GIẢI TÍCH 2 BÀI 3.

§ 2. Tích phân phu thuộc tham số với cân là hàm số

2.1. Đinh nghĩa.

Cho K(x, t) liên tục trên hình chữ nhật $D: a \le t \le b, c \le x \le d$, các hàm $\alpha(x), \beta(x)$

Cho
$$K(x, t)$$
 lien tục trên hình chữ nhạt D : $a \le t \le b$, $c \le x \le d$, các ham $\alpha(x)$, $\beta(x)$ liên tục trên $[c; d]$ thoả mãn $a \le \alpha(x) \le b$, $a \le \beta(x) \le b$, ta gọi $I(x) = \int_{\alpha(x)}^{\beta(x)} K(x, t) dt$ là

tích phân phụ thuộc tham số với cận là hàm số.

2.2. Tính liên tục, khả vi

Định lí 2. Cho K(x, t) liên tục trên hình chữ nhật $D: a \le t \le b, c \le x \le d$, các hàm $\alpha(x)$, $\beta(x)$ liên tục trên [c; d] thoả mãn $a \leq \alpha(x)$, $\beta(x) \leq b$, thì ta có

1°/ I(x) liên tuc trên [c; d]

2°/ Nếu thêm $\frac{\partial}{\partial x}K(x,t)$ liên tục trên D, các hàm $\alpha(x),\beta(x)$ khả vi , thì có I(x) khả vi trên [c; d] và có

$$I'(x) = \int_{\alpha(x)}^{\beta(x)} \frac{\partial}{\partial x} K(x, t) dt + \beta'(x) K(x, \beta(x)) - \alpha'(x) K(x, \alpha(x))$$

Ví dụ 1. Cho
$$I(x) = \int_{x}^{1+x^2} \frac{dt}{1+t^2+x^3}$$

Ví dụ 2. Xét tính khả vi và tính đạo hàm $I(x) = \int_{0.17}^{\cos y} e^{yx^2} dx$

§ 3. Tích phân suy rộng phụ thuộc tham số

3.1. Hôi tu đều

Định nghĩa. Ta gọi $I(x) = \int_{-\infty}^{+\infty} K(x,t) dt$ là tích phân phụ thuộc tham số x nếu nó

hội tụ với mọi $x \in [c; d]$.

Tương tự có thể xét $\int_{-\infty}^{b} K(x,t)dt$, $\int_{-\infty}^{+\infty} K(x,t)dt$

Định nghĩa. I(x) được gọi là hội tụ đều trên [c; d] nếu như $\forall \epsilon > 0, \exists N(\epsilon) > 0, \forall b$ $> N(\varepsilon), \forall x \in [c; d] \Rightarrow \left| \int_{\varepsilon}^{\infty} K(x,t) dt \right| < \varepsilon.$

3.2. Tiêu chuẩn Cauchy

Định lí (tiêu chuẩn Cauchy). $I(x) = \int_{0}^{\infty} K(x,t) dt$ hội tụ đều trên $[c;d] \Leftrightarrow \exists b_0$ để có $\begin{vmatrix} b_2 \\ b_1 \end{vmatrix} K(x,t) dt < \varepsilon, \forall b_1, b_2 > b_0, \forall x \in [c;d].$

3.3. Dấu hiệu Weierstrass. Cho:

- $|K(x,t)| \le F(t)$, $\forall x \in [c;d]$, $\forall t \ge b \ge a$, $F(t) \ge 0$ và khả tích
- $\int_{a}^{+\infty} F(t) dt$ hội tụ.

Khi đó $\int_{a}^{+\infty} K(x,t)dt$ hội tụ tuyệt đối và đều trên [c; d].

Ví dụ 1. CMR $\int_{0}^{+\infty} \frac{\sin tx}{a^2 + t^2} dt$ hội tụ đều trên R

Ví dụ 2. Xét tính hội tụ đều của $\int_{0}^{+\infty} e^{-x} x^{t} dt$, $a > 0, t \in [0, a]$

Ví dụ. Chứng minh rằng $\int_{0}^{\infty} e^{-yx^2} dx$ hội tụ đều trên $(t_0; +\infty), t_0 > 0$.

3.4. Tiêu chuẩn Dirichlet. Cho

$$\bullet \left| \int_{a}^{b} K(x,t) dt \right| < C_{0}, \forall b > a, \forall x \in [c; d], \exists C_{0} > 0$$

• $\varphi(x, t)$ hội tụ đều theo x đến 0 khi khi $t \to \infty$ và đơn điệu theo t với mỗi x cố định thuộc [c; d].

Khi đó $\int_{a}^{\infty} K(x,t)\varphi(t,x)dt$ hội tụ đều trên [c; d]

Ví dụ 1. Xét tính hội tụ đều $\int_{0}^{\infty} \frac{\sin xt}{\sqrt{t}} dt, x \in [x_0; +\infty), x_0 > 0.$

Ví dụ 2. CMR
$$\int_{0}^{+\infty} e^{-tx} \frac{\sin x}{x} dx , t \ge 0$$

3.5. Tiêu chuẩn Abel. Giả thiết rằng:

1°/
$$\int_{a}^{+\infty} K(x,t)dt$$
 hội tụ đều trên [c; d]

 $2^{\circ}/\left|\varphi(x,t)\right| \leq C_0$, $\exists C_0 > 0$, $\forall t \geq a$, $\forall x \in [c; d]$, và với mỗi x cố định ta có hàm $\varphi(x,t)$ đơn điệu theo t.

Khi đó ta có $\int_{a}^{\infty} K(x,t)\varphi(t,x)dt$ hội tụ đều trên [c; d].

Ví dụ 1. Xét tính hội tụ đều $\int_0^\infty e^{-tx} \frac{1}{x^2 + \sqrt{t}} dt$, $x \in [x_0; +\infty)$, $x_0 > 0$.

HAVE A GOOD UNDERSTANDING!