2). (a)
$$a = 0$$
 $b \in [0,1)$ or $b = 0$, $a \in [0,1)$
(b) $a \in (0,1]$, $b \in (0,1]$

3) (a)
$$E(x_2) = 1$$
 (b) $E(x_2 - 3x_4) = -2$ (c) $E(A_5) = 1$
(d) $E(A_5 - x_1) = 0$ (e) $Var(A_5) = \frac{1}{5}$ (f) $S+d(A_5) = \frac{1}{\sqrt{5}}$
(9): $M=1$ $\nabla^2 = \frac{1}{5}$

4) Cumulative destruction Function:
$$F(t) = P(Y < t) = \begin{cases} 1 & \text{if } t \ge 2 \\ (t \cdot t)^2 & \text{if } t \in (1, 2) \end{cases}$$
0 if $t \le 1$.

Density:
$$f(t) = F'(t) = \begin{cases} 0 & \text{if } t \ge 1 \\ 2(t-1) & \text{if } t \in (1,2) \end{cases}$$

5). (a)
$$P(|x|>2) = 2.0.1587 = 0.3174$$

(b) $P(x<-2) = 0.1587$
(c) $P(x>2) = 0.1587$
(d) $P(e^{x}
(e) $E(x^{2}) = 4$$

6). (a):
$$P(x^2>1) = P(x>1) + P(x<-1) = 0.5 + 0.0228 = 0.5228$$

(b): $P(x<0) = 0.1587$. (c) $P(x=0)=0$. (d) $P(x>0) = 1-0.1587=0.8413$
(e): $E(x-1)^2 = 1$

(7): How :
$$P_0 = 0.6$$
.

Ha: $P > 0.6$.

 $Z = \frac{350}{500} - 0.6 \approx 4.56$

P-Value
$$\approx P(Z > 4.56) \approx 0$$
 < 0.05.
Se enough evidence.

(8).
$$\lambda_1 = 2\lambda_0$$
, $\lambda_2 = \frac{2}{3}$ $\lambda_1 = \frac{4}{3}$.

(9):
$$\mu = 0$$
 $\tau^2 = \frac{13}{2}$

(10): stepsto Solve
$$f_x = 0$$
 $f_y = 0$
2) Find Hessian: $D = det \begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix}$

D=4(1-x2)-4y2

pts to consider:
$$(1, 73)$$
 $(1, -63)$, $(0, -2)$ $(0, 0)$
 $D=4(1-x^2)-4y^2$

(a) B, All of them. (b): P4 P5 P6 (C): P, P2 P3 (d): For P4 = 52 (1000) S1 and S3 care Absorbing states.

S4 1/20012 Time to Absorption S4 (2) and S. has tome to Absorption of S3 has time to Absorption Prob to Absorption: S_4 (0 1) S_1 S_1 S_2 S_3 S_4 S_4 S_5 S_7 $S_$ For P5 5, (10) Abs. States: S, 52 Time to Absorption: S. & Sz - D. S, S, S, S, S, S, O 4 prob. to be absorpted: $P_6 = \frac{s_1(10)}{s(10)}$ Abs state: S_1

Time D Als. S_2 (1) prob. to be absorbed S_1 time to Abs; S_2 (1) S_2 (1) S_2 (1) S_3 to be abs. 1.

$$\frac{12}{6} \cdot \text{(a) State space} = \int_{1}^{2} \frac{A}{2} \cdot \frac{B}{3} \cdot \frac{B}{4} \cdot \frac{B}{3} \cdot \frac{$$

©:
$$P = \begin{bmatrix} 4 & 0 & \pm & 4 \\ 0 & 4 & \pm & \pm \\ 0 & 0 & 0 \end{bmatrix}$$
 distribution
 $(4 & 4 & 4 & 4) P = (18, 16, 16, 16)$
 $P(x_1 = A) = \frac{1}{16}, P(x_2 = B_{01}) = \frac{1}{16}$
 $P(x_2 = B_{01}) = \frac{1}{16}$

Note: Absorption Prob =
$$A(\frac{2}{3}, \frac{1}{3})$$
 Time to Abs: $A(\frac{2}{3}, \frac{1}{3})$ $B(\frac{2}{3})$