C7: Structure des entités organiques.

1 Formules d'une molécule organique. **Définition Molécules organiques**

Les molécules étudiées en chimie organique contiennent principalement des

atomes de carbone et d'hydrogène. Une formule:

• développée indique toutes les liaisons

d'une molécule.

- <u>semi-développée</u> indique les liaisons entre tous les atomes sauf celles avec les atomes d'hydrogène.
- 2 Groupes caractéristiques et noms <u>des espèces organiques.</u> A. Les alcanes

Définition Alcanes Les alcanes sont une famille de molécules ne contenant que des atomes

de carbone et de l'hydrogène.

Leur squelette est saturé c'est à dire que toutes les liaisons sont simples.

5 C

groupes

caractéristiques

Nom:

fonction

chimique:

Groupe: alcool

- Noms des alcanes linéaires en fonction du nombre d'atomes de carbone
 - 1 C 2 C 3 C 4 C mééthane bu-Nom: prothane tane pane

6 C

7 C

Hydroxyle carbonyle carboxyle

aldéhyde

sons

cé-

tone

si liai-

son

8 C

О || |-С-ОН

acide

lique

si liai-carboxy-

pentane hexane hep-OCtane tane

B. Les groupes caractéristiques. Définition Groupe caractéristique Un **groupe caractéristique** est semble d'atomes d'une molécule qui permet d'identifier la famille chimie à laquelle elle appartient.

C-OH

al-

		C-H	C-C		
Exemples:	H ₃ C-OH	H ₃ C C CH ₃	H₃C C H	H ₃ C C OH	
C. Nom d'une espèce chimique organique.					
Le nom d'une molécule est généralement composé de 3 parties (préfixe) – radical – suffixe					
1) le radical indique le nombre d'atomes de carbone de la chaîne linéaire la plus longue					
2) le suffixe indique la nature et la position					

Suffixe: acide -al one oïque

Important: On numérote la chaîne la plus longue de façon à ce que le groupe caractéristique ait le numéro le plus petit possible.

la molécule possède une chaîne

aldé-

hyde

cé-

tone

acide

carboxylique

pelée ramification), on ajoute un préfixe. Celui-ci indique le nombre d'atomes de C e

carbonée avec une branche latérale (ap-

bone n°2 3 Spectres infrarouges. <u>A. Principe.</u> • Une molécule peut absorber l'énergie

d'une onde infrarouge (IR) et la convertir

 Les fréquences d'absorptions dépendent de la nature des liaisons de la molécule.

• En déterminant les valeurs de ces fréquences, on peut trouver la nature des liaisons présentes dans une molécules et en déduire quels groupes caractéris-

se

ractéristique

en vibrations.

trouve sur le car-

carbone et la position c	le la ramification			
Remarque : On place toujours un tiret entre un chiffre et une lettre.				
Exemple: le bu- tan-2-one:				
 la chaîne la plus 				
longue a 4 car-	Ö			
bones.				
• le groupe ca-	$H_3C - H_2C - \ddot{C}$			

tiques elle possède. B. Lecture d'un spectre IR.

on trouve:

cisse.

ordonnée.

| Définition | Spectre infra-rouge

Un spectre IR est un graphique sur lequel

1. la transmittance (entre 0 et 100%) en

2. le nombre d'onde (en cm-1) en abs-

(%) 100

exemple de spectre IR Remarques: spectre IR présente des • Un

d'absorptions tournée vers le bas!

• Le nombre d'onde est l'inverse de la lon-

On lit les valeurs des nombres d'onde où la transmittance est petite, puis recherche ces

valeurs dans un tableau de référence

Liaisons: O-H al-O-Hcool acide

3200

gueur d'onde.

Méthode d'analyse :

Nombre

cool édrique Nombre 1650 1415 1050 1730 d'onde 1470 1450 (cm⁻¹) Ce qu'il faut savoir faire Identifier, à partir d'une formule mi-développée, les groupes caractéris-

- tiques associés aux familles de composés : alcool, aldéhyde, cétone et acide carboxylique
 - rence, un spectre d'absorption infra-

Attention l'axe des abscisses est généralement inversé! Transmittance

raies

C-H tétra-

édrique

2800

d'onde 3650 -32003100 (cm⁻¹) C-O Liaisons: C=O al- C-H tétra-

2500

- Justifier le nom associé à la formule semi-développée de molécules simples possédant un seul groupe caractéristique et inversement. ✓ Exploiter, à partir de valeurs de réfé-
- rouge.

Lycée Kleber (HW 2025)