CRF-Based Ingredient Extraction Project Report

1. Introduction

This project focuses on the identification and classification of entities such as **ingredients**, **quantities**, and **units** from unstructured recipe text using a **Conditional Random Field (CRF)** model. Named Entity Recognition (NER) in the culinary domain is crucial for building structured recipe datasets, which can further be used in food recommendation systems, nutritional calculators, and inventory planners.

2. Data Preparation

- Input Data: A dataset of recipe ingredient lines.
- Preprocessing: Each sentence was tokenized and processed using spaCy. Each token was tagged with its Part-of-Speech (POS), lemma, and dependency information.
- Labels: Annotated labels were provided per token as ingredient, quantity, or unit.

3. Feature Engineering

Two core functions were created:

3.1 word2features(sent, i)

This function extracts rich token-level features for each token at index i in a given sentence sent.

Features Extracted:

- Core Features:
 - o token, lemma, pos_tag, tag, dep, shape

- Boolean indicators: is_stop, is_digit, has_digit, has_alpha, hyphenated, slash_present, is_title, is_upper, is_punct
- Quantity and Unit Detection:
 - Uses unit_keywords, quantity_keywords, and regex quantity_pattern to compute:
 - is_quantity, is_unit, is_numeric, is_fraction, is_decimal
- Contextual Features:
 - Previous and next tokens with:
 - prev_token, prev_is_quantity, prev_is_digit, BOS
 - next_token, next_is_unit, next_is_ingredient, EOS

3.2 sent2features(sent)

Applies word2features to all tokens in a sentence.

- 4. Dataset Transformation
 - Features were extracted and stored in:
 - X_train_features and X_val_features
 - Labels were converted to:
 - y_train_labels and y_val_labels
 - Data was further flattened for analysis:
 - y_train_flat for label distribution

5. Class Weight Computation

To combat label imbalance, **inverse frequency-based class weights** were calculated:

weight_dict[label] = total_samples / count(label)

To avoid overfitting to the dominant class (ingredient), its weight was manually penalized.

6. Weighted Feature Extraction

A function extract_features_with_class_weights was defined:

- Applies features and appends class_weight to each token.
- Final structures:
 - o X_train_weighted_features, X_val_weighted_features
 - train_sample_weights, val_sample_weights

7. Model Training

CRF Model Configuration:

Value
'lbfgs'
0.5
1.0
100
True

CRF model trained on:

X_train_weighted_features

- o y_train_labels
- o train_sample_weights

8. Model Evaluation

8.1 On Training Data

• Classification Report

Training Set Evaluation

	precision	recall	f1-score	support
11	0 00	1 00	0 00	F 2 0 2
ingredient	0.99	1.00	0.99	5323
	1 00	0 00	0.00	0.00
quantity	1.00	0.98	0.99	980
	0.00	0.06	0 07	011
unit	0.99	0.96	0.97	811
2 6 6 11 15 2 6 17			0.99	7114
accuracy			0.99	/ 1 1 4
macro avg	0.99	0.98	0.99	7114
macro avg	0.99	0.90	0.99	7114
weighted avg	0.99	0.99	0.99	7114
weighted avg	0.55	0.77	0.55	/114

Confusion Matrix

8.2 On Validation Data

- Predictions: y_pred_val
- Classification Report & Confusion Matrix

quantity	0.99	0.99	0.99	411
unit	0.98	0.91	0.94	358
diff	0.30	0.51	0.51	330
accuracy			0.98	2876
macro avg	0.98	0.96	0.97	2876
weighted avg	0.98	0.98	0.98	2876

• Accuracy: We have good accuracy on validation dataset as can be seen above

9. Error Analysis

9.1 Flattened Error Data

- Labels and predictions were flattened.
- Contextual information (prev_token, next_token, class_weight) was added.
- error_data DataFrame created.

9.2 Insights from Misclassifications

Sample Errors:

Token	True Label	Predicte d	Notes
few	ingredient	quantity	Misinterpreted due to keyword overlap.
cloves	ingredient	unit	Confusion between similar vocabulary.
Spoon	unit	ingredient	Case-sensitive error.
gram	unit	ingredient	Missed quantity context.

10. Key Learnings & Recommendations

Issues Identified:

- Label-token misalignment may be present.
- High class imbalance.
- Feature representation may be insufficient or inconsistent.

X Recommendations:

• Re-check label alignment.

- Normalize casing and token formats.
- Augment training data with more samples for each class.
- Use additional context-aware models (e.g., BiLSTM-CRF or Transformer-based approaches).