Date : 14	111	119
Page No.:		-

RANDOM ROCESS

JOINT PROBABILITY

TWO DIMENSIONAL RANDOM VARIABLE

Let x and y be 2 random variables defined on the same sample space 's' then a function (x,y) that assigns a point in 4000 dimension R2 is called 2 dimensional Rapidom variable 1.e (x, y) -> R2

DISCRETE 2-10 RANDOM VARIABLE

A 2 dimensional Random variable is said to be discrete if it when to utmost accountable number of points in 2D.

CONTINUOUS 2-D RANDOM VARIABLE

A 2D scandom variable is said to be continuous if it takes all The values blu a certain limits.

JOINT PROBABILITY DISTRIBUTION FUNCTION.

Let x and y be the RV on a sample spaces the joint probability function of X and Y is denoted and defined as follows:

Pij = P(x=xig Y=yj) = P(xi, yj)

For discrete RV the JPF is usually generaled in the form I discrete RV of table as follows:

Date: / / Page No.:

	XX	141	1 452	193	1	1 ym	Total	
	14	Pii	Piz	Pi3		Pim	Pi.	
	×2	P21	1	P23		Bon	P2-	
	Х3	P3:	P32			Pam	P3.	
	1					1	1	
1	1		-					
1	Xn	Pni	-			Pnm	Pn.	
1	1	P.1	P.2	P.3		Pim	1	
9	and the same of th	-	_	-		THE OWNER OF THE OWNER,		-

The JPF Rij is said to be joint prob. mass function if all Pijzol and \(\subseteq \subseteq p(xi, yj) = 1 \)

MARGINAL DISTRIBUTION

Let (X,Y) be a 2-D discrete RV then the mauginal distribution of X is denoted by f(x) and it is the probability distribution of X alone, which is determined as follows:

for = Px (20) = P(X=x10 /1) + P(x10 /2) + --+ P(x10 /m)

1.e	X	74	7/2	123	 n	1
	f(x)	Pi-	B.	P3.	 Pn.	T

lly. Marginal distribution of y is the probability distribution of
the variable y alone, which is determined as follows

[f(y)= Py(yi) = P(y=y; nx1) + P(y+nx2) + P(y; nx3) --- P(y; nxn)]

j.e	*	14,	132	43	 ym	
	f(y)	BI	P.2	P-3	 P.m	

Date:	1	1
Page No.:		

A fair coin is tossed 3 times, let X denote=0, OR=1 accordingly as a head on a tail occurs on the first toss.

get 4 denote the number of heads which occurred X=0,1

X-0,1

Y=0,1,2,3.

Find the marginal distribution of X and Y. Also determine the joint distribution of X and Y.

Let $S = \{(HHH), (HHT), (HTH), (THH), (THH), (THT), (HTT), (TTT)\}$.

Morginal distribution of X

 $\begin{array}{|c|c|c|c|c|c|c|c|}\hline X & O & 1 \\\hline P(X) & 4/8 = 1/2 & 4/8 = 1/2 \\\hline \end{array}$

Marginal distribution of y

| Y | 0 | 1 | 2 | 3 | |
| P(4) | 1/8 | 3/8 | 3/8 | 1/8 |

Joint Powbability distribution of X and Y

1	XY	71=0	72=1	Y3=2	Y3 = 3	
	x=0	0	1/8	2/8=1/4	4/8	= 1/2
	X2=1	1/8	2/8=1/4	1/8	0	= 4/2
						1

ij Continuous RV.

for continuous RV the JPF is usually supresented as

JOINT PROBABILITY MASS FUNCTION Let Pij = fxy (x,y) be JPF for the continuous RV (x,y) and fixy(ny) dy dn = 1 MARGINAL DENSITY FUNCTION Marginal density function of X is given by $f_X(x) = \int f_{XY}(x,y) dy$ Similarly, marginal density function y is given by fyly) = f fxx (n,y)dx. MEAN AND VARIANCE For discrete.

E(x,y) = \(\sum_{i=1}^{\infty} \) xiyi Pij

Fen Confinuous.

E(x,y) = \int xy \frac{\pi_{xy}}{\pi_{xy}} \dydx.

Date; / / Page No.: Since it is a joint probability distribution 5581=1 42K=1 =) | K = 1/42 |ily Marginal distribution. X 0 1 2 (+091 X P(X) 6/42 + 14/42 28/42 / 11/21 Y 0 1 2 3 P(Y) 6/42 9/42 12/42 15/42 + for y 17 3/14 2/7 5/14. iv) P(x=2, Y=1) = P(2,1) = 6K= 6/12=47. 5K=5/42 V> P(XX), Y<21 = P(X=1; Y<2) + P(X=2, 1/2) = P(1,0)+P(1,1)+P(1,2)+P(2,0)+P(2,1)+P(2,2) = 2K + 3K + 4K + 4K+5K+6K = 24K = 24/42 = 4/7. P(X+1/21) = P(0,0) + P(0,1) + P(1,0)= 0+2K+K = 3K = 3/42 = 1/4. ilix f = cov (ny) (OV (M)y) = E(X4) - E(M) - E(M) - E(M) = F(M) = F(M) = 5y P(y) E(xy) = II xvyiPij = 0+0+0+0+0+3K+8K+15K+0+10K + 24K + 42K = 102K = 102/42 = 17/7. (OV(x,y)=17-29/21(13/7)=17-377 =-0.13605.

	Date: / /
	Page No.:
Mean of X and y	
$E(x) = \sum x \cdot P(x) = 1$	
E(y) = Zy . P(y) = 1,4	
Conv = E(xy) - E(x)E(y)	
= 0.9-1(1.4) = -0.5	
$\sigma_{N} = \sqrt{\sum_{n=1}^{N} \sum_{n=1}^{N} p(n) \cdot u_{N}^{2}} = 100^{2} = 1.2 + 0.3 = 1.6 + 7.6 - 1.5}$	
$\sigma_y = \sqrt{\xi_y^2 p(y) - 4y^2} = \sigma_y^2 = 0.6 + 1.6 - (1.4)^2 = 0.489$	=) £X = 3.00
P=-0.329	=) Ty = 0.489
Fry (-2,1) = 0.1 + P(x) P(y)	
The 2 random Variables x and y are not indemp	endent
a The joint probability distribution of two Rando	m variables X and y is _
given by 2 2 3 3	
1 0.06 0-12 0.09 Pi	
2 0.14 0.35 0.21 192	
is Determine marginal distribution of x &y is I	unify that X and Y are -
Sancastically independent and also find P.	
Marginal distribution of X Margi	nal distribution of y
X 1 2	7 2 3 4
P(r) 03 0.7)	P(4) 0.20 6.50 0.30
Friy (1,2)=0.06=Px(1)+Py(2)	
	me sarkastically independent
	ON (N, 4)
Fry (2,12) = 0.14	
Fry (2,3)=0.36 (0V=E(X))-E(X)	E(A)
120 (2)11	x0-12+11x0-0d+11x0-14+640-32+8x0-51)=2-5
E(M=17; E(Y)=3	
(ov = E(xy) - E(xy) =	(4)
100 P=0]	

/

/

Date:	1	1
Page No.:		

Note: If two variables are sarcastically independent the conrelation coefficient is zuro.

Q Suppose that two dimensional continuous random variable has joint probability mass functions as follows

F(My) = & bx2y; O(xx) and O(yx) o; oxyet otherwise

1) leavify that if Flory) dray =1 is And Marginal density function of x and 4 and climity that x and 4 are independent $\iint_{0}^{1} 6n^{2}y \, dn \, dy = 6 \cdot \frac{13}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} = 6(\frac{1}{3}) \cdot \frac{1}{2} = \frac{1}{2}$

FX(X)= \$\int\text{F(Ny)dy} = \int\text{6n2ydy} = \text{6n2ydy} = \text{6n2ydy} = \text{3x2}

 $F_y(y) = \int_{-\infty}^{\infty} F(x,y) dx = \int_{-\infty}^{\infty} 6x^2y dx = \frac{6yx^3}{3} \int_{0}^{1} = \frac{2y}{3}$

F(My) = 6x2y= 3x2-2y = Fx(x). Fy(y)

They are sorrastically independent

in Given Random Variables are SI

	Late Control of the C						_
47	-	421	10	1.5	2.0	2.8	
		-1.0	015	0.03	0.06	0.06	
		-0-5	0.1	0.13	0.06	0.08	1
		0.0	0.04	F00	6.08	0.05	1
		0.5	0.01	0.02	0.03	0.02	-

1	T _V	1.0	1.5	2.0	25	1	V	-1.0	+D·8			1
	£(x)		0.20			3 - 60 m	F(4)			0.21	0.11	1
	0	3			2 440)	- F-1-14		0.34	1		1-	V
		0.2	0.2	0.2	1007-0	3774			0	21	11	

Date: / /
Page No.:

The yount powbability density function of random ---
Fray (x,y) = /4 e-1x1-191 -8<xx<00, -0<y<00

Sylve-1x1-191 dxdy = /4 e-1x1

 $F_{x(x)} = \int_{-\infty}^{\infty} f(x,y) dy = \int_{-\infty}^{\infty} \frac{1}{4} e^{-|x|} dy$ $= \frac{1}{4} e^{-|x|} e^{-|x|} = \frac{1}{4} e^{-|x|} \int_{-\infty}^{\infty} e^{+|x|} \int_{-\infty}^{\infty} e^{+|x|} dy$ $= \frac{1}{4} e^{-|x|} (1-0) + (0+1)$ $= \frac{1}{4} e^{-|x|} = \frac{1}{4} e^{-|x|}$

Fyly)= \$ F(ny) dn = 5/4e dn = 42e 141

The given variables X and Y are sorcastically independent

P(X < 0, y < 0)

= \int \int \frac{\frac{1}{2} \int \frac{1}{2} \i

= 5 1 ex ey dydx = 1/4/1