Section A

	Answer all questions in the spaces provided.	
1	Comparisons of lattice enthalpies from Born–Haber cycles with calculations based on a perfect ionic model are used to provide bonding in crystals.	
1 (a)	Define the terms enthalpy of atomisation and lattice dissociation	on enthalpy.
	Enthalpy of atomisation	
	Lattice dissociation enthalpy	
		(4 marks)
1 (b)	Use the following data to calculate a value for the lattice disso	ciation enthalpy
	of sodium chloride. ΔH^{\ominus} /kJ mol $^-$	1
	$\frac{\Delta H / K3 \text{ Hol}}{\text{Na(s)} \longrightarrow \text{Na(g)}} +109$	_
	$Na(g) \longrightarrow Na^+(g) + e^- +494$	
	$Cl_2(g) \longrightarrow 2Cl(g)$ +242	
	$Cl(g) + e^{-} \longrightarrow Cl^{-}(g)$ -364 $Na(s) + \frac{1}{2}Cl_{2}(g) \longrightarrow NaCl(s)$ -411	
	$\frac{\text{Nact}(s) + \frac{1}{2}\text{Ct}_2(g)}{-} \text{Nact}(s) \qquad -411$	_
		(3 marks)

1 (c) Consider the following lattice dissociation enthalpy $(\Delta H_{\scriptscriptstyle L}^{\ominus})$ data.

	NaBr	AgBr
ΔH _L [⊕] (experimental) / kJ mol ⁻¹	+733	+890
ΔH _L [⊕] (theoretical) / kJ mol ⁻¹	+732	+758

The values of $\Delta H_{\rm L}^{\oplus}$ (experimental) have been determined from Born-Haber cycles.

The values of $\Delta H_{\rm L}^{\oplus}$ (theoretical) have been determined by calculation using a perfect ionic model.

1 (c) (i)	Explain the meaning of the term perfect ionic model.	
	(2 marks)	
1 (c) (ii)	State what you can deduce about the bonding in NaBr from the data in the table.	
	(1 mark)	
1 (c) (iii)	State what you can deduce about the bonding in AgBr from the data in the table.	
	(1 mark)	

11

Turn over ▶

