The Best Mask

You have an array of integers $a_0, a_1, \ldots, a_{n-1}$. Your task is to find an integer x such that the following are true:

- Bitwise AND between a_i and x is non-zero for each $0 \leq i < n$.
- ullet Number of ones in the binary expression of $oldsymbol{x}$ is minimum.
- ullet If there are many such $oldsymbol{x}$, you should find smallest of them.

For example, let's say the array is $\{1,2,3\}$. There are an infinite amount of integers that satisfies the first condition. First few of them are $3,7,11,15,\ldots$ etc. Among all the number that satisfies the first condition, 3 has the least amount of ones in the binary expression (binary representation of 3 is 11 which have just two ones). So the answer for this example is x=3.

Input Format

The first line contains single integer n, the number of elements in the array. The second line contains n space-separated integers $a_0, a_1, \ldots, a_{n-1}$.

Constraints

- $1 < n < 10^5$
- $1 \leq a_0, a_1, a_2, \ldots, a_{n-1} \leq 2^{26}$

Time limit

- C/C++/Pascal/Java/C#: 1s
- For other languages the time limit is standard

Output Format

Print a single integer, the value of \boldsymbol{x} .

Sample Input 0

3 123

Sample Output 0

3

Explanation 0

Explained in the problem statement.

Sample Input 1

10 1 2 4 8 16 32 64 256 512 128

Sample Output 1

1023

Sample Input 2

Sample Output 2

4