SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK

Marco Hrlić

SAŽETO UZORKOVANJE

Diplomski rad

Voditelj rada: Prof. dr. sc. Damir Bakić

	1.	, predsjednik
	2.	, član
	3.	, član
ovjerenstvo	je rad ocijenilo ocjenom	
Povjerenstvo	je rad ocijenilo ocjenom	Potpisi članova povjerenstva:
Povjerenstvo	je rad ocijenilo ocjenom	Potpisi članova povjerenstva: 1.

Sadržaj

Sa	drža	j	iv
U	vod		1
1	Rije	etka rješenja	3
	1.1	Rijetsko i sažetost vektora	3
	1.2	Minimalni broj mjerenja	10
	1.3	NP-složenost ℓ_0 -minimizacije	14
2	Osn	ovni algoritmi sažetog uzorkovanja	17
	2.1	Optimizacijske metode	17
	2.2	Greedy metode	21
Bi	bliog	grafija	25

$\mathbf{U}\mathbf{vod}$

...

Poglavlje 1

Rijetka rješenja

1.1 Rijetsko i sažetost vektora

Uvedimo potrebnu notaciju. Neka je [N] oznaka za skup $\{1, 2, ..., N\}$ gdje je $N \in \mathbb{N}$. Sa card(S) označujemo kardinalitet skupa S. Nadalje, \bar{S} je komplement od S u [N], tj. $\bar{S} = [N] \backslash S$.

Definicija 1.1.1. Nosač vektora $\mathbf{x} \in \mathbb{C}^N$ je skup indeksa njegovih ne-nul elemenata, tj.

$$\operatorname{supp}(\mathbf{x}) := \{ j \in [N] : x_j \neq 0 \}$$

Za vektor $\mathbf{x} \in \mathbb{C}^N$ kažemo da je s-rijedak ako vrijedi

$$\|\mathbf{x}\|_0 := \operatorname{card}(\operatorname{supp}(\mathbf{x})) \le s$$

Primjetimo,

$$\|\mathbf{x}\|_p^p := \sum_{j=1}^N |x_j|^p \xrightarrow{p \to 0} \sum_{j=1}^N \mathbf{1}_{\{x_j \neq 0\}} = \operatorname{card}(\{j \in [N] : x_j \neq 0\}) = \|\mathbf{x}\|_0$$

Gdje smo koristili da je $\mathbf{1}_{\{x_j\neq 0\}}=1$ ako je $x_j\neq 0$ te $\mathbf{1}_{\{x_j\neq 0\}}=0$ ako je $x_j=0$. Drugim riječima, $\|\mathbf{x}\|_0$ je limes p-te potencije ℓ_p -kvazinorme vektora \mathbf{x} kada p teži k nuli. Kvazinorma definira se jednako kao standardna ℓ_p -norma, jedino što nejednakost trokuta oslabimo, tj.

$$\|\mathbf{x} + \mathbf{y}\| \le C(\|\mathbf{x}\| + \|\mathbf{y}\|)$$

za neku konstantu $C \ge 1$. Funkciju $\|\cdot\|_0$ često nazivamo ℓ_0 -norma vektora x, iako ona nije niti norma niti kvazinorma. U samoj praksi, teško je tražiti rijetkost vektora,

pa je stoga prirodno zahtjevati slabiji uvjet kompresibilnosti.

Definicija 1.1.2. ℓ_p -grešku najbolje s-rijetke aproksimacije vektora $\mathbf{x} \in \mathbb{C}^N$ definiramo sa

$$\sigma_s(\mathbf{x})_p := \inf \left\{ \|\mathbf{x} - \mathbf{z}\|_p, \ \mathbf{z} \in \mathbb{C}^N \ je \ s\text{-rijedak} \right\}$$

Primjetimo da se infimum postiže za svaki s-rijedak vektor $\mathbf{z} \in \mathbb{C}^N$ koji ima nenul elemente koji su jednaki sa s najvećih komponenti vektora \mathbf{x} . Iako takav $\mathbf{z} \in \mathbb{C}^N$ nije jedinstven, on postiže infimum za svaki p > 0. Neformalno, mogli bi reći da je vektor $\mathbf{x} \in \mathbb{C}^N$ kompresibilan ako greška njegove najbolje s-rijetke aproksimacije brzo konvergira u s. Da bi to formalno iskazali, od koristi će biti ocjena na $\sigma_s(\cdot)_p$. Pošto nam za to neće biti važan poredak elemenata vektora \mathbf{x} , uvodimo sljedeću definiciju koja će nam olaksati račun.

Definicija 1.1.3. Nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ je vektor $\mathbf{x}^* \in \mathbb{R}^{\mathbb{N}}$ takav da

$$x_1^* \ge x_2^* \ge x_3^* \ge \dots \ge 0$$

te postoji permutacije $\pi: [N] \to [N]$ takva da $x_i^* = |x_{\pi(i)}|$ za sve $i \in [N]$.

Propozicija 1.1.4. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{1}{s^{1/p-1/q}} \|\mathbf{x}\|_p.$$

Dokaz. Neka je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$. Tada slijedi,

$$\sigma_{s}(\mathbf{x})_{q}^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{q} = \sum_{j=s+1}^{N} (x_{j}^{*})^{p} (x_{j}^{*})^{q-p} \le (x_{s}^{*})^{q-p} \sum_{j=s+1}^{N} (x_{j}^{*})^{p}$$

$$\le \left(\frac{1}{s} \sum_{j=1}^{s} (x_{j}^{*})^{p}\right)^{\frac{q-p}{p}} \left(\sum_{j=s+1}^{N} (x_{j}^{*})^{p}\right) \le \left(\frac{1}{s} \|\mathbf{x}\|_{p}^{p}\right)^{\frac{q-p}{p}} \|\mathbf{x}\|_{p}^{p}$$

$$= \frac{1}{s^{q/p-1}} \|\mathbf{x}\|_{p}^{q}$$

Prva nejednakost slijedi iz činjenice da je $x_j^* \le x_s^*$ za svaki $j \ge s+1$. Druga nejednakost je također posljedica nerasta komponenti od \mathbf{x}^* . Potenciranjem obje strane s 1/q slijedi tvrdnja.

Primjetimo da ako je \mathbf{x} iz jedinične ℓ_p -kugle za neki mali p > 0, onda prethodna propozicija garantira kovergenciju od $\sigma_s(\mathbf{x})_q$ u s, gdje ℓ_p -kuglu definiramo kao

$$B_p^N := \left\{ \mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_p \le 1 \right\}$$

Vratimo se sada ocjeni iz propozicije 1.1.4. Sljedeći teorem daje najmanju konstantu $c_{p,q}$ takvu da vrijedi $\sigma_s(\mathbf{x})_q \leq c_{p,q} s^{-1/p+1/q} \|\mathbf{x}\|_p$ te zapravo predstavlja jaču tvrdnju.

Teorem 1.1.5. Za svaki q > p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$ vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{c_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_p$$

gdje je

$$c_{p,q} := \left[\left(\frac{p}{q} \right)^{p/q} \left(1 - \frac{p^{1-p/q}}{q} \right) \right]^{1/p} \le 1.$$

Istaknimo za česti odabir p = 1 i q = 2

$$\sigma_s(\mathbf{x})_2 \le \frac{1}{2\sqrt{s}} \|\mathbf{x}\|_1$$

Dokaz. Neka je \mathbf{x}^* nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$ i $\alpha_j := (x_j^*)^p$. Dokazati ćemo ekvivaltenu tvrdnju

$$\left.\begin{array}{l}
\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_N \ge 0 \\
\alpha_1 + \alpha_2 + \cdots + \alpha_N \le 1
\end{array}\right\} \implies \alpha_{s+1}^{q/p} + \alpha_{s+2}^{q/p} + \cdots + \alpha_{s+N}^{q/p} \le \frac{c_q^q}{s^{q/p-1}} \tag{1.1}$$

Stoga, za r := q/p > 1, problem se svodi na maksimizaciju konveksne funkcije

$$f(\alpha_1, \alpha_2, \dots, \alpha_N) := \alpha_{s+1}^r + \alpha_{s+2}^r + \dots + \alpha_N^r$$

na konveksnom mnogokutu

$$\mathcal{C} := \left\{ (\alpha_1, \dots, \alpha_N) \in \mathbb{R}^N : \alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_N \ge 0 \\ i\alpha_1 + \alpha_2 + \dots + \alpha_N \le 1 \right\}$$

Prema teoremu (todo) f postiže maksimum na nekom od vrhova mnogokuta C, a vrhovi od C su dani kao sjecišta N hiperplohi koje dobijemo tako da u (1.1) N nejednakosti pretvorimo u jednakosti. Mogučnosti su:

1.
$$\alpha_1 = \cdots = \alpha_N \implies f(\alpha_1, \alpha_2, \ldots, \alpha_N) = 0.$$

2.
$$\alpha_1 + \cdots + \alpha_N = 1$$
 i $\alpha_1 = \cdots = \alpha_k > \alpha_{k+1} = \cdots = \alpha_N = 0$ za neki $1 \le k \le s \implies f(\alpha_1, \alpha_2, \dots, \alpha_N) = 0$

3.
$$\alpha_1 + \dots + \alpha_N = 1$$
 i $\alpha_1 = \dots = \alpha_k > \alpha_{k+1} = \dots = \alpha_N = 0$ za neki $s+1 \le k \le N \implies \alpha_1 = \dots = \alpha_k = 1/k$ te $f(\alpha_1, \alpha_2, \dots, \alpha_N) = (k-s)/k^r$

Dakle, slijedi da

$$\max_{(\alpha_1, \dots, \alpha_N) \in \mathcal{C}} f(\alpha_1, \alpha_2, \dots, \alpha_N) = \max_{s+1 \le k \le N} \frac{k-s}{k^r}$$

Shvatimo sada k kao realnu varijablu i zamjetimo da $g(k) := (k - s)/k^r$ raste do kritične točke $k^* = (r/(r-1))s$ nakon koje opada.

$$\max_{(\alpha_1, \dots, \alpha_N) \in \mathcal{C}} f(\alpha_1, \alpha_2, \dots, \alpha_N) \le g(k^*) = \frac{1}{r} \left(1 - \frac{1}{r} \right)^{r-1} \frac{1}{s^r - 1} = c_{p,q}^q \frac{1}{s^{q/p} - 1}$$

Alternativni način na koji bi mogli definirati pojam kompresibilnosti za vektor $\mathbf{x} \in \mathbb{C}^N$ je da zahtjevamo da je broj

$$\operatorname{card}(\{j \in [N] : |x_j| \ge t\})$$

tj. broj njegovih značajnih ne-nul komponenti dovoljno mali. Ovaj pristup vodi na definiciju slabih ℓ_p -prostora.

Definicija 1.1.6. Za p > 0, slabi ℓ_p -prostor s oznakom $w\ell_p^N$ definiramo kao prostor \mathbb{C}^N sa kvazinormom

$$\|\mathbf{x}\|_{p,\infty} := \inf \left\{ M \ge 0 : \operatorname{card}(\{j \in [N] : |x_j| \ge t\}) \le \frac{M^P}{t^p}, \ \forall t > 0 \right\}$$
 (1.2)

Da bi pokazali da je (1.2) zapravo kvazinorma, potreban nam je sljedeći rezultat.

Propozicija 1.1.7. Neka su $\mathbf{x}^1, \dots \mathbf{x}^k \in \mathbb{C}^N$. Tada za svaki p > 0 vrijedi

$$\|\mathbf{x}^1 + \dots + \mathbf{x}^k\|_{p,\infty} \le k^{\max\{1,1/p\}} (\|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty})$$

Dokaz. Neka je t>0. Ako je $|x_j^1+\cdots+x_j^k|\geq t$ za neki $j\in[N],$ tada imamo da je $|x_j^i|\geq t/k$ za neki $i\in[k].$ Dakle, vrijedi

$$\left\{j \in [N]: |x_j^1 + \dots + x_j^k| \ge t\right\} \subset \bigcup_{i \in [k]} \left\{j \in [N]: |x_j^i| \ge t/k\right\}$$

pa je stoga

$$\operatorname{card}(\{j \in [N] : |x_j^1 + \dots + k_j^k| \ge t\}) \le \sum_{i \in [k]} \frac{\|\mathbf{x}^i\|_{p,\infty}^p}{(t/k)^p}$$
$$= \frac{k^p(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p)}{t^p}$$

Prema definiciji slabe ℓ_p -kvazinorme (1.2) vektora $\mathbf{x}^1 + \cdots + \mathbf{x}^k$ dobivamo

$$\|\mathbf{x}^1 + \dots + \mathbf{x}^k\|_{p,\infty} \le k \left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)$$

Ako je $p \leq 1$, uspoređujući ℓ_p i ℓ_1 norme na \mathbb{R}^k slijedi

$$\left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)^{1/p} \le k^{1/p-1} \left(\|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty}\right)$$

te ako je $p \ge 1$ slijedi

$$\left(\|\mathbf{x}^1\|_{p,\infty}^p + \dots + \|\mathbf{x}^k\|_{p,\infty}^p\right)^{1/p} \le \|\mathbf{x}^1\|_{p,\infty} + \dots + \|\mathbf{x}^k\|_{p,\infty}.$$

Tvrdnja slijedi kombiniranjem dobivenih ocjena.

Uzmimo $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$ i neka je $\lambda \in \mathbb{C}$ proizvoljan.

- 1. Neka je $\|\mathbf{x}\|_{p,\infty} = 0$. Iz (1.2) slijedi card $(\{j \in [N] : |x_j| \ge t\}) = 0$ za svaki t > 0 pa je stoga broj ne-nul komponenti on \mathbf{x} jednak nuli, tj. $\mathbf{x} = 0$
- 2. Ako je λ nula, $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ vrijedi trivijalno. Za $\lambda \neq 0$, imamo $\operatorname{card}(\{j \in [N] : |\alpha x_j| \geq t\}) = \operatorname{card}(\{j \in [N] : |x_j| \geq t/|\alpha|\}) \leq (\alpha M)^p/t^p$ za svaki t > 0. Dakle, opet $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$.
- 3. $\|\mathbf{x}+\mathbf{y}\| \leq C(\|\mathbf{x}\|+\|\mathbf{y}\|)$ je sada direktna posljedica prethodne propozicije.

sljedeća propozicija daje alternativni izraz za slabu ℓ_p -kvazinormu.

Propozicija 1.1.8. Za p > 0, vrijedi

$$\|\mathbf{x}\|_{p,\infty} = \max_{k \in [N]} k^{1/p} x_k^*$$

gdje je $\mathbf{x}^* \in \mathbb{R}^N$ nerastući poredak vektora $\mathbf{x} \in \mathbb{C}^N$.

Dokaz. Primjetimo prvo da iz (1.2) slijedi da je $\|\mathbf{x}\|_{p,\infty} = \|\mathbf{x}^*\|_{p,\infty}$, pa zapravo pokazujemo da je $\|\mathbf{x}\| := \max_{k \in [N]} k^{1/p} x_k^* = \|\mathbf{x}^*\|$. Nadalje, za t > 0 vrijedi da je $\{j \in [N] : x_j^* \ge t\} = [k]$ za neki $k \in [N]$ ili je $\{j \in [N] : x_j^* \ge t\} = \emptyset$. U prvom

slučaju $t \leq x_k^* \leq \|\mathbf{x}\|/k^{1/p}$ pa je card $(\{j \in [N] : x_j^* \geq t\}) = k \leq \|\mathbf{x}\|/k^{1/p}$. U drugom slučaju ista nejednakost vrijedi trivijalno. Iz definicije slabe ℓ_p -kvazinorme (1.2) sada dobivamo $\|\mathbf{x}^*\|_{p,\infty} \leq \|\mathbf{x}\|$. Pretpostavimo da je $\|\mathbf{x}^*\|_{p,\infty} < \|\mathbf{x}\|$. Tada postoji $\varepsilon > 0$ takav da $(1+\varepsilon)\|\mathbf{x}^*\|_{p,\infty} \leq \|\mathbf{x}\|$. Slijedi da je $(1+\varepsilon)\|\mathbf{x}^*\| \leq k^{1/p}x_k^*$ za neki $k \in [N]$ pa stoga

$$[k] \subseteq \left\{ j \in [N] : (1+\varepsilon) \|\mathbf{x}^*\|_{p,\infty} / k^{1/p} \le x_j^* \right\}$$

Ponovo iz (1.2) imamo

$$k \le \frac{\|\mathbf{x}^*\|_{p,\infty}^p}{\left((1+\varepsilon)\|\mathbf{x}^*\|_{p,\infty}k^{1/p}\right)^p} = \frac{k}{(1+\varepsilon)^p}$$

Kontradikcija, dakle mora vrijediti $\|\mathbf{x}\| = \|\mathbf{x}^*\|_{p,\infty}$.

Sada lagano možemo usporediti slabi i jaku ℓ_p normu,

Propozicija 1.1.9. Za svaki p > 0 i za svaki $\mathbf{x} \in \mathbb{C}^N$,

$$\|\mathbf{x}\|_{p,\infty} \le \|\mathbf{x}\|_p$$

Dokaz. Neka je $k \in [N]$,

$$\|\mathbf{x}\|_p^p = \sum_{j=1}^N (x_j^*)^p \ge \sum_{j=1}^k (x_j^*)^p \ge k(x_k^*)^p$$

Tvrdnja slijedi potenciranjem na 1/p i uzimajući maksimum po k i primjenom prethodne propozicije. \Box

Koristeći propoziciju (1.1.8) možemo dobiti verziju ocjene iz propozicije (1.1.4) sa slabom ℓ_p normom.

Propozicija 1.1.10. Za svaki q > p > 0 i $\mathbf{x} \in \mathbb{C}^N$, vrijedi

$$\sigma_s(\mathbf{x})_q \le \frac{d_{p,q}}{s^{1/p-1/q}} \|\mathbf{x}\|_{p,\infty}$$

gdje je

$$d_{p,q} := \left(\frac{p}{q-p}\right)^{1/q}.$$

Dokaz. Bez smanjenja opčenitosti možemo pretpostaviti da je $\|\mathbf{x}\|_{p,\infty} \leq 1$, pa je $x_k^* \leq 1/k^{1/p}$ za svaki $k \in [N]$. Tada vrijedi,

$$\sigma_s(\mathbf{x})_q^q = \sum_{k=s+1}^N (x_k^*)^q \le \sum_{k=s+1}^N \frac{1}{k^{q/p}} \le \int_s^N \frac{1}{t^{q/p}} dt = -\frac{1}{q/p-1} \frac{1}{t^{q/p-1}} \bigg|_{t=s}^{t=N} \le \frac{p}{q-p} \frac{1}{s^{q/p-1}}.$$

Potenciranjem sa 1/q slijedi tvrdnja.

Prethodna propozicija daje da su vektori $\mathbf{x} \in \mathbb{C}^N$ koji su kompresibilni u smislu $\|\mathbf{x}\|_{p,\infty} \leq 1$ za mali p > 0, također kompresibilni u smislu da greška njihove najbolje s-rijetke aproksimacije brzo konvergira sa s. Iskažimo još jedan tehnički rezultat,

Lema 1.1.11. Neka su $\mathbf{x}, \mathbf{y} \in \mathbb{C}^N$. Tada vrijedi,

$$\|\mathbf{x}^* - \mathbf{y}^*\|_{\infty} \le \|\mathbf{x} - \mathbf{y}\|_{\infty} \tag{1.3}$$

Nadalje, za $s \in [N]$,

$$|\sigma_s(\mathbf{x})_1 - \sigma(\mathbf{y})_1| \le ||\mathbf{x} - \mathbf{y}||_1 \tag{1.4}$$

 $i \ za \ k > s$,

$$(k-s)x_k^* \le \|\mathbf{x} - \mathbf{y}\|_1 + \sigma_s(\mathbf{y})_1 \tag{1.5}$$

Dokaz. Za $j \in [N]$, skup indeksa j najvećih komponenti vektora \mathbf{x} ima ne-trivijalni presjek sa skupom od N-j+1 najmanjih komponenti vektora \mathbf{y} . Izaberimo indeks l iz tog presjeka. Tada vrijedi,

$$x_j^* \le |x_l| \le |y_l| + \|\mathbf{x} - \mathbf{y}\|_{\infty} \le z_j^* + \|\mathbf{x} - \mathbf{y}\|_{\infty}$$

Zamjenom uloga od $\mathbf x$ i $\mathbf y$ slijedi (1.3). Neka je $\mathbf v \in \mathbb C^N$ najbolja s-rijetka aproksimacija vektora $\mathbf y$. Tada

$$\sigma_s(\mathbf{x})_1 \le \|\mathbf{x} - \mathbf{v}\|_1 \le \|\mathbf{x} - \mathbf{y}\|_1 + \|\mathbf{y} - \mathbf{v}\|_1 = \|\mathbf{x} - \mathbf{y}\|_1 + \sigma_s(\mathbf{y})_1$$

Ponovno, zbog simetrije slijedi (1.4). Napokon, ocjena (1.5) slijedi iz (1.4) te iz činjenice

$$(k-s)x_k^* \le \sum_{j=s+1}^k x_j^* \le \sum_{j\ge s+1} x_j^* = \sigma_s(\mathbf{x})_1.$$

1.2 Minimalni broj mjerenja

Problem sažetog uzorkovanja sastoji se od rekonstrukcije s-rijetkog vektora $\mathbf{x} \in \mathbb{C}^N$ iz sustava

$$y = Ax$$

Matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ nazivamo matrica mjerenja. Ako je m < N, za ovakav sustav linearnih jednadžbi kažemo da je neodređen. Iako iz klasične teorije linearne algebre ovakvi sustavi imaju beskonačno mnogo riješenja, pokazati će se da je dodatna pretpostavka rijetkosti vektora x dovoljno za jedinstvenost rješenja. U ovom poglavlju istražiti ćemo koji je minimalni broj mjerenja, tj. m broj redaka matrice \mathbf{A} , koji garantira rekonstrukciju s-rijetkog vektora \mathbf{x} . Zapravo, postoje dva pristupa ovom problemu. Možemo zahtjevati da problem mjerenja rekonstruira sve s-rijetke vektore $\mathbf{x} \in \mathbb{C}^N$ istodobno ili možemo tražiti rekonstrukciju specifičnog, tj. predodređenog vektora $\mathbf{x} \in \mathbb{C}^N$. Taj pristup čini se neprirodan, no pokazuje se da je on važan u proučavanju problema gdje matricu \mathbf{A} biramo nasumično.

Pokažimo da su za danu rijetkost s, matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$, naredne tvrdnje ekvivaltentne:

- 1. Vektor \mathbf{x} je jedinstveno s-rijetko rješenje sustava $\mathbf{A}\mathbf{z} = \mathbf{y}$ gdje je $\mathbf{y} = \mathbf{A}\mathbf{x}$, tj. $\{\mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}, \|\mathbf{z}\|_0 \le s\} = \{\mathbf{x}\}$
- 2. Vektor \mathbf{x} je jedinstveno rješenje problema minimizacije

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y} \tag{P_0}$$

Ako je $\mathbf{x} \in \mathbb{C}^N$ jedinstveno s-rijetko rješenje od $\mathbf{Az} = \mathbf{y}$ takvo da je $\mathbf{y} = \mathbf{Ax}$, onda rješenje x^{\sharp} od (P_0) je s-rijetko i zadovoljava $\mathbf{Ax} = \mathbf{y}$ pa je $\mathbf{x}^{\sharp} = \mathbf{x}$. Drugi smjer slijedi trivijalno.

Rekonstrukcija svih rijetkih vektora

Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $S \subset [N]$, sa \mathbf{A}_S označujemo matricu formiranu od stupaca od \mathbf{A} indeksiranih sa S. Slično, sa \mathbf{x}_S označujemo ili vektor iz \mathbb{C}^S koji se sastoji od komponenti vektora \mathbf{x} indeksiranih po S, tj. $(\mathbf{x}_S)_l = x_l$ za sve $l \in S$, ili vektor iz \mathbb{C}^N koji se podudara s \mathbf{x} na komponentama indeksiranim u S i jednak je nula na indeksima koji nisu u S, tj. $(\mathbf{x}_S)_l = x_l$ za $l \in S$ i $(\mathbf{x}_S)_l = 0$ za $l \notin S$. Iz konteksta će uvijek biti jasno na koju definiciju se misli.

Teorem 1.2.1. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$. Ekvivalentno je:

- (a) Svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ je jedinstveno rješenje od $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$, tj. ako je $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$ i ako su \mathbf{x} , \mathbf{z} oboje s-rijetki tada $\mathbf{x} = \mathbf{z}$.
- (b) Jezgra od **A** ne sadrži niti jedan 2s-rijedak vektor osim nul-vektora, tj. ker $\mathbf{A} \cap \{\mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_0 \le 2s\} = \{\mathbf{0}\}$
- (c) Za svaki $S \subset [N]$ takav da $\operatorname{card}(S) \leq 2s$, podmatrica \mathbf{A}_S je injektivna kao preslikavanje sa \mathbb{C}^S u \mathbb{C}^m .
- (d) Svaki skup od 2s stupaca matrice A je linearno nezavisan skup.
- Dokaz. (b) \Longrightarrow (a). Neka su \mathbf{x} i \mathbf{z} s-rijetki vektori takvi da $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$. Tada je $\mathbf{x} \mathbf{z}$ 2s-rijedak i $\mathbf{A}(\mathbf{x} \mathbf{z}) = \mathbf{0}$. Pošto ker \mathbf{A} ne sadrži 2s-rijetke vektore osim nul-vektora, mora vrijediti $\mathbf{x} = \mathbf{z}$.
 - $(a) \implies (b)$. Obratno, pretpostavimo da za svaki s-rijetki vektor $\mathbf{x} \in \mathbb{C}^N$ vrijedi $\{\mathbf{z} \in \mathbb{C}^N : \mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}, \|\mathbf{z}\|_0 \le s\} = \{\mathbf{x}\}$. Neka je $\mathbf{v} \in \ker \mathbf{A}$, 2s-rijedak. Tada \mathbf{v} možemo rastaviti kao $\mathbf{v} = \mathbf{x} \mathbf{z}$ gdje su \mathbf{x} i \mathbf{z} s-rijetki takvi da $\sup (\mathbf{x}) \cap \sup (\mathbf{z}) = \emptyset$. Imamo da je $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{z}$ pa prema pretpostavci vrijedi $\mathbf{x} = \mathbf{z}$. Pošto su nosači od \mathbf{x} i \mathbf{z} disjunktni, mora vrijediti $\mathbf{x} = \mathbf{z} = \mathbf{0}$ pa je stoga i $\mathbf{v} = 0$.
 - (b) \Longrightarrow (c). Pretpostavimo suprotno, ker $\mathbf{A} \cap \{\mathbf{z} \in \mathbb{C}^N : \|\mathbf{z}\|_0 \leq 2s\} = \{\mathbf{0}\}$ i da postoji $S \in [N]$ takav da je $\operatorname{card}(S) \leq 2s$ te da \mathbf{A}_s nije injektivna. To znači da postoji vektor $\mathbf{x} \in \mathbb{C}^{\operatorname{card}(S)} \setminus \{\mathbf{0}\}$ takav da je $\mathbf{A}_S \mathbf{x} = \mathbf{0}$. Definiramo vektor $\tilde{\mathbf{x}} \in \mathbb{C}^N$ sa

$$\tilde{x}_j = \begin{cases} x_j & \text{za } j \in S \\ 0 & \text{za } j \in \bar{S} \end{cases}$$

Dakle, imamo $\mathbf{x} \neq \mathbf{0}$, $\|\mathbf{x}\|_0 \leq 2s$ i vrijedi $\mathbf{A}\mathbf{x} = 0$, tj. $\mathbf{x} \in \ker \mathbf{A}$. Kontradikcija s (b).

- $(c) \Longrightarrow (d)$. Odaberimo 2s stupaca od \mathbf{A} . Skup indeksa tih stupaca označimo sa S. Prema (c), matrica \mathbf{A}_S je injektivna, a to znači da su njeni stupci linearno nezavisni, pa su stoga i 2s odabranih stupaca matrice \mathbf{A} linearno nezavisni.
- $(d) \implies (b)$. Pretpostavimo da jezgra od \mathbf{A} sadrži 2s-rijedak ne-nul vektor $\mathbf{x} \in \mathbb{C}^N$. Neka je S skup indeksa ne-nul elemenata vektora \mathbf{x} . To znači da je $\mathbf{A}_S \mathbf{x}_S = 0$, i $\mathbf{x}_S \neq \mathbf{0}$. Dakle \mathbf{A}_S nije injektivna, pa stoga i skup stupaca od \mathbf{A} indeksiranih sa S nije linearno nezavisan, što je kontradikcija sa (d).

Uočimo da ako je moguče rekonstruirati svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$, tada vrijedi (a). Prema prošlom teoremu tada vrijedi i tvrdnja (d) pa je stoga $rank(\mathbf{A}) \geq 2s$. Također vrijedi da je $rank(\mathbf{A}) \leq m$ pa imamo

$$m > 2s$$
.

To znači da je potrebno barem 2s mjerenja da bi rekonstruirali svaki s-rijedak vektor. Pokazati ćemo da je, makar u teoriji, dovoljno točno 2s mjerenja.

Teorem 1.2.2. Za svaki $N \geq 2s$, postoji matrica mjerenja $\mathbf{A} \in \mathbb{C}^{2s \times N}$ takva da se svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ može rekonstruirati iz vektora mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$ kao rješenje problema minimizacije (P_0) .

Dokaz. Fiksirajmo $t_N > \cdots t_2 > t_1 > 0$ i neka je $\mathbf{A} \in \mathbb{C}^{2s \times N}$ dana sa

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_N \\ \vdots & \vdots & \cdots & \vdots \\ t_1^{2s-1} & t_2^{2s-1} & \cdots & t_N^{2s-1} \end{bmatrix}$$
(1.6)

Nadalje, neka je $S = \{j_1 < \cdots < j_{2s}\}$ skup indeksa. Matrica $\mathbf{A}_S \in \mathbb{C}^{2s \times 2s}$ je transponirana $Vandermontova\ matrica$. Prema (TODO) slijedi

$$\det(\mathbf{A}_S) = \prod_{k < l} (t_{j_l} - t_{j_k}) > 0.$$

To znači da je matrica \mathbf{A} invertibilna, pa posebno i injektivna. Tada je zadovoljena tvrdnja (c) teorema (1.2.1), pa je po istom teoremu zadovoljena i tvrdnja (a), tj. svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ zadovoljava $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$. Stoga je taj vektor moguće jedinstveno rekonstruirati putem minimizacije (P_0) .

Zapravo, mnogo matrica zadovoljava uvjet (c) iz teorema (1.2.1). Na primjer, potencije od t_1, \ldots, t_N u (1.6) ne moraju biti uzastopne. Nadalje, brojevi t_1, \ldots, t_N ne moraju biti pozitivni, niti realni sve dok vrijedi $\det(\mathbf{A}_S) \neq 0$. Posebno, možemo uzeti $t_l = e^{2\pi i(l-1)/N}$ za $l \in [N]$, teorem (TODO) garantira da parcijalna Fourierova matrica

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & e^{2\pi i/N} & e^{2\pi i2/N} & \cdots & e^{2\pi i(N-1)/N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & e^{2\pi i(2s-1)/N} & e^{2\pi i(2s-1)2/N} & \cdots & e^{2\pi i(2s-1)(N-1)/N} \end{bmatrix}$$

rekonstruira svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^{2s}$. Zapravo može se pokazati da skup $(2s) \times N$ matrica takvih da $\det(\mathbf{A}_S) = 0$ za neki $S \subset [N]$ i $\operatorname{card}(S) \leq 2s$ ima Lebesgueovu mjeru nula, pa stoga gotovo sve $(2s) \times N$ matrice rekonstruiraju svaki s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ iz $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^{2s}$. Međutim u praksi nije isplativo rješavati problem minimizacije (P_0) , što ćemo kasnije i pokazati.

Rekonstrukcija zadanog rijetkog vektora

Promatramo problem gdje je s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$ unaprijed zadan i poznat, a matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ želimo odabrati tako da ona garantira rekonstrukciju vektora \mathbf{x} iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$. Isprva, ovaka pristup izgleda neprirodan zbog činjenice da je vektor \mathbf{x} apriorno poznat. Ideja je da će uvjeti rekonstrukcije vrijediti za gotovo sve $(s+1) \times N$ matrice, što podupire činjenicu da se u praksi matrice mjerenja često odabiru na nasumičan način.

Teorem 1.2.3. Za svaki $N \geq s+1$ i za dani s-rijedak vektor $\mathbf{x} \in \mathbb{C}^N$, postoji matrica mjerenja $\mathbf{A} \in \mathbb{C}^{(s+1)\times N}$, takva da se vektor \mathbf{x} može rekonstruirati iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{C}^m$ kao rješenje minimizacije (P_0) .

Dokaz. Neka je $\mathbf{A} \in \mathbb{C}^{(s+1)\times N}$ matrica za koju se s-rijedak vektor \mathbf{x} ne može rekonstruirati iz $\mathbf{y} = \mathbf{A}\mathbf{x}$ putem minimizacije (P_0) . To znači da postoji vektor $\mathbf{z} \in \mathbb{C}^N$ različit od \mathbf{x} , takav da $S = \operatorname{supp}(\mathbf{z}) = \{j_1, \dots, j_s\}$, $\operatorname{card}(S) \leq s$ (ako je $\|\mathbf{z}\|_0 < s$, u S dodamo proizvoljne elemente $j_l \in [N]$) i $\mathbf{A}\mathbf{z} = \mathbf{A}\mathbf{x}$. Ako je $\operatorname{supp}(\mathbf{x}) \subset S$, tada iz $\left(\mathbf{A}(\mathbf{z} - \mathbf{x})\right)_{[s]} = 0$ slijedi da $\mathbf{A}_{[s],S}$ nije invertibilna, tj.

$$f(a_{1,1}, \dots a_{1,N}, \dots, a_{m,1}, \dots, a_{m,N}) := \det(\mathbf{A}_{[s],S}) = 0.$$

Ako supp $(\mathbf{x}) \not\subset S$ tada je dimenzija prostora $V := \{\mathbf{u} \in \mathbb{C}^N : \operatorname{supp}(\mathbf{u}) \subset S\} + \mathbb{C}\mathbf{x}$ jednaka s+1, i linearno preslikavanje $G: V \to \mathbb{C}^{s+1}$, $\mathbf{v} \mapsto \mathbf{A}\mathbf{v}$ nije invertibilno, pošto je $G(\mathbf{z} - \mathbf{x}) = 0$. Matrica linearnog preslikavanja G u bazi $(\mathbf{e}_{j_1}, \dots, \mathbf{e}_{j_s}, \mathbf{x})$ prostora V, je oblika

$$B_{\mathbf{x},S} := \begin{bmatrix} a_{1,j_1} & \cdots & a_{1,j_s} & \sum_{j \in \text{supp}(\mathbf{x})} x_j a_{1,j} \\ \vdots & \ddots & \vdots & \vdots \\ a_{s+1,j_1} & \cdots & a_{s+1,j_s} & \sum_{j \in \text{supp}(\mathbf{x})} x_j a_{s+1,j} \end{bmatrix}$$

i imamo

$$g_S(a_{1,1},\ldots a_{1,N},\ldots,a_{m,1},\ldots,a_{m,N}) := \det(B_{\mathbf{x},S}) = 0.$$

Dakle, vrijedi

$$(a_{1,1}, \dots a_{1,N}, \dots, a_{m,1}, \dots, a_{m,N}) \in f^{-1}(\{0\}) \cup \bigcup_{\operatorname{card}(S)=s} g_S^{-1}(\{0\}).$$

Primjetimo da su skupovi $f^{-1}(\{0\})$ i $g_S^{-1}(\{0\})$ Lebesgueove mjere nula iz razloga što su f i g_S polinomi u varijablama $(a_{1,1}, \ldots, a_{1,N}, \ldots, a_{m,1}, \ldots, a_{m,N})$. Dakle, elemente matrice \mathbf{A} moramo izabrati izvan skupa mjere nula, da bi osigurali rekonstrukciju vekotora \mathbf{x} iz $\mathbf{y} = \mathbf{A}\mathbf{x}$.

1.3 NP-složenost ℓ_0 -minimizacije

Kao što smo najavili, pokazati ćemo da je u praksi neisplativno rješavati problem ℓ_0 -minimizacije u svrhu rekonstrukcije vektora \mathbf{x} iz mjerenja $\mathbf{y} = \mathbf{A}\mathbf{x}$. Prisjetimo se, problem koji rješavamo je oblika,

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0$$
 uz uvjet $\mathbf{A}\mathbf{z} = \mathbf{y}$.

Pošto je minimizator najvise s-rijedak, najjednostavniji algoritam za rješavanje ovog problema je rješiti sve pravokutne sustave $\mathbf{A}_S\mathbf{u} = \mathbf{y}$ ili sve kvadratne sustave oblika $\mathbf{A}_S^*\mathbf{A}_S\mathbf{u} = \mathbf{A}_S^*\mathbf{y}$ za svaki $\mathbf{u} \in \mathbb{C}^S$ gdje S ide po svim poskupovima od [N], veličine s. No ispada da broj podskupova $\binom{N}{s}$, što za male probleme sa N=1000 i s=10, iznosi $\binom{1000}{10} \geq (\frac{1000}{10})^{10} = 10^{20}$. Kada bi jedan 10×10 sustav mogli rješiti u 10^{-10} sekundi, trebalo bi nam više od 300 godina da sve rješimo. Sada ćemo pokazati zašto je zapravo općenitiji problem

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{z}\|_0 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 \le \eta \tag{$P_{0,\eta}$}$$

NP-težak.

Uvedimo prvo potrebne pojmove iz kompleksnosti algoritama. Za algoritam kažemo da je *polinomijalnog-vremena* ako je broj koraka do rješenja ograničen polinomom u varijabli veličine ulaza. Nadalje, uvedimo neformalne definicije klasa problema odlučivanja:

- \$\pi\$: Svi problemi odlučivanja za koje postoji algoritam polinomijalnog vremena koji daje rješenje.
- N\$\pi\$: Svi problemi odlučivanja za koje postoji algoritam polinomijalnog vremena koji provjerava točnost rješenja.

- MP-teški: Svi problemi (ne nužno problemi određivanja) za koje se algoritam za rješenje može u polinomijalnom vremenu transformirati u algoritam rješenja za bilo koji MP problem.
- MP-potpuni: Svi problemi koji su istovremeno MP i MP-teški.

Pitanje je li \mathfrak{P} strogo sadržano u \mathfrak{NP} do dan danas nije odgovoreno. No, vjeruje se da postoje problemi za koje ne postoji algoritam rješenja polinomijalnog vremena, ali postoji algoritam koji će provjeriti točnost rješenja u polinomijalnom vremenu. Najpoznatiji \mathfrak{NP} -potpun problem je problem putujućeg prodavača. No, iskoristiti ćemo problem egzaktnog pokrivača tročlanim skupovima da bi pokazali da je problem $(P_{0,\eta})$ \mathfrak{NP} -težak.

Egzaktni pokrivač tročlanim skupovima

Za danu kolekciju $\{C_i; i \in [N]\}$ tročlanih podskupova od [m], postoji li egzaktni pokrivač skupa [m], tj. postoji li $J \subset [N]$ takav da $\bigcup_{j \in J} C_j = [m]$, gdje je $C_j \cap C_k = \emptyset$ za svaki $j, k \in J$ različiti? Poznato je da je taj problem \mathfrak{NP} -potpun (vidi TODO).

Teorem 1.3.1. Za svaki $\eta \geq 0$, $\mathbf{A} \in \mathbb{C}^{m \times N}$ i $\mathbf{y} \in \mathbb{C}^m$, problem minimizacije $(P_{0,\eta})$ je \mathfrak{NP} -potpun.

Dokaz. Zbog linearnosti problema $(P_{0,\eta})$, možemo uzeti da je $\eta < 1$. Pokazati ćemo da se problem egzaktnog pokrivač može u polinomijalnom vremenu reducirati na problem ℓ_0 -minimizacije. Neka je $\{C_i; i \in [N]\}$ kolekcija tročanih podskupova [m]. Definirajmo vektora $\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_N \in \mathbb{C}^m$

$$(\mathbf{a}_i)_j = \begin{cases} 1 \text{ za } j \in \mathcal{C}_i, \\ 0 \text{ za } j \notin \mathcal{C}_i \end{cases}$$

Definiramo matricu $\mathbf{A} \in \mathbb{C}^{m \times N}$ i vektor $\mathbf{y} \in \mathbb{C}^m$ sa

$$\mathbf{A} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_N], \qquad \mathbf{y} = [1, 1, \dots, 1]^T.$$

Pošto je $N \leq \binom{m}{3}$, to možemo napraviti u polinomijalnom vremenu. Ako $\mathbf{z} \in \mathbb{C}^N$ zadovoljava $\|\mathbf{A}\mathbf{z} - y\|_2 \leq \eta$, tada su svih m komponenti od $\mathbf{A}\mathbf{z}$ udaljeljene od 1 za najviše η , pa su te komponente različite od nula, jer smo η uzeli manji od 1. Dakle, vrijedi $\|\mathbf{A}\mathbf{z}\|_0 = m$. Ali pošto svaki od vektora \mathbf{a}_i imam točno tri ne-nul komponente, vektor $\mathbf{A}\mathbf{z} = \sum_{j=1}^N z_j \mathbf{a}_j$ ima najviše $r\|\mathbf{z}\|_0$ ne-nul elemenata, tj. $\|\mathbf{A}\mathbf{z}\|_0 \leq 3\|\mathbf{z}\|_0$. Dakle, za svaki vektor $\mathbf{z} \in \mathbb{C}^N$ koji zadovoljava $\|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 \leq \eta$ vrijedi $\|\mathbf{z}\|_0 \geq m/3$. Neka je sada $\mathbf{x} \in \mathbb{C}^N$ rješenje ℓ_0 -minimizacije $(P_{0,\eta})$. Imamo dva slučaj za normu vektora \mathbf{x} :

- 1. Ako je $\|\mathbf{x}\|_0 = m/3$ tada je $\{C_j; j \in \text{supp}(\mathbf{x})\}$ egzaktni pokrivač skupa [m] jer inače bi neke od m komponenti od $\mathbf{A}\mathbf{x}$ bile jednake od nula.
- 2. Ako je $\|\mathbf{x}\|_0 > m/3$ tada ne može postojati egzaktni pokrivač $\{\mathcal{C}_j; \ j \in J\}$ jer bi u suprotnom vektor $\mathbf{z} \in \mathbb{C}^N$ definiran tako da je $z_j = 1$ ako je $j \in J$ i $z_j = 0$ ako je $j \notin J$, zadovoljavao $\mathbf{A}\mathbf{z} = \mathbf{y}$ i $\|\mathbf{z}\|_0 = m/3$, što je kontradikcija s minimalnosti vektora \mathbf{x} .

Dakle, rješavanjem problem ℓ_0 -minimizacije, možemo rješiti problem egzaktnog pokrivača tročlanim skupovima, pa je stoga i sam problem ℓ_0 -minimizacije \mathfrak{NP} -potpun.

Čini se da prethodni teorem predstavlja ozbiljnu zapreku u praktičnom rješavanju problema sažetog uzorkovanja. No primjetimo, teorem tvrdi da je algoritam koji rješava problem ℓ_0 -minimizacije, za sve moguće matrie \mathbf{A} i vektore \mathbf{y} barem klase \mathfrak{NP} . Naravno, u samoj praksi nije nužno zahtjevati rekonstrukciju za sve takve matrice i vektore. Naime, pokazat ćemo da postoje algoritmi koji uspješno rekonstruiraju \mathbf{x} iz \mathbf{y} za posebno dizajnirane matrice \mathbf{A} .

Poglavlje 2

Osnovni algoritmi sažetog uzorkovanja

Algoritmi za rješavanje problema sažetog uzorkovanja, koje ćemo predstaviti, podijeljeni su u tri kategorije: optimizacije, greedy metode i granične metode. U ovom poglavlju dati ćemo samo pregled najpopularnijih algoritama, dok ćemo formalnu analizu nekih od njih ostaviti za kasnije, nakon što razvijemo potrebne teorijske alate.

2.1 Optimizacijske metode

Opčeniti problem optimizacije je oblika

$$\min_{\mathbf{x} \in \mathbb{R}^N} F_0(\mathbf{x}) \quad \text{uz uvjet } F_i(\mathbf{x}) \le b_i, \ i \in [n]$$

gdje $F_0: \mathbb{R}^N \to \mathbb{R}$ zovemo funkcija cilja, a funkcije $F_1, \ldots, F_n: \mathbb{R}^N \to \mathbb{R}$ zovemo funkcije ograničenja. Ako su F_0, F_1, \ldots, F_n konveksne funkcije, tada ovaj problem zovem problem konveksne optimizacije. Ako su te funkcije linearne, tada je to problem linearnog programiranja. Primjetimo da je problem rekonstrukcije rijetkog vektora (P_0) , zapravo problem minimizacije. No, nažalost taj problem nije konveksan i kao što smo u prethodnom poglavlju pokazali, opčenito je \mathfrak{NP} -težak. Prisjetimo se da $\|\mathbf{z}\|_q^q$ konvergira k $\|\mathbf{z}\|_0$ za $q \to 0^+$, pa je prirodno (P_0) aproksimirati problemom

$$\min \|\mathbf{z}\|_q \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y} \tag{P_q}$$

Pokaže se da za q > 1, čak 1-rijetki vektori nisu rješenja od (P_q) . Dok za 0 < q < 1, (P_q) ponovno nije konveksan i dalje je opčenito \mathfrak{NP} -težak. Za q = 1, problem postaje

konveksan

$$\min \|\mathbf{z}\|_1 \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}. \tag{P_1}$$

To je zapravo konveksna relaksacija problema (P_0) i zovemo ga ℓ_1 -minimizacija (eng. basis pursuit).

ℓ_1 -minimizacija

Ulaz: Matrica mjerenja \mathbf{A} , vektor mjerenja \mathbf{y} . Problem:

$$\mathbf{x}^{\sharp} = \arg\min \|\mathbf{z}\|_{1} \quad \text{uz uvjet } \mathbf{A}\mathbf{z} = \mathbf{y}$$
 $(\ell_{1} - min)$

Izlaz: vektor \mathbf{x}^{\sharp}

Pokažimo sada da su ℓ_1 -minimizatori rijetki vektori u realnom slučaju.

Teorem 2.1.1. Neka je $\mathbf{A} \in \mathbb{R}^{m \times N}$ matrica mjerenja sa stupcima $\mathbf{a}_1, \dots, \mathbf{a}_N$. Ako je \mathbf{x}^{\sharp} minimizator od

$$\min_{\mathbf{z} \in \mathbb{R}^N} \|\mathbf{z}\|_1 \quad uz \ uvjet \ \mathbf{Az} = \mathbf{y},$$

tada je skup $\{\mathbf{a}_j, j \in \operatorname{supp}(\mathbf{x}^{\sharp})\}$ linearno nezavisan i vrijedi

$$\|\mathbf{x}^{\sharp}\|_{0} = \operatorname{card}(\operatorname{supp}(\mathbf{x}^{\sharp})) \leq m.$$

Dokaz. Pretpostavimo suprotno, tj. da je skup $\{\mathbf{a}_j,\ j\in \operatorname{supp}(\mathbf{x}^\sharp)\}$ linearno zavisan. Neka je $S=\operatorname{supp}(\mathbf{x}^\sharp)$. To znači da postoji ne-nul vektor $\mathbf{v}\in\mathbb{R}^N$ sa nosačem na S takav da $\mathbf{A}\mathbf{v}=\mathbf{0}$. Tada za svaki $t\neq 0$

$$\|\mathbf{x}^{\sharp}\|_{1} < \|\mathbf{x}^{\sharp} + t\mathbf{v}\|_{1} = \sum_{i \in S} |x_{i}^{\sharp} + tv_{i}| = \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp} + tv_{j})(x_{j}^{\sharp} + tv_{j})$$

Ako je |t|dovoljno mali, tj. $|t|<\min_{j\in S}|x_j^\sharp|/\|\mathbf{v}\|_\infty$ onda vrijedi

$$\operatorname{sgn}(x_j^{\sharp} + tv_j) = \operatorname{sgn}(x_j^{\sharp})$$
 za svaki $j \in S$.

Dakle, za $0 < |t| < \min_{j \in S} |x_j^{\sharp}| / ||\mathbf{v}||_{\infty}$ slijedi

$$\|\mathbf{x}^{\sharp}\|_{1} < \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp})(x_{j}^{\sharp} + tv_{j}) = \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp})(x_{j}^{\sharp}) + t \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp})v_{j}$$
$$= \|\mathbf{x}^{\sharp}\|_{1} + t \sum_{j \in S} \operatorname{sgn}(x_{j}^{\sharp})v_{j}.$$

No, to je kontradikcija jer $t \neq 0$ možemo odabrati dovoljno mali tako da je $t \sum_{j \in S} \operatorname{sgn}(x_j^{\sharp}) v_j \leq 0$.

U realnom slučaju, (P_1) možemo reinterpretirati kao problem linearnog programiranja, tako da uvedemo pomočne varijable $\mathbf{z}^+, \ \mathbf{z}^- \in \mathbb{R}^N$ definirane sa

$$z_j^+ = \begin{cases} z_j & \text{za } z_j > 0, \\ 0 & \text{za } z_j \le 0 \end{cases}$$

$$z_j^- = \begin{cases} 0 & \text{za } z_j > 0, \\ -z_j & \text{za } z_j \le 0 \end{cases}$$

za svaki $j \in [N]$. Tada je problem (P_1) ekvivaltan problemu

$$\min_{\mathbf{z}^+, \mathbf{z}^- \in \mathbb{R}^N} \sum_{j=1}^N (z_j^+ + z_j^-) \quad \text{uz uvjet } \begin{bmatrix} \mathbf{A} & -\mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{z}^+ \\ \mathbf{z}^- \end{bmatrix} = \mathbf{y}, \quad \begin{bmatrix} \mathbf{z}^+ \\ \mathbf{z}^- \end{bmatrix} \ge 0. \tag{P_1'}$$

Isto ne vrijedi za kompleksni slučaj. Tu činjenicu pokazati ćemo na općenitijim problemu,

$$\min \|\mathbf{z}\|_1 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - y\|_2 \le \eta. \tag{P_{1,\eta}}$$

Taj problem je zapravo pogodniji za praksu, pošto vektor $\mathbf{y} \in \mathbb{C}^m$ ne možemo izmjeriti s beskonačnom točnošću, već uz neku grešku $\mathbf{e} \in \mathbb{C}^m$ pa je stoga

$$y = Ax + e$$
.

Takvoj greški često možemo ocjeniti ℓ_2 -normu, pošto ona ima interpretaciju energije,

$$\|\mathbf{e}\|_2 < \eta$$
, za neki $\eta > 0$.

Za dani vektor $\mathbf{z} \in \mathbb{C}^N$, neka su \mathbf{u} , $\mathbf{v} \in \mathbb{R}^N$ njegovi realni i imaginarni djelovi te neka je $\mathbf{c} \in \mathbb{R}^N$ takav d je $c_j \geq |z_j| = \sqrt{u_j^2 + v_j^2}$ za sve $j \in [N]$. Problem $(P_{1,\eta})$ je tada ekvivaltan problemu

$$\min_{\mathbf{c}, \mathbf{u}, \mathbf{v} \in \mathbb{R}^{N}} \sum_{j=1}^{N} c_{j} \quad \text{uz uvjete} \quad \left\| \begin{bmatrix} \operatorname{Re}(\mathbf{A}) & -\operatorname{Im}(\mathbf{A}) \\ \operatorname{Im}(\mathbf{A}) & \operatorname{Re}(\mathbf{A}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} - \begin{bmatrix} \operatorname{Re}(\mathbf{y}) \\ \operatorname{Im}(\mathbf{y}) \end{bmatrix} \right\|_{2} \leq \eta$$

$$\sqrt{u_{j}^{2} + v_{j}^{2}} \leq c_{j}, \quad \forall j \in [N].$$

$$(P'_{1,\eta})$$

Ovo je problem konike drugog reda. Primjetimo da za $\eta = 0$ dobivamo formulaciju problema (P_1) za kompleksni slučaj u takvom obliku.

Princip rješavanja $(P_{1,\eta})$ zove se kvadratično ograničena ℓ_1 -minimizacija ili ℓ -minimizacija osjetljiva na šum (eng. quadratically constrainted basis pursuit).

Kvadratično ograničena ℓ_1 -minimizacija

Ulaz: Matrica mjerenja \mathbf{A} , vektor mjerenja \mathbf{y} , razina šuma η . *Problem:*

$$\mathbf{x}^{\sharp} = \arg\min \|\mathbf{z}\|_1 \quad \text{uz uvjet } \|\mathbf{A}\mathbf{z} - y\|_2 \le \eta$$
 $(\ell_1 - \min_{\eta})$

Izlaz: vektor \mathbf{x}^{\sharp}

Rješenje \mathbf{x}^{\sharp} povezano je s rješenjem problema ℓ_1 -minimizacije sa ugrađenim uklanjanjem šuma

$$\min_{\mathbf{z} \in \mathbb{C}^N} \lambda \|\mathbf{z}\|_1 + \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2^2 \tag{2.1}$$

za neki $\lambda \geq 0$. Također povezano je s rješenjem *LASSO* problema, za neki $\tau \geq 0$,

$$\min_{\mathbf{z} \in \mathbb{C}^N} \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 \quad \text{uz uvjet } \|\mathbf{z}\|_1 \le \tau$$
 (2.2)

To upravo tvrdi naredna propozicija.

- Propozicija 2.1.2. (a) Ako je **x** minimizator problema (2.1) sa $\lambda > 0$, onda postoji $\eta = \eta_{\mathbf{x}} \geq 0$ takva da je **x** minizator kvadratično ograničene ℓ_1 -minimizacije $(P_{1,\eta})$.
 - (b) Ako je \mathbf{x} jedinstveni minimizator problema $(P_{1,\eta})$ sa $\eta \geq 0$, onda postoji $\tau = \tau_{\mathbf{x}} \geq 0$ takav da je \mathbf{x} minimizator LASSO problema (2.2).
 - (c) Ako je \mathbf{x} minimizator LASSO problema (2.2), onda postoji $\lambda = \lambda_{\mathbf{x}} \geq 0$ takva da je \mathbf{x} minimizator problema (2.1).
- Dokaz. (a) Neka je $\eta := \|\mathbf{A}\mathbf{x} \mathbf{y}\|_2$ i $\mathbf{z} \in \mathbb{C}^N$ takav da je $\|\mathbf{A}\mathbf{z} \mathbf{y}\|_2 \le \eta$. Pošto je prema pretpostavci \mathbf{x} minimizator od (2.1) slijedi,

$$\lambda \|\mathbf{x}\|_1 + \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 \le \lambda \|\mathbf{z}\|_1 + \|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2^2 \le \lambda \|\mathbf{z}\|_1 + \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2.$$

Dakle slijedi da je $\|\mathbf{x}\|_1 \leq \|\mathbf{y}\|_1$, pa je \mathbf{x} minimizator problema $(P_{1,\eta})$

- (b) Neka je $\eta := \|\mathbf{x}\|_1$ i neka je $\mathbf{z} \in \mathbb{C}^N \setminus \{\mathbf{x}\}$ takav da je $\|\mathbf{z}\|_1 \leq \tau$. Pošto je \mathbf{x} jedinstveni minimizator od $(P_{1,\eta})$ to znači da **z** ne može zadovoljavati uvjet iz $(P_{1,\eta})$, pa stoga $\|\mathbf{A}\mathbf{z} - \mathbf{y}\|_2 > \eta \ge \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2$. Dakle, **x** je jedinstveni minimizator LASSO problema.
- (c) Za dokaz ove tvrdnje potrebni su alati konveksne analize, vidi (TODO).

2.2Greedy metode

Upoznati ćemo se sa dva iterativna greedy algoritma koji se često koriste u kontekstu sažetog uzorkovanja. Prvo algoritam koji ćemo proučiti zove se OMP (skračenica od eng. orthogonal matching pursuit).

OMP

Ulaz: Matrica mjerenja A, vektor mjerenja y.

Inicijalizacija: $S^0 = \emptyset$, $\mathbf{x}^0 = \mathbf{0}$

Iteracija: Zaustavi kada $n = \bar{n}$:

$$S^{n+1} = S^n \cup \{j_{n+1}\}, \quad j_{n+1} := \underset{j \in [N]}{\arg \max} \{ |(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))| \}, \qquad (OMP_1)$$

$$\mathbf{x}^{n+1} = \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ ||\mathbf{y} - \mathbf{A}\mathbf{z}||_2, \sup_{j \in [N]} (\mathbf{z}) \subset S^{n+1} \}. \qquad (OMP_2)$$

$$\mathbf{x}^{n+1} = \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \ \operatorname{supp}(\mathbf{z}) \subset S^{n+1} \}. \tag{OMP_2}$$

Izlaz: vektor \bar{n} -rijedak vektor $\mathbf{x}^{\sharp} = \mathbf{x}^{\bar{n}}$.

Numerički najskuplja operacija ovog algoritma je (OMP_2) . Situacije se može popraviti korištenjem QR dekompozicije matrice \mathbf{A}_{S_n} . Tada se mogu iskoristiti efikasni algoritmi za ažuriranje QR dekompozicije kada se u matricu doda novi stupac. Nadalje, za dodatna ubrzanja mogu se iskoristiti i algoritmi za brzo matrica-vektor množenje bazirani na brzoj Fourierovoj transformaciji (vidi TODO).

Indeks j_{n+1} bira se tako da se reducira ℓ_2 -norma reziduala $\mathbf{y} - \mathbf{A}\mathbf{x}^n$ što je više moguće. Sljedeća lema opravdava zašto je smisleno j odabrati takav da maksimizira vrijednost $|(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^n))_i|$.

Lema 2.2.1. Neka je $\mathbf{A} \in \mathbb{C}^{m \times N}$ sa ℓ_2 -normaliziranim stupcima. Ako su $S \subset [N]$, $\mathbf{v} \in \mathbb{C}^N$ sa nosačem na $S, j \in [N]$, te ako vrijedi

$$\mathbf{w} := \underset{\mathbf{z} \in \mathbb{C}^N}{\operatorname{arg\,min}} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \ \operatorname{supp}(\mathbf{z}) \subset S \cup \{j\} \},$$

tada

$$\|\mathbf{y} - \mathbf{A}\mathbf{w}\|_2^2 \le \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_2^2 - |(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}))_i|^2$$
.

Dokaz. Pošto svaki vektor oblika $\mathbf{v}+t\mathbf{e}_j,\ t\in\mathbb{C}$ ima nosač u $S\cup\{j\}$ vrijedi,

$$\|\mathbf{y} - \mathbf{A}\mathbf{w}\|_2^2 \le \min_{t \in \mathbb{C}} \|\mathbf{y} - \mathbf{A}(\mathbf{v} + t\mathbf{e}_j)\|_2^2$$

Stavimo da je $t = \rho e^{i\theta}$, gdje je $\rho \ge 0$ i $\theta \in [0, 2\pi)$. Imamo,

$$\|\mathbf{y} - \mathbf{A}(\mathbf{v} + t\mathbf{e}_{j})\|_{2}^{2} = \|\mathbf{y} - \mathbf{A}\mathbf{v} - t\mathbf{A}\mathbf{e}_{j}\|_{2}^{2}$$

$$= \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_{2}^{2} + |t|^{2}\|\mathbf{A}\mathbf{e}_{j}\|_{2}^{2} - 2\operatorname{Re}(\bar{t}\langle\mathbf{y} - \mathbf{A}\mathbf{v}, \mathbf{A}\mathbf{e}_{j}\rangle)$$

$$= \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_{2}^{2} + \rho^{2} - 2\operatorname{Re}(\rho e^{-i\theta}(\mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{v}))_{j})$$

$$\geq \|\mathbf{y} - \mathbf{A}\mathbf{v}\|_{2}^{2} + \rho^{2} - 2\rho|(\mathbf{A}^{*}(\mathbf{y} - \mathbf{A}\mathbf{v}))_{j}|^{2}$$

gdje jednakost vrijedi za pogodno odabrani θ . Kao kvadratni polinom u varijabli ρ , zadnji izraz poprima minimum za $\rho = |(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}))_j|$.

Korak (OMP_2) moše se prikazati u obliku

$$\mathbf{x}_{S^{n+1}}^{n+1} = \mathbf{A}_{S^{n+1}}^{\dagger} \mathbf{y},$$

gdje je $\mathbf{x}_{S^{n+1}}^{n+1}$ restrikcija od \mathbf{x}^{n+1} na svoj nosač S^{n+1} i gdje je $\mathbf{A}_{S^{n+1}}^{\dagger}$ pseudo-inverz od $\mathbf{A}_{S^{n+1}}$ (vidi TODO). Drugim rječima to znači da je $\mathbf{z} = \mathbf{x}_{S^{n+1}}^{n+1}$ rješenje sustava $\mathbf{A}_{S^{n+1}}^* \mathbf{A}_{S^{n+1}} \mathbf{z} = \mathbf{A}_{S^{n+1}}^* \mathbf{y}$. Ta činjenica je korisna i u drugim algoritmima koji imaju korak sličan (OMP_2) .

Lema 2.2.2. Neka je $S \subset [N]$ i

$$\mathbf{v} := \underset{\mathbf{z} \in \mathbb{C}^N}{\min} \{ \|\mathbf{y} - \mathbf{A}\mathbf{z}\|_2, \sup_{\mathbf{z}} (\mathbf{z}) \subset S \},$$

tada je

$$(\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}))_S = \mathbf{0}. \tag{2.3}$$

Dokaz. Prema definiciji vektora v, vektor Av je orthogonalna projekcija vektora v

na prostor $\{\mathbf{Az},\ \mathrm{supp}(\mathbf{z}\subset S)\}$, pa je karakteriziran relacijom ortogonalnosti

$$\langle \mathbf{y} - \mathbf{A}\mathbf{v}, \mathbf{A}\mathbf{z} \rangle = 0$$
 za sve $\mathbf{z} \in \mathbb{C}^N$ takve da supp $(\mathbf{z}) \subset S$.

Dakle, imamo da vrijedi $\langle \mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{v}), \mathbf{z} \rangle = 0$ za sve $\mathbf{z} \in \mathbb{C}^N$, supp $(\mathbf{z}) \subset S$, što vrijedi ako i samo ako vrijedi (2.3).

Prirodan uvjet zaustavljanja OMP-a je kada se postigne $\|\mathbf{y} - \mathbf{A}\mathbf{x}^{\bar{n}}\| \leq \varepsilon$ ili $\|\mathbf{A}^*(\mathbf{y} - \mathbf{A}\mathbf{x}^{\bar{n}})_{\infty}\| \leq \varepsilon$ za neku toleranciju $\varepsilon > 0$. Ako nam je dostupna estimacija rijetkosti s rješenja \mathbf{x} , tada je razumno stati kada je $\bar{n} = s$.

Bibliografija

Sažetak

Summary

Životopis