```
1 import pandas as pd
2 from sklearn.ensemble import AdaBoostClassifier
3 from sklearn.tree import DecisionTreeClassifier
4 from sklearn.model_selection import train_test_split, cross_val_score
5 from sklearn.metrics import accuracy_score, confusion_matrix
6 import seaborn as sns
7 import matplotlib.pyplot as plt
8 import re
9 import numpy as np
1 from google.colab import files
2 data = files.upload()
     Elegir archivos jdf.csv
    • jdf.csv(text/csv) - 1418182 bytes, last modified: 16/11/2022 - 100% done
    Saving jdf.csv to jdf.csv
    data = pd.read_csv('jdf.csv')
1
2
```

```
data = pd.read_csv('jdf.csv')
data = data.drop(['Group', 'Session', 'Subject', 'Type', 'Sample', "RA", "RRA", "GRA"], axis=1)
#data['Type'] = data['Type'].str.extract('(\d+)').astype(int)

#data['Type'] = pd.to_numeric(data['Type'])
#data['ISI'] = pd.to_numeric(data['ISI'])

data
```

	EMGPeakToPeak	ISI	Label	_RRA	QRA	GaussRA	
0	129.9786	-1	HC SWD	1.055555	1.246736	1.243814	
1	123.1377	-1	HC SWD	1.000000	1.181119	1.178351	
2	79.8115	-1	HC SWD	0.648149	0.765541	0.763746	
3	115.1565	-1	HC SWD	0.935185	1.104565	1.101976	
4	189.2671	-1	HC SWD	1.537037	1.815423	1.811168	
9115	166.4639	20	HC SWD	1.239038	1.667441	1.660530	
9116	149.3614	20	HC SWD	1.111740	1.496128	1.489927	
9117	103.7549	20	HC SWD	0.772277	1.039296	1.034988	
9118	190.4073	20	HC SWD	1.417256	1.907278	1.899373	
9119	294.1622	20	HC SWD	2.189533	2.946574	2.934360	

9120 rows × 6 columns

```
1  X = data.drop(['Label', '_RRA', 'QRA', 'GaussRA'], axis=1)
2  y = data['Label']
```

20 plt.show()

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42, stratify=y)
 5
 6
     bag_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=8), n_estimators=20, algorithm='SAMME.R',
 7
    bag_clf.fit(X_train, y_train)
 8
    y_pred = bag_clf.predict(X_test)
 9
     acc = accuracy_score(y_test, y_pred)
10
     0.3393640350877193
 1 X = data.drop(['Label', 'QRA', 'GaussRA'], axis=1)
 2 y = data['Label']
 4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42, stratify=y)
 6 bag clf = AdaBoostClassifier(DecisionTreeClassifier(max depth=8), n estimators=500, algorithm='SAMME.R'
 7 bag clf.fit(X train, y train)
 8 y_pred = bag_clf.predict(X_test)
 9 acc = accuracy_score(y_test, y_pred)
10 acc
     0.7160087719298246
 1 matrix = confusion matrix(y test, y pred)
 2 matrix = matrix.astype('float') / matrix.sum(axis=1)[:, np.newaxis]
 4 # Build the plot
 5 plt.figure(figsize=(16,7))
 6 sns.set(font scale=1.4)
 7 sns.heatmap(matrix, annot=True, annot_kws={'size':15},
 8
               cmap=plt.cm.Greens, linewidths=0.2)
 9
10 # Add labels to the plot
11 class_names = ['HC BL', 'HC SWD', 'MDD BL',
12
                  'MDD SWD']
13 tick_marks = np.arange(len(class_names))
14 tick marks2 = tick marks + 0.5
15 plt.xticks(tick_marks, class_names, rotation=25)
16 plt.yticks(tick_marks2, class_names, rotation=0)
17 plt.xlabel('Predicted label')
18 plt.ylabel('True label')
19 plt.title('Confusion Matrix for AdaBoost with Decision Trees')
```



```
1 X = data.drop(['Label', 'GaussRA', '_RRA'], axis=1)
2 y = data['Label']
3
4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42, stratify=y)
5
6 bag_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=8), n_estimators=500, algorithm='SAMME.R'
7 bag_clf.fit(X_train, y_train)
8 y_pred = bag_clf.predict(X_test)
9 acc = accuracy_score(y_test, y_pred)
10 acc
```

0.7412280701754386

```
1 matrix = confusion_matrix(y_test, y_pred)
 2 matrix = matrix.astype('float') / matrix.sum(axis=1)[:, np.newaxis]
 4 # Build the plot
 5 plt.figure(figsize=(16,7))
 6 sns.set(font_scale=1.4)
 7 sns.heatmap(matrix, annot=True, annot kws={'size':15},
               cmap=plt.cm.Greens, linewidths=0.2)
 8
10 # Add labels to the plot
11 class names = ['HC BL', 'HC SWD', 'MDD BL',
12
                  'MDD SWD']
13 tick_marks = np.arange(len(class_names))
14 tick_marks2 = tick_marks + 0.5
15 plt.xticks(tick_marks, class_names, rotation=25)
16 plt.yticks(tick_marks2, class_names, rotation=0)
17 plt.xlabel('Predicted label')
18 plt.ylabel('True label')
19 plt.title('Confusion Matrix for AdaBoost with Decision Trees')
20 plt.show()
```



```
1 X = data.drop(['Label', 'GaussRA'], axis=1)
2 y = data['Label']
3
4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42, stratify=y)
5
6 bag_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=8), n_estimators=500, algorithm='SAMME.R'
7 bag_clf.fit(X_train, y_train)
8 y_pred = bag_clf.predict(X_test)
9 acc = accuracy_score(y_test, y_pred)
10 acc
```

0.8711622807017544

```
1 matrix = confusion_matrix(y_test, y_pred)
 2 matrix = matrix.astype('float') / matrix.sum(axis=1)[:, np.newaxis]
 3
 4 # Build the plot
 5 plt.figure(figsize=(16,7))
 6 sns.set(font_scale=1.4)
 7 sns.heatmap(matrix, annot=True, annot_kws={'size':15},
               cmap=plt.cm.Greens, linewidths=0.2)
 8
 9
10 # Add labels to the plot
11 class_names = ['HC BL', 'HC SWD', 'MDD BL',
12
                  'MDD SWD']
13 tick_marks = np.arange(len(class_names))
14 tick_marks2 = tick_marks + 0.5
15 plt.xticks(tick_marks, class_names, rotation=25)
16 plt.yticks(tick_marks2, class_names, rotation=0)
```

```
17 plt.xlabel('Predicted label')
18 plt.ylabel('True label')
19 plt.title('Confusion Matrix for AdaBoost with Decision Trees')
20 plt.show()
```



```
1 X = data.drop(['Label'], axis=1)
2 y = data['Label']
3
4 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42, stratify=y)
5
6 bag_clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=8), n_estimators=500, algorithm='SAMME.R'
7 bag_clf.fit(X_train, y_train)
8 y_pred = bag_clf.predict(X_test)
9 acc = accuracy_score(y_test, y_pred)
10 acc
0.8799342105263158
```

2 matrix = matrix.astype('float') / matrix.sum(axis=1)[:, np.newaxis]

7 sns.heatmap(matrix, annot=True, annot_kws={'size':15},

cmap=plt.cm.Greens, linewidths=0.2)

1 matrix = confusion_matrix(y_test, y_pred)

4 # Build the plot

5 plt.figure(figsize=(16,7))
6 sns.set(font_scale=1.4)

1

Colab paid products - Cancel contracts here

✓ 0s completed at 9:29 PM

×