CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

	Statistics	
Course	Number	Sections
Mathematics	203	All
Examination	Date	Pages
Final	April 2010	3
Instructors:	J. Bachrachas, D. Dryanov, W. Li,	Course Examiner
1	Z. Li, P. Zorin	A. Atoyan
Special	Only Sharp EL 531 or Casio FX 300 MS	
Instructions:	calculators are allowed	4

MARKS

- [11] 1. (a) Let $f(x) = (x-2)^2$ and $g(x) = \sqrt{4-x}$. Find $h = g \circ f$ and determine the domain and the range of h,
 - (b) Find the range of the function $f = e^{2x} + 2e^x$, the inverse function f^{-1} , and the range of f^{-1} . (HINT: assume $e^x = u$ to see how to find f^{-1})
- [10] 2. Evaluate the limits:

(a)
$$\lim_{x \to -2} \frac{x^2 - x - 6}{4 - x^2}$$

(b)
$$\lim_{x \to 0} \frac{\sqrt{x+a^2}-a}{ax}$$
 $(a > 0)$

Do not use l'Hôpital rule.

[6] 3. Find all horizontal and vertical asymptotes of the function

$$f(x) = \frac{|x|\sqrt{4x^2 + 1} - 2x^2}{x^2 - 4}$$

[15] 4. Find the derivatives of the following functions:

(a)
$$f(x) = \frac{2\sqrt{x^5} - x^{3/2}}{x^2}$$

(b)
$$f(x) = \ln \frac{x^4}{\sqrt{x-3}}$$

(c)
$$f(x) = e^3 + \arctan(e^x - e^{-x})$$

(d)
$$f(x) = \frac{3^x}{1 + \cos(x^2)}$$

(e)
$$f(x) = (1 + x^2)^{2x}$$
 (use logarithmic differentiation)

- [15] 5. (a) Verify that the point (2,0) belongs to the curve defined by the equation $y + x\sqrt{1 + y^2} + 2 = x^2$, and find the equation of the tangent line to the curve at this point.
 - (b) A particle is moving along a circle with radius r = 5 m described by the equation $x^2 + y^2 = 25$ in the (x, y) plane. At the point (-4, 3) the x-coordinate changes at the rate $\frac{dx}{dt} = 15 \frac{m}{sec}$. How fast is the y coordinate changing at that instant?
 - (c) Use the l'Hôpital's rule to evaluate the $\lim_{x\to 0} \frac{e^x x 1}{x^2 + x^3}$.
- [6] 6. Let $f(x) = \frac{x}{3x-1}$.
 - (a) Find the slope m of the secant line joining the points (1, f(1)) and (3, f(3)).
 - (b) Find all points x = c (if any) on the interval [1,3] such that f'(c) = m.
- [9] 7. The volume of a sphere with radius r is given by the formula $V(r) = \frac{4\pi}{3}r^3$.
 - (a) Use the definition of the derivative to show that $\frac{dV}{dr} = 4\pi r^2$.
 - (b) If a is a given fixed value for r, write the formula for the linearization of the volume function at a.
 - (c) Use this linearization to calculate the thickness Δr (in centimeters) of a layer of paint on the surface of a spherical ball with radius $r=52\,\mathrm{cm}$ if the total volume of paint used is $340\,\mathrm{cm}^3$.
- [12] 8. (a) Find the absolute extrema of $f(x) = x e^{-x^2}$ on the interval $\left[-\frac{1}{2}, 1\right]$.
 - (b) Find the radius r and the height h of the a cylindrical can that is open at the top and has a volume $1000 \,\mathrm{cm}^3$, but has the smallest possible surface area.

- [16] 9. Given the function $f(x) = 2x^2 x^4$.
 - (a) Find the domain of f and check for symmetry. Find asymptotes of f (if any).
 - (b) Calculate f'(x) and use it to determine intervals where the function is increasing, intervals where it is decreasing, and the local extrema (if any).
 - (c) Calculate f'(x) and use it to determine intervals where the function is concave upward, intervals where the function is concave downward, and the inflection points (if any).
 - (d) Sketch the graph of the function f(x) using the information obtained above.
- [5] Bonus Question

Let $f(x) = \frac{\sin(ax)}{x-a}$ where a is a real number. Using l'Hôpital's rule, the following limit of f at $x \to a$ is calculated:

$$\lim_{x \to a} \frac{\sin(ax)}{x - a} = \lim_{x \to a} \frac{a\cos(ax)}{1} = a\cos(a^2).$$

But if
$$a = 1$$
, this says $\lim_{x \to 1} \frac{\sin(x)}{x-1} = \cos(1)$.

- (a) Explain what is wrong with this calculation.
- (b) Are there values of a for which the calculation is correct?

CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Section(s)
Mathematics	203	All
Examination	Date	Pages
Final	April 2009	3
Instructors		Course Examiner
D. Dryanov, A. Laurin, J.R. Perez-Buendia, N. Rossokhata		H. Proppe

Special Instructions

Only Sharp EL 531 or Casio FX 300 MS calculators are allowed.

MARKS

- [10] 1. (a) Sketch the graph of the function $f(x) = |1 (x-2)^2|$ starting from the graph of the standard parabola and using appropriate transformations.
 - (b) Suppose $f(x) = e^x 1$. Find its domain and range, and then find $f^{-1}(x)$ and its domain and range.
 - (c) Suppose $f(x) = \sqrt{x}$, g(x) = x/4 and h(x) = 4x 8. Find formulas for $h \circ g \circ f(x)$ and $f \circ g \circ h(x)$.
- Evaluate the limits:

(a)
$$\lim_{x \to 7} \frac{\sqrt{x+2} - 3}{x - 7}$$

(b)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x} \right)$$

(a)
$$\lim_{x \to 7} \frac{\sqrt{x+2}-3}{x-7}$$
 (b) $\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x^2+x}\right)$ (c) $\lim_{x \to -\infty} \frac{\sqrt{4x^2+1}}{3x-5}$

Do not use l'Hôpital's rule.

[10] 3. (a) Let
$$f(x) = \frac{|x^2 - 1|}{x^2 - 1}$$
.

Calculate both one-sided limits at the two points where the function is undefined.

(b) Find the numbers a and b that make the function

$$f(x) = \begin{cases} \sqrt{4 - x^2} & \text{if } -2 \le x < 0 \\ ax + b, & \text{if } 0 \le x < 2 \\ 0, & \text{if } x \ge 2 \end{cases}$$

continuous on its whole domain. Sketch the graph of this function.