# Lecture 3

# Simple Linear Regression II

Reading: Chapter 11

STAT 8020 Statistical Methods II August 26, 2019

> Whitney Huang Clemson University



# Agenda

- Review of Last Class
- Residual Analysis



#### Notes

Notes

### Simple Linear Regression (SLR)

Y: dependent (response) variable; X: independent (predictor) variable

• In SLR we assume there is a linear relationship between X and Y:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, \dots, n,$$

where  $E(\varepsilon_i)=0$ , and  $Var(\varepsilon_i)=\sigma^2, \forall i$ . Furthermore,  $Cov(\varepsilon_i, \varepsilon_j) = 0, \forall i \neq j$ 

Least Squares Estimation:

 $\begin{array}{l} \operatorname{argmin}_{\beta_0,\beta_1} \sum_{i=1}^n (Y_i - (\beta_0 + \beta_1 X_i))^2 \Rightarrow \\ \bullet \ \hat{\beta}_{1,\mathrm{LS}} = \frac{\sum_{i=1}^n (X_i - X_i)(Y_i - Y)}{\sum_{i=1}^n (X_i - X)^2} \end{array}$ 

- $\hat{\beta}_{0,\mathsf{LS}} = \bar{Y} \hat{\beta}_{1,\mathsf{LS}}\bar{X}$
- $\hat{\sigma}_{LS}^2 = \frac{\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2}{n-2}$
- Residuals:  $e_i = Y_i \hat{Y}_i$ , where  $\hat{Y}_i = \hat{\beta}_{0,LS} + \hat{\beta}_{1,LS} X_i$

| Simple Linear<br>Regression II |
|--------------------------------|
| Review of Last<br>Class        |
|                                |
|                                |
|                                |
|                                |
|                                |
|                                |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

$$\label{eq:maxHeartRate} {\sf MaxHeartRate} = 220 - {\sf Age}.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

```
        Age
        18
        23
        25
        35
        65
        54
        34
        56
        72
        19
        23
        42
        18
        39
        37

        MaxHeartRate
        202
        186
        187
        180
        156
        169
        174
        172
        153
        199
        193
        174
        198
        183
        178
```

Link to this dataset: http://whitneyhuang83.github.io/maxHeartRate.csv



#### **Plot the Data**





| N  | oto |    |
|----|-----|----|
| I۷ | ote | ?8 |

Notes

### Estimate the parameters $\beta_1$ , $\beta_0$ , and $\sigma^2$

 $\mathbf{Y}_i$  and  $\mathbf{X}_i$  are the Maximum Heart Rate and Age of the  $\mathbf{i}^{\text{th}}$  individual

- To obtain  $\hat{\beta}_{1,LS}$ 
  - Ompute  $\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$ ,  $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$
  - ② Compute  $Y_i \bar{Y}, X_i \bar{X},$  and  $(X_i \bar{X})^2$  for each observation
  - **3** Compute  $\sum_i^n (X_i \bar{X})(Y_i \bar{X})$  divived by  $\sum_i^n (X_i \bar{X})^2$
- $\hat{\beta}_{0,LS}$ : Compute  $\bar{Y} \hat{\beta}_{1,LS}\bar{X}$
- $\circ \sigma^2$ 
  - Ompute the fitted values:  $\hat{Y}_i = \hat{\beta}_{0, \text{LS}} + \hat{\beta}_{1, \text{LS}} X_i, \quad i = 1, \cdots, n$
  - ② Compute the **residuals**  $e_i = Y_i \hat{Y}_i, \quad i = 1, \dots, n$
  - Ocompute the **residual sum of squares (RSS)** =  $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$  and divided by n 2 (why?)

| Regression II           |  |  |  |  |
|-------------------------|--|--|--|--|
| CLEMS N                 |  |  |  |  |
| Review of Last<br>Class |  |  |  |  |
|                         |  |  |  |  |
|                         |  |  |  |  |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

#### Let's do the calculations

$$\bar{X} = \sum_{i=1}^{15} \frac{18 + 23 + \dots + 39 + 37}{15} = 37.33$$

$$\bar{Y} = \sum_{i=1}^{15} \frac{202 + 186 + \dots + 183 + 178}{15} = 180.27$$

Notes

$$\hat{\beta}_{1,\text{LS}} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} = 0.7977$$

$$\hat{\beta}_{0,LS} = \bar{Y} - \hat{\beta}_{1,LS}\bar{X} = 210.0485$$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^{15} (Y_i - \hat{Y}_i)^2}{13} = 20.9563 \Rightarrow \hat{\sigma} = 4.5778$$

#### Let's double check

```
Call:
lm(formula = MaxHeartRate ~ Age)
Residuals:
Min 1Q Median 3Q Max
-8.9258 -2.5383 0.3879 3.1867 6.6242
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.578 on 13 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
```



| Notes |  |   |
|-------|--|---|
|       |  | _ |
|       |  |   |
|       |  |   |
|       |  |   |
|       |  |   |
|       |  | _ |
|       |  | - |

## Output from Jmp

Load the data

 $\bigcirc$  Analyze  $\rightarrow$  Fit Model  $\rightarrow$  Run

#### **Parameter Estimates**

Term Estimate Std Error t Ratio Prob>|t| Intercept 210.04846 2.866939 73.27 <.0001\* -0.797727 0.069963 -11.40 <.0001\*

| Regression II           |
|-------------------------|
| CLEMSON                 |
| Review of Last<br>Class |
|                         |
|                         |
|                         |
|                         |

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Linear Regression Fit**



**Question:** Is linear relationship between max heart rate and age reasonable? ⇒ Residual Analysis



## Notes

#### Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = Y_i - \hat{Y}_i,$$

where 
$$\hat{Y}_i = \hat{\beta}_{0, LS} + \hat{\beta}_{1, LS} X_i$$

- ullet  $e_i$  is NOT the error term  $arepsilon_i = Y_i \mathrm{E}[Y_i]$
- Residuals are very useful in assessing the appropriateness of the assumptions on  $\varepsilon_i$ . Recall
  - $\bullet \ E[\varepsilon_i] = 0$
  - $Var[\varepsilon_i] = \sigma^2$
  - $\operatorname{Cov}[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$



Notes

# Residual Plot: $\varepsilon$ vs. X



| Simple Linear<br>Regression II |  |  |  |  |  |  |  |
|--------------------------------|--|--|--|--|--|--|--|
| CLEMS N                        |  |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |  |
| Residual Analysis              |  |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |  |

Notes

#### How (un)certain we are?



Can we formally quantify our estimation uncertainty?

 $\Rightarrow$  We need additional (distributional) assumption on  $\varepsilon$ 



Notes

**Normal Error Regression Model** 

Recall

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

- Further assume  $\varepsilon_i \sim N(0, \sigma^2) \Rightarrow Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$
- With normality assumption, we derive the sampling **distribution** of  $\hat{\beta}_1$  and  $\hat{\beta}_0 \Rightarrow$

$$\begin{array}{ll} \bullet & \frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\beta_1}} \sim t_{n-2}, & \hat{\sigma}_{\beta_1} = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2}} \\ \bullet & \frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\beta_0}} \sim t_{n-2}, & \hat{\sigma}_{\beta_0} = \hat{\sigma}\sqrt{\left(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right)} \end{array}$$

 $\begin{array}{l} & \stackrel{\cdot}{\beta_0-\beta_0} \sim t_{n-2}, \quad \hat{\sigma}_{\beta_0} = \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n(X_i - \bar{X})^2})} \\ \text{where } t_{n-2} \text{ denotes the Student's t distribution with } \\ n-2 \text{ degrees of freedom} \end{array}$ 



Notes

Notes

**Steps of Hypothesis Test for Slope** 

- **1**  $H_0: \beta_1 = 0$  vs.  $H_a: \beta_1 \neq = 0$
- ② Compute the **test statistic**:  $t^* = \frac{\hat{\beta}_1 - 0}{\hat{\sigma}_{\beta_1}} = \frac{-0.7977}{0.06996} = -11.40$
- **③** Compute **P-value**:  $P(|t_{13}| \ge |t^*|) = 3.85 \times 10^{-8}$
- **①** Compare to  $\alpha$  and draw conclusion: Reject  $H_0$  at  $\alpha = .05$  level, evidence suggests a negative linear relationship between MaxHeartRate and Age

| Simple Linear<br>Regression II |  |  |  |  |  |  |
|--------------------------------|--|--|--|--|--|--|
| CLEMS#N                        |  |  |  |  |  |  |
|                                |  |  |  |  |  |  |

### **Steps of Hypothesis Test for Intercept**

**1**  $H_0: \beta_0 = 0$  vs.  $H_a: \beta_0 \neq = 0$ 

② Compute the **test statistic**:

$$t^* = \frac{\hat{\beta}_0 - 0}{\hat{\sigma}_{\beta_0}} = \frac{210.0485}{2.86694} = 73.27$$

 $\bigcirc \ \, \text{Compute P-value: } P(|t_{13}| \geq |t^*|) \simeq 0$ 

• Compare to  $\alpha$  and draw conclusion: Reject  $H_0$  at  $\alpha$  = .05 level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0



| ivotes |  |  |  |
|--------|--|--|--|
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |

#### Summary

In this lecture, we learned

- Residual analysis to (graphically) check model assumptions
- Normal Error Regression Model and statistical inference for  $\beta_0$  and  $\beta_1$

Next time we will talk about

- Confidence/Prediction Intervals
- Analysis of Variance (ANOVA) Approach to Regression



Notes

Notes