

Program předmětu RNV

- 1. Základní principy fungování radionavigačních a radiolokačních systémů, měření vzdálenosti, úhlu, času příchodu signálu. Triangulace, multilaterace, dálkoměrná metoda, radiokomunikační a radarová rovnice.
- Popis polohy bodu v prostoru, souřadnicové systémy (ECEF, Geodetické, kartézské, lokální, ECI), vzájemné přepočty.
- 3. Výpočet polohy navigační družice, rovnice dráhy družice a její řešení, keplerovské parametry dráhy družice.
- 4. Výpočet polohy uživatele, časová základna, relativistické jevy, jednorázové metody výpočtu polohy, chyby polohy, Kalmanova filtrace.
- Družicové navigační signály, požadavky na signál, modulace BPSK, BOC, dálkoměrné posloupnosti, spektrum a korelační funkce.
- Šíření navigačních signálů, ionosférická refrakce a její modelování, dvou frekvenční měření, zpoždění v troposféře, mnohocestné šíření a jeho modelování.
- 7. Zpracování navigačních signálů I. část: Odhad parametrů, sledování signálu, korelátor, diskriminátory fáze, frekvence a zpoždění, filtr smyčky. Chyby měření způsobené šumem, mnohocestným šířením, demodulace navigační zprávy.
- 8. Zpracování navigačních signálů II. část: Počáteční synchronizace, sériové metody, Tongův algoritmus, M z N, paralelní metody ve frekvenci a ve zpoždění, 2D metody. Implementace algoritmů vyhledávání.
- Přehled družicových navigačních systémů, GPS, GLONASS, Galileo, Compass, podpůrné systémy WAAS, EGNOS, MSAS, GAGAN.
- 10. Pokročilé algoritmy zpracování signálu a výpočtu polohy, vysoká citlivost, vektorové sledování signálu, měření na fázi, RTK.
- 11. Přehled terestriálních navigačních systémů, hyperbolické navigační systémy, navigační systémy používané v letectví (DME, ILS).
- 12. Typy radarů (primární, sekundární pasivní), zpracování signálu v radaru, dopplerovská filtrace.
- 13. Sekundární radar, módy A, C a S, squitter, extended squitter, ADS-B, TCAS.
- 14. Pasivní radiolokace, směrové zaměřovače, TDOA systémy. Úvodní přednáška

Program cvičení

- 1. Seznámení se s laboratoří, bezpečnost práce
- 2. Radiokomunikační a radarová rovnice, příklady
- 3. Úloha v Matlabu na transformaci souřadnic
- 4. Úloha v Matlabu na výpočet polohy navigačních družic
- 5. Úloha v Matlabu na výpočet polohy uživatele
- 6. GNSS simulátory
- 7. Měření spektra družicových navigačních signálů
- 8. Měření rychlosti startu, citlivosti a chyby polohy družicového navigačního přijímače
- 9. Měření dynamického chování družicového navigačního přijímače
- 10. Generování VOR a ILS signálů v GNU radiu
- 11. Zpracování VOR a ILS signálů v GNU radiu
- 12. Zpracování odpovědí sekundárního radaru v GNU radiu
- 13. Doplňkové měření
- 14. Rezerva

Úvod do rádiové navigace

- Základní principy rádiové navigace
- Úvod do družicových navigačních systémů
- Úvod do radiové lokace

Základy rádiové navigace

 Poloha resp. odchylka od trasy se vyhodnocuje na základě zpracování rádiových signálů

AoA	Angle of Arrival
-----------------------	------------------

S Signal Strength

ToATime of Arrival

TDoA Time Difference of Arrival

Doppler shift

Elektronické vyznačení trasy

Elektronické vyznačení bodu

- směr příchodu signálu

- síla signálu

- čas příchodu signálu

- rozdíl časů příchodu signálů

- Dopplerův posuv kmitočtu nosné vlny

AoA – směr příchodu signálu

Aplikace

- Směrové antény
 - Radiokompas DF
 - Automatický radiokompas ADF
 - Radar
- Dopplerovský směrový zaměřovač
 - VHF Direction Finder (VKV směrový zaměřovač letadel)
 - Zaměřování ukradených vozidel

Triangulace

Určování polohy

- Určí se kurs ke dvěma všesměrovým majákům NDB
- Poloha se určí jako průsečík příslušných radiál v navigační mapě
- Přesnost závisí na přesnosti měření

Dopplerovský směrový zaměřovač

Rotační pohyb antény způsobí, že v důsledku Dopplerova jevu bude přijímaný signál kmitočtově modulovaný harmonickým signálem s periodou otáčení antén. Fáze modulačního signálu závisí na směru φ příchodu signálu.

Souřadnice rotující antény

$$x(t) = R\sin(\Omega t)$$

$$y(t) = R\cos(\Omega t)$$

rychlost

$$v_{x}(t) = \frac{dx(t)}{dt} = R\Omega\cos(\Omega t)$$

$$v_{y}(t) = \frac{dy(t)}{dt} = -R\Omega\sin(\Omega t)$$

Dopplerův posuv kmitočtu způsobuje vzájemná rychlost antén

$$v_n(t) = v_y(t)\cos\varphi + v_x(t)\sin\varphi =$$

$$= -R\Omega\sin(\Omega t)\cos\varphi + R\Omega\cos(\Omega t)\sin\varphi =$$

$$= -R\Omega\sin(\Omega t - \varphi)$$

Kmitočet přijímaného signálu

$$f_{rx} = f_c \frac{c + v_n}{c} = f_c - \frac{f_c}{c} R\Omega \sin(\Omega t - \varphi)$$
kmitočtová modulace
fáze závisí na směru příchodu signálu

Dopplerovský směrový zaměřovač

Rotující anténu lze nahradit přepínáním antén rozmístěných po kružnici

SS – síla signálu

- Měří vzdálenost od majáku na základě úrovně přijímaného sign
- Uživatel se nachází na kružnici resp. na povrchu koule o poloměru-
- Při použití více majáků lze určit polohu jako průsečík příslušných kruhů resp. koulí

Radiokomunikační rovnice

$$P_{dp} = P_{v}G_{v}G_{p} \left(\frac{\lambda}{4\pi R}\right)^{2}$$

Aplikace

- měření vzdálenosti k prahu vzletové a přistávací dráhy u systému ILS (nepoužívá se)
- pokusy s navigací uvnitř budov

- Měří vzdálenost od majáku na základě doby šíření sigr
- Uživatel se nachází na kružnici resp. na povrchu koule o poloměru k
- Při použití více majáků lze určit polohu jako průsečík příslušných kruhů resp. koulí

- Rádiově aktivní systémy (uživatel vysílá rádiové signály)
 - Pasivní odraz
 - primární radar
 - rádiový výškoměr
 - Dotazovač odpovídač
 - dálkoměr DME
 - sekundární radar
- Rádiově pasivní systémy (uživatel pouze přijímá signály majáků)
 - Družicové navigační systémy

Signál radaru je vysílán směrovou anténou, což dovoluje určit směr cíle (kombinace AoA a ToA)

Pasivní odraz od cíle

$$S = \frac{P_v G_a}{4\pi R^2}$$
 plošná hustota výkonu

Schopnost cíle odrážet rádiové vlny se popisuje pomocí efektivní odrazné plochy $A_{ef.}$ Cíl se chová jako izotropní zářič.

$$P_O = SA_{ef}$$
 odražený výkon od cíle

Radarová rovnice

$$P_{pd} = P_{o}G_{a} \left(\frac{\lambda}{4\pi R}\right)^{2} = P_{v}A_{ef}G_{a}^{2} \frac{\lambda^{2}}{\left(4\pi\right)^{3}R^{4}}$$

Výkon přijímaného signál klesá se čtvrtou mocninou vzdálenosti cíle !!!

- Rádiově aktivní systémy (uživatel vysílá rádiové signály)
 - Pasivní odraz
 - primární radar
 - rádiový výškoměr
 - Dotazovač odpovídač
 - dálkoměr DME
 - sekundární radar

- Rádiově pasivní systémy (uživatel pouze přijímá signály majáků)
 - Družicové navigační systémy

- Rádiově aktivní systémy (uživatel vysílá rádiové signály)
 - Pasivní odraz
 - primární radar
 - rádiový výškoměr
 - Dotazovač odpovídač
 - dálkoměr DME
 - sekundární radar

 t_p - doba zpracování signálu v odpovídači

- Rádiově pasivní systémy (uživatel pouze přijímá signály majáků)
 - Družicové navigační systémy

- Rádiově aktivní systémy (uživatel vysílá rádiové signály)
 - Pasivní odraz
 - primární radar
 - rádiový výškoměr
 - Dotazovač odpovídač
 - dálkoměr DME
 - sekundární radar
- Rádiově pasivní systémy (uživatel pouze přijímá signály majáků)
 - Družicové navigační systémy

t_n - doba zpracování signálu v odpovídači

Signál radaru je vysílán směrovou anténou, což dovoluje určit směr cíle (kombinace AoA a ToA)

Sekundární radar řeší nevýhodnou energetickou bilanci primárního radaru.

Cíl musí být vybaven rádiově aktivním odpovídačem sekundárního radaru.

- Rádiově aktivní systémy (uživatel vysílá rádiové signály)
 - Pasivní odraz
 - primární radar
 - rádiový výškoměr
 - Dotazovač odpovídač
 - dálkoměr DME
 - sekundární radar
- Rádiově pasivní systémy (uživatel pouze přijímá signály majáků)
 - Družicové navigační systémy

Problém

Maják a uživatel musí mít synchronizovanou časovou základnu. Chyba 1µs představuje chybu ve vzdálenosti 300m.

TDoA – rozdíl časů příchodu signál

- Řeší problém přesnosti časové základny uživatele u systémů ToA
- Signál vysílán dvěma nebo více synchronizovanými majáky
- Vživatel vyhodnocuje rozdíl časů příchodu signálu od majáků

Aplikace

- Loran C
- Omega
- Deca
- •
- Tamara a její nástupci

Hyperbola – křivka s konstantním rozdílem vzdálenosti (zpoždění) mezi ohnisky

DS – Dopplerův posuv kmitočtu nosné vlny

Měří vzájemnou rychlost uživatele a majáku

Aplikace

- Transit
- GNSS stanovení vektoru rychlosti

Elektronické vyznačení trasy

A-N range

- •vznikl v 20 letech, sloužil do 50 let
- •pracuje na 190 565 kHz
- •výkon vysílače 1500 W
- •2 vertikální rámové antény
 - 1 anténa vysílá morse A (tečka čárka)
 - 2 anténa vysílá morse N (čárka tečka)

Aplikace

- A-N Range
- VOR
- ILS
- TACAN

Elektronické vyznačení bodu

Aplikace

Marker

Základy družicové navigace

- Dopplerovská metoda
- Dálkoměrná metoda

Družicové navigační systémy

Globální

- GPS
- GLONASS
- Galileo
- Compass

Regionální

QZSS

Podpůrné

- EGNOS
- WAAS
- **–** ...

Dráhy družice

- LEO
- MEO
- Geosynchronní
 - GEO
 - IGSO

Dálkoměrná metoda

Neznámá poloha uživatele (x_u, y_u, z_u) Poloha k-té družice (x_k, y_k, z_k) Družice vysílá dálkoměrný signál v t_t

Měření

 $t_{r,k}$ - okamžik příjmu signálu k-té družice v časové základně přijímače

Časová základna přijímače a systému nejsou synchronní, liší se o au_c

Zdánlivá vzdálenost (vzdálenost zkreslená o τ_c)

$$(t_{r,k} - t_t)c = \rho_k$$

Skutečná vzdálenost

$$(t_{r,k} - t_t + \tau_c)c = r_k$$

Dálkoměrná metoda

Vzdálenost spočítaná z geometrie úlohy

$$r_k = \sqrt{(x_u - x_k)^2 + (y_u - y_k)^2 + (z_u - z_k)^2}$$

Geometrická vzdálenost se musí rovnat změřené na základě šíření signálu

$$(t_{r,k} - t_t + \tau_c)c = \sqrt{(x_u - x_k)^2 + (y_u - y_k)^2 + (z_u - z_k)^2}$$

 $k = 1, 2, ...$