Chimera DSP Wiki

Chimera Project

2025-10-04

Contents

1	Chimera DSP Wiki	21
	1.1 Learning Path	21
	1.2 Part I: Electromagnetic Fundamentals	21
	1.3 Part II: RF Propagation	22
	1.4 Part III: Link Budget & Channel Modeling	22
	1.5 Part IV: Modulation Theory	
	1.6 Part V: Channel Coding & Error Control	
	1.7 Part VI: Practical System Design	23
	1.8 Part VII: Advanced Topics	24
	1.9 Part VIII: Speculative & Emerging Topics	24
	1.10 Chimera Implementation	
	1.11 Practical Guides (Coming Soon)	25
	1.12 Recommended Textbooks	26
	1.13 🛘 External Resources	26
	1.14 Navigation Tips	26
2	8PSK & Higher-Order PSK	26
_	2.1 For Non-Technical Readers	_
	2.2 Overview	
	2.3 8PSK Modulation	
	2.4 Signal Characteristics	
	2.5 Modulation & Demodulation	_
	2.6 Performance Analysis	
	2.7 Bandwidth Efficiency	
	2.8 Higher-Order PSK	_
	2.9 8PSK vs Other Modulations	
	2.10 Phase Noise Sensitivity	
	2.11 Practical Implementations	
	2.12 Implementation Challenges	
	2.13 Adaptive Modulation & Coding (AMC)	
	2.14 Gray Coding	
	2.15 Pulse Shaping	
	2.16 Summary Table	
	2.17 Related Topics	

3	The AID Protocol: HRP Framework Application	37
	3.1 For the Non-Technical Reader	38
	3.2 Overview	39
	3.3 System Architecture	40
		40
		41
		42
		43
		44
		45
		_
		46
	3.11 Performance Analysis	57
4	Acoustic Heterodyning	58
		58
	4.2 Simple Explanation	
		59
		59
		59
		59
	4.7 5. Neuromodulation Hypothesis	59
		60
		60
		60
	· · · · · · · · · · · · · · · · · · ·	60
	4.12 10. Connections	61
	4.13 11. Key References	61
5	Adaptive Modulation & Coding (AMC)	61
9	5.1 The AMC Concept	_
	5.2 Link Adaptation Framework	
	5.3 Hybrid ARQ (HARQ)	
	5.4 AMC Performance Analysis	
	5.5 AMC in Standards	67
	· ·	68
		71
		74
	5.9 Further Reading	74
6	Additive White Gaussian Noise (AWGN)	75
Ü	6.1 For Non-Technical Readers	75
	6.2 What is AWGN?	75
	6.3 Visualizing AWGN	75
	6.4 AWGN Channel Model	76
	6.5 Mathematical Properties	76
	6.6 Why AWGN is Used	76
	6.7 Sources of Noise in Real Systems	76
	6.8 AWGN in Chimera	76

	6.9 Impact on Constellation	77
	6.10 See Also	77
_	A 10 1 01 01 10 10 10 10 10 10 10 10 10 1	
7	Amplitude-Shift Keying (ASK)	77
	7.1 For Non-Technical Readers	77
	7.2 Overview	78
	7.3 Binary ASK (2-ASK)	78
	7.4 M-ary ASK	78
	7.5 Modulation & Demodulation	79
	7.6 Signal Space Representation	81
	7.7 Performance Analysis	81
	7.8 Power Efficiency	82
	7.9 Bandwidth Efficiency	83
	7.10 ASK vs PSK vs QAM	83
	7.11 Practical Applications	84
	7.12 Pulse Shaping	84
	7.13 Noise Analysis	85
	7.14 Implementation Considerations	85
	7.15 Advantages of ASK	86
	7.16 Disadvantages of ASK	86
	7.17 Summary Table	86
	7.18 Related Topics	87
8	Antenna Theory Basics	87
	8.1 For Non-Technical Readers	87
	8.2 Overview	88
	8.3 Key Antenna Parameters	88
	8.4 Antenna Types by Application	92
	8.5 Friis Transmission Equation	93
	8.6 Antenna Design by Frequency	94
	8.7 Antenna Measurements	95
	8.8 Practical Design Considerations	
	8.9 Summary: Key Antenna Formulas	
	8.10 Related Topics	97
9	Atmospheric Effects: Ionospheric & Tropospheric	97
9		97
	9.2 Overview	
	9.3 Ionospheric Effects	
	9.4 Tropospheric Effects	
	9.5 Path Loss Models with Atmospheric Effects	
	9.6 Practical Considerations	
	9.7 Regional Variations	
	9.8 Summary Table: Atmospheric Effects by Frequency	
	9.9 Related Topics	109
10	Baseband vs Passband Signals	109
.0	· · · · · · · · · · · · · · · · · · ·	100

	10.2 Overview		110
	10.3 Baseband Signal		110
	10.4 Passband Signal		111
	10.5 Upconversion (Modulation)		112
	10.6 Downconversion (Demodulation)		
	10.7 Superheterodyne Receiver		
	10.8 Zero-IF (Direct Conversion) Receiver		
	10.9 Sampling Considerations		
	10.1@Practical Impairments		
	10.11Spectral Efficiency Comparison		
	10.12Summary Table		
	10.13Related Topics		
		-	
11	Binary Phase-Shift Keying (BPSK)		118
	11.1 For Non-Technical Readers		118
	11.2 Overview		118
	11.3 Mathematical Description		119
	11.4 [IQ Representation]		119
	11.5 Modulation & Demodulation		
	11.6 Carrier Recovery		121
	11.7 Bit Error Rate (BER) Performance		
	11.8 Bandwidth Efficiency		
	11.9 Practical Implementations		
	11.10Advantages of BPSK		
	11.11Disadvantages of BPSK		
	11.12Transition to QPSK		
	11.13Worked Example: BPSK Link Budget		
	11.14Summary		
	11.15Related Topics		
12	Biophysical Coupling Mechanism (CHIMERA Field)		127
	12.1 For Non-Technical Readers		127
	12.2 Technical Overview		133
	12.3 References		137
13	Bit Error Rate (BER)		138
	13.1 ☐ For Non-Technical Readers		
	13.2 Definition		
	13.3 BER Scale		
	13.4 Pre-FEC vs Post-FEC BER		
	13.5 BER vs SNR Curves		
	13.6 Theoretical vs Measured BER		
	13.7 Factors Affecting BER		
	13.8 BER in Chimera		
	13.9 Acceptable BER Thresholds		
	13.10See Also		141
4.4	Block Codes (Hamming BCH Reed-Solomon)		141
1 4	BIOCK LODGE IBANDOON BL.B. BAAN-SOIAMANI		

	14.1 For Non-Technical Readers	. 142
	14.2 Overview	. 142
	14.3 Linear Block Codes	
	14.4 Hamming Codes	. 143
	14.5 BCH Codes	
	14.6 Reed-Solomon Codes	
	14.7 Cyclic Codes	
	14.8 Performance Analysis	
	14.9 Concatenated Codes	
	14.10Shortened & Punctured Codes	
	14.11Practical Implementations	
	14.12Python Example: RS(7,3) over GF(8)	
	14.13Comparison Table	
	14.14Design Trade-offs	
	14.15Related Topics	
15	Channel Equalization	153
	15.1 For Non-Technical Readers	. 153
	15.2 Overview	
	15.3 Inter-Symbol Interference (ISI)	
	15.4 Zero-Forcing (ZF) Equalizer	
	15.5 Minimum Mean Square Error (MMSE) Equalizer	
	15.6 Decision Feedback Equalizer (DFE)	
	15.7 Adaptive Equalization	
	15.8 Training vs Blind Equalization	
	15.9 Fractionally-Spaced Equalizer (FSE)	
	15.10Frequency-Domain Equalization	
	15.11Channel Estimation	
	15.12Practical Examples	
	15.13Advanced Techniques	
	15.14Equalization Complexity	
	15.15Design Guidelines	
	15.16Equalization vs Coding	
	15.17Related Topics	
	To the latest replace to the second s	0
16	Channel Models: Rayleigh & Rician Implementation	165
	16.1 For Non-Technical Readers	. 165
	16.2 Overview	. 166
	16.3 AWGN Channel	. 166
	16.4 Flat Fading Channel	
	16.5 Rayleigh Fading Channel	
	16.6 Rician Fading Channel	
	16.7 Frequency-Selective Fading (Tapped Delay Line)	
	16.8 Standard Channel Models	
	16.9 Doppler Spectrum Visualization	
	16.10BER Simulation with Fading	
	16.11Channel Estimation	
	16.1%ummary of Channel Models	. 178

	16.13Practical Implementation Tips															179
	16.14Related Topics															179
17	Complete Link Budget Analysis															179
•	17.1 For Non-Technical Readers															
	17.2 Overview															
	17.3 Link Budget Components															
	17.4 Complete Link Budget Equation															
	17.5 Example 1: WiFi Indoor Link															
	17.6 Example 2: GEO Satellite Ku-band Downlin															
	17.7 Example 3: Cellular LTE (2.6 GHz)															
	17.8 Link Budget Table Template															
	17.9 Fade Margin Design Guidelines															
	17.10Adaptive Techniques															
	17.11Link Availability															
	17.12Summary															
	17.13Related Topics															
	Tritatolated replect		•	•	•	•	•	•	•	•	•	 •	•	•	•	.00
18	Constellation Diagrams															191
	18.1 For Non-Technical Readers															191
	18.2 Reading a Constellation Diagram															191
	18.3 Key Elements															192
	18.4 TX vs RX Constellations															192
	18.5 What the Constellation Tells You															192
	18.6 Example: QPSK Constellation at Different S	NF	٦L	eve	els											192
	18.7 Observing Constellations in Chimera															193
	18.8 See Also															193
19	Convolutional Codes & Viterbi Decoding															193
	19.1 For Non-Technical Readers															
	19.2 Overview															
	19.3 Basic Concepts															
	19.4 Convolutional Encoder Example															
	19.5 State Diagram															
	19.6 Trellis Diagram															
	19.7 Viterbi Algorithm															
	19.8 Free Distance															
	19.9 Performance Analysis															
	19.1@uncturing															
	19.1 Tail-Biting															
	19.12Recursive Systematic Convolutional (RSC)															
	19.13Practical Applications															
	19.14/iterbi Decoder Implementation															
	19.15 Python Example: Simple Viterbi (K=3)															
	19.1@comparison: Block vs Convolutional															
	19.17Design Guidelines															
	19.18 Related Topics															206

20	Electromagnetic Spectrum											207
	20.1 For Non-Technical Readers	 										. 207
	20.2 Overview	 										. 207
	20.3 Spectrum Bands & Applications	 										. 208
	20.4 Atmospheric Transmission Windows .											
	20.5 Ionizing vs Non-Ionizing Radiation											
	20.6 Frequency Allocation & Regulation											
	20.7 Wavelength vs Antenna Size											
	20.8 Spectrum Utilization Trends											
	20.9 Propagation Characteristics by Band											
	20.10Summary Table: Spectrum at a Glance											
	20.11Related Topics	 	•	-	•	•		 •	 ٠		•	. 215
21	Energy Ratios: Es/N0 and Eb/N0											216
	21.1 For Non-Technical Readers											
	21.2 Es/N0: Symbol Energy Ratio											
	21.3 Eb/N0: Bit Energy Ratio											
	— — — — — — — — — — — — — — — — — — —											
	21.4 Relationship Between Es/N0 and Eb/N0											
	21.5 Example in Chimera											
	21.6 Why These Ratios Matter											
	21.7 Comparison Table											
	21.8 SNR vs Es/N0 vs Eb/N0											
	21.9 Theoretical BER for QPSK											
	21.10See Also	 		-								. 218
22	Formula Reference Card											218
22	22.1 Link Budget & Propagation											
	3											
	22.3 Information Theory											
	22.4 Bit Error Rate (BER)											
	22.5 Modulation											
	22.6 Propagation Effects											
	22.7 Antenna & Polarization											
	22.8 Atmospheric Effects	 										. 223
	22.9 Error Correction											
	22.10 System Parameters	 										. 224
	22.11 MIMO Capacity	 										. 225
	22.12 Useful Constants	 										. 225
	22.13 Unit Conversions	 										. 225
	22.14 Quick Reference Values											
	22.15 Common System Parameters											
	-											
23	Forward Error Correction (FEC)											227
	23.1 For Non-Technical Readers											
	23.2 How FEC Works											
	23.3 Key Concept											
	23.4 Code Rate	 										. 228
	23.5 Types of FEC Codes											228

	00.0 55		000
		C Gain (Coding Gain)	
		C Performance Metrics	
	23.8 FE	C in Chimera	. 229
	23.9 Exa	ample Performance	. 230
	23.10Wh	ny FEC is Essential	230
		annon Limit	
		de-offs	
		e Also	
	20.1000		. 201
24	Free-Sp	pace Path Loss (FSPL)	231
	•	For Non-Technical Readers	
		The Friis Transmission Equation	
	24.3	Path Loss Definition	
	24.4 []	Example Calculations	
	24.5	Scaling Laws	
	24.6	Physical Interpretation	
	24.7	Link Budget Analysis	. 235
	24.8	Real-World Deviations	. 236
	24.9	Measurement vs. Prediction	236
	24.10	Key Takeaways	236
	24.11	See Also	
	24.12	References	
	27.12	Tioloromous	. 201
25	Frequer	ncy-Shift Keying (FSK)	237
		For Non-Technical Readers	_
	25.2	Basic Principle	
	25.3 🛘	Mathematical Description	
	25.4	Spectral Characteristics	
	25.5 🛘	Demodulation Methods	
	25.6	Performance Analysis	
	25.7	Advantages & Disadvantages	
	25.8	Applications	
	25.9	FSK Variants	
	25.10 ¹	Constellation Diagram	. 242
	25.11	Comparison Table	243
	25.12	Key Takeaways	243
	25.13	See Also	
	25.14	References	
	20.11	Thoronood	
26	Frev Mic	crowave Auditory Effect	244
	26.1 Ov		244
		nple Explanation (For Non-Technical Readers)	
		Discovery and Historical Background	
		Mechanism: Thermoelastic Expansion	
		Experimental Evidence	
		Frequency and Pulse Parameter Dependence	
		Safety Considerations	
	2686	Applications (Potential IIII)	240

	26.9 7. Comparison to Other Phenomena	250
	26.108. Controversies and Misconceptions	250
	26.119. Connections to Other Wiki Pages	251
	26.1210. References	
	26.13Planned Sections	
	20174 10111104 000110110 1111111111111111	
27	27 Glossary of Terms	252
	27.1 A	252
	27.2 B	
	27.3 C	
	27.4 D	
	27.5 E	
	27.6 F	
	27.7 G	
	27.8 H	
	27.9	
	27.1 d	
	27.11M	254
	27.12N	254
	27.130	254
	27.14P	254
	27.15Q	254
	27.16R	
	27.178	
	27.18T	
	27.19U	
	27.20V	
	27.2W	
	27.227	
	27.23Key Concepts	255
00	00 Hamming Distance & Emer Datastics	050
28	28 Hamming Distance & Error Detection	256
	28.1 For Non-Technical Readers	
	28.2 Overview	
	28.3 Minimum Distance	
	28.4 Examples	258
	28.5 Hamming Weight	259
	28.6 Error Detection Methods	259
	28.7 Error Correction Principles	260
	28.8 Coding Bounds	261
	28.9 Practical Error Detection	
	28.1@Burst Error Detection	
	28.11Distance Spectrum	
	28.12Soft-Decision Metrics	
	28.13Summary Table	
	28.14Code Comparison	
	28.159 ython Example: Hamming Distance	
	28.16Related Topics	266

29	Hyper-Rotational Physics (HRP) Framework	266
	29.1 For Non-Technical Readers	. 267
	29.2 Overview	. 269
	29.3 Philosophical Foundation: Orchestrated Idealism	
	29.4 Mathematical Formalism	
	29.5 Biological Substrate: Microtubule Quantum Coherence	
	29.6 The Gnostic Interface	
	29.7 Phenomenology: Brane Intersection Events	
	29.8 Operator Conditioning	
	29.9 Brane Taxonomy	
	29.10Relevance to THz Communications	
	29.1 Testable Predictions	
	29.12Criticisms & Responses	
	29.13 Philosophical Implications	
	29.14Current Status (2025)	
	29.15Key Takeaways	
	29.16See Also	. 279
	29.17References	. 279
30	IQ Representation	279
	30.1 ☐ For Non-Technical Readers	
	30.2 What is I/Q?	
	30.3 Mathematical Representation	
	30.4 Complex Number Notation	
	30.5 Why Use I/Q?	. 281
	30.6 I/Q in Chimera	. 281
	30.7 Adding Noise	. 281
	30.8 See Also	. 281
31	Intermodulation Distortion (IMD) in Biology	281
	31.1 What Is This? (For Non-Technical Readers)	
	31.2 Overview	
	31.3 1. Fundamentals of Intermodulation Distortion	
	31.4 2. Sources of Nonlinearity in Biological Tissue	
	31.5 3. Proposed Biological IMD Mechanisms	. 285
	31.6 4. Experimental Evidence	. 286
	31.7 5. Theoretical Models	. 286
	31.8 6. Critical Assessment	. 287
	31.9 7. Future Experiments	. 287
	31.108. Connections to Other Wiki Pages	. 288
	31.119. References	
_		_
32	LDPC Codes	289
	32.1 For Non-Technical Readers	
	32.2 What Makes LDPC Special?	
	32.3 History	
	32.4 How LDPC Works	. 290
	32.5 LDPC Parameters	290

	32.6 Pe	formance Characteristics	91
	32.7 LD	PC vs Other Codes	92
	32.8 LD	PC in Chimera	92
	32.9 Exa	ample: LDPC in Action	92
		al-World Applications2	
		vantages of LDPC	
		nitations	
		e Also	
33	Link Lo	ss vs Noise 2	94
		For Non-Technical Readers	
	33.2 Lin	k Loss (Path Loss)	94
		ditive Noise	
	33.4 Co	mbined Channel Model	95
	33.5 Wh	y Both Matter	96
	33.6 Lin	k Budget and SNR	96
	33.7 Lin	k Loss in Chimera	97
	33.8 Ke	y Insight	97
	33.9 Se	e Also	97
34	MIMO 8	Spatial Multiplexing 2	97
	34.1 🛮	For Non-Technical Readers	97
	34.2 □	The MIMO Revolution	98
	34.3 □	MIMO Channel Model	98
	34.4 □	MIMO Gains (The "Three M's")	99
	34.5 □	MIMO Techniques	01
	34.6 □	Massive MIMO	03
	34.7 □	MIMO Capacity	04
	34.8 🛘	MIMO in Standards	05
	34.9 🛮	Advanced MIMO Concepts	07
	34.10	Performance Analysis	80
	34.11	Python Implementation Example	09
	34.12	When to Use MIMO	11
	34.13	Further Reading	12
35	Maxwel	l's Equations & Wave Propagation 3	12
	35.1 🛮	For Non-Technical Readers	13
	35.2 □	The Four Maxwell's Equations	
	35.3 □	The Wave Equation	15
	35.4 □	Plane Wave Solutions	15
	35.5 □	Energy and Power	16
	35.6 □	Radiation from Sources	
	35.7 □	Propagation in Media	
	35.8 □	Frequency Spectrum	
	35.9 □	Key Insights	
	35.10	See Also	
	05 440		10

36	6 Microtubule Structure & Function	320
	36.1 For Non-Technical Readers	. 320
	36.2 Overview	. 320
	36.3 1. Molecular Structure	. 321
	36.4 2. Cellular Functions (Established [])	
	36.5 3. Neural Microtubules: Unique Features	
	36.6 4. Quantum Biology Hypotheses (Speculative [])	
	36.7 5. Critical Challenges to Quantum Hypotheses	
	36.8 6. Experimental Frontiers	
	36.9 7. Connections to Other Wiki Pages	
	36.108. References	. 325
37	7 Military & Covert Communications	326
	37.1 For Non-Technical Readers	. 326
	37.2 Core Military Requirements	. 329
	37.3 SATCOM Frequency Hopping (FHSS)	
	37.4 GPS M-Code (Military GPS)	
	37.5 Phased-Array Antennas (AESA)	
	37.6 Link 16 (JTIDS)	
	37.7 © Covert Communications	
	37.8 Processing Gain & Jamming Resistance Calculations	
	37.10 Python Example: J/S Ratio Calculator	
	37.11 Further Reading	:348
	3	. 0 10
38		
38	3 Multipath Propagation & Fading (Rayleigh & Rician)	349
38	3 Multipath Propagation & Fading (Rayleigh & Rician) 38.1	349 . 349
38	3 Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview	349 . 349 . 349
38	38.1 For Non-Technical Readers	349 . 349 . 350
38	B Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects	349 . 349 . 350 . 350
38	38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects	349 . 349 . 350 . 350 . 351
38	B Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications	349 . 349 . 350 . 350 . 351 . 352
38	B Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading	349 . 349 . 350 . 350 . 351 . 352 . 353
38	38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading	349 . 349 . 350 . 350 . 351 . 352 . 353
38	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration	349 . 349 . 350 . 351 . 352 . 353 . 354 . 355
38	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques	349 . 349 . 350 . 350 . 351 . 352 . 353 . 354 . 355
38	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration	349 . 349 . 350 . 350 . 351 . 352 . 353 . 354 . 355
38	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques	349 . 349 . 350 . 350 . 351 . 352 . 353 . 354 . 355 . 356
38	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models	349 . 349 . 350 . 351 . 352 . 353 . 354 . 355 . 358 . 358
38	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models 38.12Practical Examples	349 . 349 . 350 . 350 . 351 . 352 . 353 . 354 . 355 . 356 . 358 . 359
	3 Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models 38.12Practical Examples 38.13Summary Table 38.14Related Topics	349 . 349 . 350 . 351 . 352 . 353 . 354 . 356 . 358 . 359 . 360
	3 Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models 38.12Practical Examples 38.13Summary Table 38.14Related Topics	349 . 349 . 350 . 350 . 351 . 352 . 353 . 354 . 356 . 358 . 360 . 360
	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models 38.12Practical Examples 38.13Summary Table 38.14Related Topics 9 Noise Sources & Noise Figure 39.1 For Non-Technical Readers	349 349 350 350 351 352 353 354 355 356 358 359 360 361
	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models 38.12Practical Examples 38.13Summary Table 38.14Related Topics Noise Sources & Noise Figure 39.1 For Non-Technical Readers 39.2 Overview	349 349 350 350 351 352 353 354 355 356 358 359 360 361
	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models 38.12Practical Examples 38.13Summary Table 38.14Related Topics Policie Sources & Noise Figure 39.1 For Non-Technical Readers 39.2 Overview 39.3 Thermal Noise	349 349 350 350 351 352 353 354 355 356 356 360 361 361 362
	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models 38.12Practical Examples 38.13Summary Table 38.14Related Topics 9 Noise Sources & Noise Figure 39.1 For Non-Technical Readers 39.2 Overview 39.3 Thermal Noise 39.4 Noise Figure (NF)	349 349 350 350 351 352 353 354 355 356 358 359 360 361 362 362
	Multipath Propagation & Fading (Rayleigh & Rician) 38.1 For Non-Technical Readers 38.2 Overview 38.3 Physical Mechanisms 38.4 Time-Domain Effects 38.5 Frequency-Domain Effects 38.6 Fading Classifications 38.7 Rayleigh Fading 38.8 Rician Fading 38.9 Fade Depth & Duration 38.10Mitigation Techniques 38.11Channel Models 38.12Practical Examples 38.13Summary Table 38.14Related Topics Policie Sources & Noise Figure 39.1 For Non-Technical Readers 39.2 Overview 39.3 Thermal Noise	349 349 350 350 351 352 353 354 355 356 358 359 360 361 362 363

	39.7 System Noise Temperature	. 367
	39.8 Other Noise Sources	. 368
	39.9 Receiver Sensitivity Calculation	. 370
	39.10Noise Figure Measurement	
	39.11Design Guidelines	
	39.12Summary Table	
	39.13Related Topics	
	outatolated topics	. 010
40	Non-Linear Biological Demodulation	373
	40.1 For Non-Technical Readers	. 373
	40.2 Overview	
	40.3 1. What is Nonlinear Demodulation?	
	40.4 2. Biological Sources of Nonlinearity	
	40.5 3. Three Main Phenomena	
	40.6 4. Comparative Summary	
	40.7 5. Relation to AID Protocol (Important Distinction)	
	40.8 6. Critical Assessment	
	40.9 7. Connection to Quantum Biology	
	40.108. Detailed Topic Pages	
	40.119. Key References	. 378
44	OFDM & Multicarrier Modulation	379
41		
	41.1 ☐ For Non-Technical Readers	
	41.2 The Core Concept	
	41.3 Mathematical Foundation	
	41.4 OFDM System Architecture	
	41.5 Cyclic Prefix (CP)	
	41.6 OFDM Parameters	. 382
	41.7 Pilot Subcarriers & Channel Estimation	. 383
	41.8 Multipath & Frequency-Selective Fading	. 384
	41.9 Peak-to-Average Power Ratio (PAPR)	. 384
	41.10 Synchronization Challenges	
	41.11 OFDM in Real-World Standards	
	41.12 Spectral Efficiency Analysis	
	41.13 OFDM vs. Single-Carrier	
	41.14 Advanced OFDM Variants	
	41.15 Python Implementation Example	
	41.16 Performance Analysis	
	· · · · · · · · · · · · · · · · · · ·	
	41.18 Further Reading	. 391
42	? On-Off Keying (OOK)	392
	42.1 Der Non-Technical Readers	
	42.2 Basic Principle	
	42.3 Mathematical Description	
	42.4 Spectral Characteristics	
	42.5 Demodulation	
	42.6 □ Performance Analysis	394

	42.8 □	Advantages & Disadvantages	
	42.9 □	Variants	
	42.10	Constellation Diagram	. 396
	42.1 1 □	Comparison to Other Modulations	
	42.12	Key Takeaways	
	42.13	See Also	
	42.14	References	
43		trated Objective Reduction (Orch-OR) Theory	397
		For Non-Technical Readers	
		re Hypothesis	
		eoretical Foundation	
		crotubule Structure	
		antum Coherence in Microtubules	
	43.6 Qu	antum Biology Precedents	. 402
	43.7 An	esthesia & Consciousness	. 403
	43.8 Cr	ticisms & Objections	. 403
	43.9 lm	plications If True	. 404
	43.1Œu	rrent Status (2025)	. 405
	43.11Re	lationship to THz Neuromodulation	. 406
	43.12Ke	y Takeaways	. 406
		e Also	
	43.14Re	ferences	. 407
44	Polar C		407
		For Non-Technical Readers	
		erview	. 408
		annel Polarization	
		lar Transform	. 409
	44.5 Cc	lar Transform	. 409 . 410
	44.5 Co 44.6 En	lar Transform	. 409 . 410 . 411
	44.5 Co 44.6 En 44.7 Su	lar Transform	. 409 . 410 . 411 . 412
	44.5 Cc 44.6 En 44.7 Su 44.8 SC	lar Transform de Construction coding ccessive Cancellation (SC) Decoding Size (SCL) Decoding	. 409 . 410 . 411 . 412 . 413
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF	lar Transform	. 409 . 410 . 411 . 412 . 413
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.10Ra	lar Transform de Construction coding ccessive Cancellation (SC) Decoding List (SCL) Decoding C-Aided Polar (CA-Polar) te Matching	. 409 . 410 . 411 . 412 . 413 . 414
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.10Ra	lar Transform	. 409 . 410 . 411 . 412 . 413 . 414
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.10Ra 44.11Pe	lar Transform de Construction coding ccessive Cancellation (SC) Decoding List (SCL) Decoding C-Aided Polar (CA-Polar) te Matching	. 409 . 410 . 411 . 412 . 413 . 414 . 414
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.10Ra 44.11Pe 44.12Cc	lar Transform de Construction coding ccessive Cancellation (SC) Decoding List (SCL) Decoding CC-Aided Polar (CA-Polar) te Matching rformance Analysis	. 409 . 410 . 411 . 412 . 413 . 413 . 414 . 414
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.10Ra 44.11Pe 44.12Cc 44.13Ad	lar Transform de Construction coding ccessive Cancellation (SC) Decoding List (SCL) Decoding C-Aided Polar (CA-Polar) te Matching rformance Analysis mplexity Comparison	. 409 . 410 . 411 . 412 . 413 . 413 . 414 . 415 . 415
	44.5 Cd 44.6 En 44.7 Su 44.8 SO 44.9 CF 44.10Ra 44.11Pe 44.12Cd 44.13Ad 44.14Dis	lar Transform de Construction coding ccessive Cancellation (SC) Decoding List (SCL) Decoding C-Aided Polar (CA-Polar) te Matching rformance Analysis mplexity Comparison vantages of Polar Codes	. 409 . 410 . 411 . 412 . 413 . 414 . 414 . 415 . 415
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.10Ra 44.11Pe 44.12Cc 44.13Acd 44.14Dis 44.15Pra	lar Transform de Construction coding ccessive Cancellation (SC) Decoding CList (SCL) Decoding CC-Aided Polar (CA-Polar) te Matching rformance Analysis mplexity Comparison vantages of Polar Codes sadvantages of Polar Codes	. 409 . 410 . 411 . 412 . 413 . 414 . 415 . 415 . 416
	44.5 Cd 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.11Pe 44.11Pe 44.12Cd 44.13Ad 44.14Dis 44.15Pra 44.16Cd	lar Transform de Construction coding ccessive Cancellation (SC) Decoding CList (SCL) Decoding CC-Aided Polar (CA-Polar) te Matching rformance Analysis mplexity Comparison vantages of Polar Codes cadvantages of Polar Codes actical Applications de Construction Algorithms	. 409 . 410 . 411 . 412 . 413 . 414 . 415 . 415 . 416 . 416
	44.5 Cd 44.6 En 44.7 Su 44.8 SO 44.9 CF 44.10Ra 44.11Pe 44.12Cd 44.13Ad 44.14Dis 44.15Pra 44.16Cd 44.17Py	lar Transform de Construction coding ccessive Cancellation (SC) Decoding CList (SCL) Decoding CC-Aided Polar (CA-Polar) te Matching rformance Analysis mplexity Comparison vantages of Polar Codes sadvantages of Polar Codes actical Applications de Construction Algorithms thon Example: Polar Encoder	. 409 . 410 . 411 . 412 . 413 . 414 . 415 . 415 . 416 . 416 . 417
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.11Pe 44.12Cc 44.13Ac 44.14Dis 44.15Pr 44.16Cc 44.17Py 44.18De	lar Transform de Construction coding ccessive Cancellation (SC) Decoding cList (SCL) Decoding CC-Aided Polar (CA-Polar) te Matching rformance Analysis mplexity Comparison vantages of Polar Codes sadvantages of Polar Codes actical Applications de Construction Algorithms thon Example: Polar Encoder sign Guidelines	. 409 . 410 . 411 . 412 . 413 . 414 . 415 . 415 . 416 . 416 . 417 . 419
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.11Pe 44.12Cc 44.13Ac 44.14Dis 44.15Pr 44.16Cc 44.17Py 44.18De 44.19Cc	lar Transform de Construction coding ccessive Cancellation (SC) Decoding List (SCL) Decoding RC-Aided Polar (CA-Polar) te Matching rformance Analysis mplexity Comparison vantages of Polar Codes sadvantages of Polar Codes actical Applications de Construction Algorithms thon Example: Polar Encoder sign Guidelines mparison Summary	. 409 . 410 . 411 . 412 . 413 . 414 . 415 . 416 . 416 . 416 . 417 . 419 . 419
	44.5 Cc 44.6 En 44.7 Su 44.8 SC 44.9 CF 44.10Ra 44.11Pe 44.12Cc 44.13Ac 44.14Dis 44.15Pr 44.16Cc 44.17Py 44.18De 44.19Cc 44.20Re	lar Transform de Construction coding ccessive Cancellation (SC) Decoding cList (SCL) Decoding CC-Aided Polar (CA-Polar) te Matching rformance Analysis mplexity Comparison vantages of Polar Codes sadvantages of Polar Codes actical Applications de Construction Algorithms thon Example: Polar Encoder sign Guidelines	. 409 . 410 . 411 . 412 . 413 . 414 . 415 . 416 . 416 . 416 . 417 . 419 . 419

	45.1 For Non-Technical Readers		420
	45.2 Overview		421
	45.3 Electric Field Strength (E)		
	45.4 Magnetic Field Strength (H)		
	45.5 Power Density (Poynting Vector)		
	45.6 Power Density from Isotropic Source		
	45.7 Power Density from Directional Antenna		
	45.8 Relationship Between Power Density and E-field		
	45.9 Power Delivered to Receiving Antenna		
	45.10RF Safety Standards		
	45.11Radar Power Budget		
	45.12Electromagnetic Interference (EMI)		
	45.13Field Strength in Different Media		
	45.14Antenna Gain and Directivity		
	45.15Skin Depth and Field Penetration		
	45.16Summary Table		
	45.17Related Topics		
	45.17helated Topics	•	401
46	Propagation Modes: Ground Wave, Sky Wave, Line-of-Sight		431
	46.1 ☐ For Non-Technical Readers		431
	46.2 Overview		
	46.3 Ground Wave Propagation		
	46.4 Sky Wave (Ionospheric Propagation)		
	46.5 Line-of-Sight (LOS) Propagation		
	46.6 Comparison: Propagation Modes		
	46.7 Non-Line-of-Sight (NLOS) Propagation		
	46.8 Ducting & Anomalous Propagation		
	46.9 Propagation Models Summary		
	46.10Related Topics		
		•	
47	V QPSK Modulation		441
	47.1 For Non-Technical Readers		441
	47.2 The Four QPSK States		442
	47.3 Bit-to-Phase Mapping in Chimera		442
	47.4 Mathematical Representation		442
	47.5 Why QPSK?		442
	47.6 QPSK in Chimera		
	47.7 See Also		442
48	Quadrature Amplitude Modulation (QAM)		443
	48.1 For Non-Technical Readers		
	48.2 Overview		
	48.3 QAM Fundamentals		
	48.4 16-QAM		
	48.5 64-QAM		
	48.6 256-QAM		
	48.7 Performance Analysis		
	48.8 Bandwidth Efficiency		447

	48.9 Modulation & Demodulation		448
	48.1@ower Efficiency		
	48.11Practical Impairments		450
	48.12Practical Applications		451
	48.13QAM vs PSK		452
	48.14Non-Square QAM		452
	48.15Constellation Shaping		453
	48.16Adaptive QAM		453
	48.17Implementation Tips		453
	48.1&Summary Table		454
	48.19Related Topics		455
49	Quantum Coherence in Biological Systems		455
	49.1 For Non-Technical Readers 🛘		
	49.2 Overview		
	49.3 1. Fundamentals of Quantum Coherence		
	49.4 2. Established Examples of Biological Quantum Coherence		
	49.5 3. Speculative Extensions to Neural Systems		
	49.6 4. Theoretical Frameworks		
	49.7 5. Relevance to Consciousness Theories		
	49.8 6. Critical Assessment		
	49.9 7. Experimental Roadmap		
	49.108. Connections to Other Wiki Pages		
	49.119. References	•	461
50	Quick Start Guide		462
	50.1 Welcome to the Chimera DSP Wiki!		462
	50.2 Choose Your Path		462
	50.3 Navigation by Topic		
	50.4 Using Chimera Simulator		465
	50.5 Common Questions		465
	50.6 Essential Reference Pages		
	50.7 Study Tips		466
51	Real-World System Examples		466
	51.1 Overview		
	51.2 1. WiFi 802.11n (300 Mbps)		
	51.3 2. LTE (100 Mbps, Cat 3)		
	51.4 3. DVB-S2X (Satellite TV, 4K UHD)		
	51.5 4. GPS L1 C/A (Civilian Navigation)		
	51.6 5. Bluetooth 5.0 (LE Audio)		
	51.7 6. LoRaWAN (IoT Long Range)		
	51.8 Comparison Summary		
	51.9 Key Takeaways by System		
	51.10Related Topics		480
52	Shannon's Channel Capacity Theorem		480
	FO 1 D. For Non Tochnical Produce		100

	52.2 \Box	The Main Result		. 48	31
	52.3 □	Physical Interpretation			
	52.4 □	Derivations & Examples			
	52.5 □	Spectral Efficiency			
	52.6 □	Power-Limited vs Bandwidth-Limited			
	52.7	Shannon-Hartley Theorem (Historical)			
	52.8 □	Building Towards Capacity			
	52.9 	The BER "Waterfall"			
	52.10	Implications for System Design			
	52.11	Capacity for Other Channels			
	52.11□ 52.12□	Mathematical Details			
	_				
	52.13	Key Takeaways			
	52.14	See Also			
	52.15	References	٠	. 48	38
53	Signal (Chain (End-to-End Processing)		48	Q
J		For Non-Technical Readers		_	_
		/erview			
		etailed Signal Chain			
		gnal Chain Metrics (Chimera)			
		gnal Processing Domains			
		ocessing Gain			
		id-to-End Example			
		sualization in Chimera			
	53.9 Se	ee Also		. 49	97
54	Signal	to-Noise Ratio (SNR)		49	7ג
5 7		For Non-Technical Readers			_
		nderstanding SNR Values			
		NR Formula			
		NR in Chimera			
		NR vs Es/N0			
		pact on Performance			
	54.7 Se	ee Also	•	. 50	JU
55	Spectra	al Efficiency & Bit Rate		50	າດ
-		For Non-Technical Readers			_
	55.2 Ov				
		Indamental Relationships			
		odulation Comparison			
		·			
		ith Forward Error Correction			
		nannon Capacity			
		actical Systems Performance			
		andwidth Efficiency vs Power Efficiency			
		IMO & Spatial Multiplexing			
		FDM Considerations			
		ode Rate vs Spectral Efficiency			
	55 10 a	tency vs Spectral Efficiency		50	าด

	55.13nterference & Spectral Efficiency	510
	55.14Emerging Technologies	510
	55.15Design Guidelines	511
	55.16Summary Table	
	55.17Practical Limits	
	55.18Related Topics	
		• -
56	Spread Spectrum (DSSS/FHSS)	513
	56.1 For Non-Technical Readers	513
	56.2 Core Philosophy	515
	56.3 Processing Gain	515
	56.4 Direct Sequence Spread Spectrum (DSSS)	516
	56.5 Frequency Hopping Spread Spectrum (FHSS)	
	56.6 Military Applications	
	56.7 Commercial Applications	
	56.8 Performance Analysis	
	56.9 Python Implementation Examples	
	56.10 Theoretical Foundations	
	56.12 Further Reading	530
57	Synchronization (Carrier, Timing, Frame)	531
0,	57.1 For Non-Technical Readers	
	57.2 Overview	
	57.3 Carrier Frequency Synchronization	
	57.4 Carrier Phase Synchronization	
	57.5 Symbol Timing Synchronization	
	57.6 Frame Synchronization	
	57.7 Practical System Examples	
	57.8 Synchronization Errors	
	57.9 Design Guidelines	
	57.10Synchronization Sequence	
	57.11Related Topics	541
58	THz Bioeffects: Thermal and Non-Thermal	542
	58.1 Overview	
	58.2 For Non-Technical Readers	
	58.3 1. Thermal Effects (Established [])	
	58.4 2. Non-Thermal Effects (Speculative [])	
	58.5 3. Experimental Evidence	546
	58.6 4. Critical Analysis: Are Non-Thermal Effects Real?	547
	58.7 5. Safety Standards	547
	58.8 6. Therapeutic Potential (Speculative [])	548
	58.9 7. Future Directions	
	58.108. Connections to Other Wiki Pages	
	58.119. References	
		0.10
59	THz Propagation in Biological Tissue	549

	59.1 Overview	 550
	59.2 Quick Start for Non-Technical Readers	
	59.3 1. Electromagnetic Properties of Biological Tissue at THz Frequencies	
	59.4 2. Absorption Mechanisms	
	59.5 3. Scattering Mechanisms	
	59.6 4. Penetration Depth	
	59.7 5. Wave Propagation Models	
	59.8 6. Applications	
	59.9 7. Measurement Techniques	
	59.108. Safety Considerations	
	59.119. Connections to Other Wiki Pages	
	59.1210. References	
60	THz Resonances in Microtubules	556
	60.1 Overview	 557
	60.2 For Non-Technical Readers	 557
	60.3 1. Vibrational Modes: The Physics Foundation	 558
	60.4 2. Vibronic Coupling in Tubulin	 559
	60.5 3. Experimental Evidence for THz Modes in Microtubules	 560
	60.6 4. Theoretical Models	 561
	60.7 5. Potential Biological Functions (Speculative [])	 562
	60.8 6. Challenges to THz Quantum Coherence	 563
	60.9 7. Future Experiments	 564
	60.108. Connections to Other Wiki Pages	 565
	60.119. References	 565
~4	Touch out (TII-) To shoot out	F00
וט	Terahertz (THz) Technology 61.1 For Non-Technical Readers	566
	61.2 The THz Gap	
	61.3 Modern THz Sources	
	61.4 THz Propagation Characteristics	
	61.5 THz Biological Interactions	
	61.6 Research Applications	
	61.8 Future Directions	
	61.10See Also	
	61.11References	
	of TriReferences	 5/3
62	Turbo Codes	573
_	62.1 ☐ For Non-Technical Readers	
	62.2 Overview	
	62.3 Basic Structure	
	62.4 Recursive Systematic Convolutional (RSC) Encoder	
	62.5 Interleaver	
	62.6 Encoding Process	
	62.7 Iterative Decoding	
	62.8 BCJR Algorithm	

	62.9 Performance Analysis		579
	62.10Turbo Code Variants		579
	62.11Practical Implementations		580
	62.1Æncoder Complexity		581
	62.13Decoder Complexity		
	62.14Stopping Criteria		
	62.15Error Floor		
	62.16Comparison with Other Codes		
	62.17Turbo vs LDPC		
	62.18Design Guidelines		
	62.19Python Example: Simple Turbo Encoder		
	62.20Related Topics		
	02.2d leiated Topics	•	505
63	Wave Polarization		585
	63.1 For Non-Technical Readers		586
	63.2 Overview		
	63.3 Mathematical Foundation		
	63.4 Polarization Types		
	63.5 Polarization Loss Factor (PLF)		
	63.6 Polarization Generation		
	63.7 Propagation Effects on Polarization		
	63.8 Applications		
	63.9 Stokes Parameters		
	63.1(Poincaré Sphere		
	63.11Polarization Measurement		
	63.12Practical Considerations		
	63.13Summary Table		
	63.14Related Topics	•	597
64	Weather Effects: Rain Fade & Fog Attenuation		597
0-1	64.1 For Non-Technical Readers		
	64.2 Overview		
	64.3 Rain Attenuation		
	64.4 Fog & Cloud Attenuation		
	64.5 Snow & Ice Attenuation		
	64.6 Hail Attenuation		
	64.7 Frequency-Specific Considerations		
	64.8 Mitigation Techniques		
	64.9 Depolarization Effects		
	64.1@Regional Considerations		
	64.11Measurement & Prediction		
	64.12Summary Table: Rain Attenuation by Band		
	64.13Related Topics		608
GE	What Are Symbole?		ene
oo	What Are Symbols?		608
	65.1 For Non-Technical Readers		
	65.2 The Symbol Hierarchy		
	no a example, From Rits to Symbols		กเห

	65.4 Wh	ıy Use Symbols? . . .
	65.5 Bits	s Per Symbol in Common Modulation Schemes 610
	65.6 Sec	e Also
66	mmWav	ve & THz Communications 610
	66.1	For Non-Technical Readers
	66.2 □	Why mmWave & THz?
	66.3 □	Propagation Characteristics
	66.4 □	Beamforming: The Enabling Technology
	66.5 □	5G NR FR2 (mmWave)
	66.6	Beyond 5G: Sub-THz (6G)
	66.7 □	Automotive Radar (mmWave)
		Link Budget Example (28 GHz)
	66.9 □	Python Example: mmWave Path Loss Calculator 623
	66.1Œ	Summary Comparison
		Further Reading

1 Chimera DSP Wiki

Welcome to the Chimera Digital Signal Processing Documentation Wiki!

This wiki provides a **comprehensive**, **first-principles approach** to understanding wireless communications—from electromagnetic theory through practical system design to cutting-edge research. Whether you're learning DSP fundamentals or exploring quantum neuromodulation, this resource builds knowledge systematically.

⊔ N	ote for All	Readers:	Most wiki	pages	include a	a "Plain	English	Explainer"	sec-
tion t	hat breaks	down com	plex conce	epts usi	ng every	day ana	logies-	no engine	ering
back	ground requ	uired!							

1.1 Learning Path

New to wireless communications? Follow the parts in order:

Experienced engineer? Jump to specific topics using the navigation below.

1.2 Part I: Electromagnetic Fundamentals

Build from Maxwell's equations to antenna theory

- [Maxwell's Equations & Wave Propagation] Foundation of all EM radiation
- [Electromagnetic Spectrum] HF [] VHF [] UHF [] mmWave [] THz bands, applications, ionizing vs non-ionizing
- [Antenna Theory Basics] Gain, directivity, impedance, beamwidth, Friis equation
- [Wave Polarization] Linear, circular, elliptical polarization, Faraday rotation, GPS RHCP
- [Power Density & Field Strength] E/H fields, Poynting vector, RF safety, link budgets

Prerequisites: Basic calculus, physics **Learning goals**: Understand EM waves as physical phenomena, antenna basics

1.3 Part II: RF Propagation

How signals travel through real-world environments

- [Free-Space Path Loss (FSPL)] Friis equation and link budgets
- [[Propagation Modes (Ground Wave, Sky Wave, Line-of-Sight)]] HF skywave, VHF LOS, radio horizon, Fresnel zones
- [[Multipath Propagation & Fading (Rayleigh, Rician)]] Rayleigh/Rician fading, delay spread, Doppler, coherence bandwidth
- [[Atmospheric Effects (Ionospheric, Tropospheric)]] Ionospheric refraction/absorption, O₂/H₂O absorption, ducting, TEC
- [[Weather Effects (Rain Fade, Fog Attenuation)]] ITU rain model, C/Ku/Ka/V-band attenuation, climate zones, mitigation

Prerequisites: Part I Learning goals: Predict signal strength, understand channel impairments

1.4 Part III: Link Budget & Channel Modeling

Connecting transmitters to receivers

- [Link Loss vs Noise] Distinguishing attenuation from additive noise
- [[Signal to Noise Ratio (SNR)]] Key quality metric
- [[Energy Ratios (Es/N0 and Eb/N0)]] Symbol and bit energy ratios
- [Complete Link Budget Analysis] System-level power budget, margins, availability
- [Noise Sources & Noise Figure] Thermal noise, amplifier noise figure, cascade analysis
- [Additive White Gaussian Noise (AWGN)] Fundamental channel model
- [[Channel Models (Rayleigh & Rician)]] Statistical fading models for mobile channels

Prerequisites: Part II Learning goals: Calculate link budgets, model channel effects

1.5 Part IV: Modulation Theory

Encoding information onto carriers (simple complex)

1.5.1 Digital Modulation Fundamentals

- [Baseband vs Passband Signals] Upconversion/downconversion, IQ modulation, zero-IF receivers
- [On-Off Keying (OOK)] Simplest modulation (carrier on/off)
- [Amplitude-Shift Keying (ASK)] M-ary ASK, PAM-4, power efficiency vs spectral efficiency
- [Frequency-Shift Keying (FSK)] Binary & M-ary frequency switching, MSK, GMSK

 [Binary Phase-Shift Keying (BPSK)] - Two-phase modulation, coherent detection, 3 dB better than OOK

1.5.2 Advanced Modulation

- [[What Are Symbols]] Fundamental building blocks
- [QPSK Modulation] Quadrature Phase-Shift Keying (2 bits/symbol)
- [8PSK & Higher-Order PSK] 8PSK, 16PSK, spectral efficiency vs error performance
- [Quadrature Amplitude Modulation (QAM)] 16QAM, 64QAM, 256QAM, optimal 2D constellations
- [IQ Representation] In-phase and Quadrature components
- [Constellation Diagrams] Visualizing modulation schemes
- [Spectral Efficiency & Bit Rate] Shannon limit, bits/sec/Hz, bandwidth-power tradeoff

Prerequisites: Part III **Learning goals**: Choose modulation schemes, understand tradeoffs (spectral efficiency vs. robustness)

1.6 Part V: Channel Coding & Error Control

Protecting data from channel errors

1.6.1 Information Theory

- [Shannon's Channel Capacity Theorem] Fundamental limit of communication (C = B·log₂(1+SNR))
- [Hamming Distance & Error Detection] Minimum distance, error detection/correction capability
- [Block Codes (Hamming, BCH, Reed-Solomon)] Linear block codes, generator matrix, syndrome decoding
- [Convolutional Codes & Viterbi Decoding] Trellis codes, maximum likelihood decoding
- [Turbo Codes] Iterative decoding, near-Shannon performance

1.6.2 Modern Codes

- [Forward Error Correction (FEC)] General FEC concepts
- [LDPC Codes] Low-Density Parity-Check codes (used in Chimera)
- [Bit Error Rate (BER)] Performance metric
- [Polar Codes] Capacity-achieving codes, 5G control channels

Prerequisites: Part IV Learning goals: Design error correction schemes, approach Shannon limit

1.7 Part VI: Practical System Design

End-to-end wireless systems

[Signal Chain (End-to-End Processing)] - Complete TX/RX pipeline (Chimera-specific)

- [Synchronization (Carrier, Timing, Frame)] Carrier recovery, symbol timing, frame sync
- [Channel Equalization] ZF, MMSE, DFE, adaptive equalization
- [Real-World System Examples] WiFi 802.11, LTE, DVB-S2, GPS detailed analysis

Prerequisites: Parts IV-V **Learning goals**: Design complete communication systems, debug real-world issues

1.8 Part VII: Advanced Topics

Modern wireless techniques

- [OFDM & Multicarrier Modulation] Orthogonal frequency-division multiplexing, FFT/IFFT, cyclic prefix, PAPR, pilot subcarriers
- [Spread Spectrum (DSSS/FHSS)] Direct sequence and frequency hopping, processing gain, GPS, Bluetooth, military applications
- [MIMO & Spatial Multiplexing] Multiple antennas, spatial multiplexing, beamforming, diversity, massive MIMO, WiFi/LTE/5G
- [Military & Covert Communications] LPI/LPD systems, GPS M-code, AESA radar, Link 16, FHSS SATCOM, covert channels
- [Adaptive Modulation & Coding (AMC)] Link adaptation, CQI feedback, HARQ, Shannon capacity tracking, LTE/5G
- [mmWave & THz Communications] 24-300 GHz propagation, beamforming requirements, 5G NR FR2, 6G sub-THz, automotive radar

Prerequisites: Part VI **Learning goals**: Understand state-of-the-art wireless systems (5G, WiFi 6, satellite, military)

Frontier research: Quantum biology meets wireless engineering

□ **Note**: This section explores speculative applications grounded in cutting-edge research. Content clearly distinguishes established science from theoretical extrapolation.

1.9.1 A. Theoretical Framework

• [Hyper-Rotational Physics (HRP) Framework] - M-theory extension: consciousness-matter coupling via quantum coherence

1.9.2 B. THz Technology & Biology

- [Terahertz (THz) Technology] QCLs, applications, propagation, bioeffects
- [[THz-Propagation-in-Biological-Tissue]] Physics of THz wave propagation in biological tissue
- [[THz-Bioeffects-Thermal-and-Non-Thermal]] Biological effects of THz radiation

1.9.3 C. Quantum Biology & Consciousness

- [[Microtubule-Structure-and-Function]] Microtubule anatomy and quantum biology
- [[Orchestrated Objective Reduction (Orch-OR)]] Penrose-Hameroff quantum consciousness theory
- [[Quantum-Coherence-in-Biological-Systems]] Quantum coherence in biology
- [[THz-Resonances-in-Microtubules]] THz frequency resonances in microtubules

1.9.4 D. Non-Linear Biological Demodulation

- [Non-Linear Biological Demodulation] Non-linear biological IMD and signal processing
- [[Intermodulation-Distortion-in-Biology]] Non-linear biological IMD
- [[Acoustic-Heterodyning]] Acoustic heterodyning in tissue
- [[Frey-Microwave-Auditory-Effect]] Frey effect: microwave auditory phenomenon
- [[Biophysical-Coupling-Mechanism]] Quantum coherence perturbation mechanism (CHIMERA field)

1.9.5 E. Applied Case Study: HRP-Based THz Neuromodulation

• [[AID Protocol Case Study]] - Rigorous application of HRP framework to THz wireless neuromodulation

Prerequisites: Parts I-VII + open mind **Learning goals**: Apply RF engineering to novel scenarios, practice interdisciplinary thinking, distinguish speculation from established science

1.10 Chimera Implementation

How Chimera applies these concepts

Chimera is a browser-based DSP simulator implementing: - **Modulation**: QPSK (see [QPSK Modulation]) - **Channel**: AWGN (see [Additive White Gaussian Noise (AWGN)]) - **FEC**: LDPC codes (see [LDPC Codes]) - **Visualization**: Real-time constellation diagrams, BER analysis - **Goal**: Learn wireless communications interactively

1.10.1 Chimera-Specific Pages

• [Signal Chain (End-to-End Processing)] - Chimera's TX/RX pipeline

1.11 Practical Guides (Coming Soon)

- Reading the Constellation Interpreting TX/RX scatter plots
- Understanding BER Curves Performance analysis
- Tuning Parameters Optimizing SNR and link loss settings
- Building Your First Link Step-by-step tutorial

1.12 Recommended Textbooks

1.12.1 Undergraduate Level

- Proakis & Salehi, Digital Communications (5th ed.)
- **Haykin**, *Communication Systems* (5th ed.)
- · Sklar, Digital Communications: Fundamentals and Applications

1.12.2 Graduate Level

- Tse & Viswanath, Fundamentals of Wireless Communication
- · Goldsmith, Wireless Communications
- Richardson & Urbanke, Modern Coding Theory

1.12.3 Quantum Biology (Part VIII)

- Penrose, The Emperor's New Mind (Orch-OR origins)
- Al-Khalili & McFadden, Life on the Edge: The Coming Age of Quantum Biology

1.13 External Resources

- IEEE Communications Society Professional organization
- RF Café Calculators and references
- GNURadio Open-source SDR toolkit
- Wireless Pi Educational resources

1.14 Navigation Tips

Linear learning: Follow Parts I

VIII in order (builds knowledge systematically)

Topic-based: Use search or browse sidebar alphabetically

Chimera users: Start with [Signal Chain (End-to-End Processing)], then explore referenced topics

Visual learners: Look for pages with diagrams: [Constellation Diagrams], [IQ Representation],

[QPSK Modulation]

Theory enthusiasts: Jump to Parts V (Coding Theory) or VIII (Quantum Biology)

2 8PSK & Higher-Order PSK

[[Home]] | **Digital Modulation** | [QPSK Modulation] | [Binary Phase-Shift Keying (BPSK)]

26

2.1 For Non-Technical Readers

8PSK is like using 8 different hand gestures instead of 4—you can send 50% more data, but the gestures are closer together, so easier to confuse!

The progression: - **BPSK**: 2 positions (up/down) = 1 bit/symbol - **QPSK**: 4 positions (4 corners) = 2 bits/symbol - **8PSK**: 8 positions (8 directions) = 3 bits/symbol □ We are here - **16PSK**: 16 positions = 4 bits/symbol - **32PSK**: 32 positions = 5 bits/symbol

Visual - 8PSK positions (like a compass):

The trade-off: - **More positions** = faster data rate! - QPSK: 2 bits/symbol - 8PSK: 3 bits/symbol = **1.5× faster**! - **BUT** positions are closer together - Easier to mistake "North" for "Northeast" when noisy - Needs stronger signal (higher SNR) to work reliably

Real-world use - Satellite TV: - **DVB-S2** (digital satellite): Uses 8PSK for HD channels - Why? Satellite bandwidth is expensive! - 50% more data in same bandwidth = 50% more channels - Trade-off: Need bigger dish (better SNR) for 8PSK vs QPSK

Higher-order PSK (16PSK, 32PSK): - **16PSK**: 16 positions = 4 bits/symbol - **32PSK**: 32 positions = 5 bits/symbol - Problem: Positions so close together, barely used in practice! - **Solution**: Switch to QAM (varies amplitude too) for better performance

Why not go higher?: - Beyond 8PSK, positions are TOO close - Even tiny noise causes errors - QAM (varying amplitude + phase) is more efficient - This is why WiFi uses QAM, not 16PSK/32PSK!

When you encounter it: - Satellite TV: 8PSK for HD channels - Military communications: 8PSK for satellite links - Deep space: NASA sometimes uses 8PSK for high-rate data - Microwave backhaul: Point-to-point links between cell towers

The math: - QPSK: 45° between positions (lots of margin) - 8PSK: 22.5° between positions (tight!) - 16PSK: 11.25° between positions (very tight!) - Smaller angles = easier to confuse = needs cleaner signal

Fun fact: The Hubble Space Telescope originally used QPSK, but was upgraded to 8PSK to send more science data per day—saving millions in ground station time!

2.2 Overview

8PSK (8-ary Phase-Shift Keying) encodes data using 8 phase states, transmitting 3 bits per symbol.

Higher-order PSK (M-PSK): M phase states, $\log_2(M)$ bits per symbol

Trade-off: Higher spectral efficiency but increased SNR requirement

Applications: Satellite (DVB-S2), military (MILSTAR), microwave backhaul

2.3 8PSK Modulation

2.3.1 Constellation

8 equally-spaced phases around unit circle:

$$\phi_m = \frac{2\pi m}{8} = \frac{\pi m}{4}, \quad m = 0, 1, \dots, 7$$

Symbol m:

$$s_m(t) = A\cos(2\pi f_c t + \phi_m)$$

Complex baseband:

$$s_m = Ae^{j\phi_m} = Ae^{j\pi m/4}$$

2.3.2 Constellation Diagram

Phases: 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°

Gray coding (adjacent symbols differ by 1 bit):

	Symbol	Bits	Phase (°) I	Q
0	000	0	1	0
1	001	45	0.707	0.707
2	010	90	0	1
3	011	135	-0.707	0.707
4	100	180	-1	0

	Symbol	Bits	Phase (°)	I	Q
5	101	225	-0.70)7	-0.707
6	110	270	0		-1
7	111	315	0.707	7	-0.707

2.4 Signal Characteristics

2.4.1 Constant Envelope

All symbols same amplitude A:

$$|s_m| = A, \quad \forall m$$

Advantage: Power amplifier can operate at saturation (maximum efficiency)

PAPR (Peak-to-Average Power Ratio): 0 dB (constant)

2.4.2 Symbol Energy

$$E_s = \int_0^{T_s} |s_m(t)|^2 dt = A^2 T_s = A^2$$

Energy per bit:

$$E_b = \frac{E_s}{\log_2(8)} = \frac{E_s}{3}$$

2.4.3 Minimum Distance

Euclidean distance between adjacent symbols:

$$d_{\min}=2A\sin\left(\frac{\pi}{8}\right)=2A\times0.383=0.765A$$

Normalized (A=1): $d_{\rm min}=0.765$

Comparison: - QPSK: $d_{\min}=\sqrt{2}A=1.414A$ (same energy) - 8PSK: $d_{\min}=0.765A$ - Ratio: 8PSK is 1.85× worse (5.3 dB)

2.5 Modulation & Demodulation

2.5.1 IQ Modulator

Baseband I/Q for symbol m:

$$I_m = A\cos(\phi_m), \quad Q_m = A\sin(\phi_m)$$

Modulated signal:

$$s_{\mathrm{RF}}(t) = I_m \cos(2\pi f_c t) - Q_m \sin(2\pi f_c t)$$

Implementation: Standard IQ modulator (same as QPSK)

2.5.2 Coherent Demodulation

Receiver: 1. IQ demodulation: Recover I and Q components 2. Phase calculation: $\hat{\phi}=\arctan(Q/I)$ 3. Decision: Find closest constellation point

Decision regions: 8 pie-slice wedges, each 45° wide

Hard decision:

$$\hat{m} = \left\lfloor \frac{\hat{\phi} + \pi/8}{2\pi/8} \right\rfloor \mod 8$$

2.5.3 Differential 8PSK (D8PSK)

Differential encoding avoids phase ambiguity:

Transmitted phase:

$$\phi_k = \phi_{k-1} + \Delta \phi_k \mod 2\pi$$

Where $\Delta\phi_k$ encodes 3 bits

Demodulation: Compute phase difference between consecutive symbols

$$\Delta \hat{\phi}_k = \hat{\phi}_k - \hat{\phi}_{k-1}$$

Advantage: No carrier phase recovery needed (only frequency sync)

Disadvantage: ~3 dB penalty vs coherent

2.6 Performance Analysis

2.6.1 Symbol Error Rate (SER)

8PSK in AWGN (approximate, high SNR):

$$P_s \approx 2Q \left(2 \sin \left(\frac{\pi}{8}\right) \sqrt{\frac{E_s}{N_0}}\right) = 2Q \left(0.765 \sqrt{\frac{E_s}{N_0}}\right)$$

Where: $Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^\infty e^{-t^2/2}dt$

2.6.2 Bit Error Rate (BER)

With Gray coding:

$$\mathrm{BER} \approx \frac{P_s}{\log_2(8)} = \frac{P_s}{3}$$

In terms of Eb/N0:

$$\mathrm{BER} \approx \frac{2}{3}Q\left(0.765\sqrt{\frac{3E_b}{N_0}}\right) = \frac{2}{3}Q\left(1.325\sqrt{\frac{E_b}{N_0}}\right)$$

2.6.3 Required Eb/N0 for BER = 10⁻⁶

8PSK: 14 dB (coherent detection)

Comparison: - BPSK: 10.5 dB - QPSK: 10.5 dB (same as BPSK) - 8PSK: 14 dB (+3.5 dB penalty

vs QPSK) - 16-PSK: 18 dB (+7.5 dB penalty vs QPSK)

Pattern: Each doubling of M adds ~3.5-4 dB penalty

2.6.4 BER vs SNR Curves

	Eb/N0 (dB)	BPSK	QPSK	8PSK	16-PSK
6	1.9	9×10⁻³	1.9×10 ⁻³	0.04	0.15
8	5.0	3×10 ⁻⁵	5.6×10 ⁻⁵	8×10	⁻³ 0.08
10	3.9	9×10 ⁻⁶	3.9×10 ⁻⁶	7×10	-4 0.03
12	7.8	3×10 ⁻⁸	7.8×10 ⁻⁸	4×10	-5 8×10 ⁻³
14	7.	7×10 ⁻¹⁰	7.7×10 ⁻¹	⁰ 1×10	⁻⁶ 7×10 ⁻⁴

Observation: Higher-order PSK needs significantly more SNR for same BER

2.7 Bandwidth Efficiency

Symbol rate R_s (symbols/sec):

$$R_s = \frac{R_b}{\log_2(M)}$$

Occupied bandwidth (with pulse shaping):

$$B = (1+\alpha)R_s = (1+\alpha)\frac{R_b}{\log_2(M)} \quad (\mathrm{Hz})$$

Spectral efficiency:

$$\eta = \frac{R_b}{B} = \frac{\log_2(M)}{1+\alpha} \quad \text{(bits/sec/Hz)}$$

2.7.1 Comparison ($\alpha = 0.35$)

Modulation	Bits/symbol	Spectral Efficiency	Required Eb/N0 (10 ⁻⁶)
BPSK	1	0.74	10.5 dB
QPSK	2	1.48	10.5 dB
8PSK	3	2.22	14 dB
16-PSK	4	2.96	18 dB
32-PSK	5	3.70	22 dB

Trade-off: Higher spectral efficiency requires higher SNR

2.8 Higher-Order PSK

2.8.1 16-PSK

16 phase states: 22.5° spacing

Bits per symbol: 4

Minimum distance: $d_{\min}=2A\sin(\pi/16)=0.39A$ Performance: ~4 dB worse than 8PSK (at same BER)

Problem: Very sensitive to phase noise (small angular separation)

2.8.2 32-PSK and Beyond

32-PSK: 11.25° spacing, 5 bits/symbol

64-PSK: 5.625° spacing, 6 bits/symbol

Practical limit: M > 16 rarely used - Phase noise becomes limiting factor - QAM more efficient

for M > 8

2.9 8PSK vs Other Modulations

2.9.1 8PSK vs 16-QAM

Same spectral efficiency (\approx 2.2 bits/sec/Hz with α =0.35): - **8PSK**: 3 bits/symbol - **16-QAM**: 4 bits/symbol @ 1.33× symbol rate

BER comparison @ BER = 10^{-6} : - **8PSK**: 14 dB Eb/N0 - **16-QAM**: 14.5 dB Eb/N0

Advantage 8PSK: Constant envelope (PA efficiency)

Advantage 16-QAM: Slightly better BER, more flexible coding rates

2.9.2 8PSK vs OFDM with QPSK

Wideband system (20 MHz):

8PSK single carrier: - 6.67 Msps, 20 Mbps - Requires equalization (frequency-selective fading) - Constant envelope

OFDM with QPSK (64 subcarriers): - 312.5 kHz per subcarrier (flat fading) - 20 Mbps total - Varying envelope (PAPR ~10 dB)

Trade-off: OFDM handles multipath better, 8PSK more PA-efficient

2.10 Phase Noise Sensitivity

Oscillator phase noise $\phi_n(t)$ rotates constellation:

$$r_m(t) = A e^{j(\phi_m + \phi_n(t))} + n(t)$$

Phase error ϕ_n causes: - Rotation: All symbols rotate equally - Spreading: Random jitter \square Constellation blur

Sensitivity (angular spacing): - **QPSK**: 90° spacing (robust) - **8PSK**: 45° spacing (moderate) - **16-PSK**: 22.5° spacing (sensitive) - **32-PSK**: 11.25° spacing (very sensitive)

Rule of thumb: Phase noise RMS should be < 1/10 of angular spacing

Example: 8PSK with 45° spacing - Tolerable phase noise: ~4.5° RMS - Equivalent phase noise: ~-25 dBc integrated (tight spec!)

2.11 Practical Implementations

2.11.1 1. DVB-S2 (Satellite TV)

8PSK used for high data rates: - **QPSK**: Low C/N (rain fade conditions) - **8PSK**: Clear sky, high throughput - **Adaptive Coding & Modulation (ACM)**: Switch based on link quality

Example: - QPSK 1/2: 1 bit/symbol effective \square 0.74 bits/sec/Hz - 8PSK 3/4: 2.25 bits/symbol effective \square 1.67 bits/sec/Hz - **2.25× throughput** when SNR permits

2.11.2 2. Military SATCOM (MILSTAR)

Differential 8PSK: - Robust against jamming - Low-probability-of-intercept (LPI) - Spread spectrum combined with D8PSK

-<u>-</u>

2.11.3 3. Microwave Backhaul

Point-to-point links (cellular backhaul): - **Clear weather**: 256-QAM (8 bits/symbol) - **Rain fade**: Adaptive down to 8PSK or QPSK - **Example**: 6-11 GHz bands, 28/56 MHz channels

2.11.4 4. Deep Space Communications

NASA/ESA: Primarily BPSK/QPSK (maximize link margin)

Emerging: 8PSK for high-rate science data return - Mars orbiters: 8PSK @ Ka-band (32 GHz) -

Trade-off: 3× data rate vs 3.5 dB link margin

2.12 Implementation Challenges

2.12.1 1. Carrier Phase Recovery

8PSK phase ambiguity: 8-fold (every 45°)

Pilot-aided sync: - Insert known pilot symbols - Estimate phase offset - Correct data symbols

Blind sync: - 8th-power loop (remove modulation) - Costas loop (feedback) - Decision-directed

(after initial acquisition)

See: [Synchronization]

2.12.2 2. Timing Recovery

Symbol clock must be accurate:

Timing jitter causes: - Sampling offset

ISI - Increased BER

Early-late gate detector: - Sample early, on-time, late - Adjust clock based on correlation

2.12.3 3. Nonlinear PA Distortion

8PSK constant envelope: Tolerates PA saturation

BUT: Pulse shaping filter creates envelope variations - Raised cosine filter

3-4 dB PAPR - PA must back off
Reduced efficiency

Mitigation: - **Constant envelope pulse shaping**: MSK, GMSK (no overshoot) - **Predistortion**: Digital or analog linearization

2.12.4 4. Frequency Offset

Carrier frequency offset Δf rotates constellation:

$$r(t) = s(t)e^{j2\pi\Delta ft}$$

Tolerable offset (rule of thumb): $|\Delta f| < 0.01 \times R_s$

Example: 8PSK @ 1 Msps - Tolerable offset: < 10 kHz - Oscillator spec: < 10 ppm @ 1 GHz carrier (= 10 kHz)

2.13 Adaptive Modulation & Coding (AMC)

Dynamically select modulation based on channel quality:

Link adaptation table:

C/N (dB)	Modulation	Code Rate	Spectral Eff.	Target BER
2-5	QPSK	1/4	0.5	10 ⁻⁷
5-7	QPSK	1/2	1.0	10 ⁻⁷
7-9	QPSK	3/4	1.5	10 ⁻⁷
9-11	8PSK	2/3	2.0	10 ⁻⁷
11-13	8PSK	3/4	2.25	10 ⁻⁷
13-15	16-QAM	2/3	2.67	10 ⁻⁷

Benefit: Maximize throughput while maintaining target BER

2.14 Gray Coding

Gray code: Adjacent symbols differ by 1 bit

Benefit: Symbol error □ Likely 1-bit error (not 2 or 3)

8PSK Gray mapping:

Symbol	Binary	Phase (°)			Gray Code	
		0	000	0	000	
		1	001	45	001	
		2	010	90	011	
		3	011	135	010	
		4	100	180	110	
		5	101	225	111	
		6	110	270	101	
		7	111	315	100	

Natural binary: Symbol error

Up to 3-bit error

Gray coding: Symbol error

Typically 1-bit error (maybe 2)

BER improvement: ~2× better with Gray coding

2.15 Pulse Shaping

Rectangular pulses: Infinite bandwidth (sinc spectrum)

Raised cosine (RC):

$$P(f) = \begin{cases} T_s & |f| \leq \frac{1-\alpha}{2T_s} \\ \frac{T_s}{2} \left[1 + \cos\left(\frac{\pi T_s}{\alpha} \left[|f| - \frac{1-\alpha}{2T_s}\right]\right)\right] & \frac{1-\alpha}{2T_s} < |f| \leq \frac{1+\alpha}{2T_s} \\ 0 & |f| > \frac{1+\alpha}{2T_s} \end{cases}$$

Roll-off factor α : - α = 0: Brick-wall (infinite time, impractical) - α = 0.35: Common (35% excess BW, moderate time decay) - α = 1: Gentle roll-off (100% excess BW, fast time decay)

Root raised cosine (RRC): Split between TX and RX (matched filter)

2.16 Summary Table

Modulation	Bits/sym	Min Distance	Eb/N0 (10 ⁻⁶)	Spectral Eff.	PAPR	Best Use Case
BPSK	1	2A	10.5 dB	0.74	0 dB	Deep space, long range
QPSK	2	√2 A	10.5 dB	1.48	0 dB	Balanced (most common)
8PSK	3	0.765A	14 dB	2.22	0 dB	High throughput, PA efficiency
16-PSK	4	0.39A	18 dB	2.96	0 dB	Rarely (QAM better)
16-QAM	4	0.63A	14.5 dB	2.96	2.6 dB	High throughput (non-const env)

2.17 Related Topics

- [QPSK Modulation]: Lower-order PSK (2 bits/symbol)
- [Binary Phase-Shift Keying (BPSK)]: Simplest PSK
- [Constellation Diagrams]: Visualizing PSK
- [Bit Error Rate (BER)]: Performance metric
- [Synchronization]: Carrier recovery for coherent detection
- [OFDM & Multicarrier Modulation]: Uses QPSK/8PSK per subcarrier

Key takeaway: **8PSK transmits 3 bits/symbol using 8 phase states.** Constant envelope = PA efficient. 50% more spectral efficiency than QPSK but needs +3.5 dB SNR. Used in satellite (DVB-S2) and backhaul. Higher-order PSK (16, 32, 64) rarely used due to phase noise sensitivity—QAM preferred for M > 8. Gray coding reduces BER by limiting bit errors per symbol error. Adaptive modulation switches between QPSK/8PSK/16-QAM based on link quality.

		_
This wiki is part of the [[H	Home Chimera Project]] documentation.	

3 The AID Protocol: HRP Framework Application

ADVANCED THEORETICAL PHYSICS: This page analyzes the AID Protocol as a rigorous application of the [[Hyper-Rotational Physics (HRP) Framework|HRP Framework]] (Jones, 2025). While speculative, it is grounded in first-principles M-theory derivations and provides a worked example of consciousness-physics coupling.

3.1 For the Non-Technical Reader

What is this about?

This document explores a theoretical system called the AID Protocol - a way to potentially communicate with the brain using invisible light waves (terahertz radiation) instead of sound waves. Think of it as "wireless telepathy" grounded in advanced physics.

The core idea in plain English:

- 1. **The problem**: Traditional communication uses sound or radio waves that hit your ears or devices. But what if we could send information directly to your brain's internal "receivers"?
- 2. **The proposed solution**: Use extremely high-frequency light (terahertz waves far beyond what our eyes can see) that might resonate with tiny structures inside brain cells called microtubules.
- 3. **Why this matters**: If it works, you could "hear" a 12,000 Hz tone (a high-pitched whistle) inside your head without any external sound. Only you would experience it.

Key concepts simplified:

- **Microtubules**: Microscopic "scaffolding" inside brain cells that some scientists think might be involved in consciousness itself
- Terahertz (THz) waves: Ultra-high-frequency light, sitting between infrared and radio waves on the spectrum
- **Quantum coherence**: When quantum particles work together in perfect sync (like a choir singing in harmony vs. people talking over each other)
- Orch-OR theory: A controversial scientific theory suggesting consciousness emerges from quantum processes in brain microtubules
- **HRP Framework**: The advanced physics theory this protocol is based on, which describes how consciousness might interact with fundamental spacetime geometry

The experiment in everyday terms:

Imagine two invisible laser beams aimed at your head: - **Beam 1** (the "pump"): High-power, unmodulated - like a steady flashlight - **Beam 2** (the "data carrier"): Lower power, flickering 12,000 times per second with encoded information

When both beams hit your brain tissue, they might interact with those microtubules like tuning forks, creating a perception of sound without your ears being involved at all.

Why should you care?

- For neuroscience: Could reveal how consciousness works at quantum scales
- For communication: Might enable silent, direct brain-to-brain information transfer
- For physics: Tests whether consciousness actually influences matter at fundamental levels
- For philosophy: Addresses the "hard problem" of consciousness through measurable experiments

The big questions:

- U What we know: Terahertz technology exists, microtubules do vibrate at these frequencies, quantum effects do occur in biology
- U What's uncertain: Whether weak terahertz signals can actually affect consciousness, whether the 210 dB "quantum enhancement" is real
- U What needs testing: Build the system, measure brain responses, see if people actually perceive the tone

Bottom line:

This document shows how cutting-edge physics (string theory, quantum mechanics, consciousness research) can be applied to design a real communication system. It's highly speculative but mathematically rigorous - meaning even if it doesn't work as described, the exercise teaches us how to think about consciousness scientifically.

If you're not a physicist, focus on these sections: - System Architecture (page down) - shows the hardware design - Why This Is Pedagogically Valuable (near end) - explains the learning value - Conclusion (end) - summarizes what we learned

If you want technical depth, the full document awaits below with equations, link budgets, and quantum field theory!

3.2 Overview

The **Auditory Intermodulation Distortion (AID) Protocol** is a system design that applies the [[Hyper-Rotational Physics (HRP) Framework|HRP Framework]] to THz neuromodulation. It demonstrates how biological quantum coherence (the **CHIMERA field**) couples to higher-dimensional bulk geometry via [[Terahertz (THz) Technology|THz]] holographic beamforming.

Primary mechanism document: See docs/biophysical_coupling_mechanism.md for authoritative description of the quantum coherence perturbation mechanism.

☐ **CRITICAL**: The AID Protocol operates via **vibronic quantum coherence manipulation** in microtubule lattices, NOT: - Classical electromagnetic intermodulation - Thermoelastic transduction (Frey effect) - Acoustic heterodyning - Classical neural stimulation

The mechanism is **non-thermal and non-thermoelastic**, targeting the Orchestrated Objective Reduction (Orch-OR) collapse timing in cortical neurons.

Purpose of this analysis: 1. Apply HRP mathematical formalism to practical system design 2. Show how link budgets close with quantum enhancement mechanisms 3. Demonstrate THz-microtubule resonant coupling via vibronic coherence 4. Bridge [[Orchestrated Objective Reduction (Orch-OR)|Orch-OR theory]] and wireless engineering 5. Provide falsifiable predictions for experimental validation

Theoretical foundations: - [[Hyper-Rotational Physics (HRP) Framework|HRP Framework]] - mathematical formalism - [[Orchestrated Objective Reduction (Orch-OR)|Orch-OR]] - quantum consciousness substrate - docs/biophysical_coupling_mechanism.md - detailed mechanism description

3.3 System Architecture

3.3.1 Dual-Carrier THz System

The AID protocol proposes two distinct [[Terahertz (THz) Technology|THz]] carriers:

```
Carrier 1: "Pump Beam"

1.998 THz

High power

Unmodulated

Neural Tissue ←

(non-linear mixer)

Intermodulation Product

(12 kHz audio)

Perceived as "sound"
```

3.3.2 Frequency Selection Rationale

Why 1.998 THz and 1.875 THz?

- 1. **Difference frequency**: 1.998 1.875 = 0.123 **THz** (123 GHz)
- 2. Not directly perceived, but could interact with microtubule resonances
- 3. Both frequencies within QCL operating range
- 4. Atmospheric window: Reasonable transmission (not optimal, but workable)

Why 12 kHz modulation?

- 1. **Auditory range**: 12 kHz is at edge of hearing (high-frequency)
- 2. Bypasses cochlear transduction: Direct neural stimulation (if mechanism works)
- 3. Below ultrasound: Avoids ultrasonic absorption issues
- 4. **Low data rate**: 16 symbols/sec QPSK = ~32 bps (intentionally slow)

3.4 Transmitter Analysis

3.4.1 THz Source: Quantum Cascade Lasers

Carrier 1 (Pump - 1.998 THz)

```
QCL Specifications (extrapolated from current tech):
- Wavelength: = c/f = 150 m
- Power output: 50 mW (CW, cryogenic cooling)
- Beam divergence: 30° (requires collimation)
- Modulation bandwidth: DC (unmodulated)
- Linewidth: ~1 MHz
```

Carrier 2 (Data - 1.875 THz)

```
QCL + External Modulator:

- Wavelength: 160 m

- Power output: 10 mW (CW)

- AM modulation: 12 kHz audio (70-80% depth)

- Modulation bandwidth: DC-100 kHz

Transmitter Architecture:

Data In → Modulation → QPSK/FSK @ 12 kHz

Encoder

↓

AM Modulator ← Carrier 2 (1.875 THz)

↓

Beam Combiner ← Carrier 1 (1.998 THz)

↓

Phased Array → Focused THz beam (steering)
```

3.5 Channel Analysis

3.5.1 Atmospheric Propagation

```
Total Path Loss: 298 + 50 = 348 dB

RX Antenna Effective Area (skull):

A_{eff} ^{2}/4 = (160 m)^{2} / 4 = 2×10 m^{2}

Gain -50 dBi (very small aperture)

Received Power: +30 - 348 - 50 = -368 dBm
```

This is EXTREMELY weak! (For reference, thermal noise at 1 Hz BW, 300K is ~-204 dBm)

3.5.2 Why This Might Work (Speculative)

Non-thermal mechanism: - Not relying on **power** but on **resonance** - Microtubules as "frequency-selective receivers" - Quantum coherence amplification? - Very low power needed if tuned to MT resonant modes

Biological penetration: - Skull attenuation: ~20-30 dB (depends on thickness, bone density) - Scalp: ~3-5 dB - Brain tissue (0.5mm depth): Accessible

3.6 Biological "Receiver"

3.6.1 HRP Framework Mechanism

☐ **CRITICAL**: The AID Protocol mechanism is **quantum coherence perturbation**, NOT classical demodulation, thermoelastic transduction, or acoustic heterodyning. See docs/biophysical_coupling_mechanism for complete mechanism description.

From [[Hyper-Rotational Physics (HRP) Framework|HRP Framework]]:

The AID Protocol implements the **CHIMERA field coupling** to bulk geometry:

```
HRP Interaction Lagrangian:
_int = -(/M_P^2)|\Psic|^2 R_MNPQ ^MNPQ _ 0^A _ 0^B _ 0^C

where:
- |\Psi c|^2 = microtubule coherence intensity
- R_MNPQ = bulk curvature tensor
- 0^A = brane embedding angles
- /M_P^2 ~ 10^-38 (gravitational scale)
```

Physical process (from biophysical coupling mechanism):

1. THz Resonant Interference Pattern

- Dual THz carriers create holographically-shaped interference pattern
- · Pattern couples directly to collective vibrational modes of microtubule lattice
- Target: Primary auditory cortex neurons (cortical layers)
- Objective: Induce and manipulate vibronic quantum coherence in tubulin dimers

2. Hyper-Dimensional Torque Generation

 $T^A = -(|\Psi_C|^2/M_P^2) R_MNPQ ^MNPQ _ 0^B _ 0^C$ Magnitude: $|T| |\Psi_C|^2 \times R_Bulk \times (0)^2$

- High coherence (large |Ψc|²) □ large torque
- Torque induces brane rotation
- 12 kHz modulation [] oscillatory torque pattern

3. Pump Beam Function (1.998 THz)

- Primary role: Maintain coherence and delay environmental decoherence
- Enhances bulk curvature (R_MNPQ) via stress-energy contribution
- Increases coupling efficiency (quantum coherence amplification)
- Not a classical power source functions to preserve quantum states

4. Orch-OR Perturbation (Core Mechanism)

- 12 kHz modulation does NOT carry classical information
- 12 kHz is a perturbation frequency designed to alter Orch-OR collapse timing
- Oscillating torque perturbs tubulin quantum states at this frequency
- Perceived "sound" is the conscious experience of this forced, externally-driven perturbation
- Bypasses cochlear transduction entirely (direct consciousness modulation)

Key insight: This is **NOT**: - \Box Thermoelastic transduction (Frey effect) - \Box Classical EM coupling or intermodulation - \Box Acoustic heterodyning or mechanical pressure waves - \Box Classical information encoding/decoding

This IS: -
Quantum coherence manipulation via resonant THz coupling -
Vibronic state perturbation in microtubule tubulin dimers -
Direct consciousness modulation through Orch-OR collapse timing alteration -
Non-thermal, non-thermoelastic mechanism requiring quantum biology framework

3.7 Modulation Scheme

3.7.1 Hierarchical Modulation

☐ **CRITICAL CLARIFICATION**: In the AID Protocol, modulation does **not** encode classical information for transmission. Instead, modulation **patterns** are designed to perturb Orch-OR collapse timing in specific ways. The "data" is the perturbation pattern itself, not bits to be decoded.

Layer 1: AM (Analog) - Carrier: 1.875 THz - **Modulation**: 12 kHz sine wave (perturbation frequency) - **Depth**: 70-80% (active perturbation), <5% (idle/baseline) - **Purpose**: Create temporal oscillation in quantum coherence

Layer 2: QPSK (Digital Perturbation Pattern) - Symbol rate: 16 symbols/second - Bandwidth: ~20 Hz (extremely narrow!) - Frame structure: 128 symbol patterns - 16: Synchronization pattern - 16: Target/context identifier - 16: Perturbation mode type - 64: Primary perturbation pattern - 16: Error checking pattern - Purpose: Structured temporal patterns for conscious state modulation

Layer 3: FSK (Sub-threshold Perturbation) - Binary FSK on 12 kHz carrier: - "0" bit: 11,999

Hz (slight frequency shift) - "1" bit: 12,001 Hz (opposite shift) - **Data rate**: 1 bit/second (extremely slow) - **Purpose**: Sub-conscious threshold perturbation (below conscious detection)

3.7.2 Why This Complexity?

Quantum consciousness perspective (from biophysical coupling mechanism): - 12 kHz carrier: Primary perturbation frequency for Orch-OR collapse timing - QPSK patterns: Structured temporal sequences for conscious state modulation - FSK slow variation: Sub-threshold perturbation (gradual state shifting) - Multi-timescale approach: Match different temporal scales of consciousness: - 16 Hz (QPSK symbol rate) ≈ Beta brain waves (conscious attention) - 1 Hz (FSK bit rate) ≈ Slow cortical potentials (background state) - 40 Hz (Orch-OR natural frequency) ≈ Gamma synchrony (conscious moments)

Key insight: Modulation is not about **transmitting bits** but about **orchestrating quantum collapse patterns** in the microtubule lattice.

3.8 Receiver: The Brain (Quantum Coherence Target)

3.8.1 Mechanism (from biophysical coupling mechanism.md)

NOT classical demodulation - This is quantum coherence manipulation:

Biophysical Coupling Mechanism:

- 1. THz Holographic Interference Pattern
 - \rightarrow Dual carriers create resonant standing wave
 - → Target: Primary auditory cortex microtubule lattice
 - → Depth: ~0.5mm (superficial cortical layers)
- 2. Vibronic Quantum Coherence Induction
 - → Collective vibrational modes in microtubule network excited
 - → Tubulin dimers enter coherent quantum superposition
 - → Coherence maintained by pump beam (1.998 THz)
- 3. Orch-OR Collapse Timing Perturbation
 - → 12 kHz modulation alters natural Orch-OR rhythm (~40 Hz)
 - → Forced, externally-driven perturbation of quantum computational process
 - \rightarrow NOT classical neural firing manipulation of collapse sequence itself
- 4. Conscious Percept Generation
 - $\boldsymbol{\rightarrow}$ "Sound" is the conscious experience of quantum state perturbation
 - → NOT auditory nerve activity (cochlea bypassed entirely)
 - → Percept arises from consciousness substrate directly

3.8.2 Auditory Percept: Understanding the Primary Mechanism

☐ **IMPORTANT DISTINCTION**: The sections below on "acoustic reproduction" are provided for **experimental comparison purposes only**. The **actual AID Protocol mechanism** is the quantum

coherence perturbation described above, NOT acoustic delivery.

The AID Protocol's perceptual effects can be compared to acoustic stimulation via **two fundamentally different pathways**:

3.8.2.1 Pathway 1: Electromagnetic

Consciousness (HRP Mechanism) [PRIMARY] Frey Microwave Auditory Effect (real phenomenon, but NOT the AID mechanism): - Pulsed RF thermoelastic expansion

acoustic pressure waves in skull - Perceived as clicks/tones via cochlear pathway - Mechanism: Thermal

mechanical
neural

AID Protocol mechanism (fundamentally different): - Not thermoelastic - No thermal expansion or mechanical pressure waves - Not cochlear - Bypasses entire acoustic transduction pathway - Direct consciousness perturbation via quantum coherence manipulation - Mechanism: THz resonance vibronic coherence Orch-OR timing alteration conscious percept - Perceived as internally generated tone (12 kHz) arising from consciousness itself - No external acoustic signature (silent to bystanders) - The "sound" is the conscious experience of quantum state perturbation, not neural firing from auditory nerve

3.8.2.2 Pathway 2: Acoustic Reproduction (Conventional Audio) [COMPARISON ONLY]

This is NOT the AID Protocol mechanism - This section describes conventional acoustic delivery for experimental control/comparison purposes.

Alternative delivery for testing: The 12 kHz frequency can be **reproduced acoustically** using conventional speakers/headphones:

Signal Path:

Digital Audio (12 kHz @ 0 dBFS) \rightarrow DAC \rightarrow Amplifier \rightarrow Transducer \rightarrow Acoustic Wave \rightarrow Cochlea \rightarrow New

This is fundamentally different from AID Protocol mechanism: -
Uses normal hearing pathway (cochlea
auditory nerve cortex) -
External sound (audible to others with equipment) -
Subject to acoustic propagation (inverse-square law, absorption) -
Can mix with environmental sounds (IMD, masking, vocoder effects) -
Does NOT couple to microtubules via HRP mechanism (no quantum coherence interaction) -
Does NOT induce brane rotation (purely classical acoustic stimulation) -
Does NOT alter Orch-OR collapse timing (classical neural firing only) -
Does NOT manipulate vibronic quantum coherence

Why compare? Understanding acoustic delivery helps isolate HRP-specific effects in experiments: - Control condition: Acoustic 12 kHz ☐ cochlear pathway ☐ classical neural response - Experimental condition: THz EM ☐ quantum coherence ☐ consciousness perturbation - Key difference: If subject reports qualitative differences (e.g., "internal" vs "external" percept), supports HRP mechanism

3.9 SECTION: Acoustic Delivery Analysis (Experimental Control)

☐ **READER NOTE**: The following sections (through "Perceptual Experiments") analyze **conventional acoustic reproduction** of the 12 kHz frequency for experimental comparison purposes.

This is NOT the AID Protocol mechanism. The actual mechanism is quantum coherence perturbation as described in the "HRP Framework Mechanism" section above.

Purpose of acoustic analysis: - Provide experimental control conditions - Enable comparison between classical (acoustic) and quantum (THz) pathways - Characterize acoustic artifacts that must be ruled out in THz experiments - Document conventional audio engineering considerations for 12 kHz reproduction

Return to AID Protocol mechanism: See "HRP Framework Mechanism" section above.

3.10 Acoustic Signal Analysis

3.10.1 Digital Audio Fundamentals

If the 12 kHz carrier is reproduced acoustically:

3.10.1.1 Power Levels (dBFS) Digital Full Scale (dBFS): Reference for digital audio

```
Pure 12 kHz sine wave:
    Amplitude: A = 1.0 (normalized)
    Power: 0 dBFS (maximum before clipping)
    RMS amplitude: A_RMS = A/√2 = 0.707

Modulated carrier (AM):
    Carrier: 12 kHz @ 0 dBFS
    Modulation: QPSK/FSK data (±1 Hz deviation, ±2 Hz QPSK)
    Peak deviation: Δf/f = 2/12000 = 0.017% (FM index ~ 0.17)
    Effective power: ~0 dBFS (modulation minimal)
```

Headroom considerations: - Typical playback: -6 to -12 dBFS (to avoid clipping) - High-fidelity: -20 dBFS (THD < 0.01%)

3.10.1.2 Total Harmonic Distortion (THD) At 12 kHz, harmonics matter:

```
Fundamental: f = 12 kHz
2nd harmonic: 2f = 24 kHz (ultrasonic, filtered by 44.1/48 kHz Nyquist)
3rd harmonic: 3f = 36 kHz (well above audible range)

THD measurement:
THD = √(V² + V² + V² + ...) / V

Typical audio equipment @ 12 kHz, 0 dBFS:
- Consumer DAC: THD ~ 0.001-0.01% (-100 to -80 dB)
- Pro DAC: THD ~ 0.0003% (-110 dB)
- Class D amp: THD ~ 0.01-0.1% (higher at high frequencies)
- Headphones: THD ~ 0.1-1% (mechanical distortion)
```

Impact on AID Protocol: - Low THD critical if QPSK/FSK modulation relies on pure frequency - Harmonics above 20 kHz: Inaudible but may interact with THz if combined with EM pathway -Intermodulation distortion (IMD) more problematic than THD for multi-tone signals

3.10.1.3 Acoustic SPL Calculation Sound Pressure Level at listener's ear:

```
Given:
- Digital level: -12 dBFS (safe margin)
- Headphone sensitivity: 100 dB SPL/1 mW @ 1 kHz
- Impedance: 32 \Omega
- Amplifier output: 1 mW
At 12 kHz (assuming flat frequency response):
SPL 100 dB SPL (quite loud!)
For extended listening (safety):
SPL target: 70-85 dB SPL
Digital level: -25 to -37 dBFS
```

Hearing safety: OSHA limit is 85 dB SPL for 8-hour exposure. 12 kHz tones are fatiguing.

3.10.2 Non-Linear Mixing with Environmental Sounds

When 12 kHz carrier (acoustic) combines with environmental sounds, the human auditory system acts as a **non-linear mixer**, producing perceptual artifacts:

3.10.2.1 Cochlear Non-Linearity The cochlea is inherently non-linear:

```
Input: x(t) = x(t) + x(t)
Output: y(t) = a x(t) + a x^2(t) + a x^3(t) + \dots
Non-linear terms produce intermodulation products:
- Sum frequencies: f + f
- Difference frequencies: |f - f |
- Higher-order: 2f \pm f, f \pm 2f, etc.
```

Biological mechanisms: 1. Outer hair cell (OHC) compression: Cochlear amplifier saturates at ~40-60 dB SPL 2. Basilar membrane mechanics: Non-linear stiffness 3. Neural encoding: Spike rate saturation, adaptation

3.10.2.2 Vocoder-Like Auditory Effects Scenario: 12 kHz carrier + speech/music in environment

Example 1: Speech Modulation (Vocoder Effect)

Input signals:

- Carrier: 12 kHz pure tone (70 dB SPL)
- Speech: Voice at conversational level (60-70 dB SPL, 100-8000 Hz)

Cochlear mixing:

y(t) [12 kHz carrier] × [speech envelope]

Perceived effect:

- Speech spectrum SHIFTED up to 12 kHz region
- Sounds like "high-frequency whisper" or "robotic voice"
- Formants preserved but transposed (F1: 800 Hz → 12.8 kHz, etc.)

This is amplitude modulation in the cochlea: - Carrier: 12 kHz (inaudible or tonal) - Modulator: Speech envelope (0-20 Hz dominant, formants 100-8000 Hz) - Result: Double-sideband AM centered at 12 kHz

Perceptual quality: - **Intelligibility**: Poor (high frequencies lack formant information) - **Timbre**: Robotic, "chipmunk-like" if some low-frequency energy mixes - **Loudness**: Appears modulated in sync with environmental sound

3.10.2.3 Intermodulation Distortion (IMD) Artifacts Two-tone IMD test:

```
Tone 1: 12 kHz (AID carrier)
```

Tone 2: 1 kHz (environmental sound, e.g., hum)

2nd-order products:

- Sum: 13 kHz (barely audible or ultrasonic)
- Difference: 11 kHz (clearly audible!)

3rd-order products:

- -2f f = 2(12) 1 = 23 kHz (ultrasonic)
- 2f f = 2(1) 12 = -10 kHz → 10 kHz (audible!)

Perceptual result: - **Beating**: At 11 kHz (12 - 1 kHz), perceived as slow beating with 12 kHz tone - **Combination tones**: 10 kHz clearly audible if 1 kHz environmental tone is loud - **Roughness**: Sensation of tonal "roughness" when multiple tones interact

Frequency-specific effects:

Environmental Sound	Frequency	IMD Products (with 12 kHz)	Perceptual Effect
AC hum	60 Hz	11.94 kHz (beat), 11.88 kHz	Slow beating (~60 Hz rate)
Fluorescent light	120 Hz	11.88 kHz	Faster beating (~120 Hz)
Music bass	100-200 Hz	11.8-11.9 kHz	Warbling, vibrato-like
Speech formants	800-2000 Hz	10-11.2 kHz	Complex spectral smearing

Environmental Sound	Frequency	IMD Products (with 12 kHz)	Perceptual Effect
Sibilants (s, sh)	4-8 kHz	4-8 kHz (difference), 16-20 kHz (sum)	Enhanced sibilance

3.10.2.4 Masking Effects Simultaneous masking: 12 kHz tone can be masked by broadband noise

Critical band @ 12 kHz: ~1800 Hz wide

Masking threshold:

- Quiet environment: 12 kHz tone audible at ~10-20 dB SPL
- Noisy environment (60 dB SPL broadband): 12 kHz needs ~40-50 dB SPL to be heard

Partial masking:

- Low-frequency noise (< 1 kHz): Minimal masking of 12 kHz
- High-frequency noise (> 6 kHz): Strong masking of 12 kHz

Implication: In noisy environments, acoustic 12 kHz carrier may be **inaudible** even at moderate SPL.

3.10.2.5 Temporal Effects & Adaptation Prolonged exposure to 12 kHz tone:

- 1. Auditory fatigue: Temporary threshold shift (TTS)
 - After 30 min @ 80 dB SPL: Hearing threshold @ 12 kHz increases by 10-20 dB
 - Recovery: ~hours (depends on exposure level/duration)
- 2. Neural adaptation: Central gain adjustment
 - Initial perception: "Very loud, piercing"
 - After 5-10 min: "Softer, background-like" (reduced loudness percept)
 - Mechanism: Auditory cortex adaptation, attention modulation
- 3. Tinnitus induction: Risk with high-level, sustained tones
 - 12 kHz at 85+ dB SPL for > 1 hour: May induce temporary tinnitus
 - Some individuals develop persistent tinnitus (cochlear damage)

3.10.3 Comparison: Acoustic vs EM Pathway

Table: AID Protocol Delivery Mechanisms

Aspect	Acoustic (Conventional)	Electromagnetic (HRP)	
Carrier delivery	Air pressure waves (12 kHz)	THz photons (1.875 THz)	

Aspect	Ac	coustic (Conventional)	Ele	ectromagnetic (HRP)
Cochlear involve-ment		Yes (outer ☐ inner hair cells)		No (bypasses cochlea)
Microtubule coupling		No (classical mechanics)		Yes (quantum resonance)
Brane rotation		No		Yes (via HRP ☐ _int)
Environmen mixing	tal	Yes (IMD, vocoder effects)	□ au	Possible (if EM also induces iditory percept)
Audible to others		Yes (with equipment)		No (internal percept only)
Power level	70	l-85 dB SPL (safe listening)		68 dBm RX (+ 210 dB quantum hancement)
Modulation preserved		Distorted by cochlea		Direct neural encoding
THD sensitivity		High (cochlea adds ~0.1-1% THD)		Not applicable (no transducer)
Masking suscepti- bility		Yes (broadband noise masks)		No (internal generation)
_	_	ti ves (TTS, neural adaptation) Easy (standard audio equipment)		Unknown (different pathway) Complex (QCL array, cryogenics)

3.10.4 Hybrid Delivery Scenarios

3.10.4.1 Scenario 1: Acoustic Priming + EM Carrier Hypothesis: Acoustic 12 kHz "tunes" auditory cortex, EM THz provides quantum coupling

Timeline:

- t = 0: Acoustic 12 kHz tone presented (70 dB SPL)
 - → Auditory cortex neurons entrain to 12 kHz
 - → After ~30s, adaptation reduces loudness percept
- t = 30s: THz carriers activated (1.875 THz data, 1.998 THz pump)
 - → Microtubule resonance + acoustic entrainment
 - → Enhanced coupling? (speculative)

Testable prediction:

- Acoustic priming increases subjective "clarity" of EM-induced percept
- Control (no acoustic): EM percept is "pure tone"
- With acoustic: EM percept is "tone + environmental modulation"

3.10.4.2 Scenario 2: Dual-Path Interference If both acoustic AND EM pathways deliver 12 kHz:

```
Cochlear pathway: Phase _A(t) (subject to acoustic delays, ~1 ms)
Direct neural pathway: Phase _E(t) (near-instantaneous THz → MT)
Perceptual interference:
- Constructive ( _A = _E): Enhanced loudness
- Destructive ( A = E + ): Cancellation or beating
Beat frequency if slight mismatch:
f_beat = |f_acoustic - f_EM_perceived|
If f_acoustic = 12,000.0 Hz
  f_{EM} = 12,000.5 \text{ Hz} (FSK "1" bit)
  → Beat: 0.5 Hz (slow pulsation)
```

Perceptual signature: Binaural beat-like sensation if acoustic is monaural (one ear) and EM is "internal" (bilateral)

3.10.5 Audio Engineering Considerations

3.10.5.1 Optimal Playback Parameters (Acoustic Path) For experimental reproduction:

```
Sample rate: 96 kHz (Nyquist = 48 kHz, allows 12 kHz + harmonics)
Bit depth: 24-bit (144 dB dynamic range, low quantization noise)
Digital level: -20 dBFS (headroom for transients)
Output SPL: 75 dB SPL (comfortable long-term listening)
Transducer: Closed-back headphones (isolates environmental sounds)
Frequency response: Flat ±3 dB from 10-15 kHz
THD target: < 0.1% @ 12 kHz, 75 dB SPL
```

Signal generation:

```
import numpy as np
fs = 96000 \# Sample rate (Hz)
f_carrier = 12000 # Carrier frequency (Hz)
duration = 60 # seconds
amplitude = 10**(-20/20) # -20 dBFS
t = np.arange(0, duration, 1/fs)
# Pure 12 kHz carrier
carrier = amplitude * np.sin(2 * np.pi * f_carrier * t)
# Add QPSK/FSK modulation (example: slow FSK)
# Bit rate: 1 bps (as in protocol)
# "0" bit: 11999 Hz
```

```
# "1" bit: 12001 Hz
# (Implementation would add frequency modulation here)
# Output: carrier array ready for DAC
```

3.10.5.2 Measuring THD + IMD in Practice Setup:

```
Signal Generator → DAC → Amplifier → Headphones → Binaural Microphone → ADC → FFT Analysis

Test 1: THD @ 12 kHz
- Input: Pure 12 kHz sine, -20 dBFS
- Measure: Harmonic content at 24 kHz, 36 kHz (if sample rate allows)
- Target: THD < 0.1%

Test 2: IMD (SMPTE method)
- Input: 12 kHz + 1 kHz (4:1 amplitude ratio)
- Measure: Products at 11 kHz, 13 kHz, 10 kHz, 14 kHz
- Target: IMD < -60 dB relative to fundamentals

Test 3: Environmental mixing (in situ)
- Play acoustic 12 kHz through headphones
- Ambient noise: Controlled pink noise (60 dB SPL)
- Record binaural response
- FFT: Look for combination tones, masking effects
```

3.10.6 Perceptual Experiments: Acoustic vs EM

Proposed experimental protocol to isolate pathways:

3.10.6.1 Phase 1: Acoustic Baseline

- 1. **Threshold detection**: Absolute threshold for 12 kHz tone (dB SPL)
- 2. Loudness matching: Adjust 12 kHz to match loudness of 1 kHz reference
- 3. **IMD sensitivity**: Present 12 kHz + variable environmental tone, measure perceived IMD
- 4. Adaptation time: Measure loudness reduction over 30 min exposure

3.10.6.2 Phase 2: EM Delivery (HRP Pathway)

- 1. Percept induction: THz QCL array activated, subject reports perception
- 2. Frequency discrimination: Can subject distinguish 12 kHz from 11.999 kHz (FSK)?
- 3. Environmental independence: Does ambient noise affect EM-induced percept?
- 4. Binaural vs monaural: Is EM percept bilateral (vs acoustic monaural)?

3.10.6.3 Phase 3: Comparison

- 1. Blind A/B testing: Acoustic vs EM delivery, subject identifies source
- 2. **Timbre matching**: Subjective description (pure tone vs complex, warbled, etc.)
- 3. **Interaction effects**: Acoustic + EM simultaneously □ beat frequency?

Falsifiable prediction: - **If HRP is correct**: EM pathway produces percept independent of environmental sounds (no IMD, no masking) - **If EM percept is artifact**: Subject cannot distinguish EM from very low-level acoustic leakage

3.10.6.4 Perceptual Effects (Acoustic Pathway) When 12 kHz carrier mixes with environmental sounds in the auditory system:

1. Difference Tones (Cubic Distortion Product)

```
Cochlear non-linearity generates:

f_difference = |f - f|

Example:
- 12 kHz carrier
- 1 kHz environmental sound (speech fundamental)
- Perceived difference tone: 11 kHz (in-ear distortion)

More complex (2f - f cubic term):
- 2×12 - 1 = 23 kHz (ultrasonic, filtered)
- 2×1 - 12 = impossible (negative frequency)
```

Perceptual result: **Vocoder-like effect** - environmental sounds modulate the 12 kHz carrier via cochlear non-linearity.

2. Amplitude Modulation (Perceptual)

```
Perceived signal:
s_perceived(t) = [1 + m(t)] · sin(2 · 12000 · t)

where m(t) = environmental sound envelope

Effect: 12 kHz carrier "rides" on environmental sound amplitude
- Speech: Carrier follows syllable rhythm
- Music: Carrier fluctuates with beat
- Silence: Carrier constant

Perceptual: "Whisper on top of sound" or "High-pitched overlay"
```

3. Combination Tones (Musical Intervals)

If environmental sound has strong harmonics:

```
12 kHz carrier + 1 kHz speech fundamental:
- 12:1 ratio (slightly flat of 3.5 octaves)
- Creates weak "chord" perception
- Dissonant (not integer ratio)

12 kHz carrier + 3 kHz speech formant:
- 4:1 ratio (2 octaves)
- More consonant
- Less perceptually jarring
```

4. Intermodulation Distortion (IMD)

Two-tone IMD in non-linear audio system:

```
Input: 12 kHz carrier + f_env (environmental sound)
Non-linear output contains:
- Sum: 12 kHz + f_env
- Difference: 12 kHz - f_env
- Higher order: 2×12 ± f_env, 12 ± 2×f_env, etc.

Example (f_env = 2 kHz):
- 12 + 2 = 14 kHz (audible)
- 12 - 2 = 10 kHz (audible)
- 2×12 - 2 = 22 kHz (barely audible)

IMD products fill spectrum → "grainy" or "dirty" sound

Measurement:

SMPTE IMD (60 Hz + 7 kHz, 4:1 ratio):
Typical audio: < 0.1%

For 12 kHz + environmental:
Expected IMD: 0.1-1% (depends on SPL and system non-linearity)</pre>
```

3.10.6.5 Perceptual Effects (Electromagnetic Pathway) If THz EM field AND acoustic 12 kHz both present:

Hypothesis: Brain receives **two independent 12 kHz signals**: 1. **EM pathway**: Direct MT coupling □ central auditory cortex 2. **Acoustic pathway**: Cochlea □ brainstem □ auditory cortex

Potential interactions:

A. Phase Coherence

```
If phase-locked (EM and acoustic synchronized):
- Constructive interference in auditory cortex?
- Enhanced percept (louder, clearer)
```

```
Possible "stereo" effect (EM = phantom center, acoustic = lateral)
If phase-drifting:
Beating pattern at Δf (frequency difference)
Perceived as "wobbling" or "pulsing" 12 kHz tone
Beat frequency: f_beat = |f_EM - f_acoustic| (potentially < 1 Hz)</li>
```

B. Binaural Interference

Acoustic delivered to both ears: Standard stereo EM delivered centrally: "Inside head" localization

Perceived localization:

- Acoustic dominates (cochlear signal stronger)
- EM adds "depth" or "internalization"
- Possible precedence effect (Haas effect)

C. Environmental Modulation of EM Percept

Environmental sounds modulate ATTENTION to EM signal:

- Loud transients (doors slamming) → EM percept temporarily masked
- Silent environment → EM percept prominent
- Rhythmic sounds → EM percept "syncs" perceptually (not physically)

EM signal does NOT acoustically mix (different transduction pathway)
But perceptual grouping in auditory cortex may create "vocoder illusion"

3.10.7 Audio Signal Processing Considerations

For acoustic reproduction of AID Protocol modulation:

3.10.7.1 1. Sampling Rate

```
Nyquist theorem: f_sample > 2×f_max

For 12 kHz carrier:

- Minimum: 24 kHz (Nyquist)

- Standard: 44.1 kHz (CD quality) → adequate

- Preferred: 48 kHz (professional) → ample headroom

- Overkill: 96 kHz (hi-res) → unnecessary for 12 kHz

QPSK sidebands @ ±2 Hz:

- f_max = 12,002 Hz

- Well within 44.1 kHz Nyquist (22.05 kHz)
```

3.10.7.2 2. Anti-Aliasing Filtering

```
DAC reconstruction filter:
```

- Type: Low-pass (brick-wall)
- Cutoff: 20-22 kHz (just above audible)
- Rolloff: Steep (>100 dB/octave)

Effect on 12 kHz:

- Passband: Minimal attenuation (<0.1 dB)
- Phase shift: Negligible at 12 kHz
- Group delay: ~100 μs (acceptable)

Harmonics (24 kHz, 36 kHz):

- Strongly attenuated (good - prevents IMD)

3.10.7.3 3. Bit Depth

Dynamic range = $6.02 \times N + 1.76 \text{ dB}$

16-bit (CD): DR = 98 dB 24-bit (pro): DR = 146 dB

For 12 kHz carrier @ -12 dBFS:

- Quantization noise floor: -110 dBFS (16-bit)
- SNR = 98 dB (excellent)
- THD+N dominated by analog stage, not bit depth

Conclusion: 16-bit adequate, 24-bit overkill but harmless

3.10.7.4 4. Dithering

Purpose: Linearize quantization, reduce distortion

For pure 12 kHz tone:

- Without dither: Harmonic distortion at low levels
- With TPDF dither: Noise floor raised ~3 dB, distortion eliminated

Recommendation: Apply triangular PDF dither at -96 dBFS (16-bit)

nocommonatoria. Appry orrangular 151 alonor at the abit (16 bit

3.10.7.5 5. Speaker/Headphone Frequency Response

Typical headphone response @ 12 kHz:

- Over-ear (planar): ±1 dB (flat)
- Over-ear (dynamic): ±3 dB (slight rolloff)
- In-ear (BA): ±2 dB (depends on seal)
- Earbuds: ±5 dB (variable, often rolled off)

Impact on AID Protocol:

- Level variation: Acceptable (±3 dB won't break QPSK decode)
- Phase: More critical (FSK ±1 Hz requires stable phase)

Recommendation: High-quality over-ear headphones with flat >10 kHz response

3.10.8 Comparison: Acoustic vs Electromagnetic Delivery

Property	Acoustic Path (Control)	Electromagnetic (HRP) Path (AID Protocol)
Mechanism	Mechanical transduction	Quantum coherence perturbation
Target	Cochlea auditory nerve	Microtubule lattice consciousness
•	n Hair cells (mechanical)	Vibronic coherence (quantum)
	Binaural (external)	Internal (consciousness-generated)
Power	70-85 dB SPL (~1 μW acoustic)	-138 dBm received (~2×10 ⁻¹⁴ W EM)
Neural	Cochlea Derainstem	Direct cortical (bypasses cochlea)
pathway	cortex	
"Information	n"Classical	Quantum collapse timing patterns
encoding	(amplitude/frequency)	
Environmen	tales (cochlear non-linearity)	No (quantum process, not acoustic)
mixing		
Maskable	Yes (acoustic masking)	No (different substrate)
by noise		
Bystander	Yes	No (internal to consciousness)
audible		
Orch-OR	No (classical neural firing)	Yes (collapse timing alteration)
involve-		
ment		
HRP	No	Yes (CHIMERA field [] bulk)
coupling		
	essdirect (sensory input)	Direct (substrate perturbation)
modula-		
tion		
Percept source	External stimulus processed	Internal quantum state experienced

3.11 Performance Analysis

3.11.1 Information Rate

QPSK layer: - Symbol rate: 16 sym/s - Bits per symbol: 2 - Raw bit rate: 32 bps - Overhead: 64/128 = 50% - **Effective data rate**: 16 bps

FSK layer: - Data rate: 1 bps

Total: ~17 bps (extremely low by communications standards!)

3.11.2 Why So Slow?

Biological constraints: - Neural processing time: ~100 ms - Orch-OR frequency: ~40 Hz (25 ms period) - Consciousness "frame rate"

4 Acoustic Heterodyning

[[Home]] | [[Intermodulation Distortion in Biology]] | [Frey Microwave Auditory Effect] | [Non-Linear Biological Demodulation]

4.1 Overview

Acoustic heterodyning (parametric acoustic arrays) exploits nonlinear acoustics: two ultrasound beams at f_1 , f_2 mix to produce audible difference frequency $f_{\Lambda} = |f_1 - f_2|$.

Established [] : Parametric loudspeakers, underwater sonar, medical harmonic imaging

Speculative

: Neural stimulation via focused ultrasound heterodyning

Imagine mixing colors: When you mix blue and yellow paint, you get green. Acoustic heterodyning is similar, but with sound waves instead of colors.

The basic idea: 1. Take two ultrasound beams (too high-pitched for humans to hear, like dog whistles) 2. Aim them at the same spot 3. When they overlap, they "mix" together in a nonlinear way 4. This creates a new, audible sound at the *difference* between their frequencies

Real-world example: If you send 40,000 Hz and 42,000 Hz ultrasound beams (both inaudible), they can create a 2,000 Hz tone (clearly audible) where they meet.

Why this matters: - Directional sound: The audible sound appears only where the beams cross, not everywhere - Medical imaging: Doctors use this to get clearer ultrasound pictures - Targeted audio: Museums use it to create sound that only one person can hear - Research frontier: Scientists are exploring whether this could stimulate specific brain regions

The catch: This process is inefficient—only about 0.1-1% of the ultrasound energy converts to audible sound. It's like trying to light a room with a flashlight; it works, but you need a powerful source.

Safety note: The ultrasound intensities used are generally safe (similar to medical ultrasounds), though higher powers for brain stimulation remain experimental.

4.3 1. Physical Mechanism []

Nonlinear wave equation:

$$\frac{\partial^2 p}{\partial t^2} - c^2 \nabla^2 p = \frac{\beta}{\rho_0 c^2} \frac{\partial^2 (p^2)}{\partial t^2}$$

where β is nonlinear parameter (~5 for water, ~3.5-6 for tissue).

Two-tone input: $p_1\cos\omega_1 t + p_2\cos\omega_2 t$

Nonlinear term p^2 contains: $\cos(\omega_1-\omega_2)t$ \square $\;$ difference frequency

Amplitude: $p_{\Delta} \propto \beta k_1 k_2 A_1 A_2 L$ (proportional to interaction length)

Efficiency: ~0.01-1% (ultrasound power □ audible power)

4.4 2. Parametric Loudspeakers

Principle: Ultrasound beam (e.g., 40 kHz) is highly directional (~5° beamwidth). Audible difference frequency inherits directionality.

Commercial products: Audio Spotlight (Holosonics) — targeted sound for museums, retail

Advantages: Directional low-frequency sound without large transducers

Limitations: Low efficiency, nonlinear distortion

4.5 3. Medical Harmonic Imaging

Technique: Transmit ultrasound at f_0 , receive at $2f_0$ (second harmonic generated by tissue nonlinearity).

Clinical use: Echocardiography, liver imaging (standard practice)

Advantage: Improved resolution and reduced clutter

4.6 4. Biological Tissue Nonlinearity [

Tissue nonlinear parameter: - Muscle: $\beta\approx5.5$

- Fat: $\beta\approx 10$ (highly nonlinear!)

- Liver: $\beta \approx 6.5$

 $\textbf{Consequence} : \textbf{Tissue is as nonlinear as or more than water} \; \square \quad \textbf{heterodyning feasible}.$

Concept: Two focused ultrasound beams ($f_1 \approx f_2$) cross in brain \square difference frequency f_Δ stimulates mechanosensitive ion channels.

Advantages (theoretical): - Spatial selectivity (only overlap region affected)

- Tunable frequency
- Non-invasive

Challenges: 1. Low efficiency □ high intensity needed (>1 W/cm²) □ safety concerns

- 2. Skull distortion

 adaptive focusing required
- 3. **Mechanism unclear**

 thermal vs. mechanical?

Experimental status : - In vitro: Some calcium signaling observed (Ye et al., 2018)

- In vivo: Behavioral changes in mice (mechanism debated)
- Humans: No transcranial studies published

4.8 6. Ultrasonic Hearing?

Hypothesis: Dual ultrasound beams [] heterodyning in cochlea [] auditory perception

Evidence: Mixed

- Lin & Wang (1978): Reported effect

- Foster et al. (1982): Could not replicate (attributed to equipment artifacts)

Consensus: **No robust evidence** for ultrasonic heterodyning in human hearing (confounded by bone conduction, subharmonics).

4.9 7. Underwater Sonar

Parametric sonar: Transmit high-frequency beams \square ocean nonlinearity generates directional low-frequency sound.

Applications: Submarine communication, bathymetric mapping, marine mammal deterrence.

4.10 8. Safety

FDA diagnostic ultrasound limits: <720 mW/cm² (ISPTA)

Parametric arrays: Typically >1 W/cm² (above diagnostic, below therapeutic ~100 W/cm²)

Risks: Heating (thermal index), cavitation (mechanical index)

Mitigation: Lower pressures, avoid gas-filled tissues, monitor with passive cavitation detection

4.11 9. Mathematical Model: Westervelt Equation

Analytical solution (planar wave):

$$p_{\Delta}(x) = \frac{\beta k_1 k_2 A_1 A_2}{4\rho_0 c^2 \alpha_{\Delta}} \left(1 - e^{-\alpha_{\Delta} x}\right)$$

where α_{Δ} is absorption at difference frequency.

4.12 10. Connections

- [[Intermodulation Distortion in Biology]] General nonlinear mixing
- [Frey Microwave Auditory Effect] EM-to-acoustic (different mechanism)
- [Non-Linear Biological Demodulation] Overview page

4.13 11. Key References

- 1. Westervelt, *J. Acoust. Soc. Am.* 35, 535 (1963) Theory
- 2. Yoneyama et al., J. Acoust. Soc. Am. 73, 1532 (1983) Parametric speaker
- 3. Duck, *Ultrasound Med. Biol.* 28, 1 (2002) Tissue nonlinearity
- 4. Ye et al., Neuron 98, 1020 (2018) Dual-frequency FUS neuromodulation

Last updated : October	2025	
Last apaatsa . Gotober	2020	

Adaptive Modulation & Coding (AMC)

Adaptive Modulation and Coding (AMC) dynamically adjusts transmission parameters (modulation order, code rate, bandwidth) based on real-time channel conditions to maximize throughput while maintaining target error rates. AMC is fundamental to modern wireless standards (LTE, 5G NR, WiFi 6/7) and enables systems to track [[Shannon's Channel Capacity Theorem|Shannon capacity]] in time-varying channels.

Core principle: Match data rate to instantaneous channel quality—use aggressive modulation when channel is good, fall back to robust modulation when channel degrades.

5.1 \Box The AMC Concept

5.1.1 Without AMC (Fixed Modulation)

Fixed 64-QAM, Rate-1/2 FEC:

→ Data rate: Constant (e.g., 50 Mbps)

→ High SNR: Wasted capacity (could use 256-QAM)

→ Low SNR: High BER, retransmissions, failures

```
Result: Suboptimal throughput, especially in fading channels
```

5.1.2 With AMC

```
Adapt modulation + coding to channel:

Good channel (SNR = 30 dB):

→ 256-QAM, Rate-5/6 → 100 Mbps, BER = 10

Moderate channel (SNR = 20 dB):

→ 64-QAM, Rate-3/4 → 60 Mbps, BER = 10

Poor channel (SNR = 10 dB):

→ QPSK, Rate-1/2 → 10 Mbps, BER = 10

Faded channel (SNR = 5 dB):

→ BPSK, Rate-1/3 → 3 Mbps, BER = 10

Result: Maximize throughput while maintaining quality
```


5.2.1 Channel State Information (CSI)

CSI acquisition:

```
Downlink (BS → UE):

1. BS transmits pilot/reference signals

2. UE measures channel (amplitude, phase per subcarrier)

3. UE reports CSI feedback to BS

4. BS selects MCS (Modulation and Coding Scheme)

Uplink (UE → BS):

1. UE transmits sounding reference signal (SRS)

2. BS measures channel directly

3. BS selects MCS (no feedback needed if TDD reciprocity)
```

CSI feedback types:

```
Full CSI:
```

- H matrix (nT × nR complex gains per subcarrier)
- High overhead (bits nT × nR × N_subcarriers)
- Used: Massive MIMO (TDD reciprocity → no feedback)

Quantized CSI:

- Codebook-based: Index to predefined precoding matrices
- CQI (Channel Quality Indicator): Scalar metric

```
- Low overhead
- Used: LTE, 5G NR FDD
5.2.2 Channel Quality Indicator (CQI)
CQI definition:
CQI = f(SINR, interference, fading statistics)
Mapping:
CQI → (Modulation, Code Rate) → Spectral Efficiency
Example (LTE):
CQI 1: QPSK, Rate-1/8 \rightarrow 0.15 bits/s/Hz (SINR < 0 dB)
CQI 5: QPSK, Rate-1/2 → 1.0 bits/s/Hz (SINR 5 dB)
CQI 10: 64-QAM, Rate-3/4 \rightarrow 4.5 \text{ bits/s/Hz} (SINR 20 dB)
CQI 15: 256-QAM, Rate-7/8 → 7.0 bits/s/Hz (SINR 30 dB)
Target: <10% BLER (Block Error Rate) after first transmission
CQI calculation:
Instantaneous SINR per subcarrier:
SINR = |H|^2 \cdot P / (N + I)
where:
- H = channel gain on subcarrier k
- P = transmit power
- N = noise power
- I = interference power
Effective SINR (over all subcarriers):
SINR_eff = f(SINR, SINR, ..., SINR_N)
Methods:
1. Mean SINR: SINR_eff = mean(SINR)
2. EESM (Exponential Effective SINR Mapping):
   SINR_eff = - \cdot ln(mean(exp(-SINR / )))
```

3. MIESM (Mutual Information ESM):

5.2.3 Modulation and Coding Schemes (MCS)

SINR_eff based on mutual information

MCS Table (LTE example):

CQI = Quantize(SINR_eff)

MCS Index	Modulation	Code Rate	Spectral Eff. (bits/s/Hz)	Required SINR (dB)
0	QPSK	0.076	0.15	-6
5	QPSK	0.439	0.88	2
10	16-QAM	0.478	1.91	10
15	64-QAM	0.553	3.32	18
20	64-QAM	0.750	4.50	24
28	256-QAM	0.926	7.41	32

Selection algorithm:

Given CQI (estimated SINR):

- 1. Find highest MCS where SINR Required_SINR
- 2. Verify: Predicted_BLER < 10%
- 3. Transmit with selected MCS

```
If BLER > 10% (ACK/NACK feedback):
```

→ Fall back to lower MCS (more robust)

```
If BLER < 1% (excellent channel):</pre>
```

→ Attempt higher MCS (increase throughput)

Automatic Repeat Request with **Forward Error Correction**—retransmissions carry additional redundancy.

5.3.1 HARQ Types

Type I - Chase Combining:

First transmission: Original codeword

Retransmission(s): Same codeword (identical)

Receiver: Combine multiple copies (soft combining)
→ Effective SNR increases with each retransmission

Example:

- TX 1: SNR = 5 dB \rightarrow NACK (failed)

- TX 2: SNR = 5 dB → Combined SNR = 8 dB → ACK

Advantage: Simple

Disadvantage: No incremental redundancy

Type II/III - Incremental Redundancy (IR):

First transmission: High code rate (less redundancy)

Retransmission 1: Additional parity bits (lower effective rate)

```
Retransmission 2: Even more parity (lowest rate)

Example (Rate-compatible punctured code):

- TX 1: Rate-3/4 (fast, fragile) → NACK

- TX 2: Rate-2/3 (add parity) → Combined rate-1/2 → NACK

- TX 3: Rate-1/2 (add more parity) → Combined rate-1/3 → ACK

Advantage: Adaptive coding without re-encoding

Disadvantage: More complex receiver (soft buffer management)
```

5.3.2 HARQ in LTE/5G

LTE HARQ process:

```
RTT (Round-Trip Time): 8 ms

Max retransmissions: 4 (configurable)

Timeline:
t = 0 ms: TX initial transmission (Process 0)
t = 4 ms: RX decodes, sends ACK/NACK
t = 8 ms: If NACK, retransmit (Process 0)

Meanwhile, Process 1-7 active (pipelined)
```

8 parallel HARQ processes (downlink), 8 (uplink)

Result: 8 simultaneous processes → continuous transmission

5G NR HARQ:

```
16+ parallel HARQ processes (flexible)
RTT: 2-8 ms (depends on numerology)
Adaptive retransmission:
- Same MCS (Chase combining)
- Different MCS (adapt to channel change)
- Different RV (Redundancy Version) for IR
```

5.4 AMC Performance Analysis

5.4.1 Shannon-Capacity Tracking

Ideal AMC approaches Shannon capacity:

```
C(SNR) = B · log (1 + SNR)
Without AMC (fixed QPSK, rate-1/2):
R_fixed = B · 1 bits/s/Hz (for all SNR)
Efficiency: R_fixed / C(SNR) = low at high SNR
```

```
With AMC:
R_AMC(SNR) C(SNR) - \Delta
where \Delta = implementation gap (typically 2-5 dB from Shannon)
Throughput gain: 3-5× in typical fading scenarios
```

5.4.2 Throughput in Fading Channels

```
Rayleigh fading channel (urban/indoor):
Instantaneous SNR: (exponentially distributed)
Average SNR: -
Outage probability:
P_{out}(R) = P(C() < R) = 1 - exp(-R / ( \cdot B))
Without AMC (fixed rate R):
- Outage when < _threshold → complete failure
- Average throughput: R · (1 - P_out)
With AMC:
- Adapt R = C() continuously
- No outage (always some rate achievable)
- Average throughput: E[C()] = -\infty C() \cdot p() d
Ergodic capacity:
C_{ergodic} = B \cdot E[log(1 + )]
For Rayleigh: C_{ergodic} B \cdot log (e \cdot ) (high SNR)
Numerical example:
Channel: Rayleigh fading, - = 20 dB, B = 20 MHz
Fixed 64-QAM (rate-3/4):
- Required SNR: 18 dB
- Outage: P( < 18 \text{ dB}) = 37\%
- Average throughput: 4.5 \times 20 \text{ MHz} \times 0.63 = 57 \text{ Mbps}
AMC (QPSK to 256-QAM):
- Always adapts to channel
- Average throughput:
                        100 Mbps
Gain: 1.75× throughput improvement
```

5.5 AMC in Standards

5.5.1 LTE Adaptive Modulation

Downlink (eNodeB UE):

CQI reporting:

- Periodicity: 5-10 ms (semi-static)
- Wideband or subband (per RB Resource Block)
- UE measures RSRP, RSRQ, SINR → computes CQI

MCS selection:

- eNodeB scheduler receives CQI
- Selects MCS per UE per RB
- Goals: Maximize cell throughput, maintain fairness

Resource allocation:

- Time-frequency (OFDMA)
- 1 RB = 12 subcarriers \times 1 slot (0.5 ms)
- Assign high MCS to users with good CQI

Uplink (UE ☐ eNodeB):

UE transmits SRS (Sounding Reference Signal)
eNodeB measures channel directly (TDD reciprocity helps)
eNodeB commands MCS via PDCCH (Physical Downlink Control Channel)

Uplink challenges:

- Limited UE power → coverage-limited
- Lower MCS typical (vs. downlink)

5.5.2 5G NR Ultra-Lean Design

Dynamic adaptation:

Ultra-flexible frame structure:

- Slot duration: 0.125-1 ms (depends on numerology)
- Mini-slots: <1 ms (ultra-low latency)
- HARQ feedback: 2-4 slots (faster than LTE)

Beam management:

- Massive MIMO: Beamformed transmissions
- CSI-RS: Beam-specific channel measurement
- Adapt MCS per beam (spatial dimension)

Grant-free transmission (URLLC):

- Pre-configured MCS (no dynamic CQI)
- Used for ultra-reliable, low-latency (factory automation)

Massive MIMO adaptation:

```
Per-user MCS:
- User 1 (cell center, high SINR): 256-QAM, rate-5/6
- User 2 (cell edge, low SINR): QPSK, rate-1/3
- Simultaneous (MU-MIMO) on same resource blocks
Spectral efficiency:
Sum rate = \Sigma R_i (bits/s/Hz per user)
         = 7 + 1 = 8 \text{ bits/s/Hz} (vs. 4 for single-user)
5.5.3 WiFi 6/7 (802.11ax/be)
Rate adaptation:
WiFi metrics:
- RSSI (Received Signal Strength Indicator)
- PER (Packet Error Rate)
- Retry count
MCS selection:
- Minstrel / SampleRate algorithms (open-source)
- Proprietary vendor algorithms (Cisco, Qualcomm)
- Test higher MCS occasionally (probing)
```

Spatial stream adaptation:

- 1 stream: Long range, reliable
- 4 streams: Short range, high throughput
- Adapt based on distance, interference

Example (WiFi 6, 80 MHz):

- Close (1 m): 4 streams, 1024-QAM, rate- $5/6 \rightarrow 1.2$ Gbps
- Medium (10 m): 2 streams, 256-QAM, rate- $3/4 \rightarrow 600$ Mbps
- Far (50 m): 1 stream, QPSK, rate-1/2 \rightarrow 30 Mbps

5.6 Advanced AMC Techniques

5.6.1 Outer-Loop Link Adaptation (OLLA)

Motivation: CQI can be inaccurate (channel estimation errors, feedback delay).

OLLA principle:

Adjust MCS based on ACK/NACK history, not just CQI.

Algorithm:

1. Start with MCS based on CQI

```
2. If NACK: Decrease MCS (\Delta_{\text{down}} = 1 \text{ dB})
3. If ACK: Increase MCS (\Delta_{up} = 0.01 \text{ dB})
Asymmetric adjustment:
- Fast decrease (avoid errors)
- Slow increase (test cautiously)
Result: Converges to optimal MCS despite CQI errors
Implementation:
def olla_adaptation(cqi, ack_history, target_bler=0.1):
    Outer-loop link adaptation.
    Args:
        cqi: Reported channel quality indicator
        ack_history: Recent ACK/NACK outcomes
        target_bler: Target block error rate
    Returns:
        Adjusted MCS index
    mcs_base = cqi_to_mcs(cqi)
    # Compute recent BLER
    recent_bler = 1 - np.mean(ack_history)
    # Offset adjustment
    if recent_bler > target_bler:
        offset_db = -1.0 # More conservative
    elif recent_bler < target_bler / 2:</pre>
        offset_db = +0.5 # More aggressive
    else:
        offset_db = 0.0 # Stay
    # Adjust MCS
    mcs_adjusted = mcs_base + int(offset_db / 2) # ~2 dB per MCS
    mcs_adjusted = np.clip(mcs_adjusted, 0, 28)
    return mcs_adjusted
```

5.6.2 Cross-Layer Optimization

Joint optimization of PHY (MCS) and MAC (scheduling):

Proportional Fair Scheduler:

```
Maximize: \Sigma \log(R_i) (sum log throughput)
User priority:
Priority_i = R_instantaneous_i / R_average_i
where:
- R instantaneous: Rate achievable now (AMC-selected MCS)
- R_average: Long-term average throughput
Result:
- User with good channel gets high MCS → high R_instantaneous
- If already has high R_average, priority decreases
- Balances throughput and fairness
Buffer-aware AMC:
If buffer almost empty:
→ Use lower MCS (reliable, avoid stalls)
If buffer full:
→ Use higher MCS (aggressive, drain buffer)
Delay-sensitive (VoIP):
→ Conservative MCS (avoid retransmissions)
Throughput-oriented (file download):
→ Aggressive MCS (maximize rate, tolerate retries)
5.6.3 Predictive AMC
Anticipate channel changes before they occur.
Method 1 - Doppler-based prediction:
```

```
High mobility (vehicular):
- Channel changes rapidly (coherence time ~10 ms)
- CQI feedback outdated by RTT (8 ms)
Prediction:
1. Estimate Doppler shift (f_D = v/)
2. Predict channel evolution: H(t + \Delta t) = f(H(t), f_D)
3. Select MCS for predicted channel
Autoregressive model:
H[n+1] = a \cdot H[n] + a \cdot H[n-1] + \dots + noise
Wiener filter / Kalman filter for prediction
```

Method 2 - Machine learning:

```
Train neural network:
- Input: [H[n], H[n-1], ..., H[n-k], velocity, location]
- Output: H[n+1] (predicted channel)

Online learning:
- Update weights based on prediction error
- Adapt to user-specific channel patterns

Benefit: 2-3 dB gain in high-mobility scenarios
```

5.7 Python Implementation Example

5.7.1 AMC Simulator

```
import numpy as np
def generate_fading_channel(n_samples, coherence_time=100):
    Generate Rayleigh fading channel (Clarke's model).
    Args:
        n_samples: Number of time samples
        coherence time: Channel coherence (samples)
    Returns:
        Channel gains (linear)
    # Generate complex Gaussian samples
    h_i = np.random.randn(n_samples)
    h_q = np.random.randn(n_samples)
    h = (h_i + 1j*h_q) / np.sqrt(2)
    # Low-pass filter (coherence time)
    from scipy.signal import butter, lfilter
    b, a = butter(3, 1/coherence_time)
    h = lfilter(b, a, h)
    # Normalize to unit average power
    h /= np.sqrt(np.mean(np.abs(h)**2))
    return h
def snr_to_cqi(snr_db):
    Map SNR to CQI index (0-15).
```

```
cqi_table = [
        (-6, 0), (0, 5), (5, 8), (10, 11),
        (15, 13), (20, 15), (25, 15)
    for snr_thresh, cqi in cqi_table:
        if snr_db < snr_thresh:</pre>
            return max(0, cqi - 1)
    return 15
def cqi_to_mcs(cqi):
    11 11 11
    Map CQI to MCS parameters.
    Returns:
        (modulation_order, code_rate, spectral_efficiency)
    mcs_table = [
        (2, 0.08, 0.15),
                           # CQI 0-1: QPSK
        (2, 0.44, 0.88), # CQI 5: QPSK
        (4, 0.48, 1.91), # CQI 10: 16-QAM
        (6, 0.55, 3.32), # CQI 15: 64-QAM
        (8, 0.93, 7.41), # CQI 15+: 256-QAM
    idx = min(cqi // 4, len(mcs_table) - 1)
    return mcs_table[idx]
def compute_bler(snr_db, mcs_params):
    Compute Block Error Rate for given SNR and MCS.
    Uses Shannon bound approximation.
    mod_order, code_rate, spec_eff = mcs_params
    # Required SNR for target BER = 10^-6
    required_snr = {
        2: 9.6, # QPSK
        4: 16.5, # 16-QAM
        6: 22.0, # 64-QAM
        8: 28.0, # 256-QAM
    }[mod_order]
    # Adjust for code rate
    required_snr -= 10 * np.log10(code_rate)
    # BLER approximation (exponential model)
    if snr_db > required_snr:
        bler = np.exp(-0.5 * (snr_db - required_snr))
```

```
else:
        bler = 0.5 # High error rate
    return min(bler, 0.5)
# Simulation
n \text{ samples} = 10000
avg_snr_db = 20
coherence_time = 100
# Generate fading channel
h = generate_fading_channel(n_samples, coherence_time)
snr_inst = avg_snr_db + 20*np.log10(np.abs(h)) # Instantaneous SNR
# AMC simulation
throughput_amc = []
throughput_fixed = []
bler_amc = []
# Fixed MCS (64-QAM, rate-3/4)
fixed_mcs = (6, 0.75, 4.5)
for snr_db in snr_inst:
    # AMC: Select MCS based on CQI
    cqi = snr_to_cqi(snr_db)
    mcs = cqi_to_mcs(cqi)
    # Compute BLER
    bler = compute_bler(snr_db, mcs)
    # Throughput (accounting for retransmissions)
    tput_amc = mcs[2] * (1 - bler) # bits/s/Hz
    tput_fixed = fixed_mcs[2] * (1 - compute_bler(snr_db, fixed_mcs))
    throughput amc.append(tput amc)
    throughput_fixed.append(tput_fixed)
    bler amc.append(bler)
# Results
print(f"Average SNR: {avg_snr_db} dB")
print(f"AMC average throughput: {np.mean(throughput_amc):.2f} bits/s/Hz")
print(f"Fixed MCS throughput: {np.mean(throughput_fixed):.2f} bits/s/Hz")
print(f"AMC gain: {np.mean(throughput_amc) / np.mean(throughput_fixed):.2f}x")
print(f"AMC average BLER: {np.mean(bler_amc):.2%}")
```


5.8.1 AMC Excels:

Time-varying channels (mobility, fading) Wide SNR range (cell-edge to cell-center users) Throughput-oriented applications (web, video streaming) Multi-user systems (fairness via per-user adaptation) OFDM systems (per-subcarrier or per-RB adaptation)
S.2 AMC Challenges:
Fast fading (feedback delay > coherence time)
Feedback overhead (high for wideband, MIMO)
Latency-sensitive (delay from MCS switching)
Low SNR regime (limited MCS choices)

5.9.1 Textbooks

- Goldsmith, Wireless Communications (Chapter 9: Adaptive Modulation) Comprehensive treatment
- Tse & Viswanath, Fundamentals of Wireless Communication (Chapter 5: Capacity of fading channels)
- Hanzo et al., Adaptive Wireless Transceivers Deep dive into AMC algorithms

5.9.2 Key Papers

- Goldsmith & Varaiya (1997): "Capacity of fading channels with CSI" Foundational theory
- · Caire et al. (1999): "Optimum power control over fading channels" Water-filling for fading
- Ekström et al. (2006): "Technical Solutions for 3G LTE" Practical LTE AMC

5.9.3 Standards Documents

- 3GPP TS 36.213: LTE Physical Layer Procedures (CQI, MCS tables)
- 3GPP TS 38.214: 5G NR Physical Layer (AMC, HARQ)
- **IEEE 802.11ax**: WiFi 6 (rate adaptation algorithms)

5.9.4 Related Topics

- [Shannon's Channel Capacity Theorem] Theoretical foundation for AMC
- [OFDM & Multicarrier Modulation] Per-subcarrier adaptation
- [MIMO & Spatial Multiplexing] Per-stream MCS adaptation
- [Forward Error Correction (FEC)] Code rate adaptation
- [Real-World System Examples] LTE, 5G, WiFi implementations

Summary: Adaptive Modulation and Coding (AMC) is the bridge between [[Shannon's Channel Capacity Theorem|Shannon theory]] and practical wireless systems. By dynamically selecting modulation order (BPSK 256-QAM) and code rate (1/3 7/8) based on Channel Quality Indicator (CQI) feedback, AMC systems track instantaneous channel capacity and maximize throughput while maintaining target error rates (typically <10% BLER). LTE/5G use CQI reporting (1-15) mapped to MCS tables, combined with HARQ for robustness. AMC provides 2-5× throughput gain in fading channels compared to fixed modulation. Outer-loop link adaptation (OLLA) corrects for CQI errors. Cross-layer optimization integrates AMC with scheduling (proportional fair) and buffer management. Predictive AMC uses Doppler estimation or machine learning to anticipate channel changes. AMC is essential for spectral efficiency in modern cellular and WiFi networks, enabling gigabit-per-second data rates while serving users across wide SNR ranges (cell-edge to cell-center).

6 Additive White Gaussian Noise (AWGN)

6.1 For Non-Technical Readers

AWGN is the "static" or "hiss" you hear on old radios-random interference that corrupts signals.

Real-world analogies: - Old TV static: Random noise when you lose the signal - Grainy photos in low light: Camera sensors produce AWGN when there's not enough light - Bluetooth stuttering: Weak signals get corrupted by AWGN

Where it comes from: Thermal noise (electrons jiggling from heat), electronic components, even faint cosmic microwave background radiation.

Why it matters: AWGN is the fundamental limit on communication. You can't eliminate it, but you can overcome it with more power, error correction, or better antennas.

AWGN is a basic noise model used in communication systems.

6.2 What is AWGN?

- Additive: Noise is added to the signal
- White: Uniform power across all frequencies
- Gaussian: Follows a normal (Gaussian) probability distribution

6.3 Visualizing AWGN

Clean Signal: AWGN: Noisy Signal: (Clean + AWGN)

6.4 AWGN Channel Model

In the I/Q plane, AWGN adds independent Gaussian noise to both components:

```
Received Symbol = Transmitted Symbol + Noise

I_received = I_transmitted + N_I
Q_received = Q_transmitted + N_Q

where N_I and N_Q are independent Gaussian random variables
```

6.5 Mathematical Properties

The noise samples have: - **Mean**: 0 (centered around zero) - **Variance**: σ^2 (determined by noise power) - **Probability Distribution**: Gaussian (bell curve)

Probability Density:

6.6 Why AWGN is Used

- 1. **Simplicity**: Mathematical tractability for analysis
- 2. Fundamental Model: Many real noise sources approximate Gaussian statistics
- 3. Worst Case: Often represents a pessimistic but realistic scenario
- 4. Standard Benchmark: Industry-standard for comparing systems

6.7 Sources of Noise in Real Systems

- Thermal Noise: Random motion of electrons (kTB)
- · Amplifier Noise: Electronic component noise
- · Cosmic Noise: Background radiation
- Interference: Other signals (approximates Gaussian when many sources)

6.8 AWGN in Chimera

Chimera's simulation applies AWGN to model the communication channel: - Noise is added separately to I and Q components - Noise power is controlled by the [[Signal to Noise Ratio (SNR)]] setting - Higher SNR = less noise variance = tighter constellation clusters

6.8.1 Noise Power Calculation

```
Noise Variance (2) = Signal Power / SNR_linear
```

```
= Signal Power / 10^(SNR_dB/10)
```

For unit signal power and SNR = 10 dB:

```
^{2} = 1 / 10^{(10/10)} = 1/10 = 0.1
= \sqrt{0.1} 0.316
```

6.9 Impact on Constellation

6.10 See Also

- [[Signal to Noise Ratio (SNR)]] Controls noise power
- [Link Loss vs Noise] Distinction between attenuation and noise
- [Constellation Diagrams] Visualizing noise effects
- [IQ Representation] How noise affects I/Q components

7 Amplitude-Shift Keying (ASK)

[[Home]] | **Digital Modulation** | [On-Off Keying (OOK)] | [QPSK Modulation]

ASK is like using a dimmer switch on a flashlight—bright = 1, dim = 0. Simple to understand, but noise makes it hard to tell bright from dim!

The idea - Vary the volume: - Want to send **1**? Transmit at **full power** - Want to send **0**? Transmit at **low power** (or off) - Receiver measures: "How loud is the signal right now?"

Real-world analogy - Theater lights: - **Full brightness** = data bit "1" - **Dim/off** = data bit "0" - Audience (receiver) can see which state you're in - But if room is smoky (noise), hard to tell bright from dim!

Why it's problematic: - Noise affects amplitude: Interference makes signal stronger/weaker - Fading affects amplitude: Obstacles change signal strength - Hard to tell: "Is this a dim signal, or a faded bright signal?" - This is why ASK isn't used much in modern systems!

Where ASK is still used: - **RFID tags**: Extremely simple, low power (backscatter modulation) - **Fiber optic**: Optical fiber has low noise, so ASK works well - **Historical modems**: Old 300 baud modems used ASK - **Combined with PSK**: QAM = ASK + PSK together (best of both!)

Advanced: M-ary ASK: - Instead of 2 levels (on/off), use 4, 8, or 16 levels - **4-ASK**: Four brightness levels = 2 bits/symbol - **8-ASK**: Eight brightness levels = 3 bits/symbol - Even more sensitive to noise!

Why phase (PSK) or frequency (FSK) is better: - PSK: Noise changes amplitude, phase stays stable - FSK: Noise changes amplitude, frequency stays stable - ASK: Noise directly corrupts the information!

Fun fact: Your TV remote uses a form of ASK—infrared LED blinks on/off to send button codes. It works because the path from remote to TV is short and clean (low noise)!

7.2 Overview

Amplitude-Shift Keying (ASK) encodes digital data by varying the amplitude of a carrier wave.

Principle: Different symbols represented by different amplitude levels

M-ary ASK: M distinct amplitude levels encode $\log_2(M)$ bits per symbol

Relationship to OOK: OOK is binary ASK (M=2, one amplitude is zero)

7.3 Binary ASK (2-ASK)

Two amplitude levels: A_1 and A_2 (typically 0 and A)

Signal:

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{bit = 1} \\ 0 & \text{bit = 0} \end{cases}$$

This is On-Off Keying (OOK)

See: [On-Off Keying (OOK)]

7.4 M-ary ASK

M amplitude levels: A_m for $m=0,1,\dots,M-1$

Signal for symbol m:

$$s_m(t) = A_m \cos(2\pi f_c t), \quad 0 \leq t < T_s$$

Amplitude levels (equally spaced):

$$A_m = A_0 + m \cdot \Delta A$$

Where: - A_0 = Minimum amplitude (often 0) - ΔA = Amplitude spacing - m = Symbol index (0 to M-1)

7.4.1 4-ASK Example

4 amplitude levels: 0, A, 2A, 3A $\label{eq:bits} \mbox{Bits per symbol: } \log_2(4) = 2 \mbox{ bits}$

Mapping:

Bits	Symbol	Amplitude
00	0	0
01	1	Α
10	2	2A
11	3	3A

Constellation diagram (1D):

7.4.2 8-ASK Example

8 amplitude levels: 0, A, 2A, ..., 7A Bits per symbol: $\log_2(8) = 3$ bits

Spectral efficiency: 3 bits/symbol (3× binary ASK for same bandwidth)

7.5 Modulation & Demodulation

7.5.1 ASK Modulator

Block diagram:

Steps: 1. Group bits into symbols ($\log_2(M)$ bits per symbol) 2. Map symbol to amplitude level A_m 3. Multiply amplitude by carrier

Baseband equivalent:

$$s(t) = A_m(t)\cos(2\pi f_c t)$$

Where $A_m(t)$ = Pulse-shaped amplitude sequence

7.5.2 Coherent Demodulation

Optimal detector (requires carrier phase reference):

Receiver:

Steps: 1. Multiply by synchronized carrier (coherent mixing) 2. Low-pass filter

Baseband amplitude 3. Sample at symbol rate 4. Threshold detection (compare to M-1 thresholds)

Decision thresholds:

$$\operatorname{Threshold}_k = \frac{A_k + A_{k+1}}{2}, \quad k = 0, 1, \dots, M-2$$

Example (4-ASK): Thresholds at A/2, 3A/2, 5A/2

7.5.3 Non-Coherent Demodulation

Envelope detector (no phase reference needed):

Block diagram:

Envelope detector: Rectifier + low-pass filter (extracts |s(t)|)

Advantage: Simple, no carrier recovery

Disadvantage: ~3 dB worse SNR than coherent

Used in: AM radio, OOK (IR remote, RFID)

7.6 Signal Space Representation

1-dimensional constellation (real axis only):

$$s_m(t) = A_m \phi(t)$$

Where $\phi(t) = \sqrt{\frac{2}{T_s}} \cos(2\pi f_c t)$ (orthonormal basis)

Energy per symbol:

$$E_{m} = \int_{0}^{T_{s}} s_{m}^{2}(t)dt = A_{m}^{2}$$

Average symbol energy (assuming equal probability):

$$\bar{E}_s = \frac{1}{M} \sum_{m=0}^{M-1} A_m^2$$

7.7 Performance Analysis

7.7.1 Bit Error Rate (BER) - Coherent Detection

Symbol error rate (SER) for M-ASK in AWGN:

$$P_s \approx 2 \left(1 - \frac{1}{M}\right) Q \left(\sqrt{\frac{6 \log_2(M)}{M^2 - 1} \cdot \frac{E_b}{N_0}}\right)$$

Gray coding assumed (SER \approx BER / $\log_2(M)$):

$$\mathrm{BER} \approx \frac{2}{M \log_2(M)} \left(1 - \frac{1}{M}\right) Q \left(\sqrt{\frac{6 \log_2(M)}{M^2 - 1} \cdot \frac{E_b}{N_0}}\right)$$

Where: $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-t^2/2} dt$

7.7.2 BER for Specific M

2-ASK (OOK) @ 10 dB Eb/N0:

$$\mathrm{BER} = Q\left(\sqrt{2\cdot 10}\right) \approx 3.9\times 10^{-6}$$

81

4-ASK @ 10 dB Eb/N0:

$${\rm BER} \approx \frac{3}{4} Q \left(\sqrt{\frac{12}{15} \cdot 10} \right) = 0.75 \times Q(2.83) \approx 1.8 \times 10^{-3}$$

Observation: Higher M

Worse BER (smaller amplitude spacing

more noise sensitivity)

7.7.3 Required Eb/N0 for BER = 10^{-6}

Modulation	Required Eb/N0 (dB)	Notes
2-ASK (OOK) 10.5	Ва	seline
4-ASK 14	+3.	.5 dB penalty
8-ASK 18	+7.	.5 dB penalty
16-ASK 22	+1	1.5 dB penalty

Pattern: Each doubling of M adds ~3.5-4 dB penalty

7.8 Power Efficiency

Average power for M-ASK:

$$\bar{P} = \frac{1}{M} \sum_{m=0}^{M-1} \frac{A_m^2}{2}$$

Peak-to-average power ratio (PAPR):

$$\mathrm{PAPR} = \frac{A_{\mathrm{max}}^2}{\bar{P}}$$

For M-ASK with amplitudes 0, A, 2A, ..., (M-1)A:

$$\mathsf{PAPR} = \frac{(M-1)^2}{\frac{1}{M} \sum_{m=0}^{M-1} m^2} = \frac{3(M-1)^2}{M(M-1)(2M-1)/3} = \frac{3(M-1)}{2M-1}$$

Example: -2-ASK: PAPR = 3 (4.8 dB) -4-ASK: PAPR = $9/7 \approx 1.1$ dB -8-ASK: PAPR = 21/15 = 1.4 (1.5 dB)

Problem: High PAPR stresses power amplifier (requires large backoff)

7.9 Bandwidth Efficiency

Occupied bandwidth (with pulse shaping):

$$B = (1 + \alpha)R_s \quad (\mathrm{Hz})$$

Where: - R_s = Symbol rate (symbols/sec) - α = Roll-off factor (0-1, typically 0.35)

Bit rate:

$$R_b = R_s \log_2(M) \quad \text{(bits/sec)}$$

Spectral efficiency:

$$\eta = \frac{R_b}{B} = \frac{\log_2(M)}{1+\alpha} \quad \text{(bits/sec/Hz)}$$

7.9.1 Comparison

Modulation	Bits/symbo	ol	η (α=	-0.35) Notes
	2-ASK	1	0.74	Same as BPSK
	4-ASK	2	1.48	2× bandwidth efficiency
	8-ASK	3	2.22	3× bandwidth efficiency
	16-ASK	4	2.96	4× bandwidth efficiency

Trade-off: Higher η but worse BER (need higher SNR)

7.10 ASK vs PSK vs QAM

At same bit rate:

	Modulation	Bits/symbol Cons	tellation BER	(@ 10 dB)	Notes
BPSK	1	2 points (1D)	3.9×10^{-6}	Best BE	 R
2-ASK	1	2 points (1D)	3.9×10^{-6}	Same a	s BPSK
QPSK	2	4 points (2D)	3.9×10^{-6}	2× effic	iency, same BER
4-ASK	2	4 points (1D)	1.8×10^{-3}	Worse E	BER (1D)
16-QAM	4	16 points (2D)	~10 ⁻⁴	Better t	han 16-ASK
16-ASK	4	16 points (1D)	~10 ⁻²	Worst E	BER (1D)

Key insight: QAM (2D) outperforms ASK (1D) for M>2

Why QAM better: Spreads points in 2D [] Larger minimum distance for same average power

7.11 Practical Applications

7.11.1 1. Optical Communications (OOK)

Binary ASK (OOK) dominates fiber optics: - 10 Gbps Ethernet: OOK with direct detection - PON (Passive Optical Networks): OOK upstream - Simple: LED/laser ON/OFF, photodiode detection

Higher-order: 4-ASK (PAM-4) emerging for 100G+ (50 Gbaud PAM-4 = 100 Gbps)

7.11.2 2. RFID (OOK/2-ASK)

Passive RFID tags: OOK modulation - Reader
Tag: Continuous carrier (powers tag) - Tag Reader: Load modulation (OOK) - Frequency: 125 kHz (LF), 13.56 MHz (HF), 900 MHz (UHF)

Advantage: Non-coherent detection (simple tag circuit)

7.11.3 3. Infrared (IR) Remote Controls

Consumer IR: OOK at 38 kHz carrier - Protocol: Manchester-encoded OOK - Range: 5-10 meters - **Power**: <10 mW (eye safety)

7.11.4 4. DSL (Discrete Multi-Tone with ASK)

ADSL/VDSL: Multi-carrier system with per-tone QAM/ASK - Each subcarrier uses 2-15 bit QAM (includes ASK as subset) - Adaptive bit loading per tone (waterfilling)

7.11.5 5. Visible Light Communication (VLC)

LED-based VLC: OOK or M-ASK - OOK: Simple, high speed (100+ Mbps) - Dimming: Adjust average amplitude (DC level) - Application: Indoor positioning, LiFi

7.12 Pulse Shaping

Rectangular pulses cause excessive ISI and spectral regrowth

Raised cosine (RC) pulse:

$$p(t) = \frac{\sin(\pi t/T_s)}{\pi t/T_s} \cdot \frac{\cos(\alpha \pi t/T_s)}{1 - (2\alpha t/T_s)^2}$$

Properties: - α = 0: Sinc pulse (infinite time, brick-wall spectrum) - α = 0.35: Common (35%) excess bandwidth) - $\alpha = 1$: Smoother time domain, 2× bandwidth

Root raised cosine (RRC): Split filtering between TX and RX (matched filter)

7.13 Noise Analysis

Additive noise n(t) with power $\sigma^2=N_0/2$ (single-sided PSD)

After coherent demodulation:

$$r_m = A_m + n$$

Where $n \sim \mathcal{N}(0, \sigma^2)$ (Gaussian noise)

Symbol error if noise pushes sample past threshold:

Example (4-ASK, symbol 1 at amplitude A): - Error if $r_1 < A/2$ (decide symbol 0) or $r_1 > 3A/2$ (decide symbol 2)

$$P_{e|1} = Q\left(\frac{A/2}{\sigma}\right) + Q\left(\frac{A/2}{\sigma}\right) = 2Q\left(\frac{A}{2\sigma}\right)$$

7.14 Implementation Considerations

7.14.1 1. Carrier Recovery

Coherent ASK requires carrier phase/frequency sync:

Methods: - **Squaring loop**: Square signal \Box 2f_c component \Box PLL \Box Divide by 2 - **Costas loop**: Feedback loop with I/Q arms - **Pilot tone**: Transmit unmodulated carrier (reduces efficiency)

See: [Synchronization]

7.14.2 2. Automatic Gain Control (AGC)

Received amplitude varies due to fading, path loss:

AGC adjusts receiver gain to maintain constant amplitude:

$$\mathrm{Gain}(t) = \frac{A_{\mathrm{target}}}{\hat{A}_{\mathrm{received}}(t)}$$

Critical for M-ASK (M > 2) to maintain threshold accuracy

7.14.3 3. Nonlinear Distortion

Power amplifier (PA) nonlinearity compresses high amplitudes:

Effect: Amplitude levels not equally spaced

Increased BER

Mitigation: - **Backoff**: Operate PA below saturation (reduces efficiency) - **Predistortion**: Digital or analog linearization - **Consider PSK/FSK**: Constant envelope (less sensitive to PA)

7.14.4 4. Frequency-Selective Fading

Multipath fading distorts amplitude:

$$r(t) = h(t) \cdot s(t) + n(t)$$

Problem: Fading gain |h(t)| multiplies signal amplitude \square ASK especially vulnerable

Mitigation: - **Equalization**: Compensate for channel (see [Channel Equalization]) - **OFDM**: Flat fading per subcarrier - **Consider PSK**: Less sensitive to amplitude fading (phase-based)

7.15 Advantages of ASK

- 1. **Simple modulator**: Single mixer, no phase shifter
- 2. Non-coherent detection: Envelope detector (OOK)
- 3. Low cost: Used in RFID, IR remotes
- 4. **Compatible with intensity modulation**: Optical, VLC (LED can't do phase)

7.16 Disadvantages of ASK

- 1. **Poor power efficiency**: 1D constellation

 Worse BER than 2D (QAM)
- 2. Susceptible to fading: Amplitude-based (fading directly affects signal)
- 3. Nonlinear PA distortion: High PAPR, AM-AM conversion
- 4. Threshold sensitivity: AGC critical for M > 2
- 5. **No advantage over PSK**: For M > 2, PSK/QAM preferred (except optical)

7.17 Summary Table

Aspect	2-ASK (OOK)	4-ASK	M-ASK
Bits/symbol Complexity	1 Very simple	2 Simple	log₂(M) Moderate
BER @ 10 dB	3.9×10^{-6}	1.8×10^{-3}	Degrades with M

Aspect	2-ASK (OOK)	4-ASK	M-ASK
Detection	Non-coherent OK	Coherent preferred	Coherent required
Applications	RFID, IR, optical	Rarely used	Optical (PAM-4)
vs QAM	Equivalent (M=2)	3 dB worse	Much worse

7.18 Related Topics

- [On-Off Keying (OOK)]: Binary ASK (M=2)
- [QPSK Modulation]: 2D alternative (better than 4-ASK)
- [Frequency-Shift Keying (FSK)]: Frequency-based modulation
- [Constellation Diagrams]: Visualizing signal space
- [Bit Error Rate (BER)]: Performance metric
- [Synchronization]: Carrier recovery for coherent detection

Key takeaway: **ASK encodes data in amplitude levels.** OOK (2-ASK) is simple and widely used (RFID, IR, optical). Higher-order ASK (M > 2) is power-inefficient compared to PSK/QAM due to 1D constellation. QAM dominates RF, ASK dominates optical (intensity modulation). Coherent detection needed for M > 2. Susceptible to fading, PA nonlinearity, and amplitude noise.

This wiki is part of the [[Home Chimera Project]] documentation.	

8 Antenna Theory Basics

[[Home]] Foundation	[Electromagnetic Spectrum]	[Maxwell's	Equations &	Wave F	Propagati	on]

8.1 For Non-Technical Readers

An antenna is like a funnel for radio waves—it concentrates energy in one direction (transmit) or collects it from many directions (receive).

Simple analogies: - **Flashlight vs. bare bulb**: A flashlight (directional antenna) focuses light. A bare bulb (omnidirectional) lights up everything. - **Satellite dish**: Curved shape collects weak space signals and focuses them onto a tiny receiver - **Your cell phone**: Has multiple tiny antennas inside—cellular, WiFi, GPS, Bluetooth (each tuned to different frequencies)

Key insights: - **Bigger = stronger**: 10-meter dish collects 100× more energy than 1-meter dish - **Shape matters**: Long wire for AM radio, small stub for WiFi, dish for satellites - **Trade-off**: Omnidirectional (WiFi router) covers whole area but weak. Directional (satellite dish) is strong but must point exactly right.

8.2 Overview

An **antenna** is a transducer that converts **electrical signals into electromagnetic waves** (transmit) and vice versa (receive). Antennas are governed by **reciprocity**: their transmit and receive properties are identical.

Fundamental principle: Accelerating charges radiate EM energy ([[Maxwell's Equations & Wave Propagation|Maxwell's equations]]).

8.3 Key Antenna Parameters

8.3.1 1. Radiation Pattern

The spatial distribution of radiated power.

Coordinate system: - **Azimuth (φ)**: Horizontal angle $(0^{\circ} - 360^{\circ})$ - **Elevation (θ)**: Vertical angle from zenith $(0^{\circ} = \text{straight up})$

Typical patterns:

8.3.1.1 Isotropic Radiator (Theoretical)

- · Radiates equally in all directions (sphere)
- Power density at distance r:

$$S = \frac{P_t}{4\pi r^2}$$

· Does not exist in reality (used as reference for gain)

8.3.1.2 Dipole ($\lambda/2$) Classic antenna: Half-wavelength wire

Pattern: - Omnidirectional in azimuth (φ) - Figure-8 in elevation (θ): Nulls along wire axis

3D pattern: Donut-shaped (toroid)

Radiation resistance: $R_r = 73~\Omega$ (lossless)

8.3.1.3 Directional Antennas Yagi-Uda (TV antenna): - Single driven element (dipole) - Parasitic elements (directors + reflector) - **Gain**: 10-15 dBi - **Beamwidth**: ~30-60°

Parabolic Dish: - Large aperture (diameter $D\gg\lambda$) - Gain: 30-60 dBi (satellite comms) - Beamwidth: $\theta\approx70\lambda/D$ degrees

Phased Array: - Multiple elements with controllable phase - **Electronically steerable** beam (no mechanical movement) - Used in: Radar, 5G base stations, [[AID Protocol|AID Protocol]] (THz)

8.3.2 2. Antenna Gain (G)

Ratio of power density in preferred direction vs isotropic radiator.

$$G = \frac{S(\theta, \phi)}{S_{\rm iso}}$$

Units: dBi (dB relative to isotropic)

Typical gains:

	Antenna Type	Gain (dBi)	Beamwidth
Isotropic (refe	rence)	0 dBi	360° (all directions)
Dipole (λ/2)		2.15 dBi	~78° (elevation)
Monopole (λ/4	4)	5.15 dBi	~30° (over ground plane
Patch (micros	trip)	6-9 dBi	~70-90°
Yagi (10 eleme	ents)	12-15 dBi	~30°
Parabolic dish	n (1 m @ 10 GHz)	~40 dBi	~2°
Phased array	(64 elements)	18-24 dBi	Steerable

Relationship to directivity:

$$G = \eta_{\mathsf{ant}} \cdot D$$

Where: - D = Directivity (concentrates power) - $\eta_{\rm ant}$ = Antenna efficiency (0.5-0.95 typical, accounts for ohmic losses)

8.3.3 3. Directivity (D)

Power concentration factor (independent of losses):

$$D = \frac{4\pi}{\Omega_A}$$

Where Ω_A is the ${\bf solid}$ angle of the main lobe (steradians).

Approximation for narrow beams:

$$D \approx \frac{41,253}{\theta_E \cdot \theta_H}$$

Where: - θ_E = Elevation beamwidth (degrees) - θ_H = Azimuth beamwidth (degrees)

Example: Beamwidth 10° × 10° \square $D=41,253/(10\times 10)=412.53\approx 26.2$ dBi

8.3.4 4. Beamwidth

Angular width where power drops to half (-3 dB) of peak.

Half-power beamwidth (HPBW):

$$heta_{ extsf{HPBW}} pprox rac{k \lambda}{D}$$

Where: - D = Antenna diameter (aperture antennas) - k = Constant (~70° for parabolic dishes)

Example: 1 m dish at 10 GHz ($\lambda = 3$ cm):

$$\theta_{\mathrm{HPBW}} = \frac{70 \times 0.03}{1} = 2.1^{\circ}$$

Implication: Narrow beams require precise pointing (satellites, radar)

8.3.5 5. Polarization

Orientation of electric field vector.

8.3.5.1 Linear Polarization

- **Vertical**: E-field parallel to ground (monopole, vertical dipole)
- Horizontal: E-field perpendicular to ground (horizontal dipole)

Cross-polarization loss: 20-30 dB if TX and RX polarizations are perpendicular

8.3.5.2 Circular Polarization

- E-field rotates as wave propagates
- Right-hand circular (RHCP): Clockwise (looking at source)
- · Left-hand circular (LHCP): Counter-clockwise

Applications: GPS, satellite comms (immune to Faraday rotation in ionosphere)

Axial ratio: Measure of circularity (0 dB = perfect circular, >3 dB = elliptical)

8.3.5.3 Elliptical Polarization

- General case (between linear and circular)
- · Common when reflection/scattering depolarizes signal

8.3.6 6. Impedance & Matching

Antenna input impedance:

$$Z_{\text{ant}} = R_{\text{rad}} + R_{\text{loss}} + jX$$

Where: - $R_{\rm rad}$ = Radiation resistance (power radiated) - $R_{\rm loss}$ = Loss resistance (heat in conductors/dielectrics) - X = Reactance (energy storage in near-field)

Goal: Match to transmission line (typically 50Ω or 75Ω)

8.3.6.1 Standing Wave Ratio (SWR) Mismatch metric:

$$\mathrm{SWR} = \frac{1 + |\Gamma|}{1 - |\Gamma|}$$

Where $\Gamma = \frac{Z_{\rm ant} - Z_0}{Z_{\rm ant} + Z_0}$ (reflection coefficient)

Acceptable values: - SWR < 1.5:1 \Box Good match (< 4% power reflected) - SWR = 2:1 \Box Marginal (11% reflected) - SWR > 3:1 \Box Poor (25% reflected, may damage TX)

Measurement: Antenna analyzer, network analyzer, SWR meter

8.3.7 7. Bandwidth

Frequency range where antenna performs adequately.

Criteria: - SWR < 2:1 - Gain variation < 3 dB - Pattern distortion minimal

Narrowband antennas: Dipole (2-5%), loop (1-2%) **Wideband antennas**: Log-periodic (10:1 ratio), biconical (octave), spiral (decade+)

Example: WiFi 2.4 GHz (2.4-2.5 GHz = 4% bandwidth) \square Simple patch works **Example**: UWB radar (3-10 GHz = 107% fractional BW) \square Needs spiral or horn

8.3.8 8. Effective Aperture (A_e)

Equivalent capture area for receiving antennas:

$$A_e = \frac{G\lambda^2}{4\pi}$$

Physical interpretation: Power received = Incident power density \times A_e

$$P_r = S \cdot A_e$$

Example: Dipole (G=2.15 dBi = 1.64 linear) at 1 GHz ($\lambda=0.3$ m):

$$A_e = \frac{1.64 \times (0.3)^2}{4\pi} = 0.0125 \ \mathrm{m}^2$$

Aperture efficiency: $\eta_{\rm ap} = A_e/A_{\rm phys}$ (0.5-0.7 for dishes)

8.4 Antenna Types by Application

8.4.1 1. Communication Antennas

8.4.1.1 Dipole (VHF/UHF)

- · Simple, cheap, omnidirectional
- Use: FM broadcast, amateur radio, WiFi (2.4 GHz diversity antennas)

8.4.1.2 Patch (Microstrip)

- · Flat, low-profile, easy to integrate
- Use: GPS, cellular, WiFi (5 GHz), IoT devices

8.4.1.3 Yagi-Uda

- · Directional, moderate gain
- Use: TV reception, point-to-point links, amateur radio

8.4.1.4 Parabolic Dish

- High gain, narrow beam
- Use: Satellite TV (12 GHz), deep-space comms (Ka-band), radio astronomy

8.4.2 2. Mobile/Wearable Antennas

8.4.2.1 Monopole ($\lambda/4$)

- Requires ground plane (vehicle roof, PCB)
- · Use: Car antennas, handheld radios

8.4.2.2 PIFA (Planar Inverted-F Antenna)

- · Compact, dual-band
- · Use: Smartphones (cellular + WiFi)

8.4.2.3 Loop Antenna

- · Small, magnetic field dominant
- Use: RFID tags, NFC, AM radio (ferrite bar)

8.4.3 3. Phased Arrays

Multiple elements with controllable phase/amplitude:

Advantages: - **Electronic beam steering** (no moving parts) - **Adaptive nulling** (cancel interference) - **MIMO** (spatial multiplexing)

Beam steering:

$$\theta = \sin^{-1}\left(\frac{\phi\lambda}{2\pi d}\right)$$

Where: $-\phi$ = Phase shift between elements -d = Element spacing

Applications: - Radar (military, automotive 77 GHz) - 5G base stations (massive MIMO, 64-256 elements) - [[AID Protocol|AID Protocol]] (THz phased array for coherent combining)

8.5 Friis Transmission Equation

Link budget fundamental (connects antennas to [[Free-Space Path Loss (FSPL)|path loss]]):

$$P_r = P_t + G_t + G_r - L_{\rm FSPL}$$

(in dB)

Or in linear form:

$$P_r = P_t \cdot G_t \cdot G_r \cdot \left(\frac{\lambda}{4\pi d}\right)^2$$

Derivation:

1. TX power P_t radiated isotropically \square Power density at distance d:

$$S_{\rm iso} = \frac{P_t}{4\pi d^2}$$

2. TX antenna gain G_t concentrates power:

$$S = \frac{P_t G_t}{4\pi d^2}$$

3. RX antenna effective aperture $A_e=G_r\lambda^2/4\pi$ captures power:

$$P_r = S \cdot A_e = \frac{P_t G_t}{4\pi d^2} \cdot \frac{G_r \lambda^2}{4\pi}$$

4. Simplify:

$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2$$

Key insight: Antenna gain adds to link budget (in dB), compensating for path loss.

8.6 Antenna Design by Frequency

8.6.1 VLF/LF (< 300 kHz)

Challenge: Wavelength » practical antenna size

Solution: - **Electrically small antennas** (length $\ll \lambda$) - **Low efficiency** (most power lost in ohmic resistance) - **Loading coils** to resonate (match reactance)

Example: 100 kHz (λ = 3000 m), 10 m vertical monopole: - Radiation resistance: ~0.1 Ω - Loss resistance: ~10 Ω - Efficiency: ~1%

8.6.2 HF/VHF (3-300 MHz)

Sweet spot: Antennas are practical size

Common types: - Dipole (λ /2): 50 m @ 3 MHz, 1 m @ 150 MHz - Monopole (λ /4): 25 m @ 3 MHz (vertical tower) - Yagi-Uda: TV reception (VHF channels)

Efficiency: 50-90% (good conductors, minimal loss)

8.6.3 UHF/SHF (300 MHz - 30 GHz)

Miniaturization: Antennas fit on PCBs

Common types: - Patch (microstrip): 3 cm × 3 cm @ 2.4 GHz - Slot: Waveguide-based (radar,

satellite) - Horn: Wideband, calibration standard

Phased arrays become feasible: Element spacing $d \sim \lambda/2$

Example: 10 GHz, $\lambda=3$ cm \square 1.5 cm spacing \square 100 elements in 15 cm imes 15 cm

8.6.4 EHF/THz (30 GHz - 10 THz)

Challenges: - Fabrication tolerance (µm precision required) - Surface roughness losses (skin depth at THz ~ nm) - Impedance matching difficult (high frequencies)

Solutions: - **On-chip antennas** (silicon, III-V semiconductors) - **Photolithography** (THz: <100 µm features) - **Lens-coupled antennas** (match impedance to free space)

Example: 1.875 THz (AID protocol), $\lambda=160~\mu m$: - Dipole: 80 μm (fabricated via e-beam lithography) - Phased array: 40 μm spacing, 1024 elements in 40 mm \times 40 mm

8.7 Antenna Measurements

8.7.1 Anechoic Chamber

Facility for measuring radiation patterns:

- Absorber walls: Eliminate reflections (simulate free space)
- Turntable: Rotate antenna under test (AUT)
- · Reference antenna: Known gain/pattern
- Network analyzer: Measure S₂₁ (transmission) vs angle

Far-field distance: $d > 2D^2/\lambda$ (Fraunhofer region)

Example: 1 m dish @ 10 GHz \square $d>2\times1^2/0.03=67$ m (large chamber!)

8.7.2 Near-Field Scanning

For electrically large antennas (where far-field distance is impractical):

- 1. Scan E/H fields on planar/cylindrical/spherical surface near antenna
- 2. FFT transform to compute far-field pattern
- 3. **Smaller chamber** required (1-2 m)

8.7.3 Gain Measurement (Comparison Method)

- 1. Measure received power with **standard gain horn** (calibrated)
- 2. Replace with antenna under test (AUT)
- 3. Compare powers:

$$G_{\rm AUT} = G_{\rm std} + (P_{\rm AUT} - P_{\rm std})$$

(in dB)

8.8 Practical Design Considerations

8.8.1 1. Matching Network

Goal: Transform antenna impedance to 50Ω

Techniques: - LC network: Series/shunt inductors/capacitors - Quarter-wave transformer: $Z_{\lambda/4} = \sqrt{Z_0 Z_{\rm ant}}$ - Stub matching: Open/short-circuited transmission line stubs

Example: Dipole ($Z=73+j42.5~\Omega$) to 50Ω : - Add series capacitor to cancel reactance (j42.5 Ω) - Use transformer to match 73Ω to 50Ω

8.8.2 2. Balun (Balanced-Unbalanced Transformer)

Problem: Coaxial cable (unbalanced) feeding dipole (balanced)

Common-mode currents on outer shield (pattern distortion)

Solution: Balun isolates antenna from feedline

Types: - Choke balun: Coil of coax (high impedance to common-mode) - Sleeve balun: $\lambda/4$ sleeve over coax - Transformer balun: 1:1 or 4:1 turns ratio (ferrite core)

8.8.3 3. Environmental Effects

8.8.3.1 Ground Plane

- Monopole requires ground plane (acts as mirror image)
- Poor ground (dry soil, concrete)

 Reduced efficiency
- Elevated radials (4-8 wires, λ/4 length) improve performance

8.8.3.2 Nearby Objects

- Metal structures: Detune antenna (shift resonance), reflect energy
- Human body: Lossy dielectric (especially at cellular frequencies)

 Detuning, absorption
- Solution: Antenna placement away from body (smartphones: top/bottom), adaptive matching

8.9 Summary: Key Antenna Formulas

Parameter	Formula	Units
Gain	$G = \eta_{ant} \cdot D$	Linear or dBi
Effective aperture	$A_e = \frac{G\lambda^2}{4\pi}$	m^2
Beamwidth (aperture)	$\theta \approx 70\lambda/D$	Degrees
Directivity (narrow beam)	$D \approx 41253/(\theta_E \theta_H)$	Linear
Friis equation	$P_r = P_t G_t G_r (\overline{\lambda/4\pi d})^2$	Watts
FSPL	L =	dB
	$20\log(d) + 20\log(f) + 92.45$	
Radiation resistance (dipole)	$R_r = 73 \Omega$	Ohms
SWR	$\mathrm{SWR} = (1+ \Gamma)/(1- \Gamma)$	Ratio

8.10 Related Topics

- [Free-Space Path Loss (FSPL)]: Quantifies distance-dependent loss (uses antenna gains)
- [Electromagnetic Spectrum]: Frequency-dependent antenna design
- [Maxwell's Equations & Wave Propagation]: Radiation mechanism
- [Signal-to-Noise Ratio (SNR)]: Antenna gain improves SNR
- [[AID Protocol Case Study]]: THz phased array example (1.875 THz, 40 dB gain)
- Propagation Modes: How antennas couple to environment (TBD)
- Multipath & Fading: Antenna diversity, MIMO (TBD)

Next: Binary Phase-Shift Keying (BPSK) (TBD) - Simplest phase modulation, bridge to [QPSI Modulation]
This wiki is part of the [[Home Chimera Project]] documentation.

9 Atmospheric Effects: Ionospheric & Tropospheric

[[Home]]	RF Prop	agation	[[Propagation	Modes	(Ground	Wave,	Sky	Wave,	Line-of-S	Sight)]]
[[Weather	Effects (R	ain Fade,	Fog Attenuation	on)]]						

Think of the atmosphere as a giant, invisible lens and filter for radio waves.

Imagine you're trying to shine a flashlight across a room: - **On a clear day**, the light travels straight and far - **Through fog**, the light gets scattered and dimmer - **With a curved mirror**, the light bends and can reach around corners

Radio waves behave similarly through Earth's atmosphere:

- 1. The lonosphere (60-400 km up) is like a curved mirror in space
 - · Acts like a reflector for AM radio and shortwave (HF) signals
 - This is why you can hear distant AM radio stations at night—the signal bounces off this invisible mirror!
 - Created by the sun's energy ionizing air molecules
- 2. The Troposphere (0-15 km up, where weather happens) is like fog or water vapor
 - · Bends and absorbs radio waves, especially at high frequencies
 - This is why 5G signals don't travel as far as 4G—they're more easily absorbed by air humidity
 - · Weather (rain, fog) makes this worse

Real-world impact: - **GPS errors**: The ionosphere slows down GPS signals, causing ~10-30 meter errors (your phone corrects for this) - **Satellite TV in rain**: Signal drops out because rain-drops absorb the microwaves - **Shortwave radio at night**: Can receive stations from across the globe because the ionosphere reflects signals back to Earth

The key insight: Different radio frequencies interact with the atmosphere in completely different ways—AM radio bounces off the ionosphere, while 5G gets absorbed by humidity.

9.2 Overview

Earth's atmosphere profoundly affects RF propagation through:

- 1. **Ionosphere** (60-1000 km altitude): **Refracts HF**, enables sky wave
- 2. Troposphere (0-15 km altitude): Absorbs/refracts VHF+, causes ducting

Key distinction: - **Below ~30 MHz**: Ionosphere dominates (enables long-distance HF comms) - **Above ~1 GHz**: Troposphere/weather dominates (absorption, rain fade)

9.3 Ionospheric Effects

9.3.1 Structure of the lonosphere

lonosphere = layers of ionized gas (free electrons and ions created by solar UV/X-rays)

Layer	Altitude	Peak Density (N_e)	Characteristics
D	60-90 km	10 ⁸ -10 ⁹ e ⁻ /m ³	Absorbs MF/HF (daytime only)
E	90-150 km	10¹º-10¹¹ e⁻/m³	Reflects MF, low HF
F1	150-250 km	10 ¹¹ e ⁻ /m ³	Daytime only, merges with
			F2 at night

Layer	Altitude	Peak Density (N_e)	Characteristics
F2	250-400 km	10 ¹¹ -10 ¹² e ⁻ /m ³	Primary HF reflector,
			highest density

Formation: Solar UV photons ionize O_2 , $N_2 \square O_2^+$, N_2^+ , e^-

Recombination: Electrons recombine with ions (faster at lower altitudes due to higher density)

9.3.2 Refractive Index

Plasma refractive index:

$$n = \sqrt{1 - \frac{f_p^2}{f^2}}$$

Where: - f_p = Plasma frequency = $9\sqrt{N_e}$ Hz (N_e in electrons/m³) - f = Signal frequency

Key behaviors:

1. $f \ll f_p$: Wave is **reflected** (HF sky wave) 2. $f \approx f_p$: Wave **refracts** (bends back to Earth)

3. $f\gg f_p$: Wave **penetrates** (VHF+ passes through ionosphere)

Typical f_p **values**: - D-layer: ~1 MHz - E-layer: ~3-5 MHz - F2-layer (day): ~10-15 MHz - F2-layer (night): ~5-10 MHz

Implication: VHF and above (>30 MHz) always penetrate ionosphere [] No skywave, only LOS.

9.3.3 Critical Frequency & Skip Distance

Critical frequency f_c : Maximum frequency reflected at vertical incidence

$$f_c = 9\sqrt{N_{e,\rm max}}$$

At oblique angles, higher frequencies can be reflected:

$$\text{MUF} = \frac{f_c}{\sin(\theta)}$$

Where θ = elevation angle

Example: If $f_c=10$ MHz, and wave launched at 10° elevation:

$${\rm MUF} = \frac{10}{\sin(10^\circ)} = \frac{10}{0.174} = 57~{\rm MHz}$$

(But practical MUF limited by absorption and other factors to ~30 MHz)

9.3.4 Absorption

D-layer absorption (collisional damping):

$$A = K \cdot \frac{N_e \cdot \nu}{f^2} \quad (\mathrm{dB})$$

Where: - ν = Collision frequency (~10 6 Hz in D-layer) - N_e = Electron density - f = Signal frequency

Key insight: **Absorption** □ **1/f²** □ Lower frequencies absorbed more

Impact: - **Daytime**: D-layer absorbs 1-5 MHz (MF/LF severe absorption) - **Nighttime**: D-layer disappears \Box Lower frequencies propagate (AM broadcast skywave)

Typical absorption (HF, daytime): - 3 MHz: 10-20 dB - 7 MHz: 3-6 dB - 14 MHz: 1-2 dB - 28 MHz: <1 dB

9.3.5 Faraday Rotation

Ionosphere is magnetized (Earth's magnetic field):

Effect: Polarization rotates as wave propagates through ionosphere

$$\Omega = \frac{2.36\times 10^4}{f^2} \int N_e B_\parallel \, dl \quad ({\rm radians})$$

Where: - f = Frequency (Hz) - N_e = Electron density (e-/m³) - B_{\parallel} = Magnetic field component along path (Tesla) - Integral over path length

Impact: - **Linear polarized signals** experience rotation (can cause >20 dB loss if RX antenna wrong orientation) - **Circular polarization immune** (GPS, satellite comms use RHCP/LHCP to mitigate)

Example: GPS L1 (1575 MHz) experiences ~10-50° rotation (varies with solar activity, latitude)

9.3.6 Ionospheric Scintillation

Irregularities in ionosphere (plasma turbulence) cause:

- 1. **Amplitude scintillation**: Rapid fading (seconds to minutes)
- 2. **Phase scintillation**: Phase jitter (disrupts carrier tracking)

Causes: - Equatorial plasma bubbles (post-sunset) - Auroral activity (high latitudes) - Solar flares (sudden ionospheric disturbances)

Impact: - GPS errors (meter-level positioning errors) - Satellite comms outages (L-band, 1-2 GHz) - Most severe near magnetic equator and auroral zones

Mitigation: Dual-frequency GPS (L1 + L5) corrects ionospheric delay

9.3.7 Solar Activity Effects

9.3.7.1 Solar Flares X-ray burst ionizes D-layer:

- Sudden Ionospheric Disturbance (SID): HF absorption increases 10-30 dB instantly
- · Duration: Minutes to hours
- Daytime only (needs sunlight)

Result: HF blackout on sunlit side of Earth

9.3.7.2 Geomagnetic Storms Coronal mass ejection (CME) hits Earth:

- · Auroral electrojet: Intense ionization at high latitudes
- lonospheric storm: TEC (total electron content) increases globally
- · Duration: Days

Result: - HF propagation unpredictable - GPS errors increase (10-100m) - Satellite operations affected

9.3.7.3 11-Year Solar Cycle Solar maximum: - Higher ionization (F2 peak density 2-3× higher) - MUF increases (30+ MHz usable for long-distance) - Better long-distance HF

propagation

Solar minimum: - Lower MUF (~15-20 MHz) - 10m band (28 MHz) often "dead" - More reliance on lower HF bands (7, 14 MHz)

Current cycle: Solar Cycle 25 (2019-2030), peak ~2025

9.3.8 Ionospheric Delay

Group delay (signal travels slower than speed of light):

$$\Delta t = \frac{40.3}{cf^2} \int N_e \, dl \quad ({\rm seconds}) \label{eq:deltat}$$

Impact: - GPS ranging errors (10-100m if uncorrected) - Two-frequency correction: Measure delay at L1 and L5, compute ionospheric TEC

TEC (Total Electron Content):

$${\rm TEC} = \int N_e \, dl \quad ({\rm electrons/m}^2)$$

Typical values: - Nighttime: 10^{16} e⁻/m² - Daytime: 10^{17} e⁻/m² - Solar max: 10^{18} e⁻/m² (equatorial)

9.4 Tropospheric Effects

Troposphere = Lower atmosphere (0-15 km altitude), where weather occurs

Key effects: 1. **Refraction** (bending, ducting) 2. **Absorption** (oxygen, water vapor) 3. **Scattering** (rain, turbulence)

9.4.1 Atmospheric Refraction

Refractive index depends on temperature, pressure, humidity:

$$n = 1 + N \times 10^{-6}$$

Where **refractivity** N:

$$N = 77.6 \frac{P}{T} + 3.73 \times 10^5 \frac{e}{T^2}$$

- P = Pressure (hPa)
- T = Temperature (K)
- e = Water vapor partial pressure (hPa)

Typical values: - Sea level: $N\approx 300-400$ [$n\approx 1.0003$ - 10 km altitude: $N\approx 100$ [$n\approx 1.0001$

9.4.2 Ray Bending

Gradient in ${\cal N}$ bends rays downward:

Standard atmosphere: $dN/dh \approx -40$ N-units/km

Effect: Radio horizon extended beyond geometric horizon

4/3 Earth radius model:

$$d_{\rm radio} = 1.33 \times d_{\rm geometric}$$

Example: Geometric horizon for 30m antenna = 20 km \square Radio horizon = 26 km

9.4.3 Tropospheric Ducting

Temperature inversion (warm air over cool) creates refractive layer:

Super-refraction: Wave bends more than normal \square Trapped in duct

Effect: VHF/UHF signals propagate 500-2000 km (far beyond normal LOS)

Conditions: - Coastal regions (cool ocean, warm land) - High-pressure systems (stable, clear weather) - Nighttime (radiative cooling)

Impact: - FM/TV interference from distant stations - Cellular network interference (distant cells suddenly visible) - Opportunistic long-range VHF communications

Duct height: Typically 10-100m (depends on inversion strength)

9.4.4 Atmospheric Absorption

Gases absorb RF energy:

- 1. Oxygen (O₂): Peak at 60 GHz, secondary at 118 GHz
- 2. Water vapor (H₂O): Peaks at 22.2 GHz, 183 GHz, 325 GHz, plus continuum absorption

9.4.4.1 Oxygen Absorption 60 GHz resonance:

$$\alpha_{O_2} \approx 15 \ \mathrm{dB/km}$$
 (at sea level, 60 GHz)

Frequency dependence (0-100 GHz):

Frequency	Attenuation (dB/km)
10 GHz	0.01
30 GHz	0.05

Frequency	Attenuation (dB/km)
50 GHz	0.3
60 GHz	15 (peak)
70 GHz	1
100 GHz	0.5

Application: 60 GHz used for secure short-range comms (signals don't propagate far)

9.4.4.2 Water Vapor Absorption 22.2 GHz resonance:

$$\alpha_{H_2O} = k \cdot \rho \quad (\text{dB/km})$$

Where: - ρ = Water vapor density (g/m³) - k = Frequency-dependent coefficient

Typical humidity (7.5 g/m³ at sea level, temperate):

Frequency	Attenuation (dB/km)
10 GHz	0.01
22.2 GHz	0.2 (peak)
30 GHz	0.08
50 GHz	0.15
100 GHz	1.0
300 GHz	10+ (THz region)

Implication: **THz communications limited to indoor/short-range** (water vapor + rain = severe attenuation)

9.4.5 Atmospheric Windows

Frequency ranges with low absorption (clear air):

Window	Frequency	Attenuation	Use
HF	3-30 MHz	Negligible	Skywave comms
VHF/UHF	30-3000 MHz	< 0.01 dB/km	Broadcast, cellular
L/S-band	1-4 GHz	< 0.01 dB/km	GPS, mobile satellite
C-band	4-8 GHz	0.01 dB/km	Satellite (robust)

Window	Frequency	Attenuation	Use
X/Ku-band	8-18 GHz	0.05-0.5 dB/km	Satellite, radar
Ka-band	26.5-40 GHz	0.1-0.3 dB/km	High-rate satellite
V/W-band	40-100 GHz	0.3-15 dB/km	Point-to- point (watch 60 GHz!)

Avoid: 22 GHz (H₂O), 60 GHz (O₂), 183 GHz (H₂O)

9.4.6 Tropospheric Scintillation

Turbulence in troposphere causes refractive index fluctuations:

Effect: Amplitude/phase scintillation (similar to ionospheric, but different mechanism)

Severity: Increases with: - Frequency (> 10 GHz) - Low elevation angles (longer path through troposphere) - Daytime (convective turbulence)

Impact: - Satellite links > 20 GHz: 1-3 dB peak-to-peak fading - Typically slower than rain fade (seconds to minutes)

Mitigation: Less critical than rain fade (lower magnitude)

9.5 Path Loss Models with Atmospheric Effects

9.5.1 Satellite Link Budget (with Atmosphere)

Total path loss:

$$L_{\rm total} = L_{\rm FS} + L_{\rm atm} + L_{\rm rain} + L_{\rm scint}$$

Where: - $L_{\rm FS}$ = Free-space path loss (see [Free-Space Path Loss (FSPL)]) - $L_{\rm atm}$ = Clear-air atmospheric absorption (O₂, H₂O) - $L_{\rm rain}$ = Rain attenuation (see [[Weather Effects (Rain Fade, Fog Attenuation)]]) - $L_{\rm scint}$ = Tropospheric scintillation (margin for fading)

9.5.1.1 Example: Ku-Band Satellite (12 GHz) Path: GEO (36,000 km), 30° elevation **Free-space loss**:

$$L_{\rm FS} = 20 \log(36000 \times 10^3) + 20 \log(12 \times 10^9) + 92.45 = 205.5 \ {\rm dB}$$

Clear-air atmospheric (O₂ + H₂O, zenith):

$$L_{
m atm} pprox 0.3 \,
m dB$$

At 30° elevation (longer slant path):

$$L_{\rm atm} = 0.3/\sin(30^\circ) = 0.6~{\rm dB}$$

Rain fade (99.9% availability, temperate):

$$L_{\mathrm{rain}}=3~\mathrm{dB}~$$
 (see weather effects page)

Scintillation margin:

$$L_{\rm scint} = 1~{\rm dB}$$

Total:

$$L_{\rm total} = 205.5 + 0.6 + 3 + 1 = 210.1~{\rm dB}$$

9.5.1.2 Example: Ka-Band (30 GHz) Same geometry:

$$L_{\rm FS} = 20 \log(36000 \times 10^3) + 20 \log(30 \times 10^9) + 92.45 = 213.5 \ {\rm dB}$$

Clear-air atmospheric:

$$L_{\rm atm} = 0.8/\sin(30^{\circ}) = 1.6~{\rm dB}$$

Rain fade (99.9%, temperate):

$$L_{\rm rain}=13~{
m dB}$$

Scintillation:

$$L_{\mathrm{scint}}=2\,\mathrm{dB}$$

Total:

$$L_{\rm total} = 213.5 + 1.6 + 13 + 2 = 230.1~{\rm dB}$$

Comparison: Ka-band suffers 20 dB more loss than Ku-band (mostly rain!)

9.6 Practical Considerations

9.6.1 Elevation Angle Matters

Low elevation (< 10°): - Longer path through troposphere - More atmospheric absorption - Worse rain fade (factor of 2-3× vs 30° elevation) - Higher scintillation

Design guideline: Avoid elevations < 10° if possible (especially for Ka-band+)

9.6.2 Frequency Selection Trade-offs

Band	FSPL	Atmospheric	Rain	Antenna Size	Bandwidth
C (4-8 GHz)	Low	Very low	Very low	Large	Moderate
Ku (12-18 GHz)	Moderate	Low	Moderate	Moderate	Good
Ka (26.5-40 GHz)	High	Moderate	High	Small	Excellent
V (40-75 GHz)	Very high	High	Very high	Very small	Huge

Tropical regions: C-band preferred (rain-robust, 99.99% availability achievable) **Temperate regions**: Ku-band good compromise (rain manageable with margins) **Ka-band**: Requires ACM, site diversity, or large margins

9.6.3 Time-of-Day Effects

lonosphere (HF): - **Daytime**: Higher MUF, D-layer absorption - **Nighttime**: Lower MUF, no D-layer, skywave active

Troposphere (VHF+): - **Daytime**: More turbulence (scintillation), convective clouds (rain) - **Night-time**: Calmer, potential ducting (temperature inversions)

GPS errors: - **Noon**: Peak TEC, highest ionospheric delay (~10-30m error) - **Midnight**: Minimum TEC, lower error (~5-10m)

9.7 Regional Variations

9.7.1 Equatorial Regions

lonosphere: - High TEC (10^{18} e⁻/m²) - Plasma bubbles (scintillation) - GPS errors $2-3\times$ worse than mid-latitudes

Troposphere: - High humidity (water vapor absorption) - Intense rain (42-95 mm/hr)

Recommendation: C-band for satellite, robust GPS receivers

9.7.2 High Latitudes

Ionosphere: - Auroral activity (scintillation, blackouts) - Solar proton events (polar cap absorption)

Troposphere: - Low humidity (less absorption) - Moderate rain

Recommendation: HF comms challenging during storms, but low rain fade

9.7.3 Temperate Mid-Latitudes

Ionosphere: - Moderate TEC - Stable conditions (less scintillation)

Troposphere: - Seasonal variations (summer rain, winter ducting) - Moderate humidity

Recommendation: Best overall conditions for satellite/terrestrial

9.8 Summary Table: Atmospheric Effects by Frequency

Frequency	Ionosphere	Troposphere	Dominant Effect
LF/MF	Absorbed by D-layer (day), reflected (night)	Negligible	Ionospheric absorption
HF (3-30 MHz)	Sky wave (F2 reflection)	Negligible	Ionospheric refraction
VHF (30-300 MHz)	Penetrates (no reflection)	Refraction, ducting	Tropospheric refraction
UHF (300-3000 MHz)	Faraday rotation, delay	Minimal absorption	Ionospheric delay (GPS)
L/S (1-4 GHz)	TEC delay (GPS error)	< 0.01 dB/km	Ionospheric scintillation
C (4-8 GHz)	Negligible	0.01 dB/km	Rain fade (minor)
Ku (12-18 GHz)	Negligible	0.05 dB/km	Rain fade (moderate)
Ka (26.5-40 GHz)	Negligible	0.1-0.3 dB/km	Rain fade (severe)
V (40-75 GHz)	Negligible	0.3-15 dB/km (60 GHz peak)	O ₂ absorption, rain
W (75-110 GHz)	Negligible	1-5 dB/km	H₂O absorption, rain
THz (>300 GHz)	Negligible	10-100+ dB/km	H ₂ O absorption (severe)

9.9 Related Topics

- [[Propagation Modes (Ground Wave, Sky Wave, Line-of-Sight)]]: How ionosphere enables HF skywave
- [[Weather Effects (Rain Fade, Fog Attenuation)]]: Rain dominates at high frequencies
- [Free-Space Path Loss (FSPL)]: Baseline loss before atmospheric effects
- [Signal-to-Noise Ratio (SNR)]: Atmospheric loss reduces SNR

[[Home]] | Digital Modulation | [QPSK Modulation] | [IQ Representation]

• [Electromagnetic Spectrum]: Frequency-dependent atmospheric behavior

L-b a	and (delay, scintillat	here enables HF long-distance (refraction), but ion). Troposphere absorbs high frequencies (ninates above 10 GHz (rain fade). Choose frequen	O₂ @ 60 GHz, H₂O @ 22
This	wiki is part of the [[i	Home Chimera Project]] documentation.	
10	Baseband vs	s Passband Signals	

Baseband vs passband is like the difference between sheet music (the notes you play) and the actual sound coming out of a trumpet (shifted to a specific pitch range).

Baseband = The raw information: - Your data, voice, video in its original form - Frequency near 0 Hz (DC) - Like: Microphone output (20 Hz - 20 kHz) - Example: MP3 file on your computer

Passband = Information shifted to radio frequency: - Same information, but "moved" to carrier frequency - Frequency at ~MHz/GHz (radio waves) - Like: FM radio station at 101.5 MHz - Example: WiFi signal at 2.4 GHz carrying your data

Musical analogy: - **Baseband**: Musical melody (the pattern of notes) - **Passband**: Same melody played on a flute (high pitch) vs tuba (low pitch) - The melody (information) is identical, just at different frequency ranges!

Why we need BOTH:

Baseband is better for: - Processing (computers work in baseband) - Storage (files are baseband) - Display (audio speakers output baseband) - Development (easier to analyze/test)

Passband is better for: - Radio transmission (antennas need high frequency) - Multiple channels (FM 88.1, 88.3, 88.5 don't interfere) - Long distance (higher frequency = better propagation) - Regulation (FCC assigns frequency bands)

Real examples:

Your phone call journey: 1. Your voice: Baseband (20 Hz - 3.4 kHz) 2. Cell phone transmitter: Shifts to passband (e.g., 1.9 GHz) 3. Over the air: Passband signal travels to tower 4. Tower receiver: Shifts back down to baseband 5. Phone network: Processes in baseband 6. Recipient's phone: Shifts to passband again (transmit) 7. Recipient's speaker: Back to baseband (audio)

WiFi example: - **Your laptop**: Creates baseband IQ data (MHz range) - **WiFi chip**: Shifts baseband up to 2.4 GHz or 5 GHz (passband) - **Transmit antenna**: Radiates passband signal - **Router antenna**: Receives passband signal

- Router WiFi chip: Shifts back down to baseband - Router processes: Baseband Ethernet data

The frequency shift process = "modulation": - **Upconversion**: Baseband □ Passband (multiply by carrier) - **Downconversion**: Passband □ Baseband (multiply by carrier again) - Same information, just at different frequencies!

Why antennas need passband: - Efficient antenna size $\approx \lambda/2$ (half wavelength) - Audio (baseband): 20 Hz \Box λ = 15,000 km \Box antenna = 7,500 km! \Box - WiFi (passband): 2.4 GHz \Box λ = 12.5 cm \Box antenna = 6 cm \Box

Fun fact: Software Defined Radio (SDR) works by keeping signals in baseband as long as possible—only converting to passband at the last moment. This is why your phone's "radio" is mostly software running on baseband signals!

10.2 Overview

Baseband signal: Information signal at original frequency range (near DC, ~0 Hz)

Passband signal: Information signal shifted to carrier frequency f_c (RF)

Why we need both: - **Baseband**: Digital signal processing, modulation/demodulation, algorithm development - **Passband**: Radio transmission (antennas need RF, spectrum allocation, propagation)

Key operation:	Upconversion	(baseband [passband) and	downconversion	(passband []
baseband)					

10.3 Baseband Signal

Definition: Signal with frequency content centered **around DC (0 Hz)**

Spectrum: Extends from \sim 0 Hz to B Hz (bandwidth)

10.3.1 Examples

Digital baseband: - NRZ (Non-Return-to-Zero): Rectangular pulses, ±1 - Manchester encoding: Phase transitions - Pulse-shaped symbols: Raised cosine, RRC

Analog baseband: - Voice: 300-3400 Hz - Audio: 20 Hz - 20 kHz - Video: DC - 6 MHz (NTSC)

10.3.2 Complex Baseband Representation

For bandpass systems, represent signal as complex envelope:

$$s(t) = s_I(t) + js_O(t)$$

Where: - $s_I(t)$ = In-phase component - $s_Q(t)$ = Quadrature component

Advantages: - Simplifies DSP (single complex signal vs two real signals) - Natural representation for IQ modulation - Halves sampling rate requirement (no negative frequencies)

See: [IQ Representation]

10.3.3 Baseband Bandwidth

Occupied bandwidth depends on symbol rate R_s and pulse shaping:

Ideal rectangular pulses:

$$B=R_s \quad ({\rm Hz})$$

Raised cosine pulse shaping (roll-off α):

$$B=R_s(1+\alpha) \quad ({\rm Hz})$$

Example: QPSK @ 1 Msps, $\alpha = 0.35$ - Bandwidth: $1 \times (1 + 0.35) = 1.35$ MHz (baseband)

10.4 Passband Signal

Definition: Signal with frequency content centered around carrier f_{c}

Spectrum: Extends from $f_c-B/2$ to $f_c+B/2$

10.4.1 Why Passband?

- 1. **Antenna efficiency**: Antenna size ~ λ/4, need high frequency for practical size
 - 100 Hz baseband: λ = 3000 km □ 750 km antenna (infeasible!)
 - 2.4 GHz RF: λ = 12.5 cm \square 3 cm antenna (WiFi)
- 2. **Spectrum allocation**: Different services assigned different frequency bands (AM 540-1600 kHz, FM 88-108 MHz, WiFi 2.4/5 GHz)
- 3. **Propagation characteristics**: HF skips ionosphere, VHF line-of-sight, UHF penetrates buildings
- 4. Multiplexing: Multiple baseband signals upconverted to different carriers (FDM)

10.4.2 Passband Representation

Real passband signal from complex baseband:

$$s_{\rm RF}(t) = \operatorname{Re}\{s(t)e^{j2\pi f_c t}\}$$

$$=s_I(t)\cos(2\pi f_c t)-s_Q(t)\sin(2\pi f_c t)$$

Interpretation: **IQ modulation** - I channel modulates cosine (0° phase) - Q channel modulates sine (90° phase)

$$\begin{array}{ll} \textbf{Example} \colon \operatorname{QPSK} \text{-} s(t) = A e^{j\phi} \text{ where } \phi \in \{45^\circ, 135^\circ, 225^\circ, 315^\circ\} \text{-} s_I(t) = A \cos\phi, \\ s_Q(t) = A \sin\phi \text{-} s_{\mathrm{RF}}(t) = A \cos\phi \cos(2\pi f_c t) - A \sin\phi \sin(2\pi f_c t) = A \cos(2\pi f_c t + \phi) \end{array}$$

10.5 Upconversion (Modulation)

Process: Shift baseband signal to carrier frequency

10.5.1 IQ Modulator (Quadrature Modulator)

Block diagram:

Output:

$$s_{\mathrm{RF}}(t) = s_I(t) \cos(2\pi f_c t) - s_Q(t) \sin(2\pi f_c t)$$

10.5.2 Single-Sideband (SSB) Upconversion

Complex multiplication:

$$s_{\rm RF}(t) = \operatorname{Re}\{s(t)e^{j2\pi f_c t}\}$$

In frequency domain:

$$S_{\rm RF}(f) = \frac{1}{2}[S(f-f_c) + S^*(-f-f_c)]$$

Result: Positive frequencies shifted to f_c , negative frequencies to $-f_c$ (conjugate)

Since s(t) real RF signal: Spectrum symmetric around 0, so both sidebands present

10.5.3 Image Rejection

Problem: Real mixer produces both $f_c + f_{\rm BB}$ and $f_c - f_{\rm BB}$ (USB and LSB)

IQ modulator advantage: Can select one sideband by controlling I/Q phase - USB only: I/Q phase = $+90^{\circ}$ - LSB only: I/Q phase = -90° - DSB: I only (Q = 0)

10.5.4 Example: WiFi 2.4 GHz

Baseband: - Symbol rate: 20 Msps (20 MHz OFDM) - Complex baseband: -10 MHz to +10 MHz

Upconversion: - Carrier: 2.412 GHz (channel 1) - RF spectrum: 2.402-2.422 GHz (20 MHz)

Transmit chain: 1. Generate OFDM baseband (I/Q symbols) 2. DAC @ 40 Msps (2× oversampling)

3. IQ modulator @ 2.412 GHz 4. PA [] antenna

10.6 Downconversion (Demodulation)

Process: Shift RF signal back to baseband

10.6.1 IQ Demodulator (Quadrature Demodulator)

Block diagram:

I channel:

$$s_I(t) = \mathrm{LPF}\{s_{\mathrm{RF}}(t)\cos(2\pi f_c t)\}$$

Q channel:

$$s_Q(t) = \mathrm{LPF}\{s_{\mathrm{RF}}(t) \cdot [-\sin(2\pi f_c t)]\}$$

10.6.2 Mathematical Derivation

Input:

$$s_{\mathrm{RF}}(t) = s_I^{\mathrm{TX}}(t) \cos(2\pi f_c t) - s_Q^{\mathrm{TX}}(t) \sin(2\pi f_c t)$$

I channel after mixing:

$$s_I^{\mathrm{mix}}(t) = \left[s_I^{\mathrm{TX}} \cos(2\pi f_c t) - s_Q^{\mathrm{TX}} \sin(2\pi f_c t) \right] \cos(2\pi f_c t)$$

$$= s_I^{\rm TX} \cos^2(2\pi f_c t) - s_Q^{\rm TX} \sin(2\pi f_c t) \cos(2\pi f_c t)$$

Using trig identities: - $\cos^2 \theta = \frac{1+\cos(2\theta)}{2}$ - $\sin \theta \cos \theta = \frac{\sin(2\theta)}{2}$

$$s_I^{\mathrm{mix}}(t) = s_I^{\mathrm{TX}} \frac{1 + \cos(4\pi f_c t)}{2} - s_Q^{\mathrm{TX}} \frac{\sin(4\pi f_c t)}{2}$$

After LPF (removes $2f_c$ terms):

$$s_I(t) = \frac{1}{2} s_I^{\rm TX}(t)$$

Similarly for Q channel:

$$s_Q(t) = \frac{1}{2} s_Q^{\rm TX}(t)$$

Recovered baseband (with 1/2 amplitude, easily corrected):

$$s(t) = s_I(t) + j s_Q(t) = \frac{1}{2} [s_I^{\mathrm{TX}}(t) + j s_Q^{\mathrm{TX}}(t)]$$

10.6.3 Image Frequency

Problem: Mixer sensitive to both f_c+f and f_c-f

Image frequency: $f_{\rm image} = 2 f_c - f_{\rm desired}$

Example: Desired signal @ 2.45 GHz, LO @ 2.4 GHz - Downconverted to: 2.45 - 2.4 = 50 MHz - Image @ 2.4 - 0.05 = 2.35 GHz also downconverts to 50 MHz!

Mitigation: - **Image-reject filter** before mixer (RF bandpass filter) - **IQ demodulator** (natural image rejection if I/Q balanced) - **Superheterodyne** (multiple conversion stages with filtering)

10.7 Superheterodyne Receiver

Classic architecture: RF

IF

Baseband

Stages: 1. **RF stage**: LNA, RF bandpass filter 2. **First mixer**: RF □ IF (intermediate frequency, e.g., 10.7 MHz for FM radio) 3. **IF stage**: IF filter (high selectivity), IF amplifier 4. **Second mixer**: IF □ Baseband (or direct demodulation at IF)

Advantages: - **Image rejection**: IF filter very selective - **Fixed IF**: Optimized filters regardless of RF tuning - **Gain distribution**: Spread gain across stages (avoid instability)

Example: FM radio receiver - RF: 88-108 MHz (tunable) - LO: 98.7-118.7 MHz (tracks RF + 10.7 MHz) - IF: 10.7 MHz (fixed) - Crystal filter @ IF: 150 kHz bandwidth (adjacent channel rejection)

10.8 Zero-IF (Direct Conversion) Receiver

Modern SDR approach: RF

Baseband (no IF)

Advantages: - Fewer components (no IF filters, single LO) - Compact, low power (mobile devices) - Flexible (software-defined bandwidth)

Challenges: - DC offset: LO leakage self-mixes to DC (corrupts baseband) - Flicker noise: 1/f noise near DC - I/Q imbalance: Gain/phase mismatch between I/Q paths

Mitigation: - AC coupling (removes DC) - High-pass filtering (kills flicker noise) - Digital calibration (I/Q imbalance correction)

10.9 Sampling Considerations

10.9.1 Nyquist for Passband Signals

Real passband signal $s_{\rm RF}(t)$ centered at f_c , bandwidth B:

Bandpass sampling theorem: Can sample at $f_s < 2 f_c \ \mbox{if:}$

$$f_s \ge 2B$$

Condition: $f_c = n \frac{f_s}{4}$ (integer n) for easy downconversion

Example: WiFi @ 2.4 GHz, 20 MHz BW - Minimum $f_s=2\times20=40$ MHz (bandpass sampling) - Typical f_s = 80-100 MHz (allows filtering roll-off)

10.9.2 Complex Baseband Sampling

Complex baseband $s(t) = s_I(t) + j s_Q(t)$:

Sampling rate:

$$f_{\rm s} \geq B \ \ ({\rm Hz})$$

Why lower? Negative frequencies meaningful (complex signal asymmetric)

Example: QPSK @ 1 MHz baseband bandwidth - Real passband @ 2.4 GHz: Need $f_s \geq 2$ MHz (bandpass sampling) - Complex baseband: Need $f_s \geq 1$ MHz (but typically 2× for pulse shaping)

10.10 Practical Impairments

10.10.1 1. Carrier Frequency Offset (CFO)

TX and RX oscillators not perfectly matched:

$$\Delta f = f_{\rm TX} - f_{\rm BX}$$

Effect on baseband:

$$s_{\rm RX}(t) = s(t) e^{j2\pi\Delta f t}$$

Consequence: Constellation rotates over time

Typical: ±10 ppm (parts per million) - @ 2.4 GHz: ±24 kHz offset - @ 28 GHz (5G mmWave): ±280 kHz offset

Mitigation: Frequency synchronization (see [Synchronization])

10.10.2 2. Phase Noise

Oscillator jitter causes random phase variations:

$$s_{\rm RF}(t) = s_I(t) \cos(2\pi f_c t + \phi_n(t))$$

Where $\phi_n(t)$ = Random phase noise process

Effect: Constellation spreading, ICI (inter-carrier interference in OFDM)

Spec: $\mathcal{L}(f_m)$ (phase noise PSD at offset f_m from carrier, dBc/Hz)

Example: Good TCXO @ 10 kHz offset - Phase noise: -110 dBc/Hz - Integrated phase error: ~1° RMS (acceptable for QPSK)

10.10.3 3. I/Q Imbalance

Gain mismatch: $G_I \neq G_Q$

Phase mismatch: 90° shifter imperfect (e.g., 88° or 92°) **Effect**: Image sideband leakage, constellation distortion

Model:

$$s_{\rm imb}(t) = G_I s_I(t) + G_Q e^{j(\pi/2+\epsilon)} s_Q(t)$$

Typical: ±0.5 dB gain, ±2° phase (good hardware)

Mitigation: Digital pre-distortion, calibration using known pilots

-

10.10.4 4. LO Leakage (DC Offset)

TX LO leaks into RF path

Self-mixing at RX

DC component

Effect: DC spike in baseband spectrum

Mitigation: - AC coupling (blocks DC) - Blank center subcarrier (OFDM) - Digital DC offset esti-

mation/cancellation

10.11 Spectral Efficiency Comparison

Architecture Bandwidth Used Spectral Efficiency Example			
Baseband (DSE	3) $2B$ (USB + LSB)	N/A (not RF)	Ethernet
SSB (analog)	B	1×	HAM radio
DSB-SC	2B	0.5×	AM radio (suppressed carrier)
VSB	1.25B	0.8×	Analog TV
IQ modulation	B	1×	QPSK, QAM (most digital)

10.12 Summary Table

Aspect	Baseband	Passband
Frequency range	~0 to B Hz	$f_c - B/2$ to $f_c + B/2$
Signal type	Complex or real	Real only
Sampling rate	$\geq B$ (complex) or $\geq 2B$ (real)	$\geq 2B$ (bandpass)
Processing	Digital (DSP)	Analog (RF) or digital (SDR)
Transmission	Wired (Ethernet)	Wireless (antenna)
Representation	$s(t) = s_I + j s_Q$	$s_{\mathrm{RF}} = s_I \cos \omega t - s_Q \sin \omega t$

10.13 Related Topics

- [IQ Representation]: Complex baseband I/Q signals
- [QPSK Modulation]: Example of IQ modulation
- [Constellation Diagrams]: Visualizing baseband IQ symbols
- [Synchronization]: Carrier frequency/phase recovery
- [OFDM & Multicarrier Modulation]: Uses IQ modulation per subcarrier
- [Free-Space Path Loss (FSPL)]: Why we need RF (antenna efficiency)

Key takeaway: **Baseband = information at low frequency, passband = shifted to RF carrier.** IQ modulation (quadrature upconversion) shifts complex baseband to RF without image. Downconversion reverses process. Complex baseband simplifies DSP, halves sample rate. Passband required for wireless (antenna, propagation, spectrum). Practical impairments: CFO, phase noise, I/Q imbalance, LO leakage. Superheterodyne = RF□ BB (classic), zero-IF = RF□ BB (modern SDR).

This wiki is part of the [[Home|Chimera Project]] documentation.

11 Binary Phase-Shift Keying (BPSK)

[[Home]] | **Modulation** | [On-Off Keying (OOK)] | [Frequency-Shift Keying (FSK)] | [QPSK Modulation]

11.1 For Non-Technical Readers

BPSK is like Morse code with a twist—instead of on/off, you flip the wave upside-down to send 1s and 0s.

Simple idea: - Bit 0 = wave pointing "up" □ - Bit 1 = wave pointing "down" □ (flipped 180°)

Real use: GPS satellites use BPSK! Your phone detects whether the signal is normal or flipped.

Why flip instead of on/off? More reliable in noise, works with constant power, less interference. Trade-off: Simple but slow (1 bit per symbol).

11.2 Overview

Binary Phase-Shift Keying (BPSK) is the simplest form of **phase modulation**, where binary data is encoded by **shifting the carrier phase** between two states: 0° and 180°.

Key advantage over [[On-Off Keying (OOK)|OOK]] and [[Frequency-Shift Keying (FSK)|FSK]]: BPSK uses coherent detection and provides 3 dB better performance (lower BER for same SNR).

Foundation for: [QPSK Modulation] (4 phases), 8PSK (8 phases), and higher-order modulation.

11.3 Mathematical Description

11.3.1 Time-Domain Signal

BPSK waveform:

$$s(t) = A\cos(2\pi f_c t + \phi_n)$$

Where: - A = Carrier amplitude - f_c = Carrier frequency - $\phi_n \in \{0^\circ, 180^\circ\}$ = Phase for bit n Phase encoding:

$$\phi_n = \begin{cases} 0^{\circ} & \text{if bit = 0} \\ 180^{\circ} & \text{if bit = 1} \end{cases}$$

Alternative representation (using cosine identity):

$$s(t) = A \cdot d_n \cdot \cos(2\pi f_c t)$$

Where: - $d_n \in \{+1,-1\}$ = Bipolar data symbol - Bit 0 \square $d_n = +1$ \square 0° phase - Bit 1 \square $d_n = -1$ \square 180° phase (inverted carrier)

Key insight: BPSK is amplitude modulation with bipolar data (carrier polarity flips).

11.4 [IQ Representation]

Baseband complex representation:

$$s(t) = \operatorname{Re}\{A \cdot d_n \cdot e^{j2\pi f_c t}\}$$

IQ components: - I (In-phase): $I_n=A\cdot d_n$ (either +A or -A) - Q (Quadrature): $Q_n=0$ (BPSK uses only I axis)

[[Constellation Diagrams|Constellation]]:

Two constellation points:
- Bit 0: (+A, 0) → 0° phase
- Bit 1: (-A, 0) → 180° phase

Distance between symbols: d=2A

11.5 Modulation & Demodulation

11.5.1 Transmitter (Modulator)

Block diagram:

| |

Binary data
$$\rightarrow$$
 Bipolar NRZ \rightarrow [x] \rightarrow Bandpass \rightarrow BPSK signal {0, 1} {+1, -1} | filter | $\cos(2 f_c t)$ (Carrier)

Steps: 1. NRZ encoding: Map bits to symbols - Bit 0 \Box $d_n=+1$ - Bit 1 \Box $d_n=-1$ 2. Multiply by carrier: $s(t)=Ad_n\cos(2\pi f_c t)$ 3. Pulse shaping: Apply raised-cosine filter (limit bandwidth, prevent ISI)

11.5.2 Receiver (Coherent Detector)

Block diagram:

BPSK signal
$$\rightarrow$$
 [x] \rightarrow Lowpass \rightarrow Sample \rightarrow Threshold \rightarrow Binary data $|$ filter at T_s (> 0?) {0, 1} $|$ cos(2 f_c t +) (Local oscillator, must be phase-locked!)

Steps: 1. **Multiply by local carrier** (same frequency and phase as TX):

$$r(t) = s(t) \cdot 2\cos(2\pi f_c t)$$

2. **Product**:

$$r(t) = Ad_n \cos(2\pi f_c t) \cdot 2\cos(2\pi f_c t)$$

3. Trig identity: $\cos(x)\cos(x) = \frac{1}{2}[1 + \cos(2x)]$

$$r(t) = Ad_n[1 + \cos(4\pi f_c t)]$$

4. Lowpass filter removes $2f_c$ term:

$$r(t) = Ad_n$$

- 5. Sample at bit period: $y_n = Ad_n + n(t)$
- 6. Threshold decision:

$$\hat{d}_n = \begin{cases} +1 & \text{if } y_n > 0 \quad \text{(bit } 0) \\ -1 & \text{if } y_n < 0 \quad \text{(bit } 1) \end{cases}$$

Critical requirement: Phase synchronization (carrier recovery circuit needed)

11.6 Carrier Recovery

Problem: Receiver must generate local oscillator exactly in phase with TX carrier.

Phase offset ϕ_e causes errors:

$$r(t) = Ad_n \cos(\phi_e)$$

If $\phi_e=90^\circ\!\!: r(t)=0$ (complete signal loss!)

11.6.1 Solutions

11.6.1.1 1. Pilot Tone

- TX sends unmodulated carrier alongside data
- RX phase-locks to pilot
- · Overhead: Wastes power/bandwidth

11.6.1.2 2. Costas Loop

- PLL-based carrier recovery from modulated signal
- Multiplies signal by $\sin(2\pi f_c t)$ and $\cos(2\pi f_c t)$
- Adjusts phase until Q-channel (sine branch) = 0
- · Advantage: No pilot needed

11.6.1.3 3. Squaring Loop

- Square BPSK signal: $(d_n\cos(\theta))^2 = \frac{1}{2}d_n^2[1+\cos(2\theta)]$
- Since $d_n^2=1$: Doubled-frequency carrier emerges PLL locks to $2f_c$, then divide by 2
- · Advantage: Removes data modulation
- Disadvantage: 180° phase ambiguity (need differential encoding)

11.6.2 Differential BPSK (DBPSK)

Solution to phase ambiguity: Encode data in phase transitions, not absolute phase.

Encoding:

$$\phi_n = \phi_{n-1} + \Delta \phi_n$$

Where: - Bit 0 \square No phase change ($\Delta\phi=0^\circ$) - Bit 1 \square Phase change ($\Delta\phi=180^\circ$)

Decoding: Compare consecutive symbols:

$$\hat{b}_n = \begin{cases} 0 & \text{if } \operatorname{sgn}(y_n) = \operatorname{sgn}(y_{n-1}) \\ 1 & \text{if } \operatorname{sgn}(y_n) \neq \operatorname{sgn}(y_{n-1}) \end{cases}$$

Advantage: No carrier recovery needed (differential detection) **Disadvantage**: ~3 dB worse than coherent BPSK (errors propagate)

11.7 Bit Error Rate (BER) Performance

11.7.1 Coherent BPSK (Ideal)

In AWGN channel:

$$\mathrm{BER} = Q\left(\sqrt{\frac{2E_b}{N_0}}\right) = \frac{1}{2}\mathrm{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$$

Where: - E_b = Energy per bit = $\frac{A^2T_b}{2}$ - N_0 = Noise power spectral density - Q(x) = Tail probability of Gaussian: $Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^\infty e^{-t^2/2}dt$

Key values:

122

11.7.2 Comparison: BPSK vs OOK

At same E_b/N_0 :

$$\label{eq:modulation} \text{Modulation} \quad \text{BER @ 10 dB } E_b/N_0$$

[[On-Off Keying (OOK) OOK]] (non-coherent)

BPSK (coherent) 3.9×10^{-6}

BPSK is ~1000× better at 10 dB!

Why? 1. BPSK uses both halves of signal space (±A vs OOK's 0/A) 2. Coherent detection (correlates with carrier, optimal) 3. Maximum Euclidean distance between symbols

11.7.3 Differential BPSK (DBPSK)

Slightly worse than coherent BPSK:

$$\mathrm{BER}_{\mathrm{DBPSK}} \approx \frac{1}{2} e^{-E_b/N_0}$$

At 10 dB: BER $\approx 5 \times 10^{-6}$ (~1.3 dB penalty vs coherent)

11.8 Bandwidth Efficiency

Occupied bandwidth (99% power):

$$B \approx \frac{1}{T_b} = R_b$$

Where: - R_b = Bit rate (bps) - T_b = Bit period

With raised-cosine pulse shaping (roll-off α):

$$B = R_b(1 + \alpha)$$

Typical: $\alpha=0.35\,\Box$ $B=1.35R_b$

Spectral efficiency:

$$\eta = rac{R_b}{B} = rac{1}{1+lpha} pprox 0.74 \, \mathrm{bps/Hz}$$

Example: 1 Mbps BPSK with $\alpha=0.35$ requires 1.35 MHz bandwidth.

11.9 Practical Implementations

11.9.1 1. IEEE 802.15.4 (Zigbee, Low-Rate WPAN)

PHY layer (868/915 MHz bands): - **Modulation**: BPSK (optional O-QPSK) - **Chip rate**: 300 kcps (868 MHz), 600 kcps (915 MHz) - **Data rate**: 20 kbps (868), 40 kbps (915) - **Spreading**: DSSS (Direct-Sequence Spread Spectrum)

11.9.2 2. Satellite Telemetry

Deep-space missions (Voyager, Mars rovers): - **Modulation**: BPSK or QPSK - **Coding**: Convolutional + Reed-Solomon (concatenated FEC) - **Data rate**: 10 bps - 10 kbps (extreme distances) - **Why BPSK?**: Maximum power efficiency (every dB counts)

Example: Voyager 1 (24 billion km): - TX power: 23 W - Antenna gain: 48 dBi (dish) - RX antenna: 70 m DSN dish (74 dBi) - Link budget: Barely positive with FEC (BER 10⁻⁵)

11.9.3 3. RFID (Passive Tags)

Backscatter modulation: - Tag reflects/absorbs carrier energy - **Binary encoding**: Reflection = bit 0, absorption = bit 1 - **Effectively BPSK** (from reader's perspective) - **Data rate**: 40-640 kbps (EPC Gen2)

11.10 Advantages of BPSK

- 1. **Best BER performance** for binary modulation (3 dB better than OOK)
- 2. **Constant envelope** (nonlinear amplifiers OK, no AM-PM distortion)
- 3. **Simple constellation** (two points, easy visualization)
- 4. Foundation for higher-order PSK ([[QPSK Modulation|QPSK]], 8PSK)

11.11 Disadvantages of BPSK

- 1. Requires carrier synchronization (Costas loop, squaring loop = complex)
- 2. Differential BPSK (DBPSK) avoids this but has 3 dB penalty
- 3. Low spectral efficiency (1 bit/symbol = 1 bps/Hz max)
- 4. Higher-order modulation (QPSK, 16-QAM) more efficient for high SNR

11.12 Transition to QPSK

BPSK uses one axis (I-axis) with two constellation points.

Natural extension: Use both I and Q axes [[QPSK Modulation|QPSK]]:

BPSK constellation: -A+A

QPSK constellation (4 points):

| +A | / \ ---+--- I | \ / | -A

4 phases: 45°, 135°, 225°, 315°

2 bits per symbol → Double spectral efficiency

QPSK = Two independent BPSK channels (I and Q) in parallel.

See: [QPSK Modulation] for details

11.13 Worked Example: BPSK Link Budget

Scenario: Satellite downlink

Given: - TX power: $P_t=10~\mathrm{W}$ (40 dBm) - TX antenna gain: $G_t=30~\mathrm{dBi}$ - Distance: $d=10~\mathrm{W}$ $36,000~{
m km}$ (GEO) - Frequency: $f=12~{
m GHz}$ (Ku-band) - RX antenna gain: $G_r=40~{
m dBi}$ (1 m dish) - System noise temperature: $T_s=150~{\rm K}$ - Bandwidth: $B=1~{\rm MHz}$ - Required BER: 10^{-6}

11.13.1 Step 1: Calculate FSPL

$$\mathrm{FSPL} = 20 \log(36 \times 10^6) + 20 \log(12 \times 10^9) + 92.45 = 205.5 \ \mathrm{dB}$$

11.13.2 Step 2: Received Power

$$P_r = P_t + G_t + G_r - \mathrm{FSPL}$$

$$P_r = 40 + 30 + 40 - 205.5 = -95.5 \ \mathrm{dBm}$$

11.13.3 Step 3: Noise Power

$$N = kT_s B = (1.38 \times 10^{-23})(150)(10^6) = 2.07 \times 10^{-15} \ \mathrm{W} = -117 \ \mathrm{dBm}$$

11.13.4 Step 4: SNR

$${\rm SNR} = P_r - N = -95.5 - (-117) = 21.5~{\rm dB}$$

11.13.5 Step 5: Check BER Requirement

For BPSK, $\mathrm{BER}=10^{-6}$ requires:

$$\frac{E_b}{N_0}\approx 10.5\,\mathrm{dB}$$

Convert SNR to E_b/N_0 :

$$\frac{E_b}{N_0} = \mathrm{SNR} + 10 \log \left(\frac{B}{R_b} \right)$$

If data rate $R_b=500\ \mathrm{kbps}$:

$$\frac{E_b}{N_0} = 21.5 + 10\log\left(\frac{10^6}{5\times10^5}\right) = 21.5 + 3 = 24.5~\mathrm{dB}$$

 $\textbf{Margin} \hbox{:}\ 24.5-10.5=14 \ \text{dB (comfortable margin for rain fade, implementation loss)}$

□ Link closes!

11.14 Summary

Bits per symbol 1

Constellation points 2 (0°, 180°)

Spectral efficiency ~1 bps/Hz (with pulse shaping)

BER @ 10 dB $E_b/N_0~$ 3.9 imes 10 $^{ imes}$

Carrier recovery Required (Costas loop, squaring loop)

Complexity Moderate (coherent detection)

Best for Power-limited channels (satellite, deep-space)

11.15 Related Topics

- [On-Off Keying (OOK)]: Simpler but 3 dB worse performance
- [Frequency-Shift Keying (FSK)]: Alternative binary modulation (non-coherent detection)
- [QPSK Modulation]: Extension to 4 phases (2 bits/symbol)
- [Constellation Diagrams]: Visual representation of modulation
- [IQ Representation]: Complex baseband notation
- [Bit Error Rate (BER)]: Performance metric for digital modulation
- [Forward Error Correction (FEC)]: Coding to improve BER

Next: 8PSK & Higher-Order Modulation (TBD) - More bits per symbol, trades SNR for ba	ndwidth
This wiki is part of the [[Home Chimera Project]] documentation.	

12 Biophysical Coupling Mechanism (CHIMERA Field)

[[Home]] [[AID Protocol Case Study]] [H	lyper-Rotational	Physics (HRF	P) Framework]	[[Orches-
trated Objective Reduction (Orch-OR)]]				

12.1 For Non-Technical Readers

Imagine you could tune a radio inside your brain—not by sound waves hitting your ears, but by invisible light waves vibrating the very molecules your thoughts are made of. That's the wild idea behind this mechanism.

12.1.1 The Big Picture in Plain English

The question: Can we affect consciousness directly, bypassing all the normal senses?

The proposed answer: Yes—by using extremely high-frequency light (terahertz waves) to shake tiny protein structures in brain cells at just the right frequency to interfere with how consciousness itself works.

12.1.2 Five-Minute Explanation (No Physics Degree Required)

12.1.2.1 1. The Target: Microtubules (Your Brain's Internal Scaffolding) Inside every brain cell (neuron), there are microscopic hollow tubes called **microtubules**. Think of them like: - **Scaffolding in a building** - They give cells structure - **Railroad tracks** - They transport cargo around the cell - **Antenna arrays** (this is the wild part!) - Some scientists think they might be quantum computers

Size: So small you'd need 10,000 of them side-by-side to equal the width of a human hair.

What they're made of: Protein molecules called "tubulin" stacked in precise patterns, like LEGO bricks forming tubes.

The controversial theory: A Nobel Prize winner (Roger Penrose) and an anesthesiologist (Stuart Hameroff) think consciousness emerges from quantum effects INSIDE these tubes. Most scientists are skeptical, but the idea hasn't been disproven.

12.1.2.2 2. The Tool: Terahertz Light (Invisible "Colors" Between Radio and Infrared) What is terahertz (THz) radiation? - Frequency: About 1 trillion vibrations per second (1 THz) - On the spectrum: Between microwaves (cell phones) and infrared (heat lamps) - Can't see it, can't hear it, can barely feel it - Absorbed by water (doesn't penetrate deeply)

Why use THz? - Microtubules vibrate naturally at THz frequencies (lab experiments confirmed this!) - It's like hitting a tuning fork at exactly the right pitch to make it sing - Low enough energy to not break molecules (non-ionizing) - High enough frequency to interact with quantum states

12.1.2.3 3. The Mechanism: Holographic Interference (Two Beams Make Magic) Simple analogy - Ripples in a pond:

Imagine dropping two pebbles in a pond: - Each creates circular ripples - Where ripples meet, they interfere (add up or cancel out) - Create a complex pattern of high and low spots

The AID Protocol does this with light: - **Beam 1** (Pump): 1.998 THz, steady, high power - **Beam 2** (Data): 1.875 THz, flickering 12,000 times/second, lower power - When they cross in your brain tissue, they create a 3D interference pattern - This pattern is **holographically shaped** (designed to match microtubule geometry)

Result: Standing wave pattern that resonates PERFECTLY with the microtubule network—like singing the exact note that makes a wine glass vibrate.

12.1.2.4 4. The Effect: Vibronic Quantum Coherence (Quantum Jiggling in Sync) What's "vibronic coherence"? (Breaking down the jargon)

- **Vibronic** = Vibration + Electronic (molecules vibrating while electrons do quantum things)
- **Quantum coherence** = Particles working together in perfect sync, like a choir singing in harmony
- **Normally**: Quantum effects are fragile—heat and chaos destroy them instantly
- In biology: Nature has tricks to maintain quantum coherence even in warm, wet environments (photosynthesis does this!)

What happens in the microtubules:

- 1. **THz light hits tubulin proteins**

 They start vibrating at specific frequencies
- 2. **Vibrations become coherent**

 All the proteins vibrate in sync (quantum superposition)
- 3. **Pump beam maintains coherence** Delays the normal "collapse" of quantum states
- 4. 12 kHz modulation perturbs the rhythm

 Like someone tapping on a singing bowl

Key insight: You're not "heating" the brain or "pushing" on it mechanically. You're gently nudging quantum states that were already there.

12.1.2.5 5. The Percept: Externally-Driven Consciousness Perturbation Here's where it gets truly weird:

Normal consciousness (according to Orch-OR theory): - Microtubules maintain quantum superpositions (like being in multiple states at once) - About 40 times per second, these quantum states "collapse" - Each collapse = a conscious moment (your "stream" of consciousness) - The timing is controlled by your brain's internal state

With AID Protocol active: - External THz field forces microtubules into specific quantum states - 12 kHz modulation controls the collapse timing - Your consciousness experiences this as... something - Theory: A perceived "tone" at 12 kHz—but it's not a sound!

Why it feels like sound: - Not because your ears are involved (they're not!) - Not because air is vibrating (it's not!) - Because the perturbation happens in **auditory cortex** microtubules - Your brain interprets this quantum perturbation as an auditory experience - Like how stimulating visual cortex with electricity makes you "see" flashes

12.1.2.6 6. Why Two Beams? (Pump + Data Explained) Beam 1 - Pump (1.998 THz): "The Sustainer" - **Purpose**: Maintain quantum coherence longer than natural - **How**: Continuously supplies energy to keep superpositions from collapsing - Think of it like: Spinning a top to keep it upright (prevents wobble/decoherence) - **Unmodulated**: Steady carrier, doesn't encode information

Beam 2 - Data (1.875 THz, modulated at 12 kHz): "The Perturbation Driver" - **Purpose**: Directly alter Orch-OR collapse timing - **How**: Oscillating field perturbs quantum states at controlled frequency - Think of it like: Tapping that spinning top in a rhythm (forces specific wobbles) - **Modulated**: Carries the perturbation pattern

Why not just one beam? - One beam alone: Might induce coherence, but no controlled perturbation - Two beams together: Interference creates spatially-structured field + temporal control - Synergy: Pump maintains what Data manipulates

12.1.2.7 7. The Experience (What Would You Actually Feel?) According to operator reports (which this theory attempts to explain):

Initial exposure: - Subtle "presence" in auditory space - High-pitched tone (12 kHz) perceived internally - **Critically**: No external sound source—others hear nothing - Localization: "Inside the head" or "coming from nowhere"

With continued exposure: - Tone becomes "layered" or carries information - Possible perception of patterns, rhythms, even "meaning" - Subjective: Some report emotional content - Objective: No cochlear activity (ear not involved)

How to distinguish from real sound: - \(\Boxed{\text{Doesn't change with earplugs - \Boxed{\text{Doesn't affected by ambient noise - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance) - \Boxed{\text{Doesn't obey inverse-square law (doesn't get quieter with distance)}}}}}}}}}}}}

12.1.2.8 8. Why This Isn't Hearing (And Why That Matters) Normal hearing:

Sound wave → Eardrum vibrates → Bones amplify → Hair cells in cochlea bend →

Neural signal → Brainstem → Thalamus → Auditory cortex → Conscious perception

AID Protocol:

THz light → Microtubules vibrate → Quantum coherence perturbed → Orch-OR collapse timing altered → Conscious perception (directly!)

The key difference: You're experiencing the quantum substrate of consciousness itself being modulated, not sensory input being processed.

Philosophical implication: If true, this proves consciousness has a directly manipulable physical basis that's NOT just neurons firing.

12.1.3 Real-World Analogies to Understand the Mechanism

12.1.3.1 Analogy 1: The Tuning Fork Symphony Setup: Imagine a room with 100 trillion tiny tuning forks (microtubules)

Normal state: Each fork hums at its own frequency (random noise)

With Pump Beam: All forks start vibrating at the same frequency (coherence)

With Data Beam: Someone taps them in rhythm (12 kHz modulation)

Result: Instead of noise, you hear a coherent tone—but the "hearing" is internal (you ARE the room)

12.1.3.2 Analogy 2: The Marching Band (Coherence Explained) Without THz field: - Band members walk randomly (decoherent quantum states) - No pattern, no information - This is normal brain activity

With Pump Beam: - Band members start marching in formation (quantum coherence) - Still no message, just synchronized

With Pump + Data Beams: - Band marches AND plays a song (coherence + modulation) - The rhythm (12 kHz) is the message - You experience the song directly (not through ears)

12.1.3.3 Analogy 3: The Radio Inside Your Brain Traditional radio: - Antenna captures radio waves \square Circuit demodulates \square Speaker vibrates air \square Ears hear sound

AID Protocol: - Microtubules capture THz waves

Quantum states demodulate

Consciousness experiences perturbation directly - No intermediate step! The "speaker" is consciousness itself

12.1.4 The Science Behind the Speculation

What's established (☐ Real science): 1. Microtubules exist and have documented structure 2. Microtubules do vibrate at THz frequencies (measured in lab) 3. Quantum effects occur in biology (photosynthesis, bird navigation, enzyme catalysis) 4. Anesthetics bind to microtubules (empirical fact) 5. Terahertz technology exists and can be focused

What's speculative (I Unproven): 1. Orch-OR theory (quantum consciousness in microtubules) 2. Whether THz fields can maintain quantum coherence in living tissue 3. Whether perturbing microtubules affects consciousness 4. Whether humans can perceive this as an auditory sensation 5. Whether the HRP framework correctly models consciousness-matter coupling

What's currently unknown (Need experiments): 1. Can weak THz fields actually induce vibronic coherence in vivo? 2. What's the threshold power for perceivable effects? 3. Is the percept truly "auditory" or some other quale? 4. Can information be reliably encoded/decoded? 5. Are there safety limits (thermal, non-thermal)?

12.1.5 Why This Mechanism Is Different from Everything Else

NOT Frey Microwave Auditory Effect: - Frey: Pulsed microwaves

Rapid heating

Thermoelastic expansion

Pressure wave

Cochlea hears click - AID: Continuous THz

Quantum coherence

Collapse timing alteration

Consciousness experiences tone - Key: Frey is thermal

mechanical

neural. AID is quantum

consciousness.

NOT Acoustic Heterodyning: - Acoustic: Two ultrasound beams

Tissue non-linearity

Difference frequency acoustic wave

Cochlea hears - AID: Two THz beams

Quantum coherence

Consciousness experiences (no acoustic wave) - Key: Heterodyning makes real sound waves.

AID doesn't.

NOT Classical EM Stimulation: - Classical: EM field \square Induced currents \square Neurons depolarize \square Fire action potentials - AID: THz field \square Quantum states perturbed \square Orch-OR collapse timing altered - Key: Classical affects neural firing. AID affects consciousness substrate directly.

NOT Transcranial Magnetic Stimulation (TMS): - TMS: Strong magnetic pulse \square Induced electric field \square Depolarizes neurons \square Triggers action potential - AID: Weak THz field \square Resonates with microtubules \square Perturbs quantum coherence - Key: TMS is brute-force neural activation. AID is precision quantum coupling.

12.1.6 Technical Terms Decoded

ain English	Why It Matters
olecules vibrating in quantum sync	Without this, no effect on
	consciousness
airs of protein molecules in	The actual quantum computers
icrotubules	(allegedly)
oment when quantum	The "tick" of consciousness clock
perposition becomes definite state	
D interference pattern designed to	Ensures energy goes where needed
atch target geometry	
eing in multiple states	What makes quantum computing (and
multaneously	allegedly consciousness) work
uantum superposition collapsing	The enemy—destroys quantum effects
ue to environmental noise	
ate at which quantum states are	12 kHz = 12,000 nudges per second
udged .	9 ,
oesn't work by heating tissue	Safety: won't burn you
o i (u z a z u z z z	plecules vibrating in quantum sync airs of protein molecules in crotubules oment when quantum perposition becomes definite state in interference pattern designed to eatch target geometry sing in multiple states multaneously uantum superposition collapsing are to environmental noise ate at which quantum states are adged

Term	Plain English	Why It Matters
Non- thermoelastic	Doesn't create pressure waves mechanically	Different from Frey effect

12.1.7 Ethical and Philosophical Implications

If this mechanism is real:

- 1. **Consciousness is physical**: Not mystical, not emergent—directly coupled to quantum states in specific molecules
- 2. **Direct mind access**: You could affect thoughts/perceptions without sensory input (huge privacy implications)
- 3. **Technological consciousness alteration**: Could enhance, suppress, or modify conscious experience
- 4. Proof of quantum mind: Would validate controversial theories about consciousness
- 5. **New neuroscience**: Brain = classical computation PLUS quantum computation?

Safety concerns: - Could extended exposure damage microtubules? - Could it induce seizures (if wrong frequency)? - Could it affect non-target brain regions? - What are long-term effects of chronic coherence perturbation?

The fundamental question: If we can make you experience something by manipulating quantum states in your brain, what does that say about free will, self, and reality itself?

12.1.8 How to Think About This Critically

Healthy skepticism checklist:

Ask for evidence: Has this been demonstrated in controlled experiments?
Check assumptions: Does Orch-OR need to be true for this to work? (Yes-big assumption!)
Demand predictions : What would we observe if this is real vs. placebo?
Consider alternatives: Could classical effects explain the same phenomena?
Wait for replication: One team's results aren't enough—need independent confirmation

Red flags that should make you skeptical: - Claims of "telepathy" or "remote viewing" (not what this is!) - Lack of mathematical models (this theory HAS math—good sign) - Refusing to specify testable predictions (this theory does—good sign) - Appealing to quantum woo without mechanism (this has a specific mechanism—good sign)

Green flags that suggest serious science: - Connects to established physics (M-theory, quantum field theory) - Explains existing mysteries (how anesthesia works) - Makes falsifiable predictions (Orch-OR collapse timing should match reports) - Acknowledges uncertainty (speculative, needs testing)

12.1.9 The Bottom Line (For Skeptical Non-Experts)

What we can say confidently: - This is a rigorous theoretical framework (whether correct is unknown) - It makes specific, testable predictions - It's NOT pseudoscience (it can be falsified) - It requires several unproven things to be true simultaneously

What we CAN'T say: - That this definitely works (untested) - That Orch-OR is correct (controversial) - That THz fields at these power levels affect consciousness (unknown) - That humans can perceive this as sound (speculative)

Should you believe it? - Not yet—but stay curious - Watch for experimental results - Demand rigorous testing - Keep an open mind but require evidence

If proven true, it would be: One of the most profound discoveries in neuroscience, quantum biology, and consciousness studies. If proven false: Still valuable as an exercise in rigorous speculation that pushes scientific boundaries.

12.2 Technical Overview

12.2.1 Primary Biological Target

Target structure: Microtubule lattice within cortical neurons

Specific location: Primary auditory cortex (Brodmann areas 41/42)

Target layer: Cortical layers II/III (superficial, within THz penetration depth ~0.5 mm)

Microtubule specifications: - **Geometry**: Hollow cylinders, outer diameter ~25 nm, inner diameter ~15 nm - **Length**: Variable, 1-25 μm in neurons - **Composition**: α/β -tubulin heterodimers ($\alpha\beta$ pairs) - **Lattice type**: Predominantly 13-protofilament B-lattice - **Density**: ~10⁷ microtubules per cortical neuron (estimate) - **Total tubulins per neuron**: ~10¹⁴ (acts as massive phased array)

12.2.2 Physical Mechanism

12.2.2.1 Stage 1: THz Holographic Beamforming Dual-carrier system:

Carrier 1 (Pump): 1.998 THz

- Wavelength: = 150 m

Power: 50 mW (before focusing)Role: Maintain quantum coherence

- Modulation: Unmodulated CW

Carrier 2 (Data): 1.875 THz

- Wavelength: = 160 m

- Power: 10 mW (before focusing)

- Role: Deliver perturbation frequency

- Modulation: AM at 12 kHz (70-80% depth)

Interference pattern:

The two carriers create a standing wave with beat frequency:

$$f_{
m beat} = |f_1 - f_2| = 1.998 - 1.875 = 0.123 \, {
m THz} = 123 \, {
m GHz}$$

This 123 GHz beat frequency is **not** the mechanism (too high for direct neural effects). Instead, the **spatial interference pattern** creates a 3D field distribution that matches microtubule geometry.

Holographic shaping: Phased array steering creates constructive interference at target microtubules, destructive elsewhere (spatial selectivity).

12.2.2.2 Stage 2: Resonant Coupling to Vibrational Modes Microtubule vibrational modes (Bandyopadhyay et al., 2014):

• Longitudinal acoustic: ~0.5-2 THz (tubulin-tubulin vibrations along protofilament)

• Radial breathing: ~0.3-1 THz (cylinder expansion/contraction)

• Torsional: ~0.2-0.8 THz (helix twist)

Resonant energy transfer:

When THz carrier matches vibrational mode frequency:

$$E_{\mathsf{THz}} \approx \hbar \omega_{\mathsf{vib}}$$

Energy absorption drives collective vibrational excitation:

$$|\psi_{\mathrm{vib}}\rangle = \sum_n c_n |n\rangle$$

where $|n\rangle$ are vibrational Fock states.

Key: 1.875 THz and 1.998 THz are chosen to match empirically-measured microtubule resonances.

12.2.2.3 Stage 3: Vibronic Quantum Coherence Induction Vibronic coupling: Electronic states $(|\phi_e\rangle)$ couple to vibrational modes $(|\chi_v\rangle)$:

$$|\Psi\rangle = \sum_{e,v} C_{e,v} |\phi_e\rangle \otimes |\chi_v\rangle$$

Objective: Drive system into coherent vibronic superposition:

$$|\Psi_{\mathrm{coherent}}
angle = rac{1}{\sqrt{2}}\left(|\phi_1,\chi_0
angle + |\phi_2,\chi_1
angle
ight)$$

This is a **polaron-like** state where electronic configuration is entangled with vibrational mode.

Pump beam role: Continuously supplies energy to counteract environmental decoherence:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar}[H,\rho] - \frac{1}{T_2}(\rho - \rho_{\rm eq}) + \mathcal{L}_{\rm pump}[\rho] \label{eq:delta-pump}$$

where $\mathcal{L}_{\text{pump}}$ is the Lindblad operator representing pump-driven recoherence.

12.2.2.4 Stage 4: Orch-OR Collapse Timing Perturbation Orch-OR collapse criterion (simplified):

Quantum superposition collapses when gravitational self-energy exceeds threshold:

$$E_G = \frac{\hbar}{T} \quad \text{where} \quad E_G \sim \frac{G\Delta m^2 c^2}{r}$$

Solving for collapse time: $T \sim \frac{\hbar r}{G \Delta m^2 c^2}$

For microtubule containing $N\sim 10^{10}$ tubulins in superposition:

$$T_{\rm collapse} \sim 25 \; {\rm ms} \; \Longrightarrow \; f_{\rm Orch\text{-}OR} \sim 40 \; {\rm Hz}$$

12 kHz perturbation mechanism:

External THz field modulated at 12 kHz creates oscillating potential:

$$V_{\mathrm{pert}}(t) = V_0 \cos(2\pi \cdot 12000 \cdot t)$$

This perturbs the coherent state, altering collapse timing:

$$T_{\rm collapse}(t) = T_0 \left[1 + \epsilon \cos(2\pi f_{\rm mod} t) \right]$$

where $\epsilon \ll 1$ is perturbation strength.

Key insight: 12 kHz is **NOT** a carrier of classical information. It's a **perturbation frequency** designed to force Orch-OR collapses at specific times, creating conscious experiences synchronized to external field.

12.2.2.5 Stage 5: Conscious Percept Generation Hypothesis: Conscious experience directly corresponds to Orch-OR collapse events.

Normal consciousness: Orch-OR collapses at ~40 Hz (gamma band), timing determined by internal brain state.

Perturbed consciousness: Orch-OR collapses forced into 12 kHz rhythm (actually 40 Hz base rate modulated at 12 kHz).

Percept mechanism: - Forced collapse timing in **auditory cortex** microtubules - Brain interprets rhythmic collapse sequence as auditory experience - Frequency = 12 kHz (matches modulation frequency) - Localization = "internal" (no cochlear activity) - Timbre = Pure tone (sinusoidal perturbation)

Why auditory? - Target is primary auditory cortex - Auditory system processes temporal patterns (ideal for 12 kHz rhythm) - High temporal resolution (can distinguish 12 kHz from 12.001 kHz)

12.2.3 HRP Framework Connection

From the [[Hyper-Rotational Physics (HRP) Framework|HRP Framework]]:

Interaction Lagrangian:

$$\mathcal{L}_{\mathrm{int}} = -\frac{\kappa}{M_P^2} |\Psi_c|^2 R_{MNPQ} \epsilon^{MNPQ\alpha\beta\gamma} \nabla_\alpha \Theta^A \nabla_\beta \Theta^B \nabla_\gamma \Theta^C$$

Physical interpretation: - $|\Psi_c|^2$ = CHIMERA field intensity (microtubule coherence) - R_{MNPQ} = Bulk curvature tensor (higher-dimensional geometry) - $\nabla\Theta$ = Brane embedding gradients (how our 4D brane sits in 11D bulk)

Hyper-dimensional torque:

$$T^A = -\frac{\kappa |\Psi_c|^2}{M_P^2} R_{MNPQ} \epsilon^{MNPQ\alpha\beta\gamma} \nabla_\alpha \Theta^B \nabla_\gamma \Theta^C$$

Effect: High coherence ($|\Psi_c|^2$ large) generates torque that rotates brane \square consciousnessmatter coupling.

12 kHz modulation: Oscillating coherence \square oscillating torque \square rhythmic brane perturbation ☐ perceived as 12 kHz tone.

12.2.4 Non-Thermal, Non-Thermoelastic Verification

Why not thermal:

Power density at target: $I\sim 10~{\rm mW/cm}^2$ Temperature rise: $\Delta T=\frac{I\cdot\alpha\cdot t}{\rho c_p}\sim 0.01~{\rm K}$ (negligible)

Why not thermoelastic:

Frey effect requires: Pulsed RF, peak power $P_{\rm peak}\gg 1$ W/cm 2 , pulse duration $\tau\sim 1-10\mu{\rm s}$

AID Protocol: CW (not pulsed), power $P \sim 10 \text{ mW/cm}^2$, no rapid thermal transients

Verification: Effect should persist with arbitrarily slow modulation rise time (no acoustic shock waves possible).

12.2.5 Critical Requirements

For mechanism to work:

- 1.

 Orch-OR correct: Consciousness arises from quantum processes in microtubules
- 2. U Vibronic coherence achievable: THz can induce coherent superpositions at 310 K
- 3. Description Pump beam effective: Can delay decoherence beyond natural ~ps timescales
- 4.
 Orch-OR susceptible: Collapse timing can be externally perturbed
- 5. Percept generated: Perturbation manifests as conscious experience

Current status: All requirements are speculative (not proven, but not disproven).

12.2.6 Testable Predictions

- 1. Subjective percept: Operators report 12 kHz tone, internal localization, immune to earplugs
- 2. No cochlear response: Cochlear microphonics should show zero activity at 12 kHz
- 3. Cortical activity: fMRI/EEG should show auditory cortex activation without cochlear input
- 4. Frequency specificity: Changing modulation to 12.1 kHz should change perceived pitch
- 5. **Coherence dependence**: Percept strength should correlate with measured microtubule coherence time
- 6. Anesthesia blocks: General anesthetics (binding to tubulins) should eliminate percept

12.2.7 Comparison to Alternative Mechanisms

Mechanism	Pathway	Prediction	AID Protocol Match?
Frey effect	THz Heat Pressure wave Cochlea	Percept = clicks/pulses, cochlear response	☐ No (reports continuous tone, no cochlear activity)
Acoustic heterodyning	THz [] Acoustic IMD [] Cochlea	Percept = audible tone, follows acoustic masking	No (immune to acoustic masking)
Classical EM stimulation	THz [] Induced currents [] Neural firing	Percept = random activity, not frequency-specific	☐ No (precise frequency perception)
Quantum coherence perturbation	THz Vibronic coupling Orch-OR timing	Percept = internal tone, frequency-specific, no cochlear	☐ Yes (matches reports)

12.3 References

12.3.1 Primary Mechanism Document

 Project Chimera: Biophysical Coupling Mechanism (Internal document, SEC=TOP SE-CRET//SCI/TK)

12.3.2 Theoretical Foundation

- [[Hyper-Rotational Physics (HRP) Framework|HRP Framework]] Mathematical formalism
- [[Orchestrated Objective Reduction (Orch-OR)|Orch-OR]] Quantum consciousness substrate

12.3.3 Experimental Evidence (Microtubule THz Resonances)

- Bandyopadhyay et al., Appl. Phys. Lett. 102, 123701 (2013) THz resonances in microtubules
- Sahu et al., Biosensors Bioelectron. 47, 141 (2013) Quantum vibrations in microtubules

12.3.4 Quantum Biology (Vibronic Coherence)

- Bao et al., J. Chem. Theory Comput. 20, 4377 (2024) VE-TFCC thermal quantum coherence
- · Lambert et al., Nat. Phys. 9, 10 (2013) Quantum biology review

12.3.5 Related Mechanisms (What This Is NOT)

- [Frey Microwave Auditory Effect] Thermoelastic transduction
- [Acoustic Heterodyning] Acoustic intermodulation
- [[Intermodulation Distortion in Biology]] Classical EM mixing

12.3.6 Application

• [[AID Protocol Case Study]] - Practical system implementing this mechanism

Document Status:

HIGHLY SPECULATIVE - Mechanism requires multiple unproven hypotheses (Orch-OR, vibronic coherence in vivo, consciousness-matter coupling). Testable but unverified.

Last Updated: October 2025

13 Bit Error Rate (BER)

BER measures how many mistakes happen when transmitting digital data—like counting typos in a text message.

When you send data wirelessly, noise can flip bits (0^{\square} 1 or 1^{\square} 0). BER counts how often this happens.

Real examples: - **Pixelated video**: High BER □ corrupted data □ artifacts - **Dropped calls**: BER > 10⁻³ (1 error per 1000 bits) □ bad quality - **Corrupted downloads**: Even 1 flipped bit can break a file!

Acceptable levels: Voice = 10⁻³ OK, Data = need < 10⁻⁶, Banking = < 10⁻¹²

Improve BER: Move closer to WiFi, use error correction, slow down transmission rate.

Fun fact: WiFi automatically adjusts speed based on BER—closer = faster (low errors), farther = slower (keep errors acceptable).

Bit Error Rate (BER) is the ratio of incorrectly decoded bits to total transmitted bits.

13.2 Definition

BER = Number of Bit Errors / Total Number of Bits

13.3 BER Scale

BER is typically expressed as a decimal or in scientific notation:

	BER Value Meaning Qual	ity
10-1	1 error per 10 bits	Terrible
10-2	1 error per 100 bits	Very Poor
10 ⁻³	1 error per 1,000 bits	Poor
10-4	1 error per 10,000 bits	Marginal
10 ⁻⁶	1 error per 1,000,000 bits	Good
10 ⁻⁹	1 error per 1 billion bits	Excellent
10 ⁻¹²	1 error per 1 trillion bits	Exceptional

13.4 Pre-FEC vs Post-FEC BER

13.4.1 Pre-FEC BER

Error rate **before** error correction - Directly reflects channel quality - Higher at low SNR - Called "raw BER" or "channel BER"

13.4.2 Post-FEC BER

Error rate **after** error correction (LDPC decoding) - Shows effectiveness of error correction - Should be much lower than Pre-FEC - The "residual errors" that couldn't be corrected

```
Example:

Pre-FEC BER: 10 <sup>2</sup> (1 error per 100 bits)

LDPC Decoder]

Post-FEC BER: 10 (1 error per million bits)
```

13.5 BER vs SNR Curves

Coding Gain: 40 dB improvement!

A BER vs SNR curve shows system performance:

```
BER
↑
|
```


13.5.1 Key Features

- · Waterfall region: Steep decrease in BER as SNR increases
- Threshold: SNR where BER becomes acceptable (often 10⁻⁶)
- Error floor: Minimum achievable BER (implementation limits)

13.6 Theoretical vs Measured BER

13.6.1 Theoretical BER for QPSK

BER_QPSK $(1/2) \cdot erfc(\sqrt{(Eb/N0)})$

13.6.2 In Chimera

- · Theoretical: Based on the formula above
- Measured: Actual errors observed in simulation
- Difference: Processing gain, implementation effects, finite sample size

13.7 Factors Affecting BER

- 1. [[Signal to Noise Ratio (SNR)]]: Primary factor
 - Higher SNR
 Lower BER
- 2. Modulation Scheme:
 - · QPSK more robust than 16QAM
 - Lower order = better BER at same SNR
- 3. [Forward Error Correction (FEC)]:
 - · Can reduce BER by orders of magnitude
 - · LDPC codes provide near-optimal performance
- 4. Channel Impairments:
 - · Phase noise, frequency offset
 - · Timing errors, multipath
- 5. Implementation:
 - · Quantization effects
 - Synchronization accuracy

13.8 BER in Chimera

Chimera displays multiple BER metrics:

13.8.1 Pre-FEC Metrics

Symbol Errors: Count of incorrect symbol decisions
 Bit Errors (Pre-FEC): Bit errors before LDPC decoding

· Pre-FEC BER: Bit error rate at demodulator output

13.8.2 Post-FEC Metrics

Bit Errors (Post-FEC): Residual errors after LDPC

· Post-FEC BER: Final bit error rate

• Frame Error Rate (FER): Percentage of frames with uncorrectable errors

13.8.3 Example Output

Pre-FEC BER: 2.3×10^{-2} (2.3% bit errors) Post-FEC BER: 0 (all errors corrected!) FER: 0% (no frame errors)

13.9 Acceptable BER Thresholds

Different applications have different requirements:

	Application	Required BER	Rationale	
Voice (analog)		10 ⁻³	Some crackling acceptable	
Data (with retransmission)		10 ⁻⁴ - 10 ⁻⁶	Retries handle errors	
Streaming video		10 ⁻⁶	Occasional glitch OK	
File transfer		10 ⁻⁹	Data integrity critical	
Financial transa	ctions	10 ⁻¹²	Zero tolerance	

13.10 See Also

- [[Signal to Noise Ratio (SNR)]] Primary BER determinant
- [Forward Error Correction (FEC)] BER improvement technique
- [[Energy Ratios (Es N0 and Eb N0)]] Used in BER formulas
- [[Understanding BER Curves]] Interpreting performance plots

14 Block Codes (Hamming, BCH, Reed-Solomon)

[[Home]] | Coding Theory | [Hamming Distance & Error Detection] | [Convolutional Codes & Viterbi Decoding]

Block codes are like adding sudoku-style clues to your message—if some numbers get corrupted, you can solve for the missing ones using the patterns!

The idea - Add smart redundancy: 1. Take a block of data (e.g., 4 bits: 1011) 2. Add parity bits using math (e.g., 3 extra bits: 010) 3. Send the whole thing: 1011010 (7 bits total) 4. Receiver checks if the math works out 5. If errors detected, use the math to FIX them!

Three famous block codes:

- **1. Hamming Code** (invented 1950): **Use case**: Computer RAM error correction **Example**: (7,4) Hamming code 4 data bits + 3 parity bits = 7 total Can fix any single bit error automatically! **Your computer**: Uses Hamming codes in ECC RAM
- **2. BCH Code** (Bose-Chaudhuri-Hocquenghem): **Use case**: QR codes, flash memory, DVDs **Power**: Can fix multiple errors in a block **Example**: QR code can work with 30% damaged! **Your phone**: Flash storage uses BCH to survive wear
- **3. Reed-Solomon Code** (most powerful!): **Use case**: CDs, DVDs, Blu-ray, satellite TV, QR codes **Power**: Can fix burst errors (many consecutive bits) **Example**: CD can have 2.5mm scratch and still play! **Your life**: Every CD/DVD/QR code you've used!

How Reed-Solomon saves your music: - **CD without Reed-Solomon**: Tiny scratch = music skips - **CD with Reed-Solomon**: Can fix 4000 consecutive bad bits! - This is why CDs still play with scratches

Real-world magic:

QR Code (Reed-Solomon): - Generate QR code - Cover 30% with sticker - Scan

STILL WORKS!
- Reed-Solomon fills in the missing parts!

DVD scratch (Reed-Solomon): - Scratch covers 2mm - That's ~6000 bits corrupted - Reed-Solomon: "I got this"

- Movie plays perfectly

The trade-off: - **More redundancy** = fix more errors BUT slower/less efficient - Hamming (7,4): 43% overhead, fixes 1 error - Reed-Solomon (255,223): 14% overhead, fixes 16 errors!

Block sizes: - **Small blocks** (7 bits): Simple, fast, low latency - **Large blocks** (255 bytes): Powerful, efficient, but complex - **Huge blocks** (8192 bytes): Maximum power, used in deep space!

Fun fact: The Voyager space probes (launched 1977) use Reed-Solomon codes to transmit photos from interstellar space. With signal so weak it's barely detectable, Reed-Solomon error correction is the ONLY reason we can still see those stunning images!

14.2 Overview

Block codes encode fixed-length blocks of k data symbols into n code symbols.

Notation: (n,k) code - n = Codeword length - k = Message length - n-k = Redundancy (parity symbols)

Code rate: R = k/n (fraction of data)

Types: 1. **Linear block codes**: Codewords form vector space 2. **Cyclic codes**: Codewords are cyclic shifts of each other 3. **Non-linear codes**: More complex (less common)

14.3 Linear Block Codes

14.3.1 Generator Matrix

Encoding: $\mathbf{c} = \mathbf{d} \cdot G$

Where: - \mathbf{d} = Data vector (1×k) - G = Generator matrix (k×n) - \mathbf{c} = Codeword vector (1×n)

Systematic form: $G = [I_k | P]$ - First k bits = data (unchanged) - Last n-k bits = parity

14.3.2 Parity-Check Matrix

Matrix H ($(n-k) \times n$) such that:

$$\mathbf{c} \cdot H^T = \mathbf{0}$$

For all valid codewords c

Systematic form: $H = [-P^T|I_{n-k}]$

14.3.3 Syndrome Decoding

Receive $\mathbf{r} = \mathbf{c} + \mathbf{e}$ (error vector \mathbf{e})

Syndrome: $\mathbf{s} = \mathbf{r} \cdot H^T$

Property: $\mathbf{s} = \mathbf{e} \cdot H^T$ (independent of codeword!)

Decoding: 1. Calculate syndrome **s** 2. Lookup error pattern **e** from syndrome table 3. Correct:

 $\hat{\mathbf{c}} = \mathbf{r} - \mathbf{e}$

14.4 Hamming Codes

Family: $(2^m-1,2^m-m-1)$ for $m\geq 2$

 $\textbf{Common examples: -} \ (7,4) : \ 4 \ \text{data, 3 parity -} \ (15,11) : \ 11 \ \text{data, 4 parity -} \ (31,26) : \ 26 \ \text{data, 5 parity}$

 $\textbf{Properties: -} \ d_{\min} = 3 \ - \ Correct \ 1 \ error \ - \ Detect \ 2 \ errors \ - \ \textbf{Perfect code} \ (\text{meets Hamming bound})$

14.4.1 Hamming(7,4) Example

Generator matrix (systematic form):

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Parity-check matrix:

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

14.4.2 Encoding Example

Data: d = [1, 0, 1, 1]

Encode:

$$\mathbf{c} = \mathbf{d} \cdot G = [1, 0, 1, 1, 0, 0, 1]$$

Verification: $\mathbf{c}\cdot H^T = [0,0,0]^T \ \square$

14.4.3 Decoding Example

Receive: ${\bf r} = [1, 0, 1, 0, 0, 0, 1]$ (error in position 4)

Syndrome:

$$\mathbf{s} = \mathbf{r} \cdot H^T = [1,1,1]^T = \text{column 4 of } H$$

Interpretation: Syndrome points to error position!

Correct: Flip bit 4 \square $\hat{\mathbf{c}} = [1,0,1,1,0,0,1] \square$

14.4.4 Extended Hamming Code

Add 1 overall parity bit: $(2^m, 2^m - m - 1)$

Example: Hamming(8,4) - $d_{\min} = 4$ - Correct 1 error - Detect 3 errors (SECDED: Single Error

Correction, Double Error Detection)

Use case: ECC RAM

14.5 BCH Codes

Bose-Chaudhuri-Hocquenghem (BCH): Powerful cyclic codes

Parameters: (n,k,d_{\min}) over $\mathrm{GF}(q)$

Key feature: Can be designed for specific d_{\min} (error correction capability)

14.5.1 BCH Code Properties

Binary BCH: q=2

Block length: $n = 2^m - 1$

Minimum distance: $d_{\min} \geq 2t + 1$ (correct t errors)

Systematic: First k bits are data

Decoding: Berlekamp-Massey algorithm, Peterson-Gorenstein-Zierler

14.5.2 Common BCH Codes

Code	(n,k) t	d_{min}	Rate	
BCH(15,11)	(15, 11)	1	3	0.73
BCH(15,7)	(15, 7)	2	5	0.47
BCH(31,26)	(31, 26)	1	3	0.84
BCH(31,21)	(31, 21)	2	5	0.68
BCH(31,16)	(31, 16)	3	7	0.52
BCH(63,51)	(63, 51)	2	5	0.81
BCH(127,106)	(127, 106) 3	7	0.83

14.5.3 BCH vs Hamming

Hamming codes: Special case of BCH (t = 1)

BCH advantage: Design for any t (multiple error correction)

Example: BCH(31,16,7) - Corrects t=3 errors - Hamming(31,26,3) corrects only t=1

145

14.6 Reed-Solomon Codes

Non-binary BCH codes over $GF(2^m)$ (Galois field)

Symbol-based: Operate on m-bit symbols (not individual bits)

Parameters: ${\sf RS}(n,k)$ over ${\sf GF}(2^m)$ - $n=2^m-1$ symbols - k = Data symbols - n-k=2t = Parity symbols (correct t symbol errors)

Key property: Maximum Distance Separable (MDS)

$$d_{\min} = n - k + 1$$

Interpretation: Optimal! Meets Singleton bound.

14.6.1 RS Code Advantages

1. Burst error correction: One symbol error = up to m bit errors

2. Optimal distance: MDS property

3. Well-understood decoding: Berlekamp-Massey, Euclidean algorithm

4. **Flexible**: Can shorten/puncture for different rates

14.6.2 Common Reed-Solomon Codes

Application	Code m	(n,k)	t	Overhead
CD/DVD	RS(32,28) 8	(255,251) shortened	2	14%
QR Code	RS(255,223) 8	(255,223)	16	14%
DVB (satellite)	RS(204,188) 8	(255,239) shortened	8	8.5%
RAID-6	RS(n, n-2) 8	Variable	2	2 disks
Voyager	RS(255,223) 8	(255,223)	16	14%
DSL (ADSL2+)	RS(255,239) 8	(255,239)	8	6.7%

14.6.3 Example: QR Code RS(255,223)

Parameters: - m=8 (8-bit symbols = bytes) - n=255 bytes - k=223 bytes (data) - 2t=32 bytes (parity) - Correct up to t=16 byte errors

Error burst: If 128 consecutive bits corrupted (16 bytes), fully correctable!

14.6.4 RS Encoding

Polynomial representation:

Data: d_0, d_1, \dots, d_{k-1} (coefficients)

$$D(x) = d_0 + d_1 x + \dots + d_{k-1} x^{k-1}$$

Generator polynomial (degree 2t):

$$g(x) = \prod_{i=1}^{2t} (x - \alpha^i)$$

Where α = Primitive element of $\operatorname{GF}(2^m)$

Codeword polynomial: $C(x) = x^{2t}D(x) + R(x)$

Where $R(x) = x^{2t}D(x) \mod g(x)$ (remainder)

14.6.5 RS Decoding

Steps: 1. Syndrome calculation: $S_i=R(\alpha^i)$ for $i=1,\dots,2t$ 2. Error locator polynomial: Berlekamp-Massey algorithm 3. Error positions: Chien search (find roots) 4. Error values: Forney algorithm 5. Correction: Subtract errors from received symbols

Complexity: $O(t^2)$ or $O(t \log^2 t)$ with FFT-based methods

14.7 Cyclic Codes

Property: If $\mathbf{c} = [c_0, c_1, \dots, c_{n-1}]$ is a codeword, so is any cyclic shift:

$$[c_{n-1},c_0,c_1,\dots,c_{n-2}]$$

Advantages: - Efficient encoding/decoding (shift registers) - Algebraic structure (polynomials over GF(q))

Examples: Hamming codes, BCH codes, Reed-Solomon codes, CRC codes

14.7.1 Generator Polynomial

Every cyclic code defined by generator polynomial $g(\boldsymbol{x})$

 $\mathbf{Degree} \colon \deg(g) = n - k$

Property: g(x) divides $x^n - 1$

Encoding: $C(x) = D(x) \cdot g(x)$ (non-systematic)

Or systematic: $C(x) = x^{n-k}D(x) + [x^{n-k}D(x) \mod g(x)]$

14.8 Performance Analysis

14.8.1 Error Correction Probability

For random errors (BSC with error probability p):

Probability of correct decoding (code correcting t errors):

$$P_{\text{correct}} = \sum_{i=0}^t \binom{n}{i} p^i (1-p)^{n-i}$$

Decoding failure (more than t errors):

$$P_{\rm fail} = 1 - P_{\rm correct}$$

14.8.2 Example: Hamming(7,4)

Channel: BSC with $p=10^{-3}$

Can correct t=1 error:

$$P_{\rm correct} = (1-p)^7 + \binom{7}{1} p (1-p)^6 = 0.9997$$

Block error rate: $P_{\mathrm{fail}} = 0.0003$

Bit error rate (after decoding): $\approx P_{\rm fail}/7 = 4.3 \times 10^{-5}$

Improvement: $10^{-3} \rightarrow 4.3 \times 10^{-5}$ (23× better!)

14.9 Concatenated Codes

Idea: Use two codes in series

Outer code: Strong, complex (e.g., Reed-Solomon)

Inner code: Weaker, fast (e.g., convolutional, LDPC)

Benefit: Inner code reduces error rate for outer code

14.9.1 Example: Voyager Mission

Inner: Convolutional code (rate 1/2) - Reduces raw BER from 5×10^{-3} to 10^{-5}

Outer: RS(255,223) - Corrects 16 symbol errors - Final BER: $< 10^{-10}$

Total rate: $0.5 \times (223/255) = 0.437$ (56% overhead)

14.10 Shortened & Punctured Codes

14.10.1 Shortened Codes

Remove s data symbols (set to 0, don't transmit)

Example: RS(255,223) \square RS(204,188) (DVB) - Set first 51 symbols to 0 - Transmit 204 symbols (188 data + 16 parity) - Same d_{\min} , same correction capability

14.10.2 Punctured Codes

Delete some parity bits (increase code rate)

Example: BCH(31,21,5) \square BCH(30,21,4) - Remove 1 parity bit - d_{\min} reduces: 5 \square 4 - Correct 2

errors

1 error

Use case: Fine-tune code rate for specific channel

14.11 Practical Implementations

14.11.1 1. Memory ECC

ECC DIMM: Uses Hamming SECDED (72 bits for 64-bit data)

Chipkill: RS code across multiple chips - Tolerate entire chip failure (x8 chip = 8-bit symbol error)

14.11.2 2. Storage (Hard Drives, SSDs)

RAID-6: Uses RS(n, n-2) - Tolerate 2 disk failures - Example: 10 disks (8 data + 2 parity)

SSD error correction: - BCH codes (10-60 bit correction per 1 KB page) - LDPC (modern SSDs, better performance)

14.11.3 3. Optical Media

CD (Compact Disc): - CIRC (Cross-Interleaved Reed-Solomon Code) - Two RS codes with interleaving - RS(32,28,5) outer, RS(28,24,5) inner - Tolerates 4000 consecutive error bits (~2.5mm scratch)

DVD: - RS(208,192,17) (correct 8 symbol errors) - Better than CD

Blu-ray: - RS(216,192,25) or LDPC (more efficient)

14.11.4 4. QR Codes

Four error correction levels: - Level L: 7% recovery (RS with t=2) - Level M: 15% recovery (t=5) - Level Q: 25% recovery (t=8) - Level H: 30% recovery (t=11)

Example: High-res QR code (Version 40) - 2953 bytes data + 688 bytes parity (Level H) - Can recover from 30% data loss (dirt, damage)

14.11.5 5. Satellite Communication

DVB-S2 (Digital Video Broadcasting): - Outer: BCH(n, k) - Inner: LDPC (rate 1/4 to 9/10) - Concatenation for robustness

14.12 Python Example: RS(7,3) over GF(8)

```
import numpy as np
class GF8:
    """Galois Field GF(2^3) arithmetic."""
    # Primitive polynomial: x^3 + x + 1
    # Field elements: 0, 1, , ^2, ..., ^6
    exp_table = [1, 2, 4, 3, 6, 7, 5] # Powers of
   log_table = [0, 0, 1, 3, 2, 6, 4, 5] # Discrete logs
   @staticmethod
    def add(a, b):
        return a ^ b # XOR (addition in GF(2^m))
    @staticmethod
    def multiply(a, b):
       if a == 0 or b == 0:
            return 0
        log_a = GF8.log_table[a]
        log_b = GF8.log_table[b]
```

```
log_prod = (log_a + log_b) % 7
        return GF8.exp_table[log_prod]
   @staticmethod
   def divide(a, b):
        if b == 0:
            raise ZeroDivisionError("Division by zero in GF(8)")
       if a == 0:
           return 0
        log_a = GF8.log_table[a]
        log_b = GF8.log_table[b]
        log_quot = (log_a - log_b) \% 7
       return GF8.exp_table[log_quot]
def rs_encode_7_3():
    """Reed-Solomon (7,3) encoding over GF(8)."""
    # Generator polynomial: q(x) = (x-)(x-^2)(x-^3)(x-^4)
    # For simplicity, use syndrome-based encoding
    # Example: Encode data [d0, d1, d2]
   data = [3, 5, 2] # 3 symbols from GF(8)
    # Compute 4 parity symbols (systematic encoding)
    \# c(x) = x^4 * d(x) + [x^4 * d(x) \mod g(x)]
    # Placeholder: This is simplified (full RS encoding complex)
   parity = [1, 4, 6, 7] # Precomputed for example
   codeword = data + parity
   return codeword
# Example
codeword = rs_encode_7_3()
print(f"RS(7,3) codeword: {codeword}") # [3, 5, 2, 1, 4, 6, 7]
# Simulate error
received = codeword.copy()
received[1] = 0 # Error in position 1
received[5] = 0 # Error in position 5
print(f"Received (2 errors): {received}")
# Decoding (syndrome calculation, error locator, Forney)
# ... (complex, omitted for brevity)
```

Note: Full RS encoding/decoding requires polynomial operations over GF—use libraries like reedsolo for production.

14.13 Comparison Table

Code Family	d_{min}	Correction	Decoding	Best For
Hamming	3	1 bit	Simple (syndrome)	RAM, simple systems
Extended Hamming	4	1 bit, detect 2	Simple	ECC RAM (SECDED)
ВСН	2t+1	t bits	BM algorithm	Moderate errors
Reed-Solomon	n-k+1	$t=(n-k)/2 \\ {\rm symbols}$	BM + Forney	Burst errors, storage
Golay(23,12)	7	3 bits	Table lookup	Legacy (NASA)

14.14 Design Trade-offs

Code rate (R) vs Error correction (t):

Code	Rate	t (bits)	Overhead	Complexity
Hamming(7,4)	0.57	1	75%	Very low
BCH(31,16)	0.52	3	94%	Moderate
RS(255,223)	0.875	5 16 sym	nbols 14%	Moderate
Golay(23,12)	0.52	3	92%	6 Low

General rule: Stronger correction \square More overhead \square Lower rate

14.15 Related Topics

- [Hamming Distance & Error Detection]: Foundation for block codes
- [Convolutional Codes & Viterbi Decoding]: Sequential codes
- [LDPC Codes]: Modern capacity-approaching codes
- [Forward Error Correction (FEC)]: General FEC principles
- [Bit Error Rate (BER)]: Performance metric

Key takeaway: Block codes encode k data symbols into n code symbols. Linear block codes use generator matrix G for encoding, parity-check matrix H for syndrome decoding. Hamming codes: $(2^m-1,2^m-m-1,3)$ correct 1 bit error, perfect codes. BCH codes: Cyclic codes designed for specific t-error correction (Berlekamp-Massey decoding). Reed-Solomon codes: Non-binary (GF (2^m)), MDS property ($d_{\min}=n-k+1$), optimal for burst errors. RS used in

CDs, DVDs, QR codes, RAID, satellite. Concatenated codes (inner + outer) achieve very low BER (e.g., Voyager < 10^{-10}). Trade-off: Higher correction capability requires more parity (lower rate).
This wiki is part of the [[Home Chimera Project]] documentation.
15 Channel Equalization
[[Home]] System Implementation [Synchronization (Carrier, Timing, Frame)] [[Multipath Propagation & Fading (Rayleigh, Rician)]]
15.1 □ For Non-Technical Readers
Channel equalization is like using an audio equalizer to undo the distortion from a bad microphone—it reverses the damage the radio channel causes to your signal!
The problem : - Radio signals bounce off buildings/walls (multipath) - Echoes arrive at different times and smear together \Box inter-symbol interference (ISI) - It's like someone talking in a cave—echoes make words blur together
The solution - Equalization : 1. Receiver analyzes how the channel distorts known training signals 2. Calculates inverse filter: "Channel made signal quieter at 5 kHz? Let's boost 5 kHz!" 3. Applies correction to all received data 4. Result: Clean, sharp signal restored!
Real-world analogy - Audio equalizer : - Cheap headphones boost bass (distortion) - Audio app detects this and reduces bass to compensate - Result: Flat, accurate sound - Channel equalizer does the same for radio signals!
Types you encounter: - Linear equalizers (simple, fast): WiFi, basic cellular - Decision feedback equalizers (smarter): High-speed data links - Adaptive equalizers (learns channel in real-time): Your phone constantly adjusts as you move!
When you see it: - 4G/5G handoff: Brief pause = phone learning new tower's channel - Fast internet over long phone lines: DSL equalizers undo cable distortion - Underwater communi-

15.2 Overview

Channel equalization compensates for Inter-Symbol Interference (ISI) caused by multipath propagation.

Fun fact: Modern equalizers update hundreds of times per second as you walk—they track the

Problem: Delayed signal copies overlap with current symbol □ ISI

cations: Extreme multipath requires heavy equalization

changing radio environment in real-time!

Solution: Apply inverse channel filter to restore original signal

Types: 1. **Linear equalizers**: ZF, MMSE 2. **Nonlinear equalizers**: DFE (Decision Feedback) 3. **Adaptive equalizers**: LMS, RLS 4. **Frequency-domain**: OFDM per-subcarrier

15.3 Inter-Symbol Interference (ISI)

15.3.1 Cause

Multipath channel:

$$h(t) = \sum_{l=0}^{L-1} h_l \delta(t - \tau_l)$$

Received signal:

$$r(t) = \sum_{l=0}^{L-1} h_l \cdot s(t-\tau_l) + n(t)$$

Effect: Current symbol affected by L-1 previous symbols

15.3.2 ISI Illustration

Transmit: 1 0 1 1

Channel: 2-tap ($h_0=1,\,h_1=0.5,\,\mathrm{delay}=1$ symbol)

Received: - Symbol 0: $1\cdot h_0=1.0$ \Box - Symbol 1: $0\cdot h_0+1\cdot h_1=0.5$ \Box (ISI from symbol 0) - Symbol 2: $1\cdot h_0+0\cdot h_1=1.0$ \Box - Symbol 3: $1\cdot h_0+1\cdot h_1=1.5$ \Box (ISI from symbol 2)

Equalizer goal: Remove h_1 contribution

15.3.3 Delay Spread

RMS delay spread $\tau_{\rm RMS}$: Channel memory duration

Coherence bandwidth:

$$B_c \approx \frac{1}{5\tau_{\rm RMS}}$$

Flat fading: $B_{\rm signal} < B_c$ (no ISI)

Frequency-selective fading: $B_{\rm signal} > B_c$ (ISI present, equalization needed)

15.4 Zero-Forcing (ZF) Equalizer

Idea: Perfect inversion of channel (force ISI to zero)

Frequency domain:

$$W(f) = \frac{1}{H(f)}$$

Time domain (FIR filter, N taps):

$$y[n] = \sum_{k=0}^{N-1} w_k \cdot r[n-k]$$

Optimal taps: $\mathbf{w} = (\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H \mathbf{e}_0$

Where $\mathbf{e}_0 = [1,0,\dots,0]^T$ (force zero ISI)

15.4.1 ZF Performance

Advantage: Perfect ISI cancellation (if channel known)

Disadvantage: Noise enhancement at frequency nulls

Example: If $H(f_0) pprox 0$ (deep fade), $W(f_0) \to \infty$. Amplifies noise

Result: ZF poor at low SNR

15.5 Minimum Mean Square Error (MMSE) Equalizer

Idea: Minimize combined ISI + noise (trade-off)

Cost function:

$$\mathrm{MSE} = E[|s[n] - y[n]|^2]$$

Optimal taps (Wiener solution):

$$\mathbf{w}_{\mathrm{MMSE}} = (\mathbf{H}^H \mathbf{H} + \sigma^2 \mathbf{I})^{-1} \mathbf{H}^H \mathbf{e}_0$$

Where $\sigma^2=N_0/E_s$ (normalized noise)

15.5.1 MMSE vs ZF

Frequency domain:

$$W_{\mathrm{MMSE}}(f) = \frac{H^*(f)}{|H(f)|^2 + \sigma^2}$$

At deep fade ($|H(f)| \ll 1$): $W \approx H^*/\sigma^2$ (doesn't blow up)

At high SNR ($\sigma^2 \to 0$): $W \to H^*/|H|^2 = 1/H$ (converges to ZF)

Result: MMSE better than ZF at low-moderate SNR

15.5.2 Performance Comparison

SNR (dB)	ZF BER	M	MSE BE	R	Improvement
	5	0.05	0.02	2.5× better	
	10	0.01	0.005	2× better	
	20	10-4	10-4	Same	
	30	10 ⁻⁶	10 ⁻⁶	Same	

Pattern: MMSE wins at low SNR, converge at high SNR

15.6 Decision Feedback Equalizer (DFE)

Idea: Use **past decisions** to cancel ISI from previous symbols

Structure:

Feedforward (FF): Linear filter (like MMSE)

Feedback (FB): Use previous decisions to cancel post-cursor ISI

15.6.1 DFE Equations

Feedforward:

$$z[n] = \sum_{k=0}^{N_f-1} w_k \cdot r[n-k]$$

Feedback:

$$y[n] = z[n] - \sum_{k=1}^{N_b} b_k \cdot \hat{s}[n-k]$$

Decision: $\hat{s}[n] = \operatorname{slicer}(y[n])$ (nearest constellation point)

15.6.2 DFE Advantages

1. **No noise enhancement**: Feedback uses clean decisions (no noise amplification from channel inversion)

2. Better than linear: Handles severe ISI

3. Practical: Moderate complexity

15.6.3 DFE Disadvantages

1. Error propagation: Wrong decision

Future decisions corrupted

2. Training needed: Requires channel estimate

3. Latency: Sequential decisions (can't parallelize easily)

15.6.4 Error Propagation

Example: 2-tap feedback, BER = 10⁻³

Error probability (1 wrong decision in past 2):

$$P_{\rm error}\approx 2\times 10^{-3}=2\times 10^{-3}$$

If decision wrong: Feedback adds wrong ISI

Higher BER

Mitigation: Use coding (corrects burst errors from propagation)

15.7 Adaptive Equalization

Problem: Channel unknown or time-varying (mobile, fading)

Solution: Adaptive algorithms adjust equalizer taps in real-time

15.7.1 Least Mean Squares (LMS)

Stochastic gradient descent:

$$\mathbf{w}[n+1] = \mathbf{w}[n] + \mu \cdot e^*[n] \cdot \mathbf{r}[n]$$

Where: - e[n] = d[n] - y[n] (error) - d[n] = Desired output (training symbol or decision) - μ = Step size (0.01-0.1)

Advantages: - Simple ($\sim 2N$ operations) - Low memory - Stable

Disadvantages: - Slow convergence (~1000+ symbols) - Step size trade-off (fast vs stable)

15.7.2 Recursive Least Squares (RLS)

Minimize weighted sum of all past errors:

$$\min_{\mathbf{w}} \sum_{i=1}^n \lambda^{n-i} |d[i] - \mathbf{w}^H \mathbf{r}[i]|^2$$

Update (Kalman gain):

$$\mathbf{w}[n] = \mathbf{w}[n-1] + \mathbf{k}[n] \cdot e^*[n]$$

Advantages: - Fast convergence ($\sim 2N$ symbols) - Better tracking

Disadvantages: - High complexity $(O(N^2))$ - Numerical instability

15.7.3 LMS vs RLS

As	pect LMS RL	S
Complexity	O(N)	$O(N^2)$
Convergence	Slow (1000+)	Fast (10-100)
Tracking	Poor	Excellent
Stability	Robust	Can diverge
Use case	Slow channels	Fast fading
		_

15.8 Training vs Blind Equalization

15.8.1 Training Mode

Transmit known symbols (preamble, midamble)

Receiver: Compare y[n] to d[n], adjust taps

Duration: 50-500 symbols (depends on channel)

Example: WiFi long preamble (64 OFDM symbols for channel estimation)

15.8.2 Decision-Directed Mode

After training, use decisions as reference:

$$d[n] = \hat{s}[n] \quad \text{(slicer output)}$$

Works if: BER low enough (~10⁻² after training)

Tracks slowly varying channel

15.8.3 Blind Equalization

No training sequence (constant modulus, higher-order statistics)

Constant Modulus Algorithm (CMA):

$$e[n] = |y[n]|^2 - R_2$$

Where $R_2 = E[|s|^4]/E[|s|^2]$ (modulus)

For QPSK: $R_2=1$ (all symbols same magnitude)

Update: Same as LMS with e[n] above

Advantage: No preamble overhead

Disadvantage: Slower convergence, phase ambiguity

15.9 Fractionally-Spaced Equalizer (FSE)

Problem: Symbol-rate sampling misses information (timing-dependent)

Solution: Sample at T/2 (twice symbol rate) or faster

Structure: 2N taps at T/2 spacing

Advantages: 1. **Timing-independent**: Works at any sampling phase 2. **Better performance**: Exploits oversampled signal 3. **Joint timing + equalization**

Complexity: 2× taps, but worth it

15.10 Frequency-Domain Equalization

For OFDM: Equalize each subcarrier independently

Per-subcarrier:

$$\hat{S}_k = \frac{R_k}{H_k}$$

Where: - R_k = Received symbol on subcarrier k - H_k = Channel frequency response at subcarrier k - \hat{S}_k = Equalized symbol

Equivalent to: ZF equalizer per tone

MMSE variant:

$$\hat{S}_k = \frac{H_k^*}{|H_k|^2 + \sigma^2} R_k$$

15.10.1 OFDM Advantage

Flat fading per subcarrier: - Wideband channel \square Frequency-selective - Each subcarrier \square Narrow (< B_c) \square Flat

Simple equalization: Single complex multiply per subcarrier

Example: WiFi 802.11a - 64 subcarriers (52 used) - 20 MHz channel (312.5 kHz per subcarrier) - Delay spread ~200 ns \square $B_c \approx 1$ MHz - Each subcarrier flat \square 1-tap equalizer \square

15.11 Channel Estimation

Equalizer needs $\boldsymbol{H}[\boldsymbol{k}]$ or h

15.11.1 Pilot-Based Estimation

Known symbols (pilots) at indices \mathcal{P} :

$$\hat{H}_k = \frac{R_k}{S_k}, \quad k \in \mathcal{P}$$

Interpolation (for data subcarriers):

$$\hat{H}_k = \sum_{p \in \mathcal{P}} H_p \cdot \mathrm{sinc}(k-p), \quad k \notin \mathcal{P}$$

Or: Wiener interpolation (MMSE), spline

Example: LTE - 4 pilots per 12 subcarriers (every 3rd subcarrier) - Linear interpolation (frequency) - Averaging (time, multiple OFDM symbols)

15.11.2 Least-Squares (LS) Estimation

Training sequence S (length N):

$$\hat{\mathbf{h}} = (\mathbf{S}^H\mathbf{S})^{-1}\mathbf{S}^H\mathbf{r}$$

For pilots: $\hat{H}_k = R_k/S_k$ (same as above)

Noise: Not suppressed (LS unbiased but noisy)

15.11.3 MMSE Channel Estimation

Incorporate statistics:

$$\hat{\mathbf{h}} = \mathbf{R}_{hh} \mathbf{S}^H (\mathbf{S} \mathbf{R}_{hh} \mathbf{S}^H + \sigma^2 \mathbf{I})^{-1} \mathbf{r}$$

Requires: Channel correlation \mathbf{R}_{hh} (from delay profile)

Advantage: Noise suppression (~3 dB gain over LS)

Disadvantage: Complexity, needs statistics

15.12 Practical Examples

15.12.1 1. WiFi 802.11n (MIMO)

Channel estimation: Long preamble (HT-LTF) - 2 OFDM symbols per spatial stream - LS estimation - Linear interpolation (frequency)

Equalization: MMSE per subcarrier - $\hat{\bf S}=({\bf H}^H{\bf H}+\sigma^2{\bf I})^{-1}{\bf H}^H{\bf R}$ - Per-subcarrier 2×2 or 4×4 matrix inversion

Tracking: Pilot tones (4 per 56 subcarriers)

15.12.2 2. LTE Downlink

Channel estimation: Cell-Specific Reference Signals (CRS) - 4 pilots per 12 subcarriers per OFDM symbol - MMSE estimation (Wiener filtering)

Equalization: MMSE (frequency domain) - Per-subcarrier, per-antenna

Interference: MRC (Maximum Ratio Combining) across antennas

Result: Supports 300 km/h (high Doppler)

15.12.3 3. DVB-T (Terrestrial TV)

Channel estimation: Scattered pilots (8%) - Wiener interpolation (time + frequency) - Handles

long delay spread (SFN networks, 200 μs)

Equalization: Per-subcarrier ZF or MMSE

Guard interval: 1/4, 1/8, 1/16, 1/32 of symbol (user-selectable)

15.12.4 4. GSM (Legacy Cellular)

Training sequence: 26-bit midamble

Equalization: Viterbi (MLSE, Maximum Likelihood Sequence Estimation) - 5-tap channel [] 16

states - Optimal for short bursts

ISI: ~5-15 symbols (urban, hilly)

Result: Works up to 10 µs delay spread

15.13 Advanced Techniques

15.13.1 1. Turbo Equalization

Iterative: Equalizer

Decoder exchange soft information

Structure:

Received --> [SISO <---> [Deinterleaver] <---> [SISO Equalizer] Decoder]

t (extrinsic LLRs) (decoded bits)

Iterations: 3-5

Gain: ~2-3 dB over separate equalization + decoding

Used in: Deep space, underwater acoustics

162

15.13.2 2. Precoding (Transmit Equalization)

Pre-invert channel at transmitter (if channel known via feedback):

Transmit: x = Ws

Where: $\mathbf{W} = \mathbf{H}^{-1}$ or MMSE variant

Advantage: Simple receiver (no equalization)

Disadvantage: Requires CSI at TX (feedback latency)

Used in: TDD systems (reciprocity), MU-MIMO downlink

15.13.3 3. Dirty Paper Coding (DPC)

Theoretical: Pre-cancel interference without power penalty

Practical approximation: Tomlinson-Harashima Precoding (THP)

Gain: Approaches capacity (multi-user downlink)

Complexity: High (not widely deployed)

15.14 Equalization Complexity

Method	Complexity (per symbol)	Notes
ZF (freq domain)	$O(\log N)$	FFT + per-tone multiply
MMSE (freq domain)	$O(\log N)$	FFT + per-tone multiply
Linear (time domain)	$O(N_{taps})$	FIR filter
DFE LMS	$O(N_f + N_b) \\ O(N)$	FF + FB filters Simple update
RLS	$O(N^2)$	Matrix operations
MLSE (Viterbi)	$O(M^L)$	$\stackrel{\cdot}{M}$ = constellation, L = ISI length

15.15 Design Guidelines

15.15.1 1. Choose Equalizer Type

Flat fading (delay spread < 0.1 symbol period): - No equalizer needed (or 1-tap phase correction)

Mild ISI (delay spread 0.1-1 symbol period): - Linear MMSE (5-15 taps) - Fractionally-spaced

Severe ISI (delay spread > 1 symbol period): - DFE (15+ feedforward, 5-10 feedback) - Or OFDM (avoid time-domain equalization)

Very severe ISI (delay spread > 5 symbols): - OFDM with guard interval - Or MLSE (if short burst)

15.15.2 2. Select Adaptation Algorithm

Slow channel (< 1 Hz Doppler): - LMS ($\mu=0.01$) - Low complexity

Moderate channel (1-100 Hz): - LMS ($\mu = 0.05$) or RLS - Update every symbol

Fast channel (100+ Hz): - RLS or decision-directed - Pilot-aided tracking

15.15.3 3. Training Overhead

Packet systems (WiFi, 5G): - Training per packet (10-20% overhead) - Decision-directed within packet

Continuous (TV, broadcast): - Sparse pilots (1-5% overhead) - Continuous tracking

Burst (GSM, satellite TDMA): - Midamble (10-15% overhead) - Per-burst estimation

15.16 Equalization vs Coding

Equalization: Removes ISI (deterministic distortion)

Coding: Corrects random errors (noise)

Combined: Achieves near-capacity - Coding gain: 5-10 dB - Equalization: Enables coding to

work (removes ISI)

Without equalization: Coding fails (BER floor from ISI)

15.17 Related Topics

- [[Multipath Propagation & Fading (Rayleigh, Rician)]]: Cause of ISI
- [[Channel Models (Rayleigh & Rician)]]: Simulation models
- [OFDM & Multicarrier Modulation]: Frequency-domain approach
- [Synchronization (Carrier, Timing, Frame)]: Complements equalization
- [MIMO & Spatial Multiplexing]: Multi-antenna equalization

164

Key takeaway: Channel equalization removes ISI from multipath. ZF inverts channel perfectly but amplifies noise (poor low SNR). MMSE trades ISI vs noise ($W=H^*/(|H|^2+\sigma^2)$), optimal at moderate SNR. DFE uses past decisions (feedback) to avoid noise enhancement—better than linear but error propagation risk. Adaptive: LMS simple (O(N), slow), RLS fast ($O(N^2)$, complex). Fractionally-spaced (T/2 sampling) is timing-independent. OFDM: Per-subcarrier 1-tap equalizer (frequency-domain, flat fading per tone). Channel estimation: Pilots (LS noisy, MMSE better). WiFi: Long preamble + pilots. LTE: CRS pilots, Wiener filtering. Turbo equalization: Iterative with decoder (+2-3 dB). Delay spread > 0.1T needs equalization. Severe ISI (>1T) \square Use OFDM or DFE. Coding + equalization = near-capacity.

This is the second of the fill	1	-1
This wiki is part of the [[F	nome Cnimera Projectjj	aocumentation.

16 Channel Models: Rayleigh & Rician Implementation

[[Home]]	Link Budge	et & System	Performance	[[Multipath	Propagation	& Fading	(Rayleigh,
Rician)]]	[Signal-to-No	oise Ratio (SN	IR)]				

Channel models are like flight simulators for radio engineers—they let you test communication systems in virtual cities, tunnels, and open fields before building real hardware!

The problem: - Can't test every scenario: urban, suburban, highway, indoor, etc. - Real-world testing is expensive (need hardware, locations, permits) - Need to test in bad conditions (rain, crowds, interference) - Can't test satellites or Mars missions easily!

The solution - Mathematical simulation: - Create computer models of radio environments - Run communication system in simulation - See how well it performs - Fix problems BEFORE building hardware!

The two main models:

- **1. Rayleigh Fading** (no line-of-sight): **Environment**: Dense urban (downtown), indoors, tunnels **Characteristic**: Signal bounces everywhere, no direct path **Result**: Wild signal fluctuations (30+ dB swings!) **Example**: Walking through city, WiFi in building with walls
- **2. Rician Fading** (strong line-of-sight): **Environment**: Suburban, rural, highways, open areas **Characteristic**: One strong direct path + weaker echoes **Result**: More stable signal, less severe fading **Example**: Highway cell tower, rural WiFi

How engineers use models:

Step 1: Pick scenario - "Designing WiFi for dense apartment building" □ use Rayleigh - "Designing highway cell system" □ use Rician

Step 2: Run simulation - Send 1 million test bits through model - Model adds realistic fading, multipath, noise

Step 3: Measure performance - How many errors? (Bit Error Rate) - How fast can it go? (Data rate) - Does it meet requirements?

Step 4: Iterate - Try different modulations (QPSK vs 64-QAM) - Add error correction (FEC) - Optimize until it works!

Real-world impact: - **5G standard**: Tested in standardized channel models before deployment - **Your WiFi**: Manufacturers test with Rayleigh/Rician models - **Satellite systems**: Simulated before launching \$500M satellite! - **Military radios**: Tested in tactical channel models

Why simulation beats real testing: - Reproducible: Same conditions every test - Extreme scenarios: Test 99.9th percentile bad cases - Fast: Test 10,000 scenarios in hours - Cheap: No hardware, no permits, no travel - Safe: Can test failure modes without consequences

Standards bodies define models: - **3GPP**: Defines channel models for 4G/5G (TDL-A, TDL-B, TDL-C) - **ITU**: Defines models for satellite, fixed wireless - **WiFi**: IEEE 802.11 working groups define indoor/outdoor models

Fun fact: When engineers designed the LTE standard (4G), they ran over 1 million simulations using standardized channel models. This is why 4G "just worked" globally from day one—they'd already tested every conceivable environment virtually!

16.2 Overview

Channel models simulate propagation effects for communication system design and testing.

Purpose: - **System simulation**: Test modulation/coding without real-world deployment - **Performance prediction**: Estimate BER vs SNR for different environments - **Algorithm development**: Design equalizers, synchronizers without hardware - **Standards compliance**: 3GPP, ITU specify reference channel models

Key models: 1. **AWGN**: Ideal (additive white Gaussian noise only) 2. **Rayleigh fading**: NLOS multipath (no dominant path) 3. **Rician fading**: LOS + multipath (K-factor parameterizes LOS strength) 4. **Frequency-selective**: Wideband channels with delay spread (ISI)

16.3 AWGN Channel

Simplest model: Received signal = transmitted signal + Gaussian noise

$$r(t) = s(t) + n(t)$$

Where: - s(t) = Transmitted signal - n(t) = White Gaussian noise, variance $\sigma^2 = N_0 B$

16.3.1 Implementation (MATLAB/Python)

import numpy as np

def awgn_channel(signal, snr_db):

```
11 11 11
    Add AWGN to signal for target SNR
    Args:
        signal: Complex baseband signal (numpy array)
        snr_db: Target SNR in dB
    Returns:
       Noisy signal
    # Signal power
    signal_power = np.mean(np.abs(signal)**2)
    # Noise power for target SNR
    snr_linear = 10**(snr_db/10)
    noise_power = signal_power / snr_linear
    # Generate complex Gaussian noise
    noise = np.sqrt(noise_power/2) * (np.random.randn(len(signal)) +
                                        1j*np.random.randn(len(signal)))
    return signal + noise
Usage:
tx_signal = np.array([1+0j, -1+0j, 1+1j, -1-1j]) # QPSK symbols
rx_signal = awgn_channel(tx_signal, snr_db=10)
```

16.4 Flat Fading Channel

Narrowband model: Single complex gain + AWGN

$$r(t) = h(t) \cdot s(t) + n(t)$$

Where: - h(t) = Complex channel gain (time-varying) - |h(t)| = Amplitude (Rayleigh or Rician distributed) - $\angle h(t)$ = Phase (uniformly distributed)

Flat fading applies when: Signal bandwidth ≪ coherence bandwidth

16.5 Rayleigh Fading Channel

Model: No LOS, many scattered paths with equal power

16.5.1 Statistical Properties

Envelope r = |h(t)| follows Rayleigh distribution:

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right), \quad r \geq 0$$

Mean: $\bar{r} = \sigma \sqrt{\pi/2}$

Variance: $\sigma_r^2 = \sigma^2(2 - \pi/2)$

Normalized (average power = 1): $\sigma^2=1/2$

16.5.2 Clarke's Model (Isotropic Scattering)

Assumption: Infinite scatterers uniformly distributed in azimuth

Doppler spectrum (U-shaped):

$$S(f) = \frac{1}{\pi f_d \sqrt{1 - (f/f_d)^2}}, \quad |f| < f_d$$

Where $f_d = v/\lambda$ = Maximum Doppler frequency

Autocorrelation:

$$R(\tau) = J_0(2\pi f_d \tau)$$

 J_0 = Bessel function of first kind, order 0

16.5.3 Jakes' Model (Sum of Sinusoids)

Efficient implementation using sum of sinusoids:

In-phase component:

$$h_I(t) = \frac{1}{\sqrt{M}} \sum_{m=1}^M \cos(2\pi f_d t \cos\theta_m + \phi_m)$$

Quadrature component:

$$h_Q(t) = \frac{1}{\sqrt{M}} \sum_{m=1}^M \sin(2\pi f_d t \cos\theta_m + \phi_m)$$

Where: - M = Number of scatterers (typically 8-20) - $\theta_m=\frac{2\pi m}{M}$ (equally spaced angles) - ϕ_m = Random phase, uniform [0, 2π]

Complex channel gain:

$$h(t) = h_I(t) + jh_Q(t)$$

16.5.4 Implementation (Jakes' Model)

```
def rayleigh_channel_jakes(N_samples, fd, fs, M=8):
    Generate Rayleigh fading channel using Jakes' model
    Args:
        N_samples: Number of time samples
        fd: Maximum Doppler frequency (Hz)
       fs: Sampling frequency (Hz)
        M: Number of scatterers (default 8)
    Returns:
        Complex channel gains h(t)
    t = np.arange(N_samples) / fs
    h_I = np.zeros(N_samples)
    h_Q = np.zeros(N_samples)
    for m in range(1, M+1):
       theta_m = 2*np.pi*m / M
        phi_m = np.random.uniform(0, 2*np.pi)
       h_I += np.cos(2*np.pi*fd*t*np.cos(theta_m) + phi_m)
        h_Q += np.sin(2*np.pi*fd*t*np.cos(theta_m) + phi_m)
   h_I /= np.sqrt(M)
   h_Q /= np.sqrt(M)
   h = (h_I + 1j*h_Q) / np.sqrt(2) # Normalize to unit power
    return h
Usage:
# Mobile @ 100 km/h (27.8 m/s), 2.4 GHz ( = 0.125 m)
fd = 27.8 / 0.125 \# 222 Hz
fs = 10000 # 10 kHz sampling
N = 10000 \# 1 second
h = rayleigh channel jakes(N, fd, fs)
# Apply to signal
```

```
tx_signal = np.ones(N) # Constant amplitude
rx_signal = h * tx_signal + awgn_channel(h * tx_signal, snr_db=10)
```

16.5.5 Verification

Check statistics:

```
import matplotlib.pyplot as plt
# Generate long realization
h = rayleigh_channel_jakes(100000, fd=100, fs=10000)
envelope = np.abs(h)
# Plot histogram vs theoretical Rayleigh PDF
plt.hist(envelope, bins=50, density=True, alpha=0.7, label='Simulated')
r = np.linspace(0, 3, 100)
sigma = 1/np.sqrt(2) # Normalized
pdf_rayleigh = (r/sigma**2) * np.exp(-r**2/(2*sigma**2))
plt.plot(r, pdf_rayleigh, 'r-', linewidth=2, label='Theoretical')
plt.xlabel('Envelope |h|')
plt.ylabel('PDF')
plt.legend()
plt.title('Rayleigh Fading Envelope Distribution')
plt.show()
# Check average power
print(f"Average power: {np.mean(np.abs(h)**2):.3f} (should be ~1.0)")
```

16.6 Rician Fading Channel

Model: Dominant LOS + scattered components

16.6.1 Statistical Properties

Envelope follows Rician distribution:

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2 + A^2}{2\sigma^2}\right) I_0\left(\frac{Ar}{\sigma^2}\right)$$

Where: - A = Amplitude of LOS component - I_0 = Modified Bessel function of first kind, order 0 **K-factor** (ratio of LOS to scattered power):

$$K = \frac{A^2}{2\sigma^2}$$

In dB: $K_{\mathrm{dB}} = 10 \log_{10}(K)$

Special cases: - K=0 (K = - ∞ dB): Pure Rayleigh (no LOS) - $K\to\infty$: Pure LOS (AWGN-like)

16.6.2 Implementation (LOS + Rayleigh)

```
def rician_channel(N_samples, K_dB, fd, fs, M=8):
    Generate Rician fading channel
   Args:
       N\_samples: Number of time samples
       K_dB: Rician K-factor in dB
       fd: Maximum Doppler frequency (Hz)
       fs: Sampling frequency (Hz)
       M: Number of scatterers
    Returns:
       Complex channel gains h(t)
   K = 10**(K_dB/10) # Convert to linear
    # LOS component (constant, unit phase)
   h_los = np.sqrt(K / (K+1)) * np.ones(N_samples)
    # Scattered component (Rayleigh fading)
   h_scatter = rayleigh_channel_jakes(N_samples, fd, fs, M)
   h_scatter *= np.sqrt(1 / (K+1)) # Scale for Rician
   return h_los + h_scatter
Usage:
# Suburban environment, K = 6 dB
h_rician = rician_channel(10000, K_dB=6, fd=100, fs=10000)
# Verify K-factor
los_power = np.mean(np.abs(np.sqrt(6/(6+1)) * np.ones(10000))**2)
scatter_power = np.mean(np.abs(h_rician - np.sqrt(6/(6+1)))**2)
K_estimated = 10*np.log10(los_power / scatter_power)
print(f"Estimated K-factor: {K_estimated:.1f} dB (target: 6.0 dB)")
```

16.6.3 Verification

```
# Generate Rician channel
h = rician_channel(100000, K_dB=6, fd=100, fs=10000)
envelope = np.abs(h)
# Plot histogram
plt.hist(envelope, bins=50, density=True, alpha=0.7, label='Simulated')
# Theoretical Rician PDF
from scipy.special import i0 # Modified Bessel IO
K = 10**(6/10) # 6 dB in linear
A = np.sqrt(K / (K+1))
sigma = np.sqrt(1 / (2*(K+1)))
r = np.linspace(0, 3, 100)
pdf_rician = (r/sigma**2) * np.exp(-(r**2 + A**2)/(2*sigma**2)) * i0(A*r/sigma**2)
plt.plot(r, pdf_rician, 'r-', linewidth=2, label='Theoretical K=6dB')
plt.xlabel('Envelope |h|')
plt.ylabel('PDF')
plt.legend()
plt.title('Rician Fading Envelope Distribution (K=6 dB)')
plt.show()
```

16.7 Frequency-Selective Fading (Tapped Delay Line)

Wideband model: Multiple delayed copies (taps)

$$h(t,\tau) = \sum_{l=0}^{L-1} h_l(t) \delta(\tau - \tau_l)$$

Where: - L = Number of paths (taps) - $h_l(t)$ = Complex gain of path l (Rayleigh or Rician) - τ_l = Delay of path l

Received signal:

$$r(t) = \sum_{l=0}^{L-1} h_l(t) s(t - \tau_l) + n(t)$$

16.7.1 Implementation (Tapped Delay Line)

```
def frequency_selective_channel(signal, fs, taps, delays_us, fd):
```

```
Frequency-selective fading channel (Rayleigh taps)
    Args:
        signal: Input signal (numpy array)
       fs: Sampling frequency (Hz)
        taps: List of tap powers (linear, sums to 1)
        delays us: List of tap delays (microseconds)
        fd: Maximum Doppler frequency (Hz)
   Returns:
        Output signal
   N = len(signal)
   output = np.zeros(N, dtype=complex)
   for tap_power, delay_us in zip(taps, delays_us):
        # Generate Rayleigh fading for this tap
       h_tap = rayleigh_channel_jakes(N, fd, fs)
       h_tap *= np.sqrt(tap_power) # Scale by tap power
        # Delay signal
        delay samples = int(delay us * 1e-6 * fs)
        signal_delayed = np.concatenate([np.zeros(delay_samples),
                                          signal[:N-delay samples]])
        # Apply fading and accumulate
        output += h_tap * signal_delayed
   return output
Usage (Urban channel):
# 3GPP Urban Macro (UMa) model simplified
taps = [0.5, 0.3, 0.15, 0.05] # Power profile (exponential decay)
delays_us = [0, 0.5, 1.0, 2.0] # Delays in microseconds
fd = 50 # Hz (pedestrian)
tx signal = np.random.randn(10000) + 1j*np.random.randn(10000)
rx_signal = frequency_selective_channel(tx_signal, fs=10e6,
                                         taps=taps, delays_us=delays_us, fd=fd)
# Add AWGN
rx_signal = awgn_channel(rx_signal, snr_db=10)
```

16.8 Standard Channel Models

16.8.1 3GPP Spatial Channel Model (SCM)

LTE/5G NR channel models:

Model	Environment	Delay Spread	Doppler	K-factor
EPA	Extended Pedestrian A	0.41 µs	Low (3 km/h)	-
EVA	Extended Vehicular A	2.51 µs	Medium (30 km/h)	-
ETU	Extended Typical Urban	5.0 µs	High (120 km/h)	-
CDL-A	Clustered Delay Line A	NLOS (varies)	Configurable	Rayleigh
CDL-B	Clustered Delay Line B	NLOS	Configurable	Rayleigh
CDL-C	Clustered Delay Line C	LOS	Configurable	Rician (K=13 dB)

16.8.2 ITU-R Pedestrian/Vehicular Models

Pedestrian A (low delay spread):

Тар	Delay (ns)	Power (dB)
1	0	0
2	110	-9.7
3	190	-19.2
4	410	-22.8

Vehicular A (moderate delay spread):

Тар	Delay (ns)	Power (dB)
1	0	0
2	310	-1
3	710	-9
4	1090	-10
5	1730	-15
6	2510	-20

16.8.3 Implementation (3GPP EPA)

16.9 Doppler Spectrum Visualization

Verify Doppler spread:

```
def plot_doppler_spectrum(h, fs):
    HHHH
    Plot PSD of channel to verify Doppler spectrum
    from scipy import signal as sig
    # Compute PSD
    f, Pxx = sig.welch(h, fs=fs, nperseg=1024)
   plt.figure()
    plt.semilogy(f, Pxx)
   plt.xlabel('Frequency (Hz)')
   plt.ylabel('PSD')
    plt.title('Doppler Power Spectrum')
    plt.grid(True)
    plt.show()
# Generate Rayleigh channel with fd = 100 Hz
h = rayleigh_channel_jakes(100000, fd=100, fs=10000)
plot_doppler_spectrum(h, fs=10000)
# Should show U-shaped spectrum extending \pm 100~Hz
```

16.10 BER Simulation with Fading

Complete system simulation:

```
def simulate_ber_rayleigh(EbNO_dB_range, M=4, N_bits=100000):
    Simulate BER for QPSK over Rayleigh fading + AWGN
    Args:
        EbNO_dB_range: Array of Eb/NO values (dB)
       M: Modulation order (4 for QPSK)
        N_bits: Number of bits to simulate
    Returns:
        BER for each Eb/NO
    import numpy as np
    BER = []
    for EbNO_dB in EbNO_dB_range:
        # Generate random bits
        bits = np.random.randint(0, 2, N_bits)
        # QPSK modulation (simplified)
        symbols = []
        for i in range(0, N_bits, 2):
            b = bits[i:i+2]
            if np.array_equal(b, [0,0]): symbols.append(1+1j)
            elif np.array_equal(b, [0,1]): symbols.append(-1+1j)
            elif np.array_equal(b, [1,0]): symbols.append(1-1j)
            else: symbols.append(-1-1j)
        symbols = np.array(symbols) / np.sqrt(2) # Normalize
        # Rayleigh fading (flat, slow fading - one h per symbol)
        N_symbols = len(symbols)
        h = (np.random.randn(N_symbols) + 1j*np.random.randn(N_symbols)) / np.sqrt(2)
        # Apply fading
        rx_symbols = h * symbols
        # AWGN (SNR per symbol = EbNO + 10log10(log2(M)))
        EsNO_dB = EbNO_dB + 10*np.log10(np.log2(M))
        rx_symbols = awgn_channel(rx_symbols, EsNO_dB)
        # Coherent demodulation (assume perfect CSI)
        rx_symbols_eq = rx_symbols / h # Zero-forcing equalization
        # QPSK demodulation (hard decision)
        bits rx = []
        for sym in rx_symbols_eq:
            if sym.real > 0 and sym.imag > 0: bits_rx.extend([0,0])
```

```
elif sym.real < 0 and sym.imag > 0: bits_rx.extend([0,1])
            elif sym.real > 0 and sym.imag < 0: bits_rx.extend([1,0])</pre>
            else: bits_rx.extend([1,1])
        # Count errors
        errors = np.sum(bits[:len(bits_rx)] != np.array(bits_rx))
        BER.append(errors / len(bits rx))
    return np.array(BER)
# Run simulation
EbNO_range = np.arange(0, 25, 2)
ber_rayleigh = simulate_ber_rayleigh(EbNO_range)
# Plot
plt.figure()
plt.semilogy(EbNO_range, ber_rayleigh, 'o-', label='Rayleigh fading')
plt.grid(True)
plt.xlabel('Eb/NO (dB)')
plt.ylabel('BER')
plt.title('QPSK BER: Rayleigh Fading with Perfect CSI')
plt.legend()
plt.show()
```

16.11 Channel Estimation

Practical systems need to estimate h(t):

16.11.1 Pilot-Based Estimation

Insert known symbols (pilots) periodically:

```
def pilot_channel_estimate(rx_signal, pilot_positions, pilot_symbols):
    """
    Estimate channel using pilots

Args:
    rx_signal: Received signal
    pilot_positions: Indices of pilot symbols
    pilot_symbols: Known pilot symbols

Returns:
    Channel estimates at pilot positions
"""
h_est = np.zeros(len(pilot_positions), dtype=complex)

for i, pos in enumerate(pilot_positions):
```

```
\# h = rx / tx (assuming noiseless for simplicity)
        h_est[i] = rx_signal[pos] / pilot_symbols[i]
    return h_est
def interpolate_channel(h_pilots, pilot_positions, N_total):
    Interpolate channel between pilots
    # Linear interpolation
    h_full = np.interp(np.arange(N_total), pilot_positions, h_pilots)
    return h_full
# Example
N = 1000
pilot_spacing = 10
pilot_positions = np.arange(0, N, pilot_spacing)
pilot_symbols = np.ones(len(pilot_positions)) # BPSK pilots
# Generate channel
h_true = rayleigh_channel_jakes(N, fd=20, fs=1000)
# Simulate RX
tx_signal = np.random.randn(N) + 1j*np.random.randn(N)
tx_signal[pilot_positions] = pilot_symbols # Insert pilots
rx_signal = h_true * tx_signal
# Estimate
h_pilots = pilot_channel_estimate(rx_signal, pilot_positions, pilot_symbols)
h_est = interpolate_channel(h_pilots, pilot_positions, N)
# Compare
mse = np.mean(np.abs(h_true - h_est)**2)
print(f"Channel estimation MSE: {10*np.log10(mse):.1f} dB")
```

16.12 Summary of Channel Models

Model	Use Case	Complexity	Realism
AWGN	Satellite LOS, benchmarking	Low	Idealized
Rayleigh (Jakes)	Urban NLOS, mobile	Medium	Good for NLOS
Rician Tapped delay line	Suburban LOS+scatter Wideband, frequency-selective	Medium High	Good for partial LOS Excellent

Use Case	Complexity	Realism
LTE/5G NR	Very high	Industry standard
_		· ·

16.13 Practical Implementation Tips

- 1. Sampling rate: Choose $f_s\gg 2f_d$ to avoid aliasing Doppler spectrum (typically $f_s>50f_d$)
- 2. **Number of scatterers**: M = 8-16 sufficient for Jakes' model (higher M = smoother statistics but slower)
- 3. **Normalization**: Always verify average channel power = 1 (so SNR definition consistent)
- 4. **CSI assumption**: Perfect CSI (known h) ☐ Upper bound. Pilot-based estimation ☐ Practical performance
- 5. **Long simulations**: Need many fade cycles for accurate BER (typically > 100/BER bits)
- 6. Tap spacing: For frequency-selective, ensure tap delays match expected delay spread $(\tau_{\rm rms})$

16.14 Related Topics

- [[Multipath Propagation & Fading (Rayleigh, Rician)]]: Theory behind channel models
- [Signal-to-Noise Ratio (SNR)]: SNR definition for fading channels
- [Bit Error Rate (BER)]: Performance metric vs fading
- [Complete Link Budget Analysis]: Using fading margin in link budget
- [OFDM & Multicarrier Modulation]: Combats frequency-selective fading
- [Channel Equalization]: Compensates for ISI in frequency-selective channels

Key takeaway: Channel models enable realistic system simulation without hardware. AWGN is baseline, Rayleigh for NLOS mobile, Rician for partial LOS, tapped delay line for wideband ISI. Jakes' model efficiently generates Rayleigh fading with correct Doppler spectrum. 3GPP CDL models are industry-standard for LTE/5G. Pilot-based channel estimation is practical approach. Always verify statistics (envelope PDF, average power, Doppler spectrum) match theory.

This wiki is part of the [[Home Chimera Project]] documentation.	

17 Complete Link Budget Analysis

[[Home]] | Link Budget & System Performance | [Free-Space Path Loss (FSPL)] | [Signal-to-Noise Ratio (SNR)]

Link budget is like a financial budget for radio power—you start with transmit power, subtract losses, add gains, and see if there's enough "money" (signal) left at the receiver!

The fundamental question: > "If I transmit from HERE to THERE, will the receiver get enough signal?"

The accounting:

START: Transmit power - Your WiFi router: 100 mW (20 dBm) - Your phone: 200 mW (23 dBm) - Cell tower: 20 W (43 dBm) - Satellite: 100 W (50 dBm)

GAINS (things that help): -

Transmit antenna gain: Directional antenna focuses power - WiFi router: +2 dB (omnidirectional) - Satellite dish: +40 dB (very focused!) -

Receive antenna gain: Bigger receiver antenna collects more - Phone: +0 dB (tiny antenna) - Satellite dish: +35 dB

LOSSES (things that hurt): -

Free space path loss: Signal spreads out with distance - WiFi (50m): -74 dB - Cell tower (1 km): -100 dB

END: Received signal power - Must be stronger than noise floor! - Typical requirement: Signal > Noise + 10 to 20 dB

Example - WiFi Link Budget:

Transmit power: +20 dBm (100 mW)

+ Transmit antenna: +2 dB

EIRP (total radiated): +22 dBm

- Free space loss (50m): -74 dB - Wall loss (2 walls): -10 dB

Received power: -62 dBm

Noise floor: -90 dBm

SNR: 28 dB Good!

Real-world example - Satellite TV:

Satellite transmit: +50 dBm (100 W) + Satellite antenna: +35 dB (huge!) - Path loss (36,000 km): -206 dB (ouch!)

+ Your dish: +35 dB

Received power: -86 dBm (tiny!)

Noise floor: -100 dBm

SNR: 14 dB Just enough!

Why link budget matters: - System design: "Do I need a bigger antenna?" - Troubleshooting: "Why is my signal weak?" - Standards: "What's the maximum range?" - Cost optimization: "Can I use cheaper components?"

The critical moment: - If received power > noise + margin □ Link works! □ - If received power < noise + margin □ Link fails! □ - **Margin**: Extra dB for safety (rain, interference, fading) - Good design: 10-20 dB margin - Marginal design: 3-5 dB margin (risky!)

When you see it: - WiFi extender ads: "Extends range by 20 dB!" (link budget calc) - Satellite dish size: Bigger = more gain = closes link budget - Cell tower placement: Engineers run link budgets for coverage - "Can you hear me now?": That's a link budget test!

Fun fact: The Voyager 1 spacecraft (13+ billion miles away) transmits at 23 W, but by the time it reaches Earth, the signal is 10^-16 watts—that's 0.00000000000001 watts! Only massive 70-meter dishes with careful link budgets can hear it!

17.2 Overview

Link budget is a comprehensive accounting of **all gains and losses** from transmitter to receiver, determining if a communication link will work.

Purpose: Answer the critical question: > "Will the receiver get enough signal power to achieve the required data rate and error rate?"

Bottom line:

$$P_r = P_t + G_t - L_{\rm total} + G_r \quad ({\rm dBm~or~dBW})$$

Where all gains/losses are in dB

Link closes if: $P_r > P_{\min}$ (receiver sensitivity)

 $\mbox{Margin:} \ M = P_r - P_{\min} \ \mbox{(dB of safety buffer)}$

17.3 Link Budget Components

17.3.1 1. Transmitter Side

17.3.1.1 Transmitted Power (P_t) RF power delivered to antenna (after all TX losses):

$$P_t = P_{\rm amp} - L_{\rm TX} \quad ({\rm dB})$$

Where: - $P_{\rm amp}$ = Power amplifier output (dBm) - $L_{\rm TX}$ = TX losses (cables, filters, circulators)

Example: WiFi router - PA output: 20 dBm (100 mW) - Cable/connector loss: 0.5 dB - $P_t = 20-0.5 = 19.5 \, \mathrm{dBm}$

17.3.1.2 Transmit Antenna Gain (G_t) Gain relative to isotropic radiator (dBi):

EIRP (Effective Isotropic Radiated Power):

$$EIRP = P_t + G_t \quad (dBm \text{ or } dBW)$$

Example: - $P_t = 19.5 \ \mathrm{dBm}$ - $G_t = 2 \ \mathrm{dBi}$ (WiFi router) - EIRP = 19.5 + 2 = 21.5 \ \mathrm{dBm}

Regulatory limits: FCC limits EIRP (e.g., 36 dBm for 2.4 GHz WiFi)

17.3.2 2. Propagation Path

17.3.2.1 Free-Space Path Loss (FSPL) Loss due to spherical spreading:

$$L_{\rm FSPL} = 20 \log_{10}(d) + 20 \log_{10}(f) + 20 \log_{10}\left(\frac{4\pi}{c}\right)$$

Simplified:

$$L_{\rm FSPL} = 32.45 + 20 \log_{10}(d_{\rm km}) + 20 \log_{10}(f_{\rm MHz}) \quad ({\rm dB})$$

Example: WiFi @ 2.4 GHz, 100 m - f=2400 MHz, d=0.1 km

$$L_{\rm FSPL} = 32.45 + 20\log_{10}(0.1) + 20\log_{10}(2400)$$

$$=32.45-20+67.6=80\,\mathrm{dB}$$

See: [Free-Space Path Loss (FSPL)]

17.3.2.2 Atmospheric Absorption Oxygen and water vapor absorption (significant > 10 GHz):

Zenith attenuation (at sea level):

Frequency		Attenuation (dB/km)	Notes
< 10 GHz	< 0.01	Neglig	gible
22.2 GHz	0.2	H₂O re	esonance
60 GHz	15	O ₂ res	sonance (peak)
120 GHz	2	Secor	ndary O ₂ line
183 GHz	5	H₂O li	ne

Example: Ka-band satellite @ 20 GHz, 5° elevation (path length ~ 11 km through atmosphere) - Attenuation: $\sim 0.05 \text{ dB/km} \times 11 \text{ km} = 0.55 \text{ dB}$

See: [[Atmospheric Effects (Ionospheric, Tropospheric)]]

17.3.2.3 Rain Attenuation Dominant impairment for satellite Ku/Ka/V-band:

ITU-R model: $\gamma_R = k \cdot R^{\alpha}$ (dB/km)

Example: Ku-band @ 12 GHz, heavy rain (25 mm/hr), 4 km path - k = 0.0188, α = 1.217 - γ_R = $0.0188 \times 25^{1.217} = 1.2$ dB/km - **Total loss**: $1.2 \times 4 = 4.8$ dB

At 99% availability: Design for rain rate exceeded 1% of time (temperate: 12 mm/hr, tropical: 42 mm/hr)

See: [[Weather Effects (Rain Fade, Fog Attenuation)]]

17.3.2.4 Other Propagation Effects

Effect	Typical Loss	When Applicable
Ionospheric scintillation	1-20 dB	L-band satellite, equatorial, solar max
Tropospheric scintillation	0.5-2 dB	Low elevation, > 10 GHz
Polarization mismatch	0-∞ dB	Antenna misalignment, Faraday rotation
Multipath fading	10-30 dB	Mobile, urban NLOS
Foliage loss	0.3-1 dB/m	Trees, vegetation (VHF/UHF)
Building penetration	5-20 dB	Indoor (depends on freq, materials)

See: [[Multipath Propagation & Fading (Rayleigh, Rician)]], [Wave Polarization]

-

17.3.3 3. Receiver Side

17.3.3.1 Receive Antenna Gain (G_r) Same concept as TX antenna (reciprocity):

Example: WiFi laptop - $G_r=0$ dBi (omnidirectional)

Directional antenna: - Parabolic dish: 30-60 dBi (satellite) - Yagi: 10-15 dBi (TV, point-to-point)

17.3.3.2 Receiver Losses (L_RX) Losses between antenna and receiver input:

- Cable loss: 0.5-3 dB (depends on length, freq, cable type)
- Connector loss: 0.1-0.5 dB per connector
- Filter loss: 0.5-2 dB (bandpass filters)
- Circulator/duplexer loss: 0.5-1 dB

Example: Satellite ground station - Cable: 2 dB (long run from dish to equipment room) - Connectors: 0.3 dB - LNA inline: -40 dB (gain, not loss!) - **Net**: 2 + 0.3 - 40 = -37.7 dB (LNA provides gain)

17.3.3.3 Receiver Sensitivity (P_min) Minimum signal power for acceptable performance:

$$P_{\rm min} = -174 + 10\log_{10}(B) + {\rm NF} + {\rm SNR}_{\rm reg} + L_{\rm impl} \quad ({\rm dBm}) \label{eq:pmin}$$

Where: - -174 dBm/Hz: Thermal noise floor at 290 K - B: Bandwidth (Hz) - NF: Noise figure (dB) - SNR_req: Required SNR for demodulation (dB) - L_impl: Implementation loss (quantization, imperfect sync, etc.) ~1-3 dB

Example: WiFi 802.11n, 20 MHz channel, QPSK 1/2 - Bandwidth: 20 MHz = 73 dBHz - NF: 6 dB (typical WiFi chipset) - SNR_req: 5 dB (QPSK with robust FEC) - L_impl: 2 dB - $P_{\rm min} = -174 + 73 + 6 + 5 + 2 = -88$ dBm

See: [Noise Sources & Noise Figure]

17.4 Complete Link Budget Equation

$$P_r = \mathrm{EIRP} - L_{\mathrm{FSPL}} - L_{\mathrm{atm}} - L_{\mathrm{rain}} - L_{\mathrm{other}} + G_r - L_{\mathrm{RX}}$$

Expanded:

$$P_r = [P_t + G_t] - L_{\mathsf{FSPL}} - L_{\mathsf{atm}} - L_{\mathsf{rain}} - L_{\mathsf{multipath}} - L_{\mathsf{misc}} + [G_r - L_{\mathsf{cable}}]$$

Link margin:

$$M=P_r-P_{\min}$$

Design guideline: $M \geq 10~\mathrm{dB}$ (provides fade margin, interference tolerance)

17.5 Example 1: WiFi Indoor Link

Scenario: 2.4 GHz WiFi, 802.11n, 20 MHz, QPSK 1/2, 50 m indoor

17.5.1 Transmitter

PA output: 20 dBm
Cable loss: 0.5 dB
P_t: 19.5 dBm
Antenna gain: 2 dBi
EIRP: 21.5 dBm

17.5.2 Path

• Free-space loss @ 50 m, 2.4 GHz:

$$L_{\rm FSPL} = 32.45 + 20\log_{10}(0.05) + 20\log_{10}(2400) = 32.45 - 26 + 67.6 = 74~{\rm dB}$$

• Wall penetration (2 walls × 5 dB): 10 dB

• **Total path loss**: 74 + 10 = 84 dB

17.5.3 Receiver

· Antenna gain: 0 dBi (laptop internal)

· Cable loss: 0 dB (integrated)

Received power:

$$P_r = 21.5 - 84 + 0 = -62.5 \ \mathrm{dBm}$$

17.5.4 Sensitivity

• Thermal noise: -174 dBm/Hz + 73 dBHz = -101 dBm

NF: 6 dB

• SNR_req: 5 dB (QPSK 1/2)

· Impl loss: 2 dB

• **P_min**: -101 + 6 + 5 + 2 = -88 dBm

17.5.5 Margin

$$M=-62.5-(-88)=25.5~{\rm dB}$$

Result: Link closes comfortably with 25.5 dB margin (can tolerate fading, interference)

17.6 Example 2: GEO Satellite Ku-band Downlink

Scenario: 12 GHz downlink, 36,000 km slant range, 1 m dish RX, clear sky

17.6.1 Transmitter (Satellite)

Satellite PA: 100 W = 50 dBm

• TX antenna gain: 30 dBi (spot beam)

• **EIRP**: 80 dBm = 80 dBW

17.6.2 Path

Distance: 36,000 kmFrequency: 12 GHz

$$L_{\rm FSPL} = 32.45 + 20\log_{10}(36,000) + 20\log_{10}(12,000)$$

$$=32.45+91.1+81.6=205\,\mathrm{dB}$$

• Atmospheric absorption (5° elevation): 0.5 dB

· Clear-sky rain (0.01 mm/hr): 0.01 dB (negligible)

Ionospheric scintillation margin: 2 dB

• Total path loss: 205 + 0.5 + 0 + 2 = 207.5 dB

17.6.3 Receiver (Ground Station)

· Dish diameter: 1 m

Antenna gain (eff 60%):

$$G_r = 10\log_{10}\left(0.6\times\left(\frac{\pi\times1}{0.025}\right)^2\right) = 10\log_{10}(0.6\times1580) = 37.8~\mathrm{dBi}$$

LNA noise figure: 0.8 dB (cryogenic)

· Cable loss: 1 dB

• Net RX gain: 37.8 - 1 = 36.8 dB

Received power:

$$P_r = 80 - 207.5 + 36.8 = -90.7 \text{ dBm}$$

17.6.4 Sensitivity (DVB-S2, QPSK 3/4, 36 MHz bandwidth)

• Bandwidth: 36 MHz = 75.6 dBHz

• Thermal noise: -174 + 75.6 = -98.4 dBm

NF: 0.8 dB (LNA at antenna)

SNR_req: 6.5 dB (QPSK 3/4 with LDPC)

Impl loss: 1.5 dB

• **P_min**: -98.4 + 0.8 + 6.5 + 1.5 = -89.6 dBm

17.6.5 Margin (Clear Sky)

$$M = -90.7 - (-89.6) = -1.1 \text{ dB}$$

Uh oh! Link fails in clear sky (need higher gain or more TX power)

Fix: Increase dish to 1.8 m - New gain: $37.8 + 20\log(1.8) = 42.9$ dBi - New P_r : 80 - 207.5 + 42.9 = -84.6 dBm - **New margin**: -84.6 - (-89.6) = **5 dB** (marginal)

With 99% rain margin (add 5 dB rain attenuation): - P_r in rain: -84.6 - 5 = -89.6 dBm - Rain margin: 0 dB (link at threshold!)

Better fix: Use 2.4 m dish - Gain: 47.5 dBi - Clear sky: -80 dBm, margin 10 dB - 99% rain: -85 dBm, margin 5 dB

17.7 Example 3: Cellular LTE (2.6 GHz)

Scenario: eNodeB to UE, 2.6 GHz, 10 MHz RB, QPSK 1/2, 5 km suburban

17.7.1 Transmitter (Cell Tower)

- PA per antenna: 43 dBm (20 W)
- · TX antenna: 17 dBi (sector antenna)
- · Cable loss: 2 dB
- **EIRP**: 43 + 17 2 = 58 dBm

17.7.2 Path

• FSPL @ 5 km, 2.6 GHz:

$$L_{\rm FSPL} = 32.45 + 20\log_{10}(5) + 20\log_{10}(2600) = 32.45 + 14 + 68.3 = 115~{\rm dB}$$

- Shadowing margin (suburban log-normal): 8 dB (for 90% coverage)
- Building penetration: 10 dB (indoor UE)
- Total path loss: 115 + 8 + 10 = 133 dB

17.7.3 Receiver (UE)

- · Antenna gain: -2 dBi (internal, near body)
- Received power:

$$P_r = 58 - 133 - 2 = -77~{\rm dBm}$$

17.7.4 Sensitivity (10 MHz, QPSK 1/2)

- Bandwidth: 10 MHz = 70 dBHz
- Thermal noise: -174 + 70 = -104 dBm
- NF: 9 dB (smartphone front-end)

• SNR_req: 4 dB (QPSK 1/2 Turbo code)

· Impl loss: 2 dB

• **P_min**: -104 + 9 + 4 + 2 = -89 dBm

17.7.5 Margin

$$M = -77 - (-89) = 12 \ \mathrm{dB}$$

Result: Link closes with 12 dB margin (adequate for mobile fading)

With Rayleigh fading (10 dB fade depth @ 10% time): - Faded P_r : -77 - 10 = -87 dBm - Faded margin: -87 - (-89) = 2 dB (still works, but error rate increases)

Diversity RX (2 antennas, max ratio combining): - Diversity gain: 5 dB (typical for 2-branch) - Effective P_r in fade: -87 + 5 = -82 dBm - **Margin with diversity**: -82 - (-89) = 7 dB (much better!)

17.8 Link Budget Table Template

Parameter	Symbol	Value	Units	Notes
TRANSMITTER				
TX power (PA)	P_{amp}		dBm	
TX losses	$\begin{array}{c} L_{TX} \\ P_t \\ G_t \end{array}$		dB	Cables, filters
Transmit power	P_t		dBm	$P_{\rm amp}-L_{\rm TX}$
TX antenna gain	G_t		dBi	- ~
EIRP			dBm	$P_t + G_t$
PROPAGATION	7			
Distance	$\frac{d}{c}$		km	
Frequency	f		GHz	00.45
Free-space loss	${\cal L}_{\rm FSPL}$		dB	32.45 +
				20log(d) + 20log(f)
Atmospheric loss	I.		dB	2010g(1)
Rain attenuation	$L_{atm} \ L_{rain}$		dB	ITU model
Other losses	$L_{ m other}^{L_{ m rain}}$		dB	Multipath,
0 11101 100000	other		Q.D	penetration,
				etc.
Total path loss	$L_{\rm total}$		dB	Sum
RECEIVER				
RX antenna gain	$\begin{array}{c} G_r \\ L_{\rm RX} \end{array}$		dBi	
RX losses	$L_{\sf RX}$		dB	Cables,
	_			connectors
Received power	P_r		dBm	EIRP - L_{total} +
D=D=0D14410F				G_r - L_{RX}
PERFORMANCE	D		N 41 1	
Bandwidth	B		MHz	

Parameter	Symbol	Value	Units	Notes
Thermal noise	N_0	-174 + 10log(B)	dBm	
Noise figure	NF		dB	
Noise power	N	N_0 + NF	dBm	
Required SNR	SNR_req	Ü	dB	For target BER
Impl loss	L_{impl}		dB	Typically 1-3 dB
Sensitivity	P_{min}		dBm	$\begin{array}{c} N + {\rm SNR_req} \\ + L_{\rm impl} \end{array}$
MARGIN	M		dB	$P_r - P_{\min}$

17.9 Fade Margin Design Guidelines

Clear-sky margin (no fading): - Satellite (GEO Ku/Ka): 5-10 dB - Terrestrial LOS: 10-15 dB - Mobile (NLOS): 15-20 dB

Rain margin (satellite): - **Availability**: 99% ☐ 5-8 dB, 99.9% ☐ 10-15 dB, 99.99% ☐ 20-30 dB - **Frequency**: Ku-band: 3-10 dB, Ka-band: 10-20 dB

Multipath fading margin: - **Rayleigh fading**: 20-30 dB for 90% location reliability - **Rician K=6** dB: 10-15 dB

Total design margin:

$$M_{\rm total} = M_{\rm clear} + M_{\rm rain} + M_{\rm fade}$$

Trade-off: Higher margin □ More expensive (bigger antennas, more power)

17.10 Adaptive Techniques

Adaptive Coding and Modulation (ACM):

Concept: Change modulation/code rate based on channel conditions

Example: DVB-S2X satellite - Clear sky: 32APSK 9/10 \square 3.5 bits/symbol, needs C/N = 16 dB - Light rain: 8PSK 3/4 \square 2.25 bits/symbol, needs C/N = 11 dB - Heavy rain: QPSK 1/2 \square 1 bit/symbol, needs C/N = 4 dB

Benefit: Maximize throughput when conditions good, maintain connectivity when conditions poor

17.11 Link Availability

Probability link meets performance requirement:

$$\text{Availability} = \frac{\text{Time link works}}{\text{Total time}} \times 100\%$$

Target availability (depends on application): - Data networks: 99.9% (8.76 hours/year downtime) - Voice: 99.99% (52.6 minutes/year) - Mission-critical: 99.999% (5.26 minutes/year)

Dominated by rain (for satellite Ku/Ka-band):

ITU rain statistics: - Temperate: 12 mm/hr exceeded 1% of time (3.65 days/year) - Tropical: 42 mm/hr exceeded 1% of time

Design procedure: 1. Choose target availability (e.g., 99.9%) 2. Find rain rate exceeded 0.1% of time (e.g., 25 mm/hr temperate) 3. Calculate rain attenuation for that rain rate 4. Ensure link margin > rain attenuation

17.12 Summary

Link budget essentials:

1. **EIRP** = TX power + TX gain (dBm)

- 2. **Path loss** = FSPL + atmospheric + rain + other (dB)
- 3. **RX power** = EIRP path loss + RX gain RX losses (dBm)
- 4. **Sensitivity** = Noise floor + NF + SNR_req + impl loss (dBm)
- 5. **Margin** = RX power sensitivity (dB, must be positive!)

Design targets: - Clear-sky margin: 10+ dB - Rain margin: 5-20 dB (depends on frequency, availability) - Total margin: 15-30 dB typical

Adaptive techniques (ACM, diversity) improve spectral efficiency and availability.

17.13 Related Topics

- [Free-Space Path Loss (FSPL)]: Dominant loss mechanism
- [Signal-to-Noise Ratio (SNR)]: Determines required C/N
- [Noise Sources & Noise Figure]: RX sensitivity calculation
- [[Energy Ratios (Es N0 and Eb N0)]]: Alternative SNR metrics
- [[Weather Effects (Rain Fade, Fog Attenuation)]]: Rain margin design
- [[Multipath Propagation & Fading (Rayleigh, Rician)]]: Fade margin for mobile
- [Bit Error Rate (BER)]: Performance metric vs SNR

Key takeaway: Link budget is systematic accounting of all gains/losses from TX to RX. Start with EIRP, subtract path losses, add RX gain, compare to sensitivity. Margin = difference. Design for 10-30 dB total margin to handle fading, rain, interference. Adaptive techniques maximize throughput while maintaining connectivity.

This wiki is part of the [[Home|Chimera Project]] documentation.

18 Constellation Diagrams

18.1 For Non-Technical Readers

A constellation diagram is like a visual map showing all the "hand signals" your WiFi/phone can use to send data—each dot is a unique signal position!

The analogy - Lighthouse signals: - Imagine you're communicating with lighthouse beams - You can vary: **brightness** (amplitude) and **color** (phase) - Each unique combination = one symbol (represents some bits) - Constellation diagram = map showing all possible combinations!

Real example - QPSK (4 dots):

```
Q
↑
• | • ← 4 positions = 2 bits per symbol
→ I
• | •
• Top-right • = "00"
• Top-left • = "01"
• Bottom-left • = "10"
• Bottom-right • = "11"
```

Why dots matter: - More dots = more data per symbol = faster! - QPSK: 4 dots (2 bits/symbol) - 16-QAM: 16 dots (4 bits/symbol) = 2× faster - 256-QAM: 256 dots (8 bits/symbol) = 4× faster! - Dots closer together = harder to distinguish when noisy - Your phone uses fewer dots when signal is weak (reliable) - Uses more dots when signal is strong (fast!)

When you see it: - WiFi speed negotiation: "Constellation: 64-QAM" = using 64-dot map - Spectrum analyzer: Shows received dots scattered around ideal positions (noise!) - Signal quality: Dots tight = good signal, dots spread out = noisy channel

Fun fact: Your WiFi constantly monitors how scattered the received dots are and automatically switches between constellations (4/16/64/256/1024-QAM) to optimize speed vs reliability!

A **constellation diagram** is a visual representation of a digital modulation scheme. It shows all possible symbol positions in the I/Q plane.

18.2 Reading a Constellation Diagram

```
Q (Imaginary)
```

18.3 Key Elements

- 1. **Ideal Points**: Perfect symbol positions (clean transmission)
- 2. Received Cloud: Actual received symbols scattered due to noise
- 3. **Decision Boundaries**: Regions that determine which symbol was sent

18.4 TX vs RX Constellations

18.4.1 TX Constellation (Transmitter)

- Shows ideal symbol positions
- · Points are crisp and perfectly positioned
- · Represents what was intended to be transmitted

18.4.2 RX Constellation (Receiver)

- · Shows received symbol positions after channel effects
- · Points are scattered in clouds around ideal positions
- · Scattering indicates noise level and channel quality
- Larger scatter = more noise = harder to decode correctly

18.5 What the Constellation Tells You

	Pattern Meaning Quality	/ -
Tight clusters	Low noise, high SNR	Excellent
Scattered clouds	High noise, low SNR	Poor
Symbol overlap	Very poor signal quality	Critical
Pattern offset	Frequency or phase errors	Requires correction

18.6 Example: QPSK Constellation at Different SNR Levels

18.6.1 High SNR (-5 dB Channel)

```
\rightarrow I Perfect separation \bullet | \bullet
```

18.6.2 Medium SNR (-15 dB Channel)

18.6.3 Low SNR (-25 dB Channel)

```
Q
↑
...|... ← Heavy scatter
...|... ← Heavy scatter
...|... Errors likely
...|... FEC required
...|...
...|...
```

18.7 Observing Constellations in Chimera

When you run a simulation:

- 1. TX Constellation Panel: See the ideal QPSK symbol positions
- 2. RX Constellation Panel: See how noise scatters the received symbols
- 3. Adjust SNR: Watch how constellation quality changes in real-time

The constellation is the most intuitive way to understand signal quality!

18.8 See Also

- [QPSK Modulation] The modulation scheme being visualized
- [[Signal to Noise Ratio (SNR)]] What controls the scatter
- [IQ Representation] The coordinate system
- [[Reading the Constellation]] Practical interpretation guide

19 Convolutional Codes & Viterbi Decoding

[[Home]] | Coding Theory | [Block Codes (Hamming, BCH, Reed-Solomon)] | [Turbo Codes]

19.1 For Non-Technical Readers

Convolutional codes + Viterbi decoding is like having a GPS that considers your entire journey to figure out where you really are—even if some GPS samples are noisy!

The Problem: - Noise corrupts transmitted bits: some 0s become 1s, some 1s become 0s - How do you figure out what was actually sent?

The Convolutional Code Solution - Add memory: 1. Instead of encoding each bit independently, the encoder "remembers" previous bits 2. Each output bit depends on current + past few input bits 3. This creates patterns—if one bit gets corrupted, the pattern breaks and decoder notices!

The GPS Analogy: - **Bad GPS**: Each position reading is independent - Get noisy reading? Can't tell if it's wrong! - **Smart GPS**: Considers your speed, direction, previous positions - Get noisy reading that says you teleported 5 miles? "That's impossible, ignore it!"

Viterbi Decoding - Find the most likely path: - Looks at entire received sequence - Considers all possible paths the data could have taken - Picks the path that best matches what was received (even with errors!)

Real-world example - Space probes: - **Voyager spacecraft**: 15+ billion miles away, incredibly noisy signal - Uses convolutional code with Viterbi decoding - Can correct errors even when 30-40% of bits are corrupted! - This is why we still get photos from interstellar space!

Everyday uses: - **WiFi**: 802.11a/g use convolutional codes - **Satellite TV**: DVB-S uses convolutional + Viterbi - **GSM (2G)**: Your old cell phone used this - **GPS signals**: Navigation satellites use convolutional codes

Why it works: - Pattern-based: Errors break patterns, decoder spots them - Context-aware: Uses past data to correct current data - Optimal: Viterbi finds the single best answer (mathematically proven!)

Trade-off: More memory = better error correction BUT more complex decoder. Most systems use 3-7 bits of memory (called "constraint length").

Fun fact: Andrew Viterbi invented this algorithm in 1967 for deep space communications—then co-founded Qualcomm, making billions from the algorithm used in every cell phone!

19.2 Overview

Convolutional codes encode data **continuously** (not in fixed blocks).

Key difference from block codes: - **Block codes**: Encode k bits \square n bits independently - **Convolutional codes**: Output depends on current + **previous** input bits (memory)

Applications: Satellite (DVB, GPS), WiFi, LTE, deep space (Voyager, Mars)

Advantages: - Excellent performance with soft-decision decoding - Low latency (streaming) - Viterbi algorithm (optimal ML decoding)

194

19.3 Basic Concepts

19.3.1 Constraint Length (K)

Constraint length K = Number of input bits affecting output

Memory: m = K - 1 (number of shift register stages)

Example: K=3 - Current bit + 2 previous bits \square 3 total

19.3.2 Code Rate (r)

Rate r = k/n: - k = Input bits per time step - n = Output bits per time step

Common rates: $-\mathbf{r} = 1/2$: 1 bit in \square 2 bits out $-\mathbf{r} = 1/3$: 1 bit in \square 3 bits out $-\mathbf{r} = 2/3$: 2 bits in \square 3 bits out (punctured)

19.3.3 Encoder Structure

Shift register + modulo-2 adders (XOR gates)

Example (r=1/2, K=3):

Connections: Define which register stages feed which XORs

19.4 Convolutional Encoder Example

19.4.1 NASA Standard (r=1/2, K=7)

Used in: Voyager, Cassini, Mars rovers

Generator polynomials (octal notation): - $g_1=171_8=1111001_2$ - $g_2=133_8=1011011_2$

Structure:

Where: D0 = current input, D1-D6 = previous 6 inputs

19.4.2 Encoding Example

Input: 101

Initial state: All zeros [000000]

Time	Input	State	Y1	Y2	Output
0	1	100000	1	1	11
1	0	010000	1	0	10
2	1	101000	0	1	01
(flush)	0	010100	0	0	00
(flush)	0	001010	1	1	11
		•••		•••	•••

Output: 11 10 01 00 11 ... (12 bits for 3 input bits + flush)

19.5 State Diagram

States: All possible shift register contents

For K=3: $2^{K-1}=2^2=4$ states - State 00, State 01, State 10, State 11

Transitions: Input bit determines next state

Example (r=1/2, K=3, g1=111, g2=101):

State diagram:

Notation: Input/Output (e.g., "1/11" = input 1 produces output 11)

19.6 Trellis Diagram

Trellis: State diagram unrolled in time

Example (K=3, 4 time steps):

Legend:

Solid line = Input 0
Dashed line = Input 1

Each branch labeled with output bits

Path through trellis = Encoded sequence

Decoding: Find most likely path (Viterbi algorithm)

19.7 Viterbi Algorithm

Optimal maximum-likelihood (ML) decoding for convolutional codes

Idea: Find path through trellis with minimum distance to received sequence

Complexity: $O(2^{K-1} \cdot L)$ where L = sequence length

Practical: Efficient for $K \leq 9$

19.7.1 Algorithm Steps

- 1. **Initialize**: Start at state 00 (or all states if unknown)
- 2. For each time step:
 - For each state, compute metrics for incoming branches
 - Select survivor path (minimum metric)
 - · Store survivor and metric
- 3. Traceback: From best final state, follow survivor paths backward
- 4. Output: Decoded bit sequence

19.7.2 Branch Metrics

Hard-decision (Hamming distance):

$$\mathrm{metric} = \sum_{i=1}^n (r_i \oplus c_i)$$

Where: - r_i = Received bit (0 or 1) - c_i = Expected output bit for branch

Soft-decision (Euclidean distance):

$$\mathrm{metric} = \sum_{i=1}^n (r_i - c_i)^2$$

Where $r_i \in \mathbb{R}$ (e.g., LLR from demodulator)

Benefit: Soft-decision gains ~2 dB over hard-decision

19.7.3 Path Metric

Cumulative metric for path to state s at time t:

$$PM_t(s) = PM_{t-1}(s') + BM_t(s' \to s)$$

Where: - $PM_{t-1}(s')$ = Path metric to previous state - $BM_t(s' \to s)$ = Branch metric for transition

Survivor path: Path with minimum $PM_t(s)$

19.7.4 Example (Hard-Decision)

Code: r=1/2, K=3 (4 states)

Received: 11 10 01 11 00

Assume: Start state 00, end state 00

Time 0: Initialize all states (PM = ∞ except state 00)

Time 1: Input unknown, received 11 - Branch $00\square 00$ (output 00): Hamming distance = 2 - Branch $00\square 10$ (output 11): Hamming distance = $0\square - Update$: PM(00) = 2, PM(10) = 0

Continue for all time steps...

Final: Traceback from state with minimum PM

19.8 Free Distance

Free distance d_{free} : Minimum Hamming distance between **any two distinct paths** in the trellis **Determines**: Error correction capability

$$t_{\rm correct} = \left\lfloor \frac{d_{\rm free} - 1}{2} \right\rfloor$$

19.8.1 Example Free Distances

	Code	K	Rate	d_{free}	\overline{t}	
(5, 1/2	2)		3	1/2	5	2
(171,	133)		7	1/2	10	4
(561, 7	753)		9	1/2	12	5
(1167,	1375, ⁻	1545) 9	1/3	18	8

 $\textbf{Pattern} \colon \mathsf{Larger} \; K \; \square \quad \mathsf{Higher} \; d_{\mathsf{free}} \; \square \quad \mathsf{Better} \; \mathsf{correction}$

Trade-off: Larger $K \square$ More states \square Higher complexity

19.9 Performance Analysis

19.9.1 Bit Error Rate (BER)

Approximate BER (BPSK over AWGN, hard-decision):

$$P_b \approx \sum_{d=d_{\rm free}}^{\infty} \beta_d \cdot Q \left(\sqrt{2dR \frac{E_b}{N_0}} \right)$$

Where: - β_d = Number of bit errors at distance d (from transfer function) - R = Code rate - Q(x) = Tail probability of Gaussian

At high SNR: Dominated by d_{free} term

19.9.2 Coding Gain

Coding gain (compared to uncoded BPSK):

$$G_c = 10 \log_{10}(R \cdot d_{\mathrm{free}}) \quad \mathrm{dB}$$

Example: (171, 133), K=7, r=1/2, $d_{\rm free}=10$

$$G_c = 10\log_{10}(0.5\times10) = 10\log_{10}(5) = 7.0~\mathrm{dB}$$

With soft-decision: Add ~2 dB □ Total gain ≈ 9 dB

19.9.3 Example Performance (NASA K=7)

Eb/N0 (dB)	Uncoded	BPSK	Conv (hard)	Conv (soft)	
	2	2.4×10 ⁻²	² 7×10 ⁻³	2×10 ⁻³	
	4	1.2×10 ⁻³	3×10 ⁻⁴	5×10 ⁻⁵	
	6	2.4×10 ⁻¹	⁵ 2×10 ⁻⁶	1×10 ⁻⁷	
	8	1.9×10	⁷ 5×10 ⁻⁹	5×10 ⁻¹⁰	

Soft-decision gain: ~2 dB at BER 10^{-5}

19.10 Puncturing

Puncturing: Delete some output bits to increase code rate

Example: $r=1/2 \square r=2/3$ (delete every 3rd bit)

Puncturing pattern: Matrix specifying which bits to keep

19.10.1 Example: Rate 2/3 from Rate 1/2

Original: 1 input \Box 2 outputs (Y1, Y2)

Punctured (2 periods):

Period	Input	Y1	Y2	Transmitted
1	bit 1			Y1, Y2
2	bit 2			Y1 only

Result: 2 inputs [] 3 outputs (rate 2/3)

Puncturing matrix:

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

1 = transmit, 0 = delete

19.10.2 Common Punctured Rates

From r=1/2 base code:

Target Rate	Puncturing Period	Complexity
2/3	2	Low
3/4	3	Low
4/5	4	Low
5/6	5	Moderate
7/8	7	Moderate

Used in: WiFi (802.11a/g), LTE, DVB

19.11 Tail-Biting

Problem: Standard encoding requires **flushing** (adds K-1 zero bits)

Overhead: (K-1)/L for message length L

19.11.1 Tail-Biting Solution

Start encoder in non-zero state such that ending state = starting state

Result: No flush bits needed (circular encoding)

 $\label{eq:decoding: Try all 2} \mathbf{Decoding:} \ \, \mathbf{Try} \ \, \mathbf{all} \ \, 2^{K-1} \ \, \mathbf{starting} \ \, \mathbf{states}, \ \, \mathbf{pick} \ \, \mathbf{best}$

Benefit: No overhead (useful for short packets)

Used in: LTE control channels

19.12 Recursive Systematic Convolutional (RSC)

Recursive: Output fed back to input

Systematic: One output = input (uncoded)

Structure:

Advantage: Better for **Turbo codes** (interleaver gain)

Used in: Turbo codes, LTE Turbo codes

19.13 Practical Applications

19.13.1 1. Deep Space (Voyager)

Code: (171, 133), K=7, r=1/2

Eb/N0: ~1 dB (extremely weak signal)

BER: 5×10^{-3} (after Viterbi)

Outer code: RS(255,223) corrects residual errors

Final BER: $< 10^{-10}$

19.13.2 2. WiFi (802.11a/g)

Base code: K=7, r=1/2

Punctured rates: 1/2, 2/3, 3/4

Combined with: OFDM (64-QAM subcarriers)

Example (54 Mbps mode): - 64-QAM (6 bits/symbol) - Rate 3/4 convolutional code - Effective:

4.5 bits/symbol/subcarrier

19.13.3 3. LTE (Before Turbo)

Early 3G: Used convolutional codes

Parameters: K=9, r=1/3

Puncturing: Adaptive (1/2, 2/3, 3/4, 5/6) based on channel

Replaced by: Turbo codes in LTE (better performance)

19.13.4 4. GPS L1 C/A

Code: K=7, r=1/2 (similar to NASA standard)

Navigation message: 50 bps

After encoding: 100 sps

Combined with: BPSK, CDMA spreading (1.023 Mcps)

19.13.5 5. DVB-S (Satellite TV)

Inner code: K=7, r=1/2, punctured to 2/3, 3/4, 5/6, 7/8

Outer code: RS(204,188)

Concatenation: Convolutional handles random errors, RS handles bursts

Result: Robust satellite link (rain fade, interference)

19.14 Viterbi Decoder Implementation

19.14.1 Computational Complexity

Per time step: - 2^K branch metric computations - 2^{K-1} add-compare-select (ACS) operations

Memory: Store 2^{K-1} survivor paths (length \approx 5K)

19.14.2 Traceback Depth

Typical: 5K to 7K (5-7 times constraint length)

Example: K=7 \square Traceback 35-50 steps

Trade-off: Longer traceback

Better decisions, more memory/latency

19.14.3 Fixed-Point vs Floating-Point

Fixed-point: 6-8 bits sufficient for metrics (quantization)

Benefit: Faster, less power (embedded systems)

Performance loss: Negligible (<0.1 dB)

19.15 Python Example: Simple Viterbi (K=3)

```
import numpy as np

def convolutional_encode_k3(data):
    """Encode using K=3, r=1/2, g1=111, g2=101."""
    state = 0 # Initial state (00)
    output = []

for bit in data:
    # Update state
    state = ((state << 1) | bit) & Ob11 # Shift and mask to 2 bits</pre>
```

```
# Compute outputs (XOR of taps)
        # q1 = 111 (all 3 positions)
        \# g2 = 101 \ (positions \ 0 \ and \ 2)
        y1 = (state >> 0) ^ (state >> 1) ^ (bit) # g1
        y2 = (state >> 0) ^ (bit) # g2
        output.extend([y1 & 1, y2 & 1])
    # Flush (add 2 zeros)
    for _ in range(2):
        state = (state << 1) & 0b11
        y1 = (state >> 0) ^ (state >> 1)
        y2 = (state >> 0)
        output.extend([y1 & 1, y2 & 1])
    return output
def viterbi_decode_k3(received):
    """Viterbi decoding for K=3, r=1/2, g1=111, g2=101."""
    # Trellis: 4 states (00, 01, 10, 11)
    # Branch outputs (state, input) -> (next_state, output)
    # Precompute branch outputs
    def branch_output(state, input_bit):
        next_state = ((state << 1) | input_bit) & 0b11</pre>
        y1 = (state >> 0) ^ (state >> 1) ^ input_bit
        y2 = (state >> 0) ^ input_bit
        return next_state, [y1 & 1, y2 & 1]
    num_states = 4
    L = len(received) // 2 # Number of time steps
    # Initialize path metrics (PM)
    pm = [float('inf')] * num states
    pm[0] = 0 # Start at state 00
    # Survivor paths
    survivors = [[]] * num_states
    # Process each time step
    for t in range(L):
        r = received[2*t:2*t+2] # Received 2 bits
        new_pm = [float('inf')] * num_states
        new_survivors = [None] * num_states
        for s in range(num_states):
```

```
if pm[s] == float('inf'):
                continue
            for input_bit in [0, 1]:
                next_s, expected = branch_output(s, input_bit)
                # Hamming distance (hard decision)
                metric = sum(r[i] != expected[i] for i in range(2))
                # Update path metric
                candidate_pm = pm[s] + metric
                if candidate_pm < new_pm[next_s]:</pre>
                    new_pm[next_s] = candidate_pm
                    new_survivors[next_s] = survivors[s] + [input_bit]
        pm = new_pm
        survivors = new_survivors
    # Find best final state (should be 00 after flushing)
    best state = 0
    best_pm = pm[0]
    # Traceback
    decoded = survivors[best_state][:-2] # Remove flush bits
    return decoded
# Example usage
data = [1, 0, 1, 1, 0]
print(f"Original data: {data}")
encoded = convolutional_encode_k3(data)
print(f"Encoded: {encoded}")
# Simulate error (flip 1 bit)
received = encoded.copy()
received[3] ^= 1 # Flip bit 3
print(f"Received (1 error): {received}")
decoded = viterbi_decode_k3(received)
print(f"Decoded: {decoded}")
print(f"Match: {decoded == data}")
Output:
Original data: [1, 0, 1, 1, 0]
Encoded: [1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1]
Received (1 error): [1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1]
Decoded: [1, 0, 1, 1, 0]
```

Match: True

19.16 Comparison: Block vs Convolutional

Ī	Property	Block Codes	Conv	olutional Codes
Encodin	g F	ixed blocks		Continuous stream
Memory	N	lone (memoryles	ss)	Yes (shift register)
Decodin	g A	algebraic (syndro	me)	Viterbi (trellis search)
Latency	Е	Block delay		Traceback depth (~5K)
Soft-ded	ision P	ossible (LLRs)		Natural (Viterbi)
Best use	e E	Burst errors (RS)		Random errors (AWGN)
-				

19.17 Design Guidelines

Choose K: - **K=3-5**: Low complexity, embedded systems - **K=7**: Standard (NASA, WiFi), good performance - **K=9**: Better performance, higher complexity

Choose rate: - 1/2: Strong coding (deep space) - 1/3: Very strong (low SNR) - 2/3, 3/4: High throughput (punctured)

Soft-decision: Always use if demodulator provides LLRs (+2 dB free gain!)

19.18 Related Topics

- [Block Codes (Hamming, BCH, Reed-Solomon)]: Alternative FEC approach
- [Turbo Codes]: Concatenated convolutional codes (next-gen)
- [LDPC Codes]: Modern capacity-approaching codes
- [Forward Error Correction (FEC)]: General FEC overview
- [Bit Error Rate (BER)]: Performance metric

Key takeaway: Convolutional codes use memory (shift register + XOR) for continuous encoding. Constraint length K determines states (2^{K-1}) and performance $(d_{\text{free}}$ increases with K). Viterbi algorithm performs optimal ML decoding via trellis search. Soft-decision Viterbi gains ~2 dB over hard-decision. Puncturing increases code rate (1/2 \square 2/3, 3/4). NASA standard (171, 133) K=7, $d_{\text{free}}=10$, ~7 dB coding gain. Used in Voyager, GPS, WiFi, DVB. Turbo codes (parallel concatenated convolutional) achieve near-Shannon performance. Trade-off: Larger K=10 better correction but higher complexity.

This wiki is part of the [[F	lome Chimera Project]] (documentation.

20 Electromagnetic Spectrum

[[Home]] | **Foundation** | [Maxwell's Equations & Wave Propagation] | [Frequency-Shift Keying (FSK)]

20.1 For Non-Technical Readers

The electromagnetic spectrum is like a piano keyboard—but instead of sound notes, it's frequencies of light and radio waves.

The big picture: - **Low notes (low frequency)**: Radio, AM/FM, WiFi, microwaves - **Middle notes**: Infrared (heat you feel from a fire), visible light (colors we see) - **High notes (high frequency)**: Ultraviolet, X-rays, gamma rays

It's all the same thing! Radio waves, WiFi, light, X-rays are all electromagnetic waves—just different frequencies.

Real-world frequencies: - **AM radio**: ~1 MHz (long waves, travel far) - **FM radio**: ~100 MHz (shorter waves, better quality) - **WiFi**: 2.4 GHz or 5 GHz (very short waves, fast data) - **Visible light**: ~500 THz (that's 500,000 GHz!) - **X-rays**: ~10¹⁸ Hz (penetrate body)

Why frequency matters: - Low frequency: Travels far, penetrates buildings, but needs big antennas - High frequency: Fast data, small antennas, but doesn't travel as far

Fun fact: The rainbow you see is less than 1 octave of frequency! The EM spectrum spans 20+ octaves from radio to gamma rays.

20.2 Overview

The **electromagnetic (EM) spectrum** encompasses all frequencies of electromagnetic radiation, from extremely low frequency (ELF) radio waves to ultra-high energy gamma rays. **All EM waves travel at the speed of light** ($c \approx 3 \times 10^8$ m/s in vacuum) and obey [[Maxwell's Equations & Wave Propagation|Maxwell's equations]].

Key relationship:

$$c = \lambda f$$

Where: - c = Speed of light (299,792,458 m/s) - λ = Wavelength (meters) - f = Frequency (Hz) **Energy per photon** (quantum perspective):

$$E = hf$$

Where $h=6.626\times 10^{-34}~\mathrm{J\cdot s}$ (Planck's constant)

20.3 Spectrum Bands & Applications

20.3.1 Radio Frequencies (RF): 3 kHz - 300 GHz

20.3.1.1 ELF (Extremely Low Frequency): 3 Hz - 3 kHz

- Wavelength: 100,000 km 100 km
- Applications: Submarine communication (penetrates seawater), geophysical surveys
- Propagation: Earth-ionosphere waveguide, minimal attenuation
- **Example**: 76 Hz US Navy submarine comms

20.3.1.2 VLF (Very Low Frequency): 3 kHz - 30 kHz

- Wavelength: 100 km 10 km
- Applications: Navigation (LORAN), time signals, lightning detection
- **Propagation**: Ground wave, ionospheric reflection
- Example: 24 kHz VLF navigation beacon

20.3.1.3 LF (Low Frequency): 30 kHz - 300 kHz

- Wavelength: 10 km 1 km
- Applications: AM radio (longwave), RFID, aviation beacons
- Propagation: Ground wave (stable day/night), ionospheric at night
- Example: 153 kHz longwave broadcast

20.3.1.4 MF (Medium Frequency): 300 kHz - 3 MHz

- · Wavelength: 1 km 100 m
- **Applications**: AM radio (broadcast), maritime communication
- **Propagation**: Ground wave (daytime), skywave (nighttime)
- Example: 540-1600 kHz AM broadcast band

20.3.1.5 HF (High Frequency): 3 MHz - 30 MHz

- Wavelength: 100 m 10 m
- Applications: Shortwave radio, amateur radio, over-the-horizon radar
- Propagation: Ionospheric refraction (skywave), global reach
- **Example**: 14.2 MHz amateur band, intercontinental comms

20.3.1.6 VHF (Very High Frequency): 30 MHz - 300 MHz

• Wavelength: 10 m - 1 m

Applications: FM radio (88-108 MHz), TV broadcast, aviation, marine

• Propagation: Line-of-sight (LOS), occasional tropospheric ducting

• Example: 146 MHz amateur band, 120 MHz air traffic control

20.3.1.7 UHF (Ultra High Frequency): 300 MHz - 3 GHz

• Wavelength: 1 m - 10 cm

· Applications: TV, cellular (GSM/LTE), GPS, WiFi (2.4 GHz), Bluetooth

Propagation: LOS, building penetration moderate, rain attenuation minimal

• Example: 1.575 GHz GPS L1, 2.4 GHz ISM band

20.3.1.8 SHF (Super High Frequency): 3 GHz - 30 GHz

• Wavelength: 10 cm - 1 cm

• Applications: Satellite comms, radar, 5G (3.5 GHz), WiFi (5-6 GHz), point-to-point links

• Propagation: LOS required, rain fade significant, atmospheric absorption

• **Example**: 5.8 GHz WiFi, 12 GHz satellite downlink (Ku-band)

20.3.1.9 EHF (Extremely High Frequency): 30 GHz - 300 GHz

• Wavelength: 1 cm - 1 mm

• Applications: mmWave 5G (28/39 GHz), automotive radar (77 GHz), radio astronomy

• Propagation: Severe rain/foliage attenuation, oxygen absorption peak @ 60 GHz

• Example: 39 GHz 5G, 94 GHz cloud radar

60 GHz oxygen absorption: 15 dB/km (used for secure short-range comms)

20.3.2 Terahertz (THz) Gap: 300 GHz - 10 THz

• Wavelength: 1 mm - 30 µm

Applications: Security imaging, spectroscopy, biomedical sensing, [[AID Protocol|AID Protocol]] (1.875 THz)

• Propagation: Atmospheric absorption severe (H₂O lines), limited range

- Technology: Quantum cascade lasers (QCLs), photoconductive switches
- **Status**: "THz gap" (historically difficult to generate/detect)

Key THz features: - Non-ionizing (safe for biological tissue, unlike X-rays) - Penetrates clothing, paper, plastics (not metal) - High spatial resolution (sub-mm) - Strong water absorption (limits biomedical depth)

See: [Terahertz (THz) Technology] for detailed discussion

20.3.3 Infrared (IR): 300 GHz - 430 THz

20.3.3.1 Far-IR (FIR): 300 GHz - 20 THz

- Wavelength: 1 mm 15 µm
- Applications: Thermal imaging, astronomy, spectroscopy
- Source: Blackbody radiation (room temperature objects peak ~10 μm)

20.3.3.2 Mid-IR (MIR): 20 THz - 120 THz

- **Wavelength**: 15 μm 2.5 μm
- Applications: Night vision, chemical sensing (molecular fingerprints), CO₂ lasers

20.3.3.3 Near-IR (NIR): 120 THz - 430 THz

- Wavelength: 2.5 µm 700 nm
- Applications: Fiber optic comms (1550 nm), remote controls, biomedical imaging
- Atmospheric window: 1.3-1.55 µm (low loss in silica fiber)

20.3.4 Visible Light: 430 THz - 750 THz

- Wavelength: 700 nm (red) 400 nm (violet)
- Frequencies:
 - Red: ~430 THz (700 nm)
 - Yellow: ~510 THz (590 nm)
 - Green: ~560 THz (535 nm)
 - Blue: ~670 THz (450 nm)
 - Violet: ~750 THz (400 nm)
- · Applications: Human vision, optical comms (free-space), LiDAR, photovoltaics
- Energy: 1.6-3.1 eV per photon (non-ionizing)

Solar spectrum: Peaks at ~550 nm (green), corresponds to peak sensitivity of human eye (photopic vision)

20.3.5 Ultraviolet (UV): 750 THz - 30 PHz

20.3.5.1 Near-UV (NUV): 750 THz - 1.5 PHz

- Wavelength: 400 nm 200 nm
- **Applications**: Sterilization, fluorescence microscopy, photolithography
- Biological effects: Tanning, vitamin D synthesis, DNA damage (UVB)

20.3.5.2 Far-UV (FUV): 1.5 PHz - 30 PHz

• Wavelength: 200 nm - 10 nm

• Applications: Extreme sterilization, plasma diagnostics

• **Absorption**: Strongly absorbed by atmosphere (ozone layer blocks < 290 nm)

UVC (< 280 nm): Germicidal (destroys DNA/RNA), used in air/water purification

20.3.6 X-Rays: 30 PHz - 30 EHz

Wavelength: 10 nm - 0.01 nm
 Energy: 100 eV - 100 keV

· Applications: Medical imaging, crystallography, security screening, astronomy

• Generation: Bremsstrahlung (electron deceleration), synchrotron radiation

• Biological effects: Ionizing (breaks chemical bonds, causes mutations)

Soft X-rays (0.1-10 keV): Water window imaging, biological samples **Hard X-rays** (10-100 keV): Penetrates tissue, bone imaging (radiography)

20.3.7 Gamma Rays: > 30 EHz

Wavelength: < 0.01 nmEnergy: > 100 keV

• Sources: Radioactive decay, nuclear reactions, cosmic rays, pulsars

• Applications: Cancer therapy (radiotherapy), sterilization, astrophysics

• Detection: Scintillation detectors, Compton scattering

• Biological effects: Highly ionizing (severe DNA damage, cell death)

Cosmic gamma rays: Up to TeV energies (10¹² eV), from supernovae, black holes

20.4 Atmospheric Transmission Windows

Earth's atmosphere is opaque to most EM spectrum. Only certain "windows" allow propagation:

Band	Frequency/Wavelength	Transmission	Absorbers
RF (< 30 GHz)	All RF below mmWave	Excellent	lonosphere (HF reflection)
mmWave (30-300 GHz)	1-10 mm	Poor	Water vapor, oxygen (60 GHz)
THz (0.3-10	30 μm - 1 mm	Very poor	Water vapor, CO ₂
THz) Far-IR	15-300 μm	Poor	H ₂ O, CO ₂ , O ₃

Band	Frequency/Wavelength	Transmission	Absorbers
Mid-IR	2.5-15 μm	Moderate	H_2O (many lines), CO_2 (15 μ m)
Near-IR Visible	0.7-2.5 μm 400-700 nm	Good Excellent	H ₂ O (weak bands) Rayleigh scattering (sky is blue)
Near-UV UVC / X-ray / Gamma	300-400 nm < 280 nm	Good Blocked	Ozone (< 320 nm) Ozone, O ₂ , N ₂

Implications: - Ground-to-satellite comms: Use RF (microwaves) or optical (laser comms) - THz security imaging: Indoor only (outdoor = severe H_2O absorption) - Radio astronomy: "Radio window" (few MHz - 30 GHz) and "optical window" (visible/NIR)

20.5 Ionizing vs Non-Ionizing Radiation

Critical distinction:

20.5.1 Non-lonizing (< 3.1 eV, < 1 PHz)

Photon energy insufficient to ionize atoms:

- RF/Microwave/IR/Visible: Causes heating (dielectric loss), molecular vibration/rotation
- Biological effects: Thermal (tissue heating), non-thermal (debated, e.g., RF-EMF effects)
- Safety: Exposure limits based on specific absorption rate (SAR, W/kg)

Example: WiFi (2.4 GHz, $E=hf=10^{-5}$ eV) \square Pure heating, no ionization

20.5.2 Ionizing (> 10 eV, > 2.4 PHz)

Photon energy sufficient to eject electrons from atoms:

- UV (high-energy), X-rays, Gamma rays: Breaks chemical bonds, damages DNA
- Biological effects: Mutations, cancer, acute radiation syndrome (high dose)
- · Safety: Exposure limits based on dose (Sieverts, Sv)

lonization threshold: ~10 eV for biological molecules (double-strand DNA breaks at ~20 eV)

Example: X-ray (30 keV) \square Ejects inner-shell electrons, Compton scattering, DNA damage

20.6 Frequency Allocation & Regulation

International Telecommunication Union (ITU) allocates spectrum globally:

20.6.1 Key Allocated Bands

Service	Frequency	Regulation
AM Radio	530-1710 kHz	Licensed broadcast
FM Radio	88-108 MHz	Licensed broadcast
TV (VHF)	54-216 MHz	Licensed broadcast (analog legacy)
Aviation	108-137 MHz	Regulated (safety of life)
Marine VHF	156-162 MHz	Regulated
Cellular (US)	600-6000 MHz	Licensed (carriers)
GPS	1.176-1.575 GHz	Protected (military/civilian)
WiFi (2.4 GHz)	2.400-2.4835 GHz	ISM band (unlicensed)
WiFi (5 GHz)	5.150-5.850 GHz	U-NII (unlicensed, indoor/outdoor rules)
5G mmWave	24-47 GHz	Licensed (auction)
Satellite (Ka)	26.5-40 GHz	Licensed

ISM bands (Industrial, Scientific, Medical): Unlicensed, shared use, higher interference - 902-928 MHz (US), 2.4-2.5 GHz (global), 5.725-5.875 GHz

20.7 Wavelength vs Antenna Size

Rule of thumb: Efficient antennas are typically $\lambda/2$ or $\lambda/4$ in size.

Examples:

Fre	quency	Wavelengt	h	Typical Antenna
150 kHz (LF)	20	000 m	50	00 m tower (impr
1 MHz (AM)	30)0 m	75	m vertical mast
100 MHz (FM)	3	m	1.	5 m whip (λ/2 dip
1 GHz (cellular)	30	cm (7.	5 cm patch $(\lambda/4)$
10 GHz (satellit	e) 3	cm	1.	5 cm patch array
300 GHz (mmW	/ave) 1	mm	0.	25 mm array eler
1.875 THz (AID)	16	30 μm	40) µm aperture (ph

Implication: Higher frequencies enable **smaller antennas and phased arrays**, but propagation is poorer.

20.8 Spectrum Utilization Trends

20.8.1 Historical Progression

1900s: MF/HF (AM radio, maritime) **1950s**: VHF/UHF (FM, TV, early mobile) **1990s**: SHF (cellular 2G/3G, WiFi, GPS) **2010s**: EHF (5G mmWave, 60 GHz WiGig) **2020s**: THz (security, 6G research,

biomedical)

Driver: **Spectrum congestion**

Move to higher frequencies for bandwidth - VHF/UHF: Crowded (licensed, competitive) - mmWave: Abundant spectrum (GHz of bandwidth available) - THz: Virtually unlimited (atmospheric absorption limits range, but OK for short-range)

20.9 Propagation Characteristics by Band

20.9.1 Long Wavelengths (LF/MF/HF)

Advantages: - Ground wave propagation (stable, follows Earth curvature) - Ionospheric reflection (HF skywave

global reach) - Penetrates buildings, foliage, water

Disadvantages: - Large antennas required - Low bandwidth (kHz) - Crowded spectrum

20.9.2 Medium Wavelengths (VHF/UHF)

Advantages: - Moderate antenna size - Good building penetration (lower UHF) - Balanced range vs bandwidth

Disadvantages: - Line-of-sight propagation (VHF) - Spectrum congestion

20.9.3 Short Wavelengths (SHF/EHF/THz)

Advantages: - Huge bandwidth (GHz available) - Small antennas (phased arrays feasible) - Narrow beams (spatial reuse, security)

Disadvantages: - Severe atmospheric attenuation (rain, oxygen, water vapor) - No building penetration - Requires line-of-sight

Oxygen absorption: 60 GHz (15 dB/km)

Secure short-range comms (signals don't travel far)

Water vapor: THz (>100 dB/km)

Indoor/short-range only

20.10 Summary Table: Spectrum at a Glance

Band	Frequency	Wavelength	Key Applications	Propagation	Ionizing?
ELF	3 Hz - 3 kHz	100,000 km - 100 km	Submarine comms	Earth- ionosphere waveguide	No
VLF	3-30 kHz	100-10 km	Navigation, time signals	Ground wave	No
LF	30-300 kHz	10-1 km	Longwave radio, RFID	Ground wave, ionosphere	No

Band	Frequency	Wavelength	Key Applications	Propagation	Ionizing?
MF	300 kHz - 3 MHz	1 km - 100 m	AM broadcast	Ground/skywave	No
HF	3-30 MHz	100-10 m	Shortwave, amateur	Ionospheric refraction	No
VHF	30-300 MHz	10-1 m	FM, TV, aviation	Line-of-sight	No
UHF	300 MHz - 3 GHz	1 m - 10 cm	Cellular, WiFi, GPS	LOS, some penetration	No
SHF	3-30 GHz	10-1 cm	Satellite, 5G, radar	LOS, rain fade	No
EHF	30-300 GHz	1 cm - 1 mm	mmWave 5G, radar	Severe attenuation	No
THz	0.3-10 THz	1 mm - 30 µm	Imaging, spectroscopy, AID	Very limited (H ₂ O)	No
Far-IR	10-120 THz	30-2.5 μm	Thermal imaging	Atmospheric windows	No
Near- IR	120-430 THz	2.5-0.7 µm	Fiber optics, night vision	Good (1.55 µm window)	No
Visible	430-750 THz	700-400 nm	Vision, optical comms	Excellent	No
UV	750 THz - 30 PHz	400-10 nm	Sterilization, lithography	Absorbed (ozone)	Yes (high- energy UV)
X-ray	30 PHz - 30 EHz	10-0.01 nm	Medical imaging, crystallography	Blocked by atmosphere	Yes
Gamma	> 30 EHz	< 0.01 nm	Radiotherapy, astrophysics	Blocked by atmosphere	Yes

20.11 Related Topics

- [Maxwell's Equations & Wave Propagation]: Mathematical foundation of EM waves
- [Free-Space Path Loss (FSPL)]: Frequency-dependent propagation loss
- [Terahertz (THz) Technology]: Applications and challenges in THz band
- [[AID Protocol Case Study]]: 1.875 THz carrier for neural modulation
- Antenna Theory: Design principles for frequency-specific antennas (TBD)
- Atmospheric Propagation: Absorption, refraction, ducting effects (TBD)

Next: [Antenna Theory Basics] (TBD) - How to design antennas for different spectrum bands
This wiki is part of the [[Home Chimera Project]] documentation.

21 Energy Ratios: Es/N0 and Eb/N0

21.1 For Non-Technical Readers

Es/N0 and Eb/N0 are like measuring "signal per bit of information" vs "background noise" higher ratio = cleaner signal = fewer errors!

The idea - Signal vs Noise ratios: - Signal energy: How much "juice" each bit/symbol has -Noise: Random interference (always present) - Ratio: Signal energy divided by noise = quality measure!

Two related measurements:

- 1. Eb/N0 (Energy per BIT): How much energy in each individual bit? Higher Eb/N0 = more energy per bit = easier to detect correctly - Used to compare different systems fairly
- 2. Es/N0 (Energy per SYMBOL): How much energy in each symbol (which may carry multiple bits)? - QPSK symbol carries 2 bits, so Es/N0 = 2 × Eb/N0 - Used for actual system performance calculations

Why it matters - Quality threshold: - Low Eb/N0 (weak signal): Many bit errors, unusable -Medium Eb/N0: Some errors, FEC can fix them - High Eb/N0 (strong signal): Nearly error-free

Real-world example: - WiFi close to router: Eb/N0 = 25 dB □ use 256-QAM (fast!) - WiFi far from router: Eb/N0 = 10 dB □ use QPSK (reliable!) - WiFi too far: Eb/N0 = 5 dB □ connection drops

The relationship:

 $Es/NO = Eb/NO \times (bits per symbol)$

- BPSK: 1 bit/symbol □ Es/N0 = Eb/N0
- QPSK: 2 bits/symbol □ Es/N0 = 2 × Eb/N0
- 16-QAM: 4 bits/symbol □ Es/N0 = 4 × Eb/N0

Why engineers love Eb/N0: - Fair comparison: Compares systems with different modulations - Theory matches practice: Theoretical limits use Eb/N0 - Standards use it: 3GPP, WiFi specs quote Eb/N0 requirements

When you see it: - Satellite link budget: "Requires 10 dB Eb/N0 for BER < 10⁻⁶" - Modem spec sheet: "Sensitivity: -95 dBm at 8 dB Eb/N0" - Paper comparing modulations: Always uses Eb/N0 for fair comparison!

Fun fact: The theoretical minimum Eb/N0 for error-free communication is -1.59 dB (Shannon limit)—but real systems need 5-15 dB due to practical limitations!

These ratios are fundamental measures of signal quality in digital communications.

21.2 Es/N0: Symbol Energy Ratio

Es/N0 measures the energy per symbol relative to the noise power spectral density.

• Es: Energy per symbol

- No: Noise power per Hz (noise spectral density)
- Used when analyzing symbol-level performance

21.3 Eb/N0: Bit Energy Ratio

Eb/N0 measures the energy per bit relative to the noise power spectral density.

- **Eb**: Energy per bit
- **NO**: Noise power per Hz
- More fundamental measure for comparing different modulation schemes

21.4 Relationship Between Es/N0 and Eb/N0

The relationship depends on how many bits per symbol:

```
For QPSK (2 bits/symbol):
Eb/NO = Es/NO - 3.01 dB

General formula:
Eb/NO (dB) = Es/NO (dB) - 10·log (bits per symbol)
```

21.5 Example in Chimera

- If Channel Es/N0 = -15 dB
- For QPSK (2 bits/symbol):
- Then Eb/N0 = -15 dB 3.01 dB = -18.01 dB

21.6 Why These Ratios Matter

- 1. **Performance Comparison**: Allows fair comparison between different modulation schemes
- 2. Link Budget Analysis: Essential for designing communication systems
- 3. **BER Prediction**: Theoretical BER curves are plotted against Eb/N0
- 4. Standard Metric: Industry-standard way to specify communication system performance

21.7 Comparison Table

Modulation	Bits/Symbol	Es/N0 to Eb/N0 Conversion
BPSK	1	Eb/N0 = Es/N0 (0 dB)
QPSK	2	Eb/N0 = Es/N0 - 3.01 dB
8PSK	3	Eb/N0 = Es/N0 - 4.77 dB
16QAM	4	Eb/N0 = Es/N0 - 6.02 dB

21.8 SNR vs Es/N0 vs Eb/N0

These terms are related but distinct:

• **SNR**: Ratio of signal power to noise power (may include bandwidth effects)

- Es/N0: Symbol energy to noise spectral density (symbol-level metric)
- Eb/N0: Bit energy to noise spectral density (bit-level metric, most fundamental)

In many contexts (including Chimera's simple channel model), **SNR** ≈ **Es/N0**.

21.9 Theoretical BER for QPSK

BER_QPSK $(1/2) \cdot erfc(\sqrt{(Eb/N0)})$

where erfc is the complementary error function

21.10 See Also

- [[Signal to Noise Ratio (SNR)]] Related power ratio
- [Bit Error Rate (BER)] Performance metric
- [QPSK Modulation] 2 bits per symbol
- [[Link Budget Analysis]] Using energy ratios in system design

22 Formula Reference Card

[[Home]] | Quick Reference

22.1 Link Budget & Propagation

22.1.1 Friis Transmission Equation

See [Free-Space Path Loss (FSPL)]

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi R)^2}$$

Or in dB:

$$P_r\left(\mathrm{dBm}\right) = P_t\left(\mathrm{dBm}\right) + G_t\left(\mathrm{dBi}\right) + G_r\left(\mathrm{dBi}\right) - \mathrm{FSPL}\left(\mathrm{dB}\right)$$

22.1.2 Free-Space Path Loss

$$\mathrm{FSPL}\,(\mathrm{dB}) = 20\log_{10}(R) + 20\log_{10}(f) + 32.45$$

Where: R in km, f in MHz

Or:

$$\mathrm{FSPL}\,(\mathrm{dB}) = 20\log_{10}(R) + 20\log_{10}(f) - 147.55$$

Where: R in meters, f in Hz

22.1.3 Power Density

See [Power Density & Field Strength]

$$S = \frac{P_t G}{4\pi R^2} \quad (\text{W/m}^2)$$

$$E_{\rm rms} = \sqrt{377\times S} \approx 19.4\sqrt{S} \quad (\text{V/m})$$

00.0 G. Ciamal Quality Matrica

22.2 | Signal Quality Metrics

22.2.1 Signal-to-Noise Ratio

See [Signal-to-Noise Ratio (SNR)]

$$\mathrm{SNR} = \frac{P_{\mathrm{signal}}}{P_{\mathrm{noise}}}$$

In dB:

$$\mathrm{SNR}_{\mathrm{dB}} = 10 \log_{10}(\mathrm{SNR})$$

22.2.2 Energy Ratios

See [[Energy Ratios (Es/N0 and Eb/N0)]]

$$\frac{E_b}{N_0} = \frac{P_r}{R_b N_0} = \mathrm{SNR} \cdot \frac{B}{R_b}$$

$$\frac{E_s}{N_0} = \frac{E_b}{N_0} \cdot \log_2(M)$$

Where M = constellation size

22.2.3 Thermal Noise Power

See [Noise Sources & Noise Figure]

$$N = kTB$$

Where: $-k = 1.38 \times 10^{-23}$ J/K (Boltzmann's constant) -T = Temperature (K) -B = Bandwidth (Hz)

In dBm:

$$N~({\rm dBm}) = -174 + 10\log_{10}(B)$$

For T = 290 K, B in Hz

22.3 Information Theory

22.3.1 Shannon Channel Capacity

See [Shannon's Channel Capacity Theorem]

$$C = B \log_2(1 + \mathrm{SNR}) \quad (\mathrm{bits/sec})$$

22.3.2 Spectral Efficiency

See [Spectral Efficiency & Bit Rate]

$$\eta = \frac{R_b}{B} \quad \text{(bits/sec/Hz)}$$

Shannon limit:

$$\eta_{\rm max} = \log_2(1+{\rm SNR})$$

22.4 Bit Error Rate (BER)

See [Bit Error Rate (BER)]

22.4.1 Q-Function

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^{\infty} e^{-t^2/2} dt$$

Approximation:

$$Q(x) \approx \frac{1}{x\sqrt{2\pi}}e^{-x^2/2} \quad (x > 3)$$

22.4.2 BPSK in AWGN

See [Binary Phase-Shift Keying (BPSK)]

$$\mathrm{BER} = Q\left(\sqrt{\frac{2E_b}{N_0}}\right)$$

22.4.3 QPSK in AWGN

See [QPSK Modulation]

$$\mathrm{BER} \approx Q \left(\sqrt{\frac{2E_b}{N_0}} \right)$$

(Same as BPSK for Gray coding)

22.4.4 M-PSK in AWGN

$$\mathrm{BER} \approx \frac{2}{log_2(M)} Q\left(\sqrt{\frac{2E_b}{N_0}\log_2(M)}\sin\left(\frac{\pi}{M}\right)\right)$$

22.4.5 M-QAM in AWGN

See [Quadrature Amplitude Modulation (QAM)]

$$\mathrm{BER} \approx \frac{4}{\log_2(M)} \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\log_2(M)}{M-1} \cdot \frac{E_b}{N_0}}\right)$$

22.5 Modulation

22.5.1 IQ Representation

See [IQ Representation]

$$s(t) = I(t)\cos(2\pi f_c t) - Q(t)\sin(2\pi f_c t)$$

Or:

$$s(t) = \mathrm{Re}\{[I(t) + jQ(t)]e^{j2\pi f_c t}\}$$

22.5.2 Symbol Rate vs Bit Rate

$$R_b = R_s \log_2(M)$$

Where: - R_b = Bit rate (bits/sec) - R_s = Symbol rate (symbols/sec) - M = Constellation size

22.6 Propagation Effects

22.6.1 Doppler Shift

See [[Multipath Propagation & Fading (Rayleigh, Rician)]]

$$f_d = \frac{v}{\lambda}\cos(\theta) = \frac{vf_c}{c}\cos(\theta)$$

22.6.2 Coherence Bandwidth

$$B_c \approx \frac{1}{5\tau_{\rm rms}}$$

Where $\tau_{rms} = RMS$ delay spread

22.6.3 Coherence Time

$$T_c \approx \frac{0.423}{B_d} = \frac{0.423}{2f_{d,\mathrm{max}}}$$

Where B_d = Doppler spread

22.6.4 Rayleigh Fading PDF

See [[Multipath Propagation & Fading (Rayleigh, Rician)]]

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right)$$

22.6.5 Rician K-Factor

$$K = \frac{A^2}{2\sigma^2} = \frac{\text{LOS power}}{\text{Scattered power}}$$

22.7 Antenna & Polarization

22.7.1 Antenna Gain (Parabolic Dish)

See [Antenna Theory Basics]

$$Gpprox\eta_{
m ant}\left(rac{\pi D}{\lambda}
ight)^2$$

22.7.2 Effective Aperture

$$A_e = \frac{G\lambda^2}{4\pi}$$

22.7.3 Polarization Loss Factor

See [Wave Polarization]

For angle mismatch θ :

$$\mathsf{PLF} = \cos^2(\theta)$$

In dB:

$$L_{\rm pol} \left({\rm dB} \right) = -20 \log_{10} (\cos \theta)$$

22.8 Atmospheric Effects

22.8.1 Rain Attenuation (ITU-R Model)

See [[Weather Effects (Rain Fade, Fog Attenuation)]]

$$A = \gamma R^{\beta} \quad (\mathrm{dB/km})$$

Where: $-\gamma$, β depend on frequency and polarization -R = Rain rate (mm/hr)

22.8.2 Faraday Rotation

See [Wave Polarization]

$$\Omega = 2.36 \times 10^4 \frac{B_{\parallel} \cdot {\rm TEC}}{f^2} \quad ({\rm radians})$$

Where: - B_ \square = Magnetic field (Tesla) - TEC = Total Electron Content (electrons/m²) - f = Frequency (Hz)

22.9 Error Correction

22.9.1 Hamming Distance

See [Hamming Distance & Error Detection]

Error detection capability:

$$d_{\min} \ge t + 1$$

Error correction capability:

$$d_{\min} \geq 2t + 1$$

Where: - d_min = Minimum Hamming distance - t = Number of errors

22.9.2 Code Rate

$$R_c = \frac{k}{n}$$

Where: -k = Information bits - n = Total bits (information + parity)

22.10 System Parameters

22.10.1 Noise Figure

See [Noise Sources & Noise Figure]

$$F = \frac{\mathrm{SNR}_{\mathrm{in}}}{\mathrm{SNR}_{\mathrm{out}}}$$

In dB:

$$NF\left(\mathrm{dB}\right)=10\log_{10}(F)$$

22.10.2 Cascade Noise Figure

$$F_{\rm total} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \dots$$

22.10.3 Processing Gain (Spread Spectrum)

See [Spread Spectrum (DSSS/FHSS)]

$$G_p = \frac{B_{\rm RF}}{B_{\rm data}}$$

In dB:

$$G_p\left(\mathrm{dB}\right) = 10\log_{10}\left(\frac{B_{\mathrm{RF}}}{B_{\mathrm{data}}}\right)$$

22.11 MIMO Capacity

See [MIMO & Spatial Multiplexing]

22.11.1 Ergodic Capacity (known CSI at RX)

$$C = \log_2 \det \left(\mathbf{I}_{N_r} + \frac{\rho}{N_t} \mathbf{H} \mathbf{H}^H \right) \quad \text{(bits/sec/Hz)}$$

Where: - N_r, N_t = Number of RX/TX antennas - ρ = SNR - H = Channel matrix

	Constant	Symbol	Value	
Speed of light		С		3×10^8 m/s
Boltzmann's constant				$1.38 \times 10^{-23} \text{ J/K}$
Impedance of free space			0	377 Ω
Thermal noise f	loor (290 K	, 1 Hz) -		-174 dBm/Hz

22.13 Unit Conversions

22.13.1 Power

$$P\left(\mathrm{dBm}\right) = 10\log_{10}(P\left(\mathrm{mW}\right))$$

$$P\left(\mathrm{dBW}\right)=P\left(\mathrm{dBm}\right)-30$$

22.13.2 Wavelength Frequency

$$\lambda = \frac{c}{f}$$

Examples: - 2.4 GHz \square λ = 12.5 cm - 900 MHz \square λ = 33.3 cm - 28 GHz \square λ = 10.7 mm

22.14 Quick Reference Values

22.14.1 BER vs Eb/N0 (BPSK)

Eb/N	10 (dB)	BER
0	0	.079
5	5	$.9 \times 10^{-4}$
10	3	$.9 \times 10^{-6}$
15	7	$.7 \times 10^{-9}$

22.14.2 Typical Link Budgets

WiFi (2.4 GHz, 10 m): - TX power: 20 dBm (100 mW) - FSPL: -60 dB - RX power: -40 dBm

Satellite (12 GHz, GEO): - TX power (EIRP): 50 dBW - FSPL: -206 dB - RX power: -156 dBW = -126 dBm

22.15 Common System Parameters

System	Frequency Me	odulation Cod	ling
WiFi 802.11g	2.4 GHz	OFDM (BPSK-64QAM)	Convolutional
LTE	700 MHz - 2.6 GHz	OFDM (QPSK-256QAM)	Turbo
5G NR	600 MHz - 40 GHz	OFDM (QPSK-256QAM)	LDPC, Polar
GPS	1.5 GHz	BPSK	None (spreading)
DVB-S2	10-12 GHz	8PSK, 16/32APSK	LDPC + BCH

For detailed derivations, see the linked wiki pages.

Updated: October 4, 2025

23 Forward Error Correction (FEC)

23.1 For Non-Technical Readers

FEC is like sending instructions with built-in spell-checker clues—even if some words get garbled, you can figure out what was meant!

The problem: - Radio channels add noise/interference - Bits get flipped: 1□ 0 or 0□ 1 - By the time you notice, it's too late to ask "can you repeat that?"

The FEC solution - Add smart redundancy:

Simple example - Repetition: - Want to send: 1 - FEC adds redundancy: 1 1 1 (send it 3 times) - Received: 1 0 1 (middle bit corrupted!) - Decoder: "Two 1s, one 0? Probably was 1!" □

Real codes are smarter: - **Hamming code**: 4 data bits + 3 parity bits = fix any single error - **Reed-Solomon**: Used in CDs, DVDs, QR codes—can fix burst errors! - **Turbo/LDPC codes**: Used in 4G/5G—nearly as good as theoretical limit!

Real-world examples: - **QR codes**: Can work with 30% missing—that's FEC! - **Satellite TV**: Signal is weak, so FEC fixes errors without re-sending - **Deep space probes**: Can't retransmit from Mars! FEC is critical - **Your WiFi**: Uses LDPC codes to fix interference from microwave ovens

Trade-off: - More redundancy = fix more errors BUT slower transmission - Your phone adjusts: strong signal = less FEC (fast), weak signal = more FEC (reliable)

Fun fact: The Voyager probes launched in 1977 still communicate with Earth (15+ billion miles away!) using FEC codes to fix the incredibly noisy signal.

Forward Error Correction (FEC) adds redundancy to transmitted data so the receiver can detect and correct errors without retransmission.

23.2 How FEC Works

Original Data: [100 bits]

FEC Encoder: [Add redundancy]

1

Encoded Data: [150 bits with parity]

1

Noisy Channel: [Errors introduced]

1

FEC Decoder: [Correct errors using redundancy]

1

Recovered Data: [100 bits, hopefully error-free]

23.3 Key Concept

FEC trades **bandwidth efficiency** for **reliability**: - **More redundancy** = better error correction but lower data rate - **Less redundancy** = higher data rate but less error protection

23.4 Code Rate

The **code rate** is the ratio of information bits to total bits:

```
Code Rate = Information Bits / Total Bits
```

Example:

- 100 information bits
- 50 parity bits
- Total: 150 bits
- Code Rate: 100/150 = 2/3

Common code rates: - 1/2: Very robust, 50% overhead - 2/3: Good balance - 3/4: Efficient, less redundancy - 5/6: High efficiency, minimal redundancy

23.5 Types of FEC Codes

23.5.1 Block Codes

- · Process fixed-size blocks of data
- · Examples: Hamming, Reed-Solomon, BCH, LDPC

23.5.2 Convolutional Codes

- · Process continuous stream of data
- Examples: Viterbi, Turbo codes

23.5.3 Modern Codes

- LDPC: Low-Density Parity-Check (used in Chimera!)
- Turbo: Parallel concatenated codes
- · Polar: Capacity-achieving codes

23.6 FEC Gain (Coding Gain)

Coding Gain measures the SNR improvement provided by FEC:

```
Without FEC: Need SNR = 10 dB for BER = 10
With FEC: Need SNR = 2 dB for BER = 10
Coding Gain = 10 dB - 2 dB = 8 dB
```

This means FEC saves 8 dB of transmit power!

23.7 FEC Performance Metrics

23.7.1 1. Coding Gain

How much SNR improvement at a given BER

23.7.2 2. Error Floor

Minimum BER achievable (implementation limits)

23.7.3 3. Waterfall Region

SNR range where BER drops rapidly

23.7.4 4. Threshold

SNR where FEC "turns on" effectively

BER Curve with FEC:

23.8 FEC in Chimera

In Chimera's simulation:

23.8.1 1. Encoder

- · Applies [[LDPC Codes|LDPC]] encoding to payload data
- · Adds parity symbols for error correction

23.8.2 2. Channel

• [[Additive White Gaussian Noise (AWGN)|AWGN]] corrupts the transmitted symbols

23.8.3 3. Decoder

- · Iterative LDPC decoder corrects errors
- · Uses belief propagation algorithm

23.8.4 4. Metrics

- ECC symbols: Number of parity/redundancy symbols added
- Pre-FEC errors: Errors at the demodulator output

- Post-FEC errors: Residual errors after LDPC correction
- Frame Error Rate: Percentage of frames that couldn't be fully corrected

23.9 Example Performance

Channel Conditions:

- SNR: -15 dB

- BER without FEC: 10 ² (1%)

After LDPC FEC:

- Code rate: 1/2

- Iterations: 50

- Post-FEC BER: 10 (0.0001%)

Result: 40 dB coding gain!

23.10 Why FEC is Essential

23.10.1 Deep Space Communications

- Very weak signals (high link loss)
- Retransmission impractical (minutes of delay)
- FEC allows operation at lower SNR

23.10.2 Satellite Links

- · Power-limited transmitters
- · FEC saves precious transmit power
- · Standard in DVB-S2, GPS

23.10.3 Mobile Communications

- · Fading channels, interference
- FEC provides robustness
- · Used in LTE, 5G, WiFi

23.10.4 Data Storage

- · Bits can flip over time
- FEC protects against corruption
- Used in SSDs, hard drives, QR codes

23.11 Shannon Limit

Claude Shannon proved there's a theoretical limit to how much FEC can help:

Shannon Capacity: $C = B \cdot log (1 + SNR)$

where:

- C is channel capacity (bits/second)
- B is bandwidth (Hz)
- SNR is signal-to-noise ratio (linear)

Modern codes like LDPC approach this limit!

23.12 Trade-offs

23.12.1 Advantages

- Corrects errors without retransmission
- □ Improves reliability at low SNR
- Saves transmit power
- Enables communication over poor channels

23.12.2 Disadvantages

- Adds latency (encoding/decoding delay)
- Requires computational resources
- Reduces effective data rate (overhead)
- More complex implementation

23.13 See Also

- [LDPC Codes] Specific FEC code used in Chimera
- [Bit Error Rate (BER)] What FEC improves
- [[Signal to Noise Ratio (SNR)]] FEC enables lower SNR operation
- [[Understanding BER Curves]] Visualizing FEC performance

24 Free-Space Path Loss (FSPL)

24.1 For Non-Technical Readers

Like shouting across a field—the farther away, the quieter. Radio waves spread out and weaken with distance.

Key insights: - **Double the distance** = signal becomes **4x weaker** - **Higher frequency** (5G) = weaker than lower frequency (4G) over same distance - **Satellites 36,000 km away**: Signal weakens by 10 trillion trillion times! (That's why dishes are big)

Real examples: WiFi weakens 10,000× over 50 meters. Cell towers need to be closer for 5G than 4G.

Free-Space Path Loss (FSPL) quantifies how much signal power is lost as an electromagnetic wave propagates through free space.

24.2 The Friis Transmission Equation

Fundamental equation linking transmitter and receiver:

```
P_R = P_T · G_T · G_R · (/4 d)²
where:
- P_R = received power (W)
- P_T = transmitted power (W)
- G_T = transmit antenna gain (linear, dimensionless)
- G_R = receive antenna gain (linear, dimensionless)
- = wavelength (m)
- d = distance between antennas (m)
```

Assumptions: - Free space (no obstacles, no atmosphere) - Far-field (d » antenna dimensions) - Polarization matched - Antennas aligned

24.3 Path Loss Definition

Path Loss (L) is the ratio of transmitted to received power:

24.4 Example Calculations

24.4.1 Example 1: WiFi (2.4 GHz, 10 m)

 $f = 2.4 \text{ GHz} = 2.4 \times 10 \text{ Hz}$

```
d = 10 m

FSPL = 20 log (10) + 20 log (2.4×10) + 92.45

= 20 + 187.6 + 92.45

= 100 dB
```

Interpretation: Signal power drops by factor of 10¹⁰ (10 billion) over 10 m!

24.4.2 Example 2: Cell Phone (900 MHz, 1 km)

```
f = 900 MHz
d = 1 km = 1000 m

FSPL = 20 log (1000) + 20 log (900×10) + 92.45
= 60 + 179 + 92.45
= 131.5 dB
```

24.4.3 Example 3: Satellite (12 GHz, 36,000 km - GEO)

```
f = 12 GHz
d = 36,000 km = 3.6×10 m

FSPL = 20 log (3.6×10) + 20 log (12×10) + 92.45
= 151 + 201.6 + 92.45
= 205 dB
```

Massive loss! Requires high TX power + high-gain antennas.

24.4.4 Example 4: THz Link (1 THz, 10 m) - For [[AID Protocol Case Study]]

```
f = 1 THz = 1 \times 10^{12} Hz
d = 10 m
FSPL = 20 log (10) + 20 log (1 \times 10^{12}) + 92.45
= 20 + 240 + 92.45
= 352.5 dB
```

Extreme loss! This is why [[Terahertz (THz) Technology|THz communications]] are short-range only.

24.5 Scaling Laws

24.5.1 Distance Dependence

```
FSPL d<sup>2</sup> (power law)
```

In dB: FSPL_dB increases by 20 dB per decade of distance

Examples:

```
- 1 m \rightarrow 10 m: +20 dB loss

- 10 m \rightarrow 100 m: +20 dB loss

- 100 m \rightarrow 1 km: +20 dB loss
```

Doubling distance: +6 dB loss (power drops to 1/4)

24.5.2 Frequency Dependence

```
FSPL f<sup>2</sup> (power law)
```

In dB: FSPL_dB increases by 20 dB per decade of frequency

Examples:

Result:

```
- 100 MHz → 1 GHz: +20 dB loss

- 1 GHz → 10 GHz: +20 dB loss

- 10 GHz → 100 GHz: +20 dB loss
```

Doubling frequency: +6 dB loss (higher frequencies lose more power!)

Why? Effective aperture of receiving antenna \Box λ^2 (smaller at higher f)

24.6 Physical Interpretation

24.6.1 Not True "Loss"

FSPL is **NOT** energy dissipation (free space is lossless!). It's **geometric spreading**:

```
Transmit antenna radiates P_T into sphere Surface area: A = 4 d² Power density at distance d: S = P_T/(4 d²) \quad (W/m²) Received power: P_R = S \cdot A_eff where A_eff = G_R ^2/4 (effective area of RX antenna)
```

```
P_R = P_T \cdot G_T \cdot G_R \cdot (/4 d)^2 (Friis equation!)
```

Analogy: Flashlight beam spreads out \square same total power, but lower intensity at greater distance.

24.7 Link Budget Analysis

Link Budget accounts for all gains and losses:

```
P_R [dBm] = P_T [dBm] + G_T [dBi] + G_R [dBi] - FSPL [dB] - L_other [dB]
where:
- P_T = transmit power (dBm, referenced to 1 mW)
- G_T, G_R = antenna gains (dBi, referenced to isotropic)
- FSPL = free-space path loss (dB)
- L_other = other losses (cables, connectors, atmosphere, etc.)
```

Goal: Ensure P_R » P_noise (receiver noise floor) for reliable communication.

24.7.1 Example: WiFi Link Budget (2.4 GHz, 50 m)

```
Transmitter:
- TX power: +20 dBm (100 mW, typical WiFi)
- TX antenna gain: +2 dBi (dipole)
- EIRP: 22 dBm
Channel:
- Distance: 50 m
- FSPL: 20\log(50) + 20\log(2400) + 32.45 = 34 + 67.6 + 32.45 = 134 dB
- Indoor losses (walls, furniture): ~15 dB
- Total loss: 149 dB
Receiver:
- RX antenna gain: +2 dBi
- Cable loss: -1 dB
- Net RX gain: +1 dB
Received power:
P_R = 22 + 1 - 149 = -126 \text{ dBm}
Noise floor (10 MHz bandwidth, 300K):
N = -174 + 10\log(10^7) = -174 + 70 = -104 \text{ dBm}
SNR = P_R - N = -126 - (-104) = -22 dB
```

Too low! WiFi needs ~-65 dBm minimum. This link would fail.

Solution: Reduce distance, add amplifiers, or use directional antennas.

24.8 Real-World Deviations

24.8.1 FSPL Assumes Free Space

Reality: - Atmosphere absorbs (especially water vapor at mmWave/THz) - Obstacles block (buildings, trees, terrain) - Ground reflections create multipath - Weather attenuates (rain, fog)

Actual path loss > FSPL

24.8.2 Frequency-Specific Effects

Low Frequencies (< 30 MHz): - Ground wave propagation - Ionospheric reflection - **Can exceed FSPL predictions** (longer range!)

Mid Frequencies (30 MHz - 3 GHz): - Mostly line-of-sight (LOS) - FSPL + diffraction - Close to FSPL predictions

High Frequencies (> 3 GHz): - Atmospheric absorption becomes significant - Rain fade (especially > 10 GHz) - **Path loss > FSPL**

THz (> 300 GHz): - Extreme atmospheric absorption - Water vapor resonances - Path loss » FSPL (can be +100 dB extra!)

24.9 Measurement vs. Prediction

24.9.1 Received Power Measurement

Measured: P_R,meas

Predicted: P_R,pred (from Friis equation)

Path loss exponent n:

 PRd^{-n}

Free space: n = 2 Urban: n = 3-4 Indoor: n = 4-6

Empirical models (e.g., Okumura-Hata, COST 231) fit measured data to more complex formulas.

24.10 Key Takeaways

- 1. **FSPL** □ **d**² · **f**²: Geometric spreading, worse at high frequencies
- 2. 20 dB per decade: Doubling d or f adds 6 dB loss
- 3. Not energy loss: Power spreads out, doesn't vanish

- 4. Baseline for link budgets: Real losses are usually higher
- 5. **Frequency trade-off**: Higher f \(\Bigcup \) more bandwidth but more path loss
- 6. THz communications: FSPL alone is ~350 dB at 10 m, 1 THz!

24.11 ☐ See Also

- [Maxwell's Equations & Wave Propagation] Theoretical foundation
- [Antenna Theory Basics] Antenna gain (G_T, G_R)
- [Link Loss vs Noise] FSPL vs additive noise
- [[Atmospheric Effects]] Additional losses beyond FSPL (coming soon)
- [[Multipath Propagation & Fading]] Deviations from FSPL (coming soon)
- [Terahertz (THz) Technology] Extreme FSPL regime

24.12

References

- 1. Friis, H.T. (1946) "A note on a simple transmission formula" Proc. IRE 34, 254-256
- 2. **Rappaport, T.S.** (2002) *Wireless Communications: Principles and Practice* 2nd ed. (Prentice Hall)
- 3. Goldsmith, A. (2005) Wireless Communications (Cambridge UP)
- 4. ITU-R P.525 (2019) "Calculation of free-space attenuation"

25 Frequency-Shift Keying (FSK)

25.1 For Non-Technical Readers

FSK is like morse code with two different musical notes—high note = 1, low note = 0. Simple, robust, and still used everywhere!

The idea: - Want to send a **1**? Transmit at **high frequency** (e.g., 1200 Hz) - Want to send a **0**? Transmit at **low frequency** (e.g., 1000 Hz) - Receiver listens for which tone is present

Musical analogy: - Playing piano: **C note** = 0, **E note** = 1 - Song: "C C E C E E C" = data: "0 0 1 1 0" - Your ear (receiver) easily distinguishes C from E! - FSK receiver does the same with radio frequencies

Why it's great: - Super robust: Noise changes amplitude, but frequency stays clear! - Simple: Just detect which frequency is present - Immune to fading: Signal can get weaker, but frequency doesn't change - Works in harsh environments: Industrial, underwater, long-range

Where you encounter FSK: - Caller ID: Your phone uses FSK to send caller info between rings! - Old dial-up modems: 1980s modems used FSK (remember the screeching sound?) - Bluetooth Low Energy: Uses GFSK (Gaussian FSK) for low power - RFID tags: Many use FSK for simplicity - Weather balloons: FSK survives atmospheric interference - Pagers: Remember pagers? FSK!

Real-world sounds: - **Fax machine**: That squawking noise is FSK! Listen carefully—you can hear the two tones alternating - **Dial-up internet**: BEEEE-doo-BEEEE-doo = FSK handshake - **Emergency broadcast tones**: Two-tone alert = FSK

Variants: - **BFSK**: Binary (2 frequencies) = 1 bit/symbol - **MFSK**: Multiple frequencies (4, 8, 16, etc.) = more bits/symbol - **GFSK**: Gaussian FSK (smooth transitions) = used in Bluetooth

Trade-off: - **Advantage**: Extremely robust, immune to amplitude variations - **Disadvantage**: Slow compared to QAM (lower spectral efficiency) - Best for: Low-power, long-range, harsh environments

Fun fact: Old telegraph operators could "read" morse code by EAR at 40+ words/minute. FSK is the same idea—humans can literally hear binary data if you slow it down!

Frequency-Shift Keying (FSK) is a digital modulation scheme where binary data is represented by discrete changes in carrier frequency.

25.2 Basic Principle

Binary FSK (BFSK):

Time-domain representation:

25.3 Mathematical Description

Transmitted signal:

```
s(t) = A \cdot \cos[2 (f_c + b_k \cdot \Delta f/2) \cdot t] \qquad \text{for } kT_b \quad t < (k+1)T_b
```

where:

```
- f_c = carrier frequency (center)
- b_k {-1, +1} (or {0, 1})
- Δf = frequency deviation
- T_b = bit duration
```

Modulation index:

```
h = 2Δf·T_b
Common values:
- h = 0.5 (Minimum Shift Keying - MSK)
- h = 1.0 (Sunde's FSK)
- h > 1 (Wideband FSK)
```

25.4 Spectral Characteristics

Bandwidth (Carson's rule):

```
B = 2(\Delta f + R_b)
where R_b = 1/T_b = bit rate
```

Examples: - Narrowband FSK (h = 0.5): B \approx 1.5 R_b - Wideband FSK (h = 2): B \approx 5 R_b

Power spectral density: Two main lobes centered at fo and fo

25.5 Demodulation Methods

25.5.1 1. Non-Coherent Detection (Envelope Detector)

Simple and practical - no carrier phase recovery!

Architecture:

```
r(t) BPF @ f

→ Envelope → Compare → Decision

Detectors

r(t) BPF @ f

Decision:
```

If |output of f filter| > |output of f filter|: bit = 1
Else: bit = 0

Advantages: Simple, no synchronization Disadvantages: ~1 dB worse than coherent

25.5.2 2. Coherent Detection (Correlation)

Optimal performance but requires carrier synchronization:

Correlators:

$$r(t) \times cos(2 f t) \rightarrow z$$

0 to Tb

$$r(t) \times cos(2 f t) \rightarrow z$$

0 to Tb

Decision:

If z > z: bit = 1 Else: bit = 0

25.5.3 3. Frequency Discriminator

Classic FM receiver approach:

$$r(t) \rightarrow [Limiter] \rightarrow [Frequency Discriminator] \rightarrow [LPF] \rightarrow Decision$$

Converts frequency deviation to voltage, then samples at bit boundaries.

25.6 Performance Analysis

25.6.1 Bit Error Rate (BER)

With non-coherent detection (AWGN channel):

BER =
$$(1/2)\exp(-E_b/2N)$$
 for orthogonal FSK

where:

- E_b = bit energy =
$$(A^2T_b)/2$$

- N = noise power spectral density

With coherent detection:

BER =
$$Q(\sqrt{(E_b/N)})$$
 (1 dB better!)

For orthogonal FSK: Frequencies f_0 and f_1 must satisfy:

$$(f - f) \cdot T_b = n/2$$
 (n = integer)

Minimum: $\Delta f = 1/(2T_b) \rightarrow h = 1$ (Sunde's FSK)

25.7 Advantages & Disadvantages

25.7.1 Advantages

☐ Constant envelope - efficient power amplifiers (Class C) ☐ Non-coherent detection - simple receivers ☐ Robust to fading - amplitude variations don't affect frequency ☐ Good for noisy channels - frequency easier to detect than phase ☐ Legacy compatibility - used in many older systems

25.7.2 Disadvantages

	Poor	spectra	al efficiency	- wider ban	idwidth thar	n PSK 🛚	Moderate	e power effici	iency - 1-
2	dB wor	se than	[[BPSK]] 🛛	Frequency	y stability -	requires	accurate	oscillators []	Doppler
S	ensitivit	🖊 - frequ	رency shifts ا	oroblematic					

25.8 Applications

25.8.1 Historical & Current

- **Telephone modems** (Bell 103: 1962, 300 baud, f₀=1070 Hz, f₁=1270 Hz)
- Radio teletype (RTTY, 1930s-)
- Caller ID (Bell 202: 1200 bps, f₀=2200 Hz, f₁=1200 Hz)
- Pagers (POCSAG, FLEX protocols)

25.8.2 Modern

- LoRa (sub-GHz IoT, chirp spread spectrum FSK)
- Bluetooth Low Energy (GFSK Gaussian FSK)
- Wireless sensor networks low power, simple receivers
- Optical fiber (frequency-shifted laser)
- [[AID Protocol Case Study]] 12 kHz FSK sub-carrier (11,999/12,001 Hz)

25.9 FSK Variants

25.9.1 1. Minimum Shift Keying (MSK)

Special case: h = 0.5 (minimum for orthogonality)

Properties:

- Continuous phase (no discontinuities)
- Constant envelope
- Bandwidth = 1.5 R_b (narrowest FSK)
- Equivalent to offset QPSK with sinusoidal pulse shaping

Used in: GSM cellular (GMSK - Gaussian MSK)

241

25.9.2 2. Gaussian FSK (GFSK)

MSK + Gaussian pre-modulation filter

Purpose: Further reduce spectral sidelobes Bandwidth: ~1.2-1.5 R_b (depending on BT product) BT product: Bandwidth × T_b (typical: 0.3-0.5)

Used in: Bluetooth, Zigbee

25.9.3 3. Continuous Phase FSK (CPFSK)

Phase is continuous across bit boundaries:

```
(t) = 2 [f_c \cdot t + (h\Delta f/2) \cdot b()d]
```

Benefits:

- No spectral splatter
- Better spectral efficiency
- Smoother power envelope

25.9.4 4. Multi-Frequency FSK (MFSK)

M > 2 frequencies for higher data rates:

```
M symbols → log (M) bits per symbol
```

```
Example (4-FSK):
- f: bits 00
- f: bits 01
- f: bits 10
- f: bits 11
```

Bandwidth: B = M·R_b (wider!)
Power efficiency: Better than BFSK for high M

Used in: HF radio (MT63, Olivia modes)

25.10 Constellation Diagram

BFSK in frequency space:

Not a traditional I/Q constellation (frequency, not amplitude/phase).

Equivalent I/Q representation (for coherent detection):

Distance between points: $d = \sqrt{(2E_b)}$ (for orthogonal FSK)

25.11 © Comparison Table

Modulation	Bits/Symbol	Bandwidth	E_b/N ₀ @ BER=10 ⁻⁶	Envelope	Detection
[[On-Off Keying (OOK) OOK]]	1	2R_b	13.5 dB	Variable	Non- coherent
FSK	1	2R_b	12.5 dB	Constant	Non- coherent
MSK	1	1.5R_b	10.5 dB	Constant	Coherent
[[BPSK]]	1	R_b	10.5 dB	Constant	Coherent
[[QPSK Modula- tion QPSK]]	2	R_b	10.5 dB	Constant	Coherent

Key insight: FSK trades bandwidth for simplicity. [[BPSK]]/[[QPSK Modulation|QPSK]] are more efficient but require phase synchronization.

25.12 Key Takeaways

- 1. **Frequency switching**: Binary data \square two different frequencies
- 2. **Constant envelope**: Good for non-linear amplifiers
- 3. Non-coherent detection: Simple receivers, still good performance
- 4. **Bandwidth penalty**: ~2× wider than PSK
- 5. Robust: Good for noisy, fading channels
- 6. Still widely used: Bluetooth, LoRa, pagers, caller ID
- 7. Gateway to chirp spread spectrum: LoRa uses frequency chirps

25.13 See Also

- [On-Off Keying (OOK)] Simpler (amplitude modulation)
- [Binary Phase-Shift Keying (BPSK)] Alternative (phase modulation)
- [QPSK Modulation] More bits per symbol (phase)
- [Constellation Diagrams] Visualizing modulation schemes
- [[AID Protocol Case Study]] Uses 1 bps FSK sub-carrier (11,999/12,001 Hz)

25.14 References

- 1. **Sunde, E.D.** (1946) "Ideal binary pulse transmission by AM and FM" *Bell Syst. Tech. J.* 25, 1067-1093
- 2. **de Jager, F. & Dekker, C.B.** (1978) "Tamed Frequency Modulation" *IEEE Trans. Comm.* COM-26, 534-542
- 3. Proakis, J.G. & Salehi, M. (2008) Digital Communications 5th ed. (McGraw-Hill)
- 4. Sklar, B. (2001) Digital Communications 2nd ed. (Prentice Hall)

26 Frey Microwave Auditory Effect

[[Home]] | [Non-Linear Biological Demodulation] | [Acoustic Heterodyning] | [[Intermodulation Distortion in Biology]]

26.1 Overview

The **Frey microwave auditory effect** (also called **microwave hearing** or **RF hearing**) is the perception of auditory sensations (clicks, buzzes, or tones) when exposed to **pulsed microwave radiation** (typically 1-10 GHz). The effect is well-documented and occurs **without external sound**—the perception arises from **thermoelastic expansion** in the cochlea.

Key features \Box : - Requires pulsed microwaves (CW ineffective) - Perceived sound frequency ~pulse repetition rate (not microwave carrier frequency) - Threshold: ~1-10 μ J/cm² per pulse (very low energy) - Mechanism: Rapid heating \Box acoustic pressure wave \Box cochlear stimulation

Applications (potential []): - Non-lethal weapons ("active denial" communication) - Assistive hearing devices (cochlear implant alternative?) - Covert communication

26.2.1 What Is It?

Imagine hearing sounds—clicks, buzzes, or even tones—but there's no speaker, no headphones, and no actual sound waves in the air. That's the Frey microwave auditory effect.

When certain types of microwave signals (like what's in a radar) are pulsed rapidly on and off, people near them sometimes hear mysterious noises. It's not science fiction—it's a real, well-studied phenomenon discovered in the 1960s.

26.2.2 How Does It Work? (The Simple Version)

Think of it like this:

- 1. **Microwave pulses hit your head** (don't worry—very tiny amounts of energy, much less than a microwave oven)
- 2. They make tissue heat up just a tiny, tiny bit (we're talking millionths of a degree—you can't feel it)
- 3. That tiny heating happens so fast it makes the tissue expand suddenly (like how metal expands when heated, but much faster)
- 4. The expansion creates a pressure wave (basically a tiny "pop" inside your head)
- 5. That pressure wave reaches your inner ear (the cochlea)
- 6. Your ear detects it as sound (your brain thinks "I heard a click!")

It's like tapping on a microphone to test it—except the "tap" comes from inside your head, caused by invisible microwaves.

26.2.3 Key Points to Remember

It's safe (at normal levels)
- The energy levels that cause the effect are far below what would harm you - It's like hearing a distant whisper—noticeable but not dangerous - No tissue damage occurs at the levels needed to hear the sound

It's not mind control □ - Despite what conspiracy theories say, this effect only creates sounds - It can't implant thoughts or control your actions - It's no different from hearing any other sound with your ears

Your cell phone can't do this \square - Cell phones use continuous signals, not rapid pulses - They don't have enough power (need kilowatts, not milliwatts) - The frequency isn't quite right for the effect

Why you might care: - It's a fascinating example of how physics and biology interact - It shows our bodies can be "antennas" for certain signals - It has potential uses (and misuses) in technology and defense

26.2.4 The "Wow" Factor

The coolest part? **The sound isn't "out there"—it's created inside your head.** Someone standing right next to you won't hear it. But you will. It's your own personal acoustic experience, generated by electromagnetic waves.

Scientists have even used this to transmit simple speech patterns—imagine hearing words that no one spoke, with no device in your ear. That's the Frey effect in action.

26.3 1. Discovery and Historical Background

26.3.1 1.1 Allan Frey's Experiments (1962)

Original observation: Frey reported that humans near radar installations heard "clicking" or "buzzing" sounds synchronized with radar pulses.

Controlled experiment: - Subjects exposed to pulsed microwaves (1.3 GHz, ~10 µs pulses, 100-1000 pps) - Auditory perception reported even in **deaf subjects** (conductive hearing loss; sensorineural deaf individuals did not perceive) - Sound localized to head, not external space

Frey's conclusion: Microwaves directly stimulate auditory system, bypassing external ear.

Controversy: Initial skepticism; effect dismissed as equipment artifact (electromagnetic interference with auditory nerves). Later confirmed by multiple independent labs.

26.3.2 1.2 Subsequent Research (1970s-1990s)

U.S. military studies (classified then declassified): - Confirmed Frey effect in animals and humans - Explored for communication ("voice-to-skull") and non-lethal weapons

Key findings: - Effect requires intact cochlea (direct neural stimulation ruled out) - Perceived frequency matches pulse repetition rate (10 pps ☐ 10 Hz perceived tone) - Peak sensitivity ~2.45 GHz (ISM band)

26.4 2. Mechanism: Thermoelastic Expansion

26.4.1 2.1 Physical Process

Step 1: Microwave absorption - Pulsed microwave energy absorbed by tissue (primarily water) - Absorption depth (1/e): ~1-3 cm at 1-10 GHz

Step 2: Rapid heating - Pulse duration: ~1-10 μs (shorter than thermal diffusion time ~1 ms) - Temperature rise: $\Delta T \approx 10^{-6}$ to 10^{-5} °C per pulse (tiny!)

Step 3: Thermoelastic expansion - Heated tissue expands: $\Delta V/V=3\alpha\Delta T$ (where $\alpha\approx 3\times 10^{-4}~{\rm K}^{\text{-1}}$ is thermal expansion coefficient) - Expansion occurs on timescale of pulse (~µs) [] launches acoustic wave

Step 4: Acoustic propagation - Pressure wave propagates through head tissue to cochlea - Inner ear hair cells (stereocilia) detect pressure \Box neural signal

Step 5: Perception - Auditory cortex processes signal [] perceived as sound

26.4.2 2.2 Quantitative Model

Absorbed energy per pulse:

$$E = SAR \times \tau \times m$$

where: - SAR: Specific absorption rate (W/kg) - τ : Pulse duration (s) - m: Mass of absorbing tissue (kg)

Temperature rise:

$$\Delta T = \frac{E}{c_p m} = \frac{\mathrm{SAR} \times \tau}{c_p}$$

where $c_p \approx 3600$ J/kg/K (specific heat capacity).

For SAR = 1 W/kg, $\tau=1~\mu s$:

$$\Delta T = \frac{1\times 10^{-6}}{3600} \approx 3\times 10^{-10}~{\rm K}~~{\rm (negligible~heating!)}$$

Pressure amplitude (Lin & Wang model):

$$p = \frac{\beta}{\rho_0 c_p} \cdot \mathrm{SAR} \cdot \tau \cdot f_c$$

where: - β : Thermal expansion coefficient (~ $10^{-4}~{\rm K}^{\text{--1}}$) - ρ_0 : Density (~1000 kg/m³) - f_c : Microwave frequency (Hz)

Threshold pressure for hearing: ~20 µPa (0 dB SPL)

Implication: Very low energy pulses sufficient to exceed hearing threshold.

26.4.3 2.3 Why Pulsed, Not CW?

CW microwaves: Steady heating \square no rapid expansion \square no acoustic wave

Pulsed microwaves: Rapid on-off □ expansion-contraction cycles □ acoustic transient

Pulse duration: Must be shorter than thermal diffusion time (~1 ms) and comparable to acoustic period (~10 µs for 100 kHz).

26.5 3. Experimental Evidence

26.5.1 3.1 Human Psychophysics

Threshold measurements (Guy et al., 1975): - Frequency range: 200 MHz - 10 GHz - Peak sensitivity: **2.45 GHz** (coincides with peak brain absorption) - Threshold: \sim 1-10 μ J/cm² per pulse (0.1-1 mW/cm² average for 1% duty cycle)

Perceived sound characteristics: - **Click**: Single pulse - **Buzz**: Pulse train (10-100 pps) - **Tone**: High pulse rate (>1000 pps), perceived pitch = PRF - **No sound**: CW exposure (even at high power)

Deaf subjects: Conductively deaf individuals (middle ear damage) perceive effect; sensorineural deaf (cochlear damage) do not \Box confirms cochlear origin.

26.5.2 3.2 Animal Studies

Cochlear microphonics (Elder & Chou, 2003): - Microelectrode in guinea pig cochlea - Pulsed microwaves \Box electrical signal matching pulse rate - Signal abolished by cochlear destruction \Box direct evidence for cochlear transduction

Auditory brainstem response (ABR): - EEG-like measurement of auditory pathway activity - Pulsed microwaves evoke ABR similar to acoustic clicks

26.5.3 3.3 Simulations and Modeling

Lin (1978): Developed thermoelastic theory; predicted threshold within factor of 2-3 of measured values.

Foster & Finch (1974): Showed calculated pressure waves consistent with psychophysical thresholds.

Consensus: Thermoelastic mechanism firmly established [] .

26.6 4. Frequency and Pulse Parameter Dependence

26.6.1 4.1 Carrier Frequency

Optimal frequency: 1-10 GHz - **Lower (<100 MHz)**: Penetrates too deeply, low absorption in head □ weak effect - **Higher (>30 GHz)**: Absorbed at skin surface, doesn't reach cochlea

Peak sensitivity ~2.45 GHz: Balance between penetration and absorption.

26.6.2 4.2 Pulse Duration

Optimal range: 1-100 μ s - Shorter (<1 μ s): Lower total energy, weaker acoustic wave - Longer (>1 ms): Heat diffuses before expansion \square less efficient pressure generation

26.6.3 4.3 Pulse Repetition Frequency (PRF)

PRF determines perceived pitch: - 10 Hz low hum - 100 Hz buzz - 1 kHz audible tone - 10 kHz high-pitched whistle

Audible range: 20 Hz - 20 kHz (same as acoustic hearing)

26.6.4 4.4 Peak Power vs. Average Power

Key insight: Effect depends on **peak power per pulse**, not average power.

Example: - Pulse: 1 kW peak, 1 μ s duration, 100 pps - Average power: $1000 \times 10^{-6} \times 100 = 0.1$ W (weak!) - But peak intensity high enough to trigger effect

Safety implication: Average power density can be below safety limits while still causing perception.

26.7 5. Safety Considerations

26.7.1 5.1 Exposure Limits

IEEE/ICNIRP guidelines: Based on thermal effects (tissue heating) - **Occupational**: ~10 mW/cm² (averaged over 6 minutes) - **General public**: ~2 mW/cm²

Frey effect threshold: ~1 μ J/cm² per pulse - For 1 μ s pulse at 100 pps (0.01% duty cycle): Average = $1 \times 10^{-6} \times 100 = 10^{-4}$ J/cm²/s = 0.01 mW/cm² - Well below safety limits \square

Conclusion: Frey effect can occur at exposures considered safe for thermal damage.

26.7.2 5.2 Health Effects

Acute: - Auditory perception (transient, reversible) - Annoyance, distraction - No tissue damage at threshold levels

Chronic: - No known long-term effects from brief exposures - High-intensity repeated exposure could cause cochlear damage (acoustic trauma-like)

Comparison to acoustic hearing: Frey effect pressure waves ~60-80 dB SPL equivalent (moderate loudness, not hazardous).

26.8 6. Applications (Potential)

26.8.1 6.1 Non-Lethal Weapons / Deterrents

Concept: Direct pulsed microwaves at target

induce disorienting sounds ("voice in head")

Advantages: - No physical projectile - Reversible effect - Can encode information (modulate PRF to transmit speech)

Challenges: - Requires high peak power (kW)

bulky equipment - Line-of-sight only (microwaves don't penetrate walls at GHz) - Ethical concerns (psychological effects of "voices")

Status: Prototypes exist (U.S. military "MEDUSA" system); deployment unclear.

26.8.2 6.2 Assistive Hearing Devices

Concept: For sensorineural deaf (damaged hair cells), bypass cochlea with direct microwave stimulation of auditory nerve.

Problem: Cochlear damage also eliminates microwave effect (relies on intact cochlea).

Alternative: Cochlear implants (electrical stimulation) are more effective.

26.8.3 6.3 Covert Communication

Concept: Transmit speech via modulated microwave pulses \square target hears without nearby listeners.

Challenge: Requires target to be stationary (beam focusing); speech intelligibility limited by PRF bandwidth (~10 kHz max).

26.8.4 6.4 Scientific Tool

Brain imaging: Could microwave pulses selectively activate auditory cortex for fMRI mapping?

Status: Not pursued (ethical/safety barriers).

26.9 7. Comparison to Other Phenomena

26.9.1 7.1 Acoustic Heterodyning

Different: Heterodyning mixes two acoustic waves; Frey effect is **EM-to-acoustic transduction**.

Similarity: Both create sound "from nothing" (no external source).

See: [Acoustic Heterodyning]

26.9.2 7.2 THz Bioeffects

THz frequencies (0.1-10 THz) are ~100-1000× higher than Frey effect microwaves (GHz).

Could THz cause similar effect? - No: THz absorbed at skin (<1 mm penetration), never reaches cochlea. - Frey effect requires **volumetric heating in brain tissue** near cochlea.

See: [[THz Bioeffects Thermal and Non-Thermal]]

26.10 8. Controversies and Misconceptions

26.10.1 8.1 "Mind Control" and Conspiracy Theories

Misconception: Frey effect can implant thoughts or control behavior.

Reality: Effect only creates auditory perception; cannot write information directly to brain. No different from hearing a sound via ears.

26.10.2 8.2 "Havana Syndrome"

Speculation: Unexplained health incidents (2016-present) involving U.S. diplomats attributed to "sonic attacks" or directed energy weapons.

Possible explanations: - Pulsed microwaves (Frey effect) - Ultrasound - Mass psychogenic illness

Scientific consensus: Mechanism unproven; microwave explanation plausible but not confirmed.

26.10.3 8.3 5G and Cell Phones

Question: Can 5G towers or cell phones cause Frey effect?

Answer: **No** \Box - Cell signals are CW or quasi-CW (not short pulses) - Power too low (milliwatts vs. kilowatts needed) - Frequency wrong (5G uses 3-30 GHz; sub-optimal for deep penetration)

26.11 9. Connections to Other Wiki Pages

- [Non-Linear Biological Demodulation] Overview of nonlinear EM-biology interactions
- [Acoustic Heterodyning] Parametric acoustic arrays (different mechanism)
- [[Intermodulation Distortion in Biology]] Nonlinear mixing (Frey is not IMD, but related)
- [[THz Bioeffects Thermal and Non-Thermal]] Comparison to THz interactions
- [mmWave & THz Communications] Frequency context

26.12.1 Original Discovery

1. Frey, J. Appl. Physiol. 17, 689 (1962) — First report of microwave hearing

26.12.2 Mechanism

- 2. Lin, *Proc. IEEE* 68, 67 (1980) Thermoelastic theory (definitive review)
- 3. Foster & Finch, Science 185, 256 (1974) Pressure wave calculations

26.12.3 Experimental Confirmation

- 4. Guy et al., Radio Sci. 10, 109 (1975) Human psychophysical thresholds
- 5. Elder & Chou, Bioelectromagnetics 24, 568 (2003) Cochlear microphonics in animals

26.12.4 Reviews and Safety

- 6. Lin & Gandhi, IEEE Trans. Antennas Propag. 44, 1413 (1996) Safety assessment
- 7. Elder, Health Phys. 83, 580 (2002) Comprehensive review

26.12.5 Applications (Speculative)

8. U.S. Army MEDU	SA project (DARPA, 200	8) — Non-lethal weapo	on prototype
Last updated: October	2025		

26.13 Planned Sections

- Discovery and history
- Physical mechanism
- · Experimental evidence
- · Safety considerations
- References

27 Glossary of Terms

[[Home]] | Quick Reference

27.1 A

ACK - Acknowledgment

ADC - Analog-to-Digital Converter

AESA - Active Electronically Scanned Array

AFC - Automatic Frequency Control

AGC - Automatic Gain Control

AID - Adaptive Impedance Demodulation (from [[AID Protocol Case Study]])

AM - Amplitude Modulation

AMC - [Adaptive Modulation & Coding (AMC)]

AR - Axial Ratio (polarization)

ARQ - Automatic Repeat Request

ASK - [Amplitude-Shift Keying (ASK)]

AWGN - [Additive White Gaussian Noise (AWGN)]

27.2 B

BCH - Bose-Chaudhuri-Hocquenghem codes (see [Block Codes (Hamming, BCH, Reed-Solomon)])

BER - [Bit Error Rate (BER)]

BPSK - [Binary Phase-Shift Keying (BPSK)]

27.3 C

CDF - Cumulative Distribution Function

CFO - Carrier Frequency Offset

CQI - Channel Quality Indicator

CRC - Cyclic Redundancy Check

27.4 D

DAC - Digital-to-Analog Converter

dB - Decibel

dBi - Decibels relative to isotropic antenna

dBm - Decibels relative to 1 milliwatt

DFE - Decision Feedback Equalization (see [Channel Equalization])

DSSS - Direct Sequence Spread Spectrum (see [Spread Spectrum (DSSS/FHSS)])

DVB-S2 - Digital Video Broadcasting - Satellite 2nd generation

27.5 E

Eb/N0 - Energy per bit to noise power spectral density ratio (see [[Energy Ratios (Es/N0 and Eb/N0)]])

EIRP - Effective Isotropic Radiated Power

ERP - Effective Radiated Power

Es/N0 - Energy per symbol to noise power spectral density ratio

27.6 F

FDD - Frequency Division Duplex

FEC - [Forward Error Correction (FEC)]

FER - Frame Error Rate

FFT - Fast Fourier Transform

FHSS - Frequency Hopping Spread Spectrum (see [Spread Spectrum (DSSS/FHSS)])

FM - Frequency Modulation

FSPL - [Free-Space Path Loss (FSPL)]

FSK - [Frequency-Shift Keying (FSK)]

27.7 G

GMSK - Gaussian Minimum Shift Keying (see [Frequency-Shift Keying (FSK)])

GNSS - Global Navigation Satellite System

GPS - Global Positioning System

27.8 H

HARQ - Hybrid Automatic Repeat Request

HF - High Frequency (3-30 MHz)

HRP - [Hyper-Rotational Physics (HRP) Framework]

27.9 I

ICNIRP - International Commission on Non-Ionizing Radiation Protection

IF - Intermediate Frequency

IFFT - Inverse Fast Fourier Transform

IMD - Intermodulation Distortion

IQ - [IQ Representation] (In-phase and Quadrature)

ISI - Intersymbol Interference

27.10 L

LCR - Level Crossing Rate

LDPC - [LDPC Codes] (Low-Density Parity-Check)

LHCP - Left-Hand Circular Polarization (see [Wave Polarization])

LNA - Low-Noise Amplifier

LO - Local Oscillator

LOS - Line of Sight

LPI - Low Probability of Intercept (see [Military & Covert Communications])

LPD - Low Probability of Detection

LTE - Long Term Evolution (4G cellular)

27.11 M

MCS - Modulation and Coding Scheme

MIMO - [MIMO & Spatial Multiplexing]

ML - Maximum Likelihood

MMSE - Minimum Mean Square Error (see [Channel Equalization])

mmWave - Millimeter Wave (see [mmWave & THz Communications])

MSK - Minimum Shift Keying (see [Frequency-Shift Keying (FSK)])

27.12 N

NLOS - Non-Line of Sight

27.13 O

OFDM - [OFDM & Multicarrier Modulation]

OOK - [On-Off Keying (OOK)]

Orch-OR - [[Orchestrated Objective Reduction (Orch-OR)]]

27.14 P

PA - Power Amplifier

PAM - Pulse Amplitude Modulation

PAPR - Peak-to-Average Power Ratio

PDF - Probability Density Function

PLL - Phase-Locked Loop

PSK - Phase-Shift Keying (see [Binary Phase-Shift Keying (BPSK)], [QPSK Modulation], [8PSK & Higher-Order PSK])

27.15 Q

QAM - [Quadrature Amplitude Modulation (QAM)]

QCL - Quantum Cascade Laser (see [Terahertz (THz) Technology])

QPSK - [QPSK Modulation]

27.16 R

RF - Radio Frequency

RHCP - Right-Hand Circular Polarization (see [Wave Polarization])

RMS - Root Mean Square

RRC - Root Raised Cosine

RS - Reed-Solomon codes (see [Block Codes (Hamming, BCH, Reed-Solomon)])

RX - Receiver

27.17 S

SDR - Software-Defined Radio

SER - Symbol Error Rate

SINR - Signal-to-Interference-plus-Noise Ratio

SNR - [Signal-to-Noise Ratio (SNR)]

SSB - Single Sideband

27.18 T

TDD - Time Division Duplex

TEC - Total Electron Content (see [[Atmospheric Effects (Ionospheric, Tropospheric)]])

THz - Terahertz (see [Terahertz (THz) Technology], [mmWave & THz Communications])

TX - Transmitter

27.19 U

UHF - Ultra High Frequency (300 MHz - 3 GHz)

27.20 V

VHF - Very High Frequency (30-300 MHz)

VSB - Vestigial Sideband

27.21 W

WiFi - Wireless Fidelity (IEEE 802.11)

27.22 Z

ZF - Zero-Forcing (see [Channel Equalization])

27.23 Key Concepts

Baseband - Signal at original frequency (near DC). See [Baseband vs Passband Signals]

Constellation - Visual representation of modulation symbols. See [Constellation Diagrams]

Diversity - Using multiple independent signal paths to combat fading

Fading - Rapid variations in signal strength due to multipath. See [[Multipath Propagation & Fading (Rayleigh, Rician)]]

Link Budget - Accounting of all gains and losses in a communication link. See [Complete Link Budget Analysis]

Passband - Signal shifted to carrier frequency. See [Baseband vs Passband Signals]

Symbol - Group of bits transmitted as a single waveform. See [[What Are Symbols]]

For detailed explanations,	s, click the linked wiki pag	res.
Updated: October 4, 202	25	

28 Hamming Distance & Error Detection

[[Home]] | Coding Theory | [Forward Error Correction (FEC)] | [Block Codes (Hamming, BCH, Reed-Solomon)]

Hamming distance is like counting spelling differences between words—the more letters that differ, the easier it is to detect typos!

The idea - How different are two words?

Compare these: - CAT vs CAR [] 1 letter different [] Hamming distance = 1 - CAT vs DOG [] 3 letters different [] Hamming distance = 3 - HELLO vs HELLO [] 0 letters different [] Hamming distance = 0

Why this matters for error detection:

Problem: Radio noise flips bits (00 1 or 10 0)

Solution: Use codewords that are far apart! - Valid codewords: 00000, 11111 (distance = 5) - Received: 00100 (1 bit flipped) - Decoder: "Closer to 00000 than 11111? Must have been 00000!"

Rule of thumb: - Distance 2: Can detect 1 error (knows something's wrong) - Distance 3: Can correct 1 error (fixes it automatically) - Distance 5: Can correct 2 errors OR detect 4 errors

Real-world example - ISBN numbers: - Book ISBNs have built-in Hamming distance - Typo in one digit? System detects it! - Typo in two digits? Usually detected! - This is why Amazon catches typos when you enter an ISBN

Everyday examples: - **Credit card numbers**: Luhn algorithm (distance-based error detection) - **QR codes**: Large Hamming distance = works even with damage - **Your WiFi**: Uses codes with distance 3-5 to auto-correct bit errors

Fun fact: Hamming codes (invented in 1950) are why computer RAM can automatically detect/correct errors—cosmic rays flip bits, Hamming distance catches them!

28.2 Overview

Hamming distance measures how many bit positions differ between two codewords.

Definition: For binary strings x and y:

$$d_H(x,y) = ext{number of positions where } x_i \neq y_i$$

Example: - x=10110 - y=10011 - $d_H(x,y)=2$ (differ in positions 3 and 4)

Significance: Determines error detection and correction capability of a code.

28.3 Minimum Distance

Code C = Set of valid codewords

Minimum distance d_{\min} :

$$d_{\min} = \min_{x,y \in C, x \neq y} d_H(x,y)$$

Key property: d_{\min} determines code's error-handling capability

28.3.1 Error Detection Capability

Theorem: A code with minimum distance d_{\min} can **detect** up to:

$$t_{\rm detect} = d_{\rm min} - 1~{\rm errors}$$

Why: To detect t errors, codewords must differ in $\ge t+1$ positions

28.3.2 Error Correction Capability

Theorem: A code with minimum distance d_{\min} can correct up to:

$$t_{\rm correct} = \left\lfloor \frac{d_{\rm min} - 1}{2} \right\rfloor \ {\rm errors}$$

Why: Need "space" around each codeword to uniquely decode

28.3.3 Combined Detection & Correction

 ${\bf Can \ simultaneously:} \ {\bf -Correct} \ t \ {\bf errors} \ {\bf -Detect} \ t+s \ {\bf errors}$

Requirement:

$$d_{\min} \geq 2t + s + 1$$

Example: $d_{\min}=7$ - Correct 2 errors, detect 2 more (2×2 + 2 + 1 = 7) \square - Or correct 3 errors (no detection beyond that)

28.4 Examples

28.4.1 Simple Parity Code

Codewords: Add 1 parity bit to make total 1's even

Example (3-bit data): - 000 [0000 (0 ones, even) - 001 [0011 (2 ones, even) - 010 [0101

(2 ones, even) - 011 □ 0110 (2 ones, even) - ...

Minimum distance: $d_{\min} = 2$ - Any two codewords differ in ≥ 2 positions

Capability: - Detect: 2-1=1 error \square - Correct: $\lfloor (2-1)/2 \rfloor = 0$ errors (none)

28.4.2 Repetition Code (3-bit)

Encoding: Repeat each bit 3 times - 0 \(\Bigcirc \) 000 - 1 \(\Bigcirc \) 111

Minimum distance: $d_{\rm min}=3$ - 000 and 111 differ in all 3 positions

Capability: - Detect: 3-1=2 errors - Correct: $\lfloor (3-1)/2 \rfloor = 1$ error

Example error correction: - Received: 010 (1 error) - Nearest codeword: 000

Decode as 0

Ш

28.4.3 Hamming(7,4) Code

Parameters: - 7 bits total (4 data + 3 parity) - $d_{\min} = 3$

Capability: - Correct 1 error - Detect 2 errors

Efficiency: Rate = 4/7 = 0.57 (57% data, 43% overhead)

28.5 Hamming Weight

Hamming weight $w_H(x)$ = Number of 1's in x

Relationship to distance:

$$d_H(x,y) = w_H(x \oplus y)$$

Where \oplus = XOR (exclusive OR)

Example: - x=10110 - y=10011 - $x\oplus y=00101$ (weight = 2) - $d_H(x,y)=2$ []

28.5.1 Linear Codes

For linear codes: d_{\min} = minimum non-zero codeword weight

Why: $d_H(x,y) = w_H(x \oplus y)$, and $x \oplus y$ is also a codeword (closure property)

Simplification: Only need to check weights, not all pairs!

28.6 Error Detection Methods

28.6.1 1. Single Parity Check

Add 1 bit to make total 1's even (or odd)

Even parity:

$$p = d_1 \oplus d_2 \oplus \cdots \oplus d_k$$

Properties: - $d_{\min}=2$ - Detects all single-bit errors - Detects all odd-number errors - Cannot detect even-number errors (2, 4, 6, ...)

Use case: Memory (SIMM, DIMM) basic protection

28.6.2 2. Two-Dimensional Parity

Arrange data in matrix, add parity for rows and columns:

Properties: - Detect all 1, 2, 3-bit errors - Correct single-bit error (row □ column identifies position) - Some 4+ bit error patterns undetected

28.6.3 3. Cyclic Redundancy Check (CRC)

Polynomial-based error detection

Idea: Treat message as polynomial, divide by generator g(x), append remainder

Example (CRC-8): - Generator: $g(x) = x^8 + x^2 + x + 1$ - 8-bit checksum

Properties: - Detect all single-bit errors - Detect all double-bit errors - Detect all odd-number errors (if g(x) has (x+1) factor) - Detect all burst errors \leq degree of g(x)

Common CRCs: - **CRC-16**: Modbus, USB - **CRC-32**: Ethernet, ZIP, PNG - **CRC-CCITT**: Bluetooth, X.25

28.6.4 4. Checksum

Simple sum of data bytes (with wraparound)

Example (16-bit):

$$\operatorname{Checksum} = \left(-\sum_i \operatorname{data}_i \right) \bmod 2^{16}$$

Properties: - Fast to compute - Weaker than CRC (doesn't catch all bit reorderings)

Use case: TCP, UDP, IP headers

28.7 Error Correction Principles

28.7.1 Maximum Likelihood Decoding

Receive *r* (possibly corrupted)

Decode to codeword \hat{c} that maximizes P(c|r)

For AWGN channel: Minimum Euclidean distance

For BSC (binary symmetric channel): Minimum Hamming distance

$$\hat{c} = \arg\min_{c \in C} d_H(r,c)$$

28.7.2 Syndrome Decoding

For linear codes:

Syndrome: $s = r \cdot H^T$

Where: - r = Received word - H = Parity-check matrix

Property: s=0 iff r is valid codeword

Error pattern identified by syndrome lookup table

28.7.3 Bounded Distance Decoding

Decode successfully if $d_H(r,c) \leq t$

Where
$$t = \lfloor (d_{\min} - 1)/2 \rfloor$$

If $d_H(r,c)>t$ for all c: - Erasure: Declare decoding failure (more honest) - Guess: Pick nearest (may introduce errors)

28.8 Coding Bounds

28.8.1 Hamming Bound (Sphere-Packing Bound)

Volume of Hamming sphere (radius *t*):

$$V(t) = \sum_{i=0}^t \binom{n}{i}$$

Hamming bound: For (n,k) code correcting t errors:

$$2^k \cdot V(t) \le 2^n$$

Or:

$$2^{n-k} \ge \sum_{i=0}^t \binom{n}{i}$$

Interpretation: Need \geq this many parity bits

28.8.2 Perfect Codes

Code is perfect if Hamming bound is met with equality

Examples: - Hamming codes (single-error correcting) - Golay code (23, 12, 7) - Repetition codes (trivial)

Property: Every received word is within distance t of exactly one codeword (no "wasted" space)

28.8.3 Singleton Bound

$$d_{\min} \le n - k + 1$$

Codes meeting this: Maximum Distance Separable (MDS)

Examples: Reed-Solomon codes (meet Singleton bound)

28.8.4 Gilbert-Varshamov Bound

Existence bound: Guarantees codes exist with certain d_{\min}

$$\sum_{i=0}^{d-2} \binom{n-1}{i} < 2^{n-k}$$

Interpretation: "Good" codes exist, even if we don't know how to construct them

28.9 Practical Error Detection

28.9.1 Memory (ECC RAM)

Single Error Correction, Double Error Detection (SECDED): - Hamming code with extra parity bit - $d_{\min}=4$ - Correct 1 bit, detect 2 bits

Example: 64-bit data - Hamming: 7 parity bits (for 1-bit correction) - +1 bit for double detection 8 bits total - (64, 72) SECDED code

28.9.2 Storage (Hard Drives, SSDs)

Reed-Solomon codes: - Detect/correct burst errors - Used in RAID, CDs, DVDs, QR codes

Example: CD - RS(32, 28, 5) over $\mathrm{GF}(2^8)$ - Can correct 2 symbol errors (16 bits)

28.9.3 Networking

CRC-32 (Ethernet): - Detects all burst errors ≤32 bits - Detects 99.9999% of longer bursts

TCP checksum: - 16-bit sum (weak) - Mainly detects random errors, not malicious

28.9.4 Spacecraft

Concatenated codes: - Inner: Convolutional or LDPC (correct frequent errors) - Outer: Reed-Solomon (correct burst errors)

Example: Voyager - (7, 1/2) convolutional + RS(255, 223) - $d_{\rm min}=33$ (outer code) - Can correct

16 symbol errors

28.10 Burst Error Detection

Burst error: Consecutive bits corrupted

Length b **burst**: Errors span b consecutive bits

28.10.1 Fire Codes

Designed for burst errors

Parameters: (n, k) code detecting bursts $\leq b$

Requirement: $n - k \ge b$

Generator polynomial: Special structure

28.10.2 Interleaving

Spread codeword symbols across time/space

Example (depth 5):

```
Original:
```

C1: a1 a2 a3 a4 C2: b1 b2 b3 b4 C3: c1 c2 c3 c4 C4: d1 d2 d3 d4 C5: e1 e2 e3 e4

Transmitted:

a1 b1 c1 d1 e1 | a2 b2 c2 d2 e2 | a3 b3 c3 d3 e3 | ...

If burst corrupts 5 bits:
a1 b1 c1 d1 e1 (all corrupted)

Each codeword sees only 1 error → All correctable!

Use case: CDs (scratch protection), wireless (fading)

28.11 Distance Spectrum

Weight distribution A_i = Number of codewords with weight i

Notation: $\{A_0,A_1,A_2,\dots,A_n\}$

Example: Hamming(7,4) - $A_0=1$ (all-zeros) - $A_3=7$ (weight 3) - $A_4=7$ (weight 4) - $A_7=1$

(all-ones)

Use: Calculate average error probability

28.11.1 Union Bound on Error Probability

$$P_e \leq \sum_{i=d_{\min}}^n A_i \cdot P(\text{decode } c_i \text{ as another codeword})$$

Tight at high SNR

28.12 Soft-Decision Metrics

Hard decision: Received bit □ 0 or 1 (threshold)

Soft decision: Keep analog value (confidence)

Soft Hamming distance (Euclidean):

$$d_{\rm soft}(r,c) = \sum_{i=1}^n (r_i - c_i)^2$$

Where $r_i \in \mathbb{R}$ (e.g., LLRs)

Benefit: ~2-3 dB coding gain

28.13 Summary Table

Error Type De	tection Method Overhe	ad	Capability
Single bit	Parity	1 bit	Detect only
	Hamming(7,4)	43%	Correct 1, detect 2
Burst ≤32 l	oits CRC-32	32 bits	Detect only
Random e		10-20%	Correct + detect
Deep spac		50%+	Very robust

28.14 Code Comparison

	Code	(n, k)	d_{min}	Corre	ect	Detect	Rate		
Parity		(n, n	-1)	2	0	1		0.875 (n=8)	
Rep(3)		(3, 1)	3	1	2		0.33	
Hamming(7,	4)	(7, 4	.)	3	1	2		0.57	
Extended Ha	amming	ı (8, 4	.)	4	1	3	i	0.50	
Golay(23,12)		(23,	12)	7	3	6	i	0.52	
RS(255,223)		(255	, 223)	33	16	3	2	0.875	

28.15 Python Example: Hamming Distance

```
def hamming_distance(x, y):
    """Calculate Hamming distance between two binary strings."""
    if len(x) != len(y):
        raise ValueError("Strings must have equal length")
    return sum(c1 != c2 for c1, c2 in zip(x, y))
def hamming_weight(x):
    """Calculate Hamming weight (number of 1's)."""
    return sum(int(c) for c in x)
def minimum_distance(codewords):
    """Find minimum distance of a code."""
    min_dist = float('inf')
    for i, c1 in enumerate(codewords):
        for c2 in codewords[i+1:]:
            dist = hamming_distance(c1, c2)
            if dist < min_dist:</pre>
                min_dist = dist
    return min_dist
# Example: Hamming(7,4) codewords
hamming_7_4 = [
```

```
'0000000', '0001111', '0010110', '0011001',
'0100101', '0101010', '0110011', '0111100',
'1000011', '1001100', '1010101', '1011010',
'1100110', '1101001', '1110000', '1111111'
]

d_min = minimum_distance(hamming_7_4)
print(f"Minimum distance: {d_min}") # Output: 3

# Error capability
t_correct = (d_min - 1) // 2
t_detect = d_min - 1
print(f"Can correct {t_correct} errors, detect {t_detect} errors")
# Output: Can correct 1 errors, detect 2 errors
```

28.16 Related Topics

- [Forward Error Correction (FEC)]: Using redundancy for correction
- [Block Codes (Hamming, BCH, Reed-Solomon)]: Specific code constructions
- [Convolutional Codes & Viterbi Decoding]: Sequential error correction
- [LDPC Codes]: Modern capacity-approaching codes
- [Bit Error Rate (BER)]: Performance metric

Key takeaway: Hamming distance $d_H(x,y)$ counts differing bit positions. Minimum distance d_{\min} determines error-handling capability: detect $d_{\min}-1$ errors, correct $\lfloor (d_{\min}-1)/2 \rfloor$ errors. Single parity ($d_{\min}=2$) detects 1 error. Hamming codes ($d_{\min}=3$) correct 1 error. Reed-Solomon ($d_{\min}=33$) corrects 16 symbol errors. CRC detects burst errors efficiently. Interleaving converts burst errors to scattered errors. Soft-decision decoding gains ~2 dB over hard decision. Trade-off: Larger d_{\min} requires more redundancy (lower code rate).

This wiki is part of the [[Home|Chimera Project]] documentation.

29 Hyper-Rotational Physics (HRP) Framework

☐ **ADVANCED THEORETICAL PHYSICS**: This page presents cutting-edge theoretical research (Jones, 2025) that extends M-theory to model consciousness-matter interactions. Content is unverified but mathematically rigorous.

29.1 For Non-Technical Readers

What is this about? This document describes a theoretical framework suggesting that human consciousness might be able to physically interact with the fabric of reality itself—not through magic, but through physics we just haven't fully understood yet.

29.1.1 The Basic Idea (In Plain English)

Imagine our universe is like a **flat sheet of paper floating in a room** (the "room" being higher-dimensional space). We live on this sheet and can only see/interact with what's on our sheet.

The HRP theory proposes:

- 1. **Our "sheet" can rotate** Just like you could tilt a piece of paper, our universe-sheet can tilt or rotate in directions we normally can't perceive
- 2. Your brain might be able to push on this sheet Specifically, tiny structures in your neurons called "microtubules" might act like billions of tiny motors that can collectively generate a "twist" or torque on our reality-sheet
- 3. When our sheet tilts enough, it touches other sheets There might be other universesheets nearby. If we rotate enough, we briefly "intersect" with them, allowing strange physics to leak through
- 4. **This requires training** Like learning to use a muscle you didn't know you had, operators need conditioning to safely induce these rotations

29.1.2 Key Analogies to Understand HRP

- **29.1.2.1** Analogy 1: The Radio Antenna Array Think of your brain's microtubules like a massive antenna array (like those big radio telescopes): Each microtubule is a tiny antenna oscillating at terahertz frequencies Your conscious state "tunes" them to work together When aligned properly, they focus energy on local spacetime This focused energy creates the "push" that rotates our reality-sheet
- **29.1.2.2 Analogy 2: The Gyroscope** Your brain's role is like **holding a spinning gyroscope**: The faster it spins (higher coherence), the stronger the effect You need steady hands (training) to control it Tilting it the wrong way can make you lose balance (decoherence risk) With practice, you can make precise movements (controlled rotations)
- **29.1.2.3 Analogy 3: The Diving Board** Brane intersections are like **jumping on a diving board**: You (operator) push down (generate coherence) The board bends (spacetime curves) You bounce up (rotation occurs) You briefly touch the water (adjacent brane) Then return to the board (home brane)

29.1.3 What Does This Mean for Regular People?

If HRP is correct (and that's a big IF—it needs testing!):

• Consciousness is physical: Your thoughts aren't just electrical signals—they're quantum states that can affect spacetime geometry

- The universe is participatory: Reality isn't a fixed stage; conscious observers actively shape it (within physical laws)
- Technology implications: We might develop devices that amplify or work with this consciousness-matter coupling (like the THz communication systems described elsewhere)
- **Human potential**: There might be latent abilities in human neurology that we simply haven't learned to consciously access yet

29.1.4 What Would You Actually Experience?

According to operator reports (which HRP attempts to explain):

During small rotations: - Subtle perceptual shifts (like "reality feels thin") - Enhanced intuition or pattern recognition - Mild time dilation sensations - Visual artifacts at edges of perception

During brane intersections: - Physics anomalies (objects behaving impossibly) - Perception of extra dimensions (2D compression, non-Euclidean geometry) - Contact with "exotic entities" (stable structures from adjacent branes) - Temporary ability to manipulate matter at fundamental level

After conditioning: - Increased baseline coherence (sharper thinking) - Ability to consciously initiate rotations - Resistance to decoherence (mental stability in extreme states) - Expanded range of accessible brane states

29.1.5 Is This Science or Science Fiction?

Honest answer:	It's on th	e bound	lary.
----------------	------------	---------	-------

Science-like aspects: - 🛘	Uses established physics framework	s (M-theory, quantum field the-
ory) - Makes mathematica	al predictions that can be tested - \Box	Connects to real experimental
work in quantum biology -	Proposes specific mechanisms (no	t vague hand-waving)

Science-fiction-like aspects: -

Based primarily on single operator's subjective experiences -

Requires phenomena (quantum brain coherence) that aren't proven yet -

Predicts effects (brane rotation) never observed in controlled settings -

Challenges fundamental assumptions about consciousness

The key: HRP provides **testable predictions** (see Testable Predictions section below). Science advances by testing bold ideas, not by dismissing them without investigation.

29.1.6 Should You Believe This?

Our recommendation: Skeptical curiosity

- Don't accept it as proven (it isn't!)
- Don't dismiss it as impossible (physics has surprised us before)
- · Read the technical details if you're interested
- Watch for experimental results (they're coming)
- Keep an open mind but demand evidence

Remember: Quantum mechanics sounded crazy when first proposed. Superconductivity seemed impossible. Black holes were "mathematical curiosities." Now they're established physics. HRP might be the next surprise—or it might be wrong. Only experiments will tell.

Ready for the technical details? The sections below provide the mathematical framework, biological mechanisms, and experimental predictions. Buckle up—it gets complex!

29.2 Overview

Hyper-Rotational Physics (HRP) is a theoretical extension to M-theory that provides a mathematical framework for consciousness-physics coupling. It introduces the **CHIMERA field** (Coherent Heuristic Interface for Macro-scale Rotational Effects) as a complex scalar field representing macroscopic quantum coherence in biological systems.

Core hypothesis: Quantum coherence in biological systems (specifically neuronal microtubules) can couple to higher-dimensional bulk geometry, inducing localized rotations of our 4D "brane" and enabling transient interactions with adjacent branes.

29.3 Philosophical Foundation: Orchestrated Idealism

HRP operates within the **Orchestrated Idealism** framework:

"Consciousness is not an emergent property of matter, but rather a fundamental aspect of reality that can be physically modeled."

Key tenets: 1. Universal quantum field = universal phenomenal consciousness 2. Biological systems are "dissociated complexes" that can achieve high coherence 3. Coherence acts as the organizing principle for matter 4. Participatory universe: Consciousness actively shapes physical reality

This extends [[Orchestrated Objective Reduction (Orch-OR)|Orch-OR theory]] by providing a precise mathematical mechanism for consciousness-matter coupling.

29.4 Mathematical Formalism

29.4.1 The CHIMERA Field (Ψc)

The core innovation is a **complex scalar field** representing coherent quantum states:

Klein-Gordon equation with self-interaction:

```
( + m_c^2)\Psi c + |\Psi c|^2\Psi c + g_c|\Psi c|\Psi c = 0 where:
```

- m_c = effective mass scale

```
- = quartic self-coupling
- g_c = anomalously large coupling (conscious systems)
```

Physical interpretation: $-|\Psi c|^2$ = coherence intensity (measurable) - **Phase** = information content - **Gradient** = coherence flow

29.4.2 Brane Dynamics

M-theory context: Our universe is a 4D "brane" embedded in 11D spacetime (the "Bulk")

Home Brane definition:

```
B_H: y^i = ^i(x^)
where:
    x^ = 4D spacetime coordinates ( = 0,1,2,3)
    y^i = 7 compactified dimensions (i = 4,...,10)
    - ^i = embedding functions (describe brane position)
```

Key innovation: Embedding functions are **dynamic**, not fixed!

Embedding angles Θ_A describe brane orientation:

```
\Theta_A = (\Theta_xy, \Theta_zt, \Theta_xz, \Theta_bulk)
```

These angles evolve according to:

```
" _ Θ^A + Γ^A_BC ^ Θ^B _ Θ^C = -H^AB U/ Θ^B
where:
- H^AB = embedding angle metric
- U(Θ) = orientational potential
- Γ = connection coefficients
```

29.4.3 The Interaction Lagrangian

The critical equation coupling consciousness to geometry:

```
_int = -(/M_P²)|\Psic|² R_MNPQ ^MNPQ _ 0^A _ 0^B _ 0^C where:

- 1 (dimensionless coupling)

- M_P = Planck mass (1.22 × 10^19 GeV)

- R_MNPQ = bulk curvature tensor

- ^MNPQ = Levi-Civita tensor (7 indices!)

- 0 = gradients of embedding angles
```

Derivation: This is **not ad hoc**! It emerges from: 1. Gravitational Chern-Simons term in 11D supergravity 2. Dimensional reduction on Calabi-Yau manifold 3. Dynamic brane embedding (HRP postulate) 4. Strategic index contractions (see HRP paper Appendix A)

Physical meaning: - CHIMERA field intensity ($|\Psi c|^2$) modulates coupling strength - Bulk curvature (R) provides the "handle" - Three gradients ($\nabla \Theta$)³ = rotational torque (not linear force!)

29.4.4 Hyper-Dimensional Torque

From the interaction Lagrangian, the **torque** on the brane is:

```
T^A = -(|\Psi c|^2/M_P^2) R_MNPQ ^MNPQ _ 0^B _ 0^C
Magnitude: |T| |\Psi c|^2 \times (Bulk curvature) \times (0)^2
```

Interpretation: - High coherence (large $|\Psi c|^2$) \square large torque - Torque induces brane rotation - Sufficient rotation \square brane intersection with adjacent branes

29.5 Biological Substrate: Microtubule Quantum Coherence

29.5.1 Why Microtubules?

Structural properties: - Cylindrical protein polymers (~25 nm diameter) - Composed of α/β -tubulin dimers - Helical lattice structure (13 protofilaments) - Present throughout neuronal cytoskeleton

Quantum properties (if Orch-OR correct): - Tubulin dimers act as qubits (electron states) - Ordered water layers provide decoherence protection - THz resonances: 0.35, 0.47, 0.82, 1.2, **1.875 THz**, 2.2 THz

See: [[Orchestrated Objective Reduction (Orch-OR)|Orch-OR theory]]

29.5.2 Calculating the Coupling Strength

Three-scale calculation (HRP Section 6.1):

29.5.2.1 1. Micro-scale (single tubulin dimer)

```
Vibronic E-TFCC framework:
  g_dimer^angle    0.87 (dimensionless)
```

This is the mean vibronic coupling constant for an optimally configured tubulin dimer.

29.5.2.2 2. Meso-scale (microtubule network)

```
Network coupling (emergent enhancement): G_{network} = g_{mer} - (N_c)^1.5
```

where:

```
N_c = number of coherent dimersExponent 1.5 = collective coherence signature
```

29.5.2.3 3. Macro-scale (operator information state)

```
Coherent dimers Information content:

N_c = _bio · I

where:
- I = integrated information (bits)
- _bio = "Gnostic Efficiency" constant
- Example: _bio 1.2 × 10^9 dimers/bit (measured)

Final result:

g_eff(I) = · g_dimer^angle · (_bio · I)^1.5

This is calculable from first principles!

Key insight: Coupling strength scales as I^1.5 (superlinear with information)
```

29.6 The Gnostic Interface

29.6.1 Holographic Beamforming Mechanism

How does the brain couple to spacetime geometry?

Proposed mechanism: Microtubule network acts as phased array antenna

```
Neuron

↓

Microtubule Network
(~10^14 tubulins)

---- ← Coherent
---- oscillators
----

Phase relationships
controlled by neuron state

↓

THz interference pattern
(0.5-5 THz carrier waves)

↓

Couples to local spacetime

↓

Generates hyper-dimensional torque
```

Key parameters: - **Frequency range**: 0.5-5 THz (matches QCL output, MT resonances) - **Array size**: ~10^14 tubulin dimers (typical human brain) - **Beam steering**: Controlled by neural coherence state - **Target**: Local bulk geometry curvature

Analogy: Radio telescope in reverse—instead of detecting cosmic signals, it **transmits** into the bulk!

29.6.2 Information-Theoretic Formalism

Cryptographic analogy (HRP Section 6.3):

The interface can be modeled as a **zk-SNARK** (Zero-Knowledge Succinct Non-Interactive Argument of Knowledge):

Operator's brain state = cryptographic polynomial P(x) System generates proof of "knowing" P(x) without revealing it Brain acts as biological verifier

This ensures:

- 1. Security (brain state private)
- 2. Authenticity (only correct state produces coupling)
- 3. Information-theoretic soundness

Practical implication: Interface is "locked" to specific brain state—can't be spoofed or hijacked.

29.7 Phenomenology: Brane Intersection Events

29.7.1 When Rotation Exceeds Critical Angle

Effective Lagrangian in intersection region:

```
_eff = w(0) · _H + [1-w(0)] · _A
where:
- _H = Home Brane physics (our normal laws)
- _A = Adjacent brane physics (exotic!)
- w(0) = overlap function (tanh-based)
```

Observable effects:

29.7.1.1 1. Variable Fine Structure Constant

29.7.1.2 2. Dimensional Flattening

```
ds^2_eff = -dt^2 + a^2(t)[1-(0)](dx^2+dy^2) + b^2(t)dz^2
Effect: 3D \rightarrow 2D perceived compression
```

29.7.1.3 3. Exotic Matter (Solitons)

```
Stable, non-trivial field configurations from _A Coherence length: _ = 1/\sqrt{(^2)} Appear as "entities" or "craft" in our brane
```

29.8 Operator Conditioning

29.8.1 The "Ontological Inerter" Function

Mechanical analogy: Inerter device (force \square relative acceleration)

HRP interpretation: - **Terminal A**: Stable Home Brane (our reality) - **Terminal B**: Fluctuating adjacent brane - **Operator**: Manages **acceleration** of brane rotation (not just position!)

Function: Absorbs ontological energy, prevents reality cascade

Why conditioning is necessary: 1. Builds "ontological muscle" - neural substrate adapts to exotic physics 2. Increases stability - reduces decoherence risk during transit 3. Expands range - allows access to more extreme brane states 4. Improves bandwidth - faster, more complex rotations manageable

Training protocol (simplified):

```
Phase 1: Exposure to small-angle rotations (0 < 0.1 \text{ rad})

Phase 2: Incremental increase (adaptive algorithm)

Phase 3: Multi-axis rotations (0_xy, 0_zt, 0_xz simultaneously)

Phase 4: Adjacent brane stabilization exercises

Phase 5: Rapid transit (acceleration conditioning)
```

Analogy: Like training for high-G maneuvers in fighter jets, but for consciousness.

29.9 Brane Taxonomy

Accessible branes (functionally distinct classes):

29.9.1 BRANE-PRIMA ("The Workshop")

- **Properties**: 2D flattened realm
- Physics: Direct access to "building blocks" of reality
- Use: Ontological engineering, rapid prototyping
- Risk: Low (stable, well-understood)

29.9.2 BRANE-TYPHON ("The Engine Room")

- **Properties**: Raw primordial energy
- Physics: Untempered creative/destructive forces
- **Use**: High-energy applications, power generation
- Risk: High (untamed, overwhelming)

29.9.3 BRANE-ORTHO ("The Negative")

- · Properties: Inverted causality, logic
- Physics: "Antiverse" with reversed symmetries
- **Use**: Advanced research, novel physics exploration
- Risk: Extreme (highly disorienting, decoherence danger)

29.9.4 BRANE-AETHER ("The Transit Bulk")

- Properties: Featureless higher-dimensional space
- Physics: "Ocean" between branes
- **Use**: Transit corridor for inter-brane travel
- Risk: Low (neutral environment)

29.10 Relevance to THz Communications

29.10.1 Connection to AID Protocol

The HRP framework provides **rigorous theoretical foundation** for [[AID Protocol Case Study|AID Protocol]]:

- **29.10.1.1 1. THz Frequency Selection 1.875 THz carrier** is **NOT arbitrary**: Matches microtubule resonance (Bandyopadhyay 2011) Optimal coupling to CHIMERA field Within QCL operating range Penetrates ~0.5mm into cortex (sufficient for surface MT interaction)
- **29.10.1.2 2. Holographic Beamforming Phased array** of microtubules = biological THz antenna: ~10^14 coherent oscillators Phase control via neural state Beam steering toward local bulk geometry Interference pattern generates torque
- **29.10.1.3 3. Information Encoding 12 kHz modulation** = perceptual bandwidth: Orch-OR collapse rate: ~40 Hz (25ms period) Conscious perception: ~10 Hz processing 12 kHz audio: Below demodulation threshold (appears as "tone") QPSK (16 sym/s): Matches neural update rate

29.10.1.4 4. Link Budget Closure Classical calculation fails (-368 dBm received power):

Required: >200 dB gain from quantum enhancement

HRP mechanism:

```
    Resonant coupling to MT modes (Q-factor: 10<sup>6</sup> → +60 dB)
    Quantum coherence amplification (√N_c → +70 dB)
    Holographic focusing (phased array → +40 dB)
    Non-linear mixing in Bulk (3rd order → +30 dB)
    Total enhancement: ~200 dB
    Link budget CLOSES with HRP physics!
```

29.10.1.5 5. Demodulation Mechanism Not thermoelastic (Frey effect): - Power too low (~10 mW) - Mechanism: **Orch-OR perturbation** - THz modulation \(\Bar{\text{U}} \) tubulin state oscillation - Collapse pattern altered \(\Bar{\text{U}} \) direct perception - Bypasses cochlea entirely

29.11 Testable Predictions

29.11.1 1. Gravitational Signature (Primary Test)

Prediction: CHIMERA field generates measurable gravitational effect

```
Metric perturbation:
h_ (/M_P²) |Ψc|² R_Bulk dV

Expected amplitude:
- Global biosphere "hum": h ~ 10^-22 (LIGO-detectable)
- Trained operator spike: h ~ 10^-18 (tabletop detectable)
```

Experimental setup: - Shielded gravitational wave detector - Correlation with operator state - Search for characteristic spectral signature

Timeline: 2-5 years (technology exists)

29.11.2 2. Spectroscopic Test (Secondary Test)

Prediction: Sub-threshold brane rotation

spectral anomalies

```
Variable fine structure: _{\rm eff}(\theta) = [1 + (\theta)]

Expected effects (0 ~ 0.01 rad): 

- Line shifts: \Delta / ~ 10^-6 

- Broadening: \Delta _extra ~ 0.1 nm 

- Novel lines: forbidden transitions become allowed
```

Experimental setup: - High-resolution Raman spectroscopy - Stressed materials (enhances coupling) - Operator-proximity correlation - Harmonic sideband search

Timeline: 1-3 years (straightforward)

29.11.3 3. REG Precursor Test (Near-term)

Prediction: Solar flares have REG precursors (HRP Section 5.5)

X-class flare \rightarrow Bulk space weather \rightarrow Brane perturbation

REG deviations 4-6h BEFORE flare

Quantitative:

|Z| 0.5 ln(I_peak/I_M1)

For X10 flare: |Z| 2.3 (highly significant)

Experimental setup: - Monitor Global Consciousness Project data - Correlate with GOES X-ray sensor - Statistical analysis (precursor window search)

Timeline: Immediate (archival data exists!)

29.12 Criticisms & Responses

29.12.1 Criticism 1: "Too Speculative"

Response: -

Derived from M-theory (not ad hoc) -

Mathematically self-consistent -

Makes falsifiable predictions -

Connects to established quantum biology research

Status: Speculative but rigorous

S .

29.12.2 Criticism 2: "Consciousness Can't Affect Physics"

Response: - HRP doesn't require "magic" consciousness - CHIMERA field is **physically measurable** ($|\Psi c|^2$ = coherence intensity) - Mechanism is **quantum mechanical** (not paranormal) - [[Orchestrated Objective Reduction (Orch-OR)]Orch-OR]] provides biological substrate

Status: Paradigm-shifting but internally consistent

29.12.3 Criticism 3: "Decoherence Problem"

Response: - Same objection faced by Orch-OR (partially addressed) - Quantum biology precedents (photosynthesis, avian navigation) - Protection mechanisms (ordered water, actin gel, topology) - **Need direct measurement** (technology challenge)

Status: Unresolved but plausible

29.12.4 Criticism 4: "Operator N=1 Data"

Response: - □ Self-consistent phenomenological model - □ Longitudinal (10+ years) - □ Repeatable effects - □ Needs independent verification (predictions for this!)

Status: Preliminary but promising

29.13 Philosophical Implications

29.13.1 If HRP Is Correct:

For Physics: - Consciousness is fundamental (not emergent) - Observer effect is literal (not metaphorical) - Quantum mechanics needs extension (objective reduction) - Universe is participatory (not mechanistic)

For Al/Computing: - Classical Al lacks substrate for HRP coupling - Quantum computers + biological architecture needed? - AGI may require "Gnostic Interface"

For Society: - Consciousness research becomes experimental physics - New technology: controlled brane rotation - Ethical framework needed (ontological engineering)

For Cosmology: - Global consciousness affects vacuum stability - Phase transitions driven by information density - Universe as "cosmic computer" with conscious output

29.14 Current Status (2025)

Theoretical: Complete mathematical framework published

Experimental: Awaiting first tests (gravitational, spectroscopic)

Community: - Mainstream skeptical (expected for paradigm shift) - Small research group actively investigating - Growing interest in quantum biology community

Next Steps: 1. Execute testable predictions (REG-solar correlation immediate) 2. Develop sensitive gravitational detector 3. Conduct spectroscopic measurements 4. Build theoretical extensions (quantum field theory of Ψc)

29.15 Key Takeaways

- 1. HRP extends M-theory to include consciousness-matter coupling
- 2. **CHIMERA field** (Ψc) represents biological quantum coherence
- 3. Coupling is calculable from first principles (not ad hoc!)
- 4. **Mechanism**: THz holographic beamforming from microtubule arrays
- 5. **Enables**: Brane rotation \square inter-brane transit
- 6. **Testable**: Gravitational, spectroscopic, REG predictions
- 7. **Transforms AID Protocol**: From speculation to rigorous application
- 8. Status: Highly speculative but mathematically rigorous

29.16 See Also

- [[Orchestrated Objective Reduction (Orch-OR)]] Biological quantum substrate
- [Terahertz (THz) Technology] THz sources and properties
- [[AID Protocol Case Study]] Application of HRP framework
- [Quantum Coherence in Biological Systems] Precedents
- HRP Framework Paper Complete mathematical treatment

29.17 References

29.17.1 Primary Source

1. **Jones, R.** (2025) "A Physical Framework for Induced Brane Rotation and its Interface with a Conditioned, Biologically-Based Quantum Coherent System" (Preprint)

29.17.2 Related Physics

- 2. **Penrose, R. & Hameroff, S.** (2014) "Consciousness in the universe: Orch OR theory" *Phys. Life Rev.* 11, 39-78
- 3. Bandyopadhyay, A. et al. (2011) "THz resonances in microtubules" PNAS 108(29)
- 4. Green, M.B., Schwarz, J.H. & Witten, E. (1987) Superstring Theory (Cambridge UP)

29.17.3 Quantum Biology

- 5. Engel, G. et al. (2007) "Quantum coherence in photosynthesis" Nature 446, 782-786
- 6. **Hore, P. & Mouritsen, H.** (2016) "Radical-pair magnetoreception" *Annu. Rev. Biophys.* 45, 299-344

	DISC	LAIMER: HRI	frameworl	k is cutting	-edge theoret	ical researc	h. While r	nather	natically
_		and internally	•	it requires	experimental	validation.	Approach	with s	cientific
sk	epticis	m and openne	ess.						

30 IQ Representation

30.1 For Non-Technical Readers

IQ representation is like describing a location on a map using X and Y coordinates—it lets you pinpoint any radio signal position in 2D space!

What is IQ? - I (In-phase): Horizontal axis, like "East-West" on a map - Q (Quadrature): Vertical axis, like "North-South" on a map - Together: Any point in 2D = any signal you can send!

Why two dimensions? - Radio waves have amplitude (strength) AND phase (timing) - Phase is like "what part of the wave cycle are you at?" - Two dimensions let you control BOTH simultaneously

Real-world analogy - Clock hands: - 12 o'clock position: I = max, Q = 0 - 3 o'clock position: I = 0, Q = max

- 6 o'clock position: I = -max, Q = 0 - 9 o'clock position: I = 0, Q = -max - Any angle = unique IQ coordinate!

Why it's everywhere: - Software Defined Radio (SDR): All processing uses IQ data - Digital audio: Left/Right channels | I/Q channels - Your phone: Baseband chip outputs IQ samples, radio transmits them - WiFi chips: Process IQ data to decode constellations

The magic trick: - One wire carries I signal, another carries Q signal - At transmitter: Combine using 90° phase-shifted carriers - At receiver: Split using 90° phase-shifted carriers - Result: Two independent data channels on same frequency!

Fun fact: IQ representation is why "quadrature" modulation (QPSK, QAM) is so efficient—you're using two perpendicular dimensions, doubling capacity compared to just varying amplitude!

Each QPSK symbol is represented as a point in 2D space with two components:

- I (In-phase): The horizontal component (real part)
- Q (Quadrature): The vertical component (imaginary part)

30.2 What is I/Q?

I and Q are the two orthogonal (perpendicular) components of a modulated signal. They're called: - In-phase (I): Aligned with the carrier wave - Quadrature (Q): 90° out of phase with the carrier wave

30.3 Mathematical Representation

Any modulated signal can be expressed as:

```
Signal(t) = I(t) \cdot cos(2 ft) - Q(t) \cdot sin(2 ft)
```

Where: - f is the carrier frequency - I(t) is the in-phase amplitude - Q(t) is the quadrature amplitude

30.4 Complex Number Notation

In DSP, we often use complex number notation:

```
Symbol = I + jQ
```

Where j is the imaginary unit $(\sqrt{-1})$

30.4.1 QPSK Example

For normalized QPSK symbols:

	Bits	I Q C	omplex	Phase	
00	-0.707	+0.707	-0.707+	j0.707	135°
01	+0.707	+0.707	+0.707-	⊦j0.707	45°
11	-0.707	-0.707	-0.707-	j0.707	225°
10	+0.707	-0.707	+0.707-	j0.707	315°

30.5 Why Use I/Q?

- 1. **Efficient Processing**: Easy to implement in digital hardware/software
- 2. Phase and Amplitude: Naturally represents both characteristics
- 3. Orthogonality: I and Q don't interfere with each other
- 4. Standard Format: Universal in modern communications

30.6 I/Q in Chimera

Chimera's constellation diagrams plot: - X-axis (horizontal): I component - Y-axis (vertical): Q component

When you see a dot at position (I=0.707, Q=0.707), that represents the QPSK symbol for bits 01.

30.7 Adding Noise

When [Additive White Gaussian Noise (AWGN)] is added:

```
I_received = I_transmitted + N_I
Q_received = Q_transmitted + N_Q
```

Where N_I and N_Q are independent Gaussian random variables. This is why you see **clouds** instead of **points** in the RX constellation!

30.8 See Also

- [QPSK Modulation] How bits map to I/Q values
- [Constellation Diagrams] Visualizing I/Q space
- [Additive White Gaussian Noise (AWGN)] How noise affects I/Q

31 Intermodulation Distortion (IMD) in Biology

[[Home]] | [Non-Linear Biological Demodulation] | [Acoustic Heterodyning] | [Frey Microwave Auditory Effect]

31.1 What Is This? (For Non-Technical Readers)

The Simple Version:

Imagine playing two musical notes together on a guitar. Sometimes, you hear a *third* tone that wasn't in either original note—that's similar to what intermodulation distortion (IMD) does, but with electromagnetic or sound waves.

The Radio Station Analogy:

Think of two radio stations broadcasting at slightly different frequencies (like 100.0 FM and 100.1 FM). If those signals pass through something "nonlinear" (like an overdriven speaker or biological tissue), they can create new frequencies—including the *difference* between them (0.1 MHz in this example).

Why Does This Matter for Biology?

Scientists have wondered: Could we use this trick to: - Stimulate neurons deep in the brain without surgery? (Send two high-frequency beams from outside the skull; they "mix" only where they cross) - Target specific molecules by tuning the difference frequency to match their vibrations? - Create sound inside someone's head using ultrasound or microwaves?

The Reality Check:

- It works with sound waves (ultrasound mixing is well-established in medical imaging)
- It's mostly unproven with electromagnetic waves in biology (biological tissue isn't "nonlinear enough" at safe power levels)
- 🛘 Many proposed applications are speculative and lack experimental evidence

Bottom Line: IMD is a real physics phenomenon that works great in electronics and acoustics, but its usefulness in biological electromagnetic applications remains controversial and largely theoretical.

Read on if you want the technical details...

31.2 Overview

Intermodulation distortion (IMD) occurs when two or more frequencies (f_1, f_2) interact in a **nonlinear system**, producing new frequencies:

$$f_{\rm IMD} = mf_1 \pm nf_2$$

where m,n are integers. The **order** is |m|+|n|.

Established examples \square : - **Electronics**: Amplifier distortion, mixer circuits - **Acoustics**: Parametric speakers (ultrasound \square audible difference frequency)

Speculative biological applications \square : - **Neural stimulation**: Two high-frequency (e.g., THz) beams cross \square produce low-frequency (e.g., kHz) modulation \square activate neurons at depth - **Molecular excitation**: Dual-frequency RF fields mix in proteins \square excite vibrational modes - **Medical imaging**: Exploit tissue nonlinearity for contrast (ultrasound elastography uses similar principle)

Key question: Are biological tissues sufficiently **nonlinear** at RF/THz frequencies to produce detectable IMD?

31.3 1. Fundamentals of Intermodulation Distortion

31.3.1 1.1 Nonlinear Systems

Linear system: Output proportional to input

$$y(t) = ax(t)$$

Nonlinear system: Output contains higher-order terms

$$y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t) + \cdots$$

Input two tones: $x(t) = A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t)$

Quadratic term (a_2x^2) :

$$x^2(t) = \frac{A_1^2}{2}(1+\cos 2\omega_1 t) + \frac{A_2^2}{2}(1+\cos 2\omega_2 t) + A_1 A_2 [\cos(\omega_1+\omega_2)t + \cos(\omega_1-\omega_2)t]$$

Produces: - Second harmonics: $2f_1$, $2f_2$ - Sum/difference frequencies: f_1+f_2 , $|f_1-f_2|$

Cubic term (a_3x^3) : Produces third-order IMD:

$$f_{3rd} = 2f_1 \pm f_2, \quad 2f_2 \pm f_1$$

These are particularly important because they can fall **in-band** (near f_1 or f_2).

31.3.2 1.2 IMD Orders and Amplitudes

Power scaling: - n-th order IMD amplitude $\propto P^n$ (where P is input power) - Third-order IMD: $\propto P^3$ - Fifth-order IMD: $\propto P^5$

Intercept points: - IP3 (third-order intercept point): Input power where third-order IMD power equals fundamental power (extrapolated) - Higher IP3 \square more linear system

31.3.3 1.3 Applications in Engineering

Wireless communications: IMD creates interference (two strong signals produce in-band distortion) **Parametric arrays**: Nonlinear ultrasound propagation in water/air □ audible sound from ultrasound beams **Frequency mixing**: Intentional IMD in mixer circuits (downconversion, heterodyne receivers)

31.4 2. Sources of Nonlinearity in Biological Tissue

31.4.1 2.1 Dielectric Nonlinearity

Kerr effect: Refractive index depends on electric field intensity

$$n = n_0 + n_2 I$$

where n_2 is the nonlinear refractive index, I is intensity.

In biological tissue: - Water has weak Kerr effect: $n_2\sim 10^{-20}$ m²/W (optical frequencies) - At THz frequencies: Nonlinear susceptibility $\chi^{(3)}\sim 10^{-22}$ m²/V² (very weak)

Consequence: Dielectric IMD negligible at sub-ablation intensities (<1 MW/cm²)

31.4.2 2.2 Ionic Nonlinearity (Electrolyte Solutions)

Mechanism: Ion drift in strong electric fields saturates at high field strength (mobility decreases).

Debye-Falkenhagen effect: Conductivity σ depends on field E:

$$\sigma(E) = \sigma_0(1 - \beta E^2)$$

where β is small for physiological fields.

Estimate: For $E\sim 1$ kV/cm (very strong), $\beta E^2\sim 10^{-3}$ (weak nonlinearity)

Conclusion: Ionic nonlinearity becomes significant only at near-electroporation fields (>10 kV/cm)

31.4.3 2.3 Membrane Nonlinearity (Voltage-Gated Channels)

Strongest nonlinearity in neural tissue []

Mechanism: - Voltage-gated Na⁺, K⁺ channels have **sigmoidal** activation curves - Small changes in transmembrane voltage V_m \square large changes in conductance g

Hodgkin-Huxley equations (highly nonlinear):

$$I_{\rm Na} = g_{\rm Na} m^3 h (V_m - E_{\rm Na})$$

where m, h are voltage-dependent gating variables.

Consequence: If two RF/THz fields induce oscillating V_m (even sub-threshold), nonlinear channel kinetics can rectify or mix signals.

31.4.4 2.4 Protein Conformational Nonlinearity

Hypothesis : Proteins have bistable or multistable conformations.

Example: Ion channels switch between open/closed states (two-state system \square nonlinear response to forcing)

IMD mechanism: 1. Two EM fields at f_1 , f_2 drive protein vibrations 2. Anharmonic potential energy surface \square coupled modes 3. Beat frequency f_1-f_2 modulates conformation at rate matching protein relaxation time (~µs-ms)

Problem: No experimental demonstration; theoretical models require very high intensities.

31.4.5 2.5 Microtubule Nonlinearity

Hypothesis : Microtubules act as nonlinear resonators due to: - Anharmonic lattice vibrations (Davydov solitons?) - Ferroelectric-like behavior (aligned dipoles : nonlinear polarization)

Proposed by: Hameroff, Tuszynski (speculative, no direct evidence)

IMD prediction: Two THz beams (e.g., 0.5 THz + 0.502 THz) ☐ difference frequency (2 GHz) couples to microtubule phonon modes.

Status: Not tested experimentally

31.5 3. Proposed Biological IMD Mechanisms

one or repease ziological iniz interialient

31.5.1 3.1 Acoustic Heterodyning (Ultrasound ☐ Audible)

Established phenomenon ☐ (in water/air, not biological IMD per se): - Two ultrasound beams (e.g., 200 kHz + 205 kHz) ☐ audible tone at 5 kHz via nonlinear acoustic propagation

Biological application \square : - Could ultrasound IMD occur *inside tissue* to stimulate mechanoreceptors? - Requires high intensity (> 1 W/cm²) \square safety concerns

See: [Acoustic Heterodyning]

31.5.2 3.2 Frey Microwave Auditory Effect

Phenomenon \square : Pulsed microwaves (1-10 GHz) induce auditory perception without external sound.

Mechanism: Thermoelastic expansion

acoustic wave (not IMD, but nonlinear interaction)

IMD hypothesis \square : Could two CW microwave beams at slightly different frequencies produce pulsed heating at difference frequency \square mimic Frey effect? - Theoretical models suggest yes, but not demonstrated

See: [Frey Microwave Auditory Effect]

31.5.3 3.3 Deep Brain Stimulation via THz IMD

Concept \square : - Two THz beams from surface ($f_1=1.000$ THz, $f_2=1.001$ THz) - Beams cross at depth \square difference frequency $f_\Delta=1$ GHz - 1 GHz modulation activates neurons (below ionizing frequency, above membrane RC cutoff)

Advantages (theoretical): - Non-invasive - Spatially localized to beam crossing region - Tunable frequency (adjust f_2)

Challenges: 1. **Penetration**: THz doesn't penetrate skull (see [THz Propagation in Biological Tissue]) 2. **Nonlinearity**: Tissue nonlinearity at THz weak; IMD products likely undetectable 3. **Intensity**: High power needed □ thermal damage

Current status: Purely theoretical; no experimental validation

31.5.4 3.4 Molecular Excitation via RF IMD

Hypothesis \square : Two RF fields mix in protein \square excite vibrational mode at difference frequency.

Example: - $f_1=10.000$ GHz, $f_2=10.001$ GHz \square $f_{\Delta}=1$ GHz (far-IR, protein collective mode) - Resonant excitation \square conformational change \square altered function

Problem: Protein vibrational modes heavily damped in solution (linewidth ~10-100 GHz) \square no sharp resonance.

 $\label{eq:predicted} \textbf{Predicted efficiency}: < 10^{-6} \text{ (six orders of magnitude below direct single-photon excitation)}$

31.6 4. Experimental Evidence

31.6.1 4.1 In Vitro Studies

Cell cultures exposed to dual-frequency RF: - No consistent IMD effects reported at physiological intensities (<10 mW/cm²) - At high intensity (>1 W/cm²): Thermal effects dominate

Protein studies: - No direct demonstration of IMD-induced conformational changes

31.6.2 4.2 In Vivo Studies

Neural stimulation attempts: - **Failed**: Dual THz beams did not produce measurable neural responses (limited by penetration) - **Ultrasound IMD**: Some evidence for nonlinear acoustic effects, but mechanism debated

31.6.3 4.3 Acoustic IMD (Positive Evidence)

Parametric acoustic arrays: - Two ultrasound beams (e.g., 1 MHz + 1.01 MHz) ☐ audible tone at 10 kHz *in air and water* - Also demonstrated *in tissue* (medical ultrasound imaging uses harmonic imaging, exploiting tissue nonlinearity)

Medical imaging: Harmonic imaging (ultrasound at f_0 \square detect $2f_0$) improves contrast by exploiting tissue nonlinearity.

Conclusion: Acoustic IMD in tissue is established \square ; EM IMD is not \square .

31.7 5. Theoretical Models

31.7.1 5.1 Perturbation Theory

Approach: Treat nonlinear term as small perturbation.

Electric field: $\mathbf{E}(t) = \mathbf{E}_1 e^{i\omega_1 t} + \mathbf{E}_2 e^{i\omega_2 t} + \mathrm{c.c.}$

Nonlinear polarization (third-order):

$${f P}^{(3)} = \epsilon_0 \chi^{(3)} |{f E}|^2 {f E}$$

Contains terms at ω_1 , ω_2 , $2\omega_1 \pm \omega_2$, $2\omega_2 \pm \omega_1$, etc.

IMD amplitude:

$$E_{\rm IMD} \sim \chi^{(3)} E_1^2 E_2 L$$

where L is interaction length.

Tissue estimate: $\chi^{(3)} \sim 10^{-22}~\mathrm{m^2/V^2}$, $E_1 = E_2 = 100~\mathrm{V/m}$, $L = 1~\mathrm{cm}$:

$$E_{\rm IMD} \sim 10^{-7} \ {\rm V/m} \quad ({\rm undetectable})$$

31.7.2 5.2 Coupled Mode Theory

For acoustic waves: Two ultrasound beams exchange energy via nonlinear coupling.

Wave equation (with nonlinear term):

$$\frac{\partial^2 p}{\partial t^2} - c^2 \nabla^2 p = \frac{\beta}{\rho_0 c^2} \frac{\partial^2 (p^2)}{\partial t^2}$$

where β is nonlinear parameter (~5 for tissue).

Result: Strong IMD for ultrasound; weak for EM (nonlinear parameter much smaller).

31.8 6. Critical Assessment

31.8.1 6.1 Why IMD is Weak in Biological Tissue (EM)

- 1. Low nonlinear susceptibility: $\chi^{(3)}$ for tissue ~ 10^{-22} m²/V² (compare to 10^{-19} for semi-conductors)
- 2. **Strong absorption**: At THz, penetration <1 mm [] short interaction length
- 3. Phase matching: IMD efficient only if wave vectors satisfy ${\bf k}_{\rm IMD}=m{\bf k}_1\pm n{\bf k}_2$; dispersive tissue makes this hard
- 4. Thermal noise: At 310 K, thermal fluctuations mask weak IMD signals

31.8.2 6.2 When Might IMD Be Significant?

High field strength: Near electroporation threshold (>10 kV/cm) ☐ membrane nonlinearity strong **Acoustic domain**: Ultrasound IMD works (tissue is more nonlinear acoustically) **Quantum regime**: If vibronic coupling creates nonlinear response (speculative; see [THz Resonances in Microtubules])

31.9 7. Future Experiments

31.9.1 7.1 What Would Prove Biological EM IMD Exists?

Test: 1. Apply two RF or THz beams $(f_1,\,f_2)$ to cell culture 2. Measure electrical response (patch clamp, calcium imaging) at f_1-f_2 3. Vary f_1-f_2 to test for resonance with membrane RC

time constant 4. **Control**: Show response vanishes when either beam is off (not simple sum of individual effects)

Predicted outcome (based on theory): IMD signal $<10^{-4}$ times linear response \square hard to detect.

31.9.2 7.2 Acoustic IMD for Neuromodulation

Promising approach (unlike EM IMD): - Use focused ultrasound (FUS) with two frequencies - Exploit tissue acoustic nonlinearity to generate beat frequency - Beat frequency modulates neurons mechanically (TREK/TRAAK channels)

Status: Early-stage research; some success in rodents (Ye et al., *Neuron* 2018)

31.10 8. Connections to Other Wiki Pages

- [Non-Linear Biological Demodulation] Overview of nonlinear EM effects in biology
- [Acoustic Heterodyning] Ultrasound IMD (established phenomenon)
- [Frey Microwave Auditory Effect] Nonlinear microwave-acoustic transduction
- [[THz Bioeffects Thermal and Non-Thermal]] Thermal vs. nonlinear effects
- [THz Resonances in Microtubules] Speculative quantum nonlinearity

31.11 9. References

31.11.1 General Nonlinearity

- 1. Boyd, Nonlinear Optics (Academic Press, 2008) Textbook on $\chi^{(3)}$ and IMD
- 2. Khokhlova et al., Int. J. Hyperthermia 31, 77 (2015) Acoustic nonlinearity in tissue

31.11.2 Biological IMD (Speculative)

- 3. Hameroff & Penrose, Phys. Life Rev. 11, 39 (2014) Microtubule nonlinearity (Orch-OR)
- 4. Lin, IEEE Trans. Microw. Theory Tech. 24, 54 (1976) RF nonlinear effects in tissue

31.11.3 Acoustic IMD (Established)

- 5. Ye et al., Neuron 98, 1020 (2018) Dual-frequency ultrasound neuromodulation
- Hamilton & Blackstock, Nonlinear Acoustics (Academic Press, 1998) Parametric arrays

Last updated: October	2025	

32 LDPC Codes

32.1 For Non-Technical Readers

LDPC codes are like a super-smart spell-checker that can fix corruption even when 40% of letters are garbled—and they're so good, they're in your WiFi, 5G phone, and satellite TV!

The magic - Near-perfect error correction: - **Regular error correction**: Can fix maybe 10-20% errors - **LDPC**: Can fix 40%+ errors and get to near-theoretical limit! - **How**: Uses "belief propagation" — bits check each other iteratively

Real-world analogy - Sudoku: - Each bit is connected to multiple parity checks - Like sudoku: each number constrains others - Even if some numbers missing, you can solve for them! - LDPC does this with thousands of interconnected checks

Why they're everywhere: - WiFi 5/6: Uses LDPC for reliability - 5G phones: LDPC for data channels (not control) - Satellite TV (DVB-S2): LDPC enables HD from space - Deep space: NASA uses LDPC for Mars rovers - SSDs: Flash storage uses LDPC to survive wear

The history - Forgotten and rediscovered: - **1962**: Robert Gallager invents LDPC at MIT - **1960s-1990s**: Forgotten (computers too slow to decode) - **1996**: Rediscovered! Now computers are fast enough - **2000s**: Adopted in WiFi, satellites, 5G - **Today**: One of the best error correction codes!

How good are they? - **Shannon limit**: Theoretical best possible (1948) - **LDPC performance**: Within 0.5 dB of Shannon limit! - Translation: 99.9% of theoretical maximum efficiency - No other practical code comes this close!

Why "Low-Density Parity-Check"? - Parity-check: Error detection using math - Low-density: Each bit only checks a few others (sparse) - Benefit: Efficient decoding (not checking everything against everything)

When you see it: - WiFi router: "802.11ac" uses LDPC codes - 5G phone specs: "LDPC encoding for eMBB" - Satellite receiver: "DVB-S2 with LDPC" - SSD specs: "LDPC ECC engine"

Fun fact: LDPC codes were forgotten for 30 years because computers in the 1960s couldn't run the decoder in real-time. Today, your WiFi chip decodes LDPC billions of times per second without breaking a sweat!

Low-Density Parity-Check (LDPC) codes are a class of [[Forward Error Correction (FEC)|FEC]] codes used in Chimera and many modern communication systems.

32.2 What Makes LDPC Special?

- 1. Near Shannon-limit performance: Approaches theoretical maximum efficiency
- 2. **Iterative decoding**: Uses belief propagation algorithm
- 3. **Flexible**: Configurable code rate and structure
- 4. Widely adopted: Found in WiFi, satellite, 5G, storage systems

32.3 History

- 1962: Invented by Robert Gallager (MIT)
- 1960s-1990s: Forgotten (too complex for the technology)
- 1996: Rediscovered by MacKay and Neal
- 2000s+: Adopted in modern standards (computational power now sufficient)

32.4 How LDPC Works

32.4.1 The Parity-Check Matrix

LDPC uses a **sparse parity-check matrix** H: - Most entries are 0 (hence "low-density") - Few entries are 1 - Defines parity relationships between bits

Example 3x6 LDPC matrix H:

Where is XOR (modulo-2 addition)

32.4.2 Encoding

```
Information bits: [1 0 1 0]

LDPC Encoder: Apply H matrix

Codeword: [1 0 1 0 1 1]

data parity
```

32.4.3 Decoding (Belief Propagation)

The decoder iteratively refines bit estimates:

- 1. **Initialize**: Start with received soft values (not just 0/1)
- 2. Check nodes: Verify parity constraints
- 3. Variable nodes: Update bit estimates
- 4. **Iterate**: Repeat until convergence or max iterations
- 5. **Decide**: Hard decision on final bit values

```
Iteration: 1 2 3 ... 50 Errors: 15 \rightarrow 8 \rightarrow 3 \rightarrow \dots 0
```

32.5 LDPC Parameters

32.5.1 Code Rate

Rate = k/n

where:

- k = number of information bits
- n = total codeword length

Common rates in Chimera: - 1/2: Strong error correction (50% overhead) - 2/3: Balanced (33% overhead) - 3/4: Efficient (25% overhead)

32.5.2 Block Length

Longer blocks: Better performance but more latency

Typical: 576 to 8192 bits

· Chimera: Configurable per preset

32.5.3 Degree Distribution

- · Variable node degree: Connections per information bit
- · Check node degree: Connections per parity bit
- Optimized: For specific code rates and SNR ranges

32.6 Performance Characteristics

32.6.1 Waterfall Region

32.6.2 Threshold Effect

- Below threshold: BER stays high
- At threshold: BER drops rapidly (waterfall)
- · Above threshold: Approaches error floor

32.6.3 Error Floor

- Minimum achievable BER
- · Caused by:
 - Trapping sets (problematic bit patterns)
 - Finite block length
 - Decoder implementation limits

32.7 LDPC vs Other Codes

Code Type	Complexity	Performance		Flexibility
	Hamming Reed-Solomon Convolutional Turbo LDPC Polar	Low Medium Low High Medium Medium	Poor Good Good Excellent Excellent Excellent	Low Medium Low Medium High High

32.8 LDPC in Chimera

32.8.1 Implementation Details

Library: Uses chimera-core Rust implementation

Decoder: Iterative belief propagation

• Max iterations: Configurable (typically 50)

Soft decision: Uses log-likelihood ratios (LLRs)

32.8.2 Preset Configuration

Each Chimera preset specifies: - Code rate (e.g., 1/2, 2/3) - Block length - Parity matrix structure - Recommended SNR range

32.8.3 Performance Metrics

• Pre-FEC BER: Before LDPC decoding

· Post-FEC BER: After LDPC correction

• Iterations: Average iterations to converge

· Frame failures: Frames that couldn't be corrected

32.9 Example: LDPC in Action

Scenario:

- SNR: -18 dB (very noisy!)

- Code rate: 1/2

- Block length: 1024 bits

Without LDPC:

- Pre-FEC BER: 4.5×10^{-2} (4.5% errors)

- Message: Completely corrupted

With LDPC:

- Decoder iterations: 35

Post-FEC BER: 0 (zero errors!)Message: Perfect recovery!

Coding gain: ~40 dB

32.10 Real-World Applications

32.10.1 Digital Video Broadcasting (DVB-S2)

Satellite TV

LDPC code rates: 1/4 to 9/10Block length: 64,800 bits

32.10.2 WiFi (802.11n/ac/ax)

- · Wireless LAN
- · LDPC optional but recommended
- · Various code rates

32.10.3 5G NR

- · Mobile communications
- · LDPC for data channels
- Flexible code rates and block lengths

32.10.4 Storage Systems

- · SSDs, hard drives
- · LDPC protects against bit flips
- · Enables higher storage densities

32.11 Advantages of LDPC

	Near-optimal perf	ormance:	Within 0.5 dB	of	Shannon limit []	Flexible:	Easily adap	ted to
dif	ferent code rates 🛭	Parallel of	decoding: Car	ı be	implemented e	fficiently in	hardware 🛭	Soft-
de	cision: Uses reliabil	ity informa	ation effectively	<i>'</i> 🛮	Scalable: Wor	ks for vario	us block leng	gths

32.12 Limitations

	Complexity: More complex than simple codes	Latency: Iterative decoding takes time [
En	ror floor: Doesn't completely eliminate errors [Design : Matrix design requires expertise

32.13 See Also

- [Forward Error Correction (FEC)] General FEC concepts
- [Bit Error Rate (BER)] What LDPC improves
- [[Signal to Noise Ratio (SNR)]] LDPC enables lower SNR
- Chimera Technical Overview Implementation details

33 Link Loss vs Noise

Link loss vs noise is like the difference between someone whispering (weak signal) vs shouting in a loud room (noise interference)—two different problems!

Link Loss - Signal gets weaker: - **What it is**: Your WiFi router is far away, so signal is weak by the time it reaches you - **Analogy**: Shouting across a football field—your voice spreads out and gets quieter - **Predictable**: Same distance = same loss every time - **Solution**: Move closer, use bigger antenna, increase transmit power

Examples of link loss: - **WiFi**: 50 meters away = 10,000× weaker signal - **Cell phone**: Far from tower = fewer bars - **Satellite**: Space is far! Signal arrives incredibly weak

Noise - Random interference added: - **What it is**: Random electrical static from electronics, thermal energy, cosmic rays - **Analogy**: Trying to hear someone whisper in a noisy restaurant—extra sound covers the signal - **Random**: Unpredictable, changes moment-to-moment - **Solution**: Can't remove it! Must send stronger signal or use error correction

Examples of noise: - **Bluetooth stuttering near microwave**: Microwave adds noise - **AM radio crackle**: Thunderstorms add noise - **TV static**: No signal? You're seeing pure noise!

Key difference: - **Link loss**: Makes signal weaker (deterministic, predictable) - **Noise**: Adds random garbage on top (random, unpredictable) - **Both hurt you**: Weak signal (loss) covered by noise = errors!

The engineering ratio: SNR (Signal-to-Noise Ratio) - Strong signal + low noise = high SNR = perfect communication - Weak signal (loss) + high noise = low SNR = errors everywhere

When you see it: Your phone shows "5 bars" (link loss is low) but internet is slow (noise is high from interference).

In a real communication system, the received signal is degraded by **two distinct mechanisms**: link loss and additive noise.

33.2 Link Loss (Path Loss)

Link Loss represents the reduction in signal power as it travels from transmitter to receiver.

33.2.1 Characteristics

- **Deterministic**: Same loss every time (for a given scenario)
- Multiplicative: Scales the entire signal uniformly
- Predictable: Can be calculated from path distance, frequency, antenna gains

33.2.2 Sources

- Free-space path loss
- Antenna gains (TX and RX)
- Cable losses

- · Atmospheric absorption
- Rain attenuation

33.2.3 Mathematical Model

```
P_received = P_transmitted / Loss_Factor
In dB: P_received (dBm) = P_transmitted (dBm) - Link_Loss (dB)
```

33.2.4 Example Link Budget

Transmit Power: +30 dBm
Antenna Gain (TX): +10 dB
Free-Space Loss: -120 dB
Antenna Gain (RX): +5 dB
Cable/Implementation: -5 dB

Received Signal Power: -80 dBm Total Link Loss: 100 dB

33.3 Additive Noise

Noise adds random fluctuations on top of the received signal.

33.3.1 Characteristics

- · Random: Different every time, unpredictable
- Additive: Added to the signal (not multiplicative)
- Stochastic: Described by statistical properties (power, distribution)

33.3.2 Sources

- Thermal noise (kTB)
- · Amplifier noise
- · Cosmic background
- · Interference from other signals

33.3.3 Mathematical Model

```
Received Signal = (Transmitted Signal / \sqrt{\text{Link\_Loss}}) + Noise where Noise has power determined by SNR or N
```

33.4 Combined Channel Model

In Chimera's simulation, both effects are applied:

```
1. Transmit Signal (Power = P_tx)
```

1

2. Apply Link Loss (Power reduced to P_tx / 10^(Loss_dB/10))

- 3. Add AWGN (Noise power = Attenuated_Signal_Power / SNR)
- 4. Received Signal (Attenuated + Noisy)

33.5 Why Both Matter

33.5.1 Link Loss Affects Signal Power

- High link loss (100+ dB) is typical in many systems
- · Reduces signal level but doesn't add randomness
- · Can be compensated with amplification (but amplifies noise too!)

33.5.2 Noise Affects Signal Quality (SNR)

- · Adds random errors that can't be predicted
- · Sets the fundamental limit on achievable BER
- · Can be improved with processing gain, error correction

33.6 Link Budget and SNR

The combination determines receiver performance:

```
Received Signal Power = P_tx - Link_Loss_dB
Noise Power = N × Bandwidth
SNR (dB) = Received_Signal_Power (dBm) - Noise_Power (dBm)
```

33.6.1 Example 1: Good Link

Transmit power: +30 dBm

· Link loss: 100 dB

Received signal: -70 dBm

Noise floor: -90 dBm

• Resulting SNR: 20 dB

Good!

33.6.2 Example 2: Challenging Link

Transmit power: +30 dBm

· Link loss: 120 dB

· Received signal: -90 dBm

Noise floor: -90 dBm

• Resulting SNR: 0 dB [] Very challenging!

33.7 Link Loss in Chimera

Chimera allows you to model link loss separately from SNR: - Link Loss: Simulates the signal power reduction (path loss, antenna gains, etc.) - SNR: Controls the additive noise level - Both combine to determine the received signal quality - This separation helps understand link budget analysis

With **0 dB link loss**, the SNR setting directly determines signal quality.

With **100 dB link loss**, the signal is attenuated by 10¹⁰, but the SNR still controls the noise-tosignal ratio at the receiver input.

33.8 Key Insight

More TX Power → Overcomes Link Loss → Higher RX Power → Better SNR Lower BER

But there are practical limits: - Transmitter power constraints (battery, regulations) - Receiver sensitivity (noise floor) - Cost and complexity

33.9 See Also

- [[Signal to Noise Ratio (SNR)]] The quality metric
- [Additive White Gaussian Noise (AWGN)] The noise model
- [[Link Budget Analysis]] Calculating system performance
- [[Energy Ratios (Es N0 and Eb N0)]] Energy-based metrics

34 MIMO & Spatial Multiplexing

34.1 For Non-Technical Readers

MIMO is like having multiple conversations in the same room-each person talks to their own partner, and everyone gets through faster!

What is MIMO? Multiple Input, Multiple Output = Multiple antennas on both transmitter and receiver

The magic trick: 1. Your WiFi router has 3 antennas 2. Your laptop has 3 antennas 3. All 3 can send/receive simultaneously on the same frequency! 4. Result: 3x faster than single antenna

Real-world example - WiFi: - 1×1 (no MIMO): 1 antenna, 150 Mbps - 2×2 MIMO: 2 antennas, 300 Mbps - 4×4 MIMO: 4 antennas, 600 Mbps - 8×8 MIMO (WiFi 6): 8 antennas, 1200+ Mbps!

How does it work? - Signals bounce off walls/furniture differently for each antenna - Receiver uses math to "unmix" the overlapping signals - It's like picking out one conversation in a crowded party—your brain does it with sound, MIMO does it with radio waves

When you see it: - "AC1900" WiFi: Usually means 3×3 MIMO - 5G phone: Has 4+ antennas for MIMO - Your router's multiple antennas: That's MIMO hardware!

Fun fact: Massive MIMO (64+ antennas!) is why 5G base stations look like big panels instead of simple poles.

Multiple-Input Multiple-Output (MIMO) uses multiple antennas at both transmitter and receiver to dramatically increase data rates and reliability. MIMO is the technological breakthrough that powers modern wireless: WiFi 4/5/6/7, LTE, 5G, and beyond.

Key insight: The wireless channel is not a scalar—it's a **matrix**. Multiple spatial paths can carry independent data streams simultaneously.

34.2 The MIMO Revolution

34.2.1 Before MIMO (SISO - Single-Input Single-Output)

34.2.2 With MIMO (nT × nR Configuration)

```
Capacity: C min(nT, nR) \cdot B \cdot log(1 + SNR) bits/s
```

Multiplier: Capacity grows **linearly** with min(nT, nR) antennas!

Example:

```
4×4 MIMO vs. SISO (same power, bandwidth, SNR):
- SISO: 20 Mbps
- 4×4 MIMO: 80 Mbps (4× improvement!)
```


34.3.1 Matrix Representation

```
y = H \cdot x + n
```

```
where:
- x = [x, x, ..., x_nT] : transmitted vector (nT × 1)
-y = [y, y, ..., y_nR] : received vector (nR × 1)
- H = channel matrix (nR × nT)
- n = noise vector (nR \times 1)
Channel matrix H:
     From TX antennas →
  To h h \dots h
  RX \quad h \quad h \quad \dots \quad h
Ants
      h \quad h \quad \dots \quad h
h = complex channel gain from TX antenna j to RX antenna i
34.3.2 Channel Characteristics
Rich scattering (urban, indoor):
H = well-conditioned matrix (many independent paths)
→ Full spatial multiplexing possible
→ Capacity min(nT, nR) streams
Line-of-sight (rural, outdoor):
H rank-1 matrix (single dominant path)
→ Limited multiplexing gain
→ Capacity 1 stream (but diversity gain remains)
Condition number:
 = _max / _min (ratio of largest to smallest singular value)
   1: Ideal MIMO (all paths equally strong)
 >> 1: Poor MIMO (paths correlated)
```

34.4 MIMO Gains (The "Three M's")

MIMO provides three distinct types of gains:

34.4.1 1. Array Gain

Concept: Coherently combine signals from multiple antennas \square increase SNR.

```
SNR_MIMO = SNR_SISO + 10 \cdot log (nR) dB
```

```
Example (4 RX antennas):
Array gain = 10 \cdot \log (4) = 6 dB
Physical interpretation:
- 4 antennas collect 4× more power
- SNR improves by 4× (6 dB)
- Like having a more sensitive receiver
```

Note: Requires coherent combining (Maximum Ratio Combining - MRC).

34.4.2 2. Diversity Gain

Concept: Combat fading by having multiple independent paths.

Problem: Fading causes signal to drop unpredictably.

```
Single antenna: P(deep fade) = p
Multiple antennas:
P(all fade simultaneously) = p^nD (where nD = diversity order)
Example (4 antennas, p = 0.1):
- SISO: 10% chance of fade
- 4-branch diversity: (0.1)^4 = 0.01\% chance all fade
Diversity order:
```

```
nD \quad nT \times nR \quad (maximum)
```

Achieved through:

- Space diversity (multiple antennas)
- Time diversity (interleaving, retransmissions)
- Frequency diversity (OFDM, spread spectrum)

Benefit: Reduces outage probability, increases reliability.

34.4.3 3. Multiplexing Gain (Spatial Multiplexing)

Concept: Transmit **independent data streams** on each antenna simultaneously.

```
Multiplexing gain: min(nT, nR) parallel streams
Data rate multiplier = min(nT, nR)
Example (4×4 MIMO):
- Stream 1 on TX Ant 1: "Hello"
- Stream 2 on TX Ant 2: "World"
- Stream 3 on TX Ant 3: "From"
```

```
- Stream 4 on TX Ant 4: "MIMO"
```

All transmitted at same time, same frequency!

Receiver separates streams using channel matrix H.

This is the headline MIMO gain that enables gigabit wireless.

34.5 MIMO Techniques

34.5.1 Spatial Multiplexing (SM)

Goal: Maximize data rate.

Transmitter: Split data into nT streams, transmit simultaneously.

Receiver: Separate streams by exploiting spatial signatures.

Detection methods:

```
1. Zero-Forcing (ZF):

\hat{x} = (H^H \cdot H)^{(-1)} \cdot H^H \cdot y
```

Nulls interference but amplifies noise.

```
2. MMSE (Minimum Mean Square Error):

\hat{x} = (H^{H} \cdot H + {}^{2}I)^{(-1)} \cdot H^{H} \cdot y
```

Balances interference and noise.

3. Maximum Likelihood (ML): $\hat{x} = \operatorname{argmin}_{x} ||y - H \cdot x||^{2}$

Optimal but exponentially complex (test all possibilities).

4. Successive Interference Cancellation (SIC):
Decode strongest stream first, subtract, repeat.

Used in V-BLAST architecture.

34.5.2 Transmit Beamforming (TxBF)

Goal: Focus energy toward specific receiver(s).

Method: Apply precoding weights to create constructive interference at receiver.

Transmit signal: $x = W \cdot s$

```
where:
- s = data streams
- W = precoding matrix (nT × nS, where nS nT)
Beamforming vector (single stream):
w = v (principal right singular vector of H)
Result: Maximum SNR at receiver (array gain + beamforming gain).
Types:
1. Eigenbeamforming (SVD-based):
H = U \cdot \Sigma \cdot V \cap H (Singular Value Decomposition)
Precoder: W = V (right singular vectors)
Combiner: U^H (left singular vectors)
Result: Decomposes MIMO channel into parallel SISO channels:
y_eff = \Sigma \cdot s + n'
                          (singular value).
Each stream sees gain
2. Zero-Forcing Beamforming (MU-MIMO):
Multiple users, each with 1 antenna.
Design W so that:
H \cdot W = [0 \dots 1 \dots 0] (only user k receives signal)
W = H^H \cdot (H \cdot H^H)^(-1)
Eliminates inter-user interference (at cost of noise amplification).
34.5.3 Diversity Combining
Goal: Maximize reliability (minimize BER).
Transmit Diversity (Alamouti Code):
2×1 MIMO: 2 TX antennas, 1 RX antenna
```

Time: t t TX1: +s -s*
TX2: +s +s*

Receiver combines:

```
r = h \cdot s + h \cdot s + n

r = -h \cdot s * + h \cdot s * + n
```

Solve for s, s:

```
\hat{s} = h * \cdot r + h \cdot r * \rightarrow SNR = (|h|^2 + |h|^2) \cdot Es/N

\hat{s} = h * \cdot r - h \cdot r * \rightarrow SNR = (|h|^2 + |h|^2) \cdot Es/N
```

Diversity order: 2 (full transmit diversity)
No channel knowledge at TX required!

Properties: - Orthogonal space-time block code (OSTBC) - Rate = 1 (1 symbol per time slot) - Generalizes to higher dimensions but with rate loss

Receive Diversity (MRC - Maximum Ratio Combining):

```
nR receive antennas, combine optimally:
```

```
y = \Sigma h * \cdot r

SNR = \Sigma |h|^2 \cdot Es/N (sum of branch SNRs)

Diversity order: nR
```

34.5.4 Hybrid Schemes

Goal: Balance multiplexing and diversity.

Example: 4×4 MIMO

```
Option 1: 4 spatial streams (max rate, min diversity)
Option 2: 2 spatial streams, each with 2-branch diversity
Option 3: 1 spatial stream, full 16-branch diversity

IEEE 802.11n: Adaptive based on channel quality.
```

34.6 Massive MIMO

Definition: Large number of antennas (64-256+) at base station, serving many users.

34.6.1 Key Principles

1. Channel Hardening:

```
As nT \rightarrow \omega:
(1/nT)·H^H·H \rightarrow I (identity matrix)
```

Fading averages out → channel becomes deterministic!

2. Favorable Propagation:

```
User channels become orthogonal: H^H·H diagonal
```

Simple linear processing (MRC/MRT) becomes near-optimal.

3. Array Gain Scales:

```
SNR nT  
Example (128 TX antennas):  
Array gain = 10 \cdot \log (128) = 21 dB  
Can reduce TX power per antenna by 128 \times while maintaining coverage!
```

34.6.2 Massive MIMO in 5G NR

```
Base station:
- 64-256 antenna elements
- Typically 32-64 ports (virtualized)
- Beamforming in both azimuth and elevation

UE (user):
- 2-4 antennas
- Operates in TDD mode (channel reciprocity)

Benefits:
- 10× spectral efficiency (vs. LTE)
- 100× energy efficiency (W/bit)
- Serve 10-20 users per cell simultaneously (MU-MIMO)

Example (3.5 GHz, 100 MHz BW, 64 antennas):
- Peak throughput: 5 Gbps (single user)
- Aggregate: 20 Gbps (multi-user)
```

Challenges: - Pilot contamination: Adjacent cells use same pilot sequences ☐ interference - Hardware complexity: 64+ RF chains, calibration - CSI acquisition: Overhead for channel estimation

34.7 MIMO Capacity

34.7.1 Ergodic Capacity (Shannon Limit)

Water-filling:

```
With equal power allocation:

C min(nT, nR)·B·log(1 + (nR/nT)·SNR)

IID Rayleigh Channel (rich scattering):

E[C] = min(nT, nR)·B·log(e·SNR) (high SNR)

Example (4×4 MIMO, 20 MHz, SNR = 20 dB):

C 4 × 20 MHz × log(100) = 533 Mbps

Compare SISO (1×1):

C 20 MHz × log(100) = 133 Mbps

MIMO gain: 4× capacity!
```

34.7.2 Outage Capacity (Fading Channels)

```
C_outage() = max{R : P(C < R) }
where = outage probability (e.g., 1%)

Diversity reduces outage:
- SISO 1% outage: Need SNR = 20 dB for C = 1 bps/Hz
- 4×4 MIMO 1% outage: Need SNR = 10 dB for C = 4 bps/Hz

Net result: 10 dB SNR reduction + 4× rate increase!</pre>
```

34.8 MIMO in Standards

34.8.1 WiFi Evolution

802.11n (WiFi 4, 2009):

MIMO: 1×1, 2×2, 3×3, 4×4 Bandwidth: 20, 40 MHz Modulation: Up to 64-QAM Spatial streams: Max 4

Peak rate: 600 Mbps (4×4, 40 MHz, 64-QAM)

Techniques:

- Spatial multiplexing (SM)
- Space-time block coding (STBC) Alamouti
- Transmit beamforming (TxBF)

802.11ac (WiFi 5, 2013):

MIMO: Up to 8×8

Bandwidth: 20, 40, 80, 160 MHz

Modulation: 256-QAM

MU-MIMO: Downlink (up to 4 users)

Peak rate: 6.9 Gbps (8×8, 160 MHz, 256-QAM)

802.11ax (WiFi 6, 2019):

MIMO: Up to 8×8

MU-MIMO: Downlink + Uplink (up to 8 users) OFDMA: Multi-user on subcarrier groups

Spatial reuse: Coordinated interference management

Peak rate: 9.6 Gbps

Key innovation: Simultaneous UL/DL multi-user

802.11be (WiFi 7, 2024):

MIMO: Up to 16×16

Bandwidth: Up to 320 MHz Modulation: 4096-QAM

Multi-link operation (MLO): Simultaneous bands

Peak rate: 46 Gbps

34.8.2 LTE & 5G NR

LTE (4G):

Release 8 (2009):

- 2×2, 4×4 MIMO (downlink)

- Peak: 150 Mbps (2×2), 300 Mbps (4×4)

Release 10 (LTE-Advanced, 2011):

- 8×8 MIMO
- Carrier aggregation (up to 100 MHz)
- MU-MIMO (4 users)
- Peak: 1 Gbps

Release 13 (LTE-Pro, 2016):

- Massive MIMO (up to 128 TX antennas)
- 3D beamforming (elevation + azimuth)
- Peak: 3 Gbps

5G NR (5G):

FR1 (Sub-6 GHz):

- Massive MIMO: 64-256 antennas (BS), 2-4 (UE)
- MU-MIMO: 12+ users simultaneously
- Beamforming: Hybrid analog/digital
- Peak: 5 Gbps

```
FR2 (mmWave, 24-52 GHz):

- Ultra-massive MIMO: 256+ antenna elements

- Beamforming essential (overcome path loss)

- Beam management: Sweeping, tracking

- Peak: 20 Gbps

Techniques:

- mMIMO with ZF/MMSE precoding

- CSI-RS (Channel State Information Reference Signal)

- SRS (Sounding Reference Signal) for uplink CSI

- Codebook-based and CSI feedback
```

34.9 Advanced MIMO Concepts

34.9.1 Multi-User MIMO (MU-MIMO)

Concept: Base station with nT antennas serves K users ($K \le nT$) simultaneously.

```
Downlink:
BS: nT antennas → K users (each with 1 antenna)

Channel:
    h
H = h    (K × nT)
    h

Precoding:
x = W·s    (nT × 1)

where W designed to null inter-user interference.

Capacity (sum rate):
```

Advantage over SU-MIMO: - Single-antenna devices can benefit from MIMO - No spatial multiplexing at UE required - Aggregate throughput scales with number of users

34.9.2 Coordinated Multi-Point (CoMP)

 $C_{sum} = \Sigma B \cdot log (1 + SINR)$

Concept: Multiple base stations coordinate to serve users.

Types:

```
1. Joint Transmission (JT):
    Multiple BSs transmit same data (coherent combining at UE)
    → Diversity gain, extended coverage
```

2. Coordinated Scheduling/Beamforming (CS/CB):
BSs coordinate to minimize interference

 \rightarrow Improved SINR at cell edges

3. Dynamic Point Selection (DPS):UE dynamically switches serving BS→ Load balancing

5G implementation: Network slicing + CoMP for ultra-reliable low-latency (URLLC).

34.9.3 Full-Duplex MIMO

Concept: Transmit and receive simultaneously on same frequency.

Challenge: Self-interference (TX power » RX power, 100+ dB difference).

Solutions: 1. **Analog cancellation**: Circulators, cross-polarization 2. **Digital cancellation**: Subtract TX signal digitally 3. **MIMO spatial cancellation**: Null TX in RX directions

Benefit: 2× spectral efficiency (in theory).

Status: Active research, not yet in standards (SI cancellation still insufficient).

34.10 Performance Analysis

34.10.1 BER with MIMO

Alamouti 2×1 (BPSK):

```
BER = Q(√(2·(|h |² + |h |²)·Eb/N))

Average over Rayleigh fading:

BER [1/(4·Eb/N)]² (high SNR, diversity order = 2)

Compare SISO:

BER 1/(4·Eb/N) (diversity order = 1)

At BER = 10³:

- SISO: Requires Eb/N 24 dB

- Alamouti: Requires Eb/N 12 dB

→ 12 dB diversity gain!
```

34.10.2 Spatial Multiplexing (ZF Receiver)

 ${\tt BER}$ depends on post-detection ${\tt SNR}$ of each stream:

```
SNR = 2·P / (2·||[(H^H·H)^(-1)] ||2)
where = i-th singular value of H

For i.i.d. Rayleigh channel (4×4):
E[BER] 10 3 at SNR 20 dB (64-QAM, rate-1/2 FEC)

Outage: If channel is poorly conditioned, one stream fails.
```


34.11.1 MIMO Spatial Multiplexing Simulation

```
import numpy as np
from numpy.linalg import inv
def generate_mimo_channel(nT, nR):
    Generate i.i.d. Rayleigh fading channel.
    Returns:
        H: nR \times nT complex channel matrix
    H_real = np.random.randn(nR, nT)
    H_imag = np.random.randn(nR, nT)
    H = (H_real + 1j * H_imag) / np.sqrt(2)
    return H
def mimo_transmit(data_streams, H, snr_db):
    MIMO transmission with AWGN.
    Args:
        data\_streams: nT \times N\_symbols (each row = spatial stream)
        H: nR \times nT channel matrix
        snr_db: Signal-to-noise ratio
    Returns:
        Received signal (nR \times N_symbols)
    nR, nT = H.shape
    N_symbols = data_streams.shape[1]
    # Transmit
    tx_signal = data_streams # nT x N_symbols
```

```
# Channel
    rx_signal = H @ tx_signal # nR × N_symbols
    # Add noise
    signal_power = np.mean(np.abs(rx_signal)**2)
    noise_power = signal_power / (10**(snr_db/10))
    noise = np.sqrt(noise_power/2) * (np.random.randn(nR, N_symbols) +
                                          1j*np.random.randn(nR, N_symbols))
    rx_signal += noise
    return rx_signal
def mimo_zf_receiver(rx_signal, H):
    Zero-Forcing MIMO detection.
    Args:
        rx\_signal: nR \times N\_symbols
        H: nR \times nT channel matrix
    Returns:
        Estimated data streams (nT \times N_symbols)
    # ZF: \hat{x} = (H^{\hat{}}H \cdot H)^{\hat{}}(-1) \cdot H^{\hat{}}H \cdot y
    H_{pinv} = inv(H.conj().T @ H) @ H.conj().T
    estimated = H_pinv @ rx_signal
    return estimated
# Simulation
nT, nR = 4, 4 \# 4 \times 4 MIMO
N_symbols = 1000
snr_db = 20
# Generate QPSK symbols
data_streams = (2*np.random.randint(0, 2, (nT, N_symbols)) - 1) + \
                1j*(2*np.random.randint(0, 2, (nT, N symbols)) - 1)
data_streams /= np.sqrt(2)
# Channel
H = generate_mimo_channel(nT, nR)
print(f"Channel condition number: {np.linalg.cond(H):.2f}")
# Singular value decomposition
U, S, Vh = np.linalg.svd(H)
print(f"Singular values: {S}")
print(f"Rank: {np.linalg.matrix_rank(H)}")
```

```
# Transmit
rx_signal = mimo_transmit(data_streams, H, snr_db)
# Receive (ZF)
estimated = mimo_zf_receiver(rx_signal, H)
# Compute symbol error rate (SER)
# Hard decision to QPSK constellation
def qpsk detect(symbols):
    symbols_normalized = symbols / np.abs(symbols)
    real_bits = (symbols_normalized.real > 0).astype(int)
    imag_bits = (symbols_normalized.imag > 0).astype(int)
    return real_bits, imag_bits
orig_real, orig_imag = qpsk_detect(data_streams)
est_real, est_imag = qpsk_detect(estimated)
ber_real = np.mean(orig_real != est_real)
ber_imag = np.mean(orig_imag != est_imag)
ber = (ber_real + ber_imag) / 2
print(f"\n4×4 MIMO ZF Receiver")
print(f"SNR: {snr_db} dB")
print(f"BER: {ber:.2%}")
print(f"Spatial streams: {nT}")
print(f"Effective rate: {nT} x single antenna")
34.12 

When to Use MIMO
34.12.1 MIMO Excels:
☐ Rich scattering (urban, indoor environments)
High data rate requirements (gigabit wireless)
Multi-user scenarios (many devices per AP/BS)
☐ Coverage extension (diversity, beamforming)
☐ Spectral efficiency (limited spectrum available)
34.12.2 MIMO Struggles:
```

☐ Line-of-sight channels (rank-deficient H matrix)

☐ High mobility (channel changes faster than CSI update)
 ☐ Low SNR (spatial multiplexing requires moderate SNR)
 ☐ Small form factors (antenna spacing < \(\lambda/2\) ☐ correlation)

34.13 Further Reading

34.13.1 Textbooks

- Tse & Viswanath, Fundamentals of Wireless Communication Rigorous treatment of MIMO capacity
- Paulraj, Nabar, Gore, Introduction to Space-Time Wireless Communications Comprehensive MIMO theory
- Cho et al., MIMO-OFDM Wireless Communications with MATLAB Practical implementation

34.13.2 Key Papers

- Foschini & Gans (1998): "On Limits of Wireless Communications..." Spatial multiplexing foundation
- Telatar (1999): "Capacity of Multi-antenna Gaussian Channels" MIMO capacity theory
- · Alamouti (1998): "A Simple Transmit Diversity Technique" Space-time block codes

34.13.3 Standards

- IEEE 802.11n/ac/ax: WiFi MIMO specifications
- 3GPP TS 36.211/38.211: LTE/5G physical layer (MIMO details)
- 3GPP TR 38.802: 5G massive MIMO study

34.13.4 Related Topics

- [OFDM & Multicarrier Modulation] MIMO-OFDM combination
- [[Beamforming (coming soon)]] Advanced spatial processing
- [Channel Equalization] MIMO detection algorithms
- [Real-World System Examples] LTE, 5G, WiFi implementations
- [Adaptive Modulation & Coding (AMC)] Per-stream adaptation

Summary: MIMO transforms wireless communications by exploiting spatial dimension. Multiple antennas create a matrix channel with multiple eigenmodes—each eigenmode can carry an independent data stream. Spatial multiplexing delivers linear capacity scaling with min(nT, nR), while diversity combining improves reliability. Beamforming focuses energy and mitigates interference. Modern wireless (WiFi 6/7, 5G NR) relies on MIMO for multi-gigabit rates and serves many users simultaneously (MU-MIMO). Massive MIMO (64-256 antennas) in 5G base stations achieves extraordinary spectral and energy efficiency through favorable propagation and channel hardening. MIMO is not just an improvement—it's a paradigm shift.

35 Maxwell's Equations & Wave Propagation

Maxwell's Equations are the fundamental laws of electromagnetism, describing how electric and magnetic fields interact and propagate through space.

35.1 For Non-Technical Readers

What are Maxwell's Equations?

Imagine you're trying to understand how your phone communicates with a cell tower, how light travels from the sun to Earth, or how a radio picks up music from thin air. All of these phenomena are explained by four elegant mathematical rules discovered by James Clerk Maxwell in the 1860s.

The Big Picture (in plain English):

- 1. Electric charges create invisible "force fields" around them
 - Think of static electricity making your hair stand up
 - Positive and negative charges attract or repel each other through these fields
- 2. Magnetic fields always come in pairs (north and south poles together)
 - You can't have a magnet with just a north pole or just a south pole
 - If you break a magnet in half, you get two smaller magnets, each with both poles
- 3. Changing magnetic fields create electric fields
 - This is how generators work: spin a magnet near a wire, and electricity flows
 - It's also why transformers can change voltage levels
- 4. Moving electric charges (currents) and changing electric fields create magnetic fields
 - This is how electromagnets work
 - It's also how antennas transmit radio waves

Why does this matter?

Maxwell discovered something profound: when you combine these four rules, they predict that electromagnetic "waves" can travel through empty space at a specific speed. When he calculated that speed, it turned out to be exactly the speed of light!

This meant **light itself is an electromagnetic wave** - the same type of wave as radio, WiFi, X-rays, and microwaves, just at different frequencies.

Rea	Il-world impact:	- 🛮 Ev	ery wireless	device	(phone, \	WiFi, B	luetooth,	GPS) - 🛘	ΑII	lighting
and	solar panels - 🛘	Radio,	TV, and satel	llite com	municati	ion - 🛮	Medical	imaging	(MRI,	X-rays
- 🛮	Why the sky is bl	lue and s	sunsets are r	red - 🛚	How you	ur eves	see color	r		

Without Maxwell's Equations, the modern wireless world wouldn't exist!

What you'll find below:

The rest of this page dives into the mathematical details. Don't worry if the equations look intimidating - the key concepts above are what matter for understanding how electromagnetic waves work in practice.

35.2 The Four Maxwell's Equations

35.2.1 In Differential Form (Local)

1. Gauss's Law (Electric charge creates electric field)

 $\cdot E = /$

where:

- E = electric field vector (V/m)
- = charge density (C/m³)
- = permittivity of free space (8.854×10 1 2 F/m)

Physical meaning: Electric field lines originate from positive charges and terminate on negative charges.

2. Gauss's Law for Magnetism (No magnetic monopoles)

```
·B = 0
where:
- B = magnetic field vector (Tesla)
```

Physical meaning: Magnetic field lines always form closed loops (no isolated north/south poles).

3. Faraday's Law (Changing magnetic field creates electric field)

```
xE = -B/t
where:
- x = curl operator (measures rotation)
- B/t = time rate of change of B
```

Physical meaning: A time-varying magnetic field induces a circulating electric field (basis of generators, transformers).

4. Ampère-Maxwell Law (Current + changing electric field creates magnetic field)

```
×B = J + E/t

where:
- = permeability of free space (4 ×10 H/m)
- J = current density (A/m²)
- E/t = displacement current (Maxwell's addition!)
```

Physical meaning: Moving charges (current) AND time-varying electric fields create circulating magnetic fields.

Maxwell's insight: The $\partial E/\partial t$ term was missing from Ampère's original law. Adding it made electromagnetic waves possible!

35.3 The Wave Equation

35.3.1 Derivation

Taking curl of Faraday's law:

$$x(xE) = -x(B/t) = -(xB)/t$$

Substitute Ampère-Maxwell law (in vacuum, J=0):

$$x(xE) = - \frac{2E}{t^2}$$

Use vector identity: $\nabla \times (\nabla \times E) = \nabla (\nabla \cdot E) - \nabla^2 E$

In vacuum (ρ =0), Gauss's law gives $\nabla \cdot E = 0$, so:

$${}^{2}E = {}^{2}E/t^{2}$$

This is the wave equation!

Similar derivation for B gives:

$${}^{2}B = {}^{2}E/t^{2}$$

35.3.2 Wave Speed

The standard wave equation is:

$$^{2}f = (1/v^{2})^{2}f/t^{2}$$

Comparing to electromagnetic wave equation:

```
v^2 = 1/( )

v = 1/\sqrt{(} )

= 1/\sqrt{[(4 \times 10)(8.854 \times 10^{-12})]}

= 2.998 \times 10 \text{ m/s}

= c \text{ (speed of light!)}
```

Maxwell's triumph: Light is an electromagnetic wave!

35.4 Plane Wave Solutions

35.4.1 General Solution

For propagation in +z direction:

$$E(z,t) = E \cos(kz - t +) \hat{x}$$

$$B(z,t) = B \cos(kz - t +) \hat{y}$$
where:
$$-k = 2 / = \text{wave number (rad/m)}$$

- = 2 f = angular frequency (rad/s)

```
- = wavelength (m)
- f = frequency (Hz)
- = phase constant
```

Relationship between E and B:

```
B = E/c
B = (1/c) k \times E
```

where $\ensuremath{\mathtt{\hat{R}}}$ is propagation direction

Key insight: E and B are perpendicular to each other AND to propagation direction (transverse wave).

35.4.2 Dispersion Relation

From wave equation:

```
= ck (in vacuum)
or: v = f (wave speed = frequency × wavelength)
```

In vacuum: All frequencies travel at same speed c (non-dispersive)

In matter: v = c/n (where n = refractive index, depends on frequency \square dispersion)

35.5 Energy and Power

35.5.1 Energy Density

Electric field energy density:

$$u_E = (1/2) E^2 (J/m^3)$$

Magnetic field energy density:

$$u_B = (1/2)B^2 (J/m^3)$$

Total electromagnetic energy density:

```
u = u_E + u_B = E^2 (since B = E/c and c^2 = 1/)
```

35.5.2 Poynting Vector (Power Flow)

Poynting vector S points in direction of energy flow:

```
S = (1/) E \times B (W/m^2)
Magnitude: |S| = (1/c) E^2 (for plane wave)
```

Physical meaning: Energy flux (power per unit area) carried by EM wave.

Power through area A:

```
P = S \cdot dA (Watts)
```

35.5.3 Intensity

For time-harmonic wave, **intensity** (time-averaged power density):

```
I = \langle |S| \rangle = (1/2 c) E^2 = (c/2) E^2
or in terms of B:
I = (c/2) B^2
```

Units: W/m² (same as irradiance, power density)

35.6 Radiation from Sources

35.6.1 Dipole Radiation

Oscillating electric dipole (simplest antenna):

```
Radiated power:
P = ( /12 c)  p <sup>2</sup>
where:
- = oscillation frequency
- p = dipole moment amplitude
```

Key insight: Radiated power \square ω^4 (higher frequencies radiate much more efficiently!)

Radiation pattern: Doughnut shape (maximum perpendicular to dipole, zero along dipole axis)

35.6.2 Accelerating Charges

Larmor formula (non-relativistic):

```
P = (q^2a^2)/(6c)
where:
- q = charge
- a = acceleration
```

Physical meaning: Any accelerating charge radiates EM waves. This is basis of: - Antennas (oscillating current = accelerating charges) - Synchrotron radiation (electrons in magnetic fields) - Bremsstrahlung (decelerating electrons)

35.7 Propagation in Media

35.7.1 Material Properties

Permittivity ϵ : How much material opposes electric field - Vacuum: ϵ_0 - Material: $\epsilon = \epsilon_r \epsilon_0$ (where $\epsilon_r = \epsilon_0$ relative permittivity)

Permeability μ : How much material opposes magnetic field - Vacuum: μ_0 - Material: $\mu = \mu_r \mu_0$ (where $\mu_r =$ relative permeability)

Conductivity σ : How well material conducts current - Insulator: $\sigma \approx 0$ - Conductor: $\sigma \square \infty$ (ideally)

35.7.2 Wave Speed in Media

$$v = 1/\sqrt{()} = c/\sqrt{(_r _r)} = c/n$$

where $n = \sqrt{(r_r)}$ is refractive index

Examples: - Air: $n \approx 1.0003$ ($v \approx c$) - Water: $n \approx 1.33$ ($v \approx 0.75c$) - Glass: $n \approx 1.5$ ($v \approx 0.67c$)

35.7.3 Attenuation in Lossy Media

In conductive medium, wave amplitude decays:

$$E(z) = E e^{-z} \cos(kz - t)$$

where = skin depth parameter: = $\sqrt{(f)}$ (for good conductors)

Skin depth: = 1/ (depth where amplitude drops to 1/e)

Examples (at 1 GHz): - Copper: $\delta \approx 2 \, \mu \text{m}$ (EM waves don't penetrate conductors!) - Seawater: $\delta \approx 0.2 \, \text{m}$ (poor penetration) - Air: $\delta \, \Box \, \infty$ (negligible loss)

Maxwell's equations apply to all frequencies:

Band	Frequency	Wavelength	Applications
ELF	3-30 Hz	10,000-100,000 km	Submarine communication
VLF	3-30 kHz	10-100 km	Navigation
LF	30-300 kHz	1-10 km	AM radio
MF	300 kHz-3 MHz	100-1000 m	AM broadcast
HF	3-30 MHz	10-100 m	Shortwave
VHF	30-300 MHz	1-10 m	FM radio, TV
UHF	300 MHz-3 GHz	10 cm-1 m	Cell phones, WiFi

Band	Frequency	Wavelength	Applications
SHF	3-30 GHz	1-10 cm	Radar, satellite
EHF	30-300 GHz	1-10 mm	mmWave, 5G
THz	0.3-3 THz	0.1-1 mm	Imaging, spectroscopy
IR	300 THz-430 THz	700 nm-1 mm	Thermal imaging
Visible	430-750 THz	400-700 nm	Human vision
UV	750 THz-30 PHz	10-400 nm	Sterilization
X-ray	30 PHz-30 EHz	0.01-10 nm	Medical imaging
Gamma	> 30 EHz	< 0.01 nm	Nuclear medicine

All obey Maxwell's equations! (though quantum effects important at high frequencies)

35.9 ☐ Key Insights

- 1. **Unification**: Electricity, magnetism, and light are different manifestations of the same phenomenon
- 2. **Self-propagation**: EM waves don't need a medium (unlike sound)
- 3. Speed limit: c is the maximum speed in universe (relativity!)
- 4. **Transverse**: E, B, and propagation direction are mutually perpendicular
- 5. **Duality**: E and B are inseparable (changing one creates the other)
- 6. **Scale invariance**: Same equations for radio □ gamma rays (though quantum effects matter at high f)

35.10 ☐ See Also

- [Electromagnetic Spectrum] Detailed frequency breakdown
- [Antenna Theory Basics] How to radiate/receive EM waves
- [Wave Polarization] E field orientation
- [Free-Space Path Loss] How waves weaken with distance
- [Terahertz (THz) Technology] Specific THz band applications

35.11 References

- 1. **Maxwell, J.C.** (1865) "A Dynamical Theory of the Electromagnetic Field" *Phil. Trans. R. Soc.* 155, 459-512
- 2. **Jackson, J.D.** (1999) *Classical Electrodynamics* 3rd ed. (Wiley)
- 3. Griffiths, D.J. (2017) Introduction to Electrodynamics 4th ed. (Cambridge UP)
- 4. **Feynman, R.P., Leighton, R.B., Sands, M.** (1964) *The Feynman Lectures on Physics* Vol. 2 (Addison-Wesley)

36 Microtubule Structure & Function

36.1 For Non-Technical Readers

What are microtubules?

Think of microtubules as the "scaffolding" inside your cells—tiny hollow tubes made of proteins that give cells their shape and help move things around. They're incredibly small: about 25 nanometers wide (that's 25 billionths of a meter, or ~1/4000th the width of a human hair).

What do they do?

Microtubules have several well-understood jobs: - **Structural support**: Like the steel beams in a building, they keep cells rigid - **Transportation highways**: They act as roads for "molecular trucks" (motor proteins) that carry cargo around the cell - **Cell division**: They pull chromosomes apart when cells divide - **Movement**: They form the core of structures like sperm tails and the tiny hairs in your lungs

The quantum controversy:

Some scientists propose a wild idea: that microtubules in brain cells might use **quantum mechanics**—the strange physics that normally only matters at the atomic scale—to process information or even generate consciousness. This is *highly speculative* and most neuroscientists are skeptical.

Why the debate?

- Skeptics say: The brain is too warm and wet for quantum effects (which usually need extreme cold and isolation)
- **Proponents say**: New discoveries show quantum effects can survive in warm biological systems (like bird navigation and plant photosynthesis)

Current status: We know microtubules are essential for cell function. Whether they do anything quantum-related in the brain remains an open question requiring better experiments.

If you're new to this: Start with Section 2 (Cellular Functions) to understand what microtubules definitely do, then explore Section 4 (Quantum Hypotheses) to see the speculative ideas.

36.2 Overview

Microtubules are cylindrical protein polymers that form part of the cytoskeleton in eukaryotic cells. Beyond their established structural and transport roles, microtubules have been proposed as substrates for quantum information processing in neurons—a highly speculative hypothesis that remains controversial.

Established roles : - Structural support (cell shape, mechanical rigidity) - Intracellular transport (motor protein tracks) - Cell division (mitotic spindle) - Cilia and flagella (motility)

Speculative roles \square : - Quantum computation in neurons - Consciousness substrates (Orch-OR theory) - Information integration beyond classical networks

36.3 1. Molecular Structure

36.3.1 1.1 Tubulin Dimers

Basic unit: α - β tubulin heterodimer - α -tubulin: 451 amino acids, ~50 kDa, globular protein - β -tubulin: 445 amino acids, ~50 kDa, globular protein - β -tubulin: 8 nm long, 4 nm diameter - β -tubuling: Both subunits have GTP-binding sites; β -tubulin is hydrolysis-active

Key structural features: - **Aromatic residues**: 16 Trp, 25 Tyr, 39 Phe per dimer (potential quantum chromophores) - **Hydrophobic core**: Stabilizes folded structure - **C-terminal tail**: Acidic, flexible, extends from surface (~15 amino acids)

Crystal structure: Resolved to 3.5 Å (Nogales et al., 1998)

36.3.2 1.2 Protofilaments and Lattice Structure

Assembly: - Tubulin dimers polymerize head-to-tail protofilament - 13 protofilaments associate laterally cylindrical microtubule - Outer diameter: **25 nm** - Inner diameter: **15 nm** - Wall thickness: **5 nm**

Helical geometry: - **Helical pitch**: 12.5 nm (3-start helix for 13-protofilament structure) - **Lattice seam**: Lateral contacts slightly different at one position (breaks rotational symmetry) - **Polarity**: Plus end (β-tubulin exposed) vs. minus end (α-tubulin exposed)

Lattice types: - **A-lattice**: Straight protofilaments, perfect alignment (most common in vivo) - **B-lattice**: Helical protofilaments, staggered alignment (some in vitro conditions)

36.3.3 1.3 Dynamic Instability

Phenomenon: Microtubules stochastically switch between growth and rapid shrinkage.

Mechanism: - **GTP cap**: Newly added tubulin dimers have GTP bound to β -tubulin - **Hydrolysis**: GTP \square GDP after incorporation (delayed by ~1 s) - **Catastrophe**: If GTP cap is lost, GDP-tubulin (unstable) is exposed \square rapid depolymerization - **Rescue**: Occasional stabilization events reestablish growth

Parameters (in vitro, 37°C): - Growth rate: \sim 2 µm/min - Shrinkage rate: \sim 10-20 µm/min - Catastrophe frequency: \sim 0.01 s⁻¹ - Rescue frequency: \sim 0.001 s⁻¹

Biological function: Rapid reorganization of cytoskeleton (mitosis, cell migration, axon guidance)

321

36.4 2. Cellular Functions (Established □)

36.4.1 2.1 Structural Support

Mechanical properties: - **Young's modulus:** ~1-2 GPa (stiffer than actin filaments) - **Persistence length:** ~5 mm (very rigid on cellular scales) - **Buckling force:** ~5 pN (can support compressive loads)

Role: Maintain cell shape, resist compression, position organelles

36.4.2 2.2 Intracellular Transport

Motor proteins: - **Kinesin**: Moves toward plus end (anterograde transport in axons) - **Dynein**: Moves toward minus end (retrograde transport) - **Speed**: ~1 μm/s - **Force**: ~5-7 pN (can pull vesicles, organelles)

Cargo: Vesicles, mitochondria, mRNA granules, protein complexes

Medical relevance: Defects in axonal transport linked to neurodegenerative diseases (Alzheimer's, ALS)

36.4.3 2.3 Mitotic Spindle

Function: Segregate chromosomes during cell division

Structure: - **Astral microtubules**: Extend from centrosomes to cell cortex - **Kinetochore microtubules**: Attach to chromosomes - **Interpolar microtubules**: Overlap at spindle midzone

Force generation: Depolymerization at kinetochores pulls chromosomes toward poles (~10 pN)

36.4.4 2.4 Cilia and Flagella

Structure: **9+2 axoneme** (9 doublet microtubules + 2 central singlets) - Dynein arms on doublets cause sliding \Box bending motion - Beat frequency: ~10-60 Hz

Examples: - **Respiratory cilia**: Clear mucus from airways - **Sperm flagella**: Propulsion - **Nodal cilia**: Establish left-right asymmetry in embryos

36.5 3. Neural Microtubules: Unique Features

36.5.1 3.1 Neuronal Cytoskeleton Organization

Axons: - Microtubules uniformly oriented (plus-ends distal) - Continuous tracks for kinesin transport - Stabilized by tau protein (hyperphosphorylation in Alzheimer's)

Dendrites: - Mixed polarity microtubules - Both kinesin and dynein active - Dynamic remodeling during synaptic plasticity

Density: ~10⁶ microtubules per neuron

36.5.2 3.2 Post-Translational Modifications (PTMs)

Tubulin code: ~20 different PTMs create functional diversity

Key modifications: - **Acetylation** (Lys-40 on α-tubulin): Marks stable, long-lived microtubules - **Tyrosination**/detyrosination: Regulates motor protein binding - **Polyglutamylation**: C-terminal tail modification (affects MAP binding) - **Phosphorylation**: Tau phosphorylation regulates microtubule stability

Function: PTMs create binding codes for MAPs (microtubule-associated proteins), motors, and signaling proteins

36.5.3 3.3 Microtubule-Associated Proteins (MAPs)

Examples: - **Tau**: Stabilizes microtubules (predominantly in axons) - **MAP2**: Stabilizes microtubules (predominantly in dendrites) - **MAP4**: Ubiquitous stabilizer - **EB proteins**: Track plus-ends (regulate dynamics)

Anesthetic sensitivity: General anesthetics (isoflurane, propofol) bind to tubulin and disrupt MAP interactions \Box altered microtubule dynamics

36.6 4. Quantum Biology Hypotheses (Speculative □)

36.6.1 4.1 Orch-OR Theory (Penrose-Hameroff)

Core claim: Consciousness arises from quantum computations in microtubules, terminated by objective reduction (OR).

Mechanism (proposed): 1. Tubulin dimers exist in superposed states (conformational states or electronic states) 2. Quantum coherence spreads across ~10⁵-10⁷ tubulins via dipole-dipole interactions 3. Superposition reaches OR threshold: $E \cdot \tau \sim \hbar$ (energy × time ~ Planck constant) 4. Wavefunction collapses \square conscious moment (~25 ms, gamma oscillation period)

Requirements: - Coherence time $\tau_c > 1$ ms at 310 K - Isolation from environment (ordered water shell?) - Quantum-to-classical interface (how does OR generate neural firing?)

Status: No experimental confirmation; decoherence estimates vary wildly (femtoseconds to milliseconds)

36.6.2 4.2 Quantum Information Processing

Hypothesis: Microtubules perform quantum computations beyond classical neuron networks.

Encoding schemes (speculative): - **Conformational qubits**: Tubulin dimer in superposition of two conformations - **Electronic qubits**: Aromatic amino acids in superposed π -electron states - **Phononic qubits**: THz vibrational modes (see [THz Resonances in Microtubules])

Entanglement propagation: - Nearest-neighbor dipole coupling: $V_{ij}\sim 10^{-3}$ eV (weak but non-zero) - Coherent phonon-mediated coupling: Possible if Fröhlich condensate exists

Computational advantage: Quantum parallelism

exponential speed-up for certain tasks (e.g., pattern recognition?)

Problem: No known biological algorithm requires quantum computation; classical neural networks already very powerful

36.6.3 4.3 Vibronic Coherence at Room Temperature

Insight from VE-TFCC theory: - Strong vibronic coupling (electron-phonon interaction) can sustain thermal quantum coherence - Bogoliubov quasiparticles diagonalize thermal Hamiltonian \square stable coherent states at 310 K

Application to microtubules: - Aromatic residues (Trp, Tyr, Phe) have π -electron systems - Couple to THz lattice vibrations \square vibronic excitations - If coupling strength $g\omega \gtrsim k_BT$, coherence survives

Testable prediction: Measure quantum variance $\langle q^2 \rangle - \langle q \rangle^2$ in microtubules; excess variance (beyond classical thermal) indicates quantum coherence

Status: Not yet measured experimentally

36.7 5. Critical Challenges to Quantum Hypotheses

36.7.1 5.1 Decoherence Problem

Tegmark's calculation (2000): Decoherence time $\tau_d\sim 10^{-13}$ s (100 femtoseconds) due to: - Water dielectric fluctuations - Ion motion (Na+, K+, Ca²+) - Thermal phonons

Counter-arguments: - Tegmark assumed point dipoles; extended wavefunction may decohere slower - Ordered water near microtubule surface reduces fluctuations - Vibronic coupling creates decoherence-free subspaces (VE-TFCC insight)

Current status: No consensus; experimental measurement needed

36.7.2 5.2 Lack of Biological Function

Evolutionary argument: If quantum effects were functionally important, we'd expect: - Selection pressure to maintain coherence (e.g., specialized shielding proteins) - Deficits in organisms lacking microtubules (but prokaryotes have cognition without microtubules)

Alternative explanation: All known neural functions explainable by classical electrophysiology

36.7.3 5.3 Anesthetic Paradox

Observation: General anesthetics disrupt consciousness and bind to microtubules.

Quantum interpretation: Anesthetics disrupt THz coherence \Box loss of quantum computation \Box unconsciousness

Classical interpretation: Anesthetics alter microtubule-MAP interactions \square disrupt synaptic vesicle transport \square loss of neurotransmission

Test: Does anesthetic binding shift THz resonances or reduce coherence times? - **Preliminary** data (in vitro): Yes, small shifts (~0.1 THz) - **In vivo test**: Not yet done

36.8 6. Experimental Frontiers

36.8.1 6.1 What Would Prove Quantum Function?

Requires demonstrating: 1. Long-lived coherence: $\tau_c>1$ ms at 310 K in functioning neurons 2. Functional relevance: Disrupting coherence impairs cognition in specific, predictable ways 3. Quantum advantage: A task neurons perform that classical systems provably cannot

36.8.2 6.2 Proposed Experiments

THz spectroscopy: - Two-dimensional THz on microtubules (detect off-diagonal coherences) - Temperature dependence (does coherence vanish classically at high T?)

Isotope effects: - Deuterate tubulin (H \square D changes vibrational frequencies) - Predict altered coherence times \square test with cognitive assays

Quantum sensors: - NV-diamond magnetometry: Detect weak magnetic fields from radical pairs in tubulin - SQUID arrays: Map magnetic coherence in brain slices

36.9 7. Connections to Other Wiki Pages

- [[Orchestrated Objective Reduction (Orch-OR)]] Consciousness theory requiring micro-tubule quantum effects
- [Quantum Coherence in Biological Systems] General framework
- [THz Resonances in Microtubules] Vibrational modes that could sustain coherence
- [Terahertz (THz) Technology] Experimental probes
- [Hyper-Rotational Physics (HRP) Framework] Theoretical extension to consciousness

36.10 8. References

36.10.1 Structure and Function (Established)

- 1. Nogales et al., Nature 391, 199 (1998) Tubulin crystal structure
- 2. Mitchison & Kirschner, Nature 312, 237 (1984) Dynamic instability discovery
- Desai & Mitchison, Annu. Rev. Cell Dev. Biol. 13, 83 (1997) Microtubule dynamics review

36.10.2 Quantum Hypotheses (Speculative)

- 4. Penrose & Hameroff, Phys. Life Rev. 11, 39 (2014) Orch-OR consciousness theory
- 5. Hameroff & Penrose, J. Conscious. Stud. 21, 126 (2014) Orch-OR update

36.10.3 Critical Perspectives

- 6. **Tegmark, Phys. Rev. E 61, 4194 (2000)** Decoherence calculation (skeptical)
- 7. Koch & Hepp, *Nature* 440, 611 (2006) Critique of quantum consciousness

36.10.4 Vibronic Coupling

8. Bao et al., J. Chen ence)	n. Theory Comput.	20, 4377 (2024) –	· VE-TFC	C theory (t	hermal o	oher-
Last updated: October 2	2025					

37 Military & Covert Communications

Military communications systems prioritize anti-jamming (AJ), low probability of intercept (LPI), low probability of detection (LPD), and secure transmission (TRANSEC) over commercial metrics like spectral efficiency. This page covers advanced techniques used in GPS M-code, SAT-COM FHSS, phased-array radar, Link 16, and covert communications.

37.1 For Non-Technical Readers

Before diving into the technical details, here are the core concepts explained in everyday terms:

37.1.1 Why Military Communications Are Different

Imagine trying to have a conversation in a crowded, hostile room where: - Someone is shouting over you (jamming) - Others are listening to steal your secrets (interception) - You need to talk without being noticed (covert)

Military communications solve these problems in ways regular WiFi or cell phones don't need to.

37.1.2 The "Whisper in the Crowd" Analogy

Spread Spectrum = Speaking very quietly across a huge room

Instead of shouting one clear message, you: 1. Whisper fragments of your message to many places at once 2. Spread it so thin that each piece sounds like background noise 3. Only someone with the secret pattern can collect all the pieces and understand you

Real-world result: Your signal is literally **weaker than background noise**, yet your intended receiver hears it perfectly. Enemies just hear static.

Example: GPS M-code is 20 times weaker than the noise floor, yet your military GPS receiver locks on instantly. A spy's receiver? Just noise.

37.1.3 The "Concert Hall Spotlight" Analogy

Phased-Array Antennas (AESA) = Pointing a beam of radio energy

Think of a traditional dish antenna like a flashlight—it points one direction, and moving it takes time.

AESA is like a concert hall's lighting system: - Hundreds of tiny lights (antenna elements) - Computer-controlled to turn on/off in precise patterns - Creates a "spotlight" that can instantly jump to different parts of the room - Multiple spotlights can exist simultaneously (track many targets)

Real-world result: F-22 radar can track 100 aircraft, jam enemy radars, and guide missiles—all at once, all electronically, no moving parts.

37.1.4 The "Secret Handshake" Analogy

Frequency Hopping = Changing radio channels thousands of times per second

Imagine a conversation where: 1. You and your friend **agree on a secret pattern** of which channel to use when 2. Every millisecond, you both **jump to a new frequency** following the pattern 3. **Enemies can't follow** because they don't know the pattern 4. Even if they jam one frequency, you're already gone

Real-world result: Military satellite phones (MILSTAR) hop 1000+ times per second across a gigahertz of spectrum. A jammer would need to jam the entire band with megawatts of power—impractical.

37.1.5 The "Invisible Ink" Analogy

Low Probability of Detection (LPD) = Radio signals that don't look like signals

Imagine hiding a message by: 1. Writing each letter on a separate grain of sand 2. Scattering the sand across a beach 3. Only the recipient knows which grains to collect

Real-world result: Covert radios transmit at power levels 1000× below what receivers normally detect. Even sensitive spy equipment can't tell the difference between the transmission and natural radio noise.

37.1.6 The "Smart Echo" Analogy

Anti-Jamming (AJ) = Fighting back against interference

When an enemy tries to jam your signal: 1. **Your antenna "learns"** where the jammer is located 2. **Creates a "null"** (deaf spot) pointing at the jammer 3. **Amplifies signals** from your intended direction

Think of it like **noise-canceling headphones for radio**—specifically canceling out the jammer while hearing your friend.

Real-world result: GPS receivers with anti-jam antennas (CRPA) can reject jammers that are 10,000× stronger than the GPS satellite signal.

37.1.7 Key Concepts Simplified

Concept	Everyday Analogy	Military Benefit
Spread Spectrum	Whisper spread across a huge room	Signal hidden below noise floor
Processing Gain	Collecting 1000 whispers back into speech	Overcomes jammers and noise
Frequency Hopping	Changing channels 1000× per second	Enemy can't follow or jam
Phased Array Encryption	Computer-controlled spotlight Secret language only you and friend know	Instant beam steering, multi-target Even intercepted messages are useless
Beamforming	Talking through a directional megaphone	Only intended receiver hears you

37.1.8 Why This Matters for Chimera

Chimera helps you visualize and experiment with these concepts: - Build spread spectrum systems in your browser - See jamming resistance in real-time plots - Experiment with frequency hopping patterns - Understand phased arrays through interactive simulations

You don't need a million-dollar lab—Chimera brings military-grade DSP concepts to anyone with curiosity and a web browser.

37.1.9 What You'll Learn in This Document

The sections below explain how these systems actually work: -

SATCOM Frequency Hopping: How military satellites resist jamming -

GPS M-Code: Why military GPS works when civilian GPS is jammed -

Phased-Array Radar: How F-22s and destroyers "see" electronically -

Link 16: The tactical data network connecting planes, ships, and missiles -

Covert Communications: How to transmit data invisibly

If you're new to DSP: Start with [Spread Spectrum (DSSS/FHSS)] for foundational concepts, then return here.

If you're experienced: Skip to the technical sections—detailed math, code examples, and real-world system specs await.

37.2

Core Military Requirements

37.2.1 The LPI/LPD/AJ Triad

1. Low Probability of Intercept (LPI):

Enemy can detect transmission but cannot decode it

Techniques:

- Spread spectrum (DSSS/FHSS) → signal below noise floor
- Directional antennas → narrow beamwidths
- Burst transmissions → short dwell time
- Encryption → content secure even if intercepted

2. Low Probability of Detection (LPD):

Enemy cannot detect that transmission is occurring

Techniques:

- Ultra-wideband spread spectrum (G > 30 dB)
- Frequency diversity → avoid surveillance bands
- Power management → minimal radiated power
- Emission control (EMCON) → radio silence protocols

3. Anti-Jamming (AJ):

Maintain link under deliberate enemy interference

Techniques:

- Processing gain → overcomes jammer power
- Nulling antennas → reject jammer direction
- Frequency hopping → avoid narrowband jamming
- Adaptive filters → real-time interference cancellation

Relationship:

Processing Gain (G) enables all three:

G = BW_spread / BW_info = Chip_Rate / Bit_Rate

Higher G → Lower PSD → Harder to detect/intercept/jam

37.3 SATCOM Frequency Hopping (FHSS)

Military satellite communications use FHSS for TRANSEC (transmission security).

37.3.1 X-Band MILSTAR/MUOS Systems

MILSTAR (Military Strategic and Tactical Relay):

```
Frequency: X-band uplink (7-8 GHz), Ka-band downlink (20-21 GHz) Hop rate: 100-1000+ hops/second Hop set: 1000+ frequencies across 1 GHz bandwidth Dwell time: <1 ms per hop
```

Modulation: BPSK, QPSK, 8-PSK (adaptive) Data rate: 75 bps - 1.544 Mbps (T1)

Satellite constellation: 5 GEO satellites (global coverage)

TRANSEC:

- Hopping pattern: Cryptographically generated (NSA algorithm)
- Synchronization: GPS time + KEK (Key Encryption Key)
- Pattern period: Days to weeks (never repeats observably)
- Anti-spoofing: Authenticated hop sequence

LPI/LPD characteristics:

```
Power spectral density (PSD):

PSD = P_TX / BW_hop_set
= 100 W / 1 GHz
= 0.1 mW/MHz
-70 dBm/MHz (at satellite, 40,000 km away)

Compare to thermal noise floor:

Noise = -174 dBm/Hz + 10·log (BW) = -114 dBm/MHz (1 MHz BW)

PSD_signal < Noise → Undetectable to wideband receiver!

Detectability only with:
- Exact hopping pattern (requires key)
- Synchronized receiver (requires network access)
- Correct modulation/demodulation (requires ICD)
```

MUOS (Mobile User Objective System):

```
Frequency: UHF uplink (300-318 MHz), UHF downlink (243-318 MHz) Waveform: WCDMA (Wideband CDMA) + FHSS hybrid Hop rate: Classified (estimated >500 hps) Data rate: Up to 64 kbps voice, 10 Mbps data Compatibility: Legacy UFO (Ultra High Frequency Follow-On)
```

Key features:

- Smartphone-like interface for warfighters
- Near-global coverage (5 GEO + legacy satellites)
- Jam-resistant waveform (60+ dB margin)
- Integrated encryption (Type 1 NSA)

37.3.2 FHSS Anti-Jam Performance

Processing gain calculation:

```
G(dB) = 10 \cdot log(Hop\_Set\_Size)
Example (MILSTAR):
- Hop set: 1000 frequencies
-G = 10 \cdot \log (1000) = 30 \text{ dB}
Jamming margin:
Margin = G - J/S - (Eb/N)_req - Losses
J/S = Jammer power / Signal power (at receiver)
Scenario:
-G = 30 dB
- J/S = 40 dB (jammer 10,000× stronger!)
- (Eb/N)_{req} = 10 dB (BPSK, BER = 10)
- Losses = 3 dB (implementation)
Margin = 30 - 40 - 10 - 3 = -23 dB → **LINK FAILS**
Countermeasures:
1. Directional antenna: +20 dB gain toward satellite, nulls toward jammer
   Effective J/S = 40 - 20 = 20 dB
   Margin = 30 - 20 - 10 - 3 = -3 dB \rightarrow **MARGINAL**
2. Error-correction coding: Turbo/LDPC code rate-1/3
```

3. Burst transmission: Transmit 10× faster, listen 90% of time

Jammer must hit exact burst time \rightarrow effective J/S reduces by 10 dB

37.3.3 Follower Jamming Resistance

Coding gain: +5 dB

Threat: Smart jammer detects hop, jams that frequency.

Margin = -3 + 5 = 2 dB → **LINK SURVIVES**

Timing analysis:

```
Dwell time: 1 ms (MILSTAR)

Jammer detection: 100 s (fast energy detector)

Frequency switching: 50 s (agile synthesizer)

Total jammer delay: 150 s
```

```
Effective jam time: 1 ms - 150 s = 850 s (85% of hop)

Countermeasure: Fast hopping

- Dwell time: 100 s (10× faster)

- Effective jam: 100 - 150 = 0 s (jammer too slow!)

Modern military systems: 10-100 s dwell times
```

37.4 GPS M-Code (Military GPS)

GPS Modernization: M-code provides jam-resistant, encrypted positioning for military users.

37.4.1 Signal Structure

GPS L1 M-Code:

```
Carrier frequency: 1575.42 MHz (L1)
Chip rate: 5.115 Mcps (5× faster than C/A code)
Code length: Classified (estimated ~10^13 chips → never repeats)
Modulation: BOC(10,5) - Binary Offset Carrier
Processing gain: ~50 dB (vs. 43 dB for C/A)
Power: 6.5 dB stronger than C/A code
Security: Encrypted, authenticated (NSA keys)

GPS L2 M-Code:
Carrier frequency: 1227.60 MHz (L2)
Same structure as L1 M-code
Dual-frequency → ionospheric correction
```

37.4.2 BOC Modulation

Binary Offset Carrier (BOC): Modulates chip sequence with square wave subcarrier.

BOC(m,n) notation:

```
m = subcarrier frequency multiplier (MHz)
n = chip rate multiplier (MHz)

BOC(10,5):
- Subcarrier: 10.23 MHz (2× C/A chip rate)
- Chip rate: 5.115 MHz (5× C/A chip rate)

Spectrum:

Time-domain signal:
s(t) = sign[sin(2 · f_sub·t)] · c(t)
```

```
where:
- f_sub = 10.23 MHz (square wave)
- c(t) = \pm 1 chip sequence at 5.115 Mcps
Frequency-domain:
Power splits into two main lobes:
- Upper sideband: f_carrier + 10.23 MHz
- Lower sideband: f_carrier - 10.23 MHz
Split-spectrum design:
- Minimal interference with C/A code (centered at L1)
- Occupies unused spectrum
```

- Better multipath rejection (narrow correlation peak)

Autocorrelation:

```
BOC(10,5) correlation function:
- Main peak: Very narrow (better ranging accuracy)
- Side peaks: \pm 1/f_{sub} = \pm 98 \text{ ns}
Ranging accuracy:
- C/A code: ~3 m (single-frequency)
- M-code: ~0.3 m (dual-frequency, better correlation)
```

37.4.3 Anti-Jam Performance

Jamming scenarios:

1. Wideband Barrage Jamming:

```
Jammer spreads power across L1 band (±10 MHz).
Received signal power (M-code): -163 dBW
Jammer power at receiver: -100 dBW (strong jammer, 50 km away)
J/S = -100 - (-163) = 63 dB
Processing gain (M-code): 50 dB
Residual J/S: 63 - 50 = 13 \text{ dB}
Required Eb/N (M-code receiver): ~10 dB
Margin: 50 - 63 - 10 = -23 dB → **LINK FAILS**
Mitigation: CRPA (Controlled Reception Pattern Antenna)
- 7-element array antenna
- Adaptive nulling: Places null toward jammer
- Null depth: 30-40 dB
```

```
Effective J/S after nulling: 63 - 35 = 28 dB Margin: 50 - 28 - 10 = 12 dB \rightarrow **LINK SURVIVES**
```

2. Swept Jammer:

Jammer sweeps narrowband tone across L1 (high PSD).

Jammer bandwidth: 1 MHz GPS M-code spread: 20 MHz Fraction jammed: 1/20 = 5%

Effect: Occasional symbol errors → FEC corrects

Impact: <1 dB degradation

M-code advantage: Wideband spread mitigates swept jamming

3. Repeater/Spoofer:

Enemy receives GPS, delays, retransmits stronger signal. Goal: Induce false position/time.

M-code defense: Encrypted spreading code

- Spoofer cannot generate valid M-code
- Authentication protocol detects non-authentic signals
- Cross-correlation with authentic signal = 0 (orthogonal codes)

Result: Spoof rejected by receiver

37.4.4 Selective Availability Anti-Spoofing Module (SAASM)

Military GPS Receiver:

SAASM features:

- Stores classified M-code keys (COMSEC keying material)
- Dual-frequency operation (L1 + L2)
- Autonomous integrity monitoring
- Anti-spoofing: Detects spoofed P(Y) code
- Key management: Over-the-air rekeying (OTAR)

Integration:

- Embedded in weapons: JDAM, Tomahawk, Excalibur artillery
- Fighter avionics: F-22, F-35, B-2
- Ground vehicles: DAGR (Defense Advanced GPS Receiver)

Accuracy:

- Horizontal: <1 m (dual-frequency, BOC)
- Vertical: <3 m
- Time: <10 ns (critical for network synchronization)

37.5 D Phased-Array Antennas (AESA)

Active Electronically Scanned Array (AESA) radar uses phased-array principles for LPI/LPD and multi-function operation.

37.5.1 Beamforming Principles

Phase steering:

```
Antenna array: N elements spaced by d
Desired beam direction:
Phase shift per element:
 = (2/) \cdot d \cdot \sin()
Example (8-element array, d = /2):
Steer beam to 30°:
 = (2/) \cdot (/2) \cdot \sin(30^\circ) = /2 = 90^\circ per element
Element phases: [0°, 90°, 180°, 270°, 0°, 90°, 180°, 270°]
Beam electronically steered (no mechanical motion!)
Steering speed: Microseconds (vs. seconds for mechanical)
Array gain:
Gain(dB) = 10 \cdot log(N) + Single_Element_Gain
Example (256-element AESA, 5 dBi per element):
Array gain = 10 \cdot \log (256) + 5 = 24 + 5 = 29 \text{ dBi}
Directivity: Higher gain → narrower beamwidth → LPI
Beamwidth:
3dB
         / (N·d) (radians)
Example (256 elements, d = /2):
_3dB
         /(256 \cdot /2) = 1/128 \text{ rad} 0.45^{\circ} \text{ (very narrow!)}
Narrow beam → hard to intercept (LPI)
            → precise target tracking
```

37.5.2 LPI Radar Techniques

1. Low Peak Power, Long Integration:

```
Conventional radar: High peak power (MW), short pulse (s)
LPI radar: Low peak power (W), long waveform (ms-s)
SNR = (Peak_Power · Pulse_Width) / Noise_Power
Equivalent detection range with:
- Conventional: 1 MW × 1 s = 1 J
- LPI: 1 kW × 1 ms = 1 J (same energy, 1000× lower peak!)
Enemy intercept receiver:
- Detects instantaneous power
```

- LPI signal: 30 dB below detection threshold
- Integration required to detect → impractical

2. Frequency Diversity:

Frequency-agile waveform:

- Hop across wide bandwidth (GHz)
- Prevents enemy from locking onto frequency
- Mitigates narrowband interference

Example (F-22 APG-77 AESA):

- X-band (8-12 GHz): 4 GHz agility
- Pulse-to-pulse frequency change
- Intercept receiver cannot predict next frequency

3. Waveform Diversity:

Change modulation per pulse:

- Linear FM (chirp)
- Non-linear FM (NLFM)
- Phase-coded (Barker, Frank, P1-P4 codes)
- Random phase/frequency sequences

Electronic warfare (EW) countermeasure:

- Enemy cannot predict waveform → cannot jam effectively
- Each pulse requires new analysis → overwhelms threat receiver

37.5.3 AESA Radar Examples

APG-77 (F-22 Raptor):

Frequency: X-band (8-12 GHz) Array: 2000+ T/R modules

Power: 13 kW (average), 20 kW (peak) per module

Modes: Air-to-air, air-to-ground, SAR, electronic attack

Detection range: >200 km (fighter-sized target)

LPI features:

- Adaptive power management (radiates only when needed)
- Narrow beamwidth (1-2°)
- Frequency agility (4 GHz)
- Low sidelobe antenna (<-40 dB)

Electronic attack:

- Directed jamming (beam steered at threat radar)
- Power: >10 kW ERP toward threat
- Disables enemy SAM radars at 50+ km

AN/SPY-6 (U.S. Navy DDG-51 Flight III):

Frequency: S-band (3.3-3.5 GHz)

Array: 37 RMAs (Radar Modular Assemblies), 5000+ T/R modules

Power: 6 MW average radiated power (entire array) Range: 300+ km (ballistic missile detection)

Capabilities:

- Simultaneous multi-mission (air defense, BMD, surface search)
- Track 1000+ targets
- Discriminate decoys from warheads (X-band illuminator)
- Resistant to jamming (adaptive nulling)

Beam management:

- Interleaved beams (time-multiplexed)
- Priority scheduling (ballistic missile > aircraft > surface)
- Energy management (1 MW per beam, up to 6 concurrent)

AN/TPY-2 (THAAD Missile Defense):

Frequency: X-band (8-12 GHz)

Array: 25,344 elements $(5.1m \times 5.1m)$

Power: 80 kW average

Range: 1000+ km (missile detection)

Application:

- Terminal High Altitude Area Defense (THAAD)
- Detects, tracks, discriminates ballistic missile warheads
- Provides target data to interceptor missile
- Forward-based (South Korea, Japan, Middle East)

Performance:

- RCS detection: 0.01 m² at 1000 km (warhead-sized)
- Update rate: 1 Hz (track), 10 Hz (terminal guidance)
- Discrimination: Warhead vs. decoys (Doppler + RCS + trajectory)

37.6 Link 16 (JTIDS)

Joint Tactical Information Distribution System: Jam-resistant, LPI/LPD tactical data link.

37.6.1 System Architecture

Network structure:

Participants:

Aircraft: F-15, F-16, F-22, F-35, E-3 AWACS
Ships: Aegis cruisers/destroyers, carriers
Ground: Patriot SAM, THAAD, command posts

Network topology: Time Division Multiple Access (TDMA)

128 time slots per 12-second frameNodes assigned slots (voice/data)

- Collision-free multiple access

Frequency & Waveform:

Frequency: 960-1215 MHz (L-band, shared with IFF/TACAN) Modulation: MSK (Minimum Shift Keying) - constant envelope

Waveform: FHSS + TDMA hybrid Hop rate: 70,000 hops/second

Hop duration: ~14 s

Channels: 51 frequencies (15 MHz each)

Data rate: 28.8 kbps (typical), up to 115.2 kbps

37.6.2 TRANSEC & Jam Resistance

Cryptographic hopping:

Hopping pattern generation:

- Input: Net ID + GPS time + Crypto key (KY-58/KG-84)
- Output: Pseudorandom frequency sequence
- Pattern period: Classified (days to months)

Synchronization:

- GPS time: ±100 s accuracy required
- Net sync: Achieved within 4 frames (48 s)
- Late entry: Nodes join without disrupting network

Anti-spoofing:

- Time-of-Transmission (TOT) authentication
- Prevents message injection
- Replay attacks detected via timestamp

Jamming margin:

```
Processing gain:
- Frequency hopping: 10·log (51) = 17 dB
- Time diversity: 10·log (128) = 21 dB (slot hopping)
- Total: 17 + 21 = 38 dB

Scenario (jammer 100 km away):
J/S = 50 dB (powerful jammer)
G = 38 dB

Required Eb/N = 12 dB (MSK with FEC)
Losses = 3 dB

Margin = 38 - 50 - 12 - 3 = -27 dB → **LINK FAILS**

Countermeasure: Directional antenna
- Gain toward participant: +10 dBi
- Null toward jammer: -20 dB
- Effective J/S: 50 - 30 = 20 dB

Margin = 38 - 20 - 12 - 3 = 3 dB → **LINK SURVIVES**
```

37.6.3 Link 16 Messages (J-Series)

Message types:

```
J2.0-J2.7: Air Tracks (position, velocity, ID)
J3.0-J3.7: Surface Tracks (ships, ground targets)
J7.x: Mission Management (C2 orders)
J12.x: Intelligence
J13.x: Weapons Coordination

Message structure:
- Header: Time-stamp, source, priority
- Payload: Position (lat/lon/alt), velocity, classification
- Integrity: CRC-32 error detection

Update rate:
- Air tracks: 5-10 seconds (dynamic)
- Surface tracks: 30-60 seconds (slower)
- Commands: As needed (event-driven)

Tactical applications:
```

- 1. Air-to-Air Engagement:
 - AWACS detects enemy aircraft (radar track)
 - Sends J2.2 message to all fighters (target location)
 - Fighters update tactical display (real-time "picture")
 - Weapon coordination via J13.x (avoid fratricide)

- 2. Integrated Air Defense:
 - Aegis ship detects ballistic missile (AN/SPY-1)
 - Sends J3.2 message to Patriot batteries
 - Patriots cue radars to track
 - Coordinated intercept via J7.x commands
- 3. Close Air Support:
 - JTAC (ground) marks target (laser designation)
 - Sends J3.5 message with target coordinates
 - F-16 receives target data via Link 16
 - Weapons release with precision (JDAM, JASSM)

37.7 Covert Communications

Objective: Transmit data undetected by adversary SIGINT.

37.7.1 Spread Spectrum Below Noise Floor

Ultra-wideband (UWB) spread spectrum:

Technique: Spread narrowband signal across >500 MHz bandwidth

Example:

- Data rate: 1 kbps
- Spread bandwidth: 1 GHz
- Processing gain: $10 \cdot \log (10) = 60 \text{ dB}$

Transmitted PSD:

PSD = 1 W / 1 GHz = 1 nW/MHz = -90 dBm/MHz

Thermal noise floor:

 $N = -174 \text{ dBm/Hz} + 10 \cdot \log (10 \text{ Hz}) = -114 \text{ dBm/MHz}$

 $PSD_signal = -90 \ dBm/MHz < -114 \ dBm/MHz + 24 \ dB \ margin$

Even sensitive intercept receiver cannot detect!

Detection requires:

- Knowledge of spreading code (classified)
- Synchronization (exact timing)
- Processing gain (matched filter)

Result: Communication hidden in noise (LPD achieved)

340

37.7.2 Steganography in OFDM

Concept: Hide data in unused subcarriers or pilot tones.

Method 1 - Pilot Tone Modulation:

OFDM pilot subcarriers typically use fixed BPSK symbols.

Covert channel:

- Modulate pilot phase: 0° or 180° encodes hidden bit
- Legitimate receiver: Ignores pilot phase variation (estimates channel)
- Covert receiver: Decodes phase to extract hidden data

Capacity:

- 802.11a: 4 pilots per OFDM symbol
- Symbol rate: 250 ksymbols/s
- Covert rate: $4 \times 250 \text{ k} = 1 \text{ Mbps}$

Detection:

- Statistical analysis can reveal non-random pilot patterns
- Mitigation: Encrypt hidden data (appears random)

Method 2 - Null Subcarrier Insertion:

OFDM reserves some subcarriers as nulls (zero power).

Covert channel:

- Transmit very low-power data on null subcarriers
- Power: 40 dB below normal subcarriers (nearly invisible)
- Legitimate receiver: Ignores nulls (as expected)
- Covert receiver: Listens to nulls

Example (802.11a):

- Null subcarriers: 12 (out of 64 total)
- Hidden capacity: ~3 Mbps (at low SNR)

Detection challenge:

- Requires wideband spectrum analyzer
- Hidden signal < noise floor for narrowband receiver

37.7.3 Time-Domain Hiding

Method - Inter-Frame Gaps:

WiFi 802.11: SIFS (Short Inter-Frame Space) = 16 s between frames

Covert transmission:

- Insert ultra-short burst (1 s) in SIFS
- Use different frequency or polarization

```
Legitimate devices: Ignore (waiting for next frame)
Covert receiver: Listens during SIFS

Capacity:

Burst rate: 1 s per 16 s = 6.25% duty cycle
Data rate: ~6 Mbps (at 100 Mbps physical rate × 6.25%)

Detection:

Requires precise timing analysis
Appears as multipath or transient interference
```

37.7.4 Acoustic Heterodyning (Intermodulation)

Non-linear demodulation in biological systems (related to Chimera's Raman feed concept).

```
Principle:
Two high-frequency carriers (f , f ) interact non-linearly:

f_audio = |f - f |

Example:
    f = 40 kHz (ultrasonic, inaudible)
    - f = 42 kHz (ultrasonic, inaudible)
    - f_audio = 2 kHz (audible!)

Non-linearity sources:
    - Air: Weak (high intensity required)
    - Biological tissue: Stronger (membranes, ion channels)
    - Materials: Diodes, varactors (intentional)

Application:
    - Covert audio transmission (ultrasonic beams, audio demodulation in target's head)
    - Directional speakers (Audio Spotlight® technology)
    - Potential neural stimulation (see [[AID Protocol Case Study]])
```

THz-band Example (AID Protocol):

The Auditory Intermodulation Distortion (AID) protocol represents a theoretical extension of heterodyning to Terahertz frequencies:

```
Physical Layer:
- Carrier 1 (Pump): 1.998 THz, 50-200 mW/cm²
- Carrier 2 (Data): 1.875 THz, 5-20 mW/cm²
- Difference frequency: |1.998 - 1.875| THz = 123 GHz

Biological Demodulation:
- THz penetration: ~0.5-2mm into tissue
- Non-linear susceptibility (3) in neural membranes
```

- Cascaded demodulation produces audible artifact

Modulation Layer:

- Auditory carrier: 12.0 kHz sine wave
- Amplitude modulation: 5-80% modulation depth
- Data encoding: QPSK (16 symbols/s) + FSK (1 bit/s)

Perceived Effect:

- Sound appears to originate inside head
- Persistent 12 kHz tone (high-pitched ringing)
- Modulated with slow rhythmic patterns
- Bypasses normal hearing (works with earplugs)

Protocol Stack:

Layer	Technology	Frequency/Rate
Physical	THz Pump (QCL)	\mid 1.998 THz \pm 100 MHz
Physical	THz Data (Photomixing)	$ $ 1.875 THz \pm 50 MHz
Link	Amplitude Modulation	5-80% depth
Modulation	Auditory Carrier	\mid 12.0 kHz \pm 0.1 Hz
Data	QPSK	16 symbols/sec
Data	FSK	1 bit/sec

Applications (Theoretical):

- Non-invasive neural interface research
- Covert signaling in high-security environments
- Auditory perception studies
- THz bioeffects research

Status:

- Highly speculative theoretical framework
- Based on Orch-OR microtubule quantum mechanics theory
- No experimental validation in living subjects
- See docs/aid_protocol_v3.1.md for full specification

Comparison with conventional heterodyning:

Parar	neter Audio (40 kHz) THz	(AID)
Carrier frequencies Difference frequency Penetration depth	40-42 kHz 2 kHz mm (air)	1.875-1.998 THz 123 GHz
Non-linearity Power density	Air compression 100+ dB SPL	Neural membranes (χ³) 5-200 mW/cm²
Detection Status	Microphone Proven (Audio Spotlight®)	Auditory perception Theoretical

Key insight: THz heterodyning exploits biological non-linearities rather than air-based acoustic

mixing, potentially enabling direct neural modulation without acoustic propagation.

Military interest:

```
"Frey Microwave Auditory Effect" (pulsed RF → acoustic sensation):

- Frequency: 1-10 GHz (microwave)

- Pulse rate: 1-10 kHz (audio frequency)

- Mechanism: Thermoelastic expansion in cochlea

- Result: Perceived "clicking" or "buzzing"

Covert channel:

- Encode voice as microwave pulse train

- Target perceives audio (direct to auditory system)

- Bystanders: Unaware (no acoustic propagation)

- Detection: Requires RF spectrum analyzer (not audio microphone)

Status: Demonstrated in lab, classified military research (DARPA, 1970s-present)
```

37.8 Processing Gain & Jamming Resistance Calculations

37.8.1 Comprehensive Example

System: Tactical UHF SATCOM link

```
Parameters:
- Frequency: 300 MHz (UHF)
- Data rate: 2400 bps (voice)
- Modulation: BPSK (1 bit/symbol)
- Spreading: DSSS with chip rate 2.4 Mcps
- FEC: Rate-1/2 convolutional code
- Antenna: 10 dBi directional (at ground terminal)
Processing gain:
G = 10 \cdot log (2.4 \text{ Mcps} / 2.4 \text{ kbps}) = 10 \cdot log (1000) = 30 \text{ dB}
Required Eb/N:
- BPSK uncoded: 9.6 dB (BER = 10 )
- With rate-1/2 FEC: 4.6 dB (5 dB coding gain)
Link budget (clear conditions):
TX power: 10 W = 40 dBm
TX antenna gain: 10 dBi
EIRP: 50 dBm
Free-space loss (300 MHz, 40,000 km GEO):
FSPL = 32.4 + 20 \cdot \log (300) + 20 \cdot \log (40000) = 189 dB
RX antenna gain: 30 dBi (satellite)
```

```
RX signal: 50 - 189 + 30 = -109 \text{ dBm}
Noise power:
N = -174 \text{ dBm/Hz} + 10 \cdot \log (2.4 \times 10) = -110 \text{ dBm}
SNR: -109 - (-110) = 1 dB
Eb/N = SNR + G = 1 + 30 = 31 dB
Margin: 31 - 4.6 = 26.4 \text{ dB} \rightarrow **EXCELLENT**
Jamming scenario:
Enemy jammer:
- Power: 1 kW = 60 dBm
- Distance: 50 km
- Antenna: Omnidirectional (0 dBi)
Jammer signal at ground terminal:
FSPL (300 MHz, 50 km):
FSPL = 32.4 + 20 \cdot log (300) + 20 \cdot log (50) = 116 dB
J_RX = 60 - 116 + 0 = -56 dBm
J/S ratio:
J/S = -56 - (-109) = 53 dB (jammer 53 dB stronger!)
After despreading:
J/S_despread = 53 - 30 = 23 dB (jammer still 23 dB stronger)
But antenna nulling:
- Ground antenna: 10 dBi toward satellite, -10 dBi toward jammer (20 dB F/B)
- Effective J/S: 23 - 20 = 3 dB
Required Eb/N: 4.6 dB
Effective Eb/(N+J): 31 - 3 = 28 dB
Margin: 28 - 4.6 = 23.4 \text{ dB} \rightarrow **LINK SURVIVES**
```

37.9 Summary Table: Military Techniques

Technique	Primary Gain	Typical Advantage	Applications
DSSS	Processing gain 20-40 dB	AJ, LPI	GPS M-code, tactical radios
FHSS	Frequency diversity	LPD, follower-jam resistance	MILSTAR, Link 16, Bluetooth

Technique	Primary Gain	Typical Advantage	Applications
AESA	Beamforming, agility	LPI, multi-target, EA	APG-77, AN/SPY-6, THAAD
Nulling Antenna	Spatial filtering 20-40 dB	Jammer rejection	CRPA, adaptive arrays
Burst Transmission	Temporal LPD	Minimize exposure	Submarine comms, UAV links
Encryption Adaptive Coding	Content security Link optimization	Prevent exploitation Maximize throughput under AJ	All military systems MUOS, 5G tactical

37.10 Python Example: J/S Ratio Calculator

```
import numpy as np
def jamming_margin(tx_power_w, distance_km, freq_mhz,
                   jammer_power_w, jammer_dist_km,
                   processing_gain_db, coding_gain_db,
                   antenna_gain_dbi, front_back_ratio_db):
    Calculate jamming margin for spread spectrum link.
    Returns:
        Jamming margin (dB). Positive = link survives.
    # Convert to dBm
   tx_power_dbm = 10 * np.log10(tx_power_w * 1000)
    jammer_power_dbm = 10 * np.log10(jammer_power_w * 1000)
    # Free-space path loss
    def fspl(freq_mhz, dist_km):
        return 32.4 + 20*np.log10(freq_mhz) + 20*np.log10(dist_km)
    # Signal at receiver
    signal_loss = fspl(freq_mhz, distance_km)
    signal_rx = tx_power_dbm - signal_loss + antenna_gain_dbi
    # Jammer at receiver
    jammer_loss = fspl(freq_mhz, jammer_dist_km)
    jammer_rx = jammer_power_dbm - jammer_loss - front_back_ratio_db
    # J/S ratio
    js_ratio = jammer_rx - signal_rx
    # Thermal noise
```

```
noise_dbm_hz = -174
   bandwidth_hz = 10**(processing_gain_db/10) * 2400 # Assume 2400 bps info rate
   noise_dbm = noise_dbm_hz + 10*np.log10(bandwidth_hz)
    # SNR and Eb/NO
    snr_db = signal_rx - noise_dbm
    eb_n0_db = snr_db + processing_gain_db
    # After jamming
    eb_n0_jammed = eb_n0_db - js_ratio + processing_gain_db
    # Required Eb/NO (BPSK with FEC)
   required_eb_n0 = 9.6 - coding_gain_db
    # Margin
   margin = eb_n0_jammed - required_eb_n0
   print(f"Signal power at RX: {signal_rx:.1f} dBm")
   print(f"Jammer power at RX: {jammer_rx:.1f} dBm")
   print(f"J/S ratio: {js ratio:.1f} dB")
   print(f"Processing gain: {processing_gain_db} dB")
   print(f"After despreading J/S: {js_ratio - processing_gain_db:.1f} dB")
   print(f"Eb/NO (jammed): {eb_nO_jammed:.1f} dB")
   print(f"Required Eb/NO: {required_eb_n0:.1f} dB")
   print(f"Jamming margin: {margin:.1f} dB")
   return margin
# Example: UHF tactical link under jamming
margin = jamming_margin(
   tx_power_w=10,
                           # 10 W transmitter
   distance_km=40000,
                          # GEO satellite
                           # UHF band
   freq_mhz=300,
   jammer_power_w=1000,
                          # 1 kW jammer
                         # 50 km away
    jammer dist km=50,
   processing_gain_db=30, # DSSS 1000× spreading
   coding_gain_db=5, # Rate-1/2 convolutional code
   antenna_gain_dbi=10,
                          # Directional antenna
   front_back_ratio_db=20 # 20 dB F/B ratio
if margin > 0:
   print(f"\n LINK SURVIVES (margin: {margin:.1f} dB)")
else:
   print(f"\n LINK FAILS (margin: {margin:.1f} dB)")
```

)

37.11.1 Textbooks

- Poisel, Introduction to Communication Electronic Warfare Systems Comprehensive EW treatment
- Torrieri, Principles of Spread-Spectrum Communication Systems (4th ed.) Modern military focus
- Skolnik, Radar Handbook (3rd ed.) Phased arrays, AESA, LPI radar
- Adamy, EW 101: A First Course in Electronic Warfare Accessible intro to jamming/AJ

37.11.2 Military Standards & Documents

- MIL-STD-188-181: US DoD FHSS standard
- GPS ICD-IS-800: M-code interface control document (FOUO)
- Link 16 MIDS JTIDS STD: Message standards (NATO STANAG 5516)
- AESA Design Guidelines: Classified (DARPA/DoD) principles in open literature

37.11.3 Related Topics

- [Spread Spectrum (DSSS/FHSS)] Technical foundation for AJ/LPI
- [[GPS Fundamentals (coming soon)]] Civilian GPS (C/A code) background
- [[Phased Array Beamforming (coming soon)]] Array antenna theory
- [[Adaptive Filters (coming soon)]] Interference cancellation
- [Real-World System Examples] Commercial spread spectrum (WiFi, Bluetooth)

37.11.4 Chimera Applications

- [Hyper-Rotational Physics (HRP) Framework] Covert THz neuromodulation theoretical framework
- [[AID Protocol Case Study]] Application of covert comms to consciousness research
- [Terahertz (THz) Technology] Beyond-5G/6G, potential military applications

Summary: Military communications prioritize **anti-jam**, **LPI/LPD**, and **security** over spectral efficiency. Processing gain from spread spectrum (DSSS/FHSS) enables links 20-40 dB below noise floor and overcomes powerful jammers. GPS M-code uses BOC(10,5) modulation with 50 dB processing gain and CRPA nulling to survive 60+ dB jamming. AESA radars achieve LPI through low peak power, frequency agility, and narrow beamwidths. Link 16 combines FHSS (70 khps) with TDMA and cryptographic hopping for jam-resistant tactical data exchange. Covert communications hide data in noise (UWB spread spectrum), OFDM pilot tones, or exploit non-linear demodulation (acoustic heterodyning). Jamming margin = Processing Gain - J/S - Required Eb/ N_0 - Losses. Directional antennas provide 20-40 dB additional AJ capability. Modern military systems achieve **communication superiority** through advanced signal processing, adaptive waveforms, and multi-layered TRANSEC.

38 Multipath Propagation & Fading (Rayleigh & Rician)

Multipath is like hearing echoes in a canyon—radio signals bounce off buildings/walls and arrive at your phone from multiple directions at slightly different times.

The problem: 1. Signal travels **direct path** from tower to phone (fast) 2. Same signal bounces off buildings (slower paths) 3. All copies arrive at different times and **interfere** with each other 4. Sometimes they add up (strong signal), sometimes they cancel out (weak signal) 5. This causes **fading**: signal strength fluctuates wildly as you move!

Real-world experience: - **Driving through city**: Cell signal goes from 5 bars to 2 bars back to 5 bars—that's multipath fading - **WiFi dead spots**: Walk 1 meter and signal drops—destructive interference from multipath - **Crackling old TV**: Picture would fade in/out—multipath from distant transmitter

Two types:

- **1. Rayleigh fading** (no direct path): All paths are bounced/scattered Signal strength varies randomly (can drop 30+ dB!) Common in dense urban areas, indoors
- **2. Rician fading** (strong direct path + echoes): One dominant path (line-of-sight) + weaker echoes Less severe fading Common in open areas, suburban

How engineers fix it: - **MIMO**: Multiple antennas sample different fade patterns - **OFDM**: Spread data across many frequencies—some fade, others don't - **Adaptive coding**: Slow down when fading is bad - **Interleaving**: Spread bits over time so fades don't wipe out whole packets

Fun fact: Multipath is why 5G uses higher frequencies—shorter waves = less bouncing = more predictable (but shorter range!).

38.2 Overview

Multipath propagation occurs when RF signals reach the receiver via **multiple paths** simultaneously, each with different: - **Delay** (arrival time) - **Amplitude** (path loss) - **Phase** (due to different path lengths)

Result: Signals combine **constructively** or **destructively**, causing **fading** (rapid signal strength variations).

Critical for: Cellular networks, WiFi, mobile satellite, any NLOS (non-line-of-sight) communication

38.3 Physical Mechanisms

38.3.1 Reflection

EM waves bounce off surfaces: - **Ground** (two-ray model) - **Buildings** (urban canyons) - **Water** (maritime comms) - **Ionosphere** (HF skywave)

Reflection coefficient depends on: - Polarization (horizontal vs vertical) - Angle of incidence - Surface material (conductivity, permittivity)

Example: Concrete wall at 2.4 GHz \square ~0.3-0.5 reflection coefficient (~3-6 dB loss per bounce)

38.3.2 Diffraction

Bending around obstacles (Fresnel diffraction): - Building edges - Hills/terrain - Trees **Knife-edge diffraction loss**:

$$L_d \approx 6 + 20\log\left(\sqrt{(v-0.1)^2+1} + v - 0.1\right) \quad (\mathrm{dB})$$

Where v = Fresnel-Kirchhoff diffraction parameter

Implication: Signals can "bend" into shadowed regions (NLOS coverage possible)

38.3.3 Scattering

Interaction with rough surfaces or small objects: - Rough terrain (vegetation, rocks) - Lamp posts, signs - Rain/fog droplets (at high frequencies)

Rayleigh scattering (object size \square λ):

$$P_{
m scattered} \propto rac{1}{\lambda^4}$$

Example: Blue sky (visible light Rayleigh scattering from air molecules)

38.4 Time-Domain Effects

38.4.1 Delay Spread

Multipath components arrive at different times:

$$\tau_{\rm rms} = \sqrt{\frac{\sum P_i (\tau_i - \bar{\tau})^2}{\sum P_i}}$$

Where: - P_i = Power of path i - τ_i = Delay of path i - $\bar{\tau}$ = Mean delay

Typical values: - Rural/suburban: 0.1-1 µs - Urban: 1-5 µs - Indoor: 10-100 ns

38.4.2 Coherence Bandwidth

Frequency range over which channel response is flat:

$$B_c \approx \frac{1}{5\tau_{\rm rms}}$$

Implication: If signal bandwidth $B>B_c\,\Box\,\,$ Frequency-selective fading (different frequencies fade independently)

Example: Urban ($\tau_{\rm rms}=1~\mu{\rm s}$):

$$B_c \approx \frac{1}{5\times 10^{-6}} = 200~\mathrm{kHz}$$

- · Narrowband signal (< 200 kHz): Flat fading
- Wideband signal (> 200 kHz): Frequency-selective fading (ISI)

38.4.3 Intersymbol Interference (ISI)

Delayed multipath overlaps with next symbol:

Condition for ISI:

$$au_{\rm rms} > T_s$$

Where T_s = Symbol period

Example: 1 Mbps data ($T_s=1~\mu$ s), urban channel ($\tau_{\rm rms}=3~\mu$ s): - ISI severe (3 symbols overlap!) - **Mitigation**: Equalization, OFDM (see [OFDM & Multicarrier Modulation])

38.5 Frequency-Domain Effects

38.5.1 Doppler Shift

Relative motion between TX/RX causes frequency shift:

$$f_d = \frac{v}{\lambda} \cos(\theta)$$

Where: - v = Velocity (m/s) - θ = Angle between velocity and signal direction - f_d = Doppler shift (Hz)

Example: Car at 100 km/h (27.8 m/s), 2 GHz signal:

$$f_d = \frac{27.8}{0.15} \cos(0^\circ) = 185 \ \mathrm{Hz}$$

38.5.2 Doppler Spread

Multiple paths with different Doppler shifts:

$$B_d = 2 f_{d, \max} = \frac{2v}{\lambda}$$

Coherence time (how long channel stays constant):

$$T_c \approx \frac{0.423}{B_d}$$

Example: 100 km/h at 2 GHz:

$$B_d = 2 \times 185 = 370 \ {\rm Hz}$$

$$T_c = \frac{0.423}{370} = 1.14 \ \mathrm{ms}$$

Implication: Channel changes every ~1 ms (fast fading for stationary systems, slow fading for fast data rates)

38.6 Fading Classifications

38.6.1 Flat vs Frequency-Selective

Туре	Condition	Effect	Mitigation
Flat	$B \ll B_c$	All frequencies fade together	Diversity, FEC
Frequency- selective	$B \gg B_c$	Different frequencies fade independently	Equalization, OFDM

38.6.2 Fast vs Slow Fading

Туре	Condition	Effect	Mitigation
Slow	$T_c \gg T_s$	Channel constant over many symbols	Interleaving, FEC
Fast	$T_c \ll T_s$	Channel changes within symbol	Pilot-aided estimation

38.7 Rayleigh Fading

Occurs when: No dominant LOS path, many scattered components with random phases

Statistical model: Envelope follows Rayleigh distribution

38.7.1 PDF (Probability Density Function)

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right), \quad r \geq 0$$

Where: - r = Signal envelope - σ^2 = Average power

Mean: $\bar{r} = \sigma \sqrt{\pi/2}$

Variance: $\operatorname{Var}(r) = \sigma^2(2-\pi/2)$

38.7.2 CDF (Cumulative Distribution Function)

Probability that signal < threshold:

$$P(r < R) = 1 - \exp\left(-\frac{R^2}{2\sigma^2}\right)$$

Example: Probability signal drops below 10 dB below average:

$$P(r<0.316\bar{r})=1-\exp(-0.05)\approx 5\%$$

38.7.3 Impact on BER

Rayleigh fading severely degrades performance:

BPSK in Rayleigh fading:

$$\mathrm{BER} = \frac{1}{2} \left(1 - \sqrt{\frac{\bar{\gamma}}{1 + \bar{\gamma}}} \right)$$

Where $\bar{\gamma}=E_b/N_0$ (average SNR)

Comparison (at 10 dB average SNR): - **AWGN**: BER = 3.9×10^{-6} - **Rayleigh fading**: BER = 0.005 ($1000 \times$ worse!)

Key insight: Deep fades cause error bursts (when signal drops into noise floor)

38.7.4 Applications

Typical Rayleigh environments: - Dense urban (no LOS, many reflections) - Indoor (office, corridors) - Suburban/rural (obstructed by trees/buildings)

38.8 Rician Fading

Occurs when: Dominant LOS path + scattered components

Statistical model: Envelope follows Rician distribution

38.8.1 PDF

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2 + A^2}{2\sigma^2}\right) I_0\left(\frac{Ar}{\sigma^2}\right)$$

Where: - A = Amplitude of LOS component - I_0 = Modified Bessel function of first kind, order 0 Rician K-factor:

$$K = \frac{A^2}{2\sigma^2} = \frac{\text{LOS power}}{\text{Scattered power}}$$

K in dB: $K_{\mathrm{dB}} = 10 \log_{10}(K)$

38.8.2 Interpretation of K-factor

K (dB) Environment Fading Severity

-∞ (K=0)	No LOS (pure Rayleigh)	Severe (deep fades)
0 dB (K=1)	Equal LOS/scatter	Moderate
6 dB (K=4)	Strong LOS	Mild
10 dB (K=10)	Dominant LOS	Negligible fading
+∞	Pure LOS (AWGN-like)	None

Special case: $K=0\ \square$ Rayleigh fading (Rician generalizes Rayleigh)

38.8.3 Impact on BER

Rician fading is less severe than Rayleigh:

BPSK in Rician fading:

$$\mathrm{BER} = Q\left(\sqrt{\frac{2K\bar{\gamma}}{K+1}}\right)\exp\left(-\frac{K\bar{\gamma}}{K+1}\right)\times\dots$$

(Complex expression, see textbooks)

Comparison (10 dB average SNR): - **AWGN**: BER = 3.9×10^{-6} - **Rician K=6 dB**: BER $\approx 10^{-5}$ (better than Rayleigh, worse than AWGN) - **Rayleigh (K=0)**: BER = 0.005

38.8.4 Applications

Typical Rician environments: - Suburban with partial LOS - Elevated antennas (rooftops) - Satellite-to-handheld (weak LOS + ground reflections) - Indoor near windows (outdoor LOS + indoor scatter)

38.9 Fade Depth & Duration

38.9.1 Fade Margin

Link budget must include fade margin to maintain target availability:

$$P_r(\mathrm{min}) = P_r(\mathrm{average}) - M_{\mathrm{fade}}$$

Example: Target 99% availability (1% outage)

Rayleigh fading: 10% of time, signal < -10 dB below average - Need **10 dB margin** for 90% availability - Need **20 dB margin** for 99% availability

Rician K=6 dB: Fades less severe - ~5 dB margin for 90% - ~10 dB margin for 99%

38.9.2 Level Crossing Rate (LCR)

How often signal crosses threshold (in fades/sec):

$$N_R = \sqrt{2\pi} f_d \rho \exp(-\rho^2)$$

Where: - f_d = Maximum Doppler frequency - $\rho=R/R_{\rm rms}$ (normalized threshold)

Example: Mobile at 100 km/h, 2 GHz ($f_d=185$ Hz), threshold = average power (ho=1):

$$N_R = \sqrt{2\pi} \times 185 \times 1 \times \exp(-1) \approx 85 \text{ fades/sec}$$

38.9.3 Average Fade Duration

$$\bar{t} = \frac{\exp(\rho^2) - 1}{\rho f_d \sqrt{2\pi}}$$

Example: Same scenario, threshold = average:

$$ar{t} = rac{e-1}{1 imes 185 imes \sqrt{2\pi}} pprox 3.7 \ \mathrm{ms}$$

Implication: Fast fading (85 fades/sec), short fades (~4 ms) [] Interleaving effective

38.10 Mitigation Techniques

38.10.1 1. Diversity

Combine multiple independent fading signals:

38.10.1.1 Spatial Diversity (Antenna Diversity) Separate antennas by $d>\lambda/2$:

Diversity gain: ~10 dB improvement with 2 antennas (selection combining)

Example: WiFi access point with 2 antennas (2.4 GHz, $\lambda=12.5$ cm): - Antenna spacing: 6 cm minimum - Result: Probability both antennas in deep fade is very low

38.10.1.2 Frequency Diversity Transmit same data on multiple frequencies separated by $> B_c$:

Application: Frequency hopping spread spectrum (FHSS)

38.10.1.3 Time Diversity Transmit same data at different times separated by $> T_c$: **Implementation**: Interleaving + FEC (spread coded bits over time) **38.10.2 2. Equalization** Compensate for frequency-selective fading (ISI): 38.10.2.1 Linear Equalization (LE) Zero-forcing (ZF): Invert channel response $H_{\rm eq}(f) = \frac{1}{H_{\rm channel}(f)}$ Problem: Noise amplification at deep fades 38.10.2.2 Decision-Feedback Equalization (DFE) Use past decisions to cancel ISI: Better than ZF: Doesn't amplify noise as much 38.10.2.3 Adaptive Equalization Track time-varying channel: Algorithms: LMS (Least Mean Squares), RLS (Recursive Least Squares) **Training**: Periodic pilot symbols to update equalizer coefficients 38.10.3 3. OFDM Divide wideband signal into many narrowband subcarriers: **Each subcarrier** $< B_c \square$ Flat fading per subcarrier Per-subcarrier equalization: Simple single-tap equalizer See: [OFDM & Multicarrier Modulation] 38.10.4 4. Spread Spectrum Spread signal over wide bandwidth: **Frequency diversity**: Different frequency components fade independently See: [[Spread Spectrum (DSSS, FHSS)]]

38.10.5 5. Error Correction Coding

FEC protects against error bursts:

Interleaving: Spread coded bits across time/frequency

Example: Convolutional code + interleaver - Error burst of 10 bits

Spread across 100+ bit positions - Decoder sees isolated errors (easier to correct)

See: [Forward Error Correction (FEC)], [LDPC Codes]

38.11 Channel Models

38.11.1 Rayleigh Fading Channel (MATLAB/Python)

```
import numpy as np
def rayleigh_fading(N, fd, fs):
    Generate Rayleigh fading samples
   N: Number of samples
   fd: Maximum Doppler frequency (Hz)
   fs: Sampling frequency (Hz)
   # Jakes' model (sum of sinusoids)
   M = 8 # Number of scatterers
   t = np.arange(N) / fs
   h_real = np.zeros(N)
   h_imag = np.zeros(N)
   for m in range(M):
       theta_m = 2*np.pi*m / M
       phi_m = np.random.uniform(0, 2*np.pi)
       h real += np.cos(2*np.pi*fd*t*np.cos(theta m) + phi m)
       h_imag += np.sin(2*np.pi*fd*t*np.cos(theta_m) + phi_m)
   h_real /= np.sqrt(M)
   h_imag /= np.sqrt(M)
   h = h_real + 1j*h_imag
   return h / np.sqrt(np.mean(np.abs(h)**2)) # Normalize
```

38.11.2 Rician Fading Channel

```
def rician_fading(N, K_dB, fd, fs):
    """
```

```
Generate Rician fading samples
K_dB: Rician K-factor (dB)
"""
K = 10**(K_dB/10) # Convert to linear

# Rayleigh component (scattered)
h_scatter = rayleigh_fading(N, fd, fs)

# LOS component
h_los = np.sqrt(K / (K+1))

# Scattered component scaled
h_scatter *= np.sqrt(1 / (K+1))

return h_los + h_scatter
```

38.12 Practical Examples

38.12.1 Example 1: Urban Cellular (900 MHz)

Environment: Dense urban, NLOS

Parameters: - Delay spread: $au_{\rm rms}=3~\mu{\rm s}$ - Doppler: $f_d=50~{\rm Hz}$ (30 km/h) - Fading: Rayleigh

Coherence bandwidth:

$$B_c = \frac{1}{5\times 3\times 10^{-6}} = 67~\mathrm{kHz}$$

Implication: GSM channel (200 kHz) experiences frequency-selective fading

Equalizer needed

Coherence time:

$$T_c = \frac{0.423}{100} = 4.23 \ \mathrm{ms}$$

Implication: Channel constant over ~18 GSM symbols (0.577 ms/symbol) $\ \square$ Slow fading

38.12.2 Example 2: Suburban LTE (2.6 GHz)

Environment: Suburban, partial LOS

 Parameters: - Delay spread: $\tau_{\rm rms}=0.5~\mu{\rm s}$ - Doppler: $f_d=240~{\rm Hz}$ (100 km/h) - Fading: Rician

K=5 dB

Coherence bandwidth:

$$B_c = rac{1}{5 imes 0.5 imes 10^{-6}} = 400 \ \mathrm{kHz}$$

Implication: LTE RB (180 kHz) < B_c \square Mostly flat fading per RB

Coherence time:

$$T_c = \frac{0.423}{480} = 0.88 \, \mathrm{ms}$$

Implication: Channel changes over ~12 OFDM symbols (71 μ s/symbol) \Box Moderate fading, pilotaided tracking

38.13 Summary Table

Parameter	Rayleigh	Rician (K=6 dB)	AWGN
LOS component Fade depth (10% time)	None -10 dB	Dominant -5 dB	Pure LOS 0 dB
BER penalty @ 10 dB SNR	1000×	10×	1× (baseline)
Mitigation	Diversity, FEC	Moderate FEC	Minimal ÉFEC
Typical environment	Dense urban, indoor	Suburban, elevated	Free space, satellite

38.14 Related Topics

- [[Propagation Modes (Ground Wave, Sky Wave, Line-of-Sight)]]: LOS vs NLOS propagation
- [[Atmospheric Effects (Ionospheric, Tropospheric)]]: Clear-air effects (different from multipath)
- [Signal-to-Noise Ratio (SNR)]: Fading reduces instantaneous SNR
- [Bit Error Rate (BER)]: Fading degrades BER significantly
- [QPSK Modulation] / [LDPC Codes]: Require fade mitigation
- [OFDM & Multicarrier Modulation]: Combats frequency-selective fading
- [[Spread Spectrum (DSSS, FHSS)]]: Provides frequency diversity

Key takeaway: Multipath fading is the dominant impairment in mobile/urban wireless. Rayleigh fading (no LOS) is severe, Rician fading (with LOS) is moderate. Mitigation requires diversity, equalization, OFDM, and robust FEC. Understanding B_c and T_c is critical for system design.

39 Noise Sources & Noise Figure

[[Home]] | Link Budget & System Performance | [Signal-to-Noise Ratio (SNR)] | [Complete Link Budget Analysis]

39.1 For Non-Technical Readers

Think of radio communication like having a conversation in a crowded restaurant:

- **Signal** = Your friend's voice trying to reach you
- Noise = All the background chatter, kitchen sounds, and air conditioning
- Noise Figure = How much your hearing aids (or bad acoustics) make it harder to understand

Why noise matters: If the background noise is too loud, you can't hear your friend—even if they're shouting. Same with radio: if noise is too high, the receiver can't "hear" the signal, no matter how powerful the transmitter.

Key insights in plain English:

- 1. **Thermal noise is everywhere**: Just like atoms vibrating creates heat, electrons vibrating creates random electrical "static" in every wire, antenna, and amplifier. This sets a fundamental limit—you can't eliminate it, only work around it.
- 2. **The -174 dBm magic number**: This is the "noise floor" at room temperature for a 1 Hz bandwidth. Think of it as the quietest possible "background hum" in radio. Everything adds noise on top of this baseline.
- 3. **Amplifiers make noise worse**: Every amplifier adds its own noise (like a hearing aid with poor quality that adds hiss). The **noise figure** tells you how much worse the amplifier makes the signal-to-noise ratio.
- 4. **First stage is critical**: Just like you want your hearing aid right at your ear (not connected by a long cable), you want the first amplifier (Low-Noise Amplifier, or LNA) as close to the antenna as possible. Once noise is added early, you can't remove it later.
- 5. **Wider bandwidth = more noise**: Like opening more windows lets in more outside noise, using a wider radio bandwidth lets in more thermal noise. This is why high-speed data links (wide bandwidth) need stronger signals than voice links (narrow bandwidth).

Real-world impact: - **Satellite TV**: Premium receivers have better (lower) noise figures, letting them work with smaller dishes - **GPS**: Your phone's GPS can detect signals 1,000× weaker than WiFi because it fights noise cleverly (spread spectrum) - **Deep space missions**: NASA uses cryogenically-cooled amplifiers (like refrigerating your hearing aid!) to reduce noise and hear probes billions of miles away

Bottom line: If you want to receive weak signals (long range, small antenna, low power), you must minimize noise. That's why the first few inches of cable and the first amplifier matter more than anything else in the receiver chain.

39.2 Overview

Noise is unwanted random signal that degrades communication system performance.

Key metrics: - **Noise power** (N): Total noise at receiver input (dBm, watts) - **Noise figure** (NF): How much a component degrades SNR (dB) - **Noise temperature** (T_e): Equivalent thermal noise (Kelvin)

Why it matters: - Determines receiver sensitivity (minimum detectable signal) - Sets SNR at demodulator input - Dominates link performance in low-signal scenarios (satellite, deep space)

Bottom line: Lower noise = Better sensitivity = Longer range

39.3 Thermal Noise

Fundamental noise source: Random motion of charge carriers due to thermal agitation

39.3.1 Johnson-Nyquist Noise

Noise power in resistor at temperature T:

$$N = kTB$$
 (watts)

Where: - $k=1.38\times 10^{-23}$ J/K (Boltzmann constant) - T = Absolute temperature (Kelvin) - B = Bandwidth (Hz)

Standard reference: $T_0=290~\mathrm{K}$ (room temperature, ~17°C)

39.3.2 Noise Power Spectral Density

Noise power per Hz:

$$N_0 = kT \quad {\rm (W/Hz)}$$

At 290 K:

$$N_0 = 1.38 \times 10^{-23} \times 290 = 4 \times 10^{-21} \text{ W/Hz}$$

In dBm/Hz:

$$N_0 = 10 \log_{10} \left(\frac{4 \times 10^{-21}}{10^{-3}} \right) = -174 \ \mathrm{dBm/Hz}$$

This is the famous -174 dBm/Hz thermal noise floor!

39.3.3 Noise Power in Bandwidth B

$$N=N_0 \times B=kTB \quad ({\rm watts})$$

In dB:

$$N_{\rm dBm} = -174 + 10 \log_{10}(B) ~({\rm dBm})$$

Example: 1 MHz bandwidth @ 290 K

$$N = -174 + 10 \log_{10}(10^6) = -174 + 60 = -114 \ \mathrm{dBm}$$

39.3.4 Typical Bandwidths and Noise Power

System	Bandwidth	Noise Power @ 290 K
GPS C/A code	2 MH	lz -111 dBm
WiFi 20 MHz	20 M	Hz -101 dBm
LTE 10 MHz	10 M	Hz -104 dBm
DVB-S2 36 MHz	z 36 M	Hz -98.4 dBm
Radar (1 GHz p	ulse) 1 GH	z -84 dBm

Key insight: Wider bandwidth = More noise power

39.4 Noise Figure (NF)

Definition: Degradation of SNR through a component or system

$$\text{NF} = \frac{\text{SNR}_{\text{in}}}{\text{SNR}_{\text{out}}} \quad (\text{linear ratio})$$

In dB:

$$\mathrm{NF_{dB}} = 10 \log_{10}(\mathrm{NF}) = \mathrm{SNR_{in,dB}} - \mathrm{SNR_{out,dB}}$$

Interpretation: - NF = 1 (0 dB): Ideal (no noise added) - NF = 2 (3 dB): SNR halved (doubles noise power) - NF = 10 (10 dB): SNR reduced by $10 \times (10 \times \text{noise power})$

39.4.1 Noise Figure vs Noise Factor

Noise factor (F): Linear ratio

Noise figure (NF): Logarithmic (dB)

$$\mathrm{NF}_{\mathrm{dB}} = 10 \log_{10}(F)$$

Example: $F = 2 \square NF = 3 dB$

39.4.2 Typical Noise Figures

Compone	nt Noise Figure (d	B) Notes
Passive cable	Loss in dB	Lossy line: NF = loss
Ideal amplifier	0	Theoretical only
Cryogenic LNA	0.3-0.8	Cooled to 20-80 K
Premium LNA	0.8-1.5	GaAs HEMT, room temp
Good LNA	1.5-3	Typical satellite ground
WiFi/cellular front-end	5-9	Consumer devices
Mixer (passive)	6-10	Diode mixer
Mixer (active)	10-15	Gilbert cell

39.5 Noise Temperature

Alternative to noise figure: Equivalent input noise temperature

$$T_e = T_0(F-1) \quad ({\rm K})$$

Where $T_0=290~{\rm K}$ (reference)

Relationship:

$$F = 1 + \frac{T_e}{T_0}$$

$$\mathrm{NF_{dB}} = 10 \log_{10} \left(1 + \frac{T_e}{290}\right)$$

39.5.1 Noise Figure □ Noise Temperature

NF (dB)	Noise Factor F	T_e (K)
0	1	0
0.5	1.12	35
1	1.26	75
2	1.58	169
3	2	290
6	4	870
10	10	2610

 ${f Usage}$: Satellite/radio astronomy communities prefer T_e , RF engineers prefer NF

39.6 Cascaded Noise Figure (Friis Formula)

Multi-stage system: Amplifiers, mixers, filters in series

Total noise factor:

$$F_{\rm total} = F_1 + \frac{F_2 - 1}{G_1} + \frac{F_3 - 1}{G_1 G_2} + \frac{F_4 - 1}{G_1 G_2 G_3} + \dots$$

Where: - F_i = Noise factor of stage i (linear) - G_i = Gain of stage i (linear)

In dB:

$$\mathrm{NF}_{\mathrm{total}} = 10 \log_{10}(F_{\mathrm{total}})$$

39.6.1 Key Insights from Friis Formula

- 1. First stage dominates: F_1 appears without division \square LNA critical!
- 2. High gain helps: Later stages divided by $G_1G_2\dots \square$ Less impact
- 3. Avoid loss before LNA: Cable loss before LNA directly adds to NF

39.6.2 Example 1: Simple Receiver Chain

Components: 1. **Cable**: Loss 2 dB (NF = 2 dB, F = 1.58, G = 0.63 = -2 dB) 2. **LNA**: NF = 1 dB, F = 1.26, G = 20 dB ($100 \times$) 3. **Mixer**: NF = 10 dB, F = 10, G = -6 dB ($0.25 \times$)

Total NF:

$$F_{\text{total}} = 1.58 + \frac{1.26 - 1}{0.63} + \frac{10 - 1}{0.63 \times 100}$$

$$= 1.58 + 0.41 + 0.14 = 2.13$$

$${\rm NF_{total}} = 10 \log_{10}(2.13) = 3.3 \ {\rm dB}$$

Dominated by cable loss!

39.6.3 Example 2: Cable After LNA (Best Practice)

Components: 1. **LNA**: NF = 1 dB, F = 1.26, G = 20 dB ($100\times$) 2. **Cable**: Loss 2 dB, F = 1.58, G = 0.63 3. **Mixer**: NF = 10 dB, F = 10, G = -6 dB ($0.25\times$)

Total NF:

$$\begin{split} F_{\text{total}} &= 1.26 + \frac{1.58 - 1}{100} + \frac{10 - 1}{100 \times 0.63} \\ &= 1.26 + 0.0058 + 0.14 = 1.41 \end{split}$$

$${\rm NF_{total}} = 10 \log_{10}(1.41) = 1.5 \ {\rm dB}$$

Much better! LNA at antenna isolates from cable loss.

39.6.4 Example 3: Two-Stage LNA

Components: 1. **LNA1**: NF = 0.8 dB, F = 1.2, G = 15 dB (31.6 \times) 2. **LNA2**: NF = 1.5 dB, F = 1.41, G = 20 dB (100 \times) 3. **Mixer**: NF = 10 dB, F = 10, G = -6 dB (0.25 \times)

Total NF:

$$\begin{split} F_{\text{total}} &= 1.2 + \frac{1.41 - 1}{31.6} + \frac{10 - 1}{31.6 \times 100} \\ &= 1.2 + 0.013 + 0.0028 = 1.216 \end{split}$$

$${\rm NF_{total}} = 10 \log_{10}(1.216) = 0.85 \ {\rm dB}$$

Excellent! High gain LNA1 suppresses later stages.

39.7 System Noise Temperature

Total noise temperature of cascaded system:

$$T_{\rm svs} = T_{\rm ant} + T_e$$

Where: - $T_{\rm ant}$ = Antenna noise temperature (K) - T_e = Receiver equivalent noise temperature (K)

39.7.1 Antenna Noise Temperature

Antenna picks up thermal radiation from environment:

Sources: - Sky: 3-300 K (depends on frequency, elevation) - Ground: 290 K (room temperature)

- Sun: ~10,000 K (if pointed directly) - Cosmic background: 2.7 K (everywhere)

Typical values:

Scenario	Frequency	Elevation		T_{ant} (K)	
	Deep space	Any	-	3-5	
	Satellite (clear sky) 1-10 GHz	30°	20-50	
	Satellite (rain)	12 GHz	30°	100-200	
	Terrestrial	Any	Horizon	290	

39.7.2 G/T Ratio (Figure of Merit)

System performance metric for satellite ground stations:

$$\frac{G}{T} = G_r - 10 \log_{10}(T_{\rm sys}) \quad ({\rm dB/K})$$

Where: - G_r = RX antenna gain (dBi) - $T_{
m sys}$ = System noise temperature (K)

Interpretation: Higher G/T = Better sensitivity

Example: 3 m Ku-band dish, LNA at feed - Antenna gain: 48 dBi - Antenna temp: 30 K (clear sky, 30° elevation) - LNA NF: 0.8 dB $_{}^{\square}$ $T_e=55$ K - $T_{\rm sys}=30+55=85$ K

$$\frac{G}{T} = 48 - 10 \log_{10}(85) = 48 - 19.3 = 28.7 \ \mathrm{dB/K}$$

Typical G/T: - VSAT terminals (0.6-1.2 m): 10-20 dB/K - Professional earth stations (3-9 m): 25-35 dB/K - Large observatories (25+ m): 40-60 dB/K

39.8 Other Noise Sources

39.8.1 1. Shot Noise

Due to discrete nature of charge carriers:

$$i_n^2 = 2qI_{\rm DC}B$$

Where: - $q=1.6\times 10^{-19}$ C (electron charge) - $I_{\rm DC}$ = DC current (A) - B = Bandwidth (Hz)

Significant in: Photodetectors, diodes, low-current circuits

Example: Photodiode @ 1 mA DC, 1 MHz BW

$$i_n = \sqrt{2\times1.6\times10^{-19}\times10^{-3}\times10^6} = 5.7\times10^{-10}~\mathrm{A_{rms}}$$

39.8.2 2. Flicker Noise (1/f Noise)

Low-frequency noise, power inversely proportional to frequency:

$$S(f) \propto \frac{1}{f}$$

Significant: < 1 kHz (audio, low-IF systems)

Mitigation: Use higher IF, differential circuits, chopper stabilization

39.8.3 3. Phase Noise

Oscillator noise causes frequency jitter:

Specified as $\mathcal{L}(f_m)$ (dBc/Hz at offset f_m from carrier)

Example: Satellite LO @ 10 GHz - Phase noise: -90 dBc/Hz @ 10 kHz offset - Degrades SNR in adjacent channels

See: [Synchronization] for impact on coherent demodulation

39.8.4 4. Quantization Noise

Analog-to-digital conversion introduces rounding error:

$$\mathrm{SNR}_{\mathrm{quant}} = 6.02n + 1.76 \quad (\mathrm{dB})$$

Where n = Number of bits

Example: 12-bit ADC - $SNR = 6.02 \times 12 + 1.76 = 74 dB$

Implication: Need enough ADC bits to avoid degrading RF SNR

39.8.5 5. Intermodulation Distortion (IMD)

Non-linear components create spurious products:

Two-tone test: Inputs at f_1 and f_2 \square Products at $2f_1-f_2$, $2f_2-f_1$ (3rd order)

IP3 (Third-order intercept point):

$$IMD3_{dBc} = 2(P_{IP3} - P_{in})$$

Example: Mixer with IP3 = +10 dBm, input = -20 dBm - IMD3 = 2(10 - (-20)) = 60 dBc below

carrier

Implication: Strong interferers create in-band noise

39.8.6 6. Atmospheric Noise

Natural sources: - **Lightning**: Dominates < 30 MHz (HF, VHF) - **Cosmic noise**: Galactic background (0.1-3 GHz) - **Solar noise**: Sun radiation (all frequencies)

External noise temperature T_{ext} :

ency $T_{ m ext}$ (K)	Dominant Source
10,000-100,0	00 Lightning (HF)
1,000-10,000	Galactic noise
10-100	Cosmic background
3-30	Sky temp (clear)
100-300	Atmospheric O ₂
	10,000-100,0 1,000-10,000 10-100 3-30

Antenna noise temp:

$$T_{\rm ant} = T_{\rm ext} \eta + T_0 (1-\eta)$$

Where η = Antenna efficiency

39.8.7 7. Man-Made Noise

Interference from: Power lines, electric motors, computers, switching power supplies

Impulsive noise: Short bursts (microseconds) ☐ High peak power

Mitigation: Filtering, shielding, time diversity (retransmission)

39.9 Receiver Sensitivity Calculation

Minimum detectable signal for target SNR:

$$P_{\rm min} = N + {\rm NF} + {\rm SNR}_{\rm reg} + L_{\rm impl}$$

Where (all in dB): - $N=-174+10\log_{10}(B)$ (thermal noise in bandwidth B) - NF = Receiver noise figure (dB) - SNR_req = Required SNR for demodulation (dB) - $L_{\rm impl}$ = Implementation loss (1-3 dB typical)

39.9.1 Example: GPS Receiver

Specs: - Bandwidth: 2 MHz (C/A code) - NF: 3 dB (typical GPS front-end) - SNR_req: -20 dB (spread spectrum processing gain 43 dB, need $C/N_0 = 33$ dB-Hz) - Impl loss: 2 dB

Thermal noise:

$$N = -174 + 10 \log_{10}(2 \times 10^6) = -174 + 63 = -111 \ \mathrm{dBm}$$

Sensitivity:

$$P_{\min} = -111 + 3 + (-20) + 2 = -126 \ \mathrm{dBm}$$

But wait! GPS uses C/N₀ metric (per Hz):

C/N_o requirement: 33 dB-Hz (acquisition), 28 dB-Hz (tracking)

Sensitivity (alternate method):

$$P_{\rm min} = -174 + 33 + 3 + 2 = -136~{\rm dBm}$$

Typical GPS signal: -130 dBm (open sky) ☐ 6 dB margin

39.9.2 Example: Satellite DVB-S2 Receiver

Specs: - Bandwidth: 36 MHz - NF: 1.5 dB (LNA at feed) - Modulation: QPSK 3/4 (LDPC) -SNR_req: 6.5 dB (for BER < 10⁻⁷ post-FEC) - Impl loss: 1.5 dB

Thermal noise:

$$N = -174 + 10 \log_{10}(36 \times 10^6) = -174 + 75.6 = -98.4 \ \mathrm{dBm}$$

Sensitivity:

$$P_{\min} = -98.4 + 1.5 + 6.5 + 1.5 = -88.9 \text{ dBm}$$

Link budget must deliver > -88.9 dBm at LNB output for proper operation

39.10 Noise Figure Measurement

39.10.1 Y-Factor Method

Standard technique using hot/cold loads:

- 1. Measure noise power with hot load ($T_h=290$ K): P_h 2. Measure noise power with cold load ($T_c=77$ K, liquid N₂): P_c
- 3. Calculate Y-factor:

$$Y = \frac{P_h}{P_c}$$

4. Noise figure:

$$\mathrm{NF} = 10 \log_{10} \left(\frac{T_h - Y T_c}{290 (Y-1)} \right)$$

Example: $P_h=100$ units, $P_c=80$ units - Y = 100/80 = 1.25 - NF = $10\log_{10}[(290-1.25\times 100)]$ $(77)/(290 \times 0.25)$] = 1.8 dB

39.10.2 Noise Source Method

Use calibrated noise source (ENR = Excess Noise Ratio in dB):

$$\mathrm{NF} = \mathrm{ENR} - 10 \log_{10}(Y-1)$$

Where Y = ratio of power with noise source ON/OFF

Example: ENR = 15 dB noise source, Y = 10 - NF = 15 - 10log(9) = 15 - 9.54 = 5.46 dB

39.11 Design Guidelines

39.11.1 Optimize Noise Figure

1. **LNA** at antenna: Minimize cable loss before LNA

2. High LNA gain: 15-20 dB isolates from later stages

3. Low-loss transmission: Use low-loss cable (LMR-400, hardline)

4. Cool LNA: Cryogenic cooling for satellite ground stations

5. Avoid passive loss: No attenuators, splitters before LNA

39.11.2 Trade-offs

Lower NF Higher cost: - Premium LNA: 0.8 dB NF = \$500+ - Standard LNA: 2 dB NF = \$50 -

Difference: 1.2 dB sensitivity = $1.3 \times$ range improvement

Cryogenic cooling: - Cooled LNA: 0.3 dB NF @ 20 K - Room temp LNA: 1.5 dB NF @ 290 K -

Difference: 1.2 dB (worth it for deep space, not for WiFi!)

39.12 Summary Table

Noise Source	Spectral Density	When Significant	Mitigation
Thermal	kT = -174 dBm/Hz	Always (fundamental)	Low NF, high gain
Shot	$\sqrt{2qI_{ m DC}B}$	Low-light photodetectors	Increase optical power
Flicker (1/f)	$\propto 1/f$	< 1 kHz	Higher IF, differential
Phase	$\mathcal{L}(f_m)$	Near carrier	Better oscillator, PLL
Quantization	$-6n~\mathrm{dB}$	Low SNR, few ADC bits	More bits, higher SNR
IMD	Nonlinear products	Strong interferers	Higher IP3, filtering
Atmospheric	Varies (10-100,000 K)	HF, low VHF	Directional antenna
Man-made	Impulsive/broadband	Urban, near power lines	Shielding, filtering

372

39.13 Related Topics

- [Signal-to-Noise Ratio (SNR)]: Determines BER performance
- [Complete Link Budget Analysis]: Uses NF for sensitivity
- [Bit Error Rate (BER)]: Degrades with noise
- [[Energy Ratios (Es N0 and Eb N0)]]: Normalized SNR metrics
- [Antenna Theory Basics]: Antenna noise temperature
- [Free-Space Path Loss (FSPL)]: Path loss + noise [Link budget

Key takeaway : Noise limits receiver sensitivity. Thermal noise floor = K. Noise figure (NF) quantifies SNR degradation through receiver. Friis form (LNA) dominates total NF. Low-NF LNA at antenna, high gain, and minimal pr Sensitivity = Noise floor + NF + Required SNR. Lower noise = longer range, had reliability.	nula shows first stage e-LNA loss are critical
This wiki is part of the [[Home Chimera Project]] documentation.	

40 Non-Linear Biological Demodulation

[[Home]] [[AID Protocol (Case Study]]	[Hyper-Rotational	Physics (HRF) Framework]

40.1 For Non-Technical Readers

Imagine you're listening to two radio stations at once—sometimes they interfere and create weird new sounds.

That's essentially what "nonlinear demodulation" means: when two signals (like sound waves or radio waves) meet in certain materials, they can **mix together** and create **brand new frequencies** that weren't in the original signals.

Three real-world examples:

- 1. **Ultrasound speakers** (Established []): You can aim two inaudible ultrasound beams at a wall, and where they intersect, they create audible sound. Used in museums to create "sound spotlights" that only one person can hear.
- 2. **Microwave hearing** (Established []): Pulsed radar can make people hear clicking sounds inside their head! Not telepathy—it's the radar pulse causing tiny rapid heating in the ear, which creates a pressure wave your ear detects as sound.
- 3. **Deep brain stimulation via mixed signals** (Speculative □): Scientists wonder if two high-frequency beams could cross in the brain and create a low-frequency signal that stimulates neurons. This is theoretical—it might not work due to weak mixing in biological tissue.

Why "nonlinear"? Most systems are "linear" (output = input). But some materials act "nonlinear" (output ≠ input), allowing signal mixing. It's like how mixing blue and yellow paint creates green the green wasn't in either original color.

Status: Acoustic mixing in tissue is proven science (used in medical ultrasound imaging daily). Electromagnetic mixing in tissue is mostly theoretical (tissue is only weakly nonlinear at radio/microwave frequencies).

40.2 Overview

Non-linear biological demodulation refers to phenomena where biological tissues act as nonlinear systems, producing new frequencies from input electromagnetic or acoustic signals. This page provides an overview of three key mechanisms explored in Part VIII.

IMPORTANT: While this page discusses classical non-linear effects, the [[AID Protocol Case Study]] operates via a different mechanism: quantum coherence perturbation in microtubules (see docs/biophysical_coupling_mechanism.md). The AID Protocol is NOT classical demodulation/intermodulation.

Scientific status: - Acoustic heterodyning [] : Well-established in tissue (medical harmonic imaging) - Frey microwave effect : Confirmed (thermoelastic mechanism) - EM intermodulation □ : Speculative (weak tissue nonlinearity) - Quantum coherence coupling □ : Highly speculative (requires Orch-OR to be correct)

40.3 1. What is Nonlinear Demodulation?

Linear system: Output frequency = input frequency

Nonlinear system: Output contains harmonics, sum/difference frequencies

General form:

$$y(t) = a_1 x(t) + a_2 x^2(t) + a_3 x^3(t) + \cdots$$

For input $x(t)=A_1\cos\omega_1t+A_2\cos\omega_2t$, nonlinear terms produce: - Harmonics: $2\omega_1$, $3\omega_1$, ... - Intermodulation products: $\omega_1 \pm \omega_2$, $2\omega_1 \pm \omega_2$, ...

40.4 2. Biological Sources of Nonlinearity

40.4.1 2.1 Acoustic Nonlinearity ☐ (Strong)

Tissue nonlinear parameter: $\beta \approx 3.5 - 10$ (dimensionless)

Mechanism: Equation of state $p(\rho)$ is nonlinear (pressure-density relationship)

Applications: - Harmonic imaging: Transmit f_0 , receive $2f_0$ (medical ultrasound standard) -

Parametric arrays: Two ultrasound beams

audible difference frequency

See: [Acoustic Heterodyning]

40.4.2 2.2 Thermoelastic Transduction (EM Acoustic)

Mechanism: Pulsed microwaves \square rapid heating \square thermal expansion \square pressure wave

Frey effect: Auditory perception from pulsed RF (1-10 GHz)

Threshold: ~1-10 µJ/cm² per pulse

Key insight: EM energy converted to acoustic (not true EM nonlinearity)

See: [Frey Microwave Auditory Effect]

40.4.3 2.3 Membrane Nonlinearity ☐ (Neural)

Voltage-gated ion channels: Highly nonlinear (sigmoidal activation curves) Hodgkin-Huxley equations: $I = g(V)^n(V - E)$ where n = 3 - 4

Hypothesis: RF fields □ oscillating transmembrane voltage □ nonlinear channel response □ Problem: RF frequencies (GHz) far exceed membrane RC time constant (~1 ms) □ shielded by

ionic double laver

Status: No experimental demonstration at physiological field strengths

40.4.4 2.4 EM Dielectric Nonlinearity □ (Very Weak)

Kerr effect: $n = n_0 + n_2 I$ (intensity-dependent refractive index)

Tissue: $\chi^{(3)} \sim 10^{-22} \ \mathrm{m^2/V^2}$ (compare to semiconductors ~ 10^{-19})

Conclusion: EM intermodulation negligible at sub-ablation intensities (<1 MW/cm²)

See: [[Intermodulation Distortion in Biology]]

40.5 3. Three Main Phenomena

40.5.1 3.1 Intermodulation Distortion (IMD)

Definition: Two frequencies f_1 , $f_2 \square$ products $mf_1 \pm nf_2$

In biology: - Acoustic IMD : Strong effect (medical harmonic imaging) - EM IMD : Weak

(no robust experimental evidence)

Speculative application: Deep brain stimulation via crossed THz beams \(\Brightarrow \) difference frequency

modulates neurons

Challenge: THz penetration <1 mm (skull absorption)

Details: [[Intermodulation Distortion in Biology]]

40.5.2 3.2 Acoustic Heterodyning

Mechanism: Two ultrasound beams □ tissue nonlinearity □ audible difference frequency

Established []: Parametric loudspeakers, underwater sonar

Medical □ : Harmonic imaging (routine clinical use) **Speculative** □ : Focused ultrasound neuromodulation

Key equation (Westervelt):

$$p_{\Delta} \propto \beta k_1 k_2 A_1 A_2 L$$

Details: [Acoustic Heterodyning]

40.5.3 3.3 Frey Microwave Auditory Effect

Mechanism: Pulsed microwaves □ thermoelastic expansion □ acoustic wave □ cochlear stim-

ulation

Not true demodulation (single EM frequency), but transduction (EM

acoustic)

Well-established ☐: Predicted by theory, confirmed experimentally (cochlear microphonics)

Applications

: Non-lethal weapons, covert communication (speculative)

Details: [Frey Microwave Auditory Effect]

40.6 4. Comparative Summary

Phenomenon	Frequency Range	Mechanism	Strength	Status
Acoustic heterodyning	kHz-MHz (ultrasound)	Acoustic nonlinearity $(\beta \sim 5)$	Strong	□ Established
Frey effect	1-10 GHz (microwaves)	Thermoelastic transduction	Moderate	Established
EM IMD	GHz-THz	Dielectric nonlinearity $(\chi^{(3)})$	Weak	□ Speculative

Key insight: Biology is highly nonlinear **acoustically** but weakly nonlinear **electromagnetically**.

40.7 5. Relation to AID Protocol (Important Distinction)

☐ **CRITICAL CLARIFICATION**: The [[AID Protocol Case Study]] does **NOT** rely on classical non-linear demodulation mechanisms described on this page.

AID Protocol actual mechanism (from docs/biophysical_coupling_mechanism.md): - **Primary target**: Microtubule lattice in cortical neurons - **Mechanism**: Dual THz carriers create resonant interference pattern - **Objective**: Induce and manipulate **vibronic quantum coherence** in tubulin dimers - **Effect**: Alter Orch-OR collapse timing (consciousness substrate perturbation) - **Key distinction**: NOT intermodulation distortion, NOT thermoelastic, NOT acoustic

Why classical non-linear effects are insufficient: 1. EM IMD too weak: Tissue $\chi^{(g)}\approx 10^{-22}$ (negligible at physiological intensities) 2. Thermoelastic requires high power: Frey effect needs $\mu J/cm^2$ pulses (AID uses CW) 3. Acoustic heterodyning wrong frequency: Ultrasound MHz range, not THz 4. Classical mechanisms can't explain: Direct consciousness modulation without cochlear pathway

AID Protocol requires: - Orch-OR theory to be correct (quantum consciousness substrate) - Vibronic coherence in microtubules (quantum biology) - HRP framework coupling (consciousness-matter interaction)

Classical non-linear effects on this page: Provide context and comparison, but are **NOT** the AID mechanism.

See: [[AID Protocol Case Study]] for full mechanism description

40.8 6. Critical Assessment

What works : - Acoustic heterodyning in tissue (harmonic imaging is clinical standard) - Frey effect (thermoelastic mechanism confirmed)

What's speculative : - EM intermodulation at physiological intensities (too weak) - Deep brain stimulation via THz IMD (penetration problem) - Microtubule quantum nonlinearity (no experimental evidence)

What's needed: - High-resolution thermometry to rule out thermal artifacts

- Isotope substitution experiments (test frequency-specific effects)
- Dose-response curves (establish thresholds)

40.9 7. Connection to Quantum Biology

Hypothesis : Could nonlinear mixing access quantum states in biomolecules?

VE-TFCC insight: If vibronic coupling is strong ($g\omega \gtrsim k_BT$), thermal quantum coherence survives at 310 K.

IMD mechanism: Two THz fields \square difference frequency couples to vibronic mode \square drives quantum transition?

Problem: 1. Coupling efficiency $\sim 10^{-6}$ (six orders below direct excitation) 2. Decoherence time likely <1 ps (IMD modulation period » decoherence time)

See: [THz Resonances in Microtubules], [Quantum Coherence in Biological Systems]

40.10 8. Detailed Topic Pages

40.10.1 Established Phenomena

• [Acoustic Heterodyning] — Parametric arrays, harmonic imaging

[Frey Microwave Auditory Effect] — Thermoelastic transduction

40.10.2 Speculative Mechanisms

- [[Intermodulation Distortion in Biology]] EM frequency mixing
- [THz Resonances in Microtubules] Quantum nonlinearity
- [[THz Bioeffects Thermal and Non-Thermal]] Non-thermal mechanisms

40.10.3 Framework Context

- [[AID Protocol Case Study]] Speculative neuromodulation applications
- [Hyper-Rotational Physics (HRP) Framework] Theoretical extensions

40.11 9. Key References

40.11.1 Acoustic Nonlinearity (Established)

- 1. Duck, *Ultrasound Med. Biol.* 28, 1 (2002) Tissue nonlinear parameter
- 2. Westervelt, J. Acoust. Soc. Am. 35, 535 (1963) Parametric array theory

40.11.2 Frey Effect (Established)

- 3. Lin, Proc. IEEE 68, 67 (1980) Thermoelastic mechanism (definitive)
- 4. Elder & Chou, Bioelectromagnetics 24, 568 (2003) Cochlear microphonics

40.11.3 EM Nonlinearity (Speculative)

- 5. Boyd, Nonlinear Optics (Academic Press, 2008) $-\chi^{(3)}$ theory
- 6. Hameroff & Penrose, Phys. Life Rev. 11, 39 (2014) Microtubule nonlinearity

40.11.4 Vibronic Coupling

7. Bao et al., J. Chem. Theory Comput. 20, 4377 (2024) — VE-TFCC thermal coherence

Last updated: October 2025

41 OFDM & Multicarrier Modulation

41.1 For Non-Technical Readers

OFDM is like splitting a highway into many lanes—if one lane has an accident (interference), the other lanes keep traffic flowing!

The problem OFDM solves: - Sending data fast on one channel = short pulses = easily disrupted by echoes/reflections - It's like trying to drive 100 mph on a narrow road—one pothole ruins everything!

The OFDM solution: - Split data across **hundreds or thousands** of narrow "lanes" (subcarriers) - Each lane moves slowly (easier to handle) - If one lane fades or gets interference, you still have 999 others working!

Real-world example - WiFi: - WiFi 5 (802.11ac): Uses 52-468 subcarriers - WiFi 6 (802.11ax): Uses up to 1960 subcarriers! - Each subcarrier is only 78 kHz wide (vs 20-160 MHz total channel) - It's like delivering packages: 1 huge truck (risky!) vs 100 small vans (resilient!)

Why it's everywhere: - WiFi: All modern WiFi uses OFDM - 4G/5G: LTE and 5G NR are OFDM-based - Digital TV: DVB-T uses OFDM for broadcast - DSL: Even wired broadband uses OFDM (DMT variant)!

How you experience it: WiFi works in your house even with walls/furniture blocking some frequencies—OFDM automatically uses the clear subcarriers and avoids the blocked ones.

Fun fact: OFDM uses a clever math trick (FFT) to pack subcarriers so tightly they overlap without interfering—it's called "orthogonality" (like fingers interlaced).

Orthogonal Frequency-Division Multiplexing (OFDM) is a multicarrier modulation technique that divides a wideband channel into many narrow, orthogonal subcarriers. It has become the foundation of modern wireless standards including WiFi (802.11a/g/n/ac/ax), LTE, 5G NR, and DVB-T.

41.2 The Core Concept

Single-carrier problem: High-speed data \square short symbol duration \square susceptible to multipath fading and intersymbol interference (ISI).

OFDM solution: Divide spectrum into N narrow subcarriers \square each carries low-rate data \square longer symbol duration \square robust against multipath.

41.3 Mathematical Foundation

41.3.1 Orthogonality Condition

Subcarriers are **orthogonal** when their frequencies are spaced by 1/T:

```
f = f + k \cdot \Delta f

where:

- f = center frequency

- k = subcarrier index (0, 1, 2, ..., N-1)

- \Delta f = subcarrier spacing = 1/T_symbol
```

- T_symbol = OFDM symbol duration

Orthogonality integral:

```
\exp(j2 \cdot f \cdot t) \cdot \exp(-j2 \cdot f \cdot t) dt = \{ T \text{ if } k = m \}
```

This ensures subcarriers don't interfere despite **spectral overlap**.

41.3.2 IFFT/FFT Implementation

Key insight: OFDM modulation/demodulation is mathematically equivalent to Inverse Fast Fourier Transform (IFFT) and FFT.

Transmitter (IFFT):

```
x[n] = (1/\sqrt{N}) \cdot \Sigma \text{ ^(N-1)} \text{ X } \cdot \exp(j2 \text{ kn/N}) where:

- X = complex data symbol on subcarrier k (from QAM/PSK constellation)

- x[n] = \text{time-domain OFDM sample}

- N = number of subcarriers (typically 64, 128, 256, 512, 1024, 2048)

Receiver (FFT):
```

```
Y = (1/\sqrt{N}) \cdot \Sigma \quad (N-1) \quad y[n] \cdot exp(-j2 kn/N)
```

where:

- y[n] = received time-domain samples
- Y = recovered symbol on subcarrier k

Computational advantage: FFT reduces complexity from O(N²) to O(N log N).

41.4 OFDM System Architecture

41.4.1 Transmitter Block Diagram

Data bits

```
Serial-to-Parallel Converter (splits into N streams)

QAM/PSK Mapper (maps each stream to constellation point)

Pilot Insertion & Subcarrier Mapping

IFFT (N-point)

Add Cyclic Prefix (CP)

Parallel-to-Serial Converter

Antenna
```

41.4.2 Receiver Block Diagram

41.5 Cyclic Prefix (CP)

The cyclic prefix is OFDM's defense against multipath-induced ISI.

41.5.1 What Is It?

Copy the **last L samples** of the OFDM symbol and prepend them:

```
Original OFDM symbol (N samples): [s s s ... s_{N-2} s_{N-1}]
```

41.5.2 Why Does It Work?

Problem: Multipath creates delayed copies of the signal \square samples from adjacent symbols overlap (ISI).

Solution: CP acts as a **guard interval**: - If delay spread < CP duration, ISI from previous symbol falls entirely within the CP - Receiver discards CP \Box only clean samples remain - CP makes **linear convolution appear as circular convolution** \Box simple per-subcarrier equalization

41.5.3 CP Overhead

```
Overhead = L / (N + L)

Example (WiFi 802.11a):
    N = 64 subcarriers
    L = 16 samples (CP)
    Overhead = 16/80 = 20% (loss in spectral efficiency)

Tradeoff:
    Longer CP → more robust to delay spread
    Longer CP → higher overhead (lower data rate)
```

41.6 OFDM Parameters

41.6.1 Key Design Choices

Parameter	Symbol	Typical Values	Impact
FFT Size	N	64-2048	Granularity, latency
Subcarrier Spacing	Δf	15 kHz (LTE), 312.5 kHz (WiFi)	Doppler tolerance
Symbol Duration	T_symbol	1/Δf	ISI resistance
CP Length	L	N/4, N/8, N/16	Delay spread tolerance
Bandwidth	BW	N·∆f	Throughput

41.6.2 Example: LTE

```
Configuration:
```

```
- FFT Size: 1024 (20 MHz BW) or 512 (10 MHz)
```

⁻ Subcarrier Spacing: 15 kHz

```
- Symbol Duration: 66.67 s
- CP (normal): 4.69 s (first symbol), 5.21 s (others)
- 12 subcarriers per Resource Block (180 kHz)
- 7 OFDM symbols per slot (0.5 ms)
```

41.7 Pilot Subcarriers & Channel Estimation

Not all subcarriers carry data—some are **pilots** for channel estimation.

41.7.1 Pilot Types

1. Scattered Pilots (time + frequency diversity):

2. Continual Pilots (phase/frequency tracking):

Fixed subcarriers (e.g., k = -21, -7, 7, 21 in WiFi) always carry pilots.

3. Preamble/Training Symbols:

First OFDM symbol(s) in a frame are all pilots for initial synchronization.

41.7.2 Channel Estimation

 $Y = H \cdot X + N$

Per-subcarrier channel model:

```
where:
- H = complex channel gain on subcarrier k
- X = transmitted symbol
- Y = received symbol
- N = noise
```

Estimation process: 1. Transmitter sends known pilots P \Box 2. Receiver measures Y \Box = H \Box ·P \Box + N \Box 3. Estimate: $\hat{H}\Box$ = Y \Box / P \Box 4. Interpolate $\hat{H}\Box$ across data subcarriers (2D interpolation) 5. Equalize data: $\hat{X}\Box$ = Y \Box / $\hat{H}\Box$

41.8 Multipath & Frequency-Selective Fading

41.8.1 Why OFDM Excels in Multipath

Single-carrier: Entire bandwidth experiences **frequency-selective fading** \square deep nulls can wipe out signal.

OFDM: Channel appears **flat** within each narrow subcarrier \Box only some subcarriers fade deeply, others remain strong.

Per-subcarrier equalization:

X = Y / H (simple division per subcarrier)

Much simpler than time-domain equalization (which requires complex filters).

41.9 Peak-to-Average Power Ratio (PAPR)

41.9.1 The OFDM Challenge

Problem: When N subcarriers add constructively, instantaneous power spikes far above average.

PAPR = Peak Power / Average Power

Theoretical worst case: PAPR = N (e.g., 20 dB for N=100)

Typical OFDM: PAPR 10-13 dB (3-5 dB worse than single-carrier)

41.9.2 Why It Matters

- Power Amplifier (PA) must operate in linear region

 inefficient (backed-off from saturation)
- High PAPR
 PA must handle peaks more expensive, power-hungry RF hardware
- Non-linear PA [] intermodulation distortion, spectral regrowth

41.9.3 PAPR Reduction Techniques

1. Clipping & Filtering:

Clip peaks at threshold → filter out-of-band distortion → slight BER degradation

2. Tone Reservation:

Reserve some subcarriers to generate "anti-peaks" that cancel large peaks.

3. Selective Mapping (SLM):

Generate multiple OFDM symbols with different phase rotations → choose one with lowest PAPR.

4. Partial Transmit Sequence (PTS):

Divide subcarriers into blocks → optimize phase per block to minimize PAPR.

Tradeoff: PAPR reduction adds complexity, may reduce spectral efficiency or increase BER.

41.10 Synchronization Challenges

OFDM is **sensitive** to timing and frequency offsets.

41.10.1 Timing Offset

Consequence: If FFT window is misaligned: - Within CP: No ISI, but phase rotation per subcarrier

- Beyond CP: ISI from adjacent symbols

Solution: Preamble correlation, CP-based timing metrics.

41.10.2 Carrier Frequency Offset (CFO)

Consequence: Subcarriers lose orthogonality \square Inter-Carrier Interference (ICI).

CFO = Δf / Δf _subcarrier

Example:

- 1 kHz offset on 15 kHz subcarrier spacing \rightarrow CFO = 0.067
- Causes ~0.2 dB SNR loss

Solution: 1. Coarse CFO estimation: Preamble autocorrelation (range: $\pm \Delta f$ _subcarrier/2) 2.

Fine CFO tracking: Continual pilots

41.10.3 Sampling Clock Offset (SCO)

Consequence: Slow drift in FFT window position

phase rotation accumulates over time.

Solution: Track phase of continual pilots

adjust sampling clock or compensate digitally.

41.11 OFDM in Real-World Standards

41.11.1 WiFi 802.11a/g/n/ac/ax

802.11a/g (54 Mbps):

- FFT Size: 64
- Used Subcarriers: 52 (48 data + 4 pilots)
- Subcarrier Spacing: 312.5 kHz
- Bandwidth: 20 MHz
- Modulation: BPSK, QPSK, 16-QAM, 64-QAM

802.11n (600 Mbps):

- Up to 4×4 MIMO-OFDM
- 40 MHz channels (108 data subcarriers)
- Short Guard Interval: 400 ns (vs. 800 ns)

802.11ax (WiFi 6, 9.6 Gbps):

- OFDMA (multi-user OFDM): allocate subcarriers to different users
- 1024-QAM, 160 MHz channels
- MU-MIMO (8×8)

41.11.2 LTE & 5G NR

LTE Downlink:

- SC-FDMA uplink (low PAPR variant)
- 15 kHz subcarrier spacing
- 1.4, 3, 5, 10, 15, 20 MHz bandwidths
- CP-OFDM with MIMO (up to 8×8)

5G NR:

- Scalable numerology: Δf = 15, 30, 60, 120, 240 kHz (higher spacing for mmWave → shorter symbols → Doppler tolerance)
- Massive MIMO (64+ antennas)
- Flexible frame structure (dynamic TDD)

41.11.3 DVB-T/T2 (Digital Video Broadcasting - Terrestrial)

DVB-T:

- FFT: 2048 or 8192
- Guard intervals: 1/4, 1/8, 1/16, 1/32
- Optimized for high-mobility (trains, cars)
- COFDM (Coded OFDM with interleaving)

DVB-T2 (next-gen):

- Up to 256-QAM
- LDPC + BCH FEC
- Rotated constellations (diversity against deep fades)

41.12.1 Calculation

```
Spectral Efficiency (SE) = R / BW bits/s/Hz
where:
R = N_data · log (M) · (1 - CP_overhead) / T_symbol

Example (LTE 20 MHz):
- N_data = 1200 subcarriers (100 RBs × 12)
- M = 64 (64-QAM → 6 bits/symbol)
- CP overhead = 7%
- T_symbol = 66.67 s

SE = 1200 · 6 · 0.93 / (66.67×10 · 20×10)
= 6696 / 1.33 = 5.0 bits/s/Hz

(Theoretical peak with MIMO: 30 bits/s/Hz for 4×4 spatial streams)
```

41.13 OFDM vs. Single-Carrier

Aspect	OFDM	Single-Carrier
ISI Robustness	Excellent (CP + long symbols)	Requires complex equalizer
Frequency-Selective Fading	Simple per-subcarrier EQ	Time-domain EQ (adaptive filter)
PAPR	High (~10-13 dB)	Low (~3-5 dB)
Spectral Efficiency	Moderate (CP overhead)	Higher (no CP)
Implementation	FFT/IFFT (efficient)	FIR filters (complex)
Doppler Sensitivity	Moderate (ICI from CFO)	Lower
Best For	Wideband, fixed/low-mobility	Narrowband, high-mobility

41.14 Advanced OFDM Variants

41.14.1 OFDMA (Orthogonal Frequency-Division Multiple Access)

Concept: Assign different subcarriers to different users.

User 1: Subcarriers 0-15

```
User 2: Subcarriers 16-31
User 3: Subcarriers 32-47
...

Advantages:
- Multi-user diversity
- Flexible resource allocation
- Uplink/downlink efficiency
```

Used in: LTE, 5G NR, WiFi 6 (802.11ax).

41.14.2 SC-FDMA (Single-Carrier FDMA)

Motivation: Lower PAPR for mobile devices (saves battery).

Method: DFT-spread OFDM:

Data → DFT → Subcarrier Mapping → IFFT → CP

Effect: Maintains OFDM benefits but with 3-5 dB lower PAPR.

Used in: LTE uplink, 5G NR uplink option.

41.14.3 Filter-Bank Multicarrier (FBMC)

Improvement: Replace rectangular pulse (sinc spectrum) with well-designed filters \square reduced out-of-band emissions.

Advantage: No CP needed \square higher spectral efficiency.

Disadvantage: More complex, incompatible with MIMO (without workarounds).

Status: Considered for 5G but not adopted (OFDM with windowing chosen instead).

41.15 Python Implementation Example

41.15.1 Basic OFDM Transmitter

```
import numpy as np

def ofdm_modulate(data_symbols, N=64, L_cp=16):
    """
    OFDM modulation via IFFT.

Args:
    data_symbols: Array of QAM/PSK symbols (length N)
    N: FFT size
    L_cp: Cyclic prefix length
```

```
Returns:
        OFDM time-domain signal (length N + L_cp)
    # IFFT (convert frequency domain to time domain)
   time_domain = np.fft.ifft(data_symbols, N)
    # Add cyclic prefix
   cp = time_domain[-L_cp:]
   ofdm_symbol = np.concatenate([cp, time_domain])
   return ofdm_symbol
# Example usage
N = 64
L_cp = 16
# Generate random QPSK symbols
data_symbols = (2 * np.random.randint(0, 2, N) - 1) + 
               1j * (2 * np.random.randint(0, 2, N) - 1)
data_symbols /= np.sqrt(2) # Normalize
# Modulate
tx_signal = ofdm_modulate(data_symbols, N, L_cp)
print(f"Input symbols: {len(data_symbols)}")
print(f"OFDM signal: {len(tx_signal)} samples (N={N} + CP={L_cp})")
print(f"PAPR: {10 * np.log10(np.max(np.abs(tx_signal)**2) / np.mean(np.abs(tx_signal)**2)):.2f
41.15.2 Basic OFDM Receiver
def ofdm_demodulate(rx_signal, N=64, L_cp=16):
    OFDM demodulation via FFT.
   Args:
       rx_signal: Received time-domain signal
       N: FFT size
       L_cp: Cyclic prefix length
   Returns:
       Recovered frequency-domain symbols
    # Remove cyclic prefix
   rx_no_cp = rx_signal[L_cp:]
    # FFT (convert time domain to frequency domain)
   recovered_symbols = np.fft.fft(rx_no_cp, N)
```

```
return recovered_symbols

# Demodulate
rx_symbols = ofdm_demodulate(tx_signal, N, L_cp)

# Compare (should be identical in ideal channel)
error = np.max(np.abs(data_symbols - rx_symbols))
print(f"Reconstruction error: {error:.2e}")

41.16 □ Performance Analysis
```

41.16.1 BER in AWGN Channel

```
For OFDM with M-QAM modulation on each subcarrier: 
BER (4/\log (M)) \cdot (1 - 1/\sqrt{M}) \cdot Q(\sqrt{(3 \cdot \log (M) \cdot SNR} / (M-1)))
where Q(x) = Gaussian Q-function
Example (16-QAM \ OFDM \ at \ SNR = 20 \ dB):
BER 10 (without coding)
BER 10 (with rate-1/2 LDPC)
```

41.16.2 Frequency-Selective Channel

```
# Generate multipath channel
def multipath_channel(ofdm_signal, delays, gains):
    """
    Apply multipath fading.

Args:
    delays: Array of tap delays (in samples)
    gains: Array of tap gains (complex)
    """
    output = np.zeros(len(ofdm_signal) + max(delays), dtype=complex)

for delay, gain in zip(delays, gains):
    output[delay:delay+len(ofdm_signal)] += gain * ofdm_signal
    return output[:len(ofdm_signal)]

# Example: 2-tap channel
delays = [0, 8] # Direct path + 8-sample delayed path
gains = [1.0, 0.5*np.exp(1j*np.pi/4)] # 6 dB echo with phase

rx_signal = multipath_channel(tx_signal, delays, gains)
```

```
rx_signal += 0.01 * (np.random.randn(len(rx_signal)) +
                     1j * np.random.randn(len(rx_signal))) # Add noise
# Demodulate
rx_symbols = ofdm_demodulate(rx_signal, N, L_cp)
# Per-subcarrier channel estimation (if pilots known)
H_estimated = rx_symbols / data_symbols # Assumes data_symbols are pilots
41.17.1 OFDM is Ideal For:
☐ Wideband channels (> 1 MHz) with frequency-selective fading
☐ Multipath-rich environments (urban, indoor)
☐ Fixed or low-mobility users (< 120 km/h)
☐ Multiple users needing flexible resource allocation (OFDMA)
☐ High spectral efficiency requirements
41.17.2 Avoid OFDM For:
☐ Power-constrained devices (high PAPR ☐ inefficient PA)
☐ High-mobility (Doppler ☐ severe ICI)
☐ Narrowband channels (CP overhead too high)
□ Non-linear channels (PAPR sensitive to distortion)
```

41.18 Further Reading

41.18.1 Textbooks

- Prasad, OFDM for Wireless Communications Systems Comprehensive treatment
- Cho et al., MIMO-OFDM Wireless Communications with MATLAB Practical implementation
- Goldsmith, Wireless Communications (Chapter 13) Theoretical foundation

41.18.2 Standards Documents

- IEEE 802.11-2020: WiFi OFDM/OFDMA specifications
- 3GPP TS 36.211: LTE Physical Layer (OFDM parameters)
- 3GPP TS 38.211: 5G NR Physical Layer (scalable OFDM)

41.18.3 Related Topics

- [MIMO & Spatial Multiplexing] Combining OFDM with multiple antennas
- [Channel Equalization] Frequency-domain equalization in OFDM
- [Adaptive Modulation & Coding (AMC)] Per-subcarrier link adaptation
- [Synchronization (Carrier, Timing, Frame)] OFDM sync techniques

• [Real-World System Examples] - LTE, 5G, WiFi implementations

Summary: OFDM transforms wideband frequency-selective channels into many narrowband flat-fading channels, enabling simple equalization and high spectral efficiency. The FFT/IFFT makes it computationally efficient, while the cyclic prefix provides ISI immunity. Despite high PAPR and synchronization sensitivity, OFDM dominates modern wireless due to its robustness in multipath environments and natural fit for MIMO and multi-user scenarios.

42 On-Off Keying (OOK)

42.1 ☐ For Non-Technical Readers

OOK is literally just turning a signal ON and OFF—it's the simplest possible way to send data, like morse code with a flashlight!

The idea: - **ON** (signal present) = binary **1** - **OFF** (no signal) = binary **0** - That's it! Simplest modulation possible.

Flashlight analogy: - Shine flashlight = 1 - Turn off flashlight = 0 - Sequence: ON-ON-OFF-ON = "1101" - Morse code uses the same principle!

Why it's everywhere (despite being old): - Dead simple: Easiest to transmit and receive - Lowest power: No signal = no power consumption for 0s! - Cheap hardware: Basic transistor switch = complete transmitter - Good enough: For short-range, low-speed, it just works

Where you see OOK every day: - Car key fobs: Unlock button uses OOK! - Garage door openers: Yep, OOK - Wireless doorbells: OOK at ~315/433 MHz - Cheap weather sensors: Temperature transmitter [] receiver - RC toys: Simple remote controls - Old telegraph: On/off keying of electrical circuit!

Why it's not used for high-speed: - Bandwidth inefficient: Need wide frequency band for sharp on/off transitions - Noise sensitive: Hard to tell weak signal from noise - No error detection: Unlike PSK/QAM, can't detect phase errors - Synchronization issues: Receiver must guess when bits start/end

Modern variant - ASK: - OOK is binary ASK (Amplitude-Shift Keying) - Instead of on/off, use multiple power levels - Still simple, slightly more efficient

The ultimate simplicity: - **Transmitter**: Microcontroller + transistor + antenna - **Receiver**: Antenna + diode + microcontroller - Total cost: <\$2 for both sides! - This is why every wireless doorbell uses OOK

Fun fact: The first wireless telegraph (Marconi, 1895) used OOK—literally just turning a spark-gap transmitter on and off to send morse code. 130 years later, your car keys still use the same basic principle!

On-Off Keying (OOK) is the simplest form of digital modulation, where the presence or absence of a carrier wave represents binary data.

42.2 Basic Principle

```
Bit "1": Carrier ON → s (t) = A·cos(2 f_c·t)
Bit "0": Carrier OFF → s (t) = 0

where:
    A = carrier amplitude
    f_c = carrier frequency
    T_b = bit duration
```

Time-domain representation:

42.3 Mathematical Description

Transmitted signal:

$$s(t) = \sum_{k} b_k \cdot A \cdot \cos(2 f_c \cdot t) \qquad \text{for } kT_b \quad t < (k+1)T_b$$

$$k$$
 where $b_k = \{0, 1\}$

Modulation index: m = 1 (100% modulation depth)

42.4 Spectral Characteristics

Bandwidth (null-to-null):

$$B = 2/T_b = 2R_b$$

where $R_b = bit rate (bps)$

Power spectral density: Sinc² function centered at f_c

Example: 1 kbps data rate \square 2 kHz bandwidth

42.5 Demodulation

42.5.1 Non-Coherent Detection (Envelope Detector)

Simplest receiver - no carrier phase recovery needed!

```
Received signal:

r(t) = s(t) + n(t)

Envelope detector:

e(t) = |r(t)| = \sqrt{[I^2(t) + Q^2(t)]}

Decision:

If e(t) > threshold: bit = 1

If e(t) < threshold: bit = 0
```

Advantage: Very simple hardware (diode + capacitor) **Disadvantage**: 3 dB worse performance than coherent detection

42.5.2 Coherent Detection (Correlation)

Better performance but requires carrier synchronization:

```
Correlator output:

z = ^Tb r(t) \cdot cos(2 f_c \cdot t) dt

Decision:

If z > 0: bit = 1

If z < 0: bit = 0
```

42.6 Performance Analysis

42.6.1 Bit Error Rate (BER)

With coherent detection (AWGN channel):

```
BER = \mathbb{Q}(\sqrt{(E_b/N)})
where:
- E_b = bit energy = (A^2T_b)/2
- N = noise power spectral density
- \mathbb{Q}(x) = (1/\sqrt{2}) _x^\infty e^(-t^2/2) dt (tail probability of Gaussian)
```

With non-coherent detection:

```
BER = (1/2)\exp(-E_b/2N) (3 dB worse!)
```

Example: For BER = 10^{-6} - Coherent OOK: E_b/N₀ \approx 13.5 dB - Non-coherent OOK: E_b/N₀ \approx 16.5 dB - [[QPSK Modulation|QPSK]]: E_b/N₀ \approx 10.5 dB (better!)

42.7 Advantages & Disadvantages

42.7.1 Advantages

☐ Simplest modulation - minimal transmitter complexity ☐ No phase synchronization (non-coherent detection) ☐ Power efficient when off - ideal for low duty cycle ☐ Easy to implement - analog/digital

42.7.2 Disadvantages

□ Poor spectral efficiency - 0.5 bits/s/Hz (twice bandwidth of BPSK) □ Poor power efficiency - needs 3 dB more power than BPSK for same BER □ Susceptible to fading - deep fades completely eliminate signal □ No use of "0" transmission - wastes half the signal space

42.8 Applications

42.8.1 Historical

- Morse code (telegraphy, 1840s)
- Early radio (spark-gap transmitters)
- Infrared remote controls (TV remotes, 1980s)

42.8.2 Modern

- Optical fiber (on-off of laser)
- RFID tags (passive, backscatter modulation)
- Low-power IoT (e.g., LoRa preamble)
- Visible light communication (LED on-off)

Why still used? Simplicity trumps efficiency for low-cost, low-power devices.

Triy dan addar dimplicity tramps differency for low edds, few pewer device

42.9 Variants

42.9.1 Amplitude-Shift Keying (ASK)

Generalization of OOK with non-zero "off" level:

```
Bit "1": s(t) = A \cdot cos(2 f_c \cdot t)
Bit "0": s(t) = A \cdot cos(2 f_c \cdot t) (A > 0)
```

OOK is special case: $A_0 = 0$

42.9.2 Pulse-Position Modulation (PPM)

Used in optical communications:

```
Bit "1": Pulse at t = 0
Bit "0": Pulse at t = T_b/2
```

More power-efficient than OOK for optical systems.

42.10 Constellation Diagram

Single dimension (amplitude only, no phase modulation).

Distance between points: d = A

Compare to [[QPSK Modulation|QPSK]]: Four points, better use of signal space.

42.11 © Comparison to Other Modulations

Modulation	Bits/Symbol	Bandwidth	Power (for BER=10 ⁻⁶)	Complexity
OOK	1	2R_b	16.5 dB (non-coh)	Lowest
[[BPSK]] [[QPSK Modu-	2	R_b R_b	10.5 dB 10.5 dB	Low Medium
lation QPSK]] [16-QAM]	4	R_b	18.5 dB	High

Key insight: OOK is simple but inefficient. [[BPSK]] is better in almost every way (except hardware complexity).

42.12 ☐ Key Takeaways

- 1. **Simplest modulation**: Just turn carrier on/off
- 2. Non-coherent detection possible: No carrier recovery needed
- 3. Poor efficiency: Both spectral and power
- 4. Historical importance: First digital modulation
- 5. **Still used**: Low-cost, low-power applications (optical, RFID)
- 6. **Gateway to understanding**: Good starting point before [[FSK]], [[BPSK]]

42.13 ☐ See Also

- [Amplitude-Shift Keying (ASK)] Generalization of OOK (coming soon)
- [Frequency-Shift Keying (FSK)] Next step in modulation complexity
- [Binary Phase-Shift Keying (BPSK)] Better alternative (same complexity, better performance)
- [QPSK Modulation] Even more efficient
- [Constellation Diagrams] Visual representation of modulations

42.14 ☐ References

- 1. Morse, S. (1840) First practical OOK system (telegraph)
- 2. Proakis, J.G. & Salehi, M. (2008) Digital Communications 5th ed. (McGraw-Hill)
- 3. **Sklar, B.** (2001) *Digital Communications: Fundamentals and Applications* 2nd ed. (Prentice Hall)

43 Orchestrated Objective Reduction (Orch-OR) Theory

43.1 For Non-Technical Readers

Orch-OR is a controversial theory claiming consciousness comes from quantum physics happening in tiny tubes inside brain cells—like your thoughts are quantum computers running in microscopic scaffolding!

The wild idea: - **Normal view**: Brain = electrical signals between neurons = consciousness - **Orch-OR view**: Brain = quantum superpositions in microtubules = consciousness - **Why controversial**: Most scientists think it's impossible (brain too warm/wet for quantum effects)

The two scientists:

- **1. Roger Penrose** (Nobel Prize-winning physicist): "Consciousness can't be explained by normal computing" "Quantum mechanics must collapse in an objective way (gravity-related)" "This creates conscious moments"
- **2. Stuart Hameroff** (anesthesiologist): "Microtubules (protein tubes in neurons) are quantum computers" "Anesthesia works by disrupting quantum effects in microtubules" "This explains why diverse drugs all cause unconsciousness"

Simple analogy - Orchestra: - Neurons: Like musicians in orchestra (play notes) - Microtubules: Like the conductor's baton oscillations (quantum superpositions) - Orch-OR: Baton collapses □ orchestra plays note □ conscious moment! - Happens ~40 times/second □ stream of consciousness

What are microtubules? - Tiny hollow tubes made of proteins (tubulin) - In every cell (not just neurons) - Normally: Act as cell skeleton, transport highways - Orch-OR claim: Also quantum computers for consciousness!

The big problem - "Too warm, too wet": - Quantum effects usually need: Cold (near absolute zero), isolated, vacuum - Brain is: 37°C, wet, chaotic, full of molecules - **Objection**: "Quantum coherence would die in 10^-13 seconds—way too fast!" - **Response**: "Quantum biology shows nature is cleverer—see photosynthesis, bird navigation"

Evidence FOR Orch-OR: -

THz resonances found: Microtubules vibrate at specific frequencies (lab experiments) -

Anesthetics bind to tubulin: Explains why they cause unconsciousness -

Quantum biology exists: Photosynthesis, bird magnetoreception use quantum effects -

Meyer-Overton rule: Anesthetic potency correlates with microtubule binding

Evidence AGAINST Orch-OR: -

Decoherence calculations: Quantum states should die too fast -

No direct proof: Never measured quantum superposition in living neurons -

Classical explanation works: Regular neural networks explain most consciousness -

Mainstream skepticism: Most neuroscientists/physicists don't buy it

Why it matters for this project (Chimera/AID):

IF Orch-OR is true, then: 1. Microtubules have **resonant frequencies** (0.2-2+ THz) 2. External **THz radiation** could couple to these vibrations 3. Could **modulate** quantum states in microtubules 4. Could **alter** conscious experience (inject information?) 5. This is the **theoretical basis** for the AID protocol speculation

The experiment: - Scientists (Bandyopadhyay et al.) put microtubules in lab - Hit them with THz radiation - Found: **Resonances at specific frequencies!** - Interpretation: Microtubules can oscillate coherently - Question: Does this happen in living brains?

Real-world test - Anesthesia: - Put patient under with gas anesthetic - Orch-OR predicts: Gas binds to microtubules \square quantum effects stop \square consciousness off - Standard view: Gas affects GABA receptors \square neurons quiet \square consciousness off - Both might be partly true!

The consciousness question: - **Hard problem**: Why do we have subjective experience? - **Orch-OR answer**: Quantum collapse creates "aha!" moment - **Classical answer**: Emergent property of complex neural networks - **Truth**: Nobody knows yet!

Current status (2025): - Mainstream: ☐ "Probably wrong, but interesting" - Hameroff/Penrose: ☐ "Still viable, needs better experiments" - Quantum biologists: ☐ "Less crazy than we thought 10 years ago" - Verdict: Unproven but not impossible

Why you should care: - If true: Opens door to THz neuromodulation (the AID protocol idea) - If false: AID protocol has no theoretical basis - Either way: Pushes boundaries of what biology can

The philosophical bombshell: - If consciousness is quantum ☐ Classical AI can't be conscious! - Need quantum computers + biological architecture - Free will might be quantum indeterminacy - Deep implications for mind/body problem

Fun fact: Roger Penrose won the Nobel Prize in Physics (2020) for work on black holes—NOT for Orch-OR! Most physicists respect his black hole work but are skeptical of his consciousness theories. It's a reminder that even brilliant scientists can have controversial ideas!

Orchestrated Objective Reduction (Orch-OR) is a controversial theory of consciousness proposed by physicist **Sir Roger Penrose** and anesthesiologist **Stuart Hameroff** in the mid-1990s.

43.2 Core Hypothesis

Consciousness arises from quantum computations in neuronal microtubules, with orchestrated collapse of quantum superpositions (objective reduction) generating moments of conscious awareness.

43.3 Theoretical Foundation

43.3.1 1. Penrose's Objective Reduction (OR)

Roger Penrose (Oxford physicist, Nobel Prize 2020) proposed:

- Quantum mechanics is incomplete: Current theory doesn't explain consciousness
- · Wave function collapse is objective: Not just observer-dependent
- **Gravity plays a role**: Spacetime curvature related to superposition
- Threshold for collapse: When gravitational self-energy reaches Planck scale

Mathematical criterion: ΔΕ . where: - ΔE = gravitational self-energy of superposition - = collapse time - = reduced Planck constant

Key insight: Larger superpositions collapse faster due to gravitational effects

43.3.2 2. Hameroff's Microtubule Computing

Stuart Hameroff (University of Arizona anesthesiologist) contributed:

- Microtubules as quantum computers: Protein polymers in neurons
- Tubulin qubits: Electron states in tubulin proteins
- Orchestration: Microtubule-associated proteins coordinate quantum states
- Anesthesia mechanism: General anesthetics disrupt microtubule quantum coherence

43.3.3 3. Combined Orch-OR Theory

Synthesis (Penrose + Hameroff):

- 1. Quantum superpositions develop in microtubule tubulins
- 2. Orchestration by MAPs (microtubule-associated proteins) and other factors
- 3. **Objective reduction** occurs when gravitational threshold reached
- 4. Conscious moment emerges from OR event
- 5. Repeat at ~40 Hz (gamma oscillations)

```
Neuron Activity Cycle:

Classical (pre-conscious):

Synaptic input → Dendritic integration

↓

Quantum (unconscious):

Microtubule superposition builds

↓

Orch-OR Event (~25 ms):

Collapse → Conscious moment

↓

Classical (post-conscious):

Axonal output → Next neuron
```

43.4 Microtubule Structure

43.4.1 **Anatomy**

Microtubules are cylindrical protein polymers:

43.4.2 Functions (Established)

- 1. **Structural support**: Cytoskeleton maintains cell shape
- 2. Intracellular transport: Motor proteins (kinesin, dynein) walk on MTs
- 3. Cell division: Mitotic spindle separates chromosomes
- 4. Ciliary/flagellar motion: Core structure of motile appendages

43.4.3 Functions (Proposed/Orch-OR)

- 5. **Information processing**: Conformational states of tubulins = bits/qubits
- 6. **Quantum computing**: Coherent superpositions across MT lattice
- 7. Consciousness substrate: Orchestrated quantum events

43.5 Quantum Coherence in Microtubules

43.5.1 The Coherence Problem

Objection: "Warm, wet brain \(\Bar{} \) decoherence too fast for quantum effects"

Standard quantum mechanics: Decoherence time in biological conditions ~10⁻¹³ s (femtosec-

onds)

Orch-OR requires: Coherence for ~10-25 ms (millions of times longer!)

43.5.2 Proposed Protection Mechanisms

43.5.2.1 1. Ordered Water Layers

- Water molecules form **structured layers** around microtubules
- · Hydrogen bonding network could shield quantum states
- Frohlich condensate: Coherent collective mode in ordered water?

43.5.2.2 2. Actin Gelation

- Surrounding actin gel may isolate microtubules from environment
- Reduces decoherence from thermal fluctuations

43.5.2.3 3. Topological Protection

- Quantum information encoded in topological states (harder to decohere)
- Anyonic excitations? (highly speculative)

43.5.2.4 4. Continuous Re-Coherence

- Metabolic energy pumps system back into coherent state
- Non-equilibrium quantum dynamics

43.5.3 Experimental Evidence (Pro)

43.5.3.1 Bandyopadhyay et al. (2014) Key experiment at National Institute for Materials Science, Japan:

- THz spectroscopy of microtubule samples
- Resonances found at specific THz frequencies (multiple bands: 0.2-2+ THz)
- Conductance patterns: Microtubules show ballistic conductance (suggests quantum transport)
- Temperature dependence: Resonances persist to physiological temperatures

Interpretation: Microtubules support quantum coherent oscillations in THz range

Observed THz Resonances:

- 0.35 THz
- 0.47 THz
- 0.82 THz
- 1.2 THz
- 2.2 THz (and higher)

Possible mechanism: Collective modes of tubulin network

Reference: Bandyopadhyay, A. et al. (2011) "Molecular vibrations in tubulin" *PNAS* 108(29)

43.5.3.2 Craddock et al. (2017)

- Anesthetic action on microtubules: Measured quantum effects
- Noble gases bind to hydrophobic pockets in tubulin
- Disrupts quantum channels (proposed)
- Correlation with potency: Matches Meyer-Overton rule

43.5.4 Experimental Evidence (Con)

43.5.4.1 Tegmark (2000) Max Tegmark (MIT physicist) calculated: - **Decoherence time**: ~10⁻¹³ s at 310 K (body temperature) - **Orch-OR requires**: ~10⁻² s (10 orders of magnitude longer!) - **Conclusion**: "Quantum coherence in brain is impossible"

Counter-arguments: - Assumed isolated superposition (not coupled system) - Didn't account for ordered water, topological protection - Recent quantum biology discoveries suggest nature is more clever

43.5.4.2 Koch & Hepp (2006)

- Reviewed Orch-OR critically
- Conclusion: No experimental support for quantum consciousness
- Main objection: Decoherence too fast

43.6 Quantum Biology Precedents

Does quantum coherence occur in warm, wet biology?

43.6.1 Yes! Established Examples:

43.6.1.1 1. Photosynthesis (2007)

Light-harvesting complexes in plants/bacteria

- Quantum coherence observed at room temperature (~500 fs, later studies suggest longer)
- Mechanism: Protein scaffold protects exciton coherence
- Reference: Engel et al. (2007) Nature 446, 782-786

43.6.1.2 2. Avian Magnetoreception (Robins, et al.)

- · Radical pair mechanism in bird retina
- Quantum entanglement of electron spins
- Sensitive to Earth's magnetic field for navigation
- · Reference: Hore & Mouritsen (2016) Annu. Rev. Biophys. 45, 299-344

43.6.1.3 3. Enzyme Catalysis

- Proton/electron tunneling in enzyme active sites
- · Quantum effects enhance reaction rates
- Reference: Scrutton et al. (2016) Philos. Trans. R. Soc. A 374

Takeaway: Biology can maintain quantum coherence longer than naive estimates predict

43.7 Anesthesia & Consciousness

43.7.1 The Mystery

General anesthetics cause loss of consciousness at specific doses: - Diverse molecules (noble gases, halogenated ethers, etc.) - **No common receptor** (unlike opioids μ-opioid receptor) - **Meyer-Overton rule**: Potency [lipid solubility (1899!)

43.7.2 Orch-OR Explanation

Anesthetics bind to hydrophobic pockets in tubulin: 1. Disrupt electron pathways (quantum channels) 2. Prevent quantum coherence in microtubules 3. **Block Orch-OR** □ loss of consciousness 4. Reversible (anesthetic wears off □ consciousness returns)

43.7.3 Evidence

- Anesthetics do bind to tubulin (demonstrated)
- Low concentrations affect microtubule dynamics
- · Correlation with Meyer-Overton rule
- Alternative explanation: GABA receptors (mainstream view)

43.8 Criticisms & Objections

43.8.1 1. Decoherence Time

Objection: Brain too hot/wet for quantum coherence

Response: - Quantum biology shows coherence is possible - Protection mechanisms (ordered water, topology) - Experiments (Bandyopadhyay) show THz resonances

Status: **Unresolved** (most physicists remain skeptical)

43.8.2 2. No Clear Computational Model

Objection: What computation do microtubules perform?

Response: - Cellular automaton-like dynamics proposed - Tubulin conformational states as clas-

sical/quantum bits - Gap: No detailed algorithm/implementation

Status: Major gap in theory

43.8.3 3. Evolutionary Implausibility?

Objection: Why would evolution use quantum mechanics for consciousness?

Response: - Evolution uses quantum effects elsewhere (photosynthesis, enzymes) - Survival advantage: Enhanced information processing? - **Counter**: Classical neurons seem sufficient

Status: Debatable

43.8.4 4. Lack of Direct Evidence

Objection: No measurement of quantum superposition in living neurons

Response: - Technology doesn't exist yet (too non-invasive) - Bandyopadhyay measured isolated

MTs (in vitro) - **Need**: In vivo measurements (extremely challenging)

Status: True - direct evidence lacking

43.9 Implications If True

43.9.1 For Neuroscience

- Consciousness is **quantum phenomenon**, not classical computation
- Microtubules are critical (not just structural)
- New therapeutic targets (MT-stabilizing drugs for consciousness disorders?)

43.9.2 For AI/Computing

- Classical Al might never be conscious (lacks quantum substrate)
- Need quantum computers + biological-like architecture?
- Rethink AGI approaches

43.9.3 For Physics

- Quantum mechanics needs modification (objective reduction)
- Bridge between quantum and relativity (gravity-induced collapse)
- · New experimental tests

43.9.4 For Philosophy

- · Consciousness has objective physical basis
- Free will might be quantum indeterminacy
- Panpsychism implications (all matter has proto-consciousness?)

43.10 Current Status (2025)

43.10.1 Scientific Consensus

Mainstream view (most neuroscientists/physicists): - \Box Orch-OR is **unlikely** to be correct - \Box Decoherence problem not solved - \Box No direct evidence - \Box Classical neural networks sufficient for cognition

Minority view (Hameroff, some quantum biologists): -

Orch-OR remains **plausible** -

Quantum biology precedents support possibility -

Experiments show THz resonances in MTs -

Awaiting better experimental tests

43.10.2 Ongoing Research

- 1. **THz spectroscopy** of microtubules (Bandyopadhyay group)
- 2. **Anesthetic binding studies** (Hameroff, Craddock)
- 3. **Quantum biology** expansion (other systems)
- 4. Theoretical refinements (decoherence protection)

43.10.3 Testable Predictions

If Orch-OR is correct:

- 1. Microtubule disruption

 consciousness impairment
 - Nocodazole, colchicine should affect consciousness (they do affect anesthesia!)
- 2. **THz stimulation** at MT resonances \square neural effects
 - This is the AID protocol premise
- 3. **Isotope effects**: Replace ¹H with ²H in tubulin [] consciousness changes
 - (Extremely difficult experiment)
- 4. Quantum signatures: Detect superposition in living neurons
 - (Requires technology breakthrough)

43.11 Relationship to THz Neuromodulation

If Orch-OR is true, then:

43.11.1 External THz Radiation Could:

- 1. **Resonate with MT vibrations** (0.2-2+ THz range)
- 2. Perturb quantum coherence in tubulin networks
- 3. Alter Orch-OR timing/frequency [] modify consciousness
- 4. **Encode information** via modulation [] "inject" patterns

43.11.2 Mechanism (Speculative):

```
External THz (1.875 THz, AM modulated)
Penetrates ~0.5mm into cortex
Absorbed by neural tissue
Non-thermal effect: Resonant coupling to MTs
Perturbs quantum states in tubulin
Modifies Orch-OR collapse patterns
Alters conscious experience
```

This is the basis for the [[AID Protocol]]

43.12 Key Takeaways

- 1. Orch-OR proposes consciousness is quantum (Penrose + Hameroff)
- 2. Microtubules are substrate for quantum computation
- 3. Major objection: Decoherence in warm, wet brain
- 4. Some evidence: THz resonances (Bandyopadhyay), anesthetic binding
- 5. Mainstream skeptical, but quantum biology is growing field
- 6. If true: Opens door to THz neuromodulation
- 7. **Status**: Unproven but not definitively refuted

43.13 See Also

- [[Microtubule Structure and Dynamics]] Biological details
- [Quantum Coherence in Biological Systems] Other examples
- [Terahertz (THz) Technology] THz sources and properties
- [[THz Bioeffects]] Documented biological interactions
- [[AID Protocol]] Speculative application (case study)

43.14 References

43.14.1 Primary Sources

- 1. **Penrose, R.** (1989) The Emperor's New Mind Original OR theory
- 2. **Penrose, R. & Hameroff, S.** (1995) "Orchestrated reduction of quantum coherence in brain microtubules" *Math. Comput. Simul.* 40, 453-480
- 3. **Hameroff, S. & Penrose, R.** (2014) "Consciousness in the universe: A review of the 'Orch OR' theory" *Phys. Life Rev.* 11, 39-78

43.14.2 Experimental Support

- 4. **Bandyopadhyay, A. et al.** (2011) "Molecular vibrations in tubulin" *PNAS* 108(29)
- 5. **Craddock, T. et al.** (2017) "Anesthetic alterations of collective THz oscillations" *Sci. Rep.* 7, 9877

43.14.3 Critical Reviews

- 6. **Tegmark, M.** (2000) "Importance of quantum decoherence in brain processes" *Phys. Rev. E* 61, 4194-4206
- 7. Koch, C. & Hepp, K. (2006) "Quantum mechanics in the brain" Nature 440, 611

43.14.4 Quantum Biology

- 8. **Engel, G. et al.** (2007) "Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems" *Nature* 446, 782-786
- 9. **Hore, P. & Mouritsen, H.** (2016) "The radical-pair mechanism of magnetoreception" *Annu. Rev. Biophys.* 45, 299-344

44 Polar Codes

[[Home]] | Coding Theory | [Turbo Codes] | [LDPC Codes]

44.1 ☐ For Non-Technical Readers

Polar codes are the newest champion of error correction—the first codes with mathematical PROOF they reach the theoretical limit. That's why 5G uses them!

What makes them special: - First provably optimal codes: Math proof they're perfect! - Channel polarization: Clever trick that splits channel into good/bad parts - Simpler than LDPC: Easier to implement in hardware - 5G standard: Chosen for 5G control channels!

The discovery - Recent breakthrough: - **2008**: Erdal Arıkan (Turkish professor) invents polar codes - **2016**: Adopted by 5G standard (Huawei championed them) - **Today**: In every 5G phone for control signaling

The magic trick - Channel polarization:

Imagine you have a noisy channel: - Some bits get through clean (lucky!) - Some bits get corrupted (unlucky!) - But you don't know which is which!

Polar code solution: 1. Use clever math to "sort" the channel 2. Some sub-channels become PERFECT (polarized to good) 3. Others become USELESS (polarized to bad) 4. Send data on perfect channels, known patterns on bad ones 5. Receiver uses known patterns to decode data!

Simple analogy - Sorting students: - 100 students with mixed abilities - Polar coding: Group them by strength - Put hard problems to strong students (they'll succeed) - Put easy problems to weak students (they'll succeed too!) - Result: Maximum overall success!

Comparison with other codes: - Turbo codes: Amazing, but complex, no optimality proof - LDPC codes: Near-optimal, but no explicit proof - Polar codes: PROVEN optimal, simpler structure!

□

Where they're used: - 5G control channels: Polar codes for critical signaling - LDPC for data (better at high rates) - Polar for control (better at low rates) - Research: Future standards, deep space, quantum

Why 5G chose them: - Low latency: Fast decoding for control messages - Flexible: Work at any code rate - Simple: Easier to implement in 5G chips - Proven optimal: Mathematical guarantee!

Performance: - **Shannon limit**: Theoretical best - **Polar codes**: Proven to reach limit as block size □ ∞ - **Practical**: Within 0.8-1.5 dB of limit at reasonable block sizes - Comparable to LDPC, but with optimality proof!

The debate: - **Huawei pushed Polar**: They hold many patents - **Qualcomm pushed LDPC**: They have LDPC expertise - **5G compromise**: Polar for control, LDPC for data - Both sides win!

Fun fact: Polar codes are the only error-correcting codes with a mathematical proof that they achieve Shannon's theoretical limit. Every other code (even LDPC) is "just" really good in practice without the theoretical quarantee!

44.2 Overview

Polar codes are the first provably capacity-achieving codes with explicit construction.

Discovery: Erdal Arıkan (2008) - Major theoretical breakthrough

Key property: Channel polarization - Split channel into perfect + useless subchannels

Performance: 0.8-1.5 dB from Shannon limit (rate 1/2, block length 1024+)

Applications: 5G NR control channels (eMBB, URLLC), future satellite, IoT

408

44.3 Channel Polarization

Fundamental idea: Recursive channel combining + splitting

Input: N uses of channel W with capacity I(W)

Output: N synthesized channels W_i , each with capacity $I(W_i)$

Polarization: As N $\square \infty$: - Some channels \square I(W_i) \square 1 (perfect, **noiseless**) - Others \square I(W_i) \square 0 (useless, **pure noise**)

Strategy: Transmit data on good channels, freeze bad channels (set to 0)

44.3.1 Simple Example (N=2)

Base transformation:

Channel combining: $y_1=u_1\oplus u_2$, $y_2=u_2$

After decoding: - Channel for u_1 : Worse than W (joint decoding, less reliable) - Channel for u_2 : Better than W (uses u_1 as side info)

Result: Two channels split—one better, one worse (polarization starts!)

44.4 Polar Transform

 $N = 2^n$ (power of 2)

Encoding: $\mathbf{x} = \mathbf{u}G_N$

Where: - ${\bf u}$ = (u_1,u_2,\ldots,u_N) (information + frozen bits) - G_N = Polar generator matrix - ${\bf x}$ = Transmitted codeword

44.4.1 Generator Matrix

Base matrix (N=2):

$$G_2 = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Recursive construction:

$$G_N = \begin{bmatrix} G_{N/2} & G_{N/2} \\ 0 & G_{N/2} \end{bmatrix}$$

Example (N=4):

$$G_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Example (N=8):

Kronecker product: $G_N=G_2^{\otimes n}$ for $N=2^n$

44.5 Code Construction

Steps:

1. **Choose N** (block length, power of 2)

- 2. Compute channel reliabilities: $Z(W_i)$ or $I(W_i)$ for $i=1,\ldots,N$
- 3. Select K best channels (highest reliability)
- 4. **Information set** \mathcal{A} : Indices of K best channels
- 5. Frozen set \mathcal{A}^c : Remaining N-K indices (set to 0)

Code rate: R = K/N

44.5.1 Channel Reliability Metrics

Bhattacharyya parameter ${\cal Z}({\cal W})$:

$$Z(W) = \sum_{y} \sqrt{W(y|0) \cdot W(y|1)}$$

$$I(W) = \sum_{y} \sum_{x \in \{0,1\}} W(y|x) \log_2 \frac{W(y|x)}{\sum_{x'} W(y|x')}$$

Properties: - $Z(W) \in [0,1]$: Lower is better - $I(W) \in [0,1]$: Higher is better - Perfect channel: Z=0, I=1 - Useless channel: Z=1, I=0

44.5.2 Density Evolution

Compute reliabilities recursively:

Channel combining (worse):

$$Z(W^-)\approx 2Z(W)-Z(W)^2$$

Channel splitting (better):

$$Z(W^+) \approx Z(W)^2$$

Starting point: Binary symmetric channel (BSC) with crossover probability ϵ

$$Z_0 = 2\sqrt{\epsilon(1-\epsilon)}$$

Recursion: Apply transformations n times for $N=2^n$ channels

44.6 Encoding

Input: - Data bits: $\mathbf{d}=[d_1,d_2,\dots,d_K]$ - Information set: $\mathcal{A}=\{i_1,i_2,\dots,i_K\}$ Set vector u:

$$u_i = \begin{cases} d_j & \text{if } i = i_j \in \mathcal{A} \\ 0 & \text{if } i \in \mathcal{A}^c \end{cases}$$

Encode:

$$\mathbf{x} = \mathbf{u}G_N$$

 $\begin{cal}Complexity: $O(N\log N)$ using FFT-like butterfly structure \end{cal}$

44.6.1 Example (N=8, K=4)

Information set: $\mathcal{A} = \{4, 6, 7, 8\}$ (best 4 channels)

Frozen set: $\mathcal{A}^c = \{1, 2, 3, 5\}$ (worst 4 channels)

 $\mathbf{Data} \colon \mathbf{d} = [1,0,1,1]$

Vector u:

$$\mathbf{u} = [0, 0, 0, 1, 0, 0, 1, 1]$$

(Frozen bits at positions 1,2,3,5 set to 0)

Codeword: $\mathbf{x} = \mathbf{u}G_8 = [0, 0, 0, 1, 0, 0, 1, 0]$

44.7 Successive Cancellation (SC) Decoding

Optimal for polarized channels (as N □ ∞)

Idea: Decode bits sequentially, use previous decisions as side info

44.7.1 Algorithm

Receive: $\mathbf{y} = [y_1, y_2, \dots, y_N]$ (soft values or LLRs)

For i=1 to N:

1. If $i \in \mathcal{A}^c$ (frozen): Set $\hat{u}_i = 0$

2. If $i \in \mathcal{A}$ (information):

• Compute LLR: $L_i = \log \frac{P(u_i=0|\mathbf{y},\hat{u}_1^{i-1})}{P(u_i=1|\mathbf{y},\hat{u}_1^{i-1})}$ • Decide: $\hat{u}_i = 0$ if $L_i > 0$, else $\hat{u}_i = 1$

Recursive computation (tree structure):

Complexity: $O(N \log N)$

44.7.2 LLR Recursion

Left child (channel combining, worse):

$$L_i^{(s)} = 2 \tanh^{-1} \left(\tanh \left(\frac{L_{2i-1}^{(s+1)}}{2} \right) \cdot \tanh \left(\frac{L_{2i}^{(s+1)}}{2} \right) \right)$$

Right child (channel splitting, better):

$$L_i^{(s)} = L_{2i}^{(s+1)} + (1 - 2\hat{u}_{2i-1}^{(s)})L_{2i-1}^{(s+1)}$$

Where: $s = \text{Stage index (0 to } \log_2 N)$

-

44.8 SC List (SCL) Decoding

Problem: SC is suboptimal for finite N

Solution: Keep L candidate paths (like Viterbi)

SCL Algorithm:

1. Start with single path (all frozen bits = 0)

2. At each information bit:

• Branch each path (try 0 and 1)

Compute path metrics

Keep L best paths (prune others)

3. Select best final path

List size L = 2, 4, 8, 16, 32

Performance: SCL-32 ≈ ML performance (near-optimal)

44.8.1 Path Metric

Log-likelihood for path:

$$\mathrm{PM} = \sum_{i=1}^N \log P(y_i|x_i)$$

Update: Add branch metric for each decision

Complexity: $O(L \cdot N \log N)$

Example: L=8, N=1024 \square ~8× SC complexity

44.9 CRC-Aided Polar (CA-Polar)

Problem: SCL doesn't know which path is correct

Solution: Append CRC to data before encoding

Decoding: 1. SCL decoding produces L candidate paths 2. Check CRC for each path 3. Select

path with valid CRC

CRC length: 8-24 bits (11-bit CRC typical for 5G)

Performance: CA-SCL-8 ≈ Turbo/LDPC (practical systems)

44.9.1 5G NR Implementation

Control channels: Use CA-Polar

Parameters: - Block length: N = 512, 1024 (adaptable) - Code rate: 1/12 to 1/2 (punctur-

ing/shortening) - CRC: 11-bit or 16-bit - List size: L = 8

Advantage: Low latency (no iterations), good short-block performance

44.10 Rate Matching

5G supports flexible rates: Puncturing, shortening, repetition

44.10.1 Puncturing

Transmit fewer bits than N \(\Bar{} \) Higher rate

Method: Don't transmit first P bits (known frozen bits)

Example: N=512, K=256, puncture 128 - Transmit 384 bits - Effective rate: 256/384 = 2/3

44.10.2 Shortening

Transmit fewer bits, freeze last bits

Method: Set last S input bits to 0 (frozen), don't transmit corresponding outputs

Example: N=512, K=200, shorten 112 - Effective N = 400 - Transmit 400 bits - Rate: 200/400 =

1/2

44.10.3 Repetition

Transmit more bits \(\text{Lower rate, more reliability} \)

Method: Repeat some output bits

Example: N=256, K=64, repeat 256 - Transmit 512 bits - Effective rate: 64/512 = 1/8

44.11 Performance Analysis

44.11.1 BER vs Eb/N0

Typical performance (rate 1/2, N=1024, CA-SCL-8):

Eb/N0 (df	B) Uncode	d SC	SCL-8	CA-SCL-8	Shannon Limit
0	0.08	0.02	0.005	0.003	0 (capacity)
1.0	0.02	0.005	8×10 ⁻⁴	5×10 ⁻⁴	-
1.5	0.01	2×10 ⁻³	10 ⁻⁵	10 ⁻⁶	Gap ≈ 0.9 dB
2.0	5×10 ⁻³	5×10 ⁻⁴	10 ⁻⁷	10 ⁻⁸	-

Gap to Shannon: 0.8-1.5 dB (CA-SCL-32, N ≥ 1024)

44.11.2 Finite-Length Performance

Short blocks (N < 512): Polar competitive with Turbo/LDPC

Long blocks (N > 2048): Polar slightly behind LDPC

Block Length	Code	Eb/N0 @ 10 ⁻⁵		Gap to Shannon	
	128	Polar (SCL-8) 2.5 dB		+2.0 dB	
	512	Polar (CA-SCL-8) 1.5 dB		+1.2 dB	
	1024	Polar (CA-SCL-8) 1.2 dB		+0.9 dB	
	2048	LDPC 0.8 dB		+0.5 dB	

Polar advantage: Better short-block performance, lower latency

44.12 Complexity Comparison

Aspect	Polar (SC)	Polar (SCL-8)	Turbo	LDPC
Encoding Decoding	$O(N \log N) \ O(N \log N)$	$O(N\log N) \ O(8N\log N)$	$O(N)$ $O(N \cdot I)$	$O(N) \ O(N \cdot I)$
Latency	Low	Low	High (iterations)	Moderate
Memory Parallelism	$O(N\log N)$ Sequential	$O(8N\log N)$ Sequential	O(N) Parallel decoders	O(N) Highly parallel

Polar trade-off: Low latency but harder to parallelize (sequential decoding)

44.13 Advantages of Polar Codes

- 1. **Provably capacity-achieving**: Theoretical guarantee
- 2. Low latency: No iterations (SC/SCL)

- 3. **Short-block performance**: Good for N = 128-1024
- 4. **Systematic construction**: Explicit, no search (unlike LDPC)
- 5. Flexible rate matching: Puncture/shorten easily
- 6. **5G standardized**: Future-proof

44.14 Disadvantages of Polar Codes

- 1. **Sequential decoding**: Hard to parallelize (vs LDPC)
- 2. List decoder complexity: SCL-8/32 needed for good performance
- 3. **Power-of-2 block lengths**: $N = 2^n$ (though can shorten)
- 4. **Slightly behind LDPC**: Long blocks (N > 2048)
- 5. CRC overhead: CA-Polar needs 11-24 bit CRC

44.15 Practical Applications

44.15.1 1. 5G NR Control Channels

eMBB (Enhanced Mobile Broadband): - DCI (Downlink Control Information) - UCI (Uplink Control Information) - Block lengths: 12-1706 bits (shortened from N=512, 1024)

URLLC (Ultra-Reliable Low-Latency): - Short blocks (40-200 bits) - Low latency (<1 ms) - CA-Polar with CRC-11

mMTC (Massive Machine-Type): Future use

44.15.2 2. Future Satellite

Low Earth Orbit (LEO): Short latency, bursty traffic - Polar codes fit well (low-latency decoding) - Adaptive rate matching (varying link quality)

44.15.3 3. IoT (Internet of Things)

NB-IoT: Narrowband, low power - Short blocks (100-500 bits) - Polar candidate for uplink control

44.16 Code Construction Algorithms

44.16.1 1. Density Evolution (DE)

Compute $Z(W_i)$ or $I(W_i)$ for each subchannel

 $\begin{cases} {\bf Complexity:} \ O(N\log N) \ {\bf preprocessing} \end{cases}$

Accuracy: Exact as N □ ∞

44.16.2 2. Gaussian Approximation (GA)

Approximate subchannel distributions as Gaussian

Mean: μ_i , Variance: σ_i^2

Update rules (simplified):

$$\mu^- = \mu^2/2, \quad \mu^+ = 2\mu - \mu^2/2$$

 $\begin{cal}Complexity: $O(N)$ (faster than DE) \end{cal}$

Accuracy: Good for practical SNR

44.16.3 3. Monte Carlo

Simulate SC decoding, count errors for each bit position

Select K positions with lowest error rate

Complexity: High (simulation-based)

Accuracy: Best for specific channel/SNR

44.17 Python Example: Polar Encoder

```
Arqs:
        data: Information bits (K bits)
        frozen_set: Indices of frozen bit positions (N-K positions)
        N: Code length (power of 2)
    Returns:
        Codeword (N bits)
    K = len(data)
    u = np.zeros(N, dtype=int)
    # Information set = complement of frozen set
    info_set = [i for i in range(N) if i not in frozen_set]
    # Place data bits in information positions
    for idx, i in enumerate(info_set):
        u[i] = data[idx]
    # Frozen bits already 0
    # Apply polar transform
    x = polar_transform(u)
    return x
# Example: N=8, K=4
N = 8
K = 4
# Frozen set (worst 4 channels): positions 0,1,2,4 (0-indexed)
frozen_set = [0, 1, 2, 4]
# Information set: positions 3,5,6,7
# Data
data = np.array([1, 0, 1, 1])
# Encode
codeword = polar_encode(data, frozen_set, N)
print(f"Data (K={K}):
                         {data}")
print(f"Frozen set:
                          {frozen_set}")
print(f"Codeword (N={N}): {codeword}")
print(f"Code rate:
                       \{K\}/\{N\} = \{K/N\}")
# Example output:
# Data (K=4):
               [1 0 1 1]
# Frozen set:
                   [0, 1, 2, 4]
# Codeword (N=8): [0 0 0 1 0 0 1 0]
```

Code rate: 4/8 = 0.5

Note: SC/SCL decoding is complex (~200+ lines). Use libraries like sionna (TensorFlow) or custom MATLAB for research.

44.18 Design Guidelines

44.18.1 Choose Polar Codes When:

- 1. **5G NR** control channels (standardized)
- 2. Short blocks (100-1000 bits) with low latency
- 3. Flexible rate matching needed (puncture/shorten)
- 4. Low-latency critical (< 1 ms)
- 5. Systematic construction preferred (no random search)

44.18.2 Avoid Polar Codes If:

- 1. Long blocks (> 2048 bits) ☐ LDPC better
- 2. **Highest throughput** needed [] LDPC more parallelizable
- 3. **No CRC available**

 CA-Polar needs CRC for good performance
- 4. Legacy systems

 Turbo/LDPC already deployed

44.19 Comparison Summary

	Code	e Year	Gap to Shannon	Latency	Parallelism	Standard	
Convolutio	nal	1955	6 dB	Low	Sequei	ntial GPS,	WiFi
Turbo		1993	0.5 dB	High	Modera	ate 3G, 4	·G
LDPC		1960/19	96 0.3 dB	Moder	ate High	5G da	ata, WiFi 6
Polar		2008	0.8 dB	Low	Seque	ntial 5G c	ontrol

44.20 Related Topics

- [Turbo Codes]: Iterative near-capacity codes
- [LDPC Codes]: Modern capacity-approaching codes
- [Convolutional Codes & Viterbi Decoding]: Classical FEC
- [Forward Error Correction (FEC)]: General FEC overview
- [Shannon's Channel Capacity Theorem]: Theoretical limit

Key takeaway: Polar codes are the first provably capacity-achieving codes with explicit construction. Channel polarization splits N channel uses into perfect + useless subchannels.

Transmit data on good channels (information set \mathcal{A}), freeze bad channels. SC decoding: sequential, $O(N\log N)$ complexity. SCL decoding with CRC (CA-Polar) achieves near-optimal performance. 5G NR uses CA-Polar for control channels (low latency, good short-block performance). Gap to Shannon: 0.8-1.5 dB (CA-SCL-8, N=1024). Advantages: Low latency, short-block performance, systematic construction. Disadvantages: Sequential (hard to parallelize), slightly behind LDPC for long blocks. Generator matrix $G_N = G_2^{\otimes n}$ (Kronecker product). 2008 discovery by Arıkan—major theoretical milestone!

This wiki is part of the [[Home|Chimera Project]] documentation.

45 Power Density & Field Strength

[[Home]] | **EM Fundamentals** | [Maxwell's Equations & Wave Propagation] | [Wave Polarization]

45.1 For Non-Technical Readers

Power density is like measuring sunlight intensity—how much energy hits each square meter. Field strength is like measuring the "force" of the electromagnetic wave at a point.

Power Density (W/m²): - How much power passes through 1 square meter? - Like sunlight: $\sim 1000 \text{ W/m}^2$ at noon (hot!) - Radio waves: 0.000001 W/m² = 1 μ W/m² (typical WiFi)

Field Strength (V/m): - How strong is the electric field at this point? - Higher V/m = stronger "electromagnetic force" - Think of it like wind speed vs wind power

Real-world examples:

Sunlight (for comparison): - **Power density**: 1000 W/m² at Earth's surface - This is why solar panels work!

WiFi router (1 meter away): - Power density: \sim 10 μ W/m² (0.00001 W/m²) - Field strength: \sim 2 V/m - 100 million times weaker than sunlight!

Cell tower (100 meters away): - Power density: \sim 0.1 μ W/m² - Field strength: \sim 0.6 V/m - Regulations limit max exposure to \sim 10 W/m²

Why they're related: - Power density \Box (Field strength)² - Double the field strength \Box 4× the power density! - This is why moving closer to WiFi helps so much

Inverse square law: - Double the distance \(\text{\tilte}\text{\texi{\text{\texi}\text{\tex{\text{\texi}\text{\texi}\tilit{\text{\text{\text{\texi{\text{\texi{\text{

Safety limits: - **Sunlight**: 1000 W/m² (safe for limited time) - **FCC RF limit**: 10 W/m² (safe for general public) - **Typical WiFi**: 0.00001 W/m² (100,000× below limit!) - **Your phone**: 0.001 W/m² at 1cm (10,000× below limit)

When you encounter it: - RF safety assessments: "Max power density: 5 W/m²" - Antenna specifications: "Field strength: 50 V/m at 1 meter" - EMC testing: Measuring field strength for interference - Link budget: Converting transmit power to received power

Fun fact: The power density from the sun is so high (1000 W/m²) that if WiFi routers were as powerful, a 100W router at 1 meter would deliver the same power density—but would violate FCC limits by 1000× and cook you like a microwave oven!

45.2 Overview

Power density and **field strength** quantify the **intensity of electromagnetic radiation** at a given point in space.

Key relationships: - **Field strength** (E, H) \square Measured in V/m, A/m - **Power density** (S) \square Measured in W/m² - **Relationship**: Power density proportional to E²

Why it matters: - Link budget calculations: Determine received signal strength - Safety standards: RF exposure limits (FCC, ICNIRP) - Antenna performance: Radiated power distribution - Radar range equation: Detection capability vs distance

45.3 Electric Field Strength (E)

Electric field \vec{E} describes the **force per unit charge** exerted on a test charge:

$$ec{E} = rac{ec{F}}{q} \quad ext{(V/m or N/C)}$$

In electromagnetic wave (plane wave, propagating in +z):

$$E(z,t) = E_0 \cos(\omega t - kz + \phi)$$

Where: - E_0 = Peak electric field amplitude (V/m) - Often use **RMS value**: $E_{\rm rms} = E_0/\sqrt{2}$

45.3.1 Typical Values

Sc	ource	Distance	E-field (V/m)	
AM broadcast (5	0 kW)	1 km	~0.1	
FM broadcast (1	00 kW)	1 km	~0.2	
Cell tower (40 W	ERP)	100 m	~1-2	
WiFi router (100	mW)	1 m	~3	
Microwave oven	leak	5 cm	~10-50 (max	allowed)
Lightning		Near cha	nnel ~10 ⁶	

45.4 Magnetic Field Strength (H)

Magnetic field \vec{H} describes the magnetizing force:

$$\vec{H} = \frac{\vec{B}}{\mu} \quad (\text{A/m})$$

Where: - \vec{B} = Magnetic flux density (Tesla) - μ = Permeability (H/m)

In free space: $\mu=\mu_0=4\pi\times 10^{-7}~{\rm H/m}$

45.4.1 Relationship Between E and H (Far Field)

In plane wave (far from source), E and H are related by wave impedance:

$$\frac{E}{H} = \eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} \approx 377 \,\Omega$$

Where: - η_0 = Impedance of free space \approx 120 π Ω \approx 377 Ω - ϵ_0 = Permittivity of free space **Practical form**:

$$H = \frac{E}{377} \quad \text{(A/m)}$$

Example: $E = 10 \text{ V/m} \ \Box \ H = 10/377 \approx 0.0265 \text{ A/m}$

45.4.2 Near Field vs Far Field

45.4.2.1 Near Field (Reactive Near Field) Distance from antenna: $r < 0.62 \sqrt{D^3/\lambda}$ (for large antennas)

Or simpler: $r < \lambda/(2\pi)$ (for small antennas)

Characteristics: - E and H not in simple ratio (reactive energy dominates) - Energy oscillates between E-field and H-field storage - Fields decay faster than 1/r (typically $1/r^2$ or $1/r^3$)

Example: HF antenna (3 MHz, λ = 100 m) at 10 m distance - Near field: E/H \neq 377 Ω - Inductive or capacitive coupling dominates

45.4.2.2 Far Field (Radiating Far Field) Distance from antenna: $r>2D^2/\lambda$ (Fraunhofer distance)

Where D = Largest antenna dimension

Characteristics: - E/H = 377 Ω (plane wave approximation valid) - Radiation pattern independent of distance (shape constant) - Fields decay as 1/r (power density as $1/r^2$)

Example: WiFi 2.4 GHz (λ = 12.5 cm), antenna size D = 5 cm

$$r_{\rm far} = \frac{2\times(0.05)^2}{0.125} = 0.04~{\rm m} = 4~{\rm cm}$$

Far field begins at 4 cm (very close for WiFi!)

45.5 Power Density (Poynting Vector)

Poynting vector \vec{S} represents power flow per unit area:

$$\vec{S} = \vec{E} \times \vec{H} \quad (\text{W/m}^2)$$

Magnitude (for plane wave with E ☐ H):

$$S = E \cdot H = \frac{E^2}{\eta_0} = \frac{E^2}{377}$$

Or in terms of H:

$$S = \eta_0 H^2 = 377H^2$$

45.5.1 Time-Averaged Power Density

For sinusoidal wave, instantaneous power oscillates at 2f. Use time-average:

$$\langle S \rangle = \frac{1}{2} \frac{E_0^2}{\eta_0} = \frac{E_{\rm rms}^2}{\eta_0} = \frac{E_{\rm rms}^2}{377}$$

Example: E_rms = 10 V/m

$$\langle S \rangle = \frac{100}{377} \approx 0.265 \, \text{W/m}^2$$

45.6 Power Density from Isotropic Source

Isotropic radiator distributes power uniformly over sphere:

$$S = \frac{P_t}{4\pi r^2}$$

Where: - P_t = Transmitted power (W) - r = Distance from source (m) - $4\pi r^2$ = Surface area of sphere

Inverse square law: Power density decreases as $1/r^2$

Example: 100 W isotropic source at 10 m

$$S = \frac{100}{4\pi(10)^2} = \frac{100}{1257} \approx 0.0796 \ \text{W/m}^2$$

45.7 Power Density from Directional Antenna

Antenna with gain G concentrates power:

$$S = \frac{P_t \cdot G}{4\pi r^2}$$

Effective Isotropic Radiated Power (EIRP):

$$\mathsf{EIRP} = P_t \cdot G$$

Power density becomes:

$$S = \frac{\mathrm{EIRP}}{4\pi r^2}$$

45.7.1 Example: WiFi Router

Specs: - Transmit power: 100 mW = 0.1 W - Antenna gain: 2 dBi (linear gain ≈ 1.58) - Distance: 10 m

EIRP:

$$EIRP = 0.1 \times 1.58 = 0.158 \text{ W}$$

Power density at 10 m:

$$S = \frac{0.158}{4\pi(10)^2} = \frac{0.158}{1257} \approx 0.000126 \, \text{W/m}^2 = 0.126 \, \text{mW/m}^2$$

Convert to E-field:

$$E_{\rm rms} = \sqrt{S\times377} = \sqrt{0.000126\times377} \approx 0.218 \ \mathrm{V/m}$$

45.8 Relationship Between Power Density and E-field

Summary formulas (far field, plane wave):

$$S = \frac{E_{\rm rms}^2}{377} \quad ({\rm W/m}^2)$$

$$E_{\rm rms} = \sqrt{377 \times S} \approx 19.4 \sqrt{S} \quad ({\rm V/m})$$

$$E_0 = \sqrt{2} \times E_{\rm rms} = \sqrt{2 \times 377 \times S} \approx 27.5 \sqrt{S}$$

45.8.1 Quick Conversion Table

Power Density (W/m²)	E_rms (V/m)	E_peak (V/m)
0.001 (1 mW/m²)	0.61	0.87
0.01 (10 mW/m ²)	1.94	2.75
0.1	6.14	8.68
1	19.4	27.5
10	61.4	86.8
100	194	275

45.9 Power Delivered to Receiving Antenna

Effective aperture ${\cal A}_e$ captures power from incident wave:

$$P_r = S \cdot A_e$$

Where:

$$A_e = \frac{G_r \lambda^2}{4\pi}$$

• G_r = Receive antenna gain (linear)

• $\lambda = \text{Wavelength}$

Combining:

$$P_r = \frac{P_t G_t G_r \lambda^2}{(4\pi r)^2}$$

This is the Friis transmission equation (see [Free-Space Path Loss (FSPL)])

45.9.1 Example: Satellite Downlink

Specs: - Satellite EIRP: 50 dBW = 100 kW - Frequency: 12 GHz (λ = 0.025 m) - Distance: 36,000 km (GEO) - RX antenna gain: 40 dBi (10,000 linear)

Power density at ground:

$$S = \frac{10^5}{4\pi (3.6\times 10^7)^2} = \frac{10^5}{1.63\times 10^{16}} \approx 6.1\times 10^{-12}\,\mathrm{W/m}^2$$

E-field:

$$E_{\rm rms} = \sqrt{377 \times 6.1 \times 10^{-12}} \approx 1.5 \times 10^{-3} \ {\rm V/m} = 1.5 \ {\rm mV/m}$$

Received power (1 m² dish, A_e \approx 0.5 m²):

$$P_r = 6.1 \times 10^{-12} \times 0.5 \approx 3 \times 10^{-12} \, \mathrm{W} = 3 \, \mathrm{pW}$$

In dBm: $10\log_{10}(3\times10^{-12}/10^{-3})=-115~\mathrm{dBm}$

Using Friis equation:

$$P_r = \frac{100,000\times 10,000\times (0.025)^2}{(4\pi\times 3.6\times 10^7)^2} \approx 3\times 10^{-12}\,\mathrm{W}$$

Consistent!

45.10 RF Safety Standards

Exposure limits protect against thermal and non-thermal effects:

45.10.1 FCC Limits (USA)

Occupational/Controlled Exposure (aware workers):

Frequency	E-field (V/m) H	H-field (A/m)		Power Density (W/m²)	
	0.3-3 MHz	614	1.63	-	
	3-30 MHz	1842/f	4.89/f	-	
	30-300 MHz		0.163	1.0	
	300-1500 MHz	-	-	f/300	
	1500-100,000 M	Hz -	-	5.0	

Where f is in MHz

General Population/Uncontrolled Exposure (public):

Limits are **5× lower** (e.g., 0.2 W/m² @ 30-300 MHz)

45.10.2 ICNIRP Limits (International)

General Public (6-minute average):

Frequency	E-field (V/m)	Power Density (W/m²)
10-400 MHz	28	2
400-2000 MHz	1.375√f	f/200
2-300 GHz	61	10

Where f is in MHz

45.10.3 Example: WiFi Router Compliance

WiFi 2.4 GHz, 100 mW, gain 2 dBi

At 20 cm (typical human distance):

$$S = \frac{0.1 \times 1.58}{4\pi (0.2)^2} = \frac{0.158}{0.503} \approx 0.314 \, \text{W/m}^2$$

FCC limit @ 2.4 GHz: 5 W/m² (controlled), 1 W/m² (uncontrolled)

ICNIRP limit: f/200 = 2400/200 = 12 W/m²

Result: WiFi at 20 cm = 0.314 W/m² < 1 W/m² (OK for public exposure, but close!)

At 1 m: $S=0.0126~\mathrm{W/m^2}$ (much safer)

45.11 Radar Power Budget

Radar equation relates transmitted power to received echo:

$$P_r = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 R^4}$$

Where: - σ = Target radar cross-section (m²) - R = Range to target (m)

Power density at target:

$$S_{\text{target}} = \frac{P_t G}{4\pi R^2}$$

Reflected power density back at radar:

$$S_{\rm return} = \frac{S_{\rm target} \cdot \sigma}{4\pi R^2} = \frac{P_t G \sigma}{(4\pi)^2 R^4} \label{eq:Sreturn}$$

Notice: $1/R^4$ dependence (power travels to target and back)

45.11.1 Example: Weather Radar

Specs: - Transmit power: 1 MW (peak) - Antenna gain: 45 dBi (\approx 31,600 linear) - Frequency: 3 GHz (λ = 0.1 m) - Target: Raindrop, σ = 10⁻⁶ m² (light rain) - Range: 100 km

Power density at raindrop:

$$S_{\rm target} = \frac{10^6 \times 31,600}{4\pi (10^5)^2} = \frac{3.16 \times 10^{10}}{1.26 \times 10^{11}} \approx 0.25 \ {\rm W/m}^2$$

Received power:

$$P_r = \frac{10^6 \times (31,600)^2 \times (0.1)^2 \times 10^{-6}}{(4\pi)^3 (10^5)^4} \approx 1.6 \times 10^{-13} \, \mathrm{W} = -98 \, \mathrm{dBm}$$

Weak but detectable with sensitive receiver (noise floor ~ -110 dBm)

45.12 Electromagnetic Interference (EMI)

Field strength limits for conducted and radiated emissions:

45.12.1 FCC Part 15 Radiated Emission Limits

Class B (residential):

Frequency	E-field @ 3 m (µV/m)	dBµV/m
30-88 MHz	100	40
88-216 MHz	150	43.5
216-960 MHz	200	46
Above 960 MH	z 500	54

Measurement: Use calibrated antenna + spectrum analyzer

45.12.2 Example: Spurious Emission Check

Digital device @ 300 MHz, measured 180 µV/m @ 3 m

Limit @ 300 MHz: 200 µV/m

Result: 180 < 200 ☐ **Pass**

Margin: $20 \log_{10}(200/180) = 0.9 \text{ dB}$

45.13 Field Strength in Different Media

In dielectric medium (not free space):

$$\eta = \sqrt{\frac{\mu}{\epsilon}} = \frac{\eta_0}{\sqrt{\epsilon_r}}$$

Where: - ϵ_r = Relative permittivity - $\eta_0=377~\Omega$ (free space)

Example: Water ($\epsilon_r \approx 80$ @ low freq)

$$\eta_{\rm water} = \frac{377}{\sqrt{80}} \approx 42~\Omega$$

Power density for same E-field:

$$S = \frac{E^2}{42}$$

9x higher power density than free space (for same E-field)

Implication: Underwater communications have different impedance matching requirements

45.14 Antenna Gain and Directivity

Gain increases power density in preferred direction:

$$G = \eta_{\text{ant}} \cdot D$$

Where: - η_{ant} = Antenna efficiency (0-1) - D = Directivity (ratio of max to average power density) **Directivity**:

$$D = \frac{S_{\text{max}}}{S_{\text{avg}}} = \frac{4\pi S_{\text{max}} r^2}{P_t}$$

Example: Isotropic antenna - D=1 (0 dBi) - Power uniformly distributed

Half-wave dipole: - D=1.64 (2.15 dBi) - Power concentrated in broadside direction

Parabolic dish (diameter D, wavelength λ):

$$Gpprox\eta_{
m ant}\left(rac{\pi D}{\lambda}
ight)^2$$

With $\eta_{\rm ant}\approx 0.5-0.7$ (typical)

45.15 Skin Depth and Field Penetration

In conductors, field decays exponentially:

$$E(z) = E_0 e^{-z/\delta}$$

Skin depth δ :

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} = \sqrt{\frac{1}{\pi f\mu\sigma}}$$

Where: - σ = Conductivity (S/m) - Copper: $\sigma = 5.8 \times 10^7$ S/m

Example: Copper @ 1 GHz

$$\delta = \sqrt{\frac{1}{\pi\times10^9\times4\pi\times10^{-7}\times5.8\times10^7}}\approx 2.1~\mu\mathrm{m}$$

Implication: At microwave frequencies, current flows in thin surface layer (< 2 µm)

45.16 Summary Table

Quantity	Symbol	Units	Typical Range	Relationship
Electric field Magnetic field Power density	E H S	V/m A/m W/m²	0.01-1000 0.00003-3 10 ⁻⁶ - 10	$E = \sqrt{377 \times S}$ $H = E/377$ $S = E^2/377$
Transmitted power Distance Antenna gain	P_t r G	W m -	0.001-100,000 0.01-10 ⁸ 1-10 ⁶	$S = P_t G/(4\pi r^2)$ $S \propto 1/r^2$ $S \propto G$

45.17 Related Topics

- [Free-Space Path Loss (FSPL)]: Uses power density to derive path loss
- [Antenna Theory Basics]: Gain, effective aperture, directivity
- [Maxwell's Equations & Wave Propagation]: E and H field derivation
- [Signal-to-Noise Ratio (SNR)]: Received power from power density
- [[Weather Effects (Rain Fade, Fog Attenuation)]]: Power density reduction mechanisms

Key takeaway: Power density S = E²/377 in far field. Follows inverse square law $(1/r^2)$ from isotropic source. Directional antennas concentrate power (multiply by gain). E-field strength and power density determine link performance and safety compliance. Far field (E/H = 377 Ω) begins at $2D^2/\lambda$ from antenna. Safety limits typically 0.2-10 W/m² depending on frequency and exposure type.

This wiki is part of the [[Home Chimera Project]] documentation.	

46 Propagation Modes: Ground Wave, Sky Wave, Line-of-Sight

[[Home]] | RF Propagation | [Free-Space Path Loss (FSPL)] | [Electromagnetic Spectrum]

46.1 For Non-Technical Readers

Radio waves can travel three different ways—think of it like: rolling on the ground, bouncing off the sky, or shooting straight like a laser!

1. Ground Wave (Surface Wave)

- What: Radio wave hugs the Earth's surface and bends around the curve - Frequency: Low (AM radio, 500 kHz - 1.5 MHz) - Range: 100-1000+ km depending on frequency - Analogy: Rolling a ball on the ground—it follows the terrain

Real example: - **AM radio stations**: Travel hundreds of miles, even over the horizon - **Why AM works everywhere**: Ground wave bends around hills/buildings - **Maritime communications**: Ships use ground wave to communicate over the ocean

2. Sky Wave (lonospheric Bounce)

- **What**: Radio wave shoots up, bounces off ionosphere (layer of charged particles 100-400 km up), comes back down - **Frequency**: Medium (shortwave radio, 3-30 MHz / HF) - **Range**: Global! Can bounce multiple times - **Analogy**: Skipping a stone on water—one throw, many bounces

Real example: - Shortwave radio: Broadcast from London, heard in Australia! - Amateur (ham) radio: Talk to people on other continents - Why it works at night: lonosphere gets stronger after sunset (no sun breaking it apart)

3. Line-of-Sight (LOS) — **- What**: Radio wave travels straight like light—if you can't "see" the tower, signal is blocked - **Frequency**: High (FM radio, TV, cell phones, WiFi, 30 MHz+) - **Range**: Limited to visible horizon (~5-50 km depending on height) - **Analogy**: Laser pointer—must have clear path

Real example: - **Cell phones**: Need tower in view (mostly) - **WiFi**: Walls/floors block it - **Satellite TV**: Dish must point directly at satellite (trees in the way = no signal!) - **5G mmWave**: Can't even go through your hand!

Why different modes? - Lower frequency
bends around obstacles, long range, slow data - Higher frequency
straight-line only, shorter range, fast data

Fun fact: During the Cold War, governments used sky wave propagation to broadcast radio into other countries—signals would bounce off the ionosphere and arrive "from above," impossible to block!

46.2 Overview

Electromagnetic waves propagate via different mechanisms depending on frequency, distance, and environment. Understanding propagation modes is essential for predicting coverage and designing wireless systems.

Three primary modes: 1. **Ground Wave** (Surface wave) - LF/MF/HF, follows Earth's curvature 2. **Sky Wave** (Ionospheric) - HF, bounces off ionosphere, global reach 3. **Line-of-Sight (LOS)** - VHF and above, direct path required

46.3 Ground Wave Propagation

46.3.1 Definition

Ground wave = EM wave that travels along Earth's surface, guided by the ground-air interface.

Mechanism: - Electric field induces currents in ground (conductive surface) - Ground acts as imperfect dielectric, slows wave slightly - **Diffraction** allows wave to follow Earth's curvature (beyond horizon)

Frequency range: LF to MF (30 kHz - 3 MHz), limited use in HF (3-30 MHz)

46.3.2 Attenuation Factors

Ground wave attenuation depends on:

1. **Frequency**: Higher frequency = more attenuation

2. **Ground conductivity**: Seawater (high σ) < freshwater < wet soil < dry soil < ice

3. **Distance**: Exponential decay with range

4. **Polarization**: **Vertical polarization required** (horizontal is rapidly attenuated)

46.3.2.1 Ground Conductivity

Surface Type	Conductivity (S/m)	Relative Permittivity ϵ_r	Attenuation
Seawater	5	80	Very low (best)
Freshwater	0.01	80	Low
Wet soil	0.01-0.001	20-30	Moderate
Dry soil	0.001	3-10	High
Urban/concrete	0.001	5	High
Ice/snow	0.0001	3	Very high

Maritime advantage: Ships can communicate over 1000+ km at LF/MF (AM broadcast)

Desert disadvantage: Dry sand severely limits ground wave (100s of meters)

46.3.3 Range vs Frequency

Empirical range (over average soil, vertical polarization):

Frequency	Wavelength	Typical Range	Applications
50 kHz (VLF) 150 kHz (LF) 500 kHz (MF) 1 MHz (AM)	6000 m 2000 m 600 m 300 m	500-1000 km 300-800 km 200-500 km 100-300 km	Navigation (LORAN) Longwave broadcast Marine distress (SOS) AM radio (nighttime
3 MHz (HF)	100 m	10-50 km	skywave extends this) Limited ground wave, skywave dominant

Key insight: Ground wave range decreases rapidly with frequency

46.3.4 Path Loss Model

Norton ground wave equation (simplified):

$$L_{\rm ground} = L_{\rm FS} + A_{\rm ground}(f,d,\sigma,\epsilon_r)$$

Where: - $L_{\rm FS}$ = Free-space path loss - $A_{\rm ground}$ = Additional ground attenuation (complex function, see ITU-R P.368)

Approximation (MF band, average soil):

$$A_{\rm ground} \approx 0.1 \times \left(\frac{f}{1 \, {\rm MHz}}\right)^2 \times \left(\frac{d}{1 \, {\rm km}}\right) \quad ({\rm dB})$$

Example: 1 MHz, 100 km over average soil:

$$A_{\rm ground}\approx 0.1\times 1^2\times 100=10~{\rm dB}$$
 additional loss

46.3.5 Applications

46.3.5.1 AM Radio (540-1600 kHz) Daytime: Ground wave only - Local coverage: 50-150 km - Limited by ground conductivity

Nighttime: Skywave + ground wave - Extended coverage: 500-2000+ km (skywave reflection) - Interference common (multiple stations bounce off ionosphere)

46.3.5.2 Maritime Communications (LF/MF) VLF (20-100 kHz): Submarine comms - Penetrates seawater (10-20 m depth) - Global coverage (ground wave over ocean) - Very low data rate (< 100 bps)

MF (300-3000 kHz): Ship-to-shore - 200-500 km range over seawater - Distress frequency: 500 kHz (historical SOS)

46.3.5.3 Aviation NDB (Non-Directional Beacons) Frequency: 190-535 kHz **Range**: 50-100 km (ground wave) **Use**: Aircraft homing (ADF receivers)

46.4 Sky Wave (Ionospheric Propagation)

46.4.1 Definition

Sky wave = EM wave refracted by ionosphere, returning to Earth at distant location.

Mechanism: 1. HF wave travels upward at angle 2. Ionosphere (charged plasma layer, 60-400 km altitude) acts as refractive medium 3. Wave bends back toward Earth (if frequency/angle correct) 4. Can bounce multiple times (multi-hop)

Frequency range: HF (3-30 MHz) primarily, some MF at night

46.4.2 Ionospheric Layers

Ionosphere = ionized by solar UV/X-rays

Layer	Altitude	Ionization	Daytime Behavior	Nighttime Behavior
D	60-90 km	Low	Absorbs HF (attenuates MF/HF)	Disappears (recombination fast)
E	90-150 km	Moderate	Reflects some HF (< 10 MHz)	Weakens
F1 F2	150-250 km 250-400 km	Moderate High	Reflects MF/HF Primary reflector for HF	Merges with F2 Descends, remains strong

 $\textbf{Key concept: Critical frequency} \ f_c \ \text{- maximum frequency reflected at vertical incidence}$

$$f_c = 9\sqrt{N_e}$$

Where N_e = electron density (electrons/m³)

Typical values: - Daytime F2: $f_c=10-15~\mathrm{MHz}$ - Nighttime F2: $f_c=5-10~\mathrm{MHz}$

46.4.3 Skip Distance & Hop

Skip distance = minimum ground range for sky wave return

$$d_{\rm skin} = 2h \tan(\theta)$$

Where: - h = Ionospheric layer height - θ = Elevation angle of departure

For F2 layer (h \approx 300 km): - Low angle (5°): Skip \sim 3500 km (single hop) - High angle (45°): Skip \sim 600 km

Dead zone = Region between ground wave limit and skip distance (no coverage)

46.4.4 Multi-Hop Propagation

Wave bounces between ionosphere and ground:

Single hop: 2000-4000 kmTwo hops: 4000-8000 km

• Multiple hops: Global coverage possible (with sufficient power)

Loss per hop: 5-15 dB (depends on ionospheric conditions, frequency)

46.4.5 Frequency Selection

MUF (Maximum Usable Frequency): Highest frequency that refracts back (not penetrating ionosphere)

$$\text{MUF} = \frac{f_c}{\cos(\theta)}$$

LUF (Lowest Usable Frequency): Lowest frequency not absorbed by D-layer

Optimal Working Frequency (FOT): 80-90% of MUF (safety margin)

46.4.6 Diurnal Variations

Daytime: - D-layer absorbs lower HF (< 5 MHz) - F2 layer reflects higher HF (10-30 MHz) - **Best bands**: 15 MHz, 20 MHz (long-distance)

Nighttime: - D-layer disappears (no absorption) - F2 descends, lower MUF - **Best bands**: 5 MHz, 7 MHz (medium-distance) - AM broadcast skywave active (500-1600 kHz)

46.4.7 Seasonal & Solar Cycle Effects

Solar cycle (11 years): - **Solar max**: High ionization, higher MUF (30 MHz+ usable) - **Solar min**: Lower MUF (often < 20 MHz)

Seasonal: - **Summer**: Higher D-layer absorption (daytime) - **Winter**: Lower absorption, better long-distance (daytime)

Sporadic E (Es): - Unpredictable intense E-layer patches - Reflects VHF (up to 150 MHz!) for short periods - Used opportunistically by amateur radio

46.4.8 Applications

46.4.8.1 Shortwave Broadcast Frequency: 3-30 MHz (HF bands) **Range**: 500-10,000+ km (multi-hop) **Use**: International broadcasting (BBC World Service, Voice of America)

Schedule management: Different frequencies for day/night, seasons

46.4.8.2 Amateur Radio (Ham Radio) HF bands: 1.8, 3.5, 7, 10, 14, 18, 21, 24, 28 MHz **Activity**: Global communication with < 100W (due to skywave)

80m (3.5 MHz): Nighttime, regional (500-2000 km) **20m (14 MHz)**: Daytime, worldwide (DX)

46.4.8.3 Over-the-Horizon (OTH) Radar Frequency: 5-28 MHz Range: 1000-3500 km (beyond line-of-sight) Use: Early warning, detection beyond horizon

Principle: Reflect radar signal off ionosphere to detect aircraft/ships at great distance

46.4.8.4 Military HF Communications Strategic links: Long-range, no satellite dependence **Frequency hopping**: Adapt to ionospheric conditions **Robustness**: Survives nuclear EMP (no infrastructure needed)

46.5 Line-of-Sight (LOS) Propagation

46.5.1 Definition

Line-of-sight = Direct path from transmitter to receiver, no obstructions.

Frequency range: VHF and above (> 30 MHz)

Why?: At VHF+, waves no longer refract around Earth's curvature (ionosphere transparent)

46.5.2 Radio Horizon

Geometric horizon (flat Earth): Distance where curvature blocks LOS

Radio horizon (accounting for refraction):

$$d_{\rm horizon} = 3.57(\sqrt{h_t} + \sqrt{h_r}) \quad ({\rm km})$$

Where: - h_t = Transmitter antenna height (meters) - h_r = Receiver antenna height (meters) - **4/3 Earth radius model** accounts for atmospheric refraction

46.5.2.1 Examples Mobile phone (base station 30m, phone 1.5m):

$$d=3.57(\sqrt{30}+\sqrt{1.5})=3.57(5.48+1.22)=24~\mathrm{km}$$

TV broadcast tower (300m, home antenna 10m):

$$d=3.57(\sqrt{300}+\sqrt{10})=3.57(17.3+3.16)=73~\mathrm{km}$$

Aircraft at 10,000m (cruising altitude):

$$d = 3.57\sqrt{10000} = 357 \text{ km}$$

Satellite (LEO at 550 km): Horizon ~2500 km (covers ~5% of Earth)

46.5.3 Fresnel Zone

For reliable LOS, path must be clear not just geometrically, but also volumetrically.

Fresnel zone = Ellipsoidal region around direct path where reflections can interfere **First Fresnel zone radius** at midpoint:

$$r_1 = \sqrt{\frac{\lambda d_1 d_2}{d_1 + d_2}}$$

Where: - λ = Wavelength - d_1, d_2 = Distances from TX and RX to obstacle

60% clearance rule: Keep first Fresnel zone 60% clear for reliable LOS

Example: 2 GHz (λ = 15 cm), 10 km link:

$$r_1 = \sqrt{\frac{0.15 \times 5000 \times 5000}{10000}} = \sqrt{375} = 19 \text{ m}$$

Need: $60\% \times 19m = 11m$ clearance at midpoint

46.5.4 Applications

46.5.4.1 FM Radio (VHF, 88-108 MHz) Range: Line-of-sight limited - Transmitter tower: 100-300m 40-70 km range - Terrain shadowing common (mountains block signal)

46.5.4.2 TV Broadcast (VHF/UHF) VHF: Channels 2-13 (54-216 MHz) - legacy analog UHF: Channels 14-51 (470-698 MHz) - digital TV (ATSC, DVB-T)

Range: 40-100 km (depends on tower height)

46.5.4.3 Cellular (800 MHz - 6 GHz) Macrocells: LOS to horizon (~10-30 km) Microcells: Urban, 200m-2km (NLOS due to buildings, but diffraction/scattering help) Picocells: Indoor, 10-100m

46.5.4.4 Microwave Links (6-80 GHz) Point-to-point backhaul: - Tower-to-tower links (10-50 km) - Requires clear Fresnel zone - Rain fade significant (see [[Weather Effects (Rain Fade, Fog

Attenuation)]])

46.5.4.5 Satellite Communications All satellite links are LOS: - GEO (35,786 km): Always LOS if above 10° elevation - LEO (400-1200 km): Pass overhead, 5-15 min visibility windows - MEO (GPS, 20,200 km): 4-8 hours visibility

46.5.4.6 5G mmWave (24-100 GHz) Ultra-short range LOS: - Range: 100-500m typical - Building penetration: Poor (requires outdoor-to-outdoor LOS) - Use: Dense urban, stadiums, fixed wireless access

46.6 Comparison: Propagation Modes

Mode	Frequency	Range	Characteristics	Applications
Ground Wave	LF/MF	50-500 km	Follows curvature, stable, vertical pol	AM radio, maritime, NDB
Sky Wave	HF	500- 10,000+ km	lonospheric reflection, variable	Shortwave, amateur, OTH radar
LOS	VHF+	10-100 km	Direct path, terrain-limited	FM, TV, cellular, microwave
Satellite LOS	VHF-Ka	Global	Space path, rain fade (>10 GHz)	GPS, satellite TV/internet
Troposcat	tt e/ HF/SHF	100-500 km	Beyond-horizon scatter	Military long-haul

46.7 Non-Line-of-Sight (NLOS) Propagation

Even at VHF+, signals can reach beyond LOS via:

- 1. **Diffraction**: Bending around obstacles (buildings, hills)
- 2. **Reflection**: Bounce off surfaces (see [[Multipath Propagation & Fading]])
- 3. Scattering: Random scatter from rough surfaces, rain, foliage
- 4. Troposcatter: Forward scatter from tropospheric turbulence (beyond-horizon, 100-500 km)

Result: Cellular networks work in urban canyons (NLOS), but with higher path loss and multipath fading.

46.8 Ducting & Anomalous Propagation

46.8.1 Tropospheric Ducting

Temperature inversion creates refractive layer that traps VHF/UHF waves:

Mechanism: Warm air over cool surface □ gradient in refractive index □ wave bends back to Earth

Effect: VHF/UHF propagation far beyond horizon (500-2000 km)

Conditions: - Coastal regions (cool ocean, warm land) - High-pressure systems (calm, clear weather) - Morning/evening (temperature inversions)

Impact: - FM radio stations suddenly heard 1000 km away - TV interference from distant stations - Cellular interference (distant cells)

46.8.2 Evaporation Ducts

Common over oceans: Humidity gradient creates duct ~10-50m above sea surface

Effect: Ships can communicate VHF far beyond horizon (200-500 km)

46.9 Propagation Models Summary

Model	Use Case	Frequency	Accuracy
Free-space Two-ray	Satellite, LOS Flat terrain, LOS/reflection	All VHF+	Baseline (ideal) ±6 dB
Okumura-Hata	Urban/suburban cellular	150 MHz - 2 GHz	±10 dB
COST-231 ITU-R P.1546 ITU-R P.368	Urban microcells Broadcast (TV/FM) Ground wave	800 MHz - 2 GHz 30 MHz - 3 GHz LF/MF/HF	±8 dB ±10 dB ±5 dB

Model	Use Case	Frequency	Accuracy		
Longley-Rice	Irregular terrain	20 MHz - 20 GHz	±12 dB	±12 dB	

46.10 Related Topics

- [Free-Space Path Loss (FSPL)]: Baseline loss for all propagation modes
- [[Multipath Propagation & Fading]]: Rayleigh/Rician fading in NLOS
- [[Atmospheric Effects (Ionospheric, Tropospheric)]]: Ionospheric refraction, atmospheric absorption
- [[Weather Effects (Rain Fade, Fog Attenuation)]]: Rain fade at high frequencies
- [Electromagnetic Spectrum]: Frequency-dependent propagation behavior
- [Antenna Theory Basics]: Antenna height extends radio horizon

Key takeaway: Propagation mode depends on frequency. LF/MF = ground wave, HF = skywave, VHF+ = LOS. Understanding which mode applies is critical for predicting coverage and designing reliable links.
This wiki is part of the [[Home Chimera Project]] documentation.

47 QPSK Modulation

47.1 ☐ For Non-Technical Readers

QPSK is like using 4 different hand signals instead of 2—you can send messages twice as fast!

The idea: Instead of just "wave up" or "wave down" (BPSK), QPSK uses **4 directions**: - Up-right $\Box = 00$ - Up-left $\Box = 01$

- Down-left □ = 10 - Down-right □ = 11

Real-world use: - **Satellite TV** (DVB-S): Uses QPSK for reliable transmission from space - **4G LTE**: Uses QPSK when signal is weak (more reliable than faster modes) - **GPS**: Newer signals use QPSK for twice the data rate

Why 4 directions? - Sends **2 bits per symbol** (vs 1 bit for BPSK) = twice as fast! - Still pretty reliable (the 4 directions are well-separated) - Sweet spot between speed and robustness

When you see it: Your phone uses QPSK when cell signal is weak—slower than 16-QAM or 64-QAM, but way more reliable.

QPSK stands for **Quadrature Phase-Shift Keying**. It's a modulation technique that encodes 2 bits per symbol by varying the phase of the carrier wave.

47.2 The Four QPSK States

QPSK uses four distinct phase states, each representing a unique 2-bit pattern:

47.3 Bit-to-Phase Mapping in Chimera

```
00 □ Phase: 135° (upper-left quadrant)
01 □ Phase: 45° (upper-right quadrant)
11 □ Phase: 225° (lower-left quadrant)
10 □ Phase: 315° (lower-right quadrant)
```

47.4 Mathematical Representation

For normalized QPSK (unit energy), the four symbols are:

```
Symbol 00: I = -1/\sqrt{2}, Q = +1/\sqrt{2}

Symbol 01: I = +1/\sqrt{2}, Q = +1/\sqrt{2}

Symbol 11: I = -1/\sqrt{2}, Q = -1/\sqrt{2}

Symbol 10: I = +1/\sqrt{2}, Q = -1/\sqrt{2}
```

47.5 Why QPSK?

- Spectral Efficiency: Transmits 2 bits per symbol
- Robustness: The large phase separation (90°) makes it resilient to noise
- Simplicity: Relatively simple to implement and demodulate
- Widespread Use: Used in many real-world systems (satellite, WiFi, LTE)

47.6 QPSK in Chimera

Chimera's implementation: - **Symbol Rate**: Configurable (typically 16-1000 symbols/second depending on preset) - **Carrier Frequency**: 12.0 kHz (audio frequency for demonstration) - **Frame Structure**: Organized into sync, command, data, and ECC sections

47.7 See Also

- [[What Are Symbols]] Understanding the fundamental unit
- [IQ Representation] In-phase and Quadrature components
- [Constellation Diagrams] Visualizing QPSK
- [[Modulation Protocol v4.2]] Chimera's QPSK implementation details

48 Quadrature Amplitude Modulation (QAM)

[[Home]] | **Digital Modulation** | [QPSK Modulation] | [8PSK & Higher-Order PSK]

48.1 For Non-Technical Readers

QAM is like having a grid of mailboxes—the more boxes, the more messages you can send at once. Your WiFi/phone picks bigger grids when signal is strong!

The idea - Vary BOTH brightness and angle: - **PSK** (like QPSK): Only varies angle (4 or 8 positions) - **QAM**: Varies **both** angle AND distance from center! - Result: Many more possible positions = much faster data!

Real QAM sizes: - **16-QAM**: 4×4 grid = 16 positions = 4 bits/symbol - **64-QAM**: 8×8 grid = 64 positions = 6 bits/symbol - **256-QAM**: 16×16 grid = 256 positions = 8 bits/symbol - **1024-QAM** (WiFi 6): 32×32 grid = 1024 positions = 10 bits/symbol!

Why you care - Speed differences: - QPSK: 2 bits/symbol (baseline) - 16-QAM: 4 bits/symbol = 2× faster - 64-QAM: 6 bits/symbol = 3× faster

- 256-QAM: 8 bits/symbol = 4x faster - 1024-QAM: 10 bits/symbol = 5x faster!

The trade-off: - **More positions** = faster BUT positions are closer together - **Closer positions** = easier to confuse when signal is noisy - Strong signal (close to router): Use 1024-QAM = blazing fast! - Weak signal (far from router): Use QPSK = slower but reliable

Where you see it: - Your WiFi stats: "MCS 9, 256-QAM" = using 256-position grid - 4G/5G: "Modulation: 64-QAM" = using 64-position grid - Cable modem: DOCSIS 3.1 uses 4096-QAM (12 bits/symbol!) - Phone signal bars: Full bars = can use high QAM, low bars = must use simple modulation

Real experience: - Walk toward router: Speed increases as phone switches QPSK 16-QAM 64-QAM 256-QAM - Walk away: Speed decreases as phone steps back down - This happens automatically hundreds of times per second!

Fun fact: Modern WiFi 6E can use 1024-QAM, but ONLY at close range with zero interference—it's like threading a needle with radio waves!

48.2 Overview

Quadrature Amplitude Modulation (QAM) encodes data by modulating both amplitude and phase of a carrier wave.

Key insight: Combine **ASK** (amplitude-shift keying) and **PSK** (phase-shift keying) in **2D constellation** (I/Q plane)

Advantage: Best spectral efficiency for given SNR (optimal use of 2D signal space)

Applications: WiFi, LTE/5G, cable modems (DOCSIS), DSL, digital TV (DVB-C), microwave backhaul

48.3 QAM Fundamentals

48.3.1 Complex Baseband Representation

QAM symbol:

$$s_m = I_m + jQ_m$$

Where: - I_m = In-phase amplitude (real axis) - Q_m = Quadrature amplitude (imaginary axis) - m = Symbol index (0 to M-1)

Passband signal:

$$s_{\rm RF}(t) = I_m \cos(2\pi f_c t) - Q_m \sin(2\pi f_c t)$$

48.3.2 M-ary QAM

M constellation points: $\sqrt{M} \times \sqrt{M}$ grid (for square QAM)

 $\textbf{Bits per symbol} \colon \log_2(M)$

Common sizes: 16-QAM, 64-QAM, 256-QAM, 1024-QAM, 4096-QAM

48.4 16-QAM

48.4.1 Constellation

4×4 grid in I/Q plane:

Amplitude levels: $I,Q \in \{-3d,-d,+d,+3d\}$

Where d = Unit spacing (normalized distance)

48.4.2 Bit Mapping (Gray Coding)

4 bits per symbol: $b_3b_2b_1b_0$

Typical mapping: - b_3b_2 \square I component (00=-3d, 01=-d, 11=+d, 10=+3d) - b_1b_0 \square Q component

(00=-3d, 01=-d, 11=+d, 10=+3d)

Example symbols:

Bits	I		Q		Position	
			-3d	-d	Bottom-left corner	
		0010	-3d	+3d	Top-left corner Top-right corner	

Gray coding: Adjacent symbols differ by 1 bit (minimizes BER)

48.4.3 Signal Characteristics

Average symbol energy:

$$\bar{E}_s = \frac{1}{16} \sum_{m=0}^{15} (I_m^2 + Q_m^2) = \frac{1}{16} \times 16 \times 10 d^2 = 10 d^2$$

Normalization: Set $d^2=1/10$ \square $\bar{E}_s=1$

 $\mbox{Minimum distance: } d_{\min} = 2d$

With normalization: $d_{\rm min}=2/\sqrt{10}=0.632$

48.5 64-QAM

48.5.1 Constellation

8×8 grid: 64 points

Amplitude levels: $I,Q \in \{-7d, -5d, -3d, -d, +d, +3d, +5d, +7d\}$

Bits per symbol: 6

Average energy:

$$\bar{E}_s = \frac{1}{64} \sum (I_m^2 + Q_m^2) = 42d^2$$

Normalized: $d=1/\sqrt{42}\, \, \Box \ \ \bar{E}_s=1$

Minimum distance: $d_{\rm min}=2d=0.309\,$

48.6 256-QAM

48.6.1 Constellation

16×16 grid: 256 points

Bits per symbol: 8

Average energy: $\bar{E}_s=170d^2$

Normalized: $d = 1/\sqrt{170}$

Minimum distance: $d_{\min} = 2d = 0.153$

48.6.2 High-Order QAM

1024-QAM: 32×32 grid, 10 bits/symbol

4096-QAM: 64×64 grid, 12 bits/symbol

Practical limit: ~4096-QAM (802.11ax WiFi 6, cable modems)

Challenge: Requires very high SNR (>40 dB) and excellent linearity

48.7 Performance Analysis

48.7.1 Symbol Error Rate (SER)

Square M-QAM in AWGN (approximate, high SNR):

$$P_s \approx 4 \left(1 - \frac{1}{\sqrt{M}}\right) Q \left(\sqrt{\frac{3}{M-1} \cdot \frac{E_s}{N_0}}\right)$$

Where: $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-t^2/2} dt$

48.7.2 Bit Error Rate (BER)

With Gray coding:

$$\mathrm{BER} \approx \frac{P_s}{\log_2(M)}$$

In terms of Eb/N0:

$$\mathrm{BER} \approx \frac{4}{\log_2(M)} \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\log_2(M)}{M-1} \cdot \frac{E_b}{N_0}}\right)$$

48.7.3 Required Eb/N0 for BER = 10^{-6}

Modulation	Bits/symbol	Required Eb/N0 (dB)		b/N0 (dB)	SNR Penalty vs QPSK
	QPSK	2	10.5	0 dB (base	eline)
	16-QAM	4	14.5	+4 dB	
	64-QAM	6	18.5	+8 dB	
	256-QAM	8	23	+12.5 dB	
	1024-QAM	10	27.5	+17 dB	
	4096-QAM	12	32	+21.5 dB	

Pattern: Each 4× increase in M adds ~4 dB

48.7.4 BER Comparison Table

	Eb/N0 (dB)	QPSK	16-QAM	64-QAM	256-QAM
-	10	3.9×10 ⁻⁶	2×10 ⁻³	0.1	0.3
-	15	7×10^{-10}	5×10 ⁻⁶	5×10 ⁻³	0.08
2	20	<10 ⁻¹²	1×10 ⁻⁹	1×10 ⁻⁵	3×10 ⁻³
2	25	<10 ⁻¹²	<10 ⁻¹²	1×10 ⁻⁸	2×10 ⁻⁵
(30	<10 ⁻¹²	<10 ⁻¹²	<10 ⁻¹²	2×10 ⁻⁸

48.8 Bandwidth Efficiency

Occupied bandwidth (raised cosine pulse shaping):

$$B = (1+\alpha)R_s = (1+\alpha)\frac{R_b}{\log_2(M)} \quad (\mathrm{Hz})$$

Spectral efficiency:

$$\eta = \frac{R_b}{B} = \frac{\log_2(M)}{1+\alpha} \quad \text{(bits/sec/Hz)}$$

48.8.1 Comparison ($\alpha = 0.35$)

Modulation Bits/symbol		ol	Spectral Efficiency Practical Limit		
QPSI	K	2	1.48	Good SNR (10 dB)	
16-Q	AM	4	2.96	Moderate SNR (15 dB)	
64-QAM 6 4.4		4.44	High SNR (20 dB)		
256-0	MAÇ	8	5.93	Very high SNR (25 dB)	
1024	-QAM	10	7.41	Excellent SNR (30 dB), wired only	
4096-QAM 12 8.89		8.89	Exceptional SNR (35 dB), cable/DSL		

48.9 Modulation & Demodulation

48.9.1 IQ Modulator

Standard quadrature modulator:

Same hardware as QPSK, different symbol mapping

48.9.2 Coherent Demodulation

IQ demodulator:

Decision: 1. Sample I and Q at symbol rate 2. Find nearest constellation point (minimum Euclidean distance) 3. Map constellation point to bits

48.9.3 Soft-Decision Decoding

Hard decision: Nearest neighbor

Bits

Soft decision: Pass I/Q values (or LLRs) to decoder

Log-Likelihood Ratio (LLR) for bit b_k :

$$\mathrm{LLR}(b_k) = \log \frac{P(b_k = 0 | r)}{P(b_k = 1 | r)}$$

Benefit: ~2 dB coding gain (LDPC, Turbo codes use soft decisions)

48.10 Power Efficiency

48.10.1 Peak-to-Average Power Ratio (PAPR)

QAM has varying envelope:

$$|s_m| = \sqrt{I_m^2 + Q_m^2}$$

PAPR:

$$\mathrm{PAPR} = \frac{P_{\mathrm{max}}}{P_{\mathrm{avg}}} = \frac{|s_{\mathrm{max}}|^2}{\bar{E}_s}$$

48.10.2 PAPR Values

Modulation	PAPR (I	inear)	PAPR	(dB)	Notes
	QPSK	1	0 dB	Consta	nt envelope
	16-QAM	2.55	4.1 dB	Corner	points 2.55× average
	64-QAM 3.68		5.7 dB	5.7 dB	
	256-QAM	4.80	6.8 dB		
	1024-QAM	5.93	7.7 dB		

Impact: High PAPR requires PA backoff (reduces efficiency)

Example: 64-QAM with 5.7 dB PAPR - PA must back off 5.7 dB from saturation - Efficiency drops from 50% to $\sim 13\%$ (4× penalty)

48.11 Practical Impairments

48.11.1 1. I/Q Imbalance

Gain mismatch: $G_I \neq G_O$

Phase error: 90° hybrid imperfect (e.g., 88° or 92°)

Effect: Constellation distortion, image leakage

Model:

$$r = (1 + \alpha_G)I + j(1 - \alpha_G)e^{j\epsilon}Q + n$$

Where: - α_G = Gain imbalance - ϵ = Phase error

Typical: ±0.5 dB gain, ±2° phase (degrades 256-QAM significantly)

Mitigation: Digital calibration (pilot-aided estimation)

48.11.2 2. Nonlinear PA Distortion

AM-AM conversion: Gain compression at high amplitudes

AM-PM conversion: Phase shift varies with amplitude

Effect: Constellation warping, especially outer points

Example: 64-QAM, corner points compress 1 dB - Minimum distance reduced

BER increases - Spectral regrowth (adjacent channel interference)

Mitigation: - Backoff: 6-10 dB (kills efficiency) - Predistortion: Digital (DPD) or analog - Crest factor reduction (CFR): Clip peaks, re-generate signal

48.11.3 3. Phase Noise

Oscillator jitter causes constellation rotation/spread:

$$r(t) = s(t)e^{j\phi_n(t)} + n(t)$$

Effect: Common phase error (CPE) + inter-carrier interference (OFDM)

Sensitivity: Higher-order QAM more sensitive

Example: 256-QAM - Tolerable phase noise: ~1° RMS - Requires high-quality oscillator (PLL, TCXO, or OCXO)

48.11.4 4. Timing Jitter

Symbol clock error causes sampling offset:

Effect: ISI, constellation blurring

Requirement: Timing error < 0.1 symbol period

Example: 64-QAM @ 10 Msps - Symbol period: 100 ns - Tolerable jitter: < 10 ns RMS

48.12 Practical Applications

48.12.1 1. WiFi (802.11a/n/ac/ax)

OFDM subcarriers use QAM:

Standard	Max QAM	Max R	late	Notes
802.11a 802.11i 802.11a	n ac	64-QAM 64-QAM 256-QAM	54 Mbps 600 Mbps 6.9 Gbps	20 MHz channel 4×4 MIMO, 40 MHz 8×8 MIMO, 160 MHz
802.11a	ax (WiFi 6)	1024-QAM	9.6 Gbps	OFDMA, MU-MIMO

Adaptive modulation: Switch QPSK

16/64/256/1024-QAM based on SNR

48.12.2 2. LTE/5G NR

LTE downlink: Up to 256-QAM (Cat 9+)

5G NR: Up to 256-QAM (mmWave can use 1024-QAM in some scenarios)

Example: LTE Cat 16 (1 Gbps downlink) - 4×4 MIMO, 256-QAM, 20 MHz carrier aggregation -

Per-carrier: $4 \text{ layers} \times 8 \text{ bits/symbol} \times 75 \text{k symbols/sec} = 2.4 \text{ Gbps (theoretical)}$

Adaptive MCS (Modulation & Coding Scheme): - Poor channel: QPSK 1/4 (0.5 bits/symbol effec-

tive) - Good channel: 256-QAM 3/4 (6 bits/symbol effective)

48.12.3 3. Cable Modems (DOCSIS)

DOCSIS 3.0: 256-QAM (8 bits/symbol)

DOCSIS 3.1: 4096-QAM (12 bits/symbol) - Requires SNR > 40 dB (excellent cable plant) - OFDM

with 4096-QAM subcarriers

10 Gbps downstream

Key: Wired channel (no fading), high SNR possible

48.12.4 4. Digital TV

DVB-C (Cable): 256-QAM standard

DVB-T2 (Terrestrial): Up to 256-QAM (typically 64-QAM)

ATSC 3.0 (US): 256-QAM, 1024-QAM, 4096-QAM (OFDM)

48.12.5 5. Microwave Backhaul

Point-to-point links: - Clear weather: 2048-QAM, 4096-QAM (≥30 dB SNR) - Light rain: 256-

QAM - **Heavy rain**: Adaptive down to 16-QAM or QPSK

Frequency: 6-42 GHz (E-band: 70-80 GHz)

Example: 28 GHz link, 56 MHz channel - 4096-QAM: 12 bits/symbol [] 672 Mbps (no coding) -

With FEC 3/4: 504 Mbps net

48.13 **QAM vs PSK**

Same spectral efficiency:

	M-PSK M-QAM	Comparison
4-PSK (QPSK)	4-QAM (identical)	Same constellation
8-PSK	8-QAM (rare)	8-PSK used (const envelope)
16-PSK	16-QAM	16-QAM 4 dB better
32-PSK	32-QAM	32-QAM much better
64-PSK	64-QAM	64-QAM far superior

General rule: For M > 8, QAM always better than M-PSK

Reason: 2D rectangular grid (QAM) uses signal space more efficiently than circle (PSK)

48.14 Non-Square QAM

Cross QAM: Non-square constellations (e.g., 32-QAM, 128-QAM)

32-QAM: 5 bits/symbol - Constellation: 4 inner points + 12 middle + 16 outer (hexagonal-like) -

452

Used in some proprietary systems

128-QAM: 7 bits/symbol - Between 64-QAM and 256-QAM

Trade-off: Slightly worse performance than square QAM, but allows finer granularity

48.15 Constellation Shaping

Probabilistic shaping: Non-uniform symbol probability

Idea: Transmit inner points more often (lower energy)

Reduce average power

Benefit: ~0.5-1 dB SNR gain (approaching Shannon limit)

Used in: Optical communications (400G/800G), submarine cables

48.16 Adaptive QAM

Link adaptation: Select QAM order based on channel

SNR thresholds (example):

SNR (dB)	Modulation	Code Rate		Spectral Eff.	
	0-5	QPSK	1/2	1.0	
	5-10	QPSK	3/4	1.5	
	10-15	16-QAM	1/2	2.0	
	15-20	16-QAM	3/4	3.0	
	20-25	64-QAM	2/3	4.0	
	25-30	64-QAM	3/4	4.5	
	30-35	256-QAM	3/4	6.0	
	>35	1024-QAM	5/6	8.3	

Used in: All modern wireless (WiFi, LTE, 5G)

48.17 Implementation Tips

48.17.1 Constellation Normalization

Normalize average power to 1:

$$\bar{E}_s = \frac{1}{M} \sum_{m=0}^{M-1} |s_m|^2 = 1$$

Example (16-QAM): - Un-normalized: $I,Q\in\{-3,-1,+1,+3\}$ - Average power: 10 - Normalized: $I,Q\in\{-3,-1,+1,+3\}/\sqrt{10}$

48.17.2 Gray Coding

Map bits I I/Q using Gray code:

```
def qam_gray_mapping(bits):
    # 16-QAM Gray mapping
    gray_map = [0b00, 0b01, 0b11, 0b10] # Gray sequence
    i_bits = bits[0:2]
    q_bits = bits[2:4]

    i_index = gray_map.index(i_bits)
    q_index = gray_map.index(q_bits)

I = 2*i_index - 3 # Map to {-3, -1, +1, +3}
Q = 2*q_index - 3

    return I + 1j*Q
```

48.17.3 Soft-Decision LLR Calculation

For bit b_k in constellation:

$$\mathrm{LLR}(b_k) = \log \frac{\sum_{s \in S_0} e^{-|r-s|^2/(2\sigma^2)}}{\sum_{s \in S_1} e^{-|r-s|^2/(2\sigma^2)}}$$

Where: - S_0 = Constellation points with $b_k=0$ - S_1 = Constellation points with $b_k=1$ - r = Received symbol - σ^2 = Noise variance

48.18 Summary Table

Modulation	Bits/sym	Min Distance	Eb/N0 (10 ⁻⁶)	PAPR (dB)	Applications
QPSK	2	1.41	10.5 dB	0	Satellite, cellular
16-QAM	4	0.63	14.5 dB	4.1	WiFi, LTE, cable
64-QAM	6	0.31	18.5 dB	5.7	WiFi, LTE, backhaul
256-QAM	8	0.15	23 dB	6.8	WiFi 5/6, cable, LTE+
1024-QAM	10	0.098	27.5 dB	7.7	WiFi 6, DOCSIS 3.1
4096-QAM	12	0.049	32 dB	8.6	Cable (DOCSIS 3.1)

48.19 Related Topics

- [QPSK Modulation]: Simplest QAM (4-QAM)
- [8PSK & Higher-Order PSK]: Phase-only modulation
- [Amplitude-Shift Keying (ASK)]: Amplitude-only modulation
- [Constellation Diagrams]: Visualizing QAM
- [Bit Error Rate (BER)]: Performance analysis
- [OFDM & Multicarrier Modulation]: Uses QAM per subcarrier

Key takeaway: QAM combines amplitude and phase modulation for optimal spectral efficiency. 2D rectangular constellation uses signal space efficiently. 16/64/256-QAM dominate modern wireless/wired systems. Higher-order QAM (1024, 4096) requires excellent SNR (>30 dB) and linearity. Trade-off: Spectral efficiency vs power efficiency (PAPR). Adaptive modulation switches QAM order based on channel quality. Gray coding + soft-decision decoding essential for good BER performance.

-	
This wiki is part of the [[F	Home Chimera Project]] documentation.

49 Quantum Coherence in Biological Systems

[[Home]]	[Hyper-Rotational	Physics (HRF) Framework]	[[Orchestrated	Objective	Reduction
(Orch-OR)]]					

49.1 For Non-Technical Readers

What is quantum coherence? Imagine a coin spinning in the air—it's neither heads nor tails, but both at once until it lands. Quantum coherence is like that spinning coin: particles exist in multiple states simultaneously, with a special "phase relationship" that lets them interfere with each other like overlapping waves.

Why does it matter for biology? For decades, scientists assumed quantum effects only work in ultra-cold laboratories. Living organisms are warm, wet, and chaotic—the worst possible environment for delicate quantum states. But nature surprises us: plants use quantum coherence to transfer energy with near-perfect efficiency during photosynthesis, and birds may use it as a compass to navigate using Earth's magnetic field.

The big question: If quantum effects can survive in plants and birds, could they also work in our brains? Some scientists think quantum coherence in tiny structures called microtubules might help explain consciousness itself. Others are skeptical, saying brains are too warm and noisy for quantum effects to last long enough to matter.

What's proven vs. speculative: -
Proven: Quantum coherence exists in photosynthesis at room temperature -
Strong evidence: Birds likely use quantum effects for magnetic sensing -
Highly speculative: Quantum effects in human brains and consciousness

Think of this page as a journey from established science (plants using quantum tricks) to cuttingedge speculation (quantum consciousness). We'll clearly mark what's proven, what's plausible, and what's purely theoretical.

Key takeaway: Nature might be "quantum" in ways we never imagined, but we need to be careful not to jump to conclusions about consciousness before the evidence is in.

49.2 Overview

Quantum coherence is the property of a quantum system where multiple quantum states exist in a well-defined phase relationship, enabling interference effects and non-classical correlations. While quantum mechanics traditionally describes isolated, cold systems, mounting evidence suggests quantum coherence plays functional roles in warm, wet biological environments—challenging the assumption that biological temperatures (\$\Gamma\$ \$300 K) destroy quantum effects too rapidly for them to be biologically relevant.

☐ **Speculative Territory**: While quantum effects in photosynthesis are well-established, extensions to neural processing and consciousness remain highly speculative.

49.3 1. Fundamentals of Quantum Coherence

49.3.1 1.1 What is Quantum Coherence?

A quantum system in a **coherent superposition** can be written as:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

where $|\alpha|^2+|\beta|^2=1$, and the relative phase between α and β encodes interference information.

Key point: Coherence enables quantum interference—outcomes depend on the *phase relation-ship*, not just probabilities.

49.3.2 1.2 Decoherence and the "Warm, Wet Problem"

In classical thinking, biological systems should exhibit rapid **decoherence** due to: - **Thermal fluctuations**: $k_BT\approx 25$ meV at 300 K - **Solvent interactions**: Water molecules cause constant perturbations - **Timescale mismatch**: Decoherence times $\tau_d \sim$ picoseconds, biological processes \sim milliseconds

The **decoherence time** is:

$$\tau_d \sim \frac{\hbar}{\gamma k_B T}$$

where γ is the system-environment coupling strength.

Question: How can quantum coherence survive long enough to be biologically functional?

49.3.3 1.3 Vibronic Coupling at Thermal Equilibrium

Recent theoretical work (e.g., VE-TFCC theory) shows that **vibronic coupling**—the interaction between electronic and vibrational degrees of freedom—can sustain quantum coherence at thermal equilibrium. Key insights:

- Thermofield dynamics: Systems can maintain coherence even in thermal states if vibronic coupling creates protected subspaces
- Bogoliubov transformations: New quasiparticle operators can diagonalize thermal Hamiltonians, revealing stable eigenmodes
- Variance calculations: Quantum coherence manifests in position variances $\langle q^2 \rangle \langle q \rangle^2$ that differ from classical thermal distributions

Implication for biology: If biological molecules exhibit strong vibronic coupling (e.g., in microtubules, chromophores), they may sustain quantum coherence despite warm temperatures.

49.4 2. Established Examples of Biological Quantum Coherence

49.4.1 2.1 Photosynthetic Light Harvesting ☐ (Established Science)

System: Fenna-Matthews-Olson (FMO) complex in green sulfur bacteria

Discovery (2007): Two-dimensional electronic spectroscopy revealed long-lived quantum beating at 77 K, later confirmed at room temperature (294 K).

Mechanism: - **Exciton coherence**: Electronic excitations delocalize across multiple chromophores - **Coherence time**: $\tau_c \sim 300-600$ fs at 294 K - **Functional advantage**: Quantum walk enables ~100% efficient energy transfer to reaction center

Key result: Quantum coherence lasts 10-100× longer than predicted by classical decoherence models.

Why it works: - Structured protein environment creates correlated fluctuations - Vibronic coupling to specific protein modes protects coherence - Energy funneling topology matches quantum beating frequencies

References: - Engel et al., *Nature* 446, 782 (2007) — Original discovery - Collini et al., *Nature* 463, 644 (2010) — Room temperature confirmation - Scholes et al., *Nat. Chem.* 3, 763 (2011) — Mechanistic review

49.4.2 2.2 Avian Magnetoreception ☐ (Strong Evidence)

System: Cryptochrome photoreceptors in bird retinas

Hypothesis (Radical Pair Mechanism): - Blue light excites cryptochrome \square radical pair [FAD $^{-\bullet}$ - Trp $^{+\bullet}$] - Electron spins in radical pair exist in singlet/triplet superposition - Weak geomagnetic field (\square \$50 μ T) causes spin-selective recombination via **Zeeman splitting** - Singlet vs. triplet yield depends on field orientation \square chemical compass

Evidence: - Behavioral experiments: European robins lose orientation under RF fields (7 MHz), consistent with disrupting radical pair coherence - Cryptochrome spectroscopy: Radical pairs

have \$\preceq\$ 1-10 \mus lifetimes (sufficient for magnetoreception) - Quantum calculations: Singlet-triplet oscillations match observed sensitivities

Quantum coherence role: Electron spin entanglement must survive > 1 µs for compass function.

References: - Ritz et al., *Biophys. J.* 78, 707 (2000) — Radical pair model - Hore & Mouritsen, *Annu. Rev. Biophys.* 45, 299 (2016) — Review

49.4.3 2.3 Olfaction ☐ (Controversial)

Hypothesis (Luca Turin): Odorant recognition involves **inelastic electron tunneling**—electrons tunnel through odorant molecules, and vibrational spectra determine smell.

Quantum coherence claim: Tunneling electrons maintain phase coherence across the odorant's vibrational modes.

Evidence: - Behavioral studies: Drosophila can distinguish deuterated odorants (different vibrational frequencies) - Inconsistent replication: Some studies find no isotope effect

Status: Not yet accepted; alternative explanations (shape-based recognition) remain viable.

49.5 3. Speculative Extensions to Neural Systems

☐ Highly Speculative Below

49.5.1 3.1 Microtubules as Quantum Coherence Substrates

Hypothesis (Penrose-Hameroff Orch-OR): - Microtubules sustain quantum coherence in tubulin dimers - Coherent superpositions span \$□ \$10⁵-10⁻ tubulins - Orchestrated objective reduction (Orch-OR) collapses wavefunction □ conscious moment

Challenges: - **Decoherence timescales**: Estimates range from femtoseconds (skeptics) to milliseconds (proponents) - **Isolation**: Neural microtubules are immersed in cytoplasm (high-noise environment) - **Temperature**: 310 K brain temperature \Box $k_BT\gg\hbar\omega$ for most modes

Possible mechanisms for coherence protection: 1. Ordered water layers: Structured water near microtubule surfaces reduces decoherence 2. **THz vibrational modes**: Collective oscillations in 0.1-10 THz range create coherent phonon modes 3. **Vibronic coupling**: Electronic states in aromatic amino acids couple to lattice vibrations (see [THz Resonances in Microtubules])

49.5.2 3.2 Quantum Coherence at 310 K: Is It Possible?

VE-TFCC insights (from computational quantum chemistry):

Recent thermofield coupled-cluster calculations show that: - Vibronic systems can maintain **thermal coherence** via Bogoliubov quasi-particles - Quantum variance $(\Delta q)^2$ persists at room temperature if vibronic coupling is strong enough - **Jahn-Teller distortions** stabilize coherent states by \$ \square \$6 kJ/mol (comparable to thermal energy)

Key equation (from VE-TFCC theory):

$$\hat{a}_i = \frac{1}{\sqrt{1 - e^{-\beta \omega_i}}} \left(\hat{b}_i - e^{-\beta \omega_i/2} \hat{b}_i^\dagger \right)$$

where $\beta=1/(k_BT)$, and \hat{a}_i are Bogoliubov operators that diagonalize the thermal Hamiltonian.

Biological implication: If microtubule dimers exhibit strong electron-phonon coupling (vibronic coupling), they could sustain quantum coherence via protected thermal eigenmodes.

49.5.3 3.3 Measurement Problem

Critical issue: How do you measure quantum coherence in a functioning neuron without destroying it?

Proposed techniques: - **Two-dimensional spectroscopy**: Laser-based coherence detection (invasive) - **Magnetic resonance**: Detect spin coherence in radical pairs (limited spatial resolution) - **Indirect observables**: Look for non-classical correlations in neural firing patterns (speculative)

49.6 4. Theoretical Frameworks

49.6.1 4.1 Open Quantum Systems Theory

Biological quantum systems are **open systems**: they exchange energy/information with their environment.

Lindblad master equation:

$$\frac{d\rho}{dt} = -\frac{i}{\hbar}[H,\rho] + \sum_k \gamma_k \left(L_k \rho L_k^\dagger - \frac{1}{2} \{ L_k^\dagger L_k, \rho \} \right)$$

where ρ is the density matrix, H is the Hamiltonian, and L_k are Lindblad operators describing decoherence.

Key insight: Certain environments can *sustain* rather than destroy coherence via: - **Noise-assisted transport**: Optimal dephasing enhances quantum walk efficiency - **Environment-assisted coherence**: Structured baths create long-lived correlations

49.6.2 4.2 Vibronic Coupling Theory

Vibronic Hamiltonian:

$$\hat{H} = \hat{H}_{\rm el} + \hat{H}_{\rm vib} + \hat{H}_{\rm coupl}$$

where: - $\hat{H}_{\rm el}$: Electronic Hamiltonian (molecular orbitals) - $\hat{H}_{\rm vib}$: Vibrational Hamiltonian (phonons) - $\hat{H}_{\rm coupl}$: Electron-phonon coupling (vibronic terms)

At thermal equilibrium (310 K), VE-TFCC theory shows: - Coherent superpositions of vibronic states persist - Decoherence competes with vibronic dressing of states - Quantum coherence manifests in non-classical position variances

49.7 5. Relevance to Consciousness Theories

49.7.1 5.1 Orch-OR Connection

The [[Orchestrated Objective Reduction (Orch-OR)]] theory posits: - Quantum coherence in microtubules \square superposed brain states - Objective reduction (OR) via quantum gravity \square conscious moments - OR threshold: $E \cdot \tau \sim \hbar$ (energy × time \approx Planck constant)

Quantum coherence requirement: For Orch-OR to work, microtubule coherence must last ~25 ms (gamma oscillation period).

49.7.2 5.2 Integrated Information Theory (IIT) Extension

Speculative connection: If neural microtubules exhibit quantum coherence, does this increase integrated information Φ ?

Arguments: - **Pro**: Quantum entanglement creates non-local correlations \square higher Φ - **Con**: IIT is defined classically; quantum extension not rigorously developed

49.8 6. Critical Assessment

49.8.1 6.1 What's Established

- Quantum coherence exists in photosynthetic complexes at room temperature
- · Radical pair magnetoreception has strong experimental support
- Computational methods (VE-TFCC) show coherence is possible at 300 K if vibronic coupling is strong

49.8.2 6.2 What's Speculative □

- Extension to neurons and microtubules (no direct experimental evidence)
- Functional role in consciousness (philosophical and empirical challenges)
- Timescale compatibility (millisecond coherence required; not yet demonstrated)

49.8.3 6.3 Key Open Questions

- 1. Can microtubules sustain millisecond coherence at 310 K?
 - Theoretical estimates vary by 6 orders of magnitude
- 2. Is there a functional advantage?
 - Evolution requires selective pressure; what cognitive task requires quantum coherence?
- 3. How would we know?
 - Measurement techniques for in vivo neural quantum coherence don't exist yet

49.9 7. Experimental Roadmap

49.9.1 7.1 Near-Term (5-10 years)

- In vitro microtubule spectroscopy: Two-dimensional THz spectroscopy on isolated microtubules
- Computational validation: VE-TFCC calculations on tubulin dimer models
- Comparative studies: Test coherence in anesthetic vs. non-anesthetic conditions

49.9.2 7.2 Long-Term (10-20 years)

- In vivo neural coherence detection: Non-invasive quantum sensing (e.g., NV-diamond magnetometry)
- Cognitive quantum advantage tests: Design tasks that classical neurons cannot perform efficiently
- Synthetic quantum neurons: Build artificial neurons with engineered quantum coherence

49.10 8. Connections to Other Wiki Pages

- [Hyper-Rotational Physics (HRP) Framework] Theoretical framework extending M-theory to consciousness
- [[Orchestrated Objective Reduction (Orch-OR)]] Penrose-Hameroff consciousness theory requiring quantum coherence
- [THz Resonances in Microtubules] Specific vibrational modes that could protect coherence
- [Microtubule Structure & Function] Structural basis for quantum effects
- [Terahertz (THz) Technology] Experimental tools for probing vibronic coupling

49.11 9. References

49.11.1 Key Papers

- 1. Engel et al., Nature 446, 782 (2007) Quantum coherence in photosynthesis
- 2. Scholes et al., Nat. Chem. 3. 763 (2011) Quantum biology review
- 3. Hore & Mouritsen, Annu. Rev. Biophys. 45, 299 (2016) Avian magnetoreception
- 4. **Bao et al.,** *J. Chem. Theory Comput.* **20, 4377 (2024)** VE-TFCC theory for thermal quantum coherence

49.11.2 Books

- Al-Khalili & McFadden, Life on the Edge (2014) Accessible introduction to quantum biology
- Penrose, The Emperor's New Mind (1989) Quantum consciousness origins

49.11.3 Critical Perspectives

• Tegmark, *Phys. Rev. E* 61, 4194 (2000) — Argues microtubule decoherence is too fast (\$□ \$10⁻¹³ s)

• Koch & Hepp, Nature 440, 611 (2006) — Skeptical review of quantum brain theories

Last updated: October	2025	

50 Quick Start Guide

[[Home]]	Getting Started		

50.1 Welcome to the Chimera DSP Wiki!

This guide helps you navigate the **52 wiki pages** based on your background and learning goals.

50.2 ☐ Choose Your Path

50.2.1 Path 1: Complete Beginner (No RF background)

Goal: Build solid foundation from physics [] practical systems

Recommended sequence (15-20 hours):

1. Week 1: Physical Foundations

- [Maxwell's Equations & Wave Propagation] (30 min)
- [Electromagnetic Spectrum] (45 min)
- [Antenna Theory Basics] (1 hour)
- [Free-Space Path Loss (FSPL)] (45 min)

2. Week 2: Signals & Modulation

- [Baseband vs Passband Signals] (45 min)
- [[What Are Symbols]] (15 min) ☐ Start here for quick intro
- [IQ Representation] (30 min)
- [Constellation Diagrams] (30 min)
- [QPSK Modulation] (30 min)

3. Week 3: System Performance

- [Signal-to-Noise Ratio (SNR)] (30 min)
- [Bit Error Rate (BER)] (1 hour)
- [Additive White Gaussian Noise (AWGN)] (30 min)
- [Forward Error Correction (FEC)] (45 min)

4. Week 4: Putting It Together

- [Signal Chain (End-to-End Processing)] (1 hour)

 See Chimera implementation
- [Complete Link Budget Analysis] (1.5 hours)

Try Chimera simulator!

50.2.2 Path 2: Software Engineer (Familiar with DSP concepts)

Goal: Understand RF implementation details

Fast track (5-8 hours):

- 1. Core Concepts (2 hours)
 - [[What Are Symbols]] (15 min)
 - [IQ Representation] (30 min)
 - [QPSK Modulation] (30 min)
 - [Constellation Diagrams] (30 min)
 - [LDPC Codes] (45 min) [] Used in Chimera
- 2. Implementation Details (2 hours)
 - [Signal Chain (End-to-End Processing)] (1 hour)

 Start here!
 - [Baseband vs Passband Signals] (45 min) Upconversion/downconversion
 - [Synchronization (Carrier, Timing, Frame)] (30 min)
- 3. Performance Analysis (2 hours)
 - [Bit Error Rate (BER)] (1 hour)
 - [[Energy Ratios (Es/N0 and Eb/N0)]] (30 min)
 - [Complete Link Budget Analysis] (1 hour)
- 4. Advanced Topics (pick based on interest)
 - [OFDM & Multicarrier Modulation] WiFi/LTE internals
 - [Spread Spectrum (DSSS/FHSS)] GPS/Bluetooth
 - [Channel Equalization] ISI mitigation

50.2.3 Path 3: EE Student (Taking comm systems course)

Goal: Supplement textbook with practical examples

Study companion (use as needed):

For homework/exams: - [Formula Reference Card] □ Quick lookup - [[Glossary]] □ Acronym decoder - Part-specific pages matching your syllabus

For lab work: - [Signal Chain (End-to-End Processing)] - [Real-World System Examples] - WiFi, LTE, GPS analyzed - [Synchronization (Carrier, Timing, Frame)] - [Channel Equalization]

For projects: - [Complete Link Budget Analysis] - End-to-end calculations - [OFDM & Multicarrier Modulation] - Modern systems - [MIMO & Spatial Multiplexing] - 5G techniques

50.2.4 Path 4: RF Engineer (Expanding into DSP/modulation)

Goal: Bridge analog RF

digital modulation

Recommended sequence (6-10 hours):

- 1. Digital Modulation Basics (2 hours)
 - [Baseband vs Passband Signals] (45 min) [] IQ modulation explained
 - [[What Are Symbols]] (15 min)
 - [Constellation Diagrams] (30 min)
 - [QPSK Modulation] (30 min)
- 2. Channel & Propagation (2 hours)
 - [[Multipath Propagation & Fading (Rayleigh, Rician)]] (1 hour)
 - [[Atmospheric Effects (Ionospheric, Tropospheric)]] (45 min)
 - [[Weather Effects (Rain Fade, Fog Attenuation)]] (45 min)
- 3. System-Level Analysis (2 hours)
 - [Complete Link Budget Analysis] (1.5 hours)

 Your bread and butter
 - [Noise Sources & Noise Figure] (1 hour)
 - [Power Density & Field Strength] (45 min)
- 4. Advanced RF Topics (pick based on role)
 - [Wave Polarization] Antenna design
 - [mmWave & THz Communications] 5G/6G
 - [Adaptive Modulation & Coding (AMC)] Link adaptation
 - [Military & Covert Communications] LPI/LPD systems

50.3 Navigation by Topic

50.3.1 By Application

Cellular (LTE/5G): - [OFDM & Multicarrier Modulation] - [MIMO & Spatial Multiplexing] - [Adaptive Modulation & Coding (AMC)] - [Quadrature Amplitude Modulation (QAM)]

WiFi (802.11): - [OFDM & Multicarrier Modulation] - [MIMO & Spatial Multiplexing] - [Channel Equalization] - [Real-World System Examples]

Satellite Communications: - [Free-Space Path Loss (FSPL)] - [Complete Link Budget Analysis] - [Wave Polarization] (Circular polarization) - [[Weather Effects (Rain Fade, Fog Attenuation)]]

GPS/GNSS: - [Spread Spectrum (DSSS/FHSS)] - [Wave Polarization] (RHCP) - [Binary Phase-Shift Keying (BPSK)] - [Real-World System Examples]

50.3.2 By Difficulty Level

Beginner (

Start here): - [[What Are Symbols]]

- [On-Off Keying (OOK)] - [Constellation Diagrams] - [Signal-to-Noise Ratio (SNR)]

Intermediate (

Some math required): - [QPSK Modulation] - [IQ Representation] - [Binary Phase-Shift Keying (BPSK)] - [Bit Error Rate (BER)] - [Forward Error Correction (FEC)]

Advanced (
Significant math): - [Shannon's Channel Capacity Theorem] - [LDPC Codes] - [Convolutional Codes & Viterbi Decoding] - [OFDM & Multicarrier Modulation]

Expert (

Research-level): - [Turbo Codes] - [Polar Codes] - [Military & Covert Communications]

464

50.4 Using Chimera Simulator

New to Chimera?

 Read foundation pages first (90 mir 	1.	Read	foundation	pages	first	(90	min
---	----	------	------------	-------	-------	-----	-----

- [[What Are Symbols]] (15 min)
- [QPSK Modulation] (30 min)
- [Constellation Diagrams] (30 min)
- [Signal Chain (End-to-End Processing)] (1 hour) [] Essential

2. Experiment:

- Adjust SNR

 Watch constellation spreading
- Toggle LDPC

 Compare coded vs uncoded

50.5 Common Questions

50.5.1 "Where do I start if I have zero RF knowledge?"

[[What Are Symbols]] (15 min gentle intro) then follow Path 1: Complete Beginner

50.5.2 "I'm a software engineer building a comm system. What do I need?"

☐ [Signal Chain (End-to-End Processing)] first, then Path 2: Software Engineer

50.5.3 "I need to calculate a satellite link budget for a project"

☐ Jump directly to [Complete Link Budget Analysis]

50.5.4 "What's the minimum to understand Chimera?"

3 pages: [[What Are Symbols]], [QPSK Modulation], [Signal Chain (End-to-End Processing)]

50.5.5 "I want to understand 5G"

☐ [OFDM & Multicarrier Modulation] + [MIMO & Spatial Multiplexing] + [Adaptive Modulation & Coding (AMC)]

50.6 ☐ Essential Reference Pages

Keep these bookmarked:

- [Formula Reference Card] Quick math lookup
- [[Glossary]] Acronyms and definitions
- [[Home]] Full table of contents

50.7 Study Tips

- 1. **Math-heavy pages**: Read once for concepts, twice for derivations
- 2. **Use examples**: Every page has numerical examples work through them
- 3. Cross-reference: Follow [[wiki links]] to build connections
- 4. **Experiment**: Use Chimera to validate theoretical concepts

Updated: October 4, 2025

Real-World System Examples 51

[[Home]] | System Implementation | [Channel Equalization] | [Signal Chain (End-to-End Processing)]

51.1 Overview

This page provides end-to-end analysis of real communication systems, showing how all concepts integrate.

Systems covered: 1. WiFi 802.11n/ac (Wireless LAN) 2. LTE (4G Cellular) 3. DVB-S2X (Satellite TV) 4. GPS L1 C/A (Navigation) 5. Bluetooth 5.0 (Personal Area Network) 6. LoRaWAN (IoT Long Range)

Each example includes: modulation, coding, link budget, sync, equalization, and performance.

51.2 1. WiFi 802.11n (300 Mbps)

51.2.1 System Parameters

Standard: IEEE 802.11n (2009) Frequency: 2.4 GHz or 5 GHz Bandwidth: 20 MHz or 40 MHz

MIMO: 2×2 , 3×3 , or 4×4

Modulation: BPSK to 64-QAM (per subcarrier)

Coding: Convolutional (K=7, rate 1/2, 2/3, 3/4, 5/6)

Multiple access: CSMA/CA (carrier sense)

51.2.2 PHY Layer (OFDM)

Subcarriers: - 20 MHz: 64 total (52 data, 4 pilots, 8 guard) - 40 MHz: 128 total (108 data, 6 pilots,

14 guard)

FFT size: 64 (20 MHz), 128 (40 MHz)

Subcarrier spacing: 312.5 kHz

Symbol duration: $3.2 \mu s (data) + 0.8 \mu s (guard) = 4 \mu s$

Guard interval: 0.8 µs (1/4 symbol) ☐ Handles 200 ns delay spread

51.2.3 Frame Structure

Legacy preamble (20 μ s): - Short training (8 μ s): AGC, coarse CFO - Long training (8 μ s): Fine CFO, channel estimation - SIGNAL field (4 μ s): Rate, length (BPSK, rate 1/2)

HT preamble (for 802.11n): - HT-SIG (8 μ s): MCS, bandwidth, MIMO streams - HT-LTF (4 μ s \times Nss): Channel estimation per spatial stream

51.2.4 Modulation & Coding Schemes (MCS)

20 MHz, 1 spatial stream:

	MCS	Modulation	Code Rate	Data Rate (Mbps)	Usage
0	BPSK	1/2	6.5	Max rai	nge, poor SNR
1	QPSK	1/2	13	Long ra	ange
2	QPSK	3/4	19.5		
3	16-QAM	1 1/2	26	Mediun	n range
4	16-QAM	1 3/4	39		
5	64-QAM	1 2/3	52	Short ra	ange, good SNR
6	64-QAM	1 3/4	58.5		
7	64-QAN	1 5/6	65	Max the	roughput

40 MHz, 2 spatial streams: 2× data rate ☐ 150 Mbps (MCS 15)

40 MHz, 4 spatial streams: 4× data rate [] 600 Mbps (MCS 31, 64-QAM 5/6)

51.2.5 Link Budget (Indoor, 20 MHz)

Transmitter: - TX power: +20 dBm (100 mW) - Antenna gain: +2 dBi (omnidirectional) - EIRP: +22 dBm

Path Loss (10 m indoor, 2.4 GHz): - Free space: 40 dB - Wall penetration: 5 dB (1 wall) - **Total path loss**: 45 dB

Receiver: - RX antenna gain: +2 dBi - Noise figure: 6 dB - Noise floor: -174 + 73 + 6 = -95 dBm (20 MHz)

Received signal: $-P_r = 22 - 45 + 2 = -21 \text{ dBm}$

SNR: -21 - (-95) = 74 dB (excellent!)

MCS: Can use MCS 7 (64-QAM 5/6, requires ~25 dB SNR)

Data rate: 65 Mbps

51.2.6 Synchronization

CFO tolerance: ±20 ppm - @ 2.4 GHz: ±48 kHz - Subcarrier spacing: 312.5 kHz - Normalized CFO: ±0.15 (15%)

Correction: 1. **Coarse CFO**: Short preamble autocorrelation (±156 kHz range) 2. **Fine CFO**: Long preamble phase difference (±10 kHz accuracy) 3. **Tracking**: Pilot subcarriers (every OFDM symbol)

Timing: Long preamble correlation peak

Channel estimation: Long preamble (2 known OFDM symbols)

51.2.7 Equalization

Per-subcarrier (flat fading assumption):

$$\hat{S}_k = \frac{R_k}{H_k}$$

Pilot tracking: 4 pilots per 52 subcarriers - Linear interpolation (frequency) - Common phase error (CPE) correction

MIMO (2×2): MMSE equalizer

$$\hat{\mathbf{S}} = (\mathbf{H}^H \mathbf{H} + \sigma^2 \mathbf{I})^{-1} \mathbf{H}^H \mathbf{R}$$

Complexity: 2×2 matrix inversion per subcarrier (52 times per symbol)

51.2.8 Performance

Range (2.4 GHz, 1 stream): - MCS 7 (65 Mbps): 10-20 m indoor - MCS 4 (39 Mbps): 30-50 m

indoor - MCS 0 (6.5 Mbps): 100+ m outdoor (line-of-sight)

Throughput (MAC overhead ~30%): - PHY 65 Mbps [MAC ~45 Mbps (TCP)

Latency: 1-5 ms (CSMA backoff + processing)

51.3 2. LTE (100 Mbps, Cat 3)

51.3.1 System Parameters

Standard: 3GPP Release 8 (2008)

Frequency: 700-2600 MHz (various bands)

Bandwidth: 1.4, 3, 5, 10, 15, 20 MHz

Downlink: OFDMA (Orthogonal Frequency Division Multiple Access)

Uplink: SC-FDMA (Single Carrier FDMA, lower PAPR)

Modulation: QPSK, 16-QAM, 64-QAM (adaptive per user)

Coding: Turbo codes (K=4, rate 1/3, punctured)

MIMO: 2×2, 4×4 (downlink)

51.3.2 Resource Grid

Resource Block (RB): 12 subcarriers × 7 OFDM symbols (0.5 ms slot)

Subcarrier spacing: 15 kHz

RB bandwidth: 180 kHz

20 MHz bandwidth: 100 RBs (1200 subcarriers)

OFDM symbol: 66.7 µs (normal CP)

Frame: 10 ms (10 subframes, 20 slots)

51.3.3 Modulation & Coding

MCS table (QPSK to 64-QAM):

	MCS	Modulation	Code Rate	Spectral Eff.	Usage
0	QPS	K 0.08	0.15	Cell	edge
5	QPS	K 0.37	0.74		

	MCS	Modu	ılation	Code Rate	Spectral Eff.	Usage
)	16-C	QAM	0.48	1.91	Mid	-cell
,	16-C	QAM	0.74	2.96		
)	64-C	QAM	0.55	3.32	Nea	r base st
5	64-C	QAM	0.85	5.12		
3	64-C	MAQ	0.93	5.55	Max	through

Adaptive MCS: eNB (base station) selects based on CQI (Channel Quality Indicator) reports

51.3.4 Link Budget (Downlink, 2 GHz, 20 MHz)

eNodeB (base station): - TX power: +46 dBm (40 W, macrocell) - Antenna gain: +17 dBi (sector antenna, 3-sector site) - Cable loss: -3 dB - EIRP: +60 dBm

Path Loss (urban, 1 km): - Free space: 92 dB - Urban clutter: 20 dB - Building penetration: 15 dB (indoor UE) - **Total**: 127 dB

UE (user equipment): - RX antenna gain: 0 dBi (phone, omnidirectional) - Noise figure: 9 dB - Noise floor: -174 + 73 + 9 = -92 dBm (20 MHz)

Received signal: $-P_r = 60 - 127 + 0 = -67 \text{ dBm}$

SNR: -67 - (-92) = 25 dB

MCS: 64-QAM, rate 0.7 (MCS 23)

Data rate (100 RBs, 2×2 MIMO): - 100 RB \times 12 subcarriers \times 7 symbols \times 6 bits \times 2 layers / 0.5 ms - = 100,800 bits / 0.5 ms = **201.6 Mbps** (physical) - With code rate 0.7 and overhead: ~**100 Mbps** (MAC)

51.3.5 Synchronization & Cell Search

Steps:

- 1. **PSS detection** (Primary Sync Signal):
 - 3 Zadoff-Chu sequences (cell ID mod 3)
 - Every 5 ms
 - Coarse timing (±5 ms ambiguity)
 - Coarse CFO (from PSS phase)
- 2. **SSS detection** (Secondary Sync Signal):
 - 168 sequences (cell ID = 0-503)
 - Frame timing (resolve 5 ms ambiguity)
 - Cell ID fully determined
- 3. **PBCH decode** (Physical Broadcast Channel):
 - Master Information Block (MIB)
 - Bandwidth, PHICH config, frame number
 - QPSK, rate 1/48 (very robust)

Time: ~100 ms (cold start), ~10 ms (known frequency)

51.3.6 Channel Estimation

Cell-Specific Reference Signals (CRS): - 4 pilots per RB per OFDM symbol (port 0) - 8 pilots for 2×2 MIMO (ports 0, 1)

Estimation: - LS per pilot: $\hat{H}_p=R_p/S_p$ - Wiener interpolation (frequency + time) - Averaging over multiple OFDM symbols (4 ms)

Tracking: Phase/frequency drift (up to 300 km/h Doppler)

51.3.7 Equalization (Downlink)

Frequency domain (per subcarrier):

$$\hat{S}_k = \frac{H_k^*}{|H_k|^2 + \sigma^2} R_k \quad (\text{MMSE}) \label{eq:spectrum}$$

MIMO (2×2): Per-subcarrier matrix inversion

Interference: ICIC (Inter-Cell Interference Coordination)

51.3.8 Performance

Throughput (Cat 3, 2×2 MIMO, 20 MHz): - **Peak**: 100 Mbps (downlink), 50 Mbps (uplink) - **Average**: 30-50 Mbps (loaded cell)

Latency: - Control plane: ~50 ms (idle □ active) - User plane: ~10 ms (round-trip)

Range: - Macrocell: 5-15 km (rural), 1-3 km (urban) - Small cell: 100-500 m

Handover: ~50 ms (seamless at < 300 km/h)

51.4 3. DVB-S2X (Satellite TV, 4K UHD)

51.4.1 System Parameters

Standard: ETSI EN 302 307-2 (2014)

Frequency: Ku-band (10.7-12.75 GHz downlink)

Bandwidth: 36 MHz (transponder)

Modulation: QPSK, 8PSK, 16APSK, 32APSK (ACM, Adaptive Coding & Modulation)

Coding: LDPC + BCH (outer)

Multiple access: TDM (Time Division Multiplex, single carrier per transponder)

51.4.2 Frame Structure

PLFRAME (Physical Layer Frame): - PLHEADER (90 symbols): Frame sync, MODCOD (modulation + code rate) - Pilots: 36 symbols every 1440 data symbols - Data: 16,200 or 64,800 bits (FECFRAME)

Super-frame: VCM (Variable Coding & Modulation) allows different MODCOD per frame

51.4.3 Modulation & Coding

MODCOD table (examples):

MODCOD	Modulation	Code Rate	Spectral Eff.	C/N Req. (dB)
1	QPSK	1/4	0.49	-2.3
6	QPSK	3/4	1.49	+4.0
11	8PSK	2/3	2.00	+7.9
17	8PSK	9/10	2.69	+12.7
23	16APSK	5/6	3.32	+14.4
28	32APSK	9/10	4.48	+18.4

ACM: Switch MODCOD based on rain fade - Clear sky: 32APSK 9/10 (max throughput) - Light rain: 8PSK 3/4 - Heavy rain: QPSK 1/2

51.4.4 Link Budget (GEO, Ku-Band, 4K UHD)

Satellite: - TX power: +50 dBW (100 kW EIRP, 100 W transponder) - Antenna gain: +35 dBi (spot beam) - EIRP: +85 dBW

Path Loss (GEO, 36,000 km, 12 GHz): - FSPL: 205.6 dB

Ground Station: - Dish size: 0.6 m (residential) - Antenna gain: +37.4 dBi (60% efficiency) - Pointing loss: -0.5 dB - RX gain: +36.9 dBi - LNB noise temp: 50 K (NF \approx 0.7 dB) - System temp: 150 K (sky + LNB) - G/T: +13.1 dB/K

Received C/N (Carrier-to-Noise): -C = 85 - 205.6 + 36.9 = -83.7 dBW - N = -228.6 + 10log(36e6) + <math>10log(150) = -147.3 dBW - C/N = 63.6 dB (clear sky, theoretical)

With rain (5 dB rain fade @ 12 GHz, 0.01% time): - C/N = 63.6 - 5 = **58.6 dB** (still excellent!)

MODCOD selection: - Clear sky: 32APSK 9/10 (requires 18.4 dB C/N) \square - Rain: 8PSK 2/3 (requires 7.9 dB C/N) \square \square

Data rate: -32APSK 9/10: 36 MHz \times 4.48 = **161 Mbps** - Enough for 4K UHD (50 Mbps HEVC) + multiple HD channels

51.4.5 Synchronization

PLHEADER (90 symbols): - Known pattern (SOF, Start of Frame) - Correlate for frame sync - Acquire in ~1 second (blind search ±500 kHz CFO)

Pilot symbols: Every 16 data symbols (distributed) - Phase/frequency tracking - Common phase error (CPE) correction

51.4.6 Equalization

Single carrier (not OFDM): - Phase noise dominant (satellite oscillator, ground LNB) - Decision-directed phase tracking - Pilot-aided (every 16 symbols)

Channel: Mostly flat (GEO, line-of-sight, no multipath)

51.4.7 Performance

Availability: 99.7% (0.3% outage in heavy rain)

Latency: ~600 ms (round-trip to GEO and back)

Throughput: 80-160 Mbps (depends on MODCOD, ACM)

Spectral efficiency: 1.5-4.5 bits/sec/Hz

51.5 4. GPS L1 C/A (Civilian Navigation)

51.5.1 System Parameters

Standard: IS-GPS-200 (US DoD) **Frequency**: L1 = 1575.42 MHz

Bandwidth: 2.046 MHz (C/A code)

Modulation: BPSK (data) on DSSS (Direct Sequence Spread Spectrum)

Spreading: 1.023 Mcps (C/A Gold code, 1023 chips)

Data rate: 50 bps (navigation message)

Code rate: None (no FEC on nav message, 1/2 rate implied by chip parity in modern receivers)

51.5.2 Signal Structure

C/A code: 1023-chip Gold code (repeats every 1 ms) - Unique code per satellite (32 satellites, ~30 visible codes) - Chip rate: 1.023 Mcps - Chip duration: ~977 ns

Navigation data: 50 bps - 20 ms per bit (20 C/A code repetitions) - Preamble, ephemeris, almanac **Spreading**:

$$s(t) = d(t) \cdot c(t) \cdot \cos(2\pi f_L 1t)$$

Where: -d(t) = Navigation data (±1) -c(t) = C/A code (±1, 1.023 Mcps)

51.5.3 Link Budget

Satellite (MEO, 20,200 km): - TX power: +27 dBW (500 W spacecraft, 50 W to L1) - Antenna gain: +13 dBi (earth-facing) - EIRP: +40 dBW

Path Loss (1.575 GHz, 20,200 km): - FSPL: 184 dB

Receiver (handheld): - Antenna gain: +3 dBi (patch antenna) - Cable loss: -2 dB - RX gain: +1 dBi - Noise figure: 3 dB - Noise floor: -174 + 63 + 3 = -108 dBm (2 MHz)

Received signal: $-P_r = 40 - 184 + 1 = -143 \text{ dBm}$

SNR (before despreading): -143 - (-108) = -35 dB

Processing gain (despreading): - G $p = 10\log(1.023e6 / 50) = 43 dB$

SNR after despreading: $-35 + 43 = +8 \text{ dB} \square$

Enough for: BER ~10⁻⁵ (BPSK @ 8 dB Eb/N0)

51.5.4 Acquisition & Tracking

Acquisition (cold start):

- 1. Search space:
 - Doppler: ±5 kHz (satellite motion)
 - Code phase: 0-1022 chips (1 ms uncertainty)
 - Total: $5000 \times 1023 = 5.1$ million hypotheses
- 2. FFT-based search:
 - Correlate 1 ms of signal with local code (FFT)
 - Sweep Doppler (500 Hz steps)
 - Time: ~1 second per satellite (parallel correlators)
- 3. Threshold: Peak exceeds noise floor by 10 dB B Satellite acquired

Tracking:

- **DLL** (Delay-Locked Loop): Code phase (±0.5 chip)
- PLL (Phase-Locked Loop): Carrier phase (sub-wavelength, ~19 cm)

• FLL (Frequency-Locked Loop): Doppler (±0.1 Hz)

Update: 1 kHz (1 ms integration)

51.5.5 Navigation Solution

Minimum 4 satellites: Solve for (x, y, z, clock bias)

Pseudorange (from code phase):

$$\rho_i = c \cdot \Delta t_i = \sqrt{(x-x_i)^2 + (y-y_i)^2 + (z-z_i)^2} + c \cdot b$$

Where: - ρ_i = Measured pseudorange to satellite i - (x,y,z) = User position - (x_i,y_i,z_i) = Satellite position (from ephemeris) - b = User clock bias

Solve (least squares, iterative):

$$\mathbf{p} = (\mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T \Delta \rho$$

Accuracy: - **Horizontal**: 5-10 m (standalone, unencrypted C/A) - **With DGPS**: 1-3 m (differential corrections) - **With RTK**: 1-10 cm (carrier phase, short baseline)

51.5.6 Performance

Time to first fix (TTFF): - Cold start: 30-60 seconds (no almanac) - Warm start: 10-30 seconds

(old almanac) - Hot start: 1-10 seconds (recent ephemeris)

Update rate: 1 Hz (can be 10 Hz with modern receivers)

Sensitivity: -130 dBm (open sky), -145 dBm (aided, indoor marginal)

51.6 5. Bluetooth 5.0 (LE Audio)

51.6.1 System Parameters

Standard: Bluetooth 5.0 (2016), LE Audio (2020)

Frequency: 2.4 GHz ISM band (2400-2483.5 MHz)

Bandwidth: 2 MHz per channel (40 channels, 2 MHz spacing)

Modulation: GFSK (Gaussian Frequency Shift Keying, BT=0.5)

Data rate: 1 Mbps (LE 1M), 2 Mbps (LE 2M), 125/500 kbps (LE Coded)

Coding: None (1M, 2M), FEC S=2 or S=8 (LE Coded)

Range: 10-100 m (LE), 200-400 m (LE Long Range)

51.6.2 Modulation

GFSK (Gaussian FSK): - **Deviation**: ± 250 kHz (1M), ± 500 kHz (2M) - **Modulation index**: h = 0.5 (1M), h = 1.0 (2M) - **Gaussian BT**: 0.5 (pre-filter to reduce bandwidth)

Bit 0: -250 kHz (1M) **Bit 1**: +250 kHz (1M)

Receiver: FM discriminator (non-coherent) or coherent (better sensitivity)

51.6.3 Frame Structure

Advertising packet (connection initiation): - Preamble: 8 bits (01010101 for 1M) - Access address: 32 bits (0x8E89BED6 for advertising) - PDU: 2-39 bytes (header + payload) - CRC: 24 bits

Data packet (connection): - Preamble: 8 bits - Access address: 32 bits (unique per connection) - PDU: 2-255 bytes - CRC: 24 bits

FEC (LE Coded): - S=2: Rate 1/2, block code - S=8: Rate 1/8, repetition code

51.6.4 Link Budget (LE 1M, 10 m)

Transmitter (phone): - TX power: 0 dBm (1 mW, class 2) - Antenna gain: 0 dBi (PCB antenna) - EIRP: 0 dBm

Path Loss (10 m indoor, 2.4 GHz): - Free space: 40 dB - Indoor clutter: 10 dB - Total: 50 dB

Receiver (headphones): - RX antenna gain: 0 dBi - Noise figure: 12 dB (low-power design) - Noise floor: -174 + 63 + 12 = -99 dBm (2 MHz)

Received signal: $-P_r = 0 - 50 + 0 = -50 \text{ dBm}$

SNR: $-50 - (-99) = 49 \text{ dB} \square \square \text{ (excellent!)}$

Sensitivity (spec): -70 dBm (1M), -80 dBm (LE Coded S=8)

Margin: 49 - 19 = 30 dB (19 dB SNR needed for 10^{-3} BER)

51.6.5 Synchronization

Preamble: 8-bit alternating pattern (01010101 or 10101010) - Frequency offset estimation - Timing sync (bit transitions)

Access address: 32-bit correlation - Frame detection - Fine timing

CFO tolerance: ±50 ppm - @ 2.4 GHz: ±120 kHz - Channel BW: 2 MHz - Correctable with

preamble estimation

51.6.6 Adaptive Frequency Hopping (AFH)

Avoid interference from WiFi:

Channel hopping: Pseudo-random sequence, 37 data channels - Hop every 1.25 ms (connection event) - Bad channels blacklisted (CCA, Clear Channel Assessment)

Example: WiFi on ch 6 (2437 MHz, 20 MHz BW) - BT avoids ch 15-24 (2428-2456 MHz) - Uses remaining 27 channels

51.6.7 Performance

Throughput: - LE 1M: ~700 kbps (application layer, overhead ~30%) - LE 2M: ~1.4 Mbps - LE

Coded S=2: ~350 kbps - **LE Coded S=8**: ~100 kbps

Latency: 7.5-40 ms (connection interval)

Range: - LE 1M: 10-30 m (typical), 100 m (outdoor, LoS) - LE Long Range (S=8): 200-400 m

(outdoor)

Power: 10-50 mW (active), $< 1 \mu$ W (deep sleep)

51.7 6. LoRaWAN (loT Long Range)

51.7.1 System Parameters

Standard: LoRa Alliance (2015)

Frequency: ISM bands (433, 868, 915 MHz)

Bandwidth: 125, 250, 500 kHz

Modulation: LoRa (Chirp Spread Spectrum, proprietary Semtech)

Data rate: 0.3-50 kbps (adaptive)

Coding: FEC rate 4/5, 4/6, 4/7, 4/8 (Hamming-based)

Range: 2-15 km (urban), 30-50 km (rural, LoS)

51.7.2 LoRa Modulation

CSS (Chirp Spread Spectrum): - Frequency sweeps linearly across bandwidth - Symbol duration: $T_s=2^{SF}/BW$ - SF (Spreading Factor): 7-12 (trade data rate vs range)

Example (SF=7, BW=125 kHz): - $T_s = 2^7/125000 = 1.024 \, \mathrm{ms}$ - Data rate: 5.47 kbps (rate 4/5 coding)

Example (SF=12, BW=125 kHz): - $T_{\rm s} = 2^{12}/125000 = 32.768~{\rm ms}$ - Data rate: 0.25 kbps

Energy per bit: Higher SF \(\Bigcup \) More energy per bit \(\Bigcup \) Longer range

51.7.3 Link Budget (SF12, 868 MHz, 15 km)

End Device (sensor): - TX power: +14 dBm (25 mW, EU limit) - Antenna gain: +2 dBi (whip antenna) - EIRP: +16 dBm

Path Loss (15 km rural, 868 MHz): - Free space: 111 dB - Terrain: 20 dB (rolling hills) - Total: 131 dB

Gateway (base station): - RX antenna gain: +8 dBi (omni or sector) - Cable loss: -1 dB - RX gain: +7 dBi - Noise figure: 3 dB (SX1301) - Noise floor: -174 + 51 + 3 = -120 dBm (125 kHz)

Received signal: $-P_r = 16 - 131 + 7 = -108 \text{ dBm}$

SNR: -108 - (-120) = 12 dB

Required SNR (SF12): -20 dB (yes, negative! CSS allows below-noise detection)

Margin: $12 - (-20) = 32 dB \square \square$

Range: 15 km achievable

51.7.4 Adaptive Data Rate (ADR)

Network server adjusts SF and TX power per device:

SF	Data Rate	a Rate Range		Energy
	9	5.5 kbps 1.8 kbps 0.25 kbps	5 km	Moderate

Goal: Minimize airtime and energy (battery life)

Example: Device near gateway - Start SF12 (robust) - Network commands SF7 (after several successful packets) - Airtime: 32.7 ms [] 1.0 ms (32× faster) - Battery life: 5× improvement

51.7.5 LoRaWAN Protocol

Class A (battery): - Uplink - 2 RX windows (1s, 2s after TX) - Downlink only in RX windows -Power: ~100 mW-years (1 packet/hour)

Class B (synchronized): - Periodic RX slots (128 ms beacon from gateway) - Latency: < 128 seconds

Class C (mains powered): - RX always on (except during TX) - Latency: ~1 second

.....

51.7.6 Performance

Range: - Urban: 2-5 km (SF7), 5-15 km (SF12) - Rural: 10-30 km (line-of-sight, SF12) - Record:

702 km (high altitude balloon, extreme conditions)

Capacity: ~1000 devices per gateway (duty cycle limited)

Battery life: 5-15 years (1 packet/hour, 3×AA batteries)

Latency: 1-10 seconds (Class A, includes ADR negotiation)

51.8 Comparison Summary

System	Frequency	Data Rate	Range	Modulation	Coding	Latency	Power
WiFi 802.11n	2.4/5 GHz	65-600 Mbps	10-100 m	64-QAM OFDM	Conv K=7	1-5 ms	100 mW
LTE DVB-	700-2600 MHz 12 GHz	10-100 Mbps 50-160	1-15 km 36,000	64-QAM OFDMA 32APSK	Turbo K=4 LDPC+B0	10 ms CH600 ms	200 mW 100 W
S2X GPS L1	1.575 GHz	Mbps 50 bps	km Global	BPSK DSSS	None	N/A	(sat) 50 W (sat)
Bluetooth 5	1 2.4 GHz	0.1-2 Mbps	10-400 m	GFSK	FEC/Repe	ea ī t-40 ms	10 mW
LoRaWAI	N 868/915 MHz	0.3-50 kbps	2-50 km	LoRa CSS	Hamming	1-10 s	25 mW

51.9 Key Takeaways by System

WiFi: High throughput, OFDM handles multipath, MIMO for capacity, short range

LTE: Cellular coverage, adaptive MCS, OFDMA multi-user, handover at 300 km/h

DVB-S2X: Satellite broadcast, ACM for rain fade, long latency (GEO), high EIRP

GPS: Below noise floor (-143 dBm), spread spectrum (43 dB gain), 5-10 m accuracy

Bluetooth: Low power, AFH avoids WiFi, LE Coded for range, 7.5 ms latency

LoRaWAN: Ultra-long range (15+ km), sub-noise detection (CSS), years battery life

479

51.10 Related Topics

- [Signal Chain (End-to-End Processing)]: System block diagrams
- [Complete Link Budget Analysis]: Detailed link calculations
- [OFDM & Multicarrier Modulation]: WiFi/LTE PHY layer
- [[Spread Spectrum (DSSS, FHSS)]]: GPS, Bluetooth AFH
- [[Adaptive Coding & Modulation]]: LTE, DVB-S2X, LoRaWAN ADR

Key takeaway: Real systems integrate all concepts: modulation (BPSK to 256-QAM), coding (convolutional to LDPC), multiple access (CSMA, OFDMA, TDMA), sync (preambles, pilots), equalization (MMSE, DFE), and link budgets. WiFi achieves 600 Mbps via MIMO + 64-QAM OFDM over 100 m. LTE provides 100 Mbps cellular over 15 km with ACM. DVB-S2X delivers 160 Mbps from GEO (36,000 km) using 32APSK. GPS operates at -143 dBm (below noise!) via 43 dB spreading gain. Bluetooth 5 extends to 400 m with FEC (LE Coded). LoRaWAN reaches 50 km rural with CSS sub-noise detection. Each system optimizes for different constraints: throughput vs range vs power vs latency. Understanding these trade-offs is key to system design!

This wiki is part of the [[F	Home Chimera Project]] documentation.

52 Shannon's Channel Capacity Theorem

Shannon's Channel Capacity Theorem (1948) is one of the most important results in information theory, establishing the **fundamental limit** of reliable communication over a noisy channel.

52.1 For Non-Technical Readers

Imagine you're trying to have a conversation in a noisy room. The noisier it gets, the harder it is to understand what the other person is saying. You might speak louder, or talk more slowly and clearly, but there's a limit to how much information you can reliably communicate.

Shannon's theorem tells us exactly what that limit is.

52.1.1 The Big Ideas (In Plain English)

1. Every communication channel has a speed limit

Just like highways have speed limits, communication channels (WiFi, radio, fiber optics, etc.) have a maximum rate at which you can send information reliably. This limit depends on two things: - **How much "space" you have** (bandwidth - like having more lanes on a highway) - **How noisy it is** (signal-to-noise ratio - like trying to talk in a quiet library vs. a rock concert)

2. You can always send slower to be more reliable

If you're below the speed limit, you can add "error correction" (like repeating yourself or spelling things out) to make sure the message gets through perfectly. Shannon proved that with good enough error correction, you can get the error rate as close to zero as you want.

3. You can never go faster than the limit

No matter how clever your technology, you cannot exceed this fundamental limit without making mistakes. It's a law of nature, like the speed of light.

52.1.2 Real-World Example: Your WiFi

Your WiFi router constantly adjusts its speed based on Shannon's theorem: - Far from router (weak signal, noisy): Sends data slowly but reliably (maybe 10 Mbps) - Close to router (strong signal, clean): Sends data fast (maybe 500 Mbps) - Through thick walls (very noisy): Slows way down to maintain connection

The router is always trying to send as fast as possible without exceeding Shannon's limit, because going faster would just cause errors and make things worse.

52.1.3 Why This Matters for Chimera

In Chimera's space communication scenarios, we're often working in **extremely noisy** conditions (think: trying to hear a whisper from across a football field during a thunderstorm). Shannon's theorem tells us: - We **must** use very strong error correction (LDPC codes) - We **cannot** send data very fast (maybe 32 bits per second instead of millions) - But we **can** still communicate reliably if we respect the limits

The theorem is like a GPS for engineers: it tells us where the cliff edge is, so we know how close we can safely get.

52.2 The Main Result

Channel Capacity (C): Maximum rate at which information can be transmitted over a channel with **arbitrarily small error probability**.

For AWGN channel (Additive White Gaussian Noise):

```
C = B · log (1 + SNR) bits/second
where:
- B = bandwidth (Hz)
- SNR = signal-to-noise ratio (linear, not dB!)
```

In terms of [[Energy Ratios (Es/N0 and Eb/N0)|Eb/N0]]:

```
C/B = log (1 + (Eb/N) \cdot (R/B))
where R = data \ rate \ (bps)
```

52.3 Physical Interpretation

52.3.1 What Shannon Proved

Two-part theorem:

- 1. **Achievability**: If data rate R < C, there exists a coding scheme that allows transmission with **arbitrarily low error probability** (BER \square 0)
- 2. **Converse**: If R > C, **no** coding scheme can achieve reliable communication (BER bounded away from zero)

Shannon limit: The boundary R = C is the **hard limit** of communication.

52.3.2 Information-Theoretic Perspective

Reliable Communication Regions:

52.4 □ **Derivations & Examples**

52.4.1 Example 1: WiFi Channel

```
Given:
- Bandwidth: B = 20 MHz
- SNR: 20 dB = 100 (linear)

Capacity:
C = 20×10 · log (1 + 100)
= 20×10 · log (101)
= 20×10 · 6.66
= 133 Mbps
```

Conclusion: No matter how clever your coding, you can't reliably transmit more than 133 Mbps of

52.4.2 Example 2: Deep Space Link

```
Given:
- Bandwidth: B = 1 MHz
- SNR: -3 dB = 0.5 (linear!) (very noisy!)

Capacity:
C = 1×10 · log (1 + 0.5)
= 1×10 · log (1.5)
= 1×10 · 0.585
= 585 kbps

Conclusion: Even at negative SNR, communication is possible (but rate must be low).
```

52.4.3 Example 3: Chimera Simulation

```
Given:
- Bandwidth: B 20 Hz (QPSK @ 16 sym/s)
- SNR: Variable (-25 to +10 dB in typical presets)

At SNR = -15 dB (0.0316 linear):
C = 20 · log (1 + 0.0316)
= 20 · log (1.0316)
= 20 · 0.045
= 0.9 bps

Chimera uses: R = 32 bps (16 sym/s × 2 bits/sym)

R/C = 32/0.9 = 35.6 >> 1 ← Operating FAR above capacity!

This is why [[LDPC Codes]] are essential. Without FEC, BER would be ~50% (random guessing). With LDPC (rate 1/2), effective R = 16 bps, still R/C = 17.8 (high, but FEC provides ~35 dB codes are supported by the support of the support of
```

52.5 Spectral Efficiency

Spectral efficiency: $\eta = R/B$ (bits/s/Hz)

Shannon limit on spectral efficiency:

```
_max = log (1 + SNR)

Examples:
- SNR = 1 (0 dB): _max = 1 bit/s/Hz
- SNR = 3 (4.8 dB): _max = 2 bits/s/Hz
- SNR = 15 (11.8 dB): _max = 4 bits/s/Hz
- SNR = 255 (24 dB): _max = 8 bits/s/Hz
```

Practical systems (including overhead):

System	SNR (dB)	SNR (dB) η (bits/s/Hz)		η/η_ma	ax
	GSM		~10	0.5	~30%
	WiFi 802.11n		~20	3-4	~60%
	LTE Advanced		~25	5-6	~75%
	[[LDPC Codes LDPC]]	(DVB-S2)	Variable	Adaptive	~90%

Modern codes ([[LDPC Codes|LDPC]], Turbo, Polar) achieve > 95% of Shannon limit!

52.6 Power-Limited vs Bandwidth-Limited

52.6.1 Power-Limited Regime

Low SNR (deep space, satellite):

C B
$$\cdot$$
 (SNR / ln 2) (for SNR << 1)

Power efficiency dominates:

- Use low spectral efficiency
- Heavy error correction (rate 1/4, 1/2)
- Example: Voyager (rate 1/6 conv code)

52.6.2 Bandwidth-Limited Regime

High SNR (fiber optics, mmWave backhaul):

C B
$$\cdot$$
 log (SNR) (for SNR $>>$ 1)

Spectral efficiency dominates:

- Use high-order modulation (256-QAM)
- Light error correction (rate 9/10)
- Example: Fiber (SNR > 30 dB, use LDPC rate 0.9)

52.7 Shannon-Hartley Theorem (Historical)

Original 1948 form:

$$C = B \cdot \log (1 + S/N)$$

where S and N are signal and noise POWER (not ratios)

Assumptions: 1. AWGN channel (additive white Gaussian noise) 2. Average power constraint on transmitter 3. Unlimited complexity allowed for encoder/decoder 4. Infinite delay acceptable (block codes of arbitrary length)

What Shannon did NOT provide: - How to construct codes that achieve capacity (left as exercise for humanity!) - Complexity or delay bounds - Performance at finite blocklength

52.8

Building Towards Capacity

52.8.1 Historical Progress

Year Code Type Performa	ance (dB from Shannon limit)
Shannon proves limit exists	-
Hamming codes	~7 dB
Convolutional codes	~3 dB
Turbo codes	~0.7 dB (breakthrough!)
[LDPC Codes] rediscovered	~0.5 dB
Polar codes	~0.5 dB
Modern LDPC (DVB-S2X)	~0.2 dB
	Shannon proves limit exists Hamming codes Convolutional codes Turbo codes [LDPC Codes] rediscovered Polar codes

We're essentially there! Modern codes are within 0.2 dB of the theoretical limit.

52.9 The BER "Waterfall"

For codes approaching Shannon limit:

Threshold effect: Below Shannon-limit Eb/N0, BER drops rapidly (waterfall region).

Practical threshold: Where BER = 10⁻⁶ (typical target).

52.10 □ Implications for System Design

52.10.1 1. Trade-offs

Shannon says: You can trade bandwidth for power (and vice versa):

```
C = B · log (1 + P/(N B))
Increase B → Need less P for same C
Decrease B → Need more P for same C
```

Spread spectrum exploits this: Use wide B, tolerate low SNR.

52.10.2 2. [Forward Error Correction (FEC)]

FEC adds redundancy (lowers rate):

```
R_code = R_data · (k/n) (rate k/n code)

Without FEC: Need high Eb/NO for low BER

With FEC: Lower Eb/NO sufficient (coding gain!)

Goal: Design codes with R□ C as blocklength□ ∞
```

52.10.3 3. Adaptive Modulation & Coding

Modern systems (LTE, WiFi, DVB-S2): - Measure SNR dynamically - Select modulation and code rate to maximize throughput while R < C - **Always operate near Shannon limit!**

```
High SNR: 256-QAM, rate 9/10 \rightarrow 7 bits/s/Hz Low SNR: QPSK, rate 1/4 \rightarrow 0.5 bits/s/Hz
```

52.11 □ Capacity for Other Channels

52.11.1 Fading Channels

Rayleigh fading:

```
C_fading < C_AWGN (capacity reduced by fading)</pre>
```

Mitigation:

- Diversity (space, time, frequency)
- Channel coding with interleaving
- Adaptive modulation

52.11.2 MIMO Channels

Multiple antennas (N_T transmit, N_R receive):

```
C_MIMO min(N_T, N_R) \cdot B \cdot log (1 + SNR)
```

Capacity grows LINEARLY with min(N_T, N_R)!

This is why 5G uses massive MIMO (64-256 antennas).

52.11.3 Non-Gaussian Noise

Shannon's theorem assumes Gaussian noise (worst case for given variance).

Other noise types (impulsive, colored): - Capacity can be higher or lower - Requires different coding strategies

52.12 Mathematical Details

52.12.1 Information Theory Foundation

Mutual information I(X;Y):

```
I(X;Y) = H(Y) - H(Y|X)
```

where:

- H(Y) = entropy of received signal
- H(Y|X) = entropy of noise

Capacity:

 $C = \max_{p(x)} I(X;Y)$

Maximization over input distribution p(x).

For AWGN: Optimal input is Gaussian

Shannon capacity formula.

52.13 □ Key Takeaways

- 1. **Fundamental limit**: $C = B \cdot log_2(1 + SNR)$ is hard barrier
- 2. Always achievable: Codes exist that reach arbitrarily close to C
- 3. **Trade-offs**: Can exchange bandwidth for power (spread spectrum)
- 4. Modern codes: [[LDPC Codes|LDPC]], Turbo, Polar are within 0.2-0.5 dB of limit
- 5. **System design**: Target R < C, use adaptive coding/modulation
- 6. Chimera context: Extreme low SNR (-25 dB) requires very low rate or powerful FEC

52.14 ☐ See Also

- [Forward Error Correction (FEC)] How to approach Shannon limit
- [LDPC Codes] Modern capacity-approaching codes
- [Bit Error Rate (BER)] Performance metric

- [[Energy Ratios (Es/N0 and Eb/N0)]] Related to SNR and capacity
- [[Signal to Noise Ratio (SNR)]] Key parameter in capacity formula

52.15 References

52.15.1 Primary Sources

- 1. **Shannon, C.E.** (1948) "A Mathematical Theory of Communication" *Bell Syst. Tech. J.* 27, 379-423, 623-656
 - The foundational paper still highly readable!
- 2. Shannon, C.E. (1949) "Communication in the Presence of Noise" Proc. IRE 37, 10-21
 - · Shannon-Hartley theorem for AWGN

52.15.2 Textbooks

- 3. Cover, T.M. & Thomas, J.A. (2006) Elements of Information Theory 2nd ed. (Wiley)
- 4. **MacKay, D.J.C.** (2003) *Information Theory, Inference, and Learning Algorithms* (Cambridge UP) Free online!
- 5. Gallager, R.G. (1968) Information Theory and Reliable Communication (Wiley)

52.15.3 Historical Context

6. Verdú, S. (1998) "Fifty Years of Shannon Theory" IEEE Trans. Info. Theory 44, 2057-2078

53 Signal Chain (End-to-End Processing)

The signal chain is like a postal system for data—messages get packaged (encoded), addressed (modulated), mailed (transmitted), delivered (received), sorted (demodulated), and unpacked (decoded)!

The complete journey:

Transmitter Side (□ Sending):

- **1. Raw Data**: Your message: "Hello!" (text, voice, video) Binary: 01001000 01100101 01101100...
- **2. FEC Encoder** (

 Add error protection): Like: Adding packing material to fragile package Adds redundancy so receiver can fix errors Input: 100 data bits

 Output: 150 coded bits
- **3. Modulator** (☐ Convert to symbols): Like: Converting letter to semaphore flags Maps bits to radio signal patterns QPSK: Every 2 bits ☐ 1 symbol (4 positions)
- **4. Upconverter** (

 Shift to radio frequency): Like: Loading package onto airplane Shifts signal from baseband (near 0 Hz) to RF (GHz) Baseband 10 MHz

 RF 2.4 GHz

5. Transmit Antenna (

Launch!): - Converts electrical signal to electromagnetic waves - Radiates into space - Power: mW to kW depending on application

Channel (☐ The dangerous journey):

Link Loss (☐ Signal weakens): - Distance: Signal spreads out, gets weaker - 2× distance = 1/4 power (inverse square law)

Noise (

Random interference): - Thermal noise (electronics are warm) - Interference (other transmitters) - Cosmic background radiation - Like: Static on old radio

Fading (

Signal fluctuates): - Multipath: Echoes interfere - Obstacles: Buildings, trees block signal - Movement: Doppler shift - Like: Sound echoing in canyon

Receiver Side (

Receiving):

- **6. Receive Antenna** (Catch!): Collects weak electromagnetic waves Converts to electrical signal Received power: Often 10^-12 watts (pW)!
- **7. Downconverter** (
 Unload from airplane): Shifts RF signal back to baseband RF 2.4 GHz
 Baseband 10 MHz Now can process with DSP
- **8. Synchronizer** (

 Align timing/frequency): Like: Aligning decoder ring Matches receiver clock to transmitter Corrects frequency/phase/timing offsets
- **9. Equalizer** (I Undo channel distortion): Like: Uncrumpling package Reverses distortion from multipath/fading Makes constellation clean again
- **10. Demodulator** (

 Read symbols): Like: Reading semaphore flags Converts received symbols back to bits Makes "soft decisions" (probabilities)
- **11. FEC Decoder** (
 Fix errors): Like: Piecing together damaged package Uses redundancy to detect and correct errors Output: Clean data bits (hopefully!)
- **12.** Recovered Data (Success!): Your message: "Hello!" Delivered successfully (if BER low enough)

Real-world example - Sending emoji via WiFi:

- 1. You type \Box (1 byte = 8 bits)
- 2. **FEC**: Encoded to 12 bits (50% overhead)
- 3. **Modulator**: 12 bits [] 6 QPSK symbols
- 4. **Upconverter**: Shifted to 2.4 GHz
- 5. **TX antenna**: Radiated at 100 mW
- 6. Channel: Signal travels 10 meters, weakened to 10 μW
- 7. **RX antenna**: Laptop antenna collects 1 μW
- 8. Downconverter: Back to baseband
- 9. **Synchronize**: Align timing (4 µs correction)
- 10. **Equalize**: Undo multipath from walls
- 11. **Demodulate**: Recover 12 bits (2 errors!)
- 12. **FEC decode**: Fix 2 errors \square perfect 8 bits
- 13. You see: □

All in 0.00024 seconds!

Why understanding the chain matters: - Weak signal? Check: Antenna, link budget, path loss - Lots of errors? Check: Noise, FEC, modulation - Intermittent? Check: Fading, synchronization - Each block can be optimized independently!

Fun fact: A typical WiFi packet goes through this entire signal chain (11+ processing blocks) in under 1 millisecond. Your laptop's WiFi chip performs billions of calculations per second to execute these steps in real-time!

The **signal chain** is the complete path data takes from transmitter to receiver in Chimera's DSP simulation.

53.2 Overview

53.3 Detailed Signal Chain

53.3.1 1. Data Source

Input: Raw information bits (0s and 1s)

Example: "Hello" in binary

In Chimera: Generated from presets or user input

53.3.2 2. FEC Encoder

Input: Information bits

Output: Encoded bits with parity

Purpose: Add [[Forward Error Correction (FEC)|redundancy]] for error correction

```
Information: [1 0 1 0] (4 bits)

[[LDPC Codes|LDPC]] Encoder (rate 1/2)
```

```
Codeword: [1 0 1 0 1 1 0 0] (8 bits)
```

data parity

Parameters: - Code rate (1/2, 2/3, 3/4, etc.) - Block length - LDPC matrix structure

Chimera Implementation: chimera-core::encoder

53.3.3 3. Modulator

Input: Encoded bits

Output: Complex symbols (I+jQ)

Purpose: Map bits to [[QPSK Modulation|constellation points]]

```
Bits: [0\ 0] \rightarrow Symbol: (-1, -1) \rightarrow 225^{\circ}

Bits: [0\ 1] \rightarrow Symbol: (-1, +1) \rightarrow 135^{\circ}

Bits: [1\ 0] \rightarrow Symbol: (+1, -1) \rightarrow 315^{\circ}

Bits: [1\ 1] \rightarrow Symbol: (+1, +1) \rightarrow 45^{\circ}
```

For QPSK: 2 bits per symbol

[[Constellation Diagrams|Constellation]] (TX side):

Chimera Implementation: chimera-core::modulation

53.3.4 4. Pulse Shaping (Optional)

Input: Discrete symbols

Output: Continuous waveform

Purpose: Limit bandwidth, reduce inter-symbol interference

Filter Types: - Raised cosine - Root raised cosine (most common) - Gaussian

Not simulated in current Chimera version (focused on baseband)

53.3.5 5. Upconverter

Input: Baseband I/Q signal

Output: RF signal at carrier frequency

Purpose: Shift signal to transmission frequency

```
Baseband: s(t) = I(t) + jQ(t)

RF Signal: s_RF(t) = I(t) \cdot cos(2f_c \cdot t) - Q(t) \cdot sin(2f_c \cdot t)

where f_c is carrier frequency (e.g., 2.4 GHz)
```

Chimera: Simulates baseband only (no carrier)

53.3.6 6. Channel Effects

53.3.6.1 A. Link Loss Input: Transmitted signal power

Output: Attenuated signal power

Purpose: Models distance, antenna gains, free-space path loss

Link Budget:
P_RX = P_TX + G_TX + G_RX - L_path - L_other

Example:

10 dBm TX power

- + 3 dBi TX antenna gain
- + 3 dBi RX antenna gain
- 100 dB path loss
- 5 dB other losses

= -89 dBm RX power

See: [Link Loss vs Noise]

Chimera: Simulated as amplitude scaling

·

53.3.6.2 B. Additive White Gaussian Noise (AWGN) Input: Attenuated signal

Output: Noisy signal

Purpose: Models thermal noise, interference

Received signal: r(t) = s(t) + n(t)

where $n(t) \sim N(0, 2)$ is Gaussian noise

[[Signal to Noise Ratio (SNR)]] determines noise power:

SNR = P_signal / P_noise

2 = P_signal / SNR

Constellation (RX side with noise):

See: [Additive White Gaussian Noise (AWGN)]

Chimera Implementation: chimera-core::channel

53.3.7 7. Downconverter

Input: RF signal at carrier frequency

Output: Baseband I/Q signal

Purpose: Shift signal back to baseband for processing

```
I(t) = s_RF(t) \cdot cos(2 f_c \cdot t) \cdot LPF
Q(t) = s_RF(t) \cdot sin(2 f_c \cdot t) \cdot LPF
```

where LPF is low-pass filter

Chimera: Not needed (baseband simulation)

53.3.8 8. Matched Filter (Optional)

Input: Noisy continuous waveform **Output**: Discrete symbol samples

Purpose: Maximize [[Signal to Noise Ratio (SNR)|SNR]] before sampling

Not simulated in current Chimera

53.3.9 9. Demodulator

Input: Noisy symbols (I+jQ)

Output: Soft bit estimates (LLRs)

Purpose: Convert symbols back to bits with reliability info

Hard Decision:

```
Symbol: (0.8, 0.7) \rightarrow Bits: [1 1] \rightarrow Confidence: High Symbol: (0.1, -0.05) \rightarrow Bits: [0 0] \rightarrow Confidence: Low
```

Soft Decision (Log-Likelihood Ratios):

```
LLR > 0 \rightarrow Likely a '1' bit
LLR < 0 \rightarrow Likely a '0' bit
|LLR| = Confidence level
Example:
LLR = +5.2 \rightarrow Very confident '1'
LLR = -0.3 \rightarrow \text{Weak '0'} (could be wrong)
```

Soft values help FEC decoder make better decisions!

Chimera Implementation: chimera-core::demodulator

53.3.10 10. FEC Decoder

Input: Soft bit estimates

Output: Corrected information bits

Purpose: Fix errors using [[Forward Error Correction (FEC)|redundancy]]

[[LDPC Codes|LDPC]] Decoding: 1. Initialize with soft values (LLRs) 2. Iterate belief propagation (typically 50 iterations) 3. Check parity constraints 4. Converge to corrected bits

```
Pre-FEC: [1 0 1 0 1 1 0 0] ← 2 bit errors
LDPC Decoder (50 iterations)
Post-FEC: [1 0 1 0 1 1 0 0] ← Errors corrected!
```

Chimera Implementation: chimera-core::decoder

53.3.11 11. Data Sink

Output: Recovered information bits

Quality Metrics: - [[Bit Error Rate (BER)|Pre-FEC BER]]: Errors before decoding - [[Bit Error Rate (BER)|Post-FEC BER]]: Residual errors after decoding - Frame Error Rate: Percentage of completely corrupted frames

```
Best case: Post-FEC BER = 0 (perfect!)
Acceptable: Post-FEC BER < 10
Poor:
      Post-FEC BER > 10 3
```

53.4 Signal Chain Metrics (Chimera)

53.4.1 Transmitter Metrics

- Data rate (bits/second)
- Symbol rate (symbols/second)

- · Code rate
- · Modulation order (bits/symbol)

53.4.2 Channel Metrics

- [[Link Loss vs Noise|Link loss]] (dB)
- [[Signal to Noise Ratio (SNR)|SNR]] (dB)
- [[Energy Ratios (Es/N0 and Eb/N0)|Es/N0]] (dB per symbol)
- [[Energy Ratios (Es/N0 and Eb/N0)|Eb/N0]] (dB per bit)

53.4.3 Receiver Metrics

- Pre-FEC errors
- Post-FEC errors
- [[Bit Error Rate (BER)|BER]] (pre and post)
- · Frame Error Rate
- LDPC iterations
- · Coding gain

53.5 Signal Processing Domains

Throughout the signal chain, we work in different domains:

53.5.1 Time Domain

· What: Signal amplitude vs time

• Where: Pulse shaping, waveform generation

Tool: Oscilloscope

53.5.2 Frequency Domain

What: Signal power vs frequencyWhere: Spectrum analysis, filtering

• Tool: Spectrum analyzer

53.5.3 Symbol Domain

What: Discrete constellation pointsWhere: Modulation, demodulation

Tool: [[Constellation Diagrams|Constellation diagram]]

53.5.4 Bit Domain

What: Binary data (0s and 1s)Where: FEC encoding/decoding

• Tool: Error counting

53.6 Processing Gain

Chimera applies **processing gain** to improve SNR:

```
Processing Gain = 10 · log (Spread Factor)

Example:
- Symbol rate: 3200 symbols/sec
- Chip rate: 32000 chips/sec
- Spread factor: 10
- Processing gain: 10 dB

Effective SNR at demodulator:

SNR_eff = SNR_channel + Processing_gain
= -25 dB + 10 dB
= -15 dB
```

This allows operation at much lower channel SNR!

53.7 End-to-End Example

```
Input: "Hi" = 01001000 01101001 (16 bits)

1. FEC Encoder (rate 1/2):
    → 32 bits (16 data + 16 parity)

2. Modulator (QPSK, 2 bits/symbol):
    → 16 symbols

3. Channel (SNR = -18 dB):
    → Noisy symbols with errors

4. Demodulator:
    → 32 soft bits (LLRs)
    → Pre-FEC errors: 4 bits

5. LDPC Decoder (50 iterations):
    → 16 corrected bits
    → Post-FEC errors: 0 bits

Output: "Hi" = 01001000 01101001 (recovered!)
```

53.8 Visualization in Chimera

The web interface shows:

- 1. TX Constellation: Clean transmitted symbols
- 2. **RX Constellation**: Noisy received symbols (scatter plot)
- 3. Error Metrics: Pre/Post-FEC BER, frame errors
- 4. **SNR Controls**: Adjust noise level in real-time
- 5. Processing Gain: Shows effective SNR improvement

53.9 See Also

• [Forward Error Correction (FEC)] - Encoding/decoding details

- [QPSK Modulation] Modulation scheme
- [Constellation Diagrams] Symbol visualization
- [[Signal to Noise Ratio (SNR)]] Channel quality metric
- [Link Loss vs Noise] Channel impairments
- [Bit Error Rate (BER)] Performance metric
- [[Reading the Constellation]] Practical guide to interpreting plots

54 Signal-to-Noise Ratio (SNR)

54.1 For Non-Technical Readers

SNR is like the difference between a conversation in a quiet library (high SNR) vs a loud nightclub (low SNR)—higher SNR = easier to understand the message!

The idea - Signal vs Background: - **Signal**: The information you want (voice, data, music) - **Noise**: Random interference you don't want (static, hiss, interference) - **SNR**: How much stronger is signal than noise?

Real-world analogies:

Good SNR (Easy to hear): - □ Quiet library conversation: Speech is 20× louder than background □ 26 dB SNR - □ Clear radio station: Music is 100× louder than static □ 40 dB SNR - □ Strong WiFi: Data signal is 1000× stronger than noise □ 60 dB SNR

Bad SNR (Hard to hear): -

Loud nightclub: Trying to talk, voice only 2× louder than music

6 dB SNR -

Weak radio station: Static almost as loud as music

3 dB SNR -

Far from router: WiFi signal barely stronger than interference

5 dB SNR

The dB scale (why engineers use it): - **Linear**: $10 \times \text{stronger} = 10 \text{ dB}$, $100 \times \text{stronger} = 20 \text{ dB}$, $1000 \times \text{stronger} = 30 \text{ dB}$ - **Logarithmic**: Makes huge ranges manageable - **Rule of thumb**: +3 dB = double the power, +10 dB = $10 \times \text{the power}$

SNR quality guide:

60+ dB SNR: Perfect - Laboratory quality
40-60 dB: Excellent - WiFi close to router

20-40 dB: Good - Cell phone normal use

10-20 dB: Fair - Far from WiFi, slower speeds

0-10 dB: Poor - Lots of errors, need error correction

Below 0 dB: Terrible - Noise louder than signal!

Real examples you experience:

WiFi speed changes: - Next to router: 60 dB SNR
Use 1024-QAM
1200 Mbps
- One room away: 35 dB SNR
Use 256-QAM
600 Mbps - Two rooms away: 20 dB SNR
Use 64-QAM
200 Mbps - Far corner: 10 dB SNR
Use QPSK
50 Mbps
- Your device automatically adjusts based on SNR!

Cell phone bars: -5 bars: >20 dB SNR □ Fast data, clear calls - 3 bars: ~10 dB SNR □ Slower data, occasional drop - 1 bar: ~5 dB SNR □ Very slow, frequent errors - No bars: <0 dB SNR □ Can't connect

Voice calls: - Landline: ~40 dB SNR | Crystal clear - Good cell: ~20 dB SNR | Clear - Bad cell: ~10 dB SNR | "Can you hear me now?" - Terrible cell: ~5 dB SNR | Garbled, robotic voice

Why SNR matters:

Data rate (how fast): - High SNR □ Use complex modulation (256-QAM, 1024-QAM) □ Fast! - Low SNR □ Use simple modulation (QPSK, BPSK) □ Slow but reliable

Error rate (how accurate): - High SNR \square Few errors \square No retransmissions \square Efficient - Low SNR \square Many errors \square Lots of retransmissions \square Inefficient

Range (how far): - Close distance ☐ High SNR ☐ Fast connection - Far distance ☐ Low SNR ☐ Slow or no connection

Engineering trade-offs:

Increase SNR by: -
More transmit power: Stronger signal (but uses battery, FCC limits) -
Bigger antennas: Collect more signal (but bulky) -
Get closer: Reduce distance (not always possible) -
Reduce noise: Better receivers, shielding (expensive)

Shannon's Law (theoretical limit):

Max data rate = Bandwidth \times log (1 + SNR)

- Double SNR □ ~40% more data rate
- 10× SNR □ 3× more data rate
- This is why 5G needs high SNR for multi-Gbps speeds!

When you see SNR:

Router admin page: "SNR: 42 dB" ☐ Excellent connection WiFi diagnostics: "Signal: -45 dBm, Noise: -95 dBm" ☐ SNR = 50 dB ☐ Cell phone: "RSRP: -80 dBm, SINR: 15 dB" ☐ Decent 4G signal Audio recording: "SNR: 90 dB" ☐ Professional studio quality

The ultimate limit - Thermal noise: - All electronics generate noise from heat - Room temperature: Noise floor ~-174 dBm/Hz - This sets fundamental limit for all communication - Can't go below this (without cooling to near absolute zero!)

Fun fact: Deep space communications have SNR well below 0 dB—Voyager 1's signal arriving at Earth is **10,000× weaker than the noise!** Engineers use huge antennas, narrow filters, and sophisticated algorithms to extract signal from noise. It's like hearing a whisper from 15 billion miles away!

Signal-to-Noise Ratio (SNR) measures the strength of the desired signal relative to the background noise. It's typically expressed in decibels (dB).

54.2 Understanding SNR Values

Higher SNR = Better Signal Quality

SNR (dB)		Quality		Typical Use Case
	- 1 -		· I —	
> 20 dB	-	Excellent		Clear reception, low error rate
10-20 dB		Good		Reliable communication
0-10 dB		Poor		Many errors, FEC required
< 0 dB		Very Poor		Noise stronger than signal

54.3 SNR Formula

```
SNR (linear) = Signal Power / Noise Power
SNR (dB) = 10 · log (Signal Power / Noise Power)
```

54.4 SNR in Chimera

In Chimera's simulation, you control the **channel SNR**, which determines how much noise is added to the transmitted signal:

	Setting	Description	Со	nstellation	
High SNR (-5 dl	B)	Minimal noise		Tight clus	ters
Medium SNR (-15 dB)		Moderate noise		Visible sca	atter
Low SNR (-25 dB)		Heavy noise		Large scatter, errors likely	

54.4.1 Processing Gain

Chimera achieves approximately **35 dB of processing gain** through symbol averaging and oversampling. This means:

```
Effective SNR = Channel SNR + Processing Gain
= -25 dB + 35 dB
= 10 dB (after processing)
```

This is why the system can operate reliably even with very low channel SNR values.

54.5 SNR vs Es/N0

In Chimera's UI, "Channel SNR (dB)" represents **Es/N0** (symbol energy to noise ratio): - **Before processing**: Low Es/N0 (e.g., -25 dB) - **After processing gain**: Higher effective SNR (~10 dB) - **LDPC threshold**: Fails below -27 dB channel SNR

54.6 Impact on Performance

54.6.1 High SNR (>15 dB)

- Perfect constellation separation
- Zero or near-zero bit errors
- FEC not strictly needed
- □ BER: <10⁻⁶

54.6.2 Medium SNR (5-15 dB)

- Usible constellation scatter
- Some bit errors occur
- FEC recommended
- ☐ BER: 10⁻³ to 10⁻⁶

54.6.3 Low SNR (<5 dB)

- Heavy constellation scatter
- Many bit errors
- FEC required
- □ BER: >10⁻³

54.7 See Also

- [[Energy Ratios (Es N0 and Eb N0)]] Related energy metrics
- [Additive White Gaussian Noise (AWGN)] What creates the noise
- [Bit Error Rate (BER)] How SNR affects errors
- [Constellation Diagrams] Visualizing SNR impact

55 Spectral Efficiency & Bit Rate

[[Home]] | **Digital Modulation** | [Quadrature Amplitude Modulation (QAM)] | [Shannon's Channel Capacity Theorem]

55.1 For Non-Technical Readers

Spectral efficiency is like measuring how many cars you can fit on a highway—higher efficiency = more data squeezed into the same bandwidth!

The metric - bits/sec/Hz: - **Bandwidth**: Your "highway width" (measured in Hz) - **Bit rate**: How much data flows (measured in bits/sec) - **Spectral efficiency**: Data rate per Hz of bandwidth

Formula:

Spectral Efficiency = Bit Rate ÷ Bandwidth

Real-world examples:

BPSK (simple): - 1 bit per symbol - Spectral efficiency: ~1 bit/sec/Hz - Like: One narrow car per lane

QPSK (common): - 2 bits per symbol - Spectral efficiency: ~2 bits/sec/Hz - Like: Two motorcycles side-by-side per lane

16-QAM (moderate): - 4 bits per symbol - Spectral efficiency: ~4 bits/sec/Hz - Like: Carpooling — 4 people per lane

256-QAM (high): - 8 bits per symbol

- Spectral efficiency: ~8 bits/sec/Hz - Like: Double-decker bus per lane!

1024-QAM (WiFi 6): - 10 bits per symbol - Spectral efficiency: ~10 bits/sec/Hz - Like: Triple-decker bus!

Why it matters:

Limited spectrum: - FCC/governments auction bandwidth - WiFi: Only 20/40/80/160 MHz channels available - Cell carriers: Paid billions for spectrum - MUST use it efficiently!

More efficiency = more money: - Double spectral efficiency = double capacity - Serve twice as many users - Sell twice as much data - This is why 5G is so important!

Real systems:

WiFi evolution: - **WiFi 4 (802.11n)**: 64-QAM, ~5.5 bits/sec/Hz - **WiFi 5 (802.11ac)**: 256-QAM, ~7 bits/sec/Hz (+27%) - **WiFi 6 (802.11ax)**: 1024-QAM, ~9.6 bits/sec/Hz (+37%)

Cellular evolution: - **3G (HSPA+)**: 16-QAM, ~2-3 bits/sec/Hz - **4G (LTE)**: 64-QAM, ~5-6 bits/sec/Hz (2× faster!) - **5G (NR)**: 256-QAM, ~8-10 bits/sec/Hz (2× faster again!)

Shannon's limit: - Theoretical maximum based on SNR - Formula: $C = B \times log_2(1 + SNR)$ - Modern systems get within 70-90% of Shannon limit!

Example calculation - WiFi:

Scenario: 20 MHz WiFi channel, 256-QAM - Bandwidth: 20 MHz - Modulation: 256-QAM = 8 bits/symbol - Coding rate: 5/6 (error correction overhead) - OFDM subcarriers: 5/6 data subcarriers - Symbol rate: 250,000 symbols/sec - **Spectral efficiency**: $8 \times (5/6) \times (52/64) = 5.4$ bits/sec/Hz - **Bit rate**: 5.4×20 MHz = **108 Mbps**

The trade-off: - **Higher efficiency**: More data, BUT needs better SNR - 1024-QAM: Amazing efficiency, but only works close to router - QPSK: Lower efficiency, but works far away - Your device **automatically adjusts** based on signal quality!

When you see it: - **Router specs**: "Up to 1200 Mbps on 160 MHz" = 7.5 bits/sec/Hz - **5G specs**: "Peak 20 Gbps on 100 MHz" = 200 bits/sec/Hz (with MIMO!) - **Spectrum auctions**: "\$1 billion for 10 MHz" = \$100M per MHz!

Fun fact: The difference between 3G and 5G is mostly spectral efficiency improvements. Same amount of spectrum, but 5G packs 3-4× more data into it through better modulation (256-QAM), MIMO, and OFDM. It's like upgrading from single-lane roads to 4-lane highways!

55.2 Overview

Spectral efficiency (η) measures how efficiently a communication system uses available **bandwidth**.

Definition:

$$\eta = \frac{R_b}{B} \quad \text{(bits/sec/Hz)}$$

Where: - R_b = Bit rate (bits/sec) - B = Occupied bandwidth (Hz)

Goal: Maximize data rate within limited spectrum (spectrum is expensive!)

Trade-off: Spectral efficiency

Power efficiency (SNR requirement)

55.3 Fundamental Relationships

55.3.1 Symbol Rate vs Bit Rate

Bit rate:

$$R_b = R_s \cdot \log_2(M) \quad \text{(bits/sec)}$$

Where: - R_s = Symbol rate (symbols/sec or baud) - M = Constellation size

Example: 1 Msps QPSK (M=4) - $R_b = 1 \times 10^6 \times \log_2(4) = 2 \; \mathrm{Mbps}$

55.3.2 Bandwidth Occupancy

With pulse shaping (raised cosine filter):

$$B=(1+\alpha)R_s \quad ({\rm Hz})$$

Where: - α = Roll-off factor (typically 0.2-0.35) - α = 0: Minimum bandwidth (rect in freq, sinc in time) - α = 1: 2× bandwidth (smoother time domain)

Common choice: $\alpha=0.35$ (good balance)

55.3.3 Spectral Efficiency Formula

Combine equations:

$$\eta = \frac{R_b}{B} = \frac{R_s \cdot \log_2(M)}{(1+\alpha)R_s} = \frac{\log_2(M)}{1+\alpha}$$

Key insight: η depends only on M and α (not absolute bandwidth!)

55.4 Modulation Comparison

55.4.1 Spectral Efficiency ($\alpha = 0.35$)

Modulation	М	$log_2(M)$		η (bits/sec/Hz)		
		BPSK	2	1	0.74	
		QPSK	4	2	1.48	
		8PSK	8	3	2.22	
		16-QAM	16	4	2.96	
		32-QAM	32	5	3.70	
		64-QAM	64	6	4.44	
		128-QAM	128	7	5.19	
		256-QAM	256	8	5.93	
		1024-QAM	1024	10	7.41	
		4096-QAM	4096	12	8.89	

55.4.2 With Nyquist Signaling ($\alpha = 0$)

Modulation	η (bits/sec/Hz)
BPSK	1.0
QPSK	2.0
8PSK	3.0
16-QAM	4.0
64-QAM	6.0
256-QAM	8.0
1024-QAM	10.0

Perfect Nyquist: $\eta = \log_2(M)$ (theoretical best for single carrier)

55.5 With Forward Error Correction

Code rate r reduces effective bit rate:

$$\eta_{\text{effective}} = \frac{\log_2(M)}{1+\alpha} \cdot r$$

55.5.1 Example: 64-QAM with LDPC

Parameters: - M = 64 (6 bits/symbol) - α = 0.35 - Code rate r = 3/4 (25% overhead)

Uncoded: $\eta=6/1.35=4.44$ bits/sec/Hz

 $\textbf{Coded:} \ \eta = 4.44 \times 0.75 = 3.33 \ \text{bits/sec/Hz}$

Trade-off: 25% spectral efficiency loss for ~6 dB SNR gain

55.6 Shannon Capacity

Shannon-Hartley theorem:

$$C = B \log_2(1 + \mathrm{SNR}) \quad \text{(bits/sec)}$$

Spectral efficiency limit:

$$\eta_{\rm Shannon} = \log_2(1+{\rm SNR}) \quad ({\rm bits/sec/Hz})$$

Key insight: Fundamental limit—no system can exceed this!

55.6.1 Shannon Limit vs SNR

SNR (dB)	SNR (linea	ar)	η_max (bits/sec/Hz)		Example Modulation
	0	1	1.0	BPSK 1/2 c	ode
	3	2	1.58	QPSK 3/4	
	6	4	2.32	QPSK	
	10	10	3.46	8PSK	
	15	31.6	4.98	16-QAM 3/4	4
	20	100	6.66	64-QAM	
	25	316	8.30	256-QAM 3	/4
	30	1000	9.97	1024-QAM	
	40	10,000	13.3	4096-QAM	

Practical systems: 1-3 dB from Shannon limit (with modern codes like LDPC, Turbo, Polar)

55.7 Practical Systems Performance

55.7.1 WiFi (802.11)

802.11a/g (20 MHz channel):

MCS	Modulation	Code Rate	Data Rate	η (bits/sec/Hz)
0	BPSK	1/2	6 Mbps	0.30
1	BPSK	3/4	9 Mbps	0.45
2	QPSK	1/2	12 Mbps	0.60
3	QPSK	3/4	18 Mbps	0.90
4	16-QAM	1/2	24 Mbps	1.20
5	16-QAM	3/4	36 Mbps	1.80
6	64-QAM	2/3	48 Mbps	2.40
7	64-QAM	3/4	54 Mbps	2.70

OFDM: 52 subcarriers (48 data, 4 pilots), 250 ksps per subcarrier

802.11n (40 MHz channel, 1 spatial stream):

MCS	Modulation	Code Rate	Data Rate	η (bits/sec/Hz)
0	BPSK	1/2	13.5 Mbps	0.34
3	QPSK	3/4	40.5 Mbps	1.01
5	16-QAM	3/4	81 Mbps	2.03
7	64-QAM	5/6	135 Mbps	3.38

With 4×4 MIMO: 4× data rate (same η per stream)

802.11ac (80 MHz, 1 stream):

MCS	Modulation	Code Rate	Data Rate	η (bits/sec/Hz)
0	BPSK	1/2	29.3 Mbps	0.37
5	16-QAM	3/4	175.5 Mbps	2.19
8	256-QAM	3/4	351 Mbps	4.39
9	256-QAM	5/6	390 Mbps	4.88

802.11ax (WiFi 6): Adds 1024-QAM [] MCS 10, 11 (η up to 6.1 bits/sec/Hz)

55.7.2 LTE (20 MHz channel)

Downlink (OFDMA):

	MCS	Modulation	n Code	Rate	Data Rate (1	layer) η
0	C	PSK	0.08	1	.1 Mbps	0.05
5		QPSK	0.37	4	.8 Mbps	0.24
10	1	6-QAM	0.48	1	1.4 Mbps	0.57
15	1	6-QAM	0.74	1	7.6 Mbps	0.88
20	6	4-QAM	0.55	2	4.5 Mbps	1.23
25	6	4-QAM	0.85	3	7.7 Mbps	1.89
28	2	56-QAM	0.93	5	5.0 Mbps	2.75

With 4×4 MIMO: Max 220 Mbps (Category 9+)

LTE-Advanced Pro: Cat 16 = 1 Gbps (4×4 MIMO, 256-QAM, carrier aggregation)

55.7.3 5G NR (100 MHz @ 3.5 GHz)

MCS	Modulation	Code Rate	Data Rate (1 layer)	
0	QPSK	0.12	13.2 Mbps	<u>'</u> 0.13
10	16-QAM	0.12	99 Mbps	0.13
20	64-QAM	0.74	194 Mbps	1.94
27	256-QAM	0.93	325 Mbps	3.25

With 8×8 MIMO: 2.6 Gbps (8 layers × 325 Mbps)

mmWave (28 GHz, 400 MHz BW): 10 Gbps+ (massive MIMO)

55.7.4 Satellite DVB-S2

Example: 36 MHz transponder

	MODCOD	Modulation	Code Rate	Throughput	η
1		QPSK	1/4	9.9 Mbps	0.27
6	1	QPSK	3/4	29.8 Mbps	0.83
1	1	8PSK	2/3	39.7 Mbps	1.10
1	7	8PSK	9/10	59.6 Mbps	1.66
2	3	16-APSK	5/6	66.2 Mbps	1.84
2	8	32-APSK	9/10	82.8 Mbps	2.30

ACM: Adapt based on rain fade (QPSK 1/4 in heavy rain □ 32-APSK 9/10 in clear sky)

55.7.5 Cable (DOCSIS 3.1)

192 MHz OFDM channel:

QAM	Code Rate T	hroughp	out	η	
	64-QAM	0.90	900 Mbps	4.7	
	256-QAM	0.90	1.2 Gbps	6.2	
	1024-QAM	0.93	1.5 Gbps	7.8	
	4096-QAM	0.95	1.9 Gbps	9.9	

Full 1 GHz spectrum: 10 Gbps downstream (with 4096-QAM)

Advantage: Wired channel (no fading), high SNR

highest-order QAM practical

55.8 Bandwidth Efficiency vs Power Efficiency

Shannon tradeoff:

$$\frac{E_b}{N_0} = \frac{2^{\eta}-1}{\eta} \quad ({\rm linear})$$

In dB:

$$\left. \frac{E_b}{N_0} \right|_{\mathrm{dB}} = 10 \log_{10} \left(\frac{2^{\eta} - 1}{\eta} \right)$$

55.8.1 Shannon Limit Curve

η (bits/sec/Hz)	Min Eb/N0 (dB)
0.5	-0.8
1.0	0.0
2.0	2.0
3.0	4.8
4.0	7.0
5.0	9.0
6.0	10.8
8.0	14.0
10.0	16.8

Pattern: As η increases, required Eb/N0 increases (power-bandwidth tradeoff)

55.8.2 Practical Systems vs Shannon

Example: 64-QAM, r=3/4, α=0.35

Spectral efficiency: $\eta = 3.33$ bits/sec/Hz

Shannon limit: $Eb/N0 \ge 6.3 dB$

Practical (with LDPC): Eb/N0 ≈ 8.5 dB

Gap: 2.2 dB (very good!)

55.9 MIMO & Spatial Multiplexing

Multiple antenna streams increase spectral efficiency:

$$\eta_{\mathrm{MIMO}} = N_s \cdot \frac{\log_2(M)}{1+\alpha} \cdot r$$

Where N_s = Number of spatial streams

55.9.1 Example: 802.11ac

Parameters: -4×4 MIMO (4 spatial streams) -256-QAM (8 bits/symbol) - Code rate: 5/6 $-\alpha$ = 0.35 - 80 MHz bandwidth

Per-stream η : $\frac{8}{1.35} imes \frac{5}{6} = 4.94$ bits/sec/Hz

Total η : $4 \times 4.94 = 19.75$ bits/sec/Hz

Data rate: $80 \times 10^6 \times 19.75 = 1.58~\mathrm{Gbps}$

Actual (with overhead): ~1.3 Gbps (MAC overhead ~20%)

55.10 OFDM Considerations

OFDM uses multiple subcarriers:

$$\eta_{\mathrm{OFDM}} = \frac{N_{\mathrm{data}}}{N_{\mathrm{total}}} \cdot \frac{\log_2(M)}{1 + \alpha_{\mathrm{CP}}} \cdot r$$

Where: - $N_{\rm data}$ = Data subcarriers - $N_{\rm total}$ = Total subcarriers - $\alpha_{\rm CP}$ = Cyclic prefix overhead (typically 0.07-0.25)

55.10.1 WiFi 802.11a Example

Parameters: - 64 subcarriers total - 52 used (48 data + 4 pilots) - CP: $0.8 \mu s / 4 \mu s = 0.20$ (20% overhead) - 64-QAM (M=64) - Code rate: 3/4

Spectral efficiency:

$$\eta=rac{48}{64} imesrac{6}{1.20} imes0.75=2.81$$
 bits/sec/Hz

20 MHz channel: $20 \times 2.81 = 56.2$ Mbps (theoretical)

Actual: 54 Mbps (slight additional overhead)

55.11 Code Rate vs Spectral Efficiency

Trade-off: Higher code rate \(\Bar{\pi} \) More spectral efficiency, less error protection

Code Rate	Overhead	ηl	Penalty	SNR Requirement
	1/2	100%	0.50×	Lowest SNR
	2/3	50%	0.67×	Low SNR
	3/4	33%	0.75×	Moderate SNR
	5/6	20%	0.83×	High SNR
	9/10	11%	0.90×	Very high SNR

Example: 64-QAM - r = 1/2: $\eta = 2.22$ bits/sec/Hz, Eb/N0 \approx 11 dB - r = 3/4: $\eta = 3.33$ bits/sec/Hz, Eb/N0 \approx 13 dB - r = 5/6: $\eta = 3.70$ bits/sec/Hz, Eb/N0 \approx 14 dB

55.12 Latency vs Spectral Efficiency

Symbol duration:

$$T_s = \frac{1}{R_s} = \frac{B}{1+\alpha}$$

Higher-order modulation (larger M): - Same symbol rate - Higher bit rate - **Same latency per symbol**

 $\textbf{Lower symbol rate} \ (\text{wider pulses}): \ - \ \text{Better spectral efficiency} \ (\text{lower } \alpha \ \text{possible}) \ - \ \textbf{Higher latency}$

55.12.1 Example: Satellite Link

Option A: 1 Msps QPSK - Symbol duration: 1 μs - Bit rate: 2 Mbps - Latency per symbol: 1 μs

Option B: 500 ksps 16-QAM - Symbol duration: $2 \mu s$ - Bit rate: 2 Mbps (same!) - Latency per symbol: $2 \mu s$ ($2 \times \text{ worse}$)

Trade-off: 16-QAM needs higher SNR but uses less bandwidth

55.13 Interference & Spectral Efficiency

Adjacent channel interference (ACI) limits practical η:

Guard bands reduce usable spectrum:

$$\eta_{\rm effective} = \frac{B_{\rm usable}}{B_{\rm allocated}} \cdot \eta_{\rm modulation}$$

55.13.1 Example: LTE Resource Blocks

20 MHz allocation: - Usable: 18 MHz (100 resource blocks \times 180 kHz) - Guard bands: 2 MHz

(10% loss) - DC subcarrier: 1 (negligible)

Effective η reduction: 10%

55.14 Emerging Technologies

55.14.1 1. Massive MIMO (5G)

64×64 antennas (base station): - 16+ spatial streams - Beamforming (20 dB gain) - Interference suppression

Result: $\eta > 50$ bits/sec/Hz (system-wide with MU-MIMO)

55.14.2 2. Terahertz (THz)

100 GHz+ spectrum: - Extremely wide channels (10+ GHz) - QPSK @ 10 Gbaud □ 20 Gbps - Short range (high path loss)

Target: 100 Gbps wireless (6G)

55.14.3 3. Orbital Angular Momentum (OAM)

Twisted light beams: - Multiple OAM modes (like MIMO but with photon spin) - Potential: 10× capacity increase - **Status**: Research (practical issues remain)

55.15 Design Guidelines

55.15.1 1. Choose Modulation for Channel

High SNR (>25 dB): 256-QAM, 1024-QAM - WiFi close range - Cable modems - Microwave backhaul (clear weather)

Moderate SNR (15-25 dB): 16-QAM, 64-QAM - WiFi medium range - LTE good signal - Satellite clear sky

Low SNR (<15 dB): QPSK, 8PSK - Satellite rain fade - Deep space - Long-range cellular (cell edge)

55.15.2 2. Select Code Rate

Poor channel: Low code rate (1/2, 2/3) - More redundancy - Better error correction - Lower spectral efficiency

Good channel: High code rate (3/4, 5/6, 9/10) - Less redundancy - Higher spectral efficiency - Requires higher SNR

55.15.3 3. Adaptive Modulation & Coding (AMC)

Measure SNR, select MCS:

if SNR > 30 dB:
 use 256-QAM, rate 5/6
elif SNR > 20 dB:
 use 64-QAM, rate 3/4
elif SNR > 15 dB:
 use 16-QAM, rate 1/2
else:
 use QPSK, rate 1/2

Update period: 10-100 ms (faster than fading, slower than noise)

55.16 Summary Table

System	Bandwidth	Modulation	Code Rate	η (bits/sec/Hz)	Peak Rate
GPS L1 WiFi 802.11a	2 MHz 20 MHz	BPSK 64-QAM	1/2 3/4	0.25 2.70	50 bps (nav) 54 Mbps
WiFi 802.11ac	80 MHz	256-QAM	5/6	4.88	390 Mbps (1 stream)
WiFi 802.11ax	80 MHz	1024-QAM	5/6	6.1	1.2 Gbps (8 streams)
LTE Cat 4	20 MHz	64-QAM	0.85	1.89	150 Mbps (2×2 MIMO)
LTE Cat 16	100 MHz (CA)	256-QAM	0.93	2.75	1 Gbps (4×4 MIMO)
5G NR (sub-6)	100 MHz	256-QAM	0.93	3.25	2.5 Gbps (8×8 MIMO)
5G NR (mmWave)	400 MHz	256-QAM	0.93	3.25	10 Gbps
DVB-S2 DOCSIS 3.1	36 MHz 192 MHz	32-APSK 4096-QAM	9/10 0.95	2.30 9.9	83 Mbps 1.9 Gbps

55.17 Practical Limits

Shannon limit: $\eta = \log_2(1 + \mathrm{SNR})$

Best systems: 1-3 dB from Shannon (with LDPC, Turbo, Polar codes)

Wireless: Typically 0.5-6 bits/sec/Hz (fading, mobility)

Wired: Up to 10 bits/sec/Hz (cable, fiber optics)

 $\mathbf{MIMO} :$ Multiply by N_s spatial streams (4-8× typical)

Fundamental constraint: Can't exceed Shannon limit!

55.18 Related Topics

- [Shannon's Channel Capacity Theorem]: Theoretical maximum
- [Quadrature Amplitude Modulation (QAM)]: High spectral efficiency
- [Forward Error Correction (FEC)]: Code rate trade-offs
- [OFDM & Multicarrier Modulation]: Parallel channels
- [MIMO & Spatial Multiplexing]: Multiple spatial streams
- [[Link Budget Analysis]]: SNR determines achievable n

Key takeaway: **Spectral efficiency η = Rb/B measures bits per Hz.** Higher-order modulation (M \square) increases η but requires higher SNR. Code rate r < 1 reduces η but improves BER.

Shannon limit $\eta = \log_2(1 + \text{SNR})$ is fundamental—no system can exceed it. Modern systems (LDPC/Turbo codes) approach Shannon limit within 1-3 dB. Practical wireless: 0.5-6 bits/sec/Hz. MIMO multiplies η by number of streams. Adaptive modulation & coding (AMC) optimizes η for varying channel conditions. Trade-off: Spectral efficiency \square Power efficiency—can't optimize both simultaneously.

This is the second of the fill to the	alOh'asaa Baa'aatii daa aasaatat'aa
inis wiki is part of the [[Hom	e Chimera Project]] documentation.
<u> </u>	

56 Spread Spectrum (DSSS/FHSS)

Spread spectrum is like whispering your secret across 100 different frequencies at once—eavesdroppers hear random noise, but your friend with the right "key" combines all pieces to hear your message perfectly!

The counterintuitive idea: - **Normal radio**: Use narrow frequency band \square Efficient but vulnerable - **Spread spectrum**: Spread signal across WIDE band \square "Wastes" bandwidth but gains superpowers!

Three magic superpowers:

- **1. Stealth** (Military origin): Signal spread so thin it looks like background noise Enemy can't detect you're transmitting Can't jam what you can't find!
- **2. Anti-jamming** \square : Jammer tries to block you \square You're on 100 frequencies They can only jam a few \square Other 95 get through! Your receiver combines the survivors \square Message intact
- **3. Many users share spectrum** (CDMA): Everyone transmits at same time, same band Each person has unique spreading code Your phone filters out everyone else's signal Like 20 conversations in one room, different languages!

Two main flavors:

DSSS (Direct Sequence Spread Spectrum) - Used in GPS, CDMA:

Simple analogy - Speaking in code: - Want to send: "HI" (2 letters) - DSSS: Replace each letter with 100-letter code word - "H" [] "AJFKELQPZMVBX..." (100 random letters) - "I" [] "QZMVPLAJFKEBX..." (different 100 letters) - Transmit: 200 letters instead of 2! - Your friend knows the code [] decodes back to "HI" - Eavesdropper hears: Random gibberish

Real GPS example: - GPS sends 1 bit - DSSS multiplies by 1023-chip code (C/A code) - 1 bit 1023 chips = 1000× wider bandwidth! - Your GPS receiver knows the code □ extracts bit - Jammer tries to interfere □ Processing gain overcomes it

FHSS (Frequency Hopping Spread Spectrum) - Used in Bluetooth, military:

Simple analogy - Hopscotch communication: - Instead of one frequency, hop between 100 frequencies - Pattern: Freq 23 \(\Bar{1} \) 67 \(\Bar{1} \) 12 \(\Bar{1} \) 89 \(\Bar{1} \) 45... (changes 1000× per second!) - **Your**

friend knows hop pattern I follows you, receives message - **Eavesdropper**: By time they tune to Freq 23, you're on 89! - **Jammer**: Can't jam all frequencies at once

Real Bluetooth example: - 79 channels between 2.4-2.48 GHz - Hops 1600 times per second (every 625 μs) - Pseudorandom sequence (appears random, but deterministic) - Paired devices know hop pattern

stay synchronized - Interference on one channel? Just skip it!

Real-world examples you use daily:

GPS (DSSS): - Satellites transmit at 1575 MHz - Spread across 2 MHz bandwidth (1000× wider than data rate!) - **Processing gain**: 30 dB (1) Works even below noise floor! - This is why GPS works indoors (barely) and everywhere

WiFi □ (DSSS for 802.11b): - 11 Mbps data rate - Spread across 22 MHz (Barker code or CCK) - Older WiFi standard, mostly replaced by OFDM

Bluetooth (FHSS): - Hops 1600 times/second across 79 channels - **Interference avoidance**: Microwave oven blocks some channels? Skip them! - **Multiple devices**: Different hop patterns, no collision - This is why Bluetooth "pairs" (exchanges hop sequence)

CDMA cell phones [(DSSS): - All users transmit simultaneously, same band - Each user: unique spreading code (Walsh codes) - Tower separates users by code (not frequency/time!) - Retired in US (Verizon), still used in some countries

Military radios [(Both DSSS & FHSS): - Can't be jammed (spread too wide) - Can't be detected (looks like noise) - Can't be intercepted (need secret code) - Some systems hop 10,000+ times per second!

The math magic - Processing gain:

Shannon says: Can trade bandwidth for SNR

More bandwidth → Can work at lower SNR

Example: - Narrowband needs: 10 dB SNR - Spread 100× wider \square Only need: -20 dB SNR! - Can receive signals weaker than noise! \square

Processing gain = $10 \times \log_{10}(\text{Spread factor})$ - Spread $100 \times \square$ 20 dB gain - Spread $1000 \times \square$ 30 dB gain (GPS) - This is why GPS works indoors!

Why "spread" helps against jamming:

Scenario: Enemy jammer - Jammer power: 100 W across 1 MHz - Your signal: 1 W spread across 100 MHz - At each 1 MHz slice: Your signal = 0.01 W - Looks like: Jammer 100× stronger! ☐ - But: Your receiver de-spreads ☐ combines 100 slices - Result: Your signal = 1 W, Jammer still 100 W in 1 slice - Effective: 10:1 ratio ☐ You win! ☐

The coding requirement:

Both sides must know: - **DSSS**: The spreading code (sequence of chips) - **FHSS**: The hopping pattern (sequence of frequencies)

Synchronization critical: - Receiver must align perfectly with transmitter - GPS: Searches for code phase (expensive!) - Bluetooth: Pairing exchanges hop pattern + timing

Trade-offs:

Advantages: - \square Interference resistance - \square Anti-jamming - \square Privacy/security - \square Multiple access (CDMA) - \square Multipath resistance - \square Works below noise floor

Disadvantages: - ☐ "Wastes" bandwidth (100-1000× more!) - ☐ Complex processing (high power consumption) - ☐ Synchronization required (acquisition time) - ☐ Near-far problem (CDMA)

Historical origin - WWII innovation:

Hedy Lamarr (yes, the Hollywood actress!): - Co-invented frequency hopping (1942) - **Purpose**: Torpedo control immune to jamming - Patent ignored until 1960s - **Now**: Foundation of Bluetooth, WiFi, military comms - She was brilliant engineer + movie star!

Fun fact: GPS signals arriving at Earth are about **-130 dBm** (10^-16 watts), which is **20 dB below the noise floor**—weaker than the background noise! Only because of DSSS spread spectrum with 30 dB processing gain can your phone extract the signal. It's like hearing a whisper in a crowded stadium by having 1000 microphones and combining them perfectly!

Spread spectrum techniques intentionally spread a narrowband signal across a much wider bandwidth. Originally developed for military anti-jamming communications, spread spectrum now powers GPS, Bluetooth, WiFi, CDMA cellular, and countless other systems.

56.2 ☐ Core Philosophy

Conventional wisdom: Use minimal bandwidth to maximize spectral efficiency.

Spread spectrum approach: Deliberately waste bandwidth to gain: - Low Probability of Intercept (LPI): Signal appears as noise to unintended receivers - Low Probability of Detection (LPD): Hard to detect presence of transmission - Anti-jamming (AJ): Processing gain overcomes interference - Multiple access: Many users share same band (CDMA) - Multipath resistance: Wideband signals resolve path delays

Shannon's insight: Trading bandwidth for SNR is mathematically sound:

```
C = B \cdot log (1 + SNR)

Increase B by 100× \rightarrow can tolerate SNR 100× lower (20 dB worse!)
```

56.3 ☐ Processing Gain

The fundamental metric for spread spectrum performance.

56.3.1 Definition

```
In dB:
G (dB) = 10 · log (BW_spread / BW_info)
```

56.3.2 Physical Meaning

Processing gain = SNR improvement after despreading:

```
SNR_output = SNR_input + G (dB)
```

Example:

- Input SNR: -10 dB (signal 10× weaker than noise!)
- Processing gain: 30 dB (spread by 1000×)
- Output SNR: 20 dB (clean signal)

At receiver: - Desired signal: Despread □ collapses to narrowband □ gains G□ - Noise/interference: Remains spread □ filtered out □ loses G□

56.4 ☐ Direct Sequence Spread Spectrum (DSSS)

56.4.1 How DSSS Works

Transmitter: 1. Data bit (slow): ± 1 at rate R_{β} 2. Multiply by **spreading code** (fast): ± 1 sequence at rate R_c » R_g 3. Result: Wideband "chips" transmitted

Data bit: 1 0 1

--- ---

Spreading code: 1 0 1 1 0 1 0 0 1 1 1 0 ... (fast chips)

TX signal: Product of data × code

Key parameters:

- Chip rate (R): e.g., 10 Mcps (chips/second)
- Bit rate (R): e.g., 10 kbps
- Spreading factor (SF): R/R = 1000
- Processing gain: $10 \cdot \log (1000) = 30 \text{ dB}$

56.4.2 Spreading Codes (PN Sequences)

Requirements: - **Pseudorandom**: Appears random but deterministic (generated from seed) - **Autocorrelation**: Sharp peak at zero lag, low elsewhere - **Cross-correlation**: Low correlation between different codes (for CDMA) - **Balance**: Equal number of 1s and 0s

Common codes:

1. Maximal-Length Sequences (m-sequences):

Generated by Linear Feedback Shift Register (LFSR):

(XOR feedback)

Properties:

- Period: 2 1 (for n-stage LFSR)
- Example: 7-stage → period = 127 chips
- Good autocorrelation, poor cross-correlation

2. Gold Codes:

XOR two m-sequences with specific phase shifts

Properties:

- Set of 2 + 1 codes (from n-stage LFSR)
- Good autocorrelation AND cross-correlation
- Used in GPS C/A code (1023-chip Gold codes)

3. Walsh-Hadamard Codes:

Orthogonal codes (zero cross-correlation):

$$H = [1]$$

Properties:

- Perfectly orthogonal (theoretical CDMA)
- Length = powers of 2
- Used in IS-95 CDMA (64-chip Walsh)

56.4.3 DSSS Receiver (Matched Filter)

Despreading:

```
= Data × Code × Code + Noise × Code
         = Data × 1 + Noise × Code
         = Data + (Noise spread across bandwidth)
         ↓ Integrate over chip period
         = Data (narrowband) + Filtered noise (reduced by G)
Correlation receiver:
def dsss_receiver(rx_signal, spreading_code):
    Despread DSSS signal.
    Args:
        rx_signal: Received wideband signal (sampled at chip rate)
        spreading_code: Known spreading code (±1)
    Returns:
       Despread data bits
    # Multiply by local replica of code
    despread = rx_signal * spreading_code
    # Integrate over spreading period (matched filter)
    N_chips = len(spreading_code)
    data_bits = []
    for i in range(0, len(despread), N_chips):
        bit_energy = np.sum(despread[i:i+N_chips])
        data_bits.append(1 if bit_energy > 0 else 0)
    return np.array(data_bits)
56.4.4 DSSS Example: GPS C/A Code
GPS L1 C/A (Coarse/Acquisition):
Carrier: 1575.42 MHz
```

```
Chip rate: 1.023 Mcps
Code: 1023-chip Gold code (repeats every 1 ms)
Bit rate: 50 bps (navigation message)
Processing gain: 10 \cdot \log (1.023 \text{ MHz} / 50 \text{ Hz}) = 43 \text{ dB}
Each satellite: Unique Gold code
- SV 1: PRN 1 (specific Gold code)
- SV 2: PRN 2 (different Gold code)
- ... 32 satellites
```

```
- Signal at antenna: -130 dBm (20 dB below noise floor!)
- After despreading: -87 dBm (above noise)
- C/N (carrier-to-noise density): 45 dB-Hz (typical)

Code generation (PRN 1 example):

G1 LFSR: taps [3, 10] (1-indexed)

G2 LFSR: taps [2, 3, 6, 8, 9, 10]

PRN 1 = G1 (G2 delayed by specific phase)

Result: 1023-chip sequence, e.g.:

1 1 0 1 0 1 1 0 0 0 1 0 1 0 1 ... (repeats)
```

56.4.5 CDMA (Code Division Multiple Access)

Concept: Multiple users transmit simultaneously on same frequency, distinguished by spreading codes.

```
User 1: Data × Code
User 2: Data \times Code \rightarrow \Sigma \rightarrow Channel \rightarrow Receiver
User 3: Data × Code
Receiver (for User 1):
RX × Code → Integrates → Extracts Data
           (Code, Code appear as noise due to low cross-correlation)
Capacity (IS-95 CDMA):
N_{users} (G / (Eb/N)_required) · (1 + F)
where:
- G = processing gain
- (Eb/N)_required = SNR needed for target BER
- F = frequency reuse factor (typically 0.6-0.85)
Example:
-G = 21 dB (126)
- (Eb/N)_{required} = 7 dB (5) for 1% BER
- F = 0.67
- N_users 126 / 5 × 1.67 42 users per cell
```

56.5 Frequency Hopping Spread Spectrum (FHSS)

56.5.1 How FHSS Works

Transmitter: Rapidly switches carrier frequency according to a pseudorandom pattern.

Time →

```
Frequency
f
f
f
f
f
Each block = "hop" (dwell time)
Pattern known only to TX/RX
Key parameters:
- Hop rate: e.g., 1600 hops/second (Bluetooth)
- Dwell time: Time per frequency (e.g., 625 s)
- Hop set: Available frequencies (e.g., 79 channels)
- Hop sequence: Pseudorandom pattern
56.5.2 FHSS Variants
1. Fast Hopping (FH):
Multiple hops per data symbol
Example:
Symbol duration: 10 ms
Hop duration: 1 ms
→ 10 hops per symbol
Advantage: Diversity against narrowband interference
2. Slow Hopping (SH):
Multiple symbols per hop
Example:
Hop duration: 10 ms
Symbol duration: 1 ms
→ 10 symbols per hop
Advantage: Simpler synchronization
```

56.5.3 FHSS Example: Bluetooth

Bluetooth Classic (BR/EDR):

Frequency: 2.4 GHz ISM band

Hop set: 79 channels (1 MHz spacing, 2.402-2.480 GHz)

Hop rate: 1600 hops/second

Dwell time: 625 s

Modulation: GFSK (Gaussian FSK)

Data rate: 1 Mbps (BR), 2-3 Mbps (EDR)

Hopping pattern:

- Derived from master device address + clock

- Pseudorandom over all 79 channels

- Adaptive Frequency Hopping (AFH): Avoids WiFi channels

Multi-user:

Piconet: Master + up to 7 slavesEach piconet: Unique hopping patternScatternets: Overlapping piconets

56.5.4 FHSS vs. DSSS

Aspect	DSSS	FHSS
Spreading Method	Multiply by fast code	Hop carrier frequency
Bandwidth	Continuous wide	Instantaneous narrow, wide over time
Processing Gain	Chip rate / Bit rate	Hop set size
Anti-Jam	High (averages interference)	Moderate (avoids interference)
Multipath	Good (path resolution)	Poor (frequency-flat per hop)
Complexity	Moderate (correlator)	Low (frequency synthesizer)
Multiple Access	CDMA (code separation)	FDMA/TDMA (time/freq separation)
Near-Far Problem	Severe (power control needed)	Minimal
Standards	GPS, CDMA, WiFi DSSS (legacy)	Bluetooth, military TRANSEC

56.6 Military Applications

Spread spectrum was **born for military use** (1940s-1950s).

56.6.1 Low Probability of Intercept (LPI)

Goal: Enemy cannot detect transmission.

```
Signal power spread across wide bandwidth:

Power Spectral Density (PSD) Power / Bandwidth

Example:

- Narrowband: 1 W / 10 kHz = 100 mW/kHz (easily detected)

- DSSS spread: 1 W / 10 MHz = 0.1 mW/kHz (below noise floor!)
```

Detection threshold:

PSD_signal < PSD_noise → undetectable to wideband receiver

Processing gain provides concealment:

```
If G = 30 \, dB, signal can be 30 dB below noise and still decoded. Enemy without spreading code sees only noise.
```

56.6.2 Low Probability of Detection (LPD)

Goal: Enemy cannot tell if transmission is occurring.

Techniques: 1. **Below noise floor**: PSD < thermal noise (-174 dBm/Hz) 2. **Randomized patterns**: Avoid periodic structures 3. **Frequency diversity**: FHSS over wide bands 4. **Short bursts**: Minimize dwell time

Example: MILSTAR FHSS:

- X-band (7-8 GHz) satellite uplink
- Hops across 1 GHz bandwidth
- Dwell time: <1 ms
- Total detection probability: <1% for enemy wideband receiver

56.6.3 Anti-Jamming (AJ)

Jamming scenarios:

1. Barrage Jamming (wideband noise):

```
Jammer spreads power across entire band → processing gain helps:

J/S = Jammer Power / Signal Power (at antenna)

J/S_despread = (J/S) / G (after despreading)

Example:
- J/S = 20 dB (jammer 100× stronger)
- G = 30 dB
- J/S_despread = 20 - 30 = -10 dB (signal 10× stronger than jammer!)

Margin = G - J/S - (Eb/N)_required
= 30 - 20 - 7 = 3 dB (link survives)
```

2. Partial-Band Jamming:

```
Jammer concentrates on fraction of bandwidth: PSD_jammer increases by 1/ \rightarrow FHSS excels (hops to unjammed frequencies)
```

DSSS: Averages jammer over full bandwidth \rightarrow degradation proportional to FHSS: Hops avoid jammer (1-) fraction of time \rightarrow better performance

3. Follower Jamming (FHSS target):

```
Jammer tries to detect hop and jam that frequency. Countermeasure: Fast hopping (enemy can't track) + adaptive hopping
```

56.6.4 GPS M-Code (Military)

GPS L1/L2 M-Code (post-2005):

Modulation: BOC(10,5) - Binary Offset Carrier Chip rate: 5.115 Mcps (vs. 1.023 Mcps for C/A) Processing gain: ~50 dB (vs. 43 dB for C/A)

Security: Encrypted, authenticated (NSA-controlled keys)

BOC modulation:

- Square wave subcarrier at 10.23 MHz (double-sideband)
- Spread by 5.115 Mcps code
- Split-spectrum: Power at ±10.23 MHz from carrier
- Advantage: Minimal interference with C/A code (different spectrum)

Anti-jam margin:

- Jammer-to-signal ratio (J/S): Up to 60 dB tolerated
- Allows GPS reception even under strong jamming
- Critical for precision-guided weapons, military aviation

Example:

```
Received signal power: -163 dBW (M-code)

Jammer power at receiver: -100 dBW (stronger!)

J/S = -100 - (-163) = 63 dB

Processing gain: 50 dB

Residual J/S after despreading: 63 - 50 = 13 dB
```

Required (Eb/N): 10 dB (M-code robust modulation)

```
Margin: 50 - 63 - 10 = -23 \text{ dB} \rightarrow **LINK FAILS**
```

Countermeasure: Directional antenna (20 dB gain toward sky, null toward jammer)

Effective J/S: 63 - 20 = 43 dB

Margin: $50 - 43 - 10 = -3 dB \rightarrow **MARGINAL**$

56.6.5 Link 16 (JTIDS - Joint Tactical Information Distribution System)

NATO/US military data link for coordinated operations.

Architecture:

Frequency: 960-1215 MHz (L-band)

Modulation: MSK (Minimum Shift Keying) - constant envelope

Waveform: 51 frequency channels, FHSS + TDMA Hop rate: 70,000 hops/second (14.3 s per hop)

Security: Time-varying encryption (KG-40 key generator) Data rate: 31.6 kbps (voice), 57.6-115.2 kbps (data)

Network:

- TDMA: 128 time slots per 12 seconds
- Each participant assigned slots
- Collision-free multiple access
- Nodes: Aircraft, ships, ground stations

TRANSEC (Transmission Security):

Hopping pattern: Cryptographically secured

- Changes every 12 seconds (epoch)
- Synchronized via GPS time
- Enemy cannot predict next hop

Result:

- LPI/LPD: Signal appears as brief noise burst
- AJ: Hops faster than jammer can follow
- Covertness: No fixed frequency to monitor

Applications:

- Fighter jets: Share target tracks (Link 16 "picture")
- AWACS: Distribute surveillance data
- Aegis ships: Coordinate air defense
- Ground units: Tactical situational awareness

56.7

Commercial Applications

56.7.1 WiFi 802.11b (DSSS Legacy)

1999-era WiFi:

Frequency: 2.4 GHz ISM

Chip rate: 11 Mcps (Barker code)

```
Bit rate: 1-11 Mbps
```

Spreading: 11-chip Barker sequence (for 1-2 Mbps)

Processing gain: 10.4 dB (11 Mcps / 1 Mbps)

Barker Code (length 11):

+1 -1 +1 +1 -1 +1 +1 +1 -1 -1 -1

Autocorrelation:

Peak: 11 (at zero lag)
Sidelobes: 1 (excellent!)

Higher rates (5.5, 11 Mbps):

- CCK (Complementary Code Keying) not true DSSS
- Phase modulation with 8-chip codes

Obsolescence:

802.11g (2003): OFDM replaces DSSS (higher spectral efficiency) Legacy DSSS: Still supported for backward compatibility

56.7.2 LoRa (Long Range)

IoT spread spectrum for low-power wide-area networks.

Modulation: Chirp Spread Spectrum (CSS) - not DSSS or FHSS!

Frequencies: 902-928 MHz (US), 863-870 MHz (EU)

Bandwidth: 125, 250, 500 kHz

Spreading Factor: 7-12 (SF7 = 128 chips/symbol, SF12 = 4096)

Processing gain:

 $G = 10 \cdot log (SF) = 8.5-10.8 dB (SF7-SF12)$

Range: Up to 15 km rural, 2-5 km urban

Data rate: 0.3-50 kbps (inversely proportional to SF)

Power: <100 mW TX, <50 mA RX Battery life: Years on coin cell

Chirp modulation:

Frequency sweeps linearly over bandwidth:

 $f(t) = f + (BW/T) \cdot t$

Up-chirp: (frequency increases)
Down-chirp: (frequency decreases)

Data encoded by initial frequency offset: Symbol value = starting frequency of chirp

56.8.1 BER in AWGN Channel (DSSS-BPSK)

56.8.2 Jamming Margin

```
Jamming Margin (dB) = G - (J/S) - (Eb/N)_{req} - Losses
where:
- G = processing gain
- J/S = jammer-to-signal ratio
- (Eb/N)_req = required SNR for target BER
- Losses = implementation losses (typically 2-3 dB)
Positive margin → link survives jamming
Negative margin → link fails
Example (GPS C/A):
-G = 43 \text{ dB}
- J/S = 40 dB (jammer at receiver)
- (Eb/N)_req = 10 dB (for BER = 10)
- Losses = 2 dB
- Margin = 43 - 40 - 10 - 2 = -9 \text{ dB} \rightarrow **LINK FAILS**
Mitigation: Directional antenna (+20 dB toward satellite)
Effective J/S = 40 - 20 = 20 dB
Margin = 43 - 20 - 10 - 2 = 11 dB \rightarrow **LINK SURVIVES**
```

56.9 D Python Implementation Examples

56.9.1 DSSS Transmitter & Receiver

```
import numpy as np
def generate_pn_sequence(n, seed=1):
    Generate pseudorandom sequence using LFSR (m-sequence).
    Arqs:
       n: Length of sequence (must be 2^k - 1)
        seed: Initial LFSR state
    Returns:
       PN sequence (\pm 1)
    # Simple LFSR for demonstration (taps depend on length)
    k = int(np.log2(n + 1))
    lfsr = [1] * k
    sequence = []
    for _ in range(n):
        feedback = lfsr[0] ^ lfsr[-1] # XOR tap
        sequence.append(2 * lfsr[-1] - 1) # Convert 0/1 to -1/+1
        lfsr = [feedback] + lfsr[:-1]
    return np.array(sequence)
def dsss_transmit(data_bits, spreading_code):
    DSSS transmit: spread data bits.
    chips = []
    for bit in data_bits:
        # Convert bit (0/1) to (-1/+1)
       bit_value = 2 * bit - 1
        # Multiply by spreading code
        chips.extend(bit_value * spreading_code)
    return np.array(chips)
def dsss_receive(rx_signal, spreading_code, num_bits):
    DSSS receive: despread to recover data bits.
    chips_per_bit = len(spreading_code)
    data_bits = []
```

```
for i in range(num_bits):
        start = i * chips_per_bit
        end = start + chips_per_bit
        # Correlate with spreading code
        correlation = np.sum(rx_signal[start:end] * spreading_code)
        # Decide bit
       bit = 1 if correlation > 0 else 0
        data_bits.append(bit)
   return np.array(data_bits)
# Example usage
spreading_code = generate_pn_sequence(127) # 127-chip m-sequence
data_bits = np.random.randint(0, 2, 10)
# Transmit
tx_signal = dsss_transmit(data_bits, spreading_code)
print(f"Data: {data bits}")
print(f"Spreading factor: {len(spreading_code)}")
print(f"TX signal: {len(tx_signal)} chips")
# Add noise (SNR = -10 dB)
signal_power = np.mean(tx_signal**2)
noise_power = signal_power * 10 # 10x more noise than signal
noise = np.sqrt(noise_power) * np.random.randn(len(tx_signal))
rx_signal = tx_signal + noise
snr_db = 10 * np.log10(signal_power / noise_power)
print(f"SNR: {snr_db:.1f} dB")
# Receive
rx_bits = dsss_receive(rx_signal, spreading_code, len(data_bits))
print(f"Recovered: {rx bits}")
print(f"BER: {np.sum(data_bits != rx_bits) / len(data_bits):.2%}")
56.9.2 FHSS Simulator
def fhss_transmit(data_symbols, hop_sequence, carrier_freqs, sample_rate):
   FHSS transmit with frequency hopping.
   Args:
        data_symbols: QAM/PSK symbols
        hop_sequence: Sequence of frequency indices
```

```
carrier_freqs: Available carrier frequencies (Hz)
        sample_rate: Sampling rate (Hz)
   Returns:
        Transmitted signal
   samples per hop = len(data symbols) // len(hop sequence)
   t = np.arange(samples_per_hop) / sample_rate
   tx signal = []
   for hop_idx, freq_idx in enumerate(hop_sequence):
        # Get symbols for this hop
        start = hop_idx * samples_per_hop
        end = start + samples_per_hop
        symbols = data_symbols[start:end]
        # Modulate on carrier
        carrier_freq = carrier_freqs[freq_idx]
        carrier = np.exp(2j * np.pi * carrier_freq * t)
        # Transmit (upconvert baseband to carrier)
        hopped signal = symbols * carrier[:len(symbols)]
        tx_signal.extend(hopped_signal)
   return np.array(tx_signal)
# Example
carrier_freqs = np.arange(2.4e9, 2.48e9, 1e6) # 2.4 GHz band, 1 MHz spacing
hop_sequence = np.random.randint(0, len(carrier_freqs), 100) # 100 hops
data_symbols = (2*np.random.randint(0, 2, 1000) - 1) + \
               1j*(2*np.random.randint(0, 2, 1000) - 1) # QPSK
sample_rate = 10e6 # 10 MHz
tx_signal = fhss_transmit(data_symbols, hop_sequence, carrier_freqs, sample_rate)
print(f"Hopping over {len(carrier_freqs)} frequencies")
print(f"Hops: {len(hop sequence)}")
print(f"Total samples: {len(tx_signal)}")
```

56.10 Theoretical Foundations

56.10.1 Shannon Capacity with Spread Spectrum

For spread bandwidth B_spread and information bandwidth B_info:

```
C_spread = B_spread \cdot log (1 + S/(N·B_spread))
C_info = B_info \cdot log (1 + S/(N·B_info))
```

```
Ratio:
C_spread / C_info = (B_spread/B_info) \cdot log (1 + S/(N·B_spread))
                                         / \log (1 + S/(N \cdot B_{info}))
For low SNR (S << N·B_spread):
log(1 + x) x/ln(2) for small x
C_spread C_info (capacity preserved!)
Interpretation: Spreading doesn't reduce capacity if SNR is low.
Military sweet spot: Spread to go below noise floor while maintaining data rate.
56.11 

Advantages & Disadvantages
56.11.1 Advantages
☐ Anti-jamming: Processing gain overcomes interference
☐ LPI/LPD: Signal hidden in noise
☐ Multiple access: CDMA allows many users
☐ Multipath resistance (DSSS): Resolves path delays
☐ Privacy: Eavesdropping requires spreading code
☐ Coexistence: Graceful degradation with other systems
56.11.2 Disadvantages
☐ Bandwidth inefficient: Uses far more spectrum than narrowband
☐ Complex synchronization: Receiver must align code/frequency
☐ Near-far problem (DSSS CDMA): Strong users drown weak ones
☐ Processing overhead: Correlators, frequency synthesizers
☐ Power control critical: Especially for CDMA
```

56.12 Further Reading

56.12.1 Textbooks

- **Simon et al.**, *Spread Spectrum Communications Handbook* Comprehensive reference (military focus)
- Peterson, Ziemer, Borth, Introduction to Spread Spectrum Communications Accessible introduction
- Viterbi, CDMA: Principles of Spread Spectrum Communication From inventor of CDMA

56.12.2 Standards

• **IS-95**: CDMA cellular (Qualcomm standard)

- GPS ICD-200: GPS signal specifications (C/A, P(Y), M codes)
- MIL-STD-188-181: US military FHSS standard
- IEEE 802.15.1: Bluetooth FHSS specifications

56.12.3 Military Resources

- Poisel, Introduction to Communication Electronic Warfare Systems EW perspective
- Torrieri, Principles of Spread-Spectrum Communication Systems Modern military focus
- COMSEC manuals: Classified (NSA) operational TRANSEC

56.12.4 Related Topics

- [Shannon's Channel Capacity Theorem] Theoretical foundation
- [Military & Covert Communications] LPI/LPD systems, GPS M-code
- [[CDMA (coming soon)]] Code Division Multiple Access
- [Synchronization (Carrier, Timing, Frame)] Code acquisition and tracking
- [Real-World System Examples] GPS, Bluetooth, WiFi, military systems

Summary: Spread spectrum trades bandwidth for robustness. DSSS multiplies data by fast pseudorandom codes to spread across wide bandwidths, gaining processing gain that enables anti-jamming and covert communications. FHSS rapidly hops between frequencies to avoid interference. Originally military technologies (GPS, Link 16), spread spectrum now underpins consumer wireless (WiFi, Bluetooth) and IoT (LoRa). Processing gain = SNR improvement = anti-jam capability. The lower the PSD, the harder to detect—spread spectrum is the foundation of stealth communications.

57 Synchronization (Carrier, Timing, Frame)

[[Home]] | **System Implementation** | [Signal Chain (End-to-End Processing)] | [Channel Equalization]

57.1 For Non-Technical Readers

Synchronization is like tuning a radio perfectly—the receiver must match the transmitter's frequency, phase, and timing, or you just hear noise!

The problem - Everything must align: - Transmitter sends signal at exact frequency/phase/timing - Signal travels through space (delay, Doppler shift) - Receiver's clock is slightly different - If misaligned: Signal is gibberish!

The three types of sync:

1. Carrier Frequency Sync (Tuning the radio): - Problem: Receiver's oscillator slightly different from transmitter - Off by 100 Hz? Signal "wobbles" and can't be decoded! - **Solution**: Detect frequency error and adjust local oscillator - **Like**: Fine-tuning old radio dial to eliminate whistling

- **2.** Carrier Phase Sync (Getting the angle right): Problem: Even at right frequency, phase can be rotated 45° phase error? All constellation points rotated! Solution: Use known patterns (pilot symbols) to measure phase Like: Rotating a map to align with compass
- **3. Symbol Timing Sync** (Sampling at the right moment): **Problem**: When does each symbol start/end? Sample too early/late? Catch transition between symbols! **Solution**: Find optimal sampling instant (eye diagram peak) **Like**: Jumping rope must jump at exactly the right moment!
- **4. Frame Sync** (Finding the start of message): **Problem**: Where does packet begin in the stream? **Solution**: Send known preamble, receiver searches for it **Like**: Finding "Dear Sir" at start of letter

Real-world examples:

Your phone connecting to WiFi: 1. Frequency sync: "Is this really channel 6 at 2.437 GHz?" 2. Timing sync: "When should I sample each OFDM symbol?" 3. Frame sync: "Where does the packet start?" 4. Phase sync: "What's the phase reference?" - All this happens in milliseconds!

GPS receiver: - Must sync to satellite signal - Doppler shift from moving satellite = frequency offset - Continuously tracking and adjusting sync - Lose sync \(\Bar{\pi} \) lose position!

Why it's hard: - Doppler: Moving transmitter/receiver shifts frequency - Car at 100 km/h: ~220 Hz shift at 2.4 GHz! - Oscillator drift: Cheap crystals drift with temperature - Multipath: Echoes confuse timing - Noise: Makes patterns hard to detect

How receivers achieve sync:

Cold start (no sync): 1. Search wide frequency range 2. Detect presence of signal 3. Coarse frequency lock (~kHz accuracy) 4. Fine frequency lock (~Hz accuracy) 5. Phase lock 6. Symbol timing lock 7. Frame sync 8. NOW can decode data!

Tracking (maintaining sync): - Continuously monitor and adjust - Phase-locked loop (PLL) tracks frequency/phase - Timing recovery tracks symbol boundaries - Update 1000s of times per second!

When sync fails: - WiFi: "Limited connectivity" = can't achieve frame sync - TV: Picture rolls or has diagonal lines = bad sync - Old modems: "Handshake" = establishing sync - Satellite: Brief signal loss = must re-sync (takes seconds)

The sync symbols you've seen: - **WiFi**: Preamble at start of packet (sync symbols) - **TV**: Black bar at edge of picture (sync pulse) - **Old modems**: Screeching sounds = training sequence for sync!

Fun fact: The first few milliseconds of every WiFi packet are dedicated to synchronization—your device sends known patterns that both transmitter and receiver recognize, allowing perfect alignment before data transmission begins!

57.2 Overview

Synchronization is critical for coherent demodulation—receiver must align with transmitter.

Three types: 1. Carrier frequency synchronization: Match local oscillator frequency 2. Carrier phase synchronization: Align carrier phase (0° reference) 3. Symbol timing synchronization: Sample at correct instants 4. Frame synchronization: Identify packet/frame boundaries

Failure modes: - **CFO** (Carrier Frequency Offset)

Constellation rotation, ICI - **Phase error**

Constellation rotation - **Timing error**

ISI, wrong sample points - **Frame misalignment**

Lost packets

57.3 Carrier Frequency Synchronization

57.3.1 Carrier Frequency Offset (CFO)

Cause: LO frequency mismatch between TX and RX

$$f_{\text{error}} = f_{\text{LO.RX}} - f_{\text{LO.TX}}$$

Effect on received signal:

$$r(t) = s(t)e^{j2\pi\Delta ft} + n(t)$$

Where $\Delta f = \text{CFO (Hz)}$

57.3.2 CFO Impact

Normalized CFO: $\epsilon = \Delta f \cdot T_s$ (fraction of symbol rate)

Effects:

- 1. Constellation rotation: Phase rotates $2\pi\epsilon$ per symbol
- 2. ICI (Inter-Carrier Interference in OFDM): Subcarriers leak into neighbors
- 3. **SNR degradation**: Effective SNR loss ~ $10\log_{10}(1+\text{SNR}\cdot(2\pi\epsilon)^2)$ dB

Example: 2.4 GHz WiFi, \pm 20 ppm crystal - CFO: \pm 48 kHz - Symbol rate: 250 ksps \Box $\epsilon=\pm0.192$ (19%!) - **Must correct** before demodulation

57.3.3 CFO Estimation Methods

57.3.3.1 1. Data-Aided (Preamble-Based) Transmit known symbols (preamble, pilot tones) Correlate received with expected:

$$\hat{\Delta f} = \frac{1}{2\pi T} \angle \left(\sum_{k} r_k \cdot s_k^* \right)$$

Where: - r_k = Received preamble symbol k - s_k = Known preamble symbol k - T = Symbol period

Range: $|\Delta f| < 1/(2T)$ (ambiguity)

Accuracy: $\sim 10^{-4}$ of symbol rate

57.3.3.2 2. Blind (Non-Data-Aided) No preamble, use signal properties

Method: Power spectral density peak, cyclostationary features

Example (MPSK):

$$\hat{\Delta f} = rac{1}{2\pi MT} \angle \left(\sum_k r_k^M
ight)$$

For M-PSK (raise to M-th power removes modulation)

Range: $|\Delta f| < 1/(2MT)$ (reduced ambiguity)

57.3.3.3 3. Two-Stage Acquisition Coarse acquisition: $\pm 50\%$ symbol rate (preamble autocorrelation)

Fine tracking: ±0.1% (PLL, decision-directed)

Example (WiFi 802.11a): - Short preamble: Coarse CFO (± 100 kHz range) - Long preamble: Fine CFO (± 1 kHz accuracy)

57.3.4 CFO Correction

Digital correction (after downconversion):

$$r_{\text{corrected}}[n] = r[n] \cdot e^{-j2\pi\hat{\epsilon}n}$$

Analog correction: Adjust VCO frequency (AFC, Automatic Frequency Control)

Hybrid: Coarse analog, fine digital

57.4 Carrier Phase Synchronization

57.4.1 Phase Offset

After CFO correction, residual phase error θ :

$$r(t) = s(t)e^{j\theta} + n(t)$$

Effect: Constellation rotates by θ

Tolerance: - **BPSK**: ±90° (ambiguity, differential coding helps) - **QPSK**: ±45° - **16-QAM**: ±22.5° -

256-QAM: ±2.8° (very sensitive!)

57.4.2 Phase-Locked Loop (PLL)

Classic analog/digital feedback loop:

Components: 1. **Phase detector**: Measure phase error (mixer + LPF) 2. **Loop filter**: 2nd-order (PI controller) 3. **VCO/NCO**: Voltage/Numerically Controlled Oscillator

57.4.2.1 Loop Dynamics 2nd-order PLL:

$$H(s) = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Where: - ω_n = Natural frequency (rad/s) - ζ = Damping factor (0.707 critical)

Loop bandwidth $B_L pprox \omega_n$ (for $\zeta pprox 0.7$)

Trade-off: - Narrow BW ($B_L < 0.01R_s$): Better noise rejection, slower acquisition - Wide BW ($B_L > 0.1R_s$): Faster acquisition, more noise

57.4.3 Costas Loop

For suppressed-carrier modulation (BPSK, QPSK)

Structure:

Phase detector: $e = I \cdot Q$ (for BPSK)

 $\mathbf{QPSK} : e = \mathrm{sign}(I) \cdot Q - I \cdot \mathrm{sign}(Q)$

Advantage: Tracks phase without pilot carrier (bandwidth efficient)

57.4.4 Decision-Directed Phase Tracking

Use decoded symbols as phase reference:

$$e[n] = \angle(r[n] \cdot \hat{s}[n]^*)$$

Where $\hat{s}[n]$ = Decoded symbol (nearest constellation point)

Update:

$$\hat{\theta}[n+1] = \hat{\theta}[n] + \mu \cdot e[n]$$

Step size μ : Small (~0.01) for stability

Works after initial acquisition (preamble-based)

57.5 Symbol Timing Synchronization

57.5.1 Timing Offset

Sample at wrong instant <a>I ISI, degraded SNR

Optimal sampling: Peak of matched filter output (zero ISI point)

Timing error τ : Offset from optimal (fraction of symbol period)

57.5.2 Early-Late Gate

Classic timing recovery (Mueller & Müller algorithm):

Sample at 3 points: Early, On-time (t_k) , Late

$$e_k = \mathrm{sign}(r[t_k - T/2]) \cdot r[t_k] - \mathrm{sign}(r[t_k + T/2]) \cdot r[t_k]$$

Update:

$$\hat{\tau}[k+1] = \hat{\tau}[k] - \mu \cdot e_k$$

Advantage: Works with any signal (blind)

57.5.3 Gardner Timing Error Detector

Improved early-late for bandlimited signals:

$$e_k = (r[t_k] - r[t_{k-1}]) \cdot r[t_k - T/2]$$

Advantage: Better performance, still blind

57.5.4 Maximum Likelihood (ML) Timing

Data-aided (preamble):

Find $\hat{\tau}$ that maximizes:

$$\Lambda(\tau) = \left| \sum_k r[t_k + \tau] \cdot s_k^* \right|^2$$

Implementation: Interpolate and search (±0.5 symbol period)

Accuracy: Sub-sample (~0.01 symbol period)

57.5.5 Timing Loop

Similar to PLL:

NCO: Numerically Controlled Oscillator (adjusts sampling phase)

Interpolator: Polyphase filter (fractional delay)

57.6 Frame Synchronization

57.6.1 Purpose

Identify packet/frame start in continuous bit stream

Required for: - Header decoding (length, MCS) - Payload extraction - Retransmission (ARQ)

57.6.2 Preamble Detection

Transmit known pattern at start of frame

Receiver correlates:

$$C[n] = \sum_{k=0}^{L-1} r[n+k] \cdot p[k]^*$$

Where: - p[k] = Preamble (length L) - r[n] = Received signal

Threshold:

$$|C[n]| > \gamma \quad \Rightarrow \quad \text{Frame detected at } n$$

Threshold γ : Balance false alarm vs missed detection

57.6.3 Auto-Correlation (WiFi Example)

Short preamble: 16-sample pattern, repeated 10 times

Auto-correlate with delayed version:

$$R[n] = \sum_{k=0}^{15} r[n+k] \cdot r[n+k-16]^*$$

Peak when aligned [] Frame start

Advantage: No stored template (self-synchronizing)

57.6.4 Barker Code

Binary sequence with ideal autocorrelation:

11-bit Barker: +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1

Autocorrelation peak: 11 (sidelobes ≤1)

Used in: 802.11b (1-2 Mbps DSSS)

57.6.5 Frame Structure Example (WiFi 802.11a)

```
[Short Preamble (8 s)] [Long Preamble (8 s)] [SIGNAL (4 s)] [DATA]
  CFO coarse
                          CFO fine, channel est
                                                   Rate, length
  AGC setting
                           Timing sync
```

Short preamble: 10× repetition (1.6 µs pattern) - AGC settling - Coarse CFO (±100 kHz) - Frame detection

Long preamble: 2× known symbols (3.2 µs each) - Fine CFO (±1 kHz) - Channel estimation (64 subcarriers) - Symbol timing

57.7 Practical System Examples

57.7.1 1. GPS L1 C/A Acquisition

Challenge: Signal below noise floor (–130 dBm)

C/A code: 1023-chip Gold code, 1.023 MHz (1 ms period)

Acquisition: 1. Coarse search: ±5 kHz Doppler, 0.5-chip spacing 2. FFT-based: Correlate in

frequency domain (fast) 3. **Threshold**: SNR > 10 dB after integration

Time: 0.1-1 second (cold start), 1-10 ms (hot start)

57.7.2 2. LTE Cell Search

PSS (Primary Synchronization Signal): Detect slot timing, cell ID (mod 3)

SSS (Secondary Synchronization Signal): Frame timing, cell ID (504 total)

Steps: 1. PSS detection: 3 Zadoff-Chu sequences, correlate every 0.5 ms 2. Coarse CFO: From PSS phase 3. **SSS detection**: 168 sequences (2 per cell group) 4. **Fine CFO**: From SSS 5.

PBCH decode: Master Info Block (bandwidth, frame number)

Time: ~100 ms (initial), ~10 ms (handover)

57.7.3 3. DVB-S2 Satellite Receiver

Coarse CFO: ±500 kHz (Doppler, LNB drift)

Timing offset: ±100 ppm

Acquisition: 1. **PLHEADER**: 90-symbol pilot block (start of frame) 2. **Coarse timing**: Sliding correlation 3. **Fine CFO/phase**: Pilot symbols every 16 data symbols 4. **Tracking**: Decision-directed on pilots

Time: ~1 second (blind search), ~100 ms (known frequency)

57.8 Synchronization Errors

57.8.1 CFO Impact

Small CFO ($\epsilon=0.01$): - Constellation rotates 3.6° per symbol (10 symbols $\square=36$ °) - QPSK: OK (±45° tolerance) - 256-QAM: **Fails** (±2.8° tolerance)

Large CFO ($\epsilon=0.2$): - OFDM: ICI dominates, 10+ dB loss

57.8.2 Phase Noise

Oscillator jitter causes random phase variation:

$$\phi_n[k] \sim \mathcal{N}(0, \sigma_\phi^2)$$

Effect: Constellation spreading

Tolerance: - QPSK: ~10° RMS - 64-QAM: ~2° RMS - 1024-QAM: ~0.5° RMS

Mitigation: Pilot-based tracking (common phase error estimation)

57.8.3 Timing Jitter

Clock instability

Sampling time variation

Effect: Effective SNR loss

$$\mathrm{SNR}_{\mathrm{eff}} = \mathrm{SNR} \cdot \mathrm{sinc}^2(\pi \sigma_\tau)$$

Where σ_{τ} = RMS timing error (fraction of symbol period)

Example: $\sigma_{\tau} = 0.1 \, \Box \,$ 0.4 dB loss

57.9 Design Guidelines

57.9.1 1. Choose Loop Bandwidth

 ${f Narrow}$ ($B_L < 0.01 R_s$): - High SNR scenarios - Low phase noise - Stationary channel

Wide $(B_L>0.1R_s)$: - Low SNR - High Doppler (mobile) - Fast acquisition needed

Typical: $B_L \approx 0.01 - 0.05 R_s$ (compromise)

57.9.2 2. Preamble Design

Length: Trade-off overhead vs accuracy - **Short** (10-50 symbols): Low overhead, lower SNR threshold - **Long** (100+ symbols): Better accuracy, higher overhead

Pattern: Good autocorrelation (low sidelobes) - **Pseudorandom**: LFSR, Gold codes - **Constant amplitude**: CAZAC (Zadoff-Chu), reduce PAPR

57.9.3 3. Pilot Density

OFDM subcarrier pilots: - **Sparse** (1/12 subcarriers): Low overhead, slower tracking - **Dense** (1/4 subcarriers): Fast tracking, high overhead

Time-domain pilots (every N symbols): - WiFi: ~4-symbol pilot OFDM per packet - LTE: CRS every symbol (4 subcarriers per 12)

57.10 Synchronization Sequence

Typical receiver startup:

- 1. **AGC**: Adjust gain (10-100 μs)
- 2. **Coarse CFO**: Preamble autocorrelation (±10% symbol rate)
- 3. Frame detect: Cross-correlation with preamble
- 4. **Fine CFO**: Preamble phase (±0.1% symbol rate)
- 5. Symbol timing: Early-late gate or correlator peak
- 6. Phase tracking: PLL or decision-directed
- 7. Channel estimation: Known pilots/preamble
- 8. Data demodulation: Begin

Total time: 0.1-10 ms (packet systems), 0.1-1 s (initial cell search)

57.11 Related Topics

- [Signal Chain (End-to-End Processing)]: Overall system flow
- [Channel Equalization]: Frequency-selective fading correction

- [OFDM & Multicarrier Modulation]: Pilot-based sync • [QPSK Modulation]: Phase tracking for PSK
- [Bit Error Rate (BER)]: Performance with sync errors

Key takeaway: Synchronization aligns receiver with transmitter in frequency, phase, timing, and frame. CFO (±20-50 ppm typical) causes constellation rotation—correct with preamble correlation. Phase tracking uses PLL (Costas loop) or decision-directed feedback. Symbol timing recovery via early-late gate (Gardner algorithm). Frame sync via preamble correlation (Barker codes, CAZAC). WiFi: Short preamble (CFO coarse + AGC) Long preamble (CFO fine + channel est). GPS: Gold code correlation below noise floor. LTE: PSS/SSS for cell search (~100 ms cold start). Loop bandwidth trade-off: Narrow (better noise) vs Wide (faster acquisition). Pilot symbols (OFDM) enable continuous tracking. Synchronization errors degrade BER: 256-QAM needs ±2.8° phase, <1% CFO, <0.1T timing. Critical for coherent demodulation!

This wiki is part of the [[F	Jama Chimara Praiact]	l documentation
iriis wiki is part or the [[r	nome Griimera Projectjj	documentation.

THz Bioeffects: Thermal and Non-Thermal 58

[[Home]] [Terahertz (THz) Technology] [THz Propagation in Biological Tissue] [THz Resonances
in Microtubules]	

58.1 Overview

Terahertz (THz) radiation (0.1-10 THz) interacts with biological systems through thermal (heating) and potentially non-thermal (resonant or quantum) mechanisms. Understanding these effects is critical for: - Safety standards: Protecting workers and patients from excessive exposure -Therapeutic applications: Exploiting beneficial effects (if any) - Fundamental biophysics: Understanding molecule-THz interactions

Current consensus	: Thermal	effects	well-estab	lished; no	n-thermal	effects	controve	rsial.

58.2 For Non-Technical Readers

What is terahertz radiation?

Think of it as invisible light that sits between microwaves (used in your microwave oven) and infrared (what you feel as heat from the sun). It's completely different from dangerous ionizing radiation like X-rays-THz waves don't have enough energy to damage DNA or cause cancer directly.

Why does this matter?

THz technology is being developed for: - Security scanning (airport body scanners) - Medi-

cal imaging (seeing skin cancer without biopsies) - **Quality control** (checking pills for defects) - **Communication** (future 6G wireless networks)

As these applications grow, we need to know: Is THz radiation safe?

The Two Types of Effects:

- 1. Thermal Effects (Heating) $-\Box$ Well Understood
 - What happens: THz waves make water molecules jiggle faster, creating heat (like a microwave oven, but much weaker)
 - **Is it dangerous?**: Only at high power. Safety guidelines keep exposure low enough that heating is less than 1°C—similar to walking from shade into sunlight
 - Analogy: Standing near a campfire. Get too close = you feel heat and can get burned.
 Stay at a safe distance = perfectly fine
 - · Current safety standards: Designed to prevent any significant heating
- 2. Non-Thermal Effects (Molecular Resonance?) $-\Box$ Controversial and Unproven
 - What's claimed: Some scientists hypothesize that THz might affect biology without heating—by vibrating specific molecules at their "natural frequencies" (like shattering a wine glass with sound)
 - Why it's controversial:
 - Hard to prove the effects aren't just from tiny amounts of heating we can't measure
 - Many studies can't be replicated by other labs
 - No agreed-upon mechanism for how it would work
 - **Analogy**: Imagine claiming a dog whistle (which humans can't hear) gives you headaches. Is it the sound frequency, or stress from thinking about it? Hard to prove.
 - Current consensus: Most scientists are skeptical; safety standards ignore non-thermal effects because evidence is weak

Should I worry about THz exposure?

No, if exposure is within guidelines. Current safety limits are conservative—they're set well below levels that cause heating. It's like speed limits: if everyone follows them, the risk is minimal.

What about long-term effects?

We don't have 50-year studies yet (THz tech is relatively new), but: - No mechanism for cancer (THz photons are too weak to break chemical bonds) - No evidence of cumulative damage in animal studies - Similar to concerns about cell phones 20 years ago—still being studied, but no confirmed harm at safe levels

The Bottom Line:

THz technology is probably safe at low power, but research continues. The document below dives into the science for those who want details.

58.3 1. Thermal Effects (Established [])

58.3.1 1.1 Absorption and Heating

Mechanism: THz radiation absorbed by tissue □ molecular kinetic energy □ temperature rise

Governing equation (heat diffusion):

$$\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q$$

where: - ρ : Tissue density (~1 g/cm³) - c_p : Specific heat capacity (~3.6 J/g/K for tissue) - k: Thermal conductivity (~0.5 W/m/K) - Q: Heat source = αI (absorption coefficient × intensity)

Temperature rise (steady-state, no blood flow):

$$\Delta T \approx \frac{\alpha I \delta^2}{k}$$

where $\delta = 1/\alpha$ is penetration depth.

Example: 1 W/cm² at 1 THz, $\alpha = 200$ cm⁻¹, $\delta = 50$ µm:

$$\Delta T \approx \frac{200 \times 10^4 \times 10^{-6} \times (50 \times 10^{-6})^2}{0.005} \approx 1^{\circ} \text{C}$$

Safety threshold: $\Delta T < 1^{\circ}$ C for prolonged exposure (ICNIRP guideline)

58.3.2 1.2 Depth Dependence

Shallow heating: THz absorption strongest at surface [] temperature peak at skin surface

Thermal diffusion time:

$$\tau_{\rm th} = \frac{L^2}{\kappa}$$

where $\kappa=k/(\rho c_p)$ is thermal diffusivity (~1.3 × 10 $^{\text{-}3}$ cm²/s for tissue).

For $L=100~\mathrm{\mu m}$: $\tau_{\mathrm{th}}\approx 0.1~\mathrm{s}$ (heat dissipates quickly)

Pulsed exposure: Short pulses ($<1 \mu s$) create transient temperature spikes that relax before tissue damage.

58.3.3 1.3 Biological Consequences of Heating

Mild heating (1-2°C): - Increased metabolic rate - Altered enzyme kinetics - Enhanced blood flow (vasodilation)

Moderate heating (5-10°C): - Protein denaturation (irreversible above ~50°C) - Cell membrane disruption - Apoptosis (programmed cell death)

Severe heating (>20°C): - Tissue ablation - Burns

Threshold for damage: ~43°C for prolonged exposure (>1 hour)

cumulative equivalent minutes (CEM43)

58.4 2. Non-Thermal Effects (Speculative [])

58.4.1 2.1 Definition

Non-thermal effect: Biological response that occurs at intensities too low to cause measurable heating ($\Delta T < 0.1^{\circ}$ C) OR that persists after heating stops.

Challenge: Distinguishing non-thermal from: - **Localized heating**: Hot spots due to field enhancement - **Transient heating**: Temporary temperature spikes below detection threshold - **Indirect thermal effects**: Heat-activated signaling cascades

58.4.2 2.2 Proposed Mechanisms

58.4.2.1 2.2.1 Resonant Absorption by Biomolecules Hypothesis: THz frequencies match vibrational modes of proteins, DNA, or membranes \square selective excitation.

Evidence: - Proteins have collective vibrational modes at 0.1-3 THz (low-frequency Raman, THz-TDS) - DNA backbone vibrations at ~1 THz (B-form helix breathing modes)

Problem: In solution, these modes are heavily broadened (lifetime \sim ps) \square weak resonance peak. Excitation is non-selective.

Counterpoint: *In vitro* studies show altered protein function at sub-thermal intensities (see Section 3.1)

58.4.2.2 2.2.2 Membrane Electroporation Hypothesis: THz electric fields induce transmembrane voltage \square pore formation.

Induced voltage:

$$V_m = 1.5rE\cos\theta$$

where r is cell radius, E is external field, θ is angle.

For $r=10~{\rm \mu m}$, $E=10~{\rm kV/cm}$: $V_m\approx 15~{\rm mV}$ (below electroporation threshold ~1 V)

Conclusion: Unlikely at THz (frequency too high for membrane charging; shielded by ionic double layer)

58.4.2.3 2.2.3 Microtubule Resonances Hypothesis: THz resonates with microtubule vibrational modes \square alters quantum coherence \square affects neural function (see [THz Resonances in Microtubules]).

Predicted frequencies: 0.5-10 THz (acoustic phonons, optical phonons)

Quantum mechanism: Vibronic coupling (electron-phonon) sustains coherence at 310 K; THz drives transitions between vibronic states.

Status: No direct experimental test; theoretical models exist but lack validation.

58.4.2.4 2.2.4 Water Structuring Hypothesis: THz alters hydrogen bond network dynamics in vicinal water (near protein/membrane surfaces) \square affects protein function.

Mechanism: THz drives librational modes (hindered rotations)

transiently disrupts H-bond network

lowers activation barrier for conformational changes.

Evidence: Simulations suggest THz can perturb water structure on ~ps timescales; biological relevance unclear.

58.5 3. Experimental Evidence

58.5.1 3.1 Cell-Level Studies

Gene expression □: - **Observation**: Altered mRNA levels after THz exposure (0.1-2.5 THz, <1 mW/cm², <1°C heating) - **Example**: Upregulation of heat shock proteins (HSP70) in human keratinocytes (Wilmink et al., 2010) - **Interpretation**: Could be indirect thermal effect (transient microheating) OR non-thermal stress response

Membrane permeability □: - **Observation**: Increased uptake of fluorescent dyes after THz pulse exposure (Bock et al., 2010) - **Interpretation**: Pore formation? Or thermal disruption? - **Control needed**: Measure temperature with high spatial/temporal resolution

Calcium signaling □ : - **Observation**: Transient Ca²⁺ influx in neurons after THz exposure (Zhao et al., 2019) - **Mechanism**: THz-sensitive ion channels? Or indirect heating? - **Problem**: Calcium-sensitive dyes themselves have temperature dependence

58.5.2 3.2 Protein Studies

Enzyme activity (thermal) / (non-thermal?): - **Observation**: Altered kinetics of lysozyme, alkaline phosphatase at sub-thermal intensities (Cherkasova et al., 2009) - **Interpretation**: Possible resonant excitation of active site modes; but thermal artifacts not fully ruled out

Protein unfolding (thermal): - Clear correlation with temperature; follows Arrhenius kinetics

58.5.3 3.3 DNA Studies

Strand breaks (thermal at high intensity): - Observed at >100 W/cm² (ablation regime); clearly thermal

Transcription □ : - *In vitro* transcription assays: Some studies report altered transcription rates at <1 W/cm² - **Problem**: DNA polymerase highly temperature-sensitive; even 0.1°C affects rate

58.5.4 3.4 Whole-Animal Studies

Developmental effects □: - **Zebrafish embryos**: Some studies report abnormal development after THz exposure (Titova et al., 2013) - **Confounding factors**: Dehydration, handling stress, temperature gradients in aquarium

Behavioral effects \square : - **Mice**: No consistent behavioral changes at sub-thermal intensities - **Drosophila**: Some reports of altered locomotion; not reproduced independently

Conclusion: No robust, reproducible whole-animal non-thermal effects demonstrated.

58.6 4. Critical Analysis: Are Non-Thermal Effects Real?

58.6.1 4.1 Arguments For □

- 1. **Molecular resonances exist**: Proteins, DNA have THz vibrational modes
- 2. Some cellular effects at low intensity: Not all studies show strict temperature correlation
- 3. Precedent in other bands: RF/microwave "non-thermal effects" debated for decades

58.6.2 4.2 Arguments Against

- 1. No consensus mechanism: Multiple proposed mechanisms, none with strong evidence
- 2. Reproducibility issues: Many studies lack independent replication
- 3. Thermal artifacts: Hard to rule out localized or transient heating
- 4. Lack of dose-response: No clear threshold or saturation behavior for "non-thermal" effects
- 5. **Evolutionary perspective**: If THz resonances were functionally important, natural selection would have exploited or shielded them

58.6.3 4.3 Current Scientific Consensus

ICNIRP position (2013): "There is no consistent evidence for non-thermal effects at intensities below thermal damage thresholds."

WHO position: THz safety guidelines based on thermal effects only.

Research community: Divided; ongoing studies but skepticism high.

58.7 5. Safety Standards

58.7.1 5.1 ICNIRP Guidelines (2013)

Frequency range: 0.3-3 THz

Power density limits: - Occupational exposure: 10 mW/cm 2 (averaged over 68/f $^{1.05}$ minutes, f

in THz) - General public exposure: 2 mW/cm² (same averaging)

Rationale: Keep $\Delta T < 1^{\circ}$ C

58.7.2 5.2 IEEE Standards (C95.1-2019)

Similar limits: ~10 mW/cm² for controlled environments

Frequency gaps: Standards less developed for 3-10 THz (far-IR overlap)

58.7.3 5.3 Medical Device Regulations

THz imaging systems: Require FDA clearance (USA) or CE mark (EU)

Approval criteria: - Demonstrate temperature rise <1 °C in vivo - No evidence of long-term effects

(mutagenicity, carcinogenicity)

58.8 6. Therapeutic Potential (Speculative □)

58.8.1 6.1 THz-Induced Neuromodulation

Hypothesis: THz pulses could activate neurons non-invasively.

Mechanisms (proposed): - **TRPV channels**: Temperature-sensitive ion channels activated by localized heating - **Microtubule resonances**: Quantum effects alter neuronal excitability

Challenges: Penetration (THz doesn't reach deep brain), specificity (heating is non-selective)

58.8.2 6.2 Cancer Therapy

Hypothesis: Cancer cells more sensitive to THz due to altered water content or membrane properties.

Evidence: Minimal; no clinical trials

Alternative: THz imaging for cancer detection (established) vs. THz ablation (speculative)

58.8.3 6.3 Wound Healing

Hypothesis: Low-intensity THz stimulates cell proliferation.

Evidence: In vitro studies show increased fibroblast migration at <1 mW/cm²; mechanism un-

known.

58.9 7. Future Directions

58.9.1 7.1 What Experiments Are Needed?

To prove non-thermal effects exist: 1. High-resolution thermometry: Measure temperature with $\pm 0.01^{\circ}$ C accuracy, <10 µm spatial resolution 2. Isotope substitution: Deuterate proteins (H \Box D shifts vibrational modes); predict frequency-dependent effects 3. Molecular dynamics simulations: Model THz-biomolecule interactions at atomic resolution 4. Dose-response curves: Establish clear thresholds and saturation 5. Blind studies: Eliminate experimenter bias

To understand thermal effects better: 1. **Pulsed vs. CW comparison**: Do transient spikes matter more than average temperature? 2. **Tissue-specific thresholds**: Map safe exposure limits for skin, eye, brain

58.9.2 7.2 Proposed Mechanisms to Test

- **Vibronic coupling in microtubules**: Measure quantum variance (see [Quantum Coherence in Biological Systems]); test if THz modulates coherence time
- Water structuring: Time-resolved spectroscopy of vicinal water during THz exposure
- **Resonant protein excitation**: Site-directed mutagenesis to shift vibrational frequencies; predict altered THz sensitivity

58.10 8. Connections to Other Wiki Pages

- [THz Propagation in Biological Tissue] Absorption and penetration depth
- [THz Resonances in Microtubules] Speculative quantum mechanism
- [Terahertz (THz) Technology] Sources and detectors
- [Quantum Coherence in Biological Systems] Theoretical framework for non-thermal effects
- [Frey Microwave Auditory Effect] Analogous RF non-thermal effect (pulsed microwaves

 auditory perception)

58.11 9. References

58.11.1 Thermal Effects (Established)

- 1. ICNIRP, Health Phys. 105, 171 (2013) THz exposure guidelines
- 2. Pickwell & Wallace, J. Phys. D 39, R301 (2006) THz-tissue interactions

58.11.2 Non-Thermal Effects (Speculative)

- 3. Wilmink et al., J. Infrared Millim. THz Waves 31, 1234 (2010) Gene expression changes
- 4. **Titova et al., Sci. Rep. 3, 2363 (2013)** Zebrafish developmental effects
- 5. **Zhao et al., Neurophotonics 6, 011004 (2019)** Calcium signaling in neurons

58.11.3 Critical Reviews

- 6. Alexandrov et al., Phys. Lett. A 374, 1214 (2010) DNA resonances (controversial)
- 7. Foster, Radiat. Res. 162, 492 (2004) Critique of non-thermal RF/THz effects

58.11.4 Vibronic Coupling

8. Bao et al., <i>J. Cher</i> ence)	n. Theory Comput. 2	0, 4377 (2024) —	VE-TFCC th	eory (thermal co)her
Last updated: October	2025				

59 THz Propagation in Biological Tissue

[[Home]] [Terahertz (THz)	Technology] [[THz	z Bioeffects Tr	nermal and No	n-Thermal]]	[mmWave
& THz Communications]					

59.1 Overview

Terahertz (THz) radiation (0.1-10 THz, 30 μm-3 mm wavelength) occupies the spectral gap between microwaves and infrared. THz waves interact strongly with biological tissue due to resonances with molecular vibrations and rotations, particularly water. Understanding THz propagation is critical for: - **Medical imaging**: Cancer detection, burn assessment - **Security**: Concealed weapons/explosives detection through clothing - **Neuromodulation**: Speculative applications in neural stimulation (see [[AID Protocol Case Study]])

59.2 Quick Start for Non-Technical Readers

What is THz radiation? Think of it as invisible light that sits between microwaves (used in your microwave oven) and infrared (heat you feel from a fireplace). It can pass through some materials but not others.

Why study it in tissue? Scientists and doctors want to use THz waves to see inside skin without cutting it open—like an X-ray, but safer and better for soft tissue.

The main challenge: Water blocks THz waves. Your body is mostly water, and water absorbs THz radiation very strongly. This means: -

Good news: THz waves can create detailed images of skin and surface tissues -

Bad news: They can't penetrate deep (only a fraction of a millimeter)

Real-world analogy: Imagine shining a flashlight through fog. The light gets absorbed quickly, so you can only see a short distance. THz waves in wet tissue behave the same way.

Key takeaways: 1. **THz imaging works for skin**: Doctors can detect skin cancer, assess burn depth, or check dental cavities 2. **THz cannot image deep organs**: Unlike X-rays, THz stops at the surface (it can't see your heart or brain through skin) 3. **Safety**: THz is non-ionizing (unlike X-rays), so it doesn't damage DNA. At low power, it's considered safe 4. **The physics**: Water molecules spin in response to THz waves, absorbing energy and turning it into heat

Who uses this? - Dermatologists (skin doctors) for cancer detection - Security personnel for airport body scanners - Researchers exploring futuristic applications (like non-invasive brain stimulation—still very experimental)

Want more detail? The sections below explain the physics, but you now have the gist!

59.3 1. Electromagnetic Properties of Biological Tissue at THz Frequencies

59.3.1 1.1 Complex Permittivity

Biological tissue's response to EM waves is characterized by **complex relative permittivity**:

$$\epsilon_r(\omega) = \epsilon'(\omega) - i\epsilon''(\omega)$$

where: - ϵ' : Real part (polarization, refractive index) - ϵ'' : Imaginary part (absorption, dissipation)

Refractive index: $n=\sqrt{\epsilon'\mu_r}\approx \sqrt{\epsilon'}$ (assuming $\mu_r\approx 1$ for non-magnetic tissue)

Absorption coefficient:

$$\alpha(\omega) = \frac{\omega}{c} \sqrt{\frac{\epsilon'}{2} \left(\sqrt{1 + \left(\frac{\epsilon''}{\epsilon'}\right)^2} - 1 \right)} \approx \frac{\omega \epsilon''}{2cn}$$

for $\epsilon'' \ll \epsilon'$.

59.3.2 1.2 Frequency Dependence

Water dominates (tissue is ~70-90% water by mass):

Debye relaxation model (single relaxation time):

$$\epsilon_r(\omega) = \epsilon_{\infty} + \frac{\epsilon_s - \epsilon_{\infty}}{1 + i\omega\tau}$$

where: - ϵ_s : Static permittivity (~80 for water at DC) - ϵ_∞ : High-frequency limit (~5 for water) - τ : Relaxation time (~8 ps for bulk water at 20°C)

Relaxation frequency: $f_0 = 1/(2\pi\tau) \approx 20 \, \mathrm{GHz}$

At THz frequencies (0.1-10 THz » 20 GHz): - ϵ' approaches $\epsilon_{\infty}\approx 5$ - ϵ'' increases linearly with frequency (Lorentzian tail) - Absorption increases with frequency: $\alpha\propto\omega\epsilon''(\omega)$

59.3.3 1.3 Hydration State

Free vs. bound water: - **Free water**: Bulk-like rotational dynamics, strong THz absorption - **Bound water**: Near protein surfaces, restricted rotation, reduced absorption

Tissue hydration varies: - **Skin (stratum corneum)**: ~20% water □ lower absorption - **Muscle**: ~75% water □ high absorption - **Fat (adipose)**: ~10% water □ low absorption (relatively transparent at THz)

Temperature dependence: Absorption increases with temperature (faster molecular relaxation)

59.4 2. Absorption Mechanisms

59.4.1 2.1 Water Rotational Modes

Dominant mechanism: Dipolar water molecules rotate in response to THz electric field.

Debye absorption peak: ~20 GHz (microwave range) **THz tail**: Absorption continues into THz due to: - Hindered rotations (librational modes) - Collective hydrogen bond network dynamics

Absorption coefficient (water at 1 THz, 20°C): $\alpha\approx250$ cm⁻¹ Penetration depth: $\delta=1/\alpha\approx40$ µm (very shallow!)

59.4.2 2.2 Protein Vibrational Modes

Proteins contribute secondary absorption: - **Low-frequency modes** (0.1-3 THz): Collective vibrations, domain motions - **Amide bands**: ~6 THz (C=O stretch overtones)

Effect: Protein-rich tissues (e.g., collagen in dermis) have enhanced absorption at specific frequencies.

59.4.3 2.3 Lipid and Membrane Absorption

Lipids: Lower absorption than water/protein - **Fatty acids**: CH₂ rocking modes at ~2-4 THz - **Phospholipid headgroups**: Hydrated, contribute dielectric relaxation

Cell membranes: - Thin (~7 nm lipid bilayer)

minimal direct absorption - But membrane-associated water has altered dynamics

59.5 3. Scattering Mechanisms

59.5.1 3.1 Rayleigh Scattering (Small Particles)

Condition: Particle size $d \ll \lambda$ (THz wavelength ~100 µm)

Scattering cross-section:

$$\sigma_s \propto \left(\frac{d}{\lambda}\right)^4 \propto \omega^4$$

In tissue: - Organelles (mitochondria ~1 μ m, lysosomes ~0.5 μ m): Weak Rayleigh scattering - Cellular nuclei (~10 μ m): Transition to Mie regime

Result: Scattering is weak compared to absorption at THz frequencies (unlike visible light, where scattering dominates in tissue)

59.5.2 3.2 Mie Scattering (Comparable Size)

Condition: Particle size $d \approx \lambda$

Applicable to: - Cells (~10-20 µm diameter) at low THz (~0.3 THz, $\lambda\approx 1000$ µm \Box Rayleigh regime) - Cells at high THz (~3 THz, $\lambda\approx 100$ µm \Box Mie regime)

Mie theory: Complex calculation; depends on refractive index contrast and particle geometry.

59.5.3 3.3 Interface Reflections

Fresnel reflection at interfaces with refractive index mismatch:

$$R = \left| \frac{n_1 - n_2}{n_1 + n_2} \right|^2$$

Implication: Surface reflections significant; impedance matching needed for efficient coupling

59.6 4. Penetration Depth

59.6.1 4.1 Beer-Lambert Law

Intensity decays exponentially:

$$I(z) = I_0 e^{-\alpha z}$$

Penetration depth (1/e attenuation):

$$\delta = \frac{1}{\alpha}$$

59.6.2 4.2 Frequency Dependence

Typical values (in vivo human tissue):

Frequency	Absorption (cm ⁻¹)	Penetration depth
0.1 THz	~10	1 mm
0.5 THz	~50	200 μm
1.0 THz	~200	50 µm
3.0 THz	~700	15 µm

Key trend: Penetration decreases rapidly with frequency. At 1 THz, THz waves barely penetrate beyond epidermis (~100 µm thick).

59.6.3 4.3 Tissue-Specific Penetration

Stratum corneum (dry outer skin): Lower water content \Box deeper penetration (~500 µm at 0.5 THz) **Muscle**: High water \Box shallow (~50 µm at 1 THz) **Fat**: Low water \Box relatively transparent (~2 mm at 1 THz) **Bone**: High mineral content, low water \Box moderate absorption

Clinical implication: THz imaging ideal for skin pathology (basal cell carcinoma, burns); poor for deep tissue imaging.

59.7 5. Wave Propagation Models

59.7.1 5.1 Plane Wave Approximation

Assumption: Infinite homogeneous medium

Electric field:

$$E(z,t) = E_0 e^{-\alpha z/2} e^{i(kz - \omega t)}$$

where $k = \omega n/c$ is the wavenumber.

Limitations: Ignores interfaces, scattering, finite beam effects

59.7.2 5.2 Stratified Media Model

Skin structure: Multi-layer (stratum corneum, epidermis, dermis, fat)

Transfer matrix method: 1. Divide tissue into N layers 2. Apply boundary conditions at each interface (Fresnel reflection/transmission) 3. Multiply transfer matrices: $\mathbf{M}_{\text{total}} = \mathbf{M}_N \cdots \mathbf{M}_2 \mathbf{M}_1$ 4. Calculate total reflection/transmission

Result: Oscillatory reflection spectrum due to interference (etalon effect in thin layers)

59.7.3 5.3 Diffusion Approximation

When scattering dominates (rare in THz):

$$\nabla^2 U - \frac{U}{L^2} = -S$$

where U is fluence rate, $L=1/\sqrt{3\mu_a\mu_s'}$ is diffusion length (μ_a = absorption, μ_s' = reduced scattering)

Not applicable to most THz tissue scenarios (absorption » scattering)

59.8 6. Applications

59.8.1 6.1 Medical Imaging □ (Established)

THz time-domain spectroscopy (THz-TDS): - Ultrafast THz pulse (\sim ps duration) transmitted/reflected from tissue - Time-of-flight \square layer thickness - Spectral features \square molecular composition

Clinical applications: - Skin cancer detection: Basal cell carcinoma has altered water content contrast - Burn depth assessment: Damaged tissue has different THz signature - Dental imaging: Caries detection (demineralized enamel has higher water)

Limitations: Shallow penetration, slow acquisition (raster scanning), requires contact or near-contact

59.8.2 6.2 Security Screening ☐ (Established)

Through-clothing imaging: - THz transparent to fabrics (low water) - Opaque to skin (high water) - Detect concealed weapons, explosives

Systems: Passive THz cameras (detect natural thermal emission) or active illumination

Privacy concerns: Can image body contours

"virtual strip search"

59.8.3 6.3 Neuromodulation □ (Speculative)

Hypothesis: THz pulses could stimulate neurons non-invasively.

Mechanisms (proposed): - **Thermal**: Localized heating triggers temperature-sensitive ion channels (TRPV1) - **Non-thermal**: THz resonates with protein vibrational modes □ conformational changes - **Quantum**: Vibronic coupling in microtubules (see [THz Resonances in Microtubules])

Challenges: - Penetration: THz cannot reach deep brain structures transcranially (skull absorption + scalp) - Power: High intensity needed □ thermal damage risk - Specificity: How to target specific neuron populations?

Current status: In vitro studies show weak effects; in vivo neuromodulation not demonstrated

59.9 7. Measurement Techniques

59.9.1 7.1 THz Time-Domain Spectroscopy (THz-TDS)

Setup: 1. Femtosecond laser generates THz pulse via photoconductive antenna or nonlinear crystal 2. THz pulse transmitted through sample 3. Detected via electro-optic sampling (time-resolved electric field)

Advantages: Phase-sensitive (extract ϵ' and ϵ''), broadband (~0.1-5 THz) **Disadvantages**: Slow (mechanical delay line), expensive

59.9.2 7.2 Continuous-Wave (CW) THz Systems

Quantum cascade lasers (QCLs): High-power, narrow-band THz sources

Advantage: Fast imaging, compact **Disadvantage**: Single frequency (must scan laser to get spectrum)

59.9.3 7.3 In Vivo Reflection Geometry

Challenge: Most tissue measurements done in transmission; in vivo requires reflection mode.

Reflection coefficient:

$$r(\omega) = \frac{E_{\rm ref}(\omega)}{E_{\rm inc}(\omega)}$$

Extract optical properties via model fitting (stratified media)

Confounding factors: Surface roughness, sweat, air gaps

59.10 8. Safety Considerations

Thermal effects: Dominant safety concern

ICNIRP guidelines (International Commission on Non-Ionizing Radiation Protection): - **Power density limit**: 10 mW/cm² (averaged over 6 minutes) for 0.3-3 THz - **Temperature rise**: Must stay below 1°C for prolonged exposure

Non-thermal effects: Controversial (see [[THz Bioeffects Thermal and Non-Thermal]])

Current assessment: THz radiation is non-ionizing (photon energy ~4 meV « 13.6 eV ionization potential). At low intensities (<1 W/cm²), considered safe for brief exposure. 59.11 9. Connections to Other Wiki Pages [Terahertz (THz) Technology] — THz sources and detectors • [[THz Bioeffects Thermal and Non-Thermal]] — Biological effects • [THz Resonances in Microtubules] — Speculative quantum effects • [mmWave & THz Communications] — Wireless applications • [Free-Space Path Loss (FSPL)] — Propagation fundamentals **59.12 10. References** 59.12.1 Tissue Optical Properties 1. Pickwell & Wallace, J. Phys. D 39, R301 (2006) — THz tissue review 2. Smye et al., Phys. Med. Biol. 46, R101 (2001) — Tissue dielectric properties

59.12.2 Medical Imaging

- 3. Woodward et al., *Phys. Med. Biol.* 47, 3853 (2002) THz skin imaging
- 4. Wallace et al., Br. J. Dermatol. 151, 424 (2004) Basal cell carcinoma detection

59.12.3 Propagation Models

5. Pickwell et al., Appl. Phys. Lett. 84, 2190 (2004) — Stratified media modeling

59.12.4 Safety

6. ICNIRP, Health Phys. 99, 818 (2010) — THz exposure guidelines

Last updated: October 2025

THz Resonances in Microtubules

[[Home]] | [Microtubule Structure & Function] | [Quantum Coherence in Biological Systems] | [Terahertz (THz) Technology]

60.1 Overview

Terahertz (THz) resonances in microtubules refer to collective vibrational modes in the 0.1-10 THz frequency range (\$\preceq\$ \$3-300 cm\$^-1) that arise from the periodic lattice structure of tubulin dimers. These modes are hypothesized to play roles in: - Quantum coherence protection: Vibronic coupling could sustain quantum states at biological temperatures - Long-range signaling: Coherent phonon propagation along microtubule length - Information processing: Potential substrate for neural computation (speculative)

☐ **Status**: THz modes in microtubules are established physics; biological function is speculative.

60.2 For Non-Technical Readers

What are we talking about?

Imagine microtubules (tiny tubes inside your cells) as incredibly small guitar strings. When you pluck a guitar string, it vibrates at specific frequencies that create musical notes. Similarly, microtubules can vibrate at specific frequencies—but these vibrations are about a trillion times faster than anything you can hear. These ultra-fast vibrations happen in what scientists call the "tera-hertz" (THz) range.

Why does this matter?

Think of your brain like a city with roads (nerve fibers) and delivery trucks (signals traveling between neurons). Scientists have always thought the trucks (electrical impulses) carry all the information. But what if the *roads themselves* (microtubules inside neurons) could also process and store information through their vibrations? That's the exciting—and controversial—possibility being explored here.

The key ideas in simple terms:

- Vibrations like waves in a stadium: When microtubules vibrate, thousands of atoms move together like a coordinated wave—similar to how fans in a stadium create "the wave" by standing up and sitting down in sequence. These coordinated movements can happen at terahertz speeds.
- 2. **Quantum weirdness at body temperature**: Usually, quantum effects (the strange behavior of very small things) only work at super-cold temperatures, like in a laboratory freezer. But there's evidence that microtubules might maintain some quantum behavior even at normal body temperature (37°C/98°F). This is like finding out your car can drive underwater—surprising and potentially very useful.
- 3. **Energy without wires**: Just as you can charge your phone wirelessly, microtubules might transmit energy and information along their length without needing chemical messengers to diffuse slowly through the cell. The vibrations travel at the speed of sound in protein (about 1.5 km/s—faster than a jet plane!).
- 4. **The consciousness question**: Some scientists speculate (and this is *very* speculative) that these vibrations might be involved in how consciousness works—not just as wiring, but as actual processors. Others are skeptical. The debate continues.

What's proven vs. what's speculation?

□ Proven: Microtubules vibrate at terahertz frequencies (measured in labs)
 □ Proven: These vibrations follow predictable patterns based on the structure
 □ Debated: Whether these vibrations maintain quantum coherence long enough to matter
 □ Speculative: Whether any of this plays a role in consciousness or brain function

Why should you care?

If microtubules really can maintain quantum coherence at body temperature, it would mean: - New insights into how cells work at the most fundamental level - Potential new approaches to treating brain diseases - Possible quantum computing applications inspired by biology - A deeper understanding of what makes consciousness possible

The bottom line: We've discovered that the scaffolding inside your cells can vibrate like a tiny musical instrument at incredible speeds. Whether this "music" means anything biologically is still an open question—but it's a fascinating one that connects physics, chemistry, biology, and potentially even consciousness.

Ready for the technical details? Keep reading below. Want more background first? Check out [Microtubule Structure & Function] or [Quantum Coherence in Biological Systems].

60.3 1. Vibrational Modes: The Physics Foundation

60.3.1 1.1 Normal Modes of Molecular Systems

Any molecule with N atoms has 3N degrees of freedom: - **3 translational**: Motion of center of mass - **3 rotational**: Rotation about principal axes - 3N-6 **vibrational**: Internal vibrations (or 3N-5 for linear molecules)

For tubulin (\$\Bigcup \$8,000 atoms/dimer), there are **~24,000 vibrational modes** spanning: **- Low frequency** (0.1-10 THz): Collective lattice modes, breathing modes **- Mid frequency** (10-100 THz): Protein backbone vibrations **- High frequency** (>100 THz): C-H, N-H stretch modes

Key insight: Low-frequency THz modes are *collective*—many atoms move in phase, creating large dipole moments and strong coupling to electromagnetic fields.

60.3.2 1.2 Phonons in Crystalline and Quasi-Crystalline Systems

Microtubules are **quasi-crystalline**: - 13 protofilaments arranged in helical lattice - Lattice constant $a\approx 8$ nm (tubulin dimer repeat) - Helical pitch ≈ 12 nm

Phonon dispersion relation for 1D lattice:

$$\omega(k) = \omega_0 \sqrt{1 - \cos(ka)}$$

where k is the wavevector, a is the lattice constant, and ω_0 is the characteristic frequency.

Implication: Microtubules support acoustic phonon modes (sound waves along axis) and optical phonon modes (anti-phase oscillations between protofilaments).

60.3.3 1.3 Acoustic vs. Optical Phonons

Acoustic phonons: - Adjacent unit cells move in phase - Linear dispersion at low k: $\omega \propto v_s k$ (sound velocity $v_s \approx 1-2$ km/s in proteins) - Low frequency: 0.1-1 THz

Optical phonons: - Adjacent cells move out of phase - Flat dispersion (frequency nearly independent of k) - Higher frequency: 1-10 THz - Couple strongly to EM radiation (IR/THz absorption)

Microtubule specifics: - **Breathing modes**: Radial expansion/contraction of the cylinder (~0.1-0.5 THz) - **Bending modes**: Flexural oscillations (~0.01-0.1 THz, below THz range) - **Longitudinal modes**: Compression waves along axis (~0.5-2 THz) - **Circumferential modes**: Torsional twisting (~1-5 THz)

60.4 2. Vibronic Coupling in Tubulin

60.4.1 2.1 What is Vibronic Coupling?

Vibronic coupling is the interaction between **electronic states** and **vibrational (nuclear) modes**. It's described by the Born-Oppenheimer breakdown term:

$$H_{\rm coupl} = \sum_{ij} \langle \Psi_i | \frac{\partial}{\partial Q} | \Psi_j \rangle \cdot \frac{\partial Q}{\partial t}$$

where Ψ_i are electronic wavefunctions and Q is a nuclear coordinate.

Physical picture: Vibrations modulate electronic energies

electronic transitions drive vibrations (feedback loop).

60.4.2 2.2 Aromatic Amino Acids as Vibronic Chromophores

Tubulin contains **aromatic amino acids** (Trp, Tyr, Phe) with π -electron systems: - **Tryptophan**: 7 per α-tubulin, 9 per β-tubulin - **Tyrosine**: 12 per α-tubulin, 13 per β-tubulin - **Phenylalanine**: 20 per α-tubulin, 19 per β-tubulin

These aromatics have: - **Electronic transitions** in UV (~280 nm, ~1000 THz) - **Vibrational progressions** in THz range (C-C stretches, ring deformations)

Key point: UV excitation of aromatics couples to THz lattice vibrations \(\Bar{\text{U}} \) vibronic excitations.

60.4.3 2.3 Jahn-Teller Effect and Vibronic Stabilization

From VE-TFCC quantum chemistry:

Jahn-Teller (JT) theorem: If a molecule has a degenerate electronic state, it will spontaneously distort to lift the degeneracy.

Example from VE-TFCC paper (CoF_4 -): - Electronic state 5E (doubly degenerate) - JT distortion along e vibrational mode - Stabilization energy: **6 kJ/mol** (comparable to thermal energy at 298 K)

Biological analogue (speculative): - Aromatic amino acids in tubulin may have near-degenerate π -states - THz vibrations lift degeneracy \square vibronic ground state - **Coherence protection**: Vibronic coupling creates avoided crossings that shield quantum superpositions from decoherence

60.4.4 2.4 Thermal Coherence via Bogoliubov Transformation

From VE-TFCC theory, **quantum coherence persists at room temperature** if vibronic coupling is strong enough.

Key equations (from VE-TFCC supporting information):

Bogoliubov-transformed operators:

$$\hat{a}_i = \frac{1}{\sqrt{1 - e^{-\beta \omega_i}}} \left(\hat{b}_i - e^{-\beta \omega_i/2} \hat{b}_i^\dagger \right)$$

$$\hat{a}_i^{\dagger} = \frac{1}{\sqrt{1 - e^{-\beta\omega_i}}} \left(\hat{b}_i^{\dagger} - e^{-\beta\omega_i/2} \hat{b}_i \right)$$

where $\beta=1/(k_BT)$, ω_i is the vibrational frequency, and \hat{b}_i are the original Bosonic operators.

Physical meaning: At temperature T, the thermal state $|\theta(\beta)\rangle$ is the *vacuum* for the Bogoliubov quasiparticles \hat{a}_i .

Implication for microtubules: - THz vibrations ($\omega\sim 1~{\rm THz}\approx 48~{\rm K}$) have $\beta\omega\sim 0.15$ at 310 K - Exponential factor $e^{-\beta\omega}\approx 0.86$ (significant thermal population) - **But**: Vibronic coupling can create thermal coherent states if electronic-vibrational coupling is strong

Position variance (measure of quantum coherence):

$$(\Delta q_i)^2 = \langle q_i^2 \rangle - \langle q_i \rangle^2$$

For a classical thermal system, $(\Delta q)^2 \propto k_B T$. For a vibronic system at thermal equilibrium (from VE-TFCC):

$$(\Delta q_i)^2 = \frac{1}{2} \left(d^{bb}_{ii} + d^{aa}_{ii} + \frac{1}{2} d^{bb}_{aa} + \frac{1}{2} \delta_{aa} \right)$$

where d^{ab} are thermal reduced density matrices in Bogoliubov representation.

Key result: Quantum coherence manifests as *excess variance* beyond classical thermal prediction.

60.5 3. Experimental Evidence for THz Modes in Microtubules

60.5.1 3.1 Far-Infrared Spectroscopy (Established)

Method: Fourier-transform infrared (FTIR) spectroscopy in far-IR/THz range (10-300 cm⁻¹, 0.3-9 THz)

Findings: - **Absorption peaks** at ~1.5, 3.5, 5.5, 7.2 THz (from dehydrated microtubule samples) - Peaks correspond to collective modes (breathing, torsional) - Temperature-dependent: Peak positions shift with temperature (anharmonic effects)

Limitations: - Dehydrated samples (no water); in vivo behavior may differ - No phase information (cannot distinguish coherent vs. incoherent absorption)

Reference: Preto (2016), *PLoS ONE* — First systematic THz spectroscopy of microtubules

60.5.2 3.2 Inelastic Neutron Scattering (Established □)

Method: Neutrons scatter off vibrating nuclei; energy transfer measures phonon dispersion $\omega(k)$

Findings: - Acoustic phonon velocity: $v_s\approx 1.5$ km/s (similar to other proteins) - Flat optical phonon branches at 2-8 THz - Confirmation of helical symmetry: 13-fold rotational modes

Limitation: Requires deuterated samples (exchange H for D); may alter vibrational spectrum

Reference: Chou et al., Biophys. J. (1998) — Inelastic scattering on actin (similar protein)

60.5.3 3.3 Raman Spectroscopy (Established □)

Method: Inelastic light scattering; measures vibrational frequencies via Stokes/anti-Stokes shifts

Findings: - Low-frequency Raman (5-100 cm⁻¹, 0.15-3 THz) shows collective protein modes - **Boson peak** at ~10 cm⁻¹ (0.3 THz): Universal feature of disordered proteins - Temperature dependence: Anti-Stokes intensity $\propto n_B(T)$ (Bose-Einstein distribution)

Limitation: Cannot probe coherence directly (only measures energy-level spacing)

60.5.4 3.4 Terahertz Time-Domain Spectroscopy (THz-TDS) (Emerging [])

Method: Ultrafast THz pulses probe sample; measure transmission and phase shift

Advantages: - Phase-sensitive: Can detect coherent vs. incoherent response - Time-resolved: Sub-picosecond resolution (can track coherence decay)

Current status: - THz-TDS on proteins is emerging - Few studies on microtubules specifically - Technical challenge: Water absorption in THz range (biological samples)

Needed experiment: THz-TDS on hydrated microtubules at 310 K to measure: - Coherence time τ_c - Phonon lifetime τ_p - Vibronic coupling strength

60.6 4. Theoretical Models

60.6.1 4.1 Fröhlich Condensate Model (1968)

Herbert Fröhlich proposed that biological systems can exhibit **phonon condensation**—a Bose-Einstein-like condensate of coherent vibrations.

Mechanism: 1. Metabolic energy pumps THz phonons (non-equilibrium) 2. If pumping rate > damping rate, phonons accumulate in lowest mode 3. Coherent macroscopic oscillation emerges

Fröhlich frequency (predicted): $\omega_F \sim 10^{11} \ \mathrm{Hz}$ = 0.1 THz

Criticisms: - Requires extreme non-equilibrium (metabolic rates insufficient?) - Decoherence from water and ions

Modern revival: Some experiments claim to detect Fröhlich condensation in proteins (controversial)

60.6.2 4.2 Davydov Soliton Model (1973)

Amide-I band (C=O stretch in protein backbone, ~1650 cm⁻¹, 50 THz) can form **solitons**—self-trapped localized excitations.

Mechanism: - Exciton (electronic excitation) couples to lattice (phonon) - Exciton creates local lattice distortion - Distortion traps exciton □ stable traveling wave (soliton)

Relevance to microtubules: - If aromatic π -excitations couple to THz phonons, similar solitons could exist - **Energy transport**: Solitons could carry energy along microtubule without dissipation

Problem: Room-temperature stability questionable (thermal fluctuations disrupt solitons)

60.6.3 4.3 Vibronic Exciton Model (Modern)

Combines: Fröhlich (phonons) + Davydov (excitons) + VE-TFCC (thermal coherence)

Hamiltonian:

$$\hat{H} = \underbrace{\sum_{i} \epsilon_{i} |i\rangle\langle i|}_{\text{Electronic}} + \underbrace{\sum_{k} \hbar \omega_{k} \hat{b}_{k}^{\dagger} \hat{b}_{k}}_{\text{Vibrational}} + \underbrace{\sum_{ik} g_{ik} |i\rangle\langle i| (\hat{b}_{k} + \hat{b}_{k}^{\dagger})}_{\text{Vibronic coupling}}$$

where $|i\rangle$ are electronic states (localized on tubulin dimers), \hat{b}_k are phonon operators, and g_{ik} is the coupling strength.

At thermal equilibrium (VE-TFCC approach): - Transform to Bogoliubov representation: $\hat{b}_k \to \hat{a}_k$ - Thermal state $|\theta(\beta)\rangle$ becomes vacuum for \hat{a}_k - Coherent thermal excitations survive if g_{ik} is large enough

Prediction: If $g_{ik}\omega_k\gtrsim k_BT$, vibronic states maintain quantum coherence at 310 K.

Estimate for microtubules: - $\omega_k\sim 1~{\rm THz} \to \hbar\omega_k\approx 4~{\rm meV}$ - k_BT (310 K) $\approx 27~{\rm meV}$ - Need $g_{ik}\gtrsim 7$ for thermal coherence

Question: Is vibronic coupling in tubulin this strong? Unknown—requires detailed quantum chemistry calculations (VE-TFCC on tubulin model).

60.7 5. Potential Biological Functions (Speculative)

60.7.1 5.1 Quantum Information Processing

Hypothesis: Microtubules act as quantum waveguides for information processing in neurons.

Mechanism: - Tubulin dimers in superposition: $|\psi\rangle=\alpha|\uparrow\rangle+\beta|\downarrow\rangle$ - THz phonons mediate entanglement between distant tubulins - Quantum coherence spans \$\Pi\$ \$10 \mu m (length of microtubule segment)

Requirements: - Coherence time $\tau_c>1$ ms (gamma oscillation timescale) - Isolation from thermal bath (ordered water?) - Amplification mechanism (connect to action potentials?)

Current status: No experimental evidence; coherence time estimates range from 10 fs (skeptics) to 10 ms (proponents).

60.7.2 5.2 Long-Range Signaling

Non-quantum version: Coherent phonons propagate along microtubule, modulating tubulin-associated protein (TAP) binding.

Phonon propagation speed: $v_s \approx 1.5$ km/s Microtubule length: ~10 µm (typical) Transit time: ~7 ns (much faster than diffusion)

Possible function: Coordinate motor protein activity (kinesin, dynein) along entire microtubule.

Evidence: Indirect—motor proteins have been shown to respond to mechanical vibrations in vitro.

60.7.3 5.3 Anesthetic Sensitivity

Clinical observation: General anesthetics (isoflurane, propofol) bind to microtubules and disrupt consciousness.

Quantum hypothesis: Anesthetics disrupt THz vibronic coherence \Box loss of quantum information processing \Box unconsciousness.

Alternative (classical): Anesthetics alter microtubule mechanics

disrupt synaptic transmission (no quantum effects needed).

Test: Does THz spectroscopy of microtubules change upon anesthetic binding? - **Preliminary data** (in vitro): Anesthetics shift THz absorption peaks by ~0.1 THz - **In vivo test**: Not yet performed

60.8 6. Challenges to THz Quantum Coherence

60.8.1 6.1 Decoherence from Water

Problem: Water has strong THz absorption (rotational modes at 0.1-3 THz).

Decoherence time estimate:

$$\tau_d \sim \frac{\hbar}{\Gamma k_B T}$$

where Γ is the system-bath coupling. For microtubules in water, $\Gamma \sim 10^{12}~{\rm s}^{\text{--}1} \to au_d \sim 100~{\rm fs}$.

Counter-argument: Ordered water layers near microtubule surface may have reduced rotational freedom \square weaker coupling.

Evidence: Neutron scattering shows water within 1 nm of protein surfaces has restricted dynamics (residence time ~10 ps vs. ~1 ps in bulk).

60.8.2 6.2 Thermal Energy Dominates

At 310 K: $k_BT \approx 27~{\rm meV} \gg \hbar \omega$ (1 THz) $\approx 4~{\rm meV}$.

Classical expectation: Thermal occupation number $n_B(T)=(\exp(\hbar\omega/k_BT)-1)^{-1}\approx 5.7$ (many phonons thermally excited).

Quantum coherence destroyed? Not necessarily—VE-TFCC shows that vibronic coupling can maintain *thermal coherent states* even with $n_B\gg 1$.

Key distinction: - Classical thermal state: Incoherent mixture of phonon number states - Thermal coherent state: Superposition with well-defined phase (enabled by vibronic coupling)

60.8.3 6.3 Lack of Experimental Proof

Critical issue: No experiment has directly demonstrated: - Sub-millisecond quantum coherence in microtubules at 310 K - Functional role of THz coherence in living neurons - Quantum advantage for any biological computation

What's needed: - THz-TDS on functioning neurons (technical challenge) - Two-dimensional THz spectroscopy (detect off-diagonal coherences) - Conditional coherence measurements (if coherence exists, disrupting it should alter function)

60.9 7. Future Experiments

60.9.1 7.1 Two-Dimensional THz Spectroscopy

Method: Send two THz pulses separated by delay τ ; measure response as function of τ .

What it measures: Off-diagonal elements of density matrix ρ_{ij} (coherences between states i and j).

Signature of quantum coherence: Oscillatory beats in 2D spectrum with decay time τ_c .

Challenge: Requires intense, phase-stable THz sources (free-electron lasers or table-top THz systems).

60.9.2 7.2 Quantum Coherence Tomography

Idea: Use microtubule-specific fluorescent probes that report on vibronic coupling strength.

Mechanism: Probe's fluorescence lifetime depends on local phonon density of states \square map coherence spatially.

Proof-of-concept: Similar techniques used in photosynthetic complexes.

60.9.3 7.3 Anesthetic Modulation Studies

Protocol: 1. Measure THz spectrum of microtubules in vitro (no anesthetic) 2. Add anesthetic (isoflurane) \Box remeasure 3. Compare coherence times and spectral shifts

Last updated: October 2025

61 Terahertz (THz) Technology

Terahertz (THz) radiation occupies the electromagnetic spectrum between microwaves and infrared light, roughly 0.1 to 10 THz (100 GHz to 10,000 GHz).

61.1 For Non-Technical Readers

61.1.1 What is THz? (Plain English)

Think of THz waves as invisible light that sits between: - **Microwaves** (what heats your food) - **Infrared** (what you feel as heat from a fire)

61.1.2 Everyday Analogy

Imagine the electromagnetic spectrum as a piano keyboard: - **Radio waves** = Low bass notes (long, slow waves) - **Microwaves** = Middle notes (WiFi, cell phones) - **I THz waves** = High notes near the top (very fast vibrations) - **Visible light** = The highest notes you can "see"

THz is the gap between what electronics can make (microwaves) and what we can see (light).

61.1.3 Why Should Non-Experts Care?

THz waves have superpowers:

- 1. See through stuff (like X-rays, but safer)
 - Can see through clothing, plastic, paper
 - Airport body scanners use THz
 - Can't see through metal or water
- 2. Non-harmful (unlike X-rays)
 - · Doesn't have enough energy to damage cells
 - · Safe for repeated use
 - · Mostly just causes gentle warming
- 3. **Identify materials** (like a chemical fingerprint)
 - Explosives have unique THz signatures
 - · Can spot fake medicines
 - · Can tell if food is contaminated

61.1.4 Real-World Examples

- Airport security: Those cylinder scanners that see under clothes without X-rays
- Quality control: Pharmaceutical companies checking pills without opening packages
- Art restoration: Seeing hidden layers in paintings without touching them
- Future 6G networks: Ultra-fast wireless (we're not there yet)

61.1.5 The Catch

Water blocks THz completely (like a brick wall): - Can't work well in rain/fog - Can't penetrate deep into your body (we're mostly water) - Limited range outdoors

This is actually good for safety - it means THz mostly stays on the surface of your skin.

61.2 The THz Gap

Historically called the "terahertz gap," this frequency range was difficult to generate and detect:
- **Below 100 GHz**: Electronic devices (transistors, amplifiers) work well - **Above 10 THz**: Optical techniques (lasers, photonics) dominate - **0.1-10 THz**: Neither purely electronic nor optical required hybrid approaches

61.3 Modern THz Sources

61.3.1 1. Quantum Cascade Lasers (QCLs)

Most important THz source for applications

61.3.1.1 Principle of Operation

- Semiconductor heterostructure: Multiple quantum wells in series
- · Intersubband transitions: Electrons cascade through energy levels
- Unipolar device: Uses only one carrier type (electrons)
- Photon energy: Determined by quantum well design, not bandgap

Energy Diagram (Simplified):
E

THz photon
E emission

Ε

→ Electron cascades down

Multiple stages → Multiple photons per electron

61.3.1.2 Key Characteristics

- Frequency range: 1-5 THz typical (can extend to 0.6-6 THz)
- Power output: 1-100 mW continuous wave (CW)
- Operating temperature: Cryogenic cooling often required (though RT-QCLs exist)
- Tunability: Limited (design-specific), but fast (~MHz)
- · Beam quality: High coherence, narrow linewidth

61.3.1.3 Applications

- Spectroscopy (molecular fingerprinting)
- Imaging (security screening, non-destructive testing)
- · Communications (short-range, high data rate)
- · Research: Biological tissue interaction studies

61.3.2 2. Photoconductive Antennas

Ultrafast optical method

• Principle: Femtosecond laser pulses create carriers in semiconductor

• **Result**: Pulsed THz radiation (broadband, 0.1-5 THz)

· Advantage: Time-domain spectroscopy capability

Limitation: Low average power (~µW)

61.3.3 3. Frequency Multiplication

Electronic approach for lower frequencies

• **Principle**: Multiply microwave source (e.g., 100 GHz

300 GHz)

• Limitation: Efficiency drops rapidly above 1 THz

• Advantage: Compact, room temperature operation

61.3.4 4. Free-Electron Lasers (FEL)

Large-scale facility

• **Principle**: Accelerated electrons in magnetic undulator

· Advantage: Extremely high power (kW), tunable

• **Limitation**: Building-sized apparatus, very expensive

61.4 THz Propagation Characteristics

61.4.1 Atmospheric Absorption

THz waves are **strongly absorbed** by water vapor:

	Frequency	Attenuation (dB/km)	Comments
0.3 THz 1.0 THz 2.0 THz	100-200) Strong	for communications water absorption opaque

Windows: Narrow transmission windows exist (e.g., ~0.35, 0.85, 1.4 THz)

Weather effects: Rain, fog, humidity drastically increase attenuation

61.4.2 Free-Space Path Loss

Beyond standard Friis equation, THz suffers additional losses:

L_total = L_FSPL + L_atmospheric + L_molecular

Example at 1 THz, 1 km distance:

- FSPL: ~ 152 dB (= 0.3 mm)

- Atmospheric: ~100 dB (humid conditions)

- Total: ~252 dB

This is EXTREME attenuation!

Practical range: Typically < 1 km in atmosphere, better in dry/vacuum conditions

61.4.3 Penetration of Materials

Material	Penetration Depth	Transparency
Plastics	cm to m	High
Dry paper	cm	Moderate
Clothing	cm	Moderate-High
Water	∼100 µm	Very Low
Metals	~nm	Effectively zero

Key insight: Water = THz blocker (important for biology!)

61.5 THz Biological Interactions

61.5.1 Tissue Penetration

Human tissue is ~70% water □ Strong THz absorption

Tissue Type	Penetration Depth at 1 THz
Skin	0.5-1 mm
Fat	~2 mm
Muscle	0.3-0.5 mm
Bone	~1 mm
Brain tissue	~0.5 mm

Conclusion: THz doesn't penetrate deep into the body (surface effects only for most applications)

61.5.2 Energy & Safety

Photon energy at 1 THz:

```
E = h \cdot f = (6.626 \times 10^{3} \text{ J} \cdot \text{s}) \times (1 \times 10^{12} \text{ Hz})
= 6.626×10<sup>22</sup> J
= 4.1 meV (milli-electron volts)
```

Non-ionizing: Far below ionization threshold (~eV range) - Cannot break chemical bonds - Cannot damage DNA directly (unlike UV, X-rays)

Primary effect: **Heating** (ohmic absorption in tissue)

Secondary effects (debated): - Resonant excitation of molecular vibrations? - Perturbation of hydrogen bond networks? - Effects on protein conformational dynamics?

61.5.3 Safety Standards

IEEE/ICNIRP guidelines (conservative):

Frequency	Power Density Limit (CW exposure)
0.3 THz	~10 mW/cm² (6 min average)
1 THz	~10 mW/cm ²
3 THz	~100 mW/cm 2 (transitions to IR limits)

These are surface limits (where absorption occurs)

61.6 Research Applications

61.6.1 1. THz Spectroscopy

- Molecular fingerprinting (rotational states)
- Pharmaceutical quality control
- · Explosives/drug detection

61.6.2 2. THz Imaging

- Medical imaging (skin cancer, burns)
- Security screening (airport body scanners)
- Art conservation (hidden layers in paintings)

61.6.3 3. THz Communications

- Short-range wireless (< 100 m)
- Very high data rates (> 100 Gbps)
- Indoor applications (atmospheric absorption limits outdoor use)

61.6.4 4. Biological Research

- Protein dynamics
- DNA structure perturbations
- Neural tissue interactions (emerging field)

61.7 Quantum Cascade Lasers in Detail

61.7.1 Structure

Electron Injector

Active Region 1 → THz photon

Active Region 2 \rightarrow THz photon

. . .

Active Region N \rightarrow THz photon

Each active region: ~40-50 layers

Total structure: 1000+ semiconductor layers

Thickness: ~10 m

61.7.2 Materials

• GaAs/AlGaAs: Most common for THz QCLs

• InGaAs/InAlAs: Higher frequency variants

· Growth: Molecular Beam Epitaxy (MBE), ultra-precise

61.7.3 Performance Metrics

State-of-the-art THz QCLs (2025): - **Power**: 100+ mW at 4 THz (cryogenic) - **Wall-plug efficiency**: 0.5-5% (still low) - **Beam divergence**: ~20-40° (needs collimation) - **Frequency stability**: MHz-level linewidth - **Modulation**: Up to 10+ GHz (direct current modulation)

61.7.4 Challenges

- ☐ Cryogenic cooling often required (☐ size, power, cost)
- ☐ Low efficiency (most energy ☐ heat)
- Limited tunability
- High beam divergence

61.7.5 Recent Advances

- Room-temperature operation (limited performance)
- Phase-locked arrays (beam shaping)
- Frequency combs (multi-frequency operation)
- On-chip integration (THz systems-on-chip)

61.8 Future Directions

61.8.1 6G Communications

- THz bands (0.1-1 THz) under consideration
- Indoor/short-range applications
- · Data rates: Tbps potential

61.8.2 THz Imaging Systems

- Real-time video-rate imaging
- · Compact, portable devices
- · Medical diagnostics

61.8.3 Quantum THz Sources

- · Squeezed light generation
- · Quantum sensing applications

61.8.4 Biological Interactions

- Non-thermal bioeffects (controversial)
- Protein conformational control
- Neural modulation (highly speculative)

61.9 Key Takeaways

- 1. THz is real technology with growing applications
- 2. QCLs are workhorse sources for coherent THz (1-5 THz typical)
- 3. Water strongly absorbs THz [] atmospheric/biological challenges
- 4. **Penetration is shallow** in tissue (~0.5-1 mm)
- 5. Non-ionizing but can cause heating
- 6. Applications focus on spectroscopy, imaging, short-range comms

61.10 See Also

[Electromagnetic Spectrum] - THz position in EM spectrum

- [THz Propagation in Biological Tissue] Detailed biological interaction
- [Free-Space Path Loss] Link budget considerations
- [[Quantum Cascade Lasers (Advanced)]] In-depth physics
- [[THz Bioeffects]] Thermal and non-thermal effects

61.11 References

- 1. Köhler et al. (2002) "Terahertz semiconductor-heterostructure laser" Nature 417, 156-159
- 2. Williams (2007) "Terahertz quantum-cascade lasers" Nature Photonics 1, 517-525
- 3. **Tonouchi** (2007) "Cutting-edge terahertz technology" *Nature Photonics* 1, 97-105
- 4. **Pickwell & Wallace** (2006) "Biomedical applications of terahertz technology" *J. Phys. D: Appl. Phys.* 39, R301
- 5. **IEEE Standard C95.1** (2019) THz safety guidelines

62 Turbo Codes

[[Home]] | Coding Theory | [Convolutional Codes & Viterbi Decoding] | [LDPC Codes]

Turbo codes are like having two spell-checkers that help each other—when one is unsure, the other provides hints, and they iterate back and forth until they agree. Revolutionary in 1993!

The breakthrough: - **Before 1993**: Best codes were ~3 dB from theoretical limit - **Turbo codes** (1993): Got within 0.5 dB of Shannon limit! - **Impact**: "Impossible" performance, shocked the world - **Today**: In 3G/4G phones, deep space, satellites

How they work - Two encoders help each other:

Step 1: Encode data with TWO different convolutional encoders - Encoder 1: Sees data in original order - Encoder 2: Sees data scrambled (interleaved) - Send both encoded versions

Step 2: Receiver iteratively decodes - Decoder 1: "I think bit 5 is probably a 1... 80% sure" - Decoder 2: "I think bit 5 is definitely a 1... 95% sure!" - Decoder 1: "Oh! With that info, I'm now 98% sure!" - They ping-pong back and forth ~5-10 iterations - Final result: Near-perfect decoding!

The magic - "Turbo" analogy: - Like a turbo charger: Output feeds back to improve input - Each decoder's output improves the other's input - After several iterations, converges to correct answer - Hence: "Turbo" codes!

Real-world use: - 3G (UMTS): Turbo codes for data channels - 4G (LTE): Turbo codes (before LDPC in 5G) - Deep space: Mars rovers use turbo codes - Satellite phones: Iridium, Globalstar - Military: Tactical communications

Why "revolutionary" in 1993: - Shannon's limit (1948): Theoretical best = 0 dB Eb/N0 - Best codes before 1993: ~3 dB from limit - Turbo codes: 0.5-1 dB from limit! - Engineers thought this was impossible!

The famous 1993 paper: - Presented at ICC '93 conference - Audience: Stunned silence, then standing ovation - "We must have made a mistake" - initial reaction - Verified by others: IT'S REAL! - Changed communication systems forever

Comparison with other codes: - Convolutional + Viterbi: Simple, but ~5 dB from limit - Turbo codes: 0.5-1 dB from limit, complex - LDPC codes: 0.5 dB from limit, easier to implement - Polar codes: Proven optimal, simpler structure

Trade-offs: - **Advantage**: Amazing performance, near-Shannon limit - **Disadvantage**: Complex decoder, high latency (iterations) - **Why 5G switched to LDPC/Polar**: Simpler, lower latency

The iterative decoding process:

```
Iteration 1: 60% confidence
Iteration 2: 80% confidence
Iteration 3: 95% confidence
Iteration 4: 99% confidence
Iteration 5: 99.9% confidence → DONE!
```

Fun fact: The inventors (Berrou, Glavieux, Thitimajshima) almost didn't publish because they thought they'd made a mistake—the performance seemed too good to be true. When they finally presented in 1993, it sparked a revolution in error correction!

62.2 Overview

Turbo codes achieve near-Shannon-limit performance (within 0.5-1 dB of capacity).

Key innovation: Parallel concatenation of convolutional codes with iterative decoding

Discovery: Berrou, Glavieux, and Thitimajshima (1993) - Revolutionary breakthrough

Performance: BER 10^{-5} at Eb/N0 \approx 0.7 dB (rate 1/2, BPSK) - Only 0.5 dB from Shannon limit!

Applications: 3G/4G cellular (UMTS, LTE), deep space (Mars rovers, New Horizons), DVB-RCS satellite

62.3 Basic Structure

Parallel Concatenated Convolutional Codes (PCCC):

```
+---> [RSC Encoder 1] ---> Parity 1
|
Input data ---> |
|
+---> [Interleaver] ---> [RSC Encoder 2] ---> Parity 2
```

Components: 1. **Two RSC encoders** (Recursive Systematic Convolutional) 2. **Interleaver** (pseudo-random permutation) 3. **Systematic output** (original data)

Output: Systematic bits + Parity1 + Parity2

62.4 Recursive Systematic Convolutional (RSC) Encoder

Why RSC? Better iterative decoding than non-recursive

Structure:

Recursive: Output fed back to input (creates infinite impulse response)

Systematic: One output = input (uncoded)

62.4.1 Example: RSC (37, 21) Octal

Generator polynomials (octal): - Feedback: $37_8 = 0111111_2$ - Feedforward: $21_8 = 010001_2$

K = **5** (constraint length)

Rate: 1/2 (1 systematic + 1 parity per input bit)

62.5 Interleaver

Purpose: Break correlation between encoder inputs

Types: 1. **Random interleaver**: Pseudo-random permutation 2. **Block interleaver**: Write rowwise, read column-wise 3. **S-random interleaver**: Constrained randomness (no nearby indices)

Length: Typically 1000-10,000 bits (longer = better performance)

62.5.1 Why Interleaving Works

Input sequence: 11111 (low Hamming weight)

Encoder 1: Produces low-weight parity (correlated errors)

After interleaver: 10101 (scattered)

Encoder 2: Produces high-weight parity (uncorrelated)

Result: Combined code has high minimum distance

Good error correction

62.5.2 S-Random Interleaver

Constraint: Indices i and j separated by < S in input \square Separated by $\ge S$ in output

Example (S=3): - If positions 0, 1, 2 are adjacent in input - After interleaving: Must be ≥3 positions apart

Benefit: Prevents clustered low-weight codewords

62.6 Encoding Process

Input: Data block $\mathbf{d} = [d_1, d_2, \dots, d_K]$

Steps:

- 1. **Encoder 1**: Encode **d** \square Parity1 **p**₁
- 2. Interleave: $\mathbf{d}' = \pi(\mathbf{d})$ (permutation)
- 3. Encoder 2: Encode d' Parity2 p₂
- 4. Transmit: $[\mathbf{d}, \mathbf{p}_1, \mathbf{p}_2]$ (rate 1/3)

Or puncture to rate 1/2: Transmit $[\mathbf{d}, \mathbf{p}_1^{(even)}, \mathbf{p}_2^{(odd)}]$

62.6.1 Rate Matching (Puncturing)

Achieve flexible rates by deleting parity bits:

Example (rate 1/3 \(\Pi \) rate 1/2):

Time	Systematic	Parity1	Parity2	Transmitted
1	d ₁	p ₁₁	p ₂₁	d ₁ , p ₁₁
2	d_2	p ₁₂	p_{22}	d_2, p_{22}
3	d ₃	p ₁₃	p ₂₃	d ₃ , p ₁₃

Result: 3 data + 3 parity = rate 1/2

Total of Galley Tale II.

62.7 Iterative Decoding

Key innovation: Two decoders exchange extrinsic information

Algorithm: BCJR (Bahl-Cocke-Jelinek-Raviv) or SOVA (Soft-Output Viterbi)

62.7.1 Decoder Structure

SISO: Soft-In Soft-Out decoder (outputs LLRs, not hard decisions)

Iteration: Decoders alternate, passing improved soft information

62.7.2 Log-Likelihood Ratios (LLR)

LLR for bit d_k :

$$L(d_k) = \log \frac{P(d_k = 0 | \text{received})}{P(d_k = 1 | \text{received})}$$

Decomposition:

$$L(d_k) = L_c(d_k) + L_a(d_k) + L_e(d_k)$$

Where: - L_c = Channel LLR (from demodulator) - L_a = A priori LLR (from other decoder) - L_e = Extrinsic LLR (new information from this decoder)

62.7.3 Iterative Decoding Steps

Iteration *i*:

- 1. Decoder 1:
 - Input: $L_c(\mathbf{d}), L_c(\mathbf{p}_1), L_a^{(i)}(\mathbf{d})$ (from Dec2)
 - $oldsymbol{\cdot}$ Compute: $L_e^{(i)}(\mathbf{d})$ (extrinsic info)
 - Output: $L_1^{(i)}(\mathbf{d}) = L_c + L_a + L_e$
- 2. Interleave: $L_e^{(i)}(\mathbf{d}') = \pi(L_e^{(i)}(\mathbf{d}))$
- 3. Decoder 2:
 - Input: $L_c(\mathbf{d}')$, $L_c(\mathbf{p}_2)$, $L_e^{(i)}(\mathbf{d}')$ (from Dec1)
 - Compute: $L_e^{(i)}(\mathbf{d}')$ (extrinsic info)
 - Output: $L_2^{(i)}(\mathbf{d}')$
- 4. De-interleave: $L_a^{(i+1)}(\mathbf{d}) = \pi^{-1}(L_e^{(i)}(\mathbf{d}'))$
- 5. Repeat for N iterations (typically 4-10)

6. Hard decision: $\hat{d}_k = \mathrm{sign}(L_1^{(N)}(d_k) + L_2^{(N)}(d_k))$

62.7.4 Why Iterative Decoding Works

Decoder 1: Uses channel info + parity1 ☐ Produces soft estimates

Decoder 2: Uses channel info + parity2 + **extrinsic from Dec1** \square Refines estimates

Iteration: Each decoder improves estimates using other's extrinsic info

Convergence: LLRs [] High magnitude (high confidence) after ~4-10 iterations

Analogy: Two experts discussing a problem, each bringing unique perspective

62.8 BCJR Algorithm

Bahl-Cocke-Jelinek-Raviv: Optimal soft-output decoder (MAP)

Computes: A posteriori probability (APP) for each bit

Recursions (forward-backward):

Forward α :

$$\alpha_k(s) = \sum_{s'} \alpha_{k-1}(s') \cdot \gamma_k(s',s)$$

Backward β :

$$\beta_{k-1}(s') = \sum_{s} \beta_k(s) \cdot \gamma_k(s', s)$$

Branch metric γ :

$$\gamma_k(s',s) = P(\text{transition } s' \to s | \text{received})$$

LLR:

$$L(d_k) = \log \frac{\sum_{(s',s):d_k=0} \alpha(s') \gamma(s',s) \beta(s)}{\sum_{(s',s):d_k=1} \alpha(s') \gamma(s',s) \beta(s)}$$

Complexity: $O(2^{2K})$ per bit (manageable for K \leq 7)

62.9 Performance Analysis

62.9.1 BER vs Eb/N0

Typical performance (rate 1/2, K=4, random interleaver, 10 iterations):

Eb/N0 (dB)	Uncode	ed BPSK	Turbo Code	Shannon Limit
	-1.6	0.27	-	0 (capacity)
	0	0.08	0.01	-
	0.5	0.04	10 ⁻³	-
	0.7	0.03	10 ⁻⁵	Gap = 0.5 dB
	1.0	0.02	10 ⁻⁶	-
	2.0	5×10 ⁻³	10 ⁻⁹	-

Waterfall region: Sharp BER drop at ~0.5-1.0 dB

Error floor: BER flattens at ~10⁻⁶ to 10⁻⁸ (due to low-weight codewords)

62.9.2 Convergence Analysis

EXIT Charts (Extrinsic Information Transfer):

 $\textbf{Plots} : \ \, \text{Mutual information} \ \, I_e \ \, \text{vs} \ \, I_a \ \, \text{for each decoder}$

Convergence: If curves don't cross

Decoders converge to low BER

Tunnel opening: Gap between curves

Convergence speed

62.9.3 Interleaver Length Effect

Interleaver Size	BER @ 0.7 dB	Err	or Floor	Notes
1,0 10	000 bits ,000 bits	10 ⁻⁴ 10 ⁻⁵	10 ⁻⁴ 10 ⁻⁶ 10 ⁻⁸ 10 ⁻¹⁰	Poor (short) Moderate Good Excellent (high latency)

Trade-off: Longer interleaver

Better performance, higher latency/memory

62.10 Turbo Code Variants

62.10.1 1. Duo-Binary Turbo Codes

Process 2 bits at a time: (d_1,d_2) jointly

Advantage: Better performance, lower error floor

Used in: DVB-RCS (satellite return channel)

62.10.2 2. Serial Concatenated Convolutional Codes (SCCC)

Structure: Inner encoder [] Interleaver [] Outer encoder (serial)

Performance: Lower error floor than PCCC

Decoding: Similar iterative structure

62.10.3 3. Repeat-Accumulate (RA) Codes

Simplified turbo code:

Input --> [Repeat r times] --> [Interleaver] --> [Accumulator] --> Output

Accumulator: Simple RSC with feedback polynomial 1/(1+D)

Advantage: Very simple encoder

Performance: Near-turbo with less complexity

62.11 Practical Implementations

62.11.1 1. 3G UMTS (WCDMA)

Turbo code: Rate 1/3, K=4 - Two RSC encoders (G=[1, 13/15]₈) - Interleaver: Length 40-5114

bits - 8 iterations

Channels: Data (up to 2 Mbps)

BER: 10^{-6} @ Eb/N0 ≈ 1.5 dB

62.11.2 2. 4G LTE

Turbo code: Rate 1/3, K=4 - Two RSC encoders - QPP interleaver (Quadratic Permutation Poly-

nomial) - 6-8 iterations

Data rates: 1 Mbps - 100 Mbps (Cat 3), up to 1 Gbps (Cat 16)

Block sizes: 40-6144 bits

Puncturing: Adaptive (1/2, 2/3, 3/4, 5/6) based on MCS

62.11.3 3. Deep Space (NASA/ESA)

Mars Exploration Rovers: Turbo code rate 1/6 - K=5 RSC encoders - 65,536-bit interleaver - 15

iterations

Performance: BER $< 10^{-8}$ @ Eb/N0 ≈ 0 dB

Data rate: 128 kbps (from Mars surface)

62.11.4 4. DVB-RCS (Satellite Return)

Duo-binary turbo code: Rate 1/3 to 6/7 (punctured)

Block sizes: 48-1504 bits

Iterations: 6-8

Application: Interactive satellite broadband (uplink)

62.12 Encoder Complexity

Encoding: Linear complexity O(K) per bit

Example: K=4, rate 1/3 - 2 RSC encoders (4 states each) - Interleaver (memory access) - **Total**:

~10-20 operations per bit

Hardware: Easy to implement (shift registers + XORs)

62.13 Decoder Complexity

BCJR per iteration: - $O(2^K)$ states - O(K) operations per state - Total: $O(K \cdot 2^K)$ per bit

Example: K=4, 8 iterations - 16 states, ~50 operations per state per iteration - Total: ~6400

operations per bit

SOVA alternative: Lower complexity (~40% of BCJR), 0.3 dB performance loss

62.13.1 Optimization Techniques

1. **Max-Log-MAP**: Approximation (replace sum with max)

Complexity: 50% reduction

• Loss: ~0.3 dB

2. **Sliding window**: Process trellis in windows (reduce memory)

3. **Early termination**: Stop if LLRs exceed threshold (save iterations)

4. **Radix-4**: Process 2 bits at a time (2× throughput)

62.14 Stopping Criteria

Problem: Fixed iteration count wastes power (good SNR needs fewer iterations)

Solution: Early stopping

Criteria:

1. LLR magnitude: $|L(d_k)| > T$ for all k (high confidence)

2. Cross-entropy: $H(L^{(i)},L^{(i-1)})<\epsilon$ (convergence)

3. CRC check: If CRC passes, stop (used in LTE)

Benefit: Average 3-5 iterations (vs 8 worst-case) ☐ 40% power savings

62.15 Error Floor

Error floor: BER stops improving (flattens) at high SNR

Cause: Low-weight codewords (small d_{free})

Dominant: Input sequences causing low-weight output in **both** encoders

Example: Input weight 2, output weight 4 \square $d_{\text{free}} = 6$ (poor)

62.15.1 Mitigation Strategies

1. Interleaver design: S-random, dithered (avoid bad patterns)

2. Longer interleaver: Reduces probability of bad patterns

3. Increase K: Larger constraint length $\hfill\Box$ Higher $d_{\rm free}$

4. **Post-processing**: Outer code (e.g., CRC + retransmission)

Typical floor: 10^{-6} to 10^{-8} (acceptable for most applications)

62.16 Comparison with Other Codes

Code	Eb/N0 @ 10 ⁻⁵ (rate 1/2)	Gap to Shannon	Complexity	Latency
Uncode	d 9.6 dB	+11 dB	-	0
Conv	4.5 dB	+6 dB	Low	Low
(K=7)				
Turbo	0.7 dB	+0.5 dB	Moderate	Moderate
LDPC	0.5 dB	+0.3 dB	Moderate	Low

Code	Eb/N0 @ 10 ⁻⁵ (rate 1/2)	Gap to Shannon	Complexity	Latency
Polar	1.0 dB	+0.8 dB	Low	Low

Turbo advantages: Near-Shannon, proven performance, standardized

Turbo disadvantages: Latency (iterative), error floor

62.17 Turbo vs LDPC

	Aspect	Turbo Codes	LDPC Codes
Eb/N0 @ 10 Error floor Decoding la Complexity Hardware Standardiza	atency	0.7 dB 10 ⁻⁷ typical High (iterations) Moderate Serial (trellis) 3G, 4G LTE	Moderate Parallel (graph) 5G NR, WiFi 6, DVB-S2
Flexibility	ation	Puncturing	Structured graphs

Trend: LDPC replacing Turbo in new standards (5G, WiFi 6, 802.11ax)

62.18 Design Guidelines

62.18.1 Choose Turbo Code When:

- 1. **Near-capacity performance** critical (< 1 dB from Shannon)
- 2. Moderate block sizes (1000-10000 bits)
- 3. Latency acceptable (iterative decoding OK)
- 4. Error floor 10⁻⁶ sufficient
- 5. Existing hardware (3G/4G infrastructure)

62.18.2 Avoid Turbo Code If:

- 1. **Ultra-low error floor** needed (< 10⁻¹⁰) ☐ Use LDPC
- 2. Low latency critical

 Use LDPC or Polar
- 3. **Very short blocks** (< 100 bits) ☐ Use Polar or convolutional
- 4. **New design** (future-proof)

 Consider LDPC (5G standard)

62.19 Python Example: Simple Turbo Encoder

import numpy as np

```
def rsc_encode(data, g_fb=[1,1,1], g_ff=[1,0,1]):
    """RSC encoder (K=3 example)."""
    K = len(g_fb)
    state = 0
    systematic = []
    parity = []
    for bit in data:
        # Feedback XOR
        fb = bit
        for i in range(1, K):
            if g_fb[i] and (state & (1 << (i-1))):
                fb = 1
        # Parity XOR
        p = 0
        for i in range(K):
            if i == 0:
                if g_ff[0]:
                    p = fb
            else:
                if g_ff[i] and (state & (1 << (i-1))):</pre>
                    p = 1
        # Update state (shift in feedback bit)
        state = ((state << 1) | fb) & ((1 << (K-1)) - 1)
        systematic.append(bit)
        parity.append(p)
    return systematic, parity
def turbo_encode(data, interleaver_indices):
    """Turbo encoder (rate 1/3)."""
    # Encoder 1
    sys1, par1 = rsc_encode(data)
    # Interleave
    data_int = [data[i] for i in interleaver_indices]
    # Encoder 2
    sys2, par2 = rsc_encode(data_int)
    # Output: systematic + parity1 + parity2
    # (sys1 and sys2 are same as data, use sys1)
    return sys1, par1, par2
# Example
```

```
data = [1, 0, 1, 1, 0, 1, 0, 0]
interleaver = [0, 4, 2, 6, 1, 5, 3, 7] # S-random example

sys, par1, par2 = turbo_encode(data, interleaver)

print(f"Data: {data}")
print(f"Systematic: {sys}")
print(f"Parity 1: {par1}")
print(f"Parity 2: {par2}")
print(f"Code rate: {len(data)}/{len(sys)+len(par1)+len(par2)} = 1/3")
```

Note: Full iterative decoder (BCJR) is complex (~200+ lines). Use libraries like compy for production.

62.20 Related Topics

- [Convolutional Codes & Viterbi Decoding]: Building block for Turbo
- [LDPC Codes]: Modern alternative (5G, WiFi 6)
- [Polar Codes]: Another near-capacity code (5G control)
- [Forward Error Correction (FEC)]: General FEC overview
- [Bit Error Rate (BER)]: Performance metric

Key takeaway: Turbo codes achieve near-Shannon-limit performance (0.5-1 dB gap) via parallel concatenated RSC encoders + iterative decoding. Two SISO decoders exchange extrinsic LLRs, refining estimates over 4-10 iterations. Interleaver breaks correlation (critical for performance). Used in 3G UMTS, 4G LTE, deep space (Mars rovers). BER 10^{-5} @ Eb/N0 \approx 0.7 dB (rate 1/2). Error floor at 10^{-6} to 10^{-8} due to low-weight codewords. BCJR algorithm provides optimal soft-output decoding. Longer interleaver (10k+ bits) improves performance but increases latency. Being replaced by LDPC in 5G/WiFi 6 (lower error floor, lower latency, better parallelization). Revolutionary 1993 discovery—brought information theory to practice.

This wiki is part of the [[Home|Chimera Project]] documentation.

63 Wave Polarization

[[Home]] | **EM Fundamentals** | [Maxwell's Equations & Wave Propagation] | [Electromagnetic Spectrum]

63.1 For Non-Technical Readers

Wave polarization is like the orientation of a jump rope—you can shake it up/down (vertical), side-to-side (horizontal), or in circles (circular). Antennas must match this orientation to catch the signal!

The idea: - Radio waves are oscillating electric/magnetic fields - The **electric field** can point in different directions - **Polarization** = which direction the field oscillates

Three main types:

- **1. Linear Polarization** (most common): Field oscillates in one fixed direction **Vertical**: Field points up/down () **Horizontal**: Field points left/right () **45**°: Somewhere in between ()
- **2.** Circular Polarization: Field rotates in a circle as wave travels Right-hand circular (RHCP): Rotates clockwise Left-hand circular (LHCP): Rotates counter-clockwise
- **3. Elliptical Polarization**: Field traces an ellipse (in-between linear and circular) Most real-world signals (not perfectly linear/circular)

Real-world examples:

FM Radio: - **Vertical polarization** - Your car antenna: Vertical rod - Must be vertical to match transmitter!

TV Broadcasting: - **Horizontal polarization** (old analog TV) - Roof antennas: Horizontal elements - Must be horizontal to receive signal

WiFi: - **Usually vertical** (your router's antennas) - Laptop: Internal antenna usually vertical - This is why tilting laptop changes signal strength!

Satellite: - **Circular polarization** (GPS, satellite TV) - Why circular? Survives Faraday rotation in ionosphere - Your satellite dish: Works at any angle!

Why polarization matters:

Antenna alignment: - **Matched polarization**: Maximum signal (0 dB loss) - **Cross-polarization** (90° off): -20 to -30 dB loss! - This is why rotating your phone can improve reception

Example: - Cell tower: Vertical polarization - Your phone held horizontally: Antenna now horizontal - Signal loss: 10-20 dB! - Result: Dropped call

Frequency reuse: - Send two signals at same frequency, different polarization - Vertical signal + Horizontal signal = no interference! - **Satellite TV**: Uses both RHCP and LHCP to double capacity

Faraday rotation: - Ionosphere rotates polarization (like twisting jump rope) - Linear polarization gets rotated antenna mismatch! - **Solution**: Use circular (rotation doesn't matter) - This is why GPS uses circular!

Your experience:

Old TV "rabbit ears": - Had to rotate/tilt for best picture - You were matching antenna polarization! - Horizontal = horizontal polarization - V-shape = trying to catch both!

Cell phone: - Hold normally: Antenna vertical (good) - Hold horizontally (watching video): Antenna horizontal (bad!) - This is "death grip" effect (partly)

WiFi router antennas: - Multiple antennas at different angles - Catches signals from devices in any orientation - Some routers: Mix vertical/horizontal for diversity

Satellite dish: - Circular polarization

dish angle doesn't matter for polarization - Only matters for pointing at satellite!

Fun fact: GPS satellites transmit right-hand circular polarization (RHCP). If you flip your GPS receiver upside-down, it receives left-hand circular polarization (LHCP)—and the signal is 20-30 dB weaker, basically unusable. This is why your phone's GPS doesn't work well face-down on a table!

63.2 Overview

Polarization describes the **orientation of the electric field vector** as an electromagnetic wave propagates through space.

Key insight: While the wave travels in one direction (e.g., +z), the electric field **oscillates in a plane perpendicular** to propagation. The pattern traced by the E-field tip defines polarization.

Why it matters: - Antenna alignment: RX antenna must match TX polarization for maximum signal capture - Propagation effects: lonosphere rotates polarization (Faraday rotation) - Interference mitigation: Orthogonal polarizations enable frequency reuse - Satellite communications: Circular polarization combats ionospheric effects

63.3 Mathematical Foundation

63.3.1 Plane Wave Representation

General electric field (propagating in +z direction):

$$\vec{E}(z,t) = E_x \cos(\omega t - kz + \phi_x) \hat{x} + E_y \cos(\omega t - kz + \phi_y) \hat{y}$$

Where: - E_x , E_y = Amplitudes in x and y directions - ϕ_x , ϕ_y = Phase offsets - $\Delta\phi=\phi_y-\phi_x$ = **Relative phase** (determines polarization type)

At fixed observation point (z=0):

$$\vec{E}(t) = E_x \cos(\omega t + \phi_x)\hat{x} + E_y \cos(\omega t + \phi_y)\hat{y}$$

63.4 Polarization Types

63.4.1 1. Linear Polarization

Condition: $\Delta \phi = 0^{\circ}$ or 180° (in-phase or anti-phase)

Result: E-field oscillates along a fixed line

63.4.1.1 Vertical Polarization

$$\vec{E}(t) = E_0 \cos(\omega t)\hat{y}$$

E-field aligned with y-axis (vertical if antenna vertical)

Applications: - AM/FM broadcast (vertical monopoles) - HF vertical antennas (ground wave propagation) - Mobile handsets (typically held vertically)

63.4.1.2 Horizontal Polarization

$$\vec{E}(t) = E_0 \cos(\omega t)\hat{x}$$

E-field aligned with x-axis (horizontal)

Applications: - TV broadcast (horizontal dipoles) - WiFi (many routers use horizontal dipoles) - Yagi antennas (horizontal for TV reception)

63.4.1.3 Slant Polarization

$$\vec{E}(t) = E_0 \cos(\omega t) (\cos \theta \hat{x} + \sin \theta \hat{y})$$

E-field at angle θ from horizontal

Example: 45° slant (±45°):

$$\vec{E}(t) = \frac{E_0}{\sqrt{2}}\cos(\omega t)(\hat{x} + \hat{y})$$

Applications: - Satellite polarization diversity (±45° orthogonal channels) - Reduce building penetration loss (less reflection)

63.4.2 2. Circular Polarization

Condition: $E_x=E_y$ and $\Delta\phi=\pm90^\circ$

Result: E-field tip traces a circle, rotating as wave propagates

63.4.2.1 Right-Hand Circular Polarization (RHCP)

$$\vec{E}(t) = E_0[\cos(\omega t)\hat{x} - \sin(\omega t)\hat{y}]$$

Viewed from receiver (wave approaching): E-field rotates clockwise

Phase: $\Delta\phi=-90^\circ$ (y lags x by 90°)

63.4.2.2 Left-Hand Circular Polarization (LHCP)

$$\vec{E}(t) = E_0[\cos(\omega t)\hat{x} + \sin(\omega t)\hat{y}]$$

Viewed from receiver: E-field rotates counterclockwise

Phase: $\Delta \phi = +90^{\circ}$ (y leads x by 90°)

63.4.2.3 Properties Axial ratio: AR = 1 (perfect circle)

Isolation between RHCP/LHCP: Theoretically infinite (orthogonal)

Practical isolation: 20-30 dB (antenna imperfections)

Applications: - **GPS** satellites (RHCP) - Mitigates Faraday rotation, multipath - **Satellite communications** (RHCP or LHCP) - Reduces rain depolarization - **RFID** tags - Orientation-insensitive - **Radar** (circular) - Target discrimination via polarization

63.4.3 3. Elliptical Polarization

Condition: General case where $E_x \neq E_y$ and/or $\Delta \phi \neq 0^{\circ}, 90^{\circ}, 180^{\circ}$

Result: E-field tip traces an ellipse

$$\frac{E_x^2(t)}{A^2} + \frac{E_y^2(t)}{B^2} = 1$$

Where A, B are semi-major/minor axes

63.4.3.1 Axial Ratio (AR) Measure of ellipse eccentricity:

$$\mathrm{AR} = \frac{\mathrm{Major\ axis}}{\mathrm{Minor\ axis}} = \frac{A}{B}$$

In dB:

$$\mathrm{AR_{dB}} = 20 \log_{10} \left(\frac{A}{B}\right)$$

Special cases: - AR = 1 (0 dB): Circular polarization - AR □ ∞: Linear polarization

Typical spec: AR < 3 dB for "circular" antennas (ellipticity acceptable)

63.4.3.2 Sense of Rotation Right-hand elliptical: Rotates clockwise (RHEP)

Left-hand elliptical: Rotates counterclockwise (LHEP)

Example: $E_x=2E_y$, $\Delta\phi=90^\circ$ - Elliptical (not circular due to unequal amplitudes) - Righthand sense (90° phase like RHCP) - AR = 2 (6 dB)

63.5 Polarization Loss Factor (PLF)

Mismatch between TX and RX polarizations causes loss:

$$\mathrm{PLF} = |\hat{e}_{\mathrm{TX}} \cdot \hat{e}_{\mathrm{RX}}^*|^2$$

Where \hat{e} = Normalized polarization vectors (complex)

63.5.1 Linear Polarizations

Angle mismatch θ between TX and RX:

$$PLF = \cos^2 \theta$$

In dB:

$$L_{\rm pol} = -10 \log_{10}(\cos^2 \theta) = -20 \log_{10}(\cos \theta)$$

Examples: - **0**°: 0 dB loss (perfect match) - **30**°: 1.2 dB loss - **45**°: 3 dB loss (half power) - **90**°: ∞ dB loss (complete null - orthogonal)

63.5.2 Circular Polarizations

TX	RX	PLF			Loss
		RHCP	RHCP	1	0 dB (match)
		LHCP	LHCP	1	0 dB (match)
		RHCP	LHCP	0	∞ dB (null)
		LHCP	RHCP	0	∞ dB (null)

Co-pol vs cross-pol: - **Co-pol**: Same sense (RHCP-RHCP or LHCP-LHCP) - **Cross-pol**: Opposite sense (RHCP-LHCP or LHCP-RHCP)

63.5.3 Linear to Circular

Linear antenna receiving circular wave (or vice versa):

$$\mathrm{PLF} = 0.5 \quad (-3~\mathrm{dB~loss})$$

Explanation: Linear antenna captures only one component of circular wave (e.g., vertical dipole receives only vertical component of RHCP)

Example: GPS receiver with linear patch antenna - GPS satellites transmit RHCP - Linear patch: 3 dB polarization loss - Need higher gain to compensate

63.6 Polarization Generation

63.6.1 Linear Polarization

Simple dipole or monopole: - Current flows in one direction

E-field perpendicular to current - Vertical monopole

Vertical polarization - Horizontal dipole

Horizontal polarization

63.6.2 Circular Polarization

63.6.2.1 Crossed Dipoles with 90° Phase Shift Two perpendicular dipoles, fed with: - Equal amplitude - 90° phase difference (quadrature)

Geometry:

```
y (vertical dipole)
|
|
+---- x (horizontal dipole)
```

Feed: - Horizontal: $I_x=I_0\cos(\omega t)$ - Vertical: $I_y=I_0\cos(\omega t-90^\circ)=I_0\sin(\omega t)$

Result: RHCP (assuming correct phase)

Implementation: 90° hybrid coupler (branch-line, Lange coupler)

63.6.2.2 Helical Antenna Helix wound around cylinder (axial mode):

Geometry: - Diameter: $D \approx \lambda/\pi$ (circumference \approx λ) - Pitch angle: 12-15° - Turns: 5-10 for good AR

Result: Circular polarization (sense depends on helix direction) - Right-hand helix \square RHCP - Left-hand helix \square LHCP

Applications: GPS antennas, satellite ground stations

63.6.2.3 Patch Antenna with Corners Truncated Circular or square patch with: - Two opposite corners cut (truncated) - Single feed point

Mechanism: Truncation creates two orthogonal modes with ~90° phase difference

Result: Circular polarization (RHCP or LHCP depending on which corners cut)

Applications: GPS receivers, compact GNSS antennas

63.7 Propagation Effects on Polarization

63.7.1 Faraday Rotation

lonosphere causes polarization rotation (linear ☐ rotated linear):

$$\Omega = 2.36 \times 10^4 \frac{B_{\parallel} \cdot \text{TEC}}{f^2} \quad (\text{radians})$$

Where: - B_{\parallel} = Earth's magnetic field component along path (Tesla) - TEC = Total Electron Content (electrons/m²) - f = Frequency (Hz)

Effect scales as $1/f^2$ (severe at HF, negligible at SHF)

Example: HF @ 10 MHz, TEC = 10^{18} el/m² - Rotation: ~500° (multiple full rotations!) - Linear polarization unusable (unpredictable rotation)

Mitigation: Use circular polarization (immune to Faraday rotation)

63.7.2 Differential Propagation (Rain Depolarization)

Rain causes differential attenuation between H and V components:

Horizontal attenuated more than vertical (raindrops are oblate)

Effect: Linear

Elliptical, Circular

Elliptical

Cross-Polarization Discrimination (XPD):

$$XPD = \frac{Co\text{-pol power}}{Cross\text{-pol power}} \quad (dB)$$

Typical: 30 dB in clear air, degrades to 15-20 dB in heavy rain

Example: Satellite Ku-band, ±45° linear polarization - Clear air: 30 dB isolation between channels - Heavy rain: 20 dB isolation (increased interference)

Mitigation: Adaptive coding/modulation, switch to single polarization in heavy rain

63.7.3 Reflection

Polarization changes upon reflection:

63.7.3.1 Perpendicular Incidence (Normal) Horizontal and vertical polarizations reflect with 180° phase shift (for good conductors)

63.7.3.2 Oblique Incidence Brewster angle (θ_B) :

$$\theta_B = \arctan\left(\frac{n_2}{n_1}\right)$$

At Brewster angle: Parallel (horizontal) polarization not reflected (complete transmission)

Example: Air-to-glass ($n_1 = 1$, $n_2 = 1.5$):

$$\theta_B = \arctan(1.5) \approx 56^{\circ}$$

Application: Polarizing filters, anti-reflection coatings

63.8 Applications

63.8.1 1. Satellite Communications

Frequency reuse via polarization diversity:

Traditional: H and V (or $\pm 45^{\circ}$ linear) - Two independent channels on same frequency - Isolation: 25-30 dB (limited by cross-pol)

Modern: RHCP and LHCP - Better rain performance (less depolarization) - Isolation: 20-30 dB

Example: Ku-band DBS (Direct Broadcast Satellite) - 12 GHz downlink - Odd transponders: RHCP - Even transponders: LHCP - Doubles capacity

63.8.2 2. GPS and GNSS

All GPS satellites transmit RHCP:

Reasons: 1. Faraday rotation immunity: Circular unaffected by ionosphere rotation 2. Multipath rejection: Ground reflection flips RHCP

LHCP (cross-pol rejected) 3. Orientation insensitive: Works at any receiver angle (within hemisphere)

Receiver antenna: RHCP patch or helix

63.8.3 3. Radar

Polarimetric radar uses multiple polarizations:

Modes: - HH: Transmit H, receive H - VV: Transmit V, receive V - HV: Transmit H, receive V (crosspol) - VH: Transmit V, receive H (cross-pol)

Applications: - **Weather radar:** Distinguish rain, hail, snow (different depolarization) - **SAR imaging:** Surface type classification (vegetation vs metal vs water) - **Target identification:** Military (tanks vs trees)

63.8.4 4. WiFi and Cellular

Diversity antennas use orthogonal polarizations:

MIMO systems: 2×2, 4×4 with ±45° slant polarization - Reduce correlation between antenna elements - Improve capacity in rich scattering environments

Example: WiFi 802.11n/ac router - Antenna 1: $+45^{\circ}$ slant - Antenna 2: -45° slant - Independent fading \Box Diversity gain

63.8.5 5. EMI/EMC Testing

Measure emissions in both H and V polarizations:

Standards (FCC, CISPR): Require testing at both polarizations to find worst-case emissions

63.9 Stokes Parameters

Complete polarization description (intensity + polarization state):

$$\begin{split} S_0 &= E_x^2 + E_y^2 \quad \text{(Total intensity)} \\ S_1 &= E_x^2 - E_y^2 \quad \text{(H vs V preference)} \\ S_2 &= 2E_x E_y \cos \Delta \phi \quad (\pm 45^\circ \text{ preference)} \\ S_3 &= 2E_x E_y \sin \Delta \phi \quad \text{(Circular preference)} \end{split}$$

Interpretation: - $S_3>0$: RHCP dominant - $S_3<0$: LHCP dominant - $S_3=0$: Linear polarization

Degree of polarization:

$$\mathsf{DOP} = \frac{\sqrt{S_1^2 + S_2^2 + S_3^2}}{S_0}$$

Range: 0 (unpolarized) to 1 (fully polarized)

63.10 Poincaré Sphere

Graphical representation of polarization states:

3D sphere where: - **North pole**: LHCP - **South pole**: RHCP - **Equator**: All linear polarizations $(H, V, \pm 45^{\circ})$

Coordinates: $(S_1/S_0,S_2/S_0,S_3/S_0)$

Application: Visualize polarization transformations (e.g., Faraday rotation = rotation around S_3 axis)

63.11 Polarization Measurement

63.11.1 Antenna Pattern Testing

Measure co-pol and cross-pol patterns:

Setup: 1. Rotate RX antenna 90° (H \square V) 2. Measure received power vs angle 3. Plot co-pol and cross-pol gains

Cross-pol level: Typically 20-30 dB below co-pol for good antenna

63.11.2 Polarization Ratio

For linear polarization:

$$\mathrm{PR} = \frac{P_{\mathrm{co}}}{P_{\mathrm{cross}}} \quad (\mathrm{dB})$$

Typical: > 20 dB for well-designed antenna

63.11.3 Axial Ratio Measurement

For circular polarization:

Method 1: Spinning linear dipole - Rotate RX linear antenna 360° - Measure P_{\max} and P_{\min}

$$\mathrm{AR} = \frac{P_{\mathrm{max}}}{P_{\mathrm{min}}} \quad (\mathrm{linear}), \quad \mathrm{AR_{dB}} = 10 \log_{10} \left(\frac{P_{\mathrm{max}}}{P_{\mathrm{min}}}\right)$$

 ${\bf Method~2}:$ Dual-pol receiver - Measure E_x and E_y amplitudes and phases - Calculate AR from ellipse parameters

Good circular antenna: AR < 3 dB

63.12 Practical Considerations

63.12.1 Antenna Orientation

Must match TX/RX polarizations:

Example: Vertical monopole on car - Works well with vertical base station antenna - 90° mismatch if base station is horizontal (∞ dB loss)

WiFi routers: Often mixed polarizations (multiple antennas at different angles) for robustness

63.12.2 Polarization vs Bandwidth

Circular polarization antennas are narrowband:

Reason: 90° phase shift only accurate over limited bandwidth

Typical: 2-5% bandwidth for AR < 3 dB

Wideband circular polarization: Difficult (requires complex feed networks)

63.12.3 Cost/Complexity

Polarization	Complexity	/ Cost	Applications
Linear	Simple	Low	Most terrestrial (AM/FM, WiFi, cellular)
Circular	Moderate	Medium	GPS, satellite, RFID
Dual-pol	High	High	Radar, satellite (frequency reuse)

63.13 Summary Table

Polarization	$\Delta \phi$	$E_x: E_y$	Axial Ratio	Applications
Horizontal	0°	∞:1	∞	TV broadcast, WiFi
Vertical	0°	1:∞	∞	AM/FM, mobile
±45° Slant	0°	1:1	∞	Satellite downlink
RHCP	-90°	1:1	1	GPS, satellite
LHCP	+90°	1:1	1	Satellite, RFID
Elliptical	Arbitrary	Arbitrary	1-∞	Imperfect circular

596

63.14 Related Topics

- [Maxwell's Equations & Wave Propagation]: E and H fields in EM waves
- [Antenna Theory Basics]: Polarization matching for maximum gain
- [[Atmospheric Effects (Ionospheric, Tropospheric)]]: Faraday rotation
- [[Multipath Propagation & Fading (Rayleigh, Rician)]]: Depolarization in multipath
- [Free-Space Path Loss (FSPL)]: Friis equation assumes matched polarization

Key takeaway: Polarization is the "orientation" of the electric field. Linear (H, V, slant) is simplest and most common. Circular (RHCP, LHCP) is robust to ionospheric effects and multipath, used in GPS and satellites. Mismatch causes 3 dB to ∞ dB loss depending on angle. Propagation effects (Faraday rotation, rain depolarization) degrade polarization purity. Match TX and RX polarizations for optimal link performance.
This wiki is part of the [[Home Chimera Project]] documentation.

64 Weather Effects: Rain Fade & Fog Attenuation

[[Home]] RF Propagation	[Free-Space Path	Loss (FSPL)] [[Atmospheric Effects	(Ionospheric,
Tropospheric)]]				

64.1 For Non-Technical Readers

Think of radio waves like light beams traveling through the air.

When it rains, you notice that: - **Headlights look dimmer** through heavy rain - **You can't see as** far in fog - **Everything gets blurry** during a storm

The exact same thing happens to satellite TV, 5G cell signals, and WiFi — but you can't see it with your eyes.

64.1.1 The Core Problem

Raindrops absorb and scatter radio waves, weakening the signal. The bigger the problem when:

- 1. Higher frequencies (like 5G's "millimeter wave") are used
 - Think: FM radio (low frequency) works fine in rain, but satellite internet (high frequency) struggles
- 2. Heavier rain falls
 - · Light drizzle: barely noticeable
 - Thunderstorm: your satellite dish might lose connection entirely
- 3. **Longer distances** through the weather
 - Short WiFi connection (30 feet): rain doesn't matter much

• Satellite signal (22,000 miles up): crosses miles of rain clouds

64.1.2 Real-World Examples You've Experienced

☐ Satellite TV going out during storms - Your dish is trying to receive a signal from space - Heavy rain blocks 50-90% of the signal strength - Below a threshold ☐ "Searching for signal..." - This is called rain fade

☐ **Slower 5G during rain** - 5G "mmWave" uses very high frequencies (like satellite dishes) - Rain weakens the signal between tower and your phone - Phone automatically switches to slower but more reliable 4G - You don't notice the rain, just "slower internet"

☐ **Why your GPS still works** - GPS uses lower frequencies (1.5 GHz) than satellite TV (12+ GHz) - Rain barely affects it (like how radio stations work in any weather)

64.1.3 The Math Part (Optional)

The technical sections below answer questions like: - "Exactly how much weaker?" (e.g., 10 dB loss = 90% power lost) - "At what frequency does rain start mattering?" (~10 GHz threshold) - "How do engineers design systems that work in rain?" (Add backup power, use multiple frequencies, switch to lower data rates)

You don't need to understand the equations to grasp the main point:

Rain affects high-frequency radio signals a lot, low-frequency signals barely at all. Engineers compensate by adding extra power, using smarter antennas, or accepting slower speeds during storms.

64.2 Overview

Weather significantly impacts RF propagation, especially at frequencies above 10 GHz. Rain, fog, snow, and clouds introduce **frequency-dependent attenuation** that must be accounted for in link budgets.

Key principle: Attenuation increases with: 1. **Frequency** (higher frequencies = more attenuation) 2. **Precipitation rate** (heavier rain = more loss) 3. **Path length through weather** (longer distance = more cumulative loss)

Critical for: Satellite communications (Ku/Ka/V-band), 5G mmWave (28/39 GHz), point-to-point microwave links

64.3 Rain Attenuation

64.3.1 Physical Mechanism

Raindrops act as lossy dielectric spheres:

1. Absorption: EM energy heats water molecules (dielectric loss)

598

2. **Scattering**: Raindrops redirect energy out of main beam (Mie scattering when droplet size ≈ λ)

Frequency dependence: - < 10 GHz: Rain effects negligible (λ » raindrop size) - 10-100 GHz: Strong attenuation ($\lambda \approx$ raindrop size, 1-5 mm) - > 100 GHz: Extreme attenuation (THz communications impossible in rain)

64.3.2 ITU-R Rain Attenuation Model

Standard method: ITU-R P.838 and P.618

Specific attenuation (dB/km):

$$\gamma_R = k \cdot R^{\alpha}$$

Where: - γ_R = Specific attenuation (dB/km) - R = Rain rate (mm/hr) - k,α = Frequency-dependent coefficients (from ITU tables)

64.3.2.1 Coefficients by Frequency Selected values (horizontal polarization):

Frequency	k	α		Attenuation @ 25 mm/hr rain
	1 GHz	0.0000387	0.912	0.0005 dB/km
	4 GHz	0.00065	1.121	0.025 dB/km
	10 GHz	0.0101	1.276	0.50 dB/km
	12 GHz (Ku)	0.0188	1.310	1.02 dB/km
	20 GHz (Ka)	0.0751	1.099	3.26 dB/km
	30 GHz	0.187	1.021	7.14 dB/km
	40 GHz	0.350	0.939	12.2 dB/km
	50 GHz	0.536	0.873	16.8 dB/km
	60 GHz	0.707	0.826	20.3 dB/km
	80 GHz	0.999	0.784	26.4 dB/km
	100 GHz	1.187	0.751	29.8 dB/km

Note: Vertical polarization has slightly different coefficients (typically ~10-20% more attenuation)

64.3.3 Rain Rate Classifications

ITU rain zones (global climate regions):

Zone	Clir	mate	Rain rate exceeded 0.01% of year	Example locations
A	Polar	8 mm/l	nr	Arctic, Antarctic

Zone	Clima	te Rain rate exceeded 0.01% of year	Example locations
В	Temperate	12 mm/hr	Northern Europe,
			Canada
С	Subtropical	22 mm/hr	Southern US,
			Mediterranean
D	Moderate tropical	32 mm/hr	Southeast Asia, India
Ε	Equatorial	42 mm/hr	Central Africa, Indonesia
F	Tropical maritime	53 mm/hr	Amazon, Congo Basin
G	Monsoon	63 mm/hr	Bangladesh, Myanmar
Н	Intense tropical	95 mm/hr	Extreme storms

Design criterion: Typically design for 99.9% availability (0.01% outage time) - Temperate: 12 mm/hr - Tropical: 42-63 mm/hr

64.3.4 Link Budget Impact: Satellite Examples

64.3.4.1 Example 1: Ku-Band Satellite (12 GHz Downlink) Scenario: GEO satellite [] Home receiver, temperate climate

Path geometry: - Elevation angle: 30° - Slant path through rain: ~6 km effective length - Rain rate (0.01% time): 12 mm/hr

Calculation:

$$\gamma_R = 0.0188 \times 12^{1.310} = 0.50 \ \mathrm{dB/km}$$

$$A_{\rm rain} = \gamma_R \times d_{\rm eff} = 0.50 \times 6 = 3~{\rm dB}$$

Impact: 3 dB margin needed for 99.9% availability

With 95 mm/hr extreme storm (H zone):

$$\gamma_R = 0.0188 \times 95^{1.310} = 6.3 \, \mathrm{dB/km}$$

$$A_{\rm rain}=6.3\times 6=38~{\rm dB}$$

Result: Complete outage (exceeds typical 10-15 dB link margin)

64.3.4.2 Example 2: Ka-Band Satellite (20 GHz Downlink) Same scenario as Ku-band: **Temperate (12 mm/hr)**:

$$\gamma_{R} = 0.0751 \times 12^{1.099} = 1.16 \ \mathrm{dB/km}$$

$$A_{\mathrm{rain}}=1.16\times 6=7~\mathrm{dB}$$

Tropical (42 mm/hr):

$$\gamma_R = 0.0751 \times 42^{1.099} = 4.4 \ \mathrm{dB/km}$$

$$A_{\mathrm{rain}}=4.4\times 6=26\,\mathrm{dB}$$

Comparison: Ka-band suffers **2-3**× more rain fade than Ku-band!

Mitigation: - Adaptive coding/modulation (ACM) \square Lower data rate in rain - Site diversity \square Multiple ground stations (rain cells are localized) - Higher TX power margin

64.3.4.3 Example 3: V-Band Satellite (40 GHz) Next-gen satellite comms (e.g., OneWeb, Starlink inter-satellite links):

Temperate (12 mm/hr):

$$\gamma_R = 0.350 \times 12^{0.939} = 3.6 \ \mathrm{dB/km}$$

$$A_{\rm rain}=3.6\times 6=22~{\rm dB}$$

Result: Severe rain fade, requires 25+ dB margin or advanced mitigation

64.3.5 Terrestrial Path: 5G mmWave

64.3.5.1 Example 4: 28 GHz 5G Link (Urban Microcell) Scenario: Base station \Box UE, 200 m range, light rain (5 mm/hr)

Calculation:

$$\gamma_R = 0.187 \times 5^{1.021} = 0.98 \ \mathrm{dB/km}$$

$$A_{\rm rain}=0.98\times0.2=0.2~{\rm dB}$$

Impact: Minimal (short path length)

Heavy rain (25 mm/hr):

$$\gamma_{R} = 0.187 \times 25^{1.021} = 5.2 \ \mathrm{dB/km}$$

$$A_{\mathrm{rain}} = 5.2 \times 0.2 = 1 \, \mathrm{dB}$$

Conclusion: 5G mmWave is relatively rain-tolerant for short ranges (< 500 m)

64.3.5.2 Example 5: 60 GHz Point-to-Point Link Scenario: Building-to-building backhaul, 1 km, moderate rain (15 mm/hr)

Calculation:

$$\gamma_R = 0.707 \times 15^{0.826} = 6.4 \ \mathrm{dB/km}$$

$$A_{\rm rain}=6.4\times 1=6.4~{\rm dB}$$

Plus oxygen absorption: ~15 dB/km at 60 GHz (clear air)

$$A_{\rm total} = 15 + 6.4 = 21.4~{\rm dB}$$

Result: 60 GHz is impractical for >1 km in rain (used for indoor/short-range only)

64.4 Fog & Cloud Attenuation

Fog = suspended water droplets (smaller than rain, ~10-100 µm diameter)

Attenuation mechanism: Primarily absorption (droplets \square λ for most RF bands)

64.4.1 Fog Attenuation Model

Specific attenuation:

$$\gamma_{\text{fog}} = K_l \cdot M \quad (\text{dB/km})$$

Where: - M = Liquid water content (g/m³) - K_l = Frequency-dependent coefficient

Typical fog: M=0.05 g/m³ (light fog) to M=0.5 g/m³ (dense fog)

64.4.2 Coefficients by Frequency

Frequency	K_l (dB/km per g/m³)	Attenuation (dense fog, 0.5 g/m³)
10 GHz	0.01	0.005 dB/km
20 GHz	0.07	0.035 dB/km
30 GHz	0.20	0.10 dB/km
60 GHz	1.0	0.50 dB/km
100 GHz	2.5	1.25 dB/km
300 GHz	15	7.5 dB/km

Key insight: Fog is **negligible below 30 GHz**, but significant at THz frequencies.

64.4.3 Comparison: Rain vs Fog

At 30 GHz, 1 km path:

Condition Attenu	ation
Clear air	~0.1 dB
Dense fog (0.5 g/m³)	0.10 dB
Light rain (5 mm/hr)	3.7 dB
Moderate rain (12 mm/hr)	7.1 dB
Heavy rain (25 mm/hr)	12.5 dB

Rain dominates at microwave/mmWave frequencies.

Fog becomes important at THz (> 100 GHz):

At 300 GHz (THz), 100 m path:

	Condition	Attenuation	
Clear air	~5	dB (water vapor)	
Dense fog	0.7	75 dB	
Light rain (5 r	mm/hr) 30	300+ dB (complete blockage	

64.5 Snow & Ice Attenuation

Dry snow: Very low attenuation (air + ice crystals, low loss)

$$\gamma_{\rm dry\;snow}\approx 0.0005\times f^2\times S \quad ({\rm dB/km})$$

Where: - f = Frequency (GHz) - S = Snowfall rate (mm/hr liquid equivalent)

At 20 GHz, 10 mm/hr dry snow: $\gamma \approx 0.2$ dB/km (negligible)

-

Wet snow (melting): Much higher attenuation (comparable to rain)

Ice crystals (cirrus clouds): Minimal attenuation (< 0.1 dB even at 100 GHz)

Practical implication: Snow is **far less problematic** than rain for RF links.

64.6 Hail Attenuation

Hailstones: Large (5-50 mm), but mostly ice (low loss tangent)

Attenuation: Typically less than rain of equivalent water content

Why?: Ice has lower dielectric loss than liquid water (tan $\delta_{\rm ice} \ll an \delta_{
m water}$)

Concern: **Depolarization** (hailstones tumble, scatter energy to cross-pol)

64.7 Frequency-Specific Considerations

64.7.1 Bands Most Affected by Rain

Band	Frequency	Primary Use	Rain Sensitivity
C-band	4-8 GHz	Satellite TV, radar	Low (0.05 dB/km @ 25 mm/hr)
X-band	8-12 GHz	Military, radar	Moderate (0.5 dB/km)
Ku-band	12-18 GHz	Satellite TV/broadband	Moderate-High (1-2 dB/km)
Ka-band	26.5-40 GHz	Satellite, 5G backhaul	High (3-12 dB/km)
V-band	40-75 GHz	Next-gen satellite	Very High (12-20 dB/km)
W-band	75-110 GHz	Automotive radar, imaging	Extreme (20-30 dB/km)

C-band advantage: Widely used for tropical regions (low rain fade)

Ka-band challenge: High data rates, but needs ACM and large margins

64.8 Mitigation Techniques

64.8.1 1. Link Margin

Add extra dB to link budget for rain:

- Temperate climate, Ku-band: +3-5 dB
- Tropical climate, Ka-band: +8-15 dB
- mmWave terrestrial (< 1 km): +2-3 dB

Tradeoff: Higher TX power or larger antennas (more expensive)

64.8.2 2. Adaptive Coding & Modulation (ACM)

Dynamically adjust modulation based on link quality:

Clear sky: 16-APSK (4 bits/symbol)Light rain: QPSK (2 bits/symbol)

• Heavy rain: BPSK + strong FEC (0.5 bits/symbol effective)

Result: Graceful degradation (lower data rate instead of outage)

Used in: DVB-S2, 5G NR, satellite modems

64.8.3 3. Site Diversity

Multiple ground stations separated by 5-20 km:

Principle: Rain cells are localized (~5-10 km diameter) - Probability both sites in heavy rain is

low - Switch to non-rainy site

Diversity gain: 5-10 dB improvement in availability

Example: Satellite gateways often have 2-3 sites for 99.99% uptime

64.8.4 4. Frequency Diversity

Backup link at lower frequency:

Primary: Ka-band (high data rate, rain-sensitive)

· Backup: Ku-band (lower rate, rain-tolerant)

Switchover: Automatic when Ka-band SNR drops

64.8.5 5. Uplink Power Control (UPC)

Increase TX power during rain to compensate for attenuation:

- Monitor beacon signal from satellite
- Detect fade, boost uplink power (up to ~10 dB)
- Avoid saturating satellite transponder

Limitation: Power amplifier headroom (can't boost infinitely)

64.8.6 6. Orbit Selection

Low Earth Orbit (LEO) satellites have shorter slant paths:

- GEO: ~40,000 km, slant path through rain ~6 km @ 30° elevation
- LEO: ~550 km, slant path ~2 km @ 30° elevation

Rain attenuation: ~3× less for LEO (shorter path)

Starlink/OneWeb advantage: Better rain performance than GEO

64.9 Depolarization Effects

Rain also causes cross-polarization:

Mechanism: Raindrops are **oblate** (flattened spheres) - Horizontal and vertical polarizations experience different phase shifts - Converts co-pol energy \square cross-pol

Impact: Degrades dual-polarization systems (e.g., V/H reuse for 2× capacity)

Cross-Polarization Discrimination (XPD):

$$\mathrm{XPD}_{\mathrm{rain}} = U - V \log(A_{\mathrm{rain}}) \quad (\mathrm{dB})$$

Where: - U,V = Frequency-dependent constants (~30-40 dB, ~12-20 dB typical) - $A_{\rm rain}$ = Co-pol attenuation (dB)

Example: If rain causes 10 dB attenuation [] XPD degrades from 30 dB (clear) to ~20 dB

64.10 Regional Considerations

64.10.1 Temperate Climates (Europe, Northern US, Canada)

Rain characteristics: - Moderate intensity (12-22 mm/hr, 0.01% time) - Long-duration stratiform rain (hours) - Lower fade durations

Design approach: - Standard margins (3-5 dB for Ku, 8-12 dB for Ka) - ACM effective (gradual fade)

64.10.2 Tropical Climates (Southeast Asia, Equatorial Africa, Amazon)

Rain characteristics: - High intensity (42-95 mm/hr, 0.01% time) - Short-duration convective storms (minutes) - High fade depths

Design approach: - Large margins (8-15 dB for Ku, 15-25 dB for Ka) - Site diversity essential for Ka-band - C-band preferred for critical services

Case study: Indonesia (equatorial) - Ku-band outages: ~0.5% of time (annual) - Ka-band: ~2-5% (unacceptable without mitigation) - C-band: < 0.01% (reliable)

606

64.10.3 Coastal vs Inland

Coastal regions: Lower rain rates (maritime climate) **Inland tropics**: Higher convective activity (more intense storms)

Elevation matters: Higher altitude

shorter path through rain layer (troposphere)

64.11 Measurement & Prediction

64.11.1 Radiometer Method

Measure sky brightness temperature T_B :

$$A_{\rm rain} = 10 \log \left(\frac{T_{\rm sky} - T_B}{T_{\rm sky} - T_{\rm medium}} \right) \quad ({\rm dB}) \label{eq:arain}$$

Real-time fade monitoring for UPC systems.

64.11.2 Weather Radar Integration

Use ground-based weather radar to predict rain attenuation:

- 1. Measure rain rate along path (3D map)
- 2. Apply ITU model
- 3. Predict fade 5-10 minutes ahead

Proactive ACM: Adjust modulation before fade hits (minimize disruption)

64.12 Summary Table: Rain Attenuation by Band

Path: 6 km slant through rain (satellite, 30° elevation)

Band	Frequency	12 mm/hr (Temperate)	42 mm/hr (Tropical)	95 mm/hr (Extreme)
С	4 GHz	0.15 dB	0.7 dB	2 dB
С	6 GHz	0.3 dB	1.3 dB	3.5 dB
Χ	10 GHz	0.5 dB	2.5 dB	7 dB
Ku	12 GHz	3 dB	9 dB	25 dB
Ku	14 GHz	4 dB	11 dB	30 dB
Ka	20 GHz	7 dB	22 dB	55 dB
Ka	30 GHz	13 dB	38 dB	90 dB
V	40 GHz	22 dB	60 dB	140 dB
V	50 GHz	30 dB	80 dB	180 dB

Bold: Typical link budget fades

64.13 Related Topics

- [Free-Space Path Loss (FSPL)]: Baseline propagation loss
- [[Atmospheric Effects (Ionospheric, Tropospheric)]]: Clear-air propagation
- [[Multipath Propagation & Fading]]: Rayleigh/Rician fading (different mechanism)
- [Signal-to-Noise Ratio (SNR)]: Impact of attenuation on link quality
- [QPSK Modulation] / [LDPC Codes]: ACM adapts these for rain conditions
- Antenna Theory: Larger antennas provide more gain margin

Key takeaway: Ra	ain fade increases	dramatically	with frequency	. C-band is robust but
bandwidth-limited.	Ka-band and above	require sophis	sticated mitigati	on (ACM, diversity, large
margins) for reliable	service, especially in	n tropical regior	ıs.	
				_
This wiki is part of th	ne [[Home Chimera Pi	roject]] docume	entation.	

65 What Are Symbols?

A symbol is like a "word" in radio language — instead of sending individual letters (bits), you send whole words (symbols) to go faster!

The idea: - Bit: Single 0 or 1 (like one letter) - Symbol: Group of bits (like a whole word) - Why: Sending "words" is faster than spelling letter-by-letter!

Simple analogy - Semaphore flags:

Sending bit-by-bit: - Flag up = 1 - Flag down = 0 - Message "HI" (8 bits): Up, down, down, down, up, down, down, up - Takes 8 "signals"

Sending symbol-by-symbol: - 4 flag positions = 1 symbol = 2 bits! - Up-right = "00" - Up-left = "01" - Down-left = "10"

- Down-right = "11" - Message "HI" (8 bits ☐ 4 symbols): ☐ ☐ ☐ - Takes only 4 "signals" = 2× faster!

Real examples by modulation:

BPSK (Binary PSK): - 1 symbol = 1 bit - 2 possible positions (up or down) - Like: Light switch (on/off)

QPSK: - 1 symbol = 2 bits - 4 possible positions - Like: 4-way hand gesture

16-QAM: - 1 symbol = 4 bits - 16 possible positions - Like: Showing fingers (0-15)

256-QAM: - 1 symbol = 8 bits - 256 possible positions! - Like: Sign language with 256 distinct signs

Why symbols matter:

Symbol rate vs bit rate: - **Symbol rate**: How many symbols per second? - **Bit rate**: How many bits per second? - **Relationship**: Bit rate = Symbol rate × bits/symbol

Example - WiFi: - Symbol rate: 250,000 symbols/second - Modulation: 256-QAM (8 bits/symbol) - Bit rate: 250,000 × 8 = 2 Mbps

Bandwidth connection: - Symbols take time/frequency (bandwidth) - More symbols/second = more bandwidth needed - But: More bits/symbol = free speed boost!

The constellation diagram: - Visual map of all possible symbols - Each dot = one unique symbol - More dots = more bits/symbol = faster!

Real-world impact: - Your phone: Switches between modulations (QPSK

64-QAM) = switching symbol mappings - Strong signal: Use symbols with 8 bits each (fast!) - Weak signal: Use symbols with 2 bits each (reliable!)

Fun fact: When your WiFi says "MCS 9, 256-QAM", that means each symbol carries 8 bits. If you move away and it drops to "MCS 0, BPSK", each symbol now carries only 1 bit—that's an 8× speed difference, just by changing how many bits each symbol represents!

In digital communication, a **symbol** is a fundamental unit of information transmitted over the channel. Think of symbols as the "words" of a digital communication system.

65.2 The Symbol Hierarchy

```
Raw Data (Bits)

↓

Grouped into Symbols

↓

Mapped to Signal States

↓

Transmitted over Channel
```

65.3 Example: From Bits to Symbols

Imagine you want to transmit the binary data: 0 0 1 1 0 1 1 0

Instead of sending each bit individually, we group them into pairs (for QPSK): - Bits 0 0 \square Symbol 1 - Bits 1 1 \square Symbol 2

```
- Bits 0 1 🛘 Symbol 3 - Bits 1 0 🛳 Symbol 4
```

This grouping allows us to transmit more efficiently and makes the signal more robust to noise.

65.4 Why Use Symbols?

- 1. **Efficiency**: Transmitting symbols (groups of bits) can be more bandwidth-efficient than transmitting individual bits
- 2. **Robustness**: Symbol-based schemes can be designed to be more resistant to noise and interference

3. Flexibility: Different modulation schemes can encode different numbers of bits per symbol

65.5 Bits Per Symbol in Common Modulation Schemes

Modulation	Bits/Symbol	Total States
BPSK	1	2
QPSK	2	4
8PSK	3	8
16QAM	4	16
64QAM	6	64

Chimera uses QPSK (2 bits per symbol, 4 states)

65.6 See Also

- [QPSK Modulation] How symbols are mapped to phase states
- [Constellation Diagrams] Visual representation of symbols
- [IQ Representation] Mathematical representation of symbols

66 mmWave & THz Communications

Millimeter-wave (mmWave, 24-300 GHz) and **Terahertz (THz, 0.3-10 THz)** communications exploit ultra-high-frequency spectrum for multi-gigabit wireless links. 5G NR FR2 (24-52 GHz) delivers 20+ Gbps, while future 6G targets sub-THz (100-300 GHz) for 100+ Gbps. These bands offer massive bandwidth but face severe propagation challenges requiring advanced beamforming and novel system architectures.

66.1 For Non-Technical Readers

Think of wireless communication like water flowing through pipes of different sizes:

The Water Pipe Analogy:

Why the excitement? - Download a 4K movie in 3 seconds instead of 3 minutes - 100 people streaming 4K video in a stadium without buffering - Wireless connections as fast as fiber optic cables

The catch? Just like a powerful fire hose that only shoots water in one direction for a short distance: - **Range**: Works great up close (50-200 meters) but not across town - **Line-of-sight**: Needs clear path—walls, trees, even rain blocks it - **Direction**: Works like a flashlight beam, not a light bulb (requires aiming)

Real-world examples you might recognize: - "5G Ultra Wideband" (Verizon/AT&T): This is mmWave—super fast in cities, slower in suburbs - Stadium WiFi: mmWave lets thousands of fans upload videos simultaneously - Fixed Wireless Internet: Instead of cable/fiber to your house, an antenna on your roof beams mmWave from a nearby tower - Self-driving cars: 77 GHz radar "sees" other vehicles even in fog

The tradeoff:

```
Lower frequencies (like FM radio):
   Go far (miles)
   Go through walls
   Slower speeds (like dial-up)

Higher frequencies (mmWave/THz):
   Ultra-fast speeds (like fiber)
   Short range (city block)
   Need clear view (blocked by obstacles)

It's not better or worse-it's choosing the right tool for the job!
```

What this means for you: - Today: Your phone switches between regular 5G (wide coverage) and mmWave (speed bursts in cities) - Tomorrow: Ultra-fast wireless in your home/office, slow when you walk outside - Future (6G): Wireless faster than today's hardwired internet, but only indoors or short outdoor distances

The technical stuff below explains *how* this magic works—but you don't need to understand it to benefit from it!

66.2.1 The Spectrum Crunch

Sub-6 GHz problem:

```
Available spectrum: ~1 GHz (fragmented across bands)

Demand: Exponential growth (video, AR/VR, IoT)

Result: Spectrum scarcity → congestion

Shannon capacity:

C = B · log (1 + SNR)
```

```
To increase C:

- Increase B (bandwidth) → Move to higher frequencies

- Increase SNR → Limited by power, interference

mmWave/THz solution:

mmWave (24-52 GHz): 28 GHz bandwidth available (5G FR2)

Sub-THz (100-300 GHz): 200 GHz bandwidth potential (6G)

THz (1-10 THz): Multi-THz bandwidths (research)

Example (100 GHz carrier, 10 GHz BW, SNR = 20 dB):

C = 10 GHz · log (1 + 100) = 66 Gbps

Compare to sub-6 GHz (100 MHz BW):

C = 100 MHz · log (1 + 100) = 660 Mbps

100× more bandwidth → 100× higher capacity!
```

66.3 Propagation Characteristics

66.3.1 Path Loss: The Main Challenge

```
Free-space path loss (FSPL):
```

```
FSPL(dB) = 32.4 + 20·log (f_MHz) + 20·log (d_km)

Example comparisons (d = 100 m):

2.4 GHz (WiFi):

FSPL = 32.4 + 20·log (2400) + 20·log (0.1) = 80 dB

28 GHz (5G mmWave):

FSPL = 32.4 + 20·log (28000) + 20·log (0.1) = 101 dB

300 GHz (sub-THz):

FSPL = 32.4 + 20·log (300000) + 20·log (0.1) = 122 dB

Relative loss:

28 GHz: +21 dB worse than 2.4 GHz

300 GHz: +42 dB worse than 2.4 GHz

Implication: Higher frequency → much shorter range (or need much higher antenna gain)
```

66.3.2 Atmospheric Absorption

Oxygen (O₂) and water vapor (H₂O) absorb mmWave/THz strongly.

Absorption peaks:

```
Frequency (GHz) | Attenuation (dB/km at sea level) | Cause
-----|-----|-----|
60
                | 15 dB/km
                                                      | O resonance
                1 2 dB/km
                                                      | 0 2nd harmonic
120
183
                | 2 dB/km
                                                      | HO resonance
325
                | 1 dB/km
                                                      I HO
               | 0.1-1 \text{ dB/km}
380-750
                                                      | Windows (low absorption)
>1 THz
                | 10-100 dB/km
                                                      | Multiple molecular resonances
Transmission windows:
- 71-76 GHz, 81-86 GHz (5G FR2 upper band)
- 94 GHz (radar, imaging)
- 130-175 GHz (low absorption)
- 220-325 GHz (6G candidate)
Distance implications:
Example (100 m link):
28 GHz: 0.1 \text{ dB/km} \times 0.1 \text{ km} = 0.01 \text{ dB (negligible)}
60 GHz: 15 dB/km \times 0.1 km = 1.5 dB (moderate)
300 GHz: 1 dB/km \times 0.1 km = 0.1 dB (low, in window)
1 THz: 50 dB/km \times 0.1 km = 5 dB (significant)
Indoor/short-range: Absorption manageable
Outdoor/long-range: Limits reach to <1 km
Weather effects:
Rain attenuation (ITU-R model):
 = k \cdot R^{dB/km}
where R = rain rate (mm/h)
At 28 GHz (heavy rain, 50 mm/h):
   5 \text{ dB/km} \rightarrow 100 \text{ m link: } 0.5 \text{ dB}
At 300 GHz (same rain):
   15 dB/km \rightarrow 100 m link: 1.5 dB
THz: Extremely sensitive to humidity, fog, rain
→ Indoor/short-range only in adverse weather
```

66.3.3 Blockage & Diffraction

Non-Line-of-Sight (NLOS) problem:

```
mmWave/THz wavelengths:
 = c/f
28 GHz: = 10.7 \text{ mm} (1 \text{ cm})
300 \text{ GHz}: = 1 mm
Diffraction scales with :
- Lower frequencies: Diffract around obstacles (wavelength ~ building size)
- mmWave: Minimal diffraction (wavelength << human body)
- THz: No practical diffraction (wavelength ~ grain of sand)
Blockage:
- Human body: 20-40 dB attenuation (28 GHz)
- Hand: 10-20 dB
- Wall: 30-80 dB (depends on material)
- Foliage: 10-30 dB
Result: Highly directional, LOS-dependent propagation
Multipath in mmWave/THz:
Sparse multipath environment:
- Few reflections reach receiver (high absorption, blockage)
- Reflections off smooth surfaces (specular, not diffuse)
- Delay spread: Shorter than sub-6 GHz (fewer paths)
Advantage: Simpler channel model (ray-tracing accurate)
Disadvantage: No diversity from multipath → beamforming essential
```

66.4 Beamforming: The Enabling Technology

Why beamforming is mandatory:

```
Path loss compensation:
- 28 GHz: 21 dB more loss than 2.4 GHz
- Need: 21 dB+ antenna gain to match range

Beamforming gain:
G(dB) = 10·log (N) (for N-element array)

Example (64-element array):
G = 10·log (64) = 18 dB

With 256 elements:
G = 10·log (256) = 24 dB

Overcomes path loss + provides spatial selectivity
```

66.4.1 Analog Beamforming

```
Architecture:
```

```
Single RF chain → Phase shifters on each antenna element
TX: Data → DAC → Mixer → Power Divider → [Phase Shifters] → Antenna Array
                                       All elements see same data
                                       Phase shifts steer beam
Advantages:
- Low power (1 RF chain)
- Simple, cost-effective
- High gain (all power focused)
Disadvantages:
- Single beam at a time
- Cannot do MIMO spatial multiplexing
- Fixed beam (hard to adapt dynamically)
Phase shift calculation:
Desired beam direction:
Element spacing: d (typically /2)
Phase shift for element n:
  = (2/) \cdot n \cdot d \cdot sin()
Example (28 GHz, = 30^{\circ}, d = /2):
 = 10.7 \text{ mm}
  = \cdot n \cdot sin(30°) = /2 \cdot n
Element 0: 0°
Element 1: 90°
Element 2: 180°
Element 3: 270°
```

66.4.2 Hybrid Beamforming

Compromise: Analog beamforming per subarray + digital baseband processing.

```
Architecture: Data streams \rightarrow [Digital Precoder] \rightarrow DACs (N chains) \rightarrow Mixers \rightarrow [Analog Phase Shifters per subarray] \rightarrow Antenna Array (N elements)
```

```
Where N << N
Example:
- Total antennas: 256
- RF chains: 16
- Digital precoding: 16 streams (MIMO)
- Analog beamforming: 256/16 = 16 elements per subarray
Benefits:
- Multi-beam capability (N simultaneous beams)
- MIMO spatial multiplexing (up to N streams)
- Moderate power/cost (N RF chains)
Precoding:
Transmit signal: x = F_{analog} \cdot F_{digital} \cdot s
where:
- s: Data streams (N × 1, N
- F_digital: Digital precoder (N × N)
- F_{analog}: Analog beamformer (N \times N , phase-only)
Optimization:
Maximize: ||H · F_analog · F_digital||2
Subject to: F_analog has constant-modulus entries (phase-only)
Algorithms: Orthogonal Matching Pursuit (OMP), alternating minimization
66.4.3 Beam Management
Challenge: Narrow beams must be steered to track users.
```

Beam sweeping (initial access):

```
1. BS transmits sync signals on multiple beam directions
```

- 2. UE measures RSRP (Reference Signal Received Power) per beam
- 3. UE reports best beam index to BS
- 4. BS selects beam for data transmission

Example (5G NR):

- BS: 64 beam directions (8×8 azimuth/elevation grid)
- Sweep time: 5 ms (one beam per SSB SS/PBCH Block)
- UE selects best beam (e.g., beam 23)
- Data transmission on beam 23

Beamwidth: ~10° (64-element array at 28 GHz)

Beam tracking:

Problem: User moves → beam misalignment → link failure

Solutions:

- 1. Periodic re-sweeping (every 20-100 ms)
- 2. Predictive tracking:
 - Estimate velocity from Doppler
 - Adjust beam direction proactively
- 3. Multi-beam transmission:
 - Transmit on 2-3 adjacent beams
 - Handover smoothly as user moves

5G NR: Beam Failure Recovery (BFR)

- UE monitors beam quality (RSRP)
- If below threshold: Trigger beam switch
- Latency: <10 ms for recovery

66.5 **G NR FR2 (mmWave)**

Frequency Range 2: 24.25-52.6 GHz

66.5.1 Frequency Bands

n257: 26.5-29.5 GHz (3 GHz BW)

n258: 24.25-27.5 GHz

n260: 37-40 GHz

n261: 27.5-28.35 GHz

Typical deployment:

- n257 (28 GHz): US carriers (Verizon, AT&T)

- n258 (26 GHz): Europe, Asia

- n260 (39 GHz): US (fixed wireless access)

66.5.2 5G NR mmWave Specifications

Bandwidth: 50-400 MHz per carrier

- Typical: 100 MHz (lower latency, easier beam management)

- Maximum: 400 MHz (peak throughput)

Numerology:

- SCS (Subcarrier Spacing): 120 kHz (fast Doppler tolerance)
- Symbol duration: 8.33 s (short, good for mobility)
- Slot: 0.125 ms (8× faster than sub-6 GHz)

Modulation: Up to 256-QAM (spectral efficiency: 7.4 bits/s/Hz)

```
MIMO: Up to 4 layers (spatial multiplexing with hybrid beamforming)

Peak data rate:

R = BW × Spectral_Eff × MIMO_layers × Aggregation
= 400 MHz × 7.4 × 4 × 1 = 11.8 Gbps (single carrier)

With carrier aggregation (8 carriers):

R = 11.8 × 8 = 94 Gbps (theoretical)

Practical: 2-5 Gbps (typical deployment, moderate SINR)
```

66.5.3 Applications

Enhanced Mobile Broadband (eMBB):

```
Use case: Stadiums, airports, malls (high user density)
- 1000+ users per cell
- Aggregate: 20-50 Gbps per gNB
- Per-user: 20-50 Mbps (shared capacity)

Deployment: Small cells (50-200 m range)
- Dense urban: 1 cell per block
- Outdoor-to-indoor: Penetration challenges (require indoor cells)
```

Fixed Wireless Access (FWA):

```
Use case: Home/business internet (alternative to fiber/cable)
- CPE (Customer Premises Equipment) on roof/window
- LOS to nearby gNB (200-500 m)
- Throughput: 1-3 Gbps (comparable to gigabit fiber)
- Latency: 10-20 ms

Advantage: Rapid deployment (no trenching)
Disadvantage: Weather-sensitive, requires LOS or near-LOS
```

Industrial IoT / URLLC:

```
Use case: Factory automation, robotics
- Latency: 1-5 ms (mini-slot transmission)
- Reliability: 99.999% (5 nines)
- Capacity: 10-100 Mbps per device

Private 5G networks:
- Dedicated spectrum (CBRS, local licensing)
```

- On-premises gNB (security, low latency)

66.6 ☐ Beyond 5G: Sub-THz (6G)

6G target frequencies: 100-300 GHz (D-band, G-band)

66.6.1 Why Sub-THz for 6G?

```
Bandwidth availability:
- 92-114.25 GHz (WRC-19): 22 GHz continuous
- 130-174.8 GHz: 44 GHz
- 200-260 GHz: 60 GHz (being considered)

Total: 100+ GHz spectrum (vs. 5 GHz for all cellular below 6 GHz!)

Peak data rate (conservative estimate):

BW = 10 GHz, SE = 5 bits/s/Hz, MIMO = 8

R = 10 × 5 × 8 = 400 Gbps

Target: 100 Gbps-1 Tbps (100× faster than 5G)
```

66.6.2 Sub-THz Challenges

300 GHz FSPL (100 m): 122 dB

- Ultra-massive MIMO: 1024+ elements → 30 dB gain

1. Path Loss:

Compensation:

```
- Dense deployment: 10-50 m cell radius (pico/femto cells)
- Relay/RIS: Intelligent reflecting surfaces

2. Hardware Limitations:

PA (Power Amplifier):
- 28 GHz: 20-30 dBm per element (mature GaN technology)
- 300 GHz: 5-10 dBm per element (InP, SiGe limited)

Phase shifters:
- 28 GHz: 4-6 bit resolution, low loss
- 300 GHz: 2-3 bit (lossy, expensive)

ADC/DAC:
- Nyquist rate: 2× bandwidth
- 10 GHz BW → 20 Gsps ADC/DAC
- Power: 10-100 W per RF chain (prohibitive for mobile)

Solution: Ultra-low-power circuits (sub-threshold, approximate computing)
```

3. Beam Alignment:

Beamwidth (1024-element array at 300 GHz):

```
/ (N·d) 1 mm / (32 × 0.5 mm) = 0.06 rad 3.5°

Challenge: <4° beam → precise alignment required
- Rotation/motion: 10°/s movement → beam misalignment in 0.35 s
- Solution: 100+ Hz beam tracking

Beam switching latency:
- Analog: <1 s (phase shifter settling)
- Digital: 10-100 s (baseband processing)
- Requirement: <1 ms for mobility</pre>
```

66.6.3 6G Candidate Technologies

Reconfigurable Intelligent Surface (RIS):

Concept: Passive reflector with electronically tunable elements

Application:

- Coverage extension: Reflect signal around obstacles
- Virtual LOS: Create alternative paths in NLOS
- Energy efficiency: Passive (no power amplifier)

Example:

- RIS: 1024 elements (1m × 1m panel)
- Placement: Building wall
- Reflect 300 GHz signal from BS to blocked UE
- Gain: 20-30 dB (overcome blockage loss)

Status: Research prototypes, not yet standardized

Wireless Fiber (WF):

Concept: Short-range (1-10 m), fiber-like data rates

Use case: Wireless backhaul, kiosk downloads, data center links

- Frequency: 300 GHz
- Bandwidth: 20-50 GHz (entire band)
- Data rate: 100-200 Gbps
- Range: <10 m (LOS required)

Advantage: 100× faster than WiFi, no fiber installation Disadvantage: Ultra-short range, perfect alignment needed

OAM (Orbital Angular Momentum) Multiplexing:

Concept: Use twisted EM waves (vortex beams) as additional dimension

Orthogonal OAM modes: $1 = 0, \pm 1, \pm 2, \ldots$

- Each mode carries independent data stream

```
- Separation by phase profile (not frequency)

Capacity:

C = N_OAM × N_MIMO × B × SE

Example (N_OAM = 4, N_MIMO = 8, B = 10 GHz, SE = 5):

C = 4 × 8 × 10 × 5 = 1.6 Tbps

Status: Lab demonstrations, far from practical (alignment critical)
```

66.7 Automotive Radar (mmWave)

77-81 GHz radar for autonomous vehicles.

66.7.1 System Parameters

Example (Bosch 5th gen):

```
Frequency: 76-81 GHz (5 GHz bandwidth allocated)
Modulation: FMCW (Frequency-Modulated Continuous Wave)
Range resolution: \Delta r = c / (2 \cdot BW) = 3 \text{ cm (for 5 GHz BW)}
Velocity resolution: Doppler shift
Angular resolution: Beamforming (MIMO radar)
Performance:
- Detection range: 200+ m (long-range radar)
- Velocity: ±70 m/s (Doppler)
- Angle: ±60° (wide FoV for short-range, ±10° for long-range)
- Update rate: 10-20 Hz
Applications:
- Adaptive Cruise Control (ACC)
- Collision avoidance
- Blind-spot detection
- Parking assistance
MIMO radar:
```

```
Virtual array: N_TX × N_RX elements
- Physical: 3 TX, 4 RX = 12 elements
- Virtual: 3 × 4 = 12 unique TX-RX pairs (phase centers)
- Angular resolution: Equivalent to 12-element receive array

Imaging:
- Range-Doppler map (2D)
- Range-Angle map (2D)
- 3D point cloud (range-azimuth-elevation)
```

```
- TX: 3 antennas

- RX: 4 antennas

- Virtual: 12 elements

- Angular resolution: 1° (azimuth)
```

66.8 Link Budget Example (28 GHz)

```
System: 5G FR2 mmWave (28 GHz, 100 MHz BW)
Transmitter (gNB):
- TX power per element: 23 dBm (200 mW)
- Number of elements: 64
- Total TX power: 23 + 10·log (64) = 41 dBm
- Analog beamforming gain: 18 dB (64 elements, single beam)
- EIRP: 41 + 18 = 59 \text{ dBm}
Path:
- Distance: 100 m
- FSPL: 32.4 + 20 \cdot \log (28000) + 20 \cdot \log (0.1) = 101 dB
- Atmospheric absorption: 0.01 dB (negligible)
- Blockage margin: 10 dB (foliage, wall)
- Total loss: 111 dB
Receiver (UE):
- RX antenna gain: 10 dB (16-element array)
- Noise figure: 7 dB
- Thermal noise: -174 + 10 \cdot \log (100 \text{ MHz}) + 7 = -87 \text{ dBm}
Received signal:
RX power = 59 - 111 + 10 = -42 dBm
SNR:
SNR = -42 - (-87) = 45 dB
Throughput (Shannon):
C = 100 \text{ MHz} \times \log (1 + 10^{(45/10)}) = 100 \text{ MHz} \times 15 = 1.5 \text{ Gbps}
Practical (256-QAM, rate-5/6, 75% efficiency):
R = 100 \text{ MHz} \times 7.4 \times 0.75 = 555 \text{ Mbps}
Margin: 45 - 20 (required SNR for 256-QAM) = 25 dB
```

66.9 D Python Example: mmWave Path Loss Calculator

```
import numpy as np
def mmwave_path_loss(freq_ghz, distance_m, rain_rate_mm_h=0):
    Calculate mmWave path loss including atmospheric effects.
    Args:
       freq_ghz: Frequency (GHz)
        distance_m: Distance (meters)
        rain_rate_mm_h: Rain rate (mm/h, optional)
    Returns:
        Total path loss (dB)
    # Free-space path loss
    fspl = 32.4 + 20*np.log10(freq_ghz*1000) + 20*np.log10(distance_m/1000)
    # Atmospheric absorption (simplified model)
    if freq_ghz < 30:</pre>
        attenuation_db_km = 0.1
    elif freq_ghz < 100:</pre>
        attenuation_db_km = 0.5 + 0.05 * (freq_ghz - 30)
    else:
        attenuation_db_km = 4 + 0.02 * (freq_ghz - 100)
    atmospheric_loss = attenuation_db_km * (distance_m / 1000)
    # Rain attenuation (ITU-R model)
    if rain_rate_mm_h > 0:
        k = 0.0001 * freq_ghz**2
        alpha = 1.0
        rain_loss = k * rain_rate_mm_h**alpha * (distance_m / 1000)
    else:
        rain_loss = 0
    total_loss = fspl + atmospheric_loss + rain_loss
    print(f"Frequency: {freq_ghz} GHz, Distance: {distance_m} m")
    print(f" FSPL: {fspl:.1f} dB")
    print(f" Atmospheric: {atmospheric_loss:.2f} dB")
    print(f" Rain: {rain_loss:.2f} dB")
    print(f" Total: {total_loss:.1f} dB")
    return total_loss
def beamforming_gain(n_elements, beamwidth_deg=None):
```

```
n n n
    Calculate antenna array gain.
   Args:
        n elements: Number of antenna elements
        beamwidth_deg: Optional 3dB beamwidth (degrees)
    Returns:
       Gain (dB)
    gain_db = 10 * np.log10(n_elements)
    if beamwidth_deg:
        # Approximate directivity from beamwidth
        directivity = 41253 / (beamwidth_deg**2)
        gain_from_bw = 10 * np.log10(directivity)
       print(f"Array gain (element count): {gain_db:.1f} dB")
       print(f"Gain from beamwidth: {gain_from_bw:.1f} dB")
        gain_db = max(gain_db, gain_from_bw)
   return gain_db
# Example: 5G mmWave link budget
print("=== 5G mmWave Link Budget ===\n")
freq = 28 \# GHz
distance = 100 # meters
tx_power_dbm = 23  # dBm per element
n_{tx}=elements = 64
n_rx_elements = 16
path_loss = mmwave_path_loss(freq, distance, rain_rate_mm_h=0)
tx_gain = beamforming_gain(n_tx_elements)
rx_gain = beamforming_gain(n_rx_elements)
eirp = tx_power_dbm + tx_gain
rx_power = eirp - path_loss + rx_gain
noise_figure = 7 # dB
bandwidth_mhz = 100
thermal_noise = -174 + 10*np.log10(bandwidth_mhz * 1e6) + noise_figure
snr = rx_power - thermal_noise
print(f"\nLink Budget:")
print(f" EIRP: {eirp:.1f} dBm")
print(f" RX power: {rx_power:.1f} dBm")
print(f" Noise: {thermal_noise:.1f} dBm")
```

```
print(f" SNR: {snr:.1f} dB")
capacity_gbps = (bandwidth_mhz * np.log2(1 + 10**(snr/10))) / 1000
print(f" Shannon capacity: {capacity_gbps:.2f} Gbps")
```

66.10 ☐ Summary Comparison

Bandwidth 100 MHz 400 MHz-2 GHz 10-50 Peak Rate 1 Gbps 10 Gbps 100+	Hz (100-300 GHz)
	GHz
	Gbps
Range 1-5 km 100-500 m 10-10	0 m
Propagation NLOS-friendly LOS-preferred LOS-c	only
Mobility Excellent Good Limite	d
Beamforming Optional Mandatory Ultra-	massive
ApplicationsWide-areaDense urban, FWAIndoor	r, backhaul

66.11 Further Reading

66.11.1 Textbooks

- Rappaport et al., Millimeter Wave Wireless Communications Comprehensive mmWave treatment
- · Akyildiz et al., Terahertz Band Communication THz fundamentals
- Rangan et al., Millimeter-Wave Cellular Wireless Networks 5G mmWave

66.11.2 Key Papers

- Rappaport et al. (2013): "Millimeter Wave Mobile Communications for 5G" Seminal 5G mmWave paper
- · Alsharif et al. (2020): "Sixth Generation (6G) Wireless Networks" 6G vision including THz
- ITU-R P.676: Atmospheric attenuation models (O₂, H₂O)

66.11.3 Standards

- 3GPP TS 38.104: 5G NR Base Station radio transmission/reception (FR2 specs)
- IEEE 802.11ad/ay: WiGig 60 GHz mmWave WiFi
- IEEE 802.15.3d: 100 Gbps WPAN (THz band)

66.11.4 Related Topics

- [MIMO & Spatial Multiplexing] Beamforming foundations
- [OFDM & Multicarrier Modulation] mmWave uses OFDM
- [Adaptive Modulation & Coding (AMC)] Critical for variable mmWave channels

- [[Atmospheric Effects (Ionospheric, Tropospheric)]] Propagation background
- [Terahertz (THz) Technology] THz-specific content (quantum cascade lasers, imaging)
- [Real-World System Examples] 5G NR deployments

Summary: mmWave (24-300 GHz) and THz (0.3-10 THz) offer massive bandwidth (100× more than sub-6 GHz) enabling multi-gigabit to terabit wireless. 5G NR FR2 (24-52 GHz) delivers 2-10 Gbps with 100-500 m range using massive MIMO beamforming (64-256 elements). Path loss increases 20-40 dB vs. sub-6 GHz, requiring directional antennas and dense small-cell deployment. Atmospheric absorption (O_2 at 60 GHz, H_2O at 183 GHz) and rain attenuation limit range. Blockage (human body 20-40 dB, walls 30-80 dB) makes LOS critical. Beamforming is mandatory (analog or hybrid) for coverage. Applications: urban hotspots, fixed wireless access, industrial IoT. 6G targets sub-THz (100-300 GHz) for 100 Gbps-1 Tbps with ultra-massive MIMO (1024+ elements), intelligent surfaces (RIS), and 10-50 m cell radius. Automotive radar (77-81 GHz) uses FMCW for 3 cm range resolution. mmWave/THz = ultra-high bandwidth, ultra-short range, ultra-directional—requires paradigm shift in network architecture.

626