STI2D - SIN	Communication entre les systèmes LPO Arag		on-Picasso
S-T3	Drone PARROT		TP

Problématique:

Pour pouvoir piloter l'AR.Drone, le Pilote doit configurer la Station-Sol (iPad) pour qu'elle puisse communiquer avec l'AR.Drone par l'interface Wi-Fi.

- Quelles sont les étapes nécessaires à la mise en place de cette communication coté AR.Drone et coté Station-Sol ?
- Comment sont transmises les informations de navigation de l'AR.Drone vers la Station-Sol (altitude, niveau batterie, etc.) ?
- Quelles sont les éléments caractéristiques et les performances des communications sur réseau Station-Sol AR.Drone ?

Analyse structurelle du Drone Parrot

STI2D - SIN	Communication entre les systèmes	on-Picasso	
S-T3	Drone PARROT		TP

Configuration réseau de la tablette

On souhaite relever la configuration de l'interface réseau sans-fil de la Station-Sol avant et après la mise sous tension de l'AR.Drone.

- Mettre l'AR.Drone sous tension (brancher la batterie).
- Pour observer l'environnement radio Wi-Fi, lancer l'application « Réglages » sur la Station-Sol (iPad), puis Wi-Fi.
- Repérer le réseau wifi mis en place par le Drone et y connecter l'Ipad.

- Lancer l'application « analyser » sur la tablette,
- Saisir l'adresse IP du drone : 192.168.1.1 et le port des Navdate : 5554

Les appareils sont également identifiés grâce à leur adresse physique MAC.

Q1. Relever le numéro MAC de l'Ipad et du Drone et identifier le fabricant des matériels :

Ipad	AR.Drone		
Adresse MAC	Adresse MAC		
3 premiers octets du MAC	3 premiers octets du MAC		
Fabriquant (https://macvendors.com)	Fabriquant		

Transmission des données entre le drone et l'Ipad

1. Nature des données à transmettre

Deux types d'informations circulent entre le drone et l'Ipad à une cadence de 30 fois/seconde :

- AT commands (port 5556): permettent de contrôler et de configurer le drone
- NavData (port 5554): transportent les informations d'état du drone (position, vitesse, ...)
- Flux vidéo (port 5555)

On va s'intéresser au flux des NavData.

- Lancer l'application « analyser »
- S'assurer qu'aucune alarme ne soit active (LED vertes) sur le drone.
- Démarrer une capture d'une dizaine de seconde et lancer l'utilitaire de décodage.

STI2D - SIN	Communication entre les systèmes	n-Picasso	
S-T3	Drone PARROT		TP

• Sélectionner une trame **NavData** sur la partie gauche de l'écran et sélectionner le niveau d'encapsulation **Data**.

Composition des 300 octets de DATA :

Header 0x55667788	Drone	Sequence	Vision	Option 1		 Che	cksum bl	ock	
UX33007700	state	number	flag	id	size	data	 cks id	size	cks data
32 bit int.	32 bit int.	32 bit int.	32 bit int.	16 bit int	16 bit int		 16 bit int	16 bit int	32 bit int

Ces 32 bits permettent de connaître l'état du Drone

N° Bit	Nom	Description
b0	FLY_MASK	0 : ardrone is landed 1 : ardrone is flying
b1	VIDEO_MASK	0 : video disable 1 : video enable
b2	VISION_MASK	0 : vision disable 1 : vision enable
b3	CONTROL_MASK (control algo)	0 : euler angles control 1 : angular speed control
b4	ALTITUDE_MASK (altitude control algo)	0 : altitude control inactive 1 : altitude control active
b5	USER_FEEDBACK_START	Start button state
b6	COMMAND_MASK (Control command ACK)	0 : None 1 : one received
b7	FW_FILE_MASK	0 : 1 : Firmware file is good
b8	FW_VER_MASK	0: 1: Firmware update is newer
b9	FW_UPD_MASK	0: 1:Firmware update is ongoing
b10	NAVDATA_DEMO_MASK	0 : All navdata 1 : only navdata demo
b11	NAVDATA_BOOTSTRAP	0 : options sent in all or demo mode 1 : no navdata options sent
b12	MOTORS_MASK (Motor status)	0 : Ok 1 : Motors problem
b13	COM_LOST_MASK (Communication Lost)	0 : Ok 1 : Communication problem

STI2D - SIN	Communication entre les systèmes	LPO Arago	on-Picasso
S-T3	Drone PARROT		TP

N° Bit	Nom	Description
b14	Reserved	Bit means that there's an hardware problem with gyrometers
b15	VBAT_LOW	0 : Ok 1 : too low
b16	USER_EL (User Emergency Landing)	0 : User EL is OFF 1 : User EL is ON
b17	TIMER_ELAPSED	0 : not elapsed 1 : elapsed
b18	Reserved	Power
b19	ANGLES_OUT_OF_RANGE	0: Ok 1: out of range
b20	Reserved	Wind
b21	ULTRASOUND_MASK (Ultrasonic sensor)	0: Ok 1: deaf
b22	CUTOUT_MASK (Cutout system detection)	0 : Not detected 1 : detected
b23	PIC_VERSION_MASK	0 : a bad version number 1 : version number is OK
b24	ATCODEC_THREAD_ON	0 : thread OFF 1 : thread ON
b25	NAVDATA_THREAD_ON	0 : thread OFF 1 : thread ON
b26	VIDEO_THREAD_ON	0 : thread OFF 1 : thread ON
b27	ACQ_THREAD_ON (Acquisition thread ON)	0 : thread OFF 1 : thread ON
b28	CTRL_WATCHDOG_MASK	0 : control is well scheduled // Check frequency of control loop 1 : delay in control execution (> 5ms)
b29	ADC_WATCHDOG_MASK	0 : uart2 is good // Check frequency of uart2 dsr (com with adc) 1 : delay in uart2 dsr (> 5ms)
b30	COM_WATCHDOG_MASK	0 : com is ok // Check if we have an active connection with a client 1 : com problem
b31	EMERGENCY_MASK	0 : no emergency 1 : emergency

Q2. Identifier dans le tableau précédent les bits correspondant :

NavData	Numéro bit	Nom
Statut Moteurs		
Statut Angle		
Statut Batterie		

Demander au professeur de vous aider à lire cette trame de données.

REMARQUE: L'ordre des octets pour les valeurs composées de 2 ou 4 octets (16 ou 32 bits) est inversé. L'octet de poids faible est placé avant l'octet de poids fort. (cf. « petit-boutisme » : https://fr.wikipedia.org/wiki/Boutisme)

Exemple : « AA 55 » doit se comprendre « 55 AA » et « AA 55 BB 44 » doit se comprendre « 44 BB 55 AA ».

STI2D - SIN	Communication entre les systèmes LPO Arag		on-Picasso
S-T3	Drone PARROT		TP

Analyse de l'encapsulation des trames

Rappels:

Les données envoyées sur le réseau traversent la pile de protocoles de haut en bas sur l'hôte émetteur et de bas en haut sur l'hôte récepteur.

Sur l'émetteur, à chaque couche du modèle OSI traversée, le processus d'émission rajoute une étiquette aux données de la couche supérieure afin de garantir un échange correct avec la couche équivalente sur l'hôte récepteur. Ce phénomène est appelé « encapsulation »

Sur le récepteur les messages sont décodés de bas en haut. Chaque couche vérifie le message lui parvenant de la couche inférieure et envoie à la couche supérieure le message dépouillé de l'étiquette ajoutée lors de l'émission.

Le protocole TCP nécessite une phase de connexion, de transfert de données, de déconnexion et d'une série d'échange permettant de vérifier la bonne réception des informations transmises. Dans le cas du drone, on utilise le protocole UDP qui allège la transmission, sans connexion mais qui ne garantit pas la fiabilité des échanges.

Q3. Justifier l'utilisation de l'UDP par les concepteurs du drone (on peut avoir la même réflexion sur la VoIP (skype, discord chat audio, ...) qui utilise également l'UDP).

1. Analyse des entêtes UDP NavData et ATCommand : COUCHE TRANSPORT

Organisation d'un entête UDP

Entête UDP									
octet 1	octet 2			octet	3		octet	: 4	
b7 b0	b7	b0	b7		b0 l	b7			b0
Port UDP source Port UDP de destination									
Long	gueur				Somme de	contrôl	le		
Donnée de la couche Application (taille variable)									

STI2D - SIN	Communication entre les systèmes LPO Arag		on-Picasso
S-T3	Drone PARROT		TP

- Lancer l'application « analyser »
- Entrer le port UDP
- S'assurer qu'aucune alarme ne soit active (LED vertes)
- Démarrer la capture
- Lancer l'utilitaire de décodage.
- Sélectionner des trames **NavData** et **ATCommand** sur la partie gauche de l'écran et sélectionner le niveau d'encapsulation UDP.

Q8. Compléter le tableau suivant et identifier les informations contenues dans l'entête. Comparer cela au modèle théorique.

Entête UDP Datagramme NavData (HEXA)							
octet 1	octet 2	octet 3	octet 4				
b7 b0	p7 b0						

Entête UDP Datagramme ATCommand (HEXA)								
octet 1	octet 2	octet 3	octet 4					
b7 b0	b7 b0	b7 b0 t	p7 b0					

STI2D - SIN	Communication entre les systèmes	LPO Arago	agon-Picasso		
S-T3	Drone PARROT		TP		

2. Analyse des entêtes IP : COUCHE RESEAU

Rappels:

Le paquet IPv4 encapsule le segment (datagramme) de la couche Transport afin que le réseau le délivre à l'hôte de destination. L'encapsulation réalisée au niveau de la couche « Réseau » consiste à rajouter au segment (datagramme) des informations nécessaires à l'acheminement du paquet dans un entête IP. Les principales informations sont :

- Adresse IP de destination : 4 octets qui identifient de manière unique l'hôte destinataire du paquet sur le réseau dans le cas d'une communication monodiffusion (unicast).
- **Adresse IP source** : 4 octets qui identifie l'hôte qui émet le paquet. Permet au récepteur de pouvoir répondre à l'émetteur le cas échéant.
- **Durée de vie** : Temps de vie restant du paquet avant sa destruction. Chaque routeur traversé décrémente au moins de 1 cette valeur. Quand le compteur arrive à zéro, le paquet est détruit. Cela empêche qu'un paquet tourne « en boucle » sur l'Internet.
- Version: version du protocole IP (4 pour v4)
- IHL : longueur de l'entête (multiple de 4 octets).
- Longueur du paquet : taille du paquet entier avec entête (en octet).
- Protocole encapsulé : donne le type des données encapsulées (segment TCP/datagramme UDP, etc.) : voir https://www.frameip.com/entete-ip/ (dans Protocole)

Organisation d'une entête IP:

Organi	rganisation d une entete ip:																						
	Entête IP																						
octet 1						octet 2				octet 3						octet 4							
b7					b0	b7					b0	b0 b7 b0 b7						b0					
Ve	Ver. IHL Type de service Longueur du paquet																						
	Identification ind. frg Décalage de fragment																						
Du	rée (de	vie (TTL	.)	Pro	toc	ole (enca	psu	ılé	Somme de contrôle de l'entête											
	Adresse IP Source																						
	Adresse IP de destination																						
Options Remplissage																							
Segment TCP ou datagramme UDP																							

Q9. Sur la même capture, relever les octets de l'entête IP des trames NavData et ATCommand et compléter le tableau suivant. Que peut-on en conclure ?

Entête IP Paquet NavData (hexa)								
octet 1	octet 2	octet 3	octet 4					
b7 b0	b7 b0	b7 b0	b7 b0					

STI2D - SIN	Communication entre les systèmes	LPO Arago	on-Picasso
S-T3	Drone PARROT		TP

Entête IP Paquet NavData					
Adresse IP Source (décimale)					
Adresse IP de Destination (déci.)					
Protocole encapsulé					
Version IP					
Durée de vie					
Longueur du paquet					

Entête IP Paquet Commande AT								
octet 1	octet 2	octet 3	octet 4					
b7 b0	b7 b0	b7 b0 l	p7 b0					

Entête IP Paquet Commande AT			
Adresse IP Source (décimale)			
Adresse IP de Destination (déci.)			
Protocole encapsulé			
Version IP			
Durée de vie			
Longueur du paquet			
Conclusion :			

Choix du support de transmission

Afin d'assurer la communication entre le drone et la station sol (iPad ou PC), le constructeur a choisi une carte Wifi utilisant la norme IEEE802.11g en modulation OFSM (voir https://fr.wikipedia.org/wiki/IEEE 802.11g).

Sachant qu'une trame de NavData contient environ 370 octets et est émise par le drone à la cadence de 30 fois/seconde.

Q10. Calculer le taux d'occupation de la bande passante par le flux NavData. Commenter votre résultat.