In-person option starting Feb 15.

 https://canvas.pitt.edu/courses/77476/pages/ in-person-option

Check if your name is listed above, if so, you can go to the classroom (152 Chevron Science Center)

Previous Lectures

- Circuit switching
- Packet switching
- Delay components
- Throughput

Objectives of This Unit

- Describe what is meant by layering
- Explain why we need a protocol
- Describe TCP/IP protocol and OSI model
- Explain what *encapsulation* is and how it is used in communications networks
- Explain how the "Internet" is constructed in general terms

Processes

 Software programs run as processes in an operating system

- In Unix like operating systems, terminal command ps lists the processes
- In Windows, you can use the task manager to list processes

Figure modified from Kurose and Ross

Networked Applications

Processes on computers can communicate

- If the processes are on the same end-host, they use "inter-process communications"
 - Rules are based on the operating system

- If the processes are on different hosts, they have to communicate over a network
 - Maybe different operating systems

Client and Server Processes

Example: Alice browsing amazon.com

 Alice's browser is a client process running on her computer

 A server process is running somewhere on some machine in Amazon.com's network

Sockets

- Programming interface used by a process to send and receive messages
 - Sending/receiving process sends/receives the message to/from the socket
 - Like the door to a house
 - We will describe what is outside the door!

Application developer only controls the process

Protocols

Protocol is: "a set of rules governing the exchange or transmission of data between devices"

Example of Protocol

 The rules are there to make sure the communicating parties understand each other

Example of Protocol - Recall Telegraph

- Wire connects Transmitter and receiver
- Rule: agreed upon pattern known as Morse code

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Network Protocols

- Protocols needed for network components to interact and enable information flows
- Protocols define format, order of messages sent and received among network entities, and actions taken on message transmission, receipt
- Circuit Switching
 - Signaling protocols to set up/tear down circuit (e.g., SS7)
- Packet Switching
 - Protocols to control flow of information (e.g., TCP)

Questions

- How does the browser know what and where amazon.com is? (Addressing)
- How does it "communicate" with amazon.com? (Transport and Routing)
- How does the browser know if it has received the elements of the html page correctly? (Error control)

There seems to be many functions needed!

tophat

Q_bigProject

A big project requires many functions to be completed. Which of the following practices is recommended

- A Write one big computer program that contains required steps of all functions in sequential order needed
- B Implement each of the functions separately, and integrate them so that each function can call the next

Layering in Network Protocols

- Layering is arranging functionality in a hierarchical manner
 - Lower layers provide functions and services that support the functions and services of higher layers

- Networks make extensive use of layering of technology and protocols
 - Protocols are most often placed in layers

Layering Example

Lower layers support higher layers

- Example: corporate
 - CEO, VP, Managers, workers

 There are "protocol layers" in computer networks Layering in organizations

Layering Example

- Example (software)
 - Computer applications delegate many tasks to operating systems
 - Operating systemsdelegate tasks to"drivers" for execution

Layering in Packet Switched Networks

 Simplified view of layering

Advantages of Layering

 Why change from IPv4 to IPv6 does not require change in email clients or browsers?

 Why adding wireless network capability does not require change in web site addresses (URLs)

Advantages of Layering

- Separation of functionality
 - Simplification in upgrades
 - Simplification in adding new technology
- Specializes technology development
 - Well defined and specific
 - Modularity reduces complexity of implementation

What Functions Do We Need In Networking?

Header information

 Tasks are accomplished by adding additional required information to information packets

Packet header

 Routers and end stations use this header information to handle packets appropriately

Typical Packet Structure

- A typical packet contains
 - Information sent from the layers above
 - Additional information (called headers) specific to the functions of each layer
- At a high level (oversimplified), looks like this:

Error check Destination address Sequence number User commands	User data
---	-----------

5-layered TCP/ IP stack

 Modern computer networks implement layering in 5 layers

Called the TCP/ IP stack

- After the core set of technologies
 - TCP
 - IP

Internet Protocol stack

Five layer stack built around Internet Protocol (IP)

Protocol layer and function

Popular technologies

Application layer (what user wants)

Transport layer (ensure reliable data stream)

Network layer (routing)

Data link layer (error-free transmission over hop)

Physical layer (data sent as signals over media)

E-mail (SMTP, IMAP, POP), web (HTTP)

TCP, UDP

IΡ

Ethernet, Wi-fi, ATM

AM, FM, CDMA, Manchester encoding, SONET

Layer Names and Tasks

Layer number	Layer name	Networking task	Header information
5	Application	Specify user needs, creates "message"	User commands
4	Transport	Segmentation and reassembly of data "segments", sometimes reliable transfer & speed matching	Sequence numbers
3	Network	Identifying and locating destination, best effort delivery of "datagrams"	Address
2	Data-link	Reliable delivery of "frames" over a Error check link, Error control	
1	Physical	Signaling, moving individual bits based on medium	Usually none, but in WiFi there is a header

Browsing Example

- Alice wants to browse Amazon.com
- What happens next?

Application layer
(what user wants)

Transport layer
(ensure reliable data stream)

Network layer
(routing)

Data link layer
(error-free transmission over hop)

Physical layer
(data sent as signals over media)

Simplified View of Browsing

- A TCP "segment" is created which is passed on to the "network layer"
- Network layer creates
 IP packet (datagram)
 - TCP segment becomes the payload of an IP packet
- All of this happens in the operating system

Note that the TCP segment and the IP datagram are simply groups of bits with some structure

Simplified View of Web Browsing

- IP datagram becomes the payload of the link/MAC layer "frame"
 - Say Ethernet frame
- PHY Layer
 - The Ethernet frame is converted into a set of electrical pulses (signal) that is placed on links, e.g. Ethernet cable

Encapsulation

tophat

Changing in the implementation of layer 4 (transport layer) of the protocol necessitates changing in other layers in the protocol

Α	True
В	False

Simplified Web Browsing

There is a one-to-one correspondence between **layers** in the two end points

OSI model

OSI – Open Systems Interconnection

- Early packet switched networks involved multiple networking technologies that were not interoperable
 - SNA, DECnet, Appletalk
 - Created communication islands
 - Strong need to ensure interoperability

OSI model

- OSI model is a logical structure for communications networks, standardized by the International Organization for Standardization (ISO)
 - An effort by the ISO to standardize computer networks

OSI Model

OSI model useful frame of reference

OSI model layer

Layer function

Application layer	Request-reply mechanism for remote operations across a network
Presentation layer	Syntax conversion from host- specific syntax to syntax for network transfer
Session layer	Create and terminate connection; establish synchronization points for recovery in case of failure
Transport layer	Segmentation, reassembly of packets in one connection, multiplexing connections on one machine
Network layer	Routing and network addressing
Data link layer	Error-free data transmission over a single link
Physical layer	Convert data to signals for transmission over physical media

OSI and TCP/ IP

OSI model layers

TCP/ IP stack layers

Presentation

 Allow applications to interpret meaning of data, e.g., encryption, compression, machinespecific conventions

Session

- Synchronization, checkpointing, recovery of data exchange
- Internet stack doesn't have these layers!
 - These services, if needed, must be implemented in application or transport layers

Application layer	Application layer
Presentation layer	
Session layer	Transport layer
Transport layer	
Network layer	Network layer
Data link layer	Data link layer
Physical layer	Physical layer

Internet Stack Technologies by Layer

- IP layer is the same – IP packets can be understood regardless of the technology
- This is not an exhaustive list, but shows some of the most popular technologies at each layer

Simplified Internet Structure

 The access network—the network that physically connects an end system to the first router

Reading: Chapter, Section 1.3.3, Kurose book, Computer Networking – A Top Down Approach, 6th edition

Figure from Kurose-Ross

Internet Structure: Network of Networks

Option: connect each access network to every other access network?

Option: connect each access ISP to a global transit ISP?

But if one global ISP is viable business, there will be competitors

But if one global ISP is viable business, there will be competitors which must be interconnected

Regional networks may arise to connect access nets to ISPS

Content provider networks (e.g., Google, Microsoft, Akamai) may run their own network, to bring services, content close to end users

- Small number of well-connected large networks
 - "tier-I" commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national & international coverage
 - content provider network (e.g, Google): private network that connects it data centers to Internet, often bypassing tier-I, regional ISPs

Telecom and Networking Industry is Regulated!

 Emphasis on standardization for interoperability

- ITU
- International Telecommunications Union (ITU)
 - ITU is part of the United Nations
 - Worldwide coordination/ standardization (e.g., telephone numbers)
 - Allocation (e.g., satellite slots)
- Federal Communications Commission (FCC) in the US
- es,
- Regulates wireless spectrum (bands, licenses, power levels, etc,)

Telecom and Networking Industry Standardization

- Standards bodies include
 - Internet Engineering Task Force (IETF)
 - Internet protocols and enhancements
 - Institute for Electrical and Electronic Engineers (IEEE)
 - Ethernet, 802.11 WiFi (layer 1 and 2)
 - European Telecommunications Standards Institute (ETSI)
 - GSM, DSL
 - 3rd Generation Partnership Project (3GPP)
 - UMTS, LTE, LTE-Advanced
 - National Institute of Standards and Technology (NIST)
 - Others: Zigbee Alliance, Threat group, ...

Summary

Layering

TCP/IP

OSI model

• Internet structure, regulation, standarizations