

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa

Análise Numérica — Avaliação P1

Eng. Mecânica 30 de Janeiro de 2017

1	
2	
3	
4	
5	
Total	

Aluno(a):....

- (1) Avalie a função $f(x) = x^3 6.1x^2 + 3.2x + 1.5$ em x = 4.71 usando aritmética computacional com três dígitos e arredondamento:
 - (a) Diretamente.
 - (b) Usando o método de Horner.
 - (c) Compare os resultados usando erro relativo com o valor exato f(4.71) = -14.263899.
 - (d) Qual método obtem o melhor resultado?
- (2) (a) Encontre uma raiz de $x^3 x 1 = 0$ no intervalo [1, 2] com precisão de 10^{-1} utilizando o método da bisseção.
 - (b) Qual o número máximo de iterações necessário para obter uma raiz com essa precisão utilizando o método da bisseção?
 - (c) É possível encontrar uma raiz no intervalo [0, 1] utilizando o método da bisseção? Justifique.
- (3) Dados $x^2 \cos x = 0$ e $p_0 = 1$:
 - (a) Use o método de Newton para encontrar uma raiz da equação acima com precisão de 10^{-3} utilizando o p_0 dado.
 - (b) Podemos usar $p_0 = 0$? Justifique.
- (4) Qual o erro máximo ao aproximar a função $f(x) = \cos x$ em x = 0.45 utilizando o polinômio interpolador de Lagrange de grau no máximo 2 e $x_0 = 0$, $x_1 = 0.6$ e $x_2 = 0.9$?
- (5) A spline cúbica natural s abaixo está definida em [0,2]

$$s(x) = \begin{cases} s_0(x) = 1 + 2x - x^3, & \text{se } 0 \le x \le 1\\ s_1(x) = 2 + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & \text{se } 1 \le x \le 2 \end{cases}$$

Encontre b, $c \in d$.

Boa Prova!