

Co-Regularized Deep Multi-Network Embedding

Jingchao Ni¹, Shiyu Chang², Xiao Liu³, Wei Cheng⁴, Haifeng Chen⁴, Dongkuan Xu¹, and Xiang Zhang¹

¹College of Information Sciences and Technology, Pennsylvania State University

²IBM Thomas J. Watson Research Center

³Department of Biomedical Engineering, Pennsylvania State University

⁴NEC Laboratories America

The Web Conference 2018

Information Networks Are Prevalent

Protein-protein-interaction network

Disease similarity network

Brain network

Network Embedding

Low-dimensional space

$$\mathsf{G} = [\vec{v}_1, \dots, \vec{v}_n]$$

Existing Methods

- DeepWalk [Perozzi et al., KDD'14]
- LINE [Tang, et al., WWW'15]
- GraRep [Cao et al., CIKM'15]
- Node2vec [Grover and Leskovec, KDD'16]
- DNGR [Cao et al., AAAI'16]

- Node Classification
- Node Clustering
- Anomaly Detection
- Link Prediction

•

• ...

Multi-Network Data

Social Domain

Case 1: multiple social networks

Common users: U1, U2, U3, ...

Unique users: U7, U8, ...

Case 2: inter-connected domain networks

Multi-Network Data

Scientific Domain

Case 1: gene co-expression networks from multiple tissues

Case 2: inter-connected medical networks

Multi-Network Embedding

Motivation

✓ Wide applications

✓ Complementary information

✓ Robustness

Multi-Network Embedding

Challenges

- Networks:
 - different sizes
- Cross-network relationships:
 - many-to-many
 - weighted
 - Incomplete

Both Case 1 & 2 can be represented by the general example.

Deep Multi-Network Embedding (DMNE)

Preliminary: Structural Context Extraction¹

Network Embedding: Deep Model^{1,2}

Reconstruction error

$$\min_{\{\mathbf{W}_{l}, \mathbf{b}_{l}\}_{l=1}^{L}} \left\| \mathbf{A} - \hat{\mathbf{A}} \right\|_{F}^{2} + \lambda \sum_{l=1}^{L} \left\| \mathbf{W}_{l} \right\|_{F}^{2}$$

Reconstruction of A

Activation function

$$f(\mathbf{x}) = \sigma(\mathbf{W}_l \mathbf{x} + \mathbf{b}_l)$$

- 1. S. Cao, W. Lu, and Q. Xu. Deep Neural Networks for Learning Graph Representations. In AAAI, 2016.
- 2. D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In KDD, 2016.

DMNE: Architecture

DMNE: Cross-Network Regularization

Method #1: Embedding Disagreement (ED)

Loss function
$$\min \left\| \mathbf{h}_{x}^{(1)} - \mathbf{h}_{x}^{(1 \to 2)} \right\|_{F}^{2} \quad \mathbf{h}_{x}^{(1 \to 2)} = \frac{\sum_{y} \mathbf{S}_{xy}^{(12)} \mathbf{h}_{y}^{(2)}}{\sum_{y} \mathbf{S}_{xy}^{(12)}}$$

Matrix form $L_{ED}^{(12)} = ||\mathbf{O}^{(12)}\mathbf{H}^{(1)} - \tilde{\mathbf{S}}^{(12)}\mathbf{H}^{(2)}||_F^2$

 $\mathbf{S}_{xy}^{(12)}$: link weight between node x and y

DMNE: Cross-Network Regularization

Method #1: Embedding Disagreement (ED)

If y_1 and y_2 are far from each other in Domain 2 mean (y_1, y_2) consistent embedding(x)

DMNE: Cross-Network Regularization

Method #2: Proximity Disagreement (PD)

Proximity between x and z

min
$$[(\mathbf{h}_{x}^{(1)})^{T} \mathbf{h}_{z}^{(1)} - (\mathbf{h}_{x}^{(1 \to 2)})^{T} \mathbf{h}_{z}^{(1 \to 2)}]^{2} \xrightarrow{\text{Matrix form}} L_{PD}^{(12)} = ||(\mathbf{O}^{(12)}\mathbf{H}^{(1)})^{T} (\mathbf{O}^{(12)}\mathbf{H}^{(1)}) - (\tilde{\mathbf{S}}^{(12)}\mathbf{H}^{(2)})^{T} (\tilde{\mathbf{S}}^{(12)}\mathbf{H}^{(2)})||_{F}^{2}$$

Dataset	#Networks	#Nodes	#Links	#CrossLinks	LabeledNet.	#Classes
6-NG	5	4,500	16,447	66,756	All	6
9-NG	5	6,750	24,778	100,585	All	9
DP-NET	2	13,583	51,918	2,107	Disease	18
DBIS	2	24,535	85,184	38,035	Collaboration	4
CiteSeer-M10	3	15,533	56,548	11,828	Collaboration	10

6-NG, 9-NG (Document Network)

- From 20-Newsgroup
- Edge weight: cosine similarity between *tf-idf* vectors
- Each network is a K-NN graph (k = 5)

Class Names^{3,4}

- **6-NG**: alt.atheism, comp.sys.mac.hardware, rec.motorcycles, rec.sport.hockey, soc.religion.christian, talk.religion.misc.
- **9-NG**: talk.politics.mideast, talk.politics.misc, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, sci.electronics, sci.crypt, sci.med, sci.space, misc.forsale.
- 3. F. Tian, B. Gao, Q. Cui, E. Chen, and T. Liu. Learning deep representations for graph clustering. In AAAI, 2014.
- 4. S. Cao, W. Lu, and Q. Xu. Deep Neural Networks for Learning Graph Representations. In AAAI, 2016.

Dataset	#Networks	#Nodes	#Links	#CrossLinks	LabeledNet.	#Classes
6-NG	5	4,500	16,447	66,756	All	6
9-NG	5	6,750	24,778	100,585	All	9
DP-NET	2	13,583	51,918	2,107	Disease	18
DBIS	2	24,535	85,184	38,035	Collaboration	4
CiteSeer-M10	3	15,533	56,548	11,828	Collaboration	10

- DP-NET (Disease-Protein Network)
 - A disease network: 5,080 nodes, 19,729 links
 - A protein interaction network: 8,503 nodes, 32,189 links
 - # Disease-Protein Links: 2,107 (many-to-many)

Dataset	#Networks	#Nodes	#Links	#CrossLinks	LabeledNet.	#Classes
6-NG	5	4,500	16,447	66,756	All	6
9-NG	5	6,750	24,778	100,585	All	9
DP-NET	2	13,583	51,918	2,107	Disease	18
DBIS	2	24,535	85,184	38,035	Collaboration	4
CiteSeer-M10	3	15,533	56,548	11,828	Collaboration	10

DBIS (Author-Paper Network)

- A collaborator network: 12,002 nodes, 37,587 links
- A paper similarity network: 12,533 nodes, 47,597 links
- # Author-Paper Links: 38,035 (many-to-many)

Dataset	#Networks	#Nodes	#Links	#CrossLinks	LabeledNet.	#Classes
6-NG	5	4,500	16,447	66,756	All	6
9-NG	5	6,750	24,778	100,585	All	9
DP-NET	2	13,583	51,918	2,107	Disease	18
DBIS	2	24,535	85,184	38,035	Collaboration	4
CiteSeer-M10	3	15,533	56,548	11,828	Collaboration	10

CiteSeer-M10 (Author-Paper-Paper Network)

- A collaborator network: 3,284 nodes, 13,781 links
- A paper similarity network: 10,214 nodes, 39,411 links
- A paper citation network: 2,035 nodes, 3,356 links
- # Author-Paper Links: 7,173 & 2,634 (many-to-many)
- # Paper-Paper Cross-Links: 2,021 (*one-to-one*)

Experiments: Multi-Label Classification

Dataset	#Networks	#Nodes	#Links	#CrossLinks	LabeledNet.	#Classes
6-NG	5	4,500	16,447	66,756	All	6
9-NG	5	6,750	24,778	100,585	All	9
DP-NET	2	13,583	51,918	2,107	Disease	18
DBIS	2	24,535	85,184	38,035	Collaboration	4
CiteSeer-M10	3	15,533	56,548	11,828	Collaboration	10

Compared Methods

- **LE**: Laplacian Eigenmaps [Belkin and Niyogi, Neural Comput.'03]
- **Spectral**: Spectral clustering [Shi and Malik, *TPAMI'00*]
- DeepWalk [Perozzi et al., KDD'14]
- **LINE** [Tang, et al., *WWW'15*]
- GraRep [Cao et al., CIKM'15]
- node2vec [Grover and Leskovec, KDD'16]
- DNGR [Cao et al., AAAI'16]
- AE: AutoEncoder [Hinton and Salakhutdinov, Science'06]

Experiments: Multi-Label Classification

Feed learned embeddings (100-D) to SVM⁵

- Evaluation Method: Micro-F1 Score (1st Row) & Macro-F1 Score (2nd Row)
- Setting: varying training ratio from 0.1 to 0.9

5. R., Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res., 2008.

Experiments: Visualization

- Dataset: the first network of 6-NG (6 classes)
- Method: use t-SNE⁶ to project all embeddings to a 2-D space

Experiments: Insights of Effectiveness

- Dataset: 6-NG
- Cross-network relationships -> 5 equal parts (20% each)
- Each time → add one part

Meaningful relationships

better performance

Conclusion

✓ Investigate a general multi-network embedding problem

✓ Propose effective algorithms: DMNE (ED) and DMNE (PD)

✓ Experimental evaluations

Thanks!