Chapitre 14

Intégration sur un intervalle

II. Les grands théorèmes

Les étudiants devront connaître l'énoncé exact des quatre grands théorèmes.

Questions de cours proposées (sans obligation...)

- Q.C. 1 : énoncé d'un des quatre théorèmes
- Q.C.2 : démonstration
 - o Soit du théorème 3 (« continuité de l'intégrale à paramètre »)
 - o Soit l'intégrabilité de la fonction Γ .
 - \circ Soit la continuité de la fonction Γ .
 - o Soit le caractère C^1 de la fonction Γ .
 - o Soit le caractère C^k de la fonction Γ .

Les quatre théorèmes à connaître impérativement

Théorème 1 de convergence dominée

Soient $(f_n)_{n\in\mathbb{N}}\in\mathcal{CM}(I,\mathbb{K})^{\mathbb{N}}$ et $f\in\mathcal{CM}(I,\mathbb{K})$ (CM).

Si * la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur I vers f (C S)

* il existe $\varphi \in \mathcal{L}^1(I,\mathbb{R}_+)$ telle que $\forall n \in \mathbb{N}$: $|f_n| \leqslant \varphi$ (\mathbf{D})

Alors:

- \square $\forall n \in \mathbb{N} : f_n \in \mathcal{L}^1(I, \mathbb{K}) \text{ et } f \in \mathcal{L}^1(I, \mathbb{K})$
- lacksquare la suite des intégrales $\left(\int_I f_n
 ight)_{n\in\mathbb{N}}$ converge vers $\int_I f$

<u>Théorème 2</u>: intégration terme à terme d'une série de fonctions

Soit
$$(f_n)_{n\in\mathbb{N}}\in\mathcal{L}^1(I,\mathbb{K})^{\mathbb{N}}$$
.

- Si * la série de fonctions $\sum f_n$ converge simplement sur I et a pour somme une fonction $S \in \mathcal{CM}(I,\mathbb{K})$,
 - * la série des intégrales $\sum \int_I |f_n|$ converge

alors $S \in \mathcal{L}^1(I,\mathbb{R})$ et la série $\sum \int_I f_n$ converge et a pour somme $\int_I S$

Théorème 3 : "continuité d'une intégrale à paramètre"

Soit
$$f: \begin{cases} A \times I \to \mathbb{K} \\ (x,t) \to f(x,t) \end{cases}$$
 où $\begin{vmatrix} A \subset F \text{ avec } F \text{ e.v.n. de dimension finie} \\ I \text{ est un intervalle de } \mathbb{R} \end{vmatrix}$

Si
$$\mathbb{O}$$
 f est continue par rapport à la première variable (C1)

i.e.
$$\forall t \in I : f(.,t) \in \mathcal{C}(A,\mathbb{K})$$

$$\bigcirc$$
 f est continue par morceaux par rapport à la 2^{nde} variable (CM2)

i.e.
$$\forall x \in A : f(x,.) \in \mathcal{CM}(I,\mathbb{K})$$

alors la fonction $g: x \to \int_I f(x,t)dt$ est bien définie et continue sur A.

Théorème 4 : "dérivabilité d'une intégrale à paramètre "

Soit
$$f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \to f(x,t) \end{cases}$$
 où J et I sont des intervalles de \mathbb{R} .

Si ①
$$\forall x \in J : f(x,.) \in \mathcal{L}^1(I,\mathbb{K})$$

$${\mathbb Z} \ f \ {\rm admet\ sur}\ J \times I$$
 une dérivée partielle $\frac{\partial f}{\partial x}$ qui vérifie les hypothèses

alors la fonction
$$g: x \to \int_I f(x,t)dt$$
 est de classe \mathcal{C}^1 sur J et vérifie :

$$\forall x \in J : g'(x) = \int_{I} \frac{\partial f}{\partial x}(x,t)dt$$
.