P - 30 - 2021

수소충전소의 안전에 관한 기술지침

2021. 12.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자: 연세대학교 화공생명공학과 문 일
- 개정자: 최 이 락
- 개정자: 전남대학교 화학공학부 장 희
- 제 · 개정 경과
 - 2010년 8월 화학안전분야 제정위원회 심의(제정)
 - 2012년 7월 총괄 제정위원회 심의(개정, 법규정개정조항 반영)
 - 2021년 11월 화학안전분야 제정위원회 심의(개정)
- 관련 규격 및 자료
 - ISO/TS 20100:2008, "Gaseous hydrogen Fuelling stations", 2008
 - ISO 19880-5:2019, "Gaseous hydrogen Fuelling stations Part 5: Dispenser hoses and hose assemblies", 2019
- 기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시 기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자: 2021년 12월

제 정 자: 한국산업안전보건공단 이사장

수소충전소의 안전에 관한 기술지침 제안개요

I. 개정이유

안전보건기술지침을 작성하는데 참고한 관련법규, 규칙, 고시, 인용 문헌, 해외 기준 또는 규격 등이 지속적으로 개정 및 폐지됨에 따라 최근자료를 참조하여 개정하고, 수소충전소에서 사용하는 충전소 호스와 호스어셈블리에 관한 지침을 추가함.

Ⅱ. 개정(안)의 주요내용

1. 충전소 호스와 호스어셈블리

Ⅲ. 관련 법규 및 규격

- ISO 19880-5:2019, "Gaseous hydrogen - Fuelling stations - Part 5: Dispenser hoses and hose assemblies", 2019

Ⅳ. 제정위원회 심의개요

- 제 안 자 : 전남대학교 화학공학부 장 희

- 심 의 일 : 2021년 11월

- 주요 수정내용 : 압력단위 및 기타 자구 수정 등

수소충전소의 안전에 관한 기술지침

1. 목적

이 지침은 사업장에서 산업안전보건기준에 관한 규칙 제2장 제1절 (위험물 등이 취급) 등에서 수소를 충전하는 수소충전소의 안전에 관한 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 수소를 제조하여 충전하는 수소충전소에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
 - (가) "완충 탱크 (Buffer storage tank)"라 함은 수소 발생기와 압축기 사이에 위치 한 가압 탱크를 말한다.
 - (나) "제어장치 (Control system)"라 함은 정상적인 운전 매개 변수에 따라 수소충전 소에서 수소 제조, 저장, 충전을 제어하기 위한 장치를 말한다.
 - (다) "설계압력 (Design pressure)"이라 함은 고압가스용기 등 각부의 계산두께 또는 기계적 강도를 결정하기 위하여 허용할 수 있는 최대 게이지 압력을 말한다.
 - (라) "충전설비 (Dispenser)"라 함은 수소충전소에서 가압 저장된 수소를 자동차에 충전하는 설비를 말한다.
 - (마) "수소충전소 (Hydrogen fuelling station)"라 함은 다양한 원료를 사용하여 수소를 제조하고 압축기, 저장설비, 충전설비 등을 통하여 수소연료전지 자동차에 수소를 공급하는 시설을 말하며, 수소를 운반하는 배관, 액체수소 저장·펌프·기화장치, 기체수소 압축·정화·주입장치·완충탱크 등을 포함한다.
 - (바) "저장설비"라 함은 고압가스를 충전·저장하기 위한 설비로써 저장탱크 및 충전용기 보관설비를 말한다.
 - (사) "안전거리(Safety distance)"라 함은 사고 발생 시 사고의 위험으로부터 인명 및 재산을 보호하기 위하여 수소충전소 설비 또는 사업소와 공공장소 간에 유

P - 30 - 2021

지하여야 하는 거리를 말한다.

- (아) "저장탱크"라 함은 고압가스를 충전·저장하기 위하여 지상 또는 지하에 고정 설치된 탱크를 말한다.
- (자) "커플링(Coupling)"이라 함은 <그림 2>와 같이 호스의 끝 부분이 결합된 니플 과 소켓의 결합 구조를 말한다.
- (차) "호스 어셈블리(Hose assembly)"라 함은 피팅, 굽힘 방지장치 및 표시 (marking) 등 포함한 호스 및 끝단 연결부를 포함한 조립체를 말한다.
- (카) "충전호스(Fuelling hose)"라 함은 <그림 3>과 같이 노즐을 통해 기체 수소를 차량에 전달하는데 사용되는 호스 조립체를 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기 준에관한규칙」에서 정하는 바에 의한다.

4. 수소충전소의 설계

4.1 설계기준

- (1) 수소충전소는 사용자, 직원, 주민 등에 대한 위험을 최소화 할 수 있는 위치에 설치하여야 한다.
- (2) 설치 위치 및 운전에 관련된 잠재적 위험성을 고려하여야 한다.
- (3) 화재·폭발의 위험을 최소화하기 위하여 다음 기준을 준수하여야 한다.
 - (가) 인화성 또는 폭발성 혼합물의 형성을 방지하여야 한다.
 - (나) 점화원으로 인한 화재·폭발을 방지하여야 한다.
 - (다) 수소 누출로 인한 화재·폭발의 영향을 완화하여야 한다.
- (4) 수소충전소의 설치 및 장치 설계 시 연결 부위를 최소화하여 누출을 방지하여야 한다.
- (5) 화재 · 폭발 방지를 위해 오작동 및 오용을 고려하여야 한다.

KOSHA GUIDE P - 30 - 2021

4.2 안전거리

4.2.1 액체수소 저장

액체 수소 저장 장치는 <표 1>에 명시된 각 시설에 따라 안전거리를 유지하여야한다.

<표 1> 액체 수소 저장 장치 안전거리(m)

저장 범주 ^{주)} 노출	1	2	3	4	5	잠재적 위험
불연성 재료 건물 (최소 2시간)	1.5	1.5	1.5	3	6	
인화성 재료 건물	4	6	8	16	25	1) 건물로의 수소 확산 2) 건물 화재로 인한 저장 장치로의 영향
건물의 개구부	2	3	4	8	16	수소 누출로 인한 건물 내의 폭발성 대기
지상에 있는 적은 양의 인화성 액체	n/a	2	3	6	12	1) 수소 화재 2) 수소 저장 장치에서의 인화성 액체 화재 복사열
지상에 있는 인화성 액체	2	3	4	8	16	
환기구에 있는 인화성 액체	3	3	4	6	6	수소 저장 장치에서 인화성 액체의 화재 복사열
인화성 가스 > 500 m'	2	3	4	8	16	1) 수소 화재 2) 수소 저장 장치에서 인화성 물질의 화재 복사열
나무 등 인화성 물질	2	3	4	8	16	
화재	2	3	4	8	16	폭발성 대기의 자연 착화
에어컨 및 공기 압축기	2	3	4	8	16	폭발성 대기의 유입/수소 및 공기의 혼합
연료 주입 이외의 활동 (세차, 차량 정비, 작업장 등)	2	3	4	8	16	누출시 폭발성 대기/화염/복사
공공 집회시설	4	6	8	16	25	일반인의 즉각적인 노출
인도, 주차 등	2	3	4	8	16	누출시 폭발성 대기/화염/복사
기차, 고압 송전선로	4	6	8	16	25	기차 사고로 인한 확산
전선	1.5	1.5	2	4	8	수소 장치의 전선 파손

KOSHA GUIDE P - 30 - 2021

- 주) ①: $V \le 0.5 \text{ m}^3$, ②: $0.5 \text{ m}^3 < V \le 2 \text{ m}^3$, ③: $2 \text{ m}^3 < V \le 8 \text{ m}^3$, ④: $8 \text{ m}^3 < V \le 60 \text{ m}^3$,
 - ⑤: $60 \text{ m}^3 < V \leq 300 \text{ m}^3$

4.2.2 기체 수소 저장

- (1) 저장탱크의 수량(V), 기체 수소의 압력(P) 및 저장량(Q)에 따라 <그림 1>과 같이 4가지 저장 범주로 구분한다. V는 수량(m³), P는 압력(MPa), Q는 저장량(kg)을 말한다.
- (2) 기체 수소 저장장치는 <표 2>에 명시된 각 시설에 따른 안전거리를 유지하여야 한다.

<그림 1> 기체 수소의 저장 범주

KOSHA GUIDE P - 30 - 2021

<표 2> 기체 수소 저장장치 안전거리(m)

저장 범주 ^{주)} 노출	1	2	3	4	잠재적 위험
불연성 재료 건물 (최소 2시간)		수 및 점검 따라 구분		1.5	
인화성 재료로 된 건물	2	4	6	6	 건물로의 수소 확산 건물 화재로 인한 저장 장치의 영향
수소 장치 아래의 개구부	1	2	3	3	수소 누출로 인한 건물 내 폭발성 대기
수소 장치 위의 개구부	1.5	3	4	4	수소 누출로 인한 건물 내 폭발성 대기
인화성 액체 < 4,000 1	1.5	3	4	4	1) 수소 화재 2) 수소 저장 장치에서의 인화성 액체 화재 복 사열
인화성 액체 > 4,000 1	2	4	6	8	
환기구에서의 인화성 액체	2	3	3	4	수소 저장 장치에서의 인화성 액체 화재 복사 열
인화성 가스 > 500 m³	1.5	3	4	4	1) 수소 화재 2) 수소 저장 장치에서의 인화성 물질 화재 복 사열
나무 등의 인화성 물질	2	3	3	4	
화재	1.5	3	4	4	폭발성 대기의 자연 착화
에어컨 및 공기 압축기	1.5	3	4	4	폭발성 대기의 유입, 수소 및 공기의 혼합
연료 주입 이외의 활동 (세차, 차량 정비, 작업장 등)	1.5	3	4	4	누출시 폭발성 대기/화염/복사
공공 집회시설	2	4	6	8	일반인의 즉각적인 노출
인도, 주차 등	1.5	3	4	4	누출시 폭발성 대기/화염/복사
기차, 고압 송전선로	3	6	8	12	기차 사고로 인한 확산
전선	1.5	1.5	1.5	1.5	수소 장치의 전선 파손

주) ①: V≤1 m³ 이고 P≤5 MPa, ②: V≤1 m³ 이고 P<5 MPa 이거나, 1 m³<V≤10 m³ 이고 Q≤30 kg, ③: V≤1 m³ 이고 P>45 MPa, ④: V≤1 m³ 이고 Q>30 kg 이거나, V>10 m³

5. 화재·폭발 방지대책

5.1 일반사항

- (1) 수소 누출로 인한 화재·폭발은 담, 울타리 또는 실내 범위 내에서 방지하여야 한다.
- (2) 화재·폭발을 방지하기위한 방안은 다음과 같다.
 - (가) 자연 환기
 - (나) 환기시스템
 - (다) 인화성 가스 감지장치
- (3) 환기 속도는 수소의 경우 부피비 1% 이하, 다른 인화성 가스는 폭발하한(LFL)의 25% 이하를 유지하여야 한다.

5.2 환기설비 설치

- (1) 수소충전소에서 환기시스템을 사용할 경우 환기속도를 명시하여야 한다.
- (2) 인화성 가스의 가스설비실 및 저장설비실에는 누출된 가스가 체류하지 아니하도 록 환기설비를 설치하고 환기가 잘 되지 아니하는 곳에는 기계환기설비를 설치하여야 한다.
- (3) 수소와 같이 공기보다 가벼운 인화성 가스의 경우 가스의 성질, 처리 또는 저장하는 가스의 양, 설비의 특성 및 실의 넓이 등을 고려하여 충분한 면적을 가진 2방향이상의 개구부 또는 기계환기설비를 설치하거나 이들을 병설하여 양호한 구조로 환기하여야 한다.
- (4) 공기보다 무거운 인화성 가스의 경우 가스의 성질, 처리 또는 저장하는 가스의 양, 설비의 특성 및 실의 넓이 등을 고려하여 충분한 면적을 갖고 또한 바닥면에 접하 여 개구한 2방향 이상의 개구부 또는 바닥면 가까이에 흡입구를 갖춘 기계 환기설 비를 설치하거나 이들을 병설하여 주로 바닥면에 접한 부분을 양호한 구조로 환기 하여야 한다.

5.3 인화성 가스의 유입방지

P - 30 - 2021

- (1) 인화성 가스의 수소충전소 입구로의 유입을 방지하여야 한다.
- (2) 인화성 가스의 유입 방지를 위한 방안은 다음과 같다.
 - (가) 외부 가스 유입으로부터 수소충전소 봉인
 - (나) 수소충전소 내부의 압력을 높게 유지하여 인화성 가스의 유입 방지

5.4 인화성 가스감지기 설치

- (1) 인화성 가스감지기는 인화성 가스로 인해 화재·폭발이 발생 가능한 위치에 설치하여야 한다.
- (2) 인화성 가스감지기는 수소충전소 내의 다른 장치로부터 영향을 받지 않도록 설치하여야 한다.
- (3) 제조사는 인화성 가스감지기의 위치, 설치, 사용, 유지 및 보수 등에 대한 정보를 명시하여야 한다.
- (4) 인화성 가스감지기의 위치는 인화성 가스의 빠른 감지를 위해 최적화된 위치에 설치하여야 한다.
- (5) 인화성 가스감지기의 제어 회로는 수소충전소의 안전을 위해 다음의 기능을 가지고 있어야 한다.
 - (가) 인화성 가스가 감지된 경우, 수소충전소의 기능을 차단할 수 있어야 한다.
 - (나) 인화성 가스감지기는 수소충전소의 가동을 제어할 수 있어야 한다.
- (6) 인화성 가스감지기의 성능 실험은 정기적으로 시행하여야 한다.

5.5 화재감지기

- (1) 다른 장치로 화재가 확산 되는 것을 방지하기 위해 수소 화재감지기를 설치하여야 한다.
- (2) 수소 화재감지기는 자외선 감지센서를 이용하여야 한다.
- (3) 화재가 발생할 경우 고압의 수소 저장장치에 영향을 미칠 수 있으므로, 연기 감지 기 등을 설치하여야 한다.

5.6 긴급차단장치

- (1) 저장탱크에 부착된 배관에는 그 저장탱크의 외면으로부터 5 m 이상 떨어진 위치에서 조작할 수 있는 긴급차단장치를 설치하여야 한다.
- (2) 긴급차단장치에 부속된 밸브 외에 2개 이상의 밸브를 설치하고, 그 중 1개는 그 배관에 속하는 저장탱크의 가장 가까운 부근에 설치하여야 한다.
- (3) 이 경우 그 저장탱크의 가장 가까운 부근에 설치한 밸브는 가스를 송출 또는 주입하는 경우 외에는 잠궈 두어야 한다.
- (4) 긴급차단장치 또는 역류방지밸브는 저장탱크 주 밸브(Main valve) 외측으로서 가능한 한 저장탱크에 가까운 위치 또는 저장탱크의 내부에 설치하되, 저장탱크의 주 밸브와 겸용해서는 아니 된다.
- (5) 긴급차단장치 또는 역류방지밸브를 설치할 때에는 저장탱크의 침해, 배관의 열팽 창·지진 그 밖의 외력의 영향을 고려하여야 한다.
- (6) 수소 누출 등 비상 상황이 발생할 경우 긴급차단장치가 작동하여야 한다.
- (7) 긴급차단장치는 위험 지역 밖에 위치하여야 하며 화재, 폭발, 누출이 발생할 경우 초기에 작동하여야 한다.
- (8) 액체 수소의 경우. 자동 폐쇄장치로 된 긴급차단장치를 설치하여야 한다.
- (9) 밀폐된 공간에서 수소를 사용할 경우, 긴급차단장치는 외부에서 작동하여야 한다.
- (10) 긴급차단장치에 대한 설명서는 안전한 위치에 비치하여야 한다.
- (11) 수소 압축기 또는 액체 수소 펌프를 사용할 경우, 긴급차단장치의 전원 및 수소 공급에 관한 설명서를 제공하여야 한다.
- (12) 긴급차단장치가 작동할 경우, 모든 펌프 및 압축기의 작동은 중단되어야 한다.
- (13) 긴급차단장치는 수소 누출로 인한 영향을 받지 않는 곳에 설치하여야 한다.

5.7 부식방지설비 설치

(1) 충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에

P - 30 - 2021

따라 부식방지조치를 강구하여야 한다.

- (2) 배관을 지상에 설치하는 경우에는 그 외면에 녹이 슬지 아니하도록 방식도장을 하여야 한다.
- (3) 부식성이 있는 가스의 수송용 배관에는 해당 가스에 침식되지 않는 재료를 사용하며 배관내면의 부식정도에 따른 부식여유를 두거나 코팅 등에 의해 내면부식방지조치를 하여야 한다.
- (4) 수송되는 가스나 배관재료에 대하여 부식성이 없다고 인정되는 경우, 원칙적으로 부식여유를 고려하지 않을 수 있다.
- (5) 보온·보냉된 배관 중 빗물유입, 누수, 살수설비 등에 노출되어 있는 부분 및 응축 등에 의한 국부부식이나 응력부식균열이 발생할 수 있는 부분에는 부식방지조치를 하여야 한다.
 - (가) 점검구의 설치
 - (나) 기타 점검 가능한 방법

5.8 긴급 이송 장치

완충 탱크에서 화재가 발생할 경우, 완충 탱크의 내용물을 안전한 장소로 이송할 수 있도록 열 감지 또는 수동으로 작동시킬 수 있는 밸브를 설치하여야 한다.

5.9 소방설비

- (1) 「위험물안전관리법」에서 정하는 바에 의해 수소충전소의 크기에 따라 소방장치의 위치 및 개수를 선정하여야 한다.
- (2) 소방 설비는 위험지역 부근에 설치하여야 한다.

5.10 외부 영향으로부터의 예방

외부영향으로부터 수소충전소의 안전을 확보하기 위하여 다음 사항을 준수하여야 한다.

(가) 제어장치 설계 시 안전 원칙 적용

P - 30 - 2021

- (나) 장비의 신뢰성을 통한 위험노출 제한
- (다) 예방법의 준수
- (라) 장비에 대한 정기적인 유지 및 보수

6. 충전소 호스와 호스어셈블리

6.1 적용 범위

- (1) 이 지침은 -40 ~ 65 ℃의 사용온도 범위에서 70 № 공칭 사용압력으로 수소를 충전하기에 적합한 와이어 또는 섬유강화 호스 및 호스 어셈블리에 적용하지만, 다음의 호스 및 호스 어셈블리는 제외한다.
 - (가) 차량용에 장착된 저압 또는 고압 연료 저장시스템의 일부로 사용되는 장치
 - (나) 금속 플레시블 호스
- (2) 호스 어셈블리에는 다음 <그림 2>와 같이 호스 양쪽 끝에 연결부(커넥터)가 있는 호스를 포함한다.

식별부호

- 1 호스 어셈블리
- 2 기계적 연결부
- 3 피팅
- 4 니플
- 5 커플링
- 6 소켓
- 7 호스

<그림 2> 호스 어셈블리와 티팅

식별부호

- 1 디스펜서
- 2 호스 브레이크어웨이 장치(KS B ISO 19880-3)
- 3 피팅(3.4)
- 4 호스 조립체(3.5)
- 5 커넥터(3.1)
- 6 노즐(KS B ISO 17268)
- 7 자동차용 리셉터클(KS B ISO 17268)
- 8 자동차

<그림 3> 디스펜서에서 자동차로 연결되는 구성부품들

6.2 제조 및 압력 등급 등

(1) 호스 조립체의 압력 레벨과 최소압력등급은 다음 <표 3>과 같다.

<표 3>호스 조립체의 압력 레벨과 최소압력등급

압력 레벨 (HSL) MPa	압력 분류	최대 허용 사용 압력(MAWP)(디스펜서 부품의 압력에 따른 최소 부품 압력 등급) MPa
11	H11	15.13
25	H25	34.38
35	H35	48.13
50	H50	68.75
70	H70	96.25

- (2) 사용자는 압력 레벨을 초과하여 사용할 수 없다.
- (3) 호스 조립체는 내·외부 표면에 정전기가 발생할 수 있어 외부 정전기의 전하를 발산시키기 위해, 끝단 커플링 사이에 전기 도전성 연결이 되도록 하여야 하다.
- (4) 접합 저항은 정전기가 방출되 수 있도록, 끝단부 피팅에서 다른 끝단부 피팅까지 $100~\mathrm{k}\Omega$ 이하이어야 하지만 $1~\mathrm{k}\Omega$ 이하를 권장한다.

- (5) 호스 조립체는 정기적으로 호스 어셈블리 전체에 대한 누출시험을 실시하여 다음 의 조건을 만족시켜야 한다.
 - (가) 수조에서 수소나 헬륨을 시험가스로 사용하여야 한다.
 - (나) 압력 레벨에 1.375배의 기체 압력을 가압하고, 10분간 유지한 다음 압력을 유지하면서 누출이 호스 본체와 끝단의 연결부에 거품이 있는지 5분 동안 육안으로 검사하여야 한다.
 - (다) 시간당 누출속도는 정상적인 압력 및 온도에서 20 ml/h 미만이어야 한다.
 - (라) 시험은 상온에서 실시할 수 있지만, 누출량은 15 ℃로 환산하여야 한다.
 - (마) 이 때 보강층에 포함된 공기는 이상이 없는 한 누출량으로 계산하지 않는다.
- (6) 호스 어셈블리는 1.375 x HSL을 초과하지 않도록 과압보호장치를 설치하여야 하다.
- (7) 적절한 선정, 설치, 검사, 유지보수, 안전조치 및 사용법에 대한 설명서가 제공되어 야 하고, 사용자는 사용 설명서의 내용을 주기적으로 교육을 받아야 한다.
- (8) 호스 조립체는 사용하기에 적합한 길이이어야 한다. 필요한 길이를 만들기 위해 호스 조립체를 서로 연결해서는 안 된다.
- (9) 호스의 굽힘 반지름이 제조업체가 지정한 호스의 최소 굽힘 반지름보다 작게 사용할 수 없다.
- (10) 호스를 잡아당기거나 비틀지 말아야 한다.
- (11) 호스 조립체는 사용자의 접촉에 의한 손상을 방지하여야 한다.
- (12) 호스는 제조자가 요구하는 온도와 압력을 초과하여 사용할 수 없다.
- (13) 호스 조립체는 기계적, 화학적 또는 환경적 손상이 있는 경우 사용을 금지하고, 파기하여야 한다.

6.3 검사 및 유지보수

- (1) 호스 조립체는 제조자의 지침에 따라 검사하여야 한다. 제조자의 지침은 다음과 같은 항목이 포함되어야 한다.
 - (가) 해당 규격에 따른 누출

P - 30 - 2021

- (나) 호스의 부드러운 반점, 돌출부, 부풂, 꼬임, 신축 또는 변색
- (다) 호스 보강재를 노출시키는 과도한 마모
- (라) 보강재의 노출이나 손상에 의한 호스의 잘림 또는 균열
- (마) 호스 각 끝단에 연결부의 헐거움 또는 미끄러짐
- (바) 전기적 전도도
- (2) 호스 조립체는 늘어나거나, 얽히거나, 꼬이거나, 조여서는 안 된다.
- (3) 끌기, 떨어뜨리기, 날카로운 물체 또는 모서리와의 접촉, 화학물질의 노출을 피해야 한다.

지침 개정 이력

- □ 개정일 : 2021.10.00.
 - 개정자 : 전남대학교 화학공학부 장 희
 - 개정사유 : 안전보건기술지침을 작성하는데 참고한 관련법규, 규칙 등이 지속적으로 개정 및 폐지됨에 따라 최근 자료를 참조하여 개정하고, 수소 충전소에서 사용하는 충전소 호스와 호스어셈블리에 관한 지침을 추가함.
 - 주요 개정내용
 - 관련 법규 추가
 - 관련 규격 추가 : ISO 19880-5:2019, "Gaseous hydrogen Fuelling stations Part 5 : Dispenser hoses and hose assemblies", 2019
 - 제6장 충전소 호스와 호스어셈블리.
 - 관련 법규 및 규격
 - ISO 19880-5:2019, "Gaseous hydrogen Fuelling stations Part 5: Dispenser hoses and hose assemblies", 2019. 끝.