WS 2019/20 Shestakov

Übungsaufgaben zur Vorlesung "Analysis I" Blatt 3

Aufgabe 1.

- a) Wir bilden aus Kugeln einen Tetraeder (Abb. 2). Die Anzahl der für den nschichtigen Tetraeder benötigten Kugeln bezeichnen wir mit T_n und nennen sie die n-te Tetraederzahl.
 - i) Finden Sie eine Rekursionsformel für T_n . Benutzen Sie dabei die Dreieckszahlen D_n aus der Präsenzaufgabe 1.
 - ii) Begründen Sie, dass die Tetraederzahlen im Pascalschen Dreieck vorkommen.
 - iii) Drücken Sie T_n durch einen Binomialkoeffizienten aus.
- b) Wir bilden nun von Kugeln eine Pyramide, sodass wir in jeder Ebene einen Quadrat aus Kugeln haben (Abb. 3), und definieren analog zu a) die n-te Pyramidalzahl P_n .
 - i) Begründen Sie geometrisch die Formel $P_n = T_n + T_{n-1}, n = 2, 3,$
 - ii) Berechnen Sie die Summe $\sum_{k=1}^{n} k^2$.

Hinweis: Bringen Sie die Summe in Verbindung mit P_n und benutzen Sie dann i) und a)iii).

iii) Beweisen Sie Summenformel aus ii) mittels vollständiger Induktion.

Aufgabe 2. Finden Sie eine geschlossene Formel für die Summe

$$1 + 11 + 111 + ... + 11...1$$

wobei die letzte Zahl aus n Einsen besteht.

Aufgabe 3. Bestimmen Sie die Menge der oberen Schranken, die Menge der unteren Schranken, sowie das Supremum und Infimum der Menge

$$X = \left\{ 1 + \frac{(-1)^n + 2}{n} : n \in \mathbb{N} \right\}.$$

Aufgabe 4. Seien A und B nichtleere Teilmengen von \mathbb{R} . Zeigen Sie: Sind A und B nach unten beschränkt, so ist die Menge

$$A + B := \{a + b : a \in A, b \in B\}$$

nach unten beschränkt und es gilt

$$\inf(A+B) = \inf A + \inf B.$$

Extra-Aufgabe: Man beweise: Zu jeder reellen Zahl x gibt es genau eine ganze Zahl n mit $n \le x < n+1$. Diese Zahl wird mit [x] bezeichnet. (4 Extrapunkte) *Hinweis:* Sie dürfen ohne Beweis folgende Wohlordnungseigenschaft benutzen: Jede nichtleere Menge natürlicher Zahlen besitzt ein kleinstes Element.

Abgabe: Bis 8. November vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1		2	3	4	
	a	b				
Punkte	3	5	4	4	4	20

Präsenzaufgaben

- 1. Wir ordnen Steinchen in n Zeilen zu Dreiecken an, sodass in der ersten Zeile ein Steinchen, in der zweiten Zeile zwei Steinchen usw. liegen (Abb. 1). Die Anzahl der dabei benötigten Steinchen bezeichnen wir mit D_n und nennen diese Zahl die n-te Dreieckszahl.
 - i) Finden Sie eine rekursive Formel für D_n . Berechnen Sie D_n .
 - ii) Begründen Sie, dass die Dreieckszahlen im Pascalschen Dreieck vorkommen.
- 2. Sei M eine endliche Menge. Zeigen Sie, dass die Anzahl der Teilmengen von M mit gerader Anzahl von Elementen gleich der Anzahl der Teilmengen von M mit ungerader Anzahl von Elementen ist.
- 3. Bestimmen Sie gegebenenfalls Supremum, Infimum, Maximum, Minimum der Menge

$$M = \left\{ 2^{-n} + \frac{1}{m} \colon m, n \in \mathbb{N} \right\}.$$

- 4. Seien A und B nichtleere Teilmengen von \mathbb{R} .
 - a) Zeigen Sie: Ist $A \subset B$ und B nach oben beschränkt, so gilt sup $A \leq \sup B$.
 - b) Seien A und B nichtleere nach oben beschränkte Teilmengen der Menge der nichtnegativen reellen Zahlen. Wir definieren die Menge $A \cdot B$ als die Menge aller reellen Zahlen der Gestalt $a \cdot b$ mit $a \in A$ und $b \in B$. Zeigen Sie, dass $A \cdot B$ beschränkt ist und

$$\sup(A \cdot B) = \sup A \cdot \sup B.$$

