

Meteorological Support for MALSplus

Data Processing Cookbook

Version: 0.3.0

Date: October, 18, 2017

Document History

Responsible People

Creation/Edition	J. Grazioli
Revision	
Approval	
Further information	Document editors

Versionenkontrolle

Version	Edited by	Date	Activity
0.2.0	J. Grazioli	2017-08-23	Creation begun
0.3.0	J. Grazioli	2017-10-18	check products section

Contents

1	Intro	oduction 1
	1.1	Motivation for Separating Code and Configuration
	1.2	Rationale and other sources of information
_	.	
2		a Processing
	2.1	Data Processing
		2.1.1 Process data real time (main_process_data_rt.py)
		2.1.2 Process data (main_process_data.py)
		2.1.3 Process data (main_process_data_period.py)
		2.1.4 Process trajectories (process_trajectory.py)
3	Con	figuration 7
	3.1	Main Configuration File
	3.2	Location Configuration File
	J	200ation Comparation 1 no 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	Prod	duct Generation Configuration 12
	4.1	Basic Concept
	4.2	The concept of processing level
	4.3	Input Volume Datatypes
	4.4	Product Configuration File
	4.5	Input- and DataSet-Processing
_	.	
5	5.1	VOL Datasets 21
	5.1	
		5.1.1 SAN
		5.1.2 RAW
		5.1.3 WINDSHEAR
		5.1.4 RAINRATE
		5.1.5 BACKSCATTER
		5.1.6 SPEC_QUALITY
		5.1.7 SPHERECALIBRATION
		5.1.8 IQ_RHOHV
	- 0	5.1.9 IQ_ZDR
	5.2	RAY Datasets
	- 0	5.2.1 RAINEXTENSION
	5.3	TIMESERIES Datasets
		5.3.1 TRAJ_ATPLANE
		5.3.2 TRAJ_ANTENNA_PATTERN
		5.3.3 POINT_MEASUREMENT
	5.4	TIMEARRAY Datasets
		5.4.1 TIME_HEIGHT
		5.4.2 TIME_VECTOR
		5.4.3 QVP
	5.5	TIMEARRAY ARRAY Datasets
		5.5.1 TIME_SUMMARY_HEIGHT
	5.6	TRAJ_ONLY Datasets
		5.6.1 TRAJ
		5.6.2 TRAJ_PLANEHITS
	5.7	TRAJ_VOL_COMPOSITE Datasets
		5.7.1 TRAJ VOL

5.8 VOLUMEGROUP Datasets	
5.8.1 QUANTILE	31
5.9 PSR Datasets	31
5.9.1 PSR_RAW	31
5.9.2 PSR_MERGE	31
5.9.3 PSR_VERTICAL	
5.9.4 PSR SZH	31
5.9.5 PSR SZV	31
5.9.6 PSR SZDR	31
5.9.7 PSR_SZDR_TEXT	
5.9.8 PSR SRHOHV	
5.9.9 PSR_SPHIDP	
5.9.10 PSR_SPHIDP_TEXT	31
5.9.11 PSR DSD	
5.10 ARRAY PSR Datasets	
5.10.1 PSR FILTER	
5.10.2 PREPROC_PSR	
5.11 MONITORING Datasets	
5.11.1 MONITORING	
5.12 ARRAY_VOL Datasets	
5.12.1 PREPROCESSING	
5.12.2 MEANZ	
5.12.3 XVSC POSITION	
5.12.4 ATTENUATION	
5.12.5 HYDROCLASS	
5.12.6 PHIDP_KDP	
5.13 SUN_MONITORING Datasets	
5.13.1 SUN_MONITORING	
5.14 XVSC Datasets	
5.14.1 XVSC	
5.15 INTERCOMP Datasets	
5.15.1 INTERCOMP	
5.15.2 INTERCOMP_TIME_AVG	
5.16 HISTOGRAM Datasets	
5.16.1 HISTOGRAM	
5.17 COMPOSITE_VOLUME datasets	36
Products	27
	37
6.1 VOL Products	
6.1.1 PPI_IMAGE	
6.1.2 WGS84_IMAGE	
6.1.3 CH1903_IMAGE	
6.1.4 RHI_IMAGE	
6.1.5 RHI_PROFILE	
6.1.6 CAPPI	
6.1.7 CAPPI_ASCII	
6.1.8 PLOT_LINES	
6.1.9 CDF_STAT	
6.1.10 SAVEVOL	
6.1.11 SAVESTATE	
6.1.12 NETCDF_CONV	
6.1.13 MELTLAYER IMAGE	48

	6 1 14	MELTLAYER TS					. 48
		SAVE_DEM					
		RNGVSANG_IMAGE					
							
		SAVESLICE_PPI_ASCII					
		CONST_RANGE_IMAGE					
		CONTOUR_RANGE_IMAGE					
		CONTOUR_RANGE_IMAGE_3D					
		WRITE_BIN					
		WRITE_MEAN					
6.2	_	MONITORING Products					
	6.2.1	PSUNHITS_IMAGE					
		PSUNRETRIEVAL_IMAGE		 	 	 	 . 50
	6.2.3	ZDRSUNHITS_IMAGE					
	6.2.4	ZDRSUNRETRIEVAL_IMAGE					
	6.2.5	SUNRETRIEVAL_TS		 	 	 	
6.3	RAY F	Products					
	6.3.1	POLAR_AZ_EL_IMAGE		 	 	 	 . 51
	6.3.2	DISTANCE_VS_AZIMUTH_IMAGE.		 	 	 	 . 51
	6.3.3	QUANTILE_STAT		 	 	 	 . 52
6.4	TIMES	SERIES Products					
	6.4.1	PLOT AND WRITE		 	 	 	 . 52
	6.4.2	PLOT_AND_WRITE_POINT		 	 	 	 . 52
	6.4.3	PLOT_CUMULATIVE_POINT		 	 	 	 . 53
	6.4.4	COMPARE_POINT					
	6.4.5	COMPARE CUMULATIVE POINT.					
6.5	TIME	ARRAY Products					
0.0	6.5.1	TIME_ARRAY_IMAGE					
	6.5.2	TIME ARRAY FILE					
6.6		ARRAY ARRAY Products					
0.0	6.6.1	TIME_ARRAY_IMAGE					
	6.6.2	TIME ARRAY MAP					
6.7		ONLY Products					
0.7		TRAJ_PLOT					
	6.7.1	TRAJ TEXT					
	6.7.3	TRAJ ANTENNA					
	6.7.4	TRAJ_DX50_ANTENNA_HITS					
60							
6.8	6.8.1	_VOL_COMPOSITE Products RHI TRAJ					
		_					
c o	6.8.2	PPI_TRAJ					
6.9		roducts					
	6.9.1	SPECTRUM_IMAGE					
	6.9.2	VERTICAL_SPECTRUM_IMAGE					
	6.9.3	SINGLE_SPECTRUM_IMAGE					
	6.9.4	SAVE_PSR_VOLUME					
	6.9.5	SPEC_ALONG					
	6.9.6	IQ_ALONG					
6.10		TORING Products					
		WRITE_PHIDP0					
		WRITE_ZDRBIAS					
	6.10.3	WRITE_RHOAV		 	 	 	 . 59
	6.10.4	WRITE ZHBIAS		 	 	 	 . 59

	6.10.5 PLOT_PHIDP0	59
	6.10.6 PLOT_ZDRBIAS	59
	6.10.7 PLOT_ZHBIAS	59
	6.10.8 PLOT PHIDPO DAY TS	59
	6.10.9 PLOT_ZDRBIAS_DAY_TS	59
	6.10.10 PLOT_RHOAV_DAY_TS	59
	6.10.11 PLOT_ZHBIAS_DAY_TS	59
	6.10.12 PLOT AND WRITE PHIDPO TS	60
		60
	6.10.14 PLOT_AND_WRITE_RHOAV_TS	60
		61
6.11		61
	6.11.1 PLOT_INTERCOMP	61
	6.11.2 PLOT_AND_WRITE_INTERCOMP_TS	61
6.12		62
	_	62
6.13	HISTOGRAM products	62
	_	62
	6.13.2 PLOT_2DHIST	62
	6.13.3 WRITE_HIST	62
	_	62
6.14		62
	– –	62
	6.14.2 CELL_3D_IMAGE	63
	6.14.3 RADAR 3D IMAGE	64

1 Introduction

1.1 Motivation for Separating Code and Configuration

- A future "final" version of the code should not be touched.
- Clear change and versioning control of the code.
- No local file paths and personal settings in the code.
- Developing and test can be done using local config files.
- Parameters are not hard coded and can be changed easily.
- High flexibility. All settings are made by changing only 1–3 config files.

1.2 Rationale and other sources of information

The processing is based on the PyRad framework. <u>Usually</u> pyrad is cloned in the home directories of each users in the appropriate servers. As an example, for zueub222 and user jgr:

jgr@zueub222:pyrad\$ pwd
/home/lom/users/jgr/pyrad

The purpose of this document is to allow users to process data by manipulating only configuration files. The focus is therefore here on the processing output and not on PyRad itself. For an overview of the functionalities of PyRad, its installation, and development, please refer to the documentation available at:

pyrad/doc/

2 Data Processing

2.1 Data Processing

The information about this section is complementary to Sec. 2 of the document:

```
pyrad/doc/pyrad_user_manual.docx
```

The data processing can be started from the linux shell, after activation of the proper conda environment. Depending on the server, the appropriate environment may be "root" (i.e. for zueub222):

```
jgr@zueub222:~$ source activate root
(root) jgr@zueub222:~$
```

or it can be "pyrad" (i.e. for CSCS and cirrus servers). The python scripts used to process the radar data can be called from the directory:

```
pyrad/src/pyrad_proc/scripts/
```

The scripts that are useful for this document are the following processing and realtime scripts:

- main process data.py
- main process data rt.py
- main process data period.py
- \bullet process_trajectory.py

they can all be called from the linux shell.

2.1.1 Process data real time (main_process_data_rt.py)

This script is designed to process data in real time. The main feature that makes him real-time is the capability of "listening" some data folders and immediately process new data se they appear. Verbatim, from the help page of the script:

This program performs real time processing of the data

```
To run the processing framework type:

python main_process_data.py [config_files]

--starttime [process_start_time] --endtime [process_end_time]

--cfgpath [cfgpath] --proc_period [proc_period]
```

If startime or endtime are specified the program will start processing at the specified time and end at the specified time. Otherwise the program ends when the user interrupts it.

cfgpath is an optional argument with default: '\$HOME/pyrad/config/processing/' proc_period is the time that has to pass before attempting to restart the processing in s

if $\operatorname{proc_finish}$ is not none it indicates the time the program is allowed to ran berfore forcing it to end

Example:

```
python main_process_data.py 'paradiso_fvj_vol.txt' 'paradiso_fvj_rhi.txt'
    --starttime '20140523000000' --endtime '20140523001000'
    --cfgpath '$HOME/pyrad/config/processing/' --proc_period 60 --proc_finish 120
usage: main_process_data_rt.py [-h] [--starttime STARTTIME]
                               [--endtime ENDTIME] [--cfgpath CFGPATH]
                               [--proc_period PROC_PERIOD]
                               [--proc_finish PROC_FINISH]
                               cfgfiles [cfgfiles ...]
Entry to Pyrad processing framework
positional arguments:
  cfgfiles
                        name of main configuration file
optional arguments:
  -h, --help
                        show this help message and exit
  --starttime STARTTIME
                        starting time of the data to be processed. Format
                        YYYYMMDDhhmmss
  --endtime ENDTIME
                        end time of the data to be processed. Format
                        YYYYMMDDhhmmss
  --cfgpath CFGPATH
                        configuration file path
  --proc_period PROC_PERIOD
                        Period between processing rounds (s)
  --proc_finish PROC_FINISH
                        Processing time allowed before shutdown (s)
  TODO: explain better the last two parameters -jgr- -fvj-
```

2.1.2 Process data (main process data.py)

Stadard data processing (i.e., usually non real time) is performed by this script. Verbatim from the help page:

cfgpath is an optional argument with default: '\$HOME/pyrad/config/processing/'

This program processes and post-processes data over a time span

postproc_cfgfile is an optional argument with default: None

```
To run the processing framework type:
    python main_process_data.py [config_file] --starttime [process_start_time] --endtime
     [process_end_time] --postproc_cfgfile [postproc_config_file] --cfgpath [cfgpath]
If startime and endtime are not specified the program determines them from
the trajectory file or the last processed volume.
```

Example:

```
python main_process_data.py 'paradiso_fvj_vol.txt' --starttime '20140523000000'
--endtime '20140523001000' --postproc_cfgfile 'paradiso_fvj_vol_postproc.txt' --cfgpath
 '$HOME/pyrad/config/processing/'
```

Entry to Pyrad processing framework

positional arguments:

optional arguments:

-h, --help show this help message and exit

--starttime STARTTIME

starting time of the data to be processed. Format

YYYYMMDDhhmmss

--endtime ENDTIME end time of the data to be processed. Format

YYYYMMDDhhmmss

--postproc_cfgfile POSTPROC_CFGFILE

name of main post-processing configuration file

--cfgpath CFGPATH configuration file path

-i INFOSTR, --infostr INFOSTR

Information string about the actual data processing (e.g. 'RUN57'). This string is added to the filenames

of the product files.

-t TRAJFILE, --trajfile TRAJFILE

Definition file of plane trajectory. Configuration of

scan sector, products, ...

2.1.3 Process data (main process data period.py)

This script is used in post-processing to process data over long periods of time, usually several days. According to its help entry:

This program does the daily processing and post-processing over a period of time.

To run the processing framework type:

```
python main_process_data.py [config_file] [process_start_date] [process_end_date]
--starttime [process_start_time] --endtime [process_end_time] --postproc_cfgfile
  [postproc_config_file] --cfgpath [cfgpath]
```

```
starttime is an optional argument with default: '000000' endtime is an optional argument with default: '235959' postproc_cfgfile is an optional argument with default: None cfgpath is an optional argument with default: '$HOME/pyrad/config/processing/'
```

Example:

```
python main_process_data.py 'paradiso_fvj_vol.txt' '20140523' '20140525'
--starttime '000000' --endtime '001000' --postproc_cfgfile 'mals_emm_vol_postproc.txt'
--cfgpath '$HOME/pyrad/config/processing/'
```

usage: main_process_data_period.py [-h] [--starttime STARTTIME]

[--endtime ENDTIME]

[--postproc_cfgfile POSTPROC_CFGFILE]

[--cfgpath CFGPATH]

proc_cfgfile startdate enddate

Entry to Pyrad processing framework

positional arguments:

startdate starting date of the data to be processed. Format

YYYYMMDD

enddate end date of the data to be processed. Format YYYYMMDD

optional arguments:

-h, --help show this help message and exit

--starttime STARTTIME

starting date of the data to be processed. Format

hhmmss

--endtime ENDTIME end date of the data to be processed. Format hhmmss

--postproc_cfgfile POSTPROC_CFGFILE

name of main post-processing configuration file

--cfgpath CFGPATH configuration file path

TODO: explain better why this script is needed, conceptually. It seems very similar to the main_process_data one

2.1.4 Process trajectories (process_trajectory.py)

This script is used in post-processing to process trajectory data. IT is therefore often used in the days/weeks following a flight test or a RTS test. The usage of this script is:

usage: process_trajectory.py [-h] [-c CFGFILE]

[--preproc_cfgfile PREPROC_CFGFILE] [-i INFOSTR]

trajfile [starttime] [endtime]

Create PYRAD products using a plane trajectory

positional arguments:

trajfile Definition file of plane trajectory. Configuration of

scan sector, products, ...

starttime Starting time of the data to be processed. Format:

YYYYMMDDhhmm[ss]. If not given, the time of the first

sample is used.

endtime End time of the data to be processed. Format:

YYYYMMDDhhmm[ss]. If not given, the time of the last

sample is used.

optional arguments:

-h, --help show this help message and exit

-c CFGFILE, --cfgfile CFGFILE

Main configuration file. Defines the

--preproc_cfgfile PREPROC_CFGFILE

name of main pre-processing configuration file

-i INFOSTR, --infostr INFOSTR

Information string about the actual data processing (e.g. 'RUN57'). This string is added to the filenames of the product files.

Example:

process_trajectory.py -c \$HOME/pyrad/config/processing/mals_emm_rw22_traj.txt
 --preproc_cfgfile \$HOME/pyrad/config/processing/mals_emm_rw22_traj_preproc.txt
 -i TS011 /data/mals_plane_traj/EMM/gnv_20161026_ts011_seat_emmen_flt01_ADS.txt

3 Configuration

The configuration of the data processing is divided into three files. The main configuration file (see Section 3.1), the location configuration file (see Section 3.2) describing the location of the weather radar and the used scans. The product configuration file describes the datasets and products. As this is bit more complicated it is described in its own Section 4.

The configuration files are located in malsgit/config_pyrad/processing/.

3.1 Main Configuration File

Tha main configuration file is used to define the global settings, notably the paths to the different sources of data. The parameters of the main configuration file are described in Table 2

Table 2: Configuration parameters of the main configuration file

	\mathbf{Type}	Description
Name		
name	STRING	Name of the data processing. This name is used in the path of the saved products in the following manner: <saveingbasepath>/<name>/<yyyy-mm-dd>/<datasetname>/<pre>/ <outputname>/</outputname></pre></datasetname></yyyy-mm-dd></name></saveingbasepath>
datapath	STRING	Base directory of the rainbow raw data. This field must have a trailing '/'. The raw data files of a scan can be found using the following file path: <datapath>/<scanname>/<yyyy-mm-dd>/<yyyymmddhhmmss00datatype>.<ext></ext></yyyymmddhhmmss00datatype></yyyy-mm-dd></scanname></datapath>
psrpath	STRING	Base directory of the power spectrum (psr) raw files. By default: empty string
iqpath	STRING	Base directory of the IQ data files. By default: empty string
configpath	STRING	Base directory of the configuration files. This directory contains clutter maps, filter coefficients, antenna pattern, and the data processing configuration files.
cosmopath	STRING	Base directory of the COSMO data files.
dempath	STRING	Base directory of the Digital Elevation Model (DEM) files. Basically to load the radar visibility (Optional)
smnpath	STRING	Base directory of the SwissMetNet stations data. Used in the comparison between radar data and rain gauges (Optional)
disdropath	STRING	Base directory of the disdrometer data. Used in the comparison between radar data and disdrometers (Optional)
solarfluxpath	STRING	Base directory of the solar flux data. Used to plot the calibration bias based on sun monitoring (Optional)
rad4alppath	STRING	Base directory of the averaged reflectivity of the rad4alp radars. Used in the inter-comparison between radars (Optional)
rad4alprawpath	STRING	Base directory of raw rad4alp radars data. Used in the inter-comparison between radars (Optional)
statuspgr	STRING	path to program that reads rad4alp status files. Used in the calculation of the radar noise (Optional)
mapspath	STRING	path to directory where background maps are stored. Used in the plotting of PPI and CAPPI data (Optional)

 ${\bf Table} \ 2-Continued \ from \ previous \ page$

Name	\mathbf{Type}	2 - Continued from previous page Description
mxpolname	STRING	Name of the directory where MXPOL processed data is stored. Used in the inter-comparison between radars (Optional)
mxpolrawname	STRING	Name of the directory where MXPOL raw data is stored. Used in the inter-comparison between radars (Optional)
locationConfigFile	STRING	File name (with full path) of the location configuration file.
${\bf product ConfigFile}$	STRING	Described in Section 3.2. File name (with full path) of the product configuration file.
lastStateFile	STRING	Described in Section 4. File name (with full path) of the file containing the time of the last processed scan. Used in particular for real
saveimg	INT	time processing. Set to 1, if all generated images shall be written to a file. If set to 0, the graphical output is displayed on screen and not saved.
imgformat	STRING	File format of the images. The following formats are supported: eps, png and jpg (TODO: check if applicable -jgrfvj-). If saveing is set to 0, this field is not used.
saveimgbasepath	STRING	Base directory for the images to save. The directory structure looks as follows: <saveimgbasepath>/<name>/<yyyy-mm- dd="">/<datasetname>/<pre>/ <outputname> If saveimg is set to 0, this field is not used.</outputname></pre></datasetname></yyyy-mm-></name></saveimgbasepath>
loadbasepath	STRING	OPTIONAL. Base path of saved data. By default, this field is set to saveimgbasepath.
loadname	STRING	OPTIONAL. Name of the saved data processing. Used for saved volume loading. By default, this field is set to name.

TODO: discuss together -jgr- -fvj- to see which entry should i add or remove

3.2 Location Configuration File

The location configuration files describes some parameters that are depending on the specific location of a radar (type of scans we want to measure, radar name, etc.). The location of the weather radar (its position) itself, is instead usually read from the radar metadata directly and it is not necessarily defined in this file. The fields are described in Table 3.

Table 3: Configuration parameters of the location configuration file

Name	\mathbf{Type}	Description
RadarName	STRING	Short version name of a rad4alp radar (i.e. A, D, L,
		P) or DX50, MXPol for the X-band radars.
RadarRes	STRING	rad4alp radar resolution (H or L). Only necessary if
		rad4alp data is processed
RadarBeamwidth	FLOAT	Radar antenna beam width [Deg]
AntennaGaindB	FLOAT	antenna gain [dB]

	Table 3 –	Continued from previous page
Name	\mathbf{Type}	Description
ScanList	STRARR	A list with the scans used for this data processing. Note that the first scan in this list is used as master scan. The master scan must be the first (temporal) scan of the corresponding rainbow task. In case of composite volumes the master scan is usually a PPI and the following are RHIs. If the radar processed is rad4alp the scan list consists of the radar elevation (i.e. from 001 to 020). All scan names must have a trailing '/' except if rad4alp data is processed
ScanPeriod	FLOAT	Repetition period of each scan in minutes.
Azimtol	FLOAT	Tolerance in azimuth for irregular data. (0.5 is a good value)
clutterMap	STRING	Clutter map of the data processing. The clutter map is located at <configpath>/clutter/<cluttermap></cluttermap></configpath>
iso0setup	STRUCT	Setup to read the iso zero height from cosmo model.
xcoord	STRING	CH1903 X-coordinate of the radar position [km].
ycoord	STRING	CH1903 Y-coordinate of the radar position [km].
CosmoRunFreq	INT	Frequency of a COSMO model run in hours.
CosmoForecasted	INT	Hours forecasted by the COSMO model.
RcovFile	STRING	Name (without path) of the R-coefficients for the Kalman filtering. This file and path must be <configpath>/filter/<rcovfile></rcovfile></configpath>
PcovFile	STRING	Name (without path) of the P-coefficients for the Kalman filtering. This file and path must be <configpath>/filter/<pcovfile></pcovfile></configpath>
IQWindow	STRING	Possible values: HAMMING, HANNING, BLACK-MAN, NONE. Default NONE. When processing IQ data, window type applied before computing the spectrum.
Clipping	FLOAT	Default 0. In spectral processing: dB above noise level below which the spectra is clipped. If 0 no clipping is applied
SWindow	INT	Default 0. In spectral processing: Size (in Doppler cells) of the Gaussian smoothing window used to smooth the Doppler spectrum. If 0 no smoothing is applied.
Average	INT	Boolean: 0,1. Default 0. Flag indicating whether the Doppler of a volume have to be averaged or not. A single PRF is assumed to perform the average.
ppiImageConfig	STRUCT	Structure defining the PPI image generating. The following 6 fields are described below:
rhiImageConfig	STRUCT	Structure defining the RHI image generating. The following 6 fields are described below:
xsize	INT	Number of horizontal pixels of the picture (without frame).
ysize	INT	Number of vertical pixels of the picture (without frame).
		$\alpha + 1 + 1 + 1$

TD 11 0	C 1	C		
Table 3 –	Continued	from	previous	page

		Continuea from previous page
Name	\mathbf{Type}	Description
xmin	FLOAT	Distance of the left image boundary to the radar in
		km.
xmax	FLOAT	Distance of the right image boundary to the radar in
		km.
ymin	FLOAT	Distance of the lower image boundary to the radar in
v		km.
ymax	FLOAT	Distance of the upper image boundary to the radar in
J		km.
ppiMapImageConfig	STRUCT	Structure defining the PPI image overlayed on a map.
pp	2110001	The following 9 fields are described below:
rngRing	FLOAT	Distance between range rings (0 means no range ring)
1118141118	1 20111	[km].
xsize	FLOAT	Image size (inches) [ich].
ysize	FLOAT	Image size (inches) [len].
lonmin	FLOAT	Minimum WGS84 longitude [°].
lonmax		<u> </u>
latmin	FLOAT	Maximum WGS84 longitude [°].
	FLOAT	Minimum WGS84 latitude [°].
latmax	FLOAT	Maximum WGS84 latitude [°].
mapres	STRING	Map resolution. Accepted strings are: "10m", "50m",
	0mp + p p	"110m"
maps	STRARR	String array of possible maps to overplot. Ac-
		cepted entries include: relief, countries, provinces,
		urban_areas, roads, railroads, coastline, lakes,
		lakes_europe, rivers, rivers_europe
${\bf rvsaz Image Config}$	STRUCT	Structure defining the range versus azimuth image.
		The following 4 fields are described below:
xmin	FLOAT	Min angle on horizontal axis [Deg].
xmax	FLOAT	Max angle on horizontal axis [Deg].
ymin	FLOAT	Min range on vertical axis [km].
ymax	FLOAT	Max range on vertical axis [km].
rvselImageConfig	STRUCT	Structure defining the range versus elevation image. It
		contains the same 4 fields as rvsazImageConfig.
sunhitsImageConfig	STRUCT	Structure defining the sun hits image. The following
		6 fields are described below:
xsize	INT	Number of horizontal pixels of the picture (without
		frame).
ysize	INT	Number of vertical pixels of the picture (without
Julie	1111	frame).
xmin	FLOAT	Minimum azimuth angle difference (between sun and
XIIIII	I LOMI	radar).
77770.077	FLOAT	Maximum azimuth angle difference (between sun and
xmax	FLOAT	· · ·
	ELOAT	radar).
ymin	FLOAT	Minimum elevation angle difference (between sun and
		radar).
ymax	FLOAT	Maximum azimuth angle difference (between sun and
0.47	OMP II OM	radar).
wgs84ImageConfig	STRUCT	Structure defining the image in WGS84 coordinates.
		The following 6 fields are described below:
north	FLOAT	North limit of image [deg].
		Continued on next nage

 ${\bf Table}~3-{\it Continued~from~previous~page}$

Name	Type	Description
south	FLOAT	South limit of image [deg].
east	FLOAT	East limit of image [deg].
west	FLOAT	West limit of image [deg].
dlat	FLOAT	latitude resolution [deg].
dlon	FLOAT	longitude resolution [deg].
ch1903ImageConfig	STRUCT	Structure defining the image in Swiss coordinates. The
		following 6 fields are described below:
north	FLOAT	North limit of image [m].
south	FLOAT	South limit of image [m].
east	FLOAT	East limit of image [m].
west	FLOAT	West limit of image [m].
dchx	FLOAT	chx resolution [m].
dchy	FLOAT	chy resolution [m].
par_azimuth_antenna	STRUCT	Structure defining the PAR azimuth antenna. It con-
		tains the following 3 fields:
par_elevation_antenna	STRUCT	Structure defining the PAR elevation antenna. It con-
		tains the following 3 fields:
azPatternFile	STRING	Name of the azimuth pattern file of the an-
		tenna. This file and path must be <config-< td=""></config-<>
		path > /antenna / < azPatternFile >
elPatternFile	STRING	Name of the elevation pattern file of the an-
		tenna. This file and path must be <config-< td=""></config-<>
		$path \!\! > \!\! /antenna / \!\! < \!\! elPatternFile \!\! >$
$fixed_angle$	FLOAT	Fixed angle of a PAR antenna in degrees. For the PAR
		azimuth antenna this is the elevation angle. For the
		elevation antenna is is the azimuth angle.
RAINBOW-	INT	OPTIONAL. If set, uses the old method to read the
OLDMERGE		elevation angles from a raw rainbow file. This method
		just uses the elevation start angle. The new version
		take the mean between start and end elevation angle.
RAINBOW-	INT	OPTIONAL. Special method to merge the PPI's of a
SECTORMERGE		sector volume scan. Because the start and end azimuth
angles of different PPI slices of a non-360 degrees ve		
		ume scan do not correspond very well.

TODO: help needed here to define the complete list for pyrad and see what to remove -jgr -fvj- $\,$

4 Product Generation Configuration

This section describes the product configuration.

4.1 Basic Concept

The concept is based on three stages: 1. input or raw data volume, 2. datasets and 3. products. The center point of the data processing is the dataset. A dataset can be generated from one or more than one input data volumes (e.g. a rainrate dataset uses 5 different raw data volume to be generated).

There are several different formats of a dataset. For example, a dataset can be a volume, a trajectory, a volume composite or a time series. Section 5 summarizes the possible datasets.

From a dataset the products are generated. What products can be generated from a dataset depends on the type (volume, volume composite, trajectory or time series) of the dataset.

Figure 1 shows a schema of an example of the basic concept of the product generation. From different input data a dataset is generated and from this dataset m products are created.

Figure 1: Basic concept for product generation from input (also called raw) data.

The dataset types are described in Section 5 and the product types in Section 6

4.2 The concept of processing level

TODO: add explanation of concept of processing level -jgr--fvj-

4.3 Input Volume Datatypes

There are different group of input volume datatypes that can be read as input data for a dataset. These groups are summarized in Table 4. The possible volume datatypes for each

datatype group are listed in Table 5.

The specification of the datatype for a dataset is done by first writing the datatype group, followed by a ':' and then the name of the datatype. If no ':' is given, it is assumed that the datatype belongs to the group RAW. For a datatype from the group SAVED, the dataset and product name must be specified. This information is separated by ','. Note that NETCDF datatypes cannot be mixed with other datatypes.

Caveat: please do not mistake the input volume datatype with the dataset type (entry "type" of the dataset structure)

```
<datasetname> STRUCT 2
  type     STRING <datasettype>
  datatype STRARR
     RAW:dBZ
     PSR:NhDBM
     COSMO:TEMP
     SAVED:RR_h,<olddataset>,<oldproduct>
```

Group	Description
RAW	Raw data generated by the DX50. Stored in rainbow data format.
PSR	Power spectra data generated by the signal processor of the DX50.
10	Stored in Gematronik file format.
IQ	data based on IQ raw data. For the moment only from rad4alp radars.
	The data is stored in a binary format in a .dat file.
SAVED	A dataset generated by this dataprocessing procedure. As additional
	information the dataset and the product name of the previous dataset
	must be specified. Stored in IDL file format.
COSMO	Data created by COSMO. Converted to polar radar coordinates and
	stored in rainbow file format.
DEM	Digital Elevation Model data (DEM). Basically visibility in rainbow
	file format
NETCDF	External data in netcdf format.
NETCDFCOSMO	COSMO data in netcdf format.
RAD4ALP	rad4alp data.
RAD4ALPDEM	rad4alp visibility data.
RAD4ALPCOSMO	a binary file with COSMO data for rad4alp processing.
PROC	indicates that the dataset is the result of the preprocessing of raw data.
	(i.e. it will be created on the fly).
PSRPROC	indicates that the dataset is the result of the preprocessing of psr data.
	(i.e. it will be created on the fly).
RAINBOW	rainbow data types. TODO: check this -jgr-

Table 4: List of input volume datatype groups

TODO: (1) check entries. -jgr- -fvj-. Isaw for example that in pyrad we could have "RADAR001:CFRADIAL:..." types. (2) check that all the entries make sense

Group	Datatypes
RAW	dBZ, dBZv, dBuZ, dBuZv, V, Vv, Vu, Vvu, W, Wv, Wu, Wvu, KDP, uKDP, uKDPu, PhiDP, uPhiDP, uPhiDPu, RhoHV, RhoHVu, uRhoHV, L, ZDR, ZDRu, SQI, SQIv, SQIv, SQIvu, SNRh, SNRv, CDR
PSR	NhADU, NvADU, NhDBM, NvDBM, PhADU, PvADU, PhDBM, PvDBM, PhDBZ, PvDBZ, ShADU_HZ, ShADU_MS, ShDBADU_HZ, ShDBADU_MS, ShDBM_HZ, ShDBM_MS, ShDBZ_HZ, ShDBZ_MS, SvADU_HZ, SvADU_MS, SvDBADU_HZ, SvDBM_MS, SvDBZ_HZ, SvDBADU_MS, SvDBM_HZ, SvDBM_MS, SvDBZ_HZ, SvDBZ_MS, UhADU_HZ, UvADU_HZ, UhADU_MS, UvADU_MS, UhCPX_HZ, UvCPX_HZ,
IQ	Same as PSR plus WhADU, WvADU, WhDBADU, WvDBADU, WhDBM, WvDBM, WhDBZ, WvDBZ, IhCPX, IvCPX, IhRAW, IvRAW, IhADU, IvADU, IhDBADU, IvDBADU, IhDBM, IvDBM, IhDBZ, IvDBZ, IhDEG, IvDEG
SAVED	(Some examples, not complete) dV, dVv, dVu, dVvu, RR_Zh, RR_Ah, RR_Kdp, Att, SAN, TRAJ, HEIGHT, WP, WPDIFF, WPRELDIFF, dtfilter, RAINEXT, RCS
COSMO	ISO0, TEMP
DEM	VIS
NETCDF	
NETCDFCOSMO	ISO0, TEMP
RAD4ALP	dBZ, ZDR, RhoHV, uPhiDP, V, W, SNRh, SNRv, L, CDR.
RAD4ALPDEM	VIS.
RAD4ALPCOSMO	ISO0, TEMP
PROC	dBZc, dBZvc, ZDRc, PhiDPc, KDPc, RhoHVc, Ah, Adp.
PSRPROC	sZh_MS, sZv_MS, sZDR_MS, sRhoHV_MS, sPhiDP_MS.

Table 5: List of possible datatypes

TODO: check if those are up to date

4.4 Product Configuration File

The product configuration files describes the products that are generated for the data processing. The fields are described in Table 6.

Table 6: Configuration parameters of the product configuration file

\mathbf{Name}	\mathbf{Type}	Description
dataSetList	STRARR	A list of the datasets that are generated for the data pro-
		cessing. There must be a structure in the product config-
		uration file defining the dataset and its product for each
		dataset in this list. The list of datasets may include the
		processing level. TODO: add link to the definition
		of processing level

Table 6 – Continued from previous page

Name	Type	- Continued from previous page Description
<datasetname></datasetname>	STRUCT	A structure defining a dataset. The <datasetname> must be a member of the dataSetList list. The structure defines the type of the dataset, its parameters and the products that are applied to this dataset. The <datasetname> can be freely chosen. Just make sure the spelling is the same in the dataSetList. The <datasetname> is used for the path to store the products: <saveimgbasepath>/<name>/<yyyy-mm-dd>/<datasetname>/<pre> / coutputname>. The mandatory fields of this structure are described below. The fields depending on the dataset type are described in Section 5.</pre></datasetname></yyyy-mm-dd></name></saveimgbasepath></datasetname></datasetname></datasetname>
type	STRING	Type of the dataset. The tables in Section 5 list all possible dataset types.
datatype	STRARR	Raw (or input) datatype. The dataset is generated using rainbow raw files of this datatypes or the dataset is generated using multiple raw files with different datatypes.
IGNORE MISSING_VOLS	INT	OPTIONAL. If set, the function processing the dataset is called if not all input data volumes could be selected. For example this could be used for the sanity check. In such a case only the checks are done with the available input volumes. By default, this option is off. TODO: can be removed?
DSSAVENAME	STRING	OPTIONAL. Usually the product files are stored under the name of the dataset. If this parameter is saved, the files are stored under this name instead of the dataset name.
INPUT- PROCESSING	STRUCT	OPTIONAL. Input processing of one or more input volumes. See section 4.5 for details. TODO: can be removed?
DATASET- PROCESSING	STRUCT	OPTIONAL. Dataset processing of a volume dataset. See section 4.5 for details. TODO: can be removed?
products	STRUCT	This structure contains a list of products. Each product is a structure named as <pre> prodname></pre> . For the product description see Section 6.
<pre><pre><pre><pre></pre></pre></pre></pre>	STRUCT	Structure defining a product of the dataset. The <pre></pre>
type	STRING	Type of the product. Section 6 describes all possible product types.

Example: A simple product config file is listed below:

[#]

[#] Product generation configuration

```
#
# List of datasets to generate.
# The detailed specification of each dataset is given below.
dataSetList STRARR 12
  10:TEMP
  10:reflectivity
  10:ZDR
  10:RhoHV
  10:echoID
  11:echoFilter
  13:echoFilter_Ah
  12:outlierFilter
  12:Att_ZPhi
  13:hydroclass
  14:rainrate
  13:wind
COSMO data
# ------
TEMP STRUCT 6
  type STRING COSMO_LOOKUP
  datatype STRARR 1
     dBZ
  cosmo_type STRING TEMP
  regular_grid INT 0
  lookup_table INT 1
  MAKE_GLOBAL INT 1
# ------
            raw data processing
# ------
reflectivity STRUCT 3
  type
        STRING RAW
  datatype STRING dBZ
  products STRUCT 4
    EL03_0 STRUCT 3
      type STRING PPI_IMAGE
      anglenr INT 0
      voltype STRING dBZ
    EL04_0 STRUCT 3
      type STRING PPI_IMAGE
      anglenr INT 1
      voltype STRING dBZ
    EL05_7 STRUCT 3
      type STRING PPI_IMAGE
      anglenr INT 2
      voltype STRING dBZ
```

```
type STRING SAVESTATE
        voltype STRING dBZ
ZDR STRUCT 3
          STRING RAW
  type
  datatype STRING ZDR
  products STRUCT 3
     EL03_0 STRUCT 3
        type STRING PPI_IMAGE
        anglenr INT 0
        voltype STRING ZDR
     EL04_0 STRUCT 3
        type STRING PPI_IMAGE
        anglenr INT 1
        voltype STRING ZDR
     EL05_7 STRUCT 3
        type STRING PPI_IMAGE
        anglenr INT 2
        voltype STRING ZDR
RhoHV STRUCT 3
  type
          STRING RAW
  datatype STRING RhoHV
  products STRUCT 3
     EL03_0 STRUCT 3
        type STRING PPI_IMAGE
        anglenr INT 0
        voltype STRING RhoHV
     EL04_0 STRUCT 3
        type STRING PPI_IMAGE
        anglenr INT 1
        voltype STRING RhoHV
     EL05_7 STRUCT 3
        type STRING PPI_IMAGE
        anglenr INT 2
        voltype STRING RhoHV
                echo identification
# -----
echoID STRUCT 3
   type STRING SAN
   datatype STRARR 4
       dBZ
       ZDR.
       uPhiDP
       RhoHV
   MAKE_GLOBAL INT 1
```

SAVESTATE STRUCT 2

```
clutter and noise suppression
# ------
# echo type 3 : precip, 2 : clutter, 1 : noise
echoFilter STRUCT 4
   type STRING ECHO_FILTER
   datatype STRARR 8
     PROC:echoID
     dB7.
     ZDR.
     RhoHV
     PhiDP
     KDP
V
W
   echo_type INT 3
  MAKE_GLOBAL INT 1
echoFilter_Ah STRUCT 4
   type STRING ECHO_FILTER
   datatype STRARR 2
     PROC:echoID
     PROC: Ah
   echo_type INT 3
  MAKE_GLOBAL INT 1
             outlier filter
# -----
outlierFilter STRUCT 8
   type STRING OUTLIER_FILTER
   datatype STRARR 1
     PROC: Vc
  threshold FLOAT 10.
  nb INT 2
  nb_min INT 3
  percentile_min FLOAT 5.
  percentile_max float 95.
  MAKE_GLOBAL INT 1
             Attenuation
# ------
Att_ZPhi STRUCT 5
   type STRING ATTENUATION
   datatype STRARR 4
     PROC:dBZc
     PROC: ZDRc
```

```
PROC: TEMP
  ATT_METHOD STRING ZPhi
  fzl FLOAT 2000.
  MAKE_GLOBAL INT 1
# ------
        hydrometeor classification products
# ------
hydroclass STRUCT 5
  type STRING HYDROCLASS
  datatype STRARR 5
     PROC:dBZc
     PROC: ZDRc
     PROC: RhoHVc
     PROC: KDPc
     PROC: TEMP
  HYDRO_METHOD STRING SEMISUPERVISED
  RADARCENTROIDS STRING DX50
  MAKE_GLOBAL INT 1
          rainfall rate
# ------
rainrate STRUCT 5
  type STRING RAINRATE
  datatype STRARR 3
     PROC: dBZc
     PROC: Ahc
     PROC: hydro
  RR_METHOD STRING hydro
  MAKE_GLOBAL INT 1
  products STRUCT 3
    EL03_0 STRUCT 3
      type STRING PPI_IMAGE
      anglenr INT 0
      voltype STRING RR
    EL04_0 STRUCT 3
      type STRING PPI_IMAGE
      anglenr INT 1
      voltype STRING RR
    EL05_7 STRUCT 3
      type STRING PPI_IMAGE
      anglenr INT 2
      voltype STRING RR
# ------
           wind velocity
```

PROC: PhiDPc

wind STRUCT 5 type STRING WIND_VEL datatype STRARR 1 PROC: Vc vert_proj INT 0 MAKE_GLOBAL INT 1 products STRUCT 3 EL03_0 STRUCT 3 type STRING PPI_IMAGE anglenr INT 0 voltype STRING wind_vel_h_az EL04_0 STRUCT 3 type STRING PPI_IMAGE anglenr INT 1 voltype STRING wind_vel_h_az EL05_7 STRUCT 3 type STRING PPI_IMAGE anglenr INT 2 voltype STRING wind_vel_h_az

The example product configuration files defines twelve datasets: let us take the example of l0:reflectivity and l4: rainrate.

The reflectivity dataset is a RAW dataset generated using the raw datatype dBZ. Four products are generated for this dataset: the products $EL03_0$, $EL04_0$, $EL05_7$ which are of type PPI_IMAGE (the first, second and third PPIs in a volume scan, as given in field anglenr). The images are stored in <saveingbasepath>/<name>/<YYYY-MM-DD>/reflectivity/EL0X_X/. The fourth product saves the volume in the path given by loadbasepath fo the main configuration file. **TODO:** check that

The rainrate dataset is a RAINRATE dataset generated using the processed datatypes dBZc, Ahc, hydro, by means of the HYDRO retrieval method. In analogous way with respect to the reflectivity dataset, PPI images are generated as products.

4.5 Input- and DataSet-Processing

TODO: -jgr- -fvj- if i understand correctly, this is outdated. Need to see what is the equivalent for pyrad.

5 Datasets

Each dataset has a format. The possible formats are listed in Table 7. The dataset type is then a subset of these possible formats. A list with all possible dataset types for each dataset format is given in the following tables. If a dataset type starts with TRAJ, it uses a plane trajectory to generate the dataset.

TODO: check in pyrad_proc/process_aux.py to see which datasets exist. Does the concept of dataset type still exist?

Table 7: List of all possible formats of a dataset **Description**

	Description
Name	
	A structure with a volume with 3-dimensional data (az-
VOL	imuth, elevation and range).
RAY	As a volume structure without range dimension. The
	data are two-dimensional as function of (azimuth, eleva-
	tion). TODO: still there? or to be done?
TIMESERIES	A structure with an array with 2 dimensions: time and
	one or more values (e.g. mean, min, max, quantiles,)
TIMEARRAY	A structure with a two-dimensional array: time and an-
	other parameter (e.g. altitude)
TIMEARRAY_ARRAY	A structure with a three-dimensional array: type, time
	and another parameter (usually altitude) TODO: Still
	there?
TRAJ_ONLY	Trajectory data only. A structure containing a timeseries
	structure with range, azimuth and elevation position of
TDAI NOI COMPOSITE	the plane. TODO: still there? or to be done?
TRAJ_VOL_COMPOSITE	A volume structure (azimuth, elevation and range). It is
	a composite of several raw volume projected to the plane
VOLUMECDOUD	trajectory. TODO: still there? or to be done?
VOLUMEGROUP	XXX to be described TODO : still there? or to be done?
PSR	A structure with a volume with 4-dimensional data. For
1 SIL	each (azimuth, elevation and range) tuple a vector with
	values for each spectrum sample is given. TODO: still
	there? or to be done?
ARRAY_PSR	A structure with a volume with 5-dimensional data. For
	each (data type, azimuth, elevation and range) tuple a
	vector with values for each spectrum sample is given. It
	is a concatenation of spectra generated by a processing
	routine. TODO: still there? or to be done?
MONITORING	A structure with the data resultant from the data qual-
	ity monitoring. For each parameter monitored there is a
	space-time matrix containing the results of the monitor-
	ing for each volume and several statistical parameters.
ARRAY_VOL	A structure with a volume with a 4-dimensional data
	(type,azimuth,elevation,range). It is a concatenation of
	volumes generated together by a processing routine.
	Continued on next page

Table 7 – Continued from previous page

Name	Description
SUN_MONITORING	This dataset is computed offline. It generates two differ-
	ent structures. When processing data, whenever there is
	a possible sun hit it generates a volume array with sun
	hit information (channel power, zdr, position of sun hit,
). At the end of the data processing generates a struc-
	ture with the parameter datatype_array=SUN_HITS,
	the sun hits file name, the sun retrieval file name and the
	parameters of the fitting for horizontal sun power, verti-
	cal sun power and sun differential reflectivity. TODO:
	is it still there or integrated somewhere else?
XVSC	Used for the intercomparison of averaged reflectivity. A
	structure that contains a list of the radars with which
	the processed radar is compared and the volume time.
	TODO: is it still there?
INTERCOMP	Used for the inter-comparison of any radar variable. A
	structure that contains a list of the radars with which
	the processed radar is compared, the volume time and
	the data type. TODO: see comments below
HISTOGRAM	A structure with 2D and 1D histograms of radar vari-
	ables. TODO: see comments below
COMPOSITE_VOLUME	A nested structure that can embed two sub-structures.
	Each sub-structure is a volume with 3D data (see VOL) or
	4D data (see ARRAY_VOL). Usually one sub-structure
	includes PPI scans and the second one RHI scans.
	TODO: still of interest?

Name	Description	Reference
SAN	Sanity check dataset. This dataset is used to preprocess other raw data for other datasets.	Section 5.1.1
RAW	Use a rainbow raw volume directly as dataset.	Section 5.1.2
WINDSHEAR	Calculate the windshear.	Section 5.1.3
RAINRATE	Rainrate retrieval with a selected method.	Section 5.1.4
BACKSCATTER	Calculate the radar backscattering cross setion from the reflectivity. TODO: still there? or to be done?	Section 5.1.5
SPEC_QUALITY	Compare V and W estimations with the Doppler spectrum TODO : still there? or to be done?	Section 5.1.6
SPHERECALIBRATION	Processing of the sphere calibration measurement TODO: still there? or to be done?	Section 5.1.7
IQ_RHOHV	Computes RhoHV from raw IQ data. TODO: still there? or to be done?	Section 5.1.8
IQ_ZDR	Computes Zdr from raw IQ data. TODO: still there? or to be done?	Section 5.1.9

Table 8: List of all possible dataset types for VOL datasets

Name	Description	Reference
RAINEXTENSION	Calculate the rain extension. TODO: still there? or	Section 5.2.1
	to be done?	

Table 9: List of all possible dataset types for RAY datasets

Name	Description	Reference
TRAJ_ATPLANE	A trajectory is combined with saved rain-	Section 5.3.1
	bow volumes.	
TRAJ_ANTENNA_PATTERN	A trajectory is combined with saved rain-	Section 5.3.2
	bow volumes.	
POINT_MEASUREMENT	The radar measurement over one specific	Section 5.3.3
	point	

Table 10: List of all possible dataset types for TIMESERIES datasets

Name	Description	Reference
TIME_HEIGHT	Make a time-height profile. TODO: still there? or to	Section 5.4.1
	be done?	
TIME_VECTOR	Make a time-vector dataset. TODO: still there? or	Section 5.4.2
	to be done?	
QVP	Make a Quasi Vertical Profile (QVP) TODO: still	Section 5.4.3
	there? or to be done?	

Table 11: List of all possible dataset types for TIMEARRAY datasets

Name	Description	Reference
TIME_SUMMARY_HEIGHT	Make a set of time-height profiles. Each	Section $5.5.1$
	profile is a statistical moment (over height	
	levels) of an RHI image. TODO: still	
	there? or to be done?	

Table 12: List of all possible dataset types for TIMEARRAY_ARRAY

Name	Description	Reference
TRAJ	Uses a trajectory without radar data. Note, just a	Section $5.6.1$
	few product types can be applied on this dataset.	
TRAJ_PLANEHITS	Uses a trajectory to find plane hits in radar data.	Section 5.6.2

Table 13: List of all possible dataset types for TRAJ_ONLY datasets **TODO**: still there? or to be done?

Name	Description	Reference
$TRAJ_VOL$	A trajectory is combined with raw rainbow volumes.	Section 5.7.1

Table 14: List of all possible dataset types for TRAJ_VOL_COMPOSITE datasets **TODO:** still there? or to be done?

Name	Description	Reference
QUANTILE	Quantile calculation. TODO: still there? or to be done?	Section 5.8.1

Table 15: List of all possible dataset types for VOLUMEGROUP datasets

Name	Description	Reference
PSR_RAW	The raw spectra values.	Section 5.9.1
PSR_MERGE	Merges every two spectra with different PRF to one.	Section 5.9.2
PSR_VERTICAL	XXX to be described	Section 5.9.3
PSR_SZH	Computes the spectral horizontal reflectivity	Section 5.9.4
PSR_SZV	Computes the spectral vertical reflectivity	Section 5.9.5
PSR_SZZDR	Computes the spectral differential reflectivity	Section 5.9.6
PSR_SZDR_TEXT	Computes the texture of the spectral differential reflectivity	Section 5.9.7
PSR_SRHOHV	Computes the spectral co-polar correlation coefficient	Section 5.9.8
PSR_SPHIDP	Computes the spectral differential phase	Section 5.9.9
PSR_SPHIDP_TEXT	Computes the texture of the spectral differential phase	Section 5.9.10
PSR_DSD	Computes the drop size distribution (DSD) from spectral parameters.	Section 5.9.11

Table 16: List of all possible dataset types for PSR datasets **TODO: not there yet, but to be done?**

Name	Description	Reference
PSR_FILTER	Computes spectral polarimetric variables and filters out	Section $5.10.1$
	clutter contaminated Doppler bins	
PREPROC_PSR	Computes spectral polarimetric variables and option-	Section 5.10.2
	ally filters out clutter contaminated Doppler bins. The	
	clean polarimetric variables are then usable by other	
	functions.	

Table 17: List of all possible dataset types for ARRAY_PSR datasets **TODO: still there?** or to be done?

Name	Description	Reference
MONITORING	The data obtained by the data quality monitoring process	Section $5.11.1$

Table 18: List of all possible dataset types for MONITORING datasets **TODO: changed** from MON to MONITORING. Ok?

Name	Description	Reference
PREPROCESSING	Preprocessing of raw radar data. TODO: still there? or to be removed?	Section 5.12.1
MEANZ	Time-averaged reflectivity, differential phase (weighted by reflectivity) and a flag matrix containing information on clutter and attenuation within the time of averaging. TODO: still there? or to be removed?	Section 5.12.2
XVSC_POSITION	A boolean matrix with 1 indicating the range bins usable for intercomparison with each radar. TODO: still there? or changed name?	Section 5.12.3
ATTENUATION	Attenuation estimation and attenuation correction on the polarimetric variables.	Section 5.12.4
HYDROCLASS	Hydrometeor classification.	Section 5.12.5
PHIDP_KDP	K_{dp} and Φ_{dp} estimated from raw noisy Ψ_{dp} . TODO: still there? or name is now splitted in several smaller ones?	Section 5.12.6
PSR_POLVARIABLES	Computes the polarimetric variables from the spectra. TODO: Not there yet, i guess	Section ??
PSR_DSDBASED_PARAM	Computes parameters based on integrated DSD such as liquid water content (LWC) and rainfall rate. TODO: Not there yet, i guess	Section ??

Table 19: List of all possible dataset types for ARRAY_VOL datasets

Name	Description	Reference
SUN_MONITORING	sun monitoring data	Section $5.13.1$

Table 20: List of all possible dataset types for sun monitoring datasets. **TODO:** is it still there?

Name	Description	Reference
XVSC	inter-comparison of time-averaged reflectivity between radars.	Section 5.14.1

Table 21: List of all possible dataset types for XVSC datasets TODO: is it still there?

Name	Description	Reference
INTERCOMP	inter-comparison of instantaneous values of polarimetric	Section $5.15.1$
	parameters between radars.	

Table 22: List of all possible dataset types for INTERCOMP datasets. **TODO:** is it still there? or does it correspond to the current INTERCOMP_TIME_AVG

Name	Description	Reference
HISTOGRAM	1D and 2D histograms of polarimetric data.	Section 5.16.1

Table 23: List of all possible dataset types for HISTOGRAM datasets. **TODO: still there** as datasets?

Name	Description	Reference
	COMPOSITE_VOLUME are just combination of VOL datasets	Section 5.17

Table 24: List of all possible dataset types for COMPOSITE_VOLUME datasets. **TODO:** still there?

5.1 VOL Datasets

5.1.1 SAN

A sanity check dataset. From four raw input data volumes (dBZ, ZDR, uPhiDP and RhoHV) each radar cell is checked if its value is feasible. The output sanity volume contains a mask for each radar cell indicating if the cell is noise, clutter or melting layer. This dataset can be stored to a global variable and can be used to preprocess the raw input data of other datasets.

Note, that this dataset must be at the first place in the dataset list!

The parameters of a SAN dataset are listed in Table 25. The general parameters type, datatype, ignore_missing_vols and products are not listed here, see Table 6 for description of these parameters.

TODO: here i checked in process_echoclass.py and i am not sure the configuration inputs below still apply. Do they?

Parameter	Type	Description
NO_MELTINGLAYER	INT	OPTIONAL. If set to 1, the melting layer cells are not marked. By default, this option is not set.
RHOMIN	FLOAT	OPTIONAL. Default 0.75. The minimum value of Rhohy to flag the gate as suspected melting layer.
RHOMAX	FLOAT	OPTIONAL. Default 0.94. The maximum value of Rhohy to flag the gate as suspected melting layer.
NML_POINTS_MIN	INT	OPTIONAL. Default 1500. The minimum number of suspected melting layer radar bins to compute a valid melting layer.
PERCENTILE_BOTTOM	FLOAT	OPTIONAL. Default 0.3. The percentile of radar bins from which the melting layer bottom is considered to start.
NO_SANITYCHECK	INT	OPTIONAL. If set to 1, the clutter cells determined by the sanity check are not marked. By default, this option is not set.
DOTEXTURE	INT	OPTIONAL. Default 1. If set the sanity check uses information on texture of the polarimetric variables to identify clutter.
ТЕХТРНІ	FLOAT	OPTIONAL. Default 0.266 [Deg/m]. The threshold on the texture of Phidp to consider the radar bin clutter contaminated.
TEXTRHO	FLOAT	OPTIONAL. Default 0.004 [1/m]. The threshold on the texture of Rhohy to consider the radar bin clutter contaminated.
TEXTZDR	FLOAT	OPTIONAL. Default 0.038 [dB/m]. The threshold on the texture of Zdr to consider the radar bin clutter contaminated.
TEXTZH	FLOAT	OPTIONAL. Default 0.107 [dBz/m]. The threshold on the texture of Zh to consider the radar bin clutter contaminated.
NNEIGHBOUR_MIN	INT	OPTIONAL. Default 0. If set to a value larger than 0 speckle filtering is performed. The filter checks how many valid neighbors a valid range bin has. If it is less than what is specified by this parameter the range bin is set to clutter.
NO_NOISE	INT	OPTIONAL. If set to 1, the noise cells are not marked. By default, this option is not set.
NO_CLUTTERMAP	INT	OPTIONAL. If set to 1, the clutter cells determined by the clutter map are not marked. By default, this option is not set.
MAKE_GLOBAL	INT	OPTIONAL. If set to 1, the sanity dataset is made global and can be used for the input processing for other datasets. By default, this option is not set.

Table 25: Parameters of a RAW dataset (without the general parameters).

5.1.2 RAW

Use a rainbow raw volume directly as dataset.

The general parameters type, datatype, $ignore_missing_vols$ and products are not listed here, see Table 6 for description of these parameters.

5.1.3 WINDSHEAR

Calculate the windshear from a Doppler velocity raw volume.

The general parameters type, datatype, ignore_missing_vols and products are not listed here, see Table 6 for description of these parameters.

5.1.4 RAINRATE

Rain rate retrieval. Several rain rate retrievals are implemented. Depending on the retrieval different input data types are necessary. Each retrieval is called by using the dataset structure entry RR_METHOD (i.e. "hydro"). Table 26 describes the possible rain rate datasets. In retrievals that have a frequency dependence the parameter BANDPARAMS can be set. It is a string with possible values S, C and X and default value X.

Retrieval	Input Data Type	Output Data Type	Description
Z	dB(u)Z(c)	RR_Zh	Single Z-R relation.
KDP	KDP(c)	RR_Kdp	Kdp-R relation.
A	Ah(c)	RR_Ah	Ah-R relation.
ZA	dB(u)Z(c), Ah(c)	TODO, complete	
ZKDP	dB(u)Z(c), $KDP(c)$	TODO, complete	Use of Kdp-R or Z-R relation
ZPoly	TODO, complete		
hydro	dB(u)Z(c), Ah(c)	TODO, complete	

Table 26: Description of RAINRATE dataset types.

5.1.5 BACKSCATTER

TODO: is it still valid for pyRad?

5.1.6 SPEC QUALITY

TODO: is it still valid for pyRad?

5.1.7 SPHERECALIBRATION

TODO: is it still valid for pyRad?

5.1.8 IQ RHOHV

TODO: is it still valid for pyRad?

5.1.9 IQ ZDR

TODO: is it still valid for pyRad?

5.2 RAY Datasets

5.2.1 RAINEXTENSION

TODO: is it still valid for pyRad?

5.3 TIMESERIES Datasets

5.3.1 TRAJ ATPLANE

The values nearest to the plane during a trajectory are calculated and returned as a time series. The parameters of a $TRAJ_ATPLANE$ dataset are listed in Table 27. The general parameters type, $ignore_missing_vols$ and products are not listed here, see Table 6 for description of these parameters.

TODO: if understood correctly from process_traj.py, it seems that now there is a default behavior and cube, cube varbin are obsolete. Correct?

Parameter	Type	Description
datatype	STRING	Date type of a volume dataset. A list of generated datatypes
		is given in Table 5. For example the datatyp RR_Zh is
		possible to use a rainrate volume.
CUBE	INT	If set to 1, use a cube around to nearest cell (to the plane).
		Derive min, max, median values from this cube.
CUBE_VARBIN	INT	If set to 1, determine the size of the cube according the dis-
		tance from the radar. If set to 0, use a fixed cube size.

Table 27: Parameters of a TRAJ_ATPLANE dataset (without the general parameters).

5.3.2 TRAJ ANTENNA PATTERN

Transform the radar cells to the view of another antenna (an antenna pattern must be given). A plane trajectory is used. And a time series of the antenna transformation is returned.

The parameters of a $TRAJ_ANTENNA_PATTERN$ dataset are listed in Table 28. The general parameters type, $ignore_missing_vols$ and products are not listed here, see Table 6 for description of these parameters.

Parameter	Type	Description
datatype	STRING	Date type of a volume dataset. A list of generated datatypes is given in Table 5. For example the datatyp RR_Zh is possible to use a rainrate volume.
ANTENNATYPE	STRING	Select the antenna type, either "AZIMUTH" or "ELEVATION". The antenna pattern files are stored in the config directory and its names are defined in the location config file.
PATTERN_THRES	FLOAT	OPTIONAL. The transforming algorithm weights the radar cell by the antenna pattern. If there are undefined values, the sum of all weights must be larger than this threshold.
USE_NANS	INT	OPTIONAL. If set to 1, the NaNs are set to a fixed number (by default 0.0) and are used for the antenna pattern transformation.
NAN_VALUE	FLOAT	OPTIONAL. The value for NaNs if USE_NANS is set. By default this value is 0.0.
RANGE_ALL	INT	OPTIONAL. If set to 1, all range gates up to the plane position are used for the dataset generation (<i>line of sight</i>). By default, only the range gate of the plane is used.

Table 28: Parameters of a TRAJ_ANTENNA_PATTERN dataset (without the general parameters).

5.3.3 POINT MEASUREMENT

Obtains the value of a polarimetric variable at a particular elevation closest to a point of interest (latitude, longitude, altitude). The input data type can be any volume. The parameters of a this dataset are listed in Table 29.

TODO: here the parameters are quite different in pyRad. -jgr- check with -fvj-. Example, config file mals _mei_dataquality_prod.txt

Parameter	Type	Description
datatype	STRING	any volume data type.
lat	FLOAT	latitude of the point of interest [decimal Deg].
lon	FLOAT	longitude of the point of interest [decimal Deg].
alt	FLOAT	altitude of the point of interest [m].
elind	INT	index of the radar elevation.

Table 29: Parameters of a POINT_MEASUREMENT dataset (without the general parameters).

5.4 TIMEARRAY Datasets

5.4.1 TIME HEIGHT

TODO: not there, right?

5.4.2 TIME VECTOR

TODO: not there yet, right?

5.4.3 QVP

Creates a quasi vertical profile (QVP) of data. A QVP is an azimuthal average of the data at a particular elevation angle presented as a time-height 2D plot. The parameters for QVP datasets are listed in Table 30.

TODO: check if parameters are all ok. It seems so but some spelling may differ.

Parameter	Type	Description
type	STRING	must be QVP.
datatype	STRING	Any data type.
h_{max}	FLOAT	desired maximum height of the QVP [m MSL]. Default=50
h_res	FLOAT	desired height resolution [m]. Default=10000
ind_el	INT	index of the elevation angle used for the QVP. Default= 0

Table 30: Parameters of a QVP dataset.

5.5 TIMEARRAY ARRAY Datasets

5.5.1 TIME SUMMARY HEIGHT

TODO: not there yet, right?

5.6 TRAJ ONLY Datasets

5.6.1 TRAJ

Use a trajectory without any radar data. Note, just a few product types as plotting of the trajectory range, azimuth and elevation can be applied on this dataset.

The general parameters type, datatype, ignore_missing_vols and products are not listed here, see Table 6 for description of these parameters.

5.6.2 TRAJ PLANEHITS

TODO: not there yet, right?

5.7 TRAJ VOL COMPOSITE Datasets

5.7.1 TRAJ VOL

TODO: not there yet, i guess. And not clear to me this dataset. -jgr-

5.8 VOLUMEGROUP Datasets

TODO: not there yet, i guess.

5.8.1 QUANTILE

TODO: not there yet? or obsolete?

5.9 PSR Datasets

TODO: to clarify the plan for PSR

5.9.1 PSR RAW

5.9.2 PSR MERGE

5.9.3 PSR VERTICAL

5.9.4 PSR SZH

5.9.5 PSR SZV

5.9.6 PSR SZDR

5.9.7 PSR SZDR TEXT

5.9.8 PSR SRHOHV

5.9.9 PSR SPHIDP

5.9.10 PSR SPHIDP TEXT

5.9.11 PSR DSD

5.10 ARRAY PSR Datasets

5.10.1 PSR FILTER

5.10.2 PREPROC PSR

5.11 MONITORING Datasets

5.11.1 MONITORING

TODO -jgr-: just add a reference to latest Jordi documentation

Polarimetric data quality monitoring. The inputs can be dB(u)Z(c), ZDR(c), uPhiDP, PhiDP(c), RhoHV(c) and ISO0. The function performs 4 different monitoring routines: 1) monitoring of the phidp offset, 2) monitoring of the Zdr in moderate rain (expected 0.2 dB),

3) monitoring of the 80th quantile in rain (expected well above 0.98), 4) monitoring of the Zh bias by means of self-consistency in rain. The routines are user selectable. By default all the monitoring routines are performed. The ISO0 information is used in monitoring routines 2 to 4. By default no monitoring is performed if ISO0 information is missing but the user may select to allow missing ISO0 volumes. The ISO0 is then assumed to be at a fix height of 2000 m. The user-selectable parameters for this function are summarized in Table 31.

This process is intended to be performed off-line. It does not provide any output until all the volumes (Typically all the volumes generated in a day) have been processed. The output is a structure of type "MON" that contains general information of the volumes used (azimuth angles, elevation angles, range bins and range resolution), as well as the information for each polarimetric variable that has been processed (number of volumes used, time of each volume, space-time matrix with the data and number of samples and statistical parameters.

TODO: it seems that less parameters are now used. Correct? Which one is a good example as a config file? Checking now mals_mei_dataquality_prod

Parameter	Type	Description
IGNORE_MISSING_VOL	INT	Boolean $(0,1)$, default: 0. If set to 1, preprocessing is performed despite missing volumes.
MONPHIDP0	INT	Boolean (0,1), default: 1. If set to 1, Phidp offset monitoring is performed.
MONZDRBIAS	INT	Boolean (0,1), default: 1. If set to 1, monitoring of the Zdr in moderate rain is performed.
MONRHOAV	INT	Boolean (0,1), default: 1. If set to 1, monitoring of the RhoHV value in rain is performed.
MONZHBIAS	INT	Boolean $(0,1)$, default: 1. If set to 1, monitoring of the Zh bias is performed.
ALLOW_MISSING_ISO0	INT	Boolean (0,1), default 0. If set to 1, monitoring is performed even if ISO0 volumes are missing. The ISO0 height is assume to be 2000 m
ZDRBIAS0	FLOAT	Default: 0. ZDR bias. This parameter is used in the monitoring of Zdr when ZDRc is the input to uncorrect for any possible bias that has been previously corrected
ZDRBIAS0	FLOAT	Default: 0. Zh bias. This parameter is used in the monitoring of Zh bias when dBZc is the input to uncorrect for any possible bias that has been previously corrected

Table 31: Parameters of MONITORING (without the general parameters).

5.12 ARRAY VOL Datasets

5.12.1 PREPROCESSING

TODO: is this replaced by the "processing levels" somehow? Should check one by one the preprocessing here (IDL) to see the equivalent in pyrad -jgr- -fvj-

Pre-processing of the raw polarimetric data. The inputs can be dB(u)Z, dBZ(u)v, ZDR, (u)PhiDP, RhoHV, KDP, CDR and the auxiliary volumes SNRh (used in phidp processing), ISO0 (used in attenuation correction processing) and VIS (used for partial beam blockage correction).

The pre-processing performed is user selectable and can consist in clutter suppression, partial beam blocking correction, Zdr and Zh bias correction, kdp and phidp retrievals and/or

attenuation correction.

The output is an array of volumes that may contain some or all of these data types: dBZc, dBZvc, ZDRc, PhiDPc, KDPc, RhoHVc, CDRc, Ah or Adp, depending on the user selected processing and whether it has been successful¹. The output volumes are added to the raw volumes to be processed and can be used by other functions specifying for example: PROC:dBZc The user may decide not to issue any product for this data set. The parameters of PREPRO-CESSING are listed in Table 32.

IMPORTANT: This dataset must be processed right after the sanity volume and before any other data set so that the output volumes can be used by others.

Parameter	Type	Description
IGNORE_MISSING_VOL	INT	Boolean $(0,1)$, default: 0. If set to 1, preprocessing is performed despite missing volumes.
CLUTTERSUPPRESSION	INT	Boolean (0,1), default: 0. If set to 1, clutter suppression is performed.
VISIBILITYCORRECTION	INT	Boolean (0,1), default: 0. If set to 1, partial beam blockage correction is performed.
VISMIN	FLOAT	Possible values: 0 to 100. default: 0. Minimum visibility. Any range bin that has a lower visibility than this value will be set to -INF.
BIASCORRECTION	INT	Boolean (0,1), default: 0. If set to 1, dBZ and ZDR are corrected with the value specified by the user.
ZDRBIAS0	FLOAT	ZDR bias in dB
ZHBIAS0	FLOAT	dBZ bias in dBZ
DOKDPPHIDP	INT	Boolean (0,1). If set to 1, uPhiDP is processed to get PhiDP and KDP. If set, any parameter accepted by the ARRAY_VOL-PHIDP_KDP dataset, can be passed to define and tune the estimation methods (refer to Section 5.12.6).
ATTENUATIONENABLE	INT	Boolean (0,1). If set to 1, dBZ and ZDR are corrected for rain-induced attenuation. If set, any parameter accepted by the ARRAY_VOLATTENUATION dataset, can be passed to define and tune the methods (refer to Section 5.12.4).

Table 32: Parameters of PREPROCESSING (without the general parameters).

An example of application of PREPROCESSING, inside a product configuration file is the following one:

```
preprocessing STRUCT 9
TYPE STRING PREPROC
DATATYPE STRARR 6
dBZ
ZDR
RhoHV
PhiDP
KDP
```

¹Note the suffix -c- in processed data.

COSMO: ISOO

IGNORE_MISSING_VOLS INT 1
CLUTTERSUPPRESSION INT 1
DOKDPPHIDP INT 0
ATTENUATIONENABLE INT 1
ATTCORRMETHOD STRING zphi
BIASCORRECTION INT 1
ZDRBIASO FLOAT 0.2

5.12.2 **MEANZ**

TODO: outdated?

5.12.3 XVSC POSITION

TODO: outdated? or replaced by something with different name?

5.12.4 ATTENUATION

TODO: (1) checking the function in process_phase.py (function named process_attenuation.py) it seems that now only zphi can be used. Correct? (2) check if input parameters in table below are outdated. It seems so.

The parameters for this dataset are listed in Table 33.

Parameter	Type	Description
attcorrmethod	STRING	The attenuation estimation method. One of the following: selfcons, zphi, philinear
mu	FLOAT	Only for selfcons method. The assumed mu parameter of the gamma distribution
zhbias0	FLOAT	Only for selfcons method. The Zh bias to be corrected before applying the method
zdrbias0	FLOAT	Only for selfcons method. The Zdr bias to be corrected before applying the method
phiparammethod	STRING	Possible: MFranceX, MFranceC, MFranceS, RyzhkovX. Default MFranceX. Selects the parameters for attenuation correction

Table 33: Parameters of ATTENUATION.

5.12.5 HYDROCLASS

TODO: here now is replaced by semisupervised, right? How can i find proper parameters?

Hydrometeor classification performed with a selected method (among the available ones). Hydrometeor classification maps a set of volume inputs (radar-based or from external sources) into a discrete set of hydrometeor classes (indicated with integers). Each method has its own conventions.

This dataset is an array_volume because side products may be provided: for instance the uncertainty of classification, the second-likely hydrometeor class and so on.

5.12.6 PHIDP KDP

TODO: in general, does still hold the definition of ARRAY VOL dataset? TODO2:

this should be splitted in all the methods -jgr-. Need some support from -fvj- on how to find the accepted parameters with some certainty.

 K_{dp} and Φ_{dp} estimated from noisy Ψ_{dp} (Ψ_{dp} includes two unwanted components: (i) system noise, and (ii) differential phase shift upon backscattering δ_{hv}). Usually Φ_{dp} is estimated first, and then K_{dp} in series. Any combination of Φ_{dp} and K_{dp} methods can be used. This dataset expects a sanity volume. This ARRAY_VOL dataset is composed by the KDP volume (datatype 'KDP') and PHIDP volume (datatype 'PHIDP').

HERE HERE HERE

5.13 SUN MONITORING Datasets

5.13.1 SUN MONITORING

TODO: substituded by "sun hits", right?

5.14 XVSC Datasets

5.14.1 XVSC

TODO: is it outdated?

5.15 INTERCOMP Datasets

5.15.1 INTERCOMP

TODO: i found INTERCOMP in the function process_calib.py but still would like to find a way to understand all the parameters that are accepted through config file (similar question for other datasets/products). Could not find an example of this dataset in the config files.

Compares a polarimetric variable of a master radar with a slave radar. The data type can be any data type recognized by both radars. This dataset makes use of the list of collocated points obtained by XVSC_POSITION. The points used in the comparison are stored in a text file with the following information: time in format YYYYYMMDDhhmmss, elevation, range and azimuth indices of the master radar, polarimetric variable value of master radar, elevation, range and azimuth indices of slave radar, polarimetric variable value of slave radar. The list of parameters for this dataset can be seen in Table 34.

Parameter	Type	Description
RADAR	STRARR	list of radars that are compared to processed radar (Ex. D, MXPOL, etc.).
RADARRES	STRING	Radar resolution (H or L).
ScanList	STRARR	List of MXPOL radar scans where to look for data.

Table 34: Parameters of INTERCOMP.

5.15.2 INTERCOMP_TIME_AVG

TODO: add description (novelty with respect to IDL?)

5.16 HISTOGRAM Datasets

5.16.1 HISTOGRAM

TODO: does this still exist as dataset or is it a product?

$5.17\ \mathsf{COMPOSITE}_\mathsf{VOLUME}\ \mathsf{datasets}$

TODO: check how this would fit in the context of pyrad.

6 Products

For each dataset format several products can be generated. The following tables list the possible

products for each dataset format.

Name	Description	Reference
PPI IMAGE	PPI image of constant eleva-	Section 6.1.1
111_1111011	tion	Socion V.I.I
PPI MAP	PPI image on a map	TODO: describe it
PSEUDOPPI IMAGE	TODO: describe	TODO: describe it
PSEUDOPPI MAP	TODO: describe	TODO: describe it
RHI IMAGE	RHI image of constant az-	Section 6.1.4
	imuth	
RHI PROFILE	Averaged height profile	Section 6.1.5
PSEUDORHI IMAGE	TODO: describe	TODO: describe it
CAPPI_IMAGE	Constant altitude PPI image	Section 6.1.6
PLOT_ALONG_COORD	TODO: describe	TODO: describe it
BSCOPE_IMAGE	TODO: describe	TODO: describe it
TIME_RANGE	TODO: describe	TODO: describe it
HISTOGRAM	TODO: describe	TODO: describe it
QUANTILES	TODO: describe	TODO: describe it
FIELD_COVERAGE	TODO: describe	TODO: describe it
CDF	TODO: describe	TODO: describe it
SAVEVOL	Save the generated dataset	Section 6.1.10
0.4777.477	volume	TODO
SAVEALL	TODO: describe	TODO: describe it
SAVESTATE	Save the time of the pro-	Section 6.1.11
	cessed volume.	
	TODO: check -jgr- and -	
	fvj- all the products be-	
WCC04 IMACE	low, what to do.	0 4 610
WGS84_IMAGE	Image in WGS84 coordinates	Section 6.1.2
CH1903_IMAGE CAPPI ASCII	Image in Swiss coordinates XXX to be described	Section 6.1.3 Section 6.1.7
PLOT LINES	Plot values along a coordi-	Section 6.1.7 Section 6.1.8
I DO I TIMBO	nate, holding the other two	Decoroll 0.1.0
	fixed.	
CDF STAT	Cumulative distribution	Section 6.1.9
_~	function	5 5000011 01110
NETCDF CONV	Save data in netcdf file for-	Section 6.1.12
	mat	
MELTLAYER IMAGE	Azimuth-Height graphic in-	Section 6.1.13
	dicating the areas suspected	
	to belong to the melting	
	layer	
MELTLAYER_TS	Time series plot with the	Section 6.1.14
	evolution of the melting	
	layer.	
SAVE_DEM	Save a PPI in DEM format.	Section 6.1.15
RNGVSANG_IMAGE	Range versus angle image at	Section 6.1.16
	a particular elevation or az-	
	imuth.	
SAVESLICE_PPI_ASCII	XXX to be described	Section 6.1.17
CONST_RANGE_IMAGE	Make a azimuth elevation	Section 6.1.18
	plot at fixed range.	
CONTOUR_RANGE_IMAGE	make a contour plot (az-	Section 6.1.19
	imuth vs. elevation) at a	
	fixed range gate	
CONTOUR_RANGE_IMAGE_3D	make a contour plot (az-	Section 6.1.20
38	imuth vs. elevation) at a	
	fixed range gate	0
WRITE_BIN	Write bin values to a file.	Section 6.1.21

Name	Description	Reference
WRITE_SUN_HITS	TODO: describe	TODO
PLOT_SUN_HITS	TODO: does it replace psunhits be-	TODO
	low?	
WRITE_SUN_RETRIEVAL	TODO: describe	TODO
PLOT_SUN_RETRIEVAL	TODO: describe	TODO
PLOT_SUN_RETRIEVAL_TS	TODO: describe	TODO
	TODO: check what to do with the	
	IDL products below	
PSUNHITS_IMAGE	Creates a 2D plot where the x axis is the difference between azimuth position of the radar and the azimuth position of the sun, the y axis is the difference be- tween elevation position of the radar and elevation position of the sun and color coded us the estimated sun hits power	Section 6.2.1
PSUNRETRIEVAL_IMAGE	As above but with the retrieved sun power	Section 6.2.2
ZDRSUNHITS_IMAGE	As above but with the Zdr of the sun hits	Section 6.2.3
ZDRSUNRETRIEVAL_IMAGE	as above but with the retrieved Zdr of the sun	Section 6.2.4
SUNRETRIEVAL_TS	Plot a time series showing the evolution of a sun retrieval parameter	Section 6.2.5

Table 36: List of specific product types for dataset with SUN_HITS format. In addition to them, all the product types for dataset with VOL format can be applied.

Name	Description	Reference
	TODO: outdated? or re-	
	placed?	
POLAR_AZ_EL_IMAGE	A polar azimuth elevation plot	Section 6.3.1
DISTANCE_VS_AZIMUTH_IMAGE	Make a 2D "data" vs azimuth plot	Section 6.3.2
QUANTILE_STAT	Make "data" vs azimuth statistics	Section 6.3.3

Table 37: List of all possible product types for dataset with RAY format

Name	Description	Reference
PLOT_AND_WRITE_POINT	Plots a time series with the evo- lution of a variable at a particular point. Writes the same information in a file.	Section 6.4.2
PLOT_CUMULATIVE_POINT	Plots a time series with the accumulation in time of a variable at a particular point.	Section 6.4.3
COMPARE_POINT	Time series plot showing the evolution of a radar variable and a variable from another sensor placed at a particular point.	Section 6.4.4
COMPARE_CUMULATIVE_POINT	Time series plot showing the accumulated value of a radar variable and a variable from another sensor placed at a particular point.	Section 6.4.5
COMPARE_TIME_AVG	TODO	TODO
PLOT_AND_WRITE	Make a plot of a timeseries. And write the timeseries to a file.	Section 6.4.1

Table 38: List of all possible product types for dataset with TIMESERIES format

Name	Description	Reference
	TODO: is it still of interest? is it replaced	
	by QVP?	
TIME_ARRAY_IMAGE	Plot time-array plot (e.g. a time-height array).	Section 6.5.1
TIME ARRAY FILE	XXX to be described	Section 6.5.2

Table 39: List of all possible product types for dataset with TIMEARRAY format

Name	Description	Reference
	TODO: is it still of interest?	
TIME_ARRAY_IMAGE	Plot time-array plot (e.g. a time-height array).	Section 6.6.1
TIME_ARRAY_MAP	Plot time-array on a map	Section 6.6.2

Table 40: List of all possible product types for dataset with TIMEARRAY_ARRAY format

Name	Description	Reference
	TODO: now TRAJ and	
	TRAJ_ONLY are merged in	
	Pyrad, right?	
TRAJ_PLOT	Plot the range, elevation, azimuth of a	Section 6.7.1
	plane trajectory.	
$TRAJ_TEXT$	Write the range, elevation, azimuth of a	Section 6.7.2
	plane trajectory to a text file.	
TRAJ_ANTENNA	Plot the radar antenna movement.	Section 6.7.3
TRAJ_DX50_ANTENNA_HITS	Compare the DX50 antenna movement	Section 6.7.4
	with a plane trajectory. Possible hits	
	are listed.	

Table 41: List of all possible product types for dataset with TRAJ_ONLY format

Name	Description	Reference
	TODO: of interest?	
RHI_TRAJ	Overplot the trajectory over a RHI image with azimuth according to the planes azimuth angle.	Section 6.8.1
PPI_TRAJ	Overplot the trajectory over a PPI image with elevation according to the planes elevation angle.	Section 6.8.2

Table 42: List of all possible product types for dataset with TRAJ_VOL_COMPOSITE format

Name	Description	Reference
	TODO: of interest?	
SPECTRUM_IMAGE	Plot of a single spectrum	Section 6.9.1
VERTICAL_SPECTRUM_IMAGE	XXX to be described	Section 6.9.2
SINGLE_SPECTRUM_IMAGE	XXX to be described	Section 6.9.3
SAVE_PSR_VOLUME	XXX to be described	Section 6.9.4
SPEC_ALONG	Plot the spectrum along the range, along the azimuth or along an eleva- tion	Section 6.9.5
IQ_ALONG	Plot the IQ data along the range, along the azimuth or along an eleva- tion	Section 6.9.6

Table 43: List of all possible product types for dataset with PSR format

NT.	D : //	D. C
Name	Description	Reference
VOL_HISTOGRAM	TODO: describe	TODO: describe
PPI_HISTOGRAM	TODO: describe	TODO: describe
ANGULAR_DENSITY	TODO: describe	TODO: describe
VOL_TS	TODO: describe	TODO: describe
SAVEVOL	TODO: describe	TODO: describe
	TODO: check what to	
	do with legacy products below	
WRITE_PHIDP0	Writes the information of the monitoring of the differ- ential phase offset.	Section 6.10.1
WRITE_ZDRBIAS	Writes the information of the monitoring of the Zdr value in moderate rain.	Section 6.10.2
WRITE_RHOAV	Writes the information of the monitoring of the Rhohv in rain.	Section 6.10.3
WRITE_ZHBIAS	Writes the information of the monitoring of the reflec- tivity bias.	Section 6.10.4
PLOT_PHIDP0	Plots the differential phase offset as a function of azimuth for one elevation.	Section 6.10.5
PLOT_ZDRBIAS	Plots the Zdr in moderate rain as a function of az- imuth for one elevation.	Section 6.10.6
PLOT_ZHBIAS	Plots the Zh bias as a function of azimuth for one elevation.	Section 6.10.7
PLOT_PHIDP0_DAY_TS	Plots the instantaneous evolution of the differential phase offset.	Section 6.10.8
PLOT_ZDRBIAS_DAY_TS	Plots the instantaneous evolution of the Zdr in moderate rain.	Section 6.10.9
PLOT_RHOAV_DAY_TS	Plots the instantaneous evolution of the RhoHV in rain.	Section 6.10.10
PLOT_ZHBIAS_DAY_TS	Plots the instantaneous evolution of the Zh bias.	Section 6.10.11
PLOT_AND_WRITE_PHIDP0_TS	Plots the evolution on a daily basis of the phidp off- set. Writes the same infor- mation in a file	Section 6.10.12
PLOT_AND_WRITE_ZDRBIAS_TS	Plots the evolution on a daily basis of the Zdr in moderate rain. Writes the same information in a file	Section 6.10.13
PLOT_AND_WRITE_RHOAV_TS	Plots the evolution on a daily basis of the RhoHV in rain. Writes the same information in a file	Section 6.10.14
PLOT_AND_WRITE_ZHBIAS_TS 42	Plots the evolution on a daily basis of the Zh bias. Writes the same information in a file	Section 6.10.15

Table 44: List of all possible product types for dataset with MONITORING format

Name	Description TODO: Are XVSC substituted/merged by IN-TERCOMP format?	Reference
PLOT_INTERCOMP	scatter plot between the pairs of time-averaged reflec- tivity data at each (or all) elevations. Computation of various statistics	Section 6.11.1
PLOT_AND_WRITE_INTERCOMP_TS	Computes various statistics and plots the daily evolution of the median bias	Section 6.11.2

Table 45: List of all possible product types for dataset with XVSC format

Name	Description	Reference
PLOT_INTERCOMP	scatter plot between the pairs of polarimetric data	Section 6.12.1
	at each (or all) elevations. Computation of various	
	statistics	

Table 46: List of all possible product types for dataset with INTERCOMP format

Name	Description	Reference
	TODO: Are those merged in VOL?	
WRITE_2DHIST	writes a 2D histogram in a file	Section 6.13.1
PLOT_2DHIST	plots a 2D histogram	Section 6.13.2
WRITE_HIST	writes a 1D histogram in a file	Section 6.13.3
PLOT HIST	plots a 1D histogram	Section 6.13.4

Table 47: List of all possible product types for dataset with HISTOGRAM format

Name	Description	Reference
	TODO: what to do with them?	
PPI_RHI_IMAGE	Plot one PPI and up to 3 RHIs on the same image.	Section 6.14.1.
CELL_3D_IMAGE	Plot in 3D composite volume data inside a bound-	Section 6.14.2.
	ing box centered along a given RHI direction	
RADAR_3D_IMAGE	Plot in 3D composite volume data over a given	Section 6.14.3
	spatial domain	

Table 48: List of all possible product types for COMPOSITE_VOLUME datasets.

TODO: in Pyrad there are also: COLOCATED_GATES_PRODUCTS, QVP_PRODUCTS, GRID_PRODUCTS, COSMO_COORD_PRODUCTS. Clarify how those relate with the IDL framework.

TODO: uncomment the description of the products below here, when defined which ones to keep

6.1 VOL Products