MAT-266: Métodos para selección de modelos

Felipe Osorio

fosorios.mat.utfsm.cl

Departamento de Matemática, UTFSM

Objetivo:

Se desea obtener medidas de la calidad o bondad de ajuste del modelo. Consideraremos los siguientes procedimientos:

- Métodos de bondad de ajuste: R^2 , s^2 y C_p .
- Criterios de información.
- Validación cruzada.
- Métodos automáticos de selección de variables.

Observación:

Las medidas anteriores para el caso de regresión son funciones de los residuos. En efecto, si el modelo está bien ajustado, los residuos tenderán a ser pequeños.

Una medida de bondad de ajuste ampliamente usada es el coeficiente de determinación \mathbb{R}^2 , que es definido como:

$$R^2 = \{ \mathsf{corr}(\boldsymbol{Y}, \widehat{\boldsymbol{Y}}) \}^2.$$

En caso de modelos de regresión con intercepto, tenemos

$$R = \frac{\sum_{i=1}^{n} (Y_i - \overline{Y})(\widehat{Y}_i - \overline{Y})}{\left\{\sum_{i=1}^{n} (Y_i - \overline{Y})^2 \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2\right\}^{1/2}}.$$

Sabemos que

$$\sum_{i=1}^{n} e_i = 0, \qquad \sum_{i=1}^{n} e_i \widehat{Y}_i = 0.$$

Además,

$$\frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} \widehat{Y}_i.$$

Tenemos

$$\sum_{i=1}^{n} (Y_i - \overline{Y})(\widehat{Y}_i - \overline{Y}) = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i + \widehat{Y}_i - \overline{Y})(\widehat{Y}_i - \overline{Y})$$

$$= \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)(\widehat{Y}_i - \overline{Y}) + \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$

$$= \sum_{i=1}^{n} e_i \widehat{Y}_i - \overline{Y} \sum_{i=1}^{n} e_i + \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$

$$= \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2.$$

De ahí que

$$R = \left\{ \frac{\sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2}{\sum_{i=1}^{n} (Y_i - \overline{Y})^2} \right\}^{1/2}$$

Sea

$$SYY = \sum_{i=1}^{n} (Y_i - \overline{Y})^2,$$

y recordando que

$$SYY = \mathsf{RSS} + \!SS_{\mathsf{Regr}}$$

con RSS = $\sum_{i=1}^n (Y_i-\widehat{Y}_i)^2$ y $SS_{\mathsf{Regr}} = \sum_{i=1}^n (\widehat{Y}_i-\overline{Y})^2.$ Sigue que

$$R^2 = \frac{\sum_{i=1}^n (\widehat{Y}_i - \overline{Y})^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} = \frac{SS_{\mathsf{Regr}}}{SYY} = 1 - \frac{\mathsf{RSS}}{SYY}.$$

 $\sqrt{R^2}$ corresponde al coeficiente de correlación múltiple entre $m{Y}$ y $\hat{m{Y}}$, de este modo

$$0 \le R^2 \le 1$$
,

y un modelo será bien ajustado cuando \mathbb{R}^2 sea cercano a 1.

Lamentablemente, \mathbb{R}^2 no toma en cuenta la cantidad de parámetros en el modelo. Considere un modelo con k regresores, entonces podemos usar:

$$s_k^2 = \frac{\mathsf{RSS}_k}{n-k}.$$

Otro criterio es el R^2 -ajustado, dado por

$$R_{\text{adj}}^2 = 1 - (1 - R_k^2) \left(\frac{n-1}{n-p}\right)$$

Asumiendo un modelo con intercepto, tenemos $R_k^2 = 1 - \mathsf{RSS}_k \, / SYY$ y de ahí que

$$R_{\mathrm{adj}}^2 = 1 - \frac{\mathrm{RSS}_k}{SYY} \Big(\frac{n-1}{n-p}\Big) = 1 - \frac{s_k^2}{SYY/(n-1)}.$$

De este modo, modelos con máximo $R^2_{
m adj}$ corresponden a modelos con mínimo s^2_k

Considere $\epsilon=Y-\mu$ y suponga un modelo con k regresores. Luego, $\widehat{\mu}=X\widehat{\widehat{eta}}=HY$ y sea

$$\mathsf{ME} = \|\boldsymbol{\mu} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}\|^2$$

el error de modelo. De este modo,

$$\begin{aligned} \mathsf{ME} &= \|\boldsymbol{\mu} - \boldsymbol{H}\boldsymbol{Y}\|^2 = \|\boldsymbol{\mu} - \boldsymbol{H}(\boldsymbol{\epsilon} + \boldsymbol{\mu})\|^2 = \|(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{\mu} - \boldsymbol{H}\boldsymbol{\epsilon}\|^2 \\ &= \|(\boldsymbol{I} - \boldsymbol{H})\boldsymbol{\mu}\|^2 + \|\boldsymbol{H}\boldsymbol{\epsilon}\|^2 = \boldsymbol{\mu}^\top (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{\mu} + \boldsymbol{\epsilon}^\top \boldsymbol{H}\boldsymbol{\epsilon}. \end{aligned}$$

Esto nos permite obtener

$$\begin{split} \mathsf{E}(\mathsf{ME}) &= \boldsymbol{\mu}^\top (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{\mu} + \mathsf{E}(\boldsymbol{\epsilon}^\top \boldsymbol{H} \boldsymbol{\epsilon}) = \boldsymbol{\mu}^\top (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{\mu} + \sigma^2 \operatorname{tr} \boldsymbol{H} \\ &= \boldsymbol{\mu}^\top (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{\mu} + \sigma^2 k \end{split}$$

Ahora,

$$\begin{split} \mathsf{E}(\mathsf{RSS}_k) &= \mathsf{E}\{\boldsymbol{Y}^\top (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y}\} = \boldsymbol{\mu}^\top (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{\mu} + (n-k)\sigma^2 \\ &= \mathsf{E}(\mathsf{ME}) + (n-2k)\sigma^2. \end{split}$$

De este modo,

$$\frac{\mathsf{E}(\mathsf{ME})}{\sigma^2} = \frac{\mathsf{E}(\mathsf{RSS}_k)}{\sigma^2} + 2k - n.$$

Si consideramos estimar σ^2 por $s_p^2,$ entonces podemos usar el criterio C_p de Mallows, dado por

$$C_p = \frac{\mathsf{RSS}_k}{s_p^2} + 2k - n,$$

como una estimación de $\mathsf{E}(\mathsf{ME})/\sigma^2$.

Si el modelo está bien ajustado, entonces $\|(I-H)\mu\|^2=\mu^\top(I-H)\mu$ será pequeño. Así,

$$\mathsf{E}(C_p) \approx \frac{\mathsf{E}(\mathsf{RSS}_k)}{\sigma^2} + 2k - n = \frac{\boldsymbol{\mu}^\top (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{\mu}}{\sigma^2} + n - k + 2k - n$$
$$\approx k.$$

Es decir, escogemos aquél modelo cuyo C_p sea más cercano a k.

La discrepancia de Kullback-Leibler (KL) entre las funciones de densidad g(x) y f(x) es dada por:

$$D_{\mathsf{KL}}(g:f) = \int \log \Big(\frac{g(x)}{f(x)}\Big) g(x) \, \mathrm{d}x = \mathsf{E}_G \, \Big[\log \Big(\frac{g(x)}{f(x)}\Big) \Big].$$

La discrepacia KL (o información) tiene las propiedades:

- (a) $D_{\mathsf{KL}}(g:f) \geq 0$.
- (b) $D_{\mathsf{KL}}(g:f) = 0 \Leftrightarrow g(x) = f(x)$ (casi en toda parte).

Suponga Y_1,\ldots,Y_n variables aleatorias siguiendo el modelo verdadero g y denote por θ_0 el valor verdadero de θ . Considere que se ajusta el modelo candidato $f(y;\theta)$ maximizando

$$\ell(\boldsymbol{\theta}) = \sum_{j=1}^{n} \log f(y_j; \boldsymbol{\theta})$$

Esto sugiere escoger aquél modelo que minimice la discrepancia $D_{\mathsf{KL}}(g:f_{\theta})$.

Considere la expansión en series,

$$\log f(\boldsymbol{y}; \widehat{\boldsymbol{\theta}}) \approx \log f(\boldsymbol{y}; \boldsymbol{\theta}_0) + (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)^{\top} \frac{\partial \log f(\boldsymbol{y}; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} + \frac{1}{2} (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)^{\top} \frac{\partial^2 \log f(\boldsymbol{y}; \boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}} (\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0).$$

Notando que θ_0 minimiza $D_{\mathsf{KL}}(g:f_\theta)$, tenemos

$$\int \frac{\partial \log f(\boldsymbol{y};\boldsymbol{\theta}_0)}{\partial \boldsymbol{\theta}} \, g(\boldsymbol{y}) \, \mathrm{d} \, \boldsymbol{y} = \boldsymbol{0}$$

De ahí que

$$\begin{split} nD_{\mathsf{KL}}(g:f_{\widehat{\boldsymbol{\theta}}}) &= n \int \log \Big(\frac{g(\boldsymbol{y})}{f(\boldsymbol{y};\widehat{\boldsymbol{\theta}})}\Big) g(\boldsymbol{y}) \, \mathrm{d}\, \boldsymbol{y} \\ &\approx nD_{\mathsf{KL}}(g:f_{\boldsymbol{\theta}_0}) + \frac{1}{2} \operatorname{tr}\{(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{\mathcal{F}}_g(\boldsymbol{\theta}_0)\}, \end{split}$$

con

$$\boldsymbol{\mathcal{F}}_g(\boldsymbol{\theta}) = -n \int \frac{\partial^2 \log f(\boldsymbol{y};\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} g(\boldsymbol{y}) \, \mathrm{d}\, \boldsymbol{y} = n \, \mathsf{E}_g \, \Big\{ - \frac{\partial^2 \log f(\boldsymbol{y};\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top} \Big\}.$$

Sea

$$\mathcal{K}_g(\boldsymbol{\theta}) = n \int \frac{\partial \log f(\boldsymbol{y}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \log f(\boldsymbol{y}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}^\top} g(\boldsymbol{y}) \, \mathrm{d}\, \boldsymbol{y} = n \, \mathsf{Cov}_g(\boldsymbol{U}(\boldsymbol{\theta})).$$

Observación:

Si
$$g(y) = f(y; \theta)$$
, entonces $\mathcal{F}_g(\theta) = \mathcal{K}_g(\theta) = \mathcal{F}(\theta)$.

Cuando el modelo es mal especificado, tenemos

$$\sqrt{n}(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \overset{\mathsf{D}}{\to} \mathsf{N}_p(\boldsymbol{0}, \boldsymbol{\mathcal{F}}_q^{-1}(\boldsymbol{\theta}_0) \boldsymbol{\mathcal{K}}_g(\boldsymbol{\theta}_0) \boldsymbol{\mathcal{F}}_q^{-1}(\boldsymbol{\theta})).$$

De ahí que

$$n \, \mathsf{E}_g \{ D_{\mathsf{KL}}(g:f_{\widehat{\theta}}) \} \approx n D_{\mathsf{KL}}(g:f_{\theta_0}) + \frac{1}{2} \operatorname{tr} \{ \boldsymbol{\mathcal{F}}_g^{-1}(\boldsymbol{\theta}_0) \boldsymbol{\mathcal{K}}_g(\boldsymbol{\theta}_0) \}. \tag{1}$$

Mientras que, cuando el modelo es correcto y regular, tenemos ${\cal F}_g({m heta}_0)={m extbf{K}}_g({m heta}_0)$ de modo que

$$\operatorname{tr}\{\boldsymbol{\mathcal{F}}_g^{-1}(\boldsymbol{\theta}_0)\boldsymbol{\mathcal{K}}_g(\boldsymbol{\theta}_0)\}=p$$

Para estimar (1), considere

$$\ell(\widehat{\boldsymbol{\theta}}) = \ell(\boldsymbol{\theta}_0) + \{\ell(\widehat{\boldsymbol{\theta}}) - \ell(\boldsymbol{\theta}_0)\}.$$

De este modo

$$\begin{split} \mathsf{E}_g\{-\ell(\widehat{\boldsymbol{\theta}})\} &= -\,\mathsf{E}\{\ell(\boldsymbol{\theta}_0) + \tfrac{1}{2}LR(\boldsymbol{\theta})\} \\ &\approx nD_{\mathsf{KL}}(g:f_{\boldsymbol{\theta}_0}) - \tfrac{1}{2}\operatorname{tr}\{\boldsymbol{\mathcal{F}}_g^{-1}(\boldsymbol{\theta}_0)\boldsymbol{\mathcal{K}}_g(\boldsymbol{\theta}_0)\} - n\int g(\boldsymbol{y})\log g(\boldsymbol{y})\,\mathrm{d}\,\boldsymbol{y}, \end{split}$$

con $LR(\pmb{\theta}_0) = 2\{\ell(\widehat{\pmb{\theta}}) - \ell(\pmb{\theta}_0)\}$ el estadístico de razón de verosimilitudes.

Un estimador de (1) es $-\ell(\widehat{\boldsymbol{\theta}}) + c$ donde c estima $\operatorname{tr}\{\mathcal{F}_g^{-1}(\boldsymbol{\theta}_0)\mathcal{K}_g(\boldsymbol{\theta}_0)\}$. Dos posibles elecciones de c son p y $\operatorname{tr}(\widehat{\boldsymbol{\mathcal{J}}}^{-1}\widehat{\boldsymbol{\mathcal{K}}})$ con

$$\begin{split} \widehat{\boldsymbol{\mathcal{J}}} &= -\sum_{j=1}^n \frac{\partial^2 \log f(y_j; \widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^\top}, \\ \widehat{\boldsymbol{\mathcal{K}}} &= \sum_{j=1}^n \frac{\partial \log f(y_j; \widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}} \frac{\partial \log f(y_j; \widehat{\boldsymbol{\theta}})}{\partial \boldsymbol{\theta}^\top}. \end{split}$$

Lo anterior lleva a los criterios de información de Akaike y de red:

$$AIC = -2\ell(\widehat{\boldsymbol{\theta}}) + 2p,$$

$$NIC = -2\ell(\widehat{\boldsymbol{\theta}}) + 2\operatorname{tr}(\widehat{\boldsymbol{\mathcal{J}}}^{-1}\widehat{\boldsymbol{\mathcal{K}}}),$$

otra posibilidad es el criterio de información de Schwarz, dado por

$$SIC = -2\ell(\widehat{\boldsymbol{\theta}}) + p\log n.$$

Suponga en modelo de regresión lineal con k regresores, es decir $\boldsymbol{\theta}=(\boldsymbol{\beta}^{\top},\sigma^2)^{\top}$ es vector (k+1)-dimensional. Tenemos

$$\ell(\boldsymbol{\theta}) = -\frac{n}{2} \log 2\pi \sigma^2 - \frac{1}{2\sigma^2} \|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}\|^2.$$

Además, RSS = $\| {m Y} - {m X} \widehat{m eta} \|^2$, $\widehat{\sigma}^2 = {
m RSS} \, / n$. De este modo,

$$\begin{split} AIC &= n \log 2\pi + n \log \widehat{\sigma}^2 + \frac{1}{\widehat{\sigma}^2} \|\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}}\|^2 + 2(k+1) \\ &= n \log 2\pi + n \log(\operatorname{RSS}/n) + \frac{n}{\operatorname{RSS}} \operatorname{RSS} + 2(k+1) \\ &= n \log(\operatorname{RSS}/n) + 2(k+1) + n (\log 2\pi + 1) \end{split}$$

Suponga $(\widetilde{x}_1,\widetilde{Y}_1),\ldots,(\widetilde{x}_n,\widetilde{Y}_n)$ un conjunto de datos nuevos que siguen el mismo modelo que los datos de entrenamiento $(x_1,Y_1),\ldots,(x_n,Y_n)$. Podemos considerar el error de predicción

$$\mathsf{PE} = \frac{1}{m} \sum_{j=1}^{m} (\widetilde{Y}_i - \widetilde{\boldsymbol{x}}_i^{\top} \widehat{\boldsymbol{\beta}})^2,$$

donde $\widehat{oldsymbol{eta}}$ es calculado usando los datos de entrenamiento.

Objetivo:

Podemos subdividir el conjunto de entrenamiento en dos conjuntos disjuntos uno para obtener $\widehat{\beta}$ y otro para medir el error.

Considere seleccionar un subconjunto D con d observaciones, donde usamos las n-d observaciones restantes para calcular $\mathsf{PE}(D)$.

Una alternativa es repetir el proceso, seleccionando D_1,D_2,\ldots , y promediar $\mathsf{PE}(D_1)$, $\mathsf{PE}(D_2),\ldots$ Este método es llamado validación cruzada.

Existen diversos procedimientos para elegir tales subconjuntos:

- Métodos exhautivos: leave-p-out, leave-one-out.
- Métodos no exhautivos: k-fold, Monte Carlo CV.

La versión más simple de validación cruzada es eliminar una observación a la vez 1 y obtener $\widehat{m{\beta}}_{(i)},\ i=1,\dots,n.$ Esto lleva al error de predicción leave-one-out o CV

$$\mathsf{CV} = \frac{1}{n} \sum_{i=1}^n (Y_i - \boldsymbol{x}_i^\top \widehat{\boldsymbol{\beta}}_{(i)})^2$$

Observación:

La estadística

$$\mathsf{PRESS} = \sum_{i=1}^n (Y_i - \widehat{Y}_{i(i)})^2 = \sum_{i=1}^n (Y_i - \boldsymbol{x}_i^\top \widehat{\boldsymbol{\beta}}_{(i)})^2$$

es conocida como suma de cuadrados (residual) de predicción.

¹Selectional conjuntos D con d > 1 es computacionalmente intenso.

Es fácil mostrar que

$$\begin{aligned} Y_i - \boldsymbol{x}_i^{\top} \widehat{\boldsymbol{\beta}}_{(i)} &= Y_i - \boldsymbol{x}_i^{\top} \left[\widehat{\boldsymbol{\beta}} - \frac{e_i}{1 - h_{ii}} (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{x}_i \right] \\ &= Y_i - \boldsymbol{x}_i^{\top} \widehat{\boldsymbol{\beta}} + \frac{e_i h_{ii}}{1 - h_{ii}} = \frac{e_i}{1 - h_{ii}}. \end{aligned}$$

De ahí que

$$\mathsf{CV} = \frac{1}{n} \sum_{i=1}^n \Big(\frac{Y_i - \boldsymbol{x}_i^\top \widehat{\boldsymbol{\beta}}}{1 - h_{ii}} \Big)^2.$$

Observación:

Anteriormente usamos el criterio de validación cruzada generalizada para seleccionar el parámetro de sesgo k en regresión ridge

$$V(k) = \frac{1}{n} \frac{\|\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}_k\|^2}{\{\operatorname{tr}(\boldsymbol{I} - \boldsymbol{H}(k))/n\}^2}.$$

Ejemplo:

Considere datos de ventas en 15 regiones con 3 regresores $X_1,\ X_2$ y $X_3,$ donde se obtuvo

p	Variables	RSS_p
1	_	428 144.64
2	X_1	88 473.00
	X_2	44 683.00
	X_3	32 483.00
3	X_1, X_2	43 968.00
	X_1, X_3	32 086.00
	X_2, X_3	535.00
4	X_1, X_2, X_3	273.00

Tenemos que

$$SYY = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = 428144.64, \qquad s^2 = \frac{\mathsf{RSS}}{n-p} = \frac{273.00}{15-4} = 24.818$$

De este modo, los criterios de selección de modelos resultan:

Variables	R_p^2	s_p^2	$R^2_{\sf adj}$	C_p	AIC	SIC
_	0.000	30581.760	0.000	17238.249	157.887	159.304
$\overline{X_1}$	0.793	6805.615	0.777	3553.846	136.236	138.360
X_2	0.896	3437.154	0.888	1789.414	125.989	128.114
X_3	0.924	2498.692	0.918	1297.839	121.206	123.330
X_1, X_2	0.897	3664.000	0.880	1762.604	127.748	130.580
X_1, X_3	0.925	2673.833	0.913	1283.842	123.022	125.854
X_2, X_3	0.999	44.583	0.999	12.557	61.613	64.445
X_1, X_2, X_3	0.999	24.818	0.999	4.000	53.521	57.062

