安卓板与下位机通讯协议

1、通信方式

采用主机"轮询",从机"应答"的点对点通信方式,下位机为从机。 主机使用广播地址发送命令时,从机不允许应答。

2、通信准备

用从机键盘设置下位机串行接口通信参数: 本机地址。

具备 RS232 的主机可以使用通信接口转换器完成到 RS485 的转换。

3、注意事项

不同通讯帧之间的间隔是 3.5 个字节通信时间以上。如果在一帧数据完成之前有超过 3.5 个字节时间的停顿,接收设备将刷新当前的消息并假定下一个字节是一个新的数据帧的 开始。同样的,如果一个新消息在小于 3.5 个字节时间内接着前边一个数据开始的,接收的设备将会认为它是前一帧数据的延续。

4、安卓板下发通讯帧结构

帧头: 从机地址(1字节);

数据:功能代码(1字节),数据(4字节);

帧尾: CRC 校验 (2 字节)。

举例:

安卓板下发查询设备状态命令: 0x01,0x02,0x00, 0x00, 0x00, 0x00, 0x78, 0x0A;

其中第 0 个字节 0x01 代表的是地址为 0x01 的从机;

其中第1个字节0x02代表的是此帧是查询功能;(附表1会详细列出现有功能代码)

其中第2个字节至3个字节是附加信息,预留:

其中第4个字节至5个字节是按照比特位规定状态,(附表2会给出定义)

其中第6个字节和第7个字节是 CRC 校验; (CRC 校验 C程序会给出);

安卓板下发控制设备状态命令: 0x01,0x05,0x00, 0x01, 0x00, 0x01, 0x5D, 0xCA;

其中第 0 个字节 0x01 代表的是地址为 0x01 的从机;

其中第 1 个字节 0x05 代表的是此帧是控制功能: (附表 1 会详细列出现有功能代码)

其中第2个字节至3个字节是指定的控制设备;(附表4会列出控制设备)

其中第4个字节至5个字节是指定的控制动作,(附表4会给出定义)

其中第6个字节和第7个字节是 CRC 校验: (CRC 校验 C 程序会给出):

安卓板下发读写设备版本号命令:

其中第 0 个字节 0x01 代表的是地址为 0x01 的从机;

其中第1个字节0x05代表的是此帧是控制功能:(附表1会详细列出现有功能代码)

其中第2个字节至3个字节是指定的控制设备:(附表4会列出控制设备)

其中第4个字节至5个字节是指定的控制动作;(附表4会给出定义)

其中第6个字节是版本号字节个数;

其中第7个字节和第13个字节是版本号的ASCII码;

其中第 14 个字节和第 15 个字节是 CRC 校验: (CRC 校验 C 程序会给出):

5、下位机上传通讯帧结构

帧头: 从机地址(1字节);

数据: 功能代码(1字节)+帧长+数据:

帧尾: CRC 校验(2字节)。

举例:

下位机上传设备状态命令: 01 02 63 00 05 9D 0B F2 00 B7 D0 00 00 00 00 00 00 61 00 62 00 67 31 98 34 07 00 12 10 1E 10 20 10 1B 10 17 10 21 10 1B 10 22 10 17 10 27 10 1F 10 2B 10 15 10 00 00 64 00 41 47 41 4A 42 43 31 44 48 31 33 54 39 39 30 32 00 00 00 00 53 69 72 69 75 73 31 2E 35 56 31 36 00 00 00 00 00 00 00 D7 81;

其中第 0 个字节 0x01 代表的是地址为 0x01 的从机;

其中第1个字节0x02代表的是此帧是回应查询功能;(附表1会详细列出现有功能代码)

其中第 2 个字节 0x63 代表的是有效数据是 99 个:

其中第3个字节至4个字节是门锁和电机等状态信息;(附表2会给出定义)

其中第5个字节至8个字节是电池温度信息;(附表3会给出转换公式)

其中第9个字节至12个字节是电池电压信息;(附表3会给出转换公式)

其中第 13 个字节至 16 个字节是电池电流信息; (附表 3 会给出转换公式)

其中第 17 个字节至 18 个字节是电池相对容量百分比信息; (附表 3 会给出转换公式)

其中第 19 个字节至 20 个字节是电池绝对容量百分比信息; (附表 3 会给出转换公式)

其中第 21 个字节至 22 个字节是电池剩余容量信息; (附表 3 会给出转换公式)

其中第23个字节至24个字节是电池满充容量信息:(附表3会给出转换公式)

其中第 25 个字节至 26 个字节是电池循环次数信息; (附表 3 会给出转换公式)

其中第27个字节至40个字节是电池1~7节电池电压信息;(附表3会给出转换公式)

其中第 41 个字节至 54 个字节是电池 8~13 节电池电压信息:(附表 3 会给出转换公式)

其中第55个字节至56个字节是电池SOH信息:(附表3会给出转换公式)

其中第 57 个字节至 76 个字节是电池 ID 信息: (附表 3 会给出转换公式)

其中第77个字节至96个字节是电池版本号信息;(附表3会给出转换公式)

其中第 97 个字节至 117 个字节是电池版本号信息; (第 97 个字节为芯片温度, 后面字节预留, 暂时不用)

其中第 118 个字节和第 119 个字节是 CRC 校验: (CRC 校验 C 程序会给出):

下位机上传读写设备版本号命令:

其中第 0 个字节 0x01 代表的是地址为 0x01 的从机;

其中第1个字节0x05代表的是此帧是回复控制功能:(需和子博沟通确认)

其中第 2 个字节 0x08 代表的是有效数据是 08 个;

其中第3个字节是回复指定的对应命令;(附表4会列出控制设备)

其中第 4 个字节至 10 个字节是回复指定的版本号的 ASCII 码数据:

其中第 11 个字节和第 12 个字节是 CRC 校验: (CRC 校验 C 程序会给出):

6、上位机切换通讯模式

举例:

上位机下发透传模式命令:0x01,0x05,0x00, 0x0B, 0x00, 0x01, 0xFF, 0xFF;

其中第 0 个字节 0x01 代表的是地址为 0x01 的从机:

其中第 1 个字节 0x05 代表的是此帧是控制功能: (附表 1 会详细列出现有功能代码)

其中第2个字节至3个字节是指定的控制设备;(附表4会列出控制设备)

其中第4个字节至5个字节是指定的控制动作,(附表4会给出定义)

其中第6个字节和第7个字节是 CRC 校验; (CRC 校验 C 程序会给出)

附表 1:

功能码	名称	作用
01	预留	预留
02	读取输入状态	取得一组开关的状态
03	预留	预留
04	复位控制板	复位控制板
05	强制输出状态	强制一组开关的状态

附表 2: 比特位状态定义

低八位比特位	状态 0	状态 1
7		
6		
5		
4		
3	备用锁关闭?	备用锁打开?
2	微动关闭	微动打开
1	电机关闭	电机打开
0	门锁关闭	门锁打开

附表 3: 电池参数计算方式

11.00. 11.00 30.1 77.7.7				
参数	计算公式	单位		
电池温度	((Byte6*256+Byte5)- 2731)/10	度		
电池电压	(Byte8*256+Byte7)	mV		
电池电流	(Byte10*256+Byte9)(未验证)	mA		
相对容量百分比	Byte11	%		
绝对容量百分比	Byte12	%		
剩余容量	(Byte14*256+Byte13)	mAh		
满充容量	(Byte16*256+Byte15)	mAh		
循环次数	(Byte18*256+Byte17)	次		
1~7 节电池电压				

附表 4: 指定的控制动作定义

们表示。				
	BYTE05:00	BYTE05:01	BYTE05:02	BYTE05:03
BYTE03=0D	读取电池校	写入电池校	校验码个	
	验码	验码	数	
BYTE03=0C	CAN 控制板	CAN 控制板		
	MOS 管关闭	MOS 管打开		
BYTE03=0B	通讯模式	转发模式	=	
BYTE03=0A	备用锁			
BYTE03=09	推杆收缩(继	推杆伸长(继	停止(继电	推杆逻辑
	电器)	电器)	器)	流程
BYTE03=08	编号			
BYTE03=07	读取硬件版	写入硬件版	版本号个	

	本号	本号	数	
BYTE03=06	读取软件版	写入软件版	版本号个	
	本号	本号	数	
BYTE03=05	推杆收缩	推杆伸长	推杆停止	
BYTE03=04	复位电池 ID	复位电池 ID		
	板	板		
BYTE03=03	微动开关关	微动开关打		
	闭(保留)	开(保留)		
BYTE03=02	电机关闭	电机打开		
BYTE03=01	门锁关闭(保	门锁打开	备注:后用	
	留)		作电柜后	
			门	

举例:

弹出 1 号仓电池: 05 05 00 09 00 03 5C 4D