Package 'mhsmm'

August 23, 2023

Type Package
Title Inference for Hidden Markov and Semi-Markov Models
Version 0.4.21
Date 2023-08-21
Author Jared O'Connell < jaredoconnell@gmail.com>, Søren Højsgaard
<sorenh@math.aau.dk></sorenh@math.aau.dk>
Maintainer Jared O'Connell < jaredoconnell@gmail.com>
Description Parameter estimation and prediction for hidden Markov and semi-Markov models for data with multiple observation sequences. Suitable for equidistant time series data, with multivariate and/or missing data. Allows user defined emission distributions.
License GPL (>= 2)
LazyLoad yes
Depends mytnorm
Repository CRAN
Encoding UTF-8
NeedsCompilation yes
LazyData true
Imports methods
Date/Publication 2023-08-23 03:10:02 UTC
R topics documented:
addStates
dmvnorm.hsmm
dnorm.hsmm 4 dpois.hsmm 5
dpois.hsmm 5 gammafit 6
hmmfit
hmmspec
hsmmfit

2 addStates

smmspec	 11
nstep.mvnorm	
nstep.norm	
nstep.pois	
lot.hsmm	
lot.hsmm.data	
redict.hmm	
redict.hmmspec	
redict.hsmm	
redict.hsmmspec	 20
rint.hmm	 21
rint.hmmspec	 22
rint.hsmmspec	 22
eproai	 23
eprocows	
eproppa	
mvnorm.hsmm	
norm.hsmm	
pois.hsmm	
im.mc	
imulate.hmmspec	
imulate.hsmmspec	
mooth.discrete	
ummary.hmm	 32
ummary.hsmm	 33

addStates

Index

Adds a bar representing state sequence.

34

Description

Add a colour coded horizontal bar representing the state sequence to a plot of (presumably time-series) data.

```
addStates(states, x=NULL,ybot = axTicks(2)[1],
    ytop=ybot + (axTicks(2)[2] - axTicks(2)[1])/5,dy = ytop - ybot,
    greyscale = FALSE,leg = NA, J = length(unique(states)), time.scale = 1,
    shiftx = 0)
```

dmvnorm.hsmm 3

Arguments

states A vector of integers representing the states traversed

x The time values where the states are observed ((1:length(states)-shiftx)/time.scale

if NULL)

ybot Vertical bottom limit of the bar.
ytop Vertical top limit of the bar.

dy Height of the bar.

greyscale If TRUE produces a bar in greyscale.

leg Array of state names, if present, produces a legend.

J Number of states

time.scale Resolution of the timescale

shift x Shift the bar forward or backwards horizontal by shift x distance.

Author(s)

Soren Hojsgaard sorenh@math.aau.dk

See Also

addStates

Examples

```
plot(rnorm(100),type='l')
addStates(rep(c(1,2),each=50))

plot(seq(0.01,1,.01),rnorm(100),type='l')
addStates(rep(c(1,2),each=50),seq(0.01,1,.01))
```

dmvnorm.hsmm

Emission ensity function for a multivariate normal emission distribution

Description

Calculates the density of observations x for state j given the parameters in model. This is used for a multivariate Gaussian emission distribution of a HMM or HSMM and is a suitable prototype for user's to make their own custom distributions.

```
dmvnorm.hsmm(x, j, model)
```

4 dnorm.hsmm

Arguments

x Observed value

j State

model A hsmmspec or hmmspec object

Details

This is used by hmm and hsmm to calculate densities for use in the E-step of the EM algorithm. It can also be used as a template for users wishing to building their own emission distributions

Value

A vector of probability densities.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

See Also

```
mstep.mvnorm, rmvnorm.hsmm
```

Examples

```
J<-2
initial <- rep(1/J,J)
P <- matrix(c(.3,.5,.7,.5),nrow=J)
b <- list(mu=list(c(-3,0),c(1,2)),sigma=list(diag(2),matrix(c(4,2,2,3), ncol=2)))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dmvnorm.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rmvnorm.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.mvnorm)</pre>
```

dnorm.hsmm

Emission density function for normal emission distribution

Description

Calculates the density of observations x for state j given the parameters in model. This is used for the Gaussian emission distribution of a HMM or HSMM and is a suitable prototype for user's to make their own custom distributions.

```
dnorm.hsmm(x, j, model)
```

dpois.hsmm 5

Arguments

x Observed value

j State

model A hsmmspec or hmmspec object

Details

This is used by hmm and hsmm to calculate densities for use in the E-step of the EM algorithm. It can also be used as a template for users wishing to building their own emission distributions

Value

A vector of probability densities.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

dpois.hsmm

Emission density function for Poisson emission distribution

Description

Calculates the density of observations x for state j given the parameters in model. This is used for a Poisson emission distribution of a HMM or HSMM and is a suitable prototype for user's to make their own custom distributions.

Usage

```
dpois.hsmm(x, j, model)
```

Arguments

x Observed value

j State

model A hsmmspec or hmmspec object

Details

This is used by hmm and hsmm to calculate densities for use in the E-step of the EM algorithm. It can also be used as a template for users wishing to building their own emission distributions

Value

A vector of probability densities.

6 gammafit

Author(s)

Jared O'Connell jaredoconnell@gmail.com

See Also

```
mstep.pois, rpois.hsmm
```

Examples

```
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(lambda=c(1,3,6))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dpois.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rpois.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.pois)</pre>
```

gammafit

Parameter estimation for the Gamma distribution

Description

Estimates parameters for the Gamma distribution using the Method of Maximum Likelihood, works with weighted data.

Usage

```
gammafit(x, wt = NULL)
```

Arguments

x A vector of observationswt Optional set of weights

Value

shape The shape parameter

scale The scale parameter (equal to 1/rate)

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Choi, S. and Wette, R. (1969), Maximum likelihood estimation of the parameters of the gamma distribution and their bias, Technometrics, 11, 683-96-690.

hmmfit 7

Examples

```
gammafit(rgamma(1000, shape=10, scale=13))
```

hmmfit

fit a hidden Markov model

Description

Estimates parameters of a HMM using the EM algorithm.

Usage

```
hmmfit(x,start.val,mstep=mstep.norm,lock.transition=FALSE,tol=1e-08,maxit=1000)
```

Arguments

x A hsmm.data object (see Details)

start.val Starting parameters for the model (see Details)

mstep Re-estimates the parameters of density function on each iteration

lock.transition

If TRUE will not re-estimate the transition matrix

maxit Maximum number of iterations

tol Convergence tolerance

Value

a A vector of the starting probabilities for each state
The transition matrix of the embedded Markov chain
emission A list of the parameters of the emission distribution

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Jared O'Connell, Soren Hojsgaard (2011). Hidden Semi Markov Models for Multiple Observation Sequences: The mhsmm Package for R., Journal of Statistical Software, 39(4), 1-22., URL http://www.jstatsoft.org/v39/i04/.

Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 77, 257-286.

See Also

```
predict.hmm
```

hmmspec hmmspec

Examples

```
J<-3
initial <- rep(1/J,J)</pre>
P \leftarrow matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b \leftarrow list(mu=c(-3,0,2),sigma=c(2,1,.5))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dnorm.hsmm)</pre>
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rnorm.hsmm)</pre>
plot(train,xlim=c(0,100))
init0 < - rep(1/J,J)
P0 <- matrix(1/J,nrow=J,ncol=J)
b0 <- list(mu=c(-3,1,3), sigma=c(1,1,1))
startval <- hmmspec(init=init0, trans=P0,parms.emission=b0,dens.emission=dnorm.hsmm)</pre>
h1 = hmmfit(train, startval, mstep=mstep.norm)
plot(h1$loglik,type='b',ylab='Log-likelihood',xlab='Iteration')
summary(h1)
#proportion of incorrect states
mean(train$s!=predict(h1,train)$s)
#simulate a new test set
test <- simulate(model, nsim=c(100,200,300), seed=1234,rand.emis=rnorm.hsmm)</pre>
mean(test$s!=predict(h1,test)$s)
```

hmmspec

Specificatin of HMMs

Description

Creates a model specification for a hidden Markov model

Usage

```
hmmspec(init, trans, parms.emission, dens.emission, rand.emission=NULL, mstep=NULL)
```

Arguments

init	Distribution of states at $t=1$ ie. $P(S=s)$ at $t=1$	
trans	The transition matrix of the Markov chain	
parms.emission	A list containing the parameters of the emission distribution	
dens.emission	on Density function of the emission distribution.	
rand.emission	The function used to generate observations from the emission distribution	
mstep	Re-estimates the parameters of density function on each iteration	

hsmmfit 9

Value

A hmmspec object

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Jared O'Connell, Soren Hojsgaard (2011). Hidden Semi Markov Models for Multiple Observation Sequences: The mhsmm Package for R., Journal of Statistical Software, 39(4), 1-22., URL http://www.jstatsoft.org/v39/i04/.

Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 77, 257-286.

See Also

simulate.hmmspec, simulate.hmmspec, hmmfit, predict.hmm

 ${\it hsmmfit} \hspace{1.5cm} {\it fit~a~hidden~semi-Markov~model}$

Description

Estimates parameters of a HSMM using the EM algorithm.

Usage

Arguments

X	A hsmm.data object (see Details)	
model	Starting parameters for the model (see hsmmspec)	
mstep	Re-estimates the parameters of density function on each iteration	
maxit	axit Maximum number of iterations	
М	Maximum number of time spent in a state (truncates the waiting distribution)	
lock.transition		
	If TRUE will not re-estimate the transition matrix	
lock.d	If TRUE will not re-estimate the sojourn time density	
graphical	If TRUE will plot the sojourn densities on each iteration	

10 hsmmfit

Value

start A vector of the starting probabilities for each state

a The transition matrix of the embedded Markov chain
emission A list of the parameters of the emission distribution
waiting A list of the parameters of the waiting distribution

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Jared O'Connell, Soren Hojsgaard (2011). Hidden Semi Markov Models for Multiple Observation Sequences: The mhsmm Package for R., Journal of Statistical Software, 39(4), 1-22., URL http://www.jstatsoft.org/v39/i04/.

Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003

See Also

hsmmspec,simulate.hsmmspec,predict.hsmm

Examples

```
J <- 3
init <- c(0,0,1)
P \leftarrow matrix(c(0,.1,.4,.5,0,.6,.5,.9,0),nrow=J)
B \leftarrow list(mu=c(10,15,20),sigma=c(2,1,1.5))
d <- list(lambda=c(10,30,60),shift=c(10,100,30),type='poisson')</pre>
model <- hsmmspec(init,P,parms.emission=B,sojourn=d,dens.emission=dnorm.hsmm)</pre>
train <- simulate(model,r=rnorm.hsmm,nsim=100,seed=123456)</pre>
plot(train,xlim=c(0,400))
start.poisson <- hsmmspec(init=rep(1/J,J),</pre>
  transition=matrix(c(0,.5,.5,.5,0,.5,.5,.5,0),nrow=J),
  parms.emission=list(mu=c(4,12,23),
sigma=c(1,1,1)),
  sojourn=list(lambda=c(9,25,40), shift=c(5,95,45), type='poisson'),
 dens.emission=dnorm.hsmm)
M=500
# not run (takes some time)
# h.poisson <- hsmmfit(train,start.poisson,mstep=mstep.norm,M=M)</pre>
# plot(h.poisson$loglik,type='b',ylab='Log-likelihood',xlab='Iteration') ##has it converged?
# summary(h.poisson)
# predicted <- predict(h.poisson,train)</pre>
# table(train$s,predicted$s) ##classification matrix
# mean(predicted$s!=train$s) ##misclassification rate
d \leftarrow cbind(dunif(1:M,0,50),dunif(1:M,100,175),dunif(1:M,50,130))
start.np <- hsmmspec(init=rep(1/J,J),</pre>
```

hsmmspec 11

```
transition=matrix(c(0,.5,.5,.5,0,.5,.5,.5,0),nrow=J),
 parms.emission=list(mu=c(4,12,23),
 sigma=c(1,1,1)),
 sojourn=list(d=d,type='nonparametric'),
 dens.emission=dnorm.hsmm)
# not run (takes some time)
# h.np <- hsmmfit(train,start.np,mstep=mstep.norm,M=M,graphical=TRUE)</pre>
# mean(predicted$s!=train$s) ##misclassification rate
#J <- 2
#init <- c(1, 0)
\#P < -matrix(c(0, 1, 1, 0), nrow = J)
\#B \leftarrow list(mu = list(c(2, 3), c(3, 4)), sigma = list(matrix(c(4, 2, 2, 3), ncol = 2), diag(2)))
\#d \leftarrow list(shape = c(10, 25), scale = c(2, 2), type = "gamma")
#model <- hsmmspec(init, P, parms.emis = B, sojourn = d, dens.emis = dmvnorm.hsmm)</pre>
#train <- simulate(model, c(1000,100), seed = 123, rand.emis = rmvnorm.hsmm)</pre>
#yhat <- predict(model, train)</pre>
#mean(predict(model,train)$s==train$s)
```

hsmmspec

Hidden semi-Markov model specification

Description

Creates a model specification of a hidden semi-Markov model.

Usage

```
hsmmspec(init,transition,parms.emission,sojourn,dens.emission,
rand.emission=NULL,mstep=NULL)
```

Arguments

init	Distribution of states at $t=1$ ie. $P(S=s)$ at $t=1$	
transition	The transition matrix of the embedded Markov chain (diagonal must be 0)	
parms.emission	A list containing the parameters of the emission distribution	
sojourn	A list containining the parameters and type of sojourn distribtuion (see Details)	
dens.emission	Density function of the emission distribution	
rand.emission	The function used to generate observations from the emission distribution	
mstep	Re-estimates the parameters of density function on each iteration	

12 mstep.mvnorm

Details

The sojourn argument provides a list containing the parameters for the available sojourn distributions. Available sojourn distributions are shifted Poisson, Gamma and non-parametric.

In the case of the Gamma distribution, sojourn is a list with vectors shape and scale (the Gamma parameters in dgamma), both of length J. Where J is the number of states. See reprocows for an example using Gamma sojourn distributions.

In the case of shifted Poisson, sojourn is list with vectors shift and lambda, both of length J. See hsmmfit for an example using shifted Poisson sojourn distributions.

In the case of non-parametric, sojourn is a list containing a M x J matrix. Where entry (i,j) is the probability of a sojourn of length i in state j. See hsmmfit for an example using shifted non-parametric sojourn distributions.

Value

An object of class hsmmspec

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Jared O'Connell, Soren Hojsgaard (2011). Hidden Semi Markov Models for Multiple Observation Sequences: The mhsmm Package for R., Journal of Statistical Software, 39(4), 1-22., URL http://www.jstatsoft.org/v39/i04/.

Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003

See Also

hsmmfit, simulate.hsmmspec, predict.hsmm

mstep.mvnorm	Performs re-estimation (the M-step) for a multivariate normal emission distribution

Description

Re-estimates the parameters of a multivariate normal emission distribution as part of the EM algorithm for HMMs and HSMMs. This is called by the hmm and hsmm functions. It is a suitable prototype function for users wishing to design their own emission distributions.

```
mstep.mvnorm(x, wt)
```

mstep.norm 13

Arguments

x A vector of observed values

wt A T x J matrix of weights. Column entries are the weights for respective states.

Details

Users may write functions that take the same arguments and return the same values for their own custom emission distributions.

Value

Returns the emission slot of a hmmspec or hsmmspec object

mu A list of length J contain the mean vectors

sigma A list of length J containing the covariance matrices

Author(s)

Jared O'Connell jaredoconnell@gmail.com

See Also

```
dmvnorm.hsmm, rmvnorm.hsmm
```

Examples

mstep.norm

Performs re-estimation (the M-step) for a normal emission distribution

Description

Re-estimates the parameters of a normal emission distribution as part of the EM algorithm for HMMs and HSMMs. This is called by the hmm and hsmm functions. It is a suitable prototype function for users wishing to design their own emission distributions.

```
mstep.norm(x, wt)
```

14 mstep.pois

Arguments

x A vector of observed values

wt A T x J matrix of weights. Column entries are the weights for respective states.

Details

Users may write functions that take the same arguments and return the same values for their own custom emission distributions.

Value

Returns the emission slot of a hmmspec or hsmmspec object

mu Vector of length J contain the means

sigma Vector of length J containing the variances

Author(s)

Jared O'Connell jaredoconnell@gmail.com

mstep.pois Performs re-estimation (the M-step) for a Poisson emission distribu-

tion

Description

Re-estimates the parameters of a Poisson emission distribution as part of the EM algorithm for HMMs and HSMMs. This is called by the hmm and hsmm functions. It is a suitable prototype function for users wishing to design their own emission distributions.

Usage

```
mstep.pois(x, wt)
```

Arguments

x A vector of observed values

wt A T x J matrix of weights. Column entries are the weights for respective states.

Details

Users may write functions that take the same arguments and return the same values for their own custom emission distributions.

Value

Returns the emission slot of a hmmspec or hsmmspec object

lambda Vector of length J containing the Poisson parameters for each state j

plot.hsmm 15

Author(s)

Jared O'Connell jaredoconnell@gmail.com

See Also

```
rpois.hsmm, dpois.hsmm
```

Examples

```
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(lambda=c(1,3,6))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dpois.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rpois.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.pois)</pre>
```

plot.hsmm

Plot function for hsmms

Description

Displays the densities for the sojourn distributions of each state.

Usage

```
## S3 method for class 'hsmm' plot(x, ...)
```

Arguments

```
x A hsmm object
```

... Arguments passed to plot

Author(s)

Jared O'Connell jaredoconnell@gmail.com

16 predict.hmm

plot.hsmm.data

Plot function for hsmm data

Description

Produces a plot of the observed sequences, and displays a coloured bar signifying the hidden states (if available)

Usage

```
## S3 method for class 'hsmm.data' plot(x, ...)
```

Arguments

x A hsmm.data object... Arguments passed to plot.ts

Author(s)

Jared O'Connell jaredoconnell@gmail.com

See Also

addStates

Examples

```
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(mu=c(-3,0,2),sigma=c(2,1,.5))
model <- hmmspec(init=initial, trans=P, parms.emission=b, dens.emission=dnorm.hsmm)
train <- simulate(model, nsim=300, seed=1234, rand.emis=rnorm.hsmm)
plot(train,xlim=c(0,100))</pre>
```

predict.hmm

Prediction function for hmm

Description

Predicts the underlying state sequence for an observed sequence newdata given a hmm model

predict.hmm 17

Usage

```
## S3 method for class 'hmm'
predict(object, newdata,method = "viterbi", ...)
```

Arguments

object An object of class hmm

newdata A vector or list of observations method Prediction method (see details)

... further arguments passed to or from other methods.

Details

If method="viterbi", this technique applies the Viterbi algorithm for HMMs, producing the most likely sequence of states given the observed data. If method="smoothed", then the individually most likely (or smoothed) state sequence is produced, along with a matrix with the respective probabilities for each state.

Value

Returns a hsmm. data object, suitable for plotting.

newdata A vector or list of observations

s A vector containing the reconstructed state sequence

N The lengths of each sequence

A matrix where the rows represent time steps and the columns are the probability

for the respective state (only produced when method="smoothed")

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 77, 257-286.

See Also

```
hmmfit, hmmspec
```

Examples

```
##See examples in 'hmmfit'
```

18 predict.hmmspec

nmmspec	Prediction function	predict.hmmspec
---------	---------------------	-----------------

Description

Predicts the underlying state sequence for an observed sequence newdata given a hmmspec model

Usage

```
## S3 method for class 'hmmspec'
predict(object, newdata,method = "viterbi", ...)
```

Arguments

object An object of class hmm

newdata A vector or list of observations
method Prediction method (see details)

... further arguments passed to or from other methods.

Details

If method="viterbi", this technique applies the Viterbi algorithm for HMMs, producing the most likely sequence of states given the observed data. If method="smoothed", then the individually most likely (or smoothed) state sequence is produced, along with a matrix with the respective probabilities for each state. This function differs from predict.hmm in that it takes the output from hmmspec ie. this is useful when users already know their parameters and wish to make predictions.

Value

Returns a hsmm. data object, suitable for plotting.

newdata A vector or list of observations

s A vector containing the reconstructed state sequence

N The lengths of each sequence

p A matrix where the rows represent time steps and the columns are the probability

for the respective state (only produced when method="smoothed")

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 77, 257-286.

predict.hsmm 19

See Also

hmmspec

Examples

```
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(mu=c(-3,0,2),sigma=c(2,1,.5))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dnorm.hsmm)
train <- simulate(model, nsim=300, seed=1234, rand.emis=rnorm.hsmm)
mean(predict(model,train)$s!=train$s) #error rate when true model is known</pre>
```

predict.hsmm

Prediction for hsmms

Description

Predicts the underlying state sequence for an observed sequence newdata given a hsmm model

Usage

```
## S3 method for class 'hsmm'
predict(object, newdata, method = "viterbi", ...)
```

Arguments

object An object of type hsmm

newdata A vector or dataframe of observations

method Prediction method (see details)

... further arguments passed to or from other methods.

Details

If method="viterbi", this technique applies the Viterbi algorithm for HSMMs, producing the most likely sequence of states given the observed data. If method="smoothed", then the individually most likely (or smoothed) state sequence is produced, along with a matrix with the respective probabilities for each state.

Value

Returns a hsmm. data object, suitable for plotting.

newdata A vector or list of observations

s A vector containing the reconstructed state sequence

N The lengths of each sequence

p A matrix where the rows represent time steps and the columns are the probability for the respective state (only produced when method="smoothed")

20 predict.hsmmspec

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003

See Also

```
hsmmfit,predict.hsmmspec
```

Examples

```
##See 'hsmmfit' for examples
```

predict.hsmmspec

Prediction for hsmmspec

Description

Predicts the underlying state sequence for an observed sequence newdata given a hsmm model

Usage

```
## S3 method for class 'hsmmspec'
predict(object, newdata, method = "viterbi", M=NA, ...)
```

Arguments

object An object of type hsmmspec

newdata A vector or dataframe of observations

method Prediction method (see details)

Maximum number of time spent in a state (truncates the waiting distribution)

... further arguments passed to or from other methods.

Details

If method="viterbi", this technique applies the Viterbi algorithm for HSMMs, producing the most likely sequence of states given the observed data. If method="smoothed", then the individually most likely (or smoothed) state sequence is produced, along with a matrix with the respective probabilities for each state. This method is different to predict.hsmm in that it takes the output from hsmmspec as input ie. it is useful for people who already know their model parameters.

print.hmm 21

Value

Returns a hsmm. data object, suitable for plotting.

newdata	A vector or list of observations
S	A vector containing the reconstructed state sequence
N	The lengths of each sequence
р	A matrix where the rows represent time steps and the columns are the probability for the respective state (only produced when method="smoothed")

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003

See Also

```
hsmmspec, predict.hsmm
```

Examples

```
\label{eq:continuous} \begin{array}{lll} J <-& 3 \\ & \text{init} <-& \text{c}(\emptyset,\emptyset,1) \\ P <-& \text{matrix}(\text{c}(\emptyset,.1,.4,.5,\emptyset,.6,.5,.9,\emptyset),\text{nrow=J}) \\ B <-& \text{list}(\text{mu=c}(10,15,20),\text{sigma=c}(2,1,1.5)) \\ d <-& \text{list}(\text{lambda=c}(10,30,60),\text{shift=c}(10,100,30),\text{type='poisson'}) \\ & \text{model} <-& \text{hsmmspec}(\text{init,P,parms.emission=B,sojourn=d,dens.emission=dnorm.hsmm}) \\ & \text{train} <-& \text{simulate}(\text{model,r=rnorm.hsmm,nsim=100,seed=123456}) \\ & \text{mean}(\text{predict}(\text{model,train,M=500})\$s!=\text{train}\$s) \ \#\text{error rate when true model is known} \end{array}
```

print.hmm

Print method for hmm objects

Description

Prints the slots of a hmm object

```
## S3 method for class 'hmm'
print(x, ...)
```

22 print.hsmmspec

Arguments

x An object of type hmm

... further arguments passed to or from other methods.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

print.hmmspec

Print function for hmmspec

Description

Prints the parameters contained in the object

Usage

```
## S3 method for class 'hmmspec'
print(x, ...)
```

Arguments

x An object of type hmmspec

... further arguments passed to or from other methods.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

print.hsmmspec

Print function for hsmmspec

Description

Prints the parameters contained in the object

Usage

```
## S3 method for class 'hsmmspec'
print(x, ...)
```

Arguments

x An object of type hsmmspec

... further arguments passed to or from other methods.

reproai 23

Author(s)

Jared O'Connell jaredoconnell@gmail.com

reproai

Artificial insemination times for seven cows

Description

This is an auxilliary data set to the cows data set containing times of artificial insemination for respective cows. Only the day of insemination was recorded so time of day is always midday.

Usage

reproai

Format

reproal is a dataframe with 12 rows and id being the cow's id and days.from.calving recording the number of days from calving when insemination occurred.

Source

Danish Cattle Research Centre

References

Peters, A. and Ball, P. (1995), "Reproduction in Cattle," 2nd ed.

reprocows

Reproductive data from seven dairy cows

Description

This data set contains hourly observations on progesterone and an activity index at hourly intervals since calving on seven dairy cows.

Usage

reprocows

Format

reprocows is a data frame containing 13040 rows. id is the cow ID, progesterone is a measurement of the hormone in ng/L taken from a milk sample, activity is a relative measure of activity calculated from a pedometer.

There are a large number of missing values as progesterone is measured only at milking time (and at a farm manager's discretion). Missing values in activity occur due to hardware problems can occur with pedometers.

24 reproppa

Source

Danish Cattle Research Centre

References

Peters, A. and Ball, P. (1995), "Reproduction in Cattle," 2nd ed.

Examples

```
data(reprocows)
data(reproai)
data(reproppa)
tm = 1600
J <- 3
init <- c(1,0,0)
trans <- matrix(c(0,0,0,1,0,1,0,1,0),nrow=J)
emis <- list(mu=c(0,2.5,0), sigma=c(1,1,1))
N <- as.numeric(table(reprocows$id))</pre>
train <- list(x=reprocows$activity,N=N)</pre>
class(train) <- "hsmm.data"</pre>
tmp <- gammafit(reproppa * 24)</pre>
M \leftarrow max(N)
d <- cbind(dgamma(1:M,shape=tmp$shape,scale=tmp$scale),</pre>
 # ppa sojourn directly estimated from ppa data set
dunif(1:M,4,30),
 # oestrus between 4 and 30 hours
dunif(1:M, 15*24, 40*24))
 #not-oestrus between 15 and 40 days
startval <- hsmmspec(init,trans,parms.emission=emis,list(d=d,type='gamma'),</pre>
  dens.emission=dnorm.hsmm)
#not run (takes some time)
#h.activity <- hsmmfit(train,startval,mstep=mstep.norm,maxit=10,M=M,lock.transition=TRUE)
```

reproppa

Observed lengths of post-partum anoestrus for 73 dairy cows

Description

This data set contains the observed length of post-partum anoestrus (in days) for 73 dairy cattle.

Usage

reproppa

rmvnorm.hsmm 25

Format

reproppa a vector containing 73 integers.

Source

Danish Cattle Research Centre

References

Peters, A. and Ball, P. (1995), "Reproduction in Cattle," 2nd ed.

rmvnorm.hsmm

Random number generation from a multivariate normal distributed emission distribution

Description

This generates values from a multivariate normal distributed emission state j given parameters in model.

Usage

```
rmvnorm.hsmm(j, model)
```

Arguments

j An integer representing the state model A hmmspec or hsmmspec object

Details

This is essentially a wrapper for rnorm. Users may build functions with the same arguments and return values so they can use their own custom emission distributions.

Value

A single value from the emission distribution.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

See Also

dmvnorm.hsmm, mstep.mvnorm

26 rnorm.hsmm

Examples

rnorm.hsmm

Random number generation from a normally distributed emission distribution

Description

This generates values from a normally distributed emission state j given parameters in model.

Usage

```
rnorm.hsmm(j, model)
```

Arguments

j An integer representing the state model A hmmspec or hsmmspec object

Details

This is essentially a wrapper for rnorm. Users may build functions with the same arguments and return values so they can use their own custom emission distributions.

Value

A single value from the emission distribution.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

rpois.hsmm 27

rpois.hsmm	Random number generation from a Poisson distributed emission distribution

Description

This generates values from a Poisson distributed emission state j given parameters in model.

Usage

```
rpois.hsmm(j, model)
```

Arguments

j An integer representing the state model A hmmspec or hsmmspec object

Details

This is essentially a wrapper for rpois. Users may build functions with the same arguments and return values so they can use their own custom emission distributions.

Value

A single value from the emission distribution.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

See Also

```
mstep.pois, dpois.hsmm
```

Examples

```
J<-3
initial <- rep(1/J,J)
P <- matrix(c(.8,.5,.1,0.05,.2,.5,.15,.3,.4),nrow=J)
b <- list(lambda=c(1,3,6))
model <- hmmspec(init=initial, trans=P, parms.emission=b,dens.emission=dpois.hsmm)
model
train <- simulate(model, nsim=300, seed=1234, rand.emis=rpois.hsmm)
plot(train,xlim=c(0,100))
h1 = hmmfit(train,model,mstep=mstep.pois)</pre>
```

28 simulate.hmmspec

sim.mc

Markov chain simulation

Description

Simulates a Markov chain

Usage

```
sim.mc(init, transition, N)
```

Arguments

init The distribution of states at the first time step

transition The transition probability matrix of the Markov chain

N The number of observations to simulate

Value

A vector of integers representing the state sequence.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

Examples

```
p \leftarrow matrix(c(.1,.3,.6,rep(1/3,3),0,.5,.5),ncol=3,byrow=TRUE)
init \leftarrow rep(1/3,3)
sim.mc(init,p,10)
```

simulate.hmmspec

Simulation of hidden Markov models

Description

Simulates data from a hidden Markov model

```
## S3 method for class 'hmmspec'
simulate(object, nsim, seed = NULL, rand.emission=NULL,...)
```

simulate.hmmspec 29

Arguments

object	A hmmspec object
nsim	An integer or vector of integers (for multiple sequences) specifying the length of the sequence(s)

seed seed for the random number generator

rand.emission The function used to generate observations from the emission distribution

... further arguments passed to or from other methods.

Details

If nsim is a single integer then a HMM of that length is produced. If nsim is a vector of integers, then length(nsim) sequences are generated with respective lengths.

Value

An object of class hmmdata

Χ	A vector of length sum(N) - the sequence(s) of observed values
S	A vector of length sum(N) - the sequence(s) of hidden states
N	A vector of the length of each observation sequence (used to segment x and s)

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Rabiner, L. (1989), A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, 77, 257-286.

See Also

```
hmmspec, link{predict.hmm}
```

Examples

30 simulate.hsmmspec

CIMULDED	.hsmmspec
Sillurate.	Hommopec

Simulation for HSMMs

Description

Simulates values for a specified hidden semi-Markov model

Usage

```
## S3 method for class 'hsmmspec'
simulate(object, nsim, seed = NULL,rand.emission=NULL,...)
```

Arguments

object A hsmmspec object

nsim An integer or vector of integers (for multiple sequences) specifying the number

of states to generate per sequence

seed seed for the random number generator

rand.emission The function used to generate observations from the emission distribution

... further arguments passed to or from other methods.

Details

If nsim is a single integer then a HSMM of that length is produced. If nsim is a vector of integers, then length(nsim) sequences are generated with respective lengths. Note that elength is the number of states visited, each state will have a sojourn time typically >1 so the vector will be longer than nsim

Value

An object of class hmmdata

x A vector of length sum(N) - the sequence(s) of observed values

s A vector of length sum(N) - the sequence(s) of hidden states

N A vector of the length of each observation sequence (used to segment x and s)

Author(s)

Jared O'Connell jaredoconnell@gmail.com

References

Guedon, Y. (2003), Estimating hidden semi-Markov chains from discrete sequences, Journal of Computational and Graphical Statistics, Volume 12, Number 3, page 604-639 - 2003

smooth.discrete 31

See Also

```
hsmmfit, hsmmspec, predict.hsmm
```

Examples

```
\label{eq:continuous} \begin{array}{lll} J <- & 3 \\ & \text{init} <- & \text{c}(\emptyset,\emptyset,1) \\ P <- & \text{matrix}(\textbf{c}(\emptyset,.1,.4,.5,\emptyset,.6,.5,.9,\emptyset), \text{nrow=J}) \\ B <- & \text{list}(\text{mu=c}(10,15,20), \text{sigma=c}(2,1,1.5)) \\ d <- & \text{list}(\text{lambda=c}(10,30,60), \text{shift=c}(10,100,30), \text{type='poisson'}) \\ & \text{model} <- & \text{hsmmspec}(\text{init},P,\text{parms.emission=B},\text{sojourn=d},\text{dens.emission=dnorm.hsmm}) \\ & \text{train} <- & \text{simulate}(\text{model},\text{rand.emis=rnorm.hsmm},\text{nsim=100},\text{seed=123456}) \\ & \text{plot}(\text{train},\text{xlim=c}(\emptyset,400)) \end{array}
```

smooth.discrete

Smoothing a discrete time series.

Description

The smooth.discrete() function provides a simple smoothing of a time series of discrete values measured at equidistant times. Under the hood of smooth.discrete() is a hidden Markov model.

Usage

Arguments

у	A numeric vector
init l	Initial distribution (by default derived from data; see the vignette for details)
trans	Transition matrix (by default derived from data; see the vignette for details)
•	Matrix describing the conditional probabilities of the observed states given the latent states. (See the vignette for details).
S	Either "viterbi" or "smoothed". The viterbi method gives the jointly most likely
	sequence; the smoothed method gives the sequence of individually most likely states.
details	

Details

The parameters are estimated using the Baum-Welch algorithm (a special case of the EM-algorithm).

32 summary.hmm

Value

A list with the following components:

s The "smoothed" states

model The underlying hmm (hidden Markov model) object

data The data

initial The initial parameters

Author(s)

S<c3><b8>ren H<c3><b8>jsgaard <sorenh at math.aau.dk>

See Also

```
hmmspec, hmmfit
```

Examples

```
## Please see the vignette
```

summary.hmm

Summary method for hmm objects

Description

Prints the estimated parameters of a hmm object

Usage

```
## S3 method for class 'hmm'
summary(object, ...)
```

Arguments

object A hmm object

... further arguments passed to or from other methods.

Value

An object of class 'summary.hmm'

Author(s)

Jared O'Connell jaredoconnell@gmail.com

summary.hsmm 33

summary.hsmm

Summary function for hsmm

Description

Returns a summary object for a hsmm object

Usage

```
## S3 method for class 'hsmm'
summary(object, ...)
```

Arguments

object An object of type hsmm

... further arguments passed to or from other methods.

Author(s)

Jared O'Connell jaredoconnell@gmail.com

Index

```
* datasets
                                                  reprocows, 23
    reproai, 23
                                                  reproppa, 24
    reprocows, 23
                                                  rmvnorm.hsmm, 4, 13, 25
    reproppa, 24
                                                  rnorm.hsmm, 26
* models
                                                  rpois.hsmm, 6, 15, 27
    smooth.discrete, 31
                                                  sim.mc, 28
                                                  simulate.hmmspec, 9, 28
addStates, 2, 16
                                                  simulate.hsmmspec, 10, 12, 30
createTransition (smooth.discrete), 31
                                                  smooth.discrete, 31
                                                  summary.hmm, 32
dmvnorm.hsmm, 3, 13, 25
                                                  summary.hsmm, 33
dnorm.hsmm, 4
                                                  summary.smoothDiscrete
dpois.hsmm, 5, 15, 27
                                                           (smooth.discrete), 31
gammafit, 6
hmmfit, 7, 9, 32
hmmspec, 8, 29, 32
hsmmfit, 9, 12, 20, 31
hsmmspec, 10, 11, 21, 31
mstep.mvnorm, 4, 12, 25
mstep.norm, 13
mstep.pois, 6, 14, 27
plot.hsmm, 15
plot.hsmm.data, 16
predict.hmm, 7, 9, 16
predict.hmmspec, 18
predict.hsmm, 10, 12, 19, 21, 31
predict.hsmmspec, 20, 20
predict.smoothDiscrete
        (smooth.discrete), 31
print.hmm, 21
print.hmmspec, 22
print.hsmmspec, 22
print.smoothDiscrete(smooth.discrete),
reproai, 23
```