МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«КУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Ракультет Индустриально-педагогический					
·					
Кафедра	Общетехнических дисциплин и безопасности жизнедеятельности				

ВОЙСКОВЫЕ ПРИБОРЫ ХИМИЧЕСКОЙ РАЗВЕДКИ. ОПРЕДЕЛЕНИЕ ХИМИЧЕСКИХ ОТРАВЛЯЮЩИХ ВЕЩЕСТВ В ВОЗДУХЕ, НА МЕСТНОСТИ, В ДЫМУ И СЫПУЧИХ МАТЕРИАЛАХ

Методические указания к выполнению практической работы по дисциплине «Основы военной подготовки»

Цель работы: изучить принцип действия войсковых приборов контроля химического загрязнения окружающей среды и отработать навык их применения; изучить порядок определения отравляющих веществ в воздухе, в почве и на местности; дать оценку степени опасности заражения газами исследуемого воздуха, почвы, сыпучего материала.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Химический метод определения отравляющих веществ (ОВ)

Обнаружение современных OB с помощью органов чувств (органолептически) не всегда возможно из-за отсутствия у ряда OB запаха, цвета, раздражающего действия, а главное небезопасно; токсичность некоторых OB настолько высока, что попытка определить их по запаху или раздражающему действию может привести к тяжелому поражению.

Основным способом обнаружения и определения OB в воздухе, на местности, технике, одежде и других объектах является использование средств химической разведки, а также путем взятия проб и последующего их анализа в химических лабораториях.

Для обнаружения и определения (индикации) ОВ применяются химические методы, основанные на использовании реакции ОВ с определенными веществами-индикаторами.

Для удобства пользования индикаторы, применяемые в приборах химической разведки, наносятся на пористую основу (силикагель, фильтровальную бумагу) или помещаются в стеклянные ампулы.

Пористая основа с нанесенным индикатором или ампула с реактивами заключаются в стеклянные индикаторные трубки, которые запаиваются с обеих сторон.

Принципы обнаружения отравляющих веществ

Для обнаружения и определения отравляющих веществ индикаторные трубки и находящиеся в них ампулы вскрываются, через трубки просасывается зараженный воздух, вследствие чего ОВ вступает взаимодействие индикатором (реактивом) и соответствующее вызывает изменение окраски

наполнителя (реактива).

По характеру и интенсивности окраски определяется тип ОВ и его концентрация (сравнивают с цветовыми эталонами на кассетах с индикаторными трубками).

Принцип действия **индикаторной пленки**: на одну сторону пленки нанесен реактив на отравляющее вещество или аварийно химически опасное вещество (АХОВ) (вторая сторона клейкая); пленка крепится (приклеивается) на хорошо видимые места (на технике, оборудовании и т.д.). При

появлении паров или аэрозолей в воздухе пленка меняет свой цвет.

Например, ВИКХК — войсковой индивидуальный комплект химического контроля, обеспечивающий высокочувствительное обнаружение в воздухе и оценку зараженности воды фосфороорганическими веществами, ипритом и люизитом.

Войсковой автоматический газосигнализатор ГСА-3М

Прибор предназначен для обнаружения в воздухе ОВ и АХОВ, таких как хлор и аммиак; автоматического светового и звукового оповещений об опасности.

Состав прибора: блок индикации; блок питания; ремень; жгут.

Технические характеристики:

- ✓ время выхода на рабочий режим не более 2 мин.
- ✓ время подготовки к работе не более 10 мин.
- ✓ быстродействие по парам OB при пороговых концентрациях не более 5 с.
- ✓ последействие при пороговых концентрациях OB не более 30 с.
- ✓ последействие по парам ОВ при больших концентрациях не более 2 с.
- ✓ быстродействие по парам AXOB не более 2 мин.
- ✓ последействие по парам AXOB не более 5 мин.
- ✓ электропитание от аккумуляторной батареи 4НЛЦ-09 3,6 В, или бортовой сети постоянного тока с напряжением 12В и 27В.
- ✓ время непрерывной работы от аккумуляторной батареи 4НЛЦ-09 не менее: в НКУ -24 ч, при минус 40°C -2 ч;
- ✓ диапазон рабочих температур:
 - нестойкие OB от минус $40^{\circ}C$ до $+50^{\circ}C$;
 - стойкие OB ot минус $15^{\circ}C$ до $+50^{\circ}C$;
 - AXOB от минус 20° С до $+50^{\circ}$ С;
- ✓ средний срок службы 10 лет;
- ✓ масса 1,01 кг.

Газосигнализатор ГСА-96 и ионно-молекулярный спектрометр ИМС-97

Газосигнализатор ГСА–96 предназначен для автоматического контроля окружающего воздуха с целью обнаружения в нем паров фосфороорганических соединений (ФОС). Прибор предназначен для оснащения как подвижных, так и стационарных объектов.

Технические характеристики:

- ✓ Время обнаружения: порог 1 120 с; порог 2 270 с.
- ✓ Последействие не более 15 мин.
- ✓ Рабочая температура от - 40° С до + 45° С.
- ✓ Потребляемая мощность 200 Вт.
- ✓ Напряжение питания 27 В (220 В с блоком питания).
- ✓ Bec 15 кг.

Ионно-молекулярный спектрометр ИМС–97 предназначен для контроля химических загрязнений в атмосфере при установке на подвижных и стационарных объектах. Определяемые вещества: ФОС, люизит, несимметричный диметилгидразин, окислы азота, аммиак, фенол, формальдегид.

Войсковой прибор химической разведки (ВПХР)

Для проведения контроля химического загрязнения среды широко используется войсковой прибор химической разведки (ВПХР), принцип действия которого основан на протягивании через индикаторную трубку с порошком-индикатором строго определенного объема исследуемого воздуха с последующим контролем окраски.

Ручной насос служит для прокачивания воздуха через индикаторные трубки. При 50 качаниях насоса в 1 мин через индикаторную трубку проходит 1,8 − 2 л воздуха. Насос помещается в металлической трубе, вмонтированной в корпус. Внутри трубы имеется пружина, предназначенная для выталкивания насоса при открывании защелки. Насос вкладывается в трубу ручкой наружу. В головке насоса размещены нож для надреза концов индикаторных трубок, гнездо для установки индикаторной трубки. Для обеспечения герметичного соединения головки с клапанным устройством предусмотрена резиновая прокладка. В ручке насоса размещены ампуловскрыватель и вкладыш. Ампуловскрыватель служит для разбивания ампул, имеющихся в индикаторных трубках. Вкладыш служит для фиксирования ампуловскрывателя в ручке насоса. На торце ручки нанесены маркировки штырей ампуловскрывателя: три зеленые полоски для индикаторной трубки с тремя зелеными кольцами, красная полоска с точкой для индикаторной трубки с одним красным кольцом и точкой.

Насадка предназначена для работы с насосом в дыму, при обнаружении ОВ на местности, а также в почве и сыпучих материалах. В корпусе насадки с одной стороны закреплена воронка, а с другой стороны вставлен стеклянный цилиндр. По резьбе основания воронки свободно вращается гайка с укрепленным на ней прижимным кольцом с фиксатором.

Защитный колпачок служит для помещения проб почвы, сыпучих материалов и предохранения внутренней поверхности воронки насадки от заражения каплями стойких OB.

Противодымные фильтры используют при обнаружении ОВ в дыму или в воздухе, содержащем пары веществ кислого характера.

Химическая грелка служит для подогрева индикаторных трубок во время обнаружения ОВ при температуре окружающего воздуха ниже 5°C.

Снаружи на корпусе крепится штырь для вскрытия ампулы патрона.

Патроны грелки содержат *ампулы* с раствором и порошок магния, между которыми находится гигроскопическая вата. После разбивания ампулы с раствором содержимое вступает в химическую реакцию с порошком магния, сопровождающуюся выделением большого количества тепла.

Электрический фонарь используют для наблюдения в ночное время за изменением окраски индикаторных трубок.

Попатка-отвертка служит для взятия проб грунта и сыпучих материалов, используется при техническом обслуживании прибора.

Индикаторные трубки предназначены для обнаружения ОВ и определения степени их опасности, и представляют собой стеклянные трубки, внутри которых помещены наполнитель и одна или две стеклянные ампулы с реактивами, кроме трубки с желтым кольцом (ампул не содержат).

Индикаторные трубки:

- корпус трубки; 2 наполнитель;
- 3 ватный тампон; 4 обтекатель;
- 5 ампулы синдикатором;
- б маркировочное кольцо.

Индикаторные трубки имеют условную маркировку, показывающую для обнаружения, какого ОВ она предназначена. Индикаторные трубки размещаются в кассетах по 10 штук с одинаковой маркировкой. На лицевой стороне кассеты наклеена этикетка, на которой изображена эталонная окраска наполнителя индикаторной трубки после прокачивания через нее воздуха, краткое описание порядка работы с индикаторной трубкой и срок ее годности. Прибор ВПХР комплектуется индикаторными трубками для определения отдельных ОВ (VX, зарин, зоман, иприт, фосген, дифосген, синильная кислота и хлорциан), их справочные данные указаны в приложении.

Техническое обслуживание ВПХР

Техническое обслуживание прибора подразделяется на повседневное (проводимое по окончании работы о прибором) и периодическое (один раз в квартал). При повседневном техническом обслуживании проводятся следующие виды работ: осмотр прибора, удаление влаги и загрязнений; осмотр насоса, очистка ампуловскрывателя и головки насоса; проверка работоспособности насоса; проверка электрофонаря; очистка грелки от загрязнений; проверка целости индикаторных трубок; устранение неисправностей. При периодическом техническом обслуживании выполняются следующие работы: проверка комплектности и при необходимости доукомплектование приборов; осмотр прибора, удаление влаги и загрязнений; осмотр насоса и проверка его работоспособности; проверка состояния грелки; проверка целости и пригодности ИТ; устранение неисправностей и подкраска прибора.

Признаки непригодности ИТ: обломаны концы или разбиты ампулы; значительное пересыпание наполнителя по трубке; изменение цвета наполнителя ИТ с одним желтым кольцом, с желтого до оранжевого; изменение цвета жидкости ампулы ИТ с тремя зелеными кольцами, с бесцветной до желтой; изменение окраски реактива в нижней ампуле ИТ с

одним красным кольцом и точкой с желтой до розовой или красной; истечение срока годности трубок. Срок годности ИТ указан на кассетах.

Полуавтоматический прибор химической разведки (ППХР) предназначен для решения тех же задач, что и ВПХР. Принцип его работы аналогичен принципу работы ВПХР. Отличие состоит в том, что воздух через индикаторные трубки прокачивается с помощью ротационного насоса, работающего от электродвигателя постоянного тока, а при низких температурах трубки подогреваются с помощью электрогрелки. Питается прибор от бортовой сети автомашин, на которых ведется химическая разведка.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Определение концентрации отравляющих веществ в среде

Определение ОВ в воздухе с помощью ВПХР производится в следующей последовательности: вначале зараженный воздух индуцируется трубками с красным кольцом и красной точкой, затем с тремя зелеными кольцами и в последнюю очередь с желтым кольцом.

Механизм определения концентрации фосгена, дифосгена, хлорциана, синильной кислоты в исследуемом воздухе предполагает прокачивание определенного объема исследуемого воздуха через предварительно смоченный связующим раствором верхний и сухой нижний наполнители, последующее наблюдение окраски верхнего и нижнего наполнителя и сравнение ее с эталонными окрасками для данных газов.

Механизм определения в исследуемом воздухе наличия или хлорциана, или синильной кислоты предполагает прокачивание определенного объема исследуемого воздуха через сухой нижний и предварительно смоченный связующим раствором верхний наполнители, последующее наблюдение за наличием или отсутствием розово — малиновой окраски наполнителей.

А Определение концентрации фосгена, дифосгена, хлорциана и синильной кислоты в исследуемом воздухе

1 Проверить герметичность насоса.

Для проверки герметичности насоса необходимо:

- **>** вставить в гнездо головки насоса любую невскрытую индикаторную трубку (ИТ), которая должна легко входить в отверстие гнезда и выниматься из него с некоторым усилием;
- \triangleright оттянуть рукоятку штока насоса до отказа и по истечении 3-5 секунд плавно, но быстро отпустить ее, не допуская удара рукояти о цилиндр.

Насос герметичен, если рукоятка стремится вернуться в исходное положение.

2 Подготовить индикаторную трубку с тремя зелеными кольцами, то есть вскрыть концы трубки и ее ампулу.

Вскрывать трубки необходимо следующим образом:

- **>** взять в левую руку насос головкой вверх, а ИТ в правую;
- > сделать надрез на конце ИТ с помощью вскрывателя, для чего вставить трубку до упора в кольцевой зазор между вскрывателем и головкой, зажать трубку в сужении зазора и повернуть;
- **>** вставить надрезанный конец ИТ в одно из отверстий на головке и обломать его, нажав на трубку;
 - **>** также вскрывать ИТ с другого конца.

Вскрытие ампулы индикаторных трубок:

» вскрытую ИТ вставить в отверстие рукоятки штока с такой же маркировкой, как и на ИТ;

- **>** слегка поворачивая ИТ, давить на штырь ампуловскрывателя до тех пор, пока полностью не будет разбита ампула;
 - **»** вынуть ИТ и, взявшись за маркированный конец, резко встряхнуть.

При разбивании верхней ампулы в ИТ с красным кольцом и точкой необходимо пальцами правой руки взять ИТ несколько ниже перехвата между ампулами, чтобы штырь ампуловскрывателя не задел нижнюю ампулу при разбивании верхней.

3. Вставить трубку немаркированным концом в насос.

- **4. Прокачать через трубку исследуемый воздух** из отобранной пробы или местности, для чего сделать 10-15 качаний насосом.
- **5.** Снять трубку с насоса и наблюдать окраску верхнего и нижнего слоев наполнителя (верхний слой окрашивается от фосгена, дифосгена; нижний от хлорциана или синильной кислоты, или одновременно от обоих).
- **6.** Определить концентрацию газов в исследуемом воздухе, для чего окраски наполнителей сравнить с их эталонными окрасками на кассетной этикетке для данных газов.
- 7. Снять трубку с насоса и наблюдать окраску верхнего и нижнего слоев наполнителя (верхний слой окрашивается от фосгена, дифосгена; нижний от хлорциана или синильной кислоты, или одновременно от обоих).
- **8.** Определить концентрацию газов в исследуемом воздухе, для чего окраски наполнителей сравнить с их эталонными окрасками на кассетной этикетке для данных газов.
- **9.** Дать оценку степени опасности заражения газами исследуемого воздуха с учетом Приложения к работе.

Б Определение ОВ в дыму

- 1 Достать из прибора насос и вставить в него ИТ (порядок обследования воздуха тот же);
- 2 Достать из прибора насадку, закрепить в ней противодымный фильтр и присоединить насадку к насосу (фильтр материалом (не капроном) вверх);
 - 3 Сделать соответствующее количество качаний насосом;
 - 4 Снять насадку, вынуть из неё фильтр и убрать насадку в прибор;
- 5 Вынуть из головки насоса индикаторную трубку и провести определение наличия OB по показанию ИТ.

В Определение ОВ на местности и технике

- 1 Открыть крышку прибора и вынуть насос;
- 2 Достать необходимую индикаторную трубку и, вскрыв её, установить в головку насоса;
 - 3 Навернуть на насос насадку, оставив откинутым прижимное кольцо;
 - 4 Надеть на воронку насадки защитный колпачок;
- 5 Приложить насадку к почве (зараженному предмету) так, чтобы воронка покрыла участок о наиболее резко выраженным признаками заражения: капли, маслянистые пятна и т.п.;
 - б Прокачать через индикаторную трубку воздух, делая необходимое число качаний;
 - 7 Выбросить колпачок, снять насадку и убрать её в прибор;
 - 8 Вынуть из головки насоса ИТ и провести определение 0В.

Г Определение ОВ в почве и сыпучих материалах

- 1 Вынуть из прибора насос, достать необходимую для работы индикаторную трубку, вскрыть её и вставить в головку насоса;
 - 2 Навернуть насадку на головку насоса и надеть на её воронку защитный колпачок;
- 3 Снять с прибора лопатку, взять пробу верхнего слоя почвы (снега) или сыпучего материала в наиболее зараженном месте, взятую пробу засыпать в воронку насадки, наполнив её до краев;
 - 4 Накрыть воронку противодымным фильтром и закрепить его;
 - 5 Прокачать через трубку воздух, делая насосом необходимое число качаний;
- 6 Откинуть прижимное кольцо, выбросить фильтр, пробу и колпачок, а насадку положить в прибор;
 - 7 Вынуть из насоса трубку и произвести определение ОВ.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1 На чем основан химический метод определения отравляющих веществ?
- 2 Приведите примеры войсковых приборов химической разведки.
- 3 Какое назначение имеет комплект ВПХР, ППХР? В чем их отличие?
- 4 Что включает в себя комплект ВПХР? Изложите принцип работы ВПХР.
- 5 Какие существуют виды технического обслуживание ВПХР, перечислите виды работ по техническому обслуживанию.
 - 6 В каких случаях индикаторная трубка считается непригодной?
- 7 В какой последовательности определяются концентрации ОВ в воздухе с помощью ВПХР?
 - 8 Каков порядок определения ОВ в дыму?
 - 9 Каков порядок определения ОВ на местности и технике?
 - 10 Каков порядок определения ОВ в почве и сыпучих материалах?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1 Бабаян, А.Л. Безопасность в чрезвычайных ситуациях: лабораторный практикум/А.Л. Бабаян, Л.А. Бабаян. Челябинск: ЮУрГУ, 2010. 75 с.
- 2 Безопасность жизнедеятельности: безопасность в чрезвычайных ситуациях природного и техногенного характера : учеб. пособие для вузов, доп. МО РФ/[В.А.Акимов, Ю.Л.Воробьев, М.И.Фалеев и др]. М.: Высшая школа, 2007. 592 с.
- 3 Покрышкин, А.Б. Радиационная, химическая и биологическая защита: учебное пособие/А.Б. Покрышкин; под ред. Е.Н. Старшинова. Челябинск: ЮУрГУ, 2007. 115 с.

Приложение **A** Характеристика степени опасности отравляющих веществ

Маркировка трубки и определяемое ОВ	Обозначение на кассетной этикетке	Меры безопасности
Красное кольцо и точка (зарин, зоман,	Мало опасно 0,0000005 мг/л	Можно находиться без противогаза не более 10 мин
VX)	Опасно 0,00005 мг/л	Находиться без противогаза нельзя
	Мало опасно 0,002-0,003 мг/л	Можно находиться без противогаза не более 15 мин., а без средства защиты кожи не более 1 ч
Желтое кольцо (иприт)	Опасно 0,01 мг/л	Можно находиться без противогаза не более 5 мин., без средства защиты кожи не более 15 мин
(Очень опасно 0,1 мг/л	Пребывание в течение 2-5 мин без противогаза смертельно, а без средства защиты кожи приводит к тяжелому поражению
	Мало опасно 0,005-0,01 мг/л	Можно находиться без противогаза не более 1 ч
Три зеленых кольца (фосген, дифосген)	Опасно 0,15 мг/л	Пребывание без противогаза в течение 15 мин приводит к тяжелому отравлению
	Очень опасно 1,5-3,0 мг/л	Пребывание без противогаза в течение 2-5 мин смертельно
	Маю опасно 0,005-0,01 мг/л	Можно находиться без противогаза не более 1 ч
Три зеленых кольца (синильная кислота)	Опасно 0,1-0,2 мг/л	Пребывание без противогаза в течение 15 мин приводит к тяжелому отравлению
,	Очень опасно 0,4-0,8 мг/л	Пребывание без противогаза в течение 2-5 мин смертельно
	Маю опасно 0,005-0,01 мг/л	Можно находиться без противогаза не более 5 мин
Три зеленых кольца (хлорциан)	Опасно 0,1-0,2 мг/л	Пребывание без противогаза в течение 5 мин приводит к тяжелому отравлению
	Очень опасно 0,4-0,8 мг/л	Пребывание без противогаза в течение 1 мин смертельно

Справочные данные об индикаторных трубках

Маркировка индикаторной трубки	Окраска наполнителя до (после) воздействия ОВ	Окраска наполнителя от других ОВ	Особые указания по работе с индикаторной трубкой
Красное кольцо с точкой (зарин, зоман, VX).	Белая (после разбивания верхней ампулы – красная; нижней ампулы – желтая, при наличии ОВ).	Желтая от паров соляной кислоты и веществ кислого характера	1. Газообразные вещества основного характера мешают определению отравляющих веществ, поэтому нельзя работать с трубкой вблизи уборных, силосных ям, канализационных стоков. 2. Разнообразные вещества кислого характера обеспечивают окраску, возникающую при разбивании нижних ампул. Поэтому в тех случаях, когда после встряхивания наполнитель в опытной трубке окрасился в желтый цвет раньше, чем в контрольной, определение повторяют с применением противодымного фильтра
Желтое кольцо (иприт)	Лимонно-желтая, а при прокачивании незараженного (чистого) воздуха – желтая (красная на желтом фоне)	1. Зеленая от фосгена и дифосгена в больших концентрациях. 2. Коричневая различных оттенков от сероводорода, фосфористого водорода. 3. От светло-коричневой от окислов азота, бензина, керосина, бромбензилцианида. 4. От жёлто-коричневого до темно-зеленого от металлохлоридных дымов 5. Светло-зеленая от аммиака 6. От желто-коричневого до серо-желтой от табачного дыма	1. При прокачивании чистого воздуха, окраска наполнителя трубки меняется, поэтому пожелтение всего наполнителя не служит указанием наличия в воздухе паров иприта. 2. Наличие в воздухе аммиака снижает чувственность трубки, часто приводя ее к полной порче, поэтому нельзя работать с трубкой вблизи уборных, силосных ям, канализационных стоков. 3. Наполнитель трубки может обесцвечиваться, теряя полностью или частично чувственность к иприту, от паров соляной кислоты, нейтральных дымов и больших концентраций табуна, синильной кислоты, люизита. Поэтому отрицательные показания трубки с обратившимся в нехарактерный цвет наполнителем не позволяет сделать заключение об отсутствии паров иприта в воздухе, но говорят о присутствии паров веществ, мешающих определению иприта. 4. При определении больших концентраций иприта трубка может не дать показаний, поэтому летом, проверяя воздух над лужами иприта, в бочках и др. закрытых емкостях, делать не более 3–5 качаний насосом. 5. Чувствительность трубки к иприту, находящемуся в смеси с люизитом, значительно меньше, чем к чистому иприту, поэтому возможны случаи отказа показаний трубки на участках, зараженных

Три зеленых кольца (фосген, дифосген)	Белая. (Чисто зеленая на белом фоне, у верхнего слоя наполнителя)	1. От желтой до желтозеленой от соляной кислоты, дымовой смеси С4, хлористого сульфурила, окислов азота. 2. От желтой до оранжевой от адамсита, хлора, хлорпикрина, продуктов сгорания	смесью иприта и люизита. 6. Чувствительность трубки сильно зависит от температуры окружающего вещества, поэтому при определении концентрации иприта при температурах ниже 15°C необходимо пользоваться грелкой. 7. Хранение трубок на солнечном свету, особенно в летнее время, приводит к их порче. 1. Заключение о наличии в воздухе фосгена и дифосгена можно давать, только убедившись в том, что наполнитель трубки окрасился в характерный чисто зеленый или сине-зеленый цвет. 2. При температурах ниже нуля окраска наполнителя при малых концентрациях фосгена, дифосгена значительно слабее, чем окраска на этикетке
Три зеленых	Favog (vmaaya	порохов 3. Красно-фиолетовая от окислов азота и продуктов сгорания порохов. 4. Желто-оранжевая или	
кольца (синильная кислота, хлорциан)	Белая (красно- фиолетова ниже слоя наполнителя)	оранжево-розовая от хлорпикрина, металлохлоридных дымов. 5. От желтой до коричневой от табачного дыма.	