

Trombe wall (passive solar system in buildings)

Centre Tecnològic de Transferencia de Calor (CTTC) Universitat Politècnica de Catalunya (UPC)

February 2015

What is a Trombe Wall?

Examples:

What is a Trombe Wall?

- A passive solar system in buildings
- Adapted to the south-facing walls (in the northen hemisphere)
- The basic system consists of the south wall (masonry wall painted black), a glass cover-plate (on the exterior), and the air channel between them
- The wall incorporates vents at the bottom and at the top for the circulation of air in the air channel.
- Solar energy is collected (the system works as a solar collector) and stored in the wall. This energy is released to the air flow in the channel and directly to the room

What is a Trombe Wall?

Daytime vs. night time

What is a Trombe Wall?

• For building ventilation, the glass can also incorporate vents (the systems acts as a solar chimney).

Improvements to the basic Trombe wall design

- Radiant properties of the masonry wall can be improved if a selective surface is used (e.g. a metal foil glued to the outside surface of the wall)
- Air and heat flow can be enhanced if electric fans controlled by thermostats are installed
- Two layers of glazing material to reduce heat losses to the ambient
- Etc.

Identification of physical phenomena and mathematical formulation

- 3D and unsteady behaviour
- Direct and diffuse solar radiation in the glass cover and the air channel wall
- Infrared radiation between the room walls, in the air channel (wall – glass), and between the glass and the sky
- Conduction heat transfer in the wall (composed wall) and
- Conduction and radiation heat transfer (semi-transparent media) in the glass cover
- Natural/forced convection in the air channel, inside the room, and outside the Trombe wall (ambient conditions)

Identification of physical phenomena and mathematical formulation

Basic model: schematic representation and input data

Apart from the data indicated in the figure, other input data are necessary: i) thermophysical properties of the wall layers and glass; ii) radiant properties:

 ε_{w0} , ε_{w1} , ρ_{sw1} , ε_{w2} , κ_g , n_g , ε_{w3} ; iii) air channel walls roughness:

$$\varepsilon_{r,w1}$$
, $\varepsilon_{r,w2}$.

Basic model: basic integral equations

$$\frac{\partial}{\partial t} \int_{V_a} \rho dV + \int_{S_a} \rho \vec{v} \cdot \vec{n} dS = 0$$

$$\frac{\partial}{\partial t} \int_{V_a} \vec{v} \rho dV + \int_{S_a} \vec{v} \rho \vec{v} \cdot \vec{n} dS = \int_{S_a} \vec{f}_{(\vec{n})} dS + \int_{V_a} \vec{g} \rho dV$$

$$\frac{\partial}{\partial t} \int_{V_a} \left(h - \frac{p}{\rho} + e_c + e_p \right) \rho dV + \int_{S_a} (h + e_c + e_p) \rho \vec{v} \cdot \vec{n} dS$$

$$= -\int_{S_a} \vec{q} \cdot \vec{n} dS + \int_{S_a} \vec{v} \cdot \vec{f}_{(\vec{n})}^{\tau} dS$$

Basic model. Main hypothesis

- Unsteady simulation
- Conduction heat transfer at the wall (composed of arbitrary number of layers of different materials). Two levels of analysis: $T_{w,k}(t,x)$, $T_{w,k}(t,x,y)$
- Conduction heat transfer and radiation in the glass cover. Two levels of analysis: $T_q(t,x)$, $T_q(t,x,y)$
- 1D air flow in the channel: $\overline{\phi}(t,y)$, $\overline{\phi}=v,p,T$. Two levels of modelling: step-by-step method; semi-implicit method for pressure linked equations
- Unpolarized sun rays onto the glass cover (negligible polarization of the reflected and refracted components).
- Grey and diffuse infrared radiation

Basic model: main resolution steps

- General algorithm
- Resolution of the masonry wall
- Resolution of the glass cover
- Resolution of the air flow in the channel (forced convection; $\dot{m}(t)$ is known or depends on the pressure difference)
- Infrared radiation in the air channel and in the external part of the glass cover
- Direct and diffuse solar radiation in the glass cover and channel wall. Evaluation of the global radiant properties $(T^{DI}, R^{DI}, A^{DI}, T^{DF}, R^{DF}, A^{DF})$

More advanced analysis

- Multidimensional analysis of the masonry wall: $T_{wk}(t, x, y, z)$
- Multidimensional analysis of the glass cover (participating media): $T_q(t, x, y, z)$
- Radiation effects between the glass cover and the external ambient (terrain, adjacent buildings, etc.)
- Multidimensional natural/mixed/forced convection in the channel (m prescribed or unknown). Two approaches: i) semi-implicit method for pressure linked equations (SIMPLER) using RANS modelling (e.g. k-e, kw models); ii) explicit fractional-step method using LES models.