SLiCAP definition and execution of an instruction

from SLiCAP import * # Create an instance of the project class. This initializes the project paths, creates the directory structure, a main index HTML page and compiles the system libraries." my_prj = SLiCAP.initProject(< projectName >) # Create an instance of the instruction class my instr = SLiCAPinstruction.instruction # Check a netlist and define the circuit from it for the instruction SLiCAPinstruction.instruction.setCircuit(< fileName >) # Define the simulation type, the gain type and the data type my instr.setSimType(< simulation type >) my instr.setGainType(< gain type >) my instr.setDataType(< data type >) # If the simulation type is set to 'numeric' define the parameters # You would like to keep symbolic in the results. my instr.keepSymbolic(< list with parameter names >) # Execute the instruction. """ The results will be stored in a result dictionary with key-value pairs: key: name of the result, automatically generated by SLiCAP value: expression."""

How to deal with pole-zero analysis? # Automatic generation of names? # Results dict and units dict?