Untitled

Stefano Mezzini

11/01/2022

```
library('dplyr') # for data wrangling
library('purrr')
                     # for functional programming
library('mgcv')
                     # for fitting GAMs
library('ctmm')
                     # for animal movement stuff
library('metafor')
                     # for meta-analysis
N <- 74 # number of tapirs
tapirs <- readRDS('../models/tapirs-final.rds') # tapir data</pre>
# categories with 1 individual -> group ages together
table(tapirs$age)
##
##
       ADULT ADULT-OLD JUVENILE SUB-ADULT
          52
                               1
                                        20
table(tapirs$adult)
##
## No Yes
## 21 53
# home range estimates
meta(tapirs$model, plot = FALSE) %>% round(2)
##
                           <U+0394>AICc
## inverse-Gaussian
                            0.00
## Dirac-d
                        17382.45
               low est high
## mean (km^2) 6.53 8.31 10.42
## CoV<sup>2</sup> (RVAR) 0.65 1.02 1.48
## CoV (RSTD) 0.81 1.02 1.22
  escalc(measure = 'MN', # regression on the (untransformed) mean
         mi = area.est, # estimates
         sdi = map_dbl(1:N, # standard deviations
                       function(i)
                         ctmm:::area.covm(tapirs$model[[i]]$sigma)) %>% sqrt(),
         ni = map_dbl(tapirs$model, ctmm:::DOF.area), # degrees of freedom
         data = tapirs)
summary(rma(yi ~ 1, vi, data = d.hr, method = 'REML'))
```

```
## Random-Effects Model (k = 74; tau^2 estimator: REML)
##
##
      logLik
                deviance
                                 AIC
                                            BIC
## -335.9006
                671.8011
                           675.8011
                                       680.3820
                                                   675.9725
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 52.1630)
## tau (square root of estimated tau^2 value):
## I^2 (total heterogeneity / total variability):
                                                       0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 73) = 0.8684, p-val = 1.0000
## Model Results:
##
## estimate
                                         ci.lb
                                                  ci.ub
                  se
                        zval
                                 pval
     3.5296 2.7285 1.2936 0.1958 -1.8181 8.8773
##
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
The overall mean home range estimate is 8.31 km<sup>2</sup> with CI (6.53, 10.4) km<sup>2</sup>.
range(tapirs$area.est) %>% round(digits = 1)
## [1] 1.0 29.7
The range in home range area estimates is 1-29.7 km<sup>2</sup>.
round(range(tapirs$tau.position.est, na.rm = TRUE) / 60 / 60 / 24, 2)
## [1] 0.05 12.76
```

The range in range crossing time is 0.05-12.8 days.

Change mean estimates (now using GLMs instead of normal CIs)

```
est <- function(y, parameter = c('mean', 'lwr', 'upr')) {</pre>
  if(sum(!is.na(y)) > 2) { # if there's at least 2 observations
    # fit a Gamma GLM with only an intercept to estimate the group-level mean
    m \leftarrow gam(y \sim 1,
             family = Gamma(link = 'log'),
             method = 'REML')
    if(length(parameter) > 1) stop('Specify a single parameter.\n')
    pred <- predict(m, newdata = tibble(c = 1), se.fit = TRUE, scale = 'link') %>%
      as.data.frame() %>%
      mutate(lwr = exp(fit - 1.96 * se.fit),
             mean = exp(fit),
             upr = exp(fit + 1.96 * se.fit))
    pred[1, parameter]
  } else {NA_real_}
}
tap <-
```

```
bind_rows(
    bind_cols(
      name = c('Atlantic forest', 'Pantanal', 'Cerrado', 'Overall'),
      region.lab = c('Atlantic forest', 'Pantanal', 'Cerrado', 'Overall'),
      bind_rows(
        meta(tapirs$model[tapirs$region == 'atlantica'], plot = FALSE)[1, ],
        meta(tapirs$model[tapirs$region == 'pantanal'], plot = FALSE)[1, ],
        meta(tapirs$model[tapirs$region == 'cerrado'], plot = FALSE)[1, ],
       meta(tapirs$model, plot = FALSE)[1, ]) %>%
        rename(area.low = low, area.est = est, area.high = high),
      # regional estimates
      group_by(tapirs, region) %>%
        summarize(tau.position.e = est(tau.position.est, 'mean'),
                  tau.position.low = est(tau.position.est, 'lwr'),
                  tau.position.high = est(tau.position.est, 'upr'),
                  tau.velocity.e = est(tau.velocity.est, 'mean'),
                  tau.velocity.low = est(tau.velocity.est, 'lwr'),
                  tau.velocity.high = est(tau.velocity.est, 'upr'),
                  speed.e = est(speed.est, 'mean'),
                  speed.low = est(speed.est, 'lwr'),
                  speed.high = est(speed.est, 'upr')) %>%
        rename(tau.position.est = tau.position.e,
               tau.velocity.est = tau.velocity.e,
               speed.est = speed.e) %>%
        bind rows(
          tapirs %>%
            summarize(tau.position.est = est(tapirs$tau.position.est, 'mean'),
                      tau.position.low = est(tapirs$tau.position.est, 'lwr'),
                      tau.position.high = est(tapirs$tau.position.est, 'upr'),
                      tau.velocity.est = est(tapirs$tau.velocity.est, 'mean'),
                      tau.velocity.low = est(tapirs$tau.velocity.est, 'lwr'),
                      tau.velocity.high = est(tapirs$tau.velocity.est, 'upr'),
                      speed.est = est(tapirs$speed.est, 'mean'),
                      speed.low = est(tapirs$speed.est, 'lwr'),
                      speed.high = est(tapirs$speed.est, 'upr'))))) %>%
  mutate(
    # convert from secods to days
   tau.position.est = tau.position.est / (60^2 * 24),
   tau.position.low = tau.position.low / (60<sup>2</sup> * 24),
    tau.position.high = tau.position.high / (60^2 * 24)) %>%
  select(region.lab, area.est, area.low, area.high, tau.position.est, tau.position.low,
         tau.position.high, tau.velocity.est, tau.velocity.low, tau.velocity.high, speed.est,
         speed.low, speed.high)
##
                           <U+0394>AICc
## inverse-Gaussian
                           0.000
## Dirac-d
                        1310.217
                           <U+0394>AICc
## inverse-Gaussian
                           0.000
## Dirac-d
                        8562.481
                           <U+0394>AICc
##
## inverse-Gaussian
                           0.000
## Dirac-d
                        6961.898
```

<U+0394>AICc

##

```
## inverse-Gaussian 0.00
## Dirac-d 17382.45
knitr::kable(t(tap)) # transpose to make readable
```

region.lab	Atlantic forest	Pantanal	Cerrado	Overall
area.est	10.285217	5.936261	13.383010	8.307124
area.low	4.381964	4.695496	7.652764	6.527058
area.high	20.741635	7.400507	21.797597	10.418790
tau.position.est	0.5393670	0.6555289	0.8000626	0.7227463
tau.position.low	0.1883971	0.3981069	0.3633637	0.4191364
tau.position.high	1.544168	1.079404	1.761596	1.246282
tau.velocity.est	NA	1441.737	1659.872	1579.777
tau.velocity.low	NA	1261.780	1343.525	1352.844
tau.velocity.high	NA	1647.360	2050.707	1844.776
speed.est	NA	12.14095	10.67056	11.17040
speed.low	NA	10.638837	9.325726	10.107009
speed.high	NA	13.85514	12.20933	12.34567

Can we use the estimates from above instead of using escalc?

Broken:

This part works:

Family: Gamma

```
m.speed.sex <- gam(speed.est ~ sex,</pre>
                family = Gamma('log'),
                data = tapirs,
                method = 'REML')
m.speed.age <- gam(speed.est ~ adult,</pre>
                family = Gamma('log'),
                data = tapirs,
                method = 'REML')
# model summaries
summary(m.speed.sex)
##
## Family: Gamma
## Link function: log
##
## Formula:
## speed.est ~ sex
##
## Parametric coefficients:
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.35276 0.06872 34.235 <2e-16 ***
## sexMALE
            0.12420
                       0.10006 1.241
                                         0.22
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = 0.00946
                       Deviance explained = 2.16%
## -REML = 156.04 Scale est. = 0.13224
summary(m.speed.age)
##
```

```
## Link function: log
##
## Formula:
## speed.est ~ adult
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
                           0.0928 24.281
## (Intercept)
                2.2532
                                             <2e-16 ***
## adultYes
                 0.2168
                            0.1096
                                     1.978
                                             0.0533 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = 0.0454
                        Deviance explained = 5.18%
## -REML = 155.11 Scale est. = 0.12917 n = 53
# predictions
tibble(Sex = c('MALE', 'FEMALE'),
      bind_cols(predict(m.speed.sex, tibble(sex = Sex), se.fit = TRUE))) %>%
 mutate(est = round(exp(fit), 2),
        lwr = round(exp(fit - 1.96 * se.fit), 2),
         upr = round(exp(fit + 1.96 * se.fit), 2))
## # A tibble: 2 x 6
    Sex
             fit se.fit
                                 lwr
                           est
     <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
            2.48 0.0727 11.9 10.3
## 1 MALE
                                     13.7
## 2 FEMALE 2.35 0.0687 10.5 9.19 12.0
tibble(Adult = c('Yes', 'No'),
      bind_cols(predict(m.speed.age, tibble(adult = Adult), se.fit = TRUE))) %%
 mutate(est = round(exp(fit), 2),
        lwr = round(exp(fit - 1.96 * se.fit), 2),
        upr = round(exp(fit + 1.96 * se.fit), 2))
## # A tibble: 2 x 6
##
    Adult
           fit se.fit
                          est
                                lwr
     <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
           2.47 0.0583 11.8 10.6
           2.25 0.0928 9.52 7.94 11.4
Estimate differences in home range sizes using ctmm::meta():
meta(list(female = filter(tapirs, sex == 'FEMALE')$akde,
         male = filter(tapirs, sex == 'MALE')$akde),
    plot = FALSE)
## * Sub-population female
##
                           <U+0394>AICc
## inverse-Gaussian
                           0.000
## Dirac-d
                        7367.412
## * Sub-population male
##
                           <U+0394>AICc
## inverse-Gaussian
                           0.000
```

```
## Dirac-d
                         7240.514
## * Joint population
##
                            <U+0394>AICc
## inverse-Gaussian
                             0.00
## Dirac-d
                         14778.71
## * Joint population versus sub-populations (best models)
##
                            <U+0394>AICc
## Joint population
                         0.000000
## Sub-population
                         4.035555
## , , low
##
##
             /female
                          /male
## female/ 1.0000000 0.7026962
## male/ 0.5608838 1.0000000
##
## , , est
##
            /female
## female/ 1.000000 1.094326
## male/ 0.873601 1.000000
##
## , , high
##
##
            /female
                        /male
## female/ 1.000000 1.629906
## male/
         1.300086 1.000000
meta(filter(tapirs, sex == 'FEMALE')$akde, plot = FALSE) # CIs for females
##
                            <U+0394>AICc
## inverse-Gaussian
                            0.000
## Dirac-d
                         7367.412
##
                      low
                                est
                                         high
## mean (km<sup>2</sup>) 4.5262477 6.1131618 8.068985
## CoV<sup>2</sup> (RVAR) 0.4615141 0.8615983 1.384492
## CoV (RSTD) 0.6857438 0.9369617 1.187722
meta(filter(tapirs, sex == 'MALE')$akde, plot = FALSE) # CIs for males
                            <U+0394>AICc
## inverse-Gaussian
                            0.000
## Dirac-d
                         7240.514
                     low
                                est
## mean (km<sup>2</sup>) 4.0316215 5.4605393 7.232391
## CoV<sup>2</sup> (RVAR) 0.3590258 0.7091030 1.176317
## CoV (RSTD) 0.6057262 0.8512716 1.096417
# by age group
meta(list(female = filter(tapirs, adult == 'No')$akde,
          male = filter(tapirs, adult == 'Yes')$akde),
   plot = FALSE)
```

* Sub-population female

```
##
                            <U+0394>AICc
## inverse-Gaussian
                            0.000
                         4785.763
## Dirac-d
## * Sub-population male
##
                            <U+0394>AICc
## inverse-Gaussian
                            0.000
## Dirac-d
                         9841.229
## * Joint population
                            <U+0394>AICc
## inverse-Gaussian
                             0.00
## Dirac-d
                         14778.71
## * Joint population versus sub-populations (best models)
##
                            <U+0394>AICc
## Sub-population
                          0.00000
## Joint population
                          3.08865
## , , low
##
##
             /female
                          /male
## female/ 1.0000000 0.6457535
## male/ 0.3654871 1.0000000
##
## , , est
##
##
             /female
## female/ 1.0000000 1.28781
## male/ 0.7053567 1.00000
##
## , , high
##
            /female
                        /male
## female/ 1.000000 2.179039
## male/ 1.321561 1.000000
meta(filter(tapirs, adult == 'No') akde, plot = FALSE) # CIs for sub-adults
                            <U+0394>AICc
##
## inverse-Gaussian
                            0.000
## Dirac-d
                         4785.763
##
                    low
                              est
## mean (km<sup>2</sup>) 3.869323 6.985186 11.648677
## CoV<sup>2</sup> (RVAR) 0.576386 1.674820 3.348701
## CoV (RSTD) 0.776464 1.323575 1.871556
meta(filter(tapirs, adult == 'Yes')$akde, plot = FALSE) # CIs for adults
                            <U+0394>AICc
## inverse-Gaussian
                            0.000
## Dirac-d
                         9841.229
                      low
                                est
## mean (km<sup>2</sup>) 4.3936513 5.3698378 6.4954740
## CoV2 (RVAR) 0.3073040 0.5063389 0.7542647
```

Difference in home range estimates by sex and age

```
m.hr.sex <- gam(area.est ~ sex,</pre>
               family = Gamma('log'),
               data = tapirs,
               method = 'REML')
m.hr.age <- gam(area.est ~ adult,</pre>
               family = Gamma('log'),
               data = tapirs,
               method = 'REML')
# model summaries
summary(m.hr.sex)
## Family: Gamma
## Link function: log
## Formula:
## area.est ~ sex
##
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.8360
                           0.1542 11.910
                                            <2e-16 ***
## sexMALE
              -0.1441
                           0.2344 -0.615
                                             0.541
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
## R-sq.(adj) = -0.00882 Deviance explained = 0.758%
## -REML = 202.62 Scale est. = 0.9982
summary(m.hr.age)
##
## Family: Gamma
## Link function: log
##
## Formula:
## area.est ~ adult
## Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.9477
                         0.2117
                                   9.198 8.94e-14 ***
## adultYes
              -0.2484
                           0.2502 -0.993
                                             0.324
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.000201 Deviance explained = 1.94\%
## -REML = 202.04 Scale est. = 0.94157 n = 74
```

```
# predictions
tibble(Sex = c('MALE', 'FEMALE'),
      bind_cols(predict(m.hr.sex, tibble(sex = Sex), se.fit = TRUE))) %>%
 mutate(est = round(exp(fit), 2),
        lwr = round(exp(fit - 1.96 * se.fit), 2),
        upr = round(exp(fit + 1.96 * se.fit), 2))
## # A tibble: 2 x 6
## Sex
            fit se.fit
                          est
                                lwr
    <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
            1.69 0.177 5.43 3.84 7.68
## 1 MALE
## 2 FEMALE 1.84 0.154 6.27 4.64 8.48
tibble(Adult = c('Yes', 'No'),
      bind_cols(predict(m.hr.age, tibble(adult = Adult), se.fit = TRUE))) %>%
 mutate(est = round(exp(fit), 2),
        lwr = round(exp(fit - 1.96 * se.fit), 2),
        upr = round(exp(fit + 1.96 * se.fit), 2))
## # A tibble: 2 x 6
    Adult
           fit se.fit
                         est
                               lwr
                                     upr
     <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
## 1 Yes 1.70 0.133 5.47 4.21
          1.95 0.212 7.01 4.63 10.6
## 2 No
```