Braid Groups

Ernesto Vázquez Briseida Trejo

UNAM

21 de junio de 2019

The n-strand braid groups B_n has the presentation:

$$B_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i-j| \geq 2, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \rangle.$$

Pure braids

Two words β_1 and β_2 represent the same braid $\Leftrightarrow \beta_1\beta_2^{-1} = 1$.

Definition

Dibujo de pure braid

Theorem

The pure braid group P_n is biorderable for all $n \ge 1$.

Pure braids

Two words β_1 and β_2 represent the same braid $\Leftrightarrow \beta_1\beta_2^{-1} = 1$.

Definition

Dibujo de pure braid

Theorem

The pure braid group P_n is biorderable for all $n \ge 1$.

Pure braids

Two words β_1 and β_2 represent the same braid $\Leftrightarrow \beta_1\beta_2^{-1} = 1$.

Definition

Dibujo de pure braid

Theorem

The pure braid group P_n is biorderable for all $n \ge 1$.

Mapping class groups

Definition

Let $\mathcal S$ an oriented compact surface, possibly with boundary, and $\mathcal P$ be a finite set of distinguished interior points of $\mathcal S$.

The mapping clas group $\mathcal{MCG}(\mathcal{S}, \mathcal{P})$ of the surface \mathcal{S} relative to \mathcal{P} is the group of all isotopy classes of orientation-preserving homeomorphisms $\psi: \mathcal{S} \to \mathcal{S}$ satisfying $\psi_{|\partial \mathcal{S}} = id$ and $\psi(\mathcal{P}) = \mathcal{P}$.

Proposition

There is an isomorphism $B_n \cong \mathcal{MCG}(D_n)$, where D_n is the disk D^2 with n regularly spaced points.

Mapping class groups

Definition

Let $\mathcal S$ an oriented compact surface, possibly with boundary, and $\mathcal P$ be a finite set of distinguished interior points of $\mathcal S$.

The mapping clas group $\mathcal{MCG}(\mathcal{S},\mathcal{P})$ of the surface \mathcal{S} relative to \mathcal{P} is the group of all isotopy classes of orientation-preserving homeomorphisms $\psi:\mathcal{S}\to\mathcal{S}$ satisfying $\psi_{|\partial\mathcal{S}}=id$ and $\psi(\mathcal{P})=\mathcal{P}.$

Proposition

There is an isomorphism $B_n \cong \mathcal{MCG}(D_n)$, where D_n is the disk D^2 with n regularly spaced points.

Mapping class groups

Definition

Let $\mathcal S$ an oriented compact surface, possibly with boundary, and $\mathcal P$ be a finite set of distinguished interior points of $\mathcal S$.

The mapping clas group $\mathcal{MCG}(\mathcal{S},\mathcal{P})$ of the surface \mathcal{S} relative to \mathcal{P} is the group of all isotopy classes of orientation-preserving homeomorphisms $\psi:\mathcal{S}\to\mathcal{S}$ satisfying $\psi_{|\partial\mathcal{S}}=id$ and $\psi(\mathcal{P})=\mathcal{P}.$

Proposition

There is an isomorphism $B_n \cong \mathcal{MCG}(D_n)$, where D_n is the disk D^2 with n regularly spaced points.

Order in B_n

 σ -positive subword property

Proposition

Thanks.