

Soziologisches Institut

Data Analysis – Advanced Statistics with Python

Dr. Julia Jerke

jerke@soziologie.uzh.ch

Thursday, 12.15pm - 13.45pm, AND 2.46

Session 4 – Logistic regression

Agenda

- 1. Dummy variables and interaction terms in regression models
- 2. Logistic regression basics
- 3. Logistic regression with *Python*
- 4. Hands on

1. Dummy variables and interaction terms in regression models

Motivation

- The standard case of linear regression is the relationship between a *continuous* dependent variable Y and one or more *continuous* explanatory variables $X_1, X_2, X_3, ...$
- But what if one or more of the variables are not continuous?

X_1, X_2, X_3, \dots	Continuous	Binary (categorical)
Continuous	Linear regression	Logistic regression (Logit), Ordinal regression
Binary (categorical)	Dummy and interaction terms	Logit with dummy and interaction, Chi square analyses

Linear regression with dummy variables

- In the classic case, the dependent and independent variables are continuous
- However, the independent variables can also be dummy or categorical variables
 - ➤ In the example of the test performance and the preparation time we could, for instance, also include the effect of the gender (*)
- Assume we have a binary variable D
- The interpretation of the coefficient for the dummy variable can be expressed as follows:

$\widehat{y} = b_0 + b_1 * x + b_2 * d$	d = 0	d = 1
$\widehat{m{y}} =$	$b_0 + b_1 * x$	$(\boldsymbol{b}_0 + \boldsymbol{b}_2) + \boldsymbol{b}_1 * \boldsymbol{x}$

 \triangleright b_2 is the expected difference in Y between the two values of D (ceteris paribus)

^(*) This serves just as a simplistic example. Today, gender is rightfully no longer asked in a binary way in most surveys.

Linear regression with interaction variables

- What if the relationship between Y and X differs for different groups'
 - In the example of the test performance and the preparation time we could, for instance, also analyse whether the effect of the preparation time is different for female and male students
- We can include an interaction term X * D into the regression model
- The interpretation of the coefficient for the dummy variable can be expressed as follows:

$\widehat{y} = b_0 + b_1 * x + b_2 * d + b_3 * x \cdot d$	d = 0	d = 1
$\widehat{y} =$	$b_0 + b_1 * x$	$(b_0 + b_2) + (b_1 + b_3) * x$

- \triangleright b_3 is the expected difference in the effect of X on Y between the two values of D (ceteris paribus)
- \triangleright b_2 is the expected difference in the intercept between the two values of D

2.	Logistic	regression	basics

Logistic versus linear regression

- Specifying a (non-)linear relationship between a **binary** dependent variable Y and one or more explanatory variables $X_1, X_2, X_3, ...$
 - Simple logistic regression: one explanatory variable X_1
 - *Multiple logistic regression:* two or more explanatory variables $X_1, X_2, ..., X_p$:

In the case of logistic regression, we usually want to predict the probability that an observation either belongs to Y = 1 or Y = 0

- Linear regression is not appropriate anymore:
 - The dependent variable Y now follows a binomial distribution which poses a problem for the linear regression
 - The classic linear regression model

$$y_i = \beta_0 + \beta_1 * x_{i1} + \beta_2 * x_{i2} + \dots + \beta_p * x_{ip} + \varepsilon_i$$
 cannot be used since it makes continuous predictions

https://www.datacamp.com/community/tutorials/logistic-regression-R

From linear to logistic regression I

- Goal: Modelling the probability of belonging to Y = 1 instead of Y = 0
- **Solution**: Transforming the classic regression equation to a regression equation with a range of [0,1]
- Procedure:
 - (1) Start with the regression equation: $\hat{y} = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \cdots + \beta_p * x_p$
 - (2) Transformation with a link function h: $h(\hat{y}) = h(\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p)$
 - (3) A good choice for h is the logistic function $h(y) = \frac{1}{1+e^{-y}}$

(4) Since the logistic function is a probability distribution, we have: h(y) = P(y = 1) and therefore:

$$P(y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p)}}$$

From linear to logistic regression II

We now have a transformed regression equation:

$$P(y = 1) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p)}}$$

- In this way, for any person in the dataset, the probability of belonging to Y = 1 given their values for $X_1, X_2, X_3, ...$ can be predicted
- But: how can we estimate the specific influence of $X_1, X_2, X_3, ...$, in the sense of. "If X_j increases by one unit, then ..."?
- Rearranging and adding the error term yields the final regression equation:

$$\ln\left(\frac{P(y=1)}{1 - P(y=1)}\right) = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p + \epsilon_i, \qquad i = 1, \dots, n$$

Whereas again:

- β_0 is the constant (i.e., the predicted value if $x_{i1}, ..., x_{ip} = 0$)
- $\beta_1, ..., \beta_p$ are the regression coefficients (i.e., the effect of a one unit change in $X_1, X_2, ..., X_p$, ceteris paribus)
- ϵ_i is the individual error term (i.e., the difference between the true value y_i and the predicted value \hat{y}_i)

What is the best regression model to fit the data?

But... what means best?

- Ordinary least squares do not work here anymore
- Rather, the coefficients are estimated with the Maximum Likelihood Approach (ML)
- Maximum Likelihood:
 - Following an iterative process, the coefficients $\beta_0, \beta_1, ..., \beta_p$ are determined in such way that the observed values of Y are the most likely ones

Interpretation of the coefficients from a logistic regression I

Log Odd

- Odds versus Probability: using the example of a dice bet
 - Calculating the *probability* of having a 5 or a 6: $P(\{5,6\}) = 0.3\overline{3} = 33.\overline{3}\%$
 - Calculating the *odds* of having a 5 or a 6: $\frac{P(\{5,6\})}{P(\{1,2,3,4\})} = \frac{0.3\overline{3}}{0.6\overline{6}} = \frac{1}{2}$
 - Colloquial interpretation of odds: it is twice as likely to have a 1, 2, 3, or 4 than having a 5 or 6
- Back to the logistic regression:

$$\ln\left(\frac{P(y=1)}{1 - P(y=1)}\right) = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p + \epsilon_i$$

- How to interpret a change in X_i :
 - \succ a one-unit change in X_j will change the $Log\ Odd$ by β_p

Interpretation of the coefficients from a logistic regression II

Odds / Odds ratio

Further transformation:

$$\ln\left(\frac{P(y=1)}{1 - P(y=1)}\right) = \beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p \implies \frac{e^x}{1 - P(y=1)} = e^{\beta_0 + \beta_1 * x_1 + \beta_2 * x_2 + \dots + \beta_p * x_p} = e^{\beta_0} * e^{\beta_1 \cdot x_1} * e^{\beta_2 \cdot x_2} * \dots * e^{\beta_p \cdot x_p}$$

• How to interpret a change in *X_i*:

$$\frac{P(y=1)}{1 - P(y=1)_{[x_p+1]}} = e^{\beta_0} * e^{\beta_1 \cdot x_1} * e^{\beta_2 \cdot x_2} * \dots * e^{\beta_p \cdot (x_p+1)} = e^{\beta_0} * e^{\beta_1 \cdot x_1} * e^{\beta_2 \cdot x_2} * \dots * e^{\beta_p \cdot x_p} * e^{\beta_p} = \frac{P(y=1)}{1 - P(y=1)_{[x_p]}} * e^{\beta_p} = \frac{P(y=1)_{[x_p]}}{1 - P(y=1)_{[x_p]}} * e^{\beta_p} * e^{\beta_p} = \frac{P(y=1)_{[x_p]}}{1 - P(y=1)_{[x_p]}} * e^{\beta_p}$$

 \triangleright a one-unit change in X_i will change the *Odds ratio* by the factor β_p

Interpretation of the coefficients from a logistic regression III

Example: Dependent Var: voted for AFD in 2017 election | Independent Var: sex (1 – male, 0 – female)

Results

Logit Regression Results								<pre>In [192]: print(np.exp(results.params))</pre>
Dep. Variab Model: Method: Date:		secondvote_a Log M d, 20 Oct 20	it Df Res LE Df Mod	servations: iduals: el: R-squ.:		2112 2110 1 0.02155	→	Intercept 0.049638 male 2.336343 dtype: float64
Time: converged: Covariance		19:00:	22 Log-Li ue LL-Nul	kelihood:		-559.29 -571.60 6.933e-07		Odds ratio → 2.34: Being male increases the odds of voting
	coef	std err	z	P> z	[0.025	0.975]		AFD by a factor of 2.34
Intercept male	-3.0030 0.8486 =======	0.148 0.178	-20.307 4.769 ======	0.000 0.000 ======	-3.293 0.500	-2.713 1.197		Note: values above 1 imply a positive effect and values below 1 imply a negative effect

Log odd \rightarrow 0.85:

Being male increases the log odd of voting AFD by 0.85

Note: As for linear regression, positive values imply a positive effect and negative values imply a negative effect

Problem: none of these values can be interpreted in terms of a difference in probabilities between male and female voters **Or in other words**: these values remain relatively unaffected by the base rate of AFD voting

Interpretation of the coefficients from a logistic regression IV

Marginal effects

- · Marginal effects allow statements in terms of probability differences
- Crucial point:
 - In contrast to log odds they are non-linear
 - They depend on the value of X_j and the other covariates $X_1, X_2, X_3, ...$
 - Different subjects will have different marginal effects
 - The reason lies in the fact that the probability estimation is bound between 0 an 1

- There are different form of marginal effects:
 - 1) Average Marginal Effect (AME): The average of the marginal effects at each observation
 - 2) Marginal Effect at the Mean (MEM): The marginal effects at the mean of each regressor
 - 3) Marginal Effects at Representative values (MER): The marginal effects at specific values for the regressors
- Marginal effects are calculated from the actual predictions that the model makes by using numerical methods (they are not analytically calculated!)

3. Logistic regression in	n Python	

Libraries

- There are various ways to run a logistic regression in Python
- As for linear regression, we will again use statsmodel
- For instance, one such library is *statsmodel*:
 - Linear models
 - Non-linear models
 - Time series analysis
 - Event history analysis
 - Prediction and diagnostic
- Major advantage: enables the formula-style of R (income ~ education + age + gender)
- Extensive documentation for the library: https://www.statsmodels.org/stable/index.html

Even in statsmodel there are various modules and ways to run a regression. One way is by importing the following module:

import statsmodels.formula.api as smf

Running a logistic regression in statsmodel

- 1. Use the model class to describe the model
- 2. Fit the model using a class method
- 3. Inspect the results using a summary method In [369]: print(results.summary()) # Summarizing the model

Logit Regression Results

Dep. Variab	le:	second	dvote_afo	d No.	Observation	s:	2112	
Model:			Logit	Df I	Residuals:		2110	
Method:			MLE	Df i	Model:		1	
Date:		Thu, 21	Oct 2022	L Psei	udo R-squ.:		0.02155	
Time:			00:45:35	Log	-Likelihood:		-559.29	
converged:			True	e LL-I	Null:		-571.60	
Covariance	Type:	1	nonrobust	LLR	p-value:		6.933e-07	
							=======	
	coef	std	err	Z	P> z	[0.025	0.975]	
Intercept	-3.0036	0	.148	20.307	0.000	-3.293	-2.7 1 3	
male	0.8486	9	.178	4.769	0.000	0.500	1.197	
========	=======			======			========	

Predictions and confidence intervals

- With results = model.fit() we again create an object that contains several attributes such as the estimated parameters, the r square, but also the predicted values and the error terms (hint: type dir(results) to see a full list of all attributes)
- We can calculate marginal effects with results.get_margeff() and print the results by chaining additionallysummary():"
 - get_margeff(at="overall"): Average Marginal Effects (AME)
 - get margeff(at="mean"): Marginal Effect at the Mean (MEM)
- We can further estimate the predicted probabilities for our observations with:

```
In [391]: predict = results.predict() # Accessing the predicted probabilities
```

We can evaluate the quality of our model by calling the prediction table:

```
In [406]: predict_tab = results.pred_table(threshold=0.5) # threshold defines the classification probability
```

4. Hands on

... Open Session_4_logistic_regression.py