

Team 15 Cars – Autonomous Driving

Introduction to ROS Summer Semester 23

Prof. Dr. Markus Ryll

Autonomous Aerial Systems

TUM School of Engineering and Design

Jididu Li

Peishi Liu

Upendra Bevinamara Arun

Xing Hu

Yuan Zhao

Contents

- Overview
- Perception: Point cloud, occupancy map
- Perception: Traffic light detection
- Path Planning: Global Planner,
- Trajectory Planning: Local Planner and command fusion
- Controller: Controller and Drive
- Result

Overview of the pipeline

Perception: Point cloud and Occupancy map

Initial step:

 Transformation setup using tf2_ros package to get the sensor readings in the right directions.

Point cloud

o Input: Depth image feed and depth camera info

Output: Point cloud

Occupancy map

- o Input: Point cloud
- Setup to filter ground plane, sensor model max range and hit/miss
- Output: 3D Voxel grid and 2D Occupancy map

Path planning: Global Planner

Backbone: Move Base package

Global Planner:

- Hard coded 20 waypoints for a smoother path
 - 2 points per turn (8 turns x 2 points = 16)
 - 2 points on the long straight
 - 2 points for start and goal position
 - Goal publisher node publishes these points to the move base package

Setup the Global planner and costmaps Global Planner parameters:

A* algorithm

Global and local cost map parameters:

Obstacle and robot footprint setup

Trajectory planning: Local planner

Desired Velocity and Steering angle for a front-wheel-steering vehicle

Used package:

- teb_local_planner
 - 1. time-optimal
 - 2. maximum velocities
 - accelerations

Node:

- Twist_to_ackermann_node
 - Messages with linear velocity and steering angle

Perception: Traffic light detection

Multiple sensors used for traffic light detection Specific image area would be processed road constriction convention

Input

- o Semantic camera: detection of traffic light
- o RGB camera: estimate current signal
- Depth camera: calculate the distance

Output

o Ackermann msg with factors content.

Trajectory planning: Command Fusion

Node:

- /cmd_multiplier_node
 - Multiply corresponding value in /ackermann_cmd with factors (currently 1 for green light and 0 for red light)

Controller: Controller and Drive

Calculate the control value for the velocity and turning angle via two PID controller. Passing the calculated value to the Actuators, make sure our vehicle fellow the traffic light.

Node:

Controller node

Controller:

- PID controller for velocity and turning angle
- Integration of traffic light into control policy
- Publish control value to Actuators

Differently:

- Can not generate cost map(works for others).
- Command value are always zero.

Result

- Detects traffic lights and stops at Red and vehicle moves when Green.
- Avoids obstacles.
- Drives around as fast as possible.
 - Can not receive vel and acc signal(only local)

References

- 1. Point cloud from Depth Image: http://wiki.ros.org/depth image proc
- 2. Point cloud to Voxel Grid and Octomap: http://wiki.ros.org/octomap_server
- Move base: http://wiki.ros.org/move_base
- 4. Teb local planner: http://wiki.ros.org/teb local planner
- 5. Command fusion with mux: http://wiki.ros.org/twist_mux
- Image processing for traffic lights: https://opencv.org/
- 7. Communication between ROS and Open CV: http://wiki.ros.org/cv bridge

Thank you for your attention

