

Suppose we have a function f(x,y) of two variables

Then we can have

"the gradient of f as a function of x with yheld constant"

which we write $\frac{\partial f}{\partial x}$ or sometimes just $\frac{\partial f}{\partial x}$

"the partial derivative of f with respect to xwith y constant" ∂ - "partial d"

"partial d f by d x"

Suppose we have a function f(x,y) of two variables

Then we can have

"the gradient of f as a function of y with x held constant"

which we write $\left| \frac{\partial f}{\partial y} \right|$ or sometimes just $\left| \frac{\partial f}{\partial v} \right|$

"the partial derivative of f with respect to y

with x constant"

"partial d f by d y"

∂ - "partial d"

```
We have a surface
   with height
            f(x,y)
     varying with the
       coordinates x and y
At a specific position (x_o, y_o)
   the height is f(x_o, y_o)
```


Along the *y* direction at point (x_o, y_o) the rate of change of height with y slope ≃ at constant x is the slope of the orange line


```
Along the x direction
  at point (x_o, y_o)
     the rate of change of
      height with x
        at constant y
          is the slope of the
            orange line
```


We can also form second (and higher order) partial derivatives

$$\left. \frac{\partial^2 f}{\partial x^2} \equiv \frac{\partial^2 f}{\partial x^2} \right|_{\mathcal{X}}$$

is a second derivative

and is a measure of the curvature of the function in the *x* direction

We can also form second (and higher order) partial derivatives

$$\left. \frac{\partial^2 f}{\partial y^2} \equiv \frac{\partial^2 f}{\partial y^2} \right|_{y=0}$$

is a second derivative
and is a measure of the
curvature of the function
in the y direction

We can also form second (and higher order) partial derivatives

$$\left. \frac{\partial^2 f}{\partial y^2} \equiv \frac{\partial^2 f}{\partial y^2} \right|_{y}$$

is a second derivative

and is a measure of the curvature of the function in the *y* direction

f(x,y)

We can also form second (and higher order) partial derivatives

$$\left. \frac{\partial^2 f}{\partial y^2} \equiv \frac{\partial^2 f}{\partial y^2} \right|_{x}$$

is a second derivative
and is a measure of the
curvature of the function
in the y direction

We can also form second (and higher order) partial derivatives

$$\left. \frac{\partial^2 f}{\partial y^2} \equiv \frac{\partial^2 f}{\partial y^2} \right|_{x}$$

is a second derivative

and is a measure of the curvature of the function in the *y* direction

Cross derivative

The "cross derivative"

$$\frac{\partial^2 f}{\partial x \partial y} \equiv \frac{\partial}{\partial x} \bigg|_{y} \frac{\partial f}{\partial y} \bigg|_{x}$$

is a measure of how "warped" a surface is

Note that, for ordinary smooth functions

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Cross derivative

The "cross derivative"

$$\frac{\partial^2 f}{\partial x \partial y} \equiv \frac{\partial}{\partial x} \bigg|_{y} \frac{\partial f}{\partial y} \bigg|_{x}$$

is a measure of how "warped" a surface is

Note that, for ordinary smooth functions

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

Differential

Look at one "patch" of a function f(x, y) δx long in the x direction δy long in the y direction How much does the "height" change, i.e., δf , as we move from one corner to the other?

Differential

As we move by δx along x the "height" changes $\frac{\partial f}{\partial x} \mid \delta x$

As we move by δy along y

the "height" changes
$$\frac{\partial f}{\partial y} \bigg|_{x} \delta y$$

so the total change in "height"

is
$$\delta f \simeq \frac{\partial f}{\partial x} \bigg|_{y} \delta x + \frac{\partial f}{\partial y} \bigg|_{x} \delta y$$

Differential

In the limit as we make δx and δy very small i.e., infinitesimal

$$\delta f \simeq \frac{\partial f}{\partial x} \bigg|_{y} \delta x + \frac{\partial f}{\partial y} \bigg|_{x} \delta y$$

becomes

$$df = \frac{\partial f}{\partial x} \bigg|_{y} dx + \frac{\partial f}{\partial y} \bigg|_{x} dy$$

which is called

a differential

or sometimes an "exact differential"

Total derivative

We suppose we know the slopes of the hill in the two coordinate directions

We presume we also know how fast we are moving in the x and ydirections

So, in some small time δt we will have moved amounts δx $\delta x \simeq \frac{dx}{dt} \delta t$ and $\delta y \simeq \frac{dy}{dt} \delta t$ and δy in the x and y directions

$$\frac{\partial f}{\partial x}\Big|_{y}$$
 and $\frac{\partial f}{\partial y}\Big|_{x}$

$$v_x = \frac{dx}{dt}$$
 and $v_y = \frac{dy}{dt}$

$$\delta x \simeq \frac{dx}{dt} \delta t$$
 and $\delta y \simeq \frac{dy}{dt} \delta t$

Total derivative

So, using the differential idea

$$\delta f \simeq \frac{\partial f}{\partial x} \bigg|_{y} \delta x + \frac{\partial f}{\partial y} \bigg|_{x} \delta y$$

we have
$$\delta f \simeq \frac{\partial f}{\partial x} \bigg|_{y} \left(\frac{dx}{dt} \right) \delta t + \frac{\partial f}{\partial y} \bigg|_{x} \left(\frac{dy}{dt} \right) \delta t$$

$$\left. \frac{\partial f}{\partial t} \simeq \frac{\partial f}{\partial x} \right|_{y} \left(\frac{dx}{dt} \right) + \frac{\partial f}{\partial y} \right|_{x} \left(\frac{dy}{dt} \right)$$

or, in the limit of small δt

we have the

we have the "total derivative"
$$\frac{df}{dt} = \frac{\partial f}{\partial x} \bigg|_{y} \left(\frac{dx}{dt} \right) + \frac{\partial f}{\partial y} \bigg|_{x} \left(\frac{dy}{dt} \right)$$

Suppose we want the slopes of a hill f(x, y) along the South-East (a) and North-East (b) directions instead of along the East (x) and North (y) directions but we only know the slopes along the East (x) and North (y) directions

$$\frac{\partial f}{\partial x}\Big|_{y}$$
 and $\frac{\partial f}{\partial y}\Big|_{y}$

We do know that

if we move South-East by one unit we move East by $1/\sqrt{2}$ units since $\cos 45^{\circ} = 1/\sqrt{2}$

i.e.,
$$\frac{\partial x}{\partial a}\Big|_b = \frac{1}{\sqrt{2}}$$

We do know that

if we move South-East by one unit we move East by $1/\sqrt{2}$ units since $\cos 45^\circ = 1/\sqrt{2}$

i.e.,
$$\frac{\partial x}{\partial a}\Big|_{b} = \frac{1}{\sqrt{2}}$$

Similarly

$$\frac{\partial y}{\partial a}\Big|_{b} = -\frac{1}{\sqrt{2}}$$

We do know that

if we move South-East by one unit we move East by $1/\sqrt{2}$ units since $\cos 45^\circ = 1/\sqrt{2}$

i.e.,
$$\frac{\partial x}{\partial a}\Big|_{b} = \frac{1}{\sqrt{2}}$$

Similarly

$$\frac{\partial y}{\partial a}\Big|_{b} = -\frac{1}{\sqrt{2}} \qquad \frac{\partial x}{\partial b}\Big|_{a} = \frac{1}{\sqrt{2}}$$

We do know that

if we move South-East by one unit we move East by $1/\sqrt{2}$ units since $\cos 45^{\circ} = 1/\sqrt{2}$

i.e.,
$$\frac{\partial x}{\partial a}\Big|_{b} = \frac{1}{\sqrt{2}}$$

Similarly

$$\left. \frac{\partial y}{\partial a} \right|_{b} = -\frac{1}{\sqrt{2}} \qquad \left. \frac{\partial x}{\partial b} \right|_{a} = \frac{1}{\sqrt{2}} \qquad \left. \frac{\partial y}{\partial b} \right|_{a} = \frac{1}{\sqrt{2}}$$

Suppose we make a small movement δa along the a (South-East) direction and no movement along the b (North-East) direction

Then
$$\delta x \simeq \frac{\partial x}{\partial a} \bigg|_{b} \delta a \left(= \frac{1}{\sqrt{2}} \delta a \right)$$

Suppose we make a small movement δa along the a (South-East) direction and no movement along the b (North-East) direction

Then
$$\delta x \simeq \frac{\partial x}{\partial a} \bigg|_{b} \delta a \left(= \frac{1}{\sqrt{2}} \delta a \right)$$

and
$$\delta y \simeq \frac{\partial y}{\partial a} \bigg|_{b} \delta a \left(= -\frac{1}{\sqrt{2}} \delta a \right)$$

With these results

$$\delta x \simeq \frac{\partial x}{\partial a} \bigg|_{b} \delta a \left(= \frac{1}{\sqrt{2}} \delta a \right) \qquad \delta y \simeq \frac{\partial y}{\partial a} \bigg|_{b} \delta a \left(= -\frac{1}{\sqrt{2}} \delta a \right)$$

the resulting change δf in the value of the function f(x, y)

from this movement along the a (South-East) direction

is
$$\delta f \simeq \frac{\partial f}{\partial x} \bigg|_{y} \frac{\partial x}{\partial a} \bigg|_{b} \delta a + \frac{\partial f}{\partial y} \bigg|_{x} \frac{\partial y}{\partial a} \bigg|_{b} \delta a$$

Starting from

$$\delta f \simeq \frac{\partial f}{\partial x} \bigg|_{y} \frac{\partial x}{\partial a} \bigg|_{b} \delta a + \frac{\partial f}{\partial y} \bigg|_{x} \frac{\partial y}{\partial a} \bigg|_{b} \delta a$$

dividing by δa gives

$$\frac{\delta f}{\delta a} \simeq \frac{\partial f}{\partial x} \bigg|_{y} \frac{\partial x}{\partial a} \bigg|_{b} + \frac{\partial f}{\partial y} \bigg|_{x} \frac{\partial y}{\partial a} \bigg|_{b}$$

taking the limit of small δa and noting that this is all done at constant b

$$\left. \frac{\partial f}{\partial a} \right|_{b} = \left. \frac{\partial f}{\partial x} \right|_{y} \left. \frac{\partial x}{\partial a} \right|_{b} + \left. \frac{\partial f}{\partial y} \right|_{x} \left. \frac{\partial y}{\partial a} \right|_{b}$$

Since $\frac{\partial x}{\partial a}\Big|_{L}$ and $\frac{\partial y}{\partial a}\Big|_{L}$ are just numbers

$$\left. \frac{\partial f}{\partial a} \right|_{b} = \left. \frac{\partial x}{\partial a} \right|_{b} \left. \frac{\partial f}{\partial x} \right|_{y} + \left. \frac{\partial y}{\partial a} \right|_{b} \left. \frac{\partial f}{\partial y} \right|_{x}$$

we can move them to get

Since

$$\left. \frac{\partial f}{\partial a} \right|_{b} = \left. \frac{\partial x}{\partial a} \right|_{b} \left. \frac{\partial f}{\partial x} \right|_{y} + \left. \frac{\partial y}{\partial a} \right|_{b} \left. \frac{\partial f}{\partial y} \right|_{x}$$

holds for any function f(x, y)

provided it is suitably differentiable

we can write more generally

$$\left. \frac{\partial}{\partial a} \right|_{b} = \left. \frac{\partial x}{\partial a} \right|_{b} \left. \frac{\partial}{\partial x} \right|_{y} + \left. \frac{\partial y}{\partial a} \right|_{b} \left. \frac{\partial}{\partial y} \right|_{x}$$

which is a general way of changing the coordinates for a partial derivative

