2008-2009 学年第二学期《信号与线性系统》试卷 A 卷

授课班号_____ 年级专业____ 学号____ 姓名____

题号	_	<u> </u>		总分	审核
题分	60	40			
得分					

得分	评阅人			

一、计算说明题(共 60 分)
$$1 \cdot (5 \, \beta) \text{ 计算积分} \int_{-\infty}^{+\infty} (\cos t + \sin t) \delta(t - \frac{\pi}{4}) dt \text{ 的值}.$$

2、(10分) 绘出函数 $t[\varepsilon(t)-\varepsilon(t-1)]+\varepsilon(t-1)-\varepsilon(t-2)+\delta(t-3)$ 的波形图。

3、(10分) 已知 $f_1(t) = e^{-t} \mathcal{E}(t)$, $f_2(t) = e^{-2t} \mathcal{E}(t)$, 求卷积 $g(t) = f_1(t) * f_2(t)$ 。

4、(8分) 己知 $f(t) = e^{-2|t|}$ $(-\infty \langle t \rangle)$, 求 f(t) 的傅里叶变换。

5、(7分) 如下图所示信号,已知其傅里叶变换,记为 $F(\omega)$,

求:

- (1) F(0);
- (2) $\int_{-\infty}^{+\infty} F(\omega)d\omega$.

6、(12 分) 某线性时不变系统的单位样值响应为 h(k) ,输入为 x(k) ,且有 $h(k) = \varepsilon(k) - \varepsilon(k-3)$, $x(k) = \varepsilon(k) - \varepsilon(k-2)$, 求零状态下的输出响应 y(k) 。

7、(8分) 已知
$$f(t)$$
 对应的拉氏变换 $F(s) = \frac{2s}{s^2 + 5s + 6}$, 求 $f(t)$ 。

得分 评阅人

二、综合题(共40分)

1、(10分)在如图所示系统中,输入电压信号 $u_s(t)$,电容电压 $u_c(t)$ 为输

出信号,求系统冲激响应h(t)。

2、(10 分) 已知微分方程为
$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{d(t)} + 4x(t)$$
, 当激励为

 $x(t) = e^{-t} \varepsilon(t)$ 时,试用时域分析方法求其零状态响应。

3、(10分)用通解特解法求解差分方程。

$$y(k) + 2y(k-1) + y(k-2) = 3^k \varepsilon(k-2), \quad y(-2) = 0, y(-1) = 0$$

4、(10分)一离散时间系统的差分方程和初始条件如下:

$$y(k)-7y(k-1)+12y(k-2) = f(k)$$

 $y(-1) = 1, y(-2) = 0, f(k) = \delta(k)$

- (1) 求系统函数H(z);
- (2) 求单位样值响应h(k);
- (3) 求系统响应 y(k) 。