Here W_t denotes the standard Wiener process.

1. Find the following stochastic integral:

$$I_t = \int_0^t 3W_u - 5 \, dW_u$$

Find $\mathbb{E}(I_t)$ and $Var(I_t)$

- 2. For the standard Wiener process W_t find
 - (a) $\mathbb{E}(W_6)$, $\mathbb{E}(W_3^7)$, $\mathbb{E}(W_5 \cdot W_6)$
 - (b) $Var(W_6)$, $Var(W_6 + W_5)$
 - (c) $Cov(2W_3 + W_4, W_1)$
- 3. Consider the process $X_t = W_t^3 4tW_t$.
 - (a) Use Ito's lemma to find dX_t
 - (b) Write the corresponding full form
 - (c) Is X_t a martingale?
- 4. Let τ be a stopping time, the first moment of time when W_t hits 2 or -1.
 - (a) Apply Doob's theorem for the martingale W_t and find $\mathbb{P}(W_{\tau}=2)$
 - (b) Apply Doob's theorem for the martingale $Y_t = W_t^2 t$ and find $\mathbb{E}(\tau)$
- 5. In the framework of Black and Scholes model find the price of an asset which pays you $X_2 = \ln(S_1)$ at the moment T = 2. Here S_1 denotes the price of the share at time t = 1. Negative value of X_2 means that you should pay the corresponding amount. The parameters are: starting share price, $S_0 = 100$, risk-free rate, r = 0.1, volatility, $\sigma = 0.2$.