Question #1

Practical Buck converter

Conditions

$$V_g = 10[V]$$

$$R_{load} = 10[\Omega]$$

$$freq = 150[kHz]$$

$$Duty = 0.6$$

$$L = 200[\mu H]$$

$$C = 660[\mu F]$$

$$R_L = 0.2$$

$$R_{on} = 5[\mathbf{m}\Omega]$$

$$R_D = 0.1[\Omega]$$

$$V_D = 0.5[V]$$

Problems

인덕터 기생저항 R_L , MOSFET On 저항 R_{on} , 다이오드 기생저항 R_D , 다이오드 forward 전압 V_D 을 고려하여 아래 문제를 푸시오

- 1) R_L, R_{on}, R_D, V_D 를 포함한 Practical Buck converter 등가회로 모델링
- 2) 입출력 관계식 $^{V}/_{V_{g}}$
- 3) 왼쪽의 조건을 고려하여 인덕터 리플 전류 Δi , 출력 리플 전압 Δv , 출력전압 V 계산
- 4) 3)에서 구한 결과 값과 PSIM simulation 결과 비교

(1) 등가회로 모델링

(2)
$$D(V_g - IR_{on} - IR_L - V_c) + D'(-V_D - IR_D - IR_L - V) = 0$$

 $DV_g - DIR_{on} - DV - D'V_D - D'IR_D - IR_L - D'V = 0$
 $DV_g - DIR_{on} - D'V_D - D'IR_D - IR_L - V = 0$
 $V = (DV_g - D'V_D) \left(\frac{R}{D'R_D + DR_{on} + R_L + R}\right)$
 $\frac{V}{V_g} = \left(D - \frac{D'V_D}{V_g}\right) \left(\frac{1}{1 + \frac{D'R_D + DR_{on} + R_L}{R}}\right)$
(3) $\frac{V}{V_g} = \left(0.6 - 0.4 * \frac{0.5}{10}\right) \left(\frac{1}{1 + \frac{0.4 * 0.1 + 0.6 * 5 * 10^{-3} + 0.2}{10}}\right) = 0.5662$

$$V_c = 5.662[V]$$

$$\Delta i_L = \frac{V_{in} - V_{out}}{2L} DT_S = \frac{10 - 5.662}{2 * 200 * 10^{-6}} * 0.6 * \frac{1}{150 * 10^3} = \mathbf{0.04338} [A]$$

$$\Delta v = \frac{\Delta i_L T_S}{8C} = \frac{0.04338 * 150 * 10^3}{8.660 * 10^{-6}} = \mathbf{5.4773} * \mathbf{10}^{-5} [V]$$

(4) PSIM simulation 결과 비교 (77m부터 78m까지 측정)

Measure

:	X1	X2	Δ
Time	7.78440e-02		2.67000e-06 🔒
11	6.08457e-01	5.24096e-01	-8.43612e-02
V1	5.66248e+00	5.66248e+00	-3.70918e-07

Question #2

Practical Boost converter

Conditions

$$V_g = 10[V]$$

$$R_{load} = 5[\Omega]$$

$$freq = 100[kHz]$$

$$Duty = 0.35$$

$$L = 500[\mu H]$$

$$C = 100[\mu F]$$

$$R_L = 0.5$$

$$R_{on} = 25[\mathbf{m}\Omega]$$

$$R_D = 0.1[\Omega]$$

$$V_D = 0.7[V]$$

Problems

인덕터 기생저항 R_L , MOSFET On 저항 R_{on} , 다이오드 기생저항 R_D , 다이오드 forward 전압 V_D 를 고려하여 아래 문제를 푸시오

- 1) R_L, R_{on}, R_D, V_D 를 포함한 Boost converter 등가회로 모델링
- 2) 입출력 관계식 V/V_g
- 3) 왼쪽의 조건을 고려하여 인덕터 리플 전류 Δi , 출력 리플 전압 Δv , 출력전압 V 계산
- 4) 3)에서 구한 결과 값과 PSIM simulation 결과 비교

(1) 등가회로 모델링

(2)
$$V = \frac{1}{D'} (V_g - D'V_D) (\frac{{D'}^2 R}{D'^2 R + R_L + DR_{on} + D'R_D})$$

$$\frac{V}{V_g} = (\frac{1}{D'})(1 - \frac{D'V_D}{V_g})(\frac{1}{1 + \frac{R_L + DR_{on} + D'R_D}{D'^2R}})$$

(3)
$$V_c = 11.548[V]$$

$$I = \frac{1}{D'} \left(\frac{DV_c}{R} + \frac{D'V_c}{R} \right) = 3.55[A]$$

$$\Delta i_L = \frac{V_g - (R_L + R_{on})I_L}{2L}DT_S = \mathbf{0.0284[A]}$$

$$\Delta v = \frac{V_{out}}{2RC} * DT_s = \frac{11.548}{2 * 5 * 100 * 10^{-6}} * 0.35 * \frac{1}{100 * 10^3} = \mathbf{0.04}[V]$$

Triangular : VTRI1	×	
Parameters Color		
Triangular-wave voltage	Help	
		Display
Name	VTRI1	✓ •
V_peak_to_peak	1	
Frequency	100k	✓ •
Duty Cyde	1	
DC Offset	0	
Tstart	0	
Phase Delay	0	

(4) PSIM simulation 결과 비교 (90m부터 91m까지 측정)

Me	asure	X1	X2	Δ	
	Time	9.00000e-02	9.10000e-02	1.00000e-03 🔒	
	V1		1.18756e+01	-1.06049e-09	
	I1		3.61298e+00		

Question #4

Extra Question

HW1-1 에서 출력 리플이 굉장히 작게 관찰되는데, 이유는 무엇이라

생각하나?

엔지니어 관점에서 위와 같은 설계의 문제점은 무엇이라 생각하나?

1

Buck Converter i_L 그래프에서 기울기를 통해 리플 값을 구할 수 있다.

이를 수식으로 표현하면,
$$L = \frac{Vg-V}{2\Delta i_L}DT_S$$
이다.

이를 통해 L(inductance)가 증가하면 Δi_L (Current ripple)이 감소한다는 것을 알 수 있다.

즉 위의 문제에서 L=20[mH]이기 때문에 리플 값이 매우 작게 나온다는 것을 알 수 있다.

2.

 $\lambda = N\phi$ 이고 $\lambda = L \times I$ 이다.

따라서 인덕턴스를 키우면 리플 값이 작아지는 대신 코일을 더 많이 감아야 하고 이 때 재료의 단가를 맞추기 어렵다는 단점이 있다.

만약 인덕턴스를 재료의 단가를 줄이기 위해 인덕턴스를 낮추면 리플 값이 커져서 인덕터를 지나는 전류의 변화가 커지고 엔지니어가 원하는 출력의 오차 값이 커지게 된다.