Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Fri May 28 15:35:55 2021 Program finished at Fri May 28 20:36:44 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3240562522

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	*	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	*	*	*	0	0	0	0	0	0	0	0	0
3 PortRen	0	*	*	*	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	*	*	*	0	0	0	0	0	0	0
5 BodegaH	0	0	0	*	*	*	0	0	0	0	0	0
6 Davenpo	0	0	0	0	*	*	*	0	0	0	0	0
7 VistaDe	0	0	0	0	0	*	*	*	0	0	0	0
8 HazardR	0	0	0	0	0	0	*	*	*	0	0	0
9 Refugio	0	0	0	0	0	0	0	*	*	*	0	0
10 Carpint	0	0	0	0	0	0	0	0	*	*	*	0

11 WhitePo		0	0	0	0	0	0	0	0	0	*	*	*	
12		0	0	0	0	0	0	0	0	0	0	*	*	
12	,	U	U	U	U	U	U	U	U	U	U			
Order of param	otors:													
1	Θ_1							~d	ienla	yed:				
2	Θ_2^1								-	yed:				
3	Θ_3								-	yed:				
4	Θ_4^3									yed:				
5	Θ_5								-	yed:				
6	Θ_6									yed:				
7	Θ_7^6									yed:				
8	Θ_8									yed:				
9	Θ_9^8									yed:				
10	Θ_{10}									yed:				
11	Θ_{11}^{10}									yed:				
12	Θ_{12}^{11}									yed:				
13	$M_{2->}^{12}$. 1							-	yed:				
24	$M_{1->}^{2->}$									yed:				
25	$M_{3->}$									yed:				
36	$M_{2->}^{3->}$							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
37	$M_{4->}^{2->}$							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
48	$M_{3->}$							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
49	M _{5->}							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
60	$M_{4->}$							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
61	M _{6->}							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
72	$M_{5->}$							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
73	M _{7->}							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
84	M _{6->}							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
85	$M_{8->}$							<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
96	M _{7->}								-	yed:				
97	M _{9->}								-	yed:				
108	M _{8->}	>9							-	yed:				
109	M ₁₀₋	->9							-	yed:				
120	M _{9->}	>10							-	yed:				
121	M ₁₁₋	->10)						-	yed:				
132	M ₁₀₋	->11	l						-	yed:				
133	M ₁₂₋	->11	l						-	yed:				
144	M ₁₁₋	->12	2					<d< td=""><th>ispla</th><th>yed:</th><td>></td><td></td><td></td><td></td></d<>	ispla	yed:	>			
Mutation rate an	nong loci:													Mutation rate is constan
Analysis stret														Daniel Color
Analysis strateg	y:													Bayesian inferenc
		_												
									_					

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 Μ Exp window $0.000100 \quad 100000.000000 \quad 1000000.000000 \quad 100000.000000$ 500

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)100

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

Print data:

outfile.txt
bayesfile

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	10
12	1	0
Total of all populations	1	184

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02666
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01783
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01961
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02618
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00921
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01773
1	Θ_{7}	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02407
1	Θ_{8}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01876
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02092
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00460
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01033
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01403
1	M _{2->1}	78000.0	0.00088	105000.0	118000.0	132000.0	97000.0	80006.2
1	M _{1->2}	30000.0	94000.0	105000.0	114000.0	124000.0	79000.0	77724.5
1	$M_{3->2}$	42000.0	52000.0	67000.0	80000.0	94000.0	63000.0	49428.2
1	M _{2->3}	16000.0	24000.0	39000.0	52000.0	102000.0	49000.0	53556.4
1	$M_{4->3}$	16000.0	58000.0	81000.0	94000.0	110000.0	73000.0	67198.5
1	$M_{3->4}$	0.0	0.0	7000.0	16000.0	86000.0	45000.0	40180.4
1	M _{5->4}	0.0	0.0	17000.0	36000.0	86000.0	37000.0	35773.6
1	M _{4->5}	0.0	0.0	1000.0	14000.0	18000.0	19000.0	60908.7
1	M _{6->5}	32000.0	44000.0	59000.0	78000.0	112000.0	71000.0	70681.6
1	M _{5->6}	10000.0	26000.0	39000.0	48000.0	70000.0	41000.0	39956.6
1	M _{7->6}	46000.0	64000.0	75000.0	0.00088	110000.0	79000.0	78497.3
1	M _{6->7}	0.0	0.0	5000.0	16000.0	24000.0	79000.0	69053.9
1	M _{8->7}	82000.0	94000.0	111000.0	126000.0	138000.0	105000.0	95183.7
1	M _{7->8}	50000.0	84000.0	105000.0	120000.0	134000.0	99000.0	95185.2
1	M _{9->8}	66000.0	76000.0	93000.0	106000.0	118000.0	85000.0	68054.2
1	M _{8->9}	18000.0	32000.0	49000.0	68000.0	78000.0	61000.0	72080.9
1	M _{10->9}	44000.0	86000.0	105000.0	122000.0	140000.0	101000.0	95470.3
1	M _{9->10}	40000.0	100000.0	121000.0	136000.0	182000.0	115000.0	109441.5
1	M _{11->10}	14000.0	70000.0	87000.0	102000.0	110000.0	79000.0	67947.9
1	M _{10->11}	4000.0	48000.0	65000.0	80000.0	92000.0	59000.0	52442.3
1	M _{12->11}	0.0	0.0	1000.0	16000.0	56000.0	35000.0	53575.9
1	M _{11->12}	40000.0	52000.0	73000.0	96000.0	574000.0	93000.0	210772.8

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 15:35:55]

Citation suggestions:

 Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 15:35:55]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2176.749044	(1a)
	-2099.565824	(1b)
Harmonic mean	-2078.499911	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	1166/4447	0.26220
Θ_2	1453/4458	0.32593
Θ_3^-	1725/4355	0.39610
Θ_{A}	1036/4512	0.22961
) ₅	1570/4469	0.35131
06	1623/4449	0.36480
) ₇	1092/4422	0.24695
) ₈	1282/4483	0.28597
$\mathbf{p}_{\mathbf{q}}$	1466/4329	0.33865
) ₁₀	1058/4534	0.23335
211	1150/4311	0.26676
12	2792/4484	0.62266
1 2->1	4372/4372	1.00000
1 1−>2	4413/4413	1.00000
$M_{3->2}$	4396/4396	1.00000
$1 \frac{3}{2-3}$	4405/4405	1.00000
A _{4->3}	4407/4407	1.00000
1 _{3->4}	4423/4423	1.00000
1 5->4	4334/4334	1.00000
1 4->5	4275/4275	1.00000
1 6->5	4191/4191	1.00000
1 5->6	4509/4509	1.00000
1 7->6	4410/4410	1.00000
1 6->7	4386/4386	1.00000
1 8->7	4455/4455	1.00000
1 7->8	4472/4472	1.00000
1 _{9->8}	4279/4279	1.00000
1 8->9	4351/4351	1.00000
A 10->9	4435/4435	1.00000
A 9->10	4410/4410	1.00000
A 11->10	4386/4386	1.00000
1 10->11	4318/4318	1.00000
10->11	4463/4463	1.00000
11->12	4524/4524	1.00000
Genealogies	43343/150133	0.28870

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.86198	240.22
Θ_2	0.79472	344.48
Θ_3^-	0.64901	678.18
Θ_4	0.88259	186.98
) ₅	0.70545	565.75
06	0.73689	499.00
) ₇	0.84562	251.60
) ₈	0.82395	293.63
$\mathbf{p}_{\mathbf{q}}$	0.75524	426.28
) ₁₀	0.78821	391.77
) ₁₁	0.81409	325.15
12	0.52060	1099.43
1 ¹² _{2->1}	0.73407	461.06
1 1−>2	0.83275	275.11
$M_{3->2}$	0.69245	544.81
1 2->3	0.82891	280.62
1 4->3	0.84254	259.11
1 3->4	0.78316	379.49
1 5->4	0.90160	155.13
1 4->5	0.85203	242.52
1 6->5	0.76798	401.94
1 5->6	0.89996	158.28
1 7->6	0.85603	236.03
1 6->7	0.78982	354.41
1 8->7	0.85933	227.49
1 7->8	0.84285	260.24
Λ	0.77997	372.47
1 9->8 1 _{8->9}	0.76828	409.10
1 0->9	0.84805	246.56
10->9 1 9->10	0.90773	147.90
1 11->10 1 11->10	0.87838	195.68
11->10	0.89171	174.51
10->11	0.85296	238.33
12->11 11->12	0.90793	145.40
n[Prob(D G)]	0.99384	9.26

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run