TAVE Research

Processing sequences using RNN and CNN

Hands-On Machine Learning Part2& Deep Learning from Scratch 3

TAVE Research DL001 Heeji Won

01. RNN

02. BPTT

03. Overcoming the Unstable Gradient Problem

04. Overcoming the short-term memory

01. RNN

02. BPTT

03. Overcoming the Unstable Gradient Problem

04. Overcoming the short-term memory

01. RNN

: Sequence model for sequential time series data

Recurrent Neuron

$$h_t = f_W(h_{t-1}, x_t)$$

✓ The same function and the same parameters are used at every time step!

Memory Cell

- Outputs of recurrent neurons is a function of all inputs (form of memory)
- Memory cell is a cell conserving a state
- h_t : Cell state at time step t

• (Vanilla) RNN

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$
$$y_t = W_{hy}h_t$$

01. RNN

- : Sequence model for sequential time series data
- Various Input and Output

01. RNN

02. BPTT

03. Overcoming the Unstable Gradient Problem

04. Overcoming the short-term memory

02. BPTT (backpropagation through time)

: Gradient-based technique for training RNN

- ✓ Backpropagate from outputs calculating cost function (ignoring other outputs)
- ✓ Accumulate gradientsWhy? Outputs depends on previous time steps

Accumulative Gradient at time t=3

$$\frac{\partial E_3}{\partial W_s} = \frac{\partial E_3}{\partial \overline{y}_3} \cdot \frac{\partial \overline{y}_3}{\partial \overline{s}_3} \cdot \frac{\partial \overline{s}_3}{\partial W_s} + \frac{\partial E_3}{\partial \overline{y}_3} \cdot \frac{\partial \overline{y}_3}{\partial \overline{s}_3} \cdot \frac{\partial \overline{s}_3}{\partial \overline{s}_2} \cdot \frac{\partial \overline{s}_2}{\partial W_s} + \frac{\partial E_3}{\partial \overline{y}_3} \cdot \frac{\partial \overline{s}_3}{\partial \overline{s}_3} \cdot \frac{\partial \overline{s}_3}{\partial \overline{s}_2} \cdot \frac{\partial \overline{s}_3}{\partial \overline{s}_3} \cdot \frac{\partial \overline{s}_3}{\partial \overline{s}_2} \cdot \frac{\partial \overline{s}_3}{\partial \overline{s}_3} \cdot$$

$$\frac{\partial E_{N}}{\partial W_{S}} = \sum_{i=1}^{N} \frac{\partial E_{N}}{\partial \overline{y}_{N}} \cdot \frac{\partial \overline{y}_{N}}{\partial \overline{s}_{i}} \cdot \frac{\partial \overline{s}_{i}}{\partial W_{S}} , \quad \frac{\partial E_{N}}{\partial W_{X}} = \sum_{i=1}^{N} \frac{\partial E_{N}}{\partial \overline{y}_{N}} \cdot \frac{\partial \overline{y}_{N}}{\partial \overline{s}_{i}} \cdot \frac{\partial \overline{s}_{i}}{\partial W_{X}}$$

02. BPTT (backpropagation through time)

- Truncated BPTT
- BPTT has vanishing and exploding gradient problems and lots of calculations => Truncate!

- ✓ Truncate only Backward Pass (not forward pass)
- ✓ Generally truncate per about 5 steps

01. RNN

02. BPTT

03. Overcoming the Unstable Gradient Problem

04. Overcoming the short-term memory

03. Overcoming the Unstable Gradient Problem

- Non-Converged function
- ✓ Non-converged function make exploding gradients (or outputs)
- ✓ Why? the same weights are used in every time steps.

=> Gradient Clipping

Layer Normalization

: normalization features of each sample using each parameter

	$feature_1$	feature ₂	feature ₃	feature ₄	l	평균(mean) 표	돌편차(sta	l)
미니 배치 B	x ₁₁	x ₁₂	x ₁₃	x ₁₄	•				
	x ₂₁	x ₂₂	x ₂₃	x ₂₄	•				
	x ₃₁	x ₃₂	x ₃₃	x ₃₄	_				

✓ Also, we can use Dropout

cf) Batch Normalization

01. RNN

02. BPTT

03. Overcoming the Unstable Gradient Problem

04. Overcoming the short-term memory

- LSTM Cell (Long short-term memory)
- Solve Long-Term Dependencies problem

✓ As t increases, RNN cannot preserve information over many time steps

There are three gates (Input gate, Forget gate, Output gate)

- LSTM Cell (Long short-term memory)
- Forget Gate (f_t)
- Gate for forgetting the cell's memory
- Control which part of c_{t-1} have to be forgotten

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

- Input Gate (i_t)
- Gate for inputting current information
- Control which part of the candidate value, g_t have to be added to cell's memory

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i) \longrightarrow 0 \sim 1$$

 $g_t = tanh(W_{xg}x_t + W_{hg}h_{t-1} + b_g) \longrightarrow -1 \sim 1$

- LSTM Cell (Long short-term memory)
- Cell state(long-term) c_t
- Update the old cell state c_{t-1}

$$C_t = f_t \circ C_{t-1} + i_t \circ g_t$$

- Output gate (o_t) & Cell state(short-term) h_t
- Gate for deciding hidden state

$$egin{aligned} o_t &= \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o) \ h_t &= o_t \circ tanh(c_t) \end{aligned}$$

Peephole Connection

- Gates also consider the long-term memory, $oldsymbol{c_{t-1}}$

$$\begin{aligned} \mathbf{f}_{t} &= \sigma \left(\mathbf{W}_{cf}^{T} \cdot \mathbf{c}_{t-1} + \mathbf{W}_{xf}^{T} \cdot \mathbf{x}_{t} + \mathbf{W}_{hf}^{T} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{f} \right) \\ \mathbf{i}_{t} &= \sigma \left(\mathbf{W}_{ci}^{T} \cdot \mathbf{c}_{t-1} + \mathbf{W}_{xi}^{T} \cdot \mathbf{x}_{t} + \mathbf{W}_{hi}^{T} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{i} \right) \\ \mathbf{o}_{t} &= \sigma \left(\mathbf{W}_{co}^{T} \cdot \mathbf{c}_{t} + \mathbf{W}_{xo}^{T} \cdot \mathbf{x}_{t} + \mathbf{W}_{ho}^{T} \cdot \mathbf{h}_{t-1} + \mathbf{b}_{o} \right) \end{aligned}$$

> 1D Convolution layer

 1D Conv layer can help detect long-term pattern by reducing length of sequence

1D CNN (kernel size : 2)

Q: Why is this a 1D CNN not a 2D CNN?

A: Kernel moves in 1 direction

- > GRU Cell (gated recurrent unit)
- Simplified version of LSTM

$$\begin{aligned}
\mathbf{r}_t &= \sigma \left(\mathbf{W}_{xr}^T \cdot \mathbf{x}_t + \mathbf{W}_{hr}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_r \right) \\
\mathbf{z}_t &= \sigma \left(\mathbf{W}_{xz}^T \cdot \mathbf{x}_t + \mathbf{W}_{hz}^T \cdot \mathbf{h}_{t-1} + \mathbf{b}_z \right) \\
\mathbf{g}_t &= \tanh \left(\mathbf{W}_{xg}^T \cdot \mathbf{x}_t + \mathbf{W}_{hg}^T \cdot (\mathbf{r}_t \otimes \mathbf{h}_{t-1}) + \mathbf{b}_g \right) \\
\mathbf{h}_t &= \mathbf{z}_t \otimes \mathbf{h}_{t-1} + (1 - \mathbf{z}_t) \otimes \mathbf{g}_t
\end{aligned}$$

- \checkmark One cell state, h_t
- ✓ Two gates, Reset gate(r_t) and Update gate(z_t)
- \checkmark Reset gate control how much information of g_t will be considered
- ✓ Update gate control forget gate and input gate
- If output of z_t is 1, open **forget** gate and close input gate
- If output of z_t is 0, close forget gate and open input gate

WaveNet

Dilated Convolution Layer

- The dilation rate is doubled for each layer
- The lower layers may identify short-term patterns, while the higher layers may identify long-term patterns
- ✓ Causal Padding: padding the layer's input with zeros in the front

01. RNN

02. BPTT

03. Overcoming the Unstable Gradient Problem

04. Overcoming the short-term memory

Appendix. Deep Learning from Scratch

- Define-and-Run
- Network is defined and fixed. And then data are fed into the predefined network
- Easy to optimize
- difficult to debug

```
# 계산 그래프 정의
a = Variable('a')
b = Variable('b')
c = a + b
d = c + Constant(1)
# 계산 그래프 컴파일
f = compile(d)
# 데이터 흘려보내기
d = f(a=np.array(2), b=np.array(3))
```

- Define-by-Run
- Network is defined dynamically via the actual forward computation
- This dynamic definition allows conditionals and loops into the network easily

Mini Batch

```
a = Variable(np.ones(10))
b = Variable(np.ones(10) * 2)
c = b * a
d = c + 1
```

Thank you