Lossless Join Decomposition (XI)

- \Box The goal is to use F to prove that $t \in r$ holds
- ☐ Strategy of the Chase test
 - ❖ We chase the matrix by applying the FDs in F to equate symbols in the matrix whenever possible
 - ❖ If we manage to obtain a row that is equal to t (that is, the row only contains unsubscripted letters), we have proved that any tuple t in the join of the projections was actually a tuple of R
- Example
 - We continue our previous example and assume the set $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow A\}$ of FDs
 - ❖ The FDs in F can be applied in any order and several times

Α	В	С	D
а	<i>b</i> ₁	C ₁	d
а	b ₂	С	d ₂
a 3	b	С	d

Α	В	С	D
а	<i>b</i> ₁	C ₁	d
а	(b_1)	C	d ₂
a ₃	b b	С	d

Lossless Join Decomposition (XII)

	Α	В	С	D		Α	В	С	D
$B \rightarrow C$	а	<i>b</i> ₁	\bigcirc	d	$CD \rightarrow A$	а	<i>b</i> ₁	С	d
	а	<i>b</i> ₁	С	d_2	,	а	<i>b</i> ₁	С	d_2
	a ₃	b	С	d		(a)	b	С	d

- ❖ The last row has become equal to t
- We have shown that if r satisfies the FDs $A \rightarrow B$, $B \rightarrow C$, and $CD \rightarrow A$, then whenever we project r onto $\{A, D\}$, $\{A, C\}$, and $\{B, C, D\}$ and rejoin, what we get must have been in r

D

 (d_1)

d

C 1

 \boldsymbol{C}

 \boldsymbol{C}

Example

❖ Consider the relation R(A, B, C, D) with $F = \{B \rightarrow AD\}$ and the decomposition $\{A, B\}$, $\{B, C\}$, and $\{C, D\}$. Apply the Chase test.

A	В	С	D		Α	В
а	b	C ₁	<i>d</i> ₁	$B \rightarrow AD$	а	b
a ₂	b	С	d_2		(a)	b
a ₃	b ₃	С	d		a ₃	<i>b</i> 3

There is no row that is fully unsubscripted. The decomposition is lossy.

Lossless Join Decomposition (XIII)

- □ Example (*continued*)
 - Another way to show this is: Treat the right table as a relation with three tuples, decompose it, and then rejoin

Dependency Preservation (I)

- □ For performance reasons it would be useful if each FD in F either could be checked directly in one of the relation schemas R_i of the decomposition, or could be inferred from the FDs that hold on the attributes of some schema R_i
- If one of the FDs is not represented in some schema R_i of the decomposition, we cannot check and enforce this constraint on a single relation but have to join multiple relations in order to include all attributes involved in that FD
- Given a set F of FDs on a relation schema R and a decomposition $R_1, ..., R_n$ of R, the restriction F_{R_i} of F to R_i is defined as $F_{R_i} = \{X \to Y \in F^+ \mid X \cup Y \subseteq R_i\}$
- \square All FDs of F_{R_i} can be checked *locally* on R_i alone (without the need of joins)
- □ All FDs in F⁺ are used, not only the FDs in F
- Example
 - \$\displaystyle \text{Suppose we have } R(A, B, C), F = \{A \to B, B \to C\}, R_1(A, C), R_2(A, B)
 - ❖ F_{R_1} includes $A \to C$ since $A \to C \in F^+$ but $A \to C \notin F$

Dependency Preservation (II)

- ☐ Question: Is testing only the restrictions sufficient?
- \square $F_r = F_{R_1} \cup F_{R_2} \cup ... \cup F_{R_n}$ is a set of FDs on R, i.e., $F_r \subseteq F^+$
- \square In general, $F_r \neq F$ holds
- \square Even if $F_r \neq F$ holds, it can be that $F_r^+ = F^+$ holds, i.e., $F_r \equiv F$
- \Box If $F_r^+ = F^+$ holds, then every FD in F is logically implied by F_r
- \square A decomposition having the property $F_r^+ = F^+$ is a dependency-preserving decomposition
- ☐ If each FD in F can be tested on one of the relation schemas of the decomposition, the decomposition is dependency-preserving
- ☐ The following algorithm tests for dependency preservation in general
- \Box It is expensive since it requires the computation of F^+

Dependency Preservation (III)

- Example: Let R(A, B, C) and $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$. Let $R_1(A, B)$ and $R_2(B, C)$ be a decomposition of R. Check whether the decomposition is dependency-preserving.
- \square It is easy to see that $A \to B \in F_{R_1}$ and $B \to C \in F_{R_2}$
- \Box The question is whether the decomposition preserves the FD $C \rightarrow A$
- □ Further question: Does the fact that *A* and *C* are contained together neither in R₁ nor in R₂ mean that the decomposition is not dependency-preserving?
- □ F^+ includes F but also other FDs such as $A \to C$, $B \to A$, and $C \to B$ (the latter three FDs are obtained by transitivity)
- \square This means that $B \to A \in F_{R_1}$ and $C \to B \in F_{R_2}$
- □ In summary, $A \rightarrow B$, $B \rightarrow C$, $B \rightarrow A$, $C \rightarrow B \in F_{R_1} \cup F_{R_2}$ holds
- □ Consequently, $C \to A \in (F_{R_1} \cup F_{R_2})^+$ holds due to the transitivity axiom applied to $C \to B$ and $B \to A$
- □ Hence, the decomposition of R into $R_1(A, B)$ and $R_2(B, C)$ with $F_{R_1} = \{A \rightarrow B, B \rightarrow A\}$ and $F_{R_2} = \{B \rightarrow C, C \rightarrow B\}$ preserves the FD $C \rightarrow A$

Dependency Preservation (IV)

☐ Algorithm 1 for testing dependency preservation

```
bool IsDependencyPreserving1(\{R_1, R_2, ..., R_n\}, F)
// Input: (1) A decomposition of R into the relation schemas R_1, R_2, ..., R_n
         (2) A set F of FDs on R
// Output: true, if the decomposition is dependency preserving under F;
           false, otherwise
// Step 1: Compute the closure of F
F<sup>+</sup> := CalculateFDClosure(F)
// Step 2: Compute the restrictions of F^+ to the R_i
for each i in 1..n do
    F_{R_i} := \emptyset
    for each X \rightarrow Y \in F^+ do
        if X \cup Y \subseteq R_i then F_{R_i} := F_{R_i} \cup \{X \to Y\}
```

Dependency Preservation (V)

☐ Algorithm 1 for testing dependency preservation (*continued*)

```
// Step 3: Form the union of all restrictions F_r := \emptyset for each i in 1..n do F_r := F_r \cup F_{R_i} // Step 4: Compute the closure of F_r F_r^+ := CalculateFDClosure(F_r) // Step 5: Check if the two closures are equal return (F_r^+ = F^+)
```

Dependency Preservation (VI)

□ Algorithm 2 for testing dependency preservation without computing F⁺ bool IsDependencyPreserving2($\{R_1, R_2, ..., R_n\}, F$) for each $X \rightarrow Y \in F$ do Result := Xrepeat OldResult := Result // Compute the attribute closure of *Result* under F_r for each i in 1..n do // Compute the attribute closure of Result under F_{R_i} $C := CalculateAttributeClosure(F, Result <math>\cap R_i) \cap R_i$ Result := Result \cup C until OldResult = Result if $Y \cap Result \neq Y$ then return false // FD $X \rightarrow Y$ is not preserved **return** true // All FDs in F are preserved

Dependency Preservation (VII)

- □ Ideas behind Algorithm 2
 - ❖ Test each FD $X \to Y$ in F to see if it is preserved in F_r (as the union of all restrictions F_{R_i})
 - For this purpose, compute the attribute closure of X under F_r , and check whether it includes Y
 - This is done without first computing F_r explicitly since this is quite expensive
 - The statement CalculateAttributeClosure(F, Result $\cap R_i$) $\cap R_i$ computes the attribute closure of Result under F_{R_i}
 - Reasons:
 - For any $A \subseteq R_i$, $A \to A^+ \in F^+$, and $A \to A^+ \cap R_i \in F_{R_i}$
 - Conversely, if $A \rightarrow B \in F_{R_i}$ holds, then $B \subseteq A^+ \cap R_i$
 - The decomposition is dependency-preserving if all FDs in F are preserved
 - Algorithm has a polynomial runtime complexity

Universal Relation Assumption (I)

The transformation of an E-R diagram into a set of relation schemas already represents an anticipated decomposition of the database schema
But we have learned that checking whether each individual relation schema of a given decomposition satisfies a desired normal form does not guarantee a good database design
The anticipated decomposition itself could already have a problem
A mandatory requirement is lossless join property of the decomposition
An optional requirement is dependency preservation of the decomposition
In order to avoid problems and a bad database design, we have to make the universal relation assumption: Each normalization algorithm starts from a single universal relation schema $R(A_1:D_1,A_2:D_2,,A_n:D_n)$, which includes <i>all</i> the attributes of the database schema, and the set F of FDs on R
The universal relation assumption contributes to the correctness criteria

Universal Relation Assumption (II)

- ☐ This means for the relation schemas R_1 , R_2 , ..., R_n obtained as the result of the transformation of an E-R diagram into relation schemas:
 - Take back the decomposition
 - If there are attributes in different relation schemas with the same name, make them unique by renaming
 - ❖ Merge the relation schemas R_1 , R_2 , ..., R_n into the universal relation R, i.e., $R = \bigcup_{i=1}^n R_i$
- ☐ This does not make the E-R modeling process redundant since
 - the E-R diagram allows us to obtain an overview of the relevant data (i.e., entities, relationships, attributes) that have to be stored later in the database
 - \Leftrightarrow each relation schema R_i is "represented" by the FD $K_i \to R_i$ in F if K_i is the primary key of R_i
- Additional FDs can and will lead to a different decomposition of R