| 10/23/18 |                      | DIVIDE AND CONQUER                                                      |                                        |                      |  |
|----------|----------------------|-------------------------------------------------------------------------|----------------------------------------|----------------------|--|
| ->       | Merge-S              | ort (A)  A                                                              | = N                                    |                      |  |
|          |                      | (n) = 2T(n/2) + O(1)                                                    | n) -> Worst-co                         | ise running          |  |
|          |                      | $T(n) = O(n \log n)$                                                    | Asymptotic<br>Sorting Al<br>(1st one a | gorithm.             |  |
|          |                      |                                                                         | s input tree                           | Level                |  |
|          | T(n) = 2T $T(1) = d$ | (n/2)+c·n                                                               | h/2                                    | 1                    |  |
|          | . , ,                | (N <sub>4</sub> ) (N <sub>4</sub> ) (N <sub>4</sub> ) (N <sub>4</sub> ) | 74                                     | :                    |  |
|          | (                    | D (1)                                                                   | · · · · · · · · · · · · · · · · · · ·  | l<br>log_n           |  |
|          | Level                | Work Per Node                                                           | No of nodes inlayer                    | Total<br>Work in lay |  |
|          | 0                    | C·n                                                                     | 1                                      | c-n 7                |  |
|          | 1                    | cn/2                                                                    | 2                                      | c-n (                |  |
|          | 2.                   | C-17/4                                                                  | 4                                      | cn                   |  |
|          | 1                    |                                                                         | i                                      |                      |  |
|          | i                    | C-n/21                                                                  | 2 <sup>°</sup>                         | c-n                  |  |
| 1        | 6 -                  | •                                                                       | :                                      | •                    |  |

P Why is it 'd' and not 'c'? - Both are constants so not important - But since constant work in last level ie, T(1)=d we use 'd'. Total Work = T(n) = (c·n) log\_2n + d·n = O(nlogn) merge-sort (A) LS = merge-sort (left half)  $\rightarrow T(n/2)$ Rs = merge-sort (right half) return (merge (LS, RS)); (Refer slides) > MASTER THEOREM: T(n) = aT(nb) + f(n)T(1)=d B) Why is a + b?

- Can happen (will see later on) We will modify recuesion tree for the general case.

Recursion Tree Hrodes per node Level interel f(n) f(1/6) f (Mb2) f(2/Pr) logbn f(n)=d 1 Total Work in layer i: in layer i:  $a^{i} f(n/b^{i}) = a^{i} \left(\frac{n}{b^{i}}\right)^{\log_{b} a} = \frac{a^{i} n^{\log_{b} a}}{b^{i} \log_{b} a} = \frac{a^{i} n^{\log_{b} a}}{a^{i}}$ every other (Similar notion of same amount layer this much of work in every layer) Total Work in last layer: dalogon = dylogoa



Matrix Multiplication:  $T(n) = 8T(n_{12}) + O(n^{2})$ recursive time to add and calle. form submatrix a = 8 , b = 2  $f(n) \quad \text{v.s.} \quad \text{Nlog_28} = N^3$   $O(n^2) \quad \text{Nlog_28} = N^3$ (Case 1)  $\Rightarrow$  T(n) =  $\theta(n) = \Theta(n^3)$ (with E = 1) T(n) = 8T(n/2) +0(n2) 15 now T(n)=7T(n/2)+0(r f(n) v.s. nlogba  $O(n^2)$   $N^{\log_2 7} = n^{2.81}$ -> Success! (Case 1)  $\Rightarrow$   $T(n) = \Theta(n^{2.81})$ ( with &=0.8)

