Зміст

1	Основні поняття теорії графів		
	1.1	Графи	3
Література			4

1 Основні поняття теорії графів

Теорія графів є одніє ю з центральних тем дискретної математики, яка дивовижним чином поє днує практику з теоріє ю, наочність та заплутаність методів, історію і сучасність. Її застосування особливо помітне в теоріях інформатики та комунікацій, плануванні доріг та бізнес процесів тощо. Будучи по суті звичайними множинами із визначеними бінарними відношеннями, графи дозволяють моделювати процеси будь-якої складності. Разом із простотою графи є надзвичайно зручні для візуального представлення, а тому часто дозволяють людині візуально розв'язавши задачу, формалізувати отриманий результат у зручному для подальшої обробки мові.

1.1 Графи

Граф (ненаправлений) G=(V,E) складає ться із скінченної множини вершин V і множини $E\subseteq \binom{V}{2}$ пар $\{u,v\},\,u\neq v,$ які носять назву ребра. Зазвичай ребро $\{u,v\}$ позначають просто як $uv\in E$.

Дя графа $G = (V, E), u, v \in V$ використовують наступну термінологію:

- Якщо $uv \in E$, то кажуть, що u та v суміжні
- Ребро $uu \in E$ називає ться петлею
- Якщо $u \in V, k \in E$ і $u \in k$, то u і k називають інцидентними, а u кінцем k
- Ребра $k,l\in E$ називають інцидентними, якщо вони мають спільний кінець, тобто $k\cap l\neq\emptyset$
- Множину сусідів $u \in V$ позначають N(u)
- Вершина u, для якої виконує тьсяleq(u) = 0 ізольована
- Вершини та ребра графа також називають його елементами
- ullet Число вершин |V| порядок графа
- Число ребер |E| розмір графа

Граф H(V',E'), у якого $V'\subseteq V$ та $E'\subseteq E$ називає ться підграфом графа G(V,E). Якщо $\exists u\exists v: |\{u,v\}|>1, u,v\in V$, тобто між двома вершинами існує більше одного ребра, то такий граф називають мультиграфом. Якщо мультиграф має петлі, тобто $\exists u\in V: uu\in E$, то такий граф ще називають псевдографом.

Датково вирізняють такі важливі графи:

- 1. |V|=n $E={V\choose 2}$ (всі вершини з'є днані ребрами) повний граф $K_n=(V,E)$
- 2. Граф G=(L+R,E) називають дводольним, якщо V складає ться з двох множин L і R, що не перетинаються, тобто $L\cap R=\emptyset$ і кожне ребро складає ться з вершин, одна з яких належитьL, а друга R. Якщо ж між усіма вершинами L і R існують всі ребра, то такий граф називають повним дводольним $K_{L,R}$, або $K_{m,n}$, якщо |L|=m,|R|=n.
- 3. Узагальненням повного дводольного ϵ повнийk-дольний граф $K_{n_1,...,n_k}$ у якого:
 - $V = V_1 + \ldots + V_k$ та $V_i \cap V_j = \emptyset$ для всіх $i \neq j$
 - $|E_i| = n_i (i = 1, ..., k)$
 - $E = \{uv : xu \in E_i, v \in E_j, i \neq j\}$
- 4. Гіперкубом Q_n називає ться граф, вершинами якого є всі послідовності 0,1 довжини n, тобто $|E|=2^n$. Між усіма вершинами u та v існують ребра, якщо послідовності 0,1 цих вершин відрізняються тільки у одному місці.

$$P_n u_1, u_2, \ldots, u_n$$

Література