2020-AE-27-39

AI24BTECH11023 - Tarun Reddy Pakala

1) The positive high angle-of-attack condition is obtained in a steady pull-out maneuver at the largest permissible angle-of-attack of the wing. Under this condition, at which of the following regions of the wing does the maximum tension occur?

- a) *I*
- b) *II*
- c) III
- d) *IV*
- 2) The natural frequency of the first mode of a rectangular cross section cantilever aluminum beam is $\omega \frac{rad}{s}$. If the material and cross-section remain the same, but the length of the beam is doubled, the first mode frequency will become
 - a) $\frac{\omega}{4} \frac{rad}{s}$
 - b) $4\omega^{rad}$

 - c) $\frac{\omega}{16} \frac{rad}{s}$ d) $16\omega \frac{rad}{s}$
- $\begin{pmatrix} \sin \theta & \tan \theta \\ 0 & \cos \theta \end{pmatrix}$, the sum of squares of eigenvalues of A is 3) Given A =
 - a) $\tan^2 \theta$
 - b) 1
 - c) $\sin^2 \theta$
 - d) $\cos^2 \theta$
- 4) Burnout velocity of a space vehicle in a circular orbit at angle 5 degrees above the local horizon around earth is 13.5 $\frac{km}{s}$. Tangential velocity of the space vehicle in the orbit is _____ (round of f to two decimal places).
- 5) Velocity of an airplane in the body fixed axes is given as $[100 10\ 20] \frac{m}{s}$. The sideslip angle is degrees (round of f to two decimal places).
- 6) The similarity solution for the diffusion equation, $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$ is $u(x, t) = u(\eta)$, where similarity variable, $\eta = \frac{x}{\sqrt{\alpha t}}$. If $u(x 0) = e^{-x^2}$, the ratio $\frac{u(0, 1)}{u(0, 4)} = \frac{(round\ of\ f\ to\ one\ decimal\ place)}{(C_{\theta} = 0)}$ and exits the rotor of an axial compressor stage with no pre-whirl $(C_{\theta} = 0)$ and exits the rotor
- with whirl velocity, $C_{\theta} = 150 \frac{m}{s}$. The velocity of rotor vanes, U is $200 \frac{m}{s}$. Assume $C_P = 100 \frac{J}{kg K}$, the stagnation temperature rise across the rotor is _____ K (round of f to one decimal place).
- 8) A thin walled beam of constant thickness shown in the figure is subjected to a torque of 3.2 kNm. If the shear modulus is 25GPa, the angle of twist per unit length is $\frac{rad}{m}$ (round of f to three decimals).

9) An airplane of mass 5000 kg is flying at a constant speed of 360 $\frac{km}{h}$ at the bottom of a vertical circle with a radius of 400 m, as shown in the figure. Assuming that the acceleration due to gravity is 9.8 $\frac{m}{s^2}$, the load factor experienced at the center of gravity of the airplane is ______ (round of f to two decimal places).

- 10) The equation $x\frac{dx}{dy} + y = c$, where c is a constant, represents a family of
 - a) exponential curves
 - b) parabolas
 - c) circles
 - d) hyperbolas
- 11) A wedge shaped airfoil is placed in a supersonic flow as shown in figure (not to scale). The corners of the wedge are at $x = x_A$, $x = x_B$, $x = x_C$, respectively.

Which one of the following represents the correct static pressure along $y = Y_I$ and $y = Y_{II}$?

b)

c)

- 12) The value of Poisson's ratio at which the shear modulus of an isotropic material is equal to the bulk modulus is

 - a) $\frac{1}{2}$ b) $\frac{1}{4}$ c) $\frac{1}{6}$ d) $\frac{1}{8}$
- 13) A load P is applied to the free end of a stepped cantilever beam as shown in the figure. The Young's modulus of the material is E, and the moments of inertia of the two sections of length 2 m and 1 mare I and 3I, respectively. Ignoring transverse shear and stress concentration effects, the deflection at the point where the load is applied at the free end of the cantilever is

