## General Instruction

- Submit uncompressed file(s) in the Dropbox folder via Canvas (Not email).
- Use Python 3, any other programming language is not acceptable.
- You can import modules in the following list of libraries (please check the full list *here*). If you want to use any other library, please consult with the instructor.
- 1. Implement a multi-layer neural network from scratch. Please avoid using any deep learning libraries, such as PyTorch, Keras, etc.
  - (a) Locate the file Assignment\_7\_scratch.ipynb. This file includes a cell to generate a toy dataset and divide it into three segments: training, validation, and testing.
  - (b) Consider the neural network illustrated in Figure 1.
    - Layer 1 has a width of 3, and Layer 2 has a width of 1.
    - The activation functions used are sigmoid functions.
    - The loss function is the mean squared error, defined as  $L(y_i, \hat{y}_i) = \frac{1}{2}(y_i \hat{y}_i)^2$ .
    - The program should predict  $\hat{y}_i$  for a given input  $\vec{x}_i$ .
  - (c) (10 points) Optimize the parameters w's and biases b's using the gradient descent method. For instance, update  $b^{(2)}$  as follows:  $b^{(2)} \leftarrow b^{(2)} \eta \frac{\partial L}{\partial b^{(2)}}$ , where  $\eta$  is the learning rate, a small positive number. Use small random numbers between (-1,1) for the initial parameters and zeros for the initial biases.
  - (d) (10 points) Update the parameters for each sample in the training dataset. Completing one epoch involves updating the parameters for all samples.
  - (e) (10 points) After every epoch, compute the training and validation costs using the following formula:

$$J_D = \frac{1}{n} \sum_{i \in D} L(y_i, \hat{y}_i)^2$$

where  $D \in \{\text{train}, \text{valid}\}$ . Plot the cost values as illustrated in Figure 2a.

- (f) (10 points) Adjust the learning rate η by monitoring the training and validation costs to determine the optimal learning rate. Once finalized, train your network with the combined training and validation dataset (train\_valid) using this learning rate.
- (g) (10 points) Predict  $\hat{y}_i$  from x\_test and compare these predictions with y\_test. Create a scatter plot to illustrate the relationship between the true values  $(\hat{y}$ 's) and the predicted values  $(\hat{y}$ 's), as shown in Figure 2b.
- (h) Submit your ipynb file.



Figure 1: network design



Figure 2: Output plots