Rappels

C'est une sous-branche de la sécurité.

Même si l'adverse connait votre algorithme de cryptage, il doit être impossible pour l'adverse de décrypter votre message.

Pour cela, on étudie Z/nZ, permettant de travailler sur des blocs de taille finie.

(Z/nZ, +) => groupe commutatif.

 $(Z/nZ, +, *) \Rightarrow$ anneau commutatif unitaire

(Z/nZ, +, *) => corps ssi n est premier

Dans Z/nZ: $a \in Z/nZ$ inversible ssi a et n premier entre eux de plus, et dans ce dernier cas:

```
\existss,t: as + nt = 1
s \equiv a^{-1}(mdn)
```

Existe-t-il n tel que a : $1 \le a \le n$ - 1 est premier avec n ? \leftrightarrows n premier ?

P1 => P2: *n premier*

d = pgcd(a, n)

n = dq, dq = 1aun

sid = n, a = qd'! = 0, a > n!

P2 => P1

On suppose n non premier, n = dc, c, d! = 1 et n.

 $2 \le d \le n - 1$, d est premier avec n.

pgcd(d, n) = 1, d = 1 et n est premier

Bien entendu, les calculs vont plus loin que de l'addition ou de la multiplication.

Nous verrons des algorithmes et des propriétés basiques puis nous regarderons des structures de Z/nZ, enfin nous verrons le RSA, avec des tests de primalités.

Exponentiation modulaire (général)

Astuce:

```
x^{2q} = (x^q)^2 1 multiplication
```

$$x^{2q+1}$$
 = $x*(x^q)^2$ 2 multiplication

q a un chiffre de moins, en base 2, que 2q ou 2q + 1

Exemple:

$$5^{77} \text{ (mod 9)}$$

$$5^{77} = 5 * (5^{38})^2 \equiv 5 * 7^2 \equiv 5 * 49 \equiv 20 \equiv 2$$

$$5^{38} = (5^{19})^2 = 5^2 \equiv 25 \equiv 7$$

$$5^{19} = 5 * (5^9)^2 \equiv 5 * 8^2 = 5 * 64 \equiv 5$$

$$9 = 2^3 + 1$$

$$5^9 = 5 * (5^{2^3}) \equiv 5 * 7 = 35 \equiv 8$$

Lemme Chinois

Soient n1, n2, ..., nk des nombres premiers entre eux deux à deux.

Soient a1, a2, ..., ak des entiers quelconques

Il existe un entier a $\forall i$ a $\equiv a_i \pmod{n_i}$

Exemple:

$$n1 = 5$$
, $a1 = 2$, $n2 = 7$, $a2 = 3$

$$n1 = 2 n2 = 3$$

 $0 \ 0 \ 0$

111

022

103

014

125

006

117

On a a = 1.

Demonstration avec k = 2:

1) Cas particulier

a1 = 0, a2 = 0; a = n1 * n2
a1 = 1, a2 = 0?
? a = q * n2 et q * n2
$$\equiv$$
 1 (mod n1)
(n1, n2) = 1, n2 inversible mod n1
{Euclide etendu} (\exists q) q * n2 \equiv 1 (mod n1)
Il existe a10 \equiv 1 (mod n1) \equiv 0 (mod n2).
a10 = $n2^{-1}$ (mod n1) * n2
a01 \equiv 0 (mod n1) \equiv 1 (mod n2)
a01 = $n2^{-1}$ (mod n2) * n1
Une solution : a = a1 * a10 + a2 * a01
Reprenons l'exemple d'en haut :
 7^{-1} (mod 5) \equiv 3, a10 = 3 * 7 = 21
 5^{-1} (mod 7) \equiv 3, a01 = 3 * 5 = 15
a = 2 * 21 + 3 * 15 = 42 + 45 = 87 = 70 + 17

Fonction indicatrice d'Euler

```
Question: Combien d'éléments inversibles dans Z/nZ? \# \{a \in \mathbb{N}, 1 \leq a \leq n-1; a \text{ et n premiers entre eux} \} = \phi(n) \text{ "Euler totient function"} 101 premier (\mathbb{Z}/101\mathbb{Z}, +, *) \text{ Corps} ((\mathbb{Z}/101\mathbb{Z}), *) \text{ groupe} \text{Il y a } \phi(101) = 100 \text{ élèments} \phi(100) = ?
```

Bibliothéque C++

gmp: calcul sur les grands nombres