Chap 5. Trees

Tree

- 계층(hierarchy) 구조의 데이터를 표현하기 위한 자료 구조
- Terminologies
 - Node
 - Root (node)
 - Child (node), children
 - Degree, fan-out
 - Parent (node)
 - Each node has only 1 parent node (except for the root)
 - Sibling, ancestor, descendant
 - Leaf (node), leaves, Non-leaf node
 - Subtree
 - Forest
 - Path
 - from node x to node y
 - Level
 - 0, 1, 2, ..., h-1
 - 1, 2, 3, ..., h
 - Height: max. level

Binary tree

- Each node can have at most 2 child nodes
 - Left child
 - Right child
- Number of children of a node
 - 0 or //leaf node
 - 1 or
 - 2
- cf. n-ary tree
- Subtree
 - Left
 - Right

Full binary tree

- Every node has 2 children except for the leaf nodes
- Height = h
- Number of nodes = $1 + 2 + 2^2 + 2^3 + ... + 2^{h-1}$

Complete binary tree

- Height = h
- Level: 0, 1, 2, ..., h-1
- Level h-2까지는 full binary tree
- Level h-1 //leaf level
 - May not be full
 - rightmost leaf node 부터 한 노드씩 삭제 가능
- Number of nodes
 - Min: 2h-1
 - Max: 2^h -1

Skewed binary tree

- Left skewed or right skewed
- Height = number of nodes

노드 수(n)와 높이(h)

- Skewed binary tree: h = n
- Full binary tree
 - $h = log_2(n+1)$
 - h = 1 + $\log_2 n_0 (n_0 : \text{leaf node})$
- Complete binary tree
 - $2^{h-1} \le n \le 2^h 1$
 - $2^{h-1} \le n < 2^h \Rightarrow h-1 \le \log_2 n < h \Rightarrow h = \lfloor \log_2 n \rfloor + 1$
 - $2^{h-1} < n+1 \le 2^h \Rightarrow h-1 < \log_2(n+1) \le h \Rightarrow h = \lceil \log_2(n+1) \rceil$
- Arbitrary binary tree
 - $h \le n \le 2^h 1$
 - $\log_2(n+1) \le h \le n$

Binary tree 의 표현

• Array representation

- Node in A[i]
 - Left child: A[2*i]
 - Right child: A[2*i+1]
 - Parent: A[j], $j = \left\lfloor \frac{i}{2} \right\rfloor$

Binary tree 의 표현

• linked representation

Binary tree 탐색(traversal)

- Preorder: root-Lsubtree-Rsubtree
- Inorder: Lsubtree-root-Rsubtree
- Postorder: Lsubtree-Rsubtree-root
- Level:
 - From root to leaves
 - From left to right
- Preorder: ABDHECFIGJLK
- Inorder: DHBEAIFCLJGK
- Postorder: HDEBIFLJKGCA
- Level: ABCDEFGHIJKL

Heap

- Max (min) tree
 - Binary tee
 - Key in a node: not smaller (larger) than the keys in its children
- Max (min) heap
 - Complete binary tree
 - Max (min) tree
- Max (min) Priority queue
 - Elements in the queue are with priorities
 - Delete from queue
 - Element with max (min) priority
 - implementation:
 - using max (min) heap
 - Other methods

Heap의 표현

• Array representation

0	1	2	3	4	5	6	7	8	9	10	11
	50	41	48	30	40	31	44	25	20	30	29

- Heap operations
 - Insert
 - Maintain heap requirements
 - Complexity: O(h) = O(log n)
 - Delete
 - Maintain heap requirements
 - Complexity: O(h) = O(log n)

Heap: insert

- Insert a new key into the new rightmost leaf node N
- Locate its right position along the path from N to the root
 - A[i] \cap parent: A[j], $j = \left\lfloor \frac{i}{2} \right\rfloor$
- Example: insert 49

Heap: delete

- Delete the key in the root
- Set the key(root) to the key(rightmost leaf node N)
- Delete N
- Adjust to make the tree a heap

Heap sort

- 7장 참조
- An application of heap
- Input: array of n numbers
- Steps
 - 1. Heap construction: transforming the input array into a heap
 - 2. Swap the number in the root & the number in the rightmost leaf
 - 3. Adjust to make the tree a heap
 - 4. Repeat 2 & 3 until sorting is completed
- Output: array of n sorted numbers

29

30

Heap sort: initial heap construction

- Make every subtree of height 2 a heap
- Make every subtree of height 3 a heap
- until
- The entire tree becomes a heap

Heap sort: initial heap construction (cont'd)

Heap sort

Binary search tree(이진 탐색 트리)

- Search key: v
- Recursive routine

```
switch(compare(v, key(root)) {
    case '<': search in left subtree
    case '=': found
    case '>': search in right subtree
}
```

- Insert
- Delete

Binary search tree: insert

- Given key v to insert
 - Search v first
 - insert v as a leaf
- Example:
 - Insert 29
 - Insert 82

Binary search tree: delete

- Given key v to delete
 - Search v first
 - Cases:
 - V: in a leaf node
 - V: in a non-leaf node
 - with 1 child
 - with 2 children
- Examples
 - Delete 20 //leaf
 - Delete 51 //non-leaf with 1 child
 - Delete 69 // non-leaf with 2 children

Binary search tree: delete(2)

- Delete a leaf: trivial
- Delete a non-leaf node with 1 child
 - Before delete: $p \rightarrow d \rightarrow c$
 - After delete: $p \rightarrow c$
 - Examples
 - Delete 10
 - Delete 51

Binary search tree: delete(3)

- Delete a non-leaf node with 2 children
 - Replace deleted key with w
 - W:
 - Max key in Lsubtree or
 - Min key in Rsubtree
 - Delete w
 - Example
 - Delete 69

Selection tree

- Merge of sorted lists
- Winner tree
 - Complete binary tree
 - Leaf node: value from the first element in the sorted list
 - Non-leaf node: the winner of two children

Reconstruction of winner tree

- After output of the value in the root
- Only the path from leaf (with new value) to root is updated
- Why winner tree?
 - A total of *n* values in *m* sorted lists
 - Simple merge: O(n*m) // m-1 comparisons for each output
 - Using winner tree: O(n*log₂m)

Improvement

- Loser tree
 - Non-leaf node: the loser of two children
 - Special node for the final winner
 - Reconstruction
 - Only parent (direct ancestors) needs to be accessed
 - cf. winner tree: comparison between siblings is needed

Disjoint sets

- Set S1 and S2 are disjoint if S1 \cap S2 = { }
- Representation of disjoint sets
 - n-ary tree
 - Each node points to its parent
 - Set ID: root element
 - 1-dim array P[]: when set elements are integers ≥ 0
 - P[i]: parent of element I
 - Parent of the root: set to -1
- Operations
 - Find(i): returns the set ID of element i
 - Union(i, j): obtains the union of set i and set j