Nom:

Question de cours :

- Rappeler la définition du produit matriciel.
- Rappeler ce qu'est la distributivité du produit matriciel.

•

Exercice:

Lorsque c'est possible, calculer les matrices suivantes :

a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 0 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ -1 & 1 & 1 \\ 3 & 4 & 2 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix}$$

c)
$$\begin{pmatrix} \begin{pmatrix} 1 & 8 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 0 & 2 & 2 \end{pmatrix}$$

Exercice:

Soit
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
.

- 1) Calculer A^2 , A^3 et A^4 .
- 2) Montrer que pour tout $n \in \mathbb{N}$, on a : $A^n = 2^{n-1}A$.

Exercice:

Soient $A = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 9 \\ -3 & a \end{pmatrix}$ avec $a \in \mathbb{R}$. Donner toutes les valeurs de a telles que A et B commutent.

Commentaire:

Nom:

Question de cours :

- Rappeler ce que sont les matrices triangulaires inférieures et supérieures et les matrices diagonales. Donner des exemples.
- Comment peut-on exprimer la puissance d'un matrice diagonale?

Exercice:

Lorsque c'est possible, calculer les matrices suivantes :

a)
$$\begin{pmatrix} 1 & 1 & -3 \\ 0 & 3 & 5 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} -1 & 2 & 3 \\ 0 & 5 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 1 & 0 \\ 2 & 5 & 7 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

c)
$$\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 4 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & 0 \end{pmatrix}$$

Exercice:

On considère trois suites réelles $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ définies par $x_0=1$, $y_0=2$, $z_0=2$ et :

$$\begin{cases} x_{n+1} = 2x_n + y_n - 2z_n \\ y_{n+1} = 2y_n + z_n \\ z_{n+1} = 2z_n \end{cases}$$

On pose pour tout $n \in \mathbb{N}$ la matrice colonne $U_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$

- 1) Montrer qu'il existe une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que $U_{n+1} = AU_n$.
- 2) Montrer que pour tout $n \in \mathbb{N}$, on a : $U_n = A^n U_0$.
- 3) Pour tout $n \in \mathbb{N}$, donner une expression de A^n et calculer les valeurs de x_n, y_n, z_n .

Soit $A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$. Montrer que $A^2 = 3A - 2I_2$. En déduire une expression de A^5 en fonction de A et I_2 . Calculer alors A^5 .

Commentaire:

Nom:

Question de cours :

- Si $A,B,C\in\mathcal{M}_n(\mathbb{R})$ vérifient que AB=AC, alors avons nous B=C?
- Donner la formule de Newton pour les matrices en rappelant dans quels cas elle s'applique.

Exercice:

Lorsque c'est possible, calculer les matrices suivantes :

a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \\ 3 & 4 & 2 \end{pmatrix}$$

b) $\begin{pmatrix} 1 & -1 & 3 \\ 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$
c) $\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \end{pmatrix}$

Exercice:

Soient
$$a,b \in \mathbb{R}$$
 et $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$.

- 1) Calculer A^2 , A^3 et A^4 . Conjecturer une expression pour A^n pour tout $n \in \mathbb{N}$.
- 2) Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice:

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est inversible s'il existe $B \in \mathcal{M}_n(\mathbb{R})$ telle que $AB = BA = I_n$.

On pose
$$A=\begin{pmatrix}2&2&3\\1&1&4\\1&-2&1\end{pmatrix}$$
. Montrer que $A^3-4A^2+8A-15I_n=0_3$ et en déduire que A est inversible et donner

une expression de son inverse.

Commentaire: