

Universitatea Politehnica din București Facultatea de Automatică și Calculatoare Departamentul de Calculatoare

ARBORI AVL

Introducere

 Arborii AVL (Adelson-Velskii şi Landis) sunt arbori binari de căutare, în care fiecare subarbore este echilibrat în înălţime

Pentru a recunoaște rapid o dezechilibrare a arborelui, s-a introdus în fiecare nod un câmp suplimentar, care să arate fie înălțimea nodului, fie diferența dintre înălțimile celor doi subarbori pentru acel nod (-1, 0, 1 pentru noduri "echilibrate" și -2 sau +2 la producerea unui dezechilibru)

Echilibrarea arborelui

 La adăugarea unui nod nou (ca frunză), factorul de echilibru al unui nod interior se poate modifica la -2 (adăugare la subarborele din stânga) sau la +2 (adăugare la subarborele din dreapta), ceea ce va face necesară modificarea structurii arborelui

Echilibrarea arborelui

 Echilibrarea se face prin rotații simple sau duble, însoțite de recalcularea înălțimii fiecărui nod întâlnit, parcurgând arborele de jos în sus, spre rădăcină

Se consideră arborele AVL:

/ b

 La adăugarea valorii 'a', arborele devine dezechilibrat spre stânga şi se roteşte nodul 'c' la dreapta pentru reechilibrare (se efectuează o rotație simplă)

```
c b

/ / \

b → a c

/ rot. dreapta c
a
```

 Rotaţia dublă este necesară în cazul adăugării valorii 'b' la arborele AVL:

 Pentru reechilibrare se rotește 'c' la dreapta și apoi 'a' la stânga (se efectuează o rotație dublă la stânga)

```
a a b \
\ c → b → a c
/ rot.dreapta c \ rot.stanga a
b
```

 Dacă cele 3 noduri formează o cale în zigzag, atunci se face o rotație pentru a aduce cele 3 noduri in linie și apoi o rotație pentru ridicarea nodului din mijloc

Reguli de rotație

- Inserarea în subarborele din dreapta al unui fiu dreapta necesită o rotație simplă la stânga
- Inserarea în subarborele din stânga al unui fiu stânga necesită o rotație simplă la dreapta
- Inserarea în subarborele din stânga al unui fiu dreapta necesită o rotație dublă la stânga
- Inserarea în subarborele din dreapta al unui fiu stânga necesită o rotație dublă la dreapta

Se inserează valorile 1, 2, 3, 4, 5, 6, 7:

Observații

- Se memorează în fiecare nod din arbore înălţimea sa, adică înălţimea subarborelui cu rădăcina în acel nod
- Un nod inexistent are înălțimea –1, iar un nod frunză are înălțimea 0

```
80 (3)
     30 (2)
                100 (1)
  15(1) 40(0) 90(0)
10(0) 20(0)
```

 Adăugarea valorilor 120 sau 35 sau 50 nu necesită nicio ajustare în arbore, pentru că factorii de echilibru rămân în limitele [-1,+1]

 La adăugarea nodului cu valoarea 5, arborele se va dezechilibra:

```
80 (4)
     30 (3) 100 (1)
  15(2) 40(0) 90(0)
10(1) 20(0)
```

 Primul nod, de jos în sus, dezechilibrat (spre stânga) este 30, iar soluția este o rotație la dreapta a acestui nod:

```
80 (3)

15 (2) 100 (1)

/ \ /

10 (1) 30 (1) 90 (0)

/ \ /

5 (0) 20(0) 40(0)
```

 La adăugarea valorii 55, trebuie făcută o rotație dublă (stânga și dreapta), pentru corectarea dezechilibrului creat după adăugarea valorii 55 la arbore:

Observații

- Primul nod dezechilibrat de deasupra celui adăugat este 80
- Se face întâi o rotație la stânga a fiului său 30 și apoi o rotație la dreapta a nodului 80

Observații

- Înălţimea maximă a unui arbore AVL este 1,44*log(n)
- În cazul cel mai defavorabil, căutarea întrun arbore AVL necesită cel mult 44% comparații în plus față de cele necesare într-un arbore perfect echilibrat
- În medie, este necesară o rotație (simplă sau dublă) la 46,5% din inserări și este suficientă o singură rotație pentru reechilibrare