Dynamics Concentration of Large-Scale Tightly-Connected Networks

Hancheng Min and Enrique Mallada

58th Conference on Decision and Control December 11-13, 2019

Examples of Coherence: Synchronous Generators

In power grids, a group of synchronous generators is coherent if they have similar frequency responses.

This Talk

Characterization of coherent dynamics

• Dynamics concentration of large-scale tightly-connected network

Numerical illustrations

Coherence in networked dynamical systems

Block Diagram:

$$g_i(s), i = 1, \dots, n$$
, Node Dynamics,

L symmetric real Laplacian matrix,

$$0 = \lambda_1(L) \le \lambda_2(L) \le \dots \le \lambda_n(L),$$

$$L = V\Lambda V^T, \ \Lambda = \operatorname{diag}\{\lambda_1(L), \lambda_2(L), \cdots, \lambda_n(L)\}$$

Coherence in networked dynamical systems: Homogenous case

The transfer matrix from input **u** to output **y**:

$$T(s) = (I_n + \operatorname{diag}\{g_i(s)\}L)^{-1}\operatorname{diag}\{g_i(s)\}$$

$$= (\operatorname{diag}\{g_i^{-1}(s)\} + L)^{-1}$$

$$= (\operatorname{diag}\{g_i^{-1}(s)\} + V\Lambda V^T)^{-1} \qquad V = [\mathbb{1}, V_{\perp}]$$

$$= V(V^T\operatorname{diag}\{g_i^{-1}(s)\}V + \Lambda)^{-1}V^T \qquad \mathbb{1} = [1, \dots, 1]^T$$

Assume homogeneity: $g_i(s) = g(s), i = 1, \dots, n$

$$T(s) = \frac{1}{n}g(s)\mathbb{1}\mathbb{1}^{T} + V_{\perp}\operatorname{diag}\left\{\frac{1}{g^{-1}(s) + \lambda_{i}(L)}\right\}_{i=2}^{n} V_{\perp}^{T}$$

Coherent dynamics independent of the network structure

Dynamics depending on the network structure

Coherence in networked dynamical systems: Homogenous case

For any s_0 ,

$$T(s_0) = \frac{1}{n}g(s_0)\mathbb{1}\mathbb{1}^T + V_{\perp}\operatorname{diag}\left\{\frac{1}{g^{-1}(s_0) + \lambda_i(L)}\right\}_{i=2}^n V_{\perp}^T$$

The 2-norm converges to 0 as $\lambda_2(L)$ increases

Therefore, for any s_0 which is not a pole of g(s), we have

$$\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} g(s_0) \mathbb{1} \mathbb{1}^T \right\| = 0$$

Can this be extended to the heterogeneous case?

Coherence in networked dynamical systems: Heterogeneous case

For fixed s_0 ,

$$T(s_0) = V(V^T \operatorname{diag}\{g_i^{-1}(s_0)\}V + \Lambda)^{-1}V^T$$

$$\frac{\frac{1}{n}\sum_{i=1}^{n}g_{i}^{-1}(s_{0})}{\frac{1}{N}\sum_{i=1}^{n}g_{i}^{-1}(s_{0})} = V\begin{bmatrix} \frac{\mathbb{1}^{T}}{\sqrt{n}}\operatorname{diag}\{g_{i}^{-1}(s_{0})\}\frac{\mathbb{1}}{\sqrt{n}} & \frac{\mathbb{1}^{T}}{\sqrt{n}}\operatorname{diag}\{g_{i}^{-1}(s_{0})\}V_{\perp} \\ V_{\perp}^{T}\operatorname{diag}\{g_{i}^{-1}(s_{0})\}\frac{\mathbb{1}}{\sqrt{n}} & V_{\perp}^{T}\operatorname{diag}\{g_{i}^{-1}(s_{0})\}V_{\perp} + \tilde{\Lambda} \end{bmatrix}^{-1}V^{T}$$

$$\frac{\frac{1}{\sqrt{n}} \operatorname{diag}\{g_i^{-1}(s_0)\} V_{\perp}}{V_{\perp}^T \operatorname{diag}\{g_i^{-1}(s_0)\} V_{\perp} + \tilde{\Lambda}} \right]^{-1} V^T$$

$$\lambda_2(L) \to \infty$$

$$\tilde{\Lambda} = \operatorname{diag}\{\lambda_2(L), \cdots, \lambda_n(L)\}$$

$$\begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{i} & \frac{1}{n} \mathbb{I}_{i=1}^{n} \mathbb{I}_{i} & \frac{1}{n} \mathbb{I}_{i=1}^{n} \mathbb{I}_{i} & \frac{1}{n} & \frac{1}{n} \mathbb{I}_{i} & \frac{1}{n} \mathbb{I}_{i} & \frac{1}{n} & \frac{1}{n} \mathbb{I}_{i} & \frac{1}{n} \mathbb{I}_{i} & \frac{1}{n} & \frac{1}{n} \mathbb{I}_{i} & \frac{1}{n} &$$

The coherent dynamics:

Harmonic mean of all $g_i(s)$

The minimum singular value

grows unbounded as $\lambda_2(L)$

increases

Coherence in networked dynamical systems: Heterogeneous case

Theorem (Coherence as the pointwise convergence of transfer matrix). Define $\bar{g}(s) = \left(\frac{1}{n}\sum_{i=1}^{n}g_{i}^{-1}(s)\right)^{-1}$. If $s_{0} \in \mathbb{C}$ is neither a zero nor a pole of $\bar{g}(s)$, then we have

$$\lim_{\lambda_2(L) \to +\infty} \left\| T(s_0) - \frac{1}{n} \bar{g}(s_0) \mathbb{1} \mathbb{1}^T \right\| = 0.$$

- We can further prove **uniform convergence** over a compact subset of complex plane, if it doesn't contain any zero nor pole of $\bar{g}(s)$
- Convergence in transfer matrix is related to time-domain response by Inverse Laplace Transform
- Algebraic connectivity of *L* is an indicator of **level of coherence**

This Talk

Characterization of coherent dynamics

• Dynamics concentration of large-scale tightly-connected network

Numerical illustrations

Dynamics Concentration: From deterministic to stochastic

The coherent dynamics of the network is given by

$$\bar{g}(s) = \left(\frac{1}{n} \sum_{i=1}^{n} g_i^{-1}(s)\right)^{-1}$$

Suppose $g_i(s)$ are "i.i.d. random transfer functions", then for fixed s_0 , $\bar{g}(s_0)$ is the harmonic mean of complex random variables

It converges in probability to a deterministic value as network size n increases

The "expected "coherent dynamics is given by

$$\hat{g}(s) = \left(\mathbb{E}Re(g_i^{-1}(s)) + j\mathbb{E}Im(g_i^{-1}(s))\right)^{-1} := \left(\mathbb{E}g_i^{-1}(s)\right)^{-1}$$

If we let the **network size n grows**, and in the meantime, **increase the network connectivity**, we would expect that for fixed s_0

$$T(s_0) \xrightarrow{\mathcal{P}} \frac{1}{n} \hat{g}(s_0) \mathbb{1} \mathbb{1}^T$$

Dynamics Concentration: Stochastic convergence result

Theorem (Coherence as the pointwise convergence of transfer matrix). Define $\overline{q}(s) = \left(\frac{1}{\pi} \sum_{i=1}^{n} q_i^{-1}(s)\right)^{-1}$. If $s_0 \in \mathbb{C}$ is neither a zero nor a pole of $\overline{q}(s)$, then

Definition. A random variable X is a sub-Gaussian random variable if $\forall t > 0$:

$$\mathbb{P}(|X| \ge t) \le 2\exp\left(-ct^2\right) ,$$

for some c > 0.

Theorem (Dynamics Concentration). Concern fixs under graph Laplacian L with algebraic connectivity satisfying λ_2 () for some $p \in (0,1]$. Let $g_i(s)$ be i.i.d. random transfer functions. Given s_0 (, suppose that $g_i^{-1}(s_0)$ has both its real and imaginary part given by sub-Gaussian random variables, and s_0 is not a pole of $\hat{g}(s) = (\mathbb{E}g_i^{-1}(s))^{-1}$. Then $\forall \epsilon > 0$,

$$\lim_{n \to +\infty} \mathbb{P}\left(\left\| T(s_0) - \frac{1}{n} \hat{g}(s_0) \mathbb{1} \mathbb{1}^T \right\| \ge \epsilon \right) = 0$$

Dynamics Concentration: Stochastic convergence result

Theorem (Dynamics Concentration). Consider the networks under graph Laplacian L with algebraic connectivity satisfying $\lambda_2(L) = \Omega(n^p)$ for some $p \in (0,1]$. Let $g_i(s)$ be i.i.d. random transfer functions. Given $s_0 \in \mathbb{C}$, suppose that $g_i^{-1}(s_0)$ has both its real and imaginary part given by sub-Gaussian random variables, and s_0 is not a pole of $\hat{g}(s) = (\mathbb{E}g_i^{-1}(s))^{-1}$. Then $\forall \epsilon > 0$,

$$\lim_{n \to +\infty} \mathbb{P}\left(\left\| T(s_0) - \frac{1}{n} \hat{g}(s_0) \mathbb{1} \mathbb{1}^T \right\| \ge \epsilon \right) = 0$$

- Tightly-connected networks exhibit strong coherence and the coherent dynamics is given by the harmonic mean of all node dynamics
- The coherent dynamics of a stochastic network converges to a deterministic dynamics as network size grows

This Talk

Characterization of coherent dynamics

• Dynamics concentration of large-scale tightly-connected network

Numerical illustrations

Numerical illustration: A different view of Consensus network

Consider a first-order consensus network, where each node has different "acceptance rate":

Impulse response of this network gives exactly the evolution of opinions ${\bf y}$ starting from an initial opinions ${\bf y}_0$

Numerical illustration: A different view of Consensus network

Frequency Domain (Coherence and Dynamics Concentration)	Time Domain (State-space Analysis)
	15

Numerical illustration: Consensus on tightly-connected networks

Simulation settings:

Random nodal acceptance rate:

$$k_i \stackrel{i.i.d.}{\sim} Unif[1,5]$$

• Tightly-connected graph: L is the Laplacian of d-regular ring, d is roughly n/3

The "expected" coherent dynamics:

$$\hat{g}(s) = (\mathbb{E}k_i^{-1})^{-1} \frac{1}{s} = \frac{4}{\ln 5} \frac{1}{s}$$

its impulse response is shown in dashed red line

The coherent dynamics accurately represents the entire network as the consequence of Dynamics Concentration

Conclusion

- We proved that tightly-connected networks exhibit strong coherence, and the coherent dynamics is given by the harmonic mean of all node dynamics
- In a stochastic network where node dynamics are represented by i.i.d. random transfer functions, we showed that the coherent dynamics of the network converges to a deterministic one as the network size grows
- In numerical illustration, we provided the case where the consensus network exhibits Dynamics Concentration

Thank you for your attention!