LP当前解已是最优的四大特征:

- (1) 存在一组(初始)可行基(其系数矩阵为单位阵)。
- (2) 检验数行的基变量系数=0。
- (3) 检验行的非基变量系数 \leq **0**。 $\left\{\begin{array}{c} -10^{\circ} & \circ & \circ \\ -10^{\circ} & \circ & \circ \\ \end{array}\right.$ 存在 $=0 \Longrightarrow$ 无穷多个解。
- (4) 常数列向量≥0。

Q: 所给LP的标准型中约束矩阵中没有现成的可行基怎么办?

1.5.2 单纯形的进一步讨论

例 解下列线性规划

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$\begin{cases} -4x_1 + 3x_2 + x_3 \ge 4 \\ x_1 - x_2 + 2x_3 \le 10 \end{cases}$$

$$\begin{cases} -2x_1 + 2x_2 - x_3 = -1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解: 先化为标准形式

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$s.t.\begin{cases} -4x_1 & +3x_2 & +x_3 & -x_4 & = 4\\ x_1 & -x_2 & +2x_3 & +x_5 & = 10\\ 2x_1 & -2x_2 & +x_3 & = 1\\ x_j \ge 0, & j=1,2,\cdots,5 \end{cases}$$

系数矩阵中不存在单位矩阵,无法建立初始单纯形表。

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$s.t.\begin{cases} -4x_1 & +3x_2 & +x_3 & -x_4 & = 4\\ x_1 & -x_2 & +2x_3 & +x_5 & = 10\\ 2x_1 & -2x_2 & +x_3 & = 1\\ x_j \ge 0, & j = 1, 2, \dots, 5 \end{cases}$$

 x_5 可作为一个基变量,第一、三约束中分别加入人工变量 x_6 、 x_7 ,得

$$\begin{cases}
-4x_1 & +3x_2 + x_3 & -x_4 & +x_6 & = 4 \\
x_1 & -x_2 + 2x_3 & +x_5 & = 10 \\
2x_1 & -2x_2 + x_3 & +x_7 & = 1 \\
x_j \ge 0, \quad j = 1, 2, \dots, 7
\end{cases}$$

$$\begin{cases}
-4x_1 & +3x_2 + x_3 & -x_4 & +x_6 & = 4 \\
x_1 & -x_2 + 2x_3 & +x_5 & = 10 \\
2x_1 & -2x_2 + x_3 & +x_7 & = 1 \\
x_j \ge 0, \quad j = 1, 2, \dots, 7
\end{cases}$$

说明:①不易接受。因为 X_6 , X_7 是强行引进,称为人工变量。它们与 X_4 , X_5 不一样。 X_4 , X_5 称为松弛变量和剩余变量,是为了将不等式改写为等式而引进的,而改写前后两个约束是等价的。

②人工变量的引入一般来说是前后不等价的。只有当最优解中,人工变量都取值零时(此时人工变量实质上就不存在了)才可认为两个问题的最优解是相同的。

处理办法: 把人工变量从基变量中"赶"出去使其变为非基变量, 以求出原问题的初始基本可行解。

结论

- 1. 若新LP的最优解中,人工变量都处在非基变量位置(即取零值)时,原LP有最优解。
- 2.若新LP的最优解中,包含有非零的人工变量,则原LP无可行解。
- 3.若新LP的最优解的基变量中,包含有人工变量,但该人工变量取值为零。这时可将某个非基变量引入基变量中来替换该人工变量,从而得到原LP的最优解。

以 X⁽⁰⁾作初始基本可行解进行迭代时,怎样才能较快地将所有的人工变量从基变量中全部"赶"出去(如果能全部"赶"出去的话)。这会影响到得到最优解的迭代次数。

--大M法与两阶段法

1. 大M 法

例1-20 用大M法解下列线性规划

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$\begin{cases} -4x_1 + 3x_2 + x_3 \ge 4 \\ x_1 - x_2 + 2x_3 \le 10 \end{cases}$$

$$\begin{cases} -2x_1 + 2x_2 - x_3 = -1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解: 先化为标准形式

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$s.t.\begin{cases} -4x_1 & +3x_2 & +x_3 & -x_4 & = 4\\ x_1 & -x_2 & +2x_3 & +x_5 & = 10\\ 2x_1 & -2x_2 & +x_3 & = 1\\ x_j \ge 0, & j=1,2,\cdots,5 \end{cases}$$

系数矩阵中不存在单位矩阵,无法建立初始单纯形表。

目标函数修改为:

$$\max Z = 3x_1 + 2x_2 - x_3 - Mx_6 - Mx_7$$

$$\begin{cases}
-4x_1 + 3x_2 + x_3 - x_4 + x_6 & = 4 \\
x_1 - x_2 + 2x_3 + x_5 & = 10 \\
2x_1 - 2x_2 + x_3 + x_7 & = 1 \\
x_j \ge 0, \quad j = 1, 2, \dots, 7
\end{cases}$$

其中M为任意大的实数,"-M"称为"罚因子"。

C_j		3	2	-1	0	0	-M	-M	b
C _B	X _B	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	b
-м	X ₆	-4	3	1	-1	0	1	0	4
0	X ₅	1	-1	2	0	1	0	0	10
—M	X ₇	2	-2	[1]	0	0	0	1	1→
λ_{j}		3-2M	2+M	-1+2M↑	-м	0	0	0	
-м	X ₆	-6	[5]	0	-1	0	1		3→
0	X ₅	-3	3	0	0	1	0		8
-1	X_3	2	-2	1	0	0	0		1
λ	λ_{j}		5M ↑	0	-M	0	0		
2	X ₂	-6/5	1	0	—1/5	0			3/5
0	X_5^-	[3/5]	0	0	3/5	1			31/5
-1	X_3	-2/5	0	1	-2/5	0			→11/5
λ_i		5 ↑	0	0	0	0			
2	X ₂	0	1	0	1	2			13
3	\mathbf{x}_{1}^{-}	1	0	0	1	5/3			31/3
-1	\boldsymbol{X}_{3}	0	0	1	0	2/3			19/3
λ	j	0	0	0	-5	-25/3			

最优解 $X = (31/3, 13, 19/3, 0, 0)^T$; 最优值Z = 152/3

例1-21 求解线性规划

$$\min Z = 5x_1 - 8x_2$$

$$\begin{cases} 3x_1 + x_2 \le 6 \\ x_1 - 2x_2 \ge 4 \\ x_1, x_2 \ge 0 \end{cases}$$

解: 化为标准型

$$\min Z = 5x_1 - 8x_2$$

$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 - 2x_2 - x_4 = 4 \\ x_j \ge 0, j = 1, 2, \dots, 4 \end{cases}$$

加入人工变量x5,得

$$\min Z = 5x_1 - 8x_2 + Mx_5$$

$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 - 2x_2 - x_4 + x_5 = 4 \\ x_j \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

$$\min Z = 5x_1 - 8x_2 + Mx_5$$

$$\begin{cases} 3x_1 + x_2 + x_3 = 6 \\ x_1 - 2x_2 - x_4 + x_5 = 4 \\ x_j \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

用单纯形法计算如下表所示。

$\mathbf{C}_{\!j}$		5	-8	0	0	M	b
C_B	X_B	x_1	x_2	x_3	x_4	x_5	
0	x_3 [3]		1	1	0	0	6→
M	x_5 1		-2	0	-1	1	4
$\lambda_{f j}$		5 1//A	-8+2M	0	M	0	
	$^{\sim}_{ m j}$	<i>5</i> − <i>M</i> ↑	O+2//I	U	171	U	
5		1	1/3	1/3	0	0	2
5 <i>M</i>	$\begin{bmatrix} x_1 \\ x_5 \end{bmatrix}$	1 0					2 2
	x_1	1	1/3	1/3	0	0	_

最优解X=(2,0,0,0,2), Z=10+2M。

最优解中含有人工变量 $x_5 \neq 0$ 说明这个解不是最优解,是不可行的,因此原问题无可行解。

大M法小结:

(1) 求极大值时,目标函数变为

$$\max Z = \sum_{j=1}^{n} c_{j} x_{j} - M \sum_{i=1}^{m} R_{i}$$

(2) 求极小值时,目标函数变为

$$\min Z = \sum_{j=1}^{n} c_{j} x_{j} + M \sum_{i=1}^{m} R_{i}$$

不足:

用计算机求解时,不容易确定M的取值,且M过大容易引起计算误差。

2. 两阶段法

用大M 法处理人工变量,在计算机求解时,对M只能在计算机内输入一个机器最大字长的数字。这有时可能使计算结果发生错误。为克服这个困难,可以对添加人工变量的线性规划问题分两阶段来求解——称为两阶段法。

将LP的求解过程分成两个阶段:

第一阶段:求解第一个LP:

$$\min w = \sum_{i=1}^{m} R_i$$

约束条件是加入人工变量后的约束方程。

第一个LP的结果有三种可能情形:

- 1. 最优值 w*=(),且人工变量皆为非基变量。 从第一阶段的最优解中去掉人工变量后,即为原LP的 一个基本可行解。作为原LP的一个初始基本可行解, 再求原问题,从而进入第二阶段。
- 2. 最优值 $W^* \neq 0$,说明至少有一个人工变量不为零。 原LP无可行解。不再需要进入第二个阶段计算。
- 3. 最优值 $w^* = 0$,且存在人工变量为基变量,但取值为零, 把某个非基变量与该人工变量进行调换。

两阶段法的第一阶段求解的目的:

- 1.判断原LP有无可行解。
- 2.若有,则可得原LP的一个初始基本可行解,再对原LP进行第二阶段的计算。

例1-22 用两阶段单纯形法求解例20的线性规划。

$$\max Z = 3x_1 + 2x_2 - x_3$$

$$\begin{cases} -4x_1 + 3x_2 + x_3 - x_4 = 4 \\ x_1 - x_2 + 2x_3 + x_5 = 10 \\ 2x_1 - 2x_2 + x_3 = 1 \\ x_j \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

第一阶段问题为

$$\min w = x_6 + x_7$$

目标函数为人工变量之和

$$\begin{cases} -4x_1 + 3x_2 + x_3 - x_4 + x_6 = 4 \\ x_1 - x_2 + 2x_3 + x_5 = 10 \\ 2x_1 - 2x_2 + x_3 + x_7 = 1 \\ x_j \ge 0, j = 1, 2, \dots, 7 \end{cases}$$

加入人工变量的约束条件

用单纯形法求解,得到第一阶段问题的计算表如下:

C_{j}		0	0	0	0	0	1	1	b
C_B	X_B	x_1	x_2	x_3	x_4	x_5	x_6	x ₇	
1	x_6	-4	3	1	-1	0	1	0	4
0	x_5	1	— 1	2	0	1	0	0	10
1	x_7	2	-2	[1]	0	0	0	1	1
2	\bigcup_{j}	2	—1	-2 ↑	1	0	0	0	
1	x_6	-6	[5]	0	-1	0	1		3→
0	x_5	-3	3	0	0	1	0		8
0	x_3	2	-2	1	0	0	0		1
2	j	6	-5 ↑	0	1	0	0		
0	x_2	-6/5	1	0	-1/5	0			3/5
0	x_5	3/5	0	0	3/5	1			31/5
0	x_3	-2/5	0	1	-2/5	0			11/5
7	j	0	0	0	0	0			

最优解为
$$X = (0, \frac{3}{5}, \frac{11}{5}, 0\frac{31}{5})$$
 ,最优值 $w = 0$ 。

说明找到了原问题的一组基本可行解,将它作为初始基可行解,进行第二阶段的计算。

第二阶段问题为

$$\max Z = 3x_1 + 2x_2 - x_3$$

原问题目标函数

$$\begin{cases} -\frac{6}{5}x_1 + x_2 - \frac{1}{5}x_4 &= \frac{3}{5} \\ \frac{3}{5}x_1 + \frac{3}{5}x_4 + x_5 &= \frac{31}{5} \\ -\frac{2}{5}x_1 + x_3 - \frac{2}{5}x_4 &= \frac{11}{5} \\ x_j \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

用单纯形法计算得到下表

	$\overline{\mathbf{C}_{j}}$	3	2	-1	0	0	b
C_B	X_B	x_1	x_2	x_3	x_4	x_5	
2	x_2	-6/5	1	0	—1/5	0	3/5
0	x_5	[3/5]	0	0	3/5	1	31/5 →
-1	\mathbf{x}_3	-2/5	0	1	-2/5	0	11/5
	$\lambda_{\mathbf{j}}$	5 ↑	0	0	0	0	
2	x_2	0	1	0	1	2	13
3	x_1	1	0	0	1	5/3	31/3
-1	x_3	0	0	1	0	2/3	19/3
	$\lambda_{\mathbf{j}}$	0	0	0	<u>-5</u>	-25/3	

最优解 $X = (31/3, 13, 19/3, 0, 0)^T$; 最优值Z = 152/3

例1-23 用两阶段法求解

$$\min Z = 5x_1 - 8x_2$$

$$\begin{cases} 3x_1 + x_2 \le 6 \\ x_1 - 2x_2 \ge 4 \\ x_1, x_2 \ge 0 \end{cases}$$

解: 第一阶段问题为

$$\min w = x_5$$

$$\begin{cases} 3x_1 + x_2 + x_3 = 6\\ x_1 - 2x_2 - x_4 + x_5 = 4\\ x_j \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

用单纯形法计算如下表:

	\mathbf{C}_{j}	0	0	0	0	1	b
C_B	X_B	x_1	x_2	x_3	x_4	x_5	
0	X ₃	[3]	1	1	0	0	6→
1	x_5	1	-2	0	-1	1	4
$\lambda_{\mathbf{j}}$		—1 ↑	2	0	1	0	
0	x_1	1	1/3	1/3	0	0	2
1	x_5	0	—7/3	-1/3	-1	1	2
$\lambda_{\mathbf{j}}$		0	7/3	1/3	1	0	

第一阶段的最优解 $X=(2,0,0,0,2)^T$,最优目标值 $w=2\neq 0$, x_5 仍在基变量中,从而原问题无可行解。

解的判断

唯一最优解的判断:最优表中所有非基变量的检验数非零,则线规划具有唯一最优解

多重最优解的判断:最优表中存在非基变量的检验数为零,则线性规划具有多重最优解。

无界解的判断: 某个 $\lambda_k > 0$ 且 $a_{ik} \le 0$ (i=1, 2,...,m) 则线性规划具有无界解。

无可行解的判断: (1)当用大M单纯形法计算得到最优解并且存在R_i>0时,则表明原线性规划无可行解。

(2) 当第一阶段的最优值w≠0时,则原问题无可行解。

作业: 1.12(1)