Pizza Restaurant Sales Report

Data Analysis with Python

By
ROHIT KUMAR MAURYA
SHWETA VISHWAKARMA
AND TEAM

Problem Statement

- 1. What days and times do we tend to be busiest?
- 2. How many pizzas are we making during peak periods?
- 3. What are our best and worst-selling pizzas?
- 4. What's our average order value?

About Dataset

Contents:

This pizza sales dataset makes up 12 relevant features:

- **pizza_id:** The unique identifier for each pizza in the dataset.
- order_id: The unique identifier for each pizza order.
- **pizza_name_id**: The identifier for each specific pizza name.
- quantity: The number of pizzas ordered in each transaction.
- order_date: The date when the pizza order was placed.

- **order_time:** The time at which the pizza order was placed.
- unit_price: The price of a single unit of pizza.
- **total_price:** The total price of the pizza order, calculated as the unit price multiplied by the quantity.
- pizza_size: The size or dimensions of the pizza.
 (S,M,L,XL,XXL)
- **pizza_category:** The category or classification of the pizza, indicating its type or style. (Classic, Veggie, Supreme, Chicken)
- pizza_ingredients: The list of ingredients used in the pizza preparation.
- **pizza_name:** The name or label assigned to each specific pizza.

Exploratory Data Analysis and Data Cleaning

Top -5 data of dataset:

	#view first five rows/records Pizza_df.head()												
	order_details_i	d	order_id	pizza_id	quantity	order_date	order_time	unit_price	total_price	pizza_size	pizza_category	pizza_ingredients	pizza_name
0		1	1	hawaiian_m	1	2015-01- 01	11:38:36	13.25	13.25	М	Classic	Sliced Ham, Pineapple, Mozzarella Cheese	The Hawaiian Pizza
1		2	2	classic_dlx_m	1	2015-01- 01	11:57:40	16.00	16.00	М	Classic	Pepperoni, Mushrooms, Red Onions, Red Peppers,	The Classic Deluxe Pizza
2		3	2	five_cheese_l	1	2015-01- 01	11:57:40	18.50	18.50	L	Veggie	Mozzarella Cheese, Provolone Cheese, Smoked Go	The Five Cheese Pizza
3		4	2	ital_supr_l	1	2015-01- 01	11:57:40	20.75	20.75	L	Supreme	Calabrese Salami, Capocollo, Tomatoes, Red Oni	The Italian Supreme Pizza
4		5	2	mexicana_m	1	2015-01- 01	11:57:40	16.00	16.00	М	Veggie	Tomatoes, Red Peppers, Jalapeno Peppers, Red O	The Mexicana Pizza

Bottom-5 data of dataset:

<pre>#view last five rows/records Pizza_df.tail()</pre>												
	order_details_id	order_id	pizza_id	quantity	order_date	order_time	unit_price	total_price	pizza_size	pizza_category	pizza_ingredients	pizza_name
48615	48616	21348	ckn_alfredo_m	1	2015-12- 31	21:23:10	16.75	16.75	М	Chicken	Chicken, Red Onions, Red Peppers, Mushrooms, A	The Chicken Alfredo Pizza
48616	48617	21348	four_cheese_l	1	2015-12- 31	21:23:10	17.95	17.95	L	Veggie	Ricotta Cheese, Gorgonzola Piccante Cheese, Mo	The Four Cheese Pizza
48617	48618	21348	napolitana_s	1	2015-12- 31	21:23:10	12.00	12.00	S	Classic	Tomatoes, Anchovies, Green Olives, Red Onions,	The Napolitana Pizza
48618	48619	21349	mexicana_l	1	2015-12- 31	22:09:54	20.25	20.25	L	Veggie	Tomatoes, Red Peppers, Jalapeno Peppers, Red O	The Mexicana Pizza
48619	48620	21350	bbq_ckn_s	1	2015-12- 31	23:02:05	12.75	12.75	S	Chicken	Barbecued Chicken, Red Peppers, Green Peppers,	The Barbecue Chicken Pizza

Total no of rows and columns in the dataset:

```
#total no. of rows & columns
print("No of rows and columns in the dataset:")
Pizza_df.shape

No of rows and columns in the dataset:
(48620, 18)
```

Information about the dataset with its datatype:

Summary of data from dataset:

<pre># TO summarize the dataframe on Pizza_df.describe()</pre>									
	order_details_id	order_id	quantity	order_date	unit_price	total_price			
count	48620.000000	48620.000000	48620.000000	48620	48620.000000	48620.000000			
mean	24310.500000	10701.479761	1.019622	2015-06-29 11:03:43.611682560	16.494132	16.821474			
min	1.000000	1.000000	1.000000	2015-01-01 00:00:00	9.750000	9.750000			
25%	12155.750000	5337.000000	1.000000	2015-03-31 00:00:00	12.750000	12.750000			
50%	24310.500000	10682.500000	1.000000	2015-06-28 00:00:00	16.500000	16.500000			
75%	36465.250000	16100.000000	1.000000	2015-09-28 00:00:00	20.250000	20.500000			
max	48620.000000	21350.000000	4.000000	2015-12-31 00:00:00	35.950000	83.000000			
std	14035.529381	6180.119770	0.143077	NaN	3.621789	4.437398			

Pizza_df.describe(include='object')										
	pizza_id	order_time	pizza_size	pizza_category	pizza_ingredients	pizza_name				
count	48620	48620	48620	48620	48620	48620				
unique	91	16382	5	4	32	32				
top	big_meat_s	12:32:00	L	Classic	Pepperoni, Mushrooms, Red Onions, Red Peppers,	The Classic Deluxe Pizza				
freq	1811	26	18526	14579	2416	2416				

Checking null value in dataset:

Pizza_df.isna().sum	1()
order_details_id	0
order_id	0
pizza_id	0
quantity	0
order_date	0
order_time	0
unit_price	0
total_price	0
pizza_size	0
pizza_category	0
pizza_ingredients	0
pizza_name	0
dtype: int64	

Data Analysis and Visualization

Extracting Hour form 'order time' column in the dataset:

```
Pizza df['order time']=Pizza df['order time'].astype('string')
Pizza_df[['Hour','Minute','Second']] = Pizza_df['order_time'].str.split(":", expand=True)
Pizza_df["Hour"].value_counts()
Hour
12
     6543
    6203
13
    5359
18
    5143
17
19 4350
16 4185
14 3521
20 3487
15 3170
    2672
11
    2528
21
22
    1370
     17
10
09
Name: count, dtype: Int64
```

• Plotting hour wise:

```
sns.countplot(data=Pizza_df, x="Hour", palette="plasma")
plt.xlabel("Hour",fontsize=10, color='green')
plt.ylabel("Frequency",fontsize=10,color="green")
plt.title("HOUR", color='Purple')
plt.show()
```


Extracting Days from order_date column in the dataset:

```
Pizza_df['order_dates'] = Pizza_df['order_date'].dt.day_name()
Pizza_df['order_dates'].value_counts()
order_dates
Friday
       8106
Saturday
            7355
Thursday
           7323
Wednesday
            6797
Tuesday
            6753
Monday
            6369
Sunday
            5917
Name: count, dtype: int64
```

• Plotting Day wise:

```
sns.countplot(data = Pizza_df, x = 'order_dates', palette ="husl")
plt.xlabel('Days', fontsize=10, color="green")
plt.ylabel('Frequency', fontsize=10, color="green")
plt.title("DAYS", color="green")
plt.show()
```


 Extracting the month from the 'order_month' column in the dataset:

```
Pizza_df['order_month'] = pd.DatetimeIndex (Pizza_df['order_date']).month
Pizza_df.loc[(Pizza_df['order_month']==1), 'order_month'] = 'January'
Pizza_df.loc[(Pizza_df['order_month']==2), 'order_month'] = 'February'
Pizza_df.loc[(Pizza_df['order_month']==3), 'order_month'] = 'March'
Pizza_df.loc[(Pizza_df['order_month']==4), 'order_month'] = 'April'
Pizza_df.loc[(Pizza_df['order_month']==5), 'order_month'] = 'May'
Pizza df.loc[(Pizza df['order month']==6), 'order month'] = 'June'
Pizza df.loc[(Pizza df['order month']==7), 'order month'] = 'July'
Pizza df.loc[(Pizza df['order month']==8), 'order month'] = 'August'
Pizza df.loc[(Pizza df['order month']==9), 'order month'] = 'September'
Pizza df.loc[(Pizza df['order month']==10), 'order month'] = 'October'
Pizza df.loc[(Pizza df['order month']==11), 'order month'] = 'November'
Pizza_df.loc[(Pizza_df['order_month']==12), 'order_month'] = 'December'
Pizza df['order_month'].value_counts()
order month
July 4301
           4239
May
March
           4186
November
           4185
January
August
           4156
           4094
April
           4067
           4025
June
February 3892
           3859
December
September 3819
           3797
October 0
Name: count, dtype: int64
```

Plotting Month Wise:

```
sns.countplot(data=Pizza_df, x='order_month', palette='cubehelix')
plt.xticks(rotation=90)
plt.xlabel("Months", fontsize=10, color="red")
plt.ylabel("Frequency", fontsize=10, color="red")
plt.title("MONTHS", color='blue')
plt.show()
```


Counting the pizza_id value:

```
Pizza_df.pizza_id.value_counts()
pizza_id
big_meat_s
                1811
thai_ckn_l
                 1365
five_cheese_l
                1359
four_cheese_1
                1273
classic_dlx_m
                 1159
mexicana_s
calabrese_s
                  99
ckn_alfredo_s
                   96
                   94
green_garden_l
the_greek_xxl
                   28
Name: count, Length: 91, dtype: int64
```

Pizza_ID wise Plotting:

```
fig, ax = plt.subplots(figsize=(15,5))
sns.countplot(data=Pizza_df,x='pizza_id',palette='blend:orange,green')
plt.xticks(rotation=90)
plt.xlabel('Pizza_ID',fontsize=10,color='blue')
plt.ylabel('Frequency',fontsize=10,color='blue')
plt.title('PIZZA ORDER CODE', color='blue')
plt.show()
```


Counting the quantity value:

```
Pizza_df.quantity.value_counts()

quantity
1 47693
2 903
3 21
4 3
Name: count, dtype: int64
```

• Quantity wise Plotting:

```
sns.countplot(data=Pizza_df,x='quantity',palette='cubehelix')
plt.xlabel('quantity', fontsize=10, color='black')
plt.title('QUANTITY',color='black')
plt.show()
```


• Counting the pizza_size value:

```
Pizza_df.pizza_size.value_counts()

pizza_size
L 18526
M 15385
S 14137
XL 544
XXL 28
Name: count, dtype: int64
```

• Pizza Size wise Plotting:

```
sns.countplot(data=Pizza_df, x='pizza_size', palette='pastel')
plt.xlabel('Pizza_Size',fontsize=10,color='red')
plt.ylabel('Frequency',fontsize=10,color='red')
plt.title('SIZE', color='red')
plt.show()
```


• Pizza Size wise Pie Plotting:

```
labels = Pizza_df['pizza_size'].value_counts().index
sizes = Pizza_df['pizza_size'].value_counts()
plt.figure(figsize= (8,10))

colors = ['lightgreen','skyblue','hotpink','orange','black']
plt.pie(sizes, labels=labels, rotatelabels=False, autopct='%1.1f%%', colors=colors, shadow=True,startangle=60,explode=(0,0,0,0,0.8))
plt.show()
```


Counting the pizza_size value:

```
Pizza_df.pizza_category.value_counts()

pizza_category
Classic 14579
Supreme 11777
Veggie 11449
Chicken 10815
Name: count, dtype: int64
```

• Pizza Category wise Plotting:

```
sns.countplot(data=Pizza_df,x="pizza_category",palette="hls")
plt.xlabel("Category",fontsize=10,color="orange")
plt.ylabel("Frequency",fontsize=10,color="orange")
plt.title("PİZZA CATEGORY",color="orange")
plt.show()
```


• Pizza Category wise Pie Plotting:

```
labels = Pizza_df["pizza_category"].value_counts().index
sizes = Pizza_df["pizza_category"].value_counts()
colors = ['#ff9999','#66b3ff','#990f99','#ffcc89',"pink","yellow"]
plt.pie(sizes, labels=labels, rotatelabels=False, autopct='%1.1f%%',colors=colors,shadow=True, startangle=45)
plt.show()
```


Top-10 best-selling pizzas:

```
# Group by 'pizza_name' and calculate the total quantity sold
pizza_sales = Pizza_df.groupby('pizza_name')['quantity'].sum().sort_values(ascending=False)

top_n = 10  # Number of top-selling and worst-selling pizzas to display
plt.figure(figsize=(8, 4))

# Plot the top N best-selling pizzas
plt.bar(pizza_sales.head(top_n).index, pizza_sales.head(top_n))
plt.xlabel('Pizza Name')
plt.ylabel('Total Quantity Sold')
plt.title(f'Top {top_n} Best-Selling Pizzas')
plt.xticks(rotation=90)

plt.show()
```


• 10 Worst-Selling Pizzas:

```
# Group by 'pizza_name' and calculate the total quantity sold
pizza_sales = Pizza_df.groupby('pizza_name')['quantity'].sum().sort_values(ascending=False)

# Plotting
top_n = 10  # Number of top-selling and worst-selling pizzas to display
plt.figure(figsize=(12, 6))

# Plot the top N best-selling pizzas
plt.bar(pizza_sales.tail(top_n).index, pizza_sales.tail(top_n))
plt.xlabel('Pizza Name')
plt.ylabel('Total Quantity Sold')
plt.title(f' {top_n} Worst-Selling Pizzas')
plt.xticks(rotation=90)
```


• Pizzas Ordered During Peak Periods:

```
# Convert 'order_time' to datetime
Pizza_df['order_time'] = pd.to_datetime(Pizza_df['order_time'])

# Group by date and time, and sum the quantity of pizzas
peak_period_data = Pizza_df.groupby(['order_date', 'order_time'])['quantity'].sum().reset_index()

# Plotting
plt.figure(figsize=(12, 6))
plt.plot(peak_period_data['order_time'], peak_period_data['quantity'], marker='o', linestyle='-')
plt.xlabel('Order Time')
plt.ylabel('Total Pizzas Ordered')
plt.title('Pizzas Ordered During Peak Periods')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```


Solution of Problem Statement

- 1. According to the plotting we can see that the busiest day is Friday and the busiest time is 12 PM.
- 2. Approx 29 pizzas are made during peak periods.
- 3. Best selling pizza is 'The Classic Deluxe Pizza' and the worst selling pizza is 'The Brie Carre Pizza'.
- 4. The average order value is 16.821473673385437

Conclusion:

- Despite the pizza shop opening at 9, there are hardly any orders placed at that time.
- The Big Meat Pizza is a top choice among customers.
- The majority of customers opt for a single pizza.
- Large-sized pizzas are the most frequently ordered, while XXL-sized pizzas are the least popular.