Non-Deterministic Finite Automata

Nondeterministic Finite Automaton (NFA)

Alphabet = {a}

All input is consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA accepts a string:

if there is a computation of the NFA that accepts the string

i.e., all the input string is processed and the automaton is in an accepting state

aa is accepted by the NFA:

because this computation accepts aa

this computation is ignored

Rejection example

Second Choice

a

Second Choice

Another Rejection example

Input cannot be consumed

Second Choice

Second Choice

Input cannot be consumed

An NFA rejects a string:

if there is no computation of the NFA that accepts the string.

For each computation:

 All the input is consumed and the automaton is in a non accepting state

OR

The input cannot be consumed

a is rejected by the NFA:

All possible computations lead to rejection

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L=\{aa\}$

Lambda Transitions

input tape head does not move

Automaton changes state

all input is consumed

"accept"

String aa is accepted

Rejection Example

(read head doesn't move)

Input cannot be consumed

Automaton halts

String aaa is rejected

Language accepted: $L=\{aa\}$

Another NFA Example

Another String

a b a b

Language accepted

$$L=\{ab, abab, ababab, ...\}$$

= $\{ab\}^{\dagger}$

Another NFA Example

Language accepted

$$L(M) = \{\lambda, 10, 1010, 101010, ...\}$$

= $\{10\}^*$

Remarks:

- •The λ symbol never appears on the input tape
 - ·Simple automata:

·NFAs are interesting because we can express languages easier than DFAs

Formal Definition of NFAs

$$M=(Q, \Sigma, \delta, q_0, F)$$

- Q: Set of states, i.e. $\{q_0, q_1, q_2\}$
- Σ : Input applicable, i.e. $\{a, b\}$ $\lambda \notin \Sigma$
- δ : Transition function
- q_0 : Initial state
- F: Accepting states

Transition Function δ

$$\delta(q, x) = \{q_1, q_2, ..., q_k\}$$

resulting states with following one transition with symbol x

$$\delta(q_0, 1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda) = \{q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ

Same with δ but applied on strings

$$\delta(q_0,a) = \{q_1\}$$

$$\delta(q_0,aa) = \{q_4,q_5\}$$

$$\delta(q_0,ab) = \{q_2,q_3,q_0\}$$

Special case:

for any state q

$$q \in \delta(q, \lambda)$$

In general

$$q_j \in \delta(q_i, w)$$
: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q_i \qquad \sigma_1 \qquad \sigma_2 \qquad \sigma_2 \qquad \sigma_k$$

The Language of an NFA M

The language accepted by M is:

$$L(M) = \{w_1, w_2, \dots w_n\}$$

where
$$\delta(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

and there is some

$$q_k \in F$$
 (accepting state)

$W_m \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$q_2$$

$$q_3$$

$$\delta(q_0,aa) = \{q_4, q_5\}$$
 \Rightarrow $aa \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$q_2$$

$$q_3$$

$$\delta(q_0,ab) = \{q_2,q_3,\underline{q_0}\} \longrightarrow ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_1$$

$$q_2$$

$$q_3$$

$$\delta(q_0, abaa) = \{q_4, \underline{q_5}\}$$
 \Rightarrow $abaa \in L(M)$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_0$$

$$q_0$$

$$q_1$$

$$q_2$$

$$q_3$$

$$\delta(q_0,aba) = \{q_1\}$$
 aba $\not\in$ $L(M)$

What is the language accepted by NFA?

$$L(M) = {ab}^* U {ab}^*aa$$

(2) L = {a1:1>0}U {b1a:1>1} NFA with 4 states

3) NFA with 5 states for $L = \{abab^{n} | n > 03 \cup \{aba^{n} | n > 0\} \}$