Mate 2: Curs #0

Profesor: Iulian Duca

24 Septembrie 2019

1 Detalii curs

1.1 Obtinere nota

Nota finala se obtine dintr-un test final, ce are o pondere de 50%, unul partial cu pondere de 30%, ce va fi dat dupa primele 10 ore de curs, si pe activitatea la seminarii ce completeaza restul de 20% din nota finala.

1.2 Structura materiei

1.2.1 Algebra liniara

- Spatii vectoriale
- Produse scalare
- Aplicatii liniare
- Aplicatii biliniare

1.2.2 Ecuatii diferentiale

- Sisteme de ecuatii liniare
- Ecuatii diferentiale liniare
- Ecuatii diferentiale cu derivate partiale

2 Curs #0

Se numeste **produs cartezian** intre A si B: $A \times B = \{(a,b) \mid a \in A, b \in B\}$. ρ se numeste o **relatie binara** intre A si B daca $\rho \subseteq A \times B$.

Notatie: $(a,b) \in \rho \iff a\rho b$

Daca A = B se spune ca ρ este o **relatie pe A**.

Fie ρ o relatie binara pe A.

Proprietati:

- ρ este **reflexiva** daca $\forall x \in A, x \rho x$
- ρ este **simetrica** daca din $x\rho y$ rezulta $y\rho y$
- ρ este **tranzitiva** daca din $x\rho y$ si $y\rho z$ rezulta $x\rho z$
- ρ este antisimetrica daca din $x\rho y$ si $y\rho x$ rezulta x=y

Definitie: O relatie ρ pe A care este reflexiva, simetrica si tranzitiva se numeste relatie de echivalenta.

Exemplu: Fie $n \in N^*$, $n \neq 1$. Pe Z definim $x \rho y \iff n | x - y$.

Definitie: Daca ρ este o relatie pe A si este reflexiva, antisimetrica si tranzitiva, atunci ρ se numeste **relatie de ordine**.

Exemplu: $A = N \text{ si } x \rho y \iff x | y$.

Definitie: o relatie ρ este peste tot definita pe A daca $\forall x, y \in A$, $x\rho y$ sau $y\rho x$. O relatie de ordine pe A care este peste tot definita se numeste **relatie de ordine totala**.

Definitie: Fie ρ o relatie intre A si B, multimea $\{x \in A \mid \exists y \in B \ a.i. \ x\rho y\}$ se numeste **domeniu strict de definitie al lui** ρ , iar multimea $\{y \in B \mid \exists x \in A \ a.i. \ x\rho y\}$ se numeste **imaginea lui** ρ .

Daca ρ este definita intre A si B si domeniul de definitie al lui ρ este A rezulta ca ρ este peste tot definita.

Daca din $x\rho y_1$ si $x\rho y_2$ rezulta $y_1=y_2$ se spune ca ρ este de **tip functionala** intre A si B.

O relatie ρ de tip functionala intre A si B, care este peste tot definita, se numeste functie definita pe A cu valori in B.

Notatie: $x \rho y \iff \rho(x) = y$.

O relatie poate fi exprimata cu ajutorul unui **tablou**. In cazul in care elementele lui A si B sunt in numar finit, se pot pune elementele $a_1, a_2, a_3, \dots a_n \in A$ pe liniile tabloului, iar elementele $b_1, b_2, b_3, \dots b_n \in B$ pe coloanele tabelului si pe pozitia (i,j) se pune 1 $daca \ a_i \rho b_j \ sau \ 0 \ daca \ a_i \rho b_i$.

Fie ρ o relatie de echivalenta pe A, pentru $x \in A$ notam $\hat{x} = \{y \in A \mid y \rho x\} \subseteq A$

clasa de echivalenta a lui x.

Exercitiu: Sa se determine clasele de echivalenta pe Z (din exemplul anterior) prin $x \rho y \iff n|x-y, n \in N^*, n \neq 1$.

Exercitiu: Daca ρ este o relatie de echivalenta pe A si $x,y\in A$ atunci $\hat{x}=\hat{y}$ sau $\hat{x}\cap\hat{y}=\varnothing$.

 $A / \rho = {\hat{x} \mid x \in A}$ se numeste **partitie a lui** A.

Exercitiu: Sa se arate ca pentru o relatie ρ intre A si B, intre $A\rho B \iff \exists \ f: A \to B \ bijectie$ este o relatie de echivalenta. A este cardinal echivalent cu B.