DAHLGREN DIVISION NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5100

NSWCDD/TR-05/89

AN INVERSE OF THE CIRCULAR COVERAGE FUNCTION

BY ARMIDO DIDONATO

FORCE WARFARE SYSTEMS DEPARTMENT

JANUARY 2005

Approved for public release; distribution is unlimited.

REPORT DOCUMEN	TATIO	N PAGE			OMB No. 070	
Public reporting burden for this collection of maintaining the data needed, and completing suggestions for reducing this burden, to Washi and to the Office of Management and Budget,	and reviewing ngton Headquart	the collection of information. Sencters Services. Directorate for information	d comments regard ation Operations and	ing this burden	or any other aspec	et of this collection of information, including
1. AGENCY USE ONLY (Leave		2. REPORT DATE	. OII, DC 20303.	3. REPO	RT TYPE AN	ID DATES COVERED
	,	January 200)5		Fir	
4. TITLE AND SUBTITLE						IG NUMBERS
An Inverse of the Circular Co	overage F	unction				
6. AUTHOR(s)						
Armido DiDonato						
7. PERFORMING ORGANIZAT	TION NAMI	E(S) AND ADDRESS(ES)			RMING ORGANIZATION RT NUMBER
Naval Surface Warfare Cente	er				NOW	CDD/TD 07/00
Dahlgren Division (Code T1					NSW	CDD/TR-05/89
17320 Dahlgren Road						
Dahlgren, VA 22448-5100						
9. SPONSORING/MONITORIN	IG AGENC	Y NAME(S) AND ADDRE	ESS(ES)			ORING/MONITORING Y REPORT NUMBER
					AGENO	THE OR NOMBER
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABI	LITY STAT	EMENT			12b. DISTR	IBUTION CODE
Approved for public release;	distributi	on is unlimited.				
13. ABSTRACT (Maximum 200	words)					
This report describes an a two-dimensional normal dist (h, k); R, the radius of the cirwithin C.	ribution fi	unction with mean zer	o and equal	unit stand	lard deviation	ons and a target located at
A Fortran 77 subroutine, $10^{-8} \le P \le 1 - 10^{-8}$ and $0 \le d$	INVCIR, $1 \equiv (h^2 + k^2)$	is available that is base $0^{1/2} \le 10^8$.	ed on INCII	R, which p	oroduces R t	o eight significant digits for
A table of R versus P and	` '	,				
						.
14. SUBJECT TERMS algorithm, INCIR, inverse, C	Circular Co	overage Function CIR	INVCIR			15. NUMBER OF PAGES 48
argorium, ir verri, ir verse, e	in Cultur Co	overage i unionom, ente	i, ii v ciit			16. PRICE CODE
,						
17. SECURITY CLASSIFICATION OF REPORTS		ITY CLASSIFICATION S PAGE	19. SECURI OF ABS		FICATION	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	J	JNCLASSIFIED	U	NCLASS	IFIED	UL
NSN 7540-01-280-5500			1			Standard Form 298 (Rev 2-89)

FOREWORD

The algorithm described in this report is the basis for the Fortran software of an important statistical function that is not contained in the NSWC Library of Mathematics Subroutines. The software can be used in targeting studies when statistical confidence regions are required.

Dr. John Crigler (B10) supplied the external distribution list.

The editorial assistance of David Bozicevich (B60) is appreciated.

This document was reviewed by Robert G. Hill, Head, Warfare Systems Division.

Approved by:

REUBEN S. PITTS, Head

Force Warfare Systems Department

CONTENTS

Section		Page
I	INTRODUCTION	1
II	ANALYSIS TO DETERMINE R ($\bar{R} = R u$)	2
III	DESCRIPTION OF THE FORTRAN 77 SUBROUTINE INVCIR	4
IV	REFERENCES	5
	APPENDIX A-TABULATION OF R AS A FUNCTION OF P and d	. A-1
	DISTRIBUTION	.(1)

I. INTRODUCTION

The Circular Coverage Function, CIR, defines a probability function P(R,d), [2]. CIR gives the probability that a shot falling under a bivariate uncorrelated normal distribution with mean zero and equal standard deviations, u = v, lands in a circle, in the x-y plane, of radius \bar{R} centered at $x = \bar{h}$, $y = \bar{k}$. It can be expressed as

$$P(\bar{R}/u, \, \bar{h}/u, \, \bar{k}/u) = \frac{1}{2\pi u^2} \int_{\bar{h} - \bar{R}}^{\bar{h} + \bar{R}} \int_{\bar{k} - \sqrt{\bar{R}^2 - (x - \bar{h})^2}}^{\bar{k} + \sqrt{\bar{R}^2 - (x - \bar{h})^2}} \exp\left\{-\frac{1}{2}[(\frac{x}{u})^2 + (\frac{y}{u})^2]\right\} \, dy \, dx. \tag{1}$$

Transforming to polar coordinates, with $x - \bar{h} = r \cos \theta$, $y - \bar{k} = r \sin \theta$ yields

$$P(\bar{R}/u, \, \bar{h}/u, \, \bar{k}/u) = \frac{1}{2\pi u^2} \int_0^{\bar{R}} \int_0^{2\pi} \exp\left\{-\frac{1}{2} \left[\left(\frac{\bar{h} + r\cos\theta}{u}\right)^2 + \left(\frac{\bar{k} + r\sin\theta}{u}\right)^2 \right] \right\} r \, d\theta \, dr. \tag{2}$$

Since u = v, the distribution is circular, hence the circle of integration can be taken as offset along the positive x-axis. Thus (2) reduces to

$$P(R, d) = \exp(-d^2/2) \int_0^R \exp[-r^2/2) I_0(rd) r dr,$$
 (3)

where

$$I_0(w) \equiv \frac{1}{\pi} \int_0^{\pi} \exp(w \cos \theta) d\theta.$$
 (4)

Here $I_o(w)$ denotes the modified Bessel function of the first kind and zero order [1, p. 375] and

$$R \equiv \bar{R}/u, h \equiv \bar{h}/u, k \equiv \bar{k}/u, d \equiv \sqrt{(h^2 + k^2)}.$$
 (5)

Introducing the MacLaurin series and the asymptotic expansion for I_0 , [1, p. 375, p. 377], recurrence relations are developed which are used to generate an algorithm that efficiently and accurately evaluates P (see [2]).

The objective of this report is to describe an algorithm upon which a Fortran computer program, INVCIR, is based to determine R, given P, d. This program can be used as a tool in evaluating the accuracy of a weapon.

For example, consider a target located at the origin of the x-y plane and a set of miss distances normally distributed in the x and y directions [6], [7] that are independent, with mean zero and standard deviations u, u. Then, approximating the standard deviation from the data, say û, one asks what is the radius, R, of the circle, C, centered at (h, k), which contains P of the distribution, i.e., for which a shot has a probability P of falling within C [6], [7].

In Appendix A, the six-decimal-digit inverse P(R, d) table of [2] is extended from six-seven significant digits to seven-eight significant digits.

II. ANALYSIS TO DETERMINE R $(\bar{R} = Ru)$

In INVCIR, a special case is treated first. When d=0, then $P=1-\exp(-R^2/2)$. Therefore,

$$R = \sqrt{-2\log(1-P)},$$
 if $d = 0,$ $(IR = 0)^{1}.$ (6)

In order to find R in the general case, where $d \neq 0$ and $P = \hat{P}$ are given, the classical Newton-Raphson root-finding procedure (N-R) is used [4, p. 129]. Denoting the nth approximation or iterate for R by R_n , with d constant,

$$R_{n+1} = R_n - \frac{\exp(-d^2/2) \int_0^{R_n} \exp[-r^2/2) I_0(rd) r dr - \hat{P}}{(\partial P/\partial R)_{R=R_n}}, \quad n = 0, 1, 2, \cdots,$$
 (7)

where

$$\frac{\partial P}{\partial R} = R \exp(-\frac{R^2 + d^2}{2}) I_0(R d), \tag{8}$$

or if R > 1.7 and Rd > 16 (see [2]) then

$$\frac{\partial P}{\partial R} = R \exp\left(-\frac{(R-d)^2}{2}\right) \left[\exp(-R d) I_0(R d)\right]. \tag{9}$$

There are two basic problems associated with using N-R:

- 1. A condition for stopping the iteration procedure is needed, i.e., deciding when an acceptable approximation for R has been reached.
- 2. A value for R_0 , which initiates the N-R, is needed so that rapid convergence is assured.

The first problem was resolved by requiring that the iteration be stopped when

$$|R_{n+1} - R_n| \le R_{n+1} \text{ eps},$$
 (10)

where eps is a prespecified small positive number. It was found unnecessary to utilize the stopping rule:

$$|P(R_{n+1}, d) - \hat{P}| \le \hat{P} \text{ eps.}$$

$$\tag{11}$$

The second problem required extensive testing and some analysis to resolve satisfactorily. The solution adopted distinguishes this work from that carried out in [2]. The reasoning will be heuristic.

Values for R_0 were considered using the results of [3], but those did not do as well, in some cases, as the starting values given below.

By (6), it can be assumed d > 0. Then five choices were made for R_0 depending on the input values of P and d.

¹IR is used in INCIR and defined in the next section.

First, consider expanding the integrand of (3) in a MacLaurin series in the integration variable r and integrating the result. Then one obtains, letting $T = P \exp(d^2/2)$,

$$T = \sum_{j=1}^{j=\infty} a_j R^{2j},$$
 (12)

$$a_1 = 1/2$$
, $a_2 = d^2/16 - 1/8$, $a_3 = d^4/384 - d^2/48 + 1/48$.

Hence, R_0 can be obtained, for a region of the P-d plane, by inverting the series. Thus, with $y \equiv \sqrt{2T}$, $D2 \equiv d^2/2$, the first three terms of the inverted series are used.

$$R_0 = y [1 + (1 - D2) y^2 / 8 + (17 D2^2 - 26 D2 + 13) y^4 / 384], \text{ if } T < .099. (IR = 1) (13)$$

Since, as noted above.

$$P(R, 0) = 1 - \exp(-R^2/2), \tag{14}$$

we extend the use of (6) so that, if the inequality in (13) is not satisfied, then

$$R_0 = \sqrt{-2\log(1-P)},$$
 if $d \le 0.20.$ (IR = 2)

If the inequalities in (13) and (15) do not hold, the three following estimates are used for R_0 with the region of the P-d plane where they apply specified by inequalities. If

$$d \ge 2.5 \text{ or } (P > .99 \text{ and } d \ge .70),$$
 (16)

then

$$R_0 = \sqrt{(d+x)^2 + 1}$$
 if $d+x > .50$, (IR = 3)

where x is given by [1, p. 931, (26.2.2)]

$$P = 1/\sqrt{2\pi} \int_{-\infty}^{x} \exp(-t^2/2) dt,$$
 (18)

and is obtained from the subroutine DPNI $(P, Q, P-.5, x, IN)^2$ of [5].

If the conditions in (16) hold, and $d + x \le .5$, then [1, p. 940, (26.3.26)]

$$R_0 = \sqrt{(2+d^2)B^3}/1.50,^3$$
 $B = x/\sqrt{9a} + 1 - 1/(9a),$ (IR = 4)

where a is defined in (21). Finally, if the conditions in (16) do not hold, then from [3]

$$R_0 = \sqrt{[2 z (1 + d^2)/(1 + D^2)]}, \qquad (IR = 5)$$

where z is given by [1, p. 260, (6.5.1)]

$$P = 1/\Gamma(a) \int_0^z \exp(-t) t^{a-1} dt,$$
 $a \equiv (1 + D2)^2/(1 + d^2),$ (21)

 $^{^2\,\}mathrm{Q} \equiv 1 - \mathrm{P};\,\mathrm{IN}$ is an error parameter.

 $^{^3}$ The factor 1.50 was an adjustment of ours.

and is obtained from the subroutine GAMINV (a, z, zo, P, Q, IND) of [5]. zo is an optional initial approximation for z and IND reports the status of the results.

IR is an output parameter of INVCIR that identifies which R_0 was chosen. (See the next section.)

III. DESCRIPTION OF THE FORTRAN 77 SUBROUTINE INVCIR

In this section, the subroutine INVCIR is discussed further. Its call line is:

Call INVCIR(P, d, R, ij,
$$R_0$$
, IR)

This routine, with 28 supporting routines taken from [5], is written in Fortran 77 in double-precision. Thus, on an IBM PC approximately 15 decimal digits are available. The inputs are P and d. The outputs are R, ij, R_0 , IR. IR plays a dual role, namely as an error parameter and also to indicate the choice for R_0 as noted in the previous section.

If IR is negative, then an unacceptable input has been given. $R=-10^{10}$ is returned. In particular:

If
$$IR = -1$$
 then $P \ge 1$ or $P < 0$.
If $IR = -2$ then $d < 0$.

The integer ij represents the number of calls to the N-R procedure. The output $R = \bar{R}/u$. INVCIR is designed to give a minimum of eight significant digits for R when eps is set to $5 \cdot 10^{-9}$, and P and d are constrained to

$$10^{-8} \le P \le 1 - 10^{-8}, \qquad 0 \le d \le 10^8.$$

The routine is also efficient. Extensive testing showed a maximum for ij of six and an average for ij of three, indicating that the choices for R_0 are quite good.

As an example of how to use the routine, assume P = .40, $\bar{h} = 3.0$, $\bar{k} = 4.0$, u = v = 2.0. Then the input is P = .40, $d = \sqrt{\bar{h}^2 + \bar{k}^2}/u = 2.50$. INVCIR yields ij = 3, $R_0 = 2.45915620$, R = 2.45457329. (see page A-9.) Hence $\bar{R} = R * u = 4.90914658$.

IV. REFERENCES

- 1. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Edited by M. Abramowitz and I. Stegun, Applied Mathematics Series 55, June 1955.
- 2. DiDonato, A.R. and Jarnagin, M.P., A Method for Computing the Generalized Circular Error Function and the Circular Coverage Function, NWL Report #1768, January 1962, Naval Weapons Laboratory, Dahlgren, VA 22448.
- 3. Grubbs, F.E. Approximate Circular and Non-Circular Offset Probabilities of Hitting, Operations Research, <u>12</u>, #1, 1964, pp. 51-62.
- 4. Johnson, L.W. and Riess, R.D., <u>Numerical Analysis</u>, Addison-Wesley Publishing Co., 1977.
- 5. Morris, A.H., NSWC Library of Mathematics Subroutines, NSWCDD/TR-92/425, January 1993, Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA 22448.
- 6. Taub, A.E. and Thomas, M.A., Confidence Intervals for CEP Where Errors are Elliptical Normal, NSWC TR 83-205, November 1983, Naval Surface Weapons Center, Dahlgren, VA 22448.
- 7. Thomas, M.A. and Taub, A.E., Weapon Accuracy Assessment for Elliptical Normal Miss Distances, NSWC/DL TR-3777, January 1978, Naval Surface Weapons Center, Dahlgren, VA 22448.

APPENDIX A

TABULATION OF R AS A FUNCTION OF P AND d

TABLE A-1. TABULATION OF R AS A FUNCTION OF P AND d

Constant value of P on a row. Constant value of d on a column.

Example 1: P = .31, d = .40, R = 0.8963486 see Page A-5 Example 2: P = .9990, d = 20.0, R = 23.113476 See Page A-26

d/P 002 003 006 009 009 009 009 009 009 009 009 009	39 39 39 41 42 42 43 44 45 45 46 47 47 48 49 49 40 40 40 40 40 40 40 40 40 40 40 40 40
1.0 0.1819651 0.2578761 0.3165000 0.3662429 0.4103549 0.4876662 0.5524957 0.5554346 0.5554346 0.5554346 0.5554346 0.5554346 0.5554346 0.5554346 0.6457818 0.6457818 0.6457819 0.6457819 0.7778748 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.873292 0.9629233 0.9409442 0.9409442 0.962923 0.962923 1.0004185 1.1111114 1.11521620 1.11521620 1.11521620	1.253430 1.2735644 1.2936668 1.3137611 1.3338578 1.3539674 1.3741003 1.3942668 1.4144774 1.4347425 1.4550728
0.9 0.1735531 0.2459966 0.3019709 0.3494893 0.3916494 0.4989305 0.4989305 0.5304731 0.5605306 0.5893363 0.6170714 0.6438804 0.6438804 0.6438804 0.6438803 0.7439173 0.7675068 0.7906436 0.8357321 0.8577582 0.8357321 0.85724818 0.9093310 0.90831065 0.9688837 1.0048837 1.0452917 1.0452917 1.0452917 1.1050481 1.1247932 1.1444722 1.1444722 1.1866310669	1.2032286 1.2227573 1.24227573 1.2617932 1.2813210 1.3008688 1.3204469 1.3400652 1.3597339 1.3794633 1.3992636
0.8 0.1663501 0.2358132 0.2358132 0.3350965 0.3755624 0.4165697 0.4465697 0.4465697 0.4785986 0.5089134 0.50737021 0.6173933 0.6173933 0.6173933 0.6173933 0.6173933 0.6173933 0.6173933 0.6173933 0.691344 0.691349 0.8028774 0.8028774 0.8028774 0.8028774 0.8028774 0.8028774 0.8028774 0.8028774 0.8028774 0.80591170 0.8658210 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663043 0.9663045 0.9663	1.1584811 1.1744352 1.1963850 1.2153404 1.2533078 1.2723395 1.2914163 1.3105480 1.3297448 1.3490166 1.3483737
*u, $\dot{\mathbf{d}} = 0.7$ 0.1602388 0.2271661 0.2789066 0.3228548 0.3618684 0.3974105 0.4303489 0.4612480 0.4904998 0.5183894 0.5451318 0.5708943 0.5958099 0.7108875 0.7108875 0.7324596 0.7745328 0.7324596 0.7745328 0.7951025 0.8154005 0.8252836 0.8749137 0.8943632 0.9136503 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036 0.9518036	1.192667 1.1376817 1.1560966 1.1745213 1.1929654 1.2114386 1.2299504 1.2485105 1.2671284 1.3671284 1.3045772
0.6 0.1551215 0.2199208 0.2700229 0.3125848 0.3503729 0.3848030 0.4167150 0.4466553 0.4466553 0.4466553 0.4750031 0.5020344 0.5529356 0.5770922 0.5770922 0.6005374 0.6005374 0.6005374 0.6005374 0.6005374 0.6005374 0.6005374 0.6005374 0.6005374 0.6005374 0.6005374 0.6005374 0.6887183 0.77096522 0.77096622 0.7709629 0.7709629 0.7709629 0.7709629 0.7709629 0.7709629 0.7709629 0.7709629 0.7709629 0.7709629 0.7709629 0.7709629 0.99593283 0.99593283 0.99593283 0.99593283 0.99593283 0.99593283	1.0855724 1.1084581 1.1214266 1.1393675 1.1573302 1.1573241 1.1933586 1.2114431 1.2295870 1.2477999 1.2660915
0.5 0.5 0.1509174 0.2139659 0.2027179 0.3041361 0.3409114 0.3744213 0.405428 0.405428 0.4346273 0.4622239 0.4885408 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5137806 0.5138198 0.6907495 0.7708004 0.7305409 0.7500017 0.7881898 0.8622476 0.8622476 0.8622476 0.8622476 0.8622476 0.8622476 0.8622476 0.8622476 0.9841463 0.9695687 0.99518911	1.0573288 1.0748265 1.0923288 1.1098448 1.1273840 1.149555 1.1625684 1.1802320 1.1979555 1.2157484 1.2336200
R(P, d) where probability P 0.3 0.4 0.1450026 0.2055839 0.2092108 0.2524309 0.2568827 0.3597813 0.3333484 0.38507813 0.3861198 0.4441773 0.4694763 0.4694763 0.4694763 0.4694763 0.4694763 0.4777352 0.6516984 0.5516984 0.5516984 0.5516984 0.5516984 0.6539216 0.6539216 0.6639216 0.6639216 0.6639216 0.6639216 0.70721993 0.7	1.0344338 1.0515732 1.0687180 1.0858773 1.1030602 1.1202758 1.1375330 1.1548409 1.1722085 1.1896452 1.2071602
	1.0167751 1.0167751 1.0504935 1.0673703 1.0842709 1.1012040 1.1181785 1.1352034 1.152876 1.1694402 1.1866703
R = 0.2 0.1432016 0.2030310 0.2492967 0.2886052 0.3235096 0.3553167 0.3848017 0.4124689 0.438684 0.4636546 0.5547384 0.5547384 0.5547384 0.5547384 0.5547384 0.5547389 0.5107134 0.5758460 0.5964435 0.6557031 0.7728032 0.6935106 0.7728032 0.7728393 0.893312 0.8359390 0.8359390 0.8359390 0.8359390 0.8359390 0.8530734 0.8039372 0.8039372 0.8039372 0.9039372 0.9039372	1.0042476 1.0042476 1.0208997 1.0375577 1.0542304 1.0709267 1.0876553 1.1044251 1.1212447 1.1381232 1.1720925 1.1720925
0.1 0.1421317 0.2015141 0.2474344 0.2864493 0.3210931 0.3526628 0.403886 0.4601925 0.4601925 0.4601925 0.5505974 0.5108905 0.6508103 0.7779638	0.9967672 1.0132961 1.0298308 1.0463802 1.0629530 1.0795580 1.0962038 1.1128993 1.1296531 1.1464742 1.1633717
0.0 0.1417768 0.2468166 0.2468166 0.2468166 0.2357341 0.3502914 0.3517823 0.4083665 0.4590436 0.4590436 0.5505140 0.5056350 0.5905140 0.506801857 0.6680472 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.6866183 0.7049275 0.7049275 0.704020	0.9942800 1.0107677 1.0272612 1.0437693 1.0603008 1.0768644 1.0934688 1.1101226 1.1268347 1.1436140 1.1604693
$\begin{array}{c} P/d \\ 0.01 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.05 \\ 0.0$	339 340 350 350 350 350 350 350 350 350 350 35

	d/P	. 15.	.52	553		.56	75.	ς Σ	60. 09.	.61	.62	.63	40. 73.	99	29.	89.	69.	.70	.71	.72	.73	47.	.75 76	97.	.78	.79	.80	.81	8. 8.	8 2 8	. 8 . 73	98.	.87	× 0	86. 0	06.	26.	.93	.94	.95	96.	.97	86. 86.
	1.0	1.4754791 1.4959722	1.5165634	1.5372641	1.5390802 1.5790419	1.6001438	1.6214051	1.6428396	1.6862863	1.7083296	1.7306083	1.7531404	1.77990419	1 8224534	1.8462027	1.8703149	1.8948173	1.9197395	1.9451138	1.9709753	1.9973629	2.0243193	2.0518916	2.0801325 2.1091008	2.1388626	2.1694924	2.2010753	2.2337084	2.2675036	2.3025911 2.3391233	2.3772808	2.4172796	2.4593812	2.5039071	2.5512558	9.6566389	2.7162215	2.7819292	2.8555391	2.9397626	3.0390568	3.1615919	3.3251960 3.5844940
	0.0	1.4191453 1.4391192	1.4591963	1.4793876	1.4991049 1.5201602	1.5407658	1.5615347	1.5824804	1,6249599	1.6465242	1.6683268	1.6903853	1.7127186	1 7582909	1.7815747	1.8052229	1.8292624	1.8537227	1.8786356	1.9040361	1.9299627	1.9564577	1.9835680	2.0113458 2.0398496	2.0691448	2.0993057	2.1304165	2.1625739	2.1958890	2.2304912 2.2665321	2.3041910	2.3436827	2.3852672	2.4292642	2.4760730	9 5802191	2.5392899	2.7043605	2.7772926	2.8607844	2.9592716	3.0808862	3.2433779 3.5011446
n	0.8	1.3083737	1.4073861	1.4270632	1.4408092 1.4668159	1.4869156	1.5071810	1.5276254	1.5492028 1.5691078	1.5901761	1.6114840	1.6330489	1.0548894	1.6994780	1.7222702	1.7454268	1.7689743	1.7929419	1.8173611	1.8422667	1.8676967	1.8936930	1.9203022	1.94755793	2.0043562	2.0340012	2.0645911	2.0962215	2.1290029	2.1630636 2.1985541	2.2356524	2.2745718	2.3155705	2.3589659	2.4051545 9.4546411	2.4040411	2.5663606	2.6306910	2.7028322	2.7854658	2.8830018	3.0035261	3.1646922 3.4206239
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	0.7	1.3234280 1.3423767	1.3614338	1.3806101	1.3999109 1.4193656	1.4389683	1.4587377	1.4786866	1.5191794	1.5397529	1.5605658	1.5816353	1.6029797	1.6465731	1.6688656	1.6915207	1.7145647	1.7380263	1.7619369	1.7863306	1.8112453	1.8367223	1.8628077	1.8895528	1.9452584	1.9743562	2.0043911	2.0354579	2.0676662	2.1011430 2.1360375	2.1725261	2.2108203	2.2511759	2.2939077	2.3394089	2.3661601	2.49836199	2.5618534	2.6330926	2.7147410	2.8111768	2.9304297	3.0900358 3.3437826
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	0.6	1.2844716 1.3029504	1.3215381	1.3402454	1.3780630	1.3971966	1.4164963	1.4359750 1.4556469	1.4550462 1.4755242	1.4956241	1.5159618	1.5365543	1.55/4190	1.6000475	1.6218530	1.6440178	1.6665680	1.6895318	1.7129402	1.7368270	1.7612294	1.7861885	1.8117497	1.8379637	1.8925836	1.9211253	1.9505940	1.9810835	2.0127022	2.0455757 2.0798515	2.1157043	2.1533432	2.1930215	2.2350508	2.27.98202	2.3210234	2.4363450	2.4989205	2.5691671	2.6497224	2.7449261	2.8627397	3.0205571 3.2717559
= P(R, d),	0.5	1.2515802	1.2878058	1.3060918	1.3430644	1.3617737	1.3806478	1.3996992	1.4383882	1.4580547	1.4779565	1.4981102	1.5185337	1.5602437	1.5816205	1.6033282	1.6254167	1.6479137	1.6708498	1.6942583	1.7181761	1.7426434	1.7677053	1.7934117	1.8469885	1.8749929	1.9039125	1.9338401	1.9648823	1.9971635 2.0308294	2.0660524	2.1030391	2.1420399	2.1833626	2.22/3919 9.9746179	2.2140113	2.3814295	2.4430535	2.5122606	2.5916607	2.6855484	2.8018057	2.9576587 3.2059990
	0.4	1.2247631 1.2424635	1.2602714	1.2781972	1.2902314 1.3144450	1.3327895	1.3512967	1.3099793	1.4079235	1.4272135	1.4467358	1.4665069	1.4865443 1.5068666	1.5274942	1.5484485	1.5697531	1.5914332	1.6135164	1.6360327	1.6590151	1.6824998	1.7065265	1.7311397	1.7823284	1.8090209	1.8365365	1.8649549	1.8943676	1.9248798	1.9566144 1.9897149	2.0243518	2.0607290	2.0990935	2.1397495	2.1830767	9 9708979	2.3347256	2.3954235	2.4636106	2.5418664	2.6344368	2.7491161	2.9029443 3.1482673
= R(P, d) where probability P	0.3	1.2039874 1.2214011	1.2389211	1.2565576	1.292222	1.3102725	1.3284836	1.3468679 1.3654389	1.3842082	1.4031924	1.4224059	1.4418649	1.4615869 1.4815903	1.5018948	1.5225220	1.5434949	1.5648384	1.5865798	1.6087487	1.6313776	1.6545022	1.6781620	1.7024005	1.7528142	1.7791052	1.8062084	1.8342028	1.8631785	1.8932398	1.9245076	1.9912569	2.0271080	2.0649214	2.1049972	2.1477108 9.1035401	9 9421089	2.2431082	2.3571194	2.4243879	2.5016046	2.5929668	2.7061811	2.8581000 3.1005102
R = R(0.2	1.1892017 1.2064064	1.2237165	1.2411418	1.2360926 1.2763802	1.2942150	1.3122091	1.3303744	1.346723	1.3860299	1.4050157	1.4242445	1.4437334 1.4635006	1 4835659	1.5039503	1.5246767	1.5457698	1.5672565	1.5891661	1.6115307	1.6343858	1.6577702	1.6817272	1.7063049	1.7575445	1.7843355	1.8120082	1.8406517	1.8703691	1.9012802	1.9672715		2.0401047		2.1219000	9 9163045			2.3955991		2.5623664	2.6743833	2.8247206 3.0646684
	0.1	1.1803547 1.1974326	1.2146150	1.2319120	1.2495557 1.2668909	1.2845945	1.3024561	1.3204879	1.3571134	1.3757346	1.3945811	1.4136688	1.4330148 1.4526372	1 4725555	1.4927907	1.5133655	1.5343044	1.5556340	1.5773837	1.5995851	1.6222735	1.6454875	1.6692700	1.0930088	1.7445360	1.7711325	1.7986045	1.8270404	1.8565427	1.8872303	1.9527451	1.9879355	2.0250538	2.0643949	2.1003278 9.1513999	2.1013222 9.100000E	2.2531529	2.3119452	2.3780090	2.4538510	2.5435981	2.6548287	2.8041171 3.0424074
	0.0	1.1774100 1.1944454	1.2115851	1.2288390	1.2637307	1.2813903	1.2992075	1.3171944	1.3537287	1.3723036	1.3911032	1.4101434	1.4294413 1.4490149	1 4688837	1.4890686	1.5095922	1.5304790	1.5517557	1.5734512	1.5955975	1.6182295	1.6413858	1.6651092	1.0894475	1.7401883	1.7667189	1.7941226	1.8224880	1.8519171	1.8825285	1.9478809	1.9829840	2.0200103	2.0592540	2.1010830 2.1459660	9 1045130	2.2475447	2.3061917	2.3720922	2.4477468	2.5372725	2.6482288	2.7971496 3.0348543
	P\d	.5. 15.	.52	.53	55.	.56	.57	υ. Σ	60. 09.	.61	.62	.63	40. 73.	99	29.	89.	69.	.70	.71	.72	: :3	45.	. 75 76	97:	24.	62.	.80	.81	85.5	ÿ	2.85	98.	.87	× ×		 	66	.93	.94	.95	96.	.97	86. 86.

	d/P	0. 5	20.	20.	.05	90.	.07	80:	60.	.10	11.	.12	.13	.14	.15	.16	.17	.18	.19	.20	.21	.22	.23	.24	.25	.26	.27	.28	.29	.30	.31	. 52 	ა. გა _	4 rc	.36	.37	.38	.39	.40	.41	.42	.43	.44	.45	.46	747	84.	.49 .50
	2.0	0.3778935	0.5205225	0.7263118	0.8034918	0.8717623	0.9333800	0.9898149	1.0420858	1.0909313	1.1369066	1.1804405	1.2218720	1.2614744	1.2994714	1.3360489	1.3713632	1.4055473	1.4387151	1.4709655	1.5023846	1.5330483	1.5630235	1.5923699	1.6211411	1.6493851	1.6771456	1.7044620	1.7313707	1.7579048	1.7840950	1.8099696	1.8355549	1.8859549	1.9108143	1.9354743	1.9599545	1.9842732	2.0084484	2.0324968	2.0564351	2.0802790	2.1040439	2.1277450	2.1513969	2.1750143	2.1986115	2.2222028 2.2458023
	1.9	0.3447113	0.4824934	0.6703437	0.7437057	0.8089396	0.8680724	0.9224291	0.9729314	1.0202503	1.0648921	1.1072491	1.1476328	1.1862950	1.2234428	1.2592484	1.2938574	1.3273937	1.3599641	1.3916611	1.4225658	1.4527496	1.4822757	1.5112007	1.5395752	1.5674449	1.5948513	1.6218322	1.6484222	1.6746529	1.7005538	1.7261521	1.7514731	1.8013765	1.8260020	1.8504370	1.8747003	1.8988098	1.9227827	1.9466355	1.9703843	1.9940445	2.0176312	2.0411591	2.0646427	2.0880962	2.1115336	2.1349691 2.1584166
n	1.8	0.3155363	0.4452034	0.6193184	0.6887594	0.7508086	0.8072894	0.8593954	0.9079584	0.9535855	0.9967358	1.0377664	1.0769611	1.1145504	1.1507241	1.1856406	1.2194340	1.2522190	1.2840944	1.3151462	1.3454498	1.3750720	1.4040718	1.4325021	1.4604107	1.4878405	1.5148305	1.5414166	1.5676313	1.5935049	1.6190652	1.6443381	1.6041160	1.7186667	1.7430173	1.7671877	1.7911961	1.8150597	1.8387952	1.8624185	1.8859451	1.9093901	1.9327680	1.9560933	1.9793799	2.0026419	2.0258929	2.0491466 2.0724169
$\bar{\mathbf{d}} = \mathbf{d} *$	1.7	0.2899508	0.4083401	0.5731906	0.6387199	0.6975280	0.7512630	0.8010032	0.8475009	0.8913054	0.9328326	0.9724064	1.0102850	1.0466780	1.0817586	1.1156717	1.1485401	1.1804690	1.2115494	1.2418604	1.2714717	1.3004451	1.3288353	1.3566915	1.3840581	1.4109752	1.4374793	1.4636039	1.4893796	1.5148349	1.5399958	1.5648871	1.5895313	1.6381637	1.6621911	1.6860504	1.7097591	1.7333336	1.7567899	1.7801434	1.8034089	1.8266010	1.8497337	1.8728210	1.8958765	1.9189136	1.9419459	1.9649867 1.9880493
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	1.6	0.2675543	0.577352	0.5317959	0.5935229	0.6491232	0.7000963	0.7474226	0.7917852	0.8336833	0.8734946	0.9115135	0.9479748	0.9830694	1.0169549	1.0497637	1.0816078	1.1125834	1.1427738	1.1722518	1.2010812	1.2293188	1.2570153	1.2842160	1.3109619	1.3372902	1.3632347	1.3888267	1.4140947	1.4390651	1.4637625	1.4882099	1.5124286	1.5602599	1.5839096	1.6074052	1.6307630	1.6539989	1.6771280	1.7001650	1.7231242	1.7460194	1.7688642	1.7916721	1.8144560	1.8372292	1.8600046	1.8827952 1.9056140
= P(R, d),	1.5	0.2479760	0.5504059	0.4948814	0.5529946	0.6054978	0.6537658	0.6986961	0.7409137	0.7808748	0.8189245	0.8553317	0.8903108	0.9240360	0.9566515	0.9882780	1.0190182	1.0489600	1.0781797	1.1067439	1.1347113	1.1621340	1.1890586	1.2155267	1.2415763	1.2672416	1.2925541	1.3175423	1.3422330	1.3666507	1.3908183	1.4147571	1.4384871	1.4853956	1.5086089	1.5316834	1.5546346	1.5774774	1.6002261	1.6228948	1.6454970	1.6680459	1.6905546	1.7130358	1.7355023	1.7579665	1.7804411	1.8029380 1.8254715
	1.4	0.2308816	0.3203808	0.4621389	0.5168818	0.5664582	0.6121378	0.6547489	0.6948674	0.7329134	0.7692046	0.8039880	0.8374609	0.8697833	0.9010876	0.9314848	0.9610691	0.9899213	1.01811115	1.0457010	1.0727437	1.0992875	1.1253754	1.1510458	1.1763336	1.2012704	1.2258854	1.2502050	1.2742539	1.2980550	1.3216293	1.3449969	1.3081/05	1.3311630	1.4367587	1.4593538	1.4818409	1.5042340	1.5265468	1.5487925	1.5709839	1.5931337	1.6152542	1.6373578	1.6594565	1.6815625	1.7036877	1.7258444 1.7480446
= R(P, d) where probability P	1.3	0.2159751	0.3037200	0.4332337	0.4848828	0.5317431	0.5749958	0.6154107	0.6535226	0.6897214	0.7243015	0.7574921	0.7894757	0.8204005	0.8503891	0.8795440	0.9079524	0.9356890	0.9628187	0.9893980	1.0154769	1.0410998	1.0663063	1.0911320	1.1156092	1.1397674	1.1636333	1.1872318	1.2105857	1.2337161	1.2566430	1.2793848	1.3019590	1.3243821	1.3688368	1.3908977	1.4128662	1.4347554	1.4565783	1.4783473	1.5000748	1.5217726	1.5434526	1.5651266	1.5868060	1.6085027	1.6302280	1.6519938 1.6738118
R = R(1.2	0.2029977	0.2873001	0.4078284	0.4566749	0.5010531	0.5420692	0.5804435	0.6166762	0.6511317	0.6840852	0.7157505	0.7462980	0.7758660	0.8045688	0.8325020	0.8597469	0.8863730	0.9124408	0.9380030	0.9631062	0.9877916	1.0120963	1.0360534	1.0596931	1.0830427	1.1061274	1.1289703	1.1515927	1.1740144	1.1962540	1.2183290	1.2402556	1.2837250	1.3052966	1.3267776	1.3481812	1.3695197	1.3908054	1.4120502	1.4332657	1.4544634	1.4756545	1.4968503	1.5180620	1.5393006	1.5605774	1.6032907
	1.1	0.1917251	0.2710596	0.3855986	0.4319351	0.4740750	0.5130604	0.5495696	0.5840737	0.6169154	0.6483536	0.6785895	0.7077831	0.7360646	0.7635412	0.7903028	0.8164257	0.8419753	0.8670082	0.8915742	0.9157167	0.9394747	0.9628828	0.9859723	1.0087714	1.0313059	1.0535994	1.0756737	1.0975488	1.1192434	1.1407751	1.1621603	1.1834143	1.2255870	1.2465330	1.2674027	1.2882083	1.3089619	1.3296750	1.3503591	1.3710253	1.3916845	1.4123475	1.4330252	1.4537283	1.4744676	1.4952538	1.5160978
	1.0	0.1819651	0.2378701	0.3662429	0.4103549	0.4505002	0.4876662	0.5224957	0.5554346	0.5868077	0.6168599	0.6457818	0.6737248	0.7008119	0.7271448	0.7528084	0.7778748	0.8024060	0.8264556	0.8500705	0.8732920	0.8961567	0.9186976	0.9409442	0.9629233	0.9846593	1.0061746	1.0274897	1.0486237	1.0695945	1.0904185	1.11111114	1.13108/9	1.1321020	1.1928555	1.2130999	1.2332919	1.2534430	1.2735644	1.2936668	1.3137611	1.3338578	1.3539674	1.3741003	1.3942668	1.4144774	1.4347425	1.4550728 1.4754791
	P\d	10.	20.	50.	.05	90.	.07	80.	60.	.10	.11	.12	.13	.14	.15	.16	.17	.18	.19	.20	.21	.22	.23	.24	.25	.26	.27	.28	.29	.30	.31	.32	5. 5.	1. E.	.36	.37	.38	.39	.40	.41	.42	.43	44	.45	.46 1	74.	84.	.50

	d/P	.51	.52			.56	.57	υ Σ	90.	.61	.62	.63	40. 7.0	99	29.	89.	69.	.70	.71	2.5	57.	7. 7.	97.	77.	.78	.79	08.		83	.84	8. 28. 9		. <u>%</u>	88	90	.91	.92	.93	у. 4 д	.96.	26.	86.	66:
	2.0	2.2694243	2.2930831	2.3167931	2.3644259	2.3883788	2.4124435	2.4366360	2.4854720	2.5101511	2.5350291	2.5601261	2.585463U 2.6110629	2.6369474	2.6631439	2.6896788	2.7165813	2.7438831	2.7716182	2.7998241	2.8285415	2.837.8132	2.9182353	2.9494978	2.9815512	3.0144729	3.0483509	3 1193932	3.1568076	3.1956862	3.2362149	3.3231591	3.3701741	3.4200736	3.4733823	3.5307830	3.5931888	3.6618624	3.7386250	3.9293071	4.0561414	4.2249700	4.4915326
	1.9	2.1554160 2.1818901	2.2054037	2.2289717	2.2763289	2.3001479	2.3240812	2.3481446	2.3967288	2.4212848	2.4460415	2.4710189	2.49623 <i>(1</i> 2.5917202	2.5474900	2.5735722	2.5999940	2.6267843	2.6539747	2.6815993	2.7096952	2.7383032	2.7972387	2.8276705	2.8588244	2.8907690	2.9235817	2.9573502	2.9921/49 3.0281713	3.0654736	3.1042387	3.1446524	3.2313599	3.2782525	3.3280260	3.3812044	3.4384697	3.5007334	3.5692566	3.6458583	3.8361693	3.9627774	4.1313272	4.3974944
n	1.8	2.0957174	2.1190620	2.1424647 2.1659399	2.1895019	2.2131657	2.2369467	2.2608607	2.3091537	2.3335676	2.3581844	2.3830238	2.4081066 2.4334549	2.4590920	2.4850430	2.5113349	2.5379967	2.5650595	2.5925575	2.6205277	2.6490106 2.6780509	2.01.000.2	2.7380058	2.7690361	2.8008571	2.8335458	2.8671900	2.9018898	2.9749359	3.0135728	3.0538565	3.1402971	3.1870518	3.2366836	3.2897157	3.3468288	3.4089334	3.4772883	3.5537099 3.6400666	3.7436070	3.8699632	4.0382033	4.3039327
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{d}$	1.7	2.0111473	2.0342941	2.0575036	2.1041668	2.1276495	2.1512529	2.1749926	2.2229465	2.2471952	2.2716495	2.2963288	2.3212538 2.3464464	2.3719299	2.3977291	2.4238709	2.4503841	2.4772998	2.5046519	2.5324773	2.5608164 2.5897135	2.563/155	2.6493840	2.6802726	2.7119519	2.7444989	2.7780010	2.8125582	2.8853163	2.9238072	2.9639430	3.0039450	3.0966791	3.1461506	3.1990172	3.2559585	3.3178834	3.3860488	3.4622679 3.5402047	3.6517007	3.7777752	3.9456696	4.2109117
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	1.6	1.9284741	1.9513887	1.9743714	2.0205959	2.0438662	2.0672615	2.0907972	2.1383542	2.1624097	2.1866739	2.2111662	2.2359U7U 2.2609180	2.2862224	2.3118448	2.3378119	2.3641522	2.3908969	2.4180795	2.4457368	2.4739091	2.5020403	2.5619818	2.5927067	2.6242225	2.6566061	2.6899446	2.7599000	2.7967648	2.8350882	2.8750546	2.9106646	3.0072658	3.0565543	3.1092325	3.1659785	3.2276995	3.2956499	3.37.16397 3.4524980	3.5605483	3.6863057	3.8538119	4.1185086
= P(R, d),	1.5	1.8480527	1.8706950	1.8934115	1.9391211	1.9621421	1.9852930	2.0085891	2.0520401	2.0795091	2.1035503	2.1278232	2.1523480 9.1771469	2.2022406	2.2276559	2.2534183	2.2795565	2.3061011	2.3330856	2.3605466	2.3885241 2.4170691	2.4170021	2.4760209	2.5065542	2.5378799	2.5700736	2.6032221	2.63/424/	2.7094686	2.7475983	2.7873691	2.8230010	2.9189753	2.9680535	3.0205153	3.0770374	3.1385249	3.2062297	3.2819580	3.4702701	3.5956680	3.7627354	4.0268178
where probability P	1.4	1.7703008	1.7926254	1.8150313	1.8601391	1.8828682	1.9057331	1.928/486	1.9752937	1.9988564	2.0226360	2.0466515	2.0709227	2.1203189	2.1454909	2.1710132	2.1969139	2.2232236	2.2499756	2.2772063	2.3049553	2.3532003	2.3917748	2.4220859	2.4531890	2.4851605	2.5180868	2.5520670	2.6236635	2.6615675	2.7011103	2.7860372	2.8320134	2.8808478	2.9330591	2.9893222	3.0505401	3.1179617	3.1933889 2.2705601	3.3810168	3.5060037	3.6725709	3.9359560
P, d) where p	1.3	1.6956939	1.7176523	1.7396994	1.7841107	1.8065016	1.8290343	1.8517235	1.8976326	1.9208851	1.9443593	1.9680739	1.9920485 2.0163043	2.0408636	2.0657506	2.0909912	2.1166134	2.1426475	2.1691265	2.1960866	2.2235672	2.2310120	2.3095920	2.3396406	2.3704822	2.4021925	2.4348578	2.4085767 2.5034628	2.5396480	2.5772870	2.6165627	2.7009451	2.7466423	2.7951917	2.8471103	2.9030712	2.9639750	3.0310671	3.1061446 2.1010470	3.2929801	3.4174926	3.5834843	3.8460708
R = R(P, d)	1.2	1.6032907 1.6247501	1.6462937	1.6679336	1.7115519	1.7335562	1.7557089	1.7780240 1.8005165	1.8232019	1.8460968	1.8692184	1.8925851	1.9162164	1.9643571	1.9889126		2.0391227				2.1448053 9.1795379						2.3539346	2.387.3460			2.5340871								3.0204989 3.1058600		3.3303669	3.4956897	3.7573517
	1.1	1.5580039	1.5790886	1.6002767	1.6430117	1.6645840	1.6863105	1.7903838	1.7525587	1.7750488	1.7977705	1.8207417	1.8439817	1.8913518	1.9155274	1.9400634	1.9649872	1.9903288	2.0161206	2.0423982	2.0692005 2.0965706	2 1245561	2.1532100	2.1825913	2.2127666	2.2438110	2.2758099	2.3088609	2.3785880	2.4155482	2.4541388	2.43437.00	2.5821059	2.6299238	2.6810916	2.7362778	2.7963766	2.8626250	2.9368086	3.1216236	3.2449317	3.4094684	3.6700480
	1.0	1.4754791 1.4959722	1.5165634	1.5372641	1.5790419	1.6001438	1.6214051	1.6428390	1.6862863	1.7083296	1.7306083	1.7531404	1.7990419	1.8224534	1.8462027	1.8703149	1.8948173	1.9197395	1.9451138	1.9709753	1.9973629 2 0243193	2.0243193	2.0801325	2.1091008	2.1388626	2.1694924	2.2010753	2.2337084	2.3025911	2.3391233	2.3772808	2.4112130	2.5039071	2.5512588	2.6019474	2.6566382	2.7162215	2.7819292	2.8555391 2.85553391	3.0390568	3.1615919	3.3251960	3.5844940
	P/d	.51	.52		55.	.56	.57	ο. Σ	60.	.61	.62	.63	9. R	99	29.	89.	69.	.70	.71	2.5	S. 5	7. 7.	92:	12.	.78	.79	.80 13	δ. %	83	.84	85. 75. %		88.	88	.90	.91	.92	.93	ъс. 40. 70.	96: 96:	.97	86.	66.

	d/P	.02	.03	40.	90:	.07	80.	60.	.10	Ξ;	21.	. L3	.15	.16	.17	.18	.19	07.	.21	77.5	57.5	4 с	9.6	27	28	.29	.30	.31	.32	 4	4 წ	.36	.37	.38 8	ეგ. ე	.40	.41	24.	24. Σ 4	4. 4 4. 4	04. 04.	74	.48	.49	.50
	3.0	1.2148056	1.3719160	1.4916904	1.5899320 1.6740440	1.7481234	1.8146886	1.8754043	1.9314314	1.9836136	2.0325847	2.0788333	2.1646291	2.2047389	2.2432837	2.2804391	2.3163540	2.3511557	2.3849541	2.4178452	2.4499127	2.4812307 9.5118651	2.5418747	2.5713124	2.6002258	2.6286582	2.6566492	2.6842350	2.7114488	2.7383214	2.7040013 2.7011556	2.8171687	2.8429443	2.8685043	2.8938698	2.9190606	2.9440959	2.9689939	2.9937722	9.0184411 9.0490971	3.0450371	3.0920215	3.1164478	3.1408508	3.1652458
	2.9	1.1309256	1.2858908	1.4043797	1.5851802	1.6587340	1.7248683	1.7852210	1.8409357	1.8928447	1.9415735	1.9876049 2.0313198	2.0730246	2.1129695	2.1513620	2.1883758	2.2241585	2.2588364	2.2925183	2.3252992	2.3572625	2.3884815	2.415021.7	2.4782929	2.5071238	2.5354770	2.5633917	2.5909040	2.6180469	2.6448510	2.0713440 9.6975544	2.7235051	2.7492199	2.7747209	2.8000289	2.8251637	2.8501443	2.8749889	2.899/149	2.9245595	2.9468/80	2.9977658	3.0221448	3.0465014	3.0708507
n	2.8	1.0491916	1.2015675	1.3185180	1.4974804	1.5704184	1.6360503	1.6959815	1.7513350	1.8029290	1.8513793	1.897.1616	1.9821517	2.0219089	2.0601282	2.0969814	2.1326144	2.1671520	2.2007023	2.2333591	2.2652049	2.2903125 9.3967466	2.3565652	2.3858202	2.4145585	2.4428230	2.4706524	2.4980825	2.5251462	2.5518737	2.37.82334 2.6044314	2.6303125	2.6559598	2.6813952	2.7066393	2.7317118	2.7566317	2.7814170	2.8060851	2.0500529	2.8551507 9.8705596	2.9039162	2.9282430	2.9525483	2.9768470
$\bar{\mathbf{d}} = \mathbf{d} * 1$	2.7	0.700205	1.1192705	1.2343712	1.3234117 1.4111427	1.4833531	1.5483946	1.6078327	1.6627651	1.7139933	1.7621212	1.8076159	1.8921119	1.9316540	1.9696752	2.0063450	2.0418074	2.0761856	2.1095862	2.1421021	2.1738148	2.204/964	2.2551106	2.2939613	2.3225955	2.3507600	2.3784936	2.4058314	2.4328061	2.4594478	2.465/640 9.5118494	2.5376457	2.5632175	2.5885795	2.6137523	2.6387554	2.6636076	2.6883269	2.7129305	2.1314555 9.7619575	2.7010575 2.7869131	2.8105175	2.8347863	2.8590346	2.8832774
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	2.6	0.8938884	1.0393867	1.1522618	1.2457911 1.3264093	1.3977546	1.4620970	1.5209536	1.5753915	1.6261916	1.6739433	1.7191037	1.8030273	1.8423211	1.8801141	1.9165732	1.9518398	1.9860354	2.0192650	2.0516202	2.0831812	2.1140193 9.1441975	2.1441313	2.2027951	2.2313113	2.2593629	2.2869880	2.3142217	2.3410962	2.3676412	2.3936640 2.4198591	2.4455680	2.4710551	2.4963349	2.5214277	2.5463531	2.5711296	2.5957750	2.6203066	2.044/410	2.6690944 2.6633826	2.7176212	2.7418253	2.7660102	2.7901907
= P(R, d),	2.5	0.8213074	0.9623614	1.0725726	1.2435748	1.3138866	1.3773966	1.4355632	1.4894163	1.5397115	1.5870213	1.6317899	1.7150454	1.7540504	1.7915789	1.8277939	1.8628345	1.8968195	1.9298523	1.9620227	1.9934098	2.0240833	2.0341000	2.1124149	2.1407967	2.1687198	2.1962218	2.2233373	2.2500981	2.2765336	2.3020/14 2.3285369	2.3541541	2.3795456	2.4047326	2.4297354	2.4545733	2.4792646	2.5038271	2.5282778	2.3320332 9 E76000E	2.5769095 2.6011993	2.6252870	2.6494188	2.6735328	2.6976438
	2.4	0.5551151 0.7527860	0.8886805	0.9957414	1.1629906	1.2320670	1.2945832	1.3519277	1.4050855	1.4547823	1.5015692	1.5458755	1.6283458	1.6670127	1.7042319	1.7401625	1.7749399	1.8086804	1.8414850	1.8734416	1.9046278	1.9351120	1.9042123	2.0229325	2.0511602	2.0789361	2.1062973	2.1332778	2.1599089	2.1862197	2.2122312	2.2634918	2.2887748	2.3138568	2.3387577	2.3634965	2.3880916	2.4125604	2.4309198	2.4011002	2.4855150 9.5095037	2.5335851	2.5576357	2.5816700	2.6057030
= R(P, d) where probability P	2.3	0.6887771	0.8188381	0.9222432	1.0850629	1.1526698	1.2140019	1.2703666	1.3226964	1.3716812	1.4178473	1.4616055 1.5039837	1.5431475	1.5814158	1.6182712	1.6538677	1.6883368	1.7217914	1.7543296	1.7860371	1.8169894	1.8472333	1.97.08883	1.9344823	1.9625322	1.9901385	2.0173376	2.0441628	2.0706450	2.0968127	2.1220920 2.1483093	2.1736863	2.1988455	2.2238075	2.2485923	2.2732184	2.2977040	2.3220664	2.3463222	2.3104611	2.3943780 2.4186104	2.4425981	2.4665568	2.4905013	2.5144461
R = R(1)	2.2	0.4578902 0.6296252	0.7532909	0.8525582	1.0102409	1.0761185	1.1360506	1.1912536	1.2426001	1.2907390	1.3361673	1.3/92/4/	1.4597156	1.4975121	1.5339375	1.5691398	1.6032454	1.6363635	1.6685887	1.7000039	1.7306824	1.7900816	1.1.300510	1.8472279	1.8750710	1.9024804	1.9294915	1.9561370	1.9824470	2.0084494	2.0541104 2.0541104								2.2505922			2.3524244			2.4239659
	2.1	0.4154950 0.5755282	0.6924086	0.7871285	0.9389914	1.0028691	1.0611691	1.1150099	1.1651986	1.2123386	1.2568943	1.2992309	1.3783672	1.4156047	1.4515207	1.4862563	1.5199322	1.5526526	1.5845084	1.6155791	1.6459351	1.0730389	1 7333077	1.7613683	1.7889694	1.8161486	1.8429402	1.8693762	1.8954857	1.9212960	1.9400524	1.9971775	2.0220296	2.0466949	2.0711926	2.0955407	2.1197567	2.1438573	2.16/8588	2.191/100	2.213020 <i>1</i> 9.9304935	2.2631820	2.2869169	2.3106425	2.3343732
	2.0	0.5265225	0.6364337	0.7263118	0.8717623	0.9333800	0.9898149	1.0420858	1.0909313	1.1369066	1.1804405	1.2218720	1.2994714	1.3360489	1.3713632	1.4055473	1.4387151	1.4709655	1.5023846	1.5330483	1.5630235	1.5923699	1.0211411	1.6771456	1.7044620	1.7313707	1.7579048	1.7840950	1.8099696	1.8355549	1.8859549	1.9108143	1.9354743	1.9599545	1.9842732	2.0084484	2.0324968	2.0564351	2.0802790	2.1040459 9.1977460	2.1277450	2.1750143	2.1986115	2.2222028	2.2458023
	P\d	.02	.03	40.	30.	.07	80.	60.	.10	Ξ;	77.	. L3	.15	.16	.17	.18	.19	07.5	.21	77.5	52.5	4. c 4. c	96	27	.58	.29	.30	.31	.32		4 %	.36	.37	.38	ეწ. ე	.40	.41	42	54. 54.	4. 4	C4.	747	. 48	.49	.50

	d/P		.52	55.	1. 7.3.	.56	.57	85.	.59 09	00.	.01	.63	.64	.65	.66	, o.	69	.70	.71	.72	.73	.74	.75	.76	- α ·	97.	.80	.81	.82		4. ∞	98.	.87	x x x	80.0	06.	.92	.93	.94	.95	.96	. o	66.
	3.0	3.1652458 3.1896479	3.2140723	3.2385344	3.2876337	3.3123027	3.3370728	3.3619610	3.3869846	3.4121015 2.4275106	3.4630513	3.4888043	3.5147910	3.5410344	3.5675587	3 691 5555	3.6490855	3.6770119	3.7053696	3.7341964	3.7635339	3.7934274	3.8239272	3.8550890	3.0009140	3.9532058	3.9877183	4.0232936	4.0600486	4.0981190	4.1788708	4.2219645	4.2672166	4.3149609	4.3030133	4.4197040	4.5411868	4.6107741	4.6885203	4.7772250	4.8814869	5 1803029	5.4493683
	2.9	3.0708507 3.0952078	3.1195879	3.1440063	3.1930201	3.2176471	3.2423757	3.2672228	3.2922058	3.31/3424 3.349651 <i>6</i>	3.3681527	3.3938663	3.4198140	3.4460186	3.4725043	3.4992909 3.5964943	3.5539160	3.5818042	3.6101237	3.6389123	3.6682115	3.6980667	3.7285280	3.7596512	3.7914982 3.89/138/	3.8576504	3.8921231	3.9276579	3.9643719	4.0024007	4.0830668	4.1261162	4.1713228	4.2190200	4.2090239	4.3230037	4.4450372	4.5145645	4.5922458	4.6808793	4.7850608	5.0836648	5.3525597
n	2.8	2.9768470 3.0011545	3.0254857	3.0498560	3.0987755	3.1233562	3.1480391	3.1728411	3.1977793	3.2228(11/	3.2735947	3.2992651	3.3251699	3.3513319	3.3777752	3.4045257 3.4316110	3.4590608	3.4869072	3.5151850	3.5439318	3.5731892	3.6030025	3.6334218	3.6645028	3.0903073	3.7623738	3.7968030	3.8322938	3.8689632	3.9069467	3.9875196	4.0305208	4.0756779	4.1233241	4.1738731	4.22.18399	4.3491149	4.4185773	4.4961885	4.5847449	4.6888396	4.0100045	5.2559266
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{d}$	2.7	2.8832774 2.9075298	2.9318070	2.9561240	2.9804902 3.0049391	3.0294687	3.0541012	3.0788533	3.1037422	3.128/858	3.1794125	3.2050354	3.2308931	3.2570081	3.2834049	3.3101090	3.3645520	3,3923525	3.4205844	3.4492854	3.4784970	3.5082644	3.5386377	3.5696725	3.0014500 3.6339815	3,6674033	3.7017849	3.7372277	3.7738484	3.8117824	3.8922537	3.9352024	3.9803056	4.0278963	4.0783899	4.1323148	4.2534411	4.3228331	4.4003683	4.4888411	4.5928419	4.7207705	5.1594844
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	2.6	2.7901907 2.8143820	2.8385990	2.8628568	2.9115562	2.9360292	2.9606057	2.9853026	3.0101369	3.0351265	3.0856467	3.1112171	3.1370227	3.1630860	3.1894314	3.2100844 3.2430796	3.2704257	3.2981757	3.3263572	3.3550078	3.3841690	3.4138860	3.4442088	3.4751928	3.5069000	3.5727698	3.6070994	3.6424895	3.6790569	3.7169369	3.7972970	3.8401884	3.8852328	3.9327629	5.9851958 4.0270526	4.0370330	4.1580397	4.2273551	4.3048077	4.3931899	4.4970888	4.0249047	5.0632505
= P(R, d),	2.5	2.6976438 2.7217668	2.7459167	2.7701085	2.8186789	2.8430888	2.8676032	2.8922386	2.9170122	2.9419418	2.9923440	3.0178561	3.0436039	3.0696100	3.0958984	3.1224949 3.1707960	3.1767240	3.2044181	3.2325438	3.2611389	3.2902445	3.3199059	3.3501730	3.3811012	3.412/323 3.4151955	3.4785090	3.5127812	3.5481136	3.5846224	3.6224431	3.7026814	3.7455100	3.7904899	3.8379538	5.8885101	3.3421047	4.0629380	4.1321698	4.2095324	4.2978160	4.4016039	4.3232300	4.9672444
where probability P	2.4	2.6057030 2.6297493	2.6538240	2.6779418	2.7263680	2.7507074	2.7751522	2.7997190	2.8244250	2.8492877	2.8995582	2.9250056	2.9506891	2.9766315	3.0028567	3.0293903	3.0834948	3.1111270	3.1391910	3.1677245	3.1967686	3.2263684	3.2565740	3.2874405	3.3190296 3.3514106	3.3846614	3.4188706	3.4541392	3.4905836	3.5283389	3.6084433	3.6512028	3.6961121	3.7435032	3.7937904 2.6475000	3.0473907	3.9681667	4.0373073	4.1145716	4.2027474	4.3064145	4.4559004	4.8714883
e, d) where p		2.5144461 2.5384062	2.5623960	2.5864307	2.6346946	2.6589547	2.6833215	2.7078114	2.7324415	2.7572293	2.8073525	2.8327274	2.8583392	2.8842104	2.9103650	2.9308280 9.0636985	2.9907942	3.0183575	3.0463529	3.0748179	3.1037936	3.1333251	3.1634623	3.1942603	3.2257808	3.2912744	3.3254136	3.3606118	3.3969849	3.4346681	3.5146247	3.5573081	3.6021395	3.6494504	3.099055U 2.7529707	3.1332131	3.8737617	3.9428021	4.0199586	4.1080166	4.2115515	4.5589457	4.7760077
R = R(P, d)		2.4239659 2.4478280		2.4956623	2.5437428					2.0058453	2.7158009	2.7410944				2.8448770 2.8715995	2.8986878	2.9261740	2.9540926	2.9824812	3.0113806	3.0408359	3.0708969	3.1016187	3.1550028 3.1659981	3.1984025	3.2324642	3.2675840	3.3038782	3.3414813	3.4212742	3.4638734	3.5086186	3.5558411	3.0039344 2.6504846	3 7171159	3.7797639	3.8486941	3.9257321	4.0136606	4.1170506	4.2442.145	4.6808316
	2.1	2.3343732	2.3819080	2.4057412	2.4536578 2.4536129	2.4776820	2.5018608	2.5261656	2.5506132	2.5752211	2.6249914	2.6501929	2.6756331	2.7013345	2.7273208	2.7330173 9.7809517	2.8072528	2.8346524	2.8624849	2.8907876	2.9196014	2.9489714	2.9789470	3.0095835	3.0409421	3.1061100	3.1400851	3.1751177	3.2113238	3.2488379	3.3284487	3.3709543	3.4156039	3.4627282	3.512/403 9 5661656	3 6236877	3.6862209	3.7550294	3.8319368	3.9197226	4.0229531	4.1499910 4.3190725	4.5859936
	2.0	2.2458023 2.2694243	2.2930831	2.3167931	2.3403031 2.3644259	2.3883788	2.4124435	2.4366360	2.4609730	2.4854/20	2.5350291	2.5601261	2.5854630	2.6110622	2.6369474	2.0031439 9.6896788	2.7165813	2.7438831	2.7716182	2.7998241	2.8285415	2.8578152	2.8876949	2.9182353	2.9494978 2.9815512	3.0144729	3.0483509	3.0832857	3.1193932	3.1568076	3.2362149	3.2786162	3.3231591	3.3701741	5.4200750	3 5307830	3.5931888	3.6618624	3.7386250	3.8262529	3.9293071	4.0301414	4.4915326
	P\d	.51	.52	55.	4 73.	.56	.57	85.	.50 00 00	00.	10.	.63	.64	.65	.66	70.	69	.70	.71	.72	.73	.74	.75	.76	χ 	62.	.80	.81	.82		ş. %	98.	.87	× ×	80.0	10	.92	.93	.94	.95	.96	. 80 80	66.

	d/P	.00	.03	40. 40.	90:	20.	80.	60. 01	.11	.12	.13	14	.I5	1.0	.18	.19	.20	.21	.22	.23	.24	.25	5.26	. 77. 0	25.	.30	.31	.32	ယ် <u>ရ</u> ယ် <u>1</u>	ა. 4 გ.	36	.37	.38	.39	.40	14.	24: 25: 27:	5. 44	45	.46	.47	.48	.49	.50
	4.0	1.8573554 2.1189365	2.2857878	2.4116774	2.6017586	2.6785474	2.7473721	2.6100193	2.9214000	2.9717039	3.0191581	3.0641696	3.107.0646	3 1875936	3.2254916	3.2621691	3.2976893	3.3321672	3.3657026	3.3983830	3.4302855	3.4614788	3.4920237	3.5219754	3.5802920	3.6087429	3.6367732	3.6644174	3.6917073	3.7186725	3.7717365	3.7978853	3.8238093	3.8495302	3.8750683	3.9004433	3.9256739	3 9757733	4,0006765	4.0255040	4.0502722	4.0749967	4.0996934	4.1243777
	3.9	1.7646380 2.0252632	2.1916262	2.3171948	2.5068531	2.5834889	2.6521841	2.1141192	2.8259130	2.8761373	2.9235189	2.9684637	3.0112972	3 0016459	3.1295628	3.1661927	3.2016680	3.2361032	3.2695979	3.3022395	3.3341049	3.3652625	3.3957732	3.4256918 3.4550678	3.4839459	3.5123670	3.5403684	3.5679846	3.5952473	3.6221859	3.6751989	3.7013231	3.7272231	3.7529204	3.7.784355	3.8037879	3.8289963	3.8790526	3.9039347	3.9287416	3.9534893	3.9781938	4.0028706	4.0275353
n	8.00	1.6725435 1.9320816	2.0978951	2.2231044	2.4122922	2.4887585	2.5573106	2.013/220	2.7307100	2.7808468	2.8281488	2.8730205	2.9157863	2.3961103	3.0338754	3.0704535	3.1058797	3.1402683	3.1737187	3.2063180	3.2381430	3.2692618	3.2997353	3.3296180	3.3878041	3.4161928	3.4441629	3.4717487	3.4989819	3.5258918	3.5788495	3.6049470	3.6308210	3.6564929	3.6819831	3.7073111	3.7324956 3.7575545	3 7825052	3.8073646	3.8321491	3.8568749	3.8815577	3.9062131	3.9308567
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	3.7	1.5811588 1.8394525	2.0046445	2.1294502	2.23181124	2.3943903	2.4627836	2.3230380	2.6358186	2.6858589	2.7330732	2.7778645	2.8205562 2.8614118	2.0014116	2.9384517	2.9749730	3.0103455	3.0446832	3.0780852	3.1106383	3.1424191	3.1734956	3.2039285	3.2337721 3.2630758	3.2918842	3.3202377	3.3481738	3.3757265	3.4029276	3.4298063	3.4827041	3.5087727	3.5346184	3.5602627	3.5857259	3.6110275	3.6361860 3.6619105	3.6861453	3.7109801	3.7357405	3.7604425	3.7851018	3.8097342	3.8343550
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	3.6	1.4905882 1.7474477	1.9119330	2.0362828	2.2243555	2.3004230	2.3686394	2.4507010 2.480104	2.5412703	2.5912040	2.6383214	2.6830240	2.7256338 2.7664136	2 8055805	2.8433164	2.8797753	2.9150889	2.9493708	2.9827197	3.0152223	3.0469548	3.0779850	3.1083735	3.1381745 3.1674371	3.1962057	3.2245209	3.2524198	3.2799366	3.3071027	3.3339474 3.3604080	3.3867800	3.4128172	3.4386323	3.4642466	3.4896805	3.5149534	3.5400838	3.5899883	3,6147966	3.6395308	3.6642070	3.6888410	3.7134484	3.7380446
= P(R, d),	3.5	1.4009589 1.6561527	1.8198291	1.9436615	2.1310696	2.2069014	2.2749200	2.3308124	2.4471008	2.4969161	2.5439261	2.5885305	2.6310500	9 7108348	2.7484976	2.7848878	2.8201366	2.8543571	2.8876478	2.9200948	2.9517744	2.9827539	3.0130937	3.0428480	3.1007908	3.1290641	3.1569224	3.1843998	3.2115278	3.2383355 3.248500	3.2910969	3.3170999	3.3428816	3.3684633	3.3938653	3.4191069	3.4442068 3.4601827	3 4940519	3.5188312	3.5435370	3.5681853	3.5927918	3.6173720	3.6419415
	3.4	1.3124275 1.5656698	1.7284140	1.8516556	2.0383108	2.1138770	2.1816736	2.2454598	2.3533510	2.4030345	2.4499251	2.4944205	2.5368396	9 6164459	2.6540272	2.6903415	2.7255187	2.7596716		2.8252840	2.8569052	2.8878290	2.9181153	2.9478183 2.9769864	3.0056641	3.0338914	3.0617053	3.0891397	3.1162259	3.1429930 3.1694689	3.1956767	3.2216423	3.2473876	3.2729337	3.2983009	3.3235084	3.3485749	3.3983553	3.4231032	3.4477781	3.4723959	3.4969725	3.5215233	3.5460637
= R(P, d) where probability P	3.3	1.2251888 1.4761229	1.6377848	1.7603470	1.9461442	2.0214099	2.0889560	2.1505041	2.2600682	2.3096042	2.3563615	2.4007353	2.4430427 2.4835426	9 5994400	2.5599414	2.5961716	2.6312696	2.6653475	2.6985030	2.7308214	2.7623783	2.7932406	2.8234680	2.8531144 2.8822283	2.9108535	2.9390303	2.9667954	2.9941825	3.0212229	3.0479456	3.1005440	3.1264687	3.1521740	3.1776812	3.2030103	3.2281807	3.2532108	3.3029205	3.3276340	3.3522751	3.3768598	3.4014038	3.4259225	3.4504313
R = R(3.2	1.1394857 1.3876641	1.5480584	1.6698337	1.8546470	1.9295705	1.9968324						2.3497052 2.3400898	2.3300696										2.7587695 2.7878233						2.9532220 2.9532220							3.1581395					3.3061088	3.3305924	3.3550667
	3.1	1.0556213 1.3004809	1.4593771	1.5802337	1.7639104	1.8384419	1.9053796	1.9004103 2.0227094	2.0221334 2.0751304	2.1243137	2.1707531	2.2148377	2.2568801 2.2568801	9 2252150	2.3730959	2.4091280	2.4440397	2.4779419	2.5109309	2.5430913	2.5744977	2.6052164	2.6353065	2.6648211 2.6938085	2.7223120	2.7503714	2.7780231	2.8053007	2.8322350	2.8588548	2.9112563	2.9370865	2.9626998	2.9881172	3.0133587 3.036449E	3.0384435	3.0633898	3 1129371	3.1375718	3.1621356	3.1866444	3.2111137	3.2355589	3.2599953
	3.0	$0.9739684 \\ 1.2148056$	1.3719160	1.4916904	1.5659320 1.6740440	1.7481234	1.8146886	1.87.34043	1.9836136	2.0325847	2.0788333	2.1227449	2.1646291	0 0430837	2.2804391	2.3163540	2.3511557	2.3849541	2.4178452	2.4499127	2.4812307	2.5118651	2.5418747	2.5713124 2.6002258	2.6286582	2.6566492	2.6842350	2.7114488	2.7383214	2.7648815 2.7648815	2.8171687	2.8429443	2.8685043	2.8938698	2.9190606	2.9440959	2.9689939	3.0184477	3.0430371	3.0675564	3.0920215	3.1164478	3.1408508	3.1652458
	$P \setminus d$.01	.03	40. 40.	90.	20.	8 8 8	60. 10	1.	.12	.13	14	. F.	17	187	.19	.20	.21	.22	.23	.24	.25	5.26	, z , x	29	.30	.31	.32		كن. 4 ير	36.	.37	.38	.39	.40	.41	24.	£ 4	45	.46	.47	.48	.49	.50

0/7	a/r 702	.51	.52		.55	.56	.57	υ. Σ	6c. 09	.61	.62	.63	49.		.67	89.	69.	.70	.71	.72	.73	 4 ;	.75	97.	.78	.79	.80	81	8. 2. c	. 4	. 8. . 73.	98.	.87	×. 0	gs.	06.	26.	66.	.94	.95	.96 70	. xo	66.
6	4.0 A 19A3777	4.1490651	4.1737711	4.1985112	4.2481571	4.2730950	4.2981315	4.3232836	4.3485089	4.3996126	4.4254097	4.4514176	4.4776580	4.3041342	4.5580130	4.5854296	4.6132103	4.6413876	4.6699963	4.6990747	4.7286645	4.7588114	4.7895660	4.8209842	4.8860686	4.9198836	4.9546629	4.9905086	5.0275384	5 1057189	5.1472180	5.1906115	5.2361724	5.2842358	5.3352198 F 2806F64	5.4489875	5.5118883	5.5818879	5.6600812	5.7492793	5.8540996	6 1543982	6.4246669
o o	5.9 4 0975353	4.0522034	4.0768903	4.1016115	4.1512201	4.1761396	4.2011579	4.2262919	4.2515592	4.3025673	4.3283467	4.3543369	4.3805599	4.4070383	4.4557975	4.4882614	4.5160247	4.5441844	4.5727755	4.6018363	4.6314084	4.6615375	4.6922741	4.7236742	4.7887219	4.8225182	4.8572786	4.8931051	4.9301153	4.9084455 5.0082554	5.0497336	5.0931056	5.1386443	5.1866847	5.2376448 5.2020562	5 3506110	5.4142338	5.4842034	5.5623640	5.6515260	5.7563052	6.0564941	6.3266730
n n	3.0 3.0308567	3.9555040	3.9801703	4.0048712	4.0544397	4.0793394	4.1043380	4.1294526	4.1347006	4.2056703	4.2314307	4.2574021	4.2836061	4.3100659	4.3638522	4.3912326	4.4189771	4.4471180	4.4756903	4.5047322	4.5342853	4.5643953	4.5951127	4.6264935	4.6915019	4.7252783	4.7600184	4.7958243	4.8328136	4.8711223	4.9523664	4.9957155	5.0412305	5.0892464	5.1401810 F 1045659	5.0530005	5.3166855	5.3866231	5.4647490	5.5538725	5.6586081	5 9586806	6.2287644
$\frac{d}{d} = d *$	3.7 3.83/3550	3.8589797	3.8836238	3.9083027	3.9578280	3.9827064	4.0076839	4.0327775	4.0580047	4.1089332	4.1346731	4.1606241	4.1868079	4.2132473	4.2669934	4.2943536	4.3220780	4.3501987	4.3787509	4.4077725	4.4373052	4.4673947	4.4980916	4.5294516 4.5615371	4.5944179	4.6281729	4.6628913	4.6986752	4.7356421	4.1.139282 4.8136930	4.8551250	4.8984495	4.9439393	4.9919290	5.0428363 F 0071037	5.03/132/	5.2192506	5.2891542	5.3672431	5.4563257	5.5610149	5.8609637	6.1309465
$ar{ ext{R}} = ext{R} * ext{u},$	3.0 3.7380446	3.7626450	3.7872650	3.8119202	3.8613987	3.8862541	3.9112088	3.9362797	3.9614845 3.9868411	4.0123685	4.0380864	4.0640155	4.0901774	4.1105952	4.1452955 4.1702977	4.1976362	4.2253389	4.2534379	4.2819683	4.3109682	4.3404790	4.3705466	4.4012213	4.4325590	4.4974802	4.5312122	4.5659074	4.6016678	4.6386107	4.0708723	4.7580186	4.8013168	4.8467795	4.8947412	4.9450195 4.0000466	4.9999455 5.0584109	5.12.19375	5.1918047	5.2698541	5.3588931	5.4635329	5.7633501	6.0332257
= P(R, d),	3.5 3.6419415	3.6665155	3.6911095	3.7157390	3.7651669	3.7899974	3.8149274	3.8399739	3.8651543	3.9159903	3.9416844	3.9675898	3.9937281	4.0201224	4.0467970	4.1010932	4.1287725	4.1568482	4.1853552	4.2143315	4.2438188	4.2738627	4.3045137	4.3358274	4.4007001	4.4344075	4.4690777	4.5048127	4.5417299	4.5799653 4.6196784	4.6610574	4.7043275	4.7497612	4.7976929	4.8485401	4.9026333	5.0247549	5.0945833	5.1725906	5.2615830	5.3661701	5.6658471	5.9356087
	3.4 3.5460637	3.5706091	3.5951749	3.6197764	3.6691494	3.6939529	3.7188561	3.7438761	3.7943367	3.8198142	3.8454825	3.8713622	3.8974750	3.9238439	3.9774490	4.0047389	4.0323930	4.0604434	4.0889251	4.1178762	4.1473381	4.1773565	4.2079817	4.2392697	4.3040901	4.3377709	4.3724143	4.4081221	4.4450115	4.4832188	4.5642527	4.6074926	4.6528952	4.7007947	4.7516085	4.8038010	4.9277129	4.9974997	5.0754619	5.1644046	5.2689353	5.5684697	5.8381028
= $R(P, d)$ where probability P	5.5 3.4504313	3.4749455	3.4994805	3.5240516 3.5240516	3.5733650	3.5981391	3.6230132	3.6480044	3.6731300 3.6984081	3.7238575	3.7494979	3.7753498	3.8014349	3.8211103	3.8813265	3.9085892	3.9362159	3.9642391	3.9926935	4.0216171	4.0510516	4.0810425	4.1116400	4.1429001 4.1748849	4.2076641	4.2413163	4.2759307	4.3116092	4.3484688	4.3800437	4.4676170	4.5108244	4.5561935	4.6040585	4.0548364	4.7674119	4.8308224	4.9005646	4.9784784	5.0673678	5.1718383	5.4719058	5.7407164
R = R(3.2 3.3550667			3.4285863					3.57.7209						3.7854287		3.8402589		3.8966772			3.9849370	4.0155047	4.0467346	4.1114377	4.1450590	4.1796421	4.2152888	4.2521163	4.2902605	4.3711642	4.4143366	4.4596697	4.5074974	4.5582367	4.0124173	4.7340953	4.8037896	4.8816516	4.9704838	5.0748897	5 3740861	5.6434583
6	3.1 3.2599953	3.2844382	3.3089029	3.3334048	3.3825820	3.4072892	3.4320971	3.4570227	3.4820834	3.5326825	3.5582594	3.5840483	3.6100707	3.0303490	3.6897756	3.7169764	3.7445414	3.7725028	3.8008955	3.8297573	3.8591298	3.8890585	3.9195936	3.9507909	4.0154279	4.0490158	4.0835650	4.1191775	4.1559701	4.1940789	4.2749097	4.3180443	4.3633385	4.4111261	4.401823 <i>(</i> 4.5150 <i>6</i> 11	4.0103011	4.6375451	4.7071879	4.7849942	4.8737650	4.9781015	5 9771145	5.5463385
0	3.0 3.1652458	3.1896479	3.2140723	3.2385344	3.2876337	3.3123027	3.3370728	3.3619610	3.4121615	3.4375106	3.4630513	3.4888043	3.5147910	3.3410344	3.5943899	3.6215555	3.6490855	3.6770119	3.7053696	3.7341964	3.7635339	3.7934274	3.8239272	3.8550890	3.9196543	3.9532058	3.9877183	4.0232936	4.0600486	4.0981190	4.1788708	4.2219645	4.2672166	4.3149609	4.3050135	4.4137040 7.7779917	4.5411868	4.6107741	4.6885203	4.7772250	4.8814869	5 1803090	5.4493683
7 (0	л 50	.51	.52		55.	.56	.57	υ Σ	ğ. 9	.61	.62	.63	.64		90.	89.	69.	.70	.71	.72	.73	<u>4</u> , j	.75	9.1	.78	62.	80	.81	85 87 87	Si X	. 85	98.	.87	× ×		10	92	.93	.94	.95	.96	. 80 80	66:

	d/P	.02	.03	40.	90.	20.	80.	60. 6,	. FO	15	13	.14	.15	.16	.17	. To	6T:	5.5	22	23.	.24	.25	.26	.27	8 6 9 6	.29 08		32	.33	.34		37	88.	.39	.40	.41	.42	.43	.44	.45	.46 1	74.	07.	.50
	5.0	2.8070070	3.2437704	3.3715986	3.5642847	3.6420307	3.7116721	3.7750312	3.8333718	3.9384265	3.9863511	4.0317965	4.0750944	4.1165152	4.1562823	4.194582 <i>(</i> 7.9315745	4.2319749	4.201551	4.3359615	4.3689015	4.4010530	4.4324856	4.4632611	4.4934353	4.5230582	4.5521754	4.6090548	4.6368898	4.6643654	4.6915117	4.7183562	4.7449251	4.7973320	4.8232148	4.8489118	4.8744428	4.8998265	4.9250813	4.9502248	4.9752739	5.0002454	5.0251554 5.0500300	5.0300200 5.0748550	5.0996760
	4.9	2.9774324	3.1469856	3.2746880	3.4672021	3.5448840	3.6144704	3.6777811	3.7360788	3.8410593	3.8889514	3.9343668	3.9776367	4.0190312	4.0587736	4.09/0507	4.1340204	4.1035150	4.2383471	4.2712686	4.3034024	4.3348180	4.3655771	4.3957353	4.4253428	4.4544451	4.5112958	4.5391170	4.5665793	4.5937124	4.6205441	4.6471005 4.6734058	4.6994831	4.7253542	4.7510396	4.7765591	4.8019317	4.8271755	4.8523081	4.8773465	4.9023074	4.9272070	4.3520013	5.0016970
n	4.8	2.0140958 2.8810195	3.0503727	3.1779386	3.3702666	3.4478793	3.5174063	3.5806651	3.6389164	3.7438172	3.7916745	3.8370575	3.8802973	3.9216638	3.9613797	3.9990518 4.0365778	4.0303178	4.0129323	4.1408400	4.1737418	4.2058567	4.2372540	4.2679955	4.2981368	4.3277279	4.3568141	4.4136343	4.4414409	4.46888888	4.4960080	4.5228261	4.5493691 4.5756614	4.6017259	4.6275844	4.6532575	4.6787649	4.7041256	4.7293576	4.7544787	4.7795057	4.8044553	4.8293439 4 eE41e79	4.6341612	4.9038014
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	4.7	2.7848109	2.9539459	3.0813635	3.2734897	3.3510276	3.4204904	3.4836930	3.5418944	3.6467094	3.6945291	3.7398774	3.7830849	3.8244211	3.8641087	3.9023339 3.030384 <i>6</i>	3 9750055	4 0097028	4.0434476	4.0763283	4.1084230	4.1398008	4.1705235	4.2006466	4.2302201	4.2592893	4.3160768	4.3438677	4.3713004	4.3984047	4.4252082	4.451/3/U 4.4780154	4.5040662	4.5299113	4.5555713	4.5810658	4.6064138	4.6316334	4.6567421	4.6817570	4.7066947	4.7315714	4.1304031	4.8059944
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	4.6	2.4233400 2.6888248	2.8577213	2.9849771	3.1768840	3.2543408	3.3237341	3.3868760	3.4450235	3.5497458	3.5975250	3.6428359	3.6860087	3.7273124	3.7669694	3.8051058 3.8450503	3.8470332	3 91 24568	3.9461780	3.9790361	4.0111091	4.0424660	4.0731685	4.1032722	4.1328268	4.1618778	4.2186304	4.2464045	4.2738209	4.3009093	4.3276973	4.3542109	4.4065107	4.4323415	4.4579874	4.4834682	4.5088026	4.5340089	4.5591045	4.5841065	4.6090315	4.6338956	4.036/143	4.7082818
= P(R, d),	4.5	2.5930922 2.5930817	2.7617166	2.8887956	3.0804636	3.1578322	3.2271502	3.2902263	3.3483154 3.4093950	3.4529375	3.5006730	3.5459436	3.5890789	3.6303475	3.6699716	3.70S1371 2.74E0011	3 7806989	3.8153443	3.8490401	3.8818739	3.9139235	3.9452580	3.9759389	4.0060217	4.0355561	4.0645876	4.1213027	4.1490590	4.1764579	4.2035292	4.2303006	4.2567979	4.3090662	4.3348818	4.3605127	4.3859788	4.4112988	4.4364908	4.4615725	4.4865607	4.5114721	4.5363228	4.5011269	4.6106698
	4.4	2.4976047	2.6659518	2.7928370	2.9842442	3.0615168	3.1307529	3.1937575	3.2517832	3.3562968	3.4039850	3.4492119	3.4923067	3.5335375	3.5731261	3.0112351 2.6480005	3 6837575	3 7183750	3.7520435	3.7848512	3.8168757	3.8481861	3.8788438	3.9089041	3.9384169	3.9674273	4.0241024	4.0518393	4.0792195	4.1062726	4.1330261	4.1595061 4.1857366	4.2117407	4.2375399	4.2631548	4.2886051	4.3139097	4.3390865	4.3641532	4.3891267	4.4140235	4.4388600	4.4030313	4.5131650
= R(P, d) where probability P	4.3	2.1365/22 2.4024198	2.5704493	2.6971216	2.8882431	2.9654110	3.0345577	3.0974845	3.1554414	3.2598372	3.3074741	3.3526537	3.3957046	3.4368945	3.4764447	3.5145405 2 KK12287	3 5869737	3 6215600	3.6551990	3.6879785	3.7199760	3.7512604	3.7818931	3.8119293	3.8414187	3.8704066	3.9270385	3.9547548	3.9821149	4.0091483	4.0358827	4.0623440	4.1145424	4.1403241	4.1659219	4.1913554	4.2166434	4.2418039	4.2668546	4.2918123	4.3166936	4.3415147 4.966901E	4.3002913	4.4157750
R = R(4.2	2.3075567	2.4752346	2.6016721					3.0593061 3.1131307							3.41/99/2 3.45/758/						3.6544922				3.7735359			3.8851538	3.9121662		3.9053212		4.0432437	4.0688231	4.0942384	4.1195087	4.1446518	4.1696853	4.1946261	4.2194907	4.2442954	4.2030300	4.3185077
	4.1	2.2130493	2.3803365	2.5065143	2.6969770	2.7739043	2.8428465	2.9055956	2.9633954 3.0171464	3.0675230	3.1150435	3.1601159	3.2030674	3.2441647	3.2836281	3.3210423 3.3210423	3 3030940	3 4284420	3.4620148	3.4947309	3.5266677	3.5578937	3.5884703	3.6184523	3.6478895	3.6768268	3.7333621	3.7610322	3.7883473	3.8153369	3.8420287	3.8084482 3.8946197	3.9205661	3.9463087	3.9718682	3.9972642	4.0225153	4.0476396	4.0726547	4.0975774	4.1224242	4.1472112 4.1710545	4.11.13343	4.2213720
	4.0	1.65/5554 2.1189365	2.2857878	2.4116774	2.6017586	2.6785474	2.7473721	2.8100193	2.8677292	2.9214000	3.0191581	3.0641696	3.1070646	3.1481094	3.1875236	5.2254910 2.2621601	3 2076893	3 3321672	3.3657026	3.3983830	3.4302855	3.4614788	3.4920237	3.5219754	3.5513832	3.5802920	3.6367732	3.6644174	3.6917073	3.7186725	3.7453403	3.7978853	3.8238093	3.8495302	3.8750683	3.9004433	3.9256739	3.9507781	3.9757733	4.0006765	4.0255040	4.0502722	4.0149901	4.1243777
	P\d	.02	.03	40.	90:	.07	80.	60.	i.	1.17	1 2	.14	.15	.16	.17	. Fo	6T.	5 5	22	5 2 2	.24	.25	.26	.27	.58	67. 67.	9 5	32	.33	.34	ين تخ ۾	37	38	.39	.40	.41	.42	.43	4.	.45	.46	74.	÷.	.50

	d/P		.52	55.	.54 55	.56	.57	.58	.59	.60	.61	.62	.63	4. %	99.	29.	89.	69.	.70	.71	25.	5.7. 2.7.	4.7.	92.	.77	.78	.79	.80	0. 8.	83	.84	ဆ က အ	87	88.	88	.90	.91	.92	.93 2	у: 4 л	96	92.	86.	66.
	5.0	5.0996760 5.1244987	5.1493385	5.1742113	5.1991327 5.2241189	5.2491861	5.2743511	5.2996308	5.3250431	5.3506061	5.3763389	5.4022614	5.4283943	5 4813803	5.5082811	5.5354882	5.5630296	5.5909353	5.6192379	5.6479724	5.6771773	5.7068942 5.7271603	5 7680528	5.7996012	5.8318771	5.8649505	5.8989005	5.9338168	6.0069738	6.0454691	6.0854479	6.1270994 6.1706499	6.2163729	6.2646045	6.3157639	6.3703842	6.4291592	6.4930163	6.5632377	6.0410 <i>f</i> 25 6.7311387	6.8362641	6.9655227	7.1373825	7.4083270
	4.9	5.0016970 5.0265097	5.0513397	5.0762026	5.1011143 5.1260908	5.1511484	5.1763038	5.2015741	5.2269769	5.2525305	5.2782539	5.3041670	5.3302905	5.3832579	5.4101494	5.4373471	5.4648791	5.4927754	5.5210685	5.5497936	5.5789889	5.6086962 5.6980615	5.6698353	5.7013739	5.7336398	5.7667031	5.8006428	5.8355487	5.9086842	5.9471684	5.9871359	6.0287758	6.1180248	6.1662435	6.2173893	6.2719955	6.3307555	6.3945966	6.4648009	6.543217U 6.6396693	6.7377639	6.8669942	7.0388181	7.3097094
n	4.8	4.9038014	4.9534229	4.9782754	5.0031768	5.0531905	5.0783357	5.1035959	5.1289887	5.1545323	5.1802458	5.2061490	5.2322626	5 2852102	5.3120918	5.3392796	5.3668017	5.3946880	5.4229712	5.4516862	5.4808714	5.51U5686 F F409326	5.5716871	5.6032153	5.6354706	5.6685232	5.7024521	5.7373470	5.8104598	5.8489323	5.8888878	5.9305154	6.0197386	6.0679436	6.1190753	6.1736665	6.2324108	6.2962351	6.3664213	6 5379710	6.6393176	6.7685183	6.9403044	7.2111398
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	4.7	4.8059944	4.8555935	4.8804350	4.9053254 4.9305807	4.9553173	4.9804518	5.0057013	5.0310834	5.0566165	5.0823194	5.1082120	5.1343152	5 1872418	5.2141129	5.2412902	5.2688017	5.2966776	5.3249501	5.3536545	5.3828291	5.4125155 5.4497507	5.4421391	5.5051294	5.5373735	5.5704148	5.6043323	5.6392155	5.7123044	5.7507646	5.7907074	5.8323219	5.9215179	5.9697086	6.0208252	6.0754007	6.1341283	6.1979350	6.2681021	6.3404777 6.4358780	6.5409282	6.6700977	6.8418441	7.1126208
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	4.6	4.7082818	4.7578570	4.7826867	4.8075654	4.8575343	4.8826573	4.9078955	4.9332663	4.9587881	4.9844798	5.0103612	5.0364532	5.0893575	5.1162175	5.1433837	5.1708841	5.1987487	5.2270101	5.2557032	5.2848664	5.3145414 5.9447741	5.3756151	5.4071205	5.4393529	5.4723822	5.5062875	5.5411585	5.6142220	5.6526691	5.6925985	5.7341994 5 7776975	5.8233665	5.8715420	5.9226428	5.9772017	6.0359118	6.1996997	6.1698467	6.2482004	6.4425989	6.5717355	6.7434402	7.0141552
= P(R, d),	4.5	4.6106698 4.6354357	4.6602195	4.6850366	4.7099029 4.7348343	4.7598472	4.7849581	4.8101841	4.8355429	4.8610527	4.8867325	4.9126020	4.9386822	4.9049947	5.0184110	5.0455653	5.0730539	5.1009066	5.1291561	5.1578372	5.1869884	5.2166513 5.2468710	5 2777006	5.3091936		5.3744301	5.4083225	5.4431804	5.5162171	5.5546504	5.5945656	5.6361519 5.6706351	5.7252886	5.7734480	5.8245321	5.8790734	5.9377650	6.0015332	6.0716590	6.1499896	6.3443332	6.4734351	6.6450958	6.9157459
	4.4	4.5131650 4.5379173	4.5626876	4.5874913	4.6123443 4.6379696	4.6622624	4.6873603	4.7125735	4.7379194	4.7634165	4.7890836	4.8149405	4.8410080	4.8073073	4.9206990	4.9478408	4.9753167	5.0031569	5.0313936	5.0600621	5.0892005	5.1188506 F 1400589	5 1798739	5.2113537	5.2435602	5.2765634	5.3104422	5.3452862 F 2811078	5.4182945	5.4567131	5.4966134	5.5381843	5.6272887	5.6754311	5.7264975	5.7810202	5.8396922		5.9735429	6.0518491 6.1411793	6.2461347	6.3752001	6.5468145	6.8173963
= R(P, d) where probability P	4.3	4.4157750 4.4405127	4.4652685	4.4900579	4.5148968 4.5398010	4.5647869	4.5898709	4.6150703	4.6404026	4.6658861	4.6915396	4.7173830	4.7434370	4.7962657	4.8230878	4.8502162	4.8776787	4.9055054	4.9337287	4.9623837	4.9915085	5.0211449 F 0512288	5.0313388	5.1136064	5.1457988	5.1787877	5.2126520	5.2474813			5.3987468	5.4403014 5.4837510	5.5293716	5.5774960	5.6285436	5.6830467	5.7416978	5.8054232	5.8755028	5.9537831	6.1480076	6.2770344	6.4485999	6.7191096
R = R(4.2	4.3185077	4.3679701	4.3927443	4.4175680 4.4474572	4.4674281	4.4924974	4.5176821	4.5429998	4.5684687	4.5941078	4.6199368	4.6459764	4.0122480	4.7255843	4.7526984	4.7801466	4.8079590	4.8361679	4.8648084	4.8939188	4.9235407	4.9557199 4 9845069	5.0159579	5.0481352	5.0811089	5.1149578	5.1497715	5.2227175	5.2611040	5.3009715	5.3425087	5.4315426	5.4796479	5.5306756	5.5851578	5.6437870	5.7074889	5.7775435	5.8557964 5.0450607	5.9450007 6.0499561	6.1789421	6.3504560	6.6208898
	4.1	4.2213720 4.2460774	4.2708012	4.2955589	4.3203664	4.3701945	4.3952479	4.4204169	4.4457190	4.4711723	4.4967959	4.5226095	4.5486338	4.3746907	4.6281958	4.6552946	4.6827276	4.7105247	4.7387183	4.7673434	4.7964383	4.8260447	4.0302003	4.9184147	4.9505760	4.9835335	5.0173660	5.0521631	5.1250749	5.1634439	5.2032933	5.2448121	5.3338075	5.3818925	5.4328990	5.4873591	5.5459649	5.6096421	5.6796700	5.7578940 5.8471961	5.9519851	6.0809279	6.2523872	6.5227407
	4.0	4.1243777 4.1490651	4.1737711	4.1985112	4.2233013 4.2481571	4.2730950	4.2981315	4.3232836	4.3485689	4.3740056	4.3996126	4.4254097	4.4514176	4.4770380	4.5309305	4.5580130	4.5854296	4.6132103	4.6413876	4.6699963	4.6990747	4.7286645	4.7305114	4.8209842	4.8531284	4.8860686	4.9198836	4.9546629	5.0275384	5.0658886	5.1057189	5.1472180 5 1906115	5.2361724	5.2842358	5.3352198	5.3896564	5.4482375	5.5118883	5.5818879	5.660U812 5.740.9703	5.8540996	5.9829967	6.1543982	6.4246669
	P\d		.52	55.	4. 7.	.56	.57	.58	.59	.60	.61	.62	50.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	99.	29.	89.	69.	.70	.71	25		4 72	.76	77.	.78	.79	8. 2	6. 8.	83.	.84	8. % 13. %	82	88.	83	.30	.91	92	. y	у. 4 д	96	.97	86.	66.

	d/P	.02	.03	.04	co. 8	0.00	80.	60:	.10	.11	.12	.13	.14	.T:	.17	.18	.19	.20	.21	.22	5.23	4. C.	26	.27	.28	.29	.30 1.20	32	.33	.34	.35 36	37	.38	.39	.40	.41	.42	4. 84.	4. 7 7. 7.	46	.47	.48	.49
	7.0	4.7601925 5.0305459	5.2021567	5.3312905	5.4363534 5.5557036	5.6042264	5.6744621	5.7383454	5.7971557	5.8518185	5.9030260	5.9513103	5.9970901	6.0407006	6.1224594	6.1610224	6.1982641	6.2343210	6.2693109	6.3033361	6.3364863	6.4004686	6.4314334	6.4617909	6.4915917	6.5208817	6.5497029	6.6060883	6.6337202	6.6610193	6.6880135	6.7411904	6.7674210	6.7934426	6.8192761	6.8449414	6.8704576	6.8958429	6 9462914	6 9713886	6.9964228	7.0214104	7.0463672
	6.8	4.5553274	5.0050180	5.1340806	5.2390882	5.4068773	5.4770793	5.5409328	5.5997163	5.6543545	5.7055395	5.7538030	5.7995633	5.8431555 5.848528	5.9248807	5.9634283	6.0006552	6.0366980	6.0716743	6.1056865	6.1388241	6.2027826	6.2337359	6.2640823	6.2938724	6.3231520	6.3519629	6.4083287	6.4359511	6.4632408	6.4902258	6.5433850	6.5696069	6.5956199	6.6214450	6.6471020	6.6726100	6.6979873	6 7484199	6 7735092	6.7985357	6.8235156	6.8484648
n	6.6	4.3007002	4.8080848	4.9370682	5.0420143 5.1313588	5.2097101	5.2798750	5.3436954	5.4024491	5.4570603	5.5082204	5.5564609	5.6021997	5.6457717	5.7274600	5.7659905	5.8032012	5.8392284	5.8741898	5.9081877	5.9413115	5.97.50401 6.0052437	6.0361845	6.0665188	6.0962971	6.1255652	6.1543650 6.1897345	6.2107091	6.2383211	6.2656006	6.2925756	6.3457152	6.3719276	6.3979313	6.4237472	6.4493951	6.4748942	6.5002626 6.5366191	6.5253161	6.5757586	6.6007767	6.6257483	6.6506891
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	6.4	4.1703395 4.4401073	4.6113801	4.7402749	4.8451523	5.0127444	5.0828678	5.1466516	5.2053723	5.2599535	5.3110860	5.3593009	5.4050159	5.4485657 5.4902230	5.5302132	5.5687248	5.6059175	5.6419276	5.6768725	5.7108546	5.7439632	5.8078664	5.8387936	5.8691145	5.8988798	5.9281353	5.9569227	6.0132431	6.0408436	6.0681119	6.0950759	6.1481941	6.1743961	6.2003895	6.2261953	6.2518333	6.2773225	6.3026813	6 3530775	6.3781489	6.4031578	6.4281201	6.4530519
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	6.2	3.9742780 4.2437991	4.4149305	4.5437258	4.6485264	4.8160024	4.8860796	4.9498224	5.0085064	5.0630541	5.1141560	5.1623426	5.2080312	5.2515562 5.9931909	5.3331584	5.3716491	5.4088219	5.4448129	5.4797397	5.5137042	5.5467960	5.6106673	5.6415793	5.6718854	5.7016364	5.7308780	5.7596518 5.7870069	5.8159461	5.8435339	5.8707898	5.8977417	5.9508364	5.9770268	6.0030090	6.0288037	6.0544308	6.0799092	6.1052573	0.1504927 6 1556396	6 1806938	6.2056924	6.2306447	6.2555665
= P(R, d),	6.0	3.7.785503 4.0477958	4.2187671	4.3474502	4.4521641	4.6195098	4.6895352	4.7532322	4.8118750	4.8663855	4.9174531	4.9656080	5.0112672	5.0547646 5.0963727	5.1363164	5.1747839	5.2119345	5.2479044	5.2828110	5.3167561	5.3498292	5.4136651	5.4445602	5.4748500	5.5045851	5.5338113	5.5625701	5.6188354	5.6464093	5.6736515	5.7005899	5.7536586	5.7798364	5.8058061	5.8315885	5.8572035	5.8826700	5.9080064	5.9552502 5.0583587	5 9834086	6.0083960	6.0333373	6.0582481
	5.8	3.852189 3.8521369	4.0229261	4.1514819	4.2560978	4.4232965	4.4932635	4.5569090	4.6155057	4.6699742	4.7210034	4.7691229	4.8147491	4.8582157	4.9397111	4.9781527	5.0152786	5.0512250	5.0861089	5.1200324	5.1530847	5.2168812	5.2477575	5.2780292	5.3077467	5.3369557	5.3656978	5.4219310	5.4494893	5.4767164	5.5036400	5.5566798	5.5828435	5.6087995	5.6345683	5.6601700	5.6856233	5.7109467 5.7261577				5.8362150	5.8611137
= R(P, d) where probability P	5.6	3,6568694	3.8274502	3.9558608	4.0603653	4.2273972	4.2972982	4.3608855	4.4194301	4.4738514	4.5248373	4.5729169	4.6185060	4.6619381	4.7433702	4.7817826	4.8188809	4.8548009	4.8896596	4.9235589	4.9565879	5.0203403	5.0511957	5.0814471	5.1111449	5.1403348	5.1690583 5.1072536	5.2252557	5.2527968	5.2800069	5.3069140	5.3599217	5.3860699	5.4120105	5.4377643	5.4633511	5.4887898	5.5140988 5.5303056	5.5592950	5.5894209	5.6143823	5.6392977	5.6641830
R = R(5.4	3.1939304 3.4620492	3.6323899	3.7606340	3.86501111	4.0318527	4.1016788	4.1652000	4.2236854	4.2780532	4.3289902	4.3770247	4.4225720	4.4659649	4.5473256	4.5857053	4.6227725	4.6586627	4.6934931	4.7273652	4.7603680	4.7923001	4.8549029	4.8851316	4.9148074	4.9439758	4.9726786 5.0009536	5.0288358	5.0563576	5.0835489	5.1104375 5.1370495	5.1634094	5.1895402	5.2154637	5.2412007	5.2667709	5.2921934	5.3174863 5.3496679	5.5420075 5.3677535	5.3927615	5.4177077	5.4426080	5.4674783
	5.2	3.2677434	3.4378057	3.5658575	3.6700879	3.8367115	3.9064517	3.9698974	4.0283154	4.0826222	4.1335036	4.1814868	4.2269865	4.2703350	4.3516150	4.3899576	4.4269895	4.4628462	4.4976445	4.5314859	4.5644592	4.3900429	4.6589120	4.6891151	4.7187660	4.7479104	4.7765897	4.8327020	4.8602021	4.8873722	4.9142401 7.9408318	4.9671718	4.9932831	5.0191875	5.0449056	5.0704574	5.0958616	5.1211366	5.1402999	5 1963594	5.2212885	5.2461720	5.2710257
	5.0	3.0740335	3.2437704	3.3715986	3.4756589 3.5649847	3.6420307	3.7116721	3.7750312	3.8333718	3.8876088	3.9384265	3.9863511	4.0317965	4.0750944	4.1562823	4.1945827	4.2315745	4.2673931	4.3021550	4.3359615	4.3689015	4.4010330	4.4632611	4.4934353	4.5230582	4.5521754	4.5808283	4.6368898	4.6643654	4.6915117	4.7183562	4.7712427	4.7973320	4.8232148	4.8489118	4.8744428	4.8998265	4.9250813	4.9302246	5 0002454	5.0251554	5.0500200	5.0748550
	P/d	.02	.03	40.	cO: 9	0.0	80:	60:	.10	11.	.12	.13	<u>1</u> ;	.To	.17	.18	.19	.20	.21	.22	5.53	25.	26	.27	.28	.29	30.	.32	.33	.34	35. 36.	.37	.38	.39	.40	.41	.42	54.	‡ £	46	.47	.48	.49

	d/P	.51	.52	.53	4 г.	55.	.57	.58	.59	09.	.61	.62	.03 6.4	4. 7.	99.	29.	89.	69.	.70	12.	7.7	5.7	.75	92.	.77	.78	.79	08.		83	.84	8. 3.	00 2 2 2	- 80 - 80	88.	90	.91	.92	.93 2	у; 4 д	96	92.	86.	66.
	7.0	7.0962511	7.1212096	7.1462002	7.1712388 7.1063413	7.2215243	7.2468045	7.2721990	7.2977257	7.3234029	7.3492497	7.3752859	7.4015326	7.4547463	7.4817612	7.5090827	7.5367389	7.5647599	7.5931784	7.6220296	7.6513519	7.7115817	7.7425860	7.7742567	7.8066563	7.8398553	7.8739329	7.9089791	7.9824038	8.0210377	8.0611587	8.1029567	8.1925381	8.2409328	8.2922628	8.3470625	8.4060274	8.4700874	8.5405278	8.6192024	8.8143672	8.9439905	9.1163168	9.3879567
	6.8	6.8983337	6.9232848	6.9482680	6.9732991	7.0235701	7.0488430	7.0742303	7.0997497	7.1254197	7.1512592	7.1772882	7.2035277	7.2567269	7.2837345	7.3110487	7.3386975	7.3667112	7.3951222	7.4239659	7.4532806	7.5134951	7.5444917	7.5761544	7.6085460	7.6417368	7.6758062	7.7108440	7 7842512	7.8228760	7.8629877	7.9047761	7.9943373	8.0427213	8.0940399	8.1488278	8.2077801	8.2718266	8.3422525	8.4209110 8 5106966	8.6160374	8.7456362	8.9179309	9.1895234
n	6.6	6.50150 6.7005416	6.7254846	6.7504597	6.7754828	6.8257378	6.8510028	6.8763822	6.9018937	6.9275558	6.9533875	6.9794086	7.0056402	7.0588236	7.0858233	7.1131296	7.1407704	7.1687760	7.1971789	7.2260145	7.2553210	7.3155188	7.3465069	7.3781611	7.4105440	7.4437260	7.4777863	7.5128150 7.5480146	7.5862033	7.6248183	7.6649199	7.7066979	7.7962372	7.8446095	7.8959160	7.9506910	8.0096298	8.0736617	8.1440718	8.2227.131	8.4177980	8.5473702	8.7196309	8.9911724
$\bar{\mathbf{d}} = \mathbf{d} *$	6.4	6.5028864	6.5278205	6.5527868	6.5778012	6.6280387	6.6532951	6.6786658	6.7041688	6.7298223	6.7556453	6.7816579	6.8078809	6.8610470	6.8880381	6.9153357	6.9429678	6.9709647	6.9993588	7.0281855	7.0574831	7.1176627	7.1486416	7.1802864	7.2126599	7.2458323	7.2798829	7.3149015	7.3882693	7.4268736	7.4669643	7.5087310	7.5982465	7.6466062	7.6978995	7.7526606	7.8115846	7.8756008	7.9459938	8.0246164	8.2196564	8.3492000	8.5214240	8.7929105
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	6.2	6.2804735 6.3053814	6.3303057	6.3552624	6.3802671	6.4304856	6.4557324	6.4810937	6.5065872	6.5322313	6.5580449	6.5840481	6.6102617 6.6267076	6.6634090	6.6903907	6.7176788	6.7453014	6.7732886	6.8016732	6.8304901	6.8597780	6.9199378	6.9509067	6.9825413	7.0149044	7.0480663	7.0821063	7.1171141	7 1904595	7.2290522	7.2691309	7.3108854	7.4003750	7.4487210	7.49999999	7.5547459	7.6136539	7.6776530	7.7480275	7.0163838	8.0216212	8.1511338	8.3233181	8.5947451
= P(R, d),	6.0	6.0851442 6.1080412	6.1329549	6.1579009	6.1828950	6.2330925	6.2583289	6.2836799	6.3091630	6.3347967	6.3606001	6.3865929	6.4127962 6.4203218	6.4659229	6.4928942	6.5201719	6.5477840	6.5757608	6.6041348	6.6329412	6.6622183	6.7223566	6.7533144	6.7849379	6.8172897	6.8504402	6.8844685	6.9194644 6.0555307	6.9555507 6.9927853	7.0313654	7.0714312	7.1131722	7.2026337	7.2509647	7.3022280	7.3569575	7.4158481	7.4798285	7.5501829	7.189019	7.8237018	7.9531808	8.1253219	8.3966846
	5.8	5.8859978 5.9108829	5.9357848	5.9607190	5.9857015 6.0107484	6.0358759	6.0611008	6.0864403	6.1119120	6.1375344	6.1633263	6.1893078	6.2154997 6.2410340	6.2686037	6.2955636	6.3228299	6.3504306	6.3783959	6.4067583	6.4355531	6.4648185 6.4045064	6.5249329	6.5558787	6.5874900	6.6198295	6.6529674	6.6869829	6.7219659	6 7952600	6.8338262	6.8738777	6.9156041	7.0050347	7.0533495	7.1045957	7.1593073	7.2181788	7.2821389	7.3524713	7 5306388	7.6259087	7.7553511	7.9274454	8.1987383
= R(P, d) where probability P	5.6	5.0890538 5.7139257	5.7388145		5.7887053	5.8388541	5.8640663	5.8893931	5.9148523	5.9404621	5.9662415	5.9922105	6.0183898 6.044601E	6.0714688	6.0984161	6.1256698	6.1532579	6.1812105	6.2095602	6.2383421	6.2675946 6.2073505	6.3276829	6.3586154	6.3902132	6.4225391	6.4556632	6.4896647	6.5246334	6.5978981	6.6364491	6.6764851	6.7181954 6.7618064	6.8075922	6.8558891	6.9071166	6.9618085	7.0206592	7.0845971	7.1549055	7 2334355	7.4282540	7.5576565	7.7296998	8.0009168
R = R(5.4	5.4923344 5.5171917	5.5420659	5.5669727	5.5919280	5.6420483	5.6672465	5.6925593	5.7180045	5.7436003	5.7693658	5.7953209	5.8214864	5.8745376	5.9014711	5.9287108	5.9562850	5.9842236	6.0125591		6.0705551	6.1306245	6.1615424	6.1931254	6.2254363	6.2585452	6.2925312	6.3274842	6 4007166	6.4392508	6.4792696	6.5209622 6.545550	6.6103220	6.6585991	6.7098061	6.7644765	6.8233043	6.8872178	6.9575000	7.0360012	7.2307510	7.3601099	7.5320976	7.8032318
	5.2	5.2958652	5.3455642	5.3704549	5.3953942 5.4903081	5.4454830	5.4706654	5.4959626	5.5213923	5.5469726	5.5727227	5.5986624	5.6248124	5.6778328	5.7047508	5.7319751	5.7595338	5.7874568	5.8157768	5.8445288	5.8/3/512	5.9337787	5.9646803	5.9962469	6.0285412	6.0616333	6.0956023	6.1305379	6.1003420	6.2422502	6.2822500	6.3239232	6.4132420	6.4614975	6.5126819	6.5673284	6.6261312	6.6900178	6.7602711	6.8387408	7.0334152	7.1627263	7.3346531	7.6056968
	5.0	5.0996760 5.1244987	5.1493385	5.1742113	5.1991327	5.249189	5.2743511	5.2996308	5.3250431	5.3506061	5.3763389	5.4022614	5.4283943	5.4813803	5.5082811	5.5354882	5.5630296	5.5909353	5.6192379	5.6479724	5.67/11/73 5.7068049	5.7371692	5.7680528	5.7996012	5.8318771	5.8649505	5.8989005	5.9338168	5.9698020 6.0069738	6.0454691	6.0854479	6.1270994	6.2163729	6.2646045	6.3157639	6.3703842	6.4291592	6.4930163	6.5632377	6 7211967	6.8362641	6.9655227	7.1373825	7.4083270
	P\d	.51	.52	553	4 д	52.	.57	.58	.59	.60	.61	.62	50.	2. 13.	99.	29.	89.	69.	.70	.71	7 7	5. 4	.75	92.	.77	.78	.79	8 8 5		83.	.84	8. 8. 8	6 % 5 %	88.	83	.90	.91	92	. y	ن 4 م	96	.97	86.	66.

	$_{0.7}^{\rm d/P}$.02	.03	.04	90:	.07	80.	.03 01	11.	.12	.13	41.	.I.5 16	17	.18	.19	.20	.21	.22	.23	.24	.25	.26	.27	87. 00.	62.	.31	.32	.33	.34	.35 9	37	.38	.39	.40	.41	.42	.43	44.	.45 24	04. 77	4. 4.	49	.50
	9.0	0.7378198 7.0092123	7.1814335	7.3110038	7.5061305	7.5848039	7.6552501	7.7783007	7.8331181	7.8844683	7.9328851	7.9787888	8.0225157	8 1044889	8.1431513	8.1804879	8.2166357	8.2517129	8.2858222	8.3190536	8.3514862	8.3831904	8.4142290	8.4446582	8.4745288	8.5327745	8.5612300	8.5892885	8.6169827	8.6443428	8.6713969	8.7246907	8.7509783	8.7770561	8.8029450	8.8286649	8.8542351	8.8796737	8.9049987	8.9302272	8.9553760	8.9804616	9.0305071	9.0554989
	8.8	6.5395199 6.8108454	6.9830266	7.1125682	7.3076536	7.3863109	7.4567430	7.5208012	7.6345765	7.6859170	7.7343249	7.7802201	7.8239391 7.8657561	7 9058976	7.9445533	7.9818833	8.0180249	8.0530962	8.0871997	8.1204255	8.1528527	8.1845516	8.2155851	8.2460093	8.27.087.01 8.305.9986	8.3341115	8.3625624	8.3906165	8.4183064	8.4456623	8.4727122	8.5259979	8.5522814	8.5783553	8.6042403	8.6299565	8.6555228	8.6809577	8.7062790	8.7315038	8.7566490	8.8067658	8.8317694	8.8567576
n	8.6	6.6125657	6.7847037	6.9142142	7.1092548	7.1878948	7.2583117	7.3223563	7.4361081	7.4874381	7.5358363	7.5817225	7.6254330	7 7073757	7.7460240	7.7833471	7.8194820	7.8545468	7.8886441	7.9218639	7.9542853	7.9859786	8.0170066	8.0474255	8.07.72801	8.1355125	8.1639585	8.1920079	8.2196932	8.2470445	8.2740899	8.3273668	8.3536461	8.3797158	8.4055966	8.4313087	8.4568709	8.4823019	8.5076192	8.5328401	8.5579814	8.6080904	8.6330902	8.6580746
$\frac{d}{d} = d$	8.4	6.1432072 6.4143805	6.5864716	6.7159484	6.9109406	6.9895617	7.0599621	7 1829348	7.2377184	7.2890372	7.3374249	7.3833013	7.4270026	7 5089284	7.5475688	7.5848844	7.6210120	7.6560699	7.6901605	7.7233738	7.7557889	7.7874762	7.8184983	7.8489114	7 0081007	7.9369821	7.9654230	7.9934672	8.0211475	8.0484939	8.0755345	8.1288020	8.1550767	8.1811419	8.2070183	8.2327259	8.2582838	8.2837105	8.3090235	8.3342402	8.3593773	8.4094781	8.4344738	8.4594542
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	8.2	6.2162980	6.3883380	6.5177780	6.7127176	6.7913183	6.8617009	6.925/149 6.9846432	7.0394137	7.0907203	7.1390968	7.1849626	7.2286539	7.3105614	7.3491933	7.3865007	7.4226206	7.4576709	7.4917543	7.5249606	7.5573690	7.5890497	7.6200655	7.6504725	7 7006586	7.7385255	7.7669608	7.7949996	7.8226745	7.8500156	7.8770510	7.9303084	7.9565782	7.9826385	8.0085101	8.0342130	8.0597663	8.0851883	8.1104967	8.1357089	8.1608415	8.2109334	8.2359248	8.2609008
= P(R, d),	8.0	6.0183269	6.1903111	6.3197112	6.5145935	6.5931721	6.6635353	6.7275321 6.7864447	6.8412009	6.8924944	6.9408586	6.9867129	7.0303935	7 1122811	7.1509038	7.1882024	7.2243139	7.2593561	7.2934317	7.3266305	7.3590316	7.3907052	7.4217141	7.4521145	7 5119877	7.5401485	7.5685777	7.5966106	7.6242797	7.6516151	7.6786450	7.7318915	7.7581560	7.7842110	7.8100774	7.8357752	7.8613235	7.8867405	7.9120440	7.9372513	7 9874438	8.0124615	8.0374482	8.0624195
	7.8	5.5495890 5.8204775	5.9924007	6.1217570	6.3165769	6.3951314	6.4654735	6.5294514 6.5883471	6.6430877	6.6943669	6.7427178	6.7885597	6.8322285 6.8739981	6 9140946	6.9527074	6.9899965	7.0260988	7.0611322	7.0951994	7.1283900	7.1607832	7.1924492	7.2234507	7.2538438	7 3130039	7.3418573	7.3702800	7.3983065	7.4259693	7.4532986	7.4803224	7.5335572	7.5598159	7.5858653	7.6117262	7.6374185	7.6629613	7.6883729	7.7136712	7.7388732	7.7890553	7.8140679	7.8390495	7.8640158
= R(P, d) where probability P	7.6	5.5519808 5.6227611	5.7946172	5.9239257	6.1186772	6.1972054	6.2675244	6.3314818 6.3903590	6.4450827	6.4963463	6.5446827	6.5905111	6.6341672 6.6759248	6 7160099	6.7546118	6.7918905	6.8279829	6.8630068	6.8970648	6.9302466	6.9626313	6.9942890	7.0252824	7.0556677	7 1148190	7.1436589	7.1720745	7.2000941	7.2277501	7.2550728	7.2820901	7.3353121	7.3615647	7.3876079	7.4134628	7.4391491	7.4646861	7.4900919	7.5153844	7.5405808	7 5007517	7.6157588	7.6407348	7.6656957
R = R(5.1545421 5.4251903		5.7262286	5.9209052			6.1336333 6.1924902		6.2984420	6.3467626	6.3925762	6.4362185 6.4779630	6.5180357	6.5566257	6.5938932	6.6299748	6.6649884	6.6990364	6.7322085	6.7645839	6.7962326	6.8272173	6.8575941	6.0167991			7.0019811	7.0296298	7.0569452	7.0839554	7.1371637	7.1634095	7.1894462	7.2152945	7.2409744	7.2665049	7.2919045	7.3171908	7.3423810	7 3025308	7.4175409	7.4425111	7.4674661
	7.2	4.9572712 5.2277798	5.3994808	5.5286786	5.7232728	5.8017404	5.8720066	5.9359170	6.0494367	6.1006646	6.1489679	6.1947654	6.2383925	6.3201818	6.3587590	6.3960141	6.4320839	6.4670862	6.5011233	6.5342850	6.5666502	6.5982891	6.6292642	6.6596318	6.0894424 6.7187491	6.7475725	6.7759721	6.8039760	6.8316167	6.8589243	6.8859268	6.9391201	6.9653586	6.9913880	7.0172293	7.0429022	7.0684259	7.0938186	7.1190982	7.1442817	7 1944974	7.21944214	7.2443857	7.2693343
	7.0	4.7601925 5.0305459	5.2021567	5.3312905	5.5257936	5.6042264	5.6744621	5 7971557	5.8518185	5.9030260	5.9513103	5.9970901	6.0407006	6 1224594	6.1610224	6.1982641	6.2343210	6.2693109	6.3033361	6.3364863	6.3688405	6.4004686	6.4314334	6.4617909	6 5508817	6.5497029	6.5780933	6.6060883	6.6337202	6.6610193	6.6880135	6.7411904	6.7674210	6.7934426	6.8192761	6.8449414	6.8704576	6.8958429	6.9211152	6.9462914	6.9713886	6.9964228 7.0214104	7.0463672	7.0713088
	P\d	.02	.03	.04	90:	20.	80.	90.	11.	.12	.13	4: ;	.T5	17	18	.19	.20	.21	.22	.23	.24	.25	.26	.27	0 0 0 0	. 05 05 05 05 05	.31	.32	.33	.34		37	.38	.39	.40	.41	.42	.43	44.	45 245	.40 77	4. 4.	49	.50

	d/P	.5. 15.	.52	.53	5. r	.55 87	7.7.	. 22.	.59	09.	.61	.62	.63	.65 4	99.	29.	89.	69.	0. i	.71	7.5	5). 74	- L	92.	22.	.78	.79	.80	×.	83.	.84	œ. rc. c	00.0	- œ	68.	.90	.91	.92	. 93	9. 70	. 96.	26.	86.	66.
	9.0	9.0554989	9.1054990	9.1305388	9.1556263	9.1807777	9.2313381	9.2567812	9.2823563	9.3080819	9.3339770	9.3600617	9.3863569	9.4126840 9.4396681	9.4667320	9.4941028	9.5218084	9.5498793	9.5783479	9.6072497	9.6366231	9.6665100	9.7280139	9.7597382	9.7921922	9.8254465	9.8595806	9.8946843	9.9308607	10.006924	10.047108	10.088972	10.132742	10.227161	10.278568	10.333449	10.392501	10.456654	10.527195	10.605981	10.801413	10.931208	11.103755	11.375728
	∞. ∞. 1	8.8567576	8.9067506	8.9317870	8.9568711	8.9820190	9.0325725	9.0580121	9.0835838	9.1093059	9.1351977	9.1612789	9.1875707	9.2408749	9.2679353	9.2953025	9.3230047	9.3510719	9.3795370	9.4084351	9.4378048	9.4676881	9.5291844	9.5609048	9.5933550	9.6266053	9.6607352	9.6958348	9.7320070	9.8080611	9.8482412	9.8901001	9.9558049	10.028273	10.079675	10.134550	10.193596	10.257742	10.328276	10.407053	10.496902 10.602466	10.732248	10.904779	11.176727
n	8.6	8.6580746	8.7080602	8.7330928	8.7581732	8.7833174	8.8338636	8.8592995	8.8848675	8.9105859	8.9364740	8.9625516	8.9888396	9.0153001 9.0421364	9.0691931	9.0965566	9.1242549	9.1523184	9.1807796	9.2096739	9.2390397	9.2689190	9.2393913	9.3621235	9.3945695	9.4278156	9.4619412	9.4970364	9.5332040	9.6092487	9.6494239	9.6912777	9.7500572	9.8294345	9.8808302	9.9356993	9.9947380	10.058877	10.129403	10.208172	10.298010 10.403563	10.533332	10.705846	10.977768
$\bar{\mathbf{d}} = \mathbf{d} *$	8.4	8.4594542 8.4844349	8.5094317	8.5344603	8.5595367	8.5846770	8.6352153	8.6606472	8.6862113	8.7119258	8.7378099	8.7638836	8.7901677	8.8434565	8.8705092	8.8978687	8.9255630	8.9536224	8.9820795	9.0109697	9.0403313	9.0702063	9.1316860	9.1633979	9.1958394	9.2290810	9.2632019	9.2982924	9.3344551	9.4104899	9.4506598	9.4925082	9.5502021	9.9821901 9.6306474	9.6820367	9.7368991	9.7959306	9.8600619	9.9305796	10.009339	10.204708	10.334463	10.506958	10.778852
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	8.2	8.2609008	8.3108697	8.3358941	8.3609662	8.3861022	8.4366320	8.4620597	8.4876196	8.5133299	8.5392098	8.5652792	8.5915590 9.6190719	8.6448394	8.6718878	8.6992429	8.7269329	8.7549880	8.7834407	8.8123264	8.8416836	8.9019842	8 9330246	8.9647318	8.9971685	9.0304052	9.0645212	9.0996066	9.135/042	9.2117882	9.2519526	9.2937952	9.5575451	9.4319157	9.4832982	9.5381533	9.5971772	9.6613003	9.7318090	9.8105587	3.3003702 10,005904	10.135644	10.308119	10.579984
= P(R, d),	8.0	8.0624195 8.0873913	8.1123791	8.1373989	8.1624664	8.1875978	8.2381185	8.2635418	8.2890971	8.3148028	8.3406782	8.3667431	8.3930184	8.4462896	8.4733334	8.5006839	8.5283693	8.5564197	8.5848677	8.6137486	8.6431010	8.6723667	8.7344273	8.7661295		8.8317926	8.8659033	8.9009833	8.9371534 8.9744778	9.0131479	9.0533062	9.0951427	9.1556642	9.2332432	9.2846184	9.3394658	9.3984815	9.4625958	9.5330950	9.6118342	9.7010400 9.8071546	9.9368777	10.109332	10.381165
	7.8	7.8640158 7.8889825	7.9139654	7.9389802	7.9640428	7.9891093 8.0143769	8.0396802	8.0650985	8.0906490	8.1163499	8.1422203	8.1682803	8.1945507	8.2478121	8.2748510	8.3021966	8.3298769	8.3579223	8.3863653	8.4152411	8.4445883	8.5048688	8.5358989	8.5675956	8.6000217	8.6332477	8.6673527		8.7359094 8.7759094		8.8547252	8.8965550	8.9402697	9.0346341	9.0860015	9.1408407	9.1998476	9.2639525	9.3344416	9.4131696	9.5023628	9.7381687	9.9106011	10.182401
= R(P, d) where probability P	7.6	7.6656957 7.6906570	7.7156345	7.7406440	7.7657012	7.7908225	7.8413228	7.8667359	7.8922811	7.9179767	7.9438419	7.9698967	7.9961618	8.0494126	8.0764462	8.1037864	8.1314614	8.1595014	8.1879389	8.2168093	8.2461509	8.2760059	8.3374445	8.3691354	8.4015557	8.4347756	8.4688745	8.5039425	8.5400823 8.5774191	8.6160693	8.6562143	8.6980370	8.7876707	8.8360931	8.8874521	8.9422825	9.0012800	9.0653749	9.1358530	9.2145691	9.3043469	9.5395209	9.7119294	9.9836930
R = R(7.4	7.4674661 7.4924215	7.5173932	7.5423969	7.5674484	7.5925639	7.6430528	7.6684602	7.6939997	7.7196897	7.7455492	7.7715983	7.7978577	7.8510971	7.8781250	7.9054595	7.9331287	7.9611628	7.9895944	8.0184589	8.0477946	8.0776455	8.1390699	8.1707546	8.2031684	8.2363819	8.2704743	8.3055355	8.3410083	8.4176413	8.4577789	8.4995940	8.0400104 8.580011E	8.6376254	8.6889754	8.7437963	8.8027837	8.8668678	8.9373343	9.0160375	9.2112711	9.3409386	9.5133216	9.7850467
	7.2	7.2693343 7.2942835	7.3192489	7.3442462	7.3692915	7.3944008	7.4448774	7.4702786	7.4958120	7.5214958	7.5473492	7.5733921	7.5996455	7.6528725	7.6798942	7.7072224	7.7348854	7.7629132	7.7913385	7.8201966	7.8495259	7 9097698	7.9407814	7.9724593	8.0048663	8.0380729	8.0721581	8.1072122	8.1453577 8.1806530	8.2192952	8.2594249	8.3012317	8 3008310	8.4392365	8.4905769	8.5453876	8.6043642	8.6684366	8.7388906	8.8175800	9.0127804	9.1424266	9.3147823	9.5864663
	7.0	7.0713088 7.0962511	7.1212096	7.1462002	7.1712388	7 22152413	7.2468045	7.2721990	7.2977257	7.3234029	7.3492497	7.3752859	7.4015326	7.4547463	7.4817612	7.5090827	7.5367389	7.5647599	7.5931784	7.6220296	7.6513519	7 7115817	7.7425860	7.7742567	7.8066563	7.8398553	7.8739329	7.9089791	7 9824038	8.0210377	8.0611587	8.1029567	6.1400554 9.1095391	8.2409328	8.2922628	8.3470625	8.4060274	8.4700874	8.5405278	8.6192024	8.8143672	8.9439905	9.1163168	9.3879567
	P\d	ن 12:	.52	.53	4. r		52.	82.	.59	.60	.61	.62	50.	59.	99.	29.	89.	69.	2. 2.	F. 8	3.5	5. Z	<u> </u>	92:	22.	.78	.79	80. 13.	2 2 3	83	.84	85. S	00.0	. 80	88	.90	.91	.92	. 93	4. g	96.	26.	86:	66.

	d/P	.01	.03	40.	cn: 90:	.07	80.	90.	T. T.	.12	.13	1. 1.	.T3 16	17	18	.19	.20	.21	.22	.23	24	.25	5.26	2. c αc	25.	.30	.31	.32	.33	4. g	ა. ი გ	.37	.38	.39	.40	.41	24.	54.	4. 4 4. 7	04. 04.	.47 74.	. 48	.49	.50
	20.0	17.700223	18.145455	18.275470	18.381228	18.550173	18.620844	18.685116	18.799265	18.850772	18.899335	18.945375	18.989232	19.071445	19.110219	19.147663	19.183914	19.219091	19.253297	19.286621	19.319144	19.350936	19.382060	19.412572	19.471962	19.500928	19.529459	19.557593	19.585360	19.612793	19.639918	19.693351	19.719707	19.745852	19.771807	19.797593	19.823228	19.848731	10.800413	19.899412	19.924024 19.949772	19.974873	19.999942	20.024995
	18.0	15.703387 15.975736	16.148536	16.278528	16.384268 16.474269	16.553183	16.623842	16.688103 16.747256	16.802233	16.853731	16.902286	16.948319	16.992168 17.034109	17.074368	17.113136	17.150574	17.186819	17.221990	17.256190	17.289509	17.322027	17.353814	17.384933	17.415441	17.474821	17.503782	17.532310	17.560439	17.588202	17.615630	17.642751	17.696176	17.722528	17.748669	17.774621	17.800403	17.826034	17.851533	17 009907	17.902207	17.952559	17.977656	18.002721	18.027771
n	16.0	13.707407 13.979683	14.152438	14.282396	14.388109	14.556983	14.627624	14.691870	14.805973	14.857458	14.906001	14.952024	14.995863 15.037794	15.078044	15.116803	15.154232	15.190469	15.225632	15.259825	15.293136	15.325647	15.357427	15.388539	15.419040	15.478408	15.507362	15.535883	15.564006	15.591764	15.619186	15.646501	15.699715	15.726061	15.752196	15.778142	15.803919	15.829545	15.855039	15.005709	15.905/02	15.956044	15.981135	16.006195	16.031240
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	14.0	11.712687 11.984852	12.157538	12.287446	12.393119 12.483064	12.561930	12.632546	12.696768 19.755886	12.810830	12.862297	12.910824	12.956830	13.000654	13.082807	13.121553	13.158969	13.195194	13.230346	13.264527	13.297827	13.330327	13.362097	13.393199	13.423690	13.483038	13.511983	13.540495	13.568609	13.596358	13.623772	13.650878	13.704275	13.730613	13.756741	13.782679	13.808447	13.834065	13.859551	19.004924	13.910199	13.960525	13.985610	14.010662	14.035699
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	12.0	9.7199310 9.9919144	10.164490	10.294318	10.399927 10.489818	10.568637	10.639212	10.703397	10.817395	10.868833	10.917333	10.963314	11.007114	11.089223	11.127948	11.165345	11.201550	11.236684	11.270847	11.304130	11.336613	11.368366	11.399453	11.429928	11.489247	11.518177	11.546675	11.574775	11.602510	11.629911	11.657004	11.710375	11.736700	11.762815	11.788741	11.814497	11.840103	11.865577	11.090957	11.916200	11.941364 11.966504	11.991576	12.016617	12.041643
= P(R, d),	10.0	7.7304900 8.0021498	8.1745306	8.3042164	8.4097121	8.5782482	8.6487515	8.7128734	8.8267593	8.8781486	8.9266020	8.9725399	9.0162992	9.0983320	9.1370221	9.1743853	9.2105586	9.2456603	9.2797933	9.3130475	9.3455023	9.3772280	9.4082875	9.4387370	9.4980050	9.5269115	9.5553855	9.5834622	9.6111742	9.6385518	9.6656231 9.6924145	9.7189505	9.7452545	9.7713485	9.7972533	9.8229891	9.8485748	9.8740290	9.6393092	9.9240129	9.9491161	9.9999304	10.024952	10.049959
	9.8	7.5318183	7.9757856	8.1054515	8.2109315	8.3794433	8.4499366	8.5140497 8.5730676	8.6279202	8.6793027	8.7277498	8.7736817	8.8174553	8.8994578	8.9381431	8.9755016	9.0116704	9.0467679	9.0808968	9.1141470	9.1465979	9.1783199	9.2093757	9.2398217	9.2990828	9.3279860	9.3564567	9.3845302	9.4122391	9.4396137	9.4666820 9.4934703	9.5200034	9.5463046	9.5723957	9.5982978	9.6240308	9.6496138	9.6750652	9.7004028	9.7256458	9.7759028	9.8009534	9.8259727	9.8509765
= R(P, d) where probability P	9.6	7.3332104 7.6047751	7.7770990	7.9067435	8.1019774	8.1806924	8.2511752	8.3152788	8.4291328	8.4805081	8.5289484	8.5748739	8.6186215	8.7006329	8.7393130	8.7766666	8.8128307	8.8479236	8.8820481	8.9152940	8.9477408	8.9794588	9.0105107	9.0409529	9.1002067	9.1291064	9.1575736	9.1856438	9.2133494	9.2407206	9.2677857	9.3211009	9.3473990	9.3734871	9.3993862	9.4251162	9.4506963	9.4761448	9.3014190	9.526/17/	9.5769712	9.6020190	9.6270355	9.6520366
R = R(9.4	7.1346712 7.4061828	7.5784750	7.7080966	7.9032973	7.9819994		8.1165643 8.1755645	8.2304007		8.3302012	8.3761200	8.4198012 8.4616992											8.8421338						9.0418756	9.0089373		9.1485406					9.2772708	9.5020024				9.4281436	9.4531417
	9.2	6.9362057 7.2076601	7.3799181	7.5095150	7.5149406 7.7046801	7.7833684	7.8538277	7.9179103	8.0317278	8.0830868	8.1315121	8.1774235	8.2211579	8.3031446	8.3418134	8.3791560	8.4153097	8.4503925	8.4845072	8.5177437	8.5501814	8.5818905	8.6129338	8.6433676 8.6732428	8.7026054	8.7314972	8.7599569	8.7880195	8.8157178	8.8430819	8.8701399 8.8969181	8.9234413	8.9497326	8.9758140	9.0017066	9.0274301	9.0530038	9.0784460	9.105//44	9.1290065	9.1341363 9.1792475	9.2042892	9.2292997	9.2542948
	9.0	6.7378198 7.0092123	7.1814335	7.3110038	7.4164084 7.5061305	7.5848039	7.6552501	7.7193210 7.7783007	7.8331181	7.8844683	7.9328851	7.9787888	8.0225157	8.1044889	8.1431513	8.1804879	8.2166357	8.2517129	8.2858222	8.3190536	8.3514862	8.3831904	8.4142290	8.4446582	8.5038870	8.5327745	8.5612300	8.5892885	8.6169827	8.6443428	8.6713969	8.7246907	8.7509783	8.7770561	8.8029450	8.8286649	8.8542351	8.8796737	6.9049967	8.9502212	8.9804616	9.0055000	9.0305071	9.0554989
	P\d	.01	.03	40.	cn. 90	.07	80.	90.	9.1	17	.13	41.	.To	17	.18	.19	.20	.21	.22	.23	24	25	5.26	77. 80.	25	.30	.31	.32	.33	£	ა. ი. გ.	.37	.38	.39	.40	.41	42	54. 5. 4.	4. 4 4. 4	C4:	.47	.48	.49	.50

	d/P	05. P	.52	55.	4. c. 7. c.	.56	.57	ου. Σ	60. 09.	.61	.62	.63	40. 73.	99	29.	89.	69.	.70	.71	.72	.73	4. 1	. (? 1	07.	.78	.79	.80	.81	8. 8. 8.	× × ×	. 85 . 75	98.	.87	×. 0	gs. 00	06.	. 65 26	.93	.94	.95	96.	76.	86. 66.
	20.0	20.024995	20.050046 20.075117	20.100218	20.125500 20.150578	20.175870	20.201259	20.226763	20.278185	20.304141	20.330287	20.356643	20.383232	20.437204	20.464637	20.492406	20.520541	20.549073	20.578040	20.607479	20.637433	20.667947	20.699073	20.763391	20.796718	20.830926	20.866105	20.902358	20.939805	20.978583	21.060803	21.104663	21.150708	21.199275	21.250787	91 364048	21.429228	21.499907	21.578845	21.668874	21.774648	21.904683	22.077543 22.349994
	18.0	18.027771	18.077886	18.102983	18.153336	18.178624	18.204010	18.229510	18.280924	18.306877	18.333019	18.359371	18.385957 18.412798	18,439921	18.467350	18.495115	18.523246	18.551775	18.580737	18.610172	18.640122	18.670632	18.701753	18.766063	18.799385	18.833588	18.868763	18.905012	18.942453	18.981225	19.063435	19.107289	19.153328	19.201889	19.253394	10 367541	19.431812	19.502483	19.581411	19.671429	19.777189	19.907208	20.080048 20.352466
n	16.0	16.031240	16.030264 16.081345	16.106437	16.151579 16.156779	16.182063	16.207443	16.232938 16.252938	16.284342	16.310290	16.336426	16.362774	16.389354 16.416190	16.443308	16.470732	16.498491	16.526616	16.555140	16.584097	16.613526	16.643470	16.673974	16.705090	16.769388	16.802703	16.836900	16.872068	16.908310	16.945745	16.984510	17.066704	17.110551	17.156581	17.205134	17.256630	17 370756	17.435016	17.505674	17.584589	17.674591	17.780334	17.910331	18.083142 18.355517
$p = \bar{b}$	14.0	14.035699	14.085789	14.110874	14.150000 14.161201	14.186478	14.211851	14.23/338	14.288728	14.314667	14.340797	14.367137	14.393709 14.420538	14.447647	14.475064	14.502815	14.530933	14.559448	14.588397	14.617819	14.647754	14.678250	14.709357	14.773637	14.806944	14.841131	14.876290	14.912522	14.949947	14.988702	15.070875	15.114710	15.160729	15.209269	15.260751	15 27/8/0	15.439093	15.509734	15.588628	15.678609	15.784326	15.914293	16.087064 16.359377
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	12.0	12.041643	12.090008 12.091710	12.116783	12.141905 12.167088	12.192353	12.217714	12.243190	12.294557	12.320485	12.346603	12.372932	12.399493	12.453407	12.480812	12.508552	12.536657	12.565161	12.594098	12.623506	12.653429	12.683912	12.715006	12.779260	12.812553	12.846727	12.881871	12.918089	12.955499	12.994238	13.076378	13.120196	13.166197	13.214718	13.266181	12.321121	13.444455	13.515070	13.593935	13.683884	13.789562	13.919483	14.092194 14.364416
= P(R, d),	10.0	10.049959	10.099988	10.125042	10.150144 10.175310	10.200556	10.225899	10.251356	10.270345 10.302685	10.328595	10.354694	10.381003	10.407545	10.461422	10.488807	10.516527	10.544613	10.573097	10.602014	10.631402	10.661305	10.691767	10.722840	10.787051	10.820322	10.854473	10.889594	10.925788	10.963173	11.001888	11.083975	11.127766	11.173738	11.222229	11.2/3060	11.326300	11.451826	11.522398	11.601218	11.691114	11.796733	11.926581	12.099197 12.371276
	8.6	9.8509765	9.9010004	9.9260521	9.9511515 9.9763147	10.001558	10.026899	10.052353	10.077940 10.103678	10.129585	10.155681	10.181988	10.208528	10.262399	10.289782	10.317500	10.345583	10.374064	10.402978	10.432364	10.462263	10.492723	10.523793	10.587998	10.621266	10.655414	10.690532	10.726723	10.764106	10.802817	10.884897	10.928684	10.974652	11.023139	11.074566	11.129400	11.252718	11.323285	11.402098	11.491987	11.597598	11.727437	$11.900041\\12.172100$
= R(P, d) where probability P	9.6	9.6520366	9.7020551	9.7271041	9.7773614		9.8279400	9.8533921	9.9047110	9.9306152	9.9567091	9.9830134	10.009550 10.036343	10.063416	10.090796	10.118511	10.146591	10.175070	10.203981	10.233364	10.263261	10.293717	10.324785	10.388984	10.422249	10.456393	10.491508	10.527696	10.565075	10.603782	10.685855	10.729638	10.775602	10.824085	10.875507	10.950405	11.053645	11.124205	11.203013	11.292894	11.398497	11.528326	11.700917 11.972956
R = R(9.4	9.4531417	9.4781401 9.5031545	9.5282006	9.552945 9.5784521	9.6036901	9.6290251	9.6544743	9.7057875	9.7316890	9.7577799	9.7840814	9.8106154 9.8374052	9.8644755	9.8918526	9.9195647	9.9476421	9.9761172	10.005026	10.034406	10.064299	10.094753	10.125817 10.157548	10.190009	10.223271	10.257412	10.292524	10.328708	10.366083	10.404787	10.486852	10.530631	10.576591	10.625069	10.678487	10.700449	10.854608	10.925163	11.003963	11.093837	11.199431	11.329249	11.501826 11.773845
	9.5	9.2542948	9.2192901 9.3043014	9.3293445	9.5544555 9.3795899	9.4048248	9.4301568	9.4556030	9.4611614 9.5069102	9.5328086	9.5588965	9.5851949	9.6117259	9.6655798	9.6929539	9.7206628	9.7487370	9.7772091	9.8061142	9.8354910	9.8653815	9.8958316	9.9268924	9.9980203	10.024336	10.058474	10.093582	10.129762	10.167133	10.205833	10.287890	10.331665	10.377620	10.426094	10.477506	10 501451	10.031401 10.655610	10.726158	10.804952	10.894818	11.000402	11.130209	11.302772 11.574768
	0.6	9.0554989	9.0504303 9.1054990	9.1305388	9.1550205	9.2060094	9.2313381	9.2567812	9.2823303	9.3339770	9.3600617	9.3863569	9.4128846 9.4396681	9.4667320	9.4941028	9.5218084	9.5498793	9.5783479	9.6072497	9.6366231	9.6665100	9.6969567	9.7280139	9.7921922	9.8254465	9.8595806	9.8946843	9.9308607	9.9682280	10.006924	10.088972	10.132742	10.178692	10.227161	10.278568	10.333443	10.332301 10.456654	10.527195	10.605981	10.695838	10.801413	10.931208	11.103755 11.375728
	P\d	20. 1	.52	55.	.55.	.56	.57	о. 2	60. 09.	.61	.62	.63	40. 75.	99	29.	89.	69.	.70	.71	.72	.73	5. <u>f</u>	. (5) 76	27.	82.	.79	.80	.81	8.5	§ 2	. 85	98.	.87	× ×	8. 6. 0		92	.63	.94	.95	96.	.97 90	86. 89.

	d/P	.02	.03	40.	c. 9	.07	80.	60.	.10	.11	.12	.13	4. r	.16	.17	.18	.19	.20	.21	.22	523	42. դ.	67. 96.	272	.28	.29	.30	.31	. 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	5 &	.35	.36	.37	တ္က ေ	95.	.40 11	4.	.43	.44	.45	.46	.47	.48	94. 07.	5
	70.0	67.953501	68.126447	68.256547	68.362374 68.452450	68.531428	68.602144	68.666457	68.725657	8298289	68.832217	68.880810	68.926879	69.012736	69.053027	69.091825	69.129292	69.165565	69.200763	69.234989	69.268334	60.300876	69.363830	69.394361	69.424331	69.453786	69.482769	69.511318	69.539468	69 594701	69.621842	69.648702	69.675306	69.701678	69.727838	60.720600	69.805260	69.830778	69.856181	69.881488	69.906714	69.931877	69.956992	69.982075 70.007143	0.000
	65.0	62.954067	63.127012	63.257112	63.362938	63.531990	63.602705	63.667018	63.726217	63.781238	63.832776	63.881368	63.92/43/	64.013294	64.053584	64.092382	64.129848	64.166121	64.201319	64.235545	64.268889	64.301432 64.333943	64.353243	64.394916	64.424885	64.454340	64.483323	64.511871	64.540021 64.567805	64 595254	64.622395	64.649255	64.675859	64.702229	64.728390	64.780161	64.805811	64.831328	64.856732	64.882038	64.907264	64.932427	64.957542	64.982625	00:00:00
n	60.0	57.954730	58.127673	58.257771	58.303590 58.453669	58.532646	58.603361	58.667673	58.726872	58.781891	58.833429	58.882021	58.928090	59.013945	59.054235	59.093032	59.130498	59.166771	59.201968	59.236194	59.269538	59.302080	59.365033	59.395563	59.425532	59.454987	59.483969	59.512517	59.540667	59 595899	59.623040	59.649899	59.676503	59.702874	59.729034	59.755004	59.806454	59.831971	59.857374	59.882681	59.907906	59.933069	59.958183	59.983266	00000000
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	55.0	52.955516	53.128456	53.258552	53.304370 53.454448	53.533424	53.604137	53.668448	53.727647	53.782665	53.834202	53.882794	53.928862	54.014716	54.055005	54.093802	54.131268	54.167540	54.202737	54.236962	54.270305	54.302847	54.365799	54.396329	54.426298	54.455752	54.484734	54.513282	54.541431 54.540314	54 596662	54.623802	54.650662	54.677265	54.703635	54.729795	54.755765 54.781565	54 807214	54.832731	54.858134	54.883440	54.908665	54.933827	54.958941	54.984024	00.00000
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	50.0	47.956462	48.129399	48.259493	48.305314 48.455385	48.534359	48.605071	48.669381	48.728578	48.783596	48.835132	48.883723	48.929790	49.015643	49.055931	49.094727	49.132192	49.168464	49.203660	49.237884	49.271227	49.303768	49.356719	49.397248	49.427217	49.456671	49.485652	49.514199	49.542348	49.597578	49.624718	49.651577	49.678180	49.704550	49.730709	49.755678	49.182418	49.833643	49.859046	49.884351	49.909576	49.934737	49.959851	49.984933	00.010.00
= P(R, d),	45.0	42.053000	43.130556	43.260646	43.300405	43.535506	43.606216	43.670524	43.729720	43.784737	43.836271	43.884861	43.930927	44.016777	44.057065	44.095860	44.133324	44.169595	44.204790	44.239014	44.272356	44.304896	44.330703	44.398374	44.428342	44.457795	44.486775	44.515322	44.543470	44.371232	44.625838	44.652696	44.679298	44.705668	44.731826	44.757795	44.163334	44.834758	44.860160	44.885465	44.910689	44.935850	44.960963	44.986045	40.01111
	40.0	37.959083	38.132009	38.262095	38.367910 38.457975	38.536945	38.607653	38.671959	38.731152	38.786167	38.837700	38.886288	38.932352 38.076931	39.018199	39.058486	39.097279	39.134742	39.171011	39.206206	39.240428	39.273769	39.306308	39 369256	39.399783	39.429750	39.459202	39.488181	39.516727	39.544874 30.579655	39 600101	39.627239	39.654097	39.680698	39.707067	39.733224	39.739192	39.764338	39.836153	39.861554	39.886858	39.912081	39.937241	39.962354	39.987434	40.014400
= R(P, d) where probability P	35.0	32.960972	33.133889	33.263968	33.309778	33.538804	33.609508	33.673810	33.733001	33.788013	33.839543	33.888128	33.934190 33.078067	34.020034	34.060318	34.099110	34.136571	34.172838	34.208031	34.242251	34.275591	34.308128	34 371072	34.401598	34.431563	34.461014	34.489992	34.518537	34.546682 34.574469	34 601906	34.629043	34.655900	34.682500	34.708867	34.735023	34.760990 24.786786	34 812433	34.837947	34.863346	34.888649	34.913872	34.939030	34.964141	34.989221 35.014285	00.0144000
R = R(30.0	• . •	28.136417	28.266485	28.372280	28.541298	28.611996	28.676294	28.735480	28.790487	28.842013	28.890595	28.930653	29.022490	29.062771	29.101559	29.139017	29.175282	29.210472	29.244690	29.278027	29.310562	29.342500	29.404025	29.433988	29.463436	29.492412	29.520954	29.549098	29.51.0813	29.631453	29.658307	29.684905	29.711270	29.737424	29.7663389	29.814828	29.840340	29.865738	29.891039	29.916259	29.941416	29.966525	29.991603	00.010.00
	25.0	22.994041 22.967117	23.139996	23.270046	23.375832	23.544821	23.615509	23.679798	23.738976	23.793976	23.845496	23.894070	23.940123	24.025948	24.066224	24.105007	24.142460	24.178720	24.213906	24.248119	24.281452	24.313983	24.343162	24.407433	24.437393	24.466837	24.495809	24.524348	24.552488	24.360202	24.634833	24.661683	24.688278	24.714640	24.740791	24. (00/52 24. 702544	24.132344	24.843694	24.869089	24.894386	24.919604	24.944758	24.969864	24.994938 25.019997	40.010001
	20.0	17.972623	18.145455	18.275470	18.381228	18.550173	18.620844	18.685116	18.744279	18.799265	18.850772	18.899335	18.945375 18.080232	19.031179	19.071445	19.110219	19.147663	19.183914	19.219091	19.253297	19.286621	19.319144	19.382060	19.412572	19.442524	19.471962	19.500928	19.529459	19.557593	19 612793	19.639918	19.666763	19.693351	19.719707	19.745852	19.771807	19.823228	19.848731	19.874120	19.899412	19.924624	19.949772	19.974873	19.999942	0005440.04
	P/d	.02	.03	40.	ი. მ	20.	80.	60.	.10	11	.12	.13	1. 1. 4. 1.	.16	.17	.18	.19	.20	.21	.22	55.53	42. c	6. 6.	27	.28	.29	.30	.31	. 52. 22. 23.	5 %	.35	.36	.37	& & &	ين. وي	04.	42	1.43	.44	.45	.46	.47	.48	.49 .70	5

	d/P	52.	.52	5 4	.55	.56	.57		gc.	9. 5	.62	.63	.64	.65	9.00	. 89	69.	.70	.71	.72	.73	47.	.75	10	- x	.79	.80	.81	.82	8. 2 8. 2		98.	.87	88.	89.	.90	10. c	26. 20.	. 40	56.	96.	.97	86.	66.
	70.07	70.032210	70.057294	70.107571	70.132798	70.158104	70.183508	70.209026	70.234676	70.286448	70.312608	70.338979	70.365583	70.392444	70 447034	70.474818	70.502968	70.531517	70.560499	70.589955	70.619925	70.650456	70.681598	70.713410	70 779297	70.813523	70.848721	70.884995	70.922462	70.961260	71.043524	71.087408	71.133477	71.182070	71.233609	71.288630 71.388630	71 419144	71.412144	71 561838	71,651914	71.757741	71.887842	72.060789	72.333374
	65.0 65.007692	65.032760	65.057843	65.108120	65.133346	65.158652	65.184056	65.209574	65.235224 65.961094	65.286995	65.313155	65.339526	65.366130	65.392990 65.430191	65 447570	65.475363	65.503513	65.532062	65.561044	65.590499	65.620469	65.651000	65.682142	65.713953	65.746496 65.779840	65.814066	65.849264	65.885537	65.923004	65.961802	66.044065	66.087948	66.134017	66.182610	66.234149	66.289169	66.348309	66 783397	66.562375	66.652450	66.758276	66.888377	67.061322	67.333906
n	60.00	60.033400	60.058483	60.108760	60.133986	60.159292	60.184695	60.210213	60.235862	60.287633	60.313793	60.340164	60.366767	60.393627	60.420708	60.476000	60.504149	60.532697	60.561680	60.591134	60.621104	60.651634	60.682776	60.714587	60 780473	60.814699	60.849896	60.886169	60.923635	60.962433	61.044695	61.088578	61.134647	61.183239	61.234777	61.289797	61.348990	61.415509	61.563001	61.653075	61.758900	61.888999	62.061943	62.334524
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	55.0 55.009091	55.034157	55.059240	55.084554 55.109516	55.134742	55.160047	55.185450	55.210967	55.236617	55.288387	55.314546	55.340917	55.367520	55.394379	55 448968	55.476751	55.504900	55.533448	55.562430	55.591884	55.621853	55.652383	55.683525	55.715335	55 781221	55.815446	55.850643	55.886915	55.924381	55.963178	56.045439	56.089322	56.135390	56.183982	56.235519	56.290538	50.349737	56.414046	56 563738	56.653811	56.759635	56.889732	57.062674	57.335252
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	50.0	50.035066	50.060148	50.085262 50.110423	50.135648	50.160954	50.186356	50.211873	50.23/522	50.289291	50.315450	50.341820	50.368423	50.395282	50.442442	50.477652	50.505801	50.534348	50.563329	50.592783	50.622752	50.653281	50.684423	50.716232	50.782116	50.816341	50.851538	50.887809	50.925274	50.964071	51.046331	51.090213	51.136280	51.184871	51.236407	51.291425	51.350023	51.414955	51.564621	51.654692	51.760515	51.890610	52.063549	52.336122
= P(R, d),	45.011111	45.036176	45.061258	45.111532	45.136757	45.162061	45.187463	45.212979	45.238628	45.290395	45.316554	45.342923	45.369525	45.396384	45.42555	45.478752	45.506900	45.535447	45.564428	45.593881	45.623849	45.654377	45.685518	45.717327	45.783210	45.817434	45.852629	45.888900	45.926364	45.965160	46.047418	46.091299	46.137365	46.185955	46.237490	46.292507	46.351703	46.416012	46 565697	46.655766	46.761586	46.891678	47.064614	47.337181
	40.0	40.037564	40.062645	40.087757	40.138141	40.163445	40.188846	40.214361	40.240009	40.291775	40.317933	40.344301	40.370902	40.397760	40.424696	40.480126	40.508273	40.536819	40.565798	40.595251	40.625218	40.655745	40.686885	40.718693	40.751232	40.818796	40.853991	40.890260	40.927724	40.966518	41.048774	41.092653	41.138718	41.187306	41.238840	41.293855	41.333030	41.417550	41.567036	41.657103	41.762920	41.893008	42.065938	42.338497
= R(P, d) where probability P	35.014285	35.039349	35.064428	35.114698	35.139921	35.165223	35.190623	35.216137	35.241783	35.293547	35.319704	35.346071	35.372671	35.399527 25.496664	35 454100	35,481889	35.510035	35.538579	35.567558	35.597009	35.626974	35.657500	35.688639	35.720445	35.752983 35.786323	35.820544	35.855737	35.892005	35.929466	35.968259	36.050511	36.094388	36.140451	36.189037	36.240568	36.295581	50.35477 56.410077	36.419077 36.489783	36.568750	36,658813	36.764625	36.894708	37.067630	37.340178
R = R(30.0 30.016665	30.041727	30.066805	30.091914 30.117071	30.142292	30.167593	30.192991	30.218503	30.244147	30.295907	30.322062	30.348427	30.375025	30.401880	30 458015	30.484235	30.512379	30.540922	30.569898	30.599347	30.629310	30.659834	30.690970	30.722775	30.788648	30.822866	30.858057	30.894322	30.931781	30.970571	31.052817	31.096692	31.142751	31.191334	31.242862	31.297871	51.357059	31.421556 31.421556	31.571021	31.661078	31.766883	31.896957	32.069869	32.342399
	25.0 25.019997	25.045056	25.070131	25.095237 25.120391	25.145609	25.170906	25.196301	25.221811	25.24/452	25.299206	25.325357	25.351719	25.378314	25.405165	25.452231 55.450737	25.487511	25.515652	25.544191	25.573164	25.602609	25.632569	25.663090	25.694222	25.726023	25.758555 25.791888	25.826103	25.861289	25.897551	25.935005	25.973791	26.056027	26.099897	26.145951	26.194529	26.246051	26.301053	20.300233	20.424321 26.405921	26.433221	26.664221	26.770015	26.900075	27.072968	27.345469
	20.02	20.050048	20.075117	20.100218 20.125366	20.150578	20.175870	20.201259	20.226763	20.252399	20.278165	20.330287	20.356643	20.383232	20.410078	20.437204	20.492406	20.520541	20.549073	20.578040	20.607479	20.637433	20.667947	20.699073	20.730866	20.763391 20.796718	20.830926	20.866105	20.902358	20.939805	20.978583	21.060803	21.104663	21.150708	21.199275	21.250787	21.305779	21.304948	21.429228 21.429207	21.433301	21.668874	21.774648	21.904683	22.077543	22.349994
	P\d	.51	.52	5. 45.	.55	.56	.57	S. 7	9c.	9. 19	.62	.63	.64	.65	9.00	- 89	69.	.70	.71	.72	.73	7. i	.72	1.9	: x	62.	.80	.81	.82	8. 2		98.	.87	88.	.89	90.	16.	26.	5. 7	. 26	96.	26.	86:	66.

			R = R(.	$\mathbf{R} = \mathbf{R}(\mathbf{P},\mathbf{d})$ where probability \mathbf{P}		= P(R,d),	$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$				
p\c	70.0	75.0	80.0	85.0	0.06	95.0	100.0	105.0	110.0	115.0	120.0	d/P
.01	67.680916	72.680424	77.679995	82.679616	87.679281	92.678981	97.678711	102.678470	107.67825	112.67804	117.67786	.01
.02	67.953501	72.953011	77.952583	82.952206	87.951871	92.951572	97.951303	102.95106	107.95084	112.95064	117.95045	.02
50.	68.126447	73.125958	78.125531	83.125155	88.124821	93.124522	98.124254	103.12401	108.12379	113.12359	118.12341	.03
40. 4	08.25054 <i>(</i>	73.256060	78.255055	83.255258	88.254924	93.254020	98.254558	103.25412	108.25390	113.25370	118.25351	40. 40.
8.8	68 452450	73 451963	78 451538	83 451163	88 450830	93.450533	98.300188	103.33993	108 44980	113 44960	118 44942	90.
20.	68.531428	73.530942	78.530517	83.530143	88.529811	93.529513	98.529246	103.52900	108.52879	113.52858	118.52840	20.
80.	68.602144	73.601658	78.601234	83.600860	88.600528	93.600231	98.599964	103.59972	108.59950	113.59930	118.59912	80.
60:	68.666457	73.665972	78.665548	83.665174	88.664842	93.664546	98.664279	103.66404	108.66382	113.66362	118.66344	60.
.10	68.725657	73.725173	78.724749	83.724376	88.724044	93.723747	98.723481	103.72324	108.72302	113.72282	118.72264	.10
11.	68.780678	73.780194	78.779770	83.779397	88.779066	93.778769	98.778503	103.77826	108.77804	113.77784	118.77766	.11
.12	68.832217	73.831733	78.831309	83.830937	88.830605	93.830309	98.830043	103.82980	108.82958	113.82938	118.82920	.12
.13	68.880810	73.880326	78.879903	83.879530	88.879199	93.878903	98.878637	103.87840	108.87818	113.87798	118.87780	.13
i. 4. ;	68.926879	73.926396	78.925973	83.925601	88.925270	93.924974	98.924708	103.92447	108.92425	113.92405	118.92387	14
.To	60.01.0736	74 019953	70.909857	83.969485	88.969154	93.968859	98.968593	103.96835	108.96813	113.96793	118.96775	.I.5 16
17	69.053027	74.052544	79.052122	84.051750	89.051420	94.051124	99.050859	104.05062	109.05011	114.05991	119.05002	.17
87.	69.091825	74.091342	79.090921	84.090549	89.090219	94.089924	99.089658	104.08942	109.08920	114.08900	119.08882	18
.19	69.129292	74.128810	79.128388	84.128017	89.127686	94.127391	99.127126	104.12689	109.12667	114.12647	119.12629	.19
.20	69.165565	74.165083	79.164662	84.164290	89.163960	94.163665	99.163400	104.16316	109.16294	114.16274	119.16256	.20
.21	69.200763	74.200281	79.199860	84.199489	89.199159	94.198864	99.198599	104.19836	109.19814	114.19794	119.19776	.21
.22	69.234989	74.234508	79.234087	84.233716	89.233386	94.233091	99.232826	104.23259	109.23237	114.23217	119.23199	.22
.23	69.268334	74.267853	79.267432	84.267061	89.266732	94.266437	99.266172	104.26593	109.26571	114.26551	119.26533	.23
.24	69.300876	74.300396	79.299975	84.299604	89.299275	94.298980	99.298715	104.29848	109.29826	114.29806	119.29788	.24
.25	69.332688	74.332207	79.331787	84.331416	89.331087	94.330792	99.330527	104.33029	109.33007	114.32987	119.32969	.25
.26	69.363830	74.363350	79.362930	84.362559	89.362230	94.361936	99.361671	104.36143	109.36121	114.36101	119.36083	.26
.27	69.394361	74.393881	79.393461	84.393091	89.392762	94.392467	99.392202	104.39196	109.39175	114.39155	119.39136	.27
28	69.424331	74.423851	79.423431	84.423061	89.422732	94.422438	99.422173	104.42193	109.42172	114.42152	119.42134	28
62.5	69.453786	74.453307	79.452887	84.452517	89.452188	94.451894	99.451629	104.45139	109.45117	114.45097	119.45079	67.
 	69.482769	74.482289	79.481870	84.481500	89.481171	94.480877	99.480613	104.48037	109.48016	114.47996	119.47978	.30
25.	69 539468	74.538989	79.510419	84.538200	89.509721	94.503427	99.509102	104.50692	109.30871	114.30631 114.53666	119.50652	39
2 88	69.567252	74.566773	79.566354	84.565984	89.565656	94.565362	99.565098	104.56486	109.55686	114.56444	119.556426	; c;
.34	69.594701	74.594222	79.593803	84.593433	89.593105	94.592811	99.592547	104.59231	109.59209	114.59189	119.59171	.34
.35	69.621842	74.621363	79.620945	84.620575	89.620247	94.619953	99.619689	104.61945	109.61923	114.61903	119.61885	.35
.36	69.648702	74.648224	79.647805	84.647436	89.647108	94.646814	99.646550	104.64631	109.64609	114.64590	119.64571	.36
.37	69.675306	74.674828	79.674410	84.674040	89.673712	94.673419	99.673155	104.67292	109.67270	114.67250	119.67232	.37
85.0	69.701678	74.701199	79.700781	84.700412	89.700084	94.699791	99.699527	104.69929	109.69907	114.69887	119.69869	85. 80.
yy.	09.727838	74.727360	79.726942	84.726573	89.726245	94.725952	99.725088	104.72545	109.72523	114.72503	119.72485	ys.
.40	69.753809	74.753331	79.752913	84.752544	89.752216	94.751923	99.751659	104.75142	109.75120	114.75101	119.75082	.40
14.	609.77.8009	74.779132	70.004364	84.778345	89.778018	94.77724	99.777461	104.77722	100.77701	114.77081	119.77003	14.
24.	60.805260	74.804782	79.804364	84.803996	89.803668	94.803375	99.803112	104.80287	100.80266	114.80246	119.80228	24.
C4:	60.856161	74.850500	70 055 000	04.029314 84.854018	09.029107	94.626694	99.626050	104.62639	100.02017	114.02/30	119.62/60	04. C 4
i	60.881488	74.881011	70.880503	84.880395	80.804931	94.634296	99.604050	104.83380	100.87880	114.6555	110.87851	1. 4 1. 1.
19	69 906714	74.9016937	79 905820	84 905459	89 905125	94.819005	99.819342	104.87.910	109 90411	114 90399	119 90373	45.
747	69.931877	74.931400	79.930983	84.930615	89.930288	94.929995	99.929732	104.92949	109.92928	114.92908	119.92890	74.
84.	69.956992	74.956515	79.956098	84.955730	89.955403	94.955111	99.954848	104.95461	109.95439	114.95420	119.95401	84.
49	69.982075	74.981599	79.981182	84.980814	89.980487	94.980195	99.979932	104.97969	109,97948	114.97928	119.97910	49
.50	70.007143	75.006667	80.006250	85.005882	90.005555	95.005263	100.00500	105.00476	110.00455	115.00435	120.00417	.50

	d/P	.51	.52		4. 7.	.56	.57	.58	.59	09:	.61	.62	.63	4. 7.	99.	29.	89.	69.	.70	.71	.72	.73	.74	67. 76	27	. 48	62.	.80		% 72 0	. &	85.	98.	.87	80 80	68.	.90 10	.91 00	6.6	.94	.95	96.	26.	80
	120.	120.0241	120.05432	120.07944	120.12983	120.15513	120.18054	120.20606	120.23171	120.25751	120.28348	120.30964	120.3360I	120.38948	120.41662	120.44407	120.47186	120.50001	120.52856	120.55754	120.58700	120.61697	120.64750	120.67864	120.74300	120.77635	120.81057	120.84577	120.88205	120.91952	120.99861	121.04058	121.08447	121.13054	121.17913	121.23067	121.28570	121.34430	121.47993	121.55891	121.64899	121.75482	121.88493	100 05788
	115.	115.00455 115.02942	115.05450	115.07962	115.13001	115.15531	115.18072	115.20624	115.23189	115.25769	115.28366	115.30982	115.33619	115.38966	115.41680	115.44425	115.47204	115.50019	115.52874	115.55772	115.58718	115.61715	115.64768	115.67882	115 74318	115.77653	115.81075	115.84595	115.88223	115.91970	115.99879	116.04076	116.08465	116.13072	116.17931	116.23085	116.28588	116.34308	116.48011	116.55909	116.64917	116.75500	116.88511	1
_	110,004	110.00455 110.02961	110.05470	110.07981	110.13020	110.15551	110.18092	110.20643	110.23209	110.25789	110.28386	110.31002	110.33639	110.38986	110.41700	110.44445	110.47223	110.50039	110.52894	110.55792	110.58737	110.61735	110.64788	110.67902	110.74338	110.77672	110.81095	110.84615	110.88242	110.91989	110.99898	111.04096	111.08484	111.13091	111.17951	111.23105	111.28607	111.34327	111.48031	111.55929	111.64937	111.75520	111.88530	
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{t}$	105.	105.00470 105.02983	105.05491	105.08003	105.10519 105.13042	105.15573	105.18113	105.20665	105.23230	105.25810	105.28407	105.31024	105.33661	105.39007	105.41722	105.44467	105.47245	105.50060	105.52915	105.55813	105.58759	105.61756	105.64809	105.67924 105.71105	105.74359	105.77694	105.81116	105.84636	105.88264	105.92011	105.99920	106.04117	106.08506	106.13113	106.17972	106.23126	106.28628 106.28628	106.34349	106.48052	106.55950	106.64958	106.75541	106.88551	
$\bar{\mathbf{R}} = \mathbf{R} * \mathbf{u},$	100.00500	100.03007	100.05515	100.08027	100.10345 100.13066	100.15597	100.18137	100.20689	100.23254	100.25834	100.28431	100.31047	100.33685	100.39031	100.41745	100.44490	100.47269	100.50084	100.52939	100.55837	100.58783	100.61780	100.64833	100.67947	100.74383	100.77717	100.81140	100.84660	100.88287	100.92034	100.99914	101.04141	101.08529	101.13136	101.17996	101.23150	101.28652	101.34372	101.48075	101.55974	101.64981	101.75564	101.88575	
= P(R, d),	95.0	95.005265 95.030331	95.055415	95.080531	95.105694 95.130921	95.156228	95.181632	95.207151	95.232802	95.258603	95.284574	95.310735	95.337107	95.390573	95.417715	95.445164	95.472949	95.501100	95.529649	95.558633	95.588089	95.618059	95.648591	95.679734 05.711546	95.744090	95.777435	95.811662	95.846861	95.883135	95.920603	95.999694 95.999694	96.041668	96.085553	96.131623	96.180218	96.231758	96.286779	90.343961 96.410296	96.481014	96.559994	96.650072	96.755901	96.886005	
	90.0	90.005555 90.030624	90.055708	90.080823	90.131213	90.156520	90.181924	90.207443	90.233093	90.258895	90.284866	90.311027	90.337399	90.390864	90.418006	90.445455	90.473240	90.501391	90.529940	90.558923	90.588379	90.618350	90.648881	90.680025	90.744380	90.777725	90.811952	90.847151	90.883425	90.920893	90.999983	91.041957	91.085842	91.131912	91.180506	91.232046	91.28/068	91.340270 91.410584	91.481301	91.560282	91.650359	91.756188	91.886292	
R(P, d) where probability P	85.0	85.030950	85.056034	85.081150	85.131539	85.156846	85.182250	85.207769	85.233419	85.259221	85.285192	85.311353	85.337724	85.391189	85.418331	85.445780	85.473565	85.501716	85.530265	85.559248	85.588704	85.618674	85.649206	85.680349 85.712161	85 744704	85.778049	85.812276	85.847475	85.883748	85.921216 ee 060016	86.000306	86.042280	86.086165	86.132235	86.180829	86.232368	86.287390 86.346501	86 410906	86.481623	86.560603	86.650680	86.756509	86.886612	
R = R(I)	80.0	80.031318	80.056402	80.081517	80.131906	80.157213	80.182617	80.208136	80.233786	80.259587	80.285558	80.311719	80.338090	80.391555	80.418697	80.446146	80.473931	80.502081	80.530630	80.559613	80.589069	80.619039	80.649570	80.680713	80.745068	80.778413	80.812640	80.847839	80.884112	80.921580	81.000669	81.042643	81.086527	81.132597	81.181191	81.232731	81.287752		81.481984	81.560964	81.651040	81.756869	81.886971	
	75.0	75.031734	75.056818	75.081933		_							75.338505	75.391970	75.419111	75.446560	75.474345	75.502495	75.531044	75.560027	75.589482	75.619452	75.649984	75.681127	75 745481	75.778826	75.813052	75.848251	75.884524	75.921991	76.001081	76.043054	76.086938	76.133008	76.181602	76.233141	76 247262	76 411676	76.482393	76.561372	76.651448	76.757276	76.887378	
	70.07	70.032210	70.057294	70.082409	70.132798	70.158104	70.183508	70.209026	70.234676	70.260477	70.286448	70.312608	70.338979	70.392444	70.419585	70.447034	70.474818	70.502968	70.531517	70.560499	70.589955	70.619925	70.650456	70.681598	70.745952	70.779297	70.813523	70.848721	70.884995	70.922462	71.001550	71.043524	71.087408	71.133477	71.182070	71.233609	71.288630	71 41 91 44	71.482860	71.561838	71.651914	71.757741	71.887842	
	P\d	.51	.52		4 73	.56	.57	.58	.59	09.	.61	.62	.63	4. 75	99.	29.	89.	69.	.70	.71	.72	:33	.74 1	. 7. 2.	27.	. %.	.79	08.	8. 8.	28. 5	§ 2	.85	.86	.87	80.	68. 68.		.91 93	693	.94	.95	96.	.97	

	4.00	6.4246669	6.4436912	6.4845293	6.5065556	6.5298284	6.5545115	6.5808042	6.6089523	6.6392639	6.6721328	6.7080737	6.7477782	6.7922075	6.8427558	6.9015609	6.9721590	7.0610785	7.1826936	7.2136301	7.2479052	7.2863792	7.3303021	7.3815945	7.4434401	7.5217321	7.6294879	7.8072741	7.8336394	7.8629184	7.8958684	7.9335916	0.9777844	8.0312032	8.1933713	8.3498683	8.3731999	8.3991458	8.4283893	8.4619259	8.5012896	8.5490331	8.6099012	8.6944314	8.8357140
	3.00	5.4493683	5.4881499	5.5089791	5.5309142	5.5540912	5.5786736	5.6048600	5.6328953	5.6630866	5.6958264	5.7316278	5.7711800	5.8154412	5.8658012	5.9243911	5.9947360	6.0833446	6.2045479	6.2353821	6.2695450	6.3078944	6.3516768	6.4028074	6.4644612	6.5425152	6.6499522	6.8272332	6.8535257	6.8827245	6.9155850	6.9532067	0.9972820	7.1184458	7.2123150	7.3684293	7.3917051	7.4175895	7.4467640	7.4802221	7.5194947	7.5671288	7.6278593	7.7122019	7.8531795
	2.00	4.4915326	4.5103107	4.5506265	4.5723746	4.5953558	4.6197325	4.6457021	4.6735077	4.7034547	4.7359328	4.7714518	4.8106967	4.8546195	4.9046016	4.9627608	5.0326011	5.1205927	5.2409840	5.2716172	5.3055600	5.3436655	5.3871735	5.4379889	5.4992699	5.5768633	5.6836858	5.8599997	5.8861534	5.9151995	5.9478899	5.9853190	6.0291715	6 1797385	6.2431605	6.3985588	6.4217307	6.4475003	6.4765466	6.5098590	6.5489623	6.5963937	6.6568697	6.7408662	6.8812834
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	1.50	4.0268178	4.0454555	4.0854056	4.1069711	4.1297615	4.1539381	4.1796970	4.2072800	4.2369904	4.2692156	4.3044625	4.3434118	4.3870102	4.4366307	4.4943794	4.5637405	4.6511486	4.7707763	4.8012213	4.8349582	4.8728361	4.9160885	4.9666109	5.0275466	5.1047143	5.2109716	5.3864011	5.4124285	5.4413357	5.4738716	5.5111259	5.5547767	5.6748050	5.7678250	5.9225825	5.9456617	5.9713290	6.0002611	6.0334438	6.0723967	6.1196482	6.1798988	6.2635894	6.4035131
$ar{\mathrm{R}} = \mathrm{R} * \mathrm{u},$	1.00	3.5844940	3.6219770	3.6421191	3.6633384	3.6857676	3.7095661	3.7349277	3.7620918	3.7913580	3.8231097	3.8578482	3.8962469	3.9392425	3.9881937	4.0451851	4.1136660	4.2000081	4.3182496	4.3483545	4.3817203	4.4191885	4.4619819	4.5119798	4.5722987	4.6487094	4.7539658	4.9278403	4.9536466	4.9823111	5.0145771	5.0515270	5.0948268	5 9130911	5.3062469	5.4599031	5.4828235	5.5083158	5.5370525	5.5700138	5.6087102	5.6556553	5.7155228	5.7986947	5.9377841
P(R, d), Ē	0.75	3.3816797	3.4185821	3.4384178	3.4593184	3.4814151	3.5048657	3.5298622	3.5566412	3.5854996	3.6168169	3.6510893	3.6889838	3.7314282	3.7797683	3.8360696	3.9037502	3.9891261	4.1061166	4.1359156	4.1689480	4.2060487	4.2484312	4.2979604	4.3577298	4.4334681	4.5378391	4.7103468	4.7359598	4.7644121	4.7964428	4.8331274	4.8/01219	4.9261181	5.0861340	5.2388451	5.2616297	5.2869726	5.3155427	5.3483153	5.3867934	5.4334783	5.4930210	5.5757541	5.7141412
II	0.50	3.2059990	3.2420207	3.2613896	3.2818032	3.3033905	3.3263067	3.3507402	3.3769239	3.4051495	3.4357901	3.4693340	3.5064372	3.5480126	3.5953850	3.6505876	3.7169871	3.8008061	3.9157652	3.9450648	3.9775520	4.0140505	4.0557580	4.1045156	4.1633774	4.2380019	4.3409013	4.5111271	4.5364163	4.5645135	4.5961497	4.6323895	4.0748719	4.7203210	4.8825181	5.0336400	5.0561963	5.0812878	5.1095778	5.1420331	5.1801442	5.2263918	5.2853888	5.3673856	5.5045950
= R(P, d) where probability P	0.25	3.0809861	3.1159953	3.1348237	3.1546706	3.1756620	3.1979492	3.2217163	3.2471905	3.2746569	3.3044798	3.3371360	3.3732668	3.4137639	3.4599225	3.5137303	3.5784796	3.6602583	3.7724952	3.8011149	3.8328547	3.8685216	3.9092893	3.9569621	4.0145343	4.0875545	4.1882973	4.3550924	4.3798862	4.4074372	4.4384637	4.4740118	4.5150928	7 6304697	4.7195607	4.8680732	4.8902498	4.9149219	4.9427426	4.9746644	5.0121555	5.0576597	5.1157230	5.1964486	5.3315976
R = R(P, d)	0.10	3.0424074	3.0595055	3.0956245	3.1152433	3.1359938	3.1580257	3.1815210	3.2067045	3.2338580	3.2633420	3.2956280	3.3313503	3.3713911	3.4170313	3.4702374	3.5342662	3.6151405	3.7261466	3.7544544	3.7858492	3.8211297	3.8614571	3.9086172	3.9655731	4.0378165	4.1374961	4.3025536	4.3270915	4.3543588	4.3850668	4.4202513	4.4615074	4.0114679	4.6633233	4.8103679	4.8323273	4.8567583	4.8843079	4.9159197	4.9530479	4.9981137	5.0556208	5.1355789	5.2694581
	0.05	3.0367489	3.0536140	3.0898685	3.1094513	3.1301638	3.1521554	3.1756077	3.2007451	3.2278490	3.2572791	3.2895061	3.3251632	3.3651309	3.4106878	3.4637969	3.5277092	3.6084364	3.7192410	3.7474974	3.7788353	3.8140519	3.8543063	3.9013810	3.9582340	4.0303470	4.1298470	4.2946077	4.3191015	4.3463199	4.3769729	4.4120943	4.4532767	4.3031012	4.6547322	4.8015152	4.8234356	4.8478232	4.8753240	4.9068797	4.9439421	4.9889282	5.0463336	5.1261505	5.2597940
	0.00	3.0348543	3.0517089	3.0879408	3.1075115	3.1282111	3.1501889	3.1736267	3.1987484	3.2258355	3.2552473	3.2874543	3.3230892	3.3630321	3.4085607	3.4616368	3.5255094	3.6061864	3.7169222	3.7451611	3.7764795	3.8116742	3.8519037	3.8989492	3.9557669	4.0278352	4.1272735	4.2919321	4.3164108	4.3436123	4.3742463	4.4093460	4.4505028 4.5003695	4.5005025	4.6518337	4.7985259	4.8204328	4.8448053	4.8722891	4.9038253	4.9408648	4.9858231	5.0431931	5.1229607	5.2565218
	P/d	000066.	000066	.991500	.992000	.992500	000866.	.993500	.994000	.994500	.995000	.995500	000966.	.996500	000266.	.997500	000866.	.998500	000666.	.999100	.999200	008666.	.999400	002666.	009666.	.999700	008666.	006666.	.999910	.999920	.999930	.999940	0909999	006666.	086666	066666.	.999991	.999992	.999993	.999994	999995	966666.	266666.	866666.	666666.

	120.	122.33047	122.34966	122.36974	122.39083	122.41304	122.43650	122.46139	122.48789	122.51627	122.54682	122.57995	122.61618	122.65619							_	. 123.16002	123.19876	. 123.24299		. 123.35690	123.43572	_					_			_		_			. 124.34795	124.38168		124.46927	124.53048	124.61547	-
	80.0	82.332509	82.351691	82.371777	82.392866	82.415073	82.438536	82.463419	82.489924	82.518298	82.548851	82.581981	82.618204	82.658218	82.702991	82.753926	82.813177	82.884302	82.973875	83.096365	83.127520	83.162037	83.200779	83.245007	83.296652	83.358917	83.437734	83.546199	83.725125	83.751657	83.781119	83.814274	83.852230	83.896695	83.950501	84.018909	84.113574	84.270980	84.294445	84.320538	84.349947	84.383673	84.423257	84.471266	84.532469	84.617459	8/ 750/06
	50.0	52.336122	52.355303	52.375388	52.396476	52.418682	52.442143	52.467025	52.493529	52.521901	52.552453	52.585580	52.621801	52.661813	52.706584	52.757516	52.816763	52.887884	52.977452	53.099935	53.131089	53.165604	53.204344	53.248569	53.300211	53.362473	53.441286	53.549745	53.728662	53.755191	53.784652	53.817805	53.855760	53.900222	53.954025	54.022430	54.117090	54.274487	54.297950	54.324043	54.353450	54.387174	54.426756	54.474762	54.535962	54.620947	54 762977
$\bar{\mathbf{d}} = \mathbf{d} * \mathbf{u}$	30.0	32.342399	32.361577	32.381659	32.402743	32.424946	32.448403	32.473281	32.499781	32.528149	32.558695	32.591818	32.628034	32.668039	32.712803	32.763727	32.822965	32.894075	32.983630	33.106094	33.137243	33.171753	33.210487	33.254706	33.306340	33.368593	33.447394	33.555837	33.734727	33.761253	33.790709	33.823858	33.861807	33.906262	33.960057	34.028452	34.123099	34.280473	34.303933	34.330022	34.359425	34.393144	34.432720	34.480720	34.541911	34.626885	34 768894
$ar{ ext{R}} = ext{R} * ext{u},$	20.0	22.349994	22.369166	22.389243	22.410321	22.432517	22.455968	22.480839	22.507331	22.535690	22.566229	22.599342	22.635547	22.675542	22.720293	22.771203	22.830424	22.901515	22.991045	23.113476	23.144616	23.179116	23.217841	23.262047	23.313667	23.375904	23.454684	23.563098	23.741942	23.768461	23.797909	23.831049	23.868988	23.913432	23.967214	24.035591	24.130214	24.287549	24.311003	24.337085	24.366481	24.400192	24.439759	24.487746	24.548923	24.633875	24 775850
= P(R, d),	15.0	17.357327	17.376493	17.396562	17.417632	17.439820	17.463262	17.488124	17.514605	17.542955	17.573482	17.606583	17.642775	17.682755	17.727489	17.778381	17.837581	17.908647	17.998145	18.120533	18.151663	18.186151	18.224862	18.269053	18.320656	18.382871	18.461624	18.570003	18.748787	18.775297	18.804737	18.837866	18.875793	18.920222	18.973987	19.042342	19.136935	19.294220	19.317668	19.343741	19.373128	19.406829	19.446383	19.494356	19.555514	19.640441	19.782373
	10.0	12.371276	12.390423	12.410472	12.431522	12.453689	12.477108	12.501946	12.528403	12.556726	12.587224	12.620294	12.656452	12.696395	12.741089	12.791934	12.851080	12.922081	13.011499	13.133780	13.164883	13.199341	13.238018	13.282172	13.333730	13.395893	13.474580	13.582869	13.761508	13.787997	13.817412	13.850515	13.888412	13.932806	13.986529	14.054831	14.149351	14.306517	14.329947	14.356001	14.385366	14.419041	14.458566	14.506504	14.567617	14.652483	14.794314
= $R(P, d)$ where probability P	8.00	10.381165	10.400296	10.420328	10.441359	10.463507	10.486906	10.511723	10.538157	10.566455	10.596928	10.629970	10.666098	10.706008	10.750664	10.801467	10.860566	10.931510	11.020857	11.143042	11.174121	11.208553	11.247201	11.291321	11.342841	11.404958	11.483587	11.591798	11.770311	11.796781	11.826176	11.859256	11.897127	11.941492	11.995178	12.063434	12.157892	12.314957	12.338371	12.364409	12.393755	12.427409	12.466910	12.514818	12.575893	12.660707	12.802453
R = R(P, c)	00.9	8.3966846	8.4157828	8.4357813	8.4567782	8.4788887	8.5022497	8.5270258	8.5534169	8.5816696	8.6120929	8.6450819	8.6811529	8.7209997	8.7655864	8.8163115	8.8753194	8.9461569	9.0353717	9.1573798	9.1884144	9.2227972	9.2613911	9.3054494	9.3568981	9.4189296	9.4974528	9.6055198	9.7838024	9.8102395	9.8395977	9.8726363	9.9104601	9.9547697	10.008390	10.076564	10.170909	10.327791	10.351179	10.377187	10.406500	10.440116	10.479572	10.527427	10.588435	10.673156	10.814751
	5.00	7.4083270	7.4273968	7.4473658	7.4683318	7.4904100	7.5137371	7.5384774	7.5648306	7.5930430	7.6234234	7.6563661	7.6923869	7.7321787	7.7767046	7.8273613	7.8862907	7.9570353	8.0461354	8.1679906	8.1989870	8.2333278	8.2718749	8.3158804	8.3672680	8.4292268	8.5076594	8.6156043	8.7936917	8.8201005	8.8494276	8.8824312	8.9202154	8.9644788	9.0180442	9.0861490	9.1803999	9.3371292	9.3604947	9.3864781	9.4157636	9.4493479	9.4887674	9.5365777	9.5975300	9.6821753	9.8236456
	4.00	6.4246669	6.4436912	6.4636127	6.4845293	6.5065556	6.5298284	6.5545115	6.5808042	6.6089523	6.6392639	6.6721328	6.7080737	6.7477782	6.7922075	6.8427558	6.9015609	6.9721590	7.0610785	7.1826936	7.2136301	7.2479052	7.2863792	7.3303021	7.3815945	7.4434401	7.5217321	7.6294879	7.8072741	7.8336394	7.8629184	7.8958684	7.9335916	7.9777844	8.0312652	8.0992642	8.1933713	8.3498683	8.3731999	8.3991458	8.4283893	8.4619259	8.5012896	8.5490331	8.6099012	8.6944314	8.8357140
	P/d	000066.	.990500	.991000	.991500	.992000	.992500	.993000	.993500	.994000	.994500	.995000	.995500	000966.	.996500	000266.	.997500	000866.	.998500	000666.	.999100	.999200	.999300	.999400	.999500	009666.	002666.	008666.	006666.	.999910	.999920	.999930	.999940	.999950	096666.	026666.	086666.	066666.	.999991	.999992	.999993	.999994	.999995	966666.	266666.	866666.	666666.

${\rm NSWCDD/TR}{-}05/89$

DISTRIBUTION

Copi	es (CDs)		Copies (CDs)
DOD ACTIVITIES (CONUS) SP 2332 DIRECTOR STRATEGIC SYSTEMS PROGRAMS 1931 JEFFERSON DAVIS HWY ARLINGTON VA 22241-5362	1 S	DR DARCY MAYS DEPT OF STATISTICAL SCIENCES OPERATIONS RESEARCH VIRGINIA COMMONWEALTH UNIVERSIT PO BOX 842014	1 TY
DEFENSE TECHNICAL INFORMATION CENTER 8725 JOHN J KINGMAN ROAD SUITE 0944 FT BELVOIR VA 22060-6218	2	RICHMOND VA 23284-2014 DR JEFFREY BIRCH DEPT OF STATISTICS VIRGINIA TECH 417-A HUTCHESON HALL	1
CODE A76 (TECHNICAL LIBRARY) COMMANDING OFFICER CSSD NSWC 6703 W HIGHWAY 98 PANAMA CITY FL 32407-7001	1	BLACKSBURG VA 24061 DR DONALD RICHARDS DEPT OF STATISTICS UNIVERSITY OF VIRGINIA 103 HALSEY HALL	1
NON-DOD ACTIVITIES (CONUS)		CHARLOTTESVILLE VA 22904-4135	
JOHN CHIN GOVERNMENT DOCUMENTS SECTION 101 INDEPENDENCE AVENUE SE LIBRARY OF CONGRESS WASHINGTON DC 20540-4172	4	DR ED CARLSTEIN DEPT OF STATISTICS UNIVERSITY OF NORTH CAROLINA— CHAPEL HILL NEW WEST BUILDING	1
DOCUMENT CENTER THE CNA CORPORATION 4825 MARK CENTER DRIVE ALEXANDRIA VA 22311-1850	1	CHAPEL HILL NC 27599-3260 DR MARCIA GUMPERTZ DEPT OF STATISTICS NORTH CAROLINA STATE UNIVERSITY	1
CHRISTOPHER ZAFFRAM MCCDC STUDIES AND ANALYSIS BRANCH 3300 RUSSELL ROAD QUANTICO VA 22134	1	RALEIGH NC 27695-8203 DR JAMES D LYNCH DEPT OF STATISTICS UNIVERSITY OF SOUTH CAROLINA	1
DR EDWARD WEGMAN CENTER FOR COMPUTATIONAL SCIENCES GEORGE MASON UNIVERSITY 157 SCIENCE AND TECHNOLOGY II BUILDING FAIRFAX VA 22030	1	COLUMBIA SC 29208 DR JAMES R SCHOTT DEPT OF STATISTICS UNIVERSITY OF CENTRAL FLORIDA PO BOX 162370 ORLANDO FL 32816-2370	1
DR JAMES GENTLE DEPT OF APPLIED ENGINEERING AND STATISTICS GEORGE MASON UNIVERSITY MS 4A7 4400 UNIVERSITY DRIVE FAIRFAX VA 22030	1	DR MYLES HOLLANDER DEPT OF STATISTICS FLORIDA STATE UNIVERSITY PO BOX 118545 GAINESVILLE FL 32611-8545	1
DR N RAO CHAGANTY DEPT OF MATHEMATICS AND STATISTICS OLD DOMINION UNIVERSITY HAMPTON BLVD NORFOLK VA 23529	1	DR JACK D TUBBS INSTITUTE OF STATISTICS BAYLOR UNIVERSITY PO BOX 97140 WACO TX 76798	1
DR SAID E SAID DEPT OF STATISTICS EAST CAROLINA UNIVERSITY GREENVILLE NC 27858	1		

${\rm NSWCDD/TR-}05/89$

${\bf DISTRIBUTION} \,\, ({\bf Continued})$

	pies (CDs)	or (Communica)	Copies (CDs)
DR JAMES STAPLETON DEPT OF STATISTICS AND PROBABILITY MICHIGAN STATE UNIVERSITY EAST LANSING MI 48824	1	MS EDITH E LANDIN DEPT OF STATISTICS IOWA STATE UNIVERSITY 102 SNEDECOR HALL	1
DR ENSOR KATHERINE DEPT OF STATISTICS RICE UNIVERSITY P.O. BOX 1892 MS 138 HOUSTON TX 77251-1892	1	AMES IA 50011-1210 DR DALE ZIMMERMAN DEPT OF STATISTICS AND ACTUARIAL UNIVERSITY OF IOWA 241 SCHAEFFER HALL IOWA CITY IA 52242-1409	1 SCIENCE
MS BETSEY COGSWELL DEPT OF STATISTICS HARVARD UNIVERSITY 1 OXFORD ST CAMBRIDGE MA 02138-2901	1	DR JOHN E BOYER DEPT OF STATISTICS KANSAS STATE UNIVERSITY DICKENS HALL 101 MANHATTAN KS 66506	1
DR EDWARD R SCHEINERMAN DEPT OF MATHEMATICS JOHNS HOPKINS UNIVERSITY 104 WHITEHEAD HALL BALTIMORE MD 21218 DR BENJAMIN KADEM	1	DR DHARAM V CHOPRA DEPT OF STATISTICS WICHITA STATE UNIVERSITY 1845 N FAIRMOUNT WICHITA KS 67260-0033	1
DEPT OF MATHEMATICS UNIVERSITY OF MARYLAND COLLEGE PARK MD 20742 DR WAYNE A MUTH DEPT OF STATISTICS AND COMPUTER SCH	1	MS CAROLYN J COOK DEPT OF STATISTICS COLORADO STATE UNIVERSITY 101 STATISTICS BLDG FORT COLLINS CO 80523-1877	1
WEST VIRGINIA UNIVERSITY PO BOX 6330 MORGANTOWN WV 26506-6330 MS SHARON DINGESS		DR DENNIS L YOUNG DEPT OF MATHEMATICS AND STATISTIC ARIZONA STATE UNIVERSITY TEMPE AZ 85287-1804	1 CS
DEPT OF STATISTICS CASE WESTERN RESERVE UNIVERSITY 10900 EUCLID AVE YOST 323 CLEVELAND OH 44106-7054		DR DOOD KALICHARAN DEPT OF STATISTICS COLUMBIA UNIVERSITY 2990 BROADWAY MC 4403 NEW YORK NY 10027	1
DR DOUGLAS WOLFE DEPT OF STATISTICS OHIO STATE UNIVERSITY 1958 NEIL AVE COLUMBUS OH 43210-1247	1	DR LU ANN CUSTER DEPT OF STATISTICS UNIVERSITY OF MICHIGAN 439 WEST HALL ANN ARBOR MI 48109-1092	1
DR ERIK V NORDHEIM DEPT OF STATISTICS UNIVERSITY OF WISCONSIN-MADISON 1210 W DAYTON ST MADISON WI 53706-1613	1	DR ROBERT SMYTHE DEPT OF STATISTICS OREGON STATE UNIVERSITY KIDDER HALL 44	1
DR GARY OEHLERT DEPT OF STATISTICS UNIVERSITY OF MINNESOTA 224 CHURCH ST SE STE 313 MINNEAPOLIS MN 55455-0493	1	CORVALLIS OR 97331	

$\rm NSWCDD/TR-05/89$

DISTRIBUTION (Continued)

DIC		or (continued)	
	Copies (CDs)		Copies (CDs)
DR KENT ESKRIDGE DEPT OF STATISTICS UNIVERSITY OF NEBRASKA-LINCOLN 926 OLDFATHER HALL	1	DR ANDREW BARRON DEPT OF STATISTICS YALE UNIVERSITY PO BOX 208290 NEW HAVEN CT 06520-8290	1
LINCOLN NE 68588 DR WILLIAM D WARDE DEPT OF STATISTICS OKLAHOMA STATE UNIVERSITY 301 MSCS BLDG	1	DR KESAR SINGH DEPT OF STATISTICS RUTGERS UNIVERSITY OF NEW JERSE' 501 HILL CENTER BUSCH CAMPUS PISCATAWAY NJ 08854	1 Y
STILLWATER OK 74078-1056 DR ISHWAR V BASAWA DEPT OF STATISTICS UNIVERSITY OF GEORGIA	1	DR ROBERT SMYTHE DEPT OF STATISTICS GEORGE WASHINGTON UNIVERSITY WASHINGTON DC 20052	1
ATHENS GA 30602 DR WILLIAM GRIFFITH DEPT OF STATISTICS UNIVERSITY OF KENTUCKY LEXINGTON KY 40506-0027	1	DR STEPHEN L BIEBER DEPT OF STATISTICS UNIVERSITY OF WYOMING PO BOX 3332 LARAMIE WY 82071-3332	1
DR REBECCA W DOERGE DEPT OF STATISTICS PURDUE UNIVERSITY 1399 MATHEMATICAL SCIENCE BLDG WEST LAFAYETTE IN 47907	1	DR HOWARD B CHRISTENSEN DEPT OF STATISTICS BRIGHAM YOUNG UNIVERSITY 230A TMCB PROVO UT 84602	1
DR LARRY WASSERMAN DEPT OF STATISTICS CARNEGIE MELLON UNIVERSITY	1	DR ELGIN PERRY 2000 KING'S LANDING RD HUNTINGTOWN MD 20639-9743	1
PITTSBURGH PA 15213 DR SATISH IYENGAR DEPT OF STATISTICS UNIVERSITY OF PITTSBURGH 2703 CATHEDRAL OF LEARNING PITTSBURGH PA 15260	1	INTERNAL B60 TECHNICAL LIBRARY B10 DR ALAN BERGER B10 DR JOHN CRIGLER B10 DR WILLIAM FARR B10 NGA PHAM	3 1 1 1
DR DIRK MOORE DEPT OF STATISTICS TEMPLE UNIVERSITY SPEAKMAN HALL 006-00 PHILADELPHIA PA 19122	1	G24 DR THOMAS GOSWICK G33 CHARLES GARNETT G33 ORGAL HOLLAND T30 ROBERT HILL T30 DR ARMIDO DIDONATO T31 DR JEFFREY BLANTON	1 1 1 1 2
DR DIPAK K DEY DEPT OF STATISTICS UNIVERSITY OF CONNECTICUT 196 AUDITORIUM ROAD STORRS CT 06269	1	T31 DR JEFFREY BLANTON T32 DR ROBERT MCDEVITT T41 DR MICHAEL RUDZINSKY T51 WILLIAM ORMSBY T54 DAVID CLAWSON T505 STEVEN ANDERSON	1 1 1 1 1

