Understanding Scaling Relations In Fracture and Mechanical Deformation of Single Crystal and Polycrystalline Silicon By Performing Atomistic Simulations at Mesoscale

Han Sung Kim & Vikas Tomar

Aerospace and Mechanical Engineering University of Notre Dame, Notre Dame-Indiana, USA, 46556

Under Government Contract from TARDEC

UNCLAS: Dist A. Approved for public release

maintaining the data needed, and including suggestions for reducin	completing and reviewing the colle g this burden, to Washington Head ould be aware that notwithstanding	ction of information. Send commer juarters Services, Directorate for In	nts regarding this burden estimation Operations and Rep	nate or any other aspect ports, 1215 Jefferson D	existing data sources, gathering and of this collection of information, avis Highway, Suite 1204, Arlington with a collection of information if it	
1. REPORT DATE 16 JUL 2009				3. DATES COVERED		
_	racture and Mecha		5a. CONTRACT NUMBER W56 HZV-08-C-0236			
	ngle Crystal and Po istic Simulations at	• •	1 Ву	5b. GRANT NUMBER		
- vvgv				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
Han Sung Kim; V	ikas Tomar			5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
	IIZATION NAME(S) AND A echanical Engineeri ma, USA, 46556	` /	otre Dame,	8. PERFORMININUMBER 19983RC	G ORGANIZATION REPORT	
US Army RDECO	DRING AGENCY NAME(S) M-TARDEC 6501		ren, MI	10. SPONSOR/M TACOM/T	MONITOR'S ACRONYM(S) ARDEC	
48397-5000			11. SPONSOR/MONITOR'S REPONUMBER(S) 19983RC		ONITOR'S REPORT	
12. DISTRIBUTION/AVAI Approved for pub	ILABILITY STATEMENT lic release, distribut	tion unlimited				
13. SUPPLEMENTARY N The original docum	OTES ment contains color	images.				
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF	
a. REPORT unclassified			OF ABSTRACT SAR	OF PAGES 21	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Contents

- Motivation
 - -Limitations of MD simulations
- Method and Framework
 - Equivalent crystal lattice method
- · Silicon nanowires/ polycrystalline silicon Results
- Conclusion and Future works

Limitations of MD simulation

• Discrepancy between MD simulation and experimental results

1. Length Scale

- Recent billion atoms simulation (1 x 1 x 1 μ m for metal)
- Most of MD simulation is nanometer scale (In many case, using only a small part of actual specimen for simulations)

2. Time scale

- Most MD simulation's time step is femto second
- Current time step extending methods can increase time step about factor of 15
- •Necessity to increase length and time scale of MD simulations

Method and framework

- Equivalent crystal lattice method
- New inter-atomic potential parameters
 - Tersoff potential (T3)
- Comparison of properties
 - C11, C12, C44, Bulk modulus, Total lattice energy.
- Time step calculations
 - Maxwell-Boltzman distrubution
- Simulation details
 - Construction of suprtcells, NST ensemble,

Equivalent crystal lattice method

- Lattice parameters: 5.43, 10.86, 108.6, and 1086 Å
- -Number of atoms in the unit cell are the same
- --Fraction coordinates in the unit cell are the same

 $F = \sum_{i=1}^{N_{obs}} w_i (f_i^{tar} - f_i^{calc})^2$

-Potential parameters are found by minimizing *F*

 N_{obs} is the number of observables, f^{tar} and f^{calc} are the target and calculated values of the observables, and w_i is the weight factor for the given observables

Parameters for Tersoff potentials

				I
Lattice Constant	5.43Å (T3)	10.86Å	108.6Å	1086Å
<i>A</i> (eV)	1830.8	9911.8	9682272.8	12256245358.6
<i>B</i> (eV)	471.18	2500	2500000.0	2846954605.4
Л, (Å-1)	2.4799	1.2125	0.1195	0.01235
刈っ(Å-1)	1.7322	0.8166	0.08071	0.008282
α	0	0	0	0
n	0.78734	0.78734	0.78734	0.78734
β	1.0999E-06	1.0999E-06	1.0999E-06	1.0999E-06
n	0.78734	0.78734	0.78734	0.78734
С	100390	100390	100390	100390
d	16.218	16.218	16.218	16.218
h	-0.59826	-0.59826	-0.59826	-0.59826

$$E = \sum_{i} E_{i} = \frac{1}{2} \sum_{i \neq j} V_{ij} ,$$

$$V_{ij} = f_{C}(r_{ij}) [a_{ij} f_{R}(r_{ij}) + b_{ij} f_{A}(r_{ij})]$$

$$f_{R}(r) = A \exp(-\lambda_{1} r) ,$$

$$f_{A}(r) = -B \exp(-\lambda_{2} r) ,$$

$$f_C(r) = \begin{cases} 1, & r < R - D \\ \frac{1}{2} - \frac{1}{2} \sin \left[\frac{\pi}{2} (r - R) / D \right], & R - D < r < R + D \\ 0, & r > R + D \end{cases}$$

$$b_{ij} = (1 + \beta^n \zeta_{ij}^n)^{-1/2n} ,$$

$$\zeta_{ij} = \sum_{k \ (\neq i, j)} f_C(r_{ik}) g(\theta_{ijk}) \exp[\lambda_3^3 (r_{ij} - r_{ik})^3] , \qquad (1d)$$

(1c)

$$a_{ij} = (1 + \alpha^n \eta_{ij}^n)^{-1/2n} ,$$

$$\eta_{ij} = \sum_{k \ (\neq i, i)} f_C(r_{ik}) \exp[\lambda_3^3 (r_{ij} - r_{ik})^3] .$$
(1e)

 $g(\theta) = 1 + c^2/d^2 - c^2/[d^2 + (h - \cos\theta)^2]$

Results comparison

		Tersoff (T3) New potential					
Properties	Target values (experimental)	Lattice parameters(Å)					
		5.43 Å	10.86 Å	108.6 Å	1086 Å		
C ₁₁ (GPa)	165.7	142.5 (14)	137.0 (17)	134.86 (18.6)	136.6 (17.5)		
C ₁₂ (GPa)	63.9	75.4 (18)	70.0 (9.7)	68.13 (6.63)	73.5 (15)		
C ₄₄ (GPa)	79.6	69 (13.3)	67.42 (15)	67 (15.8)	64.8 (18.6)		
B (GPa)	98	98 (0.0)	98.5 (0.6)	90.37(7.7)	94.5 (3.5)		
Lattice E (ev)	-37.36 (5.43Å) -298.88 (10.86Å) -298880 (108.6Å) -298880000 (1086Å)	-37.04(0.9)	-289.4 (0.14)	298387 (0.1)	-298935530(0.05)		
Atomic mass	28.0855	28.0855	224.684	224684	224684000		

Silicon nanowires Simulation detail

Supercell size	5.43 Å	10.86 Å	108.6 Å	1086 Å
4x4x32	2.17x2.17x17.36 nm	4.34x4.34x34.8 nm	43x43x348 nm	0.43x0.43x3.48µm
	(4096)	(4096)	(4096)	(4096)
8x8x32	4.34x4.34x17.36 nm	8.7x8.7x34.8 nm	87x87x348 nm	0.87x0.87x3.48µm
	(16384)	(16384)	(16384)	(16384)
16x16x32	8.7x8.7x17.36 nm (65536)	17.4x17.4x34.8 nm (65536)	174x174x348 nm (65536)	1.74x1.74x3.48µm (65536)

- Applying tensile load constant strain rates: 0.01%/step and 0.001%/step
- NST ensemble (Constant particles, temperature, stress)
- Temperature: 300K, Nose-Hoover thermostat

Simulation results between 5.43 and 10.86Å equivalent lattice

(a) strain rate 0.01%/step

(b) strain rate 0.001%/step

Dimension: 4.34 x 4.34 x 17.36 nm

Fracture results between 5.43 and 10.86Å equivalent lattice

Dimension: 4.34 x 4.34 x 17.36 nm strain rate 0.001%/step

Statistical analysis: Coefficient of correlation (R)

$$R = \sqrt{\frac{SSR}{SSTO}} = \sqrt{1 - \frac{SSE}{SSTO}}$$

$$SSR = \sum_{i} (\hat{Y}_{i} - \overline{Y})^{2}$$
: Regression sum of square, where \overline{Y} : mean value, \hat{Y}_{i} : value from the fitted line

 $SSE = \sum_{i} (Y_i - \hat{Y}_i)^2$: Error sum of square

SSTO = SSE + SSR: Total sum of square

	Predictor variables			
Properties	Diameter	Surface area	Volume	Surface to volume ratio
Young's modulus	0.14	0.10	0.15	-0.74
Fracture stress	0.30	0.25	0.26	-0.85

- The surface to volume ratio is most critical factor

Young's modulus transition diameter (Si nanowire)

Discrepancy b/w current MD and experiments

-Current MD predicts 4-30nm for transition diameter (Park et al., MRS bulletin, 34, 2009)

-Experiments measured100nm for transition diameter (Li et al. Appl.Phys.Lett, 83,2003 qnd Han et al. adv. Mater.,19, 2007)

-Our simulation predicted around 100nm for transition diameter

Polysilicon simulation detail (Number of atoms and sizes)

	5.43 Å	10.86 Å	108.6 Å	1086 Å
8 grains	49356	49356	49356	49356
	(101x101x101 Å)	(202x202x202 Å)	(2020x2020x2020 Å)	(20200x20200x20200 Å)
64 grains	48058	48058	48058	48058
	(101x101x101 Å)	(202x202x202 Å)	(2020x2020x2020 Å)	(20200x20200x20200 Å)

- Constructed bulk polysilicon and surfaced polysilicon
- Applying tensile load with constant strain rates: 0.01%/step and 0.001%/step
- NST ensemble (Constant particles, temperature, stress)
- Temperature: 300K, Nose-Hoover thermostat

Number of grain and surface effect on properties

- With the same surface to volume ratio (same dimension), number of grain changes the Young's modulus: Grain size effect

Comparison with experiments

- -Koskinen et al. measured fracture stress with various grain size
- Inverse Hall-Petch mechanism
- Our results agree with Koskinen's experiments

- Our fracture stresses are converted assuming typical experimental strain rate 2E-3/sec

$$\frac{\sigma}{\sigma_0} = \left(\frac{\dot{\mathcal{E}}}{\dot{\mathcal{E}}_0}\right)^m$$

 σ : stress, $\dot{\mathcal{E}}$: strain rate, m: strain rate sensitivity index ($0.0474 \le m \le 0.112$, avgerge m = 0.079)

Limit of surface and grain size effects on polysilicon

- Grain size effect and surface effect is decreasing and converge to 0!!
- About 1 μm of the grain size and $2^3 \, \mu m^3$ of specimen size are the limit above which the Young's modulus and fracture stress is not influenced by grain size as well as surface for polysilicon
 - Agree with experiments by Fancher et al., J. Mater. Sci., 36, 2001,

Fracture transition from brittle to ductile with surfaces

- (a) bulk polysilicon
- (b) surfaced polysilicon

101 x 101 x 101 Å 8 grain polysilicon with strain rate 0.001%/step

- -Surfaces make materials more ductile when compared to bulk materials
- -Slip induced fracture is observed inside grain

Fracture behaviors for equivalent lattices

Intergranula vs. transgranula depending on strain rate

Conclusion

- By using equivalent crystal lattice method,
 - Time step increased about factor of 500 (From 0.001 to 0.5fs)
 - Length scale increased factor of 200 (5.43 Å to 1086 Å)
- The surface to volume ratio is the most important factor at nanometer and micron scale
- MD simulation results are more close to experiments if actual specimen dimension is used for MD simulations
 - Young's modulus transition diameter (Si nanowire)

Conclusion

- MD simulations of polysilicon with grain sizes ranging from 3.4nm to 1.3 μ m are made possible using equivalent lattices
- •Inverse Hall-Petch mechanism is observed for polysilicon
 - Agrees with experiments, opposite to metals and alloys
- The Young's modulus is not influenced by grain size when grain size is larger than 7nm for bulk polysilicon
 - Verified by DFT calculations
- The Young modulus is strongly influenced by grain size for surfaced polysilicon
- •The existence of surfaces make materials more ductile when compared to bulk materials

