Unsupervised identification of the body parts of an unknown articulated object

Anna M. Maureder

MASTERARBEIT

eingereicht am Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Februar 2017

© Copyright 2017 Anna M. Maureder

This work is published under the conditions of the Creative Commons License *Attribution-NonCommercial-NoDerivatives 4.0 International* (CC BY-NC-ND 4.0)—see https://creativecommons.org/licenses/by-nc-nd/4.0/.

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original work. Where other sources of information have been used, they have been indicated as such and properly acknowledged. I further declare that this or similar work has not been submitted for credit elsewhere.

Hagenberg, February 28, 2017

Anna M. Maureder

Contents

Declaration														
Abstract Kurzfassung														
														1
2	2 Related Work													
	2.1	Marker, User input	2											
	2.2	Non-rigid Registration	2											
		2.2.1 EM-algorithm	2											
		2.2.2 LRP	2											
		2.2.3 Symmetrization	2											
3	My contribution													
	3.1	Goal and approach	3											
	3.2	Assumptions	3											
	3.3	Challenges/restrictions	4											
	3.4	Approach	4											
		3.4.1 Divide and conquer	4											
		3.4.2 Removing outliers	4											
		3.4.3 Subdividing into clusters	4											
		3.4.4 Merging neighboring clusters to rigid parts	6											
		3.4.5 Joint/skeleton estimation	7											
		3.4.6 Implementation	7											
		3.4.7 Implementation Steps	8											
		3.4.8 Results	9											
		3.4.9 Possible Improvements	9											
	3.5	LRP as initial alignment	9											
		3.5.1 Overview	9											
		3.5.2 Algorithm	10											
		3.5.3 Steps	10											
	3.6	Other approaches	11											

V

		3.6.1	Points-t	o-El	lipse	e fit	ttin	g													11
		3.6.2	Algorith																		
		3.6.3	Steps.																		11
		3.6.4	Results																		12
		3.6.5	Reusing	det	ecte	d s	hap	es													12
	3.7	3.7 General Results																12			
	3.8	Improv	vements															12			
	3.9	Future	work .																		12
4	Conclusion														13						
	4.1	Future	work .															•			13
References 14													14								
	Liter	rature .																			14

Abstract

The proposed work describes a method for pose estimation of articulated objects without any prior knowledge of their body parts. Most existing pose estimation methods take advantage of trackers, and user inputs to estimate the joint positions. However, a completely unsupervised method constitutes an enormous potential but also a great challenge. A main solution to that is proposed by template matching associated with the non-rigid registration of meshes, which requires two poses of the same object and applies the Expectation-Maximization algorithm to segment the object into its rigid parts. This is done iteratively by assigning mesh points on body parts and finding transformations that perfectly match those body parts on both meshes. Based on this approach, a segmentation method is developed to obtain the rigid parts of an object and consequently estimate its joints.

Kurzfassung

An dieser Stelle steht eine Zusammenfassung der Arbeit in Deutsch.

Introduction

Related Work

Here comes the State-of the Art. An overview of related methods to non-rigid registration for detecting rigid body parts of an articulated object are mentioned by Chang [3] and Tam [7] which mainly use the ICP (iterative closest point) and the PCA (Principal component analysis) to find corresponding body parts. This paper is based on the Correlated Correspondance algorithm [2] [1] and Symmetrization [6]. A following work to [3] is [4]. Other methods include temporal coherence, markers and user inputs. Another method is from [5].

2.1 Marker, User input

Here are methods that take advantage of user inputs and markers and are therefore supervised methods. I will focus my work on non-rigid registration methods, which are unsupervised.

2.2 Non-rigid Registration

Here are methods that focus on non-rigid registration to recover the rigid part of an object.

- 2.2.1 EM-algorithm
- 2.2.2 LRP
- 2.2.3 Symmetrization

My contribution

This chapter focuses on the implementation of a new segmentation approach by taking the existing methods as reference (see chapter 2).

3.1 Goal and approach

The goal is to segment an articulated mesh M into its unknown number n of rigid parts $P = \{p_0,p_n\}$ and extract the joints $J = \{j_0,j_{n-1}\}$ linking those parts in form of a skeleton structure. In general, this is done by non-rigid registration of the points clouds S_0 and D_0 of an object in two different poses. S_0 is thereby used as a template to be registered with D_0 . The main task is to determine a part assignment p_i and the corresponding transformation t_i for all points of the template that alligns them with all points of D_0 . Basically, a divide and conquer approach (see section 3.4) is implemented to recursively subdivide S_0 and D_0 into clusters trying to be matched (reduce the computation steps of the correlated correspondence algorithm [1]). Furthermore, the LRP approach [5] is employed as an initial registration step to align the two poses of the object.

3.2 Assumptions

The input mesh M is assumed to solely consist of rigid parts that can not be deformed or stretched (e.g. rigid parts of a human). Those parts are linked by joints and no matter what kind of pose is adopted by the articulated object, the geodesic distances bestween mesh points always stay the same (see Figure SKIZZE). Thereby, it is taken advantage of the knowledge that points located on a rigid part p_i have the same transformation t_i . Furthermore, it is assumed that the two poses S_0 and D_0 of M are oriented the same direction.

3.3 Challenges/restrictions

There are many challenges regarding the non-rigid registration of point clouds in 2D, as well as in 3D. First off, the input data can be noisy by means of points not belonging to the object. Furthermore, the approach is computationally expensive and time-consuming, as the corresponding body parts of two meshes need to be detected iteratively. Additionally, the inevitable difficulty of finding the global optimum, related to ambiguous body parts, has to be overcome.

3.4 Approach

3.4.1 Divide and conquer

The algorithm starts with two sets of point clouds S_0 and D_0 of an object M in different poses (3.3). The two point clouds are iteratively subdivided into point clusters $C = \{c_0, ..., c_m\}$ through their centroids. In each iteration step two related clusters of S_0 and D_0 are matched by applying the ICP (iterative closest point) resulting in a matching error e. In case of $e < \tau$, two clusters are assumed to match. Otherwise, the algorithm is applied recursively and the clusters are again subdivided into further clusters. The algorithm terminates if all resulting clusters of S_0 can be matched to all clusters of D_0 . All neighboring clusters are then checked to be merged, in case of having divided a rigid part. After that step the remaining clusters are assigned to a rigid part $part_i$.

3.4.2 Removing outliers

As a first step the outliers of the two point clouds S0 and D0 are removed. This is done, by finding clusters and just keeping the biggest one, assuming it is the main object

3.4.3 Subdividing into clusters

As a next step, the two point clouds S_0 and D_0 are assigned to the initial clusters c_0 . If the matching between them does not succed, they are subdivided into two clusters and the whole procedure is repeated recursively until all sub clusters $C = \{c_1, ... c_m\}$ of S_0 can be matched to the clusters of D_0 . S_0 and S_0 are initially divided into a left and right cluster.

Divider position

To determine where to divide a cluster into two other clusters, PCA is applied on the clusters is applied. The resulting dividers d_0 are realised by

Figure 3.1: Subdividing of S0 and D0 into matching clusters by the depth-first approach

computing the principal axes p_0 through the centroids ct_0 and taking the perpendicular secondary axes s_S and s_D through the centroids.

Cluster tree

The subdividing of the clusters c_0 is realised by a depth-first approach in a binary tree. Consequently, S_0 and D_0 are subdivided from the left to the right. A node N of the tree contains two related clusters c_i of S_0 and D_0 and in case of subdividing it, a Node left and right, containing the subdivided clusters c_{i+1} and c_{i+2} . If two associated clusters in a Node n_i match, no further subdividing is performed. The resulting leaves of the three are stored as matching clusters $C = \{c_1, ... c_m\}$ 3.1. By applying the depth-first approach, the neighboring clusters in the list are also neighbouring clusters in the object S_0 or D_0 . As a result, the skeleton structure from an object can be extracted, where parts are connected by joints.

Declaring the matching condition

By applying the ICP and the nearest neighbour approach, usually a certain matching error is computed between $P = \{p_0,p_n\}$ and its associated points $Q = \{q_0,q_n\}$. To declare when an object is matching, it is important

Figure 3.2: Detecting rigid parts of S0 and D0 by iteratively merging neighboring clusters of S0 and matching them with the merged clusters of DO.

to find the right maximum matching error τ . If it is too high, two clusters are not easy to be matched, which will result in more clusters. If the value is too low, clusters are more likely to be matched and there won't be enough subdividing. The matching threshold is compared to error per point

$$e_{avg} = \frac{\sum_{i=0}^{m} \|p_i - q_i\|^2}{|P|}$$
(3.1)

which is the average error of a point contributing to the total error. By using the average error instead of the total error, region growing is enabled as the matching error is independent of the amount of points.

3.4.4 Merging neighboring clusters to rigid parts

As a next step, neighboring clusters from the matchedList are iteratively merged and checked for another match. This is done to reduce the found clusters to the rigid parts of the object. Again, the mergin of one cluster is done until no further merge for neighboring parts can be done. Subsequently, the cluster is assumed to be a rigid part and saved in a new list. The resulting rigid parts in the list are again neighboring (see figure 3.2).

Figure 3.3: Taking a mesh M in two different poses S_0 and D_0 as input.

Figure 3.4: Dividing S_0 and D_0 into clusters by the divider d to match them with ICP.

3.4.5 Joint/skeleton estimation

3.4.6 Implementation

using of a binary tree to recursively segment clusters into smaller clusters, until they match. To be continued until all leaves of the tree can be matched with other clusters.

Figure 3.5: Assigning of the rigid parts $P = (part_0, part_1)$ after termination of segmentation process.

3.4.7 Implementation Steps

- 1. The centroids c_S and c_D of S_θ and D_θ are computed.
- 2. The principal axis p_S and p_D are computed through c_S and c_D in order to orient the point clouds horizonally around their centroids.
- 3. The secondary axis s_S and s_D perpendicular to p_S and p_D through c_S and c_D are computed.
- 4. The dividers d_S and d_T to segment S_θ and D_θ into its assumed two rigid parts are initialized with the secondary axis s_S and s_D .
- 5. The points $P_{0...N}$ of S_0 are either allocated to S_{left} or S_{right} depending on its position to d_S . The same procedure is done with all points of D_0 .
- 6. ICP is computed between the rigid parts S_{left} and D_{left} as well as S_{right} and D_{right} .
- 7. An error distance e_{left} and e_{right} is obtained. The part with the most error per point is assumed to be not rigid which gives back an indicator where to divide S_{θ} and D_{θ} .
- 8. The dividers d_S and d_D are shifted to the direction of the highest error. To be continued from step 5 until the total error e_{total} doesn't get smaller.

3.4.8 Results

Results from easy examples. Not working for human, as by dividing of one cluster, breaking down into single clusters (see Figure X). Another approach, e.g. using LRP as an initial alignment to then recursively segment the clusters linked to the LRP. Clusters not matching, as they don't have the same number of points, each point can only have one neighboring point. Or dividing clusters that they all have the same amount of points. In case of a more complex object where one rigid part can be linked with a high number of rigid parts (upper body of a humen) another approach has to be found, as the skeleton structure is different than from a chain. (see Figure 3.5).

3.4.9 Possible Improvements

Same amount of points of associated clusters

Check clusters after subdividing

After subdividing, only two clusters should come up.

LRP as initial alignment

As only objects with rigid parts arranged like a chain are possible with this approach, another improvement/algorithm has to be pursued (see section 3.5).

3.5 LRP as initial alignment

Instead of cutting the object initially in half, as an initial step the largest rigid part is found and recursively from there all other linked parts can be detected.

3.5.1 Overview

As an initial step, the LRP algorithm tries to find the most reliable correspondences, the so-called largest rigid part (LRP), subsequently all other parts are detected that are linked to the LRP. The initial alignment stage tries to find sparse correspondences between two point clouds by applying a single rigid transformation to detect the largest subsets of points in two point clouds. Starting from the LRP all other parts are detected recursively.

3.5.2 Algorithm

Finding the LRP

The algorithm also takes two point clouds S_0 and T_0 of the same object in different configurations as input. The goal is to find a single rigid transfor-

mation T_{init} for all points of S_0 to get potential corresponding points $C_0 = \{(s_i, t_j)\}$ in T_0 . For that, local descriptors of S_0 and T_0 are computed. The requirement for a sparse correspondance between two points s_i and t_j is that they are reciprocal, which means that the Euclidean distance $d(s_i, t_j)$ between them is the smallest in both directions. Some of the sparse correspondances are assumed to be wrong. Therefore, RANSAC is used on the sparse correspondances C_0 to estimate a rigid alignment that is supported by the largest number of points n from S_0 and T_0 . To assign the LRP in S_0 and T_0 , the biggest point clusters C_s and C_t of the overlapping area $G_s = \{C_1, \ldots, C_n\}$ and $G_t = \{C_1, \ldots, C_n\}$ are detected.

Part discovery

The remaining clusters from S_0 and T_0 that have not been registered yet are matched recursively by starting with clusters connected to already matched parts. First, all matched parts are excluded from the input point clouds $G_{s(l+1)} = S_0 - C_{sl}$ and $G_{t(l+1)} = T_0 - C_{tl}$ defining l as the number of already matched parts $\{1, ..., n\}$, C_{sl} . For that clusters are formed, using region taking into account that they are attached to already registered parts. The algorithm explained is applied until all body parts have been discovered.

3.5.3 Steps

- 1. The centroids c_s and c_t of S_θ and T_θ are computed.
- 2. The principal axis p_s and p_t are computed through c_s and c_t in order to horizontally orient the objects around their centroids.
- 3. The ICP is conducted as a first guess to find a transformation T_{init} for all points from S_0 that results in the highest number of corresponding points n in T_0 , given the threshold T.
- 4. C_0 contains the corresponding points from S_0 and T_0 , resulting from $T_{init}(S_0)$.
- 5. The RANSAC approach is applied on C_0 to find a T_f that results in the highest number of corresponding points n between $T_f(S_0)$ and T_0 .
- 6. The LRP is assigned to C_s and C_t from the resulting point clusters G_s and G_t .
- 7. Starting from parts that are connected to the LRP, corresponding points C_i for unmatched points from S_0 and T_0 are seeked. The clusters are given as a input from Step 5.

3.6 Other approaches

3.6.1 Points-to-Ellipse fitting

3.6.2 Algorithm

This algorithm only requires one point cloud containing m points $\{pt_0, ..., pt_m\}$. The basic idea is to segment the non-rigid object S_0 into its rigid parts $part_1$ and $part_2$ by fitting ellipses to its rigid parts. S_0 is divided perpendicular to its principal axis p_0 into two assumed rigid parts S_{left} and S_{right} , initially defining the divider d with the secondary axis s_0 . The points of S_{left} and S_{right} are verified to form an ellipse by using its formular

$$\frac{x^2}{r_1^2} + \frac{y^2}{r_2^2} = 1\tag{3.2}$$

Assuming to verify S_{left} forming an ellipse, r_1 is half the length of the principal axis p_{left} of S_{left} through its centroid c_{left} . Furthermore, r_2 is half the length of the secondary axis s_{left} of S_{left} . Thereby, the centroid c_{left} needs to be located in the origin (0,0). Now, to check whether a point pt_i of S_{left} is located on the ellipse, the formular is remodeled and its x values is applied.

$$(1 - \frac{x^2}{r_1^2}) \cdot r_2^2 = y^2 \tag{3.3}$$

The resulting y-value of the ellipse is compared to the points actual y-value. Given a certain threshold τ a point either accounts to the number of total points lying on the ellipse n, or not.

$$n = \sum_{i=0}^{m} \begin{cases} 1 & if \quad ||pt_i \cdot y^2 - y^2|| < \tau \\ 0 & otherwise \end{cases}$$
 (3.4)

The algorithm is repeated by sliding d in the direction of the highest error e. To be continued until the total error $e_{total} = e_{left} + e_{right}$ reaches its minimum.

3.6.3 Steps

- 1. The centroid c_0 of S_0 is computed.
- 2. The principal axis p_0 is computed through c_0 and S_0 horizontally oriented.
- 3. The secondary axis s_{θ} perpendicular to p_{θ} through c_{θ} is computed.
- 4. The divider d is initialized with the secondary axis s_0 to segment S_0 into two assumed rigid parts .
- 5. The points of S_0 are either allocated to S_{left} or S_{right} depending on its position to d_0 .

- 6. The ellipse formular is applied on S_{left} and S_{right} .
- 7. An error e_{left} and e_{right} is obtained implying how many points of S_{left} and S_{right} form an ellipse.
- 8. The divider d is shifted to the direction of the highest error. To be continued from step 5 until the total error e_{total} doesn't get smaller.

3.6.4 Results

3.6.5 Reusing detected shapes

After termination of the algorithm, one point cloud can be segmented into its rigid parts P $\{part_1, ..., part_n\}$. Their variables like the ellipses' centroid c_i and radii r_1 , r_2 can be used to segment similar point clouds in different configurations. As the shapes to be matched are already known, e.g. how they are linked, finding the position to be segmented is a lot easier.

3.7 General Results

3.8 Improvements

3.9 Future work

The approaches implemented in 2D are then implemented in 3D using the PCL.

Conclusion

To conclude, I proposed... The results are \dots

4.1 Future work

Future developments can be done by \dots

References

Literature

- [1] Dragomir Anguelov et al. "Recovering Articulated Object Models from 3D Range Data". In: *Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence*. UAI '04. Banff, Canada: AUAI Press, 2004, pp. 18–26. URL: http://dl.acm.org/citation.cfm?id=1036843.1036846 (cit. on pp. 2, 3).
- [2] Dragomir Anguelov et al. "The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces". In: *Advances in Neural Information Processing Systems 17*. Ed. by L. K. Saul, Y. Weiss, and L. Bottou. MIT Press, 2005, pp. 33–40. URL: http://papers.nips.cc/paper/2601-the-correlated-correspondence-algorithm-for-unsupervised-registration-of-nonrigid-surfaces.pdf (cit. on p. 2).
- [3] Will Chang and Matthias Zwicker. "Automatic Registration for Articulated Shapes". Computer Graphics Forum (Proceedings of SGP 2008) 27.5 (2008), pp. 1459–1468 (cit. on p. 2).
- [4] Will Chang and Matthias Zwicker. "Range Scan Registration Using Reduced Deformable Models". Computer Graphics Forum (Proceedings of Eurographics 2009), to appear () (cit. on p. 2).
- [5] Hao Guo, Dehai Zhu, and Philippos Mordohai. "Correspondence estimation for non-rigid point clouds with automatic part discovery". *The Visual Computer* 32.12 (2016), pp. 1511–1524 (cit. on pp. 2, 3).
- [6] Niloy J. Mitra, Leonidas J. Guibas, and Mark Pauly. "Symmetrization". ACM Trans. Graph. 26.3 (July 2007). URL: http://doi.acm.org/10.1145 /1276377.1276456 (cit. on p. 2).
- [7] Gary KL Tam et al. "Registration of 3D point clouds and meshes: a survey from rigid to nonrigid". *IEEE transactions on visualization and computer graphics* 19.7 (2013), pp. 1199–1217 (cit. on p. 2).