There are N different points in a plane.

We say that the triangle formed by some three points as corners is a **super-triangle** if the number of points inside this triangle is **as large as possible**. We consider the points **in the corners** or **on the sides** of the triangle as being **inside** the triangle.

Write a program that will, among given points, find three points that form some super-triangle.

input data

The first line of input contains an integer N, $3 \le N \le 300$.

Each of the following N lines contains two integers – the coordinates of one point.

Note: the test data will be such that there will be at least three non-collinear points.

output data

The first line of output should contain the number of points inside the super-triangle.

The second line should contain three numbers – **indices** of the three corner points of the super-triangle, **in any order**.

examples

input	input	input
6	9	13
1 3	1 1	1 3
2 3	2 2	2 4
2 1	3 3	3 1
3 1	2 1	4 1
3 2	3 2	4 2
4 4	3 1	4 3
	4 2	4 4
output	4 1	4 5
	5 1	5 1
5		5 2
1 4 6	output	6 1
	-	6 5
	9	7 3
	1 9 3	
		output
		9
		3 11 8