

Chapter 08. 좋은 딥러닝 구조를 찾아내는 딥러닝 (Neural Architecture Search)

# NAS란?

### **AutoML** Automated Machine Learning

#### AutoML의 작동 방식





Google Cloud AutoML

Amazon SageMaker AutoPilot

컴퓨터가 자동으로 머신 러닝을 해 준다면? 인공지능 개발자에게는 천국일까 악몽일까?



#### What's in AutoML?



그림 1 자동 기계학습 시스템

NAS를 비롯하여 여러가지 기술이 포함되어 있다. NAS가 AutoML 분야에서 가장 주목받으면서, 최근에는 NAS라고 하면 AutoML 전반을 모두 포함하는 경우가 많다.



#### **NAS** Neural Architecture Search



Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy selects an architecture A from a predefined search space  $\mathcal{A}$ . The architecture is passed to a performance estimation strategy, which returns the estimated performance of A to the search strategy.

NAS를 수행하는 과정은 Straight Forward하다. 각 과정의 연산 시간을 최소화 하는 것이 주된 목표이다.



## **Search Space**



Figure 2: An illustration of different architecture spaces. Each node in the graphs corresponds to a layer in a neural network, e.g., a convolutional or pooling layer. Different layer types are visualized by different colors. An edge from layer  $L_i$  to layer  $L_j$  denotes that  $L_j$  receives the output of  $L_i$  as input. Left: an element of a chain-structured space. Right: an element of a more complex search space with additional layer types and multiple branches and skip connections.



Figure 3: Illustration of the cell search space. Left: Two different cells, e.g., a normal cell (top) and a reduction cell (bottom) (Zoph et al., 2018). Right: an architecture built by stacking the cells sequentially. Note that cells can also be combined in a more complex manner, such as in multi-branch spaces, by simply replacing layers with cells.

서로 다른 Search Space를 가지는 두 Neural Network 구조와 Cell Search Space.



### **Search Strategy**



다양한 Search Strategy가 나와있다. 전통적인 EA, 최근에 효시 역할을 한 RL, 현 SOTA인 DARTS까지.



### **Performance Estimation**

| Speed-up method                          | How are speed-ups achieved?                                                                                                                                        | References                                                                                                                                    |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Lower fidelity estimates                 | Training time reduced by training for fewer epochs, on subset of data, downscaled models, downscaled data,                                                         | Li et al. (2017),<br>Zoph et al. (2018),<br>Zela et al. (2018),<br>Falkner et al. (2018),<br>Real et al. (2019),<br>Runge et al. (2019)       |
| Learning Curve<br>Extrapolation          | Training time reduced as performance can be extrapolated after just a few epochs of training.                                                                      | Swersky et al. (2014),<br>Domhan et al. (2015),<br>Klein et al. (2017a),<br>Baker et al. (2017b)                                              |
| Weight Inheritance/<br>Network Morphisms | Instead of training models from scratch, they are warm-started by inheriting weights of, e.g., a parent model.                                                     | Real et al. (2017),<br>Elsken et al. (2017),<br>Elsken et al. (2019),<br>Cai et al. (2018a,b)                                                 |
| One-Shot Models/<br>Weight Sharing       | Only the one-shot model needs<br>to be trained; its weights are<br>then shared across different<br>architectures that are just<br>subgraphs of the one-shot model. | Saxena and Verbeek (2016),<br>Pham et al. (2018),<br>Bender et al. (2019b),<br>Liu et al. (2019b),<br>Cai et al. (2019),<br>Xie et al. (2019) |

Table 1: Overview of different methods for speeding up performance estimation in NAS.

다양한 방법을 이용해 선택된 구조의 성능을 예측한다.

