Mechanism Design (Inverse Game Theory)

The objectives / desired outcomes are set - task is to set the rules of the game

E.g., Election, license scarce resource (spectrum, cloud), matching students to universities

General model:

N: set of players

X: set of outcomes, e.g., winner in an election, Which resource allocated to Whom etc.

 Θ_i : set of private information of agent i (type). A type $\theta_i \in \Theta_i$

The type may manifest in the preferences over the outcomes in different ways

- 1) Ordinal: θ_i defines an ordering over the outcomes
- (2) Cardinal: an utility function u_i maps an (outcome, type) pair to real numbers, $u_i: X \times \Theta_i \to \mathbb{R}$ (private value model) or $u_i: X \times \Theta \to \mathbb{R}$ (interdependent value model)

Examples: Voting: X is The set of candidates θ_i is a ranking over this candidates, e.g., $\theta_i = (a, b, c)$, i.e.,

a is more preferred than b which in turn is more preferred than c.

Single object allocation: an outcome is $x = (\underline{a}, \underline{+}) \in X$ $\underline{a} = (a_1, a_2, \dots, a_n), \ a_i \in \{0,1\}, \ \overline{\geq} \ a_i \leq 1, \ \text{allocations}$ $\underline{b} = (\underline{+}_1, \underline{+}_2, \dots, \underline{+}_n), \ \underline{b}_i \text{ is The payment charged to i}$ $\underline{\theta}_i : \text{value of i for the object}$ $\underline{u}_i(x, \underline{\theta}_i) = \underline{a}_i \, \underline{\theta}_i - \underline{b}_i \cdot \underline{a}_i$

But The designer has an objective

This is captured through a Social Choice Function (SCF)

$$f: \Theta_1 \times \Theta_2 \times \cdots \times \Theta_m \rightarrow \times$$

E.g., in voting, if there is a candidate who beats everyone also in pairwise contests must be chosen as a winner.

in public project choice, where $\theta_i:X\to\mathbb{R}$, value for each project pick $f(\theta)\in \operatorname{argmax}\sum_{i\in\mathbb{N}}\theta_i(a)$. $a\in X$

Q: How can we create a game where $f(\theta)$ emerges as an outcome of an equilibrium?

A: we need mechanisms.

Defn. An (indirect) mechanism is a collection of message spaces and a decision rule $\langle M_1, M_2, ..., M_n, g \rangle$

- · Mi is The message space of agent i
- · g: M, ×M2×···× Mn ->×

A direct mechanism is same as above with $M_i = \bigcirc_i$, $\forall i \in \mathbb{N}, g \equiv f$.

Q: Why these are not so commonplace?

A: due to a result | Kat will follow.

Defn. In a mechanism $\langle M_1,...,M_n,g \rangle$, a message m_i is weakly dominant for player i at θ_i if $u_i(g(m_i,\widetilde{m}_i),\theta_i)$ $u_i(g(m_i',\widetilde{m}_i),\theta_i)$, $\forall m_i'$

[all subsequent definitions assume cardinal preferences, however they can be replaced with ordinal, e.g., the above one could be defined as

 $g(m_i, \widetilde{m}_i)$ θ_i $g(m_i', \widetilde{m}_i)$ $\forall m_i', \forall \widetilde{m}_i$]

This outcome is preferred at least as much as the latter

Defn. An SCF $f: \Theta \to X$ is implemented in dominant strategies by $(M_1, ..., M_n, g)$ if

∃ message mappings S_i: Θ_i → M_i, A. t., S_i(θ_i) is a dominant strategy for agent i at θ_i, ∀ θ_i∈ Θ_i, ∀ i∈N, and
 g (S_i(θ_i),..., S_n(θ_n)) = f(θ), ∀ θ∈ Θ.

We call this an indirect implementation, i.e., SCF f is dominant strategy implementable (DSI) by $\langle M_1,...,M_n,g \rangle$.

Defn. A direct mechanism $(\Theta_1,...,\Theta_n,f)$ is dominant strategy incentive compatible (DSIC) if

 $u_{i}(f(\theta_{i}, \widetilde{\underline{\theta}}_{i}), \theta_{i}) \geqslant u_{i}(f(\theta_{i}', \widetilde{\underline{\theta}}_{i}), \theta_{i}), \forall \theta_{i}, \theta_{i}', \widetilde{\underline{\theta}}_{i}'$

To find if an SCF f is dominant strategy implementable, we need to search over all possible indirect mechanisms $\{M_1, ..., M_n, g\}$ But luckily, There is a result that reduces The search space.