ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ <u>ТЕКУЩЕГО</u> КОНТРОЛЯ ЗНАНИЙ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ «Основы построения систем обработки визуальной информации»

Контрольная неделя 1

- 1. Укажите верное определение термина «сегментация»?
- о процесс изменения изображения
- способ разделения цифрового изображения на несколько сегментов
- о операция разделения, которое в результате дает бинарное изображение
- о обработка изображения, только при помощи гистограмм
- 2. Сегментация с помощью модели это...
- структуры или органы, имеющие повторяющиеся геометрические формы
- о абсолютная величина градиента изображения как топографической поверхности
- о процесс присвоения таких меток каждому пикселю изображения, что пиксели с одинаковыми метками имеют одинаковые характеристики
 - о когда объединены все методы сегментации
- 3. В каком методе обычно пиксель или группа пикселей ассоциируется вершиной, а веса ребер определяют похожесть соседних пикселей?
- когда изображение представляется как взвешенный неориентированный граф
- о метод, в котором гистограмма вычисляется по всем пикселям изображения и её минимумы и максимумы используются, чтобы найти кластеры на изображении
 - о метод разрастания областей без использования семян
- о итеративный метод, который используется, чтобы разделить изображение на k кластеров
 - 4. Многомасштабная сегментация -...
- о алгоритм, когда сравниваются с другими методами сегментации изображений, потому что они требуют только один проход по пикселям.
 - о замкнутые границы области
 - о разбиение изображения на неперекрывающиеся области
- сегментация изображений выполняется в разных масштабах в масштабном пространстве и иногда распространяется от мелких масштабов к крупным.
- 5. Метод, реализованный на основании использования яркости пикселей это метол?
 - о основанный на кластеризации
 - о с использованием гистограммы
 - разрастания областей
 - о выделения краев
- 6. Выделение краев это хорошо изученная область в обработке изображений, где?
- о в качестве входных данных этот метод принимает изображения и набор выделенных объектов
 - о изображение представляется в виде нормализованного разреза графов,

случайного блуждания и сегментации с помощью минимального остовного дерева

- о сегментация изображений выполняется в разных масштабах в масштабном пространстве.
- края и границы областей сильно связаны, так как часто существует сильный перепад яркости на границах областей
 - 7. Итогом решения задачи частичной сегментации является
 - о Сглаженное изображение
 - Изображение с подчеркнутыми границами
 - о Кусочно-постоянное изображение
 - о Структурное описание изображения
 - 8. Мера структурного подобия произведение(укажите лишнее)
 - о коэффициента корреляции изображений
 - о подобие средних значений яркости
 - среднеквадратичной ошибки
 - о лишних нет
- 9. Метод, который используется, чтобы разделить изображение на кластеры
 - k-средних
 - о бинаризационный
 - о среднеквадратичный
 - о безразмерных признаков контуров
- 10. Дефект цифрового изображения, вносимый фотосенсорами и электроникой устройств
 - о выдержка
 - цифровой шум
 - о чувствительность
 - о экспонирование
- 11. это метод вычисления порога бинаризации для полутонового изображения
 - о линейный
 - о дисперсия случайной величины
 - о нормирующий
 - Метод Оцу
- 12. процесс, работой которого является определение принадлежности некоторого изображения объекта к определенному классу на основании набора признаков
 - о сегментация
 - распознавание
 - о интерпретация
 - о преобразование
- 13. это график распределения полутонов изображения, в котором по горизонтальной оси представлена яркость, по вертикали относительное число пикселей с данным значением яркости

- о субдискретизация
- о преобразование
- гистограмма
- о матрица
- 14. процедура соотнесения разделенных отдельных контуров изображения с определенными объектами называется
 - о распознаванием
 - о преобразование
 - о корреляция
 - сегментацией
- 15. Способ измерения промежуточных значений величины по имеющемуся дискретному набору известных значений.
 - о корреляция
 - о субдискретизация
 - интерполяция
 - о сегментация
- 16. устранение ненужных деталей изображения, шумов, изменение композиции
 - ретушь
 - о корреляция
 - о преобразование
 - о фильтрация
- 17. фильтр, в котором значения определяются не только через входные значения, но и через выходные
 - о адаптивная
 - рекурсивный
 - о комбинированный
 - о нелинейный
 - 18. Чем представлены растровые изображения?
 - о линиями
 - пикселями
 - о дугами
 - о эллипсами
- 19. Название примитивов, использующихся только в трехмерной компьютерной графике:
 - пространственные
 - о линейные
 - о бинарные
 - о символьные
 - 20. Способом представления векторного изображения является:
 - о множество пикселей
 - последовательность команд
 - о сложная мозаика

- о все вышеперечисленное
- 21. ... является основным фрагментом для обработки растрового изображения
 - область
 - о форма
 - о фигура
 - о команда
 - 22. Трассировка это процесс ...
 - преобразования изображения из растрового в векторное
 - о изменения коородинат объектов
 - о улучшения качества изображения
 - о изменение размеров изображения
 - 23. При увеличении растрового изображения происходит :
 - ухудшение качества изображения
 - о потеря данных
 - о изменение занимаемого объема памяти
 - о все вышеперечисленное
- 24. Алгоритм, реализующий замену повторяющихся элементов, использующийся для сжатия рисунков с большим однотонным пространством
 - RLE
 - o LZW
 - o JPEG
 - o CCITT
 - 25. Графическим примитивом называют:
 - Простейшие объекты программ рисования
 - о способ сжатия изображения
 - о уменьшенную копию изображения
 - о координаты пикселя
 - 26. LZ77 при работе выдает тройки вида (A, B, C), где -C
 - о смещение
 - о длина цепочки
 - первый символ в кодируемом массиве,
 - о тип изображения
 - 27. Определение, соответствующее методу Хаффмана
- сокращает избыточность массива, создавая при кодировании переменную битовую длину его элементов
 - о кодирование исходного массива одним числом
 - о замена каждого неиспользуемого бита на противоположный.
- о используется кодирование информации в матрице ,где каждый элемент матрицы умножается на перекрестный и прибавляется центральный элемент.
 - 28. Изображение машиной понимается как

- о точка
- о диск
- матрица двумерная
- о световой сигнал
- 29. Энтропийное сжатие используется с целью
- сокращения к минимуму избыточности информации
- о уменьшения информации
- о ограничить место на диске
- о вычисления функции энтропии для двумерной матрицы
- 30. Сжатие информации с потерями значит
- из сжатого выходного массива невозможно при декодировании получить

исходный

- о сжимаемая информация обрабатывается с ошибками
- о невозможность сжатия
- о информация увеличивается в размере
- 31. Формат сжатого изображения-
- jpeg
- o bmp
- o txt
- o doc
- 32. Формат векторных рисунков
- wmf
- o bmp
- o gif
- o tiff
- 33. Кодирование (сжатие) изображения применяется для
- сокращения размера изображения
- о того чтобы удалить лишнюю информацию
- о понимания изображения различными ОС
- о удобства его обработки
- 34. Кодирование информации это
- изменение исходной информации с возможность ю последующего декодирования
 - о передача информации по сетевым каналам
 - о глубокий анализ данной информации
 - о уменьшение объема сводной памяти на диске
 - 35. Информация измеряется в
 - битах
 - о килограммах
 - о литрах
 - о калориях
 - 36. Цветные изображения формируются:

- Из комбинаций нескольких монохромных изображений
- о Одним монохромных изображений
- о Несколькими полихромными изображениями
- о Ничем
- 37. Цветовая модель RGB это...
- о Ориентированная на человека модель, и обеспечивающая возможность явного задания требуемого оттенка цвета.
- Модель, аппаратно-ориентированная, используемая в дисплеях для аддитивного формирования оттенков самосветящихся объектов (пикселов экрана).
- о Субтрактивная схема формирования цвета, используемая прежде всего в полиграфии для стандартной триадной печати.
- о Цветовая модель, в которой координатами цвета являются: цветовой тон, насыщенность и яркость.
 - 38. Цветовая модель HSV это
- о Цветовая модель, в которой координатами цвета являются: цветовой тон, насыщенность и яркость.
- о Аппаратно-ориентированная модель, используемая в дисплеях для аддитивного формирования оттенков самосветящихся объектов (пикселов экрана).
- о Субтрактивная схема формирования цвета, используемая прежде всего в полиграфии для стандартной триадной печати.
- Модель, ориентированная на человека и обеспечивающая возможность явного задания требуемого оттенка цвета.
 - 39. Цветовая модель AHSL это
- о Цветовая модель, в которой координатами цвета являются: цветовой тон, насыщенность и яркость.
- о Аппаратно-ориентированная модель, используемая в дисплеях для аддитивного формирования оттенков самосветящихся объектов (пикселов экрана).
- Модель , в которой цветовыми координатами являются тон, насыщенность и светлота.
- о Ориентированная на человека модель, и обеспечивающая возможность явного задания требуемого оттенка цвета.
 - 40. Цветовая модель RYB это
- о Цветовая модель, в которой координатами цвета являются: цветовой тон, насыщенность и яркость.
- модель субтрактивного синтеза, основанная на составлении цвета из красного, жёлтого и голубого/синего.
- о Аппаратно-ориентированная модель, используемая в дисплеях для аддитивного
- о Ориентированная на человека модель, и обеспечивающая возможность явного задания требуемого оттенка цвета.
 - 41. Цветовая модель NCS это
- о Немецкий цветовой стандарт, разработанный в 1927 году Государственным комитетом по условиям поставок
- Модель основана на системе противоположных цветов и нашла широкое применение в промышленности для описания цвета продукции..

- о Цветовая модель, в которой цвет представляется как 3 компоненты яркость и две цветоразностных.
- о Ориентированная на человека модель, и обеспечивающая возможность явного задания требуемого оттенка цвета.

42. RAL – это

- Это немецкий цветовой стандарт, разработанный в 1927 году Государственным комитетом по условиям поставок
- о Модель основана на системе противоположных цветов и нашла широкое применение в промышленности для описания цвета продукции..
- о Цветовая модель, в которой цвет представляется как 3 компоненты яркость и две цветоразностных.
- о Ориентированная на человека модель, и обеспечивающая возможность явного задания требуемого оттенка цвета.
 - 43. Цветовая модель YUV это
- о Немецкий цветовой стандарт, разработанный в 1927 году Государственным комитетом по условиям поставок
- о Модель основана на системе противоположных цветов и нашла широкое применение в промышленности для описания цвета продукции..
- Модель, в которой цвет представляется как 3 компоненты яркость и две цветоразностных.
- о Ориентированная на человека модель, и обеспечивающая возможность явного задания требуемого оттенка цвета.
- 44. Разновидность цифровых растровых изображений, когда каждый пиксель может представлять только один из двух цветов это
 - Бинарное изображение
 - о многоцветное изображение
 - о линейное изображение
 - о многолинейное изображений
 - 45. Растяжение значений яркости точек на весь диапазон это
 - Линейная коррекция
 - о Гамма коррекция
 - о Алгоритм Autolevel
 - о Алгоритм SSR

Контрольная неделя 2

- 1. Пространственная дискретизация выполняет...
- о замену непрерывного сигнала последовательностью чисел, которые являются представлением его по некоторому конечномерному базису
 - о понятие не применимо к изображениям
- о выделение области изображения, которая необходима для дальнейшего анализа
- дробление цифрового изображения на ячейки, размеры которых кратны степени «2»
 - 2. Какая логическая операция лежит в основе Эрозии:

- о исключающее «ИЛИ»
- логическое «И»
- о операция логического отрицания
- о дизъюнкция
- 3. Преобразование гистограмм является частным случаем
- линейной фильтрации
- о обработки скользящим окном
- о поэлементного преобразования
- о пространственной дискретизации
- 4. Ограничение на маску взвешенного медианного фильтра: сумма элементов маски должна быть
 - о равна нулю
 - о четной
 - нечетной
 - о кратной степени двойки
 - о равна единице
 - 5. Медиана (во время ранговой фильтрации) это...
 - о среднее значение отсчетов изображения,
 - о среднее значение отсчетов изображения в окне обработки,
 - о среднее значение отсчетов вариационного ряда,
- величина среднего (центрального) отсчета в окне обработки изображения,
 - о значение центрального отсчета в вариационном ряду.
 - 6. Геометрическое преобразование влияет на яркость изображения?
 - о уменьшает значения яркости,
 - о увеличивает значения яркости,
 - приводит к переквантованию значений функции яркости,
 - о влияния не происходит
- 7. Наиболее производительный способ построения обобщенного геометрического преобразования заключается в использовании:
 - о метода прямого преобразования (координат)
 - о метода обратного преобразования (координат)
 - о полиномиальных функций преобразования координат
 - преобразования координат линейными функциями
 - о метода опорных точек.
 - 8. Периодограмма это:
 - о нормированная гистограмма
 - о гистограмма периодического сигнала
 - о модуль спектра сигнала
 - о корень квадратный из модуля спектра сигнала
- оценка СПМ, основанная на вычислении квадрата модуля спектра сигнала

- 9. Каким логическим оператором можно представить дилатацию в математической морфологии:
 - о Операция логического «И»
 - Логического «ИЛИ»
 - о Исключающего «ИЛИ»
 - о Конъюнктивного разложения матрицы отсчетов
- 10. Отнесение предъявленного объекта по его описанию к одному из заданных классов (обучение с учителем).
 - Задача распознавания
 - о Задача автоматической классификации
 - о Задача выбора информативного набора признаков при распознавании
- о Задача приведения исходных данных к виду, удобному для распознавания.
- 11. Разбиение множества объектов (ситуаций) по их описаниям на систему непересекающихся классов (таксономия, кластерный анализ, обучение без учителя).
 - о Задача распознавания
 - Задача автоматической классификации
 - о Задача выбора информативного набора признаков при распознавании
- о Задача приведения исходных данных к виду, удобному для распознавания
- 12. Какой принцип построения системы распознавания на этапе обучения для каждого класса системой распознавания запоминается все множество образов, относящихся к данному классу.
 - Принцип перечисления членов класса
 - о Принцип общности свойств
 - о Принцип кластеризации
 - о Принцип общности кластеризации
- 13. Какой принцип построения системы распознавания предполагает, что образы, принадлежащие одному классу, обладают рядом признаков, отражающих их подобие.
 - о Принцип перечисления членов класса
 - Принцип общности свойств
 - о Принцип кластеризации
 - о Принцип общности кластеризации
- 14. Какой принцип построения системы определяется взаимным пространственным расположением кластеров в пространстве признаков
 - о Принцип перечисления членов класса
 - о Принцип общности свойств
 - Принцип кластеризации
 - о Принцип общности кластеризации
- 15. Методы распознавания, основанные на численном описании образов и применении для распознавания решающих функций
 - о Векторные

- о Структурные
- о Растровые
- Количественные
- 16. Методы распознавания, основанные на символическом описании структуры распознаваемых объектов
 - о Векторные
 - Структурные
 - о Растровые
 - о Количественные
 - 17. Формула метрики векторного пространства симметричности расстояния
 - d(a, b) = d(b, a)
 - o d(a, c) < d(a, b) d(b, c)
 - o d(a, b) > 0
 - o d(a, b) = 0
 - 18. Формула метрики векторного пространства аксиома треугольника
 - o d(a, b) = d(b, a)
 - d(a, c) < d(a, b) d(b, c)
 - o d(a, b) > 0
 - o d(a, b) = 0
 - 19. Формула метрики векторного пространства положительность расстояния
 - o d(a, b) = d(b, a)
 - o d(a, c) < d(a, b) d(b, c)
 - d(a, b) > 0
 - o d(a, b) = 0
- 20. Какой метод не применяется для выделения и вычисления признаков линейчатых образов?
 - о Градиентый метод
 - о Корреляционный метод
 - о Пространственный метод
 - Математический метод
 - 21. Метод применяемый для сегментации выделения линейчатой структуры?
 - Пороговый
 - о Морфологический
 - о Оптимизации
 - о Линейный
- 22. Что не входит в этап предварительной обработки для выделения линейчатой структуры изображения?
 - о Фильтрация
 - о Бинаризация

- о Вычисление границ области
- Нормализация
- 23. Метод вычисления линейчатых структур с кривизной?
- Варьирующей
- о Изменяющейся
- о Поверхностной
- о Угловой
- 24. Что требуется создать для оценки разработанных алгоритмов?
- Тестовое изображение
- о Наложенные изображения
- о Сложные изображения
- о Отдельные изображения
- 25. Какое из следующих геометрических преобразований в общем случае не является линейным?
 - о Аффинное преобразование
 - о Преобразование подобия
 - о Проективное преобразование
 - Транспонирование
 - 26. Признаки изображений предназначены для?
 - распознавания изображений
 - о повышения качества изображений
 - о компрессии изображений
 - о подавления шумов на изображениях
- 27. Какие из следующих цветовых пространств связаны линейным преобразованием?
 - o RGB и HSB
 - o HSB и CMY
 - o HSB и CMYK
 - RGB и CMYK
- 28. Что относится к модульному принципу обработки изображений для выделения его признаков?
 - о Выявление формата изображения
 - определение относительной структуры и семантики видимой сцены
 - о форматирование разрешения изображения
 - о поиск особых признаков на изображении
- 29. Что из перечисленного является основным критерием при выборе конкретных характерных черт изображений?
 - интерпретация
 - о Текстуризация
 - о Доступность
 - о Выделяемость

- 30. Какой существует подход для описания текстур изображения?
- структурный
- о математический
- о итерационный
- о алгоритмический
- 31. Метод, относящийся к формированию признаков текстур
- о координатного спуска
- описания текстур моментами функции распределения яркости
- о метод золотого сечения
- о альфа-функции
- 32. Обладающие этим свойством изображения относятся к текстурам:
- о Линейность
- о Разборчивость
- Эргодичность
- о Нормализованность
- 33. Метод формирования энергетических характеристик Лавса относится к методам
 - о Многомерной оптимизации
 - о Одномерной оптимизации
 - Формирования признаков текстур
 - о Выделения контура
- 34. Из названных алгоритмов для сегментации текстур применяется алгоритм:
 - о Цепного кода
 - Нечетких к-средних
 - о Поиска среднего значения целевой функции
 - о Выделения контура
- 35. изображение, так или иначе воспроизводящее визуальные свойства каких-либо поверхностей или объектов
 - Текстура
 - о Бинарное изображени
 - о Выпуклая оболочка
 - о Контур
- 36. Для реализации любого цвета последствием смешения красного, зеленого и синего цветов, используется цветовая модель:
 - o YCrCb
 - o L*a*b* MKO 1976
 - RGB
 - o HMMD
- 37. Текстура, соответствующая естественным объектам, и, как правило, являющаяся следствием шероховатости поверхности:
 - Стохастическая

- о Упорядоченная
- о Математическая
- о Геометрическая

Контрольная неделя 3

- 1. Для формирования одноточечных безразрывных контуров используется метод ...
 - Фримена
 - о Отсу
 - о Гаусса
 - о Собеля
- 2. При описании контуров изображения с помощью цепных кодов сколько символов используется при кодировании точки?
 - один
 - о два
 - о три
 - о пять
 - 3. Что собой представляет цепной код Фримена?
 - о метод распознавания изображений
 - способ кодирования контура
 - о вариант сегментации кривых
 - о вид фильтрации изображения
- 4. Для комфортных исследований в работе все изображения определяются в ... области
 - Квадратной
 - о Овальной
 - о Треугольной
 - о Линейной
- 5. Каким действием осуществляется процесс наложения одного бинарного изображения на другое?
 - о конъюнкция
 - дизъюнкция
 - о инверсия
 - о импликация
- 6. Образующие вогнутые участки точки, которые отсутствуют на форме бинарного изображения называющейся
 - о Вогнутой
 - о Изогнутой
 - о Разогнутой

- Выпуклой
- 7. Процесс дизъюнкции точек в бинарном изображении, лежащих в вогнутой области
 - о фильтрация
 - о сегментация
 - о аппроксимация
 - дилатация
 - 8. Что будет являться результатом кодирования методом Фримена
 - цепной код
 - о фильтрованное изображение
 - о выпуклая форма
 - о кластер
- 9. Выделение какой области чаще всего применяется для подсчёта периметра?
 - о Центра
 - о Углов объекта
 - о Поперечных линий
 - Контура
- 10. Признаки без явной зависимости от изменения масштабов объекта называются
 - безразмерные
 - о цепные
 - о одиночные
 - о независящие
- 11. Форма, внешне образующая собой фигуру без вогнутых внутрь углов, называется
 - о круглой
 - о краеугольной
 - выпуклой
 - о прямой
- 12. изображение на котором представлены два объекта, один из которых хотя бы частично перекрывает другой называется
 - о перекрытым
 - наложенным
 - о склеенным
 - о прикреплённым
- 13. если объект на изображении представлен в единственном числе, то оно называется
 - о единичным

- о уникальным
- отдельным
- о неповторяющимся
- 14. Для соответствия признакам понятию безразмерным, они должны быть получены:
 - соотношением параметров
 - о умножением параметров
 - о кадрированием параметров
 - о вычитанием параметров
 - 15. Название выпуклая оболочка применима к фигурам не имеющим
 - вогнутых углов
 - о длинных сторон
 - о прямых углов
 - о перпендикулярных линий
 - 16. Контур объекта, имеющий выпуклую форму, чаще всего можно назвать:
 - оболочкой
 - о краем
 - о представлением
 - о силуэтом
- 17. Вычисление какой суммы может быть использовано для определения объекта по безразмерным признакам.
 - квадратов разностей
 - о разностей квадратов
 - о трапеций
 - о диагоналей
 - 18. Изображения, представляющие объект(ы) в двумерном виде называются:
 - плоскими
 - о одномерными
 - о трёхмерными
 - о выпуклыми

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ <u>ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ</u> ПО УЧЕБНОЙ ДИСЦИПЛИНЕ «Основы построения систем обработки визуальной информации»

ПК-3:

Блок 1 (знать)

1. Какое представление изображения сохраняет пространственную организацию элементов яркости и позволяет реализовать широкий круг процедур обработки?

- векторное,
- синтаксическое,
- спектральное,
- пирамидально-рекурсивное,
- растровое
- 2. Пространственная дискретизация предполагает
- разбиение области значения сигнала (яркости изображения) на уровни,
- замену непрерывного сигнала последовательностью чисел, которые являются представлением его по некоторому конечномерному базису,
 - понятие не применимо к изображениям,
- выделение области изображения, которая необходима для дальнейшего анализа,
- разбиение цифрового изображения на ячейки, размеры которых кратны степени «2»
 - 3. Квантование по уровню предполагает
 - разбиение области значения сигнала (яркости изображения) на уровни,
- замену непрерывного сигнала последовательностью чисел, которые являются представлением его по некоторому конечномерному базису,
 - понятие не применимо к изображениям,
- выделение области изображения, которая необходима для дальнейшего анализа.
- разбиение цифрового изображения на ячейки, размеры которых кратны степени «2».
- 4. Пространственная дискретизация непрерывного изображения x(p,q) с шагом дискретизации T описывается формулой:
 - -y(m,n) = x(T,T)
 - -y(m,n) = x(pT,qT)
 - -y(m,n) = x(mT/2,nT/2)
 - -y(m,n) = x(mT,nT)
 - -y(m,n) = x(2mT,2nT)
- 5. Какие из следующих цветовых пространств связаны линейным преобразованием?
 - RGB и HSB
 - HSB и CMY
 - HSB и CMYK
 - RGB и CMY
 - RGB и CMYK
- 6. Эрозия как операция математической морфологии выполняется по отсчетам изображения в структурном элементе с использованием:
 - Логического «И»,
 - Логического «ИЛИ»,
 - Исключающего «ИЛИ»,
 - Логического отрицания,
 - Дизъюнктивного разложения матрицы отсчетов.

- 7. Преобразование гистограмм является частным случаем
- линейной фильтрации,
- обработки скользящим окном,
- поэлементного преобразования,
- квантования по уровню,
- пространственной дискретизации,
- 8. Дилатация как операция математической морфологии выполняется по отсчетам изображения в структурном элементе с использованием:
 - Логического «И»,
 - Логического «ИЛИ»,
 - Исключающего «ИЛИ».
 - Логического отрицания,
 - Конъюнктивного разложения матрицы отсчетов.
- 9. Оператор ограничения является нерасширяющим, если множество функций (сигналов), для которых он тождественен (которые удовлетворяют ограничению) составляет:
 - Выпуклое множество,
 - Открытое множество,
 - Закрытое множество,
 - Закрытое выпуклое множество,
 - Открытое выпуклое множество.
- 10. Ограничение на маску взвешенного медианного фильтра: сумма элементов маски должна быть
 - рана нулю
 - четной
 - нечетной
 - кратной степени двойки
 - равна единице
 - 11. Медиана (при ранговой фильтрации) это...
 - среднее значение отсчетов изображения,
 - среднее значение отсчетов изображения в окне обработки,
 - среднее значение отсчетов вариационного ряда,
 - значение среднего (центрального) отсчета в окне обработки изображения,
 - значение центрального отсчета в вариационном ряду.
 - 12. Ранг отсчета (при ранговой фильтрации) это:
 - номер отсчета в окне обработки,
 - номер отсчета в вариационном ряду,
 - среднее вариационного ряда,
 - значение среднего (центрального) отсчета в окне обработки изображения,
 - значение центрального отсчета в вариационном ряду.
 - 13. Периодограмма это:
 - Нормированная гистограмма
 - Гистограмма периодического сигнала
 - Модуль спектра сигнала

- Корень квадратный из модуля спектра сигнала
- Квадрат модуля спектра сигнала
- 14. Для оценки локального математического ожидания скользящим окном размера NxN необходимо следующее количество аддитивных операций на каждый отсчет изображения:
 - 2
 - 4
 - N
 - NN
 - -N(N+1)/2
- 15. С точностью до мультипликативного коэффициента, периодограмма является оценкой
 - Плотности распределения яркости
 - АКФ
 - Энергетического спектра
 - Локальной дисперсии
 - Локального математического ожидания
- 16. Анализ области искаженного изображения около прямолинейного перепада яркости позволяет оценить:
 - Импульсную характеристику искажающей системы
 - Сечение импульсной характеристики искажающей системы
 - Проекцию импульсной характеристики искажающей системы
 - Модуль импульсной характеристики искажающей системы
 - Не дает никакой информации об искажающей системе
- 17. Как геометрическое преобразование влияет на функцию яркости изображения:
 - Уменьшает значения яркости,
 - Увеличивает значения яркости,
 - Приводит к переквантованию значений функции яркости,
 - Снижает уровень высокочастотных компонент функции яркости,
 - Снижает уровень низкочастотных компонент функции яркости.
- 18. Наиболее эффективный способ построения обобщенного геометрического преобразования заключается в использовании:
 - Метода прямого преобразования (координат),
 - Метода обратного преобразования (координат),
 - Полиномиальных функций преобразования координат,
 - Линейных функций преобразования координат,
 - Метода опорных точек.
- 19. Какое количество неизвестных параметров, которые необходимо определить при построении аффинного преобразования координат изображения?
 - 2,
 - 3,
 - 4.
 - 6,

- 20. Какое из следующих геометрических преобразований в общем случае не является линейным:
 - Аффинное преобразование
 - Преобразование подобия
 - Проективное преобразование
 - Транспонирование
 - Зеркальное отражение
- 21. Какое количество неизвестных параметров, которые необходимо определить при построении преобразования координат, основанном на преобразовании подобия?
 - 1,
 - 2,
 - 3,
 - 6,
- 22. Методы сжатия с постоянной скоростью формирования выходного потока сжатых данных
 - не могут иметь контролируемую погрешность
 - всегда имеют контролируемую погрешность
 - имеют контролируемую погрешность на бинарных изображениях
 - всегда имеют нулевую погрешность
- имеют контролируемую погрешность на изображениях с гауссовской автокорреляционной функцией
 - 23. Средняя длина кодового слова кода Хаффмена
 - всегда меньше энтропии источника сообщений
 - не может быть меньше энтропии источника сообщений
 - всегда равна энтропии источника сообщений
- меньше энтропии источника сообщений, если вероятности всех сообщений являются степенями двойки
- меньше энтропии источника сообщений, если все сообщения источника равновероятны
- 24. Для обеспечения инвариантности признаков изображений к мешающим факторам при распознавании заданного объекта производится
 - сложение изображения и объекта
 - построение восстанавливающего фильтра
 - сегментация изображения
 - нормализация объекта
 - добавление шума к изображению
 - 25. Разбиение изображения на области не является сегментацией, если
 - Объединение областей покрывает все изображение
 - Объединение областей покрывает не все изображение
 - Области не пересекаются
 - Разбиение включает только одну область
 - Разбиение включает только две области
 - 26. Результатом решения задачи частичной сегментации является

- Сглаженное изображение
- Изображение с подчеркнутыми границами
- Структурное описание изображения
- Изображение, содержащее индексы областей
- Кусочно-постоянное изображение
- 27. Косвенная адресация меток при сегментации (в алгоритме разметки кусочно-постоянного изображения) используется :
 - При сегментации изображений с биэкспоненциальной АКФ
 - При сегментации изображений с гауссовской АКФ
 - При сегментации изображений с экспоненциальной изотропной АКФ
- При сегментации изображений с любой АКФ для повышения качества сегментации
- При сегментации изображений с любой АКФ для повышения скорости сегментации
- 28. Алгоритм сегментации на основе слияния-расщепления основан на последовательном выполнении двух процедур:
- Слияния и затем расщепления на основе ослабленного критерии я однородности
- Расщепления на основе ослабленного критерии я однородности и затем слияния
- Слияния и затем расщепления на основе ужесточенного критерии я однородности
- Расщепления на основе ужесточенного критерии я однородности и затем слияния
- Расщепления и затем слияния на основе ужесточенного критерия однородности
 - 29. Признаки изображений предназначены для
 - подавления шумов на изображениях
 - распознавания изображений
 - повышения качества изображений
 - фильтрации изображений
 - компрессии изображений
- 30. Усреднение спектра по секторам позволяет получить признаки, инвариантные к
 - Сдвигу
 - Масштабу
 - Повороту
 - Преобразованию подобия
 - Аффинному преобразованию
 - 31. Отсчеты модуля спектра являются признаками, инвариантными к:
 - Сдвигу
 - Масштабу
 - Повороту
 - Преобразованию подобия
 - Аффинному преобразованию

Блок 2 (уметь)

- 1. Поэлементное преобразование цифрового изображения...
- делает погрешность квантования по уровню равную числу уровней,
- сводит погрешность квантования по уровню к нулю,
- не меняет погрешность квантования по уровню,
- приводит к увеличению погрешности квантования по уровню,
- приводит к уменьшению погрешности квантования по уровню.
- 2. Использование избыточного количества стартовых точек в алгоритмах сегментации на основе параллельного наращивания областей может привести к тому, что
 - Некоторые участки изображения не будут покрыты областями
 - Будут созданы области, не удовлетворяющие предикату однородности
- Будут созданы области, которые можно объединить без нарушения предиката однородности
 - Все изображение будет принадлежать одной области
 - Избыточное количество стартовых точек не влияет на результат сегментации
- 3. Дифференциальные методы кодирования в качестве одного из этапов обязательно включают
 - вычисление разности между двумя соседними отсчетами
 - вычисление спектра
 - предсказание каждого отсчета на основании уже обработанных отсчетов
 - кодирование разностного сигнала кодами переменной длины
 - оценку автокорреляционной функции
 - 4. Шкала Макса строится исходя из условия
- обеспечения заданной максимальной погрешности при заданном количестве уровней квантования
- минимизации максимальной погрешности при заданном количестве уровней квантования
- обеспечения заданной среднеквадратической погрешности при заданном количестве уровней квантования
- минимизации среднеквадратической погрешности при заданном количестве уровней квантования
- минимизации количества уровней квантования при заданной среднеквадратической погрешности
- 5. Методы кодирования с преобразованием в качестве одного из этапов обязательно включают
 - вычисление разностей между трансформантами
 - вычисление и кодирование трансформант
 - замену некоторых трансформант нулями
 - кодирование трансформант кодами переменной длины
 - оценку автокорреляционной функции трансформант
- 6. Статистическими характеристиками одномерного распределения яркости являются:

- Энергетический спектр и дисперсия
- АКФ и плотность распределения яркости
- Энергетический спектр и АКФ
- Математическое ожидание, дисперсия и плотность распределения яркости
- Математическое ожидание, дисперсия и
- 7. Если изображение искажено линейным фильтром с импульсной характеристикой H, то импульсная характеристика G восстанавливающего инверсного фильтра может быть записана в виде:
 - -G = -H
 - -G = -1/H
 - -G = 1/H
 - -G = H*
 - -G = -H*
- 8. Усреднение спектра по кольцевым областям позволяет получить признаки инвариантные к
 - Сдвигу
 - Масштабу
 - Повороту
 - Преобразованию подобия
 - Аффинному преобразованию
 - 9. Повышение резкости изображения сопровождается
 - Повышением уровня низких частот,
 - Понижением уровня низких частот,
 - Повышением уровни высоких частот,
 - Понижением уровня высоких частот,
 - Сохранением уровня низких и высоких частот.

Максимальная сумма баллов, набираемая студентом по дисциплине «Основы построения систем обработки визуальной информации» равна 100.

Оценк а в баллах	Оценка по шкале	Обоснование	Уровень сформированно сти компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень

66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения	Продвинутый уровень
50.65		ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	
50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы