法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

第4课 图像分类(上)

Image Classification

主讲人:张宗健

悉尼科技大学博士

主要研究方向: 计算机视觉、视觉场景理解、图像&语言、深度学习

图像检索CbIR、Human ReID等

本章结构

- □ 图片分类 (Image Classification)
- □ ILSVRC竞赛 (ImageNet Large Scale Visual Recognition Challenge)
- □ 卷积神经网络 (Convolutional Neural Network)
- □ 应用案例:
 - 超深的残差神经网络ResNet

图片分类

判断图片中是否有某个物体

- 一个图对应一个标签
- 性能指标
 - Top1 error → 前1中1
 - Top5 error → 前5中1

Steel drum

输出: Scale T-shirt Steel drum Drumstick Mud turtle

输出: Scale T-shirt Giant panda Drumstick Mud turtle

ILSVRC竞赛

ImageNet Large Scale Visual Recognition Challenge

- 多个任务
 - 图像分类 (Image Classification)
 - 1000个分类
 - 训练集(1.2M)、验证集(50K)、测试集(150K)
 - 场景分类 (Scene Classification)
 - 物体检测(Object Detection)
 - 物体定位(Object Localization)
 - 场景解析 (Scene parsing)
- URL
 - http://image-net.org/challenges/LSVRC/2016/index

ILSVRC竞赛

ImageNet数据集

- 根据WordNet组织的图片集
 - 100,000+个词/词组(synsets)
 - 8,000+个名词
- 为一个名词提供平均1000张图片
 - 总共14,197,122张图片
 - 支持21,841个synsets
- URL
 - http://image-net.org/

ILSVRC竞赛

ImageNet Large Scale Visual Recognition Challenge

- 多个任务
 - 图像分类 (Image Classification)
 - 场景分类 (Scene Classification)
 - 来自MIT的Places2数据集(图片10M+、分类400+)
 - 365个场景分类
 - 训练集(8M)、验证集(36K)、测试集(328K)
 - 物体检测(Object Detection)
 - 物体定位(Object Localization)
 - 场景解析 (Scene parsing)

网络进化

- 网络: AlexNet → VGG → GoogLeNet → ResNet
- 深度: 8 → 19 → 22 → 152
- VGG、ResNet结构简洁有效
 - 容易修改,迁移到其他任务中去
 - 高层任务的基础网络
- 性能竞争网络
 - GoogLeNet: Inception v1 → v4
 - Split-transform-merge
 - ResNet: ResNet152 \rightarrow ResNeXt
 - 深度、宽度、基数(cardinality)

ImageNet性能进化

Revolution of Depth

ImageNet Classification top-5 error (%)

基础神经网络

- 神经元
 - 输入向量X
 - 权重向量W
 - 偏致标量b
 - · 激活函数sigmoid
- 浅网络
 - 3~5层
 - 优化
 - 梯度下降
 - BP后向传播(链式规则)

- 梯度下降优化
 - 交叉熵 $C = -\frac{1}{n} \sum_{x} \sum_{i} \left[y_{j} \ln a_{j}^{L} + (1 y_{j}) \ln(1 a_{j}^{L}) \right]$
 - 批量梯度下降
 - 随机梯度下降
 - 学习率/步长
 - 扰动→动量算法 (momentum)

构建CNN的基本层

- - 激活函数 (Sigmoid, ReLU, ...)
- 池化层 (Pooling layer)
 - 平均池化 (Average pooling)
 - 最大化池化 (Max pooling)
- 全连接层 (Fully-Connected layer)
- 桃归一化层 (Batch Normalization layer)

CNN卷积层

• 3通道 (RGB) 输入图片→3D tensor

- 3D滤波器/卷积核
 - 以扫描窗的方式,对图像做卷积
 - 每层含有多个核,每个核对应一个输出通道
 - 提取局部特征
 - 权重参数需要自学习

CNN卷积层

· 3D滤波器/卷积核的超参数

· 滤波器/卷积核数量 (output number)

• 核尺寸 (kernel size)

- 步长 (stride)
- 零填充 (zero padding)
- 尺寸计算(W, H, D)
 - W = (W size + 2 * padding) / stride + 1
 - H = (H size + 2 * padding) / stride + 1
 - D = output number

零填充: 1 核尺寸: 3

步长: 2 核数量: 5

- 非线性激活函数
 - Sigmoid
 - ReLU (Rectified Linear Unit)

$$\sigma(z)\equiv rac{1}{1+e^{-z}}$$
 sigmoid function $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ sigmoid function $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ sigmoid function $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^{-z}}$ sigmoid function $\sigma(z)=\frac{1}{1+e^{-z}}$ $\sigma(z)=\frac{1}{1+e^$

- ReLU激活函数
 - 分段线性函数
 - 无饱和问题,明显减轻梯度消失问题
 - 深度网络能够进行优化的关键

- 组合简例
 - 卷积步长大于1,有降维作用

CNN池化层

- 作用:特征融合,降维
- 无参数需要学习
- 超参数
 - 尺寸 (size)
 - · 步长 (step)
 - 计算类别
 - 最大化池化 (Max pooling)
 - 平均池化 (Average pooling)

CNN全连接层

- 作用: 推理器, 分类器
- 普通神经网络
- 全局感受野,去除空间信息
- 需要学习参数
- 等效于全局卷积

 $W \times H \times C$

 $1 \times 1 \times K$

CNN-Softmax 层

- 指数归一化函数
 - 将一个实数值向量压缩到 (0,1)
 - 所有元素和为1

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for j = 1, ..., K .

- 最后一个全连接层对接1000-way的softmax层
- 得出1000类标签的概率值
- 取log值后,用于构建loss

工程技巧tricks

- 图像像素中心化
 - (R, G, B) 减去各自通道的均值
- 防过拟合,提高泛化能力
 - 数据增强x10
 - 256x256中提取中心和四角的224x224子图片x5
 - 水平翻转x2
 - Dropout随机失活
 - 训练中,随机让一些神经元的输出设为()
 - 失活率0.5
 - Weight decay权重衰减(L2正则) $C = C_0 + \frac{\lambda}{2n} \sum_{w} w^2$

AlexNet 网络

- ImageNet-2012竞赛第一
- · 标志着DNN深度学习革命的开始
 - 5个卷积层+3个全连接层
 - 60M个参数 + 650K个神经元
 - 2个分组 → 2个GPU (3GB)
 - 训练肘长一周,50x加速
 - 新技术
 - ReLU非线性激活
 - Max pooling 池 化
 - Dropout regularization

AlexNet网络

- 局部响应归一化 (Local Response Normalization)
 - 神经元的侧抑制机制
 - · 某个位置 (x,y) 上夸通道方向上的归一化
 - n为邻域值, N为通道数

超参数: k=2, n=5, α=0.0001, β=0.75

$$b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j=max(0,i-n/2)}^{min(N-1,i+n/2)} \left(a_{x,y}^j\right)^2\right)^\beta$$

AlexNet网络

- 输入层: 224 x 224 x 3
- 卷积层1:96 x 11 x 11 x 3 → LRN → MP → ReLU
- 卷积层2: 256 x 5 x 5 x 48 → LRN → MP → ReLU (通道独立)
- 卷积层3:384 x 3 x 3 x 256 → ReLU (通道合并, 双GPU交互)
- 卷积层5: 256 x 3 x 3 x 192 → ReLU (通道独立)
- 全连接层1: 4096 → ReLU
- 全连接层2: 4096 → ReLU
- 全连接层3: 1000 → ReLU
- Softmax 层: 1000
- Loss: 标签概率的 \log 值之和 $argmax_w$ $\left\{\frac{1}{N}\sum -log\left(p(f(x,w)=y(x))\right)\right\}$

激活函数

Network-in-Network网络(NiN)

· 提高CNN的局部感知区域(Bottleneck Layer)

· 卷积层→1x1卷积层→Max池化层

VGG网络

- 一个大卷积核分解成连续多个小卷积核
 - 核分解: 7x7核 → 3个3x3核(由ReLU连接)
 - 参数数量: 49C² → 27C²
- 减少参数,降低计算,增加深度
- · 继承AlexNet结构特点:简单,有效
- ImageNet-2014竞赛第二
- 网络改造的首选基础网络

		ConvNet C	onfiguration			
A	A-LRN	В	С	D	Е	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
50 F-200 A	i		24 RGB image	e)	W4 1575 F-1076	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
	100		pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
			pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
	***		pool		25	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
			pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
	0				conv3-512	
			pool			
			4096			
			4096			
			1000			
		soft	-max			

Table 2: Number of parameters (in millions).

	P		().		
Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

第4课 图像分类(下)

Image Classification

主讲人:张宗健

悉尼科技大学博士

主要研究方向: 计算机视觉、视觉场景理解、图像&语言、深度学习

图像检索CbIR、Human ReID等

GoogLeNet网络

- ImageNet-2014竞赛第一
- 进化顺序
 - Inception V1 → Inception V2 → Inception V3 → Inception V4
- 为了提升性能
 - 减少参数,降低计算
 - 增加宽度、深度

- 核心组件Inception Architecture
 - · Split-Merge→1x1卷积,3x3卷积,5x5卷积,3x3池化
 - 增加网络对多尺度的适应性
 - 增加网络宽度
 - · Bottleneck Layer→使用NiN的1x1卷积进行特征降维
 - 大幅降低计算量10x
- 取消全连接
 - 参数量大,减负
- 辅助分类器
 - 解决前几层的梯度消失问题

- · 核心组件Inception Architecture (稀疏连接结构)
 - 提供多尺度特征:输出通道多尺度(感受野)化
 - 首个Split-Merge 思想
 - 串接合并所有分支输出
 - Bottleneck Layer的1x1卷积解决多尺度带来的高额参数&计算

- 取消全连接层
 - 本质上是一个全尺寸的卷积层
 - 全连接层占用了大量参数
 - AlexNet: 58.6M (6x6x256x4096 + 4096x4096 + 4096x1000)
 - VGG: 72M (7x7x256x4096 + 4096x4096 + 4096x1000)
 - · 由全局平均池化替代 (Global average pooling)
 - 输入: 7x7x1024
 - 输出: 1x1x1024
 - 一大趋势

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	$56 \times 56 \times 64$	0								
convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		$1\times1\times1000$	0								

Inception V2网络

- 核心组件
 - Batch Normalization (地归一化)
 - 解决Internal Covariate Shift问题(内部neuron的数据分布发生变化)
 - 白化:使每一层的输出都规范化到N(0,1)
 - 允许较高学习率
 - 取代部分Dropout
 - · 5x5卷积核→2个3x3卷积核

Inception V2网络

- Batch Normalization 地 归一 化
 - · 在batch范围内,对每个特征通道分别进行归一化
 - 所有图片,所有像素点

计算 mean, variance

32×32 images

batch_size 128

Inception V2网络

- 位置: 卷积→BN→ReLU
- 配对使用scale & shift
 - · 添加一组逆算子: scale乘子, bias偏置
 - 这组参数需要学习 $y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$

Inception V2网络

- 训练阶段 > 实时计算
- 测试阶段→使用固定值(对训练求平均)

Inception V3网络

- 核心组件
 - 非对称卷积: NxN分解成1xN→Nx1
 - 降低参数数量和计算量

• 分辨率35x35上使用

- 分辨率17x17上使用
- n=7

- 最低分辨率8x8上使用
- 增加特征维度

Inception V3网络

- · 高效的降尺寸 (Grid size)
 - 避免表达瓶颈
 - 降尺寸前增加特征通道
 - 2个并行分支
 - 卷积分支+池化分支
 - 串接分支结果

Inception V3网络

- 取消浅层的辅助分类器
 - 完全无用
- 深层辅助分类器只在训练后期有用
 - 加上BN和Dropout,主分类器Top1性能提升0.4%
 - 正则化作用
 - 用在最后一层17x17后

Inception V3网络

- 不增加计算量
 - 避免表达瓶颈
 - 增强结构 (表达力)
 - 宽度
 - 深度

type	patch size/stride or remarks	input size
conv	3×3/2	299×299×3
conv	$3\times3/1$	$149 \times 149 \times 32$
conv padded	3×3/1	$147 \times 147 \times 32$
pool	3×3/2	147×147×64
conv	3×3/1	73×73×64
conv	$3\times3/2$	71×71×80
conv	3×3/1	$35 \times 35 \times 192$
3×Inception	As in figure 5	$35 \times 35 \times 288$
5×Inception	As in figure 6	17×17×768
2×Inception	As in figure 7	8×8×1280
pool	8 × 8	$8 \times 8 \times 2048$
linear	logits	$1 \times 1 \times 2048$
softmax	classifier	$1 \times 1 \times 1000$
	Filter Concat	

ResNet残差网络

- 核心组件Skip/shortcut connection
 - Plain net: 可以拟合出任意目标映射H(x)
 - Residual net
 - 可以拟合出任意目标映射F(x), H(x)=F(x)+x
 - F(x)是残差映射,相对于identity来说
 - 当H(x)最优映射接近identity时,很容易捕捉到小的扰动

ResNet残差网络

- 其他设计
 - 全是3x3春积核
 - 卷积步长2取代池化
 - 使用Batch Normalization
 - 取消
 - Max池化
 - 全连接层
 - Dropout

ResNet残差网络

- 更深网络:根据Bootleneck优化残差映射网络
 - 原始: 3x3x256x<mark>256→</mark>3x3x256x<mark>256</mark>
 - 优化: 1x1x256x64→3x3x64x64→1x1x64x256

ResNet残差网络

layer name	output size	18-layer 34-layer		50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^9	

Inception V4网络

• 引入残差到Inception Architechture

ResNeXt网络

- 提出第3个DNN维度cardinality基数
 - 采用Split-Transform-Aggregate 策略
 - 将卷积核按通道分组,形成32个并行分支
 - 低维度卷积进行特征变换
 - 加法合并
- 同参数规模下,增加结构,提高模型表达力
 - 100层ResNeXt = 200层ResNet
 - ILSVRC-2016竞赛第2

ResNeXt网络

- 在计算复杂度固定的情况下
 - ResNet-50: ~4.1B FLOPs
 - ResNet-50: ~7.8B FLOPs
- · 增加cardinality基数会不断提高性能

	setting	top-1 error (%)
ResNet-50	1 × 64d	23.9
ResNeXt-50	$2 \times 40d$	23.0
ResNeXt-50	4 × 24d	22.6
ResNeXt-50	8 × 14d	22.3
ResNeXt-50	$32 \times 4d$	22.2
ResNet-101	1 × 64d	22.0
ResNeXt-101	$2 \times 40d$	21.7
ResNeXt-101	4 × 24d	21.4
ResNeXt-101	8 × 14d	21.3
ResNeXt-101	$32 \times 4d$	21.2

ResNeXt网络

- 32x4d结构参数
 - 32个分支
 - 每分支4通道
 - Bottleneck width

stage	output	ResNet-50		ResNeXt-50	32×40	d)
conv1	112×112	7×7 , 64, stride 2		7×7, 64, stride 2		
		3×3 max pool, stride 2		3×3 max pool, stride 2		
conv2	56×56	1×1,64		1×1, 128		
conv2	30 × 30	3×3, 64	$\times 3$	3×3, 128, C	C=32	×3
		1×1, 256		$1 \times 1,256$		
		1×1, 128		1×1, 256		
conv3	28×28	3×3, 128	×4	3×3, 256, C	C=32	×4
		1×1, 512		$1 \times 1,512$		
	14×14	1×1, 256	×6	1×1, 512		×6
conv4		3×3, 256		3×3, 512, C	C=32	
		1×1, 1024		$1 \times 1, 1024$		
	7×7	1×1, 512		1×1, 1024]
conv5		3×3, 512	$\times 3$	3×3, 1024, 0	C = 32	×3
		1×1, 2048		$1 \times 1,2048$		
	1 1 1	global average pool 1000-d fc, softmax		global average pool		
	1×1			1000-d fc, softmax		
# pa	arams.	25.5×10^6		25.0×10^6		
FI	LOPs	4.1 ×10 ⁹		4.2 ×10 ⁹		

	224>	<224	320×320 / 299×299		
	top-1 err	top-5 err	top-1 err	top-5 err	
ResNet-101 [14]	22.0	6.0	-	-	
ResNet-200 [15]	21.7	5.8	20.1	4.8	
Inception-v3 [39]	-	-	21.2	5.6	
Inception-v4 [37]	-	-	20.0	5.0	
Inception-ResNet-v2 [37]	-	-	19.9	4.9	
ResNeXt-101 (64 × 4d)	20.4	5.3	19.1	4.4	

模型名	AlexNet	VGG	GoogLeNet v1	ResNet
財间	2012	2014	2014	2015
层数	8	19	22	152
Top-5错误	16.4%	7.3%	6.7%	3.57%
Data Augmentation	+	+	+	+
Inception(NIN)	_	_	+	_
卷积层数	5	16	21	151
卷积核大小	11,5,3	3	7,1,3,5	7,1,3,5
全连接层数	3	3	1	1
全连接层大小	4096,4096,1000	4096,4096,1000	1000	1000
Dropout	+	+	+	+
Local Response Normalization	+	_	+	_
Batch Normalization	_	_	_	+

CNN设计准则

- 避免信息瓶颈
 - 卷积过程中
 - 空间尺寸HxW会变小
 - 输出通道数C会变多
 - 数据量HxWxC要缓慢变小

CNN设计准则

- 通道(卷积核)数量保持在可控范围内
 - 输入通道数量C
 - 输入通道数量H
 - 参数数量 Hf × Wf × C × K
 - 操作数量 $\frac{H \times H_f}{\text{stride}} \times \frac{W \times W_f}{\text{stride}} \times C \times K$

complexity $\propto C \times K$

CNN设计准则

- 感受野要足够大
 - 卷积是基于局部图片的操作
 - 捕捉大尺寸内容
 - 多个小尺寸卷积核 VS 一个大尺寸卷积核
 - 参数少, 计算快
 - 多个非线性激活

 3×3 filters + ReLU

neuron's receptive field

CNN设计准则

- 分组策略→降低计算量
 - G组M/G个滤波器

complexity: $C \times K / G$

complexity: $C \times K$

VS

CNN设计准则

• 低秩分解→降低参数&计算量

ImageNet分类

准确性 VS. 执行效率

场景分类

性能对比

	Validation Se	et of Places365	Test Set of	Places365
	Top-1 acc.	Top-5 acc.	Top-1 acc.	Top-5 acc.
Places365-AlexNet	53.17%	82.89%	53.31%	82.75%
Places365-GoogLeNet	53.63%	83.88%	53.59%	84.01%
Places365-VGG	55.24 %	84.91%	55.19 %	85.01%
Places365-ResNet	54.74%	85.08 %	54.65%	85.07 %

GT: cafeteria

top-1: cafeteria (0.179)

top-2: restaurant (0.167) top-3: dining hall (0.091)

top-4: coffee shop (0.086)

top-5: restaurant patio (0.080)

GT: creek

top-1: forest broadleaf (0.307)

top-2: forest path (0.208)

top-3: creek (0.086)

top-4: rainforest (0.076)

top-5: cemetery (0.049)

GT: crosswalk

top-1: crosswalk (0.720)

top-2: plaza (0.060)

top-3: street (0.055)

top-4: shopping mall indoor (0.039)

top-5: bazaar outdoor (0.021)

GT: greenhouse indoor

top-1: greenhouse indoor (0.479)

top-2: greenhouse outdoor (0.055)

top-3: botanical garden (0.044)

top-4: assembly line (0.025)

top-5: vegetable garden (0.022)

本章小结

- CNN
 - 基础层
 - AlexNet
 - VGG
 - Inception $V1 \rightarrow V4$
 - ResNet \rightarrow ResNeXt
- 代码实例
 - ResNet

演示环节

- Github
 - https://github.com/349zzjau
- 百度网盘
 - http://pan.baidu.com/s/1gfpCCwj
- 演示内容
 - Windows 7 下 TensorFlow 的配置
 - ResNet网络
 - 结构图http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

Q & A

小象账号: 349zzjau

课程名:基于深度学习的计算机视觉 课后调查问卷http://cn.mikecrm.com/ANB98i9

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

