Chapter 11 Notes - MC

John Yang

June 22, 2021

Contents

11	Infinite Sequences and Series
	11.1 Sequences
	11.2 Series
	11.3 The Integral Test and Estimates of Sums
	11.4 The Comparison Tests
	11.5 Alternating Series
	11.6 Absolute Convergence and the Ratio and Root Tests
	11.7 Strategy for Testing Series
	11.8 Power Series
	11.9 Representations of Functions an Power Series
	11.10Taylor and Maclaurin Series
	11.11Applications of Taylor Polynomials

11 Infinite Sequences and Series

11.1 Sequences

• sequence - a list of numbers written in a definite order:

$$a_1, a_2, a_3, a_4, \cdots, a_n, \cdots$$

- For infinite series, every term a_n has a successor a_{n+1}
- Notation the sequence $\{a_1, a_2, a_3, \cdots\}$ can also be written as

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

• Definition 1: limits of sequences:

$$\lim_{n \to \infty} a_n = L$$

- This means: as n becomes very large, the terms of the sequence $\{a_n\}$ approach L.
- can also be written as

$$a_n \to L \text{ as } n \to \infty$$

• If the limit at infinity exists, the sequence is convergent/converges. Otherwise, it is divergent/diverges.

• Definition 2: A more precise definition of the limit of a sequence:

$$\lim_{n \to \infty} a_n = L$$

if for every $\varepsilon > 0$ there is a corresponding integer N such that

if
$$n > N$$
 then $|a_n - L| < \varepsilon$

- Theorem 3: If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$ when n is an integer, then $\lim_{n\to\infty} a_n = L$.
- Equation 4:

$$\lim_{n \to \infty} \frac{1}{n^r} = 0 \text{ if } r > 0$$

• Definition 5: $\lim_{n\to\infty} a_n = \infty$ means that for every positive number M there is an integer N such that

if
$$n > N$$
 then $a_n > M$

• Limit laws for sequences: If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is a constant, then:

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n \lim_{n \to \infty} c = c$$

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} \text{ if } \lim_{n \to \infty} b_n \neq 0$$

$$\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p \text{ if } p > 0 \text{ and } a_n > 0$$

• Squeeze Theorem can be adapted for sequences:

If
$$a_n \leq b_n \leq c_n$$
 for $n \geq n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$

- Theorem 6: If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$
- Theorem 7: If $\lim_{n\to\infty} a_n = L$ and the function f is continuous at L, then

$$\lim_{n \to \infty} f(a_n) = f(L)$$

• Equation 8 (example 10):

$$a_n = \frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n}$$

(ex. 10)

• Equation 9 (example 11): The sequence $\{r^n\}$ is convergent if $-1 < r \le 1$ and divergent for all other values of r.

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1\\ 1 & \text{if } r = 1 \end{cases}$$

• Definition 10: A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, that is, $a_1 < a_2 < a_3 < \cdots$. It is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$. A sequence is **monotonic** if it is either increasing or decreasing.

• Definition 11: A sequence $\{a_n\}$ is **bounded above** if there is a number M such that

$$a_n \leq M$$
 for all $n \geq 1$

It is bounded below if there is a number m such that

$$m \leq a_n$$
 for all $n \geq 1$

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**

- Theorem 12: Monotonic Sequence Theorem: Every bounded, monotonic sequence is convergent.
- Proof of theorem 12: Suppose $\{a_n\}$ is an increasing sequence. Since $\{a_n\}$ is bounded, the set $S = \{a_n | n \ge 1\}$ has an upper bound. By the Completeness Axiom it has a least upper bound L. Given $\varepsilon > 0$, $L \varepsilon$ is not an upper bound for S (since L is the least upper bound). Therefore

$$a_N > L - \varepsilon$$

For some integer N. But the sequence is increasing so $a_n \ge a_N$ for every n > N. Thus if n > N, we have

$$a_n > L - \varepsilon$$

so

$$0 \le L - a_n < \varepsilon$$

since $a_n \leq L$. Thus,

$$|L - a_n| < \varepsilon$$
 whenever $n > N$

so $\lim_{n\to\infty} a_n = L$. A similar proof can be applied if $\{a_n\}$ is decreasing.

- 11.2 Series
- 11.3 The Integral Test and Estimates of Sums
- 11.4 The Comparison Tests
- 11.5 Alternating Series
- 11.6 Absolute Convergence and the Ratio and Root Tests
- 11.7 Strategy for Testing Series
- 11.8 Power Series
- 11.9 Representations of Functions an Power Series
- 11.10 Taylor and Maclaurin Series
- 11.11 Applications of Taylor Polynomials