8 класс Отб

Отборочная олимпиада

12 января 2019

- 1. Среди 63 внешне одинаковых монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за 3 взвешивания на чашечных весах без гирь определить 7 настоящих монет?
- **2.** Пусть a, b, c стороны треугольника. Докажите неравенство

$$\frac{a^2 + 2bc}{b^2 + c^2} + \frac{b^2 + 2ac}{c^2 + a^2} + \frac{c^2 + 2ab}{a^2 + b^2} \geqslant 3.$$

- **3.** Пусть a_1, a_2, \ldots, a_{10} натуральные числа, $a_1 < a_2 < \ldots < a_{10}$. Пусть b_k наибольший делитель a_k такой, что $b_k < a_k$. Оказалось, что $b_1 > b_2 > \ldots > b_{10}$. Докажите, что $a_{10} > 500$.
- **4.** Точка F середина стороны BC квадрата ABCD. К отрезку DF проведён перпендикуляр AE. Найдите $\angle CEF$.
- **5.** Клетки доски размером 5 × 5 раскрашены в шахматном порядке (угловые клетки чёрные). По чёрным клеткам этой доски двигается фигура мини-слон, оставляя след на каждой клетке, где он побывал, и больше в эту клетку не возвращаясь. Мини-слон может ходить либо в свободные от следов соседние (по диагонали) клетки, либо прыгать (также по диагонали) через одну клетку, в которой оставлен след, на свободную клетку за ней. Какое наибольшее количество клеток сможет посетить мини-слон?
- **6.** P(x) квадратный трёхчлен. Какое наибольшее количество членов, равных сумме двух предыдущих членов, может быть в последовательности $P(1), P(2), P(3), \dots$?

- 1. Среди 63 внешне одинаковых монет есть 7 фальшивых. Все фальшивые монеты весят одинаково, все настоящие монеты также весят одинаково, и фальшивая монета легче настоящей. Как за 3 взвешивания на чашечных весах без гирь определить 7 настоящих монет?
- **2.** Пусть a, b, c стороны треугольника. Докажите неравенство

$$\frac{a^2 + 2bc}{b^2 + c^2} + \frac{b^2 + 2ac}{c^2 + a^2} + \frac{c^2 + 2ab}{a^2 + b^2} \geqslant 3.$$

- **3.** Пусть a_1, a_2, \ldots, a_{10} натуральные числа, $a_1 < a_2 < \ldots < a_{10}$. Пусть b_k наибольший делитель a_k такой, что $b_k < a_k$. Оказалось, что $b_1 > b_2 > \ldots > b_{10}$. Докажите, что $a_{10} > 500$.
- **4.** Точка F середина стороны BC квадрата ABCD. К отрезку DF проведён перпендикуляр AE. Найдите $\angle CEF$.
- **5.** Клетки доски размером 5 × 5 раскрашены в шахматном порядке (угловые клетки чёрные). По чёрным клеткам этой доски двигается фигура мини-слон, оставляя след на каждой клетке, где он побывал, и больше в эту клетку не возвращаясь. Мини-слон может ходить либо в свободные от следов соседние (по диагонали) клетки, либо прыгать (также по диагонали) через одну клетку, в которой оставлен след, на свободную клетку за ней. Какое наибольшее количество клеток сможет посетить мини-слон?
- **6.** P(x) квадратный трёхчлен. Какое наибольшее количество членов, равных сумме двух предыдущих членов, может быть в последовательности P(1), P(2), P(3), ...?