Linear Algebra and Applications 12 November 2014

Lect. Erke Arıbaş

References:

-*Elementary Linear Algebra-Applications Version*", Howard Anton and Chris Rorres, 9th Edition, Wiley, 2010.

-Inner Product Spaces

-Orthonormal Bases, Gram-Schmidt Process

-QR Decomposition

-Eigenvalue and Eigenvectors

-Diagonalization

Chapters 6 and 7 in the course's textbook.

DEFINITION 1 An *inner product* on a real vector space V is a function that associates a real number $\langle \mathbf{u}, \mathbf{v} \rangle$ with each pair of vectors in V in such a way that the following axioms are satisfied for all vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} in V and all scalars k.

- 1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ [Symmetry axiom]
- 2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ [Additivity axiom]
- 3. $\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$ [Homogeneity axiom]
- 4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$ [Positivity axiom]

A real vector space with an inner product is called a *real inner product space*.

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Definition

If V is an inner product space, then the norm (or length) of a vector u in V is denoted by ||u|| and is defined by

$$||\mathbf{u}|| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2}$$

The distance between two points (vectors) u and v is denoted by d(u,v) and is defined by

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$$

Norm and Distance in \mathbb{R}^n

If $\mathbf{u} = (u_1, u_2, ..., u_n)$ and $\mathbf{v} = (v_1, v_2, ..., v_n)$ are vectors in \mathbb{R}^n with the Euclidean inner product, then

$$\|\mathbf{u}\| = \langle \mathbf{u}, \mathbf{u} \rangle^{1/2} = (\mathbf{u}, \mathbf{u})^{1/2} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle^{1/2} = \left[(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) \right]^{1/2}$$

$$= \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

Algebraic Properties of Inner Products

THEOREM 6.1.2 If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in a real inner product space V, and if k is a scalar, then:

(a)
$$\langle 0, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$$

(b)
$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$$

(c)
$$\langle \mathbf{u}, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{w} \rangle$$

(d)
$$\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle - \langle \mathbf{v}, \mathbf{w} \rangle$$

(e)
$$k\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u}, k\mathbf{v} \rangle$$

Inner Products Generated by Matrices

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n (expressed as $n \times 1$)

matrices), and let A be an invertible $n \times n$ matrix.

If $\mathbf{u} \cdot \mathbf{v}$ is the Euclidean inner product on \mathbb{R}^n , then the formula

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$$

defines an inner product; it is called the inner product on \mathbb{R}^n generated by A.

Recalling that the Euclidean inner product $\mathbf{u} \cdot \mathbf{v}$ can be written as the matrix product $\mathbf{v}^T \mathbf{u}$, the above formula can be written in the alternative form $\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{v})^T A\mathbf{u}$, or equivalently,

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{v}^T A^T A \mathbf{u}$$

Theorems

- Theorem 6.2.1 (Cauchy-Schwarz Inequality)
 - If u and v are vectors in a real inner product space, then

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}|| \, ||\mathbf{v}||$$

- Theorem 6.2.2 (Properties of Length)
 - \Box If **u** and **v** are vectors in an inner product space V, and if k is any scalar, then:
 - || u || ≥ 0
 - || u || = 0 if and only if u = 0
 - $\| k \mathbf{u} \| = \| k \| \| \mathbf{u} \|$
 - || u + v || ≤ || u || + || v || (Triangle inequality)
- Theorem 6.2.3 (Properties of Distance)
 - \Box If u, v, and w are vectors in an inner product space V, and if k is any scalar, then:
 - d(u, v) ≥ 0
 - d(u, v) = 0 if and only if u = v
 - $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
 - d(u, v) ≤ d(u, w) + d(w, v) (Triangle inequality)

Remarks

- The Cauchy-Schwarz inequality for Rⁿ (Theorem 4.1.3) follows as a special case of Theorem 6.2.1 by taking ⟨u, v⟩ to be the Euclidean inner product u · v.
- The angle between vectors in general inner product spaces can be defined as

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \quad \text{and} \quad 0 \le \theta \le \pi$$

- Example
 - Let R⁴ have the Euclidean inner product. Find the cosine of the angle θ between the vectors u = (4, 3, 1, -2) and v = (-2, 1, 2, 3).

θ: the angle between u and v

$$\theta = \cos^{-1} \left(\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \right)$$

DEFINITION 1 Two vectors **u** and **v** in an inner product space are called *orthogonal* if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Orthogonality

Definition

Two vectors **u** and **v** in an <u>inner product space</u> are called orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Example

 \Box If M_{22} has the inner project defined previously, then the matrices

$$U = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \text{ and } V = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$$

are orthogonal, since $\langle U, V \rangle = 1(0) + 0(2) + 1(0) + 1(0) = 0$.

Orthonormal Basis

Definition

- A set of vectors in an inner product space is called an orthogonal set if all pairs of distinct vectors in the set are orthogonal.
- An orthogonal set in which each vector has norm 1 is called orthonormal.

Example

- Let $\mathbf{u}_1 = (0, 1, 0)$, $\mathbf{u}_2 = (1, 0, 1)$, $\mathbf{u}_3 = (1, 0, -1)$ and assume that R^3 has the Euclidean inner product.
- It follows that the set of vectors $S = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is <u>orthogonal</u> since $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}_1, \mathbf{u}_3 \rangle = \langle \mathbf{u}_2, \mathbf{u}_3 \rangle = 0$.
- The Euclidean norms of the vectors are $\|\mathbf{u}_1\| = 1$, $\|\mathbf{u}_2\| = \sqrt{2}$, $\|\mathbf{u}_3\| = \sqrt{2}$
- Normalizing \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 yields $\mathbf{v}_1 = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = (0,1,0), \quad \mathbf{v}_2 = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} = (\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}), \quad \mathbf{v}_3 = \frac{\mathbf{u}_3}{\|\mathbf{u}_3\|} = (\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})$
- The set $S = \{v_1, v_2, v_3\}$ is <u>orthonormal</u> since $\langle v_1, v_2 \rangle = \langle v_1, v_3 \rangle = \langle v_2, v_3 \rangle = 0$ and $||v_1|| = ||v_2|| = ||v_3|| = 1$

Orthonormal Basis

■ Theorem 6.3.1*

□ If $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is an <u>orthonormal basis</u> for an inner product space V, and \mathbf{u} is any vector in V, then

$$\mathbf{u} = \langle \mathbf{u}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{u}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \cdots + \langle \mathbf{u}, \mathbf{v}_n \rangle \mathbf{v}_n$$

Remark

□ The scalars $\langle \mathbf{u}, \mathbf{v}_1 \rangle$, $\langle \mathbf{u}, \mathbf{v}_2 \rangle$, ..., $\langle \mathbf{u}, \mathbf{v}_n \rangle$ are the coordinates of the vector \mathbf{u} relative to the orthonormal basis $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ and

$$(\mathbf{u})_{S} = (\langle \mathbf{u}, \mathbf{v}_{1} \rangle, \langle \mathbf{u}, \mathbf{v}_{2} \rangle, \dots, \langle \mathbf{u}, \mathbf{v}_{n} \rangle)$$

is the coordinate vector of u relative to this basis

Example

Let v₁ = (0, 1, 0), v₂ = (-4/5, 0, 3/5), v₃ = (3/5, 0, 4/5).
It is easy to check that S = {v₁, v₂, v₃} is an orthonormal basis for R³ with the Euclidean inner product.
Express the vector u = (1, 1, 1) as a linear combination of the vectors in S, and find the coordinate vector (u)_s.

Solution:

- \mathbf{u} $\langle \mathbf{u}, \mathbf{v}_1 \rangle = 1$, $\langle \mathbf{u}, \mathbf{v}_2 \rangle = -1/5$, $\langle \mathbf{u}, \mathbf{v}_3 \rangle = 7/5$
- □ Therefore, by Theorem 6.3.1 we have $\mathbf{u} = \mathbf{v}_1 1/5 \mathbf{v}_2 + 7/5 \mathbf{v}_3$
- □ That is, (1, 1, 1) = (0, 1, 0) 1/5(-4/5, 0, 3/5) + 7/5(3/5, 0, 4/5)
- \Box The coordinate vector of **u** relative to S is

$$(\mathbf{u})_s = (\langle \mathbf{u}, \mathbf{v}_1 \rangle, \langle \mathbf{u}, \mathbf{v}_2 \rangle, \langle \mathbf{u}, \mathbf{v}_3 \rangle) = (1, -1/5, 7/5)$$

Converting an arbitrary basis into orthogonal basis: Gram-Schmidt Process

The Gram-Schmidt Process

To convert a basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r\}$ into an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\}$, perform the following computations:

Step 1.
$$v_1 = u_1$$

Step 2.
$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1$$

Step 3.
$$\mathbf{v}_3 = \mathbf{u}_3 - \frac{\langle \mathbf{u}_3, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_3, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2$$

Step 4.
$$\mathbf{v}_4 = \mathbf{u}_4 - \frac{\langle \mathbf{u}_4, \mathbf{v}_1 \rangle}{\|\mathbf{v}_1\|^2} \mathbf{v}_1 - \frac{\langle \mathbf{u}_4, \mathbf{v}_2 \rangle}{\|\mathbf{v}_2\|^2} \mathbf{v}_2 - \frac{\langle \mathbf{u}_4, \mathbf{v}_3 \rangle}{\|\mathbf{v}_3\|^2} \mathbf{v}_3$$

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis $\{\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_r\}$, normalize the orthogonal basis vectors.

Example (Gram-Schmidt Process)

Consider the vector space R³ with the Euclidean inner product.
 Apply the Gram-Schmidt process to transform the basis vectors

$$\mathbf{u}_1 = (1, 1, 1), \, \mathbf{u}_2 = (0, 1, 1), \, \mathbf{u}_3 = (0, 0, 1)$$

into an orthogonal basis $\{v_1, v_2, v_3\}$; then normalize the orthogonal basis vectors to obtain an orthonormal basis $\{q_1, q_2, q_3\}$.

- Solution:
 - \square Step 1: Let $\mathbf{v}_1 = \mathbf{u}_1$. That is, $\mathbf{v}_1 = \mathbf{u}_1 = (1, 1, 1)$
 - □ Step 2: Let $\mathbf{v}_2 = \mathbf{u}_2 \operatorname{proj}_{W_1} \mathbf{u}_2$. That is,

$$\mathbf{v}_{2} = \mathbf{u}_{2} - \text{proj}_{\mathbf{w}_{1}} \mathbf{u}_{2} = \mathbf{u}_{2} - \frac{\langle \mathbf{u}_{2}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1}$$

$$= (0, 1, 1) - \frac{2}{3} (1, 1, 1) = (-\frac{2}{3}, \frac{1}{3}, \frac{1}{3})$$

Example (Gram-Schmidt Process)

 $\label{eq:weak_problem}$ We have two vectors in W_2 now!

□ Step 3: Let $\mathbf{v}_3 = \mathbf{u}_3 - \operatorname{proj}_{W_2} \mathbf{u}_3$. That is,

$$\mathbf{v}_{3} = \mathbf{u}_{3} - \text{proj}_{\mathbf{w}_{2}} \mathbf{u}_{3} = \mathbf{u}_{3} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{1} \rangle}{\|\mathbf{v}_{1}\|^{2}} \mathbf{v}_{1} - \frac{\langle \mathbf{u}_{3}, \mathbf{v}_{2} \rangle}{\|\mathbf{v}_{2}\|^{2}} \mathbf{v}_{2}$$

$$= (0, 1, 1) - \frac{1}{3} (1, 1, 1) - \frac{1/3}{2/3} (-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}) = (0, -\frac{1}{2}, \frac{1}{2})$$

□ Thus, $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (-2/3, 1/3, 1/3)$, $\mathbf{v}_3 = (0, -1/2, 1/2)$ form an orthogonal basis for R^3 . The norms of these vectors are

$$\|\mathbf{v}_1\| = \sqrt{3}, \|\mathbf{v}_2\| = \frac{\sqrt{6}}{3}, \|\mathbf{v}_3\| = \frac{1}{\sqrt{2}}$$

so an orthonormal basis for R^3 is

$$\mathbf{q}_{1} = \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \ \mathbf{q}_{2} = \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} = (-\frac{2}{\sqrt{6}}, \frac{1}{6}, \frac{1}{\sqrt{6}}),$$

$$\mathbf{q}_{3} = \frac{\mathbf{v}_{3}}{\|\mathbf{v}_{2}\|} = (0, -\frac{1}{\sqrt{2}}, \frac{1}{2})$$

Theorems

■ Theorem 6.3.7 (*QR*-Decomposition)

□ If A is an m×n matrix with linearly independent column vectors, then A can be factored as

$$A = QR$$

where Q is an $m \times n$ matrix with orthonormal column vectors, and R is an $n \times n$ invertible upper triangular matrix.

Remark

In recent years the QR-decomposition has assumed growing importance as the mathematical foundation for a wide variety of practical algorithms, including a widely used algorithm for computing eigenvalues of large matrices.

QR-Decomposition of a 3×3 Matrix

Find the
$$QR$$
-decomposition of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$

- Solution:
 - The column vectors A are

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

 Applying the <u>Gram-Schmidt process</u> with subsequent normalization to these column vectors yields the orthonormal vectors

$$\mathbf{q}_{1} = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}, \ \mathbf{q}_{2} = \begin{bmatrix} -2/\sqrt{6} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \ \mathbf{q}_{3} = \begin{bmatrix} 0 \\ -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \implies Q$$

QR-Decomposition of a 3×3 Matrix

 \Box The matrix R is

$$R = \begin{bmatrix} \langle \mathbf{u}_1, \mathbf{q}_1 \rangle & \langle \mathbf{u}_2, \mathbf{q}_1 \rangle & \langle \mathbf{u}_3, \mathbf{q}_1 \rangle \\ 0 & \langle \mathbf{u}_2, \mathbf{q}_2 \rangle & \langle \mathbf{u}_3, \mathbf{q}_2 \rangle \\ 0 & 0 & \langle \mathbf{u}_3, \mathbf{q}_3 \rangle \end{bmatrix} = \begin{bmatrix} 3/\sqrt{3} & 2/\sqrt{3} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{6} \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$$

 \square Thus, the *QR*-decomposition of *A* is

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \\ 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 3/\sqrt{3} & 2/\sqrt{3} & 1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{6} \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$$

$$A \qquad Q \qquad R$$

QR Decomposition

Example: Find the QR decomposition of

$$A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Calculation of QR Decomposition

Applying Gram-Schmidt process of computing QR decomposition

1st Step:

$$r_{11} = ||a_1|| = \sqrt{3}$$

$$q_1 = rac{1}{\|a_1\|} a_1 = egin{pmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \\ 0 \end{pmatrix}$$

2nd Step:

$$r_{12} = q_1^T a_2 = -2/\sqrt{3}$$

3rd Step:

$$r_{12} = q_1^T a_2 = -2/\sqrt{3}$$

$$\hat{q}_2 = a_2 - q_1 q_1^T a_2 = a_2 - q_1 r_{12} = \begin{pmatrix} -1\\0\\-1\\0 \end{pmatrix} - (-2/\sqrt{3}) \begin{pmatrix} 1/\sqrt{3}\\1/\sqrt{3}\\1/\sqrt{3}\\0 \end{pmatrix} = \begin{pmatrix} -1/3\\2/3\\-1/3\\0 \end{pmatrix}$$

$$r_{22} = \|\hat{q}_2\| = \sqrt{2/3}$$

$$q_{2} = \frac{1}{\|\hat{q}_{2}\|} \hat{q}_{2} = \begin{pmatrix} -1/\sqrt{6} \\ \sqrt{2/3} \\ -1/\sqrt{6} \\ 0 \end{pmatrix}$$

Calculation of QR Decomposition

4th Step:

$$r_{13} = q_1^T a_3 = -1/\sqrt{3}$$

5th Step:
$$r_{23} = q_2^T a_3 = 1/\sqrt{6}$$

6th Step:

$$\hat{q}_3 = a_3 - q_1 q_1^T a_3 - q_2 q_2^T a_3 = a_3 - r_{13} q_1 - r_{23} q_2 = \begin{pmatrix} -1/2 \\ 0 \\ 1/2 \\ -1 \end{pmatrix}$$

$$r_{33} = \|\hat{q}_3\| = \sqrt{6}/2$$

$$q_3 = \frac{1}{\|\hat{q}_3\|} \hat{q}_3 = \begin{pmatrix} -1/\sqrt{6} \\ 0 \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{pmatrix}$$

Calculation of QR Decomposition

Therefore, A = QR

$$\begin{bmatrix} 1 & -1 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{6} & -1/\sqrt{6} \\ 1/\sqrt{3} & 2/\sqrt{6} & 0 \\ 1/\sqrt{3} & -1/\sqrt{6} & 0 \\ 1/\sqrt{3} & -1/\sqrt{6} & 1/\sqrt{6} \\ 0 & 0 & -2/\sqrt{6} \end{bmatrix} \begin{bmatrix} \sqrt{3} & -2/\sqrt{3} & -1/\sqrt{3} \\ 0 & 2/\sqrt{6} & 1/\sqrt{6} \\ 0 & 0 & \sqrt{6}/2 \end{bmatrix}$$

<u>Uses:</u> QR decomposition is widely used in computer codes to find the eigenvalues of a matrix, to solve linear systems, and to find least squares approximations.

TACOMA Bridge.. Collapsed in 1940.. Eigenvalues???

Eigenvalue and Eigenvector

Definition

- If A is an $n \times n$ matrix, then a <u>nonzero</u> vector x in \mathbb{R}^n is called an <u>eigenvector</u> of A if Ax is a scalar multiple of x; that is, $Ax = \lambda x$ for some scalar λ .
- The scalar λ is called an eigenvalue of A, and x is said to be an eigenvector of A corresponding to λ.

Remark

- To find the eigenvalues of an $n \times n$ matrix A we rewrite $Ax = \lambda x$ as $Ax = \lambda Ix$ or equivalently, $(\lambda I A)x = 0$.
- For λ to be an eigenvalue, there must be a nonzero solution of this equation. However, by Theorem 6.4.5, the above equation has a nonzero solution if and only if det (λI – A) = 0.
- This is called the characteristic equation of A; the scalar satisfying this equation are the eigenvalues of A. When expanded, the determinant $\det(\lambda I A)$ is a polynomial p in λ called the characteristic polynomial of A.

Example

Find the eigenvalues of

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

- Solution:
 - \Box The characteristic polynomial of A is

$$\det(\lambda I - A) = \det\begin{bmatrix} \lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -4 & 17 & \lambda - 8 \end{bmatrix} = \lambda^3 - 8\lambda^2 + 17\lambda - 4$$

The eigenvalues of A must therefore satisfy the cubic equation $\lambda^3 - 8\lambda^2 + 17\lambda - 4 = 0$

Finding Bases for Eigenspaces

The <u>eigenvectors</u> of A corresponding to an <u>eigenvalue</u> λ are the nonzero \mathbf{x} that satisfy $A\mathbf{x} = \lambda \mathbf{x}$.

Equivalently, the eigenvectors corresponding to λ are the nonzero vectors in the solution space of $(\lambda I - A)\mathbf{x} = \mathbf{0}$.

We call this <u>solution space</u> the eigenspace of A corresponding to λ.

Example

Find bases for the eigenspaces of $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$

Solution:

The characteristic equation of matrix A is $\lambda^3 - 5\lambda^2 + 8\lambda - 4 = 0$, or in factored form, $(\lambda - 1)(\lambda - 2)^2 = 0$; thus, the eigenvalues of A are $\lambda = 1$ and $\lambda = 2$, so there are two eigenspaces of A.

If $\lambda = 2$, then (3) becomes $\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Example

$$\begin{bmatrix} 2 & 0 & 2 \\ -1 & 0 & -1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving the system yield

$$x_1 = -s, x_2 = t, x_3 = s$$

Thus, the eigenvectors of A corresponding to λ = 2 are the nonzero vectors of the form

$$\mathbf{X} = \begin{bmatrix} -s \\ t \\ s \end{bmatrix} = \begin{bmatrix} -s \\ 0 \\ s \end{bmatrix} + \begin{bmatrix} 0 \\ t \\ 0 \end{bmatrix} = s \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

- The vectors [-1 0 1]^T and [0 1 0]^T are linearly independent and form a basis for the eigenspace corresponding to λ = 2.
- Similarly, the eigenvectors of A corresponding to λ = 1 are the nonzero vectors of the form x = s [-2 1 1]^T
- Thus, [-2 1 1]^T is a basis for the eigenspace corresponding to λ = 1.

Diagonalization

Definition

□ A square matrix A is called diagonalizable if there is an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix (i.e., $P^{-1}AP = D$); the matrix P is said to diagonalize A.

Theorem 7.2.1

- \Box If A is an $n \times n$ matrix, then the following are equivalent.
 - A is diagonalizable.
 - A has n linearly independent eigenvectors.

Procedure for Diagonalizing a Matrix

- The preceding theorem guarantees that an n×n matrix A with n linearly independent eigenvectors is diagonalizable, and the proof provides the following method for diagonalizing A.
 - □ Step 1. Find *n* linear independent eigenvectors of *A*, say, \mathbf{p}_1 , \mathbf{p}_2 , ..., \mathbf{p}_n .
 - □ Step 2. From the matrix P having $\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_n$ as its column vectors.
 - Step 3. The matrix $P^{-1}AP$ will then be diagonal with $\lambda_1, \lambda_2, ..., \lambda_n$ as its successive diagonal entries, where λ_i is the eigenvalue corresponding to \mathbf{p}_i , for i = 1, 2, ..., n.

Example

Find a matrix *P* that diagonalizes
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$

Solution:

- □ From the previous example, we have the following bases for the eigenspaces: $\begin{bmatrix} -1 \end{bmatrix}$ $\begin{bmatrix} 0 \end{bmatrix}$ $\begin{bmatrix} -2 \end{bmatrix}$
 - eigenspaces: $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{p}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $\lambda = 1$: $\mathbf{p}_3 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$
- $P = \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$
- $P^{-1}AP = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ -1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = D$

Example (A Non-Diagonalizable Matrix)

Find a matrix
$$P$$
 that diagonalizes $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ -3 & 5 & 2 \end{bmatrix}$

- Solution:
 - The characteristic polynomial of A is

$$\det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ -1 & \lambda - 2 & 0 \\ 3 & -5 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 2)^{2}$$

The bases for the eigenspaces are

$$\lambda = 1: \qquad \mathbf{p}_1 = \begin{bmatrix} 1/8 \\ -1/8 \\ 1 \end{bmatrix} \qquad \lambda = 2: \qquad \mathbf{p}_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Since there are only two basis vectors in total, A is not diagonalizable.

Theorems

■ Theorem 7.2.2

If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, are eigenvectors of A corresponding to distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$, then $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is a linearly independent set.

■ Theorem 7.2.3

If an n×n matrix A has n distinct eigenvalues, then A is diagonalizable.

Example

Since the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 4 & -17 & 8 \end{bmatrix}$$

has three distinct eigenvalues, $\lambda = 4$, $\lambda = 2 + \sqrt{3}$, $\lambda = 2 - \sqrt{3}$

- Therefore, A is diagonalizable.
- Further,

$$P^{-1}AP = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 + \sqrt{3} & 0 \\ 0 & 0 & 2 - \sqrt{3} \end{bmatrix}$$

for some invertible matrix P, and the matrix P can be found using the procedure for diagonalizing a matrix.