Mini Homework 6

- 1. Define l be a list storing the elements that sum to k. Pseudocode is given as follows:
 - 1. **for** i := n 1; $i \ge 0$; i := i 1:
 - 1. **if** $s_i \le k$:
 - 1. Add s_i to l
 - 2. $k := k s_i$
 - 2. **if** k = 0:
 - 1. Output *l*
 - 3. **else**:
 - 1. Output –1 (impossible)
- 2. A greedy algorithm is designed to examine s from last to first, add s_i into l whenever $s_i \le k$, and update k accordingly. Suppose this greedy choice is not included in an optimal solution. At some point, i is the largest index s.t. $s_i < k$, but s_j is selected for some j < i. However, this is a contradiction to that there is an optimal solution because $\sum_{k=0}^{j} s_k < s_i < k$, i.e., it is not possible to achieve the optimal solution even if every element from s_j down to s_0 is selected. Therefore, this greedy choice must be included in the optimal solution. And if there is no solution, then $k \ne 0$ no matter how the algorithm is designed.