Teorema di de l'Hospital

Alessio Serraino

March 1, 2016

<u>Teorema</u>: (di de l'Hospital): Siano f, g, due funzioni derivabili una volta in (a, b),

sia
$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0$$
 oppure $\pm \infty$, ed esista $\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = l \in \mathbb{R}^*$.
Allora $\exists \lim_{x \to a^+} \frac{f(x)}{g(x)} = l$

Dimostrazione (Nel caso particolare in cui $\lim_{x\to a^+} f(x) = \lim_{x\to a^+} g(x) = 0$)

Sia $\{x_n\}$ una successione convergente ad a^+ , con $x_n \in (a,b)$.

Se g o f non sono definite in a le prolungo per continuità in a, ponendo f(a) = g(a) = 0. Se sono definite, poichè sono continue per ipotesi ed il limite è 0 per ipotesi, allora anche il valore della funzione deve essere 0. In ogni caso si verifica f(a) = g(a) = 0.

Sia $h(x) = f(x_n)g(x) - g(x_n)f(x)$. h è derivabile in $[a, x_n]$, e $h'(x) = f(x_n)g'(x) - g(x_n)f'(x)$

 $h\left(x\right)$ verifica tutte le condizioni del teorema di Lagrange nell'intervallo $(a,x_{n}),$ quindi

$$\exists t_n \in (a, x_n) : h'(t_n) = \frac{h(x_n) - h(a)}{x_n - a}$$

Ma $h(a) = h(x_n) = 0$, quindi $\exists t_n \in (a, x_n) : h'(t_n) = 0$. Osserviamo che l'espressione è vera per ogni x_n (quindi per ogni x_n esiste un t_n).

$$f(x_n) g'(t_n) - g(x_n) f'(t_n) = 0$$
 \iff $\frac{f(x_n)}{g(x_n)} = \frac{f'(t_n)}{g'(t_n)}$

Considero ora le successioni $\frac{f(x_n)}{g(x_n)}$ e $\frac{f'(t_n)}{g'(t_n)}$. Per l'ugualianza posso scrivere $\frac{f'(t_n)}{g'(t_n)} \geq \frac{f(x_n)}{g(x_n)} \geq \frac{f'(t_n)}{g'(t_n)}$. La prima e l'ultima espressione della disugualianza tendono entrambe a l per ipotesi (in quanto se la funzione $w(z) \to z^*$ per $z \to z_0$ allora ogni successione $w(z_n) \to z^*$ se la successione $z_n \to z_0$).

Quindi per il teorema del confronto anche la successione $\frac{f(x_n)}{g(x_n)} \to l$. Questo limite non dipende dal modo in cui vengono scelti gli x_n , quindi è uguale anche

al limite della funzione $\frac{f(x)}{g(x)}$, ovvero $\lim_{x\to a^+}\frac{f(x)}{g(x)}=l$. Che è quanto volevamo dimostrare.

Si osservi che se non eiste il limite $\lim_{x\to a^+} \frac{f'(x)}{g'(x)} = l \in \mathbb{R}^*$ non si può concludere che non esiste $\lim_{x\to a^+} \frac{f(x)}{g(x)}$. La dimostrazione infatti basa il suo risultato sull'esistenza del limite delle derivate (che infatti è stato aggiunto fra le ipotesi). Un esempio di questo può essere la funzione:

of esempto di questo può essere la funzione. $f(x) = \frac{\sin(x) + x}{\cos(x) + x}.$ Calcoliamo il limite per $x \to +\infty$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\sin(x) + x}{\cos(x) + x} = 1$, per la gerarchia degli infiniti. Quindi il limite esiste. Tuttavia si noti che il limite delle derivate $\lim_{x \to +\infty} \frac{\cos(x) + 1}{-\sin(x) + 1}$ non esiste.