

Competitive Programming

From Problem 2 Solution in O(1)

Combinatorial Game Theory Wythoff Game

Mostafa Saad Ibrahim
PhD Student @ Simon Fraser University

Wythoff's game

- Given 2 piles of stone with 2 moves:
 - move 1: choose 1 pile, remove whatever
 - move 2: choose from the 2 piles SAME # of items
 - Example $(10, 20) \Rightarrow (5, 20)$ or (10, 12) or (5, 15)
 - Loser: No moves
- A different rephrasing
 - 2D grid with coin in position (N, M)
 - Either move up, left or diagonal (up left direction)
 - Or chess queen travel south, west or southwest
- Wythoff found formula for losing positions
 - It depends on Golden Ratio

Golden Ratio

$$arphi=rac{1+\sqrt{5}}{2}=1.6180339887\ldots$$

$$rac{1}{\phi}+rac{1}{\phi^2}=1\,.$$

$$arphi+1=arphi^2$$

$$arphi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}.$$

$$1+rac{1}{arphi}=arphi.$$

$$arphi=[1;1,1,1,\ldots]=1+rac{1}{1+rich}}}{1+rich}}}}}}}}}}}}}}}}}}} }$$

$$F\left(n
ight)=rac{arphi^{n}-(1-arphi)^{n}}{\sqrt{5}}=rac{arphi^{n}-(-arphi)^{-n}}{\sqrt{5}}.$$

Wythoff's game

- The formula for losing positions
 - Let k be for the kth term (n, m), a losing position
 - There are 2 ways to compute sequence
 - Computing n, m using k only
 - Computing n, m using relationships between them

$$n_k = \lfloor k\phi
floor = \lfloor m_k\phi
floor - m_k$$
 $m_k = \lfloor k\phi^2
floor = \lceil n_k\phi
ceil = n_k + k$

Wythoff's game

```
const double GOLDEN RATIO = (1 + sqrt(5.0)) / 2;
pair<int, int> getKthWythoffLosingPos(int k) {
 int a = k * GOLDEN RATIO;
 int b = k * GOLDEN RATIO * GOLDEN RATIO;
 // important relationship: then k = b-a
 assert(b == a+k);
  return make pair(a, b);
bool isWythoffLosingPosition(int a, int b) {
 if(a > b)
    swap(a, b);
 int k = b-a;
  return a == getKthWythoffLosingPos(k).first;
```

Wythoff's game: Sequences

- N = {1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40}
- M = {2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41}
- N \cup M = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...} Cover all values (e.g. rows/cols)
- These sequences have no terms in common
 - Beatty's Theorem [(0, 0)] is the losing terminal position

Wythoff's game: Losing positions

Src: http://math.rice.edu/~michael/teaching/2012Fall/Wythoff.pdf

Wythoff's game: Losing positions

- As mentioned, every row/col is covered
 - Actually, every row/col has exactly 1 losing position
 - This is a very sparse grid!
- Your turn
 - Given Q queries: Each query is a rectangle (0,0,X,Y)
 - What is the percentage of losing positions?
 - Hint: Think in generation style (not formula)
 - Hint: Use a data structure for efficient processing
 - Solution

Your turn: 3 piles Nim

- Given 3 piles
 - Either move from 1 pile
 - Or same amount from the 3 piles
- Prove that this game is equivalent to normal Nim
 - Solution: See discussion <u>here</u> or <u>here</u>
- In fact, for any N piles where N is odd
 - Wythoff game is equal to Normal Nim.
 - For formal proof see <u>Theorem 9</u>

Wythoff game in small inputs

- The game can have many extensions,
 restrictions and generalizations
 - Some of these variants are for the 2 piles case
 - Others variants for N piles
 - e.g. pick same amount from a **subset** of piles
 - Such as dividing N by power of squarefree numbers
 - Many of them are hard or unsolvable
 - Not in competitions so far
- If the constraints are small on a variant
 - Just think in dynamic programming solution
 - Example

Final notes

- The problem came little times in competitions
 - Hard to play with this game without making it complex
 - Most of the problems are about the direct game
 - Generate Sequence
 - Is winning/losing position ?
 - Few more challenging
 - The first move for the winner? Your turn (or, or)
 - Simulate the game? Your turn
- Lesson: Think about patterns/formula
- Optional readings: <u>See1</u>, <u>See2</u>, <u>See3</u>, <u>See4</u>

تم بحمد الله

علمكم الله ما ينفعكم

ونفعكم بما تعلمتم

وزادكم علمأ