HW5 ECE542

Ming Dai unityID: mdai3

 $March\ 25,\ 2017$

Q1

$\mathbf{Q2}$

data set setting:

```
dist = 5.0, width = 6, radius = 10
train samples = 2000, test samples = 2000
```

experiments

- training method
 - gradient descent
 - conjugate descent
 - $\ \ Levenverg\text{-}Marquart$
- hidden neuron numbers
 - -5
 - -20

Result

- \bullet testing error
- training time (both epochs and real clock time)
- Repeat measure time = 5
- convergence criterion

$\mathbf{Q3}$

Repeat mearsure number = 5

(a)

 ${\rm hidden~number} = \!\! 5$

plot:

Figure 1: hidden number =5

convergence and termination criteria:

The gradient is less than the threshold 1e-7.

(b)

hidden number = 20

plot:

Figure 2: hidden number =20

convergence and termination criteria:

Reach the gaol of minimum mse of the **training** error.

(c) Comment

Apparently, with more hidden neurons, the fitting of the sin function is better. And with more training samples, the training error will be smaller , but the testing error may be larger due to the overfliting effect.

So when the training sample is not enough, increase the complexity of model can not always give us a better result.

 $\mathbf{Q4}$

 $\mathbf{Q5}$

Q6

Q7