$$5.4 1) \Longrightarrow 2)$$

La relation de Grassmann donne

$$\dim(F+G) = \dim(F) + \dim(G) - \underbrace{\dim(F\cap G)}_0 = \dim(F) + \dim(G)\,.$$

$$2) \Longrightarrow 3)$$

Posons $m = \dim(F)$ et $n = \dim(F)$.

Soient $(e_1; \ldots; e_m)$ une base de F et $(f_1; \ldots; f_n)$ une base de G.

Alors $(e_1; \ldots; e_m; f_1; \ldots; f_n)$ est une famille génératrice de F + G.

Vu qu'elle comporte $m + n = \dim(F) + \dim(G) = \dim(F + G)$ éléments, elle forme une base de F + G.

Dès lors, la famille $(e_1; \ldots; e_m; f_1; \ldots; f_n)$ est libre, si bien que l'écriture en somme d'éléments de F et de G est unique.

$$3) \Longrightarrow 1)$$

Soit $u \in F \cap G$.

On constate que

- 1) u = u + 0 avec $u \in F$ et $0 \in G$;
- 2) u = 0 + u avec $0 \in F$ et $u \in G$.

Puisque la décomposition de tout élément de F+G en somme d'un élément de F et d'un élément de G est unique, on conclut que u=0.