Bases de données avancées

Introduction BD relationnelles

Bruno PINAUD

bruno.pinaud@u-bordeaux.fr

SUPPORT DE COURS VOLONTAIREMENT INCOMPLET

Bibliographie

Georges Gardarin, Base de données, Ed. Eyrolles, 2003 A First Course in Database Systems (3rd edition) J. D. Ullman, J. Wildom, Ed. Pearson, 2008

INTRODUCTION ET DÉFINITIONS

Définition : base de données

- Plus qu'un simple ensemble de données non-indépendantes
- Permet l'indépendance données programme

« [...] Ensemble de données modélisant les objets d'une partie du monde réel et servant de support à une application informatique » G. Gardarin

Propriété importante

interrogeable par le contenu selon n'importe quel critère

Exemple : quels sont les numéros de Radioactive Man à moins de 10\$?

Introduction

Processus de construction d'une base de données

Définition : SGBD Relationnel

- **SGBD** : Système de Gestion de Bases de Données (parfois SGBDR)
- **DBMS**: DataBase Management System (parfois RDBMS)
- Outil informatique pour gérer des BD.
- •Régie par le **Modèle relationnel** (Codd, 70)
- Doit absolument posséder plusieurs fonctionnalités
 - Sauvegarde (persistance) des données
 - Interrogation (SQL) des données
 - Recherche et mise en forme des données stockées
 - Partage des données entre les différents utilisateurs
 - Gestion de la concurrence d'accès
 - Sécurité des données (gestion des incidents)
 - Optimisation des opérations dans un souci constant de performance

Définition : SGBD Relationnel

Les principales opérations (LDD, LMD et LCD, SQL-92) :

- Création d'une relation (create table)
- Suppression d'une relation (drop table)
- Modification de la définition d'une relation (alter table)
- Interrogation (select)
- Insertion (insert)
- Mise à jour (*update*)
- Suppression (delete)
- Accorder des droits (grant)
- Retirer des droits (revoke)
- Validation d'une transaction (commit)
- Annulation d'une transaction en cours (rollback)

Définition : SGBD Relationnel

Les principales opérations (LMD) :

- Interrogation (*select*)
- Insertion (insert)
- Mise à jour (*update*)
- Suppression (delete)

sont regroupées dans des transactions.

Une **transaction** est un regroupement atomique d'un ensemble d'opérations.

Un **Système de Gestion de Bases de Données** (SGBD) se charge de la mise en œuvre des transactions.

Régies par le **Modèle relationnel** (Codd, 70) : tous les SGBD fonctionnent à peu près de la même façon (au moins pour le LDD et LMD) : « One Size Fits All ».

Propriétés ACID: Atomicité, Cohérence, Isolation, Durabilité

BD: Vocabulaires et définitions

Concepts de base : domaine

- Ensemble de valeurs atomiques (non décomposable)
- Équivalent au typage en programmation

Concepts de base : produit cartésien

Définition

Le produit cartésien d'un ensemble de domaines $D_1, D_2, ..., D_n$ noté $D_1 \times D_2 \times ... \times D_n$ est l'ensemble des n-uplets (tuples) $v_1, v_2, ..., v_n > t$ tels que $v_i \in D_i$.

Concepts de base : relation

- Sous ensemble *r* du produit cartésien d'un ensemble de domaines
- Caractérisée par un nom

Concepts de base : relation

- Sous ensemble *r* du produit cartésien d'un ensemble de domaines
- Caractérisée par un nom

Concepts de base : relation

- Sous ensemble *r* du produit cartésien d'un ensemble de domaines
- Caractérisée par un nom

Concepts de base : attribut

- Nom donné à une colonne
- Composé d'un identifiant et d'un domaine
- Nombre d'attributs d'une relation = degré de la relation (ou arité)

Concepts de base : schéma de relation

- **Un schéma de relation R** est défini par un ensemble d'attributs **U** et un ensemble de contraintes.
- On le note couramment **R(U)**.
- Le schéma décrit l'**intention** de la relation.
- La relation (tableau) définit une **extension**.
- Une relation *r* est une instance finie d'un schéma de relation, notée *r*:**R(U)**.

Concepts de base : base de données

- Un **schéma de base de données** est un ensemble de schémas de relations **liés** par des **dépendances référentielles** : attributs communs ou plus généralement des dépendances d'inclusion.
- Une **base de données** est alors un ensemble de relations (extensions) associé au schéma de base de données et vérifiant ses **contraintes d'intégrité.**

INTRODUCTION AU MODÈLE RELATIONNEL

Un mauvais exemple

Objectif : Modélisation d'une compagnie aérienne.

On veut savoir quel est l'avion utilisé pour chaque vol et sa capacité.

Point de départ : création d'une **relation universelle** avec tous les attributs

Transports

Vol	Avion	Capacité
IT5033	Airbus A330	335
AF2401	Airbus A330	335
AF2409	Boeing 727	150
IT5133	Airbus A330	335
IT5035	Canadair	90
AF2802	Airbus A330	335

Un mauvais exemple

Transports

Vol	Avion	Capacité
IT5033	Airbus A330	335
AF2401	Airbus A330	335
AF2409	Boeing 727	150
IT5133	Airbus A330	335
IT5035	Canadair	90
AF2802	Airbus A330	335

Anomalies de la relation **Transports**

Le modèle relationnel

- Défini par E. F. Codd (IBM Research) dans « A Relational Model of Data for Large Shared Data Banks », CACM 13, No. 6, June 1970)
- Indépendant de la représentation physique des données
- Assise mathématique forte (algèbre relationnelle, formes normales)

Conception d'un schéma relationnel

But : Éliminer les anomalies de la relation universelle pour faciliter la manipulation des relations Normaliser les relations.

Méthode : **Décomposer** la relation universelle en sous-relations qui ne souffrent pas des anomalies précédentes.

Problématique : obtenir un nouveau schéma de base de données qui :

- conserve toutes les données,
- conserve un minimum de contraintes d'intégrité mais respecte le réel perçu,
- élimine toutes les anomalies.

Concepts de base : base de données

Définition (rappel)

- Un **schéma de base de données** est un ensemble de schémas de relations **liés** par des **dépendances référentielles (un type de contraintes)** : attributs communs ou plus généralement des dépendances d'inclusion.
- Une **base de données** est alors un ensemble de relations (extensions) associé au schéma de base de données et vérifiant toutes ses **contraintes**.

Concepts de base : base de données

Avion

No Série	Туре	Capacité	
2001	Airbus A330	335	
2002	Airbus A330	335	
301	Boeing 727	150	
94	Canadair	90	

Planning

No Vol	Date_vol	No série
IT5033		2001
AF2401		2002
AF2409		2002
IT5133		301
IT5035		301
AF2802		2002

Vol

No Vol	Heure Départ	Heure Arrivée
IT5033		
AF2401		
AF2409		
IT5133		
IT5035		
AF2802		

Avion

N° série Type Capacité

▼ Planning.N° série ⊆ Avion.N° série

Planning

N° vol Date_vol N° série Vol N° vol Heure Départ Arrivée

Planning.N° vol ⊆ Vols.N° vol

Contraintes d'intégrité

Définition

- Tout schéma de base de données doit être conçu pour imposer le respect d'un maximum de contraintes d'intégrité du réel perçu.
- Les **contraintes d'intégrité** sont des expressions logiques qui **doivent être satisfaites à tout instant** par une instance de base de données.
- Plusieurs types
 - Contraintes sur les attributs : domaines, valeurs nulles, ... ;
 - ✓ Contraintes sur les *n*-uplets : la valeur d'un attribut peut dépendre d'un ou plusieurs autres attributs du même *n*-uplet (dates d'emprunt et de retour pour une bibliothèque), ...;
 - Contraintes sur les relations : clés, cardinalité, ... ;
 - Contraintes sur la base de données : clés étrangères, ... ;
 - Contraintes temporelles : évolution chronologique (diplômes, état-civil), ...

Problématique : minimiser le nombre de contraintes tout en restant équivalent à l'ensemble des contraintes d'origine

Contraintes d'intégrité : notion de clé

- Une relation est un ensemble de *n*-uplets. Par définition, un ensemble n'a pas d'élément en double, donc chaque *n*-uplet d'une relation est unique.
- Pour identifier les *n*-uplets de façon unique sans en donner toutes les valeurs et respecter leur unicité une clé est nécessaire.
- **Clé** : groupe minimum d'attributs qui détermine chaque *n*-uplet de façon unique.

Contraintes d'intégrité : notion de clé

Propriétés

- Toute relation possède au moins 1 clé : l'ensemble de ses attributs
- Si une relation possède plusieurs **clés candidates**, on choisit une clé qui sera privilégiée : **la clé primaire**. Aucun des attributs d'une clé primaire n'admet de valeur nulle (vide).

Conventions d'écriture

- On souligne la clé primaire.
- Les clés candidates sont soulignées en pointillés (souvent omis).

Contraintes d'intégrité : notion de clé

Exemple

Soit la relation R(A,B,C,D,E):

Α	В	C	D	Ε
A1	B1	C1	D1	E1
A 1	B1	C2	D1	E1
A 1	B1	C5	D1	E1
A 1	B2	C5	D4	E1
A2	B1	C2	D1	E1
A2	B1	C5	D1	E1
A2	B1	C5	D3	E1
A2	B2	C5	D4	E1
A3	B3	C5	D1	E2

Est-ce que (A, C, D) est une clé candidate de R?