Name: Jeremiah Webb

Module 7: Hash Tables - Worksheet

Problem 1: For this problem, utilize the string hash technique covered within the lecture video for the following keys. We shall use the indices computed in the next two problems.

Let m=11 and let R=13

a.	hash("Bilbo"); _0 6 10 8 6
b.	hash("Frodo");4 1 3 7 4
с.	hash("Sam");6 10 8
d.	hash("Gimli");5 5 9 5 5
e.	hash("Merry");0 2 8 9 7
f.	hash("Pippin");3 1 4 10 4 8

Problem 2: Insert each of the items from page 1 into the hash table below using **separate chaining**. Draw each chain as a list-like data structure.

Key	hash(Key)
Bilbo	6
Frodo	4
Sam	8
Gimli	5
Merry	7
Pippin	8

0		
	Chain (Dynamic	
	size)	
1		
2		
3		
4	Frodo	
5	Gimli	
6	Bilbo	
7		
	Merry	
8	Sam	Pippin
9		
10		

How many collisions occurred with this algorithm? i.e. how many elements were written to buckets already occupied (if any)? Sam and Pippin are in collision.

1			

Problem 3: Insert each of the items from page 1 into the hash table below using **linear probing**. Draw each chain as a list-like data structure.

Key	hash(Key)
Bilbo	6
Frodo	4
Sam	8
Gimli	5
Merry	7
Pippin	8

0	D 1 (1 4)
	Buckets (b=1)
1	
2	
3	
4	Frodo
_	11000
5	
	Gimli
6	
0	D.II
	Bilbo
7	Merry
8	Sam
9	Pippin
10	

How many collisions occurred with this algorithm? i.e. how many elements were written to buckets already occupied (if any)? Sam and Pippin in collision, Pippin moved to index 9

1			

Problem 4: Update the linear probing table after table.delete("Sam"); Start with your solution from Problem 3 and then show all changes made to the table to handle the deletion and restoration of the hash table.

Starting

0	
1	
2	
3	
4	Frodo
5	Gimli
6	Bilbo
7	Merry
8	Sam
9	Pippin
10	

Deletion of Sam

Deletion of Sam			
0			
1			
2			
3			
4	Frodo		
5	Gimli		
6	Bilbo		
7	Merry		
8			
9	Pippin		
10			

Movement of Pippin Key to redo = Pippin

Frodo
Gimli
Bilbo
Merry
Pippin