Bosonic modes in Fermi liquid

Jinyuan Wu

May 2, 2023

1 / 12

Background

In a Fermi liquid we have . . .

- ullet Quasiparticles (electron/hole) with Σ -correction
- Any anything else?

...and more

Jinyuan Wu Introduction May 2, 2023 2 / 12

Question

What to do

Finding modes other than the corrected single electron/hole

Why it's important

Usually not for C_V but for optical response: ϵ , $\chi^{(3)}$, etc.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Jinyuan Wu Introduction May 2, 2023 3 / 12

Question

What to do

Finding modes other than the corrected single electron/hole

Why it's important

Usually not for C_V but for optical response: ϵ , $\chi^{(3)}$, etc.

Today's topic

Electron-hole bosonic modes in Fermi liquid (with *some* scattering picked up back, i.e. beyond $\delta E \sim \varepsilon \, \delta n + f \, \delta n \, \delta n$), i.e.

$$|\text{single excitation}\rangle = \sum_{\boldsymbol{k}_1,\boldsymbol{k}_2} c_{\boldsymbol{k}_1\boldsymbol{k}_2} \left| \begin{array}{c} \bullet \\ \bullet \end{array} \right\rangle \tag{1}$$

No trion, higher order correlation, or even more exotic spinons, etc. beyond Fermi liquid

Jinyuan Wu Introduction May 2, 2023 3 / 12

Methodology

Series calculation

Bethe–Salpeter equation (BSE) is for quantitative calculations.

Problem: no picture about "how the electron moves"

Jinyuan Wu Introduction May 2, 2023 4 / 12

Methodology

Series calculation

Bethe–Salpeter equation (BSE) is for quantitative calculations.

Problem: no picture about "how the electron moves"

Linking BSE with single-electron kinetic theory

Linear response of single-electron under external field = BSE

simplest single-electron theory: quantum Boltzmann equation (QBE)

Jinyuan Wu Introduction May 2, 2023 4 / 12

Overview

What to investigate

Stable oscillation modes of QBE (\Leftrightarrow infinite response to external field \Leftrightarrow bosonic mode): for $n_{\boldsymbol{p}\sigma\sigma'}(\boldsymbol{r})$,

$$\frac{\partial n_{\mathbf{p}}}{\partial t} + \underbrace{\frac{\partial \varepsilon_{\mathbf{p}}}{\partial \mathbf{p}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{r}}}_{\text{diffusion}} - \underbrace{\frac{\partial \varepsilon_{\mathbf{p}}}{\partial \mathbf{r}} \cdot \frac{\partial n_{\mathbf{p}}}{\partial \mathbf{p}}}_{\text{force}} + \underbrace{i\left[\varepsilon_{\mathbf{p}}, n_{\mathbf{p}}\right]}_{\text{multi-band}} = \underbrace{I_{\text{Fermi golden rule}}}_{\text{collision}}.$$
 (4)

What to expect

Three types of important bosonic modes:

- Zero sound in uncharged single-band Fermi liquid
- Plasmon in charged single-band Fermi liquid = zero sound + long range interaction
- Exciton in charged multi-band Fermi liquid

4日 → 4部 → 4 恵 → 4 恵 → 9 へ ○

Equation governing zero sound

System Single-band Fermi liquid with spin ignored

Kinetics of uncharged Fermi liquid Landau equation = QBE +

$$\varepsilon_{\boldsymbol{p}}(\boldsymbol{r}) = \varepsilon_{\boldsymbol{p}}^{0} + \frac{1}{V} \sum_{\boldsymbol{p}'} f_{\boldsymbol{p}\boldsymbol{p}'} \, \delta n_{\boldsymbol{p}}(\boldsymbol{r})$$
 (5)

(assumption: ${m q} o 0$ in $c^{\dagger}_{{m p}+{m q}} c_{{m p}}$, i.e. $\delta n_{{m p}}({m r})$ being smooth in ${m r})$

EOM governing zero sound Small disturbance, no collision, :

$$\frac{\partial \delta n_{\mathbf{p}}}{\partial t} + \frac{\partial \varepsilon_{\mathbf{p}}^{\text{static}}}{\partial \mathbf{p}} \cdot \frac{\partial \delta n_{\mathbf{p}}}{\partial \mathbf{r}} - \frac{\partial n_{\mathbf{p}}^{\text{static}}}{\partial \mathbf{p}} \cdot \underbrace{\frac{1}{V} \sum_{\mathbf{p}'} f_{\mathbf{p}\mathbf{p}'} \frac{\partial \delta n_{\mathbf{p}}}{\partial \mathbf{r}}}_{\partial \mathbf{r}} = 0$$
 (6)

Jinyuan Wu Zero sound May 2, 2023 6 / 12

Fermi surface vibration

Ansatz Disturbance as small as possible . . .

$$n_{\mathbf{p}}(\mathbf{r},t) = e^{i(\mathbf{q}\cdot\mathbf{r} - i\,\omega t)}\,\theta(\mu - \varepsilon_{\mathbf{p}}^{\text{stable}} - h(\hat{\mathbf{p}})) \tag{7}$$

Eigenvalue problem

$$(\omega - \mathbf{q} \cdot \mathbf{v})h(\hat{\mathbf{k}}) = \mathbf{q} \cdot \mathbf{v} \int \frac{\mathrm{d}\Omega'}{4\pi} F(\vartheta)h(\hat{\mathbf{k}}'). \tag{8}$$

where \mathbf{v} is single-electron velocity. \Rightarrow zero sound has linear dispersion; zero sound requires $F \neq 0$

Jinyuan Wu Zero sound May 2, 2023 7 / 12

Modes

Shape of Fermi surface

Zero sound is not density wave In zero sound $V_{\sf Fermi \ sea} = {\sf const.} \Rightarrow {\sf zero \ sound}$ is not ordinary sound

Jinyuan Wu Zero sound May 2, 2023 8 / 12

Comparison with ordinary sound

Ordinary sound Fermi liquid theory $\Rightarrow \partial \rho/\partial P \Rightarrow$ another sound mode ("first sound", ordinary sound, density mode) from hydrodynamics

Relation with zero sound

- First sound appears when $\omega \tau \ll 1$: ordinary hydrodynamics \Leftrightarrow local equilibrium $\Leftrightarrow \tau \ll 1/\omega$
- ullet zero sound appears when $\omega au\gg 1$: no collision integral $\Leftrightarrow au\gg 1/\omega$

The two are connected: a radical finite-T correction

Jinyuan Wu Zero sound May 2, 2023 9 / 12

Summary

Fermi liquid, uncharged: zero sound

- Linear, gapless
- From $f_{pp'}$

Fermi liquid, charged: plasmon

- Divergent Hartree term ⇒ self-energy correction in real space
- When q = 0: $f_{pp'}$ not important; gapped

Two bands: exciton

Jinyuan Wu Summary May 2, 2023 10 / 12

Justifying quantum Boltzmann equation

Is QBE reliable?

Yes! When we intuitively expect it to work -

Discussion

Jinyuan Wu Further discussion May 2, 2023 12 / 12