Munkres 1.1

ID: 14221

October 2022

1. Check the distributive laws for \cup and \cap and DeMorgan's laws. Consider A, B, and C to be sets. Proof that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. $\{x|x \in A \cap (B \cup C)\} \iff \{x|x \in A \land x \in (B \cup C)\}$ $\{x|x \in A \land x \in (B \cup C)\} \iff \{x|x \in A \land (x \in B \lor x \in C)\}$ $\{x|x\in A\land (x\in B\lor x\in C)\}\iff \{x|(x\in A\land x\in B)\lor (x\in A\land x\in C)\}$ $\{x | (x \in A \land x \in B) \lor (x \in A \land x \in C)\} \iff \{x | x \in A \cap B \lor x \in A \cap C\}$ $\{x|x \in A \cap B \lor x \in A \cap C\} \iff \{x|x \in (A \cap B) \cup (A \cap C)\}$ Proof that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. $\{x|x \in A \cup (B \cap C)\} \iff \{x|x \in A \lor x \in (B \cap C)\}$ $\{x|x\in A \lor x\in (B\cap C)\} \iff \{x|x\in A \lor (x\in B \land x\in C)\}$ $\{x|x \in A \lor (x \in B \land x \in C)\} \iff \{x|(x \in A \lor x \in B) \land (x \in A \lor x \in C)\}$ $\{x | (x \in A \lor x \in B) \land (x \in A \lor x \in C)\} \iff \{x | x \in A \cup B \land x \in A \cup C\}$ $\{x|x\in (A\cup B)\cap (A\cup C)\}$ First proof for DeMorgan's law using $A - (B \cup C) = (A - B) \cap (A - C)$. $\{x|x\in A-(B\cup C)\}\iff \{x|x\in A\land x\notin (B\cup C)\}$ $\{x|x \in A \land x \notin (B \cup C)\} \iff \{x|x \in A \land \neg (x \in B \lor x \in C)\}$ $\{x|x \in A \land \neg(x \in B \lor x \in C)\} \iff \{x|x \in A \land (x \notin B \land x \notin C)\}$ $\{x|x \in A \land (x \notin B \land x \notin C)\} \iff \{x|(x \in A \land x \notin B) \land (x \in A \land x \notin C)\}$ $\{x | (x \in A \land x \notin B) \land (x \in A \land x \notin C)\} \iff \{x | x \in (A - B) \land x \in (A - C)\}$ $\{x|x\in (A-B)\land x\in (A-C)\}\iff \{x|x\in (A-B)\cap (A-C)\}$ Second proof for DeMorgan's law using $A - (B \cap C) = (A - B) \cup (A - C)$ $\{x|x\in A-(B\cap C)\}\iff \{x|x\in A\land x\notin B\cap C\}$ $\{x|x \in A \land x \notin B \cap C\} \iff \{x|A \land \neg(x \in B \land x \in C)\}$

2. a. $A \subset B$ and $A \subset C \iff A \subset (B \cup C)$

The double implication fails and \longrightarrow is true and \longleftarrow is false. Proof for \longrightarrow :

Using $A \subset B$ and $A \subset C$, consider $x \in A$. Then, $x \in B$ since $A \subset B$ so that $x \in B \cup C$. Therefore, $A \subset (B \cup C)$ is true.

Proof for \leftarrow :

However, for the converse, consider $A=0,1,2,\ B=0,1,$ and C=2,3. Then $A\subset 0,1,2,3=B\cup C$ but it is false that $A\subset B$ since 2 is in A but not in B and $A\subset C$ is false since 0 is in A but not in C. Thus, $A\subset BandA\subset C\leftarrow A\subset (B\cup C)$ does not hold.

e.
$$A - (A - B) = B$$

 $A - (A - B) \subset B$ is true but $A - (A - B) \supset B$ is false.

Using $x \in A - (A - B)$ and $x \in A$, then $x \notin A - B$. Therefore it is false that $x \in A$ and $x \notin B$. So $x \notin A$ or $x \in B$ is true. So, if $x \in A$, $x \in B$. Thus $A - (A - B) \subset B$.

However, for $A-(A-B)\supset B$, let A=0,1 and B=1,2. Therefore, A-B=0 and A-(A-B)=1. This means that B is not a subset of A-(A-B) since $2\in B$ but $2\notin A-(A-B)$. Thus, A-(A-B)=B is false.

i.
$$(A \cap B) \cup (A - B) = A$$

Proof that $(A \cap B) \cup (A - B) = A$ is true. $(A \cap B) \cup (A - B)$ = $\{x | (x \in A \land x \in B) \lor (x \in A \land \neg (x \in B))\}$ = $\{x | (x \in A \land x \in B \lor x \in A) \land (x \in A \land x \in B \lor \neg (x \in B))\}$ Distr = $\{x | (x \in A \land x \in A) \text{ Simp}$ = $\{x | (x \in A) \text{ Rep} = A\}$

o.
$$A \times (B - C) = (A \times B) - (A \times C)$$

Proof that $A \times (B-C) = (A \times B) - (A \times C)$ is true. $A \times (B-C)$ = $\{(x,y)|x \in A \land y \in B \land \neg (y \in C)\}$ = $\{(x,y)|x \in A \land y \in B \land \neg (y \in C) \lor \neg (x \in A)\}$ Add = $\{(x,y)|x \in A \land y \in B \land \neg (y \in C \land x \in A)\}$ DeM

$$= (A \times B) - (A \times C)$$

Thus, $A \times (B - C) = (A \times B) - (A \times C)$ is true.

3. a. Write the contrapositive and converse of the following statement: "If x < 0, then $x^2 - x > 0$," and determine which (if any) of the three statements are true.

Contrapositive: If $x^2 - x \le 0$ then $x \ge 0$ Converse: If $x^2 - x > 0$ then x < 0

Original: The original statement is true. Since $x^2 - x$ can be rewritten as x(x-1) and x is negative, $x^2 - x$ will be positive as the product of two negative numbers is positive.

Contrapositive: Since the original statement is true, the contrapositive will also be true since it is logically equivalent to the original statement.

Converse: The converse statement is false. For example, consider the case where x=2. $2^2-2>0$ but 2<0 is false thus proving that the converse is false.

b. Write the contrapositive and converse of the following statement: "If x>0, then $x^2-x>0$," and determine which (if any) of the three statements are true.

Contrapositive: If $x^2 - x \le 0$ then $x \le 0$ Converse: If $x^2 - x > 0$ then x > 0

Original: The original statement is false. For example, consider the case where x=0.2. 0.2 is positive but $0.2^2-0.2=-0.16$ which is negative. Therefore, the original statement is false.

Contrapositive: Since the contrapositive is logically equivalent to the original statement, the contrapositive will also be false.

Converse: The converse is also false. For example, consider the case where x = -2. $-2^2 - 2 > 0$ but -2 > 0 is false and thus the converse is false.

- 4. Let A and B be sets of real numbers. Write the negation of each of the following statements:
 - a. For every $a \in A$, it is true that $a^2 \in B$. Negation: There is at least one $a \in A$ where $a^2 \notin B$.
 - b. For at least one $a \in A$, it is true that $a^2 \in B$. Negation: For every $a \in A$, $a^2 \notin B$.

c. For every $a \in A$, it is true that $a^2 \notin B$.

Negation: There is at least one $a \in A$ where $a^2 \in B$.

d. For at least one $a \notin A$, it is true that $a^2 \in B$.

Negation: For every $a \notin A$, $a^2 \notin B$.

5. Let α be a nonempty collection of sets. Determine the truth of each of the following statements and of their converses:

a. $x \in \bigcup_{A \in \alpha} A \Rightarrow x \in A$ for at least one $A \in \alpha$.

The original statement and its converse are true since the statement on the right is the definition of the statement on the left.

b. $x \in \bigcup_{A \in \alpha} A \Rightarrow x \in A$ for every $A \in \alpha$. The original statement is false. For example, consider the case where $\alpha = \{\{0\}, \{1\}\}$. Then $\bigcup_{A \in \alpha} A = \{0, 1\}$ so that $0 \in \bigcup_{A \in \alpha} A$, but 0 is not in α for every $A \in \alpha$ since $0 \notin \{1\}$

The converse is true. Consider the case where $x \in A$ for every $A \in \alpha$. Since α is nonempty, $A_0 \in \alpha$. Then $x \in A_0$ since $A_0 \in \alpha$. Therefore, $x \in \bigcup_{A \in \alpha} A$ is true since $x \in A_0$ and $A_0 \in \alpha$.

c. $x \in \bigcap_{A \in \alpha} \Rightarrow x \in A$ for at least one $A \in \alpha$.

The original statement is true. From the definition of $x \in \bigcap_{A \in \alpha}, x \in A$ for every $A \in \alpha$. Since α is nonempty, there is an $A_0 \in \alpha$ so that $x \in A_0$. Therefore, $A_0 \in \alpha$.

The converse is false.

Consider the case where $\alpha = \{\{0,1\},\{1,2\}\}$. Then $0 \in \{0,1\}$ and $\{0,1\} \in$ α , but $1 \notin \bigcap_{A \in \alpha} \alpha$.

d. $x \in \bigcap_{A \in \alpha} A \Rightarrow x \in A$ for at least one $A \in \alpha$.

The original statement and its converse are true since the statement on the right is the definition of the statement on the left.

- 6. Write the contrapositive of each of the statements of Exercise 5.
 - a. $x \notin A$ for every $A \in \alpha \Rightarrow x \notin \bigcup_{A \in \alpha} A$
 - b. $x \notin A$ for at least one $A \in \alpha \Rightarrow x \notin \bigcup_{A \in \alpha} A$
 - c. $x \notin A$ for every $A \in \alpha \Rightarrow x \notin \bigcap_{A \in \alpha} A$
 - d. $x \notin A$ for at least one $A \in \alpha \Rightarrow x \notin \bigcap_{A \in \alpha} A$
- 7. Given sets A, B, and C, express each of the following sets in terms of A, B, and C, using the symbols \cup , \cap , and -.

$$D = A \cap (B \cup C)$$

$$E = (A \cap B) \cup C$$

For F:

$$\begin{array}{l} x \in F \iff x \in A \land (x \in B \Rightarrow x \in C) \\ A \land (x \in B \Rightarrow x \in C) \iff A \land (x \notin B \lor x \in C) \\ A \land (x \notin B \lor x \in C) \iff x \in A \land \neg (x \in B \land x \notin C) \\ x \in A \land \neg (x \in B \land x \notin C) \iff x \in A \land \neg (x \in B - C) \\ x \in A \land \neg (x \in B - C) \iff x \in A \land x \notin B - C \\ x \in A \land x \notin B - C \iff x \in A - (B - C) \\ F = A - (B - C) \end{array}$$

- 8. If a set A has two elements, show that $\mathcal{P}(A)$ has four elements. How many elements does $\mathcal{P}(A)$ have if A has one element? Three elements? No elements? Why is $\mathcal{P}(A)$ called the power set of A?
 - a. If set A has two elements: $A = \{0, 1\}$. $\mathcal{P}(A) = \{\{\emptyset\}, \{0\}, \{1\}, \{0, 1\}\}\}$ and $\mathcal{P}(A)$ has 4 elements. A = 2, $\mathcal{P}(A) = 2^2 = 4$.
 - b. If set A has one element: $A=\{0\}$. $\mathcal{P}(A)=\{\{\emptyset\},\{0\}\}$ and $\mathcal{P}(A)$ has 2 elements.

$$A = 1, \mathcal{P}(A) = 2^1 = 2.$$

- c. If set A has three elements: $A = \{0, 1, 2\}$. $\mathcal{P}(A) = \{\{\emptyset\}, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}\}$ and $\mathcal{P}(A)$ has 3 elements. A = 3, $\mathcal{P}(A) = 2^3 = 8$.
- d. If set A has zero elements: $A = \{\emptyset\}$. $\mathcal{P}(A) = \{\{\emptyset\}\}$ and $\mathcal{P}(A)$ has 1 elements. A = 0, $\mathcal{P}(A) = 2^0 = 1$.
- e. $\mathcal{P}(A)$ is called the power set of A since $\mathcal{P}(A) = 2^A$. So the number of elements in $\mathcal{P}(A)$ is 2 to the power of number of elements in A.
- Formulate and prove DeMorgan's laws for arbitrary unions and intersections.

Given that A is a set and C is a nonempty collection of sets.

For arbitrary unions:

$$A - \bigcup_{B \in C} \overset{\circ}{B} = \bigcap_{B \in C} (A - B)$$

Proof:

$$\begin{array}{l} A - \bigcup_{B \in C} B \iff x \in A \land \neg \exists B \in C (x \in B) \\ x \in A \land \neg \exists B \in C (x \in B) \iff x \in A \land \forall B \in C (x \notin B) \\ x \in A \land \forall B \in C (x \notin B) \iff \forall B \in C (x \in A \land x \notin B) \\ \forall B \in C (x \in A \land x \notin B) \iff \forall B \in C (x \in A - B) \\ \forall B \in C (x \in A - B) \iff x \in \bigcap_{B \in C} (A - B) \end{array}$$

For arbitrary intersections:

$$A - \bigcap_{B \in C} B = \bigcup_{B \in C} (A - B)$$

Proof:

$$\begin{array}{l} A - \bigcap_{B \in C} B \iff x \in A \land x \notin \bigcap_{B \in C} B \\ x \in A \land x \notin \bigcap_{B \in C} B \iff x \in A \land \neg \forall B \in C (x \in B) \\ x \in A \land \neg \forall B \in C (x \in B) \iff x \in A \land \exists B \in C (x \notin B) \\ x \in A \land \exists B \in C (x \notin B) \iff \exists B \in C (x \in A - B) \\ \exists B \in C (x \in A - B) \iff x \in \bigcup_{B \in C} (A - B) \end{array}$$

10. Let \mathbb{R} denote the set of real numbers. For each of the following subsets of $\mathbb{R} \times \mathbb{R}$, determine whether it is equal to the Cartesian product of two subsets of \mathbb{R} .

```
a. \{(x,y)|x \text{ is an integer}\}.
Equal to \mathbb{Z} \times \mathbb{R}
```

b.
$$\{(x,y)|0 < y \le 1\}$$
.
Equal to $\mathbb{R} \times (0,1]$. $(a,b]$ means $\{x \in \mathbb{R} | a < x \le b\}$.

c.
$$\{(x,y)|y>x\}$$
.

Not equal to Cartesian product of subsets of $\mathbb R$

Suppose that $A = \{(x,y)|y>x\}$ and $A = B \times C$ where $B, C \in R$. Since $1>0, \ (0,1)\in A$. Then $0\in B$ and $1\in C$ since $A=B\times C$. We also have that $1\in B$ and $1\in C$ so $(1,1)\in B\times C=A$ but it is false that 1>1 so there is a contradiction and A isn't $B\times C$.

d. $\{(x,y)|x \text{ is an integer and } y \text{ is an integer } \}$.

This is equal to $(\mathbb{R} - \mathbb{Z}) \times \mathbb{Z}$

The first part proves x cannot be an integer as it is part of a set of real numbers with integer removed. The second part is self-evident.

e.
$$\{(x,y)|x^2+y^2<1\}$$
.

Not equal to Cartesian product of subsets of \mathbb{R} .

Suppose that $A = \{(x,y)|x^2+y^2<1\}$ and $A = B \times C$ where $B,C \in \mathbb{R}$. For example, $(8/10)^2+0^2=64/100+0=64/100<1$ so that $(8/10,0)\in A=B\times C$, and thus $8/10\in B$ and $0\in C$. Also $0^2+(8/10)^2=64/100<1$ so that $(0,8/10)\in A=B\times C$, and $0\in B$ and $8/10\in C$. Thus $(8/10,8/10)\in B\times C=A$ since 8/10 is in B and C. Since $(8/10)^2+(8/10)^2=64/100+64/100=128/100\geq 1$, (8/10,8/10) cannot be in A so there is a contradiction. Therefore, A isn't equal to $B\times C$.