

Reacciones de oxidación y reducción

Fermentación

- Es un proceso que libera energía a partir de azucares u otras moléculas orgánicas (aa, ag, purinas y pirimidas).
- No necesita oxigeno (pero a veces tiene lugar en su presencia).
- No presenta ciclo de Krebs ni cadena transportadora de electrones.
- Utiliza una molécula orgánica como aceptor final de electrones.
- Produce pequeñas cantidades de ATP (solo se produce en la glucolisis)
- Existe regeneración de NAD+ y NADP+ que pueden ingresar nuevamente a la glucolisis, transfiriendo los electrones de moléculas reducidas al ácido pirúvico o sus derivados.
- La principal función es garantizar una provisión constante de NAD+ y NADP+ para que pueda continuar la glucolisis.

Respiración celular y fermentación

Conceptos de respiración y fermentación

En la RESPIRACIÓN, el $[NADH_2]$ se oxida usando un aceptor de electrones EXTERNO En la FERMENTACIÓN, el $[NADH_2]$ se oxida usando un aceptor de electrones INTERNO

"Cuando el aceptor de electrones es un ácido orgánico (molécula orgánica) se le llama fermentación, cuando el aceptor es una sustancia inorgánica (NO₂, NO₃, SO₄, CO₃ y fumarato) se llama respiración anaerobia "

Diferentes rutas de fermentación

Diversidad de fermentaciones:

- alcohólica,
- homoláctica,
- heteroláctica,
- ácido-mixta,
- butanodiólica,
- Propiónica
- acetona-butanol.

- 1. BACTERIAS HOMOFERMENTATIVAS
- 2. BACTERIAS HETEROFERMENTATIVAS

GLUCOLISIS

Tres destinos del piruvato producido en la glucólisis

Anaeróbico (fermentación láctica)

Aeróbico (oxidación)

Anaeróbico (fermentación alcohólica)

Rutas alimentadoras de la glucólisis

Gran número de glúcidos (aparte de la glucosa) entran finalmente a la ruta glucolítica:

- polisacáridos: glucógeno y almidón
- disacáridos: maltosa, lactosa, trehalosa, sacarosa
- monosacáridos: fructosa, manosa, galactosa

Fermentaciones

ALCOHÓLICA:

- En la fermentación etanólica o alcohólica: el piruvato se reduce para formar etanol y CO₂:

Glucosa +
$$2ADP + 2P_i \longrightarrow 2etanol + CO_2 + 2ATP$$

- Es el proceso de fermentación que lleva a cabo Saccharomyces cerevisiae (pocas bacterias).

Fermentaciones

HOMOLÁCTICA:

-Su único producto final es el ácido láctico. Su ecuación global es:

Estas bacterias producen el piruvato por catabolismo de la glucosa siguiendo la ruta de Embden-Meyerhof.

-Proceso presente en muchas bacterias lácticas: *Streptococcus* (grupo enterococos), *Pediococcus* y varios grupos de *Lactobacillus*.

Fermentación heteroláctica

lactic acid

- Su producto final no es exclusivamente ácido láctico.
- El proceso tiene un rendimiento menor que la fermentación homoláctica.
- El piruvato de esta ruta procede de la vía de las pentosas.
- •La reacción global es:

 Este proceso lo llevan a cabo bacterias del grupo láctico pertenecientes a los géneros Leuconostoc y Lactobacillus.

Ruta de la Fosfocetolasa o de Warburg-Dickens (WD)

COOH Lectato Hidrogenoliasa fórmica

Fermentación ácido mixta

- Produce ácido acético, etanol, H₂, CO₂ y proporciones diferentes de ácido láctico o propiónico (fórmico) según las especies.
- · La llevan a cabo las enterobacterias.
- En esta ruta de fermentación se produce ATP además de la reoxidación del NADH+H⁺.

2 ADP + 2 PI Voges-Proskauer

Fermentación butanodiólica

- · Variante de la fermentacion ácido mixta.
- Presente en algunas enterobacterias como Klebsiella, Serratia y Erwinia.
- En esta ruta se produce acetoína que se detecta mediante la reacción de Voges-Proskauer

Glucdilele Flavoproteina COASH SCOA Acetil CoA Metilmetonil-CoA соон Meteto Oxaloscetato соон Propionil-CoA COOH Succinato

Fermentación del ácido propiónico

- Proceso complejo en el que se genera acetato, CO₂ y ácido propiónico como productos finales.
- Ruta fermentativa la presentan las bacterias del tipo Propinobacterium y otras anaerobias estrictas presentes en el rumen de herbívoros

Fermentación de acetona-butanol

- Tipo de fermentación llevado a cabo por bacterias anaerobias estrictas del género Clostridium.
- Se producen compuestos orgánicos disolventes de gran importancia industrial

Ruta metabólica en Clostridium acetobutylicum ATCC824T

Fermentación de aminoácidos: reacción de Stickland

Reacción de Stickland llevada a cabo por algunas bacterias del género Clostridium 2 Acetato- + 2 NH3 2 Acetil-P NAD+ 2 ADP NADH 2 ATP Alanina NAD+ $2P_{i}$ NADH Piruvato + NH₃ Glicina CoAAminoácidos que participan en la reacción de Stickland Acetil-CoA Aminoácidos oxidados Aminoácidos reducidos Alanina Glicina CoAAcetil-P Leucina Prolina ADP Isoleucina Hidroxiprolina Valina Triptófano ATP Histidina Arginina Acetato⁻

EFECTO PASTEUR:

Inhibición de la fermentación por la respiración. La aireación induce a un aumento en la cantidad de biomasa, a una disminución de la producción de alcohol y de consumo de azúcar.

Cond. Anaeróbicas: 2ATP/Glucosa

Cond. Aeróbicas: 36 a 38 ATP/Glucosa

EFECTO CRABTREE:

Cuando la concentración de azúcar es elevada, *S. cerevisiae* sólo metaboliza los azúcares por vía fermentativa; incluso en presencia de oxígeno la respiración es imposible.