Seminarski zadatak

Dominik Mačečević

Sadržaj

Uvod	1
U zadatku je potrebno:	
Opis zadatka	2
Slika hidrauličke sheme	2
Proporcionalni ventil	2
Hidraulički motor	3
Parametri sustava	4
Simulink model	4
Simulink shema otvorenog kruga	4
Simulink shema zatvorenog kruga	5
Matlab funkcije u Simulinku	
Matlab funkcija protok	5
Matlab funkcija tlak	6
Simulacijski rezultati	6
Simulacija otvorenog kruga	6
Pobuda i odziv	6
Pozicija proporcionalnog ventila	7
Protok proporcionalnog ventila	8
Tlakovi u komorama motora	9
Simulacija zatvorenog kruga	10
Pobuda i odziv	
Pozicija proporcionalnog ventila	11
Protok proporcionalnog ventila	12
Tlakovi u komorama motora	13
Zaključak	14
Prilog:	14

Uvod

U zadatku je potrebno:

- 1. Načiniti simulacijski model **nelinearnog** sustava u Simulinku i simulirati odziv.
- 2. Zatvoriti povratnu vezu po položaju tereta (uzeti u obzir koeficijent povratne veze) i simulirati ponašanje sustava za pomak tereta iznosa 1 rad u lijevu i desnu stranu od srednjeg položaja motora. Prikazati na slikama ponašanje u vremenu za slijedeće varijable: referencu i ostvareni kut zakreta tereta, kutnu brzinu tereta, struju prop. ventila, pomak klipa prop ventila, protoke kroz prop. ventil, te tlakove u komorama motora. Pojačanjem regulatora ostvariti prihvatljiv odziv sustava.

Opis zadatka

Slika hidrauličke sheme

Na slici je prikazan rotacijski hidraulički sustav, koji se sastoji od hidrauličkog motora upravljanog proporcionalnim ventilom, pri čemu se upravlja kutem zakreta tereta.

Proporcionalni ventil

Dinamika proporcionalnog ventila može se opisati prijenosnom funkcijom P1 člana:

$$\frac{y_{\nu}(s)}{i(s)} = \frac{K_{\nu}}{\frac{1}{\omega_{\nu}} + 1} \tag{1}$$

 y_{ν} - pozicija klipa proporcionalnog ventila, m

i - ulazna struja proporcionalnog ventila, A

 K_{ν} - koeficijent pojačanja proporcionalnog ventila, m/A

 ω_{ν} - vlastita frekvencija proporcionalnog centila, rad/s

Jednadžbe protoka kroz proporcionalni ventil iznose:

$$Q_{1}(y_{v}, p_{1}) = \begin{cases} y_{v} \cdot \sqrt{|p_{s} - p_{1}|} \cdot sign(p_{s} - p_{1}), & \text{za } y_{v} \ge 0 \\ y_{v} \cdot \sqrt{|p_{1} - p_{s}|} \cdot sign(p_{1} - p_{s}), & \text{za } y_{v} < 0 \end{cases}$$
 (2)

$$Q_{2}(y_{v}, p_{2}) = \begin{cases} y_{v} \cdot \sqrt{|p_{2} - p_{a}|} \cdot sign(p_{2} - p_{a}), & \text{za } y_{v} \ge 0\\ y_{v} \cdot \sqrt{|p_{s} - p_{s}|^{2}} \cdot sign(p_{s} - p_{2}), & \text{za } y_{v} < 0 \end{cases}$$
(3)

p₁ - tlak u lijevoj komori motora, Pa

p₂ - tlak u desnoj komori motora, Pa

 p_s - tlak napajanja, Pa

 p_a - tlak spremnika, Pa

Pretpostavlja se da su tlakovi napajanja i spremnika konstantne veličine

Protoci Q_1 i Q_2 su:

$$Q_1(y_v, p_1) = -Q_2(y_v, p_2)$$
 (4)

Hidraulički motor

Za motor vrijedi slijedeća hidrodinamička jednadžba:

$$\frac{V}{B} \cdot \frac{dp}{dt} + \frac{dV}{dt} = Q \tag{5}$$

B - modul stišljivosti ulja

V- volumen motora. m^3

p - tlak motora, Pa

Q - protok motora, m^3/s

 θ_m - kut zakreta motora, rad

Volumeni dviju komora motora mijenjaju se s kutom zakreta motora θ_m :

$$V_1 = V_0 + q_{rm} \cdot \dot{\theta_m} \tag{6}$$

$$V_2 = V_0 - q_{rm} \cdot \dot{\theta_m} \tag{7}$$

 $q_{\it rm}$ - specifični protok motora, m^3/rad

 V_0 - poluvolumen motora, m^3

 $\dot{\theta_m}$ - kutna brzina motora, rad/s

Ponašanje tlaka unutar dviju komora motora:

$$\frac{dp_1}{dt} = \frac{B}{V_0 + q_{rm}\theta_m} (Q1 - q_{rm}\dot{\theta_m}) \tag{8}$$

$$\frac{dp_2}{dt} = \frac{B}{V_0 - q_{rm}\theta_m} (Q1 + q_{rm}\dot{\theta_m}) \tag{9}$$

Mehanički dio sustava može se opisati dinamičkom jednadžbom:

$$J \cdot \frac{d^2 \theta_m}{dt^2} = q_{rm} \cdot {}_1 - q_{rm} \cdot p_2 - b \frac{d\theta_m}{dt} - c \cdot \theta_m \tag{10}$$

J - moment inercije mehaničkog dijela (tereta), kgm²

b - prigušenja mehaničkog dijela, Nms/rad

c - krutost mehaničkoh dijela, Nm/rad

Parametri sustava

```
global Kv omegav ps pa B V0 qrm J b c Km Kr
Kv = 5.55e-7;  % Koeficijent pojačanja proporcionalnog ventila
omegav = 113;  % Vlastita frekvencija proporcionalnog ventila
ps = 100e5;  % Tlak napajanja
pa = 1e5;  % Tlak spremnika
B = 1350e6;  % Modul stišljivosti ulja
V0 = 150e-6;  % Poluvolumen motora
qrm = 25.6e-6;  % Specifični protok motora
J = 0.00156;  % Moment inercije tereta
b = 0.5;  % Koeficijent prigušenja tereta (trenje)
c = 150;  % Koeficijent elastičnosti tereta
Km = 1;  % Koeficijent povratne veze
Kr = 1;  % Pojačanje P regulatora
```

Simulink model

Simulink shema otvorenog kruga

```
out1 = sim("seminar_simulink1.slx");
```


Simulink shema zatvorenog kruga

```
out2 = sim("seminar_simulink2.slx");
```


Matlab funkcije u Simulinku

Matlab funkcija protok

Funkcije protoka proporcionalnog ventila (2) i (3) su implementirane u Simulinku matlab funkcijom:

```
function [Q1, Q2] = protok(p1, yv, p2)

ps = 100e5;
pa = 1e5;

if yv >= 0
    Q1 = yv * sqrt(abs(ps - p1)) * sign(ps - p1);
    Q2 = -yv * sqrt(abs(p2 - pa)) * sign(p2 - pa);

else
    Q1 = yv * sqrt(abs(p1 - pa)) * sign(p1 - pa);
    Q2 = -yv * sqrt(abs(ps - p2)) * sign(ps - p2);
end
end
```

Matlab funkcija tlak

Funkcije ponašanja tlaka unutar dvije komore motora (8) i (9) su implementirane u Simulinku matlab funkcijom:

```
function [dp1, dp2] = tlak(Q1, omega_m, theta_m, Q2)

qrm = 25.4e-6;
B = 1350e6;
V0 = 150e-6;

dp1 = (B/(V0 + qrm*theta_m) * (Q1 - qrm*omega_m));
dp2 = (B/(V0 - qrm*theta_m) * (Q2 + qrm*omega_m));
end
```

Simulacijski rezultati

Simulacija otvorenog kruga

Pobuda i odziv

```
figure
subplot(2,1,1);
plot(out1.t, out1.theta_m, 'LineWidth', 2);
hold on
plot(out1.t, out1.theta_r, 'k--', 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Kut zakreta \theta [rad]');
legend('Kut zakreta', 'Referenca');

subplot(2,1,2);
plot(out1.t, out1.omega_m, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Kutna brzina \omega [rad/s]');
```


Kut zakreta prati referencu konstantnom greškom.

Pozicija proporcionalnog ventila

```
figure
subplot(2,1,1);
plot(out1.t, out1.i, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Struja i [A]');

subplot(2,1,2);
plot(out1.t, out1.yv, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Pozicija ventila yv [m]');
```


Grafovi pokazuju da je pozicija razvodnog klipa ventila proporcionalna struji.

Protok proporcionalnog ventila

```
figure
subplot(2,1,1);
plot(out1.t, out1.Q1, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Protok Q1 [m^3/s]');

subplot(2,1,2);
plot(out1.t, out1.Q2, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Protok Q2 [m^3/s]');
```


Tlakovi u komorama motora

```
figure
subplot(2,1,1);
plot(out1.t, out1.pl, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Tlak pl [Pa]');

subplot(2,1,2);
plot(out1.t, out1.p2, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Tlak p2 [Pa]');
```


Simulacija zatvorenog kruga

Pobuda i odziv

```
figure
subplot(2,1,1);
plot(out2.t, out2.theta_m, 'LineWidth', 2);
hold on
plot(out2.t, out2.theta_r, 'k--', 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Kut zakreta \theta [rad]');
legend('Kut zakreta', 'Referenca');

subplot(2,1,2);
plot(out2.t, out2.omega_m, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Kutna brzina \omega [rad/s]');
```


Kut zakreta prati referencu aperiodski i vrijeme smirivanja je malo.

Pozicija proporcionalnog ventila

```
figure
subplot(2,1,1);
plot(out2.t, out2.i, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Struja i [A]');

subplot(2,1,2);
plot(out2.t, out2.yv, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Pozicija ventila yv [m]');
```


Grafovi pokazuju da je pozicija razvodnog klipa ventila proporcionalna struji.

Protok proporcionalnog ventila

```
figure
subplot(2,1,1);
plot(out2.t, out2.Q1, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Protok Q1 [m^3/s]');

subplot(2,1,2);
plot(out2.t, out2.Q2, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Protok Q2 [m^3/s]');
```


Tlakovi u komorama motora

```
figure
subplot(2,1,1);
plot(out2.t, out2.p1, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Tlak p1 [Pa]');

subplot(2,1,2);
plot(out2.t, out2.p2, 'LineWidth', 2);
grid on
xlabel('Vrijeme [s]');
ylabel('Tlak p2 [Pa]');
```


Zaključak

Jednostavni P regulator daje najbolji odziv. Dinamika povratne veze je zanemariva u ovom slučaju jer je koeficijent povratne veze 1 V/rad. Pojačanje regulatora je izabrano za najbrži aperiodski odziv bez prebačaja i malo vrijeme porasta.

Prilog: