Esercizio 1

Calcolare il numero delle foglie NL e l'altezza massima h_{max} di un primary B^+ -tree con i seguenti dati:

o dimensione di un nodo: D = 8192 con 96 byte di header

o lunghezze puntatori: $len(RID) \equiv len(p) = 7$ byte;

 $len(PID) \equiv len(q) = 6 byte$

o lunghezza chiave: len(k) = 10 byte

o numero record: NR = 200000

o utilizzazione pagina: u = ln 2

Si assuma che la lunghezza dei separatori nella mappa B-tree sia pari alla lunghezza delle chiavi. Si consideri anche l'occupazione dei puntatori alla foglia precedente e a quella successiva. Si tenga conto dello spazio utile in ogni nodo, pari a $D^*=D-96=8096$.

Esercizio 2

Calcolare l'occupazione di memoria di un secondary B⁺-tree con i seguenti dati:

• dimensione di un nodo: D = 4096 byte

• lunghezze puntatori: len(p) = 7, len(q) = 6 byte

lunghezza chiave: len(k) = 10 byte
numero record: NR = 1000000
numero valori distinti di chiave: NK = 1000
utilizzazione: u = ln 2

Si assuma che la lunghezza dei separatori nella mappa B-tree sia pari alla lunghezza delle chiavi. Si trascuri per semplicità l'occupazione dei puntatori alla foglia precedente e a quella successiva. Si assuma inoltre che la dimensione di un nodo coincida con quella di un blocco di disco.

Esercizio 3

Si consideri il B-tree sotto riportato (ordine g=1), nell'ipotesi di assenza di gestione di overflow:

- 1) indicare un valore di chiave che, se inserito, causerebbe un aumento dell'altezza dell'albero;
- 2) Riportare la struttura dopo l'inserimento della chiave indicata al punto precedente