Dr. Alexander Munteanu Dennis Köhn, Dr. Vibha Sahlot

3. Home Exercises

Efficient Algorithms

Ex. 1 (4 points)

A fair coin gets tossed $n + \log_2(n)$ many times, where n is a power of two. This creates a sequence $x_1, x_2, ... x_{n + \log_2(n)}$ with $x_i \in \{H, T\}$, where H represents heads and T represents tails.

We call $x_i, ..., x_{i+l-1}$ an l-sequence if $x_i = x_{i+1} = ... = x_{i+l-1}$ (all heads or tails). What is the expected number of l-sequences for $l = 1 + \log_2 n$?

Ex. 2 (4 + 2 + 2) *Points*

Consider the k-Median problem introduced in the lecture. As before, the input is a metric space (P, d). Let $C = \{c_1, \ldots, c_k\}$ be a set of optimal centers and let $OPT = \sum_{p \in P} d(p, C)$.

a) Develop a randomized algorithm that computes a weighted set S, such that

$$\mathbb{E}\left(\sum_{s \in S} w(s) \cdot d(s, C)\right) = \text{OPT},$$

where w(s) denotes the weight of point s. The running time of the algorithm should be O(n) and the size of S should be O(1).

- b) Analyze the running time of your algorithm.
- c) Prove the correctness of your algorithm.

Ex. 3 (4 + 2 + 2 Points)

Let a_1, \ldots, a_n be a sequence of n distinct natural numbers. The goal of this exercise is to compute a random permutation of this sequence of numbers. The naive way to do this would be to produce a list of n priorities and sort the numbers based on their priority. However, sorting takes $O(n \log n)$ time and we want to do this in linear time.

- a) Design an algorithm that outputs an uniformly distributed random permutation of the given sequence in running time O(n).
 - You may assume that you have access to a function RANDOM(k) that outputs a uniformly distributed random number from $\{1, \ldots, k\}$ in time O(1).
- b) Analyze the running time of your algorithm.
- c) Prove the correctness of your algorithm.

Hint: prove that any possible permutation is output with probability 1/n!.