This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

SEMICONDUCTOR FAILURE ANALYSIS DEVICE

Patent number:

JP3171754

Publication date:

1991-07-25

Inventor:

SAWADA AKIHIRO

Applicant:

MATSUSHITA ELECTRIC IND CO LTD

Classification:

- international:

H01L21/66; G06F11/22; G11C29/00

- european:

Application number:

JP19890311147 19891130

Priority number(s):

Abstract of JP3171754

PURPOSE:To specify a semiconductor structure parameter which may be a cause of failure in a short time when the measured semiconductor device parameter value is out of the standard value by using a measured semiconductor device parameter table and a semiconductor device - structure parameter correlation table and by using a simple calculation and comparison means. CONSTITUTION: A semiconductor failure analysis device consists of a measurement semiconductor device parameter registration means 11, a semiconductor device - structure parameter correlation registration means 12, a deviation - correlation multiplication means 13, a failed semiconductor structure parameter judgment table registration means 14, and a failure-cause semiconductor structure parameter determining means 15. Then, a deviation value 24 within a measurement semiconductor device parameter table is multiplied by a correlation value 34 within a semiconductor device - structure parameter correlation table. Then, it becomes possible to determine a semiconductor structure parameter which may be the cause of failure of the semiconductor device at high speed without enabling the multiplication result to include 0 and by outputting the semiconductor structure parameter of the same symbol.

Data supplied from the esp@cenet database - Worldwide

⑲ 日本国特許庁(JP)

⑩ 公 開 特 許 公 報 (A) 平3-171754

⑤Int.Cl.⁵	識別記号	庁内整理番号	43公開	平成3年(1991)7月25日
H 01 L 21/66 G 06 F 11/22 G 11 C 29/00 H 01 L 21/66	3 1 0 F 3 0 3 C	7013-5F 7343-5B 7737-5B 7013-5F 審査請求	未請求 [青求項の数 1 (全5頁)

会発明の名称 半導体不良解析装置

②特 願 平1-311147

②出 願 平1(1989)11月30日

⑩発 明 者 澤 田 昭 弘 大阪府門真市大字門真1006番地 松下電器産業株式会社内

切出 願 人 松下電器産業株式会社 大阪府門真市大字門真1006番地

仰代 理 人 弁理士 栗野 重孝 外1名

明細音

1. 発明の名称

半導体不良解析裝置

2. 特許請求の範囲

半進はデバイスパラメータ及び 半導体デバイ スパラメータ値の基準値からのずれ(偏差)を項 目として、 測定半導体デバイスパラメータテーブ ルに登録する手段と、前記半導体デバイスパラメ ータ及び、前記半導体デバイスパラメータ値の変 化の要因となる半導体構造パラメータ及び 前記 半導体デバイスパラメータと前記半導体構造パラ メータの相関を項目として、 半導体デバイスー構 浩パラメータ相関テーブルに登録する手段と 前 記測定半導体デバイスパラメータテーブルと半導 体デバイスー構造パラメータ相関テーブルの同一 の半導体デバイスパラメータ名に関して 前記半 導体デバイスパラメータと同一レコードの偏差値 と相関値を演算する偏差-相関演算手段と 前記 半導体構造パラメータ及び 前記演算結果を項目 として、不良半導体構造パラメータ判断テーブル に登録する手段と 前記不良半導体構造パラメータ判断テーブル内の同一半導体構造パラメータ名における前記演算結果値を用いて不良原因半導体構造パラメータを特定する手段とを備えた半導体不良解析装置。

3. 発明の詳細な説明

産業上の利用分野

本発明は半導体製造支援システム等に用いる 例定された半導体デバイスパラメータ値より、半 導体装置の構造上の不良を発見する半導体不良解 折装置に関すものである。

従来の技術

 その他の方法としては 高度な専門知識を有した 技術者がその専門知識と経験のもとに 測定され た半導体デバイスパラメータから 不良となる半 導体構造パラメータを特定していた。

発明が解決しようとする課題

作用

本発明は前記した構成により、不良半導体構造パラメータ判断テーブル内の演算結果値により、 半導体デバイスパラメータ値が基準値よりずれて 測定された原因、つまり半導体装置の不良の原因 となる半導体構造パラメータを高速に特定することができる。

実施例

次に 本発明における半導体不良解析装置の一 実施例を添付図面を参照して説明する。 した場合 技術者の知識及び経験により判断した ため 短時間にどの装置が故障したかを半導体デ パイスパラメータ値から特定できなかった。

本発明はかかる点に鑑み 測定された半導体デバイスパラメータ値が基準値からはずれた場合 その原因となる半導体構造パラメータを短時間で 特定する半導体不良解析装置を安価に提供することを目的とする。

課題を解決するための手段

第1図は本発明における半導体不良解析装置の 構成を示すプロック図である。11は測定半導体デ パイスパラメータ登録手段 12は半導体デバイス ー構造パラメータ相関登録手段 13は偏差ー相関 乗算手段 14は不良半導体構造パラメータ判断テ ープル登録手段 15は不良原因半導体構造パラメ ータ特定手段である。

また基準範囲内の物に関しては 0 を偏差値24として登録するものである。 このようにして作成された半導体測定デバイスパラメータテーブルを第 2 図に示す。

半導体デバイスー構造パラメータ相関登録手段 12では 半導体デバイスパラメータ21及び 前記 半導体デバイスパラメータ値の変化の要因となる 半導体構造パラメータ31及び、半導体デバイスパ ラメータ 21と 半導 体構 造パラメータ 31の 相関 32を 項目として持つ半導体デバイスー構造パラメータ 相関テーブルに半導体デバイスパラメータ名23と 半導体デバイスパラメータ21の変化に起因する半 遊体構造パラメータ名33 (例えば ゲート酸化膜 厚 t a.x、 不純物濃度 N an、 ゲート長しa等)を登 録し、かつそれらの相関値34を1レコードに登録 するものである。 ただし、前記相関値34は、半導 体構造パラメータ値が増加(減少)すると半導体 デバイスパラメータ値が増加(減少)するものに 関しては+1を、 半導体構造パラメータ値が増加 (減少) すると半導体デバイスパラメータ値が減

値を抽出し 乗算結果値に 0 が含まれているかまた 乗算結果値すべてが同符号かを判断し 乗算結果が 0 を含まずか つ すべて同符号の場合のみ前記半導体構造パラメータを出力する。

以上のように本実施例によれば 測定半導体デバイスパラメータテーブル内の偏差値と半導体デバイスー構造パラメータ相関テーブル内の相関関を乗算し その乗算結果が 0 を含まずかつ 同符号の半導体構造パラメータを特定することができる。

なお 本実施例では偏差及び相関値として0.1 等の整数値を用いて説明したが、これは本発明を 容易に理解させるために用いたにすぎず、実際は 実数値及び関数を用いれば本発明の不良解析精度 をさらに高めることが可能である。また、本実施 例では偏差と相関値とを乗算させた結果を用いた が、除算その他の演算による結果により不良い となる半導体構造パラメータを特定してもよい 少(増加)するものに関しては-1を登録する。 以上のようにして作成された半導体デバイスー構 造パラメータ相関テーブルを第3図として示す。

偏差-相関乗算手段13では 測定半導体測定デバイスパラメータテーブルと半導体デバイスー構造パラメータ相関テーブルの同一の半導体デバイスパラメータ名に関して、前記半導体デバイスパラメータと同一レコードの偏差値24と相関値34を要算する。

不良半導体構造パラメータ判断テーブル登録手段14では 半導体構造パラメータ31及び 前記乗算結果41を項目として持つ不良半導体構造パラメータ判断テーブルに半導体構造パラメータ名33と前記偏差ー相関乗算手段により計算された乗算結果值42を登録するものである。 このようにして作成された不良半導体構造パラメータ判断テーブルを第4図に示す。

不良原因半導体構造パラメータ特定手段15は第 5 図に示すようなフローチャート図により行なう。 同一半導体構造パラメータ名のすべての乗算結果

発明の効果

以上説明したように 本発明によれば 測定半 導体デバイスパラメータテーブルと 半導体デバ イスー構造パラメータ相関テーブルを用いて 簡 単な演算と比較手段により、測定された半導体デ バイスパラメータ値が基準範囲外の味 原因となる る半導体構造パラメータを短時間で特定する半導 体不良解析装置を安価に提供することができ、そ の実用的効果は大きい。

4. 図面の簡単な説明

第1図は本発明の実施例における半導体不不良解析装置のプロック図 第2図は同実施例における 別定半導体デバイスパラメータテーブルの構成図 第3図は同実施例における半導体デバイスの構成図 パラメータ相関テーブルの構成図 第4図は同実 施例における不良半導体構造パラメータ判断テー ブルの構成図 第5図は同実施例における示すフ 因半導体構造パラメータ特定手段の動作を示すフ ローチャート図である。

11・・・異常半導体デバイスパラメータ登録手段

特開平3-171754 (4)

12・・・半導体デバイス-構造パラメータ相関登録手段 13・・・偏差-相関乗算手段 14・・・不良半導体構造パラメータ判断テーブル登録手段 15・・・半導体デバイスパラメータ、22・・・半導体デバイスパラメータ値の基準値からのずれ(偏差)、31・・・半導体構造パラメータ、32・・・半導体デバイスー構造パラメータの相関 41・・・乗算結果 42・・・乗算結果値、代理人の氏名 弁理士 栗野重孝 ほか1名

第 5 図

