

"Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization

Eldar Kurtić^{1,2}, Alexandre Marques¹, Shubhra Pandit¹, Mark Kurtz¹, Dan Alistarh^{1,2}

¹Red Hat AI, ²Institute of Science and Technology Austria

Correspondence: ekurtic@redhat.com, dalistar@redhat.com

ACL 2025

HUMANE Lab, 석사과정 최종현 랩 세미나 2025.09.17

Backgrounds

- Quantization is used to accelerate LLM inference
- Trade-offs between accuracy and performance remain unclear
- This creates uncertainty due to lack of systematic benchmarks
- This paper conducts a comprehensive analysis to provide clear, datadriven guidelines

Research question

"What are the practical accuracy-performance trade-offs for popular quantization formats?"

Quantization formats

W8A8-FP

W8A8-INT

W4A16-INT

Quantization methods

• W8A8-FP: RTN

• W8A8-INT: GPTQ+SmoothQuant

• W4A16-INT: GPTQ

- Model: Llama 3.1 (8B, 70B, 405B)
- Quantization formats: W8A8-FP / W8A8-INT / W4A16-INT
- Evaluations
 - Academic benchmarks
 - Real-world benchmarks
 - Text similarity analysis

- 1. Academic benchmarks Open LLM Leaderboard V1, V2
- V1 (GSM, MMLU, ARC-C, Winogrande, HellaSwag, TruthfulQA)
- V2 (MMLU-Pro, GPQA, BBH, MuSR, MATH Level 5, IFEval)

- 2. Real-world benchmakrs for practical scenarios
 - Instruction following
 - Long-context
 - Code generation
- Arena-Hard-Auto-v0.1
- HumanEval / HumanEval+
- RULER

- 3. Text similarity analysis
- ROUGE
- BERTScore
- Semantic Textual Similarity

Results

		Recovery %	Average Score	MMLU 5-shot	MMLU CoT 0-shot	ARC-C 0-shot	GSM8k CoT 8-shot	HellaSwag 10-shot	Winogrande 5-shot	TruthfulQA 0-shot
8B	BF16	100.00	74.06	68.3	72.8	81.4	82.8	80.5	78.1	54.5
	W8A8-FP	99.31	73.55	68.0	71.6	81.2	82.0	80.0	77.7	54.3
	W8A8-INT	100.31	74.29	67.8	72.2	81.7	84.8	80.3	78.5	54.7
	W4A16-INT	98.72	73.11	66.9	71.1	80.2	82.9	79.9	78.0	52.8
70B	BF16	100.00	84.40	83.8	86.0	93.3	94.9	86.8	85.3	60.7
	W8A8-FP	99.72	84.16	83.8	85.5	93.5	94.5	86.6	84.6	60.6
	W8A8-INT	99.87	84.29	83.7	85.8	93.1	94.2	86.7	85.1	61.4
	W4A16-INT	99.53	84.00	83.6	85.6	92.8	94.4	86.3	85.5	59.8
405B	BF16	100.00	86.79	87.4	88.1	95.0	96.0	88.5	87.2	65.3
	W8A8-FP	100.12	86.89	87.5	88.1	95.0	95.8	88.5	88.0	65.3
	W8A8-INT	99.32	86.20	87.1	87.7	94.4	95.5	88.2	86.1	64.4
	W4A16-INT	99.98	86.78	87.2	87.7	95.3	96.3	88.3	87.4	65.3

- All formats show high recovery rates
- W8A8-FP formats have near perfect re covery rates

			Academi	Real-World Benchmarks									
		Recovery %	Average Score	IFEval 0-shot			GPQA 0-shot		MMLU-Pro 5-shot	Arena-Hard Win-Rate	HumanEval pass@1	HumanEval+ pass@1	RULER Score
8B	BF16	100.0	27.6	77.8	30.1	15.7	3.7	7.6	30.8	25.8	67.3	60.7	82.8
	W8A8-FP	101.2	27.9	77.2	29.6	16.5	5.7	7.5	31.2	26.8	67.3	61.3	82.8
	W8A8-INT	101.5	28.0	77.9	30.9	15.5	5.4	7.6	30.9	27.2	67.1	60.0	82.8
	W4A16-INT	96.1	26.5	76.3	28.9	14.8	4.1	6.3	28.8	24.0	67.1	59.1	81.1
70B	BF16	100.0	41.7	86.4	55.8	26.1	15.4	18.1	48.1	57.0	79.7	74.8	83.3
	W8A8-FP	100.0	41.7	87.6	54.9	28.0	14.6	17.2	47.7	57.7	80.0	75.0	83.0
	W8A8-INT	97.3	40.5	86.6	55.2	23.9	13.6	16.8	47.1	57.0	78.7	74.0	82.5
	W4A16-INT	97.4	40.6	85.7	55.0	24.4	13.8	17.2	47.2	56.3	80.5	74.2	82.2
405B	BF16	100.0	48.7	87.7	67.0	38.9	19.5	19.5	59.7	67.4	86.8	80.1	-
	W8A8-FP	99.9	48.7	86.8	67.1	38.8	18.9	20.8	59.4	66.9	87.0	81.0	-
	W8A8-INT	98.3	47.9	86.9	66.7	35.8	20.4	19.2	58.4	64.6	86.9	80.4	-
	W4A16-INT	98.9	48.2	88.0	67.5	37.6	17.5	19.4	59.3	66.5	85.1	78.9	-

- All models have recovery rates of at lea st 96%
- Smaller models have higher variance in GPQA, MuSR

Results

- Large quantized models (70B and 405B) are close with BF16 counterparts
- 8B models exhibit slightly higher variability though they still maintain strong semantic fidelity
- Quantized models generate high-quality outputs across all sizes and schemes

Sync and async

- Synchronous: single query is processed at a time
- Asynchronous: multiple query is processed at a time (e.g., vLLM)

	Input tokens	Output tokens
Code completion	256	1024
Instruction following	256	128
Summarization	4096	512
Multi-turn chat	512	256
RAG	1024	128
Docstring generation	768	128
Code fixing	1024	1024

Sync and async

Size	GPU	#	Format	CR		ode pletion		string cration	Co Fix		R	AG	Instruction Following		Multi-Turn Chat		Summarization	
					Lat.	Q/\$	Lat.	Q/\$	Lat.	Q/\$	Lat.	Q/\$	Lat.	Q/\$	Lat.	Q/\$	Lat.	Q/\$
		1	BF16	-5	24.5	183	3.2	1,395	25.0	180	3.3	1,374	3.1	1,445	6.2	723	13.4	335
8B	A6000	1	INT8	1.54	15.9	284	2.1	2,157	16.3	276	2.1	2,139	2.0	2,249	4.0	1,120	8.9	Q/\$ 335 506 736 35 66 96 37 69 96 34 63 72
		1	INT4	2.39	9.7	462	1.4	3,290	10.1	445	1.4	3,136	1.3	3,543	2.5	1,787	6.1	736
		4	BF16	-	61.7	18	6.6	170	62.6	18	8.1	138	8.0	141	15.8	71	32.6	35
	A6000	2	INT8	1.94	63.4	35	7.1	317	63.8	35	8.4	267	8.0	280	16.2	139	34.0	66
		2	INT4	2.96	39.2	57	5.0	453	40.4	56	5.8	390	5.1	440	10.2	221	23.5	96
		2	BF16	-	50.7	20	2.9	343	51.2	20	6.8	148	6.4	156	12.9	78	27.3	37
70B	A100	1	INT8	1.81	54.3	37	4.0	500	54.8	37	7.2	279	6.9	291	13.8	146	29.3	69
		1	INT4	2.67	35.0	57	2.8	718	35.8	56	5.2	390	4.6	439	9.2	220	21.0	96
		2	BF16	-5	31.3	18	4.0	139	31.5	18	4.1	138	4.0	142	7.9	71	16.4	34
	H100	1	FP8	1.84	32.8	33	4.3	256	33.1	33	4.3	254	4.2	262	8.3	132	17.4	63
		1	INT4	2.11	28.6	38	3.8	289	28.2	39	3.8	287	3.7	299	7.1	153	15.3	72
7		16	BF16	-	81.9	2	10.8	12	81.2	2	11.2	11	10.6	12	20.9	6	44.1	
	A100	8	INT8	3.27	50.1	5	6.6	38	50.5	5	6.8	37	6.4	39	12.8	20	26.9	9
405D		4	INT4	6.38	48.9	10	7.0	71	49.5	10	7.3	68	6.4	79	12.7	39	29.4	17
405B		16	BF16	_	50.6	1	6.5	12	50.3	1	6.6	11	6.4	12	13.0	6	26.5	3
	H100	8	FP8	3.17	31.7	5	4.2	36	31.9	5	4.2	36	4.1	37	8.0	19	16.7	9
		4	INT4	5.15	37.5	8	5.0	58	37.8	8	5.1	57	4.8	60	9.2	32	20.4	14

[†]**CR**: Cost Reduction factor compared to BF16 baseline. Higher is better.

Lat.: Latency in seconds (lower is better). Q/\$: Queries per USD (higher is better).

- Focus on latency and queries per USD
- INT4 shows lowest latency
- Synchronous task are memory-bound (how fast can it move from memory)
- INT4 is more efficient at lower latenci es – ideal for applications requiring ra pid response times
- INT4 is highly effective for synchrono us deployment

Sync and async

Size	HW	Format	Speedup	Code Compl.		Doc. Gen.		Code Fixing		RAG		Inst. Following		Multi-Turn Chat		Summarization	
				QPS	Q/\$	QPS	Q/\$	QPS	Q/\$	QPS	Q/\$	QPS	Q/\$	QPS	Q/\$	QPS	Q/\$
		BF16	_	1.5	6.8k	5.6	25.1k	1.1	4.8k	4.4	19.9k	11.8	53.0k	5.3	24.0k	0.7	3.2k
8B	1×A6000	INT8	1.38	2.2	9.8k	7.7	34.6k	1.4	6.4k	6.1	27.6k	16.5	74.5k	7.2	32.3k	QPS Q/3 0.7 3.21 1.0 4.41 0.7 3.11 0.2 0.31 0.3 0.41 0.3 0.31 1.2 0.61 0.8 0.41 1.7 0.51 2.6 0.81 2.2 0.61 0.3 22 0.8 66 0.6 43	4.4k
		INT4	1.08	2.2	9.8k	5.3	24.0k	1.3	6.0k	4.1	18.6k	11.2	50.5k	5.4	24.3k	0.7	3.1k
		BF16	_	0.4	0.4k	1.4	1.6k	0.3	0.3k	1.4	1.6k	3.3	3.8k	1.5	1.7k	0.2	0.3k
	4×A6000	INT8	1.91	0.7	0.8k	3.9	4.4k	0.5	0.6k	2.8	3.1k	6.9	7.7k	2.2	2.5k	0.3	0.4k
		INT4	1.92	1.2	1.4k	2.7	3.1k	0.7	0.8k	1.9	2.1k	5.2	5.9k	2.6	3.0k	0.3	0.3k
		BF16	_	1.4	0.7k	6.9	3.5k	1.0	0.5k	3.3	1.6k	8.7	4.4k	4.3	2.2k	0.7	0.4k
70B	4×A100	INT8	1.87	2.4	1.2k	15.9	8.0k	1.8	0.9k	6.1	3.1k	16.5	8.3k	8.0	4.0k	1.2	0.6k
		INT4	1.64	2.3	1.2k	22.8	11.5k	1.4	0.7k	4.3	2.2k	11.9	6.0k	5.8	2.9k	0.8	0.4k
		BF16	_	3.5	1.0k	10.0	2.9k	2.6	0.7k	8.0	2.3k	20.3	5.9k	9.9	2.9k	1.7	0.5k
	4×H100	FP8	1.77	6.9	2.0k	17.8	5.2k	4.0	1.2k	14.3	4.2k	38.3	11.1k	18.4	5.4k	2.6	0.8k
		INT4	1.55	5.9	1.7k	16.4	4.8k	3.1	0.9k	13.0	3.8k	35.8	10.4k	16.1	4.7k	2.2	0.6k
		BF16	_	0.8	59	2.5	187	0.3	20	2.1	156	4.6	347	2.1	158	0.3	22
	16×A100	INT8	2.53	1.3	98	4.8	358	1.1	79	3.8	282	10.1	760	4.9	366	0.8	63
405D		INT4	2.21	1.9	144	3.6	271	1.2	93	2.8	211	8.2	616	4.0	304	0.6	43
405B		BF16	_	0.7	52	6.1	456	0.6	44	4.8	363	8.5	638	5.3	398	0.6	46
	16×H100	FP8	3.04	4.4	329	9.6	725	2.7	200	7.6	571	20.7	1561	10.4	780	1.7	125
		INT4	3.09	4.0	304	11.1	833	2.5	192	8.7	652	24.7	1856	11.6	872	1.6	122

- Most INT8 and FP8 models show highes t query per second throughput
- Async task uses batching to process queries, thus compute-bound
- INT8 and FP8 models' weight and activa tions are both 8-bit (fast compute time)
- INT8 and FP8 is better suited for batch processing

QPS: Queries per second (higher is better). Q/\$: Queries per USD (higher is better).

Numbers denoted with k represent thousands (e.g., 20.3k = 20,300).

Conclusion

- Experiments on FP8, INT8, INT4
- FP8 is nearly lossless, INT8 is effective, INT4 is competitive
- Quantized models produce similar text
- Optimal format depends on the use case (latency vs throughput)