

Peter Burek, Mikhail Smilovic, Luca Guillaumot International Institute for Applied Systems Analysis Research Scholars at Water Program

- 0. What you need downloading data from FTP
- 1. Lumped vs. distributed modelling
- 2. The world at 30 arcsec
- 3. From elevation to flow accumulation
- 4. Example for Lake Tana, Blue Nile, Ethiopia

0. What you need

 You downloaded already all global static data for 30 arcmin e.g. global soil data on 30 arcmin from:

from CWATM_data\cwatm_input30min.zip

You need a global climate dataset (precipitation, temperature, radiation etc.)
 please download from our ftp server

```
climate_2011_2012 .zip from
please copy to the folder CWATM_data/climate/global and unzip (extract here)
```

1. Lumped and distributed modeling

- CWatM is a distributed model which can be used at different resolutions e.g. 30 arcmin, 5 arcmin, 1km
- Other hydrological models use a lumped model approach (e.g. SWAT)

2. The world in 30 arcmin raster

- CWatM is a distributed model which can be used at different resolutions e.g. 30 arcmin, 5 arcmin, 1km
- This is a part of the World (Ethiopia) split into 30 arcmin cells (around 50 km x 50 km)

3. DEM to flow direction

 Based on a digital elevation model for each cell a flow direction is calculated

 This flow direction is from: DDM30 River-routing network data (Lehner et al., 2008)

4. Flow direction to stream network

- Each flow direction gets a number (like the number keyboard)
- If you connect the flow direction you get to an upstream downstream connection the stream network

5. Stream network to flow accumulation map

• Each cell has an area (e.g. 30arcmin x 30 arcmin)

• If you sum up all upstream areas for each cell you get to the upstream area. The value is representation the upstream catchment area of this cell

6. In short: from elevation to flow accumulation

78	72	69	71	58			3	3	3	3	2			1	1	1	1	1
74	67	56	49	46	_		3	3	3	2	1	_		1	2	2	2	3
69	54	44	37	38	\rightarrow		6	6	3	2	1	\rightarrow	•	1	4	9	8	1
64	58	55	22	31			9	9	6	3	2			1	2	1	20	1
68	61	47	21	16			9	6	6	6	5			1	1	2	3	25
Elevation Flow						dir	ecti	on			F	low	acc	um	ulatio	on		
7 8 9																		
4 5 6																		
1 2 3																		
Direction code																		

See also: https://cwatm.iiasa.ac.at/data.html#river-drainage-maps

7. Why is this important?

• You have to find the right location for your basin and your discharge station as the network, data, an reality sometimes does not fit.

30 arcmin network outlet Real location of outlet of lake Tana

Lake Tana, Ethiopia

8. Why is this important?

Good news:

This is getting better if you reduce resolution!

Real location of outlet of lake Tana and 5 arcmin network outlet

Lake Tana, Ethiopia

1. Select an outlet of a basin

Folder: CWATM_exercise4

Based on the Rhine basin: At the moment the Rhine basin is using a limited set of climatic data, cut to the basin extend.

Run:

..\CWATM_model\CWatMexe\cwatm.exe settings_rhine30min_41.ini
Or: 41_exe_rhine_example.bat
For: original Rhine basin with cut climatic data

global_climate_2011_2012
output_rhine
output_tana
41_exe_rhine_example.bat
42_exe_rhine_example.bat
43_exe_Tana_example.bat
44_exe_Tana_example.bat
cwatm_exercise4.pptx
network.mxd
river_network.mpk
settings_43.ini
settings_44.ini
settings_rhine30min_41.ini
settings_rhine30min_42.ini

Folder structure CWATM exercise4

Important!
We are in folder CWATM_exercise4
but we using the model stored in CWATM_model

1. Select an outlet of a basin

Based on the Rhine basin: At the moment the Rhine basin is using a limited set of climatic data, cut to the basin extend.

To use the global climate data
Change a few line in the setting: settings_rhine30min_41.ini
And save it with the same name.

calc_evaporation = True Calculate potential Evaporation

PathOut = ./output_rhine Change output destination

PathMeteo = \$(PathRoot)/climate/global Change to folder with global climatic data

#StepEnd = 31/12/2010

StepEnd = 10 Change to 100 time steps

PrecipitationMaps = \$(FILE_PATHS:PathMeteo)/pr* Change precipitation input file

TavgMaps = \$(FILE_PATHS:PathMeteo)/tavg* Change average temperature input file

AS A

1. Select an outlet of a basin

Based on the Rhine basin:
After your changes it should run with global climatic data

Run again:

..\CWATM_model\CWatMexe\cwatm.exe settings_rhine30min_41.ini Or: 41_exe_rhine_example.bat

For: original Rhine basin with cut climatic data

(in case you did not manage, we prepared a settings file with the changes ..\CWATM_model\CWatMexe\cwatm.exe settings_rhine30min_42.ini
For: original Rhine basin with global climatic data)

2. Select an outlet of a basin

Lake Tana, Blue Nile, Ethiopia (thank you Meron)

Station name	Drainage area (km²)	Latitude	Longitude
Abbay at Bahir Dar	15321	11.6	37.39

PathOut = ./output_tana MaskMap = 37.39 11.6 Gauges = 37.39 11.6

This will change the basin from Rhine to Lake Tana

StepEnd = 10

2. Select an outlet of a basin

Tana basin

Run again:

..\CWATM_model\CWatMexe\cwatm.exe settings_rhine30min_41.ini For: original Tana outlet coordinates

Basin area too small

Station name	Drainage area (km²)	
Abbay at Bahir Dar	15321	

(in case you did not manage, we prepared a settings file with the changes ..\CWATM model\CWatMexe\cwatm.exe settings 43.ini

3. Select an outlet of a basin

Lake Tana, Blue Nile, Ethiopia

Station name	Drainage area (km²)	Latitude	Longitude
Abbay at Bahir Dar	15321	11.6	37.39

Because the 30arcmin network does not fit completely, we shift the outlet one cell to the east

Change a few line in the setting:

Lake Tana, Ethiopia

30 arcmin network outlet Real location of outlet of lake Tana

3. Select an outlet of a basin

Tana basin

Run:

..\CWATM_exercise4\CWatMexe\cwatmexe\cwatm.exe settings_rhine30min_41.ini For: changed Tana outlet coordinates

C:\WINDOWS\system32\cmd.exe

```
:\CWATM.ECHO\CWATM exercise4>..\CWATM exercise1\CWatMexe\cwatme
CWATM - Community Water Model 1.04 Date: version 1.04
International Institute of Applied Systems Analysis (IIASA)
Running under platform: Windows
reate catchment from point and river network
Number of cells in catchment:
                                  6 = 18195 \text{ km}^2
CWATM Simulation Information and Setting
The simulation output as specified in the settings file: ./outpu
            Date
                  Discharge
       01/01/2011
                       167.56
      02/01/2011
                      165.29
      03/01/2011
                      163.22
```

(in case you did not manage, we prepared a settings file with the changes ..\CWATM_exercise1\CWatMexe\cwatmexe\cwatm.exe settings_44.ini

Station name	Drainage area (km²)	
Abbay at Bahir Dar	15321	

4. Select an outlet of a basin

Lake Tana, Blue Nile, Ethiopia

Station name	Drainage area (km²)	Latitude	Longitude
Abbay at Bahir Dar	15321	11.6	37.39

Change a few line in the setting:

StepEnd = 31/12/2012

Lake Tana, Ethiopia

4. Select an outlet of a basin

Based on the Rhine basin: At the moment the Rhine basin is using a limited set of climatic data, cut to the basin extend.

Run:

..\CWATM_model\CWatMexe\cwatm.exe settings_rhine30min_41.ini

For a longer times serie

Problems

Most problems come from different file systems, folder structures We try to set up everything with relative path.

- 1. Please make sure that your folders have a similar structure like in slide 3 in cwatm_exercise1.ppt
- 2. The settings file has a part:

```
[FILE_PATHS]

PathRoot = ../cwatm_data

PathOut = ./output

PathMaps = $(PathRoot)/cwatm_input30min

PathMeteo = $(PathRoot)/climate/rhine

../ jumps back to the previous folder

../ uses the folder output in the same folder as the settings file or the directory you are in
```

- 3. If this is not working you can use also absolute path (also with white space)

 PathRoot = C/root directory/second.root/cwatm/cwatm data
- 4. If you execute cwatm you can also use absolute path

```
instead .../CWATM_model/CWatMexe/cwatm.exe settings_rhine30min.ini —l
```

"C/root directory/second.root/cwatm/CWATM_model/CWatMexe/cwatm.exe" settings_rhine30min.ini -I (mind the "if there are white spaces)

5. Some other errors we address in:

https://cwatm.iiasa.ac.at/tutorial.html#test-the-python-model-version