

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE TLAXIACO

Practica 6 - Unidad 2 - CIRCUITOS ARITMETICOS Y LOGICOS 2

Presenta:

Hernández Martínez Adriana -22620083

Carrera:

Ingeniería en Sistemas Computacionales

Asignatura:

Arquitectura de Computadoras

Docente:

Ing. Edward Osorio Salinas

Tlaxiaco, Oaxaca, 28 de noviembre de 2024.

OBJETIVO

El alumno implementará las operaciones de suma, resta, multiplicación y comparación de 4 bits, basadas en circuitos integrados la familia TTL y/o tecnología MSI, para validar y comprobar su funcionamiento.

MATERIALES

- Laptop
- Software de simulación de circuitos digitales (LiveWire).

CIRCUITO SUMADOR

4.1 Circuito Sumador

4.1.1. Implementación

Implementa el circuito sumador de 4 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.

4.1.2. Tabla de verdad

A3	A2	A1	A0	B3	B2	B1	B0	Cin	S3	S2	S1	S0	Cout
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	1	0	0
0	0	0	0	0	0	1	1	0	0	0	1	1	0
0	0	0	0	0	1	0	0	0	0	1	0	0	0
0	0	0	0	0	1	0	1	0	0	1	0	1	0
0	0	0	0	0	1	1	0	0	0	1	1	0	0
0	0	0	0	0	1	1	1	0	0	1	1	1	0
0	0	0	0	1	0	0	0	0	0	0	0	1	0
0	0	0	0	1	0	0	1	0	0	0	1	0	0

4.1.3. Simulación

4.2 Circuito Restador

4.2.1. Implementación

Implementa el circuito restador de 4 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.

4.2.2. Tabla de verdad

А3	A2	A1	Α0	B3	B2	B1	B0	Cin	S3	S2	S1	SO	Cout
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	1	1	1	1	1
0	0	0	1	0	0	0	1	0	0	0	1	0	0
0	0	1	0	0	0	0	1	0	0	0	0	1	1

4.2.3. Simulación

4.3 Circuito Comparador

4.3.1. Implementación

Implementa el circuito comparador de 4 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.

4.3.2. Tabla de verdad

A3	A2	A1	A0	B3	B2	B1	B0	IGUAL	MAYOR	MENOR
0	0	0	0	0	0	0	0	1	0	0
0	0	0	1	0	0	0	0	0	0	1
0	0	1	0	0	0	0	1	0	0	1
0	0	1	0	0	0	1	0	1	0	0
1	0	0	0	0	1	0	0	0	1	1
1	1	1	1	0	0	0	0	0	1	1
1	1	1	1	1	1	1	1	1	0	1

4.3.3. Simulación

4.4 Circuito Multiplicador

4.4.1. Implementación

Implementa el circuito multiplicador de 4 bit utilizando compuertas lógicas y circuitos integrados de la familia TTL/MSI.

4.4.2. Tabla de verdad

A3	A2	A1	A0	В3	B2	B1	В0	P7	P6	P5	P4	P3	P2	P1	P0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0
0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	1	0	1	0	0	1	0	0	1

4.4.3. Simulación

5. Conclusiones

Al realizar esta práctica sobre el circuito comparador de 4 bits, pude comprender de manera más clara cómo se utilizan las compuertas lógicas para implementar operaciones complejas como la comparación de números binarios. Este ejercicio me ayudó a reforzar la lógica detrás de la detección de igualdad, mayor o menor entre dos números, y cómo los circuitos procesan estas condiciones bit a bit. Además, pude apreciar la importancia de optimizar el diseño, ya que el uso eficiente de las compuertas no solo simplifica el circuito, sino que también garantiza un funcionamiento más rápido y confiable. Sin duda, esta práctica me permitió aplicar conceptos teóricos a un caso práctico y entender mejor su utilidad en sistemas digitales.

6. Referencias

Referencias

- Alvarez, N. (11 de junio de 2013). Sumador de 4 bits. Obtenido de https://prezi.com/utt5oziwtuh9/sumador-de-4-bits/: https://prezi.com/utt5oziwtuh9/sumador-de-4-bits/
- Comparador de dos números de 4 bits. (11 de marzo de 2018). Obtenido de https://wilaebaelectronica.blogspot.com/2017/08/comparador-de-dos-numeros-de-4-bits.html: https://wilaebaelectronica.blogspot.com/2017/08/comparador-de-dos-numeros-de-4-bits.html
- Multiplicador de dos números de 4 bits. (7 de septiembre de 2017). Obtenido de https://wilaebaelectronica.blogspot.com/2017/09/multiplicador-de-dos-numeros-de-4-bits.html: https://wilaebaelectronica.blogspot.com/2017/09/multiplicador-de-dos-numeros-de-4-bits.html
- Restador de dos números de 4 bits. (20 de febrero de 2018). Obtenido de https://wilaebaelectronica.blogspot.com/2017/01/restador-de-dos-numeros-de-4-bits.html: https://wilaebaelectronica.blogspot.com/2017/01/restador-de-dos-numeros-de-4-bits.html