Roman Muñoz CS-4033

Problem 1.

1)
$$J(\beta) = \sum_{i=1}^{n} \omega_{i} \cdot (x_{i}^{T} \beta - y_{i}^{T})^{2}$$
Let X be a nxp matrix with x_{i}^{T} on the i th row and Y be an $n-d$ imensional vector with y_{i} in i th i th element.

Then Let W be a diagonal matrix of with terms.

$$J(\beta) = W \cdot || x^{T} \beta - Y||^{2} = (x^{T} \beta - Y)^{T} (x^{T} \beta - Y)$$

$$J(\beta) = W \cdot || x^{T} \beta - Y||^{2} = W \cdot (x^{T} \beta - Y)^{T} (x^{T} \beta - Y)$$

$$2) \frac{2J(\beta)}{2\beta} = (x^{T} \beta - Y)^{T} \cdot (W + W^{T}) \cdot \frac{\partial}{\partial \beta} (x^{T} \beta - Y)$$

$$0 = (x^{T} \beta - Y) \cdot W \cdot x^{T}$$

$$0 = x^{T} w^{T} x \beta - x^{T} w Y$$

$$x^{T} w^{T} x \beta = x^{T} w Y$$

$$\beta = (x^{T} w x)^{-1} (x^{T} w Y)$$

3)

Error on high crime rate group 0.309 = 0.05 0.161 ± 0.005 0.22 = 0.005 0.122 ± 0.0015 0.161 ± 0.005 0.22 = 0.0015 0.122 = 0.0015 0.161 ± 0.005 0.22 = 0.0015 0.161 ± 0.005 0.22 = 0.0015 0.161 ± 0.005 0.22 = 0.0015 0.161 ± 0.005 0.22 = 0.0015 0.161 ± 0.005	crior on all testing instances crior on high crime rate group crior on high crime rate group	0.139 ± 0.007 0.399 ± 0.039 0.122 ± 0.005	0.167±0.004 0.259±0.048 0.161±0.005	0.224 ± 0.007	1430
--	--	---	---	---------------	------

Instances in the High Crime Group = 64.85 \$ 65 # Instances in the Low Crime Group = 1429.15 \$ 1429