## ITM426, Quiz 2, 2023 Fall

## Solution and Grading

 $\bullet$  ITM 426 Engineering Mathematics 23F

 $\bullet$  Justification is necessary unless stated otherwise.

out proper sanity check and 2) correct your mistake by doing so.

| • Oct 30, 2023                                               |
|--------------------------------------------------------------|
| • Duration: 90 minutes                                       |
| $\bullet$ Weights: 25% or 30% depending on other quiz scores |
| • 5 Questions                                                |
|                                                              |
|                                                              |
| • Name:                                                      |
| • Student ID:                                                |
| • E-mail:@seoultech.ac.kr                                    |
|                                                              |
|                                                              |
| • Write legibly.                                             |

• Partial points are given only sparingly for the most problems because you are expected to 1) carry

| 1     | 20 |
|-------|----|
| 2     | 10 |
| 3     | 10 |
| 4     | 10 |
| 5     | 10 |
| Total | 60 |

#1. Mark True or False. No justification is necessary. [Each 5pt]

- If A is an  $m \times n$  matrix and if the equation  $A\mathbf{x} = \mathbf{b}$  is inconsistent for some  $\mathbf{b}$  in  $\mathbb{R}^m$ , then A cannot have a pivot position in every row. (TRUE / FALSE)
- Any linear combination of vectors can always be written in the form  $A\mathbf{x}$  for a suitable matrix A and vector  $\mathbf{x}$ . (TRUE / FALSE)
- A homogeneous equation is always consistent. (TRUE / FALSE)
- If a set contains fewer vectors than there are entries in the vectors, then the set is linearly independent. (TRUE / FALSE)

Difficulty: Hard Amount of work: 20 % Suggested answer:

- True. See Theorem 4 in the Chapter 1.
- True. See Example 2 in the Section 1.4, for example.
- True. Because a homogeneous system always has a trivial solution, which makes the system consistent.
- False. For instance, a set consisting of (1,2,3) and (2,4,6) is linearly dependent.

#2. Describe all solutions of the homogeneous system in parametric vector form Find all solutions to the system of the homogeneous equations of A. [10pt]

$$A = \left[ \begin{array}{cccccc} 1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

Difficulty: Easy

Amount of work: 20 % Suggested answer:

$$\begin{bmatrix} 1 & -4 & -2 & 0 & 3 & -5 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & -2 & 0 & 0 & 7 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -4 & 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(x_1)$$
 -  $4x_2$  +  $5x_6$  = 0  
 $(x_3)$  -  $x_6$  = 0  
 $(x_5)$  -  $4x_6$  = 0. The basic variables are  $x_1$ ,  $x_3$ , and  $x_5$ . The remaining variables are  $x_1$  and  $x_2$  are  $x_3$  are  $x_4$  and  $x_5$  are  $x_4$  are  $x_4$  are  $x_4$  and  $x_5$  are  $x_4$  and  $x_5$  are  $x_4$  are  $x_4$  and  $x_5$  are  $x_4$  are  $x_4$  and  $x_5$  are  $x_4$  and  $x_5$  are  $x_4$  are  $x_4$  and  $x_5$  are  $x_4$  are  $x_4$  are  $x_4$  and  $x_5$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  and  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$  are  $x_4$ 

free. In particular,  $x_4$  is free (and not zero as some may assume). The solution is  $x_1 = 4x_2 - 5x_6$ ,  $x_3 = x_6$ ,  $x_5 = 4x_6$ , with  $x_2$ ,  $x_4$ , and  $x_6$  free. In parametric vector form,

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 4x_2 - 5x_6 \\ x_2 \\ x_6 \\ x_4 \\ 4x_6 \\ x_6 \end{bmatrix} = \begin{bmatrix} 4x_2 \\ x_2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -5x_6 \\ 0 \\ 0 \\ 0 \\ 4x_6 \\ x_6 \end{bmatrix} = x_2 \begin{bmatrix} 4 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_6 \begin{bmatrix} -5 \\ 0 \\ 1 \\ 0 \\ 0 \\ 4x_1 \end{bmatrix}$$

#3. Find an LU factorization of the following matrix [10pt]

$$A = \left[ \begin{array}{rrr} -5 & 3 & 4\\ 10 & -8 & -9\\ 15 & 1 & 2 \end{array} \right]$$

Difficulty: Easy

Amount of work: 20% Suggested answer:

$$\begin{bmatrix} 1 & & & \\ -2 & 1 & & \\ -3 & -5 & 1 \end{bmatrix} \cdot \begin{bmatrix} -5 & 3 & 4 \\ & -2 & -1 \\ & & 9 \end{bmatrix}$$
 (1)

#4. Find an inverse of the following matrix [10pt]

$$A = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 \\ 0 & 1/2 & 1 & 0 \\ 1 & 0 & 1/2 & 1 \end{array} \right]$$

Difficulty: Medium Amount of work: 20 % Suggested answer:

$$A^{-1} = \begin{bmatrix} 1 & & & \\ -1/2 & 1 & & \\ 1/4 & -1/2 & 1 & \\ -9/8 & 1/4 & -1/2 & 1 \end{bmatrix}$$

#5. After a linear transformation, SeoulTech's amblem has been transformed. Specifically, the emblem is horizontally reversed and its horizontal length is doubled. Suggest a standard matrix for this linear transformation and explain it. [10pt]



Difficulty: Hard

Amount of work: 25 % Suggested answer:

Doubing in x-axis can be achieved by  $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ , and reflection through y-axis can be achieved by  $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ . Doing these consecutively means multiplication of these matrices, which leads to a standard matrix of  $\begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$ 

(blank)

|  | Write your name before | re detaching this page. | Your Name: |  |
|--|------------------------|-------------------------|------------|--|
|--|------------------------|-------------------------|------------|--|