Ejemplo Demostrar la validez del siguiente razonamiento: Si el reloj está adelantado, entonces Juan llegó antes de las diez y vio partir el coche de Andrés Si Andrés dice la verdad entonces Juan no vio partir el coche de Andrés. Andrés dice la verdad o estaba en el edificio en el momento del crimen. El reloj está adelantado. Por tanto Andrés estaba en el edificio en el momento del crimen. Simbólicamente P: el reloi está adelantado 9: Juan llego antes de las eliez r: Juan vio partir el coche de Andrés S: Andrés dice la verdad Andrés estaba en el edif en el momento del crimen. Luego $P \Rightarrow (q \wedge r)$ 1. 5 => ~ Y 5 v 7 3, t P 9 nr 5. MPP 9 6. L.C. 5 7. Υ L.C ~5 8 7 MTT t 3 48 MTP

Métodos de Demostración

Toda afirmación en matemática requiere ser demostrada, y en muchos casos, realizar la demostración de una proposición no es una tarea fácil.

El objetivo de este capitulo es proporcionar al estudiante las estrategias y herramientas necesarias para poder realizar demostraciones y así poder transmitir ideas a otras personas.

En el proceso de demostrar una proposición se debe, en lo posible, expresarla en forma de una proposición condicional o implicación. En esta forma, el termino de partida se denomina hipótesis y puede estar compuesta por una o mas proposiciones, y el termino de llegada se la conoce como tesis o conclusion.

- 1. Método Directo (Progresivo)
- 2. Método Directo (Progresivo Regresivo)
- 3. Método por contradicción
- 4. Método del contrarecíproco
- 5. Método de la bicondicional

Método Directo (Progresivo)

Las proposiciones que se demuestran con este método son de la forma

$$p \Rightarrow q$$

El trabajo comienza al suponer que p es V y, de alguna manera, usar esta información para obtener otra proposición p_1 , continuando este proceso se debe obtener la proposición p_2 , y así sucesivamente hasta obtener la conclusion q. En este caso el proceso de deducción es progresivo.

$$p \Rightarrow p_1 \Rightarrow p_2 \Rightarrow \dots \Rightarrow p_k \Rightarrow q$$

Donde las proposiciones $p_1, p_2, ..., p_k$ se obtienen mediante definiciones, axiomas o teoremas ya demostrados que tienen relación con la premisa p y con la tesis q.

Así xº es impar

Método Directo (Regresivo)

Progresivo - Regresivo

Para demostrar la proposición

$$p \Rightarrow q$$

se parte de la hipótesis p, la cuál es V, y obtener proposiciones

$$p \Rightarrow p_1 \Rightarrow p_2 \Rightarrow \dots \Rightarrow p_k$$

Luego debemos partir de la conclusión q y obtener, regresivamente, proposiciones

$$p_k \Rightarrow p_{k+1} \Rightarrow p_{k+2} \Rightarrow \dots \Rightarrow p_j \Rightarrow q$$

para luego unirlas y construir las implicaciones.

$$p \Rightarrow p_1 \Rightarrow p_2 \Rightarrow ... \Rightarrow p_k \Rightarrow ,..., p_j \Rightarrow q$$

que demuestran la proposición deseada.

Método por Contradicción

Este método consiste en suponer que la conclusion de la proposición $p \Rightarrow q$ es falsa y agregarla como hipótesis, para luego aplicar el método directo hasta obtener una proposición de la forma $r \land \sim r$, la cuál es una contradicción. Por lo tanto, ya que la suposición de que la conclusion es falsa nos lleva a contradicciones, entonces debe ser verdadera.

Así, para demostrar la proposición

$$p \Rightarrow q$$

demostramos su negación

$$\sim (p \Rightarrow q) \equiv p \land \sim q$$

hasta obtener una contradicción. Luego la proposición inicial $p \Rightarrow q$ es verdadera.

Ejemplo.	Demuestra que $\sqrt{2}$ es irrac	ional. Q $\overline{\mu}$
Aplicamos	el mét. por contradico	
Es decir	suponemos que	Jz es racional
entonces.	J2 tiene forma.	fraccionaria Irreducible
Esderir	J2 = P q	1
Luego	$2 = \frac{p^2}{q^2}$	$\Rightarrow 2 q^2 = p^2$
		$\rho^2 = 2 \cdot q^2$
	=	=) p² es par) ejorcicio
		=) P es par
		=> P = 2 k , ke Z
		$= (2k)^2 = 2q^2$
		$=$ 4 $K^2 = 2g^2$
		$= \qquad \qquad$
		=> g ² es par
		=> g es par

Método del contrarrecíproco Este método consiste en demostrar la proposición equivalente de la implicación, es decir: $(p \Rightarrow q) \equiv (\sim q \Rightarrow \sim p)$ de este modo la hipótesis es la proposición $\sim q$ y la conclusión es $\sim p$, luego podemos aplicar los métodos mencionados anteriormente. Demostrar que si n^2 es par entonces n es par. Ejemplo. no es par. El contrarecíproco: Si n no es par entences Si n es impar entonces nº es impar n = 2K+1 n es impar Como $\eta^2 = (2k+1)^2$ => n2 = 412 +4K+1 n2 = 2(2x2+2x)+1 $n^2 = 2 m + 1$ = n2 es impar. =

Método de la bicondicional

Para demostrar la proposición $p \Leftrightarrow q$. Debemos usar la equivalencia:

$$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

Es decir que debemos demostrar dos implicaciones, cada una de las cuales pueden demostrarse utilizando los métodos anteriores.

Otros métodos

Otras proposiciones, que se presenten a menudo, pueden demostrarse utilizando equivalencias lógicas y los métodos vistos anteriormente. Algunas de ellas son:

- Para demostrar la proposición $p \Rightarrow (q \lor r)$ se debe demostrar $(p \land \sim q) \Rightarrow r$ o bien $(p \land \sim r) \Rightarrow q$
- \blacksquare Para demostrar la proposición $p\Rightarrow (q\wedge r)$ se deben demostrar $p\Rightarrow q$ y $p\Rightarrow r$
- \bullet Para demostrar la proposición $(p \lor q) \Rightarrow r$ se deben demostrar $p \Rightarrow r$ y $q \Rightarrow r$

