Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет ПИиКТ

ОТЧЁТ

По лабораторной работе №3

«Компьютерные сети с маршрутизатором»

По предмету: Компьютерные сети

Студент:

Степанов М. А.

Группа Р33301

Преподаватель:

Алиев Т. И.

Оглавление

Цели	3
Задачи	3
Формирование варианта	Ошибка! Закладка не определена.
Сеть 1. Локальная сеть с концентратором	4
Сеть 2. Локальная сеть с коммутатором	Ошибка! Закладка не определена.
Сеть 3. Многосегментная локальная сеть	Ошибка! Закладка не определена.
Топология общая шина	Ошибка! Закладка не определена.
Кольцевая топология	Ошибка! Закладка не определена.
Топология звезда	Ошибка! Закладка не определена.
Выволы	Ошибка! Заклалка не определена.

Цели

Изучение принципов настройки и функционирования компьютерных сетей, представляющих собой несколько подсетей, связанных с помощью маршрутизаторов, процессов автоматического распределения сетевых адресов, принципов статической маршрутизации и динамической маршрутизации, а также передачи данных на основе протоколов UDP и TCP..

<u>Задачи</u>

- построить модели компьютерных сетей, представляющих собой несколько подсетей, объединенных в одну автономную сеть, в соответствии с заданными вариантами топологий●
- выполнить настройку сети при статической маршрутизации, заключающуюся в присвоении IP-адресов интерфейсам сети и ручном заполнении таблиц маршрутизации; •
- промоделировать работу сети при использовании динамической маршрутизации на основе протокола RIP и при автоматическом распределении IP-адресов на основе протокола DHCP;
- выполнить тестирование построенных сетей путем проведения экспериментов по передаче данных на основе протоколов UDP и TCP; проанализировать результаты тестирования и сформулировать выводы об эффективности сетей с разными топологиями;
- сохранить разработанные модели локальных сетей для демонстрации процессов передачи данных при защите лабораторной работы..

Задание 1. Сеть с одним маршрутизатором

Схема сети:

Содержимое таблицы маршрутизации:

	Destination	Mask	Gateway	Interface	Metric	Source
1	203.9.7.0	255.255.255.0	203.9.7.23	203.9.7.23	0	Connected
2	203.10.7.0	255.255.255.0	203.10.7.18	203.10.7.18	0	Connected
3	203.11.7.0	255.255.255.0	203.11.7.20	203.11.7.20	0	Connected

Таблица содержит только записи, динамически-сгенерированные на основе подключений с узлом каждой сети. Как только мы подключаем коммутатор/концентратор к интерфейсу маршрутизатора и назначаем IP-адрес данному интерфейсу, маршрутизатор посылает ARP-запрос со своим IP-адресом по данной подсети И добавляет запись об этой подсети в свою таблицу маршрутизации.

Каждая строка таблицы маршрутизации содержит:

- Адрес назначения: адрес сети, к которой нужно добраться;
- Маска: маска, определяющая адрес сети;
- Шлюз: IP-адрес следующего маршрутизатора, к которому следует отправить пакет;
- Интерфейс: IP-адрес локального интерфейса, по которому следует отправить пакет;
- Метрика: величина, определяющая приоритетность маршрута;
- Источник: Подключена/Статическая/RIP источник добавления записи в таблицу.

Тестирование UDP:

Сначала передается ARP запрос на маршрутизатор, затем передаются UDP пакеты

Тестирование ТСР:

Задание 2. Сеть с двумя маршрутизаторами

Схема сети:

Таблицы маршрутизации:

Г	Destination	Mask	Gateway	Interface	Metric	Source
1	203.9.7.0	255.255.255.0	203.11.7.21	203.11.7.20	0	Static
2	203.10.7.0	255.255.255.0	203.10.7.19	203.10.7.19	0	Connected
3	203.11.7.0	255.255.255.0	203.11.7.20	203.11.7.20	0	Connected

Г	Destination	Mask	Gateway	Interface	Metric	Source
1	203.9.7.0	255.255.255.0	203.9.7.23	203.9.7.23	0	Connected
2	203.10.7.0	255.255.255.0	203.11.7.20	203.11.7.21	0	Static
3	203.11.7.0	255.255.255.0	203.11.7.21	203.11.7.21	0	Connected

В маршрутизаторы добавлены статические записи для маршрутизации между сетями.

Тестирование UDP:

```
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## received 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
## sent 203,10.7.14 > 203,9.7.18 Type: UPP Message user
```

Результаты аналогичны тестированию в задании 1, новый маршрутизатор отправил ARP запрос.

Тестирование ТСР:

```
# received 203.10.7.14 >> 203.9.7.18 Type: TCP
# sent 203.10.7.14 >> 203.9.7.18 Type: TCP
# sent 203.10.7.14 >> 203.9.7.18 Type: TCP
# sent 203.10.7.14 >> 203.9.7.18 Type: TCP
# received 203.10.7.14 >> 203.9.7.18
```

Результаты аналогичны тестированию в задании 1, новый маршрутизатор отправил ARP запрос.

Задание 3. Сеть с 3 маршрутизаторами

Был выбран вариант 4. Достоинство данного вариант заключается в простоте, у нас имеется центр в виде подсети маршрутизаторов, внутри которой при помощи ручной установки статических значений в таблицу маршрутизации пакеты направляются по нужному пути. Данная топология гарантирует одинаковую скорость доставки по всем направлениям при одинаковых каналах связи (одинаковое количество хопов). Недостаток заключается в том, что при иных топологиях пакеты могут проходить меньшее расстояние (хопов) за счет соединения с несколькими маршрутизаторами.

Таблицы маршрутизации:

	таолицы маршрутизации.							
	Destination	Mask	Gateway	Interface	Metric	Source		
1	203.9.0.0	255.255.255.0	203.9.0.8	203.9.0.8	0	Connected		
2	203.9.7.0	255.255.255.0	203.9.0.4	203.9.0.7	0	Static		
3	203.10.7.0	255.255.255.0	203.9.0.6	203.9.0.8	0	Static		
4	203.11.7.0	255.255.255.0	203.11.7.20	203.11.7.20	0	Connected		
	Destination	Mask	Gateway	Interface	Metric	Source		
1	203.9.0.0	255.255.255.0	203.9.0.4	203.9.0.4	0	Connected		
2	203.9.7.0	255.255.255.0	203.9.7.23	203.9.7.23	0	Connected		
3	203.10.7.0	255.255.255.0	203.9.0.5	203.9.0.3	0	Static		
٦.	203.11.7.0	255.255.255.0	203.9.0.7	203.9.0.4	0	Static		
4								

Destination	Mask	Gateway	Interface	Metric	Source
1 203.9.0.0	255.255.255.0	203.9.0.6	203.9.0.6	0	Connected
2 203.9.7.0	255.255.255.0	203.9.0.3	203.9.0.5	0	Static
3 203.10.7.0	255.255.255.0	203.10.7.18	203.10.7.18	0	Connected
4 203.11.7.0	255.255.255.0	203.9.0.8	203.9.0.6	0	Static

Было необходимо добавить в каждую таблицу по 2 статические записи для передачи пакетов по наикратчайшему расстоянию.

Тестирование по UDP:

Тестирование по ТСР:

После добавления протокола RIP во все узлы и маршрутизаторы, маршрутизаторы начали посылать RIP-пакеты с интервалом примерно в 15 секунд:

В результате отправки RIP пакетов таблицы маршрутизации изменились таким образом, что все записи о других подсетях теперь содержат одинаковые интерфейсы.

	Destination	Mask	Gateway	Interface	Metric	Source
1	203.9.0.0	255.255.255.0	203.9.0.6	203.9.0.6	0	Connected
2	203.9.7.0	255.255.255.0	203.9.0.3	203.9.0.5	0	Static
3	203.10.7.0	255.255.255.0	203.10.7.18	203.10.7.18	0	Connected
4	203.11.7.0	255.255.255.0	203.9.0.8	203.9.0.5	1	Static

При выведении одного маршрутизатора из строя запросы перестали отправляться.

При установке DHCP программ по сети начали передаваться пакеты:

Тестирование UDP:

