

4 pts

Les deux parties sont indépendantes.

Partie A:

Soit $n \in \mathbb{N}^*$ et l'équation dans $\mathbb{Z} \times \mathbb{Z}$:

$$(E): 2x^3 + 7y = 2022^n$$

- Montrer que si (x,y) est solution de (E) alors $2x^3 \equiv (-1)^n \pmod{7}$. En déduire les restes possibles de $2x^3$ modulo 7.
- 2 Soit $a \in \mathbb{Z}$. Déterminer les restes possibles de $2a^3$ modulo 7.
- $\boxed{3}$ Déterminer l'ensemble des solutions de (E).

Partie B:

Soit p un nombre premier supérieur ou égal à 7. On pose $A = p^4 - 1$.

- $\langle 1 \rangle$ Montrer que $A \equiv 0 \pmod{3}$.
- $\langle 2 \rangle$ Montrer que $A \equiv 0 \pmod{16}$.
- $\langle 3 \rangle$ Montrer que 240 divise A.

Exercice 2

6 pts

On considère la fonction f définie sur $\mathbb R$ par : $f(x) = x3^{-x}$ et on désigne par $\mathscr C_f$ sa courbe représentative dans le plan rapporté à un repère orthonormé $(0; \overline{i}, \overline{j})$.

- (A) (1) (a) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement.
 - **b** Calculer $\lim_{x \to +\infty} f(x)$. Interpréter.
 - (2) (a) Montrer que pour tout réel x, $f'(x) = 3^{-x} f(x) \ln 3$.
 - **b** Dresser le tableau de variation de f et préciser la valeur maximale de f.
 - 3 Soit T la tangente à (C_f) au point d'abscisse O. Montrer que (C_f) est au dessous de T.
 - 4) Dans la figure ci-jointe (voir annexe 1), on donne les courbes Γ_1 et Γ_2 représentatives respectives des fonctions $x\mapsto \frac{1}{x}$ et $x\mapsto \ln x$.

On note (x_A, y_A) les coordonnées du point A de \mathscr{C}_f d'abscisse $\frac{1}{\ln 3}$.

- (a) Construire le point de coordonées (xA, 0).
- **b** Tracer T.
- c Vérifier que $\ln y_A = -1 + \ln(x_A)$ puis construire A.
- d Tracer (Cf).
- B Pour tout entier naturel $n \ge 1$, on pose : $I_n = \int_1^n f(t)dt$.

- 1) (a) Vérifier que : $I_n = \frac{1}{\ln 3} \left(\int_1^n 3^{-x} dx + f(1) f(n) \right)$
 - **(b)** Montrer que : $\int_{1}^{n} 3^{-x} dx = \frac{1}{3 \ln 3} \frac{1}{3^{n} \ln 3}$.
 - c Calculer $\lim_{n \to +\infty} I_n$.
- 2) Pour tout $n \ge 1$, on note $S_n = \sum_{k=1}^n k3^{-k}$.
 - (a) Montrer que pour tout entier $k \ge 1$,

$$f(k+1) \le \int_k^{k+1} f(t) dt \le f(k).$$

b Déduire que pour tout entier $n \ge 2$,

$$S_n - \frac{1}{3} \le I_n \le S_n - \frac{n}{3^n}$$

- © Montrer que la suite (S_n) est convergente et déterminer un encadrement de sa limite
- (d) Montrer que pour tout $n \ge 1$, $S_{n+1} \frac{1}{3} = \frac{1}{3} \left(S_n + \sum_{k=1}^n \frac{1}{3^k} \right)$.
- (e) Déduire la valeur de l.

Exercice 3

4 pts

Le plan est muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$.

Soit f la similitude indirecte qui à tout point M d'affixe z associe le point M' d'affixe z' tel que : $z' = -2i\overline{z} + 1 + 2i$

- - Montrer que la similitude indirecte f est de centre I d'affixe 1 et d'axe la droite Δ d'équation y = 1 x.
- On définit la suite des points (M_n) par $\begin{cases} M_0 \text{ est le point d'affixe 2.} \\ \text{Pour tout } n \in \mathbb{N}; \ M_{n+1} = f(M_n). \end{cases}$

On désigne par z_n l'affixe du point M_n .

- $extcolor{lem}{ extcolor{lem}{ }}$ Caractériser $f \circ f$ puis donner son écriture complexe.
- **ⓑ** Montrer par récurrence que pour tout n ∈ IN; $z_{2n} = 1 + 4^n$.
- En déduire que pour tout $n \in \mathbb{N}$; $z_{2n+1} = 1 2 \times 4^n i$.
- △ Montrer que pour tout $n \in \mathbb{N}$; les droites (IM_{2n}) et (IM_{2n+1}) sont perpendiculaires.

Exercice 4

(5) 70 min

6 pts

Le plan est muni d'un repère orthonormé $(O; \overrightarrow{i}, \overrightarrow{j})$. On considère la fonction f définie sur $[0, +\infty[$ par $f(x) = \sqrt{1 - e^{-x}}$.

- \triangle Montrer que f possède une fonction réciproque g définie sur [0,1].
 - Montrer que pour tout $x \in [0, 1[; g(x) = -\ln(1 x^2)]$.
 - α Montrer que g(x) = x admet sur [0,1] une unique solution α et que : $\alpha \in [0,7; 0,8].$
 - \triangle On donne en annexe la représentation graphique C de la fonction f dans le repère $(O; \overrightarrow{i}, \overrightarrow{j})$, la première bissectrice Δ et le point $A(\alpha, \alpha)$. On désigne par C' la courbe g. Tracer C' dans le même repère.
- $\operatorname{sur}\left[0,+\infty\right[\operatorname{par}F(x)=\int_0^x f(t)dt.$
 - Montrer que φ est dérivable sur [0,1[et que $\varphi'(x)=\frac{2x^2}{1-x^2}.$
 - \triangle Déterminer les réels a, b et c tels que pour tout [0,1],

$$\frac{2x^2}{1-x^2} = a + \frac{b}{1+x} + \frac{c}{1-x}.$$

- En déduire que $\varphi(x) = -2x + \ln\left(\frac{1+x}{1-x}\right); x \in [0,1[.$
- \triangle On désigne par \mathcal{A} l'aire de la région du plan située entre les courbes C et C' et les droites d'équations respectives x = 0 et $x = \alpha$.

Montrer que $\mathcal{A} = 2\left(\varphi(\alpha) - \frac{\alpha^2}{2}\right)$.

Soit $n \ge 1$. On pose pour tout $t \in [0,1[$, $S_n(t) = 2\sum_{k=1}^n t^{2k-1}$.

- Montrer que pour tout $t ∈ [0,1[, S_n(t) = (1-t^{2n})g'(t).$
- \bigcirc Montrer que pour tout $0\leqslant t\leqslant \frac{\sqrt{3}}{3},\ \left(1-\frac{1}{3^n}\right)g'(t)\leqslant S_n(t)\leqslant g'(t).$

