New stochastic sketching methods for Big Data Ridge Regression

Cheikh Saliou Touré

Student at ENS Cachan

Tutor: Robert Gower

Inria Paris (Sierra department)

July, 2017

Abstract

//

Contents

1	Randomized Newton Method	2
	1.1 Algorithm	2
	1.2 Convergence rate (draft)	2
	1.2.1 General case	2
	1.2.2 Uniform case	3
2	Randomized orthonormal systems	4
	2.1 Algorithm	4
	2.2 Convergence rate (draft)	4
3	Count-min Sketches	6
	3.1 Algorithm	6
		6
4	Conclusion	7

Randomized Newton Method

Algorithm 1.1

1.2 **Convergence rate (draft)**

1.2.1 General case

Throughout the computations, we denote by $Z = AI_C^T (I_C AI_C^T)^{-1} I_C A$. That is a quantity that intervenes in the computation of the convergence rate.

The convergence rate is defined by $\rho = 1 - \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})$.

By defiition,
$$A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}=\sum_i p_iA^{\frac{1}{2}}I_{C_i}^T(I_{C_i}AI_{C_i}^T)^{-1}I_{C_i}A^{\frac{1}{2}}$$

for any $i \in \{1,\ldots,n\}$, $A^{\frac{1}{2}}I_{C_i}^T(I_{C_i}AI_{C_i}^T)^{-1}I_{C_i}A^{\frac{1}{2}}$ is a projection matrix and then its eigenvalues are a nonempty subset of $\{0, 1\}$.

Since λ_{max} is convex, we obtain that :

$$0 \leqslant \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \leqslant \lambda_{max}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \leqslant \sum_{i} p_{i}\lambda_{max}(A^{\frac{1}{2}}I_{C_{i}}^{T}(I_{C_{i}}AI_{C_{i}}^{T})^{-1}I_{C_{i}}A^{\frac{1}{2}}) \leqslant 1.$$

Denote by $C = (I_{C_1}^T, \dots, I_{C_r}^T)$.

$$A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}} = (A^{\frac{1}{2}}\mathbf{C}D)(D\mathbf{C}^TA^{\frac{1}{2}}) \text{ where } D = \text{ diag}(\sqrt{p_1}(I_{C_1}AI_{C_1}^T)^{-\frac{1}{2}},\dots,\sqrt{p_r}(I_{C_r}AI_{C_r}^T)^{-\frac{1}{2}})$$

Proposition 1.2.1
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \binom{n-1}{s-1}\frac{\lambda_{min}(A)}{\lambda_{max}(A)}\min_{i}p_{i}$$

Proof:

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})\geqslant \lambda_{min}(\mathbf{C}^TA\mathbf{C})\lambda_{min}(D^2)\\ \lambda_{min}(D^2)=\min_i\frac{p_i}{\lambda_{max}(I_{C_i}AI_{C_i}^T)}\geqslant \min_i\frac{p_i}{\lambda_{max}(I_{C_i}^TI_{C_i})\lambda_{max}(A)}\geqslant \min_i\frac{p_i}{\lambda_{max}(A)}, \text{ since for any } i\in\{1,\ldots,n\}, \text{ for any } x \text{ in } \mathbb{R}^n\left\langle I_{C_i}^TI_{C_i}x\,|\,x\right\rangle=\|I_{C_i}x\|^2\leqslant \|x\|^2 \text{ and then } \lambda_{max}(I_{C_i}^TI_{C_i})\leqslant 1.$$

Therefore,
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})\geqslant \min_{i}p_{i}\frac{\lambda_{min}(\mathbf{C}^{T}A\mathbf{C})}{\lambda_{max}(A)}=\min_{i}p_{i}\frac{\lambda_{min}(A)\lambda_{min}(\mathbf{C}\mathbf{C}^{T})}{\lambda_{max}(A)}.$$

$$\mathbf{C}\mathbf{C}^{T}=\sum_{i}I_{C_{i}}^{T}I_{C_{i}}=\binom{n-1}{s-1}I_{n}\text{ and then we obtain that :}$$

$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \binom{n-1}{s-1} \frac{\lambda_{min}(A)}{\lambda_{max}(A)} \min_{i} p_{i}$$

1.2.2 **Uniform** case

For any i, $p_i = \frac{1}{\binom{n}{s}}$ is the uniform probability of choosing s rows uniformly on $\{1, \ldots, n\}$, knowing that s is the sketch size. That leads towards that corollary of **Proposition 1.2.1**:

Corollary 1.2.2
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)}$$

page 3 ● □ Cheikh Touré

2. Randomized orthonormal systems

This type of randomized system is well-suited for big data regression, thanks to the efficiency of matrix multiplication used in this method.

When the dimension of our matrix A is n, we denote by H_n the Hadamard matrix (well defined if the dimension of the problem n is a power of 2) defined recursively as :

$$H_p = ..$$
 and $H_1 = 1.$

The Hadamard sketch consists of choosing a sketch matrix $S \in \mathcal{M}_{s,n}$ where s is called the sketch size of the problem, as follows:

we sample s i.i.d. rows of the form $s^T = e_j^T H_n D$ with probability $\frac{1}{n}$ for $j = 1, \ldots, n$, where $(e_j)_j$ forms a canonical base of \mathbb{R}^n , and $D = diag(\nu)$ is a diagonal matrix of i.i.d. Rademacher variables $\nu \in \{-1,1\}^n$.

2.1 Algorithm

2.2 Convergence rate (draft)

Now we denote by $Z = AS^T(SAS^T)^{-1}SA$, where S is our Hadamard random matrix.

The convergence rate is then $\rho = 1 - \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}})$

Notice that $S_i = I_{C_i}HD$. where $(C_i)_i$ are uniform random subsets of $\{1, \ldots, n\}$ of size s, as defined in the $Randomized\ Newton$ section 1.

Let's condition on the Rademacher diagonal matrix D.

Define by $\tilde{A}_D = \frac{H}{\sqrt{n}} DAD \frac{H^T}{\sqrt{n}}$. We obtain that :

$$\begin{split} A^{-\frac{1}{2}}E[Z|D]A^{-\frac{1}{2}} &= E[A^{\frac{1}{2}}S^{T}(SAS^{T})^{-1}SA^{\frac{1}{2}}|D] \\ &= \sum_{i} p_{i}A^{\frac{1}{2}}DH^{T}I_{C_{i}}^{T}(I_{C_{i}}HDADH^{T}I_{C_{i}}^{T})^{-1}I_{C_{i}}HDA^{\frac{1}{2}} \\ &= A^{\frac{1}{2}}DH^{T}E[I_{C}^{T}(I_{C}\tilde{A}I_{C}^{T})^{-1}I_{C}]HDA^{\frac{1}{2}} \\ &= nDH^{-1}\tilde{A}^{\frac{1}{2}}E[I_{C}^{T}(I_{C}\tilde{A}I_{C}^{T})^{-1}I_{C}]\tilde{A}^{\frac{1}{2}}n(H^{T})^{-1}D \\ &= DH^{T}\tilde{A}^{\frac{1}{2}}E[I_{C}^{T}(I_{C}\tilde{A}I_{C}^{T})^{-1}I_{C}]\tilde{A}^{\frac{1}{2}}HD. \end{split}$$

(following to be changed)

Hence:

$$\rho = 1 - \lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) = 1 - \lambda_{min}(\tilde{A}^{\frac{1}{2}}E[I_C^T(I_C\tilde{A}I_C^T)^{-1}I_C]\tilde{A}^{\frac{1}{2}})$$

We recognize the convergence rate in the Randomized Newton Method and then, denoting by $\rho_{Newton}(M)$ the convergence rate of the Newton method associated with the definite positive matrix M, we obtain that :

 $\rho = 1 - \lambda_{min}(\tilde{A}^{\frac{1}{2}}E[I_C^T(I_C\tilde{A}I_C^T)^{-1}I_C]\tilde{A}^{\frac{1}{2}}) = 1 - (1 - \rho_{Newton}(\tilde{A})) = \rho_{Newton}(\tilde{A}) = \rho_{Newton}(A), \text{ since } A$ and \tilde{A} have the same eigenvalues.

Proposition 2.2.1
$$\lambda_{min}(A^{-\frac{1}{2}}E[Z]A^{-\frac{1}{2}}) \geqslant \frac{s}{n} \frac{\lambda_{min}(A)}{\lambda_{max}(A)}$$

Cheikh Touré page 5 ● □

3. Count-min Sketches

Algorithm 3.1

3.2 **Convergence rate**

 ${\cal S}$ is constructed as follows :

For every $i \in \{1, \ldots, n\}$, l is chosen uniformly on $\{1, \ldots, n\}$ and ϵ uniformly on $\{-1, 1\}$, then S is updated in his l^{th} row as: $S(l,:) := S(l,:) + \epsilon \, e_i^T$, where e_i^T is the i^{th} coloumn of the identity matrix.

4. Conclusion

References

[1] ROBERT GOWER AND PETER RICHTARIK, <u>Randomized iterative methods for linear systems</u>, SIAM, (2015).