Thermodynamics of Ionized Argon

Physical constants

```
In[249]:= Ru = 8314.472; MWar = 39.948; MWarII = 39.94745; MWe = 0.000548579903;
```

Units

```
ln[250] = MJ = 10^6; kJ = 10^3; bar = 10^5;
```

Reference state

```
In[251]:= pref = 1 bar;
```

Enthalpy of formation

Source: NASA-TP-2002-211556

https://ntrs.nasa.gov/api/citations/20020085330/downloads/20020085330.pdf

Argon (ArI) [units: J/kmol]

```
ln[252] = h_{fAr} = 0.;
```

Ionized Argon (ArII) [units: J/kmol]

Note: "All reference elements and **the reference species electron gas** have assigned enthalpy values, Ho(298.15), **equal to zero**," so this value include the energy of ionization of Argon and the freed electron.

```
ln[253] = h_{fArII} = 1526778.407;

ln[254] = h_{fe} = 0;
```

NASA fits for c_p

Source: NASA-TP-2002-211556

https://ntrs.nasa.gov/api/citations/20020085330/downloads/20020085330.pdf

NASA fits for Argon (Arl)

```
ln[255] := a_{1Ara} = 0.;
           a_{2Ara} = 0.;
           a_{3 Ara} = 2.5;
           a_{4 \text{ Ara}} = 0.;
           a_{5 Ara} = 0.;
           a_{6 Ara} = 0.;
           a_{7 \text{Ara}} = 0.;
           b_{1Ara} = -7.453750000 \times 10^{2};
           b_{2Ara} = 4.379674910;
ln[256] = a_{1,Arb} = 2.010538475 \times 10^{1};
           a_{2 \text{ Arb}} = -5.992661070 \times 10^{-2};
           a_{3,Arh} = 2.500069401;
           a_{4 \text{ Arb}} = -3.992141160 \times 10^{-8};
           a_{5 \text{ Arb}} = 1.205272140 \times 10^{-11};
           a_{6 \text{ Arb}} = -1.819015576 \times 10^{-15};
           a_{7 \text{ Arb}} = 1.078576636 \times 10^{-19};
           b_{1.Arb} = -7.449939610 \times 10^{2};
           b_{2 Arb} = 4.379180110;
ln[257] = a_{1Arc} = -9.951265080 \times 10^{8};
           a_{2 \text{ Arc}} = 6.458887260 \times 10^5;
           a_{3 \text{ Arc}} = -1.675894697 \times 10^2;
           a_{4 \text{ Arc}} = 2.319933363 \times 10^{-2};
           a_{5 \text{ Arc}} = -1.721080911 \times 10^{-6};
           a_{6 \, Arc} = 6.531938460 \times 10^{-11};
           a_{7 \text{ Arc}} = -9.740147729 \times 10^{-16};
           b_{1 \text{ Arc}} = -5.078300340 \times 10^6;
           b_{2 Arc} = 1.465298484 \times 10^3;
In[262]:= cp<sub>Ar</sub>[T_] := Ru * Which[
                  T \leq 1000
                  a_{1 \text{Ara}} T^{-2} + a_{2 \text{Ara}} T^{-1} + a_{3 \text{Ara}} + a_{4 \text{Ara}} T + a_{5 \text{Ara}} T^{2} + a_{6 \text{Ara}} T^{3} + a_{7 \text{Ara}} T^{4}
                  1000 < T \le 6000
                 a_{1\,\text{Arb}}\,\,T^{-2}\,+\,\,a_{2\,\text{Arb}}\,\,T^{-1}\,+\,a_{3\,\text{Arb}}\,\,+\,a_{4\,\text{Arb}}\,\,T\,+\,a_{5\,\text{Arb}}\,\,T^{2}\,+\,a_{6\,\text{Arb}}\,\,T^{3}\,+\,a_{7\,\text{Arb}}\,\,T^{4}\,,
                  a_{1 \text{Arc}} T^{-2} + a_{2 \text{Arc}} T^{-1} + a_{3 \text{Arc}} + a_{4 \text{Arc}} T + a_{5 \text{Arc}} T^{2} + a_{6 \text{Arc}} T^{3} + a_{7 \text{Arc}} T^{4}
```

$$\begin{aligned} &\text{In}_{[263]^{+}} \ h_{Ar} \big[T_{-} \big] \ := \ Ru \ T \star \text{Which} \Big[\\ &T \leq 1000, \\ &-a_{1}_{Ara} \ T^{-2} + a_{2}_{Ara} \ Log \big[T \big] \ T^{-1} + a_{3}_{Ara} + a_{4}_{Ara} \ \frac{T}{2} + a_{5}_{Ara} \ \frac{T^{2}}{3} + a_{6}_{Ara} \ \frac{T^{3}}{4} + a_{7}_{Ara} \ \frac{T^{4}}{5} + b_{1}_{Ara} \ T^{-1}, \\ &1000 < T \leq 6000, \\ &-a_{1}_{Arb} \ T^{-2} + a_{2}_{Arb} \ Log \big[T \big] \ T^{-1} + a_{3}_{Arb} + a_{4}_{Arb} \ \frac{T}{2} + a_{5}_{Arb} \ \frac{T^{2}}{3} + a_{6}_{Arb} \ \frac{T^{3}}{4} + a_{7}_{Arb} \ \frac{T^{4}}{5} + b_{1}_{Arb} \ T^{-1}, \\ &T > 6000, \\ &-a_{1}_{Arc} \ T^{-2} + a_{2}_{Arc} \ Log \big[T \big] \ T^{-1} + a_{3}_{Arc} + a_{4}_{Arc} \ \frac{T}{2} + a_{5}_{Arc} \ \frac{T^{2}}{3} + a_{6}_{Arc} \ \frac{T^{3}}{4} + a_{7}_{Arc} \ \frac{T^{4}}{5} + b_{1}_{Arc} \ T^{-1} \Big] \\ &\text{In}_{[264]^{2}} \ S_{Ar} \big[T_{-} \big] \ := Ru \star \text{Which} \Big[\\ &T \leq 1000, \\ &-a_{1}_{Ara} \ \frac{T^{-2}}{2} - a_{2}_{Ara} \ T^{-1} + a_{3}_{Ara} \ Log \big[T \big] + a_{4}_{Ara} \ T + a_{5}_{Ara} \ \frac{T^{2}}{2} + a_{6}_{Ara} \ \frac{T^{3}}{3} + a_{7}_{Ara} \ \frac{T^{4}}{4} + b_{2}_{Ara}, \\ &1000 < T \leq 6000, \\ &-a_{1}_{Arb} \ \frac{T^{-2}}{2} - a_{2}_{Arb} \ T^{-1} + a_{3}_{Arb} \ Log \big[T \big] + a_{4}_{Arb} \ T + a_{5}_{Arb} \ \frac{T^{2}}{2} + a_{6}_{Arc} \ \frac{T^{3}}{3} + a_{7}_{Arb} \ \frac{T^{4}}{4} + b_{2}_{Arb}, \\ &T > 6000, \\ &-a_{1}_{Arc} \ \frac{T^{-2}}{2} - a_{2}_{Arb} \ T^{-1} + a_{3}_{Arb} \ Log \big[T \big] + a_{4}_{Arb} \ T + a_{5}_{Arc} \ \frac{T^{2}}{2} + a_{6}_{Arc} \ \frac{T^{3}}{3} + a_{7}_{Arb} \ \frac{T^{4}}{4} + b_{2}_{Arb}, \\ &T > 6000, \\ &-a_{1}_{Arc} \ \frac{T^{-2}}{2} - a_{2}_{Arc} \ T^{-1} + a_{3}_{Arc} \ Log \big[T \big] + a_{4}_{Arc} \ T + a_{5}_{Arc} \ \frac{T^{2}}{2} + a_{6}_{Arc} \ \frac{T^{3}}{3} + a_{7}_{Arb} \ \frac{T^{4}}{4} + b_{2}_{Arb} \Big] \\ &\text{In}_{[265]^{+}} \ g_{Ar}^{+} \big[T_{-} \big] \ := h_{Ar} \big[T \big] - T \ S_{Ar} \big[T \big] \\ &\text{In}_{[265]^{+}} \ u_{Ar} \big[T_{-} \big] \ := h_{Ar} \big[T \big] - Ru \ T \Big[T \big] \\ &\text{In}_{[265]^{+}} \ u_{Ar} \big[T_{-} \big] \ := h_{Ar} \big[T \big] - Ru \ T \Big[T \big] \\ &\text{In}_{[265]^{+}} \ u_{Ar} \big[T_{-} \big] \ := h_{Ar} \big[T \big] - Ru \ T \Big[T \big] \\ &\text{In}_{[265]^{+}} \ u_{Ar} \big[T_{-} \big] \ := h_{Ar} \big[$$

Out[268]= 3.36736×10^7

Ar properties on per kmol basis

 $\label{eq:mass_loss} $$ \ln[269] = $$ TableForm[Table[\{i*1000, g_{Ar}[1000*i, 0.1bar, 1, 1] / MJ, g_{Ar}[1000*i, 1bar, 1, 1] / MJ, g$ $g_{Ar}[1000*i, 10 bar, 1, 1] / MJ$, {i, 1, 20}], TableHeadings \rightarrow {None, {"Temp (K)", "g (MJ/kmol) 0.1 bar", "g (MJ/kmol) 1 bar", "g (MJ/kmol) 10 bar"}}]

Out[269]//TableForm=

Temp (K)	g (MJ/kmol) 0.1 bar	g (MJ/kmol) 1 bar	g (MJ/kmol) 10 bar
1000	- 184. 557	-165.412	- 146.267
2000	- 391.731	- 353.442	- 315.152
3000	- 609.783	- 552.348	-494.914
4000	- 834.897	- 758.318	-681.739
5000	- 1065.26	- 969 . 539	-873.816
6000	- 1299.82	- 1184.95	-1070.08
7000	- 1537.85	- 1403.84	-1269.82
8000	- 1778.86	- 1625.71	- 1472. 55
9000	- 2022.48	- 1850.18	- 1677.88
10000	- 2268.42	- 2076.97	- 1885.52
11000	- 2516.4 5	- 2305.85	- 2095.26
12000	- 2766.39	- 2536.65	-2306.91
13 000	-3018.1	- 2769.22	- 2520.34
14 000	- 3271. 5	- 3003.47	- 2735.44
15 000	- 3526.53	-3239.36	- 2952.19
16 000	- 3783.1 9	- 3476.87	- 3170.56
17 000	-4041 . 52	- 3716.05	- 3390.59
18 000	- 4301. 56	- 3956.96	- 3612.35
19000	-4563.4	- 4199.65	- 3835.9
20 000	-4827 . 08	-4444.18	-4061.29

Ar properties on per kg basis

```
In[270]:= TableForm[Table[
         \{i*1000, g_{Ar}[1000*i, 0.1bar, 1, 1] / MWar / kJ, g_{Ar}[1000*i, 1bar, 1, 1] / MWar / kJ,
          g_{Ar}[1000 * i, 10 bar, 1, 1] / MWar / kJ, {i, 1, 20}], TableHeadings \rightarrow
         {None, {"Temp (K)", "g (kJ/kg) 0.1 bar", "g (kJ/kg) 1 bar", "g (kJ/kg) 10 bar"}}]
Out[270]//TableForm=
      Temp (K)
                   g (kJ/kg) 0.1 bar
                                          g (kJ/kg) 1 bar
                                                               g (kJ/kg) 10 bar
       1000
                    -4619.92
                                          -4140.68
                                                               -3661.43
       2000
                   -9806.03
                                          -8847.55
                                                               -7889.06
                    -15264.4
                                                               -12389.
       3000
                                          -13826.7
       4000
                    -20899.6
                                          -18982.6
                                                               -17065.7
       5000
                    -26666.3
                                          -24270.
                                                               -21873.8
       6000
                    -32537.7
                                          -29662.2
                                                               -26786.8
                    -38496.3
       7000
                                          -35141.6
                                                               -31786.9
       8000
                    -44529.5
                                          -40695.6
                                                               -36861.6
                    -50627.9
       9000
                                          -46314.7
                                                               -42001.5
       10000
                   -56784.3
                                          -51991.8
                                                               -47199.4
       11000
                    -62993.1
                                          -57721.4
                                                               -52449.7
       12000
                    -69249.7
                                          -63498.8
                                                               - 57 747.9
       13000
                    -75550.8
                                          -69320.6
                                                               -63090.5
       14000
                   -81893.9
                                          -75184.5
                                                               -68475.1
                                                               -73900.7
       15 000
                   -88278.
                                          -81089.3
       16000
                    -94702.9
                                          -87035.
                                                               - 79 367.1
       17000
                   -101169.
                                          -93022.3
                                                               -84875.2
       18000
                    -107679.
                                          -99052.7
                                                               -90426.4
       19000
                                                               -96022.3
                    -114234.
                                          -105128.
       20000
                    -120834.
                                                               - 101664.
                                          -111249.
```

NASA fits for Argon (ArII)

```
ln[271] = a_{1 ArIIa} = -5.731209170 \times 10^{+4};
          a_{2 \text{ ArIIa}} = 7.930791470 \times 10^{+2};
          a_{3 \text{ ArII}a} = -1.717121217;
          a_{4 \text{ ArTTa}} = 1.044184018 \times 10^{-2};
          a_{5 \text{ ArIIa}} = -1.180207501 \times 10^{-5};
          a_{6 \text{ ArIIa}} = 6.528134780 \times 10^{-9};
          a_{7 \text{ Artta}} = -1.447558130 \times 10^{-12};
         b_{1 \text{ ArIIa}} = 1.790572230 \times 10^{+5};
         b_{2,\Delta rTTa} = 2.949150950 \times 10^{+1};
```

```
6 | Ionized Argon.nb
```

$$\begin{aligned} & \text{In}[232] = & \text{SArII} [\mathsf{T}_{-}] := & \text{Ru} * \text{Which} \Big[\\ & \text{T} \le & 1000, \\ & -a_{1}_{A}_{III} = & \frac{\mathsf{T}^{-2}}{2} - a_{2}_{A}_{III} = & \mathsf{T}^{-1} + \\ & a_{3}_{A}_{III} = & \text{Log}[\mathsf{T}] + a_{4}_{A}_{III} = & \mathsf{T} + a_{5}_{A}_{III} = & \frac{\mathsf{T}^{2}}{2} + a_{6}_{A}_{III} = & \frac{\mathsf{T}^{3}}{3} + a_{7}_{A}_{III} = & \frac{\mathsf{T}^{4}}{4} + b_{2}_{A}_{III}, \\ & 1000 < \mathsf{T} \le & 6000, \\ & -a_{1}_{A}_{III} = & \frac{\mathsf{T}^{-2}}{2} - a_{2}_{A}_{III} = & \mathsf{T}^{-1} + \\ & a_{3}_{A}_{III} = & \text{Log}[\mathsf{T}] + a_{4}_{A}_{III} = & \mathsf{T} + a_{5}_{A}_{III} = & \frac{\mathsf{T}^{2}}{2} + a_{6}_{A}_{III} = & \frac{\mathsf{T}^{4}}{4} + b_{2}_{A}_{III}, \\ & \mathsf{T} > & 6000, \\ & -a_{1}_{A}_{III} = & \frac{\mathsf{T}^{-2}}{2} - a_{2}_{A}_{III} = & \mathsf{T}^{-1} + a_{3}_{A}_{III} = & \mathsf{Log}[\mathsf{T}] + a_{4}_{A}_{III} = & \mathsf{T} + a_{5}_{A}_{III} = & \frac{\mathsf{T}^{2}}{2} + a_{6}_{A}_{III} = & \frac{\mathsf{T}^{3}}{3} + a_{7}_{A}_{III} = & \frac{\mathsf{T}^{4}}{4} + b_{2}_{A}_{III} = \\ & \mathsf{In}[233] = & \mathsf{ga_{III}}^* [\mathsf{T}_{-}] := & \mathsf{h_{A_{III}}}[\mathsf{T}] - & \mathsf{T} & \mathsf{s_{A_{III}}}[\mathsf{T}] \\ & \mathsf{In}[234] = & \mathsf{ga_{III}}^* [\mathsf{T}_{-}] := & \mathsf{h_{A_{III}}}[\mathsf{T}] - & \mathsf{Ru} \mathsf{T} \\ & \mathsf{In}[236] = & \mathsf{u_{A_{III}}}[\mathsf{3000}] - & \mathsf{u_{A_{III}}}[\mathsf{3000}] \\ & \mathsf{u_{A_{III}}}[\mathsf{3000}] - & \mathsf{u_{A_{III}}}[\mathsf{3000}] \end{aligned}$$

Out[296]= 3.71081×10^7

ArII properties on per kmol basis

In[297]:= TableForm[

 $Table\,[\,\{i*1000\,,\,g_{ArII}\,[1000*i,\,\,0.1\,bar,\,\,1\,,\,1]\,\,/\,\,MJ,\,g_{ArII}\,[1000*i,\,\,1\,bar,\,\,1\,,\,1]\,\,/\,\,MJ,\,\,1\,\,ArII\,[1000*i,\,\,1\,bar,\,\,1\,,\,1]\,\,/\,\,MJ]$ $g_{\texttt{ArII}} \texttt{[1000} \star \texttt{i, 10} \, \texttt{bar, 1, 1]} \, / \, \texttt{MJ} \texttt{, \{i, 1, 20\}]} \texttt{, TableHeadings} \rightarrow$ $\{ \texttt{None, \{"Temp (K)", "g (MJ/kmol) 0.1 bar", "g (MJ/kmol) 1 bar", "g (MJ/kmol) 10 bar"} \} \}]$

Out[297]//TableForm=

Temp (K)	g (MJ/kmol) 0.1 bar	g (MJ/kmol) 1 bar	g (MJ/kmol) 10 bar
1000	1330.17	1349.31	1368.46
2000	1109.25	1147.54	1185.83
3000	876.802	934.236	991.671
4000	637.066	713.645	790.224
5000	391.975	487.699	583.423
6000	142.644	257.512	372.381
7000	-110.2	23.8133	157.827
8000	-366.045	-212.886	-59.7281
9000	-624 . 508	-452.205	-279.902
10000	-885.296	-693.848	-502.4
11000	-1148.17	-937.581	-726.988
12000	- 1412.9 5	-1183.21	- 953.474
13 000	- 1679.46	-1430.58	-1181.7
14000	- 1947.58	-1679.55	- 1411.5 3
15 000	- 2217.19	-1930.02	-1642.85
16000	- 2488.19	-2181.88	-1875.56
17 000	- 2760.51	- 2435.04	-2109.58
18 000	- 3034.06	-2689.45	-2344.84
19000	- 3308.78	- 2945.03	- 2581.28
20 000	- 3584.64	-3201.75	- 2818.85

Arll properties on per kg basis

```
In[298]:= TableForm[Table[
                            \{i*1000, g_{ArII}[1000*i, 0.1bar, 1, 1] / MWar / kJ, g_{ArII}[1000*i, 1bar, 1, 1] / MWar / kJ, g_{ArIII}[1000*i, 1bar, 
                              g_{ArII}[1000 * i, 10 bar, 1, 1] / MWar / kJ, {i, 1, 20}], TableHeadings \rightarrow
                            {None, {"Temp (K)", "g (kJ/kg) 0.1 bar", "g (kJ/kg) 1 bar", "g (kJ/kg) 10 bar"}}]
Out[298]//TableForm=
                                                                                                                             g (kJ/kg) 1 bar
                    Temp (K)
                                                          g (kJ/kg) 0.1 bar
                                                                                                                                                                                          g (kJ/kg) 10 bar
                    1000
                                                          33297.4
                                                                                                                             33776.7
                                                                                                                                                                                          34 255.9
                     2000
                                                          27767.3
                                                                                                                             28725.8
                                                                                                                                                                                          29684.2
                     3000
                                                          21948.6
                                                                                                                             23386.3
                                                                                                                                                                                          24824.
                    4000
                                                          15947.4
                                                                                                                             17864.3
                                                                                                                                                                                          19781.3
                                                                                                                             12208.3
                     5000
                                                          9812.13
                                                                                                                                                                                          14604.6
                     6000
                                                           3570.74
                                                                                                                             6446.19
                                                                                                                                                                                          9321.65
                     7000
                                                           -2758.59
                                                                                                                             596.106
                                                                                                                                                                                          3950.8
                     8000
                                                           -9163.03
                                                                                                                             -5329.09
                                                                                                                                                                                          -1495.15
                    9000
                                                          -15633.
                                                                                                                             -11319.8
                                                                                                                                                                                          -7006.66
                    10000
                                                          -22161.2
                                                                                                                             -17368.8
                                                                                                                                                                                          -12576.4
                    11000
                                                           -28741.7
                                                                                                                             -23470.
                                                                                                                                                                                          -18198.4
                    12000
                                                          -35369.7
                                                                                                                             -29618.8
                                                                                                                                                                                          -23867.9
                    13000
                                                           -42041.2
                                                                                                                             -35811.1
                                                                                                                                                                                          -29580.9
                                                          -48752.9
                    14000
                                                                                                                             -42043.5
                                                                                                                                                                                          -35334.1
                                                          -55501.9
                    15 000
                                                                                                                             -48313.3
                                                                                                                                                                                          -41124.6
                    16000
                                                          -62285.8
                                                                                                                             -54617.9
                                                                                                                                                                                          -46950.
                    17000
                                                          -69102.5
                                                                                                                             -60955.3
                                                                                                                                                                                          -52808.2
                     18000
                                                           -75950.1
                                                                                                                             -67323.8
                                                                                                                                                                                          -58697.4
                     19000
                                                           -82827.3
                                                                                                                             -73721.7
                                                                                                                                                                                          -64616.1
                     20000
                                                           -89732.7
                                                                                                                             -80147.9
                                                                                                                                                                                          -70563.
```

NASA fits for electrons (e⁻)

```
ln[299]:= a_e = 0.;
ln[300] = a_{1ea} = 0.;
        a_{2 ea} = 0.;
        a_{3 ea} = 2.5000000000;
        a_{4 ea} = 0.;
        a_{5 ea} = 0.;
        a_{6 ea} = 0.;
        a_{7 ea} = 0.;
        b_{1 ea} = -7.453750000 \times 10^{2};
        b_{2ea} = -1.172081224 \times 10^{1};
```

Solve for Equilibrium Constant

Reminder that the NASA fits enthalpy of formation, etc., "built in" to polynomial fits.

$$In[308] = \Delta G_{ionization}^*[T_] := g_e^*[T] + g_{ArII}^*[T] - g_{Ar}^*[T]$$

$$In[309] = K_{ionization}[T_{]} := Exp\left[-\frac{\Delta G_{ionization}^{*}[T]}{Ru T}\right]$$

Solve for degree of ionization analytically.

In[310]:= Solve
$$\left[\frac{\left(\frac{\alpha}{\alpha+1}\right)^2}{\frac{1-\alpha}{\alpha+1}}\right]$$
 ppreftmp == K, α

$$\text{Out} [\text{310}] = \left. \left\{ \left\{ \alpha \to -\frac{\sqrt{K}}{\sqrt{K + \text{ppreftmp}}} \right. \right\} \text{, } \left\{ \alpha \to \frac{\sqrt{K}}{\sqrt{K + \text{ppreftmp}}} \right. \right\} \right\}$$

Define a function for degree of ionization.

In[311]:=
$$\alpha[T_{,} p_{]} := \frac{\sqrt{K_{ionization}[T]}}{\sqrt{K_{ionization}[T] + \frac{p}{pref}}}$$

```
ln[312] = \alpha[1000, 1bar]
```

Out[312]=
$$1.83723 \times 10^{-39}$$

```
ln[313] = Alpha1bar = Plot[\alpha[T, 1bar], \{T, 500, 20000\}, PlotStyle <math>\rightarrow \{Blue\},
          PlotPoints → 200, Frame → True, FrameLabel → {"Temperture (K)", "Ionization"}];
```

$$\label{eq:local_local_local_local_local} $$ \ln[314]=$ Alpha0p1bar = Plot[\alpha[T, 0.1bar], {T, 500, 20000}, PlotStyle \rightarrow {Cyan}, PlotPoints \rightarrow 200, \\ Frame \rightarrow True, FrameLabel \rightarrow {"Temperture (K)", "Ionization"}];$$

$$ln[315]$$
:= Alpha10bar = Plot[α [T, 10 bar], {T, 500, 20000}, PlotStyle \rightarrow {Purple}, PlotPoints \rightarrow 200, Frame \rightarrow True, FrameLabel \rightarrow {"Temperture (K)", "Ionization"}];

 $\log 17 = \text{TableForm[Table}[\{i * 1000, \alpha[i * 1000, 0.1 \text{ bar}], \alpha[i * 1000, 1 \text{ bar}], \alpha[i * 1000, 10 \text{ bar}]\},$ {i, 1, 20}], TableHeadings \rightarrow {None, {"Temp (K)", " α 0.1 bar", " α 1 bar", " α 10 bar"}}]

Out[317]//TableForm=

Tablet etti			
Temp (K)	lpha 0.1 bar	lpha 1 bar	lpha 10 bar
1000	5.80982×10^{-39}	1.83723×10^{-39}	5.80982×10^{-40}
2000	$\textbf{1.04434} \times \textbf{10}^{-18}$	3.3025×10^{-19}	$\textbf{1.04434}\times\textbf{10}^{-19}$
3000	$\textbf{7.42577} \times \textbf{10}^{-12}$	$\textbf{2.34823} \times \textbf{10}^{-12}$	$\textbf{7.42577} \times \textbf{10}^{-13}$
4000	$\textbf{2.20951} \times \textbf{10}^{-8}$	6.98708×10^{-9}	2.20951×10^{-9}
5000	$\textbf{2.86022}\times\textbf{10}^{-6}$	9.04481×10^{-7}	2.86022×10^{-7}
6000	0.0000763702	0.0000241504	$\textbf{7.63702}\times\textbf{10}^{-6}$
7000	0.000822184	0.000259997	0.0000822184
8000	0.00499793	0.0015805	0.000499799
9000	0.0206991	0.0065469	0.00207035
10000	0.0653096	0.0206925	0.00654479
11000	0.167359	0.0536034	0.0169728
12000	0.354538	0.119051	0.0378896
13 000	0.602213	0.232032	0.0752198
14000	0.807549	0.397332	0.135654
15 000	0.917557	0.589486	0.224861
16 000	0.964635	0.756648	0.34367
17 000	0.983958	0.867524	0.482956
18 000	0.992204	0.929375	0.622864
19 000	0.995949	0.961579	0.74225
20 000	0.997763	0.978286	0.830783

Knowing alpha (degree of ionization), find mole fractions

$$ln[318] = nTot[T_, P_] := (1 - \alpha[T, P]) + 2\alpha[T, P]$$

In[319]:= yAr[T_, P_] :=
$$\frac{1 - \alpha[T, P]}{nTot[T, P]}$$

In[320]:= yArII[T_, P_] :=
$$\frac{\alpha[T, P]}{nTot[T, P]}$$
In[321]:= ye[T_, P_] := $\frac{\alpha[T, P]}{nTot[T, P]}$

In[322]:= TableForm[Table[{i * 1000, yAr[1000 * i, 0.1 bar], yArII[1000 * i, 0.1 bar], ye[1000 * i, 0.1 bar] }, {i, 1, 20}], $\label{eq:tableHeadings} \textbf{TableHeadings} \rightarrow \{ \texttt{None}, \, \{\texttt{"Temp (K)", "y_{Ar} 0.1 bar", "y_{ArII} 0.1 bar", "y_e 0.1 bar"} \} \}]$

Out[322]//TableForm=

$Temp\ (K)$	y _{Ar} 0.1 bar	y _{ArII} 0.1 bar	y _e 0.1 bar
1000	1.	5.80982×10^{-39}	5.80982×10^{-39}
2000	1.	$\textbf{1.04434} \times \textbf{10}^{-18}$	$\textbf{1.04434} \times \textbf{10}^{-18}$
3000	1.	$\textbf{7.42577} \times \textbf{10}^{-12}$	$\textbf{7.42577} \times \textbf{10}^{-12}$
4000	1.	$\textbf{2.20951} \times \textbf{10}^{-8}$	$\textbf{2.20951}\times\textbf{10}^{-8}$
5000	0.999994	$\textbf{2.86021}\times\textbf{10}^{-6}$	$\textbf{2.86021}\times\textbf{10}^{-6}$
6000	0.999847	0.0000763644	0.0000763644
7000	0.998357	0.000821508	0.000821508
8000	0.990054	0.00497308	0.00497308
9000	0.959441	0.0202794	0.0202794
10000	0.877389	0.0613057	0.0613057
11000	0.713269	0.143365	0.143365
12000	0.476518	0.261741	0.261741
13000	0.248274	0.375863	0.375863
14000	0.10647	0.446765	0.446765
15 000	0.0429938	0.478503	0.478503
16000	0.0180009	0.491	0.491
17 000	0.00808593	0.495957	0.495957
18000	0.00391317	0.498043	0.498043
19 000	0.00202948	0.498985	0.498985
20 000	0.00111962	0.49944	0.49944

In[323]:= TableForm[Table[

 $\{i*1000, \, yAr[1000*i, \, 1\, bar] \,\,, \, yArII[1000*i, \,\, 1\, bar] \,\,, \,\, ye[1000*i, \,\, 1\, bar] \,\,\}, \,\, \{i, \,\, 1, \,\, 20\}],$ $\label{eq:tableHeadings} \begin{tabular}{ll} Table Headings \end{tabular} \begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} Temp & (K) \begin{tabular}{ll} \begin{tabular}{ll$

Out[323]//TableForm=

Temp (K)	y _{Ar} 1 bar	y _{ArII} 1 bar	y _e 1 bar
1000	1.	1.83723×10^{-39}	1.83723×10^{-39}
2000	1.	$\textbf{3.3025}\times\textbf{10}^{-19}$	3.3025×10^{-19}
3000	1.	$\textbf{2.34823} \times \textbf{10}^{-12}$	$\textbf{2.34823} \times \textbf{10}^{-\textbf{12}}$
4000	1.	$\textbf{6.98708} \times \textbf{10}^{-9}$	$\textbf{6.98708}\times\textbf{10}^{-9}$
5000	0.999998	$\textbf{9.0448}\times\textbf{10}^{-7}$	$\textbf{9.0448}\times\textbf{10}^{-7}$
6000	0.999952	0.0000241498	0.0000241498
7000	0.99948	0.00025993	0.00025993
8000	0.996844	0.00157801	0.00157801
9000	0.986991	0.00650432	0.00650432
10000	0.959454	0.020273	0.020273
11000	0.898247	0.0508763	0.0508763
12000	0.787229	0.106385	0.106385
13 000	0.623335	0.188332	0.188332
14000	0.431299	0.28435	0.28435
15 000	0.258268	0.370866	0.370866
16 000	0.138532	0.430734	0.430734
17 000	0.0709369	0.464532	0.464532
18000	0.0366052	0.481697	0.481697
19000	0.019587	0.490207	0.490207
20 000	0.0109764	0.494512	0.494512

```
ln[324]:= TableForm[Table[{i * 1000, yAr[1000 * i, 10 bar],
          yArII[1000 * i, 10 bar], ye[1000 * i, 10 bar] }, {i, 1, 20}],
       Table Headings \rightarrow \{None, \{"Temp (K)", "y_{Ar} 10 bar", "y_{ArII} 10 bar", "y_e 10 bar"\}\}]
```

Out[324]//TableForm=

Temp (K)	y _{Ar} 10 bar	y _{ArII} 10 bar	y _e 10 bar
1000	1.	5.80982×10^{-40}	5.80982×10^{-40}
2000	1.	$\textbf{1.04434} \times \textbf{10}^{-19}$	$\textbf{1.04434} \times \textbf{10}^{-19}$
3000	1.	$\textbf{7.42577} \times \textbf{10}^{-13}$	$\textbf{7.42577} \times \textbf{10}^{-13}$
4000	1.	$\textbf{2.20951}\times\textbf{10}^{-9}$	$\textbf{2.20951} \times \textbf{10}^{-9}$
5000	0.999999	$\textbf{2.86022}\times\textbf{10}^{-7}$	$\textbf{2.86022}\times\textbf{10}^{-7}$
6000	0.999985	7.63696×10^{-6}	$\textbf{7.63696} \times \textbf{10}^{-6}$
7000	0.999836	0.0000822116	0.0000822116
8000	0.999001	0.00049955	0.00049955
9000	0.995868	0.00206608	0.00206608
10000	0.986996	0.00650224	0.00650224
11000	0.966621	0.0166896	0.0166896
12000	0.926987	0.0365064	0.0365064
13000	0.860085	0.0699576	0.0699576
14 000	0.7611	0.11945	0.11945
15 000	0.632838	0.183581	0.183581
16000	0.488461	0.25577	0.25577
17 000	0.348658	0.325671	0.325671
18 000	0.232389	0.383805	0.383805
19000	0.147941	0.426029	0.426029
20 000	0.0924287	0.453786	0.453786

Check: These values are matching CEA exactly.

Average molecular weight of mixture (mole-weighted average of molecular weight of each species)

```
In[325]:= MWavg[T_, P_] := yAr[T, P] MWar + yArII[T, P] MWarII + ye[T, P] MWe
```

Mixture enthalpy on mole basis (J/kmol)

```
ln[326]:=hmix[T_, P_]:=yAr[T, P]h_{Ar}[T]+yArII[T, P]h_{ArII}[T]+ye[T, P]h_e[T]
```

Mixture enthalpy on mass basis (J/kg)

```
In[327]:= hmass[T_, P_] := hmix[T, P] / MWavg[T, P]
```

Equilibrium heat capacity (J/kg-K)

```
ln[328] = cpmass[Tinput_, P_] := D[hmass[T, P], T] /. T \rightarrow Tinput
\label{eq:local_local_local_local_local} $$\ln[329] = \text{Cp1bar} = \text{Plot}[\text{Evaluate[cpmass[T, 1bar] / kJ]}, \{T, 500, 20000\}, \text{PlotStyle} \rightarrow \{\text{Blue}\}, \{\text
                                                                                                                              PlotPoints \rightarrow 200, Frame \rightarrow True, FrameLabel \rightarrow {"Temperture (K)", "c<sub>p</sub> (kJ/kg-K)"}];
```

```
In[330]:= Cp0p1bar = Plot[Evaluate[cpmass[T, 0.1 bar] / kJ],
            {T, 500, 20000}, PlotStyle \rightarrow {Cyan}, PlotPoints \rightarrow 200,
           Frame \rightarrow True, FrameLabel \rightarrow {"Temperture (K)", "c<sub>p</sub> (kJ/kg-K)"}];
In[331]:= Cp10bar = Plot[Evaluate[cpmass[T, 10 bar] / kJ],
            {T, 500, 20000}, PlotStyle \rightarrow {Purple}, PlotPoints \rightarrow 200,
            Frame \rightarrow True, FrameLabel \rightarrow {"Temperture (K)", "c<sub>p</sub> (kJ/kg-K)"}];
```

In[332]:= Show[Cp0p1bar, Cp1bar, Cp10bar]

 $ln[333] = TableForm[Table[{i * 1000, cpmass[i * 1000, 0.1bar] / kJ, cpmass[i * 1000, 1bar] / kJ, cpma$ cpmass[i * 1000, 10 bar] / kJ}, {i, 1, 20}], TableHeadings \rightarrow {None, ${"Temp (K)", "c_p (kJ/kg-K) 0.1 bar", "c_p (kJ/kg-K) 1 bar", "c_p (kJ/kg-K) 10 bar"}$

Out[333]//TableForm=

/TableFollii-			
$Temp\ (K)$	$c_p \ (kJ/kg-K)$ 0.1 bar	$c_p \ (kJ/kg-K)$ 1 bar	$c_p \ (kJ/kg-K)$ 10 bar
1000	0.520331	0.520331	0.520331
2000	0.520331	0.520331	0.520331
3000	0.520331	0.520331	0.520331
4000	0.520336	0.520333	0.520331
5000	0.520789	0.520476	0.520377
6000	0.529063	0.523092	0.521204
7000	0.591255	0.542753	0.527415
8000	0.858764	0.626961	0.553655
9000	1.65968	0.881431	0.635125
10000	3.49799	1.46915	0.822341
11000	6.83827	2.599	1.18374
12000	10.9167	4.45604	1.79663
13 000	11.8561	6.95944	2.72896
14 000	8.05156	9.2153	4.00075
15 000	4.26496	9.50383	5.50284
16000	2.37744	7.45018	6.88452
17 000	1.60756	4.88216	7.5734
18 000	1.30038	3.09867	7.17477
19000	1.17541	2.12048	5.93292
20 000	1.12575	1.62708	4.49625

Check: These values are matching CEA exactly.

Equilibrium enthalpy (J/kg)

```
ln[334]:= h1bar = Plot[Evaluate[hmass[T, 1bar] / MJ], {T, 500, 20000}, PlotStyle \rightarrow {Blue},
           PlotPoints → 200, Frame → True, FrameLabel → {"Temperture (K)", "h (MJ/kg)"}];
 ln[335]:= hp1bar = Plot[Evaluate[hmass[T, 0.1bar]/MJ], {T, 500, 20000}, PlotStyle <math>\rightarrow {Cyan},
           PlotPoints \rightarrow 200, Frame \rightarrow True, FrameLabel \rightarrow {"Temperture (K)", "h (MJ/kg)"}];
 ln[336]= h10bar = Plot[Evaluate[hmass[T, 10 bar] / MJ], {T, 500, 20 000}, PlotStyle \rightarrow {Purple},
           PlotPoints → 200, Frame → True, FrameLabel → {"Temperture (K)", "h (MJ/kg)"}];
 In[337]:= Show[hp1bar, h1bar, h10bar]
          60
          50
          40
Out[337]= G
          30
          20
          10
                        5000
                                     10000
                                                  15000
                                                               20 000
                                  Temperture (K)
```