

Lab #2 - CPU Scheduling

Karl-Johan Grinnemo karl-johan.grinnemo@kau.se
Karlstad University — August 1, 2022

Preparations

Read Section 5.3, "Scheduling Algorithms", in the textbook (ninth and tenth edition).

Description

This lab aims at reinforcing the student's understanding of some common CPU scheduling algorithms: First-Come, First-Served (FCFS), Shortest-Job First (SJF), and Round Robin (RR). The students should implement a CPU-scheduling simulator, sched, that takes as input,

- the name of the employed scheduling algorithm: FCFS, SJF, or RR; and,
- if RR is employed, the time quantum, <time quantum>, in milliseconds.

The sched simulator computes:

- the waiting time and turnaround time for the respective process, and
- the average waiting time and average turnaround time.

The sched simulator should be implemented in C, C++, Java, or Python. Other programming languages might be possible to use, however, this needs to be discussed with the lab assistants.

A synopsis for the sched simulator is given below.

```
sched -f process information file> -a [FCFS | SJF | RR] [-q <time quantum>]
```

The -q option is only applicable when the RR scheduling algorithm is selected.

The format of a process information file is as follows:

```
<PID>,<arrival time>,<burst time><newline character>
...
<PID>,<arrival time>,<burst time><newline character>
```

Both <arrival time> and <burst time> are given in milliseconds; <PID> denotes the process identification.

As an example, consider a process information file, pif.txt, with five processes with PIDs: 1000, 1001, 1002, 1003, and 1004, arrival times: $0\,\text{ms}$, $5\,\text{ms}$, $5\,\text{ms}$, $5\,\text{ms}$, and $10\,\text{ms}$, and with burst times: $10\,\text{ms}$, $5\,\text{ms}$, $10\,\text{ms}$, $15\,\text{ms}$, and $5\,\text{ms}$:

```
File

pif.txt

1000,0,10

1001,5,5

1002,5,10

1003,5,15

1004,10,5
```

The sample output for the three possible scheduling algorithms is shown in the figures below.

```
| Terminal | Q | E | - D | Section | Compared to the state of the stat
```

Figure 1: Screenshot from a simulation of FCFS.

```
| Terminal | Q | E - 0 | Second | Contact | Co
```

Figure 2: Screenshot from a simulation of SJF.

Figure 3: Screenshot from a RR simulation with a time quantum of 5 ms.

Examination

The lab is graded as pass or failed. To pass, the students should demonstrate their CPU-scheduling simulator to a lab assistant.

End of Lab