Survival analysis with R (Part I)

Juan R Gonzalez

Contents

1	Introduction	1
2	Survival analysis	1
3	Survival time estimates using Kaplan-Meier estimator	2
4	Comparing survival curves	8
5	Adjusting for other covariates: stratified analysis	11
6	Trend test	11
7	Exercise (to deliver)	12
8	References	13
9	Session information	13

1 Introduction

Objectives

- Understand the concept of survival analysis
- Learn how to perform survival analysis (Kaplan-Meier estiamtor and log-rank test) with R
- Peform data analyses where the scientific question is to determine factor associated with time until event

2 Survival analysis

To illustrate how to carry out different survival data analyses a real dataset is going to be used. The database belongs to the data presented in a paper that analysed 686 women enrolled in a clinical trial on breast cancer. The reference is *W. Sauerbrei and P. Royston. Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. Journal of the Royal Statistics Society, Series A, 1999;162:71-94.* The information available is:

- Running-ID
- Hormonal Therapy (0- no treatment, 1-treatment)
- age (X1; in years)
- menopausal status (X2; 1- premenopausal,2- postmenopausal)
- Tumour size (X3; in mm)
- Tumour grade (X4; 1,2,3)
- Number of positive nodes (X5)
- Progesterone receptor (X6; in fmol)
- Estrogen receptor (X7; in fmol)
- Survival time (in days)
- Censoring Indicator (0- censored, 1- event).

Data can be loaded by executing:

```
library(survival)
datos <- read.table("../data/sauerbre.txt", header=TRUE)</pre>
head(datos)
     id therapy age meno.status tumor.size tumor.grade nodes progest estrog
## 1 1
              0 70
                             2
                                        21
## 2 2
             1 56
                             2
                                       12
                                                    2
                                                          7
                                                                  61
                                                                         77
## 3 3
                             2
                                        35
                                                    2
                                                          9
                                                                  52
             1 58
                                                                        271
                             2
                                                    2
## 4 4
             1 59
                                       17
                                                          4
                                                                  60
                                                                         29
              0 73
                             2
                                                    2
## 5 5
                                        35
                                                                  26
                                                                         65
                                                          1
                                        57
## 6 6
              0 32
                             1
                                                          24
                                                                  0
                                                                         13
   time event
## 1 1814
## 2 2018
              1
## 3 712
              1
## 4 1807
## 5 772
              1
## 6 448
```

Survival analysis requires an object of class Surv where "+" denotes the individual is right-censored.

```
Surv(datos$time, datos$event)
```

```
## [1] 1814 2018 712 1807 772 448 2172+ 2161+ 471 2014+ 577
## [12] 184 1840+ 1842+ 1821+ 1371 707 1743+ 1781+ 865 1684 1701+
## [23] 1701+ 1693+ 379 1105 548 1296 1483+ 1570+ 1469+ 1472+ 1342+
## [34] 1349+ 1162 1342+ 797 1232+ 1230+ 1205+
```

3 Survival time estimates using Kaplan-Meier estimator

The survival function can be estimated by using survfit function

The Kaplan-Meier table can be obtained by:

```
summary(ans)
## Call: survfit(formula = Surv(time, event) ~ 1, data = datos)
##
##
   time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
     72
            672
                      1
                           0.999 0.00149
                                                0.996
                                                              1.000
##
     98
            671
                      1
                           0.997 0.00210
                                                0.993
                                                              1.000
##
    113
            670
                      1
                           0.996 0.00257
                                                0.991
                                                             1.000
##
    120
            668
                      1
                           0.994 0.00297
                                                0.988
                                                              1.000
##
    160
            666
                      1
                           0.993 0.00332
                                                0.986
                                                              0.999
##
    169
            664
                          0.991 0.00363
                      1
                                                0.984
                                                             0.998
            663
                           0.990 0.00392
                                                             0.997
##
    171
                      1
                                                0.982
            662
                           0.988 0.00419
                                                              0.996
##
    173
                      1
                                                0.980
##
    175
            661
                          0.987 0.00445
                                                0.978
                                                             0.995
```

	4 777	000	•	0 004 0 00404	0.074	0.000	
##	177	660	2	0.984 0.00491	0.974	0.993	
##	180	657	1	0.982 0.00512	0.972	0.992	
##	181	656	1	0.981 0.00533	0.970	0.991	
##	184	655	1	0.979 0.00553	0.968	0.990	
##	191	653	1	0.978 0.00572	0.966	0.989	
##	195	652	1	0.976 0.00590	0.965	0.988	
##	205	650	1	0.975 0.00608	0.963	0.987	
##	223	648	1	0.973 0.00626	0.961	0.985	
##	227	647	1	0.972 0.00643	0.959	0.984	
##	233	645	1	0.970 0.00659	0.957	0.983	
##	238	644	1	0.969 0.00675	0.955	0.982	
##	241	643	1	0.967 0.00691	0.954	0.981	
##	242	642	1	0.966 0.00706	0.952	0.979	
##	247	641	1	0.964 0.00720	0.950	0.978	
##	249	640	1	0.963 0.00735	0.948	0.977	
##	251	639	1	0.961 0.00749	0.946	0.976	
##	272	638	2	0.958 0.00776	0.943	0.973	
##	275	635	1	0.957 0.00790	0.941	0.972	
##	281	633	2	0.953 0.00816	0.938	0.970	
##	285	631	2	0.950 0.00841	0.934	0.967	
##	286	629	1	0.949 0.00853	0.932	0.966	
##	288	628	1	0.947 0.00865	0.931	0.965	
##	293	627	1	0.946 0.00876	0.929	0.963	
##	305	625	1	0.944 0.00888	0.927	0.962	
##	307	624	1	0.943 0.00899	0.925	0.961	
##	308	623	2	0.940 0.00922	0.922	0.958	
##	316	620	1	0.938 0.00932	0.920	0.957	
##	329	617	1	0.937 0.00943	0.919	0.956	
##	336	616	1	0.935 0.00954	0.917	0.954	
##	338	615	3	0.931 0.00985	0.912	0.950	
##	343	612	1	0.929 0.00995	0.910	0.949	
##	344	611	1	0.928 0.01005	0.908	0.948	
##	348	610	1	0.926 0.01015	0.907	0.946	
##	350	609	1	0.925 0.01024	0.905	0.945	
##	353	608	1	0.923 0.01034	0.903	0.944	
##	357	607	1	0.922 0.01043	0.901	0.942	
##	358	606	1	0.920 0.01053	0.900	0.941	
##	359	605	2	0.917 0.01071	0.896	0.938	
##	360	603	1	0.916 0.01080	0.895	0.937	
##	369	601	1	0.914 0.01089	0.893	0.936	
##	370	600	2	0.911 0.01106	0.890	0.933	
##	371	598	1	0.909 0.01115	0.888	0.932	
##	372	597	1	0.908 0.01123	0.886	0.930	
##	374	596	1	0.906 0.01132	0.885	0.929	
##	375	595	1	0.905 0.01140	0.883	0.928	
##	377	594	1	0.903 0.01148	0.881	0.926	
##	379	593	1	0.902 0.01156	0.879	0.925	
##	385	592	1	0.900 0.01164	0.878	0.923	
##	392	591	1	0.899 0.01172	0.876	0.922	
##	394	590	1	0.897 0.01180	0.874	0.921	
##	403	589	1	0.896 0.01188	0.873	0.919	
##	410	588	1	0.894 0.01196	0.871	0.918	
##	415	587	1	0.893 0.01203	0.869	0.917	
##	417	586	1	0.891 0.01211	0.868	0.915	

##	420	585	2	0.888 0.01226	0.864	0.912	
##	426	582	2	0.885 0.01240	0.861	0.910	
##	436	578	1	0.884 0.01248	0.859	0.908	
##	438	577	1	0.882 0.01255	0.858	0.907	
##	446	576	1	0.880 0.01262	0.856	0.906	
##	448	575	1	0.879 0.01269	0.854	0.904	
##	449	574	1	0.877 0.01276	0.853	0.903	
##	455	573	1	0.876 0.01283	0.851	0.901	
##	456	572	1	0.874 0.01290	0.849	0.900	
##	460	571	1	0.873 0.01297	0.848	0.899	
##	465	568	1	0.871 0.01303	0.846	0.897	
##	471	567	1	0.870 0.01310	0.844	0.896	
##	473	566	1	0.868 0.01317	0.843	0.894	
##	475	565	1	0.867 0.01323	0.841	0.893	
##	476	564	2	0.864 0.01337	0.838	0.890	
##	481	562	1	0.862 0.01343	0.836	0.889	
##	486	561	1	0.861 0.01349	0.834	0.887	
##	490	559	1	0.859 0.01356	0.833	0.886	
##	491	558	3	0.854 0.01374	0.828	0.882	
##	495	555	1	0.853 0.01380	0.826	0.880	
##	498	554	1	0.851 0.01387	0.825	0.879	
##	500	553	1	0.850 0.01393	0.823	0.878	
##	502	552	1	0.848 0.01398	0.821	0.876	
##	503	551	1	0.847 0.01404	0.820	0.875	
##	504	550	1	0.845 0.01410	0.818	0.873	
##	515	549	1	0.844 0.01416	0.816	0.872	
##	518	548	1	0.842 0.01422	0.815	0.870	
##	525	547	1	0.841 0.01428	0.813	0.869	
##	529	545	1	0.839 0.01433	0.811	0.868	
##	530	543	1	0.837 0.01439	0.810	0.866	
##	533	542	1	0.836 0.01445	0.808	0.865	
##	535	541	1	0.834 0.01450	0.806	0.863	
##	536	540	1	0.833 0.01456	0.805	0.862	
##	537	539	1	0.831 0.01461	0.803	0.860	
##	540	538	1	0.830 0.01467	0.801	0.859	
##	542	536	1	0.828 0.01472	0.800	0.858	
##	544	535	2	0.825 0.01483	0.797	0.855	
##	545	533	1	0.824 0.01488	0.795	0.853	
##	547	531	1	0.822 0.01493	0.793	0.852	
##	548	530	3	0.817 0.01509	0.788	0.847	
##	550	527	2	0.814 0.01519	0.785	0.845	
##	552	525	2	0.811 0.01529	0.782	0.842	
##	554	522	2	0.808 0.01539	0.778	0.839	
##	557	520	1	0.806 0.01543	0.777	0.837	
##	559	519	1	0.805 0.01548	0.775	0.836	
##	563	518	1	0.803 0.01553	0.773	0.834	
##	564	517	1	0.802 0.01558	0.772	0.833	
##	571	513	1	0.800 0.01563	0.770	0.831	
##	573	512	1	0.799 0.01567	0.769	0.830	
##	575	511	1	0.797 0.01572	0.767	0.829	
##	577	510	1	0.796 0.01577	0.765	0.827	
##	578	509	1	0.794 0.01581	0.764	0.826	
##	579	508	1	0.792 0.01586	0.762	0.824	
##	586	507	1	0.791 0.01591	0.760	0.823	

##	594	506	2	0.788 0.01600	0.757	0.820	
##	595	504	1	0.786 0.01604	0.755	0.818	
##	598	502	1	0.785 0.01608	0.754	0.817	
##	600	501	1	0.783 0.01613	0.752	0.815	
##	612	500	1	0.781 0.01617	0.750	0.814	
##	622	498	1	0.780 0.01622	0.749	0.812	
##	624	495	2	0.777 0.01630	0.745	0.809	
##	629	492	1	0.775 0.01635	0.744	0.808	
##	632	489	1	0.774 0.01639	0.742	0.806	
##	637	488	1	0.772 0.01643	0.740	0.805	
##	646	486	1	0.770 0.01647	0.739	0.803	
##	648	485	1	0.769 0.01652	0.737	0.802	
##	650	484	1	0.767 0.01656	0.735	0.800	
##	662	479	1	0.766 0.01660	0.734	0.799	
##	670	477	1	0.764 0.01664	0.732	0.797	
##	675	476	1	0.762 0.01669	0.730	0.796	
##	679	474	1	0.761 0.01673	0.729	0.794	
##	687	473	1	0.759 0.01677	0.727	0.793	
##	698	470	1	0.758 0.01681	0.725	0.791	
##	707	469	1	0.756 0.01685	0.724	0.790	
##	712	468	1	0.754 0.01689	0.722	0.788	
##	714	467	1	0.753 0.01694	0.720	0.787	
##	722	464	1	0.751 0.01698	0.719	0.785	
##	727	461	1	0.749 0.01702	0.717	0.784	
##	729	460	1	0.748 0.01706	0.715	0.782	
##	730	459	1	0.746 0.01710	0.713	0.781	
##	731	458	1	0.745 0.01714	0.712	0.779	
##	732	457	1	0.743 0.01718	0.710	0.777	
##	742	449	1	0.741 0.01722	0.708	0.776	
##	745	448	1	0.740 0.01726	0.707	0.774	
##	747	447	1	0.738 0.01730	0.705	0.773	
##	748	445	1	0.736 0.01734	0.703	0.771	
##	754	442	1	0.735 0.01738	0.701	0.770	
##	755	441	1	0.733 0.01742	0.700	0.768	
##	762	437	1	0.731 0.01746	0.698	0.766	
##	769	434	1	0.730 0.01750	0.696	0.765	
##	772	432	1	0.728 0.01755	0.694	0.763	
##	776	430	1	0.726 0.01759	0.693	0.762	
##	784	428	1	0.725 0.01763	0.691	0.760	
##	790	427	1	0.723 0.01767	0.689	0.758	
##	795	425	1	0.721 0.01771	0.687	0.757	
##	797	424	2	0.718 0.01779	0.684	0.753	
##	799	421	1	0.716 0.01783	0.682	0.752	
##	801	420	1	0.714 0.01786	0.680	0.750	
##	805	419	1	0.713 0.01790	0.678	0.749	
##	819	417	1	0.711 0.01794	0.677	0.747	
##	827	415	1	0.709 0.01798	0.675	0.745	
##	836	413	1	0.708 0.01802	0.673	0.744	
##	838	412	1	0.706 0.01806	0.671	0.742	
##	842	410	1	0.704 0.01809	0.669	0.740	
##	855	407	2	0.701 0.01817	0.666	0.737	
##	857	404	1	0.699 0.01821	0.664	0.736	
##	859	401	2	0.695 0.01828	0.660	0.732	
##	861	398	1	0.694 0.01832	0.659	0.731	

##	865	397	1	0.692 0.01836	0.657	0.729	
##	866	396	1	0.690 0.01839	0.655	0.727	
##	867	395	1	0.688 0.01843	0.653	0.726	
##	876	392	1	0.687 0.01847	0.651	0.724	
##	883	390	1	0.685 0.01850	0.650	0.722	
##	889	388	1	0.683 0.01854	0.648	0.720	
##	890	387	1	0.681 0.01857	0.646	0.719	
##	891	386	1	0.680 0.01861	0.644	0.717	
##	893	384	1	0.678 0.01865	0.642	0.715	
##	918	382	1	0.676 0.01868	0.640	0.714	
##	945	374	1	0.674 0.01872	0.639	0.712	
##	956	372	2	0.671 0.01879	0.635	0.708	
##	959	370	1	0.669 0.01883	0.633	0.707	
##	960	369	1	0.667 0.01886	0.631	0.705	
##	964	368	1	0.665 0.01890	0.629	0.703	
##	981	358	1	0.663 0.01894	0.627	0.702	
##	982	357	1	0.661 0.01898	0.625	0.700	
##	983	356	1	0.660 0.01901	0.623	0.698	
##	991	354	1	0.658 0.01905	0.621	0.696	
##	1002	352	1	0.656 0.01909	0.620	0.694	
##	1036	350	1	0.654 0.01913	0.618	0.693	
##	1043	349	1	0.652 0.01916	0.616	0.691	
##	1059	348	1	0.650 0.01920	0.614	0.689	
##	1080	344	1	0.648 0.01924	0.612	0.687	
##	1090	340	1	0.646 0.01927	0.610	0.685	
##	1093	337	1	0.645 0.01931	0.608	0.684	
##	1094	335	1	0.643 0.01935	0.606	0.682	
##	1105	330	2	0.639 0.01943	0.602	0.678	
##	1108	328	1	0.637 0.01947	0.600	0.676	
##	1120	322	1	0.635 0.01951	0.598	0.674	
##	1140	320	1	0.633 0.01955	0.596	0.672	
##	1146	319	1	0.631 0.01958	0.594	0.670	
##	1150	318	1	0.629 0.01962	0.592	0.669	
##	1157	315	1	0.627 0.01966	0.589	0.667	
##	1162	314	1	0.625 0.01970	0.587	0.665	
##	1164	312	1	0.623 0.01974	0.585	0.663	
##	1170	309	1	0.621 0.01978	0.583	0.661	
##	1174	307	1	0.619 0.01982	0.581	0.659	
##	1183	304	1	0.617 0.01986	0.579	0.657	
##	1192	302	1	0.615 0.01989	0.577	0.655	
##	1193	300	1	0.613 0.01993	0.575	0.653	
##	1207	297	1	0.611 0.01997	0.573	0.651	
##	1218	294	1	0.609 0.02001	0.571	0.649	
##	1219	293	1	0.606 0.02005	0.568	0.647	
##	1225	289	1	0.604 0.02009	0.566	0.645	
##	1246	282	1	0.602 0.02013	0.564	0.643	
##	1253	280	1	0.600 0.02018	0.562	0.641	
##	1279	277	1	0.598 0.02022	0.560	0.639	
##	1280	276	2	0.594 0.02030	0.555	0.635	
##	1296	273	1	0.591 0.02035	0.553	0.633	
##	1306	271	1	0.589 0.02039	0.551	0.631	
##	1329	268	1	0.587 0.02043	0.548	0.628	
##	1337	265	1	0.585 0.02047	0.546	0.626	
##	1343	260	1	0.583 0.02052	0.544	0.624	

##	1352	255	1	0.580 0.02056	0.541	0.622	
##	1363	248	1	0.578 0.02061	0.539	0.620	
##	1366	246	1	0.576 0.02066	0.536	0.618	
##	1371	245	1	0.573 0.02071	0.534	0.615	
##	1387	244	1	0.571 0.02076	0.532	0.613	
##	1388	243	1	0.569 0.02081	0.529	0.611	
##	1420	241	1	0.566 0.02085	0.527	0.609	
##	1449	232	1	0.564 0.02091	0.524	0.606	
##	1459	231	1	0.561 0.02096		0.604	
##	1460	229	1	0.559 0.02101		0.602	
##	1463	228	1	0.556 0.02106	0.517	0.599	
##	1481	223	1	0.554 0.02111	0.514	0.597	
##	1493	218	1	0.551 0.02117	0.511	0.594	
##	1502	214	1	0.549 0.02122	0.509	0.592	
##	1521	209	1	0.546 0.02128		0.590	
##	1525	208	1	0.544 0.02134		0.587	
##	1528	206	1	0.541 0.02140		0.585	
##	1587	200	1	0.538 0.02147		0.582	
##	1589	199	1	0.535 0.02153	0.495	0.579	
##	1601	196	1	0.533 0.02159		0.577	
##	1641	185	1	0.530 0.02167	0.489	0.574	
##	1675	177	1	0.527 0.02175		0.571	
##	1679	175	1	0.524 0.02183		0.568	
##	1684	173	1	0.521 0.02191		0.566	
##	1701	168	1	0.518 0.02200		0.563	
##	1730	150	1	0.514 0.02212	0.473	0.560	
##	1753	144	1	0.511 0.02226	0.469	0.556	
##	1763	140	1	0.507 0.02240	0.465	0.553	
##	1806	132	1	0.503 0.02255	0.461	0.549	
##	1807	131	1	0.499 0.02271	0.457	0.546	
##	1814	129	2	0.492 0.02300	0.449	0.539	
##	1918	94	1	0.486 0.02335	0.443	0.534	
##	1975	84	1	0.481 0.02378	0.436	0.530	
##	1977	82	1	0.475 0.02420	0.430	0.525	
##	1989	77	1	0.469 0.02466	0.423	0.520	
##	1990	76	1	0.462 0.02509	0.416	0.514	
##	2015	68	1	0.456 0.02563	0.408	0.509	
##	2018	66	1	0.449 0.02615	0.400	0.503	
##	2030	63	1	0.442 0.02669	0.392	0.497	
##	2034	61	1	0.434 0.02722	0.384	0.491	
##	2039	60	1	0.427 0.02771	0.376	0.485	
##	2093	51	1	0.419 0.02840	0.367	0.478	
##	2286	25	1	0.402 0.03182		0.469	
##	2372	19	1	0.381 0.03651	0.316	0.460	
##	2456	10	1	0.343 0.04884	0.259	0.453	

The survival curve can be visualized by

```
plot(ans, xlab="Time", ylab="Survival probability")
```


4 Comparing survival curves

Let us illustrate how to compare survival curves for two groups. Researchers are interested in comparing the survival between patients who received or not a new thepary. The R code is:

```
ans.ther <- survfit(Surv(time, event)~as.factor(therapy), datos)</pre>
ans.ther
## Call: survfit(formula = Surv(time, event) ~ as.factor(therapy), data = datos)
##
##
                           n events median 0.95LCL 0.95UCL
## as.factor(therapy)=0 440
                                205
                                       1528
                                               1296
                                                        1814
## as.factor(therapy)=1 246
                                 94
                                       2018
                                               1918
                                                          NA
```

In this case we observe that there are statistically significant differences between the median survival of the two groups since their confidence intervals do not overlap. However we are normally interested in determining differences at any time. This can be visualized by comparing survival curves between groups

```
plot(ans.ther)
```


The plot can be improved by

The comparison across time is computed by using log-rank test

```
ans.logrank<-survdiff(Surv(time, event)~as.factor(therapy), datos,</pre>
                               rho=0)
ans.logrank
## Call:
##
  survdiff(formula = Surv(time, event) ~ as.factor(therapy), data = datos,
##
       rho = 0
##
##
                           N Observed Expected (O-E)^2/E (O-E)^2/V
## as.factor(therapy)=0 440
                                  205
                                            180
                                                     3.37
                                                                8.56
                                   94
## as.factor(therapy)=1 246
                                            119
                                                     5.12
                                                                8.56
##
   Chisq= 8.6 on 1 degrees of freedom, p= 0.00343
```

We observe that the differences we observe in the curves, are statistically significant at 5% level. Notice that the argument rho is not necessary since it is the default value. It corresponds to the log-rank test. Wilcoxon test is computed by setting rho=1

```
## as.factor(therapy)=0 440 157.8 138.6 2.66 8.71

## as.factor(therapy)=1 246 69.3 88.5 4.16 8.71

## Chisq= 8.7 on 1 degrees of freedom, p= 0.00316
```

We observe that both tests are providing the same conclusion.

5 Adjusting for other covariates: stratified analysis

In some occassions researchers are interested in comparing survival curves between two groups of patients but they know that there are differences in the survival due to a third variable. For instance, in this data, menopausal status influence survival. Therefore, observed differences between women receiven therapy or not must be adjusted for this third variable. This can be performed by using an stratified test

```
ans.strat<-survdiff(Surv(time, event)~as.factor(therapy)
                      +strata(meno.status), datos)
ans.strat
## Call:
## survdiff(formula = Surv(time, event) ~ as.factor(therapy) + strata(meno.status),
##
       data = datos)
##
##
                          N Observed Expected (O-E)^2/E (O-E)^2/V
## as.factor(therapy)=0 440
                                  205
                                           180
                                                    3.52
                                                               9.51
## as.factor(therapy)=1 246
                                   94
                                           119
                                                    5.31
                                                               9.51
##
##
   Chisq= 9.5 on 1 degrees of freedom, p= 0.00204
ans.logrank
## Call:
## survdiff(formula = Surv(time, event) ~ as.factor(therapy), data = datos,
##
##
                          N Observed Expected (0-E)^2/E (0-E)^2/V
## as.factor(therapy)=0 440
                                  205
                                                               8.56
                                           180
                                                    3.37
## as.factor(therapy)=1 246
                                   94
                                           119
                                                    5.12
                                                               8.56
##
   Chisq= 8.6 on 1 degrees of freedom, p= 0.00343
```

We can observe as both tests are providing similar answer. In both cases the differences in survival times after receiving or not the therapy are statistically significant. This implies that the menopausal status is not confounding the results.

6 Trend test

In other occassions researchers are interested in addressing the next scientific question: Is there any linear relationship between the survival and the tumor grade? In other words, the worse tumor grade implies worse survival? This question makes sense in the situations where the independent variable has any order. In this figure we also check whether this question is well addressed.

```
ans.grade<-survfit(Surv(time, event)~as.factor(tumor.grade), datos)
plot(ans.grade, xlab="Time", ylab="Survival probability", col=1:3)</pre>
```


The statistical test is performed by considering tumor.grade variable as numeric. This cannot be performed by using survfit function since it assumes that the covariates are categorical. These type of question can be answered by fitting Cox proportional hazards models (this will be seen in Part II). Here can also addressed he question: Are there statistical differences between tumoral grades?

```
survdiff(Surv(time, event)~as.factor(tumor.grade), datos)
## Call:
## survdiff(formula = Surv(time, event) ~ as.factor(tumor.grade),
##
       data = datos)
##
##
                              N Observed Expected (O-E)^2/E (O-E)^2/V
## as.factor(tumor.grade)=1 81
                                      18
                                              42.2
                                                                 16.159
                                                     13.8469
## as.factor(tumor.grade)=2 444
                                      202
                                             198.2
                                                      0.0725
                                                                  0.215
## as.factor(tumor.grade)=3 161
                                       79
                                              58.6
                                                      7.0788
                                                                 8.848
##
   Chisq= 21.1 on 2 degrees of freedom, p= 2.63e-05
```

Further information about survival data analysis with R can be found in this tutorial Tutorial Survival Analysis.

7 Exercise (to deliver)

Data for exercises are in the repository $https://github.com/isglobal-brge/TeachingMaterials/tree/master/Longitudinal_data_analysis/data$

File *pulmon.sav* contains data about a survival study about lung cancer (NOTE: data can be loaded into Rby using read.spss function available at foreign library - use argument *to.data.frame=TRUE*). Colums contain this information:

- TIEMPO Supervivencia (meses)
- ESTADO: 0 VIVO, 1 MORT
- EDAD4 Age at diagnosis in years (quartiles)
- SEXO: HOMBRES, MUJERES
- ESTCLIN Estadio clinico: EST 0/I, EST II, EST IIIA, EST IIIB, EST IV
- IK Indice de estado general (100 estado perfecto, 0 muerte)
- CIRUGIA: 1 No operado, 2 Cirugia no radical, 3 Cirugia Radical
- QUIMIO: 1 No Quimio, 2 Platino
- RADIOTER: 1 No RT, 2 <60 Gy, 3 >60 Gy

Exercise 1: Survival function estimation

- Estimate global survival time
- Draw survival curve
- Estimate median survival time and its confidence interval
- Which is the time where 75% of people have died?
- Estimate survival curve for the covariates sex, surgery, chemotherapy and radiotherapy

Exercise 2: Comparing survival curves

- Draw survival curves of patients receiveing chemotherapy and not
- Compare survival curves of patients receiving chemotherapy, radiotherapy, surgery and clinical stage by using log-rank test. Identify those variables significantly assoicuated with survival
- Are there statistical differences depending on chemotherapy after adjusting by clinical stage?
- Is there any trend in the survival with regard to the Karnofski index. Answer this question by visualy inspecting the required plot \end{enumerate}

8 References

The [survival] package (https://cran.r-project.org/web/packages/survival/)

9 Session information

```
## R version 3.3.2 (2016-10-31)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 14393)
##
## locale:
## [1] LC_COLLATE=Spanish_Spain.1252 LC_CTYPE=Spanish_Spain.1252
## [3] LC_MONETARY=Spanish_Spain.1252 LC_NUMERIC=C
## [5] LC_TIME=Spanish_Spain.1252
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
                                                                   base
##
## other attached packages:
```

```
## [1] survival_2.40-1 knitr_1.15.1 BiocStyle_2.2.1
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.9 lattice_0.20-34 digest_0.6.11 rprojroot_1.2
## [5] grid_3.3.2 backports_1.0.5 magrittr_1.5 evaluate_0.10
## [9] stringi_1.1.2 Matrix_1.2-7.1 rmarkdown_1.3 splines_3.3.2
## [13] tools_3.3.2 stringr_1.2.0 yaml_2.1.14 htmltools_0.3.5
```