STAT 620: Asymptotic Statistics

Spring 2022

Lecture: Mar 1

Lecturer: Xianyang Zhang

1 Projection

1.1 Hilbert space

A vector space \mathcal{H} is a **Hilbert space** if it is a complete normed vector space and have the inner product. $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ which is linear in both arguments and $\langle u, u \rangle = ||u||^2$

Example 1 \mathbb{R}^n is a Hilbert space with $\langle X, Y \rangle = X^\top Y$

Example 2 Suppose P is a measure of \mathcal{X} . Then

$$L^{2}(P) = \left\{ f : \mathcal{X} \to \mathbb{R}, \int f^{2}(x) \, dP(x) < \infty \right\}$$

is a Hilbert space with

$$\langle f, g \rangle = \int f(x) g(x) dP(x)$$
 and $||f|| = \left(\int f^2(x) dP(x) \right)^{1/2}$.

1.2 Projection

Let $S \subseteq \mathcal{H}$ be a closed linear subspace of \mathcal{H} , i.e. S contains 0 and all linear combinations of elements in itself. For any $v \in \mathcal{H}$, we define the projection of v onto S as

$$\pi_{\mathcal{S}}(v) = \underset{s \in \mathcal{S}}{\operatorname{argmin}} \|s - v\|^2.$$

1.3 Theorem

The projection $\pi_{\mathcal{S}}(v)$ exists, is unique and is uniquely determined by the equality:

$$\langle v - \pi_{\mathcal{S}}(v), a \rangle = 0$$

for all $a \in \mathcal{S}$.

Proof: (1) We first show that if the orthogonality condition is satisfied, then $\pi_{\mathcal{S}}(v)$ must be the projection of v onto \mathcal{S} . Consider any $s \in \mathcal{S}$. We have

$$||s-v||^2 = ||s-\pi_{\mathcal{S}}(v) + \pi_{\mathcal{S}}(v) - v||^2 = ||s-\pi_{\mathcal{S}}(v)||^2 + ||\pi_{\mathcal{S}}(v) - v||^2 + 2\left\langle s - \pi_{\mathcal{S}}(v), \pi_{\mathcal{S}}(v) - v\right\rangle \ge ||\pi_{\mathcal{S}}(v) - v||^2,$$

where we have used the fact that $\langle s - \pi_{\mathcal{S}}(v), \pi_{\mathcal{S}}(v) - v \rangle = 0$. The equality holds when $||s - \pi_{\mathcal{S}}(v)||^2 = 0$, that is $s = \pi_{\mathcal{S}}(v)$.

(2) Next we show the projection $\pi_{\mathcal{S}}(v)$ satisfies the orthogonality condition. For any $a \in \mathcal{S}$ and $c \in \mathbb{R}$, we have

$$||v - \pi_{\mathcal{S}}(v) - ca||^2 - ||v - \pi_{\mathcal{S}}(v)||^2 = c^2 ||a||^2 - 2c \langle a, v - \pi_{\mathcal{S}}(v) \rangle.$$

In order to have the above $\geq 0 \ \forall c \in \mathbb{R}$, we must have

$$\langle a, v - \pi_{\mathcal{S}}(v) \rangle = 0.$$

2 Conditional Expectation

Define

 $\mathcal{S} = \bigg\{ \text{linear span of } g(Y) \text{ for all measurable functions } g \text{ and some random variable } Y \text{ with } g(Y) \in L^2(P) \bigg\},$

where $Y \sim P$.

2.1 Definition

Suppose X and Y are random variables. We define the conditional expectation of X given Y, $\mathbb{E}[X \mid Y]$ as the projection of X onto S, that is $\mathbb{E}[X \mid Y]$ is the unique function of Y such that

$$\mathbb{E}[\{X - E(X \mid Y)\} g(Y)] = 0, \ \forall g \in \mathcal{S}.$$

2.2 Properties

- (1) $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}(X \mid Y)]$. It follows directly by choosing g(Y) = 1.
- $(2) \mathbb{E}[X g(Y) \mid Y] = g(Y) \mathbb{E}[X \mid Y].$

2.3 Proposition

Let T_n be a sequence of random variables and S_n be sequence of subspaces of $L^2(P_n)$. Let $\hat{T}_n = \pi_{S_n}(T_n)$. Also let, $\sigma^2(X) = \text{var}(X)$. If $\frac{\sigma^2(T_n)}{\sigma^2(\hat{T}_n)} \to 1$ as $n \to \infty$, then

$$\frac{T_n - \mathbb{E}(T_n)}{\sigma(T_n)} - \frac{\hat{T}_n - \mathbb{E}(\hat{T}_n)}{\sigma(\hat{T}_n)} \stackrel{P}{\to} 0.$$

Proof: Note that $\mathbb{E}[\{T_n - \pi_{S_n}(T_n)\} S] = 0, \forall S \in S_n$. Let

$$A_n = \frac{T_n - \mathbb{E}(T_n)}{\sigma(T_n)} - \frac{\hat{T}_n - \mathbb{E}(\hat{T}_n)}{\sigma(\hat{T}_n)}.$$

Then $\mathbb{E}(A_n) = 0$. Thus we just need to show that

$$var(A_n) \to 0.$$

Toward this end, we note that

$$\operatorname{var}(A_n) = \operatorname{var}\left(\frac{T_n - \mathbb{E}(T_n)}{\sigma(T_n)}\right) + \operatorname{var}\left(\frac{\hat{T}_n - \mathbb{E}(\hat{T}_n)}{\sigma(\hat{T}_n)}\right) - 2\operatorname{cov}\left(\frac{T_n - \mathbb{E}(T_n)}{\sigma(T_n)}, \frac{\hat{T}_n - \mathbb{E}(\hat{T}_n)}{\sigma(\hat{T}_n)}\right)$$
$$= 1 + 1 - \frac{2}{\sigma(T_n)\sigma(\hat{T}_n)}\operatorname{cov}(T_n, \hat{T}_n).$$

Noting that $\mathbb{E}(T_n) = \mathbb{E}(\hat{T}_n)$, we have

$$\operatorname{cov}(T_n, \hat{T}_n) = \mathbb{E}[T_n \, \hat{T}_n] - \mathbb{E}[T_n] \, \mathbb{E}[\hat{T}_n] = \mathbb{E}[(T_n - \hat{T}_n + \hat{T}_n) \, \hat{T}_n] - \mathbb{E}^2(\hat{T}_n) = \mathbb{E}(\hat{T}_n^2) - \mathbb{E}^2(\hat{T}_n) = \sigma^2(\hat{T}_n).$$

Then

$$\operatorname{var}(A_n) = 2 - 2 \frac{\sigma(\hat{T}_n)}{\sigma(T_n)} \to 0 \text{ as } n \to \infty.$$

2.4 Hajek Projection

Let X_1, X_2, \ldots, X_n be independent. Let

$$S = \left\{ \sum_{i=1}^{n} g_i(X_i) : g_i(X_i) \in L^2(P) \right\}.$$

If $\mathbb{E}(T^2) < \infty$, then the projection \hat{T} of T onto S is given by

$$\hat{T} = \sum_{i=1}^{n} \mathbb{E}[T \mid X_i] - (n-1)\mathbb{E}[T].$$

Proof: Note that

$$\mathbb{E}[\mathbb{E}(T \mid X_i) | X_j] = \begin{cases} \mathbb{E}(T \mid X_i) & \text{if } i = j, \\ \mathbb{E}(T) & \text{if } i \neq j. \end{cases}$$

Now,

$$\mathbb{E}[\hat{T} \mid X_j] = \sum_{i=1}^n \mathbb{E}[\mathbb{E}(T \mid X_i) \mid X_j] - (n-1)\mathbb{E}[T] = (n-1)\mathbb{E}[T] + \mathbb{E}[T \mid X_j] - (n-1)\mathbb{E}[T] = \mathbb{E}[T \mid X_j].$$

Then $\mathbb{E}[(T - \hat{T}) \mid X_j] = 0$. So

$$\mathbb{E}[(T - \hat{T}) g_j(X_j)] = \mathbb{E}[\mathbb{E}\{(T - \hat{T}) g_j(X_j) \mid X_j\}] = \mathbb{E}[g_j(X_j) \mathbb{E}\{(T - \hat{T}) \mid X_j\}] = 0.$$

Hence

$$\mathbb{E}\Big[(T-\hat{T})\sum_{j=1}^{n}g_{j}(X_{j})\Big]=0,$$

which completes the proof.