CHAPTER - 2 RELATIONAL MODEL

Prof. Kashyap Patel

Assistant Professor

DEPSTAR - CE

Outline:

- Structure of Relational Databases
- Database Schema
- Schema Diagram
- Domains
- Relations
- Relational Query Languages
- Relational Operations

Introduction:

- The relational model is today the primary data model for commercial data processing applications.
- It attained its primary position because of its simplicity, which eases the job of the programmer, compared to earlier data models such as the network model or the hierarchical model.

Structure of Relational Databases:

- A relational database consists of a collection of tables, each of which is assigned a unique name.
- The relational model the term relation
 is used to refer to a table, while the term
 tuple is used to refer to a row. Similarly,
 the term attribute refers to a column
 of a table.

	M			attributes (or columns)
ID	name	dept_name	salary]
10101	Srinivasan	Comp. Sci.	65000	
12121	Wu	Finance	90000	tuples .
15151	Mozart	Music	40000	(or rows)
22222	Einstein	Physics	95000	 *
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000]

course_id	title	dept_name	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199		Music	3
PHY-101	Physical Principles	Physics	4

instructor

course

course_id	prereq_id
BIO-301	BIO-101
BIO-399	BIO-101
CS-190	CS-101
CS-315	CS-101
CS-319	CS-101
CS-347	CS-101
EE-181	PHY-101

prerequisite courses

Structure of Relational Databases:

- The set of allowed values for each attribute is called the **domain** of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- The special value **null** is a member of every domain. Indicated that the value is "unknown"
- The null value causes complications in the definition of many operations

Database Schema:

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema

Example:

instructor = (ID, name, dept_name, salary)

- Formally, given sets $D_1, D_2, ..., D_n$ a **relation** r is a subset of $D_1 \times D_2 \times ... \times D_n$ Thus, a relation is a set of n-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \in D_i$
- The current values (relation instance) of a relation are specified by a table
- An element of is a tuple, represented by a row in a table

Database Schema:

dept_name	building	budget
Biology	Watson	90000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	80000
Physics	Watson	70000

The department relation

department (dept name, building, budget)

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

The *teaches* relation

teaches (ID, course id, sec id, semester, year)

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	H
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

The section relation

section (course id, sec id, semester, year, building, room number, time slot id)

Keys:

- Keys play an important role in the relational database.
- It is used to uniquely identify any record or row of data from the table. It is also used to establish and identify relationships between tables.
- Types of keys:
- I. Primary key
- 2. Candidate key
- 3. Super Key
- 4. Foreign key

Primary Key:

- It is the first key used to identify one and only one instance of an entity uniquely. An entity can contain multiple keys, as we saw in the PERSON table. The key which is most suitable from those lists becomes a primary key.
- In the EMPLOYEE table, ID can be the primary key since it is unique for each employee. In the EMPLOYEE table, we can even select License_Number and Passport_Number as primary keys since they are also unique.
- For each entity, the primary key selection is based on requirements and developers.

Candidate Key:

- A candidate key is an attribute or set of attributes that can uniquely identify a tuple.
- Except for the primary key, the remaining attributes are considered a candidate key. The candidate keys are as strong as the primary key.
- For example: In the EMPLOYEE table, id is best suited for the primary key. The rest of the attributes, like SSN, Passport_Number, License_Number, etc., are considered a candidate key.

Super Key

- Super key is an attribute set that can uniquely identify a tuple. A super key is a superset of a candidate key.
- For example: In the above EMPLOYEE table, for (EMPLOEE_ID, EMPLOYEE_NAME), the name of two employees can be the same, but their EMPLYEE_ID can't be the same. Hence, this combination can also be a key.
- The super key would be EMPLOYEE-ID (EMPLOYEE_ID, EMPLOYEE-NAME), etc.

Foreign Key:

- Foreign keys are the column of the table used to point to the primary key of another table.
- Every employee works in a specific department in a company, and employee and department are two different entities. So we can't store the department's information in the employee table. That's why we link these two tables through the primary key of one table.
- We add the primary key of the DEPARTMENT table, Department_Id, as a new attribute in the EMPLOYEE table.
- In the EMPLOYEE table, Department_Id is the foreign key, and both the tables are related.

Schema Diagrams:

Relational Query Languages:

- A query language is a language in which a user requests information from the database.
- In a **procedural language**, the user instructs the system to perform a sequence of operations on the database to compute the desired result.
- In a **nonprocedural language**, the user describes the desired information without giving a specific procedure for obtaining that information.

Relational Operations:

- Select Operation selection of rows (tuples)
- Relation r

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

• $\sigma_{A=B \land D > 5}(r)$

A	В	C	D
α	α	1	7
β	β	23	10

Project Operation – Selection of Columns (Attributes):

• Relation *r*:

• $\prod_{A,C} (r)$

Union of Two Relations:

Set Difference of Two Relations:

• Relations *r*, *s*:

 \bullet r-s

Set Intersection of Two Relations:

• Note: $r \cap s = r - (r - s)$

Joining Two Relations: Cartesian-Product

• Relations *r*, *s*:

A	В		C	D	Ε
α	1		α	10	a
β	2		β	10	a
1	1	•	β	20	b
			γ	10	b
				s	

• r x s:

A	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product – Naming Issue

• Relations *r*, *s*:

 A B
 B D E

 α 1
 α 10 a

 β 2
 β 10 a

 β 20 b
 γ 10 b

• r x s:

A	r.B	s.B	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Renaming a Table:

• Allows us to refer to a relation, (say E) by more than one name.

$$\rho_{x}(E)$$

returns the expression E under the name X

Relations r

\boldsymbol{A}	В
α	1
β	2
7	,

• $r \times \rho_s(r)$

r.A	r.B	s.A	s.B
α	1	α	1
α	1	β	2
β	2	α	1
β	2	β	2

Composition of Operations:

- Can build expressions using multiple operations
- Example: $\sigma_{A=C}(r \times s)$

• rxs

\boldsymbol{A}	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
ß	2	α	10	a
ß	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

• $\sigma_{A=C}(r \times s)$

A	В	C	D	Ε
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Natural Join:

• Relations r, s:

\boldsymbol{A}	В	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b

В	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	3
	s	

r⊠s

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

$$\bigcap_{A, r.B, C, r.D, E} (\sigma_{r.B = s.B \land r.D = s.D} (r \times s)))$$

Summary of Relational Algebra Operators:

Symbol (Name)	Example of Use
σ	$\sigma_{\text{salary}>=85000}(instructor)$
(Selection)	Return rows of the input relation that satisfy
	the predicate.
П	$\Pi_{ID,salary}(instructor)$
(Projection)	Output specified attributes from all rows of
236 11000 111 13	the input relation. Remove duplicate tuples
	from the output.
M	$instructor \bowtie department$
(Natural join)	Output pairs of rows from the two input rela-
100	tions that have the same value on all attributes
	that have the same name.
×	$instructor \times department$
(Cartesian product)	Output all pairs of rows from the two input
A1526 19994 153	relations (regardless of whether or not they
	have the same values on common attributes)
U	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$
(Union)	Output the union of tuples from the two input
	relations.

Thank You