EE 303 2 HW-2 Dr. Durent F'17

(2.2) (a) $y(x) = \int_{x-1}^{x} x(t) dt + 2$ $x_1(t) = \delta(t)$ $y_1(t) = \int_{x-1}^{x} \delta(t) dt + 2 = \int_{3}^{20}, t < 0$ $y_1(t) = \int_{x-1}^{x} \delta(t) dt + 2 = \int_{3}^{20}, 0 < t < 1$ $x_1 = 2\delta(t), \text{ as area in intervals is more } 0, 2, 0, \text{ then add } 2$ $y_1(t) = \int_{2}^{2} \frac{t < 0}{t^2 + 0} < t < 1$ $y_1(t) = \int_{2}^{2} \frac{t < 0}{t^2 + 0} < t < 1$ $y_1(t) = \int_{3}^{2} \frac{t < 0}{t^2 + 1} < t < 1$ $y_2(t) \neq 2y_1(t)$ $y_1(t) = \int_{3}^{2} \frac{t < 0}{t^2 + 1} < t < 1$ $y_2(t) \neq 2y_1(t)$ $y_2(t) \neq 2y_1(t)$

 $y_{3}(t) = v(t) - o(t-1)$ $y_{3}(t) = 2 + \text{area under } \times_{3}(t) \text{ from } t-1 \text{ to } t$ $y_{3}(t) = \frac{1}{2} + \frac$

yy(t) = y3(t-1) ... oyslen gopocars timo invariant

(It is indeed TI, but this ion't a couplete prog.)

(d) Yes. Let |x(t)|≤M, then y(t)≤(S+-1 Mdy)+2=M+2<∞

(i)
$$f(x) = A : z(x) = Ap(x) + B$$

linear system iff $B = 0 -$
"if 4 only if"

$$N(A) = N, (A) + N_{2}(A)$$
 $Z_{1}(A) = AN, (A) + B$
 $Z_{2}(A) = AN, (A) + B$

$$Z(x) = A(N_1(x) + N_2(x)) + B$$

$$(z_1(x) + z_2(x)) - z(x) = 2B - B = B$$

(ii)
$$f(x) = coz(-\Omega_0 t)$$
, $B = 0$, $\therefore z(x) = coz(-\Omega_0 t)$ $M(x)$

Linear?
$$N(x) = N_1(x) + N_2(x)$$

 $Z_1(x) = cos(\Omega_0 x) N_1(x)$ $Z_2(x) = cos(\Omega_0 x) N_2(x)$ $Z_1(x) + Z_2(x) = cos(\Omega_0 x) (N_1(x) + N_2(x))$

$$Z_1(x) + Z_2(x) = Z(x)$$
 :: linear

TI?

Again
$$=(t)=\cos(\Omega_0 t) r / t)$$
; $=(t-d)=\cos(\Omega_0 t) r / t - d)$

Now, input $r / t - d$, $=(t+d)=\cos(\Omega_0 t) r / (t-d)$

TI iff $=(t+d)=Z / (t)=\cos(\Omega_0 t) r / (t-d)=\cos(\Omega_0 t)$

We can larly puch almost any $=(t+d)=\cos(\Omega_0 t) r / (t-d)$

Not $=(t+d)=\cos(\Omega_0 t) r / (t-d) r / (t-d)$

$$(ii) F(x) = v(x) - v(x - 1) \qquad N(x) - v(x) - v(x - 1) \qquad B = 0$$

$$\therefore z(x) = v(x) f(x) + B = (v(x) - v(x - 1))^{2} + 0 = v(x) - v(x - 1)$$

$$N_{2}A^{2} N(x-2) = o(x-2) - o(x-3)$$

$$Z_{1}(x) = N_{2}(x) f(x) + B = (o(x-2) - o(x-3))(o(x) - o(x-1)) + O = O \quad \forall x$$

$$N_{0}A^{2} O(x) = N_{2}(x) f(x) + B = (o(x-2) - o(x-3))(o(x) - o(x-1)) + O = O \quad \forall x$$

ZI(t) + Z(t-2) : NOT TI Expected succe gain F(t) is time -varying.

(2.10) (a)
$$y(y) = |x(t)|^2 = |\cos(t)|^2 = \cos^2(t) = \frac{1}{2}(|+\cos(2t))$$

w change in not LTI

(b)
$$y(t) = 0.5(\cos(t) + \cos(t-1)) = 2\cos(\frac{2t-1}{2})\cos(\frac{t}{2})$$

$$= 2\cos(\frac{t}{2})\cos(t+\frac{t}{2})$$

$$= 2\cos(\frac{t}{2})\cos(t+\frac{t}{2})$$

$$= 2\cos(\frac{t}{2})\cos(t+\frac{t}{2})$$

$$= 2\cos(\frac{t}{2})\cos(t+\frac{t}{2})$$

$$= 2\cos(\frac{t}{2})\cos(t+\frac{t}{2})$$

. LTI

(c)
$$y(t) = \chi(t) v(t) = coe(t) v(t)$$

Not a sinusoid since thereated (d) (d).

Not LII.

Specifically, linear, but not TI.

Specifically,

 $(t) = \frac{1}{2} \int_{t-2}^{t} \chi(t) dt = \frac{1}{2} \int_{t-2}^{t} \cos(t) dt = \frac{1}{2} \sin(t) \int_{t-2}^{t} \sin(t) dt = \frac{1}{2} \int_{t-2}^{t} \cos(t) dt = \frac{1}{2} \sin(t) dt =$

i. LTI