Статистическая природа обучения

Корлякова М.О.

2018

Оценка классификатора

VC - измерение

- ограничение на скорость сходимости
- измерение Вапника-Червоненкиса (1971)

 мера емкости (вычислительной мощности) семейства функций классификации, реализованных обучаемыми машинами.

 VC-измерением классификатора F называют мощность наибольшего множества L, разбиением которого является F.

VC-измерение комбинаторно

двоичная классификация

• $d=\{0,1\}$

- правило F(**x**,w) i-я дихотомия
- множество дихотомий, реализованных обучаемой машиной

$$F = \{F(\mathbf{x}, W) : W \in W, F: \Re^m W \to \{0, 1\}\}\$$

 L = {xi∈X: i=1.N} – точки m-мерного пространства

дихотомия делит L на L1, L0

 $F(x,w)={0}$ для x∈L0 , 1 для x∈L1}

• $\Delta_{\mathsf{F}}(\mathsf{L})$ - число различных дихотомий

• $\Delta_{\mathsf{F}}(\ell)$ - максимум для $\Delta_{\mathsf{F}}(\mathsf{L})$ всех L, где $|\mathsf{L}| = \ell$

• $\Delta_{\mathsf{F}}(\ell)$ - функция роста.

Пример

Функция роста

• $\Delta_{\mathsf{F}}(\ell) \equiv 2^{|\ell|}$

ИЛИ

- мажорируется $\Delta_{F}(\ell) \leq 1.5 \ell^{n}/n!$
- n+1 минимальный объем выборки для которого нарушено условие 2 | ^ℓ |

 VC-измерением F(x,w) называют мощность наибольшего множества L, разбиением которого является F(x,w)

• VC-измерение комбинаторно

Скорость сходимости

- R(w) функционал риска –вероятность ошибка классификатора.
- R_{етр}(w) функционал эмпирического риска
 - частота ошибка.

• При N $\rightarrow \infty$, $R_{emp}(w) \rightarrow R(w)$

Доверительный интервал

- Связь ошибки обучения, объема выборки и вероятности достижения | R(w) R_{emp}(w) | > ε для текущей модели.
- $R(w) < R_{emp}(w) + \varepsilon$

$$\varepsilon 0(N,h,a) = 2 (h/N \times [\log(2\times N/h)+1)]-1/N \times \log a$$

$$\varepsilon 1(N,h,a,R_{emp}) = 2 \times \varepsilon 0(N,h,a) \times (1 + \sqrt{(1 + R_{emp}(w) / \varepsilon 0(N,h,a))})$$

Если
$$R_{emp}(w)=0$$
 , $\varepsilon 1(N,h,a,R_{emp})=4*\varepsilon 0^2(N,h,a)$

Скорость сходимости

- Ограничение 1 (общий случай)
- $R(w) \leq R_{emp}(w) + \varepsilon 1(N,h,a, R_{emp})$
- Ограничение 2 (при малой величине $R_{emp}(w)$) $R(w) \leq R_{emp}(w) + 4\varepsilon O(N,h,a)$
- Ограничение 3 (для большой $R_{emp}(w)$) $R(w) \leq R_{emp}(w) + \varepsilon O(N,h,a)$

	малая емкость класс F(X,W)	большая емкость класс F(X,W)
Близость эмпирического правила к оптимальному	хорошая	плохая
Качество разделения	низкое	высокое

Минимизация структурного риска

Гарантированный риск

$$R_{guarant}(w) = R_{emp}(w) + \varepsilon 1(N, h, a, R_{emp})$$

- *h VC* измерение классификатора *F*
- N число примеров для обучения
- €1 доверительный интервал

*R*_{gene} – ошибка обобщения

Требование к обучению с учителем.

 Необходимо привести в соответствие объем классификатора и объем выборки.

- Рассмотрим
- $Fk=\{F(X,w); w\in W\} k=1,2,...,n$

- F1 ⊂F2 ⊂... ⊂Fn
- $h_1 \leq h_2 \leq \ldots \leq h_n$

Пример

- 3000 примеров для обучения и 3000 для теста
- Определена средняя ошибка обобщения по 10 перезапускам
- Число настраиваемых параметров 2*3 (5, 7, 9, 11, 13, 15, 17, 19, 22, 24, 26, 27)

Модель множества Т

Результаты моделирования

Метод минимизации структурного риска

- Минимизируем R_{emp} для каждого классификатора.
- Определяем F*, который имеет наименьший R_{quarant}(w)

Резюме:

Типы обучения

- Обучение с учителем T={(Xi,Yi)}
- Обучение без учителя Т={(Xi)}

- ψ стохастическое явление, где X случайный вектор из n независимых переменных
- Случайный скаляр D зависимая переменная
- Представлено N реализаций примеров вектора X, {Xi}, i=1.N и соответствующих им значений случайного скаляра D, {di}

Обучающая выборка

•
$$T = \{(Xi,di)\}, i=1.N$$

Регрессионная модель связи X и D

- lacktriangle ожидаемая ошибка
 - нормально распределена
 - $M(\varepsilon)=0$
- *f*(•) детерминированная функция векторного аргумента.

Представление регрессионной модели

 Среднее значение ожидаемой ошибки ε для любой реализации X

$$E[\varepsilon|x] = 0$$

следовательно

$$f(x) = E[D|x]$$

 Принцип ортогональности. Ошибка ε не коррелирует с функцией регрессии f(X)

$$E[\varepsilon f(X)]=0$$

Вся информация о D, доступная через X, закодирована в функции регрессии f(X).

$$E[\varepsilon f(X)] = E[E[\varepsilon f(X)|x]] = E[f(X) E[\varepsilon|x]] = E[f(X)*0] = 0$$

Физическое представление

 Позволяет закодировать эмпирические знания выборки *T*, с помощью синаптических весов *w*

$$T \rightarrow W$$

$$Y = F(X, W)$$

Определение w

• Минимизация функции стоимости пакетное обучение:

$$Er(w) = \frac{1}{2} \sum (d_i - F(x_i, w))^2$$

• T.K. $T \rightarrow W$,

то F(x,w) заменяема на F(x,T),

$$Er(w) = \frac{1}{2} ET[(d_i - F(x_i, T))^2],$$
 где

Eт[•] – оператор усреднения по Т

•
$$d - F(x,T) = (d - f(x)) + (f(x) - F(x,T)) =$$

 $\varepsilon + (f(x) - F(x,T)),$

• тогда

$$Er(w) = \frac{1}{2} ET[\varepsilon^2] + \frac{1}{2} ET[(f(x) - F(x,T))^2] + ET[\varepsilon(f(x) - F(x,T))]$$
, $\varepsilon \partial e$

$$ET[\varepsilon (f(x) - F(x,T))] = 0$$

• $Er(w) = \frac{1}{2} ET[\varepsilon^2] + \frac{1}{2} ET[(f(x) - F(x,T))^2]$

- Ет[ε²] дисперсия ожидаемой ошибки (регрессионной) вычисляемой на Т.
- ε исходная ⇒ не зависит от w, а значит ее можно не учитывать, т.к. Er(w)
- $ET[(f(x) F(x,T))^2] среднее по ансамблю расстояние от <math>f(x)$ к F(x,T)

Функция стоимости для построения w

• $Er(w) = \frac{1}{2} ET[(f(x) - F(x,T))^2]$

$$L_{av}(f(x), F(x,T)) = ET[(f(x) - F(x,T))^2]$$

$$f(x) = E[D|x]$$

$$L_{av}(f(x), F(x,T)) = ET[(E[D|X=x]-F(x,T))^2](1)$$

Ошибка оценивания регрессионной функции f(X) аппроксимационной F(x,T)

$$(E[D|X=x]-F(x,T)) =$$

 $(E[D|X=x]-ET[F(x,T)]) + (ET[F(x,T)]-F(x,T))$ (2)

Тогда

$$L_{av}(f(x),F(x,T))=ET[(E[D|X=x]-F(x,T))^{2}]=B^{2}(w)+V(w) \quad (3)$$

 $B(w) = E_T [(E[D|X=x] - F(x, T))] -$ смещение среднего для F(x, T) относительно $f(x) \Rightarrow$ **ошибка аппроксимации** $V(w) = E_T [(E_T[F(x, T)] - F(x, T))^2] -$ **дисперсия** F(x, T) на всем T.

 Одновременно уменьшить смещение и дисперсию можно только для бесконечно большой выборки

Теория статистического обучения.

Объем выборки

• Объем выборки должен быть адекватным

• Каким?

Модель обучения с учителем

 Выбор конкретной F(x,w), который оптимально аппроксимирует отклик d, где выбор основан на N независимых, равномерно распределенных примерах.

•
$$T = \{(Xi,di)\}, i=1.N$$

Мера потерь

ПУСТЬ

L(d, F(x,w)) – мера потерь или несходства между желаемым откликом d на вектор x и F(x,w)

$$L(d, F(x,w)) = (d_i - F(x_i, T))^2$$

$$Lav(f(x), F(x,T)) = ET[(f(x) - F(x,T))^2] - мера прогнозирования$$

Ожидаемая величина потерь

- $R(w) = \int L(d, F(x,w)) dF_{x,D}(x,d)$ (6)
- Цель обучения с учителем минимизация функционала риска R(w) в классе функций аппроксимации F(x,w).
- F_{x,D}(x,d) обобщенная функция распределения

Принцип минимизации эмпирического риска

• $R_{emp}(w) = 1/N\Sigma L(d_i, F(x_i, w)), i=1.N (7)$

Достоинства:

- Не зависит от распределения F_{x,D}(x,d)
- Можно минимизировать по w

- \bullet w_{emp} и F(x, w_{emp}) соответствуют минимуму функционала R_{emp}(w)
- w₀ и F(x, w₀) соответствуют минимуму функционала R (w)
- \bullet W_{emp} и $W_0 \in W$
- Найти условия, при которых F(x, w_{emp}) близко к F(x, w_o)
- Мера близости разница между R_{етр}(w) и R(w)

Если R_{емр}(w) аппроксимирует R(w) равномерно с точностью ε, то их минимумы отстоят друг от друга не более чем на 2ε

- P(sup | R(w) R_{emp}(w) | > ϵ) \rightarrow 0 N $\rightarrow\infty$
- $P(\sup | R(w) R_{emp}(w) | > \epsilon) < a$ (8)
- $P((R(w_{emp}) R(w_0)) > 2\varepsilon) < a$ (9)

•
$$R(W_{emp}) - R_{emp}(W_{emp}) < \varepsilon$$
 (10)

• R_{emp} (W_0) - R (W_0)) < ε

• $R_{emp}(W_{emp}) - R(W_0) < 2\varepsilon$ (11)

Принцип минимизации эмпирического риска

$$R(w)$$
 на $R_{emp}(w)$ $R_{emp}(w) = 1/N\Sigma L(d_i, F(x_i, w))$ $i=1.N, x_i, \in T$

2

Пусть w_{emp} минимизирует $R_{emp}(w)$ в W, тогда $R_{emp}(w)$ равномерно сходится по вероятности к R(w) на растущем N.

3 Равномерная сходимость

P(sup | R(w) - R_{emp}(w) | >
$$\epsilon$$
)→0, N→∞ (12) необходимое и достаточное условие непротиворечивости принципа минимизации эмпирического риска.

• 8 параметров

Где остановиться

Для модели с конечным VC.

• Размер выборки

• N=K/ ϵ (h log(1/ ϵ) + log(1/ β))

P(L,g|Vtrain<ε)> (1-δ) вероятность ошибки ε для алгоритма L на модели g c выборкой Vtrain

Основные положения

- 1. Множество всех объектов является вероятностным пространством с некоторой неизвестной вероятностной мерой.
- 2. Обучающие объекты выбираются случайно и независимо согласно этой мере.
- з. Фиксируется некоторое семейство алгоритмов.
- Процесс обучения заключается в построении алгоритма, принадлежащего данному семейству, и доставляющего минимум эмпирическому риску на заданной обучающей выборке.
- 5. Обобщающая способность алгоритма характеризуется вероятностью ошибочной классификации.
- 6. В общем случае мы не знаем, какой именно алгоритм будет построен в результате обучения.
- 7. Водится требование *равномерной сходимости* частоты ошибок к вероятности: частота ошибок должна не сильно отклоняться от их вероятности одновременно для всех алгоритмов семейства.
- 8. Стремление этого отклонения к нулю с ростом длины выборки принимается за определение обучаемости семейства алгоритмов.

Основные результаты

- Введены понятия функции роста и ёмкости семейства алгоритмов, характеризующие сложность.
- Количественные оценки, связывающие обобщающую способность алгоритмов с длиной обучающей выборки и сложностью семейства алгоритмов. Эти оценки дают достаточные условия обучаемости.
- Получены необходимые и достаточные условия равномерной сходимости частоты к вероятности в терминах энтропии семейства алгоритмов.
- Предложен метод структурной минимизации риска.

- Проблема статистической теории является завышенность оценок.
 Непосредственный расчёт показывает, что для надёжного обучения необходимо иметь порядка 10⁶—10⁸ объектов.
- Причина завышенности статистических оценок является их чрезмерная общность.

Модификации

- Эффективная емкость
 - Не превосходит VC измерение
 - учитывает особенности распределения объектов
 - Не учитывает алгоритм и выборку
 - Метод самоограничивающихся алгоритмов
- Отступы (поля margins) SVM
 - Альтернативная функция роста fatразмерность
 - Обучение с максимизацией отступа

Модификации

- Композиции алгоритмов
 - Алгебраический подход к построению корректных алгоритмов
 - Области компетентности
 - Багинг bagging
 - Бустинг -boosting

Модификации

• Скользящий контроль

Определить тип классификатора

- Вариант 1
 - Линейный
 - Полином 2 степени
 - Комбинация гиперсфер

- Вариант 2
 - Линейный
 - Полином 2 степени
 - Комбинация гиперсфер

Литература

- Теория надёжности обучения по прецедентам (курс лекций, К.В.Воронцов) http://www.machinelearning.ru/wiki/index.php
- Хайкин С. Нейрокомпьютеры: полный курс. М.:Вильямс 2006
- Математические методы распознавания образов. Курс лекций. МГУ, ВМиК, кафедра «Математические методы прогнозирования» Местецкий Л.М., 2002— 2004