Raising the Bar: Striving to Improve Initial Therapy of PTCL

Ranjana Advani, MD

Stanford Cancer Institute
Stanford University School of Medicine
Stanford, California, United States

No Improvement in Outcome in A Decade of Patient Treatment 1992-2003

2-Year Relative Survival

Outcomes of PTCL in Modern Era Swedish Lymphoma Registry: Patients Treatment 2000-2009

PFS and OS of PTCL Compared to Matched Diffuse Large B-Cell Lymphoma (DLBCL) Patients in the Modern Era (US study)

Patient treatment 2000-2011

Achieving a complete response (CR) to front-line therapy significant on multivariate analyses

Reasons for Poor Outcomes

- Diagnosis difficult
 - Needs expert pathology
- Treated like B-cell NHL
 - CHOP or anthracycline-based therapy
 - Multidrug resistance (MDR)
 - Doxorubicin and vincristine are substrates
- Outcome of patients who fail front-line therapy is poor
- Not one disease
 - Molecular studies show distinct biological entities

Front-Line Anthracycline-Based Therapy for PTCL Meta-Analysis: OS In Older Series

PTCL subgroup	Study, year	5-y	ear OS rate	95% C	I 5-	year OS ra	ate and 9	95% CI
AITL	Pautier et al., 1999 [24]		0.360	0.217 0.5	534	-[+	
	Savage et al., 2004 [32]		0.360	0.134 0.6	672			
	Sonnen et al., 2005 [36]		0.280	0.155 0.4	451	-[-	-	
	Vose et al., 2008 [1]		0.320	0.264 0.3	381	1 0	1	
	AITL summary estimate	Fixed	0.321	0.272 0.3	375	♦	1	
		Random	0.321	0.272 0.3	375	│ ◆	1	
ALCL	Gisselbrecht et al., 1998 [4]		0.640	0.512 0.7	751	1	-[-	
	Savage et al., 2004 [32]		0.430	0.275 0.6	600	-	╟╋	
	Sonnen et al., 2005 [36]		0.610	0.394 0.7	790	1	╼╂╌	•
	ALCL summary estimate	Fixed	0.573	0.479 0.6	662	1		
Non-ALCL PTCL	Gisselbrecht et al., 1998 [4]		0.350	0.291 0.4	414	1 0	-	
	Rudiger et al., 2002 [29]		0.260	0.182 0.3	357	 -[]-	1	
PTCL-NOS	Savage et al., 2004 [32]		0.350	0.269 0.4	440	I -□	-	
	Sonnen et al., 2005 [36]		0.450	0.338 0.5	567	-	-	
	Vose et al., 2008 [1]		0.320	0.273 0.3	371	1 0		
PTCL combined	Karakas et al., 1996 [13]		0.480	0.303 0.6	663	-	-[]	
	Kim et al., 2002 [27]		0.526	0.415 0.6	633	1	- []-	
	Reiser et al., 2002 [28]		0.550	0.429 0.6	665		- -	
						0%	50%	100%

Poor Outcome (Second PFS and OS) After Relapse or Progression of PTCL

Raising the Bar: Striving to Improve Initial Therapy of PTCL

- Adding etoposide to anthracycline-based regimen
- Adding rationally targeted drugs to CHOP
- Consideration of transplant as consolidation
- Alternative to CHOP (nonanthracyclinebased regimen)
- Adding novel agents to front-line setting

Raising the Bar: Striving to Improve Initial Therapy of PTCL

Adding etoposide to anthracycline-based regimen

Event-Free Survival (EFS) of Younger Patients With PTCL: GHGNHLSG

18-60 years of age, lactate dehydrogenase (LDH) ≤ upper normal value (UNV)

Schmitz N, et al. *Blood*. 2010;116(18):3418-3425.

Phase II Study of Dose-Adjusted EPOCH in PTCL Patient Treatment 1999-2009

Progression-Free Survival

Overall Survival

Raising the Bar: Striving to Improve Initial Therapy of PTCL

Adding rationally targeted drugs to CHOP or anthracycline-based therapy

Genes Overexpressed in PTCL

- Vascular biology
- Protein ubiquination
- MDR related
- Regulation of transcription
- Chemo taxis
- Immune response

Phase II Study of Bevacizumab and CHOP (A-CHOP) for PTCL ECOG 2404

Phase II Study of Bevacizumab and CHOP (A-CHOP) ECOG 2404

Advani AS, et al. Br J Haematol. 2011;153(4):504-507; Ganjoo K, et al Leuk Lymphoma. 2014;55(4):768-772.

GELA-LNH05-1T Delmer et al ASCO 2009 # 8554

CR 49% (similar to results with ACVBP alone), more toxicity

Delmer A, et al. J Clin Oncol. 2009;27(15s): Abstract 8554.

Bortezomib+CHOP as First-Line for Stage 3-4 PTCL

ORR 76%, CR 65%, 3-year PFS 37%, OS 47%

Raising the Bar: Striving to Improve Initial Therapy of PTCL

Consideration of transplant as consolidation

What Are the Data Supporting ASCT for PTCL?

No randomized clinical trial comparing chemotherapy vs ASCT

- Retrospective data from prospective randomized trials for aggressive lymphomas
 - GELA pooled analysis with matched controls no advantage to ASCT¹
- Prospective data
 - Variable front-line chemotherapy
 - Variable preparative regimen for ASCT
 - Variable inclusion criteria

ASCT in PTCL: Upfront Treatment Prospective PTCL Restricted Trials

Citation	Patients , n	Age, y	Regimen	Tx rate	CR/PR, %	OS, %	FU
Corradini <i>Leukemia</i> 2006	62 Incl ALK + ALCL	43	1. APO → DHAP → HD Mito./Mel 2. MACOP-B → HD AraC/Mito → BEAM	74	72	34 Alk- ALCL 21	12 y
Rodriguez Eur J Hematol 2007	26	44	MegaCHOP/IFE → BEAM	73	81	73	3 y
D'Amore JCO 2012	160	55	CHOEP-14 → BEAM/BEAC	70	82	50	5 y
Mercadal Ann Onc 2008	41	47	HighCHOP/ ESHAP altern. → BEAM/BEAC	41	59	39	4 y
Reimer JCO 2009	83	47	CHOP → DexaBEAM/ESHAP → HD Cy + TBI	66	71	48	3y
Ahn ~ 25%	%-60% d	o n	ot get to A	SCT	, OS	~ 50%	Зу
			+Etop				

ASCT in PTCL Summary of Prospective Trials

- ~25%-60% do not get to ASCT due to disease progression during primary therapy
- ~20% relapse within the first year after ASCT
- Additional ~10% relapse by 2 years post ASCT
- Does ASCT as consolidation improve results or just select for healthier people with chemosensitive disease?
 - Factors (high-risk disease) predict for poor outcome after chemotherapy and ASCT

Alemtuzumab (A) + Chemotherapy First-Line Treatment of PTCL

Citation	n	PTCL	A dose, mg	Chemo	ORR/CR	% PFS/EFS	% Toxicity
Gallamani <i>Blood</i> 2007	24	14	30	CHOP-28	75/71 (50% PTCL)	48 (2 yr)	17% G4 infection
Kim Cancer Chemother Pharmacol 2007	20		30	СНОР	80/65	43 (1 yr)	10% death infection
Kluin- Nelemans <i>Annals of</i> Oncol 2011	20	10	30x3	CHOP-14	90/60	27 (2 yr)	15% EBV=LPD2 0% TRM

Phase II Study of Intensified Chemoimmunotherapy With or Without SCT in Newly Diagnosed Patients With PTCL

*these 3 patients underwent transplantation after 1 cycle HyperCHidam; **physician decision

Corradini P, et al. *Leukemia*. 2014;28(9):1885-1891.

Results Arm A: Estimated 4-Year Outcomes Median Follow-Up 40 Months, 62% Received SCT

No diff auto vs allo 4-y OS 92% vs 69% P = 0.8 4-y PFS 70% vs 69% P = 0.9

CMV 14%

Results Arm B: Estimated 4-Year Outcomes Median Follow-Up 48 Months Stopped Early Due to Poor OS

Conclusions:

- Alemtuzumab cannot be safely used with SCT
- Allo transplant not recommended outside trial
- Alemtuzumab low dose also toxic

Ongoing Phase III Trials

No trial addressing chemo versus transplant

Raising the Bar: Striving to Improve Initial Therapy of PTCL

Alternative to CHOP (nonanthracycline based regimen)

S0350 Regimen (PEGS): Phase II Trial in PTCL Cisplatinum, Etoposide, Gemcitabine Plus Solumedrol

Rationale: Use non MDR substrates due to high P glycoprotein expression in PTCL (non adriamycin- or vincristine-based regimen)

- PEGS schema: administered q 21 days
 - Cisplatinum: 25 mg/m² IV d1-4
 - Etoposide: 40 mg/m² IV d1-4
 - Gemcitabine: 1000 mg/m² IV d1
 - Solumedrol: 250 mg IV d1-4

Objectives: ORR, 2-y PFS, OS, tolerability

Molecular studies (GEP), P glycoprotein assessment

Accrual 6/55 over 2 years

Amended to include relapsed disease

Response

- ORR [CR + PR] = 39% [13/33], average Rx 5.5 cycles
- 2-year OS = 32% (95% CI: 8%-56%)
- Median OS = 17 mo (95% CI: 15 mo to 20 mo)

Response	N (%)	Histologic Subtype
CR	6 CONFIRMED (18%)	PTCL (NOS) = 4 ALCL (ALK-) = 2
	2 UNCONFIRMED (6%) TOTAL = 8 (24%)	PTCL (NOS) = 2
PR	5 (15%)	PTCL (NOS) = 3 ALCL (ALK-) = 1 AITL = 1
STABLE	4 (12%)	

Raising the Bar: Striving to Improve Initial Therapy of PTCL

Adding novel agents to front-line setting

Mechanisms of Action of New Drugs in PTCL

CEOP-P As Front-Line Therapy for Patients With Stage II- IV Peripheral T-Cell NHL

Cycle A

Cyclophosphamide 750 mg/m² d1 IV Etoposide 100 mg/m² d1-3[#] IV Vincristine 1.4 mg/m² (capped at 2 mg) d1 IV Prednisone 100 mg PO d1-5

*Pegfilgrastim 6 mg d4 wk 1 of each course SQ

#Etoposide can be given PO on d2 and d3 at double dose of 100 mg/m² BID

Cycle B

Pralatrexate 30 mg/m² d1 IV q wk x3

*Filgrastim (G-SCF) 300 mcg d30 of each course SQ (optional, per institutional standards)

SCHEMA NOTE: Patients achieving SD after 4 courses (1, 2, 3, 4) will receive 2 additional courses (5, 6) and then be reevaluated for response post course 6. *Pegfilgrastim/filgrastim are suggested/optional per MD choice.

**HDT/SCR, high-dose therapy/stem-cell rescue (see section 5.7)

CEOP-P: Results

- CR rate (50%) at end of therapy suggests the regimen useful per study design
 - Primary statistical aim of improving CR from 40%-60% not met
- Estimated 1- and-2 year PFS are 50% and 34% respectively.
- -Age <60 y, a low IPI score, achieving a CR, and consolidation with ASCT were statistically significant for better PFS
- Estimated 1- and 2-year OS is 64%
- Defining optimal front-line therapy in PTCL continues to be a challenge and an unmet need

Brentuximab Vedotin Administered Concurrently or Sequentially With Multiagent Chemotherapy As Front-Line Treatment of ALCL and Other CD30-Positive Mature T-Cell and NK-Cell Lymphomas

Med age 56, 69% stage 3-4, 73% ALCL

Response After Sequential or Combination Treatment

			Combination					
	Seque AL n =	CL		CL : 19	_	ALCL = 7		tal : 26
Response	No.	%	No.	%	No.	%	No.	%
Objective response	11	85	19	100	7	100	26	100
Complete remission	8	62	16	84	7	100	23	88
Partial remission	3	23	3	16	0		3	12
Stable disease	0		0		0		0	
Progressive disease	2	15	0		0		0	

Response assessment per investigator at cycle 8 (sequential treatment), cycle 6 (combination treatment), or at last available response assessment for patients who discontinued treatment before these timepoints.

Fanale MA, et al. *J Clin Oncol.* 2014;32(28):3137-3143.

Outcomes

Sequential Treatment

Combination Treatment

Echelon-2 Trial PTCL-CD30+ (≥ 10%) if ALK+ ALCL IPI ≥2

aCT and PET scans required

bAdditional CT scans every 6 months thereafter until progression per investigator, death, or analysis of the primary endpoint, whichever comes first

^cFor patients with documented progression, continued follow-up for survival every 6 months until death or study closure, whichever comes first

Other Ongoing Phase III Trials Front-Line Therapy of PTCL

Study	Population	Endpoint	Setting
Immunotherapy			
Alemtuzumab + chemo vs chemo	Newly diagnosed PTCL	EFS	Induction
Antimetabolite			
Pralatrexate maintenance vs observation	Newly diagnosed PTCL	os	Maintenance: Closed due to poor accrual
Histone deacetylase inhibitor			
Romidepsin + CHOP vs CHOP	Newly diagnosed PTCL	PFS	Induction

Raising the Bar: Striving to Improve Initial Therapy of PTCL

 Significant advances in biology have led to well defined molecular subsets

Putative Cellular Derivation and Known Oncogenic Pathways for the Main Nodal and Selected PTCL Entities

Potential Molecular Targets for Future Therapeutic Interventions in PTCL

Target	Function	Rationale	Agent	References
BCL2	Antiapoptotic	Overexpressed in PTCL; correlates with poor prognosis	ABT-199	Rassidakis et al, Souers et al
IDH2	Metabolic enzyme	Mutated in AITL and PTCL-NOS; produced 2HG, which blocks chromatin-modifying enzymes	Mutant IDH2 inhibitor	Cairns et al, Wang et al
BRD4	Epigenetic "reader"	BRD4 inhibition kills AML with mutant IDH2 (preclinical)	JQ1; iBET	Chen et al
FYN	Kinase	Activating mutations in AITL and PTCL-NOS	Dasatinib	Couronne et al
JAK2/STAT3	Kinase	Pathway activation in AITL and PTCL-NOS	Ruxolitinib	Maurer et al
JAK3	Kinase	Activating mutations in NKTCL	Tofacitinib	Koo et al
Pl3Kδ and γ	Kinase	Promote growth/survival in PTCL	IPI-145	Horwitz et al
MTOR	Kinase	Promotes growth/survival in PTCL	Everolimus	Kim et al
PDGFRα	Kinase	Pathway activation in PTCL	Imatinib	Piccaluga et al

Intlekofer AM, et al. Int J Hematol. 2014;99(3):249-262.

Q1: What Would You Recommend As Initial Therapy?

- 1) CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone)
- 2) CHOEP (cyclophosphamide, doxorubicin, vincristine, etoposide, prednisone)
- 3) Hyper-CVAD (cyclophosphamide, vincristine, doxorubicin, prednisone)
- 4) Brentuximab vedotin
- 5) Gemcitabine + cisplatin-based regimen

Q2: What Would You Do Next?

- 1) Observation without further therapy
- 2) Consolidate with high-dose therapy (HDT) and autologous stem cell transplant (ASCT)
- 3) Type siblings for possible allogeneic transplant (allo-SCT)
- 4) Start maintenance brentuximab vedotin

Take-Home Message

- Standard CHOP; does not work well for most subtypes
- Clinical trial should always be first choice
- Off trial: etoposide-based regimen for ALCL or pts less than age 60 y for other histologies
- If CR (PTCL-NOS, ALK ALCL, AILT), consider consolidation with SCT
- Improved understanding of biology and has offered some clarity to the broader term 'PTCL'
 - Specific entities defined
 - Molecular-based prognostic markers identified
- Potential new targets identified that provide a rationale for new approaches to therapy