Total Error (contd.)

Recall Arithmetic Using n-Digit Rounding and Chopping

The computed value $\Pi(\Pi(x) \odot \Pi(y))$ involves an error which comprises of

- Error in $\Pi(x)$ and $\Pi(y)$ due to n-digit rounding or chopping.
- Error in $\Pi(\Pi(x) \odot \Pi(y))$ due to n-digit rounding or chopping.

The letter is defined as

$$(x \otimes y) - \Pi(\Pi(x) \otimes \Pi(y)) = [(x \otimes y) - (\Pi(x) \otimes \Pi(y))] + [(\Pi(x) \otimes \Pi(y)) - \Pi(\Pi(x) \otimes \Pi(y))]$$

in which the first term on the right hand side is called the propagated error and the second term is called the floating-point error.

Total Error (contd.)

Example:

Consider evaluating the integral

$$I_n = \int_0^1 \frac{x^n}{x+5} dx$$
, for $n = 0, 1, \dots, 20$.

The value of In can be obtained in two different iterative processes, namely,

•
$$l_n = \frac{1}{n} - 5l_{n-1}$$
, $l_0 = \ln(6/5)$ (called forward iteration) and

•
$$l_n = \frac{1}{n} - 5l_{n-1}$$
, $l_0 = \ln(6/5)$ (called forward iteration) and • $l_{n-1} = \frac{1}{5n} - \frac{1}{5}l_n$; $l_{50} = 0.54046330 \times 10^{-2}$ (called backward iteration).

Total Error (contd.)

Example: The following table shows the computed value of l_a using both iterative formulas along with the exact value. The numbers are rounded to 6-digits.

n	Forward Iteration	Back	ward Iteration	Exact Value
1	0.088392	THEFT	0.088392	0.088392
5	0.028468	1	0.028468	0.028468
10	0.015368		0.015368	0.015368
15	0.010522		0.010521	0.010521
20	0.004243		0.007998	0.007998
25	11.740469		0.006450	0.006450
30	-36668.803026		Not Computed	0.005405

Condition Number

For a given function $f: \mathbb{R} \to \mathbb{R}$, consider evaluating f(x) at an approximate value x_A rather than at x

The question is how well does $f(x_A)$ approximate f(x)?

Using the mean-value theorem, we get

$$\frac{f(x) - f(x_A) = f'(\xi)(x - x_A)}{\chi_A},$$
 where ξ is an unknown point between x and x_A .

where ξ is an unknown point between x and x_A . The relative error of f(x) with respect to $f(x_A)$ is given by

$$E_r(f(x_A)) = \frac{f'(\xi)}{f(x)}(x - x_A) = \left(\frac{f'(\xi)}{f(x)}x\right)E_r(x_A).$$

Since x_A and x are assumed to be very close to each other and ξ lies between x and x_A , we may make the approximation

$$f(x) - f(x_A) \approx f'(x)(x - x_A)$$
.

Using this, we have

$$E_{f}(f(x_{A})) \approx \left(\frac{f'(x)}{f(x)}x\right) E_{f}(x_{A}).$$

Definition (Condition number of a function)

The condition number of a continuously differentiable function f at a point x = c is given by

$$\frac{f'(c)}{f(c)}c$$

Definition (Well-Conditioned and III-Conditioned)

The process of evaluating a continuously differentiable function f at a point x = c is said to be well-conditioned if the condition number

$$\left|\frac{f'(c)}{f(c)}c\right|$$

at c is small.

The process of evaluating a function at x = c is said to be III-conditioned if it is not well-conditioned.

"How small the condition number should be?"

Example: Consider the function $f(x) = \sqrt{x}$, for all $x \in [0, \infty)$. Then

$$f'(x) = \frac{1}{2\sqrt{x}}$$
, for all $x \in [0, \infty)$.

The condition number of f is

$$\left|\frac{f'(x)}{f(x)}x\right|=\frac{1}{2}, \text{ for all } x\in[0,\infty).$$

Thus, we have

$$|E_r(f(x_A))| \approx \frac{1}{r} |E_r(x_A)|$$

Example: Consider the function

$$f(x) = \frac{10}{1-x^2}, \text{ for all } x \in \mathbb{R}.$$

Then $f'(x) = \frac{20x}{(1-x^2)^2}$, so that

$$\left|\frac{f'(x)}{f(x)}x\right| = \left|\frac{(20x/(1-x^2)^2)x}{10/(1-x^2)}\right| = \frac{2x^2}{|1-x^2|}$$

and this number can be quite large for |x| near 1.

Example: Consider the function

$$f(x) = \sqrt{x+1} - \sqrt{x}, \text{ for all } x \in (0, \infty).$$

For a sufficiently large x, the condition number of this function is

$$\left|\frac{f'(x)}{f(x)}x\right| = \frac{1}{2} \left|\frac{\left(\frac{1}{\sqrt{x+1}} - \frac{1}{\sqrt{x}}\right)}{\sqrt{x+1} - \sqrt{x}}x\right| = \frac{1}{2\sqrt{x+1}\sqrt{x}} \le \frac{1}{2}.$$

which is quite good.

Stable and Unstable Computations

Definition (Stability and Instability in Evaluating a Function)

Suppose there are n steps to evaluate a function f(x) at a point x = c. Then the total process of evaluating this function is said to have instability if atleast one of the n steps is ill-conditioned. If all the steps are well-conditioned, then the process is said to be stable.

Stable and Unstable Computations (contd.)

Let us analyze the computational process of the function

$$f(x) = \sqrt{x+1} - \sqrt{x}.$$

The computational process consists of the following four computational

$$f_{1}(1)=t-\lambda_{2}$$

$$f_{2}(1)=\frac{x_{0}+1}{\sqrt{x_{1}}}$$

$$f_{3}(1)=\frac{x_{0}+1}{\sqrt{x_{1}}}$$

$$f_{4}(1)=\frac{x_{1}+1}{\sqrt{x_{2}}}$$

$$f_{5}(1)=\frac{x_{1}+1}{\sqrt{x_{2}}}$$

$$f_{5}(1)=\frac{x_{2}+1}{\sqrt{x_{1}}}$$

$$f_{5}(1)=\frac{x_{2}+1}{\sqrt{x_{2}}}$$

$$f_{5}(1)=\frac{x_{3}+1}{\sqrt{x_{2}}}$$

$$f_{5}(1)=\frac{x_{3}+1}{\sqrt{x_{2}}}$$

Stable and Unstable Computations (contd.)

Now consider the last two steps where we already computed x2 and now going to compute x3 and finally evaluate the function

$$f_0(t) := x_2 - t$$

At this step, the condition number for fa is given by

$$\left|\frac{f_4(t)}{f_4(t)}t\right| = \left|\frac{t}{x_2-t}\right|.$$

Thus, 4 is ill-conditioned when t approaches x2.

Stable and Unstable Computations (contd.)

Let us rewrite the same function
$$f(x)$$
 as $\tilde{f}(x) = \frac{1}{\sqrt{x+1} + \sqrt{x}}$

Linear System: General Form

General form of a system of n linear equations in n variables is

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$

General Form of Linear System (contd.)

These equations can be written in the matrix notation as

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

The last equation is usually written in the following short form

$$Ax = b$$
.

where

- A stands for the $n \times n$ matrix with entries a_{ij} . $x = (x_1, x_2, \dots, x_n)^T$

General Form of Linear System (contd.)

Let us now state a result concerning the solvability of the system Ax = b.

Theorem

Let A be an $n \times n$ matrix and $b \in \mathbb{R}^n$. Then the following statements concerning the system of linear equations Ax = b are equivalent.

- \bigcirc det(A) $\neq 0$
- O For each right hand side vector b, the system Ax = b has a unique solution x
- O For b = 0, the only solution of the system Ax = b is x = 0.

Linear Systems: Naive Gaussian Elimination Method

Carl Friedrich Gauss (1777-1855) German mathematician

Consider the following system:

$$a_{11}x_{1} + a_{12}x_{2} + a_{13}x_{3} = b_{1}$$

 $a_{21}x_{1} + a_{22}x_{2} + a_{23}x_{3} = b_{2} \iff Upper triangular System$
 $a_{31}x_{1} + a_{32}x_{2} + a_{33}x_{3} = b_{3}$