(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 CN 110876713 A (43)申请公布日 2020.03.13

(21)申请号 201911174187.6

A61P 15/12(2006.01)

(22)申请日 2019.11.26

(71)申请人 健民药业集团股份有限公司 地址 430052 湖北省武汉市汉阳区鹦鹉大 道484号

(72)**发明人** 吴雪英 任霞 赵刚 郭平 黄珮闻 吴木琴 黄志军

(74)专利代理机构 武汉智嘉联合知识产权代理 事务所(普通合伙) 42231

代理人 徐绍新

(51) Int.CI.

A61K 9/06(2006.01)

A61K 47/10(2006.01)

A61K 31/565(2006.01)

A61P 5/30(2006.01)

权利要求书2页 说明书5页 附图1页

(54)发明名称

一种雌二醇凝胶剂

(57)摘要

本发明公开了一种雌二醇凝胶剂,它由有效剂量的雌二醇和凝胶基质组成,所述凝胶基质含有占凝胶重量0.05-2%的泰洛沙泊。本发明通过向凝胶基质中添加泰洛沙泊,提高了雌二醇的经皮渗透速率和累积透过量,从能提高了药物的生物利用度和疗效,同时还提高了雌二醇的稳定性,防止其被降解或破坏,从而提高了药物的贮藏期。

- 1.一种雌二醇凝胶剂,由有效剂量的雌二醇和凝胶基质组成,其特征在于:所述凝胶基质含有占凝胶重量0.05~2%的泰洛沙泊。
- 2. 如权利要求1所述的雌二醇凝胶剂,其特征在于:所述凝胶基质含有占凝胶重量0.1 ~0.5%的泰洛沙泊。
- 3. 如权利要求1所述的雌二醇凝胶剂,其特征在于:所述凝胶基质还含有乙醇、水、凝胶材料、促渗剂和碱。
- 4.如权利要求3所述的雌二醇凝胶剂,其特征在于,所述乙醇、水、凝胶材料、促渗剂和碱分别占凝胶重量的百分比为:

乙醇	10~40%
凝胶材料	0.2~3%
促渗剂	$0.1 \sim 5\%$
碱	0.1~4%
水	余量。

- 5. 如权利要求3所述的雌二醇凝胶剂,其特征在于:所述凝胶材料选自卡波姆、羟乙基纤维素、羟乙基甲基纤维素、羟丙甲纤维素、甲基纤维素、羧甲基纤维素、壳聚糖、黄原胶、聚乙烯吡咯烷酮、聚乙烯醇、聚乙二醇、海藻酸钠及其衍生物中的至少一种。
- 6.如权利要求3所述的雌二醇凝胶剂,其特征在于:所述促渗剂选自丙二醇、油酸、亚油酸、月桂醇、氮酮、尿素、水杨酸、薄荷醇中的至少一种。
- 7.如权利要求1-6任何一项所述的雌二醇凝胶剂,其特征在于:所述雌二醇占凝胶重量的0.05~0.3%。
 - 8. 如权利要求7所述的雌二醇凝胶剂,其特征在于由以下重量配比的成分组成:

雌二醇	0.12%
乙醇	35%
泰洛沙泊	0.3%
聚乙烯吡咯烷酮	1%
羧甲基纤维素	0.5%
氮酮	1.5%
丙二醇	0.6%
氢氧化钠	0.2%
水	余量。

9. 如权利要求7所述的雌二醇凝胶剂,其特征在于由以下重量配比的成分组成:

雌二醇	0.12%
乙醇	25%
泰洛沙泊	0.25%
卡波姆	2.5%
亚油酸	0.15%
丙二醇	2%
三乙醇胺	2.8%
水	余量。

一种雌二醇凝胶剂

技术领域

[0001] 本发明涉及一种雌二醇凝胶剂,属于药物制剂领域。

背景技术

[0002] 雌二醇,化学名称雌一1,3,5(10)—三烯一3,17β—二醇,其组合物适用于治疗雌激素缺乏引起的各种症状,尤其是用于与绝经有关的症状(潮热,盗汗,泌尿系统症状,阴道干燥等)。给药方式有口服给药、阴道给药、皮下植入、注射给药和经皮给药五种方式。其中经皮给药途径能减少用药剂量,克服口服引起的胃肠道副反应,避免首过效应,减少对肝脏的损伤,与其它剂型相比具有明显优势。

[0003] 但是,雌二醇透皮吸收效果较差,为了促进药物吸收以提高疗效,需要在外用药物中增加促渗剂,目前已有很多关于这方面的文献报导,另外,雌二醇分子结构中含有酚羟基,很容易被氧化,尤其是在液体环境中性质很不稳定,从而缩短了药物的有效期。

发明内容

[0004] 本发明的目的在于针对上述缺陷,提供一种透皮吸收效果更好且更加稳定的雌二醇凝胶剂。

[0005] 上述目的是通过以下技术方案实现的:

[0006] 一种雌二醇凝胶剂,由有效剂量的雌二醇和凝胶基质组成,所述凝胶基质含有占凝胶重量0.05~2%的泰洛沙泊。

[0007] 优选地,所述凝胶基质含有占凝胶重量0.1~0.5%的泰洛沙泊。

[0008] 优选地,所述凝胶基质还含有乙醇、水、凝胶材料、促渗剂和碱。

[0009] 进一步优选地,所述乙醇、水、凝胶材料、促渗剂和碱分别占凝胶重量的百分比为:

	乙醇	10~40%
	凝胶材料	0.2~3%
[0010]	促渗剂	$0.1 \sim 5\%$
	碱	$0.1 \sim 4\%$
	水	余量。

[0011] 所述凝胶材料选自卡波姆、羟乙基纤维素、羟乙基甲基纤维素、羟丙甲纤维素、甲基纤维素、羧甲基纤维素、壳聚糖、黄原胶、聚乙烯吡咯烷酮、聚乙烯醇、聚乙二醇、海藻酸钠及其衍生物中的至少一种。

[0012] 所述促渗剂选自丙二醇、油酸、亚油酸、月桂醇、氮酮、尿素、水杨酸、薄荷醇中的至少一种。

[0013] 优选地,所述雌二醇占凝胶重量的0.05~0.3%。

[0014] 根据本发明的一个实施例,所述雌二醇凝胶剂由以下重量配比的成分组成:

	雌二醇	0.12%
	乙醇	35%
	泰洛沙泊	0.3%
	聚乙烯吡咯烷酮	1%
[0015]	羧甲基纤维素	0.5%
	氮酮	1.5%
	丙二醇	0.6%
	氢氧化钠	0.2%
	水	余量。
[0016]	根据本发明的另一个	实施例,所述雌二醇凝胶剂由以下重量配比的成分组成:
	雌二醇	0.12%
[0017]	乙醇	25%
	泰洛沙泊	0.25%
	卡波姆	2.5%
	亚油酸	0.15%
[0018]	丙二醇	2%
	三乙醇胺	2.8%
	水	余量。

[0019] 本发明的有益效果是:

[0020] (1) 所添加的泰洛沙泊能提高雌二醇的经皮渗透速率和累积透过量,从能提高了雌二醇凝胶的生物利用度和疗效。

[0021] (2) 所添加的泰洛沙泊还能提高雌二醇的稳定性,防止其被降解或破坏,从而提高了药物的贮藏期。

[0022] (3)本发明通过优化药物的组成和配比,进一步提高了药物的透皮吸收效果和稳定性。

附图说明

[0023] 图1是泰洛沙泊添加量对雌二醇凝胶累积透过量的影响。

具体实施方式

[0024] 下面结合实施例详述本申请,但本申请并不局限于这些实施例。如无特别说明,本申请的实施例中的原料均通过商业途径购买。

[0025] 实施例1泰洛沙泊对雌二醇凝胶透皮吸收效果和稳定性的影响

[0026] (1) 试验药物的制备

雌二醇 0.12%

乙醇 30%

泰洛沙泊 分别为 0、0.05、0.1、0.3、0.5、1.0%

[0027] HPMC 1%

氮酮 1.5%

氢氧化钠 0.8%

水 余量。

[0028] 将所述雌二醇溶于乙醇得到雌二醇乙醇溶液,然后加入泰洛沙泊和氮酮,搅拌得到溶液A;将HPMC加入水中,搅拌均匀,得溶液B;将溶液A与溶液B搅拌混合,最后加入氢氧化钠,搅拌均质后制成凝胶。

[0029] (2) 体外透皮吸收试验

[0030] 取小鼠 (20~25g左右),断颈处死,背部用手术剪去毛,用剃须刀除尽余毛,取背部皮肤约2×2cm²大小区域于生理盐水中浸泡。去皮下脂肪,置于生理盐水中4℃储存。使用Franz扩散池,将处理好的鼠皮固定于供给池与接收池中间,角质层朝向供给池。在供给池中分别均匀加入实施例1制备的雌二醇凝胶2.5g,涂抹均匀。扩散池水浴温度 (35+0.2) ℃,磁力搅拌转速500r/min。在1、2、4、6、8、10、12h分别从接受池取出样品液,同时补加等量等温新鲜的接受液。将所取样品液用0.45 μ m微孔滤膜过滤,置于EP管中,进行HPLC检测。色谱条件:十八烷基硅烷键合硅胶为填充剂;乙腈-水 (55:45) 为流动相;检测波长为205nm。

[0031] 根据浓度 $C_i(\mu g \cdot mL^{-1})$,通过公式计算累积透过量,结果见表1和图1。

[0032] 表1泰洛沙泊对雌二醇凝胶累积透过量的影响

	处方 T(h)	1	2	4	6	8	10	12
	0	0.01	0.07	0.16	0.31	0.48	0.61	0.73
	0.05	0.03	0.11	0.24	0.47	0.66	0.83	0.98
[0033]	0.1	0.06	0.15	0.35	0.64	0.86	1.03	1.21
	0.3	0.10	0.23	0.54	0.92	1.23	1.47	1.69
	0.5	0.23	0.43	0.91	1.44	1.82	2.18	2.45
	1.0	0.27	0.44	0.98	1.49	1.81	2.27	2.68

[0034] 从试验结果可以看出,泰洛沙泊能提高雌二醇的累积透过量,且存在一定的量效关系,但是当含量达到0.5%以上时,继续增加用量对累积透过量影响不大,因此选择0.1-0.5%的泰洛沙泊为佳。

[0035] (3)稳定性试验

[0036] 将实施例1制备的凝胶采用软管包装,然后在温度40℃±2℃、相对湿度75%±5%的培养箱内放置6个月。在试验期间第1个月、2个月、3个月、6个月末取样一次,按照中国药典高效液相色谱法(附录VD)测定样品中的雌二醇含量。结果见表2。

T(月) 处方	0	1	2	3	6
0	100.2%	99.0%	97.8%	96.6%	93.0%
0.05	100.1%	99.2%	98.4%	97.5%	94.9%
0.1	100.3%	99.6%	98.9%	98.2%	96.1%
0.3	100.1%	99.6%	99.1%	98.6%	97.2%
0.5	100.3%	100.0%	99.7%	99.5%	98.7%
1.0	100.2%	100.1%	99.9%	99.7%	99.1%

[0037]

[0038] 从试验结果可以看出,泰洛沙泊能提高雌二醇凝胶中药物成分的稳定性。

[0039] 实施例2

雌二醇 0.12% 乙醇 35% 泰洛沙泊 0.3% 聚乙烯吡咯烷酮 1% [0040] 羧甲基纤维素 0.5% 氮酮 1.5% 丙二醇 0.6% 氢氧化钠 0.2%

[0041] 将所述雌二醇溶于乙醇得到雌二醇乙醇溶液,然后加入泰洛沙泊和氮酮、丙二醇,搅拌得到溶液A;将聚乙烯吡咯烷酮、羧甲基纤维素加入水中,搅拌均匀,得溶液B;将溶液A与溶液B搅拌混合,最后加入氢氧化钠,搅拌均质后制成凝胶。

余量。

[0042] 实施例3

水

[0043] 雌二醇 0.12%

	乙醇	25%
	泰洛沙泊	0.25%
	卡波姆	2.5%
[0044]	亚油酸	0.15%
	丙二醇	2%
	三乙醇胺	2.8%
	水	余量。

[0045] 将所述雌二醇溶于乙醇得到雌二醇乙醇溶液,然后加入泰洛沙泊和亚油酸、丙二醇,搅拌得到溶液A;将卡波姆加入水中,搅拌均匀,得溶液B;将溶液A与溶液B搅拌混合,最后加入三乙醇胺,搅拌均质后制成凝胶。

[0046] 按照实施例1的方法对实施例2和3进行透皮吸收试验,结果见表3。

[0047] 表3 12h累积透过量(µg•cm⁻²)

T (h) 2 12 1 4 6 8 10 实施例 [0048] 0.22 0.46 0.851.39 1.97 1.42 2.79 实施例 2 实施例3 0.17 0.73 1.12 1.95 0.35 1.54 2.57

图1