Modulo: Approfondimenti sui Sistemi Aritmetici di un computer: tipo intero

[P2_02]

Unità didattica: Sistema Aritmetico Intero

[3-AT]

Titolo: Il Tipo Intero nei linguaggi di programmazione

Argomenti trattati:

- ✓ Sistemi Aritmetici di un computer e tipi numerici in C
- ✓ Finitezza della rappresentazione in memoria degli interi
- ✓ Aritmetica modulare
- ✓ Tipi di rappresentazione in memoria dei numeri interi

Prerequisiti richiesti: aritmetica binaria, operatori binari

SISTEMA ARITMETICO (S.A.)

- riterio di rappresentazione in memoria dei dati di tipo numerico
- definizione delle operazioni aritmetiche

La finitezza della memoria impone che gli insiemi numerici rappresentabili nei computer siano finiti e discreti

FLOATING POINT

Principali tipi di dati numerici nel linguaggio C

Esempio: provare...

```
#include <stdio.h>
void main()
 {short s; unsigned short u;
 printf("immetti intero
 scanf("%hd",&s); u=s;
 printf("signed = %d\nunsigned")
                                > %u\n",s,u);
immetti intero
signed
unsigned
                   immetti intero
                   signed
                   unsigned
                                   65523
```

Come spiegare i risultati?

Rappresentazione in memoria degli interi (Tipo Intero)

Si basa sulla *rappresentazione binaria posizionale*: es. $10011_2 = 1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 19$

ed **occupa un numero finito n di bit.** Con **n** bit disponibili, è possibile rappresentare solo **2**ⁿ interi diversi.

Esiste un **minimo i**min ed un **massimo** i_{max} tra gli interi rappresentabili oltre i quali (per definizione) si verifica un **overflow di intero**.

Su n bit sono rappresentabili, in base 2, <u>solo</u> i numeri naturali 0, 1, 2, ..., 2ⁿ-1

		5			19 20	•••, 4	_1			
	Esempio:		0000	0001	0010	0011	0100	0101	0110	0111
	n=4	7	010	1 ₁₀	2 ₁₀	3 ₁₀	4 ₁₀	5 ₁₀	6 ₁₀	7 ₁₀
		ノ	1000	1001	1010	1011	1100	1101	1110	1111
	2 ⁿ -1=15		8 ₁₀	9 ₁₀	10 ₁₀	11 ₁₀	12 ₁₀	13 ₁₀	1410	15 ₁₀

n numero finito di bit per la rappresentazione

Aritmetica binaria modulo m=2ⁿ

Cos'è l'aritmetica modulo m?

L'insieme \mathbb{N} dei numeri naturali viene proiettato nell'insieme dei numeri $\{0, 1, 2, ..., m-1\}$:

$$\Phi_m : k \in \mathbb{N} \longrightarrow \Phi_m(k) = k_{\text{mod } m} \in \{0, 1, 2, ..., m-1\}$$

è il resto della divisione intera per m

I numeri $\{0, 1, 2, ..., m-1\}$ sono i rappresentanti di classi di equivalenza, ciascuna contenente tutti i numeri che forniscono lo stesso resto nella divisione intera per m.

numero finito di bit

Aritmetica binaria modulo m=2ⁿ

Esempio m = 4

$$\Phi_4: k \in \mathbb{N} \longrightarrow \Phi_4(k) = k_{\text{mod }4} \in \{0, 1, 2, 3\}$$

$$\forall h, k \in \mathbb{N} : h_{\text{mod }4} = k_{\text{mod }4}$$
 si scrive $(h \equiv k)_{\text{mod }4}$

classi di equivalenza

$$[0] = \{0, 4, 8, 12, 16, 20, ...\}$$

$$[1] = \{1, 5, 9, 13, 17, 21, \ldots\}$$

$$[2] = \{2, 6, 10, 14, 18, 22, ...\}$$

h=35; mod(h,m)
ans =

$$[3] = {3, 7, 11, 15, 19, 23, ...}$$

numero finito di bit

Aritmetica binaria modulo m=2ⁿ

Esempio C: tipo char $\implies m = 2^8 = 256$

```
\Phi_{256}: k \in \mathbb{N} \longrightarrow \Phi_{256}(k) = k_{\text{mod } 256} \in \{0, 1, 2, ..., 255\}
```

output

short h = 250, char k = 250, h%m = 250

```
short h = 257, char k = 1, h\%m = 1
```


Tipi di rappresentazione

- Rappresentazione per segno e modulo:
 usata per il campo mantissa di un numero reale floatingpoint.
- Rappresentazione per complemento a 2: usata per memorizzare i numeri interi con segno.
- Rappresentazione biased:
 - usata per il campo esponente di un numero reale floating-point.

Rappresentazione degli interi per segno e modulo

Per rappresentare interi (∈**Z**) simmetricamente negativi e positivi, la soluzione più semplice consiste nell'usare uno dei bit per il segno e gli altri per la rappresentazione in base 2 (rapp. per segno e modulo).

Esempio: $+5_{10} \longrightarrow (0,101)_2 \longrightarrow (1,101)_2$ segno

Gli interi rappresentabili su n bit, per segno e modulo, sono

$$-2^{n-1}+1, \dots, -2, -1, -0$$
 $+0, 1, 2, \dots, 2^{n-1}-1$ $2^{n-1}-1$

ed il **range** [i_{min} , i_{max}]=[-(2ⁿ⁻¹-1), 2ⁿ⁻¹-1] è simmetrico.

Metodo di rappresentazione non adeguato per l'aritmetica modulo 2ⁿ

Nelle altre due rappresentazioni degli interi:

- rappresentazione per complemento a due
- rappresentazione "biased" con bias B (eccesso B)

tutti i valori interi (rappresentabili) hanno un'unica rappresentazione (anche lo zero!) mediante sequenze consecutive di **n** bit nell'aritmetica modulo **2**ⁿ: quindi il range non sarà simmetrico.

Quello che cambia tra le due rappresentazioni è solo la corrispondenza tra le sequenze di n bit di $\{0, 1, ..., 2^n-1\}$ e gli interi $\{i_{min}, i_{min}+1, ..., i_{max}-1, i_{max}\}$.

Nella rappresentazione per complemento a due (C2) lo zero è associato alla sequenza di n zeri.

range $[i_{min}, i_{max}] = [-2^{n-1}, 2^{n-1} - 1]$

(prof. M. Rizzardi)

non è simmetrico.

Nella rappresentazione biased con bias B=2ⁿ⁻¹-1 (rappresentatione)

tazione eccesso B) il bias B rappresenta il valore zero mentre gli n zeri

Esempio

n=3 bit

	bit	Segno e	Comple-	Biased	
	DIC	modulo	mento a 2	Brased	
bili	000	+0	OFORTH OSSIC	i _{min} -3 -B	
di bit disponibili	001	+10	+1	-2	
dis	010	+2	+2	-1	
ji bit	011	i _{max} +3	i _{max} +3	0	
oni d	100	2-0	i _{min} -4	+1	
	101	-1	-3	+2	
figu	110	-2	-2	+3	
3	111	i _{min} -3	-1	i _{max} +4	

Esempio int. senza segno modul 0

126

128

129

sequenza

di 8 bit

0000 0000

0000 0001

1000 0000

hex

00

