PC512

Technical Writing and Communication Skills

Prof. Anjan K Ghosh DAIICT Gandhinagar

Varieties of Communication

- Written/Printed
- Oral
- Visual
- Electronic
- Body Gestures

- One to One
- One to Many

Examples of Communication Varieties

Class lecture

 Oral+visual+one-tomany

Email to a student

 Written+electronic+ one-to-one

Conference Paper

Written+one-tomany

Written Communication

- Technical
 - Simple EnglishLanguage
 - Theorems and Proofs
 - Examples
 - Equations
 - Figures
 - Tables
 - References

- Creative
 - Language
 - Words
 - Verbal Images
 - Sound pattern

Format of a Technical Document

Shown in the next three slides

Technical Writing Example

An investigation of partitioning of images with respect to compressibility and spatial complexity

Descriptive Title

Anjan Ghosh^{*}*, Tamojay Deb^b

"DAIICT, Gandhinagar, Gujarat, India 382007; bTTAADC Polytechnic Institute, Khumlung,
Tripura, India 799045

Authors & Address

ABSTRACT

Analysis of two-dimensional spatial data is important for aerial surveys of crops and soils, recomnaissance, medical diagnosis, geographical information systems, and many other domains. Partitioning of images is helpful in the processing and analysis of spatial data. Investigations have shown that splitting an image into sub-images and compressing each sub-image using fewer calculations leads to a faster and more efficient method for the compression of the main image. The relationship between partitioning, spatial information, and the ease of compressing is explored in this paper.

Short Abstract

Keywords: Image Processing, image complexity, image segmentation, image compression

Keywords

1. INTRODUCTION

When an image is partitioned into smaller images, we often find that operations such as compression can be performed on the smaller images with less number of computational steps. In this paper, we investigate the relation between the partitioning, compressibility, and spatial information of images.

Sections
With
Numbers

2. IMAGE COMPRESSION USING SINGULAR-VALUE-DECOMPOSITION (SVD)

In using the technique of singular value decomposition we decompose a matrix in terms unitary or orthogonal matrices and set of non-negative singular values. Thus, we consider an image A as a $n \times n$ matrix and express

$$A = U\Sigma V^*$$
(1)

where U and V are $n \times n$ unitary matrices and Σ is a $n \times n$ diagonal matrix with the singular values (SVs) $\sigma_1, \sigma_2, \dots, \sigma_n$ greater than or equal to zero. Some of the SVs may be small. If we neglect the small Svs and consider the first few SVs we can create an approximation of the image A. It can be approximated by another $n \times n$ matrix

$$A' = \sigma_1 u_1 v_1^* + \sigma_2 u_2 v_2^* + \cdots + \sigma_r u_r v_r^*$$
(2)

Equations
With
Numbers

where $r < n_r$ u_i , and v_i^* are the *i*-th columns of U and V^* , the conjugate transpose of V, respectively (i = 1, 2, ..., r < n); none of the singular values used are zero or insignificant¹⁻³.

-

^{*} E-mail: anin@ieee.org

In another experiment, we took the image of "Lena" for testing. In Table 2 all the findings from the experiments are displayed. The image has been partitioned into different numbers of modules. For each case operational time and number

TABLE 3a. The effect of segmentation on the test image "LENA.BMP"

	Par titions	Spatial Information	No. of SV needed for approximation w.r.t. error threshold value(103)
Lena. jpg	1	66.36	14
	4 (2x2)	50.58 73.96 68.41 68.53	3 7 3 6
	16 (4x4)	734.36 34.44 68.61 79.44 73.59 44.21 68.39 74.31 61.45 84.86 70.46 48.45 55.04 66.73 73.17 66.53	1 1 2 2 1 1 2 2 1 1 1 1 2 1 1 1 3 3
	36 (6x6)	21.18 19.54 34.74 67.36 17.66 77.98 22.94 72.33 37.3 70.02 87.32 87.84 27.47 86.32 53.43 64.84 97.73 38.17 54.19 73.48 88.14 76.25 76.35 28.24 59.12 85.79 32.33 70.98 66.75 56.91 50.17 72.03 42.78 8.59 101.09 66.54	1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1

5. CONCLUSION

Partitioning several standard images into smaller sub-images, we have shown that SVD based compression can be performed with a less number of computational steps in a shorter time. Spatial complexity of the sub-images remains mostly in the same order as that of the main image. Thus, the advantages in computation and storage of data mostly come from the smaller dimensions of the sub-images.

Summary Or Conclusion

REFERENCES

- Wall. M.E., Rechtsteiner A., Rocha L. M., "Singular value decomposition and principal component analysis". A Practical Approach to Microarray Data Analysis, Springer US, 2003, pp.91-109.
- Bryt O., Elad M., "Compression of facial images using the K-SVD algorithm". Journal of Visual Communication & Image Presentation. Elsevier. March 2008, pp. 270-282.
- [3] Ranade, A., Srikanth, S.M., Kale, S., "A variation on SVD based Image Compression". IEEE Transaction on Image and Vision computing 25, no. 6, 2007,pp. 771-777.
- [4] Ghazy, Rania A., Nawal A. El-Fishawy, Mohiy M. Hadhoud, Moawad I. Dessouky, and Fathi E. Abd El-Samie. "An efficient block-by-block SVD-based image-watermarking scheme." IEEE Radio Science Conference, 2007, pp. 1-9.
- [5] Yu, H. and Winkler, S., "Image complexity and spatial information", Quality of Multimedia Experience (QoMEX), 2013.Fifth IEEE International Workshop, 2013, pp.12-17.

References

Oral Communication

- Technical
 - Visual aids
 - Charts
 - Slides
 - Posters
 - Handouts

- Non-Technical
 - Podium
 - Handouts

Image Compression with SVD

- Total storage for A_K will be k(m+n+1), where $m \times n$ is the size of the original image. $(C_R) = \frac{m \times n}{k \times (m+n+1)}$
- Compression ratio
- To measure the quality of the compressed image w.r.t. the original image we have calculated the error.

Plain Background Without Decorations

$$\frac{\left\|A - \tilde{A}_k\right\|_F}{\left\|A - \tilde{A}_k\right\|_F}$$

$$\left\|A - \tilde{A}_k\right\|_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}.$$

Text with Charts or Figures and Equations

Technical Communication

Technical Writing

Thesis

Paper

Report

Memo

Proposal

Minutes of meetings

Briefs

Cases

Patent applications

Tech. Presentation

Progress report

Viva

Project review

Seminar

Lecture

Technical Communication Triangle

Triangle for A Thesis (example)

General Guidelines

Technical Communication is an \mathcal{ART}

(creativity, care, beauty, ...)

Supervised Practice makes you BETTER

Tech Writing and
Presentation are for
OTHER PERSONS – not
for yourself (Who)

Technical Writing or Presentation is for some GAIN (Why)

Gain = MTech, PhD, Job, Project Money, Promotion, Fame, Recognition, Award, ...

Know / Understand the SUBJECT THOROUGHLY before Writing / Presentation

NO CHEATING

Be Diplomatic

Free Software for Writing/ Presentation

- Use
 - LibreOffice Suite (equivalent to Microsoft Office)
 - Zotero or Mendely for Reference Management
 - LaTeX packages (pdfLaTeX)
 - MikTeX in Windows
 - MacTeX for MacOSX
 - Texlive for Linux
 - LyX or TeXmacs for wyswyg and easy equation editing
 - Texmaker, Notepad++, VSCode, Vim, ... editors
 - Overleaf, Papeeria, ... for Online LaTeX

Quick Tutorials on LaTeX

- https://www.overleaf.com/learn/latex/
 Learn LaTeX in 30 minutes
- https://www.bu.edu/math/files/2013/08/
 ShortTeX3.pdf

Summary

Basic and general facts and rules about technical writing and presentations