

CSE 473: Pattern Recognition

Recall the Pattern Recognition Approaches So Far

- Determine feature vector <u>x</u>
- Train a system
- Classify the unknown pattern

Recall the Pattern Recognition Approaches So Far

- Determine feature vector <u>x</u>
- Train a system
- Classify the unknown pattern

- However, many patterns
 - are structural
 - have relational information
 - are difficult to extract traditional feature vectors

Alternate approach:

Syntactic / Structural Pattern Recognition

- SyntPR is used for
 - classification
 - description

- SyntPR assumes
 - Pattern is quantifiable
- Quantification is through
 - Formal grammar
 - Relational description or graph

- Formal grammar uses
 - parsing
 - hierarchical decomposition
- Graph based approaches uses matching

- Formal grammar can provide
 - efficient use of production rules
 - hierarchical decomposition
 - analysis, description and classification of complex patterns

• Example: the baby walks smoothly

Example: the baby walks smoothly

- Use production rules to analyze the sentence:
 - <sentence>

Example: the baby walks smoothly

- Use production rules to analyze the sentence:
 - <sentence>
 - <noun phrase> <verbal phrase>

Example: the baby walks smoothly

- Use production rules to analyze the sentence:
 - <sentence>
 - <noun phrase> <verbal phrase>
 - <article> <noun> <verbal phrase>

- Example: the baby walks smoothly
- Use production rules to analyze the sentence:
 - <sentence>
 - <noun phrase> <verbal phrase>
 - <article> <noun> <verbal phrase>
 - the baby <verbal phrase>

•

•

- An alphabet, V: nonempty, finite set of primitive symbols
 - Example: $V = \{a, b, c, ..., z\}$

- An alphabet, V: nonempty, finite set of primitive symbols
 - Example: $V = \{a, b, c, ..., z\}$

- String of different sizes:
 - V
 - $V^2 = V \circ V$, Example: ac, bx, jk, . . .
 - $V^+ = V U V^2 U V^3 U ...$
 - $V^* = \{\epsilon\} \cup V \cup V^2 \cup V^3 \cup \ldots$

- Language, L: set of strings
 - $L \subset V^*$
 - Union: $L_1 \cup L_2 = \{s \mid s \in L_1 \text{ or } s \in L_2\}$

- Language, L: set of strings
 - $L \subset V^*$
 - Union: $L_1 \cup L_2 = \{s \mid s \in L_1 \text{ or } s \in L_2\}$
 - Concatenation:

$$L_1 \circ L_2 = \{s \mid s = s_1 s_2 \text{ where } s_1 \in L_1 \text{ and } s_2 \in L_2\}$$

Elements of a Grammar (G)

- Set of Terminals, V_T
- Set of Non-terminals, V_N
- Set of Productions, P
- Starting Symbol, S

$$G = (V_T, V_N, P, S)$$

Elements of a Grammar (G)

- Set of Terminals, V_T
- Set of Non-terminals, V_N
- Set of Productions, P
- Starting Symbol, S

$$G = (V_T, V_N, P, S)$$

• The language generated by G is L(G)

Application Modes of a Grammar

Generative

Analytic

Application Modes of a Grammar

- Generative
 - Given a grammar, generate a sentence (string of terminal symbols)
- Analytic

Application Modes of a Grammar

- Generative
 - Given a grammar, generate a sentence (string of terminal symbols)
- Analytic
 - Given a grammar, determine:
 - is sentence, s, generated from G? that is, $s \in L(G)$
 - If so, get the structure of the sentence

Application of Grammar in PR

- Analytic
 - Given a grammar, determine:
 - is sentence, s, generated from G? that is, $s \in L(G)$
 - If so, get the structure of the sentence
- A class can be characterized using a Grammar, G
- The unknown pattern can be represented as a sentence, s
- Determine: $s \in L(G)$

Notations of Grammars

- Capital letters, A, B, C:
 - Non-terminals, V_N

Notations of Grammars

- Capital letters, A, B, C:
 - Non-terminals, V_N
- Small letters, a, b, c:
 - Terminals, V_T

Notations of Grammars

- Capital letters, A, B, C:
 - Non-terminals, V_N
- Small letters, a, b, c:
 - Terminals, V_T
- Greek letters, α, β:
 - strings consists of terminals and/or non-terminals, $(V_T \cup V_N)^*$

$$\alpha_1 \rightarrow \beta_2$$

$$\alpha_1 \rightarrow \beta_2$$

- Type 0: Free or Unrestricted
 - No restriction on any side

$$\alpha_1 \rightarrow \beta_2$$

- Type 0: Free or Unrestricted
 - No restriction on any side
- Type 1: Context sensitive
 - $\beta_2 \neq \varepsilon$
 - $\bullet \mid \alpha_1 \mid \leq \mid \beta_2 \mid$

$$\alpha_1 \rightarrow \beta_2$$

- Type 0: Free or Unrestricted
 - No restriction on any side
- Type 1: Context sensitive
 - $\beta_2 \neq \varepsilon$
 - $|\alpha_1| \leq |\beta_2|$
 - $\alpha \alpha_i \beta \rightarrow \alpha \beta_i \beta$

$$\alpha_1 \rightarrow \beta_2$$

- Type 1: Context sensitive
 - $\beta_2 \neq \varepsilon$
 - $|\alpha_1| \leq |\beta_2|$
 - $\alpha \alpha_i \beta \rightarrow \alpha \beta_i \beta$

- Type 2: Context Free
 - $\alpha_1 = S_1 \in V_N$
 - $S_1 \rightarrow \beta_2$

$$\alpha_1 \rightarrow \beta_2$$

- Type 2: Context Free
 - $\alpha_1 = S_1 \in V_N$
 - $S_1 \rightarrow \beta_2$

- Type 3: Regular or Finite State grammar (FSG)
 - $S_1 \rightarrow a$
 - \bullet $S_1 \rightarrow aS_2$

Comparison of Grammars

$$T_0$$
 T_1 T_2 T_3 Grammar Types $L(T_0)\supset L(T_1)\supset L(T_2)\supset L(T_3)$ Languages

Increasing Production Constraints

Increasing Description Capability

Increasing Recognition Capability

Graphical Representation of FSG

$$V_{T} = \{a,b\}$$

$$V_{N} = \{S, A_{1}, A_{2}\}$$

$$P = \{S \rightarrow aA_{2}\}$$

$$S \rightarrow bA_{1}$$

$$A_{1} \rightarrow a$$

$$A_{1} \rightarrow aA_{1}$$

$$A_{2} \rightarrow b\}$$

Graphical Representation of FSG

$$V_{T} = \{a,b\}$$

$$V_{N} = \{S, A_{1}, A_{2}\}$$

$$P = \{S \rightarrow aA_{2}\}$$

$$S \rightarrow bA_{1}$$

$$A_{1} \rightarrow a$$

$$A_{1} \rightarrow aA_{1}$$

$$A_{2} \rightarrow b\}$$

 Get nodes for each non-terminal symbols including S and T

$$V_{T} = \{a, b\}$$

$$V_{N} = \{S, A_{1}, A_{2}\}$$

$$P = \{S \rightarrow aA_{2}$$

$$S \rightarrow bA_{1}$$

$$A_{1} \rightarrow a$$

$$A_{1} \rightarrow aA_{1}$$

$$A_{2} \rightarrow b\}$$

• For each A_i -> aA_j , make edge from A_i to A_i labeled with a

$$\begin{split} V_T &= \{a,b\} \\ V_N &= \{S,A_1,A_2\} \\ P &= \{S \longrightarrow aA_2 \end{split}$$

$$S \rightarrow bA_1$$

$$A_1 \rightarrow a$$

$$A_1 \rightarrow aA_1$$

$$A_2 \rightarrow b$$

• For each A_i -> aA_j , make edge from A_i to A_i labeled with a

$$V_{T} = \{a,b\}$$

$$V_{N} = \{S, A_{1}, A_{2}\}$$

$$P = \{S \rightarrow aA_{2}$$

$$S \rightarrow bA_{1}$$

$$A_{1} \rightarrow a$$

$$A_{1} \rightarrow aA_{1}$$

$$A_{2} \rightarrow b\}$$

• For each A_i ->a, make edge from A_i to T labeled with a

$$V_{T} = \{a,b\}$$

$$V_{N} = \{S, A_{1}, A_{2}\}$$

$$P = \{S \rightarrow aA_{2}$$

$$S \rightarrow bA_{1}$$

$$A_{1} \rightarrow a$$

$$A_{1} \rightarrow aA_{1}$$

$$A_{2} \rightarrow b\}$$

Production vs. Derivation

$$\alpha_1 \rightarrow \beta_2$$
: Production

$$x \Rightarrow x_n$$
: Derivation

Recursive grammar, if G allows

$$S_1 \Longrightarrow \alpha S_1 \beta$$

Recursive grammar, if G allows

$$S_1 \Rightarrow \alpha S_1 \beta$$

Cycle Free, if there is no derivation like this

$$x \Longrightarrow x_1 \Longrightarrow x_2 \cdots \Longrightarrow x_n \Longrightarrow x$$

Ambiguous Grammar, if G allows

•
$$x \Longrightarrow x_1 \Longrightarrow x_2 \cdots \Longrightarrow x_i' \cdots \Longrightarrow x_n \Longrightarrow s$$

•
$$x \Longrightarrow x_1 \Longrightarrow x_2 \cdots \Longrightarrow x_i \cdots \Longrightarrow x_n \Longrightarrow s$$

Ambiguous Grammar, if G allows

$$x \Longrightarrow x_1 \Longrightarrow x_2 \cdots \Longrightarrow x_i \cdots \Longrightarrow x_n \Longrightarrow s$$

$$x \Longrightarrow x_1 \Longrightarrow x_2 \cdots \Longrightarrow x_i \cdots \Longrightarrow x_n \Longrightarrow s$$

- More that one derivation for the same s
- More that one parse tree for the same s

- Equivalence of Grammars
 - G_1 and G_2 are equivalent iff $L(G_1) = L(G_2)$

- Equivalence of Grammars
 - G_1 and G_2 are equivalent iff $L(G_1) = L(G_2)$
- covering
 - $G_1 = (V_T^1, V_N^1, P^1, S^1)$ covers $G_2 = (V_T^2, V_N^2, P^2, S^2)$ if there exists mapping f such that
 - $\bullet \quad V_N^1 = f(V_N^2)$
 - $S^1 = f(S^2)$
 - P¹ is obtained from P² replacing corresponding symbols

Example of Some Grammars

$$S \to aAa$$

$$A \to a$$

$$A \to b$$

$$S \to SC$$

$$CB \to Cb$$

$$aB \to ab$$

$$bB \to bb$$

$$S \to aA_1$$

$$S \to bA_1$$

$$A_1 \to a$$

$$A_1 \to b$$

Example of Some Grammars

 $S \rightarrow aAa$

 $A \rightarrow b$

CFG

 $S \rightarrow SC$

 $CB \rightarrow Cb$

 $aB \rightarrow ab$

 $bB \rightarrow bb$

CSG

 $S \to aA_1$ $S \to bA_1$

FSG

Chomsky Normal Form

$$S \to BC$$
 where $A, B, C \in V_N$
 $A \to a$ where $A \in V_N$ and $a \in V_T$

Example: A Line Drawing Grammar

Example: A Line Drawing Grammar

$$V_T^{cyl} = \{t, b, u, o, s_1, s_2, *, \neg, +\}$$
 $V_N^{cyl} = \{top, body, Cylinder\}$
 $S^{cyl} = Cylinder$
 $P^{cyl} = \{Cylinder \rightarrow top * body top \rightarrow t * b$

 $body \rightarrow \neg u + b + u$

 $G_{cyl} = (V_T^{cyl}, V_N^{cyl}, P^{cyl}, S^{cyl})$

Example: Cylinder

$$G_{cyl} = (V_T^{cyl}, V_N^{cyl}, P^{cyl}, S^{cyl})$$
 $V_T^{cyl} = \{t, b, u, o, s_1, s_2, *, \neg, +\}$
 $V_N^{cyl} = \{top, body, Cylinder\}$

$$S^{cyl} = Cylinder$$

$$P^{cyl} = \{Cylinder \rightarrow top * body$$

$$top \rightarrow t * b$$

$$body \rightarrow \neg u + b + u\}$$


```
(terminal symbols)
V_T = \{table, block, +, \uparrow\}
V_N = \{DESC, LEFT\_STACK, RIGHT\_STACK\}
  S = DESC \in V_N
P = \{DESC \rightarrow LEFT\_STACK + RIGHT\_STACK\}
       DESC \rightarrow RIGHT\_STACK + LEFT\_STACK
       LEFT\_STACK \rightarrow block \uparrow block \uparrow table
      RIGHT\_STACK \rightarrow block \uparrow block \uparrow table
```

$$P = \{DESC \rightarrow LEFT_STACK + RIGHT_STACK \ DESC \rightarrow RIGHT_STACK + LEFT_STACK \ LEFT_STACK \rightarrow block \uparrow block \uparrow table \ RIGHT_STACK \rightarrow block \uparrow block \uparrow table \}$$

$$P = \{DESC \rightarrow LEFT_STACK + RIGHT_STACK \\ LEFT_STACK + RIGHT_STACK \rightarrow \\ block \uparrow table + block \uparrow block \uparrow block \uparrow table \\ LEFT_STACK + RIGHT_STACK \rightarrow \\ block \uparrow block \uparrow block \uparrow table + block \uparrow table \}$$