SUBESPACIOS METRICOS

Def. Si $d_{\mathbf{x}}$ es una métrica sobre un conjunto \mathbf{X} y $\mathbf{A} < \mathbf{X}$ arbitrario, entonces la restricción $d_{\mathbf{x}}|_{\mathbf{A} \times \mathbf{A}}$ es una métrica, i.e $d_{\mathbf{x}} : \mathbf{A} \times \mathbf{A} \rightarrow \mathbf{R}$ dada por: $\forall x,y \in \mathbf{A}$, $d_{\mathbf{A}}(x,y) = d_{\mathbf{x}}(x,y)$

es una métrica sobre A.

Nota: Si no hay peligro de confusión, se escribe indistintamente $dx=d_A=d$. Los conceptos denotados a un subespacio se denotarán con un subindice $A: B_A(x,r), (\bar{S})_A, (\bar{S})_A, ...$

Teorema:

Sea ACX, acA, SCAyr>O.

 $\beta_{A}(\alpha,r) = \beta(\alpha,r) \cap A$

ANV = W m (a) Y = V E (a) m W = VNA

Dem:

ne (i):

Sea xo E A y r>0, entonces:

 $\beta(x_o,r) = \{x \in A \mid d_A(x,x_o) < r\} = A \cap \{x \in \overline{X} \mid d(x,x_o) < r\} = \beta(x_o,r) \cap A.$

De (ii)

=>) Suponga que $W \subset A$ es vecindad de a, i.e $W \in V_A(q)$, enfonces $\exists r_0 > 0$ tul que $B_A(u,r_0) \subset W \Rightarrow B(a,r_0) \cap A \subset W$.

Seu V= WUB(u,ro). Probaremos que V & V(u), en efecto, 3 ro>0 m B(u,ro/2) c B(a,ro) c WUB(u,ro)= V, luego V & V(u). Además

 $V \cap A = (W \cup B(\alpha, r_o)) \cap A = (W \cap A) \cup (B(\alpha, r_o) \cap A), \text{ como } W \subset A \neq B_A(\alpha, r_o)$ $\subset W, \text{ entonce } s:$

$$\Rightarrow V \cap A = W \cup B_A(a, r_0) = W$$

Suponga que ∃ V∈ V(a) talque W = VNA. Como V es vec: notad de a, ∃ ro>
 O tal que B(a, ro) ⊂ V, luego Ba(a, ro) = B(a, ro) NA ⊂ VNA = W. Por tamto,
 W∈ Va(a).

9.e.d.

Teorema (más propiedades de los conjuntos en los subespacios).

Sea ACX, acA, SCA y r>0.

 $(i) (\bar{S})_A = \bar{S} \Lambda A.$

(ii) Ses cerrado en un subespucio métrico A S=FNA para algún F cerrado F en X.

En particular, si A es cerrado en X, entonces todos los cerrados de A son los cerrados de X contenidos en A.

(iii) S es abiento en $A \Leftrightarrow S = GAA$ para algún G abiento en X. En particular, S: A es abiento en X, entonces los abientos de A son los abientos de X contenidos en A.

Dem:

De (i):

 $x \in (\bar{S})_A \iff \forall r>0$, $B_A(x,r) \cap S \neq \emptyset \iff \forall r>0$, $B(x,r) \cap A \cap S \neq \emptyset \iff \forall r>0$, $B(x,r) \cap S \neq \emptyset$ $\iff x \in \bar{S}$ $y \in \in \bar{S}$

De (ii):

=>) Suponga que S es cerrado en A, entonces $(\bar{S})_A = S_A = S$, pues $S \subset A$, por (i) $S = (\bar{S})_A = \bar{S} \cap A$, donde \bar{S} es cerrado en \bar{X} . Tome $F = \bar{S}$ un cerrado en \bar{X} , entonces $S = F \cap A$.

€) Suponga que S=FΛA para algún cerrado Fen \overline{X} . Por (i): $(\overline{S})_A = (\overline{F} \cap A)_A = \overline{F} \cap A \cap A$.

Como FNACFNA, entonces

 $(\bar{s})_A \subset (\bar{F} \cap \bar{A}) \cap A = F \cap A = S$

por ser f cernudo, luego como $(\bar{S})_A \Lambda A = (\bar{S} \Lambda A) \Lambda A = \bar{S} \Lambda A = (\bar{S})_A$, entonces $(\bar{S})_A \subset S \Lambda A = S_A$

Como $S_A \subset (\bar{S})_A$ por definición, entonces $S_A = (\bar{S})_A$, por ser $(\bar{S})_A$ cerrado en A, se tiene que \bar{S} es cerrado en A.

De (iii):

Notu: Ses abierto en A => AIS es cerrado en A.

=>) Suponga que S es abiento en A, entonces A'S es cerrado en A. Por (ii) F cerrado en X talque AIS = FNA. Veamos que:

 $S = A \setminus (A \setminus S) = A \cap (A \setminus S)^{c} = A \cap (F \cap A)^{c} = (A \cap F^{c}) \cup (A \cap A^{c})$ = $(A \cap eF) \cup \emptyset = A \cap eF$

Donde CF es abjerto.

€) Supongu que $S = G \cap A$ donde G es un abierto de X. Como G es abierto entonces $\forall x \in G \cap A$ $\exists r > O$ m $B(x,r) \subset G$, luego $B_A(x,r) = B(x,r) \cap A$ $\subset G \cap A = S$, i.e. S es abierto en A.

9.c.d.

Teorema:

Seu $A \subset \overline{X}$ y $S \subset A$. Entonces $x \in (\overline{S})_A \iff x \in A$ y \overline{J} $1x_n J_n$. Unu sucesión de puntos de S que converge a x.

Además, Ses cerrado en el subespacio A > toda sucesión de S que Converge a algún punto de A, lo hace a un punto de X.

Dem:

De la primera parte:

=) Seu $x \in (\overline{S})_A$, entonces $\forall r > 0$ $B_A(x,r) \cap S \neq \emptyset$. Entonces $\forall n \in \mathbb{N}$ \exists $x_n \in B(x,r) \cap S$. Seu $\exists x_n \mid_{x=1}^{\infty}$, claramente $\exists x_n \mid_{x=1}^{\infty}$ estú en S y converge a

E) Suponya que $\frac{1}{2} \{x_n\}_{n=1}^{\infty}$ una sucesión en Sque converge a $x \in A$. Seu r > 0.

Como $\{x_n\}_{n=1}^{\infty}$ Converge a x, $\frac{1}{2} N \in \mathbb{N}$ $m \leq n \geq N$ entonces $d(x,x_n) < r$, |u| eyo $B(x,r) \cap S \neq \emptyset$, pues $x_n \in B(x,r)$ y $x_n \in S$. Por tunto, $x \in (\overline{S})_{A}$.

G. e. \mathcal{L} .

Ejemplos:

Teorema.

Todo subespacio de un espacio métrico separable, es separable.

Dem:

Seu (X,d) un espacio métrico y (A,d) un subespacio métrico de (X,d). Suponyamos que (X,d) es separable, entonces J B una base de la topologia de (X,d) a lo sumo numerable, vigamos $B=\{B; | i\in \mathbb{N}\}$, donde B; es abierto en X Y $i\in \mathbb{N}$.

Afirmamos que $B_A=1$ B; ΛA | $i \in IN$] es una base de la topología de A. En etecto, Si H es un abierto en A, entonces $\exists G$ un abierto en X tal que $H=G\Lambda A$

Como Besbase de la topologia de X:

$$G = \bigcup_{i=1}^{\infty} \beta_{\alpha(i)}$$

$$=> H = (\bigcup_{i=1}^{\infty} \beta_{\alpha(i)}) \cap A = \bigcup_{i=1}^{\infty} (\beta_{\alpha(i)}) \cap A)$$

Luego, Ba es una base a lo sumo numerable de la topología de A, as: A es separable.