## Chapter 10

10.1 
$$\sigma_1 = \frac{\sigma_1}{\sigma_3} = \frac{\sigma_y + \sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_y - \sigma_x}{2}\right)^2 + \tau_{xy}^2}$$
  
 $\sigma_x = 60 \text{ kN/m}^2; \ \sigma_y = 100 \text{ kN/m}^2; \ \tau_{xy} = +45 \text{ kN/m}^2$ 

$$\begin{vmatrix} \sigma_1 \\ \sigma_3 \end{vmatrix} = \frac{100 + 60}{2} \pm \sqrt{\left(\frac{100 - 60}{2}\right)^2 + (45)^2}$$

 $\sigma_1 = 129.24 \text{ kN/m}^2$ ;  $\sigma_3 = 30.76 \text{ kN/m}^2$ 

$$\sigma_n = \frac{\sigma_y + \sigma_x}{2} + \frac{\sigma_y - \sigma_x}{2}\cos 2\theta + \tau_{xy}\sin 2\theta; \quad \theta = 150^\circ$$

$$\sigma_n = \frac{100 + 60}{2} + \frac{100 - 60}{2} \cos[(2)(150)] + 45\sin[(2)(150)] = 51.03 \text{ kN/m}^2$$

$$\tau_n = \frac{\sigma_y - \sigma_x}{2} \sin 2\theta - \tau_{xy} \cos 2\theta$$

$$= \frac{100 - 60}{2} \sin[(2)(150)] - 45\cos[(2)(150)] = 39.82 \text{ kN/m}^2$$

10.2 
$$\sigma_x = 750 \text{ lb/ft}^2$$
;  $\sigma_y = 400 \text{ lb/ft}^2$ ;  $\tau_{xy} = -300 \text{ lb/ft}^2$ ;  $\theta = 45^{\circ}$ 

$$\sigma_1 = 922.3 \text{ lb/ft}^2$$
;  $\sigma_3 = 227.7 \text{ lb/ft}^2$ 

$$\sigma_n = \frac{400 + 750}{2} + \frac{400 - 750}{2}\cos 90 - 300\sin 90 = 275 \text{ lb/ft}^2$$

$$\tau_n = \frac{400 - 750}{2} \sin 90 - (-300) \cos 90 = -175 \text{ lb/ft}^2$$

10.3 The Mohr's circle is shown.



$$\overline{OO_1} = \frac{150 + 80}{2} = 115 \text{ kN/m}^2; O_1O_2 = 150 - 115 = 35 \text{ kN/m}^2$$

$$\overline{O_1 B} = \sqrt{\left(\frac{150 - 80}{2}\right)^2 + (30)^2} = 46.1 \text{ kN/m}^2$$

$$\sigma_3 = \overline{OS} = 115 - 46.1 = 68.9 \text{ kN/m}^2 (+)$$

$$\sigma_1 = \overline{ON} = 115 + 46.1 = 161.1 \text{ kN/m}^2 (+)$$

$$\angle BO_1O_2 = \tan^{-1}\left(\frac{30}{35}\right) = 40.6^{\circ}$$

$$\sigma_n = \overline{OO_1} + \overline{O_1D}\cos 59.4 = 115 + 46.1\cos 59.4 = 138.5 \text{ kN/m}^2 (+)$$

$$\tau_n = \overline{O_1 D} \sin 59.4 = 39.7 \text{ kN/m}^2 (-)$$

10.4 The Mohr's circle is shown.



$$\overline{OO_1} = \frac{300 + 125}{2} = 212.5 \text{ lb/ft}^2$$
  $O_1O_2 = 212.5 - 125 = 87.5 \text{ lb/ft}^2$ 

$$\overline{O_1B} = \sqrt{(87.5)^2 + (55)^2} = 103.35 \,\text{lb/ft}^2$$

$$\sigma_1 = \overline{ON} = 212.5 + 103.35 = 315.85 \text{ lb/ft}^2$$

$$\sigma_3 = \overline{OS} = 212.5 - 103.34 = 109.15 \text{ lb/ft}^2$$

$$\angle CO_1O_2 = \tan^{-1}\left(\frac{55}{87.5}\right) = 32.15^{\circ}$$

$$\sigma_n = \overline{OO_1} - \overline{O_1D}\cos(32.15 + 40) = 212.5 - 103.35\cos72.15 =$$
**180.8 lb/ft²**

$$\tau_n = 103.35 \sin 72.15 = 98.4 \text{ lb/ft}^2$$

10.5 The Mohr's circle is shown.



$$\sigma_1 = \overline{ON} = 95 \text{ kN/m}^2; \quad \sigma_3 = \overline{OS} = 30 \text{ kN/m}^2$$

b.  $\sigma_n$  and  $\tau_n$  are coordinates of D. So

$$\sigma_n \approx 94.2 \text{ kN/m}^2$$
;  $\tau_n \approx 7.1 \text{ kN/m}^2$  (–)

10.6 The Mohr's circle is shown on the next page.

$$\sigma_1 = \overline{ON} = 109.1 \text{ lb/ft}^2$$
;  $\sigma_3 = \overline{OS} = 25.9 \text{ lb/ft}^2$ 

b.  $\sigma_n$  and  $\tau_n$  are coordinates of *D*. So

$$\sigma_n \approx 29.1 \text{ lb/ft}^2$$
;  $\tau_n \approx 16.08 \text{ lb/ft}^2$ 



Problem 10.6

|      | C                | 6000 | 5                            | 10   | 0.5      | 0.2733       | 16.4                                  |
|------|------------------|------|------------------------------|------|----------|--------------|---------------------------------------|
|      | B                | 4000 | $(10^2 + 5^2)^{0.5} = 11.18$ | 10   | 1.12     | 0.0626       | 2.5                                   |
|      | $\boldsymbol{A}$ | 2000 | $(10^2 + 5^2)^{0.5} = 11.18$ | 10   | 1.12     | 0.0626       | 1.25                                  |
|      | @                | (lb) | (ft)                         | (ft) | Z        | (Table 10.1) | (lb/ft <sup>2</sup> )                 |
| 10.7 | Load             | P    | r                            | z    | <u>r</u> | $I_1$        | $\Delta \sigma_z = \frac{P}{z^2} I_1$ |

 $\Delta \sigma_z = \sum 20.15 \text{ lb/ft}^2$ 

10.8 Eq. (10.15):

$$\Delta\sigma_z = \frac{2q_1z^3}{\pi[(x_1 + x_2)^2 + z^2]^2} + \frac{2q_2z^3}{\pi[x_2^2 + z^2]^2} = \frac{(2)(75)(2)^3}{\pi[(5)^2 + (2)^2]^2} + \frac{(2)(300)(2)^3}{\pi[3^2 + 2^2]^2}$$
$$= \mathbf{9.49 \, kN/m^2}$$

10.9 
$$\Delta\sigma_{z} = \frac{2q_{1}z^{3}}{\pi[(x_{1} + x_{2})^{2} + z^{2}]^{2}} + \frac{2q_{2}z^{3}}{\pi[x_{2}^{2} + z^{2}]^{2}}$$
$$= \frac{(2)(300)(3)^{3}}{\pi[(4+3)^{2} + (3)^{2}]^{2}} + \frac{(2)(260)(3)^{3}}{\pi[4^{2} + 3^{2}]^{2}} = 15.32 \text{ kN/m}^{2}$$

10.10 
$$\Delta \sigma_z = \frac{2q_1z^3}{\pi[(x_1 + x_2)^2 + z^2]^2} + \frac{2q_2z^3}{\pi[x_2^2 + z^2]^2}$$

$$35 = \frac{(2)(750)(3)^3}{\pi[12^2 + 3^2]^2} + \frac{2q_2(3)^3}{\pi[4^2 + 3^2]^2} = 0.55 + 0.0275q_2$$

 $q_2 = 1252.7$  lb/ft

10.11 
$$\Delta \sigma_z$$
 at A due to  $q_1 = \frac{2q_1z^3}{\pi[x^2 + z^2]^2}$ , or  $(\Delta \sigma_z)_1 = \frac{(2)(250)(2)^3}{\pi[(2)^2 + (2)^2]^2} = 19.89 \text{ kN/m}^2$ 

Vertical component of  $q_2 = q_2 \sin 45$ 

$$(\Delta \sigma_z)_2 = \frac{2q_2(\sin 45)z^3}{\pi[(5)^2 + (2)^2]^2}; (\Delta \sigma_z)_2 = 0.0043q_2$$

Horizontal component of  $q_2 = q_2 \cos 45$ 

From Eq. (10.17): 
$$(\Delta \sigma_z)_3 = \frac{2q_2xz^2}{\pi(x_1^2 + x_2^2)^2} + \frac{2q_2(\cos 45)(5)(2)^2}{\pi[5^2 + 2^2]^2} = 0.0107q_2$$

Total vertical stress,

$$\Delta \sigma_z = 30 \text{ kN/m}^2 = (\Delta \sigma_z)_1 + (\Delta \sigma_z)_2 + (\Delta \sigma_z)_3$$

$$30 = 19.89 + 0.0043q_2 + 0.0107q_2$$

$$q_2 = \frac{30 - 19.89}{0.015} = 674 \,\mathrm{kN/m}$$

10.12 
$$B = 12$$
 ft;  $q = 350$  lb/ft<sup>2</sup>;  $x = 9$  ft;  $z = 5$  ft

$$\frac{2x}{B} = \frac{(2)(9)}{12} = 1.5; \ \frac{2z}{B} = \frac{(2)(5)}{12} = 0.833.$$
 From Table 10.4,  $\frac{\Delta \sigma_z}{q} = 0.2$ 

$$\Delta \sigma_z = (0.12)(350) = 70 \text{ lb/ft}^2$$

10.13 
$$\frac{2x}{B} = \frac{(2)(1.5)}{3} = 1$$
;  $\frac{2z}{B} = \frac{(2)(3)}{3} = 2$ . From Table 10.4,  $\frac{\Delta \sigma_z}{q} = 0.409$   
 $\Delta \sigma_z = (60)(0.409) = 24.54 \text{ kN/m}^2$ 

## 10.14 Refer to the figure.



For the left side (with the notations given in Figure 10.14):

$$\frac{B_1}{z} = \frac{0}{6} = 0$$
;  $\frac{B_2}{z} = \frac{12}{6} = 2$ . From Figure 10.15,  $I_{2(L)} = 0.37$ 

For the right side:

$$\frac{B_1}{z} = \frac{9}{6} = 1.5$$
;  $\frac{B_2}{z} = \frac{12}{6} = 2$ . From Figure 10.15,  $I_{2(R)} = 0.485$ 

$$\Delta \sigma_z = q[I_{2(L)} + I_{2(R)}] = (132)(0.37 + 0.485) = 112.86 \text{ kN/m}^2$$

## 10.15 At A:



$$\Delta \sigma_z = (40)(120)(0.468 + 0.468) \approx 4492.8 \text{ lb/ft}^2$$

At *B*:



For the For the left side: right side:

$$\frac{B_1}{z} = \frac{0}{20} = 0 \quad \frac{B_1}{z} = \frac{20}{20} = 1$$

$$\frac{B_2}{z} = \frac{80}{20} = 4 \quad \frac{B_2}{z} = \frac{80}{20} = 4$$

$$I_2 = 0.42$$
  $I_2 = 0.48$ 

$$\Delta \sigma_z = (40)(120)(0.42 + 0.48) \approx 4320 \text{ lb/ft}^2$$

At *C*:



For the For the left side: right side:

$$\frac{B_1}{z} = 0 \qquad \frac{B_1}{z} = \frac{100}{20} = 5$$

$$\frac{B_2}{z} = \frac{80}{20} = 4 \qquad \frac{B_2}{z} = \frac{80}{20} = 4$$

$$I_2 = 0.42$$
  $I_2 = 0.5$ 

$$\Delta \sigma_z = (40)(120)(0.5 - 0.42) \approx 384 \text{ lb/ft}^2$$

10.16 Eq. (10.25) and Table 10.5:  $q = 200 \text{ kN/m}^2$ 

| <i>R</i> (m) | z<br>(m) | $\frac{z}{R}$ | $rac{\Delta \sigma_z}{q}$ | $\Delta \sigma_z$ (kN/m <sup>2</sup> ) |
|--------------|----------|---------------|----------------------------|----------------------------------------|
| 4            | 1.5      | 0.375         | 0.9567                     | 191.34                                 |
| 4            | 3        | 0.75          | 0.784                      | 156.8                                  |
| 4            | 6        | 1.5           | 0.4240                     | 84.8                                   |
| 4            | 9        | 2.25          | 0.2369                     | 47.38                                  |
| 4            | 12       | 3.0           | 0.1436                     | 28.72                                  |

10.17 Eq. (10.26) and Tables 10.6 and 10.7:  $q = 2000 \text{ lb/ft}^2$ 

| z (ft) | r (ft) | R (ft) | $\frac{z}{R}$ | $\frac{r}{R}$ | A'      | <i>B'</i> | $\Delta\sigma_z$ (lb/ft <sup>2</sup> ) |
|--------|--------|--------|---------------|---------------|---------|-----------|----------------------------------------|
| 5      | 0      | 10     | 0.5           | 0             | 0.55279 | 0.35777   | 1821                                   |
| 5      | 2      | 10     | 0.5           | 0.2           | 0.54403 | 0.35752   | 1803                                   |
| 5      | 4      | 10     | 0.5           | 0.4           | 0.51622 | 0.35323   | 1739                                   |
| 5      | 8      | 10     | 0.5           | 0.8           | 0.38390 | 0.26236   | 1293                                   |
| 5      | 12     | 10     | 0.5           | 1.2           | 0.18556 | 0.02165   | 414                                    |

10.18 Refer to the Newmark's chart.

The plan is drawn to scale.

$$\overline{AB} = 4 \text{ m. } M \approx 65.$$

$$\Delta \sigma_z = (IV) \, q \, M$$

=(0.005)(300)(65)

$$= 97.5 \text{ kN/m}^2$$



10.19 a. Eqs. (10.31) and (10.32): 
$$n = \frac{L}{z} = \frac{4}{2} = 2$$
;  $m = \frac{B}{z} = \frac{2}{2} = 1$ 

Eq. (10.29): 
$$\Delta \sigma_z = q I_3$$
;  $I_3 = 0.1999$ 

$$\Delta \sigma_z = (100)(0.1999) = 19.99 \text{ kN/m}^2 \approx 20 \text{ kN/m}^2$$

b. Refer to the figure.

| 1 | 2.4 m×1.2 m  | ③<br>1.6 m×1.2 m |
|---|--------------|------------------|
| 2 | 2. 4 m×0.8 m | 1.6 m×0.8 m      |

For rectangle 1: 
$$m = \frac{1.2}{2} = 0.6$$
;  $n = \frac{2.4}{2} = 1.2$ ;  $I_3 = 0.1431$ 

For rectangle 2: 
$$m = \frac{0.8}{2} = 0.4$$
;  $n = \frac{2.4}{2} = 1.2$ ;  $I_3 = 0.1063$ 

For rectangle 3: 
$$m = \frac{1.2}{2} = 0.6$$
;  $n = \frac{1.6}{2} = 0.8$ ;  $I_3 = 0.1247$ 

For rectangle 4: 
$$m = \frac{0.8}{2} = 0.4$$
;  $n = \frac{1.6}{2} = 0.8$ ;  $I_3 = 0.0931$ 

$$\Delta\sigma_z = q[I_{3(1)} + I_{3(2)} + I_{3(3)} + I_{3(4)}] = (100)(0.1431 + 0.1063 + 0.1247 + 0.0931)$$
$$= 46.72 \text{ kN/m}^2$$

c. Refer to the figure.



$$\Delta\sigma_z = \begin{pmatrix} \text{stress at } C \text{ due} \\ \text{to rectangular} \\ \text{area } 5.2 \text{ m} \times 2 \text{ m} \end{pmatrix} - \begin{pmatrix} \text{stress at } C \text{ due} \\ \text{to rectangular} \\ \text{area } 2 \text{ m} \times 1.2 \text{ m} \end{pmatrix}$$

For rectangular area 5.2 m × 2 m: 
$$m = \frac{2}{2} = 1$$
;  $n = \frac{5.2}{2} = 2.6$ ;  $I_3 = 0.202$ 

For rectangular area  $1.2 \text{ m} \times 2 \text{ m}$ :  $m = \frac{1.2}{2} = 0.6$ ;  $n = \frac{2}{2} = 1$ ;  $I_3 = 0.1361$ 

$$\Delta \sigma_z = q(0.202 - 0.1361) = (100)(0.202 - 0.1361) =$$
**6.59 kN/m<sup>2</sup>**

10.20 Eqs. (10.36), (10.37), and (10.38):

$$b = \frac{B}{2} = \frac{2}{2} = 1 \text{ m}$$

$$m_1 = \frac{L}{B} = \frac{4}{2} = 2$$

$$n_1 = \frac{z}{b} = \frac{3.5}{1} = 3.5$$

From Table 10.9,  $I_4 \approx 0.242$ 

$$\Delta \sigma_z = q I_4 = (100)(0.242) = 24.2 \text{ kN/m}^2$$