

Sample Paper-04

Mathematics Class - XI

ANSWERS

Section A

1. Solution:

$$\begin{aligned} &\frac{3+2i}{1-i} = \frac{3+2i}{1-i} \cdot \frac{1+i}{1-i} \\ &= \frac{3+2i+3i+2i^2}{1-i^2} = \frac{1}{2} + \frac{5}{2}i \\ &(1+2i)i - \frac{3+2i}{1-i} = (-2+i) - (\frac{1}{2} + \frac{5}{2}i) = -\frac{5}{2} - \frac{3}{2}i \end{aligned}$$

2. Solution:

Domain=
$$[-1,1]$$
 Range= $[0,\pi]$

3. Solution:

$$0 \le \cos^{-1} x \le \pi$$

sin in this interval is positive and hence y is positive

4. Solution:

$$\sin^{-1}\left(\sin\left(\frac{6\pi}{7}\right)\right) = \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{7}\right)\right)$$

$$= \sin^{-1}\left(\sin\left(\frac{\pi}{7}\right)\right)$$

$$= -\frac{\pi}{2} \le \frac{\pi}{7} \le \frac{\pi}{2}$$

$$= \frac{\pi}{7}$$

5. **Solution:** (a, 2a) , (a, -2a)

6. Solution:

$$x+7=10$$

$$x=3$$

$$x+y=8$$

$$y=5$$

Section B

7. Solution:

$$\frac{1 - \cos 2x}{2} + \frac{1 - \cos 4x}{2} = 1$$

$$\cos 2x + \cos 4x = 0$$

$$2\cos 3x\cos x = 0$$

$$\cos 3x = 0$$

$$x = \frac{\pi}{6} + \frac{\pi}{3}n$$

$$Cosx = 0$$

$$x = \frac{\pi}{2} + \pi k = \frac{\pi}{6} + \frac{\pi}{3} n \quad n \text{ is integer}$$

$$i^{30} + i^{40} + i^{60} = (i^4)^7 \cdot i^2 + (i^4)^{10} + (i^4)^{15}$$

$$i^4 = 1 = -1 + 1 + 1 = 1$$

9. Solution:

Substituting the points (0,0) and (5,5) on the given line

$$x + y - 8 = 0$$

$$0 + 0 - 8 = -8$$

$$5 + 5 - 8 = 2$$

Since the signs of the resulting numbers are different the given points lie on opposite sides of the given line.

10.**Solution:**

$$\tan^{-1} x = A$$

$$\tan A = x$$

$$\cot^{-1} x = B$$

$$\cot B = x$$

$$\tan(\frac{\pi}{2} - B) = x$$

$$\tan^{-1} x = \frac{\pi}{2} - B$$

$$\tan^{-1} x = A$$

$$A = \frac{\pi}{2} - B$$

$$A+B=\frac{\pi}{2}$$

$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

$$11^{n+2} + 12^{2n+1}$$
 is divisible by 133

n = 1

$$11^3 + 12^3 = (11+12)(11^2 - 11.12 + 12^2)$$

=23.133

Let it be true for k

 $11^{k+2} + 12^{2k+1}$ is divisible by 133

For k = k + 1

$$11^{k+3} + 12^{2k+3} = 11.11^{k+2} + 12^2.12^{2k+1}$$

$$=11.11^{k+2}+144.12^{2k+1}$$

$$=11.11^{k+2}+133.12^{2k+1}+11.12^{2k+1}$$

$$=11.11^{k+2}+11.12^{2k+1}+133.12^{2k+1}$$

Is divisible by 133 since $11^{k+2} + 12^{2k+1}$ is divisible by 133

12. Solution:

$$n(A' \cap B') = n(A \cup B)' = n(U) - n(A \cup B)$$

$$= n(U) \quad [n(A) + n(B) \quad n(A \cap B)]$$

$$= n(U) - [n(A) + n(B) - n(A \cap B)]$$

$$800 - [200 + 300 - 100]$$

=400

13. **Solution**: $\alpha + \beta = b$

$$\alpha\beta = c$$

$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$=b^2-2c$$

14. Solution:

$$(x+a)^n = P + Q$$

$$(x-a)^n = P - Q$$

$$(P+Q)(P-Q) = (x+a)(x-a)$$

$$P^2 - Q^2 = (x^2 - a^2)^n$$

15. Solution:

Discriminant of numerator = 9 - 24 < and

Coefficient of x^2 is positive. Hence Numerator is always positive

Hence dividing by the numerator on both sides of

The equality does not change the sign of the inequality

Hence we need only consider $\frac{1}{3x+4} < 0$

$$x < \frac{-4}{3}$$
$$x \in (-\infty, -\frac{4}{3})$$

16. Solution:

$$\cot(A+15) - \tan(A-15) = \frac{\cos(A+15)}{\sin(A+15)} - \frac{\sin(A-15)}{\cos(A-15)}$$

$$= \frac{\cos(A+15)\cos(A-15) - \sin(A+15)\sin(A-15)}{\sin(A+15)\cos(A-15)}$$

$$= \frac{\cos 2A}{\frac{1}{2}(\sin 2A + \frac{1}{2})}$$

$$= \frac{2\cos 2A}{\sin 2A + \frac{1}{2}}$$

$$= \frac{4\cos 2A}{1+2\sin 2A}$$

17. Solution:

$$4 - x^2 \ge 0$$

$$x^2 - 4 \le 0$$

Domain of $x \in [-2, 2]$

$$y^2 = 4 - x^2$$

$$x^2 = 4 - y^2$$

$$x = \sqrt{4 - y^2}$$

$$4 - y^2 \ge 0$$

$$y^2 - 4 \le 0$$

$$y \in [-2, 2]$$

Also for all values of $x \in [-2, 2]$

$$y = \sqrt{4 - x^2} \ge 0$$

Range
$$y \in [0, 2]$$

18. Solution:

$$\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$

$$\cos \theta = \frac{1 - 4}{1 + 4} = \frac{-3}{5}$$

$$\sin \theta = \frac{2 \tan \theta 2}{1 + \tan^2 \frac{\theta}{2}} = \frac{2.2}{1 + 4} = \frac{4}{5}$$

$$\frac{1}{2 + \cos \theta + \sin \theta} = \frac{1}{2 - \frac{3}{5} + \frac{4}{5}} = \frac{11}{5}$$

$$\lim_{x \to 0} \frac{\sin 5x}{x + x^3} = \lim_{x \to 0} \frac{5\sin 5x}{5x(1 + x^2)}$$

$$= \lim_{x \to 0} \frac{5\sin 5x}{5x} \lim_{x \to 0} \frac{1}{(1 + x^2)}$$

$$= 5.1.1$$

$$= 5$$

Section C

20. Solution:

$$y = \log_{10} x$$

$$x = 10^{y}$$

$$\log_{e} x = y \log_{e} 10$$

$$y = \frac{\log_{e} x}{\log_{e} 10}$$

$$\frac{dy}{dx} = \left(\frac{1}{\log_{e} 10}\right) \frac{1}{x}$$

21. Solution:

There are 3 even numbers 2, 4, 6

So the units place, 10^{th} places can be filled in $3p_2$ ways

Remaining 5 digits can be used to fill 4 places in $5p_4$ ways.

Hence the total numbers satisfying the above condition is $3p_2 \times 5p_4 = 720$

22. Solution:

Let the origin be shifted to (h, k)

$$x = x' + h$$

$$y = y' + k$$

Then

$$(x'+h)^2 + (y'+k)^2 - 4(x'+h) + 6(y'+k) = 36$$

$$x'^{2} + 2hx' + h^{2} + y'^{2} + 2ky' + k^{2} - 4(x'+h) + 6(y'+k) = 36$$

$$x'^{2} + y'^{2} + x'(2h-4) + y'(2k+6) + h^{2} + k^{2} - 4h + 6k - 36 = 0$$

$$2h - 4 = 0$$

$$h = 2$$

$$2k + 6 = 0$$

$$k = -3$$

$$x'^2 + y'^2 + 2^2 + (-3)^2 - 8 - 18 - 36 = 0$$

$$x'^2 + y'^2 + 13 - 62 = 0$$

$$x'^2 + v'^2 = 49$$

23. Solution:

$$\frac{2+4+12+14+11+x+y}{7} = 8$$

$$43 + x + y = 56$$

$$x + y = 13$$

$$\frac{2^2 + 4^2 + 12^2 + 14^2 + 11^2 + x^2 + y^2}{7} - (mean)^2 = 19$$

$$\frac{4+16+144+196+121+x^2+y^2}{7}-64=19$$

$$\frac{481 + x^2 + y^2}{7} = 83$$

$$481 + x^2 + y^2 = 581$$

$$x^2 + y^2 = 100$$

$$(x+y)^2 + (x-y)^2 = 2(x^2 + y^2)$$

$$169 + (x - y)^2 = 200$$

$$(x-y)^2 = 31$$

$$x - y = 5.57$$

$$x + y = 13$$

$$x = 9.285$$

$$y = 3.715$$

24. Solution:

$$\frac{1}{\log_a b} = \log_b a$$

$$\frac{1}{\log_{2a} b} = \log_b 2a$$

$$\frac{1}{\log_{4a} b} = \log_b 4a$$

$$\frac{\log_b a + \log_b 4a}{2} = \frac{\log_b (2a)^2}{2}$$

$$= 2\frac{\log_b 2a}{2}$$

$$= \log_b 2a$$

Thus,
$$\frac{1}{\log_{2a} b}$$
 is, the, AM, between $\frac{1}{\log_a b}$, $\frac{1}{\log_{4a} b}$

Probability of surviving = $\frac{9}{10}$

Required to find out the probability of 4 are safe or 5 are safe

Probability of 5 is safe =
$$\left(\frac{9}{10}\right)^5$$

Probability of 4 is safe =
$${}^5C_4 \left(\frac{9}{10}\right)^4 \frac{1}{10}$$

Required Probability =
$$\left(\frac{9}{10}\right)^5 + 5\left(\frac{9}{10}\right)^4 \frac{1}{10} = \frac{45927}{5000}$$

26.Solution:

$$T_{2r+1} = {}^{40}C_{2r}$$

$$T_{r+2} = {}^{40}C_{r+1}$$

$${}^{40}C_{2r} = {}^{40}C_{r+1}$$

$$2r+r+1=40$$

$$3r=39$$

$$r=13$$