Notes on Higher-Order Matching

Andrej Dudenhefner Aleksy Schubert

September 30, 2025

1 Bounded Parallel Intersection Type System

We denote intersection types by A, B, finite sets of intersection types by σ, τ , and type atoms by a, b.

Definition 1 (Intersection Types).
$$A, B ::= a \mid \sigma \to A$$

 $\sigma, \tau ::= \{A_1, \dots, A_n\}$ where $n \ge 0$

An *environment*, denoted by Γ , is a finite set of *type assumptions* having the shape $x : \sigma$ for distinct term variables.

Definition 2 (Environment). $\Gamma ::= \{x_1 : \sigma_1, \dots, x_n : \sigma_n\}$ where $x_i \neq x_j$ for $i \neq j$.

We may extend an environment Γ by an additional assumption $x : \sigma$, written $\Gamma, x : \sigma$, where x does not appear in any assumption in Γ .

We denote vectors of types or environments by \bar{A} , $\bar{\sigma}$, or $\bar{\Gamma}$ respectively. If $\bar{\sigma} = (\sigma_1, \dots, \sigma_n)$ and $\bar{A} = (A_1, \dots, A_n)$, then $\sigma \Rightarrow A = (\sigma_1 \to A_1, \dots, \sigma_n \to A_n)$. Borrowing notation [DU21] we define type vector transformations as follows.

Definition 3 (Type Vector Transformation). Let $f: \{1, ..., n\} \rightarrow \{1, ..., m\}$ be a surjective function.

- $f(A_1, ..., A_n) = (C_1, ..., C_m)$ such that $C_i = \{A_i \mid f(j) = i\}$
- $f^{-1}(B_1, \ldots, B_m) = (D_1, \ldots, D_n)$ such that $D_i = B_{f(i)}$

We tacitly extend the definition to environments where set formation is taken pointwise.

Definition 4 (Parallel Intersection Type System).

$$\frac{\bar{\{x:\bar{A}\}} \vdash x:\bar{A}}{\{x:\bar{A}\} \vdash x:\bar{A}} \xrightarrow{(Ax)} \frac{\bar{\Gamma}, x:\bar{\sigma} \vdash t:\bar{A}}{\bar{\Gamma} \vdash \lambda x.t:\bar{\sigma} \Rightarrow \bar{A}} (\Rightarrow I)$$

$$\frac{\bar{\Gamma} \vdash t: f(\bar{A}) \Rightarrow \bar{B}}{\bar{\Gamma} \cup f(\bar{\Delta}) \vdash t \ u:\bar{B}} (\Rightarrow E)$$

Definition 5 (Dimensional Restriction). $\bar{\Gamma} \vdash_k t : \bar{A}$ means that the length of vectors in some derivation is at most k.

Theorem 6. $\Gamma \vdash_{BCD} t : A \text{ iff for some } k \text{ we have } (\Gamma) \vdash_k t : (A).$

Theorem 7. Given Γ , A, and k it is decidable whether $(\Gamma) \vdash_k t : (A)$ holds.

References

[DU21] Andrej Dudenhefner and Pawel Urzyczyn. "Kripke Semantics for Intersection Formulas". In: *ACM Trans. Comput. Log.* 22.3 (2021), 15:1–15:16. DOI: 10.1145/3453481. URL: https://doi.org/10.1145/3453481.