# COL351: Analysis and Design of Algorithms

### Tutorial Sheet - 6

### September 19, 2022

## **Hashing**

**Question 1** Let U = [1, M] be a universe, and  $S \subseteq U$  be a fixed set of size n. Present a construction of a random hash function  $H: U \to [0, n-1]$  such that

- (i) For each  $i \in [0, n-1]$ , the expected size of T[i] is O(1).
- (ii) For each  $x \in U$ , the time to check membership of x in S is  $\Omega(n)$ .

**Solution:** The construction is as follows: (i) Let z be a random number in the range [0, n-1]; (ii) Define H(u) = z, for each  $u \in U$  in the universe.

The expected size of T[i] is  $\sum_{s \in S} Prob(H(s) = i) = \sum_{s \in S} \frac{1}{n} = O(1)$ . Further, for any two elements  $x, y \in U$ , we have H(x) = H(y). This shows that the time to check membership in S is  $\Omega(n)$ .

**Question 2** Let U = [1, M] be a universe, and let  $S = \{s_1, \ldots, s_n\}$  be a subset of U of size nsuch that each  $s_i$  is a uniformly random element of U independent of other  $s_j$ 's. Let H be a hash function such that  $H(x) = x \mod n$ .

- (i) Show that the expected size of  $(\max_{i=0}^{n-1} T[i])$  is  $O(\log n)$ .
- (ii) Argue that the expected value of maximum time taken to verify the membership of elements of U in S is  $O(\log n)$ .
- (iii) If we redefine H(x) as  $x \pmod{n^2}$ , then prove that with probability at least 1/2, there will be no collisions under H.

Hint: Use Markov's inequality.

#### **Solution:**

(i) Let  $k = 2\log(n)$ . We will show that with a very high probability the size of each T[i] will be at most k. For  $i \in [0, n-1]$ , let  $E_i$  be the event that the size of T[i] is at least k.

Note that event  $E_i$  occurs if there is a subset of S of size k that is mapped to i. Thus,

$$Prob(E_i) \leqslant {}^{n}C_k \left(\frac{1}{n}\right)^k \leqslant \frac{1}{k!} \leqslant \frac{1}{(k/2)^{(k/2)}}$$

Now, let  $E = \bigcup_{i=0}^{n-1} E_i$  be the event that for at least one i, size of T[i] is at least k.

By union bound,

$$Prob(E) \leqslant \sum_{i=0}^{n-1} Prob(E_i) \leqslant n \cdot \frac{1}{(k/2)^{(k/2)}} \leqslant \frac{1}{n^5}.$$

Now let  $X = (\max_{i=0}^{n-1} T[i])$ . Note that the maximum value of X is n. The expected size of X can be calculated as follows:

$$Exp(X) \leqslant n \cdot Prob(E) + 2\log n \cdot Prob(E^c) \leqslant n \cdot \frac{1}{n^5} + 2\log n = O(\log n)$$
.

- (ii) The expected value of maximum time taken to verify the membership of elements of U in S  $Exp\big(\max_{i=0}^{n-1} T[i]\big)$  which by part (i) is  $O(\log n)$ .
- (iii) We have H(x) as  $x \pmod{n^2}$ , for  $x \in U$ . For any  $i, j \in S$ , define a random variable  $Y_{ij}$  as follows.

$$Y_{ij} = \begin{cases} 1 & \text{if } H(i) = H(j); \\ 0 & \text{otherwise.} \end{cases}$$

Further, let  $Y = \sum_{\substack{i,j \in S \\ i \neq j}} Y_{ij}$ . Then Y denotes the number of collisions. Now,

$$Exp(Y) = \sum_{\substack{i,j \in S \\ i \neq j}} Exp(Y_{ij}) = \sum_{\substack{i,j \in S \\ i \neq j}} Prob(Y_{ij} = 1) = \sum_{\substack{i,j \in S \\ i \neq j}} \frac{1}{n^2} \leqslant \frac{1}{2}.$$

Observe that Y is a non-negative random variable. So by Markov's inequality  $Prob(Y \ge 1)$  is bounded by Exp(Y) which in turn is bounded above by 1/2.

This proves that with probability at least half Y is 0 (that is, there are no collisions).

# Quiz 2

**Question 1** Let  $X, Y, Z \in \{0, 1\}^n$  be three *n*-length strings. Describe an  $O(n^2)$  time algorithm to compute largest k such that there exists a k-length string that is substring of X, Y, and Z.

**Solution:** For i = 1 to n perform the following two steps.

- 1. Set pattern P = X[i, n].
  - Compute a table A of size n such that A[j] stores the length of largest suffix of Y[1, j] that is prefix of P.
  - Compute a table B of size n such that B[j] stores the length of largest suffix of Z[1,j] that is prefix of P.

(It was proved in Lecture 14 that tables A, B are computable in linear time.)

2. Sort the elements of A, B in linear time (using bucket sort), and find the maximal common entry (say  $m_i$ ).

**Claim:** The length of largest prefix of P that lies in both Y, Z is  $m_i$ .

**Proof:** See Lecture 14.

After performing n iterations, we return the answer as  $\max_{i=1}^{n} (m_i)$ .

**Question 2** Let G = (V, E) be a weighted digraph with no cycle of negative weight, and let  $S \subseteq V$  be a set of size k. A path P is said to be an S-path if the internal vertices of P lie in S.

Describe an  $O(kn^2)$  time algorithm to compute a binary matrix B such that B[i,j]=1 if and only if there exists an S-path of negative weight from vertex i to vertex j in G.

### **Solution:**

- 1. Without loss of generality assume  $1, \ldots, k$  are elements of S (if not, rearrange vertices in V).
- 2. Create matrix D of size  $n \times n$  as follows:

$$D[i,j] = \begin{cases} 0 & \text{if } i = j; \\ wt(i,j) & \text{if } (i,j) \in E; \\ \infty & \text{otherwise.} \end{cases}$$

3. For k = 1 to n:

For 
$$i, j = 1$$
 to  $n$ :  
 $D[i, j] = \min\{D[i, j], D[i, k] + D[k, j]\}$ 

- 4. Compute another matrix B such that B[i, j] = 1 iff D[i, j] < 0.
- 5. Return B.

# Quiz 1

**Question 1** Compute the optimal prefix free encoding for a character set consisting of 5 letters  $\{a, b, c, d, e\}$  with frequencies as: a: 1, b: 1, c: 2, d: 3, e: 5.

**Solution:** The tree corresponding to prefix free encoding will be:



**Question 2** Prove or disprove the following statement: "Any n vertex graph G with n-1 bridges has a unique MST".

**Solution:** Consider any MST T of G. Note that none of the edges outside T can be a bridge edge. As there are n-1 bridges, each edge of T must be a bridge, which in turn proves that T=G. Thus, the MST must be unique.

**Question 3** Let G = (V, E) be a DAG and let  $s \in V$  be a vertex in G. Design an optimal algorithm to verify that there is a unique path (at most one path) between all pairs in  $\{s\} \times V$ , and analyse its time complexity.

**Solution:** Compute a DFS tree T of G with respect to node s, and in the process if encountered with a forward/cross edge then return "Not a unique path".

The time complexity is O(n) since we scan at most n edges.

The correctness follows from the fact that a forward/cross edge (say (a, b)) results in two distinct s to b paths in G.