Notes

Maksim Levental

December 14, 2019

Contents					1 Differential Geometry				
1		ferential Geometry			Contents				
	1.1		ional Derivative	2	1.1		ional Derivative	ç	
	1.2		tions	2	1.1		ations		
	1.3		Fields	2	1.3		Fields	•	
	1.4			$\frac{3}{3}$	1.3 1.4		Space	4	
	1.5	Differential Forms on \mathbb{R}^n			1.4	Differential Forms on \mathbb{R}^n		•	
		1.5.1 $1.5.2$		3 4	1.0	1.5.1	Differential of a Function	•	
			Differential France on Multilinear	4		1.5.1 $1.5.2$	Differential k-forms		
		1.5.3	Differential Forms as Multilinear Functions on Vector Fields	E		1.5.2 $1.5.3$	Differential Forms as Multilinear	- 4	
		1.5.4	Exterior Derivative	5 5		1.5.5	Functions on Vector Fields		
		1.5.4 $1.5.5$	Closed and Exact Forms	6		1 = 4	Exterior Derivative	•	
		1.5.6		6		1.5.4			
		1.5.0 $1.5.7$	Applications to Vector Calculus	U		1.5.5	Closed and Exact Forms		
		1.5.7	Convention on Subscripts and Superscripts	7		1.5.6	Applications to Vector Calculus	(
	1.6	Manife	olds	7 7		1.5.7	Convention on Subscripts and Su-	,	
	1.0	1.6.1	Compatible Charts	7	1.0	M : C	perscripts	,	
		1.6.2	Smooth Manifolds	8	1.6		olds	,	
		1.6.3	Examples of Smooth Manifolds	8		1.6.1	Compatible Charts		
		1.6.4	Smooths Maps on a Manifold	9		1.6.2	Smooth Manifolds	5	
		1.6.5	Partial Derivatives	9		1.6.3	Examples of Smooth Manifolds	7	
	1.7		at Space	11		1.6.4	Smooths Maps on a Manifold		
	1.1	1.7.1	The Tangent Space at a Point	11	1 =	1.6.5	Partial Derivatives		
		1.7.1	The Differential of a Map	11	1.7		nt Space	11	
		1.7.3	Curves in a Manifold	13		1.7.1	The Tangent Space at a Point	1.	
	1.8		at Bundle	14		1.7.2	The Differential of a Map	1.	
1	1.0	1.8.1	Topology of the Tangent Bundle	15		1.7.3	Curves in a Manifold	13	
		1.8.2	Manifold Structure on the Tangent	10	1.8		nt Bundle	14	
		1.0.2	Bundle	15		1.8.1	Topology of the Tangent Bundle	1	
		1.8.3	Vector Bundles	16		1.8.2	Manifold Structure on the Tangent		
		1.8.4	Smooth Sections	16			Bundle	1	
		1.8.5	Smooth Frames	16		1.8.3	Vector Bundles	16	
	1.9		Functions and Partitions of Unity	16		1.8.4	Smooth Sections	16	
	1.0	1.9.1	C^{∞} Bump Functions	16		1.8.5	Smooth Frames	16	
		1.9.2	Partitions of Unity	17	1.9	Bump	Functions and Partitions of Unity	16	
	1 10		Fields	17		1.9.1	C^{∞} Bump Functions	16	
	1.10		Integral Curves	17		1.9.2	Partitions of Unity	17	
			Local Flows	18	1.10	Vector	Fields	17	
			The Lie Bracket	19		1.10.1	Integral Curves	17	
			Pushforward of Vector Fields	20		1.10.2	Local Flows	18	
	1 11		oups and Lie Algebras	20		1.10.3	The Lie Bracket	19	
	1.11		Lie Group	21		1.10.4	Pushforward of Vector Fields	20	
			Matrix Exponential	21	1.11	Lie Gr	coups and Lie Algebras	20	
			Trace of a Matrix	21			Lie Group	2	
			The Differential of det at the identity	22			Matrix Exponential	2	
		1.11.1	2110 2110101101101 of det at the identity				Trace of a Matrix	2	
							The Differential of det at the identity	22	

1.1 Directional Derivative

Elements of the tangent space $T_p(\mathbb{R}^n)$ anchored at a point $p = (p^1, \dots, p^n) \in \mathbb{R}^n$ can be visualized as arrows emanating from p. These arrows are called tangent vectors and represented by column vectors:

$$\boldsymbol{v} = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix} \tag{1}$$

The line through a point p with direction v has parameterization

$$c(t) = \left(p^1 + tv^1, \dots, p^n + tv^n\right) \tag{2}$$

If $f \in C^{\infty}$ in a neighborhood of p and v is a tangent vector at p, the directional derivative of f in the direction of v at p is defined

$$D_{v}f = \lim_{t \to 0} \frac{f(c(t)) - f(p)}{t} = \frac{d}{dt} f(c(t)) \Big|_{t=0}$$
 (3)

By the chain rule

$$D_{v}f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} \Big|_{p} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \Big|_{t=0}$$
 (4)

$$= \sum_{i=1}^{n} \frac{\mathrm{d}c^{i}}{\mathrm{d}t} \bigg|_{t=0} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \tag{5}$$

$$= \sum_{i=1}^{n} v^{i} \frac{\partial f}{\partial x^{i}} \bigg|_{p} \tag{6}$$

The directional derivative operator at p is defined

$$D_{\mathbf{v}} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{8}$$

The association $v \mapsto D_v$ offers a way to isomorphically identify tangent vectors with operators on functions. The following makes this rigorous.

1.2 Derivations

For each tangent vector \mathbf{v} at a point $p \in \mathbb{R}^n$, the directional derivative at p gives a map of vector spaces

$$D_{\boldsymbol{v}} \colon C_p^{\infty} \to \mathbb{R}$$

 $D_{\boldsymbol{v}}$ is a linear map that satisfies the *Leibniz rule*

$$D_{\mathbf{v}}(fg) = (D_{\mathbf{v}}f)g(p) + f(p)(D_{\mathbf{v}}g) \tag{9}$$

because the partial derivative satisfy the product rule. In general, any linear map $L\colon C_p^\infty\to\mathbb{R}$ that satisfies the Leibniz rule is called a *derivation* at p. Denote the set of all derivations at p by $\mathcal{D}_p(\mathbb{R}^n)$. This set is also a real vector space.

So far we know directional derivatives $D_{\boldsymbol{v}}$ at p are derivations at p. Thus, there is a map

$$\phi \colon T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R}^n)$$
$$\mathbf{v} \mapsto D_{\mathbf{v}}$$

Theorem 1.1

The linear map ϕ is an isomorphism of vector spaces.

The implication is that we may identify tangent vectors at p with derivations at p (by way of directional derivatives against germs). Under this isomorphism $T_p(\mathbb{R}^n) \simeq \mathcal{D}_p(\mathbb{R}^n)$, the standard basis $\{e_1, \ldots, e_n\}$ for $T_p(\mathbb{R}^n)$ maps to

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\} \tag{10}$$

Therefore from now on we write a tangent vector as

$$\mathbf{v} = \sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p} \tag{11}$$

The point being that, while not as geometrically intuitive as arrows, $\mathcal{D}_p(\mathbb{R}^n)$ generalizes to manifolds.

1.3 Vector Fields

A vector field X on an open $U \subset \mathbb{R}^n$ is function that assigns to $p \in U$ a tangent vector $X_p \in T_p(\mathbb{R}^n)$. Notice, carefully, that the vector field assigns at each point a vector in the tangent space anchored at that point. Using the tangent basis (eqn. (10))

$$X \colon p \mapsto \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p}$$
 (12)

Note that both the coefficients **and** the partial derivatives are evaluated at p. Having said that, we often omit p in the specification of a vector field when it clear from context.

Example 1.1. On $\mathbb{R}^n - \{\mathbf{0}\}$, let p = (x, y). Then

$$X = \frac{-y}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial x} + \frac{x}{\sqrt{x^2 + y^2}} \frac{\partial}{\partial y}$$
$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} \\ \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{-y}{\sqrt{x^2 + y^2}} & \frac{x}{\sqrt{x^2 + y^2}} \end{bmatrix}^T$$

See figure ??

In general we can identify vector fields with parameterized column vectors

$$X = \sum_{i} a^{i}(p) \frac{\partial}{\partial x^{i}} \bigg|_{p} \leftrightarrow \begin{bmatrix} a^{1}(p) \\ \vdots \\ a^{n}(p) \end{bmatrix}$$
 (13)

(7)

1.4 Dual Space

The dual space V^{\wedge} of V is the set of all real-valued linear functions on V i.e. all $f \colon V \to \mathbb{R}$. Elements of V^{\wedge} are called *covectors*.

Assume V is finite dimensional and let $\{e_1, \ldots, e_n\}$ be a basis V. Recall that $e_i := \partial_{x_i}$. Then $X = \sum a^i \partial_{x_i}$ for all $X \in T_p$. Let $\alpha^i : V \to \mathbb{R}$ be the linear function that picks out the ith coordinate of a **vector**, i.e. $\alpha^i(X) = a^i(p)$. Note that

$$\alpha^i(\partial_j) = \alpha^i(1 \cdot \partial_j) \tag{14}$$

$$= \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases} \tag{15}$$

$$=\delta_j^i \tag{16}$$

Note that position of indices is important – upper indices are for covectors.

Proposition 1.1

 $\{\alpha^i\}$ form a basis for V^{\wedge} .

Proof. We first prove that $\{\alpha^i\}$ span V^{\wedge} . If $f \in V^{\wedge}$ and $X = \sum a^i \partial_{x_i} \in V$, then

$$f(X) = \sum a^i f(\partial_{x_i}) \tag{17}$$

$$= \sum \alpha^{i}(X)f(\partial_{x_{i}}) \tag{18}$$

$$= \sum f(\partial_{x_i})\alpha^i(X) \tag{19}$$

which shows that any f can be expanded as a linear sum of α^i . To show linear independence, suppose $\sum c_i \alpha^i = 0$ with at least one c_i non-zero. Applying this to an arbitrary ∂_{x_i} gives

$$0 = \left(\sum_{i} c_{i} \alpha^{i}\right) (\partial_{x_{i}}) = \sum_{i} c_{i} \alpha^{i} (\partial_{x_{i}}) = \sum_{i} c_{i} \delta^{i}_{j} = c_{j}$$

which is a contradiction. Hence α^i are linearly independent. \Box

This basis $\{\alpha^i\}$ for V^{\wedge} is said to be dual to the basis $\{\partial_{x_i}\}$ for V.

Example 1.2. Coordinate functions With respect to a basis $\{\partial_{x_i}\}$ for V, every $X \in V$ can be written uniquely as a linear combination $X = \sum a^i \partial_{x_i}$ with $a^i \in \mathbb{R}$. Let $\{\alpha^i\}$

be the dual basis (i.e. the basis for V^{\wedge}). Then

$$\alpha^{i}(X) = \alpha^{i} \left(\sum_{j} a^{j} \partial_{x_{j}} \right)$$

$$= \sum_{j} a^{j} \alpha^{i} (\partial_{x_{j}})$$

$$= \sum_{j} a^{j} \delta_{j}^{i}$$

$$= a^{i}$$

Thus, the dual basis $\{\alpha^i\}$ to $\{\partial_{x_i}\}$ is the set of coordinate functions. The sense here is that since tangent vectors are directional derivatives (i.e. operators on functions) and the dual space is a mapping from those operators to \mathbb{R} , then a mapping from operators to scalars means hitting an operator with a function (or vice-versa). And the coordinate functions are constant with respect to each other coordinate (and hence partials wrt them are naturally zero).

1.5 Differential Forms on \mathbb{R}^n

A differential k-form assigns a k-covector from the dual space at each point p. The wedge product (alternation of tensor product) of differential forms is defined pointwise (as the wedge product of multi-covectors). Differential forms exist on an open set (why?) there is a notion of differentiation (called exterior derivative). Exterior derivative is coordinate independent and intrinsic to a manifold; it is the abstraction of gradient, curl, divergence to arbitrary manifolds. Differential forms extend Grassmann's exterior algebra (graded algebra of multi-covectors) from the tangent space at a point globally, i.e. to the entire manifold (how? bundles?).

1.5.1 Differential of a Function

Definition 1.1: Cotangent Space

The cotangent space to \mathbb{R}^n at p, denoted $T_p^*(\mathbb{R}^n)$, is defined to be the dual space $(T_p(\mathbb{R}^n))^{\vee}$ of the tangent space $T_p(\mathbb{R}^n)$.

Thus, an element of the cotangent space $T_p^*(\mathbb{R}^n)$ is a covector of linear functional on tangent space.

Definition 1.2: Differential 1-form

A covector field or a differential 1-form on an open subset U of \mathbb{R}^n is a function ω that assigns at each point p in U a covector $\omega_p \in T_p^*(\mathbb{R}^n)$

$$\omega \colon U \to \bigcup_{p \in U} T_p^*(\mathbb{R}^n)$$

$$p \mapsto \omega_p \in T_p^*(\mathbb{R}^n)$$
(21)

We call a differential 1-form a 1-form for short.

Definition 1.3: Differential

From any C^{∞} function $f: U \to \mathbb{R}$, we can construct the 1-form df, called the *differential* of f, as follows: for $p \in U$ and $X_p \in T_p(U)$

$$(\mathrm{d}f)_p(X_p) := X_p f \tag{22}$$

In words the differential of f is the application of X_p to f or the directional derivative of f in the direction of the tangent vector defined by the coefficients of X_p .

Let x^1, \ldots, x^n be the standard coordinates on \mathbb{R} , $\{(\mathrm{d}x^1)_p, \ldots, (\mathrm{d}x^n)_p\}$ their differentials defined

$$(\mathrm{d}x^i)_p(X_p) \coloneqq (X_p)(x^i)$$

and

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\}$$

be the standard basis for $T_p(\mathbb{R}^n)$.

Proposition 1.2

 $\{(\mathrm{d}x^1)_p,\ldots,(\mathrm{d}x^n)_p\}$ is the basis for $T_p^*(\mathbb{R}^n)$ dual to the coordinate basis for $T_p(\mathbb{R}^n)$.

Proof. By definition,

$$(\mathrm{d}x^i)_p \left(\frac{\partial}{\partial x^j} \bigg|_p \right) = \frac{\partial x^i}{\partial x^j} \bigg|_p = \delta^i_j$$

If ω is a 1-form on $U \in \mathbb{R}^n$ then by proposition (1.2), at each point $p \in U$

$$\omega_p = \sum a_i(p)(dx^i)_p$$

Note the lower index on $a_i(p)$ as opposed to the upper index on $X_p = \sum a^i(p) \partial_{x_i}|_p$. If $x := x^1, y := x^2, z := x^3$, then dx, dy, dz.

Proposition 1.3: df in terms of coordinates

If $f: U \to \mathbb{R}$, then

$$\mathrm{d}f = \sum \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i \tag{23}$$

Proof.

$$(\mathrm{d}f)_p = \sum a_i(p)(\mathrm{d}x^i)_p$$

for some real numbers $a_i(p)$ depending on p. Thus

$$df\left(\frac{\partial}{\partial x^{j}}\right) = \sum_{i} a_{i} dx^{i} \left(\frac{\partial}{\partial x^{j}}\right)$$

$$= \sum_{i} a_{i} \delta_{j}^{i} = a_{j}$$
(24)

On the other hand, by the definition of the differential

$$\mathrm{d}f = \left(\frac{\partial}{\partial x^j}\right) = \frac{\partial f}{\partial x^j} \tag{25}$$

Therefore

$$a_j = \frac{\partial f}{\partial x^j} \tag{26}$$

and hence

$$(\mathrm{d}f)_p = \frac{\partial f}{\partial x^i} \Big|_p (\mathrm{d}x^i)_p$$

1.5.2 Differential k-forms

Definition 1.4: Differential k-forms

More generally, a differential form ω of degree k is a function that at each point assigns an alternating k-linear function on $T_p(\mathbb{R}^n)$, i.e. $\omega_p \in A^k(T_p(\mathbb{R}^n))$.

A basis for $A^k(T_p(\mathbb{R}^n))$ is

$$(\mathrm{d}x^I)_p := (\mathrm{d}x^{i_1})_p \wedge \dots \wedge (\mathrm{d}x^{i_k})_p \tag{27}$$

where $1 \le i_1 < \dots < i_k \le n$.

What is the nuance here?

Therefore, at each point $p \in U$, ω_p is a linear combination

$$\omega_p = \sum_I a_I(p) (\mathrm{d}x^I)_p$$

$$1 \le i_1 < \dots < i_k \le n$$
(28)

and a k-form ω on open U is a linear combination

$$\omega = \sum_{I} a_{I} \, \mathrm{d}x^{I} \tag{29}$$

with function coefficients $a_I: U \to \mathbb{R}$. We say that a k-form ω is C^{∞} on U if all of the coefficients a_I are C^{∞} functions on U. Denote $\Omega^k(U)$ the vector space of k-forms on U. A 0-form on U assigns to each point p an element of $A^0(T_p(\mathbb{R}^n)) := \mathbb{R}$; thus, a 0-form on U is a constant function. Note there are no nonzero differential forms of degree > n on U since if $\deg \mathrm{d} x^I > n$ then at least two of the component 1-forms of dx^I must be the same and therefore $dx^I = 0$.

П

Definition 1.5: Wedge product of forms

The wedge product of a k-form ω and ℓ -form τ is defined pointwise

$$(\omega \wedge \tau)_p := \omega_p \wedge \tau_p$$

$$\omega \wedge \tau = \sum_{I,J} (a_I b_J) \, \mathrm{d} x^I \wedge \mathrm{d} x^J$$
 (30)

where $I \cap J = \emptyset$.

Hence the wedge product is bilinear

$$\wedge \colon \Omega^k(U) \times \Omega^\ell \to \Omega^{k+\ell}(U) \tag{31}$$

The wedge product of forms is also anticommutative and associate (owing to the associativity and anticommutativity of the wedge product on multi-covectors) as therefore induces a graded algebra on $\Omega(U) := \bigoplus_{l} \Omega^{k}(U)$.

Example 1.3. In the case of

$$\wedge \colon \Omega^0(U) \times \Omega^\ell(U) \to \Omega^\ell$$

we have the pointwise multiplication of a C^∞ function and a C^∞ $\ell\text{-form}$

$$(f \wedge \omega)_p = f(p) \wedge \omega_p = f(p)\omega_p$$

Let x, y, z be the coordinates on \mathbb{R}^3 . Then, the 1-forms are

$$f\,\mathrm{d}x + g\,\mathrm{d}y + h\,\mathrm{d}z$$

the 2-forms are

$$f \, \mathrm{d}y \wedge \mathrm{d}z + g \, \mathrm{d}x \wedge \mathrm{d}z + h \, \mathrm{d}x \wedge \mathrm{d}y$$

and the 3-forms are

$$f dx \wedge dy \wedge dz$$

1.5.3 Differential Forms as Multilinear Functions on Vector Fields

If ω is a 1-form and X is a vector field then

$$\omega(X)|_{p} := \omega_{p}(X_{p})$$

$$\omega = \sum a_{i} dx^{i} \quad X = \sum b^{i} \frac{\partial}{\partial x^{j}}$$

$$\omega(X) = \left(\sum a_{i} dx^{i}\right) \left(\sum b^{j} \frac{\partial}{\partial x^{j}}\right)$$

$$= \sum a_{i} b^{i}$$
(32)

1.5.4 Exterior Derivative

Definition 1.6: Exterior Derivative

The exterior derivative of a function $f \in C^{\infty}(U)$ is defined to be its differential $\mathrm{d} f$

$$\mathrm{d}f = \sum \frac{\partial f}{\partial x^i} \, \mathrm{d}x^i$$

For $k \geq 1$, if $\omega = \sum_{I} a_{I} dx^{I}$ is a k-form, then

$$d\omega := \sum_{I} da_{I} \wedge dx^{I}$$

$$= \sum_{I} \left(\sum_{j} \frac{\partial a_{I}}{\partial x^{j}} dx^{j} \right) \wedge dx^{I}$$
(33)

Example 1.4. Let ω be the 1-form f dx + g dy on R^2 . Then

$$d\omega = df \wedge dx + dg \wedge dy$$

$$= \left(\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy\right) \wedge dx$$

$$+ \left(\frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy\right) \wedge dy$$

$$= \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$$
(36)

where we use that $dx \wedge dy = -dy \wedge dx$ and $dx \wedge dx = 0$.

Definition 1.7: Antiderivation

et $A = \bigoplus_k A^k$ be a graded algebra over a field K. An antiderivation of the graded algebra A is a k-linear map $D \colon A \to A$ such that for $a \in A^k, b \in A^\ell$

$$D(ab) = (Da)b + (-1)^k aDb (37)$$

If there is an integer m such that D sends A^k to A^{k+m} for all k, then the antiderivation is of degree m.

Proposition 1.4: Properties of exterior differentiation

1. exterior differentiation is an antiderivation of degree 1:

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau$$

2.
$$d^2 = 0$$

Proposition 1.5: Characterization of the exterior derivative

The properties of proposition (1.4) completely characterize exterior differentiation.

1.5.5 Closed and Exact Forms

A k-form ω is a closed form if $d\omega = 0$. ω is an exact form if there is a k-1-form τ such that $\omega = d\tau$. Since $d(d\tau) = 0$, every exact form is closed.

Example 1.5. A closed 1-form on the punctured plane Define ω on the manifold $\mathbb{R}^2 - \{\mathbf{0}\}$ by

$$\omega(x,y) = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

To show that ω is closed we take the exterior derivative using example (36):

$$d\omega = \left(\frac{y^2 - x^2}{(x^2 + y^2)^2} - \frac{y^2 - x^2}{(x^2 + y^2)^2}\right) dx \wedge dy$$

$$= 0$$
(38)

Definition 1.8: Differential Complex

A collection of vector spaces $\{V^0,V^1,\dots\}$ with linear maps $d_k\colon V^k\to V^{k+1}$ such that $d_{k+1}\circ d_k=0$ is called a differential complex or a cochain complex. For any open subset $U \subset \mathbb{R}^3$, the exterior derivative makes the vector space $\Omega^*(U)$ of C^{∞} forms on U into a cochain complex, called the $de\ Rham$ $complex \ of \ U$:

$$0 \to \Omega^0(U) \xrightarrow{\mathrm{d}} \Omega^1(U) \xrightarrow{\mathrm{d}} \Omega^2(U) \xrightarrow{\mathrm{d}} \cdots$$

The closed forms are the elements of the kernel of d and the exact forms are the elements of the image of d.

Applications to Vector Calculus 1.5.6

Recall the three operators grad, curl, div $(\nabla, \nabla \times, \nabla \cdot)$ on scalar fields and vector fields (i.e. scalar valued functions and vector valued functions) over \mathbb{R}^3 :

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix}$$

$$\nabla \times \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \times \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \\ -\left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) \\ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{bmatrix}$$
(39)
$$\nabla \cdot \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \cdot \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Note we can identity 1-forms with vector fields:

$$P\,\mathrm{d}x + Q\,\mathrm{d}y + R\,\mathrm{d}z \longleftrightarrow \begin{bmatrix} P\\Q\\R \end{bmatrix}$$

Similarly 2-forms on \mathbb{R}^3

$$P \, \mathrm{d}x \wedge \mathrm{d}y + Q \, \mathrm{d}z \wedge \mathrm{d}x + R \, \mathrm{d}x \wedge \mathrm{d}y \longleftrightarrow \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$

and 3-forms on U can be identified with functions U

$$f dx \wedge dy \wedge dz \longleftrightarrow f$$

In terms of these identifications the exterior derivative of 0-form f is the 1-form df or ∇f :

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz \longleftrightarrow \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \nabla f$$

the exterior derivative of a vector field $\begin{bmatrix} P & Q & R \end{bmatrix}^T$ (i.e. 1form) is the 2-form $\nabla \times \left[P \ Q \ R \right]^T$

$$d(P dx + Q dy + R dz) =$$

$$+ \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) dy \wedge dz$$

$$- \left(\frac{\partial R}{\partial x} - \frac{\partial P}{\partial z}\right) dz \wedge dx$$

$$+ \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx \wedge dy$$

$$\longleftrightarrow$$

$$\nabla \times \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$
(40)

and the exterior derivative of a 2-form is

$$d(P dx \wedge dy + Q dz \wedge dx + R dx \wedge dy) =$$

$$\left(\frac{\partial P}{\partial x} dx + \frac{\partial Q}{\partial y} dy + \frac{\partial R}{\partial z} dz\right) dx \wedge dy \wedge dz$$

$$\longleftrightarrow \nabla \cdot \begin{bmatrix} P \\ Q \\ R \end{bmatrix}$$
(41)

Thus, the exterior derivatives on 0-forms (functions) is the grad operator, on 1-forms is the curl operator, and on 2forms is the divergence operator.

$$\Omega^{0}(U) \xrightarrow{\mathrm{d}} \Omega^{1}(U) \xrightarrow{\mathrm{d}} \Omega^{2}(U) \xrightarrow{\mathrm{d}} \Omega^{3}(U)$$

$$\cong \downarrow \qquad \qquad \cong \downarrow \qquad \qquad \cong \downarrow$$

$$C^{\infty}(U) \xrightarrow{\nabla} \mathfrak{X}(U) \xrightarrow{\nabla \times} \mathfrak{X}(U) \xrightarrow{\nabla \cdot} C^{\infty}(U)$$

where $\mathfrak{X}(U)$ is the *Lie algebra* of C^{∞} vector fields on

Proposition 1.6: grad, curl, div properties

- 1. $\nabla \times \nabla f = 0$ 2. $\nabla \cdot \left(\nabla \times [P \ Q \ R]^T\right) = 0$
- 3. On \mathbb{R}^3 , a vector field **F** is the gradient of some scalar function iff $\nabla \times \mathbf{F} = 0$

Properties (1,2) express that $d^2 = 0$ Property (3) expresses the fact that a 1-form on \mathbb{R}^3 is exact iff it is closed; it need not be true on a region other than \mathbb{R}^3 . It turns out that whether proposition (3) is true depends on the topology of U. One measure of the failure of a closed k-form to be exact is the quotient vector space

$$H^{k}(U) := \frac{\{\text{closed } k\text{-forms on } U\}}{\{\text{exact } k\text{-forms on } U\}}$$
(42)

called the kth de Rham cohomoly of U. The generalization of proposition (3) to any differential on \mathbb{R}^n is called the Poincare lemma: for $k \geq 1$, every closed k-form on \mathbb{R}^n is exact. This is equivalent to the vanishing of the kth de Rham cohomology $H^k(\mathbb{R}^n)$ for $k \geq 1$.

1.5.7 Convention on Subscripts and Superscripts

Vector fields e_1, e_2, \ldots have subscripts and differential forms $\omega^1, \omega^2, \ldots$ have superscripts. Coordinate functions x^1, x^2, \ldots , being 0-forms, have superscripts. Their differentials $\mathrm{d} x^i$ should also. Coordinate vector fields $\frac{\partial}{\partial x^i}$ are considered to have subscripts because the index is in the denominator. Coefficient functions have subscripts or subscripts depending on whether they're coefficients functions for vector fields or forms. This allows for "conservation of indices": if $X = \sum a^i \partial_{x^i}$ and $\omega = \sum b_j \, \mathrm{d} x^j$ then

$$\omega(X) = \left(\sum b_j \, \mathrm{d} x^j\right) \left(\sum a^i \frac{\partial}{\partial x^i}\right) = \sum b_i a^i$$

1.6 Manifolds

Definition 1.9: Locally Euclidean

A topological space M is locally Euclidean of dimension n if for every $p \in M$ there exists a neighborhood U such that there is a homeomorphism¹ ϕ from U onto an opensubset of \mathbb{R}^n . The pair $(U, \phi \colon U \to \mathbb{R}^n)$ is called a chart, with U being the coordinate neighborhood and ϕ the coordinate system.

Definition 1.10: Topological Manifold

A topological manifold is a $Hausdorff^2$, second $countable^3$, locally Euclidean space.

1.6.1 Compatible Charts

Suppose $(U, \phi \colon U \to \mathbb{R}^n)$ and $(V, \psi \colon V \to \mathbb{R}^n)$ are two charts of a topological manifold; since $U \cap V$ is open and ϕ is a homeomorphism onto an open subset, the image $\phi(U \cap V)$ is also an open subset (similarly $\psi(U \cap V)$).

Definition 1.11: Charts

Two charts $(U, \phi \colon U \to \mathbb{R}^n)$ and $(V, \psi \colon V \to \mathbb{R}^n)$ of a topological manifold are C^{∞} -compatible if the two composed maps

$$\phi \circ \psi^{-1} \colon \psi(U \cap V) \to \phi(U \cap V)
\psi \circ \phi^{-1} \colon \phi(U \cap V) \to \psi(U \cap V)$$
(43)

See figure ??. These two maps $\phi \circ \psi^{-1}$ and $\psi \circ \phi^{-1}$ are called the *transition functions* between the charts;

$$\phi \circ \psi^{-1} \colon \mathbb{R}^n \to U \cap V \to \mathbb{R}^n$$

$$\psi \circ \phi^{-1} \colon \mathbb{R}^n \to U \cap V \to \mathbb{R}^n$$
(44)

Definition 1.12: Atlas

A C^{∞} atlas on a topological manifold M is a collection $\mathfrak{U} := \{(U_i, \phi_i)\}$ of pairwise C^{∞} -compatible charts that $cover\ M$, i.e. such that $M = \bigcup_i U_i$.

Example 1.6. A C^{∞} atlas on a circle The unit circle S^1 in the complex plane \mathbb{C} maybe described as

$$\{e^{\mathbf{i}} \in \mathbb{C} | 0 < t < 2\pi\}$$

Let U_1, U_2 be

$$U_1 := \{ e^{it} \in \mathbb{C} | -\pi < t < \pi \}$$

$$U_2 := \{ e^{it} \in \mathbb{C} | 0 < t < 2\pi \}$$
(45)

and define

$$\phi_1(e^{it}) = t - \pi < t < \pi$$

$$\phi_2(e^{it}) = t \quad 0 < t < 2\pi$$
(46)

See figure ??. Both ϕ_1, ϕ_2 are homemorphisms onto their respective images; thus, U_1, ϕ_1 and U_2, ϕ_2 are charts on S^1 . The intersection $U_1 \cap U_2$ consists of two disjoint connected components

$$A := \{ e^{it} \in \mathbb{C} | -\pi < t < 0 \}$$

$$B := \{ e^{it} \in \mathbb{C} | 0 < t < \pi \}$$

$$(47)$$

with

$$\phi_1(U_1 \cap U_2) = \phi_1(A \sqcup B) = \phi_1(A) \sqcup \phi_2(B) = (-\pi, 0) \sqcup (0, \pi)$$

$$\phi_2(U_1 \cap U_2) = \phi_1(B \sqcup A) = \phi_1(B) \sqcup \phi_2(A) = (0, \pi) \sqcup (\pi, 2\pi)$$
(48)

 $^{^1{\}rm A}$ homeomorphism is a continuous function between topological spaces that has a continuous inverse function.

²A Hausdorff space, separated space is a topological space where for any two distinct points there exists a neighbourhood of each which is disjoint from the neighbourhood of the other.

 $^{^3}$ A topological space T is second-countable if there exists some countable collection $\mathcal{U} = \{U_i\}_{i=1}^{\infty}$ of open subsets of T such that any open subset of T can be written as a union of elements of some subfamily of \mathcal{U} .

where \sqcup means disjoint union. The transition function

$$\left(\phi_2 \circ \phi_1^{-1}\right)(t) = \begin{cases} t + 2\pi & \text{for } t \in (-\pi, 0) \\ t & \text{for } t \in (0, \pi) \end{cases}$$

and similarly

$$\left(\phi_1 \circ \phi_2^{-1}\right)(t) = \begin{cases} t & \text{for } t \in (0, \pi) \\ t - 2\pi & \text{for } t \in (\pi, 2\pi) \end{cases}$$

Therefore, since the transition functions are C^{∞} , the charts are C^{∞} compatible and form an atlas on S^1 .

Although compatibility is reflexive and symmetric it is not transitive because we don't know anything about mutual intersections. On the otherhand

Lemma 1.1

Let $\{(U_i, \phi_i)\}$ be an atlas for a topological manifold. If two other charts (not in the atlas) $(V,\psi),(U,\phi)$ are both compatible with the atlas (i.e. with all charts in the atlas), then they are mutually compatible.

1.6.2 **Smooth Manifolds**

An atlas \mathfrak{M} on a topological manifold is said to be maximal if it is not strictly contained in another atlas.

Definition 1.13: Smooth Manifold

A smooth C^{∞} manifold is a topological manifold M together with a maximal atlas. The maximal atlas is called a differentiable structure on M. M is said to have dimension n if all of its connected components have dimension n. A 1-dimensional manifold is called a curve, a 2-dimensional manifold is called a surface, and an n-dimensional manifold is called an n-manifold.

In the context of manifolds, we denote the standard coordinates on \mathbb{R}^n by r^1, \ldots, r^n . If (U, ϕ) is a chart of a manifold, we let $x^i = r^i \circ \phi$ be the ith component of ϕ and write $\phi = (x^1, \dots, x^n)$. Thus, $x^i(p) := (r^i \circ \phi)(p)$ is a point in \mathbb{R}^n . The functions x^i are called the local coordinates on U. The sense here is that x^i tell you where you are on the manifold in a standardized way, given some intrinsic description of where you are on the manifold. Think of how lat/lon tell you where you are on the globe given some intrinsic identification of where you are on the globe. This understanding gives sense to the words chart and atlas. Abusing notation, sometimes (x^1, \ldots, x^n) (sans p) stands for both the coordinates on U or for a point in \mathbb{R}^n .

1.6.3 Examples of Smooth Manifolds

 $A \subset \mathbb{R}^n$ and a function $f \colon A \to \mathbb{R}^m$ the graph of f is

defined

$$\Gamma(f) = \{(x, f(x)) \in A \times \mathbb{R}^m\}$$

If U is an open subset \mathbb{R}^n and $f: U \to \mathbb{R}^n$ is C^{∞} , then the two maps

$$\phi \colon \Gamma(f) \to U \quad (x, f(x)) \mapsto x$$

 $(1, f) \colon \to \Gamma(f) \quad x \mapsto (x, f(x))$

constitute a homemorphism. Hence, $\Gamma(f)$ has an atlas with a single $(\Gamma(f), \phi)$ and is therefore a C^{∞} manifold.

Example 1.8. General Linear group Let $\mathbb{R}^{m \times n}$ be the vector space of all $m \times n$ matrices. Since $\mathbb{R}^{m \times n}$ is isomorphic to \mathbb{R}^{mn} , we give it the topology of \mathbb{R}^{mn} . The general linear group $GL(n, \mathbb{R})$ is defined

$$GL(n, \mathbb{R}) := \{ A \in \mathbb{R}^{n \times n} | \det(A) \neq 0 \}$$
$$= \det^{-1}(\mathbb{R} - \{0\})$$
(49)

Since the determinant function $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous, $\mathrm{GL}(n,\mathbb{R})$ is an open subset of $\mathbb{R}^{n\times n}\cong\mathbb{R}^{n^2}$ is therefore a manifold.

Example 1.9. Unit circle in the xy-plane Take S^1 as the unit circle in the real plane \mathbb{R}^2 defined by $x^2 + y^2 = 1$. We can cover S^1 by four open sets: the upper and lower semicircles U_1, U_2 and the left and right semicircles U_3, U_4 (see figure ??). On U_1, U_2 the coordinate function x is a homeomorphism onto the open interval (-1,1) on the x-axis. Thus, $\phi_i(x,y) := x$. Similarly, on U_3, U_4, y is a homeomorphism onto the open interval (-1,1) on the yaxis, and so $\phi_i(x,y) := y$. You can check that on $U_i \cap U_j$, the transition function $\phi_i \circ \phi_i^{-1}$ is C^{∞} . For example, on $U_1 \cap U_3$

$$(\phi_3 \circ \phi_1^{-1})(x) = \phi_3(x, \sqrt{1-x^2}) = \sqrt{1-x^2}$$

while on $U_2 \cap U_4$

$$(\phi_4 \circ \phi_2^{-1})(x) = \phi_4(x, -\sqrt{1-x^2}) = -\sqrt{1-x^2}$$

Thus, $\{(U_i, \phi_i)\}_{i=1}^4$ is a C^{∞} atlas on S^1 .

Proposition 1.7: An atlas for a product man-

If $\{(U_i, \phi_i)\}$ and $\{(V_i, \psi_i)\}$ are C^{∞} at lases for the manifolds M, N of dimensions, respectively, then the collection

$$\{(U_i \times V_j, (\phi_i, \phi_j)) : U_i \times V_j \to \mathbb{R}^m \times \mathbb{R}^n\}$$
 (50)

is a C^{∞} atlas on $M \times N$. Therefore $M \times N$ is a C^{∞} manifold of dimension m+n.

Example 1.7. Graph of a Smooth Function For a subset There *n*-dimensional torus $S^1 \times \cdots \times S^1$ is a manifold.

1.6.4 Smooths Maps on a Manifold

Definition 1.14: Smooth at a point to \mathbb{R}

Let M be a smooth manifold of dimension n. A function $f \colon M \to \mathbb{R}$ is said to be C^{∞} or smooth a point p in M if there is a chart (U, ϕ) containing p such that $f \circ \phi^{-1}$, a function defined on the open subset $\phi(U) \subset \mathbb{R}^n$, is C^{∞} at $\phi(p)$. To summarize f is C^{∞} if

$$f \circ \phi^{-1} \colon \phi(U) \to \mathbb{R}$$

See figure ??.

Definition 1.15: Pullback

Let $F: N \to M$ be a map and h a function M. The pullback of h by F, denoted F^*h , is the composite function $h \circ F$.

Thus, a function f on M is C^{∞} on a chart (U, ϕ) iff $(\phi^{-1})^* f \equiv f \circ \phi^{-1}$ is C^{∞} on $\phi(U)$.

Definition 1.16: Smooth at a point

Let M, N be manifolds of dimension m, n. A continuous map $F: N \to M$ is C^{∞} at a point $p \in N$ if there are charts $(V, \psi), (U, \phi)$ about $F(p) \in M$ and $p \in N$ such that $\psi \circ F \psi \phi^{-1}$ is C^{∞} at $\phi(p)$. To summarize F is C^{∞} if

$$\psi \circ F \circ \phi^{-1} \colon \phi(F^{-1}(V) \cap U) \subset \mathbb{R}^n \to \mathbb{R}^m$$

See figure ??.

Proposition 1.8: Composition of C^{∞} maps

If $F \colon N \to M$ and $G \colon M \to P$ are both C^{∞} maps of manifolds, then the composite $G \circ F \colon N \to P$ is C^{∞} .

Definition 1.17: Diffeomorphism

A diffeomorphism of manifolds is a bjiective C^{∞} map $F \colon N \to M$ whose inverse F^{-1} is also C^{∞} .

Proposition 1.9

If (U, ϕ) is a chart on a manifold M of dimension n, then the coordinate map $\phi \colon U \to \phi(U)$ is a diffeomorphism.

Definition 1.18: Lie group

A Lie group is a C^{∞} manifold G having a group structure such that the multiplication map

$$\mu \colon G \times G \to G$$

and the inverse map

$$\iota \colon G \to G \quad \iota(x) \coloneqq x^{-1}$$

are both C^{∞} . Similarly, a topological group is a topological space having a group structure such that multiplication and inverse maps are both continuous.

Example 1.10. Recall the definition of $GL(n, \mathbb{R})$. As an open subset of $\mathbb{R}^{n \times n}$, it is a manifold. Since the (i, j)-entry of the product of two matrices A, B in $GL(n, \mathbb{R})$

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

is a polynomial in the coordinates of A and B. Therefore matrix multiplication

$$\mu \colon \operatorname{GL}(n,\mathbb{R}) \times \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$$

is a C^{∞} map. Furthermore, by Cramer's rule

$$(A^{-1})_{ij} = \frac{(-1)^{i+j}}{\det A}((j,i) - \text{minor of } A)$$

which is a C^{∞} function of the a_{ij} s provided det $A \neq 0$. Therefore, $GL(n, \mathbb{R})$ is a Lie group.

1.6.5 Partial Derivatives

Let (U, ϕ) be a chart and f a C^{∞} function on the manifold. As a function into \mathbb{R}^n , ϕ has n components x^1, \ldots, x^n . Therefore, if r^1, \ldots, r^n are the standard coordinates on \mathbb{R}^n , then

$$x^i = r^i \circ \phi$$

What this means is ϕ maps to some point $(\phi^1(p), \ldots, \phi^n(p))$ in \mathbb{R}^n . The projection to the *i*th standard coordinate on \mathbb{R}^n is $r^i \circ \phi$, i.e. just pick out the component of $(\phi^1(p), \ldots, \phi^n(p))$. This direct path from U to the *i*th standard coordinate of \mathbb{R}^n is called a local coordinate for U (since it's only valid in a small neighborhood of p). Then the collection (x^1, \ldots, x^n) are the local coordinates on U (but don't forget that the coordinates map from $U \to \mathbb{R}^n$).

Definition 1.19: Partial derivative

For $p \in U$, we define the partial derivative $\frac{\partial f}{\partial x^i}$ of f with respect to x^i at p

$$\frac{\partial}{\partial x^{i}} \Big|_{p} f \coloneqq \frac{\partial f}{\partial x^{i}} \Big|_{p}
\coloneqq \frac{\partial (f \circ \phi^{-1})}{\partial r^{i}} \Big|_{\phi(p)}
\coloneqq \frac{\partial}{\partial r^{i}} \Big|_{\phi(p)} (f \circ \phi^{-1})$$
(51)

Thus, as functions on $\phi(U)$ (and in terms of the local coordinates on U)

$$\frac{\partial f}{\partial x^i} \circ \phi^{-1} = \frac{\partial f \circ \phi^{-1}}{\partial r^i} \tag{52}$$

and therefore the partial derivative $\partial f/\partial x^i$ is C^∞ on U because its pullback

$$(\phi^{-1})^* \frac{\partial f}{\partial x^i}$$

is C^{∞} .

Definition 1.20: Jacobian

Let $F: N \to M$ be a smooth map, and let $(U, \phi) \equiv (U, x^1, \dots, x^n)$ and $(V, \psi) \equiv (U, y^1, \dots, y^n)$ be charts on N, M respectively such that $F(U) \subset V$. Denote by

$$(F_i := y^i \circ F \equiv r^i \circ \psi \circ F) \colon U \to \mathbb{R}$$

the *i*th component of F in the chart V, ψ . Then the matrix $\left[\frac{\partial F^i}{\partial x^j}\right]$ is called the *Jacobian matrix of* F relative to the charts U, ϕ and (V, ψ) .

A diffeomorphism $F\colon U\to F(U)\subset\mathbb{R}^n$ may be thought of as coordinate system on U. We say that a C^∞ map $F\colon N\to M$ is locally invertible or a local diffeomorphism at $p\in N$ if p has a neighborhood U on which F is a diffeomorphism. Given n smooth functions F^1,\ldots,F^n in a neighborhood of p one would like to know whether they form a coordinate system. This is equivalent to whether $F=(F^1,\ldots,F^n)$ is a local diffeomorphism at p.

Proposition 1.10: Partial derivatives are dual

Suppose U, x^1, \ldots, x^n (with local coordinates x^1, \ldots, x^n) is a chart on a manifold. Then $\partial x^i/\partial x^j = \delta^i_i$.

Theorem 1.2: Inverse function theorem \mathbb{R}^n

Let $F: W \to \mathbb{R}^n$ be a C^{∞} map defined on an open subset $W \subset \mathbb{R}^n$. For any point $p \in W$, the map F is locally invertible iff the determinant of the Jacobian

$$\det \left[\frac{\partial F^i}{\partial r^j} \bigg|_p \right]$$

is not zero.

Proof. At a point $p \in U$, by the above definition of $\partial/\partial x^j\big|_p$

$$\frac{\partial x^{i}}{\partial x^{j}}\Big|_{p} = \frac{\partial x^{i} \circ \phi^{-1}}{\partial r^{j}}\Big|_{\phi(p)}$$

$$= \frac{\partial (r^{i} \circ \phi \circ \phi^{-1})}{\partial r^{j}}\Big|_{\phi(p)}$$

$$= \frac{\partial r^{i}}{\partial r^{j}}\Big|_{\phi(p)} = \delta^{i}_{j}$$
(53)

Theorem 1.3: Inverse function theorem for manifolds

Let $F \colon N \to M$ be a C^{∞} map between manifolds of the same dimension, and $p \in N$. Suppose for some charts $(U, \phi) = (U, x^1, \dots, x^n)$, $(V, \psi) = (U, y^1, \dots, y^n)$ about p and F(p) respectively and $F(U) \subset V$. Set $F^i = y^i \circ F$. Then F is locally invertible at p iff

$$\det \left[\frac{\partial F^i}{\partial x^j} \Big|_p \right]$$

is not zero.

Corollary 1.1

Let N be a manifold of dimension n. A set of smooth functions F^1, \ldots, F^n defined on a coordinate neighborhood U, x^1, \ldots, x^n of a point $p \in N$ forms a coordinate system about p iff the Jacobian determinant

$$\det\left[\frac{\partial F^i}{\partial x^j}\bigg|_p\right]$$

is not zero.

1.7 Tangent Space

The tangent space to a manifold at a point is the vector space of derivations (germs/directional derivatives) at the point. A smooth map of manifolds induces a linear map, called its differential, of tangent spaces at corresponding points. In local coordinates, the differential is represented by the Jacobian. In this sense, the differential of a map is the generalization of the derivative between Euclidean spaces.

A basic theme in manifold theory is linearization, according to which a manifold can be approximated by its tangent space and a smooth map can be approximated by the differential of that map. The differential further categorizes maps as either immersions or submersions (depending on whether the differential is injective or surjective).

The collection of tangent spaces to a manifold can be given the structure of a *vector bundle*; it is thus called the *tangent bundle*. Vector fields, which manifest themselves in the physical world as velocity, force, electricity, and magnetism, maybe viewed as sections of the tangent bundle.

1.7.1 The Tangent Space at a Point

Definition 1.21: Tangent vector

The germ of a C^{∞} function $p \in M$ to be an equivalence class of C^{∞} functions defined in a neighborhood of $p \in M$, with equivalence defined as agreement on a (possibly smaller) neighborhood of p. The set of germs of C^{∞} real-valued functions is denoted $C_p^{\infty}(M)$. Addition and multiplication of functions induces a ring structure on $C_p^{\infty}(M)$; with scalar multiplication by real numbers $C_p^{\infty}(M)$ becomes an algebra over \mathbb{R} . A derivation at a point in M is a linear map $D: C_p^{\infty}(M) \to \mathbb{R}$ such that

$$D(fg) = (Df)g + f(p)Dg$$

A tangent vector at a point p is a derivation at p.

Given a coordinate neighborhood $(U, \phi) = (U, x^1, \dots, x^n)$

and (r^1, \ldots, r^n) the standard coordinates on \mathbb{R}^n and

$$x^i = r^i \circ \phi \colon U \to \mathbb{R}$$

If f is a smooth function in a neighborhood of p

$$\left. \frac{\partial}{\partial x^i} \right|_p f = \left. \frac{\partial}{\partial r^i} \right|_{\phi(p)} (f \circ \phi^{-1})$$

The partial derivatives satisfy the derivation property and therefore qualify as tangent vectors.

1.7.2 The Differential of a Map

Let $F: N \to M$ be a C^{∞} map between two manifolds. At each point $p \in N$, the map F induces a linear map of tangent spaces, called its differential at p

$$F_*: T_pN \to T_{F(p)}M$$

defined as follows: if $X_p \in T_pN$, then $F_*(X_p)$ is the tangent vector in $T_{F(p)}M$ according to

$$(F_*(X_p))f = X_p(f \circ F)$$

for $f \in C^{\infty}_{F(p)}(M)$ a germ (or representative of the germ). Vectors pushforward through F.

Example 1.11. Differential of a map between Euclidean spaces Suppose $F: \mathbb{R}^n \to \mathbb{R}^m$ is smooth and $p \in \mathbb{R}^n$. Let x^1, \ldots, x^n be coordinates on \mathbb{R}^n and y^1, \ldots, y^m be coordinates on \mathbb{R}^m . Then

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\}$$

form a basis for the tangent space $T_n(\mathbb{R}^n)$ and

$$\left\{ \frac{\partial}{\partial y^1} \bigg|_{F(p)}, \dots, \frac{\partial}{\partial y^m} \bigg|_{F(p)} \right\}$$

form a basis for the tangent space $T_{F(p)}(\mathbb{R}^m)$. The linear map

$$F_*: T_p(\mathbb{R}^n) \to T_{F(p)}(\mathbb{R}^m)$$

(the differential of F) is described by a matrix $\begin{bmatrix} a_j^i \end{bmatrix}$ relative to these two bases:

$$F_*\left(\frac{\partial}{\partial x^j}\Big|_p\right) = \sum_k a_j^k \frac{\partial}{\partial y^k}\Big|_{F(p)}$$

Let $F^i = y^{\circ} F$ be the *i*th component of F; we can find a^i_j by evaluating the right-hand side and left-hand side on y^i

RHS =
$$\sum_{k} a_{j}^{k} \frac{\partial}{\partial y^{k}} \Big|_{F(p)} y^{i} = \sum_{k} a_{j}^{k} \delta_{k}^{i} = a_{j}^{i}$$

LHS = $F_{*} \left(\frac{\partial}{\partial x^{j}} \Big|_{p} \right) y^{i} = \frac{\partial}{\partial x^{j}} \Big|_{p} (y^{i} \circ F) = \frac{\partial F^{i}}{\partial x^{j}} \Big|_{p}$ (54)

relative to the bases is the Jacobian

$$\left[\frac{\partial F^i}{\partial x^j} \bigg|_p \right]$$

and hence the differential generalizes the derivative of a map between Euclidean spaces (because in this instance the Jacobian is the derivative and in abstract manifolds we use the same F_*). Note this means

 $F_* \iff \text{Jacobian} \iff \text{differential} \iff \text{pushforward}$

Example 1.12. Define a diffeomorphism F such that

$$F: (r,\theta) \mapsto (r\cos\theta, r\sin\theta)$$
 (55)

The Jacobian of F

$$J = \begin{bmatrix} \frac{\partial F_1}{\partial r} & \frac{\partial F_1}{\partial \theta} \\ \frac{\partial F_2}{\partial r} & \frac{\partial F_2}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$
 (56)

where $(r, \theta) \equiv (x_1, x_2)$ and

$$(x,y) \equiv (y_1,y_2) \equiv (F_1,F_2) \equiv (r\cos\theta,r\sin\theta)$$

Note that det J = r and so F is a diffeomorphism iff $r \neq 0$. Given a vector field

$$X_{p} = a(r,\theta)\partial_{r} + b(r,\theta)\partial_{\theta} := a(r,\theta)\frac{\partial}{\partial r} + b(r,\theta)\frac{\partial}{\partial \theta}$$
 (57)

we can compute the pushforward F_* wrt the ∂_x, ∂_y basis

$$F_*(X_p) = \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a\cos(\theta) - br\sin(\theta) \\ a\sin(\theta) + br\cos(\theta) \end{pmatrix}$$
(58)

Hence, explicitly

$$F_*(X_p) = (a\cos(\theta) - br\sin(\theta))\partial_x + (a\sin(\theta) + br\cos(\theta))\partial_y$$
(59)

Since J is invertible we can investigate which vector fields map to ∂_x

$$F_* X_p = \partial_x \iff X_p = F_*^{-1} \partial_x \tag{60}$$

Let $X_p = a\partial_r + b\partial_\theta$. Then

$$X_{p} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\frac{\sin(\theta)}{r} & \frac{\cos(\theta)}{r} \end{bmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos(\theta) \\ -\frac{\sin(\theta)}{r} \end{pmatrix}$$
 (61)

However we need to write r, θ in terms of x, y

$$F_*^{-1}\partial_x = \frac{x}{\sqrt{x^2 + y^2}}\partial_r + \frac{y}{x^2 + y^2}\partial_\theta \tag{62}$$

 F_*^{-1} is called the pullback F^* of the vector field ∂_x along F.

where we've used the fact that $F^i = y^i \circ F$. Thus, F_* Let $F: N \to M$ and $G: M \to P$ be smooth maps of manifolds, and $p \in N$. The differentials of F at p and G at F(p) are linear maps

$$T_p N \xrightarrow{F_{*,p}} T_{F(p)} M \xrightarrow{G_{*,F(p)}} T_{G(F(p))} P$$

Theorem 1.4: Chain rule

If $F: N \to M$ and $G: M \to P$ are smooth maps of and $p \in N$, then

$$(G \circ F)_{*,p} = G_{*,F(p)} \circ F_{*,p}$$

Proof. Let $X_p \in T_pN$ and let f be C^{∞} at $G(F(p)) \in P$. Then

$$((G \circ F)_* X_p) f = X_p (f \circ G \circ F)$$

and

$$((G_* \circ F_*)X_p)f = (G_*(F_*X_p))f$$

$$= (F_*X_p)(f \circ G)$$

$$= X_p(f \circ G \circ F)$$
(63)

Example 1.13. Chain rule in Calculus notation Suppose w = G(x, y, z) is a C^{∞} function $\mathbb{R}^3 \to \mathbb{R}$ and (x, y, z) =F(t) is a C^{∞} function $\mathbb{R} \to \mathbb{R}^3$. Under composition

$$w = (G \circ F)(t) = G(x(t), y(t), z(t))$$

becomes a C^{∞} function $\mathbb{R} \to \mathbb{R}$. The differentials

$$F_* = \begin{bmatrix} \frac{\mathrm{d}x}{\mathrm{d}t} \\ \frac{\mathrm{d}y}{\mathrm{d}t} \\ \frac{\mathrm{d}z}{\mathrm{d}t} \end{bmatrix}$$

$$G_* = \begin{bmatrix} \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{bmatrix}$$

$$(G \circ F)_* = \frac{\mathrm{d}w}{\mathrm{d}t}$$

$$(64)$$

and since composition of linear maps is matrix multiplication

$$(G \circ F)_{*} = G_{*} \circ F_{*}$$

$$= \left[\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \frac{\partial w}{\partial z}\right] \cdot \begin{bmatrix} \frac{\mathrm{d}x}{\mathrm{d}t} \\ \frac{\mathrm{d}y}{\mathrm{d}t} \\ \frac{\mathrm{d}z}{\mathrm{d}t} \end{bmatrix}$$

$$= \frac{\partial w}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial w}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t}$$

$$(65)$$

Proposition 1.11

If $F: N \to M$ is a diffeomorphism of manifolds then

$$F_*: T_pN \to T_{F(p)}M$$

is an isomorphism of vector spaces.

Recall r^i the standard coordinates on R^n , (U, ϕ) a chart about $p \in M$ (M dimension n), and $x^i = r^i \circ \phi$. Since ϕ is a diffeomorphism onto its image, the differential (pushforward) $\phi*$ is a vector space isomorphism and

Proposition 1.12

Let $(U, \phi) = (U, x^1, ..., x^n)$. Then

$$\phi_* \left(\frac{\partial}{\partial x^i} \bigg|_p \right) = \frac{\partial}{\partial r^i} \bigg|_{\phi(p)} \tag{66}$$

Proposition 1.13

Let $(U, \phi) = (U, x^1, \dots, x^n)$. Then T_pM has basis

$$\left\{ \frac{\partial}{\partial x^1} \bigg|_p, \dots, \frac{\partial}{\partial x^n} \bigg|_p \right\}$$

Proposition 1.14: Transition matrix for coordinate vectors

Suppose $(U, \phi) = (U, x^1, \dots, x^n)$ and $(V, \psi) = (U, y^1, \dots, y^n)$. Then

$$\frac{\partial}{\partial x^j} = \sum_{i=1}^n \frac{\partial y^i}{\partial x^j} \frac{\partial}{\partial y^i}$$

on $U \cap V$.

Given $F: N \to M$ and $G: M \to P$ are smooth maps of and $p \in N, F(p) \in M$. We will find a local expression for the differential

$$F_{*,p}\colon T_pN\to T_{F(p)}M$$

relative to the two charts. Using the local coordinate bases (induced by the charts) $F_* \equiv F_{*,p}$, is completely determined by a_i^i such that

$$F_* \left(\frac{\partial}{\partial x^j} \Big|_p \right) = \sum_{k=1}^m a_j^k \frac{\partial}{\partial y^k} \Big|_{F(p)}$$
 (67)

Applying y^i , we find that

$$a_{j}^{i} = \left(\sum_{k=1}^{m} a_{j}^{k} \frac{\partial}{\partial y^{k}} \Big|_{F(p)}\right) y^{i}$$

$$= F_{*} \left(\frac{\partial}{\partial x^{j}} \Big|_{p}\right) y^{i}$$

$$= \frac{\partial}{\partial x^{j}} \Big|_{p} (y^{i} \circ F)$$

$$= \frac{\partial F^{i}}{\partial x^{j}} \Big|_{p}$$
(68)

We restate as a proposition

Proposition 1.15

Given $F \colon N \to M$ and $G \colon M \to P$ are smooth maps of and $p \in N, F(p) \in M$. Relative to bases $\partial/\partial x^j\big|_p$ for T_pN and $\partial/\partial y^i\big|_{F(p)}$ for $T_{F(p)}M$ the differential $F_{*,p} \colon T_p \to T_{F(p)}M$ is represented by the matrix

$$\begin{bmatrix}
\frac{\partial F^{1}}{\partial x^{1}} \Big|_{p} & \cdots & \frac{\partial F^{1}}{\partial x^{n}} \Big|_{p} \\
\vdots & \ddots & \vdots \\
\frac{\partial F^{m}}{\partial x^{1}} \Big|_{p} & \cdots & \frac{\partial F^{m}}{\partial x^{n}} \Big|_{p}
\end{bmatrix} (69)$$

1.7.3 Curves in a Manifold

A smooth curve is a smooth map $c:(a,b) \to M$ with $0 \in (a,b)$ and we say that c is a curve starting at p if c(0) = p. The velocity vector $c'(t_0)$ at time t_0 is

$$c'(t_0) := c_* \left(\frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t_0} \right) \in T_{c(t_0)} M$$

Proposition 1.16: Velocity of a curve in local coordinates

Let $c:(a,b) \to M$ be a smooth curve and let U, x^1, \ldots, x^n be a coordinate chart about c(t). Write $c^i = x^i \circ c$ for the *i*th component of c in the chart. Then c'(t) is given by

$$c'(t) = \sum_{i=1}^{n} \dot{c}^{i}(t) \frac{\partial}{\partial x^{i}} \bigg|_{c(t)}$$

where \dot{c} is the scalar derivitive of the *i*th component. Thus, relative to the basis $\{\partial/\partial x^j|_p\}$ for $T_{c(t)}M$, the velocity c'(t) is represented by the column vector

$$\begin{bmatrix} \dot{c}^1(t) \\ \vdots \\ \dot{c}^n(t) \end{bmatrix}$$

Every smooth curve c at p in a manifold M gives rise to a tangent vector c'(0) in T_pM . Conversely, one can show that every tangent vector $X_p \in T_pM$ is the velocity vector of some curve at p

Proposition 1.17: Existence of a curve with a given initial vector

For any point p in a manifold M and any tangent vector $X_p \in T_pM$, there are $\varepsilon > 0$ and a smooth curve $(-\varepsilon, \varepsilon) \to M$ such that c(0) = p and $c'(0) = X_p$.

Figure 1: Existence of a curve through a point with a given initial vector.

Proof. Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart centered at p i.e. $\phi(p) = \mathbf{0} \in \mathbb{R}^n$. Suppose $X_p = \sum a^i \partial/\partial x^i\big|_p$ and let r^1, \dots, r^n be the standard coordinates on \mathbb{R}^n , with $x^i = r^i \circ \phi$. To find a curve c at p with $c'(0) = X_p$, start with a curve $\alpha \in \mathbb{R}^n$ with $\alpha(0) = \mathbf{0}$ and $\alpha'(0) = \sum a^i \partial/\partial r^i\big|_{\mathbf{0}}$. We then map α to M via ϕ^{-1} (see figure 1). Let

$$\alpha(t) := (a^1 t, \dots, a^n t) \quad t \in (-\varepsilon, \varepsilon)$$

with ε small enough such that $\alpha(t) \in \phi(U)$. Then define $c = \phi^{-1} \circ \alpha \colon (-\varepsilon, \varepsilon) \to M$. Then $c(0) = \phi^{-1}(\alpha(0)) = \phi^{-1}(0) = p$ and

$$c'(0) = (\phi^{-1})_* \alpha_* \left(\frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \right)$$

$$= (\phi^{-1})_* \left(\sum_i a^i \frac{\partial}{\partial r^i} \Big|_{\mathbf{0}} \right)$$

$$= \sum_i a^i \frac{\partial}{\partial x^i} \Big|_p = X_p$$

$$(70)$$

This gives us a geometrical perspective on tangent vectors as directional derivatives

Proposition 1.18: Directional Derivatives

Suppose X_p is a tangent vector at a point $p \in M$ and $f \in C_p^{\infty}(M)$. If $c \in (-\varepsilon, \varepsilon) \to M$ is a smooth curve starting at p with $c'(0) = X_p$, then

$$X_p f = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_0 (f \circ c)$$

Proposition 1.19

Let $F: N \to M$ be a smooth map of manifolds, $p \in N, X_p \in T_pN$. If c is a smooth curve starting at $p \in N$ with velocity X_p at p,

$$F_{*,p}(X_p) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{0} (F \circ c)(t) \tag{71}$$

Example 1.14. Differential of left multiplication If $g \in \operatorname{GL}(n,\mathbb{R})$, let $\ell_g \colon \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$ be left multiplication by g i.e. $\ell_g(B) = gB$. Since $\operatorname{GL}(n,\mathbb{R}) \subset \mathbb{R}^{n \times n}$ the tangent space $T_g(\operatorname{GL}(n,\mathbb{R}))$ can be identified with $\mathbb{R}^{n \times n}$. We show that with this identification the differential at the identity

$$(\ell_g)_{*,\iota} \colon T_{\iota}(\mathrm{GL}(n,\mathbb{R})) \to T_g(\mathrm{GL}(n,\mathbb{R}))$$

is also left multiplication by g.

Let $X \in T_{\iota}(\mathrm{GL}(n,\mathbb{R})) = \mathbb{R}^{n \times n}$. To compute $(\ell_g)_{*,\iota}(X)$, choose a curve $c(t) \in \mathrm{GL}(n,\mathbb{R})$ with $c(0) = \iota$ and c'(0) = X. Then $\ell_g(c(t)) = g \cdot c(t)$ is simply matrix multiplication. Then

$$(\ell_g)_{*,\iota}(X) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \ell_g(c(t))$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} gc(t)$$

$$= gc'(0) = gX$$

$$(72)$$

1.8 Tangent Bundle

A smooth vector bundle over a smooth manifold M is a smooth varying family of vector spaces, parameterized by M, that locally looks like a product (of the manifold (base space) and the tangent spaces (fibers)). The collection of tangent spaces to a manifold has the structure of a vector bundle, called the $tangent\ bundle$. A smooth map between

manifolds induces, via its differential at each point, a bundle map of the corresponding tangent bundles. The tangent bundle is canonically associated to a manifold, hence invariants of the tangent bundle give rise to invariants of the manifold. For example Chern-Weil theory of characteristic classes uses differential geometry to construct invariants for vector bundles; applied to the tangent bundle, characteristic classes lead to numerical diffeomorphism invariants of a manifold called *characteristic numbers* (which generalize the Euler characteristic). A section of a vector bundle is a map that maps from each point of M into the *fiber* of the bundle over the point; both vector fields and differential forms on a manifold are sections of vector bundles.

1.8.1 Topology of the Tangent Bundle

Let M be a smooth manifold. Recall that at each point $p \in M$, the tangent space T_pM is the vector space of all point-derivations of $C_p^{\infty}(M)$ (itself the algebra of germs of C^{∞} functions at p). The tangent bundle of M is the union of all the tangent spaces of M

$$TM \coloneqq \bigsqcup_{p \in M} T_p M$$

There is a natural map (in the sense that it does not depend on choice of atlas or local coordinates) $pi: TM \to M$ given by $\pi(v) = p$ if $v \in T_pM$. As a matter of notation, we sometimes write a tangent vector $v \in T_pM$ as a pair (p,v).

As defined, TM is a set, with no topology or manifold structure. We make it into a smooth manifold and show that it is a C^{∞} vector bundle over M. The first step is the topology. If $(U, \phi) = (U, x^1, \dots, x^n)$ is a coordinate chart on M, let

$$TU := \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} T_p M$$

where we've the fact that the algebra $C_p^\infty(U)$ of germs of C^{∞} functions in U at p is the same as $C_p^{\infty}(M)$ (since germ equivalence classes are determined by agreement in a neighborhood of p) and therefore $T_pU = T_pM$. At a point $p \in U$ a tangent vector $v \in T_pM$

$$v = \sum_{i=1}^{n} c^{i} \frac{\partial}{\partial x^{i}} \bigg|_{p}$$

In this expression, $c^i \equiv c^i(v)$ depend on v and so therefore end up being functions on TU. Define $\phi \colon TU \to \mathbb{R}$ $\phi(U) \times \mathbb{R}^n$ by

$$v \mapsto (x^1(p), \dots, x^n(p), c^1(v), \dots, c^n(v))$$
 (73)
 \iff (74)

$$\iff$$
 (74)

$$\tilde{\phi}(v) = (\bar{x}^1(v), \dots, \bar{x}^n(v), c^1(v), \dots, c^n(v))$$
 (75)

Then $\bar{\phi}$ has an inverse (for a point (x^1, \dots, x^n)

$$\tilde{\phi}^{-1}(x^1(p), \dots, x^n(p), c^1(v), \dots, c^n(v)) = \sum_i c^i \frac{\partial}{\partial x^i} \Big|_{p}$$

is therefore a bijection. Therefore we use topology of $\phi(U) \times \mathbb{R}^n$ to induce a topology on TU: a set $A \subset TU$ is open iff $\phi(A)$ is open in $\phi(U) \times \mathbb{R}^n$ (where $\phi(U) \times \mathbb{R}^n$ has the standard topology as an open subset of \mathbb{R}^{2n}). With this identification TU becomes homeomorphic to $\phi(U) \times \mathbb{R}^n$.

Manifold Structure on the Tangent Bun-1.8.2

Next we show that if $\{(U_i, \phi_i)\}$ is a C^{∞} atlas for M, then $\{(TU_i, \tilde{\phi}_i)\}$ is a C^{∞} atlas for the tangent bundle TM, where $\tilde{\phi}_i$ is the map on TU_i induced by ϕ_i as in (75). It's immediately clear that $TM = \bigcup_i TU_i$; remains to check that on $TU_i \cap TU_i$, $\tilde{\phi}_i$, $\tilde{\phi}_i$ are C^{∞} compatible.

Recall that if $(U, x^1, \dots, x^n), (V, y^1, \dots, y^n)$ are two charts on M, then for any $p \in U \cap V$ there are two bases and so any vector $v \in T_pM$ has two representations

$$v = \sum_j a^j \frac{\partial}{\partial x^j} \bigg|_p = \sum_i b^i \frac{\partial}{\partial y^i} \bigg|_p$$

Applying v to either of x^k, y^k we get that

$$a^{k} = \sum_{i} b^{i} \frac{\partial x^{k}}{\partial y^{i}}$$

$$b^{k} = \sum_{j} a^{j} \frac{\partial y^{k}}{\partial x^{j}}$$
(76)

Returning to the atlas $\{(U_i, \phi_i)\}$ $(x^1, \ldots, x^n), \, \phi_\beta = (y^1, \ldots, y^n).$ Then

$$\tilde{\phi}_{\beta} \circ \tilde{\phi}_{\alpha}^{-1} \colon \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n} \to \phi_{\beta}(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n}$$

is given by (with $\phi_{\alpha}(p) = (x^1(p), \dots, x^n(p))$)

$$(\phi_{\alpha}(p), a^{1}(v), \dots, a^{n}(v)) \mapsto \left(p, \sum_{j} a^{j} \frac{\partial}{\partial x^{j}} \Big|_{p}\right)$$

$$\mapsto ((\phi_{\beta} \circ \phi_{\alpha}^{-1})(\phi_{\alpha}(p)), b^{1}, \dots, b^{n})$$
(77)

where by (76) and the Jacobian matrix of a transition map

$$b^{i} = \sum_{j} a^{j} \frac{\partial y^{i}}{\partial x^{j}} \Big|_{p}$$

$$= \sum_{j} a^{j} \frac{\partial (\phi_{\beta} \circ \phi_{\alpha}^{-1})}{\partial r^{j}} \Big|_{\phi_{\alpha}(p)}$$
(78)

By definition $\phi_{\beta}\circ\phi_{\alpha}^{-1}$ is C^{∞} and therefore $\tilde{\phi}_{\beta}\circ\tilde{\phi}_{\alpha}^{-1}$ is C^{∞} and thefore TM is a C^{∞} manifold, with $\left\{ (TU_{\alpha}, \tilde{\phi}_{\alpha}) \right\}$ as a C^{∞} atlas.

1.8.3 Vector Bundles

On the tangent bundle TM of a smooth manifold M, the natural projection map $\pi \colon TM \to M$

$$\pi(p,v) = p$$

makes TM into a C^{∞} vector bundle over M which we now define. Given any map $\pi \colon E \to M$, where E is called the total space and M is called the base space, we call the inverse image $\pi^{-1}(p) := \pi^{-1}(\{p\})$ of a point $p \in M$ the fiber at p. The fiber at p is often written E_p . For any two maps

$$\pi \colon E \to M$$

$$\pi' \colon E' \to M$$
(79)

with the same target space M, a map $\phi \colon E \to E'$ is said to be *fiber-preserving* if $\phi(E_p) \subset E'_p$ for all $p \in M$.

Example 1.15. Fiber-preserving maps Given two maps π, π' , the map ϕ is fiber-preserving iff the diagram

commutes.

1.8.4 Smooth Sections

A section of a vector bundle $\pi: E \to M$ is a map $s: M \to E$ such that $\pi \circ s = \mathbf{1}_M$. This just means that s maps p into the fiber E_p above p (see figure ??).

Definition 1.22: Vector field

A vector field X on a manifold M is a function that assigns a tangent vector $X_p \in T_pM$ to each point $p \in M$. In terms of the tangent bundle, a vector field on M is simply a section of the tangent bundle $\pi: TM \to M$ and the vector field is smooth if it is a smooth as a map from M to TM.

Example 1.16. The formula

$$X_{(x,y)} = \frac{1}{\sqrt{x^2 + y^2}} \left(-y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} \right) = \frac{1}{\sqrt{x^2 + y^2}} \begin{bmatrix} -y \\ x \end{bmatrix}$$

See figure ??.

1.8.5 Smooth Frames

A frame for a vector bundle $\pi: E \to M$ over an open set U is a collection of sections s_1, \ldots, s_r of E over U such that at each point $p \in U$, the elements $s_1(p), dots, s_r(p)$ form a basis for the fiber $E_p := \pi^{-1}(p)$. A frame for the tangent bundle $TM \to M$ over an open set U is simply called a frame on U.

Example 1.17. The collection of vector fields $\partial/\partial x$, $\partial/\partial y$, $\partial/\partial z$ is a smooth frame on \mathbb{R}^3 .

Example 1.18. Let M be a manifold and e_1, \ldots, e_r be the standard basis for \mathbb{R}^n . Define $\bar{e}_i \colon M \to M \times \mathbb{R}^r$ by $\bar{e}_i(p) := (p, e_i)$. Then $\bar{e}_1, \ldots, \bar{e}_r$ is a C^{∞} frame for the product bundle $M \times \mathbb{R}^r \to M$.

1.9 Bump Functions and Partitions of Unity

A partition of unity on a manifold is a collection of non-negative functions that sum to 1.

Usually one demands that the partition of unity should be subordinate to an open cover $\{U_{\alpha}\}_{{\alpha}\in A}$ i.e. the partition $\{\rho_{\alpha}\}_{{\alpha}\in A}$ is indexed by the same set A and ρ_{α} vanishes outside of U_{α} .

The existence of a C^{∞} partition of unity is one of the most important technical tools in the theory of C^{∞} manifolds. It is the single feature that makes the behavior of C^{∞} manifolds so different from that of real-analytic or complex manifolds. A partition of unity is used two ways:

- 1. to decompose a global object on a manifold into a locally finite sum of local objects on the open sets U_{α} of an open cover.
- 2. to patch together local objects on the open sets U_{α} into a global object on the manifold.

1.9.1 C^{∞} Bump Functions

The support of a real-valued function f on a manifold M is defined to be the closure in M of the subset on which $f \neq 0$

$$\operatorname{supp} f = \operatorname{closure} \{ g \in M | f(g) \neq 0 \} \tag{80}$$

Let q be a point in M, and U a neighborhood of q. A bump function at q supported in U we mean any continuous nonnegative function ρ on M that is 1 in a neighborhood of q with supp $\rho \subset U$. See figure ??

Define

$$f(t) = \begin{cases} e^{-1/t} & \text{for } t > 0\\ 0 & \text{for } t \le 0 \end{cases}$$
 (81)

$$g(t) = \frac{f(t)}{f(t) + f(1-t)}$$
 (82)

$$h(x) = g\left(\frac{x - a^2}{b^2 - a^2}\right) \tag{83}$$

$$k(x) = h(x^2) (84)$$

$$\rho(x) = 1 - k(x) \tag{85}$$

See figure 2. It is easy to extend the construction $\rho(x)$ to a bump function from \mathbb{R} to R^n : to get a C^{∞} bump function at $\mathbf{0} \in \mathbb{R}^n$ that is 1 on the closed ball $\bar{B}(\mathbf{0}, a)$ and has

Figure 2: A bump function at 0 on \mathbb{R}

support in the closed ball $\bar{B}(\mathbf{0}, b)$

$$\sigma(x) := \rho(|x|) = 1 - g\left(|x| \frac{r^2 - a^2}{b^2 - a^2}\right) \tag{86}$$

In general, a C^{∞} on an open subset U of a manifold cannot be extended to a C^{∞} function on M; an example is the function $\sec(x)$ on the open interval $(-\pi/2,\pi/2)\subset\mathbb{R}$. However, if we require that the global function on M agree with the given function only on some neighborhood of a point in U, then a C^{∞} extension is possible.

Proposition 1.20: C^{∞} extension of a function

Suppose f is a C^{∞} function defined on a neighborhood U of a point p in a manifold M. Then there is a C^{∞} function \tilde{f} on M that agrees with f in some possibly smaller neighborhood of p.

Proof. Choose a C^{∞} bump function $\rho: M \to \mathbb{R}$ supported in U that is identically 1 in a neighborhood V of p. Define

$$\tilde{f}(q) = \begin{cases} \rho(q)f(q) & \text{for } q \in U \\ 0 & \text{for } q \notin U \end{cases}$$

As the product of two C^{∞} functions on U, \tilde{f} is C^{∞} on U. If $q \notin U$, then $q \notin \operatorname{supp} \rho$, and so there is an open set containing q on which \tilde{f} is 0, since $\operatorname{supp} \rho$ is closed. Therefore, \tilde{f} is also C^{∞} at every point $q \notin U$. Finally, since $\rho = 1$ on V, the function \tilde{f} agrees with f on V. \square

1.9.2 Partitions of Unity

If $\{U_i\}_{i\in I}$ is a finite open cover of M, a C^{∞} partition of unity subordinate to $\{U_i\}_{i\in I}$ is a collection of nonnegative C^{∞} functions $\{\rho_i \colon M \to \mathbb{R}\}_{i\in I}$ such that supp $\rho_i \subset U_i$ and

$$\sum_{i} \rho_i = 1$$

When the index set I is an infinite set, for the sum to make sense, we impose and additional local finiteness condition: a collection $\{A_i\}$ of subsets of a topological space S is said to be locally finite if every point $q \in S$ has a neighborhood that meets only finitely many of the sets A_i . In particular, every $q \in S$ is contained in only finitely many of the A_i .

Example 1.19. An open cover that is not locally finite Let $U_{r,n}$ be the open interval $\left(r - \frac{1}{n}, r + \frac{1}{n}\right)$. The open cover $\{U_{r,n} | r \in \mathbb{Q}, n \in \mathbb{Z}^+\}$ of \mathbb{R} is not locally finite.

Definition 1.23: C^{∞} partition of unity

A C^{∞} partition of unity on a manifold is a collection of nonnegative C^{∞} functions $\{\rho_i \colon M \to \mathbb{R}\}_{i \in I}$ such that

- 1. the collection of supports is locally finite
- 2. $\sum \rho_i = 1$

Suppose $\{f_i\}$ is a collection of C^∞ functions on a manifold M such that the collection of its supports is locally finite. Then every point $q \in M$ has a neighborhood W_q that intersects supp f_i for only finitely many i. Thus, on W_q the sum $\sum_i f_i$ is a finite sum. This shows that $f = \sum_i f_i$ is well defined and C^∞ on the manifold M. Such a sum is called a locally finite sum.

Theorem 1.5: Existence of a C^{∞} partition of unity

Let $\{U_i\}$ be an open cover of a manifold M. Then

- 1. there is a C^{∞} partition of unity $\{\phi_k\}_{k=1}^{\infty}$ having compact support such that for each k, supp $\phi_k \subset U_i$ for some i.
- 2. if we do not require compact support, then there is a C^{∞} partition of unity $\{\rho_i\}$ subordinate to $\{U_i\}$.

1.10 Vector Fields

A vector field X on a manifold M is the assignment of a tangent vector $X_p \in T_pM$ to each point $p \in M$ (a section of the tangent bundle TM of M). Every smooth vector field may be viewed locally as the velocity vector field of a fluid flow; the path traced out by a point under this flow is called an *integral curve* of the vector field. Integral curves are curves whose velocity vector field is the restriction of the manifold's vector field, to the curve; finding an equation of an integral curve is equivalent to solving a system of first-order ODEs. The set $\mathfrak{X}(M)$ of all C^{∞} vector fields on a manifold M has the structure of a vector space; the $Lie\ Bracket\ [\ ,\]$ makes it into a $Lie\ algebra$.

1.10.1 Integral Curves

Definition 1.24: Integral Curves

Let X be a C^{∞} vector field on a manifold M, and $p \in M$. An integral curve $c: (a,b) \to M$ such that $c'(t) = X_{c(t)}$ for all $t \in (a,b)$. To show the dependence of an integral curve on its initial point p, we write $c_t(p)$.

Example 1.20. Recall the vector field $X_{(x,y)} = \langle -y, x \rangle$ on \mathbb{R}^2 . The condition for c(t) = (x(t), y(t)) to be an integral curve is $c'(t) = X_{c(t)}$ or

$$\begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix} = \begin{bmatrix} -y(t) \\ x(t) \end{bmatrix}$$

Hence we need to solve the system of first-order ODEs

$$\begin{aligned}
\dot{x} &= -y \\
\dot{y} &= x
\end{aligned} \tag{87}$$

with initial condition (x(0), y(0)) = (1, 0). Making substitutions we get

$$\ddot{x} = -x$$

which has the solution

$$x = A\cos t + B\sin t$$

and therefore

$$y = -\dot{x} = A\sin t - B\cos t$$

The initial condition forces A=1, B=0 and hence $c(t)=(\cos t,\sin t)$, which parameterizes the unit circle. More generally, if the initial point of the integral curve, corresponding to t=0, is $p=(x_0,y_0)$, then

$$A = x_0$$
 $B = -y_0$

and

$$x = x_0 \cos t - y_0 \sin t$$

$$y = x_0 \sin t + y_0 \cos t$$
(88)

which can be written in matrix notation

$$c(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$

$$= \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

$$= \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} p$$
(89)

This show that the integral curve of X starting at point p can be obtained by rotating point p counterclockwise about the origin through an angle t. Note that

$$c_s(c_t(p)) = c_{s+t}(p)$$

and also that for each $t \in \mathbb{R}$, $c_t \colon \mathbb{R}^2 \to \mathbb{R}^2$ is a diffeomorphism with inverse c_{-t} . Let operatornameDiff(M) be the group of diffeomorphisms of a manifold M to itself, with the group operation being composition. A homomorphism $c \colon \mathbb{R} \to \mathrm{Diff}(M)$ is called a one-parameter group of diffeomorphisms of M. In this example the integral curves of the vector field $X_{(x,y)} = \langle -y, x \rangle$ on \mathbb{R}^2 give rise to a one-parameter group of diffeomorphisms of R^2 .

1.10.2 Local Flows

In general, if X is a smooth vector field on a manifold M, to find an integral curve c(t) of X starting at p, we first choose a coordinate chart $(U, \phi) = (U, x^1, \dots, x^n)$ about p. In terms of the local coordinates

$$X_{c(t)} = \sum_{i} a^{i}(c(t)) \frac{\partial}{\partial x^{i}} \Big|_{c(t)}$$

or

$$c'(t) = \sum \dot{c}^i(t) \frac{\partial}{\partial x^i} \bigg|_{c(t)}$$

where $c^{i}(t) = x^{i} \circ c(t)$ is the *i*th component of c(t) in the chart (U, ϕ) . The condition $c'(t) = X_{c(t)}$ is equivalent to

$$\dot{c}^i(t) = a^i(c(t))$$

This is a system of ODEs; by *Picard–Lindelöf theorem* such a system has a unique solution in the following sense

Theorem 1.6

Let V be an open subset of \mathbb{R}^n , $p_0 \in V$, and $f: V \to \mathbb{R}^n$ a C^{∞} function. Then the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y) \quad y(0) = p_0$$

has a unique C^{∞} solution $y: (a(p_0), b(p_0)) \to V$.

Suppose s,t in the interval $(-\varepsilon,\varepsilon)$ are such that both $F_t(F_s(q))$ and $F_{t+s}(q)$ are defined. Then both $F_t(F_s(q))$ and $F_{t+s}(q)$, as functions of t, are integral curves of X with initial point $F_s(q)$. By uniqueness of the integral curve starting at a point

$$F_t(F_s(q)) = F_{t+s}(q)$$

The map F is called a local flow generated by the vector field X. For each $q \in U$, the function $F_t(q)$ of t is called a flow line of the local flow. See figure ??. Each flow line is an integral curve of X; if a local flow F defined on $\mathbb{R} \times M$, then it is called a global flow (every smooth vector field has a local flow, but not necessarily a global flow). A vector field having a global flow is called a complete vector field. If F is a global flow, then for every $t \in \mathbb{R}$

$$F_t \circ F_{-t} = F_{-t} \circ F_t = F_0 = \mathbf{1}_M$$

so $F_t \colon M \to M$ is a diffeomorphism. Thus, a global flow on M gives rise to a one-parameter group of diffeomorphisms on M.

Definition 1.25: Local Flow

A local flow about a point p in an open set U of a manifold is a C^{∞} function

$$F: (-\varepsilon, \varepsilon) \times W \to U$$

where $\varepsilon > 0$ and W is a neighborhood of p and $W \subset U$, such that writing $F_t(q) := F(t,q)$, we have

- 1. $F_0(q) = q$ for all $q \in W$
- 2. $F_t(F_s(q)) = F_{t+s}(q)$ whenever both sides are defined

If $F_t(q)$ is a local flow of the vector field X on U, then

$$F(0,q) = q$$

$$\frac{\partial F}{\partial t}\Big|_{0,q} = X_{F(0,q)}$$

$$= X_{q}$$
(90)

Thus, one can recover the vector field from its flow.

Example 1.21. The function $F: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$

$$F\left(t, \begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

is the global flow on \mathbb{R}^2 generated by the vector field

$$X_{(x,y)} = \frac{\partial F(t,(x,y))}{\partial t} \Big|_{t=0}$$

$$= \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \Big|_{t=0}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -y \\ x \end{bmatrix}$$

$$= -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$$
(91)

1.10.3 The Lie Bracket

Suppose X,Y are smooth vector fields on an open subset U of a manifold M. We view X,Y as derivations on the set of C^{∞} functions. For a C^{∞} function f on U, the function Yf is C^{∞} on U, and the function (XY)f := X(Yf) is also C^{∞} on U. Moreover, because X,Y are both \mathbb{R} -linear maps from $C^{\infty}(U)$ to $C^{\infty}(U)$, the map $XY:C^{\infty}(U)\to C^{\infty}(U)$ is \mathbb{R} -linear. However, XY does not satisfy the derivation property: if $f,g\in C^{\infty}(U)$, then

$$XY(fg) = X ((Yf)g + fYg)$$

= $(XYf)g + (Yf)(Xg) + (Xf)(Yg) + f(XYg)$
(92)

Looking more closely we see that the two extra terms (Yf)(Xg) and (Xf)(Yg) that make XY not a derivation, are symmetric in X, Y. Thus is we compute YX(fg) and

subtract it from XY(fg), the extra terms will disappear, and XY - YX will be a derivation of $C^{\infty}(U)$.

Definition 1.26: Lie Bracket

Given two smooth vector fields X, Y on U and with $p \in U$, we define their $Lie\ Bracket\ [X,Y]$ at p

$$[X,Y]_n f = (X_p Y - Y_p X) f$$
 (93)

for any germ f of a C^{∞} function at p.

By the same calculation as above, but now evaluated at p, it is easy to check that $[X,Y]_p$ is a derivation of $C_p^{\infty}(U)$ and is therefore a tangent vector at p. As p varies over U, [X,Y] becomes a vector field on U.

Proposition 1.21

f X, Y are smooth vector fields on M, then the vector field [X, Y] is also smooth on M.

From this, we see that the Lie bracket provides a product operation on the vector space $\mathfrak{X}(M)$ of all smooth vector fields on M. Clearly

$$[Y, X] = -[X, Y]$$

Example 1.22. Jacobi identity The *Jacobi identity* holds for the Lie bracket

$$\sum_{\text{cyclic}} [X, [Y, Z]] = 0$$

where

$$\sum_{\text{cvclic}} \left[X, [Y, Z] \right] = \left[X, [Y, Z] \right] + \left[Y, [Z, X] \right] + \left[Z, [X, Y] \right]$$

Definition 1.27: Lie Algebra

Let K be a field. A *Lie algebra* over K is a vector space V over K together with a product

$$[\;,\;] \to V \times V \to V$$

called the bracket, satisfying the following properties: for all $a,b \in K$ and $X,Y,Z \in V$

1. bilinearity:

$$[aX + bY, Z] = a[X, Z] + b[Y, Z]$$

$$[Z, aX + bY] = a[Z, X] + b[Z, Y]$$
(94)

2. anticommutativity:

$$[Y, X] = -[X, Y]$$

3. Jacobi identity:

$$\sum_{\text{cyclic}} [X, [Y, Z]] = 0$$

Example 1.23. Abelian Lie algebra On any vector space V, define [X, Y] = 0 for all $X, Y \in V$. With this bracket, V becomes a Lie algebra, called an *abelian Lie algebra*.

An abelian Lie algebra is trivially associative, but in general the bracket of a Lie algebra need not be associative. So despite its name, a Lie algebra is in general not an algebra.

Example 1.24. If M is a manifold, then the vector space $\mathfrak{X}(M)$ of C^{∞} vector fields on M is a real Lie algebra with the Lie bracket [,] as the bracket.

Example 1.25. Let $K^{n \times n}$ be the vector space of all $n \times n$ matrices over a field K. Define

$$[X, Y] = XY - YX$$

where XY is the matrix product of X and Y. With this bracket, $K^{n\times n}$ becomes a Lie algebra. More generally, if A is any algebra over a field K, then the product

$$[x, y] = xy - yx$$

for $x, y \in A$ makes A into a Lie algebra over K.

Definition 1.28: derivation

A derivation of a Lie algebra V over a field K is a K-linear map $D \colon V \to V$ satisfying the product rule

$$D[Y, Z] = [DY, Z] + [Y, DZ]$$

for Y, ZinV.

Example 1.26. Let V be a Lie algebra over a field K. For each $X \in V$, define

$$ad_X(Y) = [X, Y]$$

1.10.4 Pushforward of Vector Fields

Let $F: N \to M$ be a smooth map of manifolds and let $F_*: T_pN \to T_{F(p)}M$ be its differential at a point p in N. If $X_p \in T_pN$, we call $F_*(X_p)$ the pushforward of the vector X_p at p. This notion doesn't extend in general to vector fields, since it X is a vector field on N and

$$z = F(p) = F(q)$$

for two distinct points $p, q \in N$, then X_p and X_q are both pushed forward to tangent vectors $X_z \in T_zM$, but there is no reason why $F_*(X_p)$ and $F_*(X_q)$ should be equal.

1.11 Lie Groups and Lie Algebras

A Lie group is a manifold that is also a group such that the group operations are smooth. A Lie group is a homogeneous space in the sense that left translation by a group element g is a diffeomorphism of the group onto itself that maps the identity element to itself. Therefore, locally the group looks the same around any point in the group. To study the local structure of a Lie group, it is enough to examine a neighborhood of the identity element. The tangent space at the identity of a Lie group G turns out to have a canonical bracket operation $[\ ,\]$ that makes it into a Lie algebra. The tangent space T_eG with the bracket is called the Lie algebra of the Lie group G. The Lie algebra of a Lie group encodes within it much information about the group.

The matrix exponential gives rise to curves in a matrix group with a given initial vector. It is useful in computing the differential of a map on a matrix group.

1.11.1 Lie Group

Definition 1.29: Lie group

A Lie group is a C^{∞} manifold G that is also a group such that the two group operations, multiplication

$$\mu \colon G \times G \to G \quad \mu(a,b) \coloneqq ab$$

and inverse

$$\iota \colon G \to G \quad \iota(a) = a^{-1}$$

are C^{∞} . For $a \in G$, denote by

$$\ell_a \colon G \to G$$

$$\ell_a(x) = \mu(a, x) = ax \tag{95}$$

the operation of left multiplication by a and similarly by r_a the operation of right multiplication by a. We also call these operations left and right translations.

Example 1.27. Left multiplication For an element $a \in G$, prove that the left multiplication/translation $\ell_a \colon G \to G$ is a diffeomorphism.

Definition 1.30: Lie group homomorphism

A map $F: H \to G$ between two Lie groups H, G is a Lie group homomorphism if it is a C^{∞} map and a group homomorphism. The group homomorphism condition means that for all $h, x \in H$

$$F(hx) = F(h)F(x)$$

or rewritten

$$F \circ \ell_h = \ell_{F(h)} \circ F$$

for all $h \in H$. Note that a group homomorphism always maps the identity to the identity.

Definition 1.31: Orthogonal group

Recall that the orthogonal group O(n) is the subgroup of $GL(n,\mathbb{R})$ consisting of all matrices A satisfying $A^TA = I$. Thus, O(n) is the inverse image of I under the map $f(A) = A^TA$.

1.11.2 Matrix Exponential

Recall computing the pushforward using a smooth curve

$$F_{*,p}(X_p) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_0 (F \circ c)(t)$$

To compute the differential of a map on a subgroup of

 $GL(n, \mathbb{R})$, we need a curve of nonsingular matrices. Because the matrix exponential is always nonsingular, it is uniquely suited for this purpose.

Definition 1.32: Norm

A norm on a vector V is a real-valued $|\cdot|: V \to \mathbb{R}$ satisfying the following three properties for all $r \in \mathbb{R}, v, w \in V$

- 1. **positive-definiteness**: $|v| \ge 0$ with equality iff v = 0
- 2. positive homogeneity: |rv| = |r||v|
- 3. subadditivity: $|v+w| \leq |v| + |w|$

A vector space V with a norm is called a *normed* vector space. For example, the vector space $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$ with the norm

$$|X| = \sqrt{\sum_{ij} x_{ij}^2}$$

Definition 1.33: Matrix exponential

The matrix exponential e^X of a matrix $X \in \mathbb{R}^{n \times n}$ is defined

$$e^X = I + X + \frac{1}{2!}X^2 + \frac{1}{3!}X^3 + \cdots$$

If A, B commute then

$$e^A e^B = e^{A+B}$$

Proposition 1.22

For $X \in \mathbb{R}^{n \times n}$

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{tX} = Xe^{tX} = e^{tX}X$$

1.11.3 Trace of a Matrix

Definition 1.34: Trace of a Matrix

For a $n \times n$ matrix X

$$\operatorname{tr}(X) = \sum_{i=1}^{n} x_i i$$

i.e. the sum of the diagonal elements.

Lemma 1.2

1. For any two matrices $X, Y \in \mathbb{R}^{n \times n}$

$$tr(XY) = tr(YX)$$

2. For $X \in \mathbb{R}^{n \times n}$ and $A \in GL(n, \mathbb{R})$

$$tr(AXA^{-1}) = X$$

Proposition 1.23

The trace of a matrix, real or complex, is equal to the sum of its complex *eigenvalues*

Proof. Suppose X has complex eigenvalues $\lambda_1, \ldots, \lambda_n$. Then there exists a nonsingular matrix $A \in \mathrm{GL}(n,\mathbb{C})$ such that

$$AXA^{-1} = \begin{bmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

and then

$$\operatorname{tr}(X) = \operatorname{tr}(AXA^{-1}) = \sum_{i} \lambda_{i}$$

Proposition 1.24

For any $X \in \mathbb{R}^{n \times n}$

$$\det(e^X) = e^{\operatorname{tr}(X)}$$

Proof. Case 1: Assume that X is upper triangular

$$X = \begin{bmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

Then

$$e^{X} = \sum \frac{1}{k!} X^{k}$$

$$= \sum \frac{1}{k!} \begin{bmatrix} \lambda_{1}^{k} & * \\ & \ddots & \\ 0 & \lambda_{n}^{k} \end{bmatrix}$$

$$= \begin{bmatrix} e^{\lambda_{1}} & * \\ & \ddots & \\ 0 & e^{\lambda_{n}} \end{bmatrix}$$
(96)

and hence

$$\det e^X = \prod e^{\lambda_i} = e^{\sum \lambda_i} = e^{\operatorname{tr} X}$$

. Case 2: Given a general matrix X, with eigenvalues $\lambda_1, \ldots, \lambda_n$, we can find a nonsingular matrix A such that

$$AXA^{-1} = \begin{bmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

an upper triangular matrix. Then

$$e^{AXA^{-1}} = I + AXA^{-1} + \frac{1}{2!}(AXA^{-1})^2 + \frac{1}{3!}(AXA^{-1})^3 + \cdots$$

$$= I + AXA^{-1} + A\left(\frac{1}{2!}X^2\right)A^{-1} + A\left(\frac{1}{3!}X^3\right)A^{-1} + \cdots$$

$$= Ae^XA^{-1}$$
(97)

and hence

$$\det e^{X} = \det \left(A e^{X} A^{-1} \right)$$

$$= \det e^{AXA^{-1}}$$

$$= e^{\operatorname{tr}(AXA^{-1})}$$

$$= e^{\operatorname{tr} X}$$
(98)

It follows that the matrix exponential e^X is always non-singular, because $\det(e^X) = e^{\operatorname{tr} X} \neq 0$. This is one reason why the matrix exponential is so useful, for it allows us to write down explicitly a curve in $\operatorname{GL}(n,\mathbb{R})$ with a given initial point and a given initial velocity. For example $c(t) = e^{tX} : \mathbb{R} \to \operatorname{GL}(n,\mathbb{R})$ is a curve in $\operatorname{GL}(n,\mathbb{R})$ with initial point I and initial velocity X, since

$$c(0) = e^{0X} = e^0 = I$$

and

$$c'(0) = \frac{\mathrm{d}}{\mathrm{d}t} e^{tX} \bigg|_{t=0} = X e^{tX} \bigg|_{t=0} = X$$

Similarly, $c(t) = Ae^{tX}$ is a curve in $\mathrm{GL}(n,\mathbb{R})$ with initial point A and initial velocity AX.

1.11.4 The Differential of det at the identity

Let det: $GL(n, \mathbb{R}) \to \mathbb{R}$ be the determinant map. The tangent space $T_I GL(n, \mathbb{R})$ at the identity matrix I is the vector space $\mathbb{R}^{n \times n}$ and the tangent space $T_1 \mathbb{R}$ to \mathbb{R} at 1 is \mathbb{R} . So

$$\det_{*I} : \mathbb{R}^{n \times n} \to \mathbb{R}$$

Proposition 1.25

For any $X \in \mathbb{R}^{n \times n}$ it is the case that $\det_{*,I}(X) = \operatorname{tr} X$

Proof. We use a curve at I to compute the differential. As a curve c(t) with c(0) = I and c'(0) = X, choose the matrix exponential $c(t) = e^{tX}$. Then

$$\det_{*,I}(X) = \frac{\mathrm{d}}{\mathrm{d}t} \det\left(e^{tX}\right)\Big|_{t=0}$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} e^{t\operatorname{tr}X}\Big|_{t=0}$$

$$= (\operatorname{tr}X) e^{t\operatorname{tr}X}\Big|_{t=0}$$

$$= \operatorname{tr}X$$
(99)

Index

 C^{∞} partition of unity on a manifold, 17 homeomorphism, 7 C^{∞} partition of unity subordinate to $\{U_i\}_{i\in I}$, 17 integral curve, 17 C^{∞} -compatible, 7 isomorphically, 2 1-form, 3 Jacobi identity, 19 abelian Lie algebra, 20 Jacobian matrix of F, 10 antiderivation of the graded algebra, 5 atlas, 7 left and right translations, 21 left multiplication by a, 21 base space, 16 Leibniz rule, 2 bracket, 20 Lie algebra, 6, 17, 20 bump function at q supported in U, 16 Lie Bracket, 17, 19 Lie group, 9, 20, 21 characteristic numbers, 15 Lie group homomorphism, 21 chart, 7 local coordinates on U, 8 Chern-Weil theory of characteristic classes, 15 local diffeomorphism, 10 closed form, 6 local finiteness, 17 cochain complex, 6 local flow, 19 complete vector field, 18 local flow generated by the vector field X, 18 coordinate neighborhood, 7 locally Euclidean of dimension n, 7coordinate system, 7 locally finite, 17 cotangent space, 3 locally invertible, 10 covector field, 3 covectors, 3 matrix exponential, 21 curve, 8 maximal, 8 de Rham cohomolgy, 7 norm, 21 de Rham complex of U, 6 normed vector space, 21 derivation, 2 derivation of a Lie algebra V, 20 one-parameter group of diffeomorphisms, 18 diffeomorphism, 9 partial derivative $\frac{\partial f}{\partial x^i}$ of f with respect to x^i at p, 10 differentiable structure, 8 differential, 4 Picard-Lindelöf theorem, 18 differential 1-form, 3 Poincare lemma, 7 differential at p, 11 pullback, 9 differential complex, 6 pushforward, 11, 20 differential form ω of degree k, 4 directional derivative, 2 right multiplication by a, 21 dual space, 3 second countable, 7 section, 15, 16 eigenvalues, 22 smooth C^{∞} manifold, 8 Euler characteristic, 15 smooth a point p, 9 exact form, 6 smooth curve, 13 smooth vector bundle, 14 fiber, 15 fiber at p, 16 subordinate, 16 fiber-preserving, 16 support, 16 surface, 8 flow line, 18 frame, 16 tangent bundle, 11, 14, 15 frame on U, 16 tangent space, 2 tangent vectors, 2 general linear group $GL(n, \mathbb{R})$, 8 topological group, 9 global flow, 18 topological manifold, 7 graph of f, 8 total space, 16 Hausdorff, 7 transition functions, 7

vector bundle, 11, 16 vector field, 2 vector field X on a manifold M, 16 velocity vector, 13

wedge product of a $k\text{-form }\omega$ and $\ell\text{-form }\tau,\,5$