Lycée Thiers Informatique Année 2014/15 MPSI

TP 7: Feuille d'Exercices

Recherche de racines d'une fonction.

Méthode de Newton pour la recherche d'une racine de fonction.

Méthode de Babylone pour l'extraction d'une racine carrée.

Exercice 1. Racines d'un polynôme de degré 2

- (1) Ecrire une fonction racine_trinome(a,b,c) prenant en paramètres 3 nombres à virgule flottante a, b, c et qui à l'aide du discriminant retourne la ou les racines du polynôme de degré $2: P(X) = aX^2 + bX + c$.
- (2) Appliquer la recherche de racines au polynôme :

$$X^2 + X + \frac{1 - 2^{-54}}{4}$$

en appelant racine_trinome(1,1,(1.0-2**-54)/4.0).

(3) Définir la variable e = -54, et lancer l'instruction de comparaison avec 0 :

Recommencer après l'affectation : e=-52. Discuter de la validité du résultat trouvé à la question précédente.

Exercice 2. Une recherche de racine par la méthode de Newton.

La méthode de Newton permet souvent de déterminer efficacement une valeur approchée de la racine d'une fonction :

Théorème 1. Si $f: I \longrightarrow \mathbb{R}$ est de classe C^1 (dérivable à dérivée continue) et a une racine r isolée sur l'intervalle ouvert I, si x_0 est suffisamment proche de r et si $f'(r) \neq 0$, alors la suite : (x_n) définie par $\forall n \in \mathbb{N}$, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ converge vers la racine r.

- (1) En quel point la tangente à la courbe représentative en x_n intersecte-t-elle la droite des abscisses? En déduire une interprétation graphique de la suite (x_n) .
- (2) Ecrire une fonction newton(f,df,x,n) qui retourne la valeur approchée x_n de la racine de f.
- (3) Retrouver le résultat de l'Exercice 2 du TP 6, en partant du point x = 1. Que se passe-t-il si l'on prend x = 0 ou 2?

Exercice 3. Extraction de racine par la méthode de Babylone

Pour la résolution de $x^2 = a$, c'est à dire pour l'extraction de racines carrée cette méthode s'appelle la méthode de Babylone ou Méthode de Héron d'Alexandrie. L'appliquer pour le calcul approché de $\sqrt{2}$ et comparer le résultat obtenu à la valeur réelle.