Niveaux: SM PC SVT | Matière: chimie

PROF: Zakaryae Chriki

Résumé N:5

Les transformations liées par des réactions acido-basique

1. Autoprotolyse de l'eau:

La réaction d'autoprotolyse de l'eau est très limitée . $H_2O(l) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HO^-(aq)$

2. Le produit ionique de l'eau:

Dans toute solution aqueuse , le produit ionique de l'eau est défini par : $K_e = [H_3O^+]_{eq} \times [HO^-]_{eq}$ avec $[H_3O^+]_{eq}$ et $[HO^-]_{eq}$ exprimées en mol/l.

- * K_e est indépendant de la nature des espèces dissoutes dans la solution .
- * K_e ne dépend que de la température : à $25^{\circ}C$, $K_e = 1,0 \times 10^{-14}$

Pour des raisons de commodité, on utilise souvent le pK_e défini par : $pK_e = -logK_e \Longrightarrow K_e = 10^{-pK_e}$ à $25^{\circ}C$ on a $pK_e = 14,0$

N.B: En générale : Px=-Logx et x=10^{-Px}

3. La constante d'acidité Ka

Soit le couple acide/base suivant : $AH(aq)/A^-(aq)$ La constante d'acidité K_A associée à ce couple est : $K_A = \frac{[A^-]_{eq} \cdot [H_3O^+]_{eq}}{[AH]_{eq}}$

$$K_A = \frac{[A^-]_{eq}.[H_3O^+]_{eq}}{[AH]_{eq}}$$

 K_A ne dépend que de la température . Le pK_A du couple $AH(aq)/A^-(aq)$ est définit par : $pK_A = -log(K_A)$

4. La relation entre PKa et Ph:

Pour tout couple acide/base, on peut écrire: $K_A = \frac{[B]_{eq} \cdot [H_3O^+]_{eq}}{[A]_{eq}} \Rightarrow log(K_A) = log[H_3O^+] + log\left(\frac{[B]_{eq}}{[A]_{eq}}\right)$

$$-log(K_A) = -log[H_3O^+] - log\left(\frac{[B]_{eq}}{[A]_{eq}}\right) \Rightarrow pK_A = pH - log\left(\frac{[B]_{eq}}{[A]_{eq}}\right) \Rightarrow \boxed{pH = pK_A + log\left(\frac{[B]_{eq}}{[A]_{eq}}\right)}$$

5. Constante d'acidité associée à une réaction acido-basique :

Soit la réaction acido-basique entre l'acide A_1 du couple A_1/B_1 et la base B_2 du couple A_2/B_2 : $A_1(aq) + B_2(aq) \rightleftharpoons B_1(aq) + A_2(aq)$ la constante d'équilibre associée à l'équation de la réaction est la suivante :

$$K = \frac{[A_2]_{eq} \cdot [B_1]_{eq}}{[A_1]_{eq} \cdot [B_2] eq} \Rightarrow K = \frac{[B_1]_{eq} [H_3 O^+]_{eq}}{[A_1]_{eq}} \times \frac{[A_2]_{eq}}{[B_2]_{eq} [H_3 O^+]_{eq}} \Rightarrow K = \frac{[K_{A1}]_{eq} \cdot [B_{A2}]_{eq}}{[K_{A1}]_{eq}} \times \frac{[K_{A1}]_{eq}}{[K_{A2}]_{eq}} = 10^{(pK_{A2} - pK_{A1})}$$

6. Comment comprer le comportement d'acides ou de bases en solution ?

Pour une même concentration apportée d'acide, un acide A_1 est plus fort qu'un acide A_2 , si le taux d'avancement final de sa réaction avec l'eau est plus grand $\tau_l > \tau_2$

Pour une même concentration apportée de base, une base B_1 est plus fort qu'une base B_2 , si le taux d'avancement final de sa réaction avec l'eau est plus grand $\tau_1 > \tau_2$

7. Domaine de prédominance

Pour le couple acide-base A(aq)/B(aq) dans une solution aqueuse on a la relation suivante : $pH = pK_A + log\left(\frac{|B|}{|A|}\right)$ On déduit :

si
$$pH = pK_A$$
 c'est à dire que $log\left(\frac{B}{A}\right) = 0$ on a

[A] = [B]; l'acide et sa base conjuguée ont la même concentration aucune des deux formes ne prédomine.

si le $pH > pK_A$ c'est à dire que $log\left(\frac{B}{A}\right) > 0$ et on a [A] < [B] dans ce cas la base B prédomine.

si le $pH < pK_A$ c'est à dire que $log\left(\frac{B}{A}\right) < 0$ et on a [A] > [B] dans ce cas l'acide A prédomine.

8. Diagramme de distribution

Le diagramme si dessus , appelé *diagramme de distribution* , présente , en fonction du pH , les pourcentage d'acide éthanoïque et de sa base conjuguée , l'ion éthanoate en fonction du pH de la solution à $25^{\circ}C$.

À l'intersection des deux courbes $\alpha(A) = \alpha(B)$ donc [A] = [B] c'est à dire que $pH = pK_A = 4, 8$.

8. Le dosage acido-basique :

Le but du dosage : Doser (ou titrer) une solution acide, c'est déterminer sa concentration molaire dans la solution considérée au moyen d'une solution basique de concentration connue et réciproquement.

Doser la solution du bécher (solution titrée) par la solution de la burette graduée (solution titrante).

Caractéristiques du dosage : la transformation doit être totale, rapide et sélective

Etude du graphe pH=f(VB) :

Graphiquement on peut déduire :

- pH_A de la solution du bécher (V_B=0 : aucun ajout de la solution basique) :
- La nature de la solution initiale du bécher (pH_A)
- La dissolution de la solution du bécher est limitée ou totale.
- Le type de dosage (le cas est dosage d'un acide par une base vu la courbe $pH=f(V_B)$ est croissante)
- A tout instant le pH et le volume V_B correspondant et aussi la composition du mélange :
- Déterminer la concentration des ions hydronium [H₃O⁺]=10^{-pH} et en déduire la concentration des ions hydroxyde

$$[OH^{-}] = \frac{Ke}{[H_3O^{+}]}, (Ke=[H_3O^{+}].[OH^{-}])$$

- Les coordonnées du point d'équivalence $E(V_{BE}, pH_E)$:
- V_{BE} et exploiter la relation de l'équivalence : C_AV_A=C_BV_{BE}
- pH_E: déterminer la nature du mélange à l'équivalence (basique ou acide ou neutre)
- L'indicateur coloré adéquat (pH_E encadré par la zone de virage de l'indicateur coloré)

• Méthode des tangentes parallèles :

- Consiste à tracer deux tangentes T₁ et T₃ parallèles de part et d'autre du saut de pH, puis de tracer une troisième droite T₂ équidistante et parallèle aux deux premières : d(T₁,T₂)=d(T₂,T₃)
- Le **point d'équivalence** E est le point d'intersection de la droite (T_2) avec la courbe $pH = f(V_B)$.
- Une seconde méthode de détermination des coordonnées du point d'équivalence à partir de la courbe dpH dVB = f(VB) la dérivée première du pH en fonction de VB, le volume à l'équivalence est le volume pour lequel la dérivée est maximale (remarquable par un pic sur la courbe).