Problem_1 - Riya

```
set.seed(15072)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(rpart)
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
## The following object is masked from 'package:dplyr':
##
##
       combine
```

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v forcats 1.0.0 v stringr 1.5.1
                    v tibble
## v lubridate 1.9.3
                                    3.2.1
## v purrr 1.0.2 v tidyr
                                   1.3.1
## v readr
              2.1.5
## -- Conflicts ------ tidyverse_conflicts() --
## x randomForest::combine() masks dplyr::combine()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x purrr::lift() masks caret::lift()
## x randomForest::margin() masks ggplot2::margin()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicts

    → to become errors

library(readr)
library(ggplot2)
library(olsrr)
##
## Attaching package: 'olsrr'
## The following object is masked from 'package:datasets':
##
##
      rivers
library(rpart.plot)
#install.packages("gbm")
library(gbm)
## Loaded gbm 2.2.2
## This version of gbm is no longer under development. Consider transitioning to gbm3,
→ https://github.com/gbm-developers/gbm3
#install.packages("Metrics")
library(Metrics)
##
## Attaching package: 'Metrics'
## The following objects are masked from 'package:caret':
##
      precision, recall
df <- read_csv("./ames.csv")</pre>
```

```
## Rows: 2818 Columns: 73
## -- Column specification -----
## Delimiter: ","
## chr (40): MSZoning, Street, Alley, LotShape, LandContour, LotConfig, LandSlo...
## dbl (33): SalePrice, LotFrontage, LotArea, YearBuilt, YearRemodAdd, MasVnrAr...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(df)
## # A tibble: 6 x 73
##
    SalePrice MSZoning LotFrontage LotArea Street Alley
                                                          LotShape LandContour
        <dbl> <chr>
                             <dbl>
                                   <dbl> <chr> <chr>
                                                                   <chr>>
## 1
       215000 RL
                               141
                                     31770 Pave No Alley IR1
                                                                   Lvl
                               80 11622 Pave No Alley Reg
## 2
       105000 Other
                                                                   Lvl
## 3
       172000 RL
                                81
                                    14267 Pave No Alley IR1
                                                                   Lvl
## 4
       244000 RL
                                93 11160 Pave No Alley Reg
                                                                   Lvl
## 5
       189900 RL
                                74
                                   13830 Pave
                                                 No Alley IR1
                                                                   Lvl
## 6
       195500 RL
                                78
                                                 No Alley IR1
                                     9978 Pave
## # i 65 more variables: LotConfig <chr>, LandSlope <chr>, Neighborhood <chr>,
      Condition1 <chr>, Condition2 <chr>, BldgType <chr>, HouseStyle <chr>,
## #
      YearBuilt <dbl>, YearRemodAdd <dbl>, RoofStyle <chr>, RoofMatl <chr>,
      Exterior1st <chr>, Exterior2nd <chr>, MasVnrType <chr>, MasVnrArea <dbl>,
      ExterQual <chr>, ExterCond <chr>, Foundation <chr>, BsmtQual <chr>,
## #
      BsmtCond <chr>, BsmtExposure <chr>, BsmtFinType1 <chr>, BsmtFinSF1 <dbl>,
## #
      BsmtFinType2 <chr>, BsmtFinSF2 <dbl>, BsmtUnfSF <dbl>, ...
# Split the data into test and train (70% training, 30% testing)
set.seed(15072)
nrow = nrow(df)
df[sapply(df, is.character)] = lapply(df[sapply(df, is.character)], as.factor)
train_index = sample(1:nrow, size = 0.7*nrow)
train ames = df[train index, ]
```

- a) List the four out-of-sample R-squared values of the models you built from last time: linear regression; default-parameter CART; cp-optimized tree; random forest.
 - For mod linear final: 0.8254482.
 - Default parameter CART: 0.691.
 - \bullet CP-optimized tree: 0.7894255.

test_ames = df[-train_index,]

- Random forest: 0.8733.
- b) Fit an initial GBM model to the training data with the parameters listed below. Paste the code you used, the summary() of that model, and both its in-sample and out-of-sample R-squared.


```
##
                           var
                                   rel.inf
## ExterQual
                     ExterQual 21.57500906
## Neighborhood
                  Neighborhood 19.61203589
## GrLivArea
                     GrLivArea 15.27930103
## GarageCars
                    GarageCars
                               7.18472748
## TotalBsmtSF
                   TotalBsmtSF
                               5.26472265
## X1stFlrSF
                     X1stFlrSF 5.02098940
## GarageArea
                    GarageArea 3.80091271
## KitchenQual
                   KitchenQual 3.52308853
## BsmtFinSF1
                    BsmtFinSF1
                                3.13166299
## YearBuilt
                     YearBuilt 2.88267134
## BsmtQual
                      BsmtQual 2.06337170
## FireplaceQu
                   FireplaceQu 1.44654418
## GarageType
                    GarageType 1.21047724
```

##	YearRemodAdd	${\tt YearRemodAdd}$	1.02854085
##	LotArea	LotArea	0.96652059
##	${\tt BsmtExposure}$	${\tt BsmtExposure}$	0.52969960
##	GarageYrBlt	${\tt GarageYrBlt}$	0.48600454
##	BsmtFinType1	${\tt BsmtFinType1}$	0.42593063
##	X2ndFlrSF	X2ndFlrSF	0.41643240
##	Fireplaces	Fireplaces	0.32456043
##	LotFrontage	LotFrontage	0.32237367
##	WoodDeckSF	WoodDeckSF	0.31971661
##	Functional	Functional	0.31808188
##	MasVnrArea	MasVnrArea	0.31652985
##	CentralAir	CentralAir	0.28027193
##	BsmtUnfSF	BsmtUnfSF	0.18915393
##	GarageFinish	${\tt GarageFinish}$	0.18493680
##	FullBath	FullBath	0.18346713
##	Condition1	Condition1	0.15598825
##	TotRmsAbvGrd	TotRmsAbvGrd	0.13887918
##	BldgType	BldgType	0.13471589
##	BsmtFullBath	BsmtFullBath	0.12714955
##	KitchenAbvGr	KitchenAbvGr	0.12448714
##	OpenPorchSF	OpenPorchSF	0.11559558
##	BsmtCond	BsmtCond	0.10007086
##	MoSold	MoSold	0.07452003
##	BedroomAbvGr	BedroomAbvGr	0.07342685
##	Exterior1st	Exterior1st	0.06656517
##	YrSold	YrSold	0.06212389
##	HeatingQC	HeatingQC	0.06183971
##	LandContour	LandContour	0.04981984
##	ScreenPorch	ScreenPorch	0.04525480
##	Exterior2nd	Exterior2nd	0.04272438
##	SaleType	SaleType	0.04180079
##	LowQualFinSF	LowQualFinSF	0.03945218
##	HouseStyle	HouseStyle	0.03840949
##	EnclosedPorch PavedDrive	EnclosedPorch	0.03618310
##		PavedDrive	0.02870736
##	HalfBath	HalfBath	0.02396857
##	LotConfig	LotConfig	0.02095558
##	LandSlope	LandSlope	0.01845630
##	MasVnrType ExterCond	MasVnrType ExterCond	0.01666029
##			0.01627567
##	MSZoning RoofMatl	MSZoning RoofMatl	0.01367114 0.01217864
##	X3SsnPorch	X3SsnPorch	0.01217804
##	BsmtFinSF2	BsmtFinSF2	0.01144115
##	BsmtHalfBath	BsmtHalfBath	0.01071378
##	Street	Street	0.01022977
##		Alley	0.00000000
##	Alley	v	0.00000000
##	LotShape Condition2	LotShape Condition2	0.00000000
##	RoofStyle	RoofStyle	0.00000000
##	Foundation	Foundation	0.00000000
##	BsmtFinType2	BsmtFinType2	0.00000000
##	Heating	Heating	0.00000000
##	Electrical	Electrical	0.00000000
##	GarageQual	GarageQual	0.00000000
II TT	an alchan	aaragcquar	3.0000000

```
## PoolArea
                      PoolArea 0.00000000
## PoolQC
                        PoolQC 0.00000000
## Fence
                         Fence 0.00000000
## MiscFeature
                   MiscFeature 0.0000000
pred_train = predict(initial_model_gbm, newdata=train_ames)
## Using 95 trees...
sse_train = sum((train_ames$SalePrice - pred_train)^2)
sst_train = sum((train_ames$SalePrice - mean(train_ames$SalePrice))^2)
insampler2 = 1-(sse_train/sst_train)
pred_test = predict(initial_model_gbm, newdata=test_ames)
## Using 95 trees...
sse_test = sum((test_ames$SalePrice - pred_test)^2)
sst_test = sum((test_ames$SalePrice - mean(test_ames$SalePrice))^2)
outofsampler2 = 1-(sse_test/sst_test)
cat("In sample r squared:", round(insampler2, 4), "\n")
## In sample r squared: 0.9516
cat("Out of sample r squared:", round(outofsampler2, 4), "\n")
## Out of sample r squared: 0.8813
  • In sample r squared: 0.9516.
  • Out of sample r squared: 0.8813.
```

c) For each of the following hyperparameters explain how these values affect the in-sample and out-of-sample R-squared values.

- Shrinkage is the learning rate, so if this number is high it means each tree has a strong influence, quickly fitting the training data and potentially over fitting. A smaller shrinkage dampens the effect of each tree, requiring more trees to reach the same level of fit. When shrinkage is large, in sample r squared is high and out of sample r squared is lower. When shrinkage is small, we get a lower r squared on the training data but a significantly better and more honest r squared on unseen data (out-of-sample R-squared).
- Interaction.depth is the maximum depth per tree, so if this number is too big we risk over fitting and if it's too small we risk under fitting. Generally having too big a number for interaction.depth when we train our model is bad because it'll over fit to the test set resulting in a very high in sample r squared but then it'll perform poorly on the new data in the test set resulting in a low out of sample r squared.
- N.trees gives us the number of boosting iterations, so the more iterations we have, generally speaking, the more our trees can learn and pinpoint improvement spots (high residual areas) from past residuals they have encountered. Having a higher n.trees hyper parameter improves both in and out of sample r squared (out of sample r squared will increase up to a certain point but then may decline if too many trees overfit).

d) Suppose instead that you set interaction.depth to 3 and shrinkage to 0.01 (and left all other hyperparameters as they were in part b). For n.trees = 4, 8, ..., 1024, compute the train RMSE (root mean square error) and the test RMSE. Plot the two RMSE lists on the same graph. Also include all code used for this part.

```
set.seed(15072)
# tree counts
exponents <- 2:10
n.trees_list <- 2^exponents</pre>
# initialize RMSE storage lists
train_rmse <- numeric(length(n.trees_list))</pre>
test_rmse <- numeric(length(n.trees_list))</pre>
# loop over tree counts
for (i in seq along(n.trees list)) {
  n_trees <- n.trees_list[i]</pre>
  model <- gbm(SalePrice ~ .,</pre>
                data = train_ames,
                distribution = "gaussian",
                n.trees = n_trees,
                interaction.depth = 3,
                shrinkage = 0.01,
                cv.folds = 10,
                verbose = FALSE)
  # predictions
  train_pred <- predict(model, newdata = train_ames, n.trees = n_trees)</pre>
  test_pred <- predict(model, newdata = test_ames, n.trees = n_trees)</pre>
  # RMSE calculations
  train_rmse[i] <- rmse(train_ames$SalePrice, train_pred)</pre>
  test_rmse[i] <- rmse(test_ames$SalePrice, test_pred)</pre>
rmse_df <- data.frame(</pre>
  Trees = n.trees_list,
  Train_RMSE = train_rmse,
  Test_RMSE = test_rmse
)
ggplot(rmse_df, aes(x = Trees)) +
  geom_line(aes(y = Train_RMSE, color = "Train RMSE")) +
  geom_line(aes(y = Test_RMSE, color = "Test RMSE")) +
  scale x continuous(trans = "log2", breaks = n.trees list) +
  labs(title = "Train vs Test RMSE by Number of Trees",
       x = "Number of Trees (log2 scale)",
       y = "RMSE",
       color = "Legend") +
  theme minimal()
```


e) Which value of n.trees minimizes train set RMSE? test set RMSE? Are those two values the same or different? Which one is more important for model performance, and why? The value of n.trees that minimizes both train and test set RMSE is 1024. The one that is more important for model performance is test set RMSE because we want to know how our model performs on data it hasn't seen before. A high train set RMSE could just be the result of over fitting. If we really wanted to be more robust in our techniques, we would have split our data into not just train/test sets, but train/test/validation sets to prevent information leakage when we go back and forth testing different hyper parameters. We would only use the test check to test the validity and accuracy of our final tuned model the final model.

f) Identify the patterns the graphs of train set RMSE and test set RMSE follow, and explain why.

Both the train and test RMSE decrease sharply at first because as the number of trees increases, the model can fit the data better and better – each additional tree corrects residuals from the previous ensemble. The test RMSE starts to flatten out a bit around 512-1024 trees, telling us that it has reached an approximate minimum in its RMSE improvement, suggesting minimal over fitting. This pattern makes sense because GBM builds trees based on the residuals of those coming before it. Having more trees means having more capacity to fit the training data, so we see a lower training RMSE. Also, because our shrinkage is set to 0.01 (pretty small), each tree contributes only a small adjustment. This slows learning and helps prevent over fitting, but requires many trees to reach optimal performance. All in all, we see that initially, test RAMSE drops as the model captures additional signal. However, after a certain point (512-1024 trees), those gains diminish because each of the later trees adds very little information in terms of residuals. The flattening of the RMSE curve here signals that the model is no longer improving generalization to unseen data points despite the fact that training RMSE continues to drop.

g) Consider the 6 different models you now have: the 4 from last deliverable, the initial GBM from part b, and your new optimal GBM from part e. Which one has the largest R-squared?


```
## var rel.inf
## Neighborhood Neighborhood 20.548534391
## GrLivArea GrLivArea 17.913012441
## ExterQual ExterQual 17.019096096
## TotalBsmtSF TotalBsmtSF 8.452098387
## GarageCars GarageCars 4.754806480
```

	YearBuilt	YearBuilt	4.566606769
##	KitchenQual	KitchenQual	4.277585102
##	BsmtQual	BsmtQual	3.058224316
##	GarageArea	GarageArea	2.934236978
##	X1stFlrSF	X1stFlrSF	2.843893173
##	BsmtFinSF1	BsmtFinSF1	2.819938447
##	FireplaceQu	FireplaceQu	1.702889832
##	GarageType	GarageType	1.503103938
##	LotArea	LotArea	0.890844657
##	YearRemodAdd	YearRemodAdd	0.890001432
##	X2ndFlrSF	X2ndFlrSF	0.675010241
##	BsmtExposure	BsmtExposure	0.620578284
##	GarageFinish	GarageFinish	0.554507665
##	Fireplaces	Fireplaces	0.541557589
##	BsmtFinType1	BsmtFinType1	0.383144003
##	GarageYrBlt	GarageYrBlt	0.360073702
##	CentralAir	CentralAir	0.267568273
##	FullBath	FullBath	0.263167737
##	LotFrontage	LotFrontage	0.232933556
##	WoodDeckSF	WoodDeckSF	0.227542183
##	Functional	Functional	0.212291556
##	BsmtFullBath	BsmtFullBath	0.166059260
##	Condition1	Condition1	0.162161874
##	BldgType	BldgType	0.135228117
##	TotRmsAbvGrd	TotRmsAbvGrd	0.128235738
##	BsmtUnfSF	BsmtUnfSF	0.120493902
##	MasVnrArea	MasVnrArea	0.107179580
##	OpenPorchSF	OpenPorchSF	0.094820308
##	BsmtCond	BsmtCond	0.061087063
##	ScreenPorch	ScreenPorch	0.056707878
##	SaleType	SaleType	0.051574209
##	MoSold	MoSold	0.050514802
##	LandContour	LandContour	0.047431964
##	RoofMatl	RoofMatl	0.038420872
##	HouseStyle	HouseStyle	0.037557500
##	KitchenAbvGr	KitchenAbvGr	0.034802150
##	LandSlope	LandSlope	0.029970925
##	HalfBath	HalfBath	0.024310775
##	HeatingQC	HeatingQC	0.021497319
##	RoofStyle	RoofStyle	0.018903723
##	LotShape	LotShape	0.018182180
##	Exterior1st	Exterior1st	0.016333376
##	EnclosedPorch	EnclosedPorch	0.014874108
##	LowQualFinSF	LowQualFinSF	0.013651463
##	Exterior2nd	Exterior2nd	0.012626351
##	BedroomAbvGr	BedroomAbvGr	0.010022676
##	GarageQual	GarageQual	0.005269944
##	ExterCond	ExterCond	0.003876065
##	LotConfig	LotConfig	0.002972879
##	YrSold	YrSold	0.001985771
##	MSZoning	MSZoning	0.000000000
##	Street	Street	0.000000000
##	Alley	Alley	0.000000000
##	Condition2	Condition2	0.000000000
##	MasVnrType	${\tt MasVnrType}$	0.000000000

```
## Foundation
                    Foundation
                               0.00000000
## BsmtFinType2
                  BsmtFinType2
                               0.00000000
                    BsmtFinSF2
## BsmtFinSF2
                               0.000000000
## Heating
                       Heating
                               0.00000000
                    Electrical
## Electrical
                               0.00000000
                  BsmtHalfBath
                               0.000000000
## BsmtHalfBath
## PavedDrive
                    PavedDrive 0.000000000
## X3SsnPorch
                    X3SsnPorch 0.000000000
## PoolArea
                      PoolArea
                               0.00000000
## PoolQC
                        PoolQC
                               0.000000000
## Fence
                         Fence
                               0.00000000
## MiscFeature
                   MiscFeature
                               0.000000000
```

```
test_pred <- predict(best_model, newdata = test_ames, n.trees = 1024)
actual <- test_ames$SalePrice
r2_out_sample <- 1 - sum((actual - test_pred)^2) / sum((actual - mean(actual))^2)
print(paste("Out-of-sample R^2:", round(r2_out_sample, 4)))</pre>
```

[1] "Out-of-sample R^2: 0.8811"

- For mod linear final: 0.8254482.
- Default parameter CART: 0.691.
- CP-optimized tree: 0.7894255.
- Random forest: 0.8733.
- Initial GBM from part b: 0.8813.
- New optimal GBM from part e: 0.8811.
- The model with the largest out of sample r squared is the initial GBM from part b with oos r squared of 0.8813. While one may think this is not ordinary as the model from part e was built more optimally, there are key hyper parameters that differ in the construction of both models. In part b, I chose to add cross validation with cv=10 to my model. So the model provided a more reliable estimate for performance on new, unseen data by training and testing on different subsets of the data. Also, the GBM was built with a deeper interaction depth (6 vs 3) and a higher learning rate (shrinkage of 0.1 vs 0.01). These choices allow the model to capture more complex interactions and adapt more aggressively to the training data. This can lead to better performance when the underlying signal is strong and the model is not overfitting. In contrast, part e's model—though more conservative—uses a smaller interaction depth and lower shrinkage, which slows learning and enforces stronger regularization. This setup is often preferred for stability and generalization, but in this case, the added regularization may have slightly limited the model's ability to fit subtle patterns in the data.Ultimately, both models perform very similarly, and the marginal difference in r squared reflects a delicate tradeoff between model complexity and regularization.