

Reversing Image Signal Processors by Reverse Style Transferring

Furkan Kınlı, Barış Özcan, Furkan Kıraç Özyeğin University

Reversing the ISP

• RAW images are better suited for ill-posed low-level vision tasks such as denoising, HDR, or super-resolution.

• There are very few RAW image datasets that are available.

• The use of synthetic data for training is an arguable practice.

• To improve the synthetic RAW image quality, we can estimate RAW image from sRGB data.

AIM 2022 Reversed ISP Challenge

• Aim: To obtain a network design or a solution, capable of producing high-quality RAW images from sRGB input images.

Retrieved [1]

Our Approach

• We define the problem of reconstructing RAW images from sRGB input images as a reverse style transfer problem [2].

- Modeling the effects brought by the ISP's operations as the style factor.
- Removing the injected changes to convert sRGB input images to its RAW format.

RST-ISP-Net

• We propose a novel architecture, namely RST-ISP-Net, for learning to reverse the ISP operations with the help of adaptive feature normalization for transferring the style information.

Experimental Details

• Dataset:

- Samsung S7 DeepISP Dataset
- o ETH Huawei P20 Dataset

• Metrics:

- Peak Signal-to-Noise Ratio (PSNR)
- Structural Similarity (SSIM)

• Hyper-parameters:

- o **Optimizer:** Adam
- O Batch size: 8
- **Learning Rate:** 1e-4 for generator

• Misc.

- Not used any additional data for training and any ensembling strategy for inference.
- 2 × NVIDIA RTX 2080Ti, ~1 day for training and validation.

Results

			Track 1 (Samsung S6)				Track 2 (Huawei P20)			
Team			Test1		Test2		Test1		Test2	
name	ED	ENS	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR↑	$ SSIM \uparrow $	PSNR ↑	SSIM ↑
NOAHTCV	X	Х	31.86	0.83	32.69	0.88	38.38	0.93	35.77	0.92
MiAlgo	X	X	31.39	0.82	30.73	0.80	40.06	0.93	35.41	0.91
CASIA LCVG	1	/	30.19	0.81	31.47	0.86	37.58	0.93	33.99	0.92
HIT-IIL	X	X	29.12	0.80	29.98	0.87	36.53	0.91	34.07	0.90
CS2U	1	1	29.13	0.79	29.95	0.84	=	-	2	-
SenseBrains	X	/	28.36	0.80	30.08	0.86	35.47	0.92	32.63	0.91
PixelJump	X	/	28.15	0.80	n/a	n/a	-	-	-	-
HiImage	X	X	27.96	0.79	n/a	n/a	34.40	0.94	32.13	0.90
0noise	X	X	27.67	0.79	29.81	0.87	33.68	0.90	31.83	0.89
OzU VGL (Ours)	X	X	27.89	0.79	28.83	0.83	32.72	0.87	30.69	0.86
CVIP	X	X	27.85	0.80	29.50	0.86	-	-	-	D=

Visual Comparison (Track S7)

Onoise CASIA MiAlgo HiImage NOAH H-IIL Sense OzU

Visual Comparison (Track P20)

Summary

- Thanks to the AIM Reversed ISP challenge, we have had a chance to try our idea for this problem.
- Removing the effects of the ISP operations by adaptive feature normalization leads to losing the high-frequency details in the output.
- The alignment issue among the pairs (Track 2) amplifies the problem.
- Wavelet-based discriminators for our adversarial training is not a proper solution.
- Need to reconsider to use of discriminative regularization on the output.
- Nevertheless, we believe that the style of being sRGB is successfully reverted back to the style of being RAW in our final outputs.

Thank you!

https://birdortyedi.github.io/