

Grundzüge der Informatik 1

Vorlesung 11

Überblick

Überblick

- Wiederholung
 - Problemdefinition (Partition und SubsetSum)
 - Erstellen der Rekursionsgleichung (SubsetSum)
 - Entwicklung des Algorithmus
- Rucksack Problem
 - Problemdefinition
 - Erstellen der Rekursionsgleichung für den Lösungswert
 - Entwicklung des Algorithmus
 - Berechnung einer Lösung

- SubsetSum

Allgemeinere Fragestellung (SubsetSum)

• Gibt es L \subseteq M mit $\sum_{x \in L} x = U$?

Herangehensweise

- Sei M ={ x₁,...,x_n } (wir definieren eine Reihenfolge der Elemente,
 z.B. Reihenfolge im Eingabefeld)
- Definiere Indikatorfunktion Ind(U,m) mit
- $Ind(U,m) = \begin{cases} true \text{, wenn es L} \subseteq \{x_1, \dots, x_m\} \text{ gibt mit } \sum_{y \in L} y = U \\ false, \text{ sonst} \end{cases}$
- Gesucht ist Rekursion f
 ür Ind(U,m)

- SubsetSum

Die Rekursion

Wenn n>1, dann gilt:

$$Ind(U,n) = \begin{cases} true, & \text{wenn } U \ge x_n \text{ und } Ind(U-x_n,n-1) = true \\ & \text{oder } Ind(U,n-1) = true \\ & false, & \text{sonst} \end{cases}$$

Rekursionsabbruch:

Wenn U>0 und n=1, dann gilt:

•
$$Ind(U,1) = \begin{cases} true, & \text{wenn } x_1 = U \\ false, & \text{sonst } \end{cases}$$

- Wenn U=0 und n=1 dann gilt:
- Ind(0,1) = true

Dynamische Programmierung - SubsetSum

SubsetSum(A, U, n)

- Ind = new array [0..U] [1..n]
- 2. **for** j=1 **to** n **do**
- 3. Ind[i,1] = false
- 4. Ind[0,1] = true * leere Menge
- 5. Ind[A[1],1] = true * Menge {A[1]}
- 6. **for** i=2 **to** n **do**
- 7. **for** u=0 **to** U **do**
- 8. Ind[u,i] = false
- 9. **if** Ind[u,i-1] = true**then**<math>Ind[u,i] = true
- 10. **if** $u \ge A[i]$ und Ind[u-A[i], i-1] = true **then** Ind[u,i] = true
- 11. return Ind[U,n]

Optimierungsprobleme

- Für eine Eingabe I sei S(I) die Menge der möglichen Lösungen
- Für L∈S(I) bezeichne cost(L) eine Zielfunktion
- Aufgabe: Finde eine Lösung L∈S(I) mit minimalen Kosten cost(L)

Varianten

- In der Beschreibung oben soll eine Kostenfunktion minimiert werden (Minimierungsproblem)
- Man kann auch eine Wertfunktion maximieren (Maximierungsproblem)

Dynamische Programmierung für Optimierungsprobleme

- Bestimme rekursive Struktur einer optimalen Lösung durch Zurückführen auf optimale Teillösungen
- 2. Entwerfe rekursive Methode zur Bestimmung des *Wertes* einer optimalen Lösung.
- 3. Transformiere rekursive Methode in eine iterative (bottom-up) Methode zur Bestimmung des Wertes einer optimalen Lösung.
- 4. Bestimmen aus dem Wert einer optimalen Lösung und in 3. ebenfalls berechneten Zusatzinformationen eine optimale Lösung.

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Motivation

Optimierung von Prozessen/Entscheidungen unter Kapazitätsbeschränkungen

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Beispiel

Rucksackgröße 6

Größe	5	2	1	3	7	4
Wert	11	5	2	8	14	9

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Beispiel

Rucksackgröße 6

Größe	5	2	1	3	7	4
Wert	11	5	2	8	14	9

Objekt 1 und 3 passen in den Rucksack und haben einen Gesamtwert von 13

Das Rucksackproblem

- Rucksack mit begrenzter Kapazität
- Objekte mit unterschiedlichem Wert und unterschiedlicher Größe
- Wir wollen Objekte von möglichst großem Gesamtwert mitnehmen

Beispiel

Rucksackgröße 6

Größe	5	2	1	3	7	4
Wert	11	5	2	8	14	9

- Objekt 1 und 3 passen in den Rucksack und haben einen Gesamtwert von 13
- Objekte 2,3 und 4 passen und haben Gesamtwert von 15

Das Rucksackproblem

- Eingabe:
 - Anzahl Objekte n
 - ObdA. sei {1,...,n} die Menge der Objekte
 - Feld der Objektgrößen g[1..n] mit g[i]∈N
 - Feld der Objektwerte w[1..n] mit w[i]∈N
 - Ganzzahlige Rucksackgröße G

Ausgabe:

- S⊆{1,...,n}, so dass
- $w(S) := \sum_{x \in S} w(x)$ maximiert wird unter der Bedingung
- $g(S) \coloneqq \sum_{x \in S} g(x) \le G$

Lösungsansatz

- Bestimme zunächst den Wert einer optimalen Lösung
- Verfolge dazu Ansatz wie bei Maximumssuche und SubsetSum
- Verwende Eingabeordnung der Objekte
- Rekursion: Führe Kosten der Lösung mit n Objekten auf Lösungen mit n-1 Objekten zurück
- Leite dann die Lösung selbst aus der Tabelle des dynamischen Programms her

- Rucksackproblem

Zulässige und optimale Lösungen

- Wir nennen eine Lösung S⊆{1,..i} zulässig für einen Rucksack der Größe j, wenn g(S)≤ j
- Eine zulässige Lösung S heißt *optimal* für Rucksackgröße j, wenn sie w(S) unter allen zulässigen Lösungen maximiert

Wert optimaler Teillösungen

- Sei O_⊆{1,..,i} eine optimale Lösung für das Rucksackproblem mit Objekten aus {1,..,i} und Rucksackgröße j
- Sei Opt(i,j):=w(O) der Wert einer solchen optimalen Lösung
- Gesucht: Opt(n,G)

Aufgabe:

Bestimmen Sie die Rekursionsgleichung für das Rucksackproblem

Lemma 11.1 (Rekursionsabbruch: optimale Lösung für ein Objekt)

- Sei i=1 und sei {1,...,i}={1} die Eingabemenge und sei j die Rucksackgröße
- Ist j≥g[1], dann ist O={1} eine optimale Lösung mit Wert Opt(1,j) = w[1]
- Ist j<g[1], dann ist O=∅ eine optimale Lösung mit Wert Opt(1,j) = 0</p>

Beweis

- Da es nur ein Objekt gibt, kann eine optimale Lösung nur $\{1\}$ oder \emptyset sein.
- Da die Objektwerte natürliche Zahlen sind, ist {1} eine optimale Lösung, wenn {1} eine zulässige Lösung ist
- Letzteres ist der Fall, wenn j≥g[1] ist
- Ansonsten ist nur Ø eine zulässige und damit optimale Lösung

Lemma 11.2 (Zulässigkeit von Lösungen)

- (a) Ist S⊆{1,...,i-1} eine zulässige Lösung für Rucksackgröße j-g[i] mit Wert w(S), dann ist S∪{i} eine zulässige Lösung für Rucksackgröße j mit Wert w(S∪{i})
- (b) Ist S ⊆{1,..,i-1} eine zulässige Lösung für Rucksackgröße j, dann ist S auch eine zulässige Lösung für die ersten i Objekte und Rucksackgröße j
- (c) S=Ø ist eine zulässige Lösung für jede Rucksackgröße j≥0

Beweis (Teil 1)

(a) Wir verifizieren, dass $g(S)+g[i] \le j$. Damit ist $S \cup \{i\}$ zulässig und hat Wert $w(S \cup \{i\})$

Lemma 11.2 (Zulässigkeit von Lösungen)

- (a) Ist S⊆{1,..,i-1} eine zulässige Lösung für Rucksackgröße j-g[i] mit Wert w(S), dann ist S∪{i} eine zulässige Lösung für Rucksackgröße j mit Wert w(S∪{i})
- (b) Ist S ⊆{1,..,i-1} eine zulässige Lösung für Rucksackgröße j, dann ist S auch eine zulässige Lösung für die ersten i Objekte und Rucksackgröße j
- (c) S=Ø ist eine zulässige Lösung für jede Rucksackgröße j≥0

Beweis (Teil 2)

 Offensichtlich erfüllt S auch weiterhin die Größenbedingung und ist damit auch als Teilmenge von {1,...,i} eine zulässige Lösung.

Lemma 11.2 (Zulässigkeit von Lösungen)

- (a) Ist S⊆{1,..,i-1} eine zulässige Lösung für Rucksackgröße j-g[i] mit Wert w(S), dann ist S∪{i} eine zulässige Lösung für Rucksackgröße j mit Wert w(S∪{i})
- (b) Ist S ⊆{1,..,i-1} eine zulässige Lösung für Rucksackgröße j, dann ist S auch eine zulässige Lösung für die ersten i Objekte und Rucksackgröße j
- (c) S=Ø ist eine zulässige Lösung für jede Rucksackgröße j≥0

Beweis (Teil 3)

Offensichtlich erfüllt S =Ø die Größenbeschränkung.

Lemma 11.3 (Rekursive Struktur einer optimalen Lösung)

- Sei O⊆{1,..,i} eine optimale Lösung für das Rucksackproblem mit Objekten aus {1,...,i} und Rucksackgröße j. Es bezeichne Opt(i,j) den Wert dieser optimalen Lösung. Dann gilt:
- (a) Ist Objekt i in O enthalten, so ist O \ {i} eine optimale Lösung für das Rucksackproblem mit Objekten aus {1,...,i-1} und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j)=w[i] + Opt(i-1, j-g[i]).
- (b) Ist Objekt i nicht in O enthalten, so ist O eine optimale Lösung für das Rucksackproblem mit Objekten aus {1,...,i-1} und Rucksackgröße j. Insbesondere gilt Opt(i,j) = Opt(i-1, j).

Beweis (Teil 1)

- (a) Z.z.: Ist Objekt i in O enthalten, so ist O \ {i} eine optimale Lösung für das Rucksackproblem mit Objekten aus {1,...,i-1} und Rucksackgröße j-g[i]. Insbesondere gilt Opt(i,j)=w[i] + Opt(i-1, j-g[i]).
- Sei O eine optimale Lösung mit Wert Opt(i,j), die Objekt i enthält. Da Objekt i Größe g[i] hat, gilt sicher, dass O\{i} eine Gesamtgröße von höchstens j-g[i] hat. Damit ist O\{i} eine zulässige Lösung für das Rucksackproblem mit Objekten aus {1,...,i-1} und Rucksackgröße j-g[i].
- Annahme: O \ {i} hat Wert R = Opt(i,j) w[i] und ist keine optimale Lösung für das Rucksackproblem mit Objekten aus {1,..,i-1} und Rucksackgröße j-g[i].
- Dann gibt es eine bessere Lösung O* für dieses Problem mit Wert R*>R. Weiterhin ist O*∪ {i} eine zul. Lösung für das Rucksackproblem mit Objekten aus {1,...,i} und Rucksackgröße j. Der Wert dieser Lösung ist R*+w[i] > R + w[i] = Opt(i,j). Widerspruch zur Optimalität von O.
- Damit ergibt sich sofort Opt(i,j)= w[i] + Opt(i-1,j-g[i]).

- Rucksackproblem

Beweis (Teil 2)

- (b) Z.z.: Ist Objekt i nicht in O enthalten, so ist O eine optimale Lösung für das Rucksackproblem mit Objekten aus {1,...,i-1} und Rucksackgröße j. Insbesondere gilt Opt(i,j) = Opt(i-1, j).
- Sei O eine optimale Lösung mit Wert Opt(i,j), die Objekt i nicht enthält. Da Objekt i nicht in O ist, ist O \ {i} = O eine zulässige Lösung für das Rucksackproblem mit Objekten aus {1,...,i-1} und Rucksackgröße j.
- Da jede zulässige Lösung für das Rucksackproblem mit Objekten aus {1,...,i-1} auch eine Lösung für das Rucksackproblem mit Objekten aus {1,...,i} ist, folgt die Optimalität
- Damit ergibt sich sofort Opt(i,j)= Opt(i-1,j).

- Rucksackproblem

Korollar 11.4 (Rekursion zu den Kosten einer opt. Lösung)

- Es gilt
- (a) Opt(1,j)= w[1] für j \geq g[1]
- (b) Opt(1,j) = 0 für j < g[1]
- (c) $Opt(i,j) = max{Opt(i-1,j)}, w[i] + Opt(i-1,j-g[i])}, falls i>1 und g[i] <math>\leq j$, und
- (d) Opt(i,j) = Opt(i-1,j), falls i>1 und g[i]>j.

Beweis (Teil 1)

(a) und (b) folgen aus Lemma 11.1.

- Rucksackproblem

Korollar 11.4 (Rekursion zu den Kosten einer opt. Lösung)

- Es gilt
- (a) Opt(1,j)= w[1] für j \geq g[1]
- (b) Opt(1,j) = 0 für j < g[1]
- (c) $Opt(i,j) = max{Opt(i-1,j), w[i] + Opt(i-1,j-g[i])}, falls i>1 und g[i] \le j, und$
- (d) Opt(i,j) = Opt(i-1,j), falls i>1 und g[i]>j.

Beweis (Teil 2)

- Sei nun i>1 und g[i]≤j: Aufgrund von Lemma 11.3 wissen wir, dass entweder Opt(i,j) = Opt(i-1,j) oder Opt(i,j) = w[i] + Opt(i-1,j-g[i]) ist
- Wegen Lemma 11.2 entsprechen Opt(i-1,j) und w[i] + Opt(i-1,j-g[i]) dem Wert von zulässigen Lösungen

Universitä

Damit gilt (c)

- Rucksackproblem

Korollar 11.4 (Rekursion zu den Kosten einer opt. Lösung)

- Es gilt
- (a) Opt(1,j)= w[1] für j \geq g[1]
- (b) Opt(1,j)= 0 für j < g[1]
- (c) $Opt(i,j) = max{Opt(i-1,j), w[i] + Opt(i-1,j-g[i])}, falls i>1 und g[i] \le j, und$
- (d) Opt(i,j) = Opt(i-1,j), falls i>1 und g[i]>j.

Beweis (Teil 3)

- Sei nun i>1 und g[i]>j: Da g[i]>j, kann Objekt i nicht zu einer zulässigen Lösung gehören
- Aufgrund von Lemma 11.3 wissen wir, dass dann Opt(i,j) = Opt(i-1,j) gilt
- Damit gilt (d)

Rucksack(n,g,w,G)

- 1. Opt = **new array** [1,..,n][0,..,G]
- 2. for j = 0 to G do

***** Rekursionsabbruch

- 3. **if** j < g[1] **then** Opt[1,j] = 0
- 4. **else** Opt[1,j] = w[1]
- 5. **for** i = 2 **to** n **do**
- 6. for j = 0 to G do
- 7. **if** g[i] ≤j **then** Opt[i,j] = max{Opt[i-1,j], w[i] + Opt[i-1,j-g[i]]}
- 8. **else** Opt[i,j] = Opt[i-1,j]
- 9. return Opt[n,G]

- Rucksackproblem

Rucksack(n,g,w,G)

- 1. Opt = **new array** [1,..,n][0,..,G]
- 2. for j = 0 to G do

- ***** Rekursionsabbruch
- 3. **if** j < g[1] **then** Opt[1,j] = 0
- 4. **else** Opt[1,j] = w[1]
- 5. **for** i = 2 **to** n **do**
- 6. for j = 0 to G do
- 7. **if** g[i] ≤j **then** Opt[i,j] = max{Opt[i-1,j], w[i] + Opt[i-1,j-g[i]]}
- 8. **else** Opt[i,j] = Opt[i-1,j]
- 9. return Opt[n,G]

$\mathcal{O}(\sqrt{})$

Laufzeit

O(nG)

- Rucksackproblem

8	C	γ	3	5	7	9	10	12	13		g	w
7	G	2	3	5	7	9	10	12	12	\wedge	5	2
C	-			-		7	,	1 L	11)	2	3	4
6	C	2	3	5	6	7	9	10	10	>	1	1
5	0	2	3	5	6	7	9	10	10		2	3
4	\bigcirc	1	3	4	5	7	8	8	8		1	2
3	0	1	1	77		<i>→</i>	7	7	6		7	3
		7	//	7	5	5	5		6		4	7
2	0'	0	0) -	4	4	4	4	4	6	8	3	3
1	O	0	0	0	0	7	2	2	7 /	U		
i/j	0	1	2	3	4	5	6	7	8		(-	S=8
												(55

Beobachtung

- Sei R der Wert einer optimalen Lösung für Objekte aus {1,..,i}
- Falls g[i]≤j und Opt(i-1,j-g[i]) +w[i]= R, so ist Objekt i in mindestens einer optimalen Lösung enthalten

Wie kann man eine optimale Lösung berechnen?

- Idee: Verwende Tabelle der dynamischen Programmierung
- Fallunterscheidung + Rekursion:
 - Falls das i-te Objekt in einer optimalen Lösung für Objekte 1 bis i und Rucksackgröße j ist, so gib es aus und fahre rekursiv mit Objekt i-1 und Rucksackgröße j-g[i] fort
 - Ansonsten fahre mit Objekt i-1 und Rucksackgröße j fort

RucksackLösung(Opt,g,w,i,j)

- 1. if i=0 return \emptyset
- 2. else if g[i]>j then return RucksackLösung(Opt,g,w,i-1,j)
- else if Opt[i,j]=w[i] + Opt[i-1,j-g[i]] then return {i} ∪ RucksackLösung(Opt,g,w,i-1,j-g[i])
- 4. **else return** RucksackLösung(Opt,g,w,i-1,j)

Aufruf

 Nach der Berechnung der Tabelle Opt von Rucksack wird RucksackLösung mit Opt, g,w, i=n und j=G aufgerufen.

- Rucksackproblem

Lemma 11.5

 Hat die optimale Lösung für Objekte aus {1,..,i} und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus RucksackLösung eine Teilmenge S von {1,..,i}, so dass g(S)≤j und w(S)=Opt(i,j) ist.

Beweis

- Aufgrund von Korollar 11.4 enthält Opt[i,j] jeweils den Wert Opt(i,j) einer optimalen Lösung für Objekte {1,..,i} und Rucksackgröße j. Wir zeigen das Lemma per Induktion.
- Beweis per Induktion über i.
- Induktionsanfang: Ist i=0, so gibt der Algorithmus die leere Menge zurück. Dies ist korrekt, da kein Objekt in den Rucksack gepackt werden kann.
- Induktionsannahme: Die Aussage stimmt für i-1.

- Rucksackproblem

Lemma 11.5

 Hat die optimale Lösung für Objekte aus {1,..,i} und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus RucksackLösung eine Teilmenge S von {1,..,i}, so dass g(S)≤j und w(S)=Opt(i,j) ist.

Beweis

- Induktionsschluss: Ist g[i] > j, so kann Objekt i nicht Teil einer zulässigen Lösung sein. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,w,i-1,j) zurück. Dies ist nach Induktionsannahme korrekt.
- Ist g[i] ≤ j und Opt[i,j]=w[i] + Opt[i-1,j-g[i]], so gibt es eine optimale Lösung, die Objekt i enthält. In diesem Fall gibt der Algorithmus {i} ∪ RucksackLösung(Opt,g,w,i-1,j-g[i]) zurück. Dies ist nach Induktionsannahme korrekt.

- Rucksackproblem

Lemma 11.5

 Hat die optimale Lösung für Objekte aus {1,..,i} und Rucksackgröße j den Wert Opt(i,j), so berechnet Algorithmus RucksackLösung eine Teilmenge S von {1,..,i}, so dass g(S)≤j und w(S)=Opt(i,j) ist.

Beweis

Ist g[i] ≤ j und Opt[i,j]>w[i] + Opt[i-1,j-g[i]], so kann Objekt i nicht zu einer optimalen Lösung gehören. Der Algorithmus gibt in diesem Fall RucksackLösung(Opt,g,w,i-1,j) zurück. Dies ist nach Induktionsannahme korrekt.

8	0	2	3	5	7	9	10	12	13
7	0	2	3	5	7	9	10	12	13
6	0	2	3	5	6	7	9	10	10
5	0	2	3	5	6	7	9	10	10
4	0	1	3	4	5	7	8	8	8
3	0	1	1	4	5	5	5	5	6
2	0	0	0	4	4	4	4	4	6
1	0	0	0	0	0	2	2	2	2
i/j	0	1	2	3	4	5	6	7	8

	g	w
	5	2
	3	4
	1	1
	2	3
,	1	2
F	7	3
	4	7
Γ	3	3

Satz 11.6

Mit Hilfe von Algorithmus Rucksack und RucksackLösung kann man in O(nG) Zeit eine optimale Lösung für das Rucksackproblem berechnen, wobei n die Anzahl der Objekte ist und G die Größe des Rucksacks.

Beweis

- Die Laufzeit von Algorithmus RucksackLösung ist O(n), da sich bei jedem rekursiven Aufruf der erste Parameter um 1 reduziert, es nur jeweils einen rekursiven Aufruf gibt und jeder Aufruf konstante Zeit benötigt.
- Die Laufzeit wird durch Algorithmus Rucksack dominiert und ist somit O(nG). Die Korrektheit folgt aus dem Korollar zur Rekursionsgleichung und dem Lemma zur Korrektheit von RucksackLösung.

Zusammenfassung

- Rucksack Problem
 - Problemdefinition
 - Erstellen der Rekursionsgleichung für den Lösungswert
 - Entwicklung des Algorithmus
 - Finden einer Lösung

Referenzen

T. Cormen, C. Leisserson, R. Rivest, C. Stein. Introduction to Algorithms.
 The MIT press. Second edition, 2001.

