Rudin Chapter 3: Upper and Lower Limits

Alex L.

August 10, 2025

Definition: (Tending Towards Infinity)

Let $\{s_n\}$ be a sequence of real numbers with the following property:

for every real number M, there is an N with $s_n > M$ for all n > N. This sequence is said to **tend towards positive** infinity and is written

$$s_n \to +\infty$$

Likewise, if $\{s_n\}$ had the property for every real number M, there is an N with $s_n < M$ for all n > N, then the sequence would **tend towards negative infinity**, and could be written

$$s_n \to -\infty$$

Definition: (Upper and Lower Limits)

Let $\{s_n\}$ be a sequence of real numbers. Let E be the set of all subsequential limits (the set of all numbers to which subsequences can tend to). Then, E is a subset of the extended real numbers (the reals with $\pm \infty$). Then, $s^* = \sup E$ and $s_* = \inf E$, and are called the **upper and lower bounds** of $\{s_n\}$ respectively.

We also can use the notation:

$$s^* = \lim_{n \to \infty} \sup s_n$$

and

$$s_* = \lim_{n \to \infty} \inf s_n$$

Theorem:

Let $\{s_n\}$ be a sequence of real numbers, and let E be the set of all subsequential limits of $\{s_n\}$. Then,

- 1. s^* is in E
- 2. If $x > s^*$, there is an integer N such that $n \ge N$ implies $s_n < x$

The two proofs above can be extrapolated to lower limits as well.

Proof:

1. If $s^* = +\infty$, then there is at least one subsequence which tends towards positive infinity, so its limit is $+\infty$, so s^* is in E.

If s^* is real, then E is bounded above, with at least one subsequential limit existing, then $s^* \in \bar{E}$, and since the set of all subsequential limits must be closed, $E = \bar{E}$, so s^* is in E.

If $s^* = -\infty$, then every subsequence must tend towards negative infinity, so $-\infty \in E$.

2. For this, we do a proof by contradiction. Suppose there was some $x > s^*$ where $s_n \ge x$ for infinitely many values of n. Then, we could make a subsequence out of these numbers whose limit will be greater than s^* , which is a contradiction.

Theorem:

If we have two sequences, $\{s_n\}$ and $\{t_n\}$ and $s_n \leq t_n$ for all n > N, where N is a finite number, then

$$s^* < t^*$$

and

 $s_* \le t_*$

Proof:

 s^* must be less than or equal to t^* because if we pick a subsequence of $\{t_n\}$ with all elements n > N, it will tend towards a limit greater than or equal to any limit of any subsequence of $\{s_n\}$, so t^* must be greater than or equal to s^* . Likewise, any subsequence of $\{t_n\}$ must have infinitely many elements n > N, so even the lowest subsequential limit t_* must be greater than or equal to s_* .