Before proceeding, complete software installation by following **Software Installation.pdf**.

1. Introduction to Python Programming

Book 1 Think Python, Chapter 1 The way of the program

1. Basic Concepts

1.1 Program

A program is a sequence of instructions that specifies how to perform a computation. Basic instructions of programming languages include the following.

- Input
 - Get data from the keyboard, a file, the network, or some other device.
- Output
 - Display data on the screen, save it in a file, send it over the network, etc.
- Math
 - Perform basic mathematical operations like addition and multiplication.
- Conditional execution
 - Check for certain conditions and run the appropriate code.
- Repetition
 - Perform some action repeatedly, usually with some variation.

1.2 Variables

A **variable** is a named location used to store data in the computer memory. Think it as a container that holds data that can be changed later in the program. Or for simplicity, typically we think a variable as a name that refers to a value. Sample variable names are number, grade, email, firstName, cardNumber, shipping_address, employee_id, etc.

1.3 Comments

A **comment** is a piece of text that the computer ignores but provides useful documentation to programmers. In Python, the text after a pound sign, #, is a comment.

In lecture notes, comments are in blue, and code output is also shown in blue.

1.4 Data types

A data type tells the compiler or interpreter how the programmer intends to use the data.

Four basic data types in Python

- Boolean: True or False
- int and float are numeric data types: They represent numbers
- str is a string type: its value is wrapped by single or double quotes

Data Type	Type of Data	Examples
Boolean	Boolean values	True, False
int	Integers	-5, -2, 0, 1, 7
float	Real numbers	-0.25, .3333, 3.14, 6.5
str	Character strings	"Hi there", "", "16", 'hello', 'A B C', ' '

The Python's type() function returns the type of the object, for example

type(5) # int	
type('A') # str	
type('2.5') # str	

1.5 Assignment Statements

In programming, the equal sign, =, makes an assignment. An assignment statement creates a new variable and gives it a value. The value on the right side of equal sign is assigned to the variable on the left side of the equal sign.

num = 5 # assign an integer value to a variable, num, without declaring the data type of num.
 num = 1.2 # the value of num is changed from 5 to 1.2 and its data type is changed to float.
 num = 'Good morning' # the variable's value is updated and its data type is changed to str.

1.6 Dynamically vs. statically typed

Dynamically typed: A variable and its data type do not need to be declared before execution. Statically typed: A variable and its data type must be declared at compile time.

Python is dynamically typed	Java is statically typed
// don't specify a data type before assigning a value	// need to declare a data type for
age = 18	// a variable before assigning a value
type(age) // the output is int	int age = 18;

1.7 Weakly vs. strongly typed

Weakly typed: After declaring a data type for a variable, the data type can be changed. Strongly typed: After declaring a data type for a variable, the data type cannot be changed.

Python is weakly typed	Java is strongly typed
age = 18	int age = 18;
type(age) // int	double age = 18.0; // a compilation error
age = "100 Main St."	String age = "hello"; // a compilation error
type(age) // str	

1.8 Algorithm

Algorithm is a finite sequence of well-defined, computer-implementable instructions, typically to solve a class of problems or to perform a computation.

The following is a sample algorithm for finding the maximum number from a list of numbers.

Algorithm description: This algorithm iterates through a list of numbers and keeps track of the largest number found so far.

Specific steps:

- [1] Start by assuming the first number in the list is the largest.
- [2] Compare this number with each subsequent number in the list.
- [3] If a number is greater than the current largest number, update the largest number.
- [4] Repeat until all numbers in the list have been checked.
- [5] Return the largest number.

2. Python

- Python was invented at early 1990s by Guido van Rossum
- Python is a high-level, general-purpose programming language. It is an interpreted language

 this means that a Python program is not compiled into a compiled program before
 execution. A compiler is a program that reads a program written in the high-level language
 and converts it into the machine or low-level language, and reports the errors if they are present in the program.
- When a Python program is executed, the Python interpreter first translates it into byte code, and then the byte code is sent to Python Virtual Machine for further interpretation and execution.
- Python program files use .py extension.
- Python files created in Jupyter Notebook has **.ipynb** extension that can be converted to a .py program.

3. Program Development Environment

Programmers usually write high-level language statements/programs in a text editor. In this class, we use Jupyter Notebook as development environment. Refers to Software Installation.pdf for software installation and introduction to Jupyter Notebook.

Jupyter Notebook is an interactive development environment (IDE) for IPython (interactive Python) to write programs and display images, and it runs in a web browser (Internet connection is not required). It combines software code, computational output, explanatory text, and multimedia resources.

4. Python vs. Java

Python and Java are two of the most popular and robust programming languages. The following table lists their main differences.

	Python	Java
Compilation	No compilation for Python	Java programs are compiled before
	programs.	execution.
	Python is a scripting language	As a programming language Java
	which can be interpreted by an	requires a compiler to compile the
	interpreter and does not need to	source code into compiled code which
	be compiled before execution.	can be later executed.
Dynamically or	Python is dynamically typed.	Java is statically typed.
statically typed	age = 18	int age = 18;
Weakly or	Python is weakly typed.	Java is strongly typed.
strongly typed	n = 1	int n = 1;
	n = 'hello world'	n = "hello world"; // compilation error
	n = 2.5	n = 2.5; // compilation error
Learning curve	Low	Medium
Best use for	Mainly in the field of data science	Very broad for enterprise software
		development, such as embed systems,
		web applications, and mobile
		applications.

5. The Software Development Process

- Software development is the process of conceiving, specifying, designing, programming, documenting, testing, and bug fixing involved in creating and maintaining software programs.
- Waterfall model is a basic software development approach
- Common phases in the waterfall model:
 - Customer request
 - Analysis: identify requirements
 - Design: identify what programs/classes are needed, what each of the classes does and their relationships
 - Implementation: software development
 - Integration
 - Maintenance

- Modern software development is usually incremental and iterative
 - Analysis and design may produce a prototype of a system, code the prototype, testing, and then back up to earlier phases to fill in more details.

Figure 2-1 The waterfall model of the software development process

- Programs rarely work as hoped the first time they are run
 - Must perform extensive and careful testing
 - The cost of developing software is not spread equally over the phases

Figure 2-2 Relative costs of repairing mistakes that are found in different phases

6. How to Study This Class

The best way to learn programming is to practice.

Thus, you are encouraged to do more exercises in addition to class assignments and project. A great source for Python exercises is at https://www.w3resource.com/python-exercises/.

References:

- https://morioh.com/p/01d84b0bab10
- https://www.snaplogic.com/glossary/python-vs-java-performance
- https://www.guru99.com/java-vs-python.html
- https://www.geeksforgeeks.org/type-systemsdynamic-typing-static-typing-duck-typing/
- Fundamentals of Python: First Programs, 2nd edition, Kenneth A. Lambert, Cengage, 2020.
- Think Python How to Think Like a Computer Scientist, 2nd edition, Allen Downey, Green Tea Press.