Flight Price Prediction

BIA 678-B 2024 Fall
Aradhana
Ramamoorthy
Tzu Hsuan Lin
Varsha Abraham

Table of contents

01

02

Problem Statement

Data Overview

03

04

Data Processing

Exploratory Data Analysis

Table of contents

05

<u>\</u>

06

Modeling

Model Evaluation

07

08

Scale up & Scale out

Conclusion

Background

The flight booking industry is highly dynamic, with prices fluctuating based on demand, seasonality, and external factors. Predicting flight prices can empower consumers to make informed booking decisions and help airlines optimize revenue.

Problem statement

To develop a scalable regression-based predictive model to accurately predict flight prices based on historical data trends, enabling consumers to make informed decisions about flight bookings.

Data Collection

Dataset: Flight prediction Prices Sourced: Expedia, through Kaggle

Rows: 82 million rows

Storage: GCS and processed using Apache Spark

Time frame: April 2022 to October 2022

Key features: arrival and destination airports, travel duration, travel dates, seat availability, and ticket prices.

Data Cleaning

- **1. Dropping Irrelevant Columns** fareBasisCode, elapsedDays
- **2. Handling Missing Values** missing totalTravelDistance values
- **3. Dropping Temporary Columns** flight_month and flight_day
- 4. **Filtering Data** Bottom 50% of routes
- 5. Schema Validation
- **6.** Removing Redundant Rows filtering on legId

Feature Engineering

- 1. Adding days_until_flight
 between flightDate and
 searchDate
- **2.** Adding is _peak_season
- **3.** Filling Missing Values with Averages Average totalTravelDistance

EDA - Basic Statistics

- **3,915,873** unique flights, non-refundable
- **125** distinct routes(starting destination airport)

Total Fare

\$344.3

Mean

Min: 19.59/ Max: 8260.61

\$202.6

25th Percentile

\$311.1

50th Percentile

\$457.1

75th Percentile

643,726

Outliers exceeding \$835.085

- Scenarios such as high-demand seasons, exceptional booking behavior, or airline-specific pricing strategies
- Improve Model Generalization to handle a wide range of scenarios

EDA - Basic Statistics

• TotalTravelDistance: ranges from 89 to 7,252 miles, showing a mix of short and long-haul flights

EDA – Airport Distribution

EDA - Correlation Analysis

Correlation Between totalFare and the numerical features

0.04

seatsRemaining

0.4

totalTravelDistance

-0.05

days_until_flight

Correlation between totalTravelDistance and totalFare for each route

+	+	·+
startingAirport	destinationAirport	correlation
JFK	BOS	0.7089998621891911
l BOS	LGA	0.5255915934690403
IAD	BOS	0.5143842681361767
J DTW	JFK	0.477477396245983
I OAK	ORD	0.45898514946458524
MIA	LGA	0.43267881243554984
j JFK	DFW	0.41106129473904596
) OAK	DEN	0.3966772483310056
j OAK	LAX	0.3844373485319693
j JFK	ORD	0.37331433055258884
LGA	IAD	0.35588517032179295
IAD	LGA	0.35432847612316565
IAD	EWR	0.3244639255171254
PHL	LGA	0.32319192661651547
j ORD	JFK	0.3206619258593134
j DEN	SF0	0.32010566788474076
j CLT	MIA	0.2804493239435498
j DFW	LGA	0.2516080963493985
j MIA	CLT	0.24616551791871233
j LAX	ORD	0.24544673587618937

- Route-specific trends
- Variability in Correlation Strength
- Potential Influencing Factors: Airline competition, demand variability, etc

Computing Resource and Platform used

Predictor & Target Variables

Predictor

IsBasicEconomy Is_peak_season

IsRefundable travelDurationMinutes

IsNonStop StartingAirportIndex

seatsRemaining destinationAirportIndex

totalTravelDistance

daysUntilFlight

Target

totalFare

Encoding

```
from pyspark.ml.feature import StringIndexer, OneHotEncoder

# Step 1: StringIndexer for starting and destination airports
airport_indexer = StringIndexer(inputCol="startingAirport", outputCol="startingAirportIndex")
dest_airport_indexer = StringIndexer(inputCol="destinationAirport", outputCol="destinationAirportIndex")

# Transform the data
df_enc = airport_indexer.fit(df_all).transform(df_all)
df_enc = dest_airport_indexer.fit(df_enc).transform(df_enc)

# Step 2: OneHotEncoder for starting and destination airports
airport_encoder = OneHotEncoder(inputCol="startingAirportIndex", outputCol="startingAirportVec")
dest_airport_encoder = OneHotEncoder(inputCol="destinationAirportIndex", outputCol="destinationAirportVec")

# Transform the data
df_enc = airport_encoder.fit(df_enc).transform(df_enc)
df_enc = dest_airport_encoder.fit(df_enc).transform(df_enc)
```

+	t	+
startingAirport	startingAirportIndex	startingAirportVec
ATL ATL ATL	6.0 6.0 6.0	(15,[6],[1.0])

only showing top 5 rows

destination	Airport destinationAi	rportIndex destinationAirportVec
IBOS	4.0	(15,[4],[1.0])
BOS	14.0	(15, [4], [1.0])
BOS	14.0	(15,[4],[1.0])
BOS	14.0	(15,[4],[1.0])
BOS	14.0	(15, [4], [1.0])
÷	-	

```
from pyspark.sql.functions import col

# Convert boolean columns to integer

df_enc = df_enc.withColumn("isBasicEconomy", col("isBasicEconomy").cast("integer"))

df_enc = df_enc.withColumn("isRefundable", col("isRefundable").cast("integer"))

df_enc = df_enc.withColumn("isNonStop", col("isNonStop").cast("integer"))

df_enc = df_enc.withColumn("is_peak_season", col("is_peak_season").cast("integer"))
```


Modeling for Linear Regression

Chosen as a baseline to evaluate performance using models

like GBT, Linear Regression predicts a target variable by modeling the relationship between features and the target as a straight line. It's simple, interpretable, and a good baseline for regression tasks.

```
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml.evaluation import RegressionEvaluator
# Step 1: Define predictor columns and target column
predictor columns = [
    "isBasicEconomy", "isRefundable", "isNonStop", "seatsRemaining",
   "totalTravelDistance", "days_until_flight", "is_peak_season",
   "travelDurationMinutes", "startingAirportIndex", "destinationAirportIndex"
target column = "totalFare"
# Step 2: Vectorize predictors (combine all predictor columns into one feature vector)
vector_assembler = VectorAssembler(inputCols=predictor_columns, outputCol="features")
df_vectorized = vector_assembler.transform(df_enc)
# Step 3: Split Data into Training and Test Sets
train_data, test_data = df_vectorized.randomSplit([0.8, 0.2], seed=42)
# Step 4: Define and Train the Linear Regression Model
lr = LinearRegression(featuresCol="features", labelCol=target_column)
# Train the model
lr model = lr.fit(train data)
# Step 5: Evaluate the Model on the Test Set
```

predictions = lr_model.transform(test_data)

Modeling for Gradient Boosted Trees

Chosen for its ability to capture non-linear patterns in the flight price data and prediction accuracy, **Gradient Boosting Trees** build a series of decision trees where each tree corrects the errors of the previous ones, creating a robust predictive model. It handles complex relationships and nonlinear data well.

```
# Step 1: Define predictor columns and target column
predictor columns = [
    "isBasicEconomy", "isRefundable", "isNonStop", "seatsRemaining",
   "totalTravelDistance", "days_until_flight", "is_peak_season",
   "travelDurationMinutes", "startingAirportIndex", "destinationAirportIndex"
target column = "totalFare"
# Step 2: Vectorize predictors (combine all predictor columns into one feature vector)
vector assembler = VectorAssembler(inputCols=predictor columns, outputCol="features")
df vectorized 10pct = vector assembler.transform(df 10pct)
# Step 3: Split Data into Train and Test Sets
train data 10pct, test data 10pct = df vectorized 10pct.randomSplit([0.8, 0.2], seed=42)
# Step 4: Define Gradient-Boosted Trees Regressor and parameters
gbt = GBTRegressor(featuresCol="features", labelCol=target column, maxIter=100, maxDepth=6, seed=42)
# Step 5: Train the model and measure training time
start time = time.time()
qbt model 10pct = qbt.fit(train data 10pct)
training_time_10pct = time.time() - start time
print(f"Training Time (10% Dataset): {training time 10pct:.2f} seconds")
# Step 6: Make predictions and measure inference time
start time = time.time()
predictions 10pct = qbt model 10pct.transform(test data 10pct)
inference time 10pct = time.time() - start time
print(f"Inference Time (10% Dataset): {inference_time_10pct:.2f} seconds")
```


Linear Regression vs. Gradient Boosted Trees

Cluster configuration

The cluster configuration varies with dataset size to optimize resource utilization, maintain performance, and balance between training/inference times and throughput.

Dataset Sample	Machine Type	vCPUs per Node	Physical Cores per Node	Memory per Node	Number of Worker Nodes
10% Sample	n1-standard-4	4	2 (hyper-threaded)	15 GB	2
25% Sample	n1-standard-4	4	2 (hyper-threaded)	15 GB	2
50% Sample	n1-standard-4	4	2 (hyper-threaded)	15 GB	3
75% Sample	n1-standard-4	4	2 (hyper-threaded)	15 GB	4
100% Sample	n1-standard-4	4	2 (hyper-threaded)	15 GB	4

Scaling up

Sample Size	nple Size Training Time (s) Inference Time (s)		Throughput (predictions/sec)	
10%	556.41 0.34 3116		3116812.72	
25%	1380.63	0.16	16986634.29	
50%	2277.56	0.16	33952669.61	
75% 2166.97		0.27	29848675.93	
100%	2814.22	0.33	31823632.0	

Scaling out

Conclusion

Metrics	10%	25%	50%	75%	100%
Training Time	556.41 sec	1380.63 sec	277.56 sec	2166.97 sec	2814.22 sec
Inference Time	0.34 sec	0.16 sec	0.16 sec	0.27 sec	0.33 sec
RMSE	28.061	127.524	127.593	127.398	127.439
MAE	81.859	81.999	81.830	81.733	81.664
R ²	0.549	0.550	0.552	0.553	0.553
Throughput	3116812.72 preds/sec	16986634.29 preds/sec	33952669.61 preds/sec	29848675.93 preds/sec	31823632.00 preds/sec

Conclusion

Scalability achieved

Training time increases with dataset size but remains manageable due to distributed computing.

Throughput consistently scales, demonstrating efficiency in handling larger datasets.

Model Performance

Metrics (RMSE, MAE, R²) remain stable across dataset sizes, indicating the model's robustness.

R² improves slightly with larger datasets, reaching **0.553** for the full dataset.

Resource Utilization

Optimal configurations of worker nodes, executor memory, and cores ensured efficient processing.

Larger datasets required *higher instances and memory*, but training remained feasible **within** allocated resources.

Thanks

Any Questions?

