SQL Learning Quick Approach

DBMS LAB CSE- 304 LECTURE -03

Motivation

- You've just been hired by Brac Bank as their DBA for their online banking web site.
- You are asked to create a database that monitors:
 - customers
 - accounts
 - loans
 - branches
 - transactions, ...
- Now what??!!!

Database Design Steps

Entity-relationship Model

Typically used for conceptual database design

Three Levels of Modeling

Relational Model

Typically used for logical database design

Entity-Relationship Model

- Two key concepts
 - Entities:
 - An object that exists and is distinguishable from other objects
 - Examples: Bob Smith, BofA, CMSC424
 - Have attributes (people have names and addresses)
 - Form entity sets with other entities of the same type that share the same properties
 - Set of all people, set of all classes
 - Entity sets may overlap
 - Customers and Employees

Entity-Relationship Model

- Two key concepts
 - Relationships:
 - Relate 2 or more entities
 - E.g. Bob Smith has account at College Park Branch
 - Form relationship sets with other relationships of the same type that share the same properties
 - Customers have accounts at Branches
 - Can have attributes:
 - has account at may have an attribute start-date
 - Can involve more than 2 entities
 - Employee works at Branch at Job

ER Diagram: Starting Example

- Rectangles: entity sets
- Diamonds: relationship sets
- Ellipses: attributes

Next: Relationship Cardinalities

We may know:

One customer can only open one account *OR*

One customer can open multiple accounts

- Representing this is important
- Why?
 - Better manipulation of data
 - Can enforce such a constraint
 - Remember: If not represented in conceptual model, the domain knowledge may be lost

Mapping Cardinalities

- Express the number of entities to which another entity can be associated via a relationship set
- Most useful in describing binary relationship sets

Mapping Cardinalities

One-to-One

One-to-Many

Many-to-One

Many-to-Many

Mapping Cardinalities

- Express the number of entities to which another entity can be associated via a relationship set
- Most useful in describing binary relationship sets
- N-ary relationships?

Next: Types of Attributes

- Simple vs Composite
 - Single value per attribute?
- Single-valued vs Multi-valued
 - E.g. Phone numbers are multi-valued
- Derived
 - If date-of-birth is present, age can be derived
 - Can help in avoiding redundancy, enforcing constraints etc...

Types of Attributes

Types of Attributes

Types of Attributes

Next: Keys

 Key = set of attributes identifying individual entities or relationships

Entity Keys

Entity Keys

- Superkey
 - any attribute set that can distinguish entities
- Candidate key
 - a minimal superkey
 - Can't remove any attribute and preserve key-ness
 - {cust-id, age} not a superkey
 - {cust-name, cust-city, cust-street} is
 - assuming cust-name is not unique
- Primary key
 - Candidate key chosen as <u>the</u> key by DBA
 - <u>Underlined</u> in the ER Diagram

Entity Keys

- What attributes are needed to represent a relationship completely and uniquely?
 - Union of primary keys of the entities involved, and relationship attributes

• {cust-id, access-date, account number} describes a relationship completely

- Is {cust-id, access-date, account number} a candidate key?
 - No. Attribute access-date can be removed from this set without losing key-ness
 - In fact, union of primary keys of associated entities is always a superkey

- Is {cust-id, account-number} a candidate key?
 - Depends

- Is {cust-id, account-number} a candidate key ?
 - Depends

- If one-to-one relationship, either {cust-id} or {account-number} sufficient
 - Since a given customer can only have one account, she can only participate in one relationship
 - Ditto account

- Is {cust-id, account-number} a candidate key ?
 - Depends

- If one-to-many relationship (as shown), {account-number} is a candidate key
 - A given customer can have many accounts, but at most one account holder per account allowed

- General rule for binary relationships
 - one-to-one: primary key of either entity set
 - one-to-many: primary key of the entity set on the many side
 - many-to-many: union of primary keys of the associate entity sets
- n-ary relationships
 - More complicated rules

Next: Data Constraints

- Representing semantic data constraints
 - We already saw constraints on relationship cardinalities

Participation Constraint

- Given an entity set E, and a relationship R it participates in:
 - If every entity in E participates in at least one relationship in R, it is total participation
 - partial otherwise

Participation Constraint

Total participation

Cardinality Constraints

How many relationships can an entity participate in?

Next: Recursive Relationships

Sometimes a relationship associates an entity set to itself

Recursive Relationships

Next: Weak Entity Sets

- An entity set without enough attributes to have a primary key
- E.g. Transaction Entity
 - Attributes:
 - transaction-number, transaction-date, transaction-amount, transaction-type
 - transaction-number: may not be unique across accounts

- A weak entity set must be associated with an identifying or owner entity set
- Account is the owner entity set for Transaction

Still need to be able to distinguish between different weak entities associated with the same strong entity

Discriminator: A set of attributes that can be used for that

- Primary key:
 - Primary key of the associated strong entity
 - + discriminator attribute set
 - For Transaction:
 - {account-number, transaction-number}