UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE CIENCIAS DEPARTAMENTO DE ESTADÍSTICA NOTAS DE CLASE

VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES DE PROBABILIDAD.

En la mayoría de los casos de experiencias aleatorias resulta útil asociar a los eventos la descripción de diversos fenómenos mediante un número.

Una variable aleatoria permite pasar de los posibles resultados experimentales a una función numérica de resultados

Variable aleatoria (v.a)

Es una función cuyos valores son números reales asociados con cada evento elemental del espacio muestral Ω , resultante de un experimento aleatorio .

Se identifica generalmente con letras mayúsculas (X, Y, Z, W) dejando las minúsculas para los valores que se pueda asumir (x, y, z, w)

Variable aleatoria (v.a)

Formalmente una v.a. X es una función definida asi:

```
X: \Omega ------ \to \mathbf{R}

w ----- \to X(w)

X se llama v.a si \{w : X(w) \le r, para \text{ a lg ún } r \in \mathbf{R}\} \subset \Omega
```

- Ejemplo:
- Sea el experimento aleatorio la prueba de tres componentes electrónicos escogidos al azar y la calificación de cada uno como aceptable (A) o como defectuoso (D).
- $\Omega = \{AAA, AAD, ADA, DAA, DDD, DDA, DAD, ADD\}$
- Supongamos que estamos interesados en el número de componentes defectuosos que ocurren al realizar un experimento aleatorio.
- Así cada evento elemental de Ω se le asignara un valor numérico de: 0, 1, 2, 3 que son cantidades determinadas por el resultado del experimento aleatorio

- X: "Número de componentes defectuosos".
- Por lo tanto: x = 0, 1, 2, 3 componentes defectuosos.
- Se puede conocer la probabilidad para cada valor x que asume la variable aleatoria (v.a).

$$P(x=0) = \frac{1}{8}$$

$$P(x=1) = \frac{3}{8}$$

$$P(x=2) = \frac{3}{8}$$

$$P(x=3) = \frac{1}{8}$$

Las variables aleatorias se clasifican como: discretas y continuas

- Variable aleatoria Discreta:
- La v.a X se considera discreta si solamente puede asumir un conjunto finito ó contable de valores al ser aplicada sobre los eventos correspondientes del experimento aleatorio.
- Es decir X es v.a discreta si su recorrido se puede poner en correspondencia con los números enteros positivos.

Ejemplo:

- 1) Número de bacterias por unidad de área.
- 2) Número de unidades defectuosas en lote de unidades producidas
- 3) Número de imperfecciones en lámina de plástico.

Variable aleatoria continua:

La v.a X se considera continua si su recorrido como función sobre los eventos de una experiencia aleatoria pertenece a un conjunto de intervalos de números reales. Se dice de la variable aleatoria continua X lo será si puede asumir valores en escalas continuas en el intervalo de definición de la v.a X.

Ejemplo: Peso, longitud, resistencia a la comprensión o a la tensión, voltaje de salida, temperatura, entre otras, son consideradas v.a continuas en cuanto su medición tiene niveles de incertidumbre producidos por los factores no controlables en la situación experimental.

Distribución de Probabilidad de v.a discreta

Si la variable aleatoria X puede asumir una serie de valores $x_1, x_2, ..., x_k$ o $(x_1, x_2, ...)$; y para cada uno de esos valores se conoce su probabilidad $f(x_1), f(x_2),...$ tales que $\sum f(x_i) = 1$, se dice que una distribución de probabilidad queda definida "

El conjunto de pares ordenados (x, f(x)) es función de probabilidad, función masa de probabilidad o distribución de probabilidad de la variable aleatoria discreta (x, f(x)) se cumple :

1.
$$f(x) \ge 0$$

$$2. \quad \sum f(x_i) = 1$$

Para cualquier valor de x que no tenga asignada probabilidad o no sea uno de los valores en el intervalo especifico, se supone que f(x) = 0

Toda distribución o función de probabilidad puede ser representada por una tabla, una gráfica o una formula que necesariamente sería una función de los valores numéricos de \mathcal{X} o sea f(x).

Ejemplo:

Tomemos el caso del examen de una muestra aleatoria de tres unidades para detectar su estado al ser producida cada una

(A = Aceptable, D = Defectuosa).

Observamos que S= {AAA, AAD, ADA, DAA, DDD, DDA, DAD, ADD}

Si X el número de unidades defectuosas. Entonces x = 0,1,2,3 y podemos construir la correspondiente distribución de probabilidad.

x	0	1	2	3	
f(x)	<u>1</u> 8	<u>3</u>	<u>3</u>	1 8	

Que descrita como función quedará:

$$f(x) = \begin{cases} \frac{1}{8} \sin x = 0\\ \frac{3}{8} \sin x = 1\\ \frac{3}{8} \sin x = 2\\ \frac{1}{8} \sin x = 3\\ 0 \text{ en otro caso} \end{cases}$$

Su representación gráfica,

Con base en F(x) se puede calcular matemáticamente f(x).

Supongamos 2 números a y b, con a < b , entonces,

$$P(a \le x \le b) = F(b) - F(a_{\perp})$$

Donde (a) es el valor máximo posible de X que sea estrictamente menor que "a_".

Ejemplo:

Sea el lanzamiento de un par de dados correctos donde X = suma obtenida de puntos.

Construyamos su distribución de probabilidad

X	2	3	4	5	6	7	8	9	10	11	12
f(x)	1 36	36	36	<u>4</u> 36	<u>5</u> 36	6 36	<u>5</u> 36	4 36	36	36	<u>1</u> 36
F(x)	1 36	<u>3</u> 36	6 36	10 36	15 36	21 36	26 36	30 36	33 36	35 36	36 36

Si queremos averiguar $P(4 \le X \le 8)$, entonces:

$$P(4 \le X \le 8) = F(8) - F(3) = \frac{26}{36} - \frac{3}{36} = \frac{23}{36}$$

Que seria para el caso,

$$P(4 \le X \le 8) = P(X = 4) + P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)$$

$$P(4 \le X \le 8) = \frac{3}{36} + \frac{4}{36} + \frac{5}{36} + \frac{6}{36} + \frac{5}{36} = \frac{23}{36}$$