APPLICATION DU 2^{EME} PRINCIPE DE LA THERMODYNAMIQUE A LA TRANSFORMATION CHIMIQUE

1. DEUXIEME PRINCIPE DE LA THERMODYNAMIQUE

C'est un principe qui rend compte de l'évolution des systèmes thermodynamiques.

1.1 Énoncé

Pour tout système isolé, il existe une fonction d'état extensive qui ne peut que croître. Cette grandeur, notée S est appelée *entropie*.

1.2 Expression différentielle

- Soit un système fermé en contact avec l'extérieur. La variation infinitésimale de l'entropie du système s'écrit comme la contribution de deux termes : $dS = \delta_e S + \delta_i S$.
- $\delta_e S$ est l'entropie d'échange, due à l'existence de transferts thermiques.
- $\delta_e S = \frac{\delta Q}{T_{ext}}$ où δQ est le transfert thermique reçu par le système et T_{ext} la température extérieure.
- $\delta_i S$ représente le terme de création d'entropie. Il est positif ou nul. Il traduit l'irréversibilité éventuelle de la transformation.

HERMOCHIMIE A CONTROL OF THE CONTROL

1.3 Calcul de la variation d'entropie.

 S est une fonction d'état, on calcule la variation d'entropie sur une transformation réversible associée menant du même état initial au même état final.

1.3.1 Transformation quelconque d'un gaz parfait.

• Considérons n moles d'un gaz parfait qui passent d'un état initial $E_i(P_i,V_i,T_i)$ à un état final $E_f(P_f,V_f,T_f)$. Pour une transformation réversible : $dS=\frac{\delta Q}{T}$ $(\delta S_i=0)$

- Avec les variables T et P : $\delta Q = nC_p dT V dP$
- $dS = nC_p \frac{dT}{T} nR \frac{dP}{P}$ pour un gaz parfait $V = nR \frac{T}{P}$ Soit en intégrant :

•
$$\Delta S = \int_{T_i}^{T_f} nC_p \frac{dT}{T} - nR \int_{P_i}^{P_f} \frac{dP}{P}$$

- Avec les variables T et V $\delta Q = nC_v dT + P dV$
- $dS = nC_v \frac{dT}{T} + nR \frac{dV}{V}$ pour un gaz parfait $P = nR \frac{T}{V}$
- $\Delta S = \int_{T_i}^{T_f} nC_v \frac{dT}{T} + nR \int_{V_i}^{V_f} \frac{dV}{V}$

1.3.2 Cas des corps condensés

• Pour un corps condensé sans changement de phase, le comportement est peu influencé par la variation de pression ;

$$dS = nC_p \frac{dT}{T}$$

$$\Delta S = \int_{T_i}^{T_f} nC_p \frac{dT}{T}$$

- Avec changement de phase : La température est constante et
- $Q_p = \Delta_{chang} H = \Delta H$
- $\Delta S = \frac{1}{T} \int_{i}^{f} \delta Q_{p} = \frac{Q_{p}}{T} = \frac{\Delta H}{T}$
- exemple: $\Delta_{vap} S_m^0(H_2O) = \frac{\Delta_{vap} H_{m(H_2O)}^0}{T_{vap}(H_2O)}$

Exercice d'application :

- On étudie l'échauffement de 10 mol d'eau liquide de t_1 = 10°C à t_2 = 80°C sous la pression atmosphérique.
- Calculer la variation d'enthalpie puis de l'entropie de ce système.
- Donnée : C_m =75.2J/K/mol.
- $dH = nC_m dT$ et $dS = nC_m \frac{dT}{T}$
- $\Delta H = nC_m(T_2 T_1) = 10 * 75.2 * (80 10) = 52.6 \text{ kJ}$
- $\Delta S = nC_m ln \frac{T_2}{T_1} = 10 * 75.2 * ln \frac{273+80}{273+10} = 166 J.K^{-1}$

- On étudie l'échauffement de 10 mol de dioxygène gazeux de $t_1 = 10^{\circ}$ C à $t_2 = 80^{\circ}$ C sous la pression atmosphérique.
- Calculer la variation d'enthalpie puis de l'entropie de ce gaz supposé parfait.
- Donnée : $C_{Pm} = 31.5 + 3.40.10^{-3}T (J.K^{-1}.mol^{-1})$
- $dH = nC_{Pm}dT$ et $dS = nC_{Pm}\frac{dT}{T}$
- $\Delta H = n \left(31,5(T_2 T_1) + 0.5 * 3,40.10^{-3}(T_2^2 T_1^2) \right) = 22.8 \, kJ$

•
$$\Delta S = n \left(31.5 * ln \frac{T_2}{T_1} + 3.40.10^{-3} (T_2 - T_1) \right) = 72 J. K^{-1}$$

2. TROISIEME PRINCIPE DE LA THERMODYNAMIQUE

•

2.1 Énoncé

• L'entropie de tout corps pur parfaitement cristallisé est nulle au 0 absolu (0 K)

•
$$\lim_{T\to 0} \left(Scr(T)\right) = 0$$

•

2.2 Entropie molaire d'un corps pur

• Sachant que l'entropie molaire de tout corps pur est nulle à 0 K on peut en déduire l'entropie molaire de tout corps pur à n'importe quelle température :

•
$$S_m^0(T) - S_m^0(0) = \int_0^T \frac{\delta Q}{T}$$

• Les tables thermodynamiques donnent les valeurs des entropies molaires à 298 K.

RMOCHIMIE

2.3 Entropie standard de réaction

2.3.1 Définition

- Pour une équation bilan donnée, l'entropie standard de réaction est définie par :
- $\Delta_r S^0(T) = (\frac{\partial S^0}{\partial \xi})_{T,P} = \sum \nu_i \, s_i^0 \, et \, s'exprime \, en \, JK^{-1}mol^{-1}.$
- S_i^0 : entropie molaire standard du constituant i.
- $\Delta_r S^0$ ne dépend que de la température et de l'écriture de l'équation bilan.
- Le signe de $\Delta_r S^0$ dépend du signe de $\sum \nu_{i,g}$

- Considérons la réaction $C_{(s)}+O_{2(g)}\to CO_{2(g)}$ $\sum \nu_{i,g}=0$ L'entropie standard de réaction est nulle
- Considérons la réaction $C_{(s)} + \frac{1}{2} O_{2(g)} \to C O_{(g)} \sum \nu_{i,g} = \frac{1}{2}$

L'entropie standard de réaction est positive, le nombre de moles de gaz augmente, le désordre augmente.

Considérons la réaction
$$CO_{(g)}+\frac{1}{2}O_{2(g)}\to CO_{2(g)}$$
 $\sum \nu_{i,g}=-\frac{1}{2}$

L'entropie standard de réaction est négative, le nombre de moles de gaz diminue, le désordre diminue.

Soit un système homogène gazeux de quantité de matière

$$n = \sum n_i = \sum n_{i,0} + \nu_i \xi$$

$$\Delta_r n = \left(\frac{\partial n}{\partial \xi}\right)_{T,P} = \frac{dn}{d\xi} = \sum \nu_i$$

Pour un système hétérogène on sera amené à considérer la variation des seules quantités gazeuses.

$$\Delta_r n_g = \sum \nu_{i,g}$$

Exemple: Considérons la réaction dont le bilan s'écrit:

$$H_{2(g)} + 1/2 O_{2(g)} \rightarrow H_2 O_{(l)}$$

Calculer l'entropie standard de cette réaction à 25°C. On donne :

	$H_{2(g)}$	$O_{2(g)}$	$H_2O_{(l)}$
$S^0 \ en \ J.K^{-1}.mol^{-1}$	130,6	205,0	69,6

2.3.2 Influence de la température

$$\bullet \frac{d\Delta_r S^0(T)}{dT} = \frac{d}{dT} \left(\sum \nu_i \, s_i^0 \right) = \sum \nu_i \, \frac{ds_i^0}{dT} = \sum \nu_i \, \frac{C_{p,i}^0}{T} = \frac{1}{T} \Delta_r C_P^0$$

• Connaissant la valeur de $\Delta_r S^0$ à la température T_1 , on pourra déduire $\Delta_r S^0$ à la température T_2 en intégrant l'expression précédente :

• Exemple : Calculer l'entropie standard de la réaction précédente à 75°C.

	$H_{2(g)}$	$O_{2(g)}$	$H_2O_{(l)}$
C_p^0 en J. K^{-1} . mol^{-1}	27,3	30,0	75,3

3. ENTHALPIE LIBRE

3.1 Définition

- L'enthalpie libre ou fonction de Gibbs, notée G, est une grandeur extensive définie par :
- G = H TS = U + PV TS

•

3.2 Expression différentielle

- dG = dH TdS SdT = dU + VdP + PdV TdS SdT
- $dG = \delta Q PdV + VdP + PdV TdS SdT = \delta Q + VdP TdS SdT$
- Pour une transformation réversible : $\delta Q = TdS \rightarrow dG = VdP SdT$
- Pour une transformation irréversible : $\delta Q \leq TdS \rightarrow dG \leq VdP SdT$

3.3 Potentiel chimique 3.3.1 Définition

• Le potentiel chimique d'un corps pur, constituant physicochimique unique du système étudié, est défini comme la dérivée partielle de la fonction enthalpie libre de ce corps pur, relativement à la quantité de matière de celui-ci, quand la fonction G est exprimée dans ses variables canoniques (T, P, n).

$$\bullet \mu = (\frac{\partial G}{\partial n})_{T,P} = G_m$$

3.3.2 Potentiel chimique dans un mélange

• Le potentiel chimique $\mu_i(T,P,n_1,n_2,\dots,n_k)$ d'une espèce i dans un mélange est son enthalpie libre molaire partielle :

$$\mu_i(T, P, n_1, n_2, \dots, n_k) = \left(\frac{\partial G}{\partial n_i}\right)_{T, P, n_{j \neq i}}.$$

- Soit un système composé de n_1 de l'espèce X_1, n_2 de l'espèce X_2, \ldots, n_k de l'espèce X_k .
- L'enthalpie libre du système peut dépendre à priori de T, P et de la composition du milieu :
- $G = G(T, P, n_1, n_2, \dots, n_k)$ et sa différentielle s'écrit :

•
$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,ni} dT + \left(\frac{\partial G}{\partial P}\right)_{T,ni} dP + \sum \left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_{j\neq i}} dni$$

•
$$dG = -SdT + VdP + \sum_{i=1}^{k} \mu_i dn_i$$

3.3.3 Dérivées premières du potentiel chimique

- Considérons l'expression de la différentielle de l'enthalpie libre pour un corps pur :
- $dG = -SdT + VdP + \mu dni$
- G est une fonction d'état ; dG est une différentielle totale et l'application du théorème de Schwarz (égalité des dérivées croisées) conduit aux relations suivantes:

•
$$(\frac{\partial \mu}{\partial T})_{P,n} = -(\frac{\partial S}{\partial n})_{T,P}$$
 et $(\frac{\partial \mu}{\partial P})_{T,n} = (\frac{\partial V}{\partial n})_{T,P}$

- S et V étant deux grandeurs extensives, nous avons: $S = nS_m$ et $V = nV_m$
- S_m : Entropie molaire
- V_m : Volume molaire
- On a donc

$$\cdot (\frac{\partial \mu}{\partial P})_{T,n} = (\frac{\partial V}{\partial n})_{T,P} = V_m$$

3.3.4 Expression du potentiel chimique

3.3.4.1 Pour un gaz parfait pur

•
$$(\frac{\partial \mu}{\partial P})_T = V_m \to d\mu = V_m dP = RT \frac{dP}{P}$$
 soit en intégrant :

• En posant $\frac{P}{P^0} = a$: activité du gaz parfait; on a

$$\bullet \mu(T,P) = \mu^0(T,P) + RTLn(a)$$

3.3.4.2 Gaz parfait dans un mélange

- Soit un gaz parfait i. on a $(\frac{\partial \mu_i}{\partial P})_T = V_{m,i} \to d\mu_i = V_{m,i} dP = RT \frac{dP}{P_i}$
- $\mu_i(T, P) = \mu_i^{\ 0}(T, P) + RTLn\frac{P_i}{P^0}$
- On pose $x_i = \frac{P_i}{P}$: la fraction molaire et P_i : la pression partielle du gaz i.
- $\mu_i(T, P) = \mu_i^{\ 0}(T, P) + RTLn\frac{Px_i}{P^0} = \mu_i^{\ 0}(T, P) + RTLn\frac{P}{P^0} + RTLn(x_i)$
- $\mu_i(T, P) = \mu_i^*(T, P) + RT Ln(x_i)$

avec
$$\mu_i^* = \mu_i^{\ 0}(T,P) + RTLn\frac{P}{P^0}$$

3.3.4.3 Gaz réel

- Plusieurs données expérimentales montrent que de nombreux gaz, dans certaines conditions, en particulier aux pressions élevées et à basse température, ne se comportent pas comme des gaz parfaits. Cela est dû à l'existence de forces intermoléculaires à longues portées (force de Van Der Waals).
- Le potentiel chimique d'un gaz réel s'exprime par la relation :
- $\mu(T,P) = \mu^0 + RTLn(\frac{f}{P^0})$
- Où f(T,P) est une fonction de la température et de la pression, appelée **fugacité** et homogène à une pression. A toute température f(T,P) est équivalente à P lorsque P tend vers 0.
- On introduit éventuellement le coefficient γ , appelé coefficient de fugacité, défini par :
- $\gamma = \frac{f}{P}$. Il traduit l'écart au comportement de gaz parfait.

3.4.4.4 Solide ou liquide pur

- •Par analogie avec le gaz parfait, on définit le potentiel chimique d'un corps pur en phase condensée par : $\mu(T,P) = \mu^0 + RTLn(a)$
- a : Activité du corps pur.
- •On admet que pour un solide ou un liquide pur, a=1
- $\cdot \mu(T,P) = \mu^0$

ERMOCHIME 23

3.4.4.5 Potentiel chimique d'un mélange idéal

- Il s'agit de cas de liquides (ou solides) parfaitement miscibles et dont les structures sont très voisines
- En phase condensée, le potentiel chimique d'un constituant i du mélange s'écrit :
- $\mu_i(T, P) = \mu_i^*(T, P) + RT Ln(a_i)$ où a_i est l'activité du constituant i.
- Pour un mélange idéal, $\mu_i(T,P) = \mu_i^*(T,P) + RT Ln(x_i)$. Comme $\mu_i^*(T,P) \cong \mu_i^0(T)$, le potentiel chimique du constituant i s'écrit finalement
- $\mu_i(T, P) = \mu_i^0(T, P) + RT Ln(x_i)$

3.3.4.6 Potentiel chimique dans une solution idéale

- · L'activité du solvant est toujours égale à 1;
- $\mu_{solv} = \mu_{solv}^0$
- Pour un soluté i : $\mu_i(T,P) = \mu_i^0(T,P) + RT Ln\left(\frac{c_i}{c^0}\right)$ où c_i est la concentration molaire du soluté i et c^0 la concentration de référence prise par convention égale à $1 \ mol. \ L^{-1}$.

Exercice d'application :

- On considère le système constitué par une mol de dioxygène gazeux sous T, P=P⁰ plus x mol de carbone solide.
- Il se produit la réaction isobare, isotherme (T, P=P⁰) supposée totale (on suppose x<1) : $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$
- Exprimer l'enthalpie libre du système à l'état initial
- Exprimer l'enthalpie libre du système à l'état final puis la variation de l'enthalpie libre ΔG en fonction de μ_i^0 , T et x.
- En déduire la variation d'entropie du système.

3.4 Enthalpie libre de réaction

•

3.4.1 Définition

•
$$\Delta_{\mathsf{r}}\mathsf{G}$$
 (T, p, ξ) = $(\frac{\partial G(T,P,\xi)}{\partial \xi})_{\mathsf{T},\,\mathsf{p}}$ or $dG = -SdT + VdP + \sum_{i=1}^{k} \mu_i \, dn_i$

•
$$dG = -SdT + VdP + \sum_{i=1}^{k} \mu_i \nu_i d\xi$$

•
$$\Delta_{r}G$$
 (T, p, ξ) = $\sum \nu_{i}\mu_{i}(T, P, \xi)$

• Pour les grandeurs standards :

•
$$\Delta_{r}G^{\circ}$$
 (T) = $(\frac{\partial G^{\circ}}{\partial \xi})_{T,p} = \sum_{i} \nu_{i} \mu_{i}^{0}$ (T) = $\sum_{i} \nu_{i} \Delta_{f} G^{0}$

3.4.2 Influence de la température

$$\frac{d}{dT} \left(\Delta_r G^{\circ} \left(T \right) \right) = -\Delta_r S^{0}$$

3.4.3 Détermination de $\Delta_r G^0$

•

3.4.3.1 $\Delta_r H^0(T)$ et $\Delta_r S^0(T)$ sont connues

•
$$G = H - TS$$
, $donc G^0 = H^0 - TS^0$.

• En dérivant cette expression par rapport à ξ à T constant on a : $(\frac{\partial G^0}{\partial \xi})_T = (\frac{\partial H^0}{\partial \xi})_T - T(\frac{\partial S^0}{\partial \xi})_T$ d'où

3.4.3.2 $\Delta_r G^0(T_0)$ et $\Delta_r S^0(T)$ sont connues

•
$$\frac{d}{dT} \left(\Delta_r G^{\circ} \left(T \right) \right) = -\Delta_r S^0$$
 ; ce qui implique que :

•
$$\int d\left(\Delta_r G^{\circ}(T)\right) = -\int \Delta_r S^0 dT$$
; soit

3.4.3.3 $\Delta_r G^0(T_0)$ et $\Delta_r H^0(T)$ sont connues

• G =H – TS
$$\Rightarrow$$
 H = G+TS = G – T($\frac{\partial G}{\partial T}$)_p

•
$$-\frac{H}{T^2} = -\frac{G}{T^2} + \frac{1}{T} \left(\frac{\partial G}{\partial T}\right)_p = \left(\frac{\partial \left(\frac{G}{T}\right)}{\partial T}\right)_p$$

• -
$$\frac{H}{T^2}$$
 = $(\frac{\partial (\frac{G}{T})}{\partial T})_p$: Relation de Gibbs-Helmholtz

• En dérivant cette relation par rapport à ξ à T constant, on a :

•
$$\left(\frac{\partial}{\partial \xi} \left(-\frac{H^0}{T^2}\right)\right)_T = \left(\frac{\partial}{\partial \xi} \left(\frac{\partial \left(\frac{G^0}{T}\right)}{\partial T}\right)\right)_T = \frac{d}{dT} \left(\frac{1}{T} \frac{\partial G^0}{\partial \xi}\right) = \frac{d}{dT} \left(\frac{1}{T} \Delta_r G^0(T)\right)$$

$$\bullet - \frac{\Delta_r H^0}{T^2} = \frac{d}{dT} \left(\frac{1}{T} \Delta_r G^0(T) \right)$$

- Connaissant les valeurs de $\Delta_r G^0$ et de $\Delta_r H^0$ pour une température donnée, on peut en déduire, par intégration, la valeur de $\Delta_r G^0$ à toute autre température.
- Exercice d'application
- Soit la réaction en phase gazeuse : $O_2 + 4 \ HCl \rightarrow 2 \ H_2O + 2 \ Cl_2$
- Réaction exothermique à 298 K : $\Delta_r H^0 = -114 \ kJ . \ mol^{-1}$
- Calculer l'enthalpie molaire standard de formation de HCl.
- Calculer $\Delta_r G^0(298 \ K)$ puis exprimer $\Delta_r G^0(T)$
- Calculer la température d'inversion T_i pour laquelle $\Delta_r G^0(T_i) = 0$
- Données à 25°C
- $\Delta_f H^0 \ en \ kJ. \ mol^{-1} \ H_2O: -242$
- $\Delta_f G^0$ en kJ.mol⁻¹ HCl: -93.3; H_2O : -229

- On étudie la réaction suivante dans l'intervalle de température de 300K à 1800 K, Dans cet intervalle seul le magnésium se liquéfie puis se vaporise: $2Mg + O_2 \rightarrow 2MgO_{(s)}$
- a) Etablir l'expression de l'enthalpie libre standard de cette réaction en fonction de la température,
- Données à 298 K: $S_m^0=32,7;205;26,9~pour~Mg_{(s)},O_{2(g)}~et~MgO_{(s)}$ en $J~K^{-1}mol^{-1};\Delta_f H^0(MgO_{(s)})=-601,7~kJ.mol^{-1}$
- $Mg: T_f = 649^{\circ}C; T_E = 1090^{\circ}C; \Delta_{fus}H^0 = 9.2 \text{ kJ. } mol^{-1};$
- $\Delta_{vap}H^0 = 131,8 \, kJ. \, mol^{-1}$
- b)Tracer la courbe $\Delta_r G^0(T)=f(T)$