1	-	-			1	No.	PAGE	1
1	_	1		1		1	DATE	_
		/	-	_			DATE	

	Chapter DATE / / /
-	(mean, variance, S.D.)
	Estimation of parameters
17	a li / Naza mol Pa
	1 1 it antimate of a free or
	Julia) which is compared the
	as the exact value of an unknown parameter of the
	population:
	population.
	Morimum Welited method is used to compute the point
	arotemarad do noitamitas
	U'
	Maximum litalitand mothod
	the a director ox continuous)
	for that depends on the parameter o'. Then the parameter
	'o' can be estimated using the following steps.
1	of independent values
	(- de a correspondire sample (x, x, , , , ,) for
	Consider a corresponding sample (x1, x2,, xn) for which the profo(or the pdf) fare f(x1), ((x2),, f(xn))
-	which is proposed to
4.4	
-	Consider the litelihood function ab $1 = f(x_0) f(x_0) := f(x_0) = \pi f(x_0) - (i)$
	[= (\(\sigma_i\) \(\frac{1}{3}\) \(\frac{1}{3}\) \(\frac{1}{3}\)
-	
-	Find the logarithm of both sides of are (1)
	Find the Logozithm of both Dides of care (i) i.e., lo L = lo { \$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}}
	acetial
S	olve 21 -0 to got the value of a which is the estimation
	30
0	I the parameter 'O'.
0	
N	ote:
8	(a) involves o'parameters 0,02,, 0x, then by solving
	$\frac{\partial L}{\partial O_1} = 0, \frac{\partial L}{\partial O_2} = 0, \frac{\partial L}{\partial O_3} = 0$
	90, 00%

For which the performance of a independent values for which the performance $\int_{z_1}^{z_2} (x_1 - x_2)^2 dx$ Lat, x_1, x_2, \dots, x_n be the Dample of a independent values for which the performance $\int_{z_1}^{z_2} (x_1 - x_2)^2 dx$ Lat, $L = \frac{\pi}{\pi} \left(\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{1}{2}(x_1 - x_2)^2} o \sqrt{2\pi} e^{\frac{1}{2}(x_1 - x_2)^2} \right)$ $= \frac{1}{\sigma^n (\sqrt{2\pi})^n} \times \frac{\pi}{|z_1|} \left(e^{\frac{1}{2}(x_1 - x_2)^2} e^{\frac{1}{2}(x_1 - x_2)^2}$

$$\frac{\partial L}{\partial \mu} = 0$$

$$\Rightarrow \frac{\partial}{\partial \mu} \left(\frac{\mu \sum_{i=1}^{\infty} x_i}{\sigma_0^2} \right) - \frac{\partial}{\partial \mu} \left(\frac{n\mu^2}{2\sigma_0^2} \right) = 0$$

$$\Rightarrow \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow \mu = \sum_{i=1}^{\infty} x_i - n\mu = 0$$

$$\Rightarrow$$

continuing classwork \Rightarrow $po^2 = \sum_{i=1}^{n} x_i$ Sample mean $\Rightarrow p = \sum_{i=1}^{n} x_i$ $\Rightarrow p = \overline{x}$ recommum bitalitood estimate (MLE) of p'in the Biromial distribution on is $\hat{p} = \frac{1}{n^2} \sum_{i=1}^{n} x_i = \overline{x}$ 6) Fird the maximum litely boots bearing of the in the poisson's distribution.

Ans: we know the prof of the poisson's distribution is x is the result of trials. $f(x) = e^{-t}x \mu^{x}, \quad x = 0,1,2,...,\infty$ because a value is very large Let, x1, x2,, xn bethe sample of 'n' independent values for Let, x_i which the profes are $f(x_i) = e^{-\mu} \mu^{x_i}, x_i = 0,1,2,...$ $|x_i| = 1,2,...,n$ Lat, $L = \pi f(x_i) = \pi e^{-t \cdot \mu x_i}$, $x_i = 0,1,2,...$ $= 2 L = \left(\frac{\pi}{\pi} \frac{1}{|\alpha|}\right) \left(\frac{\pi}{|\alpha|} e^{-\frac{1}{|\alpha|}}\right) \left(\frac{\pi}{|\alpha|} e^{-\frac{1}{|\alpha|}}\right) \left(\frac{\pi}{|\alpha|} e^{-\frac{1}{|\alpha|}}\right)$ $\Rightarrow L = \begin{pmatrix} \pi & 1 \\ \frac{1}{1-1} & \frac{1}{1-1} \end{pmatrix} e^{-n\mu} \sum_{i=1}^{n} \alpha_i$ $\Rightarrow pr = pr \left\{ \frac{1}{1-1} \right\} + pr - pr + pr \frac{1}{2} = 1$ => lol = los = 1 - np + 5 = lope 100 (g(pr) = 0 $\Rightarrow 0-n+\frac{1}{\mu}\sum_{i=1}^{n}x_{i}=0$ $\Rightarrow n = \frac{1}{\mu} \sum_{i=1}^{n} x_i = 0 \Rightarrow \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = X$

So, mle of ' μ ' iD $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = X$

Let, $L = \frac{\pi}{\pi} \frac{\partial}{\partial e} \frac{\partial}{\partial x_i} = 0$ independent values for which the prof's are $f(x_i) = 0$ e , for i = 1, 2, ..., n, $x_i > 0$ Let, $L = \frac{\pi}{\pi} \frac{\partial}{\partial e} \frac{\partial}{\partial x_i} \frac{\partial}{$

$$L = 0^{n} \times e^{-0 \sum_{i=1}^{n} \infty i}$$

Taking logarithm on both sides of the above ear. $ln L = n ln \Theta = -\Theta \sum_{i=1}^{n} \infty_{i}$

$$=) \frac{n}{\Theta} - \sum_{i=1}^{n} x_i = 0$$

$$=) \frac{n}{0} = \sum_{i=1}^{n} x_i$$

=)0= X , X is the sample mean

So, the mule of O is
$$\hat{O} = \bar{X}$$

(3) Fird the mle of 2 in the exponential distribution. we know the poly of the exponential distribution is fac) = { le la je a la como of la como de la Lot, x1, x2, ..., xn be the sample of independent values Box which the poles are f(xi) = 0 le ; xi > 0 and i = 1, 2, ..., nLot, L= # 20 ; xi 10 & i= @1, 2,, n =>L= le = 2 = 2 = zi? コレ= 2° e-2 = xi → lo L= n lo 2 - 2 == 0 NOW, 3(hL) =0 $\Rightarrow \frac{n}{2} - \sum_{i=1}^{n} \infty_i = 0$

$$\frac{1}{\lambda} = \sum_{i=1}^{n} x_i$$

$$\Rightarrow \lambda = \frac{1}{\lambda}$$

$$\Rightarrow \lambda = \frac{1}{\lambda}$$

So, mle of λ is $\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} x_i} = \frac{1}{x_i}$

Find the mle of the geometric distribution.

on month to the printhe distribution.

x-failures SSS...S 8-Successes when $\sigma=1$, x+1

= 111 6

pmb of the geometric distribution is $\beta(x) = \beta(1-p)^x$, where x + 1 is the total roof , and be the Dample of in independent values for Let, x_1, x_2 , and $f(x_i) = p(1-p)^{x_i}$; $f(x_i) = p(1-p)^{x_i}$ which the proof to independent values for which the proof to independent values for $f(x_i) = p(1-p)^{x_i}$; $f(x_i) = p(1-p)^{x_i}$ al=(p)?. (1-p) == x. $= 2 \ln L = n \ln p + \sum_{i=1}^{n} \ln (i-p)$ NOW, 3(In L) = 0 $\frac{1}{p} = \frac{\sum z_i}{1-p} = 0$ $= (1-p)n - p \sum_{i=1}^{n} z_{i} = 0$ n-np-npX=0 => np+np×=n So, mle of PiD If we take, x toiols, $\hat{p} = \frac{1}{x}$ P = 1+x How we have taken at toials,