Ex 1-1

2、假设亿是有理数 ,
$$6=\frac{P}{8}$$
 , $P,q\in N^*$, $(P,8)=1$

$$|S| B = \{(I- fin) \mid n \in N\} \text{ int } B = minB = \frac{1}{2}$$

$$\sup_{A \in A} B = 1$$

$$\max_{A \in A} fa$$

別好 $\forall \varepsilon' > 0$, $\exists x y_1 \in AB$, $\zeta = 1$. $x_1 y_1 < inf A \cdot inf B + \varepsilon'$ 那 $inf (AB) = inf A \cdot inf B$ 同程可得 $\sup (AB) = \sup A \cdot \sup B$

14. $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

ex. 1-2

2.
$$t(x) = 2(x-1)^2 - (x-1)+1 = 3x^2 - 5x + 4$$

 $g(x+\frac{1}{x}) = (x+\frac{1}{x})^2 - 2$ $g(x) = x^2 - 2$
 $t \circ g = t(g(x)) = 2g^2(x) - 5g(x) + 4 = 2x^4 - 13x^2 + 22$
 $g \circ t = g(t(x)) = t^2(x) - 2 = 4x^4 - 20x^3 + 26x^2 - 40x + 14$

b.
$$t(x) = \ln(\sqrt{x^{2}+1} + x)$$

 $t(-x) = \ln(\sqrt{x^{2}+1} - x) = \ln(\frac{1}{\sqrt{x^{2}+1} + x}) = -\ln(\sqrt{x^{2}+1} + x) = -t(x)$

$$\begin{cases} e^{y} = \sqrt{x^{2}+1} + x \\ e^{-y} = \sqrt{x^{2}+1} - x \end{cases} \Rightarrow x = \frac{e^{y} - e^{-y}}{2}$$

15. $y = \sin x$ $z = \tan x$ $\sin x < x < \tan x$