Cross-Validation with FRESA.CAD

José Tamez-Peña

Aug 15, 2021

Contents

1	Sim	ple Cross-Validation of Common ML Methods	1
	1.1	The required libraries	1
	1.2	PimaIndiansDiabetes Data Set	1
	1.3	Gradient boosting from the gbm package	1
	1.4	Cross-Validation of common ML-Methods	8
	1.5	FRESA.CAD::BinaryBenchmark and Comparing Methods	8
	1.6	Reporting the results of the Benchmark procedure	11

1 Simple Cross-Validation of Common ML Methods

This tutorial will guide users on how to use FRESA.CAD to evaluate the performance of binary classifiers.

1.1 The required libraries

```
library("FRESA.CAD")
library("mlbench")
library("fastAdaboost")
library("gbm")
```

1.2 PimaIndiansDiabetes Data Set

I will use the PimaIndiansDiabetes2 data set from the mlbech package.

```
data("PimaIndiansDiabetes2", package = "mlbench")
```

We have to condition the data set.

FRESA.CAD cross-validation requires a data frame with complete cases. Also, the outcome has to be numeric

- * 0 for Controls, and
- * 1 for Cases

```
PimaIndiansDiabetes <- PimaIndiansDiabetes2[complete.cases(PimaIndiansDiabetes2),]
PimaIndiansDiabetes$diabetes <- 1*(PimaIndiansDiabetes$diabetes == "pos")
```

1.3 Gradient boosting from the gbm package

The cross-validation with FRESA.CAD can be done on any R function that fits binary outcomes. The requirement is that model fit has to done as:

```
>model <- fit(formula,data),</pre>
```

and the predict must be called as:

```
>pre <- predict(model,testdata)
```

If the fitting function does not conform to the requirements, you can always create a wrapper. Here we will show how to create a wrapper to the gradient boost method of the gbm package.

The following code shows the gbm wrapper function:

```
GBM_fit <- function(formula = formula, data=NULL, distribution = "bernoulli", n.trees = 1000,
                   shrinkage = 0.01, interaction.depth = 4, ...)
  fit <- gbm(formula = formula, data = data, distribution = distribution, n.trees = n.trees,</pre>
                   shrinkage = shrinkage, interaction.depth = interaction.depth,...);
  selectedfeatures <- summary(fit,plotit = FALSE);</pre>
  sum <- 0;
  sfeat = 1;
  while (sum < 90) {
    sum <- sum + selectedfeatures[sfeat,2];</pre>
  sfeat <- sfeat + 1;</pre>
  } #keep the ones that add to 90%
    result <- list(fit = fit, n.trees = n.trees,
                    selectedfeatures = rownames(selectedfeatures[1:sfeat,]))
    class(result) <- "GBM_FIT";</pre>
    return(result)
}
```

We also need a proper predict function for the boosting algorithm:

Let me check that fitting and prediction functions are working:

Table 1: Training: Gradient Boost Confusion Matrix

	0	1
FALSE	251	27
\mathbf{TRUE}	11	103

Now I can check the test ensembles performance of the gradient boosting method. The following code shows five alternatives for the cross-validation.

I'll use the plotModels.ROC() function to plot the ROC curves

FRESA.CAD provides different alternatives for selecting the training sample inside the Cross-validation. The default setting uses a balanced scheme that randomly add samples from the under represented class (classSamplingType = "Augmented"). Other options are class-proportional (classSamplingType = "Proportional"), Balanced (classSamplingType = "NoAugmented"), and Leave One Out per class (classSamplingType = "LOO"). Bootstrap (trainFraction = "Bootstrap") sampling can be used on all the sampling schemes.

```
GradBOOST_Proportionaldcv <- randomCV(PimaIndiansDiabetes,</pre>
                                        "diabetes",
                                        GBM_fit,
                                        trainFraction = 0.5,
                                        repetitions = 100,
                                        classSamplingType = "Proportional"
GradBOOST_ProportionalBootstrapcv <- randomCV(PimaIndiansDiabetes,</pre>
                                                 "diabetes",
                                                 GBM_fit,
                                                trainFraction = "Bootstrap",
                                                 repetitions = 100,
                                                 classSamplingType = "Proportional"
GradBOOST_NoAugmentedBootstrapcv <- randomCV(PimaIndiansDiabetes,</pre>
                                              "diabetes",
                                              GBM_fit,
                                              trainFraction = 0.5,
                                              repetitions = 100,
                                              classSamplingType = "NoAugmented"
GradBOOST LOOcv <- randomCV(PimaIndiansDiabetes,</pre>
                                              "diabetes",
                                              GBM_fit,
                                              repetitions = 100,
                                              classSamplingType = "L00"
```

Once cross-validated, the performance results can be analyzed and plotted using the predictionStats_binary() function.

bs5 <- predictionStats_binary(GradBOOST_ProportionalBootstrapcv\$medianTest,

"Bootstraping Proportional CV",cex = 0.8)

bs6 <- predictionStats_binary(GradBOOST_NoAugmentedBootstrapcv\$medianTest,

"Bootstraping Balanced CV",cex = 0.8)

The output of the prediction Stats_binary() function provides key performance metrics with their corresponding 95% confidence intervals

pander::pander(bs2\$accc,caption = "Accuracy")

Table 2: Accuracy

est	lower	upper
0.7755	0.7309	0.8159

pander::pander(bs2\$berror,caption = "Balanced Error")

50%	2.5%	97.5%
0.2454	0.2009	0.2894

pander::pander(bs2\$aucs,caption = "AUC")

est	lower	upper
0.846	0.8057	0.8863

pander::pander(bs2\$sensitivity,caption = "Sensitivity")

Table 5: Sensitivity

est	lower	upper
0.6923	0.6054	0.7702

pander::pander(bs2\$specificity,caption = "Specificity")

Table 6: Specificity

est	lower	upper
0.8168	0.7645	0.8617

pander::pander(bs2\$ClassMetrics, caption = "All Metrics")

50%	2.5%	97.5%
0.7755	0.7372	0.8163

• senci:

50%	2.5%	97.5%
0.7546	0.7106	0.7991

• aucci:

50%	2.5%	97.5%
0.7546	0.7106	0.7991

• berci:

50%	2.5%	97.5%
0.2454	0.2009	0.2894

• preci:

50%	2.5%	97.5%
0.7482	0.7036	0.7919

• F1ci:

50%	2.5%	97.5%
0.7505	0.7065	0.7931

1.4 Cross-Validation of common ML-Methods

Now I will compare the performance to other R methods that already have a handy fit and predict methods.

1.5 FRESA.CAD::BinaryBenchmark and Comparing Methods

Once all the cross-validation have been completed, we can compare their performance to five common ML methods:

- KNN,
- Random Forest,
- RPART,
- SVM, and
- LASSO

These methods are fitted using their default parameters inside the BinaryBenchmark function:

1.6 Reporting the results of the Benchmark procedure

Once done, we can compare the CV test results using the $\operatorname{plot}()$ function.

The plot function creates bar plots that compare the balanced error rata, the accuracy, the sensitivity, the specificity, the area under the curve, as well as the report of the concordance index of the individual cross-validation runs.

The final two plots provide the heat maps of testing if the methods have similar classification performance and if the methods have larger AUC to the other tested methods.

```
par(mfrow = c(1,1),cex = 1.0,xpd = T,pty = 'm', mar = c(3,3,3,10)) # Making space for the legend prBenchmark <- plot(cp)
```

Balanced Error

ROC AUC

Sensitivity

The plot function also generates summary tables of the CV results.

pander::pander(prBenchmark\$metrics,caption = "Classifier Performance",round = 3)

Table 13: Classifier Performance (continued below)

	RPART	ENS	Logistic	SVM	Gradient_Boost	LDA	QDA
BER	0.232	0.234	0.24	0.243	0.245	0.248	0.248
\mathbf{ACC}	0.781	0.776	0.765	0.765	0.776	0.765	0.732
\mathbf{AUC}	0.839	0.851	0.845	0.834	0.846	0.845	0.803
\mathbf{SEN}	0.731	0.738	0.746	0.731	0.692	0.715	0.8
\mathbf{SPE}	0.805	0.794	0.775	0.782	0.817	0.79	0.698
CIDX	0.762	0.851	0.841	0.824	0.832	0.84	0.784

	LASSO	KNN	ADABOOST	RF
BER	0.249	0.25	0.25	0.256
\mathbf{ACC}	0.76	0.753	0.776	0.776
\mathbf{AUC}	0.846	0.827	0.847	0.847
\mathbf{SEN}	0.731	0.746	0.662	0.654
\mathbf{SPE}	0.775	0.756	0.832	0.836
CIDX	0.844	0.799	0.801	0.835