

Klíče

Architekt Tim postavil novou únikovou hru. Tvoří ji n místností, které jsou očíslovány od 0 do n-1. Na začátku hry je v každé místnosti umístěn právě jeden klíč. Každý klíč je určitého typu, typy klíčů označujeme celými čísly z rozmezí od 0 do n-1 včetně. Klíč ležící v místnosti i ($0 \le i \le n-1$) je typu r[i]. Klíče umístěné v různých místnostech mohou být stejného typu, tzn. hodnoty r[i] nemusí být nutně navzájem různé.

V únikové hře je dále postaveno m obousměrných chodeb, které jsou označeny čísly od 0 do m-1. Chodba j ($0 \le j \le m-1$) spojuje dvojici různých místností u[j] a v[j]. Dvojice místností může být propojena více chodbami.

Hra spočívá v tom, že hráč prochází chodbami mezi místnostmi a sbírá při tom klíče. Řekneme, že hráč **prochází** chodbou j, pokud tuto chodbu použije k tomu, aby se dostal z místnosti u[j] do místnosti v[j] nebo naopak. Hráč může projít chodbou j pouze tehdy, když předtím sebral klíč typu c[j].

Kdykoliv se během hry hráč nachází v nějaké místnosti x, může provést dvě akce:

- sebrat klíč ležící v místnosti x, který má typ r[x] (pokud ho již nesebral dříve),
- projít chodbou j, kde buď u[j]=x nebo v[j]=x, pokud někdy dříve sebral klíč typu c[j]. Poznamenejme, že hráč **nikdy** neztratí klíč, který někdy dříve sebral.

Hráč **začíná** hru ve startovní místnosti s a na začátku hry u sebe nemá žádné klíče. Místnost t je **dosažitelná** z místnosti s, jestliže hráč začínající hru v místnosti s může vykonat posloupnost výše popsaných akcí a dostat se tím do místnosti t.

Pro každou místnost i ($0 \le i \le n-1$) označíme symbolem p[i] počet místností dosažitelných z místnosti i. Tim by chtěl znát množinu indexů i ($0 \le i \le n-1$), pro které je hodnota p[i] minimální.

Implementační detaily

Implementujte následující funkci:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: pole délky n. Pro každé i ($0 \le i \le n-1$) je klíč umístěný v místnosti i typu r[i].
- u,v: dvě pole délky m. Pro každé j ($0 \leq j \leq m-1$) chodba číslo j propojuje místnosti u[j] a v[j].
- c: pole délky m. Pro každé j ($0 \leq j \leq m-1$) klíč potřebný k průchodu chodbou j je typu c[j].

• Funkce vrací pole a délky n. Pro každé i ($0 \le i \le n-1$), jestliže $p[i] \le p[j]$ pro všechna j ($0 \le j \le n-1$), pak bude hodnota a[i] rovna 1. Jinak bude hodnota a[i] rovna 0.

Příklady

Příklad 1

Uvažujme následujcí volání funkce:

```
find_reachable([0, 1, 1, 2],
        [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Když hráč začíná hru v místnosti 0, může provést tuto posloupnost akcí:

Aktuální místnost	Akce
0	Sebrat klíč typu 0
0	Projít chodbou 0 do místnosti 1
1	Sebrat klíč typu 1
1	Projít chodbou 2 do místnosti 2
2	Projít chodbou 2 do místnosti 1
1	Projít chodbou 3 do místnosti 3

Místnost 3 je tedy dosažitelná z místnosti 0. Podobně můžeme sestrojit posloupnosti akcí ukazující, že také všechny ostatní místnosti jsou dosažitelné z místnosti 0, což znamená p[0]=4. Následující tabulka ukazuje dosažitelné místnosti pro všechny volby startovní místnosti:

Startovní místnost i	Dosažitelné místnosti	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

Nejmenší hodnota p[i] je $\,2$, získáme ji pro startovní místnosti $\,i=1$ nebo $\,i=2$. Funkce proto vrátí výsledek $\,[0,1,1,0]$.

Příklad 2

```
find_reachable([0, 1, 1, 2, 2, 1, 2],
        [0, 0, 1, 1, 2, 3, 3, 4, 4, 5],
        [1, 2, 2, 3, 3, 4, 5, 5, 6, 6],
        [0, 0, 1, 0, 0, 1, 2, 0, 2, 1])
```

Tabulka opět ukazuje dosažitelné místnosti:

Startovní místnost i	Dosažitelné místnosti	p[i]
0	[0,1,2,3,4,5,6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

Nejmenší hodnota p[i] mezi všemi místnostmi je 2, získáme ji pro $i \in \{1,2,4,6\}$. Funkce proto vrátí výsledek [0,1,1,0,1,0,1].

Příklad 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Tabulka dosažitelných místností:

Startovní místnost i	Dosažitelné místnosti	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

Nejmenší hodnota $\,p[i]\,$ mezi všemi místnostmi je $\,1$, získáme ji pro $\,i=2.$ Funkce proto vrátí výsledek $\,[0,0,1].$

Omezení

- $2 \le n \le 300\,000$
- $1 \le m \le 300\,000$
- $0 \le r[i] \le n-1$ pro všechna $0 \le i \le n-1$
- $0 \leq u[j], v[j] \leq n-1$ a u[j]
 eq v[j] pro všechna $0 \leq j \leq m-1$

• $0 \leq c[j] \leq n-1$ pro všechna $0 \leq j \leq m-1$

Podúlohy

- 1. (9 bodů) c[j]=0 pro všechna $0\leq j\leq m-1$ a $n,m\leq 200$
- 2. (11 bodů) $n,m \leq 200$
- 3. (17 bodů) $n, m \leq 2000$
- 4. (30 bodů) $c[j] \leq 29$ (pro všechna $0 \leq j \leq m-1$) a $r[i] \leq 29$ (pro všechna $0 \leq i \leq n-1$)
- 5. (33 bodů) Žádná další omezení.

Ukázkový vyhodnocovač

Ukázkový vyhodnocovač čte vstup v následujícím tvaru:

- řádek 1: n m
- řádek 2: r[0] r[1] ... r[n-1]
- řádek 3+j ($0 \leq j \leq m-1$): u[j] v[j] c[j]

Návratovou hodnotu volání funkce find reachable vypíše v následujícím tvaru:

• řádek 1: a[0] a[1] \dots a[n-1]