Hierarchical Text-Conditional Image Generation with CLIP Latents

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, Mark Chen

Group 6:

Jeffrey Chan, Qingyuan Li, Kevin Samms, Zhaoning Wang

Outline

- Background/Motivation
- Method
 - Overall Method
 - Prior
 - Decoder
- Image Manipulation
- Text-to-Image Generation Analysis
 - Why the prior matters?
 - GLIDE vs Dalle-2/unCLIP (Human Evaluation)
 - Diversity-Fidelity Trade-off with Guidance
- Limitations

Background/Motivation

Text to Image Generation

"an espresso machine that makes coffee from human souls, artstation"

"panda mad scientist mixing sparkling chemicals, artstation"

"a corgi's head depicted as an explosion of a nebula"

Conditioned Diffusion Model

Dhariwal, Prafulla, and Alexander Nichol. "Diffusion models beat gans on image synthesis." *Advances in Neural Information Processing Systems* 34 (2021): 8780-8794.

CLIP

(1) Contrastive pre-training

(2) Create dataset classifier from label text

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." *International conference on machine learning*. PMLR, 2021.

CLIP Guided Diffusion Model

 $\hat{\mu}_{\theta}(x_t|c) = \mu_{\theta}(x_t|c) + s \cdot \Sigma_{\theta}(x_t|c) \nabla_{x_t} (f(x_t) \cdot g(c))$

from GLIDE: classifier-free guidance > CLIP guidance

How use CLIP more effectively to improve generations?

Method

unCLIP/DALL-E-2 architecture

Prior

Given CLIP Text encoder output (text embedding) y, generate corresponding Image
Embedding z_i

Decoder

 \circ Produces the image from Image embedding z_i

Prior

- Autoregressive (AR) prior:
 - AR models predict a sequence of data on a previous data sequence
 - Use a transformer to predict Image embedding sequence from the Text embedding sequence.
- Diffusion prior:
 - Diffusion model on CLIP Image Embedding
 - o Input:
 - Encoded text
 - CLIP text embedding
 - Timestep
 - Noised CLIP Image Embedding

Diffusion Prior CLIP Image embeddings z_i **Transformer** SAME **Diffusion Timestep** Denoised CLIP 2 t-1image embeddings **Transformer** Encoded Text C **CLIP Text embeddings** Noised CLIP image embeddings z_t Diffusion Timestep t

Training

Using CLIP to get input and ground-truth while training the prior.

Training Loss

$$L_{\text{prior}} = \mathbb{E}_{t \sim [1,T], z_i^{(t)} \sim q_t} \left[\| f_{\theta}(z_i^{(t)}, t, y) - z_i \|^2 \right]$$

 $^{^*}$ ${m {\mathcal Y}}$ is the combination of encoded text ${m {\mathcal C}}$ and CLIP Text Embedding ${m {\mathcal Z}} t$

Decoder

- Diffusion model based on GLIDE
 - GLIDE uses a transformer to embedding the input text
 - Dall-E-2 put CLIP embedding into the process
- Upsampler
 - Used to generate higher-resolution Images
 - No conditioning, and no guidance

Decoder U-Net detail

Upsampler

2 unconditional off-the-shelf upsamplers to create images in higher resolution

- [1] Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models. arXiv:2102.09672, 2021.
- [2] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad Norouzi. Image Super-Resolution via Iterative Refinement. arXiv:arXiv:2104.07636, 2021.

Training the decoder with CLIP encoder

Inference

- Prior
 - \circ Convert the CLIP Text Embedding to CLIP Image Embedding ${oldsymbol{z}}$
- Decoder
 - \circ Produces the image from Image embedding z and optionally with text embedding y.

Image Manipulations

What is Latent space

Interpolation in Latent Space

Bipartite latent representation (z_i , X_t)

Variation

Input Image:

Fix $oldsymbol{z_i}_{ extstyle Vary} X_t$

Generation:

Interpolation

Modify image embedding:

$$z_{i_{\theta}} = \operatorname{slerp}(z_{i_1}, z_{i_2}, \theta)$$

Text Diff

Typographic Attacks

Attack:

Clip Image Prediction:

Generation Image Embedding:

Granny Smith: 100% iPod: 0% Pizza: 0%

Granny Smith: 0.02% iPod: 99.98% Pizza: 0%

Granny Smith: 94.33% iPod: 0% Pizza: 5.66%

Text-to-Image Generation Analysis

Why the prior matters?

Condition decoder on captions alone

Condition decoder on Caption + text embedding impersonating image embeddings

Prior + CLIP image embedding

"A group of baseball players is crowded at the mound."

"an oil painting of a corgi wearing a party hat"

"a hedgehog using a calculator"

"A motorcycle parked in a parking space next to another motorcycle."

"This wire metal rack holds several pairs of shoes and sandals"

MS COCO FID SCORE

GLIDE vs unCLIP (MS-COCO)

MS-COCO - standard evaluation:

Zero-shot FID score 10.39 - beats GLIDE & DALL-E in MS-COCO

Model	FID	Zero-shot FID	Zero-shot FID (filt)
AttnGAN (Xu et al., 2017)	35.49		
DM-GAN (Zhu et al., 2019)	32.64		
DF-GAN (Tao et al., 2020)	21.42		
DM-GAN + CL (Ye et al., 2021)	20.79		
XMC-GAN (Zhang et al., 2021)	9.33		
LAFITE (Zhou et al., 2021)	8.12		
Make-A-Scene (Gafni et al., 2022)	7.55		
DALL-E (Ramesh et al., 2021)		~ 28	
LAFITE (Zhou et al., 2021)		26.94	
GLIDE (Nichol et al., 2021)		12.24	12.89
Make-A-Scene (Gafni et al., 2022)			11.84
unCLIP (AR prior)		10.63	11.08
unCLIP (Diffusion prior)		10.39	10.87

GLIDE vs unCLIP (Human Evaluations)

FID not always in agreement with human evaluation

Photorealism → winner: GLIDE - by **small** margin; 48.9%CI

Caption Similarity → winner: GLIDE - by **small** margin; 45.3%Cl

Sample Diversity (4 x 4 grid) → winner: unCLIP stack by wide margin; 70.5%CI

Diversity-Fidelity Trade-off with Guidance

unCLIP has better diversity and relatively good fidelity

Image aesthetics improved for both unCLIP and GLIDE

GLIDE vs unCLIP

Result:

- Guidance improves GLIDE, and CLIP decoder (negative effect on CLIP prior)
- GLIDE sacrifices Recall for aesthetic quality improvement, unCLIP does not

Limitation of the model

Attribute Binding

- Suffer prompt where it must bind two separate objects (cubes) to two separate attributes (colors).
- Reconstructions mix up objects and attributes

"a red cube on top of a blue cube".

Coherent Text

A sign that says deep learning

Complex Scene

Conclusion

- Image embedding creates better generation than text embeddings.
- CLIP embedding Z_i holds image content information; meanwhile X_t holds the style of image generation.
- Diffusion prior (Text-to-Image embeddings) increases the fidelity of image generation.
- unCLIP has limitations with attribute binding, text generation, and complex scenes.