Procesarea semnalelor Transformata Discretă Cosinus

Paul Irofti

Universitatea din București
Facultatea de Matematică și Informatică
Departmentul de Informatică
Email: paul.irofti@fmi.unibuc.ro

Discretizare și eșantionare

Continuu:

$$x(t) = \sin(2\pi f_0 t) \tag{1}$$

Discret:

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s)$$
 (2)

unde

- ▶ f₀ frecvenţa (Hz) măsoară numărul de oscilaţii într-o secundă
- \triangleright n eşantionul, indexul în şirul de timpi $0, 1, 2 \dots$
- t_s perioada de eșantionare; constantă (ex. la fiecare secundă)
- nt_s orizontul de timp (s)
- ► f₀nt_s numărul de oscilații măsurat
- \triangleright $2\pi f_0 nt$ unghiul măsurat în radiani (vezi note de curs)
- ► f_s frecvența de eșantionare (Hz)
- $ightharpoonup f_0 + kf_s$ frecvenţa de aliere, $\forall k \in \mathbb{N}$

Transformata Fourier Discretă (DFT)

Definiție

Transformata Fourier a unui semnal discret (aperiodic):

$$X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi mn/N}$$

$$= \sum_{n=0}^{N-1} x(n) \left[\cos(2\pi mn/N) - j\sin(2\pi mn/N)\right]$$
(3)

- \blacktriangleright X(m) componenta m DFT (ex. X(0), X(1), X(2), ...)
- ▶ m indicele componentei DFT în domeniul frecvenței (m = 0, 1, ..., N 1)
- \rightarrow x(n) eșantioanele în timp (ex. x(0), x(1), x(2), ...)
- ▶ n indicele eşantioanelor în domeniul timpului (n = 0, 1, ..., N 1)
- N − numărul eșantioanelor în timp la intrare și numărul componentelor în frecventă la iesire

Generalizare DFT

DFT aparține unei clase generale de transformări ortogonale de lungime finită de tipul:

$$X(m) = \sum_{n=0}^{N-1} x(n) \Phi_m^H(n)$$
 (4)

$$x(n) = \frac{1}{N} \sum_{n=0}^{N-1} X(m) \Phi_m^H(n)$$
 (5)

unde secvențele, vectorii, $\Phi_m(n)$ formează o bază ortogonală:

$$\Phi_{i}\Phi_{j}^{H} = \frac{1}{N} \sum_{n=0}^{N-1} \Phi_{i}(n)\Phi_{j}^{H}(n) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$
 (6)

Unde H este operatorul de conjugare și transpunere.

Baza ortogonală DFT

În cazul DFT baza ortogonală este

$$W_N = e^{-j2\pi/N} \tag{7}$$

Putând rescrise DFT și IDFT:

$$X(m) = \sum_{n=0}^{N-1} x(n) W_N^{mn}$$
 (8)

$$x(n) = \frac{1}{N} \sum_{n=0}^{N-1} X(m) W_N^{-mn}$$
 (9)

Notația diferă un pic față de formularea generală, dar este cea întâlnită în literatură.

Baza ortogonală reală $(arPhi_m \in \mathbb{R})$

În cazul DFT baza ortogonală este alcătuită din numere complexe:

$$W_N = e^{-j2\pi/N} = \cos(2\pi/N) + j\sin(2\pi/N)$$
 (10)

dar multe semnale au doar componente reale și sunt prelucrate pe calculatoare numerice ce suportă nativ numere reale.

ightarrow nevoia unei baze reale a.î. când $x(n) \in \mathbb{R}$ să fie și $X(m) \in \mathbb{R}$

Apar mai multe transformate: Haar, Hadamard, DCT.

Cea mai apropiată de DFT este DCT cu multiple aplicații în practică (ex. JPEG, MP3 etc.)

Transformata cosinus discretă (DCT)

DCT folosește cosinus pentru a forma baza vectorială Φ_m .

Fie x(n) un semnal cu N=4 eșantioane

Cosinus este periodică și pară, $\cos(x) = \cos(-x)$, deci extensia unui semnal x(n) în afara intervalului n = 0: N - 1 trebuie să fie periodică și pară.

Există mai multe moduri de a extinde un semnal ceea ce duce la mai multe tipuri de transformată DCT.

DCT-I (Type-1)

Extensia la un semnal $\tilde{x}_1(n)$ periodic și par de 17 eșantioane.

Perioadă: 2N - 2 = 6 și simetrie pară la $n = \{0, N - 1\}$

DCT-II (Type-2)

Perioadă: 2N = 8 și simetrie pară la $n = \{-\frac{1}{2}, \frac{7}{2}\}$

DCT-III (Type-3)

Perioadă: 4N = 16 și simetrie pară la $n = \{0, 8\}$

DCT-IV (Type-4)

Perioadă: 4N = 16 și simetrie pară la $n = \{-\frac{1}{2}, \frac{15}{2}\}$

Varintele DCT

Variantele sunt copii deplasate de N eșantioane $\pm x(n)$ și $\pm x(-n)$.

Calcul DCT-I

Secvența de perioadă 2N-2 este produsă prin extinderea semnalului original:

$$\tilde{x}_1(n) = x_{\alpha}(n \mod 2N - 2) + x_{\alpha}((-n) \mod 2N - 2)$$
 (11)

unde
$$x_{\alpha}(n) = \alpha(n)x(n)$$
 cu
$$\begin{cases} \frac{1}{2}, & n = \{0, N-1\}\\ 1, & n = \overline{1:N-2} \end{cases}.$$

Semnalul rezultat este identic cu originalul în intervalul 1:N-1 și este par cu puncte de simetrie la $n=\{0,N-1,2N-2,\cdots\}$

Calcul extindere DCT-I

$$\tilde{x}_{1}(0) = \frac{1}{2}x(0) + \frac{1}{2}x(-0) = x(0); \quad \tilde{x}_{1}(4) = x(4) + x(2) = x(2); \\
\tilde{x}_{1}(1) = x(1) + \underbrace{x(5)}_{-1 \text{ mod } 6} = x(1); \quad \tilde{x}_{1}(5) = x(5) + x(1) = x(1); \\
\tilde{x}_{1}(2) = x(2) + x(4) = x(2); \quad \tilde{x}_{1}(6) = \frac{1}{2}x(0) + \frac{1}{2}x(0) = x(0); \\
\tilde{x}_{1}(3) = \frac{1}{2}x(3) + \frac{1}{2}x(3) = x(3); \quad \tilde{x}_{1}(7) = x(1) + x(5) = x(1);$$

Transformata DCT-I

Simetrie pară periodică în punctele $n = \{0, N-1, 2N-2, \cdots\}$.

Definitie

Transformata DCT-I este definită de perechea:

$$X_1(m) = 2\sum_{n=0}^{N-1} \alpha(n)x(n)\cos\left(\frac{\pi mn}{N-1}\right)$$
 (12)

$$x_1(n) = \frac{1}{N-1} \sum_{m=0}^{N-1} \alpha(m) X_1(m) \cos\left(\frac{\pi m n}{N-1}\right)$$
 (13)

Transformata DCT-II

Relația de extindere a semnalului este dată de:

$$\tilde{x}_2(n) = x_\alpha(n \bmod 2N) + x_\alpha((-n-1) \bmod 2N) \tag{14}$$

Simetrie pară periodică în punctele $n = \{-\frac{1}{2}, N - \frac{1}{2}, 2N - \frac{1}{2}, \cdots\}$.

Definiție

Transformata DCT-II este definită de perechea:

$$X_2(m) = 2\sum_{n=0}^{N-1} x(n) \cos\left(\frac{\pi m(2n-1)}{2N}\right)$$
 (15)

$$x_2(n) = \frac{1}{N} \sum_{m=0}^{N-1} \beta(m) X_2(m) \cos\left(\frac{\pi m(2n+1)}{2N}\right)$$
 (16)

cu
$$\beta(0) = \frac{1}{2}$$
 și $\beta(m) = 1$ în rest.

Transformata DCT-II unitară

În multe aplicații avem nevoie de o transformată unitară (ce distribuie factorii de-a lungul vectorilor din bază).

Definitie

Transformata DCT-II unitară este definită de perechea:

$$X_2(m) = \sqrt{\frac{2}{N}}\tilde{\beta}(m)\sum_{n=0}^{N-1} x(n)\cos\left(\frac{\pi m(2n+1)}{2N}\right)$$
 (17)

$$x_2(n) = \sqrt{\frac{2}{N}} \sum_{m=0}^{N-1} \tilde{\beta}(m) X_2(m) \cos\left(\frac{\pi m(2n+1)}{2N}\right)$$
 (18)

$$cu\ \tilde{\beta}(0) = \frac{1}{\sqrt{2}}\ \text{si}\ \beta(m) = 1\ \text{in rest.}$$

Unitar:
$$\sum_{n=0}^{N-1} x(n)^2 = \sum_{m=0}^{N-1} X(m)^2$$
 (conservă norma).

Exemplu: transformata DCT-I și DCT-II

În partea dreaptă avem transformata DCT-I și DCT-II pentru semnalul cu $\mathcal{N}=4$ eșantioane.

- ightharpoonup periodicitate în după N-1
- simetrie nu respectă tipul DCT
- ► simetrie identică pentru X₁
- dar diferită pentru X₂
- \triangleright X_2 are simetria lui \tilde{x}_3 (DCT-III)
- ightharpoonup perioada lui \tilde{x}_2 este 2N
- perioada lui X₂ este 4N!

Pentru că X(m) sunt reprezentări în urma unei transformări ortogonale, DCT are proprietăti similare cu DFT.

ortogonale, DCT are proprietăți similare cu DFT.
$$\begin{bmatrix} \cos(1m) \\ \cos(2m) \\ \cos(3m) \\ \vdots \\ \cos(Nm) \end{bmatrix} \text{ si baza } V = [v_1, v_2, \cdots, v_N].$$
 Este $v_p^T v_q = 0, \ \forall p \neq q ? \ \text{Dar } v_p^T v_p \neq 0 ?$

Este
$$v_p^T v_q = 0$$
, $\forall p \neq q$? Dar $v_p^T v_p \neq 0$?

$$v_p^T v_q = [\cos(1p) \cos(2p) \cdots \cos(Np)]$$
 $\begin{vmatrix} \cos(1q) \\ \vdots \\ \cos(Nq) \end{vmatrix}$

$$v_p^T v_q = [\cos(1p) \cos(2p) \cdots \cos(Np)] \begin{bmatrix} \cos(1q) \\ \vdots \\ \cos(Nq) \end{bmatrix} =$$

$$= \sum_{r=0}^{N-1} \cos(pr) \cos(qr)$$

$$v_p^T v_q = [\cos(1p) \cos(2p) \cdots \cos(Np)] \begin{bmatrix} \cos(1q) \\ \vdots \\ \cos(Nq) \end{bmatrix} =$$

$$= \sum_{n=0}^{N-1} \cos(pn) \cos(qn)$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} {\{\cos[(p-q)n] + \cos[(p+q)n]\}} =$$

$$v_p^T v_q = [\cos(1p) \cos(2p) \cdots \cos(Np)] \begin{bmatrix} \cos(1q) \\ \vdots \\ \cos(Nq) \end{bmatrix} =$$

$$= \sum_{n=0}^{N-1} \cos(pn) \cos(qn)$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} {\{\cos[(p-q)n] + \cos[(p+q)n]\}} =$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} {[e^{-(p-q)nj} + e^{(p-q)nj} + e^{(p+q)nj} + e^{-(p+q)nj}]} =$$

$$v_p^T v_q = [\cos(1p) \cos(2p) \cdots \cos(Np)] \begin{bmatrix} \cos(1q) \\ \vdots \\ \cos(Nq) \end{bmatrix} =$$

$$= \sum_{n=0}^{N-1} \cos(pn) \cos(qn)$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} {\{\cos[(p-q)n] + \cos[(p+q)n]\}} =$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} {\left[e^{-(p-q)nj} + e^{(p-q)nj} + e^{(p+q)nj} + e^{-(p+q)nj}\right]} =$$

$$= \frac{1}{2} \sum_{n=0}^{N-1} {\left[e^{pnj}(-1+1+1-1) + e^{qnj}(1-1+1-1)\right]} = 0$$

Teorema lui Parseval

Teoremă

Dacă $x(n) \stackrel{FT}{\underset{IFT}{\Longleftrightarrow}} X(e^{j\omega})$ atunci:

$$E = \sum_{n = -\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$$
 (19)

unde funcția $|X(e^{j\omega})|^2$ se numește și densitatea energiei spectrului pentru că determină distribuția energiei în domeniul frecvenței.

Compactarea energiei

DCT este folosită în multe aplicații ce implică compresia datelor datorită proprietății sale de compactare a energiei.

Remarcă

DCT-II a unui semnal are adesea coeficienții adunați la indicii mici X(m) ai transformatei față de DFT care îi are distribuiți de-a lungul tuturor indicilor.

Remarca devine importantă în contextul teoremei lui Parseval:

DCT-I:
$$\sum_{n=0}^{N-1} \alpha(n)|x(n)|^2 = \frac{1}{2N-2} \sum_{n=0}^{N-1} \alpha(m)|X(m)|^2$$
 (20)

DCT-II:
$$\sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{n=0}^{N-1} \beta(m) |X(m)|^2$$
 (21)

Exemplu: compactarea energiei

Fie semnalul $x(n) = a^n \cos(\omega_0 n + \varphi)$.

în figură cu parametrizarea a=0,9, $f_0=0,1\pi$ și N=32.

Exemplu: compactarea energiei DFT vs. DCT

DFT și DCT-II pentru semnalul x(n) din figura anterioară.

Exemplu: trunchiere DFT

Trunchierea în frecvență a DFT:

$$x^{\text{dft}}(n) = \frac{1}{N} \sum_{n=0}^{N-1} T_k(m) X(m) e^{j2\pi mn/N}$$
 (22)

se efectuează printr-un operator de hard-thresholding:

$$T_k(m) = \begin{cases} 1, & 0 \le m \le (N-1-k)/2 \\ 0, & (N+1-k)/2 \le m \le (N-1+k)/2 \\ 1, & (N+1+k)/2 \le m \le N-1 \end{cases}$$
 (23)

- ▶ pentru k = 1, termenul X(N/2) este anulat.
- ▶ pentru k = 3, termenii X(N/2), X(N/2 1) și termenul conjugat X(N/2 + 1) sunt anulați
- ş.a.m.d. pentru $k = \{1, 3, 5, \dots N 1\}$.

Exemplu: mean squared error (MSE)

Trunchierea în frecvență a DCT-II este mai simplă:

$$x^{\text{dct}}(n) = \frac{1}{N} \sum_{n=0}^{N-1-k} \beta(m) X(m) \cos\left(\frac{\pi m(2n+1)}{2N}\right)$$
 (24)

Comparăm cele două aproximări cu ajutorul medie pătratice a erorii:

$$E^{dft}(k) = \frac{1}{N} \sum_{n=0}^{N-1} |x(n) - x_k^{dft}(n)|^2$$
 (25)

$$E^{dct}(k) = \frac{1}{N} \sum_{n=0}^{N-1} |x(n) - x_k^{dct}(n)|^2$$
 (26)

Exemplu: Rezultat DFT vs. DCT-II

Trunchierea în funcție de numărul de coeficienți anulați k:

Cuantizare

Adesea împreună cu trunchierea sunt folosite tehnici de cuantizare.

Cuantizarea este similară cu discretizarea:

- alegem anumiți pași de cuantizare Δ
- Δ este similar cu bin-urile de la DFT
- ightharpoonup către aceste cuante aproximăm valorile x(n) ale semnalului dat

$$Q(n) = \Delta \left[\frac{x(n)}{\Delta} + \frac{1}{2} \right]$$
 (27)

unde $\Delta=1$ pentru rotunjirea către cel mai apropiat întreg.

Exemplu: cuantizare pe 2-biți și 3-biți

Sursă: https://en.wikipedia.org/wiki/Quantization_(signal_processing)

JPEG

Ipotezele JPEG bazate pe modul de funcționare al ochilor umani:

- ochii sunt mai sensibili la luminozitatea culorii decât la paleta cromatică
- ochii nu observă conținutul de frecvență înaltă din imagini

Algoritmul de compresie JPEG are patru etape:

- 1. transformarea imaginii din pixeli RGB în Y'CbCr
- 2. aplicarea 2D-DCT pe blocuri disincte de 8x8 pixeli din imagine
- 3. cuantizarea în frecvență cu Q dat de standardul JPEG
- 4. opțional compresia rezultatului cu coduri Huffman

Algoritmul JPEG fără compresie Huffman

Fie imaginea $I \in \mathbb{R}^{h \times w \times 3}$ păstrată drept un tensor tridimensional cu luminozitatea Y', cromatica albastră Cb, și cromatica roșie Cr.

1. cuantizarea (down-sampling) paletei cromatice:

$$I_{\mathsf{Cb}} = Q_{\mathsf{Cb}} \left[\frac{I_{\mathsf{Cb}}}{Q_{\mathsf{Cb}}} + \frac{1}{2} \right]; \ I_{\mathsf{CI}} = Q_{\mathsf{Cr}} \left[\frac{I_{\mathsf{Cr}}}{Q_{\mathsf{Cr}}} + \frac{1}{2} \right]$$
 (28)

- 2. pentru fiecare dimensiune $d \in \{Y', Cb, Cr\}$
 - 2.1 pentru fiecare bloc x de 8×8 pixeli

2.1.1
$$X = DCT(x)$$

2.1.2
$$X = Q_{JPEG} \left| \frac{X}{Q_{JPEG}} + \frac{1}{2} \right|$$

2.1.3
$$x = IDCT(\bar{X})$$

unde pașii de cuantizare Q_{JPEG} sunt dați de către standardul JPEG .