Problem 1

A) The graph on the right, top shows our main effects for strength location and suggests that A, C, and D are maximized at the color dots: A=2, C=0, D=1. Since A x B, C x D, A x C, and B x D have significance then we will look at AB=CD² and AC=BD². In particular, the A x B plot suggest that A=2 is maximized at B=2 and A x C suggests A=2 is maximized at C=1. Similarly, C x D suggest that C=0 is maximized at D=1; however, after results of A x C, we will be choosing C=1, since A is considered to be more significant, resulting in D=0. We have B x D suggesting that B=2 (from A x B plot results) is maximized when D=0. This suggests that A=2, B=2, C=0, and D=1 (choosing D=1 over D=0 by MF graph) will maximize our strength location. Notice that C=0 did not minimize A=2 in AB, instead it was C=1, but A is the only factor that is significant for strength dispersion, so A takes priority. This yields the final result of

<A,B,C,D>=<2,2,0,1>.

The above graph is the main effects for dispersion. As we can see this suggests that **A=2** will minimize dispersion, further suggesting our above results were selected properly. Since **A** is the only significant factor for dispersion, then we shouldn't use it to suggest values for the other factors.

B) Factor A and C are significant in the dispersion location so we can select A=0 and C=2. From A x B, A x C, A x D we get B=0 and D=2 with the A x C graph agreeing with our initial choices in above. The selection of D has minimal impact in A x D and C x D so any value (0,1,2) would be suffice. Thus,

<A,B,C,D>=<0,0,2,1>.

Looking at flash dispersion we see that the graph agrees in **A=0** and **C=2** further supporting our choices given that **A** is the only significant factor. Based on this graph I may lean toward **D=0**, but again it is not significant.

Problem 2

a) Multiplying both sides of **D=ABC** by **D**² and **E=A**²**BC** by **E**² we get **I=ABCD**² and **I=A**²**BCE**². By convention we would like A² to have a power of one so (A²BCE²)²=AB²C²E=I and this will be the alias we use. Multiplying (ABCD²)(AB²C²E)=A²D²E or (A²D²E)²=ADE² to keep convention. Furthermore we need to calculate (ABCD²)²(AB²C²E)=BCDE. This implies that we have **Resolution III** and our defining contrast subgroup is

I=ABCD²=AB²C²E=BCDE=ADE²

b) Calculating the MF results in:

Aliased:	I=ABCD ²	AB ² C ² E	BCDE	ADE ²	$A^2B^2C^2D$	A ² BCE ²	$B^2C^2D^2E^2$	A^2D^2E
Α	AB ² C ² D	ABCE ²	ABCDE	AD^2E	BCD ²	BCE ²	$AB^2C^2D^2E^2$	DE ²

c) Aliased for all MF, with clear interactions highlighted:

Aliased:	I=ABCD ²	AB ² C ² E	BCDE	ADE ²	A ² B ² C ² D	A ² BCE ²	$B^2C^2D^2E^2$	A ² D ² E
Α	AB ² C ² D	ABCE ²	ABCDE	AD ² E	BCD ²	BCE ²	$AB^2C^2D^2E^2$	DE ²
B	AB ² CD	AC ² E	BC ² D ² E ²	ABD ² E	ACD ²	ABC ² E	CDE	AB ² DE ²
C	ABC ² D ²	AB ² E	BC ² DE	ADCE ²	ABD ²	AB ² CE	BDE	AC ² DE ²
D	ABC	AB ² C ² DE	BCD ² E	AD ² E ²	ABCD	AB ² C ² D ² E	BCE	AE ²
E	ABCD ² E	AB ² C ² E ²	BCDE ²	AD	ABCD ² E ²	AB ² C ²	BCD	ADE

Aliased for all 2-fis, with clear interactions highlighted:

Aliased:	I=ABCD ²	I=AB ² C ² E	I=BCDE	I=ADE ²	I=A ² B ² C ² D	I=A ² BCE ²	I=B ² C ² D ² E ²	I=A ² D ² E
AB	ABC ² D	ACE ²	AB ² CDE	AB ² D ² E	CD ²	BC ² E	AC ² D ² E ²	BD ² E
AC	AB ² CD	ABE ²	ABC ² DE	AC ² D ² E	BD ²	BC ² E ²	AB ² D ² E ²	CD ² E
AD	AB ² C ²	ABCD ² E ²	ABCD ² E	ADE	BCD	BCDE ²	AB ² C ² E ²	E
AE	AB ² C ² DE ²	ABCE	ABCDE ²	AD ²	BCD ² E ²	ВС	$AB^2C^2D^2$	DE
ВС	$AB^2C^2D^2$	AE	BCD ² E ²	ABCDE ²	AD ²	ABCE	DE	AB ² C ² DE ²
BD	AB ² C	AC ² DE	BC ² DE ²	ABD ² E ²	ACD	ABC ² D ² E	CE	AB^2E^2
BE	AB ² CE	AC ² E ²	BC ² D ² E	ABD	ACD ² E ²	ABC ²	CD	AB ² DE
CD	ABC	AB ² DE	BC ² D ² E	ACD ² E ²	ABD	AB ² CD ² E	BE	AC ² E ²
CE	ABCD ² E	AB ² E	BC ² DE ²	ACD	ABD ² E ²	AB ² C	BD	AC ² DE
DE	ABCE	AB ² C ² DE ²	BCD ² E ²	AD	ABCDE ²	AB ² CD	ВС	AE
AB ²	AC ² D	AB ² CE ²	ACDE	ABD ² E	BC ² D	CE ²	ABC ² D ² E ²	BDE ²
AC ²	AB ² D	ABC ² E ²	ABDE	ACD ² E	BC^2D^2	BE ²	AB ² CD ² E ²	CDE ²
AD ²	$AB^2C^2D^2$	ABCDE ²	ABCE	AE	ВС	BCD ² E ²	AB ² C ² DE ²	DE
AE ²	AB ² C ² DE	ABC	ABCD	ADE ²	BCD ² E	BCE	AB ² C ² D ² E	D
BC ²	AB^2D^2	ACE	BD ² E ²	ABC ² DE ²	AC ² D ²	ABE	CD ² E ²	AB ² CDE ²
BD ²	AB ² CD	AD ² C ² E	BC ² E ²	ABE ²	AC	ABC ² DE	CD ² E	$AB^2D^2E^2$
BE ²	AB ² CD ² E ²	AC ²	BC ² D ²	ABDE	ACD ² E	ABC ² E ²	CDE ²	AB ² D
CD ²	ABC ² D	AB ² D ² E	BC ² E	ACDE	AB	AB ² CDE	BD ² E	$AC^2D^2E^2$
CE ²	ABC ² D ² E ²	AB ²	BC ² D	ACDE	ABD ² E	AB ² CE ²	BDE ²	AC ² D
DE ²	ABCE ²	AB ² C ² DE ²	BCD ²	AD ² E	ABCDE	$AB^2C^2D^2E^2$	BCE ²	Α

d) The only MF or 2-fis that are clear are B, C, and BC² as all other 2-fis are aliased with another 2-fi or MF. All other MF are aliased with at least one 2-fi.

Aliased:	I=ABCD ²	I=AB ² C ² E	I=BCDE	I=ADE ²	I=A ² B ² C ² D	I=A ² BCE ²	I=B ² C ² D ² E ²	I=A ² D ² E
В	AB ² CD	AC ² E	BC ² D ² E ²	ABD ² E	ACD ²	ABC ² E	CDE	AB ² DE ²
С	ABC ² D ²	AB ² E	BC ² DE	ADCE ²	ABD ²	AB ² CE	BDE	AC ² DE ²
BC ²	AB^2D^2	ACE	BD^2E^2	ABC ² DE ²	AC^2D^2	ABE	CD ² E ²	AB ² CDE ²

Even though BC² is clear, since BC is not clear then B x C is not clear. This implies A x B, A x C, A x D, A x E, B x C, B x D, B x E, C x D, C x E, D x E are all not clear since both their components are not clear.