Estatística Computacional

Plancha; 105289; CDB2 Versão 0.1

Teoria de Probabilidades

Esperiência aleatória		Processo de observação de fenómenos aleatórios
Fenómenos aleatórios		Acontecimentos não determináveis a priori
Espaço de resultados	Ω	Conjunto de todos os resultados possíveis
Acontecimentos A ,	B, C	Conjunto de possíveis resultados de uma experiência
Resultado da experiência aleatória	ω	A realizou-se se $\omega \in A$

Álgebra dos acontecimentos União

$$A \cup B = \{\omega : \omega \in A \lor \omega \in B\}$$

${\bf Intersecç\~ao}$

$$A \cap B = \{\omega : \omega \in A \land \omega \in B\}$$

Diferença

$$A - B = A \setminus B = \{\omega : \omega \in A \land \omega \notin B\}$$
$$\Omega - B = \overline{B} = \{\omega : \omega \in \Omega \land \omega \notin B\}$$

Propriedades

Propriedades	
Comutativa	$A \cup B = B \cup A$
	$A \cap B = B \cap A$
Associativa	$A \cup (B \cup C) = (A \cup B) \cup C$
	$A \cap (B \cap C) = (A \cap B) \cap C$
Distributiva	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Idempotência	$A \cup A = A$
	$A \cap A = A$
Lei do Complemento	$A\cup\overline{A}=\varOmega$
•	$A\cap \overline{A}=\emptyset$

Probabilidades (Cont)

Elemento Neutro

Elomonio Tiedoro	$A \cap \Omega = A$
Elemento Absorvente	$A \cup A = A$ $A \cap \emptyset = \emptyset$
Leis de Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Probabilidades

a priori:

$$P[A] = \frac{n_A}{N}$$

 $A \cup \emptyset = A$

a posteriori:

$$f_A = \frac{N_A}{N}$$

$$P[A] = \lim_{N \to \infty} f_A$$

Definições

$\Omega-A$	\overline{A}
Probabilidade de A	P[A]
Número de resultados favoráveis a $\cal A$	n_A
Número de resultados possíveis	N
Frequência relativa de A	f_A
Número de vezes que A se verificou	N_A

 $P[A \mid B]$ Probabilidade de A dado que B se verificou

Axiomas

$$\forall A \subseteq \Omega : 0 \le P[A] \le 1$$
$$P[\Omega] = 1$$

Independência/Acontecimentos mutualmente exclusivos:

$$\forall A, B \subseteq \Omega \ni A \cap B = \emptyset : P[A \cup B] = P[A] + P[B]$$

Teoremas

$$\begin{split} P[\overline{A}] &= 1 - P[A] \\ P[\emptyset] &= 0 \\ P[B - A] &= P[B] - P[A \cap B] \\ P[A \cup B] &= P[A] + P[B] - P[A \cap B] \\ P[A \cup B \cup C] &= P[A] + P[B] + P[C] \\ &- P[A \cap B] - P[A \cap C] - P[B \cap C] \\ &+ P[A \cap B \cap C] \\ P[A \cup B] &\leq P[A] + P[B] \\ P[A \mid B] &= \frac{P[A \cap B]}{P[B]} \qquad \text{se } P[B] > 0 \\ P[A \mid B] &= 0 \qquad \text{se } P[B] = 0 \end{split}$$

Para acontecimentos independentes:

$$P[A \cap B] = P[A] \cdot P[B]$$
$$P[A \mid B] = P[A]$$

n partições:

$$\bigcup_{i=1}^{n} A_i = \Omega$$

$$A_i \cap A_j = \emptyset$$

$$P[A_i] > 0$$

Teorema da Probabilidade total:

$$\forall B \subseteq \Omega : P[B] = \sum_{i=1}^{n} P[A_i \cap B]$$

$$\forall B \subseteq \Omega : P[B] = \sum_{i=1}^{n} P[A_i \mid B] \cdot P[B]$$

Fórmula de Bayes:

$$P[A_j \mid B] = \frac{P[A_j] \cdot P[B \mid A_j]}{\sum_{i=1}^{n} P[A_i] \cdot P[B \mid A_i]}$$

Variáveis aleatórias

TODO

temp

Heading on level 1 (section)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Heading on level 2 (subsection)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Heading on level 3 (subsubsection)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus.

Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Heading on level 4 (paragraph) Lorem ipsum dolor sit amet, consecteuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lists

Example for list (itemize)

- First itemtext
- Second itemtext
- Last itemtext
- First itemtext
- Second itemtext

Example for list (4*itemize)

- First itemtext
 - First itemtext
 - * First itemtext
 - THIS ICHICAL
 - · First itemtext
 - · Second itemtext
 - * Last itemtext
 - First itemtext
- Second itemtext

Example for list (enumerate)

- 1. First itemtext
- 2. Second itemtext
- 3. Last itemtext
- 4. First itemtext
- 5. Second itemtext

Example for list (4*enumerate)

- 1. First itemtext
 - (a) First itemtext
 - i. First itemtext
 - A. First itemtext
 - B. Second itemtext
 - ii. Last itemtext
 - (b) First itemtext
- 2. Second itemtext

Example for list (description)

First itemtext

Second itemtext

Last itemtext

First itemtext

Second itemtext

Example for list (4*description)

First itemtext

First itemtext

First itemtext

First itemtext

Second itemtext

Last itemtext

First itemtext

Second itemtext