Lista 2: CM300 Introdução ao Cálculo

A. Ramos *

August 12, 2019

Abstract

Equações; inequações.

1 Exercícios

Refaça os exercícios desenvolvidos em aula.

1.1 Equações lineares

1. Resolva os seguintes equações lineares

(a) $\frac{x+5}{x-3} = 7;$	rpta: x = 13/3
(b) $\frac{z}{2} + \frac{1}{6} = \frac{x}{3}$;	rpta: x = -1
(c) $5x = 2x - (1 - 3x)$;	$rpta:\emptyset$
(d) $1 + x + 7(5x - 4) = 5(6x - 7) + 2(3x + 4)$;	$rpta:\mathbb{R}$

2. Resolva as equações quadráticas

(a)
$$x^2 - 8x + 13 = 0$$
; $rpta: x = 4 \pm \sqrt{3}$
(b) $(2x - 7)^2 + (x + 5)^2 = 82$; $rpta: x = -2/5, x = 4$
(c) $2x^2 + 8x + 6 = 0$ $rpta: x = -1, x = -3$
(d) $2x^2 + 8x + 6 = 0$ $rpta: x = 1$
(e) $-x^2 + 2 - x = 0$ $rpta: x = 1, x = -2$

3. Escreva as expressões como produto de polinômios de primeiro grau

(a)
$$3x^2 + 3x - 6$$

(b) $\frac{t^2}{2} + 4t + 8$
(c) $\theta^2 - \theta - 6$
 $rpta: \frac{1}{2}(x+4)^2$
 $rpta: (\theta + 2)(\theta - 3)$

4. Resolva as seguintes equações mediante a fatorização das expressões.

(a)
$$x^{2/3} - x^{1/3} - 6 = 0$$
; $rpta: x = -8, x = 27$
(b) $\sqrt{2x} = \sqrt{x+1} + 1$; $rpta: 8$.

5. Complete quadrado para cada uma das expressões a seguir

(a)
$$x^2 + 2x + 2$$

(b) $x^2 - 2x + 3$
(c) $x^2 + 3x + 1$
 $rpta: (x+1)^2 + 1$
 $rpta: (x-1)^2 + 2$
 $rpta: (x+1,5)^2 - \frac{5}{4}$

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

6. Resolva as equações:

$$(a)|2x-1|=6$$
, $(b)|3-5x|=4$, $(c)|2x-3|=x^2$, $(d)|x+1|=2x-3$

$$rpta: (a)x = 7/2, x = -5/2; (b)x = -1/5, 7/5; (c)x = -3, x = 1; (d)x = 4.$$

- 7. Suponha que a variável s satisfaz a relação $s = \frac{1}{2}gt^2 v_0t + s_0$, onde v_0 , s_0 e g são constantes e t é uma outra variável. Escreva t em relação à variável s. $rpta: t = (v_0 \pm \sqrt{v_0^2 2g(s_0 s)})/g$.
- 8. Se $LI^2 + RI + C^{-1} = 0$. Resolva I em relação às outras variáveis. $rpta: I = (-RC \pm \sqrt{C^2R^2 4LC})/2LC$.
- 9. A fórmula para a temperatura Celsius (C) em termos na temperatura Fahrenheit (F) é C = (5/9)(F 32). Escreva uma fórmula para a temperatura Fahrenheit em termos na temoeratura Celsius.
- 10. Uma caixa de papelão com uma base quadrada e sem tampa deve ser feita a partir de um quadrado de cartolina, cortando-se um quadrado de 3cm de cada canto e dobrando os lados. Se a caixa deve ter uma capacidade de $75cm^3$. Qual é o tamanho do pedaço de cartolina deve ser usado? rpta: 11 cm
- 11. Suponha que desejamos invertir \$ 9.000, uma parte com 6% de taxa de rendimentos ao ano e outra parte com 10% de taxa de rendimentos. Quanto devemos invertir em cada parte, para obter uma taxa total de rendimento de 9% ao ano. rpta: \$2.250(ao 6% e)\$6.750(ao 10%). \(^1\).

1.2 Inequações

1. Resolva as seguintes desigualdades lineares

(a)
$$3(z-5) \le 7 + 4(z+6)$$
 $rpta: [-46, \infty)$

(b)
$$0 < 3 - 5x \le 10$$
 $rpta: [-7/5, 3/5]$

(c)
$$(2y)/(y-3) \ge 3$$
 Dica: Considere os casos, $y-3>0$ e $y-3<0$ separadamente rpta: $(3,9]$

(d)
$$(z+5)/(z-3)$$
 $rpta: [-5,3)$

2. Resolva as seguintes desigualdades quadráticas

(a)
$$5t \le 2t^2 + 2$$
 $rpta: (-\infty, 1/2] \cup [2, \infty)$

(b)
$$4x^2 - 4x + 1 > 0$$

(d)
$$\frac{9z^2}{z^2-9} \ge 0$$
 $rpta: (-\infty, -3) \cup \{0\} \cup (3, \infty)$

 $rpta: (-\infty, -4) \cup [4, \infty)$

- 3. Para quais valores $\sqrt{(x-4)/(x+4)}$ está bem definido?
- 4. Uma solução química é mantido entre -30 e -22, $5 \circ C$. Sabendo que a fórmula paea a temperatura Celsius (C) em termos na temperatura Fahrenheit (F) é C = (5/9)(F-32). Qual é o intervalo em graus Fahrenheit? rpta: (-22, -8.5).

¹Observe que o valor do rendimento é I = pit, onde p = capital, i = taxa de investimento, t = tempo