# Team 1817:Electrical plug, connector, and receptacle temperature sensor (Hubbell)



Jim Lin, Noah Lyke, Kyle Mullins, Robert Townsend Advisor: Necmi Biyikli

#### Personnel and collaborators

- Personnel:
  - Jim Lin (EE)
  - Noah Lyke (EE)
  - Kyle Mullins (EE)
  - Robert Townsend (CE)
- Faculty Advisor:
  - Necmi Biyikli
- Company Contact:
  - John Brower

#### **Outline**

- Company Information
- Task
- Goals
- Timeline
- Research
  - Background
  - $\circ$  IR
  - o RTD

- Possible Solutions
- Prototyping
- Next Steps

# **Company Background**

- Hubbell Incorporated
  - o Shelton, CT
  - Produce plugs, connectors, and receptacles
  - Cover a range of rated voltages up to 600 VAC



Fig. 1 : Hubbell L1430P Hubbell, Twist Lock Plug, 30Amp

# The Purpose

- Research existing temperature sensing technologies
  - Method of measurement
  - Contact vs. non contact
  - Temperature range
  - Accuracy
  - Associated problems
- Look to utilize existing technology to improve performance

# **Goal and Requirements**

- Miniaturization/Optimization design project
- Small temperature sensing system
  - Two or more sensors
  - 1 inch x 1 inch component density
  - Temperature range: -20°C to 80°C
  - Minimum Accuracy: ±1°C
  - Onboard Microcontroller for data interpretation
- Stay within a Budget of \$6 \$8 USD

#### **Timeline**

Project Initiation/Research



#### Research

- Examine existing temperature sensing technologies
  - Find the mechanism of measurement
  - Infrared, resistance temperature detectors, and semiconductor devices
- Compare
  - Accuracy
  - Effective range
  - Measurement type

# **Project Materials**

- Multiple temperature sensors
- Required supplementary components for each sensor
- Microcontroller Unit
- Temperature display device

#### **Possible Solutions**

- Based on research, optimal technologies include:
  - 1. Resistance Temperature Detectors
  - 2. Infrared devices

# Resistance Temperature Detectors (RTD)

Correlates resistance value to temperature value

$$R = R_o(1 + \alpha (T - T_{ref}))$$

- Close proximity/contact
- Typical Operating Range of -60°C to over 600°C
- High Accuracy (many are below (+/- 1°C)
- Two Basic Styles: Wire-wound and Thin Film





Figure 2. RTD Styles

# RTD Background

- Common composition materials:
   Copper, Nickel, and Platinum
- Three types of RTD configurations:
   2-wire, 3-wire, and 4-wire
- Voltage potential in wheatstone bridge
- Provides repeatability, stability, and are the most accurate temperature sensors



Fig. 3: 2-wire Circuit

Fig. 4: 3-wire Circuit



#### Infrared (IR)

- The long wave infrared spectrum
  - Includes wavelengths of 8 micometers to 15 micrometers
  - Stefan-Boltzmann Law
    - $\blacksquare$  P=εσA(T-Tc)<sup>4</sup>
- Non-contact
- Thermal imaging

# IR background

- Thermopiles are composed of multiple thermocouples
  - Thermocouples are made of 2 wires made of different metals
  - 2 Conductors form an electrical junction in Thermocouples
- Must be configured / adjusted for measuring material



Fig. 5: Thermocouple vs. thermopile

# **Thermopiles**

- Typical Operating Range of -20°C to 100°C
- Typical accuracy: ±0.5°C to ±1°C
- Temperature causes a small voltage output
- Emissivity of surface affects the readings
- Ambient temperature: RTD



Figure 6:Amphenol Advanced Sensors ZTP-135SR-Thermopile Sensor

# Comparison

|           | RTD                                           | IR (Thermopile)                                                           |
|-----------|-----------------------------------------------|---------------------------------------------------------------------------|
| Benefits  | Minimal external circuits,<br>Highly accurate | Non-contact measurement                                                   |
| Drawbacks | Contact or close proximity to object required | Reflective surfaces, cold junction, and ambient temperature must be known |

# **Prototyping**



$$V_{Out} = \frac{R2}{R3} * ((V^{+}) - (V^{-}))$$

$$V_{OutRTD} = V_3 * (\frac{R_{RTD}}{R_{RTD} + R_6})$$



$$Vout = V_1 * \left( \left( \frac{R_x}{R_x + R_3} \right) - \left( \frac{R_2}{R_2 + R_1} \right) \right)$$

$$R_x = R_{RTD} + 2R_{Lead}$$

# Summary

- Optimal options are IR and RTD
- Small temperature sensing system
  - Two or more sensors
  - 1 inch x 1 inch component density
  - Temperature range: -20°C to 80°C
  - Minimum Accuracy: ±1°C
  - Onboard Microcontroller for data interpretation

# **Next Step**

- Prototyping
  - Establish microcontroller information / Code for testing
    - C Code
    - UART based testing
  - Circuit Design
  - Testing with commercially available components

# **Future Steps**

- Deciding Sensor
- Components
- PCB Design
- Development/Troubleshooting

### **Questions?**

#### **Works Cited**

- "Figure 1", <a href="http://logonoid.com/images/hubbell-logo.png">http://logonoid.com/images/hubbell-logo.png</a>, Accessed: 23, October 2017
- "Figure 2", <a href="http://www.sensortips.com/temperature/designing-with-rtd-temperature-sensors/">http://www.sensortips.com/temperature/designing-with-rtd-temperature-sensors/</a>, Accessed: 22. October 2017
- Karaki, Habib. "Figure 2", 27 February 2014,
   <a href="http://www.sensorsmag.com/components/demystifying-thermopile-ir-temp-sensors">http://www.sensorsmag.com/components/demystifying-thermopile-ir-temp-sensors</a>, Accessed: 23 October 2017
- "Figure 6",
   <a href="https://www.digikey.com/product-detail/en/amphenol-advanced-sensors/ZTP-135SR/235-1330-ND/3974095">https://www.digikey.com/product-detail/en/amphenol-advanced-sensors/ZTP-135SR/235-1330-ND/3974095</a> Accessed: 23 October 2017