Matrix Computations in Lie Algebras

Alexander Jansing, Chaskin Saroff

Oswego State University Department of Mathematics

5 May 2015

A $\mathit{Lie\ Algebra}$ is a (finite-dimensional) vector space $\mathfrak g$ together with a bilinear multiplication $[\ ,\]:\mathfrak g\times\mathfrak g\to\mathfrak g$ that satisfies three properties:

A $\it Lie\ Algebra$ is a (finite-dimensional) vector space $\frak g$ together with a bilinear multiplication $[\ ,\]:\frak g\times\frak g\to\frak g$ that satisfies three properties:

A $\mathit{Lie\ Algebra}$ is a (finite-dimensional) vector space $\mathfrak g$ together with a bilinear multiplication $[\ ,\]:\mathfrak g \times \mathfrak g \to \mathfrak g$ that satisfies three properties:

A $\mathit{Lie\ Algebra}$ is a (finite-dimensional) vector space $\mathfrak g$ together with a bilinear multiplication $[\ ,\]:\mathfrak g \times \mathfrak g \to \mathfrak g$ that satisfies three properties:

- ② [[x,y],z]+[[y,z],x]+[[z,x],y]=0 for all $x,y,z\in\mathfrak{g}$. and

A $\mathit{Lie\ Algebra}$ is a (finite-dimensional) vector space $\mathfrak g$ together with a bilinear multiplication $[\ ,\]:\mathfrak g\times\mathfrak g\to\mathfrak g$ that satisfies three properties:

- ② [[x,y],z]+[[y,z],x]+[[z,x],y]=0 for all $x,y,z\in\mathfrak{g}$. and

Property 1 is known as *alternating*, property 2 is known as the *Jacobi Identity* and property 3 describes *bilinearity*.

A $\mathit{Lie\ Algebra}$ is a (finite-dimensional) vector space $\mathfrak g$ together with a bilinear multiplication $[\ ,\]:\mathfrak g\times\mathfrak g\to\mathfrak g$ that satisfies three properties:

- ② [[x,y],z]+[[y,z],x]+[[z,x],y]=0 for all $x,y,z\in\mathfrak{g}$. and

Property 1 is known as *alternating*, property 2 is known as the *Jacobi Identity* and property 3 describes *bilinearity*.

Property 1 and 3 imply another property called *skew symmetry*:

A $\mathit{Lie\ Algebra}$ is a (finite-dimensional) vector space $\mathfrak g$ together with a bilinear multiplication $[\ ,\]:\mathfrak g\times\mathfrak g\to\mathfrak g$ that satisfies three properties:

- ② [[x,y],z]+[[y,z],x]+[[z,x],y]=0 for all $x,y,z\in\mathfrak{g}$. and

Property 1 is known as *alternating*, property 2 is known as the *Jacobi Identity* and property 3 describes *bilinearity*.

Property 1 and 3 imply another property called *skew symmetry*:

The product [,] is known as a Lie bracket on \mathfrak{g} .

skew-symmetry

By bilinearity, every alternating product is also skew-symmetric. Indeed, if $[\ ,\]$ is alternating then

skew-symmetry

By bilinearity, every alternating product is also skew-symmetric. Indeed, if $[\ ,\]$ is alternating then

$$0 = [x + y, x + y] \tag{1}$$

$$= [x + y, x] + [x + y, y]$$
 (2)

$$= [x, x] + [y, x] + [x + y, y]$$
(3)

$$= [x, x] + [y, x] + [x, y] + [y, y]$$
 (4)

$$0 = [x, y] + [y, x]$$
 (5)

$$\implies [x,y] = -[y,x] \tag{6}$$

skew-symmetry

By bilinearity, every alternating product is also skew-symmetric. Indeed, if $[\ ,\]$ is alternating then

$$0 = [x + y, x + y] \tag{1}$$

$$= [x + y, x] + [x + y, y]$$
 (2)

$$= [x, x] + [y, x] + [x + y, y]$$
 (3)

$$= [x, x] + [y, x] + [x, y] + [y, y]$$
 (4)

$$0 = [x, y] + [y, x]$$
 (5)

$$\implies [x,y] = -[y,x] \tag{6}$$

Conversely, if $[\ ,\]$ is skew-symmetric, then [x,x]+[x,x]=0 implies that 2[x,x]=0. Now we see that this implies [x,x]=0 so long as our field is not of characteristic 2, for in those spaces 2=0 and we can deduce nothing about [x,x].

The Center

The center of a Lie Algebra, $\mathfrak g$ is

The Center

The *center* of a Lie Algebra, $\mathfrak g$ is

$$\mathfrak{z} = \{z \in \mathfrak{g} \mid [z,x] = \mathbf{0} \ \forall x \in \mathfrak{g}\}.$$

The Center

The center of a Lie Algebra, g is

$$\mathfrak{z} = \{z \in \mathfrak{g} \mid [z, x] = \mathbf{0} \ \forall x \in \mathfrak{g}\}.$$

Thus z, is in the center of $\mathfrak g$ if and only if

$$[z,x] = \mathbf{0} \ \forall x \in \mathfrak{g}.$$

The *non-center*, \mathfrak{v} , is given by $\mathfrak{v} = \mathfrak{g} - \mathfrak{z}$

Let ${\mathfrak g}$ be any vector space, and define

$$[x,y]=0 \ \text{ for all } x,y\in \mathfrak{g}.$$

Let ${\mathfrak g}$ be any vector space, and define

$$[x,y] = 0$$
 for all $x,y \in \mathfrak{g}$.

Clearly [,] is alternating:

$$[x,x]=0$$
 for all $x \in \mathfrak{g}$.

Let $\mathfrak g$ be any vector space, and define

$$[x,y] = 0$$
 for all $x,y \in \mathfrak{g}$.

Clearly [,] is alternating:

$$[x,x]=0$$
 for all $x \in \mathfrak{g}$.

And the Jacobi Identity is trivial:

Let $\mathfrak g$ be any vector space, and define

$$[x,y] = 0$$
 for all $x,y \in \mathfrak{g}$.

Clearly [,] is alternating:

$$[x,x]=0$$
 for all $x \in \mathfrak{g}$.

And the Jacobi Identity is trivial:

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = [0, z] + [0, x] + [0, y]$$

= 0 + 0 + 0 = 0.

Let $\mathfrak g$ be any vector space, and define

$$[x,y]=0 \ \ \text{for all} \ x,y\in \mathfrak{g}.$$

Clearly [,] is alternating:

$$[x,x]=0$$
 for all $x \in \mathfrak{g}$.

And the Jacobi Identity is trivial:

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = [0, z] + [0, x] + [0, y]$$

= 0 + 0 + 0 = 0.

This Algebra is called Abelian or One-Step Nilpotent.

Let $\mathfrak g$ be any vector space, and define

$$[x,y]=0 \ \ \text{for all} \ x,y\in \mathfrak{g}.$$

Clearly [,] is alternating:

$$[x,x]=0$$
 for all $x \in \mathfrak{g}$.

And the Jacobi Identity is trivial:

$$[[x, y], z] + [[y, z], x] + [[z, x], y] = [0, z] + [0, x] + [0, y]$$

= 0 + 0 + 0 = 0.

This Algebra is called Abelian or One-Step Nilpotent.

Two-Step Nilpotent

A Lie Algebra, $\mathfrak g$ is called two-step nilpotent if and only if

$$[[x,y],z] = \mathbf{0} \; \forall x,y,z \in \mathfrak{g} \; \text{and} \; \mathfrak{z} \neq \mathfrak{g}$$

Two-Step Nilpotent

A Lie Algebra, $\mathfrak g$ is called two-step nilpotent if and only if

$$[[x,y],z] = \mathbf{0} \ \forall x,y,z \in \mathfrak{g} \ \text{and} \ \mathfrak{z} \neq \mathfrak{g}$$

Applying the bracket twice to any arbitrary set of three vectors in the Algebra, always returns 0.

Two-Step Nilpotent

A Lie Algebra, g is called two-step nilpotent if and only if

$$[[x,y],z] = \mathbf{0} \ \forall x,y,z \in \mathfrak{g} \ \text{and} \ \mathfrak{z} \neq \mathfrak{g}$$

- Applying the bracket twice to any arbitrary set of three vectors in the Algebra, always returns 0.
- $\ensuremath{\text{\textbf{@}}}$ Applying the bracket once to any arbitrary set of two vectors does not always return $\ensuremath{\textbf{0}}.$

Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$. The cross product of x with y is defined by

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$. The cross product of x with y is defined by

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

The cross product is skew symmetric:

$$x \times y = -y \times x$$
 for all $x, y \in \mathbb{R}^3$.

Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$. The cross product of x with y is defined by

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

The cross product is skew symmetric:

$$x \times y = -y \times x$$
 for all $x, y \in \mathbb{R}^3$.

Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$. The cross product of x with y is defined by

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

The cross product is skew symmetric:

$$x \times y = -y \times x$$
 for all $x, y \in \mathbb{R}^3$.

$$(x \times y) \times z + (y \times z) \times x + (z \times x) \times y$$

Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$. The cross product of x with y is defined by

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

The cross product is skew symmetric:

$$x \times y = -y \times x$$
 for all $x, y \in \mathbb{R}^3$.

$$(x \times y) \times z + (y \times z) \times x + (z \times x) \times y$$

= $(x \cdot z)y - (y \cdot z)x + (y \cdot x)z - (z \cdot x)y + (z \cdot y)x - (x \cdot y)z$

Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$. The cross product of x with y is defined by

$$x \times y = (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

The cross product is skew symmetric:

$$x \times y = -y \times x$$
 for all $x, y \in \mathbb{R}^3$.

$$(x \times y) \times z + (y \times z) \times x + (z \times x) \times y$$

$$= (x \cdot z)y - (y \cdot z)x + (y \cdot x)z - (z \cdot x)y + (z \cdot y)x - (x \cdot y)z$$

$$= 0.$$

We can construct another example from \mathbb{R}^3 by defining a different Lie Bracket. Consider a 3-dimensional vector space with basis vectors x, y, z.

We can construct another example from \mathbb{R}^3 by defining a different Lie Bracket. Consider a 3-dimensional vector space with basis vectors x, y, z. Define a Lie bracket on this space by

$$[x,y]=z,$$

with all other brackets equal to 0.

We can construct another example from \mathbb{R}^3 by defining a different Lie Bracket. Consider a 3-dimensional vector space with basis vectors x, y, z. Define a Lie bracket on this space by

$$[x,y]=z,$$

with all other brackets equal to 0. This is called the *Heisenberg Algebra*, and is denoted by \mathfrak{h}_3 .

We can construct another example from \mathbb{R}^3 by defining a different Lie Bracket. Consider a 3-dimensional vector space with basis vectors x, y, z. Define a Lie bracket on this space by

$$[x,y]=z,$$

with all other brackets equal to 0. This is called the *Heisenberg Algebra*, and is denoted by \mathfrak{h}_3 .

Figure: The Heisenberg Algebra, \$\opena_3\$

We can construct another example from \mathbb{R}^3 by defining a different Lie Bracket. Consider a 3-dimensional vector space with basis vectors x, y, z. Define a Lie bracket on this space by

$$[x,y]=z,$$

with all other brackets equal to 0. This is called the *Heisenberg Algebra*, and is denoted by \mathfrak{h}_3 .

Figure: The Heisenberg Algebra, \$\that{h}_3\$

Can anyone tell me if the Heisenberg Algebra is one-step nilpotent, two-step nilpotent, neither, or both?

Inner Products

An inner product on a vector space $\mathfrak g$ is a non-degenerate, symmetric, bilinear, postive definite function $\langle \ , \ \rangle: \mathfrak g \times \mathfrak g \to \mathbb R.$

Inner Products

An inner product on a vector space $\mathfrak g$ is a non-degenerate, symmetric, bilinear, postive definite function $\langle \ , \ \rangle : \mathfrak g \times \mathfrak g \to \mathbb R.$

An inner product on a vector space $\mathfrak g$ is a non-degenerate, symmetric, bilinear, postive definite function $\langle \ , \ \rangle : \mathfrak g \times \mathfrak g \to \mathbb R$.

- **1** If $\langle x, y \rangle = 0$ for all $y \in \mathfrak{g}$, then x must be 0;
- $(x,y) = \langle y,x \rangle$ for all $x,y \in \mathfrak{g}$;

An inner product on a vector space $\mathfrak g$ is a non-degenerate, symmetric, bilinear, postive definite function $\langle \ , \ \rangle : \mathfrak g \times \mathfrak g \to \mathbb R$.

- **1** If $\langle x, y \rangle = 0$ for all $y \in \mathfrak{g}$, then x must be 0;
- $(x,y) = \langle y,x \rangle$ for all $x,y \in \mathfrak{g}$;

An inner product on a vector space $\mathfrak g$ is a non-degenerate, symmetric, bilinear, postive definite function $\langle \ , \ \rangle : \mathfrak g \times \mathfrak g \to \mathbb R$.

- **1** If $\langle x, y \rangle = 0$ for all $y \in \mathfrak{g}$, then x must be 0;
- $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in \mathfrak{g}$;

A Lie Algebra with an inner product is called a Metric Lie Algebra

An inner product on a vector space $\mathfrak g$ is a non-degenerate, symmetric, bilinear, postive definite function $\langle \ , \ \rangle : \mathfrak g \times \mathfrak g \to \mathbb R$.

- **1** If $\langle x, y \rangle = 0$ for all $y \in \mathfrak{g}$, then x must be 0;
- $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in \mathfrak{g}$;

A Lie Algebra with an inner product is called a Metric Lie Algebra

Example The *dot product* on \mathbb{R}^3 :

An inner product on a vector space $\mathfrak g$ is a non-degenerate, symmetric, bilinear, postive definite function $\langle \ , \ \rangle : \mathfrak g \times \mathfrak g \to \mathbb R$.

- **1** If $\langle x, y \rangle = 0$ for all $y \in \mathfrak{g}$, then x must be 0;
- ② $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in \mathfrak{g}$;

A Lie Algebra with an inner product is called a Metric Lie Algebra

Example The *dot product* on \mathbb{R}^3 : Let $x, y \in \mathbb{R}^3$; then $x \cdot y = x^T y$. The dot product is given by

An inner product on a vector space $\mathfrak g$ is a non-degenerate, symmetric, bilinear, postive definite function $\langle \ , \ \rangle : \mathfrak g \times \mathfrak g \to \mathbb R$.

- **1** If $\langle x, y \rangle = 0$ for all $y \in \mathfrak{g}$, then x must be 0;
- ② $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in \mathfrak{g}$;

A Lie Algebra with an inner product is called a Metric Lie Algebra

Example The *dot product* on \mathbb{R}^3 : Let $x, y \in \mathbb{R}^3$; then $x \cdot y = x^T y$. The dot product is given by

$$\langle x,y\rangle=x_1y_1+x_2y_2+x_3y_3$$

j-maps

In order to seperate the interaction between the center and the non-center of a two-step nilpotent lie algebra, we can define a map, $j_z:\mathfrak{v}\to\mathfrak{v}$.

In order to seperate the interaction between the center and the non-center of a two-step nilpotent lie algebra, we can define a map, $j_z:\mathfrak{v}\to\mathfrak{v}$. j_z is defined by the equation

$$\langle [x,y],z\rangle = \langle y,j_zx\rangle$$

In order to seperate the interaction between the center and the non-center of a two-step nilpotent lie algebra, we can define a map, $j_z:\mathfrak{v}\to\mathfrak{v}$. j_z is defined by the equation

$$\langle [x, y], z \rangle = \langle y, j_z x \rangle$$

The j-maps are extremely useful because they simultaneously encode information about the algebraic structure and geometric structure of the Lie algebra \mathfrak{g} .

In order to seperate the interaction between the center and the non-center of a two-step nilpotent lie algebra, we can define a map, $j_z:\mathfrak{v}\to\mathfrak{v}$. j_z is defined by the equation

$$\langle [x, y], z \rangle = \langle y, j_z x \rangle$$

The j-maps are extremely useful because they simultaneously encode information about the algebraic structure and geometric structure of the Lie algebra \mathfrak{g} .

This makes the computation of many seemingly complicated objects "simple" calculations in linear algebra!

In order to do math with Lie Algebras on a computer, we would like to represent the Lie Bracket in a matrix form.

In order to do math with Lie Algebras on a computer, we would like to represent the Lie Bracket in a matrix form. Consider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ii} = [e_i, e_i]$

In order to do math with Lie Algebras on a computer, we would like to represent the Lie Bracket in a matrix form. Consider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ii} = [e_i, e_i]$

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}$$

In order to do math with Lie Algebras on a computer, we would like to represent the Lie Bracket in a matrix form. Consider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ii} = [e_i, e_i]$

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}$$

We will denote the kth entry of L_{ij} as L_{ij}^k .

In order to do math with Lie Algebras on a computer, we would like to represent the Lie Bracket in a matrix form. Consider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ii} = [e_i, e_i]$

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}$$

We will denote the kth entry of L_{ij} as L_{ij}^k .

$$[e_i,e_i]=\boldsymbol{0}$$

Figure: The Lie Bracket as a Matrix, L

Figure: The Lie Bracket as a Matrix, L

Figure: The Lie Bracket as a Matrix, L

The Lie Bracket as a vector of matrices

It can also be represented by a "stack" of matrices

A vector of matrices.

$$L_{ij} = egin{pmatrix} L_{ij}^1 \ L_{ij}^2 \ dots \ L_{ii}^m \end{pmatrix}$$

$$L_{ij} = \begin{pmatrix} L_{ij}^1 \\ L_{ij}^2 \\ \vdots \\ L_{ii}^m \end{pmatrix}.$$

These L_{ij} can then be arranged in an $n \times n$ matrix

$$L = (L_{ij}) = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}.$$

It's nice to see that we can *encode* the bracket into a matrix representation, but how can we use that encoding as the Lie Bracket "map"?

It's nice to see that we can *encode* the bracket into a matrix representation, but how can we use that encoding as the Lie Bracket "map"?

Notice that we can retrieve information about the bases.

It's nice to see that we can *encode* the bracket into a matrix representation, but how can we use that encoding as the Lie Bracket "map"? Notice that we can retrieve information about the bases.

$$[e_1,e_2] = L_{12}$$

It's nice to see that we can *encode* the bracket into a matrix representation, but how can we use that encoding as the Lie Bracket "map"? Notice that we can retrieve information about the bases.

$$[e_1,e_2] = L_{12}$$

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}$$

It's nice to see that we can *encode* the bracket into a matrix representation, but how can we use that encoding as the Lie Bracket "map"? Notice that we can retrieve information about the bases.

$$[e_1,e_2] = L_{12}$$

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}$$

So it will be enough find a way to write all Lie Brackets as a linear combination of basis brackets.

We can write [x, y] as a linear combination of their component vectors' brackets.

We can write [x, y] as a linear combination of their component vectors' brackets.

Let's look at an example of a 2 dimensional space Let $x,y\in\mathfrak{g}$ with

We can write [x, y] as a linear combination of their component vectors' brackets.

Let's look at an example of a 2 dimensional space

Let $x, y \in \mathfrak{g}$ with

$$x=w_1e_1+w_2e_2$$

We can write [x, y] as a linear combination of their component vectors' brackets.

Let's look at an example of a 2 dimensional space

Let $x, y \in \mathfrak{g}$ with

$$x=w_1e_1+w_2e_2$$

$$y=v_1e_1+v_2e_2$$

We can write [x, y] as a linear combination of their component vectors' brackets.

Let
$$x, y \in \mathfrak{g}$$
 with

$$x = w_1 e_1 + w_2 e_2$$

$$y=v_1e_1+v_2e_2$$

So
$$[x, y] = [w_1e_1 + w_2e_2, v_1e_1 + v_2e_2]$$

We can write [x, y] as a linear combination of their component vectors' brackets.

Let
$$x, y \in \mathfrak{g}$$
 with

$$x = w_1e_1 + w_2e_2$$

$$y=v_1e_1+v_2e_2$$

So
$$[x, y] = [w_1e_1 + w_2e_2, v_1e_1 + v_2e_2]$$

= $[w_1e_1, v_1e_1 + v_2e_2] + [w_2e_2, v_1e_1 + v_2e_2]$

We can write [x, y] as a linear combination of their component vectors' brackets.

Let
$$x, y \in \mathfrak{g}$$
 with

$$x = w_1e_1 + w_2e_2$$

$$y=v_1e_1+v_2e_2$$

So
$$[x, y] = [w_1e_1 + w_2e_2, v_1e_1 + v_2e_2]$$

 $= [w_1e_1, v_1e_1 + v_2e_2] + [w_2e_2, v_1e_1 + v_2e_2]$
 $= [w_1e_1, v_1e_1] + [w_1e_1, v_2e_2] + [w_2e_2, v_1e_1] + [w_2e_2, v_2e_2]$

We can write [x, y] as a linear combination of their component vectors' brackets.

Let
$$x, y \in \mathfrak{g}$$
 with

$$x = w_1 e_1 + w_2 e_2$$

$$y=v_1e_1+v_2e_2$$

So
$$[x, y] = [w_1e_1 + w_2e_2, v_1e_1 + v_2e_2]$$

 $= [w_1e_1, v_1e_1 + v_2e_2] + [w_2e_2, v_1e_1 + v_2e_2]$
 $= [w_1e_1, v_1e_1] + [w_1e_1, v_2e_2] + [w_2e_2, v_1e_1] + [w_2e_2, v_2e_2]$
 $= w_1v_1[e_1, e_1] + w_1v_2[e_1, e_2] + w_2v_1[e_2, e_1] + w_2v_2[e_2, e_2]$

We can write [x, y] as a linear combination of their component vectors' brackets.

Let
$$x, y \in \mathfrak{g}$$
 with

$$x = w_1e_1 + w_2e_2$$

$$y=v_1e_1+v_2e_2$$

So
$$[x, y] = [w_1e_1 + w_2e_2, v_1e_1 + v_2e_2]$$

 $= [w_1e_1, v_1e_1 + v_2e_2] + [w_2e_2, v_1e_1 + v_2e_2]$
 $= [w_1e_1, v_1e_1] + [w_1e_1, v_2e_2] + [w_2e_2, v_1e_1] + [w_2e_2, v_2e_2]$
 $= w_1v_1[e_1, e_1] + w_1v_2[e_1, e_2] + w_2v_1[e_2, e_1] + w_2v_2[e_2, e_2]$
 $= w_1v_1L_{11} + w_1v_2L_{12} + w_2v_1L_{21} + w_2v_2L_{22}$

We can write [x, y] as a linear combination of their component vectors' brackets.

Let's look at an example of a 2 dimensional space

Let
$$x, y \in \mathfrak{g}$$
 with

$$x = w_1 e_1 + w_2 e_2$$

$$y=v_1e_1+v_2e_2$$

So
$$[x, y] = [w_1e_1 + w_2e_2, v_1e_1 + v_2e_2]$$

 $= [w_1e_1, v_1e_1 + v_2e_2] + [w_2e_2, v_1e_1 + v_2e_2]$
 $= [w_1e_1, v_1e_1] + [w_1e_1, v_2e_2] + [w_2e_2, v_1e_1] + [w_2e_2, v_2e_2]$
 $= w_1v_1[e_1, e_1] + w_1v_2[e_1, e_2] + w_2v_1[e_2, e_1] + w_2v_2[e_2, e_2]$
 $= w_1v_1L_{11} + w_1v_2L_{12} + w_2v_1L_{21} + w_2v_2L_{22}$

This means that the Lie Bracket is fully described by the matrix, L

Let's take another look at L

Let's take another look at LConsider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ij} = [e_i, e_j]$

Let's take another look at LConsider the Lie Bracket, with bases e_1,e_2,\ldots,e_n Formally, $L_{ij}=[e_i,e_j]$

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}$$

Let's take another look at LConsider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ij} = [e_i, e_j]$

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}$$

What is special about $[e_i, e_i]$?

Let's take another look at LConsider the Lie Bracket, with bases e_1,e_2,\ldots,e_n Formally, $L_{ij}=[e_i,e_j]$

$$L = \begin{pmatrix} L_{11} & L_{12} & \cdots & L_{1n} \\ L_{21} & L_{22} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & L_{nn} \end{pmatrix}$$

What is special about $[e_i, e_i]$? $[e_i, e_i] = \mathbf{0}$

Let's take another look at LConsider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ij} = [e_i, e_j]$

$$L = \begin{pmatrix} \mathbf{0} & L_{12} & \cdots & L_{1n} \\ L_{21} & \mathbf{0} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & \mathbf{0} \end{pmatrix}$$

Let's take another look at LConsider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ij} = [e_i, e_j]$

$$L = \begin{pmatrix} \mathbf{0} & L_{12} & \cdots & L_{1n} \\ L_{21} & \mathbf{0} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & \mathbf{0} \end{pmatrix}$$

Given $[e_i, e_j]$, what do we know about $[e_j, e_i]$?

Let's take another look at L Consider the Lie Bracket, with bases e_1,e_2,\ldots,e_n Formally, $L_{ij}=[e_i,e_j]$

$$L = \begin{pmatrix} \mathbf{0} & L_{12} & \cdots & L_{1n} \\ L_{21} & \mathbf{0} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ L_{n1} & L_{n2} & \cdots & \mathbf{0} \end{pmatrix}$$

Given $[e_i, e_j]$, what do we know about $[e_j, e_i]$? $[e_i, e_j] = -[e_j, e_i]$

Let's take another look at LConsider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ij} = [e_i, e_j]$

$$L = \begin{pmatrix} \mathbf{0} & L_{12} & \cdots & L_{1n} \\ -L_{12} & \mathbf{0} & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ -L_{1n} & -L_{2n} & \cdots & \mathbf{0} \end{pmatrix}$$

Consider the map $[e_1,]: \mathfrak{g} \to \mathfrak{g}$. Can anyone see the matrix representation of $[e_1,]$?

Let's take another look at LConsider the Lie Bracket, with bases e_1, e_2, \ldots, e_n Formally, $L_{ij} = [e_i, e_j]$

$$L = \begin{pmatrix} 0 & L_{12} & \cdots & L_{1n} \\ -L_{12} & 0 & \cdots & L_{2n} \\ \vdots & & \ddots & \vdots \\ -L_{1n} & -L_{2n} & \cdots & 0 \end{pmatrix}$$

Consider the map $[e_1,]: \mathfrak{g} \to \mathfrak{g}$. Can anyone see the matrix representation of $[e_1,]$?

As before, we'll investigate the 2 dimensional example.

As before, we'll investigate the 2 dimensional example. Let

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix},$$

As before, we'll investigate the 2 dimensional example. Let

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix},$$

$$x = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}, \quad y = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

As before, we'll investigate the 2 dimensional example. Let

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix},$$

$$x = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}, \quad y = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$x^{T}L = (w_1w_2)\begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} = (w_1L_{11} + w_2L_{12}, w_1L_{12} + w_2L_{22})$$

As before, we'll investigate the 2 dimensional example. Let

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix},$$

$$x = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}, \quad y = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
$$x^T L = \begin{pmatrix} w_1 w_2 \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} = \begin{pmatrix} w_1 L_{11} + w_2 L_{12}, w_1 L_{12} + w_2 L_{22} \end{pmatrix}$$
$$(x^T L) y = \begin{pmatrix} w_1 L_{11} + w_2 L_{12}, w_1 L_{12} + w_2 L_{22} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

As before, we'll investigate the 2 dimensional example. Let

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix},$$

$$x = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}, \quad y = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$x^T L = \begin{pmatrix} w_1 w_2 \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} = \begin{pmatrix} w_1 L_{11} + w_2 L_{12}, w_1 L_{12} + w_2 L_{22} \end{pmatrix}$$

$$(x^T L) y = \begin{pmatrix} w_1 L_{11} + w_2 L_{12}, w_1 L_{12} + w_2 L_{22} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_1 v_1 L_{11} + w_2 v_1 L_{12} + w_1 v_2 L_{12} + w_2 v_2 L_{22} \end{pmatrix}$$

As before, we'll investigate the 2 dimensional example. Let

$$L = \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix},$$

with

$$x = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}, \quad y = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$x^T L = \begin{pmatrix} w_1 w_2 \end{pmatrix} \begin{pmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{pmatrix} = \begin{pmatrix} w_1 L_{11} + w_2 L_{12}, w_1 L_{12} + w_2 L_{22} \end{pmatrix}$$

$$(x^T L) y = \begin{pmatrix} w_1 L_{11} + w_2 L_{12}, w_1 L_{12} + w_2 L_{22} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$= \begin{pmatrix} w_1 v_1 L_{11} + w_2 v_1 L_{12} + w_1 v_2 L_{12} + w_2 v_2 L_{22} \end{pmatrix}$$

That is $[x, y] = x^T L y$

What does Abelian \mathbb{R}^3 look like in this form?

What does Abelian \mathbb{R}^3 look like in this form? Recall that a Lie Algebra is Abelian if

What does Abelian \mathbb{R}^3 look like in this form? Recall that a Lie Algebra is Abelian if $[x,y]=\mathbf{0}\ \forall x,y\in\mathbb{R}^3$

What does Abelian \mathbb{R}^3 look like in this form? Recall that a Lie Algebra is Abelian if $[x,y] = \mathbf{0} \ \forall x,y \in \mathbb{R}^3$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

What does Abelian \mathbb{R}^3 look like in this form? Recall that a Lie Algebra is Abelian if $[x,y] = \mathbf{0} \ \forall x,y \in \mathbb{R}^3$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

What is the center of Abelian \mathbb{R}^3

Examples of Cross Product over \mathbb{R}^{3}

What does the the cross product on $\ensuremath{\mathbb{R}}^3$ look like in this form?

Examples of Cross Product over \mathbb{R}^3

What does the the cross product on \mathbb{R}^3 look like in this form?

$$[e_1,e_2]=e_3$$

$$[e_1,e_3]=-e_2$$

$$[e_2,e_3]=e_1$$

Examples of Cross Product over \mathbb{R}^3

What does the the cross product on \mathbb{R}^3 look like in this form?

$$[e_1, e_2] = e_3$$

$$[e_1, e_3] = -e_2$$

$$[e_2, e_3] = e_1$$

$$\begin{pmatrix} \mathbf{0} & e_3 & -e_2 \\ -e_3 & \mathbf{0} & e_1 \\ e_2 & -e_1 & \mathbf{0} \end{pmatrix}$$

Examples of Cross Product over \mathbb{R}^3

What does the the cross product on \mathbb{R}^3 look like in this form?

$$[e_1, e_2] = e_3$$

$$[e_1, e_3] = -e_2$$

$$[e_2, e_3] = e_1$$

$$\begin{pmatrix} \mathbf{0} & e_3 & -e_2 \\ -e_3 & \mathbf{0} & e_1 \\ e_2 & -e_1 & \mathbf{0} \end{pmatrix}$$

What is the center of \mathbb{R}^3 with the cross product?

How could the three dimensional Heisenberg Algebra be represented?

How could the three dimensional Heisenberg Algebra be represented? $[e_1,e_2]=e_3$ for bases $e_1,e_2,e_3\in\mathfrak{h}_3$ And all other brackets zero

How could the three dimensional Heisenberg Algebra be represented? $[e_1,e_2]=e_3$ for bases $e_1,e_2,e_3\in\mathfrak{h}_3$ And all other brackets zero

$$\begin{pmatrix} 0 & e_3 & 0 \\ -e_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

How could the three dimensional Heisenberg Algebra be represented? $[e_1,e_2]=e_3$ for bases $e_1,e_2,e_3\in\mathfrak{h}_3$ And all other brackets zero

$$\begin{pmatrix} 0 & e_3 & 0 \\ -e_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

What is the center of \mathfrak{h}_3 ?

\$\text{h}_3's Lie Bracket

How could the three dimensional Heisenberg Algebra be represented? $[e_1,e_2]=e_3 \text{ for bases } e_1,e_2,e_3\in \mathfrak{h}_3$ And all other brackets zero

$$\begin{pmatrix} 0 & e_3 & 0 \\ -e_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

What is the center of \mathfrak{h}_3 ? The center is the span of $\{e_3\}$.

$$\langle e_i, e_j \rangle = E_{ij}$$

$$\langle e_i, e_j \rangle = E_{ij}$$

$$E = \begin{pmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ E_{21} & E_{22} & \cdots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{n1} & E_{n2} & \cdots & E_{nn} \end{pmatrix}$$

The Inner Product can be represented by a matrix very similarly to the Lie Bracket.

$$\langle e_i, e_j \rangle = E_{ij}$$

$$E = \begin{pmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ E_{21} & E_{22} & \cdots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{n1} & E_{n2} & \cdots & E_{nn} \end{pmatrix}$$

Recall that $\langle e_i, e_j \rangle = \langle e_j, e_i
angle$

$$\langle e_i, e_j \rangle = E_{ij}$$

$$E = \begin{pmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ E_{21} & E_{22} & \cdots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{n1} & E_{n2} & \cdots & E_{nn} \end{pmatrix}$$

The Inner Product can be represented by a matrix very similarly to the Lie Bracket.

$$\langle e_i, e_j \rangle = E_{ij}$$

$$E = \begin{pmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ E_{12} & E_{22} & \cdots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{1n} & E_{2n} & \cdots & E_{nn} \end{pmatrix}$$

The Inner Product can be represented by a matrix very similarly to the Lie Bracket.

$$\langle e_i, e_j \rangle = E_{ij}$$

$$E = \begin{pmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ E_{12} & E_{22} & \cdots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{1n} & E_{2n} & \cdots & E_{nn} \end{pmatrix}$$

The Inner Product can be represented by a matrix very similarly to the Lie Bracket.

$$\langle e_i, e_j \rangle = E_{ij}$$

$$E = \begin{pmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ E_{12} & E_{22} & \cdots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{1n} & E_{2n} & \cdots & E_{nn} \end{pmatrix}$$

Recall also that the inner product has additional properties.

The Inner Product can be represented by a matrix very similarly to the Lie Bracket.

$$\langle e_i, e_j \rangle = E_{ij}$$

$$E = \begin{pmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ E_{12} & E_{22} & \cdots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{1n} & E_{2n} & \cdots & E_{nn} \end{pmatrix}$$

Recall also that the inner product has additional properties.

Postive Definite: $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \implies x = \mathbf{0}$

And ${\bf 0}$ canot be a basis vector because it is linearly dependent with all vectors.

So $e_{ii} > 0$

The Inner Product can be represented by a matrix very similarly to the Lie Bracket.

$$\langle e_i, e_j \rangle = E_{ij}$$

$$E = \begin{pmatrix} E_{11} & E_{12} & \cdots & E_{1n} \\ E_{12} & E_{22} & \cdots & E_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ E_{1n} & E_{2n} & \cdots & E_{nn} \end{pmatrix}$$

Recall also that the inner product has additional properties.

Postive Definite: $\langle x, x \rangle > 0$ and $\langle x, x \rangle = 0 \implies x = \mathbf{0}$

And ${\bf 0}$ canot be a basis vector because it is linearly dependent with all vectors.

So $e_{ii} > 0$

$$\langle e_i, e_j \rangle = 0$$

$$\langle e_i, e_j \rangle = 0$$

$$\langle e_i, e_i \rangle = 1$$

$$\langle e_i, e_j \rangle = 0$$

$$\langle e_i, e_i \rangle = 1$$

$$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Matrix representation of the j-maps

Let $\mathfrak n$ be a 2-step nilpotent Lie Algebra with $\mathfrak v$ as the non-center and $\mathfrak z$ as the center.

Recall that the Lie bracket on a 2-step nilpotent Lie algebra is a bilinear map $[\ ,\]:\mathfrak{v}\times\mathfrak{v}\to\mathfrak{z}.$

So for every $z\in \mathfrak{z}$, one can define a linear transformation $j_z:\mathfrak{v}\to\mathfrak{v}$ by the identity

$$\langle y, j_z(x)\rangle_{\mathfrak{v}} = \langle z, [x, y]\rangle_{\mathfrak{z}}.$$

We can then use the same methods as before to construct matrix representations of $\langle \; , \; \rangle_{\mathfrak v}$ and $[\; , \;]$ to find a matrix representation for j_z .

Matrix representation of the j-maps

By linearity, we will know how to construct any j-map, if we know the j-maps corresponding to basis vectors of \mathfrak{z} .

Suppose
$$\mathfrak{z} = \text{span}\{z_1, z_2, \ldots, z_m\}.$$

Then for any z_k , the j-map $j_{z_k} : \mathfrak{v} \to \mathfrak{v}$ is given by

$$\langle y, j_{z_k}(x) \rangle_{v} = \langle z_k, [x, y] \rangle_{s}$$

 $y^T E(J_{z_k}x) = z_k^T (x^T L y)$
 $y^T (EJ_{z_k})x = y^T (L^k)^T x$

taking advantage of some clever stack-matrix manipulations.

Matrix representation of the *j*-maps

Since $y^T(EJ_{z_k})x = y^T(L^k)^Tx$ for arbitrary x and y in v, we deduce that $EJ_{z_k} = (L^k)^T$.

Since $det(E) \neq 0$, we may solve for J_{z_k} to obtain

$$J_{z_k} = E^{-1}(L^k)^T \in \mathbb{R}^{n \times n}.$$

If $z = \zeta_1 z_1 + \zeta_2 z_2 + \cdots + \zeta_m z_m$, where ζ_i are coefficients of the linear combination of z_i , then the map j_z is represented by the matrix

$$J_z = \zeta_1 J_{z_1} + \zeta_2 J_{z_2} + \cdots + \zeta_m J_{z_m}.$$

The matrix J as a stack

The j-maps of a 2-step nilpotent Lie algebra can be described by a stack of matrices of the same type as L.

Indeed, if we let $J^k = J_{z_k}$, then

$$J = \begin{pmatrix} J^1 \\ J^2 \\ \vdots \\ J^m \end{pmatrix}$$

is an $(m \times 1)$ stack of $(n \times n)$ matrices.

Then for $z = (\zeta_1, \zeta_2, \dots, \zeta_m)^T \in \mathfrak{z}$, the map j_z is represented by

$$J_z = z^T J$$
.

The equation $y^T(EJ_z)x = y^T(z^tL^T)x$ must hold for arbitrary vectors x and y in v, implying that

$$EJ_z=z^{\mathrm{t}}L^{\mathrm{T}}.$$

Since $det(E) \neq 0$, it is invertible and

$$J_z = E^{-1}(z^{\mathsf{t}} L^{\mathsf{T}}). \tag{7}$$

This gives us a method to compute the j-map for any z using only matrix computations. Furthermore, if $z=z_k$ is a basis vector of \mathfrak{z} , then $z_k^{\mathtt{t}} L^{\mathrm{T}}$ is just $(L^k)^{\mathrm{T}}$. Thus, for basis vectors z_k , the map j_{z_k} is represented by the matrix

$$J_{z_k}=E^{-1}(L^k)^{\mathrm{T}}.$$

Since the j-maps are linear, knowing how they act on a basis of \mathfrak{z} is good enough. Indeed, we should be able to define a stack of j-maps by

$$J = E^{-1}L^{\mathrm{T}}. (8)$$

The *j*-map j_z should then be $J_z = z^t J$.

What we did

Using the programming language, sage, we created a program that would compute the j-maps of an arbitrary Lie algebra.

Acknowledgements

Justin Ryan for introducing us to Lie Algebras and providing us with Tex Templates, papers and illustrations.

Jonathan Mckibbin for his illustration of the Heisenberg Algebra.