Lecture Notes 3

Oskar Idland

Operators

Hermitian Conjugate

Definition:

$$\langle v | \hat{K}^{\dagger} | u \rangle = \langle u | \hat{K} | v \rangle^*$$

Discrete basis

$$\underbrace{\langle n | \hat{K}^{\dagger} | m \rangle}_{K_{nm}^{\dagger}} = \underbrace{\langle m | \hat{K} | n \rangle^{*}}_{K_{mn}^{*}}$$

$$K^{\dagger} = K^{*T} = K \to K_{nm}^{\dagger} = K_{mn}^{*} = K_{nm} \to K_{nn} \in \mathbb{R}$$

$$\text{when } n \neq m : K_{nm} = K_{mn}^{*} = K_{nm}^{\dagger}$$

Spectrum of an Operator

Definition: The spectrum of an operator \hat{K} is the set of all eigenvalues of \hat{K} . Two or more linearly independent eigenvectors $|\lambda_i\rangle$ have the same eigenvalue λ , the spectrum is said to be degenerate. We can always choose the eigenvectors to be orthonormal. If there are g states $|\lambda_i\rangle$ with eigenvalue λ , then the level degeneracy is g.

Hermitian Operators

Properties

- Eigenvalues are real
- Different eigenvalues correspond to orthogonal eigenvectors
- Eigenvectors with the same eigenvalues can be chosen to be orthogonal
- The eigenkets from a complete set of basis vectors for a finite dimensional Hilbert space.

Proof of Eigenvectors Creating a Liner Compination which is also an Eigenvector

$$\hat{K}\alpha |\lambda_1\rangle = \lambda_1 \alpha |\lambda_1\rangle \quad \hat{K}\beta |\lambda_2\rangle = \lambda_2 \beta |\lambda_2\rangle$$
$$\hat{K}(\alpha |\lambda_1\rangle + \beta |\lambda_2\rangle) = \lambda(\alpha |\lambda_1\rangle + \beta |\lambda_2\rangle)$$

Spectral Representation of Operators

Definition: The spectral representation of an operator \hat{K} in its basis of its eigenkets.

$$\langle \lambda_i | \hat{K} | \lambda_j \rangle = \langle \lambda_i | \lambda_j \rangle \lambda_j = \delta_{ij} \lambda_j$$

This shows that the matrix elements of a Hermitian operator in its eigenket basis are on the diagonal.

$$\hat{K} \simeq \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

We guess that (this is the spectral representation)

$$\hat{K} = \sum_{r} \lambda_r \left| \lambda_r \right\rangle \left\langle \lambda_r \right|$$

$$\left\langle \lambda_{i}\right|\hat{K}\left|\lambda_{j}\right\rangle =\left\langle \lambda_{i}\right|\sum_{r}\left|\lambda_{r}\right\rangle \left\langle \lambda_{r}\right|\lambda_{j}\right\rangle =\sum_{r}\lambda_{r}\left\langle \lambda_{i}\right|\lambda_{j}\right\rangle \left\langle \lambda_{r}\right|\lambda_{j}\right\rangle$$

r must be equal to both i and j for the sum to be non-zero.

$$\lambda_j \delta_{ij}$$

Physical Meaning

Eigenvalues: Measurement value λ

Eigenket: State on which a measurement of the quantity represented by \hat{K} , gives the value λ with certainty.