

Preparação dos Dados

Instância e Atributos

■ Instâncias

 padrões, exemplos, objetos, registros, pontos, amostras, casos, entidades

Atributos

- cada instância é formada por um conjunto de atributos
- variável, campo, característica

Valores de Atributos

- Para atribuir valores a atributos, é necessário uma escala de medição
- Regra ou função que associa um valor numérico ou simbólico a um atributo
 - Mapeia grandeza física em valor do atributo
 - Exemplo:
 - Associa-se peso a um valor numérico
 - Associa-se sexo aos símbolos Masculino e Feminino

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicasa

Inteligência Artificial

Tipos de Atributos

Nominal

- ◆ cor, identificação, profissão, ...
- Ordinal
 - gosto (ruim, médio, bom), dias da semana, ...

Intervalar

- temperatura em Celsius, ...
- Racional
 - peso, tamanho, idade, temperatura em Kelvin, ...

UFS – Sistemas de Informação – Inteligência Artificial – Prof. Alcides Xavier Benicasa

_

	Tipo de Atributo	Descrição	Exemplos	
órico ativo)	Nominal	Valores são simplesmente nomes (símbolos) diferentes, i.e., atributos nominais provêm apenas informação suficiente para distinguir uma instância de outra: (=, ≠)	Sexo, Estado Civil, CEP,	
Categórico (Qualitativo	Ordinal	Os valores de atributos ordinais provêm informação suficiente para distinguir e ordenar instâncias, i.e.: (=, ≠) e (<, >)	Grau de Educação, Números de Endereço, 	
Numérico (Quantitativo)	Intervalo	Atributos para os quais a diferença entre valores faz sentido, i.e., existe uma unidade de medida com referência (zero) arbitrário. Suporta as operações anteriores e ainda (+, -)	Datas, Temperatura em Fahrenheit,	
Num (Quant	Razão	Atributos para os quais não apenas a diferença entre valores faz sentido, mas também a razão entre valores (zero é absoluto). Suporta as ops. anteriores e ainda (*, /)	Contagens, Massa, Largura, Corrente Elétrica, Quantidades Monetárias,	

Outliers

■ Existem várias definições

- Basicamente, são instâncias "anômalas"
 - Instâncias que possuem características (valor de um ou mais atributos) diferentes da maioria dos demais
 - Definição de "diferente" usualmente é estatística

Inteligência Artificial

- Podem ser instâncias legitimas ou não
 - Se não forem legítimos, são o resultado de algum tipo de ruído

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicasa

Outlier: Friend or Foe?

Mesmo quando outliers são legítimos, podem ou não serem desejados...

nteligência Artificial

- Por exemplo, em detecção de anomalias essas instâncias são exatamente aquilo que se procura
- Em outras aplicações, podem não ser o objetivo central, mas podem ser de interesse se detectados
 - p. ex. genes diferenciados em bioinformática
- Já em outros casos, são indesejados, como em segmentação de mercado
 - interesse por categorias representativas de consumidores

Conversão de Valores Categóricos

- Algumas técnicas trabalham apenas com variáveis numéricas
 - Por exemplo, Redes Neurais Artificiais
 - Variáveis categóricas precisam ser convertidas

ligência A

- Conversão depende da existência ou não de ordem entre os valores
 - Variáveis nominais ou ordinais

UFS – Sistemas de Informação – Inteligência Artificial – Prof. Alcides Xavier Benicas

FS

Conversão de Valores Ordinais

Para variáveis ordinais, a ordem dos valores deve ser de alguma maneira mantida

eliqência Artifi

- Normalmente associa-se valores inteiros crescentes a cada valor simbólico
 - Por exemplo, {*frio, morno, quente*}={*1, 2, 3*}

16

Conversão de Valores Nominais

Atributos nominais

- ◆ Conversão é feita por binarização
- Possíveis codificações
 - · Codificação inteira binária
 - Codificação m-de-p
 - Codificação 1-de-n

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicas

Conversão de Valores Nominais

■ Codificação 1-de-n

- Um atributo binário associado a cada valor nominal
- Exemplo:
 - Codificar {amarelo, vermelho, verde, azul, laranja, branco}
 - 100000 amarelo
 - 010000 vermelho
 - 001000 verde
 - 000100 azul
 - 000010 laranja
 - 000001 branco

18

and Hotel			Exerc	Exercício - Resolução				
	Febre	Enjôo	Mancha		De	or		Diagnóstico
Inteligência Artificial								
Inteligênc								
24								
83			UFS – Sistemas de Info	ormação –	Inteligên	cia Artif	icial – Pro	f. Alcides Xavier Benicasa

an a	Exercício - Resolução							
	Febre	Enjôo	Mancha	Dor				Diagnóstico
	0	1	0,33	1	0	0	0	1
Artificial	0,5	0	0,66	0	0	1	0	0
Inteligência Artificial	1	1	1	0	1	0	0	0
Inte	1	0	0,33	1	0	0	0	1
	0	0	1	0	0	0	1	0
22	0,5	0	0	0	0	1	0	1
3		UFS – Sistemas de Informação – Inteligência Artificial – Prof. Alcides Xavier Benicasa						

Redes Neurais Artificiais

TES No. 2004

Sistema Nervoso

■ Conjunto complexo de *células*

 Determina funcionamento e comportamento dos seres vivos

ncia Artific

- Unidade fundamental: neurônio
 - Distingue-se das outras células por apresentar excitabilidade
- Engloba o cérebro

Por que Redes Neurais?

- Computadores são eficientes em várias áreas
 - Entretanto, computação convencional não tem obtido desempenho próximo da natureza em vários domínios

ligência Ar

Sistema visual humano

- Reconhecer rosto familiar em ambiente estranho (100-200m)
- Sonar de morcegos
 - Reconhece alvos (distância e velocidade)
 - Cérebro do tamanho de uma ameixa

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicas

Por que Redes Neurais?

 Trabalhos em RNAs começaram com o desejo de entender o cérebro

rência Artific

- Objetivo principal (ainda) hoje é reproduzir seu funcionamento em diversas tarefas
 - ◆ Paradigma Bio-Inspirado de AM!
 - ◆ Em particular: Paradigma Conexionista

30

O que são Redes Neurais?

■ **RNAs** são modelos de computação com propriedades particulares:

Artıfıcıa

Aprender

- Adaptar
- Generalizar
- Eventualmente Organizar

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicas

O que são Redes Neurais?

 Sistemas distribuídos inspirados no cérebro humano

ncia Artifici

- Compostas por várias unidades de processamento ("neurônios")
- Interligadas por um grande número de conexões ("sinapses")
- Eficientes em várias aplicações

32

Neurônio Natural

Dendritos

 recebem impulsos nervosos (informação) oriundos de outros neurônios e conduzem esses impulsos ao corpo da célula;

Corpo da Célula

• informação é processada e novos impulsos são gerados;

Axônio

 transmitem os impulsos gerados no corpo da célula a outros neurônios;

Sinapse

ponto de contato entre as terminações dos axônios e os dendritos.
 Controla a transmissão de impulsos, proporcionando a capacidade de adaptação do neurônio.

UFS – Sistemas de Informação – Inteligência Artificial – Prof. Alcides Xavier Benicasa

Inteligência Artificial

Aplicações de RNAs

- Principais Aplicações (Reconhecimento de Padrões)
 - Escrita (assinaturas, texto manuscrito, ...)
 - Sons (voz humana interfaces para deficientes visuais, ...)
 - Imagens ("fingerprint", placas de veículos, controle de qualidade, ...)
 - Percepções (sabor provador de vinho, cerveja, ...)

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicasa

Características de RNAs

■ Principais Características:

ência Artific

- Valores numéricos (categóricos demandam conversão);
- Tempo de treinamento pode ser extremamente *longo*;
- Tempo para avaliar um exemplo é relativamente curto;
- Interpretabilidade usualmente não é possível.

Alguns Marcos Históricos

- McCulloch & Pitts (1943) modelo matemático do neurônio;
- Hebb (1949) formulação explícita de uma regra fisiológica para modificação sináptica ("Postulado de Aprendizado de Hebb);
- Rosenblatt (1958) rede Perceptron;
- Minsky & Papert (1969) demonstraram limitações dos Perceptrons de uma única camada. Sugeriram que não haveria motivo pra acreditar que Perceptrons de múltiplas camadas poderiam superar as limitações...
 - Diminuíram significativamente os trabalhos sobre RNAs;
- Hopfield (1982) "física com redes neurais";
- Kohonen (1982) mapas auto-organizáveis;
- Rumelhart, Hinton & Williams (1986) Backpropagation
 - Retomada definitiva do grande interesse em Redes neurais;
 - Perceptrons de múltiplas camadas podem aprender problemas não linearmente separáveis

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicasa

Modelo de Neurônio MCP e Rede Perceptron

Se os padrões (vetores) usados para treinar o **Perceptron** são retirados de duas classes linearmente separáveis, então o algoritmo **Perceptron** converge e posiciona a superfície de decisão na forma de um hiperplano entre as duas classes.

Inteligência Artificial

Aprendizado

- Fornecem a base para o entendimento dos métodos de treinamento para redes formadas por várias unidades;
- Pesos são inicializados aleatoriamente e então ajustados sempre que a rede classifica equivocadamente um exemplo de treinamento;
- O processo é repetido até que um determinado critério de parada seja alcançado.

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicasa

FS 40 and some suppose

Portas de Limiar Linear

- Função executada: comparação da soma ponderada das entradas com um valor de limiar (threshold)
- Casa a soma exceda o *limiar*, a saída é *ativada*, permanecendo *desativada* em casa contrário.

$$y = \begin{cases} 1 & \sum w_i x_i \ge \theta \\ 0 & \sum w_i x_i < \theta \end{cases}$$

Portas de Limiar Linear

- Restritas à solução de problemas que sejam linearmente separáveis
- Exemplo:
 - Considere um neurônio de duas entradas x_1 e x_2 , pesos w1 e w2, limiar θ e saída y executando uma função qualquer.
 - ♦ A condição de disparo do neurônio (y=1) é então definida por $x_1 w_1 + x_2 w_2 = \theta$

$$x_2 = -\left(\frac{w_1}{w_2}\right)x_1 + \left(\frac{\theta}{w_2}\right)$$

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benica.

Portas de Limiar Linear

- A superfície de decisão de uma porta de limiar linear está restrita a uma reta, ou um hiperplano para o caso *n*-dimensional.
 - Solução para o problema do E lógico através de uma porta de limiar linear.
 - $w_1 = w_2 = 1$

Inteligência Artificial

Exemplo

b) Testar a rede

b.3) Para o padrão 100

$$v = 1(-0.5) + 1(1.2) + 0(0.2) + 0(-0.2) = 0.7$$

 $y = 1 \implies classe + 1$

b.4) Para o padrão 011

$$v = 1(-0.5) + 0(1.2) + 1(0.2) + 1(-0.2) = -0.5$$

 $v = -1 \implies \text{classe } -1$

UFS - Sistemas de Informação - Inteligência Artificial - Prof. Alcides Xavier Benicasa

Resumo do Treinamento Perceptron

Saída: $y = \text{sinal}\left(\sum_{i=0}^{n} w_i X_i\right)$

Os pesos são corrigidos de acordo com (Regra de Correção de Erro):

$$W_{I} \leftarrow W_{I} + \Delta W_{I}$$
$$\Delta W_{i} = \eta (d - y) X_{i}$$

• $d = \text{valor alvo } (-1, +1); \quad y = \text{valor obtido}; \quad \eta = \text{taxa de aprendizado}.$

Interpretação intuitiva:

□ Se exemplo é classificado corretamente \Rightarrow (*d-y*)=0;

□ Se d = 1; $y = -1 \Rightarrow \overline{\mathbf{w}}^T \overline{\mathbf{x}}$ precisa aumentar

 Análise análoga pode ser feita para o caso em que o valor alvo é menor do que o valor obtido.

8

Inteligência Artificial

Referências

- Campelo, R.J.G.B & Carvallho, A.C.O.F. & Hruschka, E.R. *Notas de Aula*. USP, 2009.
- T.M. Mitchell, *Machine Learning*,, McGraw Hill, 1997.
- Braga, A. P., Carvalho, A. C. P. L. F., Ludemir, T. B., *Redes Neurais Artificiais: Teoria e Aplicações*, LTC, 2ª Edição, 2007.
- HAYKIN, Simon. *Neural Networks: A Comprehensive Foundation*. Prentice Hall, 2008.
- RUSSELL, S. & NORVIG, P. *Inteligência Artificial*. Rio de Janeiro, Campus, 2003. 1040p.