

Mecánica de los Sólidos 2020 Profesor Titular Daniel Millán JTP Eduardo Rodríguez

Actividad de Evaluación Continua 0

Se deben enviar por email las capturas de la resolución, contenidas en un archivo "nombre.zip", a la cuenta dmillan@fcai.uncu.edu.ar indicando en el asunbto "MecaSol2020 – Actividad 0".

Fecha de entrega, hasta las 9:00hs del día martes 11 de agosto de 2020.

Ejercicio 1.

Considere un tobogán, tal que su curva central es una espiral circular. El tobagán posee una separación h entre pasos y un radio R a la curva media. Se desea que al arrojar una masa m con velocidad inicial v_0 (perfectamente alineada con la tangente), desde la parte superior, ésta se deslice a velocidad constante y siga la hélice central. Considere que el coeficiente dinámico de fricción entre la masa y el tobogán es μ_d .

- 1. ¿Qué inclinación debe tener la sección transversal z-r del tobogán, para que una partícula m no se deslice fuera de la curva central? (peralte)
- 2. ¿Qué inclinación deberá tener la sección transversal z- θ ?
- 3. Describa la normal al plano sobre el que se apoya la masa en cada instante de tiempo.
- 4. ¿Qué distancia recorre la partícula en cada vuelta?
- 5. Describa la superficie del tobogán de forma paramétrica.

Ejercicio 2.

En una fábrica donde se procesa madera se desea construir un mecanismo pasivo, el cual debe permitir deslizar cubos de madera de 5 kg (± 200 g) entre dos secciones separadas por 5 m de altura y en un área de trabajo máxima de 10 m². Por aspectos de lay - out se debe ubicar la salida a 90° de la cinta transportadora de la que se tomarían los cubos, la cual opera a 0.5 m/s.

Basado en la idea presentada en el problema anterior ud. decide evaluar si es factible resolver esto mediante un tobogán, el cual puede ser construido/reparado/mantenido sin mayores inconvenientes en el taller de la empresa tanto de acero o de fibra de vidrio.

- 1. Dimensione el tobogán tal de disminuir el contacto del bloque de madera con las guías laterales durante su trayecto.
- 2. ¿Qué carga debe soportar la estructura si se contabiliza un cubo por segundo?
- 3. Determine el momento máximo respecto al centro del tobogán.
- 4. Considere una propuesta a implementar en el tramo final (cuarto de giro), de cara a expulsar los cubos de la forma más ordenada posible y que evite un abotellamiento, y obviamente fomente su promoción en la empresa.

- 5. ¿Sería más efectivo un tobogán construido como una canasta de barras de acero, tal que por su interior se desplacen los cubos de madera? Discuta y fundamente su respuesta.
- 6. Concluya su análisis con una recomendación sobre si es factible construir un tobogán como mecanismo pasivo, en caso de descartar el tobogán contemple, describa y analice otra propuesta de mecanismo pasivo. ¿Es posible que se deba descartar un menanismo pasivo y se deba incurrir en una solución menos rentable?