Tareal Altamirano Paredes

April 30, 2025

Tarea 1, Machine Learning and Data Analysis

Juan José Altamirano 2022403951

0.1 Importación de Librerías

```
[154]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import statsmodels.api as sm
  import statsmodels.formula.api as smf
  import sklearn
  import scipy
  from scipy.stats import nbinom
  import seaborn as sns
  from statsmodels.iolib.summary2 import summary_col
  import missingno as msn
  import datetime as dt
```

0.2 Lectura de datos, exploración y limpieza de datos

1. Cargar la base de datos en el ambiente. Identifique los tipos de datos que se encuentran en la base, realice estadisticas descriptivas sobre las variables importantes (Hint: Revisar la distribuciones, datos faltantes, outliers, etc.) y limpie las variables cuando sea necesario.

```
[155]: df= pd.read_csv('machine_failure_data.csv', delimiter=",")
```

Las variables iniciales de estudio son las siguientes:

- Date: data medida en frecuencia diaria
- Location: ubicacion del medidor
- Min_Temp: temperatura minima observada
- Max Temp: temperatura maxima observada
- Leakage: Filtracion medida en el area
- Evaporation: Tasa de evaporacion
- Electricity: Consumo electrico KW
- Parameter#: Diferentes sensores de reportando direccion y velocidad de viento en distintos momentos del dia, asi como otras metricas relevantes.
- Failure today: El sensor reporta fallo (o no)

La variable "Failure_today" se transforma de manera binaria, indicando con un 1 si el sensor reporta un fallo, 0 en otro caso.

```
[156]: df['Failure_today']=df['Failure_today'].apply(lambda x: 0 if x=='No' else 1)
```

A continuación se muestran visualmente los datos vacíos en el dataframe en cada una de las variables:

```
[157]: msn.matrix(df)
```

[157]: <AxesSubplot: >

Notamos que las variables Evaporation, Electricity y el parámetro 6 (AM y PM) muestran un alto porcentaje de missing data, por lo que serán excluidos del análisis.

```
[158]: borrar= ['Parameter6_9am', 'Parameter6_3pm', 'Evaporation', 'Electricity',]
df.drop(borrar,axis=1, inplace=True)
df.reset_index(inplace=True, drop=True)
```

```
[159]: df2=df.copy()
```

Para mejor manejo de las direcciones, disminuiremos la cantidad, pasando de 16 posibles direcciones a 8, siguiendo la transformación del diccionario definido en la siguiente celda:

```
[160]: SE
              18302
              17846
       W
       SW
              17698
       S
              17559
       Ε
              16376
       N
              15466
       NE
              15052
       NW
              14564
```

Name: Parameter1_Dir, dtype: int64

Transformamos la columna date para incorporar nuevas columnas de "Año" y "Mes" con el objetivo de facilitar el manejo temporal a posteriori.

```
[161]: df2['Date'] = pd.to_datetime(df2['Date'])
    df2['Mes'] = df2['Date'].dt.month_name(locale='es')
    df2['Año'] = df2['Date'].dt.year
[162]: sns.countplot(x='Año',data=df2)
```

[162]: <AxesSubplot: xlabel='Año', ylabel='count'>

Notamos la poca cantidad de datos para los años 2007, 2008 y 2017, por lo que serán excluídos del análisis.

Por último, la variable Leakage está directamente relacionada a la variable "Failure_Today", ya que si no hay filtraciones, no se reportan fallos y si hay filtraciones, se reportan fallos. Por lo tanto, se considera como una variable que sobreexplica el modelo, así que se excluirá del análisis.

```
[164]: sns.barplot(data=df2, y='Leakage', x='Failure_today', palette='Set1')
```

[164]: <AxesSubplot: xlabel='Failure_today', ylabel='Leakage'>


```
[165]: df2.drop("Leakage",axis=1, inplace=True)
    df2.reset_index(inplace=True, drop=True)

[166]: msn.matrix(df2)

[166]: <AxesSubplot: >
```


A continuación, se excluirán del análisis todas las observaciones que cuenten con algun dato vacío.

```
[167]: df2.dropna(inplace=True) df2.reset_index(inplace=True, drop=True)
```

El siguiente gráfico radial muestra en qué dirección del viento del parámetro 1 se muestra la mayor cantidad de fallas:

```
[168]: # Direcciones ordenadas en sentido horario
       directions = ['N',
                      #'NNE',
                      'NE',
                      #'ENE',
                      'E',
                      #'ESE',
                      'SE',
                      #'SSE',
                      'S',
                      #'SSW',
                      'SW',
                      #'WSW',
                      'W',
                      #'WNW',
                      'NW',
                      #'NNW'
                      ]
       # Filtrar datos con fallo
       failures = df2[df2['Failure_today'] == 1]
```

```
# Contar ocurrencias por dirección
counts = failures['Parameter1_Dir'].value_counts()
counts = counts.reindex(directions, fill_value=0)
# Convertir a radianes para el gráfico
angles = np.deg2rad(np.linspace(0, 360, len(directions), endpoint=False))
# Repetir el primer valor al final para cerrar el círculo
values = counts.values.tolist()
values += values[:1]
angles = np.append(angles, angles[0])
# Graficar
plt.figure(figsize=(8, 8))
ax = plt.subplot(111, polar=True)
ax.plot(angles, values, linewidth=2, linestyle='solid', color='tomato')
ax.fill(angles, values, alpha=0.4, color='tomato')
ax.set_xticks(np.deg2rad(np.linspace(0, 360, len(directions), endpoint=False)))
ax.set_xticklabels(directions)
ax.set_title('Fallos por Dirección del Sensor', size=14)
plt.show()
```


]: df2						
9]:	Date	Location	Min_Temp	Max_Temp	Parameter1_Dir	\
0	2009-01-01	3	11.30	26.50	W	
1	2009-01-02	3	9.60	23.90	W	
2	2009-01-03	3	10.50	28.80	SE	
3	2009-01-04	3	12.30	34.60	W	
4	2009-01-05	3	12.90	35.80	W	
•••	•••	•••			•••	
105378	2016-12-27	42	22.10	35.80	W	
105379	2016-12-28	42	22.60	36.80	NW	

105380	2016-12-29	42 23.20	38.00	S	
105381	2016-12-30	42 19.70	37.00	E	
105382	2016-12-31	42 23.70	33.00	NE	
	D	1 D . O O	D	D	,
	_ •	_	Parameter2_3pm	-	\
0	56.00			19.00	
1	41.00			19.00	
2	26.00			11.00	
3	37.00) SE	. NW	6.00	
4	41.00) NE	. NW	6.00	
 105378	 43.00	 D W	 V	17.00	
105378	50.00			30.00	
105380	33.00			17.00	
105381	37.00			22.00	
105382	46.00) NE	. NE	24.00	
	Parameter3 3pm	Parameter4 9am	Parameter4_3pm	Parameter5 9am	\
0	31.00	46.00	26.00	1004.50	•
1	11.00	44.00	22.00	1014.40	
2	7.00	43.00	22.00	1018.70	
3	17.00	41.00	12.00	1015.10	
4	26.00	41.00	9.00	1013.10	
4		41.00	9.00	1012.00	
 105270	 21 00	77 00			
105378	31.00	77.00	41.00	997.80	
105379	15.00	63.00	39.00	1000.00	
105380	17.00	25.00	14.00	1004.40	
105381	6.00	30.00	23.00	1004.60	
105382	17.00	40.00	38.00	1005.10	
	Parameter5 3pm	Parameter7 9am	Parameter7_3pm	Failure_today \	
0	1003.20	19.70	25.70	0	
1	1013.10	14.90	22.10	0	
2	1014.80	17.10	26.50	0	
3		20.70			
	1010.30		33.90	0	
4	1009.20	22.40	34.40	0	
 105270	 00F 00				
105378	995.20	26.00	33.50	1	
105379	998.80	29.70	34.00	0	
105380	1001.00	28.70	36.40	0	
105381	1000.90	28.20	35.10	0	
105382	1002.70	30.10	31.50	0	
	Mes Año				
0	Enero 2009				
1	Enero 2009				
2	Enero 2009				

```
3 Enero 2009
4 Enero 2009
... ... ...
105378 Diciembre 2016
105379 Diciembre 2016
105380 Diciembre 2016
105381 Diciembre 2016
105382 Diciembre 2016
[105383 rows x 19 columns]
```

El siguiente gráfico de correlación nos permite ver qué variables están altamente correlacionadas con el fin de evaluar su exclusión del modelo.

[171]: <AxesSubplot: >

No existe ningun par de variables con una correlación significativa (cercana a 1), por lo que todas las variables presentes se incorporarán al análisis.

Con el fin de detectar supuestas variaciones estacionales, se crea la variable estación, la cual según el mes del año, se le asignará la estación a la que corresponde. Asumimos que los datos son originarios del hemisferio sur y agruparemos la estación Primavera y Otoño en la categoría "Otro", para detectar cambios más significativos.

```
[172]: def get_estacion(mes):
    if mes in ['Diciembre', 'Enero', 'Febrero']:
        return 'Invierno'
    elif mes in ['Junio', 'Julio', 'Agosto']:
        return 'Verano'
    else:
        return 'Otro'

df2['Estacion'] = df2['Mes'].apply(get_estacion)
```

Establecemos el orden simbólico de las estaciones con el objetivo de que en nuestros modelos se tome como referencia la estación "Otro"

```
[173]: orden_estaciones = ['Otro', 'Verano', 'Invierno']
df2['Estacion'] = pd.Categorical(df2['Estacion'], categories=orden_estaciones,__
ordered=True)
```

0.3 Modelo OLS

2. Ejecute un modelo de probabilidad lineal (MCO) que permita explicar la probabilidad de que un dia se reporte fallo medido por sensor, a partir de las informacion disponible. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R:

En base a la formulación del modelo, se toma como referencia los siguientes valores de las variables categóricas: - Estación: Otro - Año: 2009 - Location: 2 - Parameter1_Dir: East - Parameter2_9am: East - Parameter2_3pm: East

Los principales efectos sobre la base establecida son la relación negativa de pasar a invierno o a verano. Esto significa que en comparación a la estación "Otro", en Invierno y en Verano tienden a disminuir la probabilidad de que el sensor 2 detecte un fallo.

Al variar entre años, notamos una tendencia al aumento de probabilidad de que el sensor detecte un fallo, sin embargo, el cambio a algunos años como 2011 y 2016 no son significativos.

Si consideramos el cambio a otro sensor, notamos variabilidades en ambos sentidos, pero predominantemente negativas, lo que permite intuir que el sensor base (2) pudo haber detectado mayor cantidad de fallas en comparación a la gran cantidad de sensores que se relaciona de manera negativa en los coeficientes de la regresión.

Respecto a los parámetros direccionales, podemos concluir que una variación en el parámetro 1 no es significativa para el incremento o disminución del valor de nuestra variable explicativa. El parámetro 2 presenta coeficientes significativos y en su mayoría positivos, por lo que un cambio en las direcciones base (Este), tiende a aumentar la probabilidad de que el sensor detecte un fallo.

Por último, se destaca que a medida que aumenta la temperatura máxima detectada, también disminuye la probabilidad de tener fallas y análogamente, lo cual es un resultado que llama la atención por que en cierta parte desafía la lógica.

Dichos resultados se pueden deber a que un modelo de mínimos cuadrados no es lo suficientemente adecuado para estimar un valor binario, por lo que se continúa estudiando los datos con otros modelos.

```
[174]: resultado = smf.ols('Failure_today ~ C(Estacion) + C(Año) + C(Location) +

Alin_Temp + Max_Temp + C(Parameter1_Dir) + Parameter1_Speed +

C(Parameter2_9am) + C(Parameter2_3pm) + Parameter3_9am + Parameter3_3pm +

Parameter4_9am + Parameter4_3pm + Parameter5_9am + Parameter5_3pm +

Parameter7_9am + Parameter7_3pm' , data=df2).fit()

print(resultado.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: jue Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Failure_today OLS Least Squares , 24 abr. 2025 23:52:45 105383 105298 84 nonrobust	F-stati Prob (I	-squared:		0.298 0.297 531.0 0.00 -39926. 8.002e+04 8.084e+04
=======================================	==========			======	========
0.975]	coef	std err	t	P> t	[0.025
Intercept 8.484	8.0374	0.228	35.239	0.000	7.590
C(Estacion)[T.Verano]	-0.0201	0.003	-6.096	0.000	-0.027
C(Estacion)[T.Invierno] -0.018	-0.0240	0.003	-7.471	0.000	-0.030
C(Año)[T.2010] 0.017	0.0087	0.004	1.973	0.048	5.79e-05
C(Año)[T.2011] 0.012	0.0033	0.004	0.737	0.461	-0.005
C(Año)[T.2012] 0.020	0.0116	0.004	2.602	0.009	0.003
C(Año)[T.2013] 0.021	0.0122	0.004	2.778	0.005	0.004
C(Año)[T.2014] 0.018	0.0100	0.004	2.294	0.022	0.001
C(Año)[T.2015] 0.026	0.0179	0.004	4.071	0.000	0.009
C(Año)[T.2016] 0.015	0.0063	0.004	1.460	0.144	-0.002
C(Location)[T.3] -0.039	-0.0600	0.011	-5.703	0.000	-0.081
C(Location) [T.4] 0.123	0.1028	0.010	9.844	0.000	0.082
C(Location)[T.5] -0.078	-0.0991	0.011	-9.254	0.000	-0.120
C(Location)[T.6] -0.199	-0.2198	0.010	-21.007	0.000	-0.240
C(Location)[T.7] -0.091	-0.1113	0.010	-10.831	0.000	-0.131
C(Location)[T.8] 0.030	0.0095	0.010	0.908	0.364	-0.011

-0.0286

0.011 -2.590

0.010

-0.050

C(Location)[T.9]

-0.007 C(Location)[T.10]	-0.1016	0.011	-9.383	0.000	-0.123
-0.080					
C(Location) [T.11] -0.011	-0.0304	0.010	-3.042	0.002	-0.050
C(Location)[T.12] -0.021	-0.0418	0.011	-3.874	0.000	-0.063
C(Location)[T.13]	-0.1578	0.011	-14.602	0.000	-0.179
-0.137 C(Location)[T.14] -0.069	-0.0899	0.011	-8.275	0.000	-0.111
C(Location)[T.15] -0.027	-0.0475	0.011	-4.462	0.000	-0.068
C(Location) [T.16] -0.142	-0.1619	0.010	-15.759	0.000	-0.182
C(Location)[T.17] -0.041	-0.0732	0.016	-4.510	0.000	-0.105
C(Location) [T.18]	-0.1615	0.012	-13.415	0.000	-0.185
C(Location)[T.19] -0.039	-0.0608	0.011	-5.588	0.000	-0.082
C(Location)[T.20] -0.146	-0.1663	0.010	-16.339	0.000	-0.186
C(Location)[T.21] -0.077	-0.0962	0.010	-9.592	0.000	-0.116
C(Location)[T.22] -0.011	-0.0309	0.010	-2.999	0.003	-0.051
C(Location)[T.23] -0.081	-0.1007	0.010	-9.872	0.000	-0.121
C(Location)[T.26] -0.153	-0.1776	0.012	-14.413	0.000	-0.202
C(Location)[T.27] -0.119	-0.1392	0.010	-13.537	0.000	-0.159
C(Location)[T.28] -0.132	-0.1520	0.010	-14.805	0.000	-0.172
C(Location)[T.29] -0.072	-0.0919	0.010	-9.130	0.000	-0.112
C(Location) [T.30] 0.011	-0.0095	0.010	-0.917	0.359	-0.030
C(Location)[T.32] -0.018	-0.0376	0.010	-3.768	0.000	-0.057
C(Location)[T.33] -0.020	-0.0400	0.010	-3.993	0.000	-0.060
C(Location)[T.34] -0.108	-0.1282	0.010	-12.586	0.000	-0.148
C(Location)[T.35] -0.061	-0.0822	0.011	-7.469	0.000	-0.104
C(Location)[T.36]	-0.1989	0.010	-19.060	0.000	-0.219

0 170					
-0.178 C(Location)[T.38]	-0.0880	0.011	-8.061	0.000	-0.109
-0.067		****			
C(Location)[T.39] -0.052	-0.0721	0.010	-7.044	0.000	-0.092
C(Location)[T.40]	-0.0883	0.011	-8.008	0.000	-0.110
-0.067 C(Location)[T.41]	-0.0711	0.011	-6.645	0.000	-0.092
-0.050 C(Location)[T.42]	0.0749	0.013	5.940	0.000	0.050
0.100 C(Location)[T.43]	-0.0682	0.010	-6.760	0.000	-0.088
-0.048	0.0002	0.010	0.100	0.000	0.000
C(Location)[T.44] -0.084	-0.1048	0.010	-10.070	0.000	-0.125
C(Location)[T.45] -0.132	-0.1518	0.010	-14.972	0.000	-0.172
C(Location)[T.46]	-0.0152	0.011	-1.396	0.163	-0.036
0.006 C(Location)[T.47]	-0.0499	0.011	-4.678	0.000	-0.071
-0.029	-0.0499	0.011	-4.070	0.000	-0.071
C(Location)[T.48] -0.153	-0.1728	0.010	-16.811	0.000	-0.193
C(Location)[T.49]	-0.0820	0.010	-8.121	0.000	-0.102
-0.062 C(Parameter1_Dir)[T.N]	-0.0123	0.006	-2.200	0.028	-0.023
-0.001 C(Parameter1_Dir)[T.NE]	-0.0099	0.005	-1.971	0.049	-0.020
-5.61e-05	0.0033	0.000	1.0/1	0.013	0.020
<pre>C(Parameter1_Dir)[T.NW] 0.013</pre>	0.0016	0.006	0.270	0.787	-0.010
C(Parameter1_Dir)[T.S]	-0.0004	0.005	-0.069	0.945	-0.011
0.010					
C(Parameter1_Dir)[T.SE]	-0.0066	0.005	-1.362	0.173	-0.016
0.003 C(Parameter1_Dir)[T.SW]	0.0061	0.005	1.137	0.256	-0.004
0.017	0.0001	0.000	1.101	0.200	0.001
<pre>C(Parameter1_Dir)[T.W]</pre>	-0.0023	0.006	-0.409	0.683	-0.013
0.009	0.0040	0 005	1 001	0.217	0.014
C(Parameter2_9am)[T.N] 0.005	-0.0049	0.005	-1.001	0.317	-0.014
C(Parameter2_9am)[T.NE]	0.0188	0.005	4.052	0.000	0.010
0.028	0.0000	0 005	0.740	0.450	0.000
C(Parameter2_9am)[T.NW] 0.014	0.0039	0.005	0.740	0.459	-0.006
C(Parameter2_9am)[T.S]	0.0254	0.005	5.145	0.000	0.016
0.035 C(Parameter2_9am)[T.SE]	0.0044	0.005	0.974	0.330	-0.004
	0.0044	0.000	0.014	0.000	0.004

0.0662	0.005	12.678	0.000	0.056
0.0278	0.005	5.250	0.000	0.017
-0.0054	0.006	-0.977	0.328	-0.016
-0.0202	0.005	-4.053	0.000	-0.030
0.0302	0.006	5.279	0.000	0.019
0.0159	0.005	3.085	0.002	0.006
0.0000	0 005	1 0/16	0 050	-6.35e-05
0.0090	0.005	1.940	0.052	-0.35e-05
0.0148	0.005	2.733	0.006	0.004
0.0288	0.006	5.195	0.000	0.018
0.0087	0.001	15.471	0.000	0.008
-0.0326	0.001	-30.327	0.000	-0.035
0.0053	0.000	38.484	0.000	0.005
0.0029	0.000	15.646	0.000	0.003
-0.0039	0.000	-20.686	0.000	-0.004
0.0072	0.000	59.147	0.000	0.007
0.0023	0.000	16.685	0.000	0.002
-0.0362	0.001	-46.111	0.000	-0.038
0.0280	0.001	35.918	0.000	0.026
-0.0002	0.001	-0.257	0.797	-0.002
0.0246	0.001	20.850	0.000	0.022
	•			1.786 9465.860 0.00 3.02e+05
	0.0278 -0.0054 -0.0202 0.0302 0.0159 0.0090 0.0148 0.0288 0.0087 -0.0326 0.0053 0.0029 -0.0039 0.0072 0.0023 -0.0362 0.0280 -0.0002 0.0246	0.0278	0.0278 0.005 5.250 -0.0054 0.006 -0.977 -0.0202 0.005 -4.053 0.0302 0.006 5.279 0.0159 0.005 3.085 0.0090 0.005 1.946 0.0148 0.005 2.733 0.0288 0.006 5.195 0.0087 0.001 15.471 -0.0326 0.001 -30.327 0.0053 0.000 38.484 0.0029 0.000 15.646 -0.0039 0.000 -20.686 0.0072 0.000 59.147 0.0023 0.000 16.685 -0.0362 0.001 -46.111 0.0280 0.001 -0.257 0.0246 0.001 20.850	0.0278 0.005 5.250 0.000 -0.0054 0.006 -0.977 0.328 -0.0202 0.005 -4.053 0.000 0.0302 0.006 5.279 0.000 0.0159 0.005 3.085 0.002 0.0090 0.005 1.946 0.052 0.0148 0.005 2.733 0.006 0.0288 0.006 5.195 0.000 0.0087 0.001 15.471 0.000 0.0053 0.001 -30.327 0.000 0.0053 0.000 38.484 0.000 0.0029 0.000 15.646 0.000 0.0039 0.000 -20.686 0.000 0.0072 0.000 59.147 0.000 0.0023 0.000 16.685 0.000 -0.0362 0.001 -46.111 0.000 -0.002 0.001 -0.257 0.797 0.0246 0.001 20.850 0.000

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.02e+05. This might indicate that there are strong multicollinearity or other numerical problems.

0.4 Modelo Probit

3. Ejecute un modelo *probit* para responder a la pregunta 2. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

R: Si bien los resultados en coeficientes son similares entre el modelo OLS y los efectos marginales del modelo Probit, podemos notar que existen diferencias en la significancia de ciertos coeficientes como el cambio a la estación de Invierno, que el modelo Probit ya no lo considera significativo.

Además, Probit arroja que el cambio a cualquier año distinto al base también es significativo, pero mantiene la relación positiva en torno a la estimación de nuestra variable Failure Today.

Por otro lado, disminuye la magnitud de gran parte de los coeficientes, suavizando en cierta forma el impacto de algunas variables sobre la variable failure_today.

```
[175]: probit = smf.probit('Failure_today ~ C(Estacion) + C(Año) + C(Location) + □

→Min_Temp + Max_Temp + C(Parameter1_Dir) + Parameter1_Speed + □

→C(Parameter2_9am) + C(Parameter2_3pm) + Parameter3_9am + Parameter3_3pm + □

→Parameter4_9am + Parameter4_3pm + Parameter5_9am + Parameter5_3pm + □

→Parameter7_9am + Parameter7_3pm' , data=df2).fit()

print(probit.summary())

mfx = probit.get_margeff()

print(mfx.summary())
```

Optimization terminated successfully.

Current function value: 0.363349

Iterations 7

Probit Regression Results

		=======	========	=======	=======
Dep. Variable:	Failure_today	No. Obs	No. Observations:		105383
Model:	Probit	Df Resi	duals:		105298
Method:	MLE	Df Mode	1:		84
Date:	jue, 24 abr. 2025	Pseudo	R-squ.:		0.3282
Time:	23:52:53	Log-Lik	elihood:		-38291.
converged:	True	LL-Null	LL-Null:		
Covariance Type:	nonrobust	LLR p-v	LLR p-value:		0.000
=========		======	=======	=======	=======
	coef	std err	z	P> z	[0.025
0.975]					-
Intercept	27.6812	1.036	26.722	0.000	25.651

29.712					
C(Estacion)[T.Verano]	-0.1924	0.015	-12.502	0.000	-0.223
-0.162 C(Estacion)[T.Invierno]	-0.0189	0.016	-1.214	0.225	-0.049
0.012	0 0777	0.004	0.770	0.000	0.007
C(Año)[T.2010] 0.118	0.0777	0.021	3.772	0.000	0.037
C(Año)[T.2011]	0.0591	0.021	2.819	0.005	0.018
0.100 C(Año)[T.2012]	0.0676	0.021	3.175	0.001	0.026
0.109 C(Año)[T.2013]	0.0686	0.021	3.267	0.001	0.027
0.110	0.0000	0.021	3.201	0.001	0.021
C(Año)[T.2014]	0.0657	0.021	3.131	0.002	0.025
0.107					
C(Año)[T.2015]	0.0812	0.021	3.839	0.000	0.040
0.123 C(Año)[T.2016]	0.0728	0.021	3.544	0.000	0.033
0.113	0.0720	0.021	0.011	0.000	0.000
C(Location)[T.3]	-0.2491	0.051	-4.868	0.000	-0.349
-0.149					
C(Location)[T.4]	0.2631	0.063	4.176	0.000	0.140
0.387 C(Location)[T.5]	-0.2657	0.051	-5.240	0.000	-0.365
-0.166	-0.2037	0.031	-5.240	0.000	-0.303
C(Location)[T.6]	-1.0538	0.050	-21.078	0.000	-1.152
-0.956 C(Location)[T.7]	-0.5144	0.051	-10.072	0.000	-0.615
-0.414	0.0111	0.001	10.072	0.000	0.010
C(Location)[T.8]	0.3469	0.049	7.071	0.000	0.251
0.443					
C(Location)[T.9] 0.258	0.1580	0.051	3.089	0.002	0.058
C(Location)[T.10]	-0.3404	0.052	-6.526	0.000	-0.443
-0.238					
C(Location) [T.11] -0.108	-0.2128	0.054	-3.976	0.000	-0.318
C(Location)[T.12]	0.0276	0.050	0.553	0.581	-0.070
0.125					
C(Location)[T.13]	-0.7287	0.050	-14.570	0.000	-0.827
-0.631	0.0450	0.050	0.000	0.070	0 140
C(Location) [T.14] 0.056	-0.0459	0.052	-0.882	0.378	-0.148
C(Location)[T.15]	0.0421	0.050	0.839	0.402	-0.056
0.140					
C(Location)[T.16]	-0.5745	0.048	-11.999	0.000	-0.668
-0.481	0.0074	0 004	0 000	0.000	0 157
C(Location)[T.17]	0.0074	0.084	0.089	0.929	-0.157

0.172 C(Location)[T.18]	-0.6033	0.056	-10.853	0.000	-0.712
-0.494 C(Location)[T.19]	-0.1313	0.049	-2.685	0.007	-0.227
-0.035					
C(Location)[T.20] -0.547	-0.6412	0.048	-13.269	0.000	-0.736
C(Location)[T.21] -0.543	-0.6493	0.054	-11.969	0.000	-0.756
C(Location)[T.22]	0.0732	0.052	1.398	0.162	-0.029
0.176 C(Location)[T.23] -0.354	-0.4477	0.048	-9.385	0.000	-0.541
C(Location)[T.26] -0.823	-0.9467	0.063	-14.951	0.000	-1.071
C(Location)[T.27] -0.373	-0.4661	0.047	-9.815	0.000	-0.559
C(Location)[T.28] -0.390	-0.4816	0.047	-10.323	0.000	-0.573
C(Location) [T.29] -0.476	-0.5762	0.051	-11.242	0.000	-0.677
C(Location)[T.30] 0.244	0.1439	0.051	2.818	0.005	0.044
C(Location)[T.32]	-0.0562	0.050	-1.129	0.259	-0.154
0.041 C(Location)[T.33]	-0.0211	0.050	-0.418	0.676	-0.120
0.078 C(Location)[T.34] -0.479	-0.5700	0.046	-12.302	0.000	-0.661
C(Location)[T.35] -0.108	-0.2110	0.052	-4.019	0.000	-0.314
C(Location)[T.36] -0.633	-0.7289	0.049	-14.919	0.000	-0.825
C(Location)[T.38] -0.118	-0.2159	0.050	-4.309	0.000	-0.314
C(Location)[T.39] -0.087	-0.1812	0.048	-3.770	0.000	-0.275
C(Location) [T.40] 0.017	-0.0887	0.054	-1.639	0.101	-0.195
C(Location)[T.41] -0.101	-0.2015	0.051	-3.946	0.000	-0.302
C(Location)[T.42] 0.370	0.2155	0.079	2.724	0.006	0.060
C(Location)[T.43] -0.186	-0.2857	0.051	-5.635	0.000	-0.385
C(Location)[T.44] -0.284	-0.3779	0.048	-7.930	0.000	-0.471
C(Location)[T.45]	-0.6227	0.048	-12.995	0.000	-0.717

-0.529					
C(Location)[T.46]	0.1264	0.049	2.561	0.010	0.030
0.223					
C(Location)[T.47] -0.015	-0.1122	0.050	-2.262	0.024	-0.209
C(Location)[T.48]	-0.5918	0.048	-12.305	0.000	-0.686
-0.498					
C(Location)[T.49] -0.597	-0.7142	0.060	-11.976	0.000	-0.831
C(Parameter1_Dir)[T.N] -0.030	-0.0864	0.029	-3.025	0.002	-0.142
C(Parameter1_Dir)[T.NE] 0.001	-0.0499	0.026	-1.935	0.053	-0.100
C(Parameter1_Dir)[T.NW]	-0.0149	0.029	-0.511	0.609	-0.072
0.042	-0.0149	0.029	-0.511	0.009	-0.072
C(Parameter1_Dir)[T.S]	-0.0109	0.025	-0.431	0.667	-0.061
0.039	0.0100	0.020	0.101	0.001	0.001
C(Parameter1_Dir)[T.SE]	-0.0361	0.024	-1.519	0.129	-0.083
0.010					
C(Parameter1_Dir)[T.SW]	0.0427	0.026	1.617	0.106	-0.009
0.095					
<pre>C(Parameter1_Dir)[T.W]</pre>	0.0007	0.027	0.028	0.978	-0.052
0.054					
$C(Parameter2_9am)[T.N]$	-0.0201	0.026	-0.783	0.433	-0.070
0.030					
C(Parameter2_9am)[T.NE]	0.0627	0.026	2.457	0.014	0.013
0.113	0 0500		0.454		0 005
C(Parameter2_9am)[T.NW]	0.0560	0.026	2.151	0.031	0.005
0.107	0 1401	0 004	6 111	0 000	0 101
<pre>C(Parameter2_9am)[T.S] 0.197</pre>	0.1491	0.024	6.111	0.000	0.101
C(Parameter2_9am)[T.SE]	0.0970	0.024	4.102	0.000	0.051
0.143	0.0010	0.021	1.102	0.000	0.001
C(Parameter2_9am)[T.SW]	0.2847	0.025	11.313	0.000	0.235
0.334					
C(Parameter2_9am)[T.W]	0.1422	0.026	5.513	0.000	0.092
0.193					
$C(Parameter2_3pm)[T.N]$	-0.0446	0.028	-1.599	0.110	-0.099
0.010					
C(Parameter2_3pm)[T.NE]	-0.0840	0.025	-3.367	0.001	-0.133
-0.035					
C(Parameter2_3pm)[T.NW]	0.0875	0.028	3.090	0.002	0.032
0.143					
C(Parameter2_3pm)[T.S]	0.0060	0.025	0.244	0.807	-0.042
0.054 C(Darameter 2.2mm)[T. CE]	0 0030	0 000	0 171	0 064	_0_040
C(Parameter2_3pm)[T.SE] 0.048	0.0038	0.022	0.171	0.864	-0.040
C(Parameter2_3pm)[T.SW]	-0.0066	0.026	-0.252	0.801	-0.058
o(laramouciz_opm/[1.bw]	0.0000	0.020	0.202	0.001	0.000

0.045					
<pre>C(Parameter2_3pm)[T.W]</pre>	0.0606	0.027	2.253	0.024	0.008
0.113					
Min_Temp	0.0697	0.003	23.340	0.000	0.064
0.076	0.4070	0.005	05 000	0.000	0.440
Max_Temp	-0.1372	0.005	-25.908	0.000	-0.148
-0.127 Parameter1_Speed	0.0198	0.001	31.175	0.000	0.019
0.021	0.0130	0.001	31.173	0.000	0.013
Parameter3_9am	0.0098	0.001	11.025	0.000	0.008
0.012					
Parameter3_3pm	-0.0132	0.001	-14.830	0.000	-0.015
-0.011					
Parameter4_9am	0.0386	0.001	62.573	0.000	0.037
0.040					
Parameter4_3pm	0.0025	0.001	3.975	0.000	0.001
0.004	-0.1274	0.004	24 007	0.000	-0.135
Parameter5_9am -0.120	-0.1274	0.004	-34.927	0.000	-0.135
Parameter5_3pm	0.0974	0.004	27.039	0.000	0.090
0.104	0.0011	0.001	21.000	0.000	0.000
Parameter7_9am	-0.0087	0.005	-1.852	0.064	-0.018
0.001					
Parameter7_3pm	0.0556	0.006	9.619	0.000	0.044
0.067					
=======================================	========		========		=======
	-				

Probit Marginal Effects

Dep. Variable: Failure_today Method: dydx overall At:

========					
	dy/dx	std err	Z	P> z	[0.025
0.975]					
C(Estacion)[T.Verano]	-0.0393	0.003	-12.528	0.000	-0.045
-0.033					
<pre>C(Estacion)[T.Invierno]</pre>	-0.0039	0.003	-1.214	0.225	-0.010
0.002					
C(Año)[T.2010]	0.0159	0.004	3.772	0.000	0.008
0.024					
C(Año)[T.2011]	0.0121	0.004	2.819	0.005	0.004
0.020					
C(Año)[T.2012]	0.0138	0.004	3.175	0.001	0.005
0.022					

C(Año)[T.2013]	0.0140	0.004	3.268	0.001	0.006
0.022 C(Año)[T.2014]	0.0134	0.004	3.132	0.002	0.005
0.022 C(Año)[T.2015]	0.0166	0.004	3.840	0.000	0.008
0.025 C(Año)[T.2016]	0.0149	0.004	3.545	0.000	0.007
0.023 C(Location)[T.3]	-0.0509	0.010	-4.869	0.000	-0.071
-0.030 C(Location)[T.4]	0.0537	0.013	4.177	0.000	0.029
0.079 C(Location)[T.5]	-0.0543	0.010	-5.243	0.000	-0.075
-0.034 C(Location)[T.6]	-0.2152	0.010	-21.201	0.000	-0.235
-0.195 C(Location)[T.7]	-0.1051	0.010	-10.086	0.000	-0.125
-0.085 C(Location)[T.8]	0.0709	0.010	7.073	0.000	0.051
0.090 C(Location)[T.9]	0.0323	0.010	3.089	0.002	0.012
0.053 C(Location)[T.10]	-0.0695	0.011	-6.530	0.000	-0.090
-0.049 C(Location)[T.11]	-0.0435	0.011	-3.976	0.000	-0.065
-0.022 C(Location)[T.12]	0.0056	0.010	0.553	0.581	-0.014
0.026 C(Location)[T.13]	-0.1488	0.010	-14.614	0.000	-0.169
-0.129 C(Location)[T.14]	-0.0094	0.011	-0.882	0.378	-0.030
0.011 C(Location)[T.15]	0.0086	0.010	0.839	0.402	-0.011
0.029 C(Location)[T.16]	-0.1173	0.010	-12.024	0.000	-0.136
-0.098 C(Location)[T.17]	0.0015	0.017	0.089	0.929	-0.032
0.035 C(Location)[T.18] -0.101	-0.1232	0.011	-10.872	0.000	-0.145
-0.101 C(Location)[T.19] -0.007	-0.0268	0.010	-2.685	0.007	-0.046
C(Location)[T.20]	-0.1310	0.010	-13.304	0.000	-0.150
-0.112 C(Location)[T.21] -0.111	-0.1326	0.011	-11.993	0.000	-0.154
C(Location) [T.22] 0.036	0.0150	0.011	1.398	0.162	-0.006

C(Location)[T.23] -0.072	-0.0914	0.010	-9.397	0.000	-0.111
C(Location)[T.26] -0.168	-0.1934	0.013	-14.998	0.000	-0.219
C(Location)[T.27] -0.076	-0.0952	0.010	-9.830	0.000	-0.114
C(Location)[T.28] -0.080	-0.0984	0.010	-10.342	0.000	-0.117
C(Location)[T.29] -0.097	-0.1177	0.010	-11.260	0.000	-0.138
C(Location)[T.30] 0.050	0.0294	0.010	2.818	0.005	0.009
C(Location)[T.32] 0.008	-0.0115	0.010	-1.129	0.259	-0.031
C(Location)[T.33] 0.016	-0.0043	0.010	-0.418	0.676	-0.024
C(Location)[T.34] -0.098	-0.1164	0.009	-12.330	0.000	-0.135
C(Location)[T.35] -0.022	-0.0431	0.011	-4.021	0.000	-0.064
C(Location)[T.36] -0.129	-0.1489	0.010	-14.968	0.000	-0.168
C(Location)[T.38] -0.024	-0.0441	0.010	-4.311	0.000	-0.064
C(Location)[T.39] -0.018	-0.0370	0.010	-3.771	0.000	-0.056
C(Location)[T.40] 0.004	-0.0181	0.011	-1.639	0.101	-0.040
C(Location)[T.41] -0.021	-0.0412	0.010	-3.947	0.000	-0.062
C(Location)[T.42] 0.076	0.0440	0.016	2.725	0.006	0.012
C(Location)[T.43] -0.038	-0.0584	0.010	-5.637	0.000	-0.079
C(Location)[T.44] -0.058	-0.0772	0.010	-7.938	0.000	-0.096
C(Location)[T.45] -0.108	-0.1272	0.010	-13.026	0.000	-0.146
C(Location)[T.46] 0.046	0.0258	0.010	2.562	0.010	0.006
C(Location)[T.47] -0.003	-0.0229	0.010	-2.262	0.024	-0.043
C(Location)[T.48] -0.102	-0.1209	0.010	-12.335	0.000	-0.140
C(Location)[T.49] -0.122	-0.1459	0.012	-11.997	0.000	-0.170
C(Parameter1_Dir)[T.N] -0.006	-0.0176	0.006	-3.025	0.002	-0.029

C(Parameter1_Dir)[T.NE]	-0.0102	0.005	-1.935	0.053	-0.021
C(Parameter1_Dir)[T.NW] 0.009	-0.0030	0.006	-0.511	0.609	-0.015
C(Parameter1_Dir)[T.S] 0.008	-0.0022	0.005	-0.431	0.667	-0.012
C(Parameter1_Dir)[T.SE] 0.002	-0.0074	0.005	-1.519	0.129	-0.017
C(Parameter1_Dir)[T.SW]	0.0087	0.005	1.617	0.106	-0.002
C(Parameter1_Dir)[T.W] 0.011	0.0002	0.006	0.028	0.978	-0.011
C(Parameter2_9am)[T.N]	-0.0041	0.005	-0.783	0.433	-0.014
C(Parameter2_9am)[T.NE]	0.0128	0.005	2.458	0.014	0.003
C(Parameter2_9am)[T.NW]	0.0114	0.005	2.151	0.031	0.001
C(Parameter2_9am)[T.S]	0.0305	0.005	6.114	0.000	0.021
C(Parameter2_9am)[T.SE]	0.0198	0.005	4.103	0.000	0.010
C(Parameter2_9am)[T.SW]	0.0582	0.005	11.332	0.000	0.048
C(Parameter2_9am)[T.W]	0.0291	0.005	5.515	0.000	0.019
C(Parameter2_3pm)[T.N]	-0.0091	0.006	-1.599	0.110	-0.020
C(Parameter2_3pm)[T.NE] -0.007	-0.0172	0.005	-3.368	0.001	-0.027
C(Parameter2_3pm)[T.NW]	0.0179	0.006	3.090	0.002	0.007
C(Parameter2_3pm)[T.S] 0.011	0.0012	0.005	0.244	0.807	-0.009
C(Parameter2_3pm)[T.SE] 0.010	0.0008	0.005	0.171	0.864	-0.008
C(Parameter2_3pm)[T.SW]	-0.0014	0.005	-0.252	0.801	-0.012
C(Parameter2_3pm)[T.W] 0.023	0.0124	0.005	2.253	0.024	0.002
Min_Temp 0.015	0.0142	0.001	23.489	0.000	0.013
Max_Temp -0.026	-0.0280	0.001	-26.127	0.000	-0.030
Parameter1_Speed 0.004	0.0040	0.000	31.623	0.000	0.004
Parameter3_9am 0.002	0.0020	0.000	11.047	0.000	0.002

Parameter3_3pm -0.002	-0.0027	0.000	-14.881	0.000	-0.003
Parameter4_9am 0.008	0.0079	0.000	65.813	0.000	0.008
Parameter4_3pm 0.001	0.0005	0.000	3.977	0.000	0.000
Parameter5_9am -0.025	-0.0260	0.001	-35.536	0.000	-0.027
Parameter5_3pm 0.021	0.0199	0.001	27.313	0.000	0.018
Parameter7_9am 0.000	-0.0018	0.001	-1.852	0.064	-0.004
Parameter7_3pm 0.014	0.0114	0.001	9.632	0.000	0.009

========

0.5 Logit

4. Ejecute un modelo *logit* para responder a la pregunta 2. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

Se mantiene el uso de las mismas variables explicativas.

Notamos que el cambio desde la estación base a la estación Invierno continua siendo no significativo.

Además, se mantiene el resultado de la no significancia de los coeficientes asociados a las direcciones del parámetro 1, lo que puede presumir una baja explicación de la variabilidad de Failure today en torno a esta variable.

El modelo Logit vuelve a reafirmar que si la temperatura máxima detectada por el sensor aumenta, tienden a detectarse menos fallas, y si la temperatura mínima aumenta en una unidad, la probabilidad de fallo aumenta en un 1.4%. Curioso...

```
[176]: logit = smf.logit('Failure_today ~ C(Estacion) + C(Año) + C(Location) +

→Min_Temp + Max_Temp + C(Parameter1_Dir) + Parameter1_Speed +

→C(Parameter2_9am) + C(Parameter2_3pm) + Parameter3_9am + Parameter3_3pm +

→Parameter4_9am + Parameter4_3pm + Parameter5_9am + Parameter5_3pm +

→Parameter7_9am + Parameter7_3pm' , data=df2).fit()

print(logit.summary())

mfx = logit.get_margeff()

print(mfx.summary())
```

Optimization terminated successfully.

Current function value: 0.361726

Iterations 8

Logit Regression Results

Dep. Variable: Failure_today No. Observations: 105383
Model: Logit Df Residuals: 105298

Method: Date: jue, Time: converged: Covariance Type:	MLE 24 abr. 2025 23:54:13 True nonrobust		R-squ.: xelihood: L:		84 0.3312 -38120. -57001. 0.000
=======				D. J. J.	Fo. 005
0.975]		std err	Z 	P> z	[0.025
 Intercept	47.8709	1.828	26.192	0.000	44.289
51.453					
C(Estacion)[T.Verano] -0.298	-0.3514	0.027	-12.949	0.000	-0.405
C(Estacion) [T.Invierno] 0.027	-0.0277	0.028	-0.994	0.320	-0.082
C(Año)[T.2010] 0.225	0.1537	0.036	4.231	0.000	0.082
C(Año)[T.2011]	0.1184	0.037	3.192	0.001	0.046
0.191 C(Año)[T.2012]	0.1343	0.038	3.561	0.000	0.060
0.208 C(Año)[T.2013]	0.1207	0.037	3.236	0.001	0.048
0.194 C(Año)[T.2014]	0.1218	0.037	3.264	0.001	0.049
0.195 C(Año)[T.2015]	0.1458	0.038	3.877	0.000	0.072
0.220	0.12.200				*****
C(Año)[T.2016] 0.205	0.1337	0.036	3.672	0.000	0.062
C(Location)[T.3] -0.288	-0.4672	0.091	-5.117	0.000	-0.646
C(Location) [T.4] 0.687	0.4582	0.117	3.931	0.000	0.230
C(Location)[T.5]	-0.4001	0.090	-4.446	0.000	-0.577
-0.224 C(Location)[T.6]	-1.9144	0.089	-21.590	0.000	-2.088
-1.741 C(Location)[T.7]	-0.9243	0.091	-10.167	0.000	-1.102
-0.746 C(Location)[T.8]	0.7258	0.087	8.330	0.000	0.555
0.897 C(Location)[T.9]	0.4351	0.090	4.836	0.000	0.259
0.611 C(Location)[T.10]	-0.5850	0.093	-6.272	0.000	-0.768
-0.402 C(Location)[T.11]	-0.4205	0.098	-4.306	0.000	-0.612
J (100001011) [1.11]	0.4200	0.000	1.000	0.000	0.012

-0.229 C(Location)[T.12]	0.1506	0.088	1.710	0.087	-0.022
0.323					
C(Location)[T.13] -1.110	-1.2819	0.088	-14.598	0.000	-1.454
C(Location)[T.14] 0.264	0.0834	0.092	0.904	0.366	-0.097
C(Location)[T.15] 0.369	0.1946	0.089	2.190	0.028	0.020
C(Location)[T.16] -0.852	-1.0206	0.086	-11.874	0.000	-1.189
C(Location)[T.17] 0.499	0.2076	0.148	1.399	0.162	-0.083
C(Location)[T.18] -0.852	-1.0445	0.098	-10.649	0.000	-1.237
C(Location)[T.19] -0.039	-0.2096	0.087	-2.409	0.016	-0.380
C(Location)[T.20] -0.944	-1.1124	0.086	-12.910	0.000	-1.281
C(Location)[T.21] -0.969	-1.1602	0.097	-11.903	0.000	-1.351
C(Location)[T.22] 0.353	0.1650	0.096	1.724	0.085	-0.023
C(Location)[T.23] -0.606	-0.7712	0.084	-9.173	0.000	-0.936
C(Location)[T.26] -1.447	-1.6673	0.113	-14.804	0.000	-1.888
C(Location)[T.27] -0.606	-0.7715	0.084	-9.147	0.000	-0.937
C(Location)[T.28] -0.628	-0.7891	0.082	-9.582	0.000	-0.951
C(Location)[T.29] -0.870	-1.0498	0.092	-11.453	0.000	-1.229
C(Location)[T.30] 0.466	0.2861	0.092	3.125	0.002	0.107
C(Location)[T.32] 0.153	-0.0197	0.088	-0.224	0.823	-0.192
C(Location)[T.33] 0.213	0.0370	0.090	0.413	0.680	-0.139
C(Location)[T.34] -0.825	-0.9852	0.082	-12.041	0.000	-1.146
C(Location)[T.35] -0.121	-0.3035	0.093	-3.253	0.001	-0.486
C(Location)[T.36] -1.104	-1.2750	0.087	-14.626	0.000	-1.446
C(Location)[T.38] -0.140	-0.3140	0.089	-3.536	0.000	-0.488
C(Location)[T.39]	-0.2675	0.086	-3.103	0.002	-0.436

-0.099					
C(Location)[T.40]	0.0119	0.096	0.124	0.901	-0.177
0.201					
C(Location)[T.41] -0.154	-0.3323	0.091	-3.654	0.000	-0.511
C(Location)[T.42] 0.598	0.3038	0.150	2.025	0.043	0.010
C(Location)[T.43] -0.360	-0.5392	0.091	-5.905	0.000	-0.718
C(Location) [T.44] -0.476	-0.6407	0.084	-7.606	0.000	-0.806
C(Location) [T.45] -0.933	-1.1003	0.085	-12.917	0.000	-1.267
C(Location)[T.46] 0.446	0.2745	0.088	3.133	0.002	0.103
C(Location)[T.47] 0.019	-0.1526	0.088	-1.743	0.081	-0.324
C(Location)[T.48] -0.823	-0.9911	0.086	-11.545	0.000	-1.159
C(Location)[T.49] -1.111	-1.3271	0.110	-12.044	0.000	-1.543
C(Parameter1_Dir)[T.N] -0.070	-0.1703	0.051	-3.320	0.001	-0.271
C(Parameter1_Dir)[T.NE] 0.004	-0.0869	0.046	-1.873	0.061	-0.178
C(Parameter1_Dir)[T.NW] 0.060	-0.0421	0.052	-0.808	0.419	-0.144
C(Parameter1_Dir)[T.S] 0.044	-0.0440	0.045	-0.974	0.330	-0.132
C(Parameter1_Dir)[T.SE] 0.004	-0.0785	0.042	-1.856	0.063	-0.161
<pre>C(Parameter1_Dir)[T.SW] 0.153</pre>	0.0610	0.047	1.292	0.196	-0.031
<pre>C(Parameter1_Dir)[T.W] 0.079</pre>	-0.0163	0.048	-0.336	0.737	-0.111
C(Parameter2_9am)[T.N] 0.037	-0.0540	0.046	-1.161	0.246	-0.145
C(Parameter2_9am)[T.NE] 0.194	0.1027	0.046	2.213	0.027	0.012
C(Parameter2_9am)[T.NW] 0.173	0.0808	0.047	1.725	0.084	-0.011
C(Parameter2_9am)[T.S] 0.341	0.2555	0.044	5.846	0.000	0.170
C(Parameter2_9am)[T.SE] 0.256	0.1721	0.043	4.032	0.000	0.088
C(Parameter2_9am)[T.SW] 0.582	0.4944	0.045	11.024	0.000	0.406
C(Parameter2_9am)[T.W]	0.2442	0.046	5.298	0.000	0.154

Dep. Variable: Method: At:	Failure_today dydx overall				
Logit Marginal					
0.117					
Parameter7_9am -0.001 Parameter7_3pm	-0.0177 0.0962	0.008	9.284	0.007	-0.034 0.076
Parameter5_3pm 0.185 Parameter7_9am	0.1729	0.006	27.040 -2.090	0.000	0.160
Parameter5_9am -0.212	-0.2248	0.006	-34.660	0.000	-0.238
Parameter4_3pm 0.006	0.0034	0.001	3.010	0.003	0.001
Parameter4_9am 0.073	0.0705	0.001	62.932	0.000	0.068
Parameter3_3pm -0.019	-0.0225	0.002	-14.095	0.000	-0.026
Parameter3_9am 0.020	0.0164	0.002	10.334	0.000	0.013
Parameter1_Speed 0.037	0.0347	0.001	30.783	0.000	0.033
Max_Temp -0.232	-0.2507	0.010	-26.257	0.000	-0.269
Min_Temp 0.139	0.1280	0.005	23.696	0.000	0.117
<pre>0.066 C(Parameter2_3pm)[T.W] 0.192</pre>	0.0982	0.048	2.049	0.040	0.004
0.069 C(Parameter2_3pm)[T.SW]	-0.0262	0.047	-0.557	0.577	-0.118
0.086 C(Parameter2_3pm)[T.SE]	-0.0085	0.040	-0.214	0.831	-0.087
0.255 C(Parameter2_3pm)[T.S]	0.0002	0.044	0.005	0.996	-0.086
-0.057 C(Parameter2_3pm)[T.NW]		0.051	3.071	0.002	0.056
0.025 C(Parameter2_3pm)[T.NE]		0.045	-3.238	0.001	-0.233
0.335 C(Parameter2_3pm)[T.N]	-0.0729	0.050	-1.456	0.145	-0.171

28

0.975]

dy/dx std err z P>|z| [0.025

C(Estacion)[T.Verano]	-0.0403	0.003	-12.983	0.000	-0.046
C(Estacion) [T.Invierno]	-0.0032	0.003	-0.994	0.320	-0.009
C(Año)[T.2010]	0.0176	0.004	4.232	0.000	0.009
0.026 C(Año)[T.2011]	0.0136	0.004	3.193	0.001	0.005
0.022	0.0454	0.004	0. 500		
C(Año)[T.2012] 0.024	0.0154	0.004	3.562	0.000	0.007
C(Año)[T.2013] 0.022	0.0138	0.004	3.236	0.001	0.005
C(Año)[T.2014] 0.022	0.0140	0.004	3.264	0.001	0.006
C(Año)[T.2015] 0.025	0.0167	0.004	3.878	0.000	0.008
C(Año)[T.2016] 0.023	0.0153	0.004	3.673	0.000	0.007
C(Location)[T.3] -0.033	-0.0535	0.010	-5.120	0.000	-0.074
C(Location)[T.4] 0.079	0.0525	0.013	3.932	0.000	0.026
C(Location)[T.5] -0.026	-0.0458	0.010	-4.448	0.000	-0.066
C(Location)[T.6] -0.200	-0.2193	0.010	-21.772	0.000	-0.239
C(Location)[T.7] -0.086	-0.1059	0.010	-10.186	0.000	-0.126
C(Location)[T.8] 0.103	0.0832	0.010	8.336	0.000	0.064
C(Location)[T.9] 0.070	0.0498	0.010	4.837	0.000	0.030
C(Location)[T.10] -0.046	-0.0670	0.011	-6.278	0.000	-0.088
C(Location)[T.11] -0.026	-0.0482	0.011	-4.307	0.000	-0.070
C(Location) [T.12] 0.037	0.0173	0.010	1.710	0.087	-0.003
C(Location) [T.13] -0.127	-0.1469	0.010	-14.655	0.000	-0.167
C(Location)[T.14] 0.030	0.0096	0.011	0.904	0.366	-0.011
C(Location) [T.15] 0.042	0.0223	0.010	2.190	0.028	0.002
C(Location)[T.16] -0.098	-0.1169	0.010	-11.908	0.000	-0.136

C(Location)[T.17] 0.057	0.0238	0.017	1.399	0.162	-0.010
C(Location)[T.18] -0.098	-0.1197	0.011	-10.673	0.000	-0.142
C(Location)[T.19] -0.004	-0.0240	0.010	-2.410	0.016	-0.044
C(Location)[T.20] -0.108	-0.1274	0.010	-12.953	0.000	-0.147
C(Location)[T.21] -0.111	-0.1329	0.011	-11.933	0.000	-0.155
C(Location)[T.22] 0.040	0.0189	0.011	1.724	0.085	-0.003
C(Location)[T.23] -0.070	-0.0884	0.010	-9.187	0.000	-0.107
C(Location)[T.26] -0.166	-0.1910	0.013	-14.864	0.000	-0.216
C(Location)[T.27] -0.069	-0.0884	0.010	-9.164	0.000	-0.107
C(Location)[T.28] -0.072	-0.0904	0.009	-9.601	0.000	-0.109
C(Location)[T.29] -0.100	-0.1203	0.010	-11.478	0.000	-0.141
C(Location)[T.30] 0.053	0.0328	0.010	3.126	0.002	0.012
C(Location)[T.32] 0.018	-0.0023	0.010	-0.224	0.823	-0.022
C(Location)[T.33] 0.024	0.0042	0.010	0.413	0.680	-0.016
C(Location)[T.34] -0.095	-0.1129	0.009	-12.074	0.000	-0.131
C(Location)[T.35] -0.014	-0.0348	0.011	-3.254	0.001	-0.056
C(Location)[T.36] -0.127	-0.1461	0.010	-14.689	0.000	-0.166
C(Location)[T.38] -0.016	-0.0360	0.010	-3.537	0.000	-0.056
C(Location)[T.39] -0.011	-0.0306	0.010	-3.104	0.002	-0.050
C(Location)[T.40] 0.023	0.0014	0.011	0.124	0.901	-0.020
C(Location)[T.41] -0.018	-0.0381	0.010	-3.655	0.000	-0.058
C(Location)[T.42] 0.069	0.0348	0.017	2.025	0.043	0.001
C(Location)[T.43] -0.041	-0.0618	0.010	-5.908	0.000	-0.082
C(Location)[T.44] -0.055	-0.0734	0.010	-7.614	0.000	-0.092

C(Location)[T.45] -0.107	-0.1261	0.010	-12.959	0.000	-0.145
C(Location)[T.46] 0.051	0.0314	0.010	3.133	0.002	0.012
C(Location)[T.47] 0.002	-0.0175	0.010	-1.743	0.081	-0.037
C(Location)[T.48] -0.094	-0.1135	0.010	-11.577	0.000	-0.133
C(Location)[T.49] -0.127	-0.1520	0.013	-12.072	0.000	-0.177
C(Parameter1_Dir)[T.N] -0.008	-0.0195	0.006	-3.321	0.001	-0.031
C(Parameter1_Dir)[T.NE] 0.000	-0.0100	0.005	-1.874	0.061	-0.020
<pre>C(Parameter1_Dir)[T.NW] 0.007</pre>	-0.0048	0.006	-0.808	0.419	-0.017
<pre>C(Parameter1_Dir)[T.S] 0.005</pre>	-0.0050	0.005	-0.974	0.330	-0.015
<pre>C(Parameter1_Dir)[T.SE] 0.001</pre>	-0.0090	0.005	-1.856	0.063	-0.018
<pre>C(Parameter1_Dir)[T.SW] 0.018</pre>	0.0070	0.005	1.292	0.196	-0.004
<pre>C(Parameter1_Dir)[T.W] 0.009</pre>	-0.0019	0.006	-0.336	0.737	-0.013
C(Parameter2_9am)[T.N] 0.004	-0.0062	0.005	-1.161	0.246	-0.017
C(Parameter2_9am)[T.NE] 0.022	0.0118	0.005	2.213	0.027	0.001
C(Parameter2_9am)[T.NW] 0.020	0.0093	0.005	1.725	0.084	-0.001
<pre>C(Parameter2_9am)[T.S] 0.039</pre>	0.0293	0.005	5.849	0.000	0.019
C(Parameter2_9am)[T.SE] 0.029	0.0197	0.005	4.033	0.000	0.010
C(Parameter2_9am)[T.SW] 0.067	0.0566	0.005	11.045	0.000	0.047
C(Parameter2_9am)[T.W] 0.038	0.0280	0.005	5.300	0.000	0.018
<pre>C(Parameter2_3pm)[T.N] 0.003</pre>	-0.0084	0.006	-1.457	0.145	-0.020
C(Parameter2_3pm)[T.NE] -0.007	-0.0166	0.005	-3.238	0.001	-0.027
C(Parameter2_3pm)[T.NW] 0.029	0.0178	0.006	3.071	0.002	0.006
C(Parameter2_3pm)[T.S] 0.010	2.753e-05	0.005	0.005	0.996	-0.010
C(Parameter2_3pm)[T.SE] 0.008	-0.0010	0.005	-0.214	0.831	-0.010

C(Parameter2_3pm)[T.SW]	-0.0030	0.005	-0.557	0.577	-0.014
C(Parameter2_3pm)[T.W] 0.022	0.0113	0.005	2.049	0.040	0.000
Min_Temp 0.016	0.0147	0.001	23.898	0.000	0.013
Max_Temp -0.027	-0.0287	0.001	-26.564	0.000	-0.031
Parameter1_Speed 0.004	0.0040	0.000	31.369	0.000	0.004
Parameter3_9am 0.002	0.0019	0.000	10.357	0.000	0.002
Parameter3_3pm -0.002	-0.0026	0.000	-14.154	0.000	-0.003
Parameter4_9am 0.008	0.0081	0.000	67.472	0.000	0.008
Parameter4_3pm 0.001	0.0004	0.000	3.011	0.003	0.000
Parameter5_9am -0.024	-0.0258	0.001	-35.438	0.000	-0.027
Parameter5_3pm 0.021	0.0198	0.001	27.399	0.000	0.018
Parameter7_9am -0.000	-0.0020	0.001	-2.091	0.037	-0.004
Parameter7_3pm 0.013	0.0110	0.001	9.302	0.000	0.009

5. Comente los resultados obtenidos en 2, 3 y 4. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?

R: Las principales diferencias se encuentran en la significancia de ciertas variables en algunos modelos y además de la magnitud de los coeficientes. Estas diferencias se originan por la forma de resolución que hay tras cada modelo. Consideremos que OLS busca predecir una variable continua y en este caso forzamos a predecir una variable binaria, lo que puede resultar en interpretaciones erróneas.

Probit y Logit si nos permite operar con una estimación de una variable binaria, además permite estudiar la no linealidad del modelo. Además restringe el valor de porbabilidad obtenido entre [0,1]. Considerando la similitud de los resultados, se recomendaría cualquiera de los dos para poder la pregunta de investigación.

En estos 3 modelos, las principales variables significativas fueron, Max Temp, Min Temp y el cambio estacional a Verano, que fueron consistentes con la significancia y el impacto en la estimación de la variable.

0.6 Agrupación por mes

```
[177]: df_mes=df2.copy()
```

Creamos una variable que junte el mes y el año para facilitar el estudio de los datos

```
[178]: df_mes['MesYear'] = df_mes['Mes'] + " " + df_mes['Año'].astype(str)
```

Agrupamos por Mes/Año y Location (sensor), de esta forma tendremos el promedio de los parámetros de cada sensor, en cada mes y en cada año, además de la sunma de todas las fallas detectadas por cada sensor en cada mes y en cada año.

Para continuar con el estudio de la variación estacional, se mantiene la variable estación.

```
[180]:
       df_mes
[180]:
                       MesYear
                                Location
                                           Min_Temp
                                                      Max_Temp
                                                                 Parameter1_Speed
       0
                   Abril 2009
                                               13.21
                                                          22.79
                                                                              35.86
                                        1
                   Abril 2009
                                        3
                                                                              37.38
       1
                                                9.09
                                                          20.84
       2
                   Abril 2009
                                        4
                                               13.73
                                                          28.67
                                                                              38.96
                                        5
       3
                   Abril 2009
                                               12.35
                                                          22.23
                                                                              35.07
       4
                   Abril 2009
                                        6
                                                6.56
                                                          18.02
                                                                              44.11
              Septiembre 2016
                                                                              34.19
       3821
                                       45
                                                8.69
                                                          16.63
              Septiembre 2016
                                               10.25
                                                                              49.92
       3822
                                       46
                                                          21.39
              Septiembre 2016
                                                                              45.04
       3823
                                       47
                                                7.49
                                                          15.63
       3824
              Septiembre 2016
                                       48
                                               12.99
                                                          19.44
                                                                              43.23
              Septiembre 2016
                                                8.28
       3825
                                       49
                                                          20.70
                                                                              48.50
              Parameter3_9am
                               Parameter3_3pm
                                                 Parameter4_9am
                                                                  Parameter4_3pm
                        10.04
                                                           57.82
       0
                                         16.50
                                                                            45.86
       1
                         9.76
                                         14.05
                                                           67.62
                                                                            44.19
       2
                        15.72
                                         18.28
                                                           30.48
                                                                            16.92
       3
                        12.44
                                         16.78
                                                           75.96
                                                                            57.67
```

4	19.43	20.89	78.64	52.93		
•••	•••	•••	•••	•••		
3821	10.50	12.92	82.65	62.85		
3822	21.62	26.15	67.15	54.38		
3823	16.04	20.07	71.64	65.86		
3824	18.10	18.03	62.13	61.73		
3825	23.30	26.90	58.77	32.40		
	Parameter5_9am	Parameter5_3pm	Parameter7_9am	Parameter7_3pm	Estacion	\
0	1019.62	1017.43	17.61	21.36	Otro	
1	1019.12	1016.09	13.90	19.96	Otro	
2	1018.35	1014.53	20.83	27.87	Otro	
3	1019.46	1017.17	17.43	20.95	Otro	
4	1018.72	1016.76	11.67	16.67	Otro	
•••	•••	•••	•••			
3821	1015.36	1013.15	11.90	15.31	Otro	
3822	1016.32	1013.29	16.10	20.02	Otro	
3823	1019.45	1017.58	12.39	13.80	Otro	
3824	1014.82	1012.27	16.68	18.12	Otro	
3825	1016.95	1013.74	13.61	19.51	Otro	
	Failure_today					
0	6					
1	6					
2	0					
3	9					
4	8					
	•••					
3821	10					
3822	4					
3823	16					
3824	4					
3825	7					

[3826 rows x 15 columns]

6. Agregue la data a nivel mensual, usando la data promedio de las variables (ignorando aquellas categoricas, como la direccion del viento). En particular, genere una variable que cuente la cantidad de fallos observados en un mes, utilice un valor de 0 si en ese mes no se reporto fallos en ningun dia. Use un modelo Poisson para explicar el numero de fallas por mes. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.

```
[181]: poisson=smf.glm('Failure_today ~ C(Estacion) + C(Location) + Min_Temp +_\u00ed

\u20e4Max_Temp + Parameter1_Speed + Parameter3_9am + Parameter3_3pm +_\u00ed

\u20e4Parameter4_9am + Parameter4_3pm + Parameter5_9am + Parameter5_3pm +_\u00ed

\u20e4Parameter7_9am + Parameter7_3pm' , data=df_mes,family=sm.families.Poisson()).

\u20e4fit()
```

print(poisson.summary())

Generalized Linear Model Regression Results

Generali	.zed Linear Mo	odel Kegre	ssion Kesults		
Time: No. Iterations:	GLM Poisson Log IRLS 24 abr. 2025 23:54:51 5 nonrobust	Df Resided Mode: Scale: Log-Like Deviance Pearson Pseudo	l: elihood: e: chi2: R-squ. (CS):		3826 3769 56 1.0000 -8489.8 4055.0 3.64e+03 0.8599
========					
0.975]	coef	std err	z	P> z	[0.025
Intercept	20.6973	3.120	6.633	0.000	14.582
26.813 C(Estacion)[T.Verano]	-0.1492	0.024	-6.283	0.000	-0.196
-0.103 C(Estacion)[T.Invierno]	-0.0984	0.024	-4.167	0.000	-0.145
-0.052 C(Location)[T.3]	-0.1741	0.069	-2.539	0.011	-0.308
-0.040 C(Location)[T.4]	0.1165	0.089	1.312	0.190	-0.058
0.291 C(Location)[T.5]	-0.2963	0.072	-4.123	0.000	-0.437
-0.155 C(Location)[T.6]	-0.5123	0.077	-6.614	0.000	-0.664
-0.360 C(Location)[T.7] -0.131	-0.2671	0.069	-3.847	0.000	-0.403
C(Location)[T.8]	-0.0341	0.070	-0.484	0.628	-0.172
C(Location)[T.9] 0.189	0.0315	0.080	0.392	0.695	-0.126
C(Location)[T.10] -0.049	-0.1984	0.076	-2.605	0.009	-0.348
C(Location)[T.11] 0.104	-0.0366	0.072	-0.509	0.611	-0.178
C(Location)[T.12]	0.0062	0.068	0.091	0.928	-0.128
0.140 C(Location)[T.13]	-0.5371	0.070	-7.723	0.000	-0.673
-0.401 C(Location)[T.14]	-0.2878	0.084	-3.434	0.001	-0.452

-0.124					
C(Location)[T.15]	-0.0581	0.079	-0.740	0.459	-0.212
0.096	0 6611	0 063	10 570	0.000	0.704
C(Location)[T.16] -0.539	-0.6611	0.063	-10.572	0.000	-0.784
C(Location)[T.17] -0.252	-0.5012	0.127	-3.936	0.000	-0.751
C(Location) [T.18] -0.396	-0.5405	0.073	-7.355	0.000	-0.685
C(Location) [T.19] 0.027	-0.1002	0.065	-1.542	0.123	-0.227
C(Location) [T.20] -0.205	-0.3402	0.069	-4.920	0.000	-0.476
C(Location) [T.21] -0.002	-0.1565	0.079	-1.984	0.047	-0.311
C(Location) [T.22] 0.184	0.0223	0.082	0.271	0.786	-0.139
C(Location) [T.23] 0.012	-0.1182	0.066	-1.782	0.075	-0.248
C(Location) [T.26] -0.111	-0.2905	0.091	-3.175	0.001	-0.470
C(Location) [T.27] -0.430	-0.5549	0.064	-8.720	0.000	-0.680
C(Location) [T.28] -0.410	-0.5425	0.067	-8.045	0.000	-0.675
C(Location) [T.29] -0.113	-0.2420	0.066	-3.676	0.000	-0.371
C(Location) [T.30] 0.182	0.0460	0.069	0.663	0.507	-0.090
C(Location) [T.32] 0.088	-0.0371	0.064	-0.581	0.561	-0.162
C(Location)[T.33] 0.236	0.1028	0.068	1.514	0.130	-0.030
C(Location)[T.34] -0.194	-0.3147	0.062	-5.094	0.000	-0.436
C(Location)[T.35] -0.351	-0.4918	0.072	-6.837	0.000	-0.633
C(Location)[T.36] -0.161	-0.3023	0.072	-4.205	0.000	-0.443
C(Location)[T.38] -0.117	-0.2412	0.063	-3.821	0.000	-0.365
C(Location) [T.39] 0.076	-0.0521	0.065	-0.800	0.424	-0.180
C(Location) [T.40] -0.121	-0.2894	0.086	-3.364	0.001	-0.458
C(Location) [T.41] -0.126	-0.2616	0.069	-3.774	0.000	-0.397
C(Location)[T.42]	0.0356	0.116	0.308	0.758	-0.191

0.263					
C(Location)[T.43] 0.154	0.0180	0.070	0.259	0.796	-0.118
C(Location)[T.44] -0.530	-0.6514	0.062	-10.556	0.000	-0.772
C(Location)[T.45] -0.379	-0.5025	0.063	-7.997	0.000	-0.626
C(Location)[T.46] 0.236	0.1006	0.069	1.454	0.146	-0.035
C(Location)[T.47] -0.249	-0.3757	0.065	-5.821	0.000	-0.502
C(Location)[T.48] -0.636	-0.7622	0.064	-11.833	0.000	-0.888
C(Location)[T.49] -0.247	-0.4235	0.090	-4.705	0.000	-0.600
Min_Temp 0.075	0.0544	0.011	5.123	0.000	0.034
Max_Temp 0.035	-0.0135	0.025	-0.541	0.588	-0.062
Parameter1_Speed 0.064	0.0585	0.003	20.656	0.000	0.053
Parameter3_9am 0.005	-0.0027	0.004	-0.670	0.503	-0.011
Parameter3_3pm -0.060	-0.0678	0.004	-17.250	0.000	-0.075
Parameter4_9am 0.036	0.0313	0.003	12.176	0.000	0.026
Parameter4_3pm 0.008	0.0020	0.003	0.685	0.493	-0.004
Parameter5_9am -0.021	-0.0583	0.019	-3.075	0.002	-0.096
Parameter5_3pm 0.075	0.0379	0.019	1.993	0.046	0.001
Parameter7_9am 0.131	0.0991	0.016	6.111	0.000	0.067
Parameter7_3pm -0.088	-0.1424	0.028	-5.090	0.000	-0.197

========

Calculamos los odds ratios para medir la variación porcentual que aporta cada coeficiente:

```
[182]: pd.set_option('display.float_format', '{:.2f}'.format)
    coef=poisson.params
    odds_ratios = np.exp(coef)
    odds_ratios = 100*(odds_ratios-1)
    odds_ratios
```

[182]:	Intercent	97441192603.56
[102].	<pre>Intercept C(Estacion)[T.Verano]</pre>	-13.86
	C(Estacion) [T.Invierno] C(Location) [T.3]	-9.37
		-15.98
	C(Location) [T.4]	12.36
	C(Location)[T.5]	-25.64
	C(Location)[T.6]	-40.09
	C(Location)[T.7]	-23.44
	C(Location)[T.8]	-3.36
	C(Location)[T.9]	3.20
	C(Location)[T.10]	-18.00
	C(Location)[T.11]	-3.60
	C(Location)[T.12]	0.62
	C(Location)[T.13]	-41.55
	C(Location)[T.14]	-25.01
	C(Location)[T.15]	-5.65
	C(Location)[T.16]	-48.37
	C(Location)[T.17]	-39.42
	C(Location)[T.18]	-41.76
	C(Location)[T.19]	-9.53
	C(Location)[T.20]	-28.83
	C(Location)[T.21]	-14.48
	C(Location)[T.22]	2.26
	C(Location)[T.23]	-11.14
	C(Location)[T.26]	-25.21
	C(Location)[T.27]	-42.59
	C(Location)[T.28]	-41.87
	C(Location)[T.29]	-21.49
	C(Location)[T.30]	4.71
	C(Location)[T.32]	-3.64
	C(Location)[T.33]	10.82
	C(Location)[T.34]	-27.00
	C(Location)[T.35]	-38.85
	C(Location)[T.36]	-26.09
	C(Location)[T.38]	-21.43
	C(Location)[T.39]	-5.07
	C(Location)[T.40]	-25.13
	C(Location)[T.41]	-23.01
	C(Location)[T.42]	3.63
	C(Location)[T.43]	1.82
	C(Location)[T.44]	-47.87
	C(Location) [T.45]	-39.50
	C(Location)[T.46]	10.59
	C(Location) [T.47]	-31.32
	C(Location) [T.48]	-53.34
	C(Location) [T.49]	-34.53
	Min_Temp	5.59
		0.09

```
Max_Temp
                                     -1.34
Parameter1_Speed
                                      6.03
Parameter3_9am
                                     -0.27
Parameter3_3pm
                                     -6.55
Parameter4_9am
                                      3.18
Parameter4_3pm
                                      0.20
Parameter5_9am
                                     -5.67
Parameter5_3pm
                                      3.86
Parameter7_9am
                                     10.42
Parameter7_3pm
                                    -13.27
dtype: float64
```

```
[183]: df_mes['plambda'] = poisson.mu
sns.histplot(data=df_mes, x="plambda",bins=40)
```

[183]: <AxesSubplot: xlabel='plambda', ylabel='Count'>

R: Para construir la distribución Poisson, consideramos solo variables continuas, además de incorporar las variables categóricas de Location y Estacion, para poder analizar el cambio en torno a las categorías base.

Interprentando los coeficientes más significativos, podemos notar que al cambiar de la estación Otros a Verano o Invierno, hay una disminución del 13.7% y un 9.94% respectivamente en la tasa esperada de fallas para las categorías bases.

Además, al aumentar en una unidad la temperatura mínima, se espera un incremento de 5.26% en

la tasa esperada de fallas.

Skew:

Kurtosis:

Se destaca que la variación de la temperatura máxima detectada, no se considera significativa para estimar una variación en la tasa esperada.

Notamos que la mayor cantidad de errores estimados por sensor se encuentra entre 4 y 7, y el gráfico de ocurrencias sigue gráficamente una distribución Poisson. Lo que podría indicar que no existe una sobre dispersión.

7. Determine sobre dispersion en la data y posible valor optimo de alpha para un modelo Binomial Negativa.

Los resultados del test de dispersión nos arrojan que el parámetro de la regresión auxiliar es significativo, lo que puede demostrar cierto nivel de sobredispersión, es decir, el modelo de Poisson podría no capturar toda la varianza, por lo que convendría usar Binomial Negativa.

```
[184]: | aux=((df_mes['Failure_today']-poisson.mu)**2-poisson.mu)/poisson.mu
       auxr=sm.OLS(aux,poisson.mu).fit()
       print(auxr.summary())
```

OLS Regression Results

======					
Dep. Variable:	Failure_today	R-squared (uncentered):			
0.001					
Model:	OLS	Adj. R-squared (uncentered):			
0.001					
Method:	Least Squares	F-statistic:			
4.148	_				
Date:	jue, 24 abr. 2025	<pre>Prob (F-statistic):</pre>			
0.0418					
Time:	23:54:52	Log-Likelihood:			
-6700.8		-			
No. Observations:	3826	AIC:			
1.340e+04					
Df Residuals:	3825	BIC:			
1.341e+04					
Df Model:	1				
Covariance Type:	nonrobust				
=======================================					
co		t P> t [0.025 0.975]			
x1 -0.00		2.037 0.042 -0.012 -0.000			
=======================================	=======================================	=======================================			
Omnibus:	3697.998	Durbin-Watson: 1.814			
<pre>Prob(Omnibus):</pre>	0.000				

Prob(JB):

Cond. No.

0.00

1.00

4.452

46.143

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Para binomial negativa, utilizamos la exponencial del coeficiente obtenido en la regresión auxiliar para poder estimar el valor de alpha:

```
[185]: a=np.exp(-0.0068)
```

- 8. Usando la informacion anterior, ejecute un modelo Binomial Negativa para responder a la pregunta 6. Seleccione las variables dependientes a incluir en el modelo final e interprete su significado.
- R: A modo general, el sensor (location) y la estación del año son factores relevantes y explican bastante de la variación del número de fallas.

Se continúa con el resultado de a mayor mínima, más fallas; a mayor máxima, menos, pero con magnitudes distintas a Poisson, sin embargo, BN detecta que ninguna de estas dos variables es significativas.

Notamos como el parámetro 7 tiene una variación positiva si aumenta en una unidad por la mañana y un efecto completamente contrario si aumenta en una unidad por la tarde. (17% y -16% aproximadamente).

Por último, la mayoría de los sensores tiene efectos negativos (menor riesgo de falla respecto a la ubicación de referencia). Los sensores más relevantes son:

- 44: -54.44%
- 48: -57.26%

Generalized Linear Model Regression Results

Dep. Variable:	Failure_today	No. Observations:	3826
Model:	GLM	Df Residuals:	3769
Model Family:	NegativeBinomial	Df Model:	56
Link Function:	Log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-10596.
Date:	jue, 24 abr. 2025	Deviance:	937.88
Time:	23:54:52	Pearson chi2:	686.
No. Iterations:	9	Pseudo R-squ. (CS):	0.2673
Covariance Type:	nonrobust		

========					
0.975]	coef	std err	Z	P> z	[0.025
Intercept 38.846	21.5672	8.816	2.446	0.014	4.289
C(Estacion)[T.Verano] -0.036	-0.1676	0.067	-2.496	0.013	-0.299
C(Estacion)[T.Invierno] -0.009	-0.1333	0.064	-2.094	0.036	-0.258
C(Location)[T.3] 0.275	-0.0902	0.187	-0.484	0.629	-0.456
C(Location)[T.4] 0.453	0.0460	0.208	0.222	0.825	-0.361
C(Location)[T.5] -0.036	-0.4150	0.194	-2.144	0.032	-0.794
C(Location)[T.6] -0.111	-0.5424	0.220	-2.464	0.014	-0.974
C(Location)[T.7] 0.152	-0.2159	0.188	-1.150	0.250	-0.584
C(Location)[T.8] 0.179	-0.2023	0.195	-1.039	0.299	-0.584
C(Location)[T.9] 0.268	-0.1824	0.230	-0.794	0.427	-0.633
C(Location)[T.10] 0.232	-0.1668	0.203	-0.820	0.412	-0.566
C(Location)[T.11] 0.356	0.0040	0.179	0.022	0.982	-0.348
C(Location)[T.12] 0.266	-0.1206	0.197	-0.612	0.540	-0.507
C(Location)[T.13] -0.214	-0.6068	0.201	-3.024	0.002	-1.000
C(Location)[T.14] -0.248	-0.7174	0.239	-2.997	0.003	-1.186
C(Location)[T.15] 0.244	-0.1850	0.219	-0.845	0.398	-0.614
C(Location)[T.16] -0.327	-0.6745	0.177	-3.808	0.000	-1.022
C(Location)[T.17] -0.305	-0.9506	0.329	-2.885	0.004	-1.596
C(Location)[T.18] -0.176	-0.5707	0.202	-2.831	0.005	-0.966
C(Location)[T.19] 0.317	-0.0555	0.190	-0.292	0.770	-0.428
C(Location)[T.20] 0.063	-0.3193	0.195	-1.639	0.101	-0.701

C(Location)[T.21] 0.322	-0.0572	0.194	-0.296	0.768	-0.437
C(Location)[T.22] 0.431	0.0079	0.216	0.037	0.971	-0.416
C(Location)[T.23] 0.243	-0.1429	0.197	-0.726	0.468	-0.529
C(Location)[T.26] 0.257	-0.2138	0.240	-0.891	0.373	-0.684
C(Location)[T.27] -0.286	-0.6422	0.182	-3.536	0.000	-0.998
C(Location)[T.28] -0.332	-0.7118	0.194	-3.670	0.000	-1.092
C(Location)[T.29] 0.103	-0.2499	0.180	-1.388	0.165	-0.603
C(Location)[T.30] 0.318	-0.0573	0.191	-0.299	0.765	-0.433
C(Location)[T.32] 0.126	-0.2151	0.174	-1.237	0.216	-0.556
C(Location)[T.33] 0.332	-0.0380	0.189	-0.202	0.840	-0.408
C(Location)[T.34] -0.062	-0.4245	0.185	-2.292	0.022	-0.787
C(Location)[T.35] -0.165	-0.5365	0.189	-2.833	0.005	-0.908
C(Location)[T.36] 0.057	-0.3316	0.198	-1.671	0.095	-0.721
C(Location)[T.38] 0.087	-0.2688	0.182	-1.479	0.139	-0.625
C(Location)[T.39] 0.325	-0.0404	0.187	-0.217	0.828	-0.406
C(Location) [T.40] -0.105	-0.5615	0.233	-2.412	0.016	-1.018
C(Location) [T.41] 0.167	-0.1958	0.185	-1.058	0.290	-0.559
C(Location)[T.42] 0.538	0.0468	0.251	0.187	0.852	-0.444
C(Location)[T.43] 0.438	0.0698	0.188	0.372	0.710	-0.298
C(Location)[T.44] -0.446	-0.8009	0.181	-4.418	0.000	-1.156
C(Location)[T.45] -0.189	-0.5389	0.178	-3.022	0.003	-0.888
C(Location)[T.46] 0.482	0.0950	0.197	0.482	0.630	-0.292
C(Location) [T.47] -0.177	-0.5453	0.188	-2.901	0.004	-0.914
C(Location) [T.48] -0.508	-0.8603	0.180	-4.789	0.000	-1.212

C(Location)[T.49] 0.052	-0.3432	0.202	-1.702	0.089	-0.738
Min_Temp 0.093	0.0398	0.027	1.467	0.142	-0.013
Max_Temp 0.137	0.0056	0.067	0.084	0.933	-0.126
Parameter1_Speed 0.085	0.0691	0.008	8.563	0.000	0.053
Parameter3_9am 0.021	-0.0007	0.011	-0.064	0.949	-0.022
Parameter3_3pm -0.065	-0.0858	0.011	-7.932	0.000	-0.107
Parameter4_9am 0.053	0.0400	0.007	5.867	0.000	0.027
Parameter4_3pm 0.015	-6.162e-05	0.008	-0.008	0.994	-0.015
Parameter5_9am 0.034	-0.0673	0.052	-1.298	0.194	-0.169
Parameter5_3pm 0.148	0.0454	0.052	0.870	0.384	-0.057
Parameter7_9am 0.243	0.1615	0.041	3.902	0.000	0.080
Parameter7_3pm -0.051	-0.1979	0.075	-2.637	0.008	-0.345

========

Obtenemos los odds ratios para medir las variaciones porcentuales:

```
[187]: coef=negbin.params
  odds_ratios = np.exp(coef)
  odds_ratios = 100*(odds_ratios-1)
  odds_ratios
```

F + 0 = 3		
[187]:	Intercept	232559407886.95
	C(Estacion)[T.Verano]	-15.43
	<pre>C(Estacion)[T.Invierno]</pre>	-12.48
	C(Location)[T.3]	-8.62
	C(Location)[T.4]	4.71
	C(Location)[T.5]	-33.96
	C(Location)[T.6]	-41.86
	C(Location)[T.7]	-19.42
	C(Location)[T.8]	-18.32
	C(Location)[T.9]	-16.67
	C(Location)[T.10]	-15.37
	C(Location)[T.11]	0.40
	C(Location)[T.12]	-11.36
	C(Location)[T.13]	-45.49

C(Location)[T.14]	-51.20
C(Location)[T.15]	-16.89
C(Location)[T.16]	-49.06
C(Location)[T.17]	-61.35
C(Location)[T.18]	-43.49
C(Location)[T.19]	-5.40
C(Location)[T.20]	-27.33
C(Location)[T.21]	-5.56
C(Location)[T.22]	0.79
C(Location)[T.23]	-13.32
C(Location)[T.26]	-19.25
C(Location)[T.27]	-47.39
C(Location)[T.28]	-50.92
C(Location)[T.29]	-22.11
C(Location)[T.30]	-5.57
C(Location)[T.32]	-19.35
C(Location)[T.33]	-3.73
C(Location)[T.34]	-34.59
C(Location)[T.35]	-41.52
C(Location)[T.36]	-28.22
C(Location)[T.38]	-23.57
C(Location)[T.39]	-3.96
C(Location)[T.40]	-42.97
C(Location)[T.41]	-17.78
C(Location)[T.42]	4.79
C(Location)[T.43]	7.23
C(Location)[T.44]	-55.11
C(Location)[T.45]	-41.66
C(Location)[T.46]	9.97
C(Location)[T.47]	-42.03
C(Location)[T.48]	-57.70
C(Location)[T.49]	-29.05
Min_Temp	4.06
Max_Temp	0.57
Parameter1_Speed	7.15
Parameter3_9am	-0.07
Parameter3_3pm	-8.22
Parameter4_9am	4.08
Parameter4_3pm	-0.01
Parameter5_9am	-6.51
Parameter5_3pm	4.64
Parameter7_9am	17.53
Parameter7_3pm	-17.96
dtype: float64	

9. Comente los resultados obtenidos en 6, 7 y 8. ¿Cuáles y por qué existen las diferencias entre los resultados?. En su opinión, ¿Cuál sería el más adecuado para responder la pregunta de investgación y por qué? ¿Qué variables resultaron ser robustas a la especificación?

En primer lugar, en los cambios estacionales los efectos(odds ratios) entre Poisson BN son relativamente similares, aunque en Poisson son levemente menos negativos, lo cual puede indicar que el modelo Poisson subestima un poco la reducción de fallas en algunas estaciones.

En torno al cambio de un sensor a otro, el modelo Poisson tiende a exagerar efectos (más negativos o más positivos) en algunos sensores (Como el 3, 4, 33 y 38), probablemente como resultado de no ajustar adecuadamente por la dispersión extra. La Binomial Negativa, al incorporar el parámetro alpha, suaviza estos efectos.

En general, poisson tiende a inflar o subestimar algunos efectos, particularmente cuando hay mucha varianza en los datos, además el patrón de los signos (positivo/negativo) se mantiene en la mayoría de las variables, pero las magnitudes difieren, sobre todo en los sensores.

En mi opinión, y luego de realizar el test de dispersión, es adecuado utilizar el modelo de Binomial Negativa, ya que al presentar sobre dispersión en los datos, el modelo BN ajusta este error con la ayuda del coeficiente alpha, obteniendo estimaciones más precisas. Por último, algunas variables robustas en el estudio, que mantuvieron su significancia, coherencia y nivel de impacto sobre la variable explicativa fueron el Parámetro 1 de velocidad y el cambio a la estación Invierno.

[]: