Laboratorio de Curso de Data Analysis with Python

Nombre:Francisco Javier Ramírez Arias

Matricula: A01316379

#Importamos los datos del modulo #02
import pandas as pd
import numpy as np

filename='/content/automobileEDA.csv'

df = pd.read_csv(filename)
df.head()

3		symboling	normalized- losses	make	aspiration	num- of- doors	body- style	drive- wheels
	0	3	122	alfa- romero	std	two	convertible	rwd
	1	3	122	alfa- romero	std	two	convertible	rwd
	2	1	122	alfa- romero	std	two	hatchback	rwd
	3	2	164	audi	std	four	sedan	fwd
	4	2	164	audi	std	four	sedan	4wd

5 rows × 29 columns

Analizando Patrones de Características Individuales Utilizando Visualizacion

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

print(df.dtypes)

df.corr()

```
symboling
                             int64
     normalized-losses
                             int64
     make
                           object
     aspiration
                           object
     num-of-doors
                           object
     body-style
                           object
     drive-wheels
                           object
     engine-location
                           object
     wheel-base
                           float64
     length
                          float64
     width
                          float64
     height
                           float64
     curb-weight
                             int64
     engine-type
                           object
     num-of-cylinders
                           object
     engine-size
                             int64
     fuel-system
                           object
     bore
                           float64
     stroke
                          float64
                          float64
     compression-ratio
                          float64
     horsepower
                          float64
     peak-rpm
     city-mpg
                             int64
     highway-mpg
                             int64
     price
                          float64
     city-L/100km
                          float64
     horsepower-binned
                           object
     diesel
                             int64
     gas
                             int64
     dtype: object
#Pregunta #1
df['peak-rpm'].dtypes
     dtype('float64')
```

	symboling	normalized- losses	wheel- base	length	width	hε
symboling	1.000000	0.466264	-0.535987	-0.365404	-0.242423	-0.55
normalized- losses	0.466264	1.000000	-0.056661	0.019424	0.086802	-0.37
wheel-base	-0.535987	-0.056661	1.000000	0.876024	0.814507	0.59
length	-0.365404	0.019424	0.876024	1.000000	0.857170	0.49
width	-0.242423	0.086802	0.814507	0.857170	1.000000	0.30
height	-0.550160	-0.373737	0.590742	0.492063	0.306002	1.00
curb-weight	-0.233118	0.099404	0.782097	0.880665	0.866201	0.30
engine-size	-0.110581	0.112360	0.572027	0.685025	0.729436	0.07
bore	-0.140019	-0.029862	0.493244	0.608971	0.544885	0.18
stroke	-0.008245	0.055563	0.158502	0.124139	0.188829	-0.06
compression- ratio	-0.182196	-0.114713	0.250313	0.159733	0.189867	0.25
horsepower	0.075819	0.217299	0.371147	0.579821	0.615077	-0.08
peak-rpm	0.279740	0.239543	-0.360305	-0.285970	-0.245800	-0.30
city-mpg	-0.035527	-0.225016	-0.470606	-0.665192	-0.633531	-0.04
highway-mpg	0.036233	-0.181877	-0.543304	-0.698142	-0.680635	-0.10
price	-0.082391	0.133999	0.584642	0.690628	0.751265	0.13
city-L/100km	0.066171	0.238567	0.476153	0.657373	0.673363	0.00
diesel	-0.196735	-0.101546	0.307237	0.211187	0.244356	0.28
				-		

#Pregunta #2
df[['bore', 'stroke', 'compression-ratio', 'horsepower']].corr()

#Correlacion positiva
#Tamaño del motor como variable potencial para predecir el precio
sns.regplot(x="engine-size", y="price", data=df)
plt.ylim(0,)

df[["engine-size", "price"]].corr()

	engine-size	price	1
engine-size	1.000000	0.872335	
price	0.872335	1.000000	

#Millas por galon como varible predictora del precio
sns.regplot(x="highway-mpg", y="price", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78b70bf50>

df[['highway-mpg', 'price']].corr()

	highway-mpg	price	1
highway-mpg	1.000000	-0.704692	
price	-0.704692	1.000000	

#Correlacion debil
sns.regplot(x="peak-rpm", y="price", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78b225050>

df[['peak-rpm','price']].corr()

	peak-rpm	price	1
peak-rpm	1.000000	-0.101616	
price	-0.101616	1.000000	

#Encontrar la correlacion entre "stroke" y "price"
df[["stroke","price"]].corr()

	stroke	price	1
stroke	1.00000	0.08231	
price	0.08231	1.00000	

#Graficamos la correlacion
sns.regplot(x="stroke", y="price", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78b1bfd10>

Variables Categoricas

#Relacion entre body-style y precio
sns.boxplot(x="body-style", y="price", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78b12c090>

#RElacion entre "engine-location" y "price"
sns.boxplot(x="engine-location", y="price", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78b015d90>

#Otra relacion de variables
sns.boxplot(x="drive-wheels", y="price", data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fe78afa2990>

#Analisis Descriptivo Estadistico

df.describe()

	symboling	normalized- losses	wheel- base	length	width	he
count	201.000000	201.00000	201.000000	201.000000	201.000000	201.00
mean	0.840796	122.00000	98.797015	0.837102	0.915126	53.7€
std	1.254802	31.99625	6.066366	0.059213	0.029187	2.44
min	-2.000000	65.00000	86.600000	0.678039	0.837500	47.80
25%	0.000000	101.00000	94.500000	0.801538	0.890278	52.00
50%	1.000000	122.00000	97.000000	0.832292	0.909722	54.10
75%	2.000000	137.00000	102.400000	0.881788	0.925000	55.50
max	3.000000	256.00000	120.900000	1.000000	1.000000	59.80
4						

df.describe(include=['object'])

	make	aspiration	num- of- doors	body- style	drive- wheels	engine- location	engine- type	nu cyli
count	201	201	201	201	201	201	201	
unique	22	2	2	5	3	2	6	
4								

#Contamos valores
df['drive-wheels'].value_counts()

fwd 118 rwd 75 4wd 8

Name: drive-wheels, dtype: int64

df['drive-wheels'].value_counts().to_frame()

dri	ve-wheels	1
fwd	118	
rwd	75	
4wd	8	

#Mismas acciones que los pasos anteriores, se renombrar la columna
drive_wheels_counts = df['drive-wheels'].value_counts().to_frame()
drive_wheels_counts.rename(columns={'drive-wheels': 'value_counts'}, inplace=1
drive_wheels_counts

val	ue_counts	10-
fwd	118	
rwd	75	
4wd	8	

#Renombranos el nombre de la columna de drive-wheels
drive_wheels_counts.index.name = 'drive-wheels'
drive_wheels_counts

#Los pasos anteriores pero con la columna "Engine-location"
engine_loc_counts = df['engine-location'].value_counts().to_frame()
engine_loc_counts.rename(columns={'engine-location': 'value_counts'}, inplace=
engine_loc_counts.index.name = 'engine-location'
engine_loc_counts.head(10)

value_counts 🎢

10-	price	drive-wheels	
	10241.000000	4wd	0
	9244.779661	fwd	1
	19757.613333	rwd	2

#agrupamos resultados
df_gptest = df[['drive-wheels','body-style','price']]
grouped_test1 = df_gptest.groupby(['drive-wheels','body-style'],as_index=Fals@grouped_test1

10+	price	body-style	drive-wheels	
	7603.000000	hatchback	4wd	0
	12647.333333	sedan	4wd	1
	0005 750000	wagon	Awd	2

#Creamos una tabla pivote

grouped_pivot = grouped_test1.pivot(index='drive-wheels',columns='body-style')
grouped_pivot

price

body- style	convertible	hardtop		hatchback	sedan	wagon
drive- wheels						
4wd	NaN		NaN	7603.000000	12647.333333	9095.7500
4						

#Llenamos la tabla de los valores faltantes con cero
grouped_pivot = grouped_pivot.fillna(0) #fill missing values with 0
grouped_pivot

price

body- style	convertible	hardtop	hatchback	sedan	wagon
drive- wheels					
4wd	0.0	0.000000	7603.000000	12647.333333	9095.7500
4					

#Agrupamos las variables body-stle y precio
df_gptest2 = df[['body-style','price']]
grouped_test_bodystyle = df_gptest2.groupby(['body-style'],as_index= False).me
grouped_test_bodystyle

	body-style	price	0+
0	convertible	21890.500000	
1	hardtop	22208.500000	
2	hatchback	9957.441176	
3	sedan	14459.755319	

import matplotlib.pyplot as plt
%matplotlib inline

#insert labels

```
#Heatmap
plt.pcolor(grouped_pivot, cmap='RdBu')
plt.colorbar()
plt.show()
```



```
fig, ax = plt.subplots()
im = ax.pcolor(grouped_pivot, cmap='RdBu')

#label names
row_labels = grouped_pivot.columns.levels[1]
col_labels = grouped_pivot.index

#move ticks and labels to the center
ax.set_xticks(np.arange(grouped_pivot.shape[1]) + 0.5, minor=False)
ax.set_yticks(np.arange(grouped_pivot.shape[0]) + 0.5, minor=False)
```

ax.set_xticklabels(row_labels, minor=False)
ax.set_yticklabels(col_labels, minor=False)

#rotate label if too long
plt.xticks(rotation=90)

fig.colorbar(im)
plt.show()

#Correlacion
df.corr()

	symboling	normalized- losses	wheel- base	length	width	h€
symboling	1.000000	0.466264	-0.535987	-0.365404	-0.242423	-0.55
normalized- losses	0.466264	1.000000	-0.056661	0.019424	0.086802	-0.37
wheel-base	-0.535987	-0.056661	1.000000	0.876024	0.814507	0.59
length	-0.365404	0.019424	0.876024	1.000000	0.857170	0.49
width	-0.242423	0.086802	0.814507	0.857170	1.000000	0.30
height	-0.550160	-0.373737	0.590742	0.492063	0.306002	1.00
curb-weight	-0.233118	0.099404	0.782097	0.880665	0.866201	0.30
engine-size	-0.110581	0.112360	0.572027	0.685025	0.729436	0.07
bore	-0.140019	-0.029862	0.493244	0.608971	0.544885	0.18
stroke	-0.008245	0.055563	0.158502	0.124139	0.188829	-0.06
compression- ratio	-0.182196	-0.114713	0.250313	0.159733	0.189867	0.25
rom scipy import s	stats					
peak ipiii	0.217170	0.207070	0.000000	0.2007/0	0.270000	0.00

fro

#Calculamos el coeficiente de pearson pearson_coef, p_value = stats.pearsonr(df['wheel-base'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

The Pearson Correlation Coefficient is 0.584641822265508 with a P-value

0.101E46 0.207227 0.211107 0.2442E6 0.20 pearson_coef, p_value = stats.pearsonr(df['horsepower'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

The Pearson Correlation Coefficient is 0.8095745670036559 with a P-valu

pearson_coef, p_value = stats.pearsonr(df['length'], df['price']) print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value

The Pearson Correlation Coefficient is 0.6906283804483638 with a P-valu

```
pearson_coef, p_value = stats.pearsonr(df['width'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value
     The Pearson Correlation Coefficient is 0.7512653440522673 with a P-valu
pearson_coef, p_value = stats.pearsonr(df['curb-weight'], df['price'])
print( "The Pearson Correlation Coefficient is", pearson_coef, " with a P-value
     The Pearson Correlation Coefficient is 0.8344145257702843 with a P-valu
pearson_coef, p_value = stats.pearsonr(df['engine-size'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value
     The Pearson Correlation Coefficient is 0.8723351674455185 with a P-valu
pearson_coef, p_value = stats.pearsonr(df['bore'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value
     The Pearson Correlation Coefficient is 0.5431553832626602 with a P-valu
pearson_coef, p_value = stats.pearsonr(df['city-mpg'], df['price'])
print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value
     The Pearson Correlation Coefficient is -0.6865710067844678 with a P-val
pearson_coef, p_value = stats.pearsonr(df['highway-mpg'], df['price'])
print( "The Pearson Correlation Coefficient is", pearson_coef, " with a P-value
     The Pearson Correlation Coefficient is -0.704692265058953 with a P-valu
#Analisis ANOVA
grouped_test2=df_gptest[['drive-wheels', 'price']].groupby(['drive-wheels'])
grouped test2.head(2)
```

	drive-wheels	price
0	rwd	13495.0
1	rwd	16500.0
3	fwd	13950.0
4	4wd	17450.0
5	fwd	15250.0
136	4wd	7603.0
df_gptest		

	drive-wheels	body-style	price
0	rwd	convertible	13495.0
1	rwd	convertible	16500.0
2	rwd	hatchback	16500.0
3	fwd	sedan	13950.0
4	4wd	sedan	17450.0
•••			•••
196	rwd	sedan	16845.0
197	rwd	sedan	19045.0
198	rwd	sedan	21485.0
199	rwd	sedan	22470.0
200	rwd	sedan	22625.0

grouped_test2.get_group('4wd')['price']

4	17450.0
136	7603.0
140	9233.0
141	11259.0
144	8013.0
145	11694.0
150	7898.0

```
151 8778.0
Name: price, dtype: float64

_val, p_val = stats.f_oneway(gro
```

f_val, p_val = stats.f_oneway(grouped_test2.get_group('fwd')['price'], grouped
print("ANOVA results: F=", f_val, ", P =", p_val)

 ANOVA results: F= 67.95406500780399 , P = 3.3945443577151245e-23

f_val, p_val = stats.f_oneway(grouped_test2.get_group('fwd')['price'], grouped
print("ANOVA results: F=", f_val, ", P =", p_val)

 ANOVA results: F= 130.5533160959111 , P = 2.2355306355677845e-23

f_val, p_val = stats.f_oneway(grouped_test2.get_group('4wd')['price'], grouped
print("ANOVA results: F=", f_val, ", P =", p_val)
 ANOVA results: F= 8.580681368924756 , P = 0.004411492211225333

f_val, p_val = stats.f_oneway(grouped_test2.get_group('4wd')['price'], grouped

f_val, p_val = stats.f_oneway(grouped_test2.get_group('4wd')['price'], grouped
print("ANOVA results: F=", f_val, ", P =", p_val)

ANOVA results: F= 0.665465750252303 , P = 0.41620116697845666

Productos de pago de Colab - Cancelar contratos

• ×

① s completado a las 23:13

Exploratory Data Analysis (EDA) Module 3
Loaning Objetives
+ Group by
· Correlation
* Correlation - Statistics
Descriptive Statistics
+ Peroise basic features of data + Give short summaries about the sample of and measures of the data.
Describe () -> function
+ Sommarize statightes using pandes describe () method
dr. describe ()
Value (ounts () * Summarize the categorical class by using the
value_counts() method

claive (shook counts = df	["drive-wheels"].value_counts()	Lo ome 1
drive w		columns = { 'drive-wheels': 'value_counts' in place =	=True)
	drive-r		
Descr	Aud in the - Statistics	613-7	Miles Miles
A		Look James A tools cohammis tools mit	9
	100	Upper extreme Upper availe	7+
	50	whisher lower quartite > Lyur carrow	olasob Ib
		· Orllin I single durk point	In July
		Bollon (Johns Su)	

shs, b'oxpbb (x = drive-wheels", y = "onia", data = df) Adm O Local miles Scatter - plot * Each observation represented as a point * Scatter plot show the relationship between two variables. 1. Predictor Undergoden Variables on X-axis. 2. Target I dependent worldbes on y-exis. y=df["engine-size"] x=df["pric"] pH.scathr (x,y) elt. title ("Scatterplat of Engine Size us Price") plt. ylabel ("Pric")

Trouging data -> Use Ponch data-Transe. Group by () method: · (on be applied on calegorical variables · Good data into categories + Single or multiple variables Groupby () ditest = df [['drire-wheels', 'body-style', 'prai]] digro = diltest groupby (['drive-wheels', 'body-style'], as_index = talse) Pandas method - Pivol () de gre · One variable displayed along the columns and the other variable displayed along the rows If _ givet = df. grp. pivot (index = drive-wheels', columns = 'body -5 tyle')

Medmap Plot target variable over multiple variable plt. gcolor (of girot cmap = 1R [Bu") pH.colobar() pld. show () ANOVA Analysis of Variance (Anova) · Statutical comparison of groups - Analysis of Variance (ANDVA) * Why do we perform ANOVA?

Finding correlation between different groups of categorial variables * What we obtain from Mora? . F-test score: variation between sample group means divided by variation witin sample group.

* p-value: confidence degree.

What is correlation? . Measure to what extend different variables are interdependent. · For example -> Lung cancer -> Smoking Rain > Umbrelk · Correlation oben't imply causation. Correlation - Positive Linear Relationship - Correlation between two features. Sns. regold (x = "engine-size", y="prices", date = df plt. ylim (O)

· P-value . P-value (0.001 Strong cortainty in the risult · P-value <0.05 Moderate cortainty in the result Weak containty in the result . P-value < 0.1 ·P-value \$0.1 We (orfainly in the result Coefficient close to 1 or -1 - P-value less than 0.001 Peorson Correlation 0.8 0.4 0 -0.8 1 1

Pearson Correlation pearson-coet, q-value = stats person (df[hosepauxe], df[orice]) · Prarsa come lation (0.81 . P-value: 9.35e-48 Heatmap

Course Progress Dates Discussion

