

Online Airline Reservation System

BANKING MANAGEMENT SYSTEM

ATM MANAGEMENT SYSTEM

ACTIVITY DIAGRAM

Calculate the object point count, New object point and effort to develop such project.

Step-1:

Number of screens = 4

Number of records = 2

Step-2:

For screens,

Number of views = 4

Number of data tables = 7

Number of servers = 3

Number of clients = 4

by using above given information and table (For Screens),

Complexity level for each screen = medium

For reports,

Number of sections = 6

Number of data tables = 7

Number of servers = 2

medium

For reports,

Number of sections = 6

Number of data tables = 7

Number of servers = 2

Number of clients = 3

by using above given information and table (For Reports),

Complexity level for each report = difficult

Step-3:

By using complexity weight table we can assign complexity weight to each object instance depending upon their complexity level.

Complexity weight for each screen = 2 Complexity weight for each report = 8

Step-4:

Step-4:

```
Object point count
= sigma (Number of object instanc
= 4 * 2 + 2 * 8 = 24
```

Step-5:

```
%reuse of object points = 10% (gi
NOP = [object points * (100 - %re
= [24 * (100 -10)]/100 = 21.6
```

Step-6:

Developer's experience and capability is low (given)

Using information given about developer and productivity rate table Productivity rate (PROD) of given project = 7

Step-7:

Productivity rate (PROD) of given project = 7

Step-7:

```
= NOP/PROD
```

= 21.6/7

Effort

= 3.086 person-month

Therefore, effort to develop the given project = 3.086 person-month.

Example 2: Part of analysis model for SafeHome software

- Number of user inputs
- = 3 (password, panic button, and activate/deactivate)
- Number of user outputs
- = 2 (massages and sensor status)
- Number of user inquiries
- = 2 (zone inquiry and sensor inquiry)

- Number of file

- = 1 (system configuration file)
- Number of external interfaces = 4 (test sensor, zone setting, activate/deactivate, and alarm alert)

Weighting Factor

Measurement parameter	Count		Simple	Average	Complex		
Number of user inputs	3	×	3	4	6	=	9
Number of user outputs	2	x	4	5	7	=	8
Number of user inquiries	2	×	3	4	6	=	6
Number of files	1	×	7	10	15	=	7
Number of external interfaces	4	×	(5)	7	10	=	20
Count total -						-[50

- +Assume Weighting Factor is simple:
- → CT = (3*3)+(2*4)+(2*3)+(1*7)+(4*5)= 50
- +And assume ∑Fi = 46
- → FP = 50 x [0.65 + (0.01 x 46)] = 55.50 ≈ 56FP

Computing FPs

Measurement Parameter	Count		Weighing factor Simple Average Complex			
measurement Parameter	Count					
1. Number of external inputs (EI)	32	•	3	4	6 = 128	
2. Number of external Output (EO)	60	•	4	5	7 = 300	
3. Number of external Inquiries (EQ)	24	•	3	4	6 = 96	
4. Number of internal Files (ILF)	8	•	7	10	15 = 80	
5. Number of external interfaces(EIF)	2	•	5	7	10 = 14	
Count-total →					618	

Now
$$f_i$$
 for average case = 3. So sum of all f_i ($i \leftarrow 1$ to 14) = 14 * 3 = 42
 FP = Count-total * $[0.65 + 0.01 *\sum (f_i)]$
 = 618 * $[0.65 + 0.01 * 42]$
 = 618 * $[0.65 + 0.42]$
 = 618 * 1.07 = 661.26

COCOMO - II EXAMPLE

Use COCOMO-II model to estimate the effort required to build software for a simple ATM that produces 12 screen, 10 reports, and will require approximately 80% as new software components. Assume average complexity and average developer/environment maturity. Use the application composition model with object point

Object	Count	Complexity	Weight Factor	Total Objects
Screen	12	Simple	1	12
Report	10	Simple	2	20
3GL Components	0	N/A	N/A	0
		Total	32	

COCOMO – II EXAMPLE

- It is given that 80% of components have to be newly developed. So remaining 20% can be reused.
- Now compute new object points as
 - $NOP = (object\ points) * [(100 %reuse)/100]$
 - NOP = 32 * [(100 20)/100]
 - NOP = 25.6 object points
- ♦ Since productivity is average, we can assume PROD = 13
- ♦ Hence,
 - effort = NOP/PROD = 25.6 / 13 = 1.96 person-months

Example: We have determined our project fits the characteristics of Semi-Detached mode & We estimate our project will have 32,000 Delivered Source Instructions.

Using the formulas, we can estimate:

- Effort = $3.0*(32)^{1.12}$ = 146 man-months
- **Duration** = $2.5*(146)^{0.35} = 14$ months
- \circ Productivity = 32,000 DSI / 146 MM
 - = 219 DSI/MM
- Person estimation = 146 MM /14 months = 10 FSP