Architecture Des Ordinateurs

<<Rappel De La Logique Combinatoire>> École Supérieure Polytechnique (ESP) de Dakar, 2020

Intervenant: Abdou DIOP

Rappel Logique Combinatoire

Les circuits combinatoires

Objectifs

- Apprendre la structure de quelques circuits combinatoires souvent utilisés (demi additionneur , additionneur complet,.....).
- Apprendre comment utiliser des circuits combinatoires pour concevoir d'autres circuits plus complexes.

1

Rappel Logique Combinatoire

M.DIOP

1. Les Circuits combinatoires

- Un circuit combinatoire est un circuit numérique dont les sorties dépendent uniquement des entrées.
- S_i=F(E_i)
- S_i=F(E₁,E₂,....,E_n)

 C'est possible d'utiliser des circuits combinatoires pour réaliser d'autres circuits plus complexes.

Rappel Logique Combinatoire

Exemple de Circuits combinatoires

- 1. Demi Additionneur
- 2. Additionneur complet
- 3. Comparateur
- 4. Multiplexeur
- 5. Demultiplexeur
- 6. Encodeur
- 7. Décodeur

2

3

M.DIOP

M.DIOP

2. Demi Additionneur

- Le demi additionneur est un circuit combinatoire qui permet de réaliser la somme arithmétique de deux nombres A et B chacun sur un bit.
- · A la sotie on va avoir la somme S et la retenu R (Carry).

Pour trouver la structure (le schéma) de ce circuit on doit en premier dresser sa table de vérité

4

Rappel Logique Combinatoire

 En binaire l'addition sur un seul bit se fait de la manière suivante:

$$\begin{cases} 0+0 = 00 \\ 0+1 = 01 \\ 1+0 = 01 \\ 1+1 = 10 \end{cases}$$

·La table de vérité associée :

A	В	R	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

De la table de vérité on trouve :

$$R = A.B$$

$$S = \overline{A}.B + A.\overline{B} = A \oplus B$$

5

M.DIOP

Rappel Logique Combinatoire

Rappel Logique Combinatoire

M.DIOP

3. L'additionneur complet

• En binaire lorsque on fait une addition il faut tenir en compte de la retenue entrante.

$$\begin{array}{ccc} & r_{i-1} \\ & a_i \\ + & b_i \\ \hline & \\ & r_i & s_i \end{array}$$

3.1 Additionneur complet 1 bit

- · L'additionneur complet un bit possède 3 entrées :
 - a; : le premier nombre sur un bit.
 - b_i : le deuxième nombre sur un bit.
 - r_{i-1}: le retenue entrante sur un bit.
- Il possède deux sorties :
 - S_i: la somme
 - R_i la retenue sortante

M.DIOP

8

10

Rappel Logique Combinatoire

Table de vérité d'un additionneur complet sur 1 bit

a _i	$\mathbf{b_i}$	$\mathbf{r_{i-1}}$	$\mathbf{r_i}$	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S_{i} = \overline{A_{i}}.\overline{B_{i}}.R_{i-1} + \overline{A_{i}}.B_{i}.\overline{R_{i-1}} + A_{i}.\overline{B_{i}}.\overline{R_{i-1}} + A_{i}.B_{i}.R_{i-1}$$

$$R_{i} = \overline{A_{i}}B_{i}R_{i-1} + A_{i}\overline{B_{i}}R_{i-1} + A_{i}B_{i}\overline{R_{i-1}} + A_{i}B_{i}R_{i-1}$$

M.DIOP

Rappel Logique Combinatoire

Si on veut simplifier les équations on obtient :

$$\begin{split} S_{i} &= \overline{A}_{i}.\overline{B}_{i}.R_{i-1} + \overline{A}_{i}.B_{i}.\overline{R}_{i-1} + A_{i}.\overline{B}_{i}.\overline{R}_{i-1} + A_{i}.B_{i}.R_{i-1} \\ S_{i} &= \overline{A}_{i}.(\overline{B}_{i}.R_{i-1} + B_{i}.\overline{R}_{i-1}) + A_{i}.(\overline{B}_{i}.\overline{R}_{i-1} + B_{i}.R_{i-1}) \\ S_{i} &= \overline{A}_{i}(B_{i} \oplus R_{i-1}) + A_{i}.(\overline{B}_{i} \oplus R_{i-1}) \\ S_{i} &= A_{i} \oplus B_{i} \oplus R_{i-1} \end{split}$$

$$R_{i} = \overline{A_{i}} B_{i} R_{i-1} + A_{i} \overline{B_{i}} R_{i-1} + A_{i} B_{i} \overline{R_{i-1}} + A_{i} B_{i} \overline{R_{i-1}} + A_{i} B_{i} R_{i-1}$$

$$R_{i} = R_{i-1} \cdot (\overline{A_{i}} \cdot B_{i} + A_{i} \cdot \overline{B_{i}}) + A_{i} B_{i} (\overline{R_{i-1}} + {}_{i} R_{i-1})$$

$$R_{i} = R_{i-1} \cdot (A_{i} \oplus B_{i}) + A_{i} B_{i}$$

Rappel Logique Combinatoire

3.3 Schéma d'un additionneur complet

$$R_i = A_i.B_i + R_{i-1}.(B_i \oplus A_i)$$

 $S_i = A_i \oplus B_i \oplus R_{i-1}$

3.4 En utilisant des Demi Additionneurs

$$R_{i} = A_{i}.B_{i} + R_{i-1}.(B_{i} \oplus A_{i})$$
 $S_{i} = A_{i} \oplus B_{i} \oplus R_{i-1}$
Si on pose $X = A_{i} \oplus B_{i}$ et $Y = A_{i}B_{i}$
On obtient:
 $R_{i} = Y + R_{i-1}.X$
 $S_{i} = X \oplus R_{i-1}$
et si on pose $Z = X \oplus R_{i-1}$ et $T = R_{i-1}.X$
On obtient:
 $R_{i} = Y + T$
 $S_{i} = Z$

- On remarque que X et Y sont les sorties d'un demi additionneur ayant comme entrées A et B
- -On remarque que Z et T sont les sorties d'un demi additionneur ayant comme entrées X et $R_{i\text{-}1}$

M.DIOP

12

14

Rappel Logique Combinatoire

M.DIOP

Rappel Logique Combinatoire

3.4 Additionneur sur 4 bits

- Un additionneur sur 4 bits est un circuit qui permet de faire l'addition de deux nombres. A et B de 4 bits chacun
 - $-A(a_3a_2a_1a_0)$
 - $-B(b_3b_2b_4b_0)$

En plus il tient en compte de la retenu entrante

- En sortie on va avoir le résultat sur 4 bits ainsi que la retenu (5 bits en sortie)
- Donc au total le circuit possède 9 entrées et 5 sorties.
- Avec 9 entrées on a 29=512 combinaisons !!!!!! Comment faire pour représenter la table de vérité ?????
- Il faut trouver une solution plus facile et plus efficace pour concevoir ce circuit ?

Rappel Logique Combinatoire

3.4.1 Additionneur 4 bits (schéma) RC=C A3 B3 A4 B4 A2 B2 R' RS ADC4 ADDS ADC2 ADD-S **R4** S4 S3 SZ 16 M.DIOP

Rappel Logique Combinatoire

Exercice

- Soit une information binaire sur 5 bits (i₄i₃i₂i₁i₀). Donner le circuit qui permet de calculer le nombre de 1 dans l'information en entrée en utilisant uniquement des additionneurs complets sur 1 bit ?
- Exemple :
- Si on a en entrée l'information (i₄i₃i₂i₁i₀) =(10110) alors en sortie on obtient la valeur 3 en binaire (011) puisque il existe 3 bits qui sont à 1 dans l'information en entrée.

17

M.DIOP

Rappel Logique Combinatoire

4. Le Comparateur C'est un circuit combinatoire qui permet de comparer entre deux nombres binaire A et B. Il possède 2 entrées : A : sur un bit B : sur un bit Il possède 3 sorties fe : égalité (A=B) fi : inférieur (A < B) fs : supérieur (A > B)

Rappel Logique Combinatoire

4.1 Comparateur sur un bit

В	fs	fe	fi
0	0	1	0
1	0	0	1
0	1	0	0
1	0	1	0
	0	0 0 1 0 0 1	0 0 1 1 0 0 0 1 0

$$fs = A\overline{B}$$

 $fi = \overline{AB}$
 $fe = \overline{AB} + AB = \overline{A \oplus B} = \overline{fs + fi}$

Rappel Logique Combinatoire

M.DIOP

Rappel Logique Combinatoire

M.DIOF

Rappel Logique Combinatoire

M.DIOP M.DIOP

1. A=B si A2=B2 et A1=B1 $fe = (\overline{A2 \oplus B2}).(\overline{A1 \oplus B1}) = fe2.fe1$ 2. A>B si A2 > B2 ou (A2=B2 et A1>B1) $fs = A2.\overline{B2} + (\overline{A2 \oplus B2}).(A1.\overline{B1}) = fs2 + fe2.fs1$

 $fi = A2.B2 + (A2 \oplus B2).(A1.B1) = fi2 + fe2.fi1$

M.DIOP

Rappel Logique Combinatoire

M.DIOP

Rappel Logique Combinatoire

4.2.3 Comparateur avec des entrées de mise en cascade

On remarque que :

A2 < B2 ou (A2=B2 et A1<B1)

3. A<B si

- Si A2 >B2 alors A > BSi A2 <B2 alors A < B
- Par contre si A2=B2 alors il faut tenir en compte du résultat de la comparaison des bits du poids faible.
- Pour cela on rajoute au comparateur des entrées qui nous indiquent le résultat de la comparaison précédente.
- Ces entrées sont appelées des entrées de mise en cascade.

Rappel Logique Combinatoire

26

a2 b2 a' b' Comp Es Eg fs1 fs1 ff1 Ei

Rappel Logique Combinatoire

Exercice

 Réaliser un comparateur 4 bits en utilisant des comparateurs 2 bits avec des entrées de mise en cascade?

29

M.DIOP

Rappel Logique Combinatoire

M.DIOP

5. Le Multiplexeur Un multiplexeur est un circuit combinatoire qui permet de sélectionner une information (1 bit) parmi 2ⁿ valeurs en entrée. Il possède : 2ⁿ entrées d'information Une seule sortie N entrées de sélection (commandes) Em Em E3 E1 E0 C1 Mux 2ⁿ → 1 N 30

Rappel Logique Combinatoire

Rappel Logique Combinatoire

M.DIOP

Rappel Logique Combinatoire

Exemple : Réalisation d'un additionneur complet avec des multiplexeurs 8→1

•Nous avons besoin d'utiliser deux multiplexeurs :Le premier pour réaliser la fonction de la somme et l'autres pour donner la retenue.

ai	$\mathbf{b_i}$	$\mathbf{r_{i-1}}$	$\mathbf{r_i}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

ai	$\mathbf{b_i}$	$\mathbf{r_{i-1}}$	S_i
0	0	0	0
a _i 0 0	0	1	1
0	1	0	1
0 0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

34

Rappel Logique Combinatoire

Réalisation de la fonction de la somme

 $S_{i} = \overline{A}_{i} \cdot \overline{B}_{i} \cdot \overline{R}_{i-1}(0) + \overline{A}_{i} \cdot \overline{B}_{i} \cdot R_{i-1}(1) + \overline{A}_{i} \cdot B_{i} \cdot \overline{R}_{i-1}(1) + \overline{A}_{i} \cdot B_{i} \cdot R_{i-1}(0) + A_{i} \cdot \overline{B}_{i} \cdot \overline{R}_{i-1}(1) + A_{i} \cdot \overline{B}_{i} \cdot R_{i-1}(0) + A_{i} \cdot \overline{B}_{i} \cdot \overline{R}_{i-1}(1)$ $+ A_{i} \cdot B_{i} \cdot \overline{R}_{i-1}(0) + A_{i} \cdot B_{i} \cdot R_{i-1}(1)$

 $S = \overline{C2.C1.C0}(E0) + \overline{C2.C1.C0}(E1) + \overline{C2.C1.C0}(E2) + \overline{C2.C1.C0}(E3) + C2.\overline{C1.C0}(E4) + C2.\overline{C1.C0}(E5) + C2.C1.\overline{C0}(E6) + C2.C1.C0(E7)$

On pose : C2=A_i C1=B_i C0=R_{b1}

E0=0, E1=1, E2=1, E3=0, E4=1, E5=0, E6=0, E7=1

Réalisation de la fonction de la retenue $R_{i} = \overline{A_{i}} \overline{B_{i}} \overline{R_{i-1}}.(0) + \overline{A_{i}} \overline{B_{i}} R_{i-1}.(0) + \overline{A_{i}}$

Rappel Logique Combinatoire

M.DIOP

Rappel Logique Combinatoire

M.DIOP

Exercice

 Réaliser le circuit qui permet de trouver le maximum entre deux nombres A et B sur un Bit en utilisant le minimum de portes logiques et de circuits combinatoires?

Rappel Logique Combinatoire

6. Demultiplexeurs

- Il joue le rôle inverse d'un multiplexeurs, il permet de faire passer une information dans l'une des sorties selon les valeurs des entrées de commandes.
- · Il possède :
 - une seule entrée
 - 2ⁿ sorties
 - N entrées de sélection (commandes)

39

6.1 Demultiplexeur 1→4 S3 S2 **S1** SO CO $S0 = \overline{C1}.\overline{C0}.(I)$ $S1 = \overline{C1}.C0.(I)$ 0 0 $S2 = C1.\overline{C0}.(I)$ 0 0 S3 = C1.C0.(I)0 0 0 0 0 0 DeMux 1 →4 M.DIOP

Rappel Logique Combinatoire

7. Le décodeur binaire

- · C'est un circuit combinatoire qui est constitué de :
 - N : entrées de données
 - 2ⁿ sorties
 - Pour chaque combinaison en entrée une seule sortie est active à la fois

41

Un décodeur 3→8

VITILIE

Rappel Logique Combinatoire

Rappel Logique Combinatoire

Réalisation d'un additionneur complet avec des décodeurs binaire 3-8

On pose A=A, , B=B, , C=R,,

$$S_0 = \overline{A}.\overline{B}.\overline{C}, S_1 = \overline{A}.\overline{B}.C, S_2 = \overline{A}.B.\overline{C}, S_3 = \overline{A}.B.C,$$

$$S_4 = A.\overline{B}.\overline{C}, S_5 = A.\overline{B}.C, S_6 = A.B.\overline{C}, S_7 = A.B.C$$

$$R_{i} = S3 + S5 + S6 + S7$$

$$S_i = S1 + S2 + S4 + S7$$

Rappel Logique Combinatoire

8. L'encodeur binaire

- · Il joue le rôle inverse d'un décodeur
 - Il possède 2ⁿ entrées
 - N sortie
 - Pour chaque combinaison en entrée on va avoir sont numéro (en binaire) à la sortie.

Encodeur 4→2

45

M.DIOP

Rappel Logique Combinatoire

L'encodeur binaire (4→2)

I _o	L	I ₂	I ₃	×	У
0	0	0	0	0	0
1	x	x	x	0	0
0	1	x	x	0	1
0	0	1	x	1	0
0	0	0	1	1	1

$$X = \overline{I0}.\overline{I1}.(I2 + I3)$$

$$Y = \overline{I0}.(I1 + .\overline{I2}.I3)$$

M.DIOP

Rappel Logique Combinatoire

9. Le transcodeur

 C'est un circuit combinatoire qui permet de transformer un code X (sur n bits) en entrée en un code Y (sur m bits) en sortie.

E	хe	m	ple		Tra	ins	СО
A	В	С	D	X	Y	Z	T
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	x	x	x	x
1	0	1	1	x	x	x	×
1	1	0	0	x	x	x	×
1	1	0	1	x	×	x	×
1	1	1	0	x	x	x	x
1	1	1	1	X	x	x	x

M.DIOP