Rozwiązanie drugiego zadania z trzeciej listy z Mechaniki Kwantowej

Piotr Polesiuk, Bartłomiej Pytko

29 lutego 2012

Niech $A: \mathbb{C}^n \to \mathbb{C}^n$ będzie operatorem hermitowskim. Udowodnić następujące twierdzenia

1. Jeżeli podprzestrzeń $W\subseteq\mathbb{C}^n$ jest podprzestrzenią niezmienniczą operatora A to jej ortogonalne dopełnienie W^{\perp} jest również podprzestrzenią niezmienniczą A.

Dowód. Operator A jest hermitowski, tzn. dla dowolnych wektorów $x,y\in\mathbb{C}^n$ zachodzi $\langle Ax|y\rangle=\langle x|Ay\rangle$. Weźmy dowolny wektor $u\in W^{\perp}$. Z definicji ortogonalnego dopełnienia spełnia on $\forall w\in W.\langle u|w\rangle=0$. Pokażę, że własność ta zachodzi również dla Au. W tym celu weźmy dowolne $w\in W$. Wtedy

$$\langle Au|w\rangle = \langle u|Aw\rangle = 0$$

Pierwsza równość wynika z hermitowskości operatora A, zaś równość druga wynika z niezmienniczości podprzestrzeni W ($Aw \in W$) oraz z definicji ortogonalnego dopełnienia.

2. Istnieje baza ortonormalna złożona z wektorów własnych operatora A.

 $Dow \acute{o}d$. Przez indukcję po n.

- Dla n=0 zbiór pusty w sposób trywialny jest bazą ortonormalną.
- Załóżmy, że teza twierdzenia zachodzi dla każdego operatora hermitowskiego działającego nad \mathbb{C}^n . Weźmy operator $A:\mathbb{C}^{n+1}\to\mathbb{C}^{n+1}$. Jego wielomian charakterystyczny jest wielomianem stopnia n+1 nad ciałem liczb zespolonych, więc z zasadniczego twierdzenia algebry operator A ma conajmniej jedną wartość własną λ oraz wektor własny w. Oczywiście wektor ten można wybrać tak by ||w||=1.

Przestrzeń \mathbb{C}^{n+1} można przedstawić jako

$$\mathbb{C}^{n+1} = \mathbb{C}w \oplus (\mathbb{C}w)^{\perp}$$

(gdzie zapis $\mathbb{C}w$ oznacza $\{\alpha w | \alpha \in \mathbb{C}\}$), a każdy wektor v przedstwić w sposób jednoznaczny jako sumę $v = \alpha w + v'$, gdzie $v' \in (\mathbb{C}w)^{\perp}$. Zauważmy jeszcze, że podprzestrzeń $\mathbb{C}w$ jest niezmiennicza (bo w jest wektorem własnym), a na mocy poprzednio udowodnionego twierdzenia, podprzestrzeń $(\mathbb{C}w)^{\perp}$ również jest niezmiennicza.

Rozważmy działanie operatora A na dowolnym wektorze v:

$$Av = A(\alpha w + v') = A(\alpha w) + Av' = \alpha \lambda w + A'v'$$

gdzie operator A' to operator A obcięty do podprzestrzeni $(\mathbb{C}w)^{\perp}$, wartości A' również są z tego zbioru (z niezmienniczości dziedziny).

Ale dim $(\mathbb{C}w)^{\perp}=n$, czyli przestrzeń $(\mathbb{C}w)^{\perp}$ jest izomorficzna z przestrzenią \mathbb{C}^n , więc na mocy założenia indukcyjnego ma bazę ortonormalną E, złożoną z wektorów własnych operatora A', które również są wektorami własnymi operatora A.

Wektor w jest prostopadły do wszystkich wektorów z $(\mathbb{C}w)^{\perp}$, w szczególności do wektorów z E, więc układ $E \cup \{w\}$ tworzy bazę ortonormalną przestrzeni \mathbb{C}^{n+1} złożoną z wektorów własnych operatora A.

3. Przestrzeń \mathbb{C}^n jest ortogonalną sumą prostą podprzestrzeni własnych operatora A.

Dowód. Natychmiast z poprzedniego twierdzenia. Niech $\{v_{\lambda i}|\lambda\in\operatorname{spec} A|i=1,\ldots,m_{\lambda}\}$, gdzie m_{λ} oznacza krotność geometryczną wartości własnej λ , będzie wyżej wprowadzoną bazą ortonormalną. Zatem

$$\mathbb{C}^n = \bigoplus_{\lambda \in \operatorname{spec} A} \bigoplus_{i=1}^{m_{\lambda}} \mathbb{C} v_{\lambda i} = \bigoplus_{\lambda \in \operatorname{spec} A} V_{\lambda}$$

Ta ostatnia równość wynika z faktu, że wektory $\{v_{\lambda i}\}_{i=1}^{m_{\lambda}}$ rozpinają podprzestrzeń własną V_{λ} odpowiadającą wartości własnej λ .

Ortogonalność tej sumy zapewniona jest przez ortonormalność bazy.