Evaluating the Quality of Graph Embeddings via Topological Feature Reconstruction

Stephen Bonner*, John Brennan*, Ibad Kureshi*, Georgios Theodoropoulos, Stephen McGough, Bogulsaw Obara*

*Department of Computer Science, Durham University

December 11, 2017

Introduction

- A graph is a **representation of data** useful at capturing intrinsic links or relationships.
- A graph G = (V, E) set of vertices V and edges E.
- Vertices: an entity (person, object or document). Edges: relationship or link between two vertices.
- A graph's structure is called it's topology.
- Can represent: social media networks, road networks, citation networks, web hyper-link graphs, semantic web data and protein interaction networks.

Graph:
$$G=(\mathcal{V},\mathcal{E})$$
 Adjacency matrix: A

Graph Analysis

- The field of graph analysis is all about mining and making sense of these complex graph structures!
- Problems areas in network science include: Link Prediction,
 Vertex Centrality Measurement, Classification, Community
 Detection and Temporal Evolution.
- Traditionally these have been performed by custom graph-based algorithms Have issues with generality (domain specific algorithms) and scalability (graph focused parallel libraries).

Research Problems

Analysing graph via machine learning faces some challenging issues:

- Lack Of Data Compared to other ML-based fields, there is lack of (labelled) data!
- Lack Of Benchmarks There is no MNIST or CIFAR for graphs! Hard to compare results.
- Data Size Graphs can be massive 10⁸ vertices easily!
- Data Representation How best to represent the graph itself before performing ML? Traditionally performed using hand-crafted features.

Graph Embeddings

Graph Embeddings

Graph Embeddings have recently become a popular method for analysing graph using *Machine Learning* - specifically using **Neural Networks**.

- Aim to solve the problem of graph data representation by mapping the graph into vector space $f: V \to \mathbb{R}^d$
- Aim to capture as much information as possible from the topology.
- Can be **Supervised** and **Unsupervised**.

Evaluating Embedding Quality

Key Idea: We propose to measure embedding quality by *predicting* a series of known **vertex-level topological features** from graph embeddings.

- Existing approaches do not necessarily mean that embedding approaches are measured against their ability to reconstruct the topology.
- Predicting topological features is a task independent way of measuring this!
- We turn the task into Classification by binning the features via a histogram.
- We provide a framework for future embedding approaches to measure their quality.

What Do Embeddings Learn?

In other fields it's clear what neural networks are learning:

However: Not so clear with graph embeddings!

Evaluating Embedding Quality

Table 1: Topological Features for Measuring Embedding Quality.

Feature Name	Equation
PageRank Score (PR)	$PR(v) = \frac{1-d}{N} + d \sum_{u \in \Gamma^{-}(v)} \frac{PR(u)}{d^{+}(u)}$
Degree Centrality (DC)	$DC(v) = \frac{1}{ V }\Gamma^-(v) + d^+(v)$
Local Clustering Score (CLU)	$CLU(v) = \frac{2\Phi}{d^{+}(v)(d^{+}(v)-1)}$
Number Of Triangles (TR)	$TR(v) = \Phi$

Unbalanced Distribution Of Features

Many graph features are *highly unbalanced*:

Figure 1: Distribution of Topological Feature Values from the Wiki-Vote Dataset in Log Scale: (a) Degree Centrality Distribution, (b) Total Vertex Degree Distribution, (c) Page-Rank Distribution, (d) Distribution of Number Of Triangles for each Vertex.

Graph Embedding Approaches Considered

Graph Embeddings

We select three state-of-the-art unsupervised neural network based graph embedding approaches:

- Node2vec Sequences of vertices generated by random walks and fed into the Skip-gram model, with user controlled parameters for biasing the random walk (Grover et al., KDD 2016).
- Hyperbolic Poincaré Disk Similar to Node2Vec but using Hyperbolic geometry (Chamberlain et al., MLG 2017).
- Structural Deep Network Embedding Embeds vertices using a deep auto-encoder directly on the adjacency matrix (Wang et al., KDD 2016).

Graph Embeddings - Random Walks

Both **Node2Vec** and **Hyperbolic Poincaré Disk** are random walk based models, essentially optimising:

$$\frac{1}{|V|} \sum_{t=1}^{|V|} \sum_{i=0}^{n} \sum_{-c \le j \le c, j \ne 0} \log \mathbf{P}(w_{i+j}^{t}|w_{i}^{t}), \qquad (1)$$

Intuition: vertices with similar neighbourhoods get similar embeddings.

Hyperbolic Poincaré Disk uses a hyperbolic space for the embedding - meaning that the embedding vector describes a point on a hyperbolic disc.

Graph Embeddings - Auto-Encoder

Structural Deep Network Embedding is based on the use of a deep *auto-encoder*.

A two part, graph specific loss function is created to produce the embeddings.

Intuition: vertices with similar first and second order structures get similar embeddings.

Experimental Evaluation

Experimental Setup

- All three approaches were implemented in *TensorFlow* and run on an NVIDIA Tesla K40.
- Embeddings were classified against varying amounts of training data using a *Logistic Regression*.
- Reported results are the mean of five replicated experiment, with the metrics being *Macro-F1* and *Micro-F1*.

Table 2: Key Hyper-Parameter Settings

Approach	Opt	LR	Misc
SNDE	RMSProp	0.01	α =500, b =10, epochs=500
Node2Vec	SGD	1.0	p=0.5, q=2, epochs=5
Poincaré Disk	SGD	0.1	" University

Datasets

For evaluating embedding quality, we used a selection of dataset from different domains all taken from SNAP.

Table 3: Graph Datasets Used.

Dataset	V	<i>E</i>	domain
Ca-HepPh	12,008	118,521	Collaboration
ego-Facebook	4,039	88,234	Social
p2p-Gnutella04	10,876	39,994	Peer — to — peer
wiki-Vote	7,115	103,689	Wiki

Results - Predicting Degree Centrality

Figure 2: Predicting a Vertex's Degree Centrality (DC) Va Durham University

Results - Predicting Degree Centrality Wiki-Vote

Figure 3: Micro-f1 Score Degree Centrality on Wiki-Vote Durham University

Results - Predicting Triangle Count

Figure 4: Predicting a Vertex's Triangle Count (TR). University

Results - Predicting Local Clustering Score

Figure 5: Predicting Vertex's Local Clustering (CLU). Durhai University

Results - Predicting PageRank

Figure 6: Predicting a Vertex's PageRank (PR).

University

Results - Predicting PageRank

Figure 7: Micro-f1 Score Predicting PageRank on Facebook

Durham
University

Conclusions

- We propose a frame for assessing embedding quality via topological feature reconstruction.
- This work seems to suggest that traditional graph features are not always being learned.
- No consistent pattern across datasets and features Different features seem to be learned across datasets.
- *Node2Vec* seems best able to reconstruction topological from the embedding process.
- Hyperbolic approach performs well considering it is limited to 2D.
- Future Work: aim to expand the features we are analysing and see if optimising to predict features increases general performance.

 Durham University

Thank You!

