Operace s Nablou								
Gradient	Divergence	Rotace						
$\vec{\nabla} f = \left(\frac{\partial f}{\partial x}; \frac{\partial f}{\partial y}; \frac{\partial f}{\partial z}\right)$	$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\vec{\nabla} \times \vec{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_z}{\partial z}\right)$	$\left(\frac{F_y}{z}; \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}; \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right)$					
Vektorové identity								
$\overrightarrow{\nabla}(\overrightarrow{\nabla}\times\overrightarrow{F}) = 0 \qquad \overrightarrow{\nabla}\times\overrightarrow{\nabla}\times\overrightarrow{F} = \overrightarrow{\nabla}(\overrightarrow{\nabla}\overrightarrow{F}) - \Delta F$		\vec{F} $\vec{\nabla}(\vec{A} \times \vec{B}) = \vec{B}(\vec{\nabla} \times \vec{A}) - \vec{A}(\vec{\nabla} \times \vec{B})$						
Maxwellovy rovnice								
$\vec{\nabla} \cdot \vec{D} = q$	$\vec{\nabla} \cdot \vec{B} = 0$	$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$					
Vakuum								
$\vec{\nabla} \cdot \vec{E} = 0$	$\vec{\nabla} \cdot \vec{B} = 0$	$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\vec{\nabla} \times \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$					
Vodič								
$\vec{ abla} \cdot \vec{E} = 0$	$\vec{ abla}\cdot\vec{B}=0$	$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$	$\vec{\nabla} \times \vec{B} = \mu \sigma \vec{E} + \varepsilon \mu \frac{\partial \vec{E}}{\partial t}$					
Vlnění								
$\psi(t,\vec{x}) = A(t,\vec{x})e^{i\varphi(t,\vec{x})}$								
$\vec{k} = \vec{\nabla} \varphi$	$\vec{k} = const \rightarrow k = \frac{2\pi}{\lambda}$	$\omega = -\frac{\partial \varphi}{\partial t}$	$\omega = const \to \omega = \frac{2\pi}{T}$					
Rovinná vlna								
$\psi(t,\vec{x}) =$	$A e^{i(\vec{k}\cdot\vec{x}-\omega t)}$	$\psi(\vec{x}) = A e^{i(\vec{k}\cdot\vec{x})}$						
Vlnová rovnice								
$\Delta \psi - \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} = 0 \to \left(\Delta - \frac{1}{v^2} \frac{\partial^2}{\partial t^2} \right) \psi = 0 \to \Box \psi = 0$								
Disperzní relace								
$\phi(\omega, \vec{k}) = 0$								
ω =	$=\omega(\vec{k})$	$ec{k}=ec{k}(\omega)$						
Fázová rychlost		Grupová rychlost						
v_f	$r = \frac{\omega}{k}$	$v_g = rac{\partial \omega}{\partial k}$						
Fourierova transformace								
$\frac{\frac{\partial}{\partial t} \to -i\omega}{\frac{\partial}{\partial x} \to ik_x}$		$\overrightarrow{ abla} ightarrow i \overrightarrow{k}$						
$\frac{\partial}{\partial x} \to i k_x$		$\left(\overrightarrow{\nabla}\right)^2 = \Delta \to -k^2$						
Disperzní relace z elektromagnetické vlny ve vakuu								
$\vec{\nabla} \times \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \to \vec{\nabla} \times \vec{\nabla} \times \vec{B} = \varepsilon_0 \mu_0 \frac{\partial \vec{\nabla} \times \vec{E}}{\partial t} \to -\Delta \vec{B} = -\varepsilon_0 \mu_0 \frac{\partial^2 \vec{B}}{\partial t^2} \to (\Delta - \varepsilon_0 \mu_0 \frac{\partial^2}{\partial t^2}) \vec{B} = 0$								
$-k^2 - \frac{1}{c^2}(-\omega^2) = 0 \to \omega = ck$								
$v_f = \frac{\omega}{k} = c; v_g = \frac{\partial \omega}{\partial k} = c \rightarrow v_f \cdot v_g = c^2$								

Dopplerův Jev							
Nerelativisticky			Relativisticky				
$f = f_0(1 \pm \frac{v}{c})$		$f = \gamma (1 \pm \frac{v}{c}) f_0$					
Relativita							
$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$	$\beta = \frac{v}{c}$			$\left(t-\frac{vx}{c^2}\right)$			
$\Lambda = \begin{pmatrix} \gamma \\ -\gamma \\ 0 \\ 0 \end{pmatrix}$	$\beta = \frac{v}{c}$ $-\gamma \beta 0 0$ $0 1 0$ $0 0 1$		$\Lambda^{-1} = \begin{pmatrix} \gamma & \gamma\beta & 0 & 0 \\ \gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$				
Čtyř-vektory (Objekty, které lze transformovat Lorentzovou maticí)							
Událost	Čtyř-tok		Čtyř-pote	nciál	Čtyř-rychlost		
$\begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$	$\begin{pmatrix} c\rho \\ j_x \\ j_y \\ j_z \end{pmatrix}$			$\begin{pmatrix} \frac{\phi}{c} \\ A_x \\ A_y \\ A_z \end{pmatrix}$	$\gamma \begin{pmatrix} c \\ v_x \\ v_y \\ v_z \end{pmatrix}$		
Transformace							
$\tilde{S} = \Lambda S$			$S = \Lambda^{-1} \tilde{S}$				
$\begin{pmatrix} c\tilde{t} \\ \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$			$ \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta & 0 & 0 \\ \gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c\tilde{t} \\ \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{pmatrix} $				
Kontrakce délek			Dilatace času				
$\Delta x = \frac{\Delta \tilde{x}}{\gamma}$			$\Delta t = \gamma \Delta \tilde{t}$				
Energie							
Celková energie	Kinetická energie	Klidová energie		Pythagorova věta o energii			
$E = \gamma m_0 c^2$	$E = (\gamma - 1)m_0c^2$	$E = m_0 c^2$		$E^2 = p^2 c^2 + m_0^2 c^4$			