

CP8319/CPS824 Lecture 8

Instructor: Nariman Farsad

* Some of the slides in this deck are adopted from courses offered David Silver, Emma Brunskill, and Sergey Levine.

Today's Agenda

1. Finish Monte Carlo Policy Evaluation

2. Temporal Difference Policy Evaluation

What we have learned up to now?

So far we have solved a *known* MDP, i.e., dynamics and the reward function are known

Moving forward:

- Estimate the value function of an unknown MDP
- Optimize the value function of an unknown MDP

First Visit MC (On) Policy Evaluation

Goal: estimate $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] \ \forall s \in S$

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$

Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T_i-1}r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state *s* visited in episode *i*:
 - For first time t that state s is visited in episode i:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $v^{\pi}(s) = G(s)/N(s)$

Every-Visit MC (On) Policy Evaluation

Goal: estimate $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] \ \forall s \in S$

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$

Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T_i-1}r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state s visited in episode i:
 - For every time *t* that state *s* is visited in episode *i*:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $v^{\pi}(s) = G(s)/N(s)$

Incremental Mean Calculation

The mean $\mu_1, \mu_2, ...$ of a sequence $x_1, x_2, ...$ can be computed incrementally,

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} \left(x_{k} + (k-1)\mu_{k-1} \right)$$

$$= \mu_{k-1} + \frac{1}{k} \left(x_{k} - \mu_{k-1} \right)$$

Incremental MC (On) Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$ Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T_i-1}r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state *s* visited in episode *i*:
 - For every time *t* that state *s* is visited in episode *i*:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate $v^{\pi}(s) = v^{\pi}(s) + \frac{1}{N(s)}(G_{i,t} v^{\pi}(s))$

Incremental MC (On) Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$

Loop:

- Sample episode $i: s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t}=r_{i,t}+\gamma r_{i,t+1}+\gamma^2 r_{i,t+2}+\cdots+\gamma^{T_i-1}r_{i,T_i}$ as return from time step t onwards in i-th episode
- For each state s visited in episode i:
 - For every time *t* that state *s* is visited in episode *i*:
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate $v^{\pi}(s) = v^{\pi}(s) + \alpha(G_{i,t} v^{\pi}(s))$
- $\alpha = \frac{1}{N(s)}$: Identical to every visit MC
- $\alpha > \frac{1}{N(s)}$: forget older data, helpful for non-stationary domains

Bias, Variance, and MSE

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
 - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$extit{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{ extit{x}| heta}[\hat{ heta}] - heta$$

• Definition: the variance of an estimator $\hat{\theta}$ is:

$$Var(\hat{ heta}) = \mathbb{E}_{ imes \mid heta}[(\hat{ heta} - \mathbb{E}[\hat{ heta}])^2]$$

• Definition: mean squared error (MSE) of an estimator $\hat{\theta}$ is:

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias_{\theta}(\hat{\theta})^{2}$$

Bias and Variance of MC Policy Evaluation

First Visit MC:

- v^{π} estimator is an *unbiased* estimator of true $\mathbb{E}_{\pi}[G_t|S_t=s]$
- By law of large numbers, as $N(s) \to \infty$, $v^{\pi} \to \mathbb{E}_{\pi}[G_t | S_t = s]$

Every Visit MC:

- v^{π} estimator is a *biased* estimator, but it is a *consistent* estimator
- consistent estimator: As $N(s) \to \infty$, v^{π} estimate can get arbitrarily close to true value of v^{π}
- Often has better MSE

Both every visit and first are high variance estimators of v^{π}

Example: Blackjack

- States (200 of them):
 - Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a "useable" ace? (yes-no)
- Action hold: Stop receiving cards (and terminate)
- Action hit: Take another card (no replacement)
- Reward for hold:
 - +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
- Reward for hit:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically hit if sum of cards < 12

Example: Blackjack

Policy: hold if sum of cards ≥ 20, otherwise hit

MC Summary

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
 - Episode must end before data from episode can be used to update v

Today's Agenda

1. Finish Monte Carlo Policy Evaluation

2. Temporal Difference Policy Evaluation

Temporal-Difference (TD) Learning

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from <u>incomplete</u> episodes, by <u>bootstrapping</u> (i.e., using estimates to update value function)
- <u>Bootstrapping</u>: TD updates a guess towards a guess (i.e., using estimates of value function to re-estimate the value function!)
- "If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning." Sutton and Barto 2017

TD Policy Evaluation

- Aim: estimate $v^{\pi}(s)$ given episodes generated under policy π
- $G_t = rt + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$ under policy π
- $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$
- Recall Bellman operator (if know MDP models):

$$\mathfrak{B}^{\pi}v(s) = R(s,\pi(s)) + \gamma \sum_{s' \in \mathcal{S}} P_{s,s'}^{\pi(s)}v(s')$$

In incremental every-visit MC, update estimate using:

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha(G_{i,t} - v^{\pi}(s_t))$$

• Insight: have an estimate of v, use to estimate expected return

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] - v^{\pi}(s_t))$$

TD(0) Policy Evaluation

- Aim: estimate $v^{\pi}(s)$ given episodes generated under policy π
- $G_t = rt + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$ under policy π
- $v^{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$
- Simplest temporal-difference learning algorithm: TD(0)
 - Update value $v^{\pi}(s_t)$ toward estimated return $r_t + \gamma v^{\pi}(s_{t+1})$

$$v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] - v^{\pi}(s_t))$$

- $r_t + \gamma v^{\pi}(s_{t+1})$ is called the <u>TD target</u>
- $\delta_t = r_t + \gamma v^{\pi}(s_{t+1}) v^{\pi}(s_t)$ is called the <u>TD error</u>
- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

TD(0) Policy Evaluation Algorithm

```
Input: \alpha Initialize v^\pi(s) = 0, \forall s \in \mathcal{S} Loop
```

- Sample tuple (s_t, a_t, r_t, s_{t+1})
- $v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] v^{\pi}(s_t))$

TD(0) Policy Evaluation Algorithm Example

```
Input: \alpha
Initialize v^{\pi}(s) = 0, \forall s \in \mathcal{S}
Loop
```

- Sample tuple (s_t, a_t, r_t, s_{t+1})
- $v^{\pi}(s_t) = v^{\pi}(s_t) + \alpha([r_t + \gamma v^{\pi}(s_{t+1})] v^{\pi}(s_t))$

s_1	s_2	s_3	S_4	<i>S</i> ₅	s ₆	S ₇

- R = [100000 + 10] for any action
- $\pi(s) = a_1 \, \forall s, \gamma = 1$. Any action from s1 and s7 terminates episode
- Sample episode = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- First/every visit MC estimate of v of each state? [1,1,1,0,0,0,0]
- TD estimate of all states (init at 0) with $\alpha = 1$?

TD vs MC

- TD can learn before knowing the final outcome
 - TD can learn online after every step
 - MC must wait until end of episode before return is known
 - TD can learn from incomplete sequences
 - MC can only learn from complete sequences
 - TD works in continuing (non-terminating) environments
 - MC only works for episodic (terminating) environments

TD vs MC: Bias and Variance

- MC has high variance, zero bias (first-visit)
 - Good convergence properties (even with function approximation)
 - Function approximation: used in infinite state MDPs. We will learn about it later
 - Not very sensitive to initial values used in the initialization
 - Very simple to understand and use
- TD has low variance, some bias
 - Usually more efficient than MC
 - TD(0) converges (but not always with function approximation)
 - More sensitive to initial values used in the initialization

TD vs MC: Markov vs Non-Markov

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more effective in non-Markov environments

Batch MC and TD

- Batch (Offline) solution for finite dataset
- Given set of *K* episodes
 - episode 1: $s_{1,1}$, $a_{1,1}$, $r_{1,1}$, $s_{1,2}$, $a_{1,2}$, $r_{1,2}$, ..., s_{1,T_1}
 - episode 2: $s_{2,1}$, $a_{2,1}$, $r_{2,1}$, $s_{2,2}$, $a_{2,2}$, $r_{2,2}$, ..., s_{2,T_2}
 - •
 - episode $K: s_{K,1}, a_{K,1}, r_{K,1}, s_{K,2}, a_{K,2}, r_{K,2}, \dots, s_{K,T_2}$
- Repeatedly sample an episode from 1 to K
- Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

AB Example (Ex. 6.4, Sutton & Barto, 2018)

- Two states A, B with $\gamma = 1$ and a single action (i.e. action is irrelevant). Given 8 episodes of experience:
 - A,0,B,0
 - B,1 (observed 6 times)
 - B,0
- What is v(A), v(B) if we run TD and MC over these specific episodes many times?

AB Example (Ex. 6.4, Sutton & Barto, 2018)

- Two states A, B with $\gamma = 1$ and a single action (i.e. action is irrelevant). Given 8 episodes of experience:
 - A,0,B,0
 - B,1 (observed 6 times)
 - B,0
- What is v(A), v(B) if we run TD and MC over these specific episodes many times?

- TD Learns the MDP dynamics
- Uses the learned dynamics to evaluate v

What Do Batch MC and TD Converge To?

Monte Carlo in batch setting converges to min MSE (mean squared error)

$$\mathcal{L} = \sum_{k=1}^{K} \sum_{t=1}^{T_k} \left(G_{k,t} - v(s_{k,t}) \right)^2$$

- Minimize the loss \mathcal{L} with respect to observed returns
- TD(0) converges to solution of max likelihood Markov model
 - Solution to the MDP $\langle S, \mathcal{A}, \widehat{\mathbf{P}}, \widehat{R}, \gamma \rangle$ that best fits the data

$$\hat{P}_{s,s'}^{a} = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_{k,t}, a_{k,t}, s_{k,t+1} = s, a, s')$$

$$\hat{R}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{T_k} \mathbf{1}(s_{k,t}, a_{k,t} = s, a)$$

Monte Carlo Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t)\right)$$

TD Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right)$$

Dynamic Programming Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

Dynamic Programming:

- Value iteration
- Policy iteration

Bootstrapping and Sampling

- Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - TD bootstraps
- Sampling: update samples an expectation
 - MC samples
 - DP does not sample
 - TD samples

$TD(\lambda)$

• n-step returns $G_t^{(n)}$

$$G_t^{(1)} = r_t + \gamma v(s_{t+1})$$

$$G_t^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 v(s_{t+2})$$

$$G_t^{(3)} = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 v(s_{t+3})$$

$$\vdots$$

• combines all n-step returns $G_t^{(n)}$ using the weight $(1-\lambda)\lambda^{n-1}$

$$G_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

• $TD(\lambda)$: Update value function using (forward-view $TD(\lambda)$):

$$v(s_t) = v(s_t) + \alpha \left(G_t^{\lambda} - v(s_t)\right)$$

Summary of Policy Evaluation Methods

	DP	MC	TD
Usable w/no models of domain			
Handles continuing (non-episodic) setting			
Assumes Markov process			
Converges to true value in limit ¹			
Unbiased estimate of value			

- DP = Dynamic Programming (i.e., policy iteration or value iteration)
- MC = Monte Carlo
- TD = Temporal Difference

¹For tabular representations of value function (i.e., finite number of states).