BABCOCK UNIVERSITY

SCHOOL OF SCIENCE & TECHNOLOGY

DEPARTMENT OF BASIC SCIENCES

FIRST SEMESTER EXAMINATION, 2018/2019 **COURSE CODE: MATH 101**

COURSE TITLE: GENERAL MATHEMATICS 1

CREDIT UNITS: 3

TOTAL MARKS: 60

TIME ALLOWED: 2 HOURS

INSTRUCTION: Attempt any **FOUR** questions

EXAMINERS: ADELODUN J.F, ADIO, A.K., KANU, R.U., AYINDE, S.A., BAMISILE, O.O., AKANBI, B.T.

QUESTION 1

- a) (i) If A and B be two non-empty sets, then the define the notion ${}^{\prime\prime}A \cup B''$ (1 mark). Hence, use the anti-symmetric law to show that $A \cup B = B \cup A$ (3 marks)
 - (ii) If $\mu = \{1,2,3,4,5,6,7,8,9,10\}$ and $A C \mu$, where $A = \{2,4,6,8,10\}$. Show that $(2\frac{1}{2} \text{ marks})$ (A')' = A
- b) (i) What is a Venn diagram?

(1 mark)

- (ii) In a MATH 101 tutorial class of 30 students, 17 students study Mathematics, 15 students study Physics Electronics. Show the information clearly in a Venn diagram (2 marks). Hence, find out how many students study;
 - **Both Mathematics and Physics Electronics** (1 mark) (i)
 - (iii) Physics Electronics only (1 Mathematics only (1 mark) (ii) mark)
- c) Say True or False for each of the following sentences
- (i) $(\mathbb{R}, +)$ is closed $(\frac{1}{2} \text{ marks})$ (ii) $(\mathbb{R}, -)$ is closed $(\frac{1}{2} \text{ marks})$
- (iii) $(\mathbb{N}, -)$ is closed $(\frac{1}{2} \text{ mark})$
- (iv) 0 is the identity element with respect to addition in $\ensuremath{\mathbb{R}}$
- (v) 1 is the identity element with respect to multiplication in \mathbb{R} $(\frac{1}{2} \text{ mark})$

QUESTION 2

a) Find the values of the constant k for which the equation $(3k+1)x^2 +$ (3 marks) (k+2)x+1=0 has equal roots

b) Let α and β be the roots of $5x^2 - 3x - 1 = 0$, find the values of; (i) $\alpha^3 - \beta^3$ (4 marks), and form the quadratic equations whose roots are; (ii) $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$ (4 marks) (iii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ (4 marks) QUESTION 3

V

- a) Simplify the following (i) $\frac{n!}{(n-2)!}$ (ii) $\frac{(n-1)!}{(n+1)!}$ (4 marks)
- b) Show that $nc_r = nc_{n-r}$ (3 marks) c) Expand $(2y + x)^4$ in ascending powers of x. Hence, use your expansion to evaluate $(2.01)^4$ to 4 significant figures (8 marks)

QUESTION 4

- a) Define Sequence and Series. (4 marks)
- b) Given a progression 2,4,6,8,10,12,...Find the 22nd term and the sum of the first 40 terms. (4 marks)
- c) In a Geometric Progression, the first term is 7, the last term is 448 and the sum is 889. Find the common ratio. (7 marks)

QUESTION 5

- ✓ a) State the principle of Mathematical Induction.
 (2 marks)
 - b) Prove by induction that the followings are valid for all positive integer n;

(i)
$$5 + 10 + 15 + 20 + 25 + \dots 5n = \frac{5n(n+1)}{2}$$
 (4 \frac{1}{2} marks)

(ii)
$$\sum_{r=1}^{n} (4r-1) = n(2n+1)$$
 (4¹/₂ marks)

(iii)
$$10^n - 1$$
 is a multiple of 9 (4 marks)

QUESTION 6

- a) (i) Differentiate between Equality of Sets and Equivalence of Sets (2 marks)
 - (ii) If E and F are two arbitrary non empty finite sets, then show that $n(E \cup F) = n(E) + n(F) n(E \cap F)$ (5 $\frac{1}{2}$ marks)
- b) If b-15, 10, b are in a G.P. Find the possible values of b. (3 marks)
- c) The sum of the n terms of an Arithmetic progression is $2n^2 n$. Find the nth term and show that the progression is an A.P. $(4\frac{1}{2} \ marks)$