EQUATIONS IN THE FLUID DOMAIN

Fluid

Mass Balance

$$div \underline{U} = 0$$

Momentum Balance

$$\rho \frac{d\underline{U}}{dt} = -\rho \ g\underline{e}_{Z} - \underline{\nabla}p + \mu \Delta \underline{U}$$

EQUATIONS IN THE SOLID DOMAIN

SINGLE MODE APPROXIMATION IN THE SOLID DOMAIN

SINGLE MODE APPROXIMATION IN THE SOLID DOMAIN

SINGLE MODE APPROXIMATION IN THE SOLID DOMAIN

MODAL EQUATIONS IN THE SOLID DOMAIN

MODAL EQUATIONS IN THE SOLID DOMAIN

$$f = \underline{F} \cdot \underline{e}_X$$

MODAL EQUATIONS IN THE SOLID DOMAIN

Modal Modal Modal mass stiffness load (known) (known) (known)

$$\frac{\varphi}{f} = \int \underline{F} \cdot \underline{\varphi} \, dx$$

FLUID AND SOLID

Fluid

Solid

Mass Balance

$$div \underline{U} = 0$$

Momentum Balance

$$\rho \frac{d\underline{U}}{dt} = -\rho \ g\underline{e}_{Z} - \underline{\nabla}p + \mu \Delta \underline{U}$$

$$\underline{\xi}(\underline{x},t) = q(t)\underline{\varphi}(\underline{x})$$

$$m\frac{d^2q}{dt^2} + kq = f$$

AT THE INTERFACE

Kinematic condition

$$\underline{U} = \frac{\partial \underline{\xi}}{\partial t}$$

$$\underline{U}(\underline{x},t) = \frac{dq}{dt}(t)\underline{\varphi}(\underline{x})$$

AT THE INTERFACE

Dynamic condition

$$\left[-p\underline{\underline{I}} + \mu(\nabla \underline{U} + \nabla^t \underline{U})\right].\underline{n}$$

$$\int \left\{ \left[-p\underline{I} + \mu \left(\nabla \underline{U} + \nabla^t \underline{U} \right) \right] \cdot \underline{n} \right\} \underline{\varphi} \, dS = f$$
Interface

FLUID AND SOLID

$$\underline{\underline{U}(\underline{x},t)} = \frac{dq}{dt}(t)\underline{\varphi}(\underline{x})$$

$$\int \{ \left[-p\underline{\underline{I}} + \mu \left(\nabla \underline{U} + \nabla^t \underline{U} \right) \right] \underline{n} \right\} \underline{\varphi} dS = f$$
Interface