

Logos Family Products HMEMC Use Case User Guide

(UG020011, V1.2) (04.11.2019)

Shenzhen Pango Microsystems Co., Ltd.
All Rights Reserved. Any infringement will be subject to legal action.

Revisions History

Document Revisions

Version	Date of Release	Revisions
V1.2	04.11.2019	Initial release.

(UG020011, V1.2) 1/27

About this Manual

Terms and Abbreviations

Terms and Abbreviations	Meaning		
HMEMC	Hard Memory Controller		
DDR	Double Data Rate		
IOL	IO Logic		
IOB	IO Buffer		
QoS	quality of service		

(UG020011, V1.2) 2 / 27

Table of Contents

Revisions History	1
About this Manual	2
Table of Contents	3
Tables	4
Figures	5
Chapter 1 Overview	6
Chapter 2 HMEMC Functional Description	7
2.1 HMEMC Structural Description	7
2.2 HMEMC Interface Description	8
2.2.1 AXI4 Bus Interface	8
2.2.2 APB Bus Interface	10
2.2.3 Clock and Reset Signal	11
2.2.4 User Port Mask Signal	
2.2.5 Low-Power Mode Signal	
2.3 User Port Selection	
2.4 Low-Power Mode	
2.4.1 AXI Low-Power Mode	
2.4.2 DDRC Low-Power Mode	
Chapter 3 Introduction to the HMEMC DDR3 Case	
3.1 Design Description	
3.2 Parameter Description	
3.3 Signal Description	19
3.4 Simulation Description	21
3.5 Description of the Resources Used	22
Chapter 4 PCB Design Description	23
Disclaimer	27

Tables

Table 1-1 Data Rate and Peak Bandwidth of the Memory Interface	6
Table 2-1 Description of AXI4 Bus Signals	8
Table 2-2 Description of APB Bus Signals	10
Table 2-3 HMEMC Clock Signals	12
Table 2-4 HMEMC Reset Signals	12
Table 2-5 User Port Mask Signal	13
Table 2-6 HMEMC Low-Power Mode Signal	13
Table 3-1 Parameter Description of DDR3 Design Case	18
Table 3-2 Description of HMEMC DDR3 Design Case Top-Level Signal	19
Table 3-3 User-Side Signal Description of DDR3 Master Module	19
Table 3-4 DDR3 Case Resource List	22
Table 4-1 Mapping of FPGA Pins to DDR Memory Signals	23

Figures

Figure 2-1 Interconnection of HMEMC with Other Hardware Resources	7
Figure 2-2 Write Burst Timing Diagram	9
Figure 2-3 Read Burst Timing Diagram	10
Figure 2-4 APB Interface Write Timing Diagram	11
Figure 2-5 APB Interface Read Timing Diagram	11
Figure 2-6 HMEMC Clock and Reset Signals	12
Figure 2-7 Timing Diagram for Entering and Exiting Axi Low-Power Mode	
Figure 2-8 Timing for Denying Access to AXI Low-Power Mode	14
Figure 2-9 Request to Exit AXI Low-Power Mode Initiated by CACTIVE_X	14
Figure 2-10 Entering DDRC Low-Power Mode	15
Figure 2-11 Exiting DDRC Low-Power Mode	16
Figure 3-1 Logic Block Diagram of DDR3 Design Case Logic	

Chapter 1 Overview

This document primarily describes the main functions of HMEMC and the use cases of implementing DDR3 memory read and write operations using HMEMC.

HMEMC is a high-performance embedded hard core memory controller in the Logos Family FPGA chips, simplifying the interface interconnection operations with current popular memory standards. Compared to similar scale IPs, HMEMC offers better performance and reduces power consumption and development time. HMEMC preserves valuable FPGA resources, allowing developers to focus more on the FPGA design tasks.

Key features:

- ➤ LPDDR, DDR2, DDR3 supported
- > x8, x16 DDR memory supported
- Standard AXI4 bus protocol supported
- Three AXI4 user channels in total, one 128-bit, and two 64-bit, supporting read and write operations
- > AXI4 read reordering supported
- ➤ BANK Management supported
- Various low power modes supported, including self-refresh, power down, deep power down
- Bypass DDRC supported
- ➤ DDR3 write leveling and DQS gate training supported
- ➤ DDR3 maximum transfer rate reaches up to 1066Mb/s

Performance parameters:

Table 1-1 Data Rate and Peak Bandwidth of the Memory Interface

Mamaana tama	Data rate: Mb/s DDR (MHz Clock)		Peak bandwidth per HMEMC (Gb/s)	
Memory type	Min.	Max.	8-bit	16-bit
DDR2	250 Mb/s	800 Mb/s	6.4 Gb/s	12.8 Gb/s
DDK2	(125 MHz)	(400 MHz)	0.4 G0/8	12.8 Gb/S
DDR3	606 Mb/s	1066 Mb/s	8.528 Gb/s	17.056Gb/s
DDRS	(303 MHz)	(533 MHz)	0.320 00/8	17.03000/s
LPDDR	200 Mb/s	400 Mb/s	3.2 Gb/s	6.4 Gb/s
LIDDK	(100 MHz)	(200 MHz)	3.2 00/8	0.4 00/8

(UG020011, V1.2) 6 / 27

Chapter 2 HMEMC Functional Description

HMEMC has realized the FPGA fabric connection with DDR memory. Its main function is to receive access requests from the upper user logic on the FPGA fabric through the AXI4 bus interface, schedule them according to the priority of the requests, convert them into various commands recognizable by the memory in accordance with memory timing requirements, send them to the memory, and ultimately complete read and write operations on memory data. The figure below describes the connection among HMEMC, FPGA fabric, and DDR memory.

Figure 2-1 Interconnection of HMEMC with Other Hardware Resources

2.1 HMEMC Structural Description

The HMEMC is primarily composed of the DDR Controller and DDR PHY.

The DDRC module mainly arbitrates user read and write requests, completes the conversion of AXI4 commands to DFI read and write commands and operational timing, and schedules read and write operations to DDR memory.

The DDR PHY performs initialization of different types of DDR memory, write leveling for DDR3, DQS gate training, and read data eye leveling of different types of DDR memory. Receives DFI commands sent by the DDRC and performs protocol conversion then transmit them to DDR memory.

In addition, to enable the HMEMC to function properly, initialization and reset modules are needed to handle power-up initialization of the entire system and reset control of all modules. To minimize risk, this functionality is placed within the FPGA fabric and implemented through soft logic.

(UG020011, V1.2) 7 / 27

2.2 HMEMC Interface Description

2.2.1 AXI4 Bus Interface

2.2.1.1 Signal Description

The table below describes the AXI4 bus signals of HMEMC. The suffix "_X" of each signal represents different AXI4 user channels ranging from 0 to 2.

Table 2-1 Description of AXI4 Bus Signals

Signal Name	Direction	Signal Description		
CSYSREQ_X	Input	Request to exit AXI low-power mode, active-high		
CSYSACK_X	Output	Response to exit AXI low-power mode, active-high		
CACTIVE_X	Output	Peripheral device clock request, active-high		
ACLK_X	Input	Input clock signal		
AWID_X [7:0]	Input	Write address ID		
AWADDR_X [31:0]	Input	Write Address		
AWLEN_X [7:0]	Input	Write burst length		
AWSIZE_X [2:0]	Input	Write burst size		
AWBURST_X [1:0]	Input	Write burst type, does not support fixed burst type		
AWVALID_X	Input	Write address valid, active-high		
AWREADY_X	Output	Write address ready, active-high		
AWURGENT_X	Input	Once enabled, this port has the highest priority. If the PCFGW_n.wr_port_urgent_en register is enabled, the arbitrator PA immediately enters write command arbitration. When the corresponding port and address queue requests are empty, PA will ignore this signal		
WDATA_X [127:0]	Input	Write data signal		
WSTRB_X[15:0]	Input	Write data strobe signal, active-high		
WLAST_X	Input	Write the signal indicating the last data, active-high		
WVALID_X	Input	Write valid signal, active-high		
WREADY_X	Output	Write ready signal, active-high		
BID_X [7:0]	Output	Write response ID		
BRESP_X [1:0]	Output	Write response, indicating the status of the write transaction. Possible responses: OKAY, EXOKAY, SLVERR, and DECERR		
BVALID_X	Output	Write response valid, active-high		
BREADY_X	Input	Write response ready, active-high		
ARID_X [7:0]	Input	Read address ID		
ARADDR_X [31:0]	Input	Read Address		
ARLEN_X [7:0]	Input	Read burst length		
ARSIZE_X [2:0]	Input	Read burst size		
ARBURST_X[1:0]	Input	Read burst type		
ARLOCK_X	Input	Lock type. In AXI4: 0 represents normal access, 1 represents exclusive access. For exclusive access, please refer to the relevant description in the AXI4 protocol		
ARVALID_X	Input	Read address valid, active-high		

(UG020011, V1.2) 8 / 27

Signal Name	Direction	Signal Description		
ARREADY_X	Output	Read address ready, active-high		
ARURGENT_X	Input	Once enabled, this port has the highest priority. If the PCFGR_n.rd_port_urgent_en register is enabled, the arbitrator PA immediately enters read command arbitration. PA will ignore this signal when the corresponding port and address queue requests are empty		
RID_X [7:0]	Output	Read ID		
RDATA_X [127:0]	Output	Read data		
RRESP_X [1:0]	Output	Read response		
RLAST_X	Output	The last data in a read transaction, active-high		
RVALID_X	Input	Read data valid, active-high		
RREADY_X	Output	Read data ready, active-high		

2.2.1.2 Timing Description

The following is a step-by-step introduction to the interface timing of the AXI4 bus.

➤ Write channel timing

Figure 2-2 Write Burst Timing Diagram

(UG020011, V1.2) 9 / 27

Read channel timing

Figure 2-3 Read Burst Timing Diagram

2.2.2 APB Bus Interface

2.2.2.1 Signal Description

The table below describes the APB bus signals of HMEMC.

Table 2-2 Description of APB Bus Signals

Signal Name	Direction	Signal Description	
PCLK	Input	APB clock signal	
PRESET	Input	APB reset signal, active-high	
PADDR[11:0]	Input	APB address signal	
PWDATA[31:0]	Input	APB write data signal	
PWRITE	Input	APB read/write direction, high level for write operation	
PSEL	Input	APB selection signal, active-high	
PENABLE	Input	APB enable signal, active-high	
PREADY	Output	APB ready signal, active-high	
PRDATA [31:0]	Output	APB read data signal	
PSLVERR	Output	APB error signal, active-high	

(UG020011, V1.2) 10 / 27

2.2.2.2 Timing Description

> APB interface write timing

Figure 2-4 APB Interface Write Timing Diagram

> APB interface read timing

Figure 2-5 APB Interface Read Timing Diagram

2.2.3 Clock and Reset Signal

Figure 2-6 describes the logic block diagram of the main clock and reset signals of HMEMC.

(UG020011, V1.2) 11/27

Figure 2-6 HMEMC Clock and Reset Signals

The clock signals of HMEMC are shown in Table 2-3. These clocks are all asynchronous.

Table 2-3 HMEMC Clock Signals

Signal Name	Direction	Signal Description
CORE_DDRC_CORE_CLK	Input	DDRC system clock, comes from the PLL, i.e., PLL_CLK. The maximum clock frequency is 266.5MHz.
ACLK_X	Input	AXI4 bus interface clock, generated by the PLL. The maximum clock frequency is 133MHz. The value of X ranges from 0 to 2, representing different user ports.
PCLK	Input	APB bus interface clock, generated by the PLL. The frequency of PCLK must be less than or equal to the frequency of CORE_DDRC_CORE_CLK. The maximum clock frequency is 100MHz.

The reset signals of HMEMC are shown in Table 2-4.

Table 2-4 HMEMC Reset Signals

Signal Name	Direction	Signal Description
DDRPHY_RST	Input	The reset signal of DDR PHY, coming from FPGA fabric, active-high
PRESET	Input	The reset signal of the APB bus interface, coming from FPGA fabric, active-high
CORE_DDRC_RST	Input	The reset signal of DDRC, coming from FPGA fabric, active-high
ARESET_X	Input	The reset signal of the AXI4 bus interface, coming from FPGA fabric, active-high
DDRPHY_MEM_RST	Output	The reset signal from DDR PHY to external DDR memory, active-high

(UG020011, V1.2) 12 / 27

2.2.4 User Port Mask Signal

Table 2-5 User Port Mask Signal

Signal Name	Direction	Signal Description
pa_rmask[2:0]	Input	Mask the read address request to PA from the corresponding port. 0 to 2 corresponds to port0 to port2
pa_wmask[2:0]	Input	Mask the write address request to PA from the corresponding port. 0 to 2 corresponds to port0 to port2

2.2.5 Low-Power Mode Signal

Table 2-6 HMEMC Low-Power Mode Signal

Signal Name	Direction	Signal Description
csysreq_ddrc	Input	DDRC low-power request signal
csysack_ddrc	Output	DDRC low-power response signal
cactive_ddrc	Output	DDRC low-power clock valid signal, a low level indicates clock removal
CSYSREQ_X	Input	Request to exit AXI low-power mode, active-high
CSYSACK_X	Output	Response to exit AXI low-power mode, active-high
CACTIVE_X	Output	Peripheral device clock request, active-high

2.3 User Port Selection

HMEMC supports 3 AXI4 channels, one 128-bit, and two 64-bit. Users can choose the appropriate port according to their actual needs. For unused ports, it is best to configure the reset signal to be high level, other signals can be left floating. If more ports are needed on the user side, a soft core must be developed independently.

When multiple AXI4 channels are in use, the mask function can filter out a unique port for read and write operations. The description of related signals is shown in Table 2-5.

2.4 Low-Power Mode

2.4.1 AXI Low-Power Mode

HMEMC has a total of 3 sets of AXI channels, therefore there are 3 sets of AXI low-power port signals, which are CSYSREQ_X, CACTIVE_X, and CSYSACK_X, as shown in Table 2-6. External devices can initiate a request to enter or exit the AXI low-power mode through CSYSREQ_X, while HMMEC indicates acceptance or rejection of the request through CACTIVE_X, and HMEMC responds to external device requests through CSYSACK_X.

When an external device makes a request, if the AXI channel has no pending read/write requests

(UG020011, V1.2)

and there is no data in the write queue that has been accepted, it can enter a low-power state; otherwise, the request will be rejected. The timing relationship for entering and exiting the AXI low-power mode is shown in the figure below:

Figure 2-7 Timing Diagram for Entering and Exiting Axi Low-Power Mode

As Figure 2-7 shows, when an AXI channel requests to enter the AXI low-power mode CSYSREQ_X is pulled low, and after one clock cycle CSYSACK_X is also pulled low, if at this time CACTIVE_X is also low, then the clock of this port is canceled, and it enters AXI low-power mode; when requesting to exit the AXI low-power mode, CSYSREQ_X is pulled high, the clock signal is restored, and after one clock cycle CSYSACK_X is pulled high, the port returns to normal operation.

Figure 2-8 provides the scenarios where entering the AXI low-power mode is denied.

Figure 2-8 Timing for Denying Access to AXI Low-Power Mode

When the AXI channel has a data read or write request, it can also exit the AXI low-power mode through CACTIVE_X. Its timing diagram is shown below:

Figure 2-9 Request to Exit AXI Low-Power Mode Initiated by CACTIVE_X

(UG020011, V1.2) 14 / 27

As Figure 2-9 shows, external devices can also initiate a request to exit the AXI low-power mode through the CACTIVE_X status. A low CACTIVE_X indicates that the AXI channel has no pending read or write requests and the write data queue has no data to be received, meaning the port is idle and can initiate a request to enter a low-power mode at this time; when there is a read or write request, CACTIVE_X is high, the system reactivates the clock signal, and when CSYSACK_X is high, the port starts to operate normally.

2.4.2 DDRC Low-Power Mode

When the DDRC is idle, it can request to enter low-power mode. The DDRC low-power interface signals include CSYSREQ_DDRC, CSYSACK_DDRC, and CACTIVE_DDRC; as Table 2-6 shows, these signals can put the DDRC into low-power mode. Trigger the DDRC to enter self-refresh mode via CSYSREQ_DDRC. The existing commands in the DDRC will be executed before entering self-refresh mode. The timing diagram for entering the DDRC low-power mode is shown below:

Figure 2-10 Entering DDRC Low-Power Mode

The timing for exiting the DDRC low-power mode is shown in the figure below. The FPGA fabric requests to exit the DDRC low-power mode by pulling CSYSREQ_DDRC high. When CACTIVE_DDRC is high and CSYSACK_DDRC is also pulled high, the DDRC exits low-power mode and the HMEMC transitions from self-refresh mode to normal working mode.

(UG020011, V1.2) 15 / 27

Figure 2-11 Exiting DDRC Low-Power Mode

(UG020011, V1.2) 16 / 27

Chapter 3 Introduction to the HMEMC DDR3 Case

This case is a random read/write use case for HMEMC-based DDR3 memory, with the main modules DDRC and DDR_PHY implemented by calling the corresponding GTPs. Read and write control as well as initialization and reset modules are implemented through RTL code. This case uses an AXI channel. Externally, it employs one x16 DDR3 memory, Micron, MT41K512M16HA.

3.1 Design Description

Figure 3-1 Logic Block Diagram of DDR3 Design Case Logic

The logic block diagram of this case is as shown in Figure 3-1, primarily comprising the User Logic module and the DDR3 master module DDR3_top. Within this, the User Logic module can be developed by the user as needed, with HMEMC encapsulated within the DDR3 master module, requiring no modifications.

The User Logic module includes test_main_ctrl, test_wr_ctrl, and test_rd_ctrl.

- ➤ test_main_ctrl: DDR3 read/write master control module, controls the initialization of DDR3 SDRAM, and manages read/write switching;
- test_wr_ctrl: Write control module, performs write burst operations;
- > test_rd_ctrl: Read control module, performs read burst operations;
- ➤ The DDR3 master module includes HMEMC (DDRC and DDR PHY), initialization and reset modules, PLL, IOL, DQS_DDC, and IOB.

(UG020011, V1.2) 17 / 27

- ➤ DDRC: Completes the conversion of AXI4 commands to DFI read and write commands and operational timing, schedules read and write operations to DDR3 memory;
- ➤ DDR PHY: Completes the initialization of DDR3 memory, accomplishes write leveling, DQS gate training, read leveling, and other tasks, while also receiving DFI commands from DDRC, performing protocol conversion, and sending them to the external DDR3 memory;
- ➤ Initialization and reset modules: Complete the power-up initialization of the entire system and the reset control of all modules;
- ➤ PLL: The external reference clock enters the PLL, generates the AXI4 interface clock, which then through IOCLKBUF, CLKDIV, and DLL, produces the DDRC system clock, DDR PHY system clock, and the clocks required for IOL and DQS_DDC;
- ➤ DLL: Provides the delay adjustment code ctrl_code needed for DQS_DDC delay tuning;
- > IOL: Completes the serialization and deserialization of high-speed data;
- ➤ IOB: Completes the level conversion for various DDR memory devices, provides an interface between the FPGA and DDR3 memory;
- ➤ DQS_DDC: Completes the gating operation on the input DQS to remove noise influence, shifts the gated DQS phase by 1/4 clock cycle, and controls the read/write pointers of IOL IFIFO.

HMEMC first initializes the DDR3 memory; upon completion, the ddr_init_done signal is pulled high. Thereafter, users can control the DDR3 master module through the user-side AXI4 port.

In this case, all addresses of the DDR3 memory are first written sequentially, followed by the first random write operation. This write operation is of random length, writing random data to random addresses. After completing the first write operation, random read and write operations begin. Subsequent operations are either read or write, depending on the output of the pseudo-random number generator module. During read operations, the read-back data is verified; if incorrect, an error is outputted.

In this case, data is written through the write channel of the AXI4 interface and received through the read channel of the AXI4 interface.

3.2 Parameter Description

Table 3-1 Parameter Description of DDR3 Design Case

Parameter Name	Parameter Description
DDR_TYPE	DDR type, supports "DDR3", "DDR2", and "LPDDR"
DQ_WIDTH	DDR data width, supports "8" and "16"
SPEED	DDR speed, supports "600Mbps", "800Mbps", and "1066Mbps"
DDR_SIZE	DDR memory capacity, supports "512Mb", "1Gb", "2Gb", "4Gb", and "8Gb"

(UG020011, V1.2) 18 / 27

3.3 Signal Description

The table below describes the top-level signals for the HMEMC DDR3 design case, primarily including the interface signals between the FPGA and DDR memory.

Table 3-2 Description of HMEMC DDR3 Design Case Top-Level Signal

Signal Name	Direction	Signal Description		
pll_refclk_in	Input	FPGA external input reference clock, 50MHz		
resetn	Input	System reset signal, active-low		
clk_led	Output	System normal operation indicator signal, high and low-level changes		
pll_lock	Output	PLL LOCK signal, active-high		
ddr_init_done	Output	HMEMC initialization complete signal, active-high		
pad_loop_in	Input	DQS_GATE temperature drift compensation input signal, corresponding to lower 8 bits of DQS		
pad_loop_in_h	Input	DQS_GATE temperature drift compensation input signal, corresponding to upper 8 bits of DQS		
pad_rstn_ch0	Output	Reset signal of DDR memory		
pad_ddr_clk_w	Output	P side of DDR memory		
pad_ddr_clkn_w	Output	N side of DDR memory		
pad_csn_ch0	Output	DDR memory chip selection signal, active-low		
pad_addr_ch0[15:0]	Output	DDR memory address		
pad_dq_ch0[15:0]	Input/Output	DDR memory data		
pad_dqs_ch0[1:0]	Input/Output	P side of DDR memory data strobe signal		
pad_dqsn_ch0[1:0]	Input/Output	N side of DDR memory data strobe signal		
pad_dm_rdqs_ch0[1:0]	Output	Data mask signal, active-high		
pad_cke_ch0	Output	DDR memory clock enable signal, active-high		
pad_odt_ch0	Output	DDR memory on-die termination enable signal, high to enable on-die termination		
pad_rasn_ch0	Output	Row address valid signal, active-low		
pad_casn_ch0	Output	Column address valid signal, active-low		
pad_wen_ch0	Output	DDR memory write enable signal, active-low		
pad_ba_ch0[2:0]	Output	DDR memory bank address		
pad_loop_out	Output	DQS_GATE temperature drift compensation output signal, corresponding to lower 8 bits of DQS		
pad_loop_out_h	Output	DQS_GATE temperature drift compensation output signal, corresponding to upper 8 bits of DQS		
err_flag	Output	Data verification error indicator		
err_cnt[7:0]	Output	Data verification error statistics		

The user-side signal description of DDR3 master module is as follows (only AXI4 port0 is listed):

Table 3-3 User-Side Signal Description of DDR3 Master Module

Signal Name	Direction	Signal Description
pll_refclk_in	Input	FPGA external input reference clock, 50MHz
rstn	Input	System reset signal, active-low

(UG020011, V1.2) 19 / 27

Signal Name	Direction	Signal Description	
pll_lock	Output	PLL LOCK signal, active-high	
axi_clk_fast	Output	High-speed clock output to AXI4 bus, supporting up to 133MHz	
axi_clk_slow	_	Low-speed clock output to AXI4 bus	
	Output		
pclk	Output	Clock signal output to APB bus, 50MHz	
ddr_init_done	Output	HMEMC initialization complete signal, active-high	
ddrc_rst	Input	DDRC reset signal, active-high Mosly the good address respect to the PA from the corresponding part 0 to 2	
pa_rmask[2:0]	Input	Mask the read address request to the PA from the corresponding port. 0 to 2 corresponds to port0 to port2	
pa_wmask[2:0]	Input	Mask the write address request to the PA from the corresponding port. 0 to 2 corresponds to port0 to port2	
csysreq_ddrc	Input	DDRC low-power signal	
csysack_ddrc	Output	DDRC low-power request response signal	
cactive_ddrc	Output	DDRC low-power clock valid signal, a low level indicates clock removal	
RAQ_PUSH_0	Output	Write transaction to read address FIFO, pulse signal	
RAQ_SPLIT_0	Output	Read command execution in read address FIFO, pulse signal	
WAQ_PUSH_0	Output	Write transaction to write address FIFO, pulse signal	
WAQ_SPLIT_0	Output	Write command execution in write address FIFO, pulse signal	
AWQOS_0[3:0]	Input	Write channel priority indication, higher value indicates higher priority; the default value is 4'b0000, QoS not implemented	
ARQOS_0[3:0]	Input	Read channel priority indication, higher value indicates higher priority; the default value is 4'b0000, QoS not implemented	
CSYSREQ_0	Input	Request to exit AXI low-power mode, active-high	
CSYSACK_0	Output	Response to exit AXI low-power mode, active-high	
CACTIVE_0	Output	Peripheral device clock request, active-high	
ARPOISON_0	Input	AXI read poison, active-high, indicating the read priority is the highest	
ARLOCK_0	Input	Not supported	
AWPOISON_0	Input	AXI write poison, active-high, indicating the write priority is the highest	
AWLOCK_0	Input	Not supported	
ACLK_0	Input	Input clock signal	
ARESET_0	Input	Reset signal for AXI4 bus interface, active-high	
AWID_0 [7:0]	Input	Write address ID	
AWADDR_0 [31:0]	Input	Write address	
AWLEN_0[7:0]	Input	Write burst length	
AWSIZE_0 [2:0]	Input	Write burst size	
AWBURST_0 [1:0]	Input	Write burst type, does not support fixed burst type	
AWVALID_0	Input	Write address valid, active-high	
AWREADY_0	Output	Write address ready signal, active-high	
AWURGENT_0	Input	Once enabled, this port has the highest priority. If the PCFGW_n.wr_port_urgent_en register is enabled, the arbitrator PA immediately enters write command arbitration. When the corresponding port and address queue requests are empty, PA will ignore this signal	
WDATA_0[127:0]	Input	Write data signal	
WSTRB_0[15:0]	Input	Write data strobe signaling, active-high	

(UG020011, V1.2) 20 / 27

Signal Name	Direction	Signal Description	
WLAST_0	Input	Write the signal indicating the last data, active-high	
WVALID_0	Input	Write valid signal, active-high	
WREADY_0	Output	Write ready signal, active-high	
BID_0[7:0]	Output	Write response ID	
BRESP_0[1:0]	Output	Write response, indicating the status of the write transaction. Possible responses: OKAY, EXOKAY, SLVERR, and DECERR	
BVALID_0	Output	Write response valid, active-high	
BREADY_0	Input	Write response ready, active-high	
ARID_0[7:0]	Input	Read address ID	
ARADDR_0[31:0]	Input	Read address	
ARLEN_0[7:0]	Input	Read burst length	
ARSIZE_0[2:0]	Input	Read burst size	
ARBURST_0[1:0]	Input	Read burst type	
ARLOCK_0	Input	Lock type In AXI4: 0 represents normal access, 1 represents exclusive access. For exclusive access, please refer to the relevant description in the AXI4 protocol	
ARVALID_0	Input	Read address valid, active-high	
ARREADY_0	Output	Read address ready, active-high	
ARURGENT_0	Input	Once enabled, this port has the highest priority. If the PCFGR_n.rd_port_urgent_en register is enabled, the arbitrator PA immediately enters read command arbitration. PA will ignore this signal when the corresponding port and address queue requests are empty	
RID_0[7:0]	Output	Read ID	
RDATA_0[127:0]	Output	Read data	
RRESP_0[1:0]	Output	Read response	
RLAST_0	Output	The last data in a read transaction, active-high	
RVALID_0	Input	Read valid, active-high	
RREADY_0	Output	Read ready, active-high	
PRESET	Input	APB reset signal, active-high	
PADDR[11:0]	Input	APB address signal	
PWDATA[31:0]	Input	APB write data signal	
PWRITE	Input	APB read/write direction, high level for write operation	
PSEL	Input	APB selection signal, active-high	
PENABLE	Input	APB enable signal, active-high	
PREADY	Output	APB ready signal, active-high	
PRDATA [31:0]	Output	APB read data signal	
PSLVERR	Output	APB error signal, active-high	

3.4 Simulation Description

The HMEMC simulation model is encrypted, and the related simulation files are located in the directories models im 10.2c and vcs2014.03 under the path $\arch\vendor\pango\verilog\simulation$;

(UG020011, V1.2) 21 / 27

users should add the simulation library according to this path during simulation.

PDS supports the following simulation tools:

Modelsim version 10 and above

Debussy version 5.4 and above

To emulate this case, first, navigate to the "\scripts" directory, right-click in an empty area of the folder while holding down the shift key, enter "source_prj" in the command box that appears, press "Enter", then type "sim.bat demo_test FSDB_DUMP_ON", press "Enter" again to start the functional simulation. Users can also observe the waveforms in Debussy.

3.5 Description of the Resources Used

Table 3-4 DDR3 Case Resource List

Resource Type	Resource usage in x16 mode
НМЕМС	1, 50%
IO	70, 38%
LUT	1044, 6%
PLL	1, 17%

(UG020011, V1.2) 22 / 27

Chapter 4 PCB Design Description

There are two HMEMCs inside the Logos Family FPGA chips (one on the left and one on the right). If using the hard core on the right, in the connections between the DDR memory and the FPGA, only the connections of the DQ pins can be swapped within their respective groups, while the other pins must correspond strictly according to Table 4-1. (Required)

After routing DQSU_GATE_OUT outside the chip, it connects to DQSU_GATE_IN, and the routing length should be approximately equal to the sum of the CK trace length and the DQS trace length. DQSL_GATE_OUT and DQSL_GATE_IN should be treated similarly. (Not required, can be used without connection)

The trace length of CK should be slightly greater than that of DQS to ensure that the time difference between the arrival of the CK and DQS signals at the DDR memory is within one clock cycle. For example, if the DDR rate is 800Mbps, then the time difference should not exceed 2.5ns. If the PCB trace delay is 152mm/ns, then the CK trace length must not exceed 380mm, longer than the length of DQS. (Required)

Add pull-down resistors to the FPGA pins DQSU_P and DQSL_P, and pull-up resistors to the FPGA pins DQSU_N and DQSL_N, with resistance values between 500-1000ohms. The voltage applied to the pull-up resistors should match the voltage of the DDR memory, for example, 1.5V for DDR3. (Not required, used to improve signal quality).

The table below provides the mapping between FPGA pins and DDR memory signals.

Table 4-1 Mapping of FPGA Pins to DDR Memory Signals

FPGA Pin Number	Pin Description	DDR Memory Signal
E2	DIFFIO_L1_10_N/CLK3_L1/DIFFCLK1_L1_N/PLL3_CLKIN1	L_A14
E1	DIFFIO_L1_10_P/CLK2_L1/DIFFCLK1_L1_P/PLL3_CLKIN0	L_A15
G3	DIFFIO_L1_11_N/PLL3_CLKIN3	L_A12
G4	DIFFIO_L1_11_P/PLL3_CLKIN2	L_A13
F1	DIFFIO_L1_12_P/	L_A11
Н6	DIFFIO_L1_13_N/	L_A10
G2	DIFFIO_L1_14_N/	L_RESET_N
G1	DIFFIO_L1_14_P/	L_A9
Н3	DIFFIO_L1_15_N/	L_CKE
H4	DIFFIO_L1_15_P/	L_A8
H2	DIFFIO_L1_16_N/	L_A6
H1	DIFFIO_L1_16_P/	L_A7

(UG020011, V1.2) 23 / 27

Engle			
FPGA Pin Number	Pin Description	DDR Memory Signal	
J4	DIFFIO_L1_17_N/	L_A4	
Ј3	DIFFIO_L1_17_P/	L_A5	
J2	DIFFIO_L1_18_N/	L_A2	
J1	DIFFIO_L1_18_P/	L_A3	
K7	DIFFIO_L1_19_N/	L_A0	
J7	DIFFIO_L1_19_P/	L_A1	
L3	DIFFIO_L2_0_N/	L_DQSU_GATE_IN	
K3	DIFFIO_L2_0_P/	L_DQSU_GATE_OUT	
K2	DIFFIO_L2_1_N/	L_DQ15	
K1	DIFFIO_L2_1_P/	L_DMU	
R2	DIFFIO_L2_10_N/CLK3_L2/DIFFCLK1_L2_N/PLL5_CLKIN1	L_ODT	
R1	DIFFIO_L2_10_P/CLK2_L2/DIFFCLK1_L2_P/PLL5_CLKIN0	L_WE_N	
N4	DIFFIO_L2_11_N/PLL5_CLKIN3	L_CK_N	
N3	DIFFIO_L2_11_P/PLL5_CLKIN2	L_CK	
T7	DIFFIO_L2_13_N/	L_DQ7	
T4	DIFFIO_L2_14_N/	L_DQ5	
R4	DIFFIO_L2_14_P/	L_DQ6	
P6	DIFFIO_L2_15_N/	L_DQSL_N	
P5	DIFFIO_L2_15_P/	L_DQSL	
T5	DIFFIO_L2_16_N/	L_DQ3	
R5	DIFFIO_L2_16_P/	L_DQ4	
Т8	DIFFIO_L2_17_N/	L_DQ1	
R8	DIFFIO_L2_17_P/	L_DQ2	
T6	DIFFIO_L2_18_N/	L_DML	
R6	DIFFIO_L2_18_P/	L_DQ0	
M5	DIFFIO_L2_19_N/	L_DQSL_GATE_IN	
N5	DIFFIO_L2_19_P/	L_DQSL_GATE_OUT	
K6	DIFFIO_L2_2_N/	L_DQ13	
J6	DIFFIO_L2_2_P/	L_DQ14	
L2	DIFFIO_L2_3_N/	L_DQ11	
L1	DIFFIO_L2_3_P/	L_DQ12	
M2	DIFFIO_L2_4_N/	L_DQSU_N	
M1	DIFFIO_L2_4_P/	L_DQSU	
L4	DIFFIO_L2_5_N/	L_DQ9	
K4	DIFFIO_L2_5_P/	L_DQ10	
K5	DIFFIO_L2_6_P/	L_DQ8	
N2	DIFFIO_L2_7_N/	L_RAS_N	
N1	DIFFIO_L2_7_P/	L_CS_N	
T3	DIFFIO_L2_8_N/PLL4_CLKOUT_N	L_BA2	

(UG020011, V1.2) 24 / 27

FPGA Pin Number	Pin Description	DDR Memory Signal
R3	DIFFIO_L2_8_P/PLL4_CLKOUT_P	L_CAS_N
P2	DIFFIO_L2_9_N/CLK1_L2/DIFFCLK0_L2_N/PLL4_CLKFB_N/ XTALB_L2	L_BA0
P1	DIFFIO_L2_9_P/CLK0_L2/DIFFCLK0_L2_P/ PLL4_CLKFB_P/XTALA_L2	L_BA1
D15	DIFFIO_R1_10_N/CLK3_R1/DIFFCLK1_R1_N/ PLL3_CLKFB_N	R_A14
D16	DIFFIO_R1_10_P/CLK2_R1/DIFFCLK1_R1_P/ PLL3_CLKFB_P	R_A15
G13	DIFFIO_R1_11_N/PLL3_CLKOUT_N	R_A12
F13	DIFFIO_R1_11_P/PLL3_CLKOUT_P	R_A13
E16	DIFFIO_R1_12_P/	R_A11
H14	DIFFIO_R1_13_N/	R_A10
F15	DIFFIO_R1_14_N/	R_RESET_N
F16	DIFFIO_R1_14_P/	R_A9
J13	DIFFIO_R1_15_N/	R_CKE
J14	DIFFIO_R1_15_P/	R_A8
G15	DIFFIO_R1_16_N/	R_A6
G16	DIFFIO_R1_16_P/	R_A7
J10	DIFFIO_R1_17_N/	R_A4
H10	DIFFIO_R1_17_P/	R_A5
H15	DIFFIO_R1_18_N/	R_A2
H16	DIFFIO_R1_18_P/	R_A3
J11	DIFFIO_R1_19_N/	R_A0
J12	DIFFIO_R1_19_P/	R_A1
K13	DIFFIO_R2_0_N/	R_DQSU_GATE_IN
K14	DIFFIO_R2_0_P/	R_DQSU_GATE_OUT
J15	DIFFIO_R2_1_N/	R_DQ15
J16	DIFFIO_R2_1_P/	R_DMU
P15	DIFFIO_R2_10_N/CLK3_R2/DIFFCLK1_R2_N/PLL5_CLKFB_N	R_ODT
P16	DIFFIO_R2_10_P/CLK2_R2/DIFFCLK1_R2_P/PLL5_CLKFB_P	R_WE_N
R16	DIFFIO_R2_11_N/PLL5_CLKOUT_N	R_CK_N
R15	DIFFIO_R2_11_P/PLL5_CLKOUT_P	R_CK
T11	DIFFIO_R2_13_N/	R_DQ7
T14	DIFFIO_R2_14_N/	R_DQ5
R14	DIFFIO_R2_14_P/	R_DQ6
T10	DIFFIO_R2_15_N/	R_DQSL_N
R10	DIFFIO_R2_15_P/	R_DQSL
T13	DIFFIO_R2_16_N/	R_DQ3
R13	DIFFIO_R2_16_P/	R_DQ4
Т9	DIFFIO_R2_17_N/	R_DQ1

(UG020011, V1.2) 25 / 27

FPGA Pin Number	Pin Description	DDR Memory Signal
R9	DIFFIO_R2_17_P/	R_DQ2
T12	DIFFIO_R2_18_N/	R_DML
R12	DIFFIO_R2_18_P/	R_DQ0
N11	DIFFIO_R2_19_N/	R_DQSL_GATE_IN
N12	DIFFIO_R2_19_P/	R_DQSL_GATE_OUT
K12	DIFFIO_R2_2_N/	R_DQ13
K11	DIFFIO_R2_2_P/	R_DQ14
K15	DIFFIO_R2_3_N/	R_DQ11
K16	DIFFIO_R2_3_P/	R_DQ12
L16	DIFFIO_R2_4_N/	R_DQSU_N
L15	DIFFIO_R2_4_P/	R_DQSU
L12	DIFFIO_R2_5_N/	R_DQ9
L11	DIFFIO_R2_5_P/	R_DQ10
L14	DIFFIO_R2_6_P/	R_DQ8
M15	DIFFIO_R2_7_N/	R_RAS_N
M16	DIFFIO_R2_7_P/	R_CS_N
P13	DIFFIO_R2_8_N/PLL4_CLKIN1	R_BA2
N13	DIFFIO_R2_8_P/PLL4_CLKIN0	R_CAS_N
N15	DIFFIO_R2_9_N/CLK1_R2/DIFFCLK0_R2_N/PLL4_CLKIN3/ XTALB_R2	R_BA0
N16	DIFFIO_R2_9_P/CLK0_R2/DIFFCLK0_R2_P/PLL4_CLKIN2/ XTALA_R2	R_BA1

(UG020011, V1.2) 26 / 27

Disclaimer

Copyright Notice

This document is copyrighted by Shenzhen Pango Microsystems Co., Ltd., and all rights are reserved. Without prior written approval, no company or individual may disclose, reproduce, or otherwise make available any part of this document to any third party. Non-compliance will result in the Company initiating legal proceedings.

Disclaimer

- 1. This document only provides information in stages and may be updated at any time based on the actual situation of the products without further notice. The Company assumes no legal responsibility for any direct or indirect losses caused by improper use of this document.
- 2. This document is provided "as is" without any warranties, including but not limited to warranties of merchantability, fitness for a particular purpose, non-infringement, or any other warranties mentioned in proposals, specifications, or samples. This document does not grant any explicit or implied intellectual property usage license, whether by estoppel or otherwise.
- 3. The Company reserves the right to modify any documents related to its series products at any time without prior notice.

(UG020011, V1.2) 27 / 27