PATENT ABSTRACTS OF JAPAN

(11)Publication number: 09-083016 (43)Date of publication of application: 28.03.1997

26.07.2002

(51)Int.Cl. H01L 33/00

H01L 21/205 H01S 3/18

(21)Application number : 07–237501 (71)Applicant : NICHIA CHEM IND LTD (22)Date of filing : 18.09.1995 (72)Inventor : NAGAHAMA SHINICHI

IWASA SHIGETO NAKAMURA SHUJI

(54) METHOD FOR GROWING NITRIDE SEMICONDUCTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To enhance the crystallinity of nitride semiconductor by growing a layer of Al–Ga–N having inclining composition where the composition of Al decreases gradually on an SiC substrate and then growing an In–Al–Ga–N based nitride semiconductor thereon.

SOLUTION: AIN 2 is deposited on one side of a 6H–SiC substrate and an AlxGa1–xN ($0 \le X \le 1$) layer 3 is formed thereon while inclining the composition such that X decreased sequentially. A nitride semiconductor represented by a formula InaAlbGa1–a–bN ($0 \le a$, $0 \le b$, $a+b \le 1$), more sepecifically, a nitride semiconductor comprising an n–type In0.05Ga0.95N layer 4 and an In0.2Ga0.8N layer 5 is the formed. Subsequently, an Mg doped p–type Al0.15Ga0.85N layer 6, an Mg doped p–type Al0.3Ga0.7N layer 7, and an Mg doped p–type GaN layer 8 are formed thereon. Finally, etching is performed until the inclining composition n–AlGaN layer 3 is exposed and provided with negative and positive electrodes 10, 11.

in.A.,Ga...N (JSA DSA a-tal)

Ш

LEGAL STATUS

[Date of request for examination] 22.12.2000 [Date of sending the examiner's decision of rejection] 26.06.2002

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3604205
[Date of registration] 08.10.2004
[Number of appeal against examiner's decision of rejection] 2002–14182

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-83016

(43)公開日 平成9年(1997)3月28日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所
H01L	33/00			H01L	33/00	С
	21/205				21/205	
H 0 1 S	3/18			H 0 1 S	3/18	

審査請求 未請求 請求項の数3 OL (全 5 頁)

(21)出願番号	特願平7-237501	(71)出願人	000226057	
			日亜化学工業株式会社	
(22)出願日	平成7年(1995)9月18日		徳島県阿南市上中町岡491番地100	
		(72)発明者	長濱 慎一	
			徳島県阿南市上中町岡491番地100	日亜化
			学工業株式会社内	
		(72)発明者	岩佐 成人	
			徳島県阿南市上中町岡491番地100	日亜化
			学工業株式会社内	
		(72)発明者	中村 修二	
			徳島県阿南市上中町岡491番地100	日亜化
			学工業株式会社内	

(54) 【発明の名称】 窒化物半導体の成長方法

(57)【要約】

【目的】 基板の上に成長させる窒化物半導体の結晶性 を向上させ、信頼性に優れたLED、LD等を実現す る。

【構成】 気相成長法により、 $I_{n_a}A1_bGa_{1-a-b}N$ ($0 \le a$ 、 $0 \le b$ 、 $a+b \le 1$) で示される窒化物半導体を基板上にエピタキシャル成長させる方法において、基板にSiCを使用し、そのSiC基板の上にX値が順次小さくなるように組成傾斜した $A1_\chi Ga_{1-\chi}N$ ($0 \le X \le 1$) 層を成長させ、その $A1_\chi Ga_{1-\chi}N$ 層の上に窒化物半導体を成長させることにより、窒化物半導体の格子不整合による歪みを緩和して結晶性を飛躍的に向上させる。

【特許請求の範囲】

【請求項1】 気相成長法により、 $In_aAl_bGa_{1-a-b}N$ (0 \le a、0 \le b、 $a+b\le$ 1)で示される窒化物 半導体を基板上にエピタキシャル成長させる方法において、基板にSiCを使用し、そのSiC基板の上にX値 が順次小さくなるように組成傾斜した $Al_XGa_{1-X}N$ (0 \le X \le 1)層を成長させ、その $Al_XGa_{1-X}N$ 層の上に前記窒化物半導体を成長させることを特徴とする窒化物半導体の成長方法。

【請求項2】 前記 $A 1_X G a_{1-X} N$ 層と基板との間にA 1 N層を成長させることを特徴とする請求項1に記載の窒化物半導体の成長方法。

【請求項3】 前記 $A 1_x G a_{1-x} N$ 層は、X値が互いに 異なる層が積層された多層膜よりなることを特徴とする 請求項1または請求項2に記載の窒化物半導体の成長方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は気相成長法により窒化物 半導体 I n_a A 1_b G a_{1-a-b} N ($0 \le a$ 、 $0 \le b$ 、 $a+b \le 1$) の結晶を基板上に成長させる方法に関する。

[0002]

【従来の技術】窒化物半導体は有機金属気相成長法(MOVPE)、分子線気相成長法(MBE)、ハライド気相成長法(HDVPE)等の気相成長法により基板上にエピタキシャル成長される。一般に化合物半導体をエピタキシャル成長させるには、化合物半導体と格子定数が一致した基板を用いると結晶性の良いものが得られることが常識であるが、窒化物半導体には格子整合する基板がないため、現在格子定数で13%もの差があるサファイア基板の上に成長されるのが常であった。

【0003】サファイア基板の場合、窒化物半導体を成長させる前にまずサファイア基板上にA1N、GaNよりなるバッファ層を成長させ、そのバッファ層の上に窒化物半導体を成長することが知られている。例えば特公昭59-48794号、特公平4-15200号公報にはA1Nをバッファ層とする方法が記載され、また特開昭60-173829号、平4-297023号公報にはGaNをバッファ層とする方法が記載されている。その中でも特開平4-297023号による方法は現在実用化されている窒化物半導体LEDの基幹技術の一つとなっている。

【0004】その他窒化物半導体を成長させる基板には ZnS (特開平4-68579)、MnO (特開平4-209577)、ZnO (特開平4-236477)、 SiC (特開平4-223330)等数々提案されており、特に特開平4-223330号公報にはSiC基板 表面にSiCバッファ層を形成し、このバッファ層の上に窒化物半導体を成長させる技術が示されている。

[0005]

【発明が解決しようとする課題】現在、サファイア基板の上に成長された窒化物半導体で、青色LED、青緑色LED等が実用化されているが、将来、さらに高輝度で信頼性に優れたLED、またLDのような高度な発光デバイス等を実現するためには、窒化物半導体の結晶性をさらに向上させる必要がある。従って本発明はこのような事情を鑑みて成されたもので、その目的とするところは基板の上に成長させる窒化物半導体の結晶性を向上させ、信頼性に優れたLED、LD等を実現することにある。

[0006]

【〇〇〇7】本発明の成長方法において、気相成長法には先にも述べたように、例えばMOVPE法、MBE法、HDVPE法等が採用できるが、好ましくはMOVPE法で成長させることにより結晶性の良い半導体層が得られる。

【0008】また基板のSiCは単結晶のSiC基板を利用する。SiCには4H、6H、3C等数々の結晶構造があるが特に限定するものではない。好ましくは6HーSiCの(0001)面、3C-SiCの(111)面の上に成長させることにより結晶性の良い窒化物半導体が得られる。

【0009】組成傾斜した $A1_xGa_{1-x}$ N層とはA1混晶比がSiC基板より離れるに従って少なくなるように構成した $A1_xGa_{1-x}$ N層であり、この $A1_xGa_{1-x}$ N層は単一層で組成傾斜するように構成しても良いし、また後に述べるように複数の $A1_xGa_{1-x}$ N層を積層した多層膜で構成して、各層の構成をSiCより離れるに従ってA1混晶比を少なくした $A1_xGa_{1-x}$ Nとしても良い。

【0010】 $A1_xGa_{1-x}$ N層は $5nm\sim 5\mu m$ の膜厚で成長することが望ましく、さらに好ましくは $5nm\sim 3\mu m$ に調整する。5nmよりも薄いと組成傾斜した層が形成しにくく、また $2\mu m$ よりも厚いと $A1_xGa_{1-x}$ N層自身にクラックが入りやすくなるからである。また組成傾斜させた $A1_xGa_{1-x}$ N層の最表面はGaNとすることがさらに望ましい。GaNとすると、その上に成長する窒化物半導体層の結晶性が特に良くなる。

【0011】次に本発明の成長方法は前記 $A1_XGa_{1-X}$ N層と基板との間にA1 N層を成長させることを特徴とする。このA1 N層を成長させることにより、その上の $A1_XGa_{1-X}$ N層の結晶性がさらに良くなる。従ってA

【0012】次に $A1_xGa_{1-x}$ N層はX値が互いに異なる層が積層された多層膜よりなることを特徴とする。つまりSiC基板側にA1混晶比が大きいA1GaN層を形成し、その上にA1混晶比が小さいA1GaN層を形成し、次第にA1組成比の小さいA1Ga 層を積層した多層膜とする。多層膜は何層積層しても特に問題はないが、前記のようにA1GaN 層の総膜厚は $5nm\sim5\mu$ mの範囲に調整することが望ましい。

[0013]

【作用】SiC基板上に組成傾斜したAlGaN層を形成すると、そのAlGaN層が基板との格子不整合に起因する転位、歪み等を減少させることができる。これはAl混晶比の多いAlGaN層がSiCの格子定数に近いからであると推察できる。従って、組成傾斜したAlGaN層を成長させる前にAlN層を一番先に成長させると、AlGaNの結晶性が良くなる。しかも順にAl混晶比を減少させることにより、最初に形成したAl混晶比を減少させることにより、最初に形成したAl混晶比の大きいAlGaN層の格子欠陥が次第に緩和されて、結晶性の良いAlGaN層が次第に成長されるのである。結晶性のよいAlGaN層が成長できると、その上に成長させる窒化物半導体は先に形成したAlGaN層が格子整合基板となるので、窒化物半導体の結晶性が飛躍的に向上する。

[0014]

【実施例】以下、MOVPE法による本発明の成長方法 について述べる。

【0015】1050℃に加熱された6H-SiC基板の(0001)面に、水素ガスをキャリアガスとして、TMA(トリメチルアルミニウム)とアンモニアガスを供給し、A1Nよりなる薄膜を50nmの膜厚で成長させる。このA1N薄膜は400℃~1200℃の範囲で成長可能であり、前記のようにおよそ900℃以下で成長させるとアモルファスのA1Nを含む結晶が成長し、900℃以上で成長させると単結晶のA1N薄膜が成長する傾向にあるが、アモルファスのA1N薄膜、単結晶のA1N薄膜、いずれを成長させてもよい。

【0016】続いて、基板を1050℃に保持したまま で、TMAガスに加えて、TMG(トリメチルガリウ ム)ガスを徐々に流し、組成傾斜したA1GaN層を成 長させる。TMGおよびTMAのガス流量はマスフロー コントローラにより制御し、TMGのガスのガス流量を 時間の経過と共に徐々に多くし、同時にTMAガスの流 量を徐々に少なくして、TMGガスとTMAガスの合計 のガス量を常時ほぼ同一に調整してAIGaN層を成長 させる。そして最後にTMAガスを止めてGaN層が成 長するようにする。以上のようにして組成傾斜したA1 GaN層を2μmの膜厚で成長させる。なお傾斜組成A 1GaN層は最上層がGaNとなるようにしたが、特に 傾斜組成していれば最上層をGaNとする必要はない。 好ましくは最上層はX値がO. 5よりも小さいA 1_{χ} G a1-8 N層、さらに好ましくは0.3以下とする方が、そ の $A 1_X G a_{1-X} N$ 層の上に結晶性の良い窒化物半導体層 を成長できる。

【0017】続いて、TMAガスを完全に止め、TMG ガス、アンモニアガスで1050℃にてGaN層を3μ mの膜厚で成長させる。

【〇〇18】成長後基板を取り出し、得られたGaN層の結晶性を評価するためダブルクリスタルX線ロッキングカーブの半値幅(FWHM: Full Width at Half Maximum)を測定したところ、1.5分と非常に結晶性に優れていることが判明した。またホール測定装置で結晶の移動度を測定したところ、900cm²/V・secと優れた値を示した。なおFWHMは小さいほど結晶性が良いと評価でき、移動度は大きいほど結晶性がよいと評価できる。例えばサファイア基板上にGaNをバッファ層として成長したノンドープのGaN単結晶層で3分~5分であり、また移動度は500~600cm²/V・secの範囲である。

【0019】 [実施例2] 実施例1において、SiC基板の上にA1N薄膜を成長させない他は同様にしてGaN層を成長させたところ、FWHMは2分、移動度800 cm 2 / V · secであり、実施例1 に比較して若干結晶性が劣っていた。

【0020】[実施例3]実施例1において、A1N薄膜成長後、温度を1050℃に保持したままで、TM A、TMGのガス流量を調節して、まずA10.9Ga0.1N層を 0.2μ m成長させる。続いてA10.8Ga0.2N層を 0.2μ m、A10.7Ga0.3N層を 0.2μ m・・・・A10.2Ga0.8N層を 0.2μ m、A10.1Ga0.9N層を 0.2μ mの順に9層積層して、組成傾斜したA1GaN9層膜を 1.8μ mの膜厚で成長する。後は実施例1と同様にしてA10.1Ga0.9N層の上にGaN9層を 2μ m成長したところ、得られたGaN9層の結晶性は、実施例1とほぼ同一の値を示した。

【0021】[実施例4]実施例1において、傾斜組成させたA1GaN層を成長させた後、同じく温度を10

50 ℃に保持しながら、TMA、TMG及びアンモニアガスでA 10.2G a 0.8N層を 2μ m成長させる。このA 10.2G a 0.8N層のFWHMは2分、移動度は800cm 2 /V·secであり、A 1 G a 10.2C としては非常に結晶性がよいことを示している。

【0022】[実施例5]図1は本発明の方法により得られたレーザ素子の構造を示す模式的な断面図である。 以下実施例5をこの図面を元に説明する。

【0023】厚さ 500μ mの6H-SiC基板1の (0001)面に、A1N薄膜2を50nm、A1N~ GaNまで組成傾斜させたn型A1GaN層3を2 μ m の膜厚で実施例1と同様にして積層する。なお、組成傾斜A1GaN層3は好ましいn型とするためにSiをドープしており、Si源としてシランガスを原料ガスと同時に流しながらドープして成長した。

【0024】次に基板の温度を800℃にして、原料ガスにTMI(トリメチルインジウム)ガス、TMG、アンモニア、シランガスを用い、n型In0.05Ga0.95N層4を0.1μmの膜厚で成長した。

【0025】続いてTMIの流量を多くして、活性層としてノンドープIn0.2Ga0.8N層5を2nmの膜厚で形成して、単一量子井戸構造となるようにした。

【0026】次にTM I を止め、基板の温度を1050 ℃にして、原料ガスにTMG、TMA、アンモニア、p型不純物ガスとしてCp2Mg(シクロペンタジエニルマグネシウム)を用い、Mgドープp型A10.15Ga0.85N層6を0.1 μ m成長した。

【0027】続いてTMAの流量を多くして、Mgドープp型A10.3Ga0.7N層7を0.1 μ m成長した。

【0028】最後にTMAを止め、Mgドープp型GaN層8を 0.5μ m成長した。

【0029】以上のようにして窒化物半導体層を積層したウェーハを反応容器から取り出し、エッチング装置にて最上層のp-GaN層8より、組成傾斜n-A1GaN層3が露出するまでエッチングを行う。エッチング後、露出したn-A1GaN層3に負電極10を設け、最上層のp-GaN層にストライプ状の正電極11を設けた。

【0030】電極設置後、正電極のストライプに対して 垂直な方向でウェーハを劈開し、その劈開面に常法に従って誘電体多層膜よりなる反射膜を形成してレーザ素子 とする。図1はそのストライプ状の正電極11に垂直な 方向で劈開した素子の断面図を示している。なおこのレ ーザ素子は、しきい値電流密度500mA/cm²におい て、室温でレーザ発振を示し、出力5mWであった。これは組成傾斜したA1GaN層の上に成長した窒化物半 導体の結晶性が良く、さらに基板の劈開性による共振面 の形成が容易であったことによる。

【0031】このレーザ素子は以下の利点がある。まず 第一に基板にSiCを用いた場合、SiC基板は導電性 を有しているため通常の負電極はSiC基板に接して設 けられる。つまり正電極と負電極とが対向した状態とさ れる。しかし、SiCと窒化物半導体とはヘテロエピで ある。従ってSiCと窒化物半導体層との界面にヘテロ エピに起因する障壁が存在するため、素子のVf(順方 向電圧)が上昇する。一方、本発明によるレーザ素子は SiCという導電性基板を使用したにも関わらず、負電 極を基板側に設けず、敢えて窒化物半導体をエッチング して同一面側に設けた構造としている。従って、電流が SiCと窒化物半導体層との界面を流れないので、Vf の上昇を抑制できる。第二に組成傾斜させたAIGaN 層3は1μm以上と厚く成長させることにより、負電極 を形成するためのコンタクト層、及び活性層の発光を閉 じこめるためのクラッド層にもなる。さらに第三にSi Cは従来のサファイア基板と異なり劈開性を有してい る。このためSiCの劈開性を利用すれば、窒化物半導 体の劈開面をレーザ素子の光共振面とするのに非常に都 合がよい。

[0032]

【発明の効果】以上説明したように本発明の方法によると、結晶性の良い窒化物半導体層が得られる。例えば結晶のホール測定において、移動度が900cm²/V・secという値は窒化物半導体では非常に優れた値である。また本発明によると結晶性の良い窒化物半導体が得られるため、実施例5のように発光素子を作成した場合、発光出力の高い素子を得ることができ、その産業上の利用価値は大きい。

【図面の簡単な説明】

【図1】 本発明の一実施例に係る方法により得られた 窒化物半導体レーザ素子の構造を示す模式断面図。

【符号の説明】

1····SiC基板

2····A1N薄膜

3····Siドープn型A1GaN層

4 · · · · S i ドープ n型 I n 0.05 G a 0.95 N層

5 · · · · ノンドープ I n0.2G a0.8N活性層

6 · · · · · Mgドープp型A10.15Ga0.85N層

7・・・・Mgドープp型A10.3Ga0.7N層

8····p型GaN層

10 · · · · 負電極

11・・・・正電極

【図1】

