## Домашнее задание № 1 по эконометрике – 2.

Рассмотрите следующие примеры и выполните задания.

**Пример 1.** Рассматривается модель линейной регрессии  $Y = X\beta + \varepsilon$ , где

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}; \quad X = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1k} \\ 1 & x_{21} & \cdots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nk} \end{bmatrix}; \quad \beta = \begin{bmatrix} \alpha \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}; \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}.$$

Здесь X — некоторая фиксированная  $n \times (k+1)$  числовая матрица такая, что  $\operatorname{rg} X = k+1$ . Вектор  $\varepsilon$  имеет n- мерное нормальное распределение с нулевым математическим ожиданием и ковариационной матрицей  $\sigma^2 \cdot I_{n \times n}$ , т.е.  $\varepsilon \sim N(0, \sigma^2 \cdot I_{n \times n})$ .

Матрицу X генерируем так, что её компоненты  $x_{11}, x_{12}, x_{21}, x_{22}, ..., x_{n1}, x_{n2}$  являются реализациями случайной выборки из нормального стандартного распределения.

Положим n=20 , k=2 ,  $\alpha=0$  ,  $\beta_1=1$  ,  $\beta_2=2$  ,  $\sigma=2$  . При помощи метода Монте-Карло построим ядерную оценку для плотности  $\hat{\beta}_1$  . Для этого выполним S=100000 симуляций. Опишем алгоритм, согласно которому выполняется симуляции с номером s=1,...,S .

- 1. Генерируем  $\varepsilon^{(s)} \sim N(0, \sigma^2 \cdot I_{n \times n})$ .
- 2. Рассчитываем  $Y^{(s)} = X\beta + \varepsilon^{(s)}$ .
- 3. Находим  $\hat{\beta}^{(s)} = (X^T X)^{-1} X^T Y^{(s)}$ .
- 4. Из вектора  $\hat{\beta}^{(s)}$  выделяем элемент в позиции  $2 \times 1$ , который соответствует оценке  $\hat{\beta}_1^{(s)}$ .

После выполнения S симуляций мы получаем набор значений  $\{\hat{\beta}_{l}^{(s)}\}_{s=1}^{S}$ , по которому строим искомую ядерную оценку плотности  $\hat{\beta}_{l}$ . На рисунке 1 приведены результаты описанных расчетов.



Рис. 1

### Код программы в системе MATLAB

```
clc; clear;
n = 20;
k = 2;
X = [ones(n,1), randn(n,k)];
b = [0:k]';
sigma = 2;
S = 100000; % число симуляций
B1 = zeros(S, 1);
for s = 1:S
    disp(['starting simulation number ... ', num2str(s)]);
    e = sigma * randn(n,1);
    Y = X * b + e;
b_hat = (X' * X) \ (X' * Y);
    B\overline{1}(s,1) = b hat(2,1)';
[f,x] = ksdensity(B1);
plot(x, f);
title('Ядерная оценка для плотности для оценки параметра \beta 1',...
     'FontSize', 11, 'FontName', 'Times New Roman');
xlabel('x', 'FontSize', 11, 'FontName', 'Times New Roman');
ylabel('f_{\beta_1}', 'FontSize', 11, 'FontName', 'Times New Roman');
```

**Задание 1.1.** Что можно сказать о статистических свойствах оценки  $\hat{\beta}_1$ , глядя на рисунок 1.

**Задание 1.2.** Выполните аналогичные расчеты и постройте графики оценок плотностей для  $\hat{\beta}_2$ ,  $\hat{\sigma}$  и  $\hat{\sigma}^2$ . Прокомментируйте полученные результаты.

Задание 1.3. Выполняя задание 1.2, постройте таблицу,

|      | α              | $oldsymbol{eta}_{\!\scriptscriptstyle 1}$ | $eta_2$         |
|------|----------------|-------------------------------------------|-----------------|
| MEAN | $MEAN(\alpha)$ | $MEAN(\beta_1)$                           | $MEAN(\beta_2)$ |
| RMSE | $RMSE(\alpha)$ | $RMSE(\beta_1)$                           | $RMSE(\beta_2)$ |

где 
$$MEAN(\alpha) \coloneqq \frac{1}{S} \sum_{s=1}^{S} \hat{\alpha}^{(s)}$$
,  $RMSE(\alpha) \coloneqq \sqrt{\frac{1}{S-1} \sum_{s=1}^{S} \left(\hat{\alpha}^{(s)} - MEAN(\alpha)\right)^2}$ . Остальные элементы

таблицы определяются аналогичным образом. Так, например, в наших расчетах получилась следующая таблица.

|      | $\alpha$ | $oldsymbol{eta_{\!\scriptscriptstyle 1}}$ | $eta_{\scriptscriptstyle 2}$ |
|------|----------|-------------------------------------------|------------------------------|
| MEAN | 0.0009   | 1.0003                                    | 1.9988                       |
| RMSE | 0.4830   | 0.3649                                    | 0.4025                       |

**Пример 2.** Как и в примере 1 рассматривается модель линейной регрессии  $Y = X\beta + \varepsilon$ , где матрица X и вектор  $\varepsilon$  определяются так же, как и выше.

Положим k=2,  $\alpha=0$ ,  $\beta_1=1$ ,  $\beta_2=2$ ,  $\sigma=2$ . Последовательно для n=10, 20, 40, 80 и 160 при помощи метода Монте-Карло построим ядерные оценки для плотностей  $\hat{\beta}_1(n)$ . Для этого генерируем при каждом n=10, 20, 40, 80 и 160 матрицу X(n) так, что её компоненты  $x_{11}(n), x_{12}(n), x_{21}(n), x_{22}(n), ..., x_{n1}(n), x_{n2}(n)$  являются реализациями случайной выборки из нормального стандартного распределения.

Выполним S = 100000 симуляций. Алгоритм, согласно которому выполняется симуляция соответствующая n и s = 1,...,S приведен ниже.

- 1. Генерируем  $\varepsilon^{(s)}(n) \sim N(0, \sigma^2 \cdot I_{n \times n})$ .
- 2. Рассчитываем  $Y^{(s)}(n) = X(n)\beta + \varepsilon^{(s)}(n)$ .
- 3. Находим  $\hat{\beta}^{(s)}(n) = (X(n)^T X(n))^{-1} X(n)^T Y^{(s)}(n)$ .
- 4. Из вектора  $\hat{\beta}^{(s)}(n)$  выделяем элемент в позиции  $2\times 1$ , который соответствует оценке  $\hat{\beta}_1^{(s)}(n)$ .

После выполнения S симуляций для каждого n, мы получаем пять наборов значений  $\{\hat{\beta}_1^{(s)}(n)\}_{s=1}^S$ , по которым строим пять графиков оценок плотностей  $\hat{\beta}_1(n)$  в одних координатных осях. На рисунке 2 приведены результаты описанных расчетов.



## Код программы в системе МАТLAВ

```
clc; clear;
Q = 5; % число графиков
x = zeros(100,Q);
f = zeros(100,Q);
for q = [1:Q]
    n = 10 * 2 ^ (q-1);
    k = 2;
    X = [ones(n,1), randn(n,k)];
    b = [0:k]';
    sigma = 2;
    S = 100000; % число симуляций
    B1 = zeros(S, 1);
    for s = 1.8
         e = sigma * randn(n,1);
         Y = X * b + e;

b hat = (X' * X) \setminus (X' * Y);
         B\overline{1}(s,1) = b_{hat}(2,1)';
     [f(:,q),x(:,q)] = ksdensity(B1);
end
% строим графики...
plot(x, f);
title('Ядерные оценки плотности для МНК-оценки параметра \beta \sim 1 при различных n', ...
     'FontSize', 11, 'FontName', 'Times New Roman');
xlabel('x', 'FontSize', 11, 'FontName', 'Times New Roman');
ylabel('f', 'FontSize', 11, 'FontName', 'Times New Roman');
q = [1:Q]';
n = 10 * 2 .^{(q-1)};
n = num2str(n);
```

**Задание 2.1.** Что можно сказать о статистических свойствах оценки  $\hat{\beta}_1(n)$ , глядя на рисунок 2.

**Задание 2.2.** Выполните аналогичные расчеты и постройте аналогичные графики оценок плотностей для  $\hat{\beta}_2(n)$ ,  $\hat{\sigma}(n)$  и  $\hat{\sigma}^2(n)$ . Прокомментируйте полученные результаты.

Задание 2.3. Постройте графики оценок для плотностей

$$\frac{\hat{\beta}_2(n) - \beta_2}{\sqrt{\hat{D}(\hat{\beta}_2(n))}} \tag{1}$$

при n = 5, 10, 15, 20, 25, 30, 35 и 40 в одних координатных осях. Известен ли вам какой-либо факт о предельном поведении величины (1) при  $n \to \infty$ ? Можно ли этот факт наблюдать из полученного вами рисунка?

**Пример 3.** Приведем пример программы, которая генерирует два коррелированных ряда нормальных случайных чисел. Более точно, данная программа генерирует реализацию двумерной случайной выборки  $\{(X_i,Y_i)\}_{i=1}^n$  такой, что каждый случайный вектор  $(X_i,Y_i)$  имеет плотность

$$f(x,y) = \frac{1}{2\pi\sigma_X \sigma_Y \sqrt{1-\rho^2}} \cdot \exp\left\{-\frac{1}{2(1-\rho^2)} \cdot \left[\frac{x^2}{\sigma_X^2} - \frac{2\rho xy}{\sigma_X \sigma_Y} + \frac{y^2}{\sigma_Y^2}\right]\right\}, \ i = 1,...,n.$$
 (2)

Ниже приведен код программы в системе MATLAB.

```
function [X] = gen_2corr_series(n, sigmaX, sigmaY, rho)
V = [sigmaX^2, rho*sigmaX*sigmaY; rho*sigmaY*sigmaX, sigmaY^2];
Z = randn(2,n);
X = (V^0.5) * Z;
X = X';
```

Дадим здесь некоторые пояснения. Прежде всего, отметим, что плотность f в формуле (2) соответствует двумерному нормальному случайному вектору с математическим ожиданием  $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$  и ковариационной матрицей

$$V = \begin{bmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Y \\ \rho \sigma_Y \sigma_X & \sigma_Y^2 \end{bmatrix}.$$

Известно, что если случайный вектор  $Z = \begin{bmatrix} Z_1 & Z_2 \end{bmatrix}^T$  имеет нормальное распределение с математическим ожиданием  $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$  и ковариационной матрицей

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

то случайный вектор  $X = V^{\frac{1}{2}} \cdot Z$  имеет как раз требуемые параметры: математическое ожидание  $\begin{bmatrix} 0 & 0 \end{bmatrix}^T$  и ковариационную матрицу V. На основе данных соображений написана приведенная выше программа.

Проиллюстрируем работу данной программы на четырёх примерах. Пусть во всех расчетах n=10000,  $\sigma_{X}=1$ ,  $\sigma_{Y}=1$ . При этом значениям параметра  $\rho=0.7$ , 0.9, -0.7, -0.9 соответствуют рисунки с номерами 3, 4, 5 и 6 соответственно.



**Задание 3.1.** Допишите несколько строк в программе  $gen_2corr_series$ , которые позволят воспроизвести приведенные выше рисунки 3-6.

**Задание 3.2\*.** На рисунках из задания 3.1 постройте 99%-ые эллипсы рассеивания (см. [1] стр. 80-83).

**Задание 3.3.** Напишите программу, которая генерирует реализацию d-мерной случайной выборки  $\left\{\left(X_i^{(1)},...,X_i^{(d)}\right)\right\}_{i=1}^n$ , каждый случайный вектор которой имеет d-мерное нормальное распределение с математическим ожиданием  $\mu$  и ковариационной матрицей  $\Sigma$ ,  $\det \Sigma \neq 0$ .

**Пример 4.** Данный пример посвящен изучению последствий, к которым приводят ошибки при спецификации модели регрессии. Здесь будут рассмотрены три случая:

- 1. в оцениваемую модель не включена существенная переменная;
- 2. оцениваемая модель специфицирована правильно;
- 3. в оцениваемую модель включили несущественную переменную.

# Задание 4.1. Разберите следующий код программы, написанный в системе

**MATLAB**, и опишите алгоритм работы программы так, как это сделано в примерах 1 и 2.

```
clc; clear;
[X] = gen 2corr series(20, 1, 1, 0.9);
X = [ones(20,1), X(:,1), randn(20,1), X(:,2)];
[n,k] = size(X);
X U = X(:, 1:k-2);
X_T = X(:,1:k-1);
X = X(:, 1:k);
s\overline{i}gma = 2;
s = 100000;
BETA1_U = zeros(S, 1);
BETA1_T = zeros(S, 1);
BETA1 O = zeros(S, 1);
for s = 1:S
    disp(['starting simulation number ', num2str(s), ' ... ']);
    b_T = [0 \ 10 \ 20]';
     e = sigma * randn(n,1);
    Y = X_T * b_T + e;
    b hat U = (X U' * X U) \setminus (X U' * Y);
    \overline{\texttt{BETA1}}\underline{\texttt{U}}(\texttt{s,1}) = \texttt{b}\underline{\texttt{hat}}\underline{\texttt{U}}(\texttt{2});
    b_hat_T = (X_T' * X_T) \setminus (X_T' * Y);
    BETA1 T(s,1) = b hat T(2);
    b_hat_0 = (X_0' * X_0) \ (X_0' * Y);
    BETA1 O(s,1) = b \text{ hat } O(2);
end
[f_U,x_U] = ksdensity(BETA1_U);
   T, x T] = ksdensity(BETA1 T);
[f \ O, x \ O] = ksdensity(BETA1 \ O);
plot(x_U,f_U,x_T,f_T,x_O,f_O);
title('Оценки плотностей для \beta 1 при различных спецификациях модели', 'FontSize', 11, ...
     'FontName', 'Times New Roman');
xlabel('x', 'FontSize', 11, 'FontName', 'Times New Roman');
ylabel('f', 'FontSize', 11, 'FontName', 'Times New Roman');
legend('under', 'true', 'over');
```

На рисунке 7 приведены результаты расчетов, которые выполняет данная программа.



На рисунке выше кривая, помеченная 'under', соответствует ситуации, в которой в оцениваемую модель не включена существенная переменная. Кривая, помеченная 'true', соответствует случаю, когда оцениваемая модель специфицирована правильно, а график плотности, помеченный 'over' – ситуации, когда в оцениваемую модель включили несущественную переменную.

Если во второй строке приведенной выше программы исправить параметр  $\rho = 0.9$  на  $\rho = 0$ , т.е. во второй строке вместо [x] = gen\_2corr\_series(20, 1, 1, 0.9); написать [x] = gen\_2corr\_series(20, 1, 1, 0);, то получим следующий рисунок.



**Задание 4.2.** Попытайтесь объяснить причину, по которой возникло такое существенное различие в рисунках 7 и 8.

**Задание 5\*.** Рассмотрите модель линейной регрессии  $Y_i = \alpha + \beta \cdot x_i + \varepsilon_i$ , i = 1,...,n, для случая, когда  $\{x_i\}$  не являются детерминированными. Предположим  $\operatorname{corr}(x_i, \varepsilon_i) = \rho \neq 0$  при i = 1,...,n. Аналогично тому, как это сделано в примере 2, исследуйте на несмещенность и состоятельность оценку  $\hat{\beta}(n)$ .

#### Список литературы

[1] Шведов А.С., Теория вероятностей и математическая статистка – 2 (промежуточный уровень). Гос. У-нт – Высшая Школа Экономики. – М.: ТЕИС, 2007.