

## 1.5 Fonctions d'activation communément utilisées

 $\hfill \Box$  Unité linéaire rectifiée – La couche d'unité linéaire rectifiée (en anglais rectified linear unit layer) (ReLU) est une fonction d'activiation g qui est utilisée sur tous les éléments du volume. Elle a pour but d'introduire des complexités non-linéaires au réseau. Ses variantes sont récapitulées dans le tableau suivant :

| ReLU                                                                        | Leaky ReLU                                         | ELU                                                   |
|-----------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|
| $g(z) = \max(0, z)$                                                         | $g(z) = \max(\epsilon z, z)$ with $\epsilon \ll 1$ | $g(z) = \max(\alpha(e^z - 1), z)$ with $\alpha \ll 1$ |
| 0 1                                                                         | 0 1                                                |                                                       |
| Complexités non-linéaires<br>interprétables d'un<br>point de vue biologique | Répond au problème<br>de <i>dying ReLU</i>         | Dérivable partout                                     |

□ Softmax – L'étape softmax peut être vue comme une généralisation de la fonction logistique qui prend comme argument un vecteur de scores  $x \in \mathbb{R}^n$  et qui renvoie un vecteur de probabilités  $p \in \mathbb{R}^n$  à travers une fonction softmax à la fin de l'architecture. Elle est définie de la manière suivante :

$$p = \begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix} \quad \text{where} \quad p_i = \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

## 1.6 Détection d'objet

 $\square$  Types de modèles – Il y a 3 principaux types d'algorithme de reconnaissance d'objet, pour lesquels la nature de ce qui est prédit est different. Ils sont décrits dans la table ci-dessous :

HIVER 2019