Bisection Method

The bisection method is a simple iterative method for successively reducing the uncertainty interval based on evaluation of the desirvative.

Suppose the objective f^n , $f: R \to R$ is a continuously differentiable unimodal f^n .

We have to find minimizer of f over an interval [a,b].

Step 1: If the interval contains is not given, find it using bracketing the steps to method. find bracket explained earlier Call the bracket [a,b].

step 2: Find f'(x)

Step 3: Find approximate minimizer f f, $C = \frac{a+b}{2}$

step 4: Find f'(c).

Step 5'. (oue i): If f'(c)>0, ruplace b by c and rupeat from step 3.

(ase (ii) If f'(c) < 0, suplace a by c & repeat from step 3.

Step 6: Repeat above procedure till two consecutive values of c are same upto 4 decimal places. This value of c is the required minimizer of f.

Ex.1. Find the minimizer of $f(x) = x^4 - 14x^3 + 60x^2$ by bisection method within a range of 03

801? Step 1: To find initial interval, we check the values of of at 0,1,2.

f(0) = 0, f(1) = -23, f(2) = 4

in +(1) < f(0) & f(1) < f(2)

: [0,2] is the bracket containing minimizer of f. Step 2: f(x) = 4x3-4x 42x2+120x-70

b $c = \frac{a+b}{2} + f'(c)$ Remark Deration a

12 Replace b by C 1 T 0 2

0.5. -20 Replace a by c 01

0.75 1.9375 Replace a by C 0.5 3

0.875 5.5234 Replace b by C 0.75

5 0.75 0.875 0.8125

: 0.75-0.5 < 0.3.

: 0.875 - 0.8125 < 0.1, we stop here and

the approximate minimizer is 0.8125.0.75.

interval [0,1] correct apto 4 decimal places wing bisection method.

 $50|^{n}$: $f(x) = x^3 - x - 1$: $f'(x) = 3x^2 - 1$

For Given initial interval is [0,1] = a=0, b=1.

Ιlε	ration) a	Ь	c = <u>a+b</u> 2	‡1(c)	Remark
	1	0	l	0.5	-0.25	Replace a by c
	2	0.5	ı	0.75	0.6875	Replace b by C
	3	0.5	0.75	0.625	0.1719	Replace b by C
	4	0.5	0.625	0.5625	-0.0508	Replace a by C
	5	0.5625	0.625	0.5938	0.0578	Replace b by C
	6	0.5625	0-5938	0.5782	0.0029	a —
	7	6.5625	0.5782	0.5704	-0.00239	Replace a by C
		0.5704	0.5782	0.5743	-0.0105	_ 11 —
	9	0.5743	0.5782	0.5763	-0.0036	и
	10	0.5763	0.5782	0.5773	-0.0002	<u> </u>
	11	0.5773	0.5782	0.5777	0.0012	Replace b by c
	12	0.5773	0.5777	0.5775	0.0002	<u> </u>
	13	0.5 773	0.5775	0.5774	0.0002	_11
	14	0.5773	0.5774	0.5772	•	A

: 0.5774 is the minimizer of the given of f(x).

Newton's Method Consider optimisation problem Minimise f(x) subject to 2 e 1R where fire is continuously differentiable

objective function.

1) To pind initial value of minimizer of B, choose points a cckb such that fee) < fco) & {cc)< {cb) . Select initial value 20 = C.

- (2) Find b'(x) & f"(x)
- 3) Approximate minimizer $x_{n+1} = x_n \frac{b'(x_n)}{k''(x_n)}$
- (4) Repeat above procedure till two conserutive values are some upto 4 decimal places.

C

, (

) C

Note: Newton's method works well if flicand everywhere. However, if fliex)<0 for some x, Newfon's method may fail to converge to the minimizer.

Ex. 1 Using Newton's method Bind minimize

of
$$f(x) = \frac{x^2}{2} - \sin x$$

$$Sol^2 = \frac{\chi^2}{2} - \sin \chi$$

To find initial value,

$$0 < 1 < 2$$
 $(0) = 0$, $(1) = -0.3415$, $(2) = 1.0907$
 $0 < 1 < 2$ $(1) < (0)$ & $(1) < (0)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1) < (1)$ & $(1$

$$\xi'(x) = x - \cos x , \quad \xi''(x) = 1 + \sin x$$

Iteration
$$x_{n+1} = x_n - \frac{5(x_n)}{5''(x_n)}$$

 $x_{n+1} = x_n - \frac{x_n - \cos x_n}{1 + \sin x_n}$
 $x_1 = 0.7504$
 $x_2 = 0.7391$

Required minimizer of β is 0.7391. Since $\alpha_2 = \alpha_3$

Ex. 1 Osing Newton's method gind minimize of
$$f(x) = \frac{\chi^2}{2} - \sin \chi$$

Sol² $f(x) = \frac{\chi^2}{2} - \sin \chi$

To find initial value,

 $f(0) = 0$, $f(1) = -0.3415$, $f(2) = 1.0907$
 $f(3) < f(0) & f(1) < f(2) \Rightarrow Bracket is [0,2]$.

 $f(x) = \chi - \cos \chi$, $f''(x) = 1 + \sin \chi$

Iteration
$$\chi_{n+1} = \chi_n - \frac{\xi(\chi_n)}{\xi''(\chi_n)}$$

 $\chi_{n+1} = \chi_n - \frac{\chi_n - \cos \chi_n}{1 + \sin \chi_n}$
 $\chi_1 = 0.7504$
 $\chi_2 = 0.7391$
 $\chi_3 = 0.7391$
Required minimizer of ξ is 0.7391.

since $x_2 = x_3$

Find the minimizer of $f(x) = \frac{x^5}{2} - \frac{x^2}{2} - 9x$ using

Newton's method.

Sol": To find bracket [a,b]:

$$f(0)=0$$
, $f(1)=-9.3$, $f(2)=-13.6$, $f(3)=17.1$

=> the required bracket is [1,3].

Take 2n = 2.

$$f(x) = \frac{x^5}{5} - \frac{x^2}{2} - 9x$$
 : $f'(x) = x^4 - x - 9$

$$f''(x) = 4x^3 - 1$$

By Newton's method,

$$y = x_n - \frac{f'(x_n)}{f''(x_n)} = x_n - \frac{(x_n^2 - x_n - q)}{4x_n^3 - 1}$$

$$= \frac{4x_{n}^{4} - x_{n}^{4} + x_{n} + 9}{4x_{n}^{3} - 1}$$

$$= \frac{3x_n^4 + 9}{4x_n^3 - 1}$$

Iteration (n)
$$x_{n+1} = \frac{3x_n^4 + 9}{4x_n^3 - 1}$$

$$\alpha_{1} = \frac{3x_{0}^{4} + 9}{4x_{0}^{3} - 1} = \frac{3 \times 2^{4} + 9}{4 \times 2^{3} - 1} = 2.3551$$

$$1 \qquad \qquad \chi_2 = 1.9764$$

$$\chi_3 = 1.8331$$

$$x_4 = 1.8137$$

4
$$x_5 = 1.8134$$

5 $x_5 = 1.8134$

$$x_{c} = 1.8134$$

False Position method

suppose the objective function, firar is a continuously differentiable function

· Steps to find minimizer of f(x) over an interval [a,b] using false Position method:

Step 1: If the initial interval is not given, find it using the bracketing method. Call the bracket as [a, b].

Step 2: Find f'(x).

Step 3: Find approximate minimizer g f,

$$c = \frac{af'(b) - bf'(a)}{f'(b) - f'(a)}$$

step 4: Find f'(c).

Step 5: case (i) If f'(c) >0, ruplace b by c and repeat

Case (ii) 4 f'(c) <0, ruplace a by c & repeat from step 3

Step 6 Repeat above procedure till two consecutive values of c are same upto 4 decimal places or till 4'(c) = 0.

This value of c is the sequired minimizer of f.

Using False Position method, find minimizer of
$$f(x) = \frac{\chi^4}{4} - \frac{\chi^2}{5} - 4\chi$$
, $\chi \in \mathbb{R}$

To find a bracket,
$$5(x) = x^3 - x - 4$$

 $5(0) = 0$
 $5(0.5) = -2.1094$
 $5(1) = -4.25$
 $5(1.5) = -5.8594$
 $5(2) = -6$
 $5(2.5) = -3.3594$

$$\xi'(x) = x^3 - x - 4$$

... We get
$$1.5 < 2 < 2.5$$
 such that $b(2) < b(1.5) & b(2) < b(2.5)$

... [1.5, 2.5] is the inverval in which minimizes of b lies.

Initially $a = 1.5$, $b = 2.5$, $c = \frac{ab(b) - bb(a)}{b(b) - b(a)}$

zeratio'	Λ a	£10)	b	£'(b)	C	P,(C)	Remark
There	1.5	-2.125	2.5	9.125	1.6889	-0,8715	a co
2	1.6889	-0,875	2.5	9.125	1.7596	-0,3115	a د د
3	1.7596	-0.3115	2.5	9.125	1.784	-0.1061	$a \leftrightarrow c$
4	1.7840	-0.1061	2.5	9.125	1.7922	-0.0357	$a \leftrightarrow c$
5	1.7922	-0.0357	2.5	9.125	1.795	-0.0115	$a \leftrightarrow c$
6	1.795	-0,0115	2.5	9.125	1.7959	-0.0037	a4>C
7	1,7959	-0.0037	2.5	9.125	1,7962	-0.0011	aerc
8	1.7962	0.0011	2.5	9.125	1.7963	3 -0.0002	_ a ↔ c
9	1.7963	-0.0002	2.5	9,125	1.7963	}	

.. Minimizer of b in the interval [1.5,2.5]__ is 1.7963

9.2 Using False Position method, find minimizes of 5(x)=xex-sinx in the interval [-3,-2.5].

sol": given $\beta(x) = x e^{x} = e^{x} + \cos x$ $\therefore \xi'(x) = xe^{x} + e^{x} - e^{x} - \sin x$

= xex sinx Given interval u [-3,-2.5]

ally a=-3, b=-2.5, $C = \frac{a \, \xi'(b) - b \, \xi'(a)}{\xi'(b) - \xi'(a)}$

Iteration a s'(a) b s'(b) c s'(c) Number

-3 -0.0082 -2.5 0.3933 -2.9898 0.008370

2 -3 -0.0082 -2.9898 0.00083 -2.9907 0.000837

3 -3 -0.0082 -2.9907 0.00003 -2.9907

: Minimizer of g in the interval [-3, -2.5] is -2,9907.

is 1.7963 9.2 Using False Position method, find minimizes of B(x)=xe2 sinx in the interval [-3,-2.5]. sol": given $\beta(x) = x e^{x} = e^{x} + \cos x$ $\therefore \xi'(x) = xe^{x} + e^{x} - e^{x} - \sin x$ = xex sinx given interval u [-3,-2.5] :... ally a=-3, b=-2.5, $C = \frac{ab'(b) - bb'(a)}{k'(b) - k'(a)}$ Iteration a b'(a) b b'(b) c b'(c) Number -3 -0.0082 -2.5 0.3933 -2.9898 0008370 2 -3 -0.0082 -2.9898 0.00083 -2,9907 0,000837 3 -3 -0.0082 -2.9907 0.00003 -2.9907.. Minimizer of f in the interrod [-3, -2.5]

is -2,9907.

.. Minimizer of & in the interval [1.5, 2.5]