

Multiparty Computation (MPC)

Daniel Kales
Applied Cryptography 2 – ST 2020

Outline

Introduction to Multiparty Computation

Cryptographic Primitives

- Preliminaries
- 1-out-of-2 Oblivious Transfer
- 1-out-of-N Oblivious Transfer

Protocols for Multiparty Computation

- Yao's Garbled Circuits
- Goldreich-Micali-Wigderson

Introduction to Multiparty Computation

Yao's Millionaires' Problem [6]

Yao's Millionaires' Problem [6]

Secure Function Evaluation

- Generalization of the Problem
 - j parties
 - Inputs: $x_i \in \{0,1\}^n$
 - Function: $F: \{0,1\}^{jn} \to \{0,1\}^m$
- Construct protocol that ensures:
 - Some/All Users learns $F(x_1, ..., x_j)$
 - User *i* learns nothing about x_j for $j \neq i$
 - User *i* learns nothing about any intermediate values

Secure Function Evaluation (cont.)

- Applied to the Millionaires' Problem
 - 2 parties: Alice and Bob
 - Inputs: $x_1, x_2 \in \{0, 1\}^{32}$ (32-bit integers)
 - Function: $F(x_1, x_2) = x_1 > x_2$

Secure Function Evaluation (cont.)

- Trivial Solution
 - Use trusted third party
 - Each party sends it's input and desired function to TTP
 - TTP calculates the result and sends it to parties
- Can we do it without a TTP?

Secure Function Evaluation (cont.)

- Trivial Solution
 - Use trusted third party
 - Each party sends it's input and desired function to TTP
 - TTP calculates the result and sends it to parties
- Can we do it without a TTP?
 - Yes!
 - Yao: Garbled Circuits [5]
 - Goldreich, Micali, Wigderson: GMW protocol [3]
 - More on these later...

Cryptographic Primitives

Preliminaries

Reminder: Groups

Definition (Group)

An Abelian group $\langle S, * \rangle$ is a set S and an operation * that satisfy

- 1. Associative: a * (b * c) = (a * b) * c
- 2. Commutative: a * b = b * a
- 3. Neutral element (identity) e: a * e = a
- 4. Inverse element a^{-1} for every $a: a * a^{-1} = e$

A finite group is a group with a finite number of elements.

Examples:

 $\langle \mathbb{Z}_p, + \rangle$ is a finite group with identity 0.

 $\langle \mathbb{Z}_p^*, \cdot \rangle = \langle \mathbb{Z}_p \setminus \{0\}, \cdot \rangle$ is a finite group with identity 1 (if p prime).

Cyclic groups: Example $(\mathbb{Z}_{11}^*,\cdot)$

Consider $\mathbb{Z}_{11}^* = \{1, 2, \dots, 10\}$ (order 10, since 11 is prime).

The subgroups of $(\mathbb{Z}_{11}^*, \cdot)$ are:

Subgroup	Generators	Order
{1}	1	1
$\{1, 10\}$	10	2
$\{1, 3, 4, 5, 9\}$	3, 4, 5, 9	5
$\{1,2,\ldots,10\}$	2, 6, 7, 8	10

 \mathbb{Z}_{11}^{\ast} is cyclic, and the elements 2, 6, 7, 8 are generators.

Reminder: Elliptic Curves

Elliptic curve over \mathbb{F}

Elliptic curve = solutions (x, y) of equation in Weierstrass Form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Coefficients a_1, \ldots, a_6 and point coordinates x, y: elements of field \mathbb{F} .

The Weierstrass Form can be simplified for different fields:

Elliptic curve over \mathbb{Q} , \mathbb{R} , \mathbb{C} , or any prime field \mathbb{F}_{p^m} ($p \neq 2, 3$)

$$y^2 = x^3 + ax + b$$
 (+some constraints for a, b

Reminder: Elliptic Curves

Elliptic curve over \mathbb{F}

Elliptic curve = solutions (x, y) of equation in Weierstrass Form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$

Coefficients a_1, \ldots, a_6 and point coordinates x, y: elements of field \mathbb{F} .

The Weierstrass Form can be simplified for different fields:

Elliptic curve over \mathbb{Q} , \mathbb{R} , \mathbb{C} , or any prime field \mathbb{F}_{p^m} $(p \neq 2, 3)$

$$y^2 = x^3 + ax + b$$

(+some constraints for a, b)

Reminder: Elliptic Curves over Finite Fields

$$y^2 = x^3 - 2x + 1$$
 over $\mathbb R$

$$y^2 = x^3 - 2x + 1$$
 over \mathbb{Z}_{89} (96 elements)

Reminder: The Discrete Logarithm Problem (DLP)

Definition (Discrete Logarithm Problem)

Given a prime p, a generator $g \in \mathbb{Z}_p^*$, and an element $y \in \mathbb{Z}_p^*$, find the integer $x \in \{0, \dots, p-2\}$ such that $g^x = y \pmod{p}$.

Definition (Generalized Discrete Logarithm Problem)

Given a finite cyclic group G of order n, a generator $g \in G$ and an element $y \in G$, find $x \in \{0, \dots, n-1\}$ such that $g^x = y$.

The difficulty of the DLP highly depends on the group

- **Example:** DLP in $(\mathbb{Z}_p,+)$ is easy. We only need to find x such that $g+g+\ldots+g=g\cdot x=y\pmod p \quad \Rightarrow \quad x=y\cdot g^{-1}\pmod p.$
- **Example:** DLP in (\mathbb{Z}_p^*, \cdot) is believed to be hard.

Reminder: The Discrete Logarithm Problem (DLP)

Definition (Discrete Logarithm Problem)

Given a prime p, a generator $g \in \mathbb{Z}_p^*$, and an element $y \in \mathbb{Z}_p^*$, find the integer $x \in \{0, \dots, p-2\}$ such that $g^x = y \pmod{p}$.

Definition (Generalized Discrete Logarithm Problem)

Given a finite cyclic group G of order n, a generator $g \in G$ and an element $y \in G$, find $x \in \{0, \dots, n-1\}$ such that $g^x = y$.

The difficulty of the DLP highly depends on the group.

Example: DLP in $(\mathbb{Z}_p,+)$ is easy. We only need to find x such that $g+g+\ldots+g=g\cdot x=y\pmod p \implies x=y\cdot g^{-1}\pmod p.$

Example: DLP in (\mathbb{Z}_p^*, \cdot) is believed to be hard.

Reminder: Diffie-Hellman (DH)

Definition (Computational Diffie-Hellman Problem)

Given a finite cyclic group G of order n, a generator $g \in G$, g^a and g^b $(a, b \in \{0, ..., n-1\}$ and secret), find g^{ab} .

Definition (Decisional Diffie-Hellman Problem)

Given a finite cyclic group G of order n, a generator $g \in G$, distinguish the triple (g^a, g^b, g^{ab}) from (g^a, g^b, g^c) . $(a, b, c \in \{0, \dots, n-1\}$ and secret)

Best known solution: find a from g^a , or b from g^b (= solve DLP)

1-out-of-2 Oblivious Transfer

Oblivious Transfer (OT)

1-out-of-2 Oblivious Transfer: $\binom{2}{1}$ -OT

- 2 parties: sender and chooser
- Sender has 2 strings $m_0, m_1 \in \{0, 1\}^n$
- Chooser has 1 bit $\nu \in \{0,1\}$
- After protocol:
 - Chooser learns m_{ν}
 - Chooser learns nothing about $m_{1-\nu}$
 - lacktriangle Sender learns nothing about u

Chou-Orlandi OT

- "The Simplest Protocol for Oblivious Transfer" by Chou and Orlandi [2]
- Idea:
 - Very similar to Diffie-Hellman Key-Exchange
 - Sender generates 2 encryption keys
 - Chooser is able to only learn one
- Security:
 - Based on a variant of CDH problem
 - Recent Result: Security proof has small mistake
 - needs additional fixes for malicious security

Chou-Orlandi OT (cont.)

"The Simplest Protocol for Oblivious Transfer" [2]

Naor-Pinkas OT

- Efficient OT protocol by Naor and Pinkas [4]
- Idea:
 - Sender generates 2 encryption keys
 - Chooser is able to only learn one
- Security:
 - Based on DDH problem
 - Secure for groups with prime order q, where DDH is hard

Naor-Pinkas OT (cont.)

Naor-Pinkas Oblivious Transfer [4]

1-out-of-N Oblivious Transfer

Oblivious Transfer (cont.)

1-out-of-N Oblivious Transfer: $\binom{N}{1}$ -OT

- 2 parties: sender and chooser
- Sender has N strings $m_0, \ldots, m_{N-1} \in \{0, 1\}^n$
- Chooser has $\log_2(N)$ -bit value $\nu \in \{0, \dots, N-1\}$
- After protocol:
 - Chooser learns m_{ν}
 - Chooser learns nothing about $m_i \neq m_{\nu}$
 - Sender learns nothing about ν

Building $\binom{N}{1}$ -OT

- Instantiate directly if supported (e.g., Naor-Pinkas OT)
- Build from $\binom{2}{1}$ -OT (Idea: transfer encryption key per bit of ν)

$\binom{N}{1}$ -OT from $\binom{2}{1}$ -OT

- Sender prepares $L = \log_2(N)$ keypairs: $(k_1^0, k_1^1), \dots, (k_L^0, k_L^1)$
- Sender encrypts and sends item m_i:

$$C_i = m_i \oplus \left(\bigoplus_{j=1}^L \mathbb{E}(k_j^{i_j}, i)\right)$$

- For each bit b of ν : Perform $\binom{2}{1}$ -OT to give chooser k_j^b
- Chooser has all keys to decrypt C_ν

Solution to Millionaires' Problem

- We can use $\binom{N}{1}$ -OT to solve the Millionaires' Problem
 - Constraint: Set of possible inputs is small
 - Assume Alice and Bob have $i \in S = \{1, ..., 10\}$ million
- Protocol:
 - Alice has 5 million, Bob has 3 million.
 - Alice calculates F(5, y) for all $y \in S$
 - $F(5, \{1, \dots, 4\}) = \text{'Alice'}$
 - F(5,5) = 'Same'
 - $F(5, \{6, \dots, 10\}) = \text{'Bob}$

Solution to Millionaires' Problem

- We can use $\binom{N}{1}$ -OT to solve the Millionaires' Problem
 - Constraint: Set of possible inputs is small
 - Assume Alice and Bob have $i \in S = \{1, ..., 10\}$ million
- Protocol:
 - Alice has 5 million, Bob has 3 million.
 - Alice calculates F(5, y) for all $y \in S$
 - $F(5, \{1, ..., 4\}) = \text{'Alice'}$
 - F(5,5) = 'Same'
 - $F(5, \{6, ..., 10\}) = 'Bob'$

Solution to Millionaires' Problem (cont.)

- Protocol (cont.)
 - Perform $\binom{10}{1}$ -OT
 - Alice inputs the 10 results: {'Alice',...,'Same',...,'Bob}
 - Bob's choice is his input value: $\nu = 3$
 - After the OT, he learns 'Alice' and tells the result to Alice
- Problems:
 - Only practical for small input sets
 - More on that now
 - Only works for honest parties, cannot detect cheating
 - More on that next lecture

Solution to Millionaires' Problem (cont.)

- Protocol (cont.)
 - Perform $\binom{10}{1}$ -OT
 - Alice inputs the 10 results: {'Alice',...,'Same',...,'Bob}
 - Bob's choice is his input value: $\nu = 3$
 - After the OT, he learns 'Alice' and tells the result to Alice
- Problems:
 - Only practical for small input sets
 - More on that now
 - Only works for honest parties, cannot detect cheating
 - More on that next lecture

Protocols for Multiparty Computation

Multiparty Computation (MPC) Protocols

- Shared Idea:
 - Jointly evaluate a circuit calculating $F(x_1, x_2)$
- Yao's garbled circuits [5]
- Goldreich-Micali-Widgerson protocol [3]

Yao's Garbled Circuits

Basics

- Yao's original solution to his Millionaires' Problem
- Basic Idea:
 - Describe function as boolean circuit
 - Obfuscate (garble) truth tables of gates in circuit
 - Encrypt output values with corresponding input values
 - Allows to decrypt only 1 output
 - No idea if current wire is 0 or 1 due to garbling

Draw truth table of gate

Assign labels to each wire

Replace boolean values with wire labels

U	V	W
39fe	790a	367f
39fe	62dd	367f
678b	790a	367f
678b	62dd	de21

Encrypt result of gate with input labels

U	V	W
39fe	790a	$\mathbb{E}_{39 fe,790 a}(367 f)$
39fe	62dd	$\mathbb{E}_{39\text{fe},62\text{dd}}(367\text{f})$
678b	790a	$\mathbb{E}_{678b,790a}(367f)$
678b	62dd	$\mathbb{E}_{678 ext{b},62 ext{dd}}(ext{de21})$

Generalized view

$$\begin{array}{c|c|c|c} U & V & W \\ \hline u^0 & v^0 & \mathbb{E}_{u^0,v^0}(w^0) \\ u^0 & v^1 & \mathbb{E}_{u^0,v^1}(w^0) \\ u^1 & v^0 & \mathbb{E}_{u^1,v^0}(w^0) \\ u^1 & v^1 & \mathbb{E}_{u^1,v^1}(w^1) \end{array}$$

Randomly shuffle table rows

Only keep encrypted result

Garbled Table

$$\mathbb{E}_{u^1, v^0}(w^0) \ \mathbb{E}_{u^1, v^1}(w^1) \ \mathbb{E}_{u^0, v^1}(w^0) \ \mathbb{E}_{u^0, v^0}(w^0)$$

Garbling a Circuit

- Assign wire labels for 0 and 1 to each wire
- Garble gate:
 - Replace truth table by corresponding wire labels
 - Encrypt output wire labels using input wire labels as keys
 - Randomly shuffle entries in truth table
- Repeat for each gate

Input Values

- Alice is the garbler
 - She knows the wire labels corresponding to her input
 - Can send her wire labels and circuit to Bob
- How does Bob get the wire labels corresponding to his input?
 - Cannot tell Alice his input values directly
- Solution: Use $\binom{2}{1}$ -OT!
 - For each input wire w_i corresponding to Bob's input bit y_i
 - Alice is OT-sender with strings w_i^0, w_i^0
 - Bob is OT-chooser with choice bit y_i

Input Values

- Alice is the garbler
 - She knows the wire labels corresponding to her input
 - Can send her wire labels and circuit to Bob
- How does Bob get the wire labels corresponding to his input?
 - Cannot tell Alice his input values directly
- Solution: Use (²₁)-OT!
 - For each input wire w_i corresponding to Bob's input bit y_i
 - Alice is OT-sender with strings w_i^0, w_i^1
 - Bob is OT-chooser with choice bit y_i

Output Values

- After the evaluation Bob only has the output wire label o^x
- Alice is the garbler, and therefore knows the corresponding value
 - Communicate so one or both parties learn the output
- Other possibility:
 - Do not assign wire labels to output values
 - Last garbled table decrypts directly to 0 or 1

Bob receives the garbled circuit and Alice's input labels

Bob uses $\binom{2}{1}$ -OT to receive the wire labels for his input

Bob evaluates the AND gate

Bob evaluates the OR gate

Bob evaluates the XOR gate and obtains the result

Goldreich-Micali-Wigderson

Recall: Secret Sharing

- Split a secret x into shares
- Each party gets a share
- Individual shares give no information about x
- Parties combine their shares to reconstruct x
- Different instantiations of "share" and "reconstruct"
 - *n*-out-of-*n*: all *n* shares are needed to reconstruct
 - k-out-of-n: any k shares suffice to reconstruct

Recall: Additive Secret Sharing

- For an arbitrary group $\langle G, \circ \rangle$ we can share any $x \in G$:
 - Pick $x_A \in G$ at random
 - Define $x_B = x_A^{-1} \circ x$
 - Given only one of x_A or x_B , x is perfectly hidden
 - Given both, \mathbf{x} can be restored ($\mathbf{x} = x_A \circ x_B$)
 - Extends to arbitrary amount of shares by picking all but last share as random
- Example group $\langle \{0,1\}, \oplus \rangle$:
 - Shares of x are $x_A \stackrel{\$}{\leftarrow} \{0,1\}$ and $x_B = x \oplus x_A$
 - Reconstruct: $\mathbf{x} = \mathbf{x}_A \oplus \mathbf{x}_B$

Recall: Additive Secret Sharing

- For an arbitrary group $\langle G, \circ \rangle$ we can share any $x \in G$:
 - Pick $x_A \in G$ at random
 - Define $x_B = x_A^{-1} \circ x$
 - Given only one of x_A or x_B , x is perfectly hidden
 - Given both, x can be restored ($x = x_A \circ x_B$)
 - Extends to arbitrary amount of shares by picking all but last share as random
- Example group $\langle \{0,1\}, \oplus \rangle$:
 - Shares of x are $x_A \leftarrow \{0,1\}$ and $x_B = x \oplus x_A$
 - Reconstruct: $\mathbf{x} = \mathbf{x}_A \oplus \mathbf{x}_B$

GMW Protocol

- By Goldreich, Micali and Wigderson (1987)
- Basic Idea:
 - Secret-share all input with other party
 - Build logic circuit with 2-input gates (e.g., AND, XOR)
 - Jointly evaluate each gate (z = G(x, y))

- Additive Secret Sharing using XOR
- Alice knows x_A, y_A , Bob knows x_B, y_B
- Alice samples z_A at random

$$\mathbf{z}_{B}=\mathbf{z}_{A}\oplus\mathbf{G}(\mathbf{x}_{A}\oplus\mathbf{x}_{B},\mathbf{y}_{A}\oplus\mathbf{y}_{B})$$

$$\mathbf{z}_{B} = \mathbf{z}_{A} \oplus \mathbf{G}(\mathbf{x}_{A} \oplus \mathbf{x}_{B}, \mathbf{y}_{A} \oplus \mathbf{y}_{B})$$

- Alice can use $\binom{4}{1}$ -OT to give Bob his share of the result
- Due to properties of OT, Alice learns nothing about x_B, y_B
- Due to properties of OT and secret sharing, Bob learns nothing about x_A , y_A
- Let's demonstrate for an AND gate:

X B	У В	ν	\mathbf{z}_{B}
0	0	0	$((x_A \oplus 0)\&(y_A \oplus 0)) \oplus z_A$
0	1	1	$((x_A \oplus 0)\&(y_A \oplus 1)) \oplus z_A$
1	0	2	$((x_A \oplus 1)\&(y_A \oplus 0)) \oplus z_A$
1	1	3	$ \begin{vmatrix} ((x_A \oplus 0)\&(y_A \oplus 0)) \oplus z_A \\ ((x_A \oplus 0)\&(y_A \oplus 1)) \oplus z_A \\ ((x_A \oplus 1)\&(y_A \oplus 0)) \oplus z_A \\ ((x_A \oplus 1)\&(y_A \oplus 1)) \oplus z_A \end{vmatrix} $

- We can now efficiently handle one gate G
- Whole Circuit?
 - Each party secret-shares its input values with other party
 - Agree on order of the gates in the circuit
 - Alice evaluates each gate, acting as the OT-sender
 - Bob acts as the OT-chooser and gets his share of the output
 - Iteratively compute the whole circuit
 - Exchange shares of output gate(s) at the end

- Bonus: XOR gates do not require OT
 - Additive Secret Sharing!
 - Set $z_A = x_A \oplus y_A$, $z_B = x_B \oplus y_B$
- Proof:

$$z = z_A \oplus z_B = (x_A \oplus y_A) \oplus (x_B \oplus y_B)$$

= $(x_A \oplus x_B) \oplus (y_A \oplus y_B) = x \oplus y$.

Summary

- MPC Protocols
 - Yao's Garbled Circuits [5]
 - GMW [3]
- Powered by OT
- Solution to Millionaires' Problem
 - Build boolean circuit to evaluate *x* < *y*
 - Use Yao or GMW to evaluate

Questions you should be able to answer

- 1. What is oblivious transfer and what are the properties for the sender and receiver? Give an example for an OT protocol.
- 2. Describe the steps involved Yao's garbled circuit protocol. When do the parties need to interact with each other?
- 3. Describe the GMW protocol. When do the parties need to interact with each other? What needs to be done during this interaction?
- 4. Alice and Bob want to know which of them has more money, without disclosing their respective amounts. Give a detailed solution to this problem using either GMW or Yao.

Bibliography I

- [1] Mihir Bellare and Silvio Micali. Non-Interactive Oblivious Transfer and applications. CRYPTO. Vol. 435. Lecture Notes in Computer Science. Springer, 1989, pp. 547–557.
- [2] Tung Chou and Claudio Orlandi. The Simplest Protocol for Oblivious Transfer. LATINCRYPT. Vol. 9230. Lecture Notes in Computer Science. Springer, 2015, pp. 40–58.
- [3] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game or A Completeness Theorem for Protocols with Honest Majority. STOC. ACM, 1987, pp. 218–229.
- [4] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. SODA. ACM/SIAM, 2001, pp. 448–457.
- [5] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets (Extended Abstract). FOCS. IEEE Computer Society, 1986, pp. 162–167.
- [6] Andrew Chi-Chih Yao. Protocols for Secure Computations (Extended Abstract). FOCS. IEEE Computer Society, 1982, pp. 160–164.