Visual Representation Learning with **Stochastic Frame Prediction**

On Machine Learning

Huiwon Jang^A, Dongyoung Kim^A, Junsu Kim^A, Jinwoo Shin^A, Pieter Abbeel^B, Younggyo Seo^{A,C} AKAIST, BUC Berkeley, CDyson Robot Learning lab

TL; DR. Learning stochastic frame prediction model from videos enhances the image representation to capture temporal information between frames.

Introduction

Learning image representation by **predicting the future** is promising direction. It enables models to understand temporal and causal relationships, improving their understanding of how the world operates.

However, predicting the future frame is inherently under-determined.

• Multiple possible futures can arise from a single current frame.

Q) How can we address the **ambiguity of the future** to learn representations from videos?

Key idea: Learning a stochastic frame prediction model with videos to learn *image* representations that capture temporal information between frames.

- **Posterior model** predict the future frame from posterior distribution.
- Prior model learns approximate distribution without future frame.

Summary of Contribution

We propose RSP, a framework for visual representation learning from videos via stochastic future frame prediction.

- We learn a stochastic frame prediction model to capture uncertainty in future frame prediction: *Posterior and learned prior.*
- Extensive experiments demonstrate that **RSP** consistently achieves competitive or superior performance to various SSL baselines on variety of tasks.

Method: RSP

Inputs. Given a video x, we randomly sample two frames $\{x_t, x_{t+k}\} \in x$. **Patch representations.** We obtain patch representations.

• Encoder:
$$\begin{cases} \mathbf{h}_{t+k} = f_{\theta}^{\mathsf{enc}}(\mathbf{x}_{t+k} + \varepsilon) \\ \mathbf{h}_{t} = f_{\theta}^{\mathsf{enc}}(\mathbf{x}_{t}) \end{cases}$$

• Gaussian noise $\varepsilon \sim \mathcal{N}(0, \sigma)$ prevents copying pixels from \mathbf{x}_{t+k} to predict $\hat{\mathbf{x}}_{t+k}$.

Posterior and learned prior. We predict the future frame from posterior distribution, which captures the uncertainty over future. A prior learns approximate distribution without access to the future frame.

- $\mathbf{z}_{t+k} \sim q_{\theta}(\mathbf{z}_{t+k}|\mathbf{h}_t,\mathbf{h}_{t+k})$
- Learned prior: $\hat{\mathbf{z}}_{t+k} \sim p_{\theta}(\hat{\mathbf{z}}_{t+k}|\mathbf{h}_t)$

Decoder. We decode [MASK] tokens through cross-attention:

• Decoder: $\hat{\mathbf{x}}_{t+k} \sim p_{\theta}(\hat{\mathbf{x}}_{t+k}|\mathbf{h}_t,\mathbf{z}_{t+k})$

Objective. We train future frame prediction model to provide accurate prediction

 \mathbf{x}_{t+k} while minimizing KL loss to learn the prior network for future predictions.

$$\mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(\mathbf{Z}_{t+k}|\mathbf{X}_{t},\mathbf{X}_{t+k})} \left[-\ln p_{\theta}(\mathbf{x}_{t+k}|\mathbf{x}_{t},\mathbf{z}_{t+k}) + \beta \text{KL}[q_{\theta}(\mathbf{z}_{t+k}|\mathbf{x}_{t},\mathbf{x}_{t+k})||p_{\theta}(\hat{\mathbf{z}}_{t+k}|\mathbf{x}_{t})] \right]$$

$$\mathcal{L}_{\text{Pred}}$$

Masked autoencoding with shared decoder. We introduce auxiliary MAE

We *share the decoder* for both the frame prediction and MAE objective.

- Masking: $\mathbf{x}_{t+k}^m \sim p^{\mathsf{mask}}(\mathbf{x}_{t+k}, m)$
- Encoder: $\mathbf{h}_{t+k}^m = f_{\theta}^{\mathsf{enc}}(\mathbf{x}_{t+k}^m)$
- Decoder: $\hat{\mathbf{x}}_{t+k} \sim p_{\theta}(\hat{\mathbf{x}}_{t+k}|\mathbf{h}_{t+k}^m)$

Experiment

RSP consistently outperforms visual self-supervised learning methods in (a) visionbased robot learning tasks, and (b) video label propagation tasks.

	D	DAVIS		VIP	JHMDB	
Architecture	$\overline{\mathcal{J}\&\mathcal{F}_m}$	\mathcal{J}_m	\mathcal{F}_m	mIoU	PCK@0.1	PCK@0.2
ViT-S/16	53.9	51.7	56.2	31.9	37.9	66.1
ViT-S/16	57.7	54.6	60.8	32.4	38.4	67.6
ViT-S/16	59.5	56.5	62.5	33.4	41.1	70.3
ViT-S/16	53.5	50.4	56.7	32.5	43.0	71.3
ViT-S/16	58.1	56.6	59.6	33.3	44.7	73.0
ViT-S/16	60.1	57.4	62.8	33.8	44.6	73.4
ViT-B/16	60.5	57.8	63.2	34.0	46.0	74.6
	ViT-S/16 ViT-S/16 ViT-S/16 ViT-S/16 ViT-S/16	Architecture $\mathcal{J}\&\mathcal{F}_m$ ViT-S/16 53.9 ViT-S/16 57.7 ViT-S/16 59.5 ViT-S/16 53.5 ViT-S/16 58.1 ViT-S/16 60.1	Architecture $\mathcal{J}\&\mathcal{F}_m$ \mathcal{J}_m ViT-S/1653.951.7ViT-S/1657.754.6ViT-S/1659.556.5ViT-S/1653.550.4ViT-S/1658.156.6ViT-S/1660.157.4	Architecture $\mathcal{J}\&\mathcal{F}_m$ \mathcal{J}_m \mathcal{F}_m ViT-S/1653.951.756.2ViT-S/1657.754.660.8ViT-S/1659.556.562.5ViT-S/1653.550.456.7ViT-S/1658.156.659.6ViT-S/1660.157.462.8	Architecture $\mathcal{J}\&\mathcal{F}_m$ \mathcal{J}_m \mathcal{F}_m mIoUViT-S/1653.951.756.231.9ViT-S/1657.754.660.832.4ViT-S/1659.556.562.533.4ViT-S/1653.550.456.732.5ViT-S/1658.156.659.633.3ViT-S/1660.157.462.833.8	Architecture $\mathcal{J}\&\mathcal{F}_m$ \mathcal{J}_m \mathcal{F}_m mIoUPCK@0.1ViT-S/1653.951.756.231.937.9ViT-S/1657.754.660.832.438.4ViT-S/1659.556.562.533.441.1ViT-S/1653.550.456.732.543.0ViT-S/1658.156.659.633.344.7ViT-S/1660.157.462.833.844.6

We conduct extensive ablation studies and analysis: Design choices for RSP

Stochastic	$\mathcal{J}\&\mathcal{F}_m$	\mathcal{J}_m	\mathcal{F}_m	L	atent	$\mathcal{J}\&\mathcal{F}_m$	\mathcal{J}_m	
Х	54.4	50.7	58.1	Ga	ussian	54.1	52.9	
✓	60.1	57.4	62.8	Cate	egorical	60.1	57.4	

Deterministic prediction

Auxiliary MAE objective

60.1 57.4 62.8

60.1 57.4 62.8

Stochastic latent variable

KL scale	$\mathcal{J}\&\mathcal{F}_m$	\mathcal{J}_m	\mathcal{F}_m
0.1	56.1	52.9	59.3
0.01	60.1	57.4	62.8

KL scale	$\mathcal{J}\&\mathcal{F}_m$	\mathcal{J}_m	F
0.1	56.1	52.9	59
0.01	60.1	57.4	62
0.001	59.1	56.6	61

KL objective scale

Applying the same augmentation

Future frame augmentation