```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=sns.load_dataset('car_crashes')
```

df.head()

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	ab
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	
A	12 0	4 200	3 360	10 020	10 620	Ω7Ω //1	165 63	•

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 8 columns):
# Column
                    Non-Null Count Dtype
                                    float64
0
    total
                     51 non-null
     speeding
                     51 non-null
                                    float64
1
                                    float64
     alcohol
                     51 non-null
     not_distracted
                    51 non-null
                                    float64
                                    float64
     no_previous
                     51 non-null
     ins_premium
                     51 non-null
                                    float64
     ins_losses
                     51 non-null
                                    float64
     abbrev
                     51 non-null
                                    object
dtypes: float64(7), object(1)
memory usage: 3.3+ KB
```

df.describe()

	total	speeding	alcohol	<pre>not_distracted</pre>	no_previous	ins_premium	ins_losses
count	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000	51.000000
mean	15.790196	4.998196	4.886784	13.573176	14.004882	886.957647	134.493137
std	4.122002	2.017747	1.729133	4.508977	3.764672	178.296285	24.835922
min	5.900000	1.792000	1.593000	1.760000	5.900000	641.960000	82.750000
25%	12.750000	3.766500	3.894000	10.478000	11.348000	768.430000	114.645000
50%	15.600000	4.608000	4.554000	13.857000	13.775000	858.970000	136.050000
75%	18.500000	6.439000	5.604000	16.140000	16.755000	1007.945000	151.870000
max	23.900000	9.450000	10.038000	23.661000	21.280000	1301.520000	194.780000

sns.scatterplot(x="speeding",y="alcohol",data=df)

#inference: It shows the relation between speeding and alcohol.

```
plt.figure(figsize=(10,6),dpi=200)
sns.scatterplot(data=df,x="abbrev",y="alcohol")
```

plt.xticks(rotation=90);

#inference: From the above scatter plot we can say the alcohol consumption accident in each different state

```
plt.figure(figsize=(10,6),dpi=200)
sns.barplot(data=df, x='abbrev', y='total')
plt.xticks(rotation=90);
plt.title("Car crash per State")
```

Text(0.5, 1.0, 'Car crash per State')

#inference: The scatterplot displays the relationship between speeding and the total number of car crashes. It appears that as the percer

sns.distplot(df["total"])

C:\Users\praveen\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated funct
warnings.warn(msg, FutureWarning)
<AxesSubplot:xlabel='total', ylabel='Density'>

#inference: It shows how the total no of crashes varies. It helps to visulise the shape.

sns.relplot(x="speeding",y="alcohol",data=df,hue="ins_premium")

<seaborn.axisgrid.FacetGrid at 0x1bb33ffbdc0>

#inference: The relational plot shows the relationship between 'speeding' and 'alcohol' variables, with the 'ins_premium' variable repres

sns.jointplot(data=df,x='speeding',y='alcohol',kind='scatter')

<seaborn.axisgrid.JointGrid at 0x1bb34222490>

#inference: The joint plot combines a scatter plot and histograms to show the relationship between the 'speeding' and 'alcohol' variables.

corr=df.corr()
corr

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.623116
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	1.000000

sns.heatmap(corr,annot=True)

<AxesSubplot:>

#inference: It shows correlation matrix of the car crash. it shows how two variables depends on each other

X