Reg No.:______ Name:______

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Second Semester B.Tech Degree Examination June 2022 (2019 scheme)

Course Code: EST130

Course Name: BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING (2019 -Scheme)

PART I : BASIC ELECTRICAL ENGINEERING				
Max. Marks: 50 Duration: 9		0 min		
PART A				
	Answer all questions, each carries 4 marks	Marks		
1	Three resistors, 6Ω , 10Ω and 15Ω are connected in star configuration. Obtain the	(4)		
	equivalent resistance in a delta configuration.			
2	Two coils A and B of 500 and 750 turns respectively are connected in series on	(4)		
	the same magnetic circuit of reluctance 1.55×10^6 AT/Wb. Assuming that there	e e		
	is no flux leakage, calculate (i) self-inductance of each coil and (ii) mutual			
	inductance between coils.			
3	Explain the concept of statically induced emf in a magnetic circuit.	(4)		
4	Derive the relation between line and phase voltages in a 3 phase star connected	(4)		
	system.			
5	Define the following terms with an example:	(4)		
	a) Phase b) Phase difference			
	PART B			
	Answer one full question from each module, each question carries 10 marks.			
	MODULE 1			
6	Find the mesh currents i1, i2, i3 in the circuit shown in Figure 1 by performing	(10)		
	mesh analysis			
	10 Ω 40V 20 Ω 10 Ω W W W W W W W W W W W W W W W W W W			

Figure 1

Page 1 of 3

0100EST130052201

OR

Find the node voltages v_1 and v_2 in the circuit given in Fig. 2. Also find the power (10) dissipated in the 4Ω resistor.

Figure 2

MODULE 2

- A core forms a closed magnetic loop of path length 32 cm. Half of this path has a cross-sectional area of 2 cm² and relative permeability 800. The other half has a cross-sectional area of 4 cm² and relative permeability 400. Find the current needed to produce a flux of 0· 4 Wb in the core if it is wound with 1000 turns of insulated wire. Ignore leakage and fringing effects.
 - b Compare electric and magnetic circuits.

(4)

OR

- 9 a An iron ring of cross-sectional area 6 cm² is wound with a wire of 100 turns and (8) has a saw cut of 2 mm. Calculate the magnetising current required to produce a flux of 0·1 mWb. if mean length of magnetic path is 30 cm and relative permeability of iron is 470.
 - b Define the terms relative permeability and flux density and give the relation (2) between the two terms.

MODULE 3

Explain with phasor diagram instantaneous power when alternating current is supplied through a series R-L circuit. Also draw the impedance triangle and write an expression for active, reactive and apparent power in R-L circuit.

OR

A balanced three phase load has per phase impedance of (30 + j50) ohm. if the (10) load is connected across 400 V, 3 phase supply, find (i) Phase current (ii) line current (iii) power supplied to the load when it is connected in (a) star (b) delta.

0100EST130052201

		PART 2: BASIC ELECTRONICS ENGINEERING	
M	ax.	Marks: 50 Duration:	90 min
		PART A Answer all questions, each carries 4 marks	Marks
12		Draw the symbol of resistor and explain any three specifications.	(4)
13		For an NPN Transistor, $\alpha = 0.98$, $I_B = 100 \mu A$, Find I_E and I_C .	(4)
14		Explain the action of shunt capacitor filter.	(4)
15		Explain the working principle of Zener voltage regulator.	(4)
16		Differentiate between amplitude modulation (AM) and frequency modulation	(4)
		(FM).	
		PART B	
		Answer one full question from each module, each question carries 10 marks.	
		MODULE 4	
17	a	Explain with necessary diagrams, the principle of operation of NPN transistor	(5)
	b	Describe the colour coding of a resistor with example.	(5)
		OR	
18	a	Draw the circuit diagram of a common emitter amplifier.	(3)
	b	Explain the input and output characteristics of common emitter configuration	(7)
		with neat diagrams	
		MODULE 5	
19		Describe the components of a DC power supply using a neat block diagram.	(10)
		OR	
20		Explain the working of RC coupled amplifier with circuit diagram and relevant	(10)
		waveforms. Also explain the frequency response of RC coupled amplifier.	
		MODULE 6	
21	a	Explain the concept of cells in cellular communication.	(3)
	b	Draw the block diagram of GSM and explain the principle of operation.	(7)
		OR	F-1
22	a	Describe the principle and working of an antenna.	(6)
	b	What is frequency reuse? Explain with a diagram.	(4)