T.	TD /	Period·
Vame:	Date	Portod:

Rotational Motion Equations

ame:		Date:	Period:
linear/trans	lational	rotational/angular	`bridge'
			$\ell=r\theta$
$v \equiv \frac{\Delta}{\Delta}$	$\frac{x}{t}$	$\omega \equiv rac{\Delta heta}{\Delta t}$	$v = r\omega$
$a \equiv \frac{\Delta}{\Delta}$	$\frac{v}{t}$	$\alpha \equiv \frac{\Delta\omega}{\Delta t}$	$a_T = r\alpha$
			$a_C = a_R = \omega^2 r$
F = n	na	$\tau = I\alpha$	$ au \equiv r F_{\perp}$
$W \equiv F$	$\Gamma_{ }d$	$W_r = \tau \Delta \theta$	
$KE_t = \frac{1}{2}$	mv^2	$KE_r = \frac{1}{2}I\omega^2$	
PE = r	igy		
p = m	v	$L=I\omega$	

$v = v_0 + at$	$\omega = \omega_0 + \alpha t$	"Old Faithful"
$x = x_0 + v_0 t + \frac{1}{2}at^2$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	"The Big Chalupa"
$v^2 = v_0^2 + 2a(x - x_0)$	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	"Ain't Got No Time"

$$I \equiv mr^2$$

$$I_{\rm hoop} = MR^2 \qquad I_{\rm disc} = \frac{1}{2}MR^2 \qquad I_{\rm sphere} = \frac{2}{5}MR^2$$