Repetição de Comandos

Material didáctico elaborado pelas diferentes equipas de Introdução à Programação

Luís Caires (Responsável), Armanda Rodrigues, António Ravara, Carla Ferreira, Fernanda Barbosa, Fernando Birra, Jácome Cunha, João Araújo, Miguel Goulão, Miguel Pessoa Monteiro, e Sofia Cavaco.

Mestrado Integrado em Engenharia Informática FCT UNL

A nossa biblioteca Mathematics

- De modo a praticar os ciclos vamos fazer uma biblioteca com operações matemáticas diversas.
- Para isso vamos criar uma classe Mathematics, onde todos os métodos são static (estes métodos denominam-se "métodos de classe").
- Note que esta classe não tem construtores, pois nunca vamos criar objectos desta classe. É como a classe Math do Java.
- De igual modo, esta classe também não tem variáveis de instância. Repare, uma variável de instância é uma variável que pertence a uma instância, ou seja, a um objecto. Se nunca vamos criar um objecto desta classe, não faria sentido criar variáveis de instância.

- Um número inteiro positivo é primo se tiver apenas dois divisores distintos
- Por exemplo, 3, 11 e 17 são números primos:
 - 3 é divisível apenas por 1 e 3
 - 11 é divisível apenas por 1 e 11
 - 17 é divisível apenas por 1 e 17

 Crie um método na classe "Mathematics" que indica se um dado número é primo

```
public static boolean isPrime(int n)
   Indica se o número n é primo
   pre: n >= 1
```

 Teste o método implementado, num programa principal e verifique que o método isPrime se comporta como o esperado. Por exemplo, experimente fazer um programa principal em que o utilizador vai dando valores inteiros positivos, que vão sendo testados. Para terminar, o utilizador dá o número -1.

- O método implica a divisão inteira do número n por todos os números inteiros menores que n e maiores que um e a verificação do resto da operação
- Note que a operação de teste de divisibilidade deve ser repetida um certo número de vezes
 - O número de repetições depende do valor n
 - É necessário utilizar um comando de repetição ou iteração de comandos

 n %
 2
 !=
 0

 n %
 3
 !=
 0

 n %
 n-2
 !=
 0

 n %
 n-1
 !=
 0

n V Intervalo de variação de v:1<v<n

$$\nabla + + i$$

• • •

Intervalo de variação de v:1<v<n

```
while (condicao)
  instrucao
```

Esta condição é suficiente?

• • •


```
while (condicao)
  instrucao
```

Esta condição é suficiente?

Não. É preciso garantir que v está no intervalo 1<v<n

```
while ( n % v != 0 )
v++;
```

. . .

Em cada passo

Intervalo de variação de v:1<v<n

```
while (condicao)
instrucao
```

As duas condições parecem redundantes mas preenchem dois requisitos

```
while ((v < n) && ((n % v) != 0))
v++;</pre>
```

Intervalo de variação de v:1<v<n

```
while ((v < n) && ( (n % v) != 0))
     v++;</pre>
```

Condição booleana de manutenção da execução do ciclo

- (v < n) executar a divisão inteira de n por todos o números entre 1 e n.
- (n % v) != 0 enquanto não for encontrado um divisor

```
public static boolean isPrime(int n) {
   int v = 2;
   while ((v < n) && ( (n % v) != 0)) {
        v++;
   }
   return (v==n);
}</pre>
```

Também podíamos ter começado pelo limite superior do intervalo de variação. Mas nesse caso o algoritmo seria mais lento a encontrar divisores que tornem a condição do ciclo false.

Análise de casos

- n <= 0 não faz sentido pois o método só deve ser aplicado a números inteiros positivos (estes casos são excluídos pela précondição definida)
- n = 1 → v = 0 O ciclo não é executado pois v não se encontra dentro dos valores a serem testados como divisores
 - Desta forma, porque $v \mid = 1$, o método devolve false \rightarrow 1 não é primo
- n = 2 → v = 1 O ciclo não é executado pois v não se encontra dentro dos valores a serem testados como divisores
 v == 1, devolve true → 2 é primo
- \bullet n > 2
 - Se o número for primo, o ciclo é executado até v == 1, o método devolve true \rightarrow o número é primo
 - Se o número não for primo, o ciclo termina quando v igual ao 1º divisor de n, assim v!=1, o método devolve false \to o número não é primo

```
public static boolean isPrime(int n){
  int v = n-1;
  while ((v > 1) && ( (n % v) != 0)) {
      v--;
  }
  Também podíamos f
  imite superior do int
}
```

Também podíamos ter começado pelo limite superior do intervalo de variação. Mas nesse caso o algoritmo seria mais lento a encontrar divisores que tornem a condição do ciclo false.

Ainda assim... vale a pena testar todos os números entre 2 e n-1?

```
public static boolean isPrime(int n){
  int v = 2;
  while ((v <= n/2) && ( (n % v) != 0)) {
      v++;
  }
  return (v > n/2 && n > 1);
}
```

Não vale a pena testar números maiores que n/2 ! Com excepção do próprio n, nenhum é divisor de n. Além disso, n tem de ser > 1.

Pensando ainda melhor, nem sequer vale a pena testar números maiores que a raiz quadrada de n. Se n for divisível por um número p, então $n = p \times q$ Se q for menor que p, n já terá sido detectado como sendo divisível por q, ou por um divisor de q. Podemos fazer um raciocínio semelhante sobre p. Assim, no máximo, p = q = raiz quadrada de n. Além disso, n tem de ser > 1.

```
import java.util.Scanner;
public class Main {
  public static void main(String[] args) {
   Scanner in = new Scanner(System.in);
   int number;
   System.out.print("Introduza um numero para verificar se e primo: ");
   number = in.nextInt();
   in.nextLine();
   if (Mathematics.isPrime(number))
        System.out.println("E primo.");
   else
        System.out.println("Nao e primo.");
   System.out.println("Adeus!!!");
   in.close();
```

```
import java.util.Scanner;
public class Main {
                                                 Então e se quisermos testar
                                                        vários números?
  public static void main(String[] args) {
   Scanner in = new Scanner(System.in);
   int number;
   System.out.print("Introduza um numero para verificar se e primo: ");
   number = in.nextInt();
   in.nextLine();
   if (Mathematics.isPrime(number))
        System.out.println("E primo.");
   else
        System.out.println("Nao e primo.");
   System.out.println("Adeus!!!");
   in.close();
```

```
import java.util.Scanner;
                                                Vamos utilizar o -1 (que não é
public class Main {
                                                positivo) como um valor
                                               sentinela que determina o fim
 public static void main(String[] args) {
   Scanner in = new Scanner(System.in);
                                               do input
   int number;
   System.out.print("Introduza um numero para verificar se e primo: ");
   number = in.nextInt();
   in.nextLine();
   if (Mathematics.isPrime(number))
        System.out.println("E primo.");
   else
        System.out.println("Nao e primo.");
   System.out.println("Adeus!!!");
   in.close();
```

```
import java.util.Scanner;
                                             Estas três linhas têm de ser repetidas
                                             em cada passo para:
public class Main {
                                                 - Informar o utilizador sobre o input;
  public static void main(String[] args) {
                                                 -Guardar o valor introduzido.
   Scanner in = new Scanner(System.in);
   int number;
   System.out.print("Introduza um numero para verificar se e primo (-1 para terminar): ");
   number = in.nextInt();
   in.nextLine();
   while (number ! = -1) {
        if (Mathematics.isPrime(number))
             System.out.println("E primo.");
        else
             System.out.println("Nao e primo.");
   System.out.println("Adeus!!!");
   in.close();
```

```
import java.util.Scanner;
                                             Estas três linhas têm de ser repetidas
                                             em cada passo para:
public class Main {
                                                 - Informar o utilizador sobre o input;
  public static void main(String[] args) {
                                                 -Guardar o valor introduzido.
   Scanner in = new Scanner(System.in);
   int number;
   System.out.print("Introduza um número para verificar se e primo (-1 para terminar): ");
   number = in.nextInt();
   in.nextLine();
   while (number ! = -1) {
        if (Mathematics.isPrime(number))
             System.out.println("E primo.");
        else
             System.out.println("Nao e primo.");
        System.out.print("Introduza um numero para verificar se e primo (-1 para terminar): ");
        number = in.nextInt();
        in.nextLine();
   System.out.println("Adeus!!!");
   in.close();
```

```
import java.util.Scanner;
public class Main {
  public static void main(String[] args) {
   Scanner in = new Scanner(System.in);
   int number;
   System.out.print("Introduza um número para verificar se e primo (-1 para terminar): ");
   number = in.nextInt();
   in.nextLine();
   while (number ! = -1) {
        if (Mathematics.isPrime(number))
             System.out.println("E primo.");
        else
             System.out.println("Nao e primo.");
        System.out.print("Introduza um numero para verificar se e primo (-1 para terminar): ");
        number = in.nextInt();
        in.nextLine();
   System.out.println("Adeus!!!");
   in.close();
```

Como eliminar esta repetição?

```
O ciclo while...do executa-se 0 ou mais vezes.
                                           Neste caso, queremos que estes testes aos
public class Main {
                                           números primos se executem 1 ou mais vezes. O
                                           java inclui a instrução composta do...while,
  public static void main(String[] args) {
                                           precisamente com uma semântica de execução de 1
   Scanner in = new Scanner(System.in);
                                           ou mais iterações!
   int number;
   System.out.print("Introduza um número para verificar se e primo (-1 para terminar): ");
   number = in.nextInt();
   in.nextLine();
   while (number ! = -1) {
        if (Mathematics.isPrime(number))
             System.out.println("E primo.");
        else
             System.out.println("Nao e primo.");
        System.out.print("Introduza um numero para verificar se e primo (-1 para terminar): ");
        number = in.nextInt();
        in.nextLine();
   System.out.println("Adeus!!!");
   in.close();
```

import java.util.Scanner;

Ciclo while ... do vs. do ... while

while... do

Executa 0 ou mais vezes


```
Inicialização ;
while ( Condição ) {
   Corpo;
}
```

do...while

Executa 1 ou mais vezes


```
Inicialização ;
do {
   Corpo;
} while ( Condição )
```

O ciclo do...while

```
public static void main(String[] args) {
         Inicialização
                                    Scanner in=new Scanner(System.in);
                                    int number;
              Corpo
                                    do
                                         System.out.print(...);
true
                                         number=in.nextInt();
                                         in.nextLine();
                                         if (number != -1)
            Condição
                                             if (Mathematics.isPrime(number))
                                                 System.out.println("E primo.");
                   false
                                              else
                                                 System.out.println("Nao e primo.");
                                      while (number != -1);
                                    System.out.println("Adeus!!!");
                                    in.close();
  Inicialização ;
  do {
     Corpo;
   } while ( Condição )
```

Class Main com um ciclo do... while

```
import java.util.Scanner;
public class Main {
  public static void main(String[] args) {
   Scanner in = new Scanner(System.in);
   int number;
   do {
        System.out.print("Introduza um numero para verificar se e primo (-1 para terminar): ");
        number = in.nextInt();
        if (number != -1)
                                                           Evitámos a repetição
             if (Mathematics.isPrime(pr))
                                                           da pergunta e da leitura
                  System.out.println("E primo.");
                                                           de dados mas, em
             else
                                                           contrapartida, temos agora
                  System.out.println("Nao e primo.");
                                                           de testar dentro do ciclo
   } while (number !=-1);
                                                           se a sentinela está a ser
   System.out.println("Adeus!!!");
                                                           usada. 🕾
   in.close();
```

Testando vários métodos

- No resto deste bloco pretendemos testar vários métodos:
 - Uma hipótese seria criar um programa para testar cada um deles, como no slide anterior (mais repetitiva)
 - Outra hipótese é criar vários métodos auxiliares de teste, um para cada operação a testar:
 - Cada método auxiliar pode ser declarado privado
 - Pode comentar os métodos que não deseja testar
 - O corpo do método auxiliar é semelhante ao que antes colocaria no método main

```
public class Main {
  public static void main(String[] args) {
     Main.testePrimos();
  }
  private static void testePrimos() {...}
}
// Fim da classe Main
```

Aqui ficaria um corpo semelhante ao do main no slide anterior

Números Perfeitos

Números Perfeitos

- Um número perfeito é um inteiro positivo cuja soma dos seus divisores próprios é o próprio número
- Os divisores próprios de um número são os divisores que são diferentes do próprio número
- Por exemplo, 6 é um número perfeito:
 1, 2 e 3 são os divisores próprios de 6
 6 = 1 + 2 + 3

Números Perfeitos

• Crie um método na classe Mathematics que determina se um número n é um número perfeito

```
public static boolean isPerfectNumber(int n)
Indica se o número n é um número perfeito.
```

 Crie depois um método auxiliar no seu programa principal que imprima todos os números perfeitos menores que 10000.

Números perfeitos

Objectivo: ver se a soma dos divisores próprios de dado natural n não nulo é igual a esse natural

Algoritmo: usando uma variável auxiliar v a variar de n-1 a 1, acumular o valor da variável no resultado se o seu valor for divisor de n. Finalmente, comparar o valor acumulado com n.

Inicialização: v = n-1; res = 0

Condição: v >= 1

Corpo:

Acção: if (n%v == 0) res += v

Progresso: v--

Resultado: n == res

Números perfeitos

Optimização: como 1 é divisor de todos os naturais, podemos optimizar a operação, <u>inicializando o resultado a 1</u>. Isso implica que o <u>ciclo já não executa quando n = 1</u>. Nesse caso, temos de <u>especificar que 1 não é perfeito</u> explicitamente.

Inicialização: v = n-1; res = 1

Condição: v > 1

Corpo:

Acção: if (n%v == 0) res += v

Progresso: v--

Resultado: n == res & n > 1

Factorial

Definição de Factorial

Definição recursiva:

$$n! = \begin{cases} 1 & , se \ n = 0, \\ n \times (n-1)! & , se \ n > 0. \end{cases}$$

Definição iterativa:

$$n! = \prod_{k=1}^{n} k$$

- Em ambos os casos, 0! = 1
 - Repare que quando o conjunto indexante é vazio o produtório tal como acontece com o somatório – tem como resultado o elemento neutro da operação (neste caso, o elemento neutro é 1).
- Podemos resolver o mesmo problema quer de forma iterativa, quer de forma recursiva! Ambas têm vantagens e inconvenientes.

Acrescentemos dois métodos à classe Mathematics

```
/ * *
 * Calcula o factorial de n de forma recursiva
 * @param n - valor sobre o qual se quer calcular o factorial
 * @return n! (factorial de n)
 * @pre n >= 0
 * /
public static int factorial(int n) { ... }
/ * *
 * Calcula o factorial de n de forma iterativa.
 * @param n - valor sobre o qual se quer calcular o factorial
 * @return n! (factorial de n)
 * @pre n >= 0
 * /
public static int factorialIt(int n) { ... }
```

Factorial (versão recursiva)

$$n! = \begin{cases} 1 & \text{, se } n = 0, \\ n \times (n-1)! & \text{, se } n > 0. \end{cases}$$

```
Exemplo: Cálculo de 5!
<u>5!</u>
(5 \times \underline{4!})
(5 \times (4 \times 3!))
(5 \times (4 \times (3 \times \underline{2!})))
(5 \times (4 \times (3 \times (2 \times 1!))))
(5 \times (4 \times (3 \times (2 \times (1 \times 0!)))))
(5 \times (4 \times (3 \times (2 \times (1 \times (1))))))
(5 \times (4 \times (3 \times (2 \times (\underline{1 \times 1})))))
(5 \times (4 \times (3 \times (2 \times 1))))
(5 \times (4 \times (\underline{3 \times 2})))
(5 \times (4 \times 6))
(5 \times 24)
120
```

A <u>expressão sublinhada</u> é a próxima a calcular. Para calcular factorial de 5, temos de multiplicar 5 por factorial de 4. Antes dessa multiplicação, temos de calcular factorial de 4. E assim sucessivamente. No final, podemos finalmente realizar as multiplicações que fomos adiando ao longo do processo.

Factorial (versão recursiva)

$$n! = \begin{cases} 1 & \text{, se } n = 0, \\ n \times (n-1)! & \text{, se } n > 0. \end{cases}$$

```
Exemplo: Cálculo de 5!
<u>5!</u>
(5 \times \underline{4!})
(5 \times (4 \times 3!))
(5 \times (4 \times (3 \times \underline{2!})))
(5 \times (4 \times (3 \times (2 \times 1!))))
(5 \times (4 \times (3 \times (2 \times (1 \times 0!)))))
(5 \times (4 \times (3 \times (2 \times (1 \times (1))))))
(5 \times (4 \times (3 \times (2 \times (\underline{1 \times 1})))))
(5 \times (4 \times (3 \times (2 \times 1))))
(5 \times (4 \times (\underline{3 \times 2})))
(5 \times (4 \times 6))
(5 \times 24)
120
```

A <u>expressão sublinhada</u> é a próxima a calcular. Para calcular factorial de 5, temos de multiplicar 5 por factorial de 4. Antes dessa multiplicação, temos de calcular factorial de 4. E assim sucessivamente. No final, podemos finalmente realizar as multiplicações que fomos adiando ao longo do processo.

Factorial (versão recursiva)

$$n! = \begin{cases} 1 & , se \ n = 0, \\ n \times (n-1)! & , se \ n > 0. \end{cases}$$

```
/ * *
 * Calcula o factorial de n de forma recursiva
 * @param n - valor sobre o qual se quer calcular o factorial
 * @return n! (factorial de n)
 * @pre n >= 0
public static int factorial(int n)
  int result;
  if (n == 0)
    result = 1i
  else
    result = n * factorial(n-1);
  return result;
```

Prós:

Definição intuitiva da operação.

Contras:

Pilha de chamadas aninhadas penaliza a eficiência do algoritmo.

Factorial (versão iterativa)

$$n! = \prod_{k=1}^{n} k$$

```
/ * *
 * Calcula o factorial de n de forma iterativa.
 * Ideia: em vez de adiar o cálculo, guarda-se na variável auxiliar
 * <code>result</code>.
 * @param n - valor sobre o qual se quer calcular o factorial
 * @return n! (factorial de n)
 * @pre n >= 0
 * /
public static int factorialIt(int n){ Algoritmo bastante mais
  int result = 1;
  int counter = 1;
  while (counter <= n) {</pre>
    result *= counter;
    counter++;
  return result;
```

Prós:

eficiente que o anterior.

Contras:

Ligeiramente menos intuitivo que a versão recursiva.

Factorial (outra versão iterativa)

$$n! = \prod_{k=1}^{n} k$$

```
/ * *
 * Calcula o factorial de n de forma iterativa.
 * Ideia: em vez de adiar o cálculo, guarda-se na variável auxiliar
 * <code>result</code>.
 * @param n - valor sobre o qual se quer calcular o factorial
 * @return n! (factorial de n)
 * @pre n >= 0
 * /
public static int factorialIt(int n){
  int result = 1;
  int counter = n_i
  while (counter > 1) {
    result *= counter;
    counter--;
  return result;
```

Semelhante à anterior, mas neste caso iteramos do valor mais alto para o mais baixo.

- Em 1225, Leonardo Fibonacci participou numa competição matemática em Pisa onde surgiu a seguinte questão:
- Começando apenas com um par de coelhos, se em cada mês cada par produtivo de coelhos produzir um novo par de coelhos (o qual se torna produtivo apenas um mês de depois de nascer), quantos pares de coelhos existirão ao fim de n meses?

- A resposta é a chamada sequência de Fibonacci: fib(0)=0, fib(1)=1,fib(2)= 1,fib(3)= 2, fib(4)=3, fib(5)=5,fib(6)= 8, ...
- Esta sequência é muito fácil de obter: cada número da sequência é a soma dos dois números anteriores!

$$fibonacci(n) = \begin{cases} 0 &, n = 0 \\ 1 &, n = 1 \\ fibonacci(n-1) + fibonacci(n-2) &, n > 1 \end{cases}$$

Ou seja...

$$fibonacci(n) = \begin{cases} n & ,n <= 1 \\ fibonnacci(n-1) + fibonacci(n-2) & ,n > 1 \end{cases}$$

 Crie um método na classe Mathematics que calcule o valor de sequência de Fibonacci para um determinado número n (ou seja, quantos coelhos existem passados n meses).

```
public static int fibonacci(int n)
  Calcula o valor da sequência de Fibonacci na posição n.
  Pre: n >= 0
```

 Crie depois um método de teste no seu programa principal que imprima os primeiros 10 valores da sequência de Fibonacci.

Sequência de Fibonacci (versão recursiva)

$$fibonacci(n) = \begin{cases} n & ,n <= 1 \\ fibonnacci(n-1) + fibonacci(n-2) & ,n > 1 \end{cases}$$

$$m = 0 + 2 + 3 + 4 = 5$$
 $Fib(n) = 0 + 1 + 2 + 3 + 4 = 5$


```
Exemplo:
Fibonacci(6)
   pen ult res
```

- Como pode ver na tabela de emulação do Fibonacci(n), a cada passo temos o valor do último ult e do penúltimo pen. Em res guardamos o valor da soma de ult com pen no passo anterior. Depois, temos de actualizar ult e pen.
- Como programar o algoritmo com um ciclo? recorde a forma genérica de um "while":

Sejam:

else

ult = 1pen = 0

Se n < 2

res = n

k++;

k = 2 um contador auxiliar

res = ult + pen;

pen = ult; ult = res;

```
inic:
while (condição){
 corpo
resultado
```

```
, n \leq 1
fibonacci(n) =
                fibonnacci(n-1) + fibonacci(n-2) , n > 1
```

Departamento de Informática FCT UNL (uso reservado ©)

```
A condição é: k<=n
O corpo é:
```


- O Algoritmo de Euclides para cálculo do Máximo Divisor Comum (mdc) é o seguinte:
- Dados dois números naturais a e b, em que pelo menos um deles é diferente de zero
 - Ver se b é zero
 - Se sim, a é o mdc;
 - Caso contrário, repetir o processo usando respectivamente b e a % b;

$$mdc(a,b) = \begin{cases} a & , se \ b = 0 \\ mdc(b,a\%b) & , se \ b \neq 0 \end{cases}$$

Por exemplo MDC(8,12) = 4

Exemplificando o algoritmo:

$$mdc(a,b) = \begin{cases} a & ,se \ b = 0 \\ mdc(b,a\%b) & ,se \ b \neq 0 \end{cases}$$

mdc(720, 500) mdc(500, 720)
mdc(500, 220)
mdc(220, 60)
mdc(60, 40)
mdc(40, 20)
mdc(40, 20)
mdc(40, 20)
mdc(40, 20)
mdc(40, 20)
mdc(20, 0)
20

Após a primeira iteração nas chamadas a mdc com o primeiro argumento menor que o segundo, a execução é semelhante à obtida quando o mdc é calculado com o primeiro argumento maior que o segundo.

 Crie um método na classe Mathematics que calcula o MDC entre dois números naturais a e b, utilizando o algoritmo de Euclides

```
public static int mdc(int a, int b)
  Devolve o mdc dos números a e b.
  Pre: a >= 0 && b >= 0
```

 Teste o método num programa principal que vá pedindo ao utilizador pares de números naturais e devolvendo, para cada par, o seu MDC. O programa deve terminar quando o utilizador tentar indicar números menores ou iguais a 0.

Máximo Divisor Comum (versão recursiva)

- O Algoritmo de Euclides para cálculo do Máximo Divisor Comum (mdc) é o seguinte:
- Dados dois números naturais a e b, em que pelo menos um deles é diferente de zero
 - Ver se b é zero
 - Se sim, a é o mdc;
 - Caso contrário, repetir o processo usando respectivamente b e a % b;

$$mdc(a,b) = \begin{cases} a & , se \ b = 0 \\ mdc(b,a\%b) & , se \ b \neq 0 \end{cases}$$

Máximo divisor comum (versão iterativa)

mdc(8, 12)	mdc(12, 8)
mdc(12, 8) mdc(8, 4) mdc(4, 0) 4	mdc(8, 4) mdc(4, 0) 4

mdc(720, 500)	mdc(500, 720)
mdc(500, 220) mdc(220, 60) mdc(60, 40) mdc(40, 20) mdc(20, 0) 20	mdc(720, 500) mdc(500, 220) mdc(220, 60) mdc(60, 40) mdc(40, 20) mdc(20, 0) 20

- Como pode ver nas tabelas de emulação do mdc(a,b), as chamadas consecutivas da função colocam no primeiro parâmetro o segundo e no segundo o resto da divisão dos dois parâmetros
- Podemos fazer isto com variáveis auxiliares!
- Mas como trocar valores?
 - Usar uma variavel extra para guardar o valor original de uma delas e depois, proceder à troca
- Como programar o algoritmo com um ciclo? recorde a forma genérica de um "while":

```
inic;
while (condição){
  corpo
}
resultado
```

```
Seja t a variável auxiliar.
A condição é: b>0
O corpo é:
   t=b;
   b=a%b;
   a=t;
O resultado é: return a;
```

Algumas ideias a reter

- Em vários destes problemas, existia uma definição recursiva bastante intuitiva (que nos era dada)
- Tipicamente, essa solução era elegante, mas pouco eficiente
- Para resolver esse problema, transformámos a solução recursiva numa solução iterativa
 - Na solução recursiva, havia um cálculo que ia sendo adiado, até se chegar ao caso base
 - Na solução iterativa, recorremos a variáveis auxiliares para realizar os cálculos intermédios que na solução recursiva iam sendo adiados
- Note bem: um estudo mais aprofundado da recursão e das técnicas para a construção de algoritmos recursivos é deixado para outras cadeiras.
- Em IP, dado um algoritmo sob a sua forma recursiva, como aconteceu com os algoritmos do factorial, Fibonacci, e máximo divisor comum de Euclides, deverá ser capaz de o implementar em Java.

A nossa biblioteca

- Praticámos a utilização de ciclos na construção de uma biblioteca com operações matemáticas diversas.
- Ficámos a conhecer alguns algoritmos clássicos da programação.
 - Vimos, para vários desses algoritmos clássicos, duas versões: uma recursiva, tipicamente intuitiva, mas menos eficiente, outra iterativa, menos intuitiva mas mais eficiente
- Criámos uma classe Mathematics, onde todos os métodos são static (estes métodos denominam-se "métodos de classe").
 - Esta classe não tem construtores, pois nunca vamos criar objectos desta classe. É como a classe Math do Java.
- De igual modo, esta classe também não tem variáveis de instância. Repare, uma variável de instância é uma variável que pertence a uma instância, ou seja, a um objecto. Se nunca vamos criar um objecto desta classe, não faria sentido criar variáveis de instância.

