Class 10: Structural Bioinformatics

Erica Sanchez (A15787505)

What is in the PDB database?

The main repository of biomolecular structure info is in the PDB <www.rcsb.org>Let"s see what this database contains:

```
stats <- read.csv("pdb_stats.csv", row.names=1)
stats</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	161,663	12,592	12,337	200	74	32
Protein/Oligosaccharide	9,348	2,167	34	8	2	0
Protein/NA	8,404	3,924	286	7	0	0
Nucleic acid (only)	2,758	125	1,477	14	3	1
Other	164	9	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	186,898					
Protein/Oligosaccharide	11,559					
Protein/NA	12,621					
Nucleic acid (only)	4,378					
Other	206					
Oligosaccharide (only)	22					

We have to get rid of the commas. Can you find a function to get rid of the commas?

```
#gsub(",","", x)

x <- stats$X.ray
as.numeric(gsub(",","", x))</pre>
```

```
[1] 161663
             9348
                     8404
                             2758
                                     164
                                              11
  x <- stats$Total
  sum(as.numeric(gsub(",","", x)))
[1] 215684
I am going to turn this into a function and then use apply() to work on the entire table of
data.
  sumcomma <- function(x){</pre>
    sum(as.numeric(gsub(",","", x)))
  sumcomma(stats$X.ray)
[1] 182348
  apply(stats, 2, sumcomma) / sumcomma(stats$Total)
           X.ray
                                 EM
                                                  NMR Multiple.methods
    0.8454405519
                      0.0872433746
                                         0.0657118748
                                                           0.0010663749
         Neutron
                                                Total
                              Other
    0.0003662766
                      0.0001715473
                                        1.000000000
  n.total <- sumcomma(stats$Total)</pre>
  n.total
[1] 215684
  sumcomma(stats$EM)
[1] 18817
```

apply(stats, 2, sumcomma)

X.ray	EM	NMR	${\tt Multiple.methods}$
182348	18817	14173	230
Neutron	Other	Total	
79	37	215684	

apply(stats, 2, sumcomma) / sumcomma(stats\$Total)

X.ray	EM	NMR	${\tt Multiple.methods}$
0.8454405519	0.0872433746	0.0657118748	0.0010663749
Neutron	Other	Total	
0.0003662766	0.0001715473	1.0000000000	

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

$$X.ray = 85\% EM = 9\%$$

Q2: What proportion of structures in the PDB are protein?

[1] 0.07511804

visualizing the HIV-1 protease structure

Mol* ("mol-star") viewer is now everywhere. The homepage is here: https://molstar.org/viewer/ I want to insert my image from Mol* here.

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

A Hydrogen molecule has a resolution that is too small, so it can't be seen.

Figure 1: My first molecular image

Figure 2: My second molecular image $\,$

Working with bio3d

```
library(bio3d)
  pdb <- read.pdb("1HSG")</pre>
 Note: Accessing on-line PDB file
  pdb
Call:
       read.pdb(file = "1HSG")
  Total Models#: 1
    Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
    Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
    Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
    Non-protein/nucleic Atoms#: 172 (residues: 128)
    Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
  Protein sequence:
     PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
     QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
     ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
     VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
       calpha, remark, call
  head(pdb$atom)
 type eleno elety alt resid chain resno insert
                                                     X
                                                            У
                                                                  z o
                N < NA >
                                       1 <NA> 29.361 39.686 5.862 1 38.10
1 ATOM
          1
                         PRO
                                 Α
2 ATOM
          2
               CA <NA>
                         PRO
                                       1 <NA> 30.307 38.663 5.319 1 40.62
                                 Α
                         PRO
                                       1 <NA> 29.760 38.071 4.022 1 42.64
3 ATOM
          3
                C <NA>
                                 Α
                                    1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
          4
                O <NA>
                         PRO
                                 Α
```

```
5 ATOM
           5
                CB <NA>
                           PRO
                                          1
                                              <NA> 30.508 37.541 6.342 1 37.87
                                   Α
6 ATOM
                CG <NA>
                           PRO
                                              <NA> 29.296 37.591 7.162 1 38.40
           6
                                   Α
                                          1
 segid elesy charge
  <NA>
            N
                <NA>
2
  <NA>
            C
                <NA>
3
  <NA>
            С
                <NA>
  <NA>
            0
                <NA>
5
  <NA>
            С
                <NA>
  <NA>
            С
                <NA>
  pdbseq(pdb)[25]
25
"D"
```

Predicting functional motions of a single structure

We can do a bioinformatics prediction of functional motions (i.e, flexibility/dynamics):

```
pdb <- read.pdb("6s36")

Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE

pdb

Call: read.pdb(file = "6s36")

Total Models#: 1
   Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)

   Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
   Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

   Non-protein/nucleic Atoms#: 244 (residues: 244)
   Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]</pre>
```

Protein sequence:

MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

```
m <- nma(pdb)
```

Building Hessian... Done in 0.013 seconds. Diagonalizing Hessian... Done in 0.257 seconds.

plot(m)

mktrj(m, file="adk_m7.pdb")