Shorter Tours by Nicer Ears:

From connected T-join to graphic TSP variants

Jongseo Lee

October 16 2023

Introduction

Review: Christofides Algorithm for TSP

- TSP = connected + every vertex has even degree
- Connectivity: Find MST ($\leq OPT$)
- Parity: Find the minimum-cost T-join ($\leq 0.5OPT$)
 - Definition: An edge set J is called T-join if the set of vertices that have an odd degree is exactly the set T.
 - Finding T-join: solve min-cost perfect matching on T.

Connected *T*-join Problem

- Input
 - Undirected (connected) graph G = (V, E)
 - $T \subseteq V$ with even size
- Goal
 - Find a minimum cardinality set $F \subseteq 2G$ such that (V(G), F) is connected and F is a T-join
- If $T = \emptyset$, this is equivalent to the graphic TSP.
- If $T = \{s, t\}$, this is equivalent to s t path TSP.

Bi-Connected Components

Lemma. Let G_1, G_2 be 2-connected graphs with $V(G_1) \cap V(G_2) = \{v\}$. Let $G := (V(G_1) \cup V(G_2), E(G_1) \cup E(G_2))$ and $T \subseteq V(G)$ with |T| even. For i = 1, 2, define T_i be the even set among $(T \cap V(G_i)) - \{v\}$ and $(T \cap V(G_i)) \cup \{v\}$. Solving connected T-join in (G, T) is equivalent to solving connected T-join in (G_1, T_1) and (G_2, T_2) .

In other words, we can consider each BCC separately.

- An **ear-decomposition** is a sequence P_0, P_1, \cdots, P_k where P_0 is a graph consisting of only one vertex (and no edge), and for each $i \in [k]$ we have:
 - (closed ear) P_i is a circuit sharing exactly one vertex with $V(P_0) \cup \cdots \cup V(P_{i-1})$, or
 - (open ear) P_i is a path sharing exactly its two different endpoints with

- ear = endpoint + internal vertices
- in(Q) := set of internal vertices of an ear Q (colored vertices)
 - |in(Q)| = |E(Q)| 1
- If $q \in in(Q)$ is an endpoint of P, say P is attached to Q (at q).

- l-ear: an ear of length l (i.e. number of edges = l)
- Short ear: 2-ear or 3-ear
- Nontrivial ear: ear of length greater than 1
- Pendant ear: nontrivial and no nontrivial ear attached to it
- Even ear: an ear with even length

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
- For each ear $P: (J := \emptyset \text{ initially})$

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
- For each ear $P: (J := \emptyset \text{ initially})$
 - Find a connected $(T \cap in(P))$ -join J_P in P

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
- For each ear P: ($J := \emptyset$ initially)
 - Find a connected $(T \cap in(P))$ -join J_P in P

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
- For each ear $P: (J := \emptyset \text{ initially})$
 - Find a connected $(T \cap in(P))$ -join J_P in P
 - $J := J \cup J_P$

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
- For each ear $P: (J := \emptyset \text{ initially})$
 - Find a connected $(T \cap in(P))$ -join J_P in P
 - $J := J \cup J_P$
 - Delete P from G, modify T appropriately

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
- For each ear $P: (J := \emptyset \text{ initially})$
 - Find a connected $(T \cap in(P))$ -join J_P in P
 - $J := J \cup J_P$
 - Delete P from G, modify T appropriately

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G), |T|$ even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
- For each ear $P: (J := \emptyset \text{ initially})$
 - Find a connected $(T \cap in(P))$ -join J_P in P
 - $J := J \cup J_P$
 - Delete P from G, modify T appropriately

- G: 2-edge-connected graph with an ear decomposition $\{P_i\}$
- $T: T \subseteq V(G)$, |T| even
- Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
- For each ear $P: (J := \emptyset \text{ initially})$
 - Find a connected $(T \cap in(P))$ -join J_P in P
 - $J := J \cup J_P$
 - Delete P from G, modify T appropriately

- **Lemma.** For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) in(P)$ such that $|F| \le \frac{3}{2} |in(P)| + \frac{1}{2} \phi(P) + \gamma(P) 1$ and $F \cup J$ is a connected T-join for every connected S-join J of G in(P).
- . $\gamma(P) = \begin{cases} 1 & P \text{ is short and } in(P) \cap T = \emptyset \\ 0 & \text{ohterwise} \end{cases}$
- Terms ϕ and γ are the knobs that we will "try" to control

- **Lemma.** For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) in(P)$ such that $|F| \le \frac{3}{2} |in(P)| + \frac{1}{2} \phi(P) + \gamma(P) 1$ and $F \cup J$ is a connected T-join for every connected S-join J of G in(P).
- Proof Sketch
 - Subdivide P into two types of subpaths R,B by vertices of $in(P) \cap T$

- **Lemma.** For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) in(P)$ such that $|F| \le \frac{3}{2} |in(P)| + \frac{1}{2} \phi(P) + \gamma(P) 1$ and $F \cup J$ is a connected T-join for every connected S-join J of G in(P).
- Proof Sketch
 - Subdivide P into two types of subpaths R, B by vertices of $in(P) \cap T$
 - Suppose $|E_R| \le |E_B|$.
 - $F := E(P) \uplus E_R \{e\}$
 - $S:=T\Delta T_R$ where T_R is the set of vertices having odd degree in $(V(P),E_R)$

- **Lemma.** For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) in(P)$ such that $|F| \le \frac{3}{2} |in(P)| + \frac{1}{2} \phi(P) + \gamma(P) 1$ and $F \cup J$ is a connected T-join for every connected S-join J of G in(P).
- **Theorem.** There's a polynomial-time algorithm finds connected T-join with at most $\frac{3}{2}(|V(G)|-1)+\pi_2-\frac{1}{2}\phi(G)$ edges where π_2 is the number of 2-ears
- Proof.
 - Find the ear-decomposition of G with $\phi(G)$ even ears [Frank 1993]
 - Apply the Lemma repeatedly \to obtain a connected T-join with size at most $\frac{3}{2}(|V(G)|-1)+\frac{1}{2}\phi(G)-l$
 - *l*: # of nontrivial and not short ears
 - $l \ge \phi(G) \pi_2$

Nice Ear-Decomposition

Nice Ear-Decomposition

- Let G be a graph. An ear-decomposition of G is called **nice** if
 - 1. the number of even ears is $\phi(G)$
 - 2. all short ears are pendant
 - 3. internal vertices of different short ears are non-adjacent in G
- An **eardrum** in G is the set M of components of an induced subgraph in which every vertex has degree at most 1.
 - i.e. eardrum = isolated vertices + induced matching
- Given a nice ear-decomposition and $T \subseteq V(G)$ with |T| even, an ear P is **clean** if it is
 - short (thus pendant)
 - $in(P) \cap T = \emptyset$
- Eardrum $M := G[\{ \text{clean ears} \}]$ is called "associated" with the eardecomposition and T

Computing Nice Ear-Decomposition

• **Lemma.** For any 2-vertex-connected graph G, there exists a nice ear-decomposition, and such an ear-decomposition can be computed in O(|V(G)||E(G)|) time.

Computing Nice Ear-Decomposition

- **Lemma.** For any 2-vertex-connected graph G, there exists a nice ear-decomposition, and such an ear-decomposition can be computed in O(|V(G)||E(G)|) time.
- Proof Sketch
 - Take any open ear-decomposition with $\phi(G)$ even ears
 - Modify ear-decomposition to satisfy 2 and 3: decrease the number of non-trivial ears and not increase the number of even ears
 - (a): Make all 2-ears pendant
 - (b), (c), (d): Make all 3-ears pendant
 - (e): there's no edges connecting internal vertices of 2-ears
 - (f), (g), (h): deal with problematic 3-ears to satisfy 3

- **Lemma.** Let G: 2-edge-connected graph, $T \subseteq V(G)$ with |T| even. Let a nice ear-decomposition and an associated eardrum M be given. For $f \in M$,
 - P_f : the ear with f as the set of internal vertices
 - Q_f : any path in G having f as the set of internal vertices
- Then, replacing the ears $\{P_f\}$ by the ears $\{Q_f\}$ and changing the set of 1-ears accordingly, we get a nice ear-decomposition again with the same associated eardrum.

- Which $\{Q_{\!f}\}$ would be useful to replace $\{P_{\!f}\}$ with?
 - $(V(G), \cup_{f \in M} E(Q_f))$ has as few components as possible
 - Intuitively, as pay small price as possible to make whole graph connected

- Which $\{Q_{\!f}\}$ would be useful to replace $\{P_{\!f}\}$ with?
 - $(V(G), \cup_{f \in M} E(Q_f))$ has as few components as possible
 - Intuitively, as pay small price as possible to make whole graph connected
 - Ideally, if this graph is forest...
- Let G be a graph, M be a eardrum in G. Let $\mathscr{P}_f(f \in M)$ denote the set of (|f|+1)-paths in G where in(P)=f. An **earmuff** (for M in G) is a set of paths $\{P_f: f \in F\}$ where $F \subseteq M, P_f \in \mathscr{P}_f$, and $(V(G), \cup_{f \in F} E(P_f))$ is a forest.

- Let G be a graph, M be a eardrum in G. Let $\mathscr{P}_f(f \in M)$ denote the set of (|f|+1)-paths in G where in(P)=f. An **earmuff** (for M in G) is a set of paths $\{P_f: f \in F\}$ where $F \subseteq M, P_f \in \mathscr{P}_f$, and $(V(G), \cup_{f \in F} E(P_f))$ is a forest.
- Among earmuffs, the one with maximum |F| is called **maximum** earmuff and its size is denoted by $\mu(G, M)$.

- Lemma. Maximum earmuff can be found in polynomial-time.
- Proof.
 - Represent each path $P \in \mathcal{P}_f(f \in M)$ by the set $e_P \in \binom{V(G) V_M}{2}$
 - Let M_1 be the cycle matroid of the complete graph on $V\!(G)-V_M$
 - Let M_2 be the partition matroid on $V(G)-V_M$ with constraints $|I\cap \mathcal{P}_f|\leq 1$ for each $f\in M$
 - Finding such an earmuff is equivalent to finding the largest common independent set

Algorithms

Notations and Bounds

- $L_{\mu}(G,M) := |V(G)| 1 + |M| \mu(G,M)$
- $\bullet \ \ {\rm Fact.} \ L_{\mu}(G,M) \leq OPT$

Recall: Considering Pendant Ears

• **Lemma 1.** For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) - in(P)$ such that $|F| \le \frac{3}{2} |in(P)| + \frac{1}{2} \phi(P) + \gamma(P) - 1$ and $F \cup J$ is a connected T-join for every connected S-join J of G - in(P).

Recall: Considering Pendant Ears

- **Lemma 1.** For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) in(P)$ such that $|F| \le \frac{3}{2} |in(P)| + \frac{1}{2} \phi(P) + \gamma(P) 1$ and $F \cup J$ is a connected T-join for every connected S-join J of G in(P).
- In the same way, one can prove:
- **Lemma 2.** For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) in(P)$ such that $|F| \le \frac{1}{2} |in(P)| + \frac{1}{2} \phi(P)$ and $F \cup J$ is a connected T-join for every connected S-join J of G in(P).

Recall: An Algorithm Using Ear-Decomposition

- Algorithm 1.
 - Input
 - G, T, an ear decomposition of $\phi(G)$ edges
 - Consider ears in reverse order: P_k, P_{k-1}, \dots, P_1
 - For each ear $P: (J := \emptyset \text{ initially})$
 - Find a connected $(T \cap in(P))$ -join J_P in P
 - $J := J \cup J_P$
 - Delete P from G, modify T appropriately
- **Theorem.** Algorithm 1 finds a connected T-join with at most $\frac{3}{2}(|V(G)|-1)+\pi_2-\frac{1}{2}\phi(G)$ edges where π_2 is the number of 2-ears

- Algorithm 2.
 - Input
 - *G*, *T*, *M*, a nice ear-decomposition of *G* with maximum earmuff
 - $V_M := \bigcup M$; the set of internal vertices of clean ears
 - V_1 : set of internal vertices of pendant but not clean ears
 - $V_0 := V(G) (V_1 \cup V_M)$ (Note: V_0 is 2-edge-connected)
 - **1.** E_1 : union of the edge sets of clean ears
 - $|E_1|=\frac{3}{2}\,|V_M|+\frac{1}{2}\phi_M$ and $(V_M\cup V_0,E_1)$ has $|V_0|-\mu(G,M)$ components
 - **2.** Add a set E_2 of $|V_0| \mu(G, M) 1$ edges of $G[V_0]$ to make $(V_M \cup V_0, E_1 \cup E_2)$ connected
 - 3. Apply Lemma 1 to all the remaining pendant ears and obtain E_{3}
 - Now, $(V(G), E_1 \cup E_2, \cup E_3)$ is connected
 - **4.** Correctly the parities of the vertices in V_0 by adding minimum T_0 -join E_4
 - T_0 : set of vertices in V_0 having wrong degree
 - Output $(V(G), E_1 \cup E_2 \cup E_3 \cup E_4)$

Lemma 1. For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) - in(P)$ such that $|F| \le \frac{3}{2} |in(P)| + \frac{1}{2} \phi(P) + \gamma(P) - 1$ and

- Recall Notation
- $F \cup J$ is a connected T-join for every connected S-join J of G in(P).

•
$$L_{\mu}(G, M) := |V(G)| - 1 + |M| - \mu(G, M) \le OPT$$

- **Theorem.** Algorithm 2 finds a connected T-join with at most $L_{\mu}(G,M) + \frac{1}{2}(\mid V(G)\mid +\phi(G)-1) \pi \text{ edges where } \pi \text{ is the number of pendant edges}$
- Proof Sketch
 - $|E_1| = \frac{3}{2}|V_M| + \frac{1}{2}\phi_M$
 - $|E_2| = |V_0| \mu(G, M) 1$

Lemma 1. For a pendant ear P, there exists $F\subseteq E(P)$ and $S\subseteq V(G)-in(P)$ such that $|F|\leq \frac{3}{2}|in(P)|+\frac{1}{2}\phi(P)+\gamma(P)-1$ and $F\cup J$ is a connected T-join for every connected S-join J of G-in(P).

- Recall Notation
 - $L_{\mu}(G,M) := |V(G)| 1 + |M| \mu(G,M) \le OPT$
- **Theorem.** Algorithm 2 finds a connected T-join with at most $L_{\mu}(G,M) + \frac{1}{2}(\mid V(G)\mid +\phi(G)-1) \pi \text{ edges where } \pi \text{ is the number of pendant edges}$
- Proof Sketch
 - $|E_1| = \frac{3}{2} |V_M| + \frac{1}{2} \phi_M$
 - $|E_2| = |V_0| \mu(G, M) 1$
 - For each ear P, we added at most $\frac{3}{2}|in(P)| + \frac{1}{2}\phi(P) 1$ edges
 - $|E_3| \le \frac{3}{2} |V_1| + \frac{1}{2} \phi_1 (\pi |M|)$
 - ϕ_1 : number of even pendant ears that are not clean

Lemma 2. For a pendant ear P, there exists $F \subseteq E(P)$ and $S \subseteq V(G) - in(P)$ such that $|F| \le \frac{1}{2} |in(P)| + \frac{1}{2} \phi(P)$ and $F \cup J$ is a connected T-join for every connected S-join J of G - in(P).

- Recall Notation
 - $L_{\mu}(G, M) := |V(G)| 1 + |M| \mu(G, M) \le OPT$
- **Theorem.** Algorithm 2 finds a connected T-join with at most $L_{\mu}(G,M) + \frac{1}{2}(\mid V(G) \mid + \phi(G) 1) \pi \text{ edges where } \pi \text{ is the number of pendant edges}$
- Proof Sketch
 - $|E_1| = \frac{3}{2} |V_M| + \frac{1}{2} \phi_M$
 - $|E_2| = |V_0| \mu(G, M) 1$
 - $|E_3| \le \frac{3}{2} |V_1| + \frac{1}{2} \phi_1 (\pi |M|)$
 - ϕ_1 : number of even pendant ears that are not clean
 - Using Lemma 2, we corrected the parity of vertices in V_0 .
 - $|E_4| \le \frac{1}{2}(|V_0| 1 + \phi_0)$
 - $\phi_0 := \phi(G[V_0])$

- Recall Notation
 - $L_{\mu}(G,M) := |V(G)| 1 + |M| \mu(G,M) \le OPT$
- **Theorem.** Algorithm 2 finds a connected T-join with at most $L_{\mu}(G,M) + \frac{1}{2}(\mid V(G)\mid +\phi(G)-1) \pi \text{ edges where } \pi \text{ is the number of pendant edges}$
- Proof Sketch
 - $|E_1| = \frac{3}{2} |V_M| + \frac{1}{2} \phi_M$
 - $|E_2| = |V_0| \mu(G, M) 1$
 - $|E_3| \le \frac{3}{2} |V_1| + \frac{1}{2} \phi_1 (\pi |M|)$
 - ϕ_1 : number of even pendant ears that are not clean
 - $|E_4| \le \frac{1}{2}(|V_0| 1 + \phi_0)$
 - $\phi_0 := \phi(G[V_0])$
 - Add all together and compute

- Algorithm 1 $\to cost_1 \le \frac{3}{2}(|V(G)| 1) + \pi \frac{1}{2}\phi(G)$ (Note: $\pi_2 \le \pi$)
- Algorithm 2 $\to cost_2 \le OPT + \frac{1}{2}(|V(G)| + \phi(G) 1 2\pi)$

- Algorithm 1 $\to cost_1 \le \frac{3}{2}(|V(G)| 1) + \pi \frac{1}{2}\phi(G)$ (Note: $\pi_2 \le \pi$)
 - This is good when π is small
- Algorithm 2 $\to cost_2 \le OPT + \frac{1}{2}(|V(G)| + \phi(G) 1 2\pi)$
 - This is good when π is large

- Algorithm 1 $\to cost_1 \le \frac{3}{2}(|V(G)| 1) + \pi \frac{1}{2}\phi(G)$ (Note: $\pi_2 \le \pi$)
 - This is good when π is small
- Algorithm 2 $\to cost_2 \le OPT + \frac{1}{2}(|V(G)| + \phi(G) 1 2\pi)$
 - This is good when π is large
- **Theorem.** There's a $\frac{3}{2}$ -approximation algorithm for the connected T-join problem.

- Algorithm 1 $\to cost_1 \le \frac{3}{2}(|V(G)| 1) + \pi \frac{1}{2}\phi(G)$ (Note: $\pi_2 \le \pi$)
 - This is good when π is small
- Algorithm 2 $\rightarrow cost_2 \le OPT + \frac{1}{2}(|V(G)| + \phi(G) 1 2\pi)$
 - This is good when π is large
- **Theorem.** There's a $\frac{3}{2}$ -approximation algorithm for the connected T-join problem.
- Proof Sketch
 - Find a nice ear-decomposition with a maximum earmuff
 - If $\pi \leq \frac{1}{2}\phi(G)$, use Algorithm 1
 - $cost \le \frac{3}{2}(|V(G)| 1) \le \frac{3}{2}OPT$ since $\pi \frac{1}{2}\phi(G) \le 0$
 - If $\pi > \frac{1}{2}\phi(G)$, use Algorithm 2
 - $cost \le \frac{3}{2}OPT$ since $\phi(G) 2\pi \le 0$ and $OPT \ge |V(G)| 1$

Applications

- Graphic Path TSP: $\frac{3}{2}$ -approximation algorithm
 - Simply connected $\{s,t\}$ -join problem
 - NOTE: There's a very simple algorithm for this problem too (which found later)
- Graphic TSP: $\frac{7}{5}$ -approximation algorithm
 - Combine the new algorithm with the previous work
- 2-ECSS Problem: $\frac{4}{3}$ -approximation algorithm
 - Input: A connected graph G
 - Output: 2-edge-connected spanning multi-subgraph with minimum number of edges

Reference

- A. Sebö and J. Vygen (2012), Shorter Tours by Nicer Ears: 7/5approximation for graphic TSP, 3/2 for the path version, and 4/3 for twoedge-connected subgraphs, Combinatorica 34
- A. Frank (1993), Conservative weightings and ear-decompositions of graphs, Combinatorica 13