Part I 逻辑代数OK

2023Lecture 03 逻辑函数化简

重点内容: 最简与或式、卡诺图、最简或与式

"与-或"式和"或-与"式可以很方便地转换成任何其他所要求的形式。

逻辑函数化简有 2 种常用方法: 代数法、卡诺图法。

一、代数化简法

代数化简法就是运用逻辑代数的公理、定律和规则对逻辑函数进行化简的方法。

1、与-或式的化简

最简"与-或"式应同时满足以下两个条件:

- ①表达式中的"与"项个数最少;
- ②每个"与"项中的变量个数最少。

几种常用方法如下:

(1) 并项法

利用 $A\bar{B} + AB = A$,将两个"与"项合并成一个并消去一个变量。

例如: $\overline{A}B\overline{C} + \overline{A}BC = \overline{A}B$

(2) 吸收法

利用A+AB=A,吸收多余的项并消去一个量。

例如: $\overline{A}B + \overline{A}B\overline{C} = \overline{A}B$

(3) 消去法

利用 $A + \overline{A}B = A + B$,消去多余变量。

例如: $AB + \overline{A}\overline{C} + \overline{B}\overline{C} = AB + (\overline{A} + \overline{B})\overline{C}$

$$=AB+\overline{AB}\overline{C}=AB+\overline{C}$$

(4) 配项法

利用 $A = A \cdot 1$ 和 $A + \overline{A} = 1$,先从函数式中适当选择某些"与"项,并配上其所缺的一个合适的变量,然后再利用并项、吸收和消去等方法进行化简。

例如:

$$A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$

$$= A\overline{B} + B\overline{C} + (\overline{A} + A)\overline{B}C + \overline{A}B(\overline{C} + C)$$

$$=A\overline{B}+B\overline{C}+\overline{A}\overline{B}C+A\overline{B}C+\overline{A}B\overline{C}+\overline{A}BC$$

$$=(A\overline{B}+A\overline{B}C)+(B\overline{C}+\overline{A}B\overline{C})+(\overline{A}\overline{B}C+\overline{A}BC)$$

$$=A\overline{B}+B\overline{C}+\overline{A}C$$

实际应用中遇到的逻辑函数往往比较复杂, 化简时应灵活使用所学的公理、定律及规则,综 合运用各种方法。

例如:

$$F = BC + D + \overline{D}(\overline{B} + \overline{C})(AD + B\overline{C})$$

$$= BC + D + (\overline{B} + \overline{C})(AD\overline{D} + B\overline{C}\overline{D})$$

$$= BC + D + (\overline{B} + \overline{C})B\overline{C}\overline{D}$$

$$=BC+D+\overline{B}B\overline{C}\overline{D}+\overline{C}B\overline{C}\overline{D}$$

$$=BC+D+B\overline{C}\overline{D}$$

$$=BC(\overline{D}+D)+D+B\overline{C}\overline{D}$$

$$=BC\overline{D}+BCD+D+B\overline{C}\overline{D}$$

$$=BC\overline{D}+B\overline{C}\overline{D}+BCD+D$$

$$=B\overline{D}+D$$

再如:
$$F = BC + D + (\overline{B} + \overline{C})(AD + B\overline{C})$$

$$=BC+D+\overline{B}(AD+B\overline{C})+\overline{C}(AD+B\overline{C})$$

$$=BC+D+A\overline{B}D+\overline{B}B\overline{C}+A\overline{C}D+B\overline{C}\overline{C}$$

$$=BC+D+A\overline{B}D+A\overline{C}D+B\overline{C}$$

$$=BC+B\overline{C}+D+A\overline{B}D+A\overline{C}D$$

$$=B+D$$

再如:
$$F = \overline{A}(B+\overline{C})(A+\overline{B}+C)\overline{A}\overline{B}\overline{C}$$

$$= (A+\overline{B}+\overline{C})(A+\overline{B}+C)(A+B+C)$$

$$= (A+\overline{B}+\overline{C})(A+C)$$

$$= (A+\overline{B}C)(A+C)$$

 $=A+\overline{R}C$

2、"或-与"式的化简

最简"或-与"式应同时满足两个条件:

- (1)表达式中的"或"项个数最少;
- (2)每个"或"项中的变量个数最少。

用代数法化简"或-与"表达式可直接运用公理、定律中的"或-与"形式,并综合运用前面介绍"与-或"表达式化简时提出的各种方法。

例如:
$$F = (A+B)(\overline{B}+C)(A+C+\overline{D})(A+C)$$

$$= (A+B)(\overline{B}+C)(A+C)$$

$$= (A+B)(\overline{B}+C)$$

此外,可以采用两次对偶法:

第一步:对"或-与"表达式表示的函数F求对偶,得到"与-或"表达式F';

第二步: 求出F'的最简"与-或"表达式;

第三步:对F'再次求对偶,即可得到F的最简"或-与"表达式。

例如:
$$F = (A + \overline{B})(\overline{A} + B)(B + C)(\overline{A} + C)$$

 $F' = A\overline{B} + \overline{A}B + BC + \overline{A}C$
 $= A\overline{B} + \overline{A}B + (B + \overline{A})C$
 $= A\overline{B} + \overline{A}B + \overline{A}\overline{B}C$
 $= A\overline{B} + \overline{A}B + C$, $F = (A + \overline{B})(\overline{A} + B)C$

还可以两次取反:

$$F = (A + \overline{B})(\overline{A} + B)(B + C)(\overline{A} + C)$$

$$\overline{F} = \overline{A + \overline{B}} + \overline{\overline{A} + B} + \overline{B + C} + \overline{\overline{A} + C}$$

$$= \overline{A}B + A\overline{B} + \overline{B}\overline{C} + A\overline{C}$$

$$= \overline{A}B + A\overline{B} + (A + \overline{B})\overline{C}$$

$$= \overline{A}B + A\overline{B} + \overline{\overline{A}B}\overline{C}$$

$$= \overline{A}B + A\overline{B} + \overline{\overline{A}B}\overline{C}$$

$$= \overline{A}B + A\overline{B} + \overline{\overline{A}B}\overline{C}$$

代数化简法的优点:不受变量数目的约束;当对公理、定律和规则十分熟练时,化简比较方便。

缺点:没有一定的规律和步骤,技巧性很强,而且在很多情况下难以判断化简结果是否最简。

二、卡诺图化简法

1、卡诺图的构成

卡诺图是一种平面方格图,每个小方格代表 一个最小项,故又称为**最小项方格图**。

结构特点:

①*n*个变量的卡诺图由2ⁿ个小方格构成,每个小方格代表一个最小项;

②几何上处在**相邻、相对、相重**位置的小方格 所代表的最小项为相邻最小项。

2 变量、3 🗚 变量、4变量的 卡诺图分别如 图 (a)、(b)、(c) 所示:

从各卡诺图可以看出,在n个变量的卡诺图中,能从图形上直观、方便地找到每个最小项的n个相邻最小项。

例如:四变量卡诺图中, m_5 的 4 个相邻最小项分别是和它几何相邻的 m_1, m_4, m_7, m_{13} 。

m,的 4 个相邻最小项 除了与之几何相邻的 m_3, m_6 C 之外,另外两个是处在"相 对"位置的 m_0 (同一列的另 一端)和mn(同一行的另一 端)。这种相邻称为相对相 邻。

AB						
	00	01	11	10		
00	\mathbf{m}_0	\mathbf{m}_4	m ₁₂	m ₈		
01	m ₁	m ₅	m ₁₃	m ₉		
11	m ₃	m ₇	m ₁₅	m ₁₁		
10	m ₂	\mathbf{m}_6	m ₁₄	m ₁₀		

此外,处在"相重"位置的最小项相邻,如五变量卡诺图中的 m_3 ,除

ABC						
DE \	000	001	011	010		
00	0	4	12	8		
01	1	5	13	9		
11	3	7	15	11		
10	2	6	14	10		

100	101	111	110
16	20	28	24
17	21	29	25
19	23	31	27
18	22	30	26

(d)

了几何相邻的 m_1, m_2, m_7 和相对相邻的 m_{11} 外,还与 m_{19} 相邻。这种相邻称为**重叠相邻**。

好处:可以从图形上直观地找出相邻最小项进行合并,合并的理论依据是 $A\overline{B} + AB = A$ 。

基本原理: 把卡诺图上代表相邻最小项的相邻小方格"圈"在一起进行合并,达到用一个简单"与"项代替若干最小项的目的。

通常把用来包围那些能由一个简单"与"项代替的若干最小项的"圈"称为卡诺圈。

卡诺图化简的关键就是找合理的卡诺圈!

2、用卡诺图表示逻辑函数

(1)逻辑函数为标准"与-或"式

当逻辑函数为标准"与-或"式时,只需在卡诺图上找出表达式中最小项对应的小方格填上 1, 其余小方格填上 0,即可得到该函数的卡诺图。

例如:函数 $F(A,B,C) = \sum m(1,2,3,7)$ 的卡诺图如下所示:

 $F(A, B, C) = \sum m(1, 2, 3, 7)$ 的卡诺图

(2)逻辑函数为一般"与-或"式

当逻辑函数为一般"与-或"式时,可根据"与"的公共性和"或"的叠加性作出相应的卡诺图。

例如:函数 $F(A,B,C,D) = AB + CD + \overline{AB}C$ 的卡

CD 00 01 11 10 00 0 0 1 0 01 0 0 1 0 11 1 1 1 1 10 1 0 1 0	AB							
00 0 0 1 0 01 0 0 1 0 11 1 1 1 1	CD	00	01	11	10			
11 1 1 1		0	0	1	0			
	01	0	0	1	0			
10 1 0 1 0	11	1	1	1	1			
	10	1	0	1	0			

诺图如下所示:

为了叙述的方便,通 常将卡诺图上填1的小方 格称为1方格,填0的小 方格称为0方格。0方格

有时用空格表示。

问题: 函数为或与式时又该如何呢?

3、利用卡诺图化简逻辑函数

当一个函数用卡诺图表示出来后,究竟哪些最小项可以合并呢?

下面以2、3、4变量卡诺图为例予以说明。

1)两个小方格相邻,或处于某行(列)两端时, 所代表的最小项可以合并,合并后可消去一个变量。 例如,下图给出了2、3变量卡诺图上两个相邻最小项合并的典型情况的。

2)四个小方格组成一个大方格、或组成一行 (列)、或处于相邻两行(列)的两端、或处于四

角时,所代表的最小项可以合并,合并后可消去两个变量。

例如,下图给出了3变量卡诺图上四个相邻最小项合并的典型情况的。

四个相邻最小项合并的情况

4 变量卡诺图上四个相邻最小项合并的典型情况:

四个相邻最小项合并的几种情况

3)八个小方格组成一个大方格、或组成相邻的两行(列)、或处于两个边行(列)时,所代表的最小项可以合并,合并后可消去三个变量。

8个相邻最小项合并的两种情况

例如,上图给出了3、4变量卡诺图上八个相邻最小项合并的典型情况的。

n变量卡诺图中最小项的合并规律归纳如下:

- ①卡诺圈中小方格的个数必须为2^m个, m为小于或等于n的整数。
- ②卡诺圈中的2^m个小方格有一定的排列规律, 具体地说,它们含有m个不同量,n-m个相同量。

- ③卡诺圈中的2^m个小方格对应的所有最小项可用*n-m*个变量的"与"项表示,该"与"项由这些最小项中的相同变量构成。
- ④当m=n时,卡诺圈包含了整个卡诺图,可用 1表示,即n个变量的全部最小项之和为 1。

总结:卡诺圈越少越好,越大越好;全部卡诺圈要覆盖函数所涉及的所有最小项;任何一个卡诺圈至少有一个最小项未出现在其它卡诺圈中。

过程总结:

- 1) 正确画出卡诺图
- 2) 正确画出卡诺圈
- 3)根据卡诺圈写出最简表达式

例如: 化简

$$F(A,B,C,D) = \sum m(0,3,5,6,7,10,11,13,15)$$

解答:函数F的最简

"与-或"表达式为:

F(A,B,C,D)

$$= \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}BC$$

$$+A\overline{B}C+BD+CD$$

再如:用卡诺图化简

$$F(A,B,C,D) = \sum m(2,3,6,7,8,10,12)$$

解答:

结果: *F*(*A*, *B*, *C*, *D*)

$$= \overline{A}C + A\overline{C}\overline{D} + A\overline{B}\overline{D}$$

或者: F(A,B,C,D)

$$= \overline{A}C + A\overline{C}\overline{D} + \overline{B}C\overline{D}$$

再如: 化简

$$F(A,B,C,D) = \sum m(1,3,5,7,8,9,10,11,14,15)$$

解答: $F(A,B,C,D) = AC + A\overline{B} + \overline{A}D$

	AI	3				
	CD	00	01	11	10	
AD~	00	0	0	0		— AB
, ,_	01	1	1	0	1	
	11	1	1	1	1	
	10	0	0	1	1	
	'					AC

用卡诺图化简总的原则是:

- (1)在覆盖函数中所有最小项的前提下,卡诺 圈的个数应达到最少;
- (2) 在满足合并规律的前题下卡诺圈应达到 最大:
- (3)根据合并的需要,每个最小项可以被多个 卡诺圈包含。

4、求逻辑函数最简"或-与"式

(1) 两次取反法

当给定逻辑函数为"与-或"式或标准"与-或"式时,通常采用"两次取反法",具体如下:

- ①作出F的卡诺图,求出 \overline{F} 的最简"与-或"式(合并卡诺图上的 0 方格);
 - ②对 \overline{F} 的最简"与-或"式取反,得到F的最

简"或-与"式。

例如: 化简 $F(A,B,C,D) = \sum m(0,1,2,5,8,9,10)$

解答: \bar{F} 的卡诺图和卡诺圈如下:

AB		$\mathbf{B}\mathbf{\overline{D}}$			$\overline{F}=AB+CD+B\overline{D}$,
CD	00	01		10	
00	1	0_	0	1 AB	$F = \overline{AB + CD + B\overline{D}}_{+}$
01	1	1	0	1 .CD	
11	0_	0	0	0	$=\overline{ABCD}\overline{BD}_{+}$
10	1	0	(0)	1	
					$=(A+\overline{B})(C+\overline{D})(\overline{B}+D)_{a}$

(2) 两次对偶法

当给定逻辑函数为"或-与"式或标准"或-与"式时,通常采用"两次对偶法",具体如下:

- ①作出F的对偶式F'的卡诺图,并求出F'的最简"与-或"式;
- ②对F'的最简"与-或"式取对偶,得到F的最简"或-与"式。

例如: 求下列函数的最简"或-与"式:

$$F(A,B,C,D) = \prod M(2,4,5,10)$$

解答:
$$F(A,B,C,D) = \prod M(2,4,5,10)$$

$$= (A+B+\overline{C}+D)(A+\overline{B}+C+D)$$

$$(A + \overline{B} + C + \overline{D})(\overline{A} + B + \overline{C} + D)$$

$$F'(A,B,C,D) = AB\overline{C}D + A\overline{B}CD + A\overline{B}C\overline{D} + \overline{A}B\overline{C}D$$

$$= \sum m(5,10,11,13)$$

利用卡诺图求出F'的最简"与-或"式:

AB. CD.	00₽	01₽	11₽	100
00₽	ę.	th	¢.	ę.
01	ę.	(1 _e	1)	₽
11₽	ę	٩	ţ	(1)
10₽	¢	ę.	ø	1,

$$F'(A,B,C,D) = B\overline{C}D + A\overline{B}C$$

So:

$$=(B+\overline{C}+D)(A+\overline{B}+C)$$

卡诺图化简逻辑函数具有方便、直观、容易掌握等优点。但受到变量个数的约束, 当变量个数大

于6时,画图以及对图形的识别都变得相当复杂。

问题: 如何直接求 F 的最简或与式?

问题:为什么变量超过6个时,卡诺图也不好使?

三、含任意项的逻辑函数的化简

任意项:由于输入变量之间存在的相互制约或问题的某种特殊限定,输出函数与输出变量的某些取值无关,这些输入组合对应的最小项称为任意项或无关项。

例如,假定用 A、B、C 表示计算机中的+、 -、×运算,并令变量取值 1 执行相应运算,则这 三个变量不允许两个或两个以上同时为 1。 换言之, A、B、C 只允许出现 000、001、010、100 这四种取值组合, 而不允许出现其余的四种组合: 011、101、110、111。

此问题包含四个任意项: \overline{ABC} 、 $A\overline{BC}$ 、 $AB\overline{C}$ 、ABC。

问题: 任意项对应的函数值如何处理?

回答: 在保证不出现无效组合的条件下, 爱咋

处理咋处理!不管怎么处理都不影响函数的实际逻辑功能。

问题: 你会如何处理?

回答:按有利于化简的方式处理!

【例如】设计一个组合逻辑电路,用来判断以余3码表示的1位十进制数是否为合数。

【分析】设输入变量为A、B、C、D,输出函

数为F,当ABCD表示的十进制数为合数(4、6、8、9)时,输出<math>F为 1,否则F为 0。

按照余 3 码的编码规则, ABCD的取值组合不允许为 0000、0001、0010、1101、1110、1111, 这6 6 种取值组合对应的最小项为任意项,即它们对应的输出可以随意指定为 1 或者为 0,通常记为" d"。

根据以上分析,可建立描述该问题的真值表如右:

由真值表可写 出F的逻辑表达式:

A	В	C	D	F	A	В	C	D	F
0	0	0	0	d	1	0	0	0	0
0	0	0	1	d	1	0	0	1	1
0	0	1	0	d	1	0			0
0	0	1	1	0	1	0	1	1	1
0	1	_		0	1	1		0	1
0	1	0	1	0	1	1	0	1	d
0	1	1	0	0	1	1	1	0	d
0	1	1	1	1	1	1	1	1	d

$$F(A, B, C, D) = \sum m(7, 9, 11, 12) + \sum d(0, 1, 2, 13, 14, 15)$$

若无关项都处理成 0,

则F的卡诺图如下:

化简后的逻辑表达式为F(A,B,C,D)

$$=A\overline{B}D+AB\overline{C}\overline{D}+\overline{A}BCD$$

若根据化简的需要进行处理,则函数F的卡诺图如左,化简结果为

$$=AB+AD+BCD$$

问题: 大家看懂了吗?

假定采用与非门实现给定逻辑功能的电路,

可将F的最简表达式变换成"与非"式:

$$F(A,B,C,D) = AB + AD + BCD$$

$$= \overline{\overline{AB} \cdot \overline{AD} \cdot \overline{BCD}}$$

相应的逻辑电路图如下:

