курс «Машинное обучение» Градиентный бустинг Александр Дьяконов

Градиентный бустинг над деревьями

Вспоминаем идею...

Идея градиентного бустинга

FSAM + минимизация в случае дифференцируемой ф-ии ошибки

Задача регрессии с выборкой $(x_i, y_i)_{i=1}^m$, дифференцируемая функция ошибки L(y, a), уже есть алгоритм a(x) – строим b(x):

$$a(x_i) + b(x_i) = y_i, i \in \{1, 2, ..., m\}.$$

т.е. настраиваемся на невязку

$$b(x_i) \approx y_i - a(x_i)$$

формально надо:

а не

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

$$\sum_{i=1}^{m} L(y_i - a(x_i), b(x_i)) \to \min$$

хотя часто они эквивалентны

Проблема

Задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + b(x_i)) \to \min$$

может не решаться аналитически

$$F(b_1,...,b_m) = \sum_{i=1}^m L(y_i, a(x_i) + b_i) \to \min_{(b_1,...,b_m)}$$

Функция $F(b_1, ..., b_m)$ убывает в направлении антиградиента, поэтому выгодно считать

$$b_i = -L'(y_i, a(x_i)), i \in \{1, 2, ..., m\}.$$

новая задача для настройки второго алгоритма:

$$(x_i, -L'(y_i, a(x_i)))_{i=1}^m$$
.

Алгоритм градиентного бустинга (примитивный вариант)

• Строим алгоритм в виде

$$a_n(x) = \sum_{t=1}^n b_t(x),$$

для удобства можно даже считать, что $a_0(x) \equiv 0$.

• Пусть построен $a_{t}(x)$, тогда обучаем алгоритм $b_{t+1}(x)$ на выборке

$$(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$$

•
$$a_{t+1}(x) = a_t(x) + b_{t+1}(x)$$
.

Итерационно получаем сумму алгоритмов...

Вот почему называется градиентный бустинг

Частный случай: регрессия с СКО

$$L(y,a) = \frac{1}{2}(y-a)^2$$
, $L'(y,a) = -(y-a)$

Задача для настройки следующего алгоритма

$$(x_i, y_i - a_t(x_i))_{i=1}^m$$

т.е. очень логично: настраиваемся на невязку!

Частный случай: классификация на два класса

нужна дифференцируемая функция ошибки...

- предполагаем, что алгоритм выдаёт вещественные значения
 - нам подходят суррогатные функции ошибки

Частный случай: классификация на два класса

BinomialBoost – логистическая функция ошибки:

$$L(y,a) = \log(1 + e^{-y \cdot a}), \ a \in (-\infty, +\infty), \ y \in \{-1, +1\},$$
$$L'(y,a) = -\frac{y}{1 + e^{-y \cdot a}} = -y\sigma(ya).$$

Функция ошибки типа Adaboost:

$$L(y,a) = e^{-y \cdot a}, \ a \in (-\infty, +\infty), \ y \in \{-1, +1\},\$$

 $L'(y,a) = -ye^{-y \cdot a}.$

здесь что-то выводится явно...

Градиентный бустинг

Итерация градиентного бустинга

Как решать задачу с выборкой

$$(x_i, -L'(y_i, a_t(x_i)))_{i=1}^m$$
?

Любым простым методом! Мы уже настраиваемся на нужную функцию ошибки.

Проблемы

Шаг в сторону антиградиента

- не приводит в локальный минимум (сразу) ⇒ итерации
- мы всё равно не можем сделать такой шаг, а лишь шаг по ответам какого-то алгоритма модели ⇒ не нужно стремиться шагать именно туда

Дальше решение проблем...

Наискорейший спуск

$$\sum_{i=1}^{m} L(y_i, a_t(x_i) + \eta \cdot b_t(x_i)) \to \min_{\eta},$$

$$a_{t+1}(x) = a_t(x) + \eta_t \cdot b_t(x) = \eta_1 \cdot b_1(x) + \dots + \eta_t \cdot b_t(x)$$

Эвристика сокращения – Shrinkage

$$a_{t+1}(x) = a_t(x) + \eta \cdot b_t(x),$$
 $\eta \in (0,1]$ – скорость (темп) обучения (learning rate)

Видно, что число слагаемых (базовых алгоритмов) – шагов бустинга – надо контролировать (при увеличении можем переобучиться)

Чем меньше скорость, тем больше итераций надо

Стохастический градиентный бустинг (Stochastic gradient boosting)

Идея бэгинга Бреймана: bag fraction ~ берём часть всей выборки

- м.б. лучше качество («регуляризация»)
- быстрее
- аналог обучения по минибатчам
- можно вычислить ООВ-ошибки

J. Friedman «Stochastic Gradient Boost» // 1999 http://statweb.stanford.edu/~jhf/ftp/stobst.pdf

Column / Feature Subsampling for Regularization аналогичная идея с признаками

TreeBoost – градиентный бустинг над деревьями

Решающее дерево:

$$b(x) = \sum_{j} \beta_{j} I[x \in X_{j}]$$

TreeBoost – градиентный бустинг над деревьями

Наша основная задача

$$\sum_{i=1}^{m} L(y_i, a(x_i) + \sum_{j} \beta_j I[x_i \in X_j]) \to \min$$

Разбиваем по областям:

$$\sum_{x_i \in X_i} L(y_i, a(x_i) + \beta_j) \to \min_{\beta_j}$$

если разбиение выбрано и зафиксировано, то в каждой области осталось выбрать оптимальную константу

Наша основная задача

$$F(b_1,...,b_m) = \sum_{i=1}^m L(y_i, a(x_i) + b_i) \to \min_{(b_1,...,b_m)},$$

заметим, что

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \approx$$

$$F = \sum_{i=1}^{m} L(y_i, a(x_i) + b_i) \approx$$

$$\sum_{i=1}^{m} \left[L(y_i, a(x_i)) + L'(y_i, a(x_i)) \cdot b_i + \frac{1}{2} L''(y_i, a(x_i)) \cdot b_i^2 \right]$$

(частные производные по второму аргументу функции ошибки)

$$\sum_{i=1}^{m} \left[g_i b_i + \frac{1}{2} h_i b_i^2 \right] \to \min,$$

$$g_i = L'(y_i, a(x_i)),$$

$$h_i = L''(y_i, a(x_i)).$$

Сделаем оптимизацию с регуляризацией

Пусть дерево b(x) делит пространство объектов на T областей $X_1,\dots,X_T,$ в каждой области $X_{_i}$ принимает значение $eta_{_i}$.

$$\Phi = \sum_{i=1}^{m} \left[g_i b_i + \frac{1}{2} h_i b_i^2 \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} \beta_j^2 \to \min$$

$$\Phi = \dots + \gamma 4 + \lambda \frac{1}{2} (1 + 1 + 0.01 + 4)$$

$$\Phi = \sum_{j=1}^{T} \left[\sum_{x_i \in X_j} \left[g_i \beta_j + \frac{1}{2} h_i \beta_j^2 \right] + \lambda \frac{1}{2} \beta_j^2 \right] + \gamma T =$$

$$= \sum_{j=1}^{T} \left[\beta_j \sum_{x_i \in X_j} g_i + \frac{1}{2} \beta_j^2 \left(\sum_{x_i \in X_j} h_i + \lambda \right) \right] + \gamma T$$

Приравнивая производную к нулю:

$$\beta_{j} = -\frac{\sum_{x_{i} \in X_{j}} g_{i}}{\sum_{x_{i} \in X_{j}} h_{i} + \lambda}$$

Минимальное значение (при фиксированной структуре дерева)

$$\Phi_{\min} = -\frac{1}{2} \sum_{j=1}^{T} \frac{\left(\sum_{x_i \in X_j} g_i\right)^2}{\sum_{x_i \in X_j} h_i + \lambda} + \gamma T$$

Можно использовать при построении дерева для его оценки:

$$Gain = \frac{1}{2} \left(\frac{\sum_{x_i \in X_{left}} g_i}{\sum_{x_i \in X_{left}} h_i + \lambda} + \frac{\sum_{x_i \in X_{right}} g_i}{\sum_{x_i \in X_{right}} h_i + \lambda} - \frac{\sum_{x_i \in X_{left}} g_i + \sum_{x_i \in X_{right}} g_i}{\sum_{x_i \in X_{left}} h_i + \sum_{x_i \in X_{right}} h_i + \lambda} - \gamma \right)$$

можно использовать прунинг – строим дерево, рекурсивно обрезаем, если Gain<0

Не используем какой-то традиционный критерий расщепления. Исходим из функции ошибки!

История продвинутых методов / современные реализации

sklearn.ensemble.	GradientBoostingRegressor		
	GradientBoostingClassifier		
XGBoost (eXtreme Gradient Boosting)	https://github.com/dmlc/xgboost		
LightGBM, Light Gradient Boosting Machine	https://github.com/Microsoft/LightGBM		
CatBoost	https://github.com/catboost/catboost		

https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

Особенности реализаций продвинутых методов

	XGBoost	LightGBM	CatBoost
Построение деревьев	По уровням (Level-wise) потом добавили по листьям, но для гистограмм	По листьям (Leaf-wise) best-first	По уровням однородно (oblivious trees)
Поиск расщеплений	Exact greedy algorithm (полный перебор) + добавили потом гистограммный подход tree_method='hist'	Гистограммный подход (использование бинов) +	Предварительный биннинг
Фишки		Exclusive Feature Bundling Связываем разреженные признаки, которые одновременно не нули Random forest mode	Динамический бустинг Overfitting Detector Ранний останов od_type='Iter' use_best_model=True eval_metric=

Особенности реализаций продвинутых методов

	XGBoost	LightGBM	CatBoost
	–	Gradient-based One-Side	Бернулли или
	Сплиты медленнее, чем у	Sampling (GOSS)	байесовская подвыборка
Сэмплирование /	конкурентов	Среди малых градиентов	
градиенты /	pre-sorted algorithm &	сэмплируем, но с	
СПЛИТЫ	Histogram-based	большим весом	
		не выбран ли по	
		умолчанию	
Downson	Gain / Frequency или	Gain / split	Prediction Values
Важности	Weight / Coverage		Change / Loss Function
признаков			Change
Нули	+	+	
обрабатываются	см. ниже Sparsity-aware	По умолчанию	
как NaN	Split Finding	use_missing=True	
		Це е	NAI / NA
Неизвестные	На оптимальную сторону	На оптимальную сторону	Min / Max
значения	сплита	сплита	

Особенности реализаций продвинутых методов

	XGBoost	LightGBM	CatBoost
	_	+	+
	вводится в версии 1.5.1	На две части с учётом mean target	Ordered Target Statistics
Категориальные			Smoothed target encoding
признаки			OHE с числом категорий < one_hot_max_size
			Жадные комбинации категориальных признаков

Сравнение на задаче «Google Brain - Ventilator Pressure Prediction»

тут сравнение с параметрами по умолчанию (что плохо)

Сравнение

	GBM	CatBoost	LightGBM	XGBoost
Baseline	0.9455	0.9534	0.9453	0.9438
Fashion	0.9826	0.9833	0.9815	0.9814
Retail	0.9614	0.9617	0.96	0.96
Digital goods	0.8739	0.8767	0.8732	0.8751

 $\frac{https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc}{}$

Сравнение

TIME AND	TABLE II AUC USING X	KGBoost		TABLE III UC Using Li	GHT GBM	TIME AND	TABLE IV AUC USING C	ATBOOST
#Rows	AUC	Time	#Rows	AUC	Time	#Rows	AUC	Time
307507	0.788320	4306	307507	0.789996	786	307507	0.787629	1803
250000	0.784516	3550	250000	0.788589	638	250000	0.784402	1257
200000	0.781219	2892	200000	0.786344	512	200000	0.782895	851
150000	0.773347	2098	150000	0.786215	393	150000	0.780762	567
100000	0.772771	1219	100000	0.782477	263	100000	0.776168	442
50000	0.768899	9487	50000	0.777649	121	50000	0.770666	286

Essam al Daoud «Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset»

ниже рис. из https://arxiv.org/pdf/1809.04559.pdf m_catboost – т.к. не было многоклассовой версии на GPU

Figure 2: Max. validation score vs. total HPO runtime (a) Higgs (b) Epsilon (c) Microsoft (d) Yahoo.

Построение деревьев

По уровням (Level-wise)

По листьям (Leaf-wise)

По уровням однородно (oblivious trees)

https://github.com/Microsoft/LightGBM/blob/master/docs/Features.rst#references

Игнорирование нулей / NaN

убираем нули, выбираем сплит, нули добавляем в «выгодное поддерево»

https://mlexplained.com/2018/01/05/lightgbm-and-xgboost-explained/

Гистограммный подход (Histogram based algorithm)

каждый вещественный признак дискретизуется – разбивается на бины

теперь число порогов, которые надо посмотреть ~ число бинов

Exclusive Feature Bundling (EFB)

объединение признаков с большим числом нулей (жадный алгоритм)

поиск оптимального решения – NP-полная задача

	признак 1	признак 2	bundle
0	1	0	1
1	0	1	3
2	1	0	1
3	2	0	2
4	0	2	4
5	0	3	5
6	1	0	1
7	0	2	4
8	2	0	2

строим граф признаков, веса рёбер = число конфликтов между признаками, сортируем признаки по степени

идём по признакам, по возможности включаем в существующие бандлы (если мало конфликтов)

Gradient-based One-Side Sampling (GOSS)

$$g(x_1)=1,\ g(x_2)=2,\ g(x_3)=0.1,\ g(x_4)=0.5,\ g(x_5)=2.5,\ g(x_6)=0$$
 выбираем top-2 $g(x_1)=1,\ g(x_2)=2,\ g(x_3)=0.1,\ g(x_4)=0.5,\ g(x_5)=2.5,\ g(x_6)=0$ из остальных сэмплируем $2\times g(x_1)=1,\ g(x_2)=2,\ 2\times g(x_4)=0.5,\ g(x_5)=2.5$ но берём с весом

из объектов с маленькими градиентами сэмплируем (используем не все), но учитываем с большим весом

CatBoost = Category + Boosting: проблема смещения

Smoothed target encoding – для категориальных признаков

При построении дерева значение в листе = сумма антиградиентов получается утечка мы оцениваем значение в точке, зная метку на ней!

Динамический бустинг (Ordered Boosting)

- случайная перестановка обучения
- оценивания значения, используя информацию до рассматриваемой точки в таблице

oblivious trees – один предикат на каждом уровне

работает «из коробки»

с параметрами по умолчанию

CatBoost: Ordered Boosting

Algorithm 2: Building a tree in CatBoost

Figure 1: Ordered boosting principle, examples are ordered according to σ .


```
input : M, \{(\mathbf{x}_i, y_i)\}_{i=1}^n, \alpha, L, \{\sigma_i\}_{i=1}^s, Mode
grad \leftarrow CalcGradient(L, M, y);
r \leftarrow random(1, s);
if Mode = Plain then
   G \leftarrow (grad_r(i) \text{ for } i = 1..n);
if Mode = Ordered then
    G \leftarrow (grad_{r,\sigma_r(i)-1}(i) \text{ for } i=1..n);
T \leftarrow \text{empty tree};
foreach step of top-down procedure do
     foreach candidate split c do
           T_c \leftarrow \text{add split } c \text{ to } T;
           if Mode = Plain then
                \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_r(p)) for
                 p: leaf_r(p) = leaf_r(i) for i = 1..n;
          if Mode = Ordered then
               \Delta(i) \leftarrow \operatorname{avg}(\operatorname{grad}_{r,\sigma_r(i)-1}(p)) for
                 p: leaf_r(p) = leaf_r(i), \sigma_r(p) < \sigma_r(i)
                 for i = 1..n;
          loss(T_c) \leftarrow cos(\Delta, G)
     T \leftarrow \arg\min_{T_c}(loss(T_c))
if Mode = Plain then
     M_{r'}(i) \leftarrow M_{r'}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r'}(p)) for
      p: leaf_{r'}(p) = leaf_{r'}(i) for r' = 1..s, i = 1..n;
if Mode = Ordered then
     M_{r',j}(i) \leftarrow M_{r',j}(i) - \alpha \operatorname{avg}(\operatorname{grad}_{r',j}(p)) for
       p: leaf_{r'}(p) = leaf_{r'}(i), \sigma_{r'}(p) \leq j for r' = 1...s,
      i = 1..n, j \ge \sigma_{r'}(i) - 1;
return T, M
```

Параметры градиентного бустинга: определяющие тип бустинга

objective	- какая задача решается, какая целевая функция и в каком формате				
/ loss_function	будет ответ				
booster	– какой бустинг проводить: над решающими деревьями, линейный или				
	dart				
boosting_type	- lgb: gbdt / dart (Dropouts meet Multiple Additive Regression Trees) / goss				
2002 329_37.	/ rf				
tree_method	– как строить деревья				
	(grow_policy – порядок построения дерева: на следующем шаге				
	расщеплять вершину, ближайшую к корню, или на которой ошибка				
	максимальна)				
base_score	– начальный ответ на всех объектах (bias)				
eval_metric	– значения какой функции ошибки смотреть на контроле (как правило,				
	задание этого параметра не означает, что эту функцию будем				
	минимизировать при настройке бустинга)				

Александр Дьяконов (dyakonov.org)

DART: Dropouts meet Multiple Additive Regression Trees

Вместо

$$a_n(x) = \sum_{t=1}^n b_t(x)$$

берём подмножество построенных деревьев $Q = \mathrm{randsubset}(\{1, 2, ..., n\})$ пытаемся дополнить их

$$b_{t+1} = \arg\min_{b} \sum_{i=1}^{m} L(y_i, \sum_{t \in O} b_t(x_i) + b(x_i))$$

потом нужна поправка, что смещали ответ не всего ансамбля (подробно об это не будем)

$$a_n(x) = \sum_{t=1}^{n} b_t(x) + \eta b_{t+1}(x)$$

http://proceedings.mlr.press/v38/korlakaivinayak15.pdf

LGBM: разные варианты

XGBoost: разные варианты

Минутка кода

```
from lightgbm import LGBMRegressor
model = LGBMRegressor()
model = LGBMRegressor(boosting type='dart')
model = LGBMRegressor(boosting type='goss')
model = LGBMRegressor(boosting type='rf', subsample freq=1, subsample=0.75)
                          Без subsample freq не берутся подвыборки!
model = XGBRegressor()
model = XGBRegressor(tree method='approx')
model = XGBRegressor(tree method='hist')
model = XGBRegressor(tree method='gpu hist')
                                  Как правильно строить RF
params = {'colsample bynode': 0.8, 'learning rate': 1,
          'max depth': 5, # глубину м.б. надо сделать больше
          'num_parallel_tree': 100, # именно это число деревьев в RF
          'objective': 'binary:logistic',
          'subsample': 0.8, 'tree method': 'gpu hist'}
bst = train(params, dmatrix, num boost round=1) # а вот бустить не надо!
```

Параметры градиентного бустинга: основные

<pre>learning_rate / eta</pre>	– темп (скорость) обучения
n_estimators /	– число итераций бустинга (базовых алгоритмов)
<pre>num_iterations /</pre>	
/ iterations	
num_parallel_tree	– для режима RF

categorical_feature	- какие признаки категориальные

Темп обучения

пример малого, среднего и большого темпов

Темп обучения и число базовых алгоритов

Нет логики «чем больше деревьев, тем лучше»
Нет логики «уменьшили темп в 2 раза – число деревьев надо увеличить в 2 раза»!

Параметры градиентного бустинга: сложность

max_depth	– максимальная глубина	
gamma	– порог на уменьшение функции ошибки при расщеплении в	
	дереве	
min_child_weight	– минимальная сумма весов объектов в потомках	
max_delta_step	– порог на изменение весов	
<pre>max_leaves / num_leaves</pre>	– максимальное число вершин в дереве	
min_split_gain /	– порог на изменение loss-функции	
min_gain_to_split		
min_child_samples /	 – минимальное число объектов в листьях 	
min_data_in_leaf		
/	– минимальная сумма весов объектов в листе, минимальное	
min_sum_hessian_in_leaf	число объектов, при котором делается расшепление	

Сложность деревьев

Сложность деревьев

scikit-learn

lightgbm

Для разной глубины – разное оптимальное число деревьев

Сложность деревьев

num_leaves = 3

num_leaves = 10

верно ли, что для малых деревьев нет большого темпа?

Ограничение на расщепления / листья

Здесь могут быть большие оптимальные значения (10 – 50 – 1000), но параметры менее значимые, чем другие...

Что такое веса

min_child_weight – «minimum sum of instance weight (hessian) needed in a child» max_delta_step – «Maximum delta step we allow each tree's weight estimation to be»

Пример:

$$L_{i} = \frac{1}{2}(y_{i} - a_{i})^{2}$$
$$h_{i} = L_{i}'' = 1$$

- это как бы вес одного объекта

Параметры градиентного бустинга: формирование подвыборок

```
subsample /
                      - какую часть объектов обучения использовать для построения
bagging fraction
                      одного дерева
colsample bytree/

    какую часть признаков использовать для построения одного

feature fraction /
                      дерева
rsm
colsample_bylevel
                      - какую часть признаков использовать для построения
                      расщепления в уровне
colsample bynode

    какую часть признаков использовать для построения

                      расщепления в вершине
scale pos weight

    для сбалансирования позитивных и негативных весов

/ class weight
                      веса классов
  bootstrap type
                      - тип бутстрепа (для Bayesian bootstrap есть bagging temperature)
```

```
/ subsample_freq (int, optional (default=0)) - частота взятия подвыборок // sampling frequency
```

Подвыборки

Обычно больше – лучше (в XGBoost это не всегда так) Если берём подвыборки бустинги «хуже суммируются»

Параметры градиентного бустинга: регуляризация

reg_alpha / alpha	– коэффициент L1-регуляризации
reg_lambda / lambda	– коэффициент L2-регуляризации
<pre>// 12_leaf_reg</pre>	
random_strength	– шум при оценки сплитов (CatBoost)
border_count	– число сплитов для вещественных признаков (CatBoost)
ctr_border_count	– число сплитов для категориальных признаков (CatBoost)

Регуляризация

Параметры градиентного бустинга: остальные

verbosity / silent	– вывод информации при обучении
n_jobs / nthread /	– число используемых потоков
num_threads	
random_state	– инициализация генератора псевдослучайных чисел
missing	– что обозначает пропуски
<pre>importance_type</pre>	- как вычислять важность
	«weight» (как часто признак выбирался),
	«total_gain» (по той функции ↑),
	«gain» (total_gain / weight),
	«total_cover» (за разделение скольких объектов отвечает),
	«cover» (total_cover / weight).
/ subsample_for_bin	– число объектов для бинов

Параметры градиентного бустинга: fit

early_stopping_round	– если на отложенном контроле заданная функция ошибки не
(fit)	уменьшается такое число итераций, обучение останавливается
sample_weight	- веса объектов
eval_metric	– метрика качества
callbacks	– какие функции вызывать после каждой итерации

- CPU / GPU
- хранить модель в ОЗУ

Early stopping (через fit)

```
params = {'objective': 'binary', 'reg lambda': 0.0001, 'reg alpha': 0.0001,
          'num leaves': 7, 'learning rate': 0.1, 'colsample bytree': 0.75,
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(data, y, test size=0.33, random state=42)
model = lgb.LGBMClassifier(n jobs=-1, n estimators=1000, **params, metric='auc') # использовать auc
model.fit(X train, y train,
          eval set=[(X test, y test)],
          early stopping rounds=200,
         verbose=50)
Training until validation scores don't improve for 200 rounds
[50] valid 0's auc: 0.685867
[100] valid 0's auc: 0.687435
[150] valid 0's auc: 0.687931
[200] valid 0's auc: 0.688472
[250] valid 0's auc: 0.686139
[300] valid 0's auc: 0.685785
[350] valid 0's auc: 0.684596
Early stopping, best iteration is:
[198] valid 0's auc: 0.688558
```

Early stopping (yepes train)

```
def accuracy(preds, train data):
    labels = train data.get label()
    preds = 1. / (1. + np.exp(-preds))
    return 'accuracy', np.mean(labels == (preds > 0.5)), True
def rmsle(y true, train data):
    y pred = train data.get label()
    return 'RMSLE', np.sqrt(np.mean(np.power(np.log1p(y pred) - np.log1p(y true), 2))), False
bst = lqb.train(params,
                train set=lgb.Dataset(X train, y train),
                num boost round=1000,
                valid sets=[lgb.Dataset(X test, y test), lgb.Dataset(X_train, y_train)],
                valid names=['A', 'B'], # имена датасетов для удобства
                init model = tmp, # тут м.б. booster для продолжения обучения МОЖНО задать текстовый файл - см. ниже
                early stopping rounds=50,
                feval=lambda a, b: [accuracy(a,b), rmsle(a,b)], # несколько самописных функций
                verbose eval=25)
Training until validation scores don't improve for 50 rounds
[125]
      A's binary logloss: 0.106202 A's accuracy: 0.0227515 A's RMSLE: 0.10447
        B's binary logloss: 0.0928391 B's accuracy: 0.0218412 B's RMSLE: 0.0983035
      A's binary logloss: 0.106231 A's accuracy: 0.0227515 A's RMSLE: 0.104485
[150]
        B's binary logloss: 0.0921399 B's accuracy: 0.0218412 B's RMSLE: 0.0980522
Early stopping, best iteration is:
       A's binary logloss: 0.106148 A's accuracy: 0.0227515 A's RMSLE: 0.104426
[111]
        B's binary logloss: 0.0932007 B's accuracy: 0.0218412 B's RMSLE: 0.0984656
bst.save model('model.txt') # см. в файле прописаны деревья
```

GBM: Концепция чёрного ящика

model <- gbm(is_client_cancel~. , # название целевой переменной

```
T, # as.data.frame
distribution="gaussian", # распределение... лучше всего gaussian
n.trees=ntrees, # число деревьев (лучше больше, а потом выбрать)
shrinkage=0.07, # скорость сходимости
verbose=TRUE, # вывод сообщений
interaction.depth=12 # сложность модели
class sklearn.ensemble.GradientBoostingClassifier
(loss='deviance', # в классификации - логистическая регрессия или AdaBoost
learning rate=0.1, , # скорость сходимости
n estimators=100, # число деревьев
subsample=1.0,
min samples split=2,
min samples leaf=1,
min weight fraction leaf=0.0,
max depth=3, # глубина
max features=None) # сколько признаков смотреть для расщепления
```

Что означает «распределение»

пусть ошибки распределены по нормальному закону

$$p(y \mid x) = \text{const} \cdot e^{\frac{-(y - h(x))^2}{2\sigma^2}}$$

метод максимального правдоподобия

$$\prod_{i} p(y_{i} \mid x_{i}) \sim \prod_{i} e^{\frac{-(y_{i} - h(x_{i}))^{2}}{2\sigma^{2}}} \rightarrow \max$$

$$\operatorname{const} \cdot \sum_{i} (y_{i} - h(x_{i}))^{2} \rightarrow \min$$

Что означает «распределение»

пусть ошибки ~ распределение Лапласа

$$p(y \mid x) = \operatorname{const} \cdot e^{-\alpha|y-h(x)|}$$

метод максимального правдоподобия

$$\prod_{i} p(y_i \mid x_i) \sim \prod_{i} e^{-\alpha |y_i - h(x_i)|} \to \max$$

это эквивалентно минимизации такой ошибки

$$\operatorname{const} \cdot \sum_{i} |y_{i} - h(x_{i})| \to \min$$

Встроенные способы контроля

встроенный

универсальный

Встроенные способы контроля

существенно быстрее 2 мин – 2 сек

- не перестраивают ансамбль с начала
- нечестный контроль упрощённый способ выбора порогов (хитрость!)
 - сразу получаем с шагом 1
 - результаты похожи

Важности признаков – Задача OneTwoTrip (сейчас об этом не будем)

Перебор параметров

```
params = {'learning rate': [0.05, 0.1, 0.2],
          'subsample': [0.5, 0.75, 1.0],
          'max depth': [1, 2, 3, 4],
          'reg alpha': [0, 0.0001, 0.01],
          'reg lambda': [0, 0.0001, 0.01],
model = xqb.XGBRFClassifier()
rs = RandomizedSearchCV(model, params, n_iter=100,
                        scoring='roc auc',
                        n jobs=-1, cv=gss)
rs.fit(data, y, groups=groups)
```

тут есть грубая ошибка... какая?

Советы по обучению: мониторьте разные метрики качества

Советы по обучению: темп обучения learning rate

для разной сложности (ех: глубина)

- обычно глубина 3-6 смещённые (high bias), разброс ниже, чем в глубоких
 - смещение как раз устраняется бустингом
 - модель не должна переобучаться ⇒ простая
 - быстрее строить
 - зафиксируйте (достаточно большое) число деревьев в ансамбле
 - настройте learning rate (для этого числа деревьев)
 - выберите оптимальную глубину
 - настраивайте другие параметры

Есть стратегия – сделать очень маленький темп и очень много деревьев

(но для настройки других параметров не годится)

Совет: постобработка ответов

Значения gbm могут выходить за пределы отрезка! за пределы какого-то компактного множества в задаче регрессии

Вообще говоря, не важно, как их вернуть обратно...

Совет: сумма бустингов

Качество может улучшиться, но оптимальные параметры меняются!

Приложение GBM: задача скоринга (TKS)

tcs_customer_id bureau_cd	bki_request_date	inf_confirm_date	type	status	open_date	final_pmt_date	fact_close_date	credit_limit	currency	outstanding	next_pmt	curr_balar
1 2	12Aug2011	20Jul2011	99	00	13May2011	11May2012		28967	RUB	24606,00000	2743,00000	
1 1	12Aug2011	18Feb2009	99	13	27Feb2008	26Feb2009	26Feb2009	30000	RUB	0,00000		
1 1	12Aug2011	21Apr2009	99	13	28Jun2007	30Jun2008	20Apr2009	19421	RUB	0,00000		
1 1	12Aug2011	18Aug2009	9	13	15Jul2008	17Aug2009	17Aug2009	11858	RUB	0,00000		
1 1	12Aug2011	06Sep2010	99	13	09May2009	10May2010	08Sep2010	19691	RUB	0,00000		
1 1	12Aug2011	28Jul2011	7	52	07Sep2010	07Sep2040		10000	RUB			
1 1	12Aug2011	01Aug2011	9	00	31Aug2010	31Aug2015		169000	RUB			
1 1	12Aug2011	03Aug2011	9	00	04Mar2009	03Mar2014		300000	RUB			
1 3	12Aug2011	09Jul2008	9	00	28Jun2007	30Jun2008		19421	RUB	1761,00000		198
1 3	12Aug2011	19Sep2008	9	00	27Feb2008	26Feb2009		30000	RUB	15517,00000		1633
1 3	12Aug2011	14Sep2010	9	13	09May2009	10May2010	06Sep2010	19691	RUB	0,00000		
1 3	12Aug2011	11Jul2011	9	00	31Aug2010	31Aug2015		169000	RUB		0,00000	433

Решение = GBM + RF + Линейная регрессия

Приложение GBM: задача скоринга (TKS)

Name	Description	Туре
TCS_CUSTOMER_ID	Идентификатор клиента	ID
BUREAU_CD	Код бюро, из которого получен счет	numerio
BKI_REQUEST_DATE	Дата, в которую был сделан запрос в бюро	date
CURRENCY	Валюта договора (ISO буквенный код валюты)	string
RELATIONSHIP	Тип отношения к договору	string
	1 - Физическое лицо	
	2 - Дополнительная карта/Авторизованный пользователь	1
	4 - Совместный	1
	5 - Поручитель	1
	9 - Юридическое лицо	1
OPEN_DATE	Дата открытия договора	date
FINAL_PMT_DATE	Дата финального платежа (плановая)	date
TYPE	Код типа договора	string
	1 — Кредит на автомобиль	
	4 — Лизинг. Срочные платежи за наем/пользование транспортным средством, предприятием или оборудованием и т.п.	
	6— Ипотека— ссудные счета, имеющие отношение к домам, квартирам и прочей недвижимости. Ссуда выплачивается циклично согласно договоренности до тех пор, пока она не будет полностью выплачена или возобновлена.	
	7 — Кредитная карта	1
	9 — Потребительский кредит	1
	10 — Кредит на развитие бизнеса	1
	11 — Кредит на пополнение оборотных средств	1
	12 — Кредит на покупку оборудования	1
	13 — Кредит на строительство недвижимости	1
	14 — Кредит на покупку акций (например, маржинальное кредитование)	1
	99 — Другой	1
	Дисциплина (своевременность) платежей. Строка составляется из кодов состояний счета на	
PMT_STRING_84M	моменты передачи банком данных по счету в бюро, первый символ - состояние на дату	string
	PMT_STRING_START, далее последовательно в порядке убывания дат.	
	0 — Новый, оценка невозможна	
	Х – Нет информации	1
	1 — Оплата без просрочек	1
	А – Просрочка от 1 до 29 дней	1

Приложение GBM: предсказание правильности ответов студентов на вопросы тестов

Разработать алгоритм, который предсказывает правильность ответа на вопросы теста.

Зачем?

для рекомендательной системы (алгоритм решает за студента тест и сообщает ему «потенциально неприятные для него» вопросы).

GMAT, SAT, ACT

Победитель – LibFM

#	# Team Name \$5,000 • 241 teams score @ Entries					
1	Steffen Rendle *	0.24598	16			
2	Alexander D'yakonov *	0.24729	38			
3	ekla *	0.24745	87			
4	PlanetThanet & Birutas	0.24772	51			

Приложение GBM: идея использование GBM для предсказания правильности ответов

Классическое решение

- контекстная рекомендация
- коллаборативная фильтрация

Наше решение

свести задачу о рекомендациях к задаче классификации (регрессии)

пара «студент-вопрос» ~ признаковое описание

генерация кучи признаков

Приложение GBM: примеры признаков

Пусть ответы студента:

correct, incorrect, correct, correct, incorrect

$$\mathbf{IQ} \sim \frac{+1 - 1 + 1 + 1 + 1 - 1}{6}$$

weighted IQ ~
$$\frac{+1w_1 - 1w_2 + 1w_3 + 1w_4 + 1w_5 - 1w_6}{w_1 + w_2 + w_3 + w_4 + w_5 + w_6}$$

ниже - как вводились веса

Аналогично, признаки вопросов... «сложность вопроса»

(здесь усредняются ответы на данный вопрос)

Приложение GBM: веса признаков

1) веса измеряют «похожесть времени ответов для вопросов»

$$w_j = \frac{2}{1+\mid t-t_j\mid^{0.3}} - 1$$
 или $w_j = 1-\sqrt{\mid t-t_j\mid}$ t_j – время ответа на j-й вопрос, t – время ответа на этот вопрос.

2) веса – корреляция столбцов матрицы «студент-ответ»

Приложение GBM: веса признаков

- 3) Простые признаки:
 - время ответа
- 1/(число ответов всего)
- 4) SVD-признаки (восстановление элементов матрицы с помощью SVD-преобразования) (даже по подматрице)

Приложение GBM: итоговое решение

gbm (бустинг) + glm (линейная модель) + NN (нейросеть, CLOP)

Опять: хорошо «смешиваются» разные алгоритмы... Как настраивать – чуть позже...

Итог

- выбрать вид бустинга / критерий расщепления / функцию ошибки «по задаче»
 - три самых важных параметра: сложность, темп, число деревьев при разных сложностях (глубина / число листьев) настроить два остальных связных параметра для настройки можно немного деревьев

- в продакшене: увеличить число деревьев, взять маленький темп обучения
 - использовать сумму нескольких gbm

проверить, помогает ли это проверить, как нужно менять параметры для суммы

Литература

A. Natekin, A. Knoll Gradient boosting machines, a tutorial // Front Neurorobot. 2013; 7: 21.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3885826/

все статьи по XGBoost, LightGBM, CatBoost

Сравнения

https://www.kaggle.com/nholloway/catboost-v-xgboost-v-lightgbm
https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc

Про параметры

https://neptune.ai/blog/lightgbm-parameters-guide