In particular, if A is a real matrix and if A is skew-symmetric, then

$$x^{\mathsf{T}}Ax = 0.$$

Thus, for any real matrix (symmetric or not),

$$x^{\top}Ax = x^{\top}H(A)x,$$

where $H(A) = (A + A^{T})/2$, the symmetric part of A.

There are situations in which it is necessary to add linear constraints to the problem of maximizing a quadratic function on the sphere. This problem was completely solved by Golub [78] (1973). The problem is the following: given an $n \times n$ real symmetric matrix A and an $n \times p$ matrix C,

minimize
$$x^{\top}Ax$$

subject to $x^{\top}x = 1, C^{\top}x = 0, x \in \mathbb{R}^n$.

As in Section 42.2, Golub shows that the linear constraint $C^{\top}x = 0$ can be eliminated as follows: if we use a QR decomposition of C, by permuting the columns, we may assume that

$$C = Q^{\top} \begin{pmatrix} R & S \\ 0 & 0 \end{pmatrix} \Pi,$$

where Q is an orthogonal $n \times n$ matrix, R is an $r \times r$ invertible upper triangular matrix, and S is an $r \times (p-r)$ matrix (assuming C has rank r). If we let

$$x = Q^{\top} \begin{pmatrix} y \\ z \end{pmatrix},$$

where $y \in \mathbb{R}^r$ and $z \in \mathbb{R}^{n-r}$, then $C^{\top}x = 0$ becomes

$$\Pi^{\top} \begin{pmatrix} R^{\top} & 0 \\ S^{\top} & 0 \end{pmatrix} Q x = \Pi^{\top} \begin{pmatrix} R^{\top} & 0 \\ S^{\top} & 0 \end{pmatrix} \begin{pmatrix} y \\ z \end{pmatrix} = 0,$$

which implies y = 0, and every solution of $C^{\top}x = 0$ is of the form

$$x = Q^{\top} \begin{pmatrix} 0 \\ z \end{pmatrix}.$$

Our original problem becomes

minimize
$$(y^{\top} z^{\top})QAQ^{\top} \begin{pmatrix} y \\ z \end{pmatrix}$$

subject to $z^{\top}z = 1, z \in \mathbb{R}^{n-r},$
 $y = 0, y \in \mathbb{R}^{r}.$