

UNIVERSIDADE DE AVEIRO EXAME DE RECURSO DE CÁLCULO II

10 de Julho de 2013 Duração: 2h 30 min

-	~		
\mathbf{I}	ENTIFICAÇÃO	$D \cap$	ATTINIO
\mathbf{L}	ENTIFICACAO	טע	ALUNO

Nome:______ N° Mec.:_____

Questão	1	2	3	4	5	6
Cotações	20	30	60	30	30	30
Classificação						

Classificação Final

DECLARO QUE DESISTO

No folhas suplementares:

- 1. Indique o valor lógico de cada uma das afirmações seguintes:

 - (b) Se a série de potências $\sum_{n=0}^{\infty} a_n x^n$ tem raio de convergência 2, então $\lim_{n\to\infty} a_n = 0$

 - (d) Se $\sum_{n=0}^{\infty} a_n$ é uma série de termos positivos convergente, então a série $\sum_{n=0}^{\infty} \left(a_n + \frac{1}{a_n} \right)$ também é convergente.
- 2. Considere o seguinte problema de Cauchy

$$\begin{cases} y'' - y' = e^t \cos(t) \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

- (a) Mostre que $\mathcal{L}{y}(s) = \frac{1}{((s-1)^2+1)s}$.
- (b) Determine a solução do problema de Cauchy.
- 3. Determine o integral geral das seguintes equações diferenciais:

(a)
$$y' = \frac{xe^{y/x} + y}{x}$$
, para $x > 0$;

(b)
$$-2y' + xy = e^{-\frac{x^2}{2}}y^3$$
;

(c)
$$y^{(4)} + 4y^{(2)} = x$$
.

4. Determine:

(a) a natureza da série
$$\sum_{n=1}^{+\infty} \frac{2 - \operatorname{sen}(n)}{\sqrt{n}};$$

(b) a soma da série
$$\sum_{n=1}^{+\infty} \left[\frac{1}{\sqrt{n+3}} - \frac{1}{\sqrt{n}} \right].$$

5. Considere a série de potências
$$\sum_{n=0}^{+\infty} \frac{(n+1)}{2^n} (x-1)^n.$$

(a) Determine o domínio de convergência da série dada.

(b) Sabendo que
$$\frac{1}{1-x} = \sum_{n=0}^{+\infty} x^n$$
, para qualquer $x \in]-1,1[$, determine a função soma da série $\sum_{n=0}^{+\infty} \frac{(n+1)}{2^n} (x-1)^n$, indicando o maior intervalo aberto em que a função obtida representa a série considerada.

6. Considere a função 2π -periódica f definida em] $-\pi,\pi$] por f(x)=-x.

(a) Mostre que
$$\int_0^{\pi} x \operatorname{sen}(nx) dx = (-1)^{n+1} \frac{\pi}{n}, \ \forall n \in \mathbb{N}.$$

- (b) Determine a série de Fourier de f.
- (c) Seja S a função soma da série de Fourier obtida na alínea anterior. Mostre que $S(-2\pi)=S(3\pi)$.

Tabela de Transformadas de Laplace

f(t)	1	t^n	e^{at}	sen(at)	$\cos(at)$	$\sinh(at)$	$\cosh(at)$
$F(s) = \mathcal{L}\{f(t)\}\$ $s > s_f$	$\frac{1}{s}$ $s > 0$	$\frac{n!}{s^{n+1}}$ $n \in \mathbb{N}, \ s > 0$	$ \begin{array}{c c} \hline & \frac{1}{s-a} \\ & s>a \end{array} $	$ \begin{array}{c c} a \\ \hline s^2 + a^2 \\ s > 0 \end{array} $	$ \begin{array}{c} s \\ s^2 + a^2 \\ s > 0 \end{array} $	$\begin{vmatrix} a \\ \overline{s^2 - a^2} \\ s > a \end{vmatrix}$	$ \begin{array}{c c} s \\ \hline s^2 - a^2 \\ s > a \end{array} $