Studenckie Koło Naukowe Math4You Wydział Informatyki Politechniki Białostockiej

Zbiory przybliżone Polska szkoła sztucznej inteligencji

Jan Gromko

22 kwietnia 2017 r.

Plan referatu

Wprowadzenie

Czym są zbiory przybliżone – historia i idea Podstawowe pojęcia

Problem redukcji

Istota problemu redukcji Prosty algorytm wyznaczania reduktu Alternatywne metody wyznaczania reduktu

Znaczenie i kierunki rozwoju zbiorów przybliżonych

Możliwości i zalety Zastosowania

Historia i idea

- ► Teoria zaproponowana w 1982 r. przez prof. Zdzisława Pawlaka.
- Wprowadzona jako nowe matematyczne podejście do pojęć nieostrych i metoda analizy danych.

Podstawy

- ► Zbiory przybliżone oparte są o logikę trójwartościową;
- zbiór przybliżony jest zbiorem niedefiniowalnym nie można go jednoznacznie scharakteryzować na podstawie własności jego elementów.

Przykład

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
1	nie	tak podwyższona		tak
2	tak	nie	podwyższona	tak
3	tak	tak	wysoka	tak
4	nie	tak	normalna	nie
5	tak	nie	podwyższona	nie
6	nie	nie	nie wysoka	

Tabela 1. Tablica decyzyjna przykładowego zbioru.

$$S = (U, A, V, f)$$
 – system informacyjny

U – zbiór obiektów (uniwersum)

A – zbiór atrybutów

 $V = \bigcup_{a \in A} V_a$ – zbiór wszystkich możliwych wartości atrybutów

 V_a – dziedzina atrybutu $a \in A$

 $f: U \times A \rightarrow V$ – funkcja informacyjna

$$DT = (U, C, D, V, f)$$
 – tablica decyzyjna

C – zbiór atrybutów warunkowych

D – zbiór atrybutów decyzyjnych

 $A = C \cup D$ – zbiór atrybutów

Pacjent	Ból głowy	Ból mięśni Temperatu		Grypa
1	nie	tak	podwyższona	tak
2	tak	nie	podwyższona	tak
3	tak	tak	wysoka	tak
4	nie	tak	normalna	nie
5	tak	nie	podwyższona	nie
6	nie	nie wysoka		tak

Tabela 2. Tablica decyzyjna przykładowego zbioru.

U – pacjenci $C = \{b\'ol\ g\'owy,\ b\'ol\ mię\'sni,\ temperatura\},\ D$ – grypa

Reguly decyzyjne

Problem:

Znaleźć zależność między występowaniem/niewystępowaniem grypy a symptomami występującymi u pacjentów, czyli znaleźć zależność między atrybutem decyzyjnym a wartościami atrybutów warunkowych, opisujących poszczególne obiekty.

Sprzeczności w zbiorze

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
2	tak	nie	podwyższona	tak
5	tak	nie	podwyższona	nie

Tabela 3. Sprzeczne informacje w zbiorze – przypadki, których nie można jednoznacznie sklasyfikować.

Relacja nierozróżnialności

Relację nierozróżnialności zdefiniowana jest jako

$$IND(B) = \{(x, y) \in U \times U : \forall_{a \in B} \ a(x) = a(y)\},\$$

gdzie $B \subseteq A$.

Jeśli $(x, y) \in IND(B)$, wówczas obiekty x i y są nierozróżnialne ze względu na podzbiór atrybutów B.

Przykład – analiza danych

W oparciu o posiadane dane, można stwierdzić, że:

- ► {1,3,6} to zbiór przypadków, które (na podstawie atrybutów warunkowych) możemy *jednoznacznie* zaklasyfikować do grupy pacjentów chorych na grypę;
- ► {1,2,3,5,6} to zbiór przypadków, które *mogą* być zakwalifikowanie jako pacjenci chorzy na grypę;
- {2,5} to zbiór przypadków, które nie mogą być jednoznacznie zaklasyfikowane jako pacjenci, którzy są lub nie są chorzy na grypę.

Dolne przybliżenie

Wszystkie te elementy, które można jednoznacznie zaklasyfikować do danego zbioru, według posiadanej wiedzy na ich temat.

Górne przybliżenie

Wszystkie te elementy, których przynależności do danego zbioru nie można wykluczyć.

Rysunek 1. Przykładowy zbiór.

Dolne przybliżenie

Rysunek 2. Dolne przybliżenie zbioru.

Górne przybliżenie

Rysunek 3. Górne przybliżenie zbioru.

Obszar brzegowy

Rysunek 4. Obszar brzegowy zbioru.

Podstawy

- ► Zbiory przybliżone oparte są o logikę trójwartościową;
- zbiór przybliżony jest zbiorem niedefiniowalnym nie można go jednoznacznie scharakteryzować na podstawie własności jego elementów;
- zbiór przybliżony można jednak scharakteryzować
 za pomocą dwóch zbiorów definiowalnych dolnego
 i górnego przybliżenia.

Problem redukcji

Istota problemu

Czy można zredukować zbiór pod względem atrybutów w ten sposób, by zachowana była rozróżnialność elementów z oryginalnego zbioru?

Redukcja

Zbiór niezależny

Zbiór atrybutów $B_1 \subset A$ jest *niezależny* w danym systemie informacyjnym, jeśli dla każdego $B_2 \subset B_1$ zachodzi $IND(B_1) \neq IND(B_2)$.

Redukt

Reduktem zbioru atrybutów $B_1 \subseteq A$ nazywamy każdy niezależny zbiór $B_2 \subseteq B_1$, dla którego $IND(B_1) = IND(B_2)$, przy czym B_2 powinien być jak najmniej liczny. Może istnieć wiele reduktów.

Tworzenie macierzy rozróżnialności zasady

- W każdej komórce macierzy rozróżnialności umieszczane są atrybuty rozróżniające każde dwa obiekty,
- rozróżniamy jedynie obiekty należące do różnych klas decyzyjnych,
- wystarczające jest wypełnienie jedynie połowy macierzy (dzielonej według głównej przekątnej), ponieważ jeśli obiekt x₁ jest rozróżnialny od atrybutu x₂ przez zbiór atrybutów K, to obiekt x₂ jest rozróżnialny od atrybutu x₁ przez ten sam zbiór atrybutów.

Macierz rozróżnialności

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 4. Macierz rozróżnialności.

g – ból głowy; m – ból mięśni; t – temperatura

Tworzenie macierzy rozróżnialności

Pacjent	Ból głowy	Ból głowy Ból mięśni		Grypa
1	nie	tak	podwyższona	tak
5	tak	nie	podwyższona	nie

Tabela 5. Fragment tablicy decyzyjnej.

	1	2	3	4	5	6
5	g, m	?	?	Ø	Ø	_

Tabela 6. Fragment macierzy rozróżnialności.

Tworzenie macierzy rozróżnialności

Pacjent	Ból głowy	Ból głowy Ból mięśni		Grypa
2	tak	nie	podwyższona	tak
5	tak	nie	podwyższona	nie

Tabela 7. Fragment tablicy decyzyjnej.

	1	2	3	4	5	6
5	g, m	Ø	?	Ø	Ø	_

Tabela 8. Fragment macierzy rozróżnialności.

Tworzenie macierzy rozróżnialności

Pacjent	Ból głowy	Ból mięśni	Temperatura	Grypa
3	tak	tak	wysoka	tak
5	tak	nie	podwyższona	nie

Tabela 9. Fragment tablicy decyzyjnej.

	1	2	3	4	5	6
5	g, m	Ø	m, t	Ø	Ø	_

Tabela 10. Fragment macierzy rozróżnialności.

Macierz rozróżnialności – oryginalny zbiór

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 11. Macierz rozróżnialności.

Macierz rozróżnialności – redukcja

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, t	g, t	Ø	_	_
5	g	Ø	t	Ø	Ø	_
6	Ø	Ø	Ø	t	g, t	Ø

Tabela 12. Macierz rozróżnialności po redukcji.

Prosty algorytm wyznaczania reduktu

- 1. Zliczenie wystąpień atrybutów w macierzy rozróżnialności.
- Wybór atrybutu występującego najliczniej w macierzy rozróżnialności; dodanie wybranego atrybutu do wynikowego zbioru atrybutów Red.
- 3. Wykreślenie komórek zawierających wybrany atrybut.
- Jeśli wszystkie komórki zostały wykreślone, wynikiem jest uzyskany zbiór Red, w przeciwnym razie powrót do kroku 1.

Prosty algorytm redukcji

	1	2	3	4	5	6
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 13. Fragment macierzy rozróżnialności zawierający istotne dane.

$$g-4$$
 $m-4$ $t-6$

Prosty algorytm redukcji

	1	2	3	4	5	6
4	ŧ	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 14. Fragment macierzy rozróżnialności zawierający istotne dane.

$$Red = \{t\}$$

$$g-1 \qquad m-1$$

Prosty algorytm redukcji

	1	2	3	4	5	6
4	ŧ	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 15. Fragment macierzy rozróżnialności zawierający istotne dane.

$$Red = \{t, g\} \lor Red = \{t, m\}$$

Rdzeń

	1	2	3	4	5	6
1	Ø	_	_	_	_	_
2	Ø	Ø	_	_	_	_
3	Ø	Ø	Ø	_	_	_
4	t	g, m, t	g, t	Ø	_	_
5	g, m	Ø	m, t	Ø	Ø	_
6	Ø	Ø	Ø	m, t	g, t	Ø

Tabela 16. Macierz rozróżnialności oryginalnego zbioru.

$$Red = \{t, g\} \lor Red = \{t, m\}$$

Problem złożoności wyznaczania reduktu

Wyznaczanie reduktu w zbiorze przybliżonym jest problemem NP-zupełnym – nie jest możliwe znalezienie rozwiązania w czasie wielomianowym.

Alternatywne metody wyznaczania reduktu

Rozwiązania sprzętowe:

► specjalizowane układy programowalne.

Rozwiązania przybliżone – wykorzystanie innych metod sztucznej inteligencji:

- ▶ algorytmy ewolucyjne,
- algorytmy mrówkowe,
- ▶ inteligencja roju,
- metody połączone.

Rozwiązania sprzętowe

- Opis zbiorów przybliżonych z wykorzystaniem sieci komórkowych (cellular networks; na tej podstawie w 1994 r. opracowana została koncepcja PRSComp (Parallel Rough Sets COMPuter) – Rybiński, Muraszkiewicz (1984);
- idea samouczącego się systemu, wykorzystującego sieci komórkowe – uczenie systemu w warstwie oprogramowania, na podstawie wyników tworzona jest warstwa sprzętowa – Lewis, Perkowski, Jóźwiak (1999);
- implementacja systemu opartego o sieci komórkowe Dharmadhikari, Ngo, Lewisa (1999);
- ► koncepcja RSP (*Roug Set Processor*) Pawlak (2004);

Rozwiązania sprzętowe (cd.)

- idea systemu wspierającego w sposób sprzętowy minimalizację funkcji logicznych, tworzonych na podstawie macierzy rozróżnialności – Kanasugi, Yokoyama (2001);
- implementacja wyżej wymienionego rozwiązania w FPGA, 700-krotne skrócenie czasu obliczeń w porównaniu do tradycyjnych rozwiązań – Kanasugi, Matsumoto (2007);
- koprocesor wspomagający sprzętowo niektóre operacje na ZP Tiwari, Kothari (2015);
- implementacje sprzętowe na FPGA i CPLD metod ZP od operacji podstawowych (jak np. obliczanie aproksymacji), przez wyznaczanie rdzeni i reduktów, po generowanie reguł decyzyjnych – Kopczyński (2016).

Rozwiązania przybliżone

- Algorytmy genetyczne, oparte o sprowadzenie problemu redukcji do problemu pokrycia kolumnowego macierzy, w której kolumny odpowiadają atrybutom, a wiersze parom obiektów, które wymagają rozróżnienia – Wróblewski (2001);
- redukcja ZP przy pomocy algorytmów mrówkowych Jensen, Shen (2003);
- algorytm hybrydowy, łączący algorytmy mrówkowe i inteligencję roju – Pratiwi, Choo, Muda (2011);

Rozwiązania przybliżone (cd.)

- propozycja algorytmu genetycznego opartego o kodowanie chromosomów jako zbioru atrybutów w potencjalnym redukcie – Zhengjiang, Jingmin, Yan (2012);
- propozycja ulepszenia wyżej wymienionego algorytmu atrybuty należące do rdzenia chronione są przed mutacją, selekcja osobników na podstawie znormalizowanego współczynnika istotności – Chen, Liu, Wan (2014).

Możliwości

- ► Szukanie zależności między danymi,
- ► redukcja zbiorów danych,
- ▶ określenie wagi danych,
- ► generowanie reguł decyzyjnych.

Zalety

- Teoria ZP nie wymaga założeń na temat danych, takich jak prawdopodobieństwo czy rozmytość,
- ► szybkie algorytmy analizy danych,
- ► łatwa interpretacja wyników,
- matematyczna prostota.

Zastosowania

- ► Medycyna,
- ► farmakologia,
- ▶ bankowość,
- ▶ lingwistyka,
- ▶ rozpoznawanie mowy,
- ► ochrona środowiska,
- bazy danych,
- ▶ ogólniej przetwarzanie dużych zbiorów danych.

Zastosowania – przykład

Ograniczenie liczby badań medycznych do jedynie tych, które są naprawdę konieczne do rozpoznania choroby.

- ► Zmniejszenie ryzyka powikłań u pacjenta,
- zmniejszenie kosztów badań.

Bibliografia

- Zdzisław Pawlak
 Zbiory przybliżone nowa matematyczna metoda analizy danych
- [2] Leszek Rutkowski Metody i techniki sztucznej inteligencji
- [3] Jakub WróblewskiAdaptacyjne metody klasyfikacji obiektów
- [4] Maciej Kopczyński
 Wspomaganie decyzji oparte na sprzętowej realizacji metod zbiorów przybliżonych

Pytania

