The fate of carbon input into a peatland:

a matrix-based model intercomparison analysis

Enqing Hou (Northern Arizona University), Shuang Ma, Yuanyuan Huang, Yu Zhou, Hyungsub Kim, Efrén López-Blanco, Lifen Jiang, Daniel Ricciuto, Paul J. Hanson, **Yiqi Luo**

The need of reducing model uncertainty and

Matrix-based Model Intercomparison (MatrixMIP)

Six models for MatrixMIP

All model in a unified matrix form (TECO as an example)

Allocation Carbon input Transfer among C pools Baseline C turnover rate GPP Date A 3 A_2 A_5 A_6 A 7 K 1 K 2 K_3 K_5 K 7 1/1/2011 2.74E-03 0 0.35 1/2/2011 0.0032 6.84E-05 0 0.1 1/3/2011 4.00E-04 -0.71 9.13E-03 0 1/4/2011 0.0054 -0.29 1/5/2011 0.0091 4.72E-04 0 1/6/2011 0.0022 -0.45 -0.28 1 -0.42 -0.45 6.84E-03 0 1/7/2011 9.00E-04 -0.28 -0.3 5.48E-05 0 1/8/2011 0.0046 -0 -0.03 1 1.37E-06 1/9/2011 0.0085 1/10/2011 0.0093 C pool Non woo Woody Fine litteCWD Fast SOC Slow SO Passive 1/1/2011 398.159 4560.67 85.1473 1327.14 100.297 6849.03 10221.8 $A' = B \times u(t) - (A\xi K + V) \times X(t)$ 1/10/2011 395.252 4559.84 85.1389 1327.13 100.297 6849.03 10221.8 **Vertical** mix Scaler1 Scaler2 Scaler3 Scaler4 Scaler5 Scaler6 Scaler7 1/1/2011 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 Tr_2 Tr 3 Tr 4 Tr 5 Tr 6 Tr 1 Tr 7 C change rate 1/2/2011 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 1/3/2011 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 1/4/2011 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 1/5/2011 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 1/6/2011 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 1/7/2011 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 1/8/2011 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812 0.29812

Environmental scaler

Study site and model forcing for MatrixMIP

Black points: measurements from Walker et al. (2017) Colored lines are simulated values by TECO simulator

June 2016: eCO₂ (900ppm) initiated

Hourly GPP measurements from SPRUCE project

Temperature

Soil water

co2level

CO2: 900 ppm

5

Same GPP, divergent NPP, and more divergent NEP

Coefficient of variation (CV) among models (average of two treatments) increase from GPP to NPP and further to NPP

Variation among models (averaged across CO₂ treatment)

More divergence after separated into three ecosystem components.

Variability order: Soil > Litter > Plant.

Traceability analysis of transient C dynamics

Quantifying the relative importance of parameters

Xc: C storage capacity. Xp: C storage potential. T: C residence time.

Tb: baseline C residence time. ξ: environmental scaler. CUE: plant C use efficiency.

Traceability analysis of soil C change as an example

Summary

- > C cycle in six land models were converted into a unified matrix form for comparison.
- > Divergent NPP among models, due to different plant C use efficiency assigned.
- > More divergent NEP, mainly due to different C residence times among models.
- Even more divergent C changes in plant, litter, and soil, given the different parameter values and model structure.
- > Unified matrix-based models facilitate model intercomparison.