CMP205: Computer Graphics

Lecture 7: Ray Tracing I

Ahmed S. Kaseb Fall 2018

Slides by: Dr. Mohamed Alaa El-Dien Aly

Agenda

- What is Ray Tracing?
- Ray Tracing Vs Rasterization
- Ray Tracing Basics
 - Ray Generation
 - Ray Intersection
- Ray Tracing Program

What's Ray Tracing?

A rendering method that produces *more* realistic images

What's Ray Tracing?

Naturally handles reflections, shadows, refractions, ... etc.

Ray Tracing Vs Rasterization

Ray Tracing

For each pixel For each triangle Does ray hit triangle? Keep closest hit Compute shading

Rasterization

For each triangle
For each pixel
Does triangle cover pixel?
Keep closest hit
Compute shading

Ray Tracing Vs Rasterization

Ray Tracing

For each pixel
For each triangle
Does ray hit triangle?
Keep closest hit
Compute shading

Rasterization

For each triangle
For each pixel
Does triangle cover pixel?
Keep closest hit
Compute shading

Pros

- Can render anything that can be intersected with a ray
- Naturally handles shadows, transparency, reflection ... etc. using recursion

Cons

- Harder to implement in hardware
- Traditionally too slow for interactive applications
- But becoming faster and faster!

Pros

- Much much faster
- Readily available in GPUs
- Parallelizable

Cons

- Limited to certain primitives, esp. triangles
- Faceting and shading artifacts
- No unified handling of shadows, reflection, transparency (only approx.)

Ray Tracing

```
For each pixel
Construct a ray from the eye
For each object in the scene
Find intersection point (and surface normal)
Keep if closest
Compute Shading
```


Ray Generation

```
For each pixel

Construct a ray from the eye

For each object in the scene

Find intersection point (and surface normal)

Keep if closest

Compute Shading
```

Ray Generation

A ray is composed of:

- Starting point *e*
- Direction vector **d**

Parametric equation: p(t) = e + t d

$$t=0 \to \boldsymbol{p}(t)=\boldsymbol{e}$$

Find smallest t > 0 such that p(t) lies on a surface!

Ray Generation

Two types of cameras view rect viewpoint pixel position view rect viewing ray pixel position viewing ray PERSPECTIVE **ORTHOGRAPHIC**

Ray Generation: Orthographic

All rays are in the direction of \mathbf{d}_{v}

$$p(t)=s+td_v$$

Where is the viewing rectangle in World Coordinates?

Ray Generation: Orthographic

- Camera basis: **u**, **v**, **w**
- Camera position: **e**
- View rectangle specified by *l*, *r*, *t*, *b*
- Screen point in uv-plane: (u_s, v_s)

Screen point (in world space): $s = e + u_s u + v_s v$

Direction: d = -w

Starting Point: *s*

Ray: p(t)=s+td

Ray Generation: Perspective

All rays pass through the camera center **e**

$$p(t)=e+td$$

Where is the viewing rectangle in World Coordinates?

Ray Generation: Perspective

- Camera basis: **u**, **v**, **w**
- Camera position: **e**
- View rectangle specified by *l*, *r*, *t*, *b*
- Screen point in camera coordinates: $(u_s, v_s, -d)$

Screen point: $s = e + u_s u + v_s v - d w$

Direction: d = s - e

Starting Point: *e*

Ray: p(t)=e+td

Ray Generation: Pixel-to-Image

How to convert from pixel coordinates (i, j) to uv coordinates (u_s, v_s) ?

Ray Generation: Pixel-to-Image

$$[-0.5, n_x - 0.5] \times [-0.5, n_y - 0.5]$$
 $[l, r] \times [b, t]$

Windowing Transformation: Translate, Scale, Translate

$$u_s = l + \frac{r - l}{n_x} (i + 0.5) \& v_s = b + \frac{t - b}{n_y} (j + 0.5)$$

Ray Intersection

```
For each pixel
Construct a ray from the eye
For each object in the scene
Intersection (ray, t0, t1)
Keep if closest
Compute Shading
```

Finds the intersection (and surface normal) for $t \ge t_0$ and $t \le t_1$

Ray Intersection: Sphere

Ray parametric equation: p(t) = e + t d

Sphere implicit equation: $\|\boldsymbol{p}-\boldsymbol{c}\|^2-r^2=0$ for center \boldsymbol{c} & radius r

Intersect \rightarrow Substitute ray equation into sphere equation and solve for *t*

$$\|\mathbf{e} + t\,\mathbf{d} - \mathbf{c}\|^2 - r^2 = 0$$

$$(\boldsymbol{e}+t\,\boldsymbol{d}-\boldsymbol{c})^T(\boldsymbol{e}+t\,\boldsymbol{d}-\boldsymbol{c})-r^2=0$$

$$(d^Td)t^2+2d^T(e-c)t+(e-c)^T(e-c)-r^2=0$$

Quadratic Equation in *t*!

Ray Intersection: Sphere

Quadratic Equation in *t*: $At^2 + Bt + C = 0$

$$t = \frac{-B \pm \sqrt{D}}{2A}$$

Discriminant: $D = B^2 - 4AC$

Which *t* to choose?

Smallest $t > t_{min}$

Ray Intersection: Sphere

What about surface normal?

$$n=\frac{p-c}{\|p-c\|}$$

Ray Intersection: Plane

Ray parametric equation: p(t) = e + t d

Plane equation: $\mathbf{n}^T \mathbf{p} + D = 0$ where $D = -\mathbf{n}^T \mathbf{p_0}$

Intersect \rightarrow Substitute ray equation into plane equation and solve for t

$$\boldsymbol{n}^{T}(\boldsymbol{e}+t\boldsymbol{d})+D=0$$

$$t = -\frac{D + \mathbf{n}^T \mathbf{e}}{\mathbf{n}^T \mathbf{d}}$$

What if $\mathbf{n}^T \mathbf{d} = 0$?

Ray parallel to Plane!

Ray Intersection: Plane

What about surface normal?

Already given!

Straightforward approach?

- 1. Intersect ray with triangle's plane
- 2. Find Barycentric coordinates of intersection point
- 3. Decide whether inside or outside triangle: $0 \le \alpha$, β , $\gamma \le 1$

Ray parametric equation: p(t) = e + t d

Triangle equation: $p = a + \beta(b - a) + \gamma(c - a)$

Intersect \rightarrow Substitute ray equation into triangle equation and solve for t, β , and γ . Inside if $\beta + \gamma < 1$ and $\beta \& \gamma > 0$

$$e+td=a+\beta(b-a)+\gamma(c-a)$$

Three equations in three unknowns

$$\begin{aligned} x_e + t & x_d = x_a + \beta (x_b - x_a) + \gamma (x_c - x_a) \\ y_e + t & y_d = y_a + \beta (y_b - y_a) + \gamma (y_c - y_a) \\ z_e + t & z_d = z_a + \beta (z_b - z_a) + \gamma (z_c - z_a) \end{aligned}$$

Three equations in three unknowns

$$\begin{aligned} x_e + t & x_d = x_a + \beta (x_b - x_a) + \gamma (x_c - x_a) \\ y_e + t & y_d = y_a + \beta (y_b - y_a) + \gamma (y_c - y_a) \\ z_e + t & z_d = z_a + \beta (z_b - z_a) + \gamma (z_c - z_a) \end{aligned}$$

$$\begin{bmatrix} x_{a} - x_{b} & x_{a} - x_{c} & x_{d} \\ y_{a} - y_{b} & y_{a} - y_{c} & y_{d} \\ z_{a} - z_{b} & z_{a} - z_{c} & z_{d} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} x_{a} - x_{e} \\ y_{a} - y_{e} \\ z_{a} - z_{e} \end{bmatrix}$$

Solve for t, β , and γ

$$\begin{bmatrix} x_{a} - x_{b} & x_{a} - x_{c} & x_{d} \\ y_{a} - y_{b} & y_{a} - y_{c} & y_{d} \\ z_{a} - z_{b} & z_{a} - z_{c} & z_{d} \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \\ t \end{bmatrix} = \begin{bmatrix} x_{a} - x_{e} \\ y_{a} - y_{e} \\ z_{a} - z_{e} \end{bmatrix}$$

Solve for t, β , and γ

$$\beta = \frac{\begin{vmatrix} x_{a} - x_{e} & x_{a} - x_{c} & x_{d} \\ y_{a} - y_{e} & y_{a} - y_{c} & y_{d} \\ z_{a} - z_{e} & z_{a} - z_{c} & z_{d} \end{vmatrix}}{|A|}$$

$$\beta = \frac{\begin{vmatrix} x_{a} - x_{e} & x_{a} - x_{e} & x_{d} \\ y_{a} - y_{b} & x_{a} - x_{e} & x_{d} \\ y_{a} - y_{b} & y_{a} - y_{e} & y_{d} \\ z_{a} - z_{b} & z_{a} - z_{e} & z_{d} \end{vmatrix}}$$

$$\gamma = \frac{|A|}{|A|}$$

$$t = \frac{\begin{vmatrix} x_a - x_b & x_a - x_c & x_a - x_e \\ y_a - y_b & y_a - y_c & y_a - y_e \\ z_a - z_b & z_a - z_c & z_a - z_e \end{vmatrix}}{|A|}$$

- Advantages?
 - Efficient
 - No need to store plane equations
 - Compute Barycentric coordinates and check in one step!

Ray Intersection: Box

Want the intersection of the ray with a 3D box.

Do it for 2D first!

Ray Intersection: Box

Ray equation: p(t) = e + t d

2D Box:
$$x_p = x_{min}, x_p = x_{max}, y_p = y_{min}, y_p = y_{max}$$

$$x_e + t_{xmax} x_d = x_{max}$$

 $\rightarrow t_{xmax} = (x_{max} - x_e)/x_d$

$$y_e + t_{ymin} y_d = y_{min}$$

 $\rightarrow t_{ymin} = (y_{min} - y_e)/y_d$

$$y_e + t_{ymax} y_d = y_{max}$$

 $\rightarrow t_{ymax} = (y_{max} - y_e)/y_d$

Ray Intersection: Box

Each intersection gives an interval

We want the last entry point and first exit point!

$$t_{max} = min(t_{xmax}, t_{ymax})$$

Intersection?

$$\rightarrow t_{min} < t_{max}$$

Intersection point?

$$\rightarrow p(t_{min})$$

$$t \in [t_{xmin}, t_{xmax}]$$

$$t \in [t_{ymin}, t_{ymax}]$$

$$t \in [t_{xmin}, t_{xmax}] \cap [t_{ymin}, t_{ymax}]$$

Shading

```
For each pixel
Construct a ray from the eye
For each object in the scene
Find intersection point (and surface normal)
Keep if closest
Compute Shading
```

Shading

$$R = k_a I_a + \sum_i k_d I_i \max(0, l_i \cdot n) + k_s I_i \max(0, e \cdot r_i)^p$$

Ray Tracing Program

```
function ComputeShading(ray, t0, t1)
  Get intersection of ray with scene
  If intersection != null
    Color = ambient
    Get n, h, l
    Color += kd * max(0, <n,l>) + ks * <h, n>p
    Else
    Color = background
```


Ray Tracing Program

- Usually Object Oriented Design
- Objects (and Scene!) derive from base class
- Cameras (orthographic and perspective) derive from base class (for ray generation)
- Virtual methods do the trick!

Ray Tracing Program

- Similar to rasterization pipeline seen so far
- Will see later how to deal with shadows, reflections, transparency, ...

Recap

- What is Ray tracing
- Ray Tracing basics
- Ray Generation
- Ray Intersection
- Ray Tracing Program