

Course > Getting... > Course... > Syllabus

Syllabus

Course Syllabus

ISYE 6669

Deterministic Optimization

Professors: Dr. Andy Sun and Dr. Shabbir Ahmed

Course Description

The course will teach basic concepts, models, and algorithms in linear optimization, integer optimization, and convex optimization. The first module of the course is a general overview of key concepts in optimization and associated mathematical background. The second module of the course is on linear optimization, covering modeling techniques, basic polyhedral theory, simplex method, and duality theory. The third module is on nonlinear optimization and convex conic optimization, which is a significant generalization of linear optimization. The fourth and final module is on integer optimization, which augments the previously covered optimization models with the flexibility of integer decision variables. The course blends optimization theory and computation with various applications to modern data analytics.

Prerequisite

- Linear algebra
- Multivariate Calculus
- Basic Probability
- Familiarity with programming in Python

Course Goals

Student who take this course can expect to achieve the following goals:

- Learn modeling skills for formulating various analytics problems as linear, convex nonlinear, and integer optimization problems
- Learn basic optimization theory including duality theory and convexity theory, which
 will give the students a deeper understanding of not only how to formulate an
 optimization model, but also why.
- Learn fundamental algorithmic schemes for solving linear, nonlinear, and integer optimization problems.
- Learn computational skills for implementing and solving an optimization problem using modern optimization modeling language and solvers.

Grading Policy

- There will be one midterm quiz and one final quiz. The midterm will be 35% of your overall grade and the final will be 40% of your overall grade.
- There will be homework assignments most weeks of the semester. Your two lowest homework grades will be dropped, and the remaining ones will add up to 25% of the course grade. Your homework assignments will be peer-graded (based on the median score assigned by your peer graders). You will also need to peer-grade others' homeworks; you will not receive a final grade for your homework submission if you do not complete your peer assessments.
- Audit and Verified/MicroMasters learners must achieve an overall weighted average
 of 60% to pass the course. For OMS Analytics degree students, we will keep a separate
 gradebook outside of edX; quizzes will be scaled to letter grades based on their
 difficulty, and combined with the homeworks to determine an overall letter grade
 scale at the end of the semester.

Homework and Quizzes Due Dates

All homework and quizzes will be due at the times in the table at the end of this syllabus. These times are subject to change so please check back often. Please convert from UTC to your local time zone using a <u>Time Zone Converter</u>.

Timing Policy

- The Modules follow a logical sequence
- Assignments should be completed by their due dates.

- Quizzes must be completed during the time allotted on the schedule.
- You will have access to the course content for the scheduled duration of the course.

Quiz Policy

- For midterm and final quizzes, you are allowed to use one sheet of paper, either 8.5"x11" or A4, with handwritten notes (both sides of the sheet, 2 sides total).
- For midterm and final quizzes, you are allowed a blank sheet of paper for scratch work (Verified/MicroMasters learners and OMS Analytics degree students will be proctored; you will have to show the front and back of the blank sheet while you are being proctored. Audit learners will not be proctored).

Attendance Policy

- This is a fully online course.
- Login on a regular basis to complete your work, so that you do not have to spend a lot of time reviewing and refreshing yourself regarding the content.

Plagiarism Policy

• Plagiarism is considered a serious offense. You are not allowed to copy and paste or submit materials created or published by others, as if you created the materials. All materials submitted and posted must be your own.

Student Honor Code

All Audit and Verified course participants are expected and required to abide by the letter and the spirit of the edX honor code.

- Review the edXHonor Code: https://www.edx.org/edx-terms-service
- You are responsible for completing your own work.
- Any learner found in violation of the edX Honor Code will be subject to any/all of the actions listed in the edX Honor Code.

All OMS Analytics degree students should abide by the Georgia Tech Student Honor Code

- Review the Georgia Tech Student Honor Code: <u>www.honor.gatech.edu</u>.
- Any OMS Analytics degree student suspected of behavior in violation of the Georgia Tech Honor Code will be referred to Georgia Tech's Office of Student Integrity.

Communication

- All learners should ask questions, and answer their fellow learners' questions, on the course discussion forums. Often, discussions with fellow learners are the sources of key pieces of learning.
- Verified learners and OMS Analytics degree students can also ask questions of the
 instructor and teaching assistants via the course discussion forums. For special cases
 such as failed submissions due to system errors, missing grades, failed file uploads,
 emergencies that prevent you from submitting, personal issues, etc., a special email
 address will be provided in a discussion forum for you to directly contact the
 instructor and teaching assistants.

Netiquette

- Netiquette refers to etiquette that is used when communicating on the Internet. Review the Core Rules of Netiquette. When you are communicating via email, discussion forums or synchronously (real-time), please use correct spelling, punctuation and grammar consistent with the academic environment and scholarship1.
- In Georgia Tech's MS in Analytics program, we expect all participants (learners, faculty, teaching assistants, staff) to interact respectfully. Learners who do not adhere to this guideline may be removed from the course.
- 1. Conner, P. (2006-2014). Ground Rules for Online Discussions, Retrieved 4/21/2014 from http://teaching.colostate.edu/tips/tip.cfm?tipid=128

Course Topics and Sample Pacing Schedule

• The table below contains a course topic outline and homework due dates.

Weeks	Course Topics	Release Dates
-------	---------------	---------------

Week 1	 Module 1: Introduction Lesson 1: Introduction to Optimization Models Lesson 2: Mathematical ingredients Lesson 3: Classification of optimization problems Module 2: Illustration of the optimization process Lesson 1: A portfolio optimization problem Lesson 2: Formulating a portfolio optimization model Lesson 3: Solving the portfolio optimization model Lesson 4: Summary of the optimization process 	Aug 20, 2018 at 13: 00 UTC
Week 1 Homework	Homework 1	Aug 20
Week 2	 Module 3: Review of Mathematical Concepts Lesson 1: Linear Algebra Lesson 2: Properties of Functions Lesson 3: Properties of Sets Module 4: Convexity Lesson 1: Convex Functions Lesson 2: Convex Sets Lesson 3: Convex Optimization Problems 	Aug 27, 2018 at 13: 00 UTC
Week 2 Homework	Homework 2	Aug 30

	Syllabus Course information 15 1 20009 Courseware eux	
Week 3	 Module 5: Outcomes of Optimization Lesson 1: Possible Outcomes of Optimization Lesson 2: Existence of Optimal Solutions Lesson 3: Local and Global Optimal Solutions Lesson 4: Idea of Improving Search Module 6: Optimality Certificates Lesson 1: Optimality Certificates and Relaxations Lesson 2: Lagrangian Relaxation and Duality 	Sept 3, 2018 at 13: 00 UTC
Week 3 Homework	Homework 3	Sept 6
Week 4	 Module 7: Unconstrained Optimization: Derivative Based Lesson 1: Optimality Conditions Lesson 2: Gradient Descent Lesson 3: Newton's Method Module 8: Unconstrained Optimization: Derivative Free Lesson 1: Methods for Univariate Functions Lesson 2: Methods for Multivariate Function 	Sept 10, 2018 at 13: 00 UTC
Week 4 Homework	Homework 4	Sept 13

Week 5	Module 9: Linear Optimization Modeling - Network Flow Problems	Sept 17, 2018 at 13: 00 UTC
	Lesson 1: Introduction to LP Modeling	
	Lesson 2: Optimal Transportation Problem	
	• Lesson 3: Maximum Flow Problem	
	• Lesson 4: Shortest Path Problem	
	Module 10: Linear Optimization Modeling - Electricity Market	
	Lesson 1: How Electricity Markets Work	
	Lesson 2: Modeling Power plant Scheduling Using LP	
	Lesson 3: Market Clearing Mechanism	
	• Lesson 4: A Real-World Example	
Week 5 Homework	Homework 5	Sept 20
Week 6	Module 11: Linear Optimization Modeling - Decision- Making Under Uncertainty	Sept 24, 2018 at 13 00 UTC
	 Lesson 1: the Need to Make Decisions Under Uncertainty 	
	Lesson 2: Two-Stage Stochastic Linear Programming	
	Lesson 3: An Example Using Stochastic LP	
	• Lesson 4: How to Solve Stochastic Programs	
	Module 12: Linear Optimization Modeling - Handling Nonlinearity	
	Lesson 1: The Power of Piecewise Linear Functions	
	Lesson 2: Robust Regression Using LP	
	Lesson 3: Radiation Therapy	
	Lesson 4: LP Models for Radiation Therapy	

Week 6 Homework	Homework 6	Sept 27
Week 7	Module 13: Geometric Aspects of Linear Optimization	Oct 1, 2018 at 13:
	Lesson 1: Basic Geometric Objects in LP	
	Lesson 2: Extreme Points and Convex Hull	
	Lesson 3: Extreme Rays and Unbounded Polyhedron	
	• Lesson 4: Representation of Polyhedrons	
	Module 14: Algebraic Aspects of Linear Optimization	
	• Lesson 1: Basic Feasible Solution	
	Lesson 2: Polyhedron in Standard Form	
	• Lesson 3: Basic Feasible Solution in Standard Form LP	
	Lesson 4: Why We Care So Much About BFS	
Week 7 Homework	Homework 7	Oct 4
Week 8	Module 15: Simplex Method in a Nutshell	Oct 8, 2018 at 13:
	Lesson 1: Local Search - The General Idea	
	Lesson 2: Local Search - Specialized to LP	
	• Lesson 3: How to Walk on the Edge	
	• Lesson 4: When to Stop and Declare Victory	
	Module 16: Further Development of Simplex Method	
	Lesson 1: Summarize Simplex Method	
	Lesson 2: Handling Degeneracy	
	Lesson 3: Phase I/Phase II Simplex Method	
	• Lesson 4: An Example	
Week 8 Homework	Homework 8	Oct 11

Midterm	Midterm Exam	Oct 15, 2018
Week 9	 Module 17: Linear Programming Duality Lesson 1: A Simple But Fundamental Trick for Deriving LP Dual Lesson 2: Relation to Lagrangian Duality Lesson 3: Weak and Strong Duality and Complementary Slackness Lesson 4: Two-Person Zero-Sum Game Module 18: Robust Optimization Lesson 1: Robustness and Its Wide Applications Lesson 2: Robust Linear Program Lesson 3: Two-Stage Robust Linear Program 	Oct 15, 2018 at 13: 00 UTC
Week 9 Homework	Homework 9	Oct 18
Week 10	 Module 19: Nonlinear Optimization Modeling - Approximation and Fitting Lesson 1: Gauss, Geodesy, and Linear Least-Squares Problem Lesson 2: SVD, Matrix Approximation, and Image Compression Lesson 3: Sparsity, Regularization, and Basis Pursuit Lesson 4: Robust Approximation Module 20: Nonlinear Optimization Modeling - Statistical Estimation Lesson 1: Parametric Distribution Estimation Lesson 2: Nonparametric Distribution Estimation Lesson 3: Computing Probability Bounds 	Oct 22, 2018 at 12: 00 UTC

Week 10 Homework	Homework 10	Oct 25
Week 11	 Module 21: Convex Conic Programming - Introduction Lesson 1: Convex Cones and Generalized Inequality Lesson 2: From LP Duality to Conic Duality Lesson 3: Second-Order Conic Programming Lesson 4: Semi-Definite Programming 	Oct 29, 2018 at 12: 00 UTC
	 Module 22: Second-Order Conic Programming - Examples Lesson 1: Projection and Separation Lesson 2: Optimal Placement Problem Lesson 3: Support Vector Machine Lesson 4: Nonlinear Discrimination 	
Week 11 Homework	Homework 11	Nov 1
Week 12	 Module 23: Second-Order Conic Programming - Advanced Modeling Lesson 1: Conic Quadratic Representable Functions and Sets Lesson 2: More "Exotic" CQr Functions Lesson 3: Robust Linear Programming Revisited Module 24: Semi-Definite Programming - Advanced Modeling Lesson 1: Eigenvalue Optimization as SDP Lesson 2: Polynomial Optimization as SDP Lesson 3: Optimal Power Flow and SDP Relaxation Lesson 4: Structural Design 	Nov 5, 2018 at 12: 00 UTC

Week 12 Homework	Homework 12	Nov 8
Week 13	Module 25: Discrete Optimization - Introduction	Nov 12, 2018 at 12: 00 UTC
	• Lesson 1: Why Discrete Variables	00 010
	Lesson 2: Discrete Optimization Challenges	
	Lesson 3: Computational Complexity	
	Module 26: Discrete Optimization - Modeling With Binary Variables 1	
	Lesson 1: Nonconvex Functions	
	Lesson 2: Nonconvex Sets and Logical Relations	
	Lesson 3: Logical Relations	
Week 13 Homework	Homework 13	Nov 15
Week 14	Module 27: Discrete Optimization - Modeling With Binary Variables 2	Nov 19, 2018 at 12: 00 UTC
	Lesson 1: Set Packing, Covering, Partitioning	
	Lesson 2: Graph and Network Problems	
	Module 28: Discrete Optimization - Modeling Exercises	
	• Lesson 1: Modeling Exercises - 1	
	• Lesson 2: Modeling Exercises - 2	
	• Lesson 3: Modeling Exercises - 3	
Week 14 Homework	Homework 14	Nov 22

Week 15	Module 29: Discrete Optimization - Linear Programming Relaxation	Nov 26 at 12: 00 UTC
	Lesson 1: Linear Programming RelaxationLesson 2: Ideal Formulations	
	Module 30: Discrete Optimization - Solution Methods	
	Lesson 1: Enumeration	
	Lesson 2: Cutting Plane Methods	
	Lesson 3: Branch-and-Bound Algorithm	
	Lesson 4: Heuristics	
Week 15 Homework	BONUS: Homework 15	Nov 29
Final	Final Exam	Dec 3, 2018

Course Materials

- All content and course materials can be accessed online
- There is no textbook for this course
- Reference books:
 - R. Rardin. "Optimization in Operations Research", Prentice Hall, 1998.
 - S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, 2004. Online: https://web.stanford.edu/~boyd/cvxbook/
 - A. Ben-Tal and A. Nemirovski, "Lectures on Modern Convex Optimization," SIAM, 2001.

Technology/Software Requirements

- Internet connection (DSL, LAN, or cable connection desirable)
- PuLP optimization software (free download; see http://www.coin-or.org/PuLP/ Windows version and (for Mac users) a Linux version)
- CVX in Python: CVXOPT, CVXPY software (available at http://cvxopt.org and http://cvxopt.org

- CVX in MATLAB: CVX software (available at http://cvxr.com/cvx/)
- Python programming language (free download; see http://www.python.org). Preferably use the Anaconda distribution (http://www.anaconda.com) with Python 2.7.
- Adobe Acrobat PDF reader (free download; see https://get.adobe.com/reader/)

© All Rights Reserved