Bài tập đốt cháy hỗn hợp các hidrocacbon

A. Lý thuyết và phương pháp giải

* Gọi công thức hiđrocacbon là: C_xH_y hoặc $C_nH_{2n+2-2k}(k$ là số liên kết π + vòng)

$$C_n H_{2n+2-2k} + \frac{3n+1-k}{2} O_2 \xrightarrow{t^o} nCO_2 + (n+1-k) H_2 O$$

- * Dựa vào sản phẩm của phản ứng đốt cháy:
- n_{CO_2} < n_{H_2O} thì trong hỗn hợp đốt cháy chứa ít nhất 1 ankan.
- Đốt cháy hỗn hợp ankan và anken thì $n_{\mathrm{CO_2}} < n_{\mathrm{H_2O}}$ và $n_{\mathrm{ankan\,(trong\,hỗn\,hợp)}} = n_{\mathrm{H_2O}} n_{\mathrm{CO_2}}$
- $n_{CO_2} = n_{H_2O}$ thì hỗn hợp đó có thể gồm:
- +) 2 hiđrocacbon (anken hoặc xicloankan) có công thức C_nH_{2n}.
- +) 1 hiđrocacbon là ankan C_nH_{2n+2} , chất còn lại có độ bất bão hoà $k \ge 2$.
- +) Đặc biệt nếu hỗn hợp gồm C_nH_{2n+2} và C_mH_{2m-2} thì số mol 2 chất trong hỗn hợp bằng nhau.
- Để giải các bài toán cần phối hợp triệt để bảo toàn nguyên tố và bảo toàn khối lượng:

$$n_{O_2} = n_{CO_2} + \frac{1}{2}.n_{H_2O}$$

$$m_{hidrocacbon} = m_C + m_H = 12n_{CO_2} + 2n_{H_2O}$$

- Khi cho sản phẩm cháy thu được qua bình (1) đựng chất hấp thụ H₂O như: P₂O₅, H₂SO₄ đặc, CaCl₂...bình (2) đựng chất hấp thụ CO₂ như: NaOH, KOH, Ca(OH)₂, Ba(OH)₂...
- \Rightarrow khối lượng bình (1) tăng = m_{H_2O}
- \Rightarrow khối lượng bình (2) tăng = m_{CO_2}
- Nếu cho toàn bộ sản phẩm cháy qua dung dịch Ca(OH)₂, Ba(OH)₂ thì
- + Khối lượng bình tăng = m_{CO_2} + m_{H_2O}
- + Khối lượng dung dịch tăng = $(m_{CO_2} + m_{H,O}) m$
- + Khối lượng dung dịch giảm = m_{CO_2} $(m_{\text{CO}_2} + m_{\text{H}_2\text{O}})$

B. Ví dụ minh họa

Ví dụ 1: Đốt cháy hoàn toàn 6,72 lít (đktc) hỗn hợp gồm 2 hiđrocacbon X và Y ($M_Y > M_X$), thu được 11,2 lít khí CO_2 (đktc) và 10,8 gam H_2O . Công thức của X là A. CH_4

B. C_2H_4

 $C. C_2H_6$

D. C_2H_2

Hướng dẫn giải:

 $n_{hh} = 0.3 \text{mol}; n_{CO_2} = 0.5 \text{mol}; n_{H_{2}O} = 0.6 \text{mol}$

$$\overline{C} = \frac{0.5}{0.3} = 1,66$$

 \Rightarrow Hỗn hợp có CH₄. Mặt khác $M_Y > M_X \Rightarrow X$ là CH₄.

Đáp án A

Ví dụ 2: Đốt cháy hoàn toàn 0,2 mol hỗn hợp X gồm một ankan và một anken, thu được 0,35 mol CO_2 và 0,4 mol H_2O . Phần trăm số mol của ankan trong X là

A. 25%.

B. 30%.

C. 75%.

D. 70%.

Hướng dẫn giải:

Ta có: Ankan có k = 0 và $n_{ankan} = n_{H_2O} - n_{CO_2}$; Anken có k = 1 và $n_{H_2O} = n_{CO_2}$

 $n_{ankan} = 0.4 - 0.35 = 0.05 \text{ (mol)}$

$$\Rightarrow$$
 % $n_{ankan} = \frac{0.05}{0.2} .100\% = 25\%$

Đáp án A

Ví dụ 3: Đốt cháy hoàn toàn hỗn hợp M gồm một ankan X và một ankin Y, thu được số mol CO₂ bằng số mol nước. Thành phần phần trăm về số mol của X và Y trong hỗn hợp M lần lượt là

A. 20% và 80%.

B. 35% và 65%.

C. 50% và 50%.

D. 75% và 25%.

Hướng dẫn giải:

$$n_{H_2O(X)} + n_{H_2O(Y)} = n_{CO_2(X)} + n_{CO_2(Y)}$$

$$\Longrightarrow \mathbf{n}_{\mathbf{H}_2\mathbf{O}(\mathbf{X})} - \mathbf{n}_{\mathbf{CO}_2(\mathbf{X})} = \mathbf{n}_{\mathbf{CO}_2(\mathbf{Y})} - \mathbf{n}_{\mathbf{H}_2\mathbf{O}(\mathbf{Y})}$$

$$\Rightarrow n_X = n_Y$$

$$\Rightarrow$$
 % $n_x = \% n_y = 50\%$

Đáp án C

C. Luyện tập

Câu 1: Đốt cháy hoàn toàn hỗn hợp X gồm hai hiđrocacbon thu được 6,72 lít CO₂ (đktc) và 7,2 g H₂O. Tính thể tích oxi (đktc) dùng để đốt cháy hoàn toàn hỗn hợp X?

A. 2,24 lít

B. 6,72 lít

C. 8,96 lít

D. 11,2 lít

Hướng dẫn giải:

$$n_{CO_2} = 0.3 \text{ mol}; n_{H,O} = 0.4 \text{ mol}$$

Bảo toàn nguyên tố oxi

$$n_{O_2} = n_{CO_2} + \frac{1}{2}n_{H_2O}$$

 $\rightarrow n_{O_2} = 0.3 + \frac{0.4}{2} = 0.5 \text{mol}$

 $\rightarrow V_{O_2} = 11.2(1)$

Đáp án D

Câu 2: Đốt cháy hoàn toàn hỗn hợp 2 hiđrocacbon thu được số mol CO₂ nhỏ hơn số mol nước. Hỗn hợp đó gồm:

A. 2 ankan.

B. 2 anken.

C. chứa ít nhất một anken.

D. Chứa ít nhất một ankan.

Hướng dẫn giải:

Khi đốt cháy ankan sẽ cho số mol CO2 nhỏ hơn số mol nước

$$C_n H_{2n+2} + \frac{3n+1}{2} O_2 \xrightarrow{t^o} nCO_2 + (n+1)H_2O$$

⇒Hỗn hợp sẽ chứa ít nhất một ankan.

Đáp án D

Câu 3: Đốt cháy hoàn toàn hỗn hợp 2 hiđrocacbon thu được số mol CO₂ bằng số mol nước. Hỗn hợp 2 hiđrocacbon là

A. 2 ankan.

B. 2 anken.

C. 2 xicloankan.

D. B, C đều đúng

Hướng dẫn giải:

$$C_x H_y \xrightarrow{+O_2, t^o} xCO_2 + \frac{y}{2} H_2O$$

$$1 \qquad 1 \qquad mol$$

$$n_{CO_2} = n_{H_2O} \Longrightarrow y = 2x$$

$$\Rightarrow C_x H_{2x}$$

⇒Hỗn hợp là anken hoặc xicloankan

Đáp án D

Câu 4: Đốt cháy hoàn toàn 1 lít hỗn hợp khí gồm C_2H_2 và hiđrocacbon X sinh ra 2 lít khí CO_2 và 2 lít hơi H_2O (các thể tích khí và hơi đo ở cùng điều kiện nhiệt độ, áp suất). Công thức phân tử của X là

A. CH₄

B. C_2H_4

 $C. C_2H_6$

D. C_3H_8

Hướng dẫn giải:

Tỉ lệ về thể tích cũng chính là tỉ lệ về số mol

$$\overline{C} = \frac{n_{CO_2}}{n_{hh}} = \frac{V_{CO_2}}{V_{hh}} = \frac{2}{1} = 2$$

Mà C₂H₂ có 2 nguyên tử C nên X cũng có 2 nguyên tử C

$$\overline{H} = \frac{2n_{_{H_2O}}}{n_{_{hh}}} = \frac{2V_{_{H_2O}}}{V_{_{hh}}} = \frac{2.2}{1} = 4$$

Mà C_2H_2 có 2 nguyên tử H nên X có 6 nguyên tử H

Vậy X là C₂H₆

Đáp án C

Câu 5: Hỗn hợp gồm CH₄ và xicloankan X có tỉ lệ mol 1:1. Đốt cháy hoàn toàn hỗn hợp thu được 4 mol CO₂ và 5 mol nước. Công thức của X là

A. xiclopropan.

B. metylxiclopropan.

C. xiclobutan.

D. xiclopentan.

Hướng dẫn giải:

- Khi đốt cháy xicloankan thì cho số mol nước bằng số mol CO₂; khi đốt cháy ankan cho số mol nước lớn hơn số mol CO₂.
- Ta thấy khi đốt cháy hỗn hợp trên cho số mol nước lớn hơn số mol CO_2 nên

$$n_{CH_4} = n_{xicloankan} = n_{H_2O} - n_{CO_2} = 5 - 4 = 1 (mol)$$

$$CH_4 + 2O_2 \xrightarrow{t^o} CO_2 + 2H_2O$$

1 1 2 mc

$$C_nH_{2n} + \frac{3n}{2}O_2 \xrightarrow{t^o} nCO_2 + nH_2O$$

1

3 3 mol

$$n = \frac{n_{\text{CO}_2}}{n_{\text{bb}}} = \frac{3}{1} = 3$$

Vậy X là xiclopropan.

Đáp án A

Câu 6: Dẫn 1,68 lít hỗn hợp khí X gồm hai hiđrocacbon vào bình đựng dung dịch brom dư. Sau khi phản ứng xảy ra hoàn toàn, có 4 gam brom đã phản ứng và còn lại 1,12 lít khí. Nếu đốt cháy hoàn toàn 1,68 lít X thì sinh ra 2,8 lít khí CO₂. Công thức phân tử của hai hiđrocacbon là (biết các thể tích khí đều đo ở đktc)

A. CH₄ và C₂H₄

B. CH₄ và C₃H₄

C. CH₄ và C₃H₆

 $D. \ C_2H_6 \ va \ C_3H_6$

Hướng dẫn giải:

n_{Brom} = 0,025 mol; Sau phản ứng với Br₂, khí thoát ra là ankan.

$$\overline{C} = \frac{V_{CO_2}}{V_{Y}} = \frac{2.8}{1.68} \approx 1.67 \Rightarrow \text{ankan là CH}_4$$

Gọi CTPT của hiđrocacbon còn lại là C_xH_y

Tỉ lệ thể tích bằng tỉ lệ số mol

$$CH_4 \xrightarrow{+O_2} CO_2$$

$$C_x H_y \xrightarrow{+O_2} xCO_2$$

$$\Rightarrow$$
 x = $\frac{1,68}{0,56}$ = 3; $n_{C_xH_y} = \frac{0,56}{22,4} = 0,025$ mol

⇒ Hiđrocacbon còn lại là anken C₃H₆

Đáp án C

Câu 7: Đốt cháy hoàn toàn hỗn hợp 2 hiđrocacbon mạch hở, liên tiếp trong dãy đồng đẳng thu được 22,4 lít CO₂ (đktc) và 25,2 gam H₂O. Công thức phân tử 2 hiđrocacbon là

- A. CH_4 , C_2H_6
- B. C_2H_6 , C_3H_8
- C. C_3H_8 , C_4H_{10}
- D. C_4H_{10} , C_5H_{12}

Hướng dẫn giải:

$$n_{CO_2} = 1 \text{mol}; n_{H,O} = 1,4 \text{mol}$$

 $n_{_{
m H,O}} > n_{_{
m CO}}$, nên 2 hiđrocacbon đó là ankan

Gọi công thức chung của 2 chất đó là C_nH_{2n+2} (n>1)

Ta có:
$$\frac{n_{CO_2}}{n_{H_2O}} = \frac{n}{n+1} = \frac{1}{1,4}$$

$$\rightarrow$$
n = 2,5

 \rightarrow X và Y lần lượt là C₂H₆, C₃H₈

Đáp án B

Câu 8: Hỗn hợp X có tỉ khối so với H_2 là 21,2 gồm propan, propen và propin. Khi đốt cháy hoàn toàn 0,1 mol X, tổng khối lượng của CO_2 và H_2O thu được là

- A. 16,8 gam
- B. 18,60 gam
- C. 18,96 gam
- D. 20,40 gam

Hướng dẫn giải:

X gồm C_3H_8 , C_3H_6 , C_3H_4 đều có 3 nguyên tử C; $M_X = 21,2.2=42,4$ $m_X = 0,1.$ 42,4 = 4,24 g $n_{CO_2} = 3.n_X = 3.0,1 = 0,3$ mol $\rightarrow n_C = 0,3$ mol $\rightarrow m_C = 0,3.12=3,6$ g $n_H = \frac{4,24-3,6}{1} = 0,64$ mol $\Rightarrow m_{CO_2} + m_{H_2O} = 0,3.44 + \frac{0,64}{2}.18 = 18,96$ g

Đáp án C

Câu 9: Đốt cháy hoàn toàn 0,15 mol hỗn hợp A gồm 2 hiđrocacbon no thu được 9,45 g. Cho sản phẩm cháy vào dung dịch Ca(OH)₂ dư thì khối lượng kết tủa thu được là bao nhiêu?

Hướng dẫn giải:

$$n_{H_2O} = \frac{9,45}{18} = 0,525 \,\text{mol}$$

$$n_A = n_{H_2O} - n_{CO_2} \Rightarrow n_{CO_2} = n_{H_2O} - n_A = 0,525 - 0,15 = 0,375 \,\text{mol}$$

$$n_{CaCO_2} = n_{CO_2} = 0,375 \text{mol}$$

$$\Rightarrow$$
 m_{CaCO₃} = 0,375.100 = 37,5g

Đáp án A

Câu 10: . Hỗn hợp X gồm metan, axetilen và propen có tỉ khối so với H₂ là 13,1. Đốt cháy hoàn toàn 0,2 mol hỗn hợp X sau đó dẫn sản phẩm cháy vào bình chứa dung dịch Ca(OH)₂ dư thì thu được 38 gam kết tủa trắng và khối lượng bình tăng thêm m gam. Giá trị của m là :

A. 21,72 gam **B**. 16,68 gam **C**. 22,84 gam **D**. 16,72 gam

Hướng dẫn giải:

Đáp án C

Ta có:
$$\begin{cases} M_{\chi} = 13, 1.2 = 26, 2 \\ n_{\chi} = 0, 2 \text{ mol} \end{cases} \rightarrow m_{\chi} = \sum m(C, H) = 5, 24g$$

$$\begin{split} & n_{\downarrow} = 0,38\,\text{mol} \xrightarrow{\text{BTNT}} n_{\text{C}} = 0,38 \\ & \rightarrow \begin{cases} n_{\text{C}}^{\text{trong X}} = 0,38\,\text{mol} \\ n_{\text{H}}^{\text{trong X}} = 0,68\,\text{mol} \end{cases} \xrightarrow{\text{BTNT}} \begin{cases} n_{\text{CO}_2} = 0,38\,\text{mol} \\ n_{\text{H}_2\text{O}} = 0,34\,\text{mol} \end{cases} \\ & \rightarrow \Delta m \uparrow = 0,38.44 + 0,34.18 = 22,84g \end{split}$$