The RH series includes compact and high-torque DC servo actuators with a high rotational accuracy combining a speed reducer HarmonicDrive® for precision control and a DC servo motor. A combination with a dedicated servo driver that fully demonstrates the performance of this RH series of implements; compact machines and equipment with a high rotational accuracy.

Features

High resolution

High resolution of maximum 400,000 pulses/revolution (0.0009°/pulse) combining a HarmonicDrive®.

High positional accuracy

The HarmonicDrive® eliminates backlash caused by gear play, assuring high-accuracy positioning.

Compact body and high-output torque

High output. 0.69 Nm (maximum momentary torque achieved) by the smallest model RH-5A with outside dimensions of $\phi 20 \text{mm}$ in diameter x 89mm.

Structure

load is supported directly.

Models and Symbols

Specification (With an Incremental Encoder)

Time rating: Continuous

Protection: Totally enclosed self-cooled

Ambient temperature: 0 to 40°C

Ambient humidity: 35 to 80% RH (Do not expose to condensation.)

Model		RH-5A		RH-8D		RH-11D		RH-14D			
Item		8802	5502	4402	6006	3006	6001	3001	6002	3002	
Rated Output		W	1.5	1.7	1.4	8.6	6.2	13.6	12.3	20.3	18.5
Rated Voltage		V	12		24		24		24		
Maximum Momentary Torque Nm kgfcm		Nm	0.39	0.59	0.69	2.7	3.5	4.9	7.8	14	20
		kgfcm	4.0	6.0	7.0	27	36	50	80	140	200
Man Cantinuana Otali Ta		Nm	0.24	0.39	0.43	1.5	2.3	2.5	4.4	5.4	7.8
Max. Continuous Stall Torque		kgfcm	2.4	4.0	4.4	15	23	25	45	55	80
Rated Torque		Nm	0.16	0.29	0.29	1.4	2.0	2.2	3.9	3.2	5.9
		kgfcm	1.6	3.0	3.0	14	20	22	40	33	60
Max. Rotational Speed		r/min	180	110	90	100	50	100	50	100	50
Rated Rotational Speed	Rated Rotational Speed		88	55	44	60	30	60	30	60	30
Maximum Momentary Cu	Maximum Momentary Current		0.83	0.78	0.77	1.6	1.1	2.4	2.1	5.4	4.1
Rated Current		А	0.5	0.5	0.5	1.0	0.8	1.3	1.3	1.8	1.8
Torque Constant		Nm/A	0.69	1.11	1.38	2.1	4.2	2.46	4.91	2.92	5.76
Torque Constant		kgfcm/A	7.06	11.3	14.1	21.4	42.9	25.1	50.1	29.8	58.8
Moment of Inertia *5	GD ² /4	kgm²	6.3×10 ⁻⁴	16×10 ⁻⁴	25×10 ⁻⁴	37×10-4	150×10 ⁻⁴	110×10 ⁻⁴	430×10 ⁻⁴	210×10 ⁻⁴	810×10 ⁻⁴
Moment of mertia 5	J	kgfcm ²	0.007	0.016	0.026	0.04	0.15	0.11	0.44	0.21	0.83
Permissible Radial Load		N	59		196		245		392		
remissible nadiai Load	Permissible Radial Load		6.0		20 25		40				
Permissible Thrust Load kgf		N	29		98 19		96	392			
		kgf	3.0			1	0	2	0	4	.0
Reduction Ratio		50	80	100	50	100	50	100	50	100	
Mass	Mass kg		0.09		0.3		0.5		0.77		
Combined Driver	Combined Driver		HS-360-1A		HS-360-1B		HS-360-1C		HS-360-1D		

- *1: Values shown inn the table above indicate representative values on the output shaft.
- *2: This is the value when the actuator is combined with the HS-360 driver.
- *3: If you use the actuator by combining it with the HS-360 driver, chose an encoder that satisfies the line driver specification.
- *4: The actuator specification shows values when the actuator is installed on the following aluminum radiator plates.

RH-5A : 150x150x3 (mm) RH-8D : 150x150x6 (mm) RH-11D : 150x150x6 (mm) RH-14D : 150x150x6 (mm)

- *5: The inertia moment is the value converted to the output shaft from the total value of the inertia moments of the motor shaft and the HarmonicDrive®.
- *6: The resolution of the detector is the value obtained from ((motor shaft
- encoder resolution multiplied by 4) X (reduction ratio)).

 *7: The brush in DC servo motors requires replacement.
- *8: Please check the actuator rotation direction in our technical data sheet.

Encoder Specification

Item Model	RH-5A		RH-8D,11D,14D		
Output Circuit	Line Driver Open Collector		Line Driver	Open Collector	
Resolution (Pulses / revolution)	36	60	1000		
Power Supply (V)	DC+5V±5%		DC+5V±5%	DC+4.75 to 12.6V	
Current Consumption (mA)	170max. 60max.		170max. 60max.		
Response Frequency (kHz)	100		125		

■ Line Driver Output Circuit

■ Open Collector Output Circuit

■ Line Driver Output Waveform

■ Open Collector Output Waveform

■ Colors of Encoder Cables

Model	RH	-5A	RH-8D,11D,14D		
Cable Color	Line Drive	Open Collector	Line Drive	Open Collector	
Brown	Signal A	Signal A	Signal A	Signal A	
Blue	Signal Ā		Signal A	СОМ	
Red	Signal B	Signal B	Signal B	Signal B	
Green	Signal B		Signal B	COM	
Yellow	Signal Z	Signal Z	Signal Z	Signal Z	
Orange	Signal \overline{Z}		Signal Z	COM	
White	Power Supply	Power Supply	Power Supply	Power Supply	
Black	Ground (COM)	Ground (COM)	Ground (COM)	Ground (COM)	
Shield	Floating	Floating	Floating	Floating	

Tachometer Generator Specification

Specification

Item		
Voltage Generated (Note1)	V/1000(r/min)	3±10%
Linearity (Note 1)	%max	±1
Ripple (Note 1)	%max	1(RHS)/3(P-P)
Armature Resistance	Ω	45±10%(20)
Armature Inductance	mH	7±20%
Moment of Inertia (Note 2)	gm²	12×10 ⁻⁴

Note 1: Value of tachometer generator only at 200rpm or higher.

Note 2: Moment of inertia on motor shaft. When converted in terms of an actuator output shaft, the moment of inertia can be calculated by multiplying the

reduction ratio R of the HarmonicDrive® by the square.

Polarity

(+) and (-) will be output to white and red cables respectively in CW revolutions when viewed from the actuator output shaft.

Unit: mm

■ Measurement circuit of generated voltage, linearity and ripple

External Dimensions

RH-5A (With incremental encoder)

RH-8D (With incremental encoder)

Cross section B-B'

* Please confirm dimensions and shape against the illustrated specifications issued by us accompanying the delivered product. The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

External Dimensions

RH-11D (With incremental encoder)

Unit: mm

RH-14D (With incremental encoder)

Unit: mm

RH-8D, RH-11D, RH-14D (With tachometer generator)

Unit: mm

^{*} Please confirm dimensions and shape against the illustrated specifications issued by us accompanying the delivered product. The differential range may differ depending on the method for manufacturing parts (molded articles, machining articles). Contact us for the differential range of the size that is not described.

Positional Accuracy

The "uni-directional positional accuracy," "repeatability" and "reverse positional accuracy" are shown below. The following values represent typical values. (Source: JIS [Japanese Industrial Standards] B-6201-1987).

The RH series contains a speed reducer HarmonicDrive® for precision control and positioning errors of the motor shaft are therefore compressed to 1/50 or 1/100 by speed reduction. In reality, angular transmission errors of the speed reducer determine the positional accuracy. The measured values of angular transmission errors of the speed reducer are therefore shown as the positional accuracies of the RH Series. The accuracies of the individual models are shown below.

Item	Model	RH-5A	RH-8D	RH-11D	RH-14D
Uni-directional	arc sec	290	150	120	120
Positional Accuracy	rad	1.31×10 ⁻³	7.27×10 ⁻⁴	5.82×10 ⁻⁴	5.82×10 ⁻⁴
Repeatability	arc sec	±90	±60	±60	±60
	rad	±4.36×10 ⁻⁴	±2.91×10 ⁻⁴	±2.91×10 ⁻⁴	±2.91×10 ⁻⁴
Reverse Positional Accuracy	arc sec	150	60	60	60
	rad	7.27×10 ⁻⁴	2.91×10 ⁻⁴	2.91×10⁻⁴	2.91×10⁻⁴

<Measurement conditions, Load: no load, rotational speed: rated value>

Mechanical Accuracy

The mechanical accuracies of the output shaft and mounting flange of the RH series are as follows.

Mechanical Accuracy

Unit: mm

Accuracy Item	RH-5A	RH-8D	RH-11D	RH-14D
1 Output shaft surface runout	0.03	0.03	0.03	0.03
2 Concentricity of output shaft and fitting part	0.04	0.04	0.04	0.04
3 Perpendicularity between the output shaft and mounting surface	0.04	0.04	0.04	0.04

Note: The aforementioned values are TIR (total indicator reading) values.

Operable Range

Tips for Selecting the Rotary Actuator

Select an actuator after checking the detailed specifications in the technical information of actuators and drivers.

Flowchart for Actuator Selection

Check servo mechanism (Rotational or linear motion?)

V

Calculate load torque (T_L) and moment of inertia (J_L)
Equation (1)

Create a speed pattern based on operational status

V

Tentatively select an actuator based on load conditions

Calculate required starting torque (T1) Equation (2)

Is the required starting torque less than the max. momentary torque of the actuator?

Create a torque pattern and calculate effective torque (Trms) Equation (3)

YES

Is the effective torque smaller than the rated torque of the actuator?

YES

Actuator is selected

Tentative selection conditions

Load Condition	Check	Catalog Value	Unit
Load torque TL		Rated torque TR	Nm
Max. rotational speed of load NL		Rated rotational speed NR	r/min
Moment of inertia of load JL	3J _A *	Moment of inertia JA	kgm²

* J₁ ≤ J_A is desirable for a system requiring high servo stiffness (fast response and high precision)

Actuator Selection Example

An example of the actuator selection is shown below.

Tentatively select an actuator based on the load conditions. RSF-11B-100 satisfies the tentative selection conditions based on catalog values (page 50: Specification)

$$\begin{split} T_L &= 2Nm &< T_R = 4.0Nm \\ N_L &= 25 r/min &< T_R = 30 r/min \\ J_L &= 0.02 kgm^2 < J_A = 0.02 kgm^2 \end{split}$$

Calculate required starting torque (T1) Equation (1)

$$T_1 = 2 + \frac{2\pi}{60} \cdot \frac{(0.02 + 0.02) \times 25}{0.1}$$

= 3.0Nm

Therefore, the actuator model is decided to be RSF-11B-100

Load Conditions

Preconditions: The servo mechanism involves horizontal linear motion and the actuator is of a shaft type (RSF series)

Note: Use characteristic values that are converted into those for the actuator output shaft.

Structure of Harmonic Drive®

Wave Generator:

A ball bearing with thin-walled construction is fitted onto the outer circumference of an oval cam. The entire structure is oval. The inner ring of the bearing is fixed onto the oval cam and the outer ring elastically deforms through a ball. The wave generator can be mounted on a motor shaft.

Flex Spline:

A cup-like elastic metal part with thin wall thickness. Teeth are cut into the outer circumference of the opening of the cup, from where the output is usually extracted.

Circular Spline:

The inner gear of the rigid body, with teeth of equivalent size to those on the flex spline cut into the inner circumference. The circular spline has two more teeth than the flex spline and is normally fixed onto the gear casing.

Three basic components are assembled

Teeth meshing

Continued on page 104