FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen

Präsenzlösung 9: P/T-Netze: Überdeckungsgraph, S-Invarianten, Fairness

Präsenzteil am 09./10.12. – Abgabe am 16./17.12.2013

Präsenzaufgabe 9.1: Konstruieren Sie für das folgende Netz $N_{9.1}$ den Überdeckungsgraphen nach Algorithmus 7.4. (Seite 131). Bestimmen Sie die Menge der unbeschränkten Plätze.

Lösung:

$$(0,0,1)$$

$$c \swarrow \qquad \downarrow d$$

$$(1,0,0) \qquad (\omega,0,1) \supset d$$

$$a \downarrow \qquad \downarrow a \qquad \searrow c$$

$$(0,1,0) \qquad (\omega,\omega,1) \supset a,d \quad (\omega,0,0)$$

$$\downarrow b,c \qquad \swarrow a$$

$$(\omega,\omega,0) \supset a$$

Mit Hilfe des Überdeckungsgraphen können wir die Menge der unbeschränkten Plätze bestimmen: $\{p_1,p_2\}$

Präsenzaufgabe 9.2: Gegeben sei das folgende P/T Netz $N_{9.2}$:

1. Falls **i** eine S-Invariante eines Netzes ist: Gilt dann für alle erreichbaren Markierungen **m** die folgende, von **i** abgeleitete Invariantengleichung? Gilt diese Gleichung für das Netz $N_{9.2}$?

$$\mathbf{i}(p_1) \cdot \mathbf{m}(p_1) + \mathbf{i}(p_2) \cdot \mathbf{m}(p_2) = const.$$

Lösung: Ja, dies ist der Satz von Lautenbach. Für $N_{9.2}$ gilt dies nicht, siehe Skript (23.11.12) Seite 146ff.

2. Aus der Anfangsmarkierung $\mathbf{m}_0 = (1,0)$ heraus gilt für alle erreichbaren Markierungen die folgende Invariantengleichung:

$$1 \cdot \mathbf{m}(p_1) + 1 \cdot \mathbf{m}(p_2) = 1 \cdot \mathbf{m}_0(p_1) + 1 \cdot \mathbf{m}_0(p_2) = 1$$

Da nur t_1 bzw. t_2 schalten können, wechselt die Marke immer zwischen p_1 und p_2 , es existiert also zu jedem Zeitpunkt genau eine Marke im System.

Zeigen Sie, dass der zur Gleichung zugehörige Vektor $\mathbf{i} = (1,1)^{tr}$ jedoch kein Invariantenvektor ist. Erläutern Sie die Ursachen!

Lösung: Mit $\Delta = \begin{pmatrix} -1 & 1 & -2 \\ 1 & -1 & 3 \end{pmatrix}$ folgt $\Delta^{tr}\mathbf{i} = (0,0,1)^{tr} \neq \mathbf{0}$. Man beachte, dass für dieses Beispiel die Anfangsmarkierung gerade so gewählt ist, dass in keiner erreichbaren Markierung t_3 aktiviert ist. Für eine andere Anfangsmarkierung, z.B. $\mathbf{m} = (2,0)^{tr}$ ist t_3 aktiviert, und die Invariantengleichung ist ungültig.

3. Verhält sich $N_{9.2}$ unter der gegebenen Anfangsmarkierung fair?

Lösung: Nein, t_3 kommt in der einzigen unendlichen Schaltfolge $w_1 = (t_1 t_2)^{\omega}$ nicht vor.

4. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}_0' = (2,0)^{tr}$ fair?

Lösung: Nein, t_3 kann nun zwar unendlich oft schalten, z.B. in der Schaltfolge $w_2 = (t_1 t_3 t_2)^{\omega}$. Es tritt aber in der weiterhin möglichen unendlichen Schaltfolge w_1 nicht auf.

5. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}_0' = (2,0)^{tr}$ fair unter der verschleppungsfreien Schaltregel?

Lösung: Nein, die unendlichen Schaltfolge w_1 wird durch die verschleppungsfreie Schaltregel nicht ausgeschlossen, da t_3 nicht permanent aktiviert ist.

6. Verhält sich $N_{9.2}$ mit der Anfangsmarkierung $\mathbf{m}'_0 = (2,0)^{tr}$ fair unter der fairen Schaltregel?

Lösung: Zwar wird die unendliche Schaltfolge w_1 durch die faire Schaltregel ausgeschlossen, da t_3 unendlich oft aktiviert ist. Aber man kann nun $w_2 = t_1 t_1 t_2 w_1$ schalten. Nach dem Präfix $= t_1 t_1 t_2$ ist t_3 nie mehr aktiviert, muss also auch unter der fairen Schaltregel nicht schalten. Also verhält sich $N_{9.2}$ auch unter der fairen Schaltregel nicht fair.

Übungsaufgabe 9.3: Folgende zwei Netze unterscheiden sich nur durch die Inhibitorkante zwischen Transition d und Platz p_2 :

von 4

 $N_{9.3a}$

 $N_{9.3b}$

- 1. Konstruieren Sie für die beiden Netze jeweils den Überdeckungsgraphen nach Algorithmus 7.4.
- 2. Bestimmen Sie jeweils die Menge der unbeschränkten Plätze, die sich nach den Überdeckungsgraphen ergeben.
- 3. Konstruieren Sie den Erreichbarkeitsgraphen zu $N_{9.3b}$.
- 4. Diskutieren Sie die Aussagekräftigkeit des Übderdeckungsgraphen für Inhibitornetze.

Übungsaufgabe 9.4: Eine große Firma möchte ihre Produktion und die Interaktion mit dem Verbraucher analysieren. Hierfür modelliert ein Informatiker für die Firma ein Petrinetz:

von 8

Netz $N_{9.4a}$:

Hierbei soll der linke Teil des Netzes einen Fertigungsprozess in einer Firma simulieren, der rechte Teil den Konsum des gefertigten Produktes und der Platz p_3 das Lager der Firma.

- 1. Geben Sie die Wirkungsmatrix $\Delta_{N_{9.4a}}$ an.
- 2. Bestimmen Sie die Menge aller S-Invariantenvektoren von $N_{9.4a}$.
- 3. Überprüfen Sie nach Theorem 7.35 (Seite 149), ob $N_{9.4a}$ strukturell beschränkt ist.
- 4. Während der Analyse beschließt der Informatiker einen neuen Platz p_6 einzufügen. Zusätzlich fügt er zwei neue Kanten (c, p_6) & (p_6, b) ein. Für das entstandene Netz $N_{9.4b}$
 - geben Sie die Wirkungsmatrix $\Delta_{N_{9,4b}}$ an,
 - bestimmen die Menge aller S-Invarianten
 - und überprüfen mit Theorem 7.35, ob $N_{9.4b}$ strukturell beschränkt ist.

Netz $N_{9.4a}$:

5. Was fällt beim Vergleich der beiden Netze auf. Diskutieren Sie, warum der Informatiker die Änderung am Ursprungsnetz $(N_{9.4a})$ vorgenommen hat. Beachten Sie, dass das Netz, welches der Informatiker entworfen hatte, reale Bedingungen einer Firma simulieren sollte.

6. Einer der Invariantenvektoren zu $N_{9.4b}$ lautet $\mathbf{i}_1 = (2, 2, 5, 1, 1, 5)^{tr}$. Geben Sie die zugehörige Invariantengleichung gemäß Satz von Lautenbach an. Die Anfangsmarkierung sei $\mathbf{m}_0 = (1, 1, 0, 3, 0, 1)^{tr}$

Bisher erreichbare Punktzahl: 60