Algebra General Exam

August 19, 2013

Directions.

- Please show all your work and justify any statements that you make
- State clearly and fully any theorem you use
- Vague statements and hand-waving arguments will not be viewed favorable
- You may assume the statement for any early part of a problem in order to do a later part

Do each problem on a separate sheet of paper

- (1) Let p be an odd prime and G a nonabelian group of order p^3 .
 - (a) (4 points) Prove that |Z(G)| = p
 - (b) (4 points) Prove that Z(G) = [G, G].
- (2) (5 points) Let K and L be fields of characteristic 0. Prove that $K \bigotimes_{\mathbb{Z}} L$ is nonzero.
- (3) If G is a group, then there is a natural action of Σ_n on $G^{\times n}$ given by permuting the factors. Define the wreath product $G \wr \Sigma_n$ to be

$$G \wr \Sigma_n = G^n \rtimes \Sigma_n$$

using this action of Σ_n on G^n .

(a) (3 points) If X is a G-set, show that X^n is naturally a $G \wr \Sigma_n$ set by combining two actions: G^n on X^n via

$$(g_1,\ldots,g_n)\cdot(x_1,\ldots,x_n)=(g_1x_1,\ldots,g_nx_n)$$

for $(g_1, \ldots, g_n) \in G^n$ and $(x_1, \ldots, x_n) \in X^n$, and Σ_n on X^n via

$$\sigma \cdot (x_1, \dots, x_n) = (x_{\sigma^{-1}(1)}, \dots, x_{\sigma^{-1}(n)}),$$

where $\sigma \in \Sigma_n$.

- (b) (3 points) Show that $\Sigma_n \wr \Sigma_m$ embeds into Σ_{nm} .
- (c) (3 points) Identify $\Sigma_2 \wr \Sigma_2$ with a more familiar group
- (d) (2 points) Determine the order of $G \wr \Sigma_n$ as a function of the orders of G and n
- (e) (2 points) Bonus: Determine (no proof needed) the p-Sylow subgroup of $\Sigma_{p^{k+1}}$ as a function of k. Provide no more than a sentence of justification.
- (4) Let K be a field, and let $M_n(K)$ be the ring of $n \times n$ matrices with entries in K. For this problem, let $D \in M_n(K)$ be diagonalizable (over K) and, for each eigenvalue λ of D, let

$$E_{\lambda} := \{ v \in K^n \mid Dv = \lambda v \}$$

be the corresponding eigenspace.

- (a) (4 points) For any $A \in M_n(K)$, show that AD = DA if and only if $A(E_{\lambda}) \subseteq E_{\lambda}$ for all eigenvalues λ of D. (Hint: For the "if" part, you may use that AD = DA if ADv = DAv for all $v \in K^n$.)
- (b) (4 points) If A is also diagonalizable and AD = DA, show that A and D are simultaneously diagonalizable (that is, there is a matrix P such that both PAP^{-1} and PDP^{-1} are diagonal). Provide a counter-example showing that this need not be the case if the matrices do not commute.
- (c) (3 points) If D is invertible, show that the centralizer of D in $GL_n(K)$ is isomorphic to a direct product $GL_{n_1}(K) \times \ldots \times GL_{n_r}(K)$, where $n_1 + \ldots + n_r = n$. Also show that each of these products can be realized as the centralizer of some (appropriately chosen) D, provided that K has at least n + 1 elements.
- (5) Let F be a field and $f(x) = x^4 + 1 \in F[x]$.
 - (a) (3 points) Determine for which characteristic of F f(x) is separable.
 - (b) (4 points) Assume that f(x) is separable and irreducible over F, and denote by K the splitting field of f(x) over F. Determine the Galois group Gal(K|F).
 - (c) (4 points) If f(x) is irreducible over F, prove first that F is infinite, and then that the characteristic of F is 0.
- (6) Let p be a prime and ζ a primitive p^{th} root of unity (in \mathbb{C}). Set $R := \mathbb{Z}[\zeta]$ and $K := \mathbb{Q}(\zeta)$.
 - (a) (2 points) Show that R is a free \mathbb{Z} -module and $R \cap \mathbb{Q} = \mathbb{Z}$.
 - (b) (2 points) Identify $Gal(K|\mathbb{Q})$ and show that the natural action of $Gal(K|\mathbb{Q})$ on K sends elements of R to itself (hence giving an action of $Gal(K|\mathbb{Q})$ on R).
 - (c) (3 points) For any two integers m, n which are not divisible by p, show that the quotient $(1 \zeta^m)/(1 \zeta^n)$ is an element of R.
 - Hint: Reduce to the case where n divides m.
 - (d) (2 points) Verify that $p = (1 \zeta) \dots (1 \zeta^{p-1})$. Hint: manipulate the cyclotomic polynomial associated to ζ .
 - (e) (3 points) Prove that 1ζ is not a unit of R.
 - (f) (2 points) Prove (using norms) that 1ζ is an irreducible element of R. (It is true, but harder to prove, that 1ζ is in fact a prime element of R.)