Neural and neurosymbolic parsing

Computational Linguistics

Alexander Koller

12 December 2023

Sentences have structure

grammatical functions

Penn Treebank

Parsing with neural models

• The syntactic structure of a sentence is a tree. So we need models of syntax that know what a tree is.

- Right?
- Right??

Trees as sequences

- Every tree can be uniquely and reversibly encoded as a sequence of symbols.
- Thus, if we know how to map sequences to sequences, we can also map sequences to trees.

input sequence:

John has a dog.

output sequence:

 $(S (NP NNP)_{NP} (VP VBZ (NP DT NN)_{NP})_{VP}.)_{S}$

Seq2seq model for parsing

Note: Input sequence is presented in reverse order. This makes LSTM-based MT models more accurate and was standard practice at the time.

Evaluation

Parser	Training Set	WSJ 22	WSJ 23
baseline LSTM+D	WSJ only	< 70	< 70
LSTM+A+D	WSJ only	88.7	88.3
LSTM+A+D ensemble	WSJ only	90.7	90.5
baseline LSTM	I BerkeleyParser corpus		90.5
LSTM+A	high-confidence corpus	92.8	92.1
Petrov et al. (2006) [12]	WSJ only	91.1	90.4
Zhu et al. (2013) [13]	WSJ only	N/A	90.4
Petrov et al. (2010) ensemble [14]	WSJ only	92.5	91.8
Zhu et al. (2013) [13]	semi-supervised	N/A	91.3
Huang & Harper (2009) [15]	semi-supervised	N/A	91.3
McClosky et al. (2006) [16]	semi-supervised	92.4	92.1

A = with cross-attention

D = with dropout

> 98% of output sequences represent trees

Silver data

"high-confidence training corpus"

Role of attention

Observations

- It was shocking to me that a bare seq2seq model would do so well on a structured prediction task.
- Results on high-confidence corpus are excellent, but results on original WSJ training set only okay.
- Can we do better?

RNN Grammars

- Can we extend neural shift-reduce parsing into a parser with SOTA accuracy?
- Steps towards Recurrent Neural Network Grammars:
 - shift-reduce
 - discriminative RNNGs: add top-down context
 - generative RNNGs: better management of conditionals
- This is a *neurosymbolic* and not a purely neural model: It has awareness of trees and uses them to compute representations.

Neural shift-reduce

Neural shift-reduce

Neural shift-reduce

- Advantages:
 - no grammar needed
 - linear runtime
- Limitations:
 - risk of incorrect early parser actions
 - no top-down context

Discriminative RNNGs

- Add top-down context:
 - add symbols for "open nonterminals" to the stack,
 e.g. "(S"
 - ▶ add parser action "NT(X)" to add open nonterminal "(X" to the stack.
- Picks up ideas from Earley parser for CFGs.
- Note that Vinyals parser has these "open nonterminals" too.

Example

Input: The hungry cat meows.

	Stack	Buffer	Action
0		The hungry cat meows .	NT(S)
1	(S	The hungry cat meows .	NT(NP)
2	$(S \mid (NP))$	The hungry cat meows .	SHIFT
3	(S (NP The))	hungry cat meows .	SHIFT
4	(S (NP The hungry	cat meows .	SHIFT
5	(S (NP The hungry cat	meows .	REDUCE
6	(S (NP The hungry cat)	meows .	NT(VP)
7	(S (NP The hungry cat) (VP	meows .	SHIFT
8	(S (NP The hungry cat) (VP meows	•	REDUCE
9	(S (NP The hungry cat) (VP meows)		SHIFT
10	(S (NP The hungry cat) (VP meows) .		REDUCE
11	(S (NP The hungry cat) (VP meows).)		

Training and parsing

- Convert parse trees from the training set into sequences of actions (uniquely).
- Train NN to predict correct parser action in context using MLE.
- At test time, simply predict actions.
- This gives an f-score of 91.2 on the standard WSJ split. Pretty good can we do better?

Generative RNNGs

- Traditional distinction of parsing models:
 - ▶ *Discriminative* models represent prob dist P(t | w).
 - *Generative* models represent prob dist P(t, w).
- PCFGs are generative models and can be parsed efficiently. More complex generative models can't.
- Generative RNNGs: Keep NT and REDUCE actions, replace SHIFT with GEN(*word*).
 - Get rid of buffer: we are generating the string, not reading it.

Generative RNNGs

	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(The)
3	(S (NP The)	The	GEN(hungry)
4	(S (NP The hungry	The hungry	GEN(cat)
5	(S (NP The hungry cat	The hungry cat	REDUCE
6	(S (NP The hungry cat)	The hungry cat	NT(VP)
7	(S (NP The hungry cat) (VP	The hungry cat	GEN(meows)
8	(S (NP The hungry cat) (VP meows	The hungry cat meows	REDUCE
9	(S (NP The hungry cat) (VP meows)	The hungry cat meows	GEN(.)
10	(S (NP The hungry cat) (VP meows) .	The hungry cat meows .	REDUCE
11	(S (NP The hungry cat) (VP meows).)	The hungry cat meows .	

Parsing with generative RNNGs

We are looking for

```
\underset{t \in \mathsf{parses}(w)}{\arg\max} \ P(t, w),
```

but the generative RNNG doesn't know anything about w, so it is totally unclear how to compute it.

- We *could* get the argmax for P(t | w), but this is not the right model.
- We can also sample from $P(t \mid w)$. Let's do it many times and reweight \rightarrow *importance sampling*.

Importance sampling

f-score on PTB: 93.3

Neural Berkeley Parser

RNNGs are cool, but they seem complicated.

Parallel training is a nightmare.

Couldn't we just do CKY parsing with neural

scores?

Core of Viterbi-CKY

Viterbi CKY parse chart: $Ch(i, k) = \{(A, p) \mid p = \max_{d:A \Rightarrow^* w_i \dots w_{k-1}} P(d) \}$

VP: 0.0036	NP: 0.006	N: 0.014	PP: 0.12
VP: 0.06	NP: 0.12	N: 0.3	in my pyjamas ::
	Det: 0.5	elephant :	
V: 1.0	shot ::		

Core of Viterbi-CKY

$$\frac{V(i,j)}{t} = \max_{t \text{ for } (i,j)} \sum_{(i',j',\ell)\in t} s(i',j',\ell) = \max_{\ell} s(i,j,\ell) + \max_{k} (V(i,k) + V(k,j))$$

VP: 5 VP/46	NP: 0 NP/26	N: 5 N/16	PP: 8 PP/8
VP: 5 VP/33	NP: 10 X: -20 NP/18	N: 3 N/3	in my pyjamas
X: -10 X/5	Det: 5 Det/5	elephant :	
V: 10 V/10	shot	•	Assume local score s(i, j, l)

shot

Goal: Maximize $\sum s(i, j, \ell)$ $(i,j,\ell) \in t$

Computing local scores

Training uses *hinge loss*: maximize score difference of gold tree to the others.

Evaluation

Encoder Architecture	F1 (dev)	Δ
LSTM (Gaddy et al., 2018)	92.24	-0.43
Self-attentive (Section 2)	92.67	0.00
+ Factored (Section 3)	93.15	0.48
+ CharLSTM (Section 5.1)	93.61	0.94
+ ELMo (Section 5.2)	95.21	2.54

Summary

- Neural models are good at parsing, but neurosymbolic models are better.
 - ▶ RNNGs = shift-reduce plus more complex parsing
 - Berkeley = Viterbi-CKY plus more complex training
- Neurosymbolic models are really interesting, but need clearer understanding of design principles.

