Course Title

Exam 1: Topic

Class Number and Section		
MM/DD/YYYY	Name:	
1 1		Please print your name clearly

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit. When you do use your calculator (if a calculator is allowed), sketch all relevant graphs and explain all relevant mathematics.
- Circle or otherwise indicate your final answers.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 10 problems and is worth 100 points, partial credit will be given for incomplete answers. If you are not sure how to answer a problem give as much information as you can. It is your responsibility to make sure that you have all of the pages!
- You will have 1 hour 50 minutes to complete the exam.
- Good luck!

1. (8 points) Label each of the regions of the following flow regime map. Clearly label the x and y axis including any units and give the range of values for each of the flow regimes on the x and y axis.

2. (8 points) This problem involves setting up the truncation error analysis for the given fully implicit mass equation with constant positive velocity shown below.

Difference Equation:
$$\frac{\rho_j^{n+1}-\rho_j^n}{\Delta t}+v\frac{\rho_j^{n+1}-\rho_{j-1}^{n+1}}{\Delta x_j}=0$$

a. (2 pts) Plot an clearly state the variable that you are making the error evaluation about.

b. (6 pts) Write the Taylor series expansion for the two remaining variables about the point chosen above. (NOTE: you don't have to do anything beyond writing the Taylor series expansion.)

Scrap Page

(please do not remove this page from the test packet)

Useful Equations

$$\begin{split} f(x) &= f(x_0) + (x - x_0) \left. \frac{df}{dx} \right|_{x = x_0} + (x - x_0)^2 \left. \frac{1}{2} \frac{d^2 f}{dx^2} \right|_{x = x_0} + \cdots \\ f(x,y) &= f(x_0,y_0) + \Delta x \left. \frac{\partial f}{\partial x} \right|_{x_0,y_0} + \Delta y \left. \frac{\partial f}{\partial y} \right|_{x_0,y_0} + \Delta x^2 \frac{1}{2} \left. \frac{\partial^2 f}{\partial x^2} \right|_{x_0,y_0} + \\ & - \Delta x \Delta y \left. \frac{\partial^2 f}{\partial x \partial y} \right|_{x_0,y_0} + \Delta y^2 \frac{1}{2} \left. \frac{\partial^2 f}{\partial y^2} \right|_{x_0,y_0} + \cdots \\ g(x,y) &= g(x_0,y_0) + \Delta x \left. \frac{\partial g}{\partial x} \right|_{x_0,y_0} + \Delta y \left. \frac{\partial g}{\partial y} \right|_{x_0,y_0} + \Delta x^2 \frac{1}{2} \left. \frac{\partial^2 g}{\partial x^2} \right|_{x_0,y_0} + \\ & - \Delta x \Delta y \left. \frac{\partial^2 g}{\partial x \partial y} \right|_{x_0,y_0} + \Delta y^2 \frac{1}{2} \left. \frac{\partial^2 g}{\partial y^2} \right|_{x_0,y_0} + \cdots \\ & \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \\ & \frac{\partial \rho e}{\partial t} + \nabla \cdot (\rho e \vec{v}) + P \nabla \cdot \vec{v} = q_{wl} \\ & \frac{\partial \vec{v}}{\partial t} + \vec{v} \nabla \cdot (\vec{v}) + \frac{1}{\rho} \nabla P + K \vec{v}^2 = 0 \\ & r = \frac{h_3}{h_2} = \frac{h_2}{h_1} \\ & f_1 = f_{exact} + a h_1^p \\ & f_2 = f_{exact} + a h_2^p \\ & f_3 = f_{exact} + a h_3^p \\ & f_3 = f_{exact} + a h_3^p \\ & \frac{f_3 - f_2}{f_2 - f_1} = \frac{h^p}{h^p_2} = r^p \\ & p = \frac{\ln \left(\frac{f_3 - f_2}{f_2 - f_1}\right)}{\ln r} \\ & f_{exact} = f_1 - \frac{f_2 - f_1}{r^p - 1} \\ & \frac{1}{2} \rho v_1^2 + P_1 = \frac{1}{2} \rho v_2^2 + P_2 + \Delta P_l \\ & \Delta P_l = \frac{1}{2} \rho v_1^2 \left(1 - \frac{A_1}{A_2}\right)^2 \end{split}$$