Teori Bilangan (Bagian 1)

Bahan Kuliah IF2120 Matematika Diskrit

Oleh: Rinaldi Munir

Program Studi Teknik Informatika STEI-ITB

Bilangan Bulat

• **Teori bilangan** adalah cabang matematika murni yang ditujukan untuk mempelajari bilangan bulat (*integer*) atau fungsi bernilai bilangan bulat.

• Bilangan bulat (*integer*) adalah bilangan yang tidak mempunyai pecahan desimal, misalnya 8, 21, 8765, -34, 0, -13451, dsb

• Berlawanan dengan bilangan bulat adalah bilangan riil yang mempunyai titik desimal, seperti 8.0, 34.25, 0.02, -0.00234

Sifat Pembagian pada Bilangan Bulat

- Misalkan a dan b bilangan bulat, $a \neq 0$.
 - a habis membagi b (a divides b) jika terdapat bilangan bulat c sedemikian sehingga b = ac.

• Notasi: $a \mid b$ jika b = ac, $c \in \mathbf{Z}$ dan $a \neq 0$.

• Contoh 1: 4 | 12 karena 12/4 = 3 (bilangan bulat) atau $12 = 4 \times 3$. Tetapi $4 \not \mid 13$ karena 13/4 = 3.25 (bukan bilangan bulat).

Teorema Euclidean

Teorema 1 (Teorema Euclidean). Misalkan m dan n bilangan bulat, n > 0. Jika m dibagi dengan n maka hasil pembagiannya adalah q (quotient) dan sisanya r (remainder), sedemikian sehingga

$$m = nq + r$$

dengan $0 \le r < n$.

Contoh 2.

(i)
$$1987/97 = 20$$
, sisa 47 $1987 = 20 \cdot 97 + 47$

(ii)
$$-22/3 = -8$$
, sisa 2
 $-22 = (-8) \cdot 3 + 2$

tetapi jika pembagiannya sebagai berikut:

$$-22/3 = -7 \text{ sisa } -1$$

 $-22 = (-7) \cdot 3 - 1 \quad \text{(salah!!)}$
karena $r = -1 \quad \text{(syarat } 0 \le r < n \text{)}$

Pembagi Bersama Terbesar (PBB)

Misalkan a dan b bilangan bulat tidak nol.

Pembagi bersama terbesar (PBB – greatest common divisor atau gcd) dari a dan b adalah bilangan bulat terbesar d sedemikian hingga d | a dan d | b.

• Dalam hal ini kita nyatakan bahwa PBB(a, b) = d.

Di sekolah dasar, istilah "pembagi bersama terbesar" sering disebut "faktor persekutuan terbesar" atau FPB

• Contoh 3. PBB(45, 36) = ?

Faktor pembagi 45: 1, 3, 5, 9, 15, 45;

Faktor pembagi 36: 1, 2, 3, 4, 9, 12, 18, 36;

Faktor pembagi bersama 45 dan 36: 1, 3, 9 → terbesar = 9

 \rightarrow PBB(45, 36) = 9.

• **Teorema 2.** Misalkan m dan n bilangan bulat, dengan syarat n > 0 sedemikian sehingga

$$m = nq + r$$
, $0 \le r < n$ teorema euclidear maka $PBB(m, n) = PBB(n, r)$

• Contoh 4: m = 60, n = 18, $60 = 3 \cdot 18 + 6$ maka PBB(60, 18) = PBB(18, 6) = 6

Algoritma Euclidean

• Tujuan: algoritma untuk mencari PBB dari dua buah bilangan bulat.

 Penemu: Euclides, seorang matematikawan Yunani yang menuliskan algoritmanya tersebut dalam buku, Element.

• Lukisan Euclides versi lain

Misalkan m dan n adalah bilangan bulat tak negatif dengan $m \ge n$. Misalkan $r_0 = m$ dan $r_1 = n$.

Lakukan secara berturut-turut pembagian untuk memperoleh

$$r_0 = r_1 q_1 + r_2$$
 $0 \le r_2 < r_1,$
 $r_1 = r_2 q_2 + r_3$ $0 \le r_3 < r_2,$
 \vdots
 $r_{n-2} = r_{n-1} q_{n-1} + r_n$ $0 \le r_n < r_{n-1},$
 $r_{n-1} = r_n q_n + 0$

Menurut Teorema 2,

Teorema 2. Misalkan m dan n bilangan bulat, dengan syarat n > 0 sedemikian sehingga m = nq + r, $0 \le r < n$ maka PBB(m, n) = PBB(n, r)

PBB
$$(m, n)$$
 = PBB (r_0, r_1) = PBB (r_1, r_2) = ... = PBB (r_{n-2}, r_{n-1}) = PBB (r_{n-1}, r_n) = PBB $(r_n, 0)$ = r_n

Jadi, PBB dari *m* dan *n* adalah sisa terakhir yang tidak nol dari runtunan pembagian tersebut

Diberikan dua buah bilangan bulat tak-negatif m dan n ($m \ge n$). Algoritma Euclidean berikut mencari pembagi bersama terbesar dari m dan n.

Algoritma Euclidean

- 1. Jika n = 0 maka m adalah PBB(m, n); stop. tetapi jika $n \neq 0$, lanjutkan ke langkah 2.
- 2. Bagilah *m* dengan *n* dan misalkan *r* adalah sisanya.
- 3. Ganti nilai *m* dengan nilai *n* dan nilai *n* dengan nilai *r*, lalu ulang kembali ke langkah 1.

```
procedure Euclidean(input m, n : integer,
                       output PBB : integer)
{ Mencari PBB(m, n) dengan syarat m dan n bilangan tak-
  negatif dan m \ge n
  Masukan: m dan n, m \ge n dan m, n \ge 0
 Keluaran: PBB(m, n)
Kamus
   r : integer
Algoritma:
   while n \neq 0 do
      r \leftarrow m \mod n
      m \leftarrow n
      n \leftarrow r
   endwhile
   \{ n = 0, maka PBB(m,n) = m \}
   PBB \leftarrow m
```

Contoh 4. m = 80, n = 12 dan dipenuhi syarat $m \ge n$

Sisa pembagian terakhir sebelum 0 adalah 4, maka PBB(80, 12) = 4.

Kombinasi Linier

• PBB(a,b) dapat dinyatakan sebagai **kombinasi linier** (*linear combination*) a dan b dengan koefisien-koefisennya.

• Contoh 6: PBB(80, 12) = 4,

$$4 = (-1) \cdot 80 + 7 \cdot 12$$
.

• **Teorema 3.** Misalkan a dan b bilangan bulat positif, maka terdapat bilangan bulat m dan n sedemikian sehingga PBB(a, b) = ma + nb.

• **Contoh 7**: Nyatakan PBB(21, 45) sebagai kombinasi linier dari 21 dan 45. Penyelesaian:

$$45 = 2 \cdot 21 + 3$$
 (i)

$$21 = 7 \cdot 3 + 0$$
 (ii)

Sisa pembagian terakhir sebelum 0 adalah 3, maka PBB(45, 21) = 3

Dari persamaan (i) dapat dituliskan:

$$3 = 45 - 2 \cdot 21 = 1 \cdot 45 - 2 \cdot 21$$

Jadi 3 merupakan kombinasi linier dari 45 dan 21

Contoh 8: Nyatakan PBB(312, 70) sebagai kombinasi linier 312 dan 70.

<u>Jawaban</u>: Terapkan algoritma Euclidean untuk memperoleh PBB(312, 70):

$$312 = 4 \cdot 70 + 32$$
 (i)

$$70 = 2 \cdot 32 + 6$$
 (ii)

$$32 = 5 \cdot 6 + 2$$
 (iii)

$$6 = 3 \cdot 2 + 0$$
 (iv)

Sisa pembagian terakhir sebelum 0 adalah 2, maka **PBB(312, 70) = 2** Susun pembagian nomor (iii) dan (ii) masing-masing menjadi

$$2 = 32 - 5 \cdot 6$$
 (iv)

$$6 = 70 - 2 \cdot 32$$
 (v)

Sulihkan (v) ke dalam (iv) menjadi

$$2 = 32 - 5 \cdot (70 - 2 \cdot 32) = 1 \cdot 32 - 5 \cdot 70 + 10 \cdot 32 = 11 \cdot 32 - 5 \cdot 70$$
 (vi)

Susun pembagian nomor (i) menjadi

$$32 = 312 - 4 \cdot 70$$
 (vii)

Sulihkan (vii) ke dalam (vi) menjadi

$$2 = 11 \cdot 32 - 5 \cdot 70 = 11 \cdot (312 - 4 \cdot 70) - 5 \cdot 70 = 11 \cdot 312 - 49 \cdot 70$$

Jadi, PBB(312, 70) =
$$2 = 11 \cdot 312 - 49 \cdot 70$$

Relatif Prima

• Dua buah bilangan bulat a dan b dikatakan $relatif\ prima\ jika\ PBB(<math>a,b$) = 1.

Contoh 9.

- (i) 20 dan 3 relatif prima sebab PBB(20, 3) = 1
- (ii) 7 dan 11 relatif prima karena PBB(7, 11) = 1
- (iii) 20 dan 5 tidak relatif prima sebab PBB(20, 5) = $5 \neq 1$
- (iv) 31 dan 0 tidak relative prima sebab PBB(31, 0) = 31

• Dikaitkan dengan kombinasi linier, jika a dan b relatif prima, maka terdapat bilangan bulat m dan n sedemikian sehingga

$$ma + nb = 1$$

• Contoh 10. Bilangan 20 dan 3 adalah relatif prima karena PBB(20, 3) =1, atau dapat ditulis

$$2.20 + (-13).3 = 1 (m = 2, n = -13)$$

Tetapi 20 dan 5 tidak relatif prima karena PBB(20, 5) = $5 \neq 1$ sehingga 20 dan 5 tidak dapat dinyatakan dalam m . 20 + n . 5 = 1.

Aritmetika Modulo

• Misalkan a dan m bilangan bulat (m > 0). Operasi $a \mod m$ (dibaca " $a \mod n$ ") memberikan sisa jika a dibagi dengan m.

• Notasi: $a \mod m = r$ sedemikian sehingga a = mq + r, dengan $0 \le r < m$.

• m disebut **modulus** atau **modulo**, dan hasil aritmetika modulo m terletak di dalam himpunan $\{0, 1, 2, ..., m-1\}$.

• Contoh 11. Beberapa hasil operasi dengan operator modulo:

(i)
$$23 \mod 5 = 3$$
 $(23 = 5 \cdot 4 + 3)$

(ii)
$$27 \mod 3 = 0$$
 $(27 = 3 \cdot 9 + 0)$

(iii)
$$6 \mod 8 = 6$$
 $(6 = 8 \cdot 0 + 6)$

(iv)
$$0 \mod 12 = 0$$
 $(0 = 12 \cdot 0 + 0)$

(v)
$$-41 \mod 9 = -5$$
 $(-41 = (9)(-4) - 5) \rightarrow \text{salah karena } r < 0$

$$-41 \mod 9 = 4$$
 $(-41 = 9(-5) + 4)) \rightarrow betul$

$$(vi) - 39 \mod 13 = 0$$
 $(-39 = 13(-3) + 0)$

• Penjelasan untuk (v): Karena a negatif, bagi |a| dengan m mendapatkan sisa r'. Maka a mod m = m - r' bila $r' \neq 0$.

Jadi
$$|-41| \mod 9 = 5$$
, sehingga $-41 \mod 9 = 9 - 5 = 4$.

$8 \mod 4 = ?$

With a modulus of 4 we make a clock with numbers 0,1,2,3

We start at 0 and go through 8 numbers in a clockwise sequence 1,2,3,0,1,2,3,0

We ended up at 0

SO:

 $8 \mod 4 = 0$

Sumber: www.khancademy.org

$-5 \mod 3 = ?$

With a modulus of 3 we we make a clock with numbers 0,1,2

We start at 0 and go through 5 numbers in counter-clockwise sequence (5 is negative)

2,1,0,2,1

We ended up at 1

SO:

 $-5 \mod 3 = 1$

Sumber: www.khanacademy.org

Aritmetika Modulo di dalam Wolfram Alpha

• Kunjungi: www.wolframalpha.com

Kongruen

• Misalnya 38 mod 5 = 3 dan 13 mod 5 = 3, maka dikatakan $38 \equiv 13 \pmod{5}$

(dibaca: 38 kongruen dengan 13 dalam modulus 5).

• Dalam kehidupan sehari-hari menggunakan jam, kita mengenal:

jam 14.00 = jam 2 siang
$$\rightarrow$$
 14 \equiv 2 (mod 12)

jam 18.00 = jam 6 sore
$$\rightarrow$$
 18 \equiv 6 (mod 12)

jam 21.00 = jam 9 malam
$$\rightarrow$$
 21 \equiv 9 (mod 12)

jam 24.00 = jam 0
$$\rightarrow$$
 24 \equiv 0 (mod 12)

• **DEFINISI**: Misalkan a dan b bilangan bulat dan m adalah bilangan > 0, maka $a \equiv b \pmod{m}$ jika dan hanya jika $m \mid (a - b)$.

• Jika a **tidak** kongruen dengan b dalam modulus m, maka ditulis $a \not\equiv b \pmod{m}$.

• Contoh 12.

$$17 \equiv 2 \pmod{3}$$
 (3 habis membagi $17 - 2 = 15$)

$$21 \equiv 9 \pmod{12}$$
 (12 habis membagi $21 - 9 = 12$)

$$-7 \equiv 15 \pmod{11}$$
 (11 habis membagi $-7 - 15 = -22$)

$$12 \not\equiv 2 \pmod{7}$$
 (7 tidak habis membagi $12 - 2 = 10$)

$$-7 \not\equiv 15 \pmod{3}$$
 (3 tidak habis membagi $-7 - 15 = -22$)

Latihan 1

Tentukan semua bilangan yang kongruen dengan 5 (mod 11).

<u>Penyelesaian</u>: Misalkan bilangan yang kongruen dengan 5 (mod 11) adalah x.

$$x \equiv 5 \pmod{11}$$
 $x \equiv 5 \pmod{11}$ $x \equiv 5 \pmod{11}$ Jadi, 11 | $(x = 5)$, atau $\frac{x-5}{11} = \text{bilangan bulat}$ Nilai x yang memenuhi adalah 16, 27, 38, ..., lalu -6, -17, ...

• Jadi, nilai-nilai yang kongruen dengan 5 (mod 11) adalah ..., -17, –6, 16, 27, 38, ...

• $a \equiv b \pmod{m}$ dalam bentuk "sama dengan" dapat dituliskan sebagai

$$a = b + km$$

(k adalah bilangan bulat)

• Contoh 13.

$$17 \equiv 2 \pmod{3}$$
 $\rightarrow 17 = 2 + 5 \cdot 3$ $(k = 5)$

$$-7 \equiv 15 \pmod{11} \quad \rightarrow -7 = 15 + (-2)11 \quad (k = -2)$$

• $a \mod m = r \mod m$ dapat juga ditulis sebagai $a \equiv r \pmod m$

Contoh 14.

(i) 23 mod 5 = 3
$$\rightarrow$$
 23 = 3 (mod 5)

(ii) 27 mod 3 = 0
$$\rightarrow$$
 27 = 0 (mod 3)

(iii) 6 mod 8 = 6
$$\rightarrow$$
 6 \equiv 6 (mod 8)

(iv)
$$0 \mod 12 = 0 \rightarrow 0 \equiv 0 \pmod{12}$$

$$(v) - 41 \mod 9 = 4 \longrightarrow -41 \equiv 4 \pmod 9$$

(vi)
$$-39 \mod 13 = 0 \rightarrow -39 \equiv 0 \pmod{13}$$

Teorema 4. Misalkan *m* adalah bilangan bulat positif.

1) Jika $a \equiv b \pmod{m}$ dan c adalah sembarang bilangan bulat maka

(i)
$$(a + c) \equiv (b + c) \pmod{m}$$

- (ii) $ac \equiv bc \pmod{m}$
- (iii) $a^p \equiv b^p \pmod{m}$, p bilangan bulat tak-negatif

artinya, kedua ruas dapat ditambah, dikali, atau dipangkatkan dengan sebuah konstanta

- 2) Jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$, maka
 - (i) $(a + c) \equiv (b + d) \pmod{m}$
 - (ii) $ac \equiv bd \pmod{m}$

artinya, dua buah bilangan bulat dengan modulus yang sama dapat dijumlahkan atau dikalikan

Bukti (hanya untuk 1(ii) dan 2(i) saja):

$$ac \equiv bc \pmod{m}$$
 $1(ii) \ a \equiv b \pmod{m}$ berarti:
 $\Leftrightarrow a = b + km$
 $\Leftrightarrow a - b = km$
 $\Leftrightarrow ac = bc + km$
 $\Leftrightarrow ac = bc + km$
 $\Leftrightarrow ac = bc + km$
 $\Leftrightarrow ac \equiv bc \pmod{m}$

Contoh 15.

Misalkan $17 \equiv 2 \pmod{3}$ dan $10 \equiv 4 \pmod{3}$, maka menurut Teorema 4, $17 + 5 \equiv 2 + 5 \pmod{3}$ $\Leftrightarrow 22 \equiv 7 \pmod{3}$ periksa $3 \mid (22 - 7)$ $17 \cdot 5 \equiv 2 \cdot 5 \pmod{3}$ $\Leftrightarrow 85 \equiv 10 \pmod{3}$ periksa $3 \mid (85 - 10)$ $17 + 10 \equiv 2 + 4 \pmod{3}$ $\Leftrightarrow 27 \equiv 6 \pmod{3}$ periksa $3 \mid (27 - 6)$ $17 \cdot 10 \equiv 2 \cdot 4 \pmod{3}$ $\Leftrightarrow 170 \equiv 8 \pmod{3}$ periksa $3 \mid (170 - 8)$

 Teorema 4 tidak memasukkan operasi pembagian pada aritmetika modulo karena jika kedua ruas dibagi dengan bilangan bulat, maka kekongruenan tidak selalu dipenuhi.

• Contoh 16:

 $10 \equiv 4 \pmod{3}$ dapat dibagi dengan 2 karena $10/2 = 5 \det 4/2 = 2$, dan $5 \equiv 2 \pmod{3}$

 $14 \equiv 8 \pmod{6}$ tidak dapat dibagi dengan 2, karena 14/2 = 7 dan 8/2 = 4, tetapi $7 \not\equiv 4 \pmod{6}$.

Latihan 2

Buktikan Teorema 4.2(ii), jika $a \equiv b \pmod{m}$ dan $c \equiv d \pmod{m}$ maka buktikan bahwa $ac \equiv bd \pmod{m}$

•

Penyelesaian:

```
a \equiv b \pmod{m} \Rightarrow a = b + k_1 m
c \equiv d \pmod{m} \Rightarrow c = d + k_2 m
maka
\Leftrightarrow ac = (b + k_1 m)(d + k_2 m)
\Leftrightarrow ac = bd + bk_2 m + dk_1 m + k_1 k_2 m^2
\Leftrightarrow ac = bd + Km \quad \text{dengan } K = bk_2 + dk_1 + k_1 k_2 m
\Leftrightarrow ac \equiv bd \pmod{m} \text{ (terbukti)}
```

Balikan Modulo (modulo invers)

- Di dalam aritmetika bilangan riil, balikan sebuah bilangan yang tidaknol adalah bentuk pecahannya sedemikian sehingga hasil perkalian keduanya sama dengan 1.
- Jika a adalah sebuah bilangan tidak-nol, maka balikannya adalah 1/a sedemikian sehingga $a \times 1/a = 1$.
 - Contoh: Balikan 4 adalah 1/4, sebab $4 \times 1/4 = 1$.
- Balikan a dilambangkan dengan a^{-1} .

• Di dalam aritmetika modulo, balikan modulo sebuah bilangan bulat lebih sukar dihitung.

- Diberikan sebuah bilangan bulat $a \pmod{m}$. Bagaimana menghitung balikan $a \pmod{m}$?
- Syarat: Jika a dan m relatif prima dan m > 1, maka balikan (invers) dari a (mod m) ada.
- Balikan dari $a \pmod{m}$ adalah bilangan bulat x sedemikian sehingga: $xa \equiv 1 \pmod{m}$
- Dalam notasi lainnya, $a^{-1} \pmod{m} = x$

<u>Bukti</u>: a dan m relatif prima, jadi PBB(a, m) = 1, dan terdapat bilangan bulat x dan y sedemikian sehingga:

$$xa + ym = 1$$

yang mengimplikasikan bahwa

$$xa + ym \equiv 1 \pmod{m}$$

Karena $ym \equiv 0 \pmod{m}$ (kenapa?), maka $xa \equiv 1 \pmod{m}$

Kekongruenan yang terakhir ini berarti bahwa x adalah balikan dari $a \pmod{m}$.

• Pembuktian di atas juga menceritakan bahwa untuk mencari balikan dari a (mod m), kita harus membuat kombinasi linier dari a dan m sama dengan 1.

• Koefisien a dari kombinasi linier tersebut merupakan balikan dari a (mod m).

Contoh 17. Tentukan balikan dari 4 (mod 9), 17 (mod 7), dan 18 (mod 10).

Penyelesaian:

(a) Karena PBB(4, 9) = 1, maka balikan dari 4 (mod 9) ada. Dari algoritma Euclidean diperoleh bahwa

$$9 = 2 \cdot 4 + 1$$
 (i)

$$4 = 4 \cdot 1 + 0$$
 (ii)

Susun persamaan (i) menjadi

$$-2 \cdot 4 + 1 \cdot 9 = 1$$
 atau $-2 \cdot 4 + 1 \cdot 9 \equiv 1 \pmod{9}$

Karena $1 \cdot 9 \equiv 0 \pmod{9}$, maka

$$-2 \cdot 4 \equiv 1 \pmod{9}$$

Dari kekongruenan terakhir ini kita peroleh -2 adalah balikan dari 4 (mod 9). atau dapat juga ditulis 4^{-1} (mod 9) = -2 (mod 9).

Catatan: setiap bilangan yang kongruen dengan
 –2 (mod 9)

juga adalah balikan dari 4 (mod 9), misalnya ...,
$$-20$$
, -11 , 7, 16, ... $-20 \equiv -2 \pmod{9}$ (karena 9 habis membagi $-20 - (-2) = -18$) $-11 \equiv -2 \pmod{9}$ (karena 9 habis membagi $-11 - (-2) = -9$) $7 \equiv -2 \pmod{9}$ (karena 9 habis membagi $7 - (-2) = 9$) $16 \equiv -2 \pmod{9}$ (karena 9 habis membagi $16 - (-2) = 18$)

• ..., -20, -11, -2, 7, 16, ... diperoleh dengan menambahkan 9 ke kiri atau ke kanan dari -2

(b) Karena PBB(17, 7) = 1, maka balikan dari 17 (mod 7) ada. Dari algoritma Euclidean diperoleh rangkaian pembagian berikut:

$$17 = 2 \cdot 7 + 3$$
 (i)

$$7 = 2 \cdot 3 + 1$$
 (ii)

$$3 = 3 \cdot 1 + 0$$
 (iii) (yang berarti: PBB(17, 7) = 1))

Susun (ii) menjadi:

$$1 = 7 - 2 \cdot 3$$
 (iv)

Susun (i) menjadi

$$3 = 17 - 2 \cdot 7$$
 (v)

Sulihkan (v) ke dalam (iv):

$$1 = 7 - 2 \cdot (17 - 2 \cdot 7) = 1 \cdot 7 - 2 \cdot 17 + 4 \cdot 7 = 5 \cdot 7 - 2 \cdot 17$$

atau

$$-2 \cdot 17 + 5 \cdot 7 = 1$$
 (5 · 7 = 0 (mod 7))

$$-2 \cdot 17 \equiv 1 \pmod{7}$$
 (7 habis membagi $-2 \cdot 17 - 1 = -35$)

Jadi, -2 adalah balikan dari 17 (mod 7), atau dapat ditulis 17^{-1} (mod 7) = -2 (mod 7).

(c) Menghitung balikan 18 (mod 10). Karena PBB(18, 10) = $2 \neq 1$, maka balikan dari 18 (mod 10) tidak ada.

Cara lain menghitung balikan modulo

- Ditanya: balikan dari *a* (mod *m*)
- Misalkan x adalah balikan dari a (mod m), maka

```
ax \equiv 1 \pmod{m} (definisi balikan modulo)
```

atau dalam notasi 'sama dengan':

$$ax = 1 + km$$

atau

$$x = (1 + km)/a$$

Cobakan untuk k = 0, 1, 2, ... dan <math>k = -1, -2, ...

Solusinya adalah semua bilangan bulat yang memenuhi.

• Contoh 18: Balikan dari 4 (mod 9) adalah x sedemikian sehingga $4x \equiv 1 \pmod{9}$

$$4x \equiv 1 \pmod{9} \rightarrow 4x = 1 + 9k \rightarrow x = (1 + 9k)/4$$

Untuk $k = 0 \rightarrow x = (1 + 9 \cdot 0)/4 = 1/4 \rightarrow \text{tidak bulat}$
 $k = 1 \rightarrow x = (1 + 9 \cdot 1)/4 = 10/4 \rightarrow \text{tidak bulat}$
 $k = 2 \rightarrow x = (1 + 9 \cdot 2)/4 = 19/4 \rightarrow \text{tidak bulat}$
 $k = 3 \rightarrow x = (1 + 9 \cdot 3)/4 = 7$
 $k = -1 \rightarrow x = (1 + 9 \cdot -1)/4 = -2$

Balikan dari 4 (mod 9) adalah 7 (mod 9), -2 (mod 9), dst

Catatan: cukup menemukan satu saja balikan dari 4(mod 9), maka semua bilangan lainnya dapat dicari dengan menambahkan 9 pada bilangan tersebut. Pada contoh di atas 7 adalah balikan 4(mod 9), maka dengan menambahkan 9 ke kiri dan ke kanan diperoleh ..., -11, -2, 7, 16, ...

Latihan 3

• Tentukan semua balikan dari 9 (mod 11).

Penyelesaian:

- Misalkan 9^{-1} (mod 11) = x
- Maka $9x \equiv 1 \pmod{11}$ atau 9x = 1 + 11k atau x = (1 + 11k)/9

Dengan mencoba semua nilai k yang bulat (k = 0, -1, -2, ..., 1, 2, ...) maka diperoleh x = 5. Semua bilangan lain yang kongruen dengan 5 (mod 11) juga merupakan solusi, yaitu -6, 16, 27, ...

Kekongruenan Linier

• Kekongruenan linier (*linear congruence*) berbentuk:

$$ax \equiv b \pmod{m}$$

(m > 0, a dan b sembarang bilangan bulat, dan x adalah peubah bilangan bulat).

Pemecahan:
$$ax = b + km \rightarrow x = \frac{b + km}{a}$$

(Cobakan untuk k = 0, 1, 2, ... dan <math>k = -1, -2, ... yang menghasilkan x sebagai bilangan bulat)

Contoh 19.

Tentukan solusi: $4x \equiv 3 \pmod{9}$ dan $2x \equiv 3 \pmod{4}$

Penyelesaian:

(i)
$$4x \equiv 3 \pmod{9}$$

 $x = \frac{3+k \cdot 9}{4}$
 $k = 0 \rightarrow x = (3+0 \cdot 9)/4 = 3/4$ (bukan solusi)
 $k = 1 \rightarrow x = (3+1 \cdot 9)/4 = 3$
 $k = 2 \rightarrow x = (3+2 \cdot 9)/4 = 21/4$ (bukan solusi)
 $k = 3, k = 4$ tidak menghasilkan solusi
 $k = 5 \rightarrow x = (3+5 \cdot 9)/4 = 12$
...
 $k = -1 \rightarrow x = (3-1 \cdot 9)/4 = -6/4$ (bukan solusi)
 $k = -2 \rightarrow x = (3-2 \cdot 9)/4 = -15/4$ (bukan solusi)
 $k = -3 \rightarrow x = (3-3 \cdot 9)/4 = -6$
...
 $k = -6 \rightarrow x = (3-6 \cdot 9)/4 = -15$
...
Nilai-nilai x yang memenuhi: $x = 3$ $x =$

Atau solusi cukup dinyatakan sebagai $x \equiv 3 \pmod{9}$, atau x = 3 + 9k, k sembarang bilangan bulat

(ii)
$$2x \equiv 3 \pmod{4}$$

$$x = \frac{3 + k \cdot 4}{2}$$

Karena 4k genap dan 3 ganjil maka penjumlahannya menghasilkan ganjil, sehingga hasil penjumlahan tersebut jika dibagi dengan 2 tidak menghasilkan bilangan bulat. Dengan kata lain, tidak ada nilai-nilai x yang memenuhi $2x \equiv 3 \pmod{5}$.

Cara lain menghitung solusi $ax \equiv b \pmod{m}$

• Seperti dalam persamaan aljabar biasa (tanpa modulo),

$$4x = 12 \rightarrow$$
 kalikan setiap ruas dengan 1/4 (yaitu invers 4), maka (1/4) . $4x = 12$. (1/4) $\rightarrow x = 12/4 = 3$

• $4x \equiv 12 \pmod{9}$ kalikan setiap ruas dengan balikan dari 4 (mod 9) (dalam hal ini sudah kita hitung, yaitu -2)

$$(-2) \cdot 4x \equiv (-2) \cdot 12 \pmod{9} \Leftrightarrow -8x \equiv -24 \pmod{9}$$

Karena $-8 \equiv 1 \pmod{9}$, maka $x \equiv -24 \pmod{9}$. Semua bilangan bulat yang kongruen dengan $-24 \pmod{9}$ adalah solusinya, yaitu ..., -33, -15, -6, 3, 12,

Latihan

Tentukan nilai-nilai x yang memenuhi masing-masing kekongruenan berikut:

- (a) $4x \equiv 8 \pmod{11}$
- (b) $5x \equiv 1 \pmod{61}$
- (c) $2x \equiv 1 \pmod{8}$
- (d) $2^x \equiv 1 \pmod{32}$

Latihan Soal Teori Bilangan

Soal 1

• Buktikan untuk setiap bilangan bulat positif n dan a, PBB(a, a + n) habis membagi n.

Jawaban:

Misalkan PBB(a, a + n) = d.

Maka:

$$d \mid a + n \rightarrow a + n = k_1 d$$

$$d \mid a \rightarrow a = k_2 d - \frac{1}{a + n - a} = (k_1 - k_2) d$$

$$n = Kd \text{ (misal } k_1 - k_2 = K)$$

$$n = Kd \rightarrow d \mid n \text{ (terbukti)}$$

Soal 2

Perlihatkan bahwa bila $n \mid m$, yang dalam hal ini n dan m adalah bilangan bulat positif yang lebih besar dari 1, dan jika $a \equiv b$ (mod m) dengan a dan b adalah bilangan bulat, maka $a \equiv b$ (mod n).

• Jawaban:

Diketahui bahwa $n \mid m$ atau dapat dituliskan sebagai :

$$m = k_1 . n(i)$$

Jika $a \equiv b \pmod{m}$ maka :

$$a = b + k_2 . m(ii)$$

Substitusikan (i) ke dalam (ii):

$$a = b + k_2 \cdot k_1 \cdot n$$

 $a = b + k_3 \cdot n$ (misalkan $k_3 = k_2 \cdot k_1$) (iii)
 $a - b = k_3 \cdot n$ yang berarti bahwa $n \mid (a - b)$ atau
 $a \equiv b \pmod{n}$

Soal 3

 Carilah semua bilangan bulat positif yang tidak habis dibagi 2 dan bersisa 2 jika dibagi 3

Carilah semua bilangan bulat positif yang tidak habis dibagi 2 dan bersisa 2 jika dibagi 3

Penyelesaian:

```
Misal bilangan tersebut adalah x = 2k+1
```

$$(2k + 1) \mod 3 = 2 \rightarrow 2k + 1 \equiv 2 \pmod 3$$

 $2k \equiv 2 - 1 \pmod 3$
 $2k \equiv 1 \pmod 3$
 $k \equiv 2 \pmod 3$
 $k \equiv 2 \pmod 3$
 $k \equiv 2 + 3n$

Berarti x = 2(2 + 3n)+1 = 6n + 5, n sembarang bilangan bulat

Jadi bilangan-bilangan yang memenuhi adalah $x = \{..., 5, 11, 17, 23, ...\}$

Soal 4

Tentukan x dan y bilangan bulat yang memenuhi persamaan

$$312x + 70y = 2$$
,

lalu hitunglah nilai dari : y mod x .

$$312x + 70y = 2$$

Jawaban:

Dengan menggunakan algoritma Euclid, ditemukan bahwa:

$$312 = 4.70 + 32$$
 (i)

$$70 = 2.32 + 6$$
 (ii)

$$32 = 5.6 + 2$$
 (iii)

$$6 = 3.2 + 0$$
 (iv)

Persamaan (ii) dapat dituliskan menjadi :
$$6 = 70 - 2.32$$
 (vi)

Sulihkan persamaan (vi) ke persamaan (v) :

$$2 = 32 - 5.(70 - 2.32)$$

$$2 = 32 - 5.70 + 10.32$$

$$2 = 11.32 - 5.70$$
 (vii)

Persamaan (i) dapat dituliskan menjadi :
$$32 = 312 - 4.70$$
 (viii)

Sulihkan persamaan (viii) ke persamaan (vii):

$$2 = 11.(312 - 4.70) - 5.70$$

 $2 = 11.312 - 44.70 - 5.70$

$$2 = 11.312 - 49.70$$
 (ix)

Dari persamaan (ix) diketahui x dan y yang memenuhi adalah

$$x = 11 \text{ dan } y = -49$$
, sehingga $y \mod x = -49 \mod 11 = 6$

Bersambung ke Bagian 2