Interference in $K_S^0 K_S^0$ spectrum

Libov Vladyslav

May 7, 2009

Selection: reminder

- ▶ Data: HERA II (04-07) inclusive
- No explicit trigger
- V0lite finder

▶ Tracks

- Not primary
- \circ $p_T > 100 \text{ MeV}$
- $\circ \geq 3SL$, start from 1st

► *K*_S⁰

- $\circ \ \theta_{2D} < 0.12 \ \mathrm{rad}$
- $\theta_{3D} < 0.24 \text{ rad}$
- $m(p\pi) < 1.21 \text{ GeV}$
- om(ee) > 0.05 GeV
- $p_T > 0.3 \text{ GeV}$
- $\circ \ |\eta| < 1.75 \; {
 m GeV}$

Model description

- ▶ Main assumption: only $f_2(1270)$, $a_2(1320)$, $f_2(1525)$, $f_0(1710)$ contribute
- ▶ Other possible: $f_0(1370)$, $a_0(1450)$, $f_0(1500)$, ... (e.g. $f_0(1500)$ was observed in $K\overline{K}$, see Ref.[2])
- ▶ Also $f_0(980)$, $a_0(980)$. Have **large** coupling to $K\overline{K}$ (e.g. Ref. [2], backup)
- ▶ Simplest background model, $Bg(m) = m^{p_0}e^{-p_1m}$
- M, Γ of resonances are free unless otherwise stated

Check various assumptions

- ▶ Single peak for $f_2(1270)/a_2(1320)$
- ▶ Incoherent addition of $f_2(1270)$, $a_2(1320)$ and others
- ▶ Relative amplitudes and phases fixed to $\gamma\gamma$ (+5/-3/+2)
- ▶ Determine relative amplitudes and phases from the fit (maximum coherence, $\beta_{12} = \beta_{13} = \beta_{23} = 1$, see next 2 slides for definition)
- ▶ Coherence factors (β_{12} , β_{13} , β_{23}) free
- $f_2(1525)$ does not interfere $(\beta_{13} = \beta_{23} = 0)$
- $a_2(1320)$ does not interfere $(\beta_{12} = \beta_{23} = 0)$

Reminder

Interfering Breit-Wigners

$$\blacktriangleright BW_k(m) = \frac{M_k \sqrt{\Gamma_k}}{M_k^2 - m^2 - iM_k \Gamma_k} = Re_k + iIm_k$$

▶ M_k , Γ_k – mass and width of resonance k

►
$$Re_k = \frac{M_k \sqrt{\Gamma_k} (M_k^2 - m^2)}{(M_k^2 - m^2)^2 + M_k^2 \Gamma_k^2}, Im_k = \frac{M_k \sqrt{\Gamma_k} M_k \Gamma_k}{(M_k^2 - m^2)^2 + M_k^2 \Gamma_k^2}$$

$$|BW_k|^2 = Re_k^2 + Im_k^2 = \frac{M_k^2 \Gamma_k}{(m^2 - M_k^2)^2 + m_k^2 \Gamma_k^2}$$

Now consider *n* interfering resonances, i.e. $f(m) = |\sum_{i=1}^{n} \alpha_k e^{i\delta_k} BW_k(m)|^2$

▶ One of the phases can be ruled out

Reminder

Interfering Breit-Wigners

- After some algebra:
- ightharpoonup f(m) = A + B, where
- ► $A = \sum_{i=1}^{n} \alpha_k^2 |BW_k|^2$ incoherent term
- ► B = $\sum_{k \neq I} \alpha_k \alpha_I [\cos(\delta_k \delta_I)(Re_k Re_I + Im_k Im_I) + 2\sin(\delta_k \delta_I)Re_k Im_I]$ interference term
- ▶ For general treatment, introduce 'coherence factors' $\beta_{kl} \in [0,1]$, i.e. (see e.g. [3])
 - ► $B = \sum_{k \neq l} \beta_{kl} \alpha_k \alpha_l [\cos(\delta_k \delta_l)(Re_k Re_l + Im_k Im_l) + 2\sin(\delta_k \delta_l)Re_k Im_l]$
 - $\beta_{kl} = 0$ means incoherent addition of resonances k and l
 - $\beta_{kl} = 1$ means maximum coherence

Fit-I

Incoherent addition of Breit-Wigners. Single peak for $f_2(1270)/a_2(1320)$

▶ Was used e.g. in [1], [2] (see backup)

 $\Gamma_{f_0(1710)}$ free

 $\Gamma_{f_0(1710)}$ constrained to PDG

Generally nice description. Dip not perfect.

Fit-IIa

Incoherent addition of Breit-Wigners. Separate peaks for $f_2(1270)$ and $a_2(1320)$

▶ Masses and widths of $f_2(1270)$ and $a_2(1320)$ constrained to PDG

 $\Gamma_{f_0(1710)}$ free

 $\Gamma_{f_0(1710)}$ constrained to PDG

Fit-IIb

Incoherent addition of Breit-Wigners. Separate peaks for $f_2(1270)$ and $a_2(1320)$

▶ Masses and widths of $f_2(1270)$ and $a_2(1320)$ FREE

 $\Gamma_{f_0(1710)}$ free

 $\Gamma_{f_0(1710)}$ constrained to PDG

- $\triangleright \chi^2$ is improved a bit
- ▶ Resonance parameters reasonable $(\Gamma_{f_2(1270)}$ lower)

Fit-IIIa

Coefficients from $\gamma\gamma$

 $f(m) = |5BW(1270) - 3BW(1320) + 2BW(1525)|^2$

 m, Γ of $f_2(1270)$ and $a_2(1320)$ constrained to PDG

- ▶ Peak position for $f_2(1270)/a_2(1320)$ is shifted to ~ 1250 MeV
- ▶ This is observed in $\gamma\gamma$ [2] but contradicts with our data (\sim 1305 MeV)

Fit-IIIb

Coefficients from $\gamma\gamma$

▶ Mass of $a_2(1320)$ FREE

▶ Roughly similar to ZEUS paper (DESY 08-068): $a_2(1320)$ has lower mass and produces another peak

Fit-IIIc

Coefficients from $\gamma\gamma$

ALL masses and widths free

- ▶ Reasonable fit can be obtained, good χ^2 , dip
- ▶ However m and Γ of $a_2(1320)$ still disagree with PDG

Adding 'incoherent part'

- ▶ generalize previous function by adding 'incoherent term', same for all 2⁺⁺ (following from SU(3) symmetry) (H. Lipkin)
- ► $f(m) = |(5+x)\cdot BW(1270) + (-3+x)\cdot BW(1320) + (2+x)\cdot BW(1525)|^2$
- x is complex, should be corrected for phase space

Adding 'incoherent part'

Unfortunately does not help much

ALL masses, widths constrained

ALL masses, widths free

- m, Γ constrained: bad description
- ightharpoonup m, Γ free: $a_2(1320)$ far from PDG

Fit-IV

Coherent sum of 2^{++} Breit-Wigners. Separate peaks for $f_2(1270)$ and $a_2(1320)$

- ► Full coherence assumed
- ▶ M, Γ of $f_2(1270)$ and $a_2(1320)$ constrained to PDG
- ▶ Relative amplitudes (areas) and phases (δ_1, δ_2) are determined

 $\Gamma_{f_0(1710)}$ free

▶ Good χ^2 , dip

Ambiguity

Coherent addition of 2^{++} Breit-Wigners. Separate peaks for $f_2(1270)$ and $a_2(1320)$

► However fit is ambiguous

- $\triangleright \chi^2$ is the same
 - Ambiguity in $f_2(1525)$ area is due to the possibility of large negative interference of it with $f_2(1270)$ and/or $a_2(1320)$
- Prior knowledge of relative amplitudes and phases could help

Fit-V

Coherent addition of 2^{++} Breit-Wigners. Separate peaks for $f_2(1270)$ and $a_2(1320)$

► Coherence factors free

- $\triangleright \chi^2$ remains the same
- rather large coherence prefered from the fit
- ▶ Obviously (even more) ambiguous

Fit-VI

Only $f_2(1270)$ and $a_2(1320)$ interfere

Was used in (very) old analyses

 $\Gamma_{f_0(1710)}$ constrained to PDG

- $\blacktriangleright \chi^2$ slightly worse, interference of isoscalar mesons is expected,
- ▶ maybe this scenario can be ruled out

Fit-VII

Only $f_2(1270)$ and $f_2(1525)$ interfere. $a_2(1320)$ added incoherently

▶ One can argue that *isovector* $a_2(1320)$ might not interfere with *isoscalars* $f_2(1270)$ and $f_2(1525)$ in inclusive reactions (?)

 $\Gamma_{f_0(1710)}$ free

 $\Gamma_{f_0(1710)}$ constrained to PDG

- $\triangleright \chi^2$ ok, fit more stable.
- Enough freedom to describe spectrum
- More complicated parametrisation (e.g. Fit-IV) introduce ambiguity.

Results summary

Fit Comments	χ^2 / n.d.o.f.	Ratio $\frac{f_0(1710)}{f_2(1525)}$	χ^2 / n.d.o.f.	Ratio $\frac{f_0(1710)}{f_2(1525)}$
	$\Gamma_{f_0(1710)}$ free		$\Gamma_{f_0(1710)}$ constrained	
I incoh., 1 peak	110.2/95=1.16	0.94 ± 0.22	111.8/96=1.16	0.75 ± 0.09
IIa incoh., sep. peak	111.8/96=1.16	1.02 ± 0.2	111.8/97=1.15	0.77 ± 0.09
IIb IIa+M,Γ free	106.9/92=1.16	1.02 ± 0.2	106.9/93=1.15	0.73 ± 0.09
IIIa 2 ⁺⁺ constrained			370.1/102=3.63	0.97 ± 0.13
IIIb $m^{a_2(1320)}$ free			138.1/101=1.37	0.79 ± 0.09
IIIc2 ⁺⁺ free	98.0/94=1.04	0.82 ± 0.16		
$ V \delta_1 = 0.5 \pm 0.5,$	98.7/94=1.05	0.72 ± 0.2		
$\delta_2 = -0.5 \pm 0.3$				
$\delta_1=2.1\pm0.3,$	98.7/94=1.05	0.35 ± 0.1		
$\delta_2 = 1.4 \pm 0.3$				
VI	107.8/93=1.16	0.89 ± 0.2	107.8/93=1.16	0.72 ± 0.09
VII	98.8/95=1.04	0.53 ± 0.2	98.8/96=1.03	0.51 ± 0.16

How our events look like?

► An event with jet

How our events look like?

Clean DIS event

Conclusions

- ▶ Fits with interference under various assumptions were tried
- **▶** +5, -3, +2
 - ▶ m, Γ of $f_2(1270)$, $a_2(1320)$ constrained to PDG fit unresonable
 - ▶ m, Γ of $f_2(1270)$, $a_2(1320)$ free fit reasonable but $a_2(1320)$ parameters far from PDG
- ▶ incoherent addition of isovector $a_2(1320)$ reasonable and stable fit
- introducing more parameters leads to ambiguity
- Other possibilities
 - ▶ measure ratio of $f_0(1710)$ to observable contribution of 2^{++} mesons which is stable ?

To do

- choose fit assumption
- fit in bins of z variable (redefine? jets?)

References

▶ [1] "K_S⁰K_S⁰ final state in two-photon collisions and implications for glueballs", L3 Coll., Phys. Lett. B 501 (2001) 173-182

The parameters of the three Breit-Wigner functions and the parabolic background from the fit on the $K_S^0K_S^0$ mass spectrum						
Mass region	$f_2(1270)-a_2(1320)$	f ₂ '(1525)	f _J (1710)	Background		
Mass (MeV)	1239 ± 6	1523 ± 6	1767 ± 14	-		
Width (MeV)	78 ± 19	100 ± 15	187 ± 60	-		
Integral (Events)	123 ± 22	331 ± 37	221 ± 55	149 ± 21		

References

▶ [2] "A partial wave analysis of the centrally produced K^+K^- and $K_S^0K_S^0$ systems in pp interactions...", WA102 Coll., Phys. Lett. B 453 (1999) 305-315

References

- ▶ [3] " $f^0 A_2^0$ Interference and the $f^0 \to K\overline{K}$ Branching Ratio", N.N. Biswas *et.al*, Phys. Rev. D5 (1972) 1564-1569
- ▶ [4] " $K\overline{K}$ system in $\pi^-p \to K^-K^+n$ at 6 GeV/c", A.J. Pawlicki *et.al*, Phys. Rev. D12 (1975) 631-637"

In these works interference of $f_2(1270)$ and $a_2(1320)$ only is considered. The relative ampitudes, relative phase and coherence factors are determined from the fit.