Scheduling Multithreaded Applications by Work Stealing

John Mellor-Crummey

Department of Computer Science Rice University

johnmc@rice.edu

The Challenge

- Efficiently execute a dynamic, multithreaded computation on a MIMD computer
 - —parallelism not known a priori
 - dynamically grows and shrinks as computation unfolds
 - ill-suited to static scheduling
 - —threads depend upon one another
- Scheduler goals
 - —ensure that an appropriate # of threads are active at each step
 - enough to keep all processors busy
 - —bound memory footprint of active threads
 - —minimize interprocessor communication
 - keep related threads on same processor

Two Scheduling Paradigms

- Work sharing
 - —migrate new threads to other processors that might be underutilized
- Work stealing
 - —underutilized processors attempt to steal work from others

Intuition: thread migration is less frequent with work stealing

Why? When all processors have work work sharing migrates threads work stealing does not

Work Stealing has a Rich History

Use of work stealing

1981 Burton and Sleep: execution of functional programs on a virtual tree of processors

1984 Halstead: Multilisp

Analysis of work stealing

- 1991 Rudolph, Slivkin-Allalouf, and Upfal: randomized work stealing for load balancing independent jobs
- 1993 Karp and Zhang: randomized work stealing for backtracking search
- 1994 Zhang and Ortynski: bounds on communication requirements for work stealing of backtracking search

Focus of This Work

- Fully-strict, multithreaded computations
 - —includes backtrack search, divide & conquer, data flow
- Randomized work stealing
- Analysis of space, time, and communication of computations scheduled using randomized work stealing

Topics

- Graph model of multithreaded computations
- Simple scheduling algorithm using a central queue
- Work stealing scheduler based on "busy leaves" algorithm
- Atomic access model to analyze execution time and communication costs

A DAG Model for Multithreaded Computation

- Thread: sequential ordering of unit-time instructions
- Dependency edges: partial ordering on instructions

DAG Model Notes

- An instruction is ready if all its predecessors have executed
- A parent thread is alive until all its children die
 - —its activation frame has the same lifetime
- Classes of computations
 - —deterministic: computation for an input is schedule independent
 - —non-deterministic: one input can yield two or more computations
- Strict computation
 - —all join edges from a thread go to an ancestor in the spawn tree
- Fully-strict computation
 - —all join edges from a thread go to its parent in the spawn tree

Claim: any multithreaded computation that can be executed depth first can be made strict or fully strict without changing the semantics

DAG Performance Measures

- T1 (work) = total number of instructions = 23
- T∞ (critical path length) = longest path in DAG = 10

Greedy Scheduling

- Types of schedule steps
 - —complete step
 - at least P threads ready to run
 - select any P and run them
 - —incomplete step
 - strictly < P threads ready to run
 - greedy scheduler runs them all
- Theorem: On P processors, a greedy scheduler executes any computation G with work T₁ and critical path of length T∞ in time Tp ≤ T₁/P + T∞
- Proof sketch
 - —only two types of scheduler steps: complete, incomplete
 - —cannot be more than T₁/P complete steps, else work > T₁
 - —every incomplete step reduces remaining critical path length by 1
 - no more than T_∞ incomplete steps

Efficient Greedy Schedules

- Execution time for greedy schedule = T_p ≤ T₁/P + T_∞
- Interested in schedules that achieve linear speedup, O(T₁/P)
- Linear speedup occurs when $T_1/P >> T_{\infty}$, i.e., $T_1/T_{\infty} = \Omega(P)$
 - —namely, T₁/T_∞ is bounded from below by P
 - —"parallel slackness"

Space for a Multithreaded Computation

- Stack depth of a thread
 - —sum of the sizes of all its ancestors, including itself
- S₁ = minimum possible space for a 1-processor execution
 —stack depth of the execution
- Let S(X) be space for P-processor execution of schedule X of a multithreaded computation
- Interested in execution schedules that exhibit at most a linear expansion of space, i.e., S(X) = O(S₁P)

Busy Leaves

- In a strict computation
 - —once a thread Γ as been spawned
 - —a single processor can complete the computation rooted at arGamma
 - even if no other thread makes any progress
- Corollary
 - —there is always one ready thread in computation Γ that is ready
- No leaf thread in a strict multithreaded computation can stall
 - —enables a multithreaded computation to keep leaves busy
- Greedy schedule + busy leaves = schedules that achieve linear speedup and linear expansion of space

Busy Leaves Algorithm

- On line algorithm: executes each step w/o knowledge of future
- Maintain all live threads in a single pool, available to all P
 - —spawn: add new thread to pool
 - —work step: remove ready thread from pool
- Start with root thread in global pool, all processors idle
- At beginning of each step, each processor idle or has work
- Each idle thread attempts to remove a ready thread from pool
 - —if enough threads in pool, each processor gets one
- Each processor with a thread executes next instruction in thread until spawn, stall, or die

Busy Leaves Algorithm

- Spawn: if a thread spawns a child in a step
 - —finish step by returning parent thread to pool
 - —begin next step working on child thread
- Stall: if a thread stalls
 - —finish step by returning current thread to pool
 - —begin next step idle
- Die: If a thread dies in a step
 - —finish step by checking if parent thread has any living children
 - —if parent has no living children, begin next step executing parent
 - —else begin next step idle

Busy Leaves Example

Two processor execution

Properties: greedy; maintains "busy leaves" - every leaf has a processor working on it in every step it is live 16

Busy Leaves Properties

- Lemma 2 For any multithreaded computation with stack depth S₁, any P processor schedule X that maintains busy leaves has space S(X) ≤ S₁P
 - —each spawn subtree has at most P leaves at time t
 - —for each leaf, space used by it and ancestors is at most S₁
 - —therefore, space in use at any time is at most S₁P
- Theorem 3 For any number P of processors, and any strict multithreaded computation with work T₁, and critical path T₂ and stack depth S₁, busy leaves algorithm computes an execution schedule X that satisfies T(X) ≤ T₁/P + T₂ and whose space satisfies S(X) ≤ S₁P
 - —time bound follows from greedy schedule theorem
 - —space bound follows from Lemma 2
- Weakness of busy leaves: centralized queue

Randomized Work Stealing

- Each processor maintains a ready deque, with top & bottom
 - —local thread pushes and pops at bottom
 - —steals occur at top
- Spawn: if a thread spawns a child in a step
 - —return parent thread to bottom of ready deque
 - —begin next step working on child thread
- Stall: if a thread stalls
 - -check ready deque
 - —if non-empty, begin work on bottom thread else, begin work on thread stolen from top of randomly chosen deque
- Die: If a thread dies in a step, follow rule for stall
- Enable: if a thread enables another, place the enabled thread on the bottom of the processor's ready deque
- Note: a thread can simultaneously enable a stalled thread, and stall or die

A Ready Deque

- Lemma 4: For k > 0, threads in a ready deque satisfy:
 - —for i=1,2,...,k, thread $\Gamma_{\rm i}$ is the parent of $\Gamma_{\rm i-1}$
 - —if we have k > 1, then for i=1,2,...,k-1, thread Γ_i has not been worked on since it spawned Γ_{i-1}

Space Bound of Work Stealing

- Theorem 5: For any fully strict multithreaded computation with stack depth S₁, the work stealing algorithm run on P processors uses at most S₁ P space
- Proof
 - —enough to prove work stealing algorithm maintains busy leaves
 - —at every time step, every leaf must be ready, so it is either
 - in the ready deque
 - has a processor working on it
 - —lemma 4 guarantees that no leaf sits the a ready deque while a processor works on another thread

Work Stealing and Contention

Main Result

- If requests are
 - —made randomly by P processors to P deques
 - —each processor has at most one outstanding request
- then, total amount of time processors spend waiting for their requests to be satisfied is likely to be proportional to the total number M of requests
 - —no matter which processors make the requests
 - —no matter how the requests are distributed over time
- Proof by balls and bins game

(P,M) Recycling Game

- P: # balls in the game, which is equal to the # of bins
- M: total # ball tosses executed by the adversary
- Game rules
 - —adversary removes some balls in the reservoir, tosses each ball to a bin, which is selected uniformly and independently at random
 - —for each bin that has at least one ball, adversary removes any one of the balls in the bin and returns it to the reservoir
- Model servicing of steal requests
 - —each ball and each bin owned by distinct processor
 - —if ball is in reservoir: owner is not making steak request
 - —ball in bin: owner has made steal request to bin's owner
 - —ball removed from bin and returned to owner: request serviced

Contention Delay Analysis

- n_t denotes # balls left in the bins at step t
- Delay of a ball r is a random variable that denotes the total number of steps that finish with ball r in a bin
- Define the total delay D = $\sum_{t=1,T} n_t$
- Goal of adversary: maximize D
- Lemma 6

—for any $\epsilon > 0$, with probability at least 1- ϵ , the total delay of the (P, M) recycling game is O(M + P Ig P + P Ig (1/ ϵ)), and the expected total delay is at most M

Atomic Accesses

- Assumption: concurrent accesses to a data structure are serially queued by an adversary
- If concurrent steal requests are made to a deque, in one time step
 - —one request is satisfied
 - —others are queued by an adversary
- Adversary cannot choose to serve none if there is at least one request

Execution Time Analysis

- At each step, we collect P dollars, one from each process
- At each step, each processor places its dollar in one of three buckets
 - —if it executes an instruction, put it in the WORK bucket
 - —if it executes a steal, put it in the STEAL bucket
 - —if it waits, put it into the WAIT bucket

Lemma 7

—The execution of a fully strict computation with work T₁ by the work stealing algorithm on a computer with P processors terminates with exactly T₁ dollars in the WORK bucket.

Lemma 12

—For any epsilon > 0, with probability at least 1 - ε, at most $O(P(T\infty+lg(1/ε))$ work steal attempts occur. The expected number is $O(PT\infty)$.

Contribution

Randomized work stealing algorithm for fully strict computations

Provably efficient in time, space, and communication

```
—expected running time = T_1/P + O(T_{\infty})
```

- T₁ is the serial time
- T_{∞} is the minimum execution time on an infinite number of processors

—space bound = S₁P

- S₁ is the minimum serial space
- better than previous bound for work stealing
 helped in part by fully-strict model of computation

—expected total communication is at most O(P T_∞(1+n_d)S_{max})

- S_{max}: size of the largest activation record of any thread
- n_d: maximum number of times any thread synchronizes with its parent
- bound justifies intuition that work stealing has less communication than work sharing
- Results are practical and the basis for Cilk's scheduler

Beyond This Paper

- Showed that the time bound O(T₁/P + T∞) applies to arbitrary multithreaded computations
 - —need not be strict or fully strict
- Extended these ideas to an efficient scheduler for multiprogrammed environments