Printed by: 72d2bf1395d6ff3@placeholder.53343.edu. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

CHAPTER 2 Overview of the Data Mining Process

In this chapter, we give an overview of the steps involved in data mining, starting from a clear goal definition and ending with model deployment. The general steps are shown schematically in Figure 2.1. We also discuss issues related to data collection, cleaning, and preprocessing. We introduce the notion of data partitioning, where methods are trained on a set of training data and then their performance is evaluated on a separate set of validation data, as well as explain how this practice helps avoid overfitting. Finally, we illustrate the steps of model building by applying them to data.

Figure 2.1 Schematic of the data modeling process

2.1 Introduction

In Chapter 1, we saw some very general definitions of data mining. In this chapter, we introduce the variety of methods sometimes referred to as *data mining*. The core of this book focuses on what has come to be called *predictive analytics*, the tasks of classification and prediction as well as pattern discovery, which have become key elements of a "business analytics" function in most large firms. These terms are described and illustrated below.

Not covered in this book to any great extent are two simpler database methods that are sometimes considered to be data mining techniques: (1) OLAP (online analytical processing) and (2) SQL (structured query language). OLAP and SQL searches on databases are descriptive in nature and are based on business rules set by the user (e.g., "find all credit card customers in a certain zip code with annual charges > \$20,000, who own their home and who pay the entire amount of their monthly bill at least 95% of the time.") Although SQL queries are often used to obtain the data in data mining, they do not involve statistical modeling or automated algorithmic methods.

2.2 Core Ideas in Data Mining

Classification

Classification is perhaps the most basic form of data analysis. The recipient of an offer can respond or not respond. An applicant for a loan can repay on time, repay late, or declare bankruptcy. A credit card transaction can be normal or fraudulent. A packet of data traveling on a network can be benign or threatening. A bus in a fleet can be available for service or unavailable. The victim of an illness can be recovered, still be ill, or be deceased.

A common task in data mining is to examine data where the classification is unknown or will occur in the future, with the goal of predicting what that classification is or will be. Similar data where the classification is known are used to develop rules, which are then applied to the data with the unknown classification.

Prediction

Prediction is similar to classification, except that we are trying to predict the value of a numerical variable (e.g., amount of purchase) rather than a class (e.g., purchaser or nonpurchaser). Of course, in classification we are trying to predict a class, but the term *prediction* in this book refers to the prediction of the value of a continuous variable. (Sometimes in the data mining literature, the terms *estimation* and *regression* are used to refer to the prediction of the value of a continuous variable, and *prediction* may be used for both continuous and categorical data.)

Association Rules and Recommendation Systems

Large databases of customer transactions lend themselves naturally to the analysis of associations among items purchased, or "what goes with what." *Association rules*, or *affinity analysis*, is designed to find such general associations patterns between items in large databases. The rules can then be used in a variety of ways. For example, grocery stores can use such information for product placement. They can use the rules for weekly promotional offers or for bundling products. Association rules derived from a hospital database on patients' symptoms during

Printed by: 72d2bf1395d6ff3@placeholder.53343.edu. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

or for building products. Association rules derived from a nospital database on patients' symptoms during consecutive hospitalizations can help find "which symptom is followed by what other symptom" to help predict future symptoms for returning patients.

Online recommendation systems, such as those used on Amazon.com and Netflix.com, use collaborative filtering, a method that uses individual users' preferences and tastes given their historic purchase, rating, browsing, or any other measurable behavior indicative of preference, as well as other users' history. In contrast to association rules that generate rules general to an entire population, collaborative filtering generates "what goes with what" at the individual user level. Hence, collaborative filtering is used in many recommendation systems that aim to deliver personalized recommendations to users with a wide range of preferences.

Predictive Analytics

Classification, prediction, and to some extent, association rules and collaborative filtering constitute the analytical methods employed in *predictive analytics*. The term predictive analytics is sometimes used to also include data pattern identification methods such as clustering.

Data Reduction and Dimension Reduction

The performance of data mining algorithms is often improved when the number of variables is limited, and when large numbers of records can be grouped into homogeneous groups. For example, rather than dealing with thousands of product types, an analyst might wish to group them into a smaller number of groups and build separate models for each group. Or a marketer might want to classify customers into different "personas," and must therefore group customers into homogeneous groups to define the personas. This process of consolidating a large number of records (or cases) into a smaller set is termed *data reduction*. Methods for reducing the number of cases are often called *clustering*.

Reducing the number of variables is typically called *dimension reduction*. Dimension reduction is a common initial step before deploying data mining methods, intended to improve predictive power, manageability, and interpretability.

Data Exploration and Visualization

One of the earliest stages of engaging with a dataset is exploring it. Exploration is aimed at understanding the global landscape of the data, and detecting unusual values. Exploration is used for data cleaning and manipulation as well as for visual discovery and "hypothesis generation."

Methods for exploring data include looking at various data aggregations and summaries, both numerically and graphically. This includes looking at each variable separately as well as looking at relationships among variables. The purpose is to discover patterns and exceptions. Exploration by creating charts and dashboards is called *Data Visualization* or *Visual Analytics*. For numerical variables, we use histograms and boxplots to learn about the distribution of their values, to detect outliers (extreme observations), and to find other information that is relevant to the analysis task. Similarly, for categorical variables, we use bar charts. We can also look at scatter plots of pairs of numerical variables to learn about possible relationships, the type of relationship, and again, to detect outliers. Visualization can be greatly enhanced by adding features such as color and interactive navigation.

Supervised and Unsupervised Learning

A fundamental distinction among data mining techniques is between supervised and unsupervised methods. *Supervised learning algorithms* are those used in classification and prediction. We must have data available in which the value of the outcome of interest (e.g., purchase or no purchase) is known. Such data are also called "labeled data," since they contain the label (outcome value) for each record. These *training data* are the data from which the classification or prediction algorithm "learns," or is "trained," about the relationship between predictor variables and the outcome variable. Once the algorithm has learned from the training data, it is then applied to another sample of labeled data (the *validation data*) where the outcome is known but initially hidden, to see how well it does in comparison to other models. If many different models are being tried out, it is prudent to save a third sample, which also includes known outcomes (the *test data*) to use with the model finally selected to predict how well it will do. The model can then be used to classify or predict the outcome of interest in new cases where the outcome is unknown.

Simple linear regression is an example of a supervised learning algorithm (although rarely called that in the introductory statistics course where you probably first encountered it). The *Y* variable is the (known) outcome variable and the *X* variable is a predictor variable. A regression line is drawn to minimize the sum of squared deviations between the actual *Y* values and the values predicted by this line. The regression line can now be used to predict *Y* values for new values of *X* for which we do not know the *Y* value.

Printed by: 72d2bf1395d6ff3@placeholder.53343.edu. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

predict a values for here values of a for which we do not know the a value

Unsupervised learning algorithms are those used where there is no outcome variable to predict or classify. Hence, there is no "learning" from cases where such an outcome variable is known. Association rules, dimension reduction methods, and clustering techniques are all unsupervised learning methods.

Supervised and unsupervised methods are sometimes used in conjunction. For example, unsupervised clustering methods are used to separate loan applicants into several risk-level groups. Then, supervised algorithms are applied separately to each risk-level group for predicting propensity of loan default.

Supervised Learning Requires Good Supervision

In some cases, the value of the outcome variable (the 'label') is known because it is an inherent component of the data. Web logs will show whether a person clicked on a link or not. Bank records will show whether a loan was paid on time or not. In other cases, the value of the known outcome must be supplied by a human labeling process to accumulate enough data to train a model. E-mail must be labeled as spam or legitimate, documents in legal discovery must be labeled as relevant or irrelevant. In either case, the data mining algorithm can be led astray if the quality of the supervision is poor.

Gene Weingarten reported in the January 5, 2014 Washington Post magazine how the strange phrase "defiantly recommend" is making its way into English via auto-correction. "Defiantly" is closer to the common misspelling *definatly* than is *definitely*, so Google.com, in the early days, offered it as a correction when users typed the misspelled word "definatly." In the ideal supervised learning model, humans guide the auto-correction process by rejecting *defiantly* and substituting *definitely*. Google's algorithm would then learn that this is the best first-choice correction of "definatly." The problem was that too many people were lazy, just accepting the first correction that Google presented. All these acceptances then cemented "defiantly" as the proper correction.

2.3 The Steps in Data Mining

This book focuses on understanding and using data mining algorithms (Steps 4 to 7 below). However, some of the most serious errors in analytics projects result from a poor understanding of the problem—an understanding that must be developed before we get into the details of algorithms to be used. Here is a list of steps to be taken in a typical data mining effort:

- 1. Develop an understanding of the purpose of the data mining project. How will the stakeholder use the results? Who will be affected by the results? Will the analysis be a one-shot effort or an ongoing procedure?
- 2. Obtain the dataset to be used in the analysis. This often involves sampling from a large database to capture records to be used in an analysis. How well this sample reflects the records of interest affects the ability of the data mining results to generalize to records outside of this sample. It may also involve pulling together data from different databases or sources. The databases could be internal (e.g., past purchases made by customers) or external (credit ratings). While data mining deals with very large databases, usually the analysis to be done requires only thousands or tens of thousands of records.
- 3. Explore, clean, and preprocess the data. This step involves verifying that the data are in reasonable condition. How should missing data be handled? Are the values in a reasonable range, given what you would expect for each variable? Are there obvious outliers? The data are reviewed graphically: for example, a matrix of scatterplots showing the relationship of each variable with every other variable. We also need to ensure consistency in the definitions of fields, units of measurement, time periods, and so on. In this step, new variables are also typically created from existing ones. For example, "duration" can be computed from start and end dates.
- 4. Reduce the data dimension, if necessary. Dimension reduction can involve operations such as eliminating unneeded variables, transforming variables (e.g., turning "money spent" into "spent > \$100" vs. "spent ≤ \$100"), and creating new variables (e.g., a variable that records whether at least one of several products was purchased). Make sure that you know what each variable means and whether it is sensible to include it in the model.
- 5. *Determine the data mining task.* (classification, prediction, clustering, etc.). This involves translating the general question or problem of Step 1 into a more specific data mining question.
- 6. *Partition the data (for supervised tasks)*. If the task is supervised (classification or prediction), randomly partition the dataset into three parts: training, validation, and test datasets.
- Choose the data mining techniques to be used. (regression, neural nets, hierarchical clustering, etc.).

Printed by: 72d2bf1395d6ff3@placeholder.53343.edu. Printing is for personal, private use only. No part of this book may be reproduced or transmitted without publisher's prior permission. Violators will be prosecuted.

- 8. *Use algorithms to perform the task.* This is typically an iterative process—trying multiple variants, and often using multiple variants of the same algorithm (choosing different variables or settings within the algorithm). Where appropriate, feedback from the algorithm's performance on validation data is used to refine the settings.
- 9. Interpret the results of the algorithms. This involves making a choice as to the best algorithm to deploy, and where possible, testing the final choice on the test data to get an idea as to how well it will perform. (Recall that each algorithm may also be tested on the validation data for tuning purposes; in this way, the validation data become a part of the fitting process and are likely to underestimate the error in the deployment of the model that is finally chosen.)

10.