

Virtual Memory: Concepts

These slides adapted from materials provided by the textbook authors.

Virtual Memory

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

A System Using Physical Addressing

 Used in "simple" systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames

A System Using Virtual Addressing

- Used in all modern servers, laptops, and smart phones
- One of the great ideas in computer science

Address Spaces

■ Linear address space: Ordered set of contiguous non-negative integer addresses:

$$\{0, 1, 2, 3 \dots \}$$

- Virtual address space: Set of N = 2ⁿ virtual addresses {0, 1, 2, 3, ..., N-1}
- Physical address space: Set of $M = 2^m$ physical addresses $\{0, 1, 2, 3, ..., M-1\}$

Why Virtual Memory (VM)?

Uses main memory efficiently

Use DRAM as a cache for parts of a virtual address space

Simplifies memory management

Each process gets the same uniform linear address space

Isolates address spaces

- One process can't interfere with another's memory
- User program cannot access privileged kernel information and code

Virtual Memory

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Caching

- Conceptually, virtual memory is an array of N contiguous bytes stored on disk.
- The contents of the array on disk are cached in physical memory (DRAM cache)
 - These cache blocks are called pages (size is P = 2^p bytes)

DRAM Cache Organization

DRAM cache organization driven by the enormous miss penalty

- DRAM is about 10x slower than SRAM
- Disk is about 10,000x slower than DRAM

Consequences

- Large page (block) size: typically 4 KB, sometimes 4 MB
- Fully associative
 - Any VP can be placed in any PP
 - Requires a "large" mapping function different from cache memories
- Highly sophisticated, expensive replacement algorithms
 - Too complicated and open-ended to be implemented in hardware
- Write-back rather than write-through

Enabling Data Structure: Page Table

 A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.

Page Hit

Page hit: reference to VM word that is in physical memory (DRAM cache hit)

Page Fault

 Page fault: reference to VM word that is not in physical memory (DRAM cache miss)

Page miss causes page fault (an exception)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Allocating Pages

Allocating a new page (VP 5) of virtual memory.

Locality to the Rescue Again!

- Virtual memory seems terribly inefficient, but it works because of locality.
- At any point in time, programs tend to access a set of active virtual pages called the working set
 - Programs with better temporal locality will have smaller working sets
- If (working set size < main memory size)</p>
 - Good performance for one process after compulsory misses
- If (SUM(working set sizes) > main memory size)
 - Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously

Review of Terms

- Virtual address space: Set of N = 2ⁿ virtual addresses
- Physical address space: Set of M = 2^m physical addresses
 - Physical: actually fits in Memory (DRAM)
- Memory is divided in to pages. Page: Set of $P = 2^p$ bytes
- Page hit: reference to VM word that is in physical memory
- Page fault: reference to VM word that is not in physical memory (DRAM cache miss)
- Working set: a set of active virtual pages in use by a program
- Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously
 - Occurs when working set is larger than physical memory.

Enabling Data Structure: Page Table

 A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages.

Virtual Memory

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Memory Management

- Key idea: each process has its own virtual address space
 - It can view memory as a simple linear array
 - Mapping function scatters addresses through physical memory
 - Well-chosen mappings can improve locality

VM as a Tool for Memory Management

- Simplifying memory allocation
 - Each virtual page can be mapped to any physical page
 - A virtual page can be stored in different physical pages at different times
- Sharing code and data among processes
 - Map virtual pages to the same physical page (here: PP 6)

Simplifying Linking and Loading

Linking

- Each program has similar virtual address space
- Code, data, and heap always start at the same addresses.

Loading

- execve allocates virtual pages for .text and .data sections & creates PTEs marked as invalid
- The .text and .data sections are copied, page by page, on demand by the virtual memory system
 0x400000

Kernel virtual memory user code User stack (created at runtime) %rsp (stack pointer) Memory-mapped region for shared libraries brk **Run-time heap** (created by malloc) Loaded Read/write segment from (.data, .bss) the **Read-only segment** executable (.init,.text,.rodata) file Unused

Memory invisible to

24

Virtual Memory

- Address spaces
- VM as a tool for caching
- VM as a tool for memory management
- VM as a tool for memory protection
- Address translation

VM as a Tool for Memory Protection

- Extend PTEs with permission bits
- MMU checks these bits on each access

