MAT-041: Probabilidad y Estadística

Certamen 2. Noviembre 29, 2023

Tiempo: 70 minutos

Nombre:

Profesor: Felipe Osorio

1. Suponga que $X \sim \mathsf{Exp}(1)$. Es decir, $f_X(x) = e^{-x}$, para $x \in (0, +\infty)$. Determine la función de densidad de las siguientes variables aleatorias:

a. (15 pts)
$$Y = 1/X$$
.

b. (15 pts)
$$Z = X/(1+X)$$
.

2. (35 pts) Sea X_1, \ldots, X_n una muestra aleatoria de tamaño n desde la variable aleatoria X con función de densidad

$$f(x;\theta) = \frac{(x+1)}{\theta(\theta+1)} \exp(-x/\theta), \qquad x > 0, \ \theta > 0.$$

Encuentre el estimador de momentos para θ .

Puede ser útil: Recuerde que

$$\int_0^\infty x^{a-1} e^{-x/s} \, \mathrm{d}x = s^a \, \Gamma(a).$$

3. (35 pts) Considere variables aleatorias independientes X_1, \ldots, X_n y Y_1, \ldots, Y_n desde una distribución $\mathsf{N}(\mu, \sigma^2)$ y $\mathsf{N}(\mu, \lambda \sigma^2)$, respectivamente, donde μ es conocido. Obtenga el MLE de $\boldsymbol{\theta} = (\sigma^2, \lambda)^\top$.