Maths for ML III

Nipun Batra

February 4, 2020

IIT Gandhinagar

Extreme (max or min)
$$f(x,y) = x^2 + y^2$$
 s.t $xy = 1$

More generally Extrema
$$f(x,...)$$
 s.t $g(x,...) = 0$

Extreme (max or min) $f(x, y) = x^2 + y^2$ s.t xy = 1

More generally Extrema f(x,...) s.t g(x,...) = 0

At extremum,
$$(x^*, y^*)$$
, we get: $\nabla f(x^*, y^*) = \lambda \nabla g(x^*, y^*)$

At extremum, (x^*, y^*) , we get: $\nabla f(x^*, y^*) = \lambda \nabla g(x^*, y^*)$

$$\nabla f(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix} = \lambda \nabla g(x,y) = \lambda \begin{bmatrix} y \\ x \end{bmatrix}$$

$$2x = \lambda y \tag{1}$$

$$2y = \lambda x \tag{2}$$

$$xy = 1 \tag{3}$$

We have three equations involving three variables. On solving the above equations, we get

$$x = y = 1$$

$$\lambda = 2$$

Find extrema of
$$f(x, y) = x^2 + y^2$$
 s.t $x + y = 1$

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$

$$\nabla f(x,y) = \begin{bmatrix} 2x \\ 2y \end{bmatrix} \nabla g(x,y) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$2x = \lambda \tag{4}$$

$$2y = \lambda \tag{5}$$

$$x + y - 1 = 0 (6)$$

On solving we get x = y = 0.5

For solving the form of equations: Extrema f(.) s.t. g(.) = 0.

For solving the form of equations: Extrema f(.) s.t. g(.) = 0.

For example, Maximize $f(x, y) = x^2 + y^2$ s.t. x + y = 1

For solving the form of equations: Extrema f(.) s.t. g(.) = 0.

For example, Maximize $f(x, y) = x^2 + y^2$ s.t. x + y = 1

Construct a new function, Lagrangian

 $L(x,y,\lambda)=f(x,y)+\lambda g(x,y)$ where λ is called the Lagrangian multiplier

For solving the form of equations: Extrema f(.) s.t. g(.) = 0.

For example, Maximize $f(x, y) = x^2 + y^2$ s.t. x + y = 1

Construct a new function, Lagrangian $L(x,y,\lambda)=f(x,y)+\lambda g(x,y)$ where λ is called the Lagrangian multiplier

• Set $\nabla L = 0$, i.e.

For solving the form of equations: Extrema f(.) s.t. g(.) = 0.

For example, Maximize $f(x, y) = x^2 + y^2$ s.t. x + y = 1

Construct a new function, Lagrangian

 $L(x,y,\lambda)=f(x,y)+\lambda g(x,y)$ where λ is called the Lagrangian multiplier

- Set $\nabla L = 0$, i.e.
- $\frac{\partial L}{\partial x} = 0$

For solving the form of equations: Extrema f(.) s.t. g(.) = 0.

For example, Maximize $f(x, y) = x^2 + y^2$ s.t. x + y = 1

Construct a new function, Lagrangian $L(x,y,\lambda)=f(x,y)+\lambda g(x,y) \text{ where } \lambda \text{ is called the Lagrangian}$ multiplier

- Set $\nabla L = 0$, i.e.
- $\bullet \ \frac{\partial L}{\partial y} = 0$

For solving the form of equations: Extrema f(.) s.t. g(.) = 0.

For example, Maximize $f(x, y) = x^2 + y^2$ s.t. x + y = 1

Construct a new function, Lagrangian $L(x,y,\lambda)=f(x,y)+\lambda g(x,y) \text{ where } \lambda \text{ is called the Lagrangian}$ multiplier

- Set $\nabla L = 0$, i.e.
- $\frac{\partial L}{\partial x} = 0$
- $\bullet \ \frac{\partial L}{\partial y} = 0$
- $\frac{\partial L}{\partial \lambda} = 0$

Find the extrema of
$$f(x,y) = x^2y$$
 s.t $g(x,y) = x^2 + y^2 = 1$

Find the extrema of
$$f(x,y)=x^2y$$
 s.t $g(x,y)=x^2+y^2=1$
$$L(x,y,\lambda)=x^2y+\lambda(x^2+y^2-1)$$

Find the extrema of
$$f(x, y) = x^2y$$
 s.t $g(x, y) = x^2 + y^2 = 1$

$$L(x, y, \lambda) = x^2y + \lambda(x^2 + y^2 - 1)$$

Compute the partial derivatives

$$\frac{\partial L}{\partial x} = 0 \implies 2xy + \lambda(2x) = 0 \tag{7}$$

$$\frac{\partial L}{\partial y} = 0 \implies x^2 + \lambda(2y) = 0 \tag{8}$$

$$\frac{\partial L}{\partial \lambda} = 0 \implies x^2 + y^2 - 1 = 0 \tag{9}$$

$$x = 0$$
 $f(x,y) = 0$
 $y^2 = 1 \implies y = \pm 1$
 $\lambda = 0$

$$x\neq 0 \implies y=-\lambda$$

$$x \neq 0 \implies y = -\lambda$$

$$x^2 = 2\lambda^2$$

$$x \neq 0 \implies y = -\lambda$$

$$x^2 = 2\lambda^2$$

Substitute the above values in Equation 9

$$x\neq 0 \implies y=-\lambda$$

$$x^2 = 2\lambda^2$$

Substitute the above values in Equation 9

$$3\lambda^2 = 1 \implies \lambda = \pm \frac{1}{\sqrt{3}}$$

$$x \neq 0 \implies y = -\lambda$$

$$x^2 = 2\lambda^2$$

Substitute the above values in Equation 9

$$3\lambda^2 = 1 \implies \lambda = \pm \frac{1}{\sqrt{3}}$$

$$y=\pm\frac{1}{\sqrt{3}}$$

$$\text{Max of } x^2 y = \frac{2}{3} \sqrt{\frac{1}{3}}$$

KKT Conditions

Used for constrained optimization of the form

Minimize f(x), where $x \in \mathbb{R}^k$ such that

$$h_i(x) = 0$$
, $\forall i = 1, ..., m$ (m equalities) $g_j(x) \leq 0$, $\forall j = 1, ..., n$ (n inequalities)

• Create a new function for minimization,

$$L(x,\lambda_1,\ldots,\lambda_m,\mu_1,\ldots,\mu_n)=f(x)+\sum_{i=1}^m\lambda_ih_i(x)+\sum_{j=1}^n\mu_jg_j(x)$$

where,

 $\lambda_1 - \lambda_m$ are multipliers for the m equalities $\mu_1 - \mu_n$ are multipliers for the n inequalities

• Minimize $L(x, \lambda, \mu)$ w.rt. $x \implies \nabla_x L(x, \lambda, \mu) = 0$ Gives k equations

• Minimize $L(x, \lambda, \mu)$ w.rt. $\lambda \implies \nabla_{\lambda} L(x, \lambda, \mu) = 0$ Gives m equations

In both cases,
$$\mu_i g_i(x^*) = 0$$

Minimize $f(x,y) = (x-4)^2 + (y-4)^2$

s.t. x+y 75

Minimize
$$f(x,y) = (x-4)^2 + (y-4)^2$$

Minimize
$$f(x,y) = (x-4) + (y-4)^2$$

s.t. $x+y > 5$

 $f(x,y) = (x-4)^2 + (y-4)^2$

g(x,y) = -x-y+5 =

Minimize
$$f(x,y) = x^2 + y^2$$

Minimize
$$f(x,y) = x^2 + y$$

 $s.t. x+y > x$

Minimize
$$f(x,y) = x + y$$

s.t. $x+y > 5$

g(xy) = -x-y+5 =

CONSIDER CASE WHEN 140

KKT Conditions

Stationarity (For minimization)
$$\nabla_{x} f(x) + \sum_{i=1}^{m} \nabla_{x} \lambda_{i} h_{i}(x) + \sum_{i=1}^{n} \nabla_{x} \mu_{i} g_{i}(x) = 0$$

KKT Conditions

Stationarity (For minimization)

$$\nabla_{x}f(x) + \sum_{i=1}^{m} \nabla_{x}\lambda_{i}h_{i}(x) + \sum_{i=1}^{n} \nabla_{x}\mu_{i}g_{i}(x) = 0$$

Equality Constraints

$$\nabla_{\lambda} f(x) + \sum_{i=1}^{m} \nabla_{\lambda} \lambda_{i} h_{i}(x) + \sum_{i=1}^{n} \nabla_{\lambda} \mu_{i} g_{i}(x) = 0$$
$$\sum_{i=1}^{m} \nabla_{\lambda} \lambda_{i} h_{i}(x) = 0$$

KKT Conditions

Stationarity (For minimization)

$$\nabla_{\mathbf{x}} f(\mathbf{x}) + \sum_{i=1}^{m} \nabla_{\mathbf{x}} \lambda_{i} h_{i}(\mathbf{x}) + \sum_{i=1}^{n} \nabla_{\mathbf{x}} \mu_{i} g_{i}(\mathbf{x}) = 0$$

Equality Constraints

$$\nabla_{\lambda} f(x) + \sum_{i=1}^{m} \nabla_{\lambda} \lambda_{i} h_{i}(x) + \sum_{i=1}^{n} \nabla_{\lambda} \mu_{i} g_{i}(x) = 0$$
$$\sum_{i=1}^{m} \nabla_{\lambda} \lambda_{i} h_{i}(x) = 0$$

Inequality Constraints (Complementary Slackness)

$$\mu_i g_i(x) = 0 \forall i = 1, \dots, n$$

 $\mu_i \ge 0$

Minimize
$$x^2+y^2$$
 such that,
$$x^2+y^2 \leq 5$$

$$x+2y=4$$

$$x,y \geq 0$$

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = x^2 + y^2$$

$$h(x,y) = x + 2y - 4$$

$$f(x,y) = x^{2} + y^{2}$$

$$h(x,y) = x + 2y - 4$$

$$g_{1}(x,y) = x^{2} + y^{2} - 5$$

$$f(x,y) = x^{2} + y^{2}$$

$$h(x,y) = x + 2y - 4$$

$$g_{1}(x,y) = x^{2} + y^{2} - 5$$

$$g_{2}(x,y) = -x$$

$$f(x,y) = x^{2} + y^{2}$$

$$h(x,y) = x + 2y - 4$$

$$g_{1}(x,y) = x^{2} + y^{2} - 5$$

$$g_{2}(x,y) = -x$$

$$g_{3}(x,y) = -y$$

$$f(x,y) = x^{2} + y^{2}$$

$$h(x,y) = x + 2y - 4$$

$$g_{1}(x,y) = x^{2} + y^{2} - 5$$

$$g_{2}(x,y) = -x$$

$$g_{3}(x,y) = -y$$

$$L(x, y, \lambda, \mu_1, \mu_2, \mu_3) = x^2 + y^2 + \lambda(x + 2y - 4) + \mu_1(x^2 + y^2 - 5) + \mu_2(-x) + \mu_3(-y)$$

Stationarity

$$\nabla_{x}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3}) = 0$$

$$\implies 2x + \lambda + 2\mu_{1}x - \mu_{2} = 0 \dots (1)$$

$$\nabla_y L(x, y, \lambda, \mu_1, \mu_2, \mu_3) = 0$$

 $\implies 2y + 2\lambda + 2\mu_1 y - \mu_3 = 0 \dots (2)$

Stationarity

$$\nabla_{x}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3}) = 0$$

$$\implies 2x + \lambda + 2\mu_{1}x - \mu_{2} = 0 \dots (1)$$

$$\nabla_{y}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3}) = 0$$

$$\implies 2y + 2\lambda + 2\mu_{1}y - \mu_{3} = 0 \dots (2)$$

Equality Constraint

$$x + 2y = 4 \dots (3)$$

Stationarity

$$\nabla_{x}L(x,y,\lambda,\mu_{1},\mu_{2},\mu_{3}) = 0$$

$$\implies 2x + \lambda + 2\mu_{1}x - \mu_{2} = 0 \dots (1)$$

$$\nabla_y L(x, y, \lambda, \mu_1, \mu_2, \mu_3) = 0$$

 $\implies 2y + 2\lambda + 2\mu_1 y - \mu_3 = 0 \dots (2)$

Equality Constraint

$$x + 2y = 4 \dots (3)$$

Slackness

$$\mu_1(x^2 + y^2 - 5) = 0 \dots (4)$$
 $\mu_2 x = 0 \dots (5)$
 $\mu_3 y = 0 \dots (6)$

```
From (6), \mu_3=0 or y=0 But if, y=0, then x=4 according to (3) . This violates (1). Hence, y\neq 0 and \mu_3=0
```

```
From (6), \mu_3=0 or y=0 But if, y=0, then x=4 according to (3) . This violates (1). Hence, y\neq 0 and \mu_3=0
```

From (5),
$$\mu_1 = 0$$
 or $x = 0$
If $x = 0$, $y = 2$, which implies $x^2 + y^2 = 4 (\le 5)$
Since $(x,y) = (0,2)$ gives smaller $x^2 + y^2$ terms than 5,
Using (4), $\mu_1 = 0$

```
From (6), \mu_3=0 or y=0 But if, y=0, then x=4 according to (3) . This violates (1). Hence, y\neq 0 and \mu_3=0
```

From (5),
$$\mu_1 = 0$$
 or $x = 0$
If $x = 0$, $y = 2$, which implies $x^2 + y^2 = 4 (\le 5)$
Since $(x,y) = (0,2)$ gives smaller $x^2 + y^2$ terms than 5,
Using (4), $\mu_1 = 0$

On further solving we get, x = 0.8 y = 1.6

$$x^{2}+y^{2} \leq 5$$
 or $g_{1}(x_{1}y_{1})=x^{2}+y^{2}-5\leq o(\mu)$
 $x+2y=4$ or $h(x_{1}y_{1})=x+2y-4=0$

a g2(ng) = 250

gz(my)= y so (mutiplien: yz)

MINIMIZE 22+42

MINIMIZE 22 + 4

MINIMIZE 22+43

MINIMIZE 2+24=4=hilm)

M = 0

If 42=0

