Department of Statistics, The Chinese University of Hong Kong STAT5010 Advanced Statistical Inference (Term 1, 2020–21)

Mid-term Test on 2nd November 2020 (3:30 p.m. – 5:30 p.m. [+5 min grace period])

Instructions to Candidates

- 1. Attempt all five questions.
- 2. While every attempt is made to avoid defective questions, sometimes they do occur. If you believe a question is defective, the invigilators CANNOT give you any guidance beyond the instructions on the exam booklet.
- 3. The answer script in one single file should be submitted in .pdf format of size less than or equal to 5Mb to the collection box set up in Blackboard by 5:30 p.m. GMT+8 on 2nd November 2020. Please reserve at least 15 minutes of the exam time to save, convert and upload the file. No late submission or file in a wrong format will be entertained.
- 1. Let X_1, \ldots, X_n be a random sample from a distribution with pdf $f(x; \theta)$. Consider a statistic S(X).
 - (a) What does it mean for S to be sufficient for θ ?
 - (b) What does it mean for S to be complete for the family of distributions $\{f_S(\cdot \mid \theta) : \theta \in \Omega\}$? Why are complete statistics important for finding uniformly minimum variance unbiased estimators (UMVUEs)?
- 2. (a) Let X_1, \ldots, X_n be i.i.d. from N(0,1), show that \bar{X} and $(X_1 \bar{X}, \ldots, X_n \bar{X})$ are independent.
 - (b) Show that if T(X) is a complete and sufficient statistic, then T is also minimal sufficient.
 - (c) Let T be a sufficient statistic for $\mathcal{P}=\{P_{\theta}:\theta\in\Omega\}$, and let δ be an estimator of $g(\theta)$, and define $\eta(T)=E(\delta(X)\mid T)$. If $\theta\in\Omega$, $R(\theta,\delta)<\infty$ and $L(\theta,\cdot)$ is convex, where $R(\theta,\delta)$ denotes the risk function with respect to L, then $R(\theta,\eta)\leq R(\theta,\delta)$.
- 3. Let X_1, \ldots, X_n be a random sample from the $Gamma(3, \beta)$ distribution where the density of a Gamma (α, β) random variable is given by

$$f(x; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}.$$

- (a) Show that $E(X_1) = 3\beta^{-1}$.
- (b) Find the UMVUE of β . Calculate also the variance of your estimator.
- 4. Let X_1, \ldots, X_n be a random sample from the Poisson distribution with parameter λ . Find the UMVUE for $g(\lambda) = e^{-\lambda}$.

5. Let X_1, \ldots, X_n be observations satisfying

$$X_i = \theta X_{i-1} + \epsilon_i, \quad i = 2, \dots, n,$$

Where $X_1, \epsilon_2, \ldots, \epsilon_n$ are independent with $X_1 \sim N(0, (1-\theta^2)^{-1})$ and $\epsilon_i \sim N(0, 1), i=1,\ldots,n$. The parameter space is $\Omega = \{\theta : -1 < \theta < 1\}$. Show that the Cramér-Rao lower bound for unbiased estimator of θ is given by

$$B_n(\theta) = \frac{(1 - \theta^2)^2}{2\theta^2 + (n - 1)(1 - \theta^2)}.$$