Batt to 12V Buck Calculations
Lauren Jones

Design Requirements for Buck Selection	3
Power Draw of the entire system	4
Inductor Selection	5
Mosfet Selection	6
Cin Selection	7
Cout Selection	8
Rsense Selection	9
Frequency Resistor Selection	10
Vfb Selection	11
Voltage Output Ripple Simulation	12
Current through the Inductor Simulation	13
Test Points	14
Questions	15

Design Requirements for Buck Selection

V_{in}: 24V-60V

- 24V is what the eCVT motors run off of
- 60V is V_{max} according to Baja SAE rules

V_{out}: 12V

 12V is what we send around the car and what we cascade off of for 3V3 and 5V

I_{load}: 8.4A nominal, 12A for FOS of 1.43

• Calculated in Power draw section

Efficiency: > 90%

Fsw: 500 kHz

• Better efficiency

• Cleaner output ripple

Operating temperature range: -40C to 100C

Output ripple: 10%

Power Draw of the entire system

Components	Power Draw (W)	Operating Voltage (V)	Current Draw (A)
Electronics System run off of battery	327.364	24.00	13.64
Electronics system run off of 12v buck	100.844	12.00	8.40
Motherboard	317.38	24.00	13.22
eCVT	1.78	3.30	0.19
SAS	0.70	3.30	0.21
TL	0.70	3.30	0.21
DAQ	0.57	3.30	0.17
Radio	1.31	12.00	0.62
IMU/GPS	1.02	12.00	0.53
Front Breakout	1.26	12.00	0.64
Rear Breakout	1.03	12.00	0.59
Dashboard	0.89	12.00	0.50

12A/8.40A = 1.43 FOS

Electrons System Calculator (Last Year's System)

Inductor Selection

PAPO	H U	MA	M	7	
ΔIL	HE CA = 0.3. = 0.3. = 3.6	LW	W.		
ΔŢ	= 0.3	12			
OH.	= 3.6	A			
ındu	ctor				
し=	Vous	11	- V (AK	1
	- 000		V	iN	
	LΔ		fsw		
		V :) 1M		
しこ	121	11	- 7	21	
			_6	VOK	
	3.6F	1.5	00	KH	F
に	121	$(1\cdot$	-0.	2)	
	3.6	À.	()	H	t
سا	9.6				
	180	000	00		
1=	5.3	AH			

SRP1040VA-5R6M

Mosfet Selection

- V_{DS} = 60V
 I_D = 48A
- V_{GateSource} = -4 to 6V
 Q_G = 5nC
- R_{DS} = 2.6 mOhms

EPC2031

C_{in} Selection

n	H	A f	MC	11			
			A)	V			
	VCM						
	VIV	1					
	12						
	60						
0)= (
V		J . B					
	OW	Λ					
	CN	10.000					
Cin	2	D	1-0	۱. (۱	out		
Pin	>	0	2/1	NY.	2).	7.A	
Cin		C	:VII	6	0/1	Ha	
			V	7	10	-u t	
	7	U.	10	J)	17	_	
		3	OO	JO (000		
		1.0	12				
	2	20	12	nn	nΛ		
Civ	Λ.	^	64	70	JV		
M	1 >	U.	14	Ul-			

C_{out} Selection

COV	4		
Cov	_	(q-q)	
-0		(1-0) <u>00</u> 8Lf ²	
		Vo	
	=	(1-0.2) 12.08V. &(5.6111 12V	2
		12 081 815641)(CWKH)
		121	y (500 · 110)
		0.8	
		100041)&.0000.1	000)
	z	0.8	
		11274666.67	
Ca	\	0.746	

R_{sense} Selection

Righte					
Rsense =	Vst	ens	ein	Nax	7
SCHIL	I,	(MV)	N _t	AOLX DII 2	2
P-sense =		50	M۷	2	
1 00100	12	A	3	.6A 2	
Rsense =	5(m			
LICHI)C		8			
Psense =	3.6		n		
rjense =	2.1	911	171		

Frequency Resistor Selection

Rereq = 37MHZ 500 KHZ Rereq = 74 K. R. 73.2 K. R.	operum	lg	fre	AM	CO
500 KHZ	Rarea =	37	MH	E	
		50	O KH	it	

V_{fb} Selection

Voltage Output Ripple Simulation

Current through the Inductor Simulation

Test Points

- Vin
- Vout
- Switching node

Questions

4.

PLLIN/SPREAD External Synchronization Input to Phase Detector/Spread Spectrum Enable. When an external clock is applied to PLLIN/SPREAD, the phase-locked loop forces the rising TGxx signal to synchronize with the rising edge of the external clock. When not synchronizing to an external clock, tie this input to INTV_{CC} to enable spread spectrum dithering of the oscillator, or to GND to disable spread spectrum dithering.

a. Tie to ground right?

Output Voltage Control Pin. VPRG sets the adjustable output mode using external feedback resistors or the fixed 12 V or 5 V output mode. Floating VPRG programs the output from 0.8 V to 60 V with an external resistor divider, regulating V_{FB} to 0.8 V. Connect VPRG to INTV_{CC} or GND to program the output to 12 V or 5 V, respectively, through an internal resistor divider on V_{FB}.

a. Leave floating right?

9 BSTV_{CC} Bootstrap Diode Anode Connection Pin. Place an optional external Schottky diode between the BSTV_{CC} and BOOST pins to bypass most of the 7 Ω switch resistance between DRV_{CC} and BOOST.

a. Leave floating?

a. 100k or 1M res?

5. Cout and Cin caps