

Contents

1	Variety and stratification									
	1.1 Initial case: \mathcal{F} and $\mathcal{F} \times \mathcal{F}$	5								
	1.2 quiver and Weyl group	7								
	1.3 algebraic group and Lie algebra	7								
	1.4 typical variety	7								
	1.5 stratification and T -fixed points	7								
2	K-theory and cohomology theory	9								
3	Localization theorem	11								
4	Excess intersection formula	13								
5	From formula to diagram	15								
6	Generalization	17								
7	Ativah-Segal completion theorem	19								

4 CONTENTS

Variety and stratification

1.1 Initial case: \mathcal{F} and $\mathcal{F} \times \mathcal{F}$

We introduce the complete flag variety to give a bird's eye view on the whole section. Actually, the entire difficulty is bundled in this example.

Fix $n \ge 1$, we denote $\mathrm{GL}_n := \mathrm{GL}_n(\mathbb{C})$, B, T, N, W be the standard Borel subgroup, standard torus, unipotent subgroup, Weyl group respectively, i.e.,

$$GL_n = \begin{pmatrix} * & \dots & * \\ \vdots & \ddots & \vdots \\ * & \dots & * \end{pmatrix} \quad B = \begin{pmatrix} * & \dots & * \\ & \ddots & \vdots \\ 0 & & * \end{pmatrix} \quad T = \begin{pmatrix} * & & 0 \\ & \ddots & \\ 0 & & * \end{pmatrix} \quad B = \begin{pmatrix} 1 & \dots & * \\ & \ddots & \vdots \\ 0 & & 1 \end{pmatrix}$$

$$W := N_{GL_n}(T)/T \cong S_n$$

Definition 1.1.1 (flag). For a finite dimensional \mathbb{C} -vector space V, a flag of V is an increasing sequence of subspaces of V:

$$F: 0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V_k = \mathbb{C}^n$$
.

F is called a complete flag if dim $V_i = i$ for all i, otherwise F is called a partial flag.

Definition 1.1.2 (complete flag variety). The complete flag variety \mathcal{F} is defined as

$$\mathcal{F} = \operatorname{GL}_n / B$$

$$\cong \{ \operatorname{complete flags of } \mathbb{C}^n \}$$

$$= \{ 0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V_n = \mathbb{C}^n \mid \dim V_i = i \}$$

$$\cong \{ \operatorname{Borel subgroups of } \operatorname{GL}_n \}$$

$$= \{ g B g^{-1} \mid g \in \operatorname{GL}_n \}$$

Remark 1.1.3.

1. We implicitly give the base point of \mathcal{F} , which is not considered as the data of \mathcal{F} . Fix a standard basis of \mathbb{C}^n by $\{v_1, \ldots, v_n\}$, we define the standard flag

$$F_{\mathrm{Id}}: 0 \subseteq \langle v_1 \rangle \subseteq \langle v_1, v_2 \rangle \subseteq \cdots \subseteq \langle v_1, \dots, v_n \rangle = \mathbb{C}^n$$
.

2. We have the natural GL_n -action on \mathcal{F} , which is considered as the data of \mathcal{F} . For $g \in GL_n$, we define the flag attached to g:

$$F_g \triangleq gF_{\mathrm{Id}} : 0 \subseteq \langle gv_1 \rangle \subseteq \langle gv_1, gv_2 \rangle \subseteq \cdots \subseteq \langle gv_1, \dots, gv_n \rangle = \mathbb{C}^n.$$

Especially, for $w \in W = N_{\mathrm{GL}_n}(T)/T \cong S_n$, the flag attached to w

$$F_w: 0 \subseteq \langle \tilde{w}v_1 \rangle \subseteq \langle \tilde{w}v_1, \tilde{w}v_2 \rangle \subseteq \cdots \subseteq \langle \tilde{w}v_1, \dots, \tilde{w}v_n \rangle = \mathbb{C}^n$$
$$0 \subseteq \langle v_{w(1)} \rangle \subseteq \langle v_{w(1)}, v_{w(2)} \rangle \subseteq \cdots \subseteq \langle v_{w(1)}, \dots, v_{w(n)} \rangle = \mathbb{C}^n$$

does not depend on the choice of the lift $\tilde{w} \in N_{\mathrm{GL}_n}(T)$ of w.

Readers can verify that $\{F_w|w\in W\}$ are all T-fixed points of \mathcal{F} , while $\{wBw^{-1}|w\in W\}$ are all Borel subgroups of G containing the standard torus T.

3. For $n=2,\,\mathcal{F}\cong\mathbb{P}^1.$ We encourage readers to use \mathbb{P}^1 as a toy example for the whole theory.

interpretation	GL_n/B	flags	Borel subgroups
base point	Id	$F_{ m Id}$	B
GL_n -action	left multiplication	$\{V_i\} \mapsto \{gV_i\}$	conjugation
general point	g	F_g	gBg^{-1}

 \mathcal{F} is a well-studied variety, and has many combinatorical properties. For example, from the well-known Bruhat decomposition, ¹

$$\operatorname{GL}_n \cong \bigsqcup_{w \in W} BwB$$

We get a stratification of \mathcal{F} by B-orbits:

$$\mathcal{F} = \operatorname{GL}_n/B \cong \bigsqcup_{w \in W} BwB/B$$

The B-orbit BwB/B is called the Schubert cell, denoted by \mathcal{V}_w . Since

$$\mathcal{V}_w = BwB/B \cong B/\left(B \cap wBw^{-1}\right) \cong \mathbb{A}^{l(w)},$$

the Schubert cell is an affine space of dimension l(w).

As a result, we know a lot of information of \mathcal{F} :

¹For the most time the formula does not depend on the lift of w, so we abuse the notation of $w \in N_{\mathrm{GL}_n}(T)/T$ and $\tilde{w} \in N_{\mathrm{GL}_n}(T)$.

$H^i(\mathcal{F};\mathbb{C})$	0	2	4	6	8	10	12
1	1						
2	1	1					
3	1	2	2	1			
4	1	3	5	6	5	3	1
5	1	4	9	15	20	22	20

\overline{G}	Orbit	G-fixed points
GL_n	$\mathcal{F} \cong \operatorname{GL}_n/B$	Ø
\overline{B}	$\mathcal{V}_w \cong B/(B \cap wBw^{-1})$	$\{F_{\mathrm{Id}}\}$
\overline{T}	_	${F_w w \in W}$

- 1.2 quiver and Weyl group
- 1.3 algebraic group and Lie algebra
- 1.4 typical variety
- 1.5 stratification and T-fixed points

K-theory and cohomology theory

Localization theorem

Excess intersection formula

From formula to diagram

Generalization

Atiyah-Segal completion theorem