Ideas and steps about Ke et al. paper

-- Predicting Returns with Text Data-- Zhongchen Wang

Main ideas

SESTM method (Sentiment Extraction via Screening and Topic Modeling)

A novel model-based approach: understand the sentimental structure of a text corpus without relying on pre-existing dictionaries.

Three main steps:

- Screening for Sentiment-Charged Words: isolates the most relevant terms from a very large vocabulary of terms via predictive correlation screening
- Learning Sentiment Topics: assigns term-specific sentiment weights using a supervised topic model
- Scoring New Articles: uses the estimated topic model to assign article-level sentiment scores via penalized maximum likelihood

Notation

notation	explanation	remark	
n	Count of news articles		
m	A dictionary of m words		
$d_i \in \mathbb{R}^m_+$	the word (or phrase) counts of the i^{th}	$d_{j,i}$ is the number of times word	
	article in a vector	<i>j</i> occurs in article <i>i</i>	
$D = [d_1,, d_n]$	m imes n document-term matrix		
S, N	S: the index set of sentiment-charged	N: the index set of	
	words	sentiment-neutral words	
$d_{[S],i}$	the column vector corresponding to the	when $p_i = 1$, the article	
	i^{th} column of $^{D_{[S],\cdot}}$.	sentiment is maximally positive,	
	Column of $-[0]$,.	and when $p_i=0$, it is	
		maximally negative	
y_i	Associated stock return of article i		
$p_i \in [0, 1]$	Sentiment score of article i		
s_i	Total count of sentiment-charged words		
	in article i		
Q_{\perp} Q_{\perp}	Probability distribution over words;	S -vector of non-negative	
$O_{+, O_{-}}$	O_+ : Positive sentiment topic	entries with unit l^1 -norm	
	O_: Negative sentiment topic	entries with unit t -norm	
F, T	$F = \frac{1}{2}(O_+ + O), T = \frac{1}{2}(O_+ - O)$	F: a vector of frequency	
		T: a vector of tone	

Dataset

Dataset

Dow Jones Newswires service, January 1984 - July 2017

Train the model using rolling window estimation.

Training and validation sample: January 1989 - January 2014: 15 year interval

Training: first 10 years Validation: last 5 years

Out-of-sample Testing: subsequent one-year window

Roll the entire analysis forward by a year and re-train, iterate this procedure until exhaust the full sample, which amounts to estimating and validating the model 14 times.

Benchmark

A commercial vendor of financial news sentiment scores -- RavenPack

Data Pre-Processing

1	combining"chained"articles
	remove articles with more than one firm tag
	Track the date, exact timestamp, tagged firm ticker, headline, and body text of each article.
2	Timing choice
	Using ticker tags, we match each article with tagged firm's market capitalization and adjusted daily close-to-close returns from CRSP.
	Without better guidance on timing choice, we train the model by matching articles published on day t (more specifically, between 4pm of day t - 1 and 4pm of day t) with the tagged firm's three-day return from t - 1 to t + 1 (more specifically, from market close on day t - 2 to close on day t + 1)
3	Set out of sample analysis time duration: February 2014 - July 2017

Data Pre-Processing

4 Remove proper nouns

Clean and structure news articles -- bag of words

- Normalization
- 1. changing all words in the article to lower case letters
- 2. expanding contractions such as "haven't" to "have not"
- 3. deleting numbers, punctuations, special symbols, and non-English words
- Stemming and lemmatizing

Group together the different forms of a word to analyze them as a single root word

Tokenization

Splits each article into a list of words

- Removes common stop words
- Translate each article into a vector of word counts

Step 1 -- Screening for Sentiment-Charged Words

Strategy: Isolate the subset of sentiment-charged words, and then estimate a topic model to this subset alone (leaving the neutral words unmodeled)

A supervised approach that leverages the information in realized stock returns to screen for sentiment-charged words.

Intuitively, if a word frequently co-occurs in articles that are accompanied by positive returns, that word is likely to convey positive sentiment.

Step 1 -- Screening for Sentiment-Charged Words

1	calculates the frequency with which word j co-occurs with a positive return	
	$f_j = \frac{count \ of \ word \ j \ in \ articles \ with \ sgn(y) = +1}{t} . 1$	Can be viewed as a form
	$k_{j} \qquad \qquad k_{j} \qquad \qquad j=1,,m$	of marginal screening
	$k_j = count \ of \ word \ j \ in \ all \ articles$	statistics
	Variant: $f_j^* = \frac{count\ of\ articles\ including\ word\ j\ AND\ having\ sgn(y) = 1}{count\ of\ articles\ including\ word\ j}$	
	Variant: " count of articles including word j	
2	Compare f_j with proper thresholds: $^{lpha_+,lpha}$	Hyper-parameters
	Positive sentiment terms: $f_j > \hat{\pi} + \alpha_+$	$f_jpprox\hat{\pi}_{for a sentiment}$
	Negative sentiment terms: $f_j < \hat{\pi} - \alpha$	for a sentiment
	$\hat{\pi}$: The fraction of articles tagged with a positive return in training sample	neutral word
3	Third threshold: κ , to ensure minimal statistical accuracy of the f_j	Since some words may
	$k_i > \kappa$	appear infrequently in
		the data sample
4	$\hat{S} = \{j : f_j > = \hat{\pi} + \alpha_+, or \ f_j < = \hat{\pi} - \alpha\} \cap \{j : k_j > = \kappa\}$	Estimate of the relevant
	$\frac{ D-\chi J\cdot J_j }{ D-\chi J\cdot J_j } = \frac{ C-\chi J\cdot J_j }{ D-\chi J\cdot J_j $	wordlist: set S

Step 1 -- Screening for Sentiment-Charged Words

Choice of parameter

1	estimate a collection of SESTM models corresponding	$lpha_+,lpha$:always set such that the number of
	to a grid of tuning parameters	words in each group (positive and negative) is
		either 25, 50, or 100
		κ : 86%, 88%, 90%, 92%, and 94% <u>quantiles</u> of
		the count distribution each year
		λ : 1, 5, 10
2	 use all estimated models to score each news article in the validation sample 	$l^1{\operatorname{-norm}}$ of the differences between estimated
	 select the constellation of tuning parameter 	article sentiment scores and the corresponding
	values that minimizes a loss function in the	standardized return ranks for all events in the
	validation sample	validation sample.
		$\parallel \hat{p} - \hat{p}_{rank} \parallel_1$

Step 2 -- Learning Sentiment Topics

Assigns term-specific sentiment weights using a supervised topic model.

Each Newswire is associated with a stock return, and the return contains information about article sentiment. Hence, returns serve as training labels.

$O = [O_+, O]$	determines the data generating process of the counts	
	of sentiment-charged words in each article	
$h_i = d_{[S],i}/s_i$	S imes 1 vector of word frequencies	
Matrix form: $H = [h_1, h_2,, h_n]$		
$\mathbb{E}H = OW$	actimate Ovice a regression of Han M	
$W = \begin{bmatrix} p_1 & \dots & p_n \\ 1 - p_1 & \dots & 1 - p_n \end{bmatrix}$	estimate O via a regression of H on W	

Step 2 -- Learning Sentiment Topics

Assigns term-specific sentiment weights using a supervised topic model.

Each Newswire is associated with a stock return, and the return contains information about article sentiment. Hence, returns serve as training labels.

1	Estimate H:	Plugging in \hat{S} from the screening step:
	$\hat{h_i} = d_{[\hat{S}],i}/\hat{s_i}$, $\hat{s_i} = \sum_{j \in \hat{S}} d_{j,i}$	
2	$\hat{p_i} = \frac{rank \ of \ y_i \ in \ \{y_l\}_{l=1}^n}{n}$	To estimate W , we use the standardized ranks of returns as
	$p_i = {n}$	sentiment scores for all articles in the training sample.
3	$\hat{O} = [\hat{h_1}, \hat{h_2},, \hat{h_n}] \widehat{W'} (\widehat{W} \widehat{W'})^{-1}$	\hat{O} may have negative entries. We set all negative entries of this
	$O = [n_1, n_2,, n_n] vv (vv vv)$	matrix to zero and re-normalize each column to have a unit
		l^1 -norm.

Step 3 -- Scoring New Articles:

To estimate the sentiment p for a new article that is not included from the training sample.

$$d_{[S]} \sim Multinomial(s, pO_+ + (1-p)O_-)$$

Given estimates \hat{S} and \hat{O} , we can estimate p using maximum likelihood estimation (MLE).

$$\hat{p} = \arg\max_{p \in [0,1]} \{ \hat{s}^{-1} \sum_{j \in \hat{S}} d_j \log (p \hat{O}_{+,j} + (1-p)\hat{O}_{-,j}) + \lambda \log(p(1-p)) \}$$

Out-of-sample test period

- Estimate the sentiment scores of articles using the optimally tuned model determined from the validation sample.
- In the case a stock is mentioned in multiple news articles on the same day, we forecast the next-day return using the average sentiment score over the coincident articles.

Alternative hypothesis: information in news text is not fully absorbed by market prices instantaneously, for reasons such as limits-to-arbitrage and rationally limited attention.

Trading strategy: It is a zeronet-investment portfolio

- each day buys the 50 stocks with the most positive sentiment scores
- shorts the 50 stocks with the most negative sentiment scores.

Two portfolio schemes: equal-weighted and value-weighted P16
Form portfolios only at the market open each day and exclude articles published between 9:00am and 9:30am EST

Fresh News and Stale News

$$Novelty_{i,t} = 1 - \max_{j \in \chi_{i,t}} \left(\frac{d_{i,t} \cdot d_j}{\| d_{i,t} \| \| d_j \|} \right)$$

For each article for firm i on day t, we calculate its cosine similarity with all articles about firm i on the five trading days prior to t (denoted by the set $\chi_{i,t}$)

Stock volatility

$$\sigma_t = \sum_{i=0}^{\infty} (1 - \delta) \delta^i u_{t-1-i}^2$$

Calculate idiosyncratic volatility from residuals of a market model using the preceding 250 daily return observations.

Estimate the conditional idiosyncratic volatility via exponential smoothing according to the formula above.

where u is the market model residual and δ is chosen so that the exponentially_x0002_weighted moving average has a center of δm as δ) of 60 days.

Comparison Versus Dictionary Methods and RavenPack

Dictionary-based sentiment scoring: \hat{p}_i^{LM}

RavenPack News Analytics: \hat{p}_i^{RP}

Portfolio spanning test: For each sentiment-based trading strategy, regress its returns on the returns of each of the competing strategies, while also controlling for daily returns to the five Fama-French factors plus the UMD momentum factor.

If a trading strategy has a significant α after controlling for an alternative, it indicates that the underlying sentiment measure isolates predictive information that is not fully subsumed by the alternative. Likewise, the R^2 measures the extent to which trading strategies duplicate each other.

Practical asset management experiment -- taking into account trading costs

Novel trading strategy: EWCT (exponentially-weighted calendar time) portfolio

- i) turns over (at most) a fixed proportion of the existing portfolio every period
- ii) assigns weights to stocks that decay exponentially with the time since the stock was in the news.

1	Form an equal-weighted portfolio	
	 long the top N stocks in terms of news sentiment that day 	
	 short N stocks with the most negative news sentiment 	
2	Parameter: γ the severity of the turnover constraint	
3	Each subsequent day t , liquidate a fixed proportion γ of all existing positions, and	
	reallocate that γ proportion to an equal-weighted long-short portfolio based on day t	
	news.	
	$w_{i,t} = rac{\gamma}{N} + (1-\gamma)w_{i,t-1}$: For a stock i in the long-side of the portfolio at day t - 1 and	
	experience large positive sentiment news on day t	
	$w_{i,t} = (1-\gamma)w_{i,t-1}$: For a stock i in the long-side of the portfolio at day t - 1 but with no	
	news on date t	

- Practical asset management experiment -- taking into account trading costs
- The turnover parameter simultaneously governs both the size of the weight spike at news arrival (the amount of portfolio reallocation) as well as the exponential decay rate for existing weights.
- The EWCT strategy guarantees daily turnover is never larger than γ.

Some typo

- 1. P5: We occasionally work with a subset of rows from D, where the indices of columns included in the subset are listed in the set S.
- 2. P17: count of words
- 3. P15 and P20: table 2, table 3, unit of return is confusing
- 4. P29: moving down