

Linear Algebra

East China University of Science and Technology

目录

第一章	特征值和特征向量	2
1.1	基础知识	2
	1.1.1 特征值和特征向量	2
	1.1.2 矩阵的相似	3
	1.1.3 矩阵的相似对角化	3
	1.1.4 实对称矩阵	4
1.2	习题	4
	1.2.1 特征值和特征向量	4
	1.2.2 实对称矩阵	5
第二章	二次型	6
2.1	基础知识	6
	2.1.1 二次型	6
	2.1.2 线性变换	6
	2.1.3 矩阵合同	7
	2.1.4 标准形/规范形	7
	2.1.5 惯性定理	9
	2.1.6 正定二次型及其判别	9
2.2	习题	10
	221 标准形/规范形	10

第一章 特征值和特征向量

1.1 基础知识

1.1.1 特征值和特征向量

定义

设 A 为 n 阶矩阵, λ 是一个数, 若存在一个非零的 n 维向量 ξ , 使得 $A\xi = \lambda \xi$, 则称 ξ 为 A 的特征向量, λ 为 A 的特征值.

上式可以化简成 $|\lambda E - A| \xi = 0$, $|\lambda E - A|$ 被称为特征多项式, $\lambda E - A$ 称为特征矩阵.

性质

- 1. 特征值的性质
 - (a) $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii} = tr(\mathbf{A})$
 - (b) $\prod_{i=1}^n \lambda_i = |\mathbf{A}|$
- 2. 特征向量的性质
 - (a) k 重特征值 Λ 至多只有 k 个线性无关的向量
 - (b) 若 ξ_1 , ξ_2 是 A 的属于不同特征值的特征的特征向量, 则 ξ_1 , ξ_2 线性无关
 - (c) 若 ξ_1, ξ_2 是 A 的属于同一特征值 λ 的特征向量,则 $k_1\xi_1 + k_1\xi_2$ 仍然是 A 的属于特征值 λ 的特征向量

1.1.2 矩阵的相似

定义

设 \boldsymbol{A} 和 \boldsymbol{B} 为两个 n 阶方阵, 若存在 n 阶可逆矩阵 \boldsymbol{P} , 使得 $\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P}=\boldsymbol{B}$ 成立, 则称 \boldsymbol{A} 相似于 \boldsymbol{B} , 记成 $\boldsymbol{A}\sim\boldsymbol{B}$.

性质

- 1. **●** 反身性: **A** ~ **A**
 - 对称性: $A \sim B \Rightarrow B \sim A$
 - 传递性: $A \sim B, B \sim C \Rightarrow A \sim C$
- 2. 若 $\boldsymbol{A} \sim \boldsymbol{B}$, 则有
 - $r(\boldsymbol{A}) = r(\boldsymbol{B})$
 - |A| = |B|
 - A, B 具有相同的特征值
 - A, B 特征多项式的值相同
- 3. 若 $A \sim B$, 则有
 - $f(\mathbf{A}) \sim f(\mathbf{B})$
 - $A^T \sim B^T$
 - A 可逆, A* ∼ B*
 - A 可逆, $A^{-1} \sim B^{-1}$

1.1.3 矩阵的相似对角化

定义

设 n 阶矩阵 A, 存在 n 阶可逆矩阵 P, 使得 $P^{-1}AP = \Lambda$, 则 $A \sim \Lambda$, Λ 是 A 的相似标准形.

$$m{P} = \left[m{\xi_1}, m{\xi_2}, ... m{\xi_n}
ight], m{\Lambda} = egin{bmatrix} \lambda_1 & & & \ & \lambda_2 & & \ & & \ddots & \ & & & \lambda_n \end{bmatrix}$$

条件

- 1. n 阶矩阵 \boldsymbol{A} 可以相似对角化 $\Leftrightarrow \boldsymbol{A}$ 有 n 个线性无关的特征向量 (| \boldsymbol{P} | = 0)
- 2. n 阶矩阵 A 可以相似对角化 $\Leftrightarrow A$ 对应于每个 k_i 重特征值都有 k_i 个 线性无关的特征向量 (n 重特征值对应的解空间是 n 维)
- 3. n 阶矩阵 A 有 n 个不同特征值 ⇒A 可以相似对角化 (由特征向量的性质 3 可以推出)
- 4. n 阶矩阵 A 为实对称矩阵 $\Rightarrow A$ 可以相似对角化上述总共两个充要条件,两个充分条件.

1.1.4 实对称矩阵

定义

若 $A^T = A$, 则 A 为是对称矩阵, 如果在此基础上 A 的元素都是实数,则 A 是实对称矩阵.

性质

- 1. 实对称矩阵 A 的属于不同特征值的特征向量相互正交
- 2. 实对称矩阵 A 必相似于对角矩阵, 必有可逆矩阵 $P = [\xi_1, \xi_2, ..., \xi_n]$, 使得 $P^{-1}AP = \Lambda$. 且存在正交矩阵 Q, 使得 $Q^{-1}AQ = Q^TAQ = \Lambda$,

1.2 习题

1.2.1 特征值和特征向量

求具体型矩阵的特征值和特征向量

- 1. 用特征方程 $|\lambda E A| = 0$ 求出 λ , 可以使用试根法对 λ 的高次方程进行求解
- 2. 用求得的 λ 解齐次线性方程组 $(\lambda E A)\xi = 0$, 求出特征向量

第一章 特征值和特征向量

5

求解抽象型矩阵的特征值和特征向量

矩阵	\boldsymbol{A}	$k\boldsymbol{A}$	$oldsymbol{A}^k$	$f(\boldsymbol{A})$	\boldsymbol{A}^{-1}	$oldsymbol{A}^*$	$P^{-1}AP$
特征值	λ	$k\lambda$	λ^k	$f(\lambda)$	λ^{-1}	$\frac{ A }{\lambda}$	λ
特征向量	ξ	ξ	ξ	ξ	ξ	ξ	$oldsymbol{P}^{-1}oldsymbol{\xi}$

f(x) 为多项式, 若矩阵 A 满足 $f(A) = 0 \Rightarrow f(\lambda) = 0$.

1.2.2 实对称矩阵

求正交矩阵 Q

- 1. 求 **A** 的 λ 与 **ξ**
- 2. $\xi_1, \xi_2, ..., \xi_n$ 施密特正交化, 单位化至 $\eta_1, \eta_2, ..., \eta_n$
- 3. $\diamondsuit Q = (\eta_1, \eta_2, ..., \eta_n)$

不同的特征值 λ_i 对应的特征矩阵 $\boldsymbol{\xi_i}$ 之间是正交的. 施密特正交化: $\beta_1=\alpha_1,\beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1.$ 单位化: $\eta_1=\frac{\beta_1}{||\beta_1||}.$

总结

- 1. 普通矩阵 **A**
 - (a) $\lambda_1 \neq \lambda_2 \Rightarrow \xi_1, \xi_2$ 无关
 - (b) $\lambda_1 = \lambda_2 \Rightarrow \xi_1, \xi_2$
 - i. ξ_1, ξ_2 无关
 - ii. *ξ*₁, *ξ*₂ 相关
- 2. 实对称矩阵 A
 - (a) $\lambda_1 \neq \lambda_2 \Rightarrow \xi_1 \perp \xi_2 \quad \xi_1, \xi_2$ 无关
 - (b) $\lambda_1 = \lambda_2 \Rightarrow$
 - i. $\xi_1 \perp \xi_2 \quad \xi_1, \xi_2$ 无关
 - ii. ξ_1 不垂直于 ξ_2 ξ_1, ξ_2 无关

2.1 基础知识

2.1.1 二次型

定义

n 元变量 $x_1, x_2, ..., x_n$ 的二次齐次多项式称为 n 元二次型,简称二次型. 二次型可以表示为 $\sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$,由此可以得出二次型的矩阵表达式, 令:

$$m{A} = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & dots \ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, m{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$

则二次型可以表示为:

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$$

必须强调的是,这里的 A 是一个对称矩阵.

2.1.2 线性变换

对于 n 元二次型 $f(x_1, x_2, ..., x_n)$, 若令

$$\begin{cases} x_1 = c_{11}y_1 + c_{12}y_2 + \dots + c_{1n}y_n, \\ x_2 = c_{21}y_1 + c_{22}y_2 + \dots + c_{2n}y_n, \\ \dots \\ x_n = c_{n1}y_1 + c_{n2}y_2 + \dots + c_{nn}y_n, \end{cases}$$

$$i\exists \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

则上式可以写为 x = Cy. 上式成为从 $y_1, y_2, ..., y_n$ 到 $x_1, x_2, ..., x_n$ 的 线性变换. 如果 C 可逆, 则称为可逆线性变换.

7

如果 $f(x) = x^T A x$, 令 x = C y, 则有 $f(x) = (C y)^T A (C y) = y^T (C^T A C) y$.

记 $\boldsymbol{B} = \boldsymbol{C}^T \boldsymbol{A} \boldsymbol{C}$, 则有 $f(\boldsymbol{x}) = \boldsymbol{y}^T \boldsymbol{B} \boldsymbol{y}) = g(\boldsymbol{y})$. 至此我们通过线性变换得到了一个新的二次型.

2.1.3 矩阵合同

定义

设 A, B 为 n 阶矩阵, 若存在可逆矩阵 C, 使得:

$$C^T A C = B$$

则称 A 和 B 合同,记作 $A \simeq B$.此时称 f(x) 与 g(x) 为合同二次型. 所谓合同,就是指同一个二次型在可逆线性变换下的两个不同状态的联系.

性质

- 1. 反身性: $A \simeq A$
- 2. 对称性: $\mathbf{A} \simeq \mathbf{B} \Rightarrow \mathbf{B} \simeq \mathbf{A}$
- 3. 传递性: $A \simeq B$, $B \simeq C \Rightarrow A \simeq C$

2.1.4 标准形/规范形

定义

若二次型中只含有平方项, 没有交叉项, 形如

$$d_1x_1^2 + d_2x_2^2 + \dots + d_nx_n^2$$

的二次型称为标准形.

若标准形中, 系数 d_i 仅为 1, -1, 0 的二次型称为规范形.

求法

我们的目标是使得 **B** 矩阵是一个对角矩阵, 即只有主对角线有元素, 才可以得到标准型. 有两种方法:

1. 任何二次型可以通过配方法 (作可逆线性变换) 化为标准形和规范形, 它求得的对角矩阵 (标准形) 形式如下 (不一定是特征值 λ):

$$oldsymbol{\Lambda} = egin{bmatrix} d_1 & & & & & \ & d_2 & & & \ & & \ddots & & \ & & & d_n \end{bmatrix}$$

此外, 它还可以转化成规范形:

$$oldsymbol{\Lambda} = egin{bmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & -1 & & & \\ & & & \ddots & & \\ & & & & 0 & \\ & & & & \ddots & \\ & & & & 0 \end{bmatrix}$$

2. 任何二次型可以通过正交变换化成标准形 (见 2.2.1), 它求得的对角矩阵 (标准形) 形式如下 (特征值不一定是 0,1,-1):

$$oldsymbol{\Lambda} = egin{bmatrix} \lambda_1 & & & & \ & \lambda_2 & & & \ & & \ddots & & \ & & & \lambda_n \end{bmatrix}$$

2.1.5 惯性定理

定义

无论选取什么样的线性变换 (配方还是正交合同变换), 将二次型化为标准形或者规范形, 其正项系数个数 p, 负项个数 q 都是不变的, p 称为正惯性指数, q 称为负惯性指数.

性质

- 1. 若二次型的秩为 r, 则 r = p + q, 可逆线性变换不改变正/负惯性指数
- 2. 两个二次型 (或者实对称矩阵) 合同的条件是有相同的正/负惯性指数

2.1.6 正定二次型及其判别

定义

n 元二次型 $f(x_1, x_2, ..., x_n) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}$, 若对于任意的 $\boldsymbol{x} = [x_1, x_2, ..., x_n]^T \neq \boldsymbol{0}$ 均有二次型大于 0, 即 $\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} > 0$, 则称 f 为正定二次型, \boldsymbol{A} 为正定矩阵.

条件

1. 充要条件:

$$n$$
元二次型正定 \Leftrightarrow 对于任意 $\mathbf{x} \neq \mathbf{0}$,有 $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ \Leftrightarrow f 的正惯性指数 $p = n$ \Leftrightarrow 存在可逆矩阵 \mathbf{D} , 使 $\mathbf{A} = \mathbf{D}^T \mathbf{D}$ \Leftrightarrow $\mathbf{A} \simeq \mathbf{E}$ \Leftrightarrow \mathbf{A} 的特征值 $\lambda_i > 0 (i = 1, 2, ..., n)$ \Leftrightarrow \mathbf{A} 的全部顺序主子式均大于 0

2. 必要条件:

$$n$$
元二次型正定 $\Leftarrow a_{ii} > 0 (i = 1, 2, ..., n)$ $\Leftarrow |\mathbf{A}| > 0$

2.2 习题

2.2.1 标准形/规范形

用正交变换法化二次型为标准形

- 1. 写出二次型矩阵 A
- 2. 求 A 的特征值 λ 和特征向量 ξ
- 3. 将 $\boldsymbol{\xi_1},...,\boldsymbol{\xi_n}$ 通过正交化/单位化成正交矩阵 $\boldsymbol{Q}=(\boldsymbol{\eta_1},...,\boldsymbol{\eta_n})$
- 4. \diamondsuit $\boldsymbol{x} = \boldsymbol{Q}\boldsymbol{y} \Rightarrow f(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{Q}\boldsymbol{y})^T \boldsymbol{A} \boldsymbol{Q} \boldsymbol{y} = \boldsymbol{y}^T \boldsymbol{Q}^{-1} \boldsymbol{A} \boldsymbol{Q} \boldsymbol{y} = \boldsymbol{y}^T \boldsymbol{\lambda} \boldsymbol{y} \Rightarrow f(y_1, ..., y_n) = \lambda_1 y_1^2 + ... + \lambda_n y_n^2$

注意 正交变换只能化二次型为标准形,不能化为规范形 (除非特征值都是0,1,-1)