

Introdução à fotogrametria com Software Livre em contexto educativo

Conteúdos

4. Pós-processamento: operações básicas de edição e otimização

- 4.1 Especificar uma pasta de saída/exportação
- 4.2 Retopologia e Decimate
- 4.3 Orientação, posição e escala
- 4.4 Definir limites (Bounding box)
- 4.5 Turntable
- 4.6 Máscaras: workflow alternativo

Publish (exportação)

No Meshroom existe uma exportação em cada nó. Todos os nós têm uma pasta de **output** onde é armazenado o resultado da computação do nó. Como o **Texturing** é o último, o resultado final deste nó é o modelo 3D e a respetiva textura.

No entanto, é possível e útil especificar um pasta de saída através do nó **Publish**.

Publish (exportação)

A opção Folder permite exportar todo o conteúdo da pasta.

O mais habitual é utilizar as opções **Mesh**, **Material** e **Textures** para exportar os ficheiros OBJ (modelo 3D), MTL (associação do modelo à textura) e texturas de imagem.

No final de um processo de fotogrametria, é comum ser gerado um modelo bastante pesado. Em muitos casos, otimizar, simplificando e limpando o modelo, é um processo necessário para que o modelo possa ser útil.

Os nós **MeshResampling** e **MeshDecimate** permitem implementar operações de simplificação do modelo 3D gerado mantendo a sua forma, volume, limites. **MeshDecimate** elimina vértices para reduzir a densidade. Os vértices no modelo final já existiam na malha original.

MeshResampling implementa uma operação de retopologia, recria vértices na superfície com uma densidade uniforme, os vértices na versão final não são os da malha original.

Principal configuração é o **nível de simplificação** (valor entre 0 e 1). Pode definir um **número fixo**, **mínimo** e/ou **máximo** de vértices a existir no final da operação.

Principal configuração é o **nível de simplificação** (valor entre 0 e 1). Pode definir um **número fixo**, **mínimo** e/ou **máximo** de vértices a existir no final da operação.

Existem vários métodos e alguns baseiam-se na existência de fotografias com marcadores. O método manual, disponível em todas as circunstâncias, segue os seguintes passos:

- 1. Adicionar nó **SfMTransform**
- 2. Transformation Method Manual.
- 3. Duplo clique em cima do nó para visualizar no 3D View. Se não surgir nada, faça Compute no nó.
- 4. Configuração recomendada para visualização 3D: ativar Gizmo do nó, esconder Trackball
- 5. Utilize Gizmo ou Sliders/Valores nas propriedades para manipular orientação, posição e escala

Também é possível orientar o modelo a partir de uma das câmaras reconstruídas.

- 1. Escolha a opção from_single_camera
- 2. Defina qual a câmara a utilizar. Na janela Image Gallery clique com o botão direito do rato em cima da imagem e escolha **Define as Center Image**.

DICA

Se possível, é preferível realizar as operações de definição de orientação, posição e escala para o final e numa aplicação externa (por exemplo: Blender)

Definir limites (Bounding box)

É possível limitar o modelo a uma área específica.

- 1. Compute até ao **Meshing**.
- Clique com botão direito no Meshing e escolha "Duplicate Nodes from Here".
- 3. No novo nó Meshing, ative a opção **Custom Bounding Box**.

Limites (Bounding box)

Limites (Bounding box)

- 1. Configuração recomendada para a visualização 3D: esconder a Trackball e ativar a visualização da Bounding Box.
- 2. Utilize Gizmo ou Sliders/Valores nas propriedades para manipular a Bounding Box.
- 3. Faça Compute no novo nó de Meshing para verificar as alterações.

março 2024

Limites (Bounding box)

Nas imagens abaixo é visível o primeiro resultado do nó Meshing (esquerda) e o resultado do nó Meshing2 com Bounding Box (direita).

Turntable

Se pretende utilizar uma mesa rotativa (turntable), configure o **Minimal 2D Motion** para valor 2 (ou mesmo 3) para evitar detetar os pontos que estão na mesma localização entre duas imagens (os pixels estáticos).

Máscaras: workflow alternativo

Se utilizar um fundo plano, não existem elementos que permitam identificá-lo, o software não o captura e assume que foi a câmara que se moveu.

A imagem ao lado mostra o posicionamento das câmaras após o processamento.