एकक 15

बहुलक

उद्देश्य

इस एकक के अध्ययन के पश्चात् आप-

- पारिभाषिक शब्दों एकलक, बहुलक और बहुलकन को समझा सकेंगे तथा उनके महत्त्व को समझेंगे;
- बहुलकों की विभिन्न श्रेणियों के बीच विभेद कर सकेंगे तथा विभिन्न प्रकार के बहुलकन प्रक्रमों में अंतर समझेंगे;
- एकल तथा द्विक्रियात्मक एकलक अणुओं से बहुलक के बनने का महत्व समझेंगे;
- कुछ संश्लिष्ट बहुलकों के विरचन और गुणों का वर्णन कर सकेंगे।
- दैनिक जीवन में बहुलकों के महत्व को समझ सकेंगे।

पॉलिपेप्टाइड बनाने में प्रकृति द्वारा सहबहुलकन का उपयोग होता है, जिसमें विभिन्न प्रकार के 20 तक ऐमीनो अम्ल पाए जाते हैं। रसायनज्ञ अब भी इसमें काफी पीछे हैं।

बहुलकों की खोज और उनके विभिन्न अनुप्रयोगों के बिना क्या आप सोच सकते हैं कि दैनिक जीवन आसान और रंगीन हो पाता? बहुलकों का उपयोग प्लास्टिक की बाल्टियों, कपों, तश्तरियों, बच्चों के खिलौनों, पैकेज में प्रयुक्त होने वाले थैलों, संश्लेषित (सिंथेटिक) वस्त्र सामग्रियों, स्वचालित वाहनों के टायरों, गियरों और सीलों, विद्युतरोधी पदार्थों और मशीन के कलपुर्जों के औद्योगिक निर्माण ने दैनिक जीवन और साथ ही औद्योगिक जगत में संपूर्ण क्रांति ला दी है। वस्तुत: बहुलक चार मुख्य उद्योगों; जैसे—प्लास्टिक, प्रत्यास्थ बहुलकों, रेशों और प्रलेपों (पेंट्स) व वार्निशों के लिए मुख्य आधार हैं।

'बहुलक' (पॉलिमर) शब्द की उत्पत्ति दो ग्रीक शब्दों '*पॉली*' अर्थात् अनेक और 'मर' अर्थात् इकाई अथवा भाग से हुई है। बहुलकों के बहुत बृहत् अणु की तरह परिभाषित किया जा सकता है जिनका द्रव्यमान अतिउच्च (10³-10⁷u) होता है। इन्हें **बृहदणु** भी कहा जाता है, जो कि पुनरावृत्त संरचनात्मक इकाइयों के बृहत पैमाने पर जुड़ने से बनते हैं। पुनरावृत्त संरचनात्मक इकाइयाँ कुछ सरल और क्रियाशील अणुओं से प्राप्त होती हैं जो एकलक कहलाती हैं। यह इकाइयाँ एक-दूसरे के साथ सहसंयोजक बंधों द्वारा जुड़ी होती हैं। बहुलकों के संबंधित एकलकों से विरचन के प्रक्रम को **बहुलकन** कहते हैं। एथीन का पॉलिथीन में रूपांतरण और **हैक्सामेथिलीनडाइऐमीन** तथा **ऐडिपिक अम्ल** की अन्योन्यक्रिया से नाइलॉन 6,6 का विरचन दो विभिन्न प्रकार की बहुलकन अभिक्रियाओं के उदाहरण हैं।

(i)
$$nCH_2 = CH_2 \xrightarrow{\text{बहुलकन}} n \left\{ CH_2 - CH_2 \right\} \xrightarrow{\text{पॉलिथीन बहुलक}} \left\{ CH_2 - CH_2 \right\}_n$$
 एथीन पुनरावृत्त इकाई पॉलिथीन बहुलक
$$\text{ (ii)} \quad nNH_2 \ (CH_2)_6 \ NH_2 + nHOOC \ (CH_2)_4 \ COOH \xrightarrow{\text{बहुलकन}} \left\{ \begin{matrix} H & H & O & O \\ | & | & | & | & | & | \\ | N - (CH_2)_6 - N - C - (CH_2)_4 - C \end{matrix} \right\}_n$$
 है क्सामेथिलीनडाइऐमीन ऐडिपिक अम्ल

15.1 बहुलकों का वर्गीकश्ण

विशिष्ट महत्त्वों के आधार पर बहुलकों को कई प्रकार से वर्गीकृत कर सकते हैं। बहलकों के कुछ सामान्य वर्गीकरण निम्नलिखित हैं-

स्रोत पर 15,1,1 आधारित वर्गीकरण

इस प्रकार के वर्गीकरण में तीन उपसंवर्ग हैं।

1. प्राकृतिक बहुलक

यह बहुलक पादपों तथा जंतुओं में पाए जाते हैं। उदाहरण के लिए प्रोटीन, सेलुलोस, स्टार्च, कुछ रेज़िन और रबर।

2. अर्ध-संश्लेषित बहलक

सेलुलोस व्युत्पन्न जैसे सेलुलोस ऐसीटेट (रेयॉन) और सेलुलोस नाइट्रेट आदि इस उपसंवर्ग के साधारण उदाहरण हैं।

3. संश्लेषित बहुलक

विभिन्न प्रकार के संश्लेषित बहुलक जैसे प्लास्टिक (पॉलिथीन), संश्लेषित रेशे (नाइलॉन 6,6) और संश्लेषित रबर (ब्यूना-S) मानवनिर्मित बहुलकों के उदाहरण हैं, जो विस्तृत रूप से दैनिक जीवन एवं उद्योगों में प्रयुक्त होते हैं।

संरचना पर 15,1,2 आधारित बहुलकों का वर्गीकरण

संरचना के आधार पर बहुलक तीन विभिन्न प्रकार के होते हैं।

1. रैखिक बहलक

इन बहुलकों में लंबी और रेखीय शृंखलाएं होती हैं। उच्च घनत्व पॉलिथीन, पॉलीवाइनिल क्लोराइड आदि इसके उदाहरण हैं। इन्हें निम्नानुसार निरूपित करते हैं-

2. शाखित शृंखला बहुलक

इन बहुलकों में रेखीय शृंखलाओं में कुछ शाखाएं होती हैं। उदाहरण – निम्न घनत्व पॉलिथीन। इन्हें निम्न प्रकार से चित्रित करते हैं-

3. तिर्यकबंधित अथवा जालक्रम बहलक

यह साधारणतः द्विक्रियात्मक और त्रिक्रियात्मक समूहों वाले एकलकों से बनते हैं तथा विभिन्न रेखीय बहुलक शुंखलाओं के बीच प्रबल सहसंयोजक बंध होते हैं। उदाहरणार्थ-बैकेलाइट, मेलैमीन आदि। इन बहुलकों को व्यवस्थात्मक रूप में निम्न प्रकार से प्रदर्शित करते हैं-

15.1.3 बहुलकन के प्रकार के अनुसार वर्गीकरण

बहुलकों को बहुलकन की विधि के आधार पर भी दो उपसमूहों में वर्गीकृत किया जा सकता है।

1. योगज बहलक

योगज बहुलक द्वि अथवा त्रि-आबंध युक्त एकलक अणुओं के पुनरावृत योग से बनते हैं, उदाहरणार्थ—एथीन से पॉलिथीन और प्रोपीन से पॉलिप्रोपीन का विरचन। एक ही प्रकार की एकलक स्पीशीज़ के बहुलकन से बनने वाले योगज बहुलकों को समबहुलक कहा जाता है, उदाहरण—पॉलिथीन:

$$n \, \mathrm{CH_2} = \mathrm{CH_2} \longrightarrow -(\mathrm{CH_2} - \mathrm{CH_2})_n$$
 समबहुलक
एथीन पॉलिथीन

और दो भिन्न प्रकार के एकलकों के योगात्मक बहुलकन से बनने वाले बहुलकों को **सहबहुलक** कहा जाता है, उदाहरण - ब्यूना-S, ब्यूना-N आदि

$$\begin{array}{c} C_6H_5 \\ \text{n CH}_2 = \text{CH} - \text{CH} = \text{CH}_2 + \text{n C}_6H_5\text{CH} = \text{CH}_2 - \text{$$

2. संघनन बहुलक

संघनन बहुलक दो भिन्न द्विक्रियात्मक अथवा त्रिक्रियात्मक एकलक इकाइयों के बीच पुनरावृत्त संघनन अभिक्रिया द्वारा बनते हैं। इन बहुलकन अभिक्रियाओं में लघु अणुओं जैसे जल, ऐल्कोहॉल, हाइड्रोजन क्लोराइड आदि का निराकरण होता है। इसके उदाहरण हैं— टैरिलीन (डेक्रॉन), नाइलॉन-6,6, नाइलॉन 6 आदि। उदाहरण के लिए हैक्सामेथिलीन- डाइऐमीन और ऐडिपिक अम्ल के एक साथ संघनन द्वारा नाइलॉन-6,6 का विरचन होता है।

15.1.4 आण्विक बलों के आधार पर वर्गीकरण

विभिन्न क्षेत्रों में बहुलकों के अनेक अनुप्रयोग उनके यांत्रिक गुणों जैसे तनन सामर्थ्य, प्रत्यास्थता, चर्मलता आदि पर निर्भर करते हैं। यह यांत्रिक गुण अंतराआण्विक बलों द्वारा नियंत्रित होते हैं, उदाहरणार्थ— बहुलक में उपस्थित वान्डरवाल्स बल और हाइड्रोजन बंध। यह बल बहुलक शृंखलाओं को भी बंधित करते हैं। इस संवर्ग के बहुलकों को उनमें उपस्थित अंतराआण्विक बलों के परिमाण के आधार पर निम्न चार उपसमूहों में वर्गीकृत किया जाता है—

1. प्रत्यास्थ बहुलक

यह प्रत्यास्थ गुण युक्त रबर के समान ठोस होते हैं। इन प्रत्यास्थ बहुलकों में बहुलक

$$\left(\begin{array}{c} CH_2\text{-}C=CH-CH_2 \end{array}\right)_n$$
ि CI निओप्रीन

की शृंखलाएं आपस में दुर्बल अंतराआण्विक बलों द्वारा जुड़ी रहती हैं। यह दुर्बल बंधन बल बहुलक को तानित होने देते हैं। शृंखलाओं के बीच कुछ 'तिर्यक्रबंध' भी होते हैं जो इस बल के निर्मुक्त होने के बाद बहुलक को संकर्ष कर प्रारंभिक स्थान पर लाने में सहायक होते हैं जैसा वल्कनीकृत रबर में होता है। ब्यूना-S, ब्यूना-N और निओप्रीन आदि इसके उदाहरण हैं।

रेशे

रेशे एक प्रकार से धागे बनाने वाले ठोस हैं जिनकी तनन सामर्थ्य और मापांक उच्च होते हैं। इन अभिलक्षणों का संबंध प्रबल अंतराआण्विक बलों जैसे हाइड्रोजन बंध से है। इन प्रबल बलों के कारण शृंखलाएं निविड संकुलित हो जाती हैं और इस प्रकार से क्रिस्टलीय प्रकृति प्रदान करती हैं। पॉलीऐमाइड (नाइलॉन 6,6), पॉलीएस्टर (टैरीलीन) आदि इनके उदाहरण हैं।

Cl | -(CH₂-CH) गोवीसी (PVC)

3. तापसुघट्य बहुलक

यह रेखीय अथवा किंचित शाखित लंबी शृंखला के अणु होते हैं जो बार-बार गरम करने से मृदुल और ठंडा करने से कठोर हो सकने में समर्थ हैं। इन बहुलकों के अंतराआण्विक आकर्षण बल प्रत्यास्थ बहुलकों और रेशों के मध्यवर्ती होते हैं। पॉलिथीन, पॉलिस्टाइरीन, पॉलिवाइनिल आदि कुछ सामान्य तापसुघट्य हैं।

O-H CH₂ O-H CH₂ \ बैकालाइट

4. तापदृढ़ बहुलक

यह बहुलक तिर्यक बद्ध अथवा अत्यधिक शाखित अणु होते हैं जो साँचों में तापन से विस्तीर्ण तिर्यकबंध हो जाते हैं और दोबारा दुर्गलनीय बन जाते हैं। इनका दोबारा उपयोग नहीं किया जा सकता। कुछ सामान्य उदाहरण, बैकालाइट, यूरिया-फॉर्मेल्डीहाइड रेजिन आदि हैं।

15.1.5 वृद्धि बहुलकन के आधार पर वर्गीकरण

आजकल योगज और संघनन बहुलकों को उनके विरचन में बहुलकन क्रियाविधि के प्रकार के आधार पर शृंखला वृद्धि बहुलक और पद वृद्धि बहुलक भी कहा जाता है।

पात्यनिहित प्रश्न

15.1 बहुलक क्या होते हैं?

15.2 संरचना के आधार पर बहुलकों का वर्गीकरण कैसे किया जाता है?

15.2 बहुलकन के प्रकार

दो प्रमुख प्रकार की बहुलकन अभिक्रियाएं हैं यानी कि योगज अथवा शृंखला वृद्धि बहुलकन और संघनन अथवा पदश: वृद्धि बहुलकन।

15.2.1 योगात्मक बहुलकन अथवा शृंखला वृद्धि बहुलकन

इस प्रकार के बहुलकन में बहुलक एक ही प्रकार के एकलक अथवा भिन्न एकलकों के अणुओं के परस्पर योग से मिलकर बनते हैं। प्रयुक्त होने वाले एकलक असंतृप्त यौगिक होते हैं, जैसे— ऐल्कीन, ऐल्केडाइईन और उनके व्युत्पन्न। बहुलकन की इस विधि में शृंखला की लंबाई बढ़ना अथवा शृंखला वृद्धि किसी मुक्त मूलक अथवा आयनिक स्पीशीज़ के बनने से होती है। तथापि, मुक्त मूलक नियंत्रित योगज अथवा शृंखला वृद्धि बहुलकन सबसे सामान्य विधि है।

1. मुक्त मूलक क्रियाविधि

विभिन्न प्रकार की ऐल्कीन अथवा डाइईन और उनके व्युत्पन्नों का बहुलकन मुक्त मूलक जनक जैसे बेन्ज़ॉयल परॉक्साइड, ऐसीटिल परॉक्साइड, तृतीयक-ब्यूटिल परॉक्साइड आदि प्रारंभक (उत्प्रेरक) की उपस्थित में होते हैं। उदाहरण के लिए, एथीन का पॉलिथीन में बहुलकन, तापन अथवा बेन्ज़ॉयल परॉक्साइड प्रारंभक की अल्प मात्रा के साथ मिश्रण को प्रकाश में खुला छोड़ने पर होता है। प्रक्रिया परॉक्साइड द्वारा बनने वाले फ़ेनिल मुक्त मूलक के एथीन द्विक्-आबंध पर योग से प्रारंभ होती है एवं इस प्रकार एक नया और अधिक बड़ा मुक्त मूलक जनित होता है। इस चरण को शृंखला प्रारंभन पद कहते हैं। जब यह मूलक एथीन के दूसरे अणु के साथ अभिक्रिया करता है तब दूसरा और अधिक बड़े आकार का मूलक बनता है। नए और अधिक बड़े मूलकों द्वारा इस अनुक्रम की पुनरावृत्ति अभिक्रिया को अग्र दिशा में ले जाती हैं और इस चरण को शृंखला संचरण पद कहते हैं। अंतिम रूप से किसी अवस्था पर इस प्रकार बनने वाला उत्पाद मूलक किसी अन्य मूलक के साथ अभिक्रिया द्वारा बहुलिकत उत्पाद बनाता है। इस चरण को शृंखला समापन पद कहते हैं। चरणों के अनुक्रम को निम्न प्रकार से प्रदर्शित किया जा सकता है—

शृंखला प्रारंभक पद

$$\begin{array}{c} O & O \\ II & \frown \bigcirc \bigcirc II \\ C_6H_5-C-O-O-C-C_6H_5 & \longrightarrow 2C_6H_5-C-O & \longrightarrow 2\overset{\bullet}{C}_6H_5 \\ \hline \ \mathring{a}$$
-जॉयल परॉक्साइड
$$& \mathring{\ \r} \\ \overset{\bullet}{C}_6H_5+CH_2=CH_2 & \longrightarrow C_6H_5-CH_2-\overset{\bullet}{C}H_2 \end{array}$$

शृंखला संचरण पद

$$C_{6}H_{5}-CH_{2}-\overset{\bullet}{\mathbf{CH}_{2}}+CH_{2}=CH_{2}\longrightarrow C_{6}H_{5}-CH_{2}-CH_{2}-CH_{2}-\overset{\bullet}{\mathbf{CH}_{2}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

शृंखला समापन पद

दीर्घ शृंखला के समापन के लिए ये मुक्त मूलक विभिन्न प्रकार से संयोजित होकर पॉलिथीन बनाते हैं। शृंखला समापन की एक विधि नीचे दिखाई गई है—

$$C_{6}H_{5} + CH_{2} - CH_{2} + CH_{2} - CH_{2}$$

$$C_{6}H_{5} + CH_{2} - CH_{2} + CH_{2} + CH_{2} - CH_{2} + CH$$

2. कुछ महत्वपूर्ण योगज बहुलकों का विरचन

(क) पॉलिथीन

पॉलिथीन दो प्रकार की होती हैं जैसा कि नीचे दिया गया है।

(i) अल्प घनत्व पॉलिथीन - इसे 1000 से 2000 तक उच्च वायुमंडलीय दाब और 350 से 570 K ताप पर डाइऑक्सीजन अथवा परॉक्साइड प्रारंभक (उत्प्रेरक) की लेशमात्र उपस्थिति में एथीन के बहुलकन द्वारा प्राप्त किया

जाता है। मुक्त मूलक योगज और H-परमाणु अपाहरण से प्राप्त अल्प घनत्व पॉलिथीन (LDP) की संरचना अत्यधिक शाखित होती है। अल्प घनत्व पॉलिथीन रसायनत: अक्रिय और कठोर परंतु लचीली और विद्युत की अल्प चालक होती है। अत: इसका उपयोग विद्युत वाहक तारों के

का अल्प चालक होता है। अतः इसका उपयोग विद्युत वाहक तीरा के विद्युतरोधन और निष्पीडन बोतलों, खिलौनों और लचीले पाइपों के निर्माण के लिए किया जाता है।

लिए किया जाता है।

(ii) उच्च घनत्व पॉलिथीन - यह एथीन के किसी हाइड्रोकार्बन विलायक में ट्राईएथिलएलुमिनियम और टाइटेनियम टेट्राक्लोराइड (त्सीग्लर-नट्टा उत्प्रेरक) जैसे उत्प्रेरकों की उपस्थिति में, 333 K से 343 K ताप और 6-7 वायुमंडलीय दाब पर बहुलकन करने से प्राप्त होती है। इस प्रकार निर्मित उच्च घनत्व पॉलिथीन (HDP) में रेखीय अणु होते हैं तथा इसका घनत्व निविडसंकुलन के कारण उच्च होता है। यह भी रासायनिक रूप से अक्रिय अधिक कठोर और दृढ़ होती है। यह बाल्टियों, कूड़ादानों, बोतलों, पाइपों आदि के निर्माण में प्रयुक्त होती है।

इम्पेरिया के जी. नट्टा और जर्मनी के कार्ल त्सीग्लर ने 1963 में त्सीग्लर-नट्टा उत्प्रेरक विकसित करने के लिए नोबेल पुरस्कार प्राप्त किया

(ख) पॉलिटेट्राफ्लुओरोएथीन (टेफलॉन)

टेफलॉन आवरण का 300°C या अधिक ताप पर क्षरण हो जाता है। टेफलॉन, टेट्राफ्लुओरोएथीन को मुक्त मूलक अथवा परसल्फेट उत्प्रेरक के साथ उच्च दाब पर गर्म करके उत्पादित की जाती है। यह रासायिनक रूप से अक्रिय और संक्षारक अभिकर्मकों द्वारा आक्रमण के प्रति प्रतिरोधी है। इसको तेल सीलों और गैस्केटों को बनाने में और न चिपकने वाली (नॉन-स्टिक) सतह से लेपित बरतनों में उपयोग किया जाता है।

n
$$\operatorname{CF}_2$$
 = CF_2 $\xrightarrow{\operatorname{3cpl}\operatorname{res}}$ tres CF_2 - CF_2 CF_2

(ग) पॉलिऐक्रिलोनाइट्राइल

ऐक्रिलोनाइट्राइल के परॉक्साइड उत्प्रेरक की उपस्थिति में योगज बहुलकन से पॉलिऐक्रिलोनाइट्राइल बनता है।

$$n \ CH_2 = CHCN$$
 $\xrightarrow{\text{बहुलकन}}$ $\xrightarrow{\text{परॉक्साइड उत्प्रेरक}}$ $\xrightarrow{\text{CN}}$ $\xrightarrow{\text{CH}_2 - CH} \xrightarrow{\text{I}_n}$ $\xrightarrow{\text{VI}$ $\text{Min}}$ $\xrightarrow{\text{VI}}$ $\xrightarrow{\text{Min}}$ \xrightarrow

पॉलिऐक्रिलोनाइट्राइल का उपयोग ऊन के प्रतिस्थापी के रूप में औद्योगिक रेशे जैसे ऑरलॉन अथवा ऐक्रिलन बनाने में किया जाता है।

एक्रिलिक रेशे धब्बों, रसायनों, कीटो एवं कवक के प्रति अच्छी प्रतिरोधक हैं।

> इस प्रकार के बहुलकन में सामान्यत: दो द्विक्रियात्मक एकलकों की पुनरावृत्त संघनन अभिक्रिया होती है। इन बहुसंघनन अभिक्रियाओं के परिणामस्वरूप सरल अणुओं— जैसे जल, ऐल्कोहॉल आदि जैसे सरल अणुओं का ह्वास हो सकता है और उच्च आण्विक द्रव्यमान वाले संघनन बहुलक बनते हैं।

> इन अभिक्रियाओं में प्रत्येक पद का उत्पाद भी एक द्विक्रियात्मक स्पीशीज़ होती है और संघनन का अनुक्रम चलता रहता है। चूँिक, प्रत्येक पद में एक भिन्न प्रकार्यात्मक समूह युक्त स्पीशीज़ निर्मित होती है और यह एक दूसरे पर निर्भर नहीं करते अत: इस प्रक्रिया को पदश: वृद्धि बहुलकन भी कहा जाता है।

15.2.2 संघनन बहुलकन अथवा पदशः वृद्धि बहुलकन एथिलीन ग्लाइकोल और टेरेफ्थैलिक अम्ल की अन्योन्यक्रिया से टेरिलीन अथवा डेक्रॉन का बनना इस प्रकार के बहुलकन का एक उदाहरण है।

n
$$HOH_2C - CH_2OH + n$$
 $HOOC \longrightarrow COOH \longrightarrow COCH_2-CH_2-O-C \longrightarrow C$ एथिलीन ग्लाइकोल टेरेपथैलिक अम्ल टेरिलीन अथवा डेक्रॉन (एथेन-1, 2-डाइऑल) (बेन्जीन-1, 4-डाइकाबोंक्सिलिक अम्ल)

कुछ महत्वपूर्ण संघनन बहुलकन अभिक्रियाओं का वर्णन नीचे दिया गया है, जो उपस्थित बंधक इकाइयों द्वारा अभिलक्षणित होती हैं—

1. पॉलिएमाइड

ऐमाइड बंध युक्त बहुलक संश्लिष्ट रेशे के महत्वपूर्ण उदाहरण हैं, इन्हें नाइलॉन कहा जाता है। इनके विरचन की सामान्य विधि में डाइऐमीनों का डाइकार्बोक्सिलिक अम्लों के साथ तथा ऐमीनो अम्लों और उनके लैक्टमों का भी संघनन बहुलकन होता है।

नाइलॉनों का विरचन

(i) नाइलॉन 6,6 - इसका विरचन हैक्सामेथिलीनडाइऐमीन एवं ऐडिपिक अम्ल के उच्च दाब और उच्च ताप पर संघनन द्वारा किया जाता है। नाइलॉन 6,6 का उपयोग शीटों, ब्रशों के शूकों (bristles) और वस्त्र उद्योग में किया जाता है।

(ii) नाइलॉन 6 - यह कैप्रोलैक्टम को जल के साथ उच्च ताप पर गरम करके प्राप्त किया जाता है। नाइलॉन 6 का उपयोग टायर की डोरियों, वस्त्रों और रिस्सियों के निर्माण में किया जाता है।

$$H_{2}C$$
 $C=0$ $H_{2}C$ CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{4} CH_{5} CH_{5} CH_{6} CH_{7} CH_{8} CH_{1} CH_{2} CH_{2} CH_{3} CH_{4} CH_{5} $CH_$

2. पॉलिएस्टर

यह द्विकार्बोक्सिलिक अम्लों और डाइऑल के बहुसंघनन उत्पाद हैं। पॉलिएस्टर का सर्वज्ञात उदाहरण डेक्रॉन अथवा टेरिलीन हैं। यह एथिलीन ग्लाइकोल और टेरेफ्थैलिक अम्ल के मिश्रण को 420 K से 460 K ताप तक ज़िंक ऐसीटेट-एन्टिमनी ट्राइऑक्साइड उत्प्रेरक की उपस्थिति में गरम करने पर, पहले दी गई अभिक्रिया की तरह ही निर्मित होता है।

डेक्रॉन रेशा (टेरिलीन) क्रीजरोधी है और इसका उपयोग सूती तथा ऊनी रेशे के साथ सिम्मिश्रण करने में तथा सुरक्षा शिरस्त्राणों (Helmets) आदि में काँच प्रबलन पदार्थों की तरह भी होता है।

3. फ्रीनॉल-फॉर्मेल्डीहाइड बहुलक (बैकेलाइट और संबंधित बहुलक)

फ़ीनॉल फॉर्मेल्डीहाइड बहुलक सर्वाधिक पुराने संश्लिष्ट बहुलक हैं। यह फ़ीनॉल की अम्ल अथवा क्षार उत्प्रेरक की उपस्थित में फॉर्मेल्डीहाइड के साथ संघनन अभिक्रिया द्वारा प्राप्त होते हैं। अभिक्रिया का आरंभ o- और/अथवा p-हाइड्रॉक्सीमेथिलफ़ीनॉल व्युत्पन्नों के विरचन से होता है, जो पुन: फ़ीनॉल के साथ अभिक्रिया करके ऐसे यौगिक बनाते हैं जिनमें आपस में $-CH_2$ समूहों के माध्यम से जुड़ी वलय होती हैं। प्रारंभिक उत्पाद एक रैखिक उत्पाद हो सकता है जैसे— **नोवोलेक**, जिसका उपयोग प्रलेपों में होता है।

फॉर्मेल्डीहाइड के साथ गरम करने पर नोवोलेक तिर्यक बंधन निर्मित करके एक दुर्गलनीय ठोस बनाता है जिसे **बैकालाइट** कहते हैं। इसका उपयोग कंघियों, फ़ोनोग्राफ़ रेकॉर्ड अभिलेखों, वैद्यत स्विचों और विभिन्न बरतनों के हत्थे बनाने में किया जाता है।

बैकेलाइट

4. मेलैमीन-फॉर्मेल्डीहाइड बहुलक

यह मेलैमीन और फॉर्मेल्डीहाइड के संघनन बहुलकन द्वारा प्राप्त होता है। इसका उपयोग अभंजनीय बर्तनों (crockey) के निर्माण में किया जाता है।

बहुलक 447

पाठ्यनिहित प्रश्न

15.3 निम्नलिखित बहुलकों को बनाने वाले एकलकों के नाम लिखिए-

15.4 निम्न को योगज और संघनन बहुलकों में वर्गीकृत कीजिए— टेरिलीन, बैकेलाइट, पॉलिवाइनिल क्लोराइड, पॉलिथीन।

15.2.3 सहबहुलकन

सहबहुलकन वह बहुलकन अभिक्रिया है जिसमें एक से अधिक प्रकार के एकलकों के मिश्रण का बहुलकन करने पर एक सहबहुलक बनता है। सहबहुलक केवल शृंखला वृद्धि बहुलकन से ही नहीं; अपितु पदश: वृद्धि बहुलकन द्वारा भी बनाए जा सकते हैं। इसकी बहुलकी शृंखला में प्रयुक्त किए गए प्रत्येक एकलक की कई इकाइयां होती हैं। उदाहरणस्वरूप, 1,3-ब्यूटाडाईन और स्टाइरीन का मिश्रण एक सहबहुलक बना सकता है।

$$CH = CH_2$$

$$CH_2 = CH - CH = CH_2 +$$

$$CH_2 = CH - CH = CH - CH_2 - - CH_$$

सहबहुलकों के गुणधर्म समबहुलकों से काफ़ी भिन्न होते हैं। उदाहरण के लिए ब्यूटाडाईन-स्टाइरीन सहबहुलक अत्यधिक कठोर होता है और यह प्राकृतिक रबर का एक उत्तम विकल्प है। इसका उपयोग स्वचालित वाहनों के टायर, फ़र्श की टाइलों, जुतों के घटकों, केबिल के रोधन पदार्थ आदि के उत्पादन के लिए किया जाता है।

15.2.4 रबर

(i) प्राकृतिक रबर

रबर एक प्राकृतिक बहुलक है और इसमें प्रत्यास्थ गुण पाए जाते हैं। इसे प्रत्यास्थ बहुलक भी कहा जाता है और इसके विभिन्न उपयोग हैं। इसका उत्पादन रबर के लैटेक्स से किया जाता है जो कि रबर का जल में कोलॉइडी परिक्षेपण (कोलॉइडी डिस्पर्सन) है। यह लैटेक्स, रबर के वृक्षों की छाल से प्राप्त किया जाता है जो भारत, श्रीलंका, इंडोनेशिया, मलेशिया और दक्षिणी अमेरिका में पाए जाते हैं।

प्राकृतिक रबर, आइसोप्रीन (2-मेथिल-1,3-ब्यूटाडाईन) का रैखिक बहुलक है और इसे *समवक्ष-*1,4-पॉलिआइसोप्रीन भी कहा जाता है।

$$\mathrm{CH_3}$$
 $\mathrm{H_2C}$ = $\mathrm{C-CH}$ = $\mathrm{CH_2}$ आइसोप्रीन

समवक्ष-पॉलिआइसोप्रीन अणु में विभिन्न शृंखलाएं एक दूसरे के साथ दुर्बल वान्डर वाल्स अन्योन्यक्रियाओं द्वारा जुड़ी रहती हैं और कुंडलित संरचना बना लेती हैं। अत: इन्हें स्प्रिंग की तरह खींचा जा सकता है और यह प्रत्यास्थ गुण प्रदर्शित करती हैं।

$$H_3C$$
 $C = C$
 H_3C
 $C = C$
 CH_2
 C

रबर का वल्कनीकरण - प्राकृतिक रबर उच्च ताप (>335K) पर नरम और निम्न ताप (<283K) पर भंगुर हो जाता है एवं उच्च जल अवशोषण क्षमता प्रदर्शित करता है। यह अधुवीय विलायकों में घुलनशील है और ऑक्सीकरण कर्मकों के आक्रमण के प्रति प्रतिरोधी नहीं है। इन भौतिक गुणों में सुधार के लिए वल्कनीकरण की प्रक्रिया की जाती है। इस प्रक्रिया में अपिरष्कृत रबर को सल्फर और उपयुक्त योगजों के साथ 373K to 415K के ताप परास के मध्य गरम किया जाता है। वल्कनीकरण से, द्विबंधों की अभिक्रियाशील स्थितियों पर सल्फर तिर्यक बंध बनाता है और इस प्रकार रबर कठोर हो जाता है।

टायर बनाने के लिए प्रयुक्त होने वाली रबर के उत्पादन में 5% सल्फर का उपयोग तिर्यक बंधक के रूप में किया जाता है। वल्कनीकृत रबर के अणुओं की संभावित संरचनाओं को निम्नप्रकार से दिखाया जा सकता है।

2. संश्लेषित रबर

संश्लेषित रबर वल्कनीकृत रबर की तरह का बहुलक है, जो अपनी लंबाई से दुगुने तक खींचे जा सकते हैं। तथापि, जैसे ही बाह्य तनन बल निर्मुक्त होता है तो यह तुरंत अपनी मूल आकृति एवं आकार में लौट आता है इस प्रकार, संश्लेषित रबर या तो 1,3 ब्यूटाडाईन के व्युत्पन्नों के सहबहुलक हैं अथवा 1,3 ब्यूटाडाईन के या इसके व्युत्पन्नों के अन्य असंतृप्त एकलकों के साथ सहबहुलक हैं।

संश्लेषित रबर का विरचन

1. निओप्रीन

निओप्रीन अथवा पॉलिक्लोरोप्रीन, क्लोरोप्रीन के मुक्त मूलक बहुलकन द्वारा बनता है।

Cl
I
n
$$CH_2$$
=C-CH= CH_2 Cl
बहुलकन
— CH_2 -C= CH - CH_2
— CH_2 -C= CH - CH_2 — C -
तिओप्रीन2-क्लोरो-1, 3-ब्यूटाडाईन

इसमें वनस्पति और खनिज तेल के प्रति उत्कृष्ट प्रतिरोध होता है। इसका उपयोग वाहक पट्टे. गैस्केट और हौज़ों के बनाने में किया जाता है।

2. ब्यूना-N - आप खंड 15.1.3 में ब्यूना-S के बारे में पहले ही पढ़ चुके हैं। ब्यूना-N 1,3-ब्यूटाडाईन और ऐक्रिलोनाइट्राइल के परॉक्साइड उत्प्रेरक की उपस्थिति में सहबहुलकन से प्राप्त होता है।

n
$$CH_2$$
= CH - CH = CH_2 + nCH_2 = CH $\xrightarrow{HE agg} mar$ $\xrightarrow{HE agg} mar$ $\xrightarrow{HE agg} mar$ $\xrightarrow{HE agg} mar$ $\xrightarrow{CH_2} -CH$ = CH - CH_2 - CH_2 - CH - $\xrightarrow{LH_2} -CH$ $\xrightarrow{LH_2} -CH$

यह पेट्रोल, स्नेहक तेल और कार्बनिक विलायकों के प्रति प्रतिरोधी है। इसका उपयोग तेल-सील और टंकी के लिए अस्तर आदि बनाने में किया जाता है।

पाव्यनिहित प्रश्न

- ब्यूना-N और ब्यूना-S के मध्य अंतर समझाइए।
- निम्न बहुलकों को उनके अंतराआण्विक बलों के बढते क्रम में व्यवस्थित कीजिए।
 - (i) नाइलॉन-6,6, ब्यूना-S, पॉलिथीन
 - (ii) नाइलॉन-6, निओप्रीन, पॉलिवाइनिल क्लोराइड

15.3 बहुसकों का आणिवक <u>उट्य</u> आव

बहुलकों के गुण उनके आण्विक द्रव्यमान, आकार और संरचना से घनिष्ठ रूप से संबंधित होते हैं। बहुलक शृंखला की लंबाई उनके संश्लेषण के दौरान अभिक्रिया मिश्रण में एकलकों की उपलब्धता पर निर्भर करती है। इस प्रकार, बहुलक प्रतिदर्श में विभिन्न लंबाई की शृंखलाएं उपस्थित होती हैं। इसलिए इनका आण्विक द्रव्यमान सदैव एक औसत के रूप में व्यक्त किया जाता है। बहुलकों के आण्विक द्रव्यमान को रासायनिक और भौतिक विधियों द्वारा ज्ञात किया जा सकता है।

15.4 निम्ननी**य्य**श्णीय बहुलक

अनेक बहुलक पर्यावरणी निम्ननीकरण प्रक्रमों के प्रति सर्वथा प्रतिरोधी होते हैं और इस प्रकार यह बहुलक ठोस अपशिष्ट द्रव्यों के संचयन के लिए उत्तरदायी होते हैं। इन ठोस अपशिष्टों से गंभीर पर्यावरणीय समस्याएं उत्पन्न होती हैं और यह काफ़ी लंबे समय तक अनिम्ननीकृत रूप में पड़े रहते हैं। सामान्य जानकारी और बहुलक ठोस अपशिष्टों द्वारा उत्पन्न समस्याओं को ध्यान में रखते हुए कुछ नए जैवनिम्ननीय संश्लिष्ट बहुलकों को अभिकल्पित और विकसित किया गया है। इन बहुलकों में जैव बहुलकों में उपस्थित प्रकार्यात्मक समुहों के सदृश प्रकार्यात्मक समूह पाए जाते हैं।

ऐलिफ़ैटिक पॉलिएस्टर जैवनिम्ननीय बहुलकों का एक महत्त्वपूर्ण वर्ग हैं। कुछ महत्त्वपूर्ण उदाहरण निम्नलिखित हैं -

(1) पॉलि β -हाइड्रॉक्सीब्युटिरेट - को- β -हाइड्रॉक्सी वैलेरेट (PHBV) -

यह 3-हाइड्रॉक्सीब्यूटेनॉइक अम्ल और 3-हाइड्रॉक्सीपेन्टेनॉइक अम्ल के सहबहुलकन से प्राप्त होता है। PHBV का उपयोग विशिष्ट पैकेजिंग, अस्थियों में प्रयुक्त युक्तियों और औषधों के नियंत्रित मोचन में भी होता है। पर्यावरण में PHVB का जीवाण्विक निम्ननीकरण हो जाता है।

(2) नाइलॉन 2 - नाइलॉन 6

यह ग्लाइसिन (H_2 N- CH_2 -COOH) और ऐमीनोकैप्रोइक अम्ल (H_2 N (CH_2) $_5$ COOH) का एकांतर पॉलिऐमाइड सहबहुलक है और जैविनम्निनीय है। क्या आप इस सहबहुलक की संरचना लिख सकते हैं?

15.5 व्यापारिक महत्त्व के कुछ बहुबक

पहले से विवेचित बहुलकों के अतिरिक्त, व्यापारिक दृष्टि से महत्त्वपूर्ण कुछ अन्य बहुलकों को उनकी संरचनाओं एवं उपयोगों सहित सारणी 15.1 में दिया गया है।

सारणी 15.1— व्यापारिक महत्त्व के कुछ अन्य बहुलक

पॉलिमर का नाम	एकलक	संरचना	उपयोग
पॉलिप्रोपीन	प्रोपीन	$\left(\begin{array}{c} CH_3 \\ CH_2 - CH \end{array} \right)_n$	रस्सियाँ, खिलौने, पाइप, रेशे आदि बनाने में
पॉलिस्टाइरीन	स्टाइरीन	$ \begin{array}{c} & C_6H_5 \\ & \downarrow \\ & CH_2\text{-CH} \\ & \downarrow \\ & \uparrow \\ & n \end{array} $	विद्युतरोधी के रूप में, वस्तुओं को लपेटने के लिए, खिलौने, रेडियो और टेलिविजन कैबिनिट बनाने में।
पॉलिवाइनिल क्लोराइड	वाइनिल क्लोराइड	Cl CH ₂ -CH	बरसातियाँ, बैग, वाइनिल फ़र्श और पाइप बनाने में
यूरिया-फॉर्मेल्डीहाइड रेजिन	(क) यूरिया (ख) फॉर्मेल्डीहाइड	+ NH-CO-NH-CH ₂ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	न टूटने वाले कप और पटलित चादरें बनाने में।
ग्लिप्टल	(क) एथिलीन ग्लाइकॉल (ख) थैलिक अम्ल	+ OCH ₂ -CH ₂ OOC CO	प्रलेप और प्रलाक्ष बनाने में
बैकेलाइट	(क) फ़ीनॉल (ख) फॉर्मेल्डीहाइड	O-H O-H CH ₂ CH ₂	कंघियाँ, वैद्युत स्विचों, बर्तनों के हत्थे और कंप्यूटर डिस्क बनाने में।

સારાંશ

बहुलकों को उच्च आण्विक द्रव्यमान युक्त वृहदणु की तरह परिभाषित किया जाता है, जिनमें संगत एकलकों से व्युत्पन्न पुनरावृत्त संरचनात्मक इकाइयाँ पाई जाती हैं। यह बहुलक प्राकृतिक अथवा संश्लेषित उत्पत्ति के हो सकते हैं और विभिन्न प्रकार से वर्गीकृत किए जा सकते हैं।

कार्बनिक परॉक्साइड प्रारंभक की उपस्थित में, ऐल्कीन और उनके व्युत्पन्नों का योगज बहुलकन अथवा शृंखला वृद्धि बहुलकन, मुक्त मूलक क्रियाविधि द्वारा संपन्न होता है। पॉलिथीन, टेफ्लॉन और ऑरलॉन आदि उचित एल्कीन अथवा उसके व्युत्पन्नों के योगज बहुलकन से बनते हैं। संघनन बहुलकन अभिक्रियाएं -NH₂, -OH और -COOH जैसे दो अथवा अधिक प्रकार्यात्मक समूहों युक्त एकलकों की अन्योन्यक्रिया द्वारा प्रदर्शित की जाती है। यह बहुलकन कुछ सरल अणुओं जैसे H₂O, CH₃OH आदि के निराकरण द्वारा संपन्न होता है। फॉर्मेल्डीहाइड, फीनॉल और मेलैमीन के साथ अभिकृत होकर संगत संघनन बहुलक उत्पाद बनाता है। संघनन बहुलकन पदशः आगे बढ़ता है और इसे पदशः वृद्धि बहुलकन भी कहा जाता है। नाइलॉन, बैकालाइट और डेक्नॉन संघनन बहुलकों के कुछ महत्वपूर्ण उदाहरण हैं। तथापि दो असंतृप्त एकलकों का मिश्रण सहबहुलकन प्रदर्शित करता है और एक सहबहुलक बनाता है जिसमें प्रत्येक एकलक की बहुगुणित इकाइयाँ होती हैं। प्राकृतिक रबर सिस-1,4-पॉलिआइसोप्रीन है और इसे सल्फर के साथ वल्कनीकरण प्रक्रिया द्वारा अधिक कठोर बनाया जा सकता है। संशिलष्ट रबर साधारणतः एल्कीन और 1,3-ब्यूटाडाईन व्युत्पन्नों के सहबहुलकन से प्राप्त किए जाते हैं।

संश्लिष्ट बहुलकीय अपशिष्टों से स्थितिज पर्यावरणीय संकट को देखते हुए कुछ **जैवनिम्ननीय बहुलकों** जैसे PHBV और नाइलॉन 2- नाइलॉन 6 का विकल्प के रूप में विकास किया गया है।

अभ्यास

- 15.1 बहुलक और एकलक पदों की व्याख्या कीजिए।
- 15.2 प्राकृतिक और संश्लिष्ट बहुलक क्या हैं? प्रत्येक के दो उदाहरण दीजिए।
- 15.3 समबहलक और सहबहलक पदों (शब्दों) में विभेद कर प्रत्येक का एक उदाहरण दीजिए।
- 15.4 एकलक की प्रकार्यात्मकता को आप किस प्रकार समझाएंगे?
- 15.5 बहुलकन पद (शब्द) को परिभाषित कीजिए।
- 15.6 (NH-CHR-CO) एक समबहुलक है या सहबहुलक?
- 15.7 आण्विक बलों के आधार पर बहुलक किन संवर्गों में वर्गीकृत किए जाते हैं?
- 15.8 संकलन और संघनन बहुलकन के मध्य आप किस प्रकार विभेद करेंगे।
- 15.9 सहबहुलकन पद (शब्द) की व्याख्या कीजिए और दो उदाहरण दीजिए।
- 15.10 एथीन के बहुलकन के लिए मुक्त मूलक क्रियाविधि लिखिए।
- 15.11 तापसुघट्य और तापदृढ़ बहुलकों को प्रत्येक के दो उदाहरण के साथ परिभाषित कीजिए।
- 15.12 निम्न बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलक लिखिए-
 - (i) पॉलिवाइनिल क्लोराइड (ii) टेफ्लॉन (iii) बैकालाइट
- 15.13 मुक्त मूलक योगज बहुलकन में प्रयुक्त एक सामान्य प्रारंभक का नाम और संरचना लिखिए।
- 15.14 रबर अणुओं में द्विबंधों की उपस्थिति किस प्रकार उनकी संरचना और क्रियाशीलता को प्रभावित करती है?
- 15.15 रबर के वल्कनीकरण के मुख्य उद्देश्य की विवेचना कीजिए।

- 15.16 नाइलॉन-6 और नाइलॉन-6,6 में पुनरावृत एकलक इकाइयाँ क्या हैं?
- 15.17 निम्नलिखित बहुलकों के एकलकों का नाम और संरचना लिखिए।
 - (i) ब्यूना-S (ii) ब्यूना-N (iii) डेक्रॉन (iv) निओप्रीन
- 15.18 निम्नलिखित बहुलक संरचनाओं के एकलक की पहचान कीजिए-

(i)
$$= \begin{bmatrix} O & O \\ I & I \\ C - (CH_2)_8 - C - NH - (CH_2)_6 - NH \end{bmatrix}_n$$

$$(ii) \begin{bmatrix} HN & N & NH-CH_2 \\ N & N & N \\ NH & \end{bmatrix}$$

- 15.19 एथिलीन ग्लाइकॉल और टेरेफ्थैलिक अम्ल से डेक्रॉन किस प्रकार प्राप्त किया जाता है?
- 15.20 जैवनिम्ननीय बहुलक क्या हैं? एक जैवनिम्ननीय ऐलिफ़ैटिक पॉलिएस्टर का उदाहरण दीजिए।

कुछ पात्यनिहित प्रश्नों के उत्तर

- 15.1 बहुलक उच्च आण्विक द्रव्यमान वाले पदार्थ होते हैं जिनमें बृहत् संख्या में पुनरावृत्त संचनात्मक इकाइयाँ पाई जाती हैं। इन्हें बृहदणु भी कहा जाता है। बहुलकों के कुछ उदाहरण पॉलिथीन, बैकालाइट, रबर, नाइलॉन-6.6 आदि हैं।
- 15.2 संरचना के आधार पर, बहुलकों को निम्न प्रकार से वर्गीकृत किया जाता है -
 - (i) रेखीय बहुलक जैसे पॉलिथीन, पॉलिवाइनिल क्लोराइड आदि।
 - (ii) शाखित शृंखला बहुलक जैसे निम्न घनत्व पॉलिथीन।
 - (iii) तिर्यक बद्ध बहुलक जैसे बैकालाइट, मेलैमीन आदि।
- 15.3 (i) हैक्सामेथिलीनडाइऐमीन और ऐडिपिक अम्ल
 - (ii) कैप्रोलैक्टम
 - (iii) टेट्राफ्लुओरोएथीन
- **15.4** योगज बहुलक— पॉलिवाइनिल क्लोराइड, पॉलिथीन संघनन बहुलक— टेरिलीन, बैकालाइट
- 15.5 ब्यूना-N; 1, 3-ब्यूटाडाईन और ऐक्रिलोनाइट्राइल का सहबहुलक है और ब्यूना-S; 1,3- ब्यूटाडाईन और स्टाइरीन का सहबहुलक है।
- 15.6 अंतराआण्विक बलों के बढते क्रम में-
 - (i) ब्यूना-S; पॉलिथीन, नाइलॉन-6, 6
 - (ii) निओप्रीन, पॉलिवाइनिल क्लोराइड, नाइलॉन-6