

- 1 Цель курсовой работы: уметь применять персональный компьютер и математические пакеты прикладных программ в инженерной деятельности.
- 2 Исследование функции
- а) Решение уравнения вида f(x) = g(x)

$$f(x) = \sqrt{3}\sin(x) + \cos(x) \tag{1}$$

$$g(x) = \cos\left(2x + \frac{n}{3}\right) + 1\tag{2}$$

Пользуясь математическим пакетом Scilab были получены следующие корни уравнения на интервале от -10 до 10

$$x = \begin{cases} -6.807 \\ -3.665 \\ -0.524 \\ 2.618 \\ 5.76 \end{cases} \tag{3}$$

б) Исследование функции на промежутке от 0 до $5\pi/6$

На рисунке 1 изображена функция на интервале от -7 до 7

$$\sqrt{3} \cdot \sin(x) + \cos(x) - \cos\left(2x + \frac{n}{3}\right) + 1$$

Рисунок 1 – Построение графика функции

Изм	Лист	№ докум.	Подп.	Дата	

инв. $N^{\underline{o}}$

Взам. 1

Вариант 3

Лист

Слогласно задания функция функция должна быть определена на участке от 0 до $5\pi/6$, на рисунке 2 изображен график функции Корни уравнения вида

Рисунок 2 – Построение графика функции на ограниченном участке

$$\sqrt{3} \cdot sin(x) + cos(x) - cos\left(2x + \frac{n}{3}\right) + 1$$
 представлены ниже
$$x = 2.618 \tag{4}$$

На участке от 0 до $5\pi/6$ функция имеет один "0"и он находится в точке 2,618 на иллюстрирует график. Максимум находится в точке x=1.05, y=4.1-я производная функции равна

$$\sqrt{3}(x) + 2\sin\left(\frac{n+6x}{3}\right) - \sin(x) \tag{5}$$

График производной приведен на рисунке 3

Инв. № дубл.

Взам. инв. №

Подп. и дата

3 Исследование кубического сплайна Для того чтобы потенциальная энергия изогнутой металлической линейки(сплайна) принимала минимальное зна-

P_{opposite} 2	Лист
Бариант э	4
Изм Лист № докум. Подп. Дата	4

Рисунок 4 – Построение графика функции на ограниченном участке

чение,производная четвертого порядка должна быть равна нулю, следовательно можно представить сплайн полиномом третьей степени на каждом отрезке

	TΤ	77	3.6-	77	77
	VI3M	Лист	№ докум.	Подп.	Дата
_					

Взам. инв. №

Подп. и дата

Инв. № подл.

Вариант 3

Лист

5

Производные в крайних точках 1 и 5 равные нулю

$$2A_{12} + 6A_{13}x_1 = 0 (20)$$

$$2A_{42} + 6A_{43}x_5 = 0 (21)$$

В итоге составляется матрица вида

 A_{10} -1,956 A_{11} A_{12} A_{13} 5,965 A_{20} 4,127-3,475 A_{21} A_{22} 6,077Инв. № дубл. A_{23} -2,408Решение системы уравнения -0, 2 A_{30} 8,303 A_{31} A_{32} -4,461инв. 0, 7Взам. A_{33} A_{40} -1,165 A_{41} 9,67 -5,104

Изм Лист № докум. Подп. Дата

Подп.

подл.

Инв. №

Вариант 3

Лист

Окончательно, уравнение для сплайна получается в виде

$$F(x) = \begin{cases} F_1(x) = 5.965x^3 - 1.956x + 4 \\ F_2(x) = -2.408x^3 + 6.077x^2 - 3.475x + 4.127 \\ F_3(x) = 0.7x^3 - 4.46x^2 + 8.303x - 0.2 \\ F_4(x) = 0.801x^3 - 5.104x^2 + 9.67x - 1.165 \end{cases}$$
 (23)

График функции F(x) представлен на рисунке 6

Рисунок 6 – Построение сплайна

Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
Инв. № подл.	Вариант 3 Изм Лист № докум. Подп. Дата	<i>Лист</i> 8