Analyzing Generative Models by Manifold Entropic Metrics

Daniel Galperin, Ullrich Köthe Computer Vision and Learning Lab, Heidelberg University, Germany

Which learned representation is better?

Competing generative models for the two moons dataset:

We can quantify that by Manifold Entropic Metrics in terms of

 $H(X_c) \gg H(X_d)$ Alignment and Disentanglement $\mathcal{I}(X_c, X_d) \approx 0$

Manifold Entropic Metrics:

Background

How to invert an unknown data-generating process **DGP**:

$$oldsymbol{x} = \Phi(oldsymbol{s})$$

 $oldsymbol{x}$ generated data, Φ mixing function, $oldsymbol{s}$ (semantic) source vectors

Independent Component Analysis ICA:

Assume statistically indepenent sources s_i

→ non-Gaussian latent distribution

→ Mixing function is unaffected

Independent Mechanism Analysis IMA:

Assume causally independent source contributions $\partial\Phi/\partial s_i$ → Jacobian of mixing function becomes orthogonal

(Sub-)Jacobian:

Matrix Volume:

 $oldsymbol{J}_{\mathbb{S}}\coloneqqrac{\partialoldsymbol{g}(oldsymbol{z}')}{\partialoldsymbol{z}'_{\mathbb{S}}}\Bigg|_{oldsymbol{z}'_{\mathbb{S}}}=$

Approach

Disentangled Representation Learning **DRL**: Varying a single feature Δs_i only varies a single semantically meaningful and isolated variation in the data $\Delta oldsymbol{x}_i$

Quantify success of a generative model on **DRL** given sources:

- One latent variable should model the same source feature globally
- Different latent variables should not model the same source feature locally

Make two assumptions about the **DGP** to reformulate *supervised* necessary conditions into *unsupervised* desiderata using **IMA** principle:

Alignment:

The importance of different semantic features varies greatly

→ Sorting of Manifold Entropy

(In PCA → Sorting of eigenvalues)

Disentanglement: Semantic features mostly model independent variations in data

→ Vanishing Manifold Mutual Information

(In PCA → Orthogonality between eigenvectors)

Experiments on EMNIST

Analyze class-conditioned Normalizing Flows (cINN)

by Manifold Entropic Metrics: Manifold Entropy Spectrum $H(q_i)$ lacksquare $\mathcal{L}_{\mathrm{ML}}$ + $\mathcal{L}_{\mathrm{rec}}$ (10 dims)

Visualize high-dimensional *Latent Manifolds* via Averaged *Jacobian columns* (Similar to "Eigen-Digits" in PCA)

 $\mathcal{L}_{\mathrm{ML}}$ + $\mathcal{L}_{\mathrm{rec}}$ (100 dims)

Normalizing Flows:

Derivation

Encoder: $\boldsymbol{z} = \boldsymbol{f}(\boldsymbol{x}) \in \mathbb{R}^D$ Decoder: $\boldsymbol{x} = \boldsymbol{f}^{-1}(\boldsymbol{z}) \eqqcolon \boldsymbol{g}(\boldsymbol{z}) \in \mathbb{R}^D$ Prior latent distribution: $p(\boldsymbol{Z} = \boldsymbol{z}) = \mathcal{N}(\boldsymbol{z} \mid 0, \boldsymbol{I}_D)$

ightharpoonup Select latent dimensions via index set $\mathbb{S} \subseteq \{1,...,D\}$ and its complement $\overline{\mathbb{S}}$ to split latent vector $z = [z_{\mathbb{S}}, z_{\overline{\mathbb{S}}}]$

Define *Manifold random variable* and *Latent manifold*

 $oldsymbol{X}_{\mathbb{S}}\coloneqq oldsymbol{g}(ig[oldsymbol{Z}_{\mathbb{S}},oldsymbol{z}_{\overline{\mathbb{S}}}ig])$

 $\mathcal{M}_{\mathbb{S}}(oldsymbol{z}_{\overline{\mathbb{S}}})\coloneqq ig\{oldsymbol{x}=oldsymbol{g}([oldsymbol{z}_{\mathbb{S}},oldsymbol{z}_{\overline{\mathbb{S}}}]):oldsymbol{z}_{\mathbb{S}}\in\mathbb{R}^{|\mathbb{S}|}ig\}$

Derive *Manifold pdf* via (injective) change of variables

 $q_{\mathbb{S}}ig(oldsymbol{X}_{\mathbb{S}}ig) = p_{\mathbb{S}}ig(oldsymbol{Z}_{\mathbb{S}} = oldsymbol{z}_{\mathbb{S}}ig)ig|oldsymbol{J}_{\mathbb{S}}(oldsymbol{z})ig|^{-1}$ Derive *Manifold Entropy* as Differential Entropy of $X_{\mathbb{S}}$

 $H(q_{\mathbb{S}}) = \mathbb{E}\left[-\log\left(q_{\mathbb{S}}(\boldsymbol{x}_{\mathbb{S}})
ight)\right] = \mathbb{E}\left[-\log(p_{\mathbb{S}}(\boldsymbol{z}_{\mathbb{S}})) + \log|\boldsymbol{J}_{\mathbb{S}}(z)|\right]$

Derive *Manifold Mutual Information* analogously between $oldsymbol{X}_{\mathbb{S}}$ and $oldsymbol{X}_{\mathbb{T}}$

 $\mathcal{I}(q_{\mathbb{S}}, q_{\mathbb{T}}) = \underset{m{z}}{\mathbb{E}} \left| \log \left(\frac{q_{\mathbb{ST}}(m{x}_{\mathbb{ST}})}{q_{\mathbb{S}}(m{x}_{\mathbb{S}})q_{\mathbb{T}}(m{x}_{\mathbb{T}})} \right) \right| = \underset{m{z}}{\mathbb{E}} \left[\log |m{J}_{\mathbb{S}}(m{z})| + \log |m{J}_{\mathbb{T}}(m{z})| - \log |m{J}_{\mathbb{ST}}(m{z})| \right]$

Derive application-specific metrics for arbitrary S via decomposition rule:

 $oldsymbol{X}_{\mathbb{S},\mathbb{T}} = \{oldsymbol{X}_{\mathbb{S}},oldsymbol{X}_{\mathbb{T}}\} \qquad H(q_{\mathbb{S},\mathbb{T}}) = H(q_{\mathbb{S}}) + H(q_{\mathbb{T}}) - \mathcal{I}(q_{\mathbb{S}},q_{\mathbb{T}})$

Empirically useful metrics for $\mathbb{S} = \{i\}$:

- *Manifold Entropy* (dimensionwise) $H(q_i)$

Marginal information in X_i : "non-linear std" \rightarrow Measure importance per dimension Use: Plot spectrum and identify (un)important manifolds random variables

- Manifold Pairwise Mutual Information $\mathcal{I}_{ij}(q_i,q_j)$

Shared information between X_i and X_j : "non-linear cosine similarity" \rightarrow Measure orthogonality between individual latent dimensions

Use: Plot matrix and identify (dis)entangled manifold random variables

Manifold Total Correlation 1

Residual information between all $m{X}_m$, $m \in \{1, \dots, D\}$: "Global orthogonality"

– Manifold Cross-Pairwise Mutual Information $\,\mathcal{I}^{ab}_{ij}(q^a_i,q^b_j)$

Shared information between $m{X}_i^a$ and $m{X}_i^b$ coming from two different models: Compare two models by identifying (dis) similar manifold random variables