

Introduction to R for data analysis

- plots -

Carl Herrmann & Carlos Ramirez IRTG Course - December 2021

Graphical representation

- Appropriate graphical representation depends on the type of data
 - categorical
 - counts
 - continuous data
- Aim of good data graphics: display data accurately and clearly (Karl Broman https://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/)

Bad practice:

- as little information as possible
- make things obscure through inappropriate graphics
- pseudo 3D
- poor scales

Proportion survived

Example of bad plot

Figure 1 Plots of the female:male genetic-distance ratio against sex-averaged genetic location (in cM) along six selected chromosomes. Approximate locations of the centromeres are indicated by the triangles. The dashed lines correspond to equal female and male distances.

What's wrong with this plot?

https://www.biostat.wisc.edu/~kbroman/topten_worstgraphs/)

Categorical Data Barplots

- How many instances in each category?
- Only meaningfull measure: MODE (= category with highest counts)
- Possible plots: barplots; piecharts

Avoid piechart : areas are more difficult to judge than length!

Categorical Data Barplots

 Consider ordering the data by counts (no natural order of categories for nominal data)

 Beware of selecting the proper scales for plotting!

Categorical Data

10

Random order

Order by increasing / decreasing counts

Natural order of ordinal data Mode

ausreichend-

ungenügend-

mangelhaft-

Numerical variables

- Numerical data are instances of underlying random variable
- Random variables X have
 - **Density** distributions p(X)
 - Expectation values *E(X)*
 - Variances Var(X)

- Categorical data → counts (barplot)
- Numerical data → counts within intervals (histogram)
 - define discrete intervals for numerical variable → ordinal variable
 e.g. [0,10), [10,20), [20,30), ...
 - count occurences within intervals and plot
- histograms represent the distribution of the variable

9

- Right choice of interval depends on the data type
- Number of bins has a strong impact on appearance of plot!

Distribution of carat values for diamonds

- pattern becomes visible at high resolution
- peaks around integer values (why?)
- tail on the right of integer values (why?)

- Frequency distributions (= histograms) can be shown using a smoothed density curve
- Smoothing depends on the bandwidth (~size of the interval over which to smooth)

bandwith = 5

bandwith = 20

Numerical values boxplots

 Boxplot give an indication on the shape of the distribution (median / symmetry / outlier / ...)

- Upper Whisker extend to the last point that is not larger than Q75 + 1.5*IQR
- Lower Whisker extends to the last point that is not smaller than Q25-1.5*IQR
- Whisker does not go not beyond maximun or minimum value! (Hence both whisker can have different length < 1.5 x IQR)

Numerical values

boxplots

Numerical values boxplots

Boxplots summarize the properties of the distribution Usefull to compare many distributions side-by-side

Numerical values boxplots

Question: do some patients have a different median gene expression?

→ values for individual genes are lost in this type of plot!

Numerical Data: heatmaps

Heatmaps display numerical values in a data matrix using a color scheme

Question: do some genes in some patients have a different gene expression?

Numerical Data: heatmaps

use symmetrical color scales for symmetrical ranges

any relation between age and cholesterol?

igcup						
ohol	etah alu	hdl	ratio	alubb	location	age

	•						\forall
id	chol	stab.glu	hdl	ratio	glyhb	location	age
1000	203	82	56	3.60	4.31	Buckingham	46
1001	165	97	24	6.90	4.44	Buckingham	29
1002	228	92	37	6.20	4.64	Buckingham	58
1003	78	93	12	6.50	4.63	Buckingham	67
1005	249	90	28	8.90	7.72	Buckingham	64
1008	248	94	69	3.60	4.81	Buckingham	34
1011	195	92	41	4.80	4.84	Buckingham	30
1015	227	75	44	5.20	3.94	Buckingham	37
1016	177	87	49	3.60	4.84	Buckingham	45
1022	263	89	40	6.60	5.78	Buckingham	55
1024	242	82	54	4.50	4.77	Louisa	60
1029	215	128	34	6.30	4.97	Louisa	38
1030	238	75	36	6.60	4.47	Louisa	27
1031	183	79	46	4.00	4.59	Louisa	40
1035	191	76	30	6.40	4.67	Louisa	36
1036	213	83	47	4.50	3.41	Louisa	33
1037	255	78	38	6.70	4.33	Louisa	50

each dot is a patient

250 -150 -100 -30 40 50 60 Hip

Weak relationship between Cholesterol and age

Strong relationship between Hip and Weight

 we will later quantify this relationship in terms of covariance / correlation and determine how significant this relationship is!

- Do not over-interpret scatter plots!
- Existence of relation between variables does not mean that there is a causal relationship between them!
- Correlation is NOT causality!!

http://www.tylervigen.com/spurious-correlations

- In scatter plots, the x and y axis are exchangeable
- To avoid interpreting x→ y, diamond plots

 A continuous numerical variable can always be transformed into an ordinal categorical variable through binning

 Additional categorical / numerical variables can be added using color, shape, size of dot ,...

Summary on visualization

Single variable plot plot counts

Two variable plot plot relationship

	type of plot	
continuous variable	histogram	
categorical variable	barplot	

	continuous variable	categorial data
continuous variable	scatter plot	boxplot
categorical variable		heatmap