Chapter 7: One sample tests (Ott & Longnecker Sections: 5.4-5.7)

Duzhe Wang

Part 1 https://dzwang91.github.io/stat371/

What do we study

Review of hypothesis testing

- State the null hypothesis H_0 and the alternative hypothesis H_A . The goal is to test if H_A is "likely" true.
- **2** Choose a significance level α . Typically 0.05, 0.01.
- **3** Choose the test statistic $T_n(X_1,...,X_n)$ and establish the rejection region. (How do we choose the test statistic and rejection region?)
- ① Data $X_1, ..., X_n$ are gathered, compute the realization of the test statistic. If the test statistic is in the rejection region, we reject H_0 and accept H_A (because of sufficient evidence in the sample in favor of H_A), otherwise we do not reject H_0 (because of insufficient evidence to support H_A).

One-tailed test

- If
- $H_0: \theta = \theta_0$
- $H_A: \theta > \theta_0$

then this is a one-tailed test.

One-tailed test

- If
- $H_0: \theta = \theta_0$
- $H_A: \theta > \theta_0$

then this is a one-tailed test.

• If this is the distribution of the test statistic given the H_0 is true, then which part of A, B, C is the rejection region?

One-tailed test

- If
- $H_0: \theta = \theta_0$
- $H_A: \theta > \theta_0$

then this is a one-tailed test.

• If this is the distribution of the test statistic given the H_0 is true, then which part of A, B, C is the rejection region?

One-tailed test continued

- If
- $H_0: \theta = \theta_0$
- $H_A: \theta < \theta_0$

then this is also a one-tailed test.

• rejection region is in the left tail of the test statistic.

Two-tailed test

- If
- $H_0: \theta = \theta_0$
- $H_A: \theta \neq \theta_0$

then this is a two-tailed test.

 rejection region is in both of the left and right tails of the test statistic.

Two-tailed test

- If
- $H_0: \theta = \theta_0$
- $H_A: \theta \neq \theta_0$

then this is a two-tailed test.

 rejection region is in both of the left and right tails of the test statistic.

• The rejection region corresponds to the alternative hypothesis.

An example of two-tailed test

- Consider a production line of resistors that are supposed to be 100 Ohms. Assume $\sigma=8$, so the hypotheses are
 - $\bullet \ \ H_0: \mu = 100$
 - $H_A: \mu \neq 100$

An example of two-tailed test

- Consider a production line of resistors that are supposed to be 100 Ohms. Assume $\sigma=8$, so the hypotheses are
 - H_0 : $\mu = 100$ • H_A : $\mu \neq 100$
- Let \bar{X} be the sample mean for a sample of size n=100

An example of two-tailed test

- Consider a production line of resistors that are supposed to be 100 Ohms. Assume $\sigma=8$, so the hypotheses are
 - $H_0: \mu = 100$ • $H_A: \mu \neq 100$
- Let \bar{X} be the sample mean for a sample of size n=100

• In this case the test statistic is the sample mean. What is the sampling distribution of \bar{X} ?

An example of two-tailed test continued

• The sampling distribution of \bar{X} is a normal distribution with mean μ and standard deviation $\sigma/\sqrt{n}=0.8$ due to the central limit theorem.

An example of two-tailed test continued

- The sampling distribution of \bar{X} is a normal distribution with mean μ and standard deviation $\sigma/\sqrt{n}=0.8$ due to the central limit theorem.
- Then the probability of the Type I error is

$$\begin{split} &\alpha = \Pr(\bar{X} < 98 \text{ when } \mu = 100) + \Pr(\bar{X} > 102 \text{ when } \mu = 100) \\ &= \Pr\left(Z < \frac{98 - 100}{8/\sqrt{100}}\right) + \Pr(Z > \frac{102 - 100}{8/\sqrt{100}}\right) \\ &= \Pr(Z < -2.5) + \Pr(Z > 2.5) \\ &= 2 \times \Pr(Z < -2.5) = 2 \times 0.0062 = 0.0124. \end{split}$$

Two-tailed sample mean test

- In general we are often interested in testing
 - $H_0: \mu = \mu_0$
 - $H_A: \mu \neq \mu_0$

based on the sample mean \bar{X} from samples $X_1,...,X_n$ with known population variance σ^2 .

Two-tailed sample mean test

- In general we are often interested in testing
 - $H_0: \mu = \mu_0$
 - $H_A: \mu \neq \mu_0$

based on the sample mean \bar{X} from samples $X_1,...,X_n$ with known population variance σ^2 .

• Under $H_0: \mu = \mu_0$, the probability of Type I error is computed using the sampling distribution of \bar{X} , which is normal distributed with mean μ_0 and standard deviation σ/\sqrt{n} .

Two-tailed sample mean test

- In general we are often interested in testing
 - $H_0: \mu = \mu_0$
 - $H_A: \mu \neq \mu_0$

based on the sample mean \bar{X} from samples $X_1,...,X_n$ with known population variance σ^2 .

- Under $H_0: \mu = \mu_0$, the probability of Type I error is computed using the sampling distribution of \bar{X} , which is normal distributed with mean μ_0 and standard deviation σ/\sqrt{n} .
- How do we decide the rejection region at the level of significance α ?

"Use the distribution of the test statistic to determine a rejection region that limits the type I error at significance level α "

Two-tailed sample mean test continued

Two-tailed sample mean test continued

$$P(-z_{\alpha/2}<\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}< z_{\alpha/2})=1-\alpha$$

Two-tailed sample mean test continued

$$P(-z_{\alpha/2} < \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} < z_{\alpha/2}) = 1 - \alpha$$

• Therefore, to design a test at the level of significance α we choose the critical values a and b as

$$a = \mu_0 - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
$$b = \mu_0 + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

• we collect the sample, compute the sample mean \bar{X} and reject H_0 if $\bar{X} < a$ or $\bar{X} > b$.

An equivalent two-tailed Z test

$$H_0: \mu = \mu_0$$
, vs. $H_A: \mu \neq \mu_0$

- Equivalently, we can choose the test statistic $Z=rac{ar{X}-\mu_0}{\sigma/\sqrt{n}}$
- To design a test at the level of significance α , choose the rejection region $Z>z_{\alpha/2}$ and $Z<-z_{\alpha/2}$.

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha=0.05$.

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha=0.05$.

• Step 1: H_0 : $\mu = 100$, H_A : $\mu \neq 100$.

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha=0.05$.

- Step 1: H_0 : $\mu = 100$, H_A : $\mu \neq 100$.
- Step 2: Choose $\alpha = 0.05$

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha = 0.05$.

- Step 1: H_0 : $\mu = 100$, H_A : $\mu \neq 100$.
- Step 2: Choose $\alpha = 0.05$
- Step 3: In this case, reject H_0 if $\bar{X} < a$ or $\bar{X} > b$ with

$$a = \mu_0 - z_{0.025} \frac{\sigma}{\sqrt{100}} = 100 - 1.96 \frac{8}{10} = 98.432$$

$$b = \mu_0 + z_{0.025} \frac{\sigma}{\sqrt{100}} = 100 + 1.96 \frac{8}{10} = 101.568$$

A batch of 100 resistors have an average of 102 Ohms. Assuming a population standard deviation of 8 Ohms, test whether the population mean is 100 Ohms at a significance level $\alpha = 0.05$.

- Step 1: H_0 : $\mu = 100$, H_A : $\mu \neq 100$.
- Step 2: Choose $\alpha = 0.05$
- Step 3: In this case, reject H_0 if $\bar{X} < a$ or $\bar{X} > b$ with

$$a = \mu_0 - z_{0.025} \frac{\sigma}{\sqrt{100}} = 100 - 1.96 \frac{8}{10} = 98.432$$

$$b = \mu_0 + z_{0.025} \frac{\sigma}{\sqrt{100}} = 100 + 1.96 \frac{8}{10} = 101.568$$

• Step 4: $\bar{X} = 102 > b$, therefore reject H_0 .

One-tailed sample mean test, right tail

We are interested in testing H_0 : $\mu = \mu_0$ vs. H_A : $\mu > \mu_0$ at the significance level α assuming the variance is known.

• Under H_0 : $\mu = \mu_0$, the probability of a Type I error is

$$P(\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} > z_\alpha) = \alpha$$

• Thus the rejection region is $\bar{X} > \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$. Note we use z_α instead of $z_{\alpha/2}$.

One-tailed sample mean test, left tail

We are interested in testing H_0 : $\mu = \mu_0$ vs. H_A : $\mu < \mu_0$ at the significance level α assuming the variance is known.

• Under H_0 : $\mu=\mu_0$, the probability of a Type I error is

$$P(\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} < -z_\alpha) = \alpha$$

• Thus the rejection region is $\bar{X} < \mu_0 - z_\alpha \frac{\sigma}{\sqrt{n}}$. Note we use z_α instead of $z_{\alpha/2}$.

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

• Step 1: H_0 : $\mu = 480$, H_A : $\mu < 480$.

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

- Step 1: H_0 : $\mu = 480$, H_A : $\mu < 480$.
- Step 2: Choose $\alpha = 0.05$

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

- Step 1: H_0 : $\mu = 480$, H_A : $\mu < 480$.
- Step 2: Choose $\alpha = 0.05$
- Step 3: In this case, reject H_0 if

$$\bar{X} < \mu_0 - z_{0.05} \frac{\sigma}{\sqrt{n}} = 480 - 1.645 \frac{25}{10} = 475.9$$

A quality control engineer finds that a sample of 100 light bulbs had an average life-time of 470 hours. Assuming a population standard deviation of $\sigma=25$ hours, test whether the population mean is 480 hours vs. the alternative hypothesis $\mu<$ 480 at a significance level of $\alpha=$ 0.05.

- Step 1: H_0 : $\mu = 480$, H_A : $\mu < 480$.
- Step 2: Choose $\alpha = 0.05$
- Step 3: In this case, reject H_0 if

$$\bar{X} < \mu_0 - z_{0.05} \frac{\sigma}{\sqrt{n}} = 480 - 1.645 \frac{25}{10} = 475.9$$

• Step 4: $\bar{X} = 470 < 475.9$, therefore reject H_0 .

Let's make life harder...

What if the population standard deviation is unknown?

Story

A paint shop uses an automatic device to apply paint to engine blocks. It is important that the amount applied is of a minimum thickness.

Primary Research Question

Its customer, a manufacturer wants to know the average thickness of paint in a warehouse. It is supposed to be 1.50mm.

 $\mu = 1.50$ mm?

Sampling

16 blocks are selected randomly and then measured from thousands of blocks in the warehouse.

n = 16

Data

1.29, 1.12, 0.88, 1.65, 1.48, 1.59, 1.04, 0.83, 1.76, 1.31, 0.88, 1.71, 1.83, 1.09, 1.62, 1.49 (in mm)

 $\bar{x} = 1.358$ s = 0.3385

Statistical assumptions

• Normality?

• Is population standard deviation σ known?

• Normality?

• Is population standard deviation σ known? NO

- Is population standard deviation σ known? NO
- Is the sample size n large?

- Is population standard deviation σ known? NO
- Is the sample size n large?NO

Two-tailed T test

We are interested in testing $H_0: \mu = \mu_0$ vs. $H_A: \mu \neq \mu_0$ at the significance level α based a sample $X_1, ..., X_n$ from a normal distribution, but with unknown variance σ^2 .

- Under $H_0: \mu = \mu_0$, the sampling distribution of $\frac{\bar{X} \mu_0}{s/\sqrt{n}}$ is a t-distribution with degrees of freedom n-1.
- Choose test statistic $T = \frac{\bar{X} \mu_0}{s / \sqrt{n}}$.
- Reject H_0 if $T < -t_{\alpha/2,n-1}$ or $T > t_{\alpha/2,n-1}$.
- ullet For a one-sided test, $t_{lpha/2,n-1}$ is replaced by $t_{lpha,n-1}$ as usual.

• Step 1:

$$H_0$$
: $\mu=$ 1.5, H_A : $\mu\neq$ 1.5

• Step 1:

*H*₀:
$$\mu = 1.5$$
, *H_A*: $\mu \neq 1.5$

• Step 2: Choose $\alpha = 0.05$

• Step 1:

$$H_0$$
: $\mu = 1.5$, H_A : $\mu \neq 1.5$

- Step 2: Choose $\alpha = 0.05$
- Step 3: Use the T test statistic: $T=\frac{\bar{X}-\mu_0}{\frac{S}{\sqrt{n}}}$. In this example, $t_{obs}=\frac{1.348-1.50}{\frac{0.3385}{\sqrt{16}}}=-1.796$. The rejection region is $T<-t_{n-1,\alpha/2},\, T>t_{n-1,\alpha/2}$. In this example, $t_{15,0.025}=2.13$, so the rejection region is T<-2.13 or T>2.13.

• Step 1:

$$H_0$$
: $\mu = 1.5$, H_A : $\mu \neq 1.5$

- Step 2: Choose $\alpha = 0.05$
- Step 3: Use the T test statistic: $T=\frac{\bar{X}-\mu_0}{\frac{S}{\sqrt{n}}}$. In this example, $t_{obs}=\frac{1.348-1.50}{\frac{0.3385}{\sqrt{16}}}=-1.796$. The rejection region is $T<-t_{n-1,\alpha/2},\, T>t_{n-1,\alpha/2}$. In this example, $t_{15,0.025}=2.13$, so the rejection region is T<-2.13 or T>2.13.
- Step 4: Make a conclusion: since $t_{obs} = -1.796$ does not fall in the rejection region, so we do not reject the null.

Hypothesis testing using the p-value

- In the approach we have taken so far, the significance level is pre-selected up front, either by choosing a given value of α or setting the rejection region explicitly.
- Suppose a hypothesis test is performed at a significance level of 0.05, but someone else wants to test with a stricter significance level of 0.01, this requires recomputing the rejection region.
- Using p-value is better than using rejection region.

Hypothesis testing using the p-value

- "If the p-value is smaller than the given significance level α , we would reject the null, otherwise we would not reject the null."
- For a two-sided test,

• If we choose $\alpha=0.05$, then since 0.094 > 0.05, we would not reject the null. However, if we had chosen $\alpha=0.1$, we would have rejected.

- If we choose $\alpha = 0.05$, then since 0.094 > 0.05, we would not reject the null. However, if we had chosen $\alpha = 0.1$, we would have rejected.
- p-value is a measure of evidence in the sense that it is the minimum probability of a Type I error with which H_0 can still be rejected.

What's the next?

We'll discuss how to calculate the sample size and power in hypothesis testing in the next lecture.