ES-S1 2019-2020

Correction - Algèbre -

On se place dans $\mathbb{R}[X]$ muni du produit scalaire défini par :

$$\forall (P,Q) \in E^2, \langle P,Q \rangle = \int_{-1}^1 P(t)Q(t)dt$$

On considère l'endomorphisme Φ de $\mathbb{R}[X]$ défini par :

$$\forall P \in \mathbb{R}[X], \Phi(P) = (X^2 - 1)P'' + 2XP'$$

où l'on note respectivement P' ou P'(X), ainsi que P'' ou P''(X) les dérivées premières et deuxième de P=P(X).

Pour $n \in \mathbb{N}$, on note $U_n = (X^2 - 1)^n$ et $L_n = \frac{1}{2^n n!} U_n^{(n)}$, où $U_n^{(n)}$ désigne la dérivée n-ième de U_n . Les polynômes L_n sont appelés polynômes de Legendre.

Partie I - Quelques résultats généraux

- 1. Déterminer L_0, L_1 et vérifier que $L_2 = \frac{1}{2}(3X^2 1)$. On a : $U_0 = X^0$ donc $L_0 = X^0$; $U_1 = X^2 1$ donc $L_1 = X$ et $U_2 = X^4 2X^2 + 1$ donc $L_2 = \frac{1}{8}(12X^2 4) = \frac{1}{2}(3X^2 1)$.
- 2. Justifier que L_n est de degré n, et préciser son coefficient dominant. Le terme de plus haut degré de U_n est X^{2n} donc en dérivant n fois, on obtient celui de L_n qui est $\frac{1}{2^n n!} \frac{(2n)!}{n!} X^n$, et par suite $deg(L_n) = n$ et le coefficient dominant de L_n est $a_n = \frac{(2n)!}{2^n (n!)^2}$.
- **3.** Montrer que la famille (L_0, \dots, L_n) est une base de $\mathbb{R}_n[X]$. La famille (L_0, \dots, L_n) est échelonnée en degrés, donc libre. De plus son cardinal est égal à $n+1 = \dim(\mathbb{R}_n[X])$ donc c'est une base de $\mathbb{R}_n[X]$.

Partie II - Etude des éléments propres de Φ

- 1. Justifier que $\mathbb{R}_n[X]$ est stable par Φ .
 - Φ étant linéaire, il suffit de prouver que pour tout $k \in [0, n], \Phi(X^k) \in \mathbb{R}_n[X]$. On a :
 - $\bullet \ \Phi(X^0) = 0 \in \mathbb{R}_n[X].$
 - Si $n \ge 1, \Phi(X) = 2X \in \mathbb{R}_1[X], \text{ donc } \Phi(X) \in \mathbb{R}_n[X].$
 - Si $n \ge 2$, pour $k \in [2, n]$, $\Phi(X^k) = k(k+1)X^k k(k-1)X^{k-2} \in \mathbb{R}_k[X]$, donc $\Phi(X^k) \in \mathbb{R}_n[X]$. On a montré que $\forall k \in [0, n]$, $\Phi(X^k) \in \mathbb{R}_n[X]$ donc $\mathbb{R}_n[X]$ est stable par Φ .

On note Φ_n l'endomorphisme de $\mathbb{R}_n[X]$ induit par Φ , c'est-à-dire l'endomorphisme de $\mathbb{R}_n[X]$ défini pour tout $P \in \mathbb{R}_n[X]$ par $\Phi_n(P) = \Phi(P)$.

2. On note $M = (m_{i,j})_{0 \le i,j \le n}$ la matrice de Φ_n dans la base canonique de $\mathbb{R}_n[X]$. Montrer que M est triangulaire supérieure et que : $\forall k \in [0, n], m_{k,k} = k(k+1)$. Des résultats établis dans la question précédente, il vient :

$$M = \begin{pmatrix} 0 & 0 & -2 & & & (0) \\ 0 & 2 & 0 & \ddots & & \\ & & 6 & \ddots & -n(n-1) \\ & (0) & & \ddots & 0 \\ & & & n(n+1) \end{pmatrix}$$

3. En déduire que Φ_n est diagonalisable.

A partir de la matrice précédente, on obtient immédiatement le polynôme caractéristique de Φ_n est

$$\chi_{\Phi_n} = \prod_{k=0}^n (X - k(k+1));$$
 le spectre de Φ_n est donc $\{k(k+1), k \in [0, n]\}.$

Comme la suite $(k(k+1))_{k\in\mathbb{N}}$ est strictement croissante, ces n+1 valeurs propres sont 2 à 2 distinctes donc χ_{Φ_n} est scindé à racines simples, et Φ_n est diagonalisable.

Spé PT Page 1 sur 4

- **4.** Vérifier que : $\forall k \in [0, n], (X^2 1)U_k' 2kXU_k = 0.$ Pour $k \ge 1$, on a : $U_k' = 2kX(X^2 1)^{k-1}$ donc $(X^2 1)U_k' = 2kX(X^2 1)^k = 2kXU_k.$ Pour k=0 l'égalité est immédiate car les deux membres sont nuls.
- 5. Soit $k \in [0, n]$. En dérivant (k+1) fois la relation établie dans la question précédente, montrer que :

$$(X^{2} - 1)U_{k}^{(k+2)} + 2XU_{k}^{(k+1)} - k(k+1)U_{k}^{(k)} = 0$$

On rappelle la formule de Leibniz : si f et g sont k fois dérivables, alors $(fg)^{(k)} = \sum_{i=0}^{k} \binom{k}{i} f^{(i)} g^{(k-i)}$

Avec la formule de Leibniz, en dérivant
$$k+1$$
 fois la formule précédente, on obtient, pour $k \ge 1$:
$$(X^2-1)U_k^{(k+2)} + 2(k+1)XU_k^{(k+1)} + 2\binom{k+1}{2}U_k^{(k)} - 2kXU_k^{(k+1)} - 2k(k+1)U_k^{(k)} = 0, \text{ soit encore : } (X^2-1)U_k^{(k+2)} + 2XU_k^{(k+1)} - k(k+1)U_k^{(k)} = 0.$$

Pour k=0 l'égalité est encore vraie car tous les termes sont nuls.

6. Montrer que pour $k \in [0, n]$, le polynôme L_k est un vecteur propre de Φ_n , et préciser la valeur propre associée. On a : $U_k^{(k)} = 2^k k! L_k$ donc en divisant par $2^k k!$ la formule précédente s'écrit :

$$(X^2 - 1)L_k'' + 2XL_k' - k(k+1)L_k = 0$$

Ainsi, $\Phi_n(L_k) = k(k+1)L_k$; comme L_k n'est pas nul, on a donc L_k vecteur propre de Φ_n associé à la valeur propre k(k+1).

7. Déduire de ce qui précède les valeurs propres et sous-espaces propres associés à Φ.

Soient λ un valeur propre de Φ , et P un vecteur propre associé. Comme P est non nul, on note $n = \deg(P)$.

On a: $\lambda P = \Phi(P) = \Phi_n(P)$ donc $\lambda \in \{k(k+1), k \in [0, n]\}$ (d'après II 3) et $\operatorname{Spec}(\Phi) \subset \{k(k+1), k \in \mathbb{N}\}$.

Réciproquement, soit λ un réel de la forme $\lambda = n(n+1)$, avec $n \in \mathbb{N}$; alors $\lambda \in \operatorname{Spec}(\Phi_n)$ donc $\lambda \in \operatorname{Spec}(\Phi)$. On a donc Spec $(\Phi) = \{n(n+1), n \in \mathbb{N}\}.$

Soient $n \in \mathbb{N}$, P un vecteur propre associé à la valeur propre n(n+1), et $N = \max(n, \deg(P))$.

Comme $\deg(P) \leq N$, on a $P \in \mathbb{R}_N[X]$, et $P \in \operatorname{Ker} \left(\Phi_N - n(n+1)\operatorname{Id}_{\mathbb{R}_N[X]}\right)$ (d'après le II 3).

De plus, d'après II 6, Ker $(\Phi_N - n(n+1) \operatorname{Id}_{\mathbb{R}_N[X]})$ est une droite vectorielle dirigée par L_n . On en déduit que $P \in \text{Vect}(L_n)$, la réciproque étant immédiate.

Ainsi, le sous-espace propre associé à n(n+1) est $Vect(L_n)$.

Partie III - Distance au sous-espace vectoriel $\mathbb{R}_n[X]$.

1. Montrer que : $\forall (P,Q) \in \mathbb{R}[X]^2, \langle \Phi(P), Q \rangle = -\int_{-1}^{1} (t^2 - 1)P'(t)Q'(t)dt$, puis que

$$\forall (P,Q) \in \mathbb{R}[X]^2, \langle \Phi(P), Q \rangle = \langle P, \Phi(Q) \rangle$$

Une intégration par parties dans le membre de droite donne, en primitivant Q' et dérivant $t \mapsto (t^2 - 1)P'(t)$:

$$-\int_{-1}^{1} (t^2 - 1)P'(t)Q'(t)dt = \left[-(t^2 - 1)P'(t)Q(t) \right]_{-1}^{1} + \int_{-1}^{1} \left(2tP'(t) + (t^2 - 1)P''(t) \right)Q(t)dt = \int_{-1}^{1} \Phi(P(t))Q(t)dt$$

En échangeant les rôles de P et Q, par commutativité du produit dans \mathbb{R} et symétrie du produit scalaire, on obtient : $\langle \Phi(P), Q \rangle = \langle P, \Phi(Q) \rangle$.

2. Montrer que la famille $(L_n)_{n\in\mathbb{N}}$ est orthogonale pour le produit scalaire $\langle \cdot, \cdot \rangle$.

On pourra utiliser la question 6 de la partie II.

Soient n et m deux entiers naturels distincts. D'après la question précédente et la question II 6 on a :

 $n(n+1)\langle L_n, L_m \rangle = \langle \Phi(L_n), L_m \rangle = \langle L_n, \Phi(L_m) \rangle = m(m+1)\langle L_n, L_m \rangle.$

Comme $n(n+1) \neq m(m+1)$, on en déduit que $\langle L_n, L_n \rangle = 0$ donc que la famille $(L_n)_{n \in \mathbb{N}}$ est orthogonale.

3. Montrer que:

$$\forall n \in \mathbb{N}^*, \forall P \in \mathbb{R}_{n-1}[X], \langle P, L_n \rangle = 0$$

Soit $n \geq 1$. D'après **I** 3, $(L_0, \dots L_{n-1})$ est une base de $\mathbb{R}_{n-1}[X]$, et d'après la question précédente L_n est orthogonal à tous les vecteurs de cette base, donc L_n est orthogonal à $\mathbb{R}_{n-1}[X]$, et donc à tout $P \in \mathbb{R}_{n-1}[X]$.

4. On admet que $||L_n||^2 = \frac{2}{2n+1}$. Pour $n \in \mathbb{N}$, on pose $Q_n = \sqrt{\frac{2n+1}{2}}L_n$. Que peut-on dire de la famille $(Q_n)_{n \in \mathbb{N}}$ pour le produit scalaire $\langle \cdot, \cdot \rangle$?

Pour $n \in \mathbb{N}$, $Q_n = \frac{L_n}{\|L_n\|}$ donc la famille $(Q_n)_{n \in \mathbb{N}}$ est orthonormée.

Spé PT Page 2 sur 4 5. Soit $P \in \mathbb{R}[X]$. Justifier qu'il existe un unique polynôme $T_n \in \mathbb{R}_n[X]$ tel que

$$d(P, \mathbb{R}_n[X]) = \inf_{Q \in \mathbb{R}_n[X]} ||P - Q|| = ||P - T_n||$$

puis justifier l'égalité:

$$(d(P, \mathbb{R}_n[X]))^2 = ||P||^2 - \sum_{k=0}^n (c_k(P))^2, \text{ où } c_k(P) = \langle P, Q_k \rangle$$

 $\mathbb{R}_n[X]$ est un sous-espace vectoriel de dimension finie de $\mathbb{R}[X]$, donc tout polynôme P admet un projeté orthogonal T_n sur $\mathbb{R}_n[X]$, qui est l'unique vecteur de $\mathbb{R}_n[X]$ vérifiant $d(P, \mathbb{R}_n[X]) = \|P - T_n\|$. De plus, comme (Q_0, \dots, Q_n) est une famille orthonomée de $\mathbb{R}_n[X]$ de cardinal égal à $\dim(\mathbb{R}_n[X])$, on en déduit

que c'est une base orthonormée, et donc que $T_n = \sum_{k=0}^n \underbrace{\langle P, Q_k \rangle}_{c_k(P)} Q_k$, puis que $\|T_n\|^2 = \sum_{k=0}^n (c_k(P))^2$.

Enfin, comme T_n et $P - T_n$ sont orthogonaux, le théorème de Pythagore donne : $||T_n||^2 + ||P - T_n||^2 = ||P||^2$, d'où $(d(P, \mathbb{R}_n[X]))^2 = ||P||^2 - \sum_{k=0}^n (c_k(P))^2$.

6. Prouver que la série $\sum (c_k(P))^2$ converge et que

$$\sum_{k=0}^{+\infty} (c_k(P))^2 \le ||P||^2$$

D'après la question précédente, on a pour tout $n \in \mathbb{N}$: $\sum_{k=0}^{n} (c_k(P))^2 \leq \|P\|^2$, donc la série à termes positifs $\sum_{k=0}^{n} (c_k(P))^2$ a ses sommes partielles majorées par $\|P\|^2$.

On en déduit qu'elle est convergente et que sa somme est majorée par $\|P\|^2$.

Partie IV - Fonction génératrice

On admet dans cette partie que : $\forall n \in \mathbb{N}^*$, $(n+1)L_{n+1} - (2n+1)XL_n + nL_{n-1} = 0$, et on considère la série entière de la variable $t : \sum L_n(x)t^n$.

On note r la racine positive du polynôme $X^2 - 2X - 1$.

- 1. Montrer par récurrence que $\forall x \in [-1, 1], \forall n \in \mathbb{N}, |L_n(x)| \leq r^n$. On pourra utiliser la relation admise au début de cette partie. Soit $x \in [-1, 1]$. Pour $n \in \mathbb{N}$, on note HR_n la propriété : $|L_n(x)| \leq r^n$.
 - On a : $|L_0(x)| = 1 \le r^0$ donc HR_0 est vraie.
 - On a : $|L_1(x)| = |x| \le 1 \le r$, car $r = 1 + \sqrt{2}$, donc HR₁ est vraie.
 - Soit $n \in \mathbb{N}^*$. On suppose que HR_n et HR_{n-1} sont vraies. On sait que $L_{n+1}(x) = \frac{2n+1}{n+1}xL_n(x) \frac{n}{n+1}L_{n-1}(x)$ donc $|L_{n+1}(x)| \le \frac{2n+1}{n+1}|x||L_n(x)| + \frac{n}{n+1}|L_{n-1}(x)| \le 2|L_n(x)| + |L_{n-1}(x)|$ donc avec l'hypothèse de récurrence, $|L_{n+1}(x)| \le 2r^n + r^{n-1} = r^{n-1}(2r+1)$. Or $r^2 2r 1 = 0$ on a donc $2r + 1 = r^2$ puis $|L_{n+1}(x)| \le r^{n+1}$ donc HR_{n+1} est vraie.

Par principe de récurrence HR_n est donc vraie pour tout $n \in \mathbb{N}$.

2. Pour $x \in [-1, 1]$, on note R(x) le rayon de convergence de la série entière $\sum L_n(x)t^n$.

Montrer que $R(x) \ge \frac{1}{r}$.

 $r \neq 0$ donc la série entière $\sum r^n t^n$ a pour rayon de convergence $\frac{1}{r}$.

Par comparaison, on déduit de la question précédente que $R(x) \ge \frac{1}{r}$.

Spé PT Page $3 \sin 4$

3. Pour $x \in [-1, 1]$ et $t \in \left] -\frac{1}{r}, \frac{1}{r} \right[$, on pose $S_x(t) = \sum_{n=0}^{+\infty} L_n(x)t^n$.

Montrer que S_x est solution sur $\left]-\frac{1}{r},\frac{1}{r}\right[$ de l'équation différentielle

$$(1 - 2tx + t^2)y' + (t - x)y = 0$$

Soit $x \in [-1,1]$. D'après le théorème de dérivation des séries entières, S_x est dérivable sur]-R(x),R(x)[donc a fortiori sur $]-\frac{1}{r},\frac{1}{r}\Big[$, et on a pour $t\in]-\frac{1}{r},\frac{1}{r}\Big[$:

$$(1 - 2tx + t^{2})S'_{x}(t) + (t - x)S_{x}(t) = (1 - 2tx + t^{2})\sum_{n=0}^{+\infty} nL_{n}(x)t^{n-1} + (t - x)\sum_{n=0}^{+\infty} L_{n}(x)t^{n}$$

$$= \sum_{n=0}^{+\infty} (n+1)L_{n+1}(x)t^{n} - 2x\sum_{n=0}^{+\infty} nL_{n}(x)t^{n} + \sum_{n=1}^{+\infty} (n-1)L_{n-1}(x)t^{n} + \sum_{n=1}^{+\infty} L_{n-1}(x)t^{n} - x\sum_{n=0}^{+\infty} L_{n}(x)t^{n}$$

$$= \sum_{n=0}^{+\infty} \left[(n+1)L_{n+1}(x) - (2n+1)xL_{n}(x) + nL_{n-1}(x) \right] t^{n} + L_{1}(x) - xL_{0}(x) = x - x = 0.$$

Finalement, pour $t \in \left] -\frac{1}{r}, \frac{1}{r} \right[$, on a bien $(1 - 2tx + t^2)S'_n(t) + (t - x)S_x(t) = 0$.

4. En déduire que : $\forall x \in [-1, 1], \forall t \in \left] -\frac{1}{r}, \frac{1}{r} \right[, \sum_{n=0}^{+\infty} L_n(x)t^n = \frac{1}{\sqrt{t^2 - 2tx + 1}}.$

Remarquons tout d'abord que le discriminant du trinôme $1-2tx+t^2$ est $\Delta=4(x^2-1)$, donc le trinôme ne s'annule pas pour $x\in]-1,1[$, il s'annule en 1 lorsque x=1, et il s'annule en -1 lorsque x=-1. Dans tous les cas, pour $x\in [-1,1]$, il ne s'annule pas sur $\left]-\frac{1}{r},\frac{1}{r}\right[$, car r>1.

On a:
$$\int \frac{x-t}{1-2tx+t^2} dt = -\frac{1}{2} \ln(1-2tx+x^2) + C$$
, avec $C \in \mathbb{R}$.

On en déduit qu'il existe un réel A tel que pour $t \in \left] -\frac{1}{r}, \frac{1}{r} \right[, S_x(t) = \frac{A}{\sqrt{1 - 2tx + t^2}}.$

Comme $S_x(0) = L_0(x) = 1$, on en déduit que $\forall x \in [-1, 1], \forall t \in \left] -\frac{1}{r}, \frac{1}{r} \right[, \sum_{n=0}^{+\infty} L_n(x)t^n = \frac{1}{\sqrt{t^2 - 2tx + 1}}.$

5. A partir du seul résultat de la question précédente, retrouver les valeurs de L_0, L_1 et L_2

D'après le théorème de Taylor, on sait que $\forall n \in \mathbb{N}, L_n(x) = \frac{S_x^{(n)}(0)}{n!}$.

On retrouve ainsi les valeurs de L_0, L_1 et L_2 .

Remarque : Pour éviter de dériver, on peut effectuer un DL_0 à l'ordre 2 de $t \mapsto \frac{1}{\sqrt{1-2tx+t^2}}$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 4 sur 4