Ph.D. Qualifying Exam, September 2011 Real Variables

In order to obtain full credit, solve five out of the following seven problems. Please write carefully and add sufficient explanations.

Problem 1

- (a) State the Lebesgue Dominated Convergence Theorem.
- (b) Let $f: \mathbb{R} \to [-\infty, \infty]$ be a Lebesgue integrable function. For $n \in \mathbb{N}$, let $h_n: \mathbb{R} \to \mathbb{R}$ be defined by

$$h_n(x) = \frac{3 e^{n x}}{2 + e^{n x}}.$$

Show that the sequence $\left(\int (h_n f)\right)$ is convergent. Determine its limit.

Problem 2

Let m^* denote the Lebesgue outer measure on \mathbb{R} . Recall:

- A set $F \subset \mathbb{R}$ is called an F_{σ} -set if F is the union of a countable collection of closed sets.
- A function $f:[a,b] \to \mathbb{R}$ on a compact interval [a,b] is called Lipschitz continuous if there exists a constant L>0 such that $|f(x)-f(y)| \le L|x-y|$ for all $x, y \in [a,b]$.
- (a) Let $S \subset \mathbb{R}$ be a set. Prove: If there exists an F_{σ} -set F contained in S such that $m^*(S \setminus F) = 0$, then S is Lebesgue measurable.
- (b) Let $f:[a,b] \to \mathbb{R}$ be Lipschitz continuous. Show that f maps F_{σ} -sets in [a,b] onto F_{σ} -sets, sets of measure 0 in [a,b] onto sets of measure 0, and Lebesgue measurable sets in [a,b] onto Lebesgue measurable sets.

Problem 3

Let m be the Lebesgue measure on \mathbb{R} . Suppose $\{S_k \mid k \in \mathbb{N}\}$ is a countable collection of measurable sets in \mathbb{R} such that $\sum_{k=1}^{\infty} m(S_k) < \infty$. Prove: The set of points $x \in \mathbb{R}$ which belong to at least one infinite subcollection of $\{S_k \mid k \in \mathbb{N}\}$ has measure 0.

Problem 4

Let \mathcal{M} be the σ -algebra of all sets E in [0,1] such that either E or $[0,1] \setminus E$ is countable. Let μ be the counting measure on \mathcal{M} .

- (a) Show that the function g(x) = x, $0 \le x \le 1$ is not measurable.
- (b) Show that for each $f \in L^1([0,1], \mathcal{M}, \mu)$, f g is integrable. Prove that the map $f \mapsto \int f g d\mu$ defines a bounded linear functional on $L^1([0,1], \mathcal{M}, \mu)$.
- (c) Conclude that the dual space of $L^1([0,1], \mathcal{M}, \mu)$ is not isometrically isomporphic to $L^{\infty}([0,1], \mathcal{M}, \mu)$. How does this result relate to the Riesz Representation Theorem?

Problem 5

- (a) State the Hahn-Banach Theorem.
- (b) Let X be a Banach space. Show that for every $x \in X$, there exists a bounded linear functional f on X such that $f(x) = ||f|| \, ||x||$.

Problem 6

Let X be C([0,1]) endowed with the maximum norm $||f||_{\infty} = \max\{|f(x)| | 0 \le x \le 1\}$ and let Y be C([0,1]) endowed with the L^1 -norm $||f||_1 = \int_{[0,1]} |f|, f \in C([0,1])$. Let $I: X \to Y$ be the identity operator from X to Y. Prove that I maps the open unit ball in X to a set which is not open in Y. Use this result to conclude that Y is not a Banach space.

Problem 7

Let

$$f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}.$$

Is f Lebesgue integrable over \mathbb{R}^2 ? Argue carefully.