河海大学 2007~2008 学年第一学期

2006级《概率论与数理统计》试卷

(供全校工科专业使用) 2007年12月

专业			姓名			学号			(A卷)	
	题号	_	1	111	四	五.	六	七	成绩	
	得分									

- 一、(每空3分,共18分)填空题
 - 1. 设A、B 为随机事件,P(A) = 0.7,P(A B) = 0.3,则

 $P(\overline{A} \cup \overline{B}) =$;

- 2. 某实习生用一台机器接连独立地制造了 3 个同种零件,第 i 个零件是不合格品的概率 $p_i = \frac{1}{i+1}(i=1,2,3)$,以 X 表示 3 个零件中合格品的个数,则 $P\{X=2\}=$ _______;
 - **3** . 已 知 X 的 密 度 函 数 为 $f(x) = \frac{1}{\sqrt{\pi}} e^{-x^2 + 2x 1}$, 则

 $D(X) = \underline{\hspace{1cm}};$

- **4**. 设随机变量 X 服从参数为 λ 的泊松分布,且已知 E[(X-1)(X-2)]=1,则 $\lambda=$ _____;
- 5. 设 X_1, X_2 是来自正态总体 $N(0, \sigma^2)$ 的样本,则 $U = X_1/|X_2|$ 服从 分布;
- 6. 设总体X 服从(0-1)分布B(1,p), X_1 , X_2 , Λ , X_n 是来自X 的样本, \overline{X} 为样本均值,则对任意整数 $k(0 \le k \le n)$, $P(\overline{X} = \frac{k}{n}) = ______$.

二、(本题满分 12 分)有三个箱子各装有一些红、白球。第一个箱子装有 4 个红球 4 个白球 ,第二个箱子装有 2 个红球 6 个白球 ,第三个箱子装有 6 个红球 2 个白球 ,现用掷骰子来决定从哪箱子里取出一只球 ,若出一点,则从第一个箱子取出一只球 ,若出 6 点,则从第三个箱子取出一只球 ,若出的是其他点,则从第二个箱子取出 1 只球。

- 1. 试求取出的是1只红球的概率;
- 2. 已知取出的是1只红球, 求这只红球是来自第二个箱子的概率。

三、(本题满分 12 分)设随机变量X 密度函数为

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

求: 1. X的分布函数 F(x);

2. E(X), D(X).

四、(本题满分 18 分)设二维连续型随机变量(X, Y)的密度函数为

$$f(x,y) = \begin{cases} 2, & 0 \le x \le 1, & 1-x \le y \le 1 \\ 0, & \sharp ' \dot{\Xi} \end{cases},$$

- 求: 1. 关于X和Y的边缘密度分布函数 $f_X(x)$, $f_Y(y)$;
 - 2. X与Y的协方差Cov(X,Y);
 - 3. Z = X + Y的密度函数 $f_Z(z)$ 。

五、(本题满分 10 分) 设 $X \sim B(n_1,p)$, $Y \sim B(n_2,p)$ 且相互独立,证明: $X + Y \sim B(n_1 + n_2,p) \ .$

六、(本题满分 15 分) 设总体 X 服从 $(0,\theta)$ 上的均匀分布,其中 θ 为未知参数。 X_1 , X_2 , Λ , X_n 是来自 X 的简单随机样本。求 θ 的矩估计量 $\hat{\theta}_M$ 和极大似然估计量 $\hat{\theta}_{MLE}$,并说明 $\hat{\theta}_{MLE}$ 是否为 θ 的无偏估计量,请给出理由。

七、(本题满分 15 分) 某厂生产的某种型号的电池, 其寿命(以小时计) 服从正态分布, 现随机地抽取 26 只电池, 测出其寿命的样本方差 $s^2 = 7200$

- 1. 试检验假设 $H_0:\sigma^2=5000$, $H_1:\sigma^2\neq 5000$ (给定显著性水平 $\alpha=0.05$);
 - 2. 求 σ 的置信度为 0.95 的置信区间。

附表: 部分 χ^2 分布表 $P\{\chi^2(n)>\chi^2_\alpha(n)\}=\alpha$

$\chi_{\alpha}^{2}(n)$ α	0. 025	0. 05	0. 95	0. 975
25	40.646	37.652	14. 661	13. 120
26	41. 923	38. 885	15. 379	13. 844