

Predictive Analytics

Geo Analytics - Part I

Prof. Dr. Volker Herbort

Contents

- Introduction
- Geospatial Data
- Choropleth Maps
- Points
- Geo Analytics

Introduction

- Why Geo Analytics?
 - Much of the data that is produced e.g. by business models has geospatial aspects
 - ...or can at least be traced back to some location over space.
 - e.g. Transportation, Logistics, Location Based Services...
- Geo Analytics
 - Geospatial data has additional aspects.
 - Analytical methods require special spatial handling.

Geo Analytics

- Answering geospatial questions:
 - How long does it take to go from A to B?
 - What is the total area of the city of Ulm?
 - What is the best place to built a new bridge?
 - What is the shortest delivery route?
 - How much energy will be produced by a wind turbine at a certain location?
 - How many poeple live near nuclear power plants?

Answer using Mash-Up

http://opendata.zeit.de/nuclear-reactors-usa

Contents

- Introduction
- Geospatial Data
- Mapping Data
- Points
- Geo Analytics ML

Definition

- Geospatial Data
 - Series of coordinates (usually pairs of latitude and longitude)
 - Additional attributes such as time, height, place names or temperature
- Geographical Information Systems (GIS)
 - Dedicated systems for working with geospatial information
 - Maps
 - Networks e.g. water, gas or electricity

Example: Geospatial Data

What is displayed? How much data?

Core GIS Concepts

■ The earth is not flat...

...which makes GIS life a lot harder!

Location (geodetic)

- Points on the surface of the Earth
 - latitude (lat)
 - Angle between point and equator (North-South direction)
 - + North / South
 - longitude (lon)
 - Angle between point and Greenwich (England)
 - + East / West

Source: [1] p. 17

Source: [1] p. 18

Location Ctd.

Source: based on [1] p. 18

Other Locations

- Civic Location
 - Street Address
- Jurisdictional Location
 - governmental boundary
 - Electoral ward, county or city
- Translate different types of location
 - Geocoding: Address -> lat, Ion
 - Reverse Geocoding: lat, lon -> (nearest) Address

Distance

Different interpretation

Angluar distance

30.2°

Source: [1] p. 19

Linear distance ("as the crow flies")

Source: [1] p. 20

Traveling distance

Distance ctd.

Okay, but the Earth is not flat

Source: [1] p. 21

- Actually, great-circle Distance
 - Can be calculated from lat lon
 - Haversine Formula

Haversine Formula[4]

- Calculate distance d between two points A(lon₁, lat₁) and B(lon₂, lat₂) and Earth with radius R
- Algorithm
 - \blacksquare $d_{lon} = lon_2 lon_1$
 - \bullet $d_{lat} = lat_2 lat_1$
 - = a = $(\sin(d_{lat}/2))^2 + \cos(lat_1) * \cos(lat_2) * (\sin(d_{lon}/2))^2$
 - $\mathbf{c} = 2 * \operatorname{atan2}(\operatorname{sqrt}(a), \operatorname{sqrt}(1-a))$
 - \blacksquare d = R * c
- Explanation
 - d has same unit as R
 - R is 6.371 km

Projection[1]

- Maps are two-dimensional projections of the Earth
- Different types of projection
 - cylindrical
 - Mercator projection
 - equal-area cylindrical projection
 - universal transverse Mercator projection
 - conical
 - Albers equal-area projection
 - Lambert conformal conic projection
 - equidistant projection.
 - azimuthal
 - gnomonic projection
 - Lambert equal-area azimuthal projection
 - orthographic projection

Source: [1] p. 24

Source: [1] p. 25

Soul

Source: [1] p. 27

Projected Coordinate Systems

Points on the map but not the earths surface

Datums

- Mathematical Model of the Earth
- Important Datums
 - NAD 27: North American Datum of 1927.
 - only USA
 - NAD 83: North American Datum of 1983.
 - USA, Canada, Mexico and Central America
 - WGS 84: World Geodetic System of 1984.
 - Global datum
 - Used by Global Positioning System (GPS) satellites
 - All data captured by GPS units use this datum.

Shapes

- Geospatial data is often represented as shapes
 - Point
 - A coordinate, described by two or more numbers
 - Projected or unprojected coordinate system

Path

- generally described using what is called a LineString
- connected series of line segments
- a.k.a. PolyLines
- e.g. roads, rivers

Shapes ctd.

Outline

- usually a polygon
- e.g. country, lakes, cities

Geospatial Data Formats

- Geospatial Data contains
 - Geographical features
 - Meta-data (projection, datum, coordinate system, ...)
 - Attributes (name, population, average temp., ...)
 - Display information (color or line style)
- Two different main types of data
 - Raster format data
 - Vector format data

Geospatial Data Formats ctd.

- Raster format data: bitmapped images
 - Digital Raster Graphic (DRG)
 - Digital Elevation Model (DEM)
 - Band Interleave by
 - Line (BIL)
 - Pixel (BIP)
 - Band Sequential

Geospatial Data Formats ctd.

- Vector format data: Points, Lines and Polygons
 - Shapefile from Environmental Systems Research Institute (ESRI)
 - Simple Features as defined by Open Geospatial Consortium (http://www.opengeospatial.org/)
- Additional data exchange formats:
 - Well-known Text (WKT)
 - Well-known Binary (WKB)
 - GeoJSON
 - Geography Markup Language (GML)

OGC Simple Features

