5.23 Posons
$$f(x) = 2 + \frac{1}{x}$$

 $f'(x) = (2 + x^{-1})' = 0 + -1 x^{-2} = -\frac{1}{x^2}$

1)
$$f'(1) = -\frac{1}{1^2} = -1$$
.

On vérifie que $f(1) = 2 + \frac{1}{1} = 3$.

La tangente au graphe de f au point P(1;3) est donc y = -1(x-1) + 3 ou encore y = -x + 4.

Cette tangente coupe l'axe horizontal (d'équation y=0) lorsque 0=-x+4, c'est-à-dire lorsque x=4.

En d'autres termes, la cible n° 4 sera touchée si le joueur tire au moment où l'avion est en P(1;3).

2)
$$f'(\frac{3}{2}) = -\frac{1}{(\frac{3}{2})^2} = -\frac{1}{\frac{9}{4}} = -\frac{4}{9}$$

On vérifie que $f(\frac{3}{2}) = 2 + \frac{1}{\frac{3}{2}} = 2 + \frac{2}{3} = \frac{8}{3}$.

La tangente au graphe de f au point $Q(\frac{3}{2}; \frac{8}{3})$ est ainsi $y = -\frac{4}{9}(x - \frac{3}{2}) + \frac{8}{3}$, à savoir $y = -\frac{4}{9}x + \frac{10}{3}$.

Cette tangente coupe l'axe horizontal si $0 = -\frac{4}{9}x + \frac{10}{3}$, d'où suit $x = \frac{15}{2}$. Par conséquent, si le joueur tire au moment où l'avion est en $Q(\frac{3}{2}; \frac{8}{3})$, il n'atteindra aucune cible.

3) L'équation de la tangente en x_0 est donnée par :

$$y = f'(x_0) (x - x_0) + f(x_0)$$

$$y = -\frac{1}{x_0^2} (x - x_0) + 2 + \frac{1}{x_0}$$

Les coordonnées de la première cible $(1\,;0)$ doivent vérifier cette équation :

Il s'ensuit que les solutions algébriques de cette équation sont $x_0 = \frac{-2+\sqrt{12}}{2\cdot 2} = \frac{-1+\sqrt{3}}{2}$ ou $x_0 = \frac{-2-\sqrt{12}}{2\cdot 2} = \frac{-1-\sqrt{3}}{2}$

Étant donné que x_0 doit être positif, on ne retient que la première solution.

$$f(x_0) = f(\frac{-1+\sqrt{3}}{2}) = 2 + \frac{1}{\frac{-1+\sqrt{3}}{2}} = 2 + \frac{2}{-1+\sqrt{3}} = 2 + \frac{2(1+\sqrt{3})}{(-1+\sqrt{3})(1+\sqrt{3})}$$
$$= 2 + \frac{2(1+\sqrt{3})}{-1+3} = 2 + \frac{2(1+\sqrt{3})}{2} = 2 + 1 + \sqrt{3} = 3 + \sqrt{3}$$

On conclut que l'avion doit se situer au point $(\frac{-1+\sqrt{3}}{2}; 3+\sqrt{3})$ pour toucher la première cible.

Analyse : dérivées Corrigé 5.23