Artificial Intelligence

Neural Networks

Lesson 9: Deep Learning

Vincenzo Piuri

Università degli Studi di Milano

Contents

- Motivation
- Main problems
- Overfitting
- Vanishing gradient
- Auto-encoders
- Stacked auto-encoders
- Convolutional neural networks (CNNs)

Motivation (1)

Universal Approximation Theorem

- Any continuous function can be approximated arbitrarily well with a three-layer perceptron
- We can consider multi-layer perceptrons with only one hidden layer?

However

- No information about the number of hidden neurons to achieve a desired approximation accuracy
- More hidden layers may enable to achieve the same approximation quality with a significantly lower number of neurons

Motivation (2)

- *n*-bit parity function
 - Output is 1 if an even number of inputs is 1; output is 0 otherwise
 - Multi-layer perceptron with only one hidden layer
 - One hidden layer with 2^{n-1} neurons
 - Number of hidden neurons grows exponentially with the number of inputs
 - Multiple hidden layers
 - If more hidden layers are admissible, linear growth is possible

Motivation (3)

• *n*-bit parity function

- The number of neurons increases to n(n + 1) - 1

Motivation (4)

- Training data sets are necessarily limited in size
 - Complete training data for an n-ary Boolean function has 2^n training examples
 - Data sets for practical problems usually contain much fewer sample cases
 - Using more than one hidden layer promises in many cases to reduce the number of needed neurons

Motivation (5)

- Deep Learning
 - More than one hidden layer
 - Depth: the length of the longest path in the network graph

Main Problems

- Overfitting
 - Increased number of adaptable parameters
- Vanishing gradient
 - The gradient tends to vanish if many layers are backpropagated through
 - Learning in the early hidden layers can become very slow

Overfitting (1)

- Overfitting: possible solutions
 - Weight decay
 - Prevents large weights and thus an overly precise adaptation
 - Sparsity constraints to avoid overfitting
 - Restricted number of neurons in the hidden layers
 - Only few hidden neurons should be active (on average)

Overfitting (2)

- Dropout training
 - Some units are randomly omitted from the input/hidden layers during training

Vanishing Gradient (1)

- Vanishing gradient: possible solutions
 - In principle, a small gradient may be counteracted by a large weight
 - However a large weight saturates the activation functions
 - In most cases, the gradient in the first hidden layer (were the inputs are processed) becomes the smaller

Vanishing Gradient (2)

- Other activation functions limit the problem of vanishing gradient
 - Rectified linear units (ReLUs)

rectified maximum/ramp function:

$$f_{\text{act}}(\text{net}, \theta) = \max\{0, \text{net} - \theta\}$$

Vanishing Gradient (3)

Softplus function (more complex)

softplus function:

Note the scale!

$$f_{\rm act}({\rm net}, \theta) = \ln(1 + e^{{\rm net} - \theta})$$

- Alternatives
 - Leaky Rectified Linear Units: parametric slope
 - Noisy Rectified Linear Units: adding Gaussian noise

Auto-Encoders (1)

- An auto-encoder is a 3-layer perceptron that maps its inputs to approximations of these inputs
 - The hidden layer forms an encoder into some form of internal representation
 - The output layer forms a decoder that (approximately) reconstructs the inputs

Auto-Encoders (2)

- An auto-encoder/decoder (left), of which only the encoder part (right) is later used
 - x_i are the given inputs, $\hat{x_i}$ are the reconstructed inputs, f_i are the constructed features
 - Training is conducted with error backpropagation

Auto-Encoders (3)

- The hidden layer is expected to construct features
 - Features capture the information contained in the input in a compressed form (encoder), so that the input can be well reconstructed from it (decoder)

Auto-Encoders (4)

• Problem

 If there are as many (or even more) hidden units as there are inputs, it is likely that it will merely pass through its inputs to the output layer

Auto-Encoders (5)

Solutions

- Sparse auto-encoders
 - There should be (considerably) fewer hidden neurons than there are inputs
 - Few hidden neurons force the auto-encoder to learn relevant features
- Sparse activation scheme
 - The number of active neurons in the hidden layer is restricted to a small number
- Denoising auto-encoders
 - Add noise (random variations) to the input

Stacked Auto-Encoders (1)

- Stacked auto-encoders
 - Build network layer by layer,
 train only newly added layer in each step

Stacked Auto-Encoders (2)

 In the first step, auto-encoder is trained for the raw input features. The hidden layer constructs primary features useful for reconstruction

Stacked Auto-Encoders (3)

 In the second step, auto-encoder is trained for the obtained feature data set. The hidden layer constructs secondary features useful for reconstruction

Stacked Auto-Encoders (4)

 A classifier/predictor for the output is trained from the secondary feature set

Stacked Auto-Encoders (5)

 Encoder parts of the trained auto-encoders are stacked and the resulting network is fine-tuned with error backpropagation

Convolutional Neural Networks (1)

- Multilayer perceptrons with several hidden layers built in the way described have been applied very successfully for handwritten digit recognition
 - The handwriting has already been preprocessed in order to separate the digits
 - Features are localized in the image

Convolutional Neural Networks (2)

- How to use similar networks also for more general applications
 - Recognizing whole lines of handwriting
 - Analyzing photos to identify their parts as sky,
 landscape, house, pavement, tree, human being etc.
 - It is advantageous that the features constructed in hidden layers are not localized to a specific part of the image

Convolutional Neural Networks (3)

- Convolutional Neural Nets (CNNs) are a special form of deep learning multi-layer perceptron
 - Inspired by the human retina
 - Sensory neurons have a receptive field: a limited region in which they respond to a (visual) stimulus.

Convolutional Neural Networks (4)

 Each neuron of the (first) hidden layer is connected to a small number of input neurons that refer to a contiguous region of the input image (left).

Convolutional Neural Networks (5)

- Connection weights are shared
- The input field is "moved" step by step over the whole image (right)
- Equivalent to a convolution with a small size kernel

Convolutional Neural Networks (6)

- Neurons in the successor layer apply maximum pooling over small regions
- Pooling maintains knowledge of the features, not of their location in the image
- Further layers allow for high-level features