Deep Kernel Learning – IIIForensics and human-in-the-loop interventions

Sergei V. Kalinin

Types of automated experiment

Direct

Myopic discovery

Multistage discovery

Deep Kernel Learning Automated Experiment

- Global image available at the beginning of the experiment
- We create the set of image patches describing local structures
- Spectra are measured sequentially
- Scalarizer is used to convert the spectrum to a single descriptor of interest
- We run automated experiment to learn which microstructural elements (patches) maximize the scalarizer.

DKL SPM

THE UNIVERSITY of TENNESSEE UNIVERSITY OF TENNESSEE

Guided by: On field loop area

Guided by: Off field loop area

- Large loop opening corresponding 180° domain walls
- This behavior can be attributed to the large polarization mobility of 180° walls

Exploring Non-Linearity

 V_{AC} sweep curve at each location was fitted as $y = Ax^3 + Bx^2 + Cx$

A, B, C, and A/B were use as the target function to guide DKL-V_{AC} measurement.

PTO and HZO thin films were studied.

- Shown are 200-step measurements of PTO and HZO thin films
- PFM amplitude was used as structure image; A/B was used to guide the measurement.

So, how does it work and how can I control it?

- In conventional microscopy experiment, human runs everything directly – defines scan, positions the probe, defines measurement parameters.
- In AE SPM, the policies are defined before the experiment and do not change. Sometimes it works – but not always.
- How would we:
 - (a) explain the AE progression after the experiment and
 - (b) control it during the experiment?

AE Forensics

- During the AE, model learns structure-property relationships.
- What if we retrace the experimental steps using the fully trained model?

Counterfactual scalarizers

Target properties:

- 1. Loop Area
- 2. Loop Height
- 3. Coercive Field
- 4. ...

- We save the full experimental trace
- What if we follow the actual experimental path but calculate alternative (counterfactual) scalarizers?

Monitoring the AE

- Different acquisition functions (policies) give different experimental paths for AE
- Can we analyze what is special about points visited?

VAE approach: feature space of visited points

VAE approach: full feature space

Human in the loop AE

We can intervene on:

- Policies (acquisition functions): type and parameters
- Scalarizers: type and parameters
- Knowledge injection
- Direct operation

Future: full workflow optimization

Characteristic	Definition	Availability
Global image	Initial structural data set available before DKL experiment. Used to	Before
	create patches for DKL training	
DKL latents	The latent variables encoding the structural information in the patches	During**
Scalarizer function	Function defining what characteristic of spectrum guides Bayesian	Before*
	Optimization	
Acquisition function	Function combining DKL prediction and uncertainty of the scalarizer	Before*
	function	
Policy	Principle for selection of next path. Simplest policy is maximization of	Before*
	acquisition function, but can be more complex including epsilon-	
	greedy or switch between multiple scalarizers or acquisition functions.	
	Human in the loop intervention tunes some aspect of the policy	
Experimental trace	Collection of patches (and their coordinates) and spectra derived	During
	during experiment. Trace and global image are the results of AE SPM.	

Characteristic	Definition	Availability
Live DKL model	DKL model in the state corresponding to the <i>n</i> -th experimental step	During
Final DKL model	DKL model in the state corresponding to the end of the experiment	After
Complete DKL	DKL model trained on the full data set (if available from grid	
model	measurements, etc).	
Regret analysis	The difference between predictions of live DKL model and final DKL model after the whole experiment (i.e., after 200 steps in this work)	During** and After
Learning curve	Change of the DKL uncertainty (mean and deviation), indicative of the predictability of the patch-scalarizer relationship	During
Counterfactual	The availability of full spectral data as a part of experimental trace allows	During
scalarizer	to estimate what the BO step would be if scalarizer were chosen to be different	
Trajectory analysis	Real-time trajectory of the probe that can be represented in the global image plane	During
Feature discovery	Analysis of the latent variables and latent representations of image patches and spectra in the trace. Here, we realize only patch analysis but extension to spectra is straightforward.	After
Latent trajectory analysis	Analysis of the experimental trajectory in the latent space of the full collection of the image patches derived from the global image	During**