Cadenas de Markov y Modelos Económicos

Iván González Cuesta

24 de octubre de 2025

Índice

1.	Introducción	2
2.	Definición formal	2
3.	Distribución estacionaria	2
4.	Ejemplo económico: modelo de consumo estocástico 4.1. 1. Cálculo de la distribución estacionaria	3
5.	Cadenas Ocultas de Markov (HMM)5.1. Definición5.2. Ejemplo económico5.3. Algoritmos principales5.4. Aplicaciones económicas	
6	Conclusión	F

1. Introducción

Una cadena de Markov es un proceso estocástico donde el futuro depende únicamente del estado presente, y no del pasado. Formalmente:

$$P(X_{t+1} = j \mid X_t = i, X_{t-1}, X_{t-2}, \dots) = P(X_{t+1} = j \mid X_t = i)$$

En economía y finanzas, las cadenas de Markov permiten modelar la evolución de estados económicos (por ejemplo, expansión o recesión) y su impacto sobre el consumo, la inversión o el valor de los activos.

2. Definición formal

Sea un conjunto de estados:

$$S = \{1, 2, ..., n\}$$

y una matriz de transición:

$$P = [p_{ij}], \quad p_{ij} = P(X_{t+1} = j \mid X_t = i)$$

Cada fila de P cumple:

$$\sum_{j} p_{ij} = 1, \quad p_{ij} \ge 0$$

La distribución de probabilidad en el tiempo t es un vector:

$$\pi^{(t)} = (\pi_1^{(t)}, ..., \pi_n^{(t)})$$

y evoluciona según:

$$\pi^{(t+1)} = \pi^{(t)} P$$

3. Distribución estacionaria

Una distribución estacionaria π cumple:

$$\pi = \pi P, \quad \sum_{i} \pi_i = 1$$

Es decir, una vez alcanzada, la distribución de probabilidad no cambia con el tiempo.

4. Ejemplo económico: modelo de consumo estocástico

Supongamos una economía que puede encontrarse en dos estados:

- Estado 1: Expansión económica $(g_1 = 1,04)$
- Estado 2: Recesión económica $(g_2 = 0.98)$

La matriz de transición entre estados es:

$$P = \begin{bmatrix} 0.9 & 0.1 \\ 0.3 & 0.7 \end{bmatrix}$$

4.1. 1. Cálculo de la distribución estacionaria

Sea $\pi = (\pi_1, \pi_2)$. Por definición:

$$\pi = \pi P$$

Entonces:

$$\begin{cases} \pi_1 = 0.9\pi_1 + 0.3\pi_2 \\ \pi_2 = 0.1\pi_1 + 0.7\pi_2 \\ \pi_1 + \pi_2 = 1 \end{cases}$$

De la primera ecuación:

$$\pi_1 - 0.9\pi_1 - 0.3\pi_2 = 0 \Rightarrow 0.1\pi_1 = 0.3\pi_2 \Rightarrow \pi_1 = 3\pi_2$$

Usando la restricción:

$$\pi_1 + \pi_2 = 1 \Rightarrow 3\pi_2 + \pi_2 = 1 \Rightarrow \pi_2 = 0.25, \ \pi_1 = 0.75$$

Por tanto:

$$\pi = (0.75, 0.25)$$

Esto significa que a largo plazo, la economía estará el 75 % del tiempo en expansión y $25\,\%$ en recesión.

4.2. 2. Crecimiento promedio del consumo

Si el crecimiento del consumo depende del estado s_t , el crecimiento esperado a largo plazo es:

$$E[g] = \pi_1 g_1 + \pi_2 g_2$$

Sustituyendo:

$$E[g] = 0.75(1.04) + 0.25(0.98) = 0.78 + 0.245 = 1.025$$

Por tanto, el crecimiento medio esperado del consumo es:

$$E[g] = 2.5 \%$$

4.3. 3. Factor de descuento estocástico y precios Arrow

Si el agente representativo tiene preferencias del tipo CRRA:

$$u(C_t) = \frac{C_t^{1-\gamma}}{1-\gamma}$$

entonces el factor estocástico de descuento es:

$$m_{t+1} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\gamma}$$

Los precios de los Arrow securities que pagan una unidad en el estado s' dado que hoy estamos en s son:

$$q_{ss'} = \beta \, p_{ss'} \, g_{s'}^{-\gamma}$$

Ejemplo numérico

Supongamos $\beta = 0.98$ y $\gamma = 2$. Entonces los precios Arrow son:

$$Q = \beta \begin{bmatrix} 0.9g_1^{-2} & 0.1g_2^{-2} \\ 0.3g_1^{-2} & 0.7g_2^{-2} \end{bmatrix}$$

Sustituyendo $g_1 = 1,04, g_2 = 0,98$:

$$g_1^{-2} = (1.04)^{-2} = 0.9246, \quad g_2^{-2} = (0.98)^{-2} = 1.0412$$

Por tanto:

$$Q = 0.98 \begin{bmatrix} 0.9(0.9246) & 0.1(1.0412) \\ 0.3(0.9246) & 0.7(1.0412) \end{bmatrix} = 0.98 \begin{bmatrix} 0.8321 & 0.1041 \\ 0.2774 & 0.7288 \end{bmatrix}$$
$$Q = \begin{bmatrix} 0.8155 & 0.1020 \\ 0.2718 & 0.7142 \end{bmatrix}$$

Estos son los precios de los **Arrow Securities** que pagan una unidad de consumo en cada estado futuro.

De aquí pueden derivarse los precios de bonos, acciones o cualquier activo contingente.

4.4. 4. Interpretación económica

- El estado de expansión tiene mayor persistencia (0.9), por lo que domina en la distribución estacionaria.
- Los precios Arrow son más altos en el estado de recesión, ya que el consumo futuro es bajo y el agente valora más una unidad adicional de consumo.
- Este modelo sirve como base para la valoración de activos bajo incertidumbre agregada.

5. Cadenas Ocultas de Markov (HMM)

Una cadena oculta de Markov (HMM, por sus siglas en inglés) es una extensión donde el estado verdadero s_t no se observa directamente, sino que se infiere a través de una variable observable y_t .

5.1. Definición

Un HMM consta de tres elementos:

- Conjunto de estados ocultos $S = \{1, ..., N\}$
- Matriz de transición $P = [p_{ij}]$
- Distribuciones de emisión $f(y_t \mid s_t = i)$

El modelo genera secuencias (y_t) con dependencias indirectas:

$$s_t \to s_{t+1}, \quad s_t \to y_t$$

5.2. Ejemplo económico

Supón que el verdadero estado de la economía (expansión o recesión) es no observable, pero sí observamos una variable y_t , como el crecimiento del PIB o la rentabilidad del mercado.

$$s_t \in \{\text{Expansión, Recesión}\}, \quad y_t \sim \begin{cases} \mathcal{N}(\mu_1, \sigma_1^2), & s_t = \text{Expansión} \\ \mathcal{N}(\mu_2, \sigma_2^2), & s_t = \text{Recesión} \end{cases}$$

El objetivo es inferir la probabilidad de estar en cada estado dado los datos observados:

$$P(s_t \mid y_1, \ldots, y_t)$$

5.3. Algoritmos principales

- Forward-Backward: calcula la probabilidad de los estados dados los datos observados.
- Viterbi: encuentra la secuencia de estados más probable.
- Baum-Welch (EM): estima los parámetros P, μ_i , σ_i a partir de los datos.

5.4. Aplicaciones económicas

- Identificación de regímenes de política monetaria.
- Modelos de cambio de régimen de Markov (Hamilton, 1989).
- Estimación de probabilidad de recesión en tiempo real.
- Modelos de volatilidad cambiante (regímenes bull/bear en mercados financieros).

6. Conclusión

Las cadenas de Markov y sus versiones ocultas constituyen una herramienta fundamental para modelar la dinámica de variables económicas bajo incertidumbre.

Permiten capturar los cambios de régimen, calcular precios de activos contingentes, y entender cómo la economía transita entre distintos estados de equilibrio.