1. Say whether the following is true or false and support your answer by a proof.

 $(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})(\exists m + 5n = 12)$

Claim: $(\exists m \in \mathbb{N})(\exists n \in \mathbb{N})(\exists m + 5n = 12)$ is false

Proof: By cases.

Negating the original claim we get

 $(\forall m,n\in\mathbb{N})(3m+5n\neq 12)$

Given m,n∈N

If m=n=1 then 3m+5n=8<12

If m=2 and n=1 then 3m+5n=11<12 and

If m=1 and n=2 then 3m+5n=13>12.

If m=n=2 then 3m+5n=16>12.

All cases up to here have been not equal than 12, and the last one with m=n=2 is greater than 12, so every other combination with m,n>2 will be bigger than 12, therefore, for all $m,n\in\mathbb{N}$ $3m+5n\neq 12$, proving the original claim as false. \square

2. Say whether the following is true or false and support your answer by a proof: The sum of any five consecutive integers is divisible by 5 (without remainder).

Claim:
$$\forall a \in \mathbb{Z}[5|a+(a+1)+(a+2)+(a+3)+(a+4)]$$

Proof: Take an arbitrary $a \in \mathbb{Z}$. By algebra we can derive from the expression

$$a+(a+1)+(a+2)+(a+3)+(a+4)$$

5a+10

$$5(a+2)$$

which is divisible by 5 proving the original claim. $\hfill\Box$

3. Say whether the following is true or false and support your answer by a proof: For any integer n, the number n^2+n+1 is odd.

Claim: $\forall n \in \mathbb{Z}[2 \nmid n^2 + n + 1]$

Proof: Given an $n \in \mathbb{Z}$, by the Fundamental Theorem of Arithmetic, we know that 2|n iff $2|n^2$. We also know that for all $b,c \in \mathbb{Z}$

if 2|b and 2|c then 2|b+c, and,

if $2 \nmid b$ and $2 \nmid c$ then $2 \mid b+c$ too.

Set $b=n^2$ and c=n. Then, no matter if 2|n or $2\nmid n$, it is always the case that $2|n^2+n$, hence, $2\nmid n^2+n+1$, proving the original claim. \square

4. Prove that every odd natural number is of one of the forms 4n+1 or 4n+3, where n is an integer.

Claim: $\forall m \in \mathbb{N}[2 \nmid m \Rightarrow \exists n \in \mathbb{Z}(4n+1=m \lor 4n+3=m)]$

Proof: Given an $m \in \mathbb{N}$ suppose $2 \nmid m$, i.e., $\exists p \in \mathbb{Z}[m=2p+1]$.

If 2|p then $\exists q \in \mathbb{Z}[p=2q]$, hence, m=2(2q)+1=4q+1, hence, $\exists n \in \mathbb{Z}[4n+1=m]$.

If $2\nmid p$ then $\exists q\in \mathbb{Z}[p=2q+1]$, hence, m=2(2q+1)+1=4q+3, hence, $\exists n\in \mathbb{Z}[4n+3=m]$.

Therefore, since one of both cases must be true, the original claim is true. $\hfill\Box$

5. Prove that for any integer n, at least one of the integers n, n+2, n+4 is divisible by 3.

Claim: $\forall n \in \mathbb{Z}[3|n \vee 3|n+2 \vee 3|n+4]$

Proof: Given an $n \in \mathbb{Z}$ we know that it must be true that 3|n or 3|n+1 or 3|n+2, since one of those 3 consecutive integers must be a multiple of 3. If it is the case that 3|n+1 then 3|(n+1)+3, i.e., 3|n+4. Therefore, the original claim is true. \square

6. A classic unsolved problem in number theory asks if there are infinitely many pairs of 'twin primes', pairs of primes separated by 2, such as 3 and 5, 11 and 13, or 71 and 73. Prove that the only prime triple (i.e. three primes, each 2 from the next) is 3, 5, 7.

Definitions:

 $n \in \mathbb{N}$ is prime iff $\forall d \in \mathbb{N} [1 < d < n \Rightarrow d \nmid n]$

 $m,n \in \mathbb{N}$ are twin primes iff m and n are primes and n=m+2.

 $m,n,o \in \mathbb{N}$ are a prime triple iff m and n are twin primes and n and o are twin primes too.

Exercise 5 claim: $\forall n \in \mathbb{Z}[3|n \vee 3|n+2 \vee 3|n+4]$

Claim: \exists !a,b,c∈ \mathbb{N} [a,b,c are a prime triple]

Proof: By contradiction. We know that 3,5,7 is the first prime triple. By way of contradiction, suppose you can pick a,b,c such that they are a prime triple with 3 < a < b < c. Since a,b,c are primes $3 \nmid a$,b,c. We know that b = a + 2 and c = a + 4. By Exercise 5 we know that $\forall n \in \mathbb{Z}[3|n \lor 3|n+2 \lor 3|n+4]$. Set n = a. So 3|a or 3|a+2 or 3|a+4, i.e., 3|a or 3|b or 3|c, i.e., at least one of a, b or c is not prime, contradicting the assumption. Therefore, the only prime triple is 3,5,7 proving the original claim. \Box

7. Prove that for any natural number n, $2+2^2+2^3+...+2^n=2^{n+1}-2$

Claim: $\forall n \in \mathbb{N}[2^1+2^2+...+2^n=2^{n+1}-2]$

Proof: By induction.

Base case: We know that $2^1=2^{1+1}-2$, i.e., 2=4-2, i.e., 2=2, which is true.

Induction step: Given an $n \in \mathbb{N}$ suppose $2^1 + 2^2 + ... + 2^n = 2^{n+1} - 2$. Adding 2^{n+1} to both sides of the equality we get

$$2^1+2^2+...+2^n+2^{n+1}=2^{n+1}+2^{n+1}-2$$
.

The LHS (left hand side) is already in the form of n+1. Now, by algebra in the RHS (right hand side):

$$2^{n+1}+2^{n+1}-2$$

$$2(2^{n+1})-2$$

$$2^{(n+1)+1}-2$$

making the RHS in the form of n+1. This concludes the induction step and proves the claim. \Box

8. Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1 \text{ to } \infty}$ tends to limit L as $n \to \infty$, then for any fixed number M>0, the sequence $\{Ma_n\}_{n=1 \text{ to } \infty}$ tends to the limit ML.

Claim: Given $\{a_n\}_{n=1 \text{ to } \infty}$ and $L \in \mathbb{R}$

$$(\forall \epsilon > 0)(\exists N \in \mathbb{N})(\forall n \geq N)[|a_n - L| < \epsilon] \Rightarrow (\forall M \in \mathbb{R} > 0)(\forall \epsilon > 0)(\exists N \in \mathbb{N})(\forall n \geq N)[|Ma_n - ML| < \epsilon]$$

Proof: Suppose the antecedent of the claim. Given an $M \in \mathbb{R} > 0$, by the assumption we know that we if we take an arbitrary $\epsilon > 0$ there will be a $N \in \mathbb{N}$ such that for any given $n \ge N$ it will be the case that $|a_n - L| < \epsilon$. By algebra and since M > 0:

```
|a_n-L|<\epsilon
-\epsilon < a_n-L < \epsilon
-M\epsilon < Ma_n-ML < M\epsilon \text{ (remember M>0)}
-M\epsilon < -\epsilon < Ma_n-ML < \epsilon < M\epsilon, \text{ hence,}
-\epsilon < Ma_n-ML < \epsilon, \text{ thus,}
|Ma_n-ML|<\epsilon
```

By the numbers given and chosen, and by the assumptions and reasoning, we can deduce the claim and gets proved. \hdots

9. Given an infinite collection A_n , n=1,2,... of intervals of the real line, their intersection is defined to be

$$\bigcap_{n=1 \text{ to } \infty} [A_n] = \{x | (\forall n)(x \in A_n)\}$$

Give an example of a family of intervals A_n , n=1,2,..., such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1 \text{ to}} A_n = \emptyset$. Prove that your example has the stated property.

Claim: Let $A_n = (0,1/n)$

$$\forall n \in \mathbb{N}[A_{n+1} \subset A_n] \land \cap_{n=1 \text{ to } \infty}[A_n] = \emptyset$$

Proof: We will separate the claim in two and make two proofs.

First claim: $\forall n \in \mathbb{N}[A_{n+1} \subset A_n]$, i.e.,

$$\forall n \in \mathbb{N} [(0,1/(n+1)) \subset (0,1/n)], i.e.$$

$$\forall n \in \mathbb{N} \forall x \in \mathbb{R} [\ (0 < x < 1/(n+1) \Rightarrow 0 < x < 1/n) \ \land \ \neg (0 < x < 1/(n+1) \Leftrightarrow 0 < x < 1/n) \]$$

First proof: Given and an $n \in \mathbb{N}$ and an $x \in \mathbb{R}$ suppose 0 < x < 1/(n+1). We know that 1/(n+1) < 1/n, so 0 < x < 1/(n+1) < 1/n, hence 0 < x < 1/n. From this we deduce that $A_{n+1} \subseteq A$. Now, to prove the second term, suppose 0 < x < 1/n. If x = 1/(n+0.5) then 0 < x < 1/n, but 1/(n+1) < x, so it is not the case that 0 < x < 1/(n+1), hence, A_{n+1} and A_n are not equal, so $A_{n+1} \subseteq A_n$ proving the first claim.

Second claim: $\bigcap_{n=1 \text{ to } \infty} [A_n] = \emptyset$, i.e.,

$$\{x|(\forall n)(x\in A_n)\}=\emptyset$$
, i.e.,

 $\neg \exists x \in \mathbb{R} \forall n \in \mathbb{N} [0 < x < 1/n], i.e.,$

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} [x \leq 0 \lor 1/n \leq x]$

Second proof: Given an $x \in \mathbb{R}$, if $x \le 0$ pick any $n \in \mathbb{N}$ and the claim will be true. If x > 0, pick an $n \in \mathbb{N}$ so large so that 1/n < x, so, $1/n \le x$, proving the second claim.

With both claims proved the original claim gets proved. □

10. Give an example of a family of intervals A_n , n=1,2,..., such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1 \text{ to}} A_n$ consists of a single real number. Prove that your example has the stated property.

Claim: Let $A_n = [0,1/n]$

 $\forall n \in \mathbb{N}[A_{n+1} \subset A_n] \land \bigcap_{n=1 \text{ to } \infty} [A_n] = \{0\}$

Proof: We will separate the claim in two and make two proofs.

First claim: $\forall n \in \mathbb{N}[A_{n+1} \subset A_n]$, i.e.,

 $\forall n \in \mathbb{N} [[0,1/(n+1)] \subset [0,1/n]], i.e.$

 $\forall n \in \mathbb{N} \forall x \in \mathbb{R} [(0 \le x \le 1/(n+1) \Rightarrow 0 \le x \le 1/n) \land \neg (0 \le x \le 1/(n+1) \Leftrightarrow 0 \le x \le 1/n)]$

First proof: Given and an $n \in \mathbb{N}$ and an $x \in \mathbb{R}$ suppose $0 \le x \le 1/(n+1)$. We know that 1/(n+1) < 1/n, so $0 \le x \le 1/(n+1) \le 1/n$, hence $0 \le x \le 1/n$. From this we deduce that $A_{n+1} \subseteq A$. Now, to prove the second term, suppose $0 \le x \le 1/n$. If x = 1/(n+0.5) then $0 \le x \le 1/n$, but 1/(n+1) < x, so it is not the case that $0 \le x \le 1/(n+1)$, hence, A_{n+1} and A_n are not equal, so $A_{n+1} \subset A_n$ proving the first claim.

Second claim: $\bigcap_{n=1 \text{ to } \infty} [A_n] = \{0\}$, i.e.,

 $\{x|(\forall n)(x\in A_n)\}=\{0\}, i.e.,$

 $\forall x \in \mathbb{R} [\forall n \in \mathbb{N} (0 \le x \le 1/n) \Leftrightarrow x = 0]$

Second proof: Take an arbitrary $x \in \mathbb{R}$.

 $[\Rightarrow]$ Suppose $\forall n \in \mathbb{N} (0 \le x \le 1/n)$. By way of contradiction suppose $x \ne 0$. By the assumptions, clearly x must be greater than 0. If x > 0, you can pick an $n \in \mathbb{N}$ so large that makes 1/n < x, contradicting the assumption, proving the left-to-right part.

[\Leftarrow] Suppose x=0. Given any n∈N, 1/n is always greater than 0, hence, 0 \le x \le 1/n, proving the right-to-left part.

With both claims proved the original claim gets proved. \Box