Домашнее задание 1.

1.

Постройте машину Тьюринга, вычисляющую функцию $n\mapsto n \bmod 5$ в унарной кодировке аргументов. Оцените время вычислений на вашей машине в зависимости от n.

Описание:

Машина будет проходиться по слову-числу, удаляя единицы, и при этом циклично меняя свое состояние среди диапазона $\{q_1,...,q_5\}$. После удаления всех единичек, остаток от деления на 5 будет соответствовать номеру состояния, и останется лишь записать номер этого состояния.

Построение:

- q_s , # $\rightarrow q_1$, #, +1 \\ CTAPT
- $q_1, 1 \to q_2, \#, +1 \setminus \Pi$ роходим по числу, циклично меняя состояния
- $q_2, 1 \rightarrow q_3, \#, +1$
- $q_3, 1 \rightarrow q_4, \#, +1$
- q_4 , $1 \rightarrow q_5$, #, +1
- $q_5, 1 \rightarrow q_1, \#, +1$
- q_5 , # \to q_4 , 1, +1 \\ Дойдя до конца, начинаем записывать остаток, пока не вернемся на состояние q_1
- $\bullet \ q_4, \# \rightarrow q_3, 1, +1$
- $\bullet \ q_3, \# \to q_2, 1, +1$
- $q_2, \# \to q_1, 1, +1$
- $q_1,$ # \rightarrow $q_b,$ 1, 0 $\backslash\!\backslash$ q_b состояние для возвращения назад после написания остатка
- $q_b, 1 \to q_b, 1, -1$
- q_b , # $\rightarrow q_f$, #, 0

2.

Опишите машину Тьюринга, вычисляющую функцию $n, m \mapsto n * m$ в унарной кодировке аргументов. Аргументы разделяются специальным символом $\$ \in \Gamma \setminus \Sigma$. Оцените время вычислений на вашей машине в зависимости от длины входа.

Описание:

Начальная конфигурация: $1^n 1^m$.

- 1. Машина заменяет первую единицу в левом числе на # и переходит в состояние копирования числа m.
- 2. Машина копирует число m и приписывает результат его справа.
- 3. Цикл повторяется, пока от левого числа ничего не останется.
- 4. Последним шагом машина убирает все лишнее.

Сложность: Копирование числа m: O(m*(m*n)) (поскольку записываем скопированное число справа от результата). Всего n таких копирований. Итого $O(m^2n^2)$).

3.

Опишите машину Тьюринга, за время $O(n \log n)$:

- а) преобразующую унарную запись числа n в бинарную;
- b) преобразующую бинарную запись числа n в унарную;

• c) вычисляющую функцию $n\mapsto 2n$ в унарной кодировке.

Описание:

a)

- 1. Головка проходится по унарной записи числа, удаляя каждую вторую встретившуюся единицу O(n).
- 2. Головка записывает слева от унарной записи числа 1 или 0 в зависимости от последнего состояния на унарном числе перед встречей с # (была удалена единица на прошлом шаге или нет). Каждая последующая запись происходит слева от записанного промежуточного результата.

Итого: $\log n$ шагов, каждый сложностью O(n), всего $O(n\log n)$.

Пример:

 $11111111 \rightarrow 111$

- 1. $\#\#\#1111111\# \to \#\#\#1010101\# \to \#\#1\#1010101\#$
- 2. $\##1\#1010101\# \rightarrow \#\#1\#1001000\# \rightarrow \#11\#1001000\#$
- 3. $\#11\#100100\# \rightarrow \#11\#1000000\# \rightarrow 111\#1000000\#$

b)

- 1. Вычитается единица из бинарного числа $O(\log n)$.
- 2. Ставится единица перед бинарным числом O(1), так как головка уже сдвинулась к началу числа.
- 3. Бинарная запись числа сдвигается на 1 вправо $O(\log n)$.

Итого: n шагов, каждый сложностью $O(\log n)$, всего $O(n\log n)$.

c)

- 1. Конвертация в бинарную запись $O(n \log n)$.
- 2. Удвоение путем приписывания 0 справа в бинарной записи O(1).
- 3. Конвертация удвоенного числа в унарную запись $O(n \log n)$.