Six popular process scheduling algorithms

- First-Come, First-Served (FCFS) Scheduling
- Shortest-Job-Next (SJN) Scheduling
- Priority Scheduling
- Shortest Remaining Time
- Round Robin(RR) Scheduling
- Multiple-Level Queues Scheduling

Six popular process scheduling algorithms

- These algorithms are either **non-preemptive or preemptive**.
- Non-preemptive algorithms are designed so that once a process enters the running state, it cannot be preempted until it completes its allotted time,
- whereas the preemptive scheduling is based on priority where a scheduler may preempt a low priority running process anytime when a high priority process enters into a ready state.

First Come First Serve (FCFS)

- Jobs are executed on first come, first serve basis.
- It is a non-preemptive, pre-emptive scheduling algorithm.
- Easy to understand and implement.
- Its implementation is based on FIFO queue.
- Poor in performance as average wait time is high.

First Come First Serve (FCFS)

Process	Arrival Time	Execute Time	Service Time
PO	0	5	0
P1	1	3	5
P2	2	8	8
P3	3	6	16

First Come First Serve (FCFS)

 Process
 Wait Time : Service Time - Arrival Time

 P0
 0 - 0 = 0

 P1
 5 - 1 = 4

 P2
 8 - 2 = 6

 P3
 16 - 3 = 13

Average Wait Time: (0+4+6+13) / 4 = 5.75

- This is also known as **shortest job first**, or SJF
- This is a non-preemptive, pre-emptive scheduling algorithm.
- Best approach to minimize waiting time.
- Easy to implement in Batch systems where required CPU time is known in advance.
- Impossible to implement in interactive systems where required CPU time is not known.
- The processer should know in advance how much time process will take.

• Given: Table of processes, and their Arrival time, Execution time

Process	Arrival Time	Execution Time	Service Time
P0	0	5	0
P1	1	3	5
P2	2	8	14
Р3	3	6	8

Process	Arrival Time	Execute Time	Service Time
PO	О	5	3
P1	1	3	0
P2	2	8	16
P3	3	6	8

• Waiting time of each process is as follows –

Process			Waiting Time	
	Р0	0 - 0 = 0		
	P1	5 - 1 = 4		
	P2	14 - 2 = 12		
	P3	8 - 3 = 5		

Average Wait Time: (0 + 4 + 12 + 5)/4 = 21/4 = 5.25

- Priority scheduling is a non-preemptive algorithm and one of the most common scheduling algorithms in batch systems.
- Each process is assigned a priority. Process with highest priority is to be executed first and so on.
- Processes with same priority are executed on first come first served basis.
- Priority can be decided based on memory requirements, time requirements or any other resource requirement.

• Given: Table of processes, and their Arrival time, Execution time, and priority. Here we are considering 1 is the lowest priority.

Process	Arrival Time	Execution Time	Priority	Service Time
P0	0	5	1	0
P1	1	3	2	11
P2	2	8	1	14
P3	3	6	3	5

Process	Arrival Time	Execute Time	Priority	Service Time
PO	0	. 5	1	9
P1	1	3	2	6
P2	2	8		14
P3	3	6	3	0

Waiting time of each process is as follows –

Process		Waiting Time
P0	0 - 0 = 0	
P1	11 - 1 = 10	
P2	14 - 2 = 12	
Р3	5 - 3 = 2	

Average Wait Time: (0 + 10 + 12 + 2)/4 = 24 / 4 = 6

Shortest Remaining Time

- Shortest remaining time (SRT) is the preemptive version of the SJN algorithm.
- The processor is allocated to the job closest to completion but it can be preempted by a newer ready job with shorter time to completion.
- Impossible to implement in interactive systems where required CPU time is not known.
- It is often used in batch environments where short jobs need to give preference.

Round Robin Scheduling

- Round Robin is the preemptive process scheduling algorithm.
- Each process is provided a fix time to execute, it is called a quantum.
- Once a process is executed for a given time period, it is preempted and other process executes for a given time period.
- Context switching is used to save states of preempted processes.

Round Robin Scheduling

Quantum = 3

Round Robin Scheduling

Wait time of each process is as follows –

Process

Wait Time: Service Time - Arrival Time

P0
$$(0-0)+(12-3)=9$$

P1
$$(3-1)=2$$

P2
$$(6-2)+(14-9)+(20-17)=12$$

P3
$$(9-3)+(17-12)=11$$

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other existing algorithms to group and schedule jobs with common characteristics.

- Multiple queues are maintained for processes with common characteristics.
- Each queue can have its own scheduling algorithms.
- Priorities are assigned to each queue.

Multiple-Level Queues Scheduling

• For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another queue. The Process Scheduler then alternately selects jobs from each queue and assigns them to the CPU based on the algorithm assigned to the queue.

