Міністерство освіти і науки України Сумський державний університет Кафедра комп'ютерних наук Секція інформаційно-комунікаційних технологій

Пояснювальна записка до курсової роботи

з дисципліни

«Програмування»

Викладач Прокопенко В.М

Студент Іващенко Н.Ю

Група КН-42/2

Варіант №1

Зміст

1.	ПОСТАНОВКА ЗАДАЧІ	3
2.	ТЕОРЕТИЧНИЙ МАТЕРІАЛ З ТЕМИ	4
3.	ОПИС СТРУКТУРИ ДАНИХ ТА ВИМОГ ДО НИХ	5
4.	АЛГОРИТМ РОБОТИ ПРОГРАМИ	8
5.	ОПИС ФУНКЦІЇ КОРИСТУВАЧА	9
6.	ОПИС ФАЙЛІВ ТА ЇХ ПРИЗНАЧЕННЯ	11
7.	СПИСОК ВИКОРИСТАНИХ БІБЛІОТЕК	12
8.	ІНСТРУКЦІЯ ДЛЯ РОБОТИ З ПРОГРАМОЮ	13
8	В.1 НЕОБХІДНІ РЕСУРСИ ДЛЯ ЗАПУСКУ ПРОГРАМИ	13
8	В.2 ЩО НЕОБХІДНО ДЛЯ ЗАПУСКУ ПРОГРАМИ	13
	В.З Як відповідати на запити програми?	
	3.4 Перевірка та відловлювання помилок	
	ПРИКЛАД ТЕСТУВАННЯ ТА РЕЗУЛЬТАТ РОБОТИ ПРОГРАМИ	
10	ГРАФІКИ	17
11	ВИСНОВКИ	18
12	СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ	10

1. Постановка задачі

Варіант 1

Описати масив структур із трьох елементів. Кожна структура об'єднує дані для одного варіанта розрахунку. Необхідно для кожного варіанта на відрізку часу від 0 до Т із кроком Δt побудувати графік зміни потужності N1, що витрачається на розбризкування рідини осесиметричним розбризкувачем (Рисунок 1. 1) [2].

$$N_{1} = \frac{2}{3} \frac{\pi \rho \Omega_{1}^{2} f_{omb} \cdot \mu R_{1}^{3}}{g \Delta S} \cdot \sqrt{(\Omega_{1}^{2} R_{1}^{2} + 2 gH)^{3}} ,$$

де ρ - густина рідини;

 $\Omega_{\rm i}$ – кутова швидкість обертання оболонки;

 f_{obse} — площа одного отвору;

 R_1 — радіус оболонки;

 μ — коефіцієнт добутку;

 AS – площа перфорованої поверхні розбризкувача, віднесена до 1 отвору витікання;

д – прискорення вільного падіння;

11

H – напір рідини.

Параметри Ω_1 і H змінюються в часі t:

$$\Omega_1 = \Omega_{10} (1 + \alpha \cdot \cos \frac{2\pi}{T} t),$$

деΩ₁₀, α – константи, α ∈[0,1];

$$H = \begin{cases} h_0(1+\beta) \text{ для } t \in [0,\frac{T}{4}] \text{ } i \text{ } t \in [\frac{T}{2},\frac{3T}{4}], \\ h_0(1-\beta) \text{ для } t \in [\frac{T}{4},\frac{T}{2}] \text{ } i \text{ } t \in [\frac{3T}{4},T], \end{cases}$$

Де h_0 , β — константи, $\beta \in [0,1]$.

Вхідні дані зчитуються з файла. Передбачити перевірку умови $\alpha \in [0,1]$ і $\beta \in [0,1]$ при введенні.

Результати обчислень занести до іншого файла. Передбачити окремі функції для обчислень Ω_1 і H.

Вхідні дані:

1. а)
$$\rho = 1000 \frac{k^2}{M^3}$$
; $h_0 = 0,3$; $\beta = 0,3$; $\alpha = 0,4$; $T = 500c$; $\Delta t = 25c$; $\Omega_{10} = 100 \frac{pao}{c}$; $\Delta S = 1 \cdot 10^{-4} M^2$; $\mu = 0,65$; $g = 9,81 \frac{M}{c^2}$.

6) $f_{obm} = 1 \cdot 10^{-6} M^2$. $R_1 = 0,15 M$.

2. $f_{obm} = 1,1 \cdot 10^{-6} M^2$. $R_1 = 0,2 M$. Решта даних — див. пункт 1 а.

3. $f_{obm} = 1,2 \cdot 10^{-6} M^2$. $R_1 = 0,25 M$. Решта даних — див. пункт

Рисунок 1. 1 - Постановка задачі

2. Теоретичний матеріал з теми

С++ — це мова системного та об'єктно-орієнтованого програмування, що поєднує високу швидкодію з гнучкими можливостями проєктування. Вона дозволяє працювати як на низькому рівні з пам'яттю та ресурсами, так і створювати складні абстракції, моделі, алгоритми та великі програмні системи. С++ застосовується там, де потрібна ефективність, контроль і масштабованість: в ігровій індустрії, вбудованих системах, фінансових розрахунках, розробці драйверів та інженерному програмуванні [3].

Основні визначення, що використовувалися в програмі

- Структура Variant це агрегований тип даних, який використовується для зберігання параметрів одного варіанта вхідних даних.
- Omega1(t) функція, що обчислює миттєву кутову швидкість за допомогою гармонічної модифікації.
- $H_t(t)$ функція, що визначає висоту в залежності від часу на основі кусочно-заданої функції.
- N1(t) функція, що обчислює потужність у певний момент часу на основі вхідних параметрів варіанта.
 - Константа g = 9.81 прискорення вільного падіння. Функції:
 - cos(x) обчислює косинус (використовується в Omega1).
 - pow(x, y) підносить x до степеня y.
 - isnan(x) перевіряє, чи є результат обчислення невизначеним (NaN).
- std::fixed + std::setprecision(n) встановлює формат виводу з фіксованою кількістю знаків після коми.
- Оператори вводу/виводу (>>, <<) використовуються для зчитування/виведення даних у потоки.

3. Опис структури даних та вимог до них

Таблиця опису структури даних(Таблиця 3. 1).

Ім'я параметра у формулі	Змінна у програмі	Тип змінної	Призначення
р (густина)	rho	double	Вхідний параметр, густина рідини в системі. (зчитується з файлу input.txt)
h₀ (початкова висота)	h0	double	Вхідний параметр, базова висота струменя. (зчитується з файлу input.txt)
β (амплітуда коливань висоти)	beta	double	Вхідний параметр, визначає зміну висоти в часі. (зчитується з файлу input.txt)
μ (коефіцієнт витрати)	mu	double	Вхідний параметр, впливає на витрату. (зчитується з файлу input.txt)
a	a	double	Вхідний параметр, коефіцієнт площі чи масштабу (зчитується з файлу input.txt).
S (площа поперечного перерізу)	S	double	Вхідний параметр, площа отвора або труби (зчитується з файлу input.txt).
Т (період)	Т	double	Вхідний параметр, повний період коливань. (зчитується з файлу input.txt)

Продовження таблиці 3.1

∆ (крок зміни часу)
часу)
Ω₀ (середня
кутова
швидкість)
•
α (амплітуда
кутової
швидкості)
<u> </u>
f вих (вихідна
площа)
ши
R
K
D.
\mathbb{R}_1
g (прискорення
g (прискорення вільного
Rı

Продовження таблиці 3.1

продовження таолиці 3.1						
t	t	double	Змінна циклу,			
			час, у якому			
			відбувається			
			обчислення.			
			(записується у			
			файл output.txt)			
H(t)	Н (через H_t)	double	Проміжна			
			змінна, визначає			
			висоту струменя			
			у момент часу.			
$\Omega(t)$	omega (через	double	Проміжна			
	Omega1)		змінна, кутова			
			швидкість у			
			момент часу.			
$N_1(t)$	n1	double	Результат,			
			значення			
			потужності на			
			момент часу t.			
			(записується у			
			файл output.txt)			

Таблиця 3. 1 - Опис структури даних

4. Алгоритм роботи програми

5. Опис функції користувача

У процесі виконання курсової роботи було реалізовано декілька користувацьких функцій, призначених для обчислення фізичних параметрів на основі вхідних даних. Нижче подано опис кожної функції, її призначення, а також перелік вхідних і вихідних параметрів.

1. double Omega1(double t, double Omega0, double alpha, double T)

Призначення:

Обчислює миттєве значення кутової швидкості обертання тіла в момент часу t за заданим законом коливань.

Вхідні параметри:

- t (double) поточний момент часу, с.
- Omega0 (double) середнє значення кутової швидкості, рад/с.
- alpha (double) амплітуда відносного коливання кутової швидкості.
- T (double) період коливань, с.

Вихідні дані:

- Кутова швидкість Omega1(t) (double) у момент часу t, рад/с.
- 2. double H_t(double t, double h0, double beta, double T)

Призначення:

Обчислює висоту рідини або рівня в певний момент часу t відповідно до трифазного коливального процесу.

Вхідні параметри:

- t (double) поточний момент часу, с.
- h0 (double) середня висота рідини, м.
- beta (double) відносна амплітуда коливань висоти.
- T (double) період коливань, с.

Вихідні дані:

• Висота H(t) (double) у момент часу t, м.

3. double N1(double t, const Variant& v, double g = 9.81)

Призначення:

Обчислює потужність N1 у момент часу t на основі фізичних параметрів конструкції та динаміки процесу.

Вхідні параметри:

- t (double) момент часу, с.
- v (Variant) структура з параметрами варіанту:
- ho (double) середня висота рідин, м
- h0, beta, mu, a, S, T, Delta, Omega0, alpha, f_vyh, R, R1 (double) фізичні та геометричні параметри, детальніше описані в розділі вхідних даних.
- g (double) прискорення вільного падіння, м/ c^2 (за замовчуванням 9.81).

Вихідні дані:

• Потужність N1(t) (double) у ватах. У разі помилки (наприклад, недопустимі значення) повертає NaN і виводить повідомлення про помилку.

6. Опис файлів та їх призначення

1. main.cpp

Призначення:

Основний програмний файл, що містить:

- оголошення структури Variant для зберігання вхідних параметрів;
- реалізацію користувацьких функцій (Omega1, H_t, N1);
- зчитування вхідних даних з файлу;
- обчислення потужності у задані моменти часу;
- виведення результатів у консоль та у вихідний файл.

Цей файл ϵ головним модулем програми, з якого починається виконання.

2. input.txt

Призначення:

Вхідний текстовий файл, у якому зберігаються вхідні параметри для розрахунку трьох варіантів задачі. Кожен рядок містить набір параметрів, що відповідає одному варіанту, у наступному порядку

rho h0 beta mu a S T Delta Omega0 alpha f_vyh R R1

3. output.txt

Призначення:

Вихідний текстовий файл, у який записуються результати обчислень потужності N1 для кожного варіанта в задані моменти часу t. Результати подаються у форматі:

У разі помилкових обчислень (наприклад, ділення на нуль або корінь з від'ємного числа), виводиться повідомлення error (NaN).

7. Список використаних бібліотек

1. <iostream>

Призначення:

Забезпечує введення/виведення даних через консоль за допомогою об'єктів std::cin, std::cerr [3].

2. <fstream>

Призначення:

Надає засоби для роботи з файлами. У даній програмі використовується для:

- зчитування вхідних даних з файлу (std::ifstream),
- запису результатів у вихідний файл (std::ofstream) [3]
- 3. <cmath>

Призначення:

Містить математичні функції. У програмі використовуються:

- cos() обчислення косинуса,
- pow() піднесення до степеня,
- sqrt() (опосередковано через pow(..., 1.5)),
- M_PI математична константа π (якщо не визначена, задається вручну)

[3].

4. <vector>

Призначення:

Надає можливість використовувати динамічні масиви. У програмі застосовується для зберігання кількох варіантів вхідних даних (std::vector<Variant>) [1].

5. <iomanip>

Призначення:

Забезпечує форматований вивід чисел. Використовується для встановлення кількості знаків після коми (std::setprecision) і фіксованого формату виводу (std::fixed) [1].

8. Інструкція для роботи з програмою

8.1 Необхідні ресурси для запуску програми

Файл з вхідними даними data/input.txt

Має містити 3 варіанти вхідних даних у форматі (1 рядок = 1 варіант).

rho h0 beta mu a S T Delta Omega0 alpha f vyh R R1 (1 варіант)

rho h0 beta mu a S T Delta Omega0 alpha f_vyh R R1 (2 варіант)

rho h0 beta mu a S T Delta Omega0 alpha f vyh R R1 (3 варіант)

Приклад:

1000 0.3 0.3 0.4 3 0.4 500 25 314.159 0.1 1.1е-5 0.15 0.1 (1 варіант)

1050 0.25 0.2 0.3 2.5 0.3 500 25 345.575 0.15 1.0е-5 0.2 0.15 (2 варіант)

1100 0.2 0.1 0.25 2.2 0.25 500 25 376.991 0.2 0.9е-5 0.25 0.2 (3 варіант)

Середовище компіляції: будь-який компілятор C++ з підтримкою C++11 і вище(наприклад наприклад: g++, clang++, або IDE Clion, Visual Studio).

8.2 Що необхідно для запуску програми.

Якщо це IDE:

- Visual Studio: Відкрити головний файл проекту Main.cpp у Visual Studio. Натиснути CTRL + F5. Результати обчислень перевірити на екрані консолі, та у файлі output.txt.
- Clion: Відкрити головний файл проекту Main.cpp у Clion. Натиснути SHIFT + F10. Результати обчислень перевірити на екрані консолі, та у файлі output.txt.

Якщо це термінал/файловий менеджер:

На лінукс:

- Відкрити термінал (зазвичай комбінація клавіш CTRL + T)
- Ввести команду sudo nano /data/input.txt
- Ввести валідні дані (числові значення) згідно заданого порядку (1 рядок = 1 варіант, кожна змінна розділена пробілом)
 - Натиснути Ctrl + О для збереження змін у файлі
 - Натиснути Ctrl + X для виходу з файлу

- Скомпілювати програму g++ main.cpp -o run , та запустити ./run Ha Windows:
- Через стандартний файловий менеджер перейти до директорії data/input.txt
 - Відкрити файл input.txt через додаток "Блокнот"
- Ввести валідні дані (числові значення) згідно заданого порядку (1 рядок = 1 варіант, кожна змінна розділена пробілом)
 - Зберегти зміни натиснувши CTRL + S. Вийти з блокноту
- Відкривши термінал, скомпілювати програму завдяки команді g++ main.cpp -o run
 - Запустити програму за допомогою команди ./run

8.3 Як відповідати на запити програми?

Програма сама не просить у користувача вводити дані з клавіатури — всі запити читаються з іприt.txt. Проте потрібно:

- Впевнитися, що всі параметри ϵ і валідні (числові значення).
- Перевірити, що значення параметрів не призводять до математичних помилок (наприклад: ділення на нуль, від'ємний підкореневий вираз).

8.4 Перевірка та відловлювання помилок

Програма виконує такі перевірки:

• Якщо параметри призводять до base < 0, або a == 0, або S == 0 — обчислення не виконується, виводиться error (NaN):

• Такі помилки виводяться у консоль та у файл output.txt.

9 Приклад тестування та результат роботи програми

Вхідні дані(input.txt):

1000 0.3 0.3 0.4 3 0.4 500 25 314.159 0.1 1.1e-5 0.15 0.1 1050 0.25 0.2 0.3 2.5 0.3 500 25 345.575 0.15 1.0e-5 0.2 0.15 1100 0.2 0.1 0.25 2.2 0.25 500 25 376.991 0.2 0.9e-5 0.25 0.2 Результат роботи програми(консоль, Рисунок 9. 1):

Рисунок 9. 1 - Результат роботи програми(при валідних даних)

Вхідні дані(input.txt): 1000 0.3 0.3 0.4 3 0.4 500 25 314.159 0.1 1.1e-5 0.15 0.1 1050 0.25 0.2 0.3 2.5 0.3 500 25 345.575 0.15 1.0e-5 0.2 0.15 text 0.2 txe 0.25 2.2 text 500 25 tex tx 0.9e-5 0.25 0.2 Результат роботи програми(консоль, Рисунок 9. 2):

```
== Variant 2 ===

:= 0.00000 c, N1 = 2360209.69227 watt
:= 25.00000 c, N1 = 2285901.45822 watt
:= 50.00000 c, N1 = 2080788.80659 watt
:= 75.00000 c, N1 = 1790880.48986 watt
:= 100.00000 c, N1 = 1173738.49173 watt
:= 125.00000 c, N1 = 1173738.49173 watt
:= 150.00000 c, N1 = 926037.96644 watt
:= 175.00000 c, N1 = 740263.95687 watt
:= 200.00000 c, N1 = 615169.85511 watt
:= 225.000000 c, N1 = 54212.34712 watt
:= 250.00000 c, N1 = 5421340.81639 watt
:= 275.00000 c, N1 = 542123.34712 watt
:= 300.00000 c, N1 = 544212.34712 watt
:= 300.00000 c, N1 = 542340.81639 watt
:= 375.00000 c, N1 = 1740263.95687 watt
:= 450.00000 c, N1 = 174098.58995 watt
:= 4450.00000 c, N1 = 1789227.27820 watt
:= 450.00000 c, N1 = 2283987.38264 watt
:= 475.000000 c, N1 = 2283987.38264 watt
=== Variant 3 ===
Error when t = 0: invalid values (base < 0 or / 0)
Error when t = 0: invalid values (base < 0 or / 0)
Error when t = 0: invalid values (base < 0 or / 0)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
t = 0.00000 c, N1 = error (NaN)
Error when t = 0: invalid values (base < 0 or / 0)
```

Рисунок 9. 2 - Результат роботи програми(при не валідних даних)

10 Графіки

Нижче представлений графік відображаючий різницю розрахунків для трьох різних варіантів (Зелений = 3 ваіріант, Жовтий = 2 варіант, Помаранчевий = 1 варіант).

Вхідні дані:

1000 0.3 0.3 0.4 3 0.4 500 25 314.159 0.1 1.1e-5 0.15 0.1 1050 0.25 0.2 0.3 2.5 0.3 500 25 345.575 0.15 1.0e-5 0.2 0.15 1100 0.2 0.1 0.25 2.2 0.25 500 25 376.991 0.2 0.9e-5 0.25 0.2

Графік(Рисунок 10. 1):

Рисунок 10. 1 - Графічне відображення результатів розрахунку

11 Висновки

У ході виконання курсової роботи було розроблено та реалізовано програмне забезпечення для моделювання та обчислення потужності N1(t) у системі з урахуванням змінних фізичних параметрів. В основі реалізації лежить математична модель, яка враховує зміну кутової швидкості та висоти рідини в залежності від часу.

Програму реалізовано мовою програмування C++ із використанням базових структур та математичних функцій. Була передбачена можливість зчитування вхідних параметрів з файлу, що забезпечує гнучкість та зручність у використанні. Результати розрахунків виводяться у файл і на екран у зручному форматі з вказанням моменту часу та відповідного значення потужності.

У процесі реалізації враховано критичні ситуації, що можуть виникнути при обчисленнях (зокрема, перевірку на коректність значень, що потрапляють під корінь, а також уникнення ділення на нуль), що свідчить про надійність програми.

Таким чином, поставлені в курсовій роботі завдання було виконано в повному обсязі. Отримані результати можуть бути використані для аналізу й оптимізації технічних систем, що залежать від змінних параметрів у часі.

12 Список використаної літератури

- 1.Відеокурс з програмування [Електронний ресурс] : відеоуроки. —Режим доступу:https://youtube.com/playlist?list=PL7vq4D0vOpQa9WaLe7btV01eixBUZ6-Ve&si=S8sTSuWjTpQPzOjT. Назва з екрана.
- 2. Методичні вказівки до курсової роботи з дисципліни «Програмування» / уклад.: В. В. Авраменко, В. О. Боровик, Н. В. Тиркусова. Суми : Сумський державний університет, 2021. 43 с.
- 3. Авраменко В. В. *Програмування* [Електронний ресурс] : навчальний курс / Віктор Васильович Авраменко. Режим доступу: https://mix.sumdu.edu.ua/textbooks/104505/index.html. Назва з екрана.