

MERGING DATAFRAMES WITH PANDAS

Reading multiple data files

Tools for pandas data import

- pd.read_csv() for CSV files
 - dataframe = pd.read_csv(filepath)
 - dozens of optional input parameters
- Other data import tools:
 - pd.read excel()
 - pd.read html()
 - pd.read_json()

Loading separate files

```
In [1]: import pandas as pd
In [2]: dataframe0 = pd.read_csv('sales-jan-2015.csv')
In [3]: dataframe1 = pd.read_csv('sales-feb-2015.csv')
```


Using a loop

Using a comprehension

```
In [7]: filenames = ['sales-jan-2015.csv', 'sales-feb-2015.csv']
In [8]: dataframes = [pd.read_csv(f) for f in filenames]
```


Using glob

```
In [9]: from glob import glob
In [10]: filenames = glob('sales*.csv')
In [11]: dataframes = [pd.read_csv(f) for f in filenames]
```


MERGING DATAFRAMES WITH PANDAS

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Reindexing DataFrames

"Indexes" vs. "Indices"

- indices: many index labels within Index data structures
- indexes: many pandas Index data structures

indexes

NOC	AFG	АНО	ALG	ANZ	ARG	ARM	 VEN	VIE	YUG	ZAM	ZIM	zzx
Edition												
1896	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	NaN
1900	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	33.561198
1904	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	-22.642384
1908	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1912	NaN	NaN	NaN	-26.092774	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1920	NaN	NaN	NaN	0.000000	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1924	NaN	NaN	NaN	0.000000	NaN	NaN	 NaN	NaN	NaN	NaN	NaN	0.000000
1928	NaN	NaN	NaN	0.000000	131.101152	NaN	 NaN	NaN	323.521127	NaN	NaN	0.000000
1932	NaN	NaN	NaN	0.000000	-25.794206	NaN	 NaN	NaN	0.000000	NaN	NaN	0.000000
1936	NaN	NaN	NaN	0.000000	-10.271982	NaN	 NaN	NaN	-29.357594	NaN	NaN	0.000000
1948	NaN	NaN	NaN	0.000000	-4.601500	NaN	 NaN	NaN	47.596769	NaN	NaN	0.000000
1952	NaN	NaN	NaN	0.000000	-10.508545	NaN	 NaN	NaN	34.043608	NaN	NaN	0.000000

Importing weather data

```
In [1]: import pandas as pd
In [2]: w_mean = pd.read_csv('quarterly_mean_temp.csv', index_col='Month')
In [3]: w_max = pd.read_csv('quarterly_max_temp.csv', index_col='Month')
```


Examining the data

```
In [4]: print(w_mean)
       Mean TemperatureF
Month
                61.956044
Apr
Jan
                32.133333
Jul
                68.934783
Oct
                43.434783
   [5]: print(w_max)
       Max TemperatureF
Month
                      68
Jan
Apr
                      89
Jul
                      91
Oct
                      84
```


The DataFrame indexes

```
In [6]: print(w_mean.index)
Index(['Apr', 'Jan', 'Jul', 'Oct'], dtype='object', name='Month')
In [7]: print(w_max.index)
Index(['Jan', 'Apr', 'Jul', 'Oct'], dtype='object', name='Month')
In [8]: print(type(w_mean.index))
<class 'pandas.indexes.base.Index'>
```


Using.reindex()

Using.sort_index()

Reindex from a DataFrame Index

Reindexing with missing labels

Reindex from a DataFrame Index

```
In [16]: w_max.reindex(w_mean3.index)
Out[16]:
       Max TemperatureF
Month
                   68.0
Jan
                   89.0
Apr
                     NaN
Dec
   [17]: w_max.reindex(w_mean3.index).dropna()
Out[17]:
       Max TemperatureF
Month
                   68.0
Jan
                   89.0
Apr
```


Order matters

```
In [18]: w_max.reindex(w_mean.index)
Out[18]:
       Max TemperatureF
Month
Apr
                      89
                      68
Jan
Jul
                      91
Oct
                      84
In [19]: w_mean.reindex(w_max.index)
Out[19]:
       Mean TemperatureF
Month
Jan
                32.133333
                61.956044
Apr
                68.934783
Jul
                43.434783
Oct
```


MERGING DATAFRAMES WITH PANDAS

Let's practice!

MERGING DATAFRAMES WITH PANDAS

Arithmetic with Series & DataFrames

Loading weather data

```
In [1]: import pandas as pd
In [2]: weather = pd.read_csv('pittsburgh2013.csv',
                              index_col='Date', parse_dates=True)
   • • • •
In [3]: weather.loc['2013-7-1':'2013-7-7', 'PrecipitationIn']
Out[3]:
Date
2013-07-01
             0.18
2013-07-02
            0.14
2013-07-03
            0.00
2013-07-04
             0.25
2013-07-05
             0.02
2013-07-06
             0.06
2013-07-07
              0.10
Name: PrecipitationIn, dtype: float64
```


Scalar multiplication

```
In [4]: weather.loc['2013-07-01':'2013-07-07', 'PrecipitationIn'] * 2.54
Out[4]:
Date
2013-07-01
             0.4572
2013-07-02
            0.3556
2013-07-03
            0.0000
2013-07-04
            0.6350
2013-07-05
            0.0508
            0.1524
2013-07-06
2013-07-07
             0.2540
Name: PrecipitationIn, dtype: float64
```


Absolute temperature range

```
In [5]: week1_range = weather.loc['2013-07-01':'2013-07-07',
                                     ['Min TemperatureF', 'Max TemperatureF']]
   • • • •
In [6]: print(week1_range)
            Min TemperatureF Max TemperatureF
Date
2013-07-01
                           66
                                              79
2013-07-02
                           66
                                              84
2013-07-03
                                              86
2013-07-04
                                              86
                           70
2013-07-05
                           69
                                              86
2013-07-06
                                              89
                           70
2013-07-07
                           70
                                              77
```


Average temperature

```
In [7]: week1_mean = weather.loc['2013-07-01':'2013-07-07',
                                 'Mean TemperatureF'
   • • • •
In [8]: print(week1_mean)
Date
2013-07-01
2013-07-02
            74
           78
2013-07-03
2013-07-04
2013-07-05
            76
2013-07-06
            78
2013-07-07
Name: Mean TemperatureF, dtype: int64
```


Relative temperature range

```
In [9]: week1_range / week1_mean
RuntimeWarning: Cannot compare type 'Timestamp' with type 'str', sort order is
undefined for incomparable objects
  return this.join(other, how=how, return_indexers=return_indexers)
Out[9]:
            2013-07-01 00:00:00 2013-07-02 00:00:00 2013-07-03 00:00:00
Date
                                                   NaN
2013-07-01
                             NaN
                                                                         NaN
2013-07-02
                                                   NaN
                                                                         NaN
                             NaN
2013-07-03
                             NaN
                                                   NaN
                                                                         NaN
2013-07-04
                                                   NaN
                                                                         NaN
                             NaN
2013-07-05
                             NaN
                                                   NaN
                                                                         NaN
2013-07-06
                             NaN
                                                   NaN
                                                                         NaN
2013-07-07
                             NaN
                                                   NaN
                                                                         NaN
            2013-07-04 00:00:00 2013-07-05 00:00:00 2013-07-06 00:00:00
Date
2013-07-01
                             NaN
                                                   NaN
                                                                         NaN
. . . . . .
```


Relative temperature range

```
In [10]: week1_range.divide(week1_mean, axis='rows')
Out[10]:
            Min TemperatureF Max TemperatureF
Date
2013-07-01
                                      1.097222
                    0.916667
2013-07-02
                    0.891892
                                       1.135135
2013-07-03
                    0.910256
                                      1.102564
2013-07-04
                    0.909091
                                      1.116883
2013-07-05
                    0.907895
                                      1.131579
2013-07-06
                    0.897436
                                      1.141026
2013-07-07
                    0.972222
                                      1.069444
```


Percentage changes

```
In [11]: week1_mean.pct_change() * 100
Out[11]:
Date
2013-07-01
                  NaN
2013-07-02
           2.777778
2013-07-03 5.405405
2013-07-04
           -1.282051
2013-07-05
           -1.298701
2013-07-06
           2.631579
2013-07-07 -7.692308
Name: Mean TemperatureF, dtype: float64
```


Bronze Olympic medals

Silver Olympic medals

Gold Olympic medals

Adding bronze, silver

```
In [18]: bronze + silver
Out[18]:
Country
France
                   936.0
                     NaN
Germany
Italy
                     NaN
Soviet Union
                  1211.0
United Kingdom
                 1096.0
United States
                  2247.0
Name: Total, dtype: float64
```


Adding bronze, silver

```
In [19]: bronze + silver
Out[19]:
Country
France
                  936.0
                    NaN
Germany
Italy
                    NaN
Soviet Union
                 1211.0
United Kingdom
                 1096.0
United States
                 2247.0
Name: Total, dtype: float64
In [22]: print(bronze['United States'])
1052.0
  [23]: print(silver['United States'])
1195.0
```


Using the .add() method

```
In [21]: bronze.add(silver)
Out[21]:
Country
France
                   936.0
                     NaN
Germany
Italy
                     NaN
Soviet Union
                  1211.0
United Kingdom
                 1096.0
United States
                  2247.0
Name: Total, dtype: float64
```


Using a fill_value

```
In [22]: bronze.add(silver, fill_value=0)
Out[22]:
Country
                   936.0
France
                 454.0
Germany
Italy
                  394.0
Soviet Union
                  1211.0
United Kingdom
                 1096.0
United States
                  2247.0
Name: Total, dtype: float64
```


Adding bronze, silver, gold

```
In [23]: bronze + silver + gold
Out[23]:
Country
France
                     NaN
                    NaN
Germany
Italy
                    NaN
Soviet Union
                 2049.0
United Kingdom
                 1594.0
United States
              4335.0
Name: Total, dtype: float64
```


Chaining .add()

```
In [24]: bronze.add(silver, fill_value=0).add(gold, fill_value=0)
Out[24]:
Country
France
                  936.0
                  861.0
Germany
Italy
         854.0
Soviet Union
                2049.0
United Kingdom
                1594.0
United States
             4335.0
Name: Total, dtype: float64
```


MERGING DATAFRAMES WITH PANDAS

Let's practice!