- 1. Explorar modos o maneras de representar los siguientes reales:

(d) $\sqrt{2} + \sqrt{3}$

- (a) $\sqrt{2}$ (b) $\sqrt{3}$ (c) $-\sqrt{5}$

(e) $\frac{1}{\sqrt{2}}$

Soluciones

(a)

0

(b)

(c)

(d)

- (e) COMPLETAR.
- 2. Explorar modos o maneras de:
 - (a) Interpolar cuatro números racionales equidistantes entre $-3\ \mathrm{y}$ 7.
 - (b) Interpolar cinco números en el segundo del ítem anterior. ¿Cuántas veces podría reiterar esta actividad?
 - (c) Intercalar un número racional y uno irracional entre 0,0000021 y 0,0000019.

Soluciones

(a) $[-3,7] = [-3,-1] \cup [-1,1] \cup [1,3] \cup [3,5] \cup [5,7].$

- (b) $[-1,1] = [-1,-\frac{2}{3}] \cup [-\frac{2}{3},-\frac{1}{3}] \cup [-\frac{1}{3},0] \cup [0,\frac{1}{3}] \cup [\frac{1}{3},\frac{2}{3}] \cup [\frac{2}{3},1].$ Este proceso se puede reiterar indefinidamente pues los reales son un conjunto denso.
- (c) Basta considerar $x = 0,0000020 \text{ y } x + \frac{\sqrt{2}}{10^8}$.
- 3. Ordene en forma creciente los siguientes reales y escriba los números listados en el ítem a en notación científica.

(a)

• $2,8 \cdot 10^{-2}$

• $0.032 \cdot 10^{-4}$

• $1.6 \cdot 10^{-4}$

• $32,526 \cdot 10^{-5}$

(b)

 \bullet π

- 3, $\overline{14}$
- 3, $\overline{1415}$

Soluciones

(a)

- $0.032 \cdot 10^{-4} = 0.32 \cdot 10^{-5} = 3.2 \cdot 10^{-6}$.
- $32,526 \cdot 10^{-5} = 3,2526 \cdot 10^{-4}$.

(b)

$$3, 2 \cdot 10^{-6} < 1, 6 \cdot 10^{-4} < 3, 2526 \cdot 10^{-4} < 2, 8 \cdot 10^{-2} < 3, \overline{14} < 3, \overline{1415} < \pi$$

4.

- Grafique en el eje real:
 - (a) [-7,3)

- (d) $[a,b] \cup \mathbb{R}$
- (b) $[-2,4) \cup [5,9]$
- (e) $(-\infty, -1) \cup \{0\} \cup (1, +\infty)$

(c) $(4,7) \cap \mathbb{R}$

- Dar ejemplos de conjuntos de números reales de modo que todo elemento y su opuesto pertenezcan a ellos.
- Dar ejemplos de conjuntos de números reales de modo que no siempre elementos opuestos pertenezcan a los mismos.
- Definir conjunto simétrico. Dar ejemplo de conjuntos simétricos que contienen o no al cero.

Soluciones

•

- \mathbb{R} , \mathbb{Q} , \mathbb{Z} , [-a, a], (-a, a), $\{-a, a\}$, ...
- Sea X un conjunto del punto anterior, luego para $k \neq 0$ resulta que $X \{k\}$ no es simétrico.
- Sea $X\subseteq R$, diremos que X es un conjunto simétrico si y solo si: $\forall x\in X\Rightarrow -x\in X.$
- 5. Siendo A = (-2, 5], B = [1, 8] y C = [-5, 9); hallar:
 - (a) $A \cup B$
- (d) $C (A \cap B)$
- (g) $\mathbb{R} \cap A$

- (b) A B
- (e) $B \cap \{2\}$
- (h) $\mathbb{R}_0^- \cap B$

- (c) B A
- (f) $B \cap \mathbb{R}$
- (i) $(\mathbb{R}^+ \cap C) A$

Soluciones

(a)
$$A \cup B = (-2, 8] = \{x \in \mathbb{R}/-2 < x \le 8\}$$

(b)
$$A - B = (-2, 1) = \{x \in \mathbb{R} / -2 < x < 1\}$$

 -7 -5 -2 -1 0 1 2 3 4 5 7 8 9

(c)
$$B - A = (5, 8] = \{x \in \mathbb{R}/5 < x \le 8\}$$

(d)
$$C - (A \cap B) = C - [1, 5] = [-5, 1) \cup (5, 9) = \{x \in \mathbb{R}/-5 \le x < 1 \lor 5 < x < 9\}$$

(f)
$$B \cap \mathbb{R} = B = \{x \in \mathbb{R}/1 \le x \le 8\}$$

-7 -5 -2 -1 0 1 2 3 4 5 7 8 9

(g)
$$\mathbb{R} \cap A = A = \{x \in \mathbb{R}/-2 < x \le 5\}$$

- (i) COMPLETAR.
- 5. Representar en el eje real los siguientes conjuntos: