CSCI 361 Lecture 11: Turing Machines

Shikha Singh

Announcements & Logistics

- HW 3 was due last night
- HW 4 released, due Wed Oct 16 at 10 pm
- Hand in reading questions # 8
- No lecture on Tues (Oct 15): Reading period
 - No reading assignment for Thurs Oct 17/Tues Oct 22
- Reminder: tomorrow colloquium (if not Mountain Day)
 - What I did Last Summer (Research)
- CSCI 361 Midterm on Oct 22 (Tuesday):
 - In class exam, open notes, 75 mins
 - Will release practice exam/questions early next week

Last Time

- Intuition behind the equivalence CFL ←→ NPDA
- Pumping lemma for CFL and how to use it

Today

- Wrap up CFLs
- Start new model of computation: Turing machines

Pumping Lemma: CFLs

- Statement: If L is a CFL, then there is a number p (the pumping length) where for any $s \in L$ of length at least p, it is possible to divide s into five pieces s = uvxyz satisfying the conditions
 - |vy| > 0
 - $2. |vxy| \le p$
 - 3. For each $i \ge 0$, $uv^i x y^i z \in L$
- Note that vxy can appear anywhere in the string as long as they are no longer than p symbols long

Pumping Lemma Questions

- Question. What does it mean for a L to satisfy the pumping lemma?
- Question. What does it mean to show that L does not satisfy PL?
- Question. If a language satisfies PL for CFLs, does it mean it is context-free?
- Question. If a language is context-free, does it have to satisfy PL?

Pumping Lemma Proof Tips

- Proofs using the PL devolve to examining a bunch of cases
 - Can become painful to read/write
- Try to use closure properties whenever possible
- Try to select w that will lead to as few cases as possible
- Try to cover as many similar cases at once as possible: if several cases are analogous, address them in one general argument

CFL: Intersection Closure

- Theorem. If C is a context-free language and R is a regular language then $L \cap R$ is context-free.
- Proof Idea.
 - P be a PDA that recognizes C and M be DFA that recognizes R
 - Let Q, Q' be the set of states of P, M, create a new PDA P' with states $Q \times Q'$
 - P' simulates P as well as M and accepts a string if both accept
 - Ignores P's stack on M's transitions, just remembers states of M

CFL: Intersection Closure

- Note. Intersection of two CFLs is not necessarily context-free!
 - Example?

Context-Free or Not?

- Question. One of these languages is CF and the other is not, can you identify which is which?
 - $L_1 = \{ w \ a^n \ b^n \ w^R \mid w \in \{a, b\}^*, n \ge 0 \}$
 - $L_2 = \{ w \ a^n \ w^R \ b^n \mid w \in \{a, b\}^*, n \ge 0 \}$

Context-Free or Not?

- $L_1 = \{ w \ a^n \ b^n \ w^R \mid w \in \{a, b\}^*, n \ge 0 \}$
- $L_2 = \{ w \ a^n \ w^R \ b^n \mid w \in \{a, b\}^*, n \ge 0 \}$
- Answer. L_1 is context-free but L_2 is not.
- Intuition: need to match two "pairs": can do it if they are next to each other but not if they are separated
- CFG for L_1 ?
 - $S \rightarrow aSa \mid bSb \mid A$
 - $A \rightarrow aAb \mid \varepsilon$
- Exercise. Can show L_2 is not CF using the pumping lemma, use $w=b^pa^pb^pb^p$

Examples of Non CFLs

- Pairing/Counting examples we have seen:
 - $\{a^nb^nc^n \mid n \ge 0\}, \{a^nb^na^n\}, \{ww \mid w \in \{a,b\}^*\}$
 - HW: language of palindromes with equal # of Is and 0s
 - Strings over $\{a,b,c\}$ with equal # of a's, b's and c's
 - $\{a^nb^ma^nb^m \mid n,m \geq 0\}$
 - $\{w \ a^n \ w^R \ b^n \mid w \in \{a, b\}^*, n \ge 0\}$
- Non-linear counting examples:
 - $\{a^{2^n} \mid n \ge 0\}$, $\{a^p \mid p \text{ is a prime}\}$, $\{a^{n^2} \mid n \ge 0\}$
 - Intuition: structure is too rigid to be able to be "pumped"

Moving Up

Firing Squad Problem?

• https://youtu.be/xVIaKUdlljU?si=yM4N4WiLNYL-QKnT

Turing Machines

- Finite number of states
- Infinite tape (memory)
- Read-write head that can move right and left on the tape
- Can modify the input
- Special accept/reject states

A few iterations of a six-state Turing machine.

Formal Definition

- A Turing Machine is a 7-tuple $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm accept},q_{\rm reject})$, where Q,Σ,Γ are all finite sets
 - Q is the set of **states**
 - Σ is the **input alphabet** and does not contain the **blank symbol** \sqcup
 - Γ is the **tape alphabet** where $\sqcup \in \Gamma$ and $\Sigma \subset \Gamma$
 - $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the **transition function**
 - $q_0, q_{\rm accept}, q_{\rm reject} \in Q$ are the **start**, **accept** and **reject** states where $q_{\rm accept} \neq q_{\rm reject}$

How a TM Computes

- Initially, input $w=w_1w_2\cdots w_n\in \Sigma^*$ on the leftmost n squares, rest has \sqcup and **head** of the TM in the leftmost position
- The computation proceeds using δ : can move left or right, alter tape contents and change states
- Configuration of a TM: current state, tape contents & head location
 - Written as uqv: Current state is q, current tape contents is uv, current head location is first symbol of v

How a TM Computes

- A configuration C_1 yields a configuration C_2 if the TM can legally go from C_1 to C_2 using its transition function
- Consider symbols $a, b, c \in \Gamma$ and strings $u, v \in \Gamma^*$ then

```
ua\ q_i\ bv yields u\ q_j\ acv if \delta(q_i,b)=(q_j,c,L), and
```

$$ua\ q_i\ bv$$
 yields $uac\ q_j\ v$ if $\delta(q_i,b)=(q_j,c,R)$

Language of a TM

- Start configuration: $q_0 w$
- Accepting configuration if the current state is q_{accept}
- Rejecting configuration if the current state is $q_{
 m reject}$
- ATM M accepts an input w if a sequence of configurations C_1, \ldots, C_k exist such that
 - C_1 is the start configuration, each C_i yields C_{i+1} and C_k is an accepting configuration
- The set of strings accepted by M is the language recognized by M, denoted L(M)

Turing Machine Loops

- An important distinction between DFA/PDA and a TM
- On an input w, a TM can:
 - Accept w (and halt)
 - Reject w (and halt)
 - "Loop" on an input w (never halt): this is new!
- **Definition (Decidable).** A language L is **TM-decidable** or decidable if there is a TM that accepts every string in L and rejects every string not in L (i.e., it halts on all inputs in Σ^*)
 - ATM is **decider** if it halts on every input in Σ^*

• **Example TM**: Consider a TM for the language $A = \{0^{2^n} \mid n \ge 0\}$

Each transition of the form $x \rightarrow y$, D means "upon reading x, replace it with symbol y and move the tape head in direction D". If y is omitted x is left unchanged

State diagram: low-level description

Medium-Level Description

Consider a TM M for for the language $A = \{0^{2^n} \mid n \ge 0\}$:

M = "On input string w,

- 1. Sweep left to right across the tape, crossing off every other zero.
- 2. If in Stage I and there is a single zero, accept
- 3. If in Stage I and there are more than one odd zeros, reject
- 4. Return to the lefthand end of tape and go to stage 1."

Call such description medium level: says how the TM works but not as explicit as a state-diagram.

• **Example TM**: Consider a TM for the language $A = \{0^{2^n} \mid n \ge 0\}$

Each transition of the form $x \rightarrow y$, D means "upon reading x, replace it with symbol y and move the tape head in direction D". If y is omitted x is left unchanged

Levels of Description

- Low-level description using δ and state diagram provides a complete picture but quickly become unwieldy
- Stick to "medium-level" description from now on
 - Describes how the TM works in English
 - What is OK: can include anything in a high-level description, as long as you are convinced that, if you had to, you could design a (low-level) Turing machine for it!
- We will move on to high-level descriptions (algorithms) later

Practice

• Exercise. Give a medium-level description of a TM that recognizes

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Why Study Turing Machines

- Not a good model to think about fast computation
- Fast algorithms are a subject of CS 256
- In this class, we are interested in finding out if we can solve a problem at all
- To show a problem is not solvable, we need a model of what it means to solve a problem
 - Church-Turing Thesis:

Intuitive	notion
of algori	ithms

equals

Turing machine algorithms