

BCC 362 – Sistemas Distribuídos

Joubert de Castro Lima – joubertlima@gmail.com Professor Adjunto – DECOM

UFOP

SISTEMAS DISTRIBUÍDOS

Facilitar aos usuários e as aplicações o acesso a recursos remotos

Vamos falar mais de hardware.....

Vamos falar mais de sistemas operacionais

Hardware Concepts

Different basic organizations and memories in distributed computer systems

•Multiprocessors (1)

A bus-based multiprocessor.

•Multiprocessors (2)

- a) A crossbar switch
- An omega switching network

Homogeneous Multicomputer Systems

- a) Grid
- b) Hypercube

Software Concepts

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi- processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

- An overview of
- DOS (Distributed Operating Systems)
- NOS (Network Operating Systems)
- Middleware

Uniprocessor Operating Systems

 Separating applications from operating system code through a microkernel.

Multiprocessor Operating Systems

- Multiprocessor operating systems aim to support high performance through multiple CPU.
- The main goal is to make the number of CPUs transparent to the application.
- The idea is that all communication is done by manipulating data at shared memory location, and that we only have to protect that against simultaneous access.

Multicomputer Operating Systems

Distributed Shared Memory Systems

Pages of addressspace distributedamong four machines

Situation after CPU 1 references page 10

 Situation if page 10 is read only and replication is used

Network Operating System

 General structure of a network operating system. It provides facilities to allow users to make use of services available in a specific machine.

Positioning Middleware

General structure of a distributed system as middleware offering a higher level of abstraction. A important goal is to hide heterogeneity of the underlying platforms applications. Comparison between Systems

Thom	Distributed OS		Network	Middleware-	
Item	Multiproc.	Multicomp.	os	based OS	
Degree of transparency	Very High	High	Low	High	
Same OS on all nodes	Yes	Yes	No	No	
Number of copies of OS	1	N	N	N	
Basis for communication	Shared memory	Messages	Files	Model specific	
Resource management	Global, central	Global, distributed	Per node	Per node	
Scalability	No	Moderately	Yes	Varies	
Openness	Closed	Closed	Open	Open	

 A comparison between multiprocessor operating systems, multicomputer operating systems, network operating systems, and middleware based distributed systems.

FRISANDO NOVAMENTE.....

Main goals of a distributed system:

to connect users to resources;

to be open; to hide the distribution;
and to be scalable

Seja implementando novos SOs ou construindo Middlewares devemos satisfazer os objetivos impostos.....

RECURSOS ???

Um sistema distribuído TRANSPARENTE

Transparência de acesso

Transparência de localização

Transparência de migração

Transparência de relocação

Transparência de replicação

Transparência de concorrência

Transparência à falha

UFA !!!!!

GRAU DE TRANSPARÊNCIA

Dependendo do problema, não é interessante ou nem possível ocultar que o sistema é transparente.

O grau de transparência está ligado ao desempenho do sistema.

Um exemplo:

Nem sempre compensa manter a transparência na distribuição

ABERTURA

O MUNDO É HETEROGÊNEO

O SETOR DE TI NÃO É DIFERENTE

Interoperabilidade

Portabilidade

Escalabilidade

Em relação ao seu tamanho, em relação a sua geografia e, por fim, em relação a sua administração

Ser escalável em uma ou mais dimensões acima pode implicar em perda de desempenho também!!!

Vamos aos detalhes....

Ser escalável em relação ao tamanho

É fácil adicionarmos mais usuários ou recursos ao sistema

Serviços centralizados Dados centralizados Algoritmos centralizados

Nenhuma máquina tem informações completas do sistema
As decisões tomadas usam informações locais
A falha de uma máquina não arruína o algoritmo
Não existe um relógio global

Escalabilidade geográfica

Mensagens síncronas e longas distâncias um problemão!!!!

Atrapalha a escalabilidade de tamanho

Longas distâncias => comunicação não confiável e quase sempre ponto a ponto

Localização de um serviço: Imagine um broadcast num sistema distribuído mundialmente

Técnicas de escalabilidade

Ocultar a latência de comunicação

Distribuição

Replicação

Ocultar a latência de comunicação

Usar quando possível mensagens assíncronas

AGRUPAR QUANDO POSSÍVEL

Distribuição

Distribuição

Model= "civic" AND Year= "2001" AND (Color= "green" OR Color= "white")

Figure 3.2 The different tables and their dependencies in a query processing operation.

Replicação

Ciladas

- I. A rede é confiável
- II. A rede é segura
- III. A rede é homogênea
- IV. A topologia não muda
- V. A latência é zero
- VI.A largura de banda é infinita
- VII. O custo de transporte é zero
- VIII. Há só um administrador

Cluster versus Grid Computing

Sistemas de computação de cluster (algumas APIs já fazem parte do serviço). Normalmente, arquitetura mestre-escravo, podendo garantir serviços como balanceamento, segurança, Tolerância a falhas, migração de código, entre outros....

Sistemas de computação em grade: normalmente, os computadores são organizados em federações com domínios distintos, equipamento distintos, política de segurança distintas, entre outras...

Note que CLUSTER = HOMOGENEIDADE GRADE = HETEROGENEIDADE

Sistemas distribuídos pervasivos

Adotar mudanças contextuais Incentivar a composição ad hoc Reconhecer compartilhamento como padrão

BODY AREA NETWORK

SENSORES Video Camera △ Infrared Camera Microphones

Cloud Computing

