CASE STUDY

ABDULLAHI A. IBRAHIM

Task

- Predict income and expenses for a holdout sample of ~10k users for the month of August based on a training sample of ~10ks from
 February – July.
- Based on your judgement of the usefulness of the results, either aggregate the data into incoming & outgoing flows, or predict base on the transaction type/category level

Assumptions

1. Aggregate data into In (incoming) and Out (outgoing) flows.

Fill missing values in mcc_group

Impact of filling NAs

After filling the Nas
The frequency of
each class increased
without favouring
any group

Feature engineering

New Features

- Transaction Agent
- Transaction direction
- Transaction month and day

Feature preprocessing

- Encoding categorical features
- Normalization
- Train/valid/test split

Data distribution & split

- Shows imbalance distribution
- To avoid skewed result towards Out group, we do not split randomly
- Instead, we <u>maintained this</u>
 <u>proportion</u> across training,
 validation and test sets

ML methods

Accuracy of the models

Sensitivity of the models

Summary

- Our goal is to predict income and expenses of a user transaction.
- To do this we compare the performace of different model (baseline and extended versions)
- Our result shows that by adding penalities/weight the model performed better than the baseline model.
- The best performing model(s) achieved upto 87% accuracy, 93% AUC and 92% f1 score with no overfitting.