第五章 原根

- 1. 整数的阶
- 2. 原根
- 3. 一般既约剩余系的构造
- 4. 离散对数

前面的讨论都直接或间接与既约剩余系有关,因此如果既约剩余系能够很简单的表出,那么很多问题就可能得到简化.

前面的讨论都直接或间接与既约剩余系有关,因此如果既约剩余系能够很简单的表出,那么很多问题就可能得到简化.

为此,在本章中我们介绍阶,原根和离散对数等重要概念,证明原根存在的充要条件,并给出一般既约剩余系的构造方法.

1. 整数的阶

- 2. 原根
- 3. 一般既约剩余系的构造
- 4. 离散对数

由欧拉定理我们知道, 对任意正整数 m, 如果整数 a 满足 (a,m)=1, 那么必有 $a^{\phi(m)}\equiv 1 \pmod{m}$. 基于这一事实, 我们有下面的定义.

由欧拉定理我们知道, 对任意正整数 m, 如果整数 a 满足 (a,m)=1, 那么必有 $a^{\phi(m)}\equiv 1\pmod{m}$. 基于这一事实, 我们有下面的定义.

定义 1.1. 设 $m \in \mathbb{Z}^+$, $a \in \mathbb{Z}$ 且 (a, m) = 1, 如果 l 是使 $a^l \equiv 1 \pmod{m}$

成立的最小正整数, 则称 l 为 a 关于模 m 的**阶**(order), 记 为 ord_ma.

由欧拉定理我们知道, 对任意正整数 m, 如果整数 a 满足 (a,m)=1, 那么必有 $a^{\phi(m)}\equiv 1\pmod{m}$. 基于这一事实, 我们有下面的定义.

定义 1.1. 设 $m \in \mathbb{Z}^+$, $a \in \mathbb{Z}$ 且 (a, m) = 1, 如果 l 是使

$$a^l \equiv 1 \pmod{m}$$

成立的最小正整数, 则称 l 为 a 关于模 m 的**阶**(order), 记 为 ord_ma.

由定义, 如果 $a \equiv b \pmod{m}$, 那么显然有 $\operatorname{ord}_m a = \operatorname{ord}_m b$.

定理 1.1. 设 $\operatorname{ord}_m a = l$, 整数 $n \ge 0$, 则 $a^n \equiv 1 \pmod{m}$

当且仅当 l|n. 特别地, $l|\phi(m)$.

定理 1.1. 设 $\operatorname{ord}_m a = l$, 整数 $n \geq 0$, 则 $a^n \equiv 1 \pmod{m}$ 当且仅当 l|n. 特别地, $l|\phi(m)$.

证明: 由 $\operatorname{ord}_m a = l$ 知, $a^l \equiv 1 \pmod{m}$.

定理 1.1. 设 $\operatorname{ord}_m a = l$, 整数 $n \geq 0$, 则 $a^n \equiv 1 \pmod{m}$ 当且仅当 $l \mid n$. 特别地, $l \mid \phi(m)$.

证明: 由 $\operatorname{ord}_m a = l$ 知, $a^l \equiv 1 \pmod{m}$.

下面证明定理的充分性. 假设 l|n, 不妨设 n = lk. 因为

$$a^{n} - 1 = a^{lk} - 1 = (a^{l} - 1)(a^{l(k-1)} + \dots + a + 1),$$

又 $a^l \equiv 1 \pmod{m}$, 所以有 $a^n \equiv 1 \pmod{m}$.

定理 1.1. 设 $\operatorname{ord}_m a = l$, 整数 $n \geq 0$, 则 $a^n \equiv 1 \pmod{m}$ 当且仅当 $l \mid n$. 特别地, $l \mid \phi(m)$.

证明: 由 $\operatorname{ord}_m a = l$ 知, $a^l \equiv 1 \pmod{m}$.

下面证明定理的充分性. 假设 l|n, 不妨设 n = lk. 因为

$$a^{n} - 1 = a^{lk} - 1 = (a^{l} - 1)(a^{l(k-1)} + \dots + a + 1),$$

又 $a^l \equiv 1 \pmod{m}$, 所以有 $a^n \equiv 1 \pmod{m}$.

下证必要性. 假设 n = ql + r, 其中 $0 \le r < l$. 则由 $a^n \equiv a^l \equiv 1 \pmod{m}$ 有

$$1 \equiv a^n = a^{ql+r} = a^{ql} \cdot a^r = (a^l)^q \cdot a^r \equiv a^r \pmod{m},$$

即 $a^r \equiv 1 \pmod{m}$. 于是由阶的定义知, r = 0, 故 l|n. 由欧

拉定理, $l|\phi(m)$ 是显然的, 因此定理成立.

解: 直接计算知

$$2^1 \equiv 2 \pmod{7}, \quad 2^2 \equiv 4 \pmod{7}, \quad 2^3 \equiv 1 \pmod{7},$$

所以 $\operatorname{ord}_7 2 = 3$.

解: 直接计算知

$$2^1 \equiv 2 \pmod{7}$$
, $2^2 \equiv 4 \pmod{7}$, $2^3 \equiv 1 \pmod{7}$, 所以 $\operatorname{ord}_7 2 = 3$.

同理, 因为

$$3^1 \equiv 3 \pmod{7}$$
, $3^2 \equiv 2 \pmod{7}$, $3^3 \equiv 6 \pmod{7}$, $3^4 \equiv 4 \pmod{7}$, $3^5 \equiv 5 \pmod{7}$, $3^6 \equiv 1 \pmod{7}$, 所以 $\operatorname{ord}_7 3 = 6$.

解: 直接计算知

$$2^1 \equiv 2 \pmod{7}$$
, $2^2 \equiv 4 \pmod{7}$, $2^3 \equiv 1 \pmod{7}$, 所以 $\operatorname{ord}_7 2 = 3$.

同理, 因为

$$3^1 \equiv 3 \pmod{7}, \quad 3^2 \equiv 2 \pmod{7}, \quad 3^3 \equiv 6 \pmod{7},$$
 $3^4 \equiv 4 \pmod{7}, \quad 3^5 \equiv 5 \pmod{7}, \quad 3^6 \equiv 1 \pmod{7},$
Fig. ord₇3 = 6.

事实上, 因为 $\phi(7) = 6$, 所以由定理**1.1**知 ord₇2, ord₇3 \in {1, 2, 3, 6}, 因此在求 ord₇3 时可以不计算 3⁴ 和 3⁵.

利用阶, 我们有时可以判断一个数是否是一个指数方程的解.

利用阶, 我们有时可以判断一个数是否是一个指数方程的解.

例 1.2. 判断 $x_1 = 10$ 和 $x_2 = 15$ 是否是 $2^x \equiv 1 \pmod{7}$ 的解.

利用阶, 我们有时可以判断一个数是否是一个指数方程的解.

例 1.2. 判断 $x_1 = 10$ 和 $x_2 = 15$ 是否是 $2^x \equiv 1 \pmod{7}$ 的解.

解: 在例1.1中,我们已经得到 ord₇2 = 3. 而由定理1.1知,非负整数 $n \not\in 2^x \equiv 1 \pmod{7}$ 的解当且仅当 3|n. 因此 $x_1 = 10$ 不是 $2^x \equiv 1 \pmod{7}$ 的解,而 $x_2 = 15$ 是 $2^x \equiv 1 \pmod{7}$ 的解.

定理 1.2. 设 $\operatorname{ord}_m a = l$, i 和 j 为非负整数, 则 $a^i \equiv a^j \pmod{m}$ 当且仅当 $i \equiv j \pmod{l}$.

定理 1.2. 设 $\operatorname{ord}_m a = l$, $i \neq n \neq j$ 为非负整数, 则 $a^i \equiv a^j \pmod{m}$ 当且仅当 $i \equiv j \pmod{l}$.

证明: 我们先证充分性. 假设 $i \equiv j \pmod{l}$, $i \geq j \geq 0$, 则存在非负整数 k 使得 i - j = kl, 即 i = kl + j. 于是有 $a^i = a^{kl+j} = (a^l)^k \cdot a^j \equiv a^j \pmod{m}$,

 $\mathbb{P} a^i \equiv a^j \pmod{m}.$

定理 1.2. 设 $\operatorname{ord}_m a = l$, $i \neq n \neq m$ 为非负整数, 则 $a^i \equiv a^j \pmod{m}$ 当且仅当 $i \equiv j \pmod{l}$.

证明: 我们先证充分性. 假设 $i \equiv j \pmod{l}$, $i \ge j \ge 0$, 则存在非负整数 k 使得 i - j = kl, 即 i = kl + j. 于是有

$$a^i = a^{kl+j} = (a^l)^k \cdot a^j \equiv a^j \pmod{m},$$

 $\mathbb{P} a^i \equiv a^j \pmod{m}.$

下证必要性. 假设 $a^i \equiv a^j \pmod{m}$, $i \ge j \ge 0$, 则有 $a^j(a^{i-j}-1) \equiv 0 \pmod{m}.$

因为 (a, m) = 1, 所以 $a^{i-j} - 1 \equiv 0 \pmod{m}$, 即 $a^{i-j} \equiv 1 \pmod{m}$. 因为 $i - j \geq 0$, 所以由定理**1.1**知, l|i - j, 即 $i \equiv j \pmod{l}$, 这就证明了定理.

下面的推论是显然的.

定理 1.3. 如果 $\operatorname{ord}_m a = l, s \in \mathbb{Z}^+$, 那么

$$\operatorname{ord}_m a^s = \frac{l}{(s,l)}.$$

定理 1.3. 如果 $\operatorname{ord}_m a = l, s \in \mathbb{Z}^+$, 那么

$$\operatorname{ord}_m a^s = \frac{l}{(s,l)}.$$

证明: 设 $\operatorname{ord}_m a^s = t$, 则有 $a^{st} \equiv 1 \pmod{m}$. 因为 $\operatorname{ord}_m a = l$, 所以由定理1.1知, l|st, 于是 $\frac{l}{(s,l)}|\frac{st}{(s,l)}$. 由于 $\left(\frac{l}{(s,l)},\frac{s}{(s,l)}\right) = 1$, 所以 $\frac{l}{(s,l)}|t$. 另一方面, 因为

$$(a^s)^{\frac{l}{(s,l)}} = (a^l)^{\frac{s}{(s,l)}} \equiv 1 \pmod{m},$$

而 ord_m $a^s = t$, 所以 $t|\frac{l}{(s,l)}$. 于是, 我们发现 $t = \frac{l}{(s,l)}$ 或 $t = -\frac{l}{(s,l)}$. 因为 t 和 $\frac{l}{(s,l)}$ 都是正数, 所以必然有 $t = \frac{l}{(s,l)}$. 故 定理成立

由欧拉函数的定义和上面的定理,下面的推论也是显然的.

推论 1.2. 设 ord_ma = l, 令 $S = \{a^s | (s, l) = 1, 1 \le s \le l\}$, 则 $|S| = \phi(l)$, 且对任意 $b \in S$, 都有 ord_mb = l.

由欧拉函数的定义和上面的定理,下面的推论也是显然的.

推论 **1.2.** 设 ord_ma = l, 令 $S = \{a^s | (s, l) = 1, 1 \le s \le l\}$, 则 $|S| = \phi(l)$, 且对任意 $b \in S$, 都有 ord_mb = l.

值得注意的是, 上面推论里 S 中的 $\phi(l)$ 个数, 尽管它们的阶相同, 但是它们关于模 m 两两互不同余.

定理 1.4. 设 p 是素数, $a \in \mathbb{Z}$ 使得 $\operatorname{ord}_p a = l$, 那么有且 仅有 $\phi(l)$ 个关于模 p 的阶为 l, 且两两互不同余的数.

定理 **1.4.** 设 p 是素数, $a \in \mathbb{Z}$ 使得 $\operatorname{ord}_p a = l$, 那么有且 仅有 $\phi(l)$ 个关于模 p 的阶为 l, 且两两互不同余的数.

证明: 因为 $\operatorname{ord}_{p}a = l$, 所以由推论1.1知, a, a^{2}, \ldots, a^{l} 关于模 p 两两互不同余. 令 $S = \{a^{s} | 1 \leq s \leq l, (s, l) = 1\}$, 则由定理1.3知, S 中每个元素的阶均为 l, 因此 S 中的元素给出 $\phi(l)$ 个关于模 p 的阶为 l, 且两两互不同余的数.

定理 1.4. 设 p 是素数, $a \in \mathbb{Z}$ 使得 $\operatorname{ord}_{n}a = l$, 那么有且 仅有 $\phi(l)$ 个关于模 p 的阶为 l, 且两两互不同余的数.

证明: 因为 $\operatorname{ord}_{n}a = l$, 所以由推论1.1知, a, a^{2}, \ldots, a^{l} 关于 模 p 两两互不同余. 令 $S = \{a^s | 1 < s < l, (s, l) = 1\}$, 则由 定理1.3知. S 中每个元素的阶均为 l. 因此 S 中的元素给出 $\phi(l)$ 个关于模 p 的阶为 l, 且两两互不同余的数.

下证不存在其他阶为 l 且与 S 中元素关于模 p 不同余的数. 如前所述, a, a^2, \ldots, a^l 关于模 p 两两互不同余, 所以它们是 同余方程 $x^l \equiv 1 \pmod{p}$ 的全部解. 由此可见对 $\forall b \in \mathbb{Z}$, 如 果 $\operatorname{ord}_{p}b = l$, 那么 $b \not\in x^{l} \equiv 1 \pmod{p}$ 的解, 因此 $b \not\subseteq b$ a, a^2, \ldots, a^l 中某个数关于模 p 同余. 不妨设 $1 \le k \le l$ 使得 $b \equiv a^k \pmod{p}$. 由定理1.3知, $\operatorname{ord}_p b = \operatorname{ord}_p a^k = l$ 意味着 (k,l)=1, 从而 $a^k \in S$, 即不存在其他阶为 l 且与 S 中元素 关于模 p 不同余的数. 故定理成立. 12 / 64

例如, 当 p = 7 时, 在例1.1中我们已经得到 $ord_73 = 6$, 那么由上面的定理知, 应该存在 $\phi(6) = 2$ 个关于模 7 的阶为 6 且互不同余的数. 由定理1.4的证明知, 当 (s,6) = 1, 即 s = 1 或 5 时, 3 和 3^5 的阶均为 6.

例如, 当 p=7 时, 在例1.1中我们已经得到 $\operatorname{ord}_73=6$, 那么由上面的定理知, 应该存在 $\phi(6)=2$ 个关于模 7 的阶为 6 且互不同余的数. 由定理1.4的证明知, 当 (s,6)=1, 即 s=1 或 5 时, 3 和 3^5 的阶均为 6.

设 p 是素数, 则由定理1.1知, $\operatorname{ord}_p a | \phi(p) = p - 1$, 即一个数关于模 p 的阶一定是 p - 1 的因数.

例如, 当 p=7 时, 在例1.1中我们已经得到 $\operatorname{ord}_73=6$, 那么由上面的定理知, 应该存在 $\phi(6)=2$ 个关于模 7 的阶为 6 且互不同余的数. 由定理1.4的证明知, 当 (s,6)=1, 即 s=1 或 5 时, 3 和 3^5 的阶均为 6.

设 p 是素数, 则由定理1.1知, $\operatorname{ord}_p a | \phi(p) = p - 1$, 即一个数关于模 p 的阶一定是 p - 1 的因数.

反过来, 对 p-1 的任意正因数 l, 即 l|p-1, 存在整数 a 满足 $\mathrm{ord}_p a = l$ 吗?

下面的定理肯定地回答了这个问题.

定理 **1.5**. 设 p 是素数, l|p-1, 则存在 $\phi(l)$ 个关于模 p 的阶为 l 且两两互不同余的数.

定理 1.5. 设 p 是素数, l|p-1, 则存在 $\phi(l)$ 个关于模 p 的阶为 l 且两两互不同余的数.

证明: 对任意 l|p-1, 用 f(l) 记 $\{1,2,\ldots,p-1\}$ 中关于模 p 阶为 l 的元素个数. 显然, $f(l) \ge 0$. 因为 $\{1,2,\ldots,p-1\}$ 中任一元素的阶都等于 p-1 的某个因数, 所以

$$\sum_{l|p-1} f(l) = p - 1. \tag{1}$$

定理 **1.5.** 设 p 是素数, l|p-1, 则存在 $\phi(l)$ 个关于模 p 的阶为 l 且两两互不同余的数.

证明: 对任意 l|p-1, 用 f(l) 记 $\{1,2,\ldots,p-1\}$ 中关于模 p 阶为 l 的元素个数. 显然, $f(l) \ge 0$. 因为 $\{1,2,\ldots,p-1\}$ 中任一元素的阶都等于 p-1 的某个因数, 所以

$$\sum_{l|p-1} f(l) = p - 1. {1}$$

另一方面,由欧拉函数有

$$\sum_{l|p-1} \phi(l) = p - 1. \tag{2}$$

定理 **1.5**. 设 p 是素数, l|p-1, 则存在 $\phi(l)$ 个关于模 p 的阶为 l 且两两互不同余的数.

证明: 对任意 l|p-1, 用 f(l) 记 $\{1,2,\ldots,p-1\}$ 中关于模 p 阶为 l 的元素个数. 显然, $f(l) \ge 0$. 因为 $\{1,2,\ldots,p-1\}$ 中任一元素的阶都等于 p-1 的某个因数, 所以

$$\sum_{l|p-1} f(l) = p - 1. {1}$$

另一方面,由欧拉函数有

$$\sum_{l|p-1} \phi(l) = p - 1. \tag{2}$$

而由定理1.4知, 对任意 l|p-1, f(l)=0 或 $\phi(l)$, 因此总有 $f(l) \leq \phi(l)$. 于是由 (1) 和 (2) 式得 $\sum_{l|p-1} (\phi(l)-f(l))=0$, 所以有 $f(l)=\phi(l)$. 故定理成立.

接下来我们讨论阶的求法. 设 $\operatorname{ord}_m a = l, d_1, d_2, \ldots, d_s$ 是 $\phi(m)$ 的所有因数. 由于 $l|\phi(m)$, 所以阶 l 可以通过计算 a^{d_1} , a^{d_2} , \cdots , a^{d_s} 关于模 m 的值求出. 下面的事实可以简化计算.

接下来我们讨论阶的求法. 设 $\operatorname{ord}_m a = l, d_1, d_2, \ldots, d_s$ 是 $\phi(m)$ 的所有因数. 由于 $l|\phi(m)$, 所以阶 l 可以通过计算 a^{d_1} , a^{d_2} , \cdots , a^{d_s} 关于模 m 的值求出. 下面的事实可以简化计算.

定理 1.6. 如果 $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ 是 m 的标准分解, 那 么 $\operatorname{ord}_m a = [\operatorname{ord}_{p_1^{\alpha_1}} a, \operatorname{ord}_{p_2^{\alpha_2}} a, \ldots, \operatorname{ord}_{p_k^{\alpha_k}} a].$

接下来我们讨论阶的求法. 设 ord_ma = l, d_1, d_2, \ldots, d_s 是 $\phi(m)$ 的所有因数. 由于 $l|\phi(m)$, 所以阶 l 可以通过计算 a^{d_1} , a^{d_2} , \cdots , a^{d_s} 关于模 m 的值求出. 下面的事实可以简化计算.

定理 1.6. 如果 $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ 是 m 的标准分解, 那么 $\operatorname{ord}_m a = [\operatorname{ord}_{p_1^{\alpha_1}} a, \operatorname{ord}_{p_2^{\alpha_2}} a, \ldots, \operatorname{ord}_{p_k^{\alpha_k}} a].$

证明: 设 $l_i = \operatorname{ord}_{p_i^{\alpha_i}} a$, 其中 $i = 1, 2, \ldots, k$, 令 $l = [l_1, l_2, ..., l_k]$. 因为对任意 $1 \le i \le k$, 都有 $a^{l_i} \equiv 1$ $\pmod{p_i^{\alpha_i}}$, 所以对任意 $1 \le i \le k$, 都有 $a^l \equiv 1 \pmod{p_i^{\alpha_i}}$, 于是有 $a^l \equiv 1 \pmod{m}$. 如果 $l \neq \operatorname{ord}_m a$, 则将 $\operatorname{ord}_m a$ 记作 t. 显然, 0 < t < l. 由 $a^t \equiv 1 \pmod{m}$ 可得 $a^t \equiv 1$ $\pmod{p_i^{\alpha_i}}$ 对任意 $1 \le i \le k$ 均成立. 因此, 对任意 $1 \le i \le k$, 都有 $l_i|t$, 于是 $[l_1, l_2, ..., l_k]|t$, 即 l|t, 这与 0 < t < l 矛盾! 故 $l = \operatorname{ord}_m a$.

例 1.3. 计算 ord₄₅2.

例 1.3. 计算 ord₄₅2.

解: 这里 $m = 45 = 5 \cdot 3^2$, a = 2, $\phi(5) = 4$, $\phi(3^2) = 6$. 直接计算知, $\operatorname{ord}_5 2 = 4$, $\operatorname{ord}_{3^2} 2 = 6$, 故由上面的定理得, $\operatorname{ord}_{45} 2 = [4, 6] = 12$.

例 1.3. 计算 ord₄₅2.

解: 这里 $m = 45 = 5 \cdot 3^2$, a = 2, $\phi(5) = 4$, $\phi(3^2) = 6$. 直接计算知, $\operatorname{ord}_5 2 = 4$, $\operatorname{ord}_{3^2} 2 = 6$, 故由上面的定理得, $\operatorname{ord}_{45} 2 = [4, 6] = 12$.

由定理1.6知, 计算 $\operatorname{ord}_{m}a$ 的关键是计算 a 关于模素数幂的 阶. 下面的定理将解决这个问题. 为了定理叙述的方便, 我们需要一个符号 "‖": 如果 $p^{s}|a$, 但是 $p^{s+1}\nmid a$, 那么我们写 $p^{s}\parallel a$.

定理 1.7. 设 p 是素数, 对任意正整数 i, 记 $\operatorname{ord}_{p^i}a = l_i$, 则 $l_{i+1} = l_i$ 或 $l_{i+1} = pl_i$. 进一步, 设 $p^{i_0} \parallel a^{l_2} - 1$, 则有

$$l_i = \begin{cases} l_2 & \text{ if } 2 \le i \le i_0 \\ p^{i-i_0}l_2 & \text{ if } i > i_0. \end{cases}$$

证明: 因为 $\operatorname{ord}_{p^i}a = l_i$, 所以 $a^{l_i} \equiv 1 \pmod{p^i}$. 于是 $(a^{l_i})^k \equiv 1 \pmod{p^i}$ 且

$$\sum_{i=1}^{p-1} (a^{l_i})^k \equiv \sum_{i=1}^{p-1} 1 \equiv p \pmod{p^i},$$

所以 $\sum_{k=0}^{p-1} (a^{l_i})^k \equiv 0 \pmod{p}$. 这样我们得到

$$a^{pl_i} - 1 = (a^{l_i} - 1) \cdot \sum_{i=1}^{p-1} (a^{l_i})^k \equiv 0 \pmod{p^{i+1}},$$

即 $a^{pl_i} \equiv 1 \pmod{p^{i+1}}$, 所以 $l_{i+1}|pl_i$.

另外, 因为 $a^{l_{i+1}} \equiv 1 \pmod{p^{i+1}}$, 所以 $a^{l_{i+1}} \equiv 1 \pmod{p^i}$, 从而有 $l_i|l_{i+1}$. 由 $l_i|l_{i+1}$ 及前面得到的 $l_{i+1}|pl_i$, 不难推出 $l_{i+1} = l_i$ 或 pl_i .

下面证明定理后半部分. 设 $p^{i_0} \parallel a^{l_2} - 1$, 则当 $i = 2, 3, \ldots, i_0$ 时, $p^i \mid a^{l_2} - 1$, 所以 $l_i \mid l_2$, 这里 $2 \le i \le i_0$. 另一方面, 当 $2 \le i \le i_0$ 时, 由 $a^{l_i} \equiv 1 \pmod{p^i}$ 知, $a^{l_i} \equiv 1 \pmod{p^2}$, 故 $l_2 \mid l_i$. 由它及前面证明得到的 $l_i \mid l_2$ 知, 当 $2 \le i \le i_0$ 时, $l_i = l_2$.

另外, 因为 $a^{l_{i+1}} \equiv 1 \pmod{p^{i+1}}$, 所以 $a^{l_{i+1}} \equiv 1 \pmod{p^i}$, 从而有 $l_i|l_{i+1}$. 由 $l_i|l_{i+1}$ 及前面得到的 $l_{i+1}|pl_i$, 不难推出 $l_{i+1} = l_i$ 或 pl_i .

下面证明定理后半部分. 设 $p^{i_0} \parallel a^{l_2} - 1$, 则当 $i = 2, 3, \ldots, i_0$ 时, $p^i \mid a^{l_2} - 1$, 所以 $l_i \mid l_2$, 这里 $2 \le i \le i_0$. 另一方面,当 $2 \le i \le i_0$ 时,由 $a^{l_i} \equiv 1 \pmod{p^i}$ 知, $a^{l_i} \equiv 1 \pmod{p^2}$,故 $l_2 \mid l_i$. 由它及前面证明得到的 $l_i \mid l_2$ 知,当 $2 \le i \le i_0$ 时, $l_i = l_2$.

下面考虑 $i > i_0$ 的情形, 此时 $p^i \nmid a^{l_2} - 1$. 由 $l_{i_0+1} = l_{i_0}$ 或 pl_{i_0} 知, 必须是 $l_{i_0+1} = pl_{i_0}$; 否则有 $l_{i_0+1} = l_{i_0} = l_2$, 从而有 $p^{i_0+1} \mid a^{l_{i_0+1}} - 1 = a^{l_2} - 1$, 这与 $p^{i_0+1} \nmid a^{l_2} - 1$ 矛盾!

又由 $l_{i_0+2}=l_{i_0+1}$ 或 pl_{i_0+1} 知, 必须是 $l_{i_0+2}=pl_{i_0+1}$; 否则由

$$a^{l_{i_0+2}} - 1 = a^{l_{i_0+1}} - 1 = (a^{l_{i_0}} - 1) \cdot \sum_{k=0}^{p-1} (a^{l_{i_0}})^k \equiv 0 \pmod{p^{i_0+2}}$$
(3)

和前面已证的结论

$$\sum_{k=0}^{p-1} (a^{l_{i_0}})^k \equiv p \pmod{p^{i_0}}$$
 (4)

得

$$a^{l_{i_0}} - 1 \equiv 0 \pmod{p^{i_0 + 1}},$$
 (5)

所以 $l_{i_0+1}|l_{i_0}$, 这与前面得到的 $l_{i_0+1} = pl_{i_0}$ 矛盾!

又由 $l_{i_0+2} = l_{i_0+1}$ 或 pl_{i_0+1} 知, 必须是 $l_{i_0+2} = pl_{i_0+1}$; 否则由

$$a^{l_{i_0+2}} - 1 = a^{l_{i_0+1}} - 1 = (a^{l_{i_0}} - 1) \cdot \sum_{k=0}^{p-1} (a^{l_{i_0}})^k \equiv 0 \pmod{p^{i_0+2}}$$
(3)

和前面已证的结论

$$\sum_{l=0}^{p-1} (a^{l_{i_0}})^k \equiv p \pmod{p^{i_0}}$$
 (4)

得

$$a^{l_{i_0}} - 1 \equiv 0 \pmod{p^{i_0 + 1}},$$
 (5)

所以 $l_{i_0+1}|l_{i_0}$, 这与前面得到的 $l_{i_0+1}=pl_{i_0}$ 矛盾!

同理可证, $l_{i_0+3} = pl_{i_0+2}$, $l_{i_0+4} = pl_{i_0+3}$, ..., 因此

 $l_{i_0+1}=pl_{i_0}=pl_2$, $l_{i_0+2}=pl_{i_0+1}=p^2l_2$, $l_{i_0+3}=pl_{i_0+2}=p^3l_2$,

..., $l_i = p^{i-i_0}l_2$, 这里 $i > i_0$. 这就完成了定理的证明.

上面定理的证明中,多次使用了定理1.1. 在给出例子之前,我们考察一下定理1.7中的条件. 首先值得注意的是,定理中假设的是 $p^{i_0} \parallel a^{l_2} - 1$. 一个自然的问题是,为什么不假设 $p^{i_0} \parallel a^{l_1} - 1$ 呢?

上面定理的证明中, 多次使用了定理1.1. 在给出例子之前, 我们考察一下定理1.7中的条件. 首先值得注意的是, 定理中假设的是 $p^{i_0} \parallel a^{l_2} - 1$. 一个自然的问题是, 为什么不假设 $p^{i_0} \parallel a^{l_1} - 1$ 呢?

事实上, 这是不可行的, 因为在从 (3) 和 (4) 推出 (5) 时, 需要用到 $i \geq 2$ 这一事实. 也可以使用随后的例子验证假设 $p^{i_0} \parallel a^{l_1} - 1$ 时定理结论将是错误的. 另外, 因为我们假设的是 $p^{i_0} \parallel a^{l_2} - 1$, 又因为显然有 $p^{i_2} \mid a^{l_2} - 1$, 所以 $i_0 \geq 2$. 因此在定理中考虑 $2 \leq i \leq i_0$ 不会有矛盾和遗漏.

上面定理的证明中, 多次使用了定理1.1. 在给出例子之前, 我们考察一下定理1.7中的条件. 首先值得注意的是, 定理中假设的是 $p^{i_0} \parallel a^{l_2} - 1$. 一个自然的问题是, 为什么不假设 $p^{i_0} \parallel a^{l_1} - 1$ 呢?

事实上, 这是不可行的, 因为在从 (3) 和 (4) 推出 (5) 时, 需要用到 $i \geq 2$ 这一事实. 也可以使用随后的例子验证假设 $p^{i_0} \parallel a^{l_1} - 1$ 时定理结论将是错误的. 另外, 因为我们假设的是 $p^{i_0} \parallel a^{l_2} - 1$, 又因为显然有 $p^{i_2} \mid a^{l_2} - 1$, 所以 $i_0 \geq 2$. 因此在定理中考虑 $2 < i < i_0$ 不会有矛盾和遗漏.

例 1.4. 设 a = 7, p = 2, 计算 ord₂₁₀7.

上面定理的证明中,多次使用了定理1.1. 在给出例子之前,我们考察一下定理1.7中的条件. 首先值得注意的是,定理中假设的是 $p^{i_0} \parallel a^{l_2} - 1$. 一个自然的问题是,为什么不假设 $p^{i_0} \parallel a^{l_1} - 1$ 呢?

事实上, 这是不可行的, 因为在从 (3) 和 (4) 推出 (5) 时, 需要用到 $i \ge 2$ 这一事实. 也可以使用随后的例子验证假设 $p^{i_0} \parallel a^{l_1} - 1$ 时定理结论将是错误的. 另外, 因为我们假设的是 $p^{i_0} \parallel a^{l_2} - 1$, 又因为显然有 $p^{i_2} \mid a^{l_2} - 1$, 所以 $i_0 \ge 2$. 因此在定理中考虑 $2 < i < i_0$ 不会有矛盾和遗漏.

例 1.4. 设 a = 7, p = 2, 计算 ord₂₁₀7.

解: 计算知, $l_1 = \text{ord}_2 7 = 1$, $l_2 = \text{ord}_{2^2} 7 = 2$. 因为 $7^2 - 1 = 48$, $2^4 \parallel 48$, 所以 $i_0 = 4 < 10$, 故 $l_{10} = 2^{10-4} l_2 = 2^6 \cdot 2 = 128$, 即 $\text{ord}_{2^{10}} 7 = 128$.

1. 整数的阶

2. 原根

3. 一般既约剩余系的构造

4. 离散对数

在前一节我们已经看到, 当 (a,m) = 1 时, 有 $\operatorname{ord}_m a | \phi(m)$, 即 a 关于模 m 的阶一定是 $\phi(m)$ 的因数, 并且由定理1.5知, 当 m 是素数时, 存在 $\phi(m-1)$ 个使得 $\operatorname{ord}_m a = \phi(m)$ 的 a.

在前一节我们已经看到, 当 (a,m) = 1 时, 有 $\operatorname{ord}_m a | \phi(m)$, 即 a 关于模 m 的阶一定是 $\phi(m)$ 的因数, 并且由定理1.5知, 当 m 是素数时, 存在 $\phi(m-1)$ 个使得 $\operatorname{ord}_m a = \phi(m)$ 的 a.

正如我们后面要看到的, 满足 $\operatorname{ord}_m a = \phi(m)$ 的 a 具有一些好的性质, 例如, $\{a, a^2, \ldots, a^{\phi(m)}\}$ 构成模 m 的一个既约剩余系.

在前一节我们已经看到, 当 (a,m) = 1 时, 有 $\operatorname{ord}_m a | \phi(m)$, 即 a 关于模 m 的阶一定是 $\phi(m)$ 的因数, 并且由定理1.5知, 当 m 是素数时, 存在 $\phi(m-1)$ 个使得 $\operatorname{ord}_m a = \phi(m)$ 的 a.

正如我们后面要看到的, 满足 $\operatorname{ord}_m a = \phi(m)$ 的 a 具有一些好的性质, 例如, $\{a, a^2, \ldots, a^{\phi(m)}\}$ 构成模 m 的一个既约剩余系.

因此在本节中, 我们研究什么样的 m 会使得存在 a 满足 $\operatorname{ord}_m a = \phi(m)$ 以及如何求相应的 a.

定义 **2.1.** 设 m 是正整数, (g, m) = 1. 如果 $\operatorname{ord}_m g = \phi(m)$, 那么称 g 为 m 的一个原根.

定义 2.1. 设 m 是正整数, (g,m) = 1. 如果 ord_m $q = \phi(m)$, 那么称 q 为 m 的一个原根.

如前所述, 定理1.5已经表明, 对某些 m, 原根的确是存在的.

定义 2.1. 设 m 是正整数, (g,m) = 1. 如果 ord_m $g = \phi(m)$, 那么称 g 为 m 的一个原根.

如前所述, 定理1.5已经表明, 对某些 m, 原根的确是存在的.

例如, $\operatorname{ord}_7 3 = \operatorname{ord}_7 5 = 6 = \phi(7)$, 因此 3 和 5 都是 7 的原根. 而由定理1.4知, 仅有 $\phi(6) = 2$ 个关于模 7 的阶为 6 且两两互不同余的整数, 所以 3 和 5 是 7 的全部原根.

定义 2.1. 设 m 是正整数, (g, m) = 1. 如果 $\operatorname{ord}_m g = \phi(m)$, 那么称 g 为 m 的一个原根.

如前所述, 定理1.5已经表明, 对某些 m, 原根的确是存在的.

例如, $\operatorname{ord}_7 3 = \operatorname{ord}_7 5 = 6 = \phi(7)$, 因此 3 和 5 都是 7 的原根. 而由定理1.4知, 仅有 $\phi(6) = 2$ 个关于模 7 的阶为 6 且两两互不同余的整数, 所以 3 和 5 是 7 的全部原根.

然而, 也并非所有的整数都有原根, 例如 8 就没有原根. 事实上, 小于 8 且与之互素的正整数只有 1,3,5,7, 而简单计算则知 $\mathrm{ord_81}=1$, $\mathrm{ord_83}=\mathrm{ord_85}=\mathrm{ord_87}=2$, 又因为 $\phi(8)=2^3-2^2=4$, 所以 8 没有原根.

定理 2.1. 设 m 是正整数, 则 g 是 m 的原根当且仅当 $\{g, g^2, \ldots, g^{\phi(m)}\}$ 组成模 m 的一个既约剩余系.

定理 2.1. 设 m 是正整数, 则 g 是 m 的原根当且仅当 $\{g, g^2, \ldots, g^{\phi(m)}\}$ 组成模 m 的一个既约剩余系.

证明: (⇒) 设 g 是 m 的原根,则由定理1.2知, $g,g^2,\ldots,g^{\phi(m)}$ 中任意两个数关于模 m 两两互不同余. 又因为 g 是 m 的原根,所以 (g,m)=1. 于是对任意 $1 \le i \le \phi(m)$,都有 $(g^i,m)=1$,所以 $\{g,g^2,\ldots,g^{\phi(m)}\}$ 组成模 m 的一个既约剩余系.

定理 2.1. 设 m 是正整数, 则 g 是 m 的原根当且仅当 $\{g, g^2, \ldots, g^{\phi(m)}\}$ 组成模 m 的一个既约剩余系.

证明: (⇒) 设 g 是 m 的原根,则由定理1.2知, $g,g^2,\ldots,g^{\phi(m)}$ 中任意两个数关于模 m 两两互不同余.又因为 g 是 m 的原根,所以 (g,m)=1.于是对任意 $1 \le i \le \phi(m)$,都有 $(g^i,m)=1$,所以 $\{g,g^2,\ldots,g^{\phi(m)}\}$ 组成模 m 的一个既约剩余系.

(秦) 设 $\{g, g^2, \dots, g^{\phi(m)}\}$ 是模 m 的一个既约剩余系,则有 (g, m) = 1. 因此由欧拉定理知, $g^{\phi(m)} \equiv 1 \pmod{m}$. 因为 m 的既约剩余系中的任意两个数关于模 m 都是互不同余的,所以对任意 $1 \le i < \phi(m)$,都有 $g^i \not\equiv 1 \pmod{m}$. 因此 $\operatorname{ord}_m q = \phi(m)$,即 q 是 m 的原根.

在给出下一个定理之前, 我们考察一下前 30 个正整数中哪 些数存在原根, 看看它们是否有规律可循.

在给出下一个定理之前, 我们考察一下前 30 个正整数中哪 些数存在原根, 看看它们是否有规律可循.

因为 1 太特殊, 所以我们不予考虑. 剩下的 29 个数中, 2,3,4,5,6,7,9,10,11,13,14,17,18,19,22,23,25,26,27,29 都有原根, 而其他数没有原根.

除了每个素数都有原根外,每个奇素数的幂 (9,25,27) 也都有原根,但偶素数 2 的方幂中只有 4 有原根;其他有原根的数是 6,10,14,18,22,26,这些数的共同特点是它们都是奇素数幂的 2 倍的形式.

在给出下一个定理之前, 我们考察一下前 30 个正整数中哪 些数存在原根, 看看它们是否有规律可循.

因为 1 太特殊, 所以我们不予考虑. 剩下的 29 个数中, 2,3,4,5,6,7,9,10,11,13,14,17,18,19,22,23,25,26,27,29 都有原根, 而其他数没有原根.

除了每个素数都有原根外,每个奇素数的幂 (9,25,27) 也都有原根,但偶素数 2 的方幂中只有 4 有原根;其他有原根的数是 6,10,14,18,22,26,这些数的共同特点是它们都是奇素数幂的 2 倍的形式.

因此, 我们可以猜测当 $m=2,4,p^{\alpha}$ 或 $2p^{\alpha}$ 时, m 有原根.

定理 2.2. 设整数 m > 1, 如果 m 有原根, 那么 m 必为下列诸数之一:

$$2, 4, p^{\alpha}, 2p^{\alpha},$$

这里 p 为奇素数, α 为正整数.

定理 **2.2.** 设整数 m > 1, 如果 m 有原根, 那么 m 必为下列诸数之一:

$$2, 4, p^{\alpha}, 2p^{\alpha},$$

这里 p 为奇素数, α 为正整数.

证明: 设 m 的标准分解式为 $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$. 对任意正整数 a, 如果 (a,m) = 1, 那么 $(a,p_i^{\alpha_i}) = 1$. 因此由欧拉定理得, $a^{\phi(p_i^{\alpha_i})} \equiv 1 \pmod{p_i^{\alpha_i}}$, 这里 $1 \leq i \leq k$. 令 $\alpha = [\phi(p_1^{\alpha_1}), \phi(p_2^{\alpha_2}), \ldots, \phi(p_k^{\alpha_k})]$, 则有 $a^{\alpha} \equiv 1 \pmod{p_i^{\alpha_i}}$, 其中 $1 \leq i \leq k$, 于是 $a^{\alpha} \equiv 1 \pmod{m}$, 故 $\operatorname{ord}_m a \leq \alpha$.

另一方面, $\phi(m) = \phi(p_1^{\alpha_1})\phi(p_2^{\alpha_2})\cdots\phi(p_k^{\alpha_k}) \geq \alpha$. 因为当 $\phi(m) > \alpha$ 时, 我们有 $\operatorname{ord}_m a < \phi(m)$, 所以此时 m 没有原根. 因此 m 若有原根, 则必须满足 $\phi(m) = \alpha$, 这等价于 $\phi(p_1^{\alpha_1}), \phi(p_2^{\alpha_2}), \ldots, \phi(p_k^{\alpha_k})$ 两两互素. 由于对任意奇素数 p, $\phi(p^{\alpha})$ 均为偶数, 所以当 m 有两个不同的奇素因数时, m 没有原根. 这意味着 m 若有原根, 则必为 2^s , p^{α} 或 $2^t p^{\alpha}$ $(s > 0, \alpha > 0, t > 0)$ 三种形式之一.

另一方面, $\phi(m) = \phi(p_1^{\alpha_1})\phi(p_2^{\alpha_2})\cdots\phi(p_k^{\alpha_k}) \geq \alpha$. 因为当 $\phi(m) > \alpha$ 时, 我们有 $\operatorname{ord}_m a < \phi(m)$, 所以此时 m 没有原根. 因此 m 若有原根, 则必须满足 $\phi(m) = \alpha$, 这等价于 $\phi(p_1^{\alpha_1}), \phi(p_2^{\alpha_2}), \ldots, \phi(p_k^{\alpha_k})$ 两两互素. 由于对任意奇素数 p, $\phi(p^{\alpha})$ 均为偶数, 所以当 m 有两个不同的奇素因数时, m 没有原根. 这意味着 m 若有原根, 则必为 2^s , p^{α} 或 $2^t p^{\alpha}$ $(s > 0, \alpha > 0, t > 0)$ 三种形式之一.

如果 t > 1, 那么 $\phi(2^t) = 2^t - 2^{t-1} = 2^{t-1}$ 与 $\phi(p^{\alpha})$ 将不互素, 因此 t = 1.

下证 $s \ge 3$ 时, $m = 2^s$ 没有原根. 首先, 我们归纳证明: 对任意奇数 a, 当 $s \ge 3$ 时,

$$a^{2^{s-2}} \equiv 1 \pmod{2^s}. \tag{6}$$

下证 $s \ge 3$ 时, $m = 2^s$ 没有原根. 首先, 我们归纳证明: 对任意奇数 a, 当 $s \ge 3$ 时,

事实上, 当 a 为奇数时, 显然有 $a^2 \equiv 1 \pmod{2^3}$, 所以

$$a^{2^{s-2}} \equiv 1 \pmod{2^s}. \tag{6}$$

s=3 时 (6) 成立. 归纳假设 $a^{2^{s-3}}\equiv 1\pmod{2^{s-1}}$ 成立, 则存在 $l\in\mathbb{Z}$ 使得 $a^{2^{s-3}}=1+2^{s-1}l$. 于是有

$$a^{2^{s-2}} = (a^{2^{s-3}})^2 = (1+2^{s-1}l)^2 = 1+2^sl+2^{2(s-1)}l^2 \equiv 1 \pmod{2^s}.$$

因此, 对任意奇数 a, 当 $s \ge 3$ 时, (6) 成立. 另一方面, 因为 $\phi(2^s) = 2^s - 2^{s-1} = 2^{s-1} > 2^{s-2}$, 所以当 $s \ge 3$ 时, $m = 2^s$ 没有原根.

下证 $s \ge 3$ 时, $m = 2^s$ 没有原根. 首先, 我们归纳证明: 对任意奇数 a, 当 $s \ge 3$ 时,

$$a^{2^{s-2}} \equiv 1 \pmod{2^s}. \tag{6}$$

事实上, 当 a 为奇数时, 显然有 $a^2 \equiv 1 \pmod{2^3}$, 所以 s = 3 时 (6) 成立. 归纳假设 $a^{2^{s-3}} \equiv 1 \pmod{2^{s-1}}$ 成立, 则 存在 $l \in \mathbb{Z}$ 使得 $a^{2^{s-3}} = 1 + 2^{s-1}l$. 于是有

$$a^{2^{s-2}} = (a^{2^{s-3}})^2 = (1+2^{s-1}l)^2 = 1+2^sl+2^{2(s-1)}l^2 \equiv 1 \pmod{2^s}.$$

因此, 对任意奇数 a, 当 $s \ge 3$ 时, (6) 成立. 另一方面, 因为 $\phi(2^s) = 2^s - 2^{s-1} = 2^{s-1} > 2^{s-2}$, 所以当 $s \ge 3$ 时, $m = 2^s$ 没有原根.

综上, 我们证明了 $m \neq 2, 4, p^{\alpha}, 2p^{\alpha}$ 时, m 没有原根. 因此定理成立..

更重要的是, 上面定理的逆定理也是成立的.

定理 **2.3**. 当 $m = 2, 4, p^{\alpha}, 2p^{\alpha}$ (其中 p 为奇素数, α 为正整数) 时, m 有原根.

更重要的是, 上面定理的逆定理也是成立的.

定理 **2.3.** 当 $m = 2, 4, p^{\alpha}, 2p^{\alpha}$ (其中 p 为奇素数, α 为正整数) 时, m 有原根.

因此, 由定理2.2和定理2.3, 我们有下面的推论.

推论 **2.1**. 设整数 m > 1, 则 m 有原根当且仅当 $m = 2, 4, p^{\alpha}$, 或 $2p^{\alpha}$, 这里 p 为奇素数, α 为正整数.

为证明定理2.3, 我们需要下面的引理.

引理 2.1. 设 g 是奇素数 p 的原根且满足

$$g^{\phi(p)} \not\equiv 1 \pmod{p^2},\tag{7}$$

则对任意整数 $\alpha \geq 2$, 有

$$g^{\phi(p^{\alpha-1})} \not\equiv 1 \pmod{p^{\alpha}}.$$
 (8)

为证明定理2.3, 我们需要下面的引理.

引理 2.1. 设 g 是奇素数 p 的原根且满足

$$g^{\phi(p)} \not\equiv 1 \pmod{p^2},\tag{7}$$

则对任意整数 $\alpha \geq 2$, 有

$$g^{\phi(p^{\alpha-1})} \not\equiv 1 \pmod{p^{\alpha}}.$$
 (8)

证明: 对 α 进行归纳证明. 当 $\alpha = 2$ 时, (8) 即 (7), 故引理成立.

为证明定理2.3, 我们需要下面的引理.

引理 2.1. 设 g 是奇素数 p 的原根且满足

$$g^{\phi(p)} \not\equiv 1 \pmod{p^2},\tag{7}$$

则对任意整数 $\alpha \geq 2$, 有

$$g^{\phi(p^{\alpha-1})} \not\equiv 1 \pmod{p^{\alpha}}.$$
 (8)

证明: 对 α 进行归纳证明. 当 $\alpha = 2$ 时, (8) 即 (7), 故引理成立.

假设引理对 α (\geq 2) 成立, 即 $g^{\phi(p^{\alpha-1})} \not\equiv 1 \pmod{p^{\alpha}}$. 因为 g 是 p 的原根, 所以 $(g, p^{\alpha-1}) = 1$. 于是由欧拉定理得, $g^{\phi(p^{\alpha-1})} \equiv 1 \pmod{p^{\alpha-1}}$, 因此存在 $k \in \mathbb{Z}$ 使得 $g^{\phi(p^{\alpha-1})} = 1 + kp^{\alpha-1}$.

由归纳假设 $g^{\phi(p^{\alpha-1})} \not\equiv 1 \pmod{p^{\alpha}}$ 知, $p \nmid k$, 从而有

$$g^{\phi(p^{\alpha})} = g^{p^{\alpha} - p^{\alpha - 1}} = g^{p\phi(p^{\alpha - 1})} = (g^{\phi(p^{\alpha - 1})})^{p}$$

$$= (1 + kp^{\alpha - 1})^{p}$$

$$= 1 + kp^{\alpha} + k^{2} \cdot \frac{p(p - 1)}{2} \cdot p^{2(\alpha - 1)} + rp^{3(\alpha - 1)}, (9)$$

这里 $r \in \mathbb{Z}$.

由归纳假设 $g^{\phi(p^{\alpha-1})} \not\equiv 1 \pmod{p^{\alpha}}$ 知, $p \nmid k$, 从而有

$$g^{\phi(p^{\alpha})} = g^{p^{\alpha} - p^{\alpha - 1}} = g^{p\phi(p^{\alpha - 1})} = (g^{\phi(p^{\alpha - 1})})^{p}$$

$$= (1 + kp^{\alpha - 1})^{p}$$

$$= 1 + kp^{\alpha} + k^{2} \cdot \frac{p(p - 1)}{2} \cdot p^{2(\alpha - 1)} + rp^{3(\alpha - 1)}, (9)$$

这里 $r \in \mathbb{Z}$.

因为
$$2(\alpha - 1) \ge \alpha + 1$$
, $3(\alpha - 1) \ge \alpha + 1$, 所以由 (9) 式得
$$g^{\phi(p^{\alpha})} \equiv 1 + kp^{\alpha} \pmod{p^{\alpha + 1}}.$$

由前面的论证 $p \nmid k$ 知, $g^{\phi(p^{\alpha})} \not\equiv 1 \pmod{p^{\alpha+1}}$, 故 (8) 对 $\alpha+1$ 成立. 这就证明了定理.

(1) m = 2 时, 1 即为 m 的原根.

- (1) m = 2 时, 1 即为 m 的原根.
- (2) m = 4 时, 3 即为 m 的原根.

- (1) m = 2 时, 1 即为 m 的原根.
- (2) m = 4 时, 3 即为 m 的原根.
- (3) 设 $m = p^{\alpha}$, 其中 p 是奇素数, α 是正整数. 当 $\alpha = 1$ 时, 由定理1.5我们已经知道 p 存在原根. 设 g 是 p 的一个原根. 下面利用 q 构造 p^{α} 的原根.

- (1) m = 2 时, 1 即为 m 的原根.
- (2) m = 4 时, 3 即为 m 的原根.
- (3) 设 $m = p^{\alpha}$, 其中 p 是奇素数, α 是正整数. 当 $\alpha = 1$ 时, 由定理1.5我们已经知道 p 存在原根. 设 g 是 p 的一个原根. 下面利用 g 构造 p^{α} 的原根. 如果 $g^{\phi(p)} \not\equiv 1 \pmod{p^2}$, 取 h = g, 则有 $h^{\phi(p)} \not\equiv 1 \pmod{p^2}$. 如果 $g^{\phi(p)} \equiv 1 \pmod{p^2}$, 取 h = g + p, 此时 h 也是 p 的一个原根, 且

$$h^{\phi(p)} - 1 = h^{p-1} - 1 = (g+p)^{p-1} - 1$$
$$\equiv g^{p-1} + (p-1)pg^{p-2} - 1$$
$$\equiv -pg^{p-2} \not\equiv 0 \pmod{p^2},$$

即 $h^{\phi(p)} \not\equiv 1 \pmod{p^2}$. 下证 $h \not\in p^{\alpha} (\alpha \geq 2)$ 的原根.

设 $\operatorname{ord}_{p^{\alpha}}h = l$, 则有 $h^{l} \equiv 1 \pmod{p^{\alpha}}$, 所以 $h^{l} \equiv 1 \pmod{p}$. 因为 $h \neq p$ 的原根, 所以 $\phi(p)|l$. 设 $l = \phi(p)q$. 因为 $\operatorname{ord}_{p^{\alpha}}h = l$, 所以 $l|\phi(p^{\alpha})$, 即 $\phi(p)q|\phi(p^{\alpha})$, 亦即 $(p-1)q|p^{\alpha-1}(p-1)$, 故 $q|p^{\alpha-1}$. 设 $\operatorname{ord}_{p^{\alpha}}h = l$, 则有 $h^{l} \equiv 1 \pmod{p^{\alpha}}$, 所以 $h^{l} \equiv 1 \pmod{p}$. 因为 $h \not\in p$ 的原根, 所以 $\phi(p)|l$. 设 $l = \phi(p)q$. 因为 $\operatorname{ord}_{p^{\alpha}}h = l$, 所以 $l|\phi(p^{\alpha})$, 即 $\phi(p)q|\phi(p^{\alpha})$, 亦即 $(p-1)q|p^{\alpha-1}(p-1)$, 故 $q|p^{\alpha-1}$.

设 $q = p^{\beta}$, 这里 $0 \le \beta \le \alpha - 1$. 若 $\beta < \alpha - 1$, 则由 $l = \phi(p)q$ 知,

$$l = \phi(p)p^{\beta} = (p-1)p^{\beta}|p^{\alpha-2}(p-1),$$

因此 $l|\phi(p^{\alpha-1})$. 于是我们有 $h^{\phi(p^{\alpha-1})} \equiv 1 \pmod{p^{\alpha}}$, 这与引理2.1矛盾! 故 $\beta = \alpha - 1$, 从而

$$l = \phi(p)q = \phi(p)p^{\beta} = (p-1)p^{\alpha-1} = \phi(p^{\alpha}),$$

因此 $h \neq p^{\alpha}$ 的原根.

(4) 设 $m = 2p^{\alpha}$, 其中 p 是奇素数, α 是正整数. 由 3) 知, p^{α} 有原根. 设 g 是 p^{α} 的一个原根, 下证当 g 是奇数时, g 也是 $2p^{\alpha}$ 的原根.

(4) 设 $m=2p^{\alpha}$, 其中 p 是奇素数, α 是正整数. 由 3) 知, p^{α} 有原根. 设 g 是 p^{α} 的一个原根, 下证当 g 是奇数时, g 也是 $2p^{\alpha}$ 的原根.

因为 $(g, 2p^{\alpha}) = 1$, 所以由欧拉定理得 $g^{\phi(2p^{\alpha})} \equiv 1$ (mod $2p^{\alpha}$). 设 $\operatorname{ord}_{2p^{\alpha}}g = l$, 则有 $l|\phi(2p^{\alpha}) = \phi(p^{\alpha})$, 即 $l|\phi(p^{\alpha})$.

(4) 设 $m=2p^{\alpha}$, 其中 p 是奇素数, α 是正整数. 由 3) 知, p^{α} 有原根. 设 g 是 p^{α} 的一个原根, 下证当 g 是奇数时, g 也是 $2p^{\alpha}$ 的原根.

因为 $(g, 2p^{\alpha}) = 1$, 所以由欧拉定理得 $g^{\phi(2p^{\alpha})} \equiv 1$ (mod $2p^{\alpha}$). 设 $\operatorname{ord}_{2p^{\alpha}}g = l$, 则有 $l|\phi(2p^{\alpha}) = \phi(p^{\alpha})$, 即 $l|\phi(p^{\alpha})$.

另一方面, 由 $\operatorname{ord}_{2p^{\alpha}}g = l$ 知, $g^{l} \equiv 1 \pmod{2p^{\alpha}}$, 所以 $g^{l} \equiv 1 \pmod{p^{\alpha}}$, 从而 $\phi(p^{\alpha})|l$.

(4) 设 $m=2p^{\alpha}$, 其中 p 是奇素数, α 是正整数. 由 3) 知, p^{α} 有原根. 设 g 是 p^{α} 的一个原根, 下证当 g 是奇数时, g 也是 $2p^{\alpha}$ 的原根.

因为 $(g, 2p^{\alpha}) = 1$, 所以由欧拉定理得 $g^{\phi(2p^{\alpha})} \equiv 1$ (mod $2p^{\alpha}$). 设 $\operatorname{ord}_{2p^{\alpha}}g = l$, 则有 $l|\phi(2p^{\alpha}) = \phi(p^{\alpha})$, 即 $l|\phi(p^{\alpha})$.

另一方面, 由 $\operatorname{ord}_{2p^{\alpha}}g = l$ 知, $g^{l} \equiv 1 \pmod{2p^{\alpha}}$, 所以 $g^{l} \equiv 1 \pmod{p^{\alpha}}$, 从而 $\phi(p^{\alpha})|l$.

因此我们有 $l = \phi(p^{\alpha}) = \phi(2p^{\alpha})$, 故 $g \in 2p^{\alpha}$ 的原根. 若 g 是偶数, 则考虑 $g + p^{\alpha}$, 它是 p^{α} 的一个原根, 且为奇数.

推论 2.2. 设 p 是一个奇素数.

(1) 如果 $g \neq p$ 的原根, 那么当 $g^{p-1} \not\equiv 1 \pmod{p^2}$ 时, $g \neq p^2$ 的原根; 当 $g^{p-1} \equiv 1 \pmod{p^2}$ 时, $g + p \neq p^2$ 的原根.

推论 2.2. 设 p 是一个奇素数.

- (1) 如果 $g \not\in p$ 的原根, 那么当 $g^{p-1} \not\equiv 1 \pmod{p^2}$ 时, $g \not\in p^2$ 的原根; 当 $g^{p-1} \equiv 1 \pmod{p^2}$ 时, $g + p \not\in p^2$ 的原根.
- (2) 如果 $g \in p^2$ 的原根, 那么 g 也是 p^{α} ($\alpha \geq 3$) 的原根.

推论 2.2. 设 p 是一个奇素数.

- (1) 如果 $g \not\in p$ 的原根, 那么当 $g^{p-1} \not\equiv 1 \pmod{p^2}$ 时, $g \not\in p^2$ 的原根; 当 $g^{p-1} \equiv 1 \pmod{p^2}$ 时, $g + p \not\in p^2$ 的原根.
- (2) 如果 $g \in p^2$ 的原根, 那么 g 也是 p^{α} ($\alpha \geq 3$) 的原根.
- (3) 如果 g 是 p^{α} ($\alpha \ge 1$) 的原根, 那么当 g 为奇数时, g 是 $2p^{\alpha}$ 的原根; 当 g 为偶数时, $g + p^{\alpha}$ 是 $2p^{\alpha}$ 的原根.

推论 2.2. 设 p 是一个奇素数.

- (1) 如果 $g \not\in p$ 的原根, 那么当 $g^{p-1} \not\equiv 1 \pmod{p^2}$ 时, $g \not\in p^2$ 的原根; 当 $g^{p-1} \equiv 1 \pmod{p^2}$ 时, $g + p \not\in p^2$ 的原根.
- (2) 如果 $g \in p^2$ 的原根, 那么 g 也是 p^{α} ($\alpha \geq 3$) 的原根.
- (3) 如果 g 是 p^{α} ($\alpha \ge 1$) 的原根, 那么当 g 为奇数时, g 是 $2p^{\alpha}$ 的原根; 当 g 为偶数时, $g + p^{\alpha}$ 是 $2p^{\alpha}$ 的原根.

推论 2.2. 设 p 是一个奇素数.

- (1) 如果 $g \neq p$ 的原根, 那么当 $g^{p-1} \not\equiv 1 \pmod{p^2}$ 时, $g \neq p^2$ 的原根; 当 $g^{p-1} \equiv 1 \pmod{p^2}$ 时, $g + p \neq p^2$ 的原根.
- (2) 如果 $g \neq p^2$ 的原根, 那么 g 也是 p^{α} ($\alpha \geq 3$) 的原根.
- (3) 如果 $g \neq p^{\alpha}$ ($\alpha \geq 1$) 的原根, 那么当 g 为奇数时, $g \neq 2p^{\alpha}$ 的原根; 当 g 为偶数时, $g + p^{\alpha} \neq 2p^{\alpha}$ 的原根.

证明: 直接由定理2.3的证明过程可得.

下面的定理描述了如何从一个原根构造所有的原根.

定理 2.4. 设 $g \in m$ 的原根, 则集合

$$S = \{g^s | 1 \le s \le \phi(m), (s, \phi(m)) = 1\}$$

中的元素给出 m 的全部原根. 因此, 若 m 有原根, 则 m 恰 有 $\phi(\phi(m))$ 个关于模 m 两两互不同余的原根.

下面的定理描述了如何从一个原根构造所有的原根.

定理 2.4. 设 $g \in m$ 的原根, 则集合

$$S = \{g^s | 1 \le s \le \phi(m), (s, \phi(m)) = 1\}$$

中的元素给出 m 的全部原根. 因此, 若 m 有原根, 则 m 恰有 $\phi(\phi(m))$ 个关于模 m 两两互不同余的原根.

证明: 由定理1.3知,任意 $g^s \in S$,有

$$\operatorname{ord}_{m}g^{s} = \frac{\phi(m)}{(s, \phi(m))} = \phi(m),$$

所以 g^s 是 m 的原根.

下面的定理描述了如何从一个原根构造所有的原根.

定理 2.4. 设 $g \in m$ 的原根, 则集合

$$S = \{g^s | 1 \le s \le \phi(m), (s, \phi(m)) = 1\}$$

中的元素给出 m 的全部原根. 因此, 若 m 有原根, 则 m 恰 有 $\phi(\phi(m))$ 个关于模 m 两两互不同余的原根.

证明: 由定理1.3知, 任意 $g^s \in S$, 有

$$\operatorname{ord}_m g^s = \frac{\phi(m)}{(s, \phi(m))} = \phi(m),$$

所以 g^s 是 m 的原根.

反过来, 设 h 是 m 的任一原根, 则由定理2.1知, $\{h, h^2, \ldots, h^{\phi(m)}\}$ 构成 m 的一个既约剩余系.

因为 $\{g, g^2, \dots, g^{\phi(m)}\}$ 也是 m 的一个既约剩余系, 所以存在整数 $k, 1 \le k \le \phi(m)$, 使得 $g^k \equiv h \pmod{m}$, 因此 $\operatorname{ord}_m g^k = \operatorname{ord}_m h = \phi(m)$.

因为 $\{g, g^2, \dots, g^{\phi(m)}\}$ 也是 m 的一个既约剩余系, 所以存在整数 k, $1 \le k \le \phi(m)$, 使得 $g^k \equiv h \pmod{m}$, 因此 $\operatorname{ord}_m g^k = \operatorname{ord}_m h = \phi(m)$.

另一方面, 由定理1.3, 有

$$\operatorname{ord}_m g^k = \frac{\phi(m)}{(k, \phi(m))},$$

所以 $(k, \phi(m)) = 1$. 因此 h 与 S 中的某个数关于模 m 同 余, 又因为 S 中的数关于模 m 两两互不同余, 故 S 给出了 m 的全部互不同余的原根, 它们共 $\phi(\phi(m))$ 个.

在定理2.1之后, 我们看到 2 是 9 的一个原根, 因此由前面的定理知, 9 恰有 $\phi(\phi(9)) = 2$ 个原根, 相应的

$$S = \{2^s | 1 \le s \le \phi(9) = 6, (s, 6) = 1\} = \{2^s | s = 1, 5\} = \{2, 5\},\$$

即 2,5 是 9 的全部原根.

在定理2.1之后, 我们看到 2 是 9 的一个原根, 因此由前面的定理知, 9 恰有 $\phi(\phi(9)) = 2$ 个原根, 相应的

$$S = \{2^s | 1 \le s \le \phi(9) = 6, (s, 6) = 1\} = \{2^s | s = 1, 5\} = \{2, 5\},\$$

即 2,5 是 9 的全部原根.

接下来我们讨论如何计算原根. 当 m = 2 或 4 时, m 的原根在前面已经知道了.

在定理2.1之后, 我们看到 2 是 9 的一个原根, 因此由前面的定理知, 9 恰有 $\phi(\phi(9)) = 2$ 个原根, 相应的

$$S = \{2^s | 1 \le s \le \phi(9) = 6, (s, 6) = 1\} = \{2^s | s = 1, 5\} = \{2, 5\},\$$

即 2,5 是 9 的全部原根.

接下来我们讨论如何计算原根. 当 m = 2 或 4 时, m 的原根在前面已经知道了.

下面考虑 $m = p^{\alpha}, 2p^{\alpha}$ (其中 p 为奇素数, α 为正整数) 时原根的计算问题. 设 (g, m) = 1, 那么判断 g 是否是 m 的原根, 由定理1.1知不必逐一计算 $g, g^2, \ldots, g^{\phi(m)-1}$, 而只需计算 $g^l \mod m$, 这里 l 是 $\phi(m)$ 的真因数. 基于这样的思想, 我们有下面的定理.

定理 2.5. 设整数 m > 2, (g, m) = 1, 且设 $p_1, p_2, ..., p_k$ 是 $\phi(m)$ 的所有不同的素因数. 则 g 是 m 的原根当且仅当对任意 1 < i < k,

$$g^{\frac{\phi(m)}{p_i}} \not\equiv 1 \pmod{m}. \tag{10}$$

定理 2.5. 设整数 m > 2, (g, m) = 1, 且设 p_1, p_2, \ldots, p_k 是 $\phi(m)$ 的所有不同的素因数. 则 g 是 m 的原根当且仅当对任意 $1 \le i \le k$,

$$g^{\frac{\phi(m)}{p_i}} \not\equiv 1 \pmod{m}. \tag{10}$$

证明: (必要性) 若 g 是 m 的原根, 则有 $\operatorname{ord}_m g = \phi(m)$. 但是对任意 $1 \leq i \leq k$, 我们有 $0 < \frac{\phi(m)}{p_i} < \phi(m) < m$, 所以对任意 $1 \leq i \leq k$, 都有 $g^{\frac{\phi(m)}{p_i}} \not\equiv 1 \pmod{m}$.

定理 2.5. 设整数 m > 2, (g, m) = 1, 且设 $p_1, p_2, ..., p_k$ 是 $\phi(m)$ 的所有不同的素因数. 则 g 是 m 的原根当且仅当对任意 $1 \le i \le k$,

$$g^{\frac{\phi(m)}{p_i}} \not\equiv 1 \pmod{m}. \tag{10}$$

证明: (必要性) 若 g 是 m 的原根, 则有 $\operatorname{ord}_m g = \phi(m)$. 但是对任意 $1 \leq i \leq k$, 我们有 $0 < \frac{\phi(m)}{p_i} < \phi(m) < m$, 所以对任意 $1 \leq i \leq k$, 都有 $g^{\frac{\phi(m)}{p_i}} \not\equiv 1 \pmod{m}$.

(充分性) 假设对任意 $1 \le i \le k$, (10) 均成立. 设 $\operatorname{ord}_m g = l$. 若 $l < \phi(m)$, 则因为 $l | \phi(m)$, 所以 $\frac{\phi(m)}{l}$ 是大于 1 的整数. 于是存在 $\phi(m)$ 的素因数 $p_i | \frac{\phi(m)}{l}$, 即存在 $q \in \mathbb{Z}$ 使得 $\frac{\phi(m)}{l} = p_i q$, 亦即 $\frac{\phi(m)}{p_i} = lq$. 因此 $g^{\frac{\phi(m)}{p_i}} = g^{lq} \equiv 1 \pmod{m}$, 这与 (10) 矛盾! 故 $l = \phi(m)$, 即 g 是 m 的一个原根.

例 2.1. 验证 12 是 41 的原根.

例 2.1. 验证 12 是 41 的原根.

解: 令
$$m = 41$$
, 则 $\phi(m) = 2^3 \cdot 5$, 所以 $p_1 = 2, p_2 = 5$. 因为
$$12^{\frac{\phi(m)}{p_1}} = 12^{20} \equiv 40 \not\equiv 1 \pmod{41},$$

$$12^{\frac{\phi(m)}{p_2}} = 12^8 \equiv 18 \not\equiv 1 \pmod{41},$$

故由定理2.5知, 12 的确是 41 的原根.

如前所述, 求 $m = p^{\alpha}, 2p^{\alpha}$ 的原根可以归结为求奇素数 p 的原根. 下面介绍一种求 p 的原根的方法.

如前所述, 求 $m = p^{\alpha}, 2p^{\alpha}$ 的原根可以归结为求奇素数 p 的原根. 下面介绍一种求 p 的原根的方法.

定理 2.6. 设 p 是奇素数, 如果 $\operatorname{ord}_p a = l , 那么 <math>a, a^2, \ldots, a^l$ 都不是 p 的原根.

如前所述, 求 $m = p^{\alpha}, 2p^{\alpha}$ 的原根可以归结为求奇素数 p 的原根. 下面介绍一种求 p 的原根的方法.

定理 **2.6.** 设 p 是奇素数, 如果 $\operatorname{ord}_{p}a = l , 那么 <math>a, a^{2}, \ldots, a^{l}$ 都不是 p 的原根.

证明: 对任意 $1 \le s \le l$, 因为

$$\operatorname{ord}_{p} a^{s} = \frac{l}{(s, l)} \le l$$

所以 a, a^2, \ldots, a^l 都不是 p 的原根. 故定理成立.

基于定理2.6, 我们可以如下求奇素数 p 的原根:

(1) 先列出小于 p 的所有正整数:

$$1, 2, \dots, p-1.$$
 (11)

基于定理2.6, 我们可以如下求奇素数 p 的原根:

(1) 先列出小于 p 的所有正整数:

$$1, 2, \dots, p-1.$$
 (11)

(2) 取 a = 2, 计算 $ord_p 2$. 如果 $ord_p 2 = p - 1$, 则 2 就是 p 的原根; 否则在 (11) 中去掉以下各数: 2 mod p, 2^2 mod p, ..., $2^{ord_p 2}$ mod p.

基于定理2.6, 我们可以如下求奇素数 p 的原根:

(1) 先列出小于 p 的所有正整数:

$$1, 2, \dots, p-1.$$
 (11)

- (2) 取 a = 2, 计算 ord_p2. 如果 ord_p2 = p − 1, 则 2 就是 p 的原根; 否则在 (11) 中去掉以下各数: 2 mod p, 2² mod p, …, 2^{ord_p2} mod p.
- (3) 在 (11) 中剩下的数中再取一数, 重复第 (2) 步, 直到 (11) 中仅剩下 $\phi(p-1)$ 个数. 因为对奇素数 p, 它恰有 $\phi(p-1)$ 个原根, 所以这剩下的 $\phi(p-1)$ 个数便是 p 的全部原根.

例 2.2. 求 41 的全部原根.

例 2.2. 求 41 的全部原根.

解: 小于 41 的全部正整数为: 1, 2, ..., 40. 因为 $ord_{41}2 = 20 < 41 - 1$, 所以在这些数中去掉以下各数: 2, 4, 8, 16, 32, 23, 5, 10, 20, 40, 39, 37, 33, 25, 9, 18, 36, 31, 21, 1. 剩下的数为:

3, 6, 7, 11, 12, 13, 14, 15, 17, 19, 22, 24, 26, 27, 28, 29, 30, 34, 35, 38. (12)

又因为 ord₄₁3 = 8 < 41 - 1, 所以在 (12) 中去掉以下各数: 3,9,27,40,38,32,14,1, 其中 1,9,32,40 在此前已经去除. (12) 中尚剩下 $\phi(40) = 16$ 个数:

6, 7, 11, 12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34, 35,

因此它们便是 41 的全部原根.

- 1. 整数的阶
- 2. 原根
- 3. 一般既约剩余系的构造
- 4. 离散对数

而当 m 没有原根, 例如 $m = 2^{\alpha}$ ($\alpha \ge 3$), 如何构造它的既约剩余系呢? 这节我们来讨论这个问题.

而当 m 没有原根, 例如 $m = 2^{\alpha}$ ($\alpha \ge 3$), 如何构造它的既约剩余系呢? 这节我们来讨论这个问题.

我们先考虑 $m = 2^{\alpha}$ ($\alpha \ge 3$) 的情形. 在定理2.2的证明中, 我们证明了对任意奇数 a, 当 $\alpha \ge 3$ 时,

$$a^{2^{\alpha-2}} \equiv 1 \pmod{2^{\alpha}}.$$

这表明, 关于模 2^{α} , 任意奇数的阶都不大于 $2^{\alpha-2}$.

而当 m 没有原根, 例如 $m = 2^{\alpha}$ ($\alpha \ge 3$), 如何构造它的既约剩余系呢? 这节我们来讨论这个问题.

我们先考虑 $m = 2^{\alpha}$ ($\alpha \ge 3$) 的情形. 在定理2.2的证明中, 我们证明了对任意奇数 a, 当 $\alpha \ge 3$ 时,

$$a^{2^{\alpha-2}} \equiv 1 \pmod{2^{\alpha}}.$$

这表明, 关于模 2^{α} , 任意奇数的阶都不大于 $2^{\alpha-2}$. 那么有没有阶恰好等于 $2^{\alpha-2}$ 的数呢? 若有的话, 那么我们就可以用它的方幂表出模 2^{α} 的既约剩余系中的一半元素, 至于另外一半, 如果能够用它们的负数来补足, 那么模 2^{α} 的既约剩余系的形式与有原根的情形相似, 仍然比较简单.

定理 **3.1.** 设整数 $\alpha \geq 3$, 则 $\operatorname{ord}_{2^{\alpha}} 5 = 2^{\alpha-2}$.

定理 **3.1.** 设整数 $\alpha \geq 3$, 则 $\operatorname{ord}_{2^{\alpha}} 5 = 2^{\alpha-2}$.

证明: 如果我们能够证明当 $\alpha \geq 3$ 时,

$$5^{2^{\alpha-3}} \equiv 1 + 2^{\alpha-1} \pmod{2^{\alpha}},\tag{13}$$

则有 $5^{2^{\alpha-3}} \not\equiv 1 \pmod{2^{\alpha}}$, 而 $5^{2^{\alpha-2}} \equiv 1 \pmod{2^{\alpha}}$, 因此 5 关于模 2^{α} 的阶为 $2^{\alpha-2}$, 这样就证明了定理.

定理 **3.1.** 设整数 $\alpha \geq 3$, 则 $\operatorname{ord}_{2^{\alpha}} 5 = 2^{\alpha-2}$.

证明: 如果我们能够证明当 $\alpha \geq 3$ 时,

$$5^{2^{\alpha-3}} \equiv 1 + 2^{\alpha-1} \pmod{2^{\alpha}},\tag{13}$$

则有 $5^{2^{\alpha-3}} \not\equiv 1 \pmod{2^{\alpha}}$, 而 $5^{2^{\alpha-2}} \equiv 1 \pmod{2^{\alpha}}$, 因此 5 关于模 2^{α} 的阶为 $2^{\alpha-2}$, 这样就证明了定理.

下面归纳证明 (13). 当 $\alpha = 3$ 时, (13) 显然成立. 假定 α 时成立, 于是存在 $k \in \mathbb{Z}$ 使得 $5^{2^{\alpha-2}} = 1 + 2^{\alpha-1} + 2^{\alpha}k$, 从而有

$$5^{2^{\alpha-2}} = \left(5^{2^{\alpha-3}}\right)^2 = \left(1 + 2^{\alpha-1} + 2^{\alpha}k\right)^2 \equiv 1 + 2^{\alpha} \pmod{2^{\alpha+1}}.$$

这就证明了当 $\alpha > 3$ 时, (13) 成立, 因此定理得证.

定理 3.2. 设整数 $\alpha \geq 3$, 令

$$S = \{\pm 5^1, \pm 5^2, \dots, \pm 5^{2^{\alpha - 2}}\},\$$

则 S 是模 2^{α} 的一个既约剩余系.

定理 3.2. 设整数 $\alpha \geq 3$, 令

$$S = \{\pm 5^1, \pm 5^2, \dots, \pm 5^{2^{\alpha - 2}}\},\$$

则 S 是模 2^{α} 的一个既约剩余系.

证明: 因为 $5 \equiv 1 \pmod{4}$, 所以对任意非负整数 i, 我们有 $5^i \equiv 1 \pmod{4}$, 因此也有 $-5^i \equiv -1 \pmod{4}$. 于是对任意非负整数 i, j, 当 $i \neq j$ 时, 我们有 $5^i \not\equiv -5^j \pmod{2^2}$. 这表明, S 中任意两个数关于模 2^{α} 互不同余. 显然, S 中每个数均与 2^{α} 互素. 又因为 $|S| = 2^{\alpha-1} = \phi(2^{\alpha})$, 故 S 是模 2^{α} 的一个既约剩余系.

定理 3.2. 设整数 $\alpha \geq 3$, 令

$$S = \{\pm 5^1, \pm 5^2, \dots, \pm 5^{2^{\alpha - 2}}\},\$$

则 S 是模 2^{α} 的一个既约剩余系.

证明: 因为 $5 \equiv 1 \pmod{4}$, 所以对任意非负整数 i, 我们有 $5^i \equiv 1 \pmod{4}$, 因此也有 $-5^i \equiv -1 \pmod{4}$. 于是对任意非负整数 i, j, 当 $i \neq j$ 时, 我们有 $5^i \not\equiv -5^j \pmod{2^2}$. 这表明, S 中任意两个数关于模 2^{α} 互不同余. 显然, S 中每个数均与 2^{α} 互素. 又因为 $|S| = 2^{\alpha-1} = \phi(2^{\alpha})$, 故 S 是模 2^{α} 的一个既约剩余系.

基于上面的定理,可以使用下面的命题对任意正整数 m 构造既约剩余系.

命题 **3.1.** 设 $m = m_1 m_2$, $(m_1, m_2) = 1$, m_1 和 m_2 的既约剩余系分别为 $S_1 = \{a_1, a_2, \ldots, a_{\phi(m_1)}\}$ 和 $S_2 = \{b_1, b_2, \ldots, b_{\phi(m_2)}\}$. 若对任意 $a_i \in S_1$ 和 $b_j \in S_2$, 有 $a_i \equiv 1 \pmod{m_2}$ 和 $b_j \equiv 1 \pmod{m_1}$,则 $S = \{a_i b_j | 1 \le i \le \phi(m_1), 1 \le j \le \phi(m_2)\}$ 是模 m 的一个既约剩余系.

命题 **3.1.** 设 $m = m_1 m_2$, $(m_1, m_2) = 1$, m_1 和 m_2 的既约剩余系分别为 $S_1 = \{a_1, a_2, \ldots, a_{\phi(m_1)}\}$ 和 $S_2 = \{b_1, b_2, \ldots, b_{\phi(m_2)}\}$. 若对任意 $a_i \in S_1$ 和 $b_j \in S_2$, 有 $a_i \equiv 1 \pmod{m_2}$ 和 $b_j \equiv 1 \pmod{m_1}$,则 $S = \{a_i b_j | 1 \le i \le \phi(m_1), 1 \le j \le \phi(m_2)\}$ 是模 m 的一个既约剩余系.

证明: 因为 $(a_i, m_1) = (a_i, m_2) = 1$, 所以 $(a_i, m) = 1$, 同 理, $(b_i, m) = 1$, 因此 $(a_i b_i, m) = 1$, 这说明 S 中的每个数均 与 m 互素. 假设 $a_ib_i \equiv a_{i'}b_{i'} \pmod{m}$, 则有 $a_ib_i \equiv a_{i'}b_{i'}$ $\pmod{m_1}$. 由于 $b_i \equiv b_{i'} \equiv 1 \pmod{m_1}$, 所以 $a_i \equiv a_{i'}$ $(\text{mod } m_1)$, 因此 $a_i = a_{i'}$. 同理, $b_i = b_{i'}$. 这就是说 S 中任意 两个数关于模m两页不同余.又因为 $|S| = \phi(m_1)\phi(m_2) = \phi(m)$, 所以 S 是模 m 的既约剩余 系.

命题3.1给出了由 m 彼此互素的因数的既约剩余系构造模 m 的既约剩余系的方法, 这事实上提供了对任意正整数 m 构造模 m 的既约剩余系的途径, 惟一有待解释的是如何满足条件: 对任意 $a_i \in S_1$ 和 $b_j \in S_2$, 有 $a_i \equiv 1 \pmod{m_2}$ 和 $b_j \equiv 1 \pmod{m_1}$.

命题3.1给出了由 m 彼此互素的因数的既约剩余系构造模 m 的既约剩余系的方法, 这事实上提供了对任意正整数 m 构造模 m 的既约剩余系的途径, 惟一有待解释的是如何满足条件: 对任意 $a_i \in S_1$ 和 $b_j \in S_2$, 有 $a_i \equiv 1 \pmod{m_2}$ 和 $b_j \equiv 1 \pmod{m_1}$.

我们考虑如何满足条件 $a_i \equiv 1 \pmod{m_2}$; $b_j \equiv 1 \pmod{m_1}$ 的情形类似.

命题3.1给出了由 m 彼此互素的因数的既约剩余系构造模 m 的既约剩余系的方法, 这事实上提供了对任意正整数 m 构造模 m 的既约剩余系的途径, 惟一有待解释的是如何满足条件: 对任意 $a_i \in S_1$ 和 $b_j \in S_2$, 有 $a_i \equiv 1 \pmod{m_2}$ 和 $b_j \equiv 1 \pmod{m_1}$.

我们考虑如何满足条件 $a_i \equiv 1 \pmod{m_2}$; $b_j \equiv 1 \pmod{m_1}$ 的情形类似.

事实上, 只要适当挑选 m_1 的既约剩余系, $a_i \equiv 1 \pmod{m_2}$ 都是可以满足的, 这是因为如果 $\{x_1, x_2, \ldots, x_{\phi(m_1)}\}$ 是模 m_1 的既约剩余系, 那么同余方程 $m_1y \equiv 1 - x_i \pmod{m_2}$ 有惟一解 $y \equiv y_i \pmod{m_2}$. 令 $a_i = m_1y_i + x_i$, 则有 $a_i \equiv 1 \pmod{m_2}$, 并且 $a_i \equiv x_i \pmod{m_1}$, 所以 $\{a_1, a_2, \ldots, a_{\phi(m_1)}\}$ 是模 m_1 的既约剩余系.

下面通过一个例子阐明上述方法.

例 3.1. 使用命题 3.1 求模 m = 40 的既约剩余系.

下面通过一个例子阐明上述方法.

例 3.1. 使用命题 3.1 求模 m = 40 的既约剩余系.

解: 因为 $m = 40 = 5 \cdot 2^3$, 我们分别选取 5 和 2^3 的既约剩余 系 $\{1, 9, 17, 33\}$ 和 $\{1, 11, 21, 31\}$. 显然, 这样的既约剩余系满足命题3.1的条件, 于是模 40 的既约剩余系中的元素为:

$$1 \cdot 1, 1 \cdot 11, 1 \cdot 21, 1 \cdot 31, 9 \cdot 1, 9 \cdot 11, 9 \cdot 21, 9 \cdot 31,$$
$$17 \cdot 1, 17 \cdot 11, 17 \cdot 21, 17 \cdot 31, 33 \cdot 1, 33 \cdot 11, 33 \cdot 21, 33 \cdot 31,$$

即 {1,3,7,9,11,13,17,19,21,23,27,29,31,33,37,39} 是模 40 的既约剩余系.

- 1. 整数的阶
- 2. 原根
- 3. 一般既约剩余系的构造
- 4. 离散对数

在 5.2 节我们看到, 若 m 有原根 g, 则 $\{1, g, g^2, \ldots, g^{\phi(m)-1}\}$ 构成 m 的一个既约剩余系.

在 5.2 节我们看到, 若 m 有原根 g, 则 $\{1, g, g^2, \ldots, g^{\phi(m)-1}\}$ 构成 m 的一个既约剩余系.

因此, 对任意整数 a, 如果 (a, m) = 1, 那么必存在 $0 \le k < \phi(m)$ 使得 $a \equiv g^k \pmod{m}$, 并且这样的 k 是惟一的.

在 5.2 节我们看到, 若 m 有原根 g, 则 $\{1, g, g^2, \ldots, g^{\phi(m)-1}\}$ 构成 m 的一个既约剩余系.

因此, 对任意整数 a, 如果 (a, m) = 1, 那么必存在 $0 \le k < \phi(m)$ 使得 $a \equiv g^k \pmod{m}$, 并且这样的 k 是惟一的.

为了描述原根的上述重要性质, 我们给出下面的定义.

定义 **4.1**. 设正整数 m 有原根 g, 则对任意满足

(a,m)=1 的整数 a, 必存在惟一的整数 x, $0 \le x < \phi(m)$, 使得

$$g^x \equiv a \pmod{m}$$
,

称 x 为模 m 以 g 为底 a 的**离散对数**, 记作 $x = \log_g a$. 有时, 也称离散对数为**指标**.

定义 **4.1.** 设正整数 m 有原根 g, 则对任意满足

(a,m)=1 的整数 a, 必存在惟一的整数 x, $0 \le x < \phi(m)$, 使得

$$g^x \equiv a \pmod{m}$$
,

称 x 为模 m 以 g 为底 a 的**离散对数**, 记作 $x = \log_g a$. 有时, 也称离散对数为**指标**.

注 4.1.

(1) 由定义, 有 $g^{\log_g a} \equiv a \pmod{m}$.

定义 4.1. 设正整数 m 有原根 g, 则对任意满足 (a,m) = 1 的整数 a, 必存在惟一的整数 x, $0 < x < \phi(m)$,

使得
$$q^x \equiv a \pmod{m},$$

称 x 为模 m 以 g 为底 a 的**离散对数**, 记作 $x = \log_g a$. 有时, 也称离散对数为**指标**.

注 4.1.

- (1) 由定义, 有 $g^{\log_g a} \equiv a \pmod{m}$.
- (2) 若 (a, m) = (b, m) = 1, 则 $a \equiv b \pmod{m}$ 当且仅当 $\log_g a = \log_g b$.

下面例子给出模 7 分别以 3 和 5 为底 1,2,...,6 的离散对数.

下面例子给出模 7 分别以 3 和 5 为底 $1,2,\ldots,6$ 的离散对数.

例 4.1. 当 m=7 时, m 有原根 3. 因为

$$3^0 \equiv 1 \pmod{7}, \quad 3^1 \equiv 3 \pmod{7}, \quad 3^2 \equiv 2 \pmod{7},$$

$$3^3 \equiv 6 \pmod{7}, \quad 3^4 \equiv 4 \pmod{7}, \quad 3^5 \equiv 5 \pmod{7},$$

所以

$$\log_3 1 = 0$$
, $\log_3 2 = 2$, $\log_3 3 = 1$,

$$\log_3 4 = 4$$
, $\log_3 5 = 5$, $\log_3 6 = 3$.

下面例子给出模 7 分别以 3 和 5 为底 $1,2,\ldots,6$ 的离散对数.

例 **4.1.** 当 m=7 时, m 有原根 3. 因为

$$3^0 \equiv 1 \pmod{7}, \quad 3^1 \equiv 3 \pmod{7}, \quad 3^2 \equiv 2 \pmod{7},$$

$$3^3 \equiv 6 \pmod{7}, \quad 3^4 \equiv 4 \pmod{7}, \quad 3^5 \equiv 5 \pmod{7},$$

所以

$$\log_3 1 = 0$$
, $\log_3 2 = 2$, $\log_3 3 = 1$, $\log_3 4 = 4$, $\log_3 5 = 5$, $\log_3 6 = 3$.

另外, 5 也是 7 的原根, 类似计算得

$$\log_5 1 = 0$$
, $\log_5 2 = 4$, $\log_5 3 = 5$, $\log_5 4 = 2$, $\log_5 5 = 1$, $\log_5 6 = 3$.

定理 4.1. 设 g 是 m 的原根, (a, m) = (b, m) = 1, 则有:

(1) $\log_g(ab) \equiv \log_g a + \log_g b \pmod{\phi(m)}$.

- (1) $\log_g(ab) \equiv \log_g a + \log_g b \pmod{\phi(m)}$.
- (2) $\log_g a^n \equiv n \log_g a \pmod{\phi(m)}$, $\& \exists \exists n \in \mathbb{Z}^+$.

- (1) $\log_g(ab) \equiv \log_g a + \log_g b \pmod{\phi(m)}$.
- (2) $\log_g a^n \equiv n \log_g a \pmod{\phi(m)}$, 这里 $n \in \mathbb{Z}^+$.
- (3) $\log_g 1 = 0$, $\log_g g = 1$.

- (1) $\log_g(ab) \equiv \log_g a + \log_g b \pmod{\phi(m)}$.
- (2) $\log_q a^n \equiv n \log_q a \pmod{\phi(m)}$, 这里 $n \in \mathbb{Z}^+$.
- (3) $\log_q 1 = 0$, $\log_q g = 1$.
- (4) 如果 m > 2, 则 $\log_q(-1) = \phi(m)/2$.

- (1) $\log_g(ab) \equiv \log_g a + \log_g b \pmod{\phi(m)}$.
- (2) $\log_q a^n \equiv n \log_q a \pmod{\phi(m)}$, 这里 $n \in \mathbb{Z}^+$.
- (3) $\log_a 1 = 0$, $\log_a g = 1$.
- (4) 如果 m > 2, 则 $\log_q(-1) = \phi(m)/2$.
- (5) 如果 h 也是 m 的原根, 则 $\log_g a \equiv \log_h a \cdot \log_g h$ (mod $\phi(m)$).

- (1) $\log_g(ab) \equiv \log_g a + \log_g b \pmod{\phi(m)}$.
- (2) $\log_q a^n \equiv n \log_q a \pmod{\phi(m)}$, 这里 $n \in \mathbb{Z}^+$.
- (3) $\log_a 1 = 0$, $\log_a g = 1$.
- (4) 如果 m > 2, 则 $\log_q(-1) = \phi(m)/2$.
- (5) 如果 h 也是 m 的原根, 则 $\log_g a \equiv \log_h a \cdot \log_g h$ (mod $\phi(m)$).

定理 4.1. 设 g 是 m 的原根, (a, m) = (b, m) = 1, 则有:

- (1) $\log_q(ab) \equiv \log_q a + \log_q b \pmod{\phi(m)}$.
- (2) $\log_a a^n \equiv n \log_a a \pmod{\phi(m)}$, 这里 $n \in \mathbb{Z}^+$.
- (3) $\log_a 1 = 0$, $\log_a g = 1$.
- (4) 如果 m > 2, 则 $\log_a(-1) = \phi(m)/2$.
- (5) 如果 h 也是 m 的原根, 则 $\log_g a \equiv \log_h a \cdot \log_g h$ (mod $\phi(m)$).

证明: (1) 由 $g^{\log_g a} \equiv a \pmod{m}$, $g^{\log_g b} \equiv b \pmod{m}$, $g^{\log_g (ab)} \equiv ab \pmod{m}$ 得 $g^{\log_g (ab)} \equiv ab \equiv g^{\log_g a} \cdot g^{\log_g b} = g^{\log_g a + \log_g b} \pmod{m}$, 因此由 定理1.2知 $\log_g (ab) \equiv \log_g a + \log_g b \pmod{\phi(m)}$.

$$g^{\log_g a^n} \equiv a^n \pmod{m}, \quad g^{\log_g a} \equiv a \pmod{m}$$

得

$$g^{\log_g a^n} \equiv a^n \equiv (g^{\log_g a})^n = g^{n\log_g a} \pmod{m},$$

所以由定理1.2知 $\log_q a^n \equiv n \log_q a \pmod{\phi(m)}$.

(2) 由

$$g^{\log_g a^n} \equiv a^n \pmod{m}, \quad g^{\log_g a} \equiv a \pmod{m}$$

得

$$g^{\log_g a^n} \equiv a^n \equiv (g^{\log_g a})^n = g^{n\log_g a} \pmod{m},$$

所以由定理1.2知 $\log_g a^n \equiv n \log_g a \pmod{\phi(m)}$.

(3) 由定义, 显然成立.

(2) 由

$$g^{\log_g a^n} \equiv a^n \pmod{m}, \quad g^{\log_g a} \equiv a \pmod{m}$$

得

$$g^{\log_g a^n} \equiv a^n \equiv \left(g^{\log_g a}\right)^n = g^{n\log_g a} \pmod{m},$$

所以由定理1.2知 $\log_g a^n \equiv n \log_g a \pmod{\phi(m)}$.

- (3) 由定义, 显然成立.
- (4) 当 m > 2 时, m 只可能是 $4, p^{\alpha}, 2p^{\alpha}$ (其中 p 是奇素数, α 是正整数), 此时均有 $\phi(m) \equiv 0 \pmod{2}$. 当 m = 4 时, 结论显然. 当 $m = p^{\alpha}$ 时, 因为 (g, m) = 1, 所以由欧拉定理有 $g^{\phi(m)} \equiv 1 \pmod{p^{\alpha}}$, 于是有

$$\left(g^{\frac{\phi(m)}{2}} - 1\right)\left(g^{\frac{\phi(m)}{2}} + 1\right) \equiv 0 \pmod{p^{\alpha}}.$$

因为 $\left(g^{\frac{\phi(m)}{2}} - 1, g^{\frac{\phi(m)}{2}} + 1\right) \leq 2$, 所以 $p^{\alpha}|g^{\frac{\phi(m)}{2}} - 1$ 或 $p^{\alpha}|g^{\frac{\phi(m)}{2}} + 1$. 又因为 g 是 p^{α} 的原根, 所以 $\operatorname{ord}_{p^{\alpha}}g = \phi(m)$, 因此 $g^{\frac{\phi(m)}{2}} \not\equiv 1 \pmod{p^{\alpha}}$, 故 $g^{\frac{\phi(m)}{2}} \equiv -1 \pmod{p^{\alpha}}$.

因为 $\left(g^{\frac{\phi(m)}{2}} - 1, g^{\frac{\phi(m)}{2}} + 1\right) \leq 2$, 所以 $p^{\alpha} | g^{\frac{\phi(m)}{2}} - 1$ 或 $p^{\alpha} | g^{\frac{\phi(m)}{2}} + 1$. 又因为 $g \not\in p^{\alpha}$ 的原根, 所以 $\operatorname{ord}_{p^{\alpha}} g = \phi(m)$, 因此 $g^{\frac{\phi(m)}{2}} \not\equiv 1 \pmod{p^{\alpha}}$, 故 $g^{\frac{\phi(m)}{2}} \equiv -1 \pmod{p^{\alpha}}$.

当 $m = 2p^{\alpha}$ 时,此时 g 必为奇数.因为 (g,m) = 1,所以由欧拉定理有 $g^{\phi(m)} \equiv 1 \pmod{2p^{\alpha}}$,于是有 $\left(g^{\frac{\phi(m)}{2}} - 1\right)\left(g^{\frac{\phi(m)}{2}} + 1\right) \equiv 0 \pmod{2p^{\alpha}}$,因此 $\left(g^{\frac{\phi(m)}{2}} - 1\right)\left(g^{\frac{\phi(m)}{2}} + 1\right) \equiv 0 \pmod{p^{\alpha}}$.因为 $\left(g^{\frac{\phi(m)}{2}} - 1, g^{\frac{\phi(m)}{2}} + 1\right) \leq 2$,所以 $p^{\alpha}|g^{\frac{\phi(m)}{2}} - 1$ 或 $p^{\alpha}|g^{\frac{\phi(m)}{2}} + 1$.

因为 $\left(g^{\frac{\phi(m)}{2}} - 1, g^{\frac{\phi(m)}{2}} + 1\right) \leq 2$, 所以 $p^{\alpha}|g^{\frac{\phi(m)}{2}} - 1$ 或 $p^{\alpha}|g^{\frac{\phi(m)}{2}} + 1$. 又因为 $g \not\in p^{\alpha}$ 的原根, 所以 $\operatorname{ord}_{p^{\alpha}}g = \phi(m)$, 因此 $g^{\frac{\phi(m)}{2}} \not\equiv 1 \pmod{p^{\alpha}}$.

当 $m=2p^{\alpha}$ 时,此时 g 必为奇数. 因为 (g,m)=1,所以由欧拉定理有 $g^{\phi(m)}\equiv 1\pmod{2p^{\alpha}}$,于是有 $\left(g^{\frac{\phi(m)}{2}}-1\right)\left(g^{\frac{\phi(m)}{2}}+1\right)\equiv 0\pmod{2p^{\alpha}}$,因此 $\left(g^{\frac{\phi(m)}{2}}-1\right)\left(g^{\frac{\phi(m)}{2}}+1\right)\equiv 0\pmod{p^{\alpha}}$. 因为 $\left(g^{\frac{\phi(m)}{2}}-1,g^{\frac{\phi(m)}{2}}+1\right)\leq 2$,所以 $p^{\alpha}|g^{\frac{\phi(m)}{2}}-1$ 或 $p^{\alpha}|g^{\frac{\phi(m)}{2}}+1$.

又因为 $g \, \stackrel{}{=} \, 2p^{\alpha}$ 的原根, 所以 $\operatorname{ord}_{2p^{\alpha}}g = \phi(m)$, 因此 $g^{\frac{\phi(m)}{2}} \not\equiv 1 \pmod{p^{\alpha}}$; 否则由 $g \, \stackrel{}{=} \, 6$ 数知, $g^{\frac{\phi(m)}{2}} \equiv 1 \pmod{2p^{\alpha}}$, 矛盾! 故 $g^{\frac{\phi(m)}{2}} \equiv -1 \pmod{p^{\alpha}}$. 再次由 $g \, \stackrel{}{=} \, 6$ 数, 可得 $g^{\frac{\phi(m)}{2}} \equiv -1 \pmod{2}$. 于是 $g^{\frac{\phi(m)}{2}} \equiv -1 \pmod{2p^{\alpha}}$. 这就证明了 (4).

(5) 由定理2.4知, 存在整数 k 满足 $1 \le k \le \phi(m)$ 和 $(k, \phi(m)) = 1$, 且使得 $h \equiv g^k \pmod{m}$. 于是有

$$g^{\log_g a} \equiv a \equiv h^{\log_h a} \equiv g^{k \log_h a} \pmod{m},$$

所以由定理1.2知 $\log_g a \equiv k \log_h a = \log_g h \cdot \log_h a$ (mod $\phi(m)$), 故 (5) 成立.

可以利用原根造出离散对数表来解同余方程.

例 4.2. 解同余方程 $6x^{12} \equiv 11 \pmod{17}$.

可以利用原根造出离散对数表来解同余方程.

例 4.2. 解同余方程 $6x^{12} \equiv 11 \pmod{17}$.

解: 通过计算 (可使用例2.2的方法), 3 是 17 的一个原根.

可以利用原根造出离散对数表来解同余方程.

例 4.2. 解同余方程 $6x^{12} \equiv 11 \pmod{17}$.

解: 通过计算 (可使用例2.2的方法), 3 是 17 的一个原根.

进一步, 计算

$$3^0 \equiv 1 \pmod{17}, \ 3^1 \equiv 3 \pmod{17}, \dots, \ 3^{15} \equiv 6 \pmod{17}$$

得离散对数表如下:

\overline{a}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\log_3 a$	0	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

显然, 由定理1.2知,

$$6x^{12} \equiv 11 \pmod{17}$$
 (14)

与
$$\log_3(6x^{12}) \equiv \log_3 11 \pmod{16}$$
 等价, 后者即为

$$\log_3 6 + 12\log_3 x \equiv \log_3 11 \pmod{16}.$$
 (15)

显然, 由定理1.2知,

$$6x^{12} \equiv 11 \pmod{17}$$
 (14)

与 $\log_3(6x^{12}) \equiv \log_3 11 \pmod{16}$ 等价, 后者即为

$$\log_3 6 + 12\log_3 x \equiv \log_3 11 \pmod{16}.$$
 (15)

查上面的离散对数表知, (15) 即为

$$12\log_3 x \equiv 8 \pmod{16}.\tag{16}$$

显然,由定理1.2知,

$$6x^{12} \equiv 11 \pmod{17}$$
 (14)

与 $\log_3(6x^{12}) \equiv \log_3 11 \pmod{16}$ 等价, 后者即为

$$\log_3 6 + 12\log_3 x \equiv \log_3 11 \pmod{16}.$$
 (15)

查上面的离散对数表知, (15) 即为

$$12\log_3 x \equiv 8 \pmod{16}.\tag{16}$$

因此, 求解 (14) 等价于求解 (16). 而 (16) 是关于 $\log_3 x$ 的一次同余方程, 解之得 $\log_3 x \equiv 2, 6, 10, 14 \pmod{16}$. 再次使用上面的离散对数表, 反查即得 $x \equiv 9, 15, 8, 2 \pmod{17}$, 这些即为原同余方程的全部解.

例 4.3. 解同余方程 $7^x \equiv 6 \pmod{17}$.

例 4.3. 解同余方程 $7^x \equiv 6 \pmod{17}$.

解: 因为 3 是 17 的一个原根, 所以同余方程 $7^x \equiv 6 \pmod{17}$ 等价于

$$\log_3(7^x) \equiv \log_3 6 \pmod{16},$$

后者即为

$$x\log_3 7 \equiv \log_3 6 \pmod{16}$$
.

查例4.2中离散对数表知, 上面同余方程即为 $11x \equiv 15$ (mod 16), 解之得 $x \equiv 13$ (mod 16). 故原同余方程的解为 $x \equiv 13$ (mod 16).

一般地, 我们有下面的定理.

定理 4.2. 设 m 有原根 g, (b, m) = 1, $n \in \mathbb{Z}^+$, 那么同余 方程

$$x^n \equiv b \pmod{m} \tag{17}$$

有解的充要条件是 $d = (n, \phi(m))|\log_g b$. 若 (17) 有解, 则恰 有 d 个解.

一般地, 我们有下面的定理.

定理 4.2. 设 m 有原根 g, (b, m) = 1, $n \in \mathbb{Z}^+$, 那么同余 方程

$$x^n \equiv b \pmod{m} \tag{17}$$

有解的充要条件是 $d = (n, \phi(m))|\log_g b$. 若 (17) 有解, 则恰有 d 个解.

证明: 先证必要性. 假设 (17) 有解 x_0 , 即 $x_0^n \equiv b \pmod{m}$, 于是有

$$n\log_g x_0 \equiv \log_g b \pmod{\phi(m)}.$$

因此关于 y 的一次同余方程 $ny \equiv \log_g b \pmod{\phi(m)}$ 有解 $y \equiv \log_g x_0 \pmod{\phi(m)}$,从而由一次同余方程有解的条件 知 $d = (n, \phi(m)) | \log_g b$.

下证充分性. 假设 $d = (n, \phi(m))|\log_g b$, 那么关于 y 的一次同余方程

$$ny \equiv \log_a b \pmod{\phi(m)}$$

有 d 个解, 设为 y_1, y_2, \ldots, y_d . 令 $x_i = g^{y_i} \mod m$, 1 < i < d.

下证充分性. 假设 $d=(n,\phi(m))|\log_g b$, 那么关于 y 的一次同余方程

$$ny \equiv \log_g b \pmod{\phi(m)}$$

有 d 个解, 设为 y_1, y_2, \ldots, y_d . 令 $x_i = g^{y_i} \mod m$, $1 \le i \le d$.

当 $i \neq j$ 时, $x_i \not\equiv x_j \pmod{m}$; 否则有 $g^{y_i} \equiv g^{y_j} \pmod{m}$, 从而 $y_i \equiv y_j \pmod{\phi(m)}$, 矛盾! 计算知

$$x_i^n \equiv (g^{y_i})^n \equiv g^{ny_i} \equiv g^{\log_g b} \equiv b \pmod{m},$$

所以由此我们可以得到 (17) 的 d 个关于模 m 互不同余的解. 易证, (17) 没有更多的解, 因此 (17) 恰有 d 个解.

定理 4.3. 设 m 有原根 g, (a, m) = (b, m) = 1, 则同余方程 $a^x \equiv b \pmod{m}$ 有解的充要条件是 $d = (\log_g a, \phi(m)) | \log_g b$. 若该方程有解, 则恰有 d 个解.

证明: 与定理4.2的证明类似, 在此省略.