

Real Numbers Ex 1.3 Q1

Answer:

TO EXPRESS: each of the following numbers as a product of their prime factors

(i) 420

 $420 = 2^2 \times 3 \times 5 \times 7$

(ii) 468

 $468 = 2^2 \times 3^2 \times 13$

(iii) 945

 $945 = 3^3 \times 5 \times 7$

(iv) 7325

 $7325 = 5^2 \times 293$

Real Numbers Ex 1.3 Q2

Answer

TO EXPRESS: each of the following numbers as a product of their prime factors

(i) 20570

20570=2×5×112×17

(ii) 58500

 $58500 = 2^2 \times 3^2 \times 5^3 \times 13$

(iii) 45470971

 $45470971 = 7^2 \times 13^2 \times 17^2 \times 19$

Real Numbers Ex 1.3 Q3

Answer:

EXPLAIN: Why $7\times11\times13+13$ and $7\times6\times5\times4\times3\times2\times1+5$ are composite numbers

We can see that both the numbers have common factor 7 and 1.

 $7 \times 11 \times 13 + 13 = (77 + 1) \times 13$

 $=78\times13$

 $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5 = (7 \times 6 \times 4 \times 3 \times 2 + 1) \times 5$

 $=1008 \times 5$

And we know that composite numbers are those numbers which have at least one more factor other than 1

Hence after simplification we see that both numbers are even and therefore the given two numbers are composite numbers

Real Numbers Ex 1.3 Q4

Answer:

TO CHECK: Whether 6^n can end with the digit 0 for any natural number n.

We know that

 $6^n = (2 \times 3)^n$

 $6^n = 2^n \times 3^n$

Therefore, prime factorization of 6^n does not contain 5 and 2 as a factor together.

Hence 6^n can never end with the digit 0 for any natural number n

********* END ********