Regulatory Sequence Analysis

Regulatory regions and regulatory elements

Jacques van Helden Jacques.van.Helden@ulb.ac.be

The non-coding genome

Organism	1691	Mb	Seves	genesmu	% coding	8. non.co.	oing %	% Transcribed
Mycoplasma genitalium	1995	0.6	481	802	90	10		
Haemophilus influenzae	1995	1.8	1 717	954	86	14		
Escherichia coli	1997	4.6	4 289	932	87	13		
Saccharomyces cerevisiae	1996	12	6 286	524	72	28		
Arabidiopsis thaliana	2001	120	27 000	225	30	70		
Caenorhabditis elegans	1998	97	19 000	196	27	73		
Drosophila melanogaster	2000	165	16 000	97	15	85		
Homo sapiens	2001	3 200	31 000	10	3	97	46	28

The genome challenge

Transcriptional activation

Transcriptional repression

Prevent RNA polymerase from accessing DNA

Competition for factor binding site

Factor titration

Prevent transcription factor from interacting with RNA-polymerase (bind with activation domain)

Transcription factor-DNA interfaces

Phosphate utilisation in yeast

Transcription factor binding site (TFBS)

Gene	Ft_type	Factor	Strand	left	right	Sequence
PHO5	site	Pho4p	D	-370	-347	TAAATTAG CACGTTTT CGCATAGA
PHO5	site	Pho4p	D	-262	-239	TGGCACTCA CACGTGGG ACTAGCA
PHO8	site	Pho4p	D	-540	- 522	TCGGGCCACGTGCAGCGAT
PHO8	site	Pho4p	D	- 736	- 718	ATATTAAGCGTGCGGGTAA
PHO81	site	Pho4p	D	- 350	-332	TTAT GGCACGTG CGAATAA
PHO84	site	Pho4p	D	- 592	- 575	TTACG CACGTT GGTGCTG
PHO84	site	Pho4p	D	-421	-403	TTTCCAG CACGTGGGGCGG
PHO84	site	Pho4p	D	-442	-425	TAGTTC CACGTGG ACGTG
PHO84	site	Pho4p	DR	-879	-874	aaaagtg <u>t</u> CACGTG <u>a</u> taaaaat
PHO84	site	Pho4p	D	-267	-250	TT AAAAACGTG CGTATTA

- A transcription factor binding site (TFBS) is a location within a sequence.
- A site can be
 - experimentally characterized (known site)
 - inferred by some algorithm (predicted site)
- Example
 - binding sites for the yeast transcription factor Pho4p.
 Coordinates are relative to the start codon.

Alignment of transcription factor binding sites

Binding sites for the yeast transcription factor Pho4p

(Source: Oshima et al. Gene 179, 1996; 171-177)

Gene	Site Name	Sequence	Affinity
PHO5	UASp2	aCtCaCACACGTGGGACTAGC-	high
PHO84	Site D	TTTCCAGCACGTGGGGCGGA	high
PHO81	UAS	TTATGGCACGTGCGAATAA	high
PHO8	Proximal	GTGATCGCTGCACGTGGCCCGA	high
PHO5	UASp3	TAATTTGGCATGTGCGATCTC	low
PHO84	Site C	ACGTCCACGTGGAACTAT	low
PHO84	Site A	TTTATCACGTGACACTTTTT	low
group 1	consensus	gCACGTGggac	high-low
PHO5	UASp1	TAAATTAGCACGTTTTCGC	medium
PHO84	Site E	AATACGCACGTTTTTAATCTA	medium
PHO84	Site B	TTACGCACGTTGGTGCTG	low
PHO8	Distal	TTACCCGCACGCTTAATAT	low
	~	•	•
group 2	consensus	cgCACGTTt	med-low

Degenerate consensus

-----GCACGTKKk-----

IUP/	IUPAC ambiguous nucleotide code									
Α	Α	A denine								
С	С	Cytosine								
G	G	Guanine								
Т	T	T hymine								
R	A or G	pu R ine								
Υ	C or T	p Y rimidine								
W	A or T	Weak hydrogen bonding								
S	G or C	Strong hydrogen bonding								
M	A or C	aMino group at common position								
K	G or T	Keto group at common position								
Н	A, C or T	not G								
В	G, C or T	not A								
V	G , A , C	not T								
D	G , A or T	not C								
N	G, A, C or T	а N у								

Regulatory sites: matrix description

Position-specific scoring matrix (PSSM)

Pos	1	2	3	4	5	6	7	8	9	10	11	12
Base												
A	1	3	2	0	8	0	0	0	0	0	1	2
C	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
Т	4	1	0	0	0	0	0	8	3	2	2	2
			V	С	Α	С	G	T	K	В		

Binding motif for the yeast Pho4p transcription factor (Source : Transfac matrix F\$PHO4_01)

Sequence logo

Sequence logo

A TGTATGG Rap1 GGTGGCAAA Rpn4 **SAATGASTCA** Gcn4 GAA TTC AGAA HSE JG_GGGGA_GG Mig1 AAT TCACGTG Cbf1

Motif / pattern

- We use the term motif (or pattern) in the sense of a model used to represent the specificity of binding for a transcription factor.
- A motif can be described using different formalisms.
 - String-based descriptions

nucleotide alphabet
 CACGTGGG

IUPAC alphabet CACGTGKK

• regular expressions. **CACGTG[GT][GT]**

Probabilistic descriptions

Position-specific scoring matrix (PSSM)

Pos	: 1	2	3	4	5	6	7	8	9	10	11	12
Α	1	3	2	0	8	0	0	0	0	0	1	2
C	2	2	3	8	0	8	0	0	0	2	0	2
G	1	2	3	0	0	0	8	0	5	4	5	2
T	4	1	0	0	0	0	0	8	3	2	2	2

- Hidden Markov Model (HMM) (not treated here)
- Logo representation (Schneider, 1986)

Characteristics of yeast regulatory sites

- Located upstream the regulated gene
- Short DNA sequences (5-30 bp)
 - Highly conserved core (5-8 bp), with partly conserved flanking nucleotides
 - Pair of very shot oligonucleotides (3 nt) separated by a nonconserved segment (0-20 bp)
- Strand-insensitive
- Wihtin 800 bp from the start codon
- Efficiency dos not depend on
 - strand
 - position

Differences between species

organism	coli	yeast	higher organisms		
location	upstream	upstream	upstream		
	overlap. Initiation		downstream		
			within introns		
distance range	-400 to +50 bp	-800 to -1 bp	over 100s of Kb		
position effect	often essential	often irrelevant	often irrelevant		
strand	sensitive or symmetric	insensitive	insensitive		
most common	spaced pair of 3nt	~5-8 conserved bp	~5-8 conserved bp		
core repeated sites	rare	occasional	frequent		
Topoutou Sitos	rare	Occasional	почасти		
composite			frequent		
elements					

Pattern matching vs pattern discovery

Questions and approaches

- 1. If we know the consensus for a given transcription factor, can we predict its binding sites in a DNA sequence?
 - Pattern matching against a sequence
- 2. Can we scan a sequence for matches with the consensus of all he currently known transcription factor?
 - Matching a library of patterns against a sequence
- 3. Starting from a set of co-expressed genes, can we predict cis-acting elements involved in their transcriptional regulation?
 - Pattern discovery within a sequence set
- 4. Can we detect regulatory signals by searching conserved elements in noncoding sequences of orthologous genes?
 - Phylogenetic footprinting
- 5. Can we classify genes on the basis of the presence of regulatory motifs in their regulatory regions?
 - Gene classification on the basis of pattern scores
 - Unsupervised classification (clustering): regroup elements (genes) in clusters without a priori knowledge about these clusters. The clusters are "discoverd" during the clustering process.
 - Supervised classification: use pre-defined groups of genes (training sets) to train a
 program, and then use this programs to assign new elements (genes) to one of the
 pre-defined groups.

Regulatory Sequence Analysis

Supplementary material

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Typical situations : pattern discovery

- Selected sequence set
 - e.g. family of 20 co-regulated genes, obtained from DNA chip experiment
 - → identify putative regulatory sites
- Genome-scale pattern discovery
 - е.g. all upstream sequences
 - → identify transcription initiation signals
 - e.g. all downstream sequences
 - → identify 3' maturation signals

Typical situations : pattern matching

- Selected genes, selected patterns
 - e.g. 10 genes known to be regulated by a factor
 - → search matching positions
- Selected genes, library of patterns
 - → infer putative action of any previously known transcription factor
- All genes, selected patterns
 - → classify all the genes of a genome according to putative regulatory properties

Methionine Biosynthesis in S.cerevisiae

Met4p binding sites

gene	start	end	sequence
MET3	-367	-349	GAAAAG TCACGTG TAATTT
MET3	-384	-366	AAAAGG TCACGTGA CCAGA
MET14	-235	-217	CTAATT TCACGTGA TCAAT
MET16	-185	-167	ATCATT TCACGTG GCTAGT
ECM17	-311	-293	ATTTCA TCACGTG CGTATT
ECM17	-339	-321	.TTTGTC CACGTGA TATTTC
MET10	-255	-237	. CCACAC CACGTGA GCTTAT
MET10	-237	-219	. TAGAAG CACGTGA CCACAA
MET2	-360	-342	GTATTT TCACGTGA TGCGC
MET2	-554	-536	TAATAA TCACGTGA TATTT
MET17	-306	-288	. AAATGG CACGTGA AGCTGT
MET17	-332	-314	TTGAGG TCAC A TGA TCGCA
MET6	-540	-522	GCCACA TCACGTGCA CATT
MET6	-502	-484	AATATT TCACGTGA CTTAC
SAM2	-329	-311	.TCTACO CACGTGA CTATAA
SAM2	-381	-363	.TCTTCA CA T GTGA TTCATC

Α	13	11	3	3	2	0	16	0	1	0	0	12
С	1	0	0	3	0	16	0	15	0	0	0	0
G	1	1	4	4	4	0	0	0	15	0	16	4
T	1	4	9	6	10	0	0	1	0	16	0	0

Met31p binding sites

gene	start	end	sequence
MET14	-202	-182	CCTC AAAAA A TGTGG CAATGG
MET2	-313	-293	TGC AAAAA T TGTGG ATGCAC
MET17	-227	-207	TCATG AAAACTGTG TAACATA
MET6	-313	-293	GTCGC AAAACTGTGG TAGTCA
SAM2	-306	-286	GCTTG AAAACTGTGG CGTTTT
SAM1	-283	-263	ACAGG AAAACTGTGG TGGCGC
MET19	-173	-153	ATAAGC AAACTGTGG TTCAT
MUP3	-188	-168	CGG AAAAACTGTGG CGTCGC
MET8	-184	-164	GG AAAAAA A TGTG AAAATCG
MET1	-232	-212	CATAAT AAACTGTG AACGGAC
MET3	-259	-239	ACAAAG CCACAGTTTT ACAAC
MET28	-159	-139	CTAACA CCACAGTTTT GGGCG
MET8	-434	-414	TCTTGT CCGCAGTTTT ATCTG
MET30	-168	-148	GGGAAG CCACAGTTT GCGCGG
МЕТ6	-405	-385	CTATCGAA CTCGTTT AGTCGC

Α	5	11	14	14	14	2	0	0	0	0	2	5
С	2	2	0	0	0	11	0	0	1	0	0	5
G	5	0	0	0	0	0	0	14	0	14	11	1
Т	2	1	0	0	0	1	14	0	13	0	1	3

Pho4p binding sites

gene	start e	end	sequence
PHO5	-260	-242	GCACTCA CACGTGGG ACTA
PHO5	-260	-245	GCACTCA CACGTGGG A
PHO5	-262	-239	TGGCACTCA CACGTGGG ACTAGCA
PHO8	-540	-522	TCGGGC CACGTGC AGCGAT
PHO8	-736	-718	ttacccg CACG<u>C</u>TT aatat
PHO81	-350	-332	TTATGG CACGTGCG AATAA
PHO84	-421	- 403	TTTCCAG CACGTGGG GCGG
PHO84	-442	-425	TAGTTC CACGTGG ACGTG
PHO84	-879	-874	.aaaagtgt CACGTG ataaaaat
PHO84	-267	-250	taatacg CACGTTTTT aa
PHO84	-592	-575	TTACG CACGTT GGTGCTG
PHO5	-368	-349	AATTAG CACGTTTT CGCATA
PHO5	(?)	(?)	AAATTAG CACGTTT CGC
PHO5	-370	-347	. TAAATTAG CACGTTTT CGCATAGA

IUPAC ambiguous nucleotide code

Α	A	Adenine
С	С	Cytosine
G	G	Guanine
T	T	T hymine
R	A or G	pu R ine
Y	C or T	p Y rimidine
W	A or T	W eak hydrogen bonding
S	G or C	Strong hydrogen bonding
M	A or C	aMino group at common position
K	G or T	Keto group at common position
Н	A, C or T	not G
В	G, C or T	not A
V	G , A , C	not T
D	G, A or T	not C
N	G, A, C or T	a N y

Pho4p binding specificity - matrix descriptions

С	Pho4p											
Α	14	0	5	7	6	0	26	0	0	0	0	3
С	2	8	5	16	6	26	0	26	0	1	0	4
G	4	2	1	1	12	0	0	0	26	0	16	12
T	6	16	15	2	2	0	0	0	0	25	10	7

<u>D</u>	Pho4p.cacgtg											
Α	2	17	0	0	0	0	2	1	8	5	5	13
С	16	0	18	0	0	0	6	3	4	5	0	1
G	0	1	0	18	0	18	9	12	2	5	2	1
T	0	0	0	0	18	0	1	2	4	3	11	3

<u>E</u>	Pho4p.cacgtt											
Α	7	0	2	5	1	0	8	0	0	0	0	1
С	0	1	1	3	3	8	0	8	0	0	0	0
G	0	0	0	0	4	0	0	0	8	0	0	2
Т	1	7	5	0	0	0	0	0	0	8	8	5