$ definită prin $\Phi_U(s)=\widetilde{s}$ $(\forall\,U\subset X$ deschis). Demonstrați că Φ este un morfism de prefascicule.
- 6. (Verificarea axiomei de separare pentru spații etalate: diferența dintre cazul \mathcal{C}^{∞} și cazul \mathcal{C}^{ω})
- a) Considerăm o varietate diferențiabilă X și fasciculul \mathcal{C}_X^∞ . Arătați, printr-un exemplu, că topologia de pe spațiul etalat asociat nu este Hausdorff.
- b) Considerăm o varietate analitică X și fasciculul $\mathcal{C}_{\mathbf{x}}^{\omega}$. Demonstrați că topologia de pe spațiul etalat asociat este Hausdorff.
- 7. (Exemple de fascicule asociate unor prefascicule) Determinați fasciculizatul pentru:
 - a) prefasciculul de funcții constante;
 - b) prefasciculul de la Exercițiul 5, Seminar 1.