

지 50호 2018년 7월

차 례

소개····	- 2
Hot Issue · · · · · · · · · · · · · · · · · · ·	- 3
관련 통계 · · · · · · · · · · · · · · · · · ·	- 5
한걸음 더 · · · · · · · · · · · · · · · · · ·	- 6

R&D KIOSK는 과학기술정보통신부에서 무료로 배포합니다.

상업적인 용도나 목적을 제외하고 누구나 이용 가능합니다.

KIOSK에 사용된 이미지를 상업적인 용도나 목적으로 재가공하실 수 없습니다.

기획·발행: 과학기술정보통신부

자료조사·편집·디자인: 한국창의여성연구협동조합

TEL: 02-6215-1222 FAX: 02-6215-1221 www.koworc.kr info@koworc.kr

소개

4차 산업혁명 핵심기술의 특징은 초연결, 맞춤화, 지능화 등입니다. 이러한 4차 산업혁명 핵심기술은 무인이동체가 발전하기 위해서 꼭 필요하며 4차 산업혁명 핵심기술 또한 무인이동체를 통해 한 단계 더 도약이 가능합니다. 자율차, 드론, 무인선박 등 4차 산업혁명 기술의 집약체인 무인이동체는 혁신성장의 핵심동력이 되어 새로운 산업의 범위를 확장하는 견인자가 될 것입니다.

무인이동체란?

스스로 외부 환경을 인식하고 상황을 판단하여 이동하며, 필요 시에는 작업을 수행하는 육·해·공을 망라하는 이동체

응용환경에 따른 분류

- 공중무인이동체: 조종사 없이 공기역학적 힘에 의해 부양하여 자율비행하거나 원격조종으로 비행하는 동력 비행체
- 육상무인이동체: 이동체 내·외부의 컴퓨팅 시스템에 의한 자율제어 및 원격조종으로 이동과 임무수행이 가능한 이동체 및 운용 관리 시스템
- 해양무인이동체: 수상 또는 수중 등에서 운용되는 무인이동체

무인이동체 기술혁신과 성장 10개년 로드맵

'혁신성장전략과 4차 산업혁명 대응계<mark>획'에</mark> 따른 무인이동체 분야 혁신성장의 일정표이자 '무인이동체 기술개발 및 산업성장 전략과 무인이동체 발전 5개년 계획'에 이은 차세대 무인이동체 분야 기술개발 설계도

R&D Kiosk 제50호 2018년 7월

------ 6대 공통핵심기능기술 개발

① 탐지 및 인식 ② 자율지능 ③ 인간-이동체 인터페이스

4 통신 **⑤** 이동 및 작업 **⑥** 시스템 통합

---• 5대 용도별 플랫폼 개발

- ① 극한환경형: 심해저, 험지, 고고도 등 극한환경 내 운용
- ② 근린생활형: 개인 수요 및 편의에 최적화
- ③ 전문작업형: 로봇기술을 결합하여 작업효율을 극대화
- ④ 자율협력형: 다수·다종 무인이동체 간 통합운용 가능
- ⑤ 융·복합형

무인이동체 제품으로 이어지도록 산업화 촉진

자료: 과학기술정보통신부(2018), "무인이동체 기술혁신과 성장 10개년 로드맵". 과학기술정보통신부 보도자료(2017. 12. 7), "무인이동체 혁신성장 일정표 나오다!"

무인이동체 6대 공통핵심기능기술

우리나라는 바이오, 나노, 소재, 기후기술 등과 같은 분야에서 핵심원천기술을 개발하여 혁신성장동력을 확보하기 위해 노력하고 있습니다. 무인이동체 분야 또한 우리나라가 핵심원천기술을 확보하려고 집중하는 분야 중 하나입니다. 자율주행차와 드론으로 대표되는 무인이동체는 4차 산업혁명 기술의 집약체라고 일컬어지지만 그중에서도 탐지 및 인식, 자율지능, 인간-이동체 인터페이스, 통신, 이동 및 작업, 시스템 통합과 같은 6가지 분야의 공통원천기술이 원활하게 확보되어야 효과적인 산업화가 가능합니다.

탐지 및 인식(Sensing and Perception)

- 센서를 통해 이동체의 위치, 운동 상태와 지형, 장애물을 탐지해 인식하고 이 정보를 획득/분석/처리하는 기술
- 스마트폰 센서 등 기존 연구 결과를 무인이동체에 적용하는 연구가 진행 중

관련 부품 및 기술

- 항공센서(영상, GPS, INS, 초음파)
- 임무센서(영상, IR, LIDAR, RADAR)
- 인식알고리즘 및 SW

추진 중인 대표 연구 및 기술

- 실내, 지하, 수중 등 위성항법을 사용할 수 없는 가혹환경에서 무인이동체 위치 추정을 위한 관성복합항법센서(관성항법기술에 네트워크 신호세기, 자기장 패턴 등 다양한 신호정보를 연계하는 센서) 등 개발
- 복수의 위성항법 신호 수신 알고리즘, 교란 신호 구분 기술 등의 개발로 위성항법이 가능한 공간에서의 위치 추정 정확도 향상

자율지능(Autonomy)

- 스스로 상황 및 환경을 인식하여 이를 바탕으로 임무를 수행하는 기술
- 인공지능 기반 무인이동체 지능화 연구가 활발하며 국내에서도 자율주행차 중심으로 연구 진행 중

관련 부품 및 기술

- 자율제어 및 항법 중개체 협력
- 인공지능을 통한 사물/지형/개체 분류
- 디지털 맵 형성 및 태깅(Tagging)

추진 중인 대표 연구 및 기술

- 영상/음성 기반 기계학습 및 센서 데이터 융합 등을 통해 3차원 공간상 외부 물체 위치나 상황에 대한 인식률 향상
- 무인이동체 스스로 주어진 임무의 종류/중요도/우선순위 등을 판단하는 기술 및 이동경로를 최적화하는 자율이동 기술 개발

인간-이동체 인터페이스(Human-machine Interface)

- 무인이동체를 조종하고 활용하기 위한 인간-무인이동체 간 의사소통 기술
- 세계적으로 상용화된 기술이 거의 없는 상태임

- 원격조종(지상콘트롤, 가상증강현실)
- 시뮬레이터(개발, 초종, 훈련)
- 무인체 활용기술

3

추진 중인 대표 연구 및 기술

- 조종자의 실수와 피로도를 최소화하기 위한 AR/VR 기반의 원격 운동 체계와 음성/제스처 등 보다 직관적인 조종 방식 개발
- 일방적 명령 체계를 벗어나 인간과 무인이동체 간 소통을 위하여 시각, 청각, 촉각 등 다양한 방식을 결합한 상호교감 기술 개발

Hot Issue

통신(Connectivity)

- 조종기-이동체, 이동체-이동체 간 정보를 교환하는 기술
- 운용 안정성 향상기술, 불법 활용 억제 기술 등 국내외 기술 개발이 활발한 분야

• 통신 인프라 및 통신 네트워크 보안기술

추진 중인 대표 연구 및 기술

- 전파통신을 사용할 수 없는 수중에서 무인이동체 운용을 위한 수중 통신과 대용량 데이터 송수신을 위한 광통신 기술 개발
- 방해전파신호에 대응하고, 무허가 무인이동체 운용을 막기 위한 항재밍 및 다중 재밍 기술 개발을 통해 통신 보안성 확충

이동 및 작업(Mobility & Manipulation)

- 이동에 필요한 에너지원, 동력장치, 구동장치 및 작업장치 관련 기술
- 꾸준히 연구가 이루어졌으나 본격적인 상용화는 이루어지지 못하고 있음

관련 부품 및 기술

- 에너지 저장(배터리, 연료전지)
- 동력장치(모터, 엔진)
- 구동장치(휠, 프로팰러, 스크류)
- 작업장치(짐벌, 매니퓰레이터)

추진 중인 대표 연구 및 기술

- 운용시간 연장을 위해 다양한 상용 에너지 기술(배터리, 엔진, 연료전지, 태양전지 등)을 무인이동체에 최적화하고 3D 프린팅 등을 이용하여 소형화, 경량화 연구 지원
- 이차전지/엔진/신재생에너지 융합. 엔진/발전기 통합 등 하이브리드 시스템 및 친환경 분산추진 시스템 개발로 운용 효율 향상

시스템 통합(System Integration)

- 무인이동체 통합에 필요한 HW/SW 체계, 설계 평가 기술
- 지능화된 무인이동체의 다품종 소량생산 방식에 적합한 개발 프로세스, SW 등을 개발 중

관련 부품 및 기술

- 운영체계(OS) 및 S/W 아키텍처
- 모듈 부품, 공통 부품, 상호 운용성
- 설계 최적화, 시험평가

추진 중인 대표 연구 및 기술

- 지능화된 차세대 무인이동체 개발 과정과 기존 방식과의 차이를 분석하여 차세대 무인이동체에 최적화된 개발 프로세스 정립
- 악천후, 통신음영 등 실공간 구현이 어려운 환경에서 무인이동체 성능검증을 위한 가상 시뮬레이션 기반의 시험평가 기술 개발
- 운영체제, 미들웨어 등 시스템 SW 및 응용 SW 개발도구를 확보하고 무인이동체 공통 요구사항 분석을 통해 SW 아키텍처 개발

자료: 과학기술정보통신부(2018. 1), "무인이동체 기술혁신과 성장 10개년 로드맵".

관련 통계

응용환경에 따른 상업용 무인이동체 세계시장 규모 전망

• 상업용 공중무인이동체 세계시장은 2013년 2억 달러에서 2026년 130억 달러(연평균 증가율 38.5%) 수준으로, 육상무인이동체 시장은 2013년 23억 달러에서 2026년 1,282억 달러(연평균 증가율 36,2%) 수준으로 급격한 성장이 예상됨

자료: 과학기술정보통신부(2018. 1), "무인이동체 기술혁신과 성장 10개년 로드맵"

무인이동체 미래선도 핵심기술개발사업 정부투자규모

- 과학기술정보통신부는 무인이동체 핵심기술 개발사업을 위해 2016년에 150억 원, 2017 년에 140억 원을 투자하였으며, 2018년에는 119억 원을 우선 지원하기로 결정함
- 2018년 총 지원액은 2017년 대비 감소하 였으나 저고도 무인비행장치 교통관리기술 개발에는 2017년 대비 2배 증가한 30억 원 지원하기로 함

자료: 머니투데이(2018. 1. 22), "과기정통부, 육해공 무인이동체 개발 119억 투자" 미래창조과학부 보도자료(2017. 2. 14), "미래부, 육해공 무인이동체 기술개발 및 차세대 무인이동체 기술선점 추진" 미래창조과학부 보도자료(2016, 5, 18), "미래부, 「무인이동체 미래선도 핵심기술 개발사업」추진"

한걸음 더

주요국 동향

기존 산업과 실생활의 패러다임을 전적으로 바꾸는 무인이동체 실용화 가능성이 높아짐에 따라 주요국은 무인이동체 산업을 미래 신성장 분야로 제시하며, 기술개발과 시장 선점을 위한 정책을 펼치고 있습니다. 특히 '무인화' 및 '이동성' 이라는 공통 특성을 살려 육·해·공 무인이동체를 포괄하는 통합적 관점의 기술 개발을 추진 중입니다.

1217

- 2014년부터 2018년까지 육·해·공 무인이동체 기술개발에 약 240억 달러 투자
- 육·해·공 무인이동체에 공통으로 적용되는 핵심기술 개발 및 무인이동체 간 상호성에 중점
- 항공우주국(NASA)에서는 우주 분야에서 활용성 확대, 우주 비행사의 인건비 절감 및 위험 감소, 로봇 및 자율시스템 활용 중심으로 기술 전략 수립
- 2020년경 부분 자율주행차에 대한 허가가 이루어질 예정
- 글로벌 ICT 기업 중심으로 드론을 이용한 제조. 유통. 물류산업의 패러다임 변화 추진

- 2025년까지 글로벌 시장 10% 점유 목표
- 로봇 및 자율시스템 관련 기술의 통합개발 전략, 로봇 및 자율 시스템의 역할 및 발전방향을 전망하여 RAS(Robotics and Autonomous Systems)의 기술·산업 종합 전략 제시
- 정부는 자율주행자동차와 도로 간 정보 수집. 도시 정보. 새로운 음성 인식 서비스 등 자율주행과 관련된 8개 프로젝트를 지원하기 위해 2.000만 파운드 투자

- 일본 기업은 무인이동체를 활용한 신규 서비스 창출을 위해 이종 업종 간의 기술융합 도모 중 예: 소니(센서)와 ZMP(로봇)가 협업하여 건설현장 무인기 측량과 시설 점검 위탁사업 수행 캐논 MJ(영상기기)와 프로드론(무인기)이 캐논의 촬영장치를 활용한 정밀농업 지원 영상분석 서비스 제공 등
- 2015년 12월 소형 드론에 대한 운항규칙을 정비한 개정항공법을 시행했으며 산간, 낙후지역의 드론 택배 상용화를 위한 사업 추진 중

- 무인이동체에 대해 선허용, 후보완 정책으로 규제없는 산업 성장 기반 제공
- 특히 상업용 드론의 하드웨어 시장은 중국 기업인 Dajiang(이하 DJI)이 DJI 효과(DJI Effect) 라는 용어가 탄생할 정도로 압도적인 시장 점유율 확보
- DJI는 드론의 핵심 기능인 비행 컨트롤러와 드론 움직임과 관계없이 카메라를 일정한 기울기로 유지하는 짐벌(jimbal)분야에서 최고의 기술력 보유

자료: 융합연구정책센터(2017), "Weekly TIP 드론 시장 및 산업 동향" 과학기술정보통신부(2018), "무인이동체 기술혁신과 성장 10개년 로드맵" 국가기술표준원 KSA 한국표준협회(2018), "드론 해외기술 규제 가이드"

정보통신기술진흥센터(2016), "해외 ICT R&D 정책동향 해외 자율주행자동차 정책동향 미국, 유럽, 일본"

매월 과학기술정보통신부에서 발행하는 국가연구개발사업 정보 길잡이 R&D KIOSK는 과학기술 R&D에 대한 다양한 정보를 알기 쉽고 재미있게 전해드립니다.

