复变函数基础知识(上)

Content

复变函数基础知识(上)

全纯函数简介

Cauchy's 积分公式

零点理论

奇点理论

全纯函数简介

Def. 复数域 $\mathbb C$ 同构于商空间 $\mathbb R[x]/(x^2+1\sim 0)$, 其中 $\mathbb R[x]$ 为多项式. 复数形如 a+bx, 其中 $x^2=-1$. 下记 i=x.

Def. 模长 $|\cdot|:\mathbb{C}\to\mathbb{R}, a+bi\mapsto\sqrt{a^2+b^2}$ 为 \mathbb{C} 上的赋值, 从而满足自反性 ($|z|=0\Leftrightarrow z=0$) 且 为同态 ($|z_1z_2|=|z_1|\cdot|z_2|$).

Def. 幅角函数 $\operatorname{Arg}:\mathbb{C}^*\to\mathbb{R}/(0\sim 2\pi)$ 为 $\mathbb{C}^*:=\mathbb{C}\setminus\{0\}$ 上的多值函数. 之所以无法在 \mathbb{C}^* 上定义 Arg , 是因为 $H^1(\mathbb{C}^*)=\mathbb{R}\neq 0$.

定义自然的商映射 $\pi: \mathbb{R}/(0 \sim 2\pi) \to [0,2\pi)$. 记 $\arg:=\pi \circ \operatorname{Arg} \to \mathbb{C}^*$ 到 $[0,2\pi)$ 上的映射, 其为单值函数, 从而不再是同态 (至少值域 \mathbb{R} 中不存在亏格为 1 的区域).

Def. 记 U 为开区域. 称 $f:\mathbb{C}\to\mathbb{C}$ 在 $U\subset\mathbb{C}$ 上全纯, 若且仅若 $\forall z_0\in U$, 总有

$$\lim_{z o z_0}rac{f(z)-f(z_0)}{z-z_0}=:f'(z_0)$$

成立.记作 $f \in \operatorname{Hol}(U)$.此时也称 f 解析.

Thm. (Cauchy-Riemann equation) 记 U 为开区域. f 在一切 $z_0\in U$ 中可微的充要条件为 f 满足以下 微分方程 (可视 $f:\mathbb{R}^2\to\mathbb{R}^2$)

$$u_x=v_y, u_y=-v_x, \quad u=\mathrm{Re}(f), v=\mathrm{Im}(f).$$

等价地, $f_{\overline{z}}=rac{1}{2}(f_x+f_y)=0.$

Proof. $f:\mathbb{C}\to\mathbb{C}$ 的 Jacobi 为 $\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$. 由于复数 z=a+bi 在 \mathbb{C} 上相乘之作用等价于矩阵 $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ 在 \mathbb{R}^2 上的作用. 得证.

Col. 记 U 为开区域. f 在 $z_0 \in U$ 可微且 $f'(z_0) \neq 0$, 则反函数可微.

Proof. 显然形如 $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ 的矩阵与 $\mathbb C$ 同构.

Col. 记 U 为开区域. f 在 $z_0 \in U$ 可微时, f 以及 $\mathrm{Re}(f)$ 与 $\mathrm{Im}(f)$ 调和.

Proof. 注意到 $\Delta=\partial_{xx}+\partial_{yy}=4\partial_z\partial_{\overline{z}}$. $\partial_z(f)=0$ 时总有

$$\Delta f = 4\partial_{\overline{z}}(\partial_z f) = 0, \quad \Delta \overline{f} = 4\partial_z(\partial_{\overline{z}} \overline{f}) = 0.$$

从而 Re(f) 与 Im(f) 调和.

Example. (从调和函数补全为全纯形式) 若 U 为单连通开区域, u 为 U 上的调和函数, 则 $\Phi:=u_x\mathrm{d}y-u_y\mathrm{d}x$ 满足 $\mathrm{d}\Phi=0$, 即 Φ 为闭形式. 由于 $H^1(U)=0$, Φ 一定为恰当形式, 即存在 U 上函数 v 使得 $(v_x,v_y)=(-u_y,u_x)$. 不难发现 u 与 v 构成对偶, u+iv 全纯.

Example. 若开区域 U 不为单连通区域, 则对某些 U 上调和函数 u, 不存在 U 上全局良好定义的对偶 v 使得 $u+iv\in \operatorname{Hol}(U)$. 例如 $e^z=e^w$ 若且仅若 $z-w\in (2\pi i)\mathbb{Z}$, 从而 $\operatorname{Re}(\ln z)$ 为 \mathbb{C}^* 上良定义的调和函数. 然而, 观察 $z=|z|\cdot e^{i\cdot \operatorname{arg}(z)}$, 结合 v 的唯一性 (显然) 可知 $\operatorname{Re}(\ln z)$ 的对偶在 \mathbb{C}^* 上的每个邻域内与 arg 相同. 不难发现, 不存在 $\operatorname{Re}(\ln z)$ 在 \mathbb{C}^* 上全局存在的对偶.

Cauchy's 积分公式

Thm. (Cauchy-Goursat) $f\in \mathrm{Hol}(U)$, $U\subset \mathbb{C}$ 单连通, 则对任意分段可微的简单闭曲线 $\gamma\subset \overline{U}$, 总有 $\oint_{\gamma}f=0$.

Proof. 当 γ 光滑时, 由于调和函数光滑, 故 ($\partial S = \gamma$)

$$egin{aligned} \oint_{\gamma} f &= \oint_{\gamma} (u \mathrm{d}x - v \mathrm{d}y) + i \oint_{\gamma} (v \mathrm{d}x + u \mathrm{d}y) \ &= \iint_{S} (-u_{y} - v_{x}) \mathrm{d}S + i \iint (-v_{y} + u_{x}) \mathrm{d}S \ &= 0. \end{aligned}$$

对分段可微的 γ , 由调和函数极大值定理以及 γ 的紧致性知 |f| 在 γ 上有上界 $M<\infty$. 通过一列光滑闭 曲线 $\{\gamma_n\}_{n\geq 1}$ 逼近 γ 即可.

П

Example. $U\subset\mathbb{C}$ 可剖分为有限个全纯单连通区域, γ_1 与 γ_2 为分段可微简单闭曲线, 且存在 γ_1 到 γ_2 的连续变化, 则 $\oint_{\gamma_1}f=\oint_{\gamma_2}f$ 对一切 $f\in\mathrm{Hol}(U)$ 成立. 特别地, 当 γ_2 为单点时, $\oint_{\gamma_1}f=0$.

Example. 任意
$$w\in B(a,r)^\circ$$
, $\oint_{\partial B(a,r)} rac{\mathrm{d}z}{z-w} = 2\pi i.$

Thm. (Cauchy 积分公式) U 为区域, $f \in \operatorname{Hol}(U)$, $\overline{B(a,r) \subset U}$, 对任意 $w \in B(a,r)$,

$$f(w) = rac{1}{2\pi i} \oint_{\partial B(a,r)} rac{f(z) \mathrm{d}z}{z-w}.$$

Proof. 将 $\partial B(a,r)$ 变换为 $\partial B(w,\varepsilon)$, 显然.

Example. 全纯函数 (本质为调和函数) 光滑. 称其为解析函数是因为

$$rac{\mathrm{d}^n f}{\mathrm{d}z^n}|_{z=z_0} = rac{n!}{2\pi i} \oint_{\partial B(z_0,r)} rac{f(z) \mathrm{d}z}{(z-z_0)^{n+1}}.$$

其中 $f \in \operatorname{Hol}(B(z_0, r + \varepsilon))$ 对足够小的 $\varepsilon > 0$ 成立.

全纯函数一定是 (局部) 解析的, 任意一点的 Taylor 级数可复现函数全貌. 此结论与 $\mathbb R$ 上光滑函数不同, 例如定义 $\varphi(x)$ 在 (-1,1) 上为 $e^{1/(x^2-1)}$, 在其余处为 0. 可验证 $\varphi(x)$ 光滑, 但某些单点的 Taylor 级数无以复现函数全貌!

调和函数与全纯函数均具备该性质, 称之解析性.

Col.
$$\left|rac{\mathrm{d}^n f}{\mathrm{d}z^n}
ight|_{z=z_0}
ight| \leq rac{n!}{r^n} \sup_{z\in\partial B(z_0,r)} |f(z)|.$$

Col. (Liouville) $f \in \operatorname{Hol}(\mathbb{C})$ 且 f 有界, 则 f 为常函数.

Proof. $\forall z_0 \in \mathbb{C}$, f 在 z_0 处的各阶导数只能为 0.

Col. $f \in \operatorname{Hol}(\mathbb{C})$. 若 $f(\mathbb{C})$ 不在 \mathbb{C} 中稠密, 则 f 为常函数.

Proof. 若 $B(z_0,\varepsilon)$ 在 $f(\mathbb{C})^c$ 中, 则 $\frac{1}{f-z_0}$ 有上界 z_0 , 从而为常函数.

Def. 取 U 为 $\mathbb C$ 中开区域, $\gamma\subset U$ 为分段连续的简单闭曲线, $z_0\in U\setminus \gamma$. 记 $I(\gamma,z_0)$ 为 γ 记关于 z_0 的 盈数, 即

$$I(\gamma,z_0):=rac{1}{2\pi i}\oint_{\gamma}rac{\mathrm{d}z}{z-z_0}.$$

通俗地, $I(\gamma, z_0)$ 即 γ 围绕 z_0 之圈数.

简单闭曲线不自交, 故盈数恒为 1.

Thm. $f\in \mathrm{Hol}(U)$, $U\subset \mathbb{C}$ 单连通, 则对任意分段可微的闭曲线 $\gamma\subset \overline{U}$, 总有

$$I(\gamma,z_0)\cdot f(w)=rac{1}{2\pi i}\oint_{\gamma}rac{f(z)\mathrm{d}z}{z-w}.$$

零点理论

Thm. $U \subset \mathbb{C}$ 为开区域, $f \in \text{Hol}(U)$. 以下论断等价:

- $1. f^{-1}(0)$ 存在聚点,
- 2. $f\equiv 0$,
- 3. 存在 $z_0 \in U$ 使得 f(z) 在 z_0 处的各阶导数均为 0,
- 4. 存在 $z_0\in U$ 使得 $\dfrac{f(z)}{(z-z_0)^n}\in \operatorname{Hol}(U)$ 对一切 $n\in\mathbb{Z}_{\geq 1}$ 成立.

Proof. 对合适的 r, 端详 $B(z_0,r) \subset U$ 中的 Taylor 展开式

$$rac{\mathrm{d}^n f}{\mathrm{d} z^n}|_{z=z_0} = rac{n!}{2\pi i} \oint_{\partial B(z_0,r)} rac{f(z) \mathrm{d} z}{(z-z_0)^{n+1}}$$

可知 3. 与 4. 等价. 再者, 2. 推出 1., 1. 推出 3. 故只需证明 3. 推出 2.. 这是显然的, 因为根据全纯函数的解析性, f(z) 在 $B(z_0,\varepsilon)$ 中可以被一切 $|z-z_0|^k$ 限制.

此后简称孤立零点为零点. 显然零点不孤立时原函数为 0.

Thm. $U \subset \mathbb{C}$ 为开区域, $f \in \operatorname{Hol}(U)$. 若 z_0 为 $f^{-1}(0)$ 中的离散点, 则存在唯一的 $k \in \mathbb{Z}_{\geq 1}$ 使得 $f(z) = (z - z_0)^k g(z)$, 其中 $g \in \operatorname{Hol}(U)$ 且 $g(z_0) \neq 0$. 称 k 为零点重数.

Proof. 根据解析性, 显然

$$k=\inf\left\{n\in\mathbb{Z}_{\geq 0}\mid rac{n!}{2\pi i}\oint_{\partial B(z_0,r)}rac{f(z)\mathrm{d}z}{(z-z_0)^{n+1}}
eq 0
ight\}<\infty.$$

Example. $U \subset \mathbb{C}$ 为开区域, $f \in \operatorname{Hol}(U)$, 则 z_0 处零点重数为

$$rac{1}{2\pi i}\oint_{\gamma}rac{f'(z)}{f(z)}\mathrm{d}z=rac{1}{2\pi i}\oint_{\gamma}\mathrm{d}\ln f(z).$$

其中 γ 为分段可微的简单闭曲线, 且 |f| 在 γ 围成区域的闭包中仅在 z_0 取 0.

Thm. (Rouché) $U \subset \mathbb{C}$ 为开区域, $f,g \in \operatorname{Hol}(U)$. 取 γ 为 U 中分段可微的闭曲线, 且在 γ 上总有 |f(z)|>|g(z)|, 则对任意 $t\in[0,1]$, f 与 f+tg 在 γ 围成的区域内有相同的零点数量 (含重数).

Proof. 取
$$h_t(z) := rac{f'(z) + tg'(z)}{f(z) + tg(z)}$$
 , 则

$$n(t) := rac{1}{2\pi i} \oint_{\gamma} h_t(z) \mathrm{d}z$$

对 $t \in [0,1]$ 连续. 而 n(t) 取值为整数, 故 $n(t) \equiv n(0)$.

该类证明在微分几何中常见, 例如证明 Poincaré index与度量无关时, 只需证明 Poincaré index 为

Thm. (开映照定理) 设 U 为 $\mathbb C$ 中开集. 则非常值全纯函数 $f\in \operatorname{Hol}(U)$ 为开映射.

Proof. $\forall z_0 \in U$, $g(z) := f(z) - f(z_0)$ 在 z_0 处有零点. 取足够小的 r > 0 使得 g 在 $\overline{B(z_0,r)} \setminus \{z_0\}$ 上无零点, 记 m 为 |q(z)| 在 $\partial B(z_0, r)$ 上的最小值

注意到对一切 $w \in B(f(z_0), m/2)$, 在 $\partial B(z_0, r)$ 上恒有 $|g(z)| > m > |f(z_0) - w|$. 据 Rouché 定 理, $h(z) := g(z) + f(z_0) - w = f(z) - w$ 在 $B(z_0, r)$ 上有零点. 从而 $B(f(z_0), m/2) \subset f(U)$.

Thm. (逆映射定理) 设 U 为 $\mathbb C$ 中开区域, 取 $f\in \operatorname{Hol}(U)$, 则

- f 为可逆映射或局部可逆时, 总有 $f'(z) \neq 0$ 对 $z \in U$ 恒成立.
- 若 $f'(z_0) \neq 0$ 对一切 $z \in U$ 成立, 则 f 局部可逆.

Proof. 该定理并非复变函数所特有, 对一般向量值函数之证明见数分课本.

Example. 特别地, 若 f 为单射, 逆映射全纯, i.e.,

$$g \in \operatorname{Hol}(f(U)) : f(U) \to U, f(z) \mapsto z.$$

 $\forall w \in f(U)$, γ 为 f(U) 中所围区域包含 w 的分段可微曲线, 则

$$g(w) = rac{1}{2\pi i} \oint_{f(\gamma)} rac{g(\xi)}{\xi - w} \mathrm{d} \xi = rac{1}{2\pi i} \oint_{\gamma} rac{z f'(z)}{f(z) - w} \mathrm{d} z.$$

奇点理论

Def. 记 $\sum_{n\in\mathbb{Z}} c_n (z-z_0)^n$ 为 Laurant 级数. 其中

- $\sum_{n\in\mathbb{Z}_{n\geq 0}}c_n(z-z_0)^n$ 为全纯部分. $\sum_{n\in\mathbb{Z}_{n\geq -1}}c_n(z-z_0)^n$ 为主部分.

Def. 开圆环 $A(z_0, r, R) := \{z \mid |z - z_0| \in (r, R)\}.$

Thm. $A(z_0, r, R)$ 上的全纯函数总有唯一的 Laurant 级数逼近.

Proof. $\forall w \in A(z_0, r, R)$, 总有

$$egin{aligned} 2\pi i \cdot f(w) &= \oint_{\partial B(z_0,R)} rac{f(z)}{z-w} \mathrm{d}z - \oint_{\partial B(z_0,r)} rac{f(z)}{z-w} \mathrm{d}z \ &= \oint_{\partial B(z_0,R)} rac{1}{z-z_0} \sum_{m \geq 0} \left(rac{w-z_0}{z-z_0}
ight)^m \mathrm{d}z \ &- \oint_{\partial B(z_0,r)} rac{1}{w-z_0} \sum_{m \geq 0} \left(rac{z-z_0}{w-z_0}
ight)^m \mathrm{d}z \ &= \sum_{n \geq 0} \oint_{\partial B(z_0,R)} rac{f(z) \mathrm{d}z}{(z-z_0)^{n+1}} + \sum_{n < 0} \oint_{\partial B(z_0,r)} rac{f(z) \mathrm{d}z}{(z-z_0)^{n+1}}. \end{aligned}$$

根据幂级数收敛性知 Laurant 级数收敛至 f.

可根据 Laurant 级数定义 \mathbb{C} 上的 \sin , \exp , \arctan 等函数. 值得一提的是, \ln 只能局部定义.

Def. 称 z_0 为 f 的孤立奇点, 若且仅若 f 在 z_0 处去心邻域中定义.

- 称 z₀ 为可去奇点, 若且仅若 Laurant 级数不含负数次项.
- 称 z₀ 为简单奇点, 若且仅若 Laurant 级数包含有限项负次项.
- 称 z_0 为本性奇点, 若且仅若 Laurant 级数包含无穷项负次项.

Col. f 的简单奇点为 $\frac{1}{f}$ 的零点. f 的本性奇点为 $\frac{1}{f}$ 的本性奇点.

Example. $f \in \operatorname{Hol}(\mathbb{C}^*)$, 则

- f(z) = z 时, 0 为可去奇点.
- $f(z) = z^{-1}$ 时, 0 为简单奇点.
- $f(z) = e^{1/z}$ 时, 0 为本性奇点.
- $f(z) = \sin(z^{-1})$ 时, 0 不为孤立奇点.

Thm. (可去奇点定理) U 为开区域, $f \in \operatorname{Hol}(U \setminus \{z_0\})$, 则以下条件等价.

- $1. z_0$ 为 f 的可去奇点.
- 2. f 在 z_0 的邻域内有界.
- 3. 存在 $\tilde{f} \in \operatorname{Hol}(U)$ 使得 $\tilde{f} \equiv f$ 在 $U \setminus \{z_0\}$ 上恒成立.
- 4. 对足够小的 ε , f 在 $B(z_0, \varepsilon)$ 上平方可积.

Proof. 考察 Laurant 级数, 这是显然的.

П

该定理对调和函数亦然.

 $\mathbf{Def.}\ U\subset\mathbb{C}$ 为开区域,称 f 为 U 上的亚纯函数若且仅若 f 在除去有限个简单奇点上全纯. 记作 $f\in\mathrm{Mer}(U)$.

Prop. 显然 Mer(U) 为域, 其由交换环 Hol(U) 生成.

Example. $U\subset\mathbb{C}$ 为开区域, $f\in\mathrm{Mer}(U)$, γ 为分段可微的简单闭曲线且 γ 上不含奇点或零点. 记 f 在 γ 围成区域内的零点数为 N, 奇点数为 P (均包含重数). 则

$$N-P=rac{1}{2\pi i}\oint_{\gamma}rac{f'(z)\mathrm{d}z}{f(z)}.$$

Thm. (Casorati-Weierstrass, Picard 大定理的弱化形式) $f\in \operatorname{Hol}(U\setminus z_0)$ 在本性奇点 z_0 的任何邻域内的取值在 $\mathbb C$ 中稠密.

Proof. 反之, 设 $B(r,\varepsilon)$ 不在取值内, 则 $\frac{1}{|f(z)-r|}<\varepsilon^{-1}<\infty$, 从而 f 在 z_0 的某一邻域内亚纯, 矛盾.

Picard 大定理如是说: 全纯函数在本性奇点的任意去心邻域中无穷次取遍 ℂ 中几乎所有值, 至多略去一个点.