PS Algorithmen für verteilte Systeme

https://avs.cs.sbg.ac.at/

Aufgabenblatt 9

Abgabe bis Mittwoch, 27.05.2020, 11:00 Uhr auf https://abgaben.cosy.sbg.ac.at/

Aufgabe 17

Gegeben sei ein Las-Vegas-Algorithmus für ein Problem P im CONGEST Modell mit einer (allen Knoten explizit bekannten) erwarteten Laufzeit von R(n) Runden für ein Netzwerk mit n Knoten. Zeigen Sie, dass es für ein Netzwerk mit n Knoten und Durchmesser D einen Monte-Carlo-Algorithmus für P im CONGEST Modell gibt, der, für jedes gegebene $c \ge 1$, immer Laufzeit $O((R(n) + D) \cdot c \log n)$ hat und mit Wahrscheinlichkeit mindestens $1 - \frac{1}{n^c}$ korrekt ist.

Hinweis: Markov Bound

Aufgabe 18

Gegeben sei ein beliebiges Entscheidungsproblem P (d.h. es gibt nur Ausgaben der Form YES oder NO). Angenommen, wir haben einen randomisierten Algorithmus $\mathcal A$ für P mit den folgenden Eigenschaften:

- Für alle Eingaben $x \in P$ gilt $Pr[\mathcal{A}(x) = NO] \le 1/3$ und
- für alle Eingaben $x \notin P$ gilt $\Pr[\mathcal{A}(x) = \mathsf{YES}] \le 1/3$.

Zeigen Sie, dass man durch logarithmisch viele Wiederholungen von $\mathcal A$ einen Algorithmus für das Problem P mit Fehlerwahrscheinlichkeit $1/n^c$ (für eine beliebige vorgegebene Konstante c) erhalten kann.

Hinweis: Chernoff Bound