

Merancang Data untuk Power Bl

Manfaat Model yang Baik

- ⊕ Eksplorasi Data Lebih Cepat
- Agregasi Yang Lebih Sederhana
- Laporan Akurat
- Pelaporan Lebih Cepat
- Lebih Mudah Dirawat

Pemodelan adalah tentang membangun dan memelihara hubungan sehingga Anda dapat secara efektif memvisualisasikan data

Contoh Model Data

Star Schema

Yang mana faktanya, yang mana dimensinya?

Employee - > Dimension Table Sales -> Fact Table

Struktur tabel sederhana adalah:

- Menghindari sebuah Tabel yang padat dalam sebuah model.
- Mudah melakukan navigasi
- Tabel dapat digabungkan atau ditambahkan jika diperlukan
- Memiliki hubungan antar tabel yang lebih baik

Menyederhanakan Struktur Tabel Melalui Hierarki

- Hierarki akan membantu menemukan detail tabel dimensi
- Implementasi Hierarki
 - Parent-Child Hierarchy
 - Role Playing Dimension

Contoh Parent-Child

	1 ² ₃ Employee ID ▼	A ^B _C Employee ▼	1 ² 3 Manager ID ▼	A ^B _C Manager ▼
1	1010	Roy F	null	
2	1011	Pam H	1010	Roy F
3	1012	Guy L	1010	Roy F
4	1013	Roger M	1011	Pam H
5	1014	Kaylie S	1011	Pam H
6	1015	Mike O	1012	Guy L
7	1016	Rudy Q	1012	Guy L

Contoh Role-Playing Dimension

Data Granuality

• Kemampuan data sedetail mungkin

Cardinality in Data Model

One to Many / Many to One

- Kardinalitas paling umum dalam data
- Arah antara fakta ke tabel dimensi
- Disarankan dalam pemodelan data

One to One

- Membutuhkan nilai unik
- Selayaknya dihindari dengan menyatukan tabel

- ⊙ Tidak memerlukan nilai unik
- Harus dihindari dengan membuat tabel mediator

Cross filter

- → Single Cross Filter
- ⊕ Bi-Directional Cross filter

		CustomerID 💌	AccountID *	AccountName *
CustID 💌	CustName 💌	1022	12	ВНР
1022	Roy M	1023	12	ВНР
1023	Bob K	1024	13	Rogerinc
1024	Ellen L	1024	14	MyShip
1025	Mitch W	1026	15	Holdings Unl.
1026	Regan Q	1025	16	Key Biz Insiders
1027	Lulu S	1028	17	Ty Inc
1028	Aliya R	1022	17	Ty Inc
CustomerTable			AccountTal	ole

Pemodelan Data di Power Bl

Hands On Lab

Mengembangkan Data Model di Power Bl

Hands on Lab

Data Analysis eXpression (DAX)

DAX is a bahasa pemrograman yang digunakan untuk membuat calculated columns, measures, dan custom tables

Calculated Column

Total Price = 'Sales OrderDetails'[Quantity] * 'Sales OrderDetails'[Unit Price]

Order ID	Product ID	Quantity	Unit Price	Total Price
10248	11	12	\$14	\$168
10248	42	10	\$9.8	\$98
10248	72	5	\$34.8	\$174
10249	14	9	\$18.6	\$167.4
10249	51	40	\$42.4	\$1,696
10250	41	10	\$7.7	\$77
10250	51	35	\$42.4	\$1,484
10250	65	15	\$16.8	\$252
10251	22	6	\$16.8	\$100.8
10251	57	15	\$15.6	\$234
10251	65	20	\$16.8	\$336
10252	20	40	\$64.8	\$2,592
10252	33	25	\$2	\$50
10252	60	40	\$27.2	\$1,088

Created Measure

Total Sales = sum('Sales OrderDetails'[Total Price])

Context in DAX

Sintaks Penting di DAX

DAX		С Сору	
Category	Sales Amount	Blue Revenue	
Accessories	\$1,272,057.89	\$165,406.62	
Bikes	\$94,620,526.21	\$8,374,313.88	
Clothing	\$2,117,613.45	\$259,488.37	
Components	\$11,799,076.66	\$803,642.10	
Total	\$109,809,274.20	\$9,602,850.97	

Sintaks Penting di DAX

⊕ USERELATIONSHIP

- Mengaktifkan hubungan lain di tabel
- hubungan

Time Intelligence

```
YTD Total Sales = TOTALYTD
(

SUM('Sales OrderDetails'[Total Price])
, Dates[Date]
)
```

Month	2014	2015	2016
January		\$66,692.8	\$100,854.72
February		\$107,900	\$205,416.67
March		\$147,879.9	\$315,242.12
April		\$203,579.29	\$449,872.68
May		\$260,402.99	\$469,771.34
June		\$299,490.99	\$469,771.34
July	\$30,192.1	\$354,955.92	\$469,771.34
August	\$56,801.5	\$404,937.61	\$469,771.34
September	\$84,437.5	\$464,670.63	\$469,771.34
October	\$125,641.1	\$534,999.13	\$469,771.34
November	\$175,345.1	\$580,912.49	\$469,771.34
December	\$226,298.5	\$658,388.75	\$469,771.34
Total	\$226,298.5	\$658,388.75	\$469,771.34
<			>
,		_	7 63

Time Intelligence

```
Total Sales Previous Month = CALCULATE
(
    sum('Sales OrderDetails'[Total Price])
    , PREVIOUSMONTH(Dates[Date])
```

_			✓ гл
Year	Month	Total Sales	Total Sales Previous Month
2015	March	\$39,979.9	\$41,207.2
2015	April	\$55,699.39	\$39,979.9
2015	May	\$56,823.7	\$55,699.39
2015	June	\$39,088	\$56,823.7
2015	July	\$55,464.93	\$39,088
2015	August	\$49,981.69	\$55,464.93
2015	September	\$59,733.02	\$49,981.69
2015	October	\$70,328.5	\$59,733.02
2015	November	\$45,913.36	\$70,328.5
2015	December	\$77,476.26	\$45,913.36

Pengenalan DAX

Hands On Lab

Time Intelligence dengan DAX

Hands On Lab

Optimalisasi Model di Power Bl

Apa itu Model data yang Dioptimalkan?

- Mengoreksi tipe data
- Menghapus kolom dan baris yang tidak perlu
- Menghindari nilai berulang
- Mengganti Kolom Numerik
- Mengurangi Kardinalitas
- Menganalisis metadata model
- Meringkas data jika memungkinkan

Power BI Built in Support

- Performance Analyzer
 - Visuals

 - Data Model
 - Relationship
 - Oclumns
 - Auto date time

Variable

 Variable akan membantu mengurangi kompleksitas dan peningkatan kinerja

```
Sales YoY Growth =
DIVIDE (
  ([Sales] - CALCULATE ([Sales], PARALLELPERIOD (
'Date'[Date], -12, MONTH))),
  CALCULATE ([Sales], PARALLELPERIOD ('Date'[Date], -12,
MONTH))
                                                 Sales YoY Growth =
                                                 VAR SalesPriorYear =
                                                   CALCULATE ([Sales], PARALLELPERIOD ('Date'[Date], -12,
                                                 MONTH))
                                                 VAR SalesVariance =
                                                    DIVIDE ( ( [Sales] - SalesPriorYear ), SalesPriorYear )
                                                 RETURN
                                                    SalesVariance
```

Cardinality Level

- Reduce cardinality dengan mengonversi tipe data
- Menggunakan tabel ringkasan

Aggregation

- •membuat tabel dengan agregasi
- membuat tampilan untuk agregasi
- ⊕gunakan Editor Power Query untuk membuat agregasi selangkah demi selangkah.

Other Model Optimization

- Gunakan direct query di connected environment
- Hindari calculated columns yang komplek
- Review the indexes dan verifikasi indeksinya benar
- Mengurangi Query
- Aktifkan Slicers dan Filter

Kesimpulan

- Struktur tabel sederhana adalah awal yang baik untuk membuat model yang lebih baik
- One to many relationship adalah awal yang baik untuk membuat model yang lebih baik
- → DAX dapat membantu meningkatkan model melalui calculated column, measure, dan custom table