

General Description

TheVSM78N07uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

Features

- V_{DS} =75V; I_{D} =78A@ V_{GS} =10V; $R_{DS(ON)}$ <8.5mΩ @ V_{GS} =10V
- Special process technology for high ESD capability
- Special designed for Convertors and power controls
- High density cell design for ultra low Rdson
- Fully characterized Avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

-						
	Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
ĺ	VSM78N07-TC	VSM78N07	TO-220C	-	-	-

Table 1. Absolute Maximum Ratings (T_C=25℃)

Parameter	Symbol	Value	Unit	
Drain-Source Voltage (V _{GS} =0V)	V _{DS}	75	V	
Gate-Source Voltage (V _{DS} =0V)	V _{GS}	±20	V	
Drain Current (DC) at Tc=25°C	I _{D (DC)}	78	А	
Drain Current (DC) at Tc=100°C	I _{D (DC)}	55	A A V/ns W	
Drain Current-Continuous@ Current-Pulsed (Note 1)	I _{DM} (pluse)	300		
Peak diode recovery voltage	dv/dt	30		
Maximum Power Dissipation(Tc=25℃)	P _D	160		
Derating factor		1.07	W/°C	
Single pulse avalanche energy (Note 2)	E _{AS}	550	mJ	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 175	$^{\circ}$	

 ${f Notes}$ 1.Repetitive Rating: Pulse width limited by maximum junction temperature

2.EAS condition: Tj=25°C,VDD=37.5V,VG=10V,L=0.5mH

Table 2. Thermal Characteristic

Parameter	Symbol	Value	Unit	
Thermal Resistance, Junction-to-Case (Maximum)	R _{thJC}	0.94	°C/W	
Thermal Resistance, Junction-to-Ambient (Maximum)	R _{thJA}	63	°C/W	

Table 3. Electrical Characteristics (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
On/off states						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	75	84	-	V
Zero Gate Voltage Drain Current(Tc=25℃)	I _{DSS}	V _{DS} =75V,V _{GS} =0V	-	-	1	μA
Zero Gate Voltage Drain Current(Tc=125°C)	I _{DSS}	V _{DS} =75V,V _{GS} =0V	-	-	10	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	2	2.85	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	7	8.5	mΩ
Dynamic Characteristics						
Forward Transconductance	g FS	V _{DS} =5V,I _D =30A	-	60	-	S
Input Capacitance	C _{lss}	\/ -05\/\/ -0\/	-	3400	-	PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	290	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0IVIDZ	-	221	-	PF
Total Gate Charge	Qg	\/ 00\/ L 00A	-	94	-	nC
Gate-Source Charge	Q_{gs}	V_{DS} =30V, I_{D} =30A, V_{GS} =10V	-	16	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} -10V	-	24	-	nC
Switching times						
Turn-on Delay Time	t _{d(on)}		-	15	-	nS
Turn-on Rise Time	t _r	V_{DD} =30 V , I_D =2 A , R_L =15 Ω	-	11	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10V, R_{G} =2.5 Ω	-	52	-	nS
Turn-Off Fall Time	t _f		-	13	-	nS
Source- Drain Diode Characteristics			•			
Source-drain current(Body Diode)	I _{SD}		-	-	78	Α
Pulsed Source-drain current(Body Diode)	I _{SDM}		-	-	312	Α
Forward on voltage ^(Note 1)	V _{SD}	Tj=25°C,I _{SD} =40A,V _{GS} =0V	-	-	1.2	V
Reverse Recovery Time ^(Note 1)	t _{rr}	Ti-05°C L -75A di/dt-100A/	-	-	33	nS
Reverse Recovery Charge ^(Note 1)	Q _{rr}	- Tj=25℃,I _F =75A,di/dt=100A/μs	-	-	54	nC
Forward Turn-on Time	t _{on}	Intrinsic turn-on time is negligible(turn-on is dominated		ninated b	y L _S +L _D)	

Notes 1.Pulse Test: Pulse Width ≤ 300 μ s, Duty Cycle ≤ 1.5%, R_G=25 Ω , Starting Tj=25 $^{\circ}$ C

Test Circuit

1) E_{AS} test circuit

2) Gate charge test circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (curves)

Figure 1. Safe operating area

Figure 3. Output characteristics

Figure 5. Static drain-source on resistance

Figure 2. Source-Drain Diode Forward Voltage

Figure 4. Transfer characteristics

Figure 6. R_{DS(ON)} vs Junction Temperature

Figure 7. BV_{DSS} vs Junction Temperature

Figure 8. V_{GS(th)} vs Junction Temperature

Figure 9. Capacitance

Figure 10. Gate charge waveforms

Figure 11. Normalized Maximum Transient Thermal Impedance

