

	Preliminares	
1	Matrizes	9
1.1	Matrizes	9
1.1.1	Tipos de Matrizes	12
1.1.2	Operações com Matrizes	
1.1.3	Matrizes Simétricas, Anti-Simétricas e Ortogonais	21
1.1.4	Matrizes Hermitianas, Anti-Hermitianas e Unitárias	
1.1.5	Operações Elementares sobre as Linhas de uma Matriz	29
1.2	Determinante de uma Matriz Quadrada	31
1.2.1	Definição de Determinante	32
1.2.2	Propriedades de Determinantes	36
1.3	Inversa de uma Matriz	48
1.3.1	Matriz Adjunta e a Inversa	49
1.3.2	Propriedades da Matriz Inversa	52
1.4	Matriz na Forma Escalonada e na Forma Escada	54
1.4.1	Matriz Linha Equivalente	54
1.4.2	Matriz na Forma Escalonada	55
1.4.3	Matriz na Forma Escalonada Reduzida ou na Forma Escada	56
1.4.4	Matriz Inversa através de Operações Elementares	56
2	Sistemas Lineares	59
2.1	Sistemas de Equações Lineares	59
2.1.1	Sistemas de Equações Lineares	59
2.1.2	Solução de um Sistema Linear	
2.1.3	Classificação de Sistemas de Equações Lineares	
211	Sistema Linear Homogânea	62

2.1.5	Sistemas Equivalentes	
2.1.6	Operações Elementares sobre as Equações de um Sistema Linear	
2.2	Resolução de Sistemas Lineares	64
2.2.1	Posto e Nulidade de uma Matriz	
2.2.2		
2.3	Métodos de Resolução de Sistemas Lineares	68
2.3.1	Método de Resolução de Gauss-Jordan	
2.3.2 2.3.3	Método de Resolução de Gauss ou do Escalonamento	
2.3.4	Método de Resolução da Regra de Cramer	
2.0.4	Weibab de Resolução da Regia de Clamer	12
Ш	Espaços Vetoriais	
2	Farance Materials	
3	Espaços Vetoriais	//
3.1	Espaços Vetoriais	77
3.1.1	Exemplos de Espaços Vetoriais	
3.1.2	Propriedades de Espaços Vetoriais	83
3.2	Subespaços Vetoriais	84
3.3	Soma, Soma Direta e Intersecção de Subespaços	92
4	Base e Dimensão de Espaços Vetoriais	97
4.1	Combinação Linear e Subespaço Gerado	97
4.2	Dependência e Independência Linear	101
4.2.1	Propriedades de Dependência e Independência Linear	102
4.3		104
4.3.1	Base de um Espaço Vetorial Finitamente Gerado	104
4.3.2	Base Canônica	
4.3.3	Dimensão de um Espaço Vetorial Finitamente Gerado	107
4.3.4	Procedimento para o Completamento de uma Base	113
4.4	Coordenadas de um Vetor	117
4.5	Matriz Mudança de Base	20
5	Espaços Vetoriais com Produto Interno	23
5.1	Produto Interno em Espaços Vetoriais Reais	23
5.1.1	Propriedade do Produto Interno em $\mathbb R$	
5.1.2	Exemplo de Espaços Vetoriais Reais com Produto Interno	
5.1.3	Desigualdade de Cauchy-Schwarz	
5.2	Produto Interno em Espaços Vetoriais Complexos	127
5.3	Bases Ortogonais e Bases ortonormais	28
5.3.1	Vetores Ortogonais	128
5.3.2	Base Ortogonal	129
5.3.3	Norma de um Vetor	
5.3.4	Propriedades da Norma	
5.3.5	Base Ortonormal	133

5.4	Processo de Ortogonalização de Gram-Schmidt	136
5.5	Complemento Ortogonal	139
Ш	Transformações Lineares	
6	Transformações Lineares	145
6.1	Transformações Lineares	145
6.1.1	Propriedades de Transformações Lineares	. 149
6.2	Matriz de uma Transformação Linear	150
6.3	Núcleo e Imagem de uma Transformação Linear	154
6.3.1	Teorema do Núcleo e da Imagem	. 158
6.4	Transformações Lineares Injetoras e Sobrejetoras	163
6.5	Inversa de uma Transformação Linear	164
6.5.1	Isomorfismo e Automorfismo	. 166
7	Diagonalização de Operadores Lineares	173
7.1	Autovalor e Autovetor de um Operador Linear	173
7.1.1	Autoespaço associado a um Autovalor	. 175
7.2	Polinômio Característico de um Operador Linear	178
7.2.1	Polinômio Característico de uma Matriz	. 178
7.3	Diagonalização de Operadores Lineares	196
7.4	Operadores Auto-Adjuntos	203
	Bibliografia	207

Preliminares

1	Matrizes	9
1.1	Matrizes	
1.2	Determinante de uma Matriz Quadrada	
1.3	Inversa de uma Matriz	
1.4	Matriz na Forma Escalonada e na Forma Escada	
2	Sistemas Lineares	59
2.1	Sistemas de Equações Lineares	
2.2	Resolução de Sistemas Lineares	
2.3	Métodos de Resolução de Sistemas Lineares	

Definição 1.1.1 Uma **matriz** é uma tabela de elementos dispostos em linhas e colunas, em geral esses elementos são entes matemáticos, tais como: números, funções, etc.

Representamos uma matriz de m linhas e n colunas, denotada por A ou por $A_{m \times n}$, da seguinte maneira:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \text{ou} \quad A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Observações 1.1.1 (a) Cada elemento de uma matriz A é também chamado uma **entrada** de A.

- (b) O elemento $a_{ij} \in A$ está localizado na *i*-ésima linha e na *j*-ésima coluna de A, por exemplo a_{32} é o elemento da terceira linha e da segunda coluna.
- (c) Além da notação acima também utilizamos:

$$A = [a_{ij}]_{m \times n}$$
 ou $A = (a_{ij})_{m \times n}$ ou $A = (a_{ij}),$ com $1 \le i \le m$ e $1 \le j \le n$.

A tabela abaixo representa as distâncias entre as capitais do norte do pais indicadas (em quilômetros):

	Belém	Boa Vista	Macapá	Manaus	Porto Velho	Rio Branco
Belém	0	1432	329	1292	1886	2333
Boa Vista	1432	0	1110	661	1335	1626
Macapá	329	1110	0	1054	1724	2159 ·
Manaus	1292	661	1054	0	761	1149
Porto Velho	1886	1335	1724	761	0	449
Rio Branco	2333	1626	2159	1149	449	0

Em forma de matriz essas distâncias podem ser representadas por:

$$\begin{bmatrix} 0 & 1432 & 329 & 1292 & 1886 & 2333 \\ 1432 & 0 & 1110 & 661 & 1335 & 1626 \\ 329 & 1110 & 0 & 1054 & 1724 & 2159 \\ 1292 & 661 & 1054 & 0 & 761 & 1149 \\ 1886 & 1335 & 1724 & 761 & 0 & 449 \\ 2333 & 1626 & 2159 & 1149 & 449 & 0 \end{bmatrix}.$$

Ordem de uma Matriz

Definição 1.1.2 Uma matriz A de m linhas e n colunas é chamada matriz de **ordem** m por n e indicada por $m \times n$.

Exemplos 1.1.2 (a) $A = \begin{bmatrix} 5 \end{bmatrix}$ é uma matriz de ordem 1×1 .

(b)
$$A = \begin{bmatrix} -1 & 0 & 3 & \frac{1}{3} \\ 4 & -7 & 1 & 2 \\ 5 & 6 & -3 & 0 \end{bmatrix}$$
 é uma matriz de ordem 3×4 .

(c)
$$A = \begin{bmatrix} 0 & 2 & -5 \\ -3 & 7 & 5 \end{bmatrix}$$
 é uma matriz de ordem 2×3 .

(d)
$$A = \begin{bmatrix} 1 & -1 \\ 3 & 7 \\ 0 & 2 \\ -4 & -3 \end{bmatrix}$$
 é uma matriz de ordem 4×2 .

(a) O conjunto de todas matrizes de ordem $m \times n$ com entradas números reais Observações 1.1.3 é denotado por $M_{m \times n}(\mathbb{R})$, ou seja,

$$M_{m\times n}(\mathbb{R}) = \{A = [a_{ij}]_{m\times n}; \ a_{ij} \in \mathbb{R} \text{ para todo } i \text{ e todo } j\}.$$

(b) Analogamente, o conjunto de todas matrizes de ordem $m \times n$ com entradas números complexos é dado por

$$M_{m\times n}(\mathbb{C}) = \{A = [a_{ij}]_{m\times n}; \ a_{ij} \in \mathbb{C} \text{ para todo } i \text{ e todo } j\}.$$

Matriz Quadrada

Definição 1.1.3 Uma matriz A com n linhas e n colunas é chamada **matriz quadrada** de ordem n.

Observação 1.1.4 Uma matriz A é quadrada se, e somente se, o número de linhas de A é igual ao número de colunas de A.

Exemplos 1.1.5 (a)
$$A = \begin{bmatrix} 3 & 5 \\ -1 & 8 \end{bmatrix}$$
 é uma matriz quadrada de ordem 2. (b) $A = \begin{bmatrix} 0 & -2 & 5 \\ \frac{1}{2} & 1 & -4 \\ 10 & -9 & 7 \end{bmatrix}$ é uma matriz quadrada de ordem 3.

(c)
$$A = \begin{bmatrix} 2 & 1 & -1 & 1 \\ -3 & 3 & 1 & -1 \\ 0 & 1 & 4 & 0 \\ 1 & -1 & 2 & 3 \end{bmatrix}$$
 é uma matriz quadrada de ordem 4.

Observações 1.1.6 (a) O conjunto de todas matrizes quadradas de ordem com entradas números reais é denotado por $M_n(\mathbb{R})$.

Assim,
$$M_n(\mathbb{R}) = \left\{ A = [a_{ij}]_{n \times n}; \ a_{ij} \in \mathbb{R} \text{ com } 1 \leq i, \ j \leq n \right\}.$$

(b) Analogamente, $M_n(\mathbb{C}) = \{ A = [a_{ij}]_{n \times n}; \ a_{ij} \in \mathbb{C} \text{ com } 1 \leq i, \ j \leq n \}.$

Matriz Linha e Matriz Coluna

Definição 1.1.4 Uma matriz que tem uma única linha é chamada **matriz linha**, enquanto que uma matriz que tem uma única coluna é chamada **matriz coluna**.

Exemplos 1.1.7 (a) $A = \begin{bmatrix} 6 & -5 & 11 & 4 & 3 \end{bmatrix}$ e $B = \begin{bmatrix} -3 & 5 & -1 & 8 & 9 \end{bmatrix}$ são matrizes linha.

(b)
$$A = \begin{bmatrix} 5 \\ -1 \\ 8 \\ -4 \end{bmatrix}$$
 e $B = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ são matrizes coluna.

Matriz Definida por uma Fórmula

Uma matriz pode ser definida em termos de uma fórmula envolvendo seus índices, para se obter uma matriz dessa forma é necessário que seja informada sua ordem.

Exemplos 1.1.8 (a) Determine a matriz $A = [a_{ij}]$ quadrada de ordem 4 tal que

$$a_{ij} = \begin{cases} 0, & \text{se} \quad i \neq j \\ 1, & \text{se} \quad i = j. \end{cases}$$

Neste caso, temos:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(b) A matriz A de ordem 3×4 dada pela fórmula

$$a_{ij} = \begin{cases} 3i - j^2, & \text{se} \quad i > j - 1\\ i + 3j, & \text{se} \quad i \le j - 1 \end{cases}$$

é a matriz:

$$A = \left[\begin{array}{rrrr} 2 & 7 & 10 & 13 \\ 5 & 2 & 11 & 14 \\ 8 & 5 & 0 & 15 \end{array} \right].$$

Igualdade de Matrizes

Duas matrizes $A = [a_{ij}]$ e $B = [b_{ij}]$ são **iguais** se, e somente se,

- (i) A e B têm a mesma ordem.
- (ii) $a_{ij} = b_{ij}$ para todo i e para todo j.

Exemplo 1.1.9 Sejam as matrizes $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & 7 \end{bmatrix}$ e $B = \begin{bmatrix} a & -1 & b \\ a+b & b^2 & 7 \end{bmatrix}$, ambas de ordem 2×3 .

As matrizes A e B são iguais se, e somente se, $\begin{cases} a = 1 \\ b = 2 \\ a+b = 3 \\ b^2 = 4 \end{cases} \iff \begin{cases} a=1 \\ b=2 \end{cases}.$

1.1.1 Tipos de Matrizes

Matriz Nula

Definição 1.1.5 Uma matriz nula é uma matriz em que todas as entradas é o número zero. A matriz nula de ordem $m \times n$ é indicada por $0_{m \times n}$.

Exemplo 1.1.10 A matriz nula de ordem 4×2 é a seguinte: $0_{4 \times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Dentre as matrizes quadradas temos alguns tipos especiais que descreveremos a continuação. Antes porém vamos definir diagonal principal e diagonal secundária de uma matriz quadrada.

Definição 1.1.6 Seja A uma matriz quadrada de ordem n,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1(n-1)} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2(n-1)} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{(n-1)1} & a_{(n-1)2} & \cdots & a_{(n-1)(n-1)} & a_{(n-1)n} \\ a_{n1} & a_{n2} & \cdots & a_{n(n-1)} & a_{nn} \end{bmatrix},$$

os elementos a_{ij} com i = j constituem a **diagonal principal** de A. Enquanto que os elementos a_{ij} com i + j = n + 1 constituem a **diagonal secundária** de A.

Observação 1.1.11 Pela definição acima a diagonal principal de uma matriz quadrada A é constituída pelos elementos

$$a_{11}, a_{22}, \cdots, a_{nn},$$

e a diagonal secundária de A é constituída pelos elementos

$$a_{1n}, a_{2(n-1)}, \cdots, a_{(n-1)2}, a_{n1}.$$

Na matriz A a seguir:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1(n-1)} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2(n-1)} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{(n-1)1} & a_{(n-1)2} & \cdots & a_{(n-1)(n-1)} & a_{(n-1)n} \\ a_{n1} & a_{n2} & \cdots & a_{n(n-1)} & a_{nn} \end{bmatrix}$$

os elementos em azul constituem a diagonal principal, enquanto que os em vermelho constituem a diagonal secundária.

Matriz Diagonal

Definição 1.1.7 Uma matriz $A = [a_{ij}]$ quadrada de ordem n é chamada **matriz diagonal** se, e somente se, os elementos $a_{ij} = 0$ sempre que $i \neq j$, ou seja,

$$A = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}.$$

Observação 1.1.12 Uma matriz quadrada A é diagonal se, e somente se, os elementos externos à diagonal principal são todos iguais a zero.

Exemplo 1.1.13
$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$
 é uma matriz diagonal.

Matriz Escalar

Definição 1.1.8 Uma matriz diagonal de ordem n é chamada **matriz escalar** se, e somente se, os elementos da diagonal principal são todos iguais.

Exemplo 1.1.14 As matrizes abaixo são matrizes escalares:

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} \quad \text{e} \quad C = \begin{bmatrix} 7 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 7 \end{bmatrix}.$$

Matriz Identidade

Definição 1.1.9 A **matriz identidade** de ordem n, indicada por I_n , é a matriz diagonal de ordem n em que os elementos da diagonal principal são todos iguais a 1.

Exemplos 1.1.15 (a)
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 é uma matriz identidade de ordem 2.

(b)
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 é uma matriz identidade de ordem 3.

(c)
$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 é uma matriz identidade de ordem 4.

Matriz Triangular Superior

Definição 1.1.10 Uma matriz $A = [a_{ij}]$ quadrada de ordem n é chamada **matriz triangular superior** se, e somente se, $a_{ij} = 0$ sempre que para i > j, ou seja,

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}.$$

Observação 1.1.16 Uma matriz quadrada A é triangular superior se, e somente se, os elementos abaixo da diagonal principal são todos iguais a zero.

Exemplo 1.1.17
$$A = \begin{bmatrix} 1 & -5 & 0 & 7 \\ 0 & 4 & 2 & -1 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$
 é uma matriz triangular superior.

Matriz Triangular Inferior

Definição 1.1.11 Uma matriz $A = [a_{ij}]$ quadrada de ordem n é chamada **matriz triangular inferior** se, e somente se, $a_{ij} = 0$ sempre que para i < j, ou seja,

$$A = \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}.$$

Observação 1.1.18 Uma matriz quadrada A é triangular inferior se, e somente se, os elementos acima da diagonal principal são todos iguais a zero.

Exemplo 1.1.19
$$A = \begin{bmatrix} 8 & 0 & 0 \\ -1 & 3 & 0 \\ 5 & -2 & 1 \end{bmatrix}$$
 é uma matriz triangular inferior.

1.1.2 Operações com Matrizes

No que segue consideraremos $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

Adição de Matrizes

Definição 1.1.12 Sejam A e B matrizes em $M_{m \times n}(\mathbb{K})$, a **soma** de A e B, denotada por A + B, é a matriz em $M_{m \times n}(\mathbb{K})$ cujos elementos são as somas dos elementos correspondentes de A e B, ou seja, se

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix},$$

então

$$A+B=\left[\begin{array}{cccc} a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1n}+b_{1n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2n}+b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nm1}+b_{m1} & a_{m2}+b_{m2} & \cdots & a_{mn}+b_{mn} \end{array}\right].$$

Exemplo 1.1.20 Sejam
$$A = \begin{bmatrix} -3 & 8 & 5 & 2 \\ 4 & -5 & 9 & -7 \end{bmatrix}_{2\times 4}$$
 e $B = \begin{bmatrix} 1 & -3 & 11 & -8 \\ 2 & 9 & -1 & 7 \end{bmatrix}_{2\times 4}$, então

$$A+B = \begin{bmatrix} -3+1 & 8+(-3) & 5+11 & 2+(-8) \\ 4+2 & -5+9 & 9+(-1) & -7+7 \end{bmatrix} = \begin{bmatrix} -2 & 5 & 16 & -6 \\ 6 & 4 & 8 & 0 \end{bmatrix}.$$

Propriedades da Adição

Sejam A, B e C matrizes em $M_{m \times n}(\mathbb{K})$ e $0_{m \times n}$ a matriz nula de ordem $m \times n$, valem:

- A_1) A+B=B+A, propriedade comutativa.
- A_2) (A+B)+C=A+(B+C), propriedade associativa.
- A_3) $A + O_{m \times n} = A$, propriedade existência de elemento neutro.

Essas propriedades seguem diretamente da propriedades da adição de números e da igualdade de matrizes.

Multiplicação de uma Matriz por um Escalar

Definição 1.1.13 Sejam A uma matriz em $M_{m \times n}(\mathbb{K})$ e κ um número em \mathbb{K} , a **multiplicação** de A **pelo escalar** κ , denotado por $\kappa \cdot A$, é a matriz em $M_{m \times n}(\mathbb{K})$ cujos elementos são os produtos de κ pelos elementos correspondentes de A, ou seja, se

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \text{então} \quad \kappa \cdot A = \begin{bmatrix} \kappa \cdot a_{11} & \kappa \cdot a_{12} & \cdots & \kappa \cdot a_{1n} \\ \kappa \cdot a_{21} & \kappa \cdot a_{22} & \cdots & \kappa \cdot a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \kappa \cdot a_{m1} & \kappa \cdot a_{m2} & \cdots & \kappa \cdot a_{mn} \end{bmatrix}.$$

Exemplo 1.1.21 Sejam
$$A = \begin{bmatrix} 5 & 8 & -4 \\ 0 & -7 & 10 \\ -6 & 3 & 2 \\ 9 & 5 & 4 \end{bmatrix}_{4\times3}$$
 e $\kappa = 4$, então

$$\kappa \cdot A = 4A = \begin{bmatrix} 4 \times 5 & 4 \times 8 & 4 \times (-4) \\ 4 \times 0 & 4 \times (-7) & 4 \times 10 \\ 4 \times (-6) & 4 \times 3 & 4 \times 2 \\ 4 \times 9 & 4 \times 5 & 4 \times 4 \end{bmatrix} = \begin{bmatrix} 20 & 32 & -16 \\ 0 & -28 & 40 \\ -24 & 12 & 8 \\ 36 & 20 & 16 \end{bmatrix}.$$

Propriedades da Multiplicação por Escalar

Sejam A e B matrizes em $M_{m \times n}(\mathbb{K})$ e κ e λ números em \mathbb{K} , valem:

$$ME_1$$
) $\kappa \cdot (A+B) = \kappa \cdot A + \kappa \cdot B$.

$$ME_2$$
) $(\kappa + \lambda) \cdot A = \kappa \cdot A + \lambda \cdot A$.

$$ME_3$$
) $\underbrace{0}_{\text{número}} A = O_{m \times n}$.

$$ME_4$$
) $1 \cdot A = A$.

$$ME_5$$
) $(\kappa \cdot \lambda) \cdot A = \kappa \cdot (\lambda \cdot A)$.

Essas propriedades seguem diretamente da propriedades da multiplicação em \mathbb{K} e da igualdade de matrizes.

Observação 1.1.22 Dada uma matriz A em $M_{m \times n}(\mathbb{K})$, a matriz $-1 \cdot A$, indicada por -A é chamada **matriz oposta** de A, logo

$$-A = [c_{ij}]_{m \times n}$$
, tal que $c_{ij} = -a_{ij}$.

A matriz -A é o elemento **simétrico** de A em **relação à operação adição**.

De fato,

$$A + (-A) = [b_{ij}]_{m \times n}, \quad \text{com} \quad b_{ij} = a_{ij} + (-a_{ij}) = 0.$$

Portanto, $A + (-A) = 0_{m \times n}$ é a matriz nula de ordem $m \times n$.

Multiplicação de Matrizes

Definição 1.1.14 Sejam $A = [a_{ij}]$ e $B = [b_{ij}]$ matrizes em $M_{m \times k}(\mathbb{K})$ e em $M_{k \times n}(\mathbb{K})$, respectivamente, a **multiplicação** de A por B, denotada por $A \cdot B$, é a matriz em $M_{m \times n}(\mathbb{K})$:

$$A \cdot B = [c_{ij}],$$
 cujos elementos são da forma $c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj} = \sum_{p=1}^{k} a_{ip}b_{pj}.$

Observações 1.1.23 (a) De acordo com a definição acima temos, por exemplo:

$$c_{11} = a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1k}b_{k1}$$
 e $c_{12} = a_{11}b_{12} + a_{12}b_{22} + \dots + a_{1k}b_{k2}$.

(b) A equação que define os elementos de $A \cdot B$ nos diz que o elemento c_{ij} desta matriz, localizado na i-ésima linha e j-ésima coluna, é obtido através da soma de todos os produtos de cada elemento da i-ésima linha de A pelo elemento correspondente da j-ésima coluna de B, ou seja, se

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ik} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mk} \end{bmatrix} \quad e \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{kj} & \cdots & b_{kn} \end{bmatrix}_{k \times n},$$

então

$$i\text{-\'esima coluna} \qquad \qquad \downarrow \qquad \qquad$$

com
$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ik}b_{kj} = \sum_{p=1}^{k} a_{ip}b_{pj}$$
.

Exemplo 1.1.24 Sejam as matrizes
$$A = \begin{bmatrix} -1 & 7 & -5 \\ 2 & -3 & 8 \\ 5 & 1 & 3 \\ 0 & 2 & 9 \end{bmatrix}_{4\times3}$$
 e $B = \begin{bmatrix} 3 & 6 \\ -5 & 4 \\ 1 & 2 \end{bmatrix}_{3\times2}$, então o

produto de A por B é a matriz

$$A \cdot B = \begin{bmatrix} (-1) \times 3 + 7 \times (-5) + (-5) \times 1 & (-1) \times 6 + 7 \times 4 + (-5) \times 2 \\ 2 \times 3 + (-3) \times (-5) + 8 \times 1 & 2 \times 6 + (-3) \times 4 + 8 \times 2 \\ 5 \times 3 + 1 \times (-5) + 3 \times 1 & 5 \times 6 + 1 \times 4 + 3 \times 2 \\ 0 \times 3 + 2 \times (-5) + 9 \times 1 & 0 \times 6 + 2 \times 4 + 9 \times 2 \end{bmatrix} = \begin{bmatrix} -43 & 12 \\ 29 & 16 \\ 13 & 40 \\ -1 & 26 \end{bmatrix}_{4 \times 2}$$

Observação 1.1.25 Sejam A e B matrizes, o produto $A \cdot B$ está definido apenas quando o número de colunas A é igual ao número de linhas de B.

Logo, se $A \cdot B$ está definida nem sempre ocorrerá o mesmo para $B \cdot A$, e mesmo quando $A \cdot B$ e $B \cdot A$ estiverem definidas podemos ter $A \cdot B \neq B \cdot A$.

Exemplos 1.1.26 (a) Sejam
$$A = \begin{bmatrix} -1 & 5 & 2 \\ 7 & 0 & 4 \end{bmatrix}_{2 \times 3}$$
 e $B = \begin{bmatrix} 1 \\ -3 \\ 6 \end{bmatrix}_{3 \times 1}$, então $A \cdot B = \begin{bmatrix} -4 \\ 31 \end{bmatrix}_{2 \times 1}$,

note que não está definida $B \cdot A$, pois:

número de colunas de $B = 1 \neq$ número de linhas de A = 2.

(b) Sejam
$$A = \begin{bmatrix} 3 & 0 & 1 \\ -2 & 4 & 7 \end{bmatrix}_{2\times 3}$$
 e $B = \begin{bmatrix} 4 & -1 \\ 5 & 2 \\ -6 & 3 \end{bmatrix}_{3\times 2}$, então $A \cdot B = \begin{bmatrix} 6 & 0 \\ -30 & 31 \end{bmatrix}_{2\times 2}$.

No entanto, $B \cdot A = \begin{bmatrix} 14 & -4 & -3 \\ 11 & 8 & 19 \\ -24 & 12 & 15 \end{bmatrix}_{3 \times 3}$, ou seja, $A \cdot B \in B \cdot A$ têm ordens diferentes, logo são diferentes.

(c) Sejam
$$A = \begin{bmatrix} 4 & 0 \\ 6 & -3 \end{bmatrix}_{2 \times 2}$$
 e $B = \begin{bmatrix} 5 & 7 \\ 3 & -4 \end{bmatrix}_{2 \times 2}$, então

$$A \cdot B = \begin{bmatrix} 20 & 28 \\ 21 & 54 \end{bmatrix}_{2 \times 2} \quad \text{e} \quad B \cdot A = \begin{bmatrix} 62 & -2 \\ -12 & 12 \end{bmatrix}_{2 \times 2},$$

neste caso $A \cdot B$ e $B \cdot A$ têm a mesma ordem, mas são diferentes.

Propriedades da Multiplicação

- M_1) Se A é uma matriz em $M_{m \times n}(\mathbb{K})$, então:
 - (a) $A \cdot I_n = I_m \cdot A = A$.
 - (b) $A \cdot 0_{n \times l} = 0_{m \times l}$ e $0_{l \times m} \cdot A = 0_{l \times n}$
- M_2) Sejam $A \in M_{m \times p}(\mathbb{K})$, $B \in M_{p \times k}(\mathbb{K})$ e $C \in M_{k \times n}(\mathbb{K})$ matrizes, então:

$$(A_{m \times p} \cdot B_{p \times k})_{m \times k} \cdot C_{k \times n} = A_{m \times p} \cdot (B_{p \times k} \cdot C_{k \times n})_{p \times n}$$
 propriedade associativa.

 M_3) (a) Sejam A em $M_{m \times k}(\mathbb{K})$, B e C em $M_{k \times n}(\mathbb{K})$, então:

$$A \cdot (B+C) = A \cdot B + A \cdot C.$$

(b) Sejam *A* e $B_{m \times k}$ em $M_{m \times k}(\mathbb{K})$ e C em $M_{k \times n}(\mathbb{K})$, temos:

$$(A+B)\cdot C = A\cdot C + B\cdot C$$
 propriedade distributiva.

 M_4) Sejam A em $M_{m \times kn}(\mathbb{K})$ e B em $M_{k \times n}(\mathbb{K})$ e κ um número em \mathbb{K} , então:

$$\kappa \cdot (A \cdot B) = (\kappa \cdot A) \cdot B = A \cdot (\kappa \cdot B).$$

Essas propriedades seguem diretamente da propriedades da multiplicação de números e da igualdade de matrizes.

Observações 1.1.27 (a) Dada uma matriz quadrada A em $M_n(\mathbb{K})$ a k-ésima potência de A, com $k \in \mathbb{N}^*$, denotada por A^k , é o produto de A por A k-vezes, ou seja

$$A^k = \underbrace{A \cdot A \cdot \cdots \cdot A}_{k \text{ vezes}}.$$

(b) Se E é uma matriz escalar e A matriz quadrada, ambos em $M_n(\mathbb{K})$, então

$$E \cdot A = A \cdot E$$
.

De fato, seja E a matriz escalar em $M_n(\mathbb{K})$ cujos elementos da diagonal principal são todos iguais a $d \in \mathbb{K}$ e $A = [a_{ij}]$, então

$$E \cdot A = [b_{ij}], \text{ com } b_{ij} = d \times a_{ij} \text{ e } = A \cdot E = [c_{ij}], \text{ com } c_{ij} = a_{ij} \times d.$$

Transposta de uma Matriz

Definição 1.1.15 A **transposta** de uma matriz $A = [a_{ij}]$ em $M_{m \times n}(\mathbb{K})$, denotada por A^T , é a matriz cujas respectivas linhas são as respectivas colunas de A, ou seja,

$$A^T = [b_{ij}]$$
 tal que $b_{ij} = a_{ji}$.

É claro que a ordem de A^T é $n \times m$.

ou seja, o elemento ij de A^T é o elemento ji de A.

Propriedades da Transposta

Segue diretamente da definição de transposta que se A e B são matrizes em $M_{m \times k}(\mathbb{K})$, C é uma matriz em $M_{k \times n}(\mathbb{K})$ e κ um número em \mathbb{K} , então valem as seguintes propriedades:

$$T_1$$
) $(A^T)^T = A$.

$$(A + B)^T = A^T + B^T$$
.

$$T_3$$
) $(\kappa \cdot A)^T = \kappa \cdot A^T$.

$$T_4) \left(\left(A_{m \times k} \cdot C_{k \times n} \right)^T \right)_{n \times m} = \left((C^T)_{n \times k} \cdot (A^T)_{k \times m} \right)_{n \times m}.$$

Verificação:

- T_1) Para quaisquer i e j, o elemento ij da matriz $(A^T)^T$ é o elemento ji de A^T , e este por sua vez é o elemento ij da matriz A, consequentemente, $(A^T)^T = A$.
- T_2) Para quaisquer i e j, o elemento ij da matriz $(A+B)^T$ é o elemento $a_{ji}+b_{ji}$, mas a_{ji} é o elemento ij da matriz A^T e b_{ji} é o elemento ij da matriz B^T , consequentemente, $a_{ji}+b_{ji}$ é o elemento ij de A^T+B^T .

Portanto, $(A+B)^T = A^T + B^T$.

- T_3) Demonstração análoga à de T_2).
- T_4) Observemos que $(A \cdot C)^T = [e_{ij}]_{n \times m}$ com $e_{ij} = d_{ji}$, o elemento ij da $A \cdot C$, ou seja,

$$e_{ij} = a_{j1}c_{1i} + a_{j2}c_{2i} + \cdots + a_{jk}c_{ki},$$

com $1 \le i \le n$ e $1 \le j \le m$.

Por outro lado,

$$C^{T} \cdot A^{T} = \begin{bmatrix} c_{11} & c_{21} & \cdots & c_{k1} \\ c_{12} & c_{22} & \cdots & c_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & n_{kn} \end{bmatrix}_{n \times k} \cdot \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1k} & a_{2k} & \cdots & a_{mk} \end{bmatrix}_{k \times m} = [f_{ij}]_{n \times m}$$

com

$$f_{ij} = c_{1i}a_{j1} + c_{2i}a_{j2} + \dots + c_{ki}a_{jk},$$

para $1 \le i \le n$ e $1 \le j \le m$.

Logo, $e_{ij} = f_{ij}$, para todo i e todo j, consequentemente, $(A \cdot C)^T = C^T \cdot A^T$.

Traço de uma Matriz

Definição 1.1.16 Seja A uma matriz quadrada em $M_n(\mathbb{K})$ o **traço** de A, denotado por tr(A), é o número dado pela soma dos elementos da diagonal principal de A.

Assim, se $A = [a_{ij}]_{n \times n}$, então

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$$
.

Propriedades do Traço

Segue diretamente da definição de traço de uma matriz quadrada, que dadas A e B matrizes quadradas em $M_n(\mathbb{K})$ e κ um número em \mathbb{K} valem:

$$TR_1$$
) $tr(A) = tr(A^T)$.

$$TR_2$$
) $tr(A+B) = tr(A) + tr(B)$.

$$TR_3$$
) $tr(\kappa \cdot A) = \kappa \cdot tr(A)$.

$$TR_4$$
) $tr(A \cdot B) = tr(A \cdot B)$.

Verificação:

- TR_1) Uma matriz quadrada e sua transposta têm a mesma diagonal principal, portanto $tr(A) = tr(A^T)$.
- TR_2) A diagonal principal da soma de duas matrizes quadradas é a soma das diagonais principais de cada uma das matrizes, logo tr(A+B) = tr(A) + tr(B).
- TR_3) A diagonal principal da matriz $\kappa \cdot A$ é a soma dos elementos da diagonal principal de A previamente multiplicados por κ , assim $tr(\kappa \cdot A) = \kappa \cdot tr(A)$.

$$TR_4$$
) Sejam $A = [a_{ij}] \in M_{m \times n}(\mathbb{K})$ e $B = [b_{ij}] \in M_{n \times m}(\mathbb{K})$, então:

$$A \cdot B = [c_{ij}] \in M_m(\mathbb{K}), \quad \text{com} \quad c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}, \quad \text{para} \quad 1 \leq i, j \leq m;$$

$$B \cdot A = [d_{ij}] \in M_n(\mathbb{K}), \quad \text{com} \quad d_{ij} = \sum_{k=1}^m b_{ik} a_{kj}, \quad \text{para} \quad 1 \leq i, \ j \leq n.$$

Logo,

$$tr(A \cdot B) = c_{11} + c_{22} + \dots + c_{mm}$$

$$= a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1} + a_{21}b_{12} + a_{22}b_{22} + \dots + a_{2n}b_{n2} + \dots + a_{m1}b_{1m} + a_{m2}b_{2m} + \dots + a_{mn}b_{nm}$$

$$= b_{11}a_{11} + b_{12}a_{21} + \dots + b_{1m}a_{m1} + b_{21}a_{12} + b_{22}a_{22} + \dots + b_{2m}a_{m2} + \dots + b_{n1}a_{1n} + b_{n2}a_{2n} + \dots + b_{nm}a_{mn}$$

$$= d_{11} + d_{22} + \dots + d_{nn} = tr(B \cdot A).$$

Consequentemente, $tr(A \cdot B) = tr(B \cdot A)$.

Observação 1.1.29 Dada $A \in M_n(\mathbb{K})$, então $tr(A^T \cdot A) = \sum_{i, j=1}^n a_{ij}^2$. De fato,

Logo,

$$tr(A^T \cdot A) = a_{11}^2 + a_{21}^2 + \dots + a_{n1}^2 + a_{12}^2 + a_{22}^2 + \dots + a_{n2}^2 + \dots + a_{1n}^2 + a_{2n}^2 + \dots + a_{nn}^2 = m \sum_{i, j=1}^n a_{ij}^2.$$

1.1.3 Matrizes Simétricas, Anti-Simétricas e Ortogonais

Matriz Simétrica

Definição 1.1.17 Uma matriz quadrada A em $M_n(\mathbb{R})$ é **simétrica** se, e somente se, para todo i e para todo j os elementos a_{ij} e a_{ji} coincidem, ou seja, $a_{ij} = a_{ji}$.

Observação 1.1.30 Uma matriz $A = [a_{ij}]$ em $M_n(\mathbb{R})$ é simétrica, se e somente se,

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{13} & a_{23} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & a_{3n} & \cdots & a_{nn} \end{bmatrix},$$

ou seja, se e somente A coincide com sua transposta.

Logo, $A \in M_n(\mathbb{R})$ é simétrica se, e somente se, $A = A^T$.

Exemplo 1.1.31
$$A = \begin{bmatrix} 3 & -2 & 7 & 1 \\ -2 & 5 & 3 & 0 \\ 7 & 3 & -4 & 1 \\ 1 & 0 & 1 & -6 \end{bmatrix}$$
 é uma matriz simétrica, pois

$$A^{T} = \begin{bmatrix} 3 & -2 & 7 & 1 \\ -2 & 5 & 3 & 0 \\ 7 & 3 & -4 & 1 \\ 1 & 0 & 1 & -6 \end{bmatrix} = A.$$

Matriz Anti-Simétrica

Definição 1.1.18 Uma matriz quadrada A em $M_n(\mathbb{R})$ é **anti-simétrica** se, e somente se, para todo i e para todo j os elementos a_{ij} e a_{ji} são opostos, ou seja, $a_{ij} = -a_{ji}$.

Observações 1.1.32 (a) Uma matriz $A = [a_{ij}] \in M_n(\mathbb{R})$ é anti-simétrica, se e somente se,

$$A = \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ -a_{12} & 0 & a_{23} & \cdots & a_{2n} \\ -a_{13} & -a_{23} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{1n} & -a_{2n} & -a_{3n} & \cdots & 0 \end{bmatrix},$$

ou seja, se e somente A coincide com a oposta de sua transposta.

Logo, $A \in M_n(\mathbb{R})$ é anti-simétrica se, e somente se, $A = -A^T$.

(b) A diagonal de uma matriz anti-simétrica é nula, pois os elementos devem satisfazer $a_{ii} = -a_{ii} \iff a_{ii} = 0$.

Exemplo 1.1.33
$$A = \begin{bmatrix} 0 & 4 & 5 & -9 \\ -4 & 0 & -7 & 11 \\ -5 & 7 & 0 & 4 \\ 9 & -11 & -4 & 0 \end{bmatrix}$$
 é uma matriz anti-simétrica, pois

$$-A^{T} = -\begin{bmatrix} 0 & -4 & -5 & 9 \\ 4 & 0 & 7 & -11 \\ 5 & -7 & 0 & -4 \\ -9 & 11 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 4 & 5 & -9 \\ -4 & 0 & -7 & 11 \\ -5 & 7 & 0 & 4 \\ 9 & -11 & -4 & 0 \end{bmatrix} = A.$$

Proposição 1.1.34 Se A é uma matriz em $M_n(\mathbb{R})$, então:

- (i) A matriz $\frac{1}{2}(A+A^T)$ é simétrica.
- (ii) A matriz $\frac{1}{2}(A A^T)$ é anti-simétrica.
- (iii) Toda matriz quadrada real é a soma de uma matriz simétrica com uma matriz anti-simétrica.

Demonstração: Seja A uma matriz quadrada real então temos:

(i)
$$\left(\frac{1}{2}(A+A^T)\right)^T = \frac{1}{2}(A^T + (A^T)^T) = \frac{1}{2}(A+A^T)$$
, portanto $\frac{1}{2}(A+A^T)$ é simétrica.

(ii)
$$\left(\frac{1}{2}(A-A^T)\right)^T = \frac{1}{2}\left(A^T-(A^T)^T\right) = \frac{1}{2}\left(A^T-A\right) = -\frac{1}{2}(A-A^T)$$
, portanto $\frac{1}{2}(A-A^T)$ é antisimétrica.

(iii)
$$A = \frac{1}{2} \left(A + A + A^T - A^T \right) = \underbrace{\frac{1}{2} (A + A^T)}_{\text{simétrica}} + \underbrace{\frac{1}{2} (A - A^T)}_{\text{anti-simétrica}}.$$

Matriz Normal Real

Definição 1.1.19 Uma matriz quadrada A em $M_n(\mathbb{R})$ é **normal real** se, e somente se,

$$A \cdot A^T = A^T \cdot A$$
.

ou seja, se e somente se, o produto de A por sua transposta A^T é comutativo.

Exemplo 1.1.35 $A = \begin{bmatrix} 3 & 1 & -5 \\ -1 & 3 & -2 \\ 5 & 2 & 3 \end{bmatrix}$ é uma matriz real normal, pois

$$A \cdot A^{T} = \begin{bmatrix} 3 & 1 & -5 \\ -1 & 3 & -2 \\ 5 & 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & -1 & 5 \\ 1 & 3 & 2 \\ -5 & -2 & 3 \end{bmatrix} = \begin{bmatrix} 35 & 10 & 2 \\ 10 & 14 & -5 \\ 2 & -5 & 38 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & -1 & 5 \\ 1 & 3 & 2 \\ -5 & -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 & -5 \\ -1 & 3 & -2 \\ 5 & 2 & 3 \end{bmatrix} = A^{T} \cdot A.$$

Observações 1.1.36 (a) Toda matriz simétrica é matriz normal, pois

$$A \cdot A^T \stackrel{A=A^T}{=} A \cdot A \stackrel{A=A^T}{=} A^T \cdot A.$$

(b) Toda matriz anti-simétrica é matriz normal, pois

$$A \cdot A^T \stackrel{A^T = -A}{=} A \cdot (-A) \stackrel{A = -A^T}{=} (-A^T) \cdot (-A) = A^T \cdot A.$$

(c) Se A é matriz quadrada em $M_n(\mathbb{R})$ que é a soma de uma matriz anti-simétrica e uma matriz escalar, então A é matriz normal.

De fato, suponhamos que A = E + S, com E matriz escalar e S matriz anti-simétrica, então:

$$\begin{array}{lcl} A \cdot A^T & = & (E+S) \cdot (E+S)^T = (E+S) \cdot (E^T + S^T) \stackrel{E^T = E, = S^T = -S}{=} (E+S) \cdot (E-S) \\ & = & E^2 + S \cdot E - E \cdot S - S^2 \stackrel{ES = SE}{=} E^2 - S^2. \end{array}$$

Analogamente, $A^T \cdot A = E^2 - S^2$.

Portanto, A é normal.

Matriz Ortogonal

Definição 1.1.20 Uma matriz quadrada A em $M_n(\mathbb{R})$ é **ortogonal** se, e somente se, $A \cdot A^T = I_n$.

Exemplos 1.1.37 Mostre que as matrizes abaixo são ortogonais:

(a)
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cos \theta \in [0, 2\pi).$$

(b)
$$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
.

(c)
$$A = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Solução:

$$A \cdot A^{T} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
(a)
$$= \begin{bmatrix} \cos^{2} \theta + \sin^{2} \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ \cos \theta & \sin \theta - \sin \theta \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Portanto, A é ortogonal.

$$A \cdot A^{T} = \begin{bmatrix} \sqrt{2} & \sqrt{6} & \sqrt{3} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix} \cdot \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} + \frac{1}{6} + \frac{1}{3} & \frac{2}{6} - \frac{1}{3} & \frac{1}{2} - \frac{1}{6} \\ \frac{2}{6} - \frac{1}{3} & \frac{4}{6} + \frac{1}{3} & -\frac{2}{6} + \frac{1}{3} \\ \frac{1}{2} - \frac{1}{6} - \frac{1}{3} & -\frac{2}{6} + \frac{1}{3} & \frac{1}{2} + \frac{1}{6} + \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Portanto, A é ortogonal.

$$A \cdot A^{T} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \quad -\frac{1}{2} \quad \frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

(c)
$$= \begin{bmatrix} \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} & \frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} + \frac{1}{4} & \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \\ \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} & \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} + \frac{1}{4} - \frac{1}{4} \\ -\frac{1}{4} - \frac{1}{4} + \frac{1}{4} + \frac{1}{4} & \frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \\ \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} & \frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Portanto, A é ortogonal.

Proposição 1.1.38 Se $A \in M_2(\mathbb{R})$ é uma matriz ortogonal, então:

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \quad \text{ou} \quad A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

para algum $\theta \in [0, 2\pi)$.

Demonstração: Se $A=\left[egin{array}{cc} a & b \\ c & d \end{array}\right]\in M_2(\mathbb{R})$ é uma matriz ortogonal, então

$$A \cdot A^T = I_2 \Longleftrightarrow \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \cdot \left[\begin{array}{cc} a & c \\ b & d \end{array} \right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

$$\iff \left[\begin{array}{cc} a^2+b^2 & ac+bd \\ ac+bd & c^2+d^2 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \iff \left\{\begin{array}{cc} a^2+b^2=1 \\ c^2+d^2=1 \\ ac+bd=0 \end{array}\right..$$

De uma propriedade de números reais sabemos que se $a^2+b^2=1$, então existe $\theta\in[0,2\pi)$ tal que $a=\cos\theta$ e $b=\sin\theta$, da mesma maneira como $c^2+d^2=1$ existe $\phi\in[0,2\pi)$ tal que $c=\cos\phi$ e $d=\sin\phi$.

Assim, a equação ac + bd = 0 pode ser escrita como

$$\cos\theta\cos\phi + \sin\theta \sin\phi = 0 \iff \cos(\phi - \theta) = 0$$

$$\iff \phi - \theta = \frac{\pi}{2} + k\pi, \text{ com } k \in \mathbb{Z} \iff \phi = \theta + \frac{\pi}{2} + k\pi, \text{ com } k \in \mathbb{Z}.$$

Logo,

$$\cos \phi = \cos \left(\theta + \left(\frac{\pi}{2} + k\pi \right) \right) = \mp \operatorname{sen} \theta$$

 $\operatorname{sen} \phi = \operatorname{sen} \left(\theta + \left(\frac{\pi}{2} + k\pi \right) \right) = \pm \cos \theta.$

Portanto,

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \quad \text{ou} \quad A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

para algum $\theta \in [0, 2\pi)$.

1.1.4 Matrizes Hermitianas, Anti-Hermitianas e Unitárias

Nesta seção, para não confundir o índice de a_{ij} com a unidade imaginária i, vamos indicar os elementos de A por a_{jk} o elemento posicionado na j-ésima linha e na k-ésima coluna de A.

Conjugada Transposta de uma Matriz Complexa

Definição 1.1.21 Dada $A = [a_{jk}]$ uma matriz em $M_{m \times n}(\mathbb{C})$, a **matriz conjugada** de A, indicada por \overline{A} , é matriz cujos elementos são os respectivos conjugados dos elementos de A, ou seja, $\overline{A} = [\overline{a_{jk}}]$.

Definição 1.1.22 A **conjugada transposta** ou a **transconjugada** de uma matriz complexa $A = [a_{jk}] \in M_{m \times n}(\mathbb{C})$, denotada por A^* , é a matriz transposta da matriz conjugada de A, ou seja, é a matriz cujas respectivas linhas são as respectivas colunas de \overline{A} , assim:

$$A^* = \overline{A}^T = [b_{jk}]$$
 tal que $b_{jk} = \overline{a_{jk}}$.

Observações 1.1.39 (a) É fácil ver que $\overline{A}^T = \overline{A^T}$, ou seja, a matriz conjugada transposta de A é igual à matriz transposta conjugada de A.

(b) Se $A \in M_{m \times n}(\mathbb{C})$, é claro que A^* está em $M_{n \times m}(\mathbb{C})$.

(c) Se
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}_{m \times n}$$
, então $A^* = \begin{bmatrix} \overline{a_{11}} & \overline{a_{21}} & \cdots & \overline{a_{m1}} \\ \overline{a_{12}} & \overline{a_{22}} & \cdots & \overline{a_{m2}} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{a_{1n}} & \overline{a_{2n}} & \cdots & \overline{a_{mn}} \end{bmatrix}_{n \times m}$.

Propriedades da Conjugada Transposta

Segue, diretamente da definição de transposta e das propriedades de conjugação de números complexos, que para A e B matrizes em $M_{m\times n}(\mathbb{C})$, C matriz em $M_{n\times k}(\mathbb{C})$ e κ um número complexo valem as seguintes propriedades:

$$CT_1$$
) $(A^*)^* = A$.

$$CT_2$$
) $(A+B)^* = A^* + B^*$.

$$CT_3$$
) $(\kappa \cdot A)^* = \overline{\kappa} \cdot A^*$.

$$CT_4$$
) $(A \cdot C)^* = C^* \cdot A^*$.

Matriz Hermitiana

Definição 1.1.23 Uma matriz quadrada $A = [a_{jk}]$ em $M_n(\mathbb{C})$ é **hermitiana** se, e somente se, para todo j e para todo k o elemento a_{jk} e o conjugado de a_{kj} coincidem, ou seja, $a_{jk} = \overline{a_{kj}}$.

Portanto, A é hermitiana, se e somente se, $A = A^*$.

Observações 1.1.40 (a) Uma matriz $A = [a_{jk}]$ quadrada em $M_n(\mathbb{C})$ é hermitiana, se e somente se,

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ \overline{a_{12}} & a_{22} & a_{23} & \cdots & a_{2n} \\ \overline{a_{13}} & \overline{a_{23}} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \overline{a_{1n}} & \overline{a_{2n}} & \overline{a_{3n}} & \cdots & a_{nn} \end{bmatrix},$$

ou seja, se e somente se, A coincide com sua conjugada transposta, ou seja, $A = \overline{A}^T$, com \overline{A} a matriz conjugada de A.

(b) A diagonal de uma matriz hermitiana $A=[a_{jk}]$, com $a_{jk}=b_{jk}+c_{jk}i\in\mathbb{C}$, é constituída apenas por números reais.

De fato, pois os elementos a_{rr} de A devem satisfazer:

$$a_{rr} = \overline{a_{rr}} \Longleftrightarrow b_{rr} + c_{rr}i = \overline{b_{rr} + c_{rr}i} \Longleftrightarrow b_{rr} + c_{rr}i = b_{rr} - c_{rr}i \Longleftrightarrow \left\{ \begin{array}{lcl} b_{rr} & = & b_{rr} \\ c_{rr} & = & -c_{rr} \end{array} \right. \Longrightarrow c_{rr} = 0.$$

Exemplo 1.1.41
$$A = \begin{bmatrix} 3 & 1-2i & i \\ 1+2i & 5 & 2-i \\ -i & 2+i & -6 \end{bmatrix}$$
 é uma matriz hermitiana, pois

$$A^* = \overline{A}^T = \overline{\begin{bmatrix} 3 & 1-2i & i \\ 1+2i & 5 & 2-i \\ -i & 2+i & -6 \end{bmatrix}}^T$$

$$= \begin{bmatrix} 3 & 1+2i & -i \\ 1-2i & 5 & 2+i \\ i & 2-i & -6 \end{bmatrix}^T = \begin{bmatrix} 3 & 1-2i & i \\ 1+2i & 5 & 2-i \\ -i & 2+i & -6 \end{bmatrix} = A.$$

Matriz Anti-Hermitiana

Definição 1.1.24 Uma matriz quadrada $A = [a_{jk}]$ em $M_n(\mathbb{C})$ é **anti-hermitiana** se, e somente se, para todo j e para todo k os elementos a_{jk} e $\overline{a_{kj}}$ são opostos, ou seja, $a_{jk} = -\overline{a_{kj}}$.

Portanto, A é anti-hermitiana, se e somente se, $A = -A^*$.

Observações 1.1.42 (a) Uma matriz $A = [a_{jk}]$ em $M_n(\mathbb{C})$ é anti-hermitiana, se e somente se,

$$A = \begin{bmatrix} 0 & a_{12} & a_{13} & \cdots & a_{1n} \\ -\overline{a_{12}} & 0 & a_{23} & \cdots & a_{2n} \\ -\overline{a_{13}} & -\overline{a_{23}} & 0 & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\overline{a_{1n}} & -\overline{a_{2n}} & -\overline{a_{3n}} & \cdots & 0 \end{bmatrix},$$

ou seja, se e somente se, A coincide com a oposta de sua conjugada transposta, ou seja, $A=-\overline{A}^T$.

(b) A diagonal de uma matriz anti-hermitiana $A=[a_{jk}]$, com $a_{jk}=b_{jk}+c_{jk}i\in\mathbb{C}$, é constituída por imaginários puros.

De fato, os elementos a_{rr} da diagonal principal devem satisfazer:

$$a_{rr} = -\overline{a_{rr}} \iff b_{rr} + c_{rr}i = -(\overline{b_{rr}} + c_{rr}i) \iff b_{rr} + c_{rr}i = -(b_{rr} - c_{rr}i) \iff b_{rr} + c_{rr}i = -b_{rr} + c_{rr}i \iff \begin{cases} b_{rr} = -b_{rr} \\ c_{rr} = c_{rr} \end{cases} \implies b_{rr} = 0.$$

Exemplo 1.1.43
$$A = \begin{bmatrix} 2i & 2-3i & 3+i \\ -2-3i & -i & -1+4i \\ -3+i & 1+4i & 5i \end{bmatrix}$$
 é uma matriz anti-hermitiana, pois

$$A^* = \overline{A}^T = \overline{\begin{bmatrix} 2i & 2-3i & 3+i \\ -2-3i & -i & -1+4i \\ -3+i & 1+4i & 5i \end{bmatrix}}^T = \begin{bmatrix} -2i & 2+3i & 3-i \\ -2+3i & i & -1-4i \\ -3-i & 1-4i & -5i \end{bmatrix}^T$$

$$= \begin{bmatrix} -2i & -2+3i & -3-i \\ 2+3i & i & 1-4i \\ 3-i & -1-4i & -5i \end{bmatrix} = -\begin{bmatrix} 2i & 2-3i & 3+i \\ -2-3i & -i & -1+4i \\ -3+i & 1+4i & 5i \end{bmatrix} = -A.$$

Proposição 1.1.44 Se A é uma matriz em $M_n(\mathbb{C})$, então:

- (i) A matriz $\frac{1}{2}(A+A^*)$ é hermitiana.
- (ii) A matriz $\frac{1}{2}(A A^*)$ é anti-hermitiana.
- (iii) Toda matriz quadrada complexa é a soma de uma matriz hermitiana com uma matriz antihermitiana.

Demonstração: Seja A uma matriz quadrada complexa então temos:

(i)
$$\left(\frac{1}{2}(A+A^*)\right)^* = \frac{1}{2}(A^*+(A^*)^*) = \frac{1}{2}(A^*+A)$$
, logo, $\frac{1}{2}(A+A^*)$ é hermitiana.

$$\text{(ii)} \ \left(\frac{1}{2} \left(A - A^*\right)\right)^* = \frac{1}{2} \left(A^* - (A^*)^*\right) = \frac{1}{2} \left(A^* - A\right) = -\frac{1}{2} \left(A - A^*\right), \\ \log o, \left(A - A^*\right) \text{ \'e anti-hermitiana.}$$

(iii)
$$A = \frac{1}{2} \left(A + A + A^* - A^* \right) = \underbrace{\frac{1}{2} (A + A^*)}_{\text{hermitiana}} + \underbrace{\frac{1}{2} (A - A^*)}_{\text{anti-hermitiana}}.$$

Matriz Normal Complexa

Definição 1.1.25 Uma matriz A quadrada em $M_n(\mathbb{C})$ é **normal complexa** se, e somente se,

$$A \cdot A^* = A^* \cdot A$$
.

ou seja, se e somente se, o produto de A por sua conjugada transposta A^* é comutativo.

Observações 1.1.45 (a) Toda matriz hermitiana é matriz normal, pois

$$A \cdot A^* \stackrel{A=A^*}{=} A \cdot A \stackrel{A=A^*}{=} A^* \cdot A.$$

(b) Toda matriz anti-hermitiana é matriz normal, pois

$$A \cdot A^* \stackrel{A^* = -A}{=} A \cdot (-A) \stackrel{A = -A^*}{=} (-A^*) \cdot (-A) = A^* \cdot A.$$

(c) Se A é matriz quadrada em $M_n(\mathbb{C})$ que é a soma de uma matriz anti-hermitiana e uma matriz escalar real, então A é matriz normal.

De fato, suponhamos que A = E + H, com E matriz escalar e H matriz anti-hermitiana, então:

$$\begin{array}{lll} A \cdot A^T & = & (E+H) \cdot (E+H)^* = (E+H) \cdot (E^* + H^*) \stackrel{E^* = E}{=} \stackrel{H^* = -H}{=} (E+H) \cdot (E-H) \\ & = & E^2 + H \cdot E - E \cdot H - H^2 \stackrel{EH = HE}{=} E^2 - H^2. \end{array}$$

Analogamente, $A^T \cdot A = E^2 - H^2$.

Portanto, A é normal.

Exemplo 1.1.46
$$A = \begin{bmatrix} i & 1+i & 2 & 3-i \\ -1+i & 5i & 4+7i & -9i \\ -2 & -4+7i & -i & 11 \\ -3-i & -9i & -11 & 0 \end{bmatrix}$$
 é uma matriz complexa normal, pois

$$A^* = \begin{bmatrix} -i & -1-i & -2 & -3+i \\ 1-i & -5i & -4-7i & 9i \\ 2 & 4-7i & i & -11 \\ 3+i & 9i & 11 & 0 \end{bmatrix} = -A.$$

Logo, A é anti-hermitiana e, portanto normal.

Matriz Unitária

Definição 1.1.26 Uma matriz quadrada A em $M_n(\mathbb{C})$ é unitária se, e somente se, $A \cdot A^* = I_n$.

Exemplo 1.1.47 A matriz
$$A = \begin{bmatrix} \frac{\sqrt{2}}{2}i & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}i \end{bmatrix}$$
 é unitária.

$$A \cdot A^* = \left[egin{array}{ccc} rac{\sqrt{2}}{2}i & rac{\sqrt{2}}{2} \ -rac{\sqrt{2}}{2} & -rac{\sqrt{2}}{2}i \end{array}
ight] \cdot \left[egin{array}{ccc} -rac{\sqrt{2}}{2}i & rac{\sqrt{2}}{2} \ -rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2}i \end{array}
ight]^T$$

De fato:

$$= \begin{bmatrix} \frac{\sqrt{2}}{2}i & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}i \end{bmatrix} \cdot \begin{bmatrix} -\frac{\sqrt{2}}{2}i & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Portanto, A é unitária.

1.1.5 Operações Elementares sobre as Linhas de uma Matriz

No que segue dada uma matriz A em $M_n(\mathbb{K})$ vamos indicar a i-ésima linha de A por L_i e a j-ésima coluna de A por C_j , as operações elementares sobre as linhas (ou colunas) de uma matriz são:

OE₁ Permutação de duas linhas (duas colunas), ou seja, permutamos uma *i*-ésima linha e uma *j*-ésima coluna.

Notação: $L_i \longleftrightarrow L_j \quad (C_i \longleftrightarrow C_j).$

 OE_2 Substituição de uma linha por ela previamente multiplicada por um número (real ou complexo) não nulo, ou seja, substituímos uma i-ésima linha por ela multiplicada por número não nulo κ .

Notação: $L_i \longrightarrow \kappa L_i \quad (C_i \longrightarrow \kappa C_i)$.

 OE_3 Substituição de uma linha por ela somada com outra linha previamente multiplicada por um número (real ou complexo) não nulo, ou seja, substituímos uma i-ésima linha por ela somada com uma j-ésima linha multiplicada por número não nulo κ .

Notação:
$$L_i \longrightarrow L_i + \kappa L_j \quad (C_i \longrightarrow C_i + \kappa C_j).$$

Exemplos 1.1.48 Seja
$$A = \begin{bmatrix} -1 & 3 & 4 & 1 \\ 2 & 1 & 3 & -2 \\ 5 & 0 & 3 & -7 \end{bmatrix}$$
, determine a matriz:

- (a) B obtida de A pela operação elementar $L_2 \longleftrightarrow L_3$.
- (b) C obtida de A pela operação elementar $L_1 \longrightarrow (-2)L_1$.
- (c) D obtida de A pela operação elementar $L_2 \longrightarrow L_2 + 2L_1$.

Solução:

(a)
$$B = \begin{bmatrix} -1 & 3 & 4 & 1 \\ 5 & 0 & 3 & -7 \\ 2 & 1 & 3 & -2 \end{bmatrix} L_2 \longleftrightarrow L_3$$
.

(b)
$$C = \begin{bmatrix} 2 & -6 & -8 & -2 \\ 2 & 1 & 3 & -2 \\ 5 & 0 & 3 & -7 \end{bmatrix} \quad L_1 \longleftrightarrow (-2)L_1$$
.

(c)
$$D = \begin{bmatrix} -1 & 3 & 4 & 1 \\ 0 & 7 & 11 & 0 \\ 5 & 0 & 3 & -7 \end{bmatrix}$$
 $L_2 \longleftrightarrow L_2 + 2L_1$

Observações 1.1.49 (a) Sejam $A \in M_{m \times n}(\mathbb{K})$ e I_m a identidade de ordem m, indicando por:

 $E_{i \leftrightarrow j}^{m}$ a matriz obtida de I_{m} efetuando a operação elementar $L_{i} \longleftrightarrow L_{j}$;

 $E_{i \to \kappa i}^m$, com $\kappa \in \mathbb{K}^*$, a matriz obtida de I_m efetuando a operação elementar $L_i \longrightarrow \kappa L_i$;

 $E^m_{i \to i + \kappa j}$ a matriz obtida de I_m efetuando a operação elementar $L_i \longrightarrow L_i + \kappa L_j$, então:

• $E_{i \leftrightarrow j}^m \cdot A$ é a matriz obtida de A efetuando a mesma operação elementar e mais:

$$E_{i \leftrightarrow j}^m \cdot (E_{i \leftrightarrow j}^m \cdot A) = A.$$

• $E_{i \to \kappa i}^m \cdot A$ é a matriz obtida de A efetuando a mesma operação elementar e mais:

$$E_{i\to\frac{1}{\kappa}i}^m\cdot (E_{i\to\kappa i}^m\cdot A)=A.$$

• $E_{i \to i + K_i}^m \cdot A$ é a matriz obtida de A efetuando a mesma operação elementar e mais:

$$E_{i\to i-\kappa i}^m \cdot (E_{i\to i+\kappa i}^m \cdot A) = A.$$

(b) Matrizes como as do item acima, obtida da identidade I_m efetuando uma única operação elementar são chamadas **matrizes elementares**.

1.2 Determinante de uma Matriz Quadrada

Motivação

Na Geometria Analitica:

• Se dois vetores $\vec{u} = (u_1, u_2)$ e $\vec{w} = (w_1, w_2)$ no plano determinam um paralelogramo $\mathscr{P}_{\vec{u}, \vec{w}}$, então sua área é dada por área $(\mathscr{P}_{\vec{u}, \vec{w}}) = |D|$, com $D = u_1 w_2 - u_2 w_1$.

Figura 1.2.1: Paralelogramo $\mathscr{P}_{\vec{u},\vec{w}}$ determinado por \vec{u} e \vec{w}

• Se três vetores $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ e $\vec{w} = (w_1, w_2, w_3)$ no espaço tridimensional determinam um paralelepípedo $\mathcal{P}_{\vec{u}, \vec{v}, \vec{w}}$, então seu volume é dado por volume $(\mathcal{P}_{\vec{u}, \vec{v}, \vec{w}}) = |D|$, com $D = u_1(v_2w_3 - v_3w_2) - u_2(v_1w_3 - v_3w_1) + u_3(v_1w_2 - v_2w_3)$.

Figura 1.2.2: Paralelepípedo $\mathcal{P}_{\vec{u},\vec{v},\vec{w}}$ determinado por \vec{u} , \vec{v} e \vec{w}

Em Sistemas Lineares:

• Seja S: $\begin{cases} a_{11}x + a_{12}y = b_1 \\ a_{21}x + a_{22}y = b_2 \end{cases}$ um sistema linear, nas variáveis x e y, em \mathbb{R} ou \mathbb{K} .

Multiplicando a 1ª equação por a_{21} e a 2ª equação por a_{11} obtemos:

$$\begin{cases} a_{21}a_{11}x + a_{21}a_{12}y = a_{21}b_1 \\ a_{11}a_{21}x + a_{11}a_{22}y = a_{11}b_2 \end{cases},$$

subtraindo a 2ª equação da 1ª obtemos: $(a_{11}a_{22} - a_{21}a_{12})y = a_{11}b_2 - a_{21}b_1$.

Consequentemente, se
$$D = a_{11}a_{22} - a_{12}a_{21} \neq 0$$
, então $y = \frac{a_{11}b_2 - a_{21}b_1}{D}$ e $x = \frac{a_{22}b_1 - a_{12}b_2}{D}$.

• De maneira análoga dado S: $\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x + a_{32}y + a_{33}z = b_3 \end{cases}$ riáveis $x, y \in \mathbb{Z}$, em \mathbb{R} ou \mathbb{K} .

Veremos na seção 2.3.4 que se

$$D = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \neq 0,$$
então $x = \frac{D_1}{D}$, $y = \frac{D_2}{D}$ e $z = \frac{D_3}{D}$, com
$$D_1 = b_1(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(b_2a_{33} - a_{23}b_3) + a_{13}(b_1a_{32} - a_{22}b_3),$$

$$D_2 = a_{11}(b_2a_{33} - a_{23}b_3) - b_1(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}b_3 - b_2a_{31}),$$

$$D_3 = a_{11}(a_{22}b_3 - b_2a_{32}) - a_{12}(a_{21}b_3 - b_2a_{31}) + b_1(a_{21}a_{32} - a_{22}a_{31}).$$

O número D nos exemplos acima é um número associado a uma matriz quadrada que vamos definir na próxima seção.

1.2.1 Definição de Determinante

Dada uma matriz quadrada A em $M_n(\mathbb{K})$ associamos a A um número chamado **determinante** de A, denotado por detA, que definiremos de maneira recorrente.

Determinante caso n=1

Se $A = [a_{11}]$ quadrada em $M_1(\mathbb{K})$, então det $A = a_{11}$, neste caso o determinante é o valor numérico da única entrada da matriz.

Exemplos 1.2.1 (a)
$$A = [-3]$$
, então $\det A = -3$. (b) $A = [7]$, então $\det A = 7$.

Para os casos em que A está em $M_n(\mathbb{K})$, com $n \ge 2$, necessitamos definir o sinal dos elementos de A:

Sinal de um Elemento $a_{ij} \in A$

Dada $A = [a_{ij}]$ matriz em $M_n(\mathbb{K})$, a cada elemento a_{ij} de A atribuímos um **sinal**: + ou -, da seguinte maneira:

$$\operatorname{sinal}(a_{ij}) = \left\{ \begin{array}{ll} + & \operatorname{se} & i+j & \operatorname{\acute{e}} \operatorname{par} \\ - & \operatorname{se} & i+j & \operatorname{\acute{e}} \operatorname{impar} \end{array} \right.,$$

ou seja, sinal $(a_{ij}) = (-1)^{i+j}$.

Exemplos 1.2.2 (a) Os sinais de uma matriz A em $M_2(\mathbb{K})$: $\begin{bmatrix} + & - \\ - & + \end{bmatrix}$.

(b) Os sinais de uma matriz
$$A$$
 em $M_2(\mathbb{K})$: $\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$.

Cofator de um Elemento a_{ij}

Definição 1.2.1 Dada uma matriz $A = [a_{ij}]$ quadrada em $M_n(\mathbb{K})$ o cofator do elemento de a_{ij} , denotado por Δ_{ij} , é o seguinte número em \mathbb{K} :

$$\Delta_{ij} = \operatorname{sinal}(a_{ij}) \cdot \det A_{ij},$$

 $\operatorname{com} A_{ij}$ a matriz quadrada em $M_{n-1}(\mathbb{K})$ obtida de A retirando a i-ésima linha e a j-ésima coluna.

A matriz dos cofatores de A é chamada **matriz cofatora** de A e denotada por cof(A).

Exemplo 1.2.3 Encontre os cofatores da matriz $A = \begin{bmatrix} -1 & 3 \\ 4 & 7 \end{bmatrix}$.

Solução:

$$\begin{split} &\Delta_{11} = (-1)^{1+1} \cdot 7 = 7 & \Delta_{12} = (-1)^{1+2} \cdot 4 = -4 \\ &\Delta_{21} = (-1)^{2+1} \cdot 3 = -3 & \Delta_{22} = (-1)^{2+2} \cdot (-1) = -1. \\ &\text{Logo, cof } (A) = \left[\begin{array}{cc} 7 & -4 \\ -3 & -1 \end{array} \right]. \end{split}$$

Definição 1.2.2 Seja A uma matriz quadrada em $M_n(\mathbb{K})$, com $n \geq 2$, o **determinante** de A, denotado por detA, é o número dado pela soma dos elementos de uma linha ou coluna qualquer de A, previamente multiplicados por seus respectivos cofatores.

Assim, o cálculo de det A pela i-ésima linha é:

$$\det A = a_{i1} \cdot \Delta_{i1} + a_{i2} \cdot \Delta_{i2} + \dots + a_{in} \cdot \Delta_{in} = \sum_{k=1}^{n} a_{ik} \cdot \Delta_{ik}.$$

Enquanto, que o cálculo de detA pela j-ésima coluna é:

$$\det A = a_{1j} \cdot \Delta_{1j} + a_{2j} \cdot \Delta_{i2} + \dots + a_{nj} \cdot \Delta_{nj} = \sum_{k=1}^{n} a_{kj} \cdot \Delta_{kj}.$$

Cálculo de Determinante de uma Matriz Quadrada de ordem 2

Seja

$$A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right]$$

uma matriz quadrada em $M_2(\mathbb{K})$, o determinante de A, pela primeira linha é:

$$\det A = a_{11} \cdot \Delta_{11} + a_{12} \cdot \Delta_{12} = a_{11} \cdot a_{22} + a_{12} \cdot (-a_{21}) = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}.$$

Calculando pela segunda coluna obtemos:

$$\det A = a_{12} \cdot \Delta_{12} + a_{22} \cdot \Delta_{22} = a_{12} \cdot (-a_{21}) + a_{22} \cdot a_{22} = -a_{12} \cdot a_{21} + a_{22} \cdot a_{11} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}.$$

Portanto,

$$\det A = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

ou seja, é o produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

Exemplos 1.2.4 1. Calcule o determinante da matriz $A = \begin{bmatrix} -1 & 3 \\ 4 & 7 \end{bmatrix}$.

Solução:

Pelo desenvolvimento acima temos:

$$\det A = (-1) \cdot 7 - 3 \cdot 4 = -7 - 12 = -19.$$

2. Se dois vetores $\vec{u} = (u_1, u_2)$ e $\vec{w} = (w_1, w_2)$ no plano determinam um paralelogramo $\mathscr{P}_{\vec{u}, \vec{w}}$, então sua área é dada por área $(\mathscr{P}_{\vec{u}, \vec{w}}) = \left| \det \begin{bmatrix} u_1 & u_2 \\ w_1 & w_2 \end{bmatrix} \right| = |u_1 w_2 - u_2 w_1|$.

Cálculo de Determinante de uma Matriz Quadrada de ordem 3

Seja

$$A = \left[\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array} \right]$$

uma matriz quadrada em $M_3(\mathbb{K})$, o determinante de A, pela primeira linha é:

$$\det A = a_{11} \cdot \Delta_{11} + a_{12} \cdot \Delta_{12} + a_{13} \cdot \Delta_{13}$$

$$= a_{11} \cdot \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \cdot \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \cdot \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

$$= a_{11} \cdot (a_{22}a_{33} - a_{23}a_{32}) - a_{12} \cdot (a_{21}a_{33} - a_{23}a_{31}) + a_{13} \cdot (a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}.$$

Calculando pela terceira coluna obtemos:

$$\det A = a_{13} \cdot \Delta_{13} + a_{23} \cdot \Delta_{23} + a_{33} \cdot \Delta_{33}$$

$$= a_{13} \cdot \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} - a_{23} \cdot \det \begin{bmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{bmatrix} + a_{33} \cdot \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$= a_{13} \cdot (a_{21}a_{32} - a_{22}a_{31}) - a_{23} \cdot (a_{11}a_{32} - a_{12}a_{31}) + a_{33} \cdot (a_{11}a_{22} - a_{12}a_{21})$$

$$= a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{23}a_{11}a_{32} + a_{23}a_{12}a_{31} + a_{33}a_{11}a_{22} - a_{33}a_{12}a_{21}.$$

Assim, $\det A = a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$.

Exemplo 1.2.5 Calcule o determinante da matriz
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$
.

Solução:

Calculando pela terceira linha temos

$$\begin{aligned} \det A &= 2 \cdot \Delta_{31} + 3 \cdot \Delta_{32} + 2 \cdot \Delta_{33} \\ &= 2 \cdot \det \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + (-3) \cdot \det \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} + 2 \cdot \det \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \\ &= 2 \cdot (1-1) - 3 \cdot (2-1) + 2 \cdot (2-1) = 0 - 3 + 2 = -1. \end{aligned}$$

Calculemos também pela primeira coluna:

$$\begin{aligned} \det A &= 2 \cdot \Delta_{12} + 1 \cdot \Delta_{22} + 2 \cdot \Delta_{32} \\ &= 2 \cdot \det \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} + (-1) \cdot \det \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} + 2 \cdot \det \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \\ &= 2 \cdot (2 - 3) + (-1) \cdot (2 - 3) + 2 \cdot (1 - 1) = -2 + 1 + 0 = -1. \end{aligned}$$

Observações 1.2.6 (a) Também indicamos o determinante de A por |A|, assim, por exemplo:

$$\begin{vmatrix} -1 & 3 \\ 4 & 7 \end{vmatrix} = -19$$
 e $\begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 2 \end{vmatrix} = -1$.

- (b) O cálculo do determinante de matrizes quadradas em $M_n(\mathbb{K})$, com $n \ge 4$, é feito recorrentemente.
 - (b₁) No cálculo de det A, com A quadrada em $M_4(\mathbb{K})$, deveremos calcular o determinante de 4 matrizes quadradas em $M_3(\mathbb{K})$.
 - (b₂) No cálculo de det A, com A quadrada em $M_5(\mathbb{K})$, deveremos calcular o determinante de 5 matrizes quadradas em $M_4(\mathbb{K})$.
 - (b₃) De modo geral, no cálculo de detA, com A quadrada em $M_n(\mathbb{K})$, deveremos calcular o determinante de n matrizes quadradas em $M_{n-1}(\mathbb{K})$.

Exemplo 1.2.7 Calcule o determinante da matriz
$$A = \begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 3 & -1 & 1 & 2 \\ 2 & -1 & 0 & 1 \end{bmatrix}$$
.

Solução:

Calculando pela terceira coluna temos

$$\begin{split} \det A &= 2 \cdot \Delta_{13} + 0 \cdot \Delta_{23} + 1 \cdot \Delta_{33} + 0 \cdot \Delta_{43} \\ &= 2 \cdot \underbrace{(-1)^{1+3} \cdot \det A_{13}}_{\Delta_{13}} + 1 \cdot \underbrace{(-1)^{3+3} \cdot \det A_{33}}_{\Delta_{33}} = 2 \cdot \begin{vmatrix} 2 & 1 & 1 \\ 3 & -1 & 2 \\ 2 & -1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 2 & -1 & 1 \end{vmatrix} \\ &= 2 \cdot \underbrace{\left(2 \begin{vmatrix} -1 & 2 \\ -1 & 1 \end{vmatrix} - \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ 2 & -1 \end{vmatrix}\right)}_{\text{cálculo pela 1a linha}} + \underbrace{\left(\begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ 2 & -1 \end{vmatrix}\right)}_{\text{cálculo pela 1a linha}} \\ &= 2 \cdot \left(2 \times 1 - (-1) + (-1)\right) + \left(2 + 0 + 3 \times (-4)\right) = 2 \cdot \left(2 + 1 - 1\right) + \left(2 - 12\right) = -6. \end{split}$$

Logo,
$$\begin{vmatrix} 1 & -1 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 3 & -1 & 1 & 2 \\ 2 & -1 & 0 & 1 \end{vmatrix} = -6.$$

1.2.2 Propriedades de Determinantes

Seja A uma matriz quadrada em $M_n(\mathbb{K})$, valem as seguintes propriedades:

- D_1 Se A possui uma linha ou uma coluna com todos os elementos nulo, então $\det A = 0$.
- D_2 Se A tem duas linhas ou duas colunas iguais, então detA = 0.
- $D_3 \det A = \det A^T$.
- D_4 Se A é uma matriz diagonal, então o determinante de A é o produto dos elementos da diagonal principal.
- D_5 Se A é uma matriz triangular (superior ou inferior), então o determinante de A é o produto dos elementos da diagonal principal.
- D_6 Se $B = \kappa A$, com $\kappa \in \mathbb{K}$, então $\det B = \kappa^n \cdot \det A$.

$$D_7 \text{ Se } A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} + c_{i1} & b_{i2} + c_{i2} & \cdots & b_{in} + c_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \text{ então:}$$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} + c_{i1} & b_{i2} + c_{i2} & \cdots & b_{in} + c_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{i1} & c_{i2} & \cdots & c_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}.$$

 D_8 Se $A \in M_n(\mathbb{C})$, então $\det \overline{A} = \overline{\det A}$.

Verificação:

 D_1 Seja uma matriz $A = [a_{ij}]_{n \times n} \in M_n(\mathbb{K})$, tal que todos elementos da *i*-ésima linha são nulos, ou seja, $a_{ik} = 0$ para todo $k \in \mathbb{N}$, com $1 \le k \le n$, portanto:

$$\det A \stackrel{i^{\underline{a}} \text{ linha}}{=} a_{i1} \cdot \Delta_{i1} + a_{i2} \cdot \Delta_{i2} + \dots + a_{in} \cdot \Delta_{in} \stackrel{a_{ik}=0}{=} 0 \cdot \Delta_{i1} + 0 \cdot \Delta_{i2} + \dots + 0 \cdot \Delta_{in} = 0.$$

Analogamente, se todos os elementos da j-coluna de A são todos nulos também teremos det A = 0.

 D_2 Mostremos por indução sobre n para $n \in \mathbb{N}$ e $n \ge 2$.

Seja $A \in M_2(\mathbb{K})$, se a $2^{\underline{a}}$ linha é igual à $1^{\underline{a}}$ linha, temos $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix}$, e portanto $\det A = a_{11}a_{12} - a_{12}a_{11} = 0$, o mesmo ocorre se as duas colunas são iguais.

Logo, $A \in M_2(\mathbb{K})$ tem duas linhas ou duas colunas iguais, então $\det A = 0$.

Supondo que o resultado vale para toda matriz quadrada em $M_k(\mathbb{K})$, com $k \in \mathbb{N}$ e $2 \le k \le n-1$, mostremos que a propriedade vale para toda matriz em $M_n(\mathbb{K})$.

Seja $A \in M_n(\mathbb{K})$, com $i^{\underline{a}}$ linha é igual à $j^{\underline{a}}$ linha, supondo i < j, ou seja,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \quad L_j = L_1$$

calculando det *A* pela $r^{\underline{a}}$ linha, com $1 \le r \le n, r \ne i$ e $r \ne j$ temos:

$$\det A \stackrel{r^{\underline{a}} = \text{linha}}{=} (-1)^{r+1} a_{r1} \det A_{r1} + (-1)^{r+2} \det A_{r2} + \dots + (-1)^{r+n} \det A_{rn},$$

com A_{rs} , para $1 \le s \le n$, a matriz obtida de A retirando a $r^{\underline{a}}$ linha e $s^{\underline{a}}$ coluna, como cada uma das matrizes $A_{rs} \in M_{n-1}(\mathbb{K})$ tem duas linhas iguais, correspondentes $i^{\underline{a}}$ linha e $j^{\underline{a}}$ linha de A, portanto pela hipótese de indução segue que $\det A_{rs} = 0$ para todo s.

Consequentemente, $\det A = 0$.

Analogamente, se duas colunas de A são iguais segue também que $\det A = 0$.

Portanto, se $A \in M_n(\mathbb{K})$, para $n \in \mathbb{N}$ e $n \geq 2$, tem duas linhas ou duas colunas iguais, então $\det A = 0$.

 D_3 Mostremos por indução sobre n para $n \in \mathbb{N}$ e $n \ge 2$.

Seja
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 uma matriz quadrada qualquer em $M_2(\mathbb{K})$, $A^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$, logo $\det A^T = a_{11}a_{22} - a_{21}a_{12} = \det A$.

Portanto, a propriedade vale para n = 2.

Supondo que o resultado vale para toda matriz quadrada em $M_k(\mathbb{K})$, com $k \in \mathbb{N}$ e $2 \le k \le n-1$, mostremos que a propriedade vale para toda matriz em $M_n(\mathbb{K})$.

Seja
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 uma matriz qualquer em $M_n(\mathbb{K})$, então:
$$\det A^T = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix}$$

$$1^a \underset{=}{\text{linha}} \quad a_{11} \begin{vmatrix} a_{22} & \cdots & a_{n2} \\ \vdots & \ddots & \vdots \\ a_{2n} & \cdots & a_{nn} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & \cdots & a_{n2} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{nn} \end{vmatrix}$$

$$+ \cdots + (-1)^{n+1} a_{n2} \begin{vmatrix} a_{12} & \cdots & a_{n-1} & 2 \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{n-1} & n \end{vmatrix}$$

$$Hip. Indução = \begin{bmatrix} a_{11} & a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{n-1} & n \end{vmatrix} = \begin{bmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \cdots & a_{n-1} & n \end{bmatrix}$$

Hip. Indução
$$= \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$+\cdots+(-1)^{n+1}a_{n2}\begin{vmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n-1} & 2 & \cdots & a_{n-1} & n \end{vmatrix}$$

 $\stackrel{1^{\underline{a}} \text{ coluna}}{=} \det A$

Portanto, se $A \in M_n(\mathbb{K})$, para $n \in \mathbb{N}$ e $n \ge 2$, então $\det A^T = \det A$.

- D_4 Pode-se mostrar, por indução sobre n para $n \in \mathbb{N}$ e $n \ge 2$, que se $A = [a_{ij}]_{n \times n} \in M_n(\mathbb{K})$ é uma matriz diagonal, então $\det A = a_{11} \times a_{22} \times \cdots \times a_{nn}$, o produto dos elementos da diagonal principal.
- D_5 Pode-se mostrar, por indução sobre n para $n \in \mathbb{N}$ e $n \ge 2$, que se $A = [a_{ij}]_{n \times n} \in M_n(\mathbb{K})$ é uma matriz triangular (inferior ou superior), então $\det A = a_{11} \times a_{22} \times \cdots \times a_{nn}$, o produto dos elementos da diagonal principal.
- D_6 Mostremos por indução sobre n para $n \in \mathbb{N}$ e $n \ge 2$.

$$\text{Se } A = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] \in M_2(\mathbb{K}), \text{ então dados } \kappa \in corpo, \text{ então } \kappa \cdot A = \left[\begin{array}{cc} \kappa \cdot a_{11} & \kappa \cdot a_{12} \\ \kappa \cdot a_{21} & \kappa \cdot a_{22} \end{array} \right], \text{ então } \kappa \cdot A = \left[\begin{array}{cc} \kappa \cdot a_{11} & \kappa \cdot a_{12} \\ \kappa \cdot a_{21} & \kappa \cdot a_{22} \end{array} \right], \text{ então } \kappa \cdot A = \left[\begin{array}{cc} \kappa \cdot a_{11} & \kappa \cdot a_{12} \\ \kappa \cdot a_{21} & \kappa \cdot a_{22} \end{array} \right], \text{ então } \kappa \cdot A = \left[\begin{array}{cc} \kappa \cdot a_{11} & \kappa \cdot a_{12} \\ \kappa \cdot a_{21} & \kappa \cdot a_{22} \end{array} \right], \text{ então } \kappa \cdot A = \left[\begin{array}{cc} \kappa \cdot a_{11} & \kappa \cdot a_{12} \\ \kappa \cdot a_{21} & \kappa \cdot a_{22} \end{array} \right], \text{ então } \kappa \cdot A = \left[\begin{array}{cc} \kappa \cdot a_{11} & \kappa \cdot a_{12} \\ \kappa \cdot a_{21} & \kappa \cdot a_{22} \end{array} \right]$$

$$\det A = \kappa \cdot a_{11} \times \kappa \cdot a_{22} - \kappa \cdot a_{12} \times \kappa \cdot a_{21} = \kappa^2 \cdot (a_{11}a_{22} - a_{12}a_{21}) = \kappa^2 \cdot \det A.$$

Portanto, a propriedade vale para n = 2.

Supondo que o resultado vale para toda matriz quadrada em $M_k(\mathbb{K})$, com $k \in \mathbb{N}$ e $2 \le k \le n-1$, mostremos que a propriedade vale para toda matriz em $M_n(\mathbb{K})$.

Seja
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 uma matriz qualquer em $M_n(\mathbb{K})$, então

$$\kappa \cdot A = \begin{bmatrix} \kappa \cdot a_{11} & \kappa \cdot a_{12} & \cdots & \kappa \cdot a_{1n} \\ \kappa \cdot a_{21} & \kappa \cdot a_{22} & \cdots & \kappa \cdot a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \kappa \cdot a_{n1} & \kappa \cdot a_{n2} & \cdots & \kappa \cdot a_{nn} \end{bmatrix}$$

e

$$\det(\kappa \cdot A) \stackrel{1^{\underline{a} \text{ linha}}}{=} \kappa \cdot a_{11} \begin{vmatrix} \kappa \cdot a_{22} & \cdots & \kappa \cdot a_{2n} \\ \vdots & \ddots & \vdots \\ \kappa \cdot a_{n2} & \cdots & \kappa \cdot a_{nn} \end{vmatrix} - \kappa \cdot a_{21} \begin{vmatrix} \kappa \cdot a_{12} & \cdots & \kappa \cdot a_{1n} \\ \vdots & \ddots & \vdots \\ \kappa \cdot a_{n1} & \cdots & \kappa \cdot a_{nn} \end{vmatrix}$$

$$+ \cdots + (-1)^{n+1} \kappa \cdot a_{1n} \begin{vmatrix} \kappa \cdot a_{21} & \cdots & \kappa \cdot a_{2n-1} \\ \vdots & \ddots & \vdots \\ \kappa \cdot a_{n1} & \cdots & \kappa \cdot a_{nn-1} \end{vmatrix}$$

$$+ \cdots + (-1)^{n+1} \kappa \cdot a_{1n} \kappa^{n-1} \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} - \kappa \cdot a_{12} \kappa^{n-1} \cdot \begin{vmatrix} a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$

$$+ \cdots + (-1)^{n+1} \kappa \cdot a_{1n} \kappa^{n-1} \cdot \begin{vmatrix} a_{21} & \cdots & a_{2n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix}$$

$$= \kappa^{n} \cdot \left(a_{11} \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{n+1} a_{1n} \cdot \begin{vmatrix} a_{21} & \cdots & a_{2n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix} \right)$$

$$= \kappa^{n} \cdot \det A.$$

Portanto, se $A \in M_n(\mathbb{K})$, para $n \in \mathbb{N}$ e $n \ge 2$, então $\det(\kappa \cdot A) = \kappa^n \cdot \det A$.

 D_7 De fato,

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} + c_{i1} & b_{i2} + c_{i2} & \cdots & b_{in} + c_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{i+2}(b_{i2} + c_{i2}) \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{i+2}(b_{i2} + c_{i2}) \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{i+n}(b_{in} + c_{in}) \begin{vmatrix} a_{11} & \cdots & a_{1n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix}$$

$$= (-1)^{i+1}b_{i1} \begin{vmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{i+2}b_{i2} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix}$$

$$+ \cdots + (-1)^{i+n}b_{in} \begin{vmatrix} a_{11} & \cdots & a_{1n-1} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{i+2}c_{i2} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix}$$

$$+ \cdots + (-1)^{i+n}c_{in} \begin{vmatrix} a_{11} & \cdots & a_{1n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix}$$

$$+ \cdots + (-1)^{i+n}c_{in} \begin{vmatrix} a_{11} & \cdots & a_{1n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\$$

 D_8 Dados $z_1 = x_1 + iy_1$ e $z_2 = x_2 + iy_2$ em \mathbb{C} , podemos verificar que $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$, consequentemente det $\overline{A} = \overline{\det A}$.

Teorema 1.2.8 Seja *A* uma matriz em $M_n(\mathbb{K})$.

- (i) Se B é matriz obtida de A permutando duas linhas ou duas colunas, então $\det B = -\det A$.
- (ii) Se B é obtida de A multiplicando todos os elementos de uma linha ou uma coluna por um número κ , então det $B = \kappa \cdot \det A$.
- (iii) Se B é obtida de A somando a uma linha (ou coluna) de A a uma outra linha (ou coluna) previamente multiplicada por um número qualquer, então $\det B = \det A$.

Demonstração:

(i) Seja $A = [a_{ij}]_{n \times n}$ uma matriz em $M_n(\mathbb{K})$ e seja B a matriz obtida de A permutando a r-ésima linha e a s-ésima linha, ou seja, B é obtida de A fazendo a operação elementar $L_r \longleftrightarrow L_s$. Suponhamos sem perda de generalidade que 1 < r < s < n, então:

$$0 \stackrel{\text{Prop. }D_{1}}{=} 0 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} + a_{s1} & a_{r2} + a_{s2} & \cdots & a_{rn} + a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} + a_{s1} & a_{r2} + a_{s2} & \cdots & a_{rn} + a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{rn} + a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} + a_{s1} & a_{r2} + a_{s2} & \cdots & a_{rn} + a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} + a_{s1} & a_{r2} + a_{s2} & \cdots & a_{rn} + a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots &$$

Consequentemente,

$$\det B = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = - \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = - \det A.$$

(ii) Seja $A = [a_{ij}]_{n \times n}$ uma matriz em $M_n(\mathbb{K})$ e seja B a matriz obtida de A multiplicando os elementos da r-ésima linha por uma constante κ , ou seja, B é obtida de A fazendo a operação elementar $L_r \longrightarrow \kappa L_r$. Suponhamos sem perda de generalidade qur 1 < r < n, então:

$$\det B = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \kappa \cdot a_{r1} & \kappa \cdot a_{r2} & \cdots & \kappa \cdot a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{r+2} \kappa \cdot a_{r2} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{r+2} \kappa \cdot a_{r2} \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{r+n} \kappa \cdot a_{1n} \begin{vmatrix} a_{11} & \cdots & a_{1} & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix}$$

$$= \kappa \cdot \left((-1)^{r+1} a_{r1} \cdot \begin{vmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + \cdots + (-1)^{r+n} a_{rn} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1} & a_{1n-1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn-1} \end{vmatrix} \right)$$

(iii) Seja $A = [a_{ij}]_{n \times n}$ uma matriz em $M_n(\mathbb{K})$ e seja B a matriz obtida de A somando a r-ésima linha com a s-ésima linha, previamente multiplicada por uma constante κ , ou seja, B é obtida de A fazendo a operação elementar $L_r \longrightarrow L_r + \kappa L_s$. Suponhamos sem perda de generalidade que 1 < r < s < n, então:

 $\kappa \cdot \det A$.

$$\det B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} + K \cdot a_{s1} & a_{r2} + K \cdot a_{s2} & \cdots & a_{rn} + K \cdot a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \end{vmatrix} + \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & k \cdot a_{s2} & \cdots & k \cdot a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + K \cdot \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + K \cdot \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + K \cdot \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \cdots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \det A.$$

$$\Phi \cot B$$

Corolório 1.2.9 As matrizes elementares $E^m_{i \leftrightarrow j}$, $E^m_{i \to \kappa i}$, com $\kappa \in \mathbb{K}^*$, e $E^m_{i \to i + \kappa j}$ apresentadas na Observação 1.1.49 são tais que:

$$\det E^m_{i \leftrightarrow j} = -1, \quad \det E^m_{i \to \kappa i} = \kappa \quad \text{ e } \quad \det E^m_{i \to i + \kappa j} = 1.$$

Demonstração: De fato, $\det I_m = 1$, como $E^m_{i \leftrightarrow j}$, $E^m_{i \to \kappa i}$ e $E^m_{i \to i + \kappa j}$ são obtidas de I_m efetuando as respectivas operações elementares $L_i \longleftrightarrow L_j$, $L_i \longrightarrow \kappa L_i$, com $\kappa \in \mathbb{K}^*$, e $L_i \longrightarrow L_i r + \kappa L_j$, segue pelo Teorema 1.2.8 que:

$$\det E^m_{i \leftrightarrow j} = -1, \quad \det E^m_{i \to \kappa i} = \kappa \quad \text{ e } \quad \det E^m_{i \to i + \kappa j} = 1.$$

Exemplos 1.2.10 Calcule det A, em cada um dos casos:

(a)
$$B = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 1 & 3 \\ 1 & 1 & 2 \end{bmatrix}$$
; (b) $B = \begin{bmatrix} 1 & 1 & 5 \\ 3 & 3 & 3 \\ 2 & 2 & 4 \end{bmatrix}$; (c) $B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}$;

(d)
$$B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ -4 & -6 & -4 \end{bmatrix}$$
; (e) $B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$; (f) $B = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 3 \\ 6 & 9 & 6 \end{bmatrix}$;

$$(g) \ B = \begin{bmatrix} -5 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}; \qquad (h) \ B = \begin{bmatrix} 3 & -1 & 2 & 1 \\ 0 & 6 & -5 & 0 \\ 0 & 0 & -2 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \qquad (i) \ B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 5 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 4 \end{bmatrix}.$$

Solução:

Lembrando que vimos acima que se $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}$ então $\det A = -1$.

Observemos que as matrizes dos exemplos (a), (c), (d), (e) e (f) foram obtidas da matriz A.

(a)
$$\det B = \begin{vmatrix} 2 & 1 & 2 \\ 1 & 1 & 3 \\ 1 & 1 & 2 \end{vmatrix} \begin{vmatrix} D_1, \operatorname{pois} B = A^T \\ = -1.$$

(b)
$$\det B = \begin{vmatrix} 1 & 1 & 5 \\ 3 & 3 & -1 \\ 2 & 2 & 4 \end{vmatrix} D_3, \text{ pois } C_1 = C_2 0.$$

(c)
$$\det B = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 2 & 3 & 2 \end{vmatrix} \stackrel{D_4, \text{ pois } L_1 \leftrightarrow L_2}{=} - (-1) = 1.$$

(d)
$$\det B = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ -4 & -6 & -4 \end{vmatrix} \stackrel{D_5 \text{ pois } L_3 \to (-2)L_3}{=} (-2) \times (-1) = 2.$$

(e)
$$\det B = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{vmatrix} \stackrel{D_6, \text{ pois } L_3 \to L_3 - 2L_2}{=} -1.$$

(f)
$$\det B = \begin{vmatrix} 6 & 3 & 3 \\ 3 & 3 & 3 \\ 6 & 9 & 6 \end{vmatrix} \xrightarrow{D_7, \text{ pois } B = 3A} 3^3 \times (-1) = -27.$$

- (g) $\det B = (-5) \times 8 \times (-1) \times 3 = 120$, basta aplicar D_9 , pois B é matriz diagonal.
- (h) $\det B = 3 \times 6 \times (-2) \times 1 = -36$, basta aplicar D_{10} , pois B é matriz triangular.

(i)
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 5 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 4 \end{vmatrix} \stackrel{D_{11}}{=} \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 4 \end{vmatrix} + \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & 7 \\ 0 & 0 & 0 & 4 \end{vmatrix} \stackrel{D_3 \in D_{10}}{=} 0 - 4 = -4.$$

Lema 1.2.11 Sejam A e B matrizes em $M_n(\mathbb{K})$, então

$$\det(A \cdot B) = \sum_{\substack{k_1, k_2, \cdots, k_n = 1 \\ k_i \neq k_i \text{ se } i \neq j}}^{n} (-1)^s a_{1k_1} \cdot a_{2k_2} \cdot \ldots \cdot a_{nk_n} \cdot \det B,$$

com $(k_1 \ k_2 \ \cdots \ k_n)$ uma permutação de $(1 \ 2 \ \cdots \ n)$ e s a quantidade de linhas permutadas para

transformar
$$\begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} \text{ em } \begin{bmatrix} 1 \\ 2 \\ \vdots \\ n \end{bmatrix}.$$

Demonstração:

Indicando por $a_i = (a_{i1} \ a_{i2} \ \cdots \ a_{in})$ e $b_l = (b_{l1} \ b_{l2} \ \cdots \ b_{ln})$, a i-ésima linha de A e a l-ésima linha de B, respectivamente, com $i \le i \le n$ e $1 \le l \le n$, então $A \cdot B = [c_{ij}]$ e a k-ésima linha de $A \cdot B$ é indicada por $c_s = (c_{s1} \ c_{s2} \ \cdots \ c_{sn})$, com $c_{sr} = a_{s1}b_{1r} + a_{s2}b_{2r} + \cdots + a_{sn}b_{nr}$.

Logo,

$$c_s = a_{s1} \cdot (b_{11} \ b_{12} \cdots b_{1n}) + a_{s2} \cdot (b_{21} \ b_{22} \cdots b_{2n}) + \cdots + a_{sn} \cdot (b_{n1} \ b_{n2} \cdots b_{nn})$$

$$= a_{s1} \cdot b_1 + a_{s2} \cdot b_2 + \cdots + a_{sn} \cdot b_n = \sum_{k=1}^n a_{sk} \cdot b_k,$$

para $1 \le k \le n$.

Portanto,

$$\det(A \cdot B) = \det(c_1, c_2, \dots, c_n) = \det(a_{11} \cdot b_1 + a_{12} \cdot b_2 + \dots + a_{1n} \cdot b_n, c_2, \dots, c_n)$$

$$= a_{11} \cdot \det(b_1, c_2, \dots, c_n) + a_{12} \cdot \det(b_2, c_2, \dots, c_n)$$

$$+ \dots + a_{1n} \cdot \det(b_n, c_2, \dots, c_n) = \sum_{k_1 = 1}^n a_{1k_1} \cdot \det(b_{k_1}, c_2, \dots, c_n)$$

$$= \sum_{k_1 = 1}^n a_{1k_1} \cdot \det(b_{k_1}, a_{21} \cdot b_1 + a_{22} \cdot b_2 + \dots + a_{2n} \cdot b_n, \dots, c_n)$$

$$= \sum_{k_1, k_2 = 1}^n a_{1k_1} \cdot \det(b_{k_1}, a_{2k_2} \cdot \det(b_{k_1}, b_{k_2}, \dots, c_n),$$

pois $\det(\cdots,b_i,\cdots,b_i,\cdots)=0$.

Assim, fazendo as devidas substituições concluímos que a igualdade acima é dada por:

$$\det(A \cdot B) = \sum_{\substack{k_1, k_2, \dots, k_n = 1 \\ k_i \neq k_j \text{ se } i \neq j}}^n a_{1k_1} \cdot a_{2k_2} \cdot \dots \cdot a_{nk_n} \cdot \det(b_{k_1}, b_{k_2}, \dots, b_{k_n}),$$

com $(k_1 k_2 \cdots k_n)$ uma permutação de $(1 2 \cdots n)$, consequentemente,

$$\det(A \cdot B) = \sum_{\substack{k_1, k_2, \cdots, k_n = 1 \\ k_i \neq k_i \text{ se } i \neq j}}^{n} (-1)^s a_{1k_1} \cdot a_{2k_2} \cdot \ldots \cdot a_{nk_n} \cdot \det B,$$

com s a quantidade de linhas permutadas para transformar $\begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix}$ em $\begin{bmatrix} 1 \\ 2 \\ \vdots \\ n \end{bmatrix}$.

Corolário 1.2.12 Seja A matriz em $M_n(\mathbb{K})$, então

$$\det A = \sum_{\substack{k_1, k_2, \dots, k_n = 1 \\ k_i \neq k_j \text{ se } i \neq j}}^{n} (-1)^s a_{1k_1} \cdot a_{2k_2} \cdot \dots \cdot a_{nk_n},$$

com s a quantidade de linhas permutadas para transformar $\begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix}$ em $\begin{bmatrix} 1 \\ 2 \\ \vdots \\ n \end{bmatrix}$.

Demonstração:

No Lema 1.2.11 fazendo $B = I_n$ obtemos:

$$\det(A \cdot I_n) = \sum_{\substack{k_1, k_2, \cdots, k_n = 1 \\ k_i \neq k_j \text{ se } i \neq j}}^n (-1)^s a_{1k_1} \cdot a_{2k_2} \cdot \ldots \cdot a_{nk_n} \cdot \det I_n,$$

com s a quantidade de linhas permutadas para transformar $\begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix}$ em $\begin{bmatrix} 1 \\ 2 \\ \vdots \\ n \end{bmatrix}$.

Mas, como det $I_n = 1$ e $A \cdot I_n = A$, segue que

$$\det A = \sum_{\substack{k_1, k_2, \dots, k_n = 1 \\ k_i \neq k_j \text{ se } i \neq j}}^{n} (-1)^s a_{1k_1} \cdot a_{2k_2} \cdot \dots \cdot a_{nk_n},$$

com s a quantidade de linhas permutadas para transformar $\begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ \vdots \\ n \end{bmatrix}.$

Observação 1.2.13 Pelo Corolário 1.2.12, dada $A \in M_n(\mathbb{K})$, então detA é o somatório de $(-1)^s a_{1k_1} \cdot a_{2k_2} \cdot \ldots \cdot a_{nk_n}$, com $k_1, k_2, \cdots, k_n \in \{1, 2, \cdots, n\}, k_i \neq k_j$ se $i \neq j$ e a quantidade de linhas permutadas para transformar $\begin{bmatrix} k_1 \\ k_2 \\ \vdots \end{bmatrix} \text{ em } \begin{bmatrix} 1 \\ 2 \\ \vdots \end{bmatrix}.$

Além disso, o somatório tem n! parcelas, que é a quantidade de permutações de n elementos.

Logo, se n = 2, então detA tem 2! = 2 parcelas; se n = 3, então detA tem 3! = 6 parcelas; se n = 4, então detA tem 4! = 24 parcelas e assim por diante, mais precisamente temos:

$$\det A \stackrel{n=2}{=} a_{11}a_{22} - a_{12}a_{21}$$

$$\det A \stackrel{n=3}{=} a_{11}a_{22}a_{33} - a_{11}a_{23}a_{32} + a_{12}a_{23}a_{31} - a_{12}a_{21}a_{33} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31}$$

$$\det A \stackrel{n=4}{=} a_{11}a_{22}a_{33}a_{44} + a_{11}a_{23}a_{34}a_{42} + a_{11}a_{24}a_{32}a_{43} - a_{11}a_{24}a_{33}a_{42} - a_{11}a_{22}a_{34}a_{43} - a_{11}a_{23}a_{32}a_{44}$$

$$+ a_{12}a_{21}a_{34}a_{43} + a_{12}a_{23}a_{31}a_{44} + a_{12}a_{24}a_{33}a_{41} - a_{12}a_{21}a_{33}a_{44} - a_{12}a_{23}a_{34}a_{41} - a_{12}a_{24}a_{31}a_{43}$$

$$+ a_{13}a_{21}a_{32}a_{44} + a_{13}a_{22}a_{34}a_{41} + a_{13}a_{24}a_{31}a_{42} - a_{13}a_{21}a_{34}a_{42} - a_{13}a_{22}a_{31}a_{44} - a_{13}a_{24}a_{32}a_{41}$$

$$+ a_{14}a_{21}a_{33}a_{42} + a_{14}a_{22}a_{31}a_{43} + a_{14}a_{23}a_{32}a_{41} - a_{14}a_{21}a_{32}a_{43} - a_{14}a_{22}a_{33}a_{41} - a_{14}a_{23}a_{31}a_{42}.$$

Uma consequência importante do Lema 1.2.11 e do Corolário 1.2.12 é o seguinte resultado:

Teorema 1.2.14 Dadas $A \in B$ matrizes em $M_n(\mathbb{K})$, então $\det(A \cdot B) = \det A \cdot \det B$.

Proposição 1.2.15 (i) Se $A \in M_n(\mathbb{R})$ é matriz anti-simétrica e n é impar, então detA = 0.

- (ii) Se $A \in M_n(\mathbb{C})$ é matriz hermitiana, então det $A \in \mathbb{R}$.
- (iii) Se $A \in M_n(\mathbb{R})$ é matriz ortogonal, então detA = 1 ou detA = -1.
- (iv) Se $A \in M_n(\mathbb{C})$ é matriz unitária, então detA = 1 ou detA = -1.

Demonstração:

(i) $A \in M_n(\mathbb{R})$ é anti-simétrica se, e somente se, $A^T = -A$. Logo,

$$\det A^T = \det(-A) \stackrel{D_3 \in D_6}{\Longrightarrow} \det A = (-1)^n \cdot \det A \stackrel{n \text{ \'e impar}}{\Longrightarrow} \det A = -\det A \Longleftrightarrow \det A = 0.$$

(ii) $A \in M_n(\mathbb{C})$ é hermitiana se, e somente se, $A = A^* = \overline{A}^T$. Logo,

$$\det A = \det A^* = \det(\overline{A}^T) \stackrel{D_3}{=} \det \overline{A} \stackrel{D_8}{=} \overline{\det A} \iff \det A \in \mathbb{R}.$$

(iii) $A \in M_n(\mathbb{R})$ é ortogonal se, e somente se, $A \cdot A^T = I_n$. Logo,

$$\det(A \cdot A^T) = \det I_n = 1 \xrightarrow{Teo.1.2.14} \det A \cdot \det A^T = 1 \xrightarrow{D_1} (\det A)^2 = 1.$$

Portanto, det A = 1 ou det A = -1.

(iv) $A \in M_n(\mathbb{C})$ é unitária se, e somente se, $A \cdot A^* = I_n$. Logo,

$$\det(A \cdot A^*) = \det I_n = 1 \stackrel{Teo.1.2.14}{\Longrightarrow} \det A \cdot \det A^* = 1 \iff \det A \cdot \det \overline{A}^T = 1$$
$$\stackrel{D_1}{\Longrightarrow} \det A \cdot \det \overline{A} = 1 \iff \det A \cdot \overline{\det A} = 1 \iff |\det A|^2 = 1.$$

Portanto, $\det A = 1$ ou $\det A = -1$.

1.3 Inversa de uma Matriz

Sabemos que multiplicação dos números reais ou complexos tem elemento neutro, o número 1, que também satisfaz a seguinte propriedade:

Se $a \in \mathbb{K}$ e $a \neq 0$, então existe $b \in \mathbb{K}$, $b \neq 0$ tal que $a \cdot b = 1$.

Denotamos o número b por $b=a^{-1}=\frac{1}{a}$ e este é chamado **inverso multiplicativo** de a.

Pela propriedade M_1 (a) da multiplicação de matrizes sabemos que dada A uma matriz quadrada de ordem n, temos:

$$A \cdot I_n = I_n \cdot A = A$$
,

ou seja, a matriz I_n , identidade de ordem n, é o **elemento neutro da multiplicação** em $M_n(\mathbb{R})$ ou $M_n(\mathbb{C})$.

Daí é natural perguntar:

Se A é uma matriz quadrada em $M_n(\mathbb{K})$, quando existe uma matriz $B \in M_n(\mathbb{K})$ tal que:

$$A \cdot B = B \cdot A = I_n. \tag{1.3.1}$$

Exemplos 1.3.1 Em cada um dos casos, verifique se existe uma matriz B quadrada de ordem 2 tal que $A \cdot B = B \cdot A = I_2$.

(a)
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$

Solução:

(a) Devemos encontrar uma matriz $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tal que

$$\left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array}\right] \cdot \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \cdot \left[\begin{array}{cc} 1 & 1 \\ 2 & 3 \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

$$\iff \begin{bmatrix} a+c & b+d \\ 2a+3c & 2b+3d \end{bmatrix} = \begin{bmatrix} a+2b & a+3b \\ c+2d & c+3d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\iff \begin{cases} a+c=1 \\ b+d=0 \\ 2a+3c=0 \\ 2b+3d=1 \end{cases} \text{ e } \begin{cases} a+2b=1 \\ a+3b=0 \\ c+2d=0 \\ c+3d=1 \end{cases} \iff \begin{cases} \begin{cases} a+c=1 \\ 2a+3c=0 \\ \\ b+d=0 \\ 2b+3d=1 \end{cases} \text{ e } \begin{cases} \begin{cases} a+2b=1 \\ a+3b=0 \\ \\ c+2d=0 \\ c+3d=1 \end{cases} \end{cases}.$$

Observemos que

$$\begin{cases} a+c=1\\ 2a+3c=0 \end{cases} \sim \begin{cases} 2a+2c=2\\ 2a+3c=0 \end{cases} \Rightarrow c=-2 \Rightarrow a=3$$

e $\left\{ \begin{array}{l} b+d=0\\ 2b+3d=1 \end{array} \sim \left\{ \begin{array}{l} 2b+2d=0\\ 2b+3d=1 \end{array} \right. \Rightarrow d=1 \Rightarrow b=-1.$

Por outro lado,

$$\left\{ \begin{array}{l} a+2b=1 \\ a+3b=0 \end{array} \right. \Rightarrow b=-1 \Rightarrow a=3 \quad \mathrm{e} \quad \left\{ \begin{array}{l} c+2d=0 \\ c+3d=1 \end{array} \right. \Rightarrow d=1 \Rightarrow c=-2.$$

Portanto, a matriz $B = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$ satisfaz a condição $A \cdot B = B \cdot A = I_2$.

(b) Devemos encontrar uma matriz $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tal que

$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\iff \begin{bmatrix} a-2c & b-2d \\ -2a+4c & -2b+4d \end{bmatrix} = \begin{bmatrix} a-2b & -a+4b \\ c-2d & -c+4d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow \left\{ \begin{array}{l} a-2c=1 \\ b-2d=0 \\ -2a+4c=0 \\ -2b+4d=1 \end{array} \right. \text{ e} \left\{ \begin{array}{l} a-2b=1 \\ -2a+4b=0 \\ c-2d=0 \\ -c+4d=1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a-2c=1 \\ -2a+4c=0 \\ c-2d=0 \\ -2b+4d=1 \end{array} \right. \text{ e} \left\{ \begin{array}{l} a-2b=1 \\ -2a+4b=0 \\ c-2d=0 \\ -2b+4d=1 \end{array} \right. .$$

Observemos que o sistema $\begin{cases} a-2c=1 \\ -2a+4c=0 \end{cases}$ não tem solução, pois

$$\begin{cases} a-2c=1 \\ -2a+4c=0 \end{cases} \sim \begin{cases} 2a-4c=2 \\ -2a+4c=0 \end{cases} \Rightarrow 0=2,$$

um absurdo!

Portanto, neste caso, não existe uma matriz B, quadrada de ordem 2, que satisfaça a condição $A \cdot B = B \cdot A = I_2$.

Observação 1.3.2 Os exemplos acima nos mostram que há casos em que resposta à pergunta da equação 1.3.1 é afirmativa e outros em que não.

Antes estabelecer uma condição necessária para a existência da matriz *B* que satisfaça 1.3.1 introduziremos mais alguns conceitos.

1.3.1 Matriz Adjunta e a Inversa

Definição 1.3.1 Seja A uma matriz quadrada em $M_n(\mathbb{K})$, a **matriz adjunta** de A, denotada por adj(A), é a transposta da matriz cofatora de A, ou seja,

$$adj(A) = (cof(A))^{T}.$$

Teorema 1.3.3 Se A é uma matriz quadrada em $M_n(\mathbb{K})$, então

$$A \cdot \operatorname{adj}(A) = \operatorname{adj}(A) \cdot A = \det A \cdot I_n.$$

Demonstração: Vamos fazer a demonstração para n = 3, os outros casos são análogos.

Calculando c_{12} :

$$c_{12} = a_{11}\Delta_{21} + a_{12}\Delta_{22} + a_{13}\Delta_{23}$$

$$= a_{11}(a_{13}a_{32} - a_{12}a_{33}) + a_{12}(a_{11}a_{33} - a_{13}a_{31}) + a_{13}(a_{12}a_{31} - a_{11}a_{32})$$

$$= a_{11}a_{13}a_{32} - a_{11}a_{12}a_{33} + a_{12}a_{11}a_{33} - a_{12}a_{13}a_{31} + a_{13}a_{12}a_{31} - a_{13}a_{11}a_{32} = 0.$$

Com cálculos similares concluímos que $c_{13} = c_{21} = c_{23} = c_{31} = c_{32} = 0$.

Logo,

$$A \cdot \operatorname{adj} (A) = \begin{bmatrix} \det A & 0 & 0 \\ 0 & \det A & 0 \\ 0 & 0 & \det A \end{bmatrix} = \det A \cdot I_3.$$

Analogamente mostramos que adj $(A) \cdot A = \det A \cdot I_3$

Corolário 1.3.4 Se A é uma matriz quadrada em $M_n(\mathbb{K})$ e det $A \neq 0$, então

$$A \cdot \left(\frac{1}{\det A} \operatorname{adj}(A)\right) = \left(\frac{1}{\det A} \operatorname{adj}(A)\right) \cdot A = I_n.$$

Definição 1.3.2 Seja A uma matriz quadrada em $M_n(\mathbb{K})$, dizemos que A é **invertível** se, e somente se, existe *B* matriz quadrada em $M_n(\mathbb{K})$ tal que

$$A \cdot B = B \cdot A = I_n$$

 $A \cdot B = B \cdot A = I_n.$ A matriz B é chamada **matriz inversa** de A e denotada por A^{-1} , assim,

$$A \cdot A^{-1} = A^{-1} \cdot A = I_n.$$

Exemplo 1.3.5 A matriz
$$A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
 é invertível e sua inversa é a matriz $A^{-1} = \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix}$.

Teorema 1.3.6 Uma matriz quadrada A em $M_n(\mathbb{K})$ é invertível se, e somente se, $\det A \neq 0$.

Além disso, se existe A^{-1} , então

$$A^{-1} = \frac{1}{\det A} \cdot \operatorname{adj}(A).$$

Demonstração:

Se A é invertível, então $A \cdot A^{-1} = I_n$, logo

$$\det(A \cdot A^{-1}) = \det I_n = 1 \xrightarrow{Teo.1.2.14} \det A \cdot \det A^{-1} = 1 \Longrightarrow \det A \neq 0.$$

Reciprocamente, se $\det A \neq 0$, pelo Corolário 1.3.4 e a Definição 1.3.2, A é invertível e

$$A^{-1} = \frac{1}{\det A} \cdot \operatorname{adj}(A).$$

Exemplos 1.3.7 Verifique, em cada um dos casos abaixo, se a matriz *A* é invertível, em caso afirmativo determine sua inversa.

(a)
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 3 & -1 & 1 & 2 \\ 2 & -1 & 0 & 1 \end{bmatrix}$; (c) $A = \begin{bmatrix} 5 & -1 & 2 & -3 \\ 7 & 0 & -8 & 11 \\ 12 & -9 & 4 & -21 \\ -15 & 3 & -6 & 9 \end{bmatrix}$.

Solução:

(a) Vimos na seção 1.2 que $\det A = -1 \neq 0$, portanto A é invertível.

Devemos determinar adj (A).

$$adj (A) = \begin{bmatrix} \Delta_{11} & \Delta_{21} & \Delta_{31} \\ \Delta_{12} & \Delta_{22} & \Delta_{32} \\ \Delta_{13} & \Delta_{23} & \Delta_{33} \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 2 & -1 \\ 1 & -4 & 1 \end{bmatrix}.$$

Logo,

$$A^{-1} = \frac{1}{-1} \cdot \begin{bmatrix} -1 & 1 & 0 \\ 0 & 2 & -1 \\ 1 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ -1 & 4 & -1 \end{bmatrix}.$$

(b) Vimos na seção 1.2 que $\det A = -6 \neq 0$, portanto A é invertível.

Devemos determinar adj (A).

$$adj (A) = \begin{bmatrix} \Delta_{11} & \Delta_{21} & \Delta_{31} & \Delta_{41} \\ \Delta_{12} & \Delta_{22} & \Delta_{32} & \Delta_{42} \\ \Delta_{13} & \Delta_{23} & \Delta_{33} & \Delta_{43} \\ \Delta_{14} & \Delta_{24} & \Delta_{34} & \Delta_{44} \end{bmatrix} = \begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & -3 & 0 & 3 \\ 2 & 3 & -10 & 11 \\ -4 & -3 & 8 & -7 \end{bmatrix}.$$

Logo,

$$A^{-1} = -\frac{1}{6} \cdot \begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & -3 & 0 & 3 \\ 2 & 3 & -10 & 11 \\ -4 & -3 & 8 & -7 \end{bmatrix}.$$

(c) Como $L_3 = -3L_1$, logo pela propriedade D_3 de determinantes, temos detA = 0. Portanto, A não é invertível.

1.3.2 Propriedades da Matriz Inversa

Sejam A e B quadradas em $M_n(\mathbb{K})$, valem as seguintes propriedades:

 MI_1 Se A é invertível, então sua inversa é única.

 MI_2 Se A e B são invertíveis então, $A \cdot B$ também o é.

 MI_3 Se A é invertível, então A^T , a transposta de A, também é invertível com inversa $\left(A^T\right)^{-1} = \left(A^{-1}\right)^T$.

 MI_4 Se A é invertível e $\lambda \in \mathbb{K}^*$, então A^{-1} , a inversa de A, também é invertível.

 MI_5 Se A é invertível e $\lambda \in \mathbb{K}^*$, então $\lambda \cdot A$ é invertível, com inversa $(\lambda \cdot A)^{-1} = \frac{1}{\lambda} \cdot A^{-1}$.

 MI_6 Se $D=[d_{ij}]_{n\times n}$ é uma matriz diagonal com $d_{ii}\neq 0$ para todo $i\in\{1,\cdots,n\}$, então D é invertível e $D^{-1}=[e_{ij}]_{n\times n}$ é matriz diagonal com $e_{ii}=\frac{1}{d_{ii}}$.

 MI_7 Se $A \in M_n(\mathbb{C})$ é invertível, então \overline{A} , a conjugada de A também é invertível, com inversa $\overline{A}^{-1} = \overline{A^{-1}}$.

 MI_8 (a) Se existe $B \in M_n(\mathbb{K})$ tal que $A \cdot B = I_n$, então A é invertível.

(b) Se existe $C \in M_n(\mathbb{K})$ tal que $B \cdot A = I_n$, então A é invertível.

Verificação:

 MI_1 Se existissem $B \in C$ tais que $A \cdot B = A \cdot C = I_n$, multiplicando a igualdade $A \cdot C = I_n$ por B à esquerda obtemos

$$B \cdot (A \cdot C) = B \cdot I_n \iff \underbrace{(B \cdot A)}_{I_n} \cdot C = B \iff C = B.$$

 MI_2 Se A e B são invertíveis então, $\det A \neq 0$ e $\det B \neq 0$.

Logo, $\det(A \cdot B) = \underbrace{\det A}_{\neq 0} \cdot \underbrace{\det B}_{\neq 0} \neq 0$ e portanto $A \cdot B$ é invertível.

Além disso,

$$(A \cdot B) \cdot (B^{-1} \cdot A^{-1}) = A \cdot \underbrace{(B \cdot B^{-1})}_{I_n} \cdot A^{-1} = A \cdot A^{-1} = I_n.$$

Analogamente, $(B^{-1} \cdot A^{-1}) \cdot (A \cdot B) = I_n$.

Portanto, $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$.

 MI_3 Se A é invertível, então $\det A \neq 0$, como $\det A^T = \det A$, então $\det A^T \neq 0$ e A^T é invertível.

Como,

$$A \cdot A^{-1} = I_n \Longrightarrow (A \cdot A^{-1})^T = I_n^T \xrightarrow{T_4} (A^{-1})^T \cdot A^T = I_n.$$

Analogamente, $A^T \cdot (A^{-1})^T = I_n$.

Portanto, $(A^T)^{-1} = (A^{-1})^T$.

 MI_4 Se A é invertível, então $\det A^{-1} = \frac{1}{\det A} \neq 0$, portanto A^{-1} também o é invertível e segue da Definição 1.3.2 $(A^{-1})^{-1} = A$.

 MI_5 Como $\lambda \neq 0$, então

$$(\lambda \cdot A) \cdot \left(\frac{1}{\lambda} \cdot A^{-1}\right) = \lambda \cdot \frac{1}{\lambda} \cdot (A \cdot A^{-1}) = I_n.$$

Portanto, $\lambda \cdot A$ é invertível e $(\lambda \cdot A)^{-1} = \frac{1}{\lambda} \cdot A^{-1}$.

MI₆ Como

$$\begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & d_{nn} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{d_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \frac{1}{d} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

e

$$\begin{bmatrix} \frac{1}{d_{11}} & 0 & \cdots & 0 \\ 0 & \frac{1}{d_{22}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \frac{1}{d_{-}} \end{bmatrix} \cdot \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & d_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Portanto, D é invertível e $D^{-1} = [e_{ij}]_{n \times n}$ matriz diagonal com $e_{ii} = \frac{1}{d_{ii}}$.

MI₇ Demonstração análoga à da propriedade MI₃.

 MI_8 (a) Basta observar que se $A \cdot B = I_n$, então

$$\det(A \cdot B) = \det I_n = 1 \stackrel{Teo.1.2.14}{\Longrightarrow} \det A \cdot \det B = 1 \Longrightarrow \det A \neq 0.$$

Portanto, pelo Teorema 1.3.6 a matriz A é invertível, com inversa $A^{-1} = \frac{1}{\det A} \cdot \operatorname{adj}(A)$.

(b) Verifica-se de maneira análoga ao item anterior.

Proposição 1.3.8 (i) Se $A \in M_n(\mathbb{R})$ é matriz ortogonal, então A é invertível e $A^{-1} = A^T$.

(ii) Se $A \in M_n(\mathbb{C})$ é matriz unitária, então A é invertível e $A^{-1} = A^*$.

Demonstração:

- (i) Observemos que $A \in M_n(\mathbb{R})$ é matriz ortogonal se, e somente se, $A \cdot A^T = I_n$, consequentemente A é invertível e $A^{-1} = A^T$.
- (ii) $A \in M_n(\mathbb{C})$ é unitária se, e somente se, $A \cdot A^* = I_n$ e portanto, A é invertível e $A^{-1} = A^*$.

Observação 1.3.9 O exemplo 1.3.7 (b) nos mostra que a obtenção da inversa usando o teorema 1.3.6 não é eficiente, pois são necessários muitos cálculos.

Vamos introduzir um outro mecanismo para determinar a inversa de uma matriz quadrada, quando esta existe.

1.4 Matriz na Forma Escalonada e na Forma Escada

Proposição 1.4.1 As matrizes elementares são invertíveis tais que:

$$\left(E_{i\leftrightarrow j}^{m}\right)^{-1}=E_{i\leftrightarrow j}^{m}, \qquad \left(E_{i\to\kappa i}^{m}\right)^{-1}=E_{i\to\frac{1}{\kappa}i}^{m} \qquad \text{e} \qquad \left(E_{i\to i+\kappa j}^{m}\right)^{-1}=E_{i\to i-\kappa j}^{m},$$

com $\kappa \in \mathbb{K}^*$, as inversas também matrizes elementares.

Demonstração:

Pelo corolário 1.2.9 as matrizes elementares são invertíveis pois têm determinante não nulos.

Da definição de matrizes elementares, segue ainda que suas inversas são dadas por:

$$\left(E^m_{i\leftrightarrow j}\right)^{-1} = E^m_{i\leftrightarrow j} \quad \left(E^m_{i\to\kappa i}\right)^{-1} = E^m_{i\to\frac{1}{\kappa}i} \quad \text{e} \quad \left(E^m_{i\to i+\kappa j}\right)^{-1} = E^m_{i\to i-\kappa j},$$

 $\kappa \in \mathbb{K}^*$, também matrizes elementares.

No que segue vamos indicar por E_k^n matriz elementar associada a matriz identidade I_n , independentemente da operação elementar utilizada.

Observação 1.4.2 A proposição 1.4.1 nos garante que as operações elementares são reversíveis, ou seja, cada operação elementar pode ser "desfeita" por meio de uma operação elementar reversa.

De fato, dadas A em $M_{m \times n}(\mathbb{K})$ e E_k^n uma matriz elementar, então $B = E_k^m \cdot A$ é a matriz obtida de A pela operação elementar de E_k^m e

$$(E_k^m)^{-1} \cdot B = (E_k^m)^{-1} \cdot (E_k^m \cdot A) = \underbrace{((E_k^m)^{-1} \cdot E_k^m)}_{=I_m} \cdot A = I_m \cdot A = A.$$

1.4.1 Matriz Linha Equivalente

Dada uma matriz A em $M_{m \times n}(\mathbb{K})$, dizemos que B é uma **matriz linha equivalente** a A se, somente se, B é obtida efetuando um número finito de operações elementares sobre as linhas de A.

Logo, B é matriz linha equivalente a A, então

$$B = E_k^m \cdot \ldots \cdot E_2^m \cdot E_l^m \cdot A.$$

Notação: $A \sim B$.

Exemplo 1.4.3 Nos exemplos 1.1.48 temos $A \sim B$, $A \sim C$ e $A \sim D$.

Observações 1.4.4 (a) Em alguns momentos diremos simplesmente que *A* e *B* são equivalentes nos referindo a linha-equivalentes.

(b) Dada A uma matriz quadrada em $M_n(\mathbb{K})$, se A é uma matriz invertível e B é linha equivalente a A, então B também é invertível.

- 55
- (c) A relação \sim em $M_{m\times n}(\mathbb{K})$, "é linha equivalente a" é uma relação de equivalência, ou seja,
 - (i) $A \sim A$, para toda $A \in M_{m \times n}(\mathbb{K})$, pois $A = I_m \cdot A$ e I_m é uma matriz elementar. Portanto, \sim é reflexiva.
 - (ii) Dados A e B em $M_{m \times n}(\mathbb{K})$, se $A \sim B$, então

$$B = E_k^m \cdot \ldots \cdot E_2^m \cdot E_1^m \cdot A \Longrightarrow A = (E_1^m)^{-1} \cdot (E_2^m)^{-1} \cdot \ldots \cdot (E_k^m)^{-1} \cdot B,$$

como as matrizes inversas $(E_l^m)^{-1}$ também são elementares segue $B \sim A$.

Logo, \sim é simétrica.

(iii) Dados A, B e C em $M_{m \times n}(\mathbb{K})$, se $A \sim B$ e $B \sim C$, então

$$B = E_{r_k}^m \cdot \ldots \cdot E_{r_1}^m \cdot A \quad \text{e} \quad C = E_{s_l}^m \cdot \ldots \cdot E_{s_1}^m \cdot B \Longrightarrow C = E_{s_l}^m \cdot \ldots \cdot E_{s_1}^m \cdot E_{r_k}^m \cdot \ldots \cdot E_{r_1}^m \cdot A,$$

portanto $A \sim C$.

Logo, \sim é transitiva.

1.4.2 Matriz na Forma Escalonada

Definição 1.4.1 Uma matriz A em $M_{m \times n}(\mathbb{K})$ está na **forma escalonada** se satisfaz as seguintes condições:

(1) As linhas não-nulas de A estão acima de qualquer linha nula de A, ou seja, as linhas nulas estão agrupadas nas últimas linhas da matriz.

Em outras palavras, se L_i é linha nula, então as linhas L_k , com k > i, são todas linhas nulas.

(2) O primeiro elemento não-nulo de uma linha de *A* ocorre mais à direita do primeiro elemento não-nulo da linha anterior de *A*.

Em outras palavras, se $a_{ij} \neq 0$ e i > 1, existe algum k, com k < j, tal que $a_{(i-1)k} \neq 0$.

Exemplos 1.4.5 (a) A matriz
$$A = \begin{bmatrix} 1 & -5 & 2 & -4 & 0 \\ 0 & 0 & -3 & 1 & 9 \\ 0 & 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 está na forma escalonada.

- (b) A matriz $A = \begin{bmatrix} 5 & -1 & 7 \\ 0 & 0 & 0 \\ 0 & -9 & 4 \\ 0 & 0 & 3 \end{bmatrix}$ não está na forma escalonada, pois falha a condição (1).
- (c) A matriz $A = \begin{bmatrix} 1 & 2 & -2 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ não está na forma escalonada, pois entre as linhas L_3 e L_2 falha a condição (2).

1.4.3 Matriz na Forma Escalonada Reduzida ou na Forma Escada

Definição 1.4.2 Uma matriz A em $M_{m \times n}(\mathbb{K})$ está na **forma escalonada reduzida** ou na **forma escada** se está na forma escalonada e satisfaz as demais condições:

- (3) O primeiro elemento não-nulo de cada linha não-nula de A é o número 1. Em outras palavras, se $a_{ij} \neq 0$ e $(j = 1 \text{ ou } a_{ik} = 0 \text{ para } k < j)$, então $a_{ij} = 1$.
- (4) O primeiro elemento não-nulo de uma linha é o único elemento não-nulo de sua coluna. Em outras palavras, se $a_{ij} \neq 0$ e $(j = 1 \text{ ou } a_{ik} = 0 \text{ para } k < j)$, então $a_{lj} = 0$ para todo $l \neq i$.

Exemplos 1.4.6 (a) A matriz
$$A = \begin{bmatrix} 1 & -5 & 0 & 0 & 7 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 está na forma escada.

- (b) A matriz $A = \begin{bmatrix} 5 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 \end{bmatrix}$ não está na forma escalonada, pois falha a condição (3) na primeira linha.
- (c) A matriz $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$ não está na forma escalonada, pois falha a condição (4) na terceira coluna

Teorema 1.4.7 ([Boldrini]) Toda matriz é equivalente a uma única matriz na forma escada.

Observações 1.4.8 (a) Dada uma matriz *A* a sua equivalente na forma escada, é chamada também de sua **reduzida à forma escada**.

- (b) O teorema acima nos diz que podemos transformar qualquer matriz, efetuando um número finito de operações elementares, em uma matriz na forma escada.
- (c) Se A é uma matriz em $M_n(\mathbb{K})$ invertível, a forma escada de A é I_n , matriz identidade de ordem n.
- (d) Nas definições acima utilizamos operações elementares sobre as linhas da matriz A, analogamente definimos operações elementares sobre as colunas de A.

1.4.4 Matriz Inversa através de Operações Elementares

Vimos que se A é uma matriz em $M_n(\mathbb{K})$ invertível, então ao efetuarmos operações elementares em A a matriz obtida também é invertível. invertíveis.

O próximo teorema nos fornece um mecanismo para obter a inversa de uma matriz utilizando operações elementares.

Teorema 1.4.9 ([**Boldrini**]) Uma matriz A em $M_n(\mathbb{K})$ é invertível se, e somente se, $A \sim I_n$, ou seja, A é uma matriz invertível se, e somente se, a forma reduzida de A é a matriz identidade I_n .

Além disso, efetuando na identidade I_n a mesma sequência de operações elementares que transformou A em I_n obtém-se a inversa de A.

Exemplos 1.4.10 Obtenha, em cada um dos casos abaixo, a inversa da matriz *A* utilizando operações elementares sobre as linhas.

(a)
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 1 & -1 & 2 & 3 \\ 2 & 1 & 0 & 1 \\ 3 & -1 & 1 & 2 \\ 2 & -1 & 0 & 1 \end{bmatrix}$.

Solução:

Logo,

$$A^{-1} = \left[\begin{array}{rrr} 1 & -1 & 0 \\ 0 & -2 & 1 \\ -1 & 4 & -1 \end{array} \right],$$

este resultado coincide com o que obtivemos calculando o determinante pela adjunta.

Logo,

$$A^{-1} = \begin{bmatrix} -\frac{1}{3} & 0 & \frac{2}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{3} & -\frac{1}{2} & \frac{5}{3} & -\frac{11}{6} \\ \frac{2}{3} & \frac{1}{2} & -\frac{4}{3} & \frac{7}{6} \end{bmatrix} = -\frac{1}{6} \begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & -3 & 0 & 3 \\ 2 & 3 & -10 & 11 \\ -4 & -3 & 8 & -7 \end{bmatrix},$$

este resultado coincide com o que obtivemos calculando o determinante pela adjunta.

2.1 Sistemas de Equações Lineares

Definição 2.1.1 Uma equação da forma

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

é uma **equação linear** em \mathbb{R} ou em \mathbb{C} nas variáveis x_1, x_2, \dots, x_n , reais ou complexas, com coeficientes a_1, a_2, \dots, a_n e termo independente b números reais ou números complexos.

Exemplos 2.1.1 (a) As equações 2x + 4y = -3 e x - 7y = 4z - 6 = 0 são equações lineares.

(b) A equação $\cos x + 3y - z = 7$ não é uma equação linear.

Os valores das variáveis que transformam a equação linear em identidade, constituem suas soluções.

Exemplo 2.1.2 Para a equação linear 2x + 4y - 3z = 5 os valores x = 0, y = 2 e z = 1 constituem uma solução, assim como x = -3, y = -1 e z = -5 também.

2.1.1 Sistemas de Equações Lineares

Definição 2.1.2 Um **sistema linear** real ou complexo é um sistema em que todas as equações são lineares reais ou complexas, ou seja é um sistema do tipo:

nas **variáveis** x_1, x_2, \dots, x_n , com **coeficientes** $a_{11}, a_{12}, \dots, a_{1n}, a_{21}, a_{22}, \dots, a_{2n}, \dots a_{m1}, a_{m2}, \dots, a_{mn}$ e b_1, b_2, \dots, b_m **termos independentes** números reais ou números complexos.

Matricialmente temos:

$$S: \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}}_{B},$$

 $\begin{cases} A \text{ a matriz dos coeficientes de } S \\ \\ X \text{ a matriz das variáveis de } S \\ \\ B \text{ a matriz dos termos independentes de } S \end{cases}$

Matriz Ampliada de um Sistema Linear

Definição 2.1.3 A matriz:

$$A_{M} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & | & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & | & b_{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & | & b_{m} \end{bmatrix}$$

é chamada matriz ampliada do sistema S.

2.1.2 Solução de um Sistema Linear

Definição 2.1.4 Uma **solução de um sistema linear** real ou complexo

$$S: \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ + \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

$$(2.1.1)$$

em *n* variáveis, é uma *n*-upla de números reais ou complexos $(\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{K}^n$ que ao serem substituídas, respectivamente, nas variáveis x_1, x_2, \dots, x_n , todas as *m* equações se verificam.

A solução pode ser dada na forma $\begin{cases} x_1 = \lambda_1 \\ x_2 = \lambda_2 \\ \vdots \\ x_n = \lambda_n \end{cases}$ ou na forma $(\lambda_1, \lambda_2, \dots, \lambda_n)$.

O **conjunto solução** de S, indicado por Sol(S) é o conjunto de todas n-uplas $(\lambda_1, \lambda_2, \dots, \lambda_n)$ soluções de S, ou seja,

$$Sol(S) = {\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{K}^n; \lambda \text{ \'e soluç\~ao de } S}.$$

Exemplo 2.1.3
$$\begin{cases} x = 3 \\ y = -2 \end{cases} \text{ \'e uma solução do sistema } S : \begin{cases} x + 4y + 3z = 1 \\ 2x + 5y + 4z = 4 \end{cases}, \text{ pois } \\ x - 3y - 2z = 5 \end{cases}$$
$$3 + 4 \times (-2) + 3 \times 2 = 3 - 8 + 6 = 1$$
$$2 \times 3 + 5 \times (-2) + 4 \times 2 = 6 - 10 + 8 = 4 .$$
$$3 - 3 \times (-2) - 2 \times 2 = 3 + 6 - 4 = 5$$

Proposição 2.1.4 Se um sistema linear S como 2.1.1 em $\mathbb{K} = \mathbb{R}, \mathbb{C}$ tem mais do que uma solução, então S tem infinitas soluções.

Demonstração: Sejam $(\lambda_1, \lambda_2, \dots, \lambda_n)$ e $(\mu_1, \mu_2, \dots, \mu_n)$ soluções distintas do sistema linear 2.1.1, mostremos que $(\eta_1, \eta_2, \dots, \eta_n)$, com $\eta_i = \alpha \lambda_i + (1 - \alpha)\mu_i$, $\alpha \in \mathbb{K}$ e $\alpha \neq 1$, também é solução de 2.1.1.

De fato, como $(\lambda_1, \lambda_2, \dots, \lambda_n)$ e $(\mu_1, \mu_2, \dots, \mu_n)$ são soluções do sistema, então:

$$\begin{cases} a_{11}\lambda_1 + a_{12}\lambda_2 + \dots + a_{1n}\lambda_n &= b_1 \\ a_{21}\lambda_1 + a_{22}\lambda_2 + \dots + a_{2n}\lambda_n &= b_2 \\ \vdots \\ a_{m1}\lambda_1 + a_{m2}\lambda_2 + \dots + a_{mn}\lambda_n &= b_m \end{cases} \qquad \begin{cases} a_{11}\mu_1 + a_{12}\mu_2 + \dots + a_{1n}\mu_n &= b_1 \\ a_{21}\mu_1 + a_{22}\mu_2 + \dots + a_{2n}\mu_n &= b_2 \\ \vdots \\ a_{m1}\mu_1 + a_{m2}\mu_2 + \dots + a_{mn}\mu_n &= b_m \end{cases}$$

Logo,

$$\begin{cases} a_{11}\eta_1 + a_{12}\eta_2 + \dots + a_{1n}\eta_n \\ a_{21}\eta_1 + a_{22}\eta_2 + \dots + a_{2n}\eta_n \\ \vdots \\ a_{m1}\eta_1 + a_{m2}\eta_2 + \dots + a_{mn}\eta_n \end{cases}$$

$$= \begin{cases} a_{11}(\alpha\lambda_{1} + (1-\alpha)\mu_{1}) + a_{12}(\alpha\lambda_{2} + (1-\alpha)\mu_{2}) + \dots + a_{1n}(\alpha\lambda_{n} + (1-\alpha)\mu_{n}) \\ a_{21}(\alpha\lambda_{1} + (1-\alpha)\mu_{1}) + a_{22}(\alpha\lambda_{2} + (1-\alpha)\mu_{2}) + \dots + a_{2n}(\alpha\lambda_{n} + (1-\alpha)\mu_{n}) \\ \vdots \\ a_{m1}(\alpha\lambda_{1} + (1-\alpha)\mu_{1}) + a_{m2}(\alpha\lambda_{2} + (1-\alpha)\mu_{2}) + \dots + a_{mn}(\alpha\lambda_{n} + (1-\alpha)\mu_{n}) \end{cases}$$

$$= \begin{cases} \alpha(a_{11}\lambda_{1} + a_{12}\lambda_{2} + \dots + a_{1n}\lambda_{n}) + (1-\alpha)(a_{11}\mu_{1} + a_{12}\mu_{2} + \dots + a_{1n}\mu_{n}) \\ \alpha(a_{21}\lambda_{1} + a_{22}\lambda_{2} + \dots + a_{2n}\lambda_{n}) + (1-\alpha)(a_{21}\mu_{1} + a_{22}\mu_{2} + \dots + a_{2n}\mu_{n}) \\ \vdots \\ \alpha(a_{m1}\lambda_{1} + a_{m2}\lambda_{2} + \dots + a_{mn}\lambda_{n}) + (1-\alpha)(a_{m1}\mu_{1} + a_{m2}\mu_{2} + \dots + a_{mn}\mu_{n}) \end{cases}$$

$$= \begin{cases} \alpha b_{1} + (1-\alpha)b_{1} \\ \alpha b_{2} + (1-\alpha)b_{2} \\ \vdots \\ \alpha b_{m} + (1-\alpha)b_{m} \end{cases} \begin{cases} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{cases}$$

Portanto, $(\eta_1, \eta_2, \cdots, \eta_n)$ também é solução de 2.1.1, como podemos tomar todo $\alpha \in \mathbb{K}$, com $\alpha \neq 1$, segue que existem infinitas n-uplas $(\eta_1, \eta_2, \cdots, \eta_n)$, consequentemente o sistema linear 2.1.1 tem infinitas soluções.

2.1.3 Classificação de Sistemas de Equações Lineares

Classificamos um sistema linear quanto às soluções da seguinte maneira:

Sistemas Lineares Compatíveis

Definição 2.1.5 Dizemos que um sistema linear é **compatível** quando admite alguma solução, dentre os sistemas lineares compatíveis temos:

- (i) Os sistemas lineares possíveis determinados, que são aqueles que admitem uma única solução.
- (ii) Os sistemas lineares **possíveis indeterminados**, que são aqueles que admitem infinitas soluções.

Exemplos 2.1.5 (a)
$$S:$$

$$\begin{cases} x + 4y + 3z = 1 \\ 2x + 5y + 4z = 4 \\ x - 3y - 2z = 5 \end{cases}$$
 nado, pois tem uma única solução:
$$\begin{cases} x = 3 \\ y = -2 \\ z = 2 \end{cases}$$

(b)
$$S: \begin{cases} x + 2y + z + w = 0 \\ x + 3y - z + 2w = 0 \end{cases}$$
, é um sistema linear compatível indeterminado, pois tem infinitas soluções dadas por $\begin{cases} x = -5z + w \\ y = 2z - w \end{cases}$, com z e w variando nos números reais, por exemplo $\begin{cases} x = -6 \\ y = 3 \\ z = 1 \end{cases}$ é uma solução do sistema. $w = -1$

Sistemas Lineares Incompatíveis

Definição 2.1.6 Dizemos que um sistema linear é **incompatível** quando não admite solução.

Exemplo 2.1.6 O sistema linear é incompatível
$$S$$
:
$$\begin{cases} 2x + 3y = 4 \\ x + y = 6 \end{cases}$$
, pois não admite solução, $3x - 4y = 0$ já que das três equações tiramos que $-8 = y = \frac{18}{7}$, um absurdo!

2.1.4 Sistema Linear Homogêneo

Definição 2.1.7 Dizemos que um sistema linear é um **sistema homogêneo** quando todos os termos independentes são iguais a zero.

Exemplo 2.1.7 O sistema
$$S: \begin{cases} 2x + 3y - 9z = 0 \\ 5x - 8y + 7z = 0 \end{cases}$$
 é homogêneo.

Observação 2.1.8 Todo sistema linear homogêneo admite pelo menos uma solução, que é aquela em que todas as variáveis são iguais a zero, esta solução é chamada **solução trivial**.

Portanto, um sistema homogêneo é um sistema compatível determinado ou um sistema compatível indeterminado.

No exemplo acima a solução trivial é x = y = z = 0.

2.1.5 Sistemas Equivalentes

Definição 2.1.8 Dois sistemas lineares S e S' são **equivalentes** se, e somente se, toda solução de S' é solução de S' e toda solução de S' é solução de S.

Exemplos 2.1.9 (a)
$$S: \begin{cases} x + 4y + 3z = 1 \\ 2x + 5y + 4z = 4 \\ x - 3y - 2z = 5 \end{cases}$$
 e $S': \begin{cases} x + 4y + 3z = 1 \\ - 3y - 2z = 2 \\ 7y + 5z = -4 \end{cases}$ são equivalentes, pois a única solução de S e de S' é $\begin{cases} x = 3 \\ y = -2 \\ z = 2 \end{cases}$

(b)
$$S: \begin{cases} x + 2y + z + w = 0 \\ x + 3y - z + 2w = 0 \end{cases}$$
 e $S': \begin{cases} x + y + z + w = 0 \\ x + y + z - 2w = 0 \end{cases}$ não são equivalentes, pois
$$\begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$
 é solução de S e de S' , no entanto
$$\begin{cases} x = -6 \\ y = 3 \\ z = 1 \end{cases}$$
 é solução de S , mas não é solução de S' .

2.1.6 Operações Elementares sobre as Equações de um Sistema Linear

As operações elementares que vimos para matrizes também serão utilizadas em sistemas lineares, neste caso são:

- OE_1 Permutação de duas equações, ou seja, permutamos uma i-ésima equação e uma j-ésima equação. **Notação:** $E_i \longleftrightarrow E_j$.
- OE_2 Substituição de uma equação por ela previamente multiplicada por um número (real ou complexo) não nulo, ou seja, substituímos uma i-ésima equação por ela multiplicada por número não nulo κ .

Notação: $E_i \longrightarrow \kappa E_i$.

 OE_3 Substituição de uma equação por ela somada com outra equação previamente multiplicada por um número (real ou complexo) não nulo, ou seja, substituímos uma i-ésima equação por ela somada com uma j-ésima equação multiplicada por número não nulo κ .

Notação: $E_i \longrightarrow E_i + \kappa E_j$, com E_i a *i*-ésima equação do sistema linear.

Exemplos 2.1.10 Seja
$$S: \begin{cases} -x + 3y + 4z = 1 \\ 2x + y + 3z = -2 \\ 5x + 3z = -7 \end{cases}$$
, determine o sistema linear:

- (a) S' obtido de S pela operação elementar $E_2 \longleftrightarrow E_3$.
- (b) S'' obtida de S pela operação elementar $E_1 \longrightarrow (-2)E_1$.
- (c) S''' obtida de S pela operação elementar $E_2 \longrightarrow E_2 + 2E_1$.

Solução:

(a)
$$S': \begin{cases} -x + 3y + 4z = 1 \\ 5x + 3z = -7 \\ 2x + y + 3z = -2 \end{cases} E_2 \longleftrightarrow E_3$$
.

(b)
$$S'': \begin{cases} 2x - 6y - 8z = -2 & E_1 \longrightarrow (-2)E_1 \\ 2x + y + 3z = -2 \\ 5x + 3z = -7 \end{cases}$$

(a)
$$S': \begin{cases} -x + 3y + 4z = 1 \\ 5x + 3z = -7 \\ 2x + y + 3z = -2 \end{cases}$$

(b) $S'': \begin{cases} 2x - 6y - 8z = -2 \\ 2x + y + 3z = -2 \end{cases}$
(c) $S'': \begin{cases} -x + 3y + 4z = 1 \\ 7y + 11z = 0 \\ 5x + 3z = -7 \end{cases}$
(d) $E'': \begin{cases} -x + 3y + 4z = 1 \\ 7y + 11z = 0 \\ 5x + 3z = -7 \end{cases}$

Teorema 2.1.11 Dois sistemas lineares S e S' são equivalentes se, e somente se, S' pode ser obtido de S através de uma número finito de operações elementares sobre as equações de S.

2.2 Resolução de Sistemas Lineares

Posto e Nulidade de uma Matriz 2.2.1

Definição 2.2.1 Sejam *A* uma matriz e *B* a sua matriz equivalente na forma escada.

- (i) O posto de A, denotado por p(A), é o número de linhas não nulas de B.
- (ii) A $\operatorname{nulidade}$ de A, denotada por $\operatorname{null}(A)$, é a diferença entre o número de colunas de A e o posto de A, ou seja, null(A) = n - p(A).

Observações 2.2.1 (a) Para determinar o posto de uma matriz basta encontrar a sua forma escalonada, pois o número de linhas nulas da forma escalonada é igual ao da forma escada.

- (b) Note que $null(A) \ge 0$, de fato, pois $p(A) \le min\{m, n\} \le n$, consequentemente, $\operatorname{null}(A) = n - p(A) > 0.$
- (c) Dado $S: A \cdot X = B$ um sistema de equações lineares com m equações e n variáveis, em \mathbb{R} ou em \mathbb{C} , sendo p_c o posto de A matriz dos coeficientes de S e p_a o posto de A_M matriz ampliada de S, então $p_c \leq p_a$.

De fato, pois $p_c \leq \min\{m, n\}$ e $p_a \leq \min\{m+1, n\}$.

Proposição 2.2.2 Uma matriz $A \in M_n(\mathbb{K})$ é invertível se, e somente se, posto(A) = n é máximo.

Demonstração: Seja $A \in M_n(\mathbb{K})$, então

 $A
in invertível \iff \det A0 \xrightarrow{Teo.1.4.9} A
invertível <math>I_n \iff \operatorname{posto}(A) = n.$

Exemplos 2.2.3 Em cada caso determine o posto da matriz A e da matriz A_M :

(a)
$$A = \begin{bmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{bmatrix}$$
 e $A_M = \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix}$.

(b)
$$A = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 1 & 3 & -1 & 2 \end{bmatrix}$$
 e $A_M = \begin{bmatrix} 1 & 2 & 1 & 1 & | & 1 \\ 1 & 3 & -1 & 2 & | & -4 \end{bmatrix}$.

(c)
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 1 \\ 3 & -4 \end{bmatrix}$$
 e $A_M = \begin{bmatrix} 2 & 3 & | & 4 \\ 1 & 1 & | & 6 \\ 3 & -4 & | & 0 \end{bmatrix}$.

Solução:

(a) Com cálculo simples constatamos que $\det A = 1 \neq 0$, portanto a forma escada de A é $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Como 2 5 4 | 4
$$L_2 \longrightarrow L_2 - 2L_1 \sim 0$$
 -3 -2 | 2
1 -3 -2 | 0 $L_3 \longrightarrow L_3 - 3L_1 \sim 0$ -7 -5 | 1 $L_3 \longrightarrow 7L_2 - 3L_3$

segue que a forma escada de A_M é $\begin{bmatrix} 1 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & | & -8 \\ 0 & 0 & 1 & | & 11 \end{bmatrix}$.

Logo,
$$p(A) = p(A_M) = 3$$
.

(b) Como
$$\begin{bmatrix} 1 & 2 & 1 & 1 & | & 1 \\ 1 & 3 & -1 & 2 & | & -4 & L_2 \longrightarrow L_2 - L_1 \end{bmatrix}$$

segue que a forma escada de A é $\begin{bmatrix} 1 & 0 & 5 & -1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$ e a forma escada de A_M é $\begin{bmatrix} 1 & 0 & 5 & -1 & | & 11 \\ 0 & 1 & -2 & 1 & | & -5 \end{bmatrix}$.

Logo,
$$p(A) = p(A_M) = 2$$
.

(c) Como
$$\begin{vmatrix} 2 & 3 & | & 4 & & & 1 & 1 & | & 6 \\ 1 & 1 & | & 6 & L_1 \longleftrightarrow L_2 & \sim & 2 & 3 & | & 4 & L_2 \longleftrightarrow L_2 - 2L_1 \\ 3 & -4 & | & 0 & & & 3 & -4 & | & 0 & L_3 \longleftrightarrow L_3 - 3L_1 \end{vmatrix}$$

segue que a forma escada de
$$A \notin \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 e a forma escada de $A_M \notin \begin{bmatrix} 1 & 0 & | & 14 \\ 0 & 1 & | & -8 \\ 0 & 0 & | & -74 \end{bmatrix}$.

Logo,
$$p(A) = 2 e p(A_M) = 3$$
.

2.2.2 Teorema do Posto

Teorema 2.2.4 (Teorema do Posto)

Sejam $S: A \cdot X = B$ um sistema de equações lineares com m equações e n variáveis, em \mathbb{R} ou em \mathbb{C} , p_c o posto de A matriz dos coeficientes de S e p_a o posto de A_M matriz ampliada de S, então:

- (i) S admite solução se, e somente se, $p_c = p_a$.
- (ii) Se $p_c = p_a = n$, então S tem uma única solução.
- (iii) Se $p_a = p_c = k$ e k < n, então S tem infinitas soluções. Além disso, as soluções terão n k variáveis livres.

Demonstração: Sejam $A = [a_{ij}] \in M_{m \times n}(\mathbb{K})$ e $A_M = [a_{ij} \mid b_i] \in M_{m \times (n+1)}(\mathbb{K})$, a matriz dos coeficientes e a matriz ampliada de S, respectivamente, então $p_c \leq p_a$ e:

- (i) $p_c < p_a$ se, e somente se, a última linha não nula da forma escalonada reduzida da matriz ampliada é da forma $\begin{bmatrix} 0 & \cdots & 0 & b_k' \end{bmatrix}$ com $b_k' \neq 0$, com $k \leq m$, ou seja, $S \sim S'$ e S': $A' \cdot X = B'$, com A' matriz escalonada de A tendo a k-ésima de linha nula e b_k' uma constante não nula é a k-ésima de linha de B', levando à equação $0 = b_k'$, uma contradição.
- (ii) $p_c < p_a = n$ se, e somente se, $S \sim S'$, com S': $A' \cdot X = B'$ sistema linear que tem matriz dos coeficientes e a matriz ampliada associadas, ambas, na forma escalonada como abaixo:

$$S': \begin{bmatrix} 1 & c_{12} & \cdots & c_{1n} \\ 0 & 1 & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b'_1 \\ b'_2 \\ \vdots \\ b'_n \end{bmatrix},$$

cuja solução é $x_n = b'_n$, $x_{n-1} = b'_{n-1} - c_{n-1} \cdot x_n$, fazendo as sucessivas substituições obtemos a única solução de S' e de S.

(iii) $p_c < p_a = k < n$ se, e somente se, $S \sim S'$, com $S' : A' \cdot X = B'$ sistema linear que tem matriz dos

coeficientes e a matriz ampliada associadas, ambas, na forma escalonada como abaixo:

$$S': \begin{bmatrix} 1 & c_{12} & \cdots & c_{1k} & \cdots & c_{1n} \\ 0 & 1 & \cdots & c_{2k} & \cdots & c_{2n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & c_{kn} \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b'_1 \\ b'_2 \\ \vdots \\ b'_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Consequentemente, $x_k = b'_k - c_{k k+1} \cdot x_{k+1} - \cdots - c_{k n} \cdot x_n$, e portanto, as variáveis x_{k+1}, \cdots, x_n variam em \mathbb{R} . Fazendo as sucessivas substituições encontramos as expressões de x_1, \cdots, x_{k-1} que determinam as infinitas soluções de S' e S.

Observação 2.2.5 O número n-p do item (iii) do Teorema do Posto (2.2.4)é chamado **grau de liberdade** do sistema linear S.

Exemplos 2.2.6 Classifique os sistemas lineares abaixo em possível determinado, possível indeterminado e impossível utilizando o teorema do posto.

(a)
$$\begin{cases} x + 4y + 3z = 1 \\ 2x + 5y + 4z = 4 \\ x - 3y - 2z = 5 \end{cases}$$
 (b)
$$\begin{cases} x + 2y + z + t = 1 \\ x + 3y - z + 2t = -4 \end{cases}$$
;

(c)
$$\begin{cases} x + y + z + t = 0 \\ x + y + z - t = 4 \\ x + y - z + t = -4 \end{cases}$$
; (d)
$$\begin{cases} x - y + z = 3 \\ x - y - 3z = -3 \\ 3x + 3y - 5z = 0 \\ -x + y + z = 1 \end{cases}$$

Solução:

- (a) Do exemplo 2.2.3 (a) temos $p_a = p_c = 3$ = número de variáveis do sistema, portanto o sistema tem uma única solução, ou seja, é compatível determinado.
- (b) Do exemplo 2.2.3 (b) temos $p_a = p_c = 2$ < número de variáveis do sistema, portanto o sistema tem infinitas soluções, ou seja, é compatível indeterminado.

(c) Fazendo alguns cálculos concluímos que a forma escada de
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$$
 é a matriz identidade I_4 e $A_M = \begin{bmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 1 & 1 & 1 & -1 & | & 4 \\ 1 & 1 & -1 & 1 & | & -4 \\ 1 & -1 & 1 & 1 & | & 2 \end{bmatrix}$ tem forma escada $\begin{bmatrix} 1 & 0 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 1 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & -2 \end{bmatrix}$.

Logo, $p_a = p_c = 4$ = número de variáveis do sistema, portanto o sistema tem uma única solução, ou seja, é compatível determinado.

(d) A matriz
$$A_M = \begin{bmatrix} 1 & -1 & 1 & | & 3 \\ 1 & -1 & -3 & | & -3 \\ 3 & 3 & -5 & | & 0 \\ -1 & 1 & 1 & | & 1 \end{bmatrix}$$
 tem forma escalonada $\begin{bmatrix} 1 & -1 & 1 & | & 3 \\ 0 & 1 & 4/3 & | & -3/2 \\ 0 & 0 & 1 & | & 3/2 \\ 0 & 0 & 0 & | & 1/2 \end{bmatrix}$.

Portanto, $p_c = 3 \neq p_a = 4$, consequentemente o sistema não tem solução, ou seja, é incompatível.

2.3 Métodos de Resolução de Sistemas Lineares

Dado um sistema de equações lineares

vamos aplicar o teorema 2.1.11 e utilizar a matriz dos coeficientes e a matriz ampliada do sistema para obter sua(s) solução(ões).

Lembremos que a matriz dos coeficientes de S e matriz ampliada de S são dadas, respectivamente, por:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad e \quad A_M = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & | & b_2 \\ \vdots & \vdots & \vdots & \ddots & | & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & | & b_m \end{bmatrix}.$$

2.3.1 Método de Resolução de Gauss-Jordan

O **método de Gauss-Jordan** consiste em efetuar operações elementares sobre as linhas da matriz ampliada do sistema, até obter sua forma reduzida na **forma escada**.

A matriz ampliada reduzida à forma escada nos fornecerá a(s) solução(ões) ou alguma incompatibilidade.

A vantagem deste processo é que um sistema cuja matriz ampliada é uma matriz na forma escada tem solução(ões) ou incompatibilidade imediata(s).

Verificando se o sistema é compatível ou incompatível

Corolário 2.3.1 (Do teorema do posto)

Um sistema de equações lineares não tem solução se, e somente se, a última linha não nula da forma escalonada reduzida da matriz ampliada é da forma $\begin{bmatrix} 0 & \cdots & 0 & b_m' \end{bmatrix}$ com $b_m' \neq 0$.

Observação 2.3.2 Para se encontrar a solução de um sistema linear não é necessário transformar a matriz ampliada do sistema na sua forma escalonada reduzida, mas se a matriz está nesta forma, o sistema associado é o mais simples possível.

2.3.2 Método de Resolução de Gauss ou do Escalonamento

Um outro método de resolução de sistemas de equações lineares, chamado **método de Gauss**, consiste em efetuar operações elementares sobre as linhas da matriz ampliada do sistema até obter uma **forma escalonada**.

Verificando se o sistema é compatível ou incompatível

O corolário acima também se aplica a este método, ou seja, o sistema de equações lineares não tem solução se, e somente se, a última linha não nula da forma escalonada da matriz ampliada é da forma $[0\cdots 0|b_m']$ com $b_m'\neq 0$.

No caso em que o sistema tenha solução, para obte-las, após reduzir a matriz ampliada à forma escalonada, devemos fazer as devidas substituições e obter a(s) solução(ões).

A vantagem deste processo é que o número de operações elementares a serem realizadas é bem menor do que o método de Gauss-Jordan.

Exemplos 2.3.3 Resolva os seguintes sistemas lineares:

(a)
$$S: \begin{cases} x + 4y + 3z = 1 \\ 2x + 5y + 4z = 4 \\ x - 3y - 2z = 5 \end{cases}$$
 (b) $S: \begin{cases} x + 2y + z + w = -1 \\ x + 3y - z + 2w = 3 \end{cases}$;
(c) $S: \begin{cases} 2x + 3y = 4 \\ x + y = 6 \\ 3x - 4y = 0 \end{cases}$ (d) $S: \begin{cases} x + 2y + 2z + 2w = 0 \\ 2x + 4y + 6z + 8w = 0 \\ 3x + 6y + 8z + 10w = 0 \end{cases}$

Solução:

(a) A matriz ampliada de S é $\begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix}$, escalonando obtemos:

$$\begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 2 & 5 & 4 & | & 4 \\ 1 & -3 & -2 & | & 5 \end{bmatrix} \xrightarrow{L_2 \longrightarrow L_2 - 2L_1} \sim \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & -3 & -2 & | & 2 \\ 0 & -7 & -5 & | & 4 \end{bmatrix} \xrightarrow{L_2 \longrightarrow -\frac{1}{3}L_2}$$

$$\sim \begin{bmatrix} 1 & 4 & 3 & | & 1 \\ 0 & 1 & \frac{2}{3} & | & -\frac{2}{3} \\ 0 & -7 & -5 & | & 4 \end{bmatrix} \xrightarrow{L_1 \longrightarrow L_1 - 4L_2} \sim \begin{bmatrix} 1 & 0 & \frac{1}{3} & | & \frac{11}{3} \\ 0 & 1 & \frac{2}{3} & | & -\frac{2}{3} \\ 0 & 0 & -\frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \xrightarrow{L_3 \longrightarrow -3L_3}$$

$$\sim \begin{bmatrix} 1 & 0 & \frac{1}{3} & | & \frac{11}{3} \\ 0 & 1 & \frac{2}{3} & | & -\frac{2}{3} \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \xrightarrow{L_1 \longrightarrow L_1 - \frac{1}{3}L_3} \sim \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}.$$

Logo, a solução do sistema é
$$\begin{cases} x = 3 \\ y = -2 \\ z = 2 \end{cases}$$

(b) A matriz ampliada de $S \in \begin{bmatrix} 1 & 2 & 1 & 1 & | & -1 \\ 1 & 3 & -1 & 2 & | & 3 \end{bmatrix}$, escalonando obtemos:

$$\begin{bmatrix} 1 & 2 & 1 & 1 & | & -1 \\ 1 & 3 & -1 & 2 & | & 3 \end{bmatrix} \quad L_2 \longrightarrow L_2 - L_1 \quad \sim \begin{bmatrix} 1 & 2 & 1 & 1 & | & -1 \\ 0 & 1 & -2 & 1 & | & 4 \end{bmatrix} \quad L_1 \longrightarrow L_1 - 2L_2$$

$$\sim \begin{bmatrix} 1 & 0 & 5 & -1 & | & -9 \\ 0 & 1 & -2 & 1 & | & 4 \end{bmatrix}.$$

Logo, a solução do sistema é

$$\begin{cases} x & + 5z - w = -9 \\ y - 2z + w = 4 \end{cases} \iff \begin{cases} x = -9 - 5z + w \\ y = 4 + 2z - w \end{cases},$$

 $\operatorname{com} z \operatorname{e} w \operatorname{em} \mathbb{R}$.

(c) A matriz ampliada de $S \notin \begin{bmatrix} 2 & 3 & | & 4 \\ 1 & 1 & | & 6 \\ 3 & -4 & | & 0 \end{bmatrix}$, escalonando obtemos:

$$\begin{bmatrix} 2 & 3 & | & 4 \\ 1 & 1 & | & 6 \\ 3 & -4 & | & 0 \end{bmatrix} \quad L_1 \longleftrightarrow L_2 \sim \begin{bmatrix} 1 & 1 & | & 6 \\ 2 & 3 & | & 4 \\ 3 & -4 & | & 0 \end{bmatrix} \quad L_2 \longleftrightarrow L_2 - 2L_1 \\ 2 & 3 & | & 4 \\ 3 & -4 & | & 0 \end{bmatrix} \quad L_2 \longleftrightarrow L_2 - 2L_1 \\ 2 & 3 & | & 4 \\ 3 & -4 & | & 0 \end{bmatrix} \quad L_3 \longleftrightarrow L_3 - 3L_1$$

$$\sim \begin{bmatrix} 1 & 1 & | & 6 \\ 0 & 1 & | & -8 \\ 0 & -7 & | & -18 \end{bmatrix} \quad L_1 \longleftrightarrow L_1 - L_2 \quad \sim \begin{bmatrix} 1 & 0 & | & 14 \\ 0 & 1 & | & -8 \\ 0 & 0 & | & -74 \end{bmatrix}.$$

Logo, o sistema não tem solução, pois a última linha da matriz na forma escada nos diz que 0 = -74 um absurdo!

(d) A matriz ampliada de S é $\begin{bmatrix} 1 & 2 & 2 & 2 & | & 0 \\ 2 & 4 & 6 & 8 & | & 0 \\ 3 & 6 & 8 & 10 & | & 0 \end{bmatrix}$, escalonando obtemos:

$$\begin{bmatrix} 1 & 2 & 2 & 2 & 2 & | & 0 \\ 2 & 4 & 6 & 8 & 10 & | & 0 \\ 3 & 6 & 8 & 10 & 12 & | & 0 \end{bmatrix} \xrightarrow{L_2 \longrightarrow L_2 - 2L_1} \sim \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & | & 0 \\ 0 & 0 & 2 & 4 & 6 & | & 0 \\ 0 & 0 & 2 & 4 & 6 & | & 0 \end{bmatrix} \xrightarrow{L_2 \longrightarrow \frac{1}{2}L_2} \xrightarrow{L_3 \longrightarrow L_3 - 3L_1} \sim \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & | & 0 \\ 0 & 0 & 2 & 4 & 6 & | & 0 \end{bmatrix} \xrightarrow{L_2 \longrightarrow \frac{1}{2}L_2} \xrightarrow{L_3 \longrightarrow L_3 - L_2} \sim \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & | & 0 \\ 0 & 0 & 1 & 2 & 3 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Logo, a solução do sistema linear tem infinitas soluções:

$$\begin{cases} x + 2y + 2z + 2w + 2t = 0 \\ z + 2w + 2t = 0 \end{cases} \iff \begin{cases} x = -2y - 2z - 2w - 2t \\ z = -2w - 2t \end{cases}$$

Substituindo z = -2w - 2t na primeira equação obtemos:

$$\begin{cases} x = -2y + 2w + 2t \\ z = -2w - 2t \end{cases}$$
 com y , w e t em \mathbb{R} .

Observação 2.3.4 Os sistemas lineares dos exemplos (b) e (d) têm infinitas soluções, abaixo temos a forma escalonada (uma reduzida e a outra não) das matrizes ampliadas, indicando acima as variáveis livres e abaixo as variáveis dependentes:

$$\begin{bmatrix} 1 & 0 & 5 & -1 & | & -9 \\ 0 & 1 & -2 & -1 & | & 4 \end{bmatrix} \quad e \quad \begin{bmatrix} 1 & 2 & 2 & 2 & 2 & | & 0 \\ 0 & 0 & 1 & 2 & 3 & | & 0 \end{bmatrix}$$

De modo geral, no caso em que $p_a = p_c < n$, na matriz ampliada escalonada as colunas que têm o 1 elemento não nulo de alguma linha correspondem às variáveis dependentes e as outras colunas correspondem às variáveis livres, no exemplo (b) são z e w, já no exemplo (d) são y, w e t.

2.3.3 Método de Resolução da Matriz Inversa

Este método tem restrições de aplicabilidade, que são as seguintes:

- (i) Sistema linear quadrado, ou seja, com o número de equações igual ao número de variáveis.
- (ii) Matriz dos coeficientes do sistema é invertível.

Observação 2.3.5 Ao escalonar a matriz ampliada de um sistema nas condições acima, com n número de equações, a última linha não nula da forma escalonada da matriz ampliada do sistema **não** $\acute{\mathbf{e}}$ da forma $\begin{bmatrix} 0 & \cdots & 0 & 0 \\ b'_n \end{bmatrix}$ com $b'_n \neq 0$, portanto o sistema tem solução.

Sob as condições acima escrevendo o sistema linear quadrado

$$S: \begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{cases}$$

na forma matricial temos $A \cdot X = B$, como estamos supondo que A é invertível, então existe A^{-1} e portanto resolvemos o sistema da seguinte maneira:

$$A \cdot X = B \Longleftrightarrow A^{-1} \cdot (A \cdot X) = A^{-1} \cdot B \Longleftrightarrow \underbrace{(A^{-1} \cdot A)}_{I_n} \cdot X = A^{-1} \cdot B \Longleftrightarrow X = A^{-1} \cdot B.$$

Assim, a solução do sistema é $X = A^{-1} \cdot B$.

Exemplo 2.3.6 Resolva o sistema
$$\begin{cases} 2x + y + z = 15 \\ x + y + z = 6 \\ 2x + 3y + 2z = 10 \end{cases}$$
 pelo método da matriz inversa.

Solução:

A forma matricial do sistema acima é:

$$\underbrace{\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}}_{A} \cdot \underbrace{\begin{bmatrix} x \\ y \\ z \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 15 \\ 6 \\ 10 \end{bmatrix}}_{B}.$$

Vimos na seção de matriz inversa que a matriz dos coeficientes $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & 2 \end{bmatrix}$ é invertível, e sua

inversa é
$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ -1 & 4 & -1 \end{bmatrix}$$
.

Logo, pelo método da matriz inversa a solução do sistema é:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ -1 & 4 & -1 \end{bmatrix} \cdot \begin{bmatrix} 15 \\ 6 \\ 10 \end{bmatrix} = \begin{bmatrix} 9 \\ -2 \\ -1 \end{bmatrix}.$$

Observações 2.3.7 Seja S um sistema linear quadrado com matriz dos coeficientes A temos:

- (a) Se $\det A \neq 0$, então S tem uma única solução.
- (b) Se $\det A = 0$, então ou S tem infinitas soluções ou S não tem solução.
- (c) Se S é homogêneo e $\det A \neq 0$, então a única solução de S é a solução trivial.
- (d) Se S é homogêneo e $\det A = 0$, então S tem infinitas soluções.

2.3.4 Método de Resolução da Regra de Cramer

Na seção 2.3.3 vimos que se $S: A \cdot X = B$ é um sistema de equações lineares em que $A \in M_n(\mathbb{K})$ e det $A \neq 0$, então S tem uma única solução dada por: $X = A^{-1} \cdot B$.

Mas sabemos do Teorema 1.3.6 que $A^{-1} = \frac{1}{\det A} \cdot \operatorname{adj}(A)$, portanto:

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det A} \cdot \begin{bmatrix} \Delta_{11} & \Delta_{21} & \cdots & \Delta_{n1} \\ \Delta_{12} & \Delta_{22} & \cdots & \Delta_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{1n} & \Delta_{2n} & \cdots & \Delta_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

com Δ_{ij} o cofator de a_{ij} .

Logo,

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det A} \cdot \begin{bmatrix} b_1 \cdot \Delta_{11} + b_2 \cdot \Delta_{21} + \dots + b_n \cdot \Delta_{n1} \\ b_1 \cdot \Delta_{12} + b_2 \cdot \Delta_{22} + \dots + b_n \cdot \Delta_{n2} \\ \vdots \\ b_1 \cdot \Delta_{1n} + b_2 \cdot \Delta_{2n} + \dots + b_n \cdot \Delta_{nn} \end{bmatrix}.$$

Pela definição de determinantes temos:

$$b_{1} \cdot \Delta_{11} + b_{2} \cdot \Delta_{21} + \dots + b_{n} \cdot \Delta_{n1} = \begin{vmatrix} b_{1} & a_{12} & \dots & a_{1n} \\ b_{2} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

$$b_{1} \cdot \Delta_{12}b_{2} \cdot \Delta_{22} + \dots + b_{n} \cdot \Delta_{n2} = \begin{vmatrix} a_{11} & b_{1} & \dots & a_{1n} \\ a_{21} & b_{2} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & b_{n} & \dots & a_{nn} \end{vmatrix}$$

$$\vdots$$

$$b_{1} \cdot \Delta_{1n}b_{2} \cdot \Delta_{2n} + \dots + b_{n} \cdot \Delta_{nn} = \begin{vmatrix} a_{11} & a_{12} & \dots & b_{1} \\ a_{21} & a_{22} & \dots & b_{2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & a_{nn} & \dots & b_{n} \end{vmatrix}$$

Consequentemente, sendo A_i a matriz obtida da matriz A substituindo a i-ésima coluna pela matriz

coluna B dos coeficientes independentes do sistema, ou seja, $A_i = \begin{bmatrix} a_{11} & \cdots & b_1 & a_{1n} \\ a_{21} & \cdots & b_2 & a_{22} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n2} & \cdots & b_n & a_{nn} \end{bmatrix}$, para

 $i \in \{1, \dots, n\}$, então a única solução do sistema linear S é

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \text{com} \quad x_i = \frac{D_1}{D}, \quad D_i = \det A_i \quad \text{e} \quad D = \det A, \quad \text{para } i \in \{1, \dots, n\}.$$

Este método de resolução de sistemas lineares quadrados com matriz dos coeficientes invertível é chamado **Regra de Cramer**.

Exemplos 2.3.8 Resolva os seguintes sistemas lineares pela regra de Cramer:

(a)
$$S: \begin{cases} 2x - 3y = 7 \\ 3x + 5y = 1 \end{cases}$$
; (b) $S: \begin{cases} 2x + 3y - z = 1 \\ 3x + 5y + 2z = 8 \\ x - 2y - 3z = -1 \end{cases}$

Solução:

(a)
$$D = \begin{vmatrix} 2 & -3 \\ 3 & 5 \end{vmatrix} = 19$$
, $D_1 = \begin{vmatrix} 7 & -3 \\ 1 & 5 \end{vmatrix} = 35 + 3 = 38$ e $D_2 = \begin{vmatrix} 2 & 7 \\ 3 & 1 \end{vmatrix} = 2 - 21 = -19$.
Logo, $x = \frac{38}{19} = 2$ e $y = \frac{-19}{19} = -1$, consequentemente, a única solução do sistema é $\{(2, -1)\}$.

$$D = \begin{vmatrix} 2 & 3 & -1 \\ 3 & 5 & 2 \\ 1 & -2 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & -2 & -3 \\ 3 & 5 & 2 \\ 2 & 3 & -1 \end{vmatrix} L_2 \longrightarrow L_2 - 3L_1$$

$$(b) = - \begin{vmatrix} 1 & -2 & -3 \\ 0 & 11 & 11 \\ 0 & 7 & 5 \end{vmatrix} L_2 \longrightarrow \frac{1}{11}L_2 = (-11) \times \begin{vmatrix} 1 & -2 & -3 \\ 0 & 1 & 1 \\ 0 & 7 & 5 \end{vmatrix} L_3 \longrightarrow L_3 - 7L_2$$

$$= (-11) \times \begin{vmatrix} 1 & -2 & -3 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{vmatrix} = (-11) \times (-2) = 22,$$

$$D_1 = \begin{vmatrix} 1 & 3 & -1 \\ 8 & 5 & 2 \\ -1 & -2 & -3 \end{vmatrix} L_2 \longrightarrow L_2 - 8L_1 = \begin{vmatrix} 1 & 3 & -1 \\ 0 & -19 & 10 \\ 0 & 1 & -4 \end{vmatrix} L_2 \Longleftrightarrow L_3$$

$$= - \begin{vmatrix} 1 & 3 & -1 \\ 0 & 1 & -4 \\ 0 & -19 & 10 \end{vmatrix} L_3 \longrightarrow L_3 + 19L_2 = - \begin{vmatrix} 1 & 3 & -1 \\ 0 & 1 & -4 \\ 0 & 0 & -66 \end{vmatrix} = -(-66) = 66,$$

$$D_2 = \begin{vmatrix} 2 & 1 & -1 \\ 3 & 8 & 2 \\ 1 & -1 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & -1 & -3 \\ 3 & 8 & 2 \\ 1 & -1 & -3 \end{vmatrix} = - \begin{vmatrix} 1 & -1 & -3 \\ 3 & 8 & 2 \\ 2 & 1 & -1 \end{vmatrix} L_2 \longrightarrow L_2 - 3L_1$$

$$= - \begin{vmatrix} 1 & -1 & -3 \\ 0 & 11 & 11 \\ 0 & 3 & 5 \end{vmatrix} L_3 \longrightarrow L_3 - \frac{3}{11}L_2 = - \begin{vmatrix} 1 & -1 & -3 \\ 0 & 11 & 11 \\ 0 & 0 & 2 \end{vmatrix} = -22,$$

$$D_3 = \begin{vmatrix} 2 & 3 & 1 \\ 3 & 5 & 8 \\ 1 & -2 & -1 \end{vmatrix} = - \begin{vmatrix} 1 & -2 & -1 \\ 0 & 11 & 11 \\ 0 & 7 & 3 \end{vmatrix} L_3 \longrightarrow L_3 - \frac{7}{11}L_2 = - \begin{vmatrix} 1 & -2 & -1 \\ 0 & 11 & 11 \\ 0 & 0 & -4 \end{vmatrix} = -(-44) = 44.$$

$$Logo, x = \frac{66}{22} = 3, y = \frac{-22}{22} = -1 \text{ c} z = \frac{44}{22} = 2, \text{ consequentemente, a finica solução do sistema é {3.-1.2}$$

Resolva os seguintes sistemas lineares:

(a)
$$\begin{cases} 2x + 4y = 16 \\ 5x - 2y = 4 \\ 3x + y = 9 \\ 4x - y = -7 \end{cases}$$
(b)
$$\begin{cases} 2x + 4y = 16 \\ 5x - 2y = 4 \\ 10x - 4y = 3 \end{cases}$$
(c)
$$\begin{cases} 2x + y + 7z = 3 \\ x + 3y + 2z = 5 \\ 5x + 3y + 4z = -5 \end{cases}$$
(d)
$$\begin{cases} x - 4y + 12z + 9w = 42 \\ 2x - 7y + 26z + 21w = 85 \end{cases}$$
(e)
$$\begin{cases} 3x - 7y + 8z - 5w + 8t = 9 \\ 3y - 6z + 6w + 4t = -5 \\ 3x - 9y + 12z - 9w + 6t = 15 \end{cases}$$
(f)
$$\begin{cases} x + 4y + 6z = 11 \\ 2x + 3y + 4z = 9 \\ 3x + 2y + 2z = 7 \end{cases}$$
(g)
$$\begin{cases} x + 3y - 3z = 7 \\ 3x + 9y - 4z = 1 \end{cases}$$
(h)
$$\begin{cases} 3x + 5y - 4z = 0 \\ -3x - 2y + 4z = 0 \\ 6x + y - 8z = 0 \end{cases}$$
(i)
$$\begin{cases} x - 2y - z + 3w = 0 \\ -2x + 4y + 5z - 5w = 3 \\ x - 2y + 2z + 4w = 5 \end{cases}$$
(j)
$$\begin{cases} 3x + 6y - 4z - w = 0 \\ -5x + 8z + 3w = 0 \\ 8x - y + 7w = 0 \end{cases}$$

Espaços Vetoriais

3.1 3.2 3.3	Espaços Vetoriais Espaços Vetoriais Subespaços Vetoriais Soma, Soma Direta e Intersecção de Subespaços
4	Base e Dimensão de Espaços Vetoriais 97
4.1	Combinação Linear e Subespaço Gerado
4.2	Dependência e Independência Linear
4.3	Base e Dimensão
4.4	Coordenadas de um Vetor
4.5	Matriz Mudança de Base
5	Espaços Vetoriais com Produto Interno 123
5.1	Produto Interno em Espaços Vetoriais Reais
5.2	Produto Interno em Espaços Vetoriais Complexos
5.3	Bases Ortogonais e Bases ortonormais
5.4	Processo de Ortogonalização de Gram-Schmidt
5.5	Complemento Ortogonal

3.1 Espaços Vetoriais

Definição 3.1.1 Um espaço vetorial consiste em:

- (1) Um conjunto não vazio V de objetos, denominados **vetores**.
- (2) Um corpo de números (escalares), denotado por K.
- (3) Uma operação de **adição de vetores** de V, que a cada par de elementos u, $v \in V$ associa um elemento $u + v \in V$ e satisfaz as seguintes propriedades:
 - A_1 u+v=v+u para quaisquer u e v em V; comutativa.
 - $A_2(u+v)+w=u+(v+w)$ para quaisquer u, v e w em V; associativa.
 - A_3 Existe um elemento 0_V em V tal que $u + 0_V = u$ para todo u em V; existência de elemento neutro.
 - A_4 Para todo elemento u em V existe o elemento -u também em V tal que $u + (-u) = 0_V$; existência de elemento simétrico.
- (4) Uma operação de **multiplicação por escalar**, que a cada par de elementos $u \in V$ e $\alpha \in \mathbb{K}$ associa um elemento $\alpha \cdot u \in V$ e satisfaz as seguintes propriedades:
 - $M_1 \ \alpha \cdot (\beta \cdot u) = (\alpha \cdot \beta) \cdot u$ para quaisquer $u \in V$ e α e β em \mathbb{K} .
 - $M_2 \ \alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$ para quaisquer u e v em V e todo e α em \mathbb{K} ; distributiva da adição.
 - M_3 $(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$ para todo $u \in V$ e quaisquer e α e β em \mathbb{K} ; distributiva da multiplicação por escalar.
 - M_4 Existe $1_{\mathbb{K}}$ tal que $1_{\mathbb{K}} \cdot u = u$ para todo $u \in V$; **existência de unidade.**

Observações 3.1.1 (a) Também denotamos o espaço vetorial V por $(V, +, \cdot)$, com + a adição de vetores e \cdot a multiplicação por escalar.

- (b) Também denominamos o espaço vetorial V por **espaço vetorial sobre o corpo** \mathbb{K} .
- (c) No caso em que $\mathbb{K} = \mathbb{R}$, dizemos que V é um **espaço vetorial real**.
- (d) No caso em que $\mathbb{K} = \mathbb{C}$, dizemos que V é um **espaço vetorial complexo**.
- (e) O elemento neutro da adição é único.

De fato, se existissem dois elementos neutros 0_V e $0_V'$ teríamos:

$$0_V = 0_V + 0_V' = 0_V' + 0_V = 0_V',$$

provando a unicidade.

(f) Para cada $u \in V$ existe um único simétrico em relação à adição.

De fato, se u tivesse dois simétricos -u e -u' teríamos:

$$(-u) = 0_V + (-u) = (u + (-u')) + (-u) = (u + (-u)) + (-u') = 0_V + (-u') = -u',$$
 provando a unicidade.

3.1.1 Exemplos de Espaços Vetoriais

Alguns conjuntos numéricos que conhecemos têm estrutura de espaços vetoriais tais como:

Exemplos 3.1.2 (a) O conjunto do números reais, \mathbb{R} , com as operações usuais de adição e multiplicação de números reais, é um espaço vetorial real.

(b) O conjunto do números complexos, $\mathbb C$, com as operações usuais de adição e multiplicação de números complexos, é um espaço vetorial complexo, considerando o corpo dos escalares como sendo $\mathbb K=\mathbb C$.

Também podemos considerar o conjunto do números complexos, \mathbb{C} , com corpo de escalares $\mathbb{K}=\mathbb{R}$. Neste caso, \mathbb{C} é um espaço vetorial real.

Espaços Vetoriais Euclidianos

Sabemos que \mathbb{R} é o conjunto dos números reais.

O produto cartesiano $\mathbb{R} \times \mathbb{R}$, indicado por \mathbb{R}^2 , é o conjunto de todos os pares ordenados (x,y) de números reais.

Assim,

$$\mathbb{R}^2 = \{(x, y); x \in y \in \mathbb{R}\}.$$

Analogamente, o produto cartesiano $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$, indicado por \mathbb{R}^3 , é o conjunto de todas as ternas ordenadas (x, y, z) de números reais.

Logo,

$$\mathbb{R}^3 = \{(x, y, z); x, y \in z \in \mathbb{R}\}.$$

De modo geral, o produto cartesiano $\underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ vezes}}$, \mathbb{R}^n , com $n \in \mathbb{N}$ e $n \ge 2$, é o conjunto de todas

n-uplas (x_1, x_2, \dots, x_n) de números reais.

Portanto,

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n); x_1, x_2, \dots, x_n \in \mathbb{R}\}.$$

Observação 3.1.3 Podemos denotar os elementos de \mathbb{R}^n como matriz linha ou matriz coluna, por exemplo,

$$u = (x_1, x_2, \dots, x_n) = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Igualdade em \mathbb{R}^n

Dados $u = (x_1, x_2, \dots, x_n)$ e $v = (y_1, y_2, \dots, y_n)$ em \mathbb{R}^n temos:

$$u = v \iff (x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n) \iff \begin{cases} x_1 = y_1 \\ x_2 = y_2 \\ \vdots \\ x_n = y_n \end{cases}$$

Adição em \mathbb{R}^n

Dados $u=(x_1,x_2,\cdots,x_n)$ e $v=(y_1,y_2,\cdots,y_n)$ em \mathbb{R}^n , a **adição** de u e v, denotada por u+v é dada por:

$$u + v = (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n).$$

Propriedades da Adição em \mathbb{R}^n

Sejam $u=(x_1,x_2,\cdots,x_n)$, $v=(y_1,y_2,\cdots,y_n)$ e $w=(z_1,z_2,\cdots,z_n)$ elementos quaisquer em \mathbb{R}^n e $0_{\mathbb{R}^n}=\underbrace{(0,0,\cdots,0)}_{n-\text{upla de zeros}}$, denotemos por $-u=(-x_1,-x_2,\cdots,-x_n)$, então valem:

$$A_1 \ u + v = v + u.$$

$$A_2 (u+v) + w = u + (v+w).$$

$$A_3 \ u + 0_{\mathbb{R}^n} = u.$$

$$A_4 \ u + (-u) = 0_{\mathbb{R}^n}.$$

Multiplicação por Escalar em \mathbb{R}^n

Dados $u = (x_1, x_2, \dots, x_n)$ em \mathbb{R}^n e $\alpha \in \mathbb{R}$ a **multiplicação** de u por α , denotada por $\alpha \cdot u$ é dada por:

$$\alpha \cdot u = \alpha \cdot (x_1, x_2, \dots, x_n) = (\alpha \cdot x_1, \alpha \cdot x_2, \dots, \alpha \cdot x_n).$$

Propriedades da Multiplicação por Escalar em \mathbb{R}^n

Sejam $u=(x_1,x_2,\cdots,x_n)$ e $v=(y_1,y_2,\cdots,y_n)$ elementos quaisquer em \mathbb{R}^n , α e β em \mathbb{R} , então valem:

$$ME_1 \quad \alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v.$$

$$ME_2 (\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u.$$

$$ME_3 (\alpha \cdot \beta) \cdot u = \alpha \cdot (\beta \cdot u).$$

$$ME_4$$
 $1 \cdot u = u$.

Das propriedades $A_1 - A_4$ e $ME_1 - ME_4$ segue que \mathbb{R}^n , com a adição e multiplicação por escalar definidas acima, é um espaço vetorial real, chamado **espaço vetorial euclidiano**.

Observação 3.1.4 De maneira análoga definimos em $\mathbb{C}^n = \{(z_1, \dots, z_n); z_1, \dots, z_n \in \mathbb{C}\}$, conjunto de todas as n-uplas complexas, a adição e a multiplicação por escalar.

No caso em que os escalares são números reais damos a \mathbb{C}^n uma estrutura de espaço vetorial real; e no caso que os escalares são números complexo \mathbb{C}^n é um espaço vetorial complexo.

Exercicio 3.1 Considere o conjunto $V = \{(x, y) \in \mathbb{R}^2; x > 0\}$ com as operações:

Adição: $(x_1, y_1) \oplus (x_2, y_2) = (x_1 \cdot x_2, y_1 + y_2).$

Multiplicação por Escalar: $\alpha \odot (x,y) = (x^{\alpha}, \alpha \cdot y)$, para todo $\alpha \in \mathbb{R}$.

- (a) Mostre que V é um espaço vetorial real.
- (b) Exiba o elemento neutro da adição ⊕.
- (c) Exiba o simétrico aditivo de (x, y).
- (d) Exiba a unidade da operação ⊙.

Solução:

• A adição está bem definida, pois dados (x_1, y_1) e (x_2, y_2) em V, então $x_1 > 0$ e $x_2 > 0$.

Como
$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 \cdot x_2, y_1 + y_2) \in V$$
, pois $\underbrace{x_1}_{>0} \cdot \underbrace{x_2}_{>0} > 0$.

• A multiplicação por escalar está bem definida, pois dados (x, y) em V, então x > 0.

Como
$$\alpha \odot (x, y) \oplus (x_2, y_2) = (x^{\alpha}, \alpha \cdot y) \in V$$
, pois $x^{\alpha} \stackrel{x>0}{>} 0$.

- $(x_1, y_1) \oplus (x_2, y_2) = (x_1 \cdot x_2, y_1 + y_2) = (x_2 \cdot x_1, y_2 + y_1) = (x_2, y_2) \oplus (x_1, y_1)$, portanto $\oplus \notin$
- $((x_1, y_1) \oplus (x_2, y_2)) \oplus (x_3, y_3) = (x_2 \cdot x_1, y_2 + y_1) \oplus (x_3, y_3) = (x_1 \cdot x_2 \cdot x_3, y_1 + y_2 + y_3) =$ $(x_1, y_1) \oplus (x_2 \cdot x_3, y_2 + y_3) = (x_1, y_1) \oplus ((x_2, y_2) \oplus (x_3, y_3)),$ portanto \oplus é associativa.
- Existência de elemento neutro: devemos mostrar que existe $(a,b) \in V$ tal que

$$(x,y) \oplus (a,b) = (x,y)$$
 para todo $(x,y) \in V$.

$$(x,y) \oplus (a,b) = (x,y), \ \forall \ (x,y) \in V \iff (x \cdot a, y + b) = (x,y), \ \forall \ (x,y) \in V$$
$$\iff \left\{ \begin{array}{l} x \cdot a = x \\ y + b = y \end{array} \right., \ \forall \ \in V \iff \left\{ \begin{array}{l} a = 1 \\ b = 0 \end{array} \right.$$

Portanto, o elemento da operação \oplus é $0_V = (1,0)$.

• Existência de simétrico de um elemento $(x, y) \in V$: devemos mostrar que existe $(a, b) \in V$ tal que

$$(x,y) \oplus (a,b) = 0_V = (1,0).$$

$$(x,y) \oplus (a,b) = (1,0) \Longleftrightarrow (x \cdot a, y + b) = (1,0) \Longleftrightarrow \begin{cases} x \cdot a = 1 \\ y + b = 0 \end{cases} \Longleftrightarrow \begin{cases} a \stackrel{x>0}{=} x^{-1} = \frac{1}{x} \\ b = -y \end{cases}$$

Logo, o elemento simétrico de (x,y) em relação à \oplus é $\left(\frac{1}{x}, -y\right)$.

- $\alpha \odot (\beta \odot (x, y)) = \alpha \odot (x^{\beta}, \beta y) = ((x^{\beta})^{\alpha}, \alpha \cdot (\beta \cdot y)) = (x^{\alpha \cdot \beta}, \alpha \cdot \beta \cdot y) = (\alpha \cdot \beta) \odot (x, y).$ Logo vale a condição M_1 .
- $\alpha \odot ((x_1, y_1) \oplus (x_2, y_2)) = \alpha \odot (x_1 \cdot x_2, y_1 + y_2) = ((x_1 \cdot x_2)^{\alpha}, \alpha \cdot (y_1 + y_2)) = (x_1^{\alpha} \cdot x_2^{\alpha}, \alpha \cdot y_1 + \alpha \cdot y_2) = (x_1^{\alpha}, \alpha \cdot y_1) \oplus (x_2^{\alpha}, \alpha \cdot y_2).$

Logo vale a condição M_2 .

• $(\alpha + \beta) \odot (x, y) = (x^{(\alpha + \beta)}, (\alpha + \beta) \cdot y) = (x^{\alpha} \cdot x^{\beta}, \alpha \cdot y + \beta \cdot y) = (x^{\alpha}, \alpha \cdot y) \oplus (x^{\beta}, \alpha \beta \cdot y) = (\alpha \odot (x, y)) \oplus (\beta \odot (x, y)).$

Logo vale a condição M_3 .

• A unidade de \odot , se existir, é um número $\alpha \in \mathbb{R}$ tal que

$$\alpha \odot (x, y) = (x, y), \ \forall (x, y) \in V.$$

$$\alpha \odot (x, y) = (x, y), \ \forall (x, y) \in V \iff (x^{\alpha}, \ \alpha \cdot y) = (x, y), \ \forall (x, y) \in V$$

$$\iff \begin{cases} x^{\alpha} = x \\ \alpha \cdot y = y \end{cases}, \ \forall (x, y) \in V \iff \alpha = 1.$$

Portanto, a unidade da operação ⊙ é o número 1.

Do desenvolvimento acima concluímos que V com a adição \oplus e a multiplicação por escalar \odot é um espaço vetorial sobre \mathbb{R} .

Espaços Vetoriais de Matrizes

O conjunto da matrizes reais de ordem $m \times n$, que denotamos por $M_{m \times n}(\mathbb{R})$, com as operações adição e multiplicação definidas no capítulo 1, é um espaço vetorial real.

Da mesma maneira, o conjunto da matrizes complexas de ordem $m \times n$, que denotamos por $M_{m \times n}(\mathbb{C})$, também é um espaço vetorial sobre \mathbb{K} , é um espaço vetorial real se o corpo considerado é \mathbb{R} e um espaço vetorial complexo se $\mathbb{K} = \mathbb{C}$.

Os espaços vetoriais acima são chamados **espaços de matrizes**.

Espaços Vetoriais de Funções

Consideremos o conjunto de todas funções de \mathbb{R} em \mathbb{R} , denotado por $\mathscr{F}(\mathbb{R})$, ou seja,

$$\mathscr{F}(\mathbb{R}) = \{ f : \mathbb{R} \longrightarrow \mathbb{R}; f \text{ \'e uma função.} \}$$

Em $\mathscr{F}(\mathbb{R})$ definimos a soma e a multiplicação por escalar da seguinte maneira:

Observações 3.1.5 (a) Denotamos a **função nula**, indicada por f_0 , é a função que a todo $x \in \mathbb{R}$ associa o número zero, ou seja,

$$f_0: \mathbb{R} \longrightarrow \mathbb{R}$$
; tal que $f_0(x) = 0$ para todo $x \in \mathbb{R}$.

(b) Dada uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$, a sua **simétrica**, indicada por -f, é a função dada por

$$-f: \mathbb{R} \longrightarrow \mathbb{R}$$
; tal que $(-f)(x) = -f(x)$ para todo $x \in \mathbb{R}$.

Adição de Funções

Sejam f e g funções em $\mathscr{F}(\mathbb{R})$, a **soma** de f e g é uma função, denotada por f+g, dada por:

$$(f+g)(x) = f(x) + g(x)$$
, para todo $x \in \mathbb{R}$.

É claro que $f + g \in \mathcal{F}(\mathbb{R})$.

Multiplicação por Escalares em Funções

Sejam f função em $\mathscr{F}(\mathbb{R})$ e $\alpha \in \mathbb{R}$, a **multiplicação** de f pelo escalar α é uma função, denotada por $\alpha \cdot f$, dada por:

$$(\alpha \cdot f)(x) = \alpha \cdot f(x)$$
, para todo $x \in \mathbb{R}$.

Também temos $\alpha \cdot f \in \mathscr{F}(\mathbb{R})$.

O conjunto $\mathscr{F}(\mathbb{R})$ com as operações adição e multiplicação por escalar definidas acima é um espaço vetorial real.

Exemplo 3.1.6 O conjunto das funções reais contínuas com domínio [a,b], com a e b reais e a < b, e as operações adição e multiplicação por escalar definidas acima, também tem estrutura de espaço vetorial.

Mais precisamente,

$$\mathscr{C}([a,b]) = \{f : [a,b] \longrightarrow \mathbb{R}; f \text{ \'e uma função contínua}\},$$

é um espaço vetorial real.

Os espaços vetoriais acima são chamados espaços de funções.

Espaços Vetoriais Polinomiais

Agora consideremos o **conjunto dos polinômios reais** (ou complexos) de grau $\leq n$, para $n \in \mathbb{N}$, com coeficientes reais, denotado por $\mathscr{P}_n(\mathbb{R})$ (ou $\mathscr{P}_n(\mathbb{C})$).

Um elemento de $\mathscr{P}_n(\mathbb{R})$ é um polinômio p(t) dado por

$$p(t) = a_0 + a_1t + \cdots + a_nt^n,$$

com os coeficientes $a_0, a_1, \dots, a_n \in \mathbb{R}$, para todo $t \in \mathbb{R}$.

Observações 3.1.7 (a) O **polinômio nulo**, denotado por p_0 , é o polinômio que a todo $t \in \mathbb{R}$ associa o número zero, ou seja,

$$p_0(t) = 0$$
 para todo $t \in \mathbb{R}$.

(b) Dado um polinômio $p(t) = a_0 + a_1t + \cdots + a_nt^n \in \mathscr{P}_n(\mathbb{R})$, o **simétrico** de p, denotado por -p, é o polinômio (-p) dado por

$$-p(t) = -(a_0 + a_1t + \cdots + a_nt^n) = -a_0 - a_1t - \cdots - a_nt^n$$

para todo $t \in \mathbb{R}$.

Podemos considerar a adição e a multiplicação por escalar em $\mathscr{P}_n(\mathbb{R})$ como as definidas em funções.

Assim, $\mathscr{P}_n(\mathbb{R})$ munido das operações de adição e de multiplicação por escalar é um espaço vetorial real.

Enquanto, que $\mathscr{P}_n(\mathbb{C})$ munido das operações de adição e de multiplicação por escalar sobre \mathbb{R} é um espaço vetorial real, e se a multiplicação por escalar é sobre \mathbb{C} , então $\mathscr{P}_n(\mathbb{C})$ é um espaço vetorial complexo, estes espaços vetoriais são chamados **espaços de polinômios** de grau $\leq n$.

Teorema 3.1.8 (Lei do Cancelamento)

Seja V um espaço vetorial sobre um corpo \mathbb{K} , dados u, v e w elementos quaisquer em V, se u+v=u+w, então v=w.

Demonstração: Como u + v = u + w, somando (-u) em ambos os lados na igualdade temos

$$v = (-u) + u + v = (-u) + u + w = w$$

como queríamos demonstrar.

Teorema 3.1.9 Seja V um espaço vetorial sobre um corpo \mathbb{K} , dados u e v elementos quaisquer em V, existe um único $w \in V$ tal que u + w = v.

Demonstração: Suponhamos u + w = v, somando (-u) em ambos os lados na igualdade temos w = (-u) + v.

Portanto, o único
$$w = (-u) + v$$
.

3.1.2 Propriedades de Espaços Vetoriais

Sejam V um espaço vetorial sobre o corpo \mathbb{K} , $u, v \in V$ e $\alpha, \beta \in \mathbb{K}$, valem as seguintes propriedades:

$$EV_1 \ 0_{\mathbb{K}} \cdot u = 0_V.$$

$$EV_2 \quad \alpha \cdot 0_V = 0_V.$$

$$EV_3 (-\alpha) \cdot u = -(\alpha \cdot u) = \alpha \cdot (-u).$$

$$EV_4$$
 Se $\alpha \cdot u = 0_V$, então ou $\alpha = 0_K$ ou $u = 0_V$.

$$EV_5$$
 Se $\alpha \cdot u = \alpha \cdot v$ e $\alpha \neq 0_{\mathbb{K}}$, então $u = v$.

$$EV_6$$
 Se $\alpha \cdot u = \beta \cdot u$ e $u \neq 0_V$, então $\alpha = \beta$.

$$EV_7 - (u+v) = (-u) + (-v) = -u - v.$$

$$EV_8$$
 $u + u = 2u$, $u + u + u = 3u$, de um modo geral, $\underbrace{u + u + \dots + u}_{n \text{ vezes}} = nu$.

Verificação:

$$EV_1$$
 Seja $v = 0_{\mathbb{K}} \cdot u$, para todo $u \in V$.
Logo,

$$v + v = 0_{\mathbb{K}} \cdot u + 0_{\mathbb{K}} \cdot u = 0_{\mathbb{K}} \cdot (u + u) = v.$$

Somando (-v) em ambos os lados da igualdade, obtemos $v = 0_V$. Portanto, $v = 0_V$.

$$EV_2$$
 Seja $w = \alpha \cdot 0_V$, para todo $\alpha \in \mathbb{K}$.

Logo,

$$w + w = \alpha \cdot 0_V + \alpha \cdot 0_V = (\alpha + \alpha) \cdot 0_V = w.$$

Somando (-w) em ambos os lados da igualdade, obtemos $w = 0_V$. Portanto, $w = 0_V$.

EV₃ Observemos que

$$\alpha \cdot u + (-\alpha) \cdot u = (-\alpha + \alpha) \cdot u = 0_V$$
.

Portanto,
$$-(\alpha \cdot u) = (-\alpha) \cdot u$$
.

De maneira análoga mostramos que $-(\alpha \cdot u) = \alpha \cdot (-u)$.

 EV_4 Se $\alpha = 0_{\mathbb{K}}$ o resultado segue de EV_1 .

Seja $\alpha \cdot u = 0_V$ com $\alpha \neq 0_K$, então α é invertível, ou seja, existe um único $\alpha^{-1} \in \mathbb{K}$ tal que $\alpha^{-1} \cdot \alpha = 1$.

Logo,

$$u = 1 \cdot u = (\alpha^{-1} \cdot \alpha) \cdot u = \alpha^{-1} \cdot (\alpha \cdot u) = \alpha^{-1} \cdot 0_V = 0_V.$$

Consequentemente, $u = 0_V$.

 EV_5 Como $\alpha \neq 0_{\mathbb{K}}$, então α é invertível, e portanto, existe um único $\alpha^{-1} \in \mathbb{K}$ tal que $\alpha^{-1} \cdot \alpha = 1$. Logo,

$$u = (\alpha^{-1} \cdot \alpha) \cdot u = \alpha^{-1} \cdot (\alpha \cdot u) = \alpha^{-1} \cdot (\alpha \cdot v) = (\alpha^{-1} \cdot \alpha) \cdot v = v.$$

Consequentemente, u = v.

 EV_6 Somando $-(\alpha \cdot u)$ em ambos os lados da igualdade $\alpha \cdot u = \beta \cdot u$, obtemos

$$\alpha \cdot u + (-(\alpha \cdot u)) = \beta \cdot u + (-(\alpha \cdot u)) \Longleftrightarrow 0_V = (\beta - \alpha) \cdot u \stackrel{EV_4}{\Longleftrightarrow} \beta - \alpha = 0 \Longleftrightarrow \alpha = \beta.$$

EV₇ Observemos que $-(u+v) = (-1) \cdot (u+v)$. Logo,

$$-(u+v) = (-1) \cdot (u+v) \stackrel{M_2}{=} (-1) \cdot u + (-1) \cdot v = (-u) + (-v) \stackrel{EV_3}{=} -u - v.$$

 EV_8 A verificação pode ser feita por indução sobre n. No entanto, não a faremos, pois o conceito de indução foge ao escopo deste texto.

3.2 Subespaços Vetoriais

Definição 3.2.1 Seja V um espaço vetorial sobre o corpo \mathbb{K} , dizemos que U um subconjunto não vazio de V é um **subespaço vetorial** de V se, e somente se,

- (i) Para quaisquer u_1 e u_2 em U tivermos $u_1 + u_2 \in U$.
- (ii) U com as operações de adição de vetores e multiplicação por escalar definidas em V é um espaço vetorial sobre \mathbb{K} .

Exemplos 3.2.1 (a) O subconjunto $S = \{(x,y)\mathbb{R}^2; y = x\}$ é um subespaço de \mathbb{R}^2 .

Dados (x_1, y_1) e (x_2, y_2) em *S* temos $y_1 = x_1$ e y_2, x_2 .

Logo,
$$(x_1, y_1) + (x_2, y_2) = (x_1, x_1) + (x_2, x_2) = (x_1 + x_2, x_1 + x_2) \in S$$
 e $\alpha \cdot (x_1, y_1) = \alpha \cdot (x_1, x_1) = (\alpha \cdot x_1, \alpha \cdot x_1) \in S$.

Além disso, como $S \subset \mathbb{R}^2$, portanto a adição é comutativa e associativa e as propriedades de multiplicação por escalar M_1 , M_2 e M_3 se verificam.

Como
$$(0,0) \in S$$
; dado $(x,x) \in S$ temos $(-x,-x) \in S$ e $1 \cdot (x,x) = (x,x) \in S$.

Portanto, *S* é subespaço vetorial de \mathbb{R}^2 .

(b) O conjunto $\mathscr{C}_0([a,b])=\{f\in\mathscr{C}([a,b]) \text{ tal que } f(a)=f(b)=0\}$ é um subespaço vetorial de $\mathscr{C}([a,b])$.

Dados f e g em $\mathcal{C}_0([a,b])$ temos f(a) = f(b) = 0 e g(a) = g(b) = 0.

Como (f+g)(a) = f(a) + g(a) = 0 + 0 = 0 e (f+g)(b) = f(a) + g(b) = 0 + 0 = 0, então $f+g \in \mathscr{C}_0([a,b])$.

Como $\alpha \cdot f$ é tal que $(\alpha \cdot f)(a) = \alpha \cdot f(a) = \alpha \cdot 0 = 0$ e $(\alpha \cdot f)(b) = \alpha \cdot f(b) = \alpha \cdot 0 = 0$, logo $\alpha \cdot f \in \mathscr{C}_0([a,b])$.

Além disso, como $\mathscr{C}_0([a,b]) \subset \mathscr{C}([a,b])$, portanto a adição é comutativa e associativa e as propriedades de multiplicação por escalar M_1 , M_2 e M_3 se verificam.

Finalmente, $f_0 \in \mathcal{C}_0([a,b])$, dado $f \in \mathcal{C}_0([a,b])$ temos $-f \in \mathcal{C}_0([a,b])$, pois (-f)(a) = -f(a) = 0 e (-f)(b) = -f(b) = 0; e se $f \in \mathcal{C}_0([a,b])$, temos $1 \cdot f = f \in \mathcal{C}_0([a,b])$.

Portanto, $\mathcal{C}_0([a,b])$ é subespaço vetorial de $\mathcal{C}([a,b])$.

(c) O subconjunto $S = \{(x, y, z) \in \mathbb{R}^3; x + y = z - 1\}$ não é subespaço de \mathbb{R}^3 , pois $u_1 = (1, -3, -1)$ e $u_2 = (0, 1, 2)$ estão em S, mas

$$u_1 + u_2 = (1, -3, -1) + (0, 1, 2) = (1, -2, 1) \notin S$$
, pois $1 + (-2) = -1 \neq 1 - 1 = 0$.

Teorema 3.2.2 Seja V um espaço vetorial sobre \mathbb{K} , um subconjunto U não vazio V é um subespaço vetorial de V se, e somente se,

- (i) Para quaisquer elementos u_1 e u_2 em U tivermos $u_1 + u_2 \in U$.
- (ii) Para todo $u \in U$ e todo $\alpha \in \mathbb{K}$ tivermos $\alpha \cdot u \in U$.

Demonstração:

Suponhamos que U é subespaço vetorial de V, então U com a adição e a multiplicação por escalar de V é um espaço vetorial e portanto valem (i) e (ii).

Reciprocamente, se U satisfaz (i) e (ii), como $U \subset V$, então as condições A_1, A_2, M_1, M_2, M_3 e M_4 são automaticamente satisfeitas, pois são válidas para todos os elementos de V.

Mostremos então as condições A_3 e A_4 .

 A_3 Para todo $u \in U$ e todo $\alpha \in \mathbb{K}$, temos $\alpha \cdot u \in U$. Em particular, $0 \cdot u = 0_V \in U$.

Portanto, U possui elemento neutro.

 A_4 Para todo $u \in U$ e todo $\alpha \in \mathbb{K}$, temos $\alpha \cdot u \in U$. Em particular, $(-1) \cdot u = -u \in U$.

Logo, todo elemento de U possui simétrico em U.

Observações 3.2.3 (a) Segue do teorema 3.2.2 que se U é um subconjunto não vazio de V e $0_v \notin U$, então U não é subespaço de V.

- (b) Todo espaço vetorial V tem pelo menos dois subespaços vetoriais:
 - O próprio V.
 - O conjunto unitário $\{0_V\}$.

Estes subespaços são chamados **subespaços triviais** de V.

Exemplos 3.2.4 (a) O conjunto $U = \{ f \in \mathscr{C}([a,b]) \text{ tal que } f(a) = 1 \}$ não é um subespaço vetorial de $\mathscr{C}([a,b])$.

Solução: De fato, $f_0 \notin U$, pois $f_0(a) = 0 \neq 1$.

(b) O subconjunto $U = \{p(t) \in \mathscr{P}_3(\mathbb{R}); \ p(2) = 0 \ \text{e} \ p'(-1) = 0\}$ é um subespaço vetorial de $\mathscr{P}_3(\mathbb{R})$.

Solução:

 $U \neq \emptyset$, pois o polinômio nulo p_0 está em U, já que $p_0(t) = 0$ para todo $t \in \mathbb{R}$ e p'_0 também é o polinômio nulo.

Dados p e q em U e $\alpha \in \mathbb{R}$, então:

- (i) (p+q)(2) = p(2) + q(2) = 0 + 0 = 0 e (p+q)'(-1) = p'(-1) + q'(-1) = 0 + 0 = 0, portanto $p+q \in U$.
- (ii) $(\alpha \cdot p)(2) = \alpha \cdot p(2) = \alpha \cdot 0 = 0$ e $(\alpha \cdot p)'(-1) = \alpha \cdot p'(-1) = \alpha \cdot 0 = 0$, portanto $\alpha \cdot p \in U$. De (i) e (ii) concluímos que U é subespaço de $\mathscr{P}_3(\mathbb{R})$.
- (c) (c₁) O conjunto solução do sistema homogêneo $\begin{cases} -x + 3y + z = 0 \\ 2x y z = 0 \end{cases}$ é um subespaço vetorial de \mathbb{R}^3 .

Primeiro observemos que $U \neq \emptyset$, pois o sistema admite pelo menos a solução trivial $\begin{cases} x=0\\ y=0 \end{cases}, \text{ portanto, } (0,0,0) \in U. \\ z=0 \end{cases}$

A matriz ampliada de $S \notin \begin{bmatrix} -1 & 3 & 1 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{bmatrix}$, escalonando obtemos:

$$\left[\begin{array}{ccc|ccc|c} -1 & 3 & 1 & | & 0 \\ 2 & -1 & -1 & | & 0 \end{array}\right] \sim \left[\begin{array}{cccc|c} -1 & 3 & 1 & | & 0 \\ 0 & 5 & 1 & | & 0 \end{array}\right] \quad L_2 \longrightarrow L_2 + 2L_1 \ .$$

Assim, a solução do sistema é

$$\begin{cases} -x + 3y + z = 0 \\ 5y + z = 0 \end{cases} \iff \begin{cases} x = 3y + z \\ z = -5y \end{cases} \iff \begin{cases} x = -2y \\ z = -5y \end{cases}, \text{ com } y \in \mathbb{R}.$$

Logo, o conjunto solução do sistema é

$$U = \{(x, y, z) \in \mathbb{R}^3; x = -2y \text{ e } z = -5y\}.$$

(i) Dados (x_1, y_1, z_1) e (x_2, y_2, z_2) em U temos $\begin{cases} x_1 = -2y_1 \\ z_1 = -5y_1 \end{cases}$ e $\begin{cases} x_2 = -2y_2 \\ z_2 = -5y_2 \end{cases}$. Logo,

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (-2y_1, y_1, -5y_1) + (-2y_2, y_2, -5y_2)$$
$$= (-2y_1 - 2y_2, y_1 + y_2, -5y_1 - 5y_2) = (-2(y_1 + y_2), y_1 + y_2, -5(y_1 + y_2)) \in U.$$

(ii) Além disso,

$$\alpha \cdot (x_1, y_1, z_1) = \alpha \cdot (-2y_1, y_1, -5y_1) = (-2\alpha \cdot y_1, \alpha \cdot y_1, -5\alpha \cdot y_1) \in U.$$

Portanto, de (i) e (ii) concluímos que U é subespaço vetorial de \mathbb{R}^3 .

(c₂) De modo geral, o conjunto solução de um sistema homogêneo

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0 \end{cases}$$

é um subespaço vetorial de \mathbb{R}^n .

Solução:

Para mostrar isto vamos escrever o sistema acima na forma matricial:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Denotemos por U o conjunto solução do sistema, é claro que $U \neq \emptyset$, pois o sistema admite pelo

menos a solução trivial
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ \vdots \\ x_n = 0 \end{cases}$$
, portanto, $(0, 0, \dots, 0) \in U$.

(i) Sejam
$$\lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$$
 e $\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$ em U , então

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} e \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Logo,

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} + \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Portanto, $\lambda + \mu$ é solução do sistema, ou seja, $\lambda + \mu \in U$.

(ii) Dado
$$\alpha \in \mathbb{R}$$
, mostremos que $\alpha \cdot \lambda = \begin{bmatrix} \alpha \cdot \lambda_1 \\ \alpha \cdot \lambda_2 \\ \vdots \\ \alpha \cdot \lambda_n \end{bmatrix} \in U$.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} \alpha \cdot \lambda_1 \\ \alpha \cdot \lambda_2 \\ \vdots \\ \alpha \cdot \lambda_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{pmatrix} \alpha \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \end{pmatrix}$$

$$=\alpha \cdot \left(\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \right) = \alpha \cdot \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

De (i) e (ii) concluímos que U é subespaço vetorial de \mathbb{R}^n .

(d) O subconjunto de $M_2(\mathbb{R})$ dado por:

$$U = \left\{ \begin{bmatrix} x & y \\ z & t \end{bmatrix}; x - 2y + 3z = 0 \right\}$$

é um subespaço vetorial de $M_2(\mathbb{R})$.

Solução:

Observemos que

$$A = \left[\begin{array}{cc} x & y \\ z & t \end{array} \right] \in U \Longleftrightarrow x - 2y + 3z = 0 \Longleftrightarrow x = 2y + 3z \Longleftrightarrow A = \left[\begin{array}{cc} 2y - 3z & y \\ z & t \end{array} \right].$$

É claro que $U \neq \emptyset$, pois $\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] \in U$, já que $2 \cdot 0 - 3 \cdot 0 = 0$.

Sejam
$$A = \begin{bmatrix} 2y_1 - 3z_1 & y_1 \\ z_1 & t_1 \end{bmatrix}$$
 e $B = \begin{bmatrix} 2y_2 - 3z_2 & y_2 \\ z_2 & t_2 \end{bmatrix}$ em U .

(i) Temos

$$A + B = \begin{bmatrix} 2y_1 - 3z_1 & y_1 \\ z_1 & t_1 \end{bmatrix} + \begin{bmatrix} 2y_2 - 3z_2 & y_2 \\ z_2 & t_2 \end{bmatrix} = \begin{bmatrix} 2y_1 - 3z_1 + (2y_2 - 3z_2) & y_1 + y_2 \\ z_1 + z_2 & t_1 + t_1 \end{bmatrix}$$
$$= \begin{bmatrix} 2(y_1 + y_2) - 3(z_1 + z_2) & y_1 + y_2 \\ z_1 + z_2 & t_1 + t_1 \end{bmatrix}.$$

Portanto, $A + B \in U$

(ii) Dado $\alpha \in \mathbb{R}$, então

$$\alpha \cdot A = \left[\begin{array}{cc} \alpha \cdot (2y_1 - 3z_1) & \alpha \cdot y_1 \\ \alpha \cdot z_1 & \alpha \cdot t_1 \end{array} \right] = \left[\begin{array}{cc} 2(\alpha \cdot y_1) - 3(\alpha \cdot z_1) & \alpha \cdot y_1 \\ \alpha \cdot z_1 & \alpha \cdot t_1 \end{array} \right].$$

Logo, $\alpha \cdot A \in U$.

De (i) e (ii) concluímos que U é subespaço de $M_2(\mathbb{R})$.

(e) O subconjunto de $M_n(\mathbb{R})$ dado por:

$$U = \{ A \in M_n(\mathbb{R}); \ tr(A) = 0 \}$$

é um subespaço vetorial de $M_n(\mathbb{R})$.

Solução:

Como $tr(0_{n\times n})=0$, então $U\neq\emptyset$.

(i) Da propriedade TR_2 de traço de matrizes quadradas temos:

$$tr(A+B) = tr(A) + tr(B).$$

Logo, se A e B estão em U, então

$$tr(A+B) = \underbrace{tr(A)}_{0} + \underbrace{tr(B)}_{0} = 0 + 0 = 0.$$

Portanto, $A + B \in U$.

(ii) Da propriedade TR_3 de traço de matrizes quadradas, dado $\alpha \in \mathbb{R}$ temos:

$$tr(\alpha \cdot A) = \alpha \cdot tr(A)$$
.

Logo, se A está em U e $\alpha \in \mathbb{R}$, então

$$tr(\alpha \cdot A) = \alpha \cdot \underbrace{tr(A)}_{0} = \alpha \cdot 0 = 0.$$

Assim, $\alpha \cdot A \in U$.

De (i) e (ii) segue que U é um subespaço de $M_n(\mathbb{R})$.

(f) Os seguintes subconjuntos de $M_n(\mathbb{R})$ definidos por:

$$U = \{A \in M_n(\mathbb{R}); A^T = A\},\,$$

$$W = \{A \in M_n(\mathbb{R}); A^T = -A\}$$

são subespaços vetoriais de $M_n(\mathbb{R})$.

Solução:

- (f₁) Como $0_{n\times n}^T = 0_{n\times n}$, então $U \neq \emptyset$.
 - (i) Sejam A e B estão em U, então

$$(A+B)^T \stackrel{T_2}{=} A^T + B^T = A + B.$$

Portanto, $A + B \in U$.

(ii) Sejam A em U e $\alpha \in \mathbb{R}$, então

$$(\alpha \cdot A)^T \stackrel{T_3}{=} \alpha \cdot A^T = \alpha \cdot A.$$

Assim, $\alpha \cdot A \in U$.

De (i) e (ii) segue que U é um subespaço de $M_n(\mathbb{R})$.

(f₂) Como $0_{n\times n}^T = 0_{n\times n} = -0_{n\times n}$, então $W \neq \emptyset$.

(i) Sejam A e B estão em W, então

$$(A+B)^T \stackrel{T_2}{=} A^T + B^T = (-A) + (-B) = -(A+B).$$

Portanto, $A + B \in W$.

(ii) Sejam A em W e $\alpha \in \mathbb{R}$, então

$$(\alpha \cdot A)^T \stackrel{T_3}{=} \alpha \cdot A^T = \alpha \cdot (-A) = -(\alpha \cdot A).$$

Assim, $\alpha \cdot A \in W$.

De (i) e (ii) segue que W é um subespaço de $M_n(\mathbb{R})$.

(g) Verifique se o subconjunto $U = \{A \in M_n(\mathbb{R}); A^2 = A\}$ de $M_n(\mathbb{R})$ é um subespaço vetorial de $M_n(\mathbb{R})$.

Solução:

O subconjunto U não é subespaço de $M_n(\mathbb{R})$, pois a matriz I_n , identidade de ordem n, está em U, já que $I_n^2 = I_n \cdot I_n = I_n$.

Porém, $2 \cdot I^n \notin U$, pois $(2 \cdot I^n) \cdot (2 \cdot I^n) = 4 \cdot I^n \neq 2 \cdot I^n$.

(h) O subconjunto $U = \{ p(t) \in \mathcal{P}_2(\mathbb{R}); \ p(-1) = p(1) = 0 \}$ é um subespaço vetorial de $P_2(\mathbb{R})$.

Solução:

O subconjunto $U \neq \emptyset$, pois o polinômio nulo p_0 está em U, já que $p_0(t) = 0$ para todo $t \in \mathbb{R}$ e portanto, $p_0(1) = p_0(-1) = 0$.

Dados p e q em U e $\alpha \in \mathbb{R}$, entãos

(i)
$$\left\{ \begin{array}{l} (p+q)(1)=p(1)+q(1)=0+0=0\\ (p+q)(-1)=p(-1)+q(-1)=0+0=0 \end{array} \right., \, \text{portanto} \,\, p+q\in U.$$

$$(ii) \ \left\{ \begin{array}{l} (\alpha \cdot p)(1) = \alpha \cdot p(1) = \alpha \cdot 0 = 0 \\ (\alpha \cdot p)(-1) = \alpha \cdot p(-1) = \alpha \cdot 0 = 0 \end{array} \right. , \ \text{portanto} \ \alpha \cdot p \in U.$$

De (i) e (ii) concluímos que U é subespaço de $\mathscr{P}_2(\mathbb{R})$.

(i) Os seguintes subconjuntos

$$U = \big\{ f \in \mathscr{C}([-a,a]); \ f(-x) = f(x) \text{ para todo } x \in [-a,a] \big\},\$$

$$W = \left\{ f \in \mathscr{C}([-a,a]); \ f(-x) = -f(x) \text{ para todo } x \in [-a,a] \right\}$$

são subespaços vetoriais de $\mathscr{C}([-a,a])$.

Solução:

(i₁) $U \neq \emptyset$, pois a função nula f_0 está em U, já que:

$$f_0(x) = 0 = f_0(-x)$$
 para todo $x \in [-a, a]$.

Dados f e g em U e $\alpha \in \mathbb{R}$, então:

(i)
$$(f+g)(-x) = f(-x) + g(-x) = f(x) + g(x) = (f+g)(x)$$
, portanto $f+g \in U$.

(ii)
$$(\alpha \cdot f)(-x) = \alpha \cdot f(-x) = \alpha \cdot f(x) = (\alpha \cdot f)(x)$$
, portanto $\alpha \cdot f \in U$.

De (i) e (ii) concluímos que U é subespaço de $\mathscr{C}([-a,a])$.

(i₂) $W \neq \emptyset$, pois a função nula f_0 está em U, já que:

$$f_0(x) = 0 = -f_0(-x)$$
 para todo $x \in [-a, a]$.

Dados f e g em U e $\alpha \in \mathbb{R}$, então:

(i)
$$(f+g)(-x) = f(-x) + g(-x) = (-f(x)) + (-g(x)) = -(f+g)(x)$$
, portanto $f+g \in W$.

(ii)
$$(\alpha \cdot f)(-x) = \alpha \cdot (-f(x)) = -\alpha \cdot f(x) = (-\alpha \cdot f)(x)$$
, portanto $\alpha \cdot f \in W$.

De (i) e (ii) concluímos que W é subespaço de $\mathscr{C}([-a,a])$.

Observações 3.2.5 (a) As funções do conjunto U do exemplo acima são chamadas **funções** pares, enquanto que as funções do conjunto W são chamadas **funções impares**.

(b) Toda função f em $\mathscr{C}([-a,a])$ pode ser escrita como a soma de uma função par e uma função ímpar.

De fato, consideremos as funções $g(x) = \frac{f(x) + f(-x)}{2}$ e $h(x) = \frac{f(x) - f(-x)}{2}$, temos:

$$g(-x) = \frac{f(-x) + f(-(-x))}{2} = \frac{f(-x) + f(x)}{2} = g(x),$$

enquanto que

$$h(-x) = \frac{f(-x) - f(-(-x))}{2} = \frac{f(-x) - f(x)}{2} = -h(x).$$

Logo, g é função par e h é função ímpar, e é claro que

$$g(x) + h(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} = f(x).$$

(j) O subconjunto $S = \{v \in \mathbb{R}^3; v = \alpha(1, -1, 1) + (2, 1, 3)\}$ não é subespaço de \mathbb{R}^3 .

Solução:

De fato, $0_{\mathbb{R}^3} \notin S$, pois $\alpha(1, -1, 1) + (2, 1, 3) = (0, 0, 0)$

$$\iff \left\{ \begin{array}{rcl} \alpha+2 & = & 0 \\ -\alpha+1 & = & 0 \\ \alpha+3 & = & 0 \end{array} \right. \iff \left\{ \begin{array}{rcl} \alpha & = & -2 \\ \alpha & = & 1 \\ \alpha & = & -3 \end{array} \right.,$$

um absurdo!

3.3 Soma, Soma Direta e Intersecção de Subespaços

Teorema 3.3.1 Seja V um espaço vetorial sobre o corpo \mathbb{K} . Se U e W são subespaços vetoriais de V, então:

- (i) A intersecção dos subespaços U e W, $U \cap W = \{v \in V; v \in U \text{ e } v \in W\}$, é um subespaço de V.
- (ii) A soma dos subespaços de U e W, $U+W=\{v\in V;\ v=u+w,\ \text{com}\ u\in U\ \text{e}\ w\in W\}$, é um subespaço de V.

Demonstração:

- (i) $U \cap W \neq \emptyset$, pois $0_V \in U$ e $0_V \in W$, $0_V \in U \cap W$.
 - Sejam v e u em $U \cap W$, então v e u estão em U e v e u estão em W.

Como U e W são subespaços de V, então $v + u \in U$ e $v + u \in W$.

Consequentemente $v + u \in U \cap W$.

• Dado v em $U \cap W$, então $v \in U$ e $v \in W$. Dado $\alpha \in \mathbb{K}$, como U e W são subespaços de V, então $\alpha \cdot v \in U$ e $\alpha \cdot v \in W$. Logo, $\alpha \cdot v \in U \cap W$.

Portanto, $U \cap W$ é subespaço de V.

- (ii) $U + W \neq \emptyset$, pois $0_V \in U$ e $0_V \in W$, $0_V + 0_V = 0_V \in U + W$.
 - Sejam v₁ e v₂ em U + W, então v₁ = u₁ + w₁ e v₂ = u₂ + w₂ com u₁, u₂ ∈ U e w₁, w₂ ∈ W.
 Como U e W são subespaços de V, então u₁ + u₂ ∈ U e w₁ + w₂ ∈ W.

Consequentemente, $v_1 + v_2 = (u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2) \in U + W$.

• Dado v em U + W, então v = u + w, com $u \in U$ e $w \in W$.

Como U e W são subespaços de V, dado $\alpha \in \mathbb{K}$ temos $\alpha \cdot u \in U$ e $\alpha \cdot w \in W$.

Logo, $\alpha \cdot v = \alpha \cdot (u+w) = \alpha \cdot u + \alpha \cdot w \in U+W$.

Portanto, U + W é subespaço de V.

Observações 3.3.2 (a) O subespaço $U \cap W$ é chamado subespaço intersecção de U e W.

- (b) O subespaço U + W é chamado **subespaço soma** de U e W.
- (c) No caso em que $U \cap W = \{0_V\}$, o subespaço soma U + W é chamado **subespaço soma direta** e denotado por $U \oplus W$.
- (d) Dados V um espaço vetorial, U e W subespaços de um V. De modo geral, $U \cup W$ não é subespaço vetorial de V.

Por exemplo, para $V = \mathbb{R}^2$, $U = \{(x, y) \in \mathbb{R}; x = 0 \text{ e } W = \{(x, y) \in \mathbb{R}; y = 0\}$, respectivamente o eixo y e o eixo x no plano cartesiano, então

$$U \cup W = \{(x, y) \in \mathbb{R}; x = 0 \text{ ou } y = 0\},\$$

ou seja, é o conjunto dos pontos do plano cartesiano que estão ou no eixo x ou no eixo y.

Assim,
$$(1,0) \in U \cup W$$
 e $(0,-3) \in U \cup W$, mas $(1,0) + (0,-3) = (1,-3) \notin U \cup W$.

Exemplos 3.3.3 Em cada um casos abaixo, obtenha os subespaços $U \cap W$ e U + W, verifique se a soma é direta.

(a)
$$V = \mathbb{R}^3$$
 com
$$\begin{cases} U = \{(x, y, z) \in \mathbb{R}^3; x = y\} \\ W = \{(x, y, z) \in \mathbb{R}^3; z = 0\} \end{cases}$$

Solução:

•
$$(x,y,z) \in U \cap W \iff \begin{cases} x = y \\ z = 0 \end{cases}$$

 $\iff (x,y,z) = (x,x,0).$

Logo,
$$U \cap W = \{(x, y, z) \in \mathbb{R}^3; x = y \text{ e } z = 0\}$$

•
$$U + W = \{(x, y, z) \in \mathbb{R}^3; (x, y, z) = (a, a, b) + (c, d, 0)\}.$$

$$\text{Logo, } (x,y,z) \in U + W \Longleftrightarrow \left\{ \begin{array}{l} x = a + c \\ y = a + d \\ z = b \end{array} \right. \text{, assim tomando} \left\{ \begin{array}{l} a = 0 \\ b = z \\ c = x \\ d = y \end{array} \right. \text{podemos escrever} \right.$$

um vetor (x, y, z) de \mathbb{R}^3 como soma de um vetor de U e um vetor de W.

Portanto, $U + W = \mathbb{R}^3$, porém a soma não é direta, pois $U \cap W \neq \{0_{\mathbb{R}^3}\}$.

(b)
$$V = M_2(\mathbb{R}) \text{ com}$$

$$\begin{cases} U = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{22} = a_{11} \right\} \\ W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{11} = 0 \ \ \text{e} \ \ a_{21} = -a_{12} \right\} \end{cases}$$

Solução:

•
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in U \cap W \iff \begin{cases} a = d \\ a = 0 & e \ c = -b \end{cases} \iff a = d = 0 \quad e \quad c = -b$$

$$\iff A = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}.$$

Logo,
$$U \cap W = \left\{ \left[\begin{array}{cc} 0 & b \\ -b & 0 \end{array} \right] \in M_2(\mathbb{R}) \right\}.$$

•
$$U+W=\left\{\left[\begin{array}{cc} x & y \\ z & t\end{array}\right]\in M_2(\mathbb{R});\;\left[\begin{array}{cc} x & y \\ z & t\end{array}\right]=\left[\begin{array}{cc} a & b \\ c & a\end{array}\right]+\left[\begin{array}{cc} 0 & d \\ -d & e\end{array}\right]\right\}$$

$$\operatorname{Logo}, \left[\begin{array}{cc} x & y \\ z & t \end{array} \right] \in U + W \Longleftrightarrow \left\{ \begin{array}{cc} x = a \\ y = b + d \\ z = c - d \\ t = a + e \end{array} \right., \text{ assim tomando} \left\{ \begin{array}{cc} a = x \\ b = y \\ c = z \\ d = 0 \\ e = t - x \end{array} \right. \text{ podemos escre-}$$

ver um vetor $\begin{bmatrix} x & y \\ z & t \end{bmatrix}$ de $M_2(\mathbb{R})$ como soma de um vetor de U e um vetor de W.

Portanto, $U+W=M_2(\mathbb{R})$, porém a soma não é direta, pois $U\cap W\neq \{0_{M_2(\mathbb{R})}\}$.

(c)
$$V = M_n(\mathbb{R})$$
, com $n \in \mathbb{N}$ e $n \geq 2$,
$$\begin{cases} U = \{A \in M_n(\mathbb{R}); A \text{ \'e sim\'etrica}\} \\ W = \{A \in M_n(\mathbb{R}); A \text{ \'e anti-sim\'etrica}\} \end{cases}$$

Solução:

•
$$A \in U \cap W \iff \begin{cases} A \text{ \'e sim\'etrica} \\ A \text{ \'e anti-sim\'etrica} \end{cases} \iff \begin{cases} A = A^T \\ A = -A^T \end{cases} \iff A = -A$$

$$\iff 2A = 0_{n \times n} \iff A = 0_{n \times n}.$$

$$\text{Logo, } U \cap W = \{0_{M_n(\mathbb{R})}\}.$$

• Vimos no estudo de matrizes quadradas que toda matriz $A \in M_n(\mathbb{R})$ pode ser escrita como:

$$A = \underbrace{\left(\frac{A + A^T}{2}\right)}_{\text{simétrica}} + \underbrace{\left(\frac{A - A^T}{2}\right)}_{\text{anti-simétrica}}.$$

Portanto, $U \oplus W = M_n(\mathbb{R})$, a soma é direta pois $U \cap W = \{0_{n \times n}\}$.

$$\text{(d)} \ \ V = \mathscr{F}(\mathbb{R}) \ \text{com} \left\{ \begin{array}{l} U = \left\{ f \in \mathscr{F}(\mathbb{R}); \ f \ \text{\'e par} \right\} \\ \\ W = \left\{ f \in \mathscr{F}(\mathbb{R}); \ f \ \text{\'e impar} \right\} \end{array} \right.$$

Solução:

•
$$f \in U \cap W \iff \begin{cases} f \text{ \'e par} \\ f \text{ \'e impar} \end{cases} \iff \begin{cases} f(-x) = f(x) \text{ para todo } x \in \mathbb{R} \\ f(-x) = -f(x) \text{ para todo } x \in \mathbb{R} \end{cases}$$
 $\iff f(x) = -f(x) \text{ para todo } x \in \mathbb{R} \iff 2f(x) = 0 \text{ para todo } x \in \mathbb{R}$
 $\iff f(x) = 0 \text{ para todo } x \in \mathbb{R} \iff f = f_0 \text{ a função nula.}$
Logo, $U \cap W = \{f_0\}$.

• Vimos que toda função $f \in \mathcal{F}(\mathbb{R})$ pode ser escrita como:

$$f(x) = \underbrace{\left(\frac{f(x) + f(-x)}{2}\right)}_{\text{função par}} + \underbrace{\left(\frac{f(x) - f(-x)}{2}\right)}_{\text{função ímpar}}.$$

Portanto, $U \oplus W = \mathscr{F}(\mathbb{R})$, a soma é direta, pois $U \cap W = \{0_{\mathscr{F}(\mathbb{R})}\}$.

(e)
$$V = \mathbb{R}^4$$
 com
$$\begin{cases} U = \{(x, y, z, w) \in \mathbb{R}^4; \ x + y = 0 \ \text{e} \ z - w = 0\} \\ W = \{(x, y, z, w) \in \mathbb{R}^4; \ x - y - z + w = 0\} \end{cases}$$

Solução:

•
$$(x, y, z, w) \in U \cap W \iff \begin{cases} x = -y & e & w = z \\ x = y + z - w \end{cases} \iff -y = y + z - z$$

 $\iff 2y = 0 \iff \begin{cases} y = 0 \\ x = 0 \end{cases} \iff (x, y, z, w) = (0, 0, z, z).$
Logo, $U \cap W = \{(x, y, z, w) \in \mathbb{R}^3; x = y = 0 \text{ e } w = z\}.$

• $U+W=\mathbb{R}^4$, veremos isto após enunciarmos o teorema da dimensão da soma e da intersecção.

(f)
$$V = \mathscr{P}_3(\mathbb{R}) \text{ com}$$

$$\begin{cases} U = \{ p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \in \mathscr{P}_3(\mathbb{R}); \ a_3 = -a_1 \} \\ W = \{ p(t) \in \mathscr{P}_3(\mathbb{R}); \ p(-1) = p'(-1) = 0 \} \end{cases}$$

Solução:

•
$$p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \in U \cap W \iff \begin{cases} a_3 = -a_1 \\ p(-1) = p'(-1) = 0 \end{cases}$$

$$\iff \begin{cases} a_3 = -a_1 \\ a_0 - a_1 + a_2 - a_3 = 0 \\ a_1 - 2a_2 + 3a_3 = 0 \end{cases} \iff \begin{cases} a_3 = -a_1 \\ a_0 = a_1 - a_2 + a_3 \\ 2a_2 = a_1 + 3a_3 \end{cases}$$

$$\iff \begin{cases} a_3 = -a_1 \\ a_0 = a_1 - a_2 - a_1 = -a_2 \\ 2a_2 = a_1 - 3a_1 = -2a_1 \end{cases} \iff \begin{cases} a_3 = -a_1 \\ a_2 = -a_1 \\ a_0 = a_1 \end{cases}$$

Logo, $U \cap W = \{p(t) = a_1 + a_1t - a_1t^2 - a_1t^3 \in \mathcal{P}_3(\mathbb{R})\}.$

• $U + W = \mathscr{P}_3(\mathbb{R})$, veremos isto após enunciarmos o teorema da dimensão da soma e da intersecção.

Observação 3.3.4 Seja V um espaço vetorial, se U e W são subespaços de V tais que $V = U \oplus W$, então para cada $v \in V$ existem únicos $u \in U$ e $w \in W$ tais que v = u + w.

De fato, se existissem $u_1, u_2 \in U$ e $w_1, w_2 \in W$ com $v = u_1 + w_1 = u_2 + w_2$, então teríamos $u_1 - u_2 = w_2 - w_1 \in U \cap W$, mas como $V = U \oplus W$, então $U \cap W = \{0_V\}$, daí que $u_1 - u_2 = w_2 - w_1 = 0_V$, e portanto $\begin{cases} u_1 = u_2 \\ w_2 = w_1 \end{cases}$.

Portanto, a decomposição de v como soma de um elemento de U e um elemento de W é única.

4.1 Combinação Linear e Subespaço Gerado

Definição 4.1.1 Seja V um espaço vetorial sobre o corpo \mathbb{K} , dizemos que $v \in V$ é uma **combinação linear** dos vetores v_1, v_2, \dots, v_n vetores em V se, e somente se, existem escalares $\alpha_1, \alpha_2, \dots, \alpha_n$ em \mathbb{K} tais que

$$v = \alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \cdots + \alpha_n \cdot v_n.$$

Exemplos 4.1.1 (a) O vetor (-2,3) é combinação linear dos vetores (1,0) e (0,1) de \mathbb{R}^2 , pois (-2,3) = -2(1,0) + 3(0,1).

(b) O polinômio $p(t) = t^2 + 4t - 7$ é combinação linear dos polinômios

$$p_1(t) = t^2 - 2t + 1$$
 e $p_2(t) = 3t - 4$ de $\mathscr{P}_2(\mathbb{R})$,
pois $p(t) = t^2 + 4t - 7 = (t^2 - 2t + 1) + 2(3t - 4)$.

(c) A matriz $A = \begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}$ é combinação linear das matrizes

$$A_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{e} \quad A_3 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

$$\text{pois} \quad 2 \cdot \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + (-3) \cdot \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + 4 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix} \quad \text{de} \quad M_2(\mathbb{R}).$$

Definição 4.1.2 Sejam V um espaço vetorial sobre o corpo \mathbb{K} e S um subconjunto finito de V, ou seja, $S = \{v_1, \dots, v_n\}$, o conjunto de todas as combinações lineares de elementos de S é um subespaço de V, chamado **subespaço gerado** pelos elementos de S, ou simplesmente, subespaço gerado de S.

Notação: [S] ou $[v_1, \dots, v_n]$.

Observações 4.1.2 (a) Notemos que $[S] = \{ \alpha_1 \cdot v_1 + \cdots + \alpha_n \cdot v_n; \ \alpha_1, \cdots, \alpha_n \in \mathbb{K} \}.$

- (b) $[v_1, \dots, v_n]$ é o "menor" subespaço de V que contém os vetores $\{v_1, \dots, v_n\}$, ou seja, se W é subespaço de V tal que $\{v_1, \dots, v_n\} \subset W$, então $[v_1, \dots, v_n] \subset W$.
- (c) Se U = [S], dizemos que S é um **sistema de geradores** para o subespaço U.
- (d) Por convenção indicamos $[\emptyset] = \{0_V\}$.

Exemplos 4.1.3 (a) Em $\mathcal{C}([0,2\pi])$ consideremos $S = \{\cos x, \sin x\}$, então

$$[S] = \{ f \in \mathscr{C}([0,2\pi]); \ f(x) = \alpha_1 \cos x + \alpha_2 \sin x; \ \alpha_1, \ \alpha_2 \in \mathbb{R} \}.$$

(b) Seja

$$S = \left\{ \begin{array}{ccc} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right\}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\},$$

então

$$[S] = \left\{ \begin{array}{c} \alpha_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \alpha_4 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right. \\ \left. + \alpha_5 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \alpha_6 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \alpha_1, \cdots, \alpha_6 \in \mathbb{R} \right. \\ \left. = \left\{ \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ 0 & \alpha_4 & \alpha_5 \\ 0 & 0 & \alpha_6 \end{bmatrix}; \alpha_1, \cdots, \alpha_6 \in \mathbb{R} \right. \right\}.$$

Portanto, [S] é o subespaço das matrizes reais triangulares superiores de ordem 3.

(c) Seja
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 uma matriz de $M_{m \times n}(\mathbb{R})$.

(c₁) O subconjunto

$$\mathscr{L}(A) = \{\alpha_1 \cdot c_1 + \alpha_2 \cdot c_2 + \cdots + \alpha_m \cdot c_m; \alpha_1, \alpha_2, \cdots, \alpha_m \in \mathbb{R}\},\$$

com $c_i = [a_{i1} \ a_{i2} \ \cdots \ a_{in}]$ a *i*-ésima linha de A, para $i \in \{1, \cdots, m\}$, é o subespaço de \mathbb{R}^n gerado pelas linhas da matriz A, e denominado **subespaço linha** de A.

(c₂) O subconjunto

$$\mathscr{C}(A) = \{\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \cdots + \alpha_n \cdot v_n; \alpha_1, \alpha_2, \cdots, \alpha_n \in \mathbb{R} \},\$$

$$\operatorname{com} v_j = \left[\begin{array}{c} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{array}\right] \text{ a j-ésima coluna de A, para $j \in \{1, \cdots, n\}$, é um subespaço de \mathbb{R}^m gerado}$$

pelas colunas de \overline{A} , chamado **subespaço coluna** de A.

(c₃) As soluções do sistema homogêneo $A \cdot X = 0_{m \times 1}$, com $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ é um subespaço de \mathbb{R}^n , denotado por chamado $\mathcal{N}(A)$ e denominado **subespaço nulidade** de A.

No caso em que $A = \begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$, temos:

$$(c_1)$$

Por exemplo, $c = \begin{bmatrix} 1 & 2 & -4 \end{bmatrix} \in \mathcal{L}(A)$, basta tomar $\alpha_1 = 1$, $\alpha_2 = 2$, $\alpha_3 = 3$ e $\alpha_4 = -2$.

 (c_2)

$$\mathscr{C}(A) = \left\{ \begin{array}{c} \alpha_1 \begin{bmatrix} -1\\1\\0\\0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1\\-1\\1\\0 \end{bmatrix} + \alpha_3 \begin{bmatrix} -1\\1\\-1\\1 \end{bmatrix} \\ = \begin{bmatrix} -\alpha_1 + \alpha_2 - \alpha_3\\\alpha_1 - \alpha_2 + \alpha_3\\\alpha_2 - \alpha_3 \end{bmatrix}, \text{ com } \alpha_1, \ \alpha_2, \ \alpha_3 \in \mathbb{R} \end{array} \right\}.$$

Por exemplo,
$$v = \begin{bmatrix} -2 \\ 6 \\ -3 \end{bmatrix} \in \mathscr{C}(A)$$
, basta tomar $\alpha_1 = 3$, $\alpha_2 = -1$ e $\alpha_3 = 2$.

$$(c_3) \ \ \text{O sistema} \begin{bmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{\'e dado por } \begin{cases} -x_1 + x_2 - x_3 = 0 \\ x_1 - x_2 + x_3 = 0 \\ x_2 - x_3 = 0 \end{cases} \text{ que tem }$$
 apenas a solução trivial
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases}$$

Logo, neste caso $\mathcal{N}(A) = \{(0, 0, 0)\}.$

(d) Mostre que $p(t) = t^2 + t - 1 \notin [p_1(t), p_2(t)] \subset \mathcal{P}_3(\mathbb{R}), \text{ com } \begin{cases} p_1(t) = t^3 - 2 \\ p_2(t) = t + 1 \end{cases}$ De fato,

$$q(t) \in [p_1(t), p_2(t)] \iff q(t) = a(t^3 - 2) + b(t + 1) = at^3 + bt + (b - 2a), \text{ com } a, b \in \mathbb{R}.$$

Logo, um polinômio em $[p_1(t), p_2(t)]$ tem grau 3, ou grau 1 ou grau 0, consequentemente $p(t) \notin [p_1(t), p_2(t)]$.

Propriedades de Subespaço Gerado

Sejam V espaço vetorial sobre \mathbb{K} e S um subconjunto finito de V, então:

 $CL_1 S \subset [S].$

 CL_2 Se S_1 é subconjunto de V tal que $S_1 \subset S$, então $[S_1] \subset [S]$.

 CL_3 [S] = [S].

 CL_4 Se S_1 também é subconjunto de V, então $[S_1 \cup S] = [S] + [S_1]$.

Verificação:

- CL_1 Dado $v \in S$, então $v = 1_{\mathbb{K}} \cdot v \in [S]$, portanto $S \subset [S]$.
- CL_2 Dado $v \in [S_1]$, então $v = \alpha_1 \cdot v_1 + \cdots + \alpha_k \cdot v_k$, com $v_1, \cdots, v_k \in S_1 \subset S$ e $\alpha_1, \cdots, \alpha_k \in \mathbb{K}$, portanto $v \in S_1$, consequentemente $[S_1] \subset [S]$.
- CL₃ Segue da definição.
- CL_4 Dado $v \in [S_1 \cup S]$, então

$$v = \alpha_1 \cdot v_1 + \cdots + \alpha_k \cdot v_k + \beta_1 \cdot w_1 + \cdots + \beta_l \cdot w_l,$$

com
$$v_1, \dots, v_k \in S_1, v_1, \dots, v_k \in S$$
 e $\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_l \in \mathbb{K}$.

Como $\alpha_1 \cdot v_1 + \cdots + \alpha_k \cdot v_k \in [S_1]$ e $\beta_1 \cdot w_1 + \cdots + \beta_l \cdot w_l \in [S]$, então $v \in [S_1] + [S]$, logo $[S_1 \cup S] \subset [S_1] + [S]$.

Reciprocamente, se $v \in [S_1] + [S]$, então v = u + w, com $u \in [S_1]$ e $w \in [S]$, portanto,

$$u = a_1 \cdot v_1 + \cdots + a_r \cdot v_r$$
, com $v_1, \dots, v_r \in S_1$ e $a_1, \dots, a_r \in \mathbb{K}$

e

$$w = b_1 \cdot w_1 + \cdots + b_s \cdot w_s$$
, com $w_1, \cdots, w_s \in S$ e $b_1, \cdots, b_s \in \mathbb{K}$.

Consequentemente,

$$v = a_1 \cdot v_1 + \cdots + a_r \cdot v_r + b_1 \cdot w_1 + \cdots + b_s \cdot w_s$$

com
$$v_1, \dots, v_r, w_1, \dots, w_s \in S_1 \cup S$$
 e $a_1, \dots, a_r, b_1, \dots, b_s \in \mathbb{K}$.

Portanto, $v \in [S_1 \cup S]$ e daí que $[S_1] + [S] \subset [S_1 \cup S]$.

Logo,
$$[S_1] + [S] = [S_1 \cup S]$$
.

Definição 4.1.3 Dizemos que um espaço vetorial V é **finitamente gerado** se existe S um subconjunto finito de V tal que V = [S].

Exemplos 4.1.4 (a) \mathbb{R}^n é finitamente gerado, pois $\mathbb{R}^n = \left[(1,0,\cdots,0), (0,1,\cdots,0), \cdots, (0,0,\cdots,1) \right]$.

- (b) $\mathscr{P}_n(\mathbb{R})$ é finitamente gerado, pois $\mathscr{P}_n(\mathbb{R}) = \begin{bmatrix} 1, t, \cdots, t^n \end{bmatrix}$.
- (c) $M_{m\times n}(\mathbb{R})$ é finitamente gerado, pois $M_{m\times n}(\mathbb{R}) = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}_{m\times n}$, \cdots , $\begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}_{m\times n}$.

Observação 4.1.5 Existem espaços vetoriais que não são finitamente gerados, por exemplo, o espaço de funções reais $\mathscr{F}(\mathbb{R})$ não é finitamente gerado.

4.2 Dependência e Independência Linear

Definição 4.2.1 Seja V um espaço vetorial sobre o corpo \mathbb{K} , dizemos que um subconjunto $S = \{v_1, v_2, \dots, v_k\}$, de V, é **linearmente independente** se, e somente se, a equação

$$a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0_V$$

tem apenas a solução trivial $a_1 = a_2 = \cdots = a_k = 0$.

No caso em que a equação tem alguma solução não trivial, dizemos que S é **linearmente dependente**

- Observações 4.2.1 (a) Em geral usamos a notação L.I. para vetores ou conjunto de vetores linearmente independentes e a notação L.D. para designar vetores ou um conjunto de vetores linearmente dependentes.
- (b) Por convenção o conjunto vazio, $\emptyset \subset V$, é linearmente independente.

Exemplos 4.2.2 Nos casos abaixo verifique se S é L.I. ou L.D.

(a)
$$V = \mathcal{P}_2(\mathbb{R})$$
 e $S = \{t+1, t^2-1, t+t^2\}.$

Solução:

$$a(t+1) + b(t^{2} - 1) + c(t+t^{2}) = 0 \iff (a-b) + (a+c)t + (b+c)t^{2} = 0$$

$$\iff \begin{cases} a - b & = 0 \\ a + c & = 0 \\ b + c & = 0 \end{cases} \iff \begin{cases} a - b & = 0 \\ b + c & = 0 \\ c & = -b \end{cases}$$

Portanto, por exemplo, a=b=1 e c=-1 é uma solução da equação, e S é L.D.

(b)
$$V = M_2(\mathbb{R}) \text{ e } S = \left\{ \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \right\}.$$

Solução:

$$a\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} + b\begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \iff \begin{bmatrix} a & -a+b \\ a+b & -b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\iff \begin{cases} a = 0 \\ -a+b = 0 \\ a+b = 0 \\ -b = 0 \end{cases} \iff \begin{cases} a = 0 \\ b = 0 \end{cases}$$

Logo, a única solução da equação é a trivial a = b = 0, portanto S é L.I.

(c)
$$V = \mathbb{R}^3$$
 e $S = \{(1, -1, 3), (-2, 3, -5), (0, 1, 1)\}.$

Solução:

$$a(1,-1,3) + b(-2,3,-5) + c(0,1,1) = (0,0,0)$$

$$\iff (a-2b,-a+3b+c,3a-5b+c) = (0,0,0) \iff \begin{cases} a - 2b & = 0 \\ -a + 3b + c & = 0 \\ 3a - 5b + c & = 0 \end{cases}$$

$$\iff \begin{cases} a - 2b & = 0 \\ b + c & = 0 \\ b + c & = 0 \end{cases} \iff \begin{cases} a = 2b \\ c & = -b \end{cases}$$

Logo, por exemplo, b = 1, a = 2 e c = -1 é uma solução da equação, e S é L.D.

(d) $V = \mathcal{C}([0, 2\pi])$ e $S = \{1, \cos x, \text{sen } (2x)\}.$

Solução:

 $a + b\cos(2x) + c\sin x = 0$ para todo $x \in [0, 2\pi]$, em particular para x = 0, $x = \frac{\pi}{2}$ e $x = \frac{3\pi}{2}$ obtemos:

$$\begin{cases} a + b & = 0 \\ a - b + c & = 0 \\ a - b - c & = 0 \end{cases} \iff \begin{cases} a + b & = 0 \\ -2b - c & = 0 \\ -2c & = 0 \end{cases} \iff \begin{cases} a = 0 \\ b = 0 \\ c & = 0 \end{cases}$$

Portanto, S é L.I.

(e) $V = \mathscr{F}(\mathbb{R})$ e $S = \{1, \cos^2 x, \sin^2 x\}$.

Solução:

 $a+b\cos^2 x+c$ $\sin^2 x=0$ para todo $x\in\mathbb{R}$, mas sabemos que $\cos^2 x+\sin^2 x=1$ para todo $x\in\mathbb{R}$, portanto a equação acima tem solução não trivial $\begin{cases} a=1\\b=-1\\c=-1 \end{cases}$

Logo, S é L.D.

4.2.1 Propriedades de Dependência e Independência Linear

Seja V um espaço vetorial sobre \mathbb{K} , valem as seguintes consequências:

- LI_1 Se $S = \{v_1, v_2\}$ é um subconjunto de V, com $v_1 \neq 0_V$ e $v_2 \neq 0_V$, então S é L.D. se, e somente se, v_1 e v_2 são proporcionais.
- LI_2 $S = \{v\}$ é um subconjunto unitário de V é L.I. se, e somente, se $v \neq 0_V$.
- LI_3 Se S é um subconjunto de V tal que $0_V \in S$, então S é L.D, ou seja, todo conjunto que contém o elemento neutro, 0_V , é linearmente dependente.
- LI_4 Se S e S' são subconjuntos finitos de V com $S \subset S'$ e S L.D., então S' também é L.D., ou seja, todo conjunto contido em um subconjunto L.D. também é L.D.
- LI_5 Se S e S' são subconjuntos finitos de V com $S \subset S'$ e S' L.I., então S também é L.I., ou seja, todo subconjunto de um conjunto L.I. também é L.I.

Verificação:

 LI_1 $S = \{v_1, v_2\}$ é L.D. se, e somente se, existem α_1 , $\alpha_2 \in \mathbb{K}$ tais que $\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 = 0_V$ e $\alpha_1 \neq 0$ ou $\alpha_2 \neq 0$, supondo $\alpha_2 \neq 0$, então $v_1 = -\frac{\alpha_1}{\alpha_2} \cdot v_2$ e portanto v_1 e v_2 são proporcionais.

Reciprocamente, se v_1 e v_2 são proporcionais, então existe $\beta \in \mathbb{K}$ tal que

$$v_2 = \beta \cdot v_1 \iff 1 \cdot v_2 + (-\beta)v_1 = 0_V.$$

Portanto, $S = \{v_1, v_2\}$ é L.D.

 LI_2 $S = \{v\}$ é L.I. se, e somente, se $\alpha \cdot v = 0_V$ tem apenas a solução trivial $\alpha = 0$, portanto $v \neq 0_V$. É claro que se $v \neq 0_V$ a equação $\beta \cdot v = 0_V$ só tem a solução trivial $\beta = 0$, e portanto, $S = \{v\}$ é L.I.

 LI_3 Suponhamos que $S = \{0_V, v_2, \dots, v_k\}$, logo a equação

$$\alpha_1 \cdot 0_V + \alpha_2 \cdot v_2 + \cdots + \alpha_k \cdot v_k = 0_V$$

tem solução não trivial, pois α_1 pode ser qualquer elemento de \mathbb{K} .

Portanto, S é linearmente dependente.

 LI_4 Suponhamos $S = \{v_1, v_2, \dots, v_k\}$ e $S' = \{v_1, v_2, \dots, v_k, w_1 \dots w_l\}$ e que S é L.D., então existem escalares não todos nulos $\alpha_1, \alpha_2, \dots, \alpha_k$ tais que

$$\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \cdots + \alpha_k \cdot v_k = 0_V$$

consequentemente

$$\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \dots + \alpha_k \cdot v_k + 0 \cdot w_1 + 0 \cdot w_2 + \dots + 0 \cdot w_l = 0_V$$

é uma solução não trivial e portanto S' também é L.D.

 LI_5 De fato se S fosse L.D. pela propriedade LI_4 teríamos S' também L. D., uma contradição. Portanto, S é L.I.

Teorema 4.2.3 Sejam V um espaço vetorial sobre o corpo \mathbb{K} e v_1, v_2, \dots, v_k vetores em V. O conjunto $S = \{v_1, v_2, \dots, v_k\}$ é linearmente dependente (LD) se, e somente se, um de seus elementos pode ser escrito como combinação linear dos demais elementos.

Demonstração: Suponhamos que $S = \{v_1, v_2, \dots, v_k\}$ é um subconjunto L.D. de V, então a equação

$$a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0_V$$

tem alguma solução não trivial.

Suponhamos sem perda de generalidade que uma solução não trivial seja com $a_1 \neq 0$, então temos:

$$a_1 \cdot v_1 = -a_2 \cdot v_2 - \dots - a_k \cdot v_k \implies v_1 = \frac{-a_2}{a_1} \cdot v_2 + \dots + \frac{-a_k}{a_1} \cdot v_k.$$

Assim, v_1 se escreve como combinação linear dos demais vetores.

Reciprocamente, supondo que $v_1 = \alpha_1 \cdot v_2 + \cdots + \alpha_{k-1} \cdot v_k$, então temos

$$1 \cdot v_1 - \alpha_1 \cdot v_2 - \cdots - \alpha_{k-1} \cdot v_k$$
.

Consequentemente, S é linearmente dependente.

Proposição 4.2.4 Sejam V um espaço vetorial sobre o corpo \mathbb{K} e $S = \{u_1, \dots, u_k\}$ é um subconjunto L.I. de V. Se $v \in V$ se escreve como combinação linear dos vetores S, então v se escreve de maneira única, a menos da ordem das parcelas, como combinação linear dos vetores de S.

Demonstração: De fato, se existem escalares a_1, \dots, a_k e b_1, \dots, b_k em \mathbb{K} tais que

$$v = a_1u_1 + \dots + a_ku_k = b_1u_1 + \dots + b_ku_k$$

$$\iff a_1u_1+\cdots+a_ku_k-(b_1u_1+\cdots+b_ku_k)=0_V\iff (a_1-b_1)u_1+\cdots+(a_k-b_k)u_k=0_V.$$

Como *S* é subconjunto L.I. de *V* segue que:

$$a_1 - b_1 = \dots = a_k - b_k = 0 \Longleftrightarrow \begin{cases} a_1 = b_1 \\ \vdots \\ a_k = b_k \end{cases}$$

Portanto, v se escreve de maneira única como combinação linear dos vetores de S.

4.3 Base e Dimensão

4.3.1 Base de um Espaço Vetorial Finitamente Gerado

Agora vamos estabelecer o procedimento para obter um subconjunto finito de um espaço vetorial V finitamente gerado sobre um corpo \mathbb{K} , tal que todo vetor deste espaço vetorial pode ser escrito de maneira única como combinação linear dos vetores deste subconjunto.

Definição 4.3.1 Seja V um espaço vetorial finitamente gerado sobre um corpo \mathbb{K} , um subconjunto finito \mathscr{B} de V é uma **base** de V se, e somente se,

- (i) B gera V, ou seja, [B] = V.
- (ii) *B* é linearmente independente.

Exemplos 4.3.1 (a) $\mathcal{B} = \{(1,0), (0,1)\}\$ é base de \mathbb{R}^2 , pois:

- Para todo $(x,y) \in \mathbb{R}^2$ podemos escrever (x,y) = x(1,0) + y(0,1), logo $[\mathscr{B}] = \mathbb{R}^2$.
- \mathscr{B} é L.I. pela propriedade LI_1 .
- (b) $\mathscr{B} = \{(1,0), (0,1)\}\$ é base de \mathbb{C}^2 , como espaço vetorial sobre \mathbb{C} , pois:
 - Para todo $(x+iy,z+iw) \in \mathbb{R}^2$ podemos escrever

$$(x+iy,z+iw) = (x+iy)(1,0) + (z+iw)(0,1),$$

logo
$$[\mathscr{B}] = \mathbb{C}^2$$
.

- \mathscr{B} é L.I. pela propriedade LI_1 .
- (c) $\mathscr{B} = \{(1,0), (0,1), (i,0), (0,i)\}$ é base de \mathbb{C}^2 , como espaço vetorial sobre \mathbb{R} , pois:
 - Para todo $(x+iy,z+iw) \in \mathbb{R}^2$ podemos escrever

$$(x+iy,z+iw) = x(1,0) + y(i,0) + z(0,1) + w(0,i),$$

logo
$$[\mathscr{B}] = \mathbb{C}^2$$
.

• \mathscr{B} é L.I., pois a equação abaixo tem apenas a solução trivial:

$$a(1,0) + b(i,0) + c(0,1) + d(0,i) = (0,0) \iff (a+bi,c+di) = (0,0) \iff \begin{cases} a=0 \\ b=0 \\ c=0 \\ d=0 \end{cases}$$

(d) $\mathscr{B}=\{(1,-1),\ (0,1),\ (1,1)$ não é base de $\mathbb{R}^2,$ pois \mathscr{B} é L.D. já que

$$(1,-1) = (1,1) + (-2)(0,1).$$

- (e) $\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ é base de \mathbb{R}^3 , pois:
 - Para todo $(x, y, z) \in \mathbb{R}^3$ podemos escrever (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1), portanto $[\mathcal{B}] = \mathbb{R}^3$.
 - \mathscr{B} é L.I., pois a equação vetorial a(1,0,0)+b(0,1,0)+c(0,0,1)=(0,0,0) tem uma única solução $\begin{cases} a=0\\b=0\\c=0 \end{cases}$

4.3 Base e Dimensão

(f) $\mathscr{B} = \{(1,0,0), (0,1,-1)\}$ é base de \mathbb{R}^3 , pois não existem números reais a e b tais que, por exemplo, a(1,0,0) + b(0,1,-1) = (1,2,3).

(g)
$$\mathscr{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$
 é base de $M_2(\mathbb{R})$, pois:

• Para toda matriz $\begin{bmatrix} x & y \\ z & t \end{bmatrix} \in M_2(\mathbb{R})$ podemos escrever

$$\begin{bmatrix} x & y \\ z & t \end{bmatrix} = x \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + y \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + z \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + t \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

portanto $[\mathscr{B}] = M_2(\mathbb{R})$.

• \mathscr{B} é L.I., pois a única solução da equação

$$a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \acute{e} \quad \begin{cases} a = 0 \\ b = 0 \\ c = 0 \\ d = 0 \end{cases}$$

- (h) $\mathscr{B} = \{1, t, t^2\}$ é base de $\mathscr{P}_2(\mathbb{R})$, pois:
 - Para todo $p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R})$ podemos escrever $p(t) = a_0 \cdot 1 + a_1 \cdot t + a_2 \cdot t^2$, portanto $[\mathscr{B}] = \mathscr{P}_2(\mathbb{R})$.
 - \mathscr{B} é L.I., pois a única solução da equação $a\cdot 1+b\cdot t+c\cdot t^2\equiv 0$ é $\begin{cases} a=0\\b=0\\c=0 \end{cases}$

Observação 4.3.2 Os espaços vetoriais $\mathscr{F}(\mathbb{R})$ e $\mathscr{C}([a,b])$ não têm base finita, pois não existe um conjunto finito de funções L.I que gera qualquer função.

4.3.2 Base Canônica

Alguns espaços vetoriais têm uma base especial, considerada a base padrão, essa base é aquela em que, em geral, é imediato escrever um vetor do espaço vetorial como combinação de seus vetores, e é chamada **base canônica**.

Exemplos 4.3.3 (a) A base canônica de \mathbb{R}^n é:

$$\mathscr{B} = \{e_1, e_2, \cdots, e_n\},$$
 com $e_i = (0, \cdots, \underbrace{1}_{i-\text{\'esima posiç\~ao}}, \cdots, 0).$

Observemos que dado $v=(a_1, a_2, \cdots, a_n) \in \mathbb{R}^n$, então

$$v = a_1(1, 0, \dots, 0) + a_2(0, 1, \dots, 0) + \dots + a_n(0, 0, \dots, 1) = a_1e_1 + a_2e_2 + \dots + a_ne_n$$

- (a_1) $\mathscr{B} = \{(1,0),\,(0,1)\}$ é a base canônica de \mathbb{R}^2 .
- (a₂) $\mathscr{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$ é a base canônica de \mathbb{R}^3 .
- $(a_3) \ \ \mathscr{B} = \{(1,0,0,0), \ (0,1,0,0), \ (0,0,1,0), \ (0,0,0,1)\} \ \text{\'e a base canônica de } \mathbb{R}^4.$

(b) A base canônica de $M_{m \times n}(\mathbb{R})$ é:

$$\mathscr{B} = \{E_{11}, E_{12}, \dots, E_{1n}, E_{21}, E_{22}, \dots, E_{2n}, \dots, E_{m1}, E_{m2}, \dots, E_{mn}\},\$$

com $E_{ij} \in M_{m \times n}(\mathbb{R})$ a matriz que o elemento da posição ij é 1 e os demais elementos são iguais a 0, ou seja,

$$E_{ij} = \begin{bmatrix} 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \underbrace{1}_{\text{posição } ij} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{bmatrix}_{m \times n}.$$

Observemos que dado
$$A=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}\right]_{m\times n}\in M_{m\times n}(\mathbb{R}),$$
 então

$$A = a_{11} \begin{bmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} + a_{12} \begin{bmatrix} 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} + \cdots + a_{1n} \begin{bmatrix} 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} + \cdots + a_{mn} \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} + \cdots + a_{mn} \begin{bmatrix} 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$= a_{11}E_{11} + a_{12}E_{12} + \cdots + a_{1n}E_{1n} + \cdots + a_{\lceil m}1E_{m1} + a_{m2}E_{m2} + \cdots + a_{mn}E_{mn}.$$

$$(b_1) \ \mathscr{B} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\} \text{\'e base canônica de } M_2(\mathbb{R})$$

$$\text{(b2)} \ \mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{\'e base can\^omica de } M_{3 \times 2}(\mathbb{R})$$

(c) A base canônica de $\mathscr{P}_n(\mathbb{R})$ é:

$$\mathscr{B} = \{1, t, \cdots, t^n\}.$$

Observemos que dado $p(t) = a_0 + a_1 t + \cdots + a_n t^n \in \mathscr{P}_n(\mathbb{R})$, então

$$p(t) = a_0 \cdot 1 + a_1 \cdot t + \cdots + a_n \cdot t^n.$$

- (c₁) $\mathscr{B} = \{1, t\}$ é a base canônica de $\mathscr{P}_1(\mathbb{R})$.
- (c_2) $\mathscr{B} = \{1, t, t^2\}$ é a base canônica de $\mathscr{P}_2(\mathbb{R})$.
- (c₃) $\mathscr{B} = \{1, t, t^2, t^3\}$ é a base canônica de $\mathscr{P}_3(\mathbb{R})$.

4.3 Base e Dimensão

(d) A base $\mathscr{B} = \{e_1, e_2, \dots, e_n\}$, com $e_i = (0, \dots, \underbrace{1, e_{\text{sima posição}}}, \dots, 0)$, dada no exemplo (a) acima

é também base canônica de \mathbb{C}^n , como espaço vetorial sobre \mathbb{C} .

Porém, se consideramos \mathbb{C}^n como espaço vetorial sobre \mathbb{R} , então a base canônica é:

$$\mathscr{B} = \{e_1, e_2, \dots, e_n, i e_1, i e_2, \dots, i e_n\},\$$

com i a unidade imaginária.

- $(d_1) \ \mathscr{B} = \{(1,0), \ (0,1)\} \ \text{\'e a base canônica de } \mathbb{C}^2, \text{como espaço vetorial sobre } \mathbb{C}.$
- (d_2) $\mathscr{B} = \{(1,0), (0,1), (i,0), (0,i)\}$ é base canônica de \mathbb{C}^2 , como espaço vetorial sobre \mathbb{R} .
- $(d_3) \ \mathscr{B} = \{(1,0,0),\ (0,1,0),\ (0,0,1)\} \ \text{\'e a base canônica de } \mathbb{C}^3, \text{ como espaço vetorial sobre } \mathbb{C}.$
- (d₄) $\mathscr{B} = \{(1,0,0), (0,1,0), (0,0,1), (i,0,0), (0,i,0), (0,0,i)\}$ é base canônica de \mathbb{C}^3 , como espaço vetorial sobre \mathbb{R} .

4.3.3 Dimensão de um Espaço Vetorial Finitamente Gerado

Agora vamos estabelecer o procedimento para obter a dimensão de um espaço vetorial V finitamente gerado sobre um corpo \mathbb{K} .

Teorema 4.3.4 Sejam V um espaço vetorial sobre o corpo \mathbb{K} e S um subconjunto finito de V tal que [S] = V, então:

- (i) Podemos extrair de *S* uma base de *V*.
- (ii) Qualquer subconjunto de V com mais do que #(S) vetores é necessariamente L.D.

Demonstração: Suponhamos que $S = \{v_1, v_2, \dots, v_n\}$.

(i) Se S é L.I., então S é uma base de V, pois por hipótese [S] = V.

Se S é L.D., então a equação $a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0_V$ tem alguma solução não trivial.

Suponhamos sem perda de generalidade que uma solução não trivial seja com $a_n \neq 0$, então podemos escrever:

$$v_n = \frac{(-a_1)}{a_n} v_1 + \dots + \frac{(-a_{n-1})}{a_n} v_{n-1} \Longrightarrow v_n \in [v_1, \dots, v_{n-1}].$$

Consequentemente, $V = [v_1, \dots, v_{n-1}]$

Se $\{v_1, \dots, v_{n-1}\}$ é L. I., então essa é uma base de V.

Caso contrário, como S é finito, repetindo o procedimento sucessivamente encontraremos \mathscr{B} um subconjunto de S com \mathscr{B} L.I. e $[\mathscr{B}] = V$.

(ii) Por hipótese sabemos que V = [S] e pelo item (i) podemos extrair de S uma base de V, suponhamos que $\mathcal{B} = \{v_1, \dots, v_k\}$ é uma tal base de V.

Seja $\{w_1, w_2, \dots, w_m\}$ um subconjunto de V com m > k, como \mathscr{B} é base de V podemos escrever:

$$w_{1} = a_{11}v_{1} + a_{12}v_{2} + \cdots + a_{1k}v_{k}$$

$$w_{2} = a_{21}v_{1} + a_{22}v_{2} + \cdots + a_{2k}v_{k}$$

$$\vdots$$

$$w_{m} = a_{m1}v_{1} + a_{m2}v_{2} + \cdots + a_{mk}v_{k}$$

Assim a equação $\alpha_1 w_1 + \alpha_2 w_2 + \cdots + \alpha_m w_m = 0_V$ é equivalente à seguinte:

$$\alpha_{1}(a_{11}v_{1} + a_{12}v_{2} + \cdots + a_{1k}v_{k}) + \alpha_{2}(a_{21}v_{1} + a_{22}v_{2} + \cdots + a_{2k}v_{k})$$

$$+ \cdots + \alpha_{m}(a_{m1}v_{1} + a_{m2}v_{2} + \cdots + a_{mk}v_{k}) = 0_{V}$$

$$\iff (\alpha_{1}a_{11} + \alpha_{2}a_{21} + \cdots + \alpha_{m}a_{m1}) \ v_{1} + (\alpha_{1}a_{12} + \alpha_{2}a_{22} + \cdots + \alpha_{m}a_{m2}) \ v_{2}$$

$$+ \cdots + (\alpha_{1}a_{1k} + \alpha_{2}a_{2k} + \cdots + \alpha_{m}a_{mk}) \ v_{k} = 0_{V}.$$

Como $\{v_1, \dots, v_k\}$ é L.I., então devemos ter:

$$\begin{cases} \alpha_{1}a_{11} + \alpha_{2}a_{21} + \cdots + \alpha_{m}a_{m1} = 0 \\ \alpha_{1}a_{12} + \alpha_{2}a_{22} + \cdots + \alpha_{m}a_{m2} = 0 \\ \vdots \\ \alpha_{1}a_{1k} + \alpha_{2}a_{2k} + \cdots + \alpha_{m}a_{mk} = 0 \end{cases}$$

um sistema homogêneo com m variáveis, $\alpha_1, \alpha_2, \dots, \alpha_m$, e k equações e $k \le n < m$.

Como o sistema é homogêneo $p_c = p_a \le k < m$, com p_c e p_a , respectivamente, o posto da matriz dos coeficientes e o posto da matriz ampliada do sistema acima.

Logo, pelo teorema do posto o sistema tem infinitas soluções.

Portanto, $\{w_1, w_2, \dots, w_m\}$ é L.D.

Corolário 4.3.5 Seja V um espaço vetorial sobre o corpo \mathbb{K} , se \mathscr{B} é uma base de V, S é um subconjunto L.I de V, então $\#(S) \leq \#(\mathscr{B})$, com # indicando o número de elementos do conjunto.

Demonstração: De fato, se tivéssemos $\#(S) > \#(\mathscr{B})$ pelo Teorema 4.3.4 (ii) teríamos S um conjunto L. D., uma contradição!

Portanto,
$$\#(S) \leq \#(\mathscr{B})$$
.

Corolário 4.3.6 Seja V um espaço vetorial finitamente gerado sobre um corpo \mathbb{K} , então qualquer base V tem o mesmo número de elementos.

Demonstração: Sejam \mathcal{B}_1 e \mathcal{B}_2 bases de V pelo corolário acima como \mathcal{B}_1 é base e \mathcal{B}_2 é L.I devemos ter $\#(\mathcal{B}_2) \leq \#(\mathcal{B}_1)$.

Por outro lado, como \mathcal{B}_2 é base e \mathcal{B}_1 é L. I. devemos ter $\#(\mathcal{B}_1) \leq \#(\mathcal{B}_2)$.

Portanto,
$$\#(\mathscr{B}_1) = \#(\mathscr{B}_2)$$
.

Definição 4.3.2 Seja V um espaço vetorial sobre o corpo \mathbb{K} finitamente gerado. A **dimensão** de V, denotada por dimV, é o número de elementos de uma base de V.

Observações 4.3.7 (a) Se V é um espaço que tem uma base finita, dizemos que V é um espaço vetorial de dimensão finita.

(b) No caso em queremos especificar o corpo considerado para obter a dimensão de um espaço vetorial finitamente gerado indicamos a dimensão por $\dim_{\mathbb{K}} V$.

4.3 Base e Dimensão

Exemplos 4.3.8 (a) $\dim \mathbb{R}^2 = 2$, $\dim \mathbb{R}^3 = 3$, $\dim \mathbb{R}^n = n$.

- (b) $\dim_{\mathbb{C}} \mathbb{C}^2 = 2$, $\dim_{\mathbb{C}} \mathbb{C}^3 = 3$, $\dim_{\mathbb{C}} \mathbb{C}^n = n$, $\dim_{\mathbb{R}} \mathbb{C}^2 = 4$, $\dim_{\mathbb{R}} \mathbb{C}^3 = 6$, $\dim_{\mathbb{R}} \mathbb{C}^n = 2n$.
- (c) $\dim M_2(\mathbb{R}) = 4$, $\dim M_3(\mathbb{R}) = 9$, $\dim M_n(\mathbb{R}) = n^2$.
- (d) dim $\mathscr{P}_1(\mathbb{R}) = 2$, dim $\mathscr{P}_2(\mathbb{R}) = 3$, dim $\mathscr{P}_n(\mathbb{R}) = n + 1$.
- (e) $\mathscr{F}(\mathbb{R})$ e $\mathscr{C}([a,b])$ não têm dimensão finita.

Corolório 4.3.9 Seja V um espaço vetorial finitamente gerado sobre um corpo \mathbb{K} de dimensão n, se \mathscr{B} é um subconjunto finito de V com n elementos, então \mathscr{B} é L. I. se, e somente se $[\mathscr{B}]$.

Demonstração: Se \mathscr{B} é L. I. e tivéssemos $[\mathscr{B}] \neq V$, então existiria $v \in V$, $v \neq 0_V$ tal que $v \notin [\mathscr{B}]$, consequentemente, pelo Teorema 4.2.3 teríamos $\mathscr{B}_1 = \mathscr{B} \cup \{v\}$ um subconjunto L.I. de V, contradizendo o Teorema 4.3.4 (ii).

Portanto, $[\mathscr{B}] = V$.

Reciprocamente, se $[\mathcal{B}] = V$, como # $(\mathcal{B}) = n = \dim V$, outra vez pelo Teorema 4.3.4 (ii) segue que \mathcal{B} é L. I.

Teorema 4.3.10 (**Teorema do Completamento**)

Seja V um espaço vetorial sobre o corpo \mathbb{K} de dimensão finita. Se $S = \{v_1, v_2, \dots, v_k\}$ é um subconjunto de L.I. de V, então podemos completar S para formar uma base de V.

Demonstração: Se $k = n = \dim V$, segue que S é base de V.

Se k < n, então S não é base de V, consideremos $m = n - k \ge 1$, então dada $\mathscr{B} = \{u_1, u_2, \dots, u_n\}$ base de V, existe $u_{r_1} \notin S$ tal que $u_{r_1} \notin S$, logo pelo Teorema 4.2.3 segue que $S_1 = S \cup \{u_{r_1}\}$ é L. I.

Se m = 1, então $\#(S_1) = k + 1 = n = \dim V$, portanto S_1 é base de V que contém S.

Caso contrário, m > 1 e $[S_1] \neq V$, portanto existe $u_{r_2} \in \mathcal{B}$ tal que $u_{r_2} \notin [S_1]$, logo pelo Teorema 4.2.3 segue que $S_2 = S_1 \cup \{u_{r_2}\} = S \cup \{u_{r_1}, u_{r_2}\} \notin L$. I.

Se m = 2, então $\#(S_2) = k + 2 = n = \dim V$, portanto S_2 é base de V que contém S.

Caso contrário, m > 2, repetimos o processo, como $1 \le m \le n - 1$ este processo é finito, obtemos $\mathscr{B}' = S \cup \{u_{r_1}, \dots, u_{r_m}\}$ base de V que contém S.

Teorema 4.3.11 Seja V um espaço vetorial sobre o corpo $\mathbb K$ de dimensão finita. Se U é um subespaço de V, então:

- (i) $\dim U \leq \dim V$.
- (ii) dim U = 0 se, e somente se, $U = \{0_V\}$.
- (iii) $\dim U = \dim V$, se e somente se, U = V.

Demonstração: Seja \mathcal{B}_U uma base de U, então:

- (i) De fato, pois dim $U = \#(\mathcal{B}_U)$, como \mathcal{B}_U é um subconjunto L. I. de V, então pelo Teorema 4.3.4 (ii) temos $\#(\mathcal{B}_U) \leq \dim V$.
- (ii) dim U = 0 se, e somente se, $\#(\mathcal{B}_U) = 0$, mas

$$\#(\mathscr{B}_U) = 0 \iff \mathscr{B}_U = \emptyset \iff U = \{0_V\}$$

(iii) Se dim $U = \dim V$, então \mathscr{B}_U é um subconjunto L. I. de V com $\#(\mathscr{B}_U) = \dim V$. Portanto, pelo Corolário 4.3.9 segue que \mathscr{B}_U é base de V, consequentemente $U = [\mathscr{B}_U] = V$. A recíproca é imediata.

Teorema 4.3.12 (Teorema da Soma e da Intersecção de Subespaços)

Sejam V um espaço vetorial sobre o corpo \mathbb{K} de dimensão finita, U e W são subespaços de V, então:

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$$

Demonstração: Seja $\mathcal{B}_1 = \{v_1, \dots, v_k\}$ uma base de $U \cap W$, como $U \cap W$ é subespaço de U e subespaço de W, pelo Teorema do Completamento 4.3.10 podemos completar a uma base de U e a uma base de W, ou seja, existem $\mathcal{B}_2 = \{v_1, \dots, v_k, u_1, \dots, u_r\}$ e $\mathcal{B}_3 = \{v_1, \dots, v_k, w_1, \dots, w_s\}$ bases de U e W, respectivamente, com $k+r=\dim U$ e $k+s=\dim W$.

Mostremos que $\mathcal{B} = \{v_1, \dots, v_k, u_1, \dots, u_r, w_1, \dots, w_s\}$ é uma base de U + W.

Seja $v \in U + W$, então v = u + w com $u \in U$ e $w \in W$, logo existem escalares $\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_r, \gamma_1, \dots, \gamma_k, \delta_1, \dots, \delta_s$ tais que:

$$u = \alpha_1 v_1 + \cdots + \alpha_k v_k + \beta_1 u_1 + \cdots + \beta_r u_r$$

$$w = \gamma_1 v_1 + \cdots + \gamma_k v_k + \delta_1 w_1 + \cdots + \delta_s w_s.$$

Logo,

$$v = (\alpha_1 + \gamma_1)v_1 + \cdots + (\alpha_k + \gamma_k)v_k + \beta_1u_1 + \cdots + \beta_ru_r + \delta_1w_1 + \cdots + \delta_sw_s.$$

Portanto, $v \in [\mathcal{B}]$, como v é elemento arbitrário de V segue que $V = [\mathcal{B}]$.

Resta mostrar que \mathcal{B} é L. I.

Se

$$\alpha_1 v_1 + \dots + \alpha_k v_k + \beta_1 u_1 + \dots + \beta_r u_r + \gamma_1 w_1 + \dots + \gamma_s w_s = 0_V. \tag{4.3.1}$$

Consequentemente,

$$\underbrace{\alpha_1v_1 + \cdots + \alpha_kv_k + \beta_1u_1 + \cdots + \beta_ru_r}_{\in U} = \underbrace{-(\gamma_1w_1 + \cdots + \gamma_sw_s)}_{\in W}.$$

Logo,

$$-(\gamma_1 w_1 + \cdots + \gamma_s w_s) \in U \cap W.$$

Assim, como $\mathscr{B}_1 = \{v_1, \dots, v_k\}$ é base de $U \cap W$, então existem escalares $\delta_1, \dots, \delta_k$ tais que:

$$-(\gamma_1w_1 + \cdots + \gamma_sw_s) = \delta_1v_1 + \cdots + \delta_kv_k \Longleftrightarrow \gamma_1w_1 + \cdots + \gamma_sw_s + \delta_1v_1 + \cdots + \delta_kv_k = 0_V.$$

Como $\mathcal{B}_3 = \{v_1, \dots, v_k, w_1, \dots, w_s\}$ é base de W, segue que $\gamma_1 = \dots = \gamma_s = \delta_1 = \dots = \delta_k = 0$.

Logo, em 4.3.1 teremos

$$\alpha_1 v_1 + \cdots + \alpha_k v_k + \beta_1 u_1 + \cdots + \beta_r u_r = 0_V.$$

Como $\mathscr{B}_2 = \{v_1, \dots, v_k, u_1, \dots, u_r\}$ é base de U segue que $\alpha_1 = \dots = \alpha_k = \beta_1 = \dots = \beta_r = 0$.

Consequentemente, \mathcal{B} é L. I. e é base de U+W.

Assim,

$$\dim(U+W)k+r+s=(k+r)+(k+s)-k=\dim U+\dim W-\dim(U\cap W).$$

4.3 Base e Dimensão

Exemplos 4.3.13 Determine uma base e a dimensão de $U, W, U \cap W$ e U + W, nos seguintes casos:

(a)
$$V = \mathbb{R}^3$$
 com
$$\begin{cases} U = \{(x, y, z) \in \mathbb{R}^3; \ x = y\} \\ W = \{(x, y, z) \in \mathbb{R}^3; \ z = 0\} \end{cases}$$

Solução:

- $(x, y, z) \in U \iff (x, y, z) = (x, x, z) = x(1, 1, 0) + z(0, 0, 1).$ Assim, $\mathcal{B}_U = \{(1, 1, 0), (0, 0, 1)\}$ é uma base de U e dim U = 2.
- $(x,y,z) \in W \iff (x,y,z) = (x,y,0) = x(1,0,0) + y(0,1,0)$. Logo, $\mathscr{B}_W = \{(1,0,0), (0,1,0)\}$ é uma base de W e dim W = 2.
- Vimos que $U \cap W = \{(x,y,z) \in \mathbb{R}^3; \ x = y \text{ e } z = 0\}.$ Portanto, $(x,y,z) \in U \cap W \iff (x,y,z) = (x,x,0) = x(1,1,0).$ Logo, $\mathscr{B}_{U \cap W} = \{(1,1,0)\}$ é uma base de $U \cap W$ e dim $U \cap W = 1.$
- Pelo teorema da soma e da intersecção de subespaços sabemos que

$$\dim (U+W) = \underbrace{\dim U}_2 + \underbrace{\dim W}_2 - \underbrace{\dim (U \cap W)}_1 = 3.$$

Como U+W é subespaço de \mathbb{R}^3 e dim U+W=3, segue que $U+W=\mathbb{R}^3$.

(b)
$$V = M_2(\mathbb{R}) \text{ com}$$

$$\begin{cases} U = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{22} = a_{11} \right\} \\ W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{R}); \ a_{11} = 0 \quad \text{e} \quad a_{21} = -a_{12} \right\} \end{cases}$$

Solução:

- $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in U \iff \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & a \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.$ Assim, $\mathcal{B}_U = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \right\}$ é uma base de U e dim U = 3.
- $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in W \iff \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & b \\ -b & d \end{bmatrix} = b \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$ Portanto, $\mathcal{B}_W = \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ é uma base de W e dim W = 2.
- Vimos que $U \cap W = \left\{ \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix} \in M_2(\mathbb{R}) \right\}$. Logo, $\mathscr{B}_{U \cap W} = \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$ é uma base de $U \cap W$ e dim $U \cap W = 1$.
- Pelo teorema da soma e da intersecção de subespaços sabemos que

$$\dim (U+W) = \underbrace{\dim U}_{3} + \underbrace{\dim W}_{2} - \underbrace{\dim (U \cap W)}_{1} = 4.$$

Como U+W é subespaço de $M_2(\mathbb{R})$ e dim U+W=4, segue que $U+W=M_2(\mathbb{R})$.

(c)
$$V = \mathbb{R}^4 \text{ com}$$

$$\begin{cases} U = \{(x, y, z, w) \in \mathbb{R}^4; \ x + y = 0 \ \text{ e } \ z - w = 0\} \\ W = \{(x, y, z, w) \in \mathbb{R}^4; \ x - y - z + w = 0\} \end{cases}$$

Solução:

• $(x, y, z, w) \in U \iff$

$$(x, y, z, w) = (x, -x, z, z) = (x, -x, 0, 0) + (0, 0, z, z) = x(1, -1, 0, 0) + z(0, 0, 1, 1).$$

Logo, $\mathcal{B}_U = \{(1, -1, 0, 0), (0, 0, 1, 1)\}$ é uma base de U e dim U = 2.

• $(x, y, z, w) \in W \iff$

$$(x, y, z, w) = (y + z - w, y, z, w) = y(1, 1, 0, 0) + z(1, 0, 1, 0) + w(-1, 0, 0, 1).$$

Assim, $\mathcal{B}_W = \{(1,1,0,0), (1,0,1,0), (-1,0,0,1)\}$ é uma base de U e dim W = 3.

- Vimos que $U \cap W = \{(x, y, z, w) \in \mathbb{R}^3; \ x = y = 0 \ \text{ e } \ w = z\}.$ Daí que, $(x, y, z, w) \in U \cap W \iff (x, y, z, w) = (0, 0, z, z) = z(0, 0, 1, 1).$ Portanto, $\mathcal{B}_{U \cap W} = \{(0, 0, 1, 1)\}$ é uma base de $U \cap W$ e dim $U \cap W = 1$.
- Pelo teorema da soma e da intersecção de subespaços sabemos que

$$\dim (U+W) = \underbrace{\dim U}_{3} + \underbrace{\dim W}_{2} - \underbrace{\dim (U \cap W)}_{1} = 4.$$

Como U+W é subespaço de \mathbb{R}^4 e dim U+W=4, segue que $U+W=\mathbb{R}^4$.

$$\text{(d) } V = \mathscr{P}_3(\mathbb{R}) \text{ com } \left\{ \begin{array}{l} U = \{p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \in \mathscr{P}_3(\mathbb{R}); \ a_3 = -a_1\} \\ \\ W = \{p(t) \in \mathscr{P}_3(\mathbb{R}); \ p(-1) = p'(-1) = 0\} \end{array} \right.$$

Solução:

•
$$p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \in U \iff$$

$$p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 = a_0 + a_1 t + a_2 t^2 - a_1 t^3 = a_0 + a_1 (t - t^3) + a_2 t^2.$$

Logo, $\mathcal{B}_U = \{1, t+t^3, t^2\}$ é uma base de U e dim U = 3.

•
$$p(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \in W \iff p(-1) = p'(-1) = 0$$

$$\iff \begin{cases} a_0 - a_1 + a_2 - a_3 = 0 \\ a_1 - 2a_2 + 3a_3 = 0 \end{cases} \iff \begin{cases} a_0 = a_1 - a_2 + a_3 \\ a_1 = 2a_2 - 3a_3 \end{cases}$$

$$\iff \begin{cases} a_0 = 2a_2 - 3a_3 - a_2 + a_3 = a_2 - 2a_3 \\ a_1 = 2a_2 - 3a_3 \end{cases}$$

$$\iff p(t) = a_2 - 2a_3 + (2a_2 - 3a_3)t + a_2t^2 + a_3t^3 = a_2(1 + 2t + t^2) + a_3(-2 - 3t + t^3).$$

Assim, $\mathscr{B}_W = \{1 + 2t + t^2, -2 - 3t + t^3\}$ é uma base de W e dim W = 2.

• Vimos que $U \cap W = \{p(t) = a_1 + a_1t - a_1t^2 - a_1t^3 \in \mathscr{P}_3(\mathbb{R})\}.$

Portanto, $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \in U \cap W \iff$

$$p(t) = a_1 + a_1t - a_1t^2 - a_1t^3 = a_1(1+t-t^2-t^3).$$

Logo, $\mathcal{B}_U = \{1 + t - t^2 - t^3\}$ é uma base de $U \cap W$ e dim $U \cap W = 1$.

4.3 Base e Dimensão

• Pelo teorema da soma e da intersecção de subespaços sabemos que

$$\dim (U+W) = \underbrace{\dim U}_{3} + \underbrace{\dim W}_{2} - \underbrace{\dim (U \cap W)}_{1} = 4.$$

Como U+W é subespaço de $\mathscr{P}_3(\mathbb{R})$ e dim U+W=4, segue que $U+W=\mathscr{P}_3(\mathbb{R})$.

4.3.4 Procedimento para o Completamento de uma Base

Sejam V um espaço vetorial sobre um corpo \mathbb{K} finitamente gerado de dimensão n e $S = \{w_1, w_2, \dots, w_m\}$, com $m \le n$, um subconjunto de V. Para determinar uma base de V procedemos da seguinte maneira:

<u>1º Passo:</u> Consideramos $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ a base canônica de V e escrevemos os vetores de S como combinação linear dos vetores \mathcal{B} :

$$w_{1} = a_{11}v_{1} + a_{12}v_{2} + \cdots + a_{1n}v_{n}$$

$$w_{2} = a_{21}v_{1} + a_{22}v_{2} + \cdots + a_{2n}v_{n}$$

$$\vdots$$

$$w_{m} = a_{m1}v_{1} + a_{m2}v_{2} + \cdots + a_{mn}v_{n}$$

2º Passo: Consideramos a matriz A dos coeficientes dos vetores de S em relação à \mathcal{B} , ou seja,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}.$$

3º Passo: Escalonamos a matriz A obtendo uma matriz A':

$$A' = \left[egin{array}{cccc} lpha_{11} & lpha_{12} & \cdots & lpha_{1n} \ lpha_{21} & lpha_{22} & \cdots & lpha_{2n} \ dots & dots & \ddots & dots \ lpha_{m1} & lpha_{m2} & \cdots & lpha_{mn} \end{array}
ight].$$

Observemos que o conjunto $S' = \{u_1, u_2, \dots, u_m\}$, com

$$u_{1} = \alpha_{11}v_{1} + \alpha_{12}v_{2} + \cdots + \alpha_{1n}v_{n}$$

$$u_{2} = \alpha_{21}v_{1} + \alpha_{22}v_{2} + \cdots + \alpha_{2n}v_{n}$$

$$\vdots$$

$$u_{m} = \alpha_{m1}v_{1} + \alpha_{m2}v_{2} + \cdots + \alpha_{mn}v_{n}$$

gera o mesmo subespaço que S, pois os vetores de S' foram obtidos dos vetores de S por operações elementares que são:

$$\begin{cases} L_i \longleftrightarrow L_j \text{ permuta os vetores } w_i \text{ e } w_j \\ \\ L_i \longleftrightarrow kL_i, \text{ com } k \neq 0, \text{ substitui o vetor } w_i \text{ por } kw_i \\ \\ L_i \longleftrightarrow L_i + kL_j, \text{ com } k \neq 0, \text{ substitui o vetor } w_i \text{ por } w_i + kw_j \end{cases}$$

que são lineares.

Portanto, U = [S] = [S'].

4º Passo: Analisamos os casos:

- (i) Se posto de (A) = posto de (A') = m = n, então tanto S como S' são bases de V.
- (ii) Se posto de (A)= posto de (A') = m < n, então tanto S e S' são subconjuntos L.I. de V.

Para encontrarmos uma base de V basta completar a matriz $A'_{m \times n}$, adicionando n-m linhas de modo a obter uma matriz $A''_{n \times n}$ na forma escalonada, digamos que seja:

$$A'' = \left[egin{array}{ccccc} lpha'_{11} & lpha'_{12} & \cdots & lpha'_{1n} \ lpha'_{21} & lpha'_{22} & \cdots & lpha'_{2n} \ dots & dots & \ddots & dots \ lpha'_{m1} & lpha'_{m2} & \cdots & lpha'_{mn} \ lpha'_{(m+1)1} & lpha'_{(m+1)2} & \cdots & lpha'_{(m+1)n} \ dots & dots & \ddots & dots \ lpha'_{n1} & lpha'_{n2} & \cdots & lpha'_{nn} \ \end{array}
ight].$$

O conjunto $\mathscr{B}' = \{u_1, u_2, \dots, u_m, u_{m+1}, \dots, u_n\}$, com

 \acute{e} uma base de V.

(iii) Se posto de (A)= posto de (A') = $r < m \le n$, então tanto S e S' são subconjuntos L.D. de V. Consideremos as r primeiras linhas de A', que são não nulas, é claro que o conjunto $\{u_1, u_2, \dots, u_r\}$, com

$$u_1 = \alpha_{11}v_1 + \alpha_{12}v_2 + \cdots + \alpha_{1n}v_n$$

 $u_2 = \alpha_{21}v_1 + \alpha_{22}v_2 + \cdots + \alpha_{2n}v_n$
 \vdots
 $u_r = \alpha_{r1}v_1 + \alpha_{r2}v_2 + \cdots + \alpha_{rn}v_n$

é um subconjunto L. I. de V.

Para obter uma base procedemos como no caso (ii), a diferença é que aqui a partir das r primeiras linhas de A' adicionando n-r linhas de modo a obter uma matriz $A''_{n\times n}$ na forma escalonada, digamos que seja:

$$A'' = \left[egin{array}{ccccc} lpha'_{11} & lpha'_{12} & \cdots & lpha'_{1n} \ lpha'_{21} & lpha'_{22} & \cdots & lpha'_{2n} \ dots & dots & \ddots & dots \ lpha'_{r1} & lpha'_{r2} & \cdots & lpha'_{rn} \ lpha'_{(r+1)1} & lpha'_{(r+1)2} & \cdots & lpha'_{(r+1)n} \ dots & dots & \ddots & dots \ lpha'_{n1} & lpha'_{n2} & \cdots & lpha'_{nn} \ \end{array}
ight].$$

4.3 Base e Dimensão

O conjunto
$$\mathscr{B}' = \{u_1, u_2, \cdots, u_r, u_{r+1}, \cdots, u_n\}$$
, com
$$u_1 = \alpha'_{11}v_1 + \alpha'_{12}v_2 + \cdots + \alpha'_{1n}v_n \\ u_2 = \alpha'_{21}v_1 + \alpha'_{22}v_2 + \cdots + \alpha'_{2n}v_n \\ \vdots \\ u_r = \alpha'_{r1}v_1 + \alpha'_{r2}v_2 + \cdots + \alpha'_{rn}v_n \\ u_{r+1} = \alpha'_{r+11}v_1 + \alpha'_{r+12}v_2 + \cdots + \alpha'_{r+1n}v_n \\ \vdots \\ u_n = \alpha'_{n1}v_1 + \alpha'_{n2}v_2 + \cdots + \alpha'_{nn}v_n$$

é uma base de V.

Exemplos 4.3.14 Através do conjunto S obtenha uma base de V, nos seguintes casos:

(a)
$$S = \{1+t, t^2-t, t^3+t^2+t, 2t^3-1\}$$
 subconjunto de $V = \mathcal{P}_3(\mathbb{R})$.

Solução:

A base canônica de $\mathscr{P}_3(\mathbb{R})$ é $\mathscr{B} = \{1, t, t^2, t^3\}$ e os vetores de S se escrevem como combinação linear dos vetores de \mathscr{B} da seguinte maneira:

$$\begin{array}{rcl}
1+t & = & 1 \cdot t + 1 \cdot t + 0 \cdot t^2 + 0 \cdot t^3 \\
t^2 - t & = & 0 \cdot t - 1 \cdot t + 1 \cdot t^2 + 0 \cdot t^3 \\
t^3 + t^2 + t & = & 0 \cdot t + 1 \cdot t + 1 \cdot t^2 + 1 \cdot t^3 \\
2t^3 - 1 & = & -1 \cdot t + 0 \cdot t + 0 \cdot t^2 + 2 \cdot t^3
\end{array}$$

Assim, a matriz dos coeficientes é:

$$A = \left[\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & 2 \end{array} \right],$$

cuja forma escalonada pode ser:

$$A' = \left[\begin{array}{rrrr} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & -3 \end{array} \right].$$

Logo, posto de (A) = 4 e portanto S é base de $\mathscr{P}_3(\mathbb{R})$.

(b)
$$S = \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -4 \\ 1 & 0 \end{bmatrix} \right\}$$
 subconjunto de $V = M_2(\mathbb{R})$.

Solução:

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\} \text{ \'e a base canônica de } M_2(\mathbb{R}) \text{ e os vetores de } S \text{ se escrevem como combinação linear dos vetores de } \mathcal{B} \text{ da seguinte maneira:}$$

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - 1 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -2 \\ 3 & 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - 2 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 3 \cdot \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$
$$\begin{bmatrix} 3 & -4 \\ 1 & 0 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - 4 \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Portanto, a matriz dos coeficientes dos vetores de S em relação a essa base é:

$$A = \left[\begin{array}{rrrr} 1 & -1 & 0 & 1 \\ 1 & -2 & 3 & 1 \\ 3 & 4 & 1 & 0 \end{array} \right],$$

cuja forma escalonada pode ser:

$$A' = \left[\begin{array}{rrrr} 1 & -1 & 0 & 1 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & -2 & -3 \end{array} \right].$$

Logo, posto de (A) = 3 e para encontrar uma base, basta completar a matriz acima de modo a encontrar A'' uma matriz 4×4 na forma escalonada, por exemplo:

$$A'' = \left[\begin{array}{rrrr} 1 & -1 & 0 & 1 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & -2 & -3 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

Logo,

$$\mathscr{B}' = \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -2 & -3 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é base de $M_2(\mathbb{R})$.

(c)
$$S = \{(1,7,-3,1), (3,21,0,-1), (2,14,-3,-2)\}$$
 subconjunto de \mathbb{R}^4

Solução:

 $\mathscr{B} = \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$ é a base canônica de \mathbb{R}^4 e a matriz dos coeficientes dos vetores de S em relação a essa base é:

$$A = \left[\begin{array}{rrrr} 1 & 7 & -3 & 1 \\ 3 & 21 & 0 & -1 \\ 2 & 14 & -3 & -2 \end{array} \right],$$

cuja forma escalonada pode ser:

$$A' = \left[\begin{array}{rrrr} 1 & 7 & -3 & 1 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Assim, posto de (A) = 2 e para encontrar uma base, basta acrescentar duas linhas após as linhas não nulas de A' de modo a encontrar A'' uma matriz 4×4 na forma escalonada, por exemplo:

$$A'' = \left[\begin{array}{rrrr} 1 & 7 & -3 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 0 & 2 \end{array} \right].$$

Logo,

$$\mathscr{B}' = \{(1,7,-3,1), (0,1,1,1), (0,0,3,-4), (0,0,0,2)\}$$

é uma base de \mathbb{R}^4 .

4.4 Coordenadas de um Vetor

Teorema 4.4.1 Seja V espaço vetorial sobre um corpo \mathbb{K} de dimensão n. Se $\mathscr{B} = \{v_1, v_2, \dots, v_n\}$ é uma base de V, então cada vetor v de V se escreve de maneira única como combinação linear dos vetores de \mathscr{B} .

Demonstração: Suponhamos que

$$v = a_1v_1 + a_2v_2 + \dots + a_nv_n = b_1v_1 + b_2v_2 + \dots + b_nv_n$$
.

Logo,

$$(a_1-b_1)v_1+(a_2-b_2)v_2+\cdots+(a_n-b_n)v_n=0_V.$$

Como \mathscr{B} é L.I. devemos ter necessariamente:

$$\begin{cases} a_1 - b_1 = 0 \\ a_2 - b_2 = 0 \\ \vdots \\ a_n - b_n = 0 \end{cases} \iff \begin{cases} a_1 = b_1 \\ a_2 = b_2 \\ \vdots \\ a_n = b_n \end{cases}$$

Portanto, v escreve de maneira única como combinação linear dos vetores de \mathcal{B} .

Definição 4.4.1 Seja V espaço vetorial sobre um corpo \mathbb{K} de dimensão finita, **uma base ordenada** de V é uma base de vetores ordenados, isto é, na qual está determinado quem é o primeiro vetor, o segundo e assim por diante até o último.

Definição 4.4.2 Sejam V espaço vetorial sobre um corpo \mathbb{K} de dimensão finita e $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ uma base ordenada de V. Dado $v \in V$ as **coordenadas** de v em relação à \mathcal{B} , indicada por $[v]_{\mathcal{B}}$, são os números a_1, a_2, \dots, a_n tais que

$$v = a_1v_1 + a_2v_2 + \cdots + a_nv_n$$

Notação:
$$[v]_{\mathscr{B}} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
.

Exemplos 4.4.2 Determine as coordenadas de v em relação à base \mathcal{B} , nos seguintes casos:

(a)
$$v = (-3,7)$$
 e $\mathcal{B} = \{(1,1), (0,-1)\}.$

Solução:

Como
$$(-3,7) = -3(1,1) - 10(0,-1)$$
, então $[v]_{\mathscr{B}} = \begin{bmatrix} -3 \\ -10 \end{bmatrix}$.

(b)
$$v = 2 + 4t + t^2$$
 e $\mathcal{B} = \{1, 1+t, 1+t+t^2\}.$

Solução:

Como
$$2+4t+t^2 = a+b(1+t)+c(1+t+t^2) = (a+b+c)+(b+c)t+ct^2$$
, temos:

$$\begin{cases} a+b+c &= 2 \\ b+c &= 4 \\ c &= 1 \end{cases} \iff \begin{cases} a &= -2 \\ b &= 3 \\ c &= 1 \end{cases},$$

então

$$2+4t+t^2 = -2+3(1+t)+(1+t+t^2).$$

Portanto,
$$[v]_{\mathscr{B}} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}$$
.

(c)
$$v = \begin{bmatrix} 2 & -3 \\ 4 & 7 \end{bmatrix}$$
 e $\mathcal{B}' = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

Solução:

$$\operatorname{Como}\begin{bmatrix} 2 & -3 \\ 4 & 7 \end{bmatrix} = a \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\iff \begin{bmatrix} 2 & -3 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} a & a+b \\ a+b+c & a+b+c+d \end{bmatrix}$$

$$\iff \begin{cases} a & = 2 \\ a+b & = -3 \\ a+b+c & = 4 \\ a+b+c+d & = 7 \end{cases} \iff \begin{cases} a = 2 \\ b = -5 \\ c = 7 \\ d = 3 \end{cases}$$

Portanto,
$$[v]_{\mathscr{B}} = \begin{bmatrix} 2 \\ -5 \\ 7 \\ 3 \end{bmatrix}$$
.

- (d) Sejam V um espaço vetorial real de dimensão 4 e $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ uma base de V.
 - (d₁) Mostre que $\mathscr{B}' = \{v_1 + v_2 + v_3 + v_4, v_1 + v_2 + v_3, v_1 + v_2, v_1\}$ é uma base de V.

$$(d_2) \text{ Se } [v]_{\mathscr{B}} = \begin{bmatrix} 3 \\ -2 \\ 4 \\ 1 \end{bmatrix}, \text{ determine } [v]_{\mathscr{B}'}.$$

Solução:

(d₁) Para mostrar que \mathscr{B}' é base, basta mostrar que seus vetores são L. I., pois o número de vetores de \mathscr{B}' é igual a dimensão de V.

Assim, devemos analisar as soluções da equação:

$$a(v_{1} + v_{2} + v_{3} + v_{4}) + b(v_{1} + v_{2} + v_{3}) + c(v_{1} + v_{2}) + dv_{1} = 0_{V}$$

$$\iff (a+b+c+d)v_{1} + (a+b+c)v_{2} + (a+b)v_{3} + av_{4} = 0_{V}$$

$$\iff \begin{cases} a+b+c+d = 0 \\ a+b+c = 0 \\ a+b = 0 \end{cases} \iff \begin{cases} d = 0 \\ c = 0 \\ b = 0 \\ a = 0 \end{cases}$$

Portanto, \mathcal{B}' é L. I., consequentemente é uma base de V.

(d₂) Como
$$[v]_{\mathscr{B}} = \begin{bmatrix} 3 \\ -2 \\ 4 \\ 1 \end{bmatrix}$$
, então $v = 3v_1 - 2v_2 + 4v_3 + v_4$.

Queremos escrever

$$v = a(v_1 + v_2 + v_3 + v_4) + b(v_1 + v_2 + v_3) + c(v_1 + v_2) + dv_1$$

$$\iff v = (a+b+c+d)v_1 + (a+b+c)v_2 + (a+b)v_3 + av_4.$$

Assim,

$$v = 3v_1 - 2v_2 + 4v_3 + v_4 = (a+b+c+d)v_1 + (a+b+c)v_2 + (a+b)v_3 + av_4$$

$$\iff \begin{cases} a+b+c+d &= 3 \\ a+b+c &= -2 \\ a+b &= 4 \\ a &= 1 \end{cases} \iff \begin{cases} d &= 5 \\ c &= -6 \\ b &= 3 \\ a &= 1 \end{cases}$$

Portanto,
$$[v]_{\mathscr{B}'} = \begin{bmatrix} 1\\3\\-6\\5 \end{bmatrix}$$

- (e) Em $\mathscr{F}(\mathbb{R})$ consideremos o subespaço $U = [e^x, e^{-x}]$.
 - (e₁) Mostre que $\mathscr{B} = \{e^x, e^{-x}\}$ é uma base de U.
 - (e₂) As funções $\cosh x = \frac{e^x + e^{-x}}{2}$ e senh $x = \frac{e^x e^{-x}}{2}$ são vetores de U, determine as coordenadas dessas funções em relação à base \mathscr{B}

Solução:

(e₁) Como $U = [e^x, e^{-x}]$, basta mostrar que os vetores de e^x e e^{-x} são L.I., assim vamos analisar as soluções da equação:

$$a \cdot e^x + b \cdot e^{-x} \equiv 0.$$

Assim,
$$\begin{cases} \sec x = 0, \text{ então temos } a + b = 0 \\ \sec x = \ln 2, \text{ então temos } 2a + \frac{1}{2}b = 0 \end{cases} \implies \begin{cases} a + b = 0 \\ 2a + \frac{1}{2}b = 0 \end{cases} \iff \begin{cases} a = 0 \\ b = 0 \end{cases}$$

Portanto, \mathcal{B} é L.I. e consequentemente base de U.

(e₂) Temos $\cosh x = \frac{e^x + e^{-x}}{2} = \frac{1}{2}e^x + \frac{1}{2}e^{-x}$ e $\sinh x = \frac{1}{2}e^x - \frac{1}{2}e^{-x}$.

Logo,
$$[\cosh x]_{\mathscr{B}} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$
 e $[\operatorname{senh} x]_{\mathscr{B}} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$

4.5 Matriz Mudança de Base

Sejam V espaço vetorial sobre um corpo \mathbb{K} de dimensão finita, $\mathscr{B} = \{v_1, v_2, \dots, v_n\}$ e $\mathscr{B}' = \{u_1, u_2, \dots, u_n\}$ bases ordenadas de V, dado um vetor $v \in V$ podemos escrevê-lo como:

$$v = \alpha_{1}v_{1} + \alpha_{2}v_{2} + \cdots + \alpha_{n}v_{n}$$

$$v = \beta_{1}u_{1} + \beta_{2}u_{2} + \cdots + \beta_{n}u_{n}$$

$$(4.5.1)$$

Nosso objetivo é relacionar as coordenadas de v em relação à base \mathscr{B} , $[v]_{\mathscr{B}'} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$, como as

coordenadas de v em relação à base \mathscr{B}' , $[v]_{\mathscr{B}'} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix}$.

Já que $\mathcal{B}' = \{u_1, u_2, \dots, u_n\}$ é base de V, podemos escrever os vetores de \mathcal{B} como combinação linear dos vetores de \mathcal{B}' , ou seja,

$$\begin{cases} v_1 = a_{11}u_1 + a_{21}u_2 + \cdots + a_{n1}u_n \\ v_2 = a_{12}u_1 + a_{22}u_2 + \cdots + a_{n2}u_n \\ \vdots \\ v_n = a_{1n}u_1 + a_{2n}u_2 + \cdots + a_{nn}u_n \end{cases}$$

$$(4.5.2)$$

Substituindo em 4.5.1 temos:

$$v = \alpha_{1}(a_{11}u_{1} + a_{21}u_{2} + \cdots + a_{n1}u_{n}) + \alpha_{2}(a_{12}u_{1} + a_{22}u_{2} + \cdots + a_{n2}u_{n})$$

$$+ \cdots + \alpha_{n}(a_{1n}u_{1} + a_{2n}u_{2} + \cdots + a_{nn}uv_{n})$$

$$= (\alpha_{1}a_{11} + \alpha_{2}a_{12} + \cdots + \alpha_{n}a_{1n})u_{1} + (\alpha_{2}a_{21} + a_{2}\alpha_{22} + \cdots + \alpha_{n}a_{2n})u_{2}$$

$$+ \cdots + (\alpha_{n}a_{n1} + \alpha_{n}a_{n2} + \cdots + \alpha_{n}a_{nn})u_{n}.$$

Mas como $v = \beta_1 u_1 + \beta_2 u_2 + \cdots + \beta_n u_n$ e as coordenadas em relação a uma base são únicas temos necessariamente:

$$\begin{cases} \beta_1 = \alpha_1 a_{11} + \alpha_2 a_{12} + \cdots + \alpha_n a_{1n} \\ \beta_2 = \alpha_2 a_{21} + \alpha_2 a_{22} + \cdots + \alpha_n a_{2n} \\ \vdots \\ \beta_n = \alpha_n a_{n1} + \alpha_n a_{n2} + \cdots + \alpha_n a_{nn} \end{cases}$$

Que podemos escrever matricialmente como:

$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}. \tag{4.5.3}$$

Definição 4.5.1 Sejam V espaço vetorial sobre um corpo \mathbb{K} de dimensão finita, $\mathscr{B} = \{v_1, v_2, \cdots, v_n\}$ e $\mathscr{B}' = \{u_1, u_2, \cdots, u_n\}$ bases ordenadas de V, a matriz

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

que satisfaz 4.5.3, é chamada **matriz mudança de base** de \mathcal{B} para a base \mathcal{B}' .

Notação: $M_{\mathscr{B}'}^{\mathscr{B}}$.

Observações 4.5.1 (a) Comparando $M_{\mathscr{B}'}^{\mathscr{B}}$ com 4.5.2, vemos que esta matriz é obtida colocando as coordenadas de v_i , em relação a \mathscr{B}' , na *i*-ésima coluna.

(b) Conhecendo a matriz $M_{\mathscr{B}'}^{\mathscr{B}}$ podemos encontrar as coordenadas de qualquer vetor v em relação à base \mathscr{B}' multiplicando esta matriz pela matriz das coordenadas de v na base \mathscr{B} .

De fato, da equação 4.5.3 temos:

$$[v]_{\mathscr{B}'} = M_{\mathscr{B}'}^{\mathscr{B}} \cdot [v]_{\mathscr{B}}.$$

(c) A matriz mudança de base $M_{\mathscr{B}'}^{\mathscr{B}}$ é invertível e sua inversa, $(M_{\mathscr{B}'}^{\mathscr{B}})^{-1}$, é a matriz $M_{\mathscr{B}}^{\mathscr{B}'}$ é matriz mudança de base de \mathscr{B}' para \mathscr{B} , ou seja,

$$\left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^{-1}=M_{\mathscr{B}}^{\mathscr{B}'}.$$

Exemplos 4.5.2 (a) A matriz $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, com θ um número real, é a matriz de rotação do ângulo θ no sentido anti-horário.

A matriz R_{θ} é invertível com inversa $R_{\theta}^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$.

Para cada $\theta \in \mathbb{R}$ o conjunto

$$\mathscr{B}' = \{(\cos \theta, \, \text{sen } \theta), \, (-\text{sen } \theta, \, \cos \theta)\}\$$

é um base de \mathbb{R}^2 , denotando por \mathscr{B} a base da canônica de \mathbb{R}^2 temos:

 R_{θ} é a matriz de mudança de \mathscr{B}' para \mathscr{B} , ou seja, $R_{\theta} = M_{\mathscr{B}}^{\mathscr{B}'}$.

 R_{θ}^{-1} é a matriz de mudança de \mathscr{B} para \mathscr{B}' , ou seja, $R_{\theta}^{-1}=M_{\mathscr{B}'}^{\mathscr{B}}$.

Determine a matriz de mudança de base da canônica de \mathbb{R}^2 para \mathscr{B}' para $\theta = \frac{\pi}{2}$ e para $\theta = \frac{\pi}{4}$.

Solução:

Devemos determinar:

•
$$R_{\frac{\pi}{2}}^{-1} = \begin{bmatrix} \cos\frac{\pi}{2} & \sin\frac{\pi}{2} \\ -\sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, que é a matriz rotação de $\frac{\pi}{2}$.

•
$$R_{\frac{\pi}{4}}^{-1} = \begin{bmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}$$
, que é a matriz rotação de $\frac{\pi}{4}$.

(b) Em $\mathscr{P}_3(\mathbb{R})$, determine a matriz mudança de base $M_{\mathscr{B}'}^{\mathscr{B}}$ da base canônica \mathscr{B} para a base $\mathscr{B}' = \{1+t, t^2-t, t^3+t^2+t, 2t^3-1\}.$

Solução:

Vamos escrever os vetores de \mathscr{B}' em relação aos vetores de \mathscr{B} , pois a base \mathscr{B} é canônica:

$$\begin{array}{rcl}
1+t & = & 1 \cdot t + 1 \cdot t + 0 \cdot t^2 + 0 \cdot t^3 \\
t^2 - t & = & 0 \cdot t - 1 \cdot t + 1 \cdot t^2 + 0 \cdot t^3 \\
t^3 + t^2 + t & = & 0 \cdot t + 1 \cdot t + 1 \cdot t^2 + 1 \cdot t^3 \\
2t^3 - 1 & = & -1 \cdot t + 0 \cdot t + 0 \cdot t^2 + 2 \cdot t^3
\end{array}$$

Logo,
$$M_{\mathscr{B}}^{\mathscr{B}'} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
, cuja inversa é a matriz

$$M_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 4/3 & -1/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 & 1/3 \\ -2/3 & 2/3 & 2/3 & -1/3 \\ 1/3 & -1/3 & -1/3 & 2/3 \end{bmatrix},$$

que é a matriz mudança de base de \mathcal{B} para a base \mathcal{B}' .

(c) Sejam \mathbb{R}^3 e U o subespaço que tem base $\mathscr{B}' = \{(1,5,8), (4,-1,5)\}$, sabendo que $M_{\mathscr{B}}^{\mathscr{B}'} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ é a matriz mudança de base de \mathscr{B}' para \mathscr{B} , determine a base \mathscr{B} .

Solução:

Seja $\mathscr{B} = \{v_1, v_2\}$ temos:

$$\begin{cases} (1, 5, 8) &= v_1 + 2v_2 \\ (4, -1, 5) &= v_1 - v_2 \end{cases} \Longrightarrow 3v_2 = (-3, 6, 3) \Longleftrightarrow v_2 = (-1, 2, 1).$$

Consequentemente, $v_1 = (4, -1, 5) + v_2 = (4, -1, 5) + (-1, 2, 1) = (3, 1, 6)$. Portanto, $\mathcal{B} = \{(3, 1, 6), (-1, 2, 1)\}.$

5.1 Produto Interno em Espaços Vetoriais Reais

Definição 5.1.1 Seja V um espaço vetorial sobre o corpo \mathbb{R} , um **produto interno** em V é uma aplicação

$$\begin{array}{cccc} \langle \cdot, \cdot \rangle : & V \times V & \longrightarrow & \mathbb{R} \\ & (u, v) & \longmapsto & \langle u, v \rangle \end{array}$$

que satisfaz as seguintes propriedades:

 $PI_{\mathbb{R}1} \langle u, v \rangle = \langle v, u \rangle$, para quaisquer $u, v \in V$ simetria.

 $PI_{\mathbb{R}2} \ \langle v, v \rangle \ge 0$, para todo $v \in V$ e $\langle v, v \rangle \ge 0 \Longleftrightarrow v = 0_V$ **positividade**.

 $PI_{\mathbb{R}^3}$ $\langle u+w,v\rangle=\langle u,v\rangle+\langle w,v\rangle$, para quaisquer $u,w,v\in V$ distributividade.

 $PI_{\mathbb{R}^4} \ \langle \lambda u, v \rangle = \lambda \langle v, u \rangle$, para quaisquer $u, v \in V$ e todo $\lambda \in \mathbb{R}$ homogeneidade.

5.1.1 Propriedade do Produto Interno em ${\mathbb R}$

Seja V espaço vetorial sobre \mathbb{R} com um produto interno $\langle \cdot, \cdot \rangle$, dados v, u, w elementos quaisquer em V e λ e μ escalares arbitrários em \mathbb{R} valem as seguintes propriedades:

$$PI_{\mathbb{R}5} \langle v, 0_V \rangle = \langle 0_V, v \rangle = 0.$$

$$PI_{\mathbb{R}6} \langle v, \lambda u \rangle = \lambda \langle v, u \rangle.$$

$$PI_{\mathbb{R}^7} \langle v, u+w \rangle = \langle v, u \rangle + \langle v, w \rangle.$$

$$PI_{\mathbb{R}8} \langle \lambda v + \mu u, w \rangle = \lambda \langle v, w \rangle + \mu \langle u, w \rangle$$
 e $\langle v, \lambda u + \mu w \rangle = \lambda \langle v, u \rangle + \mu \langle v, w \rangle.$

Verificação:

 $PI_{\mathbb{R}5}$ De fato,

$$\langle 0_V, v \rangle \stackrel{EV_1}{=} \langle 0 \cdot v, v \rangle \stackrel{PI_{\mathbb{R}^4}}{=} 0 \cdot \langle v, v \rangle = 0.$$

Como, $\langle v, 0_V \rangle = \langle 0_V, v \rangle$, segue a propriedade.

 $PI_{\mathbb{R}6}$ Com efeito,

$$\langle v, \lambda u \rangle \stackrel{PI_{\mathbb{R}^1}}{=} \langle \lambda u, v \rangle \stackrel{PI_{\mathbb{R}^4}}{=} \lambda \langle u, v \rangle \stackrel{PI_{\mathbb{R}^1}}{=} \lambda \langle v, u \rangle.$$

 $PI_{\mathbb{R}^7}$ De fato,

$$\langle v, u+w \rangle \stackrel{PI_{\mathbb{R}^1}}{=} \langle u+w, v \rangle \stackrel{PI_{\mathbb{R}^3}}{=} \langle u, v \rangle + \langle w, v \rangle \stackrel{PI_{\mathbb{R}^1}}{=} \langle v, u \rangle + \langle v, w \rangle.$$

 $PI_{\mathbb{R}8}$ De fato,

$$\langle \lambda v + \mu u, w \rangle \stackrel{PI_{\mathbb{R}^3}}{=} \langle \lambda v, w \rangle + \langle \mu u, w \rangle \stackrel{PI_{\mathbb{R}^4}}{=} \lambda \langle v, w \rangle + \mu \langle u, w \rangle.$$

Analogamente mostramos que $\langle v, \lambda u + \mu w \rangle = \lambda \langle v, u \rangle + \mu \langle v, w \rangle$.

Observações 5.1.1 (a) A propriedade $PI_{\mathbb{R}8}$ nos diz que o produto interno, em V um espaço vetorial real, é uma aplicação bilinear, ou seja, é uma aplicação linear à direita e à esquerda.

- (b) Em um espaço vetorial V sobre \mathbb{R} pode estar definido mais do que um produto interno.
- (c) Em alguns espaços vetoriais sobre \mathbb{R} há um produto interno "mais comum", que chamamos de **produto interno usual**, no entanto isto não ocorre em todos os espaços vetoriais sobre \mathbb{R} .

1.2 Exemplo de Espaços Vetoriais Reais com Produto Interno

Exemplos 5.1.2 (a) Em \mathbb{R}^n o produto interno usual é a aplicação:

$$\langle \cdot, \cdot \rangle : \qquad \mathbb{R}^n \times \mathbb{R}^n \qquad \longrightarrow \quad \mathbb{R}$$
$$\left((x_1, \dots, x_n), (y_1, \dots, y_n) \right) \qquad \longmapsto \quad \langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = x_1 y_1 + \dots + x_n y_n.$$

De fato, sejam (x_1, \dots, x_n) , (y_1, \dots, y_n) e (z_1, \dots, z_n) elementos quaisquer em \mathbb{R}^n e $\lambda \in \mathbb{R}$, então:

- (i) $\langle (x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = x_1 y_1 + \dots + x_n y_n = y_1 x_1 + \dots + y_n x_n = \langle (y_1, \dots, y_n), (x_1, \dots, x_n) \rangle$.
- (ii) $\langle (x_1, \dots, x_n), (x_1, \dots, x_n) \rangle = x_1 x_1 + \dots + x_n x_n = x_1^2 + \dots + x_n^2 \ge 0.$ $E \langle (x_1, \dots, x_n), (x_1, \dots, x_n) \rangle = 0 \Longleftrightarrow x_1^2 + \dots + x_n^2 = 0$ $\Longleftrightarrow x_1 = \dots = x_n = 0 \Longleftrightarrow (x_1, \dots, x_n) = 0_{\mathbb{R}^n}.$
- (iii) $\langle (x_1, \dots, x_n) + (y_1, \dots, y_n), (z_1, \dots, z_n) \rangle = \langle (x_1 + y_1, \dots, x_n + y_n), (z_1, \dots, z_n) \rangle$ $= (x_1 + y_1)z_1 + \dots + (x_n + y_n)z_n = x_1z_1 + y_1z_1 + \dots + x_nz_n + y_nz_n$ $= x_1z_1 + \dots + x_nz_n + y_1z_1 + \dots + y_nz_n$ $= \langle (x_1, \dots, x_n), (z_1, \dots, z_n) \rangle + \langle (y_1, \dots, y_n), (z_1, \dots, z_n) \rangle.$

(iv)
$$\langle \lambda(x_1, \dots, x_n), (y_1, \dots, y_n) \rangle = \langle (\lambda x_1, \dots, \lambda x_n), (y_1, \dots, y_n) \rangle = (\lambda x_1) y_1 + \dots + (\lambda x_n) y_n$$

= $\lambda(x_1 y_1) + \dots + \lambda(x_n y_n) = \lambda(x_1 y_1 + \dots + x_n y_n) = \lambda(x_1 y_1 + \dots + x_n y_n) \rangle$.

(a₁) Em \mathbb{R}^2 o produto interno usual é dado por:

$$\langle (x_1, x_2), (y_1, y_2) \rangle = x_1 y_1 + x_2 y_2.$$

Assim, por exemplo, $\big<(1,-2),\ (3,1)\big>=3-2=1\ \ \ e\ \ \big<(1,0),\ (0,1)\big>=0+0=0.$

(a₂) Em \mathbb{R}^3 o produto interno usual é dado por:

$$\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3.$$

Por exemplo,

$$\langle (4,1,-2), (3,-5,2) \rangle = 12-5-4=3$$
 e $\langle (0,1,0), (0,0,1) \rangle = 0+0+0=0$.

(b) Em $\mathscr{C}([a,b])$ o produto interno usual é a aplicação:

$$\langle \cdot, \cdot \rangle : \ \mathscr{C}([a,b]) \times \mathscr{C}([a,b]) \ \longrightarrow \ \mathbb{R}$$

$$(f,g) \ \longmapsto \ \langle f,g \rangle = \int_a^b f(x)g(x) \ dx.$$

De fato, sejam $f,\ g$ e h elementos quaisquer em $\mathscr{C}([a,b])$ e $\lambda\in\mathbb{R},$ então:

(i)
$$\langle f, g \rangle = \int_a^b f(x)g(x) \ dx = \int_a^b g(x)f(x) \ dx = \langle g, f \rangle$$
.

(ii)
$$\langle f, f \rangle = \int_{a}^{b} f(x)f(x) \ dx = \int_{a}^{b} (f(x))^{2} \ dx \ge 0.$$

 $\mathrm{E} \langle f, f \rangle = 0 \Longleftrightarrow \int_a^b \big(f(x) \big)^2 \, dx = 0 \Longleftrightarrow \big(f(x) \big)^2 \, \mathrm{em} \, [a, b], \, \mathrm{se} \, \mathrm{e} \, \mathrm{somente} \, \mathrm{se}, \, f \, \mathrm{\acute{e}} \, \mathrm{a} \, \mathrm{função}$ nula $\mathrm{em} \, [a, b].$

(iii)
$$\langle f+g,h\rangle = \int_a^b (f+g)(x)h(x) dx = \int_a^b (f(x)+g(x))h(x) dx = \int_a^b (f(x)h(x)+g(x)h(x)) dx$$
$$= \int_a^b f(x)h(x) dx + \int_a^b g(x)h(x) dx = \langle f,h\rangle + \langle g,h\rangle.$$

(iv)
$$\langle \lambda f, g \rangle = \int_a^b (\lambda f)(x)g(x) dx = \int_a^b (\lambda f(x))g(x) dx = \int_a^b \lambda (f(x)g(x)) dx$$

= $\lambda \int_a^b f(x)g(x) dx = \lambda \langle f, g \rangle$.

Assim, por exemplo, como $f(x) = \frac{1}{x+1}$ e $g(x) = x^2 - 1$, ambas são funções contínuas em [0,1], então:

$$\langle f, g \rangle = \left\langle \frac{1}{x+1}, x^2 - 1 \right\rangle = \int_0^1 \frac{1}{x+1} \cdot (x^2 - 1) \, dx = \int_0^1 (x-1) \, dx$$

= $(x^2 - x + c) \Big|_0^1 = (1 - 1 + c) - (0 - 0 + c) = 0.$

(c) Em $M_n(\mathbb{R})$ o produto interno usual é a aplicação:

$$\langle \cdot, \cdot \rangle : M_n(\mathbb{R}) \times M_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

 $(A,B) \longmapsto \langle A,B \rangle = tr(B^T \cdot A),$

com $tr(B^T \cdot A)$ o traço da matriz $B^T \cdot A$.

De fato, sejam A, B e C elementos quaisquer em $M_n(\mathbb{R})$ e $\lambda \in \mathbb{R}$, então:

(i)
$$\langle A,B\rangle = tr(B^T \cdot A) \stackrel{TR_1}{=} tr(B^T \cdot A)^T = \stackrel{T_4}{=} tr(A^T \cdot B) = \langle B,A\rangle.$$

(ii)
$$\langle A, A \rangle = tr(A^T \cdot A) \stackrel{\text{Obs. 1.1.29}}{=} \sum_{i, j=1}^n a_{ij}^2 \ge 0.$$

$$\operatorname{E}\langle A,A\rangle=0\Longleftrightarrow \sum_{i,\ j=1}^n a_{ij}^2=0\Longleftrightarrow a_{ij}^2$$
 para todo $i,\ j\Longleftrightarrow a_{ij}$ para todo $i,\ j\Longleftrightarrow A=0_{n\times n}.$

(iii)
$$\langle A+B, C \rangle = tr(C^T \cdot (A+B)) = tr(C^T \cdot A + C^T \cdot B) \stackrel{TR_2}{=} tr(C^T \cdot A) + tr(C^T \cdot B)$$

= $\langle A, C \rangle + \langle B, C \rangle$.

(iv)
$$\langle \lambda A, B \rangle = tr(B^T \cdot (\lambda A)) = tr(\lambda (B^T \cdot A)) \stackrel{TR_3}{=} \lambda tr(B^T \cdot A) = \lambda \langle A, B \rangle$$
.

(c₁) Em
$$M_2(\mathbb{R})$$
 o produto interno usual, dadas $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ e $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$, temos:

$$\langle A, B \rangle = tr(B^T \cdot A) = tr\left(\begin{bmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \right)$$

$$= tr\begin{bmatrix} a_{11}b_{11} + a_{21}b_{21} & a_{12}b_{11} + a_{22}b_{21} \\ a_{11}b_{12} + a_{21}b_{22} & a_{12}b_{12} + a_{22}b_{22} \end{bmatrix}$$

$$= a_{11}b_{11} + a_{21}b_{21} + a_{12}b_{12} + a_{22}b_{22} = \sum_{1 \le i,j \le 2} a_{ij}b_{ij}.$$

Assim, por exemplo,

$$\left\langle \begin{bmatrix} 1 & 2 \\ -2 & 4 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \right\rangle = 0 - 2 - 2 + 4 = 0 \text{ e}$$

$$\left\langle \begin{bmatrix} 1 & 4 \\ -3 & 6 \end{bmatrix}, \begin{bmatrix} 2 & -1 \\ 5 & 4 \end{bmatrix} \right\rangle = 2 + (-4) + (-15) + 24 = 3.$$

(c₂) Analogamente, em $M_3(\mathbb{R})$ sejam $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{3\times 3}$ e $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{3\times 3}$, então:

$$\langle A,B\rangle = a_{11}b_{11} + a_{12}b_{12} + a_{13}b_{13} + a_{21}b_{21} + a_{22}b_{22} + a_{23}b_{23} + a_{31}b_{31} + a_{32}b_{32} + a_{33}b_{33}$$

$$= \sum_{1 \le i,j \le 3} a_{ij}b_{ij}.$$

Assim, por exemplo,

$$\left\langle \begin{bmatrix} 3 & -1 & 0 \\ 2 & 4 & 1 \\ -2 & 3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 1 \\ 3 & 0 & -3 \end{bmatrix} \right\rangle = 3 + 0 + 0 + (-4) + 4 + 1 + (-6) + 0 + (-3) = -5.$$

Observações 5.1.3 (a) O espaço vetorial \mathbb{R}^n com um produto interno é chamado espaço euclidiano n-dimensional.

(b) O espaço vetorial $\mathscr{P}_n(\mathbb{R})$ tem vários produtos internos, no entanto não há um usual, por exemplo:

$$\begin{array}{cccc} \langle \cdot, \cdot \rangle : & \mathscr{P}_2(\mathbb{R}) \times \mathscr{P}_2(\mathbb{R}) & \longrightarrow & \mathbb{R} \\ & (p,q) & \longmapsto & \langle p,q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1), \end{array}$$

é um produto interno em $\mathscr{P}_2(\mathbb{R})$.

5.1.3 Desigualdade de Cauchy-Schwarz

Teorema 5.1.4 (Desigualdade de Cauchy-Schwarz)

Se V é um espaço vetorial euclidiano, então

$$\langle u, v \rangle^2 \le \langle u, u \rangle \cdot \langle v, v \rangle$$

para quaisquer u e v em V.

Demonstração:

1º caso: Se $u \in v$ são linearmente dependentes, então existe $\lambda \in \mathbb{R}$ tal que $v = \lambda u$.

Logo

$$\langle u, v \rangle^2 = \langle u, \lambda u \rangle^2 = \langle u, \lambda u \rangle \cdot \langle u, \lambda u \rangle = \lambda \langle u, u \rangle \cdot \lambda \langle u, u \rangle = \lambda^2 \langle u, u \rangle^2$$
$$= \lambda \langle u, u \rangle \cdot \langle u, \lambda u \rangle = \langle u, u \rangle \cdot \langle \lambda u, \lambda u \rangle = \langle u, u \rangle \cdot \langle v, v \rangle.$$

Portanto, vale a igualdade.

2º caso: Se u e v são linearmente independentes, então para todo $\lambda \in \mathbb{R}$ temos $v + \lambda u \neq 0_V$, portanto $\langle v + \lambda u, v + \lambda u \rangle > 0$, ou seja,

$$\underbrace{\langle v + \lambda u, v + \lambda u \rangle}_{>0} = \langle v, v \rangle + \langle v, \lambda u \rangle + \langle \lambda u, v \rangle + \langle \lambda u, \lambda u \rangle = \langle v, v \rangle + 2\lambda \langle u, v \rangle + \lambda^2 \langle u, u \rangle > 0.$$

A equação acima é uma equação do segundo grau na variável λ , como é positiva o discriminante deve satisfazer $\Delta < 0$, ou seja,

$$\Delta = 4\langle u, v \rangle^2 - 4\langle u, u \rangle \cdot \langle v, v \rangle < 0 \iff \langle u, v \rangle^2 < \langle u, u \rangle \cdot \langle v, v \rangle.$$

Consequentemente, para quaisquer u e v em V temos $\langle u, v \rangle^2 \le \langle u, u \rangle \cdot \langle v, v \rangle$.

Produto Interno em Espaços Vetoriais Complexos

Definição 5.2.1 Seja V um espaço vetorial sobre o corpo \mathbb{C} , um **produto interno complexo** em V é uma aplicação

$$\langle \cdot, \cdot \rangle : V \times V \longrightarrow \mathbb{C}$$

$$(u, v) \longmapsto \langle u, v'$$

que satisfaz as seguintes propriedades:

 $PI_{\mathbb{C}1} \ \langle u,v \rangle = \overline{\langle v,u \rangle}$, para quaisquer $u,v \in V$ simetria hermitiana.

 $PI_{\mathbb{C}2} \ \langle v,v \rangle \geq 0$, para todo $v \in V$ e $\langle v,v \rangle \geq 0 \Longleftrightarrow v = 0_V$ positividade. $PI_{\mathbb{C}3} \ \langle u+w,v \rangle = \langle u,v \rangle + \langle w,v \rangle$, para quaisquer $u,w,v \in V$ distributividade.

 $PI_{\mathbb{C}4} \ \langle \lambda u, v \rangle = \lambda \langle u, v \rangle$, para quaisquer $u, v \in V$ e todo $\lambda \in \mathbb{C}$ homogeneidade.

Observação 5.2.1 (a) Segue das propriedades de simetria hermitiana, distributividade e homogeneidade que:

- (i) $\langle v, u + w \rangle = \langle v, u \rangle + \langle v, w \rangle$, para quaisquer $u, w, v \in V$.
- (ii) $\langle u, \lambda v \rangle = \bar{\lambda} \langle v, u \rangle$, para quaisquer $u, v \in V$ e todo $\lambda \in \mathbb{C}$.
- (b) A simetria hermitiana é necessária para garantir a propriedade de positividade.

De fato, em V um espaço vetorial complexo, dado $v \in V$, com $v \neq 0_V$, se exigíssemos a simetria teríamos:

$$\langle iv, iv \rangle = i^2 \underbrace{\langle v, v \rangle}_{>0} = -\langle v, v \rangle < 0$$

contrariando a positividade.

Quando consideramos a simetria hermitiana temos:

$$\langle iv, iv \rangle = i \cdot \overline{i} \langle v, v \rangle = \langle v, v \rangle > 0.$$

Exemplo 5.2.2 Em \mathbb{C}^n o produto interno usual é a aplicação:

$$\langle \cdot, \cdot \rangle : \qquad \mathbb{C}^{n} \times \mathbb{C}^{n} \qquad \longrightarrow \qquad \mathbb{C}$$

$$((u_{1}, \dots, u_{n}), (v_{1}, \dots, v_{n})) \longmapsto \langle (u_{1}, \dots, u_{n}), (v_{1}, \dots, v_{n}) \rangle$$

$$= u_{1}\overline{v_{1}} + \dots + u_{n}\overline{v_{n}}.$$

(i) $\operatorname{Em} \mathbb{C}^2$ o produto interno usual é dado por:

$$\langle (u_1, u_2), (v_1, v_2) \rangle = u_1 \overline{v_1} + u_2 \overline{v_2}.$$

Assim, por exemplo,

$$\langle (i,0), (0,1) \rangle = 0 + 0 = 0$$
 e
$$\langle (i,-1), (3+i,1+2i) \rangle = i(3-i) + (-1)(1-2i) = 3i+1-1+2i = 5i.$$

(ii) $\operatorname{Em} \mathbb{C}^3$ o produto interno usual é dado por:

$$\langle (u_1, u_2, u_3), (v_1, v_2, v_3) \rangle = u_1 \overline{v_1} + u_2 \overline{v_2} + u_3 \overline{v_3}.$$

Assim, por exemplo,

$$\langle (4i, 1, -2+i), (3-i, 1+i, 2i) \rangle$$

= $4i(3-i) + (1-i) + (-2+i)(-2i) = 12i + 4 + 1 - i - 4i + 2 = 7 + 7i$.

Observação 5.2.3 O espaço vetorial \mathbb{C}^n com um produto interno é chamado **espaço unitário** *n*-dimensional.

5.3 Bases Ortogonais e Bases ortonormais

5.3.1 Vetores Ortogonais

Definição 5.3.1 Seja V um espaço vetorial sobre o corpo \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) com produto interno $\langle \cdot, \cdot \rangle$, dizemos que u e v em V são **vetores ortogonais** se, e somente se, $\langle u, v \rangle = 0$.

Notação: Se u e v ortogonais indicamos por $u \perp v$.

Exemplos 5.3.1 (a) Em \mathbb{R}^3 , com o produto interno usual, os vetores u = (7, -3, 2) e v = (2, 8, 5) são ortogonais, pois

$$\langle (7,-3,2), (2,8,5) \rangle = 14 - 24 + 10 = 0.$$

(b) Em $M_2(\mathbb{R}, \text{ com o produto interno usual, as matrizes } A = \begin{bmatrix} 1 & 2 \\ -2 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$ são ortogonais, pois vimos que

$$\left\langle \left[\begin{array}{cc} 1 & 2 \\ -2 & 4 \end{array}\right], \left[\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right] \right\rangle = 0.$$

(c) Em \mathbb{C}^2 , com o produto interno usual, os vetores u=(1+i,i) e v=(i,1-i) são ortogonais, pois $\left\langle (1+i,i),(i,1-i)\right\rangle = (1+i)\overline{i}+i\overline{(1-i)}=(1+i)(-i)+i(1+i)=-i+1+i-1=0.$

Propriedades de Vetores Ortogonais

 VO_1 $O_V \perp v$ para todo $v \in V$.

 VO_2 Se $u \perp v$, então $v \perp u$.

 VO_3 Se $u \perp v$ para todo $v \in V$, então $u = 0_V$.

 VO_4 Se $u_1 \perp v$ e $u_2 \perp v$, então $(u_1 + u_2) \perp v$.

 VO_5 Se $u \perp v$ e $\lambda \in \mathbb{R}$, então $\lambda u \perp v$.

Verificação:

 VO_1 Segue da propriedade $PI_{\mathbb{R}5}$ de produto interno.

 VO_2 Segue da propriedade $PI_{\mathbb{R}1}$ de produto interno.

 VO_3 De fato, seja $\mathscr{B} = \{v_1, \dots, v_n\}$ uma base de V, então existem escalares $\alpha_1, \dots, \alpha_n$, tais que $u = \alpha_1 v_1 + \dots + \alpha_n v_n$.

Logo,

$$\langle u, u \rangle = \langle \alpha_1 v_1 + \dots + \alpha_n v_n, u \rangle = \alpha_1 \langle v_1, u \rangle + \dots + \alpha_n \langle v_n, u \rangle = 0.$$

Como, $\langle u, u \rangle = 0$ segue pela propriedade $PI_{\mathbb{R}^2}$ de produto interno que $u = 0_V$.

 VO_4 Segue da propriedade $PI_{\mathbb{R}^3}$ de produto interno.

 VO_5 Segue da propriedade $PI_{\mathbb{R}^4}$ de produto interno.

Observação 5.3.2 Segue das propriedades VO_4 e VO_5 que se $U = [u_1, u_2, \dots, u_k]$ é subespaço de V e $v \in V$ é tal que $v \perp u_1, v \perp u_2, \dots, v \perp u_k$, então $v \perp u$ para todo $u \in U$.

5.3.2 Base Ortogonal

Definição 5.3.2 Seja V um espaço vetorial sobre o corpo \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$), de dimensão n, com produto interno $\langle \cdot, \cdot \rangle$, dizemos que uma base $\mathscr{B} = \{v_1, v_2, \cdots, v_n\}$ é uma **base ortogonal** se, e somente se,

$$\langle v_i, v_j \rangle = 0$$
, para todo $i \neq j$.

Exemplos 5.3.3 (a) A base $\mathcal{B} = \{(-1,2),(2,1)\}$ é uma base ortogonal de \mathbb{R}^2 com o produto interno usual.

- (b) A base canônica $\mathscr{B} = \{(1,0,0),(0,1,0),(0,0,1)\}$ é uma base ortogonal de \mathbb{R}^3 com o produto interno usual.
- (c) A base $\mathscr{B} = \{(1+i,i),(i,1-i)\}$ de \mathbb{C}^2 é uma base ortogonal, pois como vimos anteriormente $\langle (1+i,i),(i,1-i)\rangle = 0$.
- Observações 5.3.4 (a) No espaço euclidiano n-dimensional, munido do produto interno usual, a base canônica $\mathcal{B} = \{e_1, e_2, \cdots, e_n\}$, com $e_i = (0, \cdots, \underbrace{1}_{i-\text{\'esima posição}}, \cdots, 0)$, \'e uma base ortogonal.
 - (b) No espaço unitário n-dimensional, munido do produto interno usual, a base canônica $\mathscr{B} = \{e_1, e_2, \cdots, e_n\}$, com $e_i = (0, \cdots, \underbrace{1}_{i-\text{\'esima posic\~ao}}, \cdots, 0)$, \'e uma base ortogonal.

5.3.3 Norma de um Vetor

Definição 5.3.3 Seja V um espaço vetorial sobre o corpo \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) com um produto interno $\langle \cdot, \cdot \rangle$, a **norma de um vetor** $v \in V$, indicada por ||v||, é o seguinte número real:

$$||v|| = \sqrt{\langle v, v \rangle}.$$

5.3.4 Propriedades da Norma

 $N_1 ||v|| \ge 0$, para todo $v \in V$ e $||v|| = 0 \iff v = 0_V$ positividade.

 $N_2 ||\lambda v|| = |\lambda|||v||$, para todo $v \in V$ e todo $\lambda \in \mathbb{K}$ homogeneidade.

Verificação:

 N_1 Segue da propriedade $PI_{\mathbb{R}^2}$ de produto interno.

 N_2 Segue da propriedade $PI_{\mathbb{R}^4}$ de produto interno.

Observações 5.3.5 (a) Segue da definição de norma que

$$||v||^2 = |\langle v, v \rangle|$$
 para todo v em V .

(b) Um espaço vetorial V sobre \mathbb{K} com uma norma $\|\cdot\|$ é chamado **espaço vetorial normado** e denotado por $(V\|\|)$.

Exemplo 5.3.6 Em \mathbb{R}^n a norma do produto interno usual é dada por:

$$\|(v_1,\dots,v_n)\| = \sqrt{v_1^2 + \dots + v_n^2},$$

vamos denominá-la de norma usual.

(i) Em \mathbb{R}^2 a norma usual é dada por:

$$\|(v_1, v_2)\| = \sqrt{v_1^2 + v_2^2}.$$

Assim, por exemplo,

$$\|(1,0)\| = \sqrt{1^2 + 0^2} = \sqrt{1} = 1$$
 e $\|(1,-2)\| = \sqrt{1^2 + (-2)^2} = \sqrt{5}$.

(ii) $\operatorname{Em} \mathbb{R}^3$ a norma usual é dada por:

$$\|(v_1, v_2, v_3)\| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Assim, por exemplo,

$$\|(1,0,-1)\| = \sqrt{1^2 + 0^2 + (-1)} = \sqrt{2}$$

$$e \|(3,-2,4)\| = \sqrt{3^2 + (-2)^2 + 4^2} = \sqrt{29}.$$

Corolário 5.3.7 (Desigualdade de Cauchy-Schwarz)

Se V é um espaço vetorial euclidiano, então

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||$$

para quaisquer u e v em V.

Demonstração: Vimos no teorema 5.1.4 que $\langle u, v \rangle^2 \le \langle u, u \rangle \cdot \langle v, v \rangle$, ou seja,

$$\langle u, v \rangle^2 \leq \|u\|^2 \cdot \|v\|^2 \Longrightarrow \sqrt{\langle u, v \rangle^2} \leq \sqrt{\|u\|^2 \cdot \|v\|^2} = \sqrt{\|u\|^2} \cdot \sqrt{\|v\|^2} \Longrightarrow |\langle u, v \rangle| \leq \|u\| \cdot \|v\|.$$

Corolário 5.3.8 (Desigualdade Triangular)

Se V é um espaço vetorial euclidiano, então

$$||u+v|| \le ||u|| + ||v||$$
 para quaisquer $u \in v$ em V .

Demonstração: Como $||u+v|| \ge 0$ e $||u|| + ||v|| \ge 0$, para mostrar que $||u+v|| \le ||u|| + ||v||$, basta mostrar que:

$$(\|u+v\|)^2 \le (\|u\|+\|v\|)^2.$$

Mas,

$$||u+v||^{2} = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = ||u||^{2} + 2\langle u, v \rangle + ||v||^{2}$$

$$\leq ||u||^{2} + 2|\langle u, v \rangle| + ||v||^{2} \stackrel{\text{Cor.5.3.7}}{\leq} ||u||^{2} + 2||v|| \cdot ||u|| + ||v||^{2} = (||u|| + ||v||)^{2}.$$

Portanto, $||u+v|| \le ||u|| + ||v||$ para quaisquer u e v em V.

Observações 5.3.9 (a) Segue da definição de norma que

$$||v||^2 = |\langle v, v \rangle|$$
 para todo v em V .

(b) Um espaço vetorial V sobre \mathbb{K} com uma norma $\|\cdot\|$ é chamado **espaço vetorial normado** e denotado por $(V, \|\cdot\|)$.

(c) Dados u e v em V um espaço vetorial euclidiano, o número real não negativo ||u-v|| é chamado **distância** de u a v, por exemplo, em \mathbb{R}^2 com a norma usual dados $u=(u_1,u_2)$ e $v=(v_1,v_2)$ temos:

$$||u-v|| = ||(u_1-v_1, u_2-v_2)|| = \sqrt{(u_1-v_1)^2 + (u_2-v_2)^2}.$$

(d) Sejam u e v vetores não nulos em V um espaço vetorial euclidiano, sabemos da desigualdade de Cauchy-Schwarz que $\|\langle u, v \rangle\| \le \|u\| \cdot \|v\|$, consequentemente temos:

$$-\|u\|\cdot\|v\| \le \langle u,v\rangle \le \|u\|\cdot\|v\| \Longleftrightarrow -1 \le \frac{\langle u,v\rangle}{\|u\|\cdot\|v\|} \le 1.$$

Logo, existe um único número real θ , com $0 \le \theta \le \pi$, tal que

$$\cos\theta = \frac{\langle u, v \rangle}{\|u\| \cdot \|v\|}.$$

O número θ é chamado o **ângulo entre os vetores** u e v.

(e) Dados u e v vetores não nulos em V um espaço vetorial euclidiano, se θ é o ângulo entre u e v, então:

$$\langle u, v \rangle = ||u|| \cdot ||v|| \cdot \cos \theta.$$

Teorema 5.3.10 Se V é um espaço vetorial euclidiano, dados u e v em V temos:

- (i) $u \in v$ são ortogonais se, e somente se, $||u+v||^2 = ||u||^2 + ||v||^2$ (**Teorema de Pitágoras**).
- (ii) Se u e v não são vetores nulos e θ é o ângulo entre u e v, então:

$$||u \pm v||^2 = ||u||^2 + ||v||^2 \pm 2||u|| \cdot ||v|| \cdot \cos \theta$$
, (Lei dos Cossenos).

Demonstração:

(i) Sabemos que $||u+v||^2 = \langle u+v, u+v \rangle = ||u||^2 + 2\langle u, v \rangle + ||v||^2$.

Logo,

$$||u+v||^2 = ||u||^2 + ||v||^2 \iff 2\langle u v \rangle = 0 \iff \langle u v \rangle = 0 \iff u \text{ e } v \text{ são ortogonais.}$$

(ii) Como $||u \pm v||^2 = \langle u \pm v, u \pm v \rangle = ||u||^2 \pm 2\langle u v \rangle + ||v||^2$ e na observação 5.3.9 (e) vimos que $\langle u, v \rangle = ||u|| \cdot ||v|| \cdot \cos \theta$, segue que:

$$||u \pm v||^2 = ||u||^2 + ||v||^2 \pm 2||u|| \cdot ||v|| \cdot \cos \theta.$$

5.3.5 Base Ortonormal

Definição 5.3.4 Seja V um espaço vetorial sobre o corpo \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) com norma $\|\cdot, \cdot\|$, dizemos que um vetor v em V é um **vetor unitário** se, e somente se, $\|v\| = 1$.

Exemplos 5.3.11 (a) Em \mathbb{R}^3 o vetor u=(0,1,0) e $v=\left(\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2}\right)$ são unitários, pois

$$||(0,1,0)|| = \sqrt{0^2 + 1^2 + 0^2} = \sqrt{1} = 1$$
 e

$$\left\| \left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2} \right) \right\| = \sqrt{\frac{\sqrt{2}^2}{2^2} + 0^2 + \frac{(-\sqrt{2})^2}{2^2}} = \sqrt{\frac{2}{4} + \frac{2}{4}} = \sqrt{1} = 1.$$

(b) Em \mathbb{C}^2 o vetor $u = \left(\frac{1+i}{\sqrt{3}}, \frac{i}{\sqrt{3}}\right)$ é unitário, pois:

$$\left\| \left(\frac{1+i}{\sqrt{3}}, \frac{i}{\sqrt{3}} \right) \right\| = \left\langle \sqrt{\left\langle \left(\frac{1+i}{\sqrt{3}}, \frac{i}{\sqrt{3}} \right), \left(\frac{1+i}{\sqrt{3}}, \frac{i}{\sqrt{3}} \right) \right\rangle} \right.$$

$$= \sqrt{\left(\frac{1+i}{\sqrt{3}}\right)\left(\frac{1-i}{\sqrt{3}}\right) + \frac{i}{\sqrt{3}}\frac{-i}{\sqrt{3}}} = \sqrt{\frac{2}{3} + \frac{1}{3}} = \sqrt{1} = 1.$$

Observação 5.3.12 Se v é um vetor não nulo em um espaço normado V, então o vetor $u = \frac{v}{\|v\|}$ é um vetor unitário.

De fato

$$||u|| = \left| \left| \frac{v}{||v||} \right| = \left| \frac{1}{||v||} \right| \cdot ||v|| = \frac{1}{||v||} \cdot ||v|| = 1.$$

Definição 5.3.5 Seja V um espaço vetorial sobre o corpo \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) com norma $\|\cdot,\cdot\|$, dizemos que u e v em V são **vetores ortonormais** se, e somente se, u e v são vetores ortogonais e unitários, ou seja, se e somente se,

$$||u|| = 1$$
, $||v|| = 1$ e $\langle u, v \rangle = 0$.

Exemplos 5.3.13 (a) Em \mathbb{R}^3 os vetores u = (0,1,0)) e $v = \left(\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2}\right)$ são ortonormais.

Vimos no exemplo (a) acima que u e v são unitários, como

$$\left\langle (0,1,0), \left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2} \right) \right\rangle = \frac{\sqrt{2}}{2} + 0 + \left(-\frac{\sqrt{2}}{2} \right) = 0$$

segue que u e v são ortonormais.

(b) Em \mathbb{C}^2 os vetores $u = \left(\frac{1+i}{\sqrt{3}}, \frac{i}{\sqrt{3}}\right)$ e $v = \left(\frac{i}{\sqrt{3}}, \frac{1-i}{\sqrt{3}}\right)$ são ortonormais.

De fato, no exemplo (b) acima vimos que u é unitário, de maneira análoga mostramos que v também é unitário, e analogamente ao exemplo (c) de vetores ortogonais, portanto u e v são ortonormais.

Definição 5.3.6 Seja V um espaço vetorial sobre o corpo \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$), de dimensão n, com norma $\|\cdot,\cdot\|$, dizemos que uma base $\mathscr{B} = \{v_1, v_2, \cdots, v_n\}$ é uma **base ortonormal** se, e somente se,

- (i) Os vetores de \mathcal{B} são todos unitários.
- (ii) Quaisquer dois vetores \mathcal{B} , distintos entre si, são ortogonais.

Exemplos 5.3.14 (a) A base

$$\mathscr{B} = \left\{ \left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2} \right), (0, 1, 0), \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2} \right) \right\}$$

é uma base ortonormal de \mathbb{R}^3 com a norma usual, pois através de cálculos simples podemos ver que os vetores de \mathscr{B} são unitários e dois a dois ortogonais.

- (b) A base canônica $\mathscr{B} = \{(1,0,0),(0,1,0),(0,0,1)\}$ é uma base ortonormal de \mathbb{R}^3 com a norma usual.
- (c) A base

$$\mathscr{B} = \left\{ \left(\frac{1+i}{\sqrt{3}}, \frac{i}{\sqrt{3}} \right), \left(\frac{i}{\sqrt{3}}, \frac{1-i}{\sqrt{3}} \right) \right\}$$

de \mathbb{C}^2 é uma base ortonormal, pois como vimos anteriormente os vetores de \mathscr{B} são unitários e ortogonais.

- Observações 5.3.15 (a) No espaço euclidiano n-dimensional, munido da norma usual, a base canônica $\mathcal{B} = \{e_1, e_2, \cdots, e_n\}$, com $e_i = (0, \cdots, \underbrace{1}_{i-\text{\'esima posição}}, \cdots, 0)$, \'e uma base ortonormal.
 - (b) No espaço unitário n-dimensional, munido da norma usual, a base canônica $\mathcal{B} = \{e_1, e_2, \cdots, e_n\}$, com $e_i = (0, \cdots, \underbrace{1}_{i-\text{\'esima posição}}, \cdots, 0)$, \'e uma base ortonormal.

Proposição 5.3.16 Sejam V um espaço vetorial normado e $\mathscr{B} = \{v_1, v_2, \cdots, v_n\}$ uma base de V.

(i) Se \mathcal{B} é uma base ortogonal de V, então para todo $v \in V$ temos:

$$v = \frac{\langle v, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle v, v_2 \rangle}{\|v_2\|^2} v_2 + \dots + \frac{\langle v, v_n \rangle}{\|v_n\|^2} v_n.$$

(ii) Se \mathscr{B} é base ortonormal de V, então para todo $v \in V$ temos:

$$v = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \cdots + \langle v, v_n \rangle v_n.$$

Demonstração:

(i) Como \mathscr{B} é base V existem escalares a_1, a_2, \dots, a_n tais que:

$$v = a_1v_1 + a_2v_2 + \cdots + a_nv_n$$
.

Logo,

$$\langle v, v_1 \rangle = \langle a_1 v_1 + a_2 v_2 + \dots + a_n v_n, v_1 \rangle = a_1 \underbrace{\langle v_1, v_1 \rangle}_{= \|v_1\|^2} + a_2 \underbrace{\langle v_2, v_1 \rangle}_{=0} + \dots + a_n \underbrace{\langle v_n, v_1 \rangle}_{=0} = a_1 \|v_1\|^2.$$

Como
$$||v_1|| \neq 0$$
 segue que $a_1 = \frac{\langle v, v_1 \rangle}{||v_1||^2}$.

Analogamente mostramos que

$$a_2 = \frac{\langle v, v_2 \rangle}{\|v_2\|^2}, \quad \cdots, \quad a_n = \frac{\langle v, v_n \rangle}{\|v_n\|^2}.$$

Portanto,

$$v = \frac{\langle v, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle v, v_2 \rangle}{\|v_2\|^2} v_2 + \dots + \frac{\langle v, v_n \rangle}{\|v_n\|^2} v_n.$$
 (5.3.1)

(ii) Como consequência da ortogonalidade dos vetores de \mathscr{B} vimos acima em 5.3.1 que:

$$v = \frac{\langle v, v_1 \rangle}{\|v_1\|^2} v_1 + \frac{\langle v, v_2 \rangle}{\|v_2\|^2} v_2 + \cdots + \frac{\langle v, v_n \rangle}{\|v_n\|^2} v_n.$$

Já que os vetores de \mathscr{B} são unitários segue ainda que

$$||v_1|| = ||v_2|| = \cdots = ||v_n|| = 1.$$

Consequentemente em 5.3.1 temos:

$$v = \langle v, v_1 \rangle v_1 + \langle v, v_2 \rangle v_2 + \dots + \langle v, v_n \rangle v_n$$

Exemplos 5.3.17 (a) O vetor v = (1,2) se escreve da seguinte maneira em relação à base ortogonal $\mathcal{B} = \{(1+i,i),(i,1-i)\}\ de\ \mathbb{C}^2$:

$$(1,2) = \frac{\langle (1,2), (1+i,i) \rangle}{\|(1+i,i)\|^2} (1+i,i) + \frac{\langle (1,2), (i,1-i) \rangle}{\|(i,1-i)\|^2} (i,1-i).$$

Como

$$\begin{array}{rclcrcl} \langle (1,2), (1+i,i) \rangle & = & 1(1-i)+2(-i)=1-3i \\ \langle (1,2), (i,1-i) \rangle & = & 1(-i)+2(1+i)=2+i \\ \| (1+i,i) \|^2 & = & \langle (1+i,i), (1+i,i) \rangle & = & (1+i)(1-i)+i(-i)=3 \\ \| (i,1-i) \|^2 & = & \langle (i,1-i), (i,1-i) \rangle & = & i(-i)+(1-i)(1+i)=3 \end{array},$$

então:

$$(1,2) = \frac{1-3i}{3} (1+i,i) + \frac{2+i}{3} (i,1-i)$$

$$= \left(\frac{(1-3i)(1+i)}{3}, \frac{(1-3i)(i)}{3}\right) + \left(\frac{(2+i)(i)}{3}, \frac{(2+i)(1-i)}{3}\right)$$

$$= \left(\frac{4-2i}{3}, \frac{3+i}{3}\right) + \left(\frac{-1+2i}{3}, \frac{3-i}{3}\right) = \left(\frac{3}{3}, \frac{6}{3}\right) = (1,2).$$

(b) O vetor v = (3, 4, -2) se escreve da seguinte maneira em relação à base ortogonal $\mathscr{B} = \left\{ \left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2} \right), (0, de \mathbb{R}^3) \right\}$

$$(3,4,-2) = \left\langle (3,4,-2), \left(\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2}\right) \right\rangle \left(\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2}\right) + \left\langle (3,4,-2),(0,1,0) \right\rangle (0,1,0)$$

$$+ \left\langle (3,4,-2), \left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right) \right\rangle \left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)$$

$$= \frac{5\sqrt{2}}{2} \left(\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2}\right) + 4(0,1,0) + \frac{\sqrt{2}}{2} \left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)$$

$$= \left(\frac{5}{2},0,-\frac{5}{2}\right) + (0,4,0) + \left(\frac{1}{2},0,\frac{1}{2}\right) = (3,4,-2).$$

5.4 Processo de Ortogonalização de Gram-Schmidt

Observação 5.4.1 Seja V um espaço vetorial de dimensão finita munido de um produto interno, se $\mathscr{B} = \{v_1, v_2, \dots, v_n\}$ é uma base ortogonal de V, então $\mathscr{B}' = \left\{\frac{v_1}{\|v_1\|}, \frac{v_2}{\|v_2\|}, \dots, \frac{v_n}{\|v_n\|}\right\}$ é base ortonormal de V.

De fato, da observação 5.3.12 segue que os vetores de \mathscr{B}' são unitários.

Além disso, para $i, j \in \{1, 2, \dots, n\}$ quaisquer, com $i \neq j$, temos:

$$\left\langle \frac{v_i}{\|v_i\|} \cdot \frac{v_j}{\|v_j\|} \right\rangle = \frac{1}{\|v_i\|} \cdot \frac{1}{\|v_j\|} \cdot \underbrace{\left\langle v_i, v_j \right\rangle}_{=0} = 0.$$

Portanto, a partir de uma base ortogonal podemos obter uma base ortonormal.

No que segue vamos apresentar um procedimento para obter uma base ortogonal a partir de uma base qualquer de V, para isso vamos definir a projeção de um vetor na direção de outro vetor não nulo.

Definição 5.4.1 Seja V um espaço vetorial sobre \mathbb{R} munido de um produto interno, dados que u e v em V, com u vetor não nulo, a **projeção ortogonal** de v na direção de u, indicada por $proj_u u$, é o seguinte vetor:

$$\operatorname{proj}_{u}v = \frac{\langle v, u \rangle}{\|u\|^2} u.$$

Observação 5.4.2 Dados que u e v em V, com u vetor não nulo, os vetores $w = v - \text{proj}_u v$ e u são ortogonais.

De fato,

$$\langle w, u \rangle = \langle v - \operatorname{proj}_{u} v, u \rangle = \left\langle v - \frac{\langle v, u \rangle}{\|u\|^2} u, u \right\rangle = \langle v, u \rangle - \frac{\langle v, u \rangle}{\|u\|^2} \cdot \langle u, u \rangle = \langle v, u \rangle - \frac{\langle v, u \rangle}{\|u\|^2} \cdot \|u\|^2 = 0.$$

Teorema 5.4.3 (Processo de Ortogonalização de Gram-Schmidt)

Sejam V um espaço vetorial sobre \mathbb{R} munido de um produto interno e $\mathscr{B} = \{v_1, v_2, v_3, \dots, v_n\}$ uma base de V, então $\mathscr{B}' = \{w_1, w_2, w_3, \dots, w_n\}$, com

$$w_1 = v_1$$

$$w_2 = v_2 - \operatorname{proj}_{v_2} w_1$$

$$w_3 = v_3 - \operatorname{proj}_{v_3} w_1 - \operatorname{proj}_{v_3} w_2$$

$$\vdots$$

$$w_n = v_n - \operatorname{proj}_{v_n} w_1 - \operatorname{proj}_{v_n} w_2 - \dots - \operatorname{proj}_{v_n} w_{n-1},$$

 \acute{e} uma base ortogonal de V.

Demonstração: Observemos que $\langle w_2, w_1 \rangle = \langle v_2 - \operatorname{proj}_{w_1} v_2, w_1 \rangle \stackrel{\text{Obs.5.4.2}}{=} 0$. Por outro lado,

$$\langle w_{3}, w_{1} \rangle = \langle v_{3} - \operatorname{proj}_{w_{1}} v_{3} - \operatorname{proj}_{w_{2}} v_{3}, w_{1} \rangle$$

$$= \left\langle v_{3} - \frac{\langle v_{3}, w_{1} \rangle}{\|w_{1}\|^{2}} w_{1} - \frac{\langle v_{3}, w_{2} \rangle}{\|w_{2}\|^{2}} w_{2}, w_{1} \right\rangle$$

$$= \left\langle v_{3}, w_{1} \right\rangle - \frac{\langle v_{3}, w_{1} \rangle}{\|w_{1}\|^{2}} \cdot \langle w_{1}, w_{1} \rangle - \frac{\langle v_{3}, w_{2} \rangle}{\|w_{2}\|^{2}} \cdot \underbrace{\langle w_{2}, w_{1} \rangle}_{=0} = 0.$$

De maneira análoga mostramos que $\langle w_i, w_j \rangle = 0$, se $i \neq j$.

Portanto, $\mathscr{B}' = \{w_1, w_2, w_3, \dots, w_n\}$ é uma base ortogonal de V.

Exemplos 5.4.4 (a) A partir da base \mathscr{B} de $M_2(\mathbb{R})$, com o produto interno usual, dada abaixo:

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

obtenha uma base ortogonal e uma base ortonormal de $M_2(\mathbb{R})$.

(b) Encontre uma base ortogonal de \mathbb{C}^3 , como espaço vetorial sobre \mathbb{C} , que contenha o vetor $v=(1,\ 0,\ 3i)$.

Solução:

(a) Pelo processo de ortogonalização de Gram-Schmidt devemos obter $\mathscr{B}' = \{w_1, w_2, w_3, w_4\}$ com:

$$w_{1} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \Longrightarrow ||w_{1}||^{2} = 4$$

$$w_{2} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} - \frac{\left\langle \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\rangle}{||w_{1}||^{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \Longrightarrow ||w_{2}||^{2} = \frac{3}{4}$$

$$w_{3} = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} - \frac{\left\langle \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\rangle}{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - \frac{\left\langle \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \right\rangle}{\frac{3}{4}} \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \Longrightarrow ||w_{3}||^{2} = \frac{2}{3}$$

$$w_{4} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} - \frac{\left\langle \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\rangle}{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - \frac{\left\langle \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} \right\rangle}{\frac{3}{4}} \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} - \frac{\left\langle \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \right\rangle}{\frac{2}{3}} \begin{bmatrix} 0 & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \Longrightarrow \|w_{4}\|^{2} = \frac{1}{2}.$$

Logo,

$$\mathscr{B}' = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 0 & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \right\}$$

é uma base ortogonal de $M_2(\mathbb{R})$.

Consequentemente,

$$\mathcal{B}'' = \left\{ \frac{1}{\|w_1\|} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \frac{1}{\|w_2\|} \cdot \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}, \frac{1}{\|w_3\|} \cdot \begin{bmatrix} 0 & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}, \frac{1}{\|w_4\|} \cdot \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \right\}$$

$$= \left\{ \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \frac{2}{\sqrt{3}} \cdot \begin{bmatrix} -\frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \end{bmatrix}, \frac{\sqrt{3}}{\sqrt{2}} \cdot \begin{bmatrix} 0 & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}, \sqrt{2} \cdot \begin{bmatrix} 0 & 0 \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{6} \\ \frac{\sqrt{3}}{6} & \frac{\sqrt{3}}{6} \end{bmatrix}, \begin{bmatrix} 0 & -\frac{\sqrt{6}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \right\}$$

é uma base ortonormal de $M_2(\mathbb{R})$.

(b) Para obter uma base ortogonal $\mathcal{B} = \{w_1, w_2, w_3\}$ que contenha o vetor v = (1, 0, 3i) vamos utilizar o processo de ortogonalização de Gram-Schmidt, para isso vamos considerar a base $\mathcal{B}' = \{(1,0,3i), (0,1,0), (0,0,1)\}$ do espaço vetorial \mathbb{C}^3 sobre \mathbb{C} .

Assim, como $||(1,0,3i)||^2 = 10$, segue que:

$$w_{1} = v = (1,0,3i)$$

$$w_{2} = (0,1,0) - \frac{\langle (0,1,0), (1,0,3i) \rangle}{\|(1,0,3i)\|^{2}} (1,0,3i) = (0,1,0)$$

$$w_{3} = (0,0,1) - \frac{\langle (0,0,1), (1,0,3i) \rangle}{\|(1,0,3i)\|^{2}} (1,0,3i) - \frac{\langle (0,0,1), (0,1,0) \rangle}{\|(0,1,0)\|^{2}} (0,1,0)$$

$$= (0,0,1) - \frac{3i}{10} (1,0,3i) = \left(\frac{-3i}{10}, 0, \frac{1}{10}\right)$$

Portanto, $\mathscr{B} = \left\{ (1,0,3i), \ (0,1,0), \ \left(\frac{-3i}{10}, \ 0, \ \frac{1}{10} \right) \right\}$ é base ortogonal de \mathbb{C}^3 que contém v.

5.5 Complemento Ortogonal

Definição 5.5.1 Sejam V um espaço vetorial sobre um corpo \mathbb{K} com produto interno e S um subconjunto não vazio de V, o **complemento ortogonal** de S em V, denotado por S^{\perp} , é o seguinte subconjunto de V:

$$S^{\perp} = \{ v \in V; \langle v, u \rangle = 0 \text{ para todo } u \in S \}.$$

Proposição 5.5.1 Sejam V um espaço vetorial sobre um corpo \mathbb{K} , dimensão n, com produto interno e S^{\perp} o complemento ortogonal de S um subconjunto não vazio de V, então:

- (i) S^{\perp} é um subespaço de V.
- (ii) Se S é um subespaço de V, então $V = S \oplus S^{\perp}$.

Demonstração:

(i) $0_V \in S^{\perp}$, pois pela propriedade $PI_{\mathbb{R}5}$ de produto interno $\langle 0_V, u \rangle = 0$ para todo $u \in V$, portanto $\langle 0_V, u \rangle = 0$ para todo $u \in S$.

Sejam v_1 e v_2 em S^{\perp} , então: $\langle v_1, u \rangle = 0$ e $\langle v_2, u \rangle = 0$ para todo $u \in S$.

Logo, $\langle v_1 + v_2, u \rangle \stackrel{PI_{\mathbb{R}^3}}{=} \langle v_1, u \rangle + \langle v_2, u \rangle = 0 + 0 = 0$ para todo $u \in S$.

Portanto, $v_1 + v_2 \in S^{\perp}$.

Sejam $v \in S^{\perp}$ e $\lambda \in \mathbb{K}$, então: $\langle v, u \rangle = 0$ para todo $u \in S$.

Logo, $\langle \lambda v, u \rangle \stackrel{PI_{\mathbb{R}^4}}{=} \lambda \cdot \langle v, u \rangle = \lambda \cdot 0 = 0$ para todo $u \in S$.

Portanto, $\lambda v \in S^{\perp}$.

Consequentemente, S^{\perp} é um subespaço de V.

(ii) Seja $\mathscr{B}_S = \{v_1, \dots, v_k\}$ uma base ortogonal de S, pelo Teorema do Completamento 4.3.10 podemos estender essa base a uma base de V, dígamos que seja: $\mathscr{B}' = \{v_1, \dots, v_k, w_{k+1}, \dots, w_n\}$.

Aplicando o processo de ortogonalização de Gram-Schmidt à base \mathscr{B}' obtemos uma base ortogonal \mathscr{B} de V, como os vetores v_1, \dots, v_k são dois a dois ortogonais, esses serão os k primeiros vetores de \mathscr{B} , ou seja, $\mathscr{B} = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$.

Como $S = [v_1, \dots, v_k]$ e \mathscr{B} é base ortogonal de V, segue que $[v_{k+1}, \dots, v_n] \subset S^{\perp}$.

Além disso, dado $u \in S^{\perp}$, então $\langle u, v \rangle = 0$ para todo $v \in S$, e portanto, $\langle u, v_1 \rangle = \cdots = \langle u, v_k \rangle = 0$ e pela Proposição 5.3.16 (i) temos:

$$u = \frac{\langle u, v_1 \rangle}{\|v_1\|^2} v_1 + \dots + \frac{\langle v, v_k \rangle}{\|v_k\|^2} v_k + \frac{\langle v, v_{k+1} \rangle}{\|v_{k+1}\|^2} v_{k+1} + \dots + \frac{\langle v, v_n \rangle}{\|v_n\|^2} v_n$$

$$= \frac{\langle v, v_{k+1} \rangle}{\|v_{k+1}\|^2} v_{k+1} + \dots + \frac{\langle v, v_n \rangle}{\|v_n\|^2} v_n.$$

Portanto, $u \in [v_{k+1}, \dots, v_n]$, como $u \in S^{\perp}$ é arbitrário segue que $S^{\perp} = [v_{k+1}, \dots, v_n]$.

Como $\{v_{k+1}, \dots, v_n\}$ é subconjunto L.I. de V segue ainda que $\mathscr{B}_{S^{\perp}} = \{v_{k+1}, \dots, v_n\}$ é base de S^{\perp} .

Logo,

$$V = [v_1, \cdots, v_k] \oplus [v_{k+1}, \cdots, v_n] = S \oplus S^{\perp}.$$

Exemplos 5.5.2 (a) Seja $W = \{(x, y, z, w) \in \mathbb{R}^4; x - y - w = 0 \text{ e } 2y - z + w = 0\}$ subespaço de \mathbb{R}^4 , determine uma base para W e uma base para W^{\perp} .

(b) Em $\mathscr{C}([-1,1])$, conjunto das funções contínuas de [-1,1] em \mathbb{R} , consideremos o produto interno:

$$\begin{array}{cccc} \langle \cdot, \cdot \rangle : & \mathscr{C}([-1,1]) \times \mathscr{C}([-1,1]) & \longrightarrow & \mathbb{R} \\ & (f,g) & \longmapsto & \langle f,g \rangle = \int_{-1}^1 f(x) \cdot g(x) \; dx. \end{array}$$

Determine o complemento ortogonal de $W = \{ f \in \mathcal{C}([-1,1]); f \text{ \'e impar} \}.$

Solução:

(a) Observemos
$$(x, y, z, w) \in W \iff \begin{cases} x - y & -w = 0 \\ 2y - z - w = 0 \end{cases} \iff \begin{cases} x = y + w \\ z = 2y + w \end{cases}$$

$$\iff (x, y, z, w) = (y + w, y, 2y + w, w) = y(1, 1, 2, 0) + w(1, 0, 1, 1).$$

Portanto, $\mathcal{B}_1 = \{(1,0,1,1), (1,1,2,0)\}$ é base de W.

Para obter uma base ortogonal para W a partir da base \mathcal{B}_1 vamos utilizar o processo de ortogonalização de Gram-Schmidt, ou seja, $\mathcal{B}_1' = \{w_1, w_2\}$ com:

$$w_{1} = (1,0,1,1)$$

$$w_{2} = (1,1,2,0) - \frac{\langle (1,0,1,1), (1,1,2,0) \rangle}{\|(1,0,1,1)\|^{2}} (1,0,1,1)$$

$$= (1,1,2,0) - \frac{3}{3} (1,0,1,1) = (1,1,2,0) - (1,0,1,1) = (0,1,1,-1).$$

Portanto, $\mathscr{B}_{1}' = \{(1,0,1,1), (0,1,1,-1)\}$ é base ortogonal de W.

Logo $\mathscr{B}' = \{(1,0,1,1), \ (0,1,1,-1), \ (0,0,1,0), \ (0,0,0,1)\}$ é uma base de \mathbb{R}^4 obtida pelo completamento de \mathscr{B}'_1 .

Consequentemente,

$$w_{3} = (0,0,1,0) - \frac{\langle (1,0,1,1), (0,0,1,0) \rangle}{\|(1,0,1,1)\|^{2}} (1,0,1,1) - \frac{\langle (0,1,1,-1), (0,0,1,0) \rangle}{\|(0,1,1,-1)\|^{2}} (0,1,1,-1)$$

$$= (0,0,1,0) - \frac{1}{3} (1,0,1,1) - \frac{1}{3} (0,1,1,-1) = \left(-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}, 0\right)$$

$$w_{4} = (0,0,0,1) - \frac{\langle (1,0,1,1), (0,0,0,1) \rangle}{\|(1,0,1,1)\|^{2}} (1,0,1,1) - \frac{\langle (0,1,1,-1), (0,0,0,1) \rangle}{\|(0,1,1,-1)\|^{2}} (0,1,1,-1)$$

$$- \frac{\langle \left(-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}, 0\right), (0,0,0,1) \rangle}{\|\left(-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}, 0\right)\|^{2}} \left(-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}, 0\right)$$

$$= (0,0,0,1) - \frac{1}{3} (1,0,1,1) + \frac{1}{3} (0,1,1,-1) = \left(-\frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3}\right).$$

Portanto,

$$\mathscr{B} = \left\{ (1,0,1,1), \ (0,1,1,-1), \ \left(-\frac{1}{3}, \ -\frac{1}{3}, \ \frac{1}{3}, \ 0 \right), \ \left(-\frac{1}{3}, \ \frac{1}{3}, \ 0, \ \frac{1}{3} \right) \right\}$$

é uma base ortogonal de \mathbb{R}^4 ,

$$\mathscr{B}_W = \{(1,0,1,1), (0,1,1,-1)\}$$
 é base de W

e

$$\mathscr{B}_{W^{\perp}} = \{(-1, -1, 1, 0), (-1, 1, 0, 1)\}\ \text{ \'e base de } W^{\perp}.$$

(b) Observemos que $g \in W^{\perp}$ se, e somente se, $\langle f,g \rangle = 0$, para todo $f \in W$, mas,

$$\langle f, g \rangle = 0 \Longleftrightarrow \int_{-1}^{1} f(x) \cdot g(x) \ dx = 0 \Longleftrightarrow \int_{-1}^{0} f(x) \cdot g(x) \ dx + \int_{0}^{1} f(x) \cdot g(x) \ dx = 0.$$

Fazendo a substituição: $\begin{cases} u = -x \implies du = -dx \iff dx = -du \\ x = 0 \implies u = 0 \\ x = -1 \implies u = 1, \end{cases}$ logo temos:

$$\int_{1}^{0} -f(-u) \cdot g(-u) \, du + \int_{0}^{1} f(x) \cdot g(x) \, dx = 0 \stackrel{\text{f \'e impar}}{\Longrightarrow} - \int_{0}^{1} f(u) \cdot g(-u) \, du + \int_{0}^{1} f(x) \cdot g(x) \, dx = 0.$$

Portanto, como u e x são variáveis mudas, podemos substituí-las por t, outra variável muda, e assim temos:

$$-\int_{0}^{1} f(t) \cdot g(-t) \ dt + \int_{0}^{1} f(t) \cdot g(t) \ dt = 0 \iff \int_{0}^{1} f(t) \cdot \left(g(t) - g(-t) \right) \ dt = 0,$$

para toda função $f \in W$, consequentemente devemos ter g(t) - g(-t) = 0 para todo $t \in [-1, 1]$. Portanto, g(-t) = g(t) para todo $t \in [-1, 1]$, ou seja, g é função par.

Daí que

$$W^{\perp} = \{g \in \mathscr{C}([-1,1]); g \notin \operatorname{par}\}.$$

Transformações Lineares

6	Transformações Lineares	145
6.1	Transformações Lineares	
6.2	Matriz de uma Transformação Linear	
6.3	Núcleo e Imagem de uma Transformação Linear	
6.4	Transformações Lineares Injetoras e Sobrejetoras	
6.5	Inversa de uma Transformação Linear	
7	Diagonalização de Operadores Lineares	173
7.1	Autovalor e Autovetor de um Operador Linear	
7.2	Polinômio Característico de um Operador Linear	
7.3	Diagonalização de Operadores Lineares	
7.4	Operadores Auto-Adjuntos	
	Bibliografia	207

Dados A e B conjuntos não vazios uma aplicação de A em B é uma relação biunívoca que a cada elemento a em A associa um único elemento em B.

Uma transformação linear é uma aplicação entre dois espaços vetoriais que preserva linearidade, por exemplo as rotações e as reflexões do plano no plano são lineares.

6.1 Transformações Lineares

Definição 6.1.1 Sejam V e W espaços vetoriais sobre um corpo \mathbb{K} , uma aplicação $T:V\longrightarrow W$ é uma **transformação linear** se, e somente se, satisfaz as seguintes condições:

- (i) Para quaisquer u e v em V tivermos T(u+v)=T(u)+T(v).
- (ii) Para todo v em V e todo λ em \mathbb{K} tivermos $T(\lambda \cdot v) = \lambda \cdot T(v)$.

Exemplos 6.1.1 (a) Reflexões no Plano

(a₁) Reflexão em torno do eixo x:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto T(x,y) = (x,-y)$.

(a₂) Reflexão em torno do eixo *x*:

$$T: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2$$
$$(x,y) \quad \longmapsto \quad T(x,y) = (-x,-y) \quad .$$

(a₃) Reflexão em torno do eixo y:

$$T: \quad \mathbb{R}^2 \quad \longrightarrow \quad \mathbb{R}^2 (x,y) \quad \longmapsto \quad T(x,y) = (-x,y) \quad .$$

Figura 6.1.1: Ponto X e as imagens das reflexões pelos eixos x e y e pela origem

(b) Rotações no Plano

(b₁) Rotação de um ângulo θ :

$$R_{\theta}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$$

$$(x,y) \longmapsto R_{\theta}(x,y) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= (x\cos \theta - y \sin \theta, x \sin \theta + y \cos \theta).$$

(b₂) Rotação de $\frac{\pi}{2}$:

$$R_{\frac{\pi}{2}}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto R_{\frac{\pi}{2}}(x,y) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = (-y, x)$$

(b₃) Rotação de π :

$$R_{\pi}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto R_{\pi}(x,y) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = (-x, -y).$$

A linearidade segue das propriedades de produto de matrizes.

(c) As aplicações do tipo:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \atop (x,y) \longmapsto T(x,y) = (ax, by)$$
, com a e b números reais são lineares.

Figura 6.1.2: Ponto X e as imagens das rotações de θ , $\frac{\pi}{2}$ e π

De fato:

(i) Para quaisquer (x_1, y_1) e (x_2, y_2) em \mathbb{R}^2 temos:

$$T((x_1, y_1) + (x_2, y_2)) = T(x_1 + x_2, y_1 + y_2) = (a(x_1 + x_2), b(y_1 + y_2))$$
$$= (ax_1 + ax_2, by_1 + by_2) = (ax_1, by_1) + (ax_2, by_2)$$
$$= T(x_1, y_1) + T(x_2, y_2).$$

(ii) Para todo (x, y) em \mathbb{R}^2 e todo λ em \mathbb{R} temos:

$$T(\lambda(x,y)) = T(\lambda x, \lambda y) = (a(\lambda x), b(\lambda y)) = (a\lambda x, b\lambda y) = \lambda(ax, by) = \lambda T(x,y).$$

Logo, as reflexões do exemplo (a) são lineares, no item (a₁) a = 1 e b = -1; no item (a₂) a = b = -1 e no item (a₃) a = -1 e b = 1.

(d) As translações não triviais do plano:

$$T_{(a,b)}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto T_{(a,b)}(x,y) = (x,y) + (a,b)$, $\cos a \neq 0$ ou $b \neq 0$

não são lineares.

De fato, por exemplo:

$$T(1,0) = (1,0) + (a,b) = (1+a,b)$$
 e $T(0,1) = (0,1) + (a,b) = (a,1+b)$,

assim
$$T(1,0) + T(0,1) = (1+a,b) + (a,1+b) = (1+2a,1+2b)$$
.

Por outro lado, T((1,0) + (0,1)) = T(1,1) = (1,1) + (a,b) = (1+a,1+b).

$$\text{Logo, } T(1,0) + T(0,1) = T(1,1) \Longleftrightarrow \left\{ \begin{array}{l} 1 + 2a = 1 + a \\ 1 + 2b = \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} 2a = a \\ 2b = b \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} a = 0 \\ b = 0 \end{array} \right., \text{ mas por hipótese temos } a \neq 0 \text{ ou } b \neq 0.$$

Portanto, $T_{(a,b)}$ não é linear.

(e) A aplicação derivada de polinômios é linear:

$$T: \mathscr{P}_n(\mathbb{R}) \longrightarrow \mathscr{P}_{n-1}(\mathbb{R})$$

 $p(t) \longmapsto T(p(t)) = p'(t)$ é linear.

De fato:

(i) Para quaisquer p(t) e q(t) em $\mathscr{P}_n(\mathbb{R})$ temos:

$$T(p(t)+q(t)) = T((p+q)(t)) = (p+q)'(t) \stackrel{*}{=} p'(t) + q'(t) = T(p(t)) + T(q(t)).$$

- * Propriedade da derivada da soma de funções.
- (ii) Para todo p(t) em $\mathscr{P}_n(\mathbb{R})$ e todo λ em \mathbb{R} temos:

$$T(\lambda p(t)) = T((\lambda p)(t)) \stackrel{\star}{=} \lambda(p)'(t) = \lambda T(p(t)).$$

* Propriedade da derivada do produto de uma função por uma constante.

(f) Seja
$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 uma matriz $m \times n$, a aplicação:
$$T_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

$$(x_1, x_2, \cdots, x_n) \longmapsto T_A(x_1, x_2, \cdots, x_n) = A_{m \times n} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

ou seja,

$$T_{A}(x_{1},x_{2},\cdots,x_{n}) = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$= (a_{11}x_{1} + \cdots + a_{1n}x_{n}, a_{21}x_{1} + \cdots + a_{2n}x_{n}, \cdots, a_{m1}x_{1} + \cdots + a_{mn}x_{n})$$

que é uma transformação linear.

De fato, segue das propriedades M_3 (a) e M_4 de produto de matrizes.

Por exemplo, se $A = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 1 \end{bmatrix}$ então temos:

$$T_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x,y,z) \longmapsto T_A(x,y,z) = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$= (x+3y-z, 2y+z).$$

Observação 6.1.2 Na definição de transformação linear $T: V \longrightarrow W$ os espaço vetoriais V e W devem ser sobre o mesmo corpo \mathbb{K} , pois caso contrário a segunda condição da definição não funcionaria.

6.1.1 Propriedades de Transformações Lineares

Sejam V e W espaços vetoriais sobre um corpo \mathbb{K} e $T:V\longrightarrow W$ uma transformação linear, então valem:

 $TL_1 T(O_V) = 0_W.$

 TL_2 T(-v) = -T(v), para todo $v \in V$.

 TL_3 T(v-u) = T(v) - T(u), para quaisquer $v, u \in V$.

 TL_4 Se U é subespaço de V, então T(U) é subespaço de W.

 TL_5 Dados v_1, v_2, \dots, v_k em V e escalares a_1, a_2, \dots, a_k , então:

$$T(a_1v_1 + a_2v_2 + \cdots + a_kv_k) = a_1T(v_1) + a_2T(v_2) + \cdots + a_kT(v_k).$$

Verificação:

 TL_1 De fato, podemos escrever $0_V = v + (-v)$ para algum $v \in V$, assim,

$$T(0_V) = T(v + (-v)) \stackrel{(i)}{=} T(v) + T(-v) \stackrel{(ii)}{=} T(v) - T(v) = 0_W.$$

 TL_2 De fato, dado $v \in V$, então,

$$T(v) + (-T(v)) = 0_W \stackrel{TL_1}{=} T(0_V) = T(v + (-v)) \stackrel{(i)}{=} T(v) + T(-v).$$

Logo,
$$(-T(v)) = T(-v) \iff -T(v) = T(-v)$$
.

 TL_3 De fato,

$$T(v-u) = T(v+(-u)) \stackrel{(i)}{=} T(v) + T(-u) \stackrel{TL_2}{=} T(v) - T(u).$$

 TL_4 Lembremos que $T(U) = \{ w \in W; w = T(u) \text{ para algum } u \in U \}.$

Como $0_V \in U$, pois U é subespaço de V, segue que $0_W = T(0_V) \in T(U)$, portanto $T(U) \neq \emptyset$.

Sejam w_1 $w_2 \in T(U)$, então existem u_1 , $u_2 \in U$ tais que $w_1 = T(u_1)$ e $w_2 = T(u_2)$.

Logo,

$$w_1 + w_2 = T(u_1) + T(u_2) \stackrel{(i)}{=} T(\underbrace{u_1 + u_2}) \in T(U).$$

Sejam $w \in T(U)$ e $\lambda \in \mathbb{K}$, então existe $u \in U$ tais que w = T(u).

Logo,

$$\lambda \cdot w = \lambda \cdot T(u) \stackrel{(ii)}{=} T(\underbrace{\lambda \cdot u}_{\in U}) \in T(U).$$

Portanto, T(U) é subespaço de W.

 TL_5 Segue das condições (i) e (ii) da definição de transformação linear.

Observação 6.1.3 Se $T:V\longrightarrow V$ é uma transformação linear, com Dom(T)=CD(T), dizemos que T é um **operador linear**.

Proposição 6.1.4 Sejam V, W e U espaços vetoriais sobre um corpo \mathbb{K} , se $T:V\longrightarrow W$ e $S:W\longrightarrow U$ são transformações lineares, então a composição $S\circ T:V\longrightarrow U$ também é uma transformação linear.

Demonstração:

(i) Sejam u e v em V, então:

$$S \circ T(u+v) = S(T(u+v)) \stackrel{T \text{ \'e linear}}{=} S(T(u)+T(v))$$

$$\stackrel{S \text{ \'e linear}}{=} S(T(u)) + S(T(v)) = S \circ T(u) + S \circ T(v).$$

(ii) Sejam $v \text{ em } V \text{ e } \lambda \text{ em } \mathbb{K}$, então:

$$S \circ T(\lambda v) = S(T(\lambda v)) \stackrel{T \text{ \'e linear}}{=} S(\lambda T(v)) \stackrel{S \text{ \'e linear}}{=} \lambda S(T(v)) = \lambda S \circ T(v).$$

De (i) e (ii) segue que $S \circ T$ é linear.

6.2 Matriz de uma Transformação Linear

No último exemplo de transformações lineares vimos que toda matriz define uma transformação linear. Reciprocamente, se V e W são espaços vetoriais sobre um corpo \mathbb{K} , ambos de dimensão finita, dada uma transformação linear $T:V\longrightarrow W$, considerando $\mathscr{B}=\{v_1,v_2,\cdots,v_n\}$ base de V e $\mathscr{B}'=\{w_1,w_2,\cdots,w_m\}$ base de W podemos associar a T uma matriz em relação às bases \mathscr{B} e \mathscr{B}' .

De fato, para todo $v \in V$ podemos escrever

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$$
, com $\alpha_1, \alpha_2, \cdots, \alpha_n \in \mathbb{K}$.

Por outro lado, como $T(v_1), T(v_2), \dots, T(v_n) \in W$ também podemos escrever:

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \cdots + a_{m1}w_m$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + \cdots + a_{m2}w_m.$$

$$\vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}w_2 + \cdots + a_{mn}w_m$$

$$(6.2.1)$$

Logo,

$$T(v) = T(\alpha_{1}v_{1} + \alpha_{2}v_{2} + \dots + \alpha_{n}v_{n}) = \alpha_{1}T(v_{1}) + \alpha_{2}T(v_{2}) + \dots + \alpha_{n}T(v_{n})$$

$$= \alpha_{1}(a_{11}w_{1} + a_{21}w_{2} + \dots + a_{m1}w_{m}) + \alpha_{2}(a_{12}w_{1} + a_{22}w_{2} + \dots + a_{m2}w_{m})$$

$$+ \dots + \alpha_{n}(a_{1n}v_{1} + a_{2n}w_{2} + \dots + a_{mn}w_{m})$$

$$= (\alpha_{1}a_{11} + \alpha_{2}a_{12} + \dots + \alpha_{n}a_{1n})w_{1} + (\alpha_{1}a_{21} + \alpha_{2}a_{22} + \dots + \alpha_{n}a_{2n})w_{2}$$

$$+ \dots + (\alpha_{1}a_{m1} + \alpha_{2}a_{m2} + \dots + \alpha_{n}a_{mn})w_{m}$$

$$= \begin{bmatrix} w_{1} & w_{2} & \dots & w_{m} \end{bmatrix}_{1 \times m} \cdot \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix}_{n \times 1}$$

$$(6.2.2)$$

Definição 6.2.1 Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} , de dimensões n e m, respectivamente. Dadas $\mathscr{B} = \{v_1, v_2, \cdots, v_n\}$ base de V, $\mathscr{B}' = \{w_1, w_2, \cdots, w_m\}$ base de W e $T: V \longrightarrow W$ uma transformação linear a matriz A dada em 6.2.2 é chamada **matriz da transformação linear** T relação às bases \mathscr{B} e \mathscr{B}' .

Notação: $[T]_{\mathscr{B}'}^{\mathscr{B}}$, no caso em que \mathscr{B} e \mathscr{B}' são bases canônicas indicamos por [T].

$$[T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \leftarrow \text{coordenadas do 1}^{\circ} \text{ vetor de } \mathscr{B}' \\ \leftarrow \text{coordenadas do 2}^{\circ} \text{ vetor de } \mathscr{B}' \\ \leftarrow \text{coordenadas do m}^{\circ} \text{ vetor de } \mathscr{B}' \\ \leftarrow \text{coordenadas do m}^{\circ} \text{ vetor de } \mathscr{B}'$$

- Observações 6.2.1 (a) Se $T: V \longrightarrow V$ é um operador linear e consideramos a base \mathscr{B} no domínio e no contra-domínio de T, então indicamos a matriz correspondente por $[T]_{\mathscr{B}}$.
 - (b) No que segue vamos indicar por e_1, \dots, e_n os respectivos vetores da base canônica e v_1, \dots, v_n os respectivos vetores de uma base qualquer.

Exemplos 6.2.2 (a) Seja a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dada por:

$$T(x,y,z) = (x-y+2z, 3x+4z).$$

Determine a matriz de T em relação às bases canônicas de \mathbb{R}^2 e \mathbb{R}^3 .

Solução:

A base canônica de \mathbb{R}^3 é $\mathscr{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$, enquanto que a de \mathbb{R}^2 é $\mathscr{B}' = \{(1,0), (0,1)\}$. Logo,

$$T(1,0,0) = (1,3) = 1(1,0) + 3(0,1)$$

 $T(0,1,0) = (-1,0) = -1(1,0) + 0(0,1)$.
 $T(0,0,1) = (2,4) = 2(1,0) + 4(0,1)$

Portanto, a matriz de T em relação às bases canônicas é:

$$[T] = \begin{bmatrix} T(e_1) & T(e_2) & T(e_3) \\ \downarrow & \downarrow & \downarrow \\ \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 4 \end{bmatrix} & \leftarrow \text{ coordenada do 1° vetor de } \mathscr{B}' \\ \leftarrow \text{ coordenada do 2° vetor de } \mathscr{B}' \end{bmatrix}$$

(b) Seja a transformação linear $T:M_2(\mathbb{R})\longrightarrow \mathbb{R}^3$ dada por:

$$T\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \right) = (a_{11} + a_{12} + a_{21}, \ a_{12} - a_{21} + a_{22}, \ 2a_{21} - a_{22}).$$

Determine a matriz de T em relação às bases canônicas de $M_2(\mathbb{R})$ e \mathbb{R}^3 .

Solução:

A base canônica de $M_2(\mathbb{R})$ é: $\mathscr{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ e a de \mathbb{R}^3 é $\mathscr{B}' = \{(1,0,0), (0,1,0), (0,0,1)\}.$

Assim temos:

$$T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\right) = (1,0,0) = 1(1,0,0) + 0(0,1,0) + 0(0,0,1),$$

$$T\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) = (1,1,0) = 1(1,0,0) + 1(0,1,0) + 0(0,0,1),$$

$$T\left(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}\right) = (1,-1,2) = 1(1,0,0) - 1(0,1,0) + 2(0,0,1),$$

$$T\left(\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\right) = (0,0,-1) = 0(1,0,0) + 0(0,1,0) - 1(0,0,1).$$

Portanto, a matriz de T em relação às bases canônicas é:

$$[T] = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 2 & -1 \end{bmatrix} \leftarrow \text{coordenada do 1° vetor de } \mathscr{B}'$$

$$\leftarrow \text{coordenada do 2° vetor de } \mathscr{B}'$$

(c) Seja a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathscr{P}_3(\mathbb{R})$ dada por:

$$T(x,y) = 2x + yt + 3yt^2 - xt^3$$
.

Determine a matriz de T em relação às bases canônicas de $M_2(\mathbb{R})$ e \mathbb{R}^3 .

Solução:

A base canônica de \mathbb{R}^2 é $\mathscr{B} = \{(1,0), (0,1)\}$, enquanto que a de $\mathscr{P}_3(\mathbb{R})$ é $\mathscr{B}' = \{1, t, t^2, t^3\}$. Logo,

$$T(1,0) = 2 - t^3$$
 e $T(0,1) = t + 3t^2$.

Portanto, a matriz de T em relação às bases canônicas é:

$$[T] = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 3 \\ -1 & 0 \end{bmatrix} \leftarrow \begin{array}{c} \text{coeficiente de grau 0} \\ \text{coeficiente de grau 1} \\ \text{coeficiente de grau 2} \\ \text{coeficiente de grau 3} \end{array}$$

(d) Seja a transformação linear $T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_3(\mathbb{R})$ dada por:

$$T\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = 2a_{11} + (a_{11} - a_{12})t + (2a_{11} + a_{12} - 3a_{21})t^2 + (a_{11} - a_{21} + 2a_{22})t^3.$$

Determine a matriz de T em relação às bases

$$\mathscr{B} = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix} \right\} \quad \text{de} \quad M_2(\mathbb{R})$$

$$e \mathscr{B}' = \{1, 1+t, 1+t^2, t+t^3\} de \mathscr{P}_3(\mathbb{R}).$$

Solução:

Observemos que:

$$T\left(\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\right) = 2 + 3t^2 + t^3 = (-1) \times (1+t) + 3 \times (1+t^2) + 1 \times (t+t^3),$$

$$T\left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right) = 2 + t - t^2 = 2 \times 1 + 1 \times (1+t) + (-1) \times (1+t^2),$$

$$T\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right) = -t - 2t^2 - t^3 = 2 \times 1 + (-2) \times (1+t^2) + (-1) \times (t+t^3),$$

$$T\left(\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}\right) = -3t^2 - 3t^3 = 3 \times (1+t) + (-3) \times (1+t^2) + (-3) \times (t+t^3).$$

Portanto, a matriz de T em relação às bases canônicas é:

$$[T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} T(v_1) & T(v_2) & T(v_3) & T(v_4) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 0 & 2 & 2 & 0 \\ -1 & 1 & 0 & 3 \\ 3 & -1 & -2 & -3 \\ 1 & 0 & -1 & -3 \end{bmatrix} \leftarrow \text{coordenada do 1° vetor de } \mathscr{B}' \\ \leftarrow \text{coordenada do 2° vetor de } \mathscr{B}' \\ \leftarrow \text{coordenada do 3° vetor de } \mathscr{B}'$$

Teorema 6.2.3 Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} , ambos de dimensão finita e $T: V \longrightarrow W$ uma transformação linear. Se $\mathscr{B} = \{v_1, v_2, \cdots, v_n\}$ é base de V e $\mathscr{B}' = \{w_1, w_2, \cdots, w_m\}$ é base de W, então

$$\big[T(v)\big]_{\mathscr{B}'} = [T]_{\mathscr{B}'}^{\mathscr{B}} \cdot [v]_{\mathscr{B}} \qquad \text{ para todo } \quad v \in V.$$

Demonstração: Dado $v \in V$ existem escalares $\alpha_1, \alpha_2, \dots, \alpha_n$ em \mathbb{K} tais que

$$v = \alpha_1 v_1 + \alpha_2 + \cdots + \alpha_n v_n$$
.

Logo,

$$T(v) \stackrel{TL_5}{=} \alpha_1 T(v_1) + \alpha_2 T(v_2) + \dots + \alpha_n T(v_n) \stackrel{6.2.1}{=} \beta_1 w_1 + \beta_2 w_2 + \dots + \beta_m w_m,$$

$$\operatorname{com} \beta_j = \alpha_1 a_{j1} + \alpha_2 a_{j2} + \dots + \alpha_n a_{jn} \operatorname{para} j \in \{1, \dots, m\}.$$

Portanto,
$$[T(v)]_{\mathscr{B}'} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix}$$
.

Por outro lado, da fórmula 6.2.2 temos:
$$\begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix} = [T]_{\mathscr{B}'}^{\mathscr{B}} \cdot [v]_{\mathscr{B}}.$$

Consequentemente, temos:

$$\left[T(v)\right]_{\mathscr{B}'} = \left[T\right]_{\mathscr{B}'}^{\mathscr{B}} \cdot \left[v\right]_{\mathscr{B}} \qquad \text{para todo} \quad v \in V.$$

Observações 6.2.4 (a) Sejam V, W e U espaços vetoriais sobre um corpo \mathbb{K} , com dim V = n, dim W = k e dim $U = m, \mathcal{B}, \mathcal{B}'$ e \mathcal{B}'' bases de V, W e U, respectivamente. Se

$$T: V \longrightarrow W$$
 e $S: W \longrightarrow U$ são transformações lineares,

então $\underbrace{[S \circ T]_{\mathscr{B}''}^{\mathscr{B}}}$ a matriz da composição $S \circ T$ em relação às bases \mathscr{B} e \mathscr{B}'' satisfaz:

$$[S \circ T]_{\mathscr{B}''}^{\mathscr{B}} = \underbrace{[S]_{\mathscr{B}''}^{\mathscr{B}'}}_{m \times k} \cdot \underbrace{[T]_{\mathscr{B}'}^{\mathscr{B}}}_{k \times n}.$$

(b) Sejam V espaço vetorial sobre um corpo \mathbb{K} , com dim V = n, $T : V \longrightarrow V$ um operador linear e \mathscr{B} uma base de V. Denotamos a matriz de T em relação à base \mathscr{B} (tanto no domínio, como no contradomínio) simplesmente por $[T]_{\mathscr{B}}$.

Proposição 6.2.5 Sejam V um espaço vetorial sobre um corpo \mathbb{K} de dimensão finita, \mathscr{B} e \mathscr{B}' e $T:V\longrightarrow V$ um operador linear, então:

$$[T]_{\mathscr{B}} = M_{\mathscr{B}}^{\mathscr{B}'} \cdot [T]_{\mathscr{B}'} \cdot M_{\mathscr{B}'}^{\mathscr{B}},$$

com $M_{\mathscr{B}'}^{\mathscr{B}}$ e $M_{\mathscr{B}}^{\mathscr{B}'}$ as matrizes mudanças de base de \mathscr{B} para \mathscr{B}' de \mathscr{B}' para \mathscr{B} , respectivamente.

Demonstração: Sendo $I_V: V \longrightarrow V$ o operador identidade, então $M_{\mathscr{B}'}^{\mathscr{B}} = [I_V]_{\mathscr{B}'}^{\mathscr{B}}$, ou seja, a matriz mudança de base de \mathscr{B} para \mathscr{B}' é a matriz do operador I_V em relação às bases \mathscr{B} e \mathscr{B}' , respectivamente.

Da mesma maneira $M_{\mathscr{B}}^{\mathscr{B}'} = [I_V]_{\mathscr{B}}^{\mathscr{B}'}$, a matriz mudança de base de \mathscr{B}' para \mathscr{B} é a matriz do operador I em relação às bases \mathscr{B}' e \mathscr{B} , respectivamente.

Logo,

$$M_{\mathscr{B}}^{\mathscr{B}'} \cdot [T]_{\mathscr{B}'} \cdot M_{\mathscr{B}'}^{\mathscr{B}} = [I_V]_{\mathscr{B}}^{\mathscr{B}'} \cdot [T]_{\mathscr{B}'}^{\mathscr{B}'} \cdot [I_V]_{\mathscr{B}'}^{\mathscr{B}} = [I_V]_{\mathscr{B}}^{\mathscr{B}'} \cdot [T]_{\mathscr{B}'}^{\mathscr{B}} = [T]_{\mathscr{B}} = [T]_{\mathscr{B}}.$$

6.3 Núcleo e Imagem de uma Transformação Linear

Definição 6.3.1 Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} e $T:V\longrightarrow W$ uma transformação linear, a **imagem** de T, denotada por $\mathrm{Im}(T)$, é o seguinte subconjunto de W:

$$\operatorname{Im}(T) = \{ w \in W; \text{ existe algum } v \in V \text{ com } w = T(v) \}.$$

Definição 6.3.2 Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} e $T:V\longrightarrow W$ uma transformação linear, o **núcleo** de T, denotada por $\ker(T)$, é o seguinte subconjunto de V:

$$\ker(T) = \{ v \in V; T(v) = 0_W \}.$$

Exemplos 6.3.1 Determine o núcleo e a imagem das seguintes transformações lineares.

- (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por T(x,y) = (ax, by), com $a \in b$ números reais.
- (b) $T: \mathscr{P}_n(\mathbb{R}) \longrightarrow \mathscr{P}_{n-1}(\mathbb{R})$ dada por T(p(t)) = p'(t), a derivada de polinômios de grau $\leq n$.

(c) $T_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ dada por

$$T_A(x,y,z) = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = (x+3y-z, 2y+z).$$

(d) $T: M_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ dada por

$$T\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \right) = (a_{11} + a_{12} + a_{21}, \ a_{12} - a_{21} + a_{22}, \ 2a_{21} - a_{22}).$$

(e) $T: \mathbb{R}^2 \longrightarrow \mathscr{P}_3(\mathbb{R})$ dada por $T(x,y) = 2x + yt + 3yt^2 - xt^3$.

Solução:

(a) $(c,d) \in Im(T) \iff \text{existe } (x,y) \in \mathbb{R}^2; \ T(x,y) = (c,d) \iff (ax,by) = (c,d).$

1º Caso: a = 0 e $b \neq 0$: Neste caso teremos:

$$(c,d) \in \operatorname{Im}(T) \Longleftrightarrow (0,by) = (c,d) \Longleftrightarrow \left\{ \begin{array}{l} c = 0 \\ y \stackrel{b \neq 0}{=} \frac{d}{h} \end{array} \right.$$

Logo, tomando $\left(x, \frac{d}{b}\right)$, com $x \in \mathbb{R}$ qualquer, temos

$$T\left(x, \frac{d}{b}\right) = \left(0 \cdot x, b \cdot \frac{d}{b}\right) = (0, d) = (c, d).$$

Portanto, $Im(T) = \{(x, y) \in \mathbb{R}^2; x = 0\}.$

Por outro lado,

$$(x,y) \in \ker(T) \iff T(x,y) = (0,0) \iff (0,by) = (0,0) \stackrel{b\neq 0}{\iff} y = 0.$$

Logo, $ker(T) = \{(x, y) \in \mathbb{R}^2; y = 0\}.$

2º Caso: $a \neq 0$ **e** b = 0: Analogamente ao caso anterior, temos:

$$\operatorname{Im}(T) = \{(x, y) \in \mathbb{R}^2; y = 0\} \text{ e } 0.3cm \ker(T) = \{(x, y) \in \mathbb{R}^2; x = 0\}.$$

3º Caso: $a \neq 0$ **e** $b \neq 0$ **:** Neste caso teremos:

$$(c,d) \in \operatorname{Im}(T) \Longleftrightarrow (ax,by) = (c,d) \Longleftrightarrow \left\{ \begin{array}{l} x \stackrel{a \neq 0}{=} \frac{c}{a} \\ y \stackrel{b \neq 0}{=} \frac{d}{b} \end{array} \right.$$

Logo, tomando $\left(\frac{c}{a}, \frac{d}{b}\right)$ temos $T\left(\frac{c}{a}, \frac{d}{b}\right) = \left(a \cdot \frac{c}{a}, b \cdot \frac{d}{b}\right) = (c, d)$.

Portanto, $\text{Im}(T) = \mathbb{R}^2$.

Por outro lado,

$$(x,y) \in \ker(T) \iff T(x,y) = (0,0) \iff (ax,by) = (0,0)$$

$$\iff \begin{cases} ax = 0 & a \neq 0 \text{ e } b \neq 0 \\ by = 0 & y = 0 \end{cases} \begin{cases} x = 0 \\ y = 0 & y = 0 \end{cases}$$

Logo, $ker(T) = \{(0,0)\}.$

(b) $q(t) \in \text{Im}(T) \iff \text{existe } p(t) \in \mathscr{P}_n(\mathbb{R}) \text{ tal que } T(p(t)) = q(t) \iff p'(t) = q(t)$

$$\iff \int p'(t) dt = \int q(t) dt \iff p(t) = \int q(t) dt.$$

Observemos que a integral de um polinômio é um polinômio de grau k, se e somente se, este polinômio é de grau k-1.

Assim, como grau de p = n, devemos ter grau de q = n - 1.

Portanto, $\operatorname{Im}(T) = \mathscr{P}_{n-1}(\mathbb{R})$.

Agora, $p(t) \in \ker(T) \iff T(p(t)) = 0 \iff p'(t) = 0 \iff p \text{ \'e um polinômio constante.}$

Logo, $\ker(T) = \mathscr{P}_0(\mathbb{R}) = \mathbb{R}$.

(c) $(a,b) \in \text{Im}(T) \iff \text{existe } (x,y,z) \in \mathbb{R}^3; \ T(x,y,z) = (a,b)$

$$\iff (x+3y-z, 2y+z) = (a,b) \iff \begin{cases} x+3y-z = a\\ 2y+z = b \end{cases}$$

Tomando, por exemplo, $\begin{cases} z = b \\ y = 0 \\ x = a + b \end{cases}$ temos:

$$T(x,y,z) = T(a+b,0,b) = (a+b+3\cdot 0-b, 2\cdot 0+b) = (a,b).$$

Portanto, $Im(T) = \mathbb{R}^2$.

Por outro lado,

$$(x,y,z) \in \ker(T) \iff T(x,y,z) = (0,0) \iff (x+3y-z, 2y+z) = (0,0)$$

$$\iff \begin{cases} x+3y-z=0 \\ 2y+z=0 \end{cases} \iff \begin{cases} z=-2y \\ x=-5y \end{cases}$$

Logo, $ker(T) = \{(x, y, z) \in \mathbb{R}^3; x = -5y \text{ e } z = -2y\}.$

(d) $(a,b,c) \in \text{Im}(T) \iff \text{existe } \begin{bmatrix} x & y \\ z & t \end{bmatrix} \in M_2(\mathbb{R}) \text{ tal que } T \left(\begin{bmatrix} x & y \\ z & t \end{bmatrix} \right) = (a,b,c), \text{ ou seja,}$

$$(x+y+z, y-z+t, 2z-t) = (a,b,c) \Longleftrightarrow \begin{cases} x + y + z = a \\ y - z + t = b \\ 2z - t = c \end{cases}$$

Tomando, por exemplo, $\begin{cases} t = -c \\ z = 0 \\ y = b+c \\ x = a-b-c \end{cases}$ temos:

$$T\left(\left[\begin{array}{cc} x & y \\ z & t \end{array} \right] \right) = T\left(\left[\begin{array}{cc} a-b-c & b+c \\ 0 & -c \end{array} \right] \right) = (a,b,c).$$

Portanto, $Im(T) = \mathbb{R}^3$.

Por outro lado,

$$\begin{bmatrix} x & y \\ z & t \end{bmatrix} \in \ker(T) \iff T \left(\begin{bmatrix} x & y \\ z & t \end{bmatrix} \right) = (0,0,0)$$

$$\iff \begin{cases} x + y + z & = 0 \\ y - z + t & = 0 \\ 2z - t & = 0 \end{cases} \iff \begin{cases} t = 2z \\ y = -z \\ x & = 0 \end{cases}$$

Logo,
$$\ker(T) = \left\{ \begin{bmatrix} x & y \\ z & t \end{bmatrix}; x = 0, y = -z e t = 2z \right\}.$$

(e) $a_0 + a_1t + a_2t^2 + a_3t^3 \in \text{Im}(T) \iff \text{existe } (x, y) \in \mathbb{R}^2 \text{ tal que}$

$$T(x,y) = a_0 + a_1t + a_2t^2 + a_3t^3 \iff 2x + yt + 3yt^2 - xt^3 = a_0 + a_1t + a_2t^2 + a_3t^3$$

$$\iff \begin{cases} 2x = a_0 \\ y = a_1 \\ 3y = a_2 \\ -x = a_3 \end{cases} \iff \begin{cases} x = \frac{a_0}{2} \\ y = a_1 \\ y = \frac{a_2}{3} \\ -x = a_3 \end{cases} \implies \begin{cases} \frac{a_0}{2} = -a_3 \\ a_1 = \frac{a_2}{3} \end{cases} \iff \begin{cases} a_0 = -2a_3 \\ a_2 = 3a_1 \end{cases}$$

Portanto,

$$\operatorname{Im}(T) = \{ p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \in \mathscr{P}_3(\mathbb{R}); a_0 = -2a_3 \text{ e } a_2 = 3a_1 \}.$$

Agora,
$$(x,y) \in \ker(T) \iff T(x,y) = 0 \iff 2x + yt + 3yt^2 - xt^3 = 0$$

$$\iff \begin{cases} 2x = 0 \\ y = 0 \\ 3y = 0 \\ -x = 0 \end{cases} \iff (x,y) = (0,0).$$

Logo, $ker(T) = \{(0,0)\}.$

Teorema 6.3.2 Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} e $T:V\longrightarrow W$ uma transformação linear, então:

- (i) ker(T) é um subespaço de V.
- (ii) Im(T) é um subespaço de W.

Demonstração:

(i) Sabemos que $T(0_V) = 0_W$, portanto $\ker(T) \neq \emptyset$.

Dados $u, v \in \ker(T)$, temos:

$$T(u+v) = T(u) + T(v) = 0_W + 0_W = 0_W.$$

Portanto, $u + v \in \ker(T)$.

Agora, se $v \in \ker(T)$ e $\lambda \in \mathbb{K}$, então

$$T(\lambda \cdot v) = \lambda \cdot T(v) = \lambda \cdot 0_W = 0_W.$$

Assim, $\lambda \cdot v \in \ker(T)$.

Logo, ker(T) é um subespaço de V.

(ii) É claro que $0_W \in \text{Im}(T)$, pois $0_V \in V$ e $0_W = T(0_V)$, logo $\text{Im}(T) \neq \emptyset$.

Dados $w_1, w_2 \in \text{Im}(T)$, existem $v_1, v_2 \in V$ tais que $T(v_1) = w_1$ e $T(v_2) = w_2$.

Como
$$T(\underbrace{v_1 + v_2}_{\in V}) = T(v_1) + T(v_2) = w_1 + w_2$$
, segue que $w_1 + w_2 \in \text{Im}(T)$.

Agora, se $w \in \text{Im}(T)$, existe $v \in V$ tal que T(v) = w, dado $\lambda \in \mathbb{K}$, temos

$$T(\underbrace{\lambda \cdot v}_{\in V}) = \lambda \cdot T(v) = \lambda \cdot w.$$

Assim, $\lambda \cdot w \in \text{Im}(T)$.

Logo, Im(T) é um subespaço de W.

Observação 6.3.3 Segue da definição 6.2.1 que Im(T) é o subespaço correspondente ao espaço coluna da matriz $[T]_{\mathcal{B}'}^{\mathcal{B}}$, como \mathcal{B} e \mathcal{B}' bases de V e de W, respectivamente.

6.3.1 Teorema do Núcleo e da Imagem

Teorema 6.3.4 (Teorema do Núcleo e da Imagem)

Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} , com dim V=n, e $T:V\longrightarrow W$ uma transformação linear, então:

$$\dim V = \dim (\ker(T)) + \dim (\operatorname{Im}(T)).$$

Demonstração: Como $\ker(T)$ é um subespaço de V, então $\dim(\ker(T)) = k \le n = \dim V$.

Seja $\{v_1, \dots, v_k\}$ uma base de $\ker(T)$, pelo teorema do completamento existem n-k vetores, v_{k+1}, \dots, v_n , em V, tais que

$$\mathscr{B} = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$$
 é uma base de V .

Mostremos que

$$\mathscr{B}' = \{T(v_{k+1}), \dots, T(v_n)\}\$$

é uma base de Im(T).

Dado $w \in Im(T)$, existe $v \in V$ tal que T(v) = w, como \mathscr{B} é uma base de V existem escalares $a_1, \dots, a_k, a_{k+1}, \dots, a_n \in \mathbb{K}$ tais que

$$v = a_1v_1 + \dots + a_kv_k + a_{k+1}v_{k+1} + \dots + a_nv_n.$$

Logo,

$$w = T(v) = T(a_1v_1 + \dots + a_kv_k + a_{k+1}v_{k+1} + \dots + a_nv_n)$$

$$= a_1T(v_1) + \dots + a_kT(v_k) + a_{k+1}T(v_{k+1}) + \dots + a_nT(v_n)$$

$$= a_{k+1}T(v_{k+1}) + \dots + a_nT(v_n),$$

pois v_1, \dots, v_k estão em ker(T).

Assim, como w é um elemento arbitrário $\operatorname{Im}(T)$ segue que $\operatorname{Im}(T) = [T(v_{k+1}), \cdots, T(v_n)]$.

Resta mostrar que $\{T(v_{k+1}), \cdots, T(v_n)\}$ é um conjunto L. I.

Sejam $\lambda_{k+1}, \dots, \lambda_n \in \mathbb{K}$ tais que

$$\lambda_{k+1}T(v_{k+1}) + \dots + \lambda_nT(v_n) = 0_W \iff T(\lambda_{k+1}v_{k+1} + \dots + \lambda_nv_n) = 0_W$$
$$\iff \lambda_{k+1}v_{k+1} + \dots + \lambda_nv_n \in \ker(T).$$

Como $\{v_1, \dots, v_k\}$ é uma base de $\ker(T)$, então podemos escrever

$$\lambda_{k+1}v_{k+1}+\cdots+\lambda_nv_n=\alpha_1v_1+\cdots+\alpha_kv_k\Longleftrightarrow\alpha_1v_1+\cdots+\alpha_kv_k-\lambda_{k+1}v_{k+1}-\cdots-\lambda_nv_n=0_V.$$

Mas $\mathscr{B} = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ é uma base de V, portanto devemos ter

$$\alpha_1 = \cdots = \alpha_k = -\lambda_{k+1} = \cdots = -\lambda_n = 0,$$

consequentemente $\lambda_{k+1} = \cdots = \lambda_n = 0$.

Daí que $\{T(v_{k+1}), \dots, T(v_n)\}$ é um conjunto L. I., logo $\mathscr{B}' = \{T(v_{k+1}), \dots, T(v_n)\}$ é base de Im(T). Consequentemente dim Im(T) = n - k.

Portanto,

$$\dim \ker(T) + \dim \operatorname{Im}(T) = k + (n - k) = n = \dim V.$$

Exemplos 6.3.5 Determine a dimensão do núcleo e da imagem de T dos Exemplos 6.3.1.

Solução:

- (a) T(x,y) = (ax,by), com a e b números reais.
 - **1º Caso:** a = 0 e $b \neq 0$

Como $\text{Im}(T) = \{(x,y) \in \mathbb{R}^2; x = 0\}$ e $\ker(T) = \{(x,y) \in \mathbb{R}^2; y = 0\}$, então $\dim \ker(T) = \dim \operatorname{Im}(T) = 1$.

2º Caso: $a \neq 0$ e b = 0

Como $\text{Im}(T) = \{(x,y) \in \mathbb{R}^2; y = 0\}$ e $\text{ker}(T) = \{(x,y) \in \mathbb{R}^2; x = 0\}$, então $\dim \text{ker}(T) = \dim \text{Im}(T) = 1$.

3º Caso: $a \neq 0$ e $b \neq 0$

Como $\operatorname{Im}(T) = \mathbb{R}^2$ e $\ker(T) = \{(0,0)\}$, então dim $\operatorname{Im}(T) = 2$ e $\operatorname{dim} \ker(T) = 0$.

- (b) T(p(t)) = p'(t), a derivada de polinômios de grau $\leq n$, vimos que $\operatorname{Im}(T) = \mathscr{P}_{n-1}(\mathbb{R})$ e que $\ker(T) = \mathscr{P}_0(\mathbb{R}) = \mathbb{R}$.
- Logo, dim Im(T) = n e dim ker(T) = 1.

(c) T(x,y,z) = (x+3y-z, 2y+z)

Vimos que $\operatorname{Im}(T) = \mathbb{R}^2$ e que $\ker(T) = \{(x, y, z) \in \mathbb{R}^3; x = -5y \text{ e } z = -2y\}.$

Logo, dim $Im(T) = 2 e \dim ker(T) = 1$.

(d) $T\left(\begin{bmatrix} x & y \\ z & t \end{bmatrix}\right) = (x+y+z, y-z+t, 2z-t).$

 $\text{Vimos que Im}(T) = \mathbb{R}^3 \quad \text{e que} \quad \ker(T) = \left\{ \begin{array}{cc} \left[\begin{array}{cc} x & y \\ z & t \end{array} \right]; \ x = 0, \ y = -z \ \text{e} \ t = 2z \end{array} \right\}.$

Portanto, dim Im(T) = 3 e dim ker(T) = 1.

(e) $T(x,y) = 2x + yt + 3yt^2 - xt^3$. Vimos que $Im(T) = \{p(t) = a_0 + a_1t + a_2t^2 + a_3t^3 \in \mathcal{P}_3(\mathbb{R}); a_0 = -2a_3 \text{ e } a_2 = 3a_1\}$ e que $\ker(T) = \{(0,0)\}.$

Logo, dim Im(T) = 2 e dim ker(T) = 0.

Agora observemos que dada $T: V \longrightarrow W$ uma transformação linear, pelo Teorema 6.3.4 (do Núcleo e da Imagem), tomando $\mathscr{B} = \{v_1, \cdots, v_k, v_{k+1}, \cdots, v_n\}$ base de V obtida pelo completamento de $\{v_1, \cdots, v_k\}$ uma base do $\ker(T)$, considerando \mathscr{B}' uma base de W, então a matriz de T em relação às bases \mathscr{B} e \mathscr{B}' é dada por:

$$[T]_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} 0 & \cdots & T(v_k) & T(v_{k+1}) & \cdots & T(v_n) \\ \downarrow & & \downarrow & \downarrow & & \downarrow \\ 0 & \cdots & 0 & a_{1k+1} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & a_{mk+1} & \cdots & a_{mn} \end{bmatrix} \leftarrow \text{coordenadas do 1}^{\circ} \text{ vetor de } \mathscr{B}' ,$$

como $\{T(v_{k+1}), \dots, T(v_n)\}$ é base de Im(T), segue que as n-k últimas colunas de $[T]_{\mathscr{B}'}^{\mathscr{B}}$ são L.I..

Isto ocorre independentemente das bases consideradas em V e em W.

De fato, sendo \mathcal{B}_1 e \mathcal{B}_1' bases arbitrárias de V e de W, respectivamente, pela Observação 6.2.4 (a) temos:

$$[T]_{\mathscr{B}'_{1}}^{\mathscr{B}_{1}} = [I_{W}]_{\mathscr{B}'_{1}}^{\mathscr{B}'} \cdot [T]_{\mathscr{B}'}^{\mathscr{B}_{1}} = [I_{W}]_{\mathscr{B}'_{1}}^{\mathscr{B}'} \cdot [T]_{\mathscr{B}'}^{\mathscr{B}} \cdot [I_{V}]_{\mathscr{B}}^{\mathscr{B}_{1}} = M_{\mathscr{B}'_{1}}^{\mathscr{B}'} \cdot [T]_{\mathscr{B}'}^{\mathscr{B}} \cdot M_{\mathscr{B}}^{\mathscr{B}_{1}},$$

 $\operatorname{com} M_{\mathscr{B}}^{\mathscr{B}_1} \operatorname{e} M_{\mathscr{B}_1'}^{\mathscr{B}'} \operatorname{matrizes} \operatorname{de} \operatorname{mudança} \operatorname{de} \operatorname{base} \operatorname{de} \mathscr{B}_1 \operatorname{para} \mathscr{B} \operatorname{e} \operatorname{de} \mathscr{B}' \operatorname{para} \mathscr{B}_1', \operatorname{respectivamente}.$

Tomando as transformações lineares definidas pelas matrizes $[T]_{\mathscr{B}'}^{\mathscr{B}}$ e $[T]_{\mathscr{B}'_1}^{\mathscr{B}_1}$, indicadas por S e R respectivamente, para simplificar colocamos $P=M_{\mathscr{B}'_1}^{\mathscr{B}'}$ e $Q=M_{\mathscr{B}}^{\mathscr{B}_1}$, então $R=P\cdot S\cdot Q$, com $P\in M_m(\mathbb{K})$ e $Q\in M_n(\mathbb{K})$ matrizes invertíveis, logo $S=P^{-1}\cdot R\cdot Q^{-1}$.

Se $\{u_1, \dots, u_r\}$ é base de $\ker(R)$, então $R(u_i) = 0_W$, para todo $i \in \{1, \dots, r\}$ consequentemente, $P \cdot S \cdot Q(u_i) = 0_W$, para todo i, como P é invertível aplicando P^{-1} à esquerda na última igualdade obtemos $S \cdot Q(u_i) = 0_W$, para todo $i \in \{1, \dots, r\}$.

Portanto, $\{Q(u_1), \dots, Q(u_r)\} \subset \ker(S)$, mas se existem escalares a_1, \dots, a_r tais que:

$$a_1Q(u_1) + \cdots + a_rQ(u_r) = 0_V \stackrel{S \text{ \'e linear}}{\Longrightarrow} Q(a_1u_1 + \cdots + a_ru_r) = 0_V,$$

aplicando Q^{-1} à esquerda na última igualdade obtemos $a_1u_1 + \cdots + a_ru_r = 0_V$, como $\{u_1, \cdots, u_r\}$ é base, segue que $a_1 = \cdots = a_r = 0$, assim $\{Q(u_1), \cdots, Q(u_r)\}$ é um subconjunto L.I. de ker(S).

Por outro lado, se $v \in \ker(S)$, então

$$S(v) = 0_W \Longleftrightarrow P^{-1} \cdot R \cdot Q^{-1}(v) = 0_W \stackrel{\text{aplicando à esq. } P}{\Longrightarrow} R \cdot Q^{-1}(v) = 0_W \Longleftrightarrow R(Q^{-1}(v)) = 0_W.$$

Logo, $Q^{-1}(v) \in \ker(R)$, portanto existem escalares b_1, \dots, b_r tais que

$$Q^{-1}(v) = b_1 u_1 + \cdots + b_r u_r \overset{\text{aplicando à esq. } Q}{\Longrightarrow} v = Q(b_1 u_1 + \cdots + b_r u_r) = b_1 Q(u_1) + \cdots + b_r Q(u_r).$$

Consequentemente, $[Q(u_1), \dots, Q(u_r)] = \ker(S) \in \{Q(u_1), \dots, Q(u_r)\}\$ é base de $\ker(S)$.

Assim, $\dim \ker(R) = \dim \ker(S)$.

Uma consequência deste desenvolvimento é seguinte resultado:

Proposição 6.3.6 Seja $T:V\longrightarrow W$ uma transformação linear, dadas \mathscr{B} e \mathscr{B}' bases quaisquer de V e W, respectivamente, então:

- (i) dim Im(T) = posto $[T]_{\mathscr{B}'}^{\mathscr{B}}$.
- (ii) dim ker(T) = null $[T]_{\mathscr{B}'}^{\mathscr{B}}$ = número de colunas de $[T]_{\mathscr{B}'}^{\mathscr{B}}$ posto $[T]_{\mathscr{B}'}^{\mathscr{B}}$.

Determinando a Imagem e o Núcleo através de uma Matriz da Transformação Linear

Seja $T: V \longrightarrow W$ uma transformação linear, dadas \mathscr{B} e \mathscr{B}' bases quaisquer de V e W, respectivamente, para determinar $\operatorname{Im}(T)$ e $\ker(T)$ procedemos da seguinte maneira:

- **1º Passo:** Encontramos a matriz $[T]_{\mathscr{Q}'}^{\mathscr{B}}$.
- **2º Passo:** Efetuamos operações elementares nas colunas da matriz $[T]_{\mathscr{B}'}^{\mathscr{B}}$, até obter uma matriz equivalente com k colunas nulas e n-k colunas L.I.
- **3º Passo:** Os vetores de W correspondentes às n-k colunas L.I. da matriz $[T]_{\mathscr{B}'}^{\mathscr{B}}$ formam uma base de $\operatorname{Im}(T)$.
- **4º Passo:** Os vetores de V que produziram as k colunas nulas da matriz $[T]_{\mathscr{B}'}^{\mathscr{B}}$ nos fornece uma base de $\ker(T)$.

Exemplos 6.3.7 Determine o núcleo e a imagem de *T* utilizando uma matriz da transformação linear.

(a)
$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
 dada por $T(x, y, z) = (x + 3y - z, 2y + z)$.

(b)
$$T: M_2(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R})$$
, dada por $T\left(\begin{bmatrix} x & y \\ z & t \end{bmatrix} \right) = (x+y+z, y-z+t, 2z-t)$.

(c)
$$T: \mathbb{R}^2 \longrightarrow \mathscr{P}_3(\mathbb{R})$$
 dada por $T(x,y) = 2x + yt + 3yt^2 - xt^3$.

(d)
$$T: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$$
 dada por $T(a_0 + a_1t + a_2t^2) = (a_0 + a_2, a_0 + a_2, 2(a_1 + a_2)).$

(e)
$$T: \mathbb{C}^2 \longrightarrow \mathbb{R}^2$$
 dada por $T(x_1 + y_1 i, x_2 + y_2 i) = (x_1 + 2x_2, -x_1 + 2y_2).$

Solução:

(a) A matriz de T em relação às bases canônicas de \mathbb{R}^3 e de \mathbb{R}^2 é $[T] = \begin{bmatrix} 1 & 3 & -1 \\ 0 & 2 & 1 \end{bmatrix}$, logo:

$$\left[\begin{array}{ccc} 1 & 3 & -1 \\ 0 & 2 & 1 \end{array}\right] \quad \begin{array}{ccc} C_2 \longrightarrow C_2 - 3C_1 \\ C_3 \longrightarrow C_3 + C_1 \end{array} \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 1 \end{array}\right] \quad \begin{array}{ccc} C_2' \longrightarrow C_2' - 2C_3' \\ 0 & 0 & 1 \end{array} \sim \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right].$$

Logo,
$$Im(T) = [(1,0), (0,1)] = \mathbb{R}^2 e \dim \ker(T) = 1.$$

Observemos que

$$0_{\mathbb{R}^3} = C_2' - 2C_3' = (C_2 - 3C_1) - 2(C_3 + C_1) = C_2 - 5C_1 - 2C_3$$

= $T(e_2) - 5T(e_1) - 2T(e_3) = T(e_2 - 5e_1 - 2e_3).$

Portanto,
$$ker(T) = [e_2 - 5e_1 - 2e_3] = [(-5, 1, -2)].$$

(b) A matriz de T em relação às bases canônicas de $M_2(\mathbb{R})$ e de $\mathscr{P}_2(\mathbb{R})$ é $[T] = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 & 0 \\ 4 & 2 & 5 & 0 \end{bmatrix}$, logo:

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 2 & 0 \\ 4 & 2 & 5 & 0 \end{bmatrix} \quad \begin{matrix} C_2 \to C_2 - C_1 \\ C_3 \to C_3 - C_1 \end{matrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 4 & -2 & 1 & 0 \end{bmatrix} \quad \begin{matrix} C_2' \to C_2' + 2C_3' \\ 4 & -2 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 4 & 0 & 1 & 0 \end{bmatrix}.$$

Logo, $Im(T) = [1 + t + 4t^2, t + t^2]$ e dim ker(T) = 2.

Observemos que $T(e_4) = 0_{\mathscr{P}_2(\mathbb{R})}$ e que

$$0_{\mathscr{P}_2(\mathbb{R})} = C_2' + 2C_3' = (C_2 - C_1) + 2(C_3 - C_1) = C_2 - 3C_1 + 2C_3$$

= $T(e_2) - 3T(e_1) + 2T(e_3) = T(e_2 - 3e_1 + 2e_3).$

Portanto,
$$\ker(T) = \begin{bmatrix} e_2 - 3e_1 + 2e_3, e_4 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$
.

- (c) A matriz de T em relação às bases canônicas de \mathbb{R}^2 e de $\mathscr{P}_3(\mathbb{R})$ é $[T] = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 3 \\ -1 & 0 \end{bmatrix}$, como as colunas desta matriz são L. I. segue que $\mathrm{Im}(T) = \begin{bmatrix} 2 t^3, \ t + 3t^2 \end{bmatrix}$ e $\mathrm{dim} \ker(T) = 0$, portanto $\ker(T) = \{0_V\}$.
- (d) A matriz de T em relação às bases canônicas de $\mathscr{P}_2(\mathbb{R})$ e de \mathbb{R}^3 é $[T]=\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$, logo:

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \quad C_3 \longrightarrow C_3 - C_2 - C_1 \quad \sim \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}.$$

Logo, $Im(T) = [(1,1,0), (0,0,2)] = \mathbb{R}^2 \text{ e dim ker}(T) = 1.$

Observemos que $0_{\mathscr{P}_2(\mathbb{R})} = C_3 - C_2 - C_1 = T(e_3) - T(e_2) - T(e_1) = T(e_3 - e_2 - e_1).$

Portanto, $ker(T) = [-1 - t + t^2].$

(e) A matriz de T em relação às bases canônicas de \mathbb{C}^2 e de \mathbb{R}^2 é $[T] = \begin{bmatrix} 1 & 2 & 0 & 0 \\ -1 & 0 & 0 & 2 \end{bmatrix}$, logo:

$$\left[\begin{array}{cccc} 1 & 2 & 0 & 0 \\ -1 & 0 & 0 & 2 \end{array}\right] \begin{array}{cccc} C_2 \to \frac{1}{2}C_2 \\ C_4 \to \frac{1}{2}C_4 \end{array} \sim \left[\begin{array}{ccccc} 1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 \end{array}\right] \begin{array}{cccc} C_1' \to C_1' + C_4' - C_2' \\ -1 & 0 & 0 & 1 \end{array}\right].$$

Logo, $Im(T) = [(1,0), (0,1)] = \mathbb{R}^2 \text{ e dim ker}(T) = 2.$

Observemos que $T(e_3) = 0_{\mathbb{R}^2}$ e que

$$0_{\mathbb{R}^2} = C_1' + C_4' - C_2' = C_1 + \frac{1}{2}C_4 - \frac{1}{2}C_2$$

= $T(e_1) + \frac{1}{2}T(e_4) - \frac{1}{2}T(e_2) = T\left(e_1 + \frac{1}{2}e_4 - \frac{1}{2}e_2\right).$

Portanto,
$$\ker(T) = \left[e_1 + \frac{1}{2}e_4 - \frac{1}{2}e_2, \ e_3\right] = \left[2e_1 + e_4 - e_2, \ e_3\right] = \left[(2-i, \ i), \ (0, 1)\right].$$

6.4 Transformações Lineares Injetoras e Sobrejetoras

Definição 6.4.1 Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} e $T:V\longrightarrow W$ uma transformação linear, dizemos que:

- (i) T é injetora se, e somente se, para todo u e v em V, se T(u) = T(v), então u = v.
 Equivalentemente, é injetora se, e somente se, para todo u e v em V, se u ≠ v, então T(u) ≠ T(v).
- (ii) T é sobrejetora se, e somente se, Im(T) = W, ou seja, para todo $w \in W$ existe algum $v \in V$ tal que T(v) = w.

Teorema 6.4.1 Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} e $T:V\longrightarrow W$ uma transformação linear, T é **injetora** se, e somente se, $\ker(T)=\{0_V\}$.

Demonstração: Suponhamos que T é injetora, mostremos que $\ker(T) = \{0_V\}$.

Seja $v \in \ker(T)$, então $T(v) = 0_W$, mas sabemos que $T(0_V) = 0_W$, daí que $T(v) = T(0_V)$, como T é injetora segue que $v = 0_V$.

Portanto, $ker(T) = \{0_V\}.$

Reciprocamente, suponhamos que $ker(T) = \{0_V\}$ e mostremos que T é injetora.

Sejam u e v em V tais que T(u) = T(v), então temos:

$$T(u) - T(v) = 0_W \iff T(u - v) = 0_W,$$

isto implica que $u - v \in \ker(T)$, mas como $\ker(T) = \{0_V\}$, segue que $u - v = 0_V \iff u = v$.

Portanto, T é injetora.

Exemplos 6.4.2 Determine quais transformações lineares, dos Exemplos 6.3.5, são injetoras e sobrejetoras.

Solução:

(a) T(x,y) = (ax,by), com $a \in b$ números reais.

1º Caso: a = 0 e $b \neq 0$

Como $\text{Im}(T) = \{(x,y) \in \mathbb{R}^2; \ x = 0\} \neq \mathbb{R}^2$, então T não é sobrejetora e $\text{ker}(T) = \{(x,y) \in \mathbb{R}^2; \ y = 0\} \neq \{(0,0)\}$, então T não é injetora.

2º Caso: $a \neq 0$ e b = 0

Como $\text{Im}(T) = \{(x,y) \in \mathbb{R}^2; y = 0\} \neq \mathbb{R}^2$, então T não é sobrejetora e $\text{ker}(T) = \{(x,y) \in \mathbb{R}^2; x = 0\} \neq \{(0,0)\}$, então T não é injetora.

3º Caso: $a \neq 0$ e $b \neq 0$

Como $\text{Im}(T) = \mathbb{R}^2$, então T é sobrejetora e $\text{ker}(T) = \{(0,0)\}$, então é injetora.

(b) T(p(t)) = p'(t), a derivada de polinômios de grau $\leq n$. $Im(T) = \mathscr{P}_{n-1}(\mathbb{R})$, então T é sobrejetora e $\ker(T) = \mathscr{P}_0(\mathbb{R}) = \mathbb{R} \neq \{0\}$, po

 $\operatorname{Im}(T)=\mathscr{P}_{n-1}(\mathbb{R})$, então T é sobrejetora e $\ker(T)=\mathscr{P}_0(\mathbb{R})=\mathbb{R}\neq\{0\}$, portanto T não é injetora.

(c) T(x,y,z) = (x+3y-z, 2y+z)

 $\operatorname{Im}(T) = \mathbb{R}^2$, então T é sobrejetora e

$$\ker(T) = \{(x, y, z) \in \mathbb{R}^3; \ x = -5y \ \text{e} \ z = -2y\} \neq \{(0, 0, 0)\},\$$

portanto T não é injetora.

(d)
$$T\left(\begin{bmatrix} x & y \\ z & t \end{bmatrix}\right) = (x+y+z, y-z+t, 2z-t).$$

 $\operatorname{Im}(T) = \mathbb{R}^3$, então T é sobrejetora e

$$\ker(T) = \left\{ \begin{bmatrix} x & y \\ z & t \end{bmatrix}; x = 0, y = -z e t = 2z \right\} \neq \{(0,0,0)\},$$

portanto T não é injetora.

(e) $T(x,y) = 2x + yt + 3yt^2 - xt^3$.

 $\operatorname{Im}(T) = \left\{ p(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \in \mathscr{P}_3(\mathbb{R}); a_0 = 2a_3 \text{ e } a_2 = 3a_1 \right\} \neq \mathscr{P}_3(\mathbb{R}),$ portanto T não é sobrejetora e $\ker(T) = \{(0,0)\},$ logo T é injetora.

Corolório 6.4.3 (Consequências do Teorema do Núcleo e da Imagem)

Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} , com dim V=n e dim W=m, e $T:V\longrightarrow W$ uma transformação linear, então:

- (i) Se n = m, então T é injetora se, e somente se, T é sobrejetora.
- (ii) Se n < m, então T não é sobrejetora.
- (iii) Se n > m, então T não é injetora.
- (iv) Se n = m e T é injetora, então T leva base de V em base de W.

6.5 Inversa de uma Transformação Linear

Definição 6.5.1 Sejam V e W são espaços vetoriais sobre um corpo \mathbb{K} e $T:V\longrightarrow W$ uma transformação linear, dizemos que T é **bijetora** se, e somente se, T é injetora e sobrejetora.

Se $T: V \longrightarrow W$ é uma transformação linear bijetora, então:

- (i) Para todo $w \in W$, existe $v \in V$ tal que T(v) = w, pois Im(T) = W.
- (ii) O elemento v do item (i), tal que T(v) = w, é único, pois T é injetora.

Assim, podemos considerar a aplicação

$$S: W \longrightarrow V$$

 $w \longmapsto S(w) = v$, tal que $T(v) = w$.

Definição 6.5.2 Seja $T:V\longrightarrow W$ uma transformação linear bijetora, a aplicação $S:W\longrightarrow V$ acima é chamada **inversa** de T e indicada por T^{-1} , dizemos também que T é uma transformação invertível.

Assim, $T^{-1}(w) = v$ se, e somente se, T(v) = w.

Observações 6.5.1 1. (a)] Se $T: V \longrightarrow W$ é uma transformação linear bijetora e $T^{-1}: W \longrightarrow V$ é sua inversa, então temos:

$$T^{-1} \circ T = Id_V \quad e \quad T \circ T^{-1} = Id_W.$$

(b) Na definição de inversa de uma transformação linear é essencial a condição de que a transformação seja bijetora.

De fato, a condição de T é injetora é necessária, pois se existissem v_1 e v_2 elementos distintos em V tais que $T(v_1) = T(v_2) = w_1$ não teríamos como estabelecer $T^{-1}(w_1)$.

Já a condição de T é sobrejetora é necessária para que T^{-1} possa ser aplicada a cada elemento de W, que é o seu domínio, pois se existisse $w \in W$ tal que $w \notin \operatorname{Im}(T)$, então $T^{-1}(w)$ não estaria definida.

(c) Se $T: V \longrightarrow W$ é uma transformação linear invertível, como dim $V = \dim W = n$, então a matriz $[T]_{\mathscr{B}'}^{\mathscr{B}}$ é invertível, para toda base \mathscr{B} de V e toda base \mathscr{B}' de W.

De fato, pela Proposição 6.3.6 [(ii)] temos null $[T]_{\mathscr{B}'}^{\mathscr{B}} = \dim \ker(T) \stackrel{T \text{\'e inj.}}{=} 0.$

Logo, posto $[T]_{\mathscr{B}'}^{\mathscr{B}} = n$ é máximo e pela Proposição 2.2.2 a matriz $[T]_{\mathscr{B}'}^{\mathscr{B}}$ é invertível.

Teorema 6.5.2 Se $T:V\longrightarrow W$ é uma transformação linear bijetora e $T^{-1}:W\longrightarrow V$ é sua inversa, então T^{-1} também é linear.

Demonstração:

(i) Sejam w_1 e w_2 em W, então $w_1 + w_2 \in W$, e portanto, existe $v \in V$ tal que

$$T^{-1}(w_1 + w_2) = v. (6.5.1)$$

Logo,

$$w_1 + w_2 = T(v). (6.5.2)$$

Como $w_1 \in W$ e $w_2 \in W$, existem $v_1, v_2 \in V$ tais que $T(v_1) = w_1$ e $T(v_2) = w_2$, consequentemente

$$w_1 + w_2 = T(v_1) + T(v_2) \stackrel{T \text{ \'e linear}}{=} T(v_1 + v_2).$$
 (6.5.3)

Além disso,

$$v_1 = T^{-1}(w_1)$$
 e $v_2 = T^{-1}(w_2)$. (6.5.4)

Como T é injetora segue de 6.5.2 e de 6.5.3 que $v = v_1 + v_2$.

Assim, em 6.5.1 substituindo por 6.5.4 temos:

$$T^{-1}(w_1 + w_2) = v_1 + v_2 = T^{-1}(w_1) + T^{-1}(w_2).$$

(ii) Sejam $w \in W$ e $\lambda \in \mathbb{K}$, então $\lambda w \in W$ e existe $v \in V$ tal que

$$T^{-1}(\lambda w) = v \Longleftrightarrow \lambda w = T(v). \tag{6.5.5}$$

Como $w \in W$ existe $u \in V$ tal que

$$T(u) = w \Longleftrightarrow T^{-1}(w) = u. \tag{6.5.6}$$

Assim,

$$T(\lambda u) \stackrel{T \text{ \'e linear}}{=} \lambda T(u) = \lambda w.$$
 (6.5.7)

Como T é injetora segue de 6.5.5 e 6.5.7 que

$$v = \lambda u. \tag{6.5.8}$$

Logo, de 6.5.5 e de 6.5.6 que

$$T^{-1}(\lambda w) = \lambda u = \lambda T^{-1}(w).$$

De (i) e (ii) concluímos que T^{-1} é linear.

6.5.1 Isomorfismo e Automorfismo

Definição 6.5.3 Seja $T:V\longrightarrow W$ uma transformação linear invertível, ou seja, possui inversa, dizemos que T é um **isomorfismo**, e a transformação linear $T^{-1}:W\longrightarrow V$ é o isomorfismo inverso de T.

Um operador linear $T: V \longrightarrow V$ que é um isomorfismo é chamado **automorfismo**.

Matrizes Semelhantes

Definição 6.5.4 Dizemos que duas **matrizes** A e B em $M_n(\mathbb{K})$ são **semelhantes** se, e somente se, existe P uma matriz invertível em $M_n(\mathbb{K})$ tal que

$$B = P^{-1} \cdot A \cdot P$$
.

Proposição 6.5.3 Matrizes semelhantes têm o mesmo determinante.

Demonstração: De fato, se A e B são semelhantes então, existe P uma matriz invertível em $M_n(\mathbb{K})$ tal que $B = P^{-1} \cdot A \cdot P$.

Logo,

$$\det B = \det(P^{-1} \cdot A \cdot P) = \det P^{-1} \cdot \det A \cdot \det P = \frac{1}{\det P} \cdot \det A \cdot \det P = \det A,$$

pois
$$\det P^{-1} = \frac{1}{\det P}$$
.

Teorema 6.5.4 Seja $T:V\longrightarrow V$ um operador linear, as matrizes de T em relação a bases distintas são semelhantes.

Demonstração: Sejam \mathscr{B} e \mathscr{B}' bases de V pela Proposição 6.2.5 sabemos que:

$$[T]_{\mathscr{B}} = M_{\mathscr{B}}^{\mathscr{B}'} \cdot [T]_{\mathscr{B}'} \cdot M_{\mathscr{B}'}^{\mathscr{B}},$$

com $M_{\mathscr{B}'}^{\mathscr{B}}$ e $M_{\mathscr{B}'}^{\mathscr{B}'}$, respectivamente, a matriz mudança de base de \mathscr{B} para \mathscr{B}' e a matriz mudança de base de \mathscr{B}' para \mathscr{B} .

Mas, por outro lado, sabemos que a matriz mudança de base $M_{\mathscr{B}'}^{\mathscr{B}}$ é invertível e que $\left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^{-1}=M_{\mathscr{B}}^{\mathscr{B}'}$.

Consequentemente temos

$$[T]_{\mathscr{B}} = \left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^{-1} \cdot [T]_{\mathscr{B}'} \cdot M_{\mathscr{B}'}^{\mathscr{B}}.$$

Portanto, as matrizes de *T* em relação a bases distintas são semelhantes.

Corolário 6.5.5 Seja $T:V\longrightarrow V$ um operador linear, as matrizes de T em relação a bases distintas têm mesmo determinante.

Demonstração: Pelo Teorema 6.5.4 sabemos que as matrizes de *T* em relação a bases distintas são semelhantes, consequentemente pela Proposição 6.5.3 segue o resultado.

Assim temos a seguinte definição:

Definição 6.5.5 Sejam V um espaço vetorial de dimensão finita sobre um corpo \mathbb{K} e $T:V\longrightarrow V$ um operador linear, o **determinante do operador** T, denotado por det T, é dado por:

$$\det T = \det[T]_{\mathscr{B}},$$

com \mathcal{B} uma base ordenada qualquer de V.

Teorema 6.5.6 Sejam V um espaço vetorial de dimensão finita sobre um corpo \mathbb{K} e $T:V\longrightarrow V$ um operador linear. Então, T é invertível se, e somente se, det $T\neq 0$.

Exemplos 6.5.7 (a) Mostre que a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dada por $T(x,y)=(x+y,\,x-y)$ é um isomorfismo e determine sua inversa T^{-1} .

Solução:

Para mostrar que T é isomorfismo basta mostrar que T é bijetora, como Dom(T) = CD(T) basta mostrar que T é injetora, para isso vamos mostrar que $\ker(T) = \{(0,0)\}$.

Observemos que $(x,y) \in \ker(T) \iff T(x,y) = (0,0) \iff (x+y, x-y) = (0,0)$

$$\iff \left\{ \begin{array}{l} x+y=0 \\ x-y=0 \end{array} \right. \iff \left\{ \begin{array}{l} x+y=0 \\ 2y=0 \end{array} \right. \iff \left\{ \begin{array}{l} x=0 \\ y=0 \end{array} \right..$$

Portanto, $ker(T) = \{(0,0)\}$, consequentemente T é um isomorfismo.

Determinando a inversa T^{-1} .

$$T^{-1}(x,y) = (a,b) \Longleftrightarrow (x,y) = T(a,b) \Longleftrightarrow (x,y) = (a+b, a-b)$$

$$\iff \left\{ \begin{array}{ll} a+b &=& x \\ a-b &=& y \end{array} \right. \iff \left\{ \begin{array}{ll} a+b &=& x \\ 2b &=& x-y \end{array} \right. \iff \left\{ \begin{array}{ll} a=\frac{x+y}{2} \\ b=\frac{x-y}{2} \end{array} \right.$$

Logo, a inversa de *T* é dada por:

$$T^{-1}(x,y) = \left(\frac{x+y}{2}, \frac{x-y}{2}\right).$$

(b) Mostre que a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathscr{P}_2(\mathbb{R})$ tal que

$$T(1,-1,0) = 2+t$$
, $T(0,1,-1) = -1+t^2$ e $T(0,0,1) = t+t^2$

é um isomorfismo e determine sua inversa $T^{-1}: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$.

Solução:

É claro que $\mathscr{B} = \{(1,-1,0),\ (0,1,-1),\ (0,0,1)\}$ é base de \mathbb{R}^3 , vamos escrever um vetor (x,y,z) arbitrário de \mathbb{R}^3 como combinação linear dos vetores de \mathscr{B} para encontrar a expressão da transformação T.

$$(x,y,z) = a(1,-1,0) + b(0,1,-1) + c(0,0,1)$$

$$\iff \begin{cases} a & = x \\ -a + b & = y \\ -b + c & = z \end{cases} \iff \begin{cases} a = x \\ b = x + y \\ c = x + y + z \end{cases}$$

Logo,

$$(x,y,z) = x(1,-1,0) + (x+y)(0,1,-1) + (x+y+z)(0,0,1).$$

Consequentemente,

$$T(x,y,z) = T(x(1,-1,0) + (x+y)(0,1,-1) + (x+y+z)(0,0,1))$$

$$T \stackrel{\text{é linear}}{=} x T(1,-1,0) + (x+y) T(0,1,-1) + (x+y+z) T(0,0,1)$$

$$= x(2+t) + (x+y)(-1+t^2) + (x+y+z)(t+t^2)$$

$$= (x-y) + (2x+y+z)t + (2x+2y+z)t^2.$$

Assim, a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathscr{P}_2(\mathbb{R})$ é dada por:

$$T(x,y,z) = (x-y) + (2x+y+z)t + (2x+2y+z)t^{2}$$
.

Sabemos que T é isomorfismo se, e somente se, T é bijetora, mas como dim $\mathbb{R}^3 = \dim \mathscr{P}_2(\mathbb{R})$ basta verificar que T é injetora, para isso vamos mostrar que $\ker(T) = \{(0,0,0)\}.$

$$(x,y,z) \in \ker(T) \iff T(x,y,z) = 0$$

$$\iff (x-y) + (2x+y+z) t + (2x+2y+z) t^2 = 0$$

$$\iff \begin{cases} x - y = 0 \\ 2x + y + z = 0 \\ 2x - 2y + z = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \\ z = 0 \end{cases}$$

Portanto, $ker(T) = \{(0,0,0)\}$, consequentemente T é um isomorfismo.

Determinando a inversa T^{-1} .

$$T^{-1}(a+bt+ct^{2}) = (x,y,z) \iff a+bt+ct^{2} = T(x,y,z)$$

$$\iff a+bt+ct^{2} = (x-y) + (2x+y+z)t + (2x+2y+z)t^{2}$$

$$\iff \begin{cases} x-y & = a \\ 2x+y+z & = b \\ 2x-2y+z & = c \end{cases} \iff \begin{cases} x = a-b+c \\ y = -b+c \\ z = -2a+4b-3c \end{cases}$$

Logo, a inversa de *T* é dada por:

$$T^{-1}(a + bt + ct^2) = (a-b+c, -b+c, -2a+4b-3c).$$

(c) Considere o operador linear $T: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathscr{P}_2(\mathbb{R})$ dado por: T(p(t)) = (3+t)p'(t) + 2p(t) e a transformação linear $S: \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ dada por: $T(a+bt+ct^2) = (a+b, c, a-b)$.

Determine a transformação linear $S \circ T : \mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ e verifique se é um isomorfismo, em caso afirmativo determine $(S \circ T)^{-1}$.

Solução:

Lembremos que se $p(t) = a + bt + ct^2$, então p'(t) = b + 2ct.

Logo,

$$T(a+bt+ct^2) = (3+t)(b+2ct) + 2(a+bt+ct^2) = (2a+3b) + (3b+6c)t + 4ct^2.$$

Portanto,

$$S \circ T(a+bt+ct^{2}) = S(T(a+bt+ct^{2}))$$

$$= S((2a+3b)+(3b+6c)t+4ct^{2})$$

$$= ((2a+3b)+(3b+6c), 4c, (2a+3b)-(3b+6c))$$

$$= (2a+6b+6c, 4c, 2a-6c).$$

Assim, a transformação linear é:

$$S \circ T:$$
 $\mathscr{P}_2(\mathbb{R}) \longrightarrow \mathbb{R}^3$ $a+bt+ct^2 \longmapsto T(a+bt+ct^2) = (2a+6b+6c, 4c, 2a-6c).$

Para verificar que $S \circ T$ é isomorfismo devemos mostrar que $S \circ T$ é bijetora, como dim $\mathscr{P}_2(\mathbb{R}) = \dim \mathbb{R}^3$ basta verificar que $S \circ T$ é injetora, para isso vamos mostrar que $\ker(S \circ T) = \{0\}$.

$$a + bt + ct^{2} \in \ker(S \circ T) \iff T(a + bt + ct^{2}) = (0,0,0)$$

$$\iff (2a + 6b + 6c, 4c, 2a - 6c) = (0,0,0)$$

$$\iff \begin{cases} 2a + 6b + 6c = 0 \\ 4c = 0 \iff \begin{cases} a = 0 \\ b = 0 \iff a + bt + ct^{2} = 0. \end{cases}$$

$$c = 0$$

Portanto, $ker(S \circ T) = \{0\}$, consequentemente $S \circ T$ é um isomorfismo.

Determinando a inversa $(S \circ T)^{-1}$.

$$(S \circ T)^{-1}(x, y, z) = a + bt + ct^{2} \iff (x, y, z) = S \circ T(a + bt + ct^{2})$$

$$\iff (x, y, z) = (2a + 6b + 6c, 4c, 2a - 6c) = (0, 0, 0)$$

$$\iff \begin{cases} 2a + 6b + 6c = x \\ 4c = y \\ -6c = z \end{cases} \iff \begin{cases} a = \frac{3y + 2z}{4} \\ b = \frac{x - 3y - z}{6} \\ c = \frac{y}{4} \end{cases}$$

Logo, a inversa de $S \circ T$ é dada por:

$$(S \circ T)^{-1}(x, y, z) = \left(\frac{3y + 2z}{4}\right) + \left(\frac{x - 3y - z}{6}\right)t + \left(\frac{y}{4}\right)t^2.$$

(d) Considere as transformações lineares $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ e $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, dada respectivamente, por:

$$T(x,y) = (2x, x-y, y)$$
 e $S(x,y,z) = (y-z, z-x)$.

- (d₁) Determine a transformação linear $S \circ T$ e uma base para $\ker(S \circ T)$.
- (d₂) Determine a transformação linear $T \circ S$ e uma base para $Im(T \circ S)$.
- (d₃) Verifique se $S \circ T$ e $T \circ S$, em caso afirmativo determine as inversas.

Solução:

(d₁)
$$S \circ T(x,y) = S(T(x,y)) = S(2x, x-y, y) = (x-y-y, y-2x) = (x-2y, y-2x).$$

Logo,

$$S \circ T(x, y) = (x - 2y, y - 2x).$$

Determinando $\ker(S \circ T)$:

$$(x,y) \in \ker(S \circ T) \iff S \circ T(x,y) = (0,0) \iff (x-2y, y-2x) = (0,0)$$

$$\iff \left\{ \begin{array}{cccc} x & - & 2y & = & 0 \\ -2x & + & y & = & 0 \end{array} \right. \iff \left\{ \begin{array}{cccc} x & - & 2y & = & 0 \\ - & 3y & = & 0 \end{array} \right. \iff \left\{ \begin{array}{cccc} x & = & 0 \\ y & = & 0 \end{array} \right.$$

Portanto, $\ker(S \circ T) = \{(0,0)\}$ e sua única base é $\mathcal{B}_{\ker(S \circ T)} = \emptyset$.

Como $ker(S \circ T) = \{(0,0)\}\ e\ S \circ T$ é um operador linear segue que é um automorfismo.

$$T \circ S(x,y,z) = T(S(x,y,z)) = T(y-z, z-x)$$

$$(d2) = (2(y-z), y-z-(z-x), z-x)$$

$$= (2y-2z, x+y-2z, -x+z).$$

Logo,

$$T \circ S(x, y, z) = (2y - 2z, x + y - 2z, -x + z).$$

Determinando $\text{Im}(T \circ S)$: $(x, y, z) \in \text{Im}(T \circ S)$ se, e somente se, existe $(a, b, c) \in \mathbb{R}^3$ tal que

$$T \circ S(a,b,c) = (x,y,z) \iff (2b-2c, a+b-2c, -a+c) = (x,y,z) \iff$$

$$\begin{cases} a + b - 2c = x \\ a + b - 2c = y \\ -a + c = z \end{cases} \iff \begin{cases} a + b - 2c = y \\ b - c = y + z \Longrightarrow x = 2(y + z). \\ 2b - 2c = x \end{cases}$$

Portanto, $\text{Im}(T \circ S) = \{(x, y, z) \in \mathbb{R}^3; \ x = 2(y + z)\} \text{ e } \mathscr{B}_{\text{Im}(T \circ S)} = \{(2, 1, 0), \ (2, 0, 1)\} \text{ \'e uma base de Im}(T \circ S).$

Como $\text{Im}(T \circ S) \neq \mathbb{R}^3$ segue que $T \circ S$ não é sobrejetora, portanto não é um automorfismo.

(d₃) Como $S \circ T$ é um automorfismo, então possui inversa, determinemos a inversa $(S \circ T)^{-1}$.

$$(S \circ T)^{-1}(x,y) = (a,b) \iff (x,y) = S \circ T(a,b)$$

$$\iff (x,y) = (a-2b,b-2a) = (0,0,0)$$

$$\iff \begin{cases} a - 2b = x \\ -2a + b = y \end{cases} \iff \begin{cases} a = \frac{-x-2y}{3} \\ b = \frac{-2x-y}{3} \end{cases}$$

Logo, a inversa de $S \circ T$ é dada por:

$$(S \circ T)^{-1}(x,y) = \left(\frac{-x-2y}{3}, \frac{-2x-y}{3}\right).$$

Observação 6.5.8 Se $T: V \longrightarrow W$ é uma transformação linear, com dim $V = \dim W$, então

T é isomorfismo se, e somente se, $[T]_{\mathscr{B}'}^{\mathscr{B}}$ é invertível,

com \mathcal{B} uma base qualquer de V e \mathcal{B}' uma base qualquer de W.

Além disso, a matriz de $T^{-1}: W \longrightarrow V$ em relação às bases \mathscr{B}' e \mathscr{B} é dada por:

$$[T^{-1}]_{\mathscr{B}}^{\mathscr{B}'} = \left([T]_{\mathscr{B}'}^{\mathscr{B}}\right)^{-1}.$$

Exemplo 6.5.9 Verifique matricialmente se o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dado por

$$T(x, y, z) = (x - y, 2y, y - z)$$

é um automorfismo, em caso afirmativo determine, também por meio de matrizes, sua inversa T^{-1} .

Solução:

A matriz de T em relação à base canônica de \mathbb{R}^3 é a seguinte:

$$[T] = \left[\begin{array}{rrr} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & -1 \end{array} \right].$$

Como $det[T] = -2 \neq 0$, então [T] é invertível, determinando $[T]^{-1}$:

Logo,

$$[T]^{-1} = \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & -1 \end{bmatrix}.$$

Assim, $T^{-1}(x, y, z)$ é dada por:

$$[T]^{-1} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & -1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + \frac{y}{2} \\ \frac{y}{2} \\ -\frac{y}{2} - z \end{bmatrix},$$

ou seja,

$$T^{-1}(x, y, z) = \left(\frac{2x + y}{2}, \frac{y}{2}, \frac{-y - 2z}{2}\right).$$

7.1 Autovalor e Autovetor de um Operador Linear

Seja V um espaço vetorial sobre um corpo \mathbb{K} , dado um operador linear $T:V\longrightarrow V$ estamos interessados em vetores diferentes do vetor nulo que são levados por T em múltiplo de si mesmo, ou seja, procuramos $v\in V, v\neq 0_V$, tal que $T(v)=\lambda v$, com $\lambda\in\mathbb{K}$.

Assim temos a seguinte definição:

Definição 7.1.1 Sejam V um espaço vetorial sobre um corpo \mathbb{K} e $T:V\longrightarrow V$ um operador linear, dizemos que um escalar $\lambda\in\mathbb{K}$ é um **autovalor** ou **valor-próprio** de T, se e somente se, existe um vetor $v\in V$, $v\neq 0_V$, tal que $T(v)=\lambda v$.

Neste caso, o vetor $v \in V$ é chamado **autovetor** ou **vetor-próprio** de T associado ao escalar λ .

Exemplos 7.1.1 Determine os autovalores do operador T e os autovetores associados.

(a) Reflexões no Plano

(a₁) Reflexão em torno do eixo x: $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dado por T(x,y) = (x, -y)

Solução:

$$T(x,y) = \lambda(x,y) \iff (x,-y) = \lambda(x,y) \iff \begin{cases} x = \lambda x \\ -y = \lambda y \end{cases}$$

1º Caso: Se $x \neq 0$, a única possível solução é $\lambda = 1$ e y = 0.

2º Caso: Se $y \neq 0$ devemos ter $\lambda = -1$ e x = 0.

Logo, os autovalores de T são $\lambda_1 = 1$ e $\lambda_2 = -1$.

- Os autovetores de T associados ao autovalor λ₁ = 1 são os vetores da forma (x,0), com x ≠ 0.
- Os autovetores de T associados ao autovalor $\lambda_2 = -1$ são os vetores da forma (0, y), com $y \neq 0$.

(a₂) Reflexão pela bissetriz do 1 e 3 quadrantes: $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dado por T(x,y) = (-x, -y) Solução:

$$T(x,y) = \lambda(x,y) \Longleftrightarrow (-x,-y) = \lambda(x,y) \Longleftrightarrow \left\{ \begin{array}{l} -x = \lambda x \\ -y = \lambda y \end{array} \right. \Longleftrightarrow \lambda = -1.$$

Assim, o único autovalor de T é $\lambda_1 = -1$ e os autovetores de T associados ao autovalor $\lambda_1 = -1$ são os vetores da forma (x, y), com $x \neq 0$ ou $y \neq 0$.

(a₃) Reflexão em torno do eixo y: $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dado por T(x,y) = (-x, y)

Solução:

Analogamente ao exemplo (a₁) temos os autovalores de T são $\lambda_1 = 1$ e $\lambda_2 = -1$.

- Os autovetores de T associados ao autovalor λ₁ = 1 são os vetores da forma (0,y), com y ≠ 0.
- Os autovetores de T associados ao autovalor λ₂ = −1 são os vetores da forma (x,0), com x ≠ 0.
- (b) Seja o operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dado por T(x,y) = (ax, by) com $a \in b$ número reais.

Solução:

$$T(x,y) = \lambda(x,y) \iff (ax,by) = \lambda(x,y) \iff \begin{cases} ax = \lambda x \\ by = \lambda y \end{cases}$$

- **1º Caso:** Se a = b, então o único ao autovalor de T é $\lambda_1 = a$ e os autovetores de T associados ao autovalor $\lambda_1 = a$ são todos os vetores de \mathbb{R}^2 , exceto (0,0).
- **2º Caso:** Se $a \neq b$ o operador T tem dois autovalores:
 - Se $x \neq 0$, devemos ter $\lambda_1 = a$ e y = 0, neste caso os autovetores de T associados ao autovalor $\lambda_1 = a$ são os vetores da forma (x,0) com $x \neq 0$.
 - Se $y \neq 0$, devemos ter $\lambda_2 = b$ e x = 0, neste caso os autovetores de T associados ao autovalor $\lambda_2 = b$ são os vetores da forma (0, y) com $y \neq 0$.
- (c) Seja $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, o operador linear $T_A : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dado por: $T_A(x,y) = (x+y, 2y)$.

Solução:

$$T(x,y) = \lambda(x,y) \Longleftrightarrow (x+2y, y) = \lambda(x,y) \Longleftrightarrow \begin{cases} x+y = \lambda x \\ 2y = \lambda y \end{cases}$$

1º Caso: Se $y \neq 0$, o autovalor de $T \notin \lambda_1 = 2$, neste caso teremos $x + y = 2x \iff x = y$.

Logo, os autovetores de T associados ao autovalor $\lambda_1 = 2$ são os vetores da forma (x, x), com $x \neq 0$.

- **2º Caso:** Se y = 0, o autovalor de T é $\lambda_2 = 1$ e os autovetores de T associados ao autovalor $\lambda_2 = 1$ são os vetores da forma (x, 0) com $x \neq 0$.
- (d) Seja o operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dado por T(x,y,z) = (x+y+z, x+y, z). **Solução:**

$$T(x,y,z) = \lambda(x,y,z) \Longleftrightarrow (x+y+z, \ x+y, \ z) = \lambda(x,y,z) \Longleftrightarrow \begin{cases} x+y+z = \lambda x \\ x+y = \lambda y \\ z = \lambda z \end{cases}$$

1º Caso: Se $z \neq 0$, devemos ter $\lambda_1 = 1$, consequentemente devemos ter

$$\begin{cases} x+y+z=x \\ x+y=y \end{cases} \iff \begin{cases} y=-z \\ x=0 \end{cases}$$

Logo, os autovetores de T associados ao autovalor de T é $\lambda_1 = 1$ são os vetores da forma (0, -z, z) com $z \neq 0$.

2º Caso: Se
$$z = 0$$
, devemos ter
$$\begin{cases} x + y = \lambda x \\ x + y = \lambda y \end{cases} \iff \lambda x = \lambda y \stackrel{x \neq 0 \text{ ou } y \neq 0}{\Longrightarrow} x = y.$$

Logo, temos
$$2x = \lambda x \stackrel{x \neq 0}{\Longrightarrow} \lambda = 2$$

Portanto, $\lambda_2 = 2$ é o outro valor de T e os autovetores de T associados ao autovalor $\lambda_2 = 2$ são os vetores da forma (x, x, 0) com $x \neq 0$.

7.1.1 Autoespaço associado a um Autovalor

Teorema 7.1.2 Sejam V um espaço vetorial sobre o corpo \mathbb{K} e $T:V\longrightarrow V$ um operador linear.

- (i) Se v é um autovetor associado ao autovalor λ , então todo vetor não nulo $w = \alpha v$, com $\alpha \in \mathbb{K}$, também é um autovetor de T associado a λ .
- (ii) Se v_1 e v_2 são autovetores associado ao autovalor λ , então $v_1 + v_2$ também é um autovetor de T associado a λ .

Demonstração:

(i) Como v é autovetor associado ao autovalor λ , então $T(v) = \lambda v$.

Assim,

$$T(w) = T(\alpha v) \stackrel{T \text{ \'e linear}}{=} \alpha T(v) = \alpha(\lambda v) = \lambda(\alpha v) = \lambda w.$$

Portanto, w é autovetor associado ao autovalor λ .

(ii) Como v_1 e v_2 são autovetores associado ao autovalor λ , então, então $T(v_1) = \lambda v_1$ e $T(v_2) = \lambda v_2$. Logo,

$$T(v_1 + v_2) \stackrel{T \text{ \'e linear}}{=} T(v_1) + T(v_2) = (\lambda v_1) + (\lambda v_2) = \lambda (v_1 + v_2).$$

Portanto, $v_1 + v_2$ é autovetor associado ao autovalor λ .

Do Teorema 7.1.2 acima concluímos que, dado um operador linear $T:V\longrightarrow V$ o conjunto de todos os autovetores de T associados a um autovalor junto com o vetor nulo é um subespaço de V, mais precisamente temos a seguinte definição:

Definição 7.1.2 Sejam $T: V \longrightarrow V$ um operador linear e λ um autovalor de V o subespaço

$$V_{\lambda} = \{ v \in V; \ T(v) = \lambda v \}$$

é um subespaço de V chamado **autoespaço associado ao autovalor** λ .

Exemplos 7.1.3 Determine os autoespaços de *V* nos seguintes casos:

(a) Reflexões no Plano

 (a_1) Reflexão em torno do eixo x:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto T(x,y) = (x,-y)$.

Solução:

Vimos que os autovalores de T são $\lambda_1 = 1$ e $\lambda_2 = -1$, com autovetores das formas (x,0) com $x \neq 0$ e (0,y) com $y \neq 0$, respectivamente.

Logo, os autoespaços de \mathbb{R}^2 são:

$$V_1 = \{(x, y) \in \mathbb{R}^2; y = 0\}$$
 e $V_{-1} = \{(x, y) \in \mathbb{R}^2; x = 0\}.$

(a₂) Reflexão pela bissetriz do 1 e 3 quadrantes:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto T(x,y) = (-x,-y)$.

Solução:

Vimos que o único autovalor de T é $\lambda_1 = -1$ com autovetores da forma (x, y), com $x \neq 0$ ou $y \neq 0$.

Logo, o único autoespaço de \mathbb{R}^2 é $V_1 = \mathbb{R}^2$.

(a₃) Reflexão em torno do eixo y:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto T(x,y) = (-x,y)$.

Solução:

Vimos que os autovalores de T são $\lambda_1 = 1$ e $\lambda_2 = -1$, com autovetores das formas (0, y) com $y \neq 0$ e (x, 0) com $x \neq 0$, respectivamente.

Logo, os autoespaços de \mathbb{R}^2 são:

$$V_1 = \{(x, y) \in \mathbb{R}^2; \ x = 0\}$$
 e $V_{-1} = \{(x, y) \in \mathbb{R}^2; \ y = 0\}.$

(b) Seja o operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \ (x,y) \longmapsto T(x,y) = (ax,by)$$
, com a e b números reais.

Solução:

Vimos que:

1º Caso: Se a = b, então o único ao autovalor de T é $\lambda_1 = a$ e os autovetores são todos os vetores de \mathbb{R}^2 , exceto (0,0).

Logo, o único autoespaço de \mathbb{R}^2 é $V_a = \mathbb{R}^2$.

2º Caso: Se $a \neq b$, então os autovalores de T são $\lambda_1 = a$ e $\lambda_2 = b$, com autovetores das formas (x,0) com $x \neq 0$ e (0,y) com $y \neq 0$, respectivamente.

Logo, os autoespaços de \mathbb{R}^2 são:

$$V_a = \{(x, y) \in \mathbb{R}^2; y = 0\}$$
 e $V_b = \{(x, y) \in \mathbb{R}^2; x = 0\}.$

(c) Seja $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, o operador linear T_A é dado por:

$$T_A: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto T_A(x,y) = (x+y, 2y).$

Solução:

Vimos que os autovalores de T são $\lambda_1 = 2$ e $\lambda_2 = 1$, com autovetores das formas (x, x), com $x \neq 0$ e (x, 0) com $x \neq 0$, respectivamente.

Logo, os autoespaços de \mathbb{R}^2 são:

$$V_2 = \{(x, y) \in \mathbb{R}^2; y = x\}$$
 e $V_1 = \{(x, y) \in \mathbb{R}^2; y = 0\}.$

(d) Seja o operador linear

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(x,y,z) \longmapsto T(x,y,z) = (x+y+z, x+y, z)$.

Solução:

Vimos que os autovalores de T são $\lambda_1 = 1$ e $\lambda_2 = 2$, com autovetores das formas (0, -z, z) com $z \neq 0$ e (x, x, 0) com $x \neq 0$.

Logo, os autoespaços de \mathbb{R}^3 são:

$$V_1 = \{(x, y, z) \in \mathbb{R}^3; \ x = 0 \text{ e } y = -z\} \text{ e } V_2 = \{(x, y, z) \in \mathbb{R}^3; \ y = x \text{ e } z = 0\}.$$

Proposição 7.1.4 Se λ_1 e λ_2 são autovalores distintos de um operador linear $T:V\longrightarrow V$ um operador linear, então

$$V(\lambda_1) \cap V(\lambda_2) = \{0_V\}.$$

Demonstração:

$$v \in V(\lambda_1) \cap V(\lambda_2) \Longleftrightarrow \left\{ \begin{array}{l} T(v) = \lambda_1 v \\ T(v) = \lambda_2 v \end{array} \right. \Longleftrightarrow \lambda_1 v = \lambda_2 v \Longleftrightarrow (\lambda_1 - \lambda_2) v = 0_V \stackrel{\lambda_1 \neq \lambda_2}{\Longrightarrow} v = 0_V.$$

Portanto, $V(\lambda_1) \cap V(\lambda_2) = \{0_V\}.$

Definição 7.1.3 Sejam V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n, e $T:V\longrightarrow V$ um operador linear. Dado λ_i um autovalor de T a **multiplicidade geométrica** de de λ_i é a dimensão do autoespaço V_{λ_i}

Notação: $m_G(\lambda_i)$.

Nos exemplos acima todos os autovalores têm multiplicidade geométrica igual a 1.

7.2 Polinômio Característico de um Operador Linear

Na seção anterior obtemos em alguns exemplos os autovalores e os autovetores de um operador linear. No entanto o procedimento adotado não é, de modo geral eficiente. Assim vamos utilizar a forma matricial do operador para fazer isto, porém antes devemos justificar porque podemos considerar qualquer matriz do operador.

7.2.1 Polinômio Característico de uma Matriz

Sejam V um espaço vetorial de dimensão finita n sobre um corpo \mathbb{K} e $T:V\longrightarrow V$ um operador linear, um vetor $v\in V$, não nulo, é autovetor de T se, e somente se, existe $\lambda\in\mathbb{K}$ tal que $T(v)=\lambda v$, mas

$$T(v) = \lambda v \iff T(v) - \lambda I(v) = 0_V \iff \ker(T - \lambda I) \neq \{0_V\}.$$

Consideremos \mathscr{B} uma base de V e $A = [T]_{\mathscr{B}}$ a matriz de T em relação à base \mathscr{B} , dizer que $\ker(T - \lambda I) \neq \{0_V\}$ é equivalente que o sistema

$$(A - \lambda I_n) \cdot \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

tem solução não trivial, e isto por sua vez é equivalente a dizer que det $(A - \lambda I_n) = 0$, com I_n a matriz identidade de ordem n.

Definição 7.2.1 Seja A uma matriz em $M_n(\mathbb{K})$ dizemos que um escalar $\lambda \in \mathbb{K}$ é **autovalor** de A se, e somente se, $\det(A - \lambda I_n) = 0$.

Definição 7.2.2 Seja A uma matriz em $M_n(\mathbb{K})$ o polinômio em λ dado por

$$p(\lambda) = \det(A - \lambda I_n)$$

é chamado **polinômio característico** de A.

Teorema 7.2.1 Seja $T: V \longrightarrow V$ um operador linear, as matrizes de T em relação a bases distintas têm o mesmo polinômio característico.

Demonstração: Vamos mostrar um resultado mais geral, que se *A* e *B* são semelhantes, então têm o mesmo polinômio característico.

De fato, se A e B são semelhantes, então existe P uma matriz invertível tal que $B = P^{-1} \cdot A \cdot P$. Logo,

$$p_B(\lambda) = \det(B - \lambda I_n) = \det(P^{-1}AP - \lambda P^{-1}P) = \det(P^{-1}(A - \lambda I_n)P)$$
$$= \det(P^{-1}\det(A - \lambda I_n)\det(P) = \det(A - \lambda I_n) = p_A(\lambda),$$

pois
$$\det P^{-1} = \frac{1}{\det P}$$
.

Como vimos no Teorema 6.5.4 que matrizes de *T* em relação a bases distintas são semelhantes, segue o resultado.

Assim, temos a seguinte definição:

Definição 7.2.3 Sejam V um espaço vetorial de dimensão finita n sobre um corpo \mathbb{K} e $T:V\longrightarrow V$ um operador linear, o **polinômio característico** de T, denotado por $p(\lambda)$ ou $p_T(\lambda)$, é o polinômio característico da matriz $[T]_{\mathscr{B}}$, com \mathscr{B} uma base ordenada qualquer de V, ou seja,

$$p(\lambda) = \det([T]_{\mathscr{B}} - \lambda I_n).$$

Das considerações acima concluímos:

Teorema 7.2.2 Sejam V um espaço vetorial de dimensão finita n sobre um corpo \mathbb{K} e $T:V\longrightarrow V$ um operador linear, então:

- (i) Os autovalores do operador T são as raízes de seu polinômio característico $p(\lambda)$.
- (ii) Se λ_i é um autovalor de T, então o autoespaço V_{λ_i} , associado a este autovalor, é o subespaço $\ker(A \lambda_i I_n)$.

Observação 7.2.3 O teorema 7.2.2 nos fornece o procedimento prático para determinar os autovalores, os autovetores e os autoespaços de um operador linear T:

- **1º** Obtemos $p(\lambda)$ o polinômio característico de T.
- **2º** Encontramos as raízes de $p(\lambda)$, que são os autovalores de T.
- **3º** Para cada autovalor λ_i determinamos o autoespaço V_{λ_i} , que é o subespaço $\ker(A \lambda_i I_n)$.

Exemplos 7.2.4 Determine os autovalores e os autoespaços do operador T nos seguintes casos:

- (a) T operador sobre \mathbb{R}^2 .
 - (a₁) T(x,y) = (y, 9x).
 - (a₂) T(x,y) = (-y, x).

Solução:

(a₁) Consideremos \mathscr{B} a base canônica de \mathbb{R}^2 , então:

$$T(1,0) = (0,9)$$
 e $T(0,1) = (1,0)$.

Logo, a matriz de A de T em relação à base \mathscr{B} é $A = \begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix}$.

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_2) = \det\begin{bmatrix} -\lambda & 1 \\ 9 & -\lambda \end{bmatrix} = \lambda^2 - 9.$$

É claro que

$$p(\lambda) = 0 \iff \lambda^2 - 9 = 0 \iff \lambda^2 = 9 \iff \lambda = 3 \text{ ou } \lambda = -3.$$

Logo, os autovalores de T são $\lambda_1 = 3$ e $\lambda_2 = -3$.

Determinando os autoespaços V_3 e V_{-3} .

$$(x,y) \in V_3 \iff (x,y) \in \ker(A - 3I_2) = \ker\begin{bmatrix} -3 & 1 \\ 9 & -3 \end{bmatrix}$$

$$\iff \begin{bmatrix} -3 & 1 \\ 9 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{cases} -3x + y = 0 \\ 9x - 3y = 0 \end{cases} \iff y = 3x.$$

Portanto, $V_3 = \{(x, y) \in \mathbb{R}^2; y = 3x\} = [(1, 3)].$

$$(x,y) \in V_{-3} \iff (x,y) \in \ker(A+3I_2) = \ker\begin{bmatrix} 3 & 1 \\ 9 & 3 \end{bmatrix}$$

$$\iff \begin{bmatrix} 3 & 1 \\ 9 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{cases} 3x + y = 0 \\ 9x + 3y = 0 \end{cases} \iff y = -3x.$$

Portanto, $V_{-3} = \{(x, y) \in \mathbb{R}^2; y = -3x\} = [(1, -3)]$

(a₂) Consideremos \mathscr{B} a base canônica de \mathbb{R}^2 , então:

$$T(1,0) = (0,1)$$
 e $T(0,1) = (-1,0)$.

Logo, a matriz de A de T em relação à base \mathscr{B} é $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_2) = \det\begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 + 1.$$

É claro que

$$p(\lambda) = 0 \iff \lambda^2 + 1 = 0, \iff \lambda^2 = -1 \iff \lambda = i \text{ ou } \lambda = -i.$$

Mas \mathbb{R}^2 é um espaço vetorial sobre \mathbb{R} e i e -i não são números reais.

Portanto, T não tem autovalores e autovetores e \mathbb{R}^2 não tem autoespaços determinados por este operador.

- (b) T operador sobre \mathbb{R}^3 .
 - (b₁) T(x,y,z) = (x, y, x).
 - (b₂) T(x,y,z) = (x+z, y+z, x+y+2z).
 - (b₃) T(1,1,1) = (4,9,-4), T(0,1,1) = (2,7,-3), T(0,0,1) = (1,4,-2).

Solução:

(b₁) Consideremos \mathscr{B} a base canônica de \mathbb{R}^3 , então:

$$T(1,0,0) = (1,0,1), T(0,1,0) = (0,1,0) e T(0,0,1) = (0,0,0).$$

Logo, a matriz de A de T em relação à base \mathscr{B} é $A=\left[\begin{array}{ccc}1&0&0\\0&1&0\\1&0&0\end{array}\right].$

Portanto, o polinômio característico de *T* é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_3) = \det \begin{bmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{bmatrix} = (1 - \lambda)^2 (-\lambda) = -\lambda (1 - \lambda)^2.$$

É claro que

$$p(\lambda) = 0 \Longleftrightarrow -\lambda (1 - \lambda)^2 = 0 \Longleftrightarrow \left\{ \begin{array}{c} \lambda = 0 \\ (1 - \lambda)^2 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{c} \lambda = 0 \\ 1 - \lambda = 0 \end{array} \right. \Leftrightarrow \lambda = 0 \text{ ou } \lambda = 1.$$

Logo, os autovalores de T são $\lambda_1 = 0$ e $\lambda_2 = 1$.

Determinando os autoespaços V_0 e V_1 .

$$(x, y, z) \in V_0 \iff (x, y, z) \in \ker(A - 0I_3) = \ker\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} x = 0 \\ y = 0 \\ x = 0 \end{cases} \iff x = y = 0.$$

Portanto, $V_0 = \{(x, y, z) \in \mathbb{R}^3; x = y = 0\} = [(0, 0, 1)].$

$$(x,y,z) \in V_1 \iff (x,y,z) \in \ker(A-1I_3) = \ker \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\iff \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff x - z = 0 \iff z = x.$$

Portanto, $V_1 = \{(x, y, z) \in \mathbb{R}^3; z = x\} = [(1, 0, 1), (0, 1, 0)].$

(b₂) Consideremos \mathscr{B} a base canônica de \mathbb{R}^3 , então:

$$T(1,0,0) = (1,0,1), T(0,1,0) = (0,1,1)$$
e $T(0,0,1) = (1,0,2).$

Logo, a matriz de A de T em relação à base \mathscr{B} é $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$.

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 1 \\ 1 & 1 & 2 - \lambda \end{bmatrix} = (1 - \lambda)^2 (2 - \lambda) - 2(1 - \lambda)$$

$$= (1 - \lambda)((1 - \lambda)(2 - \lambda) - 2) = (1 - \lambda)(\lambda^2 - 3\lambda + 2 - 2) = (1 - \lambda)\lambda(\lambda - 3).$$

É claro que

$$p(\lambda) = 0 \Longleftrightarrow (1 - \lambda)\lambda(\lambda - 3) = 0 \Longleftrightarrow \left\{ \begin{array}{l} 1 - \lambda = 0 \\ \lambda = 0 \\ \lambda - 3 = 0 \end{array} \right. \Longleftrightarrow \lambda = 1, \ \lambda = 0 \ \text{ou} \ \lambda = 3.$$

Logo, os autovalores de T são $\lambda_1 = 1$, $\lambda_2 = 0$ e $\lambda_3 = 3$.

Determinando os autoespaços V_1 , V_0 e V_3 .

$$(x,y,z) \in V_1 \iff (x,y,z) \in \ker(A-1I_3) = \ker\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$\iff \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} z=0 \\ x+y=0 \iff z=0 \text{ e } y=-x. \end{cases}$$

Portanto,
$$V_1 = \{(x, y, z) \in \mathbb{R}^3; z = 0 \text{ e } y = -x\} = [(1, -1, 0)].$$

$$(x,y,z) \in V_0 \iff (x,y,z) \in \ker(A-OI_3) = \ker\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \iff$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} x & + & z & = & 0 \\ & y & + & z & = & 0 \\ x & + & y & + & 2z & = & 0 \end{cases} \iff x = -z \text{ e } y = -z.$$

Portanto, $V_0 = \{(x, y, z) \in \mathbb{R}^3; x = -z \text{ e } y = -z\} = [(-1, -1, 1)].$

$$(x,y,z) \in V_3 \iff (x,y,z) \in \ker(A-3I_3) = \ker\begin{bmatrix} -2 & 0 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & -1 \end{bmatrix} \iff$$

$$\begin{bmatrix} -2 & 0 & 1 \\ 0 & -2 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} -2x & + z = 0 \\ -2y + z = 0 \\ x + y - z = 0 \end{cases} \iff x = y \in z = 2x.$$

Portanto, $V_3 = \{(x, y, z) \in \mathbb{R}^3; x = y \text{ e } z = 2x\} = [(1, 1, 2)].$

(b₃) Consideremos a base $\mathscr{B} = \{(1,1,1), (0,1,1), (0,0,1)\}$ de \mathbb{R}^3 , então para todo $(x,y,z) \in \mathbb{R}^3$ temos:

$$(x,y,z) = x(1,1,1) + (y-x)(0,1,1) + (z-y)(0,0,1) \iff \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} x \\ y-x \\ z-y \end{bmatrix}.$$

Logo,

$$T(1,1,1) = (4,9,-4) = 4(1,1,1) + 5(0,1,1) - 13(0,0,1)$$

$$T(0,1,1) = (2,7,-3) = 2(1,1,1) + 5(0,1,1) - 10(0,0,1)$$
.

$$T(0,0,1) = (1,4,-2) = 1(1,1,1) + 3(0,1,1) - 6(0,0,1)$$

Portanto, a matriz de A de T em relação à base \mathscr{B} é $A = \begin{bmatrix} 4 & 2 & 1 \\ 5 & 5 & 3 \\ -13 & -10 & -6 \end{bmatrix}$.

Consequentemente, o polinômio característico de *T* é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} 4 - \lambda & 2 & 1 \\ 5 & 5 - \lambda & 3 \\ -13 & -10 & -6 - \lambda \end{bmatrix}$$

$$= (4 - \lambda)(5 - \lambda)(-6 - \lambda) - 78 - 50 + 13(5 - \lambda) + 30(4 - \lambda) + 10(6 + \lambda)$$

$$= -\lambda^3 + 3\lambda^2 + \lambda - 3 = (\lambda - 1)(-\lambda^2 + 2\lambda + 3)$$

$$= (1 - \lambda)(1 + \lambda)(3 - \lambda).$$

É claro que

$$p(\lambda) = 0 \Leftrightarrow (1 - \lambda)(1 + \lambda)(3 - \lambda) = 0 \Leftrightarrow \left\{ \begin{array}{l} 1 - \lambda = 0 \\ 1 + \lambda = 0 \\ 3 - \lambda = 0 \end{array} \right. \iff \lambda = 1, \ \lambda = -1 \ \text{ou} \ \lambda = 3.$$

Logo, os autovalores de T são $\lambda_1 = 1$, $\lambda_2 = -1$ e $\lambda_3 = 3$.

Determinando os autoespaços V_1 , V_{-1} e V_3 .

$$(x,y,z) \in V_{1} \iff (x,y,z) \in \ker(A-1I_{3}) = \ker\begin{bmatrix} 3 & 2 & 1 \\ 5 & 4 & 3 \\ -13 & -10 & -7 \end{bmatrix} \iff$$

$$\begin{bmatrix} 3 & 2 & 1 \\ 5 & 4 & 3 \\ -13 & -10 & -7 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{\mathscr{B}} \iff \begin{bmatrix} 3 & 2 & 1 \\ 5 & 4 & 3 \\ -13 & -10 & -7 \end{bmatrix} \begin{bmatrix} x \\ y-x \\ z-x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} x + y + z = 0 \\ x + y + 3z = 0 \\ -3x - 3y - 7z = 0 \end{cases} \iff \begin{cases} x + y + z = 0 \\ z = 0 \end{cases}$$

$$\iff z = 0 \text{ e } y = -x.$$

Portanto, $V_1 = \{(x, y, z) \in \mathbb{R}^3; z = 0 \text{ e } y = -x\} = [(1, -1, 0)].$

$$(x,y,z) \in V_{-1} \iff (x,y,z) \in \ker(A+1I_3) = \ker\begin{bmatrix} 6 & 2 & 1 \\ 5 & 6 & 3 \\ -13 & -10 & -5 \end{bmatrix}$$

$$\iff \begin{bmatrix} 6 & 2 & 1 \\ 5 & 6 & 3 \\ -13 & -10 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{\mathscr{B}}$$

$$\iff \begin{bmatrix} 6 & 2 & 1 \\ 5 & 6 & 3 \\ -13 & -10 & -5 \end{bmatrix} \begin{bmatrix} x \\ y-x \\ z-x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} 3x + y + z = 0 \\ -x + 3y + 3z = 0 \\ -3x - 5y - 5z = 0 \end{cases} \iff \begin{cases} 3x + y + z = 0 \\ -x + 3y + 3z = 0 \\ 12x = 0 \end{cases}$$

$$\iff x = 0 \text{ e } z = -y.$$

Portanto,

$$V_{-1} = \{(x, y, z) \in \mathbb{R}^3; x = 0 \text{ e } z = -y\} = [(0, 1, -1)].$$

$$(x,y,z) \in V_{3} \iff (x,y,z) \in \ker(A-3I_{3}) = \ker\begin{bmatrix} 1 & 2 & 1 \\ 5 & 2 & 3 \\ -13 & -10 & -9 \end{bmatrix}$$

$$\iff \begin{bmatrix} 1 & 2 & 1 \\ 5 & 2 & 3 \\ -13 & -10 & -9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{\mathscr{B}}$$

$$\iff \begin{bmatrix} 1 & 2 & 1 \\ 5 & 2 & 3 \\ -13 & -10 & -9 \end{bmatrix} \begin{bmatrix} x \\ y-x \\ z-x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} -x + y + z = 0 \\ 3x - y + 3z = 0 \iff \begin{cases} -x + y + z = 0 \\ 2y + 6z = 0 \\ -4y - 12z = 0 \end{cases}$$

$$\iff y = -3z \ e \ x = -2z.$$

Portanto, $V_3 = \{(x, y, z) \in \mathbb{R}^3; y = -3z \text{ e } x = -2z\} = [(-2, -3, 1)].$

(c) *T* operador sobre $\mathscr{P}_2(\mathbb{R})$.

(c₁)
$$T(p(t)) = p(0) + p(1)(t+t^2)$$
.

(c₂)
$$T(p(t)) = (1+t)p'(t) + p''(t)$$
.

(c₃)
$$T(a_0 + a_1t + a_2t^2) = (2a_1 + a_2) + (3a_0 - a_1 - a_2)t + 2a_2t^2$$
.

Solução:

(c₁) Seja $p(t) = a_0 + a_1 t + a_2 t^2$ um elemento arbitrário de $\mathscr{P}_2(\mathbb{R})$, então

$$p(0) = a_0$$
 e $p(1) = a_0 + a_1 + a_2$.

Logo,

$$T(p(t)) = p(0) + p(1)(t+t^2) = a_0 + (a_0 + a_1 + a_2)(t+t^2)$$

= $a_0 + (a_0 + a_1 + a_2) t + (a_0 + a_1 + a_2) t^2$.

Consideremos $\mathscr{B} = \{1, t, t^2\}$ a base canônica de $\mathscr{P}_2(\mathbb{R})$, então:

$$T(1) = 1 + t + t^2$$
, $T(t) = t + t^2$ e $T(t^2) = t + t^2$.

Logo, a matriz de A de T em relação à base \mathscr{B} é $A=\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)^3 - (1 - \lambda) = (1 - \lambda) ((1 - \lambda)^2 - 1)$$
$$= (1 - \lambda)(\lambda^2 - 2\lambda + 1 - 1) = (1 - \lambda)\lambda(\lambda - 2).$$

É claro que

$$p(\lambda) = 0 \Longleftrightarrow (1 - \lambda)\lambda(\lambda - 2) = 0 \Longleftrightarrow \left\{ \begin{array}{l} 1 - \lambda = 0 \\ \lambda = 0 \\ \lambda - 2 = 0 \end{array} \right. \Longleftrightarrow \lambda = 1, \ \lambda = 0 \ \text{ou} \ \lambda = 2.$$

Logo, os autovalores de T são $\lambda_1=1,\,\lambda_2=0$ e $\lambda_3=2.$

Determinando os autoespaços V_1 , V_0 e V_2 .

$$p(t) = a_0 + a_1 t + a_2 t^2 \in V_1 \iff a_0 + a_1 t + a_2 t^2 \in \ker(A - 1I_3) = \ker\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_0 + a_1 t + a_2 t^2 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{\mathscr{B}} \iff \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} a_0 \\ a_0 + a_1 \end{cases} + a_2 = 0 \\ a_0 + a_1 \end{cases} \iff a_1 = -a_0 \in a_2 = -a_0.$$

Portanto, $V_1 = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); a_1 = -a_0 \text{ e } a_2 = -a_0\} = [1 - t - t^2].$

$$p(t) = a_0 + a_1 t + a_2 t^2 \in V_0 \iff a_0 + a_1 t + a_2 t^2 \in \ker(A - 0I_3) = \ker\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\iff \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_0 + a_1 t + a_2 t^2 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{\mathscr{B}} \iff \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} -a_0 & = 0 \\ a_0 + a_1 + a_2 = 0 \iff a_0 = 0 \text{ e } a_2 = -a_1. \\ a_0 + a_1 - a_2 = 0 \end{cases}$$

Portanto, $V_0 = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); a_0 = 0 \text{ e } a_2 = -a_1\} = [t - t^2].$

$$p(t) = a_0 + a_1 t + a_2 t^2 \in V_2 \iff a_0 + a_1 t + a_2 t^2 \in \ker(A - 0I_3) = \ker \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

$$\iff \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} a_0 + a_1 t + a_2 t^2 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \end{bmatrix}_{\mathscr{B}}$$

$$\iff \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} -a_0 & = 0 \\ a_0 - a_1 + a_2 = 0 \iff a_0 = 0 \text{ e } a_2 = a_1. \\ a_0 + a_1 - a_2 = 0 \end{cases}$$

Portanto, $V_2 = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); a_0 = 0 \text{ e } a_2 = a_1\} = [t + t^2].$

(c₂) Seja $p(t) = a_0 + a_1t + a_2t^2$ um elemento arbitrário de $\mathscr{P}_2(\mathbb{R})$, então $p'(t) = a_1 + 2a_2t$ e $p''(t) = 2a_2$.

Logo,

$$T(p(t)) = (1+t)p'(t) + p''(t) = (1+t)(a_1+2a_2t) + 2a_2 = (a_1+2a_2) + (a_1+2a_2)t + 2a_2t^2.$$

Consideremos $\mathscr{B} = \{1, t, t^2\}$ a base canônica de $\mathscr{P}_2(\mathbb{R})$, então:

$$T(1) = 0$$
, $T(t) = 1 + t$ e $T(t^2) = 2 + 2t + 2t^2$.

Logo, a matriz de A de T em relação à base \mathscr{B} é $A=\left[\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{array}\right].$

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} -\lambda & 1 & 2 \\ 0 & 1 - \lambda & 2 \\ 0 & 0 & 2 - \lambda \end{bmatrix} = -\lambda(1 - \lambda)(2 - \lambda).$$

É claro que

$$p(\lambda) = 0 \Longleftrightarrow -\lambda(1-\lambda)(2-\lambda) = 0 \Longleftrightarrow \begin{cases} -\lambda = 0 \\ 1-\lambda = 0 \\ 2-\lambda = 0 \end{cases} \Longleftrightarrow \lambda = 0, \ \lambda = 1 \text{ ou } \lambda = 2.$$

Logo, os autovalores de T são $\lambda_1 = 0$, $\lambda_2 = 1$ e $\lambda_3 = 2$.

Determinando os autoespaços V_0 , V_1 e V_2 .

$$p(t) = a_0 + a_1 t + a_2 t^2 \in V_0 \iff a_0 + a_1 t + a_2 t^2 \in \ker(A - 0I_3) = \ker\begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\iff \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} a_0 + a_1 t + a_2 t^2 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{\mathscr{B}} \iff \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} a_1 & + 2a_2 & = 0 \\ 2a_2 & = 0 \end{cases} \iff a_1 = a_2 = 0.$$

Portanto, $V_0 = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); a_1 = a_2 = 0\} = [1].$

$$p(t) = a_0 + a_1 t + a_2 t^2 \in V_1 \iff a_0 + a_1 t + a_2 t^2 \in \ker(A - 1I_3) = \ker\begin{bmatrix} -1 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\iff \begin{bmatrix} -1 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_0 + a_1 t + a_2 t^2 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{\mathscr{B}} \iff \begin{bmatrix} -1 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} -a_0 + a_1 + 2a_2 = 0 \\ 2a_2 = 0 \iff a_2 = 0 \iff a_2 = 0 \text{ e } a_1 = a_0.$$

$$a_2 = 0$$

Portanto,
$$V_1 = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); a_2 = 0 \text{ e } a_1 = a_0\} = [1+t].$$

$$p(t) = a_0 + a_1 t + a_2 t^2 \in V_2 \iff a_0 + a_1 t + a_2 t^2 \in \ker(A - 0I_3) = \ker \begin{bmatrix} -2 & 1 & 2 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} -2 & 1 & 2 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 + a_1 t + a_2 t^2 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} -2 & 1 & 2 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} -2a_0 + a_1 + 2a_2 = 0 \\ -a_1 + 2a_2 = 0 \end{cases} \iff a_1 = 2a_2 \text{ e } a_0 = 2a_2.$$

Portanto, $V_2 = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); \ a_1 = 2a_2 \ \ \text{e} \ \ a_0 = 2a_2\} = [2 + 2t + t^2].$

(c₃) Consideremos $\mathscr{B} = \{1, t, t^2\}$ a base canônica de $\mathscr{P}_2(\mathbb{R})$, então:

$$T(1) = 3t$$
, $T(t) = 2 - t$ e $T(t^2) = 1 - t + 2t^2$.

Logo, a matriz de A de T em relação à base \mathcal{B} é $A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & -1 \\ 0 & 0 & 2 \end{bmatrix}$.

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} -\lambda & 2 & 1\\ 3 & -1 - \lambda & -1\\ 0 & 0 & 2 - \lambda \end{bmatrix}$$
$$= \lambda (1 + \lambda)(2 - \lambda) - 6(2 - \lambda) = (2 - \lambda)(\lambda^2 + \lambda - 6)$$
$$= (2 - \lambda)(\lambda - 2)(\lambda + 3) = -(\lambda - 2)^2(\lambda + 3).$$

É claro que

$$p(\lambda) = 0 \Longleftrightarrow -(\lambda - 2)^2(\lambda + 3) = 0 \Longleftrightarrow \left\{ \begin{array}{c} (\lambda - 2)^2 = 0 \\ \lambda + 3 = 0 \end{array} \right. \Longleftrightarrow \lambda = 2, \ \ \text{ou} \ \ \lambda = -3.$$

Logo, os autovalores de T são $\lambda_1 = 2$ e $\lambda_2 = -3$.

Determinando os autoespaços V_2 e V_{-3} .

$$p(t) = a_0 + a_1 t + a_2 t^2 \in V_2 \iff a_0 + a_1 t + a_2 t^2 \in \ker(A - 2I_3) = \ker\begin{bmatrix} -2 & 2 & 1 \\ 3 & -3 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} -2 & 2 & 1 \\ 3 & -3 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 + a_1 t + a_2 t^2 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \end{bmatrix}_{\mathscr{B}}$$

$$\iff \begin{bmatrix} -2 & 2 & 1 \\ 3 & -3 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} -2a_0 + 2a_1 + a_2 = 0 \\ 3a_0 - 3a_1 - a_2 = 0 \end{cases} \iff \begin{cases} -2a_0 + 2a_1 + a_2 = 0 \\ a_0 - a_1 = 0 \end{cases} \iff a_1 = a_0 \in a_2 = 0.$$

Portanto, $V_2 = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathcal{P}_2(\mathbb{R}); a_1 = a_0 \text{ e } a_2 = 0\} = [1+t].$

$$p(t) = a_0 + a_1 t + a_2 t^2 \in V_{-3} \iff a_0 + a_1 t + a_2 t^2 \in \ker(A + 3I_3) = \ker\begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & -1 \\ 0 & 0 & 5 \end{bmatrix}$$

$$\iff \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & -1 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} a_0 + a_1 t + a_2 t^2 \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{\mathscr{B}} \iff \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & -1 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} 3a_0 + 2a_1 + a_2 = 0 \\ 3a_0 + 2a_1 - a_2 = 0 \\ 5a_2 = 0 \end{cases} \iff a_1 = \frac{3}{2}a_0 \text{ e } a_2 = 0.$$

Portanto, $V_{-3} = \{p(t) = a_0 + a_1t + a_2t^2 \in \mathscr{P}_2(\mathbb{R}); a_1 = \frac{3}{2}a_0 \text{ e } a_2 = 0.\} = [2+3t].$

(d) T operador sobre \mathbb{R}^4 .

$$(d_1)$$
 $T(x, y, z, w) = (x + y, y, 2z + w, 2z + w).$

(d₂) A matriz de
$$T$$
 em relação à base canônica de \mathbb{R}^4 é: $A = \begin{bmatrix} -1 & -4 & -2 & -2 \\ -4 & -1 & -2 & -2 \\ 2 & 2 & 1 & 4 \\ 2 & 2 & 4 & 1 \end{bmatrix}$.

Solução:

 (d_1) Consideremos \mathscr{B} a base canônica de \mathbb{R}^4 , então:

$$T(1,0,0,0) = (1,0,0,0),$$
 $T(0,1,0,0) = (1,1,0,0)$

$$T(0,0,1,0) = (0,0,2,2)$$
 e $T(0,0,0,1) = (0,0,1,1)$.

Logo, a matriz de A de T em relação à base \mathscr{B} é $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \end{bmatrix}$.

Portanto, o polinômio característico de *T* é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} 1 - \lambda & 1 & 0 & 0 \\ 0 & 1 - \lambda & 0 & 0 \\ 0 & 0 & 2 - \lambda & 1 \\ 0 & 0 & 2 & 1 - \lambda \end{bmatrix}$$
$$= (1 - \lambda) \left((1 - \lambda)^2 (2 - \lambda) - 2(1 - \lambda) \right)$$
$$= (1 - \lambda) (1 - \lambda) \left((1 - \lambda)(2 - \lambda) - 2 \right) = (1 - \lambda)^2 \lambda (\lambda - 3).$$

É claro que

$$p(\lambda) = 0 \Longleftrightarrow (1 - \lambda)^2 \lambda (\lambda - 3) = 0 \Longleftrightarrow \begin{cases} (1 - \lambda)^2 = 0 \\ \lambda = 0 \\ \lambda - 3 = 0 \end{cases}$$

$$\iff \lambda = 1, \ \lambda = 0 \text{ ou } \lambda = 3.$$

Logo, os autovalores de T são $\lambda_1 = 1$, $\lambda_2 = 0$ e $\lambda_3 = 3$.

Determinando os autoespaços V_1 , V_0 e V_3 .

$$(x, y, z, w) \in V_1 \iff (x, y, z, w) \in \ker(A - 1I_4) = \ker\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} y = 0 \\ z + w = 0 \\ 2z = 0 \end{cases} \iff y = z = w = 0.$$

Portanto,
$$V_1 = \{(x, y, z, w) \in \mathbb{R}^4; y = z = w = 0\} = [(1, 0, 0, 0)].$$

$$(x, y, z, w) \in V_0 \iff (x, y, z, w) \in \ker(A - 0I_4) = \ker\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

$$\iff \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} x+y=0 \\ y=0 \\ 2z+w=0 \end{cases} \iff \begin{cases} x=y=0 \\ w=-2z \end{cases}$$

Portanto,

$$V_0 = \{(x, y, z, w) \in \mathbb{R}^4; x = y = 0 \text{ e } w = -2z\} = [(0, 0, 1, -2)].$$

$$(x, y, z, w) \in V_3 \iff (x, y, z, w) \in \ker(A - 3I_4) = \ker\begin{bmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 2 & -2 \end{bmatrix}$$

$$\iff \begin{bmatrix} -2 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} -2x + y = 0 \\ -2y = 0 \\ -z + w = 0 \\ 2z - 2w = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \\ w = z \end{cases}.$$

Portanto,

$$V_3 = \{(x, y, z) \in \mathbb{R}^4; x = y = 0 \text{ e } w = z\} = [(0, 0, 1, 1)].$$

(d₂) Como a matriz de A de T em relação à base \mathscr{B} é $A=\begin{bmatrix} -1 & -4 & -2 & -2 \\ -4 & -1 & -2 & -2 \\ 2 & 2 & 1 & 4 \\ 2 & 2 & 4 & 1 \end{bmatrix}$, então o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_3) = \det\begin{bmatrix} -1 - \lambda & -4 & -2 & -2 \\ -4 & -1 - \lambda & -2 & -2 \\ 2 & 2 & 1 - \lambda & 4 \\ 2 & 2 & 4 & 1 - \lambda \end{bmatrix}$$

$$= (-1 - \lambda) \begin{vmatrix} -1 - \lambda & -2 & -2 \\ 2 & 1 - \lambda & 4 \\ 2 & 4 & 1 - \lambda \end{vmatrix} + 4 \begin{vmatrix} -4 & -2 & -2 \\ 2 & 1 - \lambda & 4 \\ 2 & 4 & 1 - \lambda \end{vmatrix}$$

$$= (-1 - \lambda) \begin{pmatrix} -4 & -1 - \lambda & -2 \\ 2 & 2 & 4 \\ 2 & 2 & 1 - \lambda \end{vmatrix} + 2 \begin{vmatrix} -4 & -1 - \lambda & -2 \\ 2 & 2 & 1 - \lambda \\ 2 & 2 & 1 - \lambda \end{vmatrix}$$

$$= (-1 - \lambda) \left((-1 - \lambda)(1 - \lambda)^2 - 8 + 8\lambda \right) + 4(36 - 4\lambda^2) - 2(18 - 2\lambda^2) + 2(-18 + 4\lambda^2)$$

$$= \lambda^4 - 18\lambda^2 + 81 = (\lambda^2 - 9)^2 = (\lambda - 3)^2(\lambda + 3)^2.$$

É claro que

$$p(\lambda) = 0 \Longleftrightarrow (\lambda - 3)^2 (\lambda + 3)^2 = 0 \Longleftrightarrow \begin{cases} (\lambda - 3)^2 = 0 \\ (\lambda + 3)^2 = 0 \end{cases} \Longleftrightarrow \lambda = 3 \text{ ou } \lambda = -3.$$

Logo, os autovalores de T são $\lambda_1 = 3$ e $\lambda_2 = -3$.

Determinando os autoespaços V_3 e V_{-3} .

$$(x, y, z, w) \in V_3 \iff (x, y, z, w) \in \ker(A - 3I_4) = \ker\begin{bmatrix} -4 & -4 & -2 & -2 \\ -4 & -4 & -2 & -2 \\ 2 & 2 & -2 & 4 \\ 2 & 2 & 4 & -2 \end{bmatrix}$$

$$\iff \begin{bmatrix} -4 & -4 & -2 & -2 \\ -4 & -4 & -2 & -2 \\ 2 & 2 & -2 & 4 \\ 2 & 2 & 4 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} -4x - 4y - 2z - 2w = 0 \\ 2x + 2y - 2z + 4w = 0 \\ 2x + 2y + 4z - 2w = 0 \end{cases}$$

$$\iff \left\{ \begin{array}{l} x+y-z+2w=0 \\ 3z-3w=0 \end{array} \right. \iff \left\{ \begin{array}{l} w=z \\ x=-y-z \end{array} \right.$$

Portanto, $V_3 = \{(x, y, z, w) \in \mathbb{R}^4; z = w \text{ e } x = -y - z\} = [(-1, 1, 0, 0), (-1, 0, 1, 1)].$

$$(x, y, z, w) \in V_{-3} \iff (x, y, z, w) \in \ker(A + 3I_4) = \ker\begin{bmatrix} 2 & -4 & -2 & -2 \\ -4 & 2 & -2 & -2 \\ 2 & 2 & 4 & 4 \\ 2 & 2 & 4 & 4 \end{bmatrix}$$

$$\iff \begin{bmatrix} 2 & -4 & -2 & -2 \\ -4 & 2 & -2 & -2 \\ 2 & 2 & 4 & 4 \\ 2 & 2 & 4 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} 2x - 4y - 2z - 2w = 0 \\ -4x + 2y - 2z - 2w = 0 \\ 2x + 2y + 4z + 4w = 0 \end{cases} \iff \begin{cases} x - 2y - z - w = 0 \\ 3x - 3y = 0 \end{cases} \iff \begin{cases} x = y \\ z = -x - w \end{cases}$$

Portanto, $V_{-3} = \{(x, y, z, w) \in \mathbb{R}^4; y = x \text{ e } z = -x - w\} = [(1, 1, -1, 0), (0, 0, -1, 1)].$

(e) *T* operador sobre $M_2(\mathbb{R})$.

(e₁)
$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} 2a+b & 2b \\ 2c & 2d \end{bmatrix}$$
.

(e₂)
$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+b & b \\ 0 & c-a-b \end{bmatrix}$$
.

Solução:

(e₁) Consideremos $\mathscr{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ a base canônica de $M_2(\mathbb{R})$, então:

$$T\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \ \,) = \left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right] = 2 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right],$$

$$T\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \ \,) = \left[\begin{array}{cc} 1 & 2 \\ 0 & 0 \end{array} \right] = 1 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + 2 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right],$$

$$T\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \ \right) = \left[\begin{array}{cc} 0 & 0 \\ 2 & 0 \end{array} \right] = 0 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + 2 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right],$$

$$T\left(\left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right] = 0 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + 2 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right].$$

Logo, a matriz de A de T em relação à base \mathscr{B} é $A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$.

Portanto, o polinômio característico de *T* é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_4) = \det\begin{bmatrix} 2 - \lambda & 1 & 0 & 0 \\ 0 & 2 - \lambda & 0 & 0 \\ 0 & 0 & 2 - \lambda & 0 \\ 0 & 0 & 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda)^4.$$

É claro que

$$p(\lambda) = 0 \iff (2 - \lambda)^4 = 0 \iff \lambda = 2.$$

Logo, o único autovalor de T é $\lambda_1 = 2$.

Determinando o autoespaço V_2 .

Portanto,
$$V_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}); \ b = 0 \right\} = \left[\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right].$$

(e₂) Consideremos $\mathscr{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ a base canônica de $M_2(\mathbb{R})$, então:

$$T\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = 1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} - 1 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

$$T\left(\left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \right) = \left[\begin{array}{cc} 1 & 1 \\ 0 & -1 \end{array} \right] = 1 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + 1 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] - 1 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right],$$

$$T\left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \ \, \right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] = 0 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + 1 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right],$$

$$T\left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \ \, \right) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] = 0 \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] + 0 \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right].$$

Logo, a matriz de A de T em relação à base $\mathscr{B} \notin A = \left[\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 \end{array} \right].$

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_4) = \det\begin{bmatrix} 1 - \lambda & 1 & 0 & 0 \\ 0 & 1 - \lambda & 0 & 0 \\ 0 & 0 & -\lambda & 0 \\ -1 & -1 & 1 & -\lambda \end{bmatrix} = \lambda^2 (1 - \lambda)^2.$$

É claro que

$$p(\lambda) = 0 \iff \lambda^2 (1 - \lambda)^2 = 0 \iff \lambda = 0 \text{ ou } \lambda = 1.$$

Logo, os autovalores de T são $\lambda_1 = 0$ e $\lambda_2 = 1$.

Determinando os autoespaços V_0 e V_1 .

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in V_0 \iff \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(A - 0I_4) = \ker\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 \end{bmatrix}$$

$$\iff \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{\mathscr{B}}$$

$$\iff \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} a+b=0 \\ b=0 \iff a=b=c=0. \\ -a-b+c=0 \end{cases}$$

Portanto,

$$V_0 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}); \ a = b = c = 0 \right\} = \begin{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}.$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in V_1 \iff \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(A - 1I_4) = \ker \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -1 & -1 & 1 & -1 \end{bmatrix}$$

$$\iff \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{\mathscr{B}} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{\mathscr{B}}$$

$$\iff \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ -1 & -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\iff \begin{cases} b=0\\ -c=0 \iff b=c=0 \text{ e } d=-a.\\ -a-b+c-d=0 \end{cases}$$

Portanto,
$$V_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}); b = c = 0 \text{ e } d = -a \right\} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right].$$

- (f) T operador sobre \mathbb{C}^2 .
 - (f_1) T(z,w) = (-w, z).
 - (f₂) T(z,w) = (4z + 2iw, -2iz + 4w).

Solução:

(f1) Consideremos $\mathscr{B}=\left\{(1,\,0),\,(0,\,1)\right\}$ a base canônica de \mathbb{C}^2 , então:

$$T(1, 0) = (0, 1)$$
 e $T(0, 1) = (-1, 0)$.

Logo, a matriz de A de T em relação à base \mathscr{B} é $A=\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]$.

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_2) = \det \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} = \lambda^2 + 1.$$

É claro que

$$p(\lambda) = 0 \iff \lambda^2 + 1 = 0 \iff \lambda^2 = -1 \iff \lambda = i \text{ ou } \lambda = -i.$$

Logo, os autovalores de T são $\lambda_1 = i$ e $\lambda_2 = -i$.

Determinando os autoespaços V_i e V_{-i} .

$$(z,w) \in V_i \iff (z,w) \in \ker(A - iI_2) = \ker\begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix}$$

$$\iff \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{cases} -iz - w = 0 \\ z - iw = 0 \end{cases} \iff w = -iz.$$

Portanto, $V_i = \{(z, w) \in \mathbb{C}^2; w = -iz\} = [(1, -i)].$

$$(z,w) \in V_{-i} \iff (z,w) \in \ker(A+iI_2) = \ker\begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix}$$
$$\iff \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{cases} iz & -w & = 0 \\ z & +iw & = 0 \end{cases} \iff w = iz.$$

Portanto, $V_{-i} = \{(z, w) \in \mathbb{C}^2; w = iz\} = [(1, i)].$

(f2) Consideremos $\mathscr{B}=\left\{(1,\,0),\,(0,\,1)\right\}$ a base canônica de \mathbb{C}^2 , então:

$$T(1, 0) = (4, -2i)$$
 e $T(0, 1) = (2i, 4)$.

Logo, a matriz de A de T em relação à base \mathscr{B} é $A = \begin{bmatrix} 4 & 2i \\ -2i & 4 \end{bmatrix}$.

Portanto, o polinômio característico de T é dado por:

$$p(\lambda) = p_A(\lambda) = \det(A - \lambda I_2) = \det\begin{bmatrix} 4 - \lambda & 2i \\ -2i & 4 - \lambda \end{bmatrix}$$
$$= (4 - \lambda)^2 + 4i^2 = \lambda^2 - 8\lambda + 16 - 4$$
$$= \lambda^2 - 8\lambda + 12 = (\lambda - 2)(\lambda - 6).$$

É claro que

$$p(\lambda) = 0 \Longleftrightarrow (\lambda - 2)(\lambda - 6) = 0 \Longleftrightarrow \left\{ \begin{array}{l} \lambda - 2 = 0 \\ \lambda - 6 = 0 \end{array} \right. \Longleftrightarrow \lambda = 2 \ \ \text{ou} \ \ \lambda = 6.$$

Logo, os autovalores de T são $\lambda_1 = 2$ e $\lambda_2 = 6$.

Determinando os autoespaços V_2 e V_6 .

$$(z,w) \in V_2 \iff (z,w) \in \ker(A - 2I_2) = \ker\begin{bmatrix} 2 & 2i \\ -2i & 2 \end{bmatrix}$$

$$\iff \begin{bmatrix} 2 & 2i \\ -2i & 2 \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{cases} 2z + 2iw = 0 \\ -2iz + 2w = 0 \end{cases} \iff z = -iw.$$

Portanto, $V_2 = \{(z, w) \in \mathbb{C}^2; w = iz\} = [(-i, 1)].$

$$(z,w) \in V_6 \iff (z,w) \in \ker(A+6I_2) = \ker\begin{bmatrix} -2 & 2i \\ -2i & -2 \end{bmatrix}$$

$$\iff \begin{bmatrix} -2 & 2i \\ -2i & -2 \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff \begin{cases} -2z + 2iw = 0 \\ -2iz - 2w = 0 \end{cases} \iff z = iw.$$

Portanto, $V_6 = \{(z, w) \in \mathbb{C}^2; z = iw\} = [(i, 1)].$

- (g) Seja A uma matriz quadrada de ordem n, mostre que:
 - (g₁) O polinômio característico de A^T , a transposta de A, coincide com o polinômio característico de A, ou seja, $p_{A^T}(\lambda) = p_A(\lambda)$.
 - (g₂) Se A é matriz diagonal ou matriz triangular, então os autovalores de A são os elementos da diagonal principal.
 - (g₃) Se A é invertível, então 0 não é autovalor de A.
 - (g₄) Se A é invertível e λ_1 é um autovalor de A, então $\frac{1}{\lambda_1}$ é autovalor de A^{-1} .

Solução:

(g₁) Seja $p_A(\lambda) = (A - \lambda I_n)$ o polinômio característico de A, então o polinômio característico de A^T é dado por $p_{A^T}(\lambda) = \det(A^T - \lambda I_n)$ e

$$p_{A^T}(\lambda) = \det(A^T - \lambda I_n) = \det(A^T - \lambda I_n^T) = \det(A - \lambda I_n)^T = \det(A - \lambda I_n) = p_A(\lambda).$$

(g₂) Se A é diagonal ou triangular, então a matriz $A - \lambda I_n$ também é diagonal ou triangular, com elementos da diagonal:

$$a_{11}-\lambda$$
, $a_{22}-\lambda$, \cdots , $a_{nn}-\lambda$.

Como o determinante de uma matriz diagonal ou triangular é o produto dos elementos da diagonal principal segue que:

$$p_A(\lambda) = (a_{11} - \lambda) \cdot (a_{22} - \lambda) \cdot \cdots \cdot (a_{nn} - \lambda),$$

cujas raízes são:

$$a_{11}, a_{22}, \cdots, a_{nn}.$$

(g₃) 0 é uma raiz do polinômio característico de A, se, e somente se,

$$p(0) = 0 \iff \det(A - 0I_n) = 0 \iff \det A = 0 \iff A \text{ não \'e invertível}$$

Portanto, A é invertível se, e somente se, 0 não é autovalor de A.

(g₄) Como λ_1 é um autovalor de A e A é invertível, pelo item anterior sabemos que $\lambda_1 \neq 0$, além disso $\det(A - \lambda_1 I_n) = 0$.

Logo,

$$\det(A - \lambda_1 I_n) \cdot \det A^{-1} = 0 \iff \det\left((A - \lambda_1 I_n)A^{-1}\right) = 0 \iff \det(A \cdot A^{-1} - \lambda_1 A^{-1}) = 0$$

$$\iff \det(I_n - \lambda_1 A^{-1}) = 0 \iff \det\left((-\lambda_1)\left(A^{-1} - \frac{1}{\lambda_1}I_n\right)\right) = 0$$

$$\iff (-\lambda_1)^n \det\left(A^{-1} - \frac{1}{\lambda_1}I_n\right) = 0 \stackrel{\lambda_1 \neq 0}{\Longrightarrow} \det\left(A^{-1} - \frac{1}{\lambda_1}I_n\right) = 0 \iff p_{A^{-1}}\left(\frac{1}{\lambda_1}\right) = 0.$$

Consequentemente, $\frac{1}{\lambda_1}$ é autovalor de A^{-1} .

Observações 7.2.5 (a) Se V é um espaço vetorial de dimensão n sobre \mathbb{R} e T é um operador linear sobre V, então o polinômio característico de T, $p_T(\lambda)$, é um polinômio de grau n na variável λ com coeficientes reais.

Consequentemente, $p_T(\lambda)$ tem no máximo n raízes reais.

De acordo com o demonstrado no apêndice destas notas, uma consequência do Teorema 4.3.10 é que se n é um número ímpar, então $p_T(\lambda)$ tem um número ímpar de raízes reais.

Portanto, se $\dim V$ é impar, então o operador T pelo menos um autovalor.

(b) Se V é um espaço vetorial de dimensão n sobre \mathbb{C} e T é um operador linear sobre V, então o polinômio característico de T, $p_T(\lambda)$, é um polinômio de grau n na variável λ com coeficientes complexos.

O polinômio $p_T(\lambda)$ tem exatamente *n* raízes, podendo ocorrer raízes repetidas.

Portanto, neste caso o operador T pelo menos um autovalor.

7.3 Diagonalização de Operadores Lineares

Sejam V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n, e $T:V\longrightarrow V$ um operador linear, a obtenção dos autovalores e autovetores de T é importante, pois em alguns casos podemos encontrar uma base \mathscr{B} de V constituída de autovetores tal que a matriz de T em relação à essa base é diagonal, assim obteríamos a representação mais simples do operador T.

No exemplo (a_1) acima o operador de \mathbb{R}^2 dado por: $T(x,y)=(y,\,9x)$ tem dois autovalores: $\lambda_1=3$ e $\lambda_2=-3$ com autoespaços:

$$V_3 = [(1, 3)]$$
 e $V_{-3} = [(1, -3)]$.

Observemos que $\mathscr{B} = \{(1, 3), (1, -3)\}$ é uma base de \mathbb{R}^2 e que:

$$T(1, 3) = (3,9) = 3(1, 3) + 0(1-3)$$

 $T(1, -3) = (-3,9) = 0(1, 3) + (-3)(1, -3).$

Portanto,

$$[T]_{\mathscr{B}} = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$$
 é uma matriz diagonal.

Já no exemplo (a₂) acima o operador de \mathbb{R}^3 dado por T(x,y,z)=(x,y,x) tem dois autovalores: $\lambda_1=0$ e $\lambda_2=1$ com autoespaços:

$$V_0 = [(0, 0, 1)]$$
 e $V_1 = [(1, 0, 1), (0, 1, 0)].$

Novamente $\mathcal{B} = \{(0, 0, 1), (1, 0, 1), (0, 1, 0)\}$ é uma base de \mathbb{R}^3 e temos:

$$T(0, 0, 1) = (0, 0, 0) = 0(0, 0, 1) + 0(1, 0, 1) + 0(0, 1, 0)$$

$$T(1, 0, 1) = (1, 0, 1) = 0 (0, 0, 1) + 1 (1, 0, 1) + 0 (0, 1, 0)$$

$$T(0, 1, 0) = (0, 0, 1) = 0 (0, 0, 1) + 0 (1, 0, 1) + 1 (0, 1, 0).$$

Logo,

$$[T]_{\mathscr{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{\'e uma matriz diagonal}.$$

Os operadores acima são chamados operadores diagonalizáveis, mais precisamente temos a seguinte definição:

Definição 7.3.1 Seja V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n. Dizemos que um operador linear $T:V\longrightarrow V$ é **diagonalizável** se existe \mathscr{B} uma base ordenada de V tal que $[T]_{\mathscr{B}}$ é uma matriz diagonal.

Observação 7.3.1 A existência de autovalores não implica que T é um operador diagonalizável, no exemplo 4(a) operador de \mathbb{R}^4 dado por $T(x,y,z,w)=(x+y,\ y,\ 2z+w,\ 2z+w)$ tem três autovalores: $\lambda_1=1,\ \lambda_2=0$ e $\lambda_3=3$, com autoespaços:

$$V_1 = [(1, 0, 0, 0)], \quad V_0 = [(0, 0, 1, -2)] \quad e \quad V_3 = [(0, 0, 1, 1)].$$

Embora o conjunto $\mathcal{B} = \{(1, 0, 0, 0), (0, 0, 1, -2), (0, 0, 1, 1)\}$ seja um subconjunto L.I. de \mathbb{R}^4 não é uma base, pois contém apenas três vetores.

De modo geral temos o seguinte resultado:

Teorema 7.3.2 Sejam V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n, e $T:V\longrightarrow V$ um operador linear que possui autovalores distintos $\lambda_1,\ \lambda_2,\ \cdots,\ \lambda_k$. Se $\mathscr{B}_1=\{v_{11},\ \cdots,\ v_{1n_1}\}$, $\mathscr{B}_2=\{v_{21},\ \cdots,\ v_{2n_2}\},\cdots,\mathscr{B}_k=\{v_{k1},\ \cdots,\ v_{kn_k}\}$ são bases, respectivamente, dos autoespaços $V(\lambda_1)$, $V(\lambda_2),\cdots,V(\lambda_k)$, então $\mathscr{B}=\mathscr{B}_1\cup\mathscr{B}_2\cup\cdots\cup\mathscr{B}_k$ é um subconjunto linearmente independente de V.

Demonstração: Sejam $\alpha_{11}, \dots, \alpha_{1n_1}, \alpha_{21}, \dots, \alpha_{2n_2}, \dots, \alpha_{k1}, \dots \alpha_{kn_k}$ em \mathbb{K} tais que:

$$\alpha_{11}v_{11} + \dots + \alpha_{1n_1}v_{1n_1} + \alpha_{21}v_{21} + \dots + \alpha_{2n_2}v_{2n_2} + \dots + \alpha_{k1}v_{k1} + \dots + \alpha_{kn_k}v_{kn_k} = 0_V. \quad (7.3.1)$$

Multiplicando 7.3.1 por λ_1 obtemos:

$$\lambda_{1}\alpha_{11}v_{11} + \dots + \lambda_{1}\alpha_{1n_{1}}v_{1n_{1}} + \lambda_{1}\alpha_{21}v_{21} + \dots + \lambda_{1}\alpha_{2n_{2}}v_{2n_{2}} + \dots + \lambda_{1}\alpha_{kn_{k}}v_{k1} + \dots + \lambda_{1}\alpha_{kn_{k}}v_{kn_{k}} = 0_{V}.$$
(7.3.2)

Aplicando o operador *T* em 7.3.1 obtemos:

$$\lambda_{1}\alpha_{11}v_{11} + \dots + \lambda_{1}\alpha_{1n_{1}}v_{1n_{1}} + \lambda_{2}\alpha_{21}v_{21} + \dots + \lambda_{2}\alpha_{2n_{2}}v_{2n_{2}} + \dots + \lambda_{k}\alpha_{k1}v_{k1} + \dots + \lambda_{k}\alpha_{kn_{k}}v_{kn_{k}} = 0_{V}.$$
(7.3.3)

Subtraindo 7.3.3 de 7.3.4 obtemos:

$$(\lambda_2 - \lambda_1)\alpha_{21}\nu_{21} + \dots + (\lambda_2 - \lambda_1)\alpha_{2n_2}\nu_{2n_2} + \dots + (\lambda_k - \lambda_1)\alpha_{k1}\nu_{k1} + \dots + (\lambda_k - \lambda_1)\alpha_{kn_k}\nu_{kn_k} = 0_V.$$
(7.3.4)

Repetindo esse processo sucessivamente, de multiplicar a equação resultante pelo próximo autovalor, aplicar T na equação e subtraí-las, (k-2) vezes obtemos:

$$(\lambda_k - \lambda_{k-1}) \cdots (\lambda_k - \lambda_2)(\lambda_k - \lambda_1) \alpha_{k1} v_{k1} + \cdots + (\lambda_k - \lambda_{k-1}) \cdots (\lambda_k - \lambda_2)(\lambda_k - \lambda_1) \alpha_{kn_k} v_{kn_k} = 0_V.$$

Como $\mathscr{B}_k = \{v_{k1}, \cdots, v_{kn_k}\}$ é base, seus vetores são L.I. e os autovalores $\lambda_1, \lambda_2, \cdots, \lambda_k$ são distintos, segue que $\alpha_{k1} = \cdots = \alpha_{kn_k} = 0$.

Substituindo nas equações anteriores obtemos:

$$\alpha_{11} = \cdots = \alpha_{1n_1} = \alpha_{21} = \cdots = \alpha_{2n_2} = \cdots = \alpha_{k1} = \cdots = \alpha_{kn_k} = 0.$$

Portanto, $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2 \cup \cdots \cup \mathscr{B}_k$ é um subconjunto linearmente independente de V.

Corolário 7.3.3 No teorema acima se $n_1 + n_2 + \cdots + n_k = n$, então $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \cdots \cup \mathcal{B}_k$ é base de V. Além disso:

$$[T]_{\mathscr{B}} = \begin{bmatrix} \lambda_1 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & \lambda_1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \lambda_2 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \vdots & \ddots & \vdots & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & \lambda_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \ddots & \cdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & \lambda_k & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & \lambda_k \end{bmatrix}.$$

Corolório 7.3.4 Sejam V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n, e $T:V\longrightarrow V$ um operador linear, então temos:

- (i) T tem no máximo n autovalores distintos.
- (ii) Se T possui n autovalores distintos, então, T é um operador diagonalizável.

Demonstração:

(i) Se T tivesse k autovalores distintos $\lambda_1, \dots, \lambda_k$, com k > n, então v_1, \dots, v_k os autovetores associados, respectivamente, a $\lambda_1, \dots, \lambda_k$ formaria um subconjunto L. I. de V, mas dimV = n, contrariando o fato de que qualquer subconjunto de um espaço vetorial de dimensão n tem no máximo n elementos.

Portanto, T tem no máximo n autovalores distintos.

(ii) Se T possui n autovalores distintos: $\lambda_1, \dots, \lambda_n$, então pelo teorema 7.3.2 o conjunto

$$\mathscr{B} = \{v_1, \dots, v_n\}$$

é um subconjunto L. I. de V, como dimV = n segue que \mathscr{B} é uma base de V.

Além disso,

$$T(v_1) = \lambda_1 v_1 = \lambda_1 v_1 + 0 v_2 + \cdots + 0 v_n$$

 $T(v_2) = \lambda_2 v_2 = 0 v_1 + \lambda_2 v_2 + \cdots + 0 v_n$
 \vdots
 $T(v_n) = \lambda_n v_n = 0 v_1 + 0 v_2 + \cdots + \lambda_n v_n.$

Logo,

$$[T]_{\mathscr{B}} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}, \text{ ou seja, } T \text{ \'e diagonaliz\'avel.}$$

Teorema 7.3.5 Sejam V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n, e $T:V\longrightarrow V$ um operador linear, então T é diagonalizável se, e somente se, existe uma base ordenada \mathscr{B} para V constituída de autovetores de T.

Demonstração: Seja $\mathcal{B} = \{v_1, \dots, v_n\}$ base ordenada de V de autovetores e sejam $\lambda_1, \dots, \lambda_n$ os respectivos autovalores de T, não necessariamente distintos, então temos:

$$T(v_1) = \lambda_1 v_1 = \lambda_1 v_1 + 0 v_2 + \cdots + 0 v_n$$

 $T(v_2) = \lambda_2 v_2 = 0 v_1 + \lambda_2 v_2 + \cdots + 0 v_n$
 \vdots
 $T(v_n) = \lambda_n v_n = 0 v_1 + 0 v_2 + \cdots + \lambda_n v_n.$

Logo,

$$[T]_{\mathscr{B}} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}, \quad \text{\'e matriz diagonal}.$$

Consequentemente, T é operador diagonalizável.

Reciprocamente, suponhamos que existe $\mathscr{B} = \{u_1, u_2, \dots, u_n\}$ base ordenada de V tal que $[T]_{\mathscr{B}}$ é matriz diagonal, mostremos que os vetores de \mathscr{B} são autovetores de T. Como $[T]_{\mathscr{B}}$ é matriz diagonal, então

$$[T]_{\mathscr{B}} = \left[egin{array}{cccc} \mu_1 & 0 & \cdots & 0 \\ 0 & \mu_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \mu_n \end{array}
ight],$$

com $\mu_1, \mu_2, \dots, \mu_n$ escalares em \mathbb{K} .

Além disso, escrevendo os vetores de \mathscr{B} em relação à \mathscr{B} obtemos:

$$T(u_1) = \mu_1 u_1 + 0 u_2 + \cdots 0 u_n = \mu_1 u_1$$

$$T(u_2) = 0 u_1 + \mu_2 u_2 + \cdots 0 u_n = \mu_2 u_2$$

$$\vdots$$

$$T(u_n) = 0 u_1 + 0 u_2 + \cdots + \mu_n u_n = \mu_n u_n.$$

Portanto, $\mu_1, \mu_2, \dots, \mu_n$ são autovalores de T e u_1, u_2, \dots, u_n são os autovetores associados, respectivamente.

Consequentemente, $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ é uma base de V constituída de autovetores.

Teorema 7.3.6 Sejam V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n, e $T:V\longrightarrow V$ um operador linear, então T é diagonalizável se, e somente se, os $\lambda_1, \dots, \lambda_k$ de T são tais que

$$\dim V = \dim(V_{\lambda_1}) + \cdots + \dim(V_{\lambda_k}).$$

Definição 7.3.2 Sejam V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n, e $T:V\longrightarrow V$ um operador linear. Dado λ_i um autovalor de T a **multiplicidade algébrica** de λ_i é quantidade de vezes que ele aparece como raiz do polinômio característico $p_T(\lambda)$.

Notação: $m_A(\lambda_i)$.

Proposição 7.3.7 Se λ_i é um autovalor de um operador linear $T: V \longrightarrow V$, então a multiplicidade geométrica de λ_i é menor ou igual à multiplicidade algébrica de λ_i , ou seja, $m_G(\lambda_i) \leq m_A(\lambda_i)$.

Teorema 7.3.8 Sejam V um espaço vetorial sobre um corpo \mathbb{K} , de dimensão finita n, e $T:V\longrightarrow V$ um operador linear, então T é diagonalizável se, e somente se,

- (i) O polinômio característico de T possui todas as raízes em \mathbb{K} .
- (ii) A multiplicidade algébrica de cada autovalor λ_i de T é igual à multiplicidade geométrica de λ_i , ou seja, $m_A(\lambda_i) = m_G(\lambda_i)$.

Exemplos 7.3.9 Verifique em cada um casos abaixo se o operador linear T é diagonalizável, em caso afirmativo determine uma base \mathscr{B} do espaço vetorial correspondente tal que $[T]_{\mathscr{B}}$ é uma matriz diagonal.

- (a) T operador sobre \mathbb{R}^2 .
 - (a₁) T(x,y) = (y, 9x).
 - (a₂) T(x,y) = (-y, x).

Solução:

(a₁) Vimos que os autovalores de T são $\lambda_1 = 3$ e $\lambda_2 = -3$, como T é um operador linear de \mathbb{R}^2 e dim $\mathbb{R}^2 = 2$, segue que T é diagonalizável.

Como $V_3 = [(1, 3)]$ e $V_{-3} = [(1, -3)]$, podemos tomar a seguinte base de \mathbb{R}^2 :

$$\mathscr{B} = \{(1, 3), (1, -3)\}, \quad \text{assim} \quad [T]_{\mathscr{B}} = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}.$$

- (a₂) Vimos que T não tem autovalores, portanto o operador T não é diagonalizável.
- (b) T operador sobre \mathbb{R}^3 .
 - (b₁) T(x, y, z) = (x, y, x).
 - (b₂) T(x,y,z) = (x+z, y+z, x+y+2z).
 - (b₃) T(1,1,1) = (4,9,-4), T(0,1,1) = (2,7,-3), T(0,0,1) = (1,4,-2).

Solução:

(b₁) Os autovalores de T são $\lambda_1 = 0$ e $\lambda_2 = 1$, neste caso o número de autovalores distintos é menor que a dimensão do espaço, assim vamos utilizar as multiplicidades dos autovalores para verificar se T é diagonalizável.

Vimos que $p(\lambda) = -\lambda(1-\lambda)^2$, com todas as raízes em \mathbb{R} , daí segue que $m_A(0) = 1$) e $m_A(1) = 2$.

Como os autoespaços correspondentes são: $V_0 = [(0, 0, 1)]$ e $V_1 = [(1, 0, 1), (0, 1, 0)]$, consequentemente $m_G(0) = 1$ e $m_G(1) = 2$.

Portanto, T é um operador diagonalizável, podemos tomar a seguinte base de \mathbb{R}^3

$$\mathcal{B} = \{(0, 0, 1), (1, 0, 1), (0, 1, 0)\}, \text{ assim } [T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(b₂) Os autovalores de T são $\lambda_1 = 1$, $\lambda_2 = 0$ e $\lambda_3 = 3$, como T é um operador linear de \mathbb{R}^3 e dim $\mathbb{R}^3 = 3$, segue que T é diagonalizável.

Como $V_1 = [(1, -1, 0)], V_0 = [(-1, -1, 1)]$ e $V_3 = [(1, 1, 2)]$, podemos tomar seguinte base de \mathbb{R}^3 :

$$\mathcal{B} = \{(1, -1, 0), (-1, -1, 1), (1, 1, 2)\}, \text{ assim } [T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

(b₃) Os autovalores de T são $\lambda_1 = 1$, $\lambda_2 = -1$ e $\lambda_3 = 3$, como T é um operador linear de \mathbb{R}^3 e dim $\mathbb{R}^3 = 3$, segue que T é diagonalizável.

Como $V_1 = [(1, -1, 0)], V_{-1} = [(0, 1, -1)]$ e $V_3 = [(-2, -3, 1)]$, podemos tomar seguinte base de \mathbb{R}^3 :

$$\mathcal{B} = \{(1, -1, 0), (0, 1, -1), (-2, -3, 1)\}, \quad \text{assim} \quad [T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- (c) T operador sobre $\mathscr{P}_2(\mathbb{R})$.
 - (c₁) $T(p(t)) = p(0) + p(1)(t+t^2)$.
 - (c₂) T(p(t)) = (1+t)p'(t) + p''(t).
 - (c₃) $T(a_0 + a_1t + a_2t^2) = (2a_1 + a_2) + (3a_0 a_1 a_2)t + 2a_2t^2$.

Solução:

(c₁) Os autovalores de T são $\lambda_1 = 1$, $\lambda_2 = 0$ e $\lambda_3 = 2$, como T é um operador linear de $\mathscr{P}_2(\mathbb{R})$ e dim $\mathscr{P}_2(\mathbb{R}) = 3$, segue que T é diagonalizável.

Como $V_1 = [1 - t - t^2]$, $V_0 = [t - t^2]$ e $V_2 = [t + t^2]$, tomamos a seguinte base de $\mathscr{P}_2(\mathbb{R})$:

$$\mathcal{B} = \{1 - t - t^2, t - t^2, t + t^2\}, \quad \text{assim} \quad [T]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

(c₂) Os autovalores de T são $\lambda_1 = 0$, $\lambda_2 = 1$ e $\lambda_3 = 2$, como T é um operador linear de $\mathscr{P}_2(\mathbb{R})$ e dim $\mathscr{P}_2(\mathbb{R}) = 3$, segue que T é diagonalizável.

Como $V_0 = [1]$, $V_1 = [1+t]$ e $V_2 = [2+2t+t^2]$, tomamos seguinte base de $\mathscr{P}_2(\mathbb{R})$:

$$\mathcal{B} = \{1, 1+t, 2+2t+t^2\}, \text{ assim } [T]_{\mathcal{B}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

(c₃) Os autovalores de T são $\lambda_1 = 2$ e $\lambda_2 = -3$, neste caso o número de autovalores distintos é menor que a dimensão do espaço, assim precisamos de outro mecanismo para verificar se T é diagonalizável.

Vimos que $p(\lambda) = -(\lambda - 2)^2(\lambda + 3)$, com todas as raízes em \mathbb{R} , assim segue que $m_A(2) = 2$ e $m_A(-3) = 1$.

Os autoespaços correspondentes são: $V_2 = [1+t]$ e $V_{-3} = [2+3t]$, consequentemente $m_G(2) = 1$) e $m_G(-3) = 1$, como $m_A(2) \neq m_G(2)$, segue que T é um operador que não é diagonalizável.

- (d) T operador sobre \mathbb{R}^4 .
 - (d_1) T(x,y,z,w) = (x+y, y, 2z+w, 2z+w).
 - (d₂) A matriz de T em relação à base canônica de \mathbb{R}^4 é: $A = \begin{bmatrix} -1 & -4 & -2 & -2 \\ -4 & -1 & -2 & -2 \\ 2 & 2 & 1 & 4 \\ 2 & 2 & 4 & 1 \end{bmatrix}$.

Solução:

(d₁) Os autovalores de T são $\lambda_1 = 1$, $\lambda_2 = 0$ e $\lambda_3 = 3$, assim T tem 3 autovalores distintos, como dim $\mathbb{R}^4 = 4$, vamos usar as multiplicidades dos autovalores para verificar se T é diagonalizável.

Vimos que $p(\lambda) = (1 - \lambda)^2 \lambda(\lambda - 3)$, com todas as raízes em \mathbb{R} , daí segue que $m_A(1) = 2$, $m_A(0) = 1$ e $m_A(3) = 1$.

Os autoespaços correspondentes são:

$$V_1 = [(1, 0, 0, 0)], 0 = [(0, 0, 1, -2)]$$
 e $V_3 = [(0, 0, 1, 1)],$

consequentemente $m_G(1) = 1$, $m_G(0) = 1$ e $m_G(3) = 1$, como $m_A(1) \neq m_G(1)$, segue que T é um operador que não é diagonalizável.

(d₂) Os autovalores de T são $\lambda_1 = 3$ e $\lambda_2 = -3$, assim T tem 2 autovalores distintos, como dim $\mathbb{R}^4 = 4$, vamos usar as multiplicidades dos autovalores para verificar se T é diagonalizável.

Vimos que $p(\lambda) = (\lambda - 3)^2(\lambda + 3)^2$, com todas as raízes em \mathbb{R} , daí segue que $m_A(3) = m_A(-2) = 2$.

Os autoespaços correspondentes são:

$$V_3 = [(-1, 1, 0, 0), (-1, 0, 1, 1)]$$
 e

$$V_{-3} = [(1, 1, -1, 0), (0, 0, -1, 1)],$$

consequentemente $m_G(3) = m_G(-3) = 2$.

Portanto, T é um operador diagonalizável, podemos tomar a seguinte base de \mathbb{R}^4 :

$$\mathcal{B} = \{(-1, 1, 0, 0), (-1, 0, 1, 1), (1, 1, -1, 0), (0, 0, -1, 1)\},\$$

assim
$$[T]_{\mathscr{B}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$
.

(e) *T* operador sobre $M_2(\mathbb{R})$.

$$(e_1) \ T\left(\left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \right) = \left[\begin{array}{cc} 2a+b & 2b \\ 2c & 2d \end{array} \right].$$

(e₂)
$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+b & b \\ 0 & c-a-b \end{bmatrix}$$
.

Solução:

(e₁) O único autovalor de T são $\lambda_1 = 2$, como dim $M_2(\mathbb{R}) = 4$, vamos usar as multiplicidades do autovalor para verificar se T é diagonalizável.

Vimos que $p(\lambda) = (2 - \lambda)^4$, com todas as raízes em \mathbb{R} , daí segue que $m_A(2) = 4$.

O autoespaço correspondente é:

$$V_2 = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in M_2(\mathbb{R}; \ b = 0 \right\} = \left[\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \ \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right], \ \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right],$$

consequentemente $m_G(2)=3$, como $m_A(2)\neq m_G(2)$, segue que T é um operador que não é diagonalizável.

(e₂) Os autovalores de T são $\lambda_1 = 0$ e $\lambda_2 = 1$, assim T tem 2 autovalores distintos, como $\dim M_2(\mathbb{R}) = 4$, vamos usar as multiplicidades dos autovalores para verificar se T é diagonalizável.

Vimos que $p(\lambda) = \lambda^2 \lambda (1 - \lambda)^2$, com todas as raízes em \mathbb{R} , daí segue que $m_A(0) = m_A(1) = 2$.

Os autoespaços correspondentes são:

$$V_0 = \left[\left[egin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}
ight] \right] \ \ \mathrm{e} \ \ V_1 = \left[\left[egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}
ight]
ight],$$

consequentemente $m_G(0) = m_G(1) = 1$, como $m_A(0) \neq m_G(0)$, segue que T é um operador que não é diagonalizável.

- (f) T operador sobre \mathbb{C}^2 .
 - (f_1) T(z, w) = (-w, z).
 - (f₂) T(z, w) = (4z + 2iw, -2iz + 4w).

Solução:

(f₁) Os autovalores de T são $\lambda_1 = i$ e $\lambda_2 = -i$, como T é um operador linear de \mathbb{C}^2 e dim $\mathbb{C}^2_{\mathbb{C}} = 2$, segue que T é diagonalizável.

Como $V_i = [(1, -i)]$ e $V_{-i} = [(1, i)]$, podemos tomar a seguinte base de \mathbb{C}^2 :

$$\mathscr{B} = \{(1, -i), (1, i)\}, \text{ assim } [T]_{\mathscr{B}} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}.$$

(f₂) Os autovalores de T são $\lambda_1 = 2$ e $\lambda_2 = 6$, como T é um operador linear de \mathbb{C}^2 e dim $\mathbb{C}^2_{\mathbb{C}} = 2$, segue que T é diagonalizável.

Como $V_2 = [(-i, 1)]$ e $V_{-i} = [(i, 1)]$, podemos tomar a seguinte base de \mathbb{C}^2 :

$$\mathscr{B} = \{(-i, 1), (i, 1)\}, \text{ assim } [T]_{\mathscr{B}} = \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix}.$$

7.4 Operadores Auto-Adjuntos

Nesta seção vamos considerar V um espaço vetorial sobre \mathbb{R} , de dimensão finita e com produto interno.

Definição 7.4.1 Um operador linear $T: V \longrightarrow V$ é chamado **auto-adjunto** se, e somente se, para quaisquer $u, v \in V$ tivermos

$$\langle v, T(u) \rangle = \langle T(v), u \rangle.$$

Exemplo 7.4.1 O operador linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dado por

$$T(x, y, z) = (x - 2y + 3z, -2x - y + 4z, 3x + 4y + z)$$

é auto-adjunto.

De fato, dados (x_1, y_1, z_1) e (x_2, y_2, z_2) em \mathbb{R}^3 temos:

$$\langle (x_1, y_1, z_1), T(x_2, y_2, z_2) \rangle = \langle (x_1, y_1, z_1), (x_2 - 2y_2 + 3z_2, -2x_2 - y_2 + 4z_2, 3x_2 + 4y_2 + z_2) \rangle$$

$$= x_1(x_2 - 2y_2 + 3z_2) + y_1(-2x_2 - y_2 + 4z_2) + z_1(3x_2 + 4y_2 + z_2)$$

$$= x_1x_2 - 2x_1y_2 + 3x_1z_2 - 2y_1x_2 - y_1y_2 + 4y_1z_2 + 3x_2z_1 + 4y_2z_1 + z_1z_2$$

$$= (x_1 - 2y_1 + 3z_1)x_2 + (-2x_1 - y_1 + 4z_1)y_2 + (3x_1 + 4y_1 + z_1)z_2$$

$$= \langle ((x_1 - 2y_1 + 3z_1), (-2x_1 - y_1 + 4z_1), (3x_1 + 4y_1 + z_1)), (x_2, y_2, z_2) \rangle$$

$$= \langle T(x_1, y_1, z_1), (x_2, y_2, z_2) \rangle.$$

Observemos que a matriz de T em relação à base canônica de \mathbb{R}^3 é dada por:

$$[T] = \left[\begin{array}{rrr} 1 & -2 & 3 \\ -2 & -1 & 4 \\ 3 & 4 & 1 \end{array} \right]$$

que é uma matriz simétrica.

Proposição 7.4.2 Se \mathscr{B} e \mathscr{B}' são bases ortonormais de V, então $M_{\mathscr{B}'}^{\mathscr{B}}$ é matriz ortogonal.

Demonstração: Sejam $\mathscr{B} = \{v_1, v_2, \cdots, v_n\}$ e $\mathscr{B}' = \{u_1, u_2, \cdots, u_n\}$ bases ortonormais de V e

$$M_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn}. \end{bmatrix}$$

Logo,

$$v_{1} = a_{11}u_{1} + a_{21}u_{2} + \dots + a_{n1}u_{n}$$

$$v_{2} = a_{12}u_{1} + a_{22}u_{2} + \dots + a_{n2}u_{n}$$

$$\vdots$$

$$v_{n} = a_{1n}u_{1} + a_{2n}u_{2} + \dots + a_{nn}u_{n}.$$

Como \mathcal{B} e \mathcal{B}' são bases ortonormais, então, para todo i e todo j em $\{1,2,\cdots,n\}$, temos:

$$\begin{array}{rcl}
1 & = & \langle v_i, v_i \rangle & = & a_{1i}^2 + a_{2i}^2 + \dots + a_{ni}^2 \\
0 & \stackrel{i \neq j}{=} & \langle v_i, v_j \rangle & = & a_{1i}a_{1j} + a_{2i}a_{2j} + \dots + a_{ni}a_{nj}.
\end{array}$$

Mas,

$$\left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^{T} \cdot M_{\mathscr{B}'}^{\mathscr{B}} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}^{2} + a_{21}^{2} + \cdots + a_{n1}^{2} & \cdots & a_{11}a_{1n} + a_{21}a_{2n} + \cdots + a_{n1}a_{nn} \\ a_{12}a_{11} + a_{22}a_{21} + \cdots + a_{n2}a_{n1} & \cdots & a_{12}a_{1n} + a_{22}a_{2n} + \cdots + a_{n2}a_{n2} \\ \vdots & \cdots & \vdots \\ a_{1n}a_{11j} + a_{2n}a_{21} + \cdots + a_{nn}a_{n1} & \cdots & a_{1n}^{2} + a_{2n}^{2} + \cdots + a_{nn}^{2} \end{bmatrix} = I_{n}.$$

Portanto, $M_{\mathscr{B}'}^{\mathscr{B}}$ é matriz ortogonal.

Proposição 7.4.3 Se $T:V\longrightarrow V$ operador linear tal que $[T]_{\mathscr{B}'}$ é simétrica, com \mathscr{B}' base ortonormal de V, então $[T]_{\mathscr{B}}$ é simétrica para \mathscr{B} base ortonormal de V.

Demonstração: Sabemos que

$$[T]_{\mathscr{B}} = \left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^{-1} \cdot [T]_{\mathscr{B}'} \cdot M_{\mathscr{B}'}^{\mathscr{B}}.$$

Como \mathcal{B} e \mathcal{B}' são bases ortonormais, pela proposição anterior segue que

$$\left(M_{\mathcal{B}'}^{\mathcal{B}}\right)^{-1} = \left(M_{\mathcal{B}'}^{\mathcal{B}}\right)^{T}.$$

Assim,

$$[T]_{\mathscr{B}} = \left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^T \cdot [T]_{\mathscr{B}'} \cdot M_{\mathscr{B}'}^{\mathscr{B}}.$$

Portanto,

$$\left([T]_{\mathscr{B}}\right)^T = \left(\left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^T \cdot [T]_{\mathscr{B}'} \cdot M_{\mathscr{B}'}^{\mathscr{B}}\right)^T = \left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^T \cdot \left([T]_{\mathscr{B}'}\right)^T \cdot \left(\left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^T\right)^T.$$

Como $[T]_{\mathscr{B}'}$ é simétrica, segue que $\Big([T]_{\mathscr{B}'}\Big)^T=[T]_{\mathscr{B}'}.$

Consequentemente,

$$\left([T]_{\mathscr{B}}\right)^T = \left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^T \cdot [T]_{\mathscr{B}'} \cdot \left(\left(M_{\mathscr{B}'}^{\mathscr{B}}\right)^T\right)^T = [T]_{\mathscr{B}}.$$

Logo, $[T]_{\mathscr{B}}$ também é simétrica.

Teorema 7.4.4 Um operador linear $T:V\longrightarrow V$ é auto-adjunto se, e somente se, $[T]_{\mathscr{B}}$ é matriz simétrica, para \mathscr{B} base ortonormal de V.

Demonstração: Sejam $\mathscr{B} = \{v_1, v_2, \cdots, v_n\}$ base ortonormal de V e

$$[T]_{\mathscr{B}} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Então, para todo *i* e todo *j* temos

$$a_{ij} = \langle v_i, T(v_j) \rangle.$$

Mas, $[T]_{\mathscr{B}}$ é matriz simétrica se, e somente se, $a_{ij} = a_{ji}$.

Portanto, $[T]_{\mathscr{B}}$ é simétrica se, e somente se,

$$\langle v_i, T(v_i) \rangle = \langle T(v_i), v_i \rangle$$

para todo i e todo j.

Já que \mathscr{B} é base ortonormal de V dados u e v em podemos escrever:

$$u = \langle u, u_1 \rangle u_1 + \langle u, u_2 \rangle u_2 + \dots + \langle u, u_n \rangle u_n$$

$$v = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + \dots + \langle vu, u_n \rangle u_n$$

Como T é linear segue ainda que:

$$T(u) = \langle u, u_1 \rangle T(u_1) + \langle u, u_2 \rangle T(u_2) + \cdots + \langle u, u_n \rangle T(u_n)$$

$$T(v) = \langle v, u_1 \rangle T(u_1) + \langle v, u_2 \rangle T(u_2) + \cdots + \langle vu, u_n \rangle T(u_n).$$

Portanto,

$$\langle v, T(u) \rangle = \langle T(v), u \rangle$$

para quaisquer $u, v \in V$ se, e somente se,

$$\langle v_i, T(v_i) \rangle = \langle T(v_i), v_i \rangle$$

para todo i e todo j.

Consequentemente, T é operador auto-adjunto se, e somente se, $[T]_{\mathscr{B}}$ é matriz simétrica.

Forma de Jordan

Exemplos 7.4.5 (a) O operador linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dado por T(x,y) = (y,-x) não é diagonalizável, pois:

$$p(\lambda) = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1$$

e este polinômio não tem raízes reais.

(b) O operador linear $T: \mathbb{C}^4 \longrightarrow \mathbb{C}^4$, com \mathbb{C}^4 espaço vetorial sobre \mathbb{C} , dado por

$$T(z_1, z_2, z_3, z_4) = (z_2, -z_1, z_3 + z_4, z_4)$$

não é diagonalizável, pois:

$$p(\lambda) = \begin{vmatrix} -\lambda & 1 & 0 & 0 \\ -1 & -\lambda & 0 & 0 \\ 0 & 0 & 1 - \lambda & 1 \\ 0 & 0 & 0 & 1 - \lambda \end{vmatrix} = (\lambda - 1)^2 (\lambda^2 + 1) = (\lambda - 1)^2 (\lambda - i)(\lambda + i).$$

Logo, os autovalores de T são $\lambda_1 = 1$, $\lambda_2 = i$ e $\lambda_3 = -i$.

Como $m_A(i) = m_A(-i) = 1$, então $m_G(i) = m_G(-i) = 1$, assim devemos determinar $m_G(1)$.

$$\begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} -z_1 + z_2 = 0 \\ -z_1 - z_2 = 0 \\ z_4 = 0 \end{cases} \iff z_1 = z_2 = z_4 = 0.$$

Portanto, $V(1) = \{(z_1, z_2, z_3, z_4) \in \mathbb{C}^4; z_1 = z_2 = z_4 = 0\} = [(0, 0, 1, 0)].$

Consequentemente, $m_G(1) = 1 < m_A(1)$ e T não é diagonalizável.

Vimos que nem todo operador linear é diagonalizável, se T é um operador linear de V um espaço vetorial sobre \mathbb{C} , sempre podemos encontrar uma base \mathscr{B} tal que $[T]_{\mathscr{B}} = [a_{ij}]$ em que os elementos da diagonal principal são os autovalores de T, os elementos $a_{(i+1)i}$ são iguais a 1 ou a zero e os demais elementos da matriz são todos iguais a zero, esta é a chamada **forma de Jordan** do operador linear.

A matriz

é uma matriz na forma de Jordan.

A forma de Jordan de um operador linear é um assunto avançado de Álgebra Linear que pode ser encontrado, por exemplo, em [Coelho], [Lima] e [Lipschutz].

- [1] H. Anton e C. Rorres. **Álgebra Linear com Aplicações**. 10ª edição, Bookman, São Paulo, 2012.
- [2] R. B. BAPAT. Linear Algebra and Linear Models. Third Edition. Springer, London, 2012.
- [3] J. L. BOLDRINI, S. I., R. COSTA, V. L. FIGUEIREDO e H. G. WETZLER. **Álgebra Linear**, 3ª edição, Editora Harbra, São Paulo, 1986.
- [4] M. CABRAL e P. GOLDFELD. **Curso de Álgebra Linear: Fundamentos e Aplicações.** Instituto de Matemática, UFRJ, 3ª edição, 2012, disponível em http://www.labma.ufrj.br/alglin/CursoAlgLin-livro-31-out-2012.pdf
- [5] C. A. CALLIOLI, H. I. DOMINGUES e R. C. F. COSTA. Álgebra Linear e Aplicações. 6^a edição, Atual Editora, São Paulo, 1990.
- [6] F. U. COELHO e M. L. LOURENÇO. **Um Curso de Álgebra Linear.** 2ª Edição, Edusp, São Paulo, 2005.
- [7] D. M. FARIAS. P. Η. Α. KONZEN R. R. Souza. Álgebra Linear, um Livro Colaborativo, UFRGS, 2018, disponível https://www.ufrgs.br/reamat/AlgebraLinear/livro/livro.pdf
- [8] K. HOFFMAN e R. KUNZE. **Linear Algebra**, Second Edition. Prentice Hall Inc., New Jersey, 1971.
- [9] S. LANG. Álgebra Linear. Editora Ciência Moderna, São Paulo, 2003.
- [10] D. C. LAY, Álgebra Linear e suas Aplicações. 2ª edição, Editora LTC, 1999.
- [11] E. L. LIMA. **Álgebra Linear**. 9ª Edição, Coleção Matemática Universitária, IMPA, Rio de Janeiro, 2018.
- [12] S. LIPSCHUTZ. Álgebra Linear. Coleção Schaum, Makron Books), São Paulo, 1994.

210 BIBLIOGRAFIA

[13] J. PELLEGRINI. **Álgebra Linear**. UFABC, 2018, disponível em http://aleph0.info/cursos/al/notas/al.pdf

- [14] D. Polle, **Álgebra Linear.** Editora Pioneira Thompson Learning, São Paulo, 2004.
- [15] P. PULINO, **Álgebra Linear.** Notas de Aulas, UNICAMP, 2004, disponível em http://www.ime.unicamp.br/~pulino/ALESA/Texto/
- [16] R. J. SANTOS. **Álgebra Linear e Aplicações.** Imprensa Universitária da UFMG, Belo Horizonte, 2002, disponível em http://www.mat.ufmg.br/~regi/gaalt/gaalt2.pdf
- [17] G. SCHAY, A Concise Introduction to Linear Algebra. Springer, New York, 2012.
- [18] A. A. SILVA. **Introdução à Álgebra Linear**. UFPB, João Pessoa, 2007, disponível em http://www.mat.ufpb.br/jorge/arquivos/disciplinas/listas/LivroIAL
- [19] J. L. STEVEN, **Álgebra Linear com Aplicações.** 4ª Edição, Editora LTC, Rio de Janeiro, 1999.
- [20] S. ZANI. **Álgebra Linear**. ICMC USP, 2010, disponível em http://conteudo.icmc.usp.br/pessoas/szani/alglin.pdf