A04 – Predikcia kvality vína, lineárna regresia pomocou L^1 , L^∞

Piati proti optimalizácii Tomáš Antal, Erik Božík, Róbert Kendereš, Teo Pazera, Andrej Špitalský 2DAV

Január 2024

Predstavenie projektu – lineárna regresia

lineárna regresia – predikcia závislej premennej $y \in \mathbb{R}^n$ pomocou nezávislých $x_1, \dots, x_k \in \mathbb{R}^n$

$$\min ||y - \hat{y}||$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

atribúty	<i>x</i> ₁	<i>X</i> ₂	 X _k	у
pozorovanie 1	1	0.84	 121	4.25
i i	:			•
pozorovanie <i>n</i>	4	0.12	 117	5.68

ightharpoonup vyjadriteľné ako úloha lineárneho programovania – L^1 , L^{∞}

Predstavenie projektu – obsah

- ► formulácia LP úloh a dokázanie optimality
- implementácia v Python-e a predikcia kvality vína
- ▶ počítanie a interpretácia R² koeficientu
- ightharpoonup implementácia všeobecnej triedy na počítanie L^1 a L^∞ lineárnej regresie
- minimalizácia váženej sumy noriem

Formulácia úloh lineárneho programovania

Úloha

Nájsť koeficienty β_0 , β_1 , ..., β_k tak, aby predikovaný vektor

$$\hat{y} = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k \tag{1}$$

bol čo najbližšie k výstupu y, kde y označuje závislú premennú a $x_1,\ x_2,\ \dots,\ x_k\in\mathbb{R}^n$ označujú nezávislé premenné. Túto vzdialenosť |y - $\hat{y}|$ sme minimalizovali I_1 a I_∞ normami

Minimalizovanie l₁ normy

Chceme minimalizovať normu $||y - \hat{y}||_1$ označíme:

$$A := (1_n, x_1, \dots, x_k)$$

$$\beta := (\beta_0, \beta_1, \dots, \beta_k)^T$$
(2)

Problém prevedieme do tvaru:

$$\min c^T x$$
$$Ax > b$$

Zavedieme nový vektor $t \in \mathbb{R}^n$, ktorým ohraničíme $y - \mathsf{A} eta$

Minimalizovanie l_1 normy ako úloha lineárneho programovania:

$$\min \left(0_{k+1}^{T} \middle| 1_{n}^{T}\right) \left(\frac{\beta}{t}\right)$$

$$\left(\frac{A}{-A} \middle| \mathbb{I}_{n}\right) \left(\frac{\beta}{t}\right) \ge \left(\frac{y}{-y}\right)$$

$$\beta \in \mathbb{R}^{k+1}, \ t \ge 0_{n}$$

Minimalizovanie I_{∞} normy

Chceme minimalizovať normu $||y - \hat{y}||_{\infty}$

Zavedieme skalárnu premennú $\gamma \in \mathbb{R}$, prevedieme na úlohu LP

$$-\gamma \mathbf{1}_{n} \leq y - \mathsf{A}\beta \leq \gamma \mathbf{1}_{n}$$

Pomocou značenia z (2), výsledná úloha:

$$\min \left(0_{k+1}^{T} \middle| 1\right) \left(\frac{\beta}{\gamma}\right)$$

$$\left(\frac{A}{-A} \middle| 1_{n}\right) \left(\frac{\beta}{\gamma}\right) \ge \left(\frac{y}{-y}\right)$$

$$\beta \in \mathbb{R}^{k+1}, \ \gamma > 0$$

В

. . .

Predikcia kvality vína

dáta o víne

- množstvo dážďa v zime
- priemerna teplota počas zretia vína
- množstvo dažďa počas zberu
- vek vína
- populácia Francúzska
- cena

Orley Ashenfelter

Výsledky predikcie

- L^1
 - + vplyv teplota počas zretia
 - + vplyv veku vína
 - vplyv dážď počas zberu
 - + vplyv dážd počas zimy
 - vplyv populácie Francúzska

- L^{∞}
 - rovnaké poradie ako L¹
 - ale vplyv veku vína

D

. . . .

Nadstavba

```
from models.models import L1Model, LInfModel
```

- Zovšeobecnenie problému
- ► Voľnosť dimenzionality
- Vstupný vektor y a matica X
- Hodnoty β výstupom

```
# inicializacia
model1 = L1Model(y, X)
model2 = LInfModel(y, X)
# riesenie
beta1 = model1.solve()
beta2 = model2.solve()
```

Nadstavba

- ► Hodnota R²
- ► Vizualizácia pre 2D a 3D

model.r2()
model.visualize()

Porovnanie L^1 a L^{∞} lineárnej regresie

- L¹ veľmi dobre zachytáva lineárny vzťah, môže viesť k overfittingu
- $ightharpoonup L^{\infty}$ príliš ovplyňovaná outliermi

Minimalizácia váženého súčtu noriem

redukcia overfittingu L^1 regresie váženým súčtom s L^∞ normou min $\omega ||y - \hat{y}||_1 + (1 - \omega)||y - \hat{y}||_\infty$, $\omega \in [0; 1]$

> stále implementovateľné ako úloha lineárneho programovania

$$\min \left(0_{k+1}^{T} \mid \omega 1_{n}^{T} \mid (1 - \omega) \right) \left(\frac{\beta}{\frac{t}{\gamma}} \right), \ \omega \in [0; 1]$$

$$\left(\frac{A \mid \mathbb{I}_{n} \mid 0_{n}}{-A \mid \mathbb{I}_{n} \mid 0_{n}} \right) \left(\frac{\beta}{\frac{t}{\gamma}} \right) \ge \left(\frac{y}{-y} \right)$$

$$\beta \in \mathbb{R}^{k+1}, \ t \ge 0_{n}, \ \gamma \ge 0$$

Minimalizácia váženého súčtu noriem

implementované ako WeightedL1LInfModel

Zhrnutie

- ► formulácia lineárnej regresie ako úlohy LP
- predikcia ceny vín
- ightharpoonup jednoduchý framework na počítanie lineárnej regresie pomocou L^1 a L^∞ noriem, resp. ich váženej sumy

Ďalšie kroky

- analýza časovej zložitosti, napr. voči najmenším štvorcom
- porovnanie vhodnosti jednotlivých prístupov podľa vstupných dát