

# Random Number Characterization via Quantum Inspired Machine Learning

# Università degli Studi di Padova

Tommaso Faorlin, Alessandro Marcomini, Samuele Piccinelli tommaso.faorlin@studenti.unipd.it, a.marcomini@fz-juelich.de, s.piccinelli@fz-juelich.de





#### 1. Introduction

We introduce an innovative approach that exploits **Tensor Networks** (TNs) to solve the problem of discriminating pseudo- from quantum random number sequences.

## 4. Analytical tools

Site-site correlations give an index of pseudorandomness: in truly random sequences  $C_{ij}^{\ell\ell'} \approx 0 \,\forall i, j$ .



The **entanglement entropy** serves as index of the information distribution among nodes,

$$S(X) = -\operatorname{Tr}(\rho_X \log \rho_X), \, \rho_X = \operatorname{Tr}_{\bar{X}} |\Psi_{TN}\rangle \langle \Psi_{TN}|.$$

We propose a **new spin encoding**, invariant under modulo operations:

$$\phi^{s_j}(x_i) = [\cos(2\pi x_i), \sin(2\pi x_i)].$$

#### 6. Fully connected network

We compare TTN performances with a fully connected network composed of 3 layers, 32 input nodes and binary output, performing a random grid search over **500 models**.



The dataset is composed of sequences of 32 PRNs via linear congruential generator with  $p = 2^{21}$ . Interestingly, the TTN with **our map** proposal achieves the **best** performance for long-range correlations detection: this is highly significant, since the TN sees the sequence only once.

Pre-processing the data by spectral analysis via discrete cosine transform equates TTN and FCN scores.

#### 7. Conclusion and outlook

- TTNs show **promising** results in distinguishing QR sequences from periodic PR ones up to periods well beyond the input size;
- TTNs fail to discriminate QRNs from PRNs generated from e.g. the Marsenne-Twister algorithm.

For pseudo-random sequences, increasing the bond dimension saturates the accuracy: there is a **limit** to the amount of information the network can extract, independently of its representative power.

Such methods can be thus used to certify cases of impossible information compression.

#### 2. Tensor Network states

An N-rank tensor is a mathematical object with N indices,  $\mathcal{T}_{\alpha_1...\alpha_N}$ .



A tensor network state is a tailored quantum many-body wave function ansatz,  $|\psi_{\text{QMB}}\rangle = \sum_{i_1,...,i_N} \mathcal{T}_{i_1,...,i_N} |_{i_1,...,i_N}\rangle$ . The TN prescription expresses the amplitudes tensor as the contraction of a set of smaller tensors  $\mathcal{T}^{[q]}$  over auxiliary indices  $q \in \{1, Q\}$ .



We make use of **binary tree tensor networks** (TTNs), hierarchical TNs architectures suitable in physics applications for both open and closed boundary conditions.

### 3. Tensor Network Machine Learning

TTNs turn out to also be a very natural way to parameterize ML models. We consider

$$f^{\ell}(\mathbf{x}) = W^{\ell} \cdot \phi(\mathbf{x}) = \langle W^{\ell} | \phi(\mathbf{x}) \rangle$$
  $f^{\ell} : [0, 1]^{\times N} \to [0, 1]^{\times 2} ;$ 

W is the **optimized weight tensor** and  $\phi(\cdot)$  is a multi-dimensional **feature map**. The most physically relevant feature map is the **spin-map**:

$$\phi^{s_j}(x_j) = \left[\cos\left(\frac{\pi}{2}x_j\right), \sin\left(\frac{\pi}{2}x_j\right)\right].$$

The elements of  $f^{\ell}(\mathbf{x})$  are the **amplitude probabilities** for  $\phi(\mathbf{x})$  to belong to each class,

$$|f^{\ell}(\mathbf{x})|^2 \equiv \mathcal{P}(\ell, \mathbf{x})$$
  $||f^{\ell}(\mathbf{x})||_2 = 1.$ 

For the optimization, we exploit **gauge transformations** via QR decomposition: using the MSE loss  $L_{l2}$  the value of the tensors are updated following the gradient.



#### 5. Results examples

We study the model against increasingly complex generated pseudo-random sequences by progressively increasing their **period** p, using also the new spin map proposal.



The images are for p = 9 vs. p = 31. The network classifies  $\ell = 1$  (0) by exploiting positive (negative) correlations as shown in the red (blu) squares. By swapping the labels the results are mirrored: the network is trained **symmetrically**.

#### References and acknowledgements

- [1] Edwin M. Stoudenmire and David J. Schwab: Supervised learning with tensor networks, Advances in Neural Information Processing Systems, 29 (2016)
- [2] Simone Montangero: Introduction to tensor network methods numerical simulations of low-dimensional many-body quantum systems (2018)

The TTN code has been developed by Marco Trenti & Timo Felser from "Tensor Solutions: focus is transparent AI", a spin-off of Ulm university.