UFRS - Universidade Federal do Rio de Saneiro Rio de Saneiro, 11 de Abril de 2017 - SOMA MODULAR! atb= 0 at b = atb - SUBTRAÇÃO MODULAR: ã-6 Q-6 a - b = a - b Se a= a e b = b', então a - b = à - b'

$$\bar{s}(\bar{b},\bar{c}) = (\bar{a},\bar{b})\bar{c}$$

- POTENDA MODULAR	
Quero colcular a módulo ma	
ae = a.a. a	5 G = 3 5
e seres	
ō e Zm	
e E N	
Olubóm m (intoino 22)	ā 7 5
PRIMEIRA TORIA: MÉTODO TURBONO:	
Muziplico à à	
REDUZO O RESULTADO	
MODULO m	
MULTIPLICO O RESULTADO	
REDUZIDO POR a	
AEDUZO NOVAMENTE	
NUMBRO DE MULTIPLIENÇÕES : e	
NOMERO DE REDUÇÕES e-1	
Sasuron IDEIA: Méroco Exciente, confecios	COMO "DOUBLE AND ADD" (DOBRAS
E SOMOR)	
	a superior de la

Vamos representar o expoente em	binari	o (base z)	obug so	proposts a
			5 -99	18TON & MA
= en 2 + en -1 · 2 + en -2 · 2 -2 +	+ e,	· 12 + e . z + e		1
			In materials	no chaliford
= (a,1) a < : (h		6		
= {0, 1}, para todo 0 s ; sn			***	
e _ en -2" + en - 1 · 2" + en - 2 · 2" + + 6	e, ·z E	te1.2+e0 -	Part Supplied	RO ON DOWN
<u> </u>	2 22	e. z e		
$= (a^{2^{n}})^{e_{n}} \cdot (a^{2^{n+4}})^{e_{n+4}}$	iden gare	٠ م ٠ م	T costa	Lama See
$= \left(\overline{a}^{2^{n}}\right)^{2^{n}} \cdot \left(\overline{a}^{2^{n+4}}\right)^{2^{n}}$	(2 ²)	· (a)	ches amos	1 gast
ELEVO AO ELEVO AO ELEVO	AO	ELEVO AO		P5 740 W
anusco andsido andsi	COA	QUASSAUQ.	OHAA	-8 h
		0.09.0	+ 3 of	2) 6,0
> A cada etapa, elevo a base	on-ter			
		(m (A + 2) -		
Se.	P01_			
		S (1.1) -		
> Expoentes e; são o ou 1.		· obtas , zus	93 321	2.2
		- Eli	2.7-A) E	
> Como obter os expoentes e;?		m bom (A +	$A) \rightarrow A$	2.2
		A ms sol	ev a son	LED (8
Openib ob ofeer s 3 09	de e	porz		
L> Se e é impar -> eo = .	1			1.0000
L> Se e é par → eo=				
			عربة	F3 - 11 300 613
0.1.2	2	- `` -		MODE
Obtento o quociente de e por		•		
Ly en sora o resto da divis			•	Li,
e assim por diante.				
		20084183		
		4534 241		
O expoent e na base 2	tem	nt 1 algarism	8 (eo e,	ez ¿n
		•	a.)	6.C = 7H
n=logez				ES
				tilibr

///					
n elevações	ao quadrad	lo. 1	ent ma straig	3,0 7,60	380
nn divisões	por Z	5 4 1 ,3 4 ⁴ k .			
Quantidade pro	ipporeional a	leg 2.	P2 25	31	- Seed = 3
- ALGORITHO DE	poteneingño	MODULAR:			
		internance	е.	700	100
		ida de ae m	2	(** n = 1	("1") -
- Instrugões:		a P. Const.			
1) R +	1, A = a	E←e	1.27-20 3 120	ัน รู7	
2) E ng	vanto E + 0	o, faça:			
•		é impar, então	Maria sand a co	vels , agat	s when A K-
		- (RXA) mod			<u>, nad</u>
	2.1.2) E	(E-1) 12			
2.2	lse Eé	par então:	1- 60	o Z.,	2 ways to
	2.2-1) E				
2.3			5 2 auto	80.000 20 S	orla -) <-
3) Ret	orne o vu	dor em R.			
		1000 5	sh Gireh	.h	
Exemple 1		,	1 29 5	75 m. b. 5	, pt - cal
			: e ⁵ <- 2	One 5 5	له در
3 mod	38			,	
	•		9 5 -17 9	A of a survey	, dada0 -
Q	A	E	É IMPAR ?		10 gul
4	3	01374236	não	do horas	
1	9	30687143	•		
9	81=5	1534 571			
4637	25	7671	a of 5	1	5/44 C
175≘ 2 3	4				
770- 00	•			ء اوس ک	