

Principles of Compiler Construction

Lecturer: Change Huiyou

Note that most of these slides were created by:

Prof. Wen-jun LI Dr. Zhong-mei SHU

Dr. Han LIN

Lecture 12. Code Optimization

- 1. Introduction
- 2. Local Optimization
- 3. Control-Flow Analysis and Loop Optimization
- Data-Flow Analysis and Global Optimization

1. Introduction

- Terminology
 - Code optimization vs. code improvement
- Precondition
 - Semantics-preserving transformations
- Trade-off and consequence
 - Time efficiency vs. space efficiency
 - Compiler efficiency vs. target code efficiency

Optimization Levels

- Three levels of optimization
 - Source code
 - Manual, but the most effective.
 - Intermediate code
 - General and automatic.
 - Necessary even you write good source code.
 - Target code
 - Machine dependent (e.g. registers and pipelines).

Optimization Scopes

- Four scopes of optimization
 - Peephole optimization
 - Based on a sliding window, the smallest one.
 - Local optimization
 - Within a basic block.
 - Loop optimization
 - Within a loop.
 - Global optimization
 - The biggest scope.
 - o In-Procedure vs. Inter-Procedure

```
sum = 0;
for (int i = 1; i <= 20; i++) sum += A[i] * B[i];</pre>
```

An Example

An Example: Eliminating Common Subexpressions

An Example: Code Motion in Loop Optimization

An Example: Induction Variables and Reduction in Strength

```
sum =
(2) i = 1

(4) t_2 = addr(A) - 4

(7) t_5 = addr(B) - 4
         = 4 * i
(5) t_3 = t_2[t_1]
(8) t_6 = t_5[t_4]
(9) t_7 = t_3 * t_6
(10) sum = sum + t_7
(11) i = i + 1
(3') t_1 = t_1 + 4
                                    Loop condition can
                                       be changed
(12) if i \le 20 goto B_2
```

An Example: Loop Condition Transformation

An Example: Constant and Copy Propagation

An Example: Eliminating Redundant Operations

```
(1) sum =
(4) t_2 = addr(A) - 4

(7) t_5 = addr(B) - 4

(3) t_1 = 4
(8) t_6 = t_5[t_1]
(9) t_7 = t_3 * t_6
(10) sum = sum + t_7
(3') t_1 = t_1 + 4
(12) if t_1 \le 80 goto B_2
```

2. Local Optimization

Transformations

- Common subexpressions
- Constant and copy propagation
- Eliminating redundant operations

One More Example (1)

```
(1) t_0 = 3.14

(2) t_1 = 2 * t_0

(3) t_2 = R + r

(4) A = t_1 * t_2

(5) B = A

(6) t_3 = 2 * t_0

(7) t_4 = R + r

(8) t_5 = t_3 * t_4

(9) t_6 = R - r

(10) B = t_5 * t_6
```


One More Example (2)

```
(1) t_0 = 3.14

(2) t_1 = 2 * t_0

(3) t_2 = R + r

(4) A = t_1 * t_2

(5) B = A

(6) t_3 = 2 * t_0

(7) t_4 = R + r

(8) t_5 = t_3 * t_4
```

(9) $t_6 = R - r$

(10) B = $t_5 * t_6$

One More Example (3)

```
(1) t_0 = 3.14
```

(2)
$$t_1 = 2 * t_0$$

(3)
$$t_2 = R + r$$

$$(4) \quad A = t_1 * t_2$$

$$(5) \quad B = A$$

(6)
$$t_3 = 2 * t_0$$

$$(7)$$
 $t_4 = R + r$

(8)
$$t_5 = t_3 * t_4$$

(9)
$$t_6 = R - r$$

$$(10) B = t_5 * t_6$$

One More Example (4)

- (1) $t_0 = 3.14$ (2) $t_1 = 2 * t_0$
- (3) $t_2 = R + r$
- (4) $A = t_1 * t_2$
- $(5) \quad B = A$
- (6) $t_3 = 2 * t_0$
- (7) $t_4 = R + r$
- (8) $t_5 = t_3 * t_4$
- (9) $t_6 = R r$
- (10) B = $t_5 * t_6$

One More Example (5)

- (1) $t_0 = 3.14$
- (2) $t_1 = 2 * t_0$
- (3) $t_2 = R + r$
- $(4) \quad A = t_1 * t_2$
- $(5) \quad B = A$
- (6) $t_3 = 2 * t_0$
- (7) $t_4 = R + r$
- (8) $t_5 = t_3 * t_4$
- (9) $t_6 = R r$
- (10) B = $t_5 * t_6$

One More Example (6)

- (1) $t_0 = 3.14$
- (2) $t_1 = 2 * t_0$
- $(3) \quad t_2 = R + r$
- $(4) \quad A = t_1 * t_2$
- (5) B = A
- (6) $t_3 = 2 * t_0$
- (7) $t_4 = R + r$
- (8) $t_5 = t_3 * t_4$
- (9) $t_6 = R r$
- (10) B = $t_5 * t_6$

One More Example (7)

- (1) $t_0 = 3.14$
- (2) $t_1 = 2 * t_0$
- $(3) \quad t_2 = R + r$
- $(4) \quad A = t_1 * t_2$
- (5) B = A
- (6) $t_3 = 2 * t_0$
- $(7) \quad t_4 = R + r$
- (8) $t_5 = t_3 * t_4$
- (9) $t_6 = R r$
- (10) B = $t_5 * t_6$

One More Example (8)

```
(1)
   t_0 = 3.14
   t_1 = 2 * t_0
   t_2 = R + r
   A = t_1 * t_2
(5)
(6) t_3 = 2 * t_0
(7) t_4 = R + r
(8) t_5 = t_3 * t_4
```

(9) $t_6 = R - r$

(10) B = $t_5 * t_6$

One More Example (9)

- (1) $t_0 = 3.14$ (2) $t_1 = 2 * t_0$ (3) $t_2 = R + r$
- $(4) \quad A = t_1 * t_2$
- (5) B = A
- (6) $t_3 = 2 * t_0$
- (7) $t_4 = R + r$
- (8) $t_5 = t_3 * t_4$
- (9) $t_6 = R r$
- (10) B = $t_5 * t_6$

One More Example (10)

(1) $t_0 = 3.14$ (2) $t_1 = 2 * t_0$ (3) $t_2 = R + r$ (4) $A = t_1 * t_2$ (5) B = A(6) $t_3 = 2 * t_0$ (7) $t_4 = R + r$ (8) $t_5 = t_3 * t_4$

(9) $t_6 = R - r$

(10) B = $t_5 * t_6$

One More Example (end)

A label indicates a value available to other blocks

$$(1)$$
 $t_0 = 3.14$

$$(2)$$
 $t_1 = 6.28$

$$(3)$$
 $t_3 = 6.28$

$$(4)$$
 $t_2 = R + r$

$$(5) \quad \mathsf{t_4} = \mathsf{t_2}$$

(6)
$$A = 6.28 * t_2$$

$$(7) \quad \mathsf{t}_5 = \mathsf{A}$$

(8)
$$t_6 = R - r$$

(9)
$$B = A * t_6$$

A leaf indicates a value from outside the block

3. Control-Flow Analysis and Loop Optimization

- Three important subproblems
 - How to define a loop based on a flow graph?
 - How to find a loop in a flow graph?
 - How to optimize a loop ?

Define Loops Based on Flow Graphs

- A loop is a strongly connected subgraph with a unique entry (header).
 - Properties:
 - Strongly connected
 - Unique entry (destination of code motion)
 - A loop can be expressed as a sequence of nodes.

An Example

There are 3 loops:

```
{5}
{4, 5, 6, 7}
{2, 3, 4, 5, 6, 7}
```

They are NOT loops:

```
{2, 4} Both 2 and 4 are entries{2, 3, 4} Both 2 and 4 are entries{4, 5, 7} Both 4 and 7 are entries{4, 6, 7} Both 4 and 7 are entries
```

Dominators

Notations

- m DOM n means m is a dominator of n.
- D(n) is the set of all dominators of n.
 - o $D(n) = \{m \mid m \text{ DOM } n\}$

Properties

- The entry is a dominator of all nodes in the loop.
- The binary relation **DOM** is a partial order
 - Reflective, transitive, and antisymmetric.

Algorithm to Calculate **D(n)**

- Input: flow graph G = (N, E, n₀)
 N = set of nodes; E = set of edges; n₀ = entry.
- Algorithm

```
1. D(n_0) = \{n_0\};
2. foreach (n \in N - \{n_0\}) D(n) = N;
3. changed = true;
4. while (changed) {
5. changed = false;
6. foreach (n \in N - \{n_0\})
       newd = {n} \bigcup (\bigcap_{p \in PRE(n)} D(p));
       if (D(n) \neq newd) {
8.
          D(n) = newd; changed = true;
9.
10.
11.
12. }
```

PRE = predecessor

The Previous Example


```
D(1) = \{1\}
D(2) = \{1, 2\}
D(3) = \{1, 2, 3\}
D(4) = \{1, 2, 4\}
D(5) = \{1, 2, 4, 5\}
D(6) = \{1, 2, 4, 6\}
D(7) = \{1, 2, 4, 7\}
```

Back Edges and Natural Loops

- Back edge
 - $a \rightarrow b$ is a back edge if $a \rightarrow b \in E \land b$ **DOM** a.
- Natural loop
 - A natural loop defined by a back edge a → b
 = {b} ∪ {nodes that can reach a without going through b}

The Previous Example

There are 3 back edges:

5 → **5**

 $7 \rightarrow 4$

4 → **2**

There are 3 natural loops:

 $\{5\}$ defined by $5 \rightarrow 5$

 $\{4, 5, 6, 7\}$ defined by $7 \rightarrow 4$

 $\{2, 3, 4, 5, 6, 7\}$ defined by $4 \rightarrow 2$

Find Loops by Back Edges

- o Input: back edge $n \rightarrow d$.
- Algorithm:

```
1. void insert(Node m) {
2. if (m \notin loop) \{ // d will not be pushed
      loop = loop \cup \{m\};
4. stack.push(m)
6. }
7. void main() {
8. Stack stack = new Stack();
9. loop = \{d\}; // PRE(d) will not be added
insert(n);
11. while (stack.notEmpty()) {
m = stack.pop();
13. foreach (p \in PRE(m)) insert(p)
14.
15.}
```

Example #1

• Given the back edge $7 \rightarrow 4$

- initialize: loop = $\{4, 7\}$, stack = [7].
- 2. pop 7; insert 5 and 6; loop = $\{4, 7, 5, 6\}$, stack = [5, 6].
- pop 6; insert 4 (already in loop); loop has no change, stack = [5].
- 4. pop 5; insert 4 and 5 (both in loop); loop has no change, stack = [].
- 5. result: $loop = \{4, 7, 5, 6\}$.

Example #2

• Given the back edge $4 \rightarrow 2$

- initialize: loop = $\{2, 4\}$, stack = [4].
- pop 4; insert 2, 3 and 7 (2 already in loop); loop = {2, 4, 3, 7}, stack = [3, 7].
- 3. pop 7; insert 5 and 6; loop = $\{2, 4, 3, 7, 5, 6\}$, stack = [3, 5, 6].
- pop 6; insert 4 (already in loop);loop had no change, stack = [3, 5].
- 5. pop 5; insert 4 and 5 (both in loop); loop has no change, stack = [3].
- 6. pop 3; insert 2 (already in loop); loop has no change, stack = [].
- 7. result: loop = $\{2, 4, 3, 7, 5, 6\}$.

Properties of Natural Loops

- Natural loops do not cover all of loops in common sense
 - E.g. there is no back edge in the following flow graph,
 but it does have a loop in common sense: {2, 3}.
 - Only in a reducible flow graph, can the back edges find all loops.
- Reducible flow graph
 - After removing all back edges, the subgraph is acyclic.
 - In a reducible flow graph, the only entry to a loop is the header.
 - A flow graph generated from a structured program is commonly reducible.

2

Loop Optimization: Code Motion

- Target of code motion
 - Following the header of the loop.
- What code can be moved ?

For an instruction $x = y \circ p z$,

- It is a loop-invariant operation.
 - All possible definitions of y and z are outside the loop, including constants, or (recursively)
 - Defined by loop-invariant values.
- 2. No other statement in the loop defines x.
- 3. All uses of x in the loop are defined by it.

Loop Optimization: Reducing Strength and Eliminating Induction Variables

Basic induction variable

- $i = i \pm C$
 - Unique assignment to i in the loop.
 - C is loop-invariant.

Family of induction variables

- $j = C_1 * i \pm C_2$
 - Both C₁ and C₂ are loop-invariant.

Motivation

- Substitute i with some j in the family.
 - The multiplication of j can be removed.
 - Then i can be eliminated.
- Specially effective to indexing variables.

An Example: Family of Induction Variables

Only one loop:

Basic induction variable:

Family of induction variables:

$$\mathbf{t_1} = (i, 4, 0) = 4 * i + 0$$

$$\mathbf{t_4} = (i, 4, 0) = 4 * i + 0$$

An Example: Strength Reduction (1)

Create a new variable \mathbf{j}' (e.g. $\mathbf{t_1}'$ and $\mathbf{t_4}'$) for each induction variable in family $\mathbf{j} = \mathbf{C_1} * \mathbf{i} \pm \mathbf{C_2}$ (e.g. $\mathbf{t_1}$ and $\mathbf{t_4}$).

Initialize new variables at the end of the preheader:

$$\mathbf{j'} = \mathbf{C_1} * \mathbf{i}$$
 $\mathbf{j'} = \mathbf{j'} + \mathbf{C_2}$ // only if $\mathbf{C_2} \neq \mathbf{0}$

```
B_{1} \begin{bmatrix} (1) & sum = 0 \\ (2) & i = 1 \\ (2a) & t_{1}' = 4 * i \\ (2b) & t_{4}' = 4 * i \end{bmatrix}
```

```
B_{2} = \begin{pmatrix} 3 & 1 & 1 & 1 & 1 & 1 & 1 \\ (4) & 1 & 1 & 1 & 1 & 1 & 1 \\ (5) & 1 & 1 & 1 & 1 & 1 & 1 \\ (5) & 1 & 1 & 1 & 1 & 1 & 1 \\ (6) & 1 & 1 & 1 & 1 & 1 & 1 \\ (6) & 1 & 1 & 1 & 1 & 1 & 1 \\ (7) & 1 & 1 & 1 & 1 & 1 & 1 \\ (8) & 1 & 1 & 1 & 1 & 1 & 1 \\ (10) & 1 & 1 & 1 & 1 & 1 & 1 \\ (11) & 1 & 1 & 1 & 1 & 1 & 1 \\ (12) & 1 & 1 & 1 & 1 & 1 & 1 \\ (12) & 1 & 1 & 1 & 1 & 1 & 1 \\ (12) & 1 & 1 & 1 & 1 & 1 & 1 \\ (12) & 1 & 1 & 1 & 1 & 1 & 1 \\ (12) & 1 & 1 & 1 & 1 & 1 & 1 \\ (12) & 1 & 1 & 1 & 1 & 1 & 1 \\ (13) & 1 & 1 & 1 & 1 & 1 & 1 \\ (14) & 1 & 1 & 1 & 1 & 1 & 1 \\ (15) & 1 & 1 & 1 & 1 & 1 & 1 \\ (17) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1 & 1 & 1 \\ (18) & 1 & 1
```

An Example: Strength Reduction (2)

Change the definition of each induction variable (e.g. t_1 and t_4): i = i'

```
(4) \quad t_2 = addr(A) - 4
(5) t_3 = t_2[t_1]
(7) \quad t_5 = addr(B) - 4
(8) t_6 = t_5[t_4]
(9) t_7 = t_3 * t_6
(10) \quad \text{sum} = \quad \text{sum} + t_7
(12) if i \le 20 goto B_2
```

sum =

An Example: Strength Reduction (3)

Add linear assignments to new variables following the unique definition of basic statement variable ($i = i \pm C$):

$$t = C_1 * C$$
$$j' = j' \pm t$$

If $C == \pm 1$, only one statement need to be added:

$$j' = j' \pm C_1$$

```
(1) sum =
(2a) t_1' = 4 * i
(2b) t_4' = 4 * i
(4) t_2 = addr(A) - 4
(5) t_3 = t_2[t_1]
(6) 	 t_4 = t_4'
(7) t_5 = addr(B) - 4
(8) t_6 = t_5[t_4]
(9) t_7 = t_3 * t_6
(10) sum = sum + t_7
(11) i = i + 1
(11a) t_1' = t_1' + 4
(11b) t_4' = t_4' + 4
(12) if i \le 20 goto B_2
```

An Example: Eliminate Dead Induction Variables

If induction variable **j** is not live on exit,

change the use of j to j' (e.g. change reference from $\mathbf{t_1}$ and $\mathbf{t_4}$ to $\mathbf{t_1}$ ' and $\mathbf{t_4}$ '),

and then remove the definition of j (e.g. t_1 and t_4).

```
sum =
         t<sub>4</sub>' = 4 * i
B_2
    (4) t_2 = addr(A) - 4
    (5) t_3 = t_2[t_1']
    (7) t_5 = addr(B) - 4
    (8) t_6 = t_5[t_4']
    (9) t_7 = t_3 * t_6
    (10) \quad \text{sum} = \quad \text{sum} + t_7
    (11) i = i + 1
    (11a) t_1' = t_1' + 4
    (11b) t_4' = t_4' + 4
    (12) if i \le 20 goto B_2
```

An Example: Change Loop Condition

Pick a new induction variable from the family (say $\mathbf{t_1}$), then change the loop condition.

```
sum =
      (2b) t_4' = 4 * i
      (3) t_1 = t_1'

(4) t_2 = addr(A) - 4
B_2
      (5) t_3 = t_2[t_1']

(6) t_4 = t_4'

(7) t_5 = addr(B) - 4
      (8) t_6 = t_5[t_4']
(9) t_7 = t_3 * t_6
      (10) \quad \text{sum} = \quad \text{sum} + t_7
      (11a) t_1' = t_1' + 4
      (11b) t_4' = t_4' + 4
      (12a)R = 4 * 20
      (12b) if t_1' \leq R goto B_2
```

An Example: Remove Basic Induction Variable

If the basic induction variable i is not live on exit, the definition of i can be removed.

```
sum =
      (2b) t_4' = 4 * i
      (3) t_1 = t_1'
(4) t_2 = addr(A) - 4
B_2
      (5) t_3 = t_2[t_1']
      (6) t_4 = t_4 (7) t_5 = addr(B) - 4
     (8) t_6 = t_5[t_4']
(9) t_7 = t_3 * t_6
      (10) \quad \text{sum} = \quad \text{sum} + t_7
      (11b) t_4' = t_4' + 4
```

(12a)R = 4 * 20

(12b) if $t_1' \leq R$ goto B_2

An Example: After Loop Optimization

The optimized code facilitate further local optimization.

$$B_{2} \quad (4) \quad t_{2} = \operatorname{addr}(A) - 4$$

$$(5) \quad t_{3} = t_{2}[t_{1}']$$

$$(7) \quad t_{5} = \operatorname{addr}(B) - 4$$

$$(8) \quad t_{6} = t_{5}[t_{4}']$$

$$(9) \quad t_{7} = t_{3} * t_{6}$$

$$(10) \quad \operatorname{sum} = \operatorname{sum} + t_{7}$$

$$(11a) \quad t_{1}' = t_{1}' + 4$$

$$(11b) \quad t_{4}' = t_{4}' + 4$$

$$(12a) \quad R = 4 * 20$$

$$(12b) \quad \mathbf{if} \quad t_{1}' \leq R \quad \mathbf{goto} \quad B_{2}$$

4. Data-Flow Analysis and Global Optimization

- Collect information about data flows
 - How a variable is assigned (definition) ?
 - How a variable is referred (use) ?
- Control-flow vs. data-flow
 - Control-flow analysis: basic blocks are considered as **black** boxes.
 - Data-flow analysis: basic blocks are considered as white boxes.

Where Global Information Are Needed?

- Local optimization
 - Assignments to a variable can be removed if the variable is never used.
- Loop optimization: code motion
 - Determine loop-invariant operations according to the definitions of variables.
 - Code motion requires the operation is the unique definition in the loop.
 - Code motion also requires the defined variable is not live on the exit of the loop.
- Loop optimization: induction variable elimination
 - induction variables can be removed if it is not used outside the loop.
- Code generation
 - Information on liveness on exit facilitate register utilization.

What Global Information Are Needed?

Definition

All assignments (sources) of a R-value in a statement.

Use

All possible use of an L-value in a statement.

Liveness

 Will the variable be referred as a R-value after a statement.

Basic Concepts

Points in a flow graph

between statements

- Between two adjacent statements.
- Before the first and after the last statement.
- Definition of a variable x

A statement that (may) assign(s) a value to x.

L-value.

Use of a variable x

A statement that refers x as an operand.

R-value.

statement

statement

Basic Concepts (cont')

- Definition d reaches a point p
 - There exists a path from the point immediately following d to p, such that d is not "killed" along the path.
 - While we use x immediately following p, the value of x may be determined by d.

Ud-Chains vs. Du-Chains

- Ud-chain: the use-definition chain of a variable x in a use statement s
 - Set of definitions of x that can reach s.
 - Useful for finding loop-invariants.
 - Also for global constant folding.
- Du-chain: the definition-use chain of a variable x in a definition statement s
 - Set of uses of x that can be reached from s.
 - Useful for eliminating induction variables in loop optimization.
 - Also for finding family of induction variables.

Reaching Definition Analysis

Forward data-flow equation

```
out[B] = (in[B] - kill[B]) \bigcup gen[B] in[B] = \bigcup_{p \in PRE(B)} out[p]
```

- in[B]: ud-chain before the entry of B.
- out[B]: ud-chain after the exit of B.
- gen[B]: all definitions in B that can reach the exit of B.
- kill[B]: all definitions outside B that are killed by B.

Construction of Ud-Chains

- Input: gen[] and kill[]; Output: in[] and out[].
- Algorithm

```
for (int i = 1; i <= n; i++) { // initialize
   in[Bi] = \emptyset; out[Bi] = gen[Bi];
changed = true;
while (changed) {     // iterative
   changed = false;
   for (i = 1; i <= n; i++) {
     newIn = \bigcup_{p \in PRE[Bi]} out[p];
     if (newIn ≠ in[Bi]) {
         changed = true;
         in[Bi] = newIn;
         out[Bi] = (in[Bi] - kill[Bi]) \cup gen[Bi];
```

An Example: (1) gen[] and kill[] is known

Only variable i and j are considered

An Example: (2) Iterations of in[] and out[]

Depth-first visit: B₁, B₂, B₃, B₄ and B₅

	В	Init		1 st		2 nd		3 rd		4 th	
		in[B]	out[B]	in[B]	out[B]	in[B]	out[B]	in[B]	out[B]	in[B]	out[B]
	B_1	0000000	1100000	0010000	1100000	0110000	1100000	0111100	1100000	0111100	1100000
	B ₂	0000000	0010000	1100000	0110000	1111100	0111100	1111100	0111100	1111100	0111100
	B ₃	0000000	0001000	0110000	0011000	0111100	0011000	0111100	0011000	0111100	0011000
	B ₄	0000000	0000100	0011000	0010100	0011000	0010100	0011000	0010100	0011000	0010100
	B ₅	0000000	0000000	0011100	0011100	0011100	0011100	0011100	0011100	0011100	0011100

An Example: (3) Construction of Ud-Chains

- Compute ud-chains with in[B].
 - If s.x has definitions before s in B, ud-chain of s.x is a singleton (definition nearest to s).
 - Otherwise, ud-chain of s.x is all definitions of x in in[B].

```
    Result ud-chains
```

- Variable i at definition d₂: {d₁}
- Variable j at definition d_4 : { d_2 , d_4 , d_5 }
- Variable j at definition d₅: {d₄}
- Variable i at definition d₆: {d₃}
- Variable j at definition d₇: {d₄, d₅}

d₃ is the definition of **i**, not **j**!

d₄ and d₅ are the definitions of **i**, not **i**!

Global Constant Propagation and Folding Based on Ud-Chains

```
changed = true;
while (changed) {
  changed = false;
  foreach (statement [S: x = ...]) {
   foreach (operand S.y) { // constant propagation
     if (S.y.ud-chain has only one i and i is [y = CONST]) {
       replace all S.y with CONST;
       changed = true;
   if (S has op and each operand is CONST) { // folding
     let C = result of constant operation;
     replace S with [x = C];
     changed = true;
```

More Data-Flow Equations: Available Expressions

Forward data-flow equation

```
out[B] = (in[B] - E_kill[B]) \bigcup E_gen[B]
in[B] = iif(B == ENTRY, \emptyset, \bigcap_{p \in PRE(B)} out[p])
```

- in[B]: available expressions before B.
- out[B]: available expressions after B.
- E_gen[B]: expressions generated by B.
- E_kill[B]: expressions killed by B.

Motivation

- Available expression E = X op Y at s is the last evaluation of E from entry point to s, and no redefinition of X and Y after the definition of E.
- Useful: global common expression elimination.

More Data-Flow Equations: Liveness Analysis

Backward data-flow equation

```
in[B] = (out[B] - def[B]) \bigcup use[B] out[B] = \bigcup_{s \in SUCC(B)} in[s]
```

- in[B]: live variables before B.
- out[B]: live variables after B.
- use[B]: live variables generated by B.
- o def[B]: live variables killed by B.

SUCC = successor

Exercise 12.1

- Given the following flow graph:
 - Compute the dominators of all nodes.
 - Find all back edges in the flow graph.
 - Find all natural loops defined by each back edge.

Enjoy the Course!

