List 01. Into to Python

Nikita V. Artamonov

February 14, 2025

Contents

L	Pandas]
2	NumPy	4
3	Visualization	ļ

1 Pandas

- #1. Load a dataset from sleep75.csv file.
 - 1. evaluate the dataset size (a number of observation & a number of variables)
 - 2. Fill the table of values of variables

Obs	sleep	totwrk	age	male
0				
5				
100				
700				

- 3. Calculate the correlation matrix for the following variables: sleep, totwrk, age
- 4. the table of values of variables

Desc.Stat	sleep	totwrk	age	hrwage
max				
min				
mean				
median				
st.dev				
var (unbiased)				
var (biased)				
1st quartile				
3rd quartile				

Remark: 1st/3rd quartiles are 25%/75% quantiles respectively.

- 5. How many observations in the dataset
 - (a) with sleep>3000
 - (b) with totwrk<2000
 - (c) with age>40
 - (d) with age<30
- 6. How many observations in the dataset with totwrk=0? Who is this people?
- 7. Do we have evidence for missing values in the dataset? How many do we have?
- #2. Load a dataset from Electricity.csv file.
 - 1. evaluate the dataset size (a number of observation & a number of variables)
 - 2. Fill the table of values of variables

Obs	cost	q	pl	pk	pf
1					
15					
48					
87					

- 3. Calculate the correlation matrix for the following variables: cost, q, pl, pk, pf
- 4. the table of values of variables

Desc.Stat	cost	q	pl	pk	pf
max					
min					
mean					
median					
st.dev					
var (unbiased)					
var (biased)					
1st quartile					
3rd quartile					

Remark: 1st/3rd quartiles are 25%/75% quantiles respectively.

- 5. How many observations in the dataset
 - (a) with cost > 40
 - (b) with q<5000
 - (c) with q>4000
 - (d) with 20 < cost < 50
- 6. Do we have evidence for missing values in the dataset? How many do we have?
- #3. Load a dataset from wage2.csv file.
 - 1. evaluate the dataset size (a number of observation & a number of variables)
 - 2. Fill the table of values of variables

Obs	wage	hour	IQ	educ	exper	age
1						
25						
179						
800						

- 3. Calculate the correlation matrix for the following variables: wage, hour, IQ, educ, exper
- 4. the table of values of variables

Desc.Stat	wage	hour	IQ	educ	exper	wage
max						
min						
mean						
median						
st.dev						
var (unbiased)						
var (biased)						
1st quartile						
3rd quartile						

Remark: 1st/3rd quartiles are 25%/75% quantiles respectively.

- 5. How many observations in the dataset
 - (a) with wage>1000
 - (b) with age<40
 - (c) with exper>10
 - (d) with 100<IQ<130
- 6. Do we have evidence for missing values in the dataset? How many do we have?
- #4. Load a dataset from Labour.csv file. Create a new DataFrame containing the log-variables of the initial dataset.
- #5. Load a dataset from Electricity.csv file. Create a new DataFrame containing the log-variables of the initial dataset.

2 NumPy

#1. Consider matrices

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} \quad C = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & -1 \end{pmatrix} \quad D = \begin{pmatrix} 5 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$

Calculate

$$\det(A)$$
 A^{-1} AB CA $B^{\mathsf{T}}A$ $2C \pm 3D$ $C^{\mathsf{T}}D$ $D^{\mathsf{T}}C$

#2. Consider matrices

$$A = \begin{pmatrix} 0 & 1 & -2 & 6 \\ 1 & 0 & 1 & -1 \\ -1 & 1 & -2 & 0 \\ 1 & -1 & 2 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 4 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 0 & 1 & 1 \\ 1 & 3 & -1 & 3 \end{pmatrix}$$

Calculate

$$\det(A)$$
 A^{-1} A^2 A^3 AB CA CB $B^{\top}A$

#3. Consider 1-D arrays:

$$x^{\top} = \begin{pmatrix} 1 & 2.8 & 1.8 & 3 & 0.5 & 1.5 \end{pmatrix}$$

 $y^{\top} = \begin{pmatrix} 3.8 & 2.1 & 5.3 & 3.4 & 0.2 & 0.1 \end{pmatrix}$
 $z^{\top} = \begin{pmatrix} -0.4 & 0 & -4.3 & 6.8 & -3.3 & 2.7 \end{pmatrix}$

Perform the following manipulations: $x+2, x-3, x+3y, z^2, z^3, \log(x), \sqrt{x}, |z|, \log(|z|+1)$

#4. Solve a system of linear equation in matrix form Ax = b with matrices

$$A,b = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \quad A,b = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad A,b = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

3 Visualization

- #1. Load a dataset from sleep75.csv file.
 - 1. Draw histogram for variables sleep, totwrk, age, hrwage, educ
 - 2. Draw stacked histogram for sleep across male dummy
 - 3. Draw stacked histogram for totwrk across south dummy
 - 4. Draw stacked histogram for totwrk across smsa dummy

- 5. Draw scatter plot sleep vs totwrk
- 6. Draw scatter plot sleep vs totwrk with grouping by male dummy
- 7. Draw scatter plot sleep vs age
- 8. Draw scatter plot sleep vs age with grouping by south dummy
- 9. Draw scatter plot sleep vs edu
- 10. Draw scatter plot sleep vs edu with grouping by smsa dummy
- #2. Load a dataset from Labour.csv file.
 - 1. Draw histogram for variables output, capital, labour, wage
 - 2. Draw histogram for log-variables output, capital, labour, wage
 - 3. Draw scatter plots output vs another variables
 - 4. Draw scatter plots log(output) vs log of another variables
- #3. Load a dataset from Electricity.csv file.
 - 1. Draw histogram for variables cost, q, pf, pk, pl
 - 2. Draw histogram for log-variables cost, q, pf, pk, pl
 - 3. Draw scatter plots cost vs another variables
 - 4. Draw scatter plots log(cost) vs log of another variables
- #4. Load a dataset from diamonds.csv file.
 - 1. Draw histogram for variables price, carat
 - 2. Draw histogram for log-variables price, carat
 - 3. Draw stacked histogram for price across cut
 - 4. Draw stacked histogram for carat across clarity
 - 5. Draw stacked histogram for log(price) across color
 - 6. Draw stacked histogram for log(carat) across color

- 7. Draw scatter plot price vs carat
- 8. Draw scatter plot log-price vs log-carat
- 9. Draw scatter plot log-price vs log-carat with grouping by cut
- 10. Draw scatter plot log-price vs log-carat with grouping by color
- 11. Draw scatter plot log-price vs log-carat with grouping by clarity
- #5. Load a dataset from Diamond.csv file.
 - 1. Draw histogram for variables price, carat
 - 2. Draw histogram for log-variables price, carat
 - 3. Draw stacked histogram for price across certification
 - 4. Draw stacked histogram for carat across clarity
 - 5. Draw stacked histogram for log(price) across colour
 - 6. Draw stacked histogram for log(carat) across colour
 - 7. Draw scatter plot price vs carat
 - 8. Draw scatter plot log-price vs log-carat
 - 9. Draw scatter plot log-price vs log-carat with grouping by certification
 - 10. Draw scatter plot log-price vs log-carat with grouping by colour
 - 11. Draw scatter plot log-price vs log-carat with grouping by clarity