# Predicting Drug Consumption Patterns Using Machine Learning

Sandip Patel

### **Project Overview**





Predicting Drug Consumption Patterns Using Machine Learning based on

- **Demographic**
- Personality Scores
- Psychological Traits

A Data-Driven Approach to Preventing Drug Abuse and addiction

### **Target Users**





- Substance Abuse and Mental Health Services Administration (SAMHSA)
- National Institute on Drug Abuse (NIDA)
- Educational Institutions
- Family Support Organizations

### The Multi-Faceted Impact of Addressing Drug Abuse





#### **Improved Public Health:**

- Early intervention prevents drug abuse escalation, reducing healthcare burdens and deaths.
- Nearly 107,941 drug overdose deaths occurred in the U.S. in 2022.

Source: https://nida.nih.gov/research-topics/trends-statistics/overdose-death-rates



#### **Enhanced Quality of Life:**

- Personalized treatment boosts recovery rates, benefiting individuals, families, and communities.
- Effective interventions can significantly lower the \$740 billion annual cost of drug-related expenses in the U.S.



### **Dataset Overview**

#### **Features:**

- Demographic
  - Gender
  - Age group
  - Countries
  - Educational background
- > Personality Scores 🧠
  - Oscore
  - Cscore
  - Escore
  - Ascore
  - Nscore
- Physiological Trait
  - Impulsiveness
  - Sensation Seeking (SS)

#### **Targets:** (18 types of legal and illegal drugs)

#### **Stimulants**

- Amphetamines (Amphet)
- Cocaine (Coke)
- Crack
- Ecstasy (Ecstasy)
- Methamphetamine (Meth)
- Caffeine (Caff)
- Cannabis
- Chocolate (Choc)
- Nicotine

#### **Depressants**

- Alcohol
- Benzodiazepines (Benzos)
- Amyl nitrite (Amyl)

#### **Hallucinogens**

- LSD
- Mushrooms

#### **Opioids**

- Heroin
- Legal highs (Legalh)
- Semeron (Semer)

#### **Dissociatives**

• Ketamine (Ketamine)

#### Other

Volatile substances (VSA)

 i.e Laughing Gas, Ether,
 Gasoline etc.

Data Source: <a href="https://www.kaggle.com/datasets/mexwell/drug-consumption-classification">https://www.kaggle.com/datasets/mexwell/drug-consumption-classification</a>

# Data Processing and Predictive Modeling Workflow

Data Acquisition

Data Transformation

Feature Engineering

Model Development

Data was acquired from Kaggle, which used codes instead of human-readable values for each feature.

The original data was then mapped to human-readable values.

It involves converting categorical variables into numerical forms and ensuring all data is consistently numeric I.e. Active users (who used substance in last day, last week or last month).

- LogisticRegression
- Decision Tree
- Random Forest

| Alcohol Z   |       |
|-------------|-------|
| CL6         | 505   |
| CL5         | 759   |
| CL4         | 287   |
| CL3         | 198   |
| CL2         | 68    |
| CL1         | 34    |
| CLO         | 34    |
| Grand Total | 1,885 |

| Alcohol     |       |
|-------------|-------|
| Last Day    | 505   |
| Last Week   | 759   |
| Last Month  | 287   |
| Last Year   | 198   |
| Last Decade | 68    |
| Decade Ago  | 34    |
| Never       | 34    |
| Grand Total | 1,885 |
|             |       |

| Alcohol            | Final<br>Mapped |
|--------------------|-----------------|
| Last Day           | 505             |
| Last Week          | 759             |
| <b>Last Month</b>  | 287             |
| Last Year          | 0               |
| Last Decade        | 0               |
| Decade Ago         | 0               |
| Never              | 0               |
| <b>Grand Total</b> | 1,551           |

# **Preliminary EDA findings**



Younger individuals (18 to 34) are more likely to engage in drugs consumption.

**Gender** influences substance use patterns, with **males** possibly more inclined towards certain substances.

|        | Heroin   |            |           |  |  |  |  |  |  |
|--------|----------|------------|-----------|--|--|--|--|--|--|
| Gender | Last Day | Last Month | Last Week |  |  |  |  |  |  |
| Female | 3        | 8          | 3         |  |  |  |  |  |  |
| Male   | 10       | 16         | 13        |  |  |  |  |  |  |

|        |          | Coke      |            |  |  |  |  |  |  |  |
|--------|----------|-----------|------------|--|--|--|--|--|--|--|
| Gender | Last Day | Last Week | Last Month |  |  |  |  |  |  |  |
| Female | 5        | 14        | 37         |  |  |  |  |  |  |  |
| Male   | 14       | 27        | 62         |  |  |  |  |  |  |  |

### **Preliminary EDA findings**

|              | Heroin   |           |            |  |  |  |  |  |  |
|--------------|----------|-----------|------------|--|--|--|--|--|--|
| Nscore (bin) | Last Day | Last Week | Last Month |  |  |  |  |  |  |
| 10           |          |           | 1          |  |  |  |  |  |  |
| 20           |          |           | 3          |  |  |  |  |  |  |
| 30           | 3        | 4         | 5          |  |  |  |  |  |  |
| 40           | 7        | 9         | 11         |  |  |  |  |  |  |
| 50           | 3        | 3         | 4          |  |  |  |  |  |  |

|              | Heroin   |           |            |  |  |  |  |  |  |
|--------------|----------|-----------|------------|--|--|--|--|--|--|
| Escore (bin) | Last Day | Last Week | Last Month |  |  |  |  |  |  |
| 10           |          | 2         |            |  |  |  |  |  |  |
| 20           | 3        | 1         | 5          |  |  |  |  |  |  |
| 30           | 8        | 6         | 10         |  |  |  |  |  |  |
| 40           | 2        | 6         | 7          |  |  |  |  |  |  |
| 50           |          | 1         | 2          |  |  |  |  |  |  |

|              | Coke     |           |            |  |  |  |  |  |  |  |
|--------------|----------|-----------|------------|--|--|--|--|--|--|--|
| Nscore (bin) | Last Day | Last Week | Last Month |  |  |  |  |  |  |  |
| 10           |          | 1         |            |  |  |  |  |  |  |  |
| 20           | 3        | 8         | 14         |  |  |  |  |  |  |  |
| 30           | 7        | 9         | 43         |  |  |  |  |  |  |  |
| 40           | 6        | 21        | 27         |  |  |  |  |  |  |  |
| 50           | 3        | 2         | 15         |  |  |  |  |  |  |  |

|              | Coke     |           |            |  |  |  |  |  |  |
|--------------|----------|-----------|------------|--|--|--|--|--|--|
| Escore (bin) | Last Day | Last Week | Last Month |  |  |  |  |  |  |
| 10           |          | 1         | 2          |  |  |  |  |  |  |
| 20           | 1        | 1         | 4          |  |  |  |  |  |  |
| 30           | 8        | 16        | 41         |  |  |  |  |  |  |
| 40           | 10       | 19        | 39         |  |  |  |  |  |  |
| 50           |          | 4         | 13         |  |  |  |  |  |  |

Personality traits like higher Neuroticism (Nscore), Extraversion (Escore), and Sensation Seeking (SS) values are strongly related to substance use behaviors.

# Modeling

- The dataset was heavily imbalanced, requiring alternate training methods.
- I used SMOTE (Synthetic Minority Oversampling Technique) to oversample the minority class and improve model learning.



My best model was **Logistic Regression** with SMOTE (**ADASYN**), achieving **83%** accuracy for predicting heroin abuse on the test set. Recall (**58%**) and Precision (**9%**)

### **Drug Usage Patterns Across Age Groups**

| Target Drugs | 18-24 | 25 - 34 | 35 - 44 | 45 - 54 | 55 - 64 | 65+  |
|--------------|-------|---------|---------|---------|---------|------|
| Alcohol      | 1.50  | 1.01    | 1.00    | 0.90    | 0.81    | 0.72 |
| Amphet       | 1.17  | 0.97    | 1.02    | 1.16    | 0.73    | 0.60 |
| Amyl         | 1.42  | 2.08    | 1.35    | 0.51    | 0.25    | 0.61 |
| Benzos       | 0.77  | 1.00    | 1.11    | 1.18    | 0.96    | 1.34 |
| Caffeine     | 2.94  | 2.82    | 3.88    | 3.12    | 2.04    | 1.58 |
| Cannabis     | 1.40  | 0.99    | 0.89    | 0.91    | 0.86    | 0.71 |
| Chocolate    | 3.09  | 2.93    | 2.79    | 3.14    | 1.86    | 1.26 |
| Coke         | 0.99  | 1.26    | 0.92    | 0.82    | 1.16    | 0.79 |
| Ecstasy      | 1.64  | 1.18    | 0.96    | 0.80    | 0.44    | 0.77 |
| Heroin       | 3.71  | 4.39    | 1.30    | 0.09    | 0.14    | 0.59 |
| Ketamine     | 1.87  | 1.39    | 0.54    | 0.80    | 0.66    | 0.87 |
| Legalh       | 1.30  | 0.92    | 1.05    | 0.81    | 0.99    | 0.76 |
| LSD          | 1.93  | 1.17    | 0.83    | 0.70    | 0.52    | 0.73 |
| Meth         | 1.45  | 1.22    | 0.75    | 0.73    | 0.95    | 0.82 |
| Mushrooms    | 1.24  | 0.90    | 1.32    | 0.98    | 0.62    | 0.57 |
| Nicotine     | 1.09  | 1.05    | 1.01    | 0.89    | 0.94    | 0.92 |
| VSA          | 4.38  | 2.32    | 0.68    | 0.13    | 0.53    | 0.78 |

Based on the provided coefficients, here are the four strongest associations:

- 18 24, 25-34 and Heroin with coefficients of 3.71, 4.39.
- 18 24 and VSA with a coefficient of 4.38.
- 35 44 and Caffeine with a coefficient of 3.88.

### **Analyzing Personality Traits**



A **coefficient** of **1.16** means that for every 1-unit increase in the **Oscore**, the odds of drug consumption increase by approximately **16%** 

### Impact of Personality Traits on Drug Usage Coefficients

| Target Drugs | Oscore | SS   | Nscore | Escore | Impulsive | Ascore | Cscore |
|--------------|--------|------|--------|--------|-----------|--------|--------|
| Alcohol      | 1.00   | 1.74 | 1.00   | 1.03   | 0.97      | 0.99   | 1.00   |
| Amphet       | 0.78   | 1.09 | 1.09   | 1.09   | 1.04      | 1.01   | 0.71   |
| Amyl         | 1.10   | 0.82 | 0.36   | 0.87   | 1.14      | 0.91   | 0.58   |
| Benzos       | 1.21   | 0.83 | 2.29   | 1.26   | 0.94      | 1.01   | 1.17   |
| Caffeine     | 1.01   | 1.23 | 1.65   | 1.37   | 1.32      | 1.51   | 1.06   |
| Cannabis     | 1.71   | 1.11 | 0.84   | 0.95   | 1.03      | 1.02   | 0.85   |
| Chocolate    | 1.16   | 0.99 | 1.44   | 0.94   | 1.31      | 1.31   | 1.58   |
| Coke         | 0.65   | 1.72 | 1.28   | 1.14   | 1.06      | 0.97   | 1.14   |
| Ecstasy      | 1.19   | 1.06 | 0.76   | 1.21   | 0.77      | 0.86   | 0.80   |
| Heroin       | 0.61   | 1.02 | 0.89   | 0.52   | 0.87      | 0.53   | 1.68   |
| Ketamine     | 1.86   | 0.78 | 0.85   | 1.06   | 0.63      | 0.60   | 0.89   |
| Legalh       | 1.22   | 0.94 | 1.09   | 0.94   | 0.97      | 0.92   | 0.75   |
| LSD          | 1.46   | 0.90 | 1.15   | 1.00   | 0.71      | 1.01   | 0.72   |
| Meth         | 1.04   | 1.31 | 1.00   | 0.97   | 0.93      | 0.89   | 0.86   |
| Mushrooms    | 1.53   | 1.02 | 0.60   | 0.64   | 0.92      | 1.01   | 0.84   |
| Nicotine     | 1.06   | 1.13 | 1.06   | 1.01   | 1.18      | 1.03   | 0.86   |
| VSA          | 1.07   | 1.67 | 0.70   | 1.24   | 0.70      | 0.79   | 0.56   |

**Nscore for Benzos:** 

2.29

**Oscore for Ketamine:** 

1.86

**Cscore for Chocolate:** 

1.58

**Nscore for Caffeine:** 

1.65

**Oscore for** 

**Mushrooms: 1.53** 

### **Exploring Drug Associations**

| Target Drugs | Caffeine | Benzos | Cannabis | Coke | Nicotine | Legalh | Ecstasy | Amphet | LSD  | Ketamine | Amyl | Alcohol | Mushro | Chocola | Semer | Meth | VSA  | Heroin |
|--------------|----------|--------|----------|------|----------|--------|---------|--------|------|----------|------|---------|--------|---------|-------|------|------|--------|
| Alcohol      | 1.85     | 1.49   | 1.25     | 1.50 | 1.02     | 0.78   | 1.49    | 0.78   | 1.23 | 1.27     | 1.29 | 0.00    | 1.34   | 1.41    | 1.01  | 0.72 | 1.01 | 0.78   |
| Amphet       | 1.57     | 2.00   | 1.44     | 1.17 | 1.07     | 1.58   | 1.25    | 0.00   | 0.84 | 1.36     | 1.14 | 0.80    | 0.94   | 1.17    | 1.35  | 1.01 | 0.96 | 0.88   |
| Amyl         | 5.30     | 2.63   | 0.84     | 2.20 | 2.12     | 1.94   | 1.18    | 1.14   | 0.23 | 1.31     | 0.00 | 2.27    | 1.77   | 0.89    | 0.76  | 1.30 | 1.11 | 0.48   |
| Benzos       | 1.34     | 0.00   | 1.08     | 1.36 | 1.50     | 1.17   | 1.05    | 1.62   | 0.74 | 1.43     | 1.14 | 1.30    | 0.97   | 1.01    | 1.44  | 1.82 | 1.21 | 1.13   |
| Caffeine     | 0.00     | 1.17   | 1.10     | 1.27 | 1.58     | 1.14   | 1.02    | 1.33   | 1.18 | 1.11     | 1.28 | 1.29    | 1.04   | 1.22    | 1.01  | 1.11 | 1.23 | 1.02   |
| Cannabis     | 1.01     | 1.06   | 0.00     | 1.22 | 1.88     | 1.25   | 1.40    | 1.02   | 0.98 | 1.03     | 0.89 | 1.02    | 1.24   | 1.07    | 0.84  | 0.99 | 1.08 | 0.93   |
| Chocolate    | 1.44     | 1.05   | 1.44     | 1.00 | 0.91     | 1.46   | 1.51    | 1.15   | 1.21 | 0.97     | 1.05 | 0.97    | 1.21   | 0.00    | 1.03  | 1.00 | 1.02 | 1.02   |
| Coke         | 1.24     | 1.54   | 1.90     | 0.00 | 1.24     | 0.78   | 2.10    | 1.41   | 1.02 | 0.91     | 1.40 | 1.33    | 1.09   | 1.11    | 1.34  | 1.17 | 1.07 | 1.46   |
| Ecstasy      | 0.80     | 1.04   | 1.81     | 2.09 | 1.36     | 1.30   | 0.00    | 1.22   | 1.51 | 1.52     | 1.18 | 1.27    | 0.98   | 1.57    | 1.25  | 0.67 | 0.75 | 1.05   |
| Heroin       | 1.96     | 1.41   | 0.85     | 2.02 | 1.31     | 0.97   | 0.71    | 0.95   | 0.78 | 1.07     | 0.92 | 0.49    | 0.89   | 0.86    | 0.77  | 1.00 | 1.02 | 0.00   |
| Ketamine     | 0.89     | 1.60   | 1.04     | 0.70 | 2.05     | 1.45   | 1.64    | 1.90   | 1.90 | 0.00     | 1.39 | 1.48    | 1.16   | 1.00    | 1.34  | 0.76 | 0.82 | 1.14   |
| Legalh       | 1.23     | 1.07   | 1.84     | 0.86 | 1.11     | 0.00   | 1.18    | 1.56   | 0.94 | 1.26     | 1.20 | 0.83    | 1.00   | 1.42    | 0.89  | 0.94 | 1.01 | 0.87   |
| LSD          | 1.26     | 0.85   | 1.31     | 1.07 | 0.89     | 1.14   | 1.85    | 0.78   | 0.00 | 1.38     | 0.76 | 1.29    | 1.82   | 1.16    | 0.84  | 0.93 | 1.25 | 0.93   |
| Meth         | 1.54     | 2.46   | 0.81     | 0.97 | 1.10     | 0.92   | 0.83    | 1.10   | 0.93 | 0.77     | 1.17 | 0.80    | 0.99   | 0.82    | 0.85  | 0.00 | 1.05 | 1.19   |
| Mushrooms    | 1.18     | 0.97   | 2.38     | 1.21 | 0.75     | 1.20   | 0.99    | 1.13   | 1.99 | 1.41     | 1.03 | 1.37    | 0.00   | 0.85    | 0.81  | 0.98 | 0.87 | 0.91   |
| Nicotine     | 1.28     | 1.14   | 1.90     | 1.12 | 0.00     | 1.00   | 1.07    | 1.01   | 0.93 | 1.17     | 1.12 | 1.02    | 0.90   | 0.93    | 1.13  | 0.98 | 0.99 | 0.95   |
| VSA          | 3.95     | 2.69   | 1.38     | 1.35 | 0.88     | 2.00   | 0.58    | 0.80   | 2.44 | 0.75     | 1.59 | 0.81    | 0.87   | 1.07    | 0.92  | 1.84 | 0.00 | 1.02   |

Based on the coefficients, the two strongest associations among substance uses are:

- Caffeine and Amyl with a coefficient of 5.30, Caffeine and VSA with a coefficient of 3.95 Benzos and Amyl with a coefficient of 2.63, Benzos and VSA with a coefficient of 2.69

These high values indicate a significant likelihood that individuals using caffeine are also likely to use amyl and **VSA**.

### **Gender and Drug Usage Patterns**

| Target Drugs | Male | Female |  |  |
|--------------|------|--------|--|--|
| Alcohol      | 0.83 | 0.96   |  |  |
| Amphet       | 1.12 | 0.90   |  |  |
| Amyl         | 1.16 | 0.86   |  |  |
| Benzos       | 1.06 | 0.94   |  |  |
| Caffeine     | 1.69 | 1.31   |  |  |
| Cannabis     | 1.15 | 0.87   |  |  |
| Chocolate    | 1.70 | 1.97   |  |  |
| Coke         | 1.10 | 0.91   |  |  |
| Ecstasy      | 1.02 | 0.98   |  |  |
| Heroin       | 1.10 | 0.91   |  |  |
| Ketamine     | 1.27 | 0.79   |  |  |
| Legalh       | 1.15 | 0.87   |  |  |
| LSD          | 1.10 | 0.91   |  |  |
| Meth         | 1.08 | 0.93   |  |  |
| Mushrooms    | 1.16 | 0.86   |  |  |
| Nicotine     | 1.07 | 0.93   |  |  |
| VSA          | 0.98 | 1.02   |  |  |



- Substances with Highest Association:
  - ➤ Chocolate (1.70)
  - > Caffeine (**1.68**)
- Significant Substances:
  - Ketamine (1.27)
  - > Amphetamines (1.11)



- > Chocolate (**1.97**)
- > Caffeine (**1.31**)
- Significant Substances:
  - VSA (Volatile Substance Abuse) (1.01)
  - > Ecstasy (0.98)

**Men** appear to be more at risk for substance abuse

### Regional Variations in Drug Consumption

| Target Drugs | USA   | Australia | New<br>Zealand | Republic of<br>Ireland | Canada | UK   | Others |
|--------------|-------|-----------|----------------|------------------------|--------|------|--------|
| Alcohol      | 0.81  | 0.92      | 1.03           | 0.83                   | 0.79   | 1.60 | 0.99   |
| Amphet       | 1.82  | 1.39      | 0.76           | 0.96                   | 1.18   | 0.57 | 0.75   |
| Amyl         | 0.71  | 1.67      | 0.72           | 0.91                   | 0.45   | 1.83 | 0.82   |
| Benzos       | 1.46  | 1.16      | 3.76           | 0.83                   | 0.90   | 0.66 | 1.01   |
| Cannabis     | 1.45  | 1.09      | 1.13           | 1.03                   | 0.96   | 0.67 | 1.08   |
| Coke         | 0.84  | 0.88      | 0.88           | 1.07                   | 1.14   | 1.11 | 1.10   |
| Ecstasy      | 1.01  | 1.23      | 0.83           | 1.09                   | 1.03   | 0.94 | 0.93   |
| Heroin       | 10.02 | 0.51      | 0.81           | 1.66                   | 1.80   | 0.26 | 0.18   |
| Ketamine     | 0.52  | 1.12      | 0.84           | 0.89                   | 1.06   | 1.83 | 0.96   |
| Legalh       | 1.08  | 0.97      | 1.27           | 0.99                   | 1.31   | 0.79 | 1.10   |
| LSD          | 1.81  | 1.56      | 0.84           | 0.84                   | 1.09   | 0.42 | 1.48   |
| Meth         | 1.83  | 0.89      | 0.79           | 0.80                   | 0.97   | 0.57 | 1.27   |
| Mushrooms    | 1.74  | 1.16      | 0.79           | 0.82                   | 1.26   | 0.53 | 1.10   |
| Nicotine     | 0.98  | 0.93      | 0.96           | 1.10                   | 1.02   | 1.03 | 0.98   |
| VSA          | 1.18  | 1.12      | 1.04           | 1.77                   | 0.33   | 1.55 | 0.55   |

USA: Heroin - 10.02

Australia: Amphet - 1.39

New Zealand: Benzos - 3.76

Republic of Ireland: VSA - 1.76

Canada: Heroin - 1.80

UK: Ketamine - 1.83

Others: LSD - 1.47

These coefficients represent the strongest relationships between the features (listed drugs) and the likelihood of substance use in each respective country

### So What???

- Initiate immediate support and education programs for young males in the USA, focusing on heroin use (coefficient: 10.02) and other high-risk substances.
- Implement evidence-based strategies tailored to males aged 18-34, addressing critical substances like heroin,amphetamines and ketamine.
- Stress the importance of ongoing data collection to monitor intervention effectiveness.
- Aim to reduce substance dependence over the next several decades.

### **Next Steps**

- Explore using these models on different datasets.
- Plan to enhance model robustness with cross-validation.
- Compare results with similar projects for benchmarking and insights.