Digital Logic Concepts — Comprehensive Notes

Introduction

- 1. Clear hierarchical organization using sections and subsections.
- 2. Mathematical formalism using LaTeX notation for:
 - Truth tables,
 - Binary conversions,
 - Boolean expressions.
- 3. Systematic presentation of:
 - Two's complement conversion methodology,
 - SOP derivation,
 - Thermometer code conversion,
 - K-map optimization principles.

For additional work, we could:

- 1. Add more detailed K-map examples,
- 2. Include step-by-step conversion examples,
- 3. Expand the don't care conditions analysis,
- 4. Add practice problems with solutions.

What aspect would be most helpful to explore further?

1 Two's Complement Conversion Methodology

1.1 Core Principles

For an 8-bit system, two's complement conversion follows these recursive steps: For negative numbers (n):

- 1. Convert |n| to binary (8 bits).
- 2. Invert all bits (i.e., perform the NOT operation).
- 3. Add 1 to the result.

For positive numbers:

• Use the direct binary representation with a leading 0.

1.2 Representation Framework

Each number requires four distinct representations:

Base-10	Positive Binary	Hexadecimal	2's Complement
n	$b_7b_6b_5b_4b_3b_2b_1b_0$	0x??	$c_7c_6c_5c_4c_3c_2c_1c_0$

1.3 Example Transformations

For n = -12:

$$|n| = 12_{10} = 00001100_2,$$

Invert = 11110011₂,
Add 1 = 11110100₂,
Hex = 0x0C.

2 Sum-of-Products (SOP) Derivation

2.1 Boolean Function Construction

For a truth table with inputs A and B:

A	В	Out
0	0	0
0	1	1
1	0	0
1	1	1

The SOP expression is constructed as:

$$Out = \overline{A}B + AB.$$

2.2 Three-Input Systems

For inputs A, B, and C:

A	В	C	Out
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
:	:	:	:

3 Thermometer Code Conversion

3.1 State Mapping

Thermometer code follows the sequence:

$$000_2 \to 001_2 \to 011_2 \to 111_2$$
.

Converting to binary output $[X_1X_0]$:

$$000_2 \rightarrow 00_2,$$

 $001_2 \rightarrow 01_2,$
 $011_2 \rightarrow 10_2,$
 $111_2 \rightarrow 11_2.$

3.2 Don't Care Conditions

For input bits $[T_2T_1T_0]$, invalid states are marked as don't care (X):

T_2	T_1	T_0	$[X_1X_0]$
0	0	0	00
0	0	1	01
0	1	0	X
:	:	:	•

4 Karnaugh Map Optimization

4.1 Prime Implicant Identification

For a K-map with variables A and B:

$$\begin{array}{c|c}
AB' & AB \\
A'B' & A'B
\end{array}$$

3

4.2 Minimization Rules

- 1. Group adjacent 1's in powers of 2.
- 2. Include don't cares (X) when beneficial.
- 3. Minimize the number of terms in the final expression.

The minimal SOP expression is derived from the largest possible groupings of 1's and the strategic use of don't care conditions.