راهنمای استفاده از مثال IOToggle

هدف از این مثال این است که شما با رجیستر هایی که برای ست و ریست کردن یک پین مورد استفاده قرار می،گیرد آشنا شوید. در این مثال ساده حداکثر سرعت میکرو را نشان داده شده است.

1. سخت افزار

برای تست این برنامه میتوانید از چهار LED که بر روی برد آموزشی قرار دارد، استفاده کنید. شماره ی پینهایی که میتوانید استفاده کنید، در تصویر زیر نشان داده شده است.

2. آشنایی و کار با برنامه

ابتدا برنامه را با نرم افزار Keil باز کنید.

تغذیه Δ ولت را به برد آموزشی متصل کنید و بعد از اینکه پروگرامر ST-LINK را با استفاده از دکمه Download پروگرم نمائید.

خروجی پین های PC2 و PC3 با استفاده از اسیلوسکوپ اندازه گیری شده اند و در شکل زیر نشان داده میشود.

3. توضيحات مربوط به برنامه

ابتدا استراکچری، مربوط به تنظیمات اولیه پینهای ورودی و خروجی تعریف شده است.

GPIO_InitTypeDef GPIO_InitStructure;

سپس در تابع main برنامه تنظیمات مربوط به کلاک GPIO وخود GPIO انجام شده است.

```
/* GPIOC Periph clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE);

/* Configure PC2 and PC3 in output pushpull mode */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
```

در حلقه ی while پینهای C2 و C3 پشت سرهم ست و ریست a b شوند.

```
71 📥
72
         /* Set PC2 and PC3 */
73
         GPIOC -> BSRR = 0x00000000C;
74
         /* Reset PO
75
         GPIOC->BRR
                            رجيستر مريوط
76
                           به ست کردن بین
         /* Set PC2 and
77
         GPIOC->BSRA
78
79
         /* Reset PC
                           0000000
         GPIOC->BRR
80
81
                      رجيستر مريوط به
         /* Set PC:
82
                       ریست کردن بین
        GPIOC->BSI
83
84
         /* Reset PCz
         GPIOC->BRR = 0x00000000C;
85
86
```

```
{ نکته ی برنامه نویسی }
```

همانطور که در تصویر بالا مشاهده مینمائید، رجیسترهای BRR و BSRR با x0000000C

مقداردهی شده اند.

همانطور که می دانید رجیسترها در پردازنده های ARM همگی % (1,0) = 1 همانطور که می دانید. در اینجا ما می خواهیم LED های % (1,0) = 1 و % (1,0) = 1 و % (1,0) = 1 همان % (1,0) = 1 و % (1,0) = 1 همان % (1,0) = 1 و % (1,0) = 1 همان % (1,0) = 1 هماند.

