CLAIMS

WHAT IS CLAIMED IS:

i	1. A planar lightwave circuit comprising:
2	a first portion of a waveguide;
3	a second portion of waveguide; and
4	a segment of crystal core fiber coupling the first portion of the waveguide
5	with the second portion of the waveguide.
1	2. The planar lightwave circuit of claim 1 further comprising:
2	an optical index-matching gel disposed between the segment of crystal core
3	fiber and the first portion and second portion of the waveguide.
1	3. The planar lightwave circuit of claim 1, wherein the segment of crystal core
2	fiber has a principal optical axis disposed at approximately a 45-degree angle with the
3	planar lightwave circuit.
4	
1	4. The planar lightwave circuit of claim 1, wherein the planar lightwave circuit is
2	an array wayequide grating

1	5. The planar lightwave circuit of claim 4, wherein the segment of crystal core
2	fiber is disposed at a mid section of the array waveguide grating.
1	6. The planar lightwave circuit of claim 5, wherein the segment of crystal core
2	fiber is disposed in a V-groove substrate.
1	7. The planar lightwave circuit of claim 4, wherein the segment of crystal core
2	fiber has a length that satisfies the equation $(2m+1) * \lambda / (2 * \Delta n)$, wherein m is any non-
3	negative integer, λ is a wavelength of an optical signal in an optical communication
4	waveband range, and Δn is a measure of birefringence of the segment of crystal core
5	fiber.
1	8. The planar lightwave circuit of claim 7, wherein the optical communication
2	waveband range is approximately 800 nm to 1700 nm.
1	9. The planar lightwave circuit of claim 7, wherein the segment of crystal core
2	fiber comprises quartz, lithium niobate, lithium borate, beta-barium borate or other
3	inorganic substance.
1	10. The planar lightwave circuit of claim 7, wherein the segment of crystal core
2	fiber comprises an organic or polymeric substance.
1	11. An array waveguide grating comprising:
2	a plurality of waveguides;

3	a V-groove portion of substrate having multiple segments of crystal core
4	fibers inserted into a section of the plurality of waveguides.
1	12. The array waveguide grating of claim 11 further comprising:
2	an optical index-matching gel disposed at ends of the multiple segments of
3	crystal core fibers.
1	
1	13. The array waveguide grating of claim 11, wherein the V-groove portion of
2	substrate is inserted at a midway point of the array waveguide grating.
1	14. A method of correcting for birefringence in a planar lightwave circuit, the
2	method comprising:
3	removing a section of the planar lightwave circuit; and
4	inserting a portion of crystal core fiber into the planar lightwave circuit.
1	
1	15. The method of claim 14, wherein inserting the portion of crystal core fiber
2	further comprises:
3	positioning the portion of crystal core fiber to have approximately a 45-
4	degree angle between an optical axis of the portion of crystal core fiber
5	and a substrate plane of the planar lightwave circuit.
1	16. The method of claim 15 further comprising:
2	inserting an index-matched gel between the portion of crystal core fiber and
3	the planar lightwave circuit.

1	17. The method of claim 14, wherein the portion of crystal core fiber is disposed
2	in a V-groove substrate.
1	18. The method of claim 17, wherein other portions of crystal core fiber are also
2	disposed in the V-groove substrate.
1	19. A method of correcting for birefringence in a planar waveguide, the method
2	comprising:
3	directing an optical signal down a first segment of the planar waveguide;
4	changing a polarization of the optical signal by directing the optical signal
5	through a portion of crystal core fiber; and
6	directing the optical signal down a second segment of the planar waveguide.
1	20. The method of claim 19 further comprising:
2	reducing loss of the optical signal between an interface of the portion of
3	crystal core fiber and the planar waveguide by using an index-matched
4	gel.
1	21. The method of claim 19, wherein the length of the portion of crystal core fiber
2	satisfies the equation $(2m+1) * \lambda / (2 * \Delta n)$, wherein m is a non-negative integer, λ is a
3	wavelength of the optical signal, and Δn is a measure of birefringence of the portion of
4	crystal core fiber.

- 1 22. The method of claim 21, wherein λ is in an optical waveband range of
- 2 approximately 800 nm to 1700 nm.