→ Caractéristique

On souhaite tracer la caractéristique I = f(U) d'une cellule photovoltaïque (PV) pour 3 conditions d'éclairage différentes. On réalise pour cela le montage ci-contre où la cellule est sous une lampe dont on mesure l'éclairement avec un luxmètre.

À quoi sert le rhéostat dans ce montage?

Une cellule PV est-elle un dipôle passif ou actif?

Une simulation de l'expérience se trouve à la page : https://www.geogebra.org/m/u27ch5v7

Enregistrer sur un tableur différents couples de valeur (U,I) pour chacune des 3 lampes puis tracer les 3 caractéristiques correspondantes (en les superposant) sur le repère au dos.

Lampe 1			Lampe 2			Lampe 3		
U (en V)	I (en A)	P (en W)	U (en V)	I (en A)	P (en W)	U (en V)	I (en A)	P (en W)

Indiquer sur le graphe :

- la zone où la cellule se comporte comme un **générateur idéal de courant** (le courant fourni est indépendant de la charge du circuit c.-à-d. de sa résistance)
- la zone ou la cellule se comporte comme un **générateur idéal de tension** (la tension fournie est indépendante de la charge du circuit)
- la tension en circuit ouvert U_{co}
- l'intensité de court-circuit I_{cc}

→ Puissance

U (en V)

Calculer grâce au tableur la grandeur puissance P en chacun des points de vos caractéristiques.

Tracer P(U) sur le graphe ci-contre (superposer les 3 éclairements).

On note P_c (puissance crête) la valeur maximale de la puissance. Que vaut P_c dans le cas de l'éclairement de 1000 W.m-2 (lampe A)?

$$P_c = \dots W$$

L'éclairement énergétique ou **irradiance** exprimé en watt par mètre carré (W.m-2) correspond à la puissance d'un rayonnement qu'elle reçoit par unité de surface (c'est aussi une *densité surfacique de flux énergétique*). L'éclairement est mesuré par un **solarimètre** ou **pyranomètre**.

Le rendement η d'une cellule photovoltaïque vaut : $\eta = \frac{P_c}{P_E}$ où P_E est la puissance lumineuse absorbée par la cellule. Le rendement dépend du matériau semi-conducteur utilisé pour la cellule.

Cellule PV	Si monocristallin	Si polycristallin	Si amorphe
rendement typique	17 %	15%	8 %

Pouvez-vous déterminer le matériau de la cellule PV utilisée ?

