Suites géométriques

Quelques calculs généraux pour commencer

Calcul 1.1 — Des développements.

0000

Développer les expressions suivantes.

a)
$$(2x-3)^2$$

c)
$$-3(-x+2)(6-5x)$$

b)
$$(7-8x)(8x+7)$$

Calcul 1.2 — Des factorisations.

0000

Factoriser les expressions suivantes.

a)
$$4x^2 - 49$$

d)
$$\frac{4}{9}x^2 - \frac{25}{4}$$

b)
$$(5-3x)^2-16$$

e)
$$121x^2 - 110x + 25$$

c)
$$-\frac{3}{2}x^2 - 6x$$

f)
$$(3x-7)(x+5)-(3x-7)(-4x+3)$$

Calcul 1.3 — Images.

On considère la fonction f définie par $f(x) = \frac{x}{2} - \frac{3}{5}$ pour tout réel x.

Calculer les images de :

a)
$$\frac{3}{4}$$

b)
$$-\frac{2\sqrt{2}}{5}$$

Calcul 1.4 — Antécédents.

On considère la fonction f définie par $f(x) = -\frac{1}{4}x + 5$ pour tout réel x.

Déterminer les antécédents de :

b)
$$-\frac{3}{2}$$

Calcul de termes

Calcul 1.5 La suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q=2$ et de premier terme $u_0=3$.	0000
a) Calculer u_4	
b) Calculer u_6	
Calcul 1.6	0000
La suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q=\sqrt{3}$ et de premier terme $u_0=-\frac{1}{\sqrt{3}}$.	
a) Exprimer u_n en fonction de n	
b) Calculer u_{123}	
Calcul 1.7	0000
On considère la suite $(u_n)_{n\in\mathbb{N}}$ géométrique de raison $q=\frac{3}{2}$ telle que $u_6=16$.	
a) Donner l'expression de u_n en fonction de n	
b) Combien vaut u_{10} ?	
On donnera une expression sous forme de fractions de puissances.	
Calcul de termes, avec des paramètres	
Calcul 1.8	0000
On considère la suite $(u_n)_{n\in\mathbb{N}}$ géométrique de raison q telle que $u_7=\sqrt{2}$ et $u_{10}=27\sqrt{2}$.	
a) Déterminer la valeur de la raison de la suite	
b) Calculer u_0	

			_
C_{α}	lcul	1	a
C/a	СШ	- 1	. 77

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_0 telle que $u_6=\frac{3}{4}$ et $u_8=12$.

- a) Déterminer les deux valeurs possibles de la raison q
- b) Calculer u_0

Calcul 1.10

Soit a un nombre réel.

On considère $(u_n)_{n\in\mathbb{N}}$ une suite telle que $u_{41}=a,\,u_{42}=a-2$ et $u_{43}=a+1.$

- a) Déterminer la valeur de a pour que la suite $(u_n)_{n\in\mathbb{N}}$ soit géométrique
- b) Calculer dans ce cas u_0

Calcul 1.11

Soit $(u_n)_{n\in\mathbb{N}^*}$ une suite numérique définie pour tout $n\in\mathbb{N}^*$ par : $u_1=5$ et $u_{n+1}=3u_n+\frac{4}{3}$. Soit x un nombre réel. Pour tout $n\in\mathbb{N}$, on pose $v_n=u_n+x$.

- b) Donner alors l'expression de v_n en fonction de n
- c) Exprimer enfin u_n en fonction de n

Calculs plus avancés

Calcul 1.12

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q telle que $u_1=\frac{1}{2}$.

- b) Déterminer la raison q pour que l'expression $u_1 8u_2 4u_3$ soit maximale

Calcul 1.13

La suite $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=2 et de premier terme $u_0=a$.

- a) Combien vaut 2¹⁰?
- b) Déterminer la valeur de a telle que $u_0 + u_1 + \cdots + u_9 = 341$

Réponses mélangées

$$\frac{1}{2} - 4q - 2q^{2}. \qquad \left(\frac{2x}{3} - \frac{5}{2}\right)\left(\frac{2x}{3} + \frac{5}{2}\right) \qquad \frac{\sqrt{2}}{2187} \qquad -3^{61} \qquad 3 \qquad 3(1 - 3x)(3 - x)$$

$$\frac{1}{3} \qquad x = 20 \qquad 1024 \qquad (11x - 5)^{2} \qquad -\frac{1}{2} \qquad 26 \qquad -\frac{9}{40} \qquad -\sqrt{3}^{n-1} \qquad 3^{4}$$

$$(3x - 7)(5x + 2) \qquad \frac{3}{16384} \qquad \frac{4}{5} \qquad 5 \times 3^{(n-1)} \qquad -15x^{2} + 48x - 36 \qquad -\frac{6}{5} \times \left(\frac{2}{3}\right)^{41}$$

$$q = -1 \qquad 192 \qquad x = \frac{2}{3} \qquad 4x^{2} - 12x + 9 \qquad 5x^{2} - 5x + 2 \qquad 49 - 64x^{2} \qquad q = 4 \quad \text{ou} \quad q = -4$$

$$16 \times \left(\frac{3}{2}\right)^{n-6} \qquad -3x\left(\frac{x}{2} + 2\right) \qquad (2x - 7)(2x + 7) \qquad \frac{\sqrt{2} - 3}{5} \qquad 48 \qquad 5 \times 3^{n}$$

► Réponses et corrigés page 5

Fiche nº 1. Suites géométriques

Réponses

1.1 a)
$$4x^2 - 12x + 9$$

1.1 c)
$$-15x^2 + 48x - 36$$

1.1 d)
$$|5x^2 - 5x + 2|$$

1.2 a)
$$(2x-7)(2x+7)$$

1.2 b)
$$3(1-3x)(3-x)$$

1.2 d)....
$$\left(\frac{2x}{3} - \frac{5}{2}\right) \left(\frac{2x}{3} + \frac{5}{2}\right)$$

1.2 e)
$$(11x - 5)^2$$

1.2 f)
$$(3x-7)(5x+2)$$

1.3 a).....
$$-\frac{9}{40}$$

1.3 b)
$$\sqrt{\frac{\sqrt{2}-3}{5}}$$

1.4 a)
$$x = 20$$

1.6 a).....
$$-\sqrt{3}^{n-1}$$

1.6 b)
$$-3^{61}$$

1.8 b)
$$\frac{\sqrt{2}}{2187}$$

1.9 a)
$$q = 4$$
 ou $q = -4$

1.10 a)
$$\frac{4}{5}$$

1.10 b)
$$\left| -\frac{6}{5} \times \left(\frac{2}{3} \right)^{41} \right|$$

1.11 a)
$$x = \frac{2}{3}$$

1.11 b)
$$5 \times 3^n$$

1.11 c)
$$5 \times 3^{(n-1)}$$

1.12 a)
$$\left[\frac{1}{2} - 4q - 2q^2\right]$$
.

1.12 b).....
$$q = -1$$

1.12 c)
$$-\frac{1}{2}$$

1.13 b)
$$\frac{1}{3}$$

Corrigés

1.1 a) On a
$$(2x-3)^2 = (2x)^2 - 2 \times 2x \times 3 + 3^2 = 4x^2 - 12x + 9$$
.

1.1 b) On a
$$(7-8x)(8x+7) = (7-8x)(7+8x) = 7^2 - (8x)^2 = 49 - 64x^2$$
.

$$-3(-x+2)(6-5x) = (3x-6)(6-5x) = 3x \times 6 - 3x \times 5x - 6 \times 6 + 6 \times 5x$$
$$= 18x - 15x^2 - 36 + 30x = -15x^2 + 48x - 36.$$

1.1 d) On a
$$5\left(x - \frac{1}{2}\right)^2 + \frac{3}{4} = 5\left(x^2 - x + \frac{1}{4}\right) + \frac{3}{4} = 5x^2 - 5x + \frac{5}{4} + \frac{3}{4} = 5x^2 - 5x + 2$$
.

1.2 a) On a
$$4x^2 - 49 = (2x)^2 - 7^2 = (2x - 7)(2x + 7)$$
.

1.2 b) On a
$$(5-3x)^2 - 16 = (5-3x)^2 - 4^2 = (5-3x-4)(5-3x+4) = (1-3x)(9-3x) = 3(1-3x)(3-x)$$
.

1.2 c) On a
$$-\frac{3}{2}x^2 - 6x = -3x \times \frac{x}{2} - 3x \times 2 = -3x(\frac{x}{2} + 2)$$
.

1.2 d) On a
$$\frac{4}{9}x^2 - \frac{25}{4} = \left(\frac{2x}{3}\right)^2 - \left(\frac{5}{2}\right)^2 = \left(\frac{2x}{3} - \frac{5}{2}\right)\left(\frac{2x}{3} + \frac{5}{2}\right)$$
.

1.2 e) On a
$$121x^2 - 110x + 25 = (11x)^2 - 2 \times 11x \times 5 + 5^2 = (11x - 5)^2$$
.

1.2 f) On a

$$(3x-7)(x+5) - (3x-7)(-4x+3) = (3x-7)((x+5) - (-4x+3))$$
$$= (3x-7)(x+5+4x-3) = (3x-7)(5x+2).$$

.....

1.3 a) On a
$$f\left(\frac{3}{4}\right) = \frac{\frac{3}{4}}{2} - \frac{3}{5} = \frac{3}{8} - \frac{3}{5} = \frac{15}{40} - \frac{24}{40} = -\frac{9}{40}$$
.

$$(2\sqrt{2})$$
 $(2\sqrt{2})$ $(2\sqrt{2})$ $(2\sqrt{2})$ $(2\sqrt{2})$ $(2\sqrt{2})$ $(2\sqrt{2})$ $(2\sqrt{2})$

1.3 b) On a
$$f\left(\frac{2\sqrt{2}}{5}\right) = \frac{\frac{2\sqrt{2}}{5}}{2} - \frac{3}{5} = \frac{\sqrt{2}}{5} - \frac{3}{5} = \frac{\sqrt{2} - 3}{5}$$
.

1.4 a) On a
$$-\frac{1}{4}x + 5 = 0 \iff \frac{1}{4}x = 5 \iff x = 5 \times 4 = 20$$
. L'antécédent de 0 par la fonction f est 20.

1.4 b) On a
$$-\frac{1}{4}x + 5 = -\frac{3}{2} \iff \frac{1}{4}x = 5 + \frac{3}{2} \iff x = \frac{13}{2} \times 4 = 26$$
. L'antécédent de $-\frac{3}{2}$ par la fonction f est 26.

1.5 a) On a
$$u_4 = u_0 \times q^4 = 3 \times 2^4 = 48$$
.

1.5 b) On a
$$u_6 = u_0 \times q^6 = 3 \times 2^6 = 192$$
.

1.6 a) On a
$$u_n = -\frac{1}{\sqrt{3}} \times \sqrt{3}^n = -\sqrt{3}^{n-1}$$
.

1.6 b) On a
$$u_{123} = u_0 \times q^{123}$$
. Donc, $u_{123} = -\frac{1}{\sqrt{3}} \times \sqrt{3}^{123} = -\frac{1}{\sqrt{3}} \times \sqrt{3} \times \sqrt{3}^{122}$. Donc, $u_{123} = -3^{61}$.

1.7 a) On a
$$u_n = u_6 \times q^{n-6} = 16 \times \left(\frac{3}{2}\right)^{n-6}$$
.

1.7 b) On a
$$u_{10} = 16 \times \left(\frac{3}{2}\right)^4 = 3^4$$
.

1.8 a) On a
$$u_{10} = u_7 \times q^3 \iff q^3 = \frac{u_{10}}{u_7} = 27 \iff q = 3.$$

1.8 b) On a
$$u_0 = u_7 \times q^{-7} = 3^{-7} \times \sqrt{2} = \frac{\sqrt{2}}{3^7} = \frac{\sqrt{2}}{2187}$$
.

1.9 a) On a
$$q^2 = \frac{u_8}{u_6} = \frac{12}{\frac{3}{4}} = 16 \iff q = 4 \text{ ou } q = -4.$$

1.9 b) On a
$$u_0 = u_6 \times q^{-6}$$
. Donc, on a $u_0 = \frac{3}{4^7} = \frac{3}{16384}$.

1.10 a) On a
$$u_{42}^2 = u_{41} \times u_{43} \iff (a-2)^2 = a(a+1) \iff a^2 - 4a + 4 = a^2 + a \iff 5a = 4 \iff a = \frac{4}{5}$$
.

1.10 b) On a
$$q = \frac{u_{42}}{u_{41}} = \frac{a-2}{a} = -\frac{3}{2}$$
. Donc $u_0 = u_{41} \times q^{-41} = -\frac{6}{5} \times \left(\frac{2}{3}\right)^{41}$.

1.11 a) On a
$$v_{n+1} = u_{n+1} + x = 3u_n + \frac{4}{3} + x$$
, et $3v_n = 3(u_n + x) = 3u_n + 3x$. Donc, on a

$$v_{n+1} = 3v_n \iff 3u_n + \frac{4}{3} + x = 3u_n + 3x \iff \frac{4}{3} + x = 3x \iff x = \frac{2}{3}$$

1.11 b) La suite $(v_n)_n$ est une suite géométrique de raison q=3 et de premier terme $v_1=u_1+\frac{2}{3}=5+\frac{2}{3}=\frac{17}{3}$. Donc, on a $v_n=v_1\times q^{(n-1)}=\frac{17}{3}\times 3^{(n-1)}=17\times 3^{(n-2)}$.

.....

1.11 c) On a
$$u_n = \frac{v_n}{3} = \frac{17 \times 3^{(n-2)}}{3} = 17 \times 3^{(n-3)}$$
.

1.12 a) On a
$$u_1 = \frac{1}{2}$$
, $u_2 = u_1 \times q = \frac{q}{2}$ et $u_3 = u_2 \times q = \frac{q^2}{2}$. Donc, on a $u_1 - 8u_2 - 4u_3 = \frac{1}{2} - 4q - 2q^2$.

1.12 b) On a $u_1 - 8u_2 - 4u_3 = -2(q+1)^2 + \frac{5}{2} \leqslant \frac{5}{2}$, pour tout q. Donc, l'expression $u_1 - 8u_2 - 4u_3$ est maximale si, et seulement si, q = -1.

.....

1.12 c) On a
$$u_8 = u_1 \times q^7 = \frac{1}{2} \times (-1)^7 = -\frac{1}{2}$$
.

.....

1.13 a) On a
$$2^{10} = 1024$$
.

1.13 b) On a $u_0 + u_1 + \dots + u_9 = u_0 \times \frac{1 - q^{10}}{1 - q}$. En plus $u_0 + u_1 + \dots + u_9 = 341$ et q = 2.

Donc
$$a = u_0 = \frac{341 \times (1-2)}{1-2^{10}} = \frac{341}{1023} = \frac{1}{3}.$$