$n\bar{x}^2$) Gemittelte Summe der quadrati- 2 Wahrscheinlichkeitsrechnung Hilfszettel zur Klausur von JD., Seite 1 von 4 schen Abweichung vom Mittelwert BeschreibendeStatistik 1.4.3 Stichprobenstandardabweichungebnisse eines Experiments 1.1 Begriffe R:sd(x) $s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit wie beobachteten Daten $x_i.\bar{x}$ minimiert 1.1.1 Beschreibende/Deskriptive die "quadratische Verlustfunktionöder Statistik

schaulich gemacht.

theorie bewertet.

1.2 Lagemaße

1.2.2 Mittelwert

1.4 Streuungsmaße

1.4.1 Spannweite

Verschiebungssatz:

1.4.2 Stichprbenverians s^2

 $\max x_i$ - $\min x_i$

R:var(x)

malen)

R:mean(x)

Schwerpunkt

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$

1.3 Median

R:median(x)

1.1.3 Grundgesamtheit

1.2.1 Modalwerte x_{mod}

Aus beobachtete Daten werden Schlüsse

Am häufigsten auftretende Ausprägun-

gen (insbesondere bei qualitativen Merk-

ten. Empfindlich gegemüber Ausreißern.

Liegt in der Mitt der sortierten Daten x_i .

 $\left(\frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1})\right)$, falls n gerade

Unempfindlich gegenüber Ausreißern.

 $\frac{x_{n+1}}{2}$, falls n ungerade

die Varianz gibt das Minimum der Feh-Beobachtete Daten werden durch geeiglerquadrate an. nete statistische Kennzahlen charakteri-1.5 p-Quantile siert und durch geeignete Grafiken an-R:quantile(x, p). Teilt die **sortierten** Da- **Schnitt** $E \cap F$: Ereignis E und Ereignis F ten x_i ca. im Verhältnis p: (1-p) d.h. $\hat{F}(x_p) \approx p$; 1. Quartil = 0.25-Quantil; Me-1.1.2 Schließende/Induktive Stadian = 0.5-Quantil; 3. Quartil = 0.75-Quartil;

 $I = x_{0.75} - x_{0.25}$. Ist ein weiterer Streu- 2.2 De Morgan'schen Regeln gezogen und diese im Rahmen vorgegeungsparameter. bener Modelle der Wahrscheinlichkeits-1.7 Chebyshev $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1 \overline{x}$ der Durchschnitt, s > 0 die Stichproben-Standardabweichung von Beobachtungs- Ω : Grundgesamtheit ω :Element oder Obwerten $x_1,...,x_n$. Sei $S_k = \{i, 1 \le i \le n : |x_i - \overline{x}| < k \cdot s\}$; Für eine beliebige Zahl jekt der Grundgesamtheit diskret(<30 Ausprägungen), stetig(≥30 Ausprägun $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{L^2})$ Progen), univariat(p=1), mulivariat(p>1) zent der Daten im Intervall von $\bar{x} - ks$ bis $\overline{x} + ks$. **Speziell:**Für k = 2 liegen mehr als

1.6 Interquartilsabstand I

rung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(S_k)}{n} \le \frac{1}{k^2};$ Die Ungleichheit lifert nur eine sehr grobe Abschätzung, ist aber unabhängig von der Verteilung der Daten. Empirische Regeln 68% der Daten im Bereich um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$. 1.8 Korrelation Grafische Zusammenhang zwischen mul-

tivariaten Daten y und y durch ein Streudiagramm. Kennzahlen zur Unter-

75% der Daten im 2s-Bereich um \bar{x} . Für

3s-Bereich um \bar{x} . **Komplement Formulie**-

k=3 liegen mehr als 89% der Daten im

1.8.1 Empirische Kovarians R:cov(x, y); $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$

 $\frac{1}{n-1}(\sum_{i=1}^{n}(x_iy_i-n\overline{xy})$

suchung des Zusammenhangs:

1.8.2 Empirische Korrellationsko-

R:cor(x, x); $r = \frac{s_{xy}}{s_x x_y}$; Näherungsweise lin.

Zusammenhang zw. x und y, falls $|\mathbf{r}| \approx 1$.

1.8.3 Regressionsgerade y

 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s_x} \text{ und } t = \overline{y} - m \cdot \overline{x}$

2.1 Begriffe **Ergebnisraum** Ω : Menge aller möglichen

Ø heißt unmögliches Ereignis

nicht ein (Komplement von E)

ment von Ω

Ereignis E_i tritt ein.

 $E_1 \cup E_2 = E_1 \cap E_2$

 $\overline{E_1 \cap E_2} = \overline{E}_1 \cup \overline{E}_2$

2.3.1 Satz 2.1

 $P(\overline{E}) = 1 - P(E)$

2.3 Wahrscheinlichkeit

 $0 \le P(E) \le 1$; $P(\Omega) = 1$;

Elementarereignis $\omega \in \Omega$: einzelnes Ele-**Ereignis** $E \subseteq \Omega$: beliebige Teilmenge des Ergebnisraums Ω heißt sicheres Ereignis,

ohne Zurücklegen = $k \le n$. mit Zurücklegen = k > n möglich. mit Beachtung der Reihenfolge, ohne Zurücklegen: $\frac{n!}{(n-k)!}$ **Vereinigung** $E \cup F$: Ereignis E oder Ereigohne Beachtung der Reihenfolge, ohne

nis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein $\bigcap_{i=1}^{n} E_i$ alle Ereignisse E_i treten ein. **Gegenereignis** $\overline{E} = \Omega / E$: Ereignis E tritt **Disjunkte Ereignisse**E und F: $E \cap F = \emptyset$

2.6.1 Satz 2.2 $P(\bigcup_{i=1}^{\infty}) = \sum_{i=1}^{\infty} P(E_i)$, falls $E_i \cap E_j = \emptyset$

$P(E \cup F) = P(E) + P(F) - P(E \cap F)$

Zufallsexperimente mit n gleich wahr-Elementarereignissen. Dann berechnet sich die Wahrscheinlichmit gilt: $P(E) = \frac{AnzahlderfrEgnstigenEreignisse}{AnzahldermglichenEreignisse}$

 $\frac{\textit{MchtigkeitvonE}}{\textit{Mchtigkeitvon}\Omega} = \frac{|E|}{\Omega} \textbf{text}$

Anzahl der Möglihckeiten für ein k-

stufiges Zufallsexperiment mit n_i Vari-

(Übungsaufgabe!!! Ergänzen)

2.4 Laplace-Experiment

keit P(E) für $E \subseteq \Omega$ aus:

2.5 Kombinatorik 2.5.1 Allgmeines Zählprinzip

anten im i-ten Schritt: $n_1 \cdot n_2 \cdot ... \cdot n_k$

2.5.2 Permutationen

Anzahl einer n-elementigen Menge nmaliges Ziehen ohne Zurücklgen mit Beachtung der Reihenfolge: n unterscheid**bare Elemente**: $n! = n \cdot (n-1) t ext b f ... 2 \cdot 1$ k Klassen mit je n_i nicht unterscheidbaren Elementen $n = sum_k^{i=1} n_i$: $\frac{n!}{n_1! \cdot n_2! \cdot n_k!}$

Zurücklegen: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ mit Beachtung der Reihenfolge, mit Zurücklegen: nk ohne Beachtung der Reihenfolge, mit

2.5.3 Anzahl k-elementigen Teil-

mengen einer n-elementigen

Menge k-maliges Ziehen aus

einer n-elementigen Menge

Zurücklegen $\binom{n+k-1}{k}$ 2.6 Bedingte Wahrscheinlichkeit $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F))}{P(F)}$

$P(E \cap F) = P(E|F) \cdot P(F)$ $P(E \cap F) = P(F|E) \cdot P(E)$

2.6.2 Satz der totalen Wahrschein-

Sei $\Omega = \bigcup_{i=1}^n E_i$ mit $E_i \cap E_j = \emptyset$ für $i \neq j$ d.h. die Ereignisse bilde eine disjunkte Zerlegung bzw. eine Partition von Ω . So-

 $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$ Summe der Äste des Wahrscheinlichkeitsbaums zu allen Schnitten $F \cap E_i$

2.6.3 Vierfeldertafel

 $P(F) = P(F \cap E) + P(F \cap \overline{E})$ $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$ E E

P(TAE) P(TAE) P(T)

Satz 2.2 $P(E \cap F)P(E)$ $P(F|E) = P(F) \cdot P(E|F)$ **Tafel** $= P(F) - P(F \cap F)$ Nur Nenner!P(F) aus dem Satz der totalen Wahrscheinlichkeit.

Hilfreich, wenn man man $P(F|E_i)$ kennt,

aber nicht $P(E_k|F)$ Satz 2.4 $P(E_k|F) =$

2.6.5 Stochastische Unabhängig-

Uebung Die Ereignisse E und F heißen (stochastisch) unabhängig, wenn die İnformation über das Eintreten des einen

2.6.4 Formel von Bayes

 $P(F|E_k) \cdot P(E_k)$

 $P(F|E_i) \cdot P(E_i)$

Ereignisses die Wahrscheinlichkeit für das Eintreten des anderen Ereignisses nicht ändert, d.h. falls $P(E|F) = P(E)oderP(E \cap F) = P(E) \cdot P(F)$ $= \frac{P(E \cap F)}{P(F)}$

gig sind, dann sind auch:

Es gilt Falls die Ereignisse E, F unabhän-

E, F unabhängig Bemerkung Stochastische Unabhängigkeit bedeutet nicht notwendigerweise eine kausale Abhängigkeit

· Veranschaulichung mit Venn Dia-

 $P(E) = \frac{1}{2} = P(E(F))$ gramm stock unabhanging P(E)= 1 < P(EIF) • $A, B \neq \emptyset$ und $A \cap B = \emptyset$

 $P(A \cap B) \stackrel{?}{=} P(A) \cdot P(B)$ $\emptyset \neq P(A) \cdot P(B)$ da P(A) > 0 und

=> A, B stochastisch abhängig

3 Zufallsvariable Abbildung des **abstrakte** Ergebnisraums

 Ω auf \mathbb{R} . Eine Abbildung $X:\Omega\to\mathbb{R}$,

 $\omega \mapsto X(\omega) = \text{heißt Zufalls variable (ZV). x}$ ∈ R. heißt Realisation der ZV X.

• Diskrete ZV: $X(\Omega) = x_1,...,x_2 (n \in$

 \mathbb{N}); z.B. X = "Augensumme beim"

• Stetige ZV: $X(\Omega) \subseteq \mathbb{R}$; "z.B. Körpergröße eines Menschen"

3.1 Verteilungsfunktion-allg. Die Wahrscheinlichkeit P(B) für ein Er-

eignis B in R wird zurückgefürht auf die

Währscheinlichkeit der entsprechenden \overline{E}) = $P(E) - P(\overline{F} \cap E)$; $P(\overline{F}|E) = 1 - P(F|E)$ Ereignisse in Ω . Für jedes $X \in \mathbb{R}$ ist die

von JD., Seite 2 von 4 • Dichtefunktion fx $\int_{-\infty}^{\infty} f(x)dx = 1$ Verteilungsfunktion F: $\mathbb{R} \to [0,1]$ einer • Verteilungsfunktion F(x) ist stetig ZV X definiert durch:

 $F(x) = P(X \le x)$ • $0 \le F(x) \le 1$

• $\lim_{x \to -\infty} F(X) = 0 \lim_{x \to \infty} F(x) = 1$

· monoton wachsend

Hilfszettel zur Klausur

- P(X > x) = 1 F(x)• $P(a < X \le b) = F(b) - F(a)$
- 3.2 Diskrete ZVs Für eine diskrete ZV X mit $X(\Omega) =$ $x_1,...,x_n$ (n endlich oder abzählbar

funktion definiert durch:

- $p(x) = \begin{cases} P(X = x_i), \text{falls } x_i \in X(\Omega) \\ 0, sonst \end{cases}$ Es gilt:
- $F(x) = (P(X \le x) = \sum_{x_i \le x} p(x_i)$ • F(x) ist eine rechtseitig stetige
- Treppenfunktion mit Sprüngen bei der Realisation von x_i . 3.3 Stegite ZVs
- Stetige ZV X ist die Wahrscheinlichkeitsdichte f $f: \mathbb{R} \to [0, \infty]$ definiert durch $P(a < X < b) = \int_{a}^{b} f(x) dx$
- $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ und
- F'(x) = f(x)• F(x) ist stetig & $P(a < X \le b) =$ $P(a \le X \le b)$ wegen P(X = a) = 0
- 3.4 Verteilungsfunktion
- Untergrenze Es wird normal mit Inte-3.5 Zusammenfassung 3.5.1 Diskrete ZV

 $X \leq b$

- Wahrscheinlichkeitsverteilung $p(x) \sum_{i=1}^{n} p(x_i) = 1x_i$ ist Realisation der ZV.
- Verteilungsfunktion F(x) ist rechtsseitig stetige Treppenfunktion. **Sprunghöhen:** $P(X = x_i) = F(x_i) \lim \neq 0$

• $P(a < X \le b) = F(b) - F(a) \ne P(a \le b)$

- 3.6 Erwartungswert Der Erwartungswert E[X] = einer ZV X ist der Schwerpunkt ihrer Verteilung or der durchschnittliche zu erwartende
- Wert der ZV. • diskrete ZV: $E[X] = \sum_{i=1}^{n} x_i \cdot p(x_i)$ • stetige ZV: $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$
- unendlich) ist die Wahrscheinlichkeits- Eigenschaften von E[X]: • E[b] = b• E[aX + b] = aE[X] + b• $E[X_i + ... + X_n] = \sum_{i=1}^n E[X_i]$

ZV ist konstant. E[X] verhält sich linear.

mit F'(x) = f(x); $P(X = x_i) = 0$

• $P(a < X \le b) = F(b) - F(a) = P(a \le b)$

 $X \le b$) = $F(a \le X < b)$ = P(a < X < b)

• $\sum_{i=1}^{n} x_i$ 3.6.1 Satz 3.1

3.5.2 Stetige ZV

Sei Y = g(X) eine Funktion der ZV X.

Dann gilt:

 $\sum_{i=1}^{n} g(x) \cdot p(x_i)$ • für stetige ZV: E[g(X)] = $\int_{-\infty}^{\inf fty} g(x) \cdot f(x) dx$. Das vertauschen von E und g nur bei linearen

• für diskrete ZV:E[g(X)] =

3.7 Varianz

 $\frac{1}{n}\sum_{i=1}^{n}E[x_i] = \frac{1}{n} \cdot n \cdot \mu = \mu$ Die Varianz einer ZV X mit µ ist ein quadratisches Streungsmaß. $\sigma^2 = Var[X] =$ $E[(X-)^2]$ falls x stetig $\int_{-\infty}^{\infty} (x-\mu)^2 \cdot f(x)$

Funktionen möglich. \Rightarrow g(E[X])

g(X)

Die Standardabweichung $\sigma = \sqrt{Var[X]}$ hat im Gegensatz zur Varianz die gleiche Dimension von die ZV X. • Var[b] = 0

- $Var[aX + b] = a^2 Var[X]$
- 3.7.1 Satz 3.2

 $Var[X] = E[X^2] - (E[X])^2$ Beim Minuend wird beim Erwartungswert nur das einfach stehende x quadriert nicht f(x)!!! 3.8 Z-Transformation, Standardisie-

Sei X eine ZV mit μ und σ . Dann ist $Z = \frac{X - \mu}{\mu} = \frac{x}{\mu} - \frac{\mu(konstant)}{\mu(konstant)}$

den gilt: $F(x_p) \ge p$. p-Quantil einer stetigen ZV mit streng monoton wachsenden $F(x)x_p = F^{-1}(p)d$. h. umkehrbar.

3.12 Quantile

Ziehen**mit** Zurücklegen; scheinlichkeit $P(x = k) = \binom{n}{k} \cdot p^k$ $(1 - p)^{n-k}, k \in [0, 1, ..., n]$; Verteilung $X \sim B_{n,p}$; E[X] = np; Var[X] =np(1 - p); **R:** dbinom(k,n,p)=P(X=k) \triangleq Wahrscheinlichkeits-/Dichtefunktion; pbinom(k,n,p)=F(k)≜Verteilungsfunktion;

4 Spezielle Verteilung

 $p - p^2 = p(1 - p);$

4.1 Diskrete Verteilung

4.1.1 Bernouilliverteilung

4.1.2 Binominal verteilung

Indikatorvariable mit den Werten 1 bei

Erfolg und 0 bei Misserfolg; Wahrschein-

 $p(1); Var[X] = p(1-p) = E[X^2] - (E[X])^2 =$

Anzahl der Erfolge beim n-maligen

bedeuten. Gesamtumfang = M + N;

Wahrscheinlichkeit $P(\bar{X} = k) =$

 $\frac{\binom{M}{k}\cdot\binom{N}{n-k}}{\binom{M+N}{k}}, k \in \{0,1,...,min\{n,M\}\};$ **Ver**-

teilung $X \sim H_{M,N,n}$; $E[X] = n \frac{M}{M+N}$;

figkeit punktförmiger Ereignisse in ei-

nem Kontinuum. Die durchschnittlich

 $\sum_{i=1}^{n} \sum_{i=1}^{i} Cov[X_i, X_i]; Var[X_1 +$ qbinom(q,n,p)=q-Quantil; rbinom(k,n,p)≘kbinomialverteilte Zu- X_2] = $Var[X_1] + Var[X_2] + 2Cov[X_1, X_2]$ fallszahlen; • Falls X_i, X_i paarweise unabhängig 4.1.3 Hypergeometrische Vertei-!!!: $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$

> Anzahl der Erfolge beim n-maligen Ziehen ohne Zurücklegen aus einer Menge mit M Elementen, die Erfolg bedeuten, und N Elementen, die Misserfolg

 $E[aX + b] = AE[X] + b; EX_1 + ... + E_n =$ $\sum_{i=1}^{n} E[X_i];$ Falls X_1, X_2 unabhängig: $E[X_i] = \mu = E[\overline{X}] = E[\frac{1}{n}(X_1 + ... + X_n)] =$

3.9 Kovarianz

• Cov[X, Y] = Cov[Y, X]

• Cov[aX, Y] = aCov[X, Y]

Die Kovarianz zweier ZV (X, Y)

E[(X - E[X])(Y - E[Y]) Die Kovarianz

beschreibt die Abhängigkeit zweier ZV X

und Y. Je stärker diese Korrelieren, desto

(betragsmäßig) größer ist die Kovarianz.

Falls X, Y stochastisch unabhängig \Rightarrow

3.10.1 Varianz einer Summe von

• $Var[X_i + ... + X_n]$

 $Cov[X, Y] = E[XY] - E[X] \cdot E[Y]$

definiert durch Cov[X, Y] =

• Cov[X,X] = Var[X]

Eigenschaften:

Cov[X,Y]=0

3.10 Satz 3.3

3.11 Overview $\mu \sigma$

3.11.1 E[X]

3.11.2 Varianz $Var[aX + b] = a^2 Var[X]$

Falls X_i , X_j parweise unabhängig:

 $Var[X_i] = \sigma^2 = Var[\overline{X}] = Var[\frac{1}{n}(x_1 + ... +$

 $[x_n] = \frac{1}{n^2} \sum_{i=1}^n Var[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}$

 $Va[X_1 + ... + X_n] = \sum_{i=1}^{n} Var[X_i]$

Sei X eine ZV mit Verteilungsfunktion F(x) und 0 . Dann ist das p-Quantil definiert als der Wert $x_p \in \mathbb{R}$ für

 $\frac{M}{M+N}$ $\hat{=}$ Tref ferwahrscheinlichkeit; $Var[X] = n \frac{M}{M+N} (1 - \frac{M}{M+N}) \frac{M+N-n}{M+N-1};$ $\rightarrow 1$ falls n klein im Verhältnis zu M+N; **R**: dhyper(k, M, N, n) = P(X = k); phyper(k, M, N, n) = F(k);

4.1.4 Poisson-Verteilung Verteilung der seltenen Ereignisse Häu-

lung

zu erwartende Anzahl der Erfolge λ pro Maßeinheit (i. a. Zeiteinheit) sei bekannt. $k \in \mathbb{N}_0 \rightarrow diskret$ Wahrscheinlich- $\mathbf{keit}P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} \text{ mit } \sum_{k=0}^{\infty} P(X=k)$ k) = 1, $da \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$; Verteilung $X \sim P_{\lambda}$; $E[X] = \lambda, da \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} =$

Alle Werte $\{x_1,...,x_n\}$ einer ZV X sind gleich wahrscheinlich; **Wahrscheinlich**-

4.1.5 Gleichverteilung

ppois $(k, \lambda) = F(k)$;

 $Var[X] = \lambda \mathbf{R} : \frac{d}{pois}(k, \lambda) = P(X = k);$

lichkeit:P(X = 1) = p, P(X = 0) = 1 - p;**Verteilung:** $X \sim B_{1,p}$ p ist Erfolgswahrscheinlichkeit; $E[X] = p = \sum x_i \cdot p(x_i) = 1$.

keit $P(X = x_k) = \frac{1}{n}$; Verteilung

 $X \sim U_{\{x_1,...,x_n\}}; E[X] = \frac{1}{n} \sum_{k=1}^n x_k = \overline{x};$ $Var[X] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \overline{x}^2$; **R:** sample(1:

(N,n) n Zufallszahlen zwischen 1 und 4.2 Gleichverteilung

Zufallszahlen aus einem Intervall [a, b]; **Dichte:** $f(x) = \frac{1}{h-a}$ für $x \in [a,b]$;

4.2.1 Stetige Gleichverteilung

zahlen zwischen 0 und 1; runi f(n, a, b) =

Dichte:

Schätz-

n Zufallszahlen zwischen a und b;

Verteilung: $X \sim U_{[a,b]}$; $E[X] = \frac{a+b}{2}$; $Var[X] = \frac{(b-a)^2}{12} \mathbf{R} : \frac{d}{dunif}(x, a, b) = f(x);$ puni f(x, a, b) = F(x); runi f(n) = n Zufalls-

4.2.2 Normalverteilung

Beschreibt viele reale Situationen, ist insbesondere Grenzverteilung

unabhängiger Summen;

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right);$ Verteilung:

 $X \sim N_{u.\sigma^2}$; $E[X] = \mu$; $Var[X] = \sigma^2$; **R**:

 $dnorm(x, \mu, \sigma) = f(x); pnorm(x, \mu, \sigma) =$ F(x); qnorm (q, μ, σ) : q - Quantil; Maxi-

malstelle von f(x) bei $x = \mu$; Wende**stelle** von f(x) bei $x = \mu \pm \sigma$; E[aX + b] =

aE[X] + b; $Var[aX + b] = a^2Var[X]$; $X \sim N_{\mu,\sigma^2} \Rightarrow aX + b \sim N_{a\mu+b,a^2\sigma^2}$ und

 $\frac{X-\mu}{\sigma}$ ~ $N_{0,1}$; X_1 ~ N_{μ_1,σ_1^2} und X_2 ~ $N_{\mu_2,\sigma_2^2} \Rightarrow X_1 + X_2 \sim N_{\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2};$

 X_1, X_2 stochastisch unabhängig

4.2.3 Standardnormalverteilung

Dichte: $\varphi(x) = \frac{1}{\sqrt{2}}e^{(-\frac{1}{2}x^2)}$; Verteilung

 $\phi(x) = \int_{-\infty}^{x} \varphi(t)dt$; Quantile: $\phi(-x) = 1$ $\phi(x) \Rightarrow -x_p = x_{1-p} \text{ z.B. } -x_{0.25} = x_{0.75};$

 $e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} = \lambda;$ werte: $Z = \frac{x-\mu}{\sigma} \sim N_{0,1}$

Wahr-

4.2.4 Exponentialverteilung

Modellierung von Lebensdauern, Wartezeiten Sei $Y_t \sim P_{\lambda t}$ im Intervall [0,t]von t Zeiteinheiten, dann beschreibt die Exponentialverteilung die Wartezeit X bis zum Eintreten eines Ereignisses; Dichte- und Verteilungsfunktion: $f(x) = \lambda e^{-\lambda x} (x \ge 0)$ und F(x) = 1 $e^{-\lambda x}$; Verteilung: $X \sim Exp_{\lambda}$; E[X] = $\frac{1}{1} \Rightarrow$ Berechnung mit partieller Integration; $Var[X] = \frac{1}{12}$; **R**: $dexp(x, \lambda) = f(x)$; $pexp(x, \lambda) = F(x)$; **Eigenschaft:** Eine ex-

ponentialverteile ZV X ist gedächtnis-

4.2.5 Chiquadrat-Verteilung

 $Z_1,...,Z_n$ seien unabhängige, standardnormalverteilte ZV \Rightarrow X = $Z_1^2 + + Z_n^2$ hat Chiquadratverteilung mit n Freiheitsgraden; Anwendungsmodell: Summen unabhängiger, standardnormalverteilter ZV; **Verteilung:** $X \sim \chi_n^2$; E[X] =n; Var[X] = 2n; **R**: $\frac{d}{d}chisq(x,n) = f(x)$; ppchisq(x,n) = F(x); Eigenschaft: $X_1 \sim$ $\chi_{n_1}^2$ und $X_2 \sim \chi_2^2 \Rightarrow X_1 + X_2 \sim \chi_{n_1 + n_2}$

4.2.6 t-Verteilung

 $Z \sim N_{0,1}$ und $X \sim \chi_n^2 \Rightarrow Y =$ $\frac{Z}{X}$ ist t-verteilt mit n Freiheitsgra-

den; Anwendungsmodell: Schätz- und Testverfahren bei unbekannter Varianz; Verteilung: $Y \sim t_n$; E[Y] = 0 für n > 1; $Var[Y] = \frac{n}{n-2}$ für n > 2; **R**: dt(y,n) = f(x); pt(y,n) = F(x); Eigenschaf**ten:** Für $n \to \infty$: $t_n \to N_{0,1}$; Achsensym--qnorm(p) =

Abbildung Dichtefunktion

5 Zentraler Grenzwertsatz

 $\mu\sigma^2$ bekannt aber nicht die Verteilung

Seien X_i (i = 1,...,n) unabhängige identische verteilte (i.i.d) ZV mit Erwartungswert μ und Varianz σ^2 . Dann gilt für hinreichend große n (>30) und $\overline{X} = \frac{1}{n} \sum_{i=1}^{n}$ näherungsweise:

$$\sum_{i=1}^{n} X_{i} \sim N_{n\mu,n\sigma^{2}} \& \frac{\sum X_{i} - n\mu}{\sqrt{n \cdot \sigma}} \sim N_{0,1}$$

$$\sum_{i=1}^{n} X_{i} \sim N_{0,1}$$

 $\sum X_i$ bezieht sich auf Y; $\sum X_i - n\mu$ bezieht sich auf X_i ; $\overline{X} \sim N_{\mu,\frac{\sigma^2}{n}} & \overline{X} - \mu \sim N_{0,1}$;

Der Satz gilt sogar allgemeiner, wenn die X_i abhängig und nicht identisch verteilt sind, vorausgesetzt kein X_i ist deutlich dominanter?! als die anderen.Für die Voraussetzung des ZGW ist, dass die X_i nicht normalverteilt sein müssen., damit $\sum_{i=1}^{n} X_i$ oder \overline{X} bei **hinreichend** großem n normalverteilt sind. Faustregel: **Je** schiefer die Verteilung der X_i desto größer muss n sein: n>30: falls die unbekannte Verteilung ohne markanten Ausreißer, aber schief ist (Exponentialverteilung); n>15: falls die unbekannte Verteilung annähernd symmetrisch ist(Binomialverteilung); $n \le 15$: falls die unbekannte Verteilung annähernd normalverteilt ist;

5.2 ϕ

5.3
$$\phi^{(}-1$$

Aufgabentypen: Seien X_i i.i.d. ZV mit μ und σ^2 , aber unbekannter Verteilung. Dann sind $Z_1 = \frac{\sum X_i - n\mu}{\sqrt{n}\sigma}$ und $Z_2 = \frac{\overline{X} - \mu}{\sigma}$ näherungsweise standardnormalverteilt.

 $\phi^{-1}(p) = x_n;$

- Es lassen sich Wahrscheinlichkeiten für $\sum X_i$, X, Z_1 oder Z_2 berech-
- Es lässt sich n bestimmen, so dass, zu vorgegebener Schranke *k* und Wahrscheinlichkeit p gilt: $P(Z_i >$ $k \ge p$ or $P(-k \le Z_i \le k) \ge p$

5.4 Stichprobenverteilungen für normalverteilte Grundgesamtheiten 5.4.1 Stichprobenmittel

Die Stichprobenfunktion $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ ist eine erwartungstreue Schätzfunktion für Erwartungswert μ , d. h. $E[X] = \mu$

5.4.2 Stichprobenvarianz

Die Stichprobenfunktion S² $\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = \frac{1}{n-1} (\sum_{i=1}^{n} X_i^2 - X_i^2)$ $n\overline{X}^2$)ist eine erwartungstreue Schätzfunktion für die Varianz σ^2 , d. h. $E[S^2] = \sigma^2; E[\overline{X}] = E[\frac{1}{n}\sum X_i] = \frac{a^m}{a^n} = a^{m-n}textfra \neq 0$ $\frac{1}{n}E[\sum X_i] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}n\mu = \mu; \quad "(a^m)^n = (a^n)^m = a^{m \cdot n}$ $Var[\overline{X}] = Var[\frac{1}{n}\sum X_i] = \frac{1}{n^2}Var[\sum X_i] = a^n \cdot b^n = (a \cdot b)^n$ $\frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$; Seien $X_i(i=1,...,n)$ un- $\frac{a^n}{b^n} = (\frac{a}{b})^n$ für $b \neq 0$ äbhängige normalverteilte ZV mit Erwartungswert μ und Varianz σ^2 . Dann

gilt: bei unbekannter Varianz: $\frac{\overline{X}-\mu}{\sigma}\sqrt{n} \sim N_{0,1}$; $\frac{(n-1)S^2=\sum (x-\overline{x})^2}{\sigma^2\Rightarrow \text{Standardisierung}} \sim \chi^2_{n-1}$; Bei 7.5 Wurzel

unbekannter Varinanz: $\frac{X-\mu}{S}\sqrt{n} \sim t_{n-1}$;

6 Konfidenzintervall

7 Allgemein 7.1 Symbole

Standardabweichung $\hat{=}\sigma$

7.2 Ableitungsregeln

Faktorregel $y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$; Summerregel $y = f_1(x) + f_2(x) + ... +$ $f_n(x) \Rightarrow y' = f_1'(x) + f_2'(x) + ... + f_n'(x)$; **Produktregel** $y = u \cdot v \Rightarrow y' = u' \cdot v + v' \cdot u$; $y = u \cdot v \cdot x \Rightarrow y' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot x';$ Quotientenregel $y = \frac{u}{v} \Rightarrow y' = \frac{u' \cdot v - u \cdot v'}{v^2}$; Kettenregel $f'(x) = F'(u)u'(x) = \hat{F}'(u)$:

Ableitung der Äußeren Funktion; u'(x): Ableitung der Inneren Funktion

7.3 Integralregel, elementar

Faktorregel $\int_a^b C \cdot f(x) dx = C \cdot \int_a^b f(x) dx$; Summerregel $\int_a^b [f_1(x) + ... + f_n(x)]dx =$ $\int_a^b f_1(x)dx + ... + \int_a^b f_n(x)dx$; Vertauschungsregel $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$; $\int_a^a f(x)dx = 0; \quad \int_a^b f(x)dx = \int_a^c f(x)dx +$ $\int_{a}^{b} f(x)dx \text{ für } (a \le c \le b);$

7.4 Potenzen

$$\begin{array}{l}
0 = 1, a^{-n} = \frac{1}{a^{n}} \\
m \cdot a^{n} = a^{m+n} \\
\frac{m}{n} = a^{m-n} text f r a \neq 0 \\
a^{m})^{n} = (a^{n})^{m} = a^{m \cdot n} \\
n \cdot b^{n} = (a \cdot b)^{n} \\
\frac{n}{n} = (\frac{a}{b})^{n} \text{ für } b \neq 0
\end{array}$$

$$\begin{array}{l}
m, n \in \mathbb{N}^{*}; \\
a, b \in \mathbb{R} \\
a > 0, b > 0 : \\
beliebig reele \\
Exponenten \\
a > 0 : a^{b} \\
= e^{b \ln a}
\end{array}$$

$$(3)$$

$$\begin{array}{l} \sqrt{a^2} = |a|; \, b = a^n \Leftrightarrow a = \sqrt[n]{b}; \, \sqrt[n]{a} = a^{\frac{1}{n}}; \\ \sqrt[n]{a \pm b} \neq \sqrt[n]{a \pm \sqrt[n]{b}} \end{array}$$

$$\sqrt[n]{a^{m}} = (a^{m})^{\frac{1}{n}} = a^{\frac{m}{n}} = (a^{\frac{1}{n}})^{m} = (\sqrt[n]{a})^{m}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = {}^{m \cdot \sqrt[n]{a}}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$$

$$\sqrt[n]{a} = \frac{a^{\frac{1}{n}}}{\sqrt[n]{b}} = (\frac{a}{b})^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}} \text{ für } b > 0$$

$$\Rightarrow m, n \in \mathbb{N}^*; a \ge 0, b \ge 0$$