Politecnico di Milano	Analisi Matematica II	10 gennaio 2020					
Prof. E. Maluta							·
Ing. Informatica e Ing. delle Telecomunicazioni	Prima Parte						
Cognome e Nome:	Matricola:	P	\mathbf{T}	1	2	3	4

Ogni risposta va scritta nello spazio sotto il quesito e motivata con calcoli o/e spiegazioni.

1. Data la funzione f definita su \mathbb{R}^2 da $f(x,y)=e^{xy^2}$, determinare e disegnare le curve di livello 1 e quelle di livello 4.

2. Calcolare il rotore del campo $\mathbf{F}(x, y, z) = (yz^2, xy, xyz)$ e stabilire poi se il campo F è conservativo su \mathbb{R}^3 .

3. Stabilire se la curva di equazione parametrica $\mathbf{r}(t) = ((\sin t)^3, t^2, 3t^2)$, con $t \in [-\pi, 2\pi]$, è piana, regolare, chiusa.

5. Sia $\frac{a_0}{2} + \sum_{1}^{+\infty} (a_n \cos nx + b_n \sin nx)$ la serie di Fourier della funzione f definita da $f(x) = \sin 2x \cos 2x$. Quanto valgono a_2, b_2, a_4 e b_4 ?

6. Risolvere, per l'equazione differenziale y'=y-1, il problema di Cauchy con condizione iniziale y(-1)=1.