Электрон имеет квантовые числа n: E_n , l: L, m: L_z , $s=\pm \frac{1}{2}$: L_s . Электроны подчиняются принципу запрета Паули и правилу заполнения уровней.

Энергетическое состояние атома описывается с помощью суммарного орбитального момента L_L и суммарным собственным моментом L_S и обусловлено спинорбитальным взаимодействием. В результате формируется результирующий момент $\overrightarrow{L_I}=\overrightarrow{L_L}+\overrightarrow{L_S}$. J=L+S,L+S-1,...,|L-S| — полное квантовое число (существует только для атомов). Суммарное орбитальное число определяется суммой возможных неповторяющихся значений l – состояний частиц системы. Например:

2

3

1 2

4

3 1

3

1

0

1

1

 $L = 1; S = \frac{1}{2}; J = \frac{3}{2}; \frac{1}{2}.$

Пример: определить число возможных квантовых состояний системы, состоящей из двух электронов:

- 1) p состояние, $s = \frac{1}{2}$, l = 1.
- 2) d состояние, $s = \frac{1}{2}$, l = 2.

Считаем величину $L=1+2=3 \to L=1,2,3$, так как электроны находятся в разных состояниях. Электронов два, значит $S = \frac{1}{2} + \frac{1}{2} = 1 \rightarrow$ Получаем следующие S = 0.1. ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$, ${}^{1}P_{1}$, ${}^{3}D_{3}$, ${}^{3}D_{2}$, ${}^{3}D_{1}$, ${}^{1}D_{2}$, ${}^{3}F_{4}$, ${}^{3}F_{3}$, ${}^{3}F_{2}$, ${}^{1}F_{3}$, итого 12 состояний.

Квантовые состояния имеют собственную систему обозначений $N^{2s+1}L_{\!J}$, где s – суммарное спиновое число, 2s+1 – мультиплетность, J – полное квантовое число, N – номер уровня, вместо L указывается буквенное обозначение суммарного момента импульса.

Пример: написать терм основного состояния элемента, имеющего 13 электронов. Терм основного состояния определяется по последней оболочке. Электронная конфигурация $1s^22s^22p^63s^23p^1$. Последний уровень это $3p^1$ уровень. L=1, так как электроны в одном состоянии. $S=\frac{1}{2}$, так как электрон всего один. $J=\frac{1}{2};\frac{3}{2}$. Получаем два терма $^{2}P_{3/2}$, $^{2}P_{1/2}$. **Термом основного состояния будут тот терм, у** которого меньше энергия. Если последняя оболочка заполнена менее, чем на половину, то наименьшей энергией обладает терм, у которого ${\it J}=|{\it L}-{\it S}|$, в про**тивном случае с** $m{J} = m{L} + m{S}$. В нашем случае это $^2P_{1/2}$. И для любого состояния np^1 основным термом будет этот терм.

Пример: для определения суммарного спинового числа следует помнить, что учитывается только спин несвязанных валентных электронов, электроны сначала заполняют уровень стрелочкой вверх, потом стрелочкой вниз. Для атома ${\it Cl}$ в состоянии np^5 будет только 1 валентный электрон, в состоянии np^4 – два валентных электрона.

Максимальное число электронов в слое $2n^2$. Максимальное число электронов на оболочке 2(2l+1).

Мультиплетное расщепление

Мультиплетность определяет, на сколько линий расщепится спектральная линия в результате спин-орбитального взаимодействия (без внешнего воздействия). Для желтой линии натрия это переход $^2P_{3/2}
ightarrow \, ^2S_{1/2}$, соответствующий линии $5890 \mathrm{A}$ и $^2P_{1/2} o \ ^2S_{1/2}$, соответствующий линии $5896 \mathrm{A}$. Если мультиплетность

равна 1, то синглет, 2 – дуплет, 3 – триплет, и т.д. В отсутствие внешнего магнитного поля расщипление идет из-за мультиплетности, а во внешнем поле 4.

Модель LS связи

У легких элементов хорошо работает модель LS связи, т.е. взаимодействие суммарных орбитальных и спиновых моментов. Правило отбора для квантовых чисел: $\Delta I = 0; \pm 1; \Delta L = \pm 1$. Т.е. разрешены только такие переходы.

Расщипление спектральных линий во внешнем поле

Пример: ${}^3F_{3/2}$ расщепится на 4 подуровня $m_J=-\frac{3}{2};-\frac{1}{2};\frac{1}{2};\frac{3}{2}$.

Гармонический осциллятор

Это частица, которая совершает колебания около положения равновесия, ион в узлах кристаллической решетки. Потенциальная энергия такой частицы $U=\frac{m\omega^2x^2}{2}$. Он имеет минимальное значение энергии $E_0=\frac{1}{2}\hbar\omega$. Собственные значения энергии $E_n=\left(n+\frac{1}{2}\right)\hbar\omega$. Правило отбора $\Delta n=\pm 1$.

