面向对象程序设计基础作业五设计文档

1. 模型部分

a. 功能简述

本程序内包含一个复数类 cpxnum, 可以实现复数的储存、计算工作 (详见<u>b</u>)。在运行时,本程序将对包含的复数类进行测试(详见<u>2</u>),并 输出结果。下图为测试过程中两个样例输出。

```
TESTING FOR z = 1.5+2i

z + 1.5 = 3+2i

z - 1.5 = 2i

z * 4.5 = 6.75+9i

z / 4.5 = 0.3333333+0.444444i

1.5 + z = 3+2i

1.5 - z = -2i

4.5 * z = 6.75+9i

4.5 / z = 2.7-3.6i

After ans = z++, ans = 1.5+2i, z = 2.5+2i

After ans = z--, ans = 2.5+2i, z = 1.5+2i

After ans = --z, ans = 1.5+2i, z = 2.5+2i

PRESS ENTER TO CONTINUE
```

```
TESTING FOR w = 1.5+2i and z = 1.5

w + z = 3+2i

w - z = 2i

w * z = 2.25+3i

w / z = 1.5+2i

PRESS ENTER TO CONTINUE
```

b. 数据结构

```
cpxnum operator+ (cpxnum&) const;
cpxnum operator+ (double) const;
cpxnum operator- (cpxnum&) const;
cpxnum operator- (cpxnum&) const;
cpxnum operator- (double) const;
cpxnum operator* (double) const;
cpxnum operator* (double) const;
cpxnum operator/ (cpxnum&) const;
cpxnum operator/ (double) const;

cpxnum operator/ (double) const;

cpxnum operator- (int);
cpxnum operator-- (int);
cpxnum operator-- ();

bool operator== (cpxnum&) const;

bool operator== (double) const;

cpxnum& operator= (double);
```

```
static double real(cpxnum&);
static double imag(cpxnum&);
static double abs(cpxnum&);
static cpxnum conj(cpxnum&);
```

本程序包含复数类 cpxnum,有两个 double 型私有参数 real_part 和 imaginary_part, 分别存储复数的实数部分和虚数部分。cpxnum 内有四个 公有接口,分别用于调用本复数的实部、虚部、模长和共轭。另外, cpxnum 类重载了如上左图所示的操作符,在 c. 算法部分将一一说明。

c. 算法

- i. 自增、自减操作符
 - 1. 前++、前--

此操作符可以使被操作数的实部增加/减少1,虚部不 变。用在表达式中时,先改变被操作数的值,再获取改变后被 操作数的值。

2. 后++、后--

此操作符可以使被操作数的实部增加/减少1,虚部不 变。用在表达式中时,先获取被操作数的值,再改变被操作数 的值。

ii. 四则运算符+ - × /

这些操作符的功能和它们数学上的功能相一致。本程序中的cpxnum 类允许复数和实数混合运算,且顺序可交换。

特别注明:本程序没有进行"除以零"判断。鉴于计算过程的"除以零"异常会被正常抛出,在实际使用时和实数运算中处理除以零错误的方式是一样的。

iii. 赋值操作符

本程序为 cpxnum 类重载了符值操作符=,支持将复数或实数赋值给 cpxnum 类实例。当将实数赋值给 cpxnum 类时,cpxnum 类会将虚部设置为零。

iv. 逻辑运算符

本程序为 cpxnum 类重载了逻辑运算符==,支持与另一个复数或实数相比较,返回二者是否相等。

其他的逻辑运算符没有重载、原因是复数不可比较大小。

v. 插入流运算符(std::ostream) <<

为了更便捷地输出复数,本程序为 std::ostream 类重载了针对复数的插入流运算符。被调用时,会以 a+bi 的形式输出复数结果;如果 a 或 b 等于零,对应的部分不会显示。如果 a 与 b 都等于零,会显示 0.如果 a 或 b 等于正负 1,不会输出此多余的 1.

2. 验证部分

本程序的验证部分使用如下测试样例:

复数编号	1	直	心 丰 44 쎻 1人 半	
	实部	虚部	代表的等价类	
\mathbf{z}_1	1.5	2	普通复数	
\mathbf{z}_2	1.5	0	实数	
\mathbf{z}_3	0	0	零	
\mathbf{z}_4	0	1.5	纯虚数	
z_5	z ₅ -1 -1		实部与虚部为负数的普通复数	

a. 仅涉及一个复数的运算符测试

对于上表每一个复数,分别做如下测试:输出它的值;复数与实数四则运算;实数与复数四则运算;自增(两种);自减(两种)。这些测试可以验证重载的四则运算操作符·(·为+-×/之一)是否可用于复数·实数和实数·复数两种情况,验证自增、自减操作符是否能改变复数的值,比较前自增(减)和后自增(减)操作符的结果差异,以及测试插入流运算符的输出是否符合格式。

结果见 Table 1。

b. 二元运算符的测试

对于上表每两个不相同的复数,分别做如下测试:输出它们的值;复数与复数四则运算。这些测试主要是为了测试复数之间重载的四则运算符。结果见 <u>Table 2</u>。

Table 1 涉及一个复数的运算符验证结果

序号	cout << z	z+1.5	z-1.5	z*1.5	z / 1.5	z++的值	++z 的值	z的值	z 的值
		1.5+z	1.5-z	1.5*z	1.5 / z	z++后 z 的值	++z 后 z 的值	z后 z 的值	z 后 z 的值
\mathbf{z}_1	1.5+2i	3+2i	2i	6.75+9i	0.33+0.44i	1.5+2i	2.5+2i	2.5+2i	1.5+2i
		3+2i	-2i	6.75+9i	0.33+0.44i	2.5+2i	1.5+2i	2.5+2i	1.5+2i
\mathbf{z}_2	1.5	3	0	6.75	0.33	1.5	2.5	2.5	1.5
		3	0	6.75	4.5	2.5	1.5	2.5	1.5
\mathbf{z}_3	0	1.5	-1.5	0	0	0	1	1	0
		1.5	1.5	0	NAN¹	1	0	1	0
\mathbf{z}_4	1.5i	1.5+1.5i	-1.5+1.5i	6.75i	0.33i	1.5i	1+1.5i	1+1.5i	1.5i
		1.5+1.5i	1.5-1.5i	6.75i	-4.5i	1+1.5i	1.5i	1+1.5i	1.5i
\mathbf{z}_5	-1-i	0.5-i	-2.5-i	-4.5-4.5i	-0.22-0.22i	-1-i	-i	-i	-1-i
		0.5-i	2.5+i	-4.5-4.5i	-3.18+3.18i	-i	-1-i	-i	-1-i

¹NAN 为除以零异常,是本程序意料之内。下文同。详见 1.c.ii.

Table 2 涉及两个复数的运算符验证结果

第一操作数	第二操作数	相加	相减	相乘	相除
\mathbf{z}_1	\mathbf{z}_2	3+2i	2i	2.25+3i	1.5+2i
	\mathbf{z}_3	1.5+2i	1.5+2i	0	NAN
	z_4	1.5+3.5i	1.5+0.5i	-3+2.25i	2-1.5i
	z_5	0.5+i	2.5+3i	0.5-3.5i	-2.47-0.35i
	z_1	3+2i	-2i	2.25+3i	0.9-1.2i
_	\mathbf{z}_3	1.5	1.5	0	NAN
\mathbf{z}_2	z_4	1.5+1.5i	1.5-1.5i	2.25i	-1.5i
	z_5	0.5-i	2.5+i	-1.5-1.5i	-1.06+1.06i
	z_1	1.5+2i	-1.5-2i	0	0
_	\mathbf{z}_2	1.5	-1.5	0	0
z_3	z_4	1.5i	-1.5i	0	0
	$oldsymbol{z}_5$	-1-i	1+i	0	0
	z_1	1.5+3.5i	-1.5-0.5i	-3+2.25i	1.2+0.9i
_	\mathbf{z}_2	1.5+1.5i	-1.5+1.5i	2.25i	1.5i
Z_4	\mathbf{z}_3	1.5i	1.5i	0	NAN
	\mathbf{z}_5	-1+0.5i	1+2.5i	1.5-1.5i	-1.06-1.06i
\mathbf{z}_5	\mathbf{z}_1	0.5+i	-2.5-3i	0.5-3.5i	-1.4+0.2i
	\mathbf{z}_2	0.5-i	-2.5-i	-1.5-1.5i	-1-i
	z_3	-1-i	-1-i	0	NAN
	z_4	-1+0.5i	-1-2.5i	1.5-1.5i	-1+i