

Операционные системы

Введение в операционные системы и аппаратное обеспечение ЭВМ

Требования к слушателям

- 1. Знание операционной системы Microsoft Windows/*nix Примеры и лабораторные работы будут выполняться в данной ОС
- 2. Базовое знание языка C/C++ Лабораторные работы должны будут выполнены на языках C/C++

Литература

Э. ТАНЕНБАУМ, «ОПЕРАЦИОННЫЕ СИСТЕМЫ. РАЗРАБОТКА И РЕАЛИЗАЦИЯ»

Ю. ВАХАЛИЯ, «UNIX ИЗНУТРИ»

Местоположение ОС

Функции ОС

- 1. Увеличение уровня абстракции
- 2. Управление ресурсами

ОС как расширенная машина

ОС в качестве менеджера ресурсов

- 1. Мультиплексирование Во времени и в пространстве
- 2. Сохранение целостности данных
- 3. Обеспечение защиты при многопользовательском режиме

Развитие OC. Поколения

- 1. Электронные лампы (1945-1955)
- 2. Транзисторы и системы пакетной обработки (1955-1965)
- 3. Интегральные схемы и многозадачность (1965-1980) Многозадачность, spooling, разделение времени
- 4. Персональные компьютеры (1980 ...) GUI, сетевые ОС, распределенные ОС
- 5. Компьютеры пятого поколения Prolog, искусственный интеллект

Компоненты ЭВМ

Процессоры. Общие положения

- 1. Регистры
- 2. Счетчик команд
- 3. Указатель стека
- 4. PSW слово состояния программы
 Биты условия, биты управления приоритетом ЦП, биты режима ядра

Процессоры. Основные характеристики

- •Тактовая частота
- •Объем адресуемой памяти
- •Кэш
- •Дизайн архитектуры
- •Скорость обращения к регистрам и ОЗУ

Процессоры. Конвейер

```
IF (<u>англ.</u> Instruction Fetch) — получение <u>инструкции</u>,
```

ID (англ. Instruction Decode) — раскодирование инструкции,

EX (<u>англ.</u> *Execute*) — выполнение,

MEM (англ. Memory access) — доступ к памяти,

WB (англ. Register write back) — запись в регистр.

IF	ID	EX	MEM	WB				
↓ <i>i</i>	IF	ID	EX	MEM	WB			
<i>t</i> →		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB

Суперскалярные процессоры

F	F
D1	D1
D2	D2
EX	EX
WB	WB

Многопоточность и многоядерность

Память

- 1. Регистры
- 2. Кэш
- **3**. ОЗУ
- 4. SSD
- 5. Магнитный диск
- 6. Магнитная лента

Шины

Системные вызовы

- 1. Для управления процессами
- 2. Для управления файлами
- 3. Для управления каталогами
- 4. Другое

Классификация ОС по функциональным характеристикам

- 1. ОС мейнфреймов
- 2. Серверные ОС
- 3. Многопроцессорные ОС
- **4.** OC ΠK
- ОС КПК
- 6. Встроенные ОС

Классификация ОС по функциональным характеристикам

- 7. ОС сенсорных узлов
- 8. ОС реального времени
- 9. ОС смарт-карт

Структурная классификация ОС

- 1. Монолитные системы
- 2. Многоуровневые системы
- 3. Микроядра
- 4. Клиент-серверная модель
- 5. Виртуальные машины
- 6. Экзоядра

Монолитные ОС

Многоуровневые системы

Уров ень	Функция
5	Оператор
4	Программы пользователя
3	Управление вводом-выводом
2	Связь оператора с процессом
1	Управление основной памятью и магнитным барабаном
0	Распределение ресурсов процессора и обеспечение много

Микроядро

Клиент-серверная модель

Виртуальные машины

Экзоядра

- 1. Ядро осуществляет контроль над ресурсами
- 2. Отсутствует режим отображения ресурсов

