DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS:

The equation contains independent variable (x), dependent variable (y) and it's derivative (y').

ORDINARY DIFFERENTIAL EQUATION (ODE)	PARTIAL DIFFERENTIAL EQUATION (PDE)
ODEs are formed, When $y = f(only x)$	PDEs are formed, When $y = f(x, z,)$

ORDER OF EQs.	DEGREE OF EQs.
Highest order derivative term present in the equation.	Power of Highest order derivative term in the equation.
E.g. 1 st order, 2 nd order, 3 rd order.	E.g. $(y')^2 + x = 0$ is 2^{nd} Degree Equation.

If there is fraction in power, eliminate fraction and make whole number.

ORDINARY DIFFERENTIAL EQUATIONS (ODEs)			
FIRST ORDER DIFFERENTIAL EQUATIONS HIGHER ORDER DIFFERENTIAL EQUATIONS			
1st order & 1st degree (Linear) D.E.,	Higher order & 1 st degree (Linear) D.E.,		
1. Variable Separable Form,	1. With Constant coefficients		
2. Homogenous D.E.	2. With Variable coefficients		
3. Linear D.E.			
4. Exact D.E.			

SOLUTION OF A DIFFERENTIAL EQ.:	TYPES OF SOLUTIONS	
Relation Between dependent & independent variables	General Solution	Particular Solution
Should not contain derivative/ differential term	Contains Arbitrary	Don't Contains Arbitrary
• Solution must satisfy given D.E.	Constant	Constant. E.g. BCs are given

VARIABLE SEPARABLE FORM	EQUATIONS REDUCIBLE TO VARIABLE SEPARABLE FORMS		
$f_1(x)dx = f_2(y)dy$	FORM – I	FORM – II	
• Separate the variable,	$\frac{dy}{dx} = f(ax + by + c),$	$dy _ f(a_1x + b_1y + c_1)$	
• Integrate Both Side,		$\frac{1}{dx} - \frac{1}{f_2(a_2x + b_2y + c_2)}$	
 Add appropriate Constant, 	Let, ax + by + c = v	Limiting Condition: $a_1/a_2 = b_1/b_2$	

HOMOGENOUS FUNCTION:

 $y = f(x, y, z, ...) \Leftrightarrow y = K^n f(x, y, z, ...)$ is homogenous function with degree n

HOMOGENOUS DIFFERENTIAL EQUATIONS		
TYPE - A: $\frac{dy}{dx} = \frac{f_1(x,y)}{f_2(x,y)} = \frac{\emptyset_1(y/x)}{\emptyset_2(y/x)}, Let \ v = \frac{y}{x}$	TYPE - B: $\frac{dx}{dy} = \frac{f_1(x,y)}{f_2(x,y)} = \frac{\emptyset_1(x/y)}{\emptyset_2(x/y)}, Let v = \frac{x}{y}$	
Where, $f_1(x, y) \& f_2(x, y)$ both are homogenous equations with same degree.		

LINEAR/ LABNITZ'S DIFFERENTIAL EQUATIONS				
Dependent Variable and it's derivative are not multiplied together.				
$TYPE - A: \frac{dy}{dx} + Py = Q$		$TYPE - B: \frac{dx}{dy} + Px = Q$		
$IF = \int e^{Pdx}$	$y(IF) = \int Q(IF)dx + C$	$IF = \int e^{Pdy}$	$x(IF) = \int Q(IF)dy + C$	
Where, P , Q are function	of independent variable.			
$TYPE - C: f'(y)\frac{dy}{dx} + P f(y) = Q$		TYPE – D	$: f'(x)\frac{dx}{dy} + Pf(x) = Q$	
Le	t f(y) = v		Let f(x) = v	

EXACT DIFFERENTIAL EQUATIONS			
Md	$dx + Ndy = 0$ is exact $\Leftrightarrow \left[\frac{\partial M}{\partial y}\right]_x = \left[\frac{\partial N}{\partial x}\right]_y$	$\int_{y=Constant} Mdx + \int \left(\frac{Terms \ of \ N \ not}{Containing \ x} \right) dy = C$	

REDUCING EQUATION TO EXACT FORM

differential equation but it's homogeneous differential equation, multiply equation with Integrating factor to get Form Exact DE, Integrating factor to get Form Exact DE,

 $\overline{Mx + Ny}$

FORM-I: If Mdx + Ndy = 0 is not exact **FORM-II:** If $f_1(xy) y dx + f_2(xy) x dy = Mdx + Ndy = 0$ is not exact differential equation, multiply equation with

$$IF = \frac{1}{Mx - Ny}$$

FORM-III: If Mdx + Ndy = 0 is not exact differential equation,

CASE 1: If
$$\frac{\left|\frac{\partial M}{\partial y}\right|_{x} - \left|\frac{\partial N}{\partial x}\right|_{y}}{N} = f(x) \Rightarrow IF = e^{\int f(x)dx}$$

CASE 2: If
$$\frac{\left|\frac{\partial N}{\partial x}\right|_{y} - \left|\frac{\partial M}{\partial y}\right|_{x}}{M} = f(y) \Rightarrow IF = e^{\int f(y)dy}$$

INTEGRATING FACTORS BY INSPECTION							
Sr.	Group of	I.F.	Exact	Sr.	Group of	I.F.	Exact Differential
No.	Terms		Differential	No.	Terms		
1		$\frac{1}{x^2}$	$d\left(\frac{y}{x}\right)$	6		1	d(xy)
2		$\frac{1}{y^2}$	$d\left(-\frac{x}{y}\right)$	7		$\frac{1}{xy}$	$d[\ln(xy)]$
3	xdy - ydx	$\frac{1}{xy}$	$d\left[\ln\left(\frac{y}{x}\right)\right]$	8	xdy + ydx	$\frac{1}{(xy)^n}$	$\frac{-1}{n-1}d\left[\ln\left(\frac{1}{(xy)^{n-1}}\right)\right]$
4		$\frac{1}{x^2 + y^2}$	$d\left[\tan^{-1}\left(\frac{y}{x}\right)\right]$	9		$\frac{1}{x^2 + y^2}$	$d\left[\frac{1}{2}\ln(x^2+y^2)\right]$
5		$\frac{1}{x^2 - y^2}$	$d\left[\frac{1}{2}\ln\left(\frac{x+y}{x-y}\right)\right]$	10		$\frac{1}{(x^2+y^2)^n}$	$\frac{-1}{2(n-1)}d\left[\frac{1}{(x^2+y^2)^{n-1}}\right]$

HIGHER ORDER LINEAR DIFFERENTIAL EQUATION:

WITH CONSTANT COEFFICIENTS:

$f(D) y = x, Where D \equiv d/dx$	Complete Soi	l.= Complimentary Fun. + Particular Integral
$d^n y = d^{n-1} y = dy$	**	Where, a_i are constant coefficients,
$a_0 \frac{dy}{dx^n} + a_1 \frac{dy}{dx^{n-1}} + \dots + a_{n-1} \frac{dy}{dx} + a_n y = X$		y is dependent and x is independent variable.
$[a_0 D^n + a_1 D^{n-1} + \dots + a_{n-1} D + a_n] y = x = f(D) y$ Let, $D \equiv d/dx$		$Let, D \equiv d/dx$
CS = CF + PI $CS = $ Complete Solution always denote by dependent variable		

METHOD TO FIND CF		
Step 1: Write the given In D-Form.	Step 2: Write Auxiliary (AE) Equation, $AE = f(m) = 0$	
Step 3: Solve Auxiliary (AE) Equation & find it's roots.	Step 4: Write CF according to nature of roots.	

CASE-I: Roots are Real and Distinct	CASE-II: Roots are Real & Equal
$CF = C_1 e^{m_1 x} + C_2 e^{m_2 x} + C_3 e^{m_3 x}$	$CF = (C_1 + C_2 x + C_3 x^2)e^{mx}$
CASE-III: Roots are Complex	CASE-IV: Roots are Complex & Equal
For $m = \alpha \pm i\beta$,	For $m_1 = m_2 = \alpha \pm i\beta$,
$CF = (C_1 \cos \beta x + C_2 \sin \beta x) e^{\alpha x}$	$CF = [(C_1 + C_2 x) \cos \beta x + (C_3 + C_4 x) \sin \beta x] e^{\alpha x}$

If x = 0 in f(D) y = x, CS = CF (: PI = 0).

METHOD TO FIND PI			
6 BASIC CASES METHOD OF VARIATION OF PARAMETERS			

CASE	VALUE OF X	REMARKS
I	e^{ax}	
II	sin ax OR cos ax	
III	x^m	<i>m</i> is positive integer
IV	e ^{ax} V	$V = \sin ax \ OR \cos ax \ OR \ x^m$
V	x V	$V = \sin ax \ OR \cos ax$
VI	$x^m V$	$V = \sin ax \ OR \cos ax \ \& \ m$ is positive integer >1

Derivative $D \equiv \frac{d}{dx}$	Integration $I \equiv \frac{1}{D}$
------------------------------------	------------------------------------

CASE I: Replace 'D' by 'a'.

$$PI = \frac{1}{f(D)} e^{ax} = \frac{1}{f(a)} e^{ax}, Where f(a) \neq 0 \qquad If f(a) = 0, PI = \frac{x}{f'(a)} e^{ax}, Where f'(a) \neq 0 \& So \ on ...$$

$$\sinh x = (e^{x} - e^{-x})/2 \qquad \cosh x = (e^{x} + e^{-x})/2 \qquad \tanh x = (e^{x} - e^{-x})/(e^{x} + e^{-x})$$
CASE II: Replace 'D' by ' - a''.

$$PI = \frac{1}{f(D)} \sin ax \ OR \cos ax = \frac{1}{\emptyset(D^{2})} \sin ax \ OR \cos ax = \frac{1}{\emptyset(-a^{2})} \sin ax \ OR \cos ax, Where \ \emptyset(-a^{2}) \neq 0$$

$$If \ \emptyset(-a^{2}) = 0, PI = \frac{x}{\emptyset'(D^{2})} \sin ax \ OR \cos ax = \frac{x}{\emptyset'(-a^{2})} \sin ax \ OR \cos ax, Where \ \emptyset'(-a^{2}) \neq 0 \& So \ on ...$$
CASE III: Use binomial Expansion

$$PI = \frac{1}{f(D)} \sin ax \ OR \cos ax = \frac{1}{\emptyset(D^2)} \sin ax \ OR \cos ax = \frac{1}{\emptyset(-a^2)} \sin ax \ OR \cos ax, Where \ \emptyset(-a^2) \neq 0$$

$$If \ \emptyset(-a^2) = 0, PI = \frac{x}{W(a^2)} \sin ax \ OR \cos ax = \frac{x}{W(a^2)} \sin ax \ OR \cos ax, Where \ \emptyset'(-a^2) \neq 0 \ \& So \ on \ ...$$

$$PI = \frac{1}{f(D)}x^{m} = \frac{1}{K[1 + \emptyset(D)]}x^{m} = \frac{[1 + \emptyset(D)]^{-1}}{K}x^{m}, Use \ binomial \ Expansion$$

$$(1 + A)^{-1} = 1 - A^{1} + A^{2} - A^{3} + \cdots$$

$$(1 - A)^{-1} = 1 + A^{1} + A^{2} + A^{3} + \cdots$$

CASE IV:	CASE V:
$PI = \frac{1}{f(D)}e^{ax} V = e^{ax} \frac{1}{f(D+a)} V, Use Case II \& III.$	$PI = \frac{1}{f(D)}x V = x \frac{1}{f(D)} V - \frac{f'(D)}{[f(D)]^2} V$, Use Case II.

CASE VI:

$$PI = \frac{1}{f(D)}x^{m}V = \frac{1}{f(D)}x^{m}\cos ax = \frac{1}{f(D)}x^{m}[RP \cdot e^{iax}] = RP\left[\frac{1}{f(D)}e^{iax}x^{m}\right], RP = Real, Use Case IV$$

$$PI = \frac{1}{f(D)}x^{m}V = \frac{1}{f(D)}x^{m}\sin ax = \frac{1}{f(D)}x^{m}[IP e^{iax}] = IP\left[\frac{1}{f(D)}e^{iax}x^{m}\right], IP = Imaginary, Use Case IV$$

METHOD OF VARIATION OF PARAMETERS: Use when none of above useful & Used for 2nd order LDEs.

Step 1: Find CF	Step 5: Find
Step 2: Compare with $CF = C_1 y_1 + C_2 y_2$	$u = \int \frac{-y_2 X}{CT} dx \& v = \int \frac{y_1 X}{CT} dx.$
Step 3: Find $y_1 \& y_2$. Also Find $y'_1 \& y'_2$.	$u = \int \frac{dx}{cT} dx & v = \int \frac{dx}{cT} dx$.
Step 4: Find Common Term $CT = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$	Step 6: Find $PI = uy_1 + vy_2$
$ y_1, y_2 $	Step 7: $CS = CF + PI$

WITH VARIABLE (INDEPENDENT VAR) COEFFICIENTS:

Cauchy's Homogenous form	Legendre's Homogenous form
--------------------------	----------------------------

CAUCHY'S HOMOGENOUS FORM:
$$a_0x^n\frac{d^ny}{dx^n} + a_1x^{n-1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{n-1}x\frac{dy}{dx} + a_ny = \left[a_0x^nD^n + a_1x^{n-1}D^{n-1} + \dots + a_{n-1}xD + a_n\right]y = X$$

$$f(xD)\ y = X, Where\ D \equiv d/dx$$

$$Let, x = e^z \Rightarrow \ln x = z\ \&\ D_1 \equiv d/dz \quad xD = D_1 \quad x^2D^2 = D_1(D_1 - 1) \quad x^3D^3 = D_1(D_1 - 1)(D_1 - 2) \quad \dots$$
 LEGENDRE'S HOMOGENOUS FORM:

$$a_{0}(a + bx)^{n} \frac{d^{n}y}{dx^{n}} + a_{1}(a + bx)^{n-1} \frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{n-1}(a + bx) \frac{dy}{dx} + a_{n}y$$

$$= [a_{0}(a + bx)^{n}D^{n} + a_{1}(a + bx)^{n-1}D^{n-1} + \dots + a_{n-1}(a + bx)D + a_{n}] y = X$$

$$f[(a + bx)D] y = X, Where D \equiv d/dx$$

$$Let, a + bx = e^{z} \Rightarrow \ln(a + bx) = z \& D_{1} \equiv d/dz \quad (a + bx)D = bD_{1} \quad (a + bx)^{2}D^{2} = b^{2}D_{1}(D_{1} - 1) \quad \cdots$$

Here, z is independent variable.

FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

$p = \frac{\partial f}{\partial x}$	$q = \frac{\partial f}{\partial y}$	$r = \frac{\partial^2 f}{\partial x^2}$	$s = \frac{\partial^2 f}{\partial x \partial y}$	$t = \frac{\partial^2 f}{\partial v^2}$
1st Order	1 st Order	2 nd Order	2 nd Order	2 nd Order

1ST **ORDER PDEs:** The equation contains only p & q terms.

1 ST ORDER PDEs			
Linear 1 ST Order PDEs	Non-Linear 1 ST Order PDEs		
	If $p \& q$ are not with degree one or $p \& q$ are multiplied together are Non-Linear 1 st Order PDEs.		

LINEAR 1ST ORDER PDEs:

I A CD ANGEIG FOUATION	D . O . D	dx dy dz
LAGRANGE'S EQUATION	Pp + Qq = R	Auxiliary Equation: $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$

NON-LINEAR 1ST ORDER PDEs:

TYPE-I: f(p, q onl y) = 0 | **Sol:** z = ax + by + c | Where, a & b relate with relation f(a, b) = 0 | **CONCEPT:** Non-Linear 1st Order PDEs can only contain 2 constants.

PE-II: $f(z, p, q) = 0$, Where $z = f(x, y)$ & Let $t = x + ay$ be a trial solution also, $z = g(t)$				
$p = \frac{\partial z}{\partial x} \& q = \frac{\partial z}{\partial y}$	Z	t	<i>x</i> , <i>y</i>	
$p = \frac{\partial}{\partial x} \otimes q = \frac{\partial}{\partial y}$	Initial Variable	Intermediate Var.	Final Variable	
	$\therefore z = f_{composite}(t)$			
$\therefore \frac{\partial z}{\partial x} \& \frac{\partial z}{\partial y} \text{ will exist as Total Derivative}$	tive $\frac{\partial z}{\partial x} = \frac{dz}{dt} \frac{\partial t}{\partial x} = \frac{dz}{dt} = p \qquad \frac{\partial z}{\partial y} = \frac{dz}{dt} \frac{\partial t}{\partial y} = a \frac{dz}{dt} = q$			
$\therefore f(z, p, q) = f\left[z, \frac{dz}{dt}, a\frac{dz}{dt}\right] = 0, Where \ t = x + ay \ \& \ z = g(t)$				

TYPE-III: When Eq. has p, q, x, y such that,	Find <i>p</i> , <i>q</i> from given conditions.
$f_1(p,x) = f_2(q,y) = k$	$dz = p \ dx + q \ dy$
Where $p = \frac{\partial z}{\partial x} \& q = \frac{\partial z}{\partial y}$	$\therefore z = \int p dx + \int q dy + C$

TYPE-IV: Clairaut's form, z = px + qy + f(p,q)**Sol**: z = ax + by + f(a, b)

2 ND ORDER PDE (TYPE IDENTIFICATION)			
$\partial^2 f = \partial^2 f = \partial^2 f = \partial f = \partial f$	TYPE OF PDE		
$A\frac{\partial}{\partial x^2} + B\frac{\partial}{\partial x}\frac{\partial}{\partial y} + C\frac{\partial}{\partial y^2} + D\frac{\partial}{\partial x} + E\frac{\partial}{\partial y} + Ff = G$	ELLIPTICAL	PARABOLIC	HYPERBOLIC
$\Delta = B^2 - 4AC$	Δ< 0	$\Delta = 0$	$\Delta > 0$

Ī	WAVE EQUATION	HEAT EQUATION	LAPLACE EQUATION
Ī	$\partial^2 u = \partial^2 u$	$\partial u = \partial^2 u$	$\partial^2 u \partial^2 u$
	$\frac{\partial t^2}{\partial t^2} = C^2 \frac{\partial x^2}{\partial x^2}$	$\frac{\partial t}{\partial t} = C^2 \frac{\partial x^2}{\partial x^2}$	$\frac{\partial x^2}{\partial x^2} + \frac{\partial y^2}{\partial y^2} = 0$

METHOD OF SEPARATION OF VARIABLE