

Mechatronics AEZG511

Lecture

Transfer functions

Transfer function

Gain = Output / Input =
$$x(t)/y(t)$$

Gain of inverting amplifier is $V_{out}/V_{in} = -R_2/R_1$

Whereas differential equation cannot be expressed as a gain equation as simple ratio

Therefore Laplace transforms are used

Transfer Function = Laplace transformation of output

Laplace transformation of input

Laplace transform of derivatives/Integrals

$$\mathcal{L}\left\{\frac{\mathrm{d}}{\mathrm{d}t}f(t)\right\} = sF(s) - f(0)$$

$$\mathcal{L}\left\{\frac{\mathrm{d}^2}{\mathrm{d}t^2}f(t)\right\} = s^2 F(s) - s f(0) - \frac{\mathrm{d}}{\mathrm{d}t}f(0)$$

The Laplace transform of the integral of a function f(t) which has a Laplace transform F(s) is given by

$$\mathcal{L}\left\{\int_0^t f(t) \, \mathrm{d}t\right\} = \frac{1}{s} F(s)$$

For example, the Laplace transform of the integral of the function e^{-t} between the limits 0 and t is given by

$$\mathcal{L}\left\{\int_0^t e^{-t} dt\right\} = \frac{1}{s} \mathcal{L}\left\{e^{-t}\right\} = \frac{1}{s(s+1)}$$

Example 1 – Transfer function

Consider a system where the relationship between the input and the output is in the form of a first-order differential equation. The differential equation of a first-order system is of the form

$$a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = b_0 y$$

where a_1 , a_0 , b_0 are constants, y is the input and x the output, both being functions of time. The Laplace transform of this, with all initial conditions zero, is

$$a_1 s X(s) + a_0 X(s) = b_0 Y(s)$$

and so we can write the transfer function G(s) as

$$G(s) = \frac{X(s)}{Y(s)} = \frac{b_0}{a_1 s + a_0}$$

This can be rearranged to give

$$G(s) = \frac{b_0/a_0}{(a_1/a_0)s + 1} = \frac{G}{\tau s + 1}$$

Example 2 – Transfer Function

■ Problem

Obtain the transfer functions X(s)/F(s) and X(s)/G(s) for the following equation.

$$5\ddot{x} + 30\dot{x} + 40x = 6f(t) - 20g(t)$$

■ Solution

Using the derivative property with zero initial conditions, we can immediately write the equation as

$$5s^2X(s) + 30sX(s) + 40X(s) = 6F(s) - 20G(s)$$

Solve for X(s).

$$X(s) = \frac{6}{5s^2 + 30s + 40}F(s) - \frac{20}{5s^2 + 30s + 40}G(s)$$

When there is more than one input, the transfer function for a specific input can be obtained by temporarily setting the other inputs equal to zero (this is another aspect of the superposition property of linear equations). Thus, we obtain

$$\frac{X(s)}{F(s)} = \frac{6}{5s^2 + 30s + 40} \qquad \frac{X(s)}{G(s)} = -\frac{20}{5s^2 + 30s + 40}$$

First order system example

$$v = RC \frac{dv_C}{dt} + v_C$$

The Laplace transform is:

$$V(s) = RCsV_{C}(s) + V_{C}(s)$$

Thus V(s) is the Laplace transform of the input voltage v and $V_{C}(s)$ is the Laplace transform of the output voltage v_{C} . Rearranging gives:

$$\frac{V_{\rm C}(s)}{V(s)} = \frac{1}{RCs + 1}$$

The above equation thus describes the relationship between the input and output of the system when described as s functions.

innovate

First order system problem

Example

A thermocouple which has a transfer function linking its voltage output V and temperature input of:

$$G(s) = \frac{30 \times 10^{-6}}{10s + 1} \text{ V/°C}$$

Determine the response of the system when it is suddenly immersed in a water bath at 100°C.

The output as an s function is:

$$V(s) = G(s) \times \text{input } (s)$$

The sudden immersion of the thermometer gives a step input of size 100° C and so the input as an s function is 100/s. Thus:

$$V(s) = \frac{30 \times 10^{-6}}{10s + 1} \times \frac{100}{s} = \frac{30 \times 10^{-4}}{10s(s + 0.1)} = 30 \times 10^{-4} \frac{0.1}{s(s + 0.1)}$$

The fraction element is of the form a/s(s + a) and so the output as a function of time is:

$$V = 30 \times 10^{-4} (1 - e^{-0.1t}) \text{ V}$$

innovate

Second Order system

For a second-order system, the relationship between the input y and the output x is described by a differential equation of the form

$$a_2 \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + a_1 \frac{\mathrm{d}x}{\mathrm{d}t} + a_0 x = b_0 y$$

where a_2 , a_1 , a_0 and b_0 are constants. The Laplace transform of this equation, with all initial conditions zero, is

$$a_2s^2X(s) + a_1sX(s) + a_0X(s) = b_0Y(s)$$

Hence

$$G(s) = \frac{X(s)}{Y(s)} = \frac{b_0}{a_2 s^2 + a_1 s + a_0}$$

Systems in series

$$Y(s) = G_2(s)Y_1(s) = G_2(s)G_1(s)X(s)$$

The overall transfer function G(s) of the system is Y(s)/X(s) and so:

$$G_{\text{overall}}(s) = G_1(s)G_2(s)$$

First order system example

$$\frac{V_1(s)}{V_s(s)} = \frac{1}{RCs + 1}$$

$$V_2(s) = GV_1(s)$$

$$\frac{V_o(s)}{V_2(s)} = \frac{1}{RCs + 1}$$

$$\frac{V_o(s)}{V_s(s)} = \frac{V_o(s)}{V_2(s)} \frac{V_2(s)}{V_1(s)} \frac{V_1(s)}{V_s(s)} = \frac{1}{RCs+1} G \frac{1}{RCs+1} = \frac{G}{R^2 C^2 s^2 + 2RCs+1}$$

Systems with feedback loops

Error
$$(s) = X(s) - H(s)Y(s)$$

Since G(S) = Y(S)/(E(S))

$$G(s) = \frac{Y(s)}{X(s) - H(s)Y(s)}$$

overall transfer function = $\frac{Y(s)}{X(s)} = \frac{G(s)}{1 + G(s)H(s)}$

$$G_{\text{overall}}(s) = \frac{\frac{2}{s+2}}{1+4 \times \frac{2}{s+2}} = \frac{2}{s+10}$$

ve

Second Order system

What will be the state of damping of a system having the following transfer function and subject to a unit step input?

$$G(s) = \frac{1}{s^2 + 8s + 16}$$

The output Y(s) from such a system is given by:

$$Y(s) = G(s)X(s)$$

For a unit step input X(s) = 1/s and so the output is given by:

$$Y(s) = \frac{1}{s(s^2 + 8s + 16)} = \frac{1}{s(s+4)(s+4)}$$

The roots of $s^2 + 8s + 16$ are $p_1 = p_2 = -4$. Both the roots are real and the same and so the system is critically damped.

Stability of system

A system is **stable** if, when it is given an input, it has transients which die away with time.

Final state is steady state condition

It is **unstable**, if transients do not die away with time but increase in size and steady state is not attained.

Stability of system

For a transfer function, value of **S** which make the transfer function infinite is termed as **Poles**

$$Y(s) = \frac{1}{s(s+1)(s+2)} = \frac{1}{2s} - \frac{1}{s+1} + \frac{1}{2(s+2)}$$

$$y = \frac{1}{2} - e^{-t} + \frac{1}{2}e^{-2t}$$

Only If all poles are negative, then system is stable

$$Y(s) = \frac{1}{s(s-1)(s-2)} = \frac{1}{2s} - \frac{1}{s-1} + \frac{1}{2(s-2)}$$

$$y = \frac{1}{2} - e^{+t} + \frac{1}{2}e^{+2t}$$

Even If one of poles is positive, then system is unstable

Stability of system

$$G(s) = \frac{1}{s^2 + 2s + 4}$$

we have the roots of the quadratic given by:

$$s = \frac{-2 \pm \sqrt{4 - 16}}{2} = -1 \pm j1.73$$

$$G(s) = \frac{1}{s^2 - 2s + 4}$$

we have the roots of the quadratic given by:

$$s = \frac{2 \pm \sqrt{4 - 16}}{2} = +1 \pm j1.73$$

A system is stable, if the real part of all its poles is negative

A system is unstable, if the real part of any of its poles is positive

Matlab code to view the graph

lead

Stability of system

Closed Loop Controllers

lead

Continuous and discrete control process

Control system terminology

Control systems

lead

Terminology

- Lag
 - Time required for the system to make necessary response

Steady State error

Steady state error

$$e_{SS} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s)$$

Control modes - On/Off

On/off controlled liquid heating system.

Control modes – Proportional (P)

controller output = K_{pe}

where e is the error and K_p a constant. Thus taking Laplace transforms,

controller output $(s) = K_{\mathbf{p}}E(s)$

and so K_P is the transfer function of the controller.

$$E(s) = \frac{1}{1 + K_{\rm p}G(s)}R(s)$$

$$e_{SS} = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \left[s \frac{1}{1 + K_P G(s)} \frac{1}{s} \right]$$

Proportional (P) Hardware

$$V_{\rm out} = -\frac{R_2}{R_1} V_{\rm e} - V_0$$

$$V_{\text{out}} = \frac{R_2}{R_1} V_{\text{e}} + V_0$$

$$V_{\rm out} = K_{\rm P}V_{\rm e} + V_0$$

Proportional (P) Hardware

Derivative (D)

controller output =
$$K_{\rm D} \frac{\mathrm{d}e}{\mathrm{d}t}$$

 $K_{\rm D}$ is the constant of proportionality. The transfer function is obtained by taking Laplace transforms, thus

controller output $(s) = K_{D}sE(s)$

Derivative (D) – Hardware

Does not respond to steady state errors!

innovate

PD control

With proportional plus derivative control the controller output is given by

controller output =
$$K_{\rm p}e + K_{\rm D}\frac{\mathrm{d}e}{\mathrm{d}t}$$

 $K_{\rm P}$ is the proportionality constant and $K_{\rm D}$ the derivative constant, ${\rm d}e/{\rm d}t$ is the rate of change of error. The system has a transfer function given by

controller output
$$(s) = K_P E(s) + K_D s E(s)$$

Hence the transfer function is $K_P + K_D s$. This is often written as

transfer function =
$$K_{\rm D} \left(s + \frac{1}{T_{\rm D}} \right)$$

where $T_D = K_D/K_P$ and is called the derivative time constant.

PD control

Ideal for fast changing processes

Integral Control

The **integral mode** of control is one where the rate of change of the control output *I* is proportional to the input error signal *e*:

$$\frac{\mathrm{d}I}{\mathrm{d}t} = K_{\mathrm{I}}e$$

 $K_{\rm I}$ is the constant of proportionality and has units of 1/s. Integrating the above equation gives

$$\int_{I_0}^{I_{\text{out}}} \mathrm{d}I = \int_0^t K_{\mathrm{I}} e \, \mathrm{d}t$$

$$I_{\text{out}} - I_0 = \int_0^t K_{\text{I}} e \, \mathrm{d}t$$

 I_0 is the controller output at zero time, I_{out} is the output at time t.

The transfer function is obtained by taking the Laplace transform. Thus

$$(I_{\text{out}} - I_0)(s) = \frac{1}{s} K_{\text{I}} E(s)$$

and so

transfer function =
$$\frac{1}{s}K_{\rm I}$$

Laplace transform of an integral (Refer Appendix-Bolton)

Integral (I) control

Integral (I) control - Hardware

controller output =
$$K_{\rm p}e + K_{\rm I} \int e \, \mathrm{d}t$$

where K_P is the proportional control constant, K_I the integral control constant and e the error e. The transfer function is thus

transfer function =
$$K_{\rm P} + \frac{K_{\rm I}}{s} = \frac{K_{\rm P}}{s} \left(s + \frac{1}{T_{\rm I}} \right)$$

where $T_{\rm I} = K_{\rm P}/K_{\rm I}$ and is the integral time constant.

lead

P I control

controller output =
$$K_{\rm p}e + K_{\rm I} \int e \, dt + K_{\rm D} \frac{\mathrm{d}e}{\mathrm{d}t}$$

where K_P is the proportionality constant, K_I the integral constant and K_D the derivative constant. Taking the Laplace transform gives

controller output
$$(s) = K_{\rm p}E(s) + \frac{1}{s}K_{\rm I}E(s) + sK_{\rm D}(s)$$

and so

transfer function =
$$K_{pe} + \frac{1}{s}K_{I} + sK_{D} = K_{p}\left(1 + \frac{1}{T_{I}s} + T_{D}s\right)$$

$$H_{CLI}(s) = \frac{\Omega_I(s)}{\Omega_S(s)}$$

$$= \frac{H_{CI}(s)H_{pI}}{I + H_s(s)H_{CI}(s)H_{pI}(s)}$$

achieve

P I D control - Hardware

Typical PID combination

Commercial PID

Commercial PID

Ziegler – Nichols – Process Reaction

Open the control loop, no control action is allowed

Control mode	Kp	$T_{ m I}$	T_{D}
P	P/RL		
PI	0.9P/RL	3.33L	
PID	1.2P/RL	2L	0.5L

R is maximum gradient(Slope) = M/T

Study the example problem given in **Bolton**

The method describes the procedure to find out constants like gain, Integral time, derivative time

<u>Step 1:</u>

Remove the integral and derivative action from the controller by setting

- a) Derivative time to zero,
- b) Integral time to zero
- c) Proportional gain to one.

<u>Step 2:</u>

Run the system in automatic mode and control loop.

Step 3:

Upset the process (Say change the set point)

Step 4:

If the response curve does not damp but is unstable (Like below)

then gain is too high. Reduce the gain

<u>Step 5:</u>

If the response curve damps out

then gain is too low. Increase the gain till you get the

stable response.

Record the value of Time (P_u) and ultimate gain (S_u) which generated stable response.

PI control:

$$K_c = 0.45S_u$$

$$T_i = \frac{P_u}{1.2}$$

PD control:

$$T_d = \frac{P_u}{8}$$

Set the calculated parameters in the controller

PID control:

$$K_c = 0.6S_u$$

$$T_{i} = 0.5P_{u}$$

$$T_d = \frac{P_u}{8}$$

Other tuning procedures

Manual:

- ✓ Operator estimates the tuning parameters required to give the desired controller response
- ✓ Proportional, integral, and derivative terms must be adjusted and tuned individually to a particular system using trial and error method.

Auto tune:

- The controller takes care of calculating and setting PID parameters
 - ✓ Measures sensor
 - ✓ Calculates error, sum of error, rate of change of error
 - ✓ Calculates desired parameter with PID equations
 - ✓ Updates control output

Thank you