Moving from R&D to Successful and Lasting Deployments

Greg Larson
Division of Traffic
Operations
Caltrans HQ

Presentation Index

- California Connected Vehicle Test Bed
- MMITSS (Multi-Modal Intelligent Traffic Signal Systems)
- Adaptive Transit Signal Priority
- SPaT Challenge
- Standards
- Potpourri

California Connected Vehicle Test Bed

California Connected Vehicle Test Bed

Caltrans[®]

- 1. Stanford
- 2. Cambridge
- 3. California
- 4. Page Mill
- 5. Portage/Hansen
- 6. Matadero
- 7. Curtner
- 8. Ventura
- 9. Los Robles
- 10. Maybell
- 11. Charleston

Example Installation

Actual Installation (Page Mill Road and El Camino Real)

Example Layout Schematic

Intersection list:

Stanford

Cambridge

California

Page Mill

Portage/

Hansen

Matadero

Ventura

Los Robles

Actual Installations

Front

Caltrans®

Actual Installations

Actual Installations

MMITSS (Multi-Modal Intelligent Traffic Signal Systems)

- Funded through the Connected Vehicle Pooled Fund Study, led by Virginia DOT
- Additional funding from USDOT Dynamic Mobility Applications (DMA) program
- University of Arizona and University of California PATH Program
- Phase I: March 2012- June 2013 (Concept of Operations, System Requirements, Preliminary Design)
- Phase II: October 2013 December 2015
 (Implement, Test, Demonstrate, and Evaluate)

MMITSS Suite of Applications

- Intelligent Traffic Signal System (ISIG)
 - Signal actuation
 - Coordinated section of signals
 - Congestion control
- Emergency Vehicle Signal Preemption (EVP)
- Transit Signal Priority (TSP)
- Freight Signal Priority (FSP)
- Pedestrian Mobility

Multi-Modal Intelligent Traffic Signal Systems

PATH Software Development

- MMITSS signal priority applications are implemented with software developed by PATH
- Soft-call timing
 - Sends priority request call every 50 ms until either a cancel priority request is received or the priority phase has been terminated (for extended green) or has turned to green (for early green)
 - Sends vehicular phase actuation/extension call every 50 ms until either the vehicle has passed the intersection or the phase green has terminated

Status of California MMITSS Project

- The CA MMITSS signal priority and Intelligent Traffic Signal is built upon a signal priority algorithm
- The algorithm was thoroughly tested using 3G based communication network (emulating transit Advanced Communication System)
- MMTISS traffic and priority control software modules were developed and tested at the Richmond Field Station intersection
- Caltrans HQ Traffic Ops has modified 2070 TSCP software
- Field testing was conducted in October 2015; final demo held for FHWA in mid-November

Adaptive Transit Signal Priority

Improves on conventional TSP to provide:

- Reduced number of stops for red
- Reduced bus delay at intersections
- Reduced average waiting time per stop for red
- Reduced average bus travel time
- No statistically significant impacts on overall traffic intersection delays

The AASHTO SPaT Challenge

A challenge to achieve:

- Deployment of Signal Phase and Timing (SPaT) DSRC transmissions operating on a corridor of at least 20 intersections in 50 States by 2020
- Commitment to operate and maintain for at least 10 years

The AAHTO SPaT Challenge

Why would we do this?

- It will give DOTs an entry into V2I deployment and operations (valuable experience with procurement, installation, operations)
- It will help promote future (more advanced)
 V2I deployments
- It will show a commitment to OEMs that we intend to deploy

Possible Resources to be Developed

- 1. Guidelines for selecting corridors
- 2. Procurement guidance (specifications?)
- 3. DSRC licensing information
- 4. Installation guidance
- 5. Estimated costs (installation, operation, and maintenance)
- 6. Identification of existing funding sources that agencies may consider

Standards to Ensure Interoperability

Hardware and Physical Layers:

- IEEE 802.11p (frequency; bandwidth; channels)
- IEEE 1609.0-.4 (architecture; security)

Message Sets and Performance:

- SAE J2735 (DSRC\WAVE)
- SAE J2945/X

Communications between Roadside Systems:

Potpourri

- V2I Deployment Guidance from FHWA
- V2I Deployment Coalition (AASHTO, ITE, ITS America)
 - Red-Light Violation Warning
 - Reduced Speed in Work Zones
 - Eco-Approach and Departure
- DMV Automated Vehicle Regulations
- Transportation Funding

Discussion

For more information, please visit: www.dot.ca.gov/research

Caltrans provides a safe, sustainable, integrated, and efficient transportation system to enhance California's economy and livability

