

A cultura ocidental adotou um sistema de numeração que possui dez diferentes algarismos — 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 e, por essa razão, foi chamado de *sistema decimal*.

Vamos exemplificar o conceito de sistema posicional. Seja o número 1303, representado na base 10, escrito da seguinte forma:

1303₁₀

Neste exemplo, o número é composto de quatro algarismos:

1, 3, 0 e 3

e cada algarismo possui um valor correspondente à sua posição no número.

1303

Assim, o primeiro 3 (algarismo mais à direita) representa 3 unidades. Neste caso, o valor absoluto do algarismo (que é 3) é igual ao seu valor relativo (que também é 3), por se tratar da 1ª posição (posição mais à direita, que é a ordem das unidades). Considerando-se o aspecto três vezes a potência 0 da base 10 ou

 $3 \times 10^0 = 3$

enquanto o segundo 3 vale três vezes a potência 2 da base 10 ou

$$3 \times 10^2 = 300$$

O valor total do número seria então:

$$1000 + 300 + 0 + 3 = 1303_{10}$$

$$1 \times 10^{3} + 3 \times 10^{2} + O \times 10^{1} + 3 \times 10^{0} = 1303_{10}$$

Outras Bases de Numeração

Entre as bases diferentes da 10, consideremos apenas as bases 2 e potências de 2, visto que todo computador digital representa internamente as informações em algarismos binários, ou seja, trabalha em base 2.

128 64 32 16 8 1 0 0 1 1 1 0 0 1560 = 100111002

Outras Bases de Numeração

No entanto, nas bases diferentes de 10, o valor relativo do algarismo (valor dependente de sua posição no número) é normalmente calculado usando-se valores resultantes de operações aritméticas em sua base.

Exemplo

- Seja o número na base **2**: (1011)₂)
- Se aplicássemos a expressão anterior teríamos:

$$1X2^{3} + 0X2^{2} + 1X2^{1} + 1X2^{0} =$$

= 8 + 0 + 2 + 1 = (11)₁₀

Outras Bases de Numeração

O número máximo de algarismos diferentes de uma base é igual ao valor da base.

Exemplo:

- ☐ na base 10 temos dez dígitos: de 0 a 9;
- □ na base 2 temos apenas dois dígitos: 0 e 1;
- ☐ na base 5 temos cinco dígitos: de 0 a 4.

Tabela de Conversão de Bases

Hexadecimal	Octal	Binário	Decimal
0	0	0	0
1	1	1	1
2	2	10	2
3	3	11	3
4	4	100	4
5	5	101	5
6	6	110	6
7	7	111	7
8	10	1000	8
9	11	1001	9
Α	12	1010	10
В	13	1011	11
С	14	1100	12
D	15	1101	13
E	16	1110	14
F	17	1111	15

Conversão de uma Base B para a Base 10

O Processo é sempre o mesmo de qualquer base para a base 10

Conversão da Base 10 para a Base 2

$$19_{10} = 10011_2$$

Bibliografia Base

STALLINGS, William. Arquitetura e Organização de Computadores. São Paulo: Pearson Education do Brasil, 2002.

MONTEIRO, Mário A. Introdução a Organização de Computadores. Rio de Janeiro: LTC, 2002.

David A. Patterson & John L. Hennessy. **Organização e projeto de computadores a interface Hardware/Software.** Tradução: Nery Machado Filho. Morgan Kaufmmann Editora Brasil: LTC, 2000.