Assignment 12, Discrete Mathematics

Oleg Sivokon

 $<\!2015\text{-}04\text{-}05~Sun}\!>$

Contents

1	Problems															2					
	1.1	Proble	m 1																		2
		1.1.1	Answer	1																	2
		1.1.2	Answer	3																	2

1 Problems

1.1 Problem 1

Let M be the set of all relations over $A = \{1, 2, 3\}$.

- 1. How many members does M have?
- 2. Let S be a set of relations over M, defined as follows:

$$S = \{R_1 R_2 | R_1, R_2 \in M \land R_1 R_2 = R_2 R_1\}.$$

Show that S is not an equivalence relation.

1.1.1 Answer 1

The number of elements of M is $|M|^2 = 3^2 = 9$. This can be proved from a partial sum of a recurence: $a_{n+1} = a_n + 2n - 1$, but I will omit the proof. Intuitively, the number of relations of a set of cardinality n+1, is as big as the number of relations of a set with cardinality n plus a number of relations we can create from the element added to the elements already counted (n-1), plus the number of relations to the element added from elements already counted (n-1), plus the relation from the element added to itself.

1.1.2 Answer 3

I will prove that S is not an equivalence using the definition of equivalence which states that a relation is an equivalence if it is **relfexive**, **symmetric** and **transitive**. It is easy to see that the definition of reflexivity requires that all members of M be present in the relation, but, for example, (1,2) is absent from S. Suppose, for contradiction, it was present in S, then it would imply that there exists a pair $(a,b) \in M$ s.t. $((1,2),(a,b)) \in S$ and $((a,b),(1,2)) \in S$. By looking at the first and the last members of the two members of S we know that $(1,2) \circ (a,b) = (1,b)$ and $(a,b) \circ (1,2) =$

(a,2), in other words it is necessary that: $(1,2) \circ (a,b) = (1,b) = (1,2) = (a,2) = (a,b) \circ (1,2)$, which in turn, means that b=2 and a=1. Plugging these values back into original equilaty gives $(1,2) \circ (1,2) = (1,2)$, which is obviously false. Hence, by contradiction, the proof is complete.