PROJEKT ZALICZENIOWY

KAMILA SOĆKO NR. 402770, INŻYNIERIA I ANALIZA DANYCH

UŻYTE BIBLIOTEKI:

```
# ZALADOWANIE WYKORZYSTYWANYCH PAKIETOW

```{r}
library(dplyr)
library(tidyverse)
library(graphics)
library(magrittr)
library(lattice)
library(latticeExtra)
library(aplpack)
library(plotly)
library(ggplot2)
```

# ETAP I – WCZYTANIE DANYCH I PODSUMOWANIE DANYCH

```
myData<-read.csv("Socko_dane_surowe.csv", skip=1, header=FALSE,
col.names=c("Period", "Sex", "Age", "Count"))
myData</pre>
```

Wczytałam plik .csv z danymi do zmiennej myData oraz nadałam nazwy kolumn dla danych. Wyrażeniem skip=1 omijam pierwszy wiersz, z wejściowymi nazwami kolumn, nazwałam je w kolejnej linijce.

Początek danych:

```
myData
 Period
 Sex
 Age Count
 2008
 Male
 Infant
 198
2
3
4
5
6
7
8
 45
 2008
 Male
 1 - 4
 2008
 Male
 18
 5-9
 2008
 Male
 10-14
 33
 2008
 Male
 15-19
 132
 2008
 20-24
 Male
 153
 2008
 Male
 25-29
 120
 2008
 Male
 30-34
 123
9
10
 2008
 Male
 35-39
 189
 2008
 Male
 40-44
 249
11
 45-49
 2008
 Male
 366
12
 50-54
 2008
 477
 Male
13
 2008
 Male
 55-59
 711
14
 2008
 Male
 60-64
 978
15
 2008
 Male
 65-69
 1260
16
 2008
 Male
 70-74
 1506
17
 2008
 Male
 75-79
 2148
18
 2008
 Male
 80-84
 2529
```

```
exists('myData') && is.data.frame(get('myData'))
any(is.na(myData))
summary(myData)
str(myData)
typeof(myData)
length(myData)
class(myData)
head(myData)
tail(myData)
write.csv(myData, "Socko_dane_przeksztalcone.csv")
```

Sprawdziłam czy dane się wczytały i istnieją oraz czy są data.frame, a następnie sprawdziłam czy w moich danych występuje NA – nie występują.

```
[1] TRUE
[1] FALSE
```

Dokonałam podsumowania danych, sprawdziłam typ każdej z kolumn, typ danych, ilość kolumn.

```
Period
 Sex
 Age
 Count
 :2008
 Length: 828
 Length:828
Min.
 Min.
 6
 1st Qu.:
1st Qu.:2011
 Class :character
 Class :character
 117
Median:2014
 Mode
 :character
 Mode
 :character
 Median:
 366
 1792
 :2014
Mean
 Mean
3rd Qu.:2016
 3rd Qu.: 1635
 :2019
 :34260
Max.
 Max.
'data.frame':
 828 obs. of 4 variables:
 $ Period: int
 "Male" "Male" "Male"
$ Sex
 : chr
 "Infant" "1-4" "5-9" "10-14"
$ Age
 : chr
$ Count : int
 198 45 18 33 132 153 120 123 189 249 ...
[1] "list"
[1]
 "data.frame"
[1]
```

Oraz wyświetliłam początek i koniec moich danych:

```
Period
 Sex
 Age Count
 2008 Male Infant
 198
 45
 2008 Male
 1-4
 5-9
 18
3
 2008 Male
 10-14
4
 2008 Male
 33
5
 2008 Male
 15-19
 132
6
 2008 Male
 20-24
 153
 tail(myData)
 Period
 Sex
 Age Count
823
 2019 Total
 80 - 84
 4881
824
 2019 Total
 85-89
 5889
825
 2019 Total
 4599
 90 - 94
 2019 Total
 1890
826
 95-99
 2019 Total 100 and over
 324
827
 2019 Total
828
 Total 34260
```

Zapisałam dane do pliku "Socko\_dane\_przekształcone.csv"

#### ETAP 2 – PRACA Z DANYMI – wykorzystanie pakietu tidyverse

1. Wykonałam podsumowanie dla danych dot. różnych płci:

```
male_data<-myData%>%filter(Sex=="Male")
female_data<-myData%>% filter(Sex=="Female")
total_data<-myData%>% filter(Sex=="Total")
print("PODSUMOWNANIE DLA MEZCZYZN: ")
summary(male_data)
print("PODSUMOWANIE DLA KOBIET")
summary(female_data)
print("DLA KAZDEJ Z PLCI:")
summary(total_data)
> print("PODSUMOWNANIE DLA MEZCZYZN: ")
[1] "PODSUMOWNANIE DLA MEZCZYZN:
> summary(male_data)
 Sex
 Period
 Age
 Count
Min.
 Min.
 :2008
 Length: 276
 Length: 276
 6
 1st Qu.:2011
 117
 Class :character
 Class :character
 1st Qu.:
 Median:2014
 Mode :character
 Mode :character
 Median: 339
 : 1353
 Mean
 :2014
 Mean
 3rd Qu.:2016
 3rd Qu.: 1406
 :2019
 Max.
 :17583
Max.
 print("PODSUMOWANIE DLA KOBIET")
[1] "PODSUMOWANIE DLA KOBIET"
> summary(female_data)
 Period
 Sex
 Age
 Count
 Min.
 :2008
 Length: 276
 Length: 276
 Min.
 6.0
 1st Qu.:2011
 Class :character
 Class :character
 1st Qu.:
 63.0
 Median :2014
 Mode :character
 Mode :character
 Median : 268.5
 Mean : 1335.5
 :2014
 Mean
 3rd Qu.:2016
 3rd Qu.: 1170.8
 :16677.0
Max.
 :2019
 Max.
> print("DLA KAZDEJ Z PLCI:")
[1] "DLA KAZDEJ Z PLCI:"
> summary(total_data)
 Period
 Sex
 Count
 Age
 Min.
 :2008
 Lenath: 276
 Length: 276
 Min.
 15.0
 1st Qu.:2011
 Class:character
 Class :character
 1st Qu.:
 194.2
 Median:2014
 Mode :character
 Mode :character
 Median:
 621.0
 Mean : 2688.4
 Mean
 :2014
 3rd Qu.:2016
 3rd Qu.: 2682.8
 Max.
 :2019
 Max.
 :34260.0
```

2. Używając "filter" wybrałam dane z 2019 roku dla mężczyzn i kobiet, gdy liczba zgonów była mniejsza od 100



3. Wybrałam kolumnę, która kończy się na "od"



Wybrałam kolumnę "Age" i wszystkie inne pasujące do niej kolumny z odpowiadającymi wierszami.

<pre>select(myData, Age, everything())</pre>				
Age <chr></chr>	Period <int></int>	Sex <chr></chr>	Count <int></int>	
Infant	2008	Male	198	
1-4	2008	Male	45	
5-9	2008	Male	18	
10-14	2008	Male	33	
15-19	2008	Male	132	
20-24	2008	Male	153	
25-29	2008	Male	120	
30-34	2008	Male	123	
35-39	2008	Male	189	
40-44	2008	Male	249	
1-10 of 828 rows		Previo	ıs 1 2 3 4 5	6 83 Next

5. Wybrałam dane, zmieniając jednej z kolumn nazwę.

# rename(myData, Gender = Sex)

Period <int></int>	Gender <chr></chr>	Age <chr></chr>	Count ⊲int>	
2008	Male	Infant	198	
2008	Male	1-4	45	
2008	Male	5-9	18	
2008	Male	10-14	33	
2008	Male	15-19	132	
2008	Male	20-24	153	
2008	Male	25-29	120	
2008	Male	30-34	123	
2008	Male	35-39	189	
2008	Male	40-44	249	
1-10 of 828 ro	ws		Previous 1 2 3 4 5	6 83 Next

6. Wyfiltrowałam dane – "Period, Age, Count" niezawierające lat 100 i wyżej, oraz wieku niemowlęcego oraz wyeliminowałam wiek oraz płeć – total, czyli łączne wartości. Pogrupowałam względem ilości i posortowałam względem ilości zgonów.

```
myData %>%
 filter(Age!="100 and over" & Age!="Total" & Sex!= "Total" &
Age!="Infant")%>%
 select(Period, Age, Count) %>%
 group_by(Count) %>% arrange(Count)
```

Period <int></int>	Age <chr></chr>	Count <int></int>				
2010	5-9	6				
2011	5-9	6				
2011	5-9	9				
2014	5-9	9				
2009	5-9	12				
2010	5-9	12				
2012	5-9	12				
2013	5-9	12				
2013	5-9	12				
2014	10-14	12				
1-10 of 480 rows		Previous 1 2	3 4	5 6	6 48	Next

7. Przefiltrowałam dane, tak aby mieć tylko łączne wartości zarówno dla kobiet jak i mężczyzn w wieku 2019 i posortowałam malejąco względem ilości zgonów.

```
myData %>%
 filter(Sex=="Total") %>%
 filter(Period==2019) %>% arrange(desc(Count))
```

Period <int></int>	Sex <chr></chr>	Age <chr></chr>	Count <int></int>
2019	Total	85-89	5889
2019	Total	80-84	4881
2019	Total	90-94	4599
2019	Total	75-79	4110
2019	Total	70-74	3372
2019	Total	65-69	2466
2019	Total	95-99	1890
2019	Total	60-64	1818
2019	Total	55-59	1428
2019	Total	50-54	990
1-10 of 22 row	'S		Previous 1 2 3 Next

8. Używając "mutate" zmieniłam nazwę dla wartości Infant z kolumny Age na Niemowle.

```
myData %>%
 filter(Age=="Infant")%>% mutate(Age="Niemowle")
 Period Sex
 Age
 Count
 2008 Male
 Niemowle
 198
 2008 Female
 Niemowle
 126
 2008 Total
 Niemowle
 321
 2009 Male
 Niemowle
 168
 2009 Female
 Niemowle
 138
 2009 Total
 Niemowle
 306
 2010 Male
 Niemowle
 186
 2010 Female
 Niemowle
 141
 2010 Total
 Niemowle
 327
 2011 Male
 Niemowle
 168
 1-10 of 36 rows
 Previous 1 2
 4 Next
```

9. Wyświetliłam dane z 2008 roku zawierające informację na temat wieku, w którym była największa ilość zgonów u kobiet.

```
myData %>% filter(Period==2008 & Sex=="Female") %>% filter(Age!="Total")%>% slice_max(Count)

Period Sex Age Count cint> cchr> 2008 Female 85-89 2847
```

Oraz najmniejsza ilość zgonów u mężczyzn w 2010 roku.

```
myData %>% filter(Period==2010 & Sex=="Male") %>% filter(Age!="Total")%>% slice_min(Count)

Period Sex Age Count cint> cchr> cchr> cchr> 12
```

10. Do zmiennej specificCount wstawiłam dane, zawierające informacje na temat ilości zgonów w roku 2019 w zależności od wieku – nie biorąc pod uwagę niemowląt i ludzi w wieku 100 lub więcej. Dot. tylko kobiet. Wybrałam kolumnę Count oraz Age.

```
specificCount<-myData %>%
 filter(Age!="100 and over" & Age!="Total" & Age!="Infant")%>%
 filter(Period==2019 & Sex=="Female") %>% select(Count, Age)
 Count Age
 24 1-4
 12 5-9
 24 10-14
 45 15-19
 54 20-24
 60 25-29
 87 30-34
 84 35-39
 159 40-44
 282 45-49
1-10 of 20 rows
 Previous
 Next
```

II. Obliczyłam średnią dla danych wybranych z poprzedniego podpunktu dla Count, wartości zaokrągliłam do jednego miejsca po przecinku oraz wykonałam ogólne podsumowanie danych.

```
srednia=round(mean(specificCount[1:20,1]), digits = 1)
srednia
summary(specificCount)
[1] 814.4
 summary(specificCount)
 Count
 Min.
 12.0
 Length:20
 58.5
 Class :character
 1st Qu.:
 Median: 340.5
 Mode
 :character
 814.4
 Mean
 3rd Qu.:1352.2
 :3084.0
 Max.
```

# ETAP 3 – WIZUALIZACJE

#### WYKRES I – wykorzystanie pakietu lattice oraz latticeExtra

Na początek wybrałam dane, z których skorzystałam przy wykonywaniu wykresu. Wybrałam dane zawierające informacje ogólne bez wyróżniania wieku oraz płci, pogrupowałam dane względem ilości zgonów.

```
period_count<-myData %>%
 filter(Age=="Total" & Sex=="Total") %>% select(Period,Count) %>%
group_by(Count)
period_count
```

Wykonałam wykres przedstawiający, ile było zgonów w danym roku. Skorzystałam z funkcji dotplot, dodałam kolorowe kropki oznaczające dany rok (jeden kolor na dwa okresy czasu), dzięki auto.key informacje są po prawo, mają tytuł "Lata" oraz została ustawiona wielkość czcionki dla tytułu legendy. Kropki również zostały delikatnie powiększone.

```
dotplot(Count ~ Period, period_count, group = Period,
 main = "Ilosc zgonow w danym roku",
 xlab = "Rok",
 ylab = "Ilosc zgonow",
 auto.key = list(space = "right", title = "Lata", cex.title=1.2),
 par.settings=ggplot2like(),
 lattice.options = ggplot2like.opts(),
 cex=1.5)
```



Na wykresie zauważamy, że najmniej zgonów było w roku 2010, a najwięcej w 2019.

# WYKRES 2 – wykorzystanie pakietu graphics i aplpack

Wybrałam dane (kolumny Period i Count) dotyczące niemowląt bez względu na płeć oraz pogrupowałam dane względem ilości zgonów.

```
filter(Age=="Infant" & Sex=="Total") %>% select(Period, Count) %>% group_by(Count)
```

Wykonałam 3 wykresy przedstawiające to samo tylko w innej wersji graficznej. Wykorzystując funkcje plot ustawiłam wykres na połączone pomarańczowe krzyżyki. Funkcja bagplot – zmieniłam nazwy osi na polskie nazwy oraz powiększyłam kropki, które są połączone. Dodatkowo funkcją sunflowerplot stworzyłam wykres z czerwonymi punktami i również je powiększyłam. Dodałam tytuł do wykresów.

```
par(mfrow=c(1,3))
plot(total_count_period, col="orange",type="b",pch=3)
bagplot(total_count_period$Period,total_count_period$Count,cex=3,
xlab="0kres", ylab="llosc")
sunflowerplot(total_count_period, col="red", cex=3)
mtext("llosc zgonow u niemowlat w danym roku, na trzech innych
wykresach", outer=TRUE, cex=0.9, line=-1.6)|
```



W roku 2010 oraz 2014 była największa ilość zgonów u niemowląt, najmniej w 2016.

#### **WYKRES 3 – WYKORZYSTANIE PAKIETU GGPLOT2**

Wybrałam dane w zależności od płci oraz ilości zgonów w roku 2019.

```
count_sex<-myData%>% filter(Age=="Total" & Sex!="Total" & Period==2019)
%>% select(Count, Sex)
count_sex
```

Wykonałam wykres kołowy przedstawiający, ile mężczyzn i kobiet umarło w 2019. Ustawiłam w coord\_polar, że wykres zaczyna się od 0, czyli od północnego punktu na wykresie. Wybrałam paletę kolorów "Set3" oraz ustawiłam inną czcionkę oraz rozmiar. Dodatkowo ustawiłam kolor oraz grubość obramowania wykresu i kolor środkowego tła. Usunęłam zbędne tytuły z osi. Pogrubiłam tytuł wykresu, wyśrodkowałam i zmieniłam rozmiar, co więcej – wykorzystując ggtitle dodałam podtytuł.



Zauważamy, że w 2019 roku zmarło więcej mężczyzn niż kobiet, ale różnica nie jest diametralna.

# WYKRES 4 - wykorzystanie pakietu plotly

Do wykresu potrzebowałam danych, które będą zawierały informację na temat wszystkich ludzi w 2017 roku w zależności od wieku. (Nie brałam pod uwagę osób, które przeżyły 100 lub więcej lat oraz niemowląt). Pogrupowałam dane względem wieku oraz wyliczyłam średnią ilość zgonów dla danego wieku.

```
countAge<-myData %>%
 filter(Age!="100 and over" & Age!="Total" & Age!="Infant")%>%
 filter(Period==2017 & Sex=="Total") %>% group_by(Age)%>%
summarise(srednia=mean(Count))
countAge
```

Wykonałam wykres używając funkcji plot\_ly, punkty ustawiłam na półprzezroczyste, dodałam nazwy osi oraz pionową siatkę do wykresu. Kolor tła na wykresie ustawiłam na mincream oraz kolor poza wykresem na jasnoniebieski.

```
countAge%>%
plot_ly(x=~Age, y=~srednia, color=~srednia) %>%
add_markers(marker=list(opacity=0.5), showlegend=FALSE) %>%
layout(xaxis = list(title="Wiek", showgrid=TRUE),
yaxis = list(title="Ilosc zgonow", showgrid=FALSE),
title = "Srednia ilosc zgonow w zaleznosci od wieku w 2017 roku",
paper_bgcolor="#CCFFFF", plot_bgcolor="mintcream")
```



Średnio najmniejsza ilość zgonów w 2017 roku była w przedziale wiekowym 5-9 lat, największa między 85 a 89 rokiem życia.

# WYKRES 5 – wykorzystanie pakietu ggplot2

Do celów sporządzenia wykresu użyłam informacji na temat ludzi, którzy umarli w wieku 100 i powyżej. Wybrałam kolumnę Period i Count.

```
higher_age_total<-myData %>%
 filter(Age=="100 and over" & Sex=="Total")%>%
 select(Period, Count)
higher_age_total
```

Korzystając z ggplot wykonałam wykres punktowy przedstawiający ile osób w wieku 100 lub więcej umarło w poszczególnych latach. Ustawiłam kolor w środku wykresu na "azure3" oraz zrobiłam przerywane obramowanie kolorem "deepskyblue3". Tytuł wykresu pogrubiłam i wyśrodkowałam, dodałam również podtytuł do wykresu oraz nazwałam osie.



Zauważamy wzrost w ilości osób, które dożyły 100 lub więcej lat biorąc pod uwagę zgony między 2008 a 2019 rokiem.