11-15-21			
Last Time: Curl	and Divergence		
	Div(t)= V.J		
<p,q,r></p,q,r>			
	(F)=3 @ div (cus	-1(7))=0	
	of Curl and D		
	s " how swirty "		
i i) is always "sw		
		e v.f. tend to p	ush points aw
	e open region?"		
STANKE S	, 0		< swirty
(divergence = 0
	divergence # 0	0/-/	
Ex.			
	(P(x,y),Q(x,y),c	o> = \(\vec{1} \).	y
			Z Z X
curl (7) = del	3× 3× 3× 3×		Z Z Z
	P Q O	*Vie	w from above
= <- Q	z, + Pz, Qx - Py)		
	0, 0x-Py>		
	0, 3x - 3p >		
Recosting Gree	en's Theorem w/	Vector fields:	
		we ets partial d	erivatives on
1		containing clos	
1		8	0

w/ pierewise-smooth simple, closed boundary curre. Then

O So curi (7). i dA = Soot. dr and D Soot. (y'(+) 2-x'(+)) (7) ds

= SodivOt) JA

Why: O carl (7) = <0,0,32 - 34), so carl (7). = 3x - 34 : SSo curl(7). k dA = SSO (30 - 30) dA Green's Theorem -> = Sop Pax + Ody = Stoa (P(x,y)x'(t) + Q(x,y)y'(t))dt = St=a < P,Q,0> - <x',y',z'>dt = San J. dz $\omega = \langle -Q, P, 0 \rangle$ @ SSD div (7) dA = SSD (3x + 34) dA = Sto (32 - 3(-0)) JA ↔ \$6 (3 - 3) dA = Joo - Qdx + Pdy ↔ Jan Adx + Bdy = St=a (-0x'+Py')dt = ft=a (Py'-Qx') dt = St=a < P,Q> · < y',-x' > dt = 800 J. (g'(+) Z-x'(+)) Ir'(+) ds NB: These two ways of rewriting Green's Theorem w/ 2) divergence 1 Cur 1 are jumping points for generalizing Green's Theorem Divergence Theorem Stokes's Theorem Not on Exam 3, but on the final ? 6.6: Parametric Surfaces Idea: Generalize space curves to have dimension 2 ... Def: A parametric surface in 3-space is given by vector function 3 (U,V) = (x(U,V), y(U,V), Z(U,V)) on some domain DER. Ex. The Euclidean Plane sits on TR3 as a parametric surface 3(x,y) = < x,y,0>

Ex. Every plane IT in TR3 can be parameterized by 3 (a,b) = av +bv + w for suitable vectors v, v, w. on D= TR2 I.e. 3 (a,b)= < u,a + V1b + w, uza + V2b+w2, u3a + V3b+w3). The sphere of radius 100 is parameterized by 3 (0, 4)= < rsin(4) cos(0), rsin(4) sin(0), rcos(4)> on D=[0,277] × [0,77]. Ex. The torus has parameterization 3 (0,4) = < (2+sin(0)) cos(4), (2+sin(0)) sin(4), cos(0)) on D=[0,47e] x [0,27e] Donut, aka torus Ex. Parametrize the parabdoid Z= x2+2y2, UB: There is no one parameterization of a surface ... 50.0: 3(x,y)= <x,y,x2+2y2> on D=R2 501. D: 3(1,0)= < rcos(0), rsin(0), (ros(0))2+2(rsin(0))2> = < (cos(0), rsin(0), r2(1+sin2(0))> on D=[0,00) x [0,27] Sol. B: 3(1,0) = < 12 (0000), rsin(0), 22) on D= [0,00) x [0,27]

Ex. A surface of revolution (about x-axis) be obtained for a function f(x) via (x) = x+1 3 (x,0) = <x, f(x) cos(0), f(x) sin(0)) on D = dom (f) x [0, 27].