

Análisis Predictivo de Precios y Segmentación de Usuarios en Airbnb

Un enfoque desde la Ciencia de Datos

Angel Soto García Trabajo Final de Grado Grado en Ciencia de Datos

ÍNDICE

- 1 ¿De qué trata la investigación?
- 2 Preguntas de investigación
- 3 Metodología y técnicas empleadas
- 4 Información relevante
- 5 Resultados

¿De qué trata la investigación?

¿De qué trata la investigación?

- Predecir precios Airbnb aplicando ciencia de datos y machine learning en ciudades españolas.

- Determinar factores clave en precios: ubicación, características y servicios ofrecidos.

- Extraer insights valiosos mediante técnicas estadísticas para procesar y mejorar datos.

- Clasificar experiencias de usuarios analizando reseñas con procesamiento del lenguaje natural.
- Análisis temporal del sentimiento, extracción de temas y palabras clave en cada cluster de opiniones.

Preguntas de investigación

Preguntas de investigación

 ¿Qué variables explicativas presentan un mayor impacto en la determinación del precio de los alojamientos en Airbnb?

• ¿Existen patrones latentes en las reseñas de los usuarios que permitan una segmentación significativa basada en su comportamiento y opiniones?

• ¿Es factible construir modelos predictivos que permitan estimar con precisión el precio de un alojamiento a partir de sus características estructurales y descriptivas?

• ¿Cómo difiere la percepción del servicio entre distintos grupos de usuarios identificados mediante técnicas de clustering?

Metodología y técnicas empleadas

Metodología CRISP-DM (Análisis y Predicción de precios)

Comprensión del Negocio: Definición de objetivos para el modelo predictivo.

Comprensión de los Datos: Recolección y exploración preliminar aplicando técnicas estadísticas.

Preparación de los Datos: Limpieza, selección de variables y transformación para el modelado.

Modelado: Construcción y optimización de modelos predictivos de precios.

Evaluación: Valoración de resultados respecto a objetivos iniciales.

Despliegue: Implementación del modelo en dashboard interactivo.

Técnicas usadas I (Análisis y Predicción de precios)

Test de Little: Evalúa aleatoriedad de datos faltantes.

Algoritmo MICE: Imputación de valores faltantes mediante ecuaciones encadenadas.

Rango Intercuartílico: Identifica valores atípicos fuera de 1.5×IQR.

Shapiro-Wilk: Prueba de normalidad en distribuciones.

Kruskal-Wallis: Compara diferencias entre tres o más grupos independientes.

Correlación de Pearson/Spearman: Mide relaciones entre variables numéricas.

Mann-Whitney U: Compara dos grupos independientes sin normalidad.

Intervalo de confianza: Estima rango probable de la media poblacional.

DBSCAN: Clustering espacial basado en densidad.

Técnicas usadas II (Análisis y Predicción de precios)

Índice de Moran: Mide autocorrelación espacial.

Chi-cuadrado: Analiza relaciones entre variables categóricas.

Análisis de Correspondencias: Visualiza relaciones entre categorías.

Test de Levene: Evalúa homogeneidad de varianzas.

PCA: Reduce dimensionalidad preservando información relevante.

Fisher: Prueba asociación en muestras pequeñas.

Cohen's d: Cuantifica tamaño del efecto entre grupos.

Friedman: Compara mediciones repetidas.

LightGBM/Random Forest/XGBoost: Modelos predictivos.

Metodología PLN (Clasificación de usuarios)

Perfiles de usuarios: Se generan características por usuario: número de reseñas, promedio de sentimiento, días activos y longitud promedio de reseñas.

Selección de características: Se usan número de reseñas, sentimiento promedio, días activos y longitud de reseñas para segmentar.

Normalización: Características se normalizan con StandardScaler para igualar escalas.

Reducción dimensional: PCA reduce datos a 2D para visualizar segmentos.

Segmentación con DBSCAN: DBSCAN agrupa usuarios similares

Técnicas usadas (Clasificación de usuarios)

Agregación de datos: Generación de características por usuario (número de reseñas, sentimiento promedio, días activos, longitud de reseñas) mediante agrupación.

Normalización: Aplicación de StandardScaler para estandarizar las características y evitar sesgos por diferencias de escala.

Reducción dimensional: Uso de PCA para proyectar datos en un espacio 2D para visualización.

Clustering con DBSCAN: Empleo de DBSCANpara identificar segmentos de usuarios y outliers.

Visualización: Creación de gráficos de dispersión para mostrar segmentos y outliers en el espacio PCA.

Información relevante

Conjunto inmuebles (Datos relevantes)

Conjunto de datos entrenamiento

Conjunto de datos prueba

(85%): 22491 registros

(15%): 3969 registros

Variables relevantes: tipo de propiedad, tipo de habitación, capacidad de huéspedes, distancia al centro, total de comodidades, noche mínima de estancia

Estadísticas descriptivas variable objetivo en conjunto de prueba

Media: 66.11Mínimo: 10Máximo: 100

Desviación Estándar: 23.02

Conjunto inmuebles (Optimización de hiperparámetros)

Optuna

MÉTRICAS DE RENDIMIENTO EVALUADAS

ERROR ABSOLUTO MEDIO

RAÍZ DEL ERROR CUADRÁTICO MEDIO

COEFICIENTE DE DETERMINACIÓN

ERROR PORCENTUAL MEDIO ABSOLUTO

Conjunto inmuebles (Modelos ML entrenados)

- Máquina de Potenciación del Gradiente Ligero
- Bosque Aleatorio
- Máquina de Potenciación del Gradiente Extremo

View page source

Welcome to LightGBM's documentation!

Conjunto reseñas (Datos relevantes)

Conjunto de datos : 50000 reseñas

Rango de fechas: 2011 - 2024

Localización reseñas: España (Madrid, Barcelona, Sevilla, Valencia, Menorca, Mallorca, Euskadi)

Número óptimo de clusters: 3

Resultados

Clasificación de usuarios

Actividad semanal

Clusters de reseñas en espacio PCA

Tendencias temporales

Sentimiento por cluster

Palabras Clave del Cluster 0

Palabras clave Cluster 1

nice perfect re

Palabras Clave del Cluster 1

Palabras clave Cluster 2

Palabras Clave del Cluster 2

Palabras clave Cluster 3

Temas principales detectados

```
"tema_s_principales": {

"Tema_1": "0.028*\"check\" + 0.021*\"help\" + 0.020*\"give\" + 0.017*\"time\" + 0.015*\"arrive\" + 0.012*\"leave\" + 0.011*\"arrival\" + 0.011*\"not\" + 0.011*\"question\" + 0.010*\"early\"",

"Tema_2": "0.030*\"room\" + 0.018*\"not\" + 0.016*\"bathroom\" + 0.016*\"bathroom\" + 0.016*\"small\" + 0.013*\"kitchen\" + 0.013*\"night\" + 0.011*\"work\" + 0.010*\"shower\" + 0.010*\"bedroom\"",

"Tema_3": "0.074*\"accommodation\" + 0.051*\"pleasant\" + 0.028*\"welcome\" + 0.025*\"locate\" + 0.016*\"description\" + 0.014*\"foot\" + 0.012*\"functional\" + 0.011*\"photo\" + 0.011*\"available\" + 0.011*\"practi

"Tema_4": "0.040*\"apartment\" + 0.038*\"great\" + 0.037*\"stay\" + 0.036*\"location\" + 0.027*\"place\" + 0.027*\"good\" + 0.025*\"clean\" + 0.020*\"recommend\" + 0.019*\"nice\" + 0.017*\"host\"",

"Tema_5": "0.064*\"house\" + 0.034*\"attentive\" + 0.033*\"hostel\" + 0.020*\"attention\" + 0.018*\"department\" + 0.014*\"floor\" + 0.012*\"position\" + 0.011*\"doubt\" + 0.011*\"meter\" + 0.010*\"wide\""
```

Resultados

Predicción y Análisis de precios

Métricas de rendimiento en la prueba

Tras completar la optimización de los hiperparámetros observamos que el modelo LGBM presenta el mejor rendimiento en la prueba

	LGBM	XGBM	RF
RMSE	14.69	14.90	16.39
R2	0.5938	0.582	13.09
MAE	11.14	11.47	0.4939
MAPE	19.22%	19.91%	23.10%

Características más influyentes en el mejor modelo

Métricas de rendimiento por ciudad (gráfica)

Métricas de rendimiento por ciudad (output textual)

,	DE ERRORES POR	CIODIIO	
Métricas	de error por ci	iudad:	
Ciudad	MAE	MAPE (%)	R ²
Madrid	11.22	20.96	0.5917
Barcelona	12.83	24.54	0.4625
Sevilla	11.08	16.42	0.5064
Valencia	9.37	16.62	0.7320
Málaga	9.84	15.20	0.6715
Menorca	10.98	15.68	0.2723
Mallorca	11.85	17.87	0.3922
Girona	10.74	15.25	0.4393
Euskadi	9.82	15.61	0.6700

Correlación entre características clave y precio real

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Ejemplos de predicciones

```
Muestra 1: Real: 94.00, Predicción: 74.25, Error: 19.75

Muestra 2: Real: 81.00, Predicción: 77.87, Error: 3.13

Muestra 3: Real: 24.00, Predicción: 45.37, Error: 21.37

Muestra 4: Real: 57.00, Predicción: 73.29, Error: 16.29

Muestra 5: Real: 90.00, Predicción: 80.50, Error: 9.50 Muestra 1: Real: 94.00, Predicción: 74.25, Error: 19.75

Muestra 2: Real: 81.00, Predicción: 77.87, Error: 3.13

Muestra 3: Real: 24.00, Predicción: 45.37, Error: 21.37

0

Muestra 6: Real: 70.00, Predicción: 76.14, Error: 6.14

Muestra 7: Real: 68.00, Predicción: 68.86, Error: 0.86

Muestra 8: Real: 45.00, Predicción: 58.03, Error: 13.03

Muestra 9: Real: 94.00, Predicción: 82.90, Error: 11.10

Muestra 10: Real: 21.00, Predicción: 39.75, Error: 18.75
```

Conclusiones segmentación de usuarios

Conclusiones predicción de precios

Rendimiento general y evaluación estadística

LGBM demostró el mejor desempeño con un R² de 0.5938 y MAPE de 19.22%, superando consistentemente a XGBoost y Random Forest en todas las métricas evaluadas.

Las estadísticas descriptivas de la variable objetivo (rango 10-100, media 66.11, desviación típica 23.02), el RMSE de 14.69 representa el 16.3% del rango total y 63.8% de la desviación estándar.

MAE de 11.14 equivale al 29.3% del rango intercuartílico (48-86), un valor razonable frente a la variabilidad natural de los datos.

El modelo explica casi el 60% de la variabilidad en un mercado con alta influencia de factores subjetivos no cuantificables, lo que representa un rendimiento satisfactorio.

MAE es significativamente menor que la variabilidad natural (desviación estándar), indicando que el modelo aporta valor predictivo sustancial.

Factores determinantes del precio

Tipo de propiedad: factor más influyente (28.96%)

Tipo de habitación: segundo factor más relevante (12.52%)

Factores principales: Capacidad de alojamiento (6.83%), Distancia al centro (6.76%), Total de comodidades (6.59%)