```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
%matplotlib inline
warnings.filterwarnings("ignore")
```

Export Data

```
In [2]: exp=pd.read_csv('/kaggle/input/india-trade-data/2018-2010_export.csv')
    exp.head()
```

Out[2]:	: HSCode		Commodity	value	country	year
	0	2	MEAT AND EDIBLE MEAT OFFAL.	0.18	AFGHANISTAN TIS	2018
	1	3	FISH AND CRUSTACEANS, MOLLUSCS AND OTHER AQUAT	0.00	AFGHANISTAN TIS	2018
	2	4	DAIRY PRODUCE; BIRDS' EGGS; NATURAL HONEY; EDI	12.48	AFGHANISTAN TIS	2018
	3	6	LIVE TREES AND OTHER PLANTS; BULBS; ROOTS AND	0.00	AFGHANISTAN TIS	2018
	4	7	EDIBLE VEGETABLES AND CERTAIN ROOTS AND TUBERS.	1.89	AFGHANISTAN TIS	2018

```
In [4]: ### Checking for null values

exp.isnull().sum()

Out[4]: HSCode 0
Commodity 0
```

commodity 0
value 14038
country 0
year 0
dtype: int64

Sanity Check for export data

```
In [5]: ### Value must be >=0
```

```
exp[exp['value']<0.0].shape[0]

Out[5]:</pre>
```

Visualization for export data

```
In [6]: ### In Which year India exported highest in value
plt.figure(figsize=[11,7])
exp.groupby(by='year')['value'].sum().sort_values(ascending=True).plot.bar(color='gplt.xlabel('Year')
plt.ylabel('Exports in Billion US$')
ticks = np.arange(0, 400000, 100000)
labels = ["{}B$".format(i//1000) for i in ticks]
plt.yticks(ticks, labels)
plt.title('Exports by year',fontdict={'fontsize': 20,'color':'Red'})
plt.show()
```


Inference: In 2018, India exported highest in value while in 2010 it was lowest

```
In [7]: ### Exports trend during 2010-2018 using line plot

plt.figure(figsize=[11,7])
  exp.groupby(by='year')['value'].sum().plot.line(color='red',marker='s',linestyle='
    ticks = np.arange(200000, 450000, 50000)
  labels = ["{}B USD".format(i//1000) for i in ticks]
  plt.yticks(ticks, labels)
  plt.xlabel('Year',fontdict={'fontsize': 12,'color':'green'})
  plt.ylabel('Exports in Billion USD',fontdict={'fontsize': 12,'color':'green'})
  plt.title('Exports in Billion USD',fontdict={'fontsize': 20,'color':'Blue'})
  plt.show()
```


Inference 2:India's export is continously increasing after 2015

```
In [8]: ### To which country India exported highest?

plt.figure(figsize=[15,9])
    a=exp.groupby(by=['country'])['value'].sum().sort_values(ascending=False).head(10)
    a.plot(kind='bar',color='red',edgecolor='black')
    plt.xlabel('country',fontdict={'fontsize': 12,'color':'green'})
    plt.ylabel('Exports in Billion US$',fontdict={'fontsize': 12,'color':'green'})
    plt.title('Total Exports by country(2010-2018)',fontdict={'fontsize': 20,'color':'lticks = np.arange(0, 450000, 50000)
    labels = ["{}B USD".format(i//1000) for i in ticks]
    plt.yticks(ticks, labels)
    plt.show()
```


India exported highest(by value) to USA(2010-2018)

```
In [9]: ### which Indian commodity was exported(highest in value)
plt.figure(figsize=[15,9])
a=exp.groupby(by=['Commodity'])['value'].sum().sort_values(ascending=False).head(10 a.plot(kind='bar',color='cyan',edgecolor='black')
plt.xlabel('commodity',fontdict={'fontsize': 12,'color':'green'})
plt.ylabel('Exports in Billion US$',fontdict={'fontsize': 12,'color':'green'})
plt.title('Total Exports by commodity(2010-2018)',fontdict={'fontsize': 20,'color'
ticks = np.arange(0, 450000, 50000)
labels = ["{}B USD".format(i//1000) for i in ticks]
plt.yticks(ticks, labels)
plt.show()
```


Mineral wax,mineral fuel and other mineral product commodity was exported highest during 2010-2018

```
In [10]: exp.info()
```

```
RangeIndex: 137023 entries, 0 to 137022
Data columns (total 5 columns):
    Column
              Non-Null Count
                               Dtype
   HSCode
              137023 non-null int64
0
    Commodity 137023 non-null object
              122985 non-null float64
    value
              137023 non-null object
3
    country
               137023 non-null int64
    year
dtypes: float64(1), int64(2), object(2)
```

<class 'pandas.core.frame.DataFrame'>

In [11]: expcorr=exp.corr()
 sns.heatmap(expcorr,annot=True)
 plt.show()

memory usage: 5.2+ MB

No relationship found

Import Data

imp=pd.read_csv('/kaggle/input/india-trade-data/2018-2010_import.csv')
imp.head()

Out[12]:		HSCode	Commodity	value	country	year
	0	5	PRODUCTS OF ANIMAL ORIGIN, NOT ELSEWHERE SPECI	0.00	AFGHANISTAN TIS	2018
	1	7	EDIBLE VEGETABLES AND CERTAIN ROOTS AND TUBERS.	12.38	AFGHANISTAN TIS	2018
	2	8	EDIBLE FRUIT AND NUTS; PEEL OR CITRUS FRUIT OR	268.60	AFGHANISTAN TIS	2018
	3	9	COFFEE, TEA, MATE AND SPICES.	35.48	AFGHANISTAN TIS	2018
	4	11	PRODUCTS OF THE MILLING INDUSTRY; MALT; STARCH	NaN	AFGHANISTAN TIS	2018

```
imp.dtypes
         HSCoae
Commodity object
float64
Out[13]:
         country
                      object
                        int64
         year
         dtype: object
                                       -----> Datatypes are good
In [14]: ### Checking for null values
         imp.isnull().sum()
         HSCode
Out[14]:
         Commodity
                          0
         value
                      11588
         country
                         0
         year
         dtype: int64
```

Sanity Check for Import data

```
In [15]: ### Value must be >=0
    imp[imp['value']<0.0].shape[0]
Out[15]: 0</pre>
```

Visualization for Import data

```
In [16]: ### In Which year India imported highest in value
    plt.figure(figsize=[11,7])
    imp.groupby(by='year')['value'].sum().sort_values(ascending=False).plot.bar(color=
    plt.xlabel('Year')
    plt.ylabel('Import in Billion US$')
    ticks = np.arange(0, 500000, 50000)
    labels = ["{}B$".format(i//1000) for i in ticks]
    plt.yticks(ticks, labels)
    plt.title('Imports by year',fontdict={'fontsize': 20,'color':'Red'})
    plt.show()
```

Imports by year

In 2018 India imported highest

```
In [17]: ### Which commmodity has been imported highest by value?
plt.figure(figsize=[11,7])
    imp_by_com=imp.groupby(by=['Commodity'])['value'].sum().sort_values(ascending=False)
    imp_by_com.plot(kind='bar',color='cyan',edgecolor='black')
    plt.xlabel('Year',fontdict={'fontsize': 15,'color':'green'})
    plt.ylabel('Import in Billion US$',fontdict={'fontsize': 15,'color':'green'})
    ticks = np.arange(0, 1600000, 200000)
    labels = ["{}B$".format(i//1000) for i in ticks]
    plt.yticks(ticks, labels)
    plt.title('Total Imports by commodity(2010-2018)',fontdict={'fontsize': 20,'color'
    plt.show()
```


Year

```
In [18]: ### Imports trend during 2010-2018 using line plot
    plt.figure(figsize=[11,7])
    imp.groupby(by='year')['value'].sum().plot.line(color='red',marker='s',linestyle='
    ticks = np.arange(300000, 600000, 50000)
    labels = ["{}B USD".format(i//1000) for i in ticks]
    plt.yticks(ticks, labels)
    plt.xlabel('Year',fontdict={'fontsize': 12,'color':'green'})
    plt.ylabel('Imports in Billion USD',fontdict={'fontsize': 12,'color':'green'})
    plt.title('Imports in Billion USD',fontdict={'fontsize': 20,'color':'Blue'})
    plt.show()
```


Merged Import-Export data

```
In [19]: ### We can compare Import Vs. Export during 2010-2018

plt.figure(figsize=[11,7])
   imp.groupby(by='year')['value'].sum().plot.line(color='red',marker='s',linestyle='exp.groupby(by='year')['value'].sum().plot.line(color='blue',marker='o',linestyle=ticks = np.arange(150000, 600000, 50000)
   labels = ["{}B USD".format(i//1000) for i in ticks]
   plt.yticks(ticks, labels)
   plt.xlabel('Year',fontdict={'fontsize': 12,'color':'green'})
   plt.ylabel('Values in Billion USD',fontdict={'fontsize': 12,'color':'green'})
   plt.title('Imports Vs Export in Billion USD(2010-2018)',fontdict={'fontsize': 20,'opt.legend()
   plt.show()
```


we can see that as exports increases/decreases import also increase/decreases or viceversa.

India has been net importer in any year.

```
x=imp.groupby(by='year')['value'].sum()
In [20]:
         y=exp.groupby(by='year')['value'].sum()
         print(min(x-y))
         print(max(x-y))
         print(x-y)
         108515.020000000002
         190345.75
         year
         2010
                 119961.07
         2011
                 183363.53
         2012
                 190345.75
         2013
                 135804.38
         2014
                 137705.61
         2015
                 150263.23
         2016
                 108515.02
         2017
                 162066.17
         2018
                 184012.69
         Name: value, dtype: float64
```

In 2016 trade gap was narrowest

In 2012 trade gap was widest

```
In [21]: ### Finding corelation for import data
   impcorr=imp.corr()
   sns.heatmap(impcorr,annot=True)
   plt.show()
```


No relationship found

```
In [22]:
         ### Grouping countries for export data
          df1=exp.groupby(by='country')['value'].sum()
          df1.head()
         country
Out[22]:
         AFGHANISTAN TIS
                             4760.19
         ALBANIA
                             196.51
         ALGERIA
                             8232.24
         AMERI SAMOA
                                3.40
         ANDORRA
                                6.28
         Name: value, dtype: float64
In [23]: ### Grouping countries for import data
          df2=imp.groupby(by='country')['value'].sum()
          df2.head()
         country
Out[23]:
         AFGHANISTAN TIS
                              2686.62
         ALBANIA
                               524.18
                             10185.73
         ALGERIA
         AMERI SAMOA
                                 5.82
         ANDORRA
                                 5.45
         Name: value, dtype: float64
In [24]: ### Merging data frame on country
          df3=pd.merge(df1,df2,on='country')
          df3.head()
Out[24]:
                           value_x
                                   value_y
                  country
          AFGHANISTAN TIS 4760.19
                                   2686.62
                 ALBANIA
                            196.51
                                    524.18
                  ALGERIA 8232.24 10185.73
             AMERI SAMOA
                             3.40
                                      5.82
                ANDORRA
                             6.28
                                      5.45
```

In [25]: df3.rename(columns={'value_x':'export_val','value_y':'import_val'},inplace=True)

```
In [26]: df3.head()
Out[26]: export_val import_val
```

co		n	t	r	v
CU	u		·		٧

AFGHANISTAN TIS	4760.19	2686.62
ALBANIA	196.51	524.18
ALGERIA	8232.24	10185.73
AMERI SAMOA	3.40	5.82
ANDORRA	6.28	5.45

```
In [27]: ### Finding correlation b/w exoprt and import value
  value_corr=df3.corr()
  sns.heatmap(value_corr,annot=True)
  plt.show()
```


We can say that export_val and import_val are moderately positive correlated

```
In [28]: plt.figure(figsize=[15,7])
  plt.scatter(df3.export_val,df3.import_val,marker='o',edgecolor='black',color='red'
  plt.ylabel('Import value',fontdict={'fontsize':15,'color':'blue'})
  plt.xlabel('export value',fontdict={'fontsize':15,'color':'blue'})
  ticks_y = np.arange(0, 600000, 100000)
  ticks_x = np.arange(0, 400000, 500000)
  labels_y = ["{}B USD".format(i//1000) for i in ticks_y]
  labels_x = ["{}B USD".format(i//1000) for i in ticks_x]
  plt.yticks(ticks_y, labels_y)
  plt.xticks(ticks_x, labels_x)
  plt.title('Export-Import of India with another countries(2010-2018) in Billion US splt.show()
```


In [29]: ### Making a column for trade difference to find out with which country India a bee

df3['trade_diff']=df3['export_val']-df3['import_val']
 df3.head()

Out[29]: export_val import_val trade_diff

country

AFGHANISTAN TIS	4760.19	2686.62	2073.57
ALBANIA	196.51	524.18	-327.67
ALGERIA	8232.24	10185.73	-1953.49
AMERI SAMOA	3.40	5.82	-2.42
ANDORRA	6.28	5.45	0.83

In [30]: df3['NE/NI']=df3['trade_diff'].apply(lambda x: 'NE' if x>0 else 'NI')
NE means Net Exporter
NI means Net Importer
df3.head()

Out[30]: export_val import_val trade_diff NE/NI

country

AFGHANISTAN TIS	4760.19	2686.62	2073.57	NE
ALBANIA	196.51	524.18	-327.67	NI
ALGERIA	8232.24	10185.73	-1953.49	NI
AMERI SAMOA	3.40	5.82	-2.42	NI
ANDORRA	6.28	5.45	0.83	NE

In [31]: | ### With How many country India have been Net Exporter and Net Importer.

#plt.figure(figsize=[10,5])
df3['NE/NI'].value_counts(normalize=True)

Out[31]: NE 0.595041 NI 0.404959

Name: NE/NI, dtype: float64

With 59.5% countries India's trade have been surplus and with 40.5% countries India's trade have been deficit

```
In [32]: ### Lets understand With bar graph
    plt.figure(figsize=[10,7])
    df3['NE/NI'].value_counts().plot.bar(color='green',edgecolor='black')
    plt.title('Net_exports and Net_imports',fontdict={'fontsize':20,'color':'green'})
    plt.ylabel('Nos. of countries',fontdict={'fontsize':15,'color':'blue'})
    plt.xlabel('NE/NI',fontdict={'fontsize':15,'color':'blue'})
    plt.show()
```



```
In [33]: ### Which are top 5 countries to which India exports more and imoprt Less?

plt.figure(figsize=[11,7])
top5=df3.sort_values(by='trade_diff',ascending=False).head(5)
top5.plot(kind='bar')
ticks = np.arange(0, 600000, 50000)
labels = ["{}B USD".format(i//1000) for i in ticks]
plt.yticks(ticks, labels)
plt.title('top trade surplus country(by value)',fontdict={'fontsize':20,'color':'giplt.ylabel('Values in Billion USD',fontdict={'fontsize':15,'color':'blue'})
plt.xlabel('Country',fontdict={'fontsize':15,'color':'blue'})
plt.show()
```

<Figure size 792x504 with 0 Axes>

With USA India's surplus trade has been highest

```
In [34]: ### Which are top 5 countries to which India imports more and export less?

plt.figure(figsize=[11,7])
  top5=df3.sort_values(by='trade_diff',ascending=True).head(5)
  top5.plot(kind='bar')
  ticks = np.arange(-400000, 500000, 100000)
  labels = ["{}B USD".format(i//1000) for i in ticks]
  plt.yticks(ticks, labels)
  plt.title('top trade deficit country(by value)',fontdict={'fontsize':20,'color':'gp plt.ylabel('Values in Billion USD',fontdict={'fontsize':15,'color':'blue'})
  plt.xlabel('Country',fontdict={'fontsize':15,'color':'blue'})
  plt.show()
```

<Figure size 792x504 with 0 Axes>

With China India's deficit trade has been highest

```
In [35]: ### Which countries are India's top 5 trade partner?

df3['total trade']=df3['export_val']+df3['import_val']
df3.head()
```

Out[35]: export_val import_val trade_diff NE/NI total trade

country

AFGHANISTAN TIS	4760.19	2686.62	2073.57	NE	7446.81
ALBANIA	196.51	524.18	-327.67	NI	720.69
ALGERIA	8232.24	10185.73	-1953.49	NI	18417.97
AMERI SAMOA	3.40	5.82	-2.42	NI	9.22
ANDORRA	6.28	5.45	0.83	NE	11.73

```
In [36]: plt.figure(figsize=[11,7])
    df3.sort_values(by='total trade',ascending=False).head(5).plot.bar()
    ticks = np.arange(-400000, 7000000, 1000000)
    labels = ["{}B USD".format(i//1000) for i in ticks]
    plt.yticks(ticks, labels)
    plt.title('India top 5 trade partner(by value)',fontdict={'fontsize':20,'color':'gr
    plt.ylabel('Values in Billion USD',fontdict={'fontsize':15,'color':'blue'})
    plt.xlabel('Country',fontdict={'fontsize':15,'color':'blue'})
    plt.show()
```

<Figure size 792x504 with 0 Axes>

China is India's top trading partner followed by USA

```
In [37]: c=df3.corr() c
```

	export_val	import_val	trade_diff	total trade
export_val	1.000000	0.662867	0.018169	0.872865
import_val	0.662867	1.000000	-0.736570	0.943948
trade_diff	0.018169	-0.736570	1.000000	-0.472022
total trade	0.872865	0.943948	-0.472022	1.000000

```
In [38]: plt.figure(figsize=[11,7])
    c=df3.corr()
    sns.heatmap(c,annot=True)
    plt.show()
```



```
In [39]: plt.figure(figsize=[11,7])
  plt.scatter(data=df3,x='total trade',y='import_val',marker='s',color='cyan',edgecolor:title('total trade vs import_val',fontdict={'fontsize':20,'color':'green'})
  plt.ylabel('Import Values ',fontdict={'fontsize':15,'color':'blue'})
  plt.xlabel('total trade',fontdict={'fontsize':15,'color':'blue'})
  plt.show()
```



```
In [40]: plt.figure(figsize=[11,7])
  plt.scatter(data=df3,x='total trade',y='export_val',marker='s',color='yellow',edge
  plt.title('total trade vs export_val',fontdict={'fontsize':20,'color':'green'})
  plt.ylabel('Export Values ',fontdict={'fontsize':15,'color':'blue'})
  plt.xlabel('total trade',fontdict={'fontsize':15,'color':'blue'})
  plt.show()
```



```
Out[41]: country
                           year
          AFGHANISTAN TIS
                           2010
                                 422.31
                           2011
                                   510.81
                                   472.55
                           2012
                            2013
                                   474.26
                            2014
                                   422.48
          Name: value, dtype: float64
In [42]: ### Import dataset grouped by country and year
          imp_grpby_yr=imp.groupby(by=['country','year'])['value'].sum()
          imp_grpby_yr.head()
          country
                           year
Out[42]:
          AFGHANISTAN TIS
                           2010
                                   146.01
                           2011
                                   132.49
                           2012
                                   159.53
                           2013
                                   208.76
                           2014
                                    261.92
          Name: value, dtype: float64
In [43]: ### Merge both dataset which grouped by country and year both
          merged_grp=pd.merge(exp_grpby_yr,imp_grpby_yr,on=['country','year'])
          merged_grp.head()
Out[43]:
                                 value_x value_y
                   country
                           year
                                  422.31
          AFGHANISTAN TIS
                           2010
                                         146.01
                           2011
                                  510.81
                                         132.49
                                  472.55
                                         159.53
                           2012
                           2013
                                  474.26
                                         208.76
                           2014
                                 422.48
                                         261.92
In [44]:
          ###Reseting index
          merged_grp.reset_index(inplace=True)
In [45]:
          ### raname column names
          merged_grp.rename(columns={'value_x':'val_exp','value_y':'val_imp'},inplace=True)
          merged_grp.head()
Out[45]:
                    country
                            year val_exp val_imp
          0 AFGHANISTAN TIS 2010
                                   422.31
                                           146.01
          1 AFGHANISTAN TIS
                            2011
                                   510.81
                                           132.49
          2 AFGHANISTAN TIS 2012
                                   472.55
                                           159.53
          3 AFGHANISTAN TIS 2013
                                   474.26
                                           208.76
          4 AFGHANISTAN TIS 2014
                                   422.48
                                           261.92
In [46]:
          ### Adding columnn net_val
          merged_grp['net_trade']=merged_grp['val_exp']-merged_grp['val_imp']
          merged_grp.head()
```

Out[46]:		country	year	val_exp	val_imp	net_trade
	0	AFGHANISTAN TIS	2010	422.31	146.01	276.30
	1	AFGHANISTAN TIS	2011	510.81	132.49	378.32
	2	AFGHANISTAN TIS	2012	472.55	159.53	313.02
	3	AFGHANISTAN TIS	2013	474.26	208.76	265.50
	4	AFGHANISTAN TIS	2014	422.48	261.92	160.56

Next, we will find export and import trend for india top 3 trade partner

```
In [47]: ###For CHINA
CHINA=merged_grp[merged_grp['country']=='CHINA P RP']
CHINA
```

```
        Out[47]:
        country
        year
        val_exp
        val_imp
        net_trade

        378
        CHINA P RP
        2010
        14168.65
        43479.39
        -29310.74

        379
        CHINA P RP
        2011
        18076.34
        55313.17
        -37236.83

        380
        CHINA P RP
        2012
        13534.66
        52247.97
        -38713.31

        381
        CHINA P RP
        2013
        14824.16
        51034.30
        -36210.14

        382
        CHINA P RP
        2014
        11934.07
        60412.84
        -48478.77

        383
        CHINA P RP
        2015
        9011.19
        61707.54
        -52696.35

        384
        CHINA P RP
        2016
        10171.66
        61282.66
        -51111.00

        385
        CHINA P RP
        2017
        13333.33
        76380.35
        -63047.02

        386
        CHINA P RP
        2018
        16751.94
        70319.29
        -53567.35
```

```
In [48]: ### LINEPLOT FOR INDIA'S TRADE WITH CHINA BETWEEN 2010-2018

plt.figure(figsize=[11,7])
# CHINA = merged_grp.query("COUNTRY == 'CHINA P RP'")
sns.lineplot(data=CHINA, x="year", y="val_exp",label='exp',marker='o',color='red',isns.lineplot(data=CHINA, x="year", y="val_imp",label='imp',marker='s',color='blue'
sns.lineplot(data=CHINA, x="year", y="net_trade",label='net_trade',marker='s',color
plt.title('INDIA trade with CHINA(2010-2018)',fontdict={'fontsize':20,'color':'greeplt.ylabel('Value in million USD')
plt.legend()
plt.show()
```


year

In [49]: ### Heatmap for India trade with CHINA
 plt.figure(figsize=[11,7])
 CHINA_corr=CHINA.corr()
 sns.heatmap(CHINA_corr,annot=True)
 plt.title('INDIA with CHINA',color='Blue')
 plt.show()


```
In [50]: ### For USA
USA=merged_grp[merged_grp['country']=='U S A']
USA
```

	country	year	val_exp	val_imp	net_trade
1913	USA	2010	25291.56	20050.41	5241.15
1914	USA	2011	34741.33	23454.64	11286.69
1915	USA	2012	36154.88	25204.39	10950.49
1916	USA	2013	39141.81	22504.79	16637.02
1917	USA	2014	42448.30	21814.27	20634.03
1918	USA	2015	40335.68	21781.06	18554.62
1919	USA	2016	42211.96	22307.18	19904.78
1920	USA	2017	47878.17	26610.72	21267.45
1921	USA	2018	52405.88	35549.20	16856.68

Out[50]:

```
plt.figure(figsize=[11,7])
sns.lineplot(data=USA, x="year", y="val_exp",label='exp',marker='o',color='red',lings sns.lineplot(data=USA, x="year", y="val_imp",label='imp',marker='s',color='blue',lings sns.lineplot(data=USA, x="year", y="net_trade",label='net_trade',marker='s',color='plt.title('INDIA trade with USA(2010-2018)',fontdict={'fontsize':20,'color':'green plt.ylabel('Value in million USD')
plt.legend()
plt.show()
```



```
In [52]: ### Heatmap for India trade with USA

plt.figure(figsize=[11,7])
USA_corr=USA.corr()
sns.heatmap(USA_corr,annot=True)
```

```
plt.title('INDIA with USA',color='Blue')
plt.show()
```


In [53]: ###For UAE

UAE=merged_grp[merged_grp['country']=='U ARAB EMTS']
UAE

```
country year
Out[53]:
                                     val exp
                                              val imp
                                                      net trade
                U ARAB EMTS 2010
          1895
                                    33822.08
                                             32753.02
                                                         1069.06
          1896
                 U ARAB EMTS 2011
                                    35925.23
                                             36756.16
                                                         -830.93
                 U ARAB EMTS 2012
                                    36316.29
                                             39138.21
                                                        -2821.92
          1898
                U ARAB EMTS 2013 30520.08
                                             29019.66
                                                         1500.42
          1899
                U ARAB EMTS 2014
                                    33027.73
                                             26139.73
                                                         6888.00
          1900
               U ARAB EMTS 2015
                                   30316.16
                                             19445.54
                                                        10870.62
          1901
                U ARAB EMTS 2016 31175.16 21509.69
                                                         9665.47
          1902 U ARAB EMTS 2017 28145.77 21738.98
                                                         6406.79
          1903 U ARAB EMTS 2018 30126.38 29785.09
                                                         341.29
```

```
In [54]: ### LINEPLOT FOR INDIA'S TRADE WITH UAE BETWEEN 2010-2018

plt.figure(figsize=[11,7])
sns.lineplot(data=UAE, x="year", y="val_exp",label='exp',marker='o',color='red',lings:lineplot(data=UAE, x="year", y="val_imp",label='imp',marker='s',color='blue',lings:lineplot(data=UAE, x="year", y="net_trade",label='net_trade',marker='s',color='plt.title('INDIA trade with UAE(2010-2018)',fontdict={'fontsize':20,'color':'green plt.ylabel('Value in million USD')
```

```
plt.legend()
plt.show()
```


In [55]: ### Heatmap for India trade with Uae

plt.figure(figsize=[11,7])
UAE_corr=USA.corr()
sns.heatmap(USA_corr,annot=True)
plt.title('INDIA with UAE',color='Blue')
plt.show()

These are the trade analysis of india top 3 trade partner(by value), we can do for all countries

```
d=merged_grp.groupby(by=['year','country'])['net_trade'].sum().sort_values(ascendia)
In [56]:
         d.reset_index()
         year country
Out[56]:
                            21267.45
         2017 USA
         2014 U S A
                            20634.03
         2016 U S A
                            19904.78
         2015 U S A
                           18554.62
         2018 U S A
                           16856.68
                              . . .
         2014 CHINA P RP -48478.77
         2016 CHINA P RP -51111.00
         2015 CHINA P RP -52696.35
         2018 CHINA P RP -53567.35
         2017 CHINA P RP -63047.02
         Name: net_trade, Length: 2055, dtype: float64
In [57]: plt.figure(figsize=[11,7])
         d=merged_grp.groupby(by=['year','country'])['net_trade'].sum().sort_values(ascendia)
         d.plot(kind='bar')
         plt.title('TOP 5 country with highest surplus trade ',fontdict={'fontsize':20,'colo
         plt.ylabel('Value in million USD')
         plt.xlabel('country and year')
         plt.show()
```


country and year

India's highest surplus trade in 2017 with USA

```
In [58]: plt.figure(figsize=[11,7])
d=merged_grp.groupby(by=['year','country'])['net_trade'].sum().sort_values(ascending d.plot(kind='bar')
```

```
plt.title('TOP 5 country with highest trade deficit ',fontdict={'fontsize':20,'co.
plt.ylabel('Value in million USD')
plt.xlabel('country and year')
plt.show()
```


India's highest deficit trade was in 2017 and with CHINA

IN 2017,FOR INDIA TRADE DEFICIT WAS HIGHEST(WITH CHINA) AND TRADE SURPLUS(WITH USA) AS WELL

```
In [59]: merged_grp['total trade']=merged_grp['val_imp']+merged_grp['val_exp']
    merged_grp
```

Out[59]:		country	year	val_exp	val_imp	net_trade	total trade
	0	AFGHANISTAN TIS	2010	422.31	146.01	276.30	568.32
	1	AFGHANISTAN TIS	2011	510.81	132.49	378.32	643.30
	2	AFGHANISTAN TIS	2012	472.55	159.53	313.02	632.08
	3	AFGHANISTAN TIS	2013	474.26	208.76	265.50	683.02
	4	AFGHANISTAN TIS	2014	422.48	261.92	160.56	684.40
	•••						
	2050	ZIMBABWE	2014	223.84	32.69	191.15	256.53
	2051	ZIMBABWE	2015	205.01	24.44	180.57	229.45
	2052	ZIMBABWE	2016	109.02	60.45	48.57	169.47
	2053	ZIMBABWE	2017	163.46	62.20	101.26	225.66
	2054	ZIMBABWE	2018	181.62	7.81	173.81	189.43

2055 rows × 6 columns

```
In [60]: d=merged_grp.groupby(by=['year','country'])['total trade'].sum()
Out[60]: year country
        2010 AFGHANISTAN TIS
                               568.32
              ALBANIA
                                 11.60
              ALGERIA
                              2598.11
              AMERI SAMOA
                                 0.35
              ANDORRA
                                  0.28
        2018 VIRGIN IS US
                                43.29
              WALLIS F IS
                                 0.00
              YEMEN REPUBLC
                               753.00
              ZAMBIA
                                829.40
              ZIMBABWE
                                189.43
        Name: total trade, Length: 2055, dtype: float64
 In [ ]:
 In [ ]:
```

Inferences 1: In 2018,India exported highest(in value) while in 2010 it was lowest

Inference 2:India's export is continously increasing after 2015

Inference 3: India exported highest(in value) to USA(2010-2018)

Inference 4:Mineral wax,mineral fuel and other mineral product commodity was exported highes during 2010-2018

Inference 5: In 2018 India imported highest while in 2010 it was lowest

Inference 6: In 2018,India exports and imports are highest

Inference 7: In 2010,India exports and imports are lowest

Inference 8 :In commodity, Mineral wax, mineral fuel and other mineral product was imported highest during 2010-2018

Inference 9: India has been net importer in any year

Inference 10: In 2016 trade gap was narrowest

Inference 11: In 2012 trade gap was widest

Inference 12: We can say that export_val and import_val are moderately positive correlated. Correlation coefficient = 0.66

Inference 13: With 59.5% countries India's trade have been surplus and with 40.5% countries India,s have been deficit

Inference 14: USA has been topmost surplus trade partner during()2010-2018

Inference 15: China has been topmost deficit trade partner for India during()2010-2018

Inference 16: China has been India's top trading partner between 2010-2018 followed by USA in terms of both exoprts and inports

Inference 17:India's highest surplus trade was in 2017 with USA

Inference 18:India's highest deficit trade was in 2017 with China