Ad-Soyad : No :	Email : İmza :
Vize 2 (28.12. 0112611 - Lojik	•
S1. Aşağıdaki şekil animasyonlu bir sola dönüş trafik levhasını vardır. Trafik levhası sola dönüş işareti gösterdiği zaman, sönerek çalışmaktadırlar (1 de lamba yanık, 0 da lamba sö	lambalar aşağıdaki örüntüyü izleyecek şekilde yanıp
Buna göre: (a) Gerekli ardışıl devreye ait durum diagramını çiziniz. (b) Gerekli durum tablosunu oluşturunuz. (c) D-FF kullanılırsa FF ların karakteristik denklemlerini (D) (d) Devreyi çiziniz.	(5) (7) (7) (6) Ardışıl Devre
S2. Yandaki devrede inverter 3 ns, D-FF ise 5 ns lik bir yayılım gecikmesi (propagation delay) değerlerine sahiptir. Buna göre yandaki grafiği tamamlayınız. (15)	Clk D Q 0 5 10 15 20 25 30 35 40 45 50 55 60 65 t(ns)
S3. Bir ardışıl devreye ait durum diyagramı yandaki gibi olduş (a) Ardışıl devrenin türünü belirleyiniz (nedenini yazını (b) Devreye ait durum tablosunu oluşturunuz. (c) Bu devre için kaç farklı durum ataması (state assign (d) Bu devrenin ne yaptığını açıklayınız.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
S4. S3 teki devreyi gerçekleştirmek için J-K FF kullanılırsa ve yapılırsa; (a) Devreyi gerçekleştirmek için gerekli durum tablosu (b) J ve K girişleri için gerekli denklemleri bulunuz. (c) Devreyi gerçekleştiriniz.	
S5. Şekildeki bir bitlik yarım-çıkarıcı (half-subtractor) devresi (a) Doğruluk tablosunu oluşturunuz. (b) Sadeleşmiş ifadeleri bulunuz (c) Devreyi çiziniz.	Yarım (5) (5) (5) (5) D: fark (difference), B: ödünç alınan (borrow)

CEVAPLAR

C1.

ABC	$A^{\dagger}B^{\dagger}C^{\dagger}$			D_A	D_{B}	D_{C}
000	0	0	1	0	0	1
001	0	1	1	0	1	1
010	*	*	*	*	*	*
0 1 1	1	1	1	1	1	1
100	*	*	*	*	*	*
101	*	*	*	*	*	*
1 1 0	*	*	*	*	*	*
111	0	0	0	0	0	0

C2.

(b)

C3.

- (a) Because the output depends on both the state and the input (or the arcs show both the state transition and the output) this is a Mealy type sequential circuit.
- (b) Present Next State Output y State x=0 x=1 x=0 x=1**S**0 **S**0 **S**1 0 0 **S**1 S0S2 0 0 **S**0 **S**2
- (c) Because there are 4 states total (1 state is unused) there can be 4! = 24 different assignments.
- (d) This is a sequence detector circuit, which detects three or more consecutive 1's in a string of bits coming through an input line.

(a) State table C4.

Pre	sent sta	te	Input Next state			Flip-flop inputs				Output	
	A	В	X		A^{+}	\mathbf{B}^{+}	J_A	K_A	J_{B}	K_{B}	у
S0	0	0	0	S 0	0	0	0	d	0	d	0
S0	0	0	1	S 1	0	1	0	d	1	d	0
S1	0	1	0	S 0	0	0	0	d	d	1	0
S 1	0	1	1	S2	1	1	1	d	d	0	0
d	1	0	0	d	d	d	d	d	d	d	d
d	1	0	1	d	d	d	d	d	d	d	d
S2	1	1	0	S0	0	0	d	1	d	1	0
S2	1	1	1	S2	1	1	d	0	d	0	1

Alternative state table (and Karnaugh map)

PS		S	Outp	ut Y	J	A	K	-A	J	В	K	·B
	$A^+ B^+$	$A^+ B^+$										
A B	X=0	X=1	X=0	X=1	X=0	X=1	X=0	X=1	X=0	X=1	X=0	X=1
00	00	0 1	0	0	0	0	d	d	0	1	d	d
01	00	11	0	0	0	1	d	d	d	d	1	0
1 1	00	1 1	0	1	d	d	1	0	d	d	1	0
10	d d	d d	d	d	d	d	d	d	d	d	d	d

(b)
$$J_A = xB$$
, $K_A = x'$,

$$J_A=xB\;,\quad K_A=x'\;,\qquad \qquad J_B=x,\quad K_B=x'\;,\qquad \qquad y=xA$$

C5.

(a) Truth table:

$\boldsymbol{\sigma}$	

/	_
	$^{-1}$
١.	

X	Y	D	В
0	0	0	0
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1	1
1	0	1	0
1	1	0	0

$$\begin{aligned} D &= XY' + X'Y = X \oplus Y \\ B &= X'Y \end{aligned}$$

