

12.24196

Introduction to Embedded Systems

Prof. Dr.-Ing. Stefan Kowalewski | Julius Kahle, M. Sc. Summer Semester 2025

Part 2

Data Buses

Introduction

- Most embedded systems are interconnected
 - Microcontroller and external devices (board)
 - Engine control unit and tachometer (car)
 - Process control center and magnetic valve (plant)
- All communication share common principles
- Implementations vary in
 - Costs
 - Safety and reliability
 - Real-time capability
 - Data rate
 - Flexibility

Part A

Data Communication Basics

- Fourier analysis and sampling theorem
 - Topology
 - ► ISO/OSI
 - Mechanical and electrical properties
 - Bit encoding
 - Frames
 - Error detection and correction
 - Medium access

Layer 1

Layer 2

Bus Topology

- Linear line (with terminators)
- Passive connection (no repeating)
- Only one partner can send at a time
- All partners can listen to all communication
- Advantages
 - Cheap
 - Simple
- Disadvantages
 - Multiple access (Babbling idiot, security)
 - Single point of failure

Bus Topology

Bus Topology

- Dedicated connection to central station
- Buffering and repeating
- Multiple partners can send at the same time
- Only sender and receiver can listen to communication
- Advantages
 - Multiple access, no collisions
 - Only central station is single point of failure
- Disadvantages
 - Expensive central station
 - More wiring

Ring Topology

- Circular line (unidirectional)
- Active connection (repeating / changing)
- Multiple partners can send at the same time
- Some partners can listen to communication
- Advantages
 - High quality of service
 - Multiple access (to some extend)
- Disadvantages
 - Complex (expensive)
 - Single point of failure

Ring Topology

Ring Topology

IEEE -> Elektrose huiz, Repel-(M. IEC -> hadretieanton.

- International Organization for Standardization
- Open Systems Interconnection
- 7 Layer architecture
- One task per layer
- Very complex
- Reference model
- Here: layers 1 & 2

1	Layer 7: Application Layer
	Layer 6: Presentation Layer
	Layer 5: Session Layer
(Layer 4: Transport Layer
	Layer 3: Network Layer
	Layer 2: Data Link Layer
	Layer 1: Physical Layer

Physical Layer

- Defines mechanical properties
 - Medium: copper, optical fiber, air, EM waves
 - Connectors: form and pin assignment
- Defines electrical / optical properties
- **→** Voltage
 - Frequencies
 - Baud rate
 - Bit encoding
- Hardware
 - Cable, connector, terminator, antenna, amplifier
 - Transceiver, repeater, hub

Bit Encoding

- Return to Zero (RZ)
- Non Return to Zero (NRZ)
 - Differential NRZ
 - Bit stuffing
 - Manchester Code
 - ► 4B/5B Code

Return to Zero

- Return to neutral state between all pulses
- Needs three states
- Self-synchronizing
- ► Half data rate

Non Return to Zero

- No neutral state
- Needs synchronization
- Capacitive problems
- ► Full data rate

Synchronization

- Clocks are never perfectly synchronous
- Clock A ticks every 100μs
- Clock B ticks every 90μs
- Clock A sends nine ones → high level for 900μs
- Clock B interprets this as ten ones

Differential NRZ

- O is represented by level change
- 1 is represented by no level change
- No problems for long sequences of 0s

DNR21 hvered

Bit Stuffing

- Prevents long sequences of 1s
- Sender inserts a 0 after a sequence of n 1s (n = 6 for USB)
- Receiver (checks and) removes inserted 0s
- Code violations (frame delimiters)

Manchester Code (IEEE 802.3)

- No neutral state
- Self-synchronizing
- No capacitive problems
- Half data rate

Rising Edge = 1

Falling Edge = 0

1343

(inverted in G.E. Thomas version)

- Uses some form of NRZ
- 80% data rate

Encoding table prevents long sequences (FDDI with NRZI)

Name	<u>4B</u>	<u>5B</u>	Name	4B	5B	Name	5B	Desc
0	0000	11110	8	1000	10010	Q	00000	Quiet
1	0001	01001	9	1001	10011	I	11111	Idle
2	0010	10100	А	1010	10110	J	11000	Start #1
3	0011	10101	В	1011	10111	K	10001	Start #2
4	0100	01010	С	1100	11010	Т	01101	End
5	0101	01011	D	1101	11011	R	00111	Reset
6	0110	01110	E	1110	11100	S	11001	Set
7	0111	01111	F	1111	11101	Н	00100	Halt

ISO/OSI

Layer 7: Application Layer

Layer 6: Presentation Layer

Layer 5: Session Layer

Layer 4: Transport Layer

Layer 3: Network Layer

Layer 2: Data Link Layer

Layer 1: Physical Layer

Data Link Layer

- Encapsulates data (bits) into frames
- Frame synchronization
- Logical link control
 - Automatic repeat request (ARQ)
 - Forward error correction (FEC)
 - Flow control
- Media access control
- Hardware: Switch, Bridge
- Two sublayers
 - Logical Link Control (LLC)
 - Media Access Control (MAC)

Frames

- On layer 2 data is transferred in frames
- Typical parts of a frame
 - Start delimiter
 - Sender address
 - Receiver address
 - Identifier
 - Acknowledgement

- Length of frame / data
- User data
- Checksum
- End delimiter

Error Detection

- Parity bit
 - Append parity bit such that the sum off all bits is even / odd
 - One bit error detection
- Cyclic Redundancy Check (CRC)
 - Hash function based on polynomial division
 - Detection of burst errors
- Hamming Code
 - Set of parity bits
 - Single error correction
 - (Double error detection)

Hamming Code

Published by Richard Hamming in 1950

- For (up to) 2ⁿ-1 Bits in a hamming encoded message:
 - Positions that are powers of 2 are Parity Bits (n Parity Bits)
 - Remaining Bits are the data Bits (2ⁿ-n-1 Data Bits)
 - A Data Bit at position x is protected by the Parity Bits that comprise x
- Example: 14 Bits in the encoded message
 - Positions 1, 2, 4 and 8 are Parity Bits
 - Positions 3, 5-7, 9-14 are Data Bits
 - Data Bit 11 is protected by the Parity Bits 1, 2 and 8 (1 + 2 + 8 = 11)

Hamming Code – Example (Encoding)

- Encode the 8 Bit message (01010010)₂ with even parity:
- Use 4 Parity Bits: $(2^3 3 1 < 8 <= 2^4 4 1)$
- Structure of encoded message:
- Fill in the message:
 - $p_1 p_2 0 p_4 101 p_8 0010$
- Calculate Parity Bits:
 - $p_1 + d_3 + d_5 + d_7 + d_9 + d_{11}$ has to be <u>even</u> -> $p_1 = 1$
 - $p_2 + d_3 + d_6 + d_7 + d_{10} + d_{11}$ has to be <u>even</u> -> $p_2 = 0$
 - $p_4^2 + d_5 + d_6 + d_7 + d_{12}$ has to be <u>even</u> -> $p_4 = 0$
 - $p_8 + d_9 + d_{10} + d_{11} + d_{12}$ has to be <u>even</u> $> p_8 = 1$
- Encoded message is: (100010110010)₂

Automatic Repeat Request

- Successful transmission
 - A sends frame to B
 - B acknowledges frame
- Unsuccessful transmission (transmission error)
 - A send frame to B
 - B detects error
 - B sends negative acknowledgement ("NACK")
 - A resends frame to B
- Unsuccessful transmission (transmission lost)
 - A sends frame to B
 - Timeout occurs
 - A resends frame to B

Media Access Control

Regulates access to a shared medium

Hybrid

- Frequency (FDMA)
- Time (TDMA)
- Code (CDMA)
- Hybrid

^	A											
$f\left[ight]$	A1	A2	A3	A1	A2	A3						
	B1	B2	В3	B1	B2	B3						
	C1	C2	C3	C1	C2	C3						
		(_							

کس Dynamic MAC

- With collisions: CSMA/CD Collision Delection
 Without collisions: CSMA/CR Collision Resolu

CSMA/CD

- Carrier sense multiple access / collision detection
- Wait until medium is free
- Start sending
- If collision is detected
 - Scramble
 - Back off
- High data rate / long range

CSMA/CR

- Carrier sense multiple access / collision resolution
- Wait until medium is free
- Start sending
- If collision is dominated
 - Stop sending
 - Start receiving
- No Collisions
- Either dominant
 - 1 ("wired or") or
 - 0 ("wired and")

Part B

Data Bus Standards

- ► I²C bus
- CAN bus
- FlexRay
- PROFIBUS

Inter-Integrated Circuit (I²C) Bus

- Connects multiple devices on the same board
- Developed by Philips in 1980s
- Also known as Two Wire Interface (TWI)
- Five modes
 - Standard mode: 100 kbit/s
 - Fast mode: 400 kbit/s
 - Fast mode plus: 1 Mbit/s
 - High speed mode: 3.4 Mbit/s
 - Ultra-high speed mode: 5 Mbit/s
- Noise-prone (used inside shielded casings)
- Simple and cheap
- Very popular

I²C – Exemplary Setup

I²C – Physical Layer

- Two lines connected to pull-up resistors
 - SCL: serial clock line

- SDA: serial data line
- Devices are connected via open connectors
- High level (logical 1): >0.7V (usually 3.3V 5V)
- ▶ Low level (logical 0): -0.5V 0.3V
- Maximum Capacity 400pF (few meters)
- Wired-AND (dominant 0)

S 1. dominates.

A sends 1. B sends 0 and dominates.

I²C – Bit Encoding

I²C – Data Link Layer

- Each device has a unique 7 bit address (priority)
- Frame structure (Simplification*)

- Master-Slave principle
 - Master polls / pushes data
- Multi-master
 - arbitration by CSMA/CR: first 0 wins
- No error detection / correction
- Flow control by
 - Acknowledgement
 - Clock stretching

*I²C additionaly uses register addresses, these are excluded in the lecture

I²C – Example: Simple Write

I²C – Example: Simple Read

- Master doesn't want to receive more bytes
 - → Sends NACK

I²C – Example: Efficient Double Read

- Master doesn't want to receive more bytes
 - → Sends NACK

I²C – Example: Restart

I²C – Example: Master Arbitration

I²C – Example: Clock stretching

Controller Area Network (CAN) Bus

- Connects multiple controller units in harsh environments
 - Up to 5km at 10kbit/s
 - Up to 25m at 1Mbit/s
- Developed by Bosch in 1983
 - Reduce number and length of cables (weight / cost)
 - Reduce number and types of connectors (wiring errors)
- Standardized in ISO 11898
- Main application as automotive bus
- Also used as industrial field bus (CANopen)

CAN – Exemplary Setup

CAN – Physical Layer

- Shielded twisted pair (also: optical fiber)
- Comfort bus (low speed) also possible with single line
- Higher data rates use difference signals
 - Prevents common-mode interference (Gleichtaktstörung)
 - Can use optional <u>third line CAN_GND</u>
- Simple NRZ with bit stuffing after 5 equal bits
- Wired-AND (dominant 0; see I²C)
- Usually up to 32 participants
- ▶ 64, 110, and 128 (with limitations) possible
- More participants with repeaters and bridges
- \triangleright Bus termination with 120 Ω resistor

CAN – Data Link Layer

- Each message type has unique identifier (priority)
- Devices have no address
- 4 frame types
- Arbitration by CSMA/CR: first 0 wins
- CRC (15 bit) error detection

CAN – Object Identifier

- Unique bit mask
 - 11 bits: base frame format (CAN 2.0A)
 - 29 bits: extended frame format (CAN 2.0B)
- Each object ID should only be sent by one device
- Each device can have multiple object IDs
- Object ID is used for arbitration
- Assignment of object IDs is fixed in specification
 - CAN matrix document
 - Reserve object IDs for future extensions

CAN – Matrix

Message: Motor 1

Identifier: 0x0280

► Length: 8 byte

Receiver: all

Data rate: 500kBaud

Periodicity: 10ms

Signal	Byte	Bit	Init	Range	Interpretation
•••					
Pedal check	1	1			pedal ok 1: use default value
Kick-down switch	1	2			0: no kick-down 1: kick-down
•••					

CAN – Frames

Data frame

Remote frame

R Bits = two reserved Bits Error frame

EOF = **End** of **Frame**

SOF= Start of Frame

request

RTR= Remote transmission

DLC = Data Length Control

CRC = Cyclic Redundancy Check

- Overload frame (analog to active error frame)
- Interframe space: three recessive bits (pause)

CANopen

- Application layer protocol
- Based on CAN bus
- Developed ESPRIT project (lead developer: Bosch)
- Since 1995 by CAN in Automation (CiA)
- EN 50325-4
- Four basic services
 - Request: application requests service
 - Indication: system notifies application of event
 - Response: application replies to an indication
 - Confirmation: system confirms service execution

FlexRay

- Automotive network communication protocol
- Developed FlexRay consortium (2000)
- Core partners
 - BMW
 - Daimler
 - 1Motorola (Freescale)
 - Philips (NXP Semiconductors)
 - Later: Bosch, General Motors, Volkswagen
- Deterministic timing real time capable (X-by-wire)
- Hybrid MAC: TDMA + dynamic part (reservation)
- Integrates parts of ByteFlight protocol (BMW)

TTCAN

FlexRay – Exemplary Setup

- 2 channels with up to 10Mbit/s each
 - Use both channels for redundancy
- Use single channel for higher data rate
- Distributed clock synchronization (no master)
- Bus, star, and star with buses topologies

FlexRay – Physical Layer

- Shielded twisted pair
- ► NRZ
 - High 3.5 VLow 1.5 V
 - → Idle 2.5 V
 - → Suspension 0 V
- Clock drift < 0.15% compared to reference clock</p>
- Maximum signal delay < 2.5μs
- 8 samples per bit (majority vote of 5 samples)

FlexRay – Data Link Layer

- Repeating communication cycle
- Static part for real-time communication (TDMA)
- Dynamic part for other communication (FTDMA)
- CRC (11 bit) error detection for header
- CRC (24 bit) error detection for payload

FlexRay - Static Slot

TSS: Transmission Start Sequence

FSS: Frame Start Sequence BSS: Byte Start Sequence FES: Frame End Sequence

FlexRay - Dynamic Slot

FlexRay - Payload

Flex Ray Frame

- 0: reserved
- 1: payload preamble indicator
- 2: sync frame indicator
- 3: null frame indicator
- 4: startup frame indicator

FlexRay – Static Segment

slot	node	message	channel
1	(Λ)	A1	А
1		A1	В
2	B	<u>B1</u>	А
2	<u>©</u>	<u>C1</u>	В
3		Q1	А
3		<u>D2</u>	В
1	E	E1	А
4	А	A2	В
5	С	C2	А
J	В	B2	В

FlexRay - Dynamic Segment

	slot	node	message	event
1	6	Α	Α4	
	7	С	C3	
	8	D	D3	
	9	В	B3	
	, 10	Е	E3	

resulting dynamic slots:

- slots 7,9 and 10 are filled with minislots
- message B3 doesn't fit into the dynamic segment

FlexRay - Dynamic Segment

U						
slot	node	message	event			
6	А	A4				
7	С	C3				
8	D	D3				
9	В	В3				
10	E	E3				

resulting dynamic slots:

- slots 6 and 9 are filled with minislots
- all triggered messages can be send

Process Field Bus (PROFIBUS)

- Field bus for automation in industrial environments
- Publicly founded German research project (BMBF)
- "Dezentrale Peripherie" (DP) (1993)
 - Focus on central controller using remote sensors and actors
 - Simple, fast (12Mbit/s)
- "Prozessautomation" (PA)
 - Limited current (<u>explosion</u> protection)
 - Very slow (31.25kbit/s)
- Fieldbus Message Specification" (FMS) (1991)
 - First version
 - Very complex, replaced by DP
- ► IEC 61158 / IEC 61784

PROFIBUS-DP – Exemplary Setup

singleinmæstær sættupp

PROFIBUS-DP – Physical Layer

► RS-485

- Shielded twisted pair
- 9600 bit/s 12Mbit/s
- Bus topology with 150Ω terminators
- 100m 1200m between repeaters (depends on data rate)
- NRZ

Optical fiber

- Star, bus, or (redundant) ring topology
- Up to 15km between repeaters

PROFIBUS-DP – Data Link Layer

- Fieldbus Data Link (FDL)
- Each device has 7 bit address
- 5 frame types
- Master polls / pushes data
- Multi-master by token passing
- CRC (8 bit) error detection
- Hamming distance of 4 for delimiters

PROFIBUS-DP – Token Passing

SPS controls actor using latest sensor data

No Data

Variable data length

Fix data length

Token

Short Confirmation

SD 1: Start delimiter, signals type of data

DA: Destination adress

SA: Source adress

FC: Function code, extension of data type

FCS: Frame checking sequence, error handling

ED: End delimiter

No Data

Variable data length

Fix data length

Token

Short Confirmation

LE: Length of PDU

LEr: Repetition of LE

DSAP: Destination Service Access Point

SSAP: Source Service Access Point

PDU: Protocol Data Unit

No Data

Variable data length

Fix data length

▶ Token

Short Confirmation

No Data

Variable data length

Fix data length

Token

Short Confirmation

No Data

Variable data length

Fix data length

Token

Short Confirmation

SC

PROFIBUS-DP – Application Layer

DPV0

- Original specification
- Cyclic exchange of data
- Automation technology

DPV1

- Acyclic data communication
- Alarm management
- Chemical engineering

► DPV2

- Isochronous data communication
- Slave to slave communication
- Robot control

Literature

CAN

- Vector E-Learning: http://www.vector-elearning.com
- PROFIBUS Handbuch: http://www.profibus.felser.ch/
- Heinz Wörn, Uwe Brinkschulte: Echtzeitsysteme, Springer-Verlag, 2005. ISBN 3-540-20588-8.

Summary

- All data communication follows basic principles
 - Limitation by bandwidth
 - Degradation due to damping
- Embedded data communication has special demands
 - Cheap and simple
 - Real-time capable
 - Robust
- Physical Layer defines how bit streams are transported
 - Mechanical and electrical characteristics
 - Bit encoding
 - Synchronization

Summary

- Data Link Layer defines how messages are transported
 - Frame formats
 - Medium access
 - Error correction and flow control
- Different areas of application use fitting protocols
 - I²C for intra board communication

 - CAN for intra car communication

 FlexRay for intra car communication with real time and higher data rates
 - PROFIBUS for industrial controllers

