MATH 2135 Linear Algebra

3.B Null Spaces and Ranges

Alyssa Motas

March 21, 2021

Contents

1	Nul	l Space and Injectivity	3
	1.1	Definition of null space	3
	1.2	Examples of null spaces	3
	1.3	The null space is a subspace	3
	1.4	Injective	4
	1.5	Injectivity is equivalent to null space equals $\{0\}$	4
2	Rar	nge and Surjectivity	4
	2.1	Definition of range	4
	2.2	Examples of range	5
	2.3	The range is a subspace	5
	2.4	Surjective	6
	2.5	Example	6
3	Fundamental Theorem of Linear Maps		
	3.1	A map to a smaller dimensional space is not injective	7
	3.2	A map to a larger dimensional space is not surjective	7
	3.3	Homogenous system of linear equations	7
	3.4	Inhomogenous system of linear equations	8

1 Null Space and Injectivity

1.1 Definition of null space

For $T \in \mathcal{L}(V, W)$, the *null space* or *kernel* of T, denoted null T, is the subset of V consisting of those vectors that T maps to 0:

$$\text{null } T = \{v \in V \mid Tv = 0\}.$$

1.2 Examples of null spaces

- If $T: V \to W$ is the zero map where Tv = 0 for every $v \in V$, then null T = V.
- If $T: V \to V$ is the identity function, then null $T = \{0\}$.
- Suppose $\phi \in \mathcal{L}(\mathbb{R}^3, \mathbf{F})$ is defined by $\phi(z_1, z_2, z_3) = z_1 + 2z_2 + 3z_3$. Then null $\phi = \{(z_1, z_2, z_3) \in \mathbb{C}^3 \mid z_1 + 2z_2 + 3z_3 = 0\}$. A basis of null ϕ is (-2, 1, 0), (-3, 0, 1).
- Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the differentiation map defined by Dp = p'. The only functions whose derivative equals the zero function are the constant functions. Then, the null space of D equals the set of constant functions.

$$\text{null } D = \{a_0 \mid a_0 \in \mathbb{R}\}.$$

- Suppose $T \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the multiplication by x^2 map defined by $(Tp)(x) = x^2p(x)$. The only polynomial p such that $x^2p(x) = 0$ for all $x \in \mathbb{R}$ is the 0 polynomial. Then null $T = \{0\}$.
- Suppose $B \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ is the backward shift defined by

$$B(x_1, x_2, x_3, \dots) = (x_2, x_3, \dots).$$

Then $B(x_1, x_2, x_3, ...) = 0$ if and only if $x_2 = x_3 = ... = 0$. So we have null $B = \{(a, 0, 0, ...) \mid a \in \mathbf{F}\}.$

1.3 The null space is a subspace

Suppose $T \in \mathcal{L}(V, W)$. Then null T is a subspace of V.

Proof. Since T is a linear map, we know that T(0) = 0 then $0 \in \text{null } T$. Suppose $u, v \in \text{null } T$, then

$$T(u+v) = Tu + Tv = 0 + 0 = 0.$$

Since $u+v\in \text{null }T,$ then it is closed under addition. Suppose that $u\in \text{null }T$ and $\lambda\in \mathbf{F}.$ Then

$$T(\lambda u) = \lambda T u = \lambda 0 = 0.$$

Hence $\lambda u \in \text{null } T$ and it is closed under scalar multiplication. Thus, null T is a subspace of V.

1.4 Injective

A function $T: V \to W$ is called *injective* or *one-to-one* if Tu = Tv implies u = v. This can be rephrased to say that T is injective if $u \neq v$ implies that $Tu \neq Tv$.

1.5 Injectivity is equivalent to null space equals {0}

Let $T \in \mathcal{L}(V, W)$. Then T is injective if and only if null $T = \{0\}$.

Proof. Suppose T is injective. We want to prove that null $T = \{0\}$. We already know that $\{0\} \subset \text{null } T \text{ since } 0 \in \text{null } T$. To prove that null $T \subset \{0\}$, suppose $v \in \text{null } T$. Then

$$T(v) = 0 = T(0).$$

Since T is injective, the equation above implies v = 0, then we can conclude that null $T = \{0\}$, as desired.

Suppose that null $T = \{0\}$ and we need to show that T is injective. Suppose $u, v \in V$ and Tu = Tv. Then

$$0 = Tu - Tv = T(u - v).$$

Then $u - v \in \text{null } T$, which equals $\{0\}$. Hence $u - v = 0 \Rightarrow u = v$ which implies T is injective, as desired.

2 Range and Surjectivity

2.1 Definition of range

For T a function from V to W, the range of T is the subset of W consisting of those vectors that are of the form Tv for some $v \in V$:

range
$$T = \{ Tv \mid v \in V \}.$$

2.2 Examples of range

- If T is the zero map from V to W, in other words if Tv = 0 for every $v \in V$, then range $T = \{0\}$.
- Suppose $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ is defined by T(x,y) = (2x, 5y, x+y), then range $T = \{(2x, 5y, x+y) \mid x, y \in \mathbb{R}\}$. A basis of range T is (2,0,1), (0,5,1).
- Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}), \mathcal{P}(\mathbb{R}))$ is the differentiation map by Dp = p'. Because for every polynomial $q \in \mathcal{P}(\mathbb{R})$ there exists a polynomial $p \in \mathcal{P}(\mathbb{R})$ such that p' = q, the range of D is $\mathcal{P}(\mathbb{R})$.
- Suppose $B \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ is the backshift operator defined by $B(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$. Then

range
$$B = \{B(x_1, x_2, \dots) \mid (x_1, x_2, dots) \in \mathbf{F}^{\infty} \}$$

= $\{(x_2, x_3, x_4, \dots) \mid x_1, x_2, \dots \in \mathbf{F} \}$
= \mathbf{F}^{∞} .

• Let $F \in \mathcal{L}(\mathbf{F}^{\infty}, \mathbf{F}^{\infty})$ be the forward shift operator defined by $F(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots)$. Then

range
$$F = \{ F(x_1, x_2, \dots) \mid (x_1, x_2, \dots) \in \mathbf{F}^{\infty} \}$$

= $\{ (0, x_1, x_2, \dots) \mid x_1, x_2, \dots \in \mathbf{F} \}.$

This is a proper subspace of \mathbf{F}^{∞} .

2.3 The range is a subspace

If $T \in \mathcal{L}(V, W)$, then range T is a subspace of W.

Proof. Suppose $T \in \mathcal{L}(V, W)$, then T(0) = 0 which implies that $0 \in \text{range } T$. If $w_1, w_2 \in \text{range } T$, then there exist $v_1, v_2 \in V$ such that $Tv_1 = w_1$ and $Tv_2 = w_2$. So

$$T(v_1 + v_2) = Tv_1 + Tv_2 = w_1 + w_2.$$

Hence $w_1 + w_2 \in \text{range } T$, so it is closed under addition. If $w \in \text{range } T$ and $\lambda \in \mathbf{F}$, then there exists $v \in V$ such that Tv = w. Thus

$$T(\lambda v) = \lambda T v = \lambda w$$
.

Hence $\lambda w \in \text{range } T$, and it is closed under scalar multiplication. Hence, range T is a subspace of W.

2.4 Surjective

A function $T: V \to W$ is called *surjective* or *onto* if its range equals W.

2.5 Example

The differentiation map $D \in \mathcal{L}(\mathcal{P}_5(\mathbb{R}), \mathcal{P}_5(\mathbb{R}))$ defined by Dp = p' is not surjective, because the polynomial x^5 is not in the range of D. However, the differentiation map $S \in \mathcal{L}(\mathcal{P}_5(\mathbb{R}), \mathcal{P}_4(\mathbb{R}))$ defined by Sp = p' is surjective, because its range equals $\mathcal{P}_4(\mathbb{R})$, which is now the vector space into which S maps.

3 Fundamental Theorem of Linear Maps

Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Then range T is finite-dimensional and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T.$$

Proof. Let u_1, \ldots, u_m be a basis of null T, then dim null T = m. The linearly independent list u_1, \ldots, u_m can be extended to a basis

$$u_1,\ldots,u_m,v_1,\ldots,v_n$$

of V, thus dim V = m + n. We need to show that range T is finite-dimensional and dim range T = n. We will do this by proving that Tv_1, \ldots, Tv_n is a basis of range T.

Let $v \in V$. Since $u_1, \ldots, u_m, v_1, \ldots, v_n$ spans V, we can write

$$v = a_1 u_1 + \dots + a_m u_m + b_1 v_1 + \dots + b_n v_n$$

where $a_1, \ldots, a_m, b_1, \ldots, b_n \in \mathbf{F}$. Applying T to both sides, we get

$$Tv = b_1 Tv_1 + \cdots + b_n Tv_n$$

where all the terms of Tu_j disappeared since $u_j \in \text{null } T$. The equation above implies that Tv_1, \ldots, Tv_n spans range T, then range T is finite-dimensional.

To show that Tv_1, \ldots, Tv_n is linearly independent, suppose $c_1, \ldots, c_n \in \mathbf{F}$ and $c_1Tv_1 + \cdots + c_nTv_n = 0$. Then

$$T(c_1v_1 + \dots + c_nv_n) = 0$$

and $c_1v_1 + \cdots + c_nv_n \in \text{null } T$. Because u_1, \ldots, u_m spans null T, we can write $c_1v_1 + \cdots + c_nv_n = d_1u_1 + \cdots + d_mu_m$ where $d_1, \ldots, d_m \in \mathbf{F}$. The equation implies all c's and d's are 0 (since $u_1, \ldots, u_m, v_1, \ldots, v_n$ is linearly independent). Thus Tv_1, \ldots, Tv_n is linearly independent and hence is a basis of range T, as desired.

3.1 A map to a smaller dimensional space is not injective

Suppose V and W are finite-dimensional vector spaces such that $\dim V > \dim W$. Then no linear map from V to W is injective.

Proof. Let $T \in \mathcal{L}(V, W)$. Then

$$\dim \text{ null } T = \dim V - \dim \text{ range } T$$

$$\geq \dim V - \dim W$$

$$> 0.$$

The inequality states that dim null T > 0 which means null T contains vectors other than 0. Thus, T is not injective since null $T \neq \{0\}$.

3.2 A map to a larger dimensional space is not surjective

Suppose V and W are finite-dimensional vector spaces such that $\dim V < \dim W$. Then no linear map from V to W is surjective.

Proof. Let $T \in \mathcal{L}(V, W)$. Then

$$\dim \text{ range } T = \dim V - \dim \text{ null } T$$

$$\leq \dim V$$

$$< \dim W.$$

The inequality states that dim range $T < \dim W$. This means that range $T \neq W$, so T is not surjective. \Box

3.3 Homogenous system of linear equations

A homogenous system of linear equations with more variables than equations has nonzero solutions.

Proof. Consider $T: \mathbf{F}^n \to \mathbf{F}^m$ defined by

$$T(x_1, \dots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \dots, \sum_{k=1}^n x_k\right)$$

where $T(x_1, ..., x_n) = 0$ and 0 here is the additive identity in \mathbf{F}^m , which is the list of length m of all 0's. We have a homogeneous system of m linear equations with n variables. If $\dim \mathbf{F}^n = n > \dim \mathbf{F}^m = m$, then T is not injective. We also have null $T \neq \{0\}$ which implies that there exists some $v \in \text{null } T \text{ such that } v \neq 0$. So, the system Tv = 0 has nonzero solutions. \square

3.4 Inhomogenous system of linear equations

An inhomogenous system of linear equations with more equations than variables has no solution for some choice of the constant terms.

Proof. Define $T: \mathbf{F}^n \to \mathbf{F}^m$ by

$$T(x_1, \dots, x_n) = \left(\sum_{k=1}^n A_{1,k} x_k, \dots, \sum_{k=1}^n A_{m,k} x_k\right)$$

where $T(x_1, ..., x_n) = (c_1, ..., c_m)$. We have a system of m equations with n variables $x_1, ..., x_n$. We see that T is not surjective if n < m since range $T \neq \mathbf{F}^m$.