Cut Vertices

August 26, 2024

Cut Vertices

Let G be a graph, v be a vertex and e be an edge.

Definition

A vertex v of G is a cut-vertex if the the edge set E can be Partitioned into E_1 and E_2 such that $G[E_1]$ and $G[E_2]$ share only this vertex v.

Cut Vertices: {c, d, e, g, k}

- ▶ Cut vertex : v is said to be a cut-vertex if $\omega(G v) > \omega(G)$.
- ▶ If G is connected, then v is a cut-vertex if G v is disconnected.
- v is a cut-vertex of G if and only if v is a cut-vertex of a component of G:

- ▶ Cut vertex : v is said to be a cut-vertex if $\omega(G v) > \omega(G)$.
- ▶ If G is connected, then v is a cut-vertex if G v is disconnected.
- v is a cut-vertex of G if and only if v is a cut-vertex of a component of G:

- ▶ Cut vertex : v is said to be a cut-vertex if $\omega(G v) > \omega(G)$.
- ▶ If G is connected, then v is a cut-vertex if G v is disconnected.
- \triangleright *v* is a cut-vertex of *G* if and only if *v* is a cut-vertex of a component of *G*:

- ▶ Cut vertex : v is said to be a cut-vertex if $\omega(G v) > \omega(G)$.
- ▶ If G is connected, then v is a cut-vertex if G v is disconnected.
- ▶ *v* is a cut-vertex of *G* if and only if *v* is a cut-vertex of a component of *G*:

Cut-Vertex: 4

Cut-Vertex: 4

Cut-Vertices: None

Cut-Vertices: None

Cut-Vertices: 3 and 2

Cut-Vertices: 3 and 2

Let G be a graph with n vertices and n-1 edges, then TFAE:

- G is connected
- 2 G is acyclic.
- 3 G is a tree.

A vertex v of a simple connected graph is a cut-vertex if and only if there exist vertices x and y ($\neq v$) such that every x - y-path contains v.

- " \Longrightarrow " Let $v \in G$ be a cut vertex of G. Need to show existence of vertices x, y such that every x y path contains v.
 - v is a cut vertex.
 - **2** G v is disconnected and has atleast two components, say C and D.
 - $\exists \ \text{Let} \ x \in V(C) \ \text{and} \ y \in V(D).$
 - Since there is no x y path in G v.
 - \implies every x y path in G contains v.

A vertex v of a simple connected graph is a cut-vertex if and only if there exist vertices x and y ($\neq v$) such that every x - y-path contains v.

- " \Longrightarrow " Let $v \in G$ be a cut vertex of G. Need to show existence of vertices x, y such that every x y path contains v.
 - v is a cut vertex.
 - 2 G v is disconnected and has atleast two components, say C and D.
 - 3 Let $x \in V(C)$ and $y \in V(D)$.
 - Since there is no x y path in G v.
 - \Rightarrow every x y path in G contains v.

A vertex v of a simple connected graph is a cut-vertex if and only if there exist vertices x and y ($\neq v$) such that every x - y-path contains v.

- " \Longrightarrow " Let $v \in G$ be a cut vertex of G. Need to show existence of vertices x, y such that every x y path contains v.
 - v is a cut vertex.
 - **2** G v is disconnected and has atleast two components, say C and D.
 - 3 Let $x \in V(C)$ and $y \in V(D)$.
 - Since there is no x y path in G v.
 - \Rightarrow every x y path in G contains v.

A vertex v of a simple connected graph is a cut-vertex if and only if there exist vertices x and y ($\neq v$) such that every x - y-path contains v.

- " \Longrightarrow " Let $v \in G$ be a cut vertex of G. Need to show existence of vertices x, y such that every x y path contains v.
 - v is a cut vertex.
 - G v is disconnected and has atleast two components, say C and D.
 - 3 Let $x \in V(C)$ and $y \in V(D)$.
 - Since there is no x y path in G v.
 - \Rightarrow every x y path in G contains v.

A vertex v of a simple connected graph is a cut-vertex if and only if there exist vertices x and y ($\neq v$) such that every x - y-path contains v.

- " \Longrightarrow " Let $v \in G$ be a cut vertex of G. Need to show existence of vertices x, y such that every x y path contains v.
 - v is a cut vertex.
 - $\mathbf{Z} \mathbf{G} \mathbf{V}$ is disconnected and has atleast two components, say \mathbf{C} and \mathbf{D} .

 - Since there is no x y path in G v.
 - \Rightarrow every x y path in G contains v.

A vertex v of a simple connected graph is a cut-vertex if and only if there exist vertices x and y ($\neq v$) such that every x - y-path contains v.

Proof.

" \Longrightarrow " Let $v \in G$ be a cut vertex of G. Need to show existence of vertices x, y such that every x - y path contains v.

- v is a cut vertex.
- G v is disconnected and has atleast two components, say C and D.
- 3 Let $x \in V(C)$ and $y \in V(D)$.
- Since there is no x y path in G v.
- \Rightarrow every x y path in G contains v.

A vertex v of a simple connected graph is a cut-vertex if and only if there exist vertices x and y ($\neq v$) such that every x - y-path contains v.

Proof.

" \Longrightarrow " Let $v \in G$ be a cut vertex of G. Need to show existence of vertices x, y such that every x - y path contains v.

- v is a cut vertex.
- $\mathbf{Z} \mathbf{G} \mathbf{V}$ is disconnected and has atleast two components, say \mathbf{C} and \mathbf{D} .
- 3 Let $x \in V(C)$ and $y \in V(D)$.
- Since there is no x y path in G v.
- \implies every x y path in G contains v.

- Suppose there exist x and $y \neq v$ such that every x y
- \implies there is no x-y path in G-v.
- 3 Hence, G v is disconnected,
- 4 that is v is a cut-vertex.

- I Suppose there exist x and $y \neq v$ such that every x y path contains v.
- \implies there is no x y path in G v.
- $\mathbf{3}$ Hence, G v is disconnected,

- Suppose there exist x and $y \neq v$ such that every x y path contains v.
- \implies there is no x y path in G v.
- $\mathbf{3}$ Hence, G v is disconnected,
- 4 that is *v* is a cut-vertex.

- Suppose there exist x and $y \neq v$ such that every x y path contains v.
- \implies there is no x y path in G v.
- $\mathbf{3}$ Hence, G v is disconnected,
- 4 that is *v* is a cut-vertex.

- Suppose there exist x and $y \neq v$ such that every x y path contains v.
- \implies there is no x y path in G v.
- $\mathbf{3}$ Hence, G v is disconnected,
- 4 that is v is a cut-vertex.

A vertex v is a cut-vertex of a tree if and only if d(v) > 1.

- $"\Longrightarrow"$
 - By Previous theorem, if v is a cut vertex, there exists $x, y \neq v$ such that every x y path contains v.
 - Hence, v is an internal vertex of all x y paths and d(v) > 1.

A vertex v is a cut-vertex of a tree if and only if d(v) > 1.

- " \Longrightarrow "
 - By Previous theorem, if v is a cut vertex, there exists $x, y \neq v$ such that every x y path contains v.
 - 2 Hence, v is an internal vertex of all x y paths and d(v) > 1.

A vertex v is a cut-vertex of a tree if and only if d(v) > 1.

Proof.

" \Longrightarrow "

- By Previous theorem, if v is a cut vertex, there exists $x, y \neq v$ such that every x y path contains v.
- 2 Hence, v is an internal vertex of all x y paths and d(v) > 1.

- I Given d(v) > 1.
- v is adjacent to atleast two vertices v and v.
- Note that every x y path contains v.
- If not, then P is a x y path that does not contain v,
- 5 And P + xv + vy forms a cycle of G a contradiction.
- \bullet Hence, by previous thereom, v is a cut vertex.

- II Given <math>d(v) > 1.
- v is adjacent to atleast two vertices x and y.
- Note that every x y path contains v.
- If not, then P is a x y path that does not contain v,
- 5 And P + xv + vy forms a cycle of G a contradiction.
- 6 Hence, by previous thereom, *v* is a cut vertex.

- I Given d(v) > 1.
- v is adjacent to atleast two vertices x and y.
- 3 Note that every x y path contains v.
- If not, then P is a x y path that does not contain v,
- 5 And P + xv + vy forms a cycle of G a contradiction.
- \bullet Hence, by previous thereom, v is a cut vertex.

- II Given <math>d(v) > 1.
- v is adjacent to atleast two vertices x and y.
- 3 Note that every x y path contains v.
- If not, then P is a x y path that does not contain v,
- And P + xv + vy forms a cycle of G a contradiction.
- \bullet Hence, by previous thereom, v is a cut vertex.

- II Given <math>d(v) > 1.
- v is adjacent to atleast two vertices x and y.
- 3 Note that every x y path contains v.
- If not, then P is a x y path that does not contain v,
- 5 And P + xv + vy forms a cycle of G a contradiction.
- 6 Hence, by previous thereom, *v* is a cut vertex.

- I Given d(v) > 1.
- v is adjacent to atleast two vertices x and y.
- 3 Note that every x y path contains v.
- If not, then P is a x y path that does not contain v,
- 5 And P + xv + vy forms a cycle of G a contradiction.
- \bullet Hence, by previous thereom, ν is a cut vertex.

Every non-trivial loopless connected graph has atleast two vertices that are not cut vertices.

- ☐ G is a loopless connected graph.
- **2** *G* has a spanning tree *T*.
- T has atleast two pendant vertices.
- By previous theorem they are not cut-vertices of *T*.

Every non-trivial loopless connected graph has atleast two vertices that are not cut vertices.

- G is a loopless connected graph.
- 2 *G* has a spanning tree *T*.
- T has atleast two pendant vertices.
- \blacksquare By previous theorem they are not cut-vertices of T.

Every non-trivial loopless connected graph has atleast two vertices that are not cut vertices.

- G is a loopless connected graph.
- **2** *G* has a spanning tree *T*.
- T has atleast two pendant vertices.
- \blacksquare By previous theorem they are not cut-vertices of T.

Every non-trivial loopless connected graph has atleast two vertices that are not cut vertices.

- G is a loopless connected graph.
- **2** *G* has a spanning tree *T*.
- T has atleast two pendant vertices.
- \blacksquare By previous theorem they are not cut-vertices of T.

Every non-trivial loopless connected graph has atleast two vertices that are not cut vertices.

- G is a loopless connected graph.
- **2** *G* has a spanning tree *T*.
- T has atleast two pendant vertices.
- By previous theorem they are not cut-vertices of T.

 \blacksquare Let v be a pendant vertex of T.

2
$$\omega(T - v) = 1$$
.

T - v is a spanning subgraph of G - v.

$$\omega(G-V) \leq \omega(T-V) = 1$$

$$\delta \implies \omega(G-V)=1$$

 $\Longrightarrow v$ is not a cut vertex of G.

We have atleast two such vertices.

- \blacksquare Let v be a pendant vertex of T.
- 2 $\omega(T v) = 1$.
- T v is a spanning subgraph of G v.

$$\omega(G-V) \leq \omega(T-V) = 1$$

$$\delta \implies \omega(G-V)=1$$

- $\Longrightarrow v$ is not a cut vertex of G.
- We have atleast two such vertices.

- \blacksquare Let v be a pendant vertex of T.
- 2 $\omega(T v) = 1$.
- T v is a spanning subgraph of G v.

$$\delta \implies \omega(G-V)=1$$

- $\Longrightarrow v$ is not a cut vertex of G.
- We have atleast two such vertices.

- Let v be a pendant vertex of T.
- 2 $\omega(T v) = 1$.
- T v is a spanning subgraph of G v.
- $\omega(G-v) \leq \omega(T-v) = 1$
- $\delta \implies \omega(G-V)=1$
- $\Longrightarrow v$ is not a cut vertex of G.
- We have atleast two such vertices.

- Let *v* be a pendant vertex of *T*.
- 2 $\omega(T v) = 1$.
- T v is a spanning subgraph of G v.
- $\omega(G-v) \leq \omega(T-v) = 1$
- $\longrightarrow \omega(G-v)=1$
- \longrightarrow v is not a cut vertex of G.
- We have atleast two such vertices.

- Let *v* be a pendant vertex of *T*.
- 2 $\omega(T v) = 1$.
- T v is a spanning subgraph of G v.
- $\omega(G-v) \leq \omega(T-v) = 1$
- $\longrightarrow \omega(G-v)=1$
- $\longrightarrow v$ is not a cut vertex of G.
- We have atleast two such vertices.

- \blacksquare Let v be a pendant vertex of T.
- 2 $\omega(T v) = 1$.
- T v is a spanning subgraph of G v.
- $\omega(G-v) \leq \omega(T-v) = 1$
- $\longrightarrow \omega(G-v)=1$
- $\longrightarrow v$ is not a cut vertex of G.
- We have atleast two such vertices.

- ► Counts the number of spanning trees in a given graph.
- ▶ Involves two operation on edges: Contraction and Deletion.
- ▶ An $e \in G$ is said to be contracted if e is deleted and its ends are identified.
- ▶ The resulting graph is denoted by $G \bullet e$ or G/e

- ► Counts the number of spanning trees in a given graph.
- ▶ Involves two operation on edges : Contraction and Deletion.
- ▶ An $e \in G$ is said to be contracted if e is deleted and its ends are identified.
- ▶ The resulting graph is denoted by $G \bullet e$ or G/e

- ► Counts the number of spanning trees in a given graph.
- ▶ Involves two operation on edges: Contraction and Deletion.
- ▶ An $e \in G$ is said to be contracted if e is deleted and its ends are identified.
- ▶ The resulting graph is denoted by $G \bullet e$ or G/e

- ► Counts the number of spanning trees in a given graph.
- ▶ Involves two operation on edges: Contraction and Deletion.
- ▶ An $e \in G$ is said to be contracted if e is deleted and its ends are identified.
- ▶ The resulting graph is denoted by $G \bullet e$ or G/e

▶ If *e* is a link then,

$$|V(G \bullet e)| = |V(G)| - 1$$

$$|E(G \bullet e)| = |E(G)| - 1$$

$$\omega(\mathbf{G} \bullet \mathbf{e}) = \omega(\mathbf{G})$$

▶ If T is a tree then $T \bullet e$ is also a tree.

- ▶ If e is a link then,
 - $|V(G \bullet e)| = |V(G)| 1$
 - $|E(G \bullet e)| = |E(G)| 1$
 - $\omega(\mathbf{G} \bullet \mathbf{e}) = \omega(\mathbf{G})$
- ▶ If T is a tree then $T \bullet e$ is also a tree.

Denote by $\tau(G)$ the number of spanning trees of G.

Theorem

If e is a link then,

$$\tau(G) = \tau(G - e) + \tau(G \bullet e)$$

- Let A= spanning trees of G containing e.
- 2 Let B= spanning trees of G not containing e.
- $|A| = \tau (G e).$
- Find a bijection between B and all spanning trees of $G \bullet e$ so that $|B| = \tau(G \bullet e)$.

Denote by $\tau(G)$ the number of spanning trees of G.

Theorem

If e is a link then,

$$\tau(G) = \tau(G - e) + \tau(G \bullet e)$$

- **1** Let A= spanning trees of G containing e.
- 2 Let B= spanning trees of G not containing e.
- $|A| = \tau (G e).$
- Find a bijection between B and all spanning trees of $G \bullet e$ so that $|B| = \tau(G \bullet e)$.

Denote by $\tau(G)$ the number of spanning trees of G.

Theorem

If e is a link then,

$$\tau(G) = \tau(G - e) + \tau(G \bullet e)$$

- ✓ Let A= spanning trees of G containing e.
- 2 Let B= spanning trees of G not containing e.
- $|A| = \tau (G e).$
- Find a bijection between B and all spanning trees of $G \bullet e$ so that $|B| = \tau(G \bullet e)$.

Denote by $\tau(G)$ the number of spanning trees of G.

Theorem

If e is a link then,

$$\tau(G) = \tau(G - e) + \tau(G \bullet e)$$

- Let A= spanning trees of G containing e.
- 2 Let B= spanning trees of G not containing e.
- $|A| = \tau (G e).$
- Find a bijection between B and all spanning trees of $G \bullet e$ so that $|B| = \tau(G \bullet e)$.

Denote by $\tau(G)$ the number of spanning trees of G.

Theorem

If e is a link then,

$$\tau(G) = \tau(G - e) + \tau(G \bullet e)$$

- ✓ Let A= spanning trees of G containing e.
- 2 Let B= spanning trees of G not containing e.
- $|A| = \tau (G e).$
- Find a bijection between B and all spanning trees of $G \bullet e$ so that $|B| = \tau(G \bullet e)$.

Example

Cut Vertices