GENERATOR DE IMPULSURI DREPTUNGHIULARE

- exemplu de proiectare -

Presupunem ca se doreste obtinerea unui oscilator cu urmatoarele date de proiectare:

- ◆ Frecventa de oscilatie reglabila in intervalul 2÷5 KHz, factor de umplere 0.5;
- Sarcina la iesire 1Ω;
- ◆ Amplitudinea oscilatiei la iesire reglabila in intervalul 0.5 ÷ 2.4V.

Conform datelor de proiectare circuitul va fi compus dintr-un oscilator de frecventa variabila, un amplificator de putere si un stabilizator.

1. Proiectarea oscilatorului

O posibila implementare pentru oscilator apare in fig.1.

Fig. 1 Oscilator cu forma de unda la iesire dreptunghiulara.

Circuitul este unul basculant, astabil, comandat de oglinda de curent multipla Q1, Q2, Q3. Se aleg Q₁, Q₂, Q₃ de tip 2N6804 cu parametrii de catalog (V_T =-3..-4V, K_p =10uA/V²). Se aleg Q₄, Q₅, de tip 2N6755 cu parametrii de catalog (V_T =3..3.5V, K_p =20uA/V²).

Semiperioada de oscilatie a acestui circuit este data de timpul de incarcare al unui condensator $C_{1,2}$ sub curentul de drena al Q_1 , Q_2 la o tensiune aproximativ egala cu: $E-V_z+V_T$. Alegem diodele zener de tip PL5V6 (diode cu drift termic extrem de mic, pentru a avea o buna independenta fata de temperatura, I_{zmin} =10uA). Considerand E=7V, rezulta pentru frecventa de 2KHz un curent de incarcare de circa 18uA, respectiv 22uA pentru 5KHz. Ecuatiile care controleaza curentul de incarcare sunt:

$$E_I \cong V_{SGI} - R_I + R_4 I_{DI} \tag{1}$$

$$I_{DI} = I_{D2} = I_{D3} = K_n V_{SG} - V_T^2$$
 (2)

Rezistenta R_4 are rolul de a limita curentul de drena al p- MOS-urilor atunci cand cursorul lui R_1 scurcircuiteaza aceasta rezistenta. Considerand o toleranta de 20% pentru

aceste rezistente avem in cele mai defavorabile cazuri curenti de incarcare de 14uA respectiv 30uA, deci se poate acoperi gama de frecvente cerute.

Amplitudinea de oscilatie este data de valoarea lui E respectiv de tensiuna V_{DS} atinsa de tranzistoare in conductie. Amplitudinea maxima de oscilatie nu poate fi insa mai mare de 7V. Pentru a aduce acest semnal in limitele impuse de datele de proiectare este necesara introducerea unui etaj amplificator de putere precedat de un potentiometru de reglare a amplitudinii. Eliminarea componentei continue a acestui semnal se face prin C_o care se va alege suficient de mare astfel incat sa nu apara un efect de filtru " trece sus". In particular, se va folosi un condensator cu Ta de 100uF.

2.. Proiectarea amplificatorului

O implementare posibila (cu dispozitive discrete) a amplificatorului este prezentata in Fig. 2.

Fig. 2 Schema electrica a amplificatorului.

Acest circuit are o retea de reactie negativa <u>Serie-Paralel</u>, amplificare mare in bucla deschisa, impedanta de intrare $>5M\Omega$, impedanta de iesire foarte mica.

Detalii de proiectare

Tranzistoarele din etajul diferential de intrare $Q_{1,2}$ vor functiona in mod simetric la un curent mai mic decat I_{DSS} / 2 (Q_1 , Q_2 , Q_3 se aleg de tip BF256 cu parametri de catalog

 I_{DSS} =6...10mA, V_T = -1...-3V, V_{DSmax} = 30V) pentru a putea permite maximum excursiei asimetrice in curent intre tranzistoare. Suma curentilor de drena ai $Q_{1.2}$ este:

$$I_{D1} + I_{D2} = I_{D3} (3)$$

Curentul I_{D3} este dat de ecuatiile:

$$I_{D3} = \frac{-V_{GS3}}{R_7} \tag{4}$$

si

$$I_{D3} = I_{DSS3} \left(1 - \frac{V_{GS3}}{V_T} \right)^2 \tag{5}$$

Presupunind pentru parametri I_{DSS} , V_T valorile tipice: $I_{DSS} = 8mA$ respectiv $V_T = -2V$ rezulta $I_{D3} = 2mA$. In cazurile cele mai defavorabile avem:

$$(I_{DSS}=6mA, V_T=-3V) \Rightarrow I_{D3} \approx 1.6mA$$

$$(I_{DSS}=10mA, V_{T}=-1V) \Rightarrow I_{D3} \approx 2.8mA$$

deci intotdeuna tranzistoarele de intrare $Q_{1,2}$ vor functiona la un curent static de drena mai mic decat I_{DSS} /2.

Curentul prin Q₁ este dat de relatia:

$$I_{D1} = \frac{V_{BE4}}{R_2} \tag{6}$$

Alegem Q_4 de tip BC 177 (pnp de mica putere) la care, conform curbelor de catalog, $V_{BE} = 0.5...0.7V$ pentu $I_C = 10mA$ (la t = 25°C). Tinanad seama de toleranta lui R_2 (5%) putem determina:

$$I_{D1min} = 0.8mA$$
; $I_{D1max} = 1.2mA$

Intotdeauna avem un curent diferit de 0 prin Q₂.

Curentul prin $Q_4 \approx I_{DSS5}$ (BF256, I_{DSS5} = 6...10mA). Compensarea functionarii nesimetrice a Q_1 , Q_2 se va face prin R_1 . Alegem R_1 =1K Ω (20%) deoarece in cel mai defavorabil caz (R_{1min} , I_{D3min}) se poate compensa o tensiune de 1.12V (mai mare decat diferenta (V_{GS1} - V_{GS2})_{max}=0.8V.

Dioda D asigura functionarea Q_1 , Q_2 la aproximativ aceeasi tensiune V_{DS} . Curentul static prin Q_6 , Q_7 va fi ales suficient de mare astfel incat sa avem un β stabil pentru tranzistoare iar curentul de baza al tranzistoarelor finale sa fie neglijabiliar in raport cu acesta.

Ciruitul "superdioda" format din Q_8 , R_6 , R_4 are rolul compensarii neliniaritatilor la comutarea de pe untranzistor final pe celalalt, si al fixarii curentului de mers in gol pentru etajul final. Tensiunea V_{CE8} este data de formula:

$$V_{CE8} = V_{BE8} \frac{R_4 + R_6}{R_6'} \tag{7}$$

Unde R_6 este rezistenta din bratul lui R_6 de langa R_4 , plus R_4 . Alegem Q_8 de tipul BC107 (npn de mica putere) la care, conform curbelor de catalog, $V_{BE} = 0.5...0.7V$ pentu $I_C = 10mA$ (la t = 25°C). Tinand sema de tolerantele componentelor V_{CE8} se poate regla in intervalul 0.5- 4.8. Q_8 se va monta pe acelasi radiator cu tranzistoarele finale pentru ca superdioda sa copieze driftul termic al acestora si curentul de mers in gol al etajului final sa nu se modifice.

Etajul final in clasa AB. Tranzitorul final NPN este un Darlington (Q_{11} , Q_{12}) si va suporta in cel mai defavorabil caz 2.4A sau o tensiune CE de circa 14V. Alegem Q_{11} BC107 (β >100, V_{CBO} =25V, I_{Cmax} =100mA) si Q_{12} BD433 (P_{max} =36W, V_{CBO} =22V, I_{Cmax} =4A, 85< β <150). Tranzistorul echivalent are β >8500 deci la curentul maxim I_b <0.2mA, deci neglijabil in raport cu I_{C6} . Tranzistoarele au ambele tensiuni de strapungere superioare celor ce pot aparea in montaj deci problema strapungerii nu se pune. Curentul maxim suportat de Q_{11} este 28mA < I_{Cmax} . Puterea disipata de tranzistorul echivalent este aproape in intregime localizata la nivelul Q_{12} si in cel mai defavorabil caz este circa ½ din puterea in sarcina (5.6W) si in concluzie acest tranzistor nu se poate distruge.

Tranzitorul final PNP este o configuratie Super G (Q_{13} , Q_{14}) si va suporta in cel mai defavorabil caz 2.4A sau o tensiune V_{CE} de circa 14V. Alegem Q_{13} de tip BC177 (β >100, V_{CBO} =25V, I_{Cmax} =100mA) si Q_{14} de tip BD434 (P_{max} =36W, V_{CBO} =22V, I_{Cmax} =4A, 85< β <150). Tranzistorul echivalent are β >8500 deci la curentul maxim I_b <0.2mA, deci neglijabil in raport cu I_{C6} . Se vor face restul verificarilor identic ca pentru celalat tranzistor.

Rezistentele R_{13} , R_{14} (1K) se aleg astfel incat sa forteze curent prin tranzistoarele de mica putere si atunci cand curentul prin tranzistorul echivalent este mic (pentru a evita scaderea lui β odata cu cresterea sarcinii). In acelasi timp ele evita amplificarea curentilor reziduali ai Q_{13} , Q_{11} prin finalii de putere. Tinand seama de tolerantele tensiunii V_{BE} si ale rezistentelor R_{13} , R_{14} (+/-20%) rezulta curentii minimi pentru perioadele de conductie de la care se dechid finalii de putere si anume 0.5V/1.2K=0.4mA.

Circuitul de protectie pentru tranzistorul final NPN va limita curentul de baza al acestuia la depasirea limitei de 2.5A. Pentru sistemul de protectie (cu limitare) ales este necesar ca in caz de suprasarcina pe R_{11} sa cada o tensiune mai mare de 0.8V necesara deschiderii lui Q_9 (uzual un NPN de mica putere). Alegem Q_9 BC107 la care, conform curbelor de catalog, $V_{BEon} = 0.5...0.7V$. Pentru siguranta deschiderii lui Q_9 alegem $R_{11} = 0.68\Omega$ (20%). La o suprasarcina de 2.5A la bornele ei vor apare in cel mai defavorabil caz 1.3V. Aceasta tensiune va fi preluata de divizorul rezistiv R_9 care se va calibra in functie de parametrii concreti ai Q_9 . In mod identic rezulta sistemul de protectie al PNP final.

Curentul de mers in gol al etajului se regleaza din tensiune V_{CE8} , deoarece $V_{CE8} = V_{BE11} + V_{BE12} + (R_{11} + R_{12}) I_{gol} + V_{EB13}$. Acest curent (I_{gol}) se alege la circa 1/20 din curentul maxim (in acest caz aproximativ 0.12A). Rezulta ca avem nevoie in cel mai defavorabil caz (toate V_{BE} sunt maxime iar toleranta rezistentelor este +20%) de o tensiune de circa 4.8V, tensiune ce se poate obtine din reglajul R_6 .

Amplificarea in bucla inchisa a etajului este data de formula $A=(R_1+R_8)/R_1$. In dimensionarea acestor rezistente se va tine seama ca $R_1\cong R_1^{'}|R_8$.

In final se va verifica prin calcul pe valorile nominale din schema functionarea in RAN a tuturor componentelor active (la etajul final pot apare situatii de blocare (clasa B de functionare)).

Se va studia circuitul in regim dinamic pentru functionarea pe una din alternantele tensiunii de intrare (se va lua in calcul numi unul din finali, celalalt este blocat). Pe schema de regim dinamic se vor determina a_v (obligatoriu >10.000), A_v , R_l , R_0 . Valorile obtinute vor satisface obligatoriu datele de proiectare.