MOWNIT – Sprawozdanie 5

Rozwiązywanie równań i układów równań nieliniowych

Opis doświadczenia:

Stosując metodę Newtona oraz metodę siecznych wyznaczam pierwiastki równania w zadanym przedziale [a, b]. Dla metody Newtona zostają wybrane punkty startowe rozpoczynając od wartości końców przedziału, zmniejszając je o 0.1 w kolejnych eksperymentach numerycznych. Odpowiednio dla metody siecznej jeden z końców przedziału stanowi wartość punktu startowego dla metody Newtona, a drugi – początek, a następnie koniec przedziału [a, b].

Następnie wykonano porównanie liczby iteracji dla obu tych metod (dla różnych dokładności ρ), stosując jako kryterium stopu:

$$\bullet \quad \left| x^{(i+1)} - x^{(i)} \right| < \rho$$

•
$$|f(x^i)| < \rho$$

Dana funkcja oraz przedział:

$$f(x) = x^{15} - (1 - x)^{10}$$
 $x = [0.2,2]$

Wykres 1 Wykres funkcji wejściowej

Rzeczywiste miejsce zerowe funkcji: $x \simeq 0.56984$

Po wykonaniu obliczeń z dokładnością do 5 miejsc po przecinku największy błąd, przy którym obliczone miejsce zerowe odpowiada rzeczywistemu:

- Newtona z pierwszym warunkiem końcowym: $\rho = 10^{-5}$
- Newtona z drugim warunkiem końcowym: $\rho = 10^{-7}$
- Siecznych z pierwszym warunkiem końcowym: $\rho = 10^{-6}$
- Siecznych z drugim warunkiem końcowym: $\rho = 10^{-8}$

Poniżej są zaprezentowane tabele dla dokładności $\rho = 10^{-15}$ oraz $\rho = 10^{-4}$ kolejno dla metody Newtona oraz siecznych z dwoma różnymi warunkami stopu. Tak dobrane błędy pozwolą nam zaobserwować różnice w tabelach.

Wyniki dla metody Newtona

	$\rho = 10^{-15}$		$\rho = 10^{-4}$		
Punkt startowy	Wartość x	Liczba iteracji	Wartość x	Liczba iteracji	
0.2	0.56987	7	0.56984	9	
0.3	0.56985	6	0.56984	8	
0.4	0.56984	5	0.56984	6	
0.5	0.56984	3	0.56984	5	
0.6	0.56989	2	0.56984	4	
0.7	0.56984	5	0.56984	6	
0.8	0.56984	7	0.56984	8	
0.9	0.56988	8	0.56984	10	
1	0.56984	10	0.56984	12	
1.1	0.56986	11	0.56984	13	
1.2	0.56984	13	0.56984	14	
1.3	0.56984	14	0.56984	15	
1.4	0.56984	15	0.56984	17	
1.5	0.56984	16	0.56984	18	
1.6	0.56984	17	0.56984	18	
1.7	0.56984	18	0.56984	19	
1.8	0.56989	18	0.56984	20	
1.9	0.56985	19	0.56984	21	
2	0.56984	20	0.56984	22	

Tabela 1 Wyniki dla metody Newtona z pierwszym kryterium stopu, $\rho = 10^{-15}$ oraz $\rho = 10^{-4}$

	$\rho = 10^{-15}$ w Wartość x Liczba iteracji		ρ = 1	0-4
Punkt startowy			Wartość x	Liczba iteracji
0.2	0.56984	9	0.56253	6
0.3	0.56984	8	0.56701	5
0.4	0.56984	6	0.56971	4
0.5	0.56984	5	0.56879	2
0.6	0.56984	4	0.57459	1
0.7	0.56984	6	0.57015	4
0.8	0.56984	8	0.57858	5
0.9	0.56984	10	0.57393	7
1	0.56984	12	0.57055	9
1.1	0.56984	13	0.57293	10
1.2	0.56984	14	0.57636	11
1.3	0.56984	15	0.57011	13
1.4	0.56984	17	0.57024	14
1.5	0.56984	18	0.57024	15
1.6	0.56984	18	0.57013	16
1.7	0.56984	19	0.57718	16
1.8	0.56984	20	0.57453	17
1.9	0.56984	21	0.57222	18
2	0.56984	22	0.57072	19

Tabela 2 Wyniki dla metody Newtona z drugim kryterium stopu, $\rho=10^{-15}\,\mathrm{oraz}\,\rho=10^{-4}$

Wyniki dla metody siecznych

Lewa tabela [a,2]

Prawa tabela [0.2, b]

Wartość x	Liczba iteracji	Punkt a	Wartość x	Liczba iteracji	Punkt b
0.56984	15	0.2	-	-	0.2
0.56984	13	0.3	0.56984	12	0.3
0.56984	11	0.4	0.56984	10	0.4
0.56984	8	0.5	0.56984	7	0.5
0.56984	8	0.6	0.56984	7	0.6
0.56984	11	0.7	0.56984	10	0.7
0.56984	14	0.8	0.56984	9	0.8
0.56984	16	0.9	0.56984	10	0.9
0.56984	19	1	0.56984	13	1
0.56984	21	1.1	0.56984	14	1.1
0.56984	22	1.2	0.56984	15	1.2
0.56984	24	1.3	0.56984	15	1.3
0.56984	26	1.4	0.56984	15	1.4
0.56984	27	1.5	0.56984	15	1.5
0.56984	28	1.6	0.56984	15	1.6
0.56984	29	1.7	0.56984	15	1.7
0.56984	30	1.8	0.56984	15	1.8
0.56984	31	1.9	0.56984	15	1.9
0.56984	31	2	0.56984	15	2

Tabela 3 i 4 Wyniki dla metody siecznych i pierwszego kryterium stopu oraz $\rho = 10^{-15}$

3-zmienny lewy kraniec przedziału, prawy=2; 4-zmienny prawy kraniec przedziału, lewy=0.2

Lewa tabela [a,2]

Prawa tabela [0.2, b]

Wartość x	Liczba iteracji	Punkt a	Wartość x	Liczba iteracji	Punkt b
0.20001	1	0.2	-	-	0.2
0.30000	1	0.3	0.56984	9	0.3
0.40000	1	0.4	0.56984	7	0.4
0.50000	1	0.5	0.56984	4	0.5
0.60000	1	0.6	0.56984	4	0.6
0.70000	1	0.7	0.56984	7	0.7
0.80000	1	0.8	0.56984	7	0.8
0.89999	1	0.9	0.56984	7	0.9
0.99994	1	1	0.56984	10	1
0.56984	18	1.1	0.56984	11	1.1
0.56984	20	1.2	0.56984	12	1.2
0.56984	21	1.3	0.56984	12	1.3
0.56984	23	1.4	0.56984	12	1.4
0.56984	24	1.5	0.56984	12	1.5
0.56984	25	1.6	0.56984	12	1.6
0.56984	26	1.7	0.20011	1	1.7
0.56984	27	1.8	0.20005	1	1.8
0.56984	28	1.9	0.20002	1	1.9
0.56984	28	2	0.20001	1	0.2

Tabele 5 i 6 Wyniki dla metody siecznych i pierwszego kryterium stopu oraz $\rho = 10-4$ 5-zmienny lewy kraniec przedziału, prawy=2; 6-zmienny prawy kraniec przedziału, lewy=0.2

Lewa tabela [a,2]

Prawa tabela [0.2, b]

Wartość x	Liczba iteracji	Punkt a	Wartość x	Liczba iteracji	Punkt b
0.56984	14	0.2	-	-	0.2
0.56984	12	0.3	0.56984	10	0.3
0.56984	10	0.4	0.56984	8	0.4
0.56984	7	0.5	0.56984	6	0.5
0.56984	6	0.6	0.56984	5	0.6
0.56984	10	0.7	0.56984	8	0.7
0.56984	13	0.8	0.56984	8	0.8
0.56984	15	0.9	0.56984	9	0.9
0.56984	17	1	0.56984	12	1
0.56984	19	1.1	0.56984	13	1.1
0.56984	21	1.2	0.56984	13	1.2
0.56984	23	1.3	0.56984	14	1.3
0.56984	24	1.4	0.56984	14	1.4
0.56984	26	1.5	0.56984	14	1.5
0.56984	27	1.6	0.56984	14	1.6
0.56984	28	1.7	0.56984	14	1.7
0.56984	29	1.8	0.56984	14	1.8
0.56984	29	1.9	0.56984	14	1.9
0.56984	30	2	0.56984	14	2

Tabele 7 i 8 Wyniki dla metody siecznych i drugiego kryterium stopu oraz $\rho = 10^{-15}$

7-zmienny lewy kraniec przedziału, prawy=2; 8-zmienny prawy kraniec przedziału, lewy=0.2

Lewa tabela [a,2]

Prawa tabela [0.2, b]

Wartość x	Liczba iteracji	Punkt a	Wartość x	Liczba iteracji	Punkt b
0.56866	10	0.20000	-	-	0.20000
0.56772	8	0.30000	0.56196	6.00000	0.30000
0.56838	6	0.40000	0.56909	5.00000	0.40000
0.56332	3	0.50000	0.56399	2.00000	0.50000
0.57459	2	0.60000	0.57433	1.00000	0.60000
0.57114	6	0.70000	0.57487	4.00000	0.70000
0.57715	8	0.80000	0.57293	4.00000	0.80000
0.57235	11	0.90000	0.56856	5.00000	0.90000
0.57377	13	1.00000	0.56702	8.00000	1.00000
0.57369	15	1.10000	0.56559	9.00000	1.10000
0.57238	17	1.20000	0.56929	10.00000	1.20000
0.57876	18	1.30000	0.56891	10.00000	1.30000
0.57351	20	1.40000	0.56875	10.00000	1.40000
0.57708	21	1.50000	0.56869	10.00000	1.50000
0.57110	23	1.60000	0.56867	10.00000	1.60000
0.57118	24	1.70000	0.56866	10.00000	1.70000
0.57772	24	1.80000	0.56866	10.00000	1.80000
0.57395	25	1.90000	0.56866	10.00000	1.90000
0.57099	26	2.00000	0.56866	10.00000	2.00000

Tabele 9 i 10 Wyniki dla metody siecznych i drugiego kryterium stopu oraz $\rho = 10^{-4}$

9-zmienny lewy kraniec przedziału, prawy=2; 10-zmienny prawy kraniec przedziału, lewy=0.2

Wnioski

W każdej tabeli widać, że w zależności od punktu początkowego mamy różną liczbą iteracji (im bliżej oczekiwanego miejsca zerowego tym mniej iteracji)

Możemy zaobserwować, że metoda Newtona w znacznej większości przypadków potrzebuje dużo mniejszej liczby iteracji niż metoda siecznych, aby otrzymać wynik.

Do wykorzystania metody Newtona musi być spełnione więcej założeń, potrzebna jest pochodna zadanej funkcji i nie zawsze jest ona zbieżna do pierwiastka funkcji.