Semantic Web 5. RDF-S and OWL

PD Dr. Matthias Thimm

thimm@uni-koblenz.de

Institute for Web Science and Technologies (WeST)
University of Koblenz-Landau

RDF vocabulary

- Recap RDF vocabulary:
 - rdf:XMLLiteral: XML literal values
 - rdf:Property: class of properties
 - rdf:Statement: class of RDF statements
 - rdf:Alt, rdf:Bag, rdf:Seq: containers
 - rdf:List: class of RDF Lists
 - rdf:nil: the empty list
 - rdf:type: type of an instance
 - rdf:first: first item in a list
 - rdf:rest: rest of a list
 - rdf:value: for structured values
 - rdf:subject: subject of a statement
 - rdf:predicate predicate of a statement
 - rdf:object: object of a statement

What is missing?

RDF Schema

- RDFS: RDF Schema
- Extends the basic RDF vocabulary with meta-modeling capabilities
- RDFS defines a basic set of classes and properties, together with their semantics (interpretation) and logic
- Some elements:
 - Class, subClassOf, DataType
 - Property, subPropertyOf
 - Domain, range

OWL

- ► OWL: Web Ontology Language
- Extends RDFS even further
- Incorporates aspects of description logics
- ▶ Defines formal semantics for RDF

Outline

RDF Schema

2 OWL

Summary

RDFS Vocabulary 1/2

► RDFS namespace:

```
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
```

- ► RDFS classes:
 - rdfs:Resource: everything is a resource
 - rdfs:Literal: the class of literal values
 - rdfs:Class: the class of classes
 - rdfs:Datatype: the class of datatypes
 - rdfs:Container: the class of containers
 - rdfs:ContainerMembershipProperty: rdf:_1, rdf:_2, ...

RDFS Vocabulary 2/2

RDFS properties:

- rdfs:subClassOf: subclass of a class
- rdfs:subPropertyOf: subproperty of a property
- rdfs:domain: domain of a property
- rdfs:range: range of a property
- rdfs:label: the name
- rdfs:comment: a description of resource
- rdfs:member: a member of a resource
- rdfs:seeAlso: further information about a resource
- rdfs:isDefinedBy: the definition of a resource

RDFS Principles

rdfs:Resource: all resources are instances of rdfs:Resource (like ⊤ in description logics):

```
(ex:John, rdf:type, rdfs:Resource)
(rdfs:Resource, rdf:type, rdfs:Resource)
```

rdfs:Class: sets of resources, can be hierarchically structured (like concepts in description logics):

```
(ex:Bird, rdf:type, rdfs:Class)
(ex:Bird, rdfs:subClassOf, ex:Animal)
```

rdfs:Property: resources that link resources, can appear in the middle-position of triples (like relations in description logics):

```
(ex:Color, rdf:type, rdfs:Class)
(ex:hasColor, rdf:type, rdfs:Property)
(ex:hasColor, rdfs:range, ex:Color)
(ex:hasColor, rdfs:domain, rdfs:Resource)
```

Example

Image taken from Jos de Bruijn, Semantic Web Technologies course, 2008

Semantics 1/3

- ▶ RDF-S terms come with a well-defined meaning that allows limited reasoning on RDF
- ► Rules (informally):
 - ► If (X,rdfs:domain,Y) and (U,X,V) then (U,rdf:type,Y)
 - If (ex:motherOf,rdfs:domain,ex:Human) and (ex:Mia,ex:motherOf,ex:Ann) then (ex:Mia,rdf:type,ex:Human)
 - ► If (X,rdfs:range,Y) and (U,X,V) then (V,rdf:type,Y)
 - If (ex:hasColor,rdfs:range,ex:Color) and (ex:hammer,ex:hasColor,ex:green) then (ex:green,rdf:type,ex:Color)

Semantics 2/3

- ► Rules (informally, cont'd):
 - ► If (X,rdfs:subPropertyOf,Y) and (Y,rdfs:subPropertyOf,Z) then (X,rdfs:subPropertyOf,Z)
 - If (ex:brotherOf,rdfs:subPropertyOf,ex:SiblingOf) and (ex:SiblingOf,rdfs:subPropertyOf,ex:RelativeOf) then (ex:brotherOf,rdfs:subPropertyOf,ex:RelativeOf)
 - ▶ If (X,rdfs:subPropertyOf,Y) and (U,X,V) then (U,Y,V)
 - If (ex:Carl,ex:brotherOf,ex:Dave) and
 (ex:brotherOf,rdfs:subPropertyOf,ex:SiblingOf) then
 (ex:Carl,ex:SiblingOf,ex:Dave)

Semantics 3/3

- Rules (informally, cont'd):
 - If (X,rdfs:subClassOf,Y) and (Y,rdfs:subClassOf,Z) then (X,rdfs:subClassOf,Z)
 - If (ex:Cat,rdfs:subClassOf,ex:Mammal) and (ex:Mammal,rdfs:subClassOf,ex:Animal) then (ex:Cat,rdfs:subClassOf,ex:Animal)
 - If (X,rdfs:subClassOf,Y) and (U,rdf:type,X) then (U,rdf:type,Y)
 - If (ex:Cat,rdfs:subClassOf,ex:Mammal) and
 (ex:Kitty,rdf:type,ex:Cat) then
 (ex:Kitty,rdf:type,ex:Mammal)

Axiomatic Triples

The following triples are assumed to be always true:

```
(rdf:type, rdfs:domain, rdfs:Resource)
(rdfs:domain, rdfs:domain, rdf:Property)
(rdfs:range, rdfs:domain, rdf:Property)
(rdfs:subPropertyOf, rdfs:domain, rdf:Property)
(rdf:type, rdfs:range, rdfs:Class)
(rdfs:domain, rdfs:range, rdfs:Class)
(rdfs:range, rdfs:range, rdfs:Class)
(rdfs:subPropertyOf, rdfs:range, rdf:Property)
(rdfs:subClassOf, rdfs:range, rdfs:Class)
(rdf:Alt, rdfs:subClassOf, rdfs:Container)
(rdf:Bag, rdfs:subClassOf, rdfs:Container)
. . .
```

Entailment

- ► If a triplestore (=data base for RDF triples) implements the RDF/RDFS entailment regime the previous rules are applied when answering queries
- ▶ more on queries later (→ SPARQL)
- ► Small example anyway: Querying

```
(ex:Cat,rdfs:subClassOf,ex:Mammal)
(ex:Kitty, rdf:type, ex:Cat)
(ex:Dumbo, rdf:type, ex:Mammal)
```

with "Get all mammals" returns Dumbo and Kitty.

Outline

1 RDF Schema

OWL

Summary

Limitations of RDFS

- RDFS has limited expressive power for several applications
 - ▶ No conditional range and domain restrictions
 - The range of hasChild should be Human when applied to humans and Elephant when applied to elephants
 - ► No existence/cardinality constraints
 - All instances of Person must have a mother
 - ► All instances of Person must have two parents
 - ► No constraints on properties
 - Knows is symmetric
 - ▶ isAncestor is transitive

OWL - Web Ontology Language

- ► The OWL family comprises actually three different languages
 - OWL Lite
 - Classification hierarchy
 - Simple constraints
 - OWL DL
 - Maximal expressiveness
 - ► Still tractable
 - OWL Full
 - Even higher expressiveness
 - ► Not tractable

Features of OWL Language Layers

- ► OWL Lite
 - (sub)classes, individuals
 - (sub)properties, domain, range
 - conjunction
 - ► (in)equality
 - cardinality 0/1
 - datatypes
 - inverse, transitive, symmetric properties
 - someValuesFrom
 - allValuesFrom

- ► OWL DL
 - Negation
 - Disjunction
 - Full cardinality
 - Enumerated types
 - hasValue
- ► OWL Full
 - Meta-classes
 - More compatible with RDFS

OWL Full

- ► No restriction on vocabulary
 - use classes as instances
- ▶ owl:Class≡rdfs:Class
- ► RDF-style model theory
 - Reasoning using FOL engine
 - Semantics should correspond to OWL DL for restricted KBs
- ightharpoonup based on \mathcal{SROIQ}

OWL DL

- Use of vocabulary restricted
 - no classes as instances
 - defined by abstract syntax
- ▶ owl:Class rdfs:Class
- Standard DL-based model theory
 - ▶ Direct correspondence with a DL
 - Reasoning via DL engines
- ightharpoonup based on \mathcal{SHOIN}

OWL Lite

- ► No explicit negation or union
- ► Restricted cardinality (0/1)
- No nominals (oneOf)
- DL-based semantics
 - Reasoning via DL engines
- ▶ owl:Class rdfs:Class
- Semantically, only small restriction on OWL DL
 - No nominals
 - no arbitrary cardinality
- \triangleright based on \mathcal{SHIF}

OWL concepts

OWL concept	DL	Example
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Actor □ Politician
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Male ⊔ Female
complementOf	$\neg C$	$\neg S$ tudent
oneOf	$\{o_1,\ldots,o_n\}$	{carl, dave}
allValuesFrom	∀P.C	∀hasChild.Female
someValuesFrom	∃ <i>P</i> . <i>C</i>	∃hasChild.Female
value	∃ <i>P</i> .{ <i>v</i> }	∃hasColor.green
minCardinality	$\geq_n P.C$	\geq_3 hasChild.Male
maxCardinality	$\leq_n P.C$	\leq_2 hasChild.Male
cardinality	$=_n P.C$	$=_3$ hasChild.Male

OWL axioms

OWL axiom	DL	Example
SubClassOf	$C_1 \sqsubseteq C_n$	Platypus ⊑ Mammal □ Oviparous
EquivalentClasses	$C_1 \equiv C_2$	$\mathit{Man} \equiv \mathit{Human} \sqcap \mathit{Male}$
SubPropertyOf	$P_1 \sqsubseteq P_2$	$hasParent \sqsubseteq hasAncestor$
EquivalentProperties	$P_1 \equiv P_2$	$hasCost \equiv hasPrice$
SameIndividual	$o_1 \equiv o_2$	jack ≡ jacksmith
DisjointClasses	$C_1 \sqsubseteq \neg C_2$	$Male \sqsubseteq eg Female$
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
Transitive	$P^+ \sqsubseteq P$	$hasAncestor^+ \sqsubseteq hasAncestor$
Symmetric	$P \equiv P^-$	k nows $\equiv k$ nows $^-$

Example 1/2

```
In OWL:
Class (associate Professor partial academic Staff Member)
DisjointClasses ( associateProfessor assistantProfessor )
Disjoint Classes ( professor associate Professor )
Class (faculty complete academicStaffMember)
In DL:
associateProfessor \sqsubseteq academicStaffMember
associateProfessor □ ¬assistantProfessor
professor ⊑ ¬associateProfessor
faculty ≡ academicStaffMember
```

Example 2/2

```
In OWL:
DatatypeProperty(age range(xsd:nonNegativeInteger))
SubPropertyOf(isTaughtBy involves)
ObjectProperty(teaches inverseOf(isTaughtBy)
   domain(academicStaffMember) range(course))
In DL:
\top \sqsubseteq \forall age.xsd:nonNegativeInteger
isTaughtBy \sqsubseteq involves
teaches \equiv isTaughtBy^-
\top \Box \forall teaches^-. academicStaffMember
\top \sqsubseteq \forallteaches.course
```

OWL in RDF

OWL namespace: xmlns:owl="http://www.w3.org/2002/07/owl"

- OWL expressions can be represented in RDF
 - ► Class(C) → (C, rdf:type, owl:class)
 - ▶ DisjointClasses(C1 C2) \rightarrow (C1, owl:disjointOf, C2)
 - SymmetricObjectProperty(P) → (P, rdf:type, owl:SymmetricProperty)
 - ► SameIndividual(o1 o2) → (o1, owl:sameAs, o2)
 - ▶ ObjectAllValuesFrom(P C) \rightarrow
 - (_x, rdf:type, owl:Restriction)
 - (_x, owl:onProperty, P)
 - ► (_x, owl:allValuesFrom, C)
 - Example:

```
(ex:ParentOfOnlyDaughters, owl:equivalentClass, _x)
(_x, rdf:type, owl:Restriction)
(_x, owl:onProperty, ex:hasChild)
(_x, owl:allValuesFrom, ex:Female)
```

• ...

OWL in RDF - Another example

A happy cat owner owns a cat and all beings he cares for are healthy.

Outline

1 RDF Schema

2 OWL

3 Summary

Summary

- ► RDF Schema
 - ▶ Resources, classes, properties, . . .
 - ► Sub-classes, domain, range, . . .
 - Semantics and entailment
- ► OWI
 - ► OWL Lite, OWL DL, OWL Full
 - OWL in RDF

Pointers to further reading

- ▶ Baader, Franz; Horrocks, Ian; Sattler, Ulrike (2005). Description Logics as Ontology Languages for the Semantic Web. In Hutter, Dieter; Stephan, Werner. Mechanizing Mathematical Reasoning: Essays in Honor of Jörg H. Siekmann on the Occasion of His 60th Birthday. Heidelberg, DE: Springer Berlin. ISBN 978-3-540-25051-7.
- Hitzler, Pascal; Krötzsch, Markus; Rudolph, Sebastian (2009-08-25). Foundations of Semantic Web Technologies. CRCPress. ISBN 1-4200-9050-X.
- Patel-Schneider, Peter F.; Motik, Boris (2009-10-27). OWL 2 Web Ontology Language Mapping to RDF Graphs. http://www.w3.org/TR/2009/ REC-owl2-mapping-to-rdf-20091027/