Quantum optimization through path-integral molecular dynamics

Center for Scientific Computing, Theory and Data

Alfredo Fiorentino¹, Nicola Marzari^{1,2}

¹ PSI Center for Scientific Computing, Theory, and Data, Villigen, Switzerland

² Theory and Simulation of Materials (THEOS), Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

1. Introduction

- Motivation
 - Global optimization of atomic degrees of freedom is a key problem in physics whenever the number of candidate structures (local minima) is combinatorially large: cluster physics, polymer folding, interfaces...
- ► The idea

Novel implementation of Quantum Annelealing (QA) using Path-Integral Molecular Dynamics (PIMD), labeled QA-PIMD. While Classical Annealing (CA) involves melting and slowly cooling through a temperature schedule, QA uses quantum delocalization.

Figure: Summary of the workflow

2. Methods

QA-PIMD is obtained by combining two powerful methods:

Quantum annealing: exploration through quantum delocalization

$$\hat{H}(t) = -\alpha(t) \sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \nabla^2 + U(\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_N)$$

- $ightharpoonup \lim_{t_{max}\to\infty} Tr[\rho(t_{max})U] = \min U$
- Path-Integral Molecular Dynamics Equilibrium nuclear quantum effects (NQEs)

from P classical simulations ($P \sim 10 - 100$. $H_P = \sum_{i=1}^{N} \sum_{j=1}^{P} \left[\frac{1}{2m_i} |\mathbf{p}_i^{(j)}|^2 + \frac{1}{2} m_i \omega_P^2 |\mathbf{x}_i^{(j)} - \mathbf{x}_i^{(j+1)}|^2 \right]$ $+\sum_{j=1}^{P}U(\mathbf{x}_{1j},\ldots,\mathbf{x}_{Nj}),$

3. Benchmark: asymmetric double well

The local density from 200-ps PIMD simulations follows adiabatically the exact instantaneous quantum density. T = 100 K.

4.1 Lennard-Jones clusters

LJ clusters: millions of estimated local minima with just a few tens of atoms!

Figure: Global minimum of a LJ cluster with N=13.

4.2 LJ clusters: classical vs quantum

Figure: Comparison of QA and CA residual energy against annealing time, for two size of LJ cluster.

5.1 Missing hydrogens' sites

Hydrogen's positions are hardly detected in X-ray scattering, resulting in a large dataset of structures missing hydrogen positions. The 10 materials are simulated with MACE's foundational MLIP

Figure: Example of finding, through QA-PIMD, the hydrogens' sites for a known crystal (B_4H_{12}). Check the QR code for the video!

5.2 Results missing hydrogens problem

Figure: Top panel: residual energy with respect of MC3D database against annealing time. Lower panel: probability of finding an equal of lower energy.

6. Conclusion

- QA-PIMD is an unbiased and general novel global optimization algorithm using quantum fluctuations.
- It can outperform classical annealing. E.g., shorter annealing time needed for LJ clusters.
- Material discovery: new candidate stable crystals from the MC3D database

Open questions and challenges

- > Small, but **finite**, temperature. Not a ground-state method.
- ► PIMD time-evolution is not exactly quantum, dynamically $QA - PIMD \neq QA$. Work in progress.

7. References

- 1. A. Fiorentino and N. Marzari. *Quantum* annealing for material sciences. Manuscript in preparation
- 2. R. P. Feynman et al., Quantum Mechanics and Path Integrals, Physics Today 19, 89 (1966).
- 3. T. Gregor et al., Chem. Phys. Lett. 412, 125 (2005).
- 4. L. Stella et al., Phys. Rev. B 72, 014303 (2005).

8. Acknowledgements

The authors are thankful for insightful discussions with S. Baroni, L. Vojáček, A. Carta, V. Sanella, and S. Schären. The authors acknowledge financial support by the NCCR MARVEL, a National Centre of Competence in Research, funded by the Swiss National Science Foundation (grant number 205602).