Neural Language Models and Representation Discovery

(Slides by Piotr Mirowski, Hugo Larochelle, Omer Levy and Tomas Mikolov)

Limitations of n-grams

 Conditional likelihood of seeing a sub-sequence of length n in available training data

```
the cat sat on the mat P(w_t \mid \mathbf{w}_{t-5}^{t-1}) = 0.15 w_{t-5} \ w_{t-4} \ w_{t-3} \ w_{t-2} \ w_{t-1} \ w_t the cat sat on the hat P(w_t \mid \mathbf{w}_{t-5}^{t-1}) = 0.05 the cat sat on the sat P(w_t \mid \mathbf{w}_{t-5}^{t-1}) = 0
```

- Limitation: discrete model (each word is a token)
 - Incomplete coverage of the training dataset
 Vocabulary of size V words: Vⁿ possible n-grams (exponential in n)

my cat sat on the **mat**
$$P(w_t | \mathbf{w}_{t-5}^{t-1}) = ?$$

Semantic similarity between word tokens is not exploited

the cat sat on the **rug**
$$P(w_t | \mathbf{w}_{t-5}^{t-1}) = ?$$

Outline

- Neural Probabilistic I Ms
 - Vector-space representation of words
 - Neural probabilistic language model
 - Log-Bilinear (LBL) LMs (loss function maximization)
- Long-range dependencies
 - Recurrent Neural Networks (RNN)
- Bag-of-word-vector approaches
 - Continuous bag-of-words and skip-gram models
- Scalability with large vocabularies
 - o Tree-structured LMs
 - Noise-contrastive estimation

Outline

- Neural Probabilistic LMs
 - Vector-space representation of words
 - Neural probabilistic language model
 - Log-Bilinear (LBL) LMs (loss function maximization)
- Long-range dependencies
 - Recurrent Neural Networks (RNN)
- Bag-of-word-vector approaches
 - Continuous bag-of-words and skip-gram models
- Scalability with large vocabularies
 - o Tree-structured LMs
 - Noise-contrastive estimation

Distributed Representation

Each word is associated with a continuous valued vector

Word w		C(w)	
"the"	1	[0.6762, -0.9607, 0.3626, -0.2410, 0.6636]	
" a "	2	[0.6859, -0.9266, 0.3777, -0.2140, 0.6711]	
" have "	3	[0.1656, -0.1530, 0.0310, -0.3321, -0.1342]	
" be "	4	[0.1760, -0.1340, 0.0702, -0.2981, -0.1111]	
"cat"	5	[0.5896, 0.9137, 0.0452, 0.7603, -0.6541]	
" dog "	6	[0.5965, 0.9143, 0.0899, 0.7702, -0.6392]	
"car"	7	[-0.0069, 0.7995, 0.6433, 0.2898, 0.6359]	

Vector-space representation of words

"One-hot" of "one-of-V" representation of a word token at position t in the text corpus, with vocabulary of size V

Vector-space representation $\hat{\mathbf{z}}_{i}$ of the prediction of target word w_t (we predict a vector of size D)

Vector-space representation \mathbf{Z}_{v} of any word v in the vocabulary

using a vector of dimension D

Vector-space representation of the *t*th word history: e.g., concatenation of n-1 vectors of size D

Also called distributed representation

Learning continuous space language models

- Input:
 - word history (one-hot or distributed representation)
- Output:
 - target word (one-hot or distributed representation)
- Function that approximates word likelihood:
 - Linear transform
 - Feed-forward neural network
 - Recurrent neural network
 - Continuous bag-of-words
 - Skip-gram
 - 0 ...

Learning continuous space language models

- How do we learn the word representations z for each word in the vocabulary?
- How do we **learn the model** that predicts the next word or its representation \hat{z}_t given a word history?
- Simultaneous learning of model and representation

Vector-space representation of words

- Compare two words using vector representations:
 - Dot product
 - Cosine similarity
 - Euclidean distance
- Bi-Linear scoring function at position t:

$$s(\mathbf{w}_1^{t-1}, v; \mathbf{\theta}) = s(\widehat{\mathbf{z}}_t, v) = s_{\mathbf{\theta}}(v) = \widehat{\mathbf{z}}_t^T \mathbf{z}_v + b_v$$

- o Parametric model θ predicts next word
- \circ Bias b_v for word v related to unigram probabilities of word v
- o Given a predicted vector $\hat{\mathbf{z}}_t$, the actual predicted word is the 1-nearest neighbour of $\hat{\mathbf{z}}_t$
- Exhaustive search in large vocabularies (V in millions)
 can be computationally expensive...

Word probabilities from vector-space representation

- Normalized probability:
 - Using softmax function

$$P(w_t = v \mid \mathbf{w}_1^{t-1}) = \frac{e^{s(\hat{\mathbf{z}}_t, v)}}{\sum_{v'=1}^{V} e^{s(\hat{\mathbf{z}}_t, v')}}$$

Bi-Linear scoring function at position t:

$$s(\mathbf{w}_1^{t-1}, v; \mathbf{\theta}) = s(\widehat{\mathbf{z}}_t, v) = s_{\mathbf{\theta}}(v) = \widehat{\mathbf{z}}_t^T \mathbf{z}_v + b_v$$

- o Parametric model θ predicts next word
- \circ Bias b_v for word v related to unigram probabilities of word v
- o Given a predicted vector $\hat{\mathbf{z}}_t$, the actual predicted word is the 1-nearest neighbour of $\hat{\mathbf{z}}_t$
- Exhaustive search in large vocabularies (V in millions)
 can be computationally expensive...

Neural Probabilistic Language Model


```
function z_hist = Embedding_FProp(model, w)
% Get the embeddings for all words in w
z_hist = model.R(:, w);
z_hist = reshape(z_hist, length(w)*model.dim_z, 1);
```

[Bengio et al, 2001, 2003; Schwenk et al, "Connectionist language modelling for large vocabulary continuous speech recognition", ICASSP 2002]

Neural Probabilistic Language Model

function s = NeuralNet FProp(model, z hist)

Neural Probabilistic Language Model

[Bengio et al, 2001, 2003; Schwenk et al, "Connectionist language modelling for large vocabulary continuous speech recognition", ICASSP 2002]

Complexity: $(n-1)\times D + (n-1)\times D\times H + H\times V$

(in 2001-2002) on AP News

corpus (14M words)

Log-Bilinear Language Model

% Simple linear transform Z hat = model.C * z hist + model.bias c; word embedding $\widehat{\mathbf{z}}_{t} = \mathbf{C}\mathbf{z}_{t-n+1}^{t-1} + \mathbf{b}_{c}$ space \Re^D Simple matrix word multiplication embedding R R in dimension D=100discrete word space {1, ..., *V*} V=18k words

mat

the cat sat on

the

function z hat = LBL FProp(model, z hist)

Log-Bilinear Language Model

Complexity: $(n-1)\times D + (n-1)\times D\times D + D\times V$

$$\widehat{\mathbf{z}}_{t} = \mathbf{C}\mathbf{z}_{t-n+1}^{t-1} + \mathbf{b}_{c}$$

$$s_{\theta}(v) = \widehat{\mathbf{z}}_{t}^{T} \mathbf{z}_{v} + b_{v}$$

$$P(w_{t} \mid \mathbf{w}_{t-n+1}^{t-1}) = \frac{e^{s_{\theta}(w_{t})}}{\sum_{v} e^{s_{\theta}(v)}}$$

Slightly better than best n-grams (Class-based Kneyser-Ney back-off 5-grams) Takes days to train (in 2007) on AP News corpus (14 million words)

Nonlinear Log-Bilinear Language Model

$$\mathbf{h} = \tanh\left(\mathbf{A}\mathbf{z}_{t-n+1}^{t-1} + \mathbf{b}_{a}\right)$$
$$\widehat{\mathbf{z}}_{t} = \mathbf{B}\mathbf{h} + \mathbf{b}_{b}$$

$$s_{\theta}(v) = \widehat{\mathbf{z}}_{t}^{T} \mathbf{z}_{v} + b_{v}$$

$$P(w_{t} \mid \mathbf{w}_{t-n+1}^{t-1}) = \frac{e^{s_{\theta}(w_{t})}}{\sum_{v} e^{s_{\theta}(v)}}$$

Outperforms best n-grams (Class-based Kneyser-Ney back-off 5-grams) by 24%

Took weeks to train (in 2009-2010) on AP News corpus (14M words)

Complexity: $(n-1)\times D + (n-1)\times D\times H + H\times D + D\times V$

Limitations of these neural language models

- Computationally expensive to train
 - Bottleneck: need to evaluate probability of each word over the entire vocabulary
 - Very slow training time (days, weeks)
- Ignores long-range dependencies
 - Fixed time windows
 - Continuous version of n-grams

More Observations

- There is no knowledge built in that most recent context word should generally be more informative than earlier ones – this has to be learned
- Parameters of the model are hard to interpret
 - L2 norm of A_j for different context words j correspond to importance of history position j
 - Individual word embeddings can be clustered and dimensions can be analyzed (Tsvetkov et al 2015)
- Architectures are non-intuitive
- Still, perplexity gains substantial...

Outline

- Neural Probabilistic I Ms
 - Vector-space representation of words
 - Neural probabilistic language model
 - Log-Bilinear (LBL) LMs (loss function maximization)
- Long-range dependencies
 - Recurrent Neural Networks (RNN)
- Bag-of-word-vector approaches
 - Continuous bag-of-words and skip-gram models
- Scalability with large vocabularies
 - o Tree-structured LMs
 - Noise-contrastive estimation

Recurrent Neural Net (RNN) language model

$$\mathbf{z}_{t} = \sigma(\mathbf{W}\mathbf{z}_{t-1} + \mathbf{U}\mathbf{w}_{t})$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\mathbf{o} = \mathbf{V}\mathbf{z}_{t}$$

$$P(w_t \mid \mathbf{w}_{t-n+1}^{t-1}) = \mathbf{y}_t = \frac{e^{o(w)}}{\sum_{v} e^{o(v)}}$$

Handles **longer word history** (~10 words) as well as 10-gram feed-forward NNLM

Training algorithm: BPTT

Back-Propagation Through Time

Complexity: D×D + D×D + D×V

Word embeddings obtained on Reuters

- Example of word embeddings obtained using our language model on the Reuters corpus (not RNN) (1.5 million words, vocabulary V=12k words), vector space of dimension D=100
- For each word, the 10 nearest neighbours in the vector space retrieved using cosine similarity:

debt	aa	decrease	met	slow
financing	aaa	drop	introduced	moderate
funding	bbb	decline	rejected	lower
debts	aa-minus	rise	sought	steady
loans	b-minus	increase	supported	slowing
borrowing	a-1	fall	called	double
short-term	bb-minus	jump	charged	higher
indebtedness	a-3	surge	joined	break
long-term	bbb-minus	reduction	adopted	weaker
principal	a-plus	limit	made	stable
capital	a-minus	slump	sent	narrow

Example of word embeddings obtained using our LM on AP News (14M words, V=17k), D=100

Example of word embeddings obtained using our LM on AP News (14M words, V=17k), D=100

Example of word embeddings obtained using our LM on AP News (14M words, V=17k), D=100

Example of word embeddings obtained using our LM on AP News (14M words, V=17k), D=100

Outline

- Neural Probabilistic I Ms
 - Vector-space representation of words
 - Neural probabilistic language model
 - Log-Bilinear (LBL) LMs (loss function maximization)
- Long-range dependencies
 - o **Recurrent** Neural Networks (RNN)
- Bag-of-word-vector approaches
 - Continuous bag-of-words and skip-gram models
- Scalability with large vocabularies
 - o Tree-structured LMs
 - Noise-contrastive estimation

Continuous Bag-of-Words

word embedding space \Re^D in dimension D=100 to 300 $\mathbf{Word\ embedding\ matrices}$ $\mathbf{Word\ embedding\ matrices}$ $\mathbf{Wiscrete\ word\ space\ \{1,\ ...,\ V\}\ V>100k\ words}$ $\mathbf{Wiscrete\ word\ space\ \{1,\ ...,\ V\}\ V>100k\ words}$

o = Wh

$$P(w_{t} \mid \mathbf{w}_{t-c}^{t-1}, \mathbf{w}_{t+1}^{t+c}) = \frac{e^{o(w)}}{\sum_{v} e^{o(v)}}$$

Extremely efficient estimation of word embeddings in matrix **U** without a Language Model.

Can be used as input to neural LM. **Enables much larger datasets**, e.g.,

Google News (6B words, V=1M)

Complexity: 2C×D + D×V

Complexity: $2C \times D + D \times \log(V)$ (hierarchical softmax using tree factorization)

Skip-gram

word embedding space \Re^D in dimension D=100 to 1000

Word embedding matrices

discrete word space {1, ..., V} V>100k words

$$S_{\theta}(w,c) = \mathbf{Z}_{c,output} \mathbf{Z}_{w,input}$$

$$P(w_{t+c} \mid w_{t}) = \frac{e^{s_{\theta}(w,c)}}{\sum_{v} e^{s_{\theta}(v,c)}}$$

Extremely efficient estimation of word embeddings in matrix U without a Language Model.

Can be used as input to neural LM.

Enables much larger datasets, e.g.,
Google News (33B words, V=1M)

Complexity: 2C×D + 2C×D×V

Complexity: $2C \times D + 2C \times D \times \log(V)$ (hierarchical softmax using tree factorization)

Complexity: $2C \times D + 2C \times D \times (k+1)$ (negative sampling with k negative examples)

Vector-space word representation without LM

[Image credits: Mikolov et al (2013) "Distributed Representations of Words and Phrases and their Compositionality", NIPS]

Word and phrase representation learned by skip-gram exhibit linear structure that enables analogies with vector arithmetics.

This is **due to training objective**, input and output (before softmax) are in **linear relationship**.

The sum of vectors in the loss function is the sum of log-probabilities (or log of product of probabilities), i.e., comparable to the AND function.

Semantic-syntactic word evaluation task

Table 1: Examples of five types of semantic and nine types of syntactic questions in the Semantic-Syntactic Word Relationship test set.

Type of relationship	Word Pair 1		Word Pair 2		
Common capital city	Athens	Greece	Oslo	Norway	
All capital cities	Astana	Kazakhstan	Harare	Zimbabwe	
Currency	Angola	kwanza	Iran	rial	
City-in-state	Chicago	Illinois	Stockton	California	
Man-Woman	brother	sister	grandson	granddaughter	
Adjective to adverb	apparent	apparently	rapid	rapidly	
Opposite	possibly	impossibly	ethical	unethical	
Comparative	great	greater	tough	tougher	
Superlative	easy	easiest	lucky	luckiest	
Present Participle	think	thinking	read	reading	
Nationality adjective	Switzerland	Swiss	Cambodia	Cambodian	
Past tense	walking	walked	swimming	swam	
Plural nouns	mouse	mice	dollar	dollars	
Plural verbs	work	works	speak	speaks	

[Image credits: Mikolov et al (2013) "Efficient Estimation of Word Representation in Vector Space", arXiv]

Syntactic and Semantic tests with RNN

Observed that word embeddings obtained by RNN-LDA have linguistic regularities "a" is to "b" as "c" is to _

Syntactic: king is to kings as queen is to **queens Semantic:** clothing is to shirt as dish is to **bowl**

[Image credits: Mikolov et al (2013) "Efficient Estimation of Word Representation in Vector Space", arXiv]

Vector offset method

$$z_1$$
 - z_2 + z_3 = z_2 cosine similarity

Linguistic Regularities - Examples

Expression	Nearest token	
Paris - France + Italy	Rome	
bigger - big + cold	colder	
sushi - Japan + Germany	bratwurst	
Cu - copper + gold	Au	
Windows - Microsoft + Google	Android	
Montreal Canadiens - Montreal + Toronto	Toronto Maple Leafs	

Semantic-syntactic word evaluation task

Table 4: Comparison of publicly available word vectors on the Semantic-Syntactic Word Relationship test set, and word vectors from our models. Full vocabularies are used.

Model	Vector	Training	Accuracy [%]		
	Dimensionality	words			
			Semantic	Syntactic	Total
Collobert-Weston NNLM	50	660M	9.3	12.3	11.0
Turian NNLM	50	37M	1.4	2.6	2.1
Turian NNLM	200	37M	1.4	2.2	1.8
Mnih NNLM	50	37M	1.8	9.1	5.8
Mnih NNLM	100	37M	3.3	13.2	8.8
Mikolov RNNLM	80	320M	4.9	18.4	12.7
Mikolov RNNLM	640	320M	8.6	36.5	24.6
Huang NNLM	50	990M	13.3	11.6	12.3
Our NNLM	20	6B	12.9	26.4	20.3
Our NNLM	50	6B	27.9	55.8	43.2
Our NNLM	100	6B	34.2	64.5	50.8
CBOW	300	783M	15.5	53.1	36.1
Skip-gram	300	783M	50.0	55.9	53.3

[Image credits: Mikolov et al (2013) "Efficient Estimation of Word Representation in Vector Space", arXiv]

Outline

- Neural Probabilistic I Ms
 - Vector-space representation of words
 - Neural probabilistic language model
 - Log-Bilinear (LBL) LMs (loss function maximization)
- Long-range dependencies
 - Recurrent Neural Networks (RNN)
- Bag-of-word-vector approaches
 - Continuous bag-of-words and skip-gram models
- Scalability with large vocabularies
 - Tree-structured LMs
 - Noise-contrastive estimation

Computational bottleneck of large vocabularies

target word

w(t)

word history

 \mathbf{w}_1^{t-1}

scoring function

$$s_{v}(t) = s(\mathbf{w}_{1}^{t-1}, v)$$

softmax

$$g(s_v) = \frac{e^{s_v}}{\sum_{v'=1}^{V} e^{s_{v'}}}$$

$$P(w_t = v \mid \mathbf{w}_1^{t-1}) = g(s_v(t))$$

- Bulk of computation at word prediction and at input word embedding layers
- Large vocabularies:
 - o AP News (14M words; V=17k)
 - HUB-4 (1M words; V=25k)
 - Google News (6B words, V=1M)
 - o Wikipedia (3.2B, V=2M)
- Strategies to compress output softmax

61

Reducing the bottleneck of large vocabularies

- Replace rare words, numbers by <unk> token
- Subsample frequent words during training
 - Speed-up 2x to 10x
 - Better accuracy for rare words
- Hierarchical Softmax (HS)
- Noise-Contrastive Estimation (NCE) and Negative Sampling (NS)

Hierarchical softmax by grouping words

target word

w(t)

word history

 \mathbf{W}_1^{t-1}

scoring function

$$s_{\mathbf{\theta}}(v) = s(\mathbf{w}_1^{t-1}, v; \mathbf{\theta})$$

softmax

$$g(s_{\theta}(v)) = \frac{e^{s_{\theta}(v)}}{\sum_{v'=1}^{V} e^{s_{\theta}(v')}}$$

$$P(w_t = v \mid \mathbf{w}_1^{t-1}) = g(s_{\theta}(v))$$

$$P(w_t = v \mid \mathbf{w}_1^{t-1}) = P(c \mid \mathbf{w}_1^{t-1}) \times P(v \mid \mathbf{w}_1^{t-1}, c)$$

$$P(w_t = v \mid \mathbf{w}_1^{t-1}) = g(s_{\theta}(c)) \times g(s_{\theta}(c, v))$$

- Group words into disjoint classes:
 - E.g., 20 classes
 with frequency binning
 - Use unigram frequency
 - Top 5% words ("the") go to class 1
 - o Following 5% words go to class 2
- Factorize word probability into:
 - Class probability
 - Class-conditional word probability
- Speed-up factor:
 - O(|V|) to O(|C|+max|VC|)

Hierarchical softmax by grouping words

target word

w(t)

word history

 \mathbf{W}_1^{t-1}

scoring function

 $s_{\mathbf{\theta}}(v) = s(\mathbf{w}_1^{t-1}, v; \mathbf{\theta})$

softmax

$$g(s_{\theta}(v)) = \frac{e^{s_{\theta}(v)}}{\sum_{v'=1}^{V} e^{s_{\theta}(v')}}$$

$$P(w_t = v \mid \mathbf{w}_1^{t-1}) = g(s_{\theta}(v))$$

$$P(w_t = v \mid \mathbf{w}_1^{t-1}) = P(c \mid \mathbf{w}_1^{t-1}) \times P(v \mid \mathbf{w}_1^{t-1}, c)$$

$$P(w_t = v \mid \mathbf{w}_1^{t-1}) = g(s_{\theta}(c)) \times g(s_{\theta}(c, v))$$

[Image credits: Mikolov et al (2011) "Extensions of Recurrent Neural Network Language Model", ICASSP]

Hierarchical softmax using Huffman trees

 Frequency-based binning

"this is an example of a huffman tree"

[Image credits: Wikipedia, Wikimedia Commons http://en.wikipedia.org/wiki/File:Huffman tree 2.svg]

Hierarchical softmax using Huffman trees

target word

w(t)

word history

 \mathbf{w}_1^{t-1}

path to target word at node j

n(w(t), j)

predicted word vector

 $\hat{\mathbf{z}}(t)$

vector at node j of target word

 $\mathbf{Z}_{n(w,j)}$

sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$P(w_{t} = v \mid \mathbf{w}_{1}^{t-1}) = \prod_{i=1}^{L(w)-1} \sigma(\pm 1_{n(w,j+1)=ch(n(w,j))} \mathbf{z}_{n(w,j)}^{T} \hat{\mathbf{z}})$$

Replace comparison with V vectors of target words by comparison with log(V) vectors

Noise-Contrastive Estimation

Conditional probability of word w in the data:

$$P(w_t = w \mid \mathbf{w}_1^{t-1}) = \underbrace{\frac{e^{s_{\theta}(w)}}{\sum_{v=1}^{V} e^{s_{\theta}(v)}}}$$

 Conditional probability that word w comes from data D and not from the noise distribution:

$$P(D = 1 \mid w, \mathbf{w}_{1}^{t-1}) = \frac{P_{d}^{\mathbf{w}_{1}^{t-1}}(w)}{P_{d}^{\mathbf{w}_{1}^{t-1}}(w) + kP_{noise}(w)} \qquad P(D = 1 \mid w, \mathbf{w}_{1}^{t-1}) = \frac{e^{s_{\theta}(w)}}{e^{s_{\theta}(w)} + kP_{noise}(w)}$$

$$P(D=1 \mid w, \mathbf{w}_{1}^{t-1}) = \underbrace{e^{s_{\theta}(w)}}_{e^{s_{\theta}(w)} + kP_{noise}(w)}$$

- Auxiliary binary classification problem:
 - Positive examples (data) VS. negative examples (noise)
- Scaling factor k: noisy samples k times more likely than data samples
 - Noise distribution: based on unigram word probabilities
- Empirically, model can cope with un-normalized probabilities:

$$P_d^{\mathbf{w}_1^{t-1}}(w) \leftarrow P(w \mid \mathbf{w}_1^{t-1}, \mathbf{\theta}) \approx e^{s_{\mathbf{\theta}}(w)}$$

Noise-Contrastive Estimation

 Conditional probability that word w comes from data D and not from the noise distribution:

$$P(D=1 \mid w, \mathbf{w}_1^{t-1}) = \underbrace{e^{s_{\theta}(w)}}_{e^{s_{\theta}(w)} + kP_{noise}(w)}$$

- Auxiliary binary classification problem:
 - Positive examples (data) VS. negative examples (noise)
- Scaling factor k: noisy samples k times more likely than data samples
 - Noise distribution: based on unigram word probabilities
- o Introduce log of difference between:

$$\Delta s_{\theta}(w) = s_{\theta}(w) - \log k P_{noise}(w)$$

- score of word w under data distribution
- and unigram distribution score of word w

$$P(D=1 \mid w, \mathbf{w}_1^{t-1}) = \sigma(\Delta s_{\theta}(w))$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Negative sampling

Noise contrastive estimation

$$L_{t}' = E_{P_{d}^{\mathbf{w}_{1}^{t-1}}} \left[\log P(D = 1 \mid w, \mathbf{w}_{1}^{t-1}) \right] + kE_{P_{noise}} \log P(D = 0 \mid w, \mathbf{w}_{1}^{t-1}) \right]$$

$$P(D = 1 \mid w, \mathbf{w}_{1}^{t-1}) = e^{s_{\theta}(w)} + kP_{noise}(w)$$

- Negative sampling
 - Remove normalization term in probabilities

$$L_{t}' = \log \sigma(s_{\theta}(w)) + \sum_{i=1}^{k} E_{P_{noise}} [\log \sigma(-s_{\theta}(v_{i}))]$$

$$P(D=1 \mid w, \mathbf{w}_1^{t-1}) = \sigma(s_{\theta}(w))$$

Compare to Maximum Likelihood learning:

$$L_{t} = s_{\theta}(w) - \log \sum_{v=1}^{V} e^{s_{\theta}(v)}$$

Speed-up over full softmax

LBL with **full softmax**, trained on APNews data, **14M words**, **V=17k 7days**

Skip-gram (context 5)
with phrases, trained
using negative sampling,
on Google data,
33G words, V=692k + phrases
1 day

LBL (2-gram, 100d) with full softmax, 1 day LBL (2-gram, 100d) with noise contrastive estimation 1.5 hours

RNN (100d) with **50-class hierarchical softmax 0.5 hours** (own experience)

Model (training time)	Redmond	Havel	ninjutsu	graffiti	capitulate
Collobert (50d)	conyers	plauen	reiki	cheesecake	abdicate
(2 months)	lubbock keene	dzerzhinsky osterreich	kohona karate	gossip dioramas	accede rearm
Turian (200d)	McCarthy	Jewell	-	gunfire	-
(few weeks)	Alston	Arzu	-	emotion	-
	Cousins	Ovitz	-	impunity	-
Mnih (100d)	Podhurst	Pontiff	-	anaesthetics	Mavericks
(7 days)	Harlang	Pinochet	-	monkeys	planning
	Agarwal	Rodionov	-	Jews	hesitated
Skip-Phrase	Redmond Wash.	Vaclav Havel	ninja	spray paint	capitulation
(1000d, 1 day)	Redmond Washington	president Vaclav Havel	martial arts	grafitti	capitulated
	Microsoft	Velvet Revolution	swordsmanship	taggers	capitulating

[Image credits: Mikolov et al (2013) "Distributed Representations of Words and Phrases and their Compositionality", NIPS]

Training	Number of	Test	Training	
ALGORITHM	SAMPLES	PPL	TIME (H)	
${ m ML}$		163.5	21	
NCE	1	192.5	1.5	
NCE	5	172.6	1.5	
NCE	25	163.1	1.5	
NCE	100	159.1	1.5	
RNN (HS)	50 classes	145.4	0.5	

[Image credits: Mnih & Teh (2012) "A fast and simple algorithm for training neura probabilistic language models", ICML]

Penn TreeBank data (900k words, V=10k)

What is word2vec?

- word2vec is not a single algorithm
- It is a software package for representing words as vectors, containing:
 - Two distinct models
 - CBoW

• Skip-Gram (SG)

- Various training methods
 - Negative Sampling (NS)
 - Hierarchical Softmax
- o A rich preprocessing pipeline
 - Dynamic Context Windows
 - Subsampling
 - Deleting Rare Words

Take SGNS's embedding matrices (W and C)

- Take SGNS's embedding matrices (W and C)
- Multiply them
- What do you get?

- A $V_W \times V_C$ matrix
- Each cell describes the relation between a specific word-context pair

$$\vec{w} \cdot \vec{c} = ?$$

 We prove that for large enough d and enough iterations

- We prove that for large enough d and enough iterations
- We get the word-context PMI matrix

- We prove that for large enough d and enough iterations
- We get the word-context PMI matrix, shifted by a global constant

"Neural Word Embeddings as Implicit Matrix Factorization" Levy & Goldberg, NIPS 2014

• 115

GLOVE

• SGNS

$$\vec{w} \cdot \vec{c} = \text{PMI}(w, c) - \log k$$

GLOVE

$$\vec{w} \cdot \vec{c} + b_w + b_c = \log(\#(w, c)) \quad \forall (w, c) \in D$$

Follow up work

Baroni, Dinu, Kruszewski (2014): Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

- Turns out neural based approaches are very close to traditional distributional semantics models
- Luckily, word2vec significantly outperformed the best previous models across many tasks ©

How to reconcile good results ???

The Big Impact of "Small" Hyperparameters

- word2vec & GloVe are more than just algorithms...
- Introduce new hyperparameters
- May seem minor, but make a big difference in practice

- Preprocessing
 - Dynamic Context Windows
 - Subsampling
 - Deleting Rare Words
- Postprocessing
 - Adding Context Vectors
- Association Metric
 - Shifted PMI
 - Context Distribution Smoothing

(word2vec)

(GloVe)

- Preprocessing
 - Dynamic Context Windows
 - Subsampling
 - Deleting Rare Words
- Postprocessing
 - Adding Context Vectors
- Association Metric
 - Shifted PMI
 - Context Distribution Smoothing

(word2vec)

(GloVe)

- Preprocessing
 - Dynamic Context Windows
 - o Subsampling
 - Deleting Rare Words
- Postprocessing
 - Adding Context Vectors
- Association Metric
 - Shifted PMI
 - Context Distribution Smoothing

(word2vec)

(GloVe)

- Preprocessing
 - Dynamic Context Windows
 - o Subsampling
 - Deleting Rare Words
- Postprocessing
 - Adding Context Vectors
- Association Metric
 - Shifted PMI
 - Context Distribution Smoothing

(word2vec)

(GloVe)

Dynamic Context Windows

Marco saw a furry little wampimuk hiding in the tree.

123

Dynamic Context Windows

saw a furry little wampimuk hiding in the tree

124

Dynamic Context Windows

saw a furry little wampimuk hiding in the tree

word2vec:
$$\frac{1}{4} = \frac{2}{4} = \frac{3}{4} = \frac{4}{4} = \frac{4}{4}$$

GloVe:
$$\frac{1}{4} \frac{1}{3} \frac{1}{2} \frac{1}{1}$$
 $\frac{1}{1} \frac{1}{2} \frac{1}{3} \frac{1}{4}$

Aggressive:
$$\frac{1}{8} \frac{1}{4} \frac{1}{2} \frac{1}{1}$$
 $\frac{1}{1} \frac{1}{2} \frac{1}{4} \frac{1}{8}$

The Word-Space Model (Sahlgren, 2006)

Adding Context Vectors

- SGNS creates word vectors \vec{w}
- SGNS creates auxiliary context vectors \vec{c}
 - So do GloVe and SVD

Adding Context Vectors

- SGNS creates word vectors \vec{w}
- SGNS creates auxiliary context vectors \vec{c}
 - So do GloVe and SVD
- Instead of just \vec{w}
- Represent a word as: $\vec{w} + \vec{c}$
- Introduced by Pennington et al. (2014)
- Only applied to GloVe

Adapting Hyperparameters across Algorithms

Context Distribution Smoothing

- SGNS samples $c' \sim P$ to form **negative** (w, c') examples
- Our analysis assumes P is the unigram distribution

$$P(c) = \frac{\#c}{\sum_{c' \in V_C} \#c'}$$

Context Distribution Smoothing

- SGNS samples $c' \sim P$ to form **negative** (w, c') examples
- Our analysis assumes P is the unigram distribution
- In practice, it's a smoothed unigram distribution

$$P^{0.75}(c) = \frac{(\#c)^{0.75}}{\sum_{c' \in V_C} (\#c')^{0.75}}$$

This little change makes a big difference

Context Distribution Smoothing

- We can adapt context distribution smoothing to PMI!
- Replace P(c) with $P^{0.75}(c)$:

$$PMI^{0.75}(w,c) = \log \frac{P(w,c)}{P(w) \cdot P^{0.75}(c)}$$

- Consistently improves PMI on every task
- Always use Context Distribution Smoothing!

Comparing Algorithms

Controlled Experiments

- Prior art was unaware of these hyperparameters
- Essentially, comparing "apples to oranges"
- We allow every algorithm to use every hyperparameter

Controlled Experiments

- Prior art was unaware of these hyperparameters
- Essentially, comparing "apples to oranges"
- We allow every algorithm to use every hyperparameter*

* If transferable

Systematic Experiments

- 9 Hyperparameters
 - o 6 New
- 4 Word Representation Algorithms
 - o PPMI (Sparse & Explicit)
 - o SVD(PPMI)
 - o SGNS
 - o GloVe
- 8 Benchmarks
 - o 6 Word Similarity Tasks
 - o 2 Analogy Tasks
- 5,632 experiments

Systematic Experiments

- 9 Hyperparameters
 - o 6 New
- 4 Word Representation Algorithms
 - o PPMI (Sparse & Explicit)
 - o SVD(PPMI)
 - o SGNS
 - o GloVe
- 8 Benchmarks
 - o 6 Word Similarity Tasks
 - o 2 Analogy Tasks
- 5,632 experiments

Hyperparameter Settings

Classic Vanilla Setting

(commonly used for distributional baselines)

- Preprocessing
 - o <None>
- Postprocessing
 - o <None>
- Association Metric
 - o Vanilla PMI/PPMI

Hyperparameter Settings

Classic Vanilla Setting

(commonly used for distributional baselines)

- Preprocessing
 - o <None>
- Postprocessing
 - o <None>
- Association Metric
 - o Vanilla PMI/PPMI

Recommended word2vec Setting

(tuned for SGNS)

- Preprocessing
 - Dynamic Context Window
 - o Subsampling
- Postprocessing
 - o <None>
- Association Metric
 - Shifted PMI/PPMI
 - Context Distribution Smoothing

Experiments

WordSim-353 Relatedness

139

Experiments: "Oranges to Oranges"

WordSim-353 Relatedness

140

Experiments: Hyperparameter Tuning

WordSim-353 Relatedness

• 141

Overall Results

- Hyperparameters often have stronger effects than algorithms
- Hyperparameters often have stronger effects than more data
- Prior superiority claims were not exactly accurate
- Not exactly true for NEURAL LANGUAGE MODELS