CS2105

An *Awesome* Introduction to Computer Networks

Lecture 1: Overview

Lecturers

Dr. Zhou Lifeng

Office: COM2 #02-56

Email: zhoulifeng@nus.edu.sg

Prof. Roger Zimmermann

Office: AS6, #05-05

Email: rogerz@comp.nus.edu.sg

What is CS2105 About?

- Discussion of fundamental concepts and principles behind computer networking
 - Using the Internet as a case study

- Introduction to networking tools and networked application programming
 - Choice of programming language: Python, Java, or C

What you will NOT learn in CS2105

- How to configure hardware, e.g. router
 - This is covered in CS3103 Computer Networks Practice - perform hands-on experiments in subnetting, DHCP, DNS, RIP, OSPF, TCP handshaking and congestion mechanism

- Mobile and wireless networks
 - This is covered in CS4222 Wireless Networking

Textbook

Computer Networking: A Top-Down Approach: Global Edition, 7/E

Authors: Kurose

Ross

Publisher: Pearson

ISBN : 9781292153599

Acknowledgement:
Most of the lecture slides are
adopted from slides of this textbook.

Available at NUS Campus bookstore

Contact Hours

Lectures

- Video recording will be uploaded every Monday
- Consultation will be provided online
- No lecture in week 8 (reserved for midterm test)

Tutorials

- To be conducted lively online using zoom
- Start from week 3.
- 1 hour per session
- Email me, Roger or your tutor, if you have questions.

Assessments

- **A** CA (50%)
 - Individual programming assignments 23%
 - Midterm test (week 8 lecture time: Mon, 4 Oct 2021, 2-4pm) - 25%
 - · E-assessment
 - Mock midterm test 2%
 - Conducted in week 7 tutorial
- Final Exam (50%)
 - E-assessment
 - Mon, 29 Nov 2021, 9-11am

Notes and Tips

- Why CS2105 can be easy
 - You use and interact with the Internet constantly
 - Many of the concepts are intuitive and based on very practical design considerations
 - There are very few equations!

- Why CS2105 can be tough
 - Many concepts are covered
 - Programming assignments
 - · "Best-effort" technical support from a team of tutors

Lecture 1: Introduction

After this class, you are expected to:

- understand the basic terms, including host, packet, protocol, throughput, store-and-forward, and autonomous system.
- know about the logical (five protocol layers) and physical (a network of ASes) architecture of the Internet.
- understand the different components of end-toend delay and their relations to bandwidth, packet size, distance, propagation speed, and queue size.

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
- 1.3 Network Core
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Kurose Textbook, Chapter 1 (Some slides are taken from the book)

Internet: "nuts and bolts" View

- The Internet is a network of connected computing devices (e.g. PC, server, laptop, smartphone)
 - Such devices are known as hosts or end systems.
 - Hosts run network applications (e.g. WhatsApp, browser, Zoom).
 - · communicate over links.

Growth of Internet Hosts

number of hosts in Internet X Q All Images Videos INews Value More Settings Tools

About 414,000,000 results (0.58 seconds)

1.01 billion

The statistic shows the trend in the global number of internet hosts in the domain name system from 1993 to 2019. In January 2019, approximately **1.01 billion** internet hosts were available on the DNS. May 15, 2020

www.statista.com → Internet → Demographics & Use ▼

Global internet hosts in the domain name system 2019 ...

"Fun" Internet-connected Devices

IP picture frame http://www.ceiva.com/

Slingbox: watch, control cable TV remotely

Web-enabled toaster + weather forecaster

Tweet-a-watt: monitor energy use

Internet refrigerator

sensorized, bed mattress

Internet phones

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Network Edge (Access Network)

- Hosts access the Internet through access network.
 - Residential access networks
 - Institutional access networks (school, company)
 - Mobile access networks

Users/Hosts are here
They access the internet here

Home Networks

Enterprise Access Networks (Ethernet)

- Typically used in companies, universities, etc.
- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- Today, hosts typically connect to Ethernet switch

Wireless Access Networks

- Wireless access network connects hosts to router
 - via base station aka "access point"

Wireless LANs:

- within building (100 ft)
- 802.11b/g/n/ac (Wi-Fi)

Wide-area wireless access

- 3G, 4G
- provided by telco (cellular) operator, I 0's km

Physical Media

- Hosts connect to the access network over different physical media.
 - Guided media:
 - · signals propagate in solid media

Twisted pair cable

Fiber optic cable

- Unguided media:
 - signals propagate freely, e.g., radio

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

The Network Core

 A mesh of interconnected routers

- How is data transmitted through network?
 - Circuit switching: dedicated circuit per call
 - Packet switching: data sent thru net in discrete "chunks"

Circuit Switching

End-end resources allocated to and reserved for "call" between source & dest:

- call setup required
- circuit-like (guaranteed)performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

In above diagram, each link has four circuits. A "call" gets 2nd circuit in top link and 1st circuit in right link.

Packet Switching

Host sending function:

- breaks application
 message into smaller
 chunks, known as
 packets, of length L bits
- transmits packets onto the link at transmission rate R
 - link transmission rate is aka link capacity or link bandwidth

signals are waves, and thus there will be propagation delay

packet time needed to transmission delay transmit
$$L$$
-bit packet into link $= \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}$

Packet-switching: store-and-forward

- ❖ Packets are passed from one router to the next, across links on path from source to destination.
- Store and forward: entire packet must arrive at a router before it can be transmitted on the next link.

End-to-end delay = 2*L/R (assuming no other delay)

if there is no router - connected directly - then delay is only L/R

Routing and Addressing

- Routers determine source-destination route taken by packets.
 - Routing algorithms
- Addressing: each packet needs to carry source and destination information

Summary: Packet Switching

- The Internet is a packet switching network
- User A, B ... 's packets share network resources
- Resources are used on demand
- Excessive congestion is possible

Internet Structure: Network of Networks

- Hosts connect to Internet via access ISPs (Internet Service Providers)
 - Residential, company and university ISPs
- Access ISPs in turn must be interconnected.
- Resulting network of networks is very complex
 - Evolution was driven by economics and national policies
- Therefore, the Internet is a "network-of-networks", organized into <u>autonomous systems</u> (AS), each is owned by an organization.

Internet Structure: Network of Networks

Question: given millions of access nets, how to connect them together?

Internet Structure: Network of Networks

Internet Structure: Network of Networks

Who Runs the Internet?

- ❖ IP address & Internet Naming administered by Network Information Centre (NIC)
 - Refer to: <u>www.sgnic.net.sg</u>; <u>www.apnic.org</u>
- The Internet Society (ISOC) Provides leadership in Internet related standards, education, and policy around the world.
- The Internet Architecture Board (IAB) Authority to issue and update technical standards regarding Internet protocols.
- Internet Engineering Task Force (IETF) Protocol engineering, development and standardization arm of the IAB.
 - Internet standards are published as RFCs (Request For Comments)
 - Refer to: www.ietf.org; for RFCs: http://www.ietf.org/rfc.html

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Recall: Packet Switching Network

- To send a packet in a packet switching network,
 signal will propagate over the cable as waves
 - 1. Sender transmit a packet onto the link as a sequence of bits.
 - 2. Bits are propagated to the next node (e.g. a router) on the link. Usually a router to check bits
 - 3. Router stores, processes and forwards the packet to the next link.
 - 4. Steps 2 & 3 repeat till the packet arrives at the receiver.

How do Delay and Loss Occur?

Packets queue in router buffers

wait for turn to be sent out one by one

Q: What if packet arrival rate exceeds departure rate?

If the queue is full, all incoming packets will be dropped

Packet Loss

- Queue (aka buffer) of a router has finite capacity.
- ❖ Packet arriving to full queue will be dropped (aka lost).

Four Sources of Packet Delay

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec

packet is checked
packet is dropped if error

d_{queue}: queuing delay

- time waiting in the queue for transmission
- depends on congestion level of router

if packet is right sent to queue to wait for departure

Four Sources of Packet Delay

d_{trans}: transmission delay

- L: packet length (bits)
- R: link bandwidth (bps)
- $d_{trans} = L/R$

transmission delay is the L/R as normal

d_{prop} : propagation delay

- d: length of physical link
- s: propagation speed in medium (~2x10⁸ m/sec)

End-to-end Packet Delay

- End-to-end packet delay is the time taken for a packet to travel from source to destination. It consists of:
 - transmission delay
 - propagation delay
 - processing delay
 - queueing delay

means the start time of 0ms to the end time when the receiver gets all the packets

Throughput

- Throughput: how many bits can be transmitted per unit time.
 - Throughput is measured for end-to-end communication.
 - Link capacity (bandwidth) is meant for a specific link.

Metric Units

❖ 1 byte = 8 bits

Exp.	Explicit	Prefix	Exp.	Explicit	Prefix
10 ⁻³	0.001	milli	10 ³	1,000	Kilo
10-6	0.000001	micro	10 ⁶	1,000,000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1,000,000,000	Giga
10 -12	0.00000000001	pico	10 ¹²	1,000,000,000,000	Tera
10 ⁻¹⁵	0.0000000000001	femto	10 ¹⁵	1,000,000,000,000,000	Peta
10 ⁻¹⁸	0.000000000000000001	atto	10 ¹⁸	1,000,000,000,000,000	Exa
10 ⁻²¹	0.0000000000000000000000001	zepto	10 ²¹	1,000,000,000,000,000,000	Zetta
10 -24	0.0000000000000000000000000000000000000	yocto	10 ²⁴	1,000,000,000,000,000,000,000	Yotta

The principal metric prefixes

Lecture 1: Roadmap

- 1.1 What is the Internet?
- 1.2 Network Edge
 - hosts, access networks, links
- 1.3 Network Core
 - packet switching, circuit switching, network structure
- 1.4 Delay, Loss and Throughput in Networks
- 1.5 Protocol Layers and Service Models

Network Protocols

- The Internet supports various kinds of network applications:
 - Web, VoIP, email, games, e-commerce, social nets, ...
- Network applications exchange messages and communicate among peers according to protocols.
 - A protocol defines format and order of messages exchanged and the actions taken after messages are sent or received.

Internet Protocol Stack

- Protocols in the Internet are logically organized into 5 "layers" according to their purposes.
 - application: supporting network applications
 - FTP, SMTP, HTTP
 - transport: process-to-process data transfer
 - TCP, UDP
 - network: routing of datagrams from source to destination
 - IP, routing protocols
 - link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
 - physical: bits "on the wire"

application transport network link physical

ISO/OSI reference model (FYI)

- ❖ Theoretical model not in use
- Two additional layers not present in Internet Protocol Stack
 - presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
 - session: synchronization, checkpointing, recovery of data exchange

application presentation session transport network link physical

Lecture 1: Summary

covered a "ton" of material!

- Internet overview
- Network edge, core, access network
 - packet-switching versus circuitswitching
 - Internet structure
- Performance: loss, delay, throughput
- What's a protocol?
- Layering, service models

you now have:

- Context, overview, "feel" of networking
- More depth, detail to follow!