1. Find the maximum and minimum values of

$$h(\theta) = 3\sin(\theta), \qquad 0 \le \theta \le 2\pi$$

Solution:

First, we need the derivative: $h'(0) = 3\cos(\theta)$

Critical points are

$$h'(0) = 0$$
 \Rightarrow $3(0s(0) = 0$
 $\Rightarrow 0 = \frac{\pi}{2}$, $\frac{3\pi}{2}$

Since θ is on a closed interval $[0,2\pi]$ to find max 8 min values we test compare values of the function @ Critical pts & @ interval endpoints

$$h(0) = 35in(0) = 0$$

 $h(\frac{\pi}{2}) = 35in(\frac{\pi}{2}) = 3(1) = 3$ \implies Absolute max
 $h(\frac{3\pi}{2}) = 35in(\frac{5\pi}{2}) = 3(-1) = -3$ \implies Absolute min
 $h(2\pi) = 35in(2\pi) = 3(0) = 0$

50

Absolute max of function is $h(\frac{\pi}{2}) = 3$

Absolute Min of Function is $h(\frac{3\pi}{a}) = -3$

These results can be confirmed by looking at the graph

2. The population p of a species at time t is given by the equation

$$p(t) = At^3(B - t), \qquad 0 \le t < 2B$$

where A and B are positive constants. At what time will the population reach its maximum?

Solution: First, we need the derivative:

Critical points:

$$3At^{2}(B-4At) = 0$$

$$\Rightarrow 3At^{2} = 0 \Rightarrow t = 0$$

$$8 - \frac{4}{3}t = 0 \Rightarrow t = \frac{3}{4}B$$

We are not on a closed interval so we must use a derivative test to confirm max/min values.

By 1st Derivative test:

<u> </u>	0 011000		
U	Interval	$(0, \frac{3}{4}B)$	(³ / ₄ B, 2B)
	test value	_	В
	Value of f'(x)	<u>A B³</u> 4	- AB ³
	Sign of f'(x)	+	_
	Behavior	Increasing	Decreasing

Since p(t) goes from increasing to Decreasing $@t = \frac{3}{4}B$ then this is when the population will meet its maximum value.

By 2nd Derivative test:

Note that
$$P''(t) = 6At(B-2t)$$

Since $P''(\frac{3}{4}B) = 6A(\frac{3}{4}B)(B-3(\frac{3}{4}B)) = -\frac{q}{4}AB^2 < 0$
there is a maximum value @ $t = \frac{3}{4}$

For problems 3 to 4: answer the following for each of the given functions.

3.
$$f(x) = (1-x)e^{2x}$$

(a) State the first and second derivative of the function. (You do not need to show your work.)

Solution:

$$f'(x) = 2e^{ax}(1-x) - e^{ax}$$

$$f''(x) = 4e^{2x}(1-x) - 4e^{2x}$$

(b) Find the critical points.

Solution:

=) Only (.P'5 are when
$$f'(x) = 0$$

=) $\lambda e^{2x}(1-x) - e^{2x} = 0$
=) $e^{3x}(\lambda(1-x) - 1) = 0$
=) $e^{3x}(1-2x) = 0$ => $x = \frac{1}{2}$

(c) Find the interval(s) of increase and/or decrease.

Interval	$\left(-\omega,\frac{1}{2}\right)$	(½ , ∞)	
Test value	0	l	
Value of $f'(x)$	1	-e-2	
Sign of $f'(x)$	+	_	
Behavior	increasing	Decreasing	

$$f(x)$$
 is increasing on $(-\infty, \frac{1}{2})$
 $f(x)$ is dereasing on $(\frac{1}{2}, \infty)$

3. (Continued)

(d) Find the interval(s) where the function is concave up and/or concave down.

Solution:
$$f''(x)$$
 exists everywhere
 $f''(x) = 0$: $e^{-ax}(4(1-x)-4) = 0$ Since $e^{-ax} \neq 0$:
 $= e^{-ax}(-4x) = 0$ $\implies -4x = 0 \implies x = 0$

Interval	(-0,0)	(0,00)	
Test value	- (1	
Value of $f''(x)$	4/e2	-4e2	
Sign of $f''(x)$	+		
Behavior	Concave U	concave n	

$$F(x)$$
 is concave up on $(-\infty,0)$
 $F(x)$ is concave down on $(0,\infty)$

(e) Determine the point(s) of inflection (if any).

Solution:

Since
$$F(x)$$
 Changes Concavity @ $X=0$
then there is an inflection pt @ $X=0$.

(f) Use an appropriate *derivative test* to determine any maximum or minimum values. This means you must clearly indicate which test you are applying by name.

$$f''(\frac{1}{2}) = 4e^{2(\frac{1}{2})}(1-\frac{1}{2})-4e^{2(\frac{1}{2})} = -2e$$
 Since $f''(\frac{1}{2}) < 0$ then there is a relative max @ $x = \frac{1}{2}$

4.
$$g(x) = \frac{x^2}{x-1}$$

(a) State the first and second derivative of the function. (You do not need to show your work.)

Solution:

$$g'(x) = \frac{X(x-2)}{(x-1)^2}$$

$$g''(x) = \frac{2}{(x-1)^3}$$

(b) Find the critical points.

Solution:

$$g'(x) = 0$$
 when $x(x-a) = 0$
=> $x = 0$, $x = a$

$$g'(x)$$
 DNE when $X-1=0$
 $\Rightarrow X=1$

(c) Find the interval(s) of increase and/or decrease.

Interval	(-∞,0)	(0,1)	(1,2)	(2,∞)
Test value	-1	<u> </u>	3[2	3
Value of $g'(x)$				
Sign of $g'(x)$	+		_	+
Behavior	Increasing	Decreasing	Decreasing	Increasing

$$g(x)$$
 is increasing on $(-\infty,0)$ & (a,∞) $g(x)$ is decreasing on $(0,1)$ & $(1,2)$

- 4. (Continued)
 - (d) Find the interval(s) where the function is concave up and/or concave down.

Solution:

$$g''(x) = 0$$
 nowhere $g''(x)$ DUE @ $x=1$

Interval	(1,00)	(1,00)	
Test value	٥	a	
Value of $g''(x)$			
Sign of $g''(x)$	_	+	
Behavior	Concave O	Concave U	

$$g(x)$$
 is concave up on $(1, \infty)$
 $g(x)$ is concave down on $(-\infty, 1)$

(e) Determine the point(s) of inflection (if any).

Solution:

(f) Use an appropriate derivative test to determine any maximum or minimum values. This means you must clearly indicate which test you are applying by name.

Using
$$1^{5t}$$
 Derivative Test:

 $Q = x = 0$ $g(x)$ goes from increasing to Decreasing \Rightarrow Relative max $Q = x = 2$ $g(x)$ goes from decreasing to Increasing \Rightarrow Relative min Using 1^{nd} Derivative Test:

$$g''(o) = \frac{a}{(o-i)^3} = -a < 0 \implies \text{Relative max}.$$

$$g''(2) = \frac{a}{(2-1)^3} = 2 > 0$$
 \implies Relative min.