Topics: Normal distribution, Functions of Random Variables

- 1. The time required for servicing transmissions is normally distributed with μ = 45 minutes and σ = 8 minutes. The service manager plans to have work begin on the transmission of a customer's car 10 minutes after the car is dropped off and the customer is told that the car will be ready within 1 hour from drop-off. What is the probability that the service manager cannot meet his commitment?
 - A. 0.3875
 - B. 0.2676
 - C. 0.5
 - D. 0.6987

Ans. (B) -0.2676

Explanation:-

- \triangleright μ =45min, σ =8min
- μ =10min after = 45+10=55
- Car will be ready in 1hr=60min(x)
- > Z=x- μ/σ
- **>** 60-55/8
- ➤ 0.625
- > 1=stats.norm.cdf(z)
- > 1=stats.norm.cdf(0.625)
- > 0.2659
- P value for z score is 0.2659 approx to 0.2676
- 2. The current age (in years) of 400 clerical employees at an insurance claims processing center is normally distributed with mean μ = 38 and Standard deviation σ =6. For each statement below, please specify True/False. If false, briefly explain why.
 - A. More employees at the processing center are older than 44 than between 38 and 44.

Ans. False.

Explanation-

- \rightarrow $\mu = 38$
 - σ =6
- \geq Z score μ = 38
 - σ =6
- \triangleright Z score = (X- μ)/ σ
- ightharpoonup Z score for 44 = (44 38)/6 = 1

- In python- stats.norm.cdf(1) => 84.13 %
- People above 44 age = 100 84.13 = 15.87%
- Given 400 clerical employes, that is calculating 15.87% of 400=336.52 out of 400
- **400 336.52**
- > 63.49≈63(approx)
- \triangleright Z score for 38 = (38 38)/6 = 0
- ➤ In python- stats.norm.cdf(0) => 50%

Hence, People between 38 & 44 age = 84.13 - 50 = 34.13 % ≈ 137 out of 400

B. A training program for employees under the age of 30 at the center would be expected to attract about 36 employees.

Ans. Zscore for $30 = (30 - 38)/6 = -1.33 = 9.15 \% \approx 36$ out of 400

3. If $X_1 \sim N(\mu, \sigma^2)$ and $X_2 \sim N(\mu, \sigma^2)$ are *iid* normal random variables, then what is the difference between 2 X_1 and $X_1 + X_2$? Discuss both their distributions and parameters.

Ans.

- As both are independent normal random variables, X1+X2 is normal with N (μ 1+ μ 2, σ ²1+ σ ²2). And 2X1 will just scale the normal distribution by 2 times
- 4. Let $X \sim N(100, 20^2)$. Find two values, a and b, symmetric about the mean, such that the probability of the random variable taking a value between them is 0.99.
 - A. 90.5, 105.9
 - B. 80.2, 119.8
 - C. 22, 78
 - D. 48.5, 151.5
 - E. 90.1, 109.9

Ans. 48.5, 151.5

Explanation;-

- ightharpoonup p(a<x
b) = 0.99, μ =100, σ = 20
- To Find:
- ➤ Identify symmetric values for the standard normal distribution such that the area enclosed is 0.99

- Using Python
- > stats.norm.interval (0.99, 100, 20)

Two values symmetric about mean for the given standard normal distribution are [48.5,151.5]

- 5. Consider a company that has two different divisions. The annual profits from the two divisions are independent and have distributions $Profit_1 \sim N(5, 3^2)$ and $Profit_2 \sim N(7, 4^2)$ respectively. Both the profits are in \$ Million. Answer the following questions about the total profit of the company in Rupees. Assume that \$1 = Rs. 45
 - A. Specify a Rupee range (centered on the mean) such that it contains 95% probability for the annual profit of the company.
 - Refer Yash Bhosale Assignment 2 Python File
 Range is Rs (99.00810347848784, 980.9918965215122) in Millions.
 - B. Specify the 5th percentile of profit (in Rupees) for the company
 - Refer Yash Bhosale Assignment 2 Python File
 5th percentile of profit (in Million Rupees) is 170.0.
 - C. Which of the two divisions has a larger probability of making a loss in a given year?
 - Refer Yash Bhosale Assignment 2 Python File

Probability of Division 1 making a loss P(X<0)

0.047

Probability of Division 2 making a loss P(X<0)

0.040