ADVERSARIAL ATTACKS & DEFENCES ON PHISHING DETECTION MODELS

Prepared by: Archana Sreekumar (AM.EN.P2CSN18005)

Mentored by: Dr Krishnashree Achuthan

Collaborator: Mr Gilad Gressel, Georgia Tech, USA

OVERVIEW

- What is phishing?
- Adversarial attack on ML model
- Problem statement
- Dataset used
- Basic architecture
- Method of feature selection
- Training & testing using dataset
- Modification & testing on dataset
- Observations
- Adversarial training
- Roadmap until next review
- Conclusion

What is Phishing?

"Phishing is the act of tricking people into entering their sensitive information by disguising oneself as a trustworthy entity"

Source: https://whatismyipaddress.com/phishing

http:// Your. Bank Password?

Adversarial Attacks on ML Model

"An adversary crafts a malicious input sample with the intention of causing the machine learning model to make an incorrect prediction"

Source: Explaining and Harnessing Adversarial Examples, Goodfellow et al.[5]

Problem Statement

"To learn whether phishing detection models are vulnerable to adversarial attacks and to defend the model against such adversarial attacks."

- Carefully crafted adversarial examples could evade phishing detection models.
- Millions of user accounts could be compromised through the misclassification of phishing detection models under adversarial attack.

Adversarial Sampling Attack Against Phishing Detection

- Demonstrate attack on phishing detection models
- Dataset consist of a number of features for each instance and corresponding label.
- '-1' indicates a legitimate page and '1' indicates phishing page.
- Different combinations of features are considered.
- Original phishing instance and selected features used to create adversarial sample.

Dataset Used

Phishing dataset from UCI Machine learning repository

O Dataset 1 [2]

Number of attributes: 30

Number of instances: 2456

Attribute characteristics: Integer

	Α	В	С	D	E	F	G	Н	
IΡ	add	URL_length	Shortening_serv	having_at_symbol	double_slash	prefix_suffix	sub_domain	ssl_final state	
Г	-1	1	. 1	1	-1	-1	-1	-1	
	1	1	. 1	1	1	-1	0	1	
	1	0	1	1	1	-1	-1	-1	
	1	C	1	1	1	-1	-1	-1	
	1	0	-1	1	1	-1	1	1	
	-1	C	-1	1	-1	-1	1	1	
	1	0	-1	1	1	-1	-1	-1	
	4		4	4	4	4	4	4	

O Dataset 2 [3]

Number of attributes: 10

Number of instances: 1353

Attribute characteristics: Integer

A	В	C	D	E	F	G	H	I	J
SFH	popup	ssl_fs	rqst_url	url_of_anchor	web_trffc	url_length	age_of_domain	ip address	Result
1	-1	1	-1	-1	. 1	1	1	0	0
-1	-1	-1	-1	-1	. 0	1	1	1	1
1	-1	0	0	-1	. 0	-1	1	0	1
1	. 0	1	-1	-1	. 0	1	1	0	0
-1	-1	1	-1	C	0	-1	1	0	1
-1	-1	1	-1	-1	. 1	0	-1	0	1
		-			-			-	

Basic Architecture

Training phase:

X – input data

y – output

Test phase:

X – input data without modification

X' – input data with modification

y,y' – prediction

Method of Feature Selection

- Label 1 indicates phishing instance & -1 indicates legitimate instance
- Take a set of phishing instances
- Replace all feature values with -1 which indicates a 'legitimate' value and check prediction
- Change the value of each feature sequentially to 1 and check the prediction by the model
- Select those features which upon changing to 1 caused a change in prediction to -1.

_	<pre>1 data2 = test_data 2 data2 = data2.replace(1,-1) 3 data2 = data2.replace(0,-1) 4 data2.head()</pre>									
	SFH	popup	ssl_fs	rqst_url	url_of_anchor	web_trffc	url_length	age_of_domain	ip address	
0	-1	-1	-1	-1	-1	-1	-1	-1	-1	
1	-1	-1	-1	-1	-1	-1	-1	-1	-1	
2	-1	-1	-1	-1	-1	-1	-1	-1	-1	
3	-1	-1	-1	-1	-1	-1	-1	-1	-1	
4	-1	-1	-1	-1	-1	-1	-1	-1	-1	

Training & Testing Using Same Data

- Model is trained using phishing and legitimate instances in the dataset
- Testing is done using the same phishing instances in the dataset with and without modification

Training & Testing Using Different Data

- From the dataset 200 phishing instances are separated out
- Model is trained using phishing and legitimate instances in the remaining dataset
- Testing is done using the 200 phishing instances with and without modification

Modification & Testing on Dataset 1

Result '1' indicate phishing instance & '-1' indicates legitimate instance

Result before feature modification

Result after feature modification

Modification & Testing on Dataset 2

Feature values 1 for legitimate & -1 for phish

Result before feature modification

Result after feature modification

Observations - Dataset 1

Train Data	Test Data	Accuracy before modification (%)	Accuracy after modification (%)
Complete dataset (phish+leg)	all phish	96	14
Without 200 phish	200 phish	96.5	9.5

Observations - Dataset 2

Train Data	Test Data	Accuracy before modification (%)	Accuracy after modification (%)
Complete dataset (phish+leg)	all phish	92	0
Without 200 phish	200 phish	82	0

Adversarial Training on Dataset-1

Adding adversarial samples to training data

Dataset used for adversarial training

Increase in accuracy with modified dataset

Adversarial Training on Dataset-2

Adding adversarial samples in training set

Dataset used for adversarial training

Increase in accuracy with modified dataset

Roadmap Until Next Review

- Construct a classifier using neural networks.
- Add more real valued features to the dataset.
- Manipulate the features using an optimization method rather than random change to craft an adversarial example.
- Add the manipulated features to the website source code and check the functionality of phishing website.

Conclusion

- Adversarial attacks represent a concrete problem in the field of machine learning.
- The vulnerability of phishing detection models to adversarial attacks could lead to exposure of sensitive information of millions of users.
- There is a need for finding a method to craft an adversarial example which scales inorder to find out the possible vulnerabilities of the model and also to define a robust defence mechanism.

References

- [1] H. Shirazi, B. Bezawada, I. Ray, and C. Anderson, "Adversarial Sampling Attacks Against Phishing Detection," Data and Applications Security and Privacy XXXIII Lecture Notes in Computer Science, pp. 83–101, 2019.
- [2] Abdelhamid et al.,(2014a) Phishing Detection based Associative Classification Data Mining. Expert Systems With Applications (ESWA), 41 (2014) 5948–5959.
- [3] Rami M Mohammad, Fadi Thabtah, and Lee McCluskey. "An assessment of features related to phishing websites using an automated technique". In: 2012 International Conference for Internet Technology and Secured Transactions. IEEE. 2012, pp. 492–497.
- [4] H. Shirazi, B. Bezawada, I. Ray, and C. Anderson, "Adversarial Sampling Attacks Against Phishing Detection," Data and Applications Security and Privacy XXXIII Lecture Notes in Computer Science, pp. 83–101, 2019.
- [5] I. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and Harnessing Adversarial Examples," Google AI, 01-Jan-1970. [Online]. Available: https://ai.google/research/pubs/pub43405. [Accessed: 21-Sep-2019].

Thank You