ACI 318-19 Method C Column Design

Slenderness Analysis and Moment Magnification

Ahmed Ghali, P.E. | Lead Structural Engineer Ghali Consultants | January 21, 2025

Project Overview

Parameter	Value
Project ID	GC-COL-2025
Column ID	C36 (297)
Design Code	ACI 318-19
Analysis Method	Method C (Moment Magnification)
Engineer	Ahmed Ghali, P.E.

Material Properties

Property	Value	Unit
Concrete Strength, f'c	11.0	MPa
Steel Yield Strength, fy	500	MPa
Concrete Modulus, Ec	15,588.1	MPa
Steel Modulus, Es	200,000	MPa

Column Geometry

Parameter	Value	Unit
Width (short), b	200	mm
Height (long), h	1000	mm
Unsupported Length, Lu	2900	mm
Effective Length, Le	2900	mm
Gross Area, Ag	200,000	mm²
Critical Ig (minor axis)	666,666,667	mm■
Steel Area, As	2412.7	mm²

Applied Forces

Force/Moment	Value	Unit
Factored Axial Load, Pu	1583.5	kN
End Moment 1, M1u	8.0383	kN⋅m
End Moment 2, M2u	10.9098	kN⋅m
Sustained Load, Psus	1583.5	kN
βdns Factor	1.00	
Cm Factor	0.3053	

■ Critical Buckling Direction Analysis

Direction	Inertia (mm■)	Applied Moment	Critical
Major Axis	16,666,666,667	M33 Range	No
Minor Axis	666,666,667	M22 Range	YES

Key Finding: Minor axis buckling governs due to smaller moment of inertia.

Slenderness Ratio: Le/b = 2900/200 = 14.5

Classification: SHORT (Limit = 22 for braced frames)

Method C Analysis - Effective Stiffness

Method 1: Conservative Approach (ACI 318-19 Eq. 6.6.4.4.4a)

(EI)eff = $0.4 \times \text{Ec} \times \text{Ig} / (1 + \beta \text{dns})$ = $0.4 \times 15,588.1 \times 666,666,667 / (1 + 1.00)$ = $51,960.5 \text{ kN} \cdot \text{m}^2$

Method 2: Refined Approach (ACI 318-19 Eq. 6.6.4.4.4c)

(EI)eff = Ec \times Ig \times Ifactor / (1 + β dns) = 15,588.1 \times 666,666,667 \times 0.70 / (1 + 1.00) = 90,930.8 kN·m² where Ifactor = 0.70 (conservative estimate per Table 6.6.3.1.1(b))

Critical Buckling Load & Moment Magnification

Critical Buckling Load (ACI 318-19 Eq. 6.6.4.4.2):

 $Pc = \pi^2 \times (EI)eff / (Le)^2$

Method	Pc (kN)	0.75Pc (kN)	Pu/0.75Pc	Status
--------	---------	-------------	-----------	--------

Method 1	15,695.0	11,771.25	0.1345	ок
Method 2	27,465.0	20,598.75	0.0769	ок

Moment Magnification Factor (ACI 318-19 Eq. 6.6.4.5.2):

 δ ns = Cm / (1 - Pu/0.75Pc) ≥ 1.0

Method	δ ns	Magnified Moment Mc (kN-m)
Method 1	1.00	10.91
Method 2	1.00	10.91

Column Cross-Section

Column C36 (297)

Dimensions: 200 mm × 1000 mm Reinforcement: $12 \times \emptyset 16$ mm Steel Ratio: $\rho = 1.21\%$

[Cross-section diagram - Critical buckling about 200mm direction (minor axis)]

Design Verification Summary

Requirement	Status	Reference
Slenderness Limits	ок	ACI 6.2.5
Method C Applicability	ок	ACI 6.6.4.4.2
Moment Magnification	ок	ACI 6.6.4.5.2
Strength Interaction	ок	ACI 22.4

Conclusion

The ACI 318-19 Method C analysis demonstrates that Column C36 (297) satisfies all applicable code requirements for slenderness and stability. The moment magnification approach provides adequate safety factors while maintaining structural efficiency.

Key Design Features:

- Critical buckling direction properly identified (minor axis)
- Method C applicability verified (Pu < 0.75Pc)
- Conservative and refined stiffness approaches compared
- Complete ACI 318-19 Section 6.6 compliance

Prepared By	Reviewed By

Ahmed Ghali, P.E.	
Professional Engineer	
Date: January 21, 2025	

Senior Engineer, P.E. Professional Engineer Date: ____

References

ACI Committee 318. (2019). *Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary*. American Concrete Institute, Farmington Hills, MI.

This calculation follows ACI 318-19 Method C requirements and professional engineering standards. All calculations and results are subject to independent review and verification per professional engineering protocols.