BOLETÍN V: GENERADORES. TEOREMAS DE REDES. RESOLUCIÓN DE CIRCUITOS (TEMA 8)

[1] Sin arrancar un coche, se mide la tensión e intensidad suministrada por su batería, obteniendo un valor de 12 V y O A, respectivamente. Una vez arrancado, la caída de potencial en la batería vale 11,4 V y la corriente que suministra al motor de arranque 20 A ¿Cuánto valen la fem (el voltaje) y la resistencia interna de la batería?

Solución: ε = 12 V, r = 0,03 Ω

[2] Una fuente de tensión proporciona una tensión entre sus terminales de 80 V cuando está en circuito abierto. Si se conecta a una resistencia de 100 Ω , la caída de potencial entre sus terminales baja a 64 V. Determinar los parámetros del generador.

Solución: ε = 80 V, r = 25 Ω (Como fuente de intensidad: I = 3,2 A, g = 0,04 S)

[3] Una fuente de intensidad proporciona una intensidad de 24 A cuando se cortocircuitan sus terminales. Si se conecta a una resistencia de 1 Ω suministra una intensidad de 20 A. Determinar los parámetros del generador.

Solución: I = 24 A, g = 0,2 S (Como fuente de tensión: ε = 120 V, r = 5 Ω)

[4] Determinar los equivalentes Thevenin y Norton del circuito entre los puntos A y B: a) utilizando los teoremas de Thevenin o Norton, respectivamente; y b) transformando progresivamente porciones del circuito entre dos terminales de fuentes de tensión a fuentes de intensidad, o viceversa, y asociando resistencias en serie o en paralelo. Datos: $\varepsilon = 180 \text{ V y R}_1 = \text{R}_2 = \text{R}_3 = 30 \ \Omega$. Nota: En el apartado a) es útil lo visto para circuitos divisores de tensión e intensidad.

Solución: ε_T = 90 V, R_T = 45 Ω ; I_N = 2 A, R_N = 45 Ω

Problema 4

Problema 5

[5] Determinar los equivalentes Thevenin y Norton del circuito entre los puntos A y B: a) utilizando los teoremas de Thevenin o Norton, respectivamente; y b) transformando progresivamente porciones del circuito entre dos terminales de fuentes de tensión a fuentes de intensidad, o viceversa, y asociando resistencias en serie o en paralelo. Datos: $I = 2 A y R_1 = R_2 = R_3 = 30 \Omega$. Nota: En el apartado a) es útil lo visto para circuitos divisores de tensión e intensidad.

Solución:
$$\varepsilon_T$$
 = 20 V, R_T = 20 Ω ; I_N = 1 A, R_N = 20 Ω

[6] Se tienen dos fuentes de tensión ϵ_1 , r_1 y ϵ_2 , r_2 , conectadas en paralelo con la misma polaridad, unidas a un circuito a través de los terminales de la asociación. Determinar las características de la fuente de tensión equivalente que puede sustituir a dicha asociación: a) empleando el Teorema de Thevenin; y b) tranformando las fuentes en fuentes de intensidad y empleando el Teorema de Norton.

$$\underline{\text{Solución}} \colon \ \mathcal{E}_{eq} = \frac{r_{\scriptscriptstyle I}\mathcal{E}_{\scriptscriptstyle 2} + r_{\scriptscriptstyle 2}\mathcal{E}_{\scriptscriptstyle I}}{r_{\scriptscriptstyle I} + r_{\scriptscriptstyle 2}} \ ; \ r_{eq} = \frac{r_{\scriptscriptstyle I}r_{\scriptscriptstyle 2}}{r_{\scriptscriptstyle I} + r_{\scriptscriptstyle 2}} \ ; \ I_{eq} = \frac{\mathcal{E}_{\scriptscriptstyle I}}{r_{\scriptscriptstyle I}} + \frac{\mathcal{E}_{\scriptscriptstyle 2}}{r_{\scriptscriptstyle 2}} \ ; \ g_{eq} = g_{\scriptscriptstyle I} + g_{\scriptscriptstyle 2}$$

[7] Se tienen dos fuentes de intensidad I_1 , g_1 y I_2 , g_2 , conectadas en serie con la misma polaridad, unidas a un circuito a través de los terminales de la asociación. Determinar las características de la fuente de intensidad equivalente que puede sustituir a dicha asociación: a) empleando el Teorema de Norton; y b) tranformando las fuentes en fuentes de tensión y empleando el Teorema de Thevenin.

Solución:
$$I_{eq} = \frac{g_1 I_2 + g_2 I_1}{g_1 + g_2}$$
; $g_{eq} = \frac{g_1 g_2}{g_1 + g_2}$; $\varepsilon_{eq} = \varepsilon_1 + \varepsilon_2$; $r_{eq} = r_1 + r_2$

[8] Determinar los equivalentes Thevenin y Norton de los circuitos siguientes entre los puntos A y B usando los teoremas de Thevenin o Norton, respectivamente. Datos: I = 2 A y $R_1 = R_2 = R_3 = 10$ Ω ; $\epsilon = 180$ V y $R_1 = R_2 = R_3 = 90$ Ω . Nota: Transformando la conexión en estrella o en triángulo, que aparece en cada caso, en triángulo o estrella, respectivamente, se tiene un circuito igual al del prob. 4 o al del 5. Por tanto, los resultados son los mismos.

[9] Determinar la intensidad que circula por cada resistencia del circuito y la tensión en cada elemento del mismo aplicando: a) el teorema de superposición, y b) el concepto de corriente de malla. Verificar que la potencia neta suministrada por las fuentes de intensidad coincide con la consumida por las resistencias del circuito. Nota: Es útil lo visto sobre circuitos divisores de V e I. Datos: $I_1 = 5$ A, $I_2 = 25$ A, $R_1 = 12$ Ω , $R_2 = 30$ Ω , $R_3 = 8$ Ω .

<u>Solución</u>: I_{R1} = 18,8 A (descendente), I_{R2} = 11,2 A (descendente), I_{R3} = 13,8 A (hacia la izquierda); V_{R1} = V_{I1} = 225,6 V, V_{R2} = V_{I2} = 336 V, V_{R3} = 110,4 V; P = 9528 W.

[10] Lo mismo que en el problema anterior pero invirtiendo la polaridad de la fuente de intensidad I_2 . Datos: I_1 = 2 A, I_2 = 4 A, R_1 = 5 Ω , R_2 = 2 Ω , R_3 = 8 Ω .

<u>Solución</u>: I_{R1} = 0,8 A (descendente), I_{R2} = 2,8 A (ascendente), I_{R3} =1,2 A (hacia la dcha.); V_{R1} = V_{I1} = 4 V, V_{R2} = V_{I2} = 5,6 V, V_{R3} = 9,6 V; P = 30,4 W.

[11] Determinar la intensidad que circula por cada elemento del circuito y la tensión en cada resistencia del mismo aplicando: a) el teorema de superposición, y b) el concepto de corriente de malla. Verificar que la potencia neta suministrada por las fuentes de tensión coincide con la consumida por las resistencias del circuito. Nota: Es útil lo visto sobre circuitos divisores de V e I. Datos: ϵ_1 = 40 V, ϵ_2 = 80 V, ϵ_1 = 20 ϵ_2 , ϵ_3 = 8 ϵ_4 .

<u>Solución</u>: $I_{R1} = I_{\epsilon 1} = 1$ A (ascendente), $I_{R2} = I_{\epsilon 2} = 1,5$ A (asc.), $I_{R3} = 2,5$ A (descendente); $V_{R1} = 20$ V, $V_{R2} = 60$ V, $V_{R3} = 20$ V; P = 160 W.

[12] Lo mismo que en el problema anterior pero invirtiendo la polaridad de la fuente de tensión ϵ_2 . Datos: ϵ_1 = 180 V, ϵ_2 = 90 V, R_1 = 60 Ω , R_2 = 45 Ω , R_3 = 90 Ω .

<u>Solución</u>: $I_{R1} = I_{\epsilon 1} = 2,67$ A (ascendente), $I_{R2} = I_{\epsilon 2} = 2,44$ A (descendente), $I_{R3} = 0,23$ A (descendente); $V_{R1} = 20$ V, $V_{R2} = 60$ V, $V_{R3} = 20$ V; P = 700,2 W.

[13] Determinar la intensidad que circula por cada elemento del circuito y la tensión en cada elemento del mismo aplicando el teorema de superposición, el concepto de corriente de malla o resolviéndolo directamente. Verificar que la potencia neta suministrada por las fuentes coincide con la consumida por las resistencias del circuito.

Datos: ε = 10 V, I = 2 A, R₁ = 2 Ω , R₂ = 2 Ω .

Solución: I_{ϵ} = 3 A (ascendente), I_{R1} = 5 A (descendente), I_{R2} = I_{I} = 2 A (ascendente); V_{ϵ} =10 V, V_{R1} =10 V, V_{R2} =4 V, V_{I} =14 V; P = 58 W.

