BENFORD'S LAW

Professor Brian Bushee

Benford's Law

- Let's throw away all notions of trying to model discretionary earnings or fraud prediction ratios
 - Instead, we'll let the data speak as to whether it is true or manipulated
- Benford's law
 - In 1881, Simon Newcomb determined that the probability that a number has a first digit, d, is given by
 - Prob(d) = $Log_{10}(1+(1/d))$, for d=1, 2, ..., 9
 - In 1938, Frank Benford found that a large number of naturally-occurring datasets follow this pattern
 - Surface areas of rivers, molecular weights, death rates, street addresses, and the numbers contained in an issue of Reader's Digest
 - "Benford's Law" has been used to detect irregularities in
 - Published scientific studies, fraudulent election data in Iran, suspicious macroeconomic data from Greece, and tax return misreporting

Benford's Law and Bernie Madoff

• Here is the expected distribution of leading digits under Benford's law:

Leading digit	1	2	3	4	5	6	7	8	9
Frequency	30.1%	17.6%	12.5%	9.7%	7.9%	6.7%	5.8%	5.1%	4.6%

 Here is the distribution of leading digits from 215 months of returns for the Fairfield Sentry Fund, a fund that invested only with Bernie Madoff:

Leading digit	1	2	3	4	5	6	7	8	9
Frequency	39.6%	14.2%	10.4%	7.1%	7.5%	6.6%	6.1%	6.6%	1.9%

Source: (Dan Amiram, Zahn Bozanic, and Ethan Rouen 2014)

Benford's Law and Financial Statements

- Amiram, Bozanic, and Rouen (2014) studied Benford's Law in financial statements
- Aggregating all financial statements by industries or by years for 2000-2011, the leading digits follow Benford's distribution
 - 83.7% of firm's annual financial statements conform with the distribution
- Larger discrepancy versus Benford's distribution is associated with
 - Larger Modified Jones Model discretionary accruals
 - Higher Beneish M-Score

Detecting Discrepancies from Benford's Law

- Enter a "large" number of financial statement items
 - No theory on how many are needed, but more is better
- Count the number of each leading digit
 - Find leading digit with Excel formula: =LEFT(ABS("cell"*1000),1)
 - Count leading digits with formula: =Countif("range", "digit")
- Compare the actual frequency of leading digits to the expected distribution according to Benford's law
 - Kolmogorov-Smirnov (KS) statistic

$$KS = \max\{|AD_1 - ED_1|, |(AD_1 + AD_2) - (ED_1 + ED_2)|, \\ ..., |(AD_1 + AD_2 + \dots + AD_9) - (ED_1 + ED_2 + \dots + ED_9)|\}$$

- Where AD_i is actual frequency of the leading digits, and ED_i is the theoretical frequency of the leading digits
- Potential manipulation if KS > 1.36/\(\sqrt{P}\), where P is the total number of leading digits used

