SE 380 — HW 2

Bilal Khan bilal2vec@gmail.com

September 28, 2023

Contents

1	1																1																
	1.1	a																															1
	1.2	b															•		•														2
2	_																																2
	2.1	a																															2
	2.2	b																															4
		2	.2.	1	j	ĺ																						 					4
		2	.2.	2	j	i																											4
3	3																																5
	3.1	a																										 					5
	3.2	b																															5
	3.3	\mathbf{c}																										 					5
	3.4	d																										 					5

1 1

1.1 a

Considering the state space model

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

where $x \in \mathbb{R}^2$, $u \in \mathbb{R}^2$, and $y \in \mathbb{R}$, find values for A, B, C, D such that the corresponding transfer function is

$$G(s) = \frac{\mu}{1 + \tau s}$$

Taking the Laplace transform of the above equations, we get

$$sX(s) - x(0) = AX(s) + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

Solving this, assuming initial state is zero, we get

$$sX(s) - x(0) = AX(s) + BU(s)$$

$$sX(s) - AX(s) = BU(s)$$

$$X(s)(sI - A) = BU(s)$$

$$X(s) = \frac{BU(s)}{sI - A}$$

$$Y(s) = \left(\frac{CB}{sI - A} + D\right)U(s)$$

$$H(S) = \frac{Y(s)}{U(s)} = \frac{CB}{sI - A} + D$$

$$\frac{CB}{sI - A} = \frac{\mu}{1 + \tau s}$$

We want $CB = \mu$, so one possible solution is

$$C = \begin{bmatrix} \mu & 0 \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

The $1 + \tau s$ term can be made simpler by rearranging it to $s + \frac{1}{\tau}$, and we want the same $x_1(t)$ state value to change as in B so we want A to be

$$A = \begin{bmatrix} -\frac{1}{\tau} & 0\\ 0 & 0 \end{bmatrix}$$

D is zero because we do not use it in the transfer function.

1.2 b

No, there are multiple ways to set up the state space matrices to get the same transfer function. For example, we could have chosen $x_2(t)$ to be the state variable we use and then choose C to be $\begin{bmatrix} 0 & 1 \\ 1 \end{bmatrix}$, and A to be $\begin{bmatrix} 0 & 0 \\ -\frac{1}{\tau} & 0 \end{bmatrix}$, and D to be zero. This would have given us the same transfer function.

2 2

2.1 a

Consider a first-order system with transfer function given by $H(s) = \frac{\mu}{1+\tau s}$. Compute the response $y_1(t)$ to a step input $u_1(t) = H(t)$ and the response of $y_2(t)$ to a ramp input $u_2(t) = tHTt$.

The laplace transform of $u_1(t)$ is $U_1(s) = \frac{1}{s}$ and the Laplace transform of $u_2(t)$ is $U_2(s) = \frac{1}{s^2}$

$$Y_1(s) = H(s)U_1(s)$$

$$= \frac{\mu}{1 + \tau s} \frac{1}{s}$$

$$= \frac{\mu}{s(1 + \tau s)}$$

$$Y_2(s) = H(s)U_2(s)$$

$$= \frac{\mu}{1 + \tau s} \frac{1}{s^2}$$

$$= \frac{\mu}{s^2(1 + \tau s)}$$

We can compute the inverse Laplace transforms on their partial fraction decompositons.

$$Y_{1}(s) = \frac{\mu}{s(1+\tau s)}$$

$$\frac{\mu}{s(1+\tau s)} = \frac{A}{s} + \frac{B}{1+\tau s}$$

$$\mu = A(1+\tau s) + Bs$$

$$\mu = A$$

$$\mu = \mu(1+\tau s) + Bs$$

$$\mu = \mu + \mu \tau s + Bs$$

$$0 = s(\mu \tau + B)$$

$$B = -\mu \tau$$

$$Y_{1}(s) = \frac{\mu}{s} - \frac{\mu \tau}{1+\tau s}$$

$$y_{1}(t) = (\mu - \mu e^{-t/\tau})u_{1}(t)$$

$$(s = 0)$$

$$(s \neq 0)$$

$$Y_{2}(s) = \frac{\mu}{s^{2}(1+\tau s)}$$

$$\frac{\mu}{s^{2}(1+\tau s)} = \frac{A}{s} + \frac{B}{s^{2}} + \frac{C}{1+\tau s}$$

$$\mu = As(1+\tau s) + B(1+\tau s) + Cs^{2}$$

$$\mu = B \qquad (s = 0)$$

$$\mu = As(1+\tau s) + \mu(1+\tau s) + Cs^{2}$$

$$\mu = C(-1/\tau)^{2} \qquad (s = -1/\tau)$$

$$\mu = C/\tau^{2}$$

$$C = \mu\tau^{2}$$

$$\mu = As(1+\tau s) + \mu(1+\tau s) + \mu\tau^{2}s^{2}$$

$$\mu = As(1+\tau s) + \mu + \mu\tau s + \mu\tau^{2}s^{2}$$

$$0 = As(1+\tau s) + (1+\tau s)\mu\tau s$$

$$-(1+\tau s)\mu\tau s = As(1+\tau s)$$

$$-\mu\tau = A$$

$$Y_{2}(s) = \frac{-\mu\tau}{s} + \frac{\mu}{s^{2}} + \frac{\mu\tau^{2}}{1+\tau s}$$

$$y_{2}(t) = (-\mu\tau + \mu t + \mu\tau e^{-t/\tau})u_{2}(t)$$

2.2 b

2.2.1 i

 $u_1(t)$ is positive and 1 for all values ≥ 1 so its value is fixed. As $t \to \infty$, $y_1(t) \to \mu$ for all values of t and so the limit goes to 1. For the abs of the difference to go to zero, we need $\mu = 1$.

2.2.2 ii

 $u_2(t)$ is positive and t for all values $t \geq 1$. As $t \to \infty$, the terms in

$$|-\mu\tau + \mu t + \mu\tau e^{-t/\tau} - t|$$

go to

$$|-\mu\tau+t(\mu-1)|$$

This goes to zero as $t \to \infty$ if $\mu = 1$ and $\tau = 0$.

The first example is about tracking the error between a constant reference given by the input (a constant value of 1 from the heaviside function) and so our system's error will go to zero if the gain of our transfer function μ is also one.

The second example is about tracking the error between a ramp reference with a slope of t given by the input (the ramp) and so our system's error will go to zero if the gain of our transfer function μ is one and the time constant τ is zero. Setting μ to one ensures that the middle term in our response tracks the input and leads to zero error. However, this is probably a case that is

not physically feasible since that would mean that the damped exponential in our response would immediately go to zero. In more , realistic cases, we would still set μ to one but we would set τ to a small value so that the damped exponential would go to zero quickly and the first term $\mu\tau$ would also reduce the error to a constant τ value.

3 3

3.1 a

Given the equation $y(t) = u(t - \tau)$ where $\tau > 0$, its Laplace transform is $Y(s) = e^{-\tau s}U(s)$. Its transfer function is given by $H(s) = e^{-s\tau}$

3.2 b

 $H(j\omega)=e^{-j\omega\tau}$. The magnitude in decibels is given by $20\log_{10}|H(j\omega)|=20\log_{10}|e^{-j\omega\tau}|=20\log_{10}1=0$. The angle is given by $\angle H(j\omega)=\angle e^{-j\omega\tau}=-\omega\tau$.

3.3 c

 $H(s)=e^{-\tau/s}$. Taking the Laplace transform of the input, $U(s)=\frac{0.15\times 2\pi}{s^2+(2\pi)^2}$. The output is given by $Y(s)=H(s)U(s)=\frac{0.15\times 2\pi e^{-\tau/s}}{s^2+(2\pi)^2}$. Taking the inverse Laplace transform, we get apply the rules for sin and time shifting to get $y(t)=0.15\times \sin(2\pi(t-\tau))$.

3.4 d

Yes it holds because the output is a sinusoid with a modified amplitude that has been phase shifted, but at the same frequency.