Lecture note 3: Stochastic calculus

1 Exercise

Problem 1.1. (45 points) Consider a Brownian motion $B = (B_t)_{t \ge 0}$. For 0 < s < t, evaluate the followings. Use the cumulative distribution function

$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{y^2}{2}} dy$$

of the standard normal density if needed.

- (i) $\mathbb{P}(B_1 > 1, B_3 B_2 > 1)$
- (ii) $\mathbb{P}(2B_1 B_2 > -1)$
- (iii) $\mathbb{P}(B_1 < 0, B_2 > (1 \sqrt{3})B_1)$
- (iv) $\mathbb{P}(B_3 < 1 \mid B_1)$
- (v) $\mathbb{P}(B_1 < 2 \mid B_2)$
- (vi) $\mathbb{E}(B_s^2 e^{2B_t})$
- (vii) $Var(2B_3 B_2)$
- (viii) $\operatorname{Cov}(e^{B_t}, e^{-2B_s})$
- (ix) $\mathbb{E}(B_1 + B_3|B_1 2B_2)$.

For random variable X, Y and a Borel set A, the notation $\mathbb{P}(X \in A|Y)$ means $\mathbb{E}(\mathbb{I}_{\{X \in A\}}|\sigma(Y))$.

Problem 1.2. (10 points) Let $0 \le s < t$. Show that $B_t - B_s$ is independent of $\sigma(B_u|0 \le u \le s)$. Read Problem 1.4 on page 49 in (Karatzas and Shreve, Brownian Motion and Stochastic Calculus, 1991). You can find the solution from the book.

Problem 1.3. Let $(B_t)_{t\geq 0}$ be a Brownian motion.

- (i) (10 points) Show that $(X_t)_{t\geq 0} = (\frac{1}{\sqrt{c}}B_{ct})_{t\geq 0}$ is a Brownian motion for any c>0,
- (ii) (5 points) Use the time inversion formula and the law of iterated logarithm of Brownian motion to show that for $s \ge 0$

$$\mathbb{P}\left(\liminf_{t\to 0+} \frac{B_{t+s} - B_s}{\sqrt{2t\ln\ln\frac{1}{t}}} = -1, \lim_{t\to 0+} \frac{B_{t+s} - B_s}{\sqrt{2t\ln\ln\frac{1}{t}}} = 1\right) = 1.$$

Problem 1.4. Solve the following problems.

- (i) (5 points) Let $f:[0,T]\to\mathbb{R}$ be a RCLL function. Show that f is bounded.
- (ii) (10 points) Let $(X_t)_{t\geq 0}$ be a RCLL Gaussian process. Show that

$$\left(\int_0^t X_s \, ds\right)_{t \ge 0}$$

is a continuous Gaussian process. You may use, without proof, the fact that the limit (in the sense of convergence in distribution) of a sequence of normal random variables is normal.

(iii) (5 points) For T > 0, find the distribution of

$$\int_0^T uB_u du.$$

(iv) (5 points) Calculate

$$\mathbb{E}(e^{\int_0^T uB_u \, du})$$

Problem 1.5. (Fractional Brownian motion) (25 points) Let 0 < H < 1. A continuous Gaussian process $B^H = (B_t^H)_{t \ge 0}$ with mean zero and covariance

$$cov(B_s^H, B_t^H) = \frac{1}{2}(s^{2H} + t^{2H} - |t - s|^{2H})$$

is called a fractional Brownian motion with parameter H.

- (i) Show that if H = 1/2, then B^H is the standard Brownian motion.
- (ii) Let B^H be a fractional Brownian motion with parameter H. Show that for any h > 0, the process X given by

$$X_t = B_{t+h}^H - B_h^H$$

is a fractional Brownian motion with parameter H.

- (iii) Deduce that a fractional Brownian motion has stationary increments, that is, $B_t^H B_s^H$ has the same distribution with B_{t-s}^H for 0 < s < t.
- (iv) Let $0 \le u \le s \le t$. Evaluate $\mathbb{E}(B_u^H(B_t^H B_s^H))$. For which H the increment $B_t^H B_s^H$ is independent of the past $\sigma(B_u^H: 0 \le B_u^H \le s)$?
- (v) Show that

$$\left(\int_{0}^{t} B_{u}^{H} \mathbb{I}_{[1,2)}(u) - 2B_{u}^{H} \mathbb{I}_{[3,\infty)}(u) du\right)_{t \ge 0}$$

is a Gaussian process.

Hint: The proofs of the above problems are similar with the Brownian motion case we did in class.

References