Конспект Шорохова Сергея Если нашли опечатку/ошибку - пишите @le9endwp

Содержание

1	Глава 9. Теория меры		2
	1.1	§1. Системы множеств	2
	1.2	§2. Объем и мера	8
	1.3	§3. Продолжение меры	13
	1.4	§4. Мера Лебега	18
	1.5	§5. Измеримые функции	25

Глава 9. Теория меры 1

1.1 §1. Системы множеств

Definition 1.1. Объемлющее множество

X – объемлющее множество. Будем рассматривать $A \subset X$

Declaration 1.1. Обозначения

 $A \sqcup B$ – объединение множеств A и B и множества A и B не пересекаются

 $\bigsqcup A_k$ – объединение и $A_i \cap A_j = \varnothing$

Дизъюнктные множества = непересекающиеся множества

Definition 1.2. Разбиение множества

Множества E_{α} , $\alpha \in I$ – разбиение множества E, если $E = \bigsqcup E_{\alpha}$

Definition 1.3. Система подмножеств и ее свойства

 \mathcal{A} – система подмножеств X (т.е. $\mathcal{A} \subset 2^X$)

- 1. \mathcal{A} имеет свойство σ_0 , если $\forall A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- 2. \mathcal{A} имеет свойство δ_0 , если $\forall A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- 3. \mathcal{A} имеет свойство σ , если $\forall A_1, A_2 \ldots \in \mathcal{A} \Rightarrow \bigcup^{\infty} A_n \in \mathcal{A}$
- 4. \mathcal{A} имеет свойство δ , если $\forall A_1, A_2 \ldots \in \mathcal{A} \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$
- 5. \mathcal{A} симметричная система, если $\forall A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$

2

Reminder 1.1.

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}$$

$$X \setminus \bigcup_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} X \setminus A_{\alpha}$$
$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} X \setminus A_{\alpha}$$

Proposition 1.1.

 $(\sigma_0) \Leftrightarrow (\delta_0)$ Если \mathcal{A} симметричная система, то $(\sigma) \Leftrightarrow (\delta)$

Definition 1.4. Алгебра

 \mathcal{A} – алгебра, если

- 1. $\emptyset \in \mathcal{A}$
- $2. \mathcal{A}$ симметричная система
- 3. Есть свойства (σ_0) и (δ_0)

Definition 1.5. σ -алгебра

 \mathcal{A} – σ -алгебра, если

- 1. $\varnothing \in \mathcal{A}$
- 2. A симметричная система
- 3. Есть свойства (σ) и (δ)

Theorem 1.1. Свойства

- 1. Если \mathcal{A} алгебра и $A_1 \dots A_n \in \mathcal{A}$, то $\bigcup_{k=1}^n A_k$ и $\bigcap_{k=1}^n A_k \in \mathcal{A}$
- 2. Если \mathcal{A} σ -алгебра, то \mathcal{A} алгебра
- 3. Если \mathcal{A} алгебра и $A,B\in\mathcal{A},$ то $\underbrace{A\setminus B}_{A\cap (X\setminus B)}\in\mathcal{A}$

Example 1.1.

- 1. $X = \mathbb{R}^n$
 - ${\cal A}$ все ограниченные множества и их дополнения. Это алгебра, но не σ -алгебра
- 2. $2^{X} \sigma$ -алгебра
- 3. Индуцированная $(\sigma$ -)алгебра
 - $Y \subset X$, $\mathcal{A} (\sigma$ -)алгебра подмножеств X
 - $\mathcal{B} := \{A \cap Y : A \in \mathcal{A}\} (\sigma$ -)алгебра подмножеств Y
- 4. $X \supset A, B$
 - \mathcal{A} алгебра подмножеств X
 - $\varnothing, X, A, B, A \cup B, A \cap B, A \setminus B, B \setminus A, X \setminus A, X \setminus B, A \triangle B, X \setminus (A \cap B), X \setminus (A \cup B),$
 - $X \setminus (A \triangle B), X \setminus (A \setminus B), X \setminus (B \setminus A)$
- 5. A_{α} $(\sigma$ -)алгебра подмножеств X
 - Тогда $\mathcal{B} = \bigcap_{\alpha \in I} \mathcal{A}_{\alpha} (\sigma$ -)алгебра подмножеств X

Доказательство:

- (a) $\varnothing \in \mathcal{A}_{\alpha} \Rightarrow \varnothing \in \mathcal{B}$
- (b) $A \in \mathcal{B} \Rightarrow A \in \mathcal{A}_{\alpha} \forall \alpha \Rightarrow X \setminus A \in \mathcal{A}_{\alpha} \forall \alpha \Rightarrow X \setminus A \in \mathcal{B}$

Theorem 1.2.

Пусть \mathcal{E} – система подмножеств X

Тогда существует наименьшая по включению (σ -)алгебра \mathcal{A} , содержащая \mathcal{E}

3

Доказательство:

Пусть \mathcal{A}_{α} – всевозможные алгебры, содержащие \mathcal{E} (2^{X} подходит)

$$\mathcal{A} := \bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$$
 – алгебра и $\mathcal{A} \subset \mathcal{A}_{\alpha} \forall \alpha$

Definition 1.6. Борелевская оболочка

 ${\mathcal E}$ – система подмножеств X

Борелевская оболочка системы $\mathcal E$ — наименьшая по включению σ -алгебра, содержащая $\mathcal E$

Declaration 1.2. Обозначение

 $\mathcal{B}(\mathcal{E})$

Definition 1.7. Борелевская σ -алгебра

Борелевская σ -алгебра – это $\mathcal{B}(\mathcal{E})$, где \mathcal{E} – всевозможные открытые множества в \mathbb{R}^n

Declaration 1.3. Обозначение

 \mathcal{B}^n

Remark 1.1.

 $\mathcal{B}^n \neq 2^{\mathbb{R}^n}$

Definition 1.8. Кольцо

 ${\mathcal A}$ – семейство подмножеств X

 \mathcal{A} – кольцо, если

1. $\emptyset \in \mathcal{A}$

2. $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}, A \cup B \in \mathcal{A}$

3. $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$

Remark 1.2.

 ${\mathcal A}$ – алгебра \Leftrightarrow ${\mathcal A}$ – кольцо и $X\in{\mathcal A}$

Definition 1.9.

 \mathcal{P} – семейство подмножеств X

 \mathcal{P} – полукольцо, если

1. $\varnothing \in \mathcal{P}$

2. $\forall A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$

3. $\forall A, B \in \mathcal{P} \; \exists Q_1 \dots Q_m \in \mathcal{P}, \text{ т.ч. } A \setminus B = \bigsqcup_{k=1}^m Q_k$

Example 1.2.

1. $X = \mathbb{R}; \ \mathcal{P} := \{(a,b] : a,b \in \mathbb{R}\}$ – полукольцо

2. $X = \mathbb{R}; \ \mathcal{P} := \{(a,b] : a,b \in \mathbb{Q}\}$ – полукольцо

Lemma 1.1.

$$\bigcup_{k=1}^n A_k = \coprod_{k=1}^n \underbrace{(A_k \setminus \bigcup_{j=1}^{k-1} A_j)}_{B_k}$$
 (для ∞ вместо n тоже верно)

Доказательство:

- $B_k \subset A_k \Rightarrow \supset$ верно
- ullet С возьмем $x\in\bigcup_{k=1}^nA_k\Rightarrow$ найдется наименьший индекс m, т.ч. $x\in A_m$ и $x\notin A_{m-1}\dots A_1\Rightarrow$

$$\Rightarrow x \in B_m$$

• Дизъюнктность $k < m \Rightarrow B_k \cap B_m = \emptyset$

$$B_m = A_m \setminus \bigcup_{j=1}^{m-1} A_j \subset A_m \setminus A_k \subset A_m \setminus B_k$$
$$B_k \subset A_k$$

Theorem 1.3.

 \mathcal{P} – полукольцо. Тогда

1.
$$P, P_1 \dots P_n \in \mathcal{P} \Rightarrow \exists Q_1 \dots Q_m \in \mathcal{P}, \text{ т.ч. } P \setminus \bigcup_{k=1}^n P_k = \bigsqcup_{j=1}^m Q_j$$

2.
$$P_1, P_2 \ldots \in \mathcal{P} \Rightarrow \exists Q_{ij} \in \mathcal{P}$$
, т.ч. $\bigcup_{k=1}^n P_k = \bigsqcup_{k=1}^n \bigsqcup_{j=1}^{m_k} Q_{kj}$, где $Q_{kj} \subset P_k \forall k, j$

3. В п. 2 можно вместо n написать ∞

Доказательство:

1. Индукция. База n=1 – определение полукольца

Переход
$$n \to n+1$$

$$P \setminus \bigcup_{k=1}^{n+1} P_k = \underbrace{\left(P \setminus \bigcup_{k=1}^{n} P_k\right) \setminus P_{n+1}}_{\text{инд. предполож.}} \setminus P_{n+1} = \underbrace{\left(\bigsqcup_{j=1}^{m} Q_j\right) \setminus P_{n+1}}_{\text{где } Q_j \in \mathcal{P}} = \bigcup_{j=1}^{m} Q_j \setminus P_{n+1} = \bigsqcup_{j=1}^{m} \bigsqcup_{i=1}^{m_j} Q_{ji}$$

2.
$$\bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} (P_k \setminus \bigcup_{j=1}^{k-1} P_j)$$

Definition 1.10.

 \mathcal{P} – полукольцо подмножеств X

 \mathcal{Q} – полукольцо подмножеств Y

 $\mathcal{P} \times \mathcal{Q} := \{A \times B : A \in \mathcal{P} \text{ и } B \in \mathcal{Q}\}$ – декартово произведение полуколец \mathcal{P} и \mathcal{Q}

Theorem 1.4.

Декартово произведение полуколец – полукольцо

Доказательство:

1. Пустые очев

2.
$$C \times D$$
 if $A \times B \in \mathcal{P} \times \mathcal{Q} \Rightarrow (A \times B) \cap (C \times D) = \underbrace{(A \cap C)}_{\in \mathcal{P}} \times \underbrace{(B \cap D)}_{\in \mathcal{Q}}$

3.
$$A \times B, C \times D \in \mathcal{P} \times \mathcal{Q} \stackrel{?}{\Rightarrow} (A \times B) \setminus (C \times D) = \bigsqcup_{k=1}^{m} \underbrace{P_{k}}_{\in \mathcal{P}} \times \underbrace{Q_{k}}_{\in \mathcal{Q}}$$

$$(A \times B) \setminus (C \times D) = \underbrace{(A \setminus C)}_{\stackrel{m}{\downarrow} P_{j}} \times \underbrace{B}_{\in \mathcal{Q}} \sqcup \underbrace{(A \cap C)}_{\in \mathcal{P}} \times \underbrace{(B \setminus D)}_{\stackrel{n}{\downarrow} Q_{i}}$$

Definition 1.11. Замкнутый и открытый параллелепипеды

 $a, b \in \mathbb{R}^n$

Замкнутый параллелепипед $[a,b] := [a_1,b_1] \times \ldots \times [a_n,b_n]$

Открытый параллеленинед $(a,b) := (a_1,b_1) \times \ldots \times (a_n,b_n)$

Definition 1.12. Ячейка

 $a, b \in \mathbb{R}^n$

Ячейка $(a, b] := (a_1, b_1] \times \ldots \times (a_n, b_n]$

Remark 1.3.

$$(a,b)\subset (a,b]\subset [a,b]$$

Proposition 1.2.

- 1. Непустая ячейка объединение возрастающей (по включению) последовательности замкнутых параллелепипедов
- 2. Непустая ячейка пересечение убывающей (по включению) последовательности открытых параллелепипедов

6

Доказательство:

1.
$$A_k := [a_1 - \frac{1}{k}, b_1] \times [a_2 - \frac{1}{k}, b_2] \times \ldots \times [a_n - \frac{1}{k}, b_n]$$

$$A_{k+1} \supset A_k \ \text{if} \ \bigcup_{k=1}^{\infty} A_k = (a, b]$$

$$A_{k+1} \supset A_k$$
 и $\bigcup_{k=1}^{\infty} A_k = (a, b]$
2. $B_k := (a_1, b_1 + \frac{1}{k}) \times (a_2, b_2 + \frac{1}{k}) \times \ldots \times (a_n, b_n + \frac{1}{k})$

$$B_{k+1} \subset B_k$$
 и $\bigcap_{k=1}^{\infty} B_k = (a, b]$

Declaration 1.4. Обозначения

$$\mathcal{P}^n := \{(a, b] : a, b \in \mathbb{R}^n\}$$

$$\mathcal{P}^n_{\mathbb{Q}} := \{(a, b] : a, b \in \mathbb{Q}^n\}$$

Proposition 1.3.

$$\mathcal{P}^n$$
 и $\mathcal{P}^n_{\mathbb{Q}}$ – полукольца

Доказательство:

$$\mathcal{P}^n = \underbrace{\mathcal{P}^1 \times \mathcal{P}^1 \times \ldots \times \mathcal{P}^1}_{\text{полукольца}}$$

Theorem 1.5.

G – непустое открытое множество в \mathbb{R}^m

Тогда G представимо в виде счетного дизъюнктного объединения ячеек с рациональными координатами вершин

Доказательство:

У АИ тут рисуночки, посмотрите запись!

Для $x \in G$ построим ячейку P_x с рациональными координатами вершин, т.ч. $P_x \in G$ и $x \in P_x$

$$\bigcup_{x \in G} P_x = G$$

Ячеек с рациональными координатами вершин счетное число. Значит если выкинуть повторы из объединения выше, то останется счетное объединение

$$G = \bigcup_{n=1}^{\infty} P_{x_n} = \coprod_{n=1}^{\infty} \coprod_{j=1}^{m_n} Q_{nj}$$
 – ячейки с рациональными координатами вершин

Theorem 1.6. Следствие

$$\mathcal{B}^m = \mathcal{B}(\mathcal{P}^m) = \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$$

Доказательство:

- 1. $\mathcal{B}^m \supset \mathcal{B}(\mathcal{P}^m)$. Достаточно доказать, что $\mathcal{B}^m \supset \mathcal{P}^m$ (a,b] счетное пересечение открытых параллелепипедов (т.к. открытых множеств) \Rightarrow (a,b] лежит в σ -алгебре, содержащей все открытые множества
- 2. $\mathcal{B}(\mathcal{P}^m) \supset \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$. Достаточно доказать, что $\mathcal{B}(\mathcal{P}^m) \supset \mathcal{P}^m_{\mathbb{Q}}$, но $\mathcal{B}(\mathcal{P}^m) \supset \mathcal{P}^m \supset \mathcal{P}^m_{\mathbb{Q}}$
- 3. $\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}}) \supset \mathcal{B}^m$. Достаточно доказать, что $\mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$ содержит все открытые множества. Это следует из теоремы 1.5.

1.2 §2. Объем и мера

Definition 1.13. Объем

 \mathcal{P} – полукольцо. $\mu:\mathcal{P} \to [0,+\infty]$ μ – объем, если

1.
$$\mu\varnothing=0$$

2. Если
$$A_1, \dots A_n$$
 и $\bigsqcup_{k=1}^n A_k \in \mathcal{P}$, то $\mu(\bigsqcup_{k=1}^n A_k) = \sum_{k=1}^n \mu A_k$

Definition 1.14. Mepa

 \mathcal{P} – полукольцо. $\mu: \mathcal{P} \to [0, +\infty]$ μ – мера, если

1.
$$\mu\varnothing=0$$

2. Если
$$A_1, A_2 \dots$$
 и $\bigsqcup_{k=1}^{\infty} A_k$, то $\mu(\bigsqcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu A_k$

Exercise 1.1.

Если $\mu\varnothing\neq +\infty$, то $\mu\varnothing=0$ из свойства 2

Example 1.3. Примеры объемов

1.
$$X = \mathbb{R}, \ \mathcal{P}^1$$
. Длина – объем. $\mu(a, b] = b - a$

2.
$$X=\mathbb{R},~\mathcal{P}^1.~g:\mathbb{R}\to\mathbb{R}$$
 – нестрого возрастающая функция $\nu_q(a,b]:=g(b)-g(a)$

3. Классический объем на
$$\mathcal{P}^m$$
 $\lambda_m(a,b]=(b_1-a_1)(b_2-a_2)\dots(b_m-a_m)$ – объем и даже мера (докажем позже)

8

4.
$$x_0 \in X$$
; $\mu A = \begin{cases} 0 & x_0 \notin A \\ 1 & x_0 \in A \end{cases}$

5.
$$X = \mathbb{R}^2$$
; \mathcal{P} – ограниченные множества и их дополнения $\mu A = \begin{cases} 0 & A$ – ограничена $1 & A$ дополнение ограничено – объем, но не мера

Theorem 1.7. Свойства объема

 \mathcal{P} – полукольцо, μ – объем на \mathcal{P} . Тогда

$$P, \tilde{P} \in \mathcal{P}$$
 и $P \subset \tilde{P} \Rightarrow \mu P \leq \mu \tilde{P}$

2. Усиленная монотонность
$$n$$

$$P_1, P_2 \dots P_n, \tilde{P} \in \mathcal{P}$$
 и $\bigsqcup_{k=1}^n P_k \subset \tilde{P} \Rightarrow \sum_{k=1}^n \mu P_k \leq \mu \tilde{P}$

$$P_1, P_2 \dots P_n, \tilde{P} \in \mathcal{P}$$
 и $\bigsqcup_{k=1}^n P_k \subset \tilde{P} \Rightarrow \sum_{k=1}^n \mu P_k \leq \mu \tilde{P}$
2'. $P_1, P_2 \dots, \tilde{P} \in \mathcal{P}$ и $\bigsqcup_{k=1}^\infty P \subset \tilde{P} \Rightarrow \sum_{k=1}^\infty \mu P_k \leq \mu \tilde{P}$

$$P_1 \dots P_n, P \in \mathcal{P}$$
 и $P \subset \bigcup_{k=1}^n P_k \Rightarrow \mu P \leq \sum_{k=1}^n \mu P_k$

Доказательство:

2.
$$\tilde{P} \setminus \bigsqcup_{k=1}^{n} P_k = \bigsqcup_{j=1}^{m} Q_j$$
, где $Q_j \in \mathcal{P}$

$$\tilde{P} = \bigsqcup_{k=1}^{n} P_k \sqcup \bigsqcup_{j=1}^{m} Q_j \Rightarrow \mu \tilde{P} = \sum_{k=1}^{n} \mu P_k + \sum_{j=1}^{m} \mu Q_j \geq \sum_{k=1}^{n} \mu P_k$$

2'. Предельный переход в неравенстве

3.
$$P'_k := P_k \cap P \in \mathcal{P} \Rightarrow P = \bigcup_{k=1}^n P'_k = \bigcup_{k=1}^m \bigcup_{j=1}^{m_k} Q_{kj}$$
 (они из \mathcal{P}) $\Rightarrow \mu P = \sum_{k=1}^n \sum_{j=1}^{m_k} \mu Q_{kj}$ $P_k \supset P'_k \supset \bigcup_{j=1}^m Q_{kj} \Rightarrow \mu P_k \ge \sum_{j=1}^m \mu Q_{kj}$

Remark 1.4.

- 1. Если μ объем на алгебре $\mathcal{A}, A \subset B; \ A, B \in \mathcal{A}$ и $\mu A < +\infty$, то $\mu(B \setminus A) = \mu B \mu A$ Доказательство: Т.к. $B = A \sqcup (B \setminus A)$
- 2. Объем на полукольце можно продолжить на кольцо, состоящего из всевозможных объединений элементов полукольца

Theorem 1.8.

$$\mathcal P$$
 и $\mathcal Q$ — полукольца подмножеств X и Y . μ и ν — объемы на $\mathcal P$ и $\mathcal Q$ λ $\underbrace{(P \times Q)}_{P \in \mathcal P; \ Q \in \mathcal Q}$ $($ считаем, что $0 \cdot + \infty = + \infty \cdot 0 = 0)$ Тогда λ — объем на $\mathcal P \times \mathcal Q$

Theorem 1.9. Следствие

Классический объем λ_m – объем

Доказательство:

Example 1.4. Примеры мер

- 1. λ_m мера (потом докажем)
- 2. $g:\mathbb{R} \to \mathbb{R}$ нестрого возрастающая и непрерывная справа во всех точках $\nu_{q}(a,b] := g(b) - g(a)$ - Mepa
- 3. $x_0 \in X$; $\mu A = \begin{cases} 1 & x_0 \in A \\ 0 & x_0 \notin A \end{cases}$ мера на 2^X
- 4. Считающая мера = количество элементов в множестве
- 5. $X; \ \frac{t_1,t_2\ldots\in X}{w_1,w_2\ldots\geq 0}; \ \mu A:=\sum_{k:t_k\in A} w_k$ мера на 2^X

Счетная аддитивность: $A = \bigsqcup_{k=1}^{\infty} A_k \stackrel{?}{\Rightarrow} \mu A = \sum_{k=1}^{\infty} \mu A_k$ В множестве A_k гирьки $w_{k_1}, w_{k_2} \dots$

$$\mu A_k = \sum_{j=1}^{\infty} w_{k_j}$$
 и $\mu A = \sum w_{k_j}$

Надо понять, что $\sum\limits_{k=1}^{\infty}\sum\limits_{i=1}^{\infty}w_{k_{j}}=\sum w_{k_{j}}$

$$\leq: \underbrace{\sum_{k=1}^K \sum_{j=1}^\infty w_{k_j}}_{\sum_{j=1}^\infty \sum_{k=1}^K w_{k_j}} \leq R \Rightarrow L \leq R$$

 \geq : Берем частичную сумму S для R. Надо доказать, что $S \leq L$ $K = \max k$ в этой частичной сумме $J = \max j$ в этой частичной сумме $\Rightarrow S \leq \sum_{k=1}^K \sum_{j=1}^J w_{k_j} \leq L$

Theorem 1.10.

 $\mu:\mathcal{P} \to [0,+\infty]$ – объем на полукольце $\mathcal{P}.$ Тогда

$$\mu$$
 – мера \Leftrightarrow (счетная полуаддитивность)
 $(P, P_k \in \mathcal{P}) \ \forall P \subset \bigcup_{k=1}^{\infty} P_k \Rightarrow \mu P \leq \sum_{k=1}^{\infty} \mu P_k$

Доказательство:

$$\Leftarrow$$
: $P = \bigsqcup_{k=1}^{\infty} P_k \xrightarrow[\text{сч. полуадд.}]{} \mu P \leq \sum_{k=1}^{\infty} \mu P_k$

$$P = \bigsqcup_{k=1}^{\infty} P_k \xrightarrow[\text{усил. монот.}]{} \mu P \geq \sum_{k=1}^{\infty} \mu P_k$$

$$k=1$$
 \Rightarrow : $P_k' := P \cap P_k \Rightarrow P = \bigcup_{k=1}^{\infty} P_k' = \bigsqcup_{k=1}^{\infty} \bigsqcup_{j=1}^{m_k} Q_{k_j}$, где $Q_{k_j} \subset P_k' \subset P_k \xrightarrow{\mu \text{ - Mepa}} \mu P = \sum_{k=1}^{\infty} \sum_{j=1}^{m_k} \mu Q_{k_j}$

$$\bigsqcup_{j=1}^{m_k} Q_{k_j} \subset P_k \xrightarrow[\text{усил. монот.}]{m_k} \mu P_k \ge \sum_{j=1}^{m_k} \mu Q_{k_j}$$

Theorem 1.11. Следствие

 μ — мера на σ -алгебре. Тогда счетное объединение множеств нулевой меры — множество нулевой меры

Доказательство:

$$\mu A = 0; \ A := \bigcup_{k=1}^{\infty} A_k \Rightarrow \mu A \le \sum_{k=1}^{\infty} \mu A_k = 0 \Rightarrow \mu A = 0$$

Theorem 1.12. Непрерывность меры снизу

 μ – объем на σ -алгебре \mathcal{A} . Тогда равносильны

1. μ – мера

2.
$$A_1 \subset A_2 \subset A_3 \subset \dots$$
; $A_k \in \mathcal{A}$. Тогда $\mu(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu A_k$

Доказательство:

$$1\Rightarrow 2:\ A_0\neq\varnothing$$
 и $B_k:=A_k\setminus A_{k-1};\ A:=\bigcup_{k=1}^\infty A_k$ Тогда $A=\bigcup_{k=1}^\infty B_k\Rightarrow \mu A=\sum_{k=1}^\infty \mu B_k=\lim_{n\to\infty} \sum_{k=1}^n \mu B_k=\lim_{n\to\infty} \mu A_n$

$$2 \Rightarrow 1$$
: Пусть $A = \bigsqcup_{k=1}^{\infty} C_k$; $A_n := \bigsqcup_{k=1}^n C_k \Rightarrow A_1 \subset A_2 \subset \ldots \Rightarrow \mu A = \lim_{n \to \infty} \mu A_n = \lim_{n \to \infty} \mu \left(\bigsqcup_{k=1}^n C_k\right) = \lim_{n \to \infty} \sum_{k=1}^n \mu C_k = \sum_{k=1}^\infty \mu C_k$

Theorem 1.13. Непрерывность меры сверху

 μ – объем на σ -алгебре $\mathcal A$ и $\mu X<+\infty$. Следующие условия равносильны

- 1. μ мера
- 2. Непрерывность меры сверху

$$A_1 \supset A_2 \supset A_3 \supset \dots; \ A_k \in \mathcal{A} \Rightarrow \mu(\bigcap_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu A_k$$

3. Непрерывность меры сверху на пустом множестве

$$A_1 \supset A_2 \supset A_3 \supset \dots; \ A_k \in \mathcal{A} \ \text{u} \bigcap_{k=1}^{\infty} A_k = 0 \Rightarrow \lim_{k \to \infty} \mu A_k = 0$$

Доказательство:

$$1\Rightarrow 2: B_k:=A_1\setminus A_k; \ B_1\subset B_2\subset B_3\subset\dots$$

$$\bigcup_{k=1}^\infty B_k=A_1\setminus \bigcap_{k=1}^\infty A_k. \ \text{По предыдущей теореме} \ \ \underline{\mu(\bigcup_{k=1}^\infty B_k)} = \lim_{k\to\infty} \mu B_k=\mu A_1-\lim_{k\to\infty} \mu A_k$$

$$\underline{\mu A_1-\mu(\bigcap^\infty A_k)}$$

 $2 \Rightarrow 3$: Очев, 3. – частный случай 2.

$$3 \Rightarrow 1: A = \bigsqcup_{k=1}^{\infty} C_k; A_n := \bigsqcup_{k=n+1}^{\infty} C_k; \bigcap_{n=1}^{\infty} A_n = \emptyset$$
 и $A_1 \supset A_2 \supset A_3 \supset \ldots \Rightarrow \lim \mu A_n = 0$

$$A = \bigsqcup_{k=1}^{n} C_k \sqcup A_n \Rightarrow \mu A = \underbrace{\sum_{k=1}^{n} \mu C_k}_{\rightarrow \sum_{k=1}^{n} \mu C_k} + \underbrace{\mu A_n}_{\rightarrow 0}$$

Theorem 1.14. Следствие

 μ – мера на σ -алгебре $\mathcal A$ и $A_1\supset A_2\supset A_3\supset\dots$ и $\mu A_m<+\infty$ для некоторого m Тогда $\mu(\bigcap_{k=1}^\infty A_k)=\lim \mu A_k$

Доказательство:

Пишем $A_m \setminus A_k$ вместо $A_1 \setminus A_k$

Remark 1.5.

Условие
$$\mu X<+\infty$$
 важно. $A_n:=[n,+\infty)$ и $\lambda_1 A_n=+\infty;$ $\bigcap_{n=1}^\infty [n,+\infty)=\varnothing$

Exercise 1.2.

Придумать объем, не являющийся мерой, который обладает свойством из следствия

§3. Продолжение меры 1.3

Definition 1.15. Субмера

 $\nu: 2^X \to [0, +\infty]$ – субмера, если

- 1. $\nu\varnothing=0$
- 2. Монотонность: $A \subset B \Rightarrow \nu A \leq \nu B$
- 3. Счетная полуаддитивность: $A \subset \bigcup_{n=1}^{\infty} A_n \Rightarrow \nu A \leq \sum_{n=1}^{\infty} \nu A_n$

Remark 1.6.

2. – частный случай 3.

Definition 1.16. Полная мера

 μ – мера на \mathcal{A} . μ – полная мера, если

 $A \in \mathcal{A}$, т.ч. $\mu A = 0 \Rightarrow \forall B \subset A \ B \in \mathcal{A}$ (и тогда $\mu B = 0$)

Definition 1.17.

 ν – субмера. $E \subset X$

E – ν -измеримое множество, если $\forall A \subset X \Rightarrow \nu A = \nu(A \cap E) + \nu(A \setminus E)$

Remark 1.7.

- 1. Достаточно требовать ≥, т.к. ≤ из полуаддитивности
- 2. $E_1, E_2 \dots E_n \nu$ -измеримые и $E = \bigsqcup_{k=1}^n E_k \Rightarrow \nu(A \cap E) = \sum_{k=1}^n \nu(A \cap E_k)$

$$E_1, E_2 \dots E_n - \nu$$
-измеримые и $E = \bigsqcup_{k=1} E_k \Rightarrow \nu(A \cap E) = \sum_{k=1} \nu(A)$ Индукция по $n. \ n \to n+1$
$$\nu(A \cap \bigsqcup_{k=1}^{n+1} E_k) = \nu\left((A \cap \bigsqcup_{k=1}^{n+1} E_k) \cap E_{n+1}\right) + \nu\left((A \cap \bigsqcup_{k=1}^{n+1} E_k) \setminus E_{n+1}\right)$$

Theorem 1.15. Теорема Каратеодори

 ν – субмера. Тогда

- 1. ν -измеримые множества образуют σ -алгебру
- 2. Сужение ν на эту σ -алгебру полная мера

Доказательство:

 ${\cal A}$ – семейство всех u-измеримых множеств

1. Маленькими шагами :)

Шаг 1. Если $\nu E = 0$, то E будет ν -измеримым

$$\nu\underbrace{(A\cap E)}_{\subset E} + \nu\underbrace{(A\setminus E)}_{\subset A} \leq \nu E + \nu A = 0 + \nu A = \nu A$$

Шаг 2.
$$\mathcal{A}$$
 – симметричная, т.к. если $E \in \mathcal{A}$, то $X \setminus E \in \mathcal{A}$ $A \cap (X \setminus E) = A \setminus E; \ A \setminus (X \setminus E) = A \cap E$

Шаг 3. Если
$$E$$
 и $F \in \mathcal{A}$, то $E \cup F \in \mathcal{A}$
$$\nu A = \nu(A \cap E) + \nu(A \setminus E) = \nu(A \cap E) + \nu((A \setminus E) \cap F) + \nu\underbrace{((A \setminus E) \setminus F)}_{A \setminus (E \cup F)} \ge$$

$$\geq \nu(A \cap (E \cup F)) + \nu(A \setminus (E \cup F))$$

Шаг 4. \mathcal{A} – алгебра

Шаг 5.
$$E = \bigsqcup_{n=1}^{\infty} E_n$$
 и $E_n \in \mathcal{A} \stackrel{?}{\Rightarrow} E \in \mathcal{A}$

$$\nu A = \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus \bigsqcup_{k=1}^{n} E_k) \ge \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus E) = \underbrace{\sum_{k=1}^{n} \nu(A \cap E_k)}_{\rightarrow \sum_{k=1}^{\infty}} + \nu(A \setminus E)$$

$$E) \Rightarrow \nu A \ge \sum_{k=1}^{\infty} \nu(A \cap E_k) + \nu(A \setminus E) \ge \nu(\bigcup_{k=1}^{\infty} (A \cap E_k)) + \nu(A \setminus E)$$

Шаг 6.
$$E = \bigcup_{k=1}^{\infty} E_k$$

Переделаем в дизъюнктное объединение

Т.е. \mathcal{A} – σ -алгебра

2. $\nu \mid_{\mathcal{A}}$ – мера, т.к. это объем и счетная полуаддитивная

$$\nu(A \cap \bigsqcup_{k=1}^n E_k) = \sum_{k=1}^n \nu(A \cap E_k); \ A = X \Rightarrow$$
 объем

 $\nu\mid_{\mathcal{A}}$ – полная мера. Если $\nu B=0$ и $A\subset B$, то $\nu A=0$ и тогда $A\in\mathcal{A}$ по шагу 1

Definition 1.18. Внешняя мера

 μ – мера на полукольце \mathcal{P} . Внешняя мера, порожденная μ называется

$$\mu^*A := \inf\{\sum_{k=1}^{\infty} \mu A_k : A \subset \bigcup_{k=1}^{\infty} A_k, A_k \in \mathcal{P}\}$$

Если такого покрытия для A нет, то $\mu^*A = +\infty$

Remark 1.8.

1. Можем рассматривать только покрытия дизъюнктными множествами

$$igcup_{k=1}^\infty A_k = igl|_{k=1}^\infty igl|_{j=1}^{m_k} Q_{k_j}$$
 и $igr|_{j=1}^{m_k} Q_{k_j} \subset A_k$

2. Если μ – мера на σ -алгебре, то $\mu^*A = \inf\{\mu B : B \supset A$ и $B \in \mathcal{A}\}$

Theorem 1.16.

 μ^* – субмера, совпадающая с μ на ${\mathcal P}$

Доказательство:

Шаг 1. Если $A \in \mathcal{P}$, то $\mu A = \mu^* A$

$$\geq$$
Берем покрытие $A,\varnothing,\varnothing,\ldots\,\mu^*A=\inf\leq \mu A$

$$\leq A \subset \bigcup_{n=1}^{\infty} A_n \Rightarrow \mu A \leq \sum_{n=1}^{\infty} \mu A_n$$
 (счетная полуаддитивность меры) $\Rightarrow \mu A \leq \inf = \mu^* A$

Шаг 2. μ^* – субмера

Надо проверить, если $A \subset \bigcup_{n=1}^{\infty} A_n \Rightarrow \mu^* A \leq \sum_{n=1}^{\infty} \mu^* A_n$

Если справа есть $+\infty$, то все очев. Считаем, что $\mu^*A_n<+\infty$

Возьмем покрытие $A_n\subset\bigcup_{k=1}^\infty C_{nk}$, т.ч. $C_{nk}\in\mathcal{P}$ и $\sum_{k=1}^\infty \mu C_{nk}<\mu^*A_n+\frac{\varepsilon}{2^n}\Rightarrow A\subset\bigcup_{n=1}^\infty\bigcup_{k=1}^\infty C_{nk}$

$$\mu^* A \le \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu C_{nk} < \sum_{n=1}^{\infty} \mu^* (A_n + \frac{\varepsilon}{2^n}) = \varepsilon + \sum_{n=1}^{\infty} \mu^* A_n$$

Definition 1.19. Стандартное продолжение меры

 μ_0 – мера на полукольце ${\cal P}$

 μ_0^* – внешняя мера, построенная по μ_0 – субмера

 μ – сужение субмеры μ_0^* на μ_0^* -измеримые множества

 μ называется стандартным продолжением μ_0

Declaration 1.5.

Будем писать μ -измеримые, вместо μ_0^* -измеримые

Theorem 1.17.

Это действительно продолжение. Т.е. множества из \mathcal{P} будут μ -измеримы

Доказательство:

Шаг 1. Если
$$E$$
 и $A \in \mathcal{P}$, то $\mu_0^* A \ge \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$ $\mu_0^* A = \mu_0 A$ и $\mu_0^* (A \cap E) = \mu_0 (A \cap E)$

$$\mu_0 A = \mu_0 A$$
 и $\mu_0 (A + E) = \mu_0 (A + E)$

$$A \setminus E = \coprod_{k=1}^m Q_k, \text{ где } Q_k \in \mathcal{P} \Rightarrow A = (A \cap E) \sqcup \coprod_{k=1}^m Q_k \Rightarrow \mu_0 A = \mu_0 (A \cap E) + \underbrace{\sum_{k=1}^m \mu_0^* Q_k}_{\geq \mu_0^* (A \setminus E)} \geq \underbrace{\mu_0^* (A \setminus E)}_{\geq \mu_0^* (A \setminus E)}$$

$$\geq \mu_0^*(A \cap E) + \mu_0^*(A \setminus E)$$

Шаг 2. Если $E \in \mathcal{P}$, а $A \notin \mathcal{P}$

Если $\mu_0^*A=+\infty$, то неравенство очевидно. Считаем, что $\mu_0^*A<+\infty$

Возьмем покрытие $A \subset \bigcup_{n=1}^{\infty} P_n$, т.ч. $\sum_{k=1}^{\infty} \mu_0 P_k < \mu_0^* A + \varepsilon \ (P_n \in \mathcal{P})$ $\mu_0 P_k \geq \mu_0^* (P_k \cap E) + \mu_0^* (P_k \setminus E)$

$$\mu_0 P_k \ge \mu_0^*(P_k \cap E) + \mu_0^*(P_k \setminus E)$$

$$\mu_0 P_k \ge \mu_0^*(P_k \cap E) + \mu_0^*(P_k \setminus E)$$

$$\varepsilon + \mu_0^* A > \sum_{k=1}^{\infty} \mu_0 P_k \ge \sum_{k=1}^{\infty} \mu_0^*(P_k \cap E) + \sum_{k=1}^{\infty} \mu_0^*(P_k \setminus E) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \setminus E) \right) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \setminus E) \right) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \setminus E) \right) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \setminus E) \right) \ge \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) = \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) = \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) + \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right) = \mu_0^* \left(\bigcup_{k=1}^{\infty} (P_k \cap E) \right)$$

$$\geq \mu_0^*(A \cap E) + \mu_0^*(A \setminus E)$$

Definition 1.20. σ -конечная мера

Мера
$$\mu$$
 – σ -конечная, если $X=\bigcup\limits_{n=1}^{\infty}X_n$, т.ч. $\mu X_n<+\infty$

Remark 1.9.

- 1. Меру и ее стандартное продолжение будем обозначать одинаково
- 2. μ задана на σ -алгебре $\mu A = \inf \{ \sum_{k=1}^{\infty} \mu P_k : P_k \in \mathcal{P}, \bigcup_{k=1}^{\infty} P_k \supset A \}$
- 3. Применение стандартного продолжения к стандартному продолжению меры не дает ничего нового
- 4. Можно ли продолжить меру на более широкий класс множеств? Обычно да, но нет однозначности продолжения
- 5. Можно ли по-другому продолжить меру на σ -алгебру μ -измеримых множеств? Если μ_0 σ -конечная мера, то нет!
- 6. Обязательно ли полная мера задана на σ -алгебре μ -измеримых множеств? Если $\mu_0 \sigma$ -конечная, то да

Exercise 1.3.

Доказать замечание 1.9.3.

Подсказка: нужно доказать, что $\mu_0^* = \mu^*$

Theorem 1.18.

 ${\cal P}$ – полукольцо, μ – стандартное продолжение с полукольца

 μ^* – внешняя мера. A – множество, т.ч. $\mu^*A < +\infty$. Тогда существует $B_{nk} \in \mathcal{P}$, т.ч.

$$C_n := \bigcup_{k=1}^{\infty} B_{nk}, \ C := \bigcap_{n=1}^{\infty} C_n, \ C \supset A$$
 и $\mu C = \mu^* A$

Доказательство:

$$\mu^*A=\inf\{\sum_{k=1}^\infty \mu P_k: P_k\in\mathcal{P}$$
 и $\bigcup_{k=1}^\infty P_k\supset A\}$

Пусть
$$B_{nk} \in \mathcal{P}$$
, т.ч. $\sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}$ и $\bigcup_{k=1}^{\infty} B_{nk} \supset A$

$$A \subset C_n = \bigcup_{k=1}^{\infty} B_{nk} \Rightarrow \mu C_n \le \sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}$$

$$A \subset C = \bigcap_{n=1}^{\infty} C_n \subset C_n; \ \mu C \le \mu C_n < \mu^* A + \frac{1}{n} \Rightarrow \mu C \le \mu^* A$$

$$C \supset A \Rightarrow \mu^* A \le \mu^* C = \mu C$$

Theorem 1.19. Следствие

 \mathcal{P} — полукольцо, μ — стандартное продолжение с \mathcal{P} , A — μ -измеримое множество. $\mu A < +\infty$. Тогда существует $B \in \mathcal{B}(\mathcal{P})$ и e — μ -измеримое, т.ч. $A = B \sqcup e$ и $\mu e = 0$

Доказательство:

По теореме существует $C \in \mathcal{B}(\mathcal{P})$, т.ч. $A \subset C$ и $\mu A = \mu C$

$$e_1 := C \setminus A; \ \mu e_1 = \mu C - \mu A = 0$$

По теореме найдется $e_2 \in \mathcal{B}(\mathcal{P})$, т.ч. $e_1 \subset e_2$ и $\mu e_2 = \mu e_1 = 0 \Rightarrow A \supset C \setminus e_2$

$$\mu(\underbrace{C\setminus e_2}_B) = \mu C = \mu A$$

$$e := A \setminus B \Rightarrow \mu e = \mu A - \mu B = 0$$

Theorem 1.20. Единственность продолжения

 \mathcal{P} – полукольцо, μ – стандартное продолжение с полукольца, \mathcal{A} – σ -алгебра, на которой задана μ . ν – мера на \mathcal{A} , т.ч. $\mu P = \nu P \ \forall P \in \mathcal{P}$ Если мера $\mu - \sigma$ -конечна, то $\mu A = \nu A \ \forall A \in \mathcal{A}$

$\overline{\text{Reminder } 1.2. \ \sigma}$ -конечность

$$\mu$$
 – σ -конечна, если $X=\coprod_{n=1}^{\infty}X_n$, т.ч. $\mu X_n<+\infty$

Доказательство:

Шаг 1.
$$\mu A \ge \nu A \ \forall A \in \mathcal{A}$$

$$\mu A=\inf\{\underbrace{\sum_{k=1}^{\infty}\mu P_k}_{\geq \nu A}:A\subset\bigcup_{k=1}^{\infty}P_k$$
 и $P_k\in\mathcal{P}\}.$ По усиленной монотонности меры ν

$$\nu A \le \sum_{k=1}^{\infty} \nu P_k = \sum_{k=1}^{\infty} \mu P_k \Rightarrow \mu A \ge \nu A$$

Шаг 2. Если
$$E \in \mathcal{A}$$
 и $\mu P < +\infty$, то $\mu(P \cap E) = \nu(P \cap E) \ \forall P \in \mathcal{P}$

$$\mu P = \underbrace{\mu(P \cap E)}_{\geq \nu(P \cap E)} + \underbrace{\mu(P \setminus E)}_{\geq \nu(P \setminus E)} \geq \nu(P \cap E) + \nu(P \setminus E) = \nu P \Rightarrow \mu(P \cap E) = \nu(P \cap E)$$

Шаг 3.
$$\mu A = \nu A \ \forall A \in \mathcal{A}$$

$$\mu$$
 – σ -конечная $\Rightarrow X = \coprod_{n=1}^{\infty} P_n$, т.ч. $P_n \in \mathcal{P}$ и $\mu P_n < +\infty$

Тогда
$$A = \coprod_{n=1}^{\infty} (A \cap P_n)$$

Тогда
$$A = \bigsqcup_{n=1}^{\infty} (A \cap P_n)$$

 $\mu A = \sum_{n=1}^{\infty} \mu(A \cap P_n) = \sum_{n=1}^{\infty} \nu(A \cap P_n) = \nu A$

§4. Мера Лебега

Theorem 1.21.

 λ_m (классический объем в \mathbb{R}^m) – σ -конечная мера

Доказательство: (на записи рисуночки!)

Достаточно проверить счетную полуаддитивность λ_m , т.е. если $(a,b]\subset \bigcup_{n=0}^{\infty}(a_n,b_n]$, то

$$\lambda_m(a,b] \le \sum_{n=1}^{\infty} \lambda_m(a_n,b_n]$$

Возьмем $a' \in (a,b]$, т.ч. $\lambda_m(a',b] > \lambda_m(a,b] - \varepsilon \Rightarrow [a',b] \subset (a,b]$

Возьмем b'_n , т.ч. $(a_n,b_n]\subset (a_n,b'_n)$ и $\lambda_m(a_n,b'_n]<\lambda_m(a_n,b_n]+rac{arepsilon}{2^n}$

$$\underbrace{[a',b]}_{\text{замкн. паралл. - компакт}}\subset (a,b]\subset \bigcup_{n=1}^{\infty}(a_n,b_n]\subset \bigcup_{n=1}^{\infty}\underbrace{(a_n,b'_n)}_{\text{откр. паралл. - откр. мн-ва}}$$

Выберем конечное подпокрытие $(a',b] \subset [a',b] \subset \bigcup_{n=1}^{N} (a_n,b'_n) \subset \bigcup_{n=1}^{N} (a_n,b'_n)$

По конечной полуаддитивности объема:

$$\lambda_m(a,b]-arepsilon<\lambda_m(a',b]\leq \sum\limits_{n=1}^N\lambda_m(a_n,b'_n]<\sum\limits_{n=1}^N(\lambda_m(a_n,b_n]+rac{arepsilon}{2^n}) и устремляем $arepsilon$ к $0$$$

Definition 1.21. Мера Лебега

Мера Лебега – стандартное продолжение классического объема

Declaration 1.6. Обозначение

 \mathcal{L}^m – σ -алгебра, на которую продолжили Лебеговская σ -алгебра

Remark 1.10.

- 1. Если $A\in\mathcal{L}^m$, то $\lambda_mA=\inf\{\sum\limits_{k=1}^\infty\lambda_mP_k:A\subset\bigcup\limits_{k=1}^\infty P_k$ и P_k ячейки $\{\sum\limits_{k=1}^\infty\lambda_mP_k:A\subset\bigcup\limits_{k=1}^\infty P_k\}$ и $\{\sum\limits_{k=1}^\infty\lambda_mP_k\}$ 2. Можно брать ячейки из $\mathcal{P}^m_\mathbb{Q}$

Theorem 1.22. Свойства меры Лебега

- 1. Открытые множества измеримы и меры непустого открытого > 0
- 2. Замкнутые множества измеримы
- 3. Мера одноточечного множества равна 0
- 4. Мера ограниченного измеримого множества конечна
- 5. Всякое измеримое множество счетное объединение множеств конечной меры Картинка! $\mathbb{R}^m=\coprod_{k=1}^\infty P_k,\ P_k$ – единичные ячейки. $A=\coprod_{k=1}^\infty (P_k\cap A)$ и $\lambda_m(P_k\cap A)\leq$
- 6. Пусть $E \subset \mathbb{R}^m : \forall \varepsilon > 0$ найдутся $A_{\varepsilon}, B_{\varepsilon} \in \mathcal{L}^m$, т.ч. $A_{\varepsilon} \subset E \subset B_{\varepsilon}$ и $\lambda_m(B_{\varepsilon} \setminus A_{\varepsilon}) < \varepsilon$. Тогда $E \in \mathcal{L}^m$

Remark 1.11.

Это свойство любой полной меры

- 7. Пусть $e \subset \mathbb{R}^m$, т.ч. $\forall \varepsilon > 0$ найдется $B_{\varepsilon} \in \mathcal{L}^m$, т.ч. $e \subset B_{\varepsilon}$ и $\lambda_m B_{\varepsilon} < \varepsilon$ Тогда $E \in \mathcal{L}^m$ и $\lambda_m e = 0$
- 8. Счетное объединение множеств нулевой меры множество нулевой меры
- 9. Счетное множество имеет нулевую меру
- 10. Множество нулевой меры не имеет внутренних точек
- 11. $\lambda_m e=0$ и $\varepsilon>0$. Тогда найдутся кубические ячейки Q_k , т.ч. $e\subset\bigcup^\infty Q_k$ и $\sum_{k=1}^{\infty} \lambda_m Q_k < \varepsilon$
- 12. Пусть $m \geq 2$. $H_k(c) = \{x \in \mathbb{R}^m : x_k = c\}$. Тогда $\lambda_m(H_k(c)) = 0$
- 13. Пусть m > 2. Множество, содержащееся в нбчс объединении гиперплоскостей $H_k(c)$, имеет меру 0
- 14. $\lambda_m(a,b] = \lambda_m(a,b) = \lambda_m[a,b]$

Доказательство:

- 1. Открытые множества лежат в $\mathcal{B}(\mathcal{P}^m)$. Картинка на записи! $\lambda_m \delta > \lambda_m$ (ячейка) > 0
- 3. Картинка! λ_m (точка) $< \lambda_m$ (ячейка) $= \varepsilon^m$
- 4. Картинка! A ограничено. $\lambda_m A \leq \lambda_m(\text{шар}) \leq \lambda_m(\text{ячейка}) < +\infty$
- 6. $A_{\frac{1}{n}} \subset E \subset B_{\frac{1}{n}}; \ \lambda_m(B_{\frac{1}{n}} \setminus A_{\frac{1}{n}}) < \frac{1}{n}$ $A := \bigcup_{n=1}^{\infty} A_{\frac{1}{n}} \in \mathcal{L}^m \text{ M } B := \bigcap_{n=1}^{\infty} B_{\frac{1}{n}} \in \mathcal{L}^m$ $B\setminus A\subset B_{\frac{1}{n}}\setminus A_{\frac{1}{n}};\ \lambda_m(B\setminus A)\leq \lambda_m(B_{\frac{1}{n}}\setminus A_{\frac{1}{n}})<\frac{1}{n}\Rightarrow \lambda_m(B\setminus A)=0$ Тогда т.к. $E\setminus A\subset B\setminus A\Rightarrow E\setminus A\in \mathcal{L}^m$ Тогда $E=\underbrace{A}_{\in\mathcal{L}^m}\cup\underbrace{\left(E\setminus A\right)}_{\in\mathcal{L}^m}$ 7. $A_{\varepsilon}=\varnothing$ в свойстве 6
- 10. От противного. Если a внутренняя точка A. Рисунок! $\Rightarrow \lambda_m A \geq \lambda_m$ (ячейка) > 0
- 11. $0 = \lambda_m e = \inf\{\sum_{k=1}^{\infty} \lambda_m P_k : e \subset \bigcup_{k=1}^{\infty} P_k \text{ if } P_k \in \mathcal{P}_{\mathbb{Q}}^m\}$

Возьмем такие $P_k \in \mathcal{P}_{\mathbb{Q}}^m$, что $e \subset \bigcup_{k=1}^{\infty} P_k$ и $\sum_{k=1}^{\infty} \lambda_m P_k < \varepsilon$

Рассмотрим P_k , у нее все стороны имеют рациональную длину. $d = \frac{1}{\text{НОК знаменателей}}$ \Rightarrow каждая сторона кратна $d\Rightarrow$ нарежем P_k на кубики со стороной \dot{d}

12.
$$A_n := (-n, n]^m \cap H_k(c) \Rightarrow H_k(c) = \bigcup_{n=1}^{\infty} A_n$$
 Достаточно доказать, что $\lambda_n A_n = 0$. $A_n \subset (-n, n] \times \ldots \times (-n, n] \times (c - \varepsilon, c] \times (-n, n] \times \ldots$ λ_m (ячейка) $= (2n)^{m-1} \cdot \varepsilon$

Remark 1.12.

1. Существуют несчетные множество нулевой меры

При $m \geq 2$ подойдет $H_1(0)$

При
$$m \ge 2$$
 подойдет $H_1(0)$ При $m = 1$ подойдет Канторово множество:
$$1 = \lambda(0,1] = \lambda K + \underbrace{\frac{1}{3} + 2 \cdot \frac{1}{9} + 4 \cdot \frac{1}{27} + \ldots + 2^n \cdot \frac{1}{3^{n+1}}}_{\frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = 1} \Rightarrow \lambda K = 0$$

(0,1] запишем в троичной системе счисления. Запрещаем запись ... 000

T.K. 0,2000...=0,1222...

(] – числа, у которых первая цифра после запятой – 1

 $\tilde{\ }$ и ($\]$ — числа, у которых вторая цифра после запятой — 1

И так далее

K – числа из (0,1], у которых в троичной записи нет 1. Биекция между K и (0,1]:

 $0\mapsto 0;\ 2\mapsto 1;$ троичная \mapsto двоичная

2. Существуют неизмеримые множества (т.е. $\mathcal{L}^m \neq 2^{\mathbb{R}^m}$)

Theorem 1.23. Регулярность меры Лебега

$$E \in \mathcal{L}^m$$
. Тогда существует G – открытое, $G \supset E$, т.ч. $\lambda_m(G \setminus E) < \varepsilon$

Доказательство:

$$\lambda_m E < +\infty. \quad \lambda_m E = \inf\{\sum_{k=1}^\infty \lambda_n P_k : P_k$$
 – ячейки и $E \subset \bigcup_{k=1}^\infty P_k\}$

Возьмем такие ячейки, что $\sum\limits_{k=1}^{\infty}\lambda_mP_k<\lambda_mE+\varepsilon$ и $E\subset\bigcup\limits_{k=1}^{\infty}P_k$ Возьмем $(a_k,b_k)\supset P_k$, т.ч. $\lambda_m(a_k,b_k)<\lambda_mP_k+\frac{\varepsilon}{2k}$

$$E\subset G:=igcup_{k=1}^\infty(a_k,b_k)$$
 – открытое

$$\lambda_m G \le \sum_{k=1}^{\infty} \lambda_m (a_k, b_k) \le \sum_{k=1}^{\infty} (\lambda_m P_k + \frac{\varepsilon}{2^k}) = \varepsilon + \sum_{k=1}^{\infty} \lambda_m P_k < 2\varepsilon + \lambda_m E$$

$$\lambda_m(G \setminus E) = \lambda_m G - \lambda_m E < 2\varepsilon$$

$$\lambda_m E = +\infty. \quad E = \bigcup_{n=1}^{\infty} E_n, \text{ t.y. } \lambda_m E_n < +\infty$$

n=1 По предыдущему случаю $\exists G_n$ – открытое, $G_n \supset E_n$ и $\lambda_m(G_n \setminus E_n) < \frac{\varepsilon}{2^n}$

$$G := \bigcup_{n=1}^{\infty} G_n$$
 – открытое

$$G \setminus E \subset \bigcup_{n=1}^{\infty} G_n \setminus E_n \Rightarrow \lambda_m(G \setminus E) \leq \sum_{n=1}^{\infty} \lambda_m(G_n \setminus E_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$$

Theorem 1.24. Следствие 1

 $\varepsilon > 0, \ E \in \mathcal{L}^m$. Тогда существует замкнутое F, т.ч. $F \subset E$ и $\lambda_m(E \setminus F) < \varepsilon$

Доказательство:

По теореме найдется G – открытое, т.ч. $G \supset \mathbb{R}^m \setminus E$ и $\lambda_m(G \setminus (\mathbb{R}^m \setminus E)) < \varepsilon \Rightarrow F := \mathbb{R}^m \setminus G$ – замкнутое, $F \subset E$ и $E \setminus F = G \setminus (\mathbb{R}^m \setminus E)$

Theorem 1.25. Следствие 2

 $E \in \mathcal{L}^m$. Тогда

 $\lambda_m E = \inf\{\lambda_m G: G$ – открытое и $E \subset G\}$

 $\lambda_m E = \sup\{\lambda_m F : F$ – замкнутое и $E \supset F\}$

 $\lambda_m E = \sup \{\lambda_m K : K$ – компакт и $K \subset E\}$

Доказательство:

1. Из теоремы $\Rightarrow \exists G \supset E$ – открытое, т.ч. $\lambda_m(G \setminus E) < \varepsilon \Rightarrow \lambda_m G < \lambda_m E + \varepsilon$

2. Если $\lambda_m E < +\infty$, то по следствию 1 $\exists F \subset E$ – замкнутое, т.ч. $\lambda_m (E \setminus F) < \varepsilon \Rightarrow \lambda_m F > \lambda_m E - \varepsilon$

Если $\lambda_m E = +\infty \ldots \Rightarrow \lambda_m F = +\infty$

3. Выберем замкнутое $F\subset E$, т.ч. $\lambda_m F>\lambda_m E-\varepsilon$

$$K_n := \underbrace{[-n,n]^m}_{\text{компакт}} \cap F$$

 $K_1 \subset K_2 \subset \dots$ и $\bigcup_{n=1}^{\infty} K_n = F \xrightarrow{\text{непр. меры снизу}} \lambda_m K_n \to \lambda_m F > \lambda_m E - \varepsilon \Rightarrow$ найдется K_n , т.ч. $\lambda_m K_n > \lambda_m F - \varepsilon$

В случае с $\lambda_m E = +\infty$ доказательство меняется несильно

Theorem 1.26. Следствие 3

 $E\in\mathcal{L}^m$. Тогда существуют компакты $K_1\subset K_2\subset\dots$ и e нулевой меры, т.ч. $E=e\sqcup\bigcup_{n=1}^\infty K_n$

Доказательство:

$$\lambda_m E < +\infty$$
. Возьмем $K_n \subset E$ – компакт, т.ч. $\lambda_m K_n > \lambda_m E - \frac{1}{n}$

$$\bigcup_{n=1}^{\infty} K_n \subset E \text{ if } E \setminus \bigcup_{n=1}^{\infty} K_n \subset E \setminus K_n \Rightarrow \lambda_m e < \lambda_m(E \setminus K) = \lambda_m E - \lambda_m K_n < \frac{1}{n} \Rightarrow \lambda_m e = 0$$

Как сделать вложенность? $K_1, K_1 \cup K_2, K_1 \cup K_2 \cup K_3, \dots$

$$\lambda_m E = +\infty$$
. $E = \coprod_{n=1}^{\infty} E_n$; $\lambda_m E_n < +\infty$. Тогда $\exists K_{n1}, K_{n2} \ldots$ – компакты и $\lambda_m e_n = 0$,

т.ч.
$$E_n = e_n \sqcup \bigcup_{k=1}^{\infty} K_{nk} \Rightarrow E = \bigcup_{n=1}^{\infty} e_n \sqcup \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} K_{nk}$$

Theorem 1.27. Инвариантность меры Лебега относительно сдвига

 $E \subset \mathbb{R}^m$ — измеримое относительно меры Лебега, $v \in \mathbb{R}^m$ Тогда E + v – измеримо и $\lambda E = \lambda (E + v)$

Доказательство:

$$\mu E := \lambda (E + v)$$

 μ и λ совпадают на ячейках $\Rightarrow \mu^*$ и λ^* совпадают \Rightarrow совпадают измеримые множества для μ^* и $\lambda^* \Rightarrow E$ и E + v одновременно измеримые (или нет) и их меры равны

Theorem 1.28.

Пусть μ задана на \mathcal{L}^m . Если

- 1. μ инвариантна относительно сдвигов
- 2. μ конечна на ячейках (= μ конечна на ограниченных измеримых множествах) то существует $k \in [0, +\infty)$, т.ч. $\mu = k \cdot \lambda$

Доказательство:

$$Q := (0,1]^m; \ k := \mu Q$$

$$k=1$$
: Тогда $\mu Q=1$

$$Q_n:=(0,\frac{1}{n}]^m$$
. Из n^m копий Q_n можно собрать $Q\Rightarrow n^m\mu Q_n=\mu Q=\lambda Q=n^m\lambda Q_n\Rightarrow \mu Q_n=\lambda Q_n$

Рассмотрим ячейку из $\mathcal{P}^m_{\mathbb{Q}}$. Все длины сторон у нее рациональные

 $n=\mathrm{HOK}$ всех знаменателей длин сторон. Эта ячейка собирается из сдвигов $Q_n \Rightarrow$ $\Rightarrow \mu = \lambda$ на $\mathcal{P}^m_{\mathbb{Q}} \xrightarrow[\mathrm{eguhctb. npodonm.}]{} \mu = \lambda$

$$k > 0$$
: $\tilde{\mu} := \frac{1}{k}\mu \Rightarrow \tilde{\mu}Q = 1 \Rightarrow \tilde{\mu} = \lambda \Rightarrow \mu = k\lambda$

$$k = 0: \quad \mu Q = 0$$

 \mathbb{R}^m – счетное объединение сдвигов $Q\Rightarrow \mu\mathbb{R}^m=0\Rightarrow \mu\equiv 0$

Theorem 1.29.

 $G \subset \mathbb{R}^m$ – открытое. $\Phi: G \to \mathbb{R}^m$ – непрерывно дифференцируема. Тогда

- 1. Если $e \subset G$, т.ч. $\lambda e = 0$, то $\lambda(\Phi(e)) = 0$
- 2. Если $E \subset G$, т.ч. E измеримое, то $\Phi(E)$ измеримое

Доказательство:

1. \bullet Случай $e \subset P \subset \operatorname{Cl} P \subset G$, где P – ячейка $\operatorname{Cl} P$ – компакт, $\Phi'(x)$ – непрерывна на $\operatorname{Cl} P$ $||\Phi'(x)||$ непрерывна на $\operatorname{Cl} P \Rightarrow ||\Phi'(x)|| \leq M \ \forall x \in \operatorname{Cl} P \Rightarrow ||\Phi(x) - \Phi(y)|| \leq M||x - y||$ $\lambda e=0\Rightarrow e$ можно покрыть кубическими ячейками Q_n так, что $\sum_{n=1}^{\infty}\lambda Q_n<arepsilon;$

$$(e\subset\bigcup_{n=1}^\infty Q_n)\Rightarrow \Phi(e)\subset\bigcup_{n=1}^\infty \Phi(Q_n)\subset\bigcup_{n=1}^\infty \tilde{Q_n}$$
 Пусть a_n – длина ребра Q_n

Если x и $y \in Q_n$, то $||x-y|| < \sqrt{m}a_n \Rightarrow ||\Phi(x) - \Phi(y)|| < \sqrt{m}Ma_n \Rightarrow \Phi(y)$ лежит в шаре радиуса $\sqrt{m}Ma_n$ с центром в $\Phi(x) \Rightarrow \Phi(y)$ лежит в кубической ячейке Q_n со стороной $2\sqrt{m}Ma_n$ (с центром в $\Phi(x)$)

$$\sum_{n=1}^{\infty} \lambda \tilde{Q_n} = \sum_{n=1}^{\infty} (2\sqrt{m}Ma_n)^m = (2\sqrt{m}M)^m \sum_{n=1}^{\infty} (a_n)^m = (2\sqrt{m}M)^m \sum_{n=1}^{\infty} \lambda Q_n < \varepsilon \cdot (2\sqrt{m}M)^m \Rightarrow$$

$$\Rightarrow \lambda \Phi(e) = 0$$

• Случай произвольный

Случаи произвольный Представим
$$G$$
 в виде $\bigsqcup_{j=1}^\infty P_j$, где P_j – ячейки и $\operatorname{Cl} P_j \subset G$ $e_j := e \cap P_j; \ \lambda e_j = 0$ и e_j подходит под предыдущий случай $\Rightarrow \lambda \Phi(e_j) = 0$, но $\Phi(e) = \bigcup_{j=1}^\infty \Phi(e_j) \Rightarrow \lambda \Phi(e) = 0$

2.
$$E$$
 – измеримое \Rightarrow E = e \sqcup $\bigcup_{n=1}^{\infty} K_n$, где λe = 0 и K_n – компакты \Rightarrow \Rightarrow $\Phi(E)$ = $\bigoplus_{\text{мера 0, т.е. измеримы}} \bigoplus_{n=1}^{\infty} \bigoplus_{\text{компакты, т.е. измеримы}} \Phi(K_n)$

Theorem 1.30.

Мера Лебега инвариантна относительно движения

Доказательство:

Движение – композиция сдвигов и поворотов. Надо понять, что λ не меняется при повороте U – поворот вокруг 0. Если E – измеримо, то U(E) – измеримо $\mu E := \lambda(U(E))$. μ задана на \mathcal{L}^m

Проверим, что μ инвариантна относительно сдвигов

$$\mu(E+v) = \lambda(U(E+v)) = \lambda(U(E) + U(v)) = \lambda(U(E)) = \mu E$$

 μ конечна на ограниченных измеримых множествах $\Rightarrow \mu = k\lambda$

Но U переводит в себя единичный шарик с центром в $0 \Rightarrow k = 1$

$$B$$
 – единичный шар. $\underbrace{\mu B}_{k\lambda B} = \lambda(\underbrace{U(B)}_B) = \lambda B$

Theorem 1.31. Об изменении меры Лебега при линейной отображении

$$T:\mathbb{R}^m o\mathbb{R}^m;\ E$$
 — измеримое. Тогда $T(E)$ — измеримое и $\lambda(T(E))=|\det T|\cdot\lambda E$

Доказательство:

 $\mu E := \lambda(T(E))$ – инвариантна относительно сдвигов

 μ – конечна на ограниченных измеримых множествах $\Rightarrow \mu = k\lambda$

Нужно найти k. Возьмем Q – единичный куб. Q был куб, натянутым на вектора. T повернул эти вектора, получили T(Q) – косоугольный параллелепипед и $|\det T|$ – его объем

Remark 1.13.

 λ и объем на параллелепипеде из алгебры – одно и то же (рисунок на записи)

Example 1.5. Неизмеримое множество для λ_1

$$[0,1]; x \sim y$$
, если $x - y \in \mathbb{Q}$

В каждом классе эквивалентности возьмем по одному представителю

А – получившееся множество

Предположим, что A – измеримо. Тогда у него есть конечная мера

•
$$\lambda A=0$$
:
$$\bigsqcup_{r\in\mathbb{Q}}(A+r)\supset[0,1]$$

$$(A+r_1)\cap(A+r_2)\neq\varnothing\Rightarrow x+r_1=y+r_2,$$
 где $x,y\in A\Rightarrow x\sim y\Rightarrow x=y\Rightarrow$

$$\Rightarrow\underbrace{\lambda_1[0,1]}_{1}\leq\sum_{r\in\mathbb{Q}}\underbrace{\lambda(A+r)}_{\lambda A=0}=0.$$
 Противоречие

•
$$\lambda A>0$$
:
$$\bigsqcup_{r\in\mathbb{Q}\cap[0,1]}(A+r)\subset[0,2]\Rightarrow\underbrace{\lambda[0,2]}_2\geq\sum_{r\in\mathbb{Q}\cap[0,1]}\underbrace{\lambda(A+r)}_{\lambda A}=+\infty.$$
 Противоречие

§5. Измеримые функции 1.5

Notation 1.1.

Теперь все меры заданы на σ -алгебрах

Измеримые множества – множества из σ -алгебры, где задана мера

Definition 1.22. Лебеговы множества

 $f:E\to\overline{\mathbb{R}}$. Лебеговы множества для функции f

$$E\{f \le a\} := f^{-1}[-\infty, a] = \{x \in E : f(x) \le a\}$$

$$E\{f < a\} := f^{-1}[-\infty, a] = \{x \in E : f(x) < a\}$$

$$E\{f \ge a\} := f^{-1}[a, +\infty] = \{x \in E : f(x) \ge a\}$$

$$E\{f > a\} := f^{-1}(a, +\infty] = \{x \in E : f(x) > a\}$$

Theorem 1.32.

Пусть E — измеримое множество. Тогда равносильно следующее:

- 1. $E\{f \leq a\}$ измеримы $\forall a \in \mathbb{R}$
- 2. $E\{f < a\}$ измеримы $\forall a \in \mathbb{R}$
- 3. $E\{f \geq a\}$ измеримы $\forall a \in \mathbb{R}$
- 4. $E\{f>a\}$ измеримы $\forall a \in \mathbb{R}$

Доказательство:

$$1 \Leftrightarrow 4$$
: $E\{f > a\} = E \setminus E\{f \le a\}$

$$2 \Leftrightarrow 3$$
: $E\{f < a\} = E \setminus E\{f \ge a\}$

$$1 \Rightarrow 2$$
: $E\{f < a\} = \bigcup_{n=1}^{\infty} E\{f \le a - \frac{1}{n}\}$

$$2 \Leftrightarrow 3: \quad E\{f < a\} = E \setminus E\{f \ge a\}$$

$$1 \Rightarrow 2: \quad E\{f < a\} = \bigcup_{n=1}^{\infty} E\{f \le a - \frac{1}{n}\}$$

$$3 \Rightarrow 4: \quad E\{f > a\} = \bigcup_{n=1}^{\infty} E\{f \ge a + \frac{1}{n}\}$$

Definition 1.23. Измеримая функция

 $f:E o\overline{\mathbb{R}}$ – измерима, если измеримы все ее Лебеговы множества

Remark 1.14.

$$f: E \to \overline{\mathbb{R}}$$

f – измерима $\Leftrightarrow E$ – измеримо и $\forall a \in \mathbb{R}$ измеримы все лебеговы множества одного типа

Доказательство:

←: Теорема

$$\Rightarrow: \ E = E\{f < a\} \cup E\{f \ge a\}$$

$\overline{\text{Example } 1.6.}$

- 1. Константа
- 2. A, E измеримые; $f(x) = \begin{cases} 1, & x \in A \cap E \\ 0, & x \in E \setminus A \end{cases}$
- 3. $f \in C(\mathbb{R}^m)$. Тогда f измерима относительно λ_m Доказательство: $\mathbb{R}^m\{f < a\} = f^{-1}\underbrace{(-\infty,a)}$ – открыто \Rightarrow измеримо

Theorem 1.33. Свойства измеримых функций

 $f:E o\overline{\mathbb{R}}$ – измеримая

- 1. E измеримо
- 2. $E\{f=-\infty\}=\bigcap_{n=1}^{\infty}E\{f<-n\}$ и $E\{f=+\infty\}=\bigcap_{n=1}^{\infty}E\{f>n\}$ измеримы
- 3. Прообразы любого промежутка измеримы $E\{a < f < b\}, E\{a \le f \le b\}, \dots$ $E\{f < b\} \setminus E\{f < a\}$
- 4. $E\{f=c\}$ измеримы
- 5. Прообразы любого открытого множества измеримы Доказательство:

$$G \subset \mathbb{R}$$
 – открытое $\Rightarrow G = \bigsqcup_{k=1}^{\infty} (a_k, b_k] \Rightarrow f^{-1}(G) = \bigsqcup_{k=1}^{\infty} f^{-1}(a_k, b_k]$

6. -f и |f| – измеримы

Доказательство:

$$E\{-f < a\} = E\{f > -a\}$$

$$E\{|f| < a\} = \begin{cases} \varnothing & a \le 0 \\ E\{-a < f < a\} & a > 0 \end{cases}$$

7. $f, g: E \to \overline{\mathbb{R}}$ – измеримы

Тогда $\max\{f,g\}$ и $\min\{f,g\}$ – измеримы

 $(\max\{f,g\}$ – такая $h:E\to\overline{\mathbb{R}}$, что $h(x)=\max\{f(x),g(x)\}$)

Доказательство:

$$E\{max\{f,g\} < a\} = E\{f < a\} \cap E\{g < a\}$$

- 8. $f_+ := \max\{f,0\}$ и $f_- := \max\{-f,0\}$ измеримы
- 9. $E = \bigcup_{n=1}^{\infty} E_n$, E_n измеримы, $f: E \to \overline{\mathbb{R}}$. Если $f \mid_{E_n}$ измеримо, то f измерима Доказательство:

$$E\{f < a\} = \bigcup_{n=1}^{\infty} E_n\{f < a\}$$

 $E\{f< a\}=\bigcup_{n=1}^\infty E_n\{f< a\}$ 10. $f:E\to\overline{\mathbb{R}}$ – измеримая, тогда $f=g\mid_E$, где $g:X\to\overline{\mathbb{R}}$ – измеримая Доказательство:

$$g(x) := \begin{cases} f(x) & x \in E \\ 0 & x \notin E \end{cases}$$

Theorem 1.34.

 $f_1, f_2, \ldots : E \to \overline{\mathbb{R}}$ – последовательность измеримых функций. Тогда

- 1. $\sup f_n$, $\inf f_n$ измеримы $\sup f_n$ такая функция h, что $h(x) = \sup_{n \in \mathbb{N}} \{f_n(x)\}$)
- 2. $\underline{\lim} f_n$ и $\overline{\lim} f_n$ измеримы
- 3. Если существует $\lim f_n$, то он измерим

Доказательство:

1.
$$h := \sup\{f_n\}$$

$$E\{h \le a\} = \bigcap_{n=1}^{\infty} E\{f_n \le a\}$$
Если $x \in E\{h \le a\}$, то $\sup_{n \in \mathbb{N}} f_n(x) \le a \Leftrightarrow f_n(x) \le a \ \forall n$

$$E\{\inf f_n \ge a\} = \bigcap_{n=1}^{\infty} E\{f_n \ge a\}$$
2. $\underline{\lim}_{n \in \mathbb{N}} f_n(x) = \sup_{n \in \mathbb{N}} \underbrace{\inf_{k \ge n} f_k(x)}_{\text{измеримо}}$

$$\overline{\lim}_{n \in \mathbb{N}} f_n(x) = \inf_{n \in \mathbb{N}} \sup_{k \ge n} f_k(x)$$

3. Если lim существует, то он совпадает с $\overline{\text{lim}}$ и с $\underline{\text{lim}}$

Theorem 1.35.

$$f:E o H\subset\mathbb{R}^m;\ f_1,f_2,\ldots,f_m$$
 – измеримы $\varphi:H o\mathbb{R}$, т.ч. $\varphi\in C(H)$ Тогда $F(x):=\varphi(f_1(x),f_2(x),\ldots,f_m(x))$ – измерима

Доказательство:

$$E\{F < a\} = F^{-1}(-\infty,a) = f^{-1}(\varphi^{-1}(-\infty,a))$$

 $\varphi^{-1}(-\infty,a)$ – прообраз открытого множества – открытое в H множество, т.е. это пересечение некоторого открытого $G\subset\mathbb{R}^m$ с H

$$\varphi^{-1}(-\infty,a)=G\cap H,$$
 r.e. $E\{F< a\}=f^{-1}(G\cap H)=f^{-1}(G)$

Т.е. надо для открытого G понять, что $f^{-1}(G)$ – измеримо

$$G=igsqcup_{k=1}^\infty\underbrace{(a_k,b_k]}_{\mathrm{ячейки \ B}\ \mathbb{R}^m}$$
 , т.е. надо понять, что $f^{-1}(c,d]$ – измеримо

$$(c,d] = (c_1,d_1] \times (c_2,d_2] \times \ldots \times (c_m,d_m]$$

$$f^{-1}(c,d) = \{x \in E : c_1 < f_1(x) \le d_1, \dots, c_m < f_m(x) \le d_m\} = \bigcap_{k=1}^{\infty} E\{c_k < f_k \le d_k\}$$

Notation 1.2. Операции с $\pm \infty$

- 1. $\pm \infty + a = \pm \infty \ \forall a \in \mathbb{R}$
- 2. $\pm \infty \cdot a = \pm \infty \ \forall a > 0$ $\pm \infty \cdot a = \mp \infty \ \forall a < 0$
- 3. $\pm \infty \cdot 0 = 0$
- 4. $+\infty (+\infty) = (-\infty) (-\infty) = +\infty + (-\infty) = 0$
- $5. \ \frac{a}{\pm \infty} = 0 \ \forall a \in \overline{\mathbb{R}}$
- 6. Деление на 0 не определено

Theorem 1.36.

- 1. Произведение и сумма измеримых функций измеримы
- 2. φ непрерывна, f измерима, $\varphi \circ f$ измерима
- 3. $p>0,\, f$ измерима и $\geq 0 \Rightarrow f^p$ измерима (считаем, что $(+\infty)^p=+\infty)$
- 4. Если f измерима, то $\frac{1}{f}$ измерима на $E\{f \neq 0\}$

Доказательство:

1. $f, g: E \to \overline{\mathbb{R}}$ – измеримые

$$E\{f=+\infty\}, E\{f=-\infty\}$$
 и $E\{f\in\mathbb{R}\}$ и аналогично для g

На
$$E\{f\in\mathbb{R}\}\cap E\{g\in\mathbb{R}\}: f+g$$
 – измерима

$$\varphi(x,y) = x + y; \ f + g = \varphi(f,g)$$

На остальных пересечениях f + g – постоянна

2. Частный случай теоремы

3.
$$\{f^p \le a\} = \begin{cases} \emptyset & a \le 0 \\ E\{f \le a^{\frac{1}{p}}\} & a > 0 \end{cases}$$

4.
$$\tilde{E} := E\{f \neq 0\}$$

2. Частный случай теоремы
$$3. \ \{f^p \le a\} = \begin{cases} \varnothing & a \le 0 \\ E\{f \le a^{\frac{1}{p}}\} & a > 0 \end{cases}$$

$$4. \ \tilde{E} := E\{f \ne 0\}$$

$$\tilde{E}\{\frac{1}{f} \le a\} = \begin{cases} E\{\frac{1}{a} \le f < 0\} & a < 0 \\ E\{f \le 0\} \cup E\{\frac{1}{a} \le f\} & a > 0 \end{cases}$$

Theorem 1.37. Следствия

- 1. Произведение конечного числа измеримых измеримая
- 2. Натуральная степень измеримых измеримая
- 3. Линейная комбинация измеримых измеримая

Theorem 1.38.

 $E \subset \mathbb{R}^m$ – измеримо относительно меры Лебега

 $f \in C(E)$. Тогда f — измерима относительно меры Лебега

Доказательство:

 $E\{f < a\} = f^{-1}(-\infty, a)$ – открыто в E, т.е. $E \cap G$ для некоторого $G \subset \mathbb{R}^m$ – открытое

Definition 1.24. Простая функция

 $f:E o\mathbb{R}$ – измеримая

f – простая, если она принимает конечное число значений

Definition 1.25. Допустимое разбиение

$$E = \bigsqcup_{k=1}^n A_n$$
, т.ч. $f\mid_{A_k}$ – константа и A_k – измеримые $\forall k$

Theorem 1.39. Свойства

- 1. Если $E=\bigsqcup_{k=1}^n A_k,\ A_k$ измеримы $\forall k,\ f\mid_{A_k}$ константы, то f простая
- 2. Для любой пары простых функций есть общее допустимое разбиение Доказательство:

$$E = \coprod_{k=1}^m A_k$$
 – допустимое разбиение для f

$$E = \bigsqcup_{j=1}^{\kappa=1} B_j$$
 – допустимое разбиение для g

$$\bigsqcup_{k=1}^m\bigsqcup_{j=1}^n A_k\cap B_j$$
 – допустимое разбиение для f и g

- 3. Сумма, разность и произведение простых функций простая функция
- 4. Линейная комбинация простых функций простая функция
- 5. тах и т

Для двух функций – общее допустимое разбиение

Theorem 1.40.

 $F:E o\overline{\mathbb{R}}$ – неотрицательная измеримая

Тогда существует последовательность $f_1, f_2, \ldots : E \to \mathbb{R}$ – простые, т.ч. $f_1 \le f_2 \le \ldots$ и $\lim f_n = f$