KU LEUVEN

Ontwerp, analyse en implementatie van een convolutionair neuraal netwerk voor gelijktijdige spraak en beeldherkenning

Overview

- 1. Problem sketch
- 2. Current research
- 3. Neural networks
- 4. Dataset: TCDTIMIT
- 5. Objectives
- 6. Lipreading
- 7. Speech (audio)
- 8. Sensor fusion

1. Problem sketch

Speech recognition applications

- Automatic subtitles
- Assisting hearing impaired
- Human-computer interation (Siri)
- International meetings (translations)

2. Research

General SR model:

• In the past:

- Mostly audio SR
- Acoustic model: formants, fricatives,...
- Record sound features;
- Do statistical correlation
 - → Hidden Markov Models (HMM)
- Language model on top
- Often limited in scope (eg. Phone support)

https://www.uea.ac.uk/computing/research-at-the-uea-speech-group

2. Research

- Current: 'Deep learning'
 - Still mostly audio
 - Acoustic model: formants, fricatives,...
 - Record sounds, statistical correlation of spectrals
 - → Convolutional Neural Networks
 - Language model on top (possibly DNN?), or built-in
 - Much broader in scope (Siri, Cortana, SR 'in the wild')

3. Neural Networks

Simple units with nonlinear output function

http://cs231n.github.io/neural-networks-1/

3. Neural Networks: ConvNets

- Goal: Pattern Recognition → high-dimensional input data
- Fully connected Nns don't scale
 - We want to reduce # parameters
- Brain also uses specialized neurons
 - → Convolutional Neural Networks
- Layers in 3D ≈ trainable filters
- parameter sharing + pooling
- Layer types: Conv, ReLu, Pool, FC,...

$$N_{weights} = \sum_{1}^{L} F^2 * C_{i-1} * C_i$$

$$Activation memory = \sum_{1}^{L} L_i * W_i * C_i$$

INPUT: [224x224x3] memory: 224*224*3=150K weights: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728

memory: 224*224*64=3.2M

POOL2: [112x112x64] memory: 112*112*64=800K weights: 0

CONV3-64: [224x224x64]

weights: (3*3*64)*64 = 36,864

3. Neural Networks: LSTM

- Goal: add time aspect → memory
- Add feedback loop
 - → Recurrent Neural Networks
- Improved version
 - → LSTM Neural Networks

$$W = n_c \times n_c \times 4 + n_i \times n_c \times 4 + n_c \times n_o + n_c \times 3$$

where n_c is the number of memory cells (and number of memory blocks in this case), n_i is the number of input units, and n_o is the number of output units.

Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition https://arxiv.org/abs/1402.1128

Alternatives:

- GRID: large dataset, but small vocabulary
- VidTIMIT: small dataset
- Many non-public databases (Google etc)

TCDTIMIT:

- Many speakers, high quality
- Continuous speech, good coverage of phonemes and visemes. (TIMIT)
- Available to other researchers.
- Content:
 - 2255 sentences from TIMIT
 - 59 volunteers (98 sentences each)
 - 3 professional lipspeakers (377 sentences each)
 - ~25 phonemes/sentence
 - Total: 235k phoneme examples; ~ 6k each

Harte, N.; Gillen, E., "TCD-TIMIT: An Audio-Visual Corpus of Continuous Speech," Multimedia, IEEE Transactions on , vol.17, no.5, pp.603,615, May 2015 doi: 10.1109/TMM.2015.2407694

- Issues downloading & extracting
- Lacking documentation
- Very little support
- Files missing
- After processing:
 - time mismatch phoneme- frame
 - frames missing
 - Other issues

- → write own software to extract data from videos
- → open source for other researchers

- Goal: labeled frames of phoneme pronounciation
- SW pipeline:
 - Extract phoneme time information
 - Extract frames
 - Remove invalid frames
 - Extract faces, mouths
 - Grayscale and compress
 - Pickle for simple loading in Python

Frame Phoneme		
16	sil	
34	sh	
37	iy	
40	hh	
44	ae	
45	d	
47	У	
49	uh	

38 x sa1_34_sh.jpg (2KB)

- Train/test/validation set splits:
- For each speaker:
 - 80% training set
 - 10% validation set
 - 10% test set
- Baseline results from database paper (using HMM)

	Split 1 (T	Table 4.1)	Spli	t 2
	Train set	Test set	Train set	${\rm Test\ set}$
%correct		46.78	41.18	46.97
%accuracy	36.50	34.77	35.53	35.61

Harte, N.; Gillen, E., "TCD-TIMIT: An Audio-Visual Corpus of Continuous Speech," Multimedia, IEEE Transactions on , vol.17, no.5, pp.603,615, May 2015 doi: 10.1109/TMM.2015.2407694

5. Objectives

- Combine lipreading and audio to achieve:
 - Better performance (we use more information)
 - Better robustness (low quality recording, background noise,...)
 - → use best information source available
- Work on phonemes, not words or sentences
 - Simpler; also smaller networks needed
 - Language independent
 - Modularity

http://ml.sun.ac.za/people/helge-reikeras/

6. Lipreading

- CNN for pattern recognition, then FC
- Networks tested: 1) CIFAR 10, 8 layer network
 - 2) ResNet 50 layerscifar
 - 3) Google DeepMind network
- No time-aspect (yet)

Google DeepMind network

6. Lipreading: Phoneme – Viseme map

- Limited correllation lips ↔ sound (aspirated or not,...) → map to visemes
 -> Classification problem: 39 phonemes or 12 visemes
- Networks are trained on phonemes:
 - More general; possibly the CNN can discover more information

Occurrence [%]	Visibility Rank	Description	TIMIT Phonemes	Viseme
3.15	1	Lip to Teeth	/f/ /v/	/A
			/er/ /ow/ /r/ /q/	
15.49	2	Lips Puckered	/w/ $/uh/$ $/uw/$ $/axr/$	/B
			/ux/	
5.88	3	Lip Together	/b/ $/p/$ $/m/$ $/em/$	/C
		${\it Lips\ Relaxed-Moderate\ Opening}$	/aw/	/D
0.7	4	to Lips Puckered-Narrow	/ aw/	/D
2.9	5	Tongue Between Teeth	$/\mathrm{dh}/\ /\mathrm{th}/$	/E
1.2	6	Lips Forward	$/\mathrm{ch}/\ /\mathrm{jh}/\ /\mathrm{sh}/\ /\mathrm{zh}/$	/F
1.81	7	Lips Rounded	/oy/ /ao/	/G
4.36	8	Teeth Approximated	/s/ /z/	/H
			/aa/ /ae/ /ah/ /ay/	
31.46	9	Lips Relaxed Narrow Opening	$/\mathrm{ey}/$ $/\mathrm{ih}/$ $/\mathrm{iy}/$ $/\mathrm{y}/$	/I
			/eh/ /ax-h/ /ax/ /ix/	
			/d/ $/l/$ $/n/$ $/t/$	
21.1	10	Tongue Up or Down	/el//nx//en//dx/	/J
4.84	11	Tongue Back	$/\mathrm{g}/$ $/\mathrm{k}/$ $/\mathrm{ng}/$ $/\mathrm{eng}/$	/K
			$/\mathrm{sil}/\ /\mathrm{pcl}/\ /\mathrm{tcl}/\ /\mathrm{kcl}/$	
-	-	Silence	/bcl/ /dcl/ /gcl/ /h#/	/S
			/#h/ /pau/ /epi/	

6. Lipreading: Google WLAS

- Nov 2016
- Goal: transcribe videos of mouth motion to characters
- Beats a professional lip reader on videos from BBC television
- Audio and visual parts merged with alignment mechanism

Method	SNR	CER	WER
Lips only			
Professional [‡]	-	58.7%	73.8%
WAS	-	59.9%	76.5%
WAS+CL	-	47.1%	61.1%
WAS+CL+SS	-	44.2%	59.2%
WAS+CL+SS+BS	-	42.1%	53.2%
	Audio	only	
LAS+CL+SS+BS	clean	16.2%	26.9%
LAS+CL+SS+BS	10dB	33.7%	48.8%
LAS+CL+SS+BS	0dB	59.0%	74.5%
Audio and lips			
WLAS+CL+SS+BS	clean	13.3%	22.8%
WLAS+CL+SS+BS	10dB	22.8%	35.1%
WLAS+CL+SS+BS	0dB	35.8%	50.8%

6. Lipreading: Google WLAS

$$egin{aligned} s^v, \mathbf{o}^v &= \mathtt{Watch}(\mathbf{x}^v) \ s^a, \mathbf{o}^a &= \mathtt{Listen}(\mathbf{x}^a) \ P(\mathbf{y}|\mathbf{x}^v, \mathbf{x}^a) &= \mathtt{Spell}(s^v, s^a, \mathbf{o}^v, \mathbf{o}^a) \end{aligned}$$

6. Lipreading:

Phoneme results DeepMind network

validation error rate:	57.58%
test error rate:	56.68%

Train and test on lipspeakers:
 Train on lipspeakers, test on volunteers:

validation error rate:	64.6%
test error rate:	91.6%

Trained and test on volunteers: • Train on volunteers, test on lipspeakers:

validation error rate:	74.48%
test error rate:	73.53%

validation error rate:	76.58%
test error rate:	92.68%

- Only 1 (small) FC layer -> not many weights (about 7M)
- Relative performance lipspeaker/volunteer similar to TCDTIMIT paper

6. Lipreading: Phoneme results CIFAR10

Train and test on lipspeakers:

validation error rate:	57.40%
test error rate:	58.62%

 Training takes about 2x longer than on Google network (350s/epoch)

- Performance not better
- Some more layers, more parameters
 - -> decent for lipreading

Trained and test on volunteers:

validation error rate:	74.48%
test error rate:	72.76%

6. Lipreading: Phoneme results ResNet50

Train and test on lipspeakers:

validation error rate:	61.95%
test error rate:	62.45%

Trained and test on volunteers:

validation error rate:	74.48%
test error rate:	72.76%

- Training takes about 5x longer than on Google network (500s/epoch)
- Performance not better
- Many more layers, more complex architecture with more parameters
 - -> not well suited for lipreading

6. Lipreading: example

- Take picture
- Extract face, mouth, convert to grayscale and resize to 120x120x1
- Reshape image for evaluation
- Evaluate, print phoneme predictions (takes 0.2s on laptop)
- Phonemes need extra processing (mapping)

sa1_123_w

'w', 0.97530985]
'uw', 0.013956073]
'aa', 0.0087260948]
'r', 0.00060936378]
'ow', 0.00048886862]
'l', 0.00036438892]
't', 0.0001477778]
'p', 0.00010646239]
'ah', 8.7175431e-05]

sa1_179_sil

['sil', 0.9990834] ['ah', 0.00034327869] ['v', 0.00027455814] ['m', 0.00016214803] ['f', 5.49916e-05] ['ih', 2.7548622e-05] ['l', 2.5572908e-05]

sa1_120_aa

```
['ah', 0.65317434]
['aa', 0.21935698]
['k', 0.940156793]
['er', 0.027025498]
['sil', 0.021670166]
['r', 0.017895222]
['ow', 0.011971737]
['l', 0.0048446977]
['ay', 0.0012279666]
```


6. Lipreading: Phoneme – Viseme map

- Limited correllation lips ↔ sound (aspirated or not,...) → map to visemes
 Classification problem: 39 phonemes or 12 visemes
- Training DeepMind network with viseme labels -> much improved scores

On lipspeakers		
validation error rate:	36.01%	
test error rate:	37.41%	

On volunteers	
validation error rate:	50.01%
test error rate:	52.41%

Compared to previous result (phonemes):

validation error rate:	57.58%
test error rate:	56.68%

validation error rate:	74.48%
test error rate:	73.53%

Remark:
 Phoneme result will be improved after processing/combining with speech (todo)

Lipreading: binaryNets

- BinaryNet uses binary (+/- 1) weights
 - -> efficient HW implementation possible
- Training has to happen with full precision for gradients

```
Epoch 63 of 500 took 168.815496922s

LR: 0.000671220654262

training loss: 12411.3772716

validation loss: 24672.7545517

validation error rate: 87.2159090909%

best epoch: 63

best validation error rate: 87.2159090909%

test loss: 23885.5305231

test error rate: 87.7840909091%
```

validation error rate:	87.22%
test error rate:	87.78%

Very high error rates -> more training needed

Next semester

- Goal: robust phoneme recognition using both image and sound
- Audio SR

Real-valued Networks

- Sensor fusion
- HW efficiency -> train networks with:
 - Binary weights

7. Audio SR

- Two-layer LSTM architecture, MFCC as input
- Train with noise to make more robust
- Two layer LSTM

8. Fusing audio and visual

- SR: inherent time aspect
- Lipreading: mostly time-independent, could benefit from limited time aspect
- Audio and video synchronized thanks to labeled dataset
 - -> possible to combine feature vectors
 - -> LSTM for audio (1), LSTM for feature fusing (2)

8. Fusing audio and visual

- 'Late fusion': combine output sequences (weighting)
- Weighting determined by:
 - performance of seperate models
 - S/N of audio
 - Quality of video/image

-

http://www.esat.kuleuven.be/psi/spraak/theses/08-09-en/MDT.php

- Analyse performance:
 - Different amounts of audio and/or image noise
 - Comparison audio only/visual only/ audio-visual

KU LEUVEN

Questions

