

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Студент	Смирнова Анита Андреев	вна
Группа	PK6-61	
Тип задания	Лабораторная работа	
Тема лабораторной работы	БПФ, полиномиальная регрессия	
Студент	 подпись, дата	<u>Смирнова А.А.</u> фамилия,
u.o.	поопись, оата	фимилия,
Преподаватель	подпись, дата	<u>Соколов П.А.</u> фамилия,
u.o.	noonaeb, oama	фимилил,
Преподаватель		Першин Ю.А.
u.o.	подпись, дата	фамилия,
Оценка		

Москва, 2019 г.

Оглавление

Задание на лабораторную работу	3
Цель выполнения лабораторной работы	5
Задачи, выполненные в процессе реализации лабораторной работы	5
Численное интегрирование с помощью тригонометрических интерполянтов	5
Заключение	17
Список использованных источников	17

Задание на лабораторную работу

1. Численное интегрирование с помощью тригонометрических интерполянтов

Даны интегралы:

$$I_{1} = \int_{-\pi/4}^{\pi} |x| dx$$

$$I_{2} = \int_{-\pi/4}^{\pi} (x \cos x^{2} + e \cos e^{x}) dx$$

- 1.1. Вывести общее выражение для формулы численного интегрирования путем аналитического интегрирования тригонометрического ряда, заменяющего подинтегральную функцию.
- 1.2. Используя алгоритм Кули—Тьюки, написать функцию $fft_coeff(y_nodes)$, которая вычисляет и возвращает комплексные коэффициенты тригонометрического полинома, интерполирующего узлы y_nodes , равномерно распределенные на отрезке $[-\pi;\pi]$.
- 1.3. Написать функцию $spectral_integral(f, N)$, которая вычисляет значение интеграла функции f, интерполируемой в N узлах с помощью тригонометрического ряда, на интервале $[-\frac{\pi}{4}; \pi]$. Функция $spectral_integral$ должна использовать внутри себя функцию fft_coeff .
- 1.4. Для каждого из интегралов I_1 и I_2 провести следующий анализ:
 - Найти точное значение интеграла.
 - Найти приближенное значение интеграла с помощью функции spectral_integral для $N=2^{\tilde{n}}$, где $\tilde{n}\in 1,...,8$.
 - Для каждого N найти относительную погрешность вычислений δ и вывести на экран график зависимости δ от N, где δ следует отображать в логарифмической шкале
- 1.5. Объяснить, как можно использовать полученные логарифмические графики для оценки порядка точности интегрирования.

- 1.6. Ответить, различаются ли порядки точности интегрирования в случае вычисления интегралов I_1 и I_2 и, если различаются, объяснить, с тем это связано.
 - 2. Полиномиальная регрессия

Дана функция

$$f(x) = -10x^2 + 1.5x + 1 + \sigma X$$
,

где $x \in [-1;1]$ и X — случайная величина, нормально распределенная на интервале

Требуется:

- 2.1. Написать функцию *poly_regression(x_nodes, y_nodes, degree)*, которая возвращает коэффициенты многочлена степени degree, наилучшим образом приближающегося к точкам с абсциссами x_nodes и ординатами y_nodes.
- 2.2. Для каждого σ из множества { 10^{-2} , 10^{-1} , 10^{0} , 10^{1} , 10^{2} }, N из множества { 2^{3} , 2^{4} , 2^{5} , 2^{6} , 2^{7} , 2^{8} , 2^{9} } и р из множества 1, 2, 3, 4, 5 провести следующий анализ.
 - С помощью функции f(x) сгенерировать начальный набор данных $D_{regr}^{(N)}$ и проверочный набор данных $D_{test}^{(N)}$, где N число точек в наборе данных.
 - ullet С помощью набора данных $D_{regr}^{(N)}$ и функции $poly_regression$ построить многочлен степени ${
 m p}$, наилучшим образом приближающийся ${
 m k}$ данным
 - ullet Вычислить среднеквадратичную погрешность аппроксимации $\epsilon_{regr}^{(N,p)}$ данных $D_{regr}^{(N)}$ полученным многочленом.
 - ullet Вычислить среднеквадратичную погрешность аппроксимации $\epsilon_{test}^{(N,p)}$ данных $D_{test}^{(N)}$ полученным многочленом.
- 2.3. Вывести на экран несколько характерных примеров графиков многочленов вместе с начальными и проверочными данными.
- 2.4. Ответить на следующие вопросы.

- Как влияет увеличение числа начальных и проверочных данных на $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$? Выведите на экран графики, иллюстрирующие ответ, и сделайте вывод
- Как влияет увеличение степени многочлена р на $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$? Выведите на экран графики, иллюстрирующие ответ, и сделайте вывод
- Как влияет увеличение числа начальных и проверочных данных на относительную погрешность коэффициентов многочлена при сравнении с f(x) в случае фиксированного σ? Что происходит при увеличении σ? Выведите на экран графики,иллюстрирующие ответ, и сделайте вывод. Как может повлиять изменение функции распределения случайной величины X на сделанный вывод?
- 2.5. Исходя из ответов на предыдущие вопросы, сделать общий вывод о свойствах сходимости полиномиальной регрессии в случае зашумленных данных.

Цель выполнения лабораторной работы

Реализовать алгоритм БПФ, полиномиальной регрессии и проанализировать результаты.

Задачи, выполненные в процессе реализации лабораторной работы

- 1. Численное интегрирование с помощью тригонометрических интерполянтов
- 1.1. Рассчитано общее выражение для формулы численного интегрирования путем аналитического интегрирования тригонометрического ряда, заменяющего подынтегральную функцию. Вывод представлен ниже: Тригонометрический полином k-ой степени имеет вид:

$$p(x) = a_0 + \sum_{k=1}^{n} a_k \cdot \cos(kx) + \sum_{k=1}^{n} b_k \cdot \sin(kx)$$
 (1)

Для того, чтобы вывести выражение для формулы численного интегрирования для функции, определенной на промежутке $[-\frac{\pi}{4};\pi]$, подынтегральная функция была заменена тригонометрический полиномом из формулы (1).

$$\int_{-\pi/4}^{\pi} f(x) dx = \int_{-\pi/4}^{\pi} (a_0 + \sum_{k=1}^{n} (a_k \cdot \cos(kx) + b_k \cdot \sin(kx))) dx =$$

$$a_0 \cdot \int_{-\pi/4}^{\pi} dx + \sum_{k=1}^{n} (a_k \cdot \int_{-\pi/4}^{\pi} \cos(kx) dx + b_k \cdot \int_{-\pi/4}^{\pi} \sin(kx) dx$$
 (2)

Тогда первообразная функции (2):

$$\frac{5\pi}{4}a_{0} + \frac{a_{k}}{k} \cdot (\sin(k\pi) - \sin(-\frac{k\pi}{4})) - \frac{b_{k}}{k} \cdot (\cos(k\pi) - \cos(-\frac{k\pi}{4})) = \frac{5\pi}{4}a_{0} + \frac{a_{k}}{k} \cdot \sin(\frac{k\pi}{4}) - \frac{b_{k}}{k} \cdot (\cos(k\pi) - \cos(\frac{k\pi}{4})) = \frac{5\pi}{4}a_{0} + \frac{a_{k}}{k} \cdot \sin(\frac{k\pi}{4}) + \frac{b_{k}}{k} \cdot (-\cos(k\pi) + \cos(\frac{k\pi}{4}))$$
(3)

Тригонометрический полином (1) часто называют тригонометрическим рядом. Тригонометрический ряд можно записать в экспоненциальной форме. Для экспоненциальной формы a_0 , a_k , b_k выражаются через комплексный коэффициент $\widehat{a_k}$ через формулу Эйлера:

$$a_0 = Re(\widehat{a_k}) (4)$$

$$a_k = 2Re(\widehat{a_k}) (5)$$

$$b_k = -2Im(\widehat{a_k}) (6)$$

Im — краткое обозначение мнимой части комплексного числа.

Re — обозначение для действительной части комплексного числа. [1]

После подставления формул (4-6) искомая формула имеет вид:

$$\frac{5\pi}{4}Re(\widehat{a_k}) + \frac{2Re(\widehat{a_k})}{k} \cdot \sin(\frac{k\pi}{4}) + \frac{-2Im(\widehat{a_k})}{k} \cdot (-\cos(k\pi) + \cos(\frac{k\pi}{4}))$$
(7)

1.2. Реализована функция $fft_coeff(y_nodes)$, которая вычисляет комплексные коэффициенты тригонометрического полинома на основании алгоритма Кули—Тьюки. Данный алгоритм используется для вычисления дискретного преобразования Фурье (ДПФ) за время $O(mlog_2m)$ и основан на следующих принципах:

- ДПФ размерности N выражается через сумму ДПФ более малых размерностей N1 и N2.
- Аналогичным образом N1 и N2 рекурсивно выражаются через ДПФ ещё более малых размерностей.
- Разложение ДПФ в сумму 2 частей можно организовать таким образом,
 что первая часть будет представлять собой сумму по чётным индексам,
 а вторая по нечётным. [2]

Алгоритм вычисляет сумму

$$A_k = \sum_{j=0}^{2m-1} y_j e^{\frac{-ikj\pi}{m}}$$
 (8),

которая нужна для вычисления комплексного коэффициента $\widehat{a_k}$, где

$$\widehat{a_k} = \frac{(-1)^k}{2m} \cdot A_k(9)$$

- 1.3. Была написана функция $spectral_integral(f, N)$, которая вычисляет значение интеграла функции f, интерполируемой в N узлах с помощью тригонометрического ряда, на интервале $[-\frac{\pi}{4}; \pi]$. Для этого использовались формулы (7) и (9). Функция $spectral_integral$ использует внутри себя функцию ftt_coeff . Для вычисления интеграла была использована формула (7).
- 1.4. Для каждого из интегралов I_1 и I_2 был проведен анализ:
 - Найдены точные значения интегралов с помощью библиотеки sympy:

$$I_1 = -1.85726$$

$$I_2 = 5.24322$$

• Найдена относительная погрешность вычислений δ в зависимости от N. Для нахождения погрешности использовалось приближенное значение интеграла, которое было найдено с помощью функции spectral_integral для N = $2^{\tilde{n}}$, где $\tilde{n} \in 1,...,8$. Относительная погрешность приближенного значения a^* была посчитана по формуле:

$$\delta(\mathbf{a}^*) = \left| \frac{a_* - a}{a} \right| (10),$$

а* – приближенное значение интеграла,

а – точное значение интеграла

Были выведены на экран график зависимости δ от N, где δ следует отображается в логарифмической шкале. (рис. 1, рис. 2, рис. 3)

Рис. 1. Зависимость относительной погрешности от количества узлова для интеграла I_1 , где $N=2^{\tilde{n}}$, где $\tilde{n}\in 1,...,8$.

Рис. 2. Зависимость относительной погрешности от количества узлов(N) для интеграла I_2 , где $N=2^{\tilde{n}}$, где $\tilde{n}\in 1,...,8$.

1.5. Полученные логарифмические графики можно использовать для оценки порядка точности интегрирования.

Для интеграла I_1 из графика на рис. 1:

- 1) Количество улов 16, относительная погрешность $10^{-2}\,.$
- 2) Количество улов 200, относительная погрешность 10^{-3} .

При увеличении количества узлов примерно в 12.5 раз, относительная погрешность уменьшилась в 10 раз. Так как при увеличении количества узлов в ≈ 10 раз, уменьшение относительной погрешности происходит в 10 раз, то порядок точности интегрирования I_1 можно считать равным примерно 1.

- Для интеграла I_2 из графика на рис. 2, рис. 3:
 - 1) Количество узлов \approx 56, относительная погрешность 10.
 - 2) Количество узлов 400, относительная погрешность 10^{-1} .

При увеличении количества узлов примерно в 7 раз, относительная погрешность уменьшилась в 10 раз. По аналогичным утверждениям, точность интегрирования I_2 можно считать равным примерно 1. Также можно отметить, что для интеграла I_2 минимальная относительная погрешность получается при количестве узлов равном 8, а затем резко возрастает, а для интеграла I_1 относительная погрешность уменьшается с возрастанием количества узлов без скачков.

1.6. Был исследован вопрос о том, различаются ли порядки точности интегрирования в случае вычисления интегралов I_1 и I_2 .

Погрешность интегрирования зависит от:

- 1. Вида подынтегральной функции
- 2. Метода интегрирования
- 3. Шага сетки [3]

Для вычисления интегралов I_1 и I_2 использовался один и тот же метод интегрирования и одинаковый шаг сетки, поэтому погрешность интегрирования в таком случае зависит от подынтегральной функции. Пусть

подынтегральная функция I_1 будет названа f_1 , а подынтегральная функция I_2 . Тогда

$$f_1(x) = |x| (11)$$

 $f_2(x) = x \cos x^2 + e \cos e^x (12).$

Функция f_1 периодическая на интервале $[-\pi; \pi]$, f_2 - непериодическая. Непериодическая функция не может быть разложена в ряд Фурье для всех значений х. Для каждой из функций можно составить новую функцию $f_1(x)*$, $f_2(x)*$, выбирая значения в определенном диапазоне и повторяя их вне этого диапазона с интервалом 2π . Для функций $f_1(x)*$, $f_2(x)*$ можно определить ряд Фурье, представляющий функцию в любом диапазоне шириной 2π . Для f_1 можно построить такую периодическую функцию $f_1(x)*$ без разрывов, а f_2 нельзя. Т. к. $f_1(x)*$ непрерывная на замкнутом отрезке, из аппроксимационной теоремы Вейерштрасса следует, что существует такая последовательность многочленов такая, что она равномерно сходится к $f_1(x)*$ при $n\to\infty$. Для $f_2(x)*$ суммы Фурье будут сильно осциллировать в малых окрестностях точек разрыва. Из этого можно сделать вывод, что порядок точности выше у I_1 . [4][5]

2. Полиномиальная регрессия

- 2.1. Была написана функция $poly_regression(x_nodes, y_nodes, degree)$, которая возвращает коэффициенты многочлена степени degree, наилучшим образом приближающегося к точкам с абсциссами x_nodes и ординатами y_nodes. 2.2. Для каждого σ из множества { 10^{-2} , 10^{-1} , 10^{0} , 10^{1} , 10^{2} }, N из множества { 2^{3} , 2^{4} , 2^{5} , 2^{6} , 2^{7} , 2^{8} , 2^{9} } и р из множества 1, 2, 3, 4, 5 был проведен следующий анализ.
 - Был сгенерирован начальный набор данных $D_{regr}^{(N)}$ и проверочный набор данных $D_{test}^{(N)}$, где N число точек в наборе данных. Для генерации использовалась функция

$$f(x) = -10x^2 + 1.5x + 1 + \sigma X(13)$$

- ullet С помощью набора данных $D_{regr}^{(N)}$ и функции $poly_regression$ был построен многочлен степени p, наилучшим образом приближающийся к данным
- Была вычислена среднеквадратичная погрешность аппроксимации $\epsilon_{regr}^{(N,p)}$ данных $D_{regr}^{(N)}$ полученным многочленом. Для среднеквадратичной погрешности использовалась формула:

$$\sqrt{\frac{\sum_{i=1}^{N} (y[i] - P(x_i))^2}{N}}$$
 (14)

- ullet Была вычислена среднеквадратичная погрешность аппроксимации, также вычисляемая по формуле (14), $\epsilon_{test}^{(N,p)}$ данных $D_{test}^{(N)}$ полученным многочленом.
- 2.3. Несколько характерных примеров графиков многочленов вместе с начальными и проверочными данными показано на рис. 4, рис. 5, рис. 6.

Рис. 3. Многочлен степени p = 1, полученный из функции f(x), где σ = 10^{-2} , количество узлов N = 2^3

Рис. 4. Многочлен степени p = 2, полученный из функции f(x), где σ = $~10^{-1}$, количество узлов N = $~2^4$.

Рис. 5. Многочлен степени p = 4, полученный из функции f(x), где σ = 10^1 , количество узлов N = 2^6 .

2.4. Была исследована среднеквадратичная погрешность.

Рис. 6. Среднеквадратическая погрешность полинома (p=3 , $\sigma=10^{-1}\,$) для разного количества узлов.

Рис. 7. Среднеквадратическая погрешность полинома (p=2 , $\sigma=10^{-2}\,$) для разного количества узлов.

• Было исследовано, как влияет увеличение степени многочлена р на $\epsilon_{regr}^{(N,p)}$ и $\epsilon_{test}^{(N,p)}$. Из рис. 8-10 следует, что в целом графики погрешностей

сходятся к σ . Можно заметить, что $\varepsilon_{regr}^{(N,p)}$ и $\varepsilon_{test}^{(N,p)}$ имеют большое значение при степени полинома p=1, для полиномов большей степени, погрешность меньше.

Рис. 8. Среднеквадратическая погрешность полинома (N = 2^8 , σ = 10^1) для разной степени полинома.

Рис. 9. Среднеквадратическая погрешность полинома (N = 2^3 , σ = 10^{-1}) для разной степени полинома.

Рис. 10. Среднеквадратическая погрешность полинома (N = 2^6 , σ = 10^{-2}) для разной степени полинома.

 Было исследовано, как влияет увеличение числа начальных и проверочных данных на относительную погрешность коэффициентов многочлена при сравнении с f(x) в случае фиксированного о. Для подсчета погрешности использовалась формула:

$$\frac{1}{p+1} \sum_{i=0}^{p} \left| \frac{a^i - b^i}{a^i} \right|,$$

 a^i - коэффициенты исходной функции,

 b^i - коэффициенты полинома,

р = 2 из исходной функции

График для $\sigma = 10^{-2}$ представлен на рис.12. Из графика можно сделать вывод, что относительная погрешность коэффициентов уменьшается при увеличении количества узлов. То есть, чтобы полином был максимально был приближен к исходной функции, нужно брать большое количество точек.

Рис. 11. Зависимость относительной погрешности коэффициентов от количества узлов полинома для для $\sigma=10^{-2}$.

Было исследовано, что произойдет при увеличении σ. σ изменялась от 10⁻² до 10², N от 2³ до 2⁷. График относительной погрешности коэффициентов показан на рис. 12. Из него можно сделать вывод, что при увеличении количества узлов при возрастающем σ относительная погрешность растет. Из этого можно сделать вывод, что постоянная σ в таком случае будет эффективней.

Рис. 12. Зависимость относительной погрешности коэффициентов от количества узлов полинома для изменяющейся сигма σ от 10^{-2} до 10^2 .

2.5. Сделан вывод о свойствах сходимости полиномиальной регрессии в случае зашумленных данных: зашумленные данные ухудшают точность приближения полиномом, также необходимо брать постоянную о для большей точности.

Заключение

- 1) При использовании тригонометрических полиномов при численном интегрировании получается наиболее точный результат, если подынтегральная функция периодическая.
- 2) Полиномиальная регрессия может использоваться для зашумленных данных, для этого следует выбирать степень полинома, при которой погрешность будет минимальна.

Список использованных источников

- 1. Першин А.Ю., Соколов А.П., Вычислительная математика, Лабораторные работ. Учебное пособие. Москва, 2018.
- 2. Першин А.Ю. Лекции по вычислительной математике. Москва, 2019, 143 с.
- 3. Быстрое преобразование Фурье [Электронный ресурс] // URL: https://ru.bmstu.wiki/
- 4. Численное интегрирование [Электронный ресурс] // URL: http://portal.tpu.ru:7777/SHARED/l/LOPATKIN/Students/DG/8-Integration.
 pdf
- 5. Ряд Фурье [Электронный ресурс] // URL: https://tehtab.ru/Guide/GuideMathematics/SeriesOfTaylorMaklorenFourier/F ourierSeries/
- 6. Р. В. Голованов, Н. Н. Калиткин, К. И. Луцкий, Нечетное продолжение для фурье-аппроксимации непериодических функций, Матем. моделирование, 2013, том 25, номер 5, 67–84