# Week 9 Discussion lab 8 Machine Learning

# Deadlines

### **DUE DATES**

- Quiz 7 is due Monday, May 19
- Checkpoint #2: EDA is due Wednesday, May 28
- Discussion lab 8 is due Friday May 30







- 1. Data preprocessing: Handle missing values and extract ABV, IBU features
- 2. Filter data to keep only top 4 most common beer styles
- 3. Split data into training (80%) and test (20%) sets
  - Train SVM model and generate predictions
- 5. Evaluate model using classification reports and confusion matrices for both training and test sets

## Part I: Data, Wrangling, & EDA

dtype: int64

- 1. Analyze missing values( .isnull().sum(axis=0) )

  Name ABV IBU Name ABV IBU Name 1

  O Beer1 5.0 45.0 O False False False
- 1 Beer2 NaN 60.0 1 False False False
  2 Beer3 7.5 NaN 2 False False True

  ABV 1

  IBU 2

  dtype: ir
- 3 None 4.8 NaN 3 True False True
- 2. Remove rows with missing values in style, abv, ibu( **dropna(subset=1)**)
- 3. Merge beer and brewery datasets( left join)
  - Why left join?
  - How does left join works?
- 4. Filter dataset to keep only top 4 styles (.value\_counts()[:].index.tolist()

### Part II: Prediction Model

### 1. Extract features (X: ABV, IBU) and labels (Y: Style)

```
data_x = beer_df[['abv','ibu']]
data_y= np.array(beer_df['style'])
```

### 2. Split data into train/test sets

```
train_X = data_x[:num_training]
train_ Y = data_y[num_training:]
test_X = data_x[:num_training]
test_ Y = data_x[num_training:]
3. Train SVM model and generate predictions
beer_clf = train(train_X, train_Y)
```

beer\_clf.predict(train\_X)
beer\_clf.predict(test\_X)

### Part III: Model Assessment

- 1. Generate classification reports (precision, recall, f1-score)
- 2. Create confusion matrices
- 3. Compare training vs testing performance Train accuracy vs test accuracy
- 4. Analyze where model performs well/poorly F1 score
- 5. Evaluate potential overfitting