Simple Update Accuracy

Wen-Yuan Liu

February 14, 2024

two ways to perform simple update:

- (1) first get converged D=2 simple update state, then use this D=2 as initial state for D=4 and further perform SU and get converged D=4 SU state. Continue this process, we can gradually get larger D SU states. Denote this process as increasing D: $D=2\rightarrow 4\rightarrow 6\rightarrow \cdots \rightarrow 20$.
- (2) first get converged D=2 simple update state, then use this D=2 as initial state for D=8 and further perform SU and get converged D=8 SU state. Similarly we can use this D=8 SU states as initial state for D=20 SU. After get converged D=20 SU state, similarly we can get converged D=18 SU state, then D=16 SU state... Denote it as decreasing D: $D=20 \rightarrow 18 \rightarrow 16 \rightarrow \cdots \rightarrow 2$. (This is also the way of femionic SU for the Hubbard model.)

The following two figures Figs. 1 and 2 show the results for 4×4 and 10×10 Heisenberg model with open boundary conditions. The cutoff $\chi=2D$ is used to guarantee the χ convergence. 50000 Monte Carlo samples are used, with an energy (persite) variance smaller than 0.0001. Indeed it shows the simple update accuracy suffer a plateau, with an limitation 0.4% for 4×4 and 0.3% for 10×10 .

For the 4×4 Heisenberg model, typically a fully optimized D=8 PEPS is enough to converge the ground state, with zero local magnetic momentum $\langle S_i^z \rangle$ (recover the SU(2) symmetry). But here D=20 SU state still has an obvious nonzero $\langle S_i^z \rangle$, around 0.15. (Note $\langle S_i^z \rangle$ here is shown just for understanding. If system size is large enough, $\langle S_i^z \rangle$ could not be zero because spontaneous symmetry broken, even if the ground state energy is very accurate.)

Figure 1: 4×4 Heisenberg model energies from simple update with D = 4 - 20.

Figure 2: 10×10 Heisenberg model energies from simple update with D = 4 - 20.

Figure 3: Local $\langle S_i^z\rangle$ at the center of 4×4 and 10×10 from simple update with D=4-20.