STAT 2011 Tutorial 8

Qian(Jessie) Jin Apr, 2023

Gamma distribution

• Definition:

Theorem 3.3.10. Suppose that Poisson events are occurring at the constant rate of λ per unit of time. Let the random variable Y denote the waiting time for the r-th event. Then Y has pdf

$$f_Y(y) = \frac{\lambda^r}{(r-1)!} y^{r-1} e^{-\lambda y}$$
 $y > 0.$

Mean and variance:

Theorem 3.3.11. Suppose that Y has a gamma pdf with shape parameter r and rate parameter λ . Then

(i)
$$E(Y) = \frac{r}{\lambda}$$

(ii)
$$Var(Y) = \frac{r}{\lambda^2}$$
.

Higher Moment

• Definition:

Definition 3.3.7. Let RV W have pdf $f_W(w)$ (or pmf $p_W(w)$). For any positive integer r, the r-th moment of W about the origin, μ_r , is

$$\mu_r = \mathrm{E}(W^r)$$

and the r-th moment about the mean, μ'_r , is

$$\mu_r' = \mathrm{E}[(W - \mu)^r]$$

provided $E(|W|^r) < \infty$.

Joint Density

• Discrete:

Definition 3.4.1. Suppose S is a discrete sample space on which two RVs, X and Y, are defined. The joint pmf of X and Y is denoted $p_{X,Y}(x,y)$, where

$$p_{X,Y}(x,y) = P\left(\left\{s : X(s) = x \text{ and } Y(s) = y\right\}\right) = P(X = x, Y = Y)$$

Theorem 3.4.1. Let $p_{X,Y}(x,y)$ be the joint pmf of the discrete RV X and Y. Then,

$$p_X(x) = \sum_{all \ y} p_{X,Y}(x,y) \quad and \quad p_Y(y) = \sum_{all \ x} p_{X,Y}(x,y)$$

Continuous:

Definition 3.4.3. Two RVs on the same set of real numbers are jointly continuous if there exists a function $f_{X,Y}(x,y)$ such that for any region R in the xy-plane

$$P[(X,Y) \in R] = \iint_R f_{X,Y}(x,y) \, dx \, dy$$

and the function $f_{X,Y}(x,y)$ is called the joint pdf of X and Y.

Theorem 3.4.2. Let continuous RV X and Y have joint pdf $f_{X,Y}(x,y)$. Then the marginal pdf's $f_X(x)$ and $f_Y(y)$ are given by

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$
 and $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$

Basic Transformation

• Properties:

Theorem 3.5.1. Let RV X be discrete and consider Y = aX + b, $a \neq 0$. Then,

$$p_Y(y) = p_X\left(\frac{y-b}{a}\right).$$

Theorem 3.5.2. Let RV X be continuous and consider Y = aX + b, $a \neq 0$. Then,

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right) \qquad \Box$$

Theorem 3.5.3. Let RVs X and Y be independent and W = X + Y. Then,

1. If X and Y are discrete

$$p_W(w) = \sum_{all \ x} p_X(x) p_Y(w-x)$$

2. If X and Y are continuous

$$f_W(w) = \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) \, dx$$