Aula 1: Introdução ao Laboratório de Física I

Belarmino Luís Matsinhe

21 de março de 2023

Conteúdo da aula

- Objectivos e funcionamento
- Estrutura das aulas
- Uso de equipamentos
- Algarismos significativos
- 5 Erros de medição e sua propagação

- Obtenção, tratamento e análise de resultados laboratoriais.
- Introdução ao uso de instrumentos de medição e metodologias de apresentação de resultados.

Funcionamento

Número de actividades laboratoriais

O semestre é composto por (4) Experiências Laboratoriais:

Matéria abrangida

- Cinemática de um ponto material
- ② Dinâmica de um ponto material

Funcionamento

Seguência de actividades laboratoriais

- Medição e propagação de erro
- Uso de nónio
- Movimento retilíneo de uma partícula
- Movimento oscilatório de uma partícula
- Avaliação experimental da Lei de Hook

Estrutura das aulas

Actividades laboratoriais na sala de Aula

- Cada Aula tem duração de 2 horas
- A turma deve ser dividida em dois grupos e subgrupos
- 3 Cada grupo deve ter $\frac{N}{5}$ elementos e mesma razão de elementos de subgrupos

Algarismos significativos

São algarismos significativos todos aqueles contados, da esquerda para a direita, a partir do primeiro algarismo diferente de zero.

Exemplos:

- 45,30cm > tem quatro algarismos significativos;
- 0,0595m > tem três algarismos significativos; e
- 0,0450kg > tem três algarismos significativos.

Ao se efetuar mudanças de unidade o número de algarismos significativos não se altera.

Algarismos significativos

$$4,32 \text{ cm} + 2,1 \text{ cm} = ?$$

Resultado:

6,4 cm

Ao efetuar a soma de resultados deve-se expressar valores que sejam compatíveis com o valor de menor número de algarismos significativos (dentre os originalmente obtidos).

Erros de medição e sua propagação

Em alguns casos uma variável do experimento é medida muitas vezes, tornando a aferição de um processo mais precisa. Deve-se então expressar o valor médio e a incerteza como o desvio da média.

Ex: Medida do tempo até um projétil lançado atingir o chão

Lançamento Tempo (s) 1 1,93 2 1,89 3 2,01 4 1,95 5 2,02	$t_{\text{médio}} = \frac{(t_1 + t_2 + t_3 + t_4 + t_5)}{5}$ $t_{\text{médio}} = \bar{t} = 1,96 \text{ s}$
--	--

Incerteza = desvio padrão da média:

$$\Delta t = 0.0245 \, \text{s}$$

$$\Delta u = \left[\frac{1}{n(n-1)} \sum_{i=1}^{n} (u_i - \bar{u})^2 \right]^{1/2}$$
 Declare então: $t = (1.96 \pm 0.02) \text{ s}$

Erros de medição e sua propagação

Em muitos casos não é possível aferir diretamente o valorda incerteza de uma medida cujo resultado é obtido a partir de um grupo de variáveis (e valores).

$$\Delta Y = \sqrt{\left(\frac{\partial Y}{\partial a}\right)^2 \Delta a^2 + \left(\frac{\partial Y}{\partial b}\right)^2 \Delta b^2 + \left(\frac{\partial Y}{\partial c}\right)^2 \Delta c^2}$$

$$para$$

$$V = \pi r^2 h \qquad \rightarrow \qquad \frac{\partial V}{\partial r} = 2\pi r h \qquad \frac{\partial V}{\partial h} = \pi r^2$$

$$\Delta V = \sqrt{(2\pi r h)^2 \Delta r^2 + (\pi r^2)^2 \Delta h^2}$$

Erros de medição e sua propagação

Número de Medições	Níveis de confiança (P_k)				
	0.90	0 ,95	0.99	0.999	
2	6.314	12.71	63.66	636.6	
3	2.920	4.303	9.925	31.60	
4	2.353	3.182	5.841	12.94	
5	2.132	2.776	4.604	8.610	
6	2.015	2.571	4.032	6.859	
7	1.943	2.447	3.707	5.405	
8	1.895	2.365	3.499	5.041	
9	1.860	2.306	3.355	4.781	
10	1.833	2.262	3.250	4.587	
11	1.812	2.228	3.169	4.437	
12	1.796	2.201	3.106	4.318	
13	1.782	2.179	3.055	4.221	
14	1.771	2.160	3.012	4.140	
15	1.761	2.145	2.977	4.073	
16	1.753	2.131	2.947	4.015	
17	1.746	2.120	2.921	3.965	
18	1.740	2.110	2.898	3.922	
19	1.734	2.101	2.878	3.883	
20	1.729	2.093	2.861	3.850	
21	1.725	2.086	2.845	3.819	

FIM da Aula

