Contents

Ι	Measure Theory And Lebesgue Integration	2
1	Measure Theory	3
	1.1 Measurable Sets (σ -Algebras)	3

Part I Measure Theory And Lebesgue Integration

Chapter 1

Measure Theory

1.1 Measurable Sets (σ -Algebras)

Definition 1.1.1. A σ -Algebra on a set X is a collection, denote \mathfrak{A} , of subsets of X s.t.

- $\bullet \varnothing \in \mathfrak{A}$
- If $A \in \mathfrak{A}$, then $A^c = X$ $A \in \mathfrak{A}$
- If $\{A_i/i \in \mathbb{N}\}$ is a countable family of sets in \mathfrak{A} then $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$

Definition 1.1.2. A measurable space (X, \mathfrak{A}) is a set X with a σ -algebra on X. The elements of that collection are called measurable sets.

Proposition 1.1.1. Let a set X and \mathfrak{A} be a σ -Algebra on X. Then $X \in \mathfrak{A}$ and \mathfrak{A} is closed under countable intersections.

Proof. • Since $\varnothing \in \mathfrak{A}$ then $X = \varnothing^c \in \mathfrak{A}$

• Let $\{A_i/i \in \mathbb{N}\}$ be a countable family of elements of \mathfrak{A} . Be definition, $\forall i \in \mathbb{N}, A_i^c \in \mathfrak{A}$. In other words, $\{A_i^c/i \in \mathbb{N}\}$

$$\therefore, \qquad \cap_{i=1}^{\infty} A_i = (\cup_{i=1}^{\infty} A_i^c)^c \in \mathfrak{A}$$

Example 1.1.1. The smallest σ -Algebra that can be defined over an arbitrary set is the empty set $\{\emptyset, X\}$

Example 1.1.2. The largest σ -Algebra that can be defined is the power set, $\mathfrak{P}(x)$. The power set is the collection of all possible sets of X.

Example 1.1.3. Let T be the collection of open sets in X ((X,T) is called a **Topological Space**). The σ -Algebra of X generalized by T is called the Borel σ -Algebra on X. We denote this $\mathfrak{B}(x)$. Its elements are called Borel Sets.

- (R) A closed set is the compliment of an open set. It is possible to be closed and open at the same time.
- R) By definition, the complement of sets in the σ -Algebra is also in the σ -Algebra. This means that the closed sets are also in the σ -Algebra. For instance, the Borel-Algebra on \mathbb{R}^n is generated by the collection of cubes, C, of the form $C = (a_1, b_1)(a_2, b_2)(\cdots)(a_n, b_n)$.

Definition 1.1.3. A measure, μ , on a set X, is a map $\mu: \mathfrak{A} \to [0, \infty]$ on a σ -Alembra \mathfrak{A} of X s.t.

- $\mu(\varnothing) = 0$
- If $\{A_i/i \in \mathbb{N}\}$ is a countable family of mutually disjoint sets of \mathfrak{A} , ie $A_i \cap A_j = \emptyset$, $i \neq j$

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i)$$

The measure is said to be finite if $\mu(x) < \infty$ and said to be σ -finite if $\exists \{A_i \in /i \in \mathbb{N}\}$ of measurable subsets of X s.t. $\forall i \in \mathbb{N}, \mu(A_i) < \infty$ and $X = \bigcup_{i=1}^{infty} A_i$