Congratulations! You passed!

Grade received 97.50% To pass 80% or higher

Go to next item

Introduction to Deep Learning

Latest Submission Grade 97.5%

What does the analogy "AI is the new electricity" refer to?

1/1 point

- Through the "smart grid", Al is delivering a new wave of electricity.
- Al runs on computers and is thus powered by electricity, but it is letting computers do things not possible before.
- Al is powering personal devices in our homes and offices, similar to electricity.
- Similar to electricity starting about 100 years ago, AI is transforming multiple industries.

Yes. Al is transforming many fields from the car industry to agriculture to supply-chain...

Whici	Which of these are reasons for Deep Learning recently taking off? (Check the three options that apply.)		
_	Deep learning has resulted in significant improvements in important applications such as online advertising, speech recognition, and image recognition.		
\odot	Correct These were all examples discussed in lecture 3.		
☑ ∨	We have access to a lot more data.		
\odot	Correct Yes! The digitalization of our society has played a huge role in this.		
<u> </u>	Neural Networks are a brand new field.		
✓ ∨	We have access to a lot more computational power.		
\odot	Correct Yes! The development of hardware, perhaps especially GPU computing, has significantly improved deep learning algorithms' performance.		

2.

1/1 point

- It is faster to train on a big dataset than a small dataset.
- Recent progress in deep learning algorithms has allowed us to train good models faster (even without changing the CPU/GPU hardware).

Yes. For example, we discussed how switching from sigmoid to ReLU activation functions allows faster training.

Faster computation can help speed up how long a team takes to iterate to a good idea.

⊘ Correct

1/1 point

- False
- O True
 - (Correct

Yes. Finding the characteristics of a model is key to have good performance. Although experience can help, it requires multiple iterations to build a good model.

5. Which one of these plots represents a ReLU activation function?

1/1 point

O Figure 4:

Figure 3:

6.	Images for cat recognition is an example of "structured" data, because it is represented as a structured array in a computer, True/False?	1/1 point
	O True	
	● False	
	Correct Yes. Images for cat recognition is an example of "unstructured" data.	
7.	A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "unstructured" data because it contains data coming from different sources, True/False?	1/1 point
	False	
	O True	
	Correct A demographic dataset with statistics on different cities' population, GDP per capita, economic growth is an example of "structured" data by opposition to image, audio or text datasets,	
Ē.	Why is an RNN (Recurrent Neural Network) used for machine translation, say translating English to French? (Check all that apply.)	0.75 / 1 point
	It is applicable when the input/output is a sequence (e.g., a sequence of words).	
	Correct Yes. An RNN can map from a sequence of english words to a sequence of french words.	
	It can be trained as a supervised learning problem.	
	Correct Yes. We can train it on many pairs of sentences x (English) and y (French).	
	RNNs represent the recurrent process of Idea->Code->Experiment->Idea->	
	This should not be selected No. RNNs are a model type. The iterative process of developing DL systems is a completely separate concept.	
	It is strictly more powerful than a Convolutional Neural Network (CNN).	

g. In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?

- x-axis is the input to the algorithm
 - y-axis is outputs.
- O . x-axis is the amount of data
 - y-axis is the size of the model you train.
- x-axis is the performance of the algorithm
 - y-axis (vertical axis) is the amount of data.
- x-axis is the amount of data
 - y-axis (vertical axis) is the performance of the algorithm.
 - Correct
- 10. Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.)

1/1 point

- Increasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.
 - Correct
 Yes. Bringing more data to a model is almost always beneficial.
- Decreasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.
- Decreasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.
- Increasing the size of a neural network generally does not hurt an algorithm's performance, and it may help-significantly.