Q1

4 Points

The inter-arrival time of market shocks is modeled by an exponential distribution with pdf $f(x)=\frac{1}{\theta}e^{-\frac{1}{\theta}x}, x>0$. Consider a random sample $\{X_1,\cdots,X_n\}$ from this distribution.

Q1.4

1 Point

Let $\hat{\sigma}_X^2$ be the sample variance of the random sample. What is $\mathbb{E}[\hat{\sigma}_X^2]$? Is the sample standard deviation $\hat{\sigma}_X$ an unbiased estimator for θ ?

$$\frac{\partial x}{\partial x} = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{X}_i)^2 \\
= \frac{1}{N-1} \sum_{i=1}^{N} (X_i + \overline{X}_i)^2 - 2X_i \overline{X}_i$$

$$= \frac{1}{N-1} \left(\sum_{i=1}^{N} X_i^2 + N \theta^2 - 2\theta \sum_{i=1}^{N} X_i^2 \right)$$

$$\frac{Z(\vec{S}\vec{X})}{Z(\vec{S}\vec{X})} = \frac{1}{n+1} \frac{1}{2} \frac{1}{2} Z(\vec{X}\vec{i}) + \frac{1}{n+1} \frac{1}{2} Z(\vec{X}\vec{i}) + \frac{1}{n+1} \frac{1}{2} Z(\vec{X}\vec{i})$$

$$= \frac{1}{n+1} \frac{1}{2} \frac{1}{2} Z(\vec{X}\vec{i}) + \frac{1}{n+1} \frac{1}{2} Z(\vec{X}\vec{i})$$

$$\frac{1}{2} \int_{N-1}^{\infty} \frac{1}{2} \left(\left(\frac{1}{2} \left(\frac{1}{2}$$