Theoretische Physik (Hebecker)

Robin Heinemann

October 23, 2016

${\bf Contents}$

1.1	Kinen	natik der Massenpunktes in <u>einer</u> Dimension
	1.1.1	Graphik
	1.1.2	Üben dieser Logik an unserem Beispiel
1.2	Grund	dbegriffe der Differenzial und Integralrechung
	1.2.1	Funktion
	1.2.2	Differentiation oder Ableitung
	1.2.3	Integrieren
1.3	Kinen	natik in mehreren Dimensionen
	1.3.1	Zweidimensionale Bewegung
	1.3.2	
1.4	Vektorräume	
	1.4.1	Einfachstes Beispiel
	1.4.2	Unser Haupt-Beispiel
1.5	Kinen	natik in $d>1$
	1.5.1	Beispiel für 3-dimensionale Trajketorie
1.6	Skalaı	rprodukt
	1.6.1	Symmetrische Bilinearform
	1.6.2	Norm (Länge) eines Vektors
Einl	leitung:	

 $\bullet \ \ Webseite: www.thphys.uni-heidelberg.de/hebecker/TP1/tp1.html$

•

1 Kinematik des Massenpunktes

Massenpunkt / Punktmasse - (selbstevidente) Abstraktion Kinematik: Bescheibung der Bewegung (Ursachen der Bewegung \rightarrow Dynamik)

1.1 Kinematik der Massenpunktes in einer Dimension

1.1.1 Graphik

• Ort: *x*

• zu Zeit t: x(t)

• Geschwindigketi: $v(t) \equiv \frac{dx(t)}{dt} \equiv \dot{x}(t)$

• Beschleunigung: $a(t) \equiv \dot{v}(t) = \ddot{x}(t)$

• Beispiel: $x(t) \equiv x_0 + v_0 t + \frac{a_0}{2}, \ t^2, \ v(t) = v_0 + a_0 t, \ a(t) = a_0$

• Umgekehrt: Integration, z.B. von Geschwindigkeit zu Trajektorie: Anfangsposition muss gegeben sein, z.B. $x(t_0) \equiv x_0$

$$x(T) = x_0 + \int_{t_0}^t v(t) dt$$

Man prüft leicht $\dot{x}(t) = v(t)$

– Es gibt keine andere Funktion $\tilde{x}(t)$ mit $\dot{\tilde{x}}(t) = v(t)$ und $\tilde{x}(t_0) = x_0$

Analog: Von Beschleunigung zur Geschwindigkeit, und dann weiter zur Trajektorie

1.1.2 Üben dieser Logik an unserem Beispiel

Gegeben: $a(t) = a_0, t_0 = 0, v_0, x_0$

$$\Rightarrow v(t) = v_0 + \int_0^t a_0 dt' = v_0 + a_0 t$$
$$x(t) = x_0 + \int_0^t (v_0 + a_0 t') dt' = x_0 + v_0 t + \frac{a_0}{2} t^2$$

1.2 Grundbegriffe der Differenzial und Integralrechung

1.2.1 Funktion

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto f(x)$$

1.2.2 Differentiation oder Ableitung

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

df bezeichnet den in Δx linearen Anteil des Zuwaches $\Delta f \equiv f(x + \Delta x) - f(x)$.

- Aus $\Delta f = f'(x)\Delta(x) + O(\Delta x^2)$ folgt $df = f'(x)\Delta x$
- Anwendung auf die Identitätabbildung: $x \mapsto x \Rightarrow dx = \Delta x$

$$\Rightarrow df = f'(x)dx \text{ oder } \frac{df(x)}{dx} = f'(x)$$

Dies ist eigentlich nur eine Schreibweise für f'(x), <u>aber</u> nützlich, weil bei kleinen Δx d $f \simeq \Delta f$ (Schreibweise beinhaltet intuitiv die Grenzwertdefinition)

- f'(x) wieder Funktion \Rightarrow analog: $f''(x), f'''(x), \dots, f^{(n)}(x)$
- Praxis

$$(f \cdot g)' = f'g + g'f$$
 (Produkt/Leibnizregel)
$$(f \circ g)'(x) = f'(g(x))g'(x)$$
 (Kettenregel)
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 (Ableitung der Inversen Funktion)

- Begründung (nur zum letzen Punkt)

$$(f^{-1})'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}(f(y))} = \frac{\mathrm{d}y}{f'(y)\mathrm{d}y} = \frac{1}{f'(f^{-1}(x))}$$

Schöne Beispiele

$$(x^x)' = (e^{\ln x^x})' = (e^{x \ln x})' = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1)$$

$$\arctan'(x) \equiv (\tan^{-1}(x)) = \frac{1}{\tan^{-1}(y)}$$
 wobei $y = \tan^{-1}(x)$

Besser:

$$\tan^{-1}(y) = (\sin y \frac{1}{\cos y})' = \cos y \frac{1}{\cos y} + \sin y (\frac{1}{\cos y})' = 1 + \sin y (-\frac{1}{\cos^2 y})(-\sin y) = 1 + \tan^2 y$$

Verknüpfung

$$f\circ g:x\mapsto f(g(x))$$

• Inverse

$$f^{-1}: x = f(y) \mapsto y$$

• Grenzwerte:

 – nützliche Regel: l'Hôpital (" $\frac{0}{0}$ ") Falls $\lim_{x\to x_0} f, g = 0$ und $\lim_{x\to x_0} \frac{f'}{g'}$ existiert, so gilt $\lim_{x\to x_0} \frac{f}{g} = \lim_{x\to x_0} \frac{f'}{g'}$

- weitere nützliche Regel

$$\lim \frac{\text{Beschränkt}}{\text{Unbeschränkt und monoton wachsend}} = 0$$

* Beispiel:

$$\lim_{y \to 0} \frac{\sin \frac{1}{y}}{\frac{1}{y}}$$

- Kürzen unter lim

* Beispiel:

$$\lim_{x \to \infty} \frac{x}{2x + \sqrt{x}} = \lim_{x \to \infty} \frac{1}{2 + \frac{1}{\sqrt{x}}} = \frac{1}{2}$$

1.2.3 Integrieren

1. Fundamentalsatz der Analysis

$$\int_{a}^{y} f(x)dx = F(y)\&F'(y) = f(y)$$
$$\int_{a}^{b} f(x)dx = F(x) + C$$
$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

 $(\rightarrow \text{ saubere Definition "über Riemansches Integral})$

- 2. Praxis
 - (a) Partielle Integration

$$\int_{-\infty}^{y} f(x)g'(x)dx = f(y)g(y) - \int_{-\infty}^{y} f'(x)g(x)dx$$

(b) Substitution Unter Annahme einer invertierbaren Funktion $x: y \mapsto x(y)$

$$\int f(x)dx = \int f(x)\frac{dx}{dy}dy = \int f(x(y))x'(y)dy$$

Andere Formulierung:

$$\int_{a}^{b} f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(y)dy$$

Substitution y = g(x)

(c) Klassiker

$$\int \ln x dx = \int \ln x 1 dx = \ln x - \int \frac{1}{x} x dx = x(\ln x - 1)$$
$$\int x e^{x^2} dx = \int e^{x^2} \frac{1}{2} d(x^2) = \frac{1}{2} \int e^y dy = \frac{1}{2} e^y = \frac{1}{2} e^{x^2}$$

1.3 Kinematik in mehreren Dimensionen

1.3.1 Zweidimensionale Bewegung

Zweidimensional \rightarrow Bewegung in der Ebene. Trajektorie: x(t), y(t)

1. Bespiel

$$x(t) = v_0 t \sin \omega t$$
$$y(t) = v_0 t \cos \omega t$$

- (a) **TODO** Skizze der Trajektorie (Bahnkurve)
- (b) Raumkurve Menge aller Punkte $\{x,y\},$ die das Teilchen durchläuft
- (c) **TODO** Skizze Nichtriviale Darstellung nur im Raum (Raumkurve)

1.3.2 Dreidimensionale Bewegung

Die Darstellung der Tranjektorie istr erschwert, denn man bräuchte 4 Dimensionen: 3 für Raum und 1 für Zeit Formal keim Problem: Trajektorie ist

•

•

$$x^{1}(t), x^{2}(t), x^{3}(t)$$

•

$$\{x^i(t)\}, i = 1, 2, 3$$

Dementsprechend:

$$v^{i}(t) = \dot{x}^{i}(t); a^{i}(t) = \dot{v}^{i}(t); i = 1, 2, 3$$

1.4 Vektorräume

Eine Menge V heißt Vektorraum, wenn auf ihr zwei Abbildungen

- die Addition (+)
- die Multiplikation mit reellen Zahlen (*)

definiert sind.

$$x: V \times V \to V$$

 $\text{Multiplikation}: \mathbb{R} \times V \to V$

 $V \times V$ - Produktmenge \equiv Menge aller Paare so dass gilt:

$$\begin{array}{lll} v+(w+u)=(v+w)+u & u,v,w\in V & \text{Assoziativit\"at} \\ & v+w=w+v & \text{Kommutativit\"at} \\ & \exists 0\in V: v+0=v\,\forall\,v\in V & \text{Null} \\ & \alpha(v+w)=\alpha v+\alpha w & \text{Distributvit\"at} \\ & (\alpha+\beta)v=\alpha v+\beta v & \alpha,\beta\in\mathbb{R} & \text{Distributivit\"at} \\ & \alpha(\beta v)=(\alpha\beta)v & \text{Assoziativit\"at der Multiplikation} \\ & 1v=v & \text{Multiplikation mit Eins} \end{array}$$

1.4.1 Einfachstes Beispiel

 $V \equiv \mathbb{R}$ (mit der gewöhnlichen Addition und Multiplikation und mit $0 \in \mathbb{R}$ als Vektorraumnull)

1.4.2 Unser Haupt-Beispiel

Zahlentupel aus n-Zahlen:

$$V \equiv \mathbb{R}^n = \{(x^1, x^2, \dots, x^n), x^i \in \mathbb{R}\}\$$

Notation:

$$\vec{x} = \begin{pmatrix} x^1 & x^2 & \dots & x^n \end{pmatrix}, \vec{y} = \begin{pmatrix} y^1 & \dots & y^n \end{pmatrix}$$

Man definiert:

$$\vec{x} + \vec{y} \equiv (x^1 + y^1, x^2 + y^2, \dots, x^n + y^n)$$
$$\vec{0} \equiv (0, \dots, 0)$$
$$\alpha \vec{x} \equiv (\alpha x^1, \dots, \alpha x^n)$$

1. **TODO** (Maybe) Skizze 3D Vektor \rightarrow übliche Darstellung durch "Pfeile"

1.5 Kinematik in d > 1

Trajektorie ist Abbildung: $\mathbb{R} \to \mathbb{R}^3, t \to \vec{x}(t))(x^1(t), x^1(t), x^3(t))$

$$\vec{v} = \dot{\vec{x}}(t), \vec{a(t)} = \dot{\vec{v}}(t) = \ddot{\vec{x}}(t)$$

Setzt allgemeine Definition der Ableitun voraus:

$$\frac{\mathrm{d}\vec{y}(x)}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\vec{y}(x + \Delta x) - \vec{y}(x)}{\Delta x} \Rightarrow \vec{y}'(x) = (y^{1'}(x), \dots, y^{n'}(x))$$

1.5.1 Beispiel für 3-dimensionale Trajketorie

Schraubenbahn:

$$\vec{x}t = (R\cos\omega t, R\sin\omega t, v_0 t)$$
$$\vec{v} = (-R\omega\sin\omega t, R\omega\cos\omega t, v_0)$$
$$\vec{a} = (-R\omega^2\cos\omega t, -R\omega^2\sin\omega t, 0)$$

1. TODO Skizze (Raumkurve) Kommentar:

 $\vec{x}, \vec{v}, \vec{a}$ leben in verschiedenen Vektorräumen! allein schon wegen [x]=m, [v]=m s $^{-1}$

Wir können wie in d = 1 von \vec{a} zu \vec{v} zu \vec{x} gelangen!

$$\vec{v}(t) = \vec{v_0} + \int_{t_0}^t dt' \vec{a}(t') = (v_0^1 + \int_{t_0}^t dt' a^1(t'), v_0^2 + \int_{t_0}^t dt' a^2(t'), v_0^3 + \int_{t_0}^t dt' a^2(t'))$$

2. Üben: Schraubenbahn; $t_0 = 0$, $\vec{x_0} = (R, 0, 0)$, $v_0 = (0, R\omega, v_0)$ Es folgt:

$$\vec{v}(t))(0, R\omega, v_0) + \int_0^t dt'(-R\omega^2)(\cos \omega t', \sin \omega t', 0)$$
 (1)

$$= (0, R\omega, v_0) + (-R\omega^2)(\frac{1}{\omega}\sin\omega t', -\frac{1}{\omega}\cos\omega t', 0) \mid_0^t$$
 (2)

$$= (0, R\omega, v_0) - R\omega(\sin \omega t, -\cos \omega t, 0) - (0, -1, 0)$$
(3)

$$= (-R\omega\sin\omega t, R\omega + R\omega\cos\omega t - R\omega, v_0) \tag{4}$$

$$= (-R\omega\sin\omega t, R\omega\cos\omega t, v_0) \tag{5}$$

3. Bemerkung Man kann Integrale über Vektoren auch durch Riemansche Summen definieren:

$$\int_{t_0}^t \vec{v}(t')dt' = \lim_{n \to \infty} (v(t_0)\Delta t + \vec{v}(t_0 + \Delta t)\Delta t + \dots + \vec{v}(t - \Delta t)\Delta t)$$
mit $\Delta t = \frac{t - t_0}{N}$

1.6 Skalarprodukt

Führt von Vektoren wieder zu nicht-vektoriellen (Skalaren) Größen.

1.6.1 Symmetrische Bilinearform

Abbildung von $V \times V \to \mathbb{R}, \ (v, w) \mapsto v \cdot w$ mit den Eigenschaften

- $v \cdot w = w \cdot v$
- $(\alpha u + \beta v) \cdot w = \alpha u \cdot w + \beta v \cdot w$

Sie heißt positiv-semidefinit, falls $v\cdot v\geq 0$, Sie heißt positiv-definit, falls $v\cdot v=0\Rightarrow v=0$ Hier : Skalarprodukt \equiv positiv definite symmetrische Bilinearform

1.6.2 Norm (Länge) eines Vektors

$$|v| = \sqrt{v \cdot v} = \sqrt{v^2}$$

 \mathbb{R}^n : Wir definieren

$$\vec{x} \cdot \vec{y} = x^1 y^1 + \ldots + x^n y^n \equiv \sum_{i=1}^n x^i y^i \equiv \underbrace{x^i y^i}_{\text{Einsteinsche Summenkonvention}}$$

$$|\vec{x}| = \sqrt{(x^1)^2 + \ldots + (x^n)^2}$$

Wichtig: oben euklidiesches Skalarprodukt! Anderes Skalarprodukt auf \mathbb{R}^2 : $\vec{x}\cdot\vec{y}=7x^1y^2+x^2y^2$ anderes Beispiel:

$$\vec{x} \cdot \vec{y} \equiv x^1 y^1 - x^2 y^2$$

symmetrische Bilinearform, $\underline{\text{nicht}}$ positiv, semidefinit! Frage: Beispiel für Bilinearform die positiv-semidefinit ist, aber nicht positiv definit