Induction on Decision Trees

Séance « IDT »

UE IAL3

Bruno Bouzy

bruno.bouzy@parisdescartes.fr

Avril 2022

Outline

- Induction task
- ID3
- Entropy (disorder) minimization
- Unknown attribute values
- Selection criterion

- Formalism:
 - objects with attributes
- Example:
 - objects = saturday mornings
 - attributes:
 - outlook {sunny, overcast, rain}
 - temperature {cool, mild, hot}
 - humidity {high, normal}
 - windy {true, false}

Induction on Decision Trees

- One particular saturday:
 - Outlook = overcast
 - Temperature = cool
 - Humidity = normal
 - Windy = false
- Classes mutually exclusive, here 2 classes:
 - Positive (P)
 - Negative (N)

- Training set:
 - objects whose class is known

- Goal:
 - Develop a classification rule

A small training set

n	outlook	temperat.	humidity	windy	С
1	sunny	hot	high	false	N
2	sunny	hot	high	true	N
3	overcast	hot	high	false	Р
4	rain	mild	high	false	Р
5	rain	cool	normal	false	Р
6	rain	cool	normal	true	N
7	overcast	cool	normal	true	Р
8	sunny	mild	high	false	N
9	sunny	cool	normal	false	Р
10	rain	mild	normal	false	Р
11	sunny	mild	normal	true	Р
12	overcast	mild	high	true	Р

A simple decision tree

- If the attributes are adequate, it is possible to build a correct decision tree.
- Many correct decision trees are possible.
- Correctly classify unseen objects? (it depends...)
- Between 2 correct decision trees, choose the simplest one.

- Systematical approach:
 - Generate all decision trees and choose the simplest
 - Possible for small induction tasks only

- ID3 approach:
 - Many objects, many attributes.
 - A reasonably good decision tree is required.
 - Use the entropy minimization principle to select the « best » attribute

Result:

- Correct decision trees are found.
- Training sets of 30,000 examples
- Examples with 50 atttributes
- No convergence garantee

- How to form a DT for a set C of objects?
 - T = test of the value of a given attribute on an object
 - The possible values (outcomes) are:

$$O_1, O_2, ..., O_w$$

- Partition = $\{C_1, C_2, ..., C_w\}$ of C.
- C_i contains objects of C whose value (outcome) is O_i.

A structuring tree of C

Choice of the test

- 2 assumptions:
- (1) the test set is in the proportion of the training set:

p: number of positive (+) examples

n: number of negative (-) examples

 P_+ : probability to be positive = p/(p+n)

 P_{\cdot} : probability to be negative = n/(p+n)

(2) Information gain based on the entropy E(p, n):

$$E(p, n) = - P_{\perp}log(P_{\perp}) - P_{\perp}log(P_{\perp})$$

(entropy \approx disorder)

Induction on Decision Trees

Choice of the test

- A attribute with values in {A₁, A₂, ..., A_w}
- $C = \{C_1, C_2, ..., C_w\}$
 - objects in C_i have $A = A_i$.
- C_i has p_i objects in P and n_i objects in N.
- $E(p_i, n_i) = entropy of of C_i$.

Entropy function

A measure of disorder

For x in]0, 1[:
$$E(x) = -x\log(x) - (1-x)\log(1-x)$$

- E(0) = E(1) = 0
 - No disorder
- E is a bell function
 - maximum for x=1/2 (maximal disorder)
 - Vertical in 0 and 1.
 - E(1/2) = log(2) ≈ 0.7
- (... approximate values: log(3) ≈ 1.1 log(4) ≈ 1.4 log(5) ≈ 1.6 log(7) ≈ 2)

Entropy function

p positive objects and n negative objects...

 What is the entropy E(p|n) of the proportion (p|n)?

•
$$E(p|n) = - p/(p+n)\log(p/(p+n)) - n/(p+n)\log(n/(p+n))$$

= $\log(p+n) - p/(p+n)\log(p) - n/(p+n)\log(n)$

Choice of the test

« Entropy a priori » (Eap) of attribute A:

A measure of what could be the average entropy if we ask the value of attribute A

A weighted sum of the entropies associated to each value of A

The weight of value Ai is in proportion of the number of objects with value Ai

$$Eap(A) = \sum_{i} E(p_i, n_i)(p_i+n_i)/(p+n)$$

Choose attribute A* = argmin_b Eap(b)

(i.e. looking for the attribute that minimizes disorder...)

Induction on Decision Trees

Choice of the test

- Example, the entropy « a priori » of each attribute
 - Eap(outlook) = 0.45
 - Eap(temperature) = 0.65
 - Eap(humidity) = 0.55
 - Eap(windy) = 0.65

ID3 chooses « outlook » as the DT root attribute.

- Complexity:
 - O (|C|.|A|.D)
 - |C| : size of the training set
 - |A| : number of attributes
 - D : depth of the decision tree

Unknown attribute values

2 questions:

How to build the DT?

How to deal them during classification?

Unknown attribute values

How to build the DT?

```
Bayesian approach
DT approach
« most common value » approach
« unknown » as a value
the « proportion » approach
```

Unknown attribute values

Assume the value of A is unknown for few objects (= '?') p_u number of objects in P with A unknown

n_u number of objects in N with A unknown

- Objects with unknown values are distributed across the values of in proportion the relative frequency of these values in C
- $p_i := p_i + p_u r_i$ where $r_i = (p_i + n_i)/((p + n) (p_u + n_u))$
- (number of objects with value Ai: p_i+n_i)
- (Number of objects with A value known: (p+n)-(p_u + n_u)

Summary

- Induction task = find out DT for classification
- 2 classes, ~1000 attributes, ~50 values
- Simple method
- Minimization of entropy principle
- Unknown attribute values
- Approximate method

Reference

 J.R. Quinlan, « Induction on decision trees », Machine Learning (1986)