

Entrenamiento y validación de un modelo de alerta a partir de series temporales

Rodríguez Nuñez M., Balzarini M.

Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias, Departamento de estadística y biometría. Córdoba, Argentina.

Consejo Nacional de Investigaciones Científicas y Técnicas. Córdoba, Argentina.

Modelo de alerta de calidad de aire

Red neuronal Recurrente (RNN): Staked (LSTM + Dropout) + Capa densa totalmente conectada

Metodología de entrenamiento y validación

Muestreo de series de tiempo

				•					
1	2	3	4	5	6	7	8		
1	2	3	4	5	6	7	8		
1	2	3	4	5	6	7	8		
1	2	3	4	5	6	7	8		
1	2	3	4	5	6	7	8		
1	2	3	4	5	6	7	8		
1	2	3	4	5	6	7	8		

Muestreo de K fold

1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8

Aleatorio estratificado
K fold

Muestreo aleatorio estratificado

1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	თ	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8

Entrenamiento

Validación

Series de tiempo

- LSTM: Long-Short Term Memory, son un tipo especial de RNN, capaces de aprender dependen Hochreiter & Schmidhuber en 1997.
- Dropout: es una técnica de regularización basada en la eliminación de conexiones entre neuronas de las capas de la red neuronal donde se aplica en base a la probabilidad dada por la distribución de Bernoulli.

Staked: módulos ensamblados.

• Capa densa totalmente conectada: capa de salida que aglomera las conexiones.

Entrenamiento

Validación

1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8		1	2	3	4	5	6	7	8
enci	ncias a largo plazo, estas fueron introducidos por															

Validación Generalización Entrenamiento Series de tiempo Aprendizaje K fold Aleatorio estratificado