CZ1016: Assignment

Essential Libraries

Let us begin by importing the essential Python Libraries.

NumPy: Library for Numeric Computations in Python Pandas: Library for Data Acquisition and Preparation Matplotlib: Low-level library for Data Visualization Seaborn: Higher-level library for Data Visualization

```
In [1]: # Basic Libraries
   import numpy as np
   import pandas as pd
   import seaborn as sb
   import matplotlib.pyplot as plt # we only need pyplot
   sb.set() # set the default Seaborn style for graphics
```

Setup: Import the Dataset

Dataset: "smsdata.txt" (use read_table function from Pandas to import)
After importing, take a quick look at the dataset using the head function.

```
In [2]: # \t because the columns are separated by a tab
# read_table to read the text file
smsData = pd.read_table('smsdata.txt', sep = "\t", header = None)
smsData.sample(n=10)
```

Out[2]:

1	0	
Should I be stalking u?	good	2323
But if she.s drinkin i'm ok.	good	1285
No pic. Please re-send.	good	3415
Dear how you. Are you ok?	good	1627
All done? All handed in? Celebrations in full	good	280
Just arrived, see you in a couple days <3	good	2784
Sun ah Thk mayb can if dun have anythin on	good	4554
Lol they don't know about my awe some phone. I \dots	good	3050
Dear U've been invited to XCHAT. This is our f	spam	1073
WHO ARE YOU SEEING?	good	43

```
In [3]: # .columns method can rename columns
smsData.columns = ["label", "text"]
smsData.sample(n=10)
```

Out[3]:

text	label	
I donno its in your genes or something	good	5293
They did't play one day last year know even th	good	1855
Double Mins & Double Txt & 1/2 price Linerenta	spam	1378
Just sent you an email – to an address with in	good	1473
Short But Cute: "Be a good person, but dont tr	good	3795
UpgrdCentre Orange customer, you may now claim	spam	463
Ya, i'm referin to mei's ex wat No ah, wait	good	5516
Carlos took a while (again), we leave in a minute	good	2136
FREE>Ringtone! Reply REAL or POLY eg REAL1 1	spam	3921
That's my honeymoon outfit. :)	good	1592

```
In [4]: # Basic information about the data
smsData.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5572 entries, 0 to 5571
Data columns (total 2 columns):
label 5572 non-null object
text 5572 non-null object

dtypes: object(2)
memory usage: 87.2+ KB

Solution: Classification

Use the labeled (good / spam) text messages in smsData to build a tree-based binary classifier that is capable of distinguishing spam text messages from the good ones. You may build a single decision tree or an ensemble (forest), whichever is better in this case. Try both, and find out which one is better.

In [5]: smsData.sample(20)

Out[5]:

	label	text
4514	spam	Money i have won wining number 946 wot do i do
4526	good	Cos i was out shopping wif darren jus now n i
3565	good	Do you always celebrate NY's with your family?
2910	spam	URGENT! Your Mobile number has been awarded wi
1732	good	Lol. Well quality aint bad at all so i aint co
1149	good	I'm not driving Raining! Then i'll get caug
4807	good	Call me when u finish then i come n pick u.
4141	good	Leave it wif me lar Ü wan to carry meh so h
5468	spam	URGENT! Last weekend's draw shows that you hav
3599	good	Aight, we'll head out in a few
3411	good	Joy's father is John. Then John is the of
3976	good	do u think that any girl will propose u today
24	good	Fffffffff. Alright no way I can meet up with
1504	good	III be there on &It#> ok.
1229	spam	FREE entry into our £250 weekly comp just send
4778	good	Sorry completely forgot * will pop em round th
2042	good	Ü dun wan to watch infernal affair?
4685	good	My life Means a lot to me, Not because I love
4235	good	Now only i reached home I am very tired n
5382	good	I can make it up there, squeezed &It#> b

Data exploration and feature extraction

```
In [6]: # likely need to convert response variable to CATEGORICAL type
# there is only ONE predictor, likely have to extract more relevant predictors for the in
print("Dimensions:", smsData.shape)
print()
print("Data Types:")
print(smsData.dtypes)
```

Dimensions: (5572, 2)

Data Types: label object text object dtype: object

Visualising the response variable

- · imbalanced dataset
- · likely will have to balance out the data using SMOTE

```
In [7]: sb.countplot(smsData['label'])
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x1d862c155c8>

Extract length of message

```
In [8]: # find out if length of message length would be relevant
smsData['msg_len'] = smsData['text'].astype(str).apply(len)

In [9]: def univariate_plots(target):
    f, axes = plt.subplots(1, 1, figsize=(20, 5))
    sh boxplot(smsData[target], solon = "doenskyblue")
```

```
In [9]: def univariate_plots(target):
    f, axes = plt.subplots(1, 1, figsize=(20, 5))
    sb.boxplot(smsData[target], color = "deepskyblue")
    f, axes = plt.subplots(1, 1, figsize=(20, 5))
    sb.distplot(smsData[target], color = "deepskyblue")
    f, axes = plt.subplots(1, 1, figsize=(20, 5))
    sb.violinplot(smsData[target], color = "deepskyblue")
```



```
In [11]: def multivariate_plots(target):
    f, axes = plt.subplots(1, 1, figsize=(15, 5))
    sb.boxplot(x=target,y='label',data=smsData,palette=['turquoise','darkgoldenrod'])
    f, axes = plt.subplots(1, 1, figsize=(15, 5))
    sb.violinplot(x=target,y='label',data=smsData,palette=['turquoise','darkgoldenrod']
```

In [12]: # Observation: most 'spam' length is concentrated at around 150 while 'good' is around
above 200, rows are very likely to be 'good'
multivariate_plots('msg_len')

In [13]: pd.crosstab(smsData['msg_len'].apply(lambda x: 100<x<200), smsData['label'])</pre>

Out[13]:

label	good	spam
msg_len		
False	3846	78
True	979	669

Extract word counts

```
In [14]: smsData['word_count'] = smsData['text'].apply(lambda x: len(str(x).split()))
```

In [15]: # this feature is correlated with message length, likely take one or the other
univariate_plots('word_count')

In [16]: # very similar result with message length
multivariate_plots('word_count')


```
In [17]: ## comapring word count to message length
sb.jointplot(smsData['word_count'],smsData['msg_len'])
```

Out[17]: <seaborn.axisgrid.JointGrid at 0x1d8655b2208>

Extract number of capital letters

· hypothesis: 'spam' would tend to have more captial letters

```
In [19]: smsData['num_of_caps']=smsData['text'].apply(lambda x: len([x for x in str(x) if x.isu
In [20]: # Large majority of rows have less than 10 caps
univariate_plots('num_of_caps')
```

In [21]: # 'spam' does tend to have more caps, but this doesn't seem to be a very good predictor
#because there are also lots of 'good' with many caps
multivariate_plots('num__of_caps')


```
In [22]: # above 5 caps over 50% are 'spam'
pd.crosstab(smsData['num_of_caps'].apply(lambda x: 5<x), smsData['label'])</pre>
```

Out[22]:

label	good	spam
numof_caps		
False	4305	135
True	520	612

Extract number of digits

```
In [23]: smsData['num_of_digits']=smsData['text'].apply(lambda x: len([x for x in str(x) if x.is
```

In [24]: # most rows have little to no digits
univariate_plots('num_of_digits')

In [25]: # 'spam' emails tend to have a lot more digits than 'good'
multivariate_plots('num_of_digits')

Out[26]:

	label	text	msg_len	numof_caps	num_of_digits
692	good	Sorry to trouble u again. Can buy 4d for my da	109	4	15
989	good	Yun ah.the ubi one say if ü wan call by tomorr	160	2	23
2408	good	Solve d Case : A Man Was Found Murdered On &I	444	44	11
2681	good	Solve d Case : A Man Was Found Murdered On &I	444	44	11
2933	good	Only 2% students solved this CAT question in '	183	5	14
3280	good	Solve d Case : A Man Was Found Murdered On &I	444	44	11
3291	good	My tuition is at 330. Hm we go for the 1120 to	69	3	11
3462	good	K I yan jiu liao Sat we can go 4 bugis vi	155	4	12
4762	good	It's é only $140 ard \ldots \acute{E} restallard$ 180 at	89	3	11

```
In [27]: # above 10 digits, the email is very likely to be 'spam'
pd.crosstab(smsData['num_of_digits'].apply(lambda x: x>10), smsData['label'])
```

Out[27]:

label	good	spam
num_of_digits		
False	4816	189
True	9	558

extract number of stopwords

- although all, data points more than 20 stopwords are 'good', this seems to be a poor indicator
- In [28]: from nltk.corpus import stopwords
 stop=stopwords.words('english')
- In [29]: smsData['num_of_stopwords']=smsData['text'].apply(lambda x: len([x for x in x.split() in text)]

In [30]: univariate_plots('num_of_stopwords')


```
In [31]: # 50% of rows have 2 to 6 stopwords
smsData['num_of_stopwords'].describe()
```

```
Out[31]: count
                   5572.000000
                      4.596554
         mean
         std
                      4.591812
         min
                      0.000000
         25%
                      2.000000
         50%
                      3.000000
         75%
                      6.000000
                     86.000000
         max
```

Name: num_of_stopwords, dtype: float64

In [32]: # above 20 stopwords the email is like 'good'
multivariate_plots('num_of_stopwords')


```
In [33]: # this feature does not a very good predictor looking at the multivariate plot
smsData=smsData.drop(['num_of_stopwords'],axis=1)
```

extract number of 'pounds' sign

· hyppthesis is that pounds sign can indicate 'spam' that is asking for money

```
In [34]: smsData['num_of_pounds']=smsData['text'].apply(lambda x: len([x for x in str(x) if x=='
```

In [35]: # most rows have no pounds sign
univariate_plots('num_of_pounds')

In [36]: # if there is a pounds sign, it is very likely to be 'spam'
multivariate_plots('num_of_pounds')


```
In [37]:
         # 'good' with pounds sign
         smsData.loc[(smsData['num_of_pounds']>0)&(smsData['label']=='good')]
```

Out[37]:

	label	text	msg_len	numof_caps	num_of_digits	num_of_pounds
1677	good	Yeah, that's fine! It's £6 to get in, is that ok?	49	2	1	1
1724	good	Hi Jon, Pete here, Ive bin 2 Spain recently &	157	8	8	1
1998	good	YEH I AM DEF UP4 SOMETHING SAT,JUST GOT PAYED2	149	113	6	1
3044	good	Your bill at 3 is £33.65 so thats not bad!	42	1	5	1
3736	good	It's £6 to get in, is that ok?	30	1	1	1

```
# if there is a pounds sign, it is very likely to be 'spam'
pd.crosstab(smsData['num_of_pounds'].apply(lambda x: x>0), smsData['label'])
```

Out[38]:

label	good	spam
num_of_pounds		
False	4820	494
True	5	253

extract presence of a link

· hypothesis is that a link would suggest 'spam' that want the victim to click to another website

```
In [39]:
         smsData['link present']=smsData['text'].apply(lambda x: 'www.' in str(x).lower() or
         # indeed if a link is present, it is likely spam. it accounts for a very small percentage
In [40]:
         pd.crosstab(smsData['link_present'], smsData['label'])
```

Out[40]:

```
label
             good spam
link_present
                      640
      False
              4823
       True
                 2
                      107
```

```
# 'good' with link present
In [41]:
         smsData.loc[(smsData['link_present'])&(smsData['label']=='good'),['text','link_present
```

Out[41]:

	text	link_present
2379	Hi, Mobile no. <#> has added you in th	True

4773 Hi, Mobile no. <#> has added you in th... True

extract number of exclamations

• hypothesis was that presence of more exclamation mark would indicate 'spam'

```
In [42]: smsData['num_of_exclamations']=smsData['text'].apply(lambda x: len([x for x in str(x) i
In [43]: # Large majority of emails have little to none
univariate_plots('num_of_exclamations')
```

In [44]: # around 50 % of 'spam' emails do have '!' have there are also quite a number of 'good'
multivariate_plots('num_of_exclamations')

In [45]: # 'good' with exclamations
smsData.loc[(smsData['num_of_exclamations']>0)&(smsData['label']=='good')]

Out[45]:

	label	text	msg_len	numof_caps	num_of_digits	num_of_pounds	link_present	num_of_excl
14	good	I HAVE A DATE ON SUNDAY WITH WILL!!	35	26	0	0	False	
29	good	Ahhh. Work. I vaguely remember that! What does	64	5	0	0	False	
31	good	Yeah he got in at 2 and was v apologetic. n ha	188	5	2	0	False	
39	good	Hello! How's you and how did saturday go? I wa	155	4	0	0	False	
44	good	Great! I hope you like your man well endowed.	72	3	0	0	False	
5465	good	Shall I bring us a bottle of wine to keep us a	87	4	0	0	False	
5476	good	Yes princess! I want to please you every night	74	3	0	0	False	
5480	good	Have you seen who's back at Holby?!	35	2	0	0	False	
5494	good	Cool, we shall go and see, have to go to tip a	155	4	0	0	False	
5506	good	God's love has no limit. God's grace has no me	149	6	1	0	False	

```
In [46]:
         # around 50% of 'spam' have '!',
         pd.crosstab(smsData['num_of_exclamations'].apply(lambda x: x>0), smsData['label'])
```

Out[46]:

```
label good spam
num_of_exclamations
              False
                     4263
                             381
               True
                      562
                             366
```

extract presence of consecutive dots '..'

Now Tapas This wook

• looking at the raw data, 'good' emails tend to have this, let's take a look

```
In [47]:
         smsData['consecutiveDots']=smsData['text'].apply(lambda x: '..' in str(x))
```

```
# emails are very likely to be 'good' when '..' is present
In [48]:
         pd.crosstab(smsData['consecutiveDots'], smsData['label'])
```

Out[48]:

```
label good spam
consecutiveDots
          False
                 3702
                         730
           True
                 1123
                         17
```

```
In [49]:
         # 'spam' with consecutive dots
         smsData.loc[(smsData['consecutiveDots'])&(smsData['label']=='spam')]
```

Out[49]:

	label	text	msg_len	numof_caps	num_of_digits	num_of_pounds	link_pre
1366	spam	HOT LIVE FANTASIES call now 08707509020 Just 2	101	29	23	0	F
1374	spam	Bears Pic Nick, and Tom, Pete and Dick. In	151	7	25	0	F
1734	spam	Hi, this is Mandy Sullivan calling from HOTMIX	223	14	23	1	F
2003	spam	TheMob>Yo yo yo-Here comes a new selection of	143	9	0	0	F
2247	spam	Hi ya babe x u 4goten bout me?' scammers getti	181	4	1	0	F
2313	spam	tddnewsletter@emc1.co.uk (More games from TheD	114	10	1	0	F

extract happy faces

True

296

• hypothesis is that happy faces indicate non-sinister intent which are 'good' emails

Number of question marks

0

```
In [51]: smsData['question_mark']=smsData['text'].apply(lambda x: len([i for i in str(x) if i=='
```

In [52]: # majority of rows have none, though there are plenty of outliers
univariate_plots('question_mark')

In [53]: ## does seem to predict 'good' when quantity is high
multivariate_plots('question_mark')


```
In [54]:
         ## dropped this feature because it is not a significant enough predictor
         smsData=smsData.drop(['question_mark'],axis=1)
In [55]:
         new_features=[col for col in smsData.columns if( col not in ['label', 'text'])]
         print("Additional features extracted: ")
         for i,col in enumerate(new features):
             print(i+1,col)
         Additional features extracted:
         1 msg len
         2 num of caps
         3 num_of_digits
         4 num_of_pounds
         5 link_present
         6 num of exclamations
         7 consecutiveDots
         8 happy face
```

Pre-processing

convert text to lower case

- x.split() splits by empty space, so we have a LIST OF WORDS
- " ".join converts this list back into a SENTENCE

```
In [56]: smsData['text']=smsData['text'].apply(lambda x: " ".join(x.lower() for x in x.split()))
```

extract only alphabets

- · special characters and all punctuations would be removed
- [^a-zA-Z] means to exclude a-z and A-Z

```
In [57]: import re
smsData['text']=smsData['text'].apply(lambda x: re.sub('[^a-zA-Z]',' ',x))
```

remove punctuations(disabled)

- · this step is already account in the previous cell
- · using .replace method

```
smsData['text']=smsData['text'].str.replace('[^\w\s]','')
```

remove stopwords

-ie unimportant words

```
In [58]: from nltk.corpus import stopwords
stop = stopwords.words('english')
smsData['text']=smsData['text'].apply(lambda x: " ".join(x for x in x.split() if x not
```

take only most frequent words

- · rare words are just add to noise
- Dilemma: at what point do we call a word rare and remove it?
- Note: we should keep mopst FREQUENT words because some of them like 'call' or 'free' help predict 'spam'

```
In [59]: freq=pd.Series(' '.join(smsData['text']).split()).value_counts()
    most_freq=freq[:300]

In [60]: smsData['text']=smsData['text'].apply(lambda x: " ".join(x for x in x.split() if x in means the sum of the
```

remove leftover single letters

- · it seems, there are single letters scattered around
- · remove them because they likely do not add any meaning

```
In [61]: smsData['text']=smsData['text'].apply(lambda x: " ".join(x for x in x.split() if len(x)
```

lemmatization

· convert words to roots

```
In [62]: from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
smsData['text']=smsData['text'].apply(lambda x: " ".join([lemmatizer.lemmatize(x) for word))
```

creating the bag of words model

· a sparse matrix where each column represents a word

```
3 0 0 0 0 5 0 0 0 0 0 ...
                                        0 0
                                                0
                                                    0
                                                         0
                                                             0 0
                                                                   0 0
                                                                             0
         4 0 0 0 0 0 0 0 0 0 0 ...
                                        0
                                            0
                                                                         0
                                                                             0
         5 rows × 291 columns
         # adding the engineered features
In [65]:
         X=pd.concat([X,smsData[new_features]], axis=1, sort=False)
In [66]: # extracting the response variable
         y=smsData['label']
In [67]: # split into train and test sets
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
```

0 1 2 3 4 5 6 7 8 9 ... 281 282 283 284 285 286 287 288 289 290

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

Classification models

decision tree model

X.head()

 $\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, 0\ \, \dots$

 $1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \dots$

2 0 0 0 0 0 0 0 0 0 0 ...

In [64]:

Out[64]:

```
In [330]:
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.metrics import confusion_matrix
          from sklearn.tree import plot_tree
          # training and fitting the model
          dtClassifier=DecisionTreeClassifier(max depth=3)
          dtClassifier.fit(X_train,y_train)
          # predicting train and test set
          y train pred = dtClassifier.predict(X train)
          y test pred = dtClassifier.predict(X test)
          from sklearn.metrics import confusion matrix
          # Plot the Confusion Matrix for Train and Test
          f, axes = plt.subplots(1, 2, figsize=(12, 4))
          sb.heatmap(confusion_matrix(y_train, y_train_pred),
                     annot = True, fmt=".0f", annot_kws={"size": 18}, ax = axes[0])
          sb.heatmap(confusion_matrix(y_test, y_test_pred),
                     annot = True, fmt=".0f", annot kws={"size": 18}, ax = axes[1])
```

Out[330]: <matplotlib.axes._subplots.AxesSubplot at 0x1d4715d5ac8>


```
def print_metrics(actual, predicted):
In [331]:
               from sklearn.metrics import confusion matrix
               cm=confusion_matrix(actual, predicted)
               TN=cm[0][0]
               TP=cm[1][1]
               FP=cm[0][1]
               FN=cm[1][0]
               precision=TP/(FP+TP)
               recall=TP/(FN+TP)
               F1= 2*(recall * precision) / (recall + precision)
               accuracy=(TP+TN)/(TP+FP+FN+TN)
               print('{0:<15} {1}'.format("Accuracy:",accuracy))</pre>
               print('{0:<15} {1}'.format("Precision:",precision))</pre>
               print('{0:<15} {1}'.format("Recall:",recall))</pre>
               print('{0:<15} {1}'.format("F1:",F1))</pre>
```

- decision tree model performs very well in training set, over 89% for all metrics
- however, there is a slight drop of performance in the test set, likely an indication of OVERFITTING

```
In [332]: print("Performance on training set:")
    print_metrics(y_train, y_train_pred)
    print()
    print("Performance on test set:")
    print_metrics(y_test, y_test_pred)
```

Performance on training set:

Accuracy: 0.9820507067534215
Precision: 0.9576271186440678
Recall: 0.9112903225806451
F1: 0.9338842975206612

Performance on test set:

Accuracy: 0.9820627802690582 Precision: 0.9421487603305785 Recall: 0.8976377952755905 F1: 0.9193548387096775

 plotting the tree, we see that num_of_digits, presence of link and presence of '..' are the most significant predictors

· let's increase the max_depth

Out[334]: <matplotlib.axes._subplots.AxesSubplot at 0x1d418411648>

- with max depth=20, performance in the training set is over 98% for all metrics
- however, there is OVERFITTING, because we see a drop in performance in the test set

```
In [335]: print("Performance on training set:")
    print_metrics(y_train, y_train_pred)
    print()
    print("Performance on test set:")
    print_metrics(y_test, y_test_pred)
```

Performance on training set:

Accuracy: 0.9984294368409243

Precision: 1.0

Recall: 0.9887096774193549 F1: 0.994322789943228

Performance on test set:

Accuracy: 0.9820627802690582
Precision: 0.9212598425196851
Recall: 0.9212598425196851
F1: 0.9212598425196851

random forest model

```
In [336]:
          # Import RandomForestClassifier model from Scikit-Learn
          from sklearn.ensemble import RandomForestClassifier
          # Create the Random Forest object
          rforest = RandomForestClassifier(max depth=20,n estimators= 1000)
          # Fit Random Forest on Train Data
          rforest.fit(X train, y train.values.ravel())
Out[336]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                                  max depth=20, max features='auto', max leaf nodes=None,
                                  min impurity decrease=0.0, min impurity split=None,
                                  min samples leaf=1, min samples split=2,
                                  min weight fraction leaf=0.0, n estimators=1000,
                                  n jobs=None, oob score=False, random state=None,
                                  verbose=0, warm start=False)
In [337]:
          # predicting train and test set
          y train pred = rforest.predict(X train)
          y test pred = rforest.predict(X test)
In [338]:
          from sklearn.metrics import confusion matrix
```


Out[338]: <matplotlib.axes._subplots.AxesSubplot at 0x1d41d9ca888>

- precision is very high, which is good because we don't want user emails to be falsely predicted as spam
- compared to decision tree performance did not drop as much, indicating less OVERFITTING
- recall in the test set is still at 90% so there are still 10% 'spam' not detected

```
In [339]: print("Performance on training set:")
    print_metrics(y_train, y_train_pred)
    print()
    print("Performance on test set:")
    print_metrics(y_test, y_test_pred)
```

Performance on training set:

Accuracy: 0.9939421135292797

Precision: 1.0

Recall: 0.9564516129032258 F1: 0.9777411376751854

Performance on test set:

Accuracy: 0.9874439461883409
Precision: 0.9829059829059829
Recall: 0.905511811023622
F1: 0.9426229508196721

using GridSearch

best parameters for the random forest are as follows: {'max_depth': 25, 'min_samples_leaf': 1, 'min samples split': 2, 'n estimators': 500}

```
#data splitting
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
# Import RandomForestClassifier model from Scikit-Learn
from sklearn.ensemble import RandomForestClassifier
# Create the Random Forest object
rforest = RandomForestClassifier()
# set the maximum depth of each tree
n_{estimators} = [100, 300, 500, 800, 1200]
max_depth = [5, 8, 15, 25, 30]
min_samples_split = [2, 5, 10, 15, 100]
min samples leaf = [1, 2, 5, 10]
from sklearn.model_selection import GridSearchCV
hyperF = dict(n_estimators = n_estimators, max_depth = max_depth,
              min_samples_split = min_samples_split,
             min samples leaf = min samples leaf)
gridF = GridSearchCV(rforest, hyperF, cv = 3, verbose = 1,
                      n_{jobs} = -1
bestF = gridF.fit(X_train, y_train)
bestF.best_params_
```

```
In [340]:
          # split into train and test sets
          from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
          # Import RandomForestClassifier model from Scikit-Learn
          from sklearn.ensemble import RandomForestClassifier
          # Create the Random Forest object
          rforest = RandomForestClassifier(max_depth= 25,
                                           min samples leaf= 1,
                                           min samples split=2,
                                           n estimators=500)
          # Fit Random Forest on Train Data
          rforest.fit(X_train, y_train.values.ravel())
          # predicting train and test set
          y_train_pred = rforest.predict(X_train)
          y_test_pred = rforest.predict(X_test)
          from sklearn.metrics import confusion matrix
          # Plot the Confusion Matrix for Train and Test
          f, axes = plt.subplots(1, 2, figsize=(12, 4))
          sb.heatmap(confusion_matrix(y_train, y_train_pred),
                     annot = True, fmt=".0f", annot_kws={"size": 18}, ax = axes[0])
          sb.heatmap(confusion_matrix(y_test, y_test_pred),
                     annot = True, fmt=".0f", annot_kws={"size": 18}, ax = axes[1])
```

Out[340]: <matplotlib.axes._subplots.AxesSubplot at 0x1d41d97fa88>

· using the best parameters, we see an improvement in the recall compared to previous models

```
In [341]:
          print("Performance on training set:")
          print_metrics(y_train, y_train_pred)
          print()
          print("Performance on test set:")
          print_metrics(y_test, y_test_pred)
```

Performance on training set:

Accuracy: 0.9959614090195199 Precision: 1.0 Recall: 0.9701492537313433 F1: 0.9848484848484849

Performance on test set:

0.9919282511210762 Accuracy:

Precision: 1.0 Recall: 0.9375

F1: 0.967741935483871

upsampling(disabled)

· SMOTE used instead

```
from sklearn.utils import resample
# concatenate our training data back together
X = pd.concat([X_train, y_train], axis=1)
# separate minority and majority classes
not_spam = X[X.label=='good']
spam = X[X.label=='spam']
# upsample minority
spam_upsampled = resample(spam,
                          replace=True, # sample with replacement
                          n_samples=len(not_spam), # match number in majority class
                          random state=27) # reproducible results
# combine majority and upsampled minority
upsampled = pd.concat([not_spam, spam_upsampled])
# check new class counts
upsampled.label.value counts()
```

```
# Import RandomForestClassifier model from Scikit-Learn
from sklearn.ensemble import RandomForestClassifier
# Create the Random Forest object
rforest = RandomForestClassifier(n_estimators =500, # n_estimators denote number of
trees
                                 max_depth = 10)
                                       # set the maximum depth of each tree
# trying logistic regression again with the balanced dataset
y_train = upsampled.label
X_train = upsampled.drop('label', axis=1)
# Fit Random Forest on Train Data
```

SMOTE

A technique similar to upsampling is to create synthetic samples. Here we will use imblearn's SMOTE
or Synthetic Minority Oversampling Technique. SMOTE uses a nearest neighbors algorithm to
generate new and synthetic data we can use for training our model

```
In [68]: | from imblearn.over_sampling import SMOTE
         # split into train and test sets
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
         # Import RandomForestClassifier model from Scikit-Learn
         from sklearn.ensemble import RandomForestClassifier
         sm = SMOTE(random state=20, ratio=1.0)
         X train, y train = sm.fit sample(X train, y train)
         # using best parameters
         rforest = RandomForestClassifier(max depth= 25,
                                          min samples leaf= 1,
                                          min samples split=2,
                                           n estimators=500)
         # Fit Random Forest on Train Data
         rforest.fit(X train, y train)
         # making predictions
         y train pred = rforest.predict(X train)
         y test pred = rforest.predict(X test)
         from sklearn.metrics import confusion matrix
         # Plot the Confusion Matrix for Train and Test
         f, axes = plt.subplots(1, 2, figsize=(12, 4))
         sb.heatmap(confusion_matrix(y_train, y_train_pred),
                    annot = True, fmt=".0f", annot_kws={"size": 18}, ax = axes[0])
         sb.heatmap(confusion_matrix(y_test, y_test_pred),
                    annot = True, fmt=".0f", annot_kws={"size": 18}, ax = axes[1])
```

Out[68]: <matplotlib.axes. subplots.AxesSubplot at 0x1d86c2d47c8>

In [70]: pd.DataFrame(X train)

Out[70]:

	0	1	2	3	4	5	6	7	8	9	 289	290	291	292	293
0	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	26.000000	1.000000	0.000000
1	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	160.000000	20.000000	15.000000
2	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	63.000000	1.000000	0.000000
3	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	158.000000	22.000000	23.000000
4	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	11.000000	1.000000	0.000000
7737	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	194.675637	18.046338	14.907325
7738	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	96.470816	5.509728	15.019456
7739	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	160.953626	11.721754	23.860877
7740	0.0	0.0	0.0	0.0	0.0	3.852497	0.0	0.0	0.0	0.0	 0.0	0.0	151.481562	13.184379	18.963124
7741	0.0	0.0	0.0	0.0	0.0	0.000000	0.0	0.0	0.0	0.0	 0.0	0.0	157.508470	24.245765	29.508470

7742 rows × 299 columns

- using best parameters and smote metrics are over 96% on both sets
- there is the least drop in performance from training to test set compared to previous models

```
In [343]:
```

```
print("Performance on training set:")
print_metrics(y_train, y_train_pred)
print()
print("Performance on test set:")
print_metrics(y_test, y_test_pred)
```

Performance on training set:

Accuracy: 0.9984492116826054

Precision: 1.0 Recall: 0.9968984233652106 F1: 0.9984468030028475

Performance on test set:

0.9901345291479821 Accuracy:

Precision: 0.9625

Recall: 0.9685534591194969 F1: 0.9655172413793103

References

- color palletes: https://python-graph-gallery.com/100-calling-a-color-with-seaborn/ (https://python-graph-gallery.com/100-calling-a-color-with-seaborn/ (https://python-graph-gallery.com/100-calling-a-color-with-seaborn/ (https://python-graph-gallery.com/100-calling-a-color-with-seaborn/ (https://python-graph-gallery.com/ (https://python-graph-gallery.com/ (https://python-gallery.com/ (<a href="https://python-gall gallery.com/100-calling-a-color-with-seaborn/)
- filtering data frames: https://towardsdatascience.com/effective-data-filtering-in-pandas-using-loc-40eb815455b6 (https://towardsdatascience.com/effective-data-filtering-in-pandas-using-loc-40eb815455b6)

- using .crosstab https://pandas.pydata.org/pandas.pydata.org/pandas.docs/version/0.23.4/generated/pandas.crosstab.html)
- handling text data https://www.analyticsvidhya.com/blog/2018/02/the-different-methods-deal-text-data-predictive-python/)
- metrics https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
 (https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9)
- handling imbalanced data https://towardsdatascience.com/methods-for-dealing-with-imbalanced-data-5b761be45a18)
- gridSearch https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74)