Chapter 1

Discrete Sequences and Systems

Outline

- 1.1 Discrete Sequences
- 1.2 Signal Amplitude, Magnitude, Power
- 1.3 Signal Processing Operational Symbols
- 1.4 Introduction to Discrete Linear Time-Invariant Systems
- 1.5 Discrete Linear Systems
- 1.6 Time-Invariant Systems
- 1.7 The Commutative Property of Linear Time-Invariant Systems
- 1.8 The Causality Property of Linear Time-Invariant Systems
- 1.9 The Stability Property of Linear Time-Invariant Systems
- 1.10 Analyzing Linear Time-Invariant Systems

 $\{x(n)\}$: n is integer in the range -\infty and +\infty

: x(n) is one sample

E.g.

- x(-1)=-0.1564;
- x(0)=0;
- x(1)=0.1564;
- x(2)=0.3090;

•

x(n)

comes from:

$$x_a(t)=\sin(2\pi ft)$$

Uniformed sampled as:

$$x_a(nT)=\sin(2\pi f nT)$$

<u>T</u> denotes sampling interval or period and its reciprocal is sampling frequency written as:

$$f_s = \frac{1}{T}$$

Relationship between $x_a(nT)$ and $x_a(t)$:

- ✓ Part and whole;
- ✓ Many curves connecting the two points x(nT) and x((n+1)T), but under certain conditions, $x_a(t)$ can be exclusively reconstructed based on $x_a(nT)$.

About Sequence:

 $\{x(n)\}\$ is a real sequence if x(n) is real for any n.

 $\{x(n)\}\$ is a complex sequence if x(n) is complex.

$${x(n)} = {x_{re}(n)} + j{x_{im}(n)}$$

x(n) is a finite length sequence if it is defined only for a finite time interval as: $N1 \le n \le N2$.

The period of a finite length sequence is:

 $N = N_2 - N_1 + 1$: N point sequence

About Sequence:

x(n) is a infinite length sequence if it is defined for infinite time interval.

(By appending with zeros or zero-padding, finite length sequence infinite.)

Three types of infinite length sequence, as:

<u>Right-side sequence</u>

About Sequence:

Left-side sequence

Two-side sequence: -∞<n<∞

(1) Unit sample sequence discrete-time impulse unit impulse

$$\delta(n) = \begin{cases} 1 & , n = 0 \\ 0 & , n \neq 0 \end{cases}$$

Shifted:

$$\delta(n-n_0) = \begin{cases} 1 & , n = n_0 \\ 0 & , n \neq n_0 \end{cases}$$

Any sequence could be expressed as the weighted sum of:

shifted unit sample sequences

$$x(n) = x(0)\delta(n) + x(1)\delta(n-1) + x(2)\delta(n-2) + \cdots$$

$$= \sum_{k=-\infty}^{\infty} x(k)\delta(n-k)$$

▶ Important! Often used later

(2) Unit step sequence

$$u(n) = \begin{cases} 1 & , n \geq 0 \\ 0 & , n < 0 \end{cases}$$

Relation between u(n) and $\delta(n)$

• δ (n) could be expressed as:

$$\delta(n) = u(n) - u(n-1)$$

u(n) could be expressed as:

$$u(n) = \sum_{k=0}^{\infty} \delta(n-k) = \delta(n) + \delta(n-1) + \delta(n-2) + \cdots$$

(3) Rectangular sequence

$$R_{N}(n) = \begin{cases} 1, & 0 \le n \le N - 1 \\ 0, & n < 0, n \ge N \end{cases}$$

Relation of $R_N(n)$, u(n) and $\delta(n)$

•R_N(n) is expressed as:

$$R_N(n) = u(n) - u(n-N)$$

•R_N(n) is expressed as:

$$R_{N}(n) = \sum_{k=0}^{N-1} \delta(n-k) = \delta(n) + \delta(n-1) + \dots + \delta(n-(N-1))$$

(4) Real exponential sequence

$$x(n) = a^n u(n), \qquad a \neq 0 \& a \in R$$

when 0<a<1

1.2 Signal Amplitude, Magnitude, Power

$$x_{\text{pwr}}(n) = x(n)^2 = |x(n)|^2$$
,

or

$$X_{pwr}(m) = X(m)^2 = |X(m)|^2$$
.

Operation on Sequences

- Single Input-Single Output:
 - ✓ Input: corrupted signals
 - ✓ Output: pure signals
- M Input-N Output:
 - ✓ Several branches of signals are combined to output
- But above system could be decomposed into simple operations, including:
 - ✓ modulator, scalar multiplication
 - ✓ addition, unit advance

Addition (Adder):

- a(n)=b(n)+c(n)
- sum of samples at the same instant.

Addition (Adder):

•
$$a(n) = \sum_{k=n}^{n+3} b(k)$$

summation of samples.

Subtract:

- a(n)=b(n)-c(n)
- difference of samples at the same instant.

Multiplication:

- $a(n)=b(n)\cdot c(n)$
- product of samples at the same instant.
- · Like: Windowing operation.

Unit Delay:

- a(n) = b(n-1)
- A delayed version of sample

1.4 Introduction to Discrete Linear Time-Invariant Systems

• Linearity and Time-Invariance (LTI) are two important system characteristics having very special properties.

 We need to recognize and understand the notions of Linearity and Time-Invariance not just because the vast majority of discrete systems used in practice are LTI systems, but also LTI systems are very accommodating when it comes to their analysis.

1.5 Discrete Linear Systems

 The term <u>Linear</u> defines a special class of systems where the output is the superposition, or sum, of the individual outputs had the individual inputs been applied separately to the system.

$$x_1(n) \xrightarrow{\text{results in}} y_1(n)$$

$$x_2(n) \xrightarrow{\text{results in}} y_2(n)$$

$$x_1(n) + x_2(n) \xrightarrow{\text{results in}} y_1(n) + y_2(n)$$

$$c_1x_1(n) + c_2x_2(n) \xrightarrow{\text{results in}} c_1y_1(n) + c_2y_2(n)$$

Example

E.g:

- **Given** y(n) = 3x(n) + 4:
- Is this sequence linear?

Example

E.g:

- Given y(n) = 3x(n) + 4:
- Is this sequence linear?

$$y_1(n) = T[x_1(n)] = 3x_1(n) + 4$$

$$y_2(n) = T[x_2(n)] = 3x_2(n) + 4$$

$$ay_1(n) + by_2(n) = 3ax_1(n) + 3bx_2(n) + 4(a+b)$$

$$T[ax_1(n) + bx_2(n)] = 3[ax_1(n) + bx_2(n)] + 4$$

- $T[ax_1(n) + bx_2(n)] \neq ay_1(n) + by_2(n)$
- ∴ Non−linear

1.6 Time-Invariant Systems

 A time-invariant system is one where a time delay (or shift) in the input sequence causes a equivalent time delay in the system's output sequence.

$$x(n) \xrightarrow{\text{results in}} y(n)$$

$$x'(n) = x(n+k) \xrightarrow{\text{results in}} y'(n) = y(n+k)$$

Example

E.g:

- Given y(n) = 3x(n) + 4:
- Is this sequence time-invariant?

Example

Time-shift Invariant?

$$T[x(n-m)] = 3x(n-m) + 4$$

$$y(n-m) = 3x(n-m) + 4$$

So, it's Time-shift Invariant.

• -> This system is not a LTI system.

1.7 The Commutative Property of Linear Time-Invariant Systems

 Swapping the order of two cascaded systems does not alter the final output.

1.8 The Causality Property of Linear Time-Invariant Systems

Causality definition:

$$y_1[n] = y_2[n] \quad \text{for } n < N$$

This implies that:

For the causal system, if $x_1(n)=x_2(n)$ for $n< n_0$, then $y_1(n)=y_2(n)$ for $n< n_0$.

1.8 The Causality Property of Linear Time-Invariant Systems

Causality:

If a LTI system is a causal system, it satisfies:

$$h(n) = 0, \qquad n < 0$$

——Realizable System, it is used to prove the causality of the system (*Important*).

1.9 The Stability Property of Linear Time-Invariant Systems

Stability:

If and only if for every bounded input, the output is also bounded (*BIBO*).

•i.e.

$$|x(n)| < \infty$$
, every n

Then

$$|y(n)| < \infty$$
, every n

In the later discussion, the involved discrete system is the LTI system. General practical systems are causal and stable.

1.9 The Stability Property of Linear Time-Invariant Systems

Significant Conclusion:

•For a LTI system, the *sufficient* and *necessary* condition to stability is:

$$\sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

1.9 The Stability Property of Linear Time-Invariant Systems

Proof:

- •Assuming $|x(n)| \le M$.
- •Then,

$$|y(n)| \le \sum_{k=-\infty}^{\infty} |h(k)x(n-k)|$$

$$\le \sum_{k=-\infty}^{\infty} |h(k)| |x(n-k)|$$

$$\le M \sum_{k=-\infty}^{\infty} |h(k)| < \infty$$

Stability and Causality

We focus on:

Stability and Causality

E.g.:

Impulse response of a LTI system is given by

$$h(n) = a^n u(n)$$

Question:

Is it a causal system?

Is it a stable system?

Stability and Causality

Solution:

$$n < 0$$
 $u(n) = 0$

$$\therefore n > 0 \qquad h(n) = a^n u(n)$$

$$\sum_{n=-\infty}^{\infty} |h(n)| = \sum_{n=-\infty}^{\infty} |a^n u(n)| = \begin{cases} |a| < 1 & \frac{1}{1-a} \\ |a| > 1 & \frac{1-a^{n+1}}{1-a} \end{cases}$$

causal

bounded

stable

not stable

1.10 Analyzing Linear Time-Invariant Systems

Knowing the <u>(unit) impulse response</u> of an LTI system, we can
determine the system's output sequence for any input sequence
because <u>the output is equal to the convolution of the input</u>
<u>sequence and the system's impulse response</u>.

$$y(n) = T[x(n)] = x(n) * h(n)$$

$$h(n) = T[\delta(n)]$$

Summary

- Discrete Sequences
- Signal Amplitude, Magnitude, Power
- Signal Processing Operational Symbols
- Introduction to Discrete Linear Time-Invariant Systems
- Discrete Linear Systems
- Time-Invariant Systems
- The Commutative Property of Linear Time-Invariant Systems
- The Causality Property of Linear Time-Invariant Systems
- The Stability Property of Linear Time-Invariant Systems
- Analyzing Linear Time-Invariant Systems