

GrabCut Interactive Foreground Extraction using Iterated Graph Cuts

Carsten Rother
Vladimir Kolmogorov
Andrew Blake

Microsoft Research Cambridge-UK

Problem

Fast & Accurate ?

What GrabCut does

User Input

Magic Wand (198?)

Result

Regions

Intelligent Scissors

Mortensen and Barrett (1995)

Boundary

GrabCut

Regions & Boundary

Framework

- \bullet Input: Image $\mathbf{x} \in \{\mathbf{R}, \mathbf{G}, \mathbf{B}\}^{\mathbf{n}}$
- \bullet Output: Segmentation $S \in \{0,1\}^n$
- **Parameters:** Colour Θ , Coherence λ
- Energy: $E(\Theta, S, x, \lambda) = E_{Col} + E_{Coh}$
- **Optimization:** arg min $E(S, \Theta, x, \lambda)$

Graph Cuts

Boykov and Jolly (2001)

Image

(sink)

Cut: separating source and sink; Energy: collection of edges

Min Cut: Global minimal enegry in polynomial time

Iterated Graph Cut

User Initialisation

 $\operatorname{arg\,min}_{\boldsymbol{\Theta}} \ E(\mathbf{S}, \boldsymbol{\Theta}, \mathbf{x}, \boldsymbol{\lambda})$

arg min $E(\mathbf{S}, \mathbf{\Theta}, \mathbf{x}, \lambda)$

K-means for learning colour distributions

Graph cuts to infer the segmentation

Iterated Graph Cuts

Result

Energy after each Iteration

Colour Model

Iterated graph cut

Gaussian Mixture Model (typically 5-8 components)

$$E_{Col}(\Theta, S, x) = \sum_{n} D(S_n, \Theta, x_n)$$

Coherence Model

An object is a coherent set of pixels:

$$E_{coh}(\mathbf{S}, \mathbf{x}, \lambda) =$$

$$\lambda \sum_{i,j \text{ adj.}} (S_i
eq S_j) \ exp\{-rac{1}{2\sigma^2}||x_i-x_j||^2\}$$

$$\lambda = 0$$

$$\lambda = 50$$

 $\lambda = 1000$

Blake et al. (2004): Learn Θ , λ jointly

Moderately straightforward examples

... GrabCut completes automatically

Difficult Examples

Camouflage & Low Contrast

Initial Rectangle

Initial Result

Fine structure

No telepathy

Evaluation – Labelled Database

Available online: http://research.microsoft.com/vision/cambridge/segmentation/

Comparison

Boykov and Jolly (2001)

GrabCut

User Input

Result

Error Rate: 0.72%

Error Rate: 0.72%

Summary

SIGGRAPH2004

Intelligent Scissors Mortensen and Barrett (1995)

Graph Cuts Boykov and Jolly (2001)

LazySnapping Li et al. (2004)

GrabCut Rother et al. (2004)

Conclusions

GrabCut – powerful interactive extraction tool

Iterated Graph Cut based on colour and contrast

Regularized alpha matting by Dynamic Programming

