DALI LED Driver Control System for Lighting Operations Based on Raspberry Pi and Kernel Modules

Group: Hello World

Instructor: Minh-Huan Vo

Team members

Lê Thành Ngân	22139044
Huỳnh Phước Long	22139037
Ngô Khải Hoàng	22139024
Huỳnh Xuân Vỹ	22139079
Trần Duy Vương	22139078
Lê Thành Tài	22139057
Lưu Ngọc Thiện	22139065
Võ Minh Thái	22139063
Ngô Đình Thái Long	22139038

Introduction

- 1. General introduction to the project
- 2. Hardware components utilized in the DALI LED driver control system
- 3. DALI Protocol structure and advantages
- 4. Manchester encoding
- 5. Software architecture and control modules
- 6. User interface & application
- 7. Result of the project
- 8. Comparison with similar systems
- 9. Experimental setup & results

Phước Long

Xuân Vỹ

Minh Thái

Duy Vương

Thành Tài

Thành Ngân & Khải Hoàng

Ngọc Thiện

Thái Long

Thành Tài

General introduction to the project

1. What is the Digital Addressable Lighting Interface (DALI)?

IEC 62386-101 Revised

IEC 62386-101:2014

Digital addressable lighting interface - Part 101: General requirements - System components

IEC 62386-101:2014 is applicable to system components in a bus system for control by digital signals of electronic lighting equipment. This electronic lighting equipment should be in line with the requirements of IEC 61347, with the addition of d.c. supplies. This second edition

Show more

An international standard protocol (IEC 62386) for controlling lighting systems.

HCMUTE 11/1/2024 Embedded System 11/1/2024

General introduction to the project

2. Features of DALI in the current age

- Addressability: Controls individual lights
- Two-way communication: Monitors device status
- Energy efficiency: Reduces power usage.
- Scalability: Expands for any additional system
- Diverse application: Adapts to residential, commercial, and industrial lighting

General introduction to the project

Why choose Raspberry Pi 5?

CPU Test Suite Average Results for ARM Cortex-A72 4 Core 1500 MHz		
Integer Math	6,839 MOps/Sec	
Floating Point Math	3,318 MOps/Sec	
Find Prime Numbers	2 Million Primes/Sec	

CPU Test Suite Average Results for ARM Cortex-A76 4 Core 2400 MHz		
Integer Math	14,581 MOps/Sec	
Floating Point Math	11,311 MOps/Sec	
Find Prime Numbers	6 Million Primes/Sec	

CPU of RPi3

Compare RPi5 to lower raspberry version:

- Efficiency: CPU of RPi5 is powerful
- Memory: RPi5 is enough for DALI systems and any other additional functions

CPU of RPi5

Function of Raspberry Pi

- DALI Signal Interface: Utilizes GPIO14 and GPIO15 for sending and receiving DALI signals.
- Manchester En-Decoding: Encodes and decodes DALI signals, enabling remote brightness adjustment of LEDs.
- Kernel Driver Operation: Implements a kernel driver that allows the system to interface with GPIO hardware, integrating Raspberry Pi into the lighting control system.

Hardware

Function of ESP32

- **DALI Signal Interface**: Utilizes GPIO16 (In) and GPIO17 (Out) for sending and receiving DALI signals.
- LED Control: Adjusts the brightness of LEDs via PWM on GPIO pins (12, 14, 15, 25, 26, 27).
- **Signal Processing**: Converts binary signals into LED control information, mapping values from 0-255 to 0-1023.

Wiring Diagram

HCMUTE Embedded System 11/1/2024

The DALI protocol

- 1. Used two wire low-voltage serial bus
- 2. Data tranfer rate: 1200 bps
- 3. Range 9.5 to 22.5 voltage (typical 16V) is know that high signal
- 4. Range 6.5 to 0 voltage (Typical 0V) is know that low signal

DALI protocol base on master-slave principle

Up to 64 devices

The DALI protocol

In this project

- Data tranfer rate: 0.01s per Manchester encoded bit
- 2. Range 2.4 to 3.3 voltage is know that high signal
- 3. Range 0 to 0.8 voltage is know that low signal

The DALI protocol

Figure 1. Digital Addressable Lighting Interface (DALI) protocol two-way communication message structure (forward & backward frames).

Manchester encoding?

Advantages

- 1. Precise control of each device
- 2. Device status feedback capability
- 3. Global standardization and high compatibility
- 4. Flicker-free dimming
- 5. Simple implementation with straightforward wiring requirements

Manchester encoding

Widely used in Ethernet, telecommunications, and digital data transmission systems.

HCMUTE Embedded System 11/1/2024

Advantages of Manchester encoding

Self-Synchronization: Each bit has a midpoint transition, eliminating the need for an external clock and simplifying connections.

Error Detection: Reliable transitions allow quick identification of errors, crucial for precise lighting control.

Minimal DC Offset: Frequent transitions maintain signal integrity over long cables, suitable for DALI's environment.

Low-Speed Compatibility: Works well at DALI's low data rates, ensuring consistent signal quality.

Cost Efficiency: Simplifies circuitry, reducing overall costs for scalable and low-maintenance lighting systems.

HCMUTE Embedded System 11/1/2024

Illustrate Manchester encoding

[14233.694287] Bit value OUT is 1 [14233.704287] Bit value OUT is 1

Software Architecture

HCMUTE Embedded System 11/1/2024

Software Architecture

User interface & application

- The user-space application runs as a server, using TCP to receive commands, enabling flexibility to develop applications across various platforms without platform-specific dependencies.
- The demo client application is programmed in C++ and uses GLFW, OpenGL, and the ImGui library to create an interactive environment.
- Additionally, a web client can also be used to send commands directly to our Raspberry Pi 5 server

HCMUTE 11/1/2024 Embedded System 11/1/2024

User interface & application

HCMUTE Embedded System 11/1/2024

User interface & application

HCMUTE Embedded System 11/1/2024

Web App (server Flask)

http://172.30.162.196:5000/

	DALI (Digital Addressable Lighting Interface)
Main Application	Energy-efficient, flexible, and programmable building and industrial lighting control
Connection Type	2-wire bus system
Dimming Control	Smooth dimming, with support for color control in DALI-2
Transmission Speed	1,200 bps (and up to 9.6 kbps in DALI-2)
Power Consumption	Low, energy-saving
Control Range	300 meters per segment
Cost	Moderate, suitable for industrial use
Security	Basic security, may require more for remote or networked access

	DMX (Digital Multiplex)	DALI (Digital Addressable Lighting Interface)
Main Application	Primarily used in stage, theatrical, and event lighting	Energy-efficient, flexible, and programmable building and industrial lighting control
Connection Type	3-wire or 5-wire XLR cable	2-wire bus system
Dimming Control	Synchronized color, intensity adjustment	Smooth dimming, with support for color control in DALI-2
Transmission Speed	250 kbps, real-time synchronization	1.2 kbps (and up to 9.6 kbps in DALI-2)
Power Consumption	Higher than Zigbee & Dali suitable for high-power lights	Low, energy-saving
Control Range	Around 100 meters can be extended with signal boosters	300 meters per segment
Cost	Higher, ideal for professional use	Moderate, suitable for industrial use
Security	Low and generally not prioritized	Basic security, may require more for remote or networked access

	Zigbee	DALI (Digital Addressable Lighting Interface)
Main Application	Smart home and residential lighting	Energy-efficient, flexible, and programmable building and industrial lighting control
Connection Type	Wireless (IEEE 802.15.4 standard)	2-wire bus system
Dimming Control	Smooth dimming and color tuning	Smooth dimming, with support for color control in DALI-2
Transmission Speed	At 250 kbps, wireless	1.2 kbps (and up to 9.6 kbps in DALI-2)
Power Consumption	Very low, optimized for energy efficiency	Low, energy-saving
Control Range	Up to 100 meters wireless, Can extend using Relay signals	300 meters per segment
Cost	Low to moderate, ideal for home use	Moderate, suitable for industrial use
Security	Good, including AES 128-bit encryptionn	Basic security, may require more for remote or networked access

	KNX (KONNEX)	DALI (Digital Addressable Lighting Interface)
Main Application	Complex systems that control many building functions	Energy-efficient, flexible, and programmable building and industrial lighting control
Connection Type	Wired (bus cable), can be wireless	2-wire bus system
Dimming Control	Dimming, on/off control	Smooth dimming, with support for color control in DALI-2
Transmission Speed	9.6 kbps, suitable for building automation but not real-time applications	1.2 kbps (and up to 9.6 kbps in DALI- 2)
Power Consumption	Moderate, often powered via the KNX bus	Low, energy-saving
Control Range	Up to 1,000 meters	300 meters per segment
Cost	Higher installation cost, suitable for commercial buildings	Moderate, suitable for industrial use
Security	High, multiple security levels	Basic security, may require more for remote or networked access

	DALI (Digital Addressable Lighting Interface)	DMX (Digital Multiplex)	Zigbee	KNX (Konnex)
Main Application	Building and industrial lighting control	Stage and event lighting	Smart home and residential lighting	Building automation
Connection Type	Wired (2-wire bus system)	Wired (3-wire/5-wire system)	Wireless (IEEE 802.15.4)	Wired (bus cable), can be wireless
Dimming Control	Smooth dimming, supports color tuning	Synchronized color, intensity adjustment	Adjustable brightness, color tuning	Dimming, on/off control
Transmission Speed	Slower	High-speed, real-time	Moderate	Moderate
Power Consumption	Low	High	Very low	Low
Control Range	~300 meters per line	~100 meters per line	~100 meters wireless	~1,000 meters per line
Cost	Moderate, suitable for industrial use	Highest, ideal for professional use	Low to moderate, ideal for home use	High, suitable for commercial buildings
Security	Relatively secure, may need added encryption	Low security, not essential for stage use	Moderate, AES wireless encryption	High, multiple security levels
HCMUTE		Embedded System	11/1/2024	28

Result of the project

```
Johnny@raspberrypi: ~/drivers/server
File Edit Tabs Help
Johnny@raspberrypi:~/drivers/dali $ ls
my_driver.c my_driver.ko RPi3-DALI
Johnny@raspberrypi:~/drivers/dali $ sudo insmod my_driver
Johnny@raspberrypi:~/drivers/dali $ sudo chmod 666 /dev/m
 dali driver
Johnny@raspberrypi:~/drivers/dali $ dmesg | tail
 3490.236780] Dali driver module initializing
 3490.236846] Class creation successfully
 3490.238118] Device creation successfully
 3490.238126 Device addition successfully
Johnny@raspberrypi:~/drivers/dali $ cd ...
Johnny@raspberrypi:~/drivers $ ls
dali server
Johnny@raspberrypi:~/drivers $ cd server/
Johnny@raspberrypi:~/drivers/server $ ls
a.out server.c
Johnny@raspberrypi:~/drivers/server $ sudo ./a.out
Listening on port 28009...
```


Result of the project

```
gpio_stringout = 026255
igpio_stringout[0] (address) = 26
igpio_stringout[1] (data) = 255
Executing the write function
Start timer
Timer started
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
Bit value OUT is 0
Bit value OUT is 1
```


30