MATH 51 Homework #13 Tamir Enkhjargal May 2019 1. Let $a \equiv b \mod m$ and $b \equiv c \mod m$. This means that (where $k \in \mathbb{Z}$):

$$a \equiv b \bmod m \to a - b = mk_1 \tag{1}$$

$$b \equiv c \bmod m \to b - c = mk_2 \tag{2}$$

$$(1) + (2) = [a - b = mk_1] + [b - c = mk_2]$$
(3)

$$= a - c = m(k_1 + k_2) \tag{4}$$

As $k_1 + k_2$ is also an integer, this means that m divides a - c, which is the same as $a \equiv c \mod m$. Therefore the transitie property works $a \equiv b \equiv c \mod m$ if $a \equiv b$ and $b \equiv c$.

2. Let $a \equiv b \mod m$ and $c \equiv d \mod m$. This means that (where $k \in \mathbb{Z}$):

$$a \equiv b \bmod m \to a - b = mk_1 \tag{1}$$

$$c \equiv d \bmod m \to c - d = mk_2 \tag{2}$$

$$ac \equiv bd \mod m \to ac - bd = mk_3$$
 (3)

$$= a(c-d) + (a-b)d = mk_3$$
 (4)

$$= a(mk_2) + (mk_1)d = mk_3 (5)$$

$$= m(ak_2 + k_1d) = mk_3 (6)$$

Since $ak_2 + k_1d$ is $\in \mathbb{Z}$, this shows that $ac \equiv bd \mod m$

3.

n	$n^2 + n + 1$	$n^2 + n + 1 \bmod 3$
1	3	0
2	7	1
3	13	1
4	21	0
5	31	1
6	43	1
7	57	0

\overline{m}	3m + 2	$3m + 2 \mod 3$
1	5	2
2	8	2
3	11	2
4	14	2
5	17	2
6	20	2

Since the results of $n^2+n+1\equiv (0,1) \bmod 3$ and $3m+2\equiv 2 \bmod 3$, we showed that $n^2+n+1\not\equiv 3m+2 \bmod 3$

4. Prove that if n is an odd positive integer, then $n^2 \equiv 1 \mod 8$.

We can look at all of the possible results of $n \mod 8$:

n	$n \bmod 8$
1	1
3	3
5	5
7	7
9	1
11	3
13	5

All reduced $n \in \{1, 3, 5, 7\} \mod 8$. Because multiplication is respected in mod, we can square then mod, or mod then square. We will now square the only possible reductions:

n	n^2	$n^2 \bmod 8$
1	1	1
3	9	1
5	25	1
7	49	1

Therefore, $n^2 \equiv 1 \mod 8$ for all positive odd integers n.

5.

$$(p \lor q) \to r \equiv (p * q + p + q) \to r \tag{1}$$

$$\equiv (p * q + p + q)r + (p * q + p + q) + 1 \tag{2}$$

$$\equiv p * q * r + p * r + q * r + p * q + p + q + 1 \tag{3}$$

$$(p \to r) \land (q \to r) \equiv (p * r + p + 1) \land (q * r + q + 1) \tag{4}$$

$$\equiv (p * r + p + 1) * (q * r + q + 1) \tag{5}$$

$$\equiv p * q * r^2 + 2 * p * q * r + p * r + q * r + p * q + p + q + 1$$
(6)

$$\equiv p * q * r + p * r + q * r + p * q + p + q + 1 \tag{7}$$

From both sides, we converted to a Boolean expression, and arrived at the same equivalency.