CS4102 Algorithms Fall 2018

Warm up

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Find Min, Lower Bound Proof

Show that finding the minimum of an unordered list requires $\Omega(n)$ comparisons

Suppose (toward contradiction) that there is an algorithm for Find Min that does fewer than $\frac{n}{2} = \Omega(n)$ comparisons.

This means there is at least one "uncompared" element We can't know that this element wasn't the min!

Homeworks

- Regrade office hours TODAY 4-5pm
 - Check for new HW2 scores this afternoon
- Hw3 Due 11pm Wednesday Oct 3
 - Divide and conquer
 - Written (use LaTeX!)
- Hw4 is out
 - Sorting
 - Written

Today's Keywords

- Sorting
- Linear time Sorting
- Counting Sort
- Radix Sort

CLRS Readings

• Chapter 8

Sorting in Linear Time

- Cannot be comparison-based
- Need to make some sort of assumption about the contents of the list
 - Small number of unique values
 - Small range of values
 - Etc.

Idea: Count how many things are less than each element

$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$

1.Range is [1, k] (here [1,6]) make an array \emph{C} of size k populate with counts of each value

For
$$i$$
 in L :
 $+ + C[L[i]]$

2.Take "running sum" of *C* to count things less than each value

For
$$i = 1$$
 to len(C):

$$C[i] = C[i-1] + C[i]$$

To sort: last item of value 3 goes at index 4

Idea: Count how many things are less than each element

For each element of *L* (last to first): Use *C* to find its proper place in *B* Decrement that position of *C*

For
$$i = \text{len}(\underline{L})$$
 downto 1:

$$B \left[C[\underline{L}[i]] \right] = \underline{L}[i]$$

$$C[\underline{L}[i]] = C[\underline{L}[i]] - 1$$

Idea: Count how many things are less than each element

$$L = \begin{bmatrix} 3 & 6 & 6 & 1 & 3 & 4 & 1 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}$$
 $C = \begin{bmatrix} 1 & 2 & 4 & 5 & 5 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ Last item of value 1 \\ goes at index 2 \end{bmatrix}$

For each element of L (last to first): Use C to find its proper place in B Decrement that position of C

For
$$i = \text{len}(\underline{L})$$
 downto 1:

$$B \left[C[\underline{L}[i]] \right] = \underline{L}[i]$$

$$C[\underline{L}[i]] = C[\underline{L}[i]] - 1$$

Run Time: O(n + k)

Memory: O(n + k)

- Why not always use counting sort?
- For 64-bit numbers, requires an array of length $2^{64} > 10^{19}$
 - 5 GHz CPU will require > 116 years to initialize the array
 - 18 Exabytes of data
 - Total amount of data that Google has

12 Exabytes

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 1's place

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 10's place

Radix Sort

 Idea: Stable sort on each digit, from least significant to most significant

Place each element into a "bucket" according to its 100's place

Run Time: O(d(n+b)) d =digits in largest value b =base of representation

Maximum Sum Continuous Subarray Problem

The maximum-sum subarray of a given array of integers A is the interval [a, b] such that the sum of all values in the array between a and b inclusive is maximal.

Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Return the Max of

Left, Right, Center

Divide and Conquer Summary

Typically multiple subproblems.

Typically all roughly the same size.

Divide

Break the list in half

Conquer

Find the best subarrays on the left and right

Combine

- Find the best subarray that "spans the divide"
- I.e. the best subarray that ends at the divide concatenated with the best that starts at the divide

Types of "Divide and Conquer"

- Divide and Conquer
 - Break the problem up into several subproblems of roughly equal size, recursively solve
 - E.g. Karatsuba, Closest Pair of Points, Mergesort...
- Decrease and Conquer
 - Break the problem into a single smaller subproblem, recursively solve
 - E.g. Gotham City Police, Quickselect, Binary Search

Pattern So Far

- Typically looking to divide the problem by some fraction (½, ¼ the size)
- Not necessarily always the best!
 - Sometimes, we can write faster algorithms by finding unbalanced divides.

Unbalanced Divide and Conquer

Divide

Make a subproblem of all but the last element

Conquer

- Find best subarray on the left (BSL(n-1))
- Find the best subarray ending at the divide (BED(n-1))

Combine

- New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New best on the left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Divide

Recursively
Solve on Left
25

Divide

Recursively Divide
Solve on Left
13

Unbalanced Divide and Conquer

Divide

Make a subproblem of all but the last element

Conquer

- Find best subarray on the left (BSL(n-1))
- Find the best subarray ending at the divide (BED(n-1))

Combine

- New Best Ending at the Divide:
 - $BED(n) = \max(BED(n-1) + arr[n], 0)$
- New best on the left:
 - $BSL(n) = \max(BSL(n-1), BED(n))$

Why was unbalanced better?

• Old:

- We divided in Half
- We solved 2 different problems:
 - Find the best overall on BOTH the left/right
 - Find the best which end/start on BOTH the left/right respectively
- Linear time combine
- New:
 - We divide by 1, n-1
 - We solve 2 different problems:
 - Find the best overall on the left ONLY
 - Find the best which ends on the left ONLY
 - Constant time combine

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(n) = \Theta(n \log n)$$

$$T(n) = 1T(n-1) + 1$$

$$T(n) = \Theta(n)$$

Maximum Sum Continuous Subarray Problem Redux

- Solve in O(n) by increasing the problem size by 1 each time.
- Idea: Only include negative values if the positives on both sides of it are "worth it"

Remember two values:

Best So Far 13

Remember two values:

Best So Far 13

Remember two values:

Best So Far 13

Remember two values:

Best So Far 19

Remember two values:

Best So Far 25

End of Midterm Exam Materials!

"Mr. Osborne, may I be excused? My brain is full."