Risoluzioni libere di ideali determinantali

Federico Galetto

Northeastern University Boston, MA

Welcome Home Workshop Università degli Studi di Torino 21 Dicembre 2011

- $\bullet \ A = \mathbb{C}[x_1, \dots, x_n]$
- M A-modulo graduato finitamente generato

Definizione

Una risoluzione libera minimale di M è una sequenza di A-moduli liberi $F_i=A^{n_i}$ e mappe A-lineari $d_i:F_i\to F_{i-1}$

$$\dots \longrightarrow F_{i+1} \xrightarrow{d_{i+1}} F_i \xrightarrow{d_i} F_{i-1} \longrightarrow \dots \longrightarrow F_1 \xrightarrow{d_1} F_0$$

tale che

- $F_0/\operatorname{im} d_1 \cong M$
- $\bullet \ker d_i = \operatorname{im} d_{i+1}$
- ullet le mappe d_i sono matrici di polinomi omogenei di grado $\geqslant 1$

Le risoluzioni libere minimali di A-moduli esistono, hanno lunghezza al più n e sono uniche a meno d'isomorfismo.

Esempio

$$A = \mathbb{C}[x, y, z], \ M = A/I, \ I = (x, y, z)$$

$$0 \longrightarrow A \xrightarrow{\begin{pmatrix} z \\ -y \\ x \end{pmatrix}} A^3 \xrightarrow{\begin{pmatrix} y & z & 0 \\ -x & 0 & z \\ 0 & -x & -y \end{pmatrix}} A^3 \xrightarrow{(x & y & z)} A$$

- ullet la matrice d_1 contiene un insieme minimale di generatori di I
- la matrice d_2 contiene le relazioni fra i generatori:

$$yx + (-x)y = 0$$
$$zx + (-x)z = 0$$
$$zy + (-y)z = 0$$

• la matrice d_3 contiene le relazioni fra le relazioni, etc.

La risoluzione libera minimale fornisce informazioni algebro/geometriche sul modulo in questione:

- generatori minimali
- relazioni minimali fra i generatori
- serie di Hilbert
- codimensione

Esempio

$$A = \mathbb{C}[x, y, z], \ M = A/I, \ I = (x, y, z)$$

$$0 \longrightarrow A \xrightarrow{\qquad \qquad } A^3 \xrightarrow{\qquad \qquad } A^3 \xrightarrow{\qquad \qquad } A$$

A/I è l'anello delle coordinate dell'origine dello spazio affine $\mathbb{A}^3_{\mathbb{C}}.$

Introduciamo una matrice di coordinate per lo spazio affine $\mathbb{A}^{mn}_{\mathbb{C}}$:

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & & \vdots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}$$

Convenzione: $m \leq n$.

Definizione

La varietà determinantale Y_r è il luogo degli zeri dei minori di ordine r+1 di X. Equivalentemente, Y_r è l'insieme delle matrici $m\times n$ di rango al più r.

Esempio

$$Y_m = \mathbb{A}^{mn}_{\mathbb{C}}$$
$$Y_0 = \{0\}$$

Esempio

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{pmatrix}$$

$$Y_{1} = \mathcal{V}\left(\left|\frac{x_{11}}{x_{21}}\frac{x_{12}}{x_{22}}\right|, \left|\frac{x_{11}}{x_{21}}\frac{x_{13}}{x_{23}}\right|, \left|\frac{x_{12}}{x_{22}}\frac{x_{13}}{x_{23}}\right|\right) =$$

$$= \mathcal{V}(x_{11}x_{22} - x_{12}x_{21}, x_{11}x_{23} - x_{13}x_{21}, x_{12}x_{23} - x_{13}x_{22}) \subseteq \mathbb{A}_{\mathbb{C}}^{6}$$

$$0 \longrightarrow A^{2} \xrightarrow{\begin{pmatrix} x_{13} & x_{23} \\ -x_{12} & -x_{22} \\ x_{11} & x_{21} \end{pmatrix}} A^{3} \xrightarrow{\begin{pmatrix} \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix} & \begin{vmatrix} x_{11} & x_{13} \\ x_{21} & x_{23} \end{vmatrix} & \begin{vmatrix} x_{12} & x_{13} \\ x_{22} & x_{23} \end{vmatrix} \end{pmatrix}} A$$

dove $A = \mathbb{C}[x_{ij}]_{\substack{1 \leqslant i \leqslant 2 \\ 1 \leqslant j \leqslant 3}}$.

$$0 = \left| \begin{smallmatrix} x_{11} & x_{12} & x_{13} \\ x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{smallmatrix} \right| = x_{11} \left| \begin{smallmatrix} x_{12} & x_{13} \\ x_{22} & x_{23} \end{smallmatrix} \right| - x_{12} \left| \begin{smallmatrix} x_{11} & x_{13} \\ x_{21} & x_{23} \end{smallmatrix} \right| + x_{13} \left| \begin{smallmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{smallmatrix} \right|$$

Una partizione è una sequenza $\lambda = \lambda_1 \geqslant \lambda_2 \geqslant \ldots \geqslant \lambda_i \geqslant \ldots$ di numeri naturali tale che

$$|\lambda| = \sum_{i} \lambda_i < \infty.$$

L'intero $|\lambda|$ è detto peso della partizione. Le partizioni sono rappresentate graficamente mediante diagrammi di Young.

Esempio

$$\lambda = (42210), |\lambda| = 9$$

 λ contiene un quadrato massimale 2×2 .

Vogliamo la risoluzione di $Y_r \subseteq \mathbb{A}^{mn}_{\mathbb{C}}$. Sia q=n-r. In una griglia $q \times m$, inscriviamo tutte le partizioni ammissibili ovvero quelle aventi un quadrato massimale $s \times s$ (allineato in alto a sinistra) che poggia su un rettangolo $s \times r$.

Esempio (m = 3, n = 6, r = 2, q = 4)

$$s = 0$$
:

$$\mu = (000) \\ \nu = (000000)$$

s = 1:

$$\mu = (111) \\ \nu = (003000)$$

$$\mu = (211) \\
\nu = (003100)$$

$$\mu = (311)
\nu = (003110)$$

$$\mu = (411) \\ \nu = (003111)$$

Inscriviamo la griglia $q \times m$ in una griglia $n \times m$ (allineata in alto a destra) ed associamo ad ogni partizione ammissibile due sequenze, μ e ν di lunghezza m ed n.

La sequenza ν non è una partizione ma induce una partizione $\tilde{\nu}$ operando "scambi" tra coppie crescenti di interi adiacenti. Uno "scambio" manda la coppia a,b in b-1,a+1.

Esempio

$$\nu = (003000) \qquad \qquad \nu = (003111)$$

$$\begin{matrix} \begin{matrix} \begin{matrix} \\ \\ \\ \\ \end{matrix} \end{matrix} \\ (021000) \\ \begin{matrix} \\ \\ \end{matrix} \end{matrix} \\ \tilde{\nu} = (111000) \qquad \qquad \tilde{\nu} = (111111)$$

Alle partizioni μ e $\tilde{\nu}$ associamo due interi $s_{\mu}(m)$ e $s_{\tilde{\nu}}(n)$.

Esempio (m = 3, n = 6, r = 2, q = 4)

$$\mu = (411), s_{(411)}(3) = ?$$

$$\begin{array}{c|c} & +3 & & \boxed{3} & 4 & 5 \\ \hline & 2 & & \\ \hline & 1 & & \end{array}$$

$$s_{(411)}(3) = \frac{1}{2} \cdot \frac{4}{3} \cdot \frac{5}{2} \cdot 6 = 10$$

Esemplo $(m = 3, n = 6, r = 2, q = 4)$						
μ	(000)	(111)	(211)	(311)	(411)	
$ \mu $	0	3	4	5	6	
s	0	1	1	1	1	
$ ilde{ u}$	(000000)	(111000)	(111100)	(111110)	(111111)	
$s_{\mu}(m)$	1	1	3	6	10	
$s_{\tilde{\nu}}(n)$	1	20	15	6	1	
$s_{\mu}(m)s_{\tilde{\nu}}(n)$	1	20	45	36	10	
$ \mu -rs$	0	1	2	3	4	

$$0 \longrightarrow A^{10} \longrightarrow A^{36} \longrightarrow A^{45} \longrightarrow A^{20} \longrightarrow A$$

Nella risoluzione di $Y_r \subseteq \mathbb{A}^{mn}_{\mathbb{C}}$,

$$F_{|\mu|-rs} = A^{s_{\mu}(m)s_{\tilde{\nu}}(n)}.$$

Il gruppo $\mathrm{GL}_m(\mathbb{C}) \times \mathrm{GL}_n(\mathbb{C})$ agisce sullo spazio di matrici $\mathbb{A}^{mn}_{\mathbb{C}}$ via cambi di base:

$$(G,H)\cdot X = GXH^{-1}.$$

Quest'azione ha un numero finito di orbite $\mathcal{O}_0, \mathcal{O}_1, \dots, \mathcal{O}_m$ dove \mathcal{O}_t è l'insieme delle matrici di rango t. La varietà determinantale Y_r è

$$\mathcal{O}_0 \cup \mathcal{O}_1 \cup \ldots \cup \mathcal{O}_r$$

ovvero $Y_r = \overline{\mathcal{O}}_r$ nella topologia di Zariski. Il gruppo $\mathrm{GL}_m(\mathbb{C}) \times \mathrm{GL}_n(\mathbb{C})$ agisce su Y_r e l'azione si estende a tutti i termini della risoluzione. In particolare, le matrici della risoluzione sono compatibili con l'azione e ciò permette di identificarle completamente.

Rappresentazioni con un numero finito di orbite

gruppo	$GL_m(\mathbb{C}) \times GL_n(\mathbb{C})$	gruppi di Lie riduttivi
rappresentazione	$\mathbb{A}^{mn}_{\mathbb{C}}$	opportuni sottospazi
		di algebre di Lie
varietà	Y_r	chiusura delle orbite
tecniche	algebra commutativa,	+ algebra
	geometria algebrica,	computazionale
	teoria delle	
	rappresentazioni,	
	combinatoria	

A breve su arXiv "Free resolutions of orbit closures for representations with finitely many orbits" con le risoluzioni per i gruppi eccezionali E_6 e F_4 .

Per un'anteprima: www.math.neu.edu/~fgaletto.