

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

Edexcel A Level Maths: Pure

1.1 Proof

Contents

- * 1.1.1 Language of Proof
- * 1.1.2 Proof by Deduction
- * 1.1.3 Proof by Exhaustion
- * 1.1.4 Disproof by Counter Example

Head to www.savemyexams.com for more awesome resources

1.1.1 Language of Proof

Your notes

Language of Proof

What is proof?

- Proof is a series of logical steps which show whether a result is true or not for a set of specified numbers
 - e.g. All integers, all even numbers etc

Notation in proof

- LHS and RHS are standard abbreviations for left-hand side and right-hand side
- Integers are used frequently in the language of proof
 - The set of integers is denoted by \mathbb{Z}

Techniques for proof

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

=Q P IS EQUAL TO Q (TRUE FOR SOME VALUES)

P IS IDENTICAL TO Q (TRUE FOR ALL VALUES)

P⇒Q

P IMPLIES Q (IF P IS TRUE THEN Q IS TRUE)

P IS EQUIVALENT TO Q (Q IS TRUE IF AND ONLY IF (IFF) P IS TRUE

Copyright © Save My Exams, All Rights Reserved

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$

1.1.2 Proof by Deduction

Your notes

Proof by Deduction

What is proof by deduction?

Proof by deduction is when a mathematical and logical argument is used to show whether or not a result is true

How to do proof by deduction

You may also need to:

- Write multiples of **n** in the form **kn** for some integer **k**
- Use algebraic techniques, showing logical steps of simplifying
- Use correct mathematical notation

Sets of numbers

- N the set of natural numbers
- Z the set of integers
- Q the set of quotients/rational numbers
- R the set of real numbers

 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$

Examiner Tip

- Try the result you are proving with a few values
 - Use a sequence of them (eg 1, 2, 3)
 - Try different types of numbers (positive, negative, zero)
- This may help you see a pattern and spot what is going on

1.1.3 Proof by Exhaustion

Your notes

Proof by Exhaustion

What is proof by exhaustion?

- Proof by exhaustion is a way to show that the desired result works for every allowed value **How do I prove a result by exhaustion?**
 - Using proof by exhaustion means testing every allowed value not just showing a few examples

ALL VALUES NEED TO BE TESTED

Copyright © Save My Exams. All Rights Reserved

Difficulties with proof by exhaustion

- In many cases proof by exhaustion is not practical, or possible
 - Proving all multiples of 4 are even can't be shown for every multiple of 4
- Aim to minimise the work involved
 - Proving a number is prime only requires testing factors up to the square root

Examiner Tip

- Try a simpler case if you are stuck.
- For example, if you are asked to prove that 97 is a prime number you could try thinking about what you would do for smaller primes such as 7 or 11.

Worked example

Prove that the difference between $n^3 + 7$ and a multiple of 7 is always 1, for all integers in the interval $1 \le n \le 4$.

NOTE: THIS RESULT MAY BE TRUE FOR ALL VALUES OF n BUT YOU ARE ONLY ASKED TO PROVE IT FOR INTEGERS IN THE INTERVAL $1 \le n \le 4$, i.e. n=1, n=2, n=3, n=4 SO 'EXHAUST' ALL POSSIBILITIES

n = 1, $n^3 + 7 = 1^3 + 7 = 8$ DIFFERENCE OF 1 FROM 7 n = 2, $n^3 + 7 = 2^3 + 7 = 15$ DIFFERENCE OF 1 FROM 14 n = 3, $n^3 + 7 = 3^3 + 7 = 34$ DIFFERENCE OF 1 FROM 35 n = 4, $n^3 + 7 = 4^3 + 7 = 71$ DIFFERENCE OF 1 FROM 70

BY EXHAUSTION, n³+7 HAS A DIFFERENCE OF 1 FROM A MULTIPLE OF 7 FOR ALL INTEGERS 1 < n < 4

DO SHOW THE APPROPRIATE MULTIPLES OF 7

Copyright © Save My Exams. All Rights Reserved

1.1.4 Disproof by Counter Example

Your notes

Disproof by Counter Example

What is disproof by counter-example?

- Disproof by counter-examples involves finding a value that does **not** work for the given statement
 - That value is called a **counter-example**

How do I disprove a result?

- You only need to find **one** value that does "not work"
- Numbers that have unusual results are often helpful to try

- Look carefully to see what types of number the result is claimed for it may just be integers rather than real numbers
- Irrational numbers can be unusual
- Think about areas of maths where unusual things happen such as in trigonometry where there are several angles with the same sine value

Use a counter-example to show that the sum of three distinct prime numbers is not always odd.

ALL PRIME NUMBERS ARE ODD, EXCEPT 2
SO YOU CAN EXPECT THAT TO BE INVOLVED

5 + 11 + 2 = 187 18 IS NOT ODD

ODD + ODD = EVEN
SO THE THIRD NUMBER
WILL NEED TO BE EVEN

THE QUESTION SAYS
DISTINCT SO ALL THREE
HAVE TO BE DIFFERENT

Save my exams