Отчёт по лабораторной работе № 1

Королёв Иван

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	19

Список иллюстраций

4.1	Virtual Box	8
4.2	Fedora	9
4.3	sudo -i, update	9
4.4	tmux	10
4.5	Таймер	10
4.6	Таймер	10
4.7	Selinux	11
4.8	Drivers	11
4.9	Drivers	12
4.10	Раскладка клавиатуры	12
4.11	Имя пользователя и название хоста	13
4.12	pandoc	13
4.13	pandoc	14
4.14	TexLive	14
4.15	dmesg less	15
4.16	linux version	15
4.17	mhz processor	16
4.18	cpu	16
4.19	memory	16
		17
		17
		18
		18
4.24	Последовательности монтирования	18

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- Лабораторная работа подразумевает установку на виртуальную машину VirtualBox (https://www.virtualbox.org/) операционной системы Linux (дистрибутив Fedora).
- Выполнение работы возможно как в дисплейном классе факультета физикоматематических и естественных наук РУДН, так и дома. Описание выполнения работы приведено для дисплейного класса со следующими характеристиками техники:
- intelre i3-550 3.2 GHz, 4 GB оперативной памяти, 80 GB свободного места на жёстком диске;
- OC Linux Gentoo (http://www.gentoo.ru/);
- VirtualBox версии 7.0 или новее.
- Для установки в виртуальную машину используется дистрибутив Linux Fedora (https://getfedora.org), вариант с менеджером окон i3 (https://spins.fedoraproject.org/i3/).
- При выполнении лабораторной работы на своей технике вам необходимо скачать необходимый образ операционной системы (https://spins.fedoraproject.org/i3/dow

3 Теоретическое введение

Linux — семейство Unix-подобных операционных систем на базе ядра Linux, включающих тот или иной набор утилит и программ проекта GNU, и, возможно, другие компоненты. Как и ядро Linux, системы на его основе, как правило, создаются и распространяются в соответствии с моделью разработки свободного и открытого программного обеспечения. Linux-системы распространяются в основном бесплатно в виде различных дистрибутивов — в форме, готовой для установки и удобной для сопровождения и обновлений, — и имеющих свой набор системных и прикладных компонентов, как свободных, так и проприетарных.

4 Выполнение лабораторной работы

1. Создание виртуальной машины, установка ос.

Я пропустил эти пункты, т.к. на данный момент у меня уже создана виртуальная машина и установлена Fedora Демонстрирую это на рисунках.[4.1],[4.2]

Рис. 4.1: Virtual Box

Рис. 4.2: Fedora

2. После установки.

Вхожу в ОС используя данные учетной записи. Открываю терминал, перехожу в режим супер-пользователя(sudo -i). Обновляю все пакеты (dnf -y update)[4.3]

Рис. 4.3: sudo -i, update

Скачиваю программу для удобства работы в консоли(tmux)[4.4]

```
[root@fedora ~]# dnf install tmux mc
Последняя проверка окончания срока де
, Вс 12 фев 2023 20:47:37.
Пакет tmux-3.3a-1.fc36.x86_64 уже уста
Пакет mc-1:4.8.28-2.fc36.x86_64 уже уа
Зависимости разрешены.
Отсутствуют действия для выполнения.
Выполнено!
```

Рис. 4.4: tmux

Автоматическое обновление. Установка программного обеспечения. Задаю необходимую конфигурацию в файле /etc/dnf/automatic.conf. Запускаю таймер[4.5],[4.6]

```
[root@fedora ~]# dnf install dnf-automatic
Последняя проверка окончания срока действия
, Вс 12 фев 2023 20:47:37.
Зависимости разрешены.
========
======
Пакет Архитектура Версия
Размер
```

Рис. 4.5: Таймер

```
dnf-automatic-4.14.0-1.fc36.noarch
Выполнено!
[root@fedora ~]# systemctl enable --now dnf-automatic.timer
Created symlink /etc/systemd/system/timers.target.wants/dnf-automatic
.timer → /usr/lib/systemd/system/dnf-automatic.timer.
[root@fedora ~]#
```

Рис. 4.6: Таймер

Отключение SELinux. В файле /etc/selinux/config заменяю значение.[4.7]

Рис. 4.7: Selinux

3. Установка драйверов для VirtualBox.

Запускаю мультиплексор. Переключаюсь на роль супер-пользователя. Устанавливаю DKMS. Подключаю образ дополнений гостевой ОС. Подмонтирую диск. Устанавливаю драйвера. Перезагружаю систему. [4.8],[4.9]

Рис. 4.8: Drivers

```
irtualBox Guest Additions: Starting.
VirtualBox Guest Additions: Setting up modules
VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel
modules. This may take a while.
VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>
VirtualBox Guest Additions: or
VirtualBox Guest Additions:
                             /sbin/rcvboxadd quicksetup all
VirtualBox Guest Additions: Building the modules for kernel
6.1.10-100.fc36.x86_64.
VirtualBox Guest Additions: Look at /var/log/vboxadd-setup.log to find out what
ValueError: File context for /opt/VBoxGuestAdditions-7.0.0/other/mount.vboxsf alre
ady defined
VirtualBox Guest Additions: Running kernel modules will not be replaced until
the system is restarted
[root@fedora ~]#
```

Рис. 4.9: Drivers

4. Настройка раскладки клавиатуры.

Запускаю мультиплексор. Переключаюсь на роль супер-пользователя. Отредактирую конфигурационный файл. Перезагрузка. [4.10]

Рис. 4.10: Раскладка клавиатуры

5. Установка имени пользователя и названия хоста.

Имя пользователя и название хоста. [4.11]

```
sudi [iakorolyov@fedora ~]$ sudo -i
[sudo] пароль для iakorolyov:
[root@fedora ~]# adduser -G wheel iakorolyov
dduser: пользователь «iakorolyov» уже существует
[root@fedora ~]# hostnamectl set-hostname iakorolyov
root@fedora ~]# hostnamectl
Static hostname: iakorolyov
      Icon name: computer-vm
       Chassis: vm ⊨
     Machine ID: 96015d926981488daf327beb06cac770
       Boot ID: a530cfb2cfea4ab2b3334318c3ff64d2
 Virtualization: oracle
Operating System: Fedora Linux 36 (Workstation Edition)
    CPE OS Name: cpe:/o:fedoraproject:fedora:36
         Kernel: Linux 6.1.10-100.fc36.x86_64
   Architecture: x86-64
Hardware Vendor: innotek GmbH
 Hardware Model:_VirtualBox
root@fedora ~]#
```

Рис. 4.11: Имя пользователя и название хоста

6. Установка программного обеспечения для создания документации.

Установка pandoc и необходимые расширения для создания файлов.[4.12],[4.13]

```
[root@fedora xorg.conf.d]# dnf -y install pandoc
Последняя проверка окончания срока действия метаданных: 1:27:20 назад, Пн 13 фев
2023 00:28:44.
Зависимости разрешены.
Пакет Архитектура Версия Репозиторий Размер
                                               Репозиторий Размер
Установка:
               x86_64 2.14.0.3-16.fc36
гей:
noarch 2.14.0.3-16.fc36
                                               fedora
                                                           21 M
pandoc
Установка зависимостей:
                                               fedora
                                                           435 k
Результат транзакции
Установка 2 Пакета
Объем загрузки: 21 М
Объем изменений: 158 М
Загрузка пакетов:
^[[B^[[B^[[B(1-2/2): pandoc-comm 0% [
_^[[A^[[A^[[A^[[A^[[A^[[A(1-2/2): pandoc-2.14 0% [
                                            ] 14 kB/s | 85 kB
] 15 kB/s
                                    ] 37 kB/s | 232 kB 09:48 ETA
(1-2/2): pandoc-comm 1% [
```

Рис. 4.12: pandoc

```
iakorolyov@iakorolyov report]$ cd ~\
bash: cd: ~f: Нет такого файла или каталога
[iakorolyov@iakorolyov report]$ cd
iakorolyov@iakorolyov ~]$ pip install pandoc-fignos pandoc-eqnos pandoc-tableno
equirement already satisfied: pandoc-fignos in ./.local/lib/python3.10/site-pac
kages (2.4.0)
Requirement already satisfied: pandoc-eqnos in ./.local/lib/python3.10/site-pack
ages (2.5.0)
Requirement already satisfied: pandoc-tablenos in ./.local/lib/python3.10/site-p
ackages (2.3.0)
Requirement already satisfied: pandoc-secnos in ./.local/lib/python3.10/site-pac
kages (2.2.2)
Requirement already satisfied: pandoc-xnos<3.0,>=2.5.0 in ./.local/lib/python3.1
0/site-packages (from pandoc-fignos) (2.5.0)
Requirement already satisfied: psutil<6,>=4.1.0 in ./.local/lib/python3.10/site-
packages (from pandoc-xnos<3.0,>=2.5.0->pandoc-fignos) (5.9.4)
Requirement already satisfied: pandocfilters<2,>=1.4.2 in ./.local/lib/python3.1
)/site-packages (from pandoc-xnos<3.0,>=2.5.0->pandoc-fignos) (1.5.0)
[iakorolyov@iakorolyov ~]$
```

Рис. 4.13: pandoc

Установка TexLive.[4.14]

Рис. 4.14: TexLive

7. Домашнее задание.

Дождитесь загрузки графического окружения и откройте терминал. В окне терминала проанализируйте последовательность загрузки системы, выполнив

команду dmesg. Вывод команды.[4.15]

```
0.000000] Linux version 6.1.10-100.fc36.x86_64 (mockbuild@bkernel01.iad2.fe
doraproject.org) (gcc (GCC) 12.2.1 20221121 (Red Hat 12.2.1-4), GNU ld version 2 .37-37.fc36) #1 SMP PREEMPT_DYNAMIC Mon Feb 6 19:58:39 UTC 2023
    0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-6.1.10-100.fc36.x86
_64 root=UUID=3569d79f-c95c-4483-9cf0-0bb02116423c ro rootflags=subvol=root rhgb
quiet
    0.000000] x86/fpu: x87 FPU will use FXSAVE
    0.000000] signal: max sigframe size: 1440
    0.000000] BIOS-provided physical RAM map:
    0.000000] BIOS-e820: [mem 0x00000000009fc00-0x00000000009ffff] reserved
    0.000000] BIOS-e820: [mem 0x00000000000f0000-0x000000000ffffff] reserved
    0.000000] BIOS-e820: [mem 0x00000000971f0000-0x00000000971ffffff] ACPI data
    0.000000] BIOS-e820: [mem 0x00000000fec00000-0x00000000fec00fff] reserved
    0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
     \hbox{\tt 0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x000000000ffffffff] reserved } \\
    0.000000] NX (Execute Disable) protection: active
    0.000000] SMBIOS 2.5 present.
    0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/20
    0.000000] Hypervisor detected: KVM
    0.000000] kvm-clock: Using msrs 4b564d01 and 4b564d00
```

Рис. 4.15: dmesg less

Можно использовать поиск с помощью grep. Найти следующее:

• Версия ядра Linux (Linux version).[4.16]

```
[iakorolyov@fedora ~]$ dmesg | grep -i "Linux version"
[ 0.000000] Linux version 6.1.10-100.fc36.x86_64 (mockbuild@bkernel01.iad2.fe
doraproject.org) (gcc (GCC) 12.2.1 20221121 (Red Hat 12.2.1-4), GNU ld version 2
.37-37.fc36) #1 SMP PREEMPT_DYNAMIC Mon Feb 6 19:58:39 UTC 2023
[iakorolyov@fedora ~]$
```

Рис. 4.16: linux version

• Частота процессора (Detected Mhz processor).[4.17]

```
[iakorolyov@fedora ~]$ dmesg | grep -i "processor"
[ 0.000131] tsc: Detected 2166.636 MHz processor
[ 0.471543] smpboot: Total of 1 processors activated (4333.27 BogoMIPS)
[ 0.591812] ACPI: Added _OSI(Processor Device)
[ 0.591816] ACPI: Added _OSI(Processor Aggregator Device)
```

Рис. 4.17: mhz processor

• Модель процессора (СРИО).[4.18]

```
[iakorolyov@fedora ~]$ dmesg | grep -i "CPU0"
[ 0.467587] smpboot: CPU0: Intel(R) Celeron(R) CPU N2840 @ 2.16GHz (family:
0x6, model: 0x37, stepping: 0x8)
[iakorolyov@fedora ~]$
```

Рис. 4.18: сри

• Объём доступной оперативной памяти (Memory available). (CPU0).[4.19]

```
iakorolyov@fedora:~ — tmux  

iakorolyov@fedora:~  

iakorolyov@fedo
```

Рис. 4.19: memory

• Тип обнаруженного гипервизора (Hypervisor detected).[4.20]

```
[iakorolyov@fedora ~]$ dmesg | grep -i "Hypervisor detected"

[ 0.000000] Hypervisor detected: KVM

[iakorolyov@fedora ~]$
```

Рис. 4.20: hypervisor

• Тип файловой системы корневого раздела.[4.21],[4.22],[4.23]

Рис. 4.21: Тип файловой системы

```
[iakorolyov@fedora ~]$ dmesg | grep -i "Ext4"

[ 38.808820] EXT4-fs (sda1): mounted filesystem with ordered data mode. Quota

[mode: none.

[iakorolyov@fedora ~]$
```

Рис. 4.22: Тип файловой системы

```
[iakorolyov@fedora ~]$ dmesg | grep -i "btrfs"

[ 2.490087] Btrfs loaded, crc32c=crc32c-generic, zoned=yes, fsverity=yes

[ 9.594860] BTRFS: device label fedora_localhost-live devid 1 transid 5758 /d
ev/sda2 scanned by systemd-udevd (305)

[ 13.934729] BTRFS info (device sda2): using crc32c (crc32c-intel) checksum al
gorithm

[ 13.934759] BTRFS info (device sda2): using free space tree

[ 26.137713] BTRFS info (device sda2: state M): use zstd compression, level 1
```

Рис. 4.23: Тип файловой системы

• Последовательность монтирования файловых систем.[4.24]

```
[iakorolyov@iakorolyov ~]$ dmesg | grep -i "Mounted"
[ 17.733430] systemd[1]: Mounted dev-hugepages.mount - Huge Pages File System.
[ 17.737650] systemd[1]: Mounted dev-mqueue.mount - POSIX Message Queue File System.
[ 17.745108] systemd[1]: Mounted sys-kernel-debug.mount - Kernel Debug File System.
[ 17.753720] systemd[1]: Mounted sys-kernel-tracing.mount - Kernel Trace File System.
[ 26.269660] EXT4-fs (sda1): mounted filesystem with ordered data mode. Quota mode: none.
[ 34.217967] 22:46:00.700784 automount vbsvcAutomounterMountIt: Successfully mounted 'doc' on '/media/sf_doc'
```

Рис. 4.24: Последовательности монтирования

5 Выводы

Я приобрёл практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.