Práctica 4

RAÚL CASTRO MORENO
3º A - AZ

Ejercicio 1

Primero vamos a realizar el autómata que acepte cadenas que contengan la subcadena 000, vamos a usar q; , i=0,1,...,n, para sus estados.

Ahora reclizanos el autómato que acepte cadenes las cuales contengon le subcadena 111, usando ahora pi con i=0,1,...,n.

Voy a realizar ahora la table del producto

-		
	0	1_
-> qoiPo	qui Po	8 1P4
9,100	921Po	90191
90, P1	Faile	90, P2
92180	93,80	90, 91
90,182	9,10	90183
93.80	93,80	93,19
90 P3	94 R3	90183
93, 1	43, Po	93, 82
9,193	92 P3	90.P3

	0	1
92193	93,13	90, P3
93,1/2	93, Po	93,P3
93,83	93183	93,193

Al ser una intersección, (93,83) será el estado terminal

Una vez hecha la tabla, solo queda dibujer el automata.

Ejercicio 2

Primero vamos a calcular el AFD. Hacemas la tabla de estados.

	0	1
→ 9,	9, 18/1/20	91,92,93
9,192,93	94193194	9, 192, 93,94
94193194	941 94	9,12,9,194
94192193194	91193194	94192193194
92,94	9,194	91192193194

Venos que tenemos 5 estados. Dibujomos el autómata.

Ahora, para hacerlo minimal, vamos a construir la tabla

P	4	X			
P	2	X	X		
-	3	X	X		
	Py	X	X		
•		Po	Pa	PZ	P3

Una vez construïda, tachamos primero, los estados en los cuales uno es terminal, y el etro no.

Estos son: (Po, P2), (Po, P3), (Po, P4), (Pa, P3), (Pa, P3), (Pa, P4)

Después de esto, comproboros los demás estados.

1 -	*		
1 Po Pa 0 Po Pa 1 Pa Pa	0 P4 P2	P2 R1	1 B P4
1 P. P3	1 62 6	P2 P4 0 P4 P4 1 P3 P3	0 Pe P4 1 P3 P3
Se morce	Se deje libre		
	V ample 11 pes	Se deja libre	Se oleja libra

Por lo tanto, Pz, P3 Y Py son estados equivalentes.

El autónata minimal resultante Sería entonces ->

Ejercicio 3

Para realizar estos aportados vernos a usar el lema de Bombec donde extertista si $|z| \ge h$ con hell y $\forall z \in C$, se puede expresar de la Jorna z = uvu, compliendo que $-|uv| \le h$, $-|v| \ge 1$, $-(\forall i \ge 0)$ $uv'w \in C$.

a) Cogemos una palabra del lenguaje.

Z = (ac) b m+1, como 2 = UVW, la separamos

u = (aa)i , v = (aa)k , w = (aa)n-j-k bm+1 .

De esto hay que tener en aventa que j+K ≤ n y K ≥ 1, debieb a que luvl ≤ n y lvl≥1 respectionmente.

Obteneros lo siguiente: $z=(aa)^{i}(aa)^{k}(aa)^{k-j-k}b^{m+1}=uvw$ Falta verificar la última propiedad por lo que probamos con un $i \ge 0$.

Demostración con i=2.

1 4 4 w = (aa) (aa) (aa) n-j-k bm +1

que Le no es un lenguaje regular

-) proto que n = n+k

b) Cogemos une palabre del lenguije

2 = 1" 1"

Z= uvw -> u=1, v=1k, w=1,-j-k1n

Sabemor que j+K * En y K ≥ 1.

Pasamos a la demostración de la última propiedad con i=2

Z=UVW = 13 1K 1n-j-K1n

Con i = 2 Uv2w = 181 1 / 2 / 1n = 1n+k 1n

Luego vu²w = 1h+k 1h E Lz por le que afirmames que Lz no es un lenguaje regular.

C) Realizamos los mismos pasos que en los anteriores aportodos. $Z = a^{2n}$ $\rightarrow u = a^{j}$, $v = a^{k}$, $w = a^{j} + k$ $a^{2n} - j - k$ $a^{2n} - j - k$ con $j + k \le n$ y $k \ge 1$ Hacemos la demostración con i = 2 $a^{2n} - j - k$ $a^{2n} - j - k$ $a^{2n} - j - k$

Puesto que $K \ge 1$, cuando K = 1, se tendrá $MMDM 2^{h} 2^{h} + 1$, entonces hará que exponente sea impor, por ejemplo con n = 1 y K = 1 tendríamos que $a^{2+1} = a^{3} y$ eso no pertenece al lenguije.

Por tanto aznik & L3, confirmando avíque L3 no es un lenguaje regular.