RESTRICTING THE FLOW: INFORMATION BOTTLENECKS FOR ATTRIBUTION

Karl Schulz, Leon Sixt, Federico Tombari, Tim Landgraf

Introduction

What are attribution methods?

They help us to understand how networks make decisions by assigning some kind of scores to the inputs or the weights of the network.

• Why is it necessary/motivation?

In several applications it is absolutely necessary to know how networks are making decisions eg: medical diagnosis.

Contributions of the paper

- Propose a information bottleneck framework for attribution.
- Give a information theoretic guarantee for their method i.e areas with zero bit of information are not used by the network.
- Give 2 models: **per-sample bottleneck** and **readout bottleneck** to do the task
- Contribute a novel evaluation method based on bounding boxes
- Amazing and well documented code.

Theory

$$\max I[Y; Z] - \beta I[X, Z]$$

Introduce a new random variable Z, through some operation (here noise), such that the information Z shares with Y is maximized and information Z shared with X is minimized.

What is mutual Information

- Say we have a prediction variable Y. There is of course some uncertainty associated with this which is quantified by entropy (higher the more uncertain)
- Now what mutual information tells us is if we know some X (may be input image or a
 message or anything that results in Y) how much decrease in entropy will be there or
 decrease in uncertainty.
- It is Symmetric

Some more equations...

$$I[R, Z] = \mathbb{E}_R[D_{KL}[P(Z|R)||P(Z)]],$$

$$I[R, Z] = \mathbb{E}_R[D_{KL}[P(Z|R)||Q(Z)]] - D_{KL}[P(Z)||Q(Z)]$$

$$\mathcal{L}_I = \mathbb{E}_R[D_{KL}[P(Z|R)||Q(Z)]]$$

$$\mathcal{L} = \mathcal{L}_{CE} + \beta \mathcal{L}_I$$

Per Sample Bottle neck

Readout bottle neck

Experiments

Let's look at the paper!

Conclusion

- This paper presents a good approach to understand what the model is not focusing on (also focusing on) during taking decisions.
- There is a strong theoretical background for this approach which can be utilized in future works and its highly flexible.
- You get a score (in bits), which makes it comparable with other models.

THANK YOU