СО			PSO						
	1	2	3	4	5	6	1	2	3
1.	V		V	V		V	V	V	V
2.	V		V	V		V	V	V	V
3.	V		V	V		V	V	V	V
4.	V		V	V		$\sqrt{}$	V	V	V
5.	V		V	V		$\sqrt{}$	V	V	V

RM5151

RESEARCH METHODOLOGY AND IPR

LT P C 2 0 0 2

OBJECTIVES:

To impart knowledge and skills required for research and IPR:

- Problem formulation, analysis and solutions.
- Technical paper writing / presentation without violating professional ethics
- Patent drafting and filing patents.

UNIT I RESEARCH PROBLEM FORMULATION

6

Meaning of research problem- Sources of research problem, criteria characteristics of a good research problem, errors in selecting a research problem, scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, necessary instrumentations

UNIT II LITERATURE REVIEW

6

Effective literature studies approaches, analysis, plagiarism, and research ethics.

UNIT III TECHNICALWRITING /PRESENTATION

6

Effective technical writing, how to write report, paper, developing a research proposal, format of research proposal, a presentation and assessment by a review committee.

UNIT IV INTRODUCTION TO INTELLECTUAL PROPERTY RIGHTS (IPR)

6

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT V INTELLECTUAL PROPERTY RIGHTS (IPR)

6

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System, IPR of Biological Systems, Computer Software etc.

Traditional knowledge Case Studies, IPR and IITs.

TOTAL: 30 HOURS

OUTCOMES:

- 1. Ability to formulate research problem
- 2. Ability to carry out research analysis
- 3. Ability to follow research ethics
- 4. Ability to understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity
- 5. Ability to understand about IPR and filing patents in R & D.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓										
CO2	✓											
CO3	✓							✓				
CO4	✓				✓							
CO5	✓					✓						✓

REFERENCES:

- 1. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 2. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 3. Mayall, "Industrial Design", McGraw Hill, 1992.
- 4. Niebel, "Product Design", McGraw Hill, 1974.
- 5. Ranjit Kumar, 2nd Edition, "Research Methodology: A Step by Step Guide for beginners" 2010

CP5161

DATA STRUCTURES AND ALGORITHMS LABORATORY

LTPC 0042

OBJECTIVES:

- To familiarize various data structure implementations.
- To implement heap and various tree structures like AVL, Red-black, B-Tree and segment trees.
- To understand efficient implementation of line segment intersection.
- To understand various search structures.
- To get understanding of problem to program mapping.

LIST OF EXPERIMENTS:

- 1. Binary Search Trees
- 2. Min/Max Heaps
- 3. Leftist Heaps
- 4. AVL Trees
- 5. Red-Black Trees
- 6. B-Trees
- 7. Segment Trees
- 8. Line segment intersection

TOTAL: 60 PERIODS

OUTCOMES:

Upon completion of the course, the student will be able to

- Achieve programming skill to convert a problem to a programming logic.
- Apply suitable data structure for the problem in hand.
- Implement heap and various tree structures like AVL, Red-black, B-Tree and segment trees.
- Understand the usage of data structures for geometric problems.
- Understand the importance of height balancing in search structures.