Feuille d'exercice n° 21 : Espaces vectoriels de dimension finie

Exercice 1 (\bigcirc) Dans \mathbb{R}^4 , on considère les familles de vecteurs suivantes.

- 1) $v_1 = (1, 1, 1, 1), v_2 = (0, 1, 2, -1), v_3 = (1, 0, -2, 3), v_4 = (2, 1, 0, -1), v_5 = (4, 3, 2, 1).$
- **2)** $v_1 = (1, 2, 3, 4), v_2 = (0, 1, 2, -1), v_3 = (3, 4, 5, 16).$
- **3)** $v_1 = (1, 2, 3, 4), v_2 = (0, 1, 2, -1), v_3 = (2, 1, 0, 11), v_4 = (3, 4, 5, 14).$

Ces vecteurs forment-ils:

- 1) Une famille libre ? Si c'est le cas, la compléter pour obtenir une base de R⁴. Si non donner des relations de dépendance entre eux et extraire de cette famille une base du sous-espace vectoriel engendré par celle-ci.
- 2) Une famille génératrice ? Si c'est le cas, en extraire au moins une base de l'espace. Si non, donner la dimension du sous-espace qu'ils engendrent.

Exercice 2 ()

- 1) Montrer que l'application $\varphi: \mathbb{K}[X] \to \mathbb{K} \times \mathbb{K}[X]$ est un isomorphisme. $P \mapsto (P(0), P')$
- 2) En déduire que $\mathbb{K}[X]$ n'est pas de dimension finie.

Exercice 3 () Définir par leurs équations cartésiennes dans la base canonique les sous-espaces vectoriels :

- 1) F engendré par : $\{(3,1,2); (2,1,3)\}$ dans \mathbb{R}^3 ;
- 2) G engendré par : (1,2,3) dans \mathbb{R}^3 ;
- 3) H engendré par $\{(1,2,3,0); (4,-1,2,0); (2,1,-3,0)\}$ dans \mathbb{R}^4 .

Exercice 4 (\mathbb{Z}_{n}) Soit $(P_n)_{n\in\mathbb{N}}$ une suite de polynômes à coefficients dans \mathbb{K} , vérifiant

$$\forall n \in \mathbb{N}, \deg P_n = n.$$

Remarque : on dit alors que la famille $(P_n)_{n\in\mathbb{N}}$ est échelonnée en degré.

- 1) Montrer que pour tout $n \in \mathbb{N}$, (P_0, \dots, P_n) est une base de $\mathbb{K}_n[X]$.
- 2) La famille $(P_n)_{n\in\mathbb{N}}$ est-elle une base de $\mathbb{K}[X]$?

Exercice 5 ($^{\circ}$) Soit $n \in \mathbb{N}$, soit $a \in \mathbb{R}$.

- 1) Montrer que la famille $((X-a)^i)_{0 \le i \le n}$, est une base de $\mathbb{R}_n[X]$.
- 2) Donner les coordonnées de $P \in \mathbb{R}_n[X]$ dans cette base.

Exercice 6 () Dans $\mathbb{R}_3[X]$, soit $P = X^3 + 2X - 1$ et Q = 2X - 1. Déterminer une base \mathscr{B} de $\mathbb{R}_3[X]$ dont P et Q sont éléments.

Exercise 7 (Soit $\mathbf{v}_1 = (1,0,0,-1), \mathbf{v}_2 = (2,1,0,1), \mathbf{v}_3 = (1,-1,1,-1), \mathbf{v}_4 = (7,2,0,-1)$ et $\mathbf{v}_5 = (-2,1,0,5).$

- 1) Donner une base du sous-espace vectoriel (de \mathbb{R}^4) $F = \text{Vect}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$.
- 2) Déterminer un supplémentaire G de F dans \mathbb{R}^4 .

Exercice 8 ($^{\circ}$) Soient E un espace vectoriel et F un sous-espace vectoriel de dimension finie de E . Soit f une application linéaire de E dans lui-même.

- 1) Montrer que, si $F \subset f(F)$ alors f(F) = F.
- 2) Montrer que, si f est injective et $f(F) \subset F$ alors f(F) = F.

Exercice 9 Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Montrer l'équivalence des trois propriétés suivantes.

1)
$$\operatorname{Ker} f = \operatorname{Ker} f^2$$

2) Im
$$f = \text{Im } f^2$$

3)
$$E = \operatorname{Ker} f \oplus \operatorname{Im} f$$

Exercice 10 Soit E un \mathbb{K} -espace vectoriel de dimension finie, soit $(f,g) \in \mathcal{L}(E)^2$ tel que $E = \operatorname{Im} f + \operatorname{Im} g = \operatorname{Ker}(f) + \operatorname{Ker}(g)$. Montrer que ces sommes sont directes.

Exercice 11 (${\mathfrak{D}}$) Soient E et F deux ${\mathbb{K}}$ -espaces vectoriels de dimensions finies et $u, v \in {\mathscr{L}}(E, F)$.

- 1) Montrer que $rg(u+v) \leq rg(u) + rg(v)$.
- 2) En déduire que $|rg(u) rg(v)| \le rg(u+v)$.

Exercice 12 – Suite exacte d'applications linéaires –

Soient $E_0, E_1, ..., E_n$ n+1 espaces vectoriels sur un même corps commutatif \mathbb{K} , de dimensions respectives $\alpha_0, \alpha_1, ..., \alpha_n$. On suppose qu'il existe n applications linéaires $f_0, f_1, ..., f_{n-1}$ telles que :

$$\forall k \in \{0, ..., n-1\}, f_k \in \mathcal{L}(E_k, E_{k+1}).$$

et de plus :

- f_0 est injective;
- $-- \forall j \in \{1, ..., n-1\}, \text{Im } f_{j-1} = \text{Ker}(f_j);$
- f_{n-1} est surjective.

Montrer que

$$\sum_{j=0}^{n} (-1)^j \alpha_j = 0.$$

Exercice 13 Soit f l'application de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$ définie par $f: P \mapsto P + P' + P''$.

- 1) Montrer que f est injective. En déduire que f est bijective.
- 2) On appelle φ l'application de $\mathbb{R}[X]$ dans $\mathbb{R}[X]$ définie par $\varphi: P \mapsto P + P' + P''$. Montrer que φ est surjective puis bijective.

Exercice 14 Soit E un \mathbb{K} -espace vectoriel de dimension égale à n. Montrer que

$$n \text{ est pair} \Leftrightarrow \exists f \in \mathcal{L}(E) \quad \text{Im } f = \text{Ker } f.$$

Exercice 15 Soit F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie.

- 1) Déterminer une condition nécessaire et suffisante pour qu'il existe un endomorphisme u tel que ${\rm Ker}(u)=F$ et ${\rm Im}(u)=G.$
- **2)** Construire un tel endomorphisme u avec $E = \mathbb{R}^3$, $F = \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \}$ dans \mathbb{R}^3 et $G = \{ \lambda(2, -1, -1) \mid \lambda \in \mathbb{R} \}$.

Exercice 16 (\bigcirc) Soit E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$, soit $f \in \mathcal{L}(E)$. Montrer que $\operatorname{rg}(f^n) = \operatorname{rg}(f^{n+1})$.

Exercice 17 Soit E un espace vectoriel de dimension finie, soit H un hyperplan de E et F un sous-espace vectoriel de E.

Si $F \not\subset H$, que dire de la dimension de $F \cap H$?

Exercice 18 Soit E un espace vectoriel, soit H un hyperplan de E et soit $a \in E \setminus H$.

- 1) Dans le cas où E est de dimension finie, montrer que $E = H \oplus \text{Vect}(a)$.
- 2) Est-ce toujours vrai si E n'est pas de dimension finie ?

Exercice 19 () Soient $n \in \mathbb{N}$, $\alpha \in \mathbb{K}$ et $H = \{ P \in \mathbb{K}_n[X] \mid P(\alpha) = 0 \}$. Montrer que H est un hyperplan de $\mathbb{K}_n[X]$ et en déterminer une base.

Exercice 20 () Montrer que les formes linéaires sur $\mathbb{K}^3 \varphi : (x, y, z) \mapsto x + 2y + 3z$ et $\psi : (x, y, z) \mapsto x - 2y + 3z$ sont linéairement indépendantes.

