Assigned: Wednesday September 3, 2014, Due: Friday, September 12, 2014, 11:59pm.

Building a List with a Dynamic Array (to model a deck of cards)

1. The List Abstract Data Type (ADT)

A "List" is an example of an Abstract Data Type (ADT): it defines the interface that is used to store data, but *not* the underlying data structure that the list is implemented in. In this assignment, we will build a list using C++ *dynamic arrays*, and in the next assignment, we will re-implement the list using *linked lists*.

An ADT is abstract in the sense that it defines the operations that need to be implemented, and it is up to the programmer to decide *how* to implement those operations. This layer of abstraction gives the programmer the flexibility to make decisions that are transparent to the end user of the ADT, although there may be trade-offs, such as in performance (how fast the operations happen), and size (how much memory the implementation takes up).

Our list will be used in the implementation of a program that models a deck of playing cards. There is a Card class, which defines a playing card, and which will be used by our List_dynamic_array class to store individual playing cards (see the implementation for details). For our purposes, we will model traditional playing cards from a 52-card deck, with standard suits and ranks. There will also be a Hand class, which will use our list to produce a deck or a hand of cards. Our List_dynamic_array needs to know what a Card is, and the Hand class needs to know how to use our List_dynamic_array. But, the List_dynamic_array does not need to know anything about a Hand.

2. Implementation Specifics

We have provided you the Card and Hand implementations in full. We have also provided you with the List_dynamic_array header file, and also with the List_dynamic_array implementation file, with empty function definitions. You will have to create the code for the functions in order to implement the list.

You must implement the list using dynamic arrays. Recall that a dynamic array is a standard C++ pointer to a given array in memory, and "grows" as more memory is needed. We use quotes around *grow*, because in order to increase the size of an array in C++, you need to create a completely new

array with a larger size, copy the old data to the new array, and clean up after yourself by deleting the old array and setting the list variable pointer to the new array.

The Card Class

A card has a *suit* and a *rank* defined by an **enum** as follows:

```
enum Suit {CLUB,DIAMOND,HEART,SPADE};
enum Rank {TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,TEN,JACK,QUEEN,KING,ACE};
```

A Card is created by one of two constructors:

```
Card();
Card(char r, char s);
```

The first constructor creates a default card with a *rank* of ACE and a *suit* of CLUB. The second constructor creates a card with the *rank* and *suit* defined in the parameters of the constructor, e.g.,

```
Card c = new Card('5', 'H');
```

Cards can be printed to the screen using the print_card() function.

The rank and suit can be set or read using setters and getters:

```
Suit get_suit() { return suit; }
void set_suit(Suit s) { suit = s; }
Rank get_rank() { return rank; }
void set rank(Rank r) { rank = r; }
```

A card can be copied to another card using the "=" operator:

```
Card card2 = card1;
```

Two cards can be compared using the following function, which returns *true* if the cards are the same, and *false* if they are different:

```
bool same card(Card c);
```

Cards can also be converted into an integer value using the <code>card_int()</code> function. This is useful for comparing two cards so that a hand may be ordered. Clubs are considered lower than Diamonds, then Hearts, and finally Spades. The lowest ranking card is a TWO, and the highest is an ACE.

The good news: your list implementation will only have to be concerned with copying cards, and printing cards (and we already wrote the print function for you!). In other words, most of the above is for reference and not even necessary for this project.

The Hand Class

A Hand holds all of its cards in a List_dynamic_array, called hand. A hand can be printed using the print_hand() or print_hand_int() functions. A 52-card deck can be created in two different ways, using either the create_deck() function, or by reading a deck in from standard input (i.e., the terminal, or a file piped in) using the read deck() function.

Hands can be shuffled (re-ordered randomly) with the **shuffle()** function.

The number of cards in a hand can be determined using the cards in hand() function.

A card can be added to a hand with the add_card(Card c) function. A card can be removed from a hand with the remove_card(Card c) function, if the card exists in the hand. An error will be generated if the card is not already in the hand.

Cards can be moved between two hands ("dealt") with the deal_card_from_top (Hand &h) and deal_card_from_bottom(Hand &h) functions. These functions also return the card to the calling function, as well. An error is generated if there are no cards in the dealing hand.

The good news: We have already implemented all of these functions for you! (We will use them to test the functionality of your list). In future projects, we may have you add more functions to the Hand class. It might be a good idea to become familiar with this class in order to do your own testing on your List dynamic array class.

The List_dynamic_array Class

You are responsible for writing most of the functions in this class. The following is the header definition of the List dynamic array class:

```
// List dynamic array.h
// The List dynamic array header
// Purpose: create a list using a dynamic array that grows as needed.
           The list is comprised of an array of Cards, which can be
//
//
           inserted, removed, and replaced in a number of different
//
           ways.
//
            The "head" of the list is the beginning of the array
            The "tail" of the list is the end of the array
#ifndef List dynamic array h
#define List dynamic array h
#include "card.h" // the definition of a Card
#define INITIAL CAPACITY 10 // the initial size of our list.
class List dynamic array
public:
       List_dynamic_array(); // constructor
       ~List dynamic array(); // destructor
       void print list(); // prints the list in human-readable form
```

```
void print list int(); // prints the list as integers based on rank and suit
       bool is empty() { return cards held==0; }
       void make empty() { cards held = 0; } // makes the list empty
       void insert at head(Card c); // inserts at the beginning of the list
       void insert at tail(Card c); // inserts at the end of the list
       void insert at index(Card c, int index); // inserts at an index
       void replace at index(Card c, int index); // replaces the card at an index
       Card card at(int index); // returns the card at the index
       bool has card(Card c); // returns true if the card is in the list
       bool remove(Card c); // removes the card
       Card remove_from_head(); // removes the beginning card
       Card remove from tail(); // removes the last card
       Card remove from index(int index); // removes the card at index
       int cards_in_hand() { return cards_held; }
private:
       void expand(); // expand the list when necessary
       Card *cards; // the array of cards
       int cards held; // how many cards are currently in the hand
       int hand capacity; // the capacity of the array that holds the cards
};
#endif // List dynamic array h
```

The comments provide enough information to get you started on writing the code for the class. We have provided some other hints in the List_dynamic_array.cpp file, as well. We will also be going over some implementation details in class lectures.

3. General Tips and Instructions

Test, test! In class, we will be discussing how to test your functions, and you should write a test for virtually every function. In other words, you need to set up a test for each function to see if it is working. For example, if you want to test the void insert_at_tail(Card c); function, you could write the following function in your main.cpp file (before the main() function):

```
void test_insert_at_tail() {
    List_dynamic_array test_list;
    Card card1('A','D'); // ace of diamonds
    Card card2('5','S'); // five of spades
    Card card3('8','C'); // eight of clubs

    test_list.print_list(); // should be blank

    test_list.insert_at_tail(card1); // insert a card
    test_list.print_list(); // should print the Ace of Diamonds (AD)

    test_list.insert_at_tail(card2); // insert another card
    test_list.print_list(); // should print AD,5S

    test_list.insert_at_tail(card3); // insert another card
    test_list.print_list(); // should print AD,5S,8C
}
```

In your main() function, you could then write the following:

```
int main(int argc, char **argv)
{
     // test functions
     test_insert_at_tail();
     exit(0);
}
```

If the output is as you expected, then your insert at tail() function works.

When we grade your assignments, we will run your functions through a battery of tests that will check all of the so-called "corner cases" — in other words, we will check to ensure that your functions are thoroughly correct for all possible cases.

4. Low Level Details

Getting the files

There are two ways to get the files for this assignment. The first is by copying the original files from the class folder. The second is to use "git" to pull the files from the GitHub cloud server.

Method 1: copy files from the class folder

```
First make a directory called orderedListAssignment

"mkdir hw1"

change into that directory

"cd hw1"

At the command prompt, enter

"cp /comp/15/public_html/assignments/hw1/files/* ."
```

Method 2: pull from GitHub:

```
At the command prompt, enter

"git clone https://github.com/Tufts-COMP15/2014f_HW1.git hw1"

change into the directory that git created:

"cd hw1"
```

Compiling and running:

- 1. At the command prompt, enter "make" and press enter or return to compile.
- 2. At the command prompt, enter "./cards dynamic array" and press return to run the new program.

Providing:

At the command prompt, enter "make provide" and press enter or return.