

FCC PART 15 SUBPART C TEST REPORT

FCC Part 15C

Report Reference No..... CTL1412153026-WF

Compiled by

(position+printed name+signature)..: File administrators Happy Guo

Name of the organization performing

the tests

Test Engineer Happy Guo

(position+printed name+signature)..:

Approved by

(position+printed name+signature)..: Manager Tracy Qi

Jan. 21, 2015

Date of issue....:

Test Firm....: Shenzhen CTL Testing Technology Co., Ltd.

Address....: Floor 1-A, Baisha Technology Park, No.3011, Shahexi Road,

Nanshan District, Shenzhen, China 518055

Applicant's name..... **ID Innovations**

Address....: 21 Sedges Grove, Canning Vale, WA6155, Australia

Test specification:

FCC Part 15C Standard: Master TRF..... Dated 2011-01

Shenzhen CTL Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTL Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTL Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: RFID reader

2ADZBID-2 FCC ID.....:

Trade Mark: **ID** innovations

ID-2, ID-3, ID-12, ID-20(UP, USB, SA, HE, ISO, LP, Arduino Model/Type reference....:

compatible), ID-3LA, ID-12LA, ID-20LA(UP, USB, SA, HE, ISO, LP,

Arduino compatible), ID-20WRLF, MF

Transmit Frequency.....: 125KHz

Number of channels:

Antenna type: Coil antenna

Result....: **Positive**

TEST REPORT

Tost Poport No.:	CTL1412153026-WF	Jan. 21, 2015
Test Report No. :	C1L1412155020-VVF	Date of issue

Equipment under Test : RFID reader

Type / Model(s) : ID-2

Listed Modes ID-3, ID-12, ID-20(UP, USB, SA, HE, ISO, LP, Arduino compatible), ID-

3LA, ID-12LA, ID-20LA(UP, USB, SA, HE, ISO, LP, Arduino compatible),

Report No.: CTL1412153026-WF

ID-20WRLF, MF

Difference Description Only the model's name is different

Applicant : ID Innovations

Address : 21 Sedges Grove, Canning Vale, WA6155, Australia

Manufacturer : ID Innovations

Address : 21 Sedges Grove, Canning Vale, WA6155, Australia

Test Result according to the standards on page 4:	
---	--

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

Report No.: CTL1412153026-WF

<u>1.</u>	TEST STANDARDS	4
<u>2.</u>	SUMMARY	<u> 5</u>
2.1.	General Remarks	5
2.2.	Equipment Under Test	5
2.3.	Short description of the Equipment under Test (EUT)	5
2.4.	EUT operation mode	5
2.5.	EUT configuration	5
2.6.	Related Submittal(s) / Grant (s)	5
2.7.	Modifications	5
2.8.	Summary of Test Results	6
<u>3.</u>	TEST ENVIRONMENT	7
<u> </u>	47:	
	WILL TIP	_
3.1.	Address of the test laboratory	7
3.2.	Test Facility	7
3.3.	Environmental conditions	7
3.4.	Statement of the measurement uncertainty	7
3.5.	Equipments Used during the Test	8
<u>4.</u>	TEST CONDITIONS AND RESULTS	<u> 9</u>
4.4	AC Power Conducted Emission	0
4.1. 4.2.	Radiated Emission	9 12
4.2. 4.3.	Occupied Bandwidth	17
4.3.	Occupied Balldwidth	17
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	18
•		
<u>6.</u>	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	1 <u>9</u>

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.207,15.209, 15.215(c)

ANSI C63.4-2009

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. The public notice DA 00-705 for frequency hopping spread spectrum systems shall be performed also.

V1.0 Page 5 of 21 Report No.: CTL1412153026-WF

2. <u>SUMMAR</u>Y

2.1. General Remarks

Date of receipt of test sample	:	Dec. 22, 2014
Testing commenced on	:	Dec. 22, 2014
Testing concluded on	:	Jan. 20, 2015

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
	500	0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	ow	

DC 2.8V

2.3. Short description of the Equipment under Test (EUT)

A RFID reader work frequency range 125KHz.
For more details, refer to the user's manual of the EUT Serial number: Prototype

2.4. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting mode for testing.

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

0	Test PCB	Manufacturer :	ID Innovations
		Model No. :	
0	AC adapter	Manufacturer :	KVD
	FCC VOC APPROVED	Model No. :	SA/6PA/06FEU050100

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID**: 2ADZBID-2 filing to comply with the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

2.8. Summary of Test Results

The EUT is a Cat® wireless charging Pad, The functions of the EUT listed as below:

	Test Standards	Test Result
Electric Field Radiated Emissions	FCC Part 15 Subpart C (Section15.209)	PASS
20dB Bandwidth	FCC Part 15 Subpart C (Section15.215(c))	PASS
Conducted Emissions	FCC Part 15 Subpart C (Section15.207)	PASS

Remark: The measurement uncertainty is not included in the test result.

V1.0 Page 7 of 21 Report No.: CTL1412153026-WF

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China

There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December 19, 2013.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for CTL laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10dB	(1)
Radiated Emission	Above 1GHz	4.32dB	(1)
Conducted Disturbance	0.15~30MHz	3.20dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.5. Equipments Used during the Test

Test Equipment	Manufacturer	Manufacturer Model No. Serial No.		Calibration Date	Calibration Due Date
Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2014/07/12	2015/07/11
EMI Test Receiver	R&S	ESCI	103710	2014/07/10	2015/07/09
Spectrum Analyzer	Agilent	E4407B	MY45108355	2014/07/06	2015/07/05
Controller	EM Electronics	Controller EM 1000	N/A	2014/07/06	2015/07/05
Horn Antenna	Sunol Sciences Corp.	DRH-118	A062013	2014/07/12	2015/07/11
Horn Antenna	SCHWARZBECK	BBHA9170	1562	2014/07/12	2015/07/11
Active Loop Antenna	SCHWARZBECK	FMZB1519	1519-037	2014/07/12	2015/07/11
LISN	R&S	ENV216	101316	2014/07/10	2015/07/09
LISN	SCHWARZBECK	NSLK8127	8127687	2014/07/10	2015/07/09
Microwave Preamplifier	HP th	8349B	3155A00882	2014/07/10	2015/07/09
Amplifier	HP	8447D	3113A07663	2014/07/10	2015/07/09
Transient Limiter	Com-Power	LIT-153	532226	2014/07/10	2015/07/09
Radio Communication Tester	R&S	CMU200	3655A03522	2014/07/06	2015/07/05
Temperature/Humidity Meter	zhicheng	ZC1-2	22522	2014/07/10	2015/07/09
SIGNAL GENERATOR	HP	8647A	3200A00852	2014/07/10	2015/07/09
Wideband Peak Power Meter	Anritsu	ML2495A	220.23.35	2014/07/06	2015/07/05
Climate Chamber	ESPEC	EL-10KA	A20120523	2014/07/06	2015/07/05
High-Pass Filter	K&L	9SH10- 2700/X12750 -O/O	1,00	2014/07/06	2015/07/05
High-Pass Filter	K&L	41H10- 1375/U12750 -O/O	schin	2014/07/06	2015/07/05

V1.0 Page 9 of 21 Report No.: CTL1412153026-WF

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2009
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009
- 4 The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.
 Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

- Fragueney	Maximum RF Line Voltage (dBμV)						
Frequency (MHz)	CLAS	S A	CLASS B				
(11112)	Q.P.		Q.P.	Ave.			
0.15 - 0.50	79	66	66-56*	56-46*			
0.50 - 5.00	73	60	56	46			
5.00 - 30.0	73	60	60	50			

^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL150120330_fin"

1/20/2015	5:03PM						
Frequenc	cy Level	Transd	Limit	Margin	Detector	Line	PE
M	Hz dBµV	dB	dΒμV	dB			
0.4260	00 26.00	10.2	57	31.3	QP	L1	GND
0.5060	00 25.30	10.2	56	30.7	QP	L1	$G\!ND$
3.8660	00 19.80	10.4	56	36.2	QP	L1	GND
3.9260	00 20.30	10.4	56	35.7	QP	L1	GND
25.0880	00 29.00	11.1	60	31.0	QP	L1	GND

MEASUREMENT RESULT: "CTL150120330 fin2"

1/20/2015 5: Frequency MHz	03PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
27.014000	19.70	11.2	50	30.3	AV	L1	GND
28.400000	17.20	11.2	50	32.8	AV	L1	GND
28.460000	19.50	11.2	50	30.5	AV	L1	GND
29.660000	19.40	11.3	50	30.6	AV	L1	GND
29.720000	18.60	11.3	50	31.4	AV	L1	GND
29.780000	18.00	11.3	50	32.0	AV	L1	GND

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL150120331 fin"

1/	20/2015 5:0	6PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	\mathtt{MHz}	dΒμV	dB	dΒμV	dB			
	0.422000	20.10	10.2	57	37.3	QP	N	$G\!ND$
	24.488000	25.70	11.1	60	34.3	QP	N	$G\!MD$
	24.728000	28.00	11.1	60	32.0	QP	N	GND
	24.968000	29.00	11.1	60	31.0	QP	N	GND
	25.094000	24.70	11.1	60	35.3	QP	N	GND
	29.720000	32.20	11.3	60	27.8	QP	N	$G\!ND$

MEASUREMENT RESULT: "CTL150120331 fin2"

1,	/20/2015 5:0 Frequency MHz	6PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	29.180000	19.00	11.2	50	31.0	AV	N	GND
	29.540000	17.80	11.3	50	32.2	AV	N	GND
	29.600000	21.60	11.3	50	28.4	AV	N	GND
	29.660000	21.40	11.3	50	28.6	AV	N	GND
	29.720000	20.10	11.3	50	29.9	AV	N	GND
	29.780000	19.70	11.3	50	30.3	AV	N	GND

4.2. Radiated Emission

TEST CONFIGURATION

Radiated Emission Test Set-Up Frequency range 9KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

V1.0 Page 13 of 21 Report No.: CTL1412153026-WF

TEST PROCEDURE

- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360°C to acquire the highest emissions from EUT
- 3 And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4 Repeat above procedures until all frequency measurements have been completed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	41

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

RADIATION LIMIT

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

9k~30MHz:

Frequency Range (MHz)	E-field Strength Limit @ 30m (mV/m)	E-field Strength Limit @ 3m (dBµV/m)
0.009-0.490	2400/F(kHz)	129-94
0.490-1.705	24000/F(kHz)	74-63
1.705-30	30	70

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula:

Extrapolation(dB) = $40\log_{10}$ (Measurement Distance/Specification Distance)

Note:

- (1) The tighter limit shall apply at the edge between two frequency bands.
- (2) dBuV/m = 20*log(uV/m)

30M~1GHz:

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Note:

- (1) The tighter limit shall apply at the edge between two frequency bands.
- (2) Distance refers to the distance in meters between the test instrument antenna and the closest point of any part of the E.U.T.

TEST RESULTS

WORST-CASE RADIATED EMISSION BELOW 30 MHz

Frequency	Meter Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Detector Mode
(KHz)	(dBµV)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	PK /AV
125.00(F)	62.53	Loop	23.62	0.01	86.16	105.67	PK
36.44	34.23	Loop	22.86	-0.25	56.84	116.37	PK
29.89	36.67	Loop	19.55	-0.24	55.98	118.09	PK
77.64	28.03	Loop	22.18	0.01	50.22	109.80	PK
110.00	28.11	Loop	23.50	0.01	51.62	106.78	PK
495.00	28.91	Loop	23.51	0.01	52.43	73.71	PK
2496.53	24.56	Loop	25.22	0.04	49.82	70	PK

Remark: 1. Data of measurement within this frequency range shown " -" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
- 4. F means Fundamental Frequency.
- 5. RBW=10KHz, VBW=30kHz.

Radiated Emission Test Data 30-1000MHz:

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi
Start Stop Detector Field Strength Detector Meas. IF Transducer Frequency Frequency 30.0 MHz 1.0 GHz Time Bandw. MaxPeak 300.0 ms 120 kHz JB1

MEASUREMENT RESULT: "CTL150105650_red"

1	/5/2015 9:37	7AM							
	Frequency MHz	Level dBµV/m		Limit dBµV/m	_	Det.	Height cm	Azimuth deg	Polarization
	45.520000	31.90	10.0	40.0	8.1		0.0	0.00	VERTICAL
	55.220000	15.20	8.3	40.0	24.8		0.0	0.00	VERTICAL
	99.840000	19.30	11.5	43.5	24.2		0.0	0.00	VERTICAL
	206.540000	20.10	14.3	43.5	23.4		0.0	0.00	VERTICAL
	553.800000	25.30	21.1	46.0	20.7		0.0	0.00	VERTICAL
	910.760000	31.60	26.2	46.0	14.4		0.0	0.00	VERTICAL

Transducer

SWEEP TABLE: "test (30M-1G)"

WEEP TAble. Short Description: Stop Field Strength IF Detector Meas.

Frequency Frequency Time Bandw. 300.0 ms 120 kHz 30.0 MHz 1.0 GHz MaxPeak JB1

MEASUREMENT RESULT: "CTL150105651_red"

1/5/2015 9:39AM

1/3/2013 9:3:	JAM							
Frequency MHz	Level dBµV/m		Limit dBµV/m	_	Det.	Height cm	Azimuth deg	Polarization
30.000000	24.10	21.1	40.0	15.9		0.0	0.00	HORIZONTAL
84.320000	13.90	9.2	40.0	26.1		0.0	0.00	HORIZONTAL
125.060000	19.40	15.0	43.5	24.1		0.0	0.00	HORIZONTAL
212.360000	18.30	14.3	43.5	25.2		0.0	0.00	HORIZONTAL
530.520000	25.90	20.5	46.0	20.1		0.0	0.00	HORIZONTAL
941.800000	31.60	26.5	46.0	14.4		0.0	0.00	HORIZONTAL

4.3. Occupied Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated are each equal to 0.5% of the total mean power radiated by a given emission.

TEST RESULTS

5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

External Photos

Internal Photos

.....End of Report.....