Optimal control in RL

July 18, 2023

Imports & Constants 1

```
import numpy as np
import math
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from tqdm import tqdm
```

Constants: $T_{\text{max}} = u_{\text{max}} = 0.5, c = 0.1, \sigma_0 = 0.01, \tau = 1, m = l = 1, g = 9.8,$ $\mu = 0.01$, timestamp = 500, $\Delta t = 20/500$

Pre-defined Functions $\mathbf{2}$

- (1) g(x):
- input: a number x
- output: $\frac{2}{\pi} \tan^{-1}(\frac{\pi}{2}x)$
- (2) $g^{-1}(x)$:
- input: a number x
- output: $\frac{2}{\pi} \cdot \tan(\frac{\pi}{2}x)$

- $\begin{array}{l} (3)\ G(u) = c \int_0^{u/u_{\max}} g^{-1}(s) ds \\ \text{- input: } u \text{ as control} \\ \text{- output: } c \cdot -4 \frac{\log(\cos(\frac{\pi}{2} \frac{u}{u_{\max}}))}{\pi^2} \end{array}$
- (4) reinforcement r(x, u):
- input: $x = (\theta, \dot{\theta}), u$ as control
- output: $r(x) G(u) = \cos(\theta) G(u)$
- (5) a fixed set of 12×12 Gaussian functions:
- input: $\mathbf{x} = (\theta, \theta)$
- prediction is given by $P(\mathbf{x}(t)) = \sum_{i=1}^{144} w_k b_k(\mathbf{x})$ where $b_k(\mathbf{x}) = \exp\left(-\frac{||\mathbf{x} \mathbf{c}_k||^2}{2\sigma^2}\right)$ where \mathbf{c}_k is the center of k-th gaussian basis function
- create 12 evenly spaced centers c_1 for θ ranging from $-\pi$ to π and 12 evenly spaced centers c_2 for θ ranging from -10 to 10

```
- initialize basis_functions to a 12 \times 12 \times 1 = 144 \times 1 array of 0's, k=0
```

- for i = 1, ..., 12:

for j = 1, ..., 12:

basis_functions[k] =
$$\exp\left(-\frac{(\theta-c_1[i])^2+(\dot{\theta}-c_2[j])^2}{2\sigma^2}\right)$$
 where $\sigma=0.1$ increase the index k by 1

- output: a $12 \times 12 \times 1 = 144 \times 1$ array of basis_functions

- (6) pendulum simulation with limited torque: $ml\ddot{\theta} = -\mu\dot{\theta} + mgl\sin\theta + T$ First, to simulate this dynamics equation with function pendulum_dynamics
- input: the current state $(\theta, \dot{\theta})$, the current time t, the current control T
- output: the derivatives (θ, θ) of the current state (θ, θ)

Next, to solve for this dynamics equation, use the odeint library from python scipy

- input: the simulation function pendulum_dynamics, the current state $(\theta, \dot{\theta})$, the current control T, the time period $[0, \Delta t]$
- output: the next state (θ, θ) based on the previous state and control

(7) error $\hat{r}(t)$:

- input: current state x(t), previous state $x(t-\Delta t)$, current weight v(t), current control T(t), $\tau=0.4$ since assumes that the discount factor $\gamma=1-\frac{\Delta t}{\tau}=0.9$

- output:
$$\hat{r}(t) = r(x(t), T(t)) + \frac{\tau}{\Delta t} \left[(1 - \frac{\Delta t}{\tau}) P(x(t)) - P(x(t - \Delta t)) \right]$$

where $P(x(t)) = \sum_{i=1}^{144} v_i b_i(x(t))$ and $P(x(t - \Delta t)) = \sum_{i=1}^{144} v_i b_i(x(t - \Delta t))$

(8) sum of absolute error with the weight v:

- input: a 500×2 array of x(t), weight v (constant), a 500×1 array of T(t)
- for k = 1, ..., 500, $t = k\Delta t$ solve for the error $\hat{r}(t)$ based on the current state x(t), the previous state $x(t - \Delta t)$, weight v, the current control T at time $k\Delta t$
- output: $\sum_{i=1}^{500} |\hat{r}(i)| = \text{sum of abs errors at each of the } 500 \text{ states}$

3 Generate Data

Step 1: generate $x(t)=(\theta(t),\dot{\theta}(t))$ for $t=k\Delta t$ with $\Delta t=\frac{20}{500},\,k=1,...,500$ - input: $x(0)=(0,0),\,T(t)\sim \mathrm{Uniform}[\min=0,\,\max=5]$ for $t=k\Delta t$ - for $k=1,...,500,\,t=k\Delta t$ solve for the next state x(k+1) based on the current state x(k), the current control T at time $k\Delta t$, and the pre-defined functions (6) - output: a 500×2 array of $x(t)=(\theta(t),\dot{\theta}(t))$ for $t=k\Delta t$

4 Optimal Control

Step 2: Calculate $P(t) = \sum_{i=1}^{144} v_i b_i(x(t))$ where $b_i()$ are the basis Gaussian functions dimension

- input: a 500×2 x(t) array for $t = k\Delta t$, weight v, control T

- initialization: weight $v = a 144 \times 1$ array of 1's, t_up = 0
- for i = 1, ..., 500
 - current prediction P(t) = dot product of current weight v and b(x(t))
 - calculate error $\hat{r}(t)$ according to the pre-defined function (7) (Note: if the current state is the initialization state and there is no previous state, the error $\hat{r}(t)$ is set to 0)
 - calculate sum of absolute error w.r.t the current weight v at the $i^{\rm th}$ timestamp using the pre-defined function (8)
 - according to $\Delta v_i \propto \hat{r}(t)b_i(x(t-\Delta t))$, update weight s.t. $v=v+\alpha\cdot\hat{r}(t)\cdot \text{gaussian}(\text{prev state})$ where $\alpha=0.01$ is the learning rate [new way of updating v]
 - if $\theta(t) < 90^{\circ}$ or $> 270^{\circ}$, increase t_up by 1.
- output: a 500×1 array containing the prediction P(x(t)) of each x(t), t_up, the final weight v after 500 times update, a 500×1 array of the sum of absolute errors w.r.t each v in each iteration

errors w.r.t each v in each iteration

Step 3: Calculate the derivative $\frac{\partial P(x)}{\partial x}$ with input x(t)Since $P(t) = \sum_{i} v_i b_i(x(t)) = v_1 b_1(x(t)) + ... + v_{144} b_{144}(x(t))$ and $b_i(x(t))$ is the

Gaussian basis,
$$x_0 = \theta$$
, $x_1 = \dot{\theta}$

$$b_1(x(t)) = \exp\left(-\frac{(x_0 - \mu_{0,1})^2 + (x_1 - \mu_{1,1})^2}{2\sigma^2}\right), ..., b_{12}(x(t)) = \exp\left(-\frac{(x_0 - \mu_{0,1})^2 + (x_1 - \mu_{1,12})^2}{2\sigma^2}\right)$$

$$b_{13}(x(t)) = \exp\left(-\frac{(x_0 - \mu_{0,2})^2 + (x_1 - \mu_{1,1})^2}{2\sigma^2}\right), ..., b_{24}(x(t)) = \exp\left(-\frac{(x_0 - \mu_{0,2})^2 + (x_1 - \mu_{1,12})^2}{2\sigma^2}\right)$$

then
$$\frac{\partial P(x)}{\partial x_0} = v_1 b_1(x(t)) \frac{\partial b_1}{\partial x_0} + \dots + v_{144} b_{144}(x(t)) \frac{\partial b_{144}}{\partial x_0}$$

= $v_1 b_1(x(t)) \cdot \left(-\frac{x_0 - \mu_{0,1}}{\sigma^2}\right) + \dots + v_{144} b_{144}(x(t)) \cdot \left(-\frac{x_0 - \mu_{0,12}}{\sigma^2}\right)$

Similarly,
$$\frac{\partial P(x)}{\partial x_1} = v_1 b_1(x(t)) \frac{\partial b_1}{\partial x_1} + \dots + v_{144} b_{144}(x(t)) \frac{\partial b_{144}}{\partial x_1}$$

= $v_1 b_1(x(t)) \cdot \left(-\frac{x_1 - \mu_{1,1}}{\sigma^2}\right) + \dots + v_{144} b_{144}(x(t)) \cdot \left(-\frac{x_1 - \mu_{1,12}}{\sigma^2}\right)$

Thus,
$$\frac{\partial P(x)}{\partial x} = \left(\frac{\partial P(x)}{\partial x_0}, \frac{\partial P(x)}{\partial x_1}\right)$$

- input: a 500×2 array of x(t), weight v, 12 evenly spaced centers for $x_0 = \theta$ and $x_1 = \dot{\theta}$

- output: a 2×1 array of $\frac{\partial P(x)}{\partial x}$

Step 4: Calculate the optimal control

 $\mathbf{b} = (0,1)^T$, $T^{\text{max}} = 5$, c = 0.1, $\tau = 1$, $g(x) = \frac{2}{\pi} \tan^{-1}(\frac{\pi}{2}x)$, $\sigma_0 = 0.01$

- input: final weight v returned in step 2, state x
- for each timestamp t, the optimal control T(t) is given by

$$T = T^{\max} g \left(\frac{T^{\max}}{c} \tau \frac{\partial P(x)}{\partial x} \mathbf{b} + \sigma n(t) \right)$$

where $\sigma = \sigma_0 \cdot e^{P(t)} = \sigma_0 \cdot e^{\sum v \cdot b(x(t))}$ and n(t) = (N(0,1)) a random noise. Use the final weight v for the calculation of $\frac{\partial P(x)}{\partial x}$ - output: optimal control T(t)

Overall Algorithm with Optimal Control:

initialization

 $T(t) \sim Uniform[min=0, max=5]$

 $w = a 144 \times 1 \text{ array of 1's}$

for trial = 1,...,100:

generate data with the input control T(t) using step 1 record t_u up & the final weight w of this trial using step 2 record sum of abs error w.r.t w using pre-defined function (8) update the input control T(t) for each timestamp t using step 4 update w with the final weight w

5 Actor Critic

Step 2*: Update weights w_i , predictions = $\sum_i w_i b_i(x(t))$ used in actor-critic

- input: a 500×2 x(t) for $t = k\Delta t$, weight w
- for i = 1, ..., 500
 - current prediction P(t) = dot product of current weight v and b(x(t))
 - calculate error $\hat{r}(t)$ according to the pre-defined function (7) (Note: if the current state is the initialization state and there is no previous state, the error $\hat{r}(t)$ is set to 0)
 - calculate sum of absolute error w.r.t the current weight v at the ith timestamp using the pre-defined function (8)
 - according to $\Delta w_i \propto \hat{r}(t)n(t)b_i(x(t))$, update weight s.t. $w = w + \alpha \cdot \hat{r}(t) \cdot n(t)$ · gaussian(current state) where $\alpha = 0.01$ is the learning rate and $n(t) = (N(0,1))^{144}$ [144×1 n(t)?] a 12×1 random noise [new way of updating v]
 - if $\theta(t) < 90^{\circ}$ or $> 270^{\circ}$, increase t_up by 1
- output: a 500×1 array containing the prediction P(x(t)) of each x(t), t_up, the final weight w after 500 times update, a 500×1 array of the sum of absolute errors w.r.t each w in each iteration

Step 3*: Calculate the optimal control

- input: final weight w returned in step 2^* , state x
- for each timestamp t, the optimal control u(t) is given by

$$u(t) = u^{\max} g\left(\sum_{i} w_{i} b_{i}(x(t)) + \sigma n(t)\right)$$

where $\sigma = \sigma_0 \cdot e^{P(t)} = \sigma_0 \cdot e^{\sum w \cdot b(x(t))}$ and n(t) = (N(0,1)) a random noise - output: a 500×1 array of u(t) (the optimal control for each state)

Overall Algorithm with Actor Critic:

initialization $T(t) \sim Uniform[min=0, max=5]$ w = a 144×1 array of 1's

for trial = 1,...,100:

generate data with the input control T(t) using step 1 record t_up & the final weight w of this trial using step 2* record sum of abs error w.r.t w using pre-defined function (8) update the input control T(t) for each timestamp t using step 3* update w with the final weight w