Optimization

Xiaojing Ye, Math & Stat, Georgia State University

Fall 2018

About Instructor

Instructor: Dr. Xiaojing Ye

► Email: xye@gsu.edu

▶ Webpage: https://math.gsu.edu/xye

▶ Office: 25 Park Place, Room 1436

▶ Office hour: M 10:30–11:30AM, W 9:30–10:30AM (other time by appointment only)

About Course

- ► Time: MW 2:00–3:15PM
- ▶ Location: Langdale Hall 227
- Textbook: Introduction to Optimization, 4th edition, Edwin K. P. Chong and Stanislaw H. Zak, Wiley.
- Prerequisit:
 - ► Either MATH 3030 or both MATH 2641 (Formerly MATH 3435) and MATH 2215 with grades of C or higher.
 - ► The ability to program in a high-level language such as MATLAB or Python.

About Textbook and References

Textbook

Introduction to Optimization, 4th edition, Edwin K. P. Chong and Stanislaw H. Zak, Wiley.

Reference books

- Convex Analysis and Optimization, Bertsekas, Nedic, and Ozdaglar, Athens.
- Convex Optimization, Boyd and Vandenberghe, Cambridge University Press.
- Numerical Optimization, Nocedal and Wright, Springer.

Homework

- Assigned every 2-2.5 weeks.
- ▶ 5 assignments. 6 point each. Credits given based on correctness and completeness.
- Due at beginning of class. Late homework will not be accepted nor graded!

Exams

- ▶ Midterm 1 (20 pts): in class on September 9.
- ▶ Midterm 2 (20 pts): in class on October 24.
- ▶ **Final (30 pts)**: 1:30-3:30PM on December 5.

Grading Policy

Grading points:

Homework	30 pts
Midterm 1	20 pts
Midterm 2	20 pts
Final	30 pts
Total	100 pts

Extra credit:

Attendance	1 missed	2 missed	3 missed	> 3 missed	
Extra credit	10 pts	5 pts	2 pts	0 pts	

Grading scale:

Score	0-59	60-69	70-76	77–79	80-82	83-86	87-89	90-92	93-96	97-100
Grade	F	D	С	C+	B-	В	B+	A-	А	A+

Prerequisite

- Review uni- and multi-variable calculus and linear algebra (Part I Chapters 1-3 and 5 in textbook).
- MATLAB and Python programming

Some tips

- Before next class: preview materials by reading book, slides and notes;
- In class: try to understand as much as possible, take good notes, ask question if there's any!
- ► After class: review notes, and read book and slides again. Solve homework problems independently.
- If you stuck at a problem, think where you didn't fully understand and revisit that part of notes/book and try again.
- Come to my office hours if you need help.

1. Introduction

- mathematical optimization
- least-squares and linear programming
- convex optimization
- example
- course goals and topics
- nonlinear optimization
- brief history of convex optimization

Mathematical optimization

(mathematical) optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

- $x = (x_1, \dots, x_n)$: optimization variables
- $f_0: \mathbf{R}^n \to \mathbf{R}$: objective function
- $f_i: \mathbf{R}^n \to \mathbf{R}, i = 1, \dots, m$: constraint functions

optimal solution x^* has smallest value of f_0 among all vectors that satisfy the constraints

Examples

portfolio optimization

- variables: amounts invested in different assets
- constraints: budget, max./min. investment per asset, minimum return
- objective: overall risk or return variance

device sizing in electronic circuits

- variables: device widths and lengths
- constraints: manufacturing limits, timing requirements, maximum area
- objective: power consumption

data fitting

- variables: model parameters
- constraints: prior information, parameter limits
- objective: measure of misfit or prediction error

Solving optimization problems

general optimization problem

- very difficult to solve
- \bullet methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- least-squares problems
- linear programming problems
- convex optimization problems

Least-squares

minimize
$$||Ax - b||_2^2$$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k $(A \in \mathbf{R}^{k \times n})$; less if structured
- a mature technology

using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (e.g., including weights, adding regularization terms)

Linear programming

minimize
$$c^T x$$

subject to $a_i^T x \leq b_i, \quad i = 1, \dots, m$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (e.g., problems involving ℓ_1 or ℓ_∞ -norms, piecewise-linear functions)

Convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \leq b_i, \quad i = 1, \dots, m$

• objective and constraint functions are convex:

$$f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$$

if
$$\alpha + \beta = 1$$
, $\alpha \ge 0$, $\beta \ge 0$

• includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization