Graduate Preliminary Examination, Spring 2003 [3 hours, problems counted equally, $\mathbb R$ denotes the set of real numbers.] Instructions: Work 7 of the 8 problems.

#1. (a) Define the span of vectors $v_1, ..., v_k$ in \mathbb{R}^n .

(b) Prove that if w lies in the span of $v_1, ..., v_k$, then the span of $v_1, ..., v_k, w$ is equal to the span of $v_1, ..., v_k$.

#2. Does there exist a 3×2 complex matrix A such that

$$A^tA = I_2$$
, and $AA^t = I_3$?

If so, give an example; if not, prove it. Here I_k is the $k \times k$ identity matrix.

#3. Prove the formula
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
.

#4. Prove that $x > \ln x$ for all x > 0.

#5. Prove that any linear function $L: \mathbb{R}^2 \to \mathbb{R}^2$ is continuous.

#6. Does there exist a divergent series $\sum_{i=0}^{\infty} a_i$ of positive real numbers a_i such that $\sum_{i=0}^{\infty} \sqrt{a_i}$ converges? If so, give an example; if not, prove it.

#7. (a) Let f be a real-valued function defined on \mathbb{R}^n . Define differentiability of f at a point p.

(b) Show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 for $(x,y) \neq (0,0)$, and $f(0,0) = 0$

is not differentiable at (0,0).

#8. Consider the line integral $\int_C 2xdx + x^2ydy$, where C is the boundary of the unit square in the 1st quadrant. Evaluate the line integral (a) directly and (b) by using Green's theorem.