	*Background In project, let's explore a few classifications metrics in Python's scikit-learn and write our own functions from scratch to understand the math behind a few of them. One major area of predictive modeling in data science is classification.
	Classification consists of trying to predict which class a particular sample from a population comes from. For example, if we are trying to predict if a particular patient will be rehospitalized, the two possible classes are hospital (positive) and not-hospitalized (negative). The classification model then tries to predict if each patient will be hospitalized or not hospitalized. In other words, classification is simply trying to predict which bucket (predicted positive vs predicted negative) a particular sample from the population should be placed as seen below. As we train our classification predictive model, we will want to assess how good it is. Interestingly, there are many different ways to evaluate the performance. Most data scientists that use Python for predictive modeling use the Python package called scikit-learn. Scikit-learn contains many built-in functions for analyzing the performance of models.
	This project will cover the following metrics functions from sklearn.metrics: - confusion_matrix - accuracy_score - recall_score
	- precision_score - f1_score - roc_curve - roc_auc_score
	*Objective Explore a few classifications metrics in Python's scikit-learn and write our own functions from scratch (assuming a two-class classification) to understand the math behind a few of them. *Data Source
In [85]:	We will be a using a dummy data provided by the professor. This dataset has has the actual labels (actual_label) and the prediction probabilities for two models (model_RF and model_LR), where the probabilities are the probability of being class 1.
<pre>In [86]: Out[86]:</pre>	<pre>df = pd.read_csv('data.csv') df.head()</pre>
In [87]:	1 0 0.490993 0.414496 2 1 0.623815 0.569883 3 1 0.506616 0.443674 4 0 0.418302 0.369532 # Define a threshold to define which prediction probabilities are labeled as predicted positive vs predicted negative
Out[87]:	<pre>thresh = 0.5 # For now let's assume the threshold is 0.5 & let's add 2 additional columns that convert the probabilities to predicted labels df['predicted_RF'] = (df.model_RF >= 0.5).astype('int') df['predicted_LR'] = (df.model_LR >= 0.5).astype('int') df.head() actual_label_model_RF_model_LR_predicted_RF_predicted_LR</pre>
Out[87]:	actual_label model_ER predicted_ER 0 1 0.639816 0.531904 1 1 1 0 0.490993 0.414496 0 0 2 1 0.623815 0.569883 1 1 3 1 0.506616 0.443674 1 0 4 0 0.418302 0.369532 0 0
In [88]:	Confusion Matrix # Load confusion matrix table for visualization !pip install pillow from PIL import Image import matplotlib.pyplot as plt
	image = Image.open('C:/Users/Harvey/Documents/Harvey/Personal/DS Personal Projects/Data Science Classification Metrics in Sci-kit Learn/conf_matrix plt.imshow(image) plt.axis('off') # hide axis plt.show() Requirement already satisfied: pillow in c:\users\harvey\anaconda3\lib\site-packages (9.4.0) Confusion Matrix Predicted Predicted
	Negative Positive Actual Negative True Negative False Positive Positive False Negative True Positive Given an actual label and a predicted label, the first thing to do is divide the samples in 4 buckets:
	- True positive - actual = 1, predicted = 1 - False positive - actual = 1, predicted = 0 - False negative - actual = 0, predicted = 1 - True negative - actual = 0, predicted = 0
In [89]: Out[89]:	# Get the confusion matrix (as a 2x2 array) from scikit learn, which takes as inputs the actual labels and the predicted labels from sklearn.metrics import confusion_matrix confusion_matrix(df.actual_label.values, df.predicted_RF.values) array([[5519, 2360],
In [90]:	<pre># Verify confusion_matrix and print def find_TP(y_true, y_pred): # Count the number of true positives (y_true = 1, y_pred = 1) return sum((y_true == 1) & (y_pred == 1)) def find_FN(y_true, y_pred): # Count the number of false negatives (y_true = 1, y_pred = 0) return sum((y_true == 1) & (y_pred == 0))</pre>
	<pre>def find_FP(y_true, y_pred): # Count the number of false positives (y_true = 0, y_pred = 1) return sum((y_true == 0) & (y_pred == 1)) def find_TN(y_true, y_pred): # Count the number of true negatives (y_true = 0, y_pred = 0) return sum((y_true == 0) & (y_pred == 0)) print('TP:', find_TP(df.actual_label.values, df.predicted_RF.values)) print('FN:', find_FN(df.actual_label.values, df.predicted_RF.values)) print('FP:', find_FP(df.actual_label.values, df.predicted_RF.values))</pre>
In [91]:	print('TN:', find_TN(df.actual_label.values, df.predicted_RF.values)) TP: 5047 FN: 2832 FP: 2360 TN: 5519 # Calculate all 4 buckets (TP, FN, FP, TN)
	<pre>import numpy as np def find_conf_matrix_values(y_true,y_pred): # Calculate TP, FN, FP, TN TP = find_TP(y_true,y_pred) FN = find_FN(y_true,y_pred) FP = find_FP(y_true,y_pred) TN = find_TN(y_true,y_pred) return TP,FN,FP,TN</pre>
In [92]: Out[92]:	<pre># Duplicate confusion_matrix def my_confusion_matrix(y_true, y_pred): TP,FN,FP,TN = find_conf_matrix_values(y_true,y_pred) return np.array([[TN,FP],[FN,TP]]) my_confusion_matrix(df.actual_label.values, df.predicted_RF.values) array([[5519, 2360],</pre>
	# Verify that the functions worked using Python's built in assert function and numpy's array_equal functions assert np.array_equal(my_confusion_matrix(df.actual_label.values, df.predicted_RF.values),\
	# Load accuracy image for visualization !pip install pillow from PIL import Image import matplotlib.pyplot as plt image = Image.open('C:/Users/Harvey/Documents/Harvey/Personal/DS Personal Projects/Data Science Classification Metrics in Sci-kit Learn/accuracy.pn plt.imshow(image)
	<pre>plt.axis('off') # hide axis plt.show() Requirement already satisfied: pillow in c:\users\harvey\anaconda3\lib\site-packages (9.4.0)</pre> Accuracy = TP+TN = TP+TN = TP+TN
Tn [400	TP + TN + FP + FN correctly This is the most common metric for classification is accuracy, which is the fraction of samples predicted correctly as shown above.
Out [102] # Duplicate	# Obtain the accuracy score from scikit learn, which takes as inputs the actual labels and the predicted labels from sklearn.metrics import accuracy_score accuracy_score(df.actual_label.values, df.predicted_RF.values) 0.6705165630156111 accuracy_score def my_accuracy_score(y_true, y_pred): # Calculate the fraction of samples predicted correctly TP,FN,FP,TN = find_conf_matrix_values(y_true,y_pred) return N,FP],[FN,TP]]) my_accuracy_score(df.actual_label.values, df.predicted_RF.values)
In [99]:	<pre># Calculate the accuracy score def my_accuracy_score(y_true, y_pred): # Calculate the number of correctly predicted samples correct_predictions = np.sum(y_true == y_pred) # Calculate the total number of samples total_samples = len(y_true)</pre>
In [104	# Calculate the accuracy score accuracy = correct_predictions / total_samples return accuracy # Verify that the functions worked using Python's built in assert function assert my_accuracy_score(df.actual_label.values, df.predicted_RF.values) == accuracy_score(df.actual_label.values, df.predicted_RF.values), 'my_accuracy_score(df.actual_label.values, df.predicted_LR.values) == accuracy_score(df.actual_label.values, df.predicted_LR.values) == accuracy_score(df.actual_label.values, df.predicted_LR.values), 'my_accuracy_score(df.actual_label.values, df.predicted_LR.values) == accuracy_score(df.actual_label.values, df.predicted_LR.values), 'my_accuracy_score(df.actual_label.values, df.predicted_LR.values), 'my_accuracy_score(df.actual_label.value
	print('Accuracy RF: %.3f'%(my_accuracy_score(df.actual_label.values, df.predicted_RF.values))) print('Accuracy LR: %.3f'%(my_accuracy_score(df.actual_label.values, df.predicted_LR.values))) Accuracy RF: 0.671 Accuracy LR: 0.616 Using accuracy as a performance metric, the RF model is more accurate than the LR model. We stop here and say RF model is the best model? No! Accuracy is not always the best metric to use to assess classification models. For example, let's say that we are trying to predict hat only happens 1 out of 100 times. We could build a model that gets 99% accuracy by saying the event never happened. However, we catch 0% of the events we care about. The 0%
measure he	Recall Score / Sensitivity # Load recall image for visualization !pip install pillow from PIL import Image
	<pre>import matplotlib.pyplot as plt image = Image.open('C:/Users/Harvey/Documents/Harvey/Personal/DS Personal Projects/Data Science Classification Metrics in Sci-kit Learn/recall.png' plt.imshow(image) plt.axis('off') # hide axis plt.show() Requirement already satisfied: pillow in c:\users\harvey\anaconda3\lib\site-packages (9.4.0)</pre>
	Recall = TP = (Sensitivity) TP + FN
	Fraction of positives predicted correctly Recall (also known as sensitivity) is the fraction of positives events that you predicted correctly as shown above.
Out[50]:	# Obtain the accuracy score from scikit-learn, which takes as inputs the actual labels and the predicted labels from sklearn.metrics import recall_score recall_score(df.actual_label.values, df.predicted_RF.values) 0.6405635232897576 recall_score def my_recall_score(y_true, y_pred): # Calculate the fraction of positive samples predicted correctly TP,FN,FP,TN = find_conf_matrix_values(y_true,y_pred) return N,FP],[FN,TP]]) my_recall_score(df.actual_label.values, df.predicted_RF.values)
In [105	<pre># Calculate recall score def my_recall_score(y_true, y_pred): # Calculate the number of true positive and false negative predictions TP = np.sum((y_true == 1) & (y_pred == 1)) FN = np.sum((y_true == 1) & (y_pred == 0)) # Calculate the recall score recall = TP / (TP + FN)</pre>
In [109	<pre># Verify that the functions worked using Python's built in assert function assert my_recall_score(df.actual_label.values, df.predicted_RF.values) == recall_score(df.actual_label.values, df.predicted_RF.values), 'my_recall_ assert my_recall_score(df.actual_label.values, df.predicted_LR.values) == recall_score(df.actual_label.values, df.predicted_LR.values), 'my_recall_ print('Recall RF: %.3f'%(my_recall_score(df.actual_label.values, df.predicted_RF.values)))</pre>
	print('Recall LR: %.3f'%(my_recall_score(df.actual_label.values, df.predicted_LR.values))) Recall RF: 0.641 Recall LR: 0.543 One method to boost the recall is to increase the number of samples that we define as predicted positive by lowering the threshold for predicted positive. Unfortunately, this will also increase the number of false positives. Another performance metric called precision takes this into account.
In [56]:	# Load recall image for visualization !pip install pillow from PIL import Image import matplotlib.pyplot as plt image = Image.open('C:/Users/Harvey/Documents/Harvey/Personal/DS Personal Projects/Data Science Classification Metrics in Sci-kit Learn/precision.pplt.imshow(image)
	<pre>plt.axis('off') # hide axis plt.show() Requirement already satisfied: pillow in c:\users\harvey\anaconda3\lib\site-packages (9.4.0)</pre> <pre>TP</pre>
	Precision = TP + FP Fraction of predicted positives that are actually positive
In [57]:	Precision is the fraction of predicted positives events that are actually positive as shown above # Obtain the accuracy score from scikit-learn, which takes as inputs the actual labels and the predicted labels from sklearn.metrics import precision_score precision_score(df.actual_label.values, df.predicted_RF.values)
find_conf_m	<pre>0.681382476036182 precision_score def my_precision_score(y_true, y_pred): # Calculate the fraction of predicted positives samples that are actually positive TP,FN,FP,TN = natrix_values(y_true,y_pred) return np.array([[TN,FP],[FN,TP]]) my_precision_score(df.actual_label.values, df.predicted_RF.values) # Calculate precision score def my_precision_score(y_true, y_pred): # Calculate the number of true positive and false positive predictions TP = np.sum((y_true == 1) & (y_pred == 1))</pre>
In [108	<pre>FP = np.sum((y_true == 0) & (y_pred == 1)) # Calculate the precision score precision = TP / (TP + FP) return precision # Verify that the functions worked using Python's built in assert function</pre>
	<pre>assert my_precision_score(df.actual_label.values, df.predicted_RF.values) == precision_score(df.actual_label.values, df.predicted_RF.values), 'my_p assert my_precision_score(df.actual_label.values, df.predicted_LR.values) == precision_score(df.actual_label.values, df.predicted_LR.values), 'my_p print('Precision RF: %.3f'%(my_precision_score(df.actual_label.values, df.predicted_RF.values))) print('Precision LR: %.3f'%(my_precision_score(df.actual_label.values, df.predicted_LR.values))) Precision RF: 0.681 Precision LR: 0.636</pre> In this case, it looks like RF model is better at both recall and precision.
	But what if one model was better at recall and the other was better at precision. Another method to use is called the F1 score. F1 Score
In [61]:	<pre># Load recall image for visualization !pip install pillow from PIL import Image import matplotlib.pyplot as plt image = Image.open('C:/Users/Harvey/Documents/Harvey/Personal/DS Personal Projects/Data Science Classification Metrics in Sci-kit Learn/f1_score.pn plt.imshow(image) plt.axis('off') # hide axis plt.show()</pre>
	Requirement already satisfied: pillow in c:\users\harvey\anaconda3\lib\site-packages (9.4.0) $F1 = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = \frac{2 * (precision * recall)}{precision + recall}$
In [62]:	The f1 score is the harmonic mean of recall and precision, with a higher score as a better model, calculated using the above formula # Obtain the f1 score from scikit-learn, which takes as inputs the actual labels and the predicted labels from sklearn.metrics import f1_score f1_score(df.actual_label.values, df.predicted_RF.values)
find_conf_m	0.660342797330891 f1_score def my_f1_score(y_true, y_pred): # Calculate the F1 score recall = my_recall_score(y_true,y_pred) precision = my_precision_score(y_true,y_pred) TP,FN,FP,TN = natrix_values(y_true,y_pred) return np.array([[TN,FP],[FN,TP]]) my_f1_score(df.actual_label.values, df.predicted_RF.values) # Calculate f1 score def my_f1_score(y_true, y_pred): # Calculate the recall and precision scores
In [111	<pre>recall = my_recall_score(y_true, y_pred) precision = my_precision_score(y_true, y_pred) # Calculate the F1 score f1_score = 2 * (precision * recall) / (precision + recall) return f1_score # Verify that the functions worked using Python's built in assert function</pre>
	<pre>assert my_f1_score(df.actual_label.values, df.predicted_RF.values) == f1_score(df.actual_label.values, df.predicted_RF.values), 'my_f1_score failed assert my_f1_score(df.actual_label.values, df.predicted_LR.values) == f1_score(df.actual_label.values, df.predicted_LR.values), 'my_f1_score failed print('F1 RF: %.3f'%(my_f1_score(df.actual_label.values, df.predicted_RF.values))) print('F1 LR: %.3f'%(my_f1_score(df.actual_label.values, df.predicted_LR.values)))</pre> F1 RF: 0.660 F1 LR: 0.586 ave assumed that we defined a threshold of 0.5 for selecting which samples are predicted as positive. If we change the threshold, the performance metrics will change as well (see below).
	<pre>print('Scores with Threshold = 0.5') print(' ') print('Accuracy RF: %.3f'%(my_accuracy_score(df.actual_label.values, df.predicted_RF.values))) print('Recall RF: %.3f'%(my_recall_score(df.actual_label.values, df.predicted_RF.values))) print('Precision RF: %.3f'%(my_precision_score(df.actual_label.values, df.predicted_RF.values))) print('F1 RF: %.3f'%(my_f1_score(df.actual_label.values, df.predicted_RF.values))) print(' ') print('Scores with Threshold = 0.25')</pre>
	<pre>print(' ') print('Accuracy RF: %.3f'%(my_accuracy_score(df.actual_label.values, (df.model_RF >= 0.25).astype('int').values))) print('Recall RF: %.3f'%(my_recall_score(df.actual_label.values, (df.model_RF >= 0.25).astype('int').values))) print('Precision RF: %.3f'%(my_precision_score(df.actual_label.values, (df.model_RF >= 0.25).astype('int').values))) print('F1 RF: %.3f'%(my_f1_score(df.actual_label.values, (df.model_RF >= 0.25).astype('int').values))) Scores with Threshold = 0.5 Accuracy RF: 0.671 Recall RF: 0.641</pre>
	Precision RF: 0.681 F1 RF: 0.660 Scores with Threshold = 0.25 Accuracy RF: 0.502 Recall RF: 1.000 Precision RF: 0.501 F1 RF: 0.668
POC curves	How do we assess a model if we haven't picked a threshold? One very common method is using the receiver operating characteristic (ROC) curve. roc_curve and roc_auc_score s are VERY help with understanding the balance between true-positive rate and false positive rates. The inputs to these functions (roc curve and roc auc score) are the actual labels and
the predicted	from sklearn.metrics import roc_curve fpr_RF, tpr_RF, thresholds_RF = roc_curve(df.actual_label.values, df.model_RF.values) fpr_LR, tpr_LR, thresholds_LR = roc_curve(df.actual_label.values, df.model_LR.values)
Out[117]	The roc_curve function returns three lists: # thresholds = all unique prediction probabilities in descending order thresholds_RF array([1.93052053, 0.93052053, 0.82363091,, 0.25654616, 0.25587275,
Out[118]	
In [120	1.]) # tpr = the true positive rate (TP / (TP+FN)) (i.e. recall) for each threshold tpr_RF array([0.00000000e+00, 1.26919660e-04, 5.33062571e-03,,
	array([0. , 0. , 0. ,, 0.9941617, 0.9941617, 1.]) # tpr = the true positive rate (TP / (TP+FN)) (i.e. recall) for each threshold tpr_RF
	array([0.
	array([0. , 0. , 0. ,, 0.9941617, 0.9941617, 1.]) # tpr = the true positive rate (TP / (TP+FN)) (i.e. recall) for each threshold tpr_RF array([0.00000000e+00, 1.26919660e-04, 5.33062571e-03,, 9.99873080e-01, 1.00000000e+00]) # Plot the ROC curve for each model import matplotlib.pyplot as plt plt.plot(fpr_RF, tpr_RF, 'r-', label= 'RF') plt.plot(fpr_LR, tpr_LR, 'b-', label='random') plt.plot([0,1],[0,1],[0,1,1],'g-', label='perfect') plt.legend() plt.xlabel('False Positive Rate') plt.show() 1.0 0.8
	array([0. , 0. , 0. ,, 0.9941617, 0.9941617, 1.]) # tpr = the true positive rate (TP / (TP+FN)) (i.e. recall) for each threshold tpr_RF array([0.00000000e+00, 1.28919680e-04, 5.33062571e-03,, 9.99873080e-01, 1.00000000e+00, 1.00000000e+00]) # Plot the ROC curve for each model import matplotlib.pyplot as plt plt.plot([pr_RF, tpr_RF,'r-', label = 'RF') plt.plot([pr_LR, tpr_LR, 'b-', label= 'LR') plt.plot([0, 0], 1, [0, 1], 'k-', label= 'random') plt.plot([0, 0], 1, 1], [0, 1, 1, 1], 'y-', label= 'perfect') plt.label('False Positive Rate') plt.xlabel('False Positive Rate') plt.show() 1.0 0.8 0.8
	array([0.
	array(8, , , , , , , , , , , , , , , , , , ,
	array([0,
In [121	### area from pressure rate (TP / (TP-Rs)) (s.m., cosals) for soch previously ### area from pressure rate (TP / (TP-Rs)) (s.m., cosals) for soch previously ### area from pressure rate (TP / (TP-Rs)) (s.m., cosals) for soch previously ### area from pressure rate (TP / (TP-Rs)) (s.m., cosals) for soch previously ### area from pressure rate (TP / (TP-Rs)) (s.m., cosals) for soch previously ### area from pressure rate (TP / (TP-Rs)) (s.m., cosals) (s.m., cosals) #### area from pressure rate (TP / (TP-Rs)) (s.m., cosals) #### area from pr
In [121	Breat (9,
In [121	## Size File postular area (77 × (77 × 60)) (Lie. recula) for each intraceday ## Size File postular area (77 × (77 × 60)) (Lie. recula) for each intraceday ## Size File and conver for each recol ## Size
In [121	There are a couple things that we and observe from this tipure. There are a couple things that we and observe from this tipure. Annoted that including pulses are the label with the black line is balled in the black line (speed modes should have a course show this handle in the black line). Annoted that including pulses are the black line is balled in the black line is balled line (speed modes should have a course show this handle in the black line). Annoted that including pulses are the black line is balled in the black line is balled line (speed modes should have a course showe this black line). Annoted that including pulses are the black line is balled line is balled line is balled line in the black line is balled line in the black line is balled line is balled line is balled line in the black line is balled line in the black line is balled l
In [121	## Comparison of the Compariso
In [121	There are a couple things the see can observe from the black fire (gold models stoods see a care stood this black fire). There are a couple things fire are can observe from the black fire (gold models stoods see a care stood this black fire). A model that reached by guesses the black fire is believe as off (gold models stoods see a care stood this black fire). A model that reached by guesses the black is extended to a fire in the black fire (gold models stoods see a care stood this black fire). A model that reached by guesses the black is extended as a fire in the black fire (gold models stoods see a care stood this black fire). A model that reached by guesses the black is extended as a fire in the black fire (gold models stoods see a care stood this black fire). A model that reached by guesses the black is extended as a fire in the black fire (gold models stoods see a care stood this black fire). A model that reached by guesses the black is extended as the fire of gold models stood see a care stood this black fire). A model that reached by guesses the black is extended to see a fire of gold models stood see a care stood this black fire). A model that reached by guesses the black is extended as the fire of gold models stood shade as a care stood this black fire). A model that reached by guesses the black is extended as the fire of gold models stood this part of g