Análise de Algoritmos

Parte destes slides são adaptações de slides do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

16 de agosto de 2022

Introdução

CLRS 1.1, 1.2, 2.1 e 2.2 AU 3.3, 3.4 e 3.6

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

Ordenação

$$A[1..n]$$
 é crescente se $A[1] \leq \cdots \leq A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

Entra:

Ordenação

$$A[1..n]$$
 é crescente se $A[1] \leq \cdots \leq A[n]$.

Problema: Rearranjar um vetor A[1..n] de modo que ele fique crescente.

Entra:

Sai:

chave = 38

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	20	25	35	38	40	44	55	99	10	65	50

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								J		n
10	10	20	25	35	38	40	44	55	99	65	50

Algoritmo rearranja A[1...n] em ordem crescente.

```
ORDENA-POR-INSERÇÃO (A, n)
1 para j \leftarrow 2 até n faça
2 chave \leftarrow A[i]
i \leftarrow i - 1
4 enquanto i \ge 1 e A[i] > chave faça
          A[i+1] \leftarrow A[i]  \triangleright desloca
6
          i \leftarrow i - 1
  A[i+1] \leftarrow chave > insere
```

Algoritmo rearranja A[1...n] em ordem crescente

```
ORDENA-POR-INSERÇÃO (A, n)
0 \quad i \leftarrow 2
1 enquanto i < n faca
2 chave \leftarrow A[i]
i \leftarrow i - 1
4 enquanto i \ge 1 e A[i] > chave faça
          A[i+1] \leftarrow A[i]  \triangleright desloca
          i \leftarrow i - 1
7 A[i+1] \leftarrow chave > insere
8 i \leftarrow i + 1
```

Número mínimo, médio ou máximo? Melhor caso, caso médio, pior caso?

LINHAS 3–6 (A, j, chave)

3
$$i \leftarrow j - 1$$
 $\Rightarrow 2 \leq j \leq n$

4 enquanto $i \ge 1$ e A[i] > chave faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

linha	atribuições (número máximo)
3	?
4	?
5	?
6	?

total ?

LINHAS 3–6 (A, j, chave)

3
$$i \leftarrow j - 1$$
 $\Rightarrow 2 \leq j \leq n$

4 enquanto $i \ge 1$ e A[i] > chave faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

linha	atribuições (número máximo)
3	= 1
4	= 0
5	?
6	?

total

LINHAS 3–6 (A, j, chave)

3
$$i \leftarrow j - 1$$
 $\Rightarrow 2 \leq j \leq n$

4 enquanto $i \ge 1$ e A[i] > chave faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

linha	atribuições (número máximo)
3	= 1
4	= 0
5	$\leq j-1$
6	?

total

LINHAS 3–6 (A, j, chave)

3
$$i \leftarrow j - 1$$
 $\Rightarrow 2 \leq j \leq n$

4 enquanto $i \ge 1$ e A[i] > chave faça

$$5 A[i+1] \leftarrow A[i]$$

6
$$i \leftarrow i - 1$$

linha	atribuições (número máximo)
3	= 1
4	= 0
5	$\leq j-1$
6	$\leq j-1$

total
$$\leq 2j-1 \leq 2n-1$$

ORDENA-POR-INSERÇÃO (A, n)

- 1 para $j \leftarrow 2$ até n faça $\triangleright j \leftarrow j+1$ escondido
- 2 $chave \leftarrow A[j]$
- 3 LINHAS 3–6 (A, j, chave)
- 7 $A[i+1] \leftarrow chave$

linha	atribuições (número máximo)
1	?
2	?
3–6	?
7	?

total ?

ORDENA-POR-INSERÇÃO (A, n)

- 1 para $j \leftarrow 2$ até n faça $\triangleright j \leftarrow j + 1$ escondido
- 2 $chave \leftarrow A[j]$
- 3 LINHAS 3–6 (A, j, chave)
- 7 $A[i+1] \leftarrow chave$

linha	atribuições (número máximo)
1	= n-1+1
2	= n-1
3–6	$\leq (n-1)(2n-1)$
7	= n-1

total
$$\leq 2n^2 - 1$$

Análise mais fina

linha	atribuições (número máximo)
1	= n-1+1
2	= n-1
3-6	$\leq 3+5+\cdots+(2n-1)=(n+1)(n-1)=n^2-1$
7	= n-1

total
$$\leq n^2 + 3n - 3$$

$$n^2 + 3n - 3$$
 versus n^2

n	n^2+3n-3	n^2
1	1	1
2	7	4

$$n^2 + 3n - 3$$
 versus n^2

n	n^2+3n-3	n^2
1	1	1
2	7	4
3	15	9
10	127	100

$$n^2 + 3n - 3$$
 versus n^2

n	n^2+3n-3	n^2
1	1	1
2	7	4
3	15	9
10	127	100
100	10297	10000
1000	1002997	1000000

$$n^2 + 3n - 3$$
 versus n^2

n	n^2+3n-3	n^2
1	1	1
2	7	4
3	15	9
10	127	100
100	10297	10000
1000	1002997	1000000
10000	100029997	10000000
100000	10000299997	1000000000

 n^2 domina os outros termos

Exercício 1.B

Se a execução de cada linha de código consome 1 unidade de tempo, qual o consumo total?

```
ORDENA-POR-INSERÇÃO (A, n)
  para i \leftarrow 2 até n faça
2 chave \leftarrow A[i]
i \leftarrow i - 1
4 enquanto i \ge 1 e A[i] > chave faça
5
           A[i+1] \leftarrow A[i]  \triangleright desloca
6
           i \leftarrow i - 1
      A[i+1] \leftarrow chave > insere
```

Solução

linha	todas as execuções da linha	
1	=	n
2	=	n-1
3	=	n-1
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$
7	=	n-1
total	<	$(3/2)n^2 + (7/2)n - 4$

Exercício 1.C

```
Se a execução da linha i consome t_i unidades de tempo, para i = 1, ..., 7, qual o consumo total?
```

```
ORDENA-POR-INSERÇÃO (A, n)
1 para i \leftarrow 2 até n faça
2 chave \leftarrow A[i]
i \leftarrow i - 1
4 enquanto i \ge 1 e A[i] > chave faça
5
           A[i+1] \leftarrow A[i]  \triangleright desloca
6
           i \leftarrow i - 1
      A[i+1] \leftarrow chave > insere
```

Solução para $t_i = 1$

linha	todas as execuções da linha	
1	=	n
2	=	n-1
3	=	n-1
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$
7	=	n-1
total	<	$(3/2)n^2 + (7/2)n - 4$

Solução

linha	todas as execuções da linha		
1	=	n	$\times t_1$
2	=	n-1	$\times t_2$
3	=	n-1	$\times t_3$
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$\times t_4$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$
7	=	n-1	$\times t_7$

total \leq ?

Solução

linha	todas as execuções da linha		
1	=	n	$\times t_1$
2	=	n-1	$\times t_2$
3	=	n-1	$\times t_3$
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$\times t_4$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$
7	=	n-1	$\times t_7$
total	<	$((t_4+t_5+t_6)/2) \times n^2$	
	+	$(t_1+t_2+t_3+t_4/2-t_5/2-t_6/2+t_7)$) × n
	_	$(t_2+t_3+t_4+t_7)$	

Solução

linha	todas as execuções da linha		
1	=	n	$\times t_1$
2	=	n-1	$\times t_2$
3	=	n-1	$\times t_3$
4	\leq	$2+3+\cdots+n = (n-1)(n+2)/2$	$\times t_4$
5	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_5$
6	\leq	$1+2+\cdots+(n-1) = n(n-1)/2$	$\times t_6$
7	=	n-1	$\times t_7$
total	<	$c_2 \times n^2 + c_1 \times n + c_0$	

 c_2, c_1, c_0 são constantes que dependem da máquina.

 n^2 é para sempre! Está nas entranhas do algoritmo!

Notação O

Intuitivamente...

```
O(f(n)) \approx funções que não crescem mais rápido que f(n) \approx funções menores ou iguais a um múltiplo de f(n)
```

$$n^2$$
 $(3/2)n^2$ 9999 n^2 $n^2/1000$ etc.

crescem todas com a mesma velocidade

Notação O

Intuitivamente...

```
O(f(n)) pprox funções que não crescem mais rápido que f(n) pprox funções menores ou iguais a um múltiplo de f(n)
```

$$n^2$$
 $(3/2)n^2$ 9999 n^2 $n^2/1000$ etc.

crescem todas com a mesma velocidade

- $n^2 + 99n \in O(n^2)$
- ► $33n^2$ é $O(n^2)$
- ▶ $9n + 2 \in O(n^2)$
- $> 0,00001n^3 200n^2$ não é $O(n^2)$

Definição

Sejam T(n) e f(n) funções dos inteiros nos reais. Dizemos que T(n) é O(f(n)) se existem constantes positivas c e n_0 tais que

$$T(n) \leq c f(n)$$

para todo $n \ge n_0$.

Mais informal

$$T(n) \in O(f(n))$$
 se existe $c > 0$ tal que

$$T(n) \leq c f(n)$$

para todo *n* suficientemente GRANDE.

 $T(n) \in O(f(n))$ lê-se " $T(n) \in O$ de f(n)" ou " $T(n) \in O$ da ordem de f(n)"

$$T(n) \in O(f(n))$$
 lê-se " $T(n) \in O$ de $f(n)$ " ou " $T(n) \in O$ da ordem de $f(n)$ "

Exemplo 1 $10n^2 \in O(n^3)$.

$$T(n) \in O(f(n))$$
 lê-se " $T(n) \in O$ de $f(n)$ " ou " $T(n) \in O$ da ordem de $f(n)$ "

Exemplo 1

 $10n^2 \in \mathcal{O}(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

$$T(n) \in O(f(n))$$
 lê-se " $T(n) \in O$ de $f(n)$ " ou " $T(n) \in O$ da ordem de $f(n)$ "

Exemplo 1

 $10n^2$ é $O(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1n^3$.

$$T(n) \in O(f(n))$$
 lê-se " $T(n) \in O$ de $f(n)$ " ou " $T(n) \in O$ da ordem de $f(n)$ "

Exemplo 1

 $10n^2 \in \mathcal{O}(n^3)$.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1 n^3$.

Exemplo 2

 $\lg n \in O(n)$.

$$T(n) \in O(f(n))$$
 lê-se " $T(n) \in O$ de $f(n)$ " ou " $T(n) \in O$ da ordem de $f(n)$ "

Exemplo 1

$$10n^2 \, \text{\'e} \, \mathrm{O}(n^3)$$
.

Prova: Para $n \ge 0$, temos que $0 \le 10n^2 \le 10 n^3$.

Outra prova: Para $n \ge 10$, temos $0 \le 10n^2 \le n \times n^2 = 1 n^3$.

Exemplo 2

 $\lg n \in O(n)$.

Prova: Para $n \ge 1$, tem-se que $\lg n \le 1$ n.

Mais exemplos

Exemplo 3

 $20n^3 + 10n \log n + 5 \in O(n^3)$.

Mais exemplos

Exemplo 3

$$20n^3 + 10n \log n + 5 \in O(n^3)$$
.

Prova: Para $n \ge 1$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3$$
.

Mais exemplos

Exemplo 3

$$20n^3 + 10n \log n + 5 \in O(n^3)$$
.

Prova: Para $n \ge 1$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + 10n^3 + 5n^3 = 35n^3.$$

Outra prova: Para $n \ge 10$, tem-se que

$$20n^3 + 10n \lg n + 5 \le 20n^3 + n n \lg n + n \le 20n^3 + n^3 + n^3 = 22n^3$$
.

Uso da notação O

$$O(f(n)) = \{T(n) : \text{ existem } c \text{ e } n_0 \text{ tq } T(n) \leq cf(n), n \geq n_0\}$$

" $T(n) \in O(f(n))$ " deve ser entendido como " $T(n) \in O(f(n))$ ".

"T(n) = O(f(n))" deve ser entendido como " $T(n) \in O(f(n))$ ".

" $T(n) \leq O(f(n))$ " é feio.

" $T(n) \ge O(f(n))$ " não faz sentido!

" $T(n) \in g(n) + O(f(n))$ " significa que existe constantes positivas c e n_0 tais que

$$T(n) \leq g(n) + c f(n)$$

para todo $n \geq n_0$.

Nomes de classes O

classe	nome
O(1)	constante
$O(\lg n)$	logarítmica
O(n)	linear
$O(n \lg n)$	n log n
$O(n^2)$	quadrática
$O(n^3)$	cúbica
$O(n^k)$ com $k \ge 1$	polinomial
$O(2^n)$	exponencial
$O(a^n)$ com $a>1$	exponencial