딥러닝 기초

Data Learning Basic

나동빈(dongbinna@postech.ac.kr)

Pohang University of Science and Technology

학습자 목표

- 인공지능의 정의를 이해할 수 있습니다.
- 딥러닝 모델 구현에 필요한 기초적인 수학 원리를 이해할 수 있습니다.
- PyTorch를 활용하여 딥러닝 모델을 구현하고 학습시킬 수 있습니다.
- 딥러닝을 활용한 실전 프로젝트 예제를 구현할 수 있습니다.

인공지능

- 인공지능이란 기계를 통해 인공적으로 구현된 지능을 의미합니다.
 - 기계 학습: 데이터를 반복적으로 학습하여 데이터에 잠재된 특징을 발견합니다.
 - 딥러닝: 깊은 인공 신경망을 활용하여 더 높은 정확도를 얻습니다.

인공지능의 학습 방법 1. 지도 학습(Supervised Learning)

- 지도 학습은 명시적인 정답을 제공하면서 학습시키는 유형입니다.
 - 회귀(Regression)
 - 특정한 데이터가 주어졌을 때 결과를 연속적인 값으로 예측합니다.
 - 예시: "영어 공부를 7시간 했다면, 몇 점이 나올까요?"
 - 분류(Classification)
 - 종류에 따라서 데이터를 분류합니다.
 - 예시: "이 이미지는 고양이인가요? 강아지인가요?"

인공지능의 학습 방법 1. 지도 학습(Supervised Learning)

• 회귀(Regression)

- 학습 시간에 따른 영어 점수 예측
- 거리에 따른 이동 시간 예측
- 업무 시간에 따른 매출 예측

인공지능의 학습 방법 1. 지도 학습(Supervised Learning)

- 분류(Classification)
 - 손글씨 분류
 - 강아지/고양이 분류
 - 배경 분류

학습 데이터셋

인공지능의 학습 방법 2. 비지도 학습(Unsupervised Learning)

- 비지도 학습은 명시적인 정답을 제공하지 않으면서 학습시키는 유형입니다.
 - 클러스터링(Clustering)
 - 데이터를 특정한 기준으로 묶습니다.
 - 예시: "사용자들을 3가지 집단으로 나누고 싶어요."
 - 차원 축소(Dimensionality Reduction)
 - 차원을 줄여 데이터 내 유의미한 특징을 추출합니다.
 - 예시: "이 이미지들을 2차원 공간에 투영시켜서 시각화 할 수 있을까요?"

인공지능의 학습 방법 2. 비지도 학습(Unsupervised Learning)

- 클러스터링(Clustering)
 - 비슷한 유형의 사용자끼리 그룹화

인공지능의 학습 방법 2. 비지도 학습(Unsupervised Learning)

- 차원 축소(Dimension Reduction)
 - 고차원 데이터의 차원을 축소하여 새로운 차원의 데이터를 생성합니다.
 - 예시: 데이터 시각화, 데이터 압축을 통한 복잡도 개선

딥러닝을 위한 도구

- 파이토치(PyTorch)
 - https://pytorch.org/
 - PyTorch는 빠르고 유연한 딥러닝 연구 플랫폼입니다.
 - GPU를 활용한 연산 가속을 지원합니다.

딥러닝을 위한 도구

Google Colab

- 나만의 머신 러닝 개발 환경을 1초 만에 가질 수 있도록 해주는 서비스입니다.
- PyTorch을 포함한 머신 러닝 관련 라이브러리가 기본적으로 설치되어 있습니다.
- 무료 서비스일 뿐만 아니라 GPU 런타임을 지원합니다.
- 다른 사람과 함께 코드를 공유하며 협업하기에 좋은 개발 환경입니다.

벡터(Vector)

- 벡터란 크기와 방향을 모두 가진 물리적 양을 나타낼 때 사용합니다.
 - 변위벡터: 점 A(시점)와 점 B(종점)으로 구성되며 $v = \overrightarrow{AB}$ 로 표현합니다.
 - 동치: 두 벡터의 길이와 방향이 같을 때 동치(equivalent)라고 합니다.

- 어떤 경우에는 좌표계를 도입하고 벡터를 대수적으로 다루는 것이 최선인 경우가 있습니다.
 - 변위벡터 대신에 위치벡터를 효과적으로 사용할 수 있습니다.

벡터(Vector)

- 성분(Component)
 - 직교 좌표계의 원점에 벡터 x의 시점을 놓을 때의 종점
 - $x = < x_1, x_2 >$
 - 일반적으로 평면에 있는 점을 (x_1, x_2) 형태로 표현합니다.
 - 성분의 경우 $< x_1, x_2 >$ 로 표현합니다.
- 위치벡터(Position vector)
 - 원점으로부터 점 P(4,3)에 이르는 벡터 \overrightarrow{OP}

행렬(Matrix)

- 행렬(Matrix)
 - 행렬이란 M행, N열로 나열된 실수의 2차원 배열입니다. (M, N은 양의 정수)
 - 프로그래밍에서는 2차원 배열을 행렬처럼 이용할 수 있습니다.
- 행렬의 필요성
 - 현실 세계의 많은 문제는 행렬을 이용해 해결할 수 있습니다.

열
$$\begin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \end{bmatrix}$$

행렬의 연산

- 행렬의 덧셈과 뺄셈
 - 두 행렬의 합이나 차를 계산할 때는 동일한 위치에 상응하는 원소끼리 계산합니다.
 - 기본적으로는 두 행렬의 크기가 같을 때 사용할 수 있습니다.

5	6		2	3	_	7	9
3	2	Т	5	4	_	8	6

행렬의 연산

- 행렬과 스칼라의 연산
 - 행렬은 상수(스칼라)와 연산할 수 있습니다.
 - 스칼라 연산을 할 때는 각 원소에 대하여 연산을 수행합니다.

5	6	+	2	=	7	8
3	2	Т	_	_	5	4

행렬의 곱셈

- 행렬과 스칼라의 연산
 - 두 행렬 A와 B는 곱할 수 있습니다.
 - 행렬 A의 열의 개수와 행렬 B의 행의 개수가 같아야 합니다.
 - 두 행렬의 곱 AB에서 행렬 AB의 크기는 A의 행과 B의 열의 개수를 가집니다.

행렬 사용 예시

• 2년간의 판매 실적의 합 구하기

2019년

	키보드	마우스
상반기	1,200개	3,400개
하반기	1,400개	3,800개

2020년

	키보드	마우스
상반기	1,900개	2,900개
하반기	1,700개	3,200개

1200	3400
1400	3800

1900	2900
1700	3200

3100	6300
3100	7000

행렬 사용 예시

• 가장 체력을 많이 증가시킬 수 있는 선택지 고르기

선택지 1

선택지 2

선택지 3

물약 1	물약 2	물약 3
3개	1개	4개
3개	2개	3개
4개	2개	2개

물약 1

물약 2

물약 3

체력 증가량
10
20
30

3	1	4
3	2	3
4	2	2

(3 X 3)

$$\begin{array}{c|cccc}
 & 10 & & 170 \\
X & 20 & = & 160 \\
\hline
 & 30 & & 140 \\
\end{array}$$

(3 X 1)

• Tensor 만들기

```
import torch
# 리스트를 Tensor로 변환
a = torch.tensor([1, 2, 3])
print(a)
# 값이 초기화되지 않은 행렬을 생성
a = torch.empty(4, 5)
print(a)
# 랜덤 값(uniform)으로 초기화된 행렬을 생성 (기본: 실수형)
a = torch.rand(4, 5)
print(a)
# 0으로 초기화된 행렬을 생성 (정수형)
a = torch.zeros((5, 3), dtype=torch.long)
print(a)
```

• Tensor 더하기

```
1 1 + 2 3 = 3 4
```

```
import torch

# Tensor를 만들고 크기를 출력
a = torch.tensor([1, 1])
print(a.size())

# Tensor 더하기
b = torch.tensor([2, 3])
c = a + b

print(c)
```

- Tensor 곱하기
 - 기본적인 Tensor의 곱셈은 동일한 위치의 원소끼리 곱하는 연산을 의미합니다.

0	1
2	3

*

1	2
3	4

=

0	2
6	12

• Tensor 곱하기

```
import torch

# Tensor 곱하기
a = torch.tensor([[0, 1], [2, 3]])
b = torch.tensor([[1, 2], [3, 4]])
c = a * b

print(c)
```

- Tensor의 행렬 곱
 - Tensor는 행렬 곱 연산을 지원합니다.

```
import torch

# Tensor 곱하기
a = torch.tensor([[0, 1], [2, 3]])
b = torch.tensor([[1, 2], [3, 4]])
c = torch.matmul(a, b)

print(c)
```

- 서로 다른 형태의 Tensor 연산
 - 브로드캐스트: 형태가 다른 행렬을 연산할 수 있도록 형렬의 형태를 동적으로 변환합니다.

0	1	2	3
4	5	6	7
0	1	2	3
4	5	6	7

0	
1	
2	
3	

+

0	1	2	3
4	5	9	7
0	1	2	3
4	5	6	7

0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3

- 서로 다른 형태의 Tensor 연산
 - 브로드캐스트: 형태가 다른 행렬을 연산할 수 있도록 형렬의 형태를 동적으로 변환합니다.

```
import torch

# Tensor 브로드캐스트
a = torch.tensor([1, 2, 3])
b = torch.tensor([[1, 2, 3], [1, 2, 3]])
c = a + b

print(c)
```

- Tensor의 형태 변경
 - Tensor는 인덱싱 표기법을 사용할 수 있습니다.
 - 다양한 방법으로 형태를 변경할 수 있습니다.

0	1	2	3		2
4	5	6	7	x[:, 2] =	6
0	1	2	3		2
4	5	6	7		6

• Tensor의 형태 변경

```
import torch
a = torch.tensor([
    [0, 1, 2, 3],
    [4, 5, 6, 7],
    [0, 1, 2, 3],
    [4, 5, 6, 7]
print(a[:, 2])
a = a.view(16)
print(a)
a = a.view(4, 4)
print(a)
a = a.view(-1, 8)
print(a)
```

• Tensor와 NumPy 변환

```
import torch
import numpy as np
a = torch.tensor([
   [0, 1, 2, 3],
    [4, 5, 6, 7]
print(a)
b = a.numpy()
print(b)
c = torch.from_numpy(b)
print(c)
```

- Tensor에 대한 추가적인 내용 살펴보기
 - https://pytorch.org/docs/stable/torch.html

- 현실 세계의 많은 데이터는 선형적인 구조를 내재합니다.
 - 예시: "많은 시간을 공부할수록 그 시간에 비례하여 실력이 늘지 않을까?"
 - 예시: "많은 돈을 투자할수록, 더 성능이 좋은 제품을 살 수 있지 않을까?"

• 장사꾼의 매출

- 어느 날, 한 장사꾼의 노동 시간과 매출액은 다음과 같았습니다.
- 8시간을 일한다면 매출은 얼마일까요?

하루 노동 시간	매출
1	25,000
2	55,000
3	75,000
4	110,000
5	128,000
6	155,000
7	180,000

- 장사꾼의 매출
 - 매출 데이터를 그래프로 표현해 봅시다.

- 선형 회귀(Linear regression)
 - 주어진 데이터를 학습시켜서 가장 합리적인 선형 함수를 찾아내는 접근 방법을 의미합니다.
 - 데이터는 3개 이상일 때 의미가 있습니다.
 - 데이터를 가장 잘 나타내는 선형 함수는?

좋은 가설의 기준

- X와 Y의 관계를 하나의 직선으로 완벽하게 표현할 수는 없을 수 있습니다.
- 그렇다면 그나마 합리적인 직선은 어떻게 찾을 수 있을까요?

좋은 가설의 기준

- 선형 함수를 이용해 직선을 표현할 수 있습니다.
- 가설 함수(파라미터)를 수정해 나가면서 가장 합리적인 식을 찾아낼 수 있습니다.
- 가설 함수: H(x) = Wx + b

최적화 문제

흔히 알려진 머신러닝, 딥러닝 문제는 아무튼 최적화 문제를 해결하는 형태

학습(Training) 개요

- 선형 회귀에서의 학습은 주어진 데이터를 이용해 선형 함수를 수정해 나가는 것입니다.
 - 학습을 거쳐 가장 합리적인 파라미터를 도출합니다.
- 학습을 많이 해도 완벽한 식을 찾아내지 못할 수 있습니다.
- 하지만 실제 사례에서는 근삿값을 찾는 것만으로도 충분할 때가 많습니다.
 - 딥러닝은 함수를 적절히 근사해주는 소프트웨어입니다.

학습(Training) 개요

• 학습이 이루어지는 과정을 직관적으로 이해해 봅시다.

• 비용(Cost)

- 가설이 얼마나 정확한지 판단하는 기준입니다.
- 가설이 정확하지 않다면, 비용이 많이 발생합니다.
- 비용을 줄이는 방향으로 학습을 진행합니다.
- 일반적으로 비용을 계산할 때는 **실제 값과 예상값이 얼마나 다른가**를 기준으로 설정합니다.

- 비용(Cost)
 - 단순히 비용을 실제 값 예상 값으로 설정하면 될까요?

$$H(x) = Wx + b$$
 일 때

$$C = y - H(x)$$
라면?

- MSE (Mean Squared Error)
 - 모든 데이터에 대한 (실제 값 예상 값)²의 합으로 비용을 계산합니다.
 - 따라서 다음 식을 최소화하는 파라미터 (W, b)를 찾는 것이 목표입니다.
 - *m*: 데이터의 개수

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$$

- 비용 구하기 예제
 - 데이터가 다음과 같다면 어떤 선형 함수가 적절할까요?

X	Υ
1	2
2	4
3	6

$$y = 2x$$

- 데이터의 개수가 작을 때 인간은 선형 함수를 간단히 찾을 수 있습니다.
- 하지만 데이터의 개수가 많을 때도 인간이 쉽게 계산할 수 있을까요?
- 이러한 비용을 기계적으로 줄이는 방법이 필요합니다.

- 비용 구하기 예제
 - W = 1, b = 2일 때의 비용을 계산합시다.

•
$$y = x + 2$$

X	Υ
1	2
2	4
3	6

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x_i) - y_i)^2$$

$$=\frac{(3-2)^2+(4-4)^2+(5-6)^2}{3}$$

$$= 2/3$$

비용을 더 줄이려면, W와 b를 어떻게 바꾸어야 할까요?

• 미분을 한 마디로 정의하면?

기울기(gradient)를 구해주는 작업

- 도함수(Derivative) f'(x)란?
 - 입력(파라미터) x에 대하여, 함수 f의 기울기(gradient)를 알려주는 함수
 - 입력(파라미터) x에 대하여, 함수 f가 얼마나 민감하게 변화하는지(순간 변화율)를 알려주는 함수
- 미분(Differentiation)이란? 도함수 f'(x)를 계산하는 작업

따라서 어떠한 함수 f(x)가 있을 때, 특정한 점 a의 위치에서의 기울기(gradient) 혹은 순간 변화율 값을 구하고 싶다면 f'(a)를 계산하면 됩니다.

- 기울기의 정의
 - *f*(*x*)의 변화량 / *x*의 변화량
 - 특정 함수에서 x가 h만큼 변할 때의 기울기를 계산해 봅시다.

• x가 h만큼 변할 때의 기울기는?

$$\frac{f(x+h)-f(x)}{h}$$

• 따라서 도함수 f'(x)는 다음과 같이 계산할 수 있습니다.

$$f'(x) = \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- 미분은 인공지능 분야에서 뉴럴 네트워크를 **학습(training)**을 시키기 위한 과정에서 사용됩니다.
- 뉴럴 네트워크의 파라미터를 기울기 값을 기준으로 학습을 시키는 방법을 주로 이용합니다.
- 실제로 h를 0.0001 정도로 설정하여 근사할 수도 있으나 기계학습 라이브러리에서는 실제로 도함수를 계산하여 학습을 진행하며, 레이어가 많으므로 **연쇄법칙(chain-rule)**을 이용하게 됩니다.
- 기본 미분 공식

$$(constant)' = 0$$
 $(ax^k)' = kax^{k-1}$

• 기본 미분 공식

$$(constant)' = 0 \quad (ax^k)' = kax^{k-1}$$

• 지수 함수 미분 공식

$$(e^x)' = e^x$$

$$(a^x)' = a^x \ln a$$

$$\left(e^{f(x)}\right)' = e^{f(x)} * f'(x)$$

$$\left(a^{f(x)}\right)' = a^{f(x)} * \ln a * f'(x)$$

• 로그 함수 미분 공식

$$(\ln x)' = \frac{1}{x}$$

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(\ln f(x))' = \frac{f'(x)}{f(x)}$$

• 삼각 함수 미분 공식

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\tan x)' = \sec^2 x$$

편미분(Partial Derivative)

- 편미분: 다변수 함수(multivariate function)에서 하나의 변수를 기준으로 미분하는 작업
- 미분할 때 다른 변수는 모두 상수(constant) 취급합니다.

$$f(x,y) = 2x^2 + xy + 5y$$

$$\frac{\partial f(x,y)}{\partial x} = \frac{\partial (2x^2 + xy + 5y)}{\partial x} = 4x + y$$

$$\frac{\partial f(x,y)}{\partial y} = \frac{\partial (2x^2 + xy + 5y)}{\partial y} = x + 5$$

편미분(Partial Derivative)

- **편미분**: 다변수 함수(multivariate_function)에서 하나의 변수를 기준으로 미분하는 작업
- 미분할 때 다른 변수는 모두 상수(constant) 취급합니다.

$$y = x^{2} + 5 \qquad y = 3$$

$$f(x) = 3x_{1} + 4x_{2}^{2} + 5x_{3}^{2} + 7x_{1}x_{2}$$

$$\begin{cases} x_{1} \\ x_{2} \\ x_{3} \end{cases} \qquad \frac{2f(x)}{2x_{1}} = 3 + 7x_{2}$$

$$\frac{2f(x)}{2x_{2}} = 8x_{2} + 7x_{1}$$

$$\frac{2f(x)}{2x_{3}} = 10x_{3}$$

편미분(Partial Derivative)

- 실제로 딥러닝 모델에서 **입력(input)**이나 **가중치(weight)** 값들이 다변수 벡터 형태입니다.
 - 따라서 딥러닝 모델에서 학습(training) 과정은 편미분을 통해 이루어집니다.

• 또한 딥러닝 모델은 다수의 레이어로 구성되어 있기 때문에 **연쇄법칙(chain-rule)**을 이용합니다.

- 미분을 이용하면 특정 값에서의 기울기를 구할 수 있습니다.
- 경사 하강: 기울기를 구하여 비용을 줄이는 방법입니다.

"현재 기울기가 양수(+)구나? 가중치를 음수(-) 방향으로 이동시키자!"

• 그래프 $(x-4)^2$ 가 있다고 가정합시다. 가장 y 값이 작을 때를 찾고 싶습니다.

• 예를 들어 x = -8일 때 y 값은 144입니다.

• 도함수 f'(x)는 2x - 8입니다. 따라서 x = -8에서의 기울기는 -24입니다.

• 기울기 값의 반대 방향으로 이동하면 y 값이 줄어들게 되므로 비용을 줄일 수 있습니다.

- 현재의 기울기(gradient)를 통해 업데이트 방향을 결정합니다.
- 실제 함수에서는 여러 극소점(local minimum)이 존재할 수 있습니다.
 - 극소점: 기울기가 0인 낮은 지점을 의미합니다.
- **최소점(global minimum)**을 찾지 못해도(혹은 없어도) 최소점에 가까운 지점까지 비용을 낮추기 위해 파라미터를 업데이트합니다.

MSE (Mean Squared Error)

볼록 함수(convex function)인 경우 항상 경사 하강 (gradient descent)로 쉽게 해결할 수 있습니다.

- 먼저 간단히 H(x) = Wx를 고려합시다.
- 비용 함수는 다음과 같습니다.

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx_i - y_i)^2$$

• 그렇다면 $(Wx_i - y_i)^2$ 의 합을 어떻게 하면 가장 작게 할 수 있을까요?

- 가중치(W)에 대한 비용 함수의 기울기를 구한 뒤에 기울기의 반대 방향으로 W를 업데이트합니다.
- 어느 정도의 크기로 이동해야 할까요?
 - 예를 들어 W = 4에서 기울기가 7일 때, W = -3의 위치로 이동하는 것은 과할 수 있습니다.
 - 너무 많이 이동하면 튕겨 나갈 수 있으므로, 학습률(learning rate)을 곱하여 이동합니다.
- 학습률이 0.01이라면, -7 * 0.01만큼만 이동합니다.

- 또한 미분을 수행하지 않고 **수치적으로 근사**하여 기울기를 계산할 수 있습니다.
- 파라미터 w가 있을 때 다음의 공식을 이용해 기울기(gradient)를 계산해 봅시다.

$$cost'(w) = \frac{dcost(W)}{dW} = \lim_{h \to 0} \frac{cost(W+h) - cost(W)}{h}$$

- dW 값은 0.001과 같이 작은 값으로 설정할 수 있습니다.
- 실제 딥러닝 프레임워크는 미분을 수행하여 계산합니다.

• 학습 목적의 데이터를 준비합니다.

하루 노동 시간	하루 매출
1	25,000
2	55,000
3	75,000
4	110,000
5	128,000
6	155,000
7	180,000

• Python만을 이용한 구현: 데이터 준비하기 (Linear Regression 바닥부터 구현)

```
import matplotlib.pyplot as plt

X = [1, 2, 3, 4, 5, 6, 7]
Y = [25000, 55000, 75000, 110000, 128000, 155000, 180000]

plt.plot(X, Y)
plt.scatter(X, Y)
```


- 순방향(Forward): 모델에 입력을 넣어 결과를 출력하는 과정
 - 쉽게 말하면, 함수에 입력을 넣어서 결과를 구하는 과정

• Python만을 이용한 구현: 가설 클래스 정의하기

```
# 가설 모델(학습 시킬 대상)
class H():
   def __init__(self, w):
       self.w = w
   # 결과를 반환하는 함수
   def forward(self, x):
       return self.w * x
   # 가설의 비용을 구하는 함수 (낮추어야 할 대상)
   def get_cost(self, X, Y):
       cost = 0
       for i in range(len(X)):
          cost += (self.forward(X[i]) - Y[i]) ** 2
       cost = cost / len(X)
       return cost
```

• Python만을 이용한 구현: 가중치(W)에 따른 비용 확인

```
cost_list = []
w_list = []
# w를 -300,000부터 300,000까지 바꾸어 보며 비용 확인
for i in range(-300, 300):
   w = i * 1000
   h = H(w)
   cost = h.get_cost(X, Y)
   w_list.append(w)
   cost list.append(cost)
# 결과적으로 약 25,000 정도일 때 최소 비용임을 확인
plt.figure(figsize=(8, 8))
plt.scatter(w_list, cost_list, s=10)
```


• Python만을 이용한 구현: 미분 없이 기울기 계산하기(모델 클래스)

```
# 기울기를 계산하는 함수
def get_gradient(self, X, Y):
   cost = self.get_cost(X, Y)
   dw = 0.001
   self.w = self.w + dw
   next_cost = self.get_cost(X, Y)
   self.w = self.w - dw
   dcost = next cost - cost
   gradient = dcost / dw
   return gradient, next_cost
# w 값을 변경하는 함수
def set_w(self, w):
   self.w = w
# w 값을 반환하는 함수
def get_w(self):
   return self.w
```

• Python만을 이용한 구현: 학습 진행하기

```
w = 4
h = H(w)
learning_rate = 0.001

for i in range(1001):
    gradient, cost = h.get_gradient(X, Y)
    h.set_w(h.get_w() + learning_rate * -gradient)
    if i % 100 == 0:
        print("[ epoch: %d, cost: %.2f ]" % (i, cost))
        print("w = %.2f, w_gradient = %.2f" % (h.get_w(), gradient))
```

Python만을 이용한 구현: 결과 예측하기

```
print("f(x) = %.2fx" %(h.get_w()))
print("예측값: [%.2f]" %(h.forward(8)))
```

• 미분을 활용한 수식 간소화

$$W := W - \alpha \frac{\partial}{\partial W} (cost(W))$$

$$W := W - \alpha \frac{\partial}{\partial W} \left(\frac{1}{m} \sum_{i=1}^{m} (Wx_i - y_i)^2 \right)$$

$$W := W - \alpha \frac{1}{m} \sum_{i=1}^{m} 2(Wx_i - y_i) x_i$$

$$W := W - \alpha \frac{2}{m} \sum_{i=1}^{m} (Wx_i - y_i) x_i$$

$$f(x)' = f(x) f(x)$$

$$(wx_i - y_i)^2 = w^2 x_i^2 - 2wx_i y_i + y_i^2$$

$$\frac{y_i}{y_i} = 2x_i^2 w - 2x_i y_i$$

$$= 2(wx_i - y_i) x_i$$

$$\sqrt{f(x)} = x_i \quad (wx_i - y_i) x_i$$

$$\sqrt{f(x)} = x_i$$

• Python만을 이용한 구현: 미분을 이용해 기울기 계산하기(모델 클래스)

```
# 미분으로 기울기를 계산하는 함수

def get_gradient_using_derivative(self, X, Y):
    gradient= 0
    for i in range(len(X)):
        gradient += (h.forward(X[i]) - Y[i]) * X[i]
    gradient = 2 * gradient / len(X)
    cost = self.get_cost(X, Y)
    return gradient, cost
```

선형 회귀 예시: H(x) = Wx + b

• 비용(Cost) 함수를 다음과 같이 원래 형태대로 W와 b를 모두 사용하는 방식으로 다시 정의합시다.

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} ((Wx_i + b) - y_i)^2$$

- 업데이트 할 파라미터의 수가 2개가 되었습니다.
- 어떻게 미분할 수 있을까요?

선형 회귀 예시: H(x) = Wx + b

• 편미분을 활용한 수식 간소화

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} ((Wx_i + b) - y_i)^2$$

$$W \coloneqq W - \alpha \frac{\partial}{\partial W}(cost(W, b))$$

$$b \coloneqq b - \alpha \frac{\partial}{\partial b} (cost(W, b))$$

$$W := W - \alpha \frac{2}{m} \sum_{i=1}^{m} (Wx_i + b - y_i) x_i$$

$$b := b - \alpha \frac{2}{m} \sum_{i=1}^{m} (Wx_i + b - y_i)$$

선형 회귀 예시: H(x) = Wx + b

- Python만을 이용해 구현해보기
 - Linear Regression 바닥부터 구현(Bias 포함) 실습
- PyTorch를 이용해 구현해보기

- 현실 세계에서는 "매출액"을 결정하기 위한 다양한 변수가 존재합니다.
 - 1. 근무 시간
 - 2. 종업원의 수
 - 3. 매장의 크기

• 다변수 선형 회귀에서는 변수가 여러 개입니다.

$$H(x) = Wx + b$$

$$H(x_1, x_2, x_3) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$
 (선형 함수)
$$= \sum_i W_i x_i + b$$

- 한 번에 여러 개의 입력이 들어온다면?
 - 행렬 곱을 이용하면 한 번의 연산으로 해결이 가능합니다.
 - 현대의 GPU는 이러한 행렬 곱 연산을 굉장히 효율적으로 수행할 수 있도록 해줍니다.

특징1 특징2 특징3
$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ x_{41} & x_{42} & x_{43} \end{pmatrix} * \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} x_{11}w_1 + x_{12}w_2 + x_{13}w_3 \\ x_{21}w_1 + x_{22}w_2 + x_{23}w_3 \\ x_{31}w_1 + x_{32}w_2 + x_{33}w_3 \\ x_{41}w_1 + x_{42}w_2 + x_{43}w_3 \end{pmatrix}$$

$$H(X) = XW$$

- PyTorch를 이용해 구현해보기
- 실습 코드 살펴보기
 - 다변수 선형 회귀(multivariable linear regression) 구현

분류(Classification) 문제

- 앞서 공부한 선형 회귀를 이용하여 분류 문제를 해결할 수 있을까요?
 - 선형 회귀로 공부 시간에 따른 합격/불합격 분류를 해봅시다.

• 결과 값을 0부터 1사이로 제한해야 분류(Classification) 문제를 해결하기에 효과적일 것입니다.

로지스틱 회귀(Logistic Regression)

- 회귀를 사용하여 데이터가 어떤 클래스에 속할 확률을 0부터 1사이의 값으로 예측합니다.
 - 예시: 공부 시간에 따른 합격/불합격 분류기
 - 예시: 이미지 특징에 따른 강아지/고양이 분류기

이진 분류와 Sigmoid

• Sigmoid 함수 (Logistic 함수)는 다음과 같습니다.

$$Sigmoid(x) = \frac{1}{1 + e^{-x}}$$

- 모든 위치에서 미분이 가능합니다.
- 0부터 1 사이의 확률 값을 반환합니다.
- 로지스틱 회귀(Logistic Regression)에 적합합니다.

이진 분류와 Sigmoid

• 실제 결과 값을 뽑기 전에 Sigmoid 함수에 넣으면 어떨까요?

$$H(X) = \frac{1}{1 + e^{-XW}}$$

- 결과는 항상 0부터 1 사이의 확률 값으로 한정됩니다.
- 다만 기존에 사용했던 MSE 비용 함수를 그대로 사용하기 어렵습니다. (non-convexity)

이진 분류와 Sigmoid

• 다만 기존에 사용했던 MSE 비용 함수를 그대로 사용하기 어렵습니다. (non-convexity)

엔트로피(Entropy)

• Entropy는 특정 시스템이 얼마나 불안정한지 알려주는 근거로 사용될 수 있습니다.

$$H(P,Q) = -\sum P(x)\log(Q(x))$$

- P(x): 실제 확률
- Q(x): 예측 확률
- 예를 들어 예측 확률이 0.1이고, 실제 확률이 1이라고 해봅시다.
 - 이는 예측이 많이 틀린 것입니다.
 - 따라서 매우 큰 값(정보량)이 도출됩니다.

Logistic Regression의 비용 함수

- 볼록 함수(convex function) 형태를 보장할 수 있는 비용 함수를 새롭게 정의합니다.
- y = 1일 때와 y = 0일 때를 나누어서 분류 문제의 비용 함수를 설정할 수 있습니다.

$$c(H(x), y) = \begin{cases} -\log(H(x)) & : y = 1\\ -\log(1 - H(x)) & : y = 0 \end{cases}$$

- 만약 판단 결과가 틀리게 되면 log 함수에 의하여 큰 피드백이 가해집니다.
- 결과적으로 비용 함수는 조건식 없이 다음과 같은 형태로 사용합니다.

$$c(H(x), y) = -y \log(H(x)) - (1 - y) \log(1 - H(x))$$

Multinomial Classification

- 클래스가 여러 개인 문제를 해결하는 방법을 알아봅시다.
 - 각각의 클래스 마다 별도의 모델을 두어서 확률 값을 각각 구하는 아이디어를 사용할 수 있을까요?

Multinomial Classification

- 클래스가 여러 개인 문제를 해결하는 방법을 알아봅시다.
 - 행렬 곱을 이용하면 하나의 네트워크만을 이용할 수 있습니다.

특징1 특징2 특징3
$$W_{1A}$$
 W_{1B} W_{2A} W_{2B} W_{3A} W_{3B} W_{3B} Class A Class B W_{2A} W_{3B} W_{3B}

$$H(X) = \frac{1}{1 + e^{-XW}} = (s(x_1 w_{1A} + x_2 w_{2A} + x_3 w_{3A}) \quad s(x_1 w_{1B} + x_2 w_{2B} + x_3 w_{3B}))$$

• 단 Sigmoid 함수를 각 클래스마다 별도로 취해야 할까요?

Multinomial Classification

• 클래스가 여러 개인 문제를 해결하는 방법을 알아봅시다.

Sigmoid를 쓴다면?

- 아웃풋 뉴런(클래스) 각각 0부 터 1사이의 값을 가집니다.
- 모델의 결과를 모두 합쳤을 때 1이 되면 더 좋을 것입니다.
- 예시) 이미지가 들어왔을 때
 - 고양이: 70%
 - 강아지: 30%

Softmax Function

- 모델의 결과 확률을 모두 합한 값이 1이 되도록 만들기 위해 Softmax를 사용합니다.
 - 아래 예시는 클래스의 개수가 5개인 상황을 가정합니다.

- Binary classification → Sigmoid를 사용
- Multinomial classification → Softmax 사용

Cross-entropy 비용 함수

- 마지막 레이어에서 Softmax를 사용할 때 비용 함수를 어떻게 설정할 수 있을까요?
 - **크로스 엔트로피(Cross-entropy)** 비용 함수를 이용합니다.

딥러닝 개요: 뉴런(Neuron)

- 뉴런은 뇌를 구성하는 기본 단위입니다.
- 사람의 뇌는 1,000억 개 이상의 뉴런으로 구성된 복잡한 회로와 같습니다.

딥러닝 개요: 뉴런(Neuron)

- 하나의 뉴런 출력 값을 수학적으로 모델링할 수 있습니다. (그냥 앞서 확인했던 선형 함수)
 - [핵심] 활성화 함수(Sigmoid 등)를 이용하여 모델 전체에 비선형성(non-linearity)을 추가합니다.

Universal Approximation Theorem (무엇이든 근사가 가능하다)

• 하나 이상의 은닉층(hidden layer)를 가지고 비선형 활성화 함수를 가진 뉴럴 네트워크는 임의의 연속인 다변수 함수(고차 함수도 가능)를 근사할 수 있습니다. (1989, G. Cybenko)

딥러닝(심층 신경망)이 하는 역할이 무엇일까요?

"특정한 함수를 (수학적으로) 근사할 수 있는 기계"

• 딥러닝 모델은 <mark>입력</mark>을 넣었을 때 적절한 **출력**이 무엇인지 맞히는 방식으로 동작합니다.

• 세상은 우리가 설명하지 못하는 다양한 함수로 구성되며, 딥러닝은 이것을 근사할 수 있도록 합니다.

XOR 문제

OR		
I ₁	l ₂	out
0	0	0
0	1	1
1	0	1
1	1	1

- 이는 선형적으로 분리 되지 않는 문제입니다.
- 더불어 1960년대에는 뉴럴 네트워크를 깊게 쌓아 올리더라도 앞쪽 레이어를 학습할 방법이 없었습니다.
- 레이어를 깊게 쌓고, 비선형 활성화 함수를 이용해 비 선형적인 분류 모델을 학습하 수 있게 되어 해결 가능.

역전파(Backward-propagation)

- 앞에서 뒤로만 순전파(Forward-propagation)를 시키는 경우 앞쪽의 가중치는 학습되지 않습니다.
- 따라서 역전파(Backward-propagation)가 필요합니다.

- 인공지능 모델은 여러 개의 **다수의 레이어**로 구성되어 있습니다.
- 그러므로 손실 함수(loss function)의 기울기를 계산하는 것은 합성함수를 미분하는 것과 같습니다.

• 따라서 **합성함수의 미분법**은 인공지능 분야에서 매우 중요합니다.

• 합성함수의 도함수는 다음과 같습니다.

$$f(g(x))' = f'(g(x))g'(x)$$

• 도함수의 정의를 이용해 합성함수의 미분 결과를 유도할 수 있습니다.

$$f(g(x))' = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} * \frac{g(x+h) - g(x)}{h}$$

$$= f'(g(x))g'(x)$$

$$z = g(f(x))$$
의 미분법은?

$$\frac{dz}{dx} = \frac{dz}{dy} * \frac{dy}{dx}$$

• 더하기 노드에 대한 편미분

• 곱하기 노드에 대한 편미분

대표적인 활성 함수

Sigmoid

- 뉴럴 네트워크 초기 연구에 많이 사용되었으나 최근에는 많이 사용되지 않습니다.
- 대표적인 문제점: Gradient vanishing (네트워크가 매우 깊어지면 앞쪽 레이어는 기울기가 작음)

대표적인 활성 함수

ReLU

- 입력 값이 0 이상일 때만 입력 값을 그대로 출력하는 함수입니디f(x) = max(0,x)
- Gradient vanishing 문제를 효과적으로 해결하며 학습 속도를 높입니다.

최적화(Optimizer)

- GD: 전체 데이터를 한 번에 확인한 뒤에 기울기를 계산해 학습
- SGD: 데이터셋을 쪼갠 뒤에 미니 배치(Mini-batch) 단위로 학습
 - Momentum: 내려오던 방향으로(관성) 조금 더 많이 학습
 - Adagrad: 안 가본 곳을 초반에 빠르게 학습하고, 많이 가본 곳은 세밀하게 학습
 - RMSProp: 이전 맥락을 확인하며 세밀하게 학습
 - Adam: RMSProp + Momentum의 개념을 적절히 활용

DNN for MNIST

- PyTorch를 이용해 손글씨 분류기 만들기
- 실습 코드 살펴보기
 - 기본적인 DNN을 이용해 MNIST 분류하기 실습

CNN

- 고양이 시각피질 반응 연구: 고양이의 시각피질에는 사선을 인식하는 기능이 있습니다.
 - 다양한 패턴에 따라 뉴런이 반응하는 정도가 서로 다르다는 실험 결과가 도출됩니다.

CNN

- 기본적으로 모든 뉴런을 **완전 연결(Fully-Connected)** 방식으로 연결하면 어떨까요?
 - 파라미터의 수가 많으며 학습 시간이 길어집니다.
- 어떻게 하면 이미지의 공간 정보를 적절히 유지하며 학습할 수 있을까요?
 - CNN을 이용하면 많은 파라미터를 공유하고 이미지 특성을 효과적으로 학습할 수 있습니다.

CNN

• CNN을 위한 준비물

CNN

• 하나의 필터는 이미지에 대하여 슬라이딩 하면서 특징 맵(feature map)을 계산합니다.

1	1	1	0	0						
0	1	1	1	0	1	0	1		5	
1	0	1	1	1	0	1	0			
0	0	1	1	0	1	0	1			
0	1	1	0	0				•		

CNN

• 하나의 필터는 이미지에 대하여 슬라이딩 하면서 특징 맵(feature map)을 계산합니다.

1	1	1	0	0						7	
0	1	1	1	0	1	0	1		5	3	
1	0	1	1	1	0	1	0				
0	0	1	1	0	1	0	1				
0	1	1	0	0				•			

CNN 모델의 특징 맵 (Feature Map)

- 일반적으로 CNN에서 레이어가 깊어질수록 채널의 수가 많아지고 너비와 높이는 줄어듭니다.
- 컨볼루션 레이어의 서로 다른 필터들은 각각 적절한 특징(feature)값을 추출하도록 학습됩니다.

CNN의 필터(Filter)

- 실제로 각 필터는 특정한 특징(feature)를 인식하기 위한 목적으로 사용됩니다.
- 각 필터는 특징이 반영된 특징 맵(feature map)을 생성합니다.
- 얕은 층에서는 local feature, 깊은 층에서는 고차원적인 global feature를 인식하는 경향이 있습니다.

^{*}Visualizing and Understanding Convolutional Networks

• 하나의 입력 이미지(왼쪽)와 하나의 필터(오른쪽)가 있다고 가정합시다.

• 입력 이미지의 로컬 영역과 필터(filter) 사이에서 내적(dot product)을 계산해 각 위치의 결과를 구합니다.

• 각 위치에서의 콘볼루션 연산 결과를 모아서 특징 맵(feature map)을 생성합니다.

• 6개의 개별적인 필터(Filter)를 가진 Convolution Layer를 이용하면 다음과 같습니다.

• 실제 CNN Layer는 여러 번 중첩되어 사용될 수 있습니다.

VGG Network (ICLR 2015)

• VGG 네트워크는 작은 크기의 3x3 컨볼루션 필터(filter)를 이용해 레이어의 깊이를 늘려 우수한 성능을 보입니다.

• 본 논문에서는 **깊은 네트워크**를 학습시키기 위한 방법으로 **잔여 학습(residual learning)**을 제안합니다.

< ImageNet top-1 training error >

60 50 error (%) 18-layer ResNet-18 ResNet-34 34-layer 20 10 30 40 50 iter. (1e4)

일반적인 CNN

잔여 학습을 적용한 CNN

- 잔여 블록(residual block)을 이용해 네트워크의 최적화(optimization) 난이도를 낮춥니다.
 - 실제로 내재한 mapping인 H(x)를 곧바로 학습하는 것은 어려우므로 대신 F(x) = H(x) x를 학습합니다.

• 잔여 블록(residual block)을 이용해 네트워크의 최적화(optimization) 난이도를 낮춥니다.

• 이전까지의 아키텍처와 다르게 레이어가 깊어질수록 성능이 향상됩니다. (단, 레이어가 과도하게 깊으면 오히려 감소)

	plain	ResNet
18 layers	27.94	27.88
34 layers	28.54	25.03

Top-1 validation error rates (%)

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Top-5 test error rates (%) of **ensembles**

method	top-1 err.	top-5 err.	
VGG [41] (ILSVRC'14)	-	8.43 [†]	
GoogLeNet [44] (ILSVRC'14)	-	7.89	
VGG [41] (v5)	24.4	7.1	
PReLU-net [13]	21.59	5.71	
BN-inception [16]	21.99	5.81	
ResNet-34 B	21.84	5.71	
ResNet-34 C	21.53	5.60	
ResNet-50	20.74	5.25	
ResNet-101	19.87	4.60	
ResNet-152	19.38	4.49	

Validation error rates (%) of single-model

CNN을 활용한 다양한 아키텍처

• State-of-the-art 동향: https://paperswithcode.com/sota/image-classification-on-imagenet

Transfer Learning을 활용한 마동석 분류기 만들기

- PyTorch를 이용해 마동석/김종국 분류기 만들기
- 실습 코드 살펴보기
 - 이미지 크롤링 + Transfer Learning + Web API 실습

마동석 88%

김종국 94%

김종국 95%