1

GATE: CH - 34.2022

EE23BTECH11010 - Venkatesh D Bandawar *

Question: A process described by the transfer function

$$G_p(s) = \frac{(10s+1)}{(5s+1)}$$

is forced by a unit step input at time t = 0. The output value immediately after the unit step input (at $t = 0^+$) is ? (Gate 2022 CH 34)

Solution:

Parameters	Description
X(s)	Laplace transform of $x(t)$
Y(s)	Laplace transform of $y(t)$
$G_p(s) = \frac{Y(s)}{X(s)}$	Transfer function
x(t) = u(t)	unit step function

TABLE I: Given parameters

$$G_p(s) = \frac{Y(s)}{X(s)} = \frac{(10s+1)}{(5s+1)} \tag{1}$$

$$u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s} \tag{2}$$

From equation (2):

$$Y(s) = \frac{(10s+1)}{s(5s+1)} \tag{3}$$

$$= \frac{1}{s} + \frac{5}{5s+1} \tag{4}$$

Taking inverse laplace transformation,

$$\frac{1}{s} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} u(t) \tag{5}$$

$$\frac{1}{s-c} \stackrel{\mathcal{L}^{-1}}{\longleftrightarrow} e^{ct} u(t) \tag{6}$$

$$y(t) = \left(1 + e^{\frac{-t}{5}}\right)u(t) \tag{7}$$

$$y(0^+) = 2 (8)$$

Fig. 1: Graph of y(t)