Computer Network Design Network Layer II

Yalda Edalat – Spring 23

Review

- Which devices are on same networks?
- A: 192.168.137.44/21
- B: 192.168.141.12/21
- C: 192.168.145.3/21
- A: 11000000.10101000.10001001.00101100
- B: 11000000.10101000.10001101.00001100
- C: 11000000.10101000.10010001.00000011

IP Forwarding

- IP addresses on one network belong to the same prefix
- Node uses a table that lists the next hop for IP prefixes

	Prefix	Next Hop		
	192.24.0.0/18	D		
	192.24.12.0/22	В		
A D D				

Longest Matching Prefix

- Prefixes in the table might overlap!
- Longest matching prefix forwarding rule:
 - For each packet, find the longest prefix that contains the destination address, i.e., the most specific entry
 - Forward the packet to the next hop router for that prefix

Longest Matching Prefix (2)

Host/Router Distinction

- In the Internet:
 - Routers do the routing, know which way to all destinations
 - Hosts send remote traffic (out of prefix) to nearest router

Host Forwarding Table

- Give using longest matching prefix
 - 0.0.0.0/0 is a default route that catches all IP addresses

Prefix	Next Hop	
My network prefix	Send direct to that IP	
0.0.0.0/0	Send to my router	

Example

• Source: 192.168.22.78/24

• Destination: 192.168.23.71/24

• What is next hop? Is it 192.168.23.71? Or default router of source?

Getting IP Addresses

- Problem:
 - A node wakes up for the first time ...
 - What is its IP address? What is the IP address of its router? Etc.
 - At least Ethernet address is on NIC

Getting IP Addresses (2)

- 1. Manual configuration (old days)
 - Can't be factory set, depends on use
- 2. A protocol for automatically configuring addresses (DHCP)
 - Shifts burden from users to IT folk

DHCP

- DHCP (Dynamic Host Configuration protocol) is widely used
- It leases IP address to nodes
- Provide other parameters too
 - Network prefix
 - Address of local router (default router)
 - DNS server, time server, etc.
- DHCP is a client-server application
 - Uses UDP ports 67, 68

DHCP Addressing

- Bootstrap issue:
 - How does node send a message to DHCP server before it is configured?
- Answer:
 - Node sends broadcast messages that delivered to all nodes on the network
 - Broadcast address is all 1s (IP: 255.255.255.255) (Ethernet: ff:ff:ff:ff:ff)

DHCP Messages

- To renew an existing lease, an abbreviated sequence is used:
 - REQUEST, followed by ACK

Sending an IP Packet

- Problem:
 - A node needs link layer addresses to send a frame over the local link
 - How does it get the destination link address from a destination IP address?

ARP (Address Resolution Protocol)

Node uses to map a local IP address to its link layer addresses

ARP Protocol Stack

- ARP sits right on top of link layer
 - No servers, just asks node with target IP to identify itself
 - Uses broadcast to reach all nodes

ARP

Ethernet

ARP Messages

Packet Size Problem

- Different networks have different maximum packet sizes (MTU)
- How do we connect networks with different maximum packet sizes?
 - Need to split up packets or discover the largest size to use

- Prefer large packets for efficiency
 - But what size is too large?
 - Difficult because node doesn't know complete network path

Packet Size Solution

- Fragmentation
 - Split up large packets in the network if they are too large to send
 - Classic method, dated
- Discovery
 - Find the largest packet that fits on the network path and use it
 - IP uses today instead of fragmentation

IPv4 Fragmentation

- Routers fragment packets that are too large to forward
- Receiving host reassembles to reduce load on routers

IPv4 Fragmentation Fields

- Header fields used to handle packet size differences
 - Identification, Fragment offset, MF/DF control bits

IPv4 Fragmentation Procedure

- Routers split a packet that is too large:
 - Typically break into large pieces
 - Copy IP header to pieces
 - Adjust length on pieces
 - Set offset to indicate position
 - Set MF (More Fragments on all pieces except last
- Receiving hosts reassembles the pieces:
 - Identification field links pieces together, MF tells if it has all pieces

IPv4 Fragmentation (2)

IPv4 Fragmentation (3)

IPv4 Fragmentation (4)

- It works!
 - Allow repeated fragmentation
- But fragmentation is undesirable
 - More work for routers, hosts
 - Tends to magnify loss rate
 - Security vulnerabilities too

Path MTU Discovery

- Discover the MTU that will fit
 - So we can avoid fragmentation
 - The method in use today
- Host tests path with large packet
 - Routers provide feedback if too large; They tell host what size would have fit

Path MTU Discovery (2)

Path MTU Discovery (3)

Path MTU Discovery (4)

- Process may seem involved
 - But usually quick to find right size
- Path MTU depends on the path and so can change over time
 - Search is ongoing
- Implemented with ICMP
 - Set DF (Don't Fragment) bit in IP header to get feedback messages

Error Handling

- What happens when something goes wrong during forwarding?
 - Need to be able to find the problem

Internet Control Message Protocol

- ICMP is a companion protocol to IP
 - They are implemented together
 - Sits on top of IP (IP protocol=1)
- Provides error report and testing
 - Error is at router while forwarding
 - Also, testing that hosts can use

ICMP Errors

- When router encounters an error while forwarding:
 - It sends an ICMP error report back to the IP source address
 - It discards the problematic packet; host needs to rectify

ICMP Message Format

- Each ICMP message has a type, code and checksum
- Often carry the start of the offending packet as payload
- Each message is carried in an IP packet

Portion of offending packet, starting with its IP header

Example ICMP Message

Name	Type / Code	Usage
Dest. Unreachable (Net or Host)	3 / 0 or 1	Lack of connectivity
Dest. Unreachable (Fragment)	3 / 4	Path MTU Discovery
Time Exceeded (Transit)	11 / 0	Traceroute
Echo Request or Reply	8 or 0 / 0	Ping

Testing, not a forwarding error: Host sends Echo Request, and destination responds with an Echo Reply

Traceroute

- IP header contains TTL (Time To Live) field
 - Decremented every router hop, with ICMP error if it hits zero
 - Protects against forwarding loops

Traceroute (2)

- Traceroute repurposes TTL and ICMP functionality
 - Sends probe packets increasing TTL starting from 1
 - ICMP errors identify routers on the path

Internet Growth

- At least a billion Internet hosts and growing ...
 - And we're using 32-bit addresses!
- IP version 6, the future of IPv4 that is now (still) being deployed

IPv6

- Feature large addresses
 - 128 bits, most of header
- New notation
 - 8 groups of 4 hex digits (16 bits)
 - Omit leading zeros, groups of zeros

• EX: 2001:0db8:0000:0000:0000:ff00:0042:8329

• ->2001:db8::ff00:42:8329

IPv6 Transition

- The big problem:
 - How to deploy IPv6?
 - Fundamentally incompatible with IPv6?
- Dozens of approaches proposed
 - Dual stack (speak IPv4 and IPv6)
 - Translators (convert packets)
 - Tunnels (carry IPv6 over IPv4)

Tunneling

- Native IPv6 islands connected via IPv4
 - Tunnel carries IPv6 packets across IPv4 network

Tunneling (2)

• Tunnel acts as a single link across IPv4 network

Tunneling (3)

• Tunnel acts as a single link across IPv4 network

Layering Review

- Remember how layering is meant to work?
 - "Routers don't look beyond the IP header." Well ...

Middleboxes

- Sit "inside the network" but perform "more than IP" processing on packets to add new functionality
 - NAT box, Firewall / Intrusion Detection System

What is NAT (Network Address Translation)

- NAT box connects an internal network to an external network
 - Many internal hosts are connected using few external addresses
 - Middlebox that "translates addresses"
- Motivated by IP address scarcity
 - Controversial at first, now accepted

NAT (2)

- Common scenario:
 - Home computers use "private" IP addresses
 - NAT (in AP/firewall) connects home to ISP using a single external IP address

How NAT Works?

- Keeps an internal/external table
 - Typically uses IP address + TCP port
 - This is address and port translation

What host thinks	What ISP thinks
------------------	-----------------

Internal IP:port	External IP : port
192.168.1.12 : 5523	44.25.80.3 : 1500
192.168.1.13 : 1234	44.25.80.3 : 1501
192.168.2.20 : 1234	44.25.80.3 : 1502

• Need ports to make mapping 1-1 since there are fewer external IPs

How NAT Works? (2)

- Internal -> External:
 - Look up and rewire source IP/port

How NAT Works? (3)

- External -> Internal:
 - Look up and rewire destination IP/port

NAT Downsides

- Connectivity has been broken!
 - Can only send incoming packets after an outgoing connection is set up
 - Difficult to run servers or peer-to-peer apps (Skype) at home
- Doesn't work so well when there are no connections (UDP apps)
- Breaks apps that unwisely expose their IP addresses (FTP)

NAT Upsides

- Relieves much IP address pressure
 - Many home hosts behind NATs
- Easy to deploy
 - Rapidly, and by you alone
- Useful functionality
 - Firewall, helps with privacy

To do

- Quiz next week
- Research reference due March 1st
- Lab1 due March 15th