

Chapter 10

Algorithm Efficiency and Sorting

Measuring the Efficiency of Algorithms

- Analysis of algorithms
 - Provides tools for contrasting the efficiency of different methods of solution
- A comparison of algorithms
 - Should focus of significant differences in efficiency
 - Should not consider reductions in computing costs due to clever coding tricks

Measuring the Efficiency of Algorithms

- Three difficulties with comparing programs instead of algorithms
 - How are the algorithms coded?
 - What computer should you use?
 - What data should the programs use?
- Algorithm analysis should be independent of
 - Specific implementations
 - Computers
 - Data

The Execution Time of Algorithms

- Counting an algorithm's operations is a way to access its efficiency
 - An algorithm's execution time is related to the number of operations it requires
 - Examples
 - Traversal of a linked list
 - The Towers of Hanoi
 - Nested Loops

Algorithm Growth Rates

- An algorithm's time requirements can be measured as a function of the problem size
- An algorithm's growth rate
 - Enables the comparison of one algorithm with another
 - Examples
 - Algorithm A requires time proportional to n²
 - Algorithm B requires time proportional to n
- Algorithm efficiency is typically a concern for large problems only

Algorithm Growth Rates

Figure 10-1

Time requirements as a function of the problem size *n*

• Definition of the order of an algorithm

Algorithm A is order f(n) – denoted O(f(n)) – if constants k and n_0 exist such that A requires no more than k * f(n) time units to solve a problem of size $n \ge n_0$

- Growth-rate function
 - A mathematical function used to specify an algorithm's order in terms of the size of the problem
- Big O notation
 - A notation that uses the capital letter O to specify an algorithm's order
 - Example: O(f(n))

Figure 10-3a

A comparison of growth-rate functions: a) in tabular form

Figure 10-3b

A comparison of growth-rate functions: b) in graphical form

- Order of growth of some common functions $O(1) < O(\log_2 n) < O(n) < O(n * \log_2 n) < O(n^2) < O(n^3) < O(2^n)$
- Properties of growth-rate functions
 - You can ignore low-order terms
 - You can ignore a multiplicative constant in the highorder term
 - O(f(n)) + O(g(n)) = O(f(n) + g(n))

- Worst-case and average-case analyses
 - An algorithm can require different times to solve different problems of the same size
 - Worst-case analysis
 - A determination of the maximum amount of time that an algorithm requires to solve problems of size n
 - Average-case analysis
 - A determination of the average amount of time that an algorithm requires to solve problems of size n

Keeping Your Perspective

- Throughout the course of an analysis, keep in mind that you are interested only in significant differences in efficiency
- When choosing an ADT's implementation, consider how frequently particular ADT operations occur in a given application
- Some seldom-used but critical operations must be efficient

Keeping Your Perspective

- If the problem size is always small, you can probably ignore an algorithm's efficiency
- Weigh the trade-offs between an algorithm's time requirements and its memory requirements
- Compare algorithms for both style and efficiency
- Order-of-magnitude analysis focuses on large problems

The Efficiency of Searching Algorithms

- Sequential search
 - Strategy
 - Look at each item in the data collection in turn, beginning with the first one
 - Stop when
 - You find the desired item
 - You reach the end of the data collection

The Efficiency of Searching Algorithms

- Sequential search
 - Efficiency
 - Worst case: O(n)
 - Average case: O(n)
 - Best case: O(1)

The Efficiency of Searching Algorithms

- Binary search
 - Strategy
 - To search a sorted array for a particular item
 - Repeatedly divide the array in half
 - Determine which half the item must be in, if it is indeed present,
 and discard the other half
 - Efficiency
 - Worst case: O(log₂n)
- For large arrays, the binary search has an enormous advantage over a sequential search

Sorting Algorithms and Their Efficiency

- Sorting
 - A process that organizes a collection of data into either ascending or descending order
- Categories of sorting algorithms
 - An internal sort
 - Requires that the collection of data fit entirely in the computer's main memory
 - An external sort
 - The collection of data will not fit in the computer's main memory all at once but must reside in secondary storage

Sorting Algorithms and Their Efficiency

- Data items to be sorted can be
 - Integers
 - Character strings
 - Objects
- Sort key
 - The part of a record that determines the sorted order of the entire record within a collection of records

Selection Sort

- Selection sort
 - Strategy
 - Select the largest item and put it in its correct place
 - Select the next largest item and put it in its correct place, etc.

Figure 10-4

A selection sort of an array of five integers

Selection Sort

- Analysis
 - Selection sort is O(n²)
- Advantage of selection sort
 - It does not depend on the initial arrangement of the data
- Disadvantage of selection sort
 - It is only appropriate for small n

Please open file *carrano_ppt10_B.ppt* to continue viewing chapter 10.

Chapter 10 (continued)

Algorithm Efficiency and Sorting

Bubble Sort

- Bubble sort
 - Strategy
 - Compare adjacent elements and exchange them if they are out of order
 - Comparing the first two elements, the second and third elements, and so on, will move the largest (or smallest) elements to the end of the array
 - Repeating this process will eventually sort the array into ascending (or descending) order

Bubble Sort

Figure 10-5

The first two passes of a bubble sort of an array of five integers: a) pass 1; b) pass 2

Bubble Sort

- Analysis
 - Worst case: O(n²)
 - Best case: O(n)

Insertion Sort

- Insertion sort
 - Strategy
 - Partition the array into two regions: sorted and unsorted
 - Take each item from the unsorted region and insert it into its correct order in the sorted region

Figure 10-6

An insertion sort partitions the array into two regions

Insertion Sort

Figure 10-7

An insertion sort of an array of five integers.

Insertion Sort

- Analysis
 - Worst case: O(n²)
 - For small arrays
 - Insertion sort is appropriate due to its simplicity
 - For large arrays
 - Insertion sort is prohibitively inefficient

- Important divide-and-conquer sorting algorithms
 - Mergesort
 - Quicksort
- Mergesort
 - A recursive sorting algorithm
 - Gives the same performance, regardless of the initial order of the array items
 - Strategy
 - Divide an array into halves
 - Sort each half
 - Merge the sorted halves into one sorted array

Figure 10-8

A mergesort with an auxiliary temporary array

Figure 10-9

A mergesort of an array of six integers

- Analysis
 - Worst case: O(n * log₂n)
 - Average case: O(n * log₂n)
 - Advantage
 - It is an extremely efficient algorithm with respect to time
 - Drawback
 - It requires a second array as large as the original array

- Quicksort
 - A divide-and-conquer algorithm
 - Strategy
 - Partition an array into items that are less than the pivot and those that are greater than or equal to the pivot
 - Sort the left section
 - Sort the right section

Figure 10-12

A partition about a pivot

- Using an invariant to develop a partition algorithm
 - Invariant for the partition algorithm

The items in region S_1 are all less than the pivot, and those in S_2 are all greater than or equal to the pivot

Figure 10-14

Invariant for the partition algorithm

Analysis

- Worst case
 - quicksort is $O(n^2)$ when the array is already sorted and the smallest item is chosen as the pivot

Figure 10-19
A worst-case partitioning
with quicksort

- Analysis
 - Average case
 - quicksort is $O(n * log_2 n)$ when S_1 and S_2 contain the same or nearly the same number of items arranged at random

Figure 10-20

A average-case partitioning with quicksort

Analysis

- quicksort is usually extremely fast in practice
- Even if the worst case occurs, quicksort's
 performance is acceptable for moderately large arrays

Radix Sort

- Radix sort
 - Treats each data element as a character string
 - Strategy
 - Repeatedly organize the data into groups according to the ith character in each element
- Analysis
 - Radix sort is O(n)

Radix Sort

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150 Original integers (156**0**, 215**0**) (106**1**) (022**2**) (012**3**, 028**3**) (215**4**, 000**4**) Grouped by fourth digit Combined 1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004 (00**0**4) (02**2**2, 01**2**3) (21**5**0, 21**5**4) (15**6**0, 10**6**1) Grouped by third digit (02**8**3) 0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283 Combined Grouped by second digit (0**0**04, 1**0**61) (0**1**23, 2**1**50, 2**1**54) (0**2**22, 0**2**83) (1**5**60) Combined 0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560 (**0**004, **0**123, **0**222, **0**283) (**1**061, **1**560) (**2**150, **2**154) Grouped by first digit 0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154 Combined (sorted)

Figure 10-21

A radix sort of eight integers

A Comparison of Sorting Algorithms

	Worst case	Average case
Selection sort Bubble sort Insertion sort	n ² n ² n ²	n ² n ² n ²
Mergesort	n * log n	n * log n
Quicksort	n ²	n * log n
Radix sort	n	n
Treesort	n ²	n * log n
Heapsort	n * log n	n * log n

Figure 10-22

Approximate growth rates of time required for eight sorting algorithms

Summary

- Order-of-magnitude analysis and Big O notation measure an algorithm's time requirement as a function of the problem size by using a growth-rate function
- To compare the inherit efficiency of algorithms
 - Examine their growth-rate functions when the problems are large
 - Consider only significant differences in growth-rate functions

Summary

- Worst-case and average-case analyses
 - Worst-case analysis considers the maximum amount of work an algorithm requires on a problem of a given size
 - Average-case analysis considers the expected amount of work an algorithm requires on a problem of a given size
- Order-of-magnitude analysis can be used to choose an implementation for an abstract data type
- Selection sort, bubble sort, and insertion sort are all O(n²) algorithms
- Quicksort and mergesort are two very efficient sorting algorithms