PML LAB 3

G RETHINAGIRI

225229139

```
In [1]:
          import pandas as ad
          a = ad.read_csv("fuel_data.csv")
Out[4]:
              drivenKM fuelAmount
                 390.00
                               3600.0
           1
                 403.00
                              3705.0
           2
                 396.50
                              3471.0
           3
                 383.50
                              3250.5
           4
                 321.10
                              3263.7
                 391.30
                              3445.2
           5
           6
                 386.10
                              3679.0
           7
                 371.80
                              3744.5
           8
                               3809.0
                 404.30
           9
                 392.20
                              3905.0
                 386.43
                              3874.0
          10
          11
                 395.20
                              3910.0
          12
                 381.00
                              4020.7
          13
                 372.00
                              3622.0
          14
                 397.00
                              3450.5
          15
                 407.00
                              4179.0
          16
                 372.40
                              3454.2
          17
                 375.60
                               3883.8
          18
                 399.00
                              4235.9
          a.isnull()
In [5]:
```

Out[5]:	drivenKM		fuelAmount
	0	False	False
	0	False	

	drivenKM	fuelAmount
0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
5	False	False
6	False	False
7	False	False
8	False	False
9	False	False
10	False	False
11	False	False
12	False	False
13	False	False
14	False	False
15	False	False
16	False	False
17	False	False
18	False	False

a.head() In [7]:

Out[7]:

	drivenKM	fuelAmount
0	390.0	3600.0
1	403.0	3705.0
2	396.5	3471.0
3	383.5	3250.5
4	321.1	3263.7

In [8]: a.shape

(19, 2) Out[8]:

In [9]: a.size

Out[9]:

In [10]: a.columns

Index(['drivenKM', 'fuelAmount'], dtype='object') Out[10]:

```
type(a)
In [11]:
          pandas.core.frame.DataFrame
Out[11]:
In [12]:
          a.info
          <bound method DataFrame.info of</pre>
                                                 drivenKM fuelAmount
Out[12]:
                390.00
                              3600.0
                403.00
                              3705.0
          1
          2
                396.50
                              3471.0
          3
                 383.50
                              3250.5
          4
                321.10
                              3263.7
          5
                391.30
                              3445.2
          6
                386.10
                              3679.0
          7
                 371.80
                              3744.5
          8
                404.30
                              3809.0
          9
                 392.20
                              3905.0
          10
                386.43
                              3874.0
          11
                395.20
                              3910.0
          12
                381.00
                              4020.7
          13
                372.00
                              3622.0
          14
                397.00
                              3450.5
          15
                407.00
                              4179.0
                              3454.2
          16
                 372.40
          17
                 375.60
                              3883.8
          18
                 399.00
                              4235.9>
          a.shape[0]
In [13]:
Out[13]:
          import seaborn as sns
In [14]:
          sns.relplot(data=a,x="drivenKM",y="fuelAmount",hue="fuelAmount")
          <seaborn.axisgrid.FacetGrid at 0x19bb3e43310>
Out[14]:
             4200
             4000
                                                               fuelAmount
          fuelAmount
             3800
                                                                   3400
                                                                   3600
                                                                   3800
                                                                   4000
             3600
                                                                   4200
             3400
                  320
                           340
                                    360
                                              380
                                                       400
                                    drivenKM
          sns.regplot(data=a,x="drivenKM",y="fuelAmount")
In [15]:
          <AxesSubplot:xlabel='drivenKM', ylabel='fuelAmount'>
Out[15]:
```



```
In [19]: x=ad.DataFrame(a['drivenKM'])
    y=ad.DataFrame(a['fuelAmount'])
    print(x)
    print(y)
```

```
drivenKM
      390.00
0
1
      403.00
2
      396.50
3
      383.50
4
      321.10
5
      391.30
6
      386.10
7
      371.80
8
      404.30
9
      392.20
10
      386.43
11
      395.20
12
      381.00
13
      372.00
14
      397.00
15
      407.00
16
      372.40
17
      375.60
18
      399.00
    fuelAmount
0
        3600.0
1
         3705.0
2
        3471.0
3
        3250.5
4
        3263.7
5
        3445.2
6
        3679.0
7
        3744.5
8
        3809.0
9
        3905.0
10
        3874.0
11
        3910.0
12
        4020.7
13
         3622.0
14
        3450.5
15
        4179.0
16
         3454.2
        3883.8
17
18
        4235.9
```

```
type(x)
In [20]:
         pandas.core.frame.DataFrame
Out[20]:
          type(y)
In [21]:
         pandas.core.frame.DataFrame
Out[21]:
In [23]:
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.2,random_state=42)
          x_train.shape
          (15, 1)
Out[23]:
         y_train.shape
In [24]:
         (15, 1)
Out[24]:
         x test.shape
In [25]:
         (4, 1)
Out[25]:
         y_test.shape
In [26]:
          (4, 1)
Out[26]:
         from sklearn.linear_model import LinearRegression
In [28]:
          reg=LinearRegression()
          reg.fit(x_train,y_train)
         LinearRegression()
Out[28]:
In [29]:
         pred_800_KM=reg.predict([[800]])
          print("Deisel price for 800KM:",pred_800_KM[0])
         Deisel price for 800KM: [6905.64571567]
         C:\Users\elcot\anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X doe
          s not have valid feature names, but LinearRegression was fitted with feature names
           warnings.warn(
In [31]: y_pred=reg.predict(x_test)
          y_pred
         array([[3775.81615646],
Out[31]:
                 [3785.74000628],
                 [3815.51155575],
                 [3875.05465468]])
          import sklearn.metrics as metrics
In [32]:
          mse=metrics.mean_squared_error(y_test,y_pred)
          r2=metrics.r2_score(y_test,y_pred)
          print("MSE: ",mse)
          print("R2: ",r2)
          print("\n")
          print("Model parameters:")
          print("coefficient:",reg.coef_)
          print("Intercept:",reg.intercept_)
```

MSE: 46181.36710639155 R2: -0.6180990161577022

Model parameters:

coefficient: [[7.63373063]]
Intercept: [798.6612099]

In []: