

מבני נתונים ומבוא לאלגוריתמים מפגש הנחיה מס' 3

מדעי המחשב, קורס מס' 20407 סמסטר 2016ב

מנחה: ג'ון מרברג

?מה ראינו במפגש הקודם

- תרגילים לפרק ■
- פרק 3 בספר גידול של פונקציות
- המוטיבציה לשימוש בסימונים אסימפטוטיים
 - הגדרת הסימונים
 - חסמים שימושיים ותכונות שימושיות
 - חישוב סיבוכיות הזמן של אלגוריתם
 - תרגילים לפרק 3

מפגש שלישי

- נושאי השיעור
- סימונים אסימפטוטים − תרגילים נוספים
 - פרק 4 בספר נוסחאות נסיגה
 - מבוא =
 - שיטת ההצבה
 - שיטת האיטרציה 🔳
 - שיטת האב -
 - תרגילים 🔳

מבוסס על מצגת של ברוך חייקין ואיציק בייז

נוסחאות נסיגה - מבוא

- הנוסחה מבטאת את עלות האלגוריתם (בדרך כלל עבור מס' הפעולות המבוצעות)
- מייצגת עלות של אלג' רקורסיבי ולפיכך מכילה מופע של עצמה 🔳
- עבור אלגוריתם רקורסיבי עם T(n) דוגמאות של נוסחת נסיגה קלט בגודל n
 - T(n) = T(n-1) + O(n)
 - T(n) = 2T(n/2) + O(nlogn)
 - T(n) = T(n/3) + T(2n/3) + O(logn)
 - T(n) = T(n/2) + O(1)
- זמן זה מייצג את המקרה הכללי. בנוסף יש לספק עלות למקריקצה (בד"כ עלות קבועה על קלט קטן, נניח n=1)

נוסחאות נסיגה - מבוא

- תבנה טיפוסי של נוסחת נסיגה T(n) עבור אלגוריתם רקורסיבי עם קלט בגודל n
 - (זהו תנאי השפה) $T(n) = \Theta(1)$ אם $n <= n_0$ אם $n <= n_0$
 - $T(n) = \sum_{i=1}^{k} T(n_i) + O(g(n)) , \text{ and } \blacksquare$

כאשר

- הוא מספר התת-בעיות k >= 1
- הוא חסם עליון על זמן ההפרדה והצירוף $g(n) \, lacksquare$
 - i-הוא גודל הקלט עבור תת-בעיה ה $n_i < n_i$

דוגמאות לנוסחאות נסיגה

אלגוריתם רקורסיבי	תנאי השפה	נוסחת נסיגה	פתרון
חיפוש בינארי	$T(1) = \Theta(1)$	$T(n) = T(n/2) + \Theta(1)$	$T(n) = \Theta(\log n)$
מיון-מיזוג	$T(1) = \Theta(1)$	$T(n) = 2T(n/2) + \Theta(n)$	$T(n) = \Theta(n \log n)$
מגדלי האנוי	$T(1) = \Theta(1)$	$T(n) = 2T(n-1) + \Theta(1)$	$T(n) = \Theta(2^n)$

שיטת ההצבה

- השיטה
- T(n) = O(f(n)) מנחשים פתרון מהסוג $n \ge n_0$ לכל $T(n) \le cf(n)$
- מוכיחים את נכונות הפתרון באינדוקציה על *ח*:
 - מציבים את הניחוש בנוסחת הנסיגה
- ו- n_0 ו- n_0 עבורם תנאי השפה מתקיימים lacktriangle

שיטת ההצבה – דוגמה

חסם עליון על חיפוש בינארי ■

$$T(1) = 1$$
 :תנאי השפה: $T(n) = T(n/2) + 1$, תנאי השפה: $T(n) = T(n/2) + 1$

- $n \geq n_0$ לכל $T(n) \leq c \log_2 n$ כלומר קבועים $T(n) = O(\log n)$ לכל C, עבורם האי-שוויון מתקיים C, D0 עבורם רמצוא קבועים
 - צעד האינדוקציה

$$T(n) = T(n/2) + 1$$

 $\leq c \log_2(n/2) + 1$ by the induction hypothesis
 $= c \log_2 n - c \log_2 2 + 1 = c \log n - c + 1$
 $\leq c \log_2 n$ inequality holds for $c \geq 1$

בסיס האינדוקציה

n=2 אי אפשר להוכיח את בסיס האינדוקציה עבור n=1, לכן נתחיל מ-

$$T(2) = T(1) + 1 = 1 + 1 = 2 \le c \log_2 2 = c$$

 $c=2,\,n_0=2$ הטענה אכן נכונה עבור הקבועים

שיטת האיטרציה

- השיטה ו
- $T(n) = \sum_{i=1}^k T(n_i) + O(g(n))$ מתחילים בנוסחה
- ... בשלב הבא, במקום כל $T(n_i)$ מפתחים את נוסחת הנסיגה שוב, וכך הלאה...
 - $\mathsf{T}(n_o)$ כשמגיעים לתנאי השפה, מציבים את הביטוי המתאים במקום
 - אם וכאשר מסתמן דפוס מסוים המאפשר ניחוש פתרון, אפשר גם לעבור לשיטת ההצבה

 $= 1 + \log_2 n$

שיטת האיטרציה – דוגמה 1

חיפוש בינרי

נוסחת הנסיגה:
$$T(1) = 1$$
 : מקרה קצה, $T(n) = T(n/2) + 1$: $(m = \log_2 n \ \text{ Color of the proof of the proof$

 $T(n) = \Theta(\log n)$ מתקבל הפתרון

שיטת האיטרציה – דוגמה 2

מיון-מיזוג

נוסחת הנסיגה:
$$T(n) = 2T(n/2) + cn$$
, מקרה קצה: $T(n) = 1$ ($T(n) = 10$), $T(n) = 2^m$, כלומר $T(n) = 2T(n/2) + cn$ ($T(n) = 2T(n/2) + cn$) ($T(n) = 2T(n/4) + cn/2$) ($T(n) = 2(2T(n/4) + cn/2) + cn = 4T(n/4) + 2cn$) ($T(n) = 2(2T(n/4) + cn/4) + 2cn = 8T(n/8) + 3cn$) ($T(n) = 2(2T(n/8) + cn/4) + 2cn = 8T(n/8) + 3cn$) ($T(n) = 2(2T(n/2)) + 3cn$) ($T(n) = 2(2T(n/2))$

 $= n + \log_2 n \cdot cn$

 $T(n) = \Theta(n \log n)$ מתקבל הפתרון

(Master Method) שיטת האב

- הרעיון: טיפול אחיד בקבוצה גדולה של נוסחאות נסיגה
- צורת הנוסחה: f(n) באשר T(n) = aT(n/b) + f(n) פונקציה חיובית
 - תת-בעיות בגודל n/b כל אחת. a-מתחלקת ל-a-מתחלקת ל-a-מעים כאשר הפרמטרים a>1, b>1 כאשר הפרמטרים
 - למשל: חיפוש בינארי ומיון-מיזוג, אבל לא מגדלי האנוי
- ניתן לראות את הריצה כעץ קריאות בכל צומת פנימי מתבצעים הפרדה וצירוף בזמן ()f, ובכל עלה מטופל מקרה בסיס בזמן קבוע
 - בעיה וגודל הבעיה a^j בעץ יש בעץ ואודל הבעיה, log $_b n$ גובה העץ הוא ברמה ה-j הוא וגודל הבעיה ברמה ה-j
 - לכן סה"כ עבודת ההפרדה והצירוף המתבצעת בעץ היא $0 \le j \le (\log_b n) 1$, כאשר $\Sigma a^j f(n/b^j)$
 - מספר העלים בעץ הוא $a^{\log}b^n = n^{\log}b^a$ ובכל אחד מהם מתבצעת c עבודה בגודל קבוע c

$$T(n) = cn^{\log_b a} + \sum_{j=0}^{(\log_b a)} a^j f(\frac{n}{b^j})$$

■ לכן נוסחת הנסיגה מתכנסת ל:

עץ הקריאות

$$T(n) = cn^{\log_b a} + \sum_{j=0}^{(\log_b n)-1} a^j f(\frac{n}{b^j})$$

שיטת האב (המשך)

כאמור, שיטת האב מטפלת בנוסחת הנסיגה

$$T(n) = aT(n/b) + f(n)$$

- ב הגדרה לא פורמאלית של שיטת האב:
 - משווים בין שני גורמים:
 - $n^{\log}b^a$:מספר העלים בעץ הקריאות
 - f(n):עלות הפירוק והצירוף בשורש
- $T(n) = \Theta(n^{\log}b^a)$ אם $n^{\log}b^a$ "גדול יותר" אזי $n^{\log}b^a$
 - $T(n) = \Theta(f(n))$ אם f(n) = f(n) "גדול יותר" אזי
- $T(n) = \Theta(f(n) \log n)$ אם שני הערכים מאותו סדר גודל, אזי \blacksquare
 - "גדול יותר" מתייחס להגדרה פורמאלית שתובא בהמשך

שיטת האב (המשך)

- אם נצמצם את תחום הדיון לפונקציות f מסוג פולינום או פולילוגריתם בלבד (פונק' נפוצות בקורס שלנו) אזי שיטת האב אומרת כדלקמן:
- בורת הנוסחה : T(n) = aT(n/b) + f(n) הם קבועים b>1 ו a≥1 צורת הנוסחה : T(n) = aT(n/b) + f(n) הם קבועים כלשהם (למשל a=4, b=2
 - $(n^2$ הוא פולינום ב- $n^{\log}b^a$
 - $(n^{1.5} \log^2 n$ הוא כאמור פולינום או פולילוגריתם או שילוב (למשל f(n)
- בכדי לקבוע מי "גדול יותר", $n^{\log}_b a$ או f(n), נשווה בין החזקות <u>הפולינומיות</u> של שני הגורמים (כי כל פולילוגריתם קטן אסימפטוטית מכל פולינום)
 - ביטוי עם החזקה הפולינומית הגדולה יותר הוא ה"גדול יותר"ולכן הוא קובע את התוצאה
 - $T(n) = \Theta(n^2)$ ולכן n^2 ה"גדול יותר" הוא n^2 ולכן n^2 למשל בין n^2 למשל בין n^2 ה"גדול יותר" הוא n^2
 - אם החזקות הפולינומיות שוות, שיטת האב מתאימה רק כאשר שני הגורמים $T(n) = \Theta(f(n) \log n)$, ואז $f(n) = \Theta(n^{\log} b^a)$ הם מאותו סדר גודל, כלומר אם
 - בהמשך נציג הרחבה של מקרה השוויון גם עבור f(n) פולילוגריתמי lacktrian

שיטת האב – הגדרה פורמאלית

- a≥1 ,b>1 כאשר $T(n) = aT(\frac{n}{b}) + f(n)$ כאשר 1
 - השיטה מבחינה בין שלשה מקרים של עלות העבודה בעץ הקריאות:
- 1. הגורם הדומיננטי הוא עלות העבודה המתבצעת בעלים (= מספר העלים)

$$T(n) = \Theta(n^{\log_b a})$$
 אם קיים קבוע $\varepsilon > 0$ כך ש $\varepsilon > 0$ כך ש $\varepsilon > 0$ אם קיים קבוע

2. העבודה מתחלקת באופן שווה בין כל הרמות בעץ

$$T(n) = \Theta(n^{\log_b a} \log n)$$
 אם $f(n) = \Theta(n^{\log_b a})$

3. הגורם הדומיננטי הוא עלות העבודה בשורש

$$T(n) = \Theta(f(n))$$
 אַז $f(n) = \Omega(n^{\log_b a} n^{arepsilon})$ -כך ש $arepsilon > 0$ אַז $arepsilon > 0$ אַם קײם קבוע

במקרה 3 חייב להתקיים גם <u>תנאי הרגולריות</u> על f(n) *כדלקמן:*

$$n \ge n_0$$
 לכל $af(\frac{n}{b}) \le cf(n)$ -קיימים קבועים 1 $c < 1$ ו- $c < 1$

(*) הערה לגבי היחס בין הגדלים במקרים 1, 3:

 $n^{arepsilon}$ נשים לב שהגורם הדומיננטי חייב להיות גדול <u>פולינומיאלית</u> מהגורם השני, בפקטור של

שיטת האב – דוגמה למקרה 1

(עמ' 73 בספר) ■

$$T(n) = 7T(n/2) + n^2$$
 נוסחת הנסיגה:

$$a = 7, b = 2, f(n) = n^2$$

$$n^{\log_b a} = n^{\log_2 7} > n^2 = f(n)$$
 :ים אנו מבחינים כי:

לכן אנו מנסים לחסום את f(n) מלמעלה lacktriangleright

בדיקת התנאי: נבחר arepsilon>0 מתאים כך שיתקיים lacksquare

$$f(n) = n^2 = O(n^{\log_b a}/n^{\varepsilon})$$

 $:\!O$ נשתמש בהגדרות הסימון האסימפטוטי

$$n^2 \le c n^{\log_b a} / n^{\varepsilon}$$

$$n^{\varepsilon} \le c n^{\log_b a} / n^2 = c n^{\log_2 7} / n^2) = c n^{\log_2 (7/4)}$$

►
$$\varepsilon = \log_2(7/4) > 0$$
 $c=1$

הראינו שנוסחת הנסיגה שייכת למקרה 1 ■

$$T(n) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2.8})$$
 מסקנה:

שיטת האב – דוגמה למקרה 2

מיון-מיזוג

נוסחת הנסיגה:
$$T(n) = 2T(n/2) + n$$
 :נוסחת הנסיגה $a=2, b=2, f(n)=n$

$$n^{\log_b a} = n^{\log_2 2} = n = f(n)$$
 :אנו מבחינים כי במקרה זה

$$f(n) = n = \Theta(n^{\log_b a})$$
 לכן:

ב הראינו שנוסחת הנסיגה שייכת למקרה 2

$$T(n)=\Theta(n\log n)$$
 מסקנה:

שיטת האב – עוד דוגמה למקרה 2

בעיה 1-4ג (עמ' 73 בספר) ■

$$T(n) = 16T(n/4) + n^2$$
 נוסחת הנסיגה: $a = 16, b = 4, f(n) = n^2$

$$n^{\log_b a} = n^{\log_4 16} = n^2 = f(n)$$
 :אנו מבחינים כי במקרה זה

$$f(n) = n^2 = \Theta(n^{\log_b a})$$
 לכן

ב הראינו שנוסחת הנסיגה שייכת למקרה 2

$$T(n) = \Theta(n^2 \log n)$$
 מסקנה:

שיטת האב – דוגמה למקרה 3

(עמ' 73 בספר) בעיה 1-4ד (עמ' 73 בספר)
$$T(n) = 7T(n/3) + n^2$$
 נוסחת הנסיגה: $a = 7, b = 3, f(n) = n^2$

$$n^{\log}b^a = n^{\log}3^7 < n^{\log}3^9 = n^2 = f(n)$$
 אנו מבחינים כי:

לכן אנו מנסים לחסום את f(n) מלמטה

בדיקת התנאי: נבחר $\varepsilon > 0$ כך שיתקיים

$$f(n) = n^2 = \Omega(n^{\log_b a} \cdot n^{\varepsilon})$$

 $: \Omega$ נשתמש בהגדרת הסימון האסימפטוטי

$$cn^{\varepsilon} \le cn^{\log_b a} n^{\varepsilon}$$

$$cn^{\varepsilon} \le n^2/n^{\log_b a} = n^2/n^{\log_3 7} = n^{(\log_3 9 - \log_3 7)} = n^{\log_3 (9/7)}$$

$$\blacktriangleright \varepsilon = \log_3 (9/7) > 0 \quad c=1$$

$$af(n/b) \le cf(n)$$
 בדיקת תנאי הרגולריות: נבחר $c < 1$ כך שיתקיים $af(n/b) = 7(n/3)^2 = (7/9)n^2$

$$ightharpoonup c = 7/9 < 1$$

הראינו שנוסחת הנסיגה שייכת למקרה 3

$$T(n) = \Theta(n^2)$$
 מסקנה:

שיטת האב – מקרה 2 המורחב

f(n)נרחיב את הנוסחה של מקרה 2 עבור מצבים בהם חסום על ידי פונקציה שכוללת כופל פולילוגריתמי

$$k \geq 0$$
 אם $f(n) = \varTheta(n^{\log}b^a \cdot \log^k n)$ עבור $T(n) = aT(n/b) + f(n)$ אז פתרון נוסחת הנסיגה $T(n) = \varTheta(n^{\log}b^a \cdot \log^{k+1}n)$ הוא: $T(n) = \varTheta(n^{\log}b^a \cdot \log^{k+1}n)$

- לבין מספר f(n) אינטואיטיבית, בהרחבה זו השוויון בין מספר די פקטור של פונקציה פולילוגריתמית העלים הוא עד כדי פקטור של פונקציה פולילוגריתמית
 - (עמ' 72 בספר) 4.4-2 מופיע כתרגיל 12-4.4 (עמ' 12 בספר) ■

דוגמה – כפל מטריצות

- $C = A \cdot B$ דרוש אלגוריתם לכפל מטריצות
- $(n=2^m)\; n \times n$ מטריצות ריבועיות בגודל A, B, C
- תזכורת: האיבר C_{ij} של מטריצת המכפלה $C = A \cdot B$ מחושב ע"י המכפלה הפנימית ב $C_{ij} = \sum_{k=1}^n A_{ik} B_{kj}$
 - אלגוריתם פשוט:

SimpleMatrixMultiply(A, B, C, n)

- 1. for $i \leftarrow 1$ to n
- 2. **do for** $j \leftarrow 1$ **to** n
- 3. **do** $C[i,j] \leftarrow 0$
- 4. **for** $k \leftarrow 1$ **to** n
- 5. $\mathbf{do} \ C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$
- 6. return C

 $\Theta(n^3)$:זמן הריצה

(המשך) כפל מטריצות

?מה לגבי אלגוריתם רקורסיבי

$$A \times B = \begin{bmatrix} A1 & A2 \\ A3 & A4 \end{bmatrix} \times \begin{bmatrix} B1 & B2 \\ B3 & B4 \end{bmatrix} = \begin{bmatrix} C1 & C2 \\ C3 & C4 \end{bmatrix} = C$$

נחשב רקורסיבית את 8 מכפלות הרבעים, ונחבר

$$C1 = A1 \cdot B1 + A2 \cdot B3$$
 $C3 = A3 \cdot B1 + A4 \cdot B3$
 $C2 = A1 \cdot B2 + A2 \cdot B4$ $C4 = A3 \cdot B2 + A4 \cdot B4$

- $T(n) = 8T(n/2) + 4(n/2)^2$ נוסחת הנסיגה המתקבלת:
 - $T(n) = \Theta(n^3)$:(פתרון (מקרה 1 של שיטת האב) פתרון
- $\Theta(\log n)$ אותו זמן ריצה אסימפטוטי, אך צריכת הזיכרון היא
 - ת לא הושג כל שיפור... ■

(המשך) כפל מטריצות

(Strassen, 1969) האלגוריתם של שטראסן ■

C1 = P4 + P5 + P6 - P2

C4 = P1 + P5 - P3 - P7

מספיקות רק 7 מכפלות רבעים!

$$P1 = A1 \cdot (B2 - B4)$$

$$P2 = (A1 + A2) \cdot B4$$

$$P3 = (A3 + A4) \cdot B1$$

$$P4 = A4 \cdot (B3 - B1)$$

$$P5 = (A1 + A4) \cdot (B1 + B4)$$

$$P6 = (A2 - A4) \cdot (B3 + B4)$$

$$P7 = (A1 - A3) \cdot (B1 + B2)$$

$$T(n) = 7T(n/2) + 18(n/2)^2$$
 נוסחת הנסיגה המתקבלת:

C2 = P1 + P2

C3 = P3 + P4

$$T(n) = \Theta(n^{\log_2 7}) = \Theta(n^{2.81})$$
 (מקרה 1 של שיטת האב = $\Theta(n^{\log_2 7}) = \Theta(n^{2.81})$

באופן מעשי, עבור 45 > *ח* האלגוריתם הנאיבי עדיף. ■