Euclidean 延伸演算法的證明

對於任意兩個非負整數 a 和 b,我們可以進一步使用歐幾里得延伸演算法找到兩個整數 s 和 t,使得 $as+bt=\gcd(a,b)$ 。

• 證明過程:

歐幾里得延伸演算法在 q_i 和 r_i 的基礎上增加了兩組序列,記作 s_i 和 t_i ,並 初始化 $s_1 = 1$, $s_2 = 0$, $t_1 = 0$, $t_2 = 1$,

在歐幾里得演算法每步計算 $r_{i+1} = r_{i-1} - r_i q_i$ 之外,額外計算 $s_{i+1} = s_{i-1} - s_i q_i$ 和 $t_{i+1} = t_{i-1} - t_i q_i$,亦即:

$$r_1 = a, \ r_2 = b, ..., \ r_{i+1} = r_{i-1} - r_i q_i \ (0 \le r_{i+1} < |r_i|)$$

$$s_1 = 1$$
, $s_2 = 0$, ..., $s_{i+1} = s_{i-1} - s_i q_i$

$$t_1 = 0, \ t_2 = 1, ..., \ t_{i+1} = t_{i-1} - t_i q_i$$

演算法結束條件與歐幾里得演算法一致,也是 $r_{i+1}=0$,此時所得的 s_i 和 t_i 即滿足貝祖 (Bézout) 等式 $\gcd(a,b)=r_i=as_i+bt_i$ 。

在歐幾里得演算法正確性的基礎上,又對於 $a=r_1$ 和 $b=r_2$ 有貝祖等式 $as_i+bt_i=r_i$ 在 i=1 或 2 時成立。

這一關係式可由下列遞推式推得其對所有 i>1 皆成立:

$$r_{i+1} = r_{i-1} - r_i q_i = (as_{i-1} + bt_{i-1}) - (as_i + bt_i) q_i = (as_{i-1} - as_i q_i) + (bt_{i-1} - bt_i q_i) = as_{i+1} + bt_{i+1}$$

因為數學歸納法求得其滿足貝祖等式,所以證明了歐幾里得延伸演算法的正確性。