

LINEAR PREDICTORS

Why

Here's a simple idea. If the set of postcepts is a vector space, use a predictor that is a linear transformation.¹

Definition

A *linear predictor* is a predictor which is linear in the precepts. Such a model is simple to implement and interpretable, at the cost of flexibility.

R^d Example

A linear function $f: \mathbb{R}^d \to \mathbb{R}$ over the vector space $(\mathbb{R}^d, \mathbb{R})$ has a set of parameters $w \in \mathbb{R}^d$ so that

$$f(x) = \sum_{i} w_i x_i = w^{\top} x.$$

The parameters of a linear predictor on \mathbb{R}^d are often called weights.

¹Future editions will expand on this why.

