وَهَا أُوتِيتُوْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Ain Shams University – Faculty of Engineering – EECE Dept. – Integrated Circuits Lab.

Dr. Hesham Omran

Analog Integrated System Design Lab 03

Data Converters Specifications

Lab Objective

- 1) To be familiar with the leading manufacturers of data converters.
- 2) To be able to search for and read manufacturers datasheets.
- 3) To be familiar with the leading forums (conferences and journals) in IC design.
- 4) To be able to search for and read technical research papers.
- 5) To be able to analyze and compare data converters specifications.
- 6) To appreciate the gap between the FoM of industrial data converters and published papers.

ADCs Comparison

Select one ADC from ADI, one ADC from TI, and one ADC from papers published in one of the following top forums (in the last 10 years)¹:

- Journal of Solid State Circuits (JSSC)
- International Solid-State Circuits Conference (ISSCC)
- VLSI Symposium

The ADCs you select must meet the specifications below.

No. of bits	12
Sample rate	>= 1 MSps
No. of channels	1
Input type	Differential
Max DNL	< 1 LSB
Max INL	< 1 LSB
Power consumption	Minimum

Read the datasheets/papers and compare the following for the selected ADCs in a table.

- 1) Architecture (SAR, pipelined, etc.)
- 2) Block diagram
- 3) Price (\$)
- 4) Min power supply (V)
- 5) Peak-to-peak input range (V)
- 6) Power consumption at 1 MSps (mW)
- 7) Max DNL (LSB)
- 8) Max INL (LSB)
- 9) ENOB (bit)

https://web.stanford.edu/~murmann/adcsurvey.html

¹ For industrial ADCs use the manufacturer parametric search (selection table). For papers, you may search IEEExplore or use the survey available at this link:

- 10) SNR (dB)
- 11) SINAD (dB)
- 12) SFDR (dB)
- 13) Digital output format (parallel, serial, etc.)
- 14) Internal reference (Yes/No)?
- 15) Internal sampling clock (Yes/No)?
- 16) Walden FoM (fJ/step)
- 17) Schreier FoM (dB)