CS624 Final

Duc Le

12/17/2020

Problem 1

```
pension = read.csv("pension.csv")
pension = pension %>% select(-c(X, id)) %>%
 na.omit(pension)
base.model1 = lm(wealth89~., data = pension)
final1 = stepAIC(base.model1, trace = 0)
summary(final1)
##
## Call:
##
  lm(formula = wealth89 ~ age + finc50 + finc75 + finc100 + finc101 +
##
       stckin89 + irain89, data = pension)
##
##
  Residuals:
##
       Min
                1Q Median
                                3Q
                                        Max
   -413.65 -113.98
                   -46.41
                             69.79 1147.64
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -593.247
                           227.590
                                    -2.607 0.009897 **
                 10.677
                             3.736
                                     2.858 0.004758 **
## age
                            39.542
                                     1.478 0.141065
## finc50
                 58.452
                168.494
                            48.878
                                     3.447 0.000703 ***
## finc75
## finc100
                151.098
                            47.842
                                     3.158 0.001857 **
                            70.951
                                     4.939 1.76e-06 ***
## finc101
                350.426
## stckin89
                109.376
                            34.821
                                     3.141 0.001963 **
                 90.154
                            33.367
                                     2.702 0.007542 **
## irain89
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 211.1 on 183 degrees of freedom
## Multiple R-squared: 0.2938, Adjusted R-squared:
## F-statistic: 10.88 on 7 and 183 DF, p-value: 1.888e-11
```

Looking at the summary of our model, a person is estimated to have negative wealth (-\$593), given no effects from all the other predictors. There seems to be a huge emphasis on how retirement contribution and investing habits (stocks, IRA) affect one's overall wealth. The majority of variables related to financial contribution holds significance for the linear regression model. The best/simplest model from stepAIC holds an R-squared of 0.2938, indicating a poor fit. This could simply be maybe these predictors just aren't ideal to be used for predicting wealth.

Problem 2

```
travel = read.table("Travel.txt", header = T)
travel = na.omit(travel)
travel$orig_destination_distance = as.numeric(travel$orig_destination_distance)
travel = na.omit(travel)
for (i in 2:length(travel)){
 travel[,i] = as.factor(travel[,i])
travel$srch_adults_cnt = as.numeric(travel$srch_adults_cnt)
travel$srch_rm_cnt = as.numeric(travel$srch_rm_cnt)
travel$orig_destination_distance = as.numeric(travel$orig_destination_distance)
base.model2 = glm(is_booking~orig_destination_distance+
                  is_mobile+is_package+channel+
                  prop_is_branded+srch_adults_cnt + srch_rm_cnt+
                  prop_starrating+distance_band+
                  hist_price_band+popularity_band, data = travel, family = "binomial")
final2 = stepAIC(base.model2, trace = 0)
summary(final2)
##
## Call:
## glm(formula = is_booking ~ is_mobile + is_package + channel +
##
      prop_is_branded + srch_adults_cnt + srch_rm_cnt + prop_starrating +
##
      hist_price_band + popularity_band, family = "binomial", data = travel)
##
## Deviance Residuals:
##
                1Q
                    Median
                                 3Q
                                        Max
      Min
## -0.8811
          -0.4812 -0.4083 -0.3072
                                      2.8218
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                    -2.51300 0.32548 -7.721 1.16e-14 ***
## is_mobile1
                    -0.12329
                                0.06263 -1.968 0.04903 *
## is_package1
                               0.08843 -10.385 < 2e-16 ***
                    -0.91826
## channel262
                    ## channel293
                    0.943 0.34593
## channel324
                     0.10830
                                0.11490
## channel355
                     0.45414
                                0.19706
                                        2.305 0.02119 *
## channel386
                                0.17921
                                        1.160 0.24619
                     0.20782
## channel417
                   -10.52529 162.32793 -0.065 0.94830
## channel448
                                0.36925 -2.420 0.01553 *
                    -0.89349
                                        1.090 0.27568
## channel479
                     0.53786
                               0.49341
## channel510
                    -0.03039 0.09400 -0.323 0.74645
## channel541
                                0.07832 -0.344 0.73099
                    -0.02693
                                        4.470 7.81e-06 ***
## prop_is_branded1
                     0.24636
                                0.05511
## srch adults cnt
                    -0.14559
                                0.03470 -4.196 2.72e-05 ***
## srch rm cnt
                     0.12764
                                0.06875
                                        1.857 0.06337 .
## prop_starrating1
                     0.60909
                                0.66568
                                        0.915 0.36020
                     0.71843
                                0.28758
                                         2.498 0.01248 *
## prop_starrating2
                                0.27973
                                        2.160 0.03080 *
## prop_starrating3
                     0.60413
                                0.28196
                                         0.500 0.61697
## prop_starrating4
                     0.14103
```

```
0.29364 -0.338 0.73501
## prop_starrating5
                      -0.09939
## hist_price_bandL
                      -0.07327
                                   0.08706
                                           -0.842 0.39999
                      -0.04597
                                   0.07239
## hist price bandM
                                            -0.635 0.52539
## hist_price_bandVH
                       0.15868
                                   0.10035
                                             1.581 0.11381
## hist_price_bandVL
                      -0.26306
                                   0.11514
                                            -2.285
                                                    0.02233 *
## popularity bandL
                      -0.71005
                                            -3.916 8.99e-05 ***
                                   0.18130
## popularity bandM
                      -0.07574
                                            -1.084 0.27825
                                   0.06986
## popularity_bandVH
                                             4.887 1.02e-06 ***
                       0.30430
                                   0.06226
## popularity_bandVL
                      -0.48615
                                   0.42381
                                           -1.147 0.25135
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 11877
                             on 19992 degrees of freedom
## Residual deviance: 11495
                             on 19964
                                       degrees of freedom
  AIC: 11553
##
## Number of Fisher Scoring iterations: 11
exp(final2$coefficients)-1
##
         (Intercept)
                            is mobile1
                                              is_package1
                                                                  channel262
##
         -0.91897515
                           -0.11599085
                                              -0.60078786
                                                                 -0.09944750
##
          channel293
                            channel324
                                               channel355
                                                                 channel386
         -0.31168622
                            0.11438152
                                               0.57481544
                                                                 0.23099075
##
##
          channel417
                            channel448
                                               channel479
                                                                 channel510
##
         -0.99997315
                           -0.59077563
                                               0.71233228
                                                                 -0.02993483
##
                      prop_is_branded1
          channel541
                                          srch_adults_cnt
                                                                 srch_rm_cnt
##
         -0.02656750
                            0.27936099
                                              -0.13549204
                                                                 0.13614718
##
   prop_starrating1
                      prop_starrating2
                                        prop_starrating3
                                                           prop_starrating4
##
          0.83875512
                            1.05120573
                                               0.82965291
                                                                 0.15145346
##
    prop_starrating5
                      hist_price_bandL
                                        hist_price_bandM hist_price_bandVH
##
         -0.09460851
                           -0.07065004
                                              -0.04493251
                                                                 0.17196060
##
  hist_price_bandVL
                      popularity_bandL
                                         popularity_bandM popularity_bandVH
         -0.23130149
                           -0.50838219
                                              -0.07294563
                                                                 0.35567416
##
  popularity_bandVL
         -0.38500779
##
p2 = predict(final2, type = "response")
roc.curve(travel$is_booking, p2)
```

ROC curve

Area under the curve (AUC): 0.636

Within this abundant list of variables, it seems like only a subset of them has significance when it comes to predicting whether a customer books a hotel room. For ex: whether a customer is using a mobile app (is_mobile) has statistical significance. Whether or not the room comes in a package (is_package) is also an important predictor. Another important predictor worth noting is the popularity band of hotels relative to each other in the same destination.

Looking at the coefficients, we can exponentiate them to make it easier to interpret the odds of booking a hotel room. For ex: if the user is using a mobile app, then the odds of booking will decrease by ~ 0.115 . If the booking is included in a package, the odds of book decrease by ~ 0.6 .

Problem 3

```
fitglm = read.delim("FITglm2.txt", sep="\t")

fitglm2 = fitglm %>%
    select(-c(alloc, nosp)) %>% na.omit(fitglm)

risk.levels = levels(fitglm2$riskcat4)
fitglm2$riskcat4 = mapvalues(factor(fitglm2$riskcat4), from = risk.levels, to = seq(length(risk.levels))

## The following `from` values were not present in `x`:

rt.levels = levels(fitglm2$rtgroup)
fitglm2$rtgroup = mapvalues(factor(fitglm2$rtgroup), from = rt.levels, to = seq(length(rt.levels)))

## The following `from` values were not present in `x`:
```

```
base.model3 = glm(numnosp~., data = fitglm2, family = "poisson")
final3 = stepAIC(base.model3, trace = 0)
summary(final3)
##
## Call:
## glm(formula = numnosp ~ frx + trialyrs, family = "poisson", data = fitglm2)
##
## Deviance Residuals:
##
        Min
                   10
                         Median
                                                Max
## -1.53378 -0.00001 -0.00001 -0.00001
                                            2.06252
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
                                    -0.025
## (Intercept) -23.64817 941.33476
                                              0.9800
                23.38587
                          941.33474
                                      0.025
                                              0.9802
                 0.09065
                            0.04537
                                      1.998
                                              0.0457 *
## trialyrs
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
       Null deviance: 4115.61
                               on 6365
                                        degrees of freedom
## Residual deviance: 295.88
                               on 6363 degrees of freedom
## AIC: 2023.9
## Number of Fisher Scoring iterations: 21
1-pchisq(final3$deviance, final3$df.residual)
## [1] 1
(exp(final3$coefficients) -1)*100
##
     (Intercept)
                           frx
                                    trialyrs
```

```
## -1.000000e+02 1.433351e+12 9.488201e+00
```

The resulted poisson regression model from stepAIC only uses 2 covariates to predict the # of non-spinal bone fractures in women with low bone densities. "Trialyrs", the duration of follow-up is the only variable that holds statistical significance. Analyzing the effect sizes, for every unit increase in "trialyrs" or duration of follow-up, the # of expected fractures increases by 9.48%. Similarly, if the patient has spinal fractures, (frx = 1), the rate of fractures increases by 1.43%. The resulted chi-square test using the model's deviance & residual is 1, indicating the model was a good fit.

Problem 4

```
data(wine)
base.model4 = vglm(Type~., multinomial(refLevel = 1), data = wine)
(exp(base.model4@coefficients)-1)*100
##
       (Intercept):1
                          (Intercept):2
                                                 Alcohol:1
                                                                   Alcohol:2
##
        4.974049e+42
                          7.395403e+16
                                            -9.922253e+01
                                                               -5.442847e+01
                                                                       Ash:2
##
                                Malic:2
             Malic:1
                                                     Ash:1
##
       -8.507296e+01
                          -4.807708e+01
                                            -9.999978e+01
                                                                4.223493e+02
##
        Alcalinity:1
                          Alcalinity:2
                                              Magnesium:1
                                                                 Magnesium: 2
##
        1.774465e+02
                           6.311822e+01
                                            -1.090468e+00
                                                               -1.200543e+01
```

```
##
           Phenols:1
                              Phenols:2
                                              Flavanoids:1
                                                                  Flavanoids:2
##
        1.248020e+03
                           1.347025e+04
                                              -6.980202e+01
                                                                 -9.989260e+01
                        Nonflavanoids: 2 Proanthocyanins: 1 Proanthocyanins: 2
##
     Nonflavanoids:1
##
        7.133476e+05
                          -9.99999e+01
                                              1.294184e+02
                                                                 -2.402657e+01
##
             Color:1
                                 Color:2
                                                      Hue:1
                                                                         Hue:2
##
       -7.864126e+01
                           5.409236e+02
                                              3.564642e+06
                                                                 -9.339913e+01
##
          Dilution:1
                             Dilution:2
                                                 Proline:1
                                                                     Proline:2
##
       -9.397942e+01
                          -9.964835e+01
                                             -2.390362e+00
                                                                 -1.024325e+00
```

Since the reference level chosen is 1, this means the 2 lines of coefficients produced will represent the log odds of type 2 and 3 in respect of type 1. Looking at Alcohol1, every unit increase will result in a -99% for the odds of one choosing type2 wine. Every increase of Alcohol2 will result in a -54% for the odds of one picking type3 wine. There are contrasting coefficients for both odds equations, such as every unit increase in Hue, will lead to a huge bump for the odds of Type2 but a decrease in the odds for Type3.

Problem 5

##

##

110

118

141

140

1

1

0.8442 0.02807

0.8382 0.02851

```
data(lung)
df3 = na.omit(lung)
attach(df3)
surv.obj = Surv(time = time, event = status)
kmsurvival = survfit(surv.obj~1)
summary(kmsurvival)
## Call: survfit(formula = surv.obj ~ 1)
##
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
       5
             167
                        1
                            0.9940 0.00597
                                                   0.9824
                                                                   1.000
             166
                                                   0.9717
##
      11
                        1
                            0.9880 0.00842
                                                                   1.000
##
      12
             165
                        1
                            0.9820 0.01028
                                                   0.9621
                                                                   1.000
##
      13
             164
                        1
                            0.9760 0.01183
                                                   0.9531
                                                                   1.000
##
      15
             163
                            0.9701 0.01319
                                                   0.9446
                                                                   0.996
                        1
##
      26
             162
                        1
                            0.9641 0.01440
                                                   0.9363
                                                                   0.993
##
      30
             161
                        1
                            0.9581 0.01551
                                                   0.9282
                                                                   0.989
##
      31
             160
                        1
                            0.9521 0.01653
                                                   0.9203
                                                                   0.985
##
      53
             159
                        2
                            0.9401 0.01836
                                                   0.9048
                                                                   0.977
##
      54
             157
                        1
                            0.9341 0.01919
                                                   0.8973
                                                                   0.973
##
      59
             156
                        1
                            0.9281 0.01998
                                                   0.8898
                                                                   0.968
                        2
                            0.9162 0.02145
##
      60
             155
                                                   0.8751
                                                                   0.959
##
             153
                        1
                            0.9102 0.02213
                                                                   0.955
      61
                                                   0.8678
      62
                        1
                            0.9042 0.02278
                                                   0.8606
                                                                   0.950
##
             152
##
      65
             151
                        1
                            0.8982 0.02340
                                                   0.8535
                                                                   0.945
##
      79
             150
                        1
                            0.8922 0.02400
                                                   0.8464
                                                                   0.941
             149
                            0.8862 0.02457
                                                                   0.936
##
      81
                        1
                                                   0.8394
##
      88
             148
                        1
                            0.8802 0.02512
                                                   0.8323
                                                                   0.931
##
      92
             147
                        1
                            0.8743 0.02566
                                                   0.8254
                                                                   0.926
##
      93
             146
                        1
                            0.8683 0.02617
                                                   0.8185
                                                                   0.921
                        2
##
      95
             145
                            0.8563 0.02715
                                                   0.8047
                                                                   0.911
##
     107
             142
                        1
                            0.8503 0.02762
                                                   0.7978
                                                                   0.906
```

0.7910

0.7841

0.901

0.896

##	135	139	1	0.8322	0.02894	0.7773	0.891
##	142	138	1	0.8261	0.02935	0.7706	0.886
##	145	137	1	0.8201	0.02975	0.7638	0.881
##	147	136	1	0.8141	0.03013	0.7571	0.875
##	153	135	1	0.8080	0.03051	0.7504	0.870
##	156	134	2	0.7960	0.03122	0.7371	0.860
##	163	132	3	0.7779	0.03221	0.7173	0.844
##	166	129	1	0.7719	0.03252	0.7107	0.838
##	167	128	1	0.7658	0.03282	0.7041	0.833
##	170	127	1	0.7598	0.03311	0.6976	0.828
##	176	124	1	0.7537	0.03341	0.6910	0.822
##	179	122	1	0.7475	0.03370	0.6843	0.817
##	180	121	1	0.7413	0.03398	0.6776	0.811
##	181	120	2	0.7290	0.03452	0.6644	0.800
##	183	118	1	0.7228	0.03478	0.6577	0.794
##	197	114	1	0.7164	0.03505	0.6510	0.789
##	199	112	1	0.7101	0.03531	0.6441	0.783
##	201	111	1	0.7037	0.03557	0.6373	0.777
##	207	108	1	0.6971		0.6303	0.771
##	210	107	1	0.6906		0.6234	0.765
##	212	105	1	0.6840		0.6164	0.759
##	218	104	1	0.6775		0.6094	0.753
##	222	102	1	0.6708		0.6024	0.747
##	223	100	1	0.6641		0.5953	0.741
##	226	97	1	0.6573		0.5881	0.735
##	229	96	1	0.6504		0.5809	0.728
##	230	95	1	0.6436		0.5737	0.722
##	239	93	1	0.6367		0.5664	0.716
##	245	90	1	0.6296		0.5590	0.709
##	246	89	1	0.6225		0.5516	0.703
##	267	85	1	0.6152		0.5439	0.696
##	268	84	1	0.6079		0.5362	0.689
##	269	83	1	0.6005		0.5286	0.682
##	270	81	1	0.5931		0.5208	0.675
##	283	79	1	0.5856		0.5130	0.668
##	284	78	1	0.5781		0.5052	0.661
##	285	76	2	0.5629		0.4895	0.647
##	286	74	1	0.5553		0.4817	0.640
##	288	73 70	1		0.04045	0.4739	0.633
##	291	72 60	1		0.04060	0.4661	0.626
##	293	69 66	1		0.04076	0.4581	0.618
##	301 303	66 64	1		0.04093	0.4498 0.4414	0.611
## ##	305	64 62	1 1		0.04110 0.04127		0.603 0.595
##	310	61	1		0.04127	0.4329	
##	320	60	1		0.04143	0.4244 0.4160	0.588 0.580
##	337	58	1		0.04137	0.4074	0.572
##	345	57	1		0.04170	0.3988	0.564
##	348	5 <i>1</i>	1		0.04182	0.3903	0.555
##	351	55	1	0.4572		0.3818	0.547
##	353	54	2		0.04201	0.3650	0.531
##	361	52	1		0.04212	0.3566	0.523
##	363	51	2		0.04217	0.3399	0.506
##	371	49	1	0.4064		0.3316	0.498
	011	10	1	3.1004	0.01210	0.0010	0.400

##	390	45	1	0.3973 0.04217	0.3227	0.489
##	426	42	1	0.3879 0.04221	0.3134	0.480
##	428	41	1	0.3784 0.04223	0.3041	0.471
##	429	40	1	0.3690 0.04222	0.2948	0.462
##	433	39	1	0.3595 0.04218	0.2856	0.452
##	444	38	1	0.3500 0.04212	0.2765	0.443
##	450	37	1	0.3406 0.04203	0.2674	0.434
##	455	36	1	0.3311 0.04192	0.2584	0.424
##	457	35	1	0.3217 0.04177	0.2494	0.415
##	460	33	1	0.3119 0.04163	0.2401	0.405
##	473	32	1	0.3022 0.04145	0.2309	0.395
##	477	31	1	0.2924 0.04124	0.2218	0.386
##	519	29	1	0.2823 0.04104	0.2123	0.375
##	520	28	1	0.2722 0.04079	0.2030	0.365
##	524	27	1	0.2622 0.04051	0.1937	0.355
##	550	25	1	0.2517 0.04022	0.1840	0.344
##	558	23	1	0.2407 0.03993	0.1739	0.333
##	567	21	1	0.2293 0.03964	0.1634	0.322
##	574	20	1	0.2178 0.03928	0.1529	0.310
##	583	19	1	0.2063 0.03885	0.1427	0.298
##	613	18	1	0.1949 0.03835	0.1325	0.287
##	641	17	1	0.1834 0.03777	0.1225	0.275
##	643	16	1	0.1720 0.03711	0.1126	0.262
##	655	15	1	0.1605 0.03636	0.1029	0.250
##	687	14	1	0.1490 0.03552	0.0934	0.238
##	689	13	1	0.1376 0.03459	0.0840	0.225
##	705	12	1	0.1261 0.03355	0.0749	0.212
##	707	11	1	0.1146 0.03240	0.0659	0.199
##	731	10	1	0.1032 0.03112	0.0571	0.186
##	765	8	1	0.0903 0.02979	0.0473	0.172
##	791	7	1	0.0774 0.02818	0.0379	0.158
##	814	5	1	0.0619 0.02646	0.0268	0.143

plot(kmsurvival, xlab = "Time", ylab = "Survival Probability")


```
kmsurvival.sex = survfit(surv.obj~ sex)
summary(kmsurvival.sex)
```

```
##
   Call: survfit(formula = surv.obj ~ sex)
##
##
                     sex=1
##
    time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
      11
             103
                             0.9903 0.00966
                                                    0.9715
                                                                    1.000
                        1
             102
##
       12
                             0.9806 0.01360
                                                    0.9543
                                                                    1.000
##
             101
                                                    0.9389
                                                                    1.000
      13
                             0.9709 0.01657
##
       15
             100
                                                    0.9246
                             0.9612 0.01904
                                                                    0.999
##
      26
              99
                        1
                             0.9515 0.02118
                                                    0.9108
                                                                    0.994
##
      30
              98
                             0.9417 0.02308
                                                    0.8976
                                                                    0.988
##
              97
                             0.9320 0.02480
      31
                        1
                                                    0.8847
                                                                    0.982
                        2
                             0.9126 0.02782
##
      53
              96
                                                    0.8597
                                                                    0.969
##
      54
              94
                        1
                             0.9029 0.02917
                                                    0.8475
                                                                    0.962
##
      59
              93
                             0.8932 0.03043
                                                    0.8355
                                                                    0.955
##
      60
              92
                        1
                             0.8835 0.03161
                                                    0.8237
                                                                    0.948
##
      65
                        1
                             0.8738 0.03272
                                                    0.8119
                                                                    0.940
##
      88
              90
                        1
                             0.8641 0.03377
                                                    0.8004
                                                                    0.933
##
      92
              89
                        1
                             0.8544 0.03476
                                                    0.7889
                                                                    0.925
##
      93
              88
                        1
                             0.8447 0.03569
                                                    0.7775
                                                                    0.918
##
      95
              87
                        1
                             0.8350 0.03658
                                                    0.7663
                                                                    0.910
##
     110
              86
                        1
                             0.8252 0.03742
                                                    0.7551
                                                                    0.902
                             0.8155 0.03822
##
                                                    0.7440
                                                                    0.894
     118
              85
                        1
##
     135
              84
                             0.8058 0.03898
                                                    0.7329
                                                                    0.886
```

##	142	83	1		0.03970	0.7220	0.878
##	147	82	1		0.04038	0.7111	0.870
##	156	81	2	0.7670	0.04165	0.6895	0.853
##	163	79	3	0.7379	0.04333	0.6576	0.828
##	166	76	1	0.7282	0.04384	0.6471	0.819
##	170	75	1	0.7184	0.04432	0.6366	0.811
##	176	73	1	0.7086	0.04479	0.6260	0.802
##	179	72	1	0.6988	0.04523	0.6155	0.793
##	180	71	1	0.6889	0.04566	0.6050	0.784
##	181	70	2		0.04642	0.5842	0.767
##	183	68	1		0.04677	0.5738	0.758
##	197	64	1		0.04716	0.5629	0.748
##	207	62	1		0.04755	0.5519	0.739
##	210	61	1		0.04791	0.5409	0.729
##	212	60	1		0.04731	0.5300	0.720
##			1		0.04855		
	218	59 57				0.5191	0.710
##	222	57	1		0.04885	0.5081	0.700
##	223	55	1		0.04915	0.4969	0.690
##	229	52	1		0.04948	0.4852	0.680
##	230	51	1		0.04977	0.4736	0.670
##	246	50	1		0.05004	0.4621	0.659
##	267	48	1		0.05030	0.4503	0.649
##	269	47	1		0.05053	0.4386	0.638
##	270	46	1		0.05072	0.4270	0.627
##	283	45	1		0.05088	0.4154	0.616
##	284	44	1		0.05101	0.4039	0.605
##	285	42	1		0.05113	0.3922	0.594
##	286	41	1	0.4709	0.05122	0.3805	0.583
##	288	40	1	0.4591	0.05128	0.3689	0.571
##	291	39	1	0.4473	0.05129	0.3573	0.560
##	301	36	1	0.4349	0.05135	0.3451	0.548
##	303	34	1	0.4221	0.05141	0.3325	0.536
##	320	32	1	0.4089	0.05147	0.3195	0.523
##	337	31	1	0.3957	0.05147	0.3067	0.511
##	353	30	2	0.3694	0.05131	0.2813	0.485
##	363	28	1	0.3562	0.05114	0.2688	0.472
##	371	27	1	0.3430	0.05092	0.2564	0.459
##	390	26	1	0.3298	0.05064	0.2441	0.446
##	428	23	1	0.3154	0.05043	0.2306	0.432
##	429	22	1	0.3011	0.05014	0.2173	0.417
##	455	21	1	0.2868	0.04976	0.2041	0.403
##	457	20	1	0.2724	0.04929	0.1911	0.388
##	460	18	1		0.04882	0.1774	0.373
##	477	17	1		0.04824	0.1639	0.358
##	519	16	1	0.2270	0.04754	0.1506	0.342
##	524	15	1		0.04672	0.1375	0.326
##	558	14	1		0.04577	0.1247	0.310
##	567	13	1		0.04468	0.1121	0.294
##	574	12	1		0.04344	0.0998	0.278
##	583	11	1		0.04205	0.0878	0.261
##	613	10	1		0.04048	0.0761	0.244
##	643	9	1		0.03870	0.0647	0.244
##	655	8	1		0.03671	0.0537	0.209
##	689	7	1		0.03444	0.0432	0.203
ir tif	503	'	_	5.0500	J.JU-171	0.0402	0.101

##	707	6	1	0 0757	0.03185		0.0332		0.173
##	791	5	1		0.03185		0.0332		0.173
##	814	3	1		0.02533		0.0238		0.134
##	014	3	1	0.0404	0.02555		0.0116		0.130
##			sex=2)					
##	+imo	n riek		survival	std orr	lower	05% CT	uppor	95% CT
##	5	11.115K 64	n.event	0.984	0.0155	TOMET	0.9545	upper	1.000
##	60	63	1	0.969	0.0133		0.9343		1.000
##	61	62	1	0.953	0.0217		0.9270		1.000
##	62	61	1	0.938	0.0204		0.8800		0.999
##	79	60	1	0.922	0.0335		0.8584		0.990
##	81	59	1	0.906	0.0364		0.8376		0.981
##	95	58	1	0.891	0.0390		0.8174		0.970
##	107	56	1	0.875	0.0330		0.7972		0.960
##	145	55	1	0.859	0.0414		0.7774		0.949
##	153	54	1	0.843	0.0456		0.7581		0.937
##	167	53	1	0.827	0.0475		0.7390		0.925
##	199	50	1	0.810	0.0493		0.7194		0.913
##	201	49	1	0.794	0.0510		0.7000		0.900
##	226	45	1	0.776	0.0528		0.6794		0.887
##	239	43	1	0.758	0.0546		0.6584		0.873
##	245	40	1	0.739	0.0564		0.6366		0.859
##	268	37	1	0.719	0.0583		0.6136		0.843
##	285	34	1	0.698	0.0603		0.5894		0.827
##	293	32	1	0.676	0.0623		0.5647		0.810
##	305	30	1	0.654	0.0641		0.5394		0.792
##	310	29	1	0.631	0.0658		0.5146		0.774
##	345	27	1	0.608	0.0674		0.4892		0.755
##	348	26	1	0.584	0.0687		0.4642		0.736
##	351	25	1	0.561	0.0698		0.4397		0.716
##	361	24	1	0.538	0.0707		0.4155		0.696
##	363	23	1	0.514	0.0714		0.3918		0.675
##	426	19	1	0.487	0.0726		0.3639		0.653
##	433	18	1	0.460	0.0734		0.3366		0.629
##	444	17	1	0.433	0.0739		0.3100		0.605
##	450	16	1	0.406	0.0741		0.2839		0.581
##	473	15	1	0.379	0.0739		0.2585		0.556
##	520	13	1	0.350	0.0738		0.2314		0.529
##	550	11	1	0.318	0.0736		0.2020		0.501
##	641	8	1	0.278	0.0744		0.1648		0.470
##	687	7	1	0.239	0.0736		0.1303		0.437
##	705	6	1	0.199	0.0713		0.0984		0.401
##	731	5	1	0.159	0.0672		0.0695		0.364
##	765	3	1	0.106	0.0623		0.0335		0.335
	. (1		-	1 1177		uа			

plot(kmsurvival.sex, xlab = "Time", ylab = "Survival Probability")

From the survival model plot in relation to Sex, we see that over time, males actually have a lower survival rate than women despite starting off with a higher survival probablity.

```
coxph.model = coxph(surv.obj~age+sex+ph.ecog+pat.karno+meal.cal+wt.loss, data = df3)
summary(coxph.model)
```

```
## Call:
## coxph(formula = surv.obj ~ age + sex + ph.ecog + pat.karno +
       meal.cal + wt.loss, data = df3)
##
##
     n= 167, number of events= 120
##
##
                                                     z Pr(>|z|)
##
                    coef
                          exp(coef)
                                      se(coef)
## age
                          1.006e+00
              5.610e-03
                                     1.127e-02 0.498
             -5.362e-01
                          5.850e-01
                                     2.017e-01 -2.658
                                                        0.00785 **
##
  sex
## ph.ecog
              4.424e-01
                          1.557e+00
                                     1.713e-01
                                                 2.583
                                                        0.00979 **
                                     8.099e-03 -1.226
## pat.karno -9.933e-03
                          9.901e-01
                                                        0.22005
## meal.cal
              1.503e-05
                          1.000e+00
                                     2.529e-04 0.059
                                                        0.95261
## wt.loss
             -1.340e-02
                          9.867e-01
                                     7.711e-03 -1.738
                                                        0.08228 .
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
##
             exp(coef) exp(-coef) lower .95 upper .95
## age
                1.0056
                            0.9944
                                      0.9836
                                                 1.0281
                0.5850
                            1.7094
                                      0.3940
                                                 0.8686
## sex
## ph.ecog
                1.5565
                            0.6425
                                      1.1126
                                                 2.1775
## pat.karno
                0.9901
                            1.0100
                                      0.9745
                                                 1.0060
```

```
## meal.cal
                 1.0000
                            1.0000
                                       0.9995
                                                  1.0005
## wt.loss
                 0.9867
                            1.0135
                                       0.9719
                                                 1.0017
##
## Concordance= 0.654 (se = 0.03)
## Likelihood ratio test= 23.95 on 6 df,
                                              p=5e-04
## Wald test
                         = 23.1 \text{ on } 6 \text{ df},
                                             p=8e-04
## Score (logrank) test = 23.89 on 6 df,
                                              p=5e-04
percentages = round(((exp(coxph.model$coefficients)-1)*100),3)
percentages
##
         age
                    sex
                          ph.ecog pat.karno
                                              meal.cal
                                                          wt.loss
##
       0.563
                -41.500
                           55.652
                                      -0.988
                                                 0.002
                                                           -1.331
```

Analyzing the hazard rates for each variable, we see that for every unit increase in age the subject is 0.56% more likely to die from lung cancer. Looking at ph.ecog, the more "bedbound" the subject is, the more likely he/she is to die from lung cancer. Their probability of dying increases by 55% for this predictor.