

BRAC UNIVERSITY

CSE 330: Numerical Methods (LAB)

LAB 7: Numerical Differentiation

We are familiar with the analytical method of finding the derivative of a function when the functional relation between the dependent variable y and the independent variable x is known. However, in practice, most often functions are defined only by tabulated data or the values of y for specified values of x can be found experimentally. Also in some cases, it is not possible to find the derivative of a function by analytical method. The process of calculating the derivatives of a function by means of a set of given values of that function is called numerical differentiation.

Forward Difference Formula:

All numerical differentiation are done by expansion of Taylor series

$$f(x+h) = f(x) + f'(x)h + f''(x)h^2/2 + f'''(x)h^3/6 + \dots (1)$$

From (1)

$$f'(x) = (f(x+h) - f(x)) / h + O(h)$$
(2)

Where, O(h) is the truncation error, which consists of terms containing h and higher order terms of h.

Central Difference Formula:

$$f(x+h) = f(x) + f'(x)h + f''(x)h^2/2 + f'''(x)h^3/6 + \dots$$
 (3)

$$f(x-h) = f(x) - f(x)h + f'(x)h^2/2 - f''(x)h^3/6 + \dots$$
 (4)

Using (3) and (4)

$$f'(x) = (f(x+h) - f(x-h)) / 2h + O(h^2)$$
(5)

Where, $O(h^2)$ is the truncation error, which consists of terms containing h^2 and higher order terms of h.

©RHS Page 1

Example 1: Given $f(x) = e^x$, find f'(1) with forward difference formula using $h = 10^{-1}$, 10^{-2} ...upto 10^{-10} .

Ans: 2.7183

Solution:

```
1
      function [d] = forward difference(f,x,tol,max)
 2 -
 3 -
      D(1) = (f(x+h) - f(x)) / (h);
 4 -
      E(1)=0;
 5 -
      for n=1:2
 6 -
      h=h/10;
 7 -
      D(n+1) = (f(x+h) - f(x)) / (h);
      E(n+1) = abs(D(n+1) - D(n));
 8 -
 9 -
      end
10
11 -
      while ((E(n)>E(n+1)) \& E(n)>tol \& n < max)
12 -
      h=h/10;
13 -
      D(n+2) = (f(x+h) - f(x)) / (h);
14 -
      E(n+2) = abs(D(n+2) - D(n+1));
15 -
      n=n+1;
16 -
      end
17 -
      d=D(n+1);
```

```
Command Window
>> f=@(x) exp(x);
[d]=forward_difference(f,1,.0001,12)
d =
     2.7183
```

Lab Task 1: Given $f(x) = x^2 + 5$, find f'(2) with central difference formula using $h = 10^{-1}$, 10^{-2} ...upto 10^{-15} .

Ans: 4.00

Numerical Differentiation with built-in function: "diff"

MATLAB software has the ability to determine the derivatives of data based on built-in function **diff.** When it is passed a one-dimensional vector of length n, the **diff** function returns a vector of length n-l containing the differences between adjacent elements. As described in the following example, these can be employed to determine finite-difference approximations of first derivatives.

©RHS Page 2

Example 2: From the following table of values of x and y, obtain

$$\frac{dy}{dx}$$
 for $x = 2.0$

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
y	2.7183	3.3201	4.0552	4.953	6.0496	7.3891	9.025

Ans: 7.4385

Solution:

Lab Task 2: In the above example, find

$$\frac{dy}{dx}$$
 for $x = 1.2$ Ans: 3.3423

Bonus mark will be given if you can find

$$\frac{d^2y}{dx^2}$$
 for $x = 1.2$ Ans: 3.3325

Home Task:

Given $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$. Find f'(0) with

- [1]. Forward difference method
- [2]. Central difference method
- [3]. Built-in function diff

Compare the results and determine which method is more accurate and appropriate with proper explanations.

©RHS Page 3