

ENTERED

RAW SEQUENCE LISTING

PATENT APPLICATION: UB/09/769,736

DATE: 02/24/2003

TIME: 08:08:08

Input Set : A:\P21089WO.txt

Output Set: N:\CRF4\02242003\1769736.raw

```
3 <110> APPLICANT: Microbial Technics Limited
             Le Page, Richard WF
              Wells, Jeremy M
             Hanniffy, Sean B
      8 <120> TITLE OF INVENTION: Proteins
     10 <130> FILE REFERENCE: PWC/P21089wo
C--> 12 <140> CURRENT APPLICATION NUMBER: US/09/769,736
C--> 13 <141> CURRENT FILING DATE: 2003-02-14
     15 <150> PRIOR APPLICATION NUMBER: GB 9816335.5
     16 <151> PRIOR FILING DATE: 1998-07-27
```

18 <150> PRIOR APPLICATION NUMBER: US 60/125163

19 <151> PRIOR FILING DATE: 1999-83 19 21 <160> NUMBER OF SEQ ID NOS: 212

23 <170> SOFTWARE: PatentIn Ver. 2.1

25 <210> SEQ ID NO: 1 26 <211> LENGTH: 1248 27 <212> TYPE: DNA

28 <213> ORGANISM: Streptococcus agalactiae

30 <400> SEQUENCE: 1 31 atggaaaaaa atacttggaa aaaattactt gttagtactg ctgctctttc agtagttgca 60 32 ggaggagcaa ttgctgctac tcactctaac tcagttgatg ctgcttcaaa aaaaactatc 120 33 aaactttggg tcccaacaga ttcaaaagcg tcttataaag caattgttaa aaaattcgag 180 34 aaggaaaaca aaggcgttac tgtaaaaatg attgagtcta atgactccaa agctcaagaa 240 35 aacgtaaaaa aagacccaag caaggcagcc gatgtattct cacttccaca tgaccaactt 300 36 ggtcaattag tagaatctgg tgttatccaa gaaattccag agcaatactc aaaagaaatt 360 37 gctaaaaacg acactaaaca atcacttact ggtgcacaat ataaagggaa aacttatgca 420 38 ttcccatttg gtattgaatc tcaagttctt tattataata aaacaaagtt aactgctgac 480 39 gacgttaaat catacgaaac aattacaagc aaagggaaat teggtcaaca gettaaagca 540 40 gctaactcat atgtaacagg toototttto otttotgtag gogacacttt atttggtaaa 600 41 tetggtgaag atgetaaagg cactaaetgg ggtaatgaag caggtgttte tgteettaaa 660 42 tggattgcag atcaaaagaa aaatgatggt tttgtcaact tgacagctga aaatacaatg 720 43 totaaatttg gogatggtto tgttoatgot tttgaaagtg gaccatggga ttacgacgot 780 44 gctaaaaaag ctgtcggtga agataaaatc ggtgttgctg tttacccaac aatgaaaatc 840 45 ggtgacaaag aagttcaaca aaaagcattc ttgggcgtta aactttatgc cgttaaccaa 900 46 gcacctgctg gttcaaacac taaacgaatc tcagctagct acaaactcgc tgcatatcta 960 47 actaatgetg aaagteaaaa aatteaatte gaaaaaegte atategttee tgetaactea 1020 48 tcaattcaat cttctgatag cgtccaaaaa gatgaacttg caaaagcagt tatcgaaatg 1080 49 ggtageteag ataaatatae aaeggttatg eetaagttga gteaaatgte aaeattetgg 1140 51 cttaaacgtc taaaacaatt cgataaagac atcgctaaaa caaaatag 54 <210> SEQ ID NO: 2

55 <211> LENGTH: 415 56 <212> TYPE: PRT

SEQUENCE LISTING

<110> Microbial Technics Limited
 Le Page, Richard WF
 Wells, Jeremy M
 Hanniffy, Sean B
 Hansbro, Philip M

<120> Proteins

<130> PWC/P21122WO

<140> PCT/GB99/02452

<141> 1999-07-27

<150> GB 9816336.3

<151> 1998-07-27

<150> US 60/125329

<151> 1999-03-19

<160> 196

<170> PatentIn Ver. 2.1

<210> 1

<211> 1200

<212> DNA

<213> Streptococcus pneumoniae

<400> 1

atgagaaata tgtgggttgt aatcaaggaa acctatcttc gacatgtcga gtcatggagt 60 ttcttcttta tggtgatttc gccgttcctc tttttaggaa tctctgtagg aattgggcat 120 ctccaaggtt cttctatggc taaaaataat aaagtggcag tagtgacaac agtgccatct 180 gtagcagaag gactgaagaa tgtaaatggt gttaacttcg actataaaga cgaagcaagt 240 gccaaagaag caattaaaga agaaaaatta aaaggttatt tgaccattga tcaagaagat 300 agtgttctaa aggcagttta tcatggcgaa acatcgcttg aaaatggaat taaatttgag 360

for Poper Copy

BEST AVAILABLE COPY

<210> 196

<211> 11

<212> PRT

<213> Streptococcus pneumoniae

<400> 196

Gln Lys Ile Thr Met Ile Thr Phe Thr Phe Gln

10

All genomic digests and their corresponding Southern blots followed an identical lane order as described in Table I.

Table 1							
	l kb molecula r	515 -	A909	SB35	H36B	18RS21	1954/92
	Weight Marker	Ia	Ia	Ιb	Ib	П	II

		:				
118/158	97/0057	BM110	BS30	M781	97/0099	3139
II	П	Ш	Ш	Ш	Ш	IV

	1169-NT	GBS 6	7271	ЛМ9	Group A	Streptococcu
	:				Strepococcu	s
					s	pneumoniae
3.20	V	VI	VII	VIII	-	14

For comparative purposes, it was decided to analyse the serotype distribution of the GBS rib gene, which encodes the known protective immunogen Rib. Rib has 10 previously been shown to be present in serotype III and some strains of serotype II but not in serotypes Ia or Ib (Stalhammar-Carlemalm et al., 1993). Confirmation of this pattern would not only give increased confidence in interpreting subsequent results, it would also determine if a rib gene homologue was present in the remaining GBS

THE R. L. IN THE ST. B. L.

Full and and a