

PLASMA TREATMENT CONTAINER INSIDE MEMBER

Veröffentlichungsnummer JP2004003022
Veröffentlichungsdatum: 2004-01-08
Erfinder: HARADA YOSHIO; TAKEUCHI JUNICHI;
HAMAGUCHI TATSUYA; NAGAYAMA MASAYUKI;
MIHASHI YASUSHI
Anmelder: TOCALO CO LTD; TOKYO ELECTRON LTD
Klassifikation:
- Internationale: B01J19/02; B01J19/08; C23C4/10; C23C28/00;
H01L21/3065; H01L21/31; B01J19/02; B01J19/08;
C23C4/10; C23C28/00; H01L21/02; (IPC1-7):
C23C4/10; B01J19/02; B01J19/08; C23C28/00;
H01L21/3065; H01L21/31
- Europäische:
Anmeldenummer: JP20030140700 20030519
Prioritätsnummer(n): JP20030140700 20030519

[Datenfehler hier melden](#)

Zusammenfassung von JP2004003022

PROBLEM TO BE SOLVED: To provide a plasma treatment container inside member excellent in plasma erosion resistance and its advantageous production method.

SOLUTION: The inside member is prepared by covering the surface of a metal substrate with a single layer of a thermally sprayed Y_{2}O_{3} film or, if necessary, with a multilayered composite layer comprising a metal film formed as an undercoat, an $\text{Al}_{2}\text{O}_{3}$ film or an $\text{Al}_{2}\text{O}_{3}+\text{Y}_{2}\text{O}_{3}$ film formed as an interlayer on the undercoat, and a thermally sprayed Y_{2}O_{3} film formed as a topcoat on the interlayer.

COPYRIGHT: (C)2004,JPO

Daten sind von der **esp@cenet** Datenbank verfügbar - Worldwide

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-3022

(P2004-3022A)

(43)公開日 平成16年1月8日(2004.1.8)

(51)Int.Cl.⁷

C23C 4/10
B01J 19/02
B01J 19/08
C23C 28/00
H01L 21/3085

F 1

C23C 4/10
B01J 19/02
B01J 19/08
C23C 28/00
H01L 21/31

テーマコード(参考)

4G075
4K031
4K044
5FO04
5FO45

審査請求 未請求 請求項の数 1 O L (全 9 頁) 最終頁に続く

(21)出願番号

特願2003-140700(P2003-140700)

(22)出願日

平成15年5月19日(2003.5.19)

(62)分割の表示

特願平11-351546の分割

原出願日

平成11年12月10日(1999.12.10)

(71)出願人

000109875
トーカロ株式会社
兵庫県神戸市東灘区深江北町4丁目13番
4号

(71)出願人

000219967
東京エレクトロン株式会社
東京都港区赤坂五丁目3番6号

(74)代理人

100080687

弁理士 小川 順三

(74)代理人

100077126

弁理士 中村 盛夫

(72)発明者

原田 良夫
兵庫県明石市大久保町高丘1丁目8番18
号

最終頁に続く

(54)【発明の名称】プラズマ処理容器内部材

(57)【要約】

【課題】耐プラズマエロージョン性に優れるプラズマ処理容器内部材と、その有利な製造方法とを提案する。

【解決手段】金属基材の表面が、 Y_2O_3 溶射皮膜の単相か、必要に応じて、アンダーコートとして形成された金属皮膜と、そのアンダーコート上に中間層として形成された A_1O_3 もしくは $A_1O_3 + Y_2O_3$ の皮膜とのいずれかと、そしてその中間層の上にトップコートとして形成された Y_2O_3 溶射皮膜とからなる多層状複合層によって被覆されている部材。

【選択図】 なし

【特許請求の範囲】

【請求項 1】

金属基材の表面が Y_2O_3 溶射皮膜によって被覆されていることを特徴とする、プラズマ処理容器内部材。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、耐プラズマエロージョン性に優れるプラズマ処理容器内部材に関するものである。

とくに本発明は、ハロゲン元素を含む処理ガスのプラズマ雰囲気における、プラズマ処理で使用される、例えば、デポシールド、バッフルフレート、フォーカスリング、インシュレータリング、シールドリング、ペローズカバー、電極などに適用できる技術についての提案である。10

なお、本発明はまた、単に半導体製造装置の分野のみに限られるものではなく、例えば、液晶ディバイスなどのプラズマ処理容器内部品に対しても適用が可能である。以下、主に半導体製造装置の例で説明する。

【0002】

【従来の技術】

一般に、半導体および液晶ディバイスなどの製造プロセスでは、処理容器内で BF_3 や NF_3 のようなふっ化物、 BCl_3 や $SnCl_4$ などの塩化物、 HBr の如き臭化物をはじめとする処理ガスを使用するため、処理容器内部材が著しく腐食損耗するという問題があつた。20

【0003】

例えば、半導体製造装置のプラズマ処理容器内に使われている材料としては、 Al および Al 合金などの金属材料、その表面に被覆した Al の陽極酸化膜、あるいはホロンカーバイドなどの溶射皮膜、 Al_2O_3 や Si_3N_4 などの焼結体皮膜、さらにはふっ素樹脂やエポキシ樹脂などの高分子皮膜が知られている。これらの材料は、腐食性の強いハロゲンイオンに接すると、化学的損傷を受けたり、 SiO_2 、 Si_3N_4 などの微粒子、およびプラズマによって励起されたイオンによってエロージョン損傷を受けることが知られている。30

【0004】

とくに、ハロゲン化合物を用いるプロセスでは、反応のより一層の活性化を図るため、しばしばプラズマが用いられる。しかし、このようなプラズマ使用環境下では、ハロゲン化合物は解離して非常に腐食性の強い原子状の F 、 C 、 B 、 I などを発生すると同時に、その環境中に SiO_2 や Si_3N_4 、 Si 、 W などの微粉末状固体物が存在すると、プラズマ処理容器内に用いられている部材が化学的腐食とともに、微粒子によるエロージョン損傷の両方の作用を強く受けることになる。

しかも、プラズマが励起された環境は、 Ar ガスのように腐食性のない気体でもイオン化し、これが固体面に強く衝突する現象（イオンホンバードメント）が発生するので、上記容器内に配設されている各種部材はより一層強い損傷を受けることも知られている。40

【0005】

【発明が解決しようとする課題】

上述した半導体製造装置のように、化学的腐食やエロージョン損傷の激しい分野で用いられる下記の従来部材については、次のような問題点があった。

(1) Al および Al 合金を陽極酸化して耐食性を有する Al_2O_3 膜（アルマイド）を生成させた材料については、ハロゲンガスを含む雰囲気中でプラズマエロージョンを受けると寿命が短いという問題がある。また、 Al を含む皮膜なので、 AlF_3 のパーティクルが発生し、製造する半導体の製品不良を招く。

(2) 部材表面に、PVD法やCVD法によって、 Sc 、 Y 、 La 、 Ce 、 Yb 、 Eu 、 Dy などの周期律表第3 α 族元素の酸化物、炭化物、窒化物、ふっ化物などの密な皮50

膜を形成したり、 Y_2O_3 の単結晶を適用する技術がある（特開平10-4083号公報）。しかし、この技術は、成膜速度が遅く生産性に劣るほか、複数の皮膜部材を同時に形成（複合皮膜）できないという欠点がある。

【0006】

そこで、本発明の目的は、ハロゲンガスが含まれるような環境による化学的腐食による損傷ならびにアラズマエロージョンによる損傷に対する抵抗力の大きいアラズマ処理容器等に供される表面処理部材を提案するところにある。

【0007】

【課題を解決するための手段】

本発明は、従来技術が抱えている上述した問題ならびに欠点を、以下に要約して述べる解決手段の採用によって克服したものである。すなわち、本発明の構成を整理すると、次の通りである。

10

【0008】

(1) 金属基材の表面に、溶射法によって気孔率0.2～10%、厚さ50～200μmの Y_2O_3 溶射皮膜のみからなる層を形成した被覆部材であること。

【0009】

(2) 環境の腐食性が強い場合、例えば、ハロゲン化合物を含む雰囲気中におけるアラズマ発生条件下の場合には、金属基材の表面に、アンダーコートとして、好ましくは溶射法により、 Y_2O_3 溶射皮膜との密着性に優れた、Niおよびその合金、Wおよびその合金、Moおよびその合金、Tiおよびその合金の中から選ばれる1種以上の金属・合金の皮膜を、50～500μmの厚さに被覆し、そしてそのアンダーコートの上に、 Y_2O_3 溶射皮膜を50～2000μm厚さに加工して複合層を形成した被覆部材であること。

20

【0010】

(3) 金属基材の表面に、金属皮膜（好ましくは溶射皮膜）をアンダーコートとして施工した後、そのアンダーコートの上に、中間層として Al_2O_3 の皮膜（好ましくは溶射皮膜）を形成し、さらにその中間層の上に、トップコートとして溶射によって Y_2O_3 溶射皮膜を形成してなる多層状複合層を形成した被覆部材であること。

【0011】

(4) 金属基材の表面に、金属皮膜（好ましくは溶射皮膜）をアンダーコートとして施工した後、そのアンダーコートの上に、中間層として Al_2O_3 と Y_2O_3 の混合物の皮膜（好ましくは溶射皮膜）を形成し、さらにその中間層の上に、トップコートとして溶射法によって Y_2O_3 溶射皮膜を形成した多層状複合層を形成した被覆部材であること。

30

【0012】

(5) 金属基材の表面に、直接またはアンダーコートや中間層を施工した上に形成する Y_2O_3 溶射皮膜は、純度95%以上の Y_2O_3 粉末を使用し、この粉末を大気中でアラズマ溶射するか、実質的に酸素を含まないArガスの減圧雰囲気下でアラズマ溶射するか、あるいは高速フレーム溶射法や爆発溶射法などから選ばれた溶射方法を適用して得られる溶射皮膜を被覆した部材であること。

なかでも、Arガスの減圧アラズマ溶射による方法が、耐食性の改善にも有効である。

40

【0013】

【発明の実施の形態】

発明者らの研究によると、従来技術が抱えている上述した課題について鋭意研究した結果、アラズマ処理容器内部材の損傷は、ハロゲンガスによる化学的腐食による損傷と、アラズマエロージョンによる損傷とが考えられる。特に、この部材がアラズマによって励起されたハロゲンを含む雰囲気中で使用される場合、耐アラズマエロージョン性を起因とする損傷を防ぐことが重要であり、そうすれば化学的腐食防止に対しても有効に作用するとの知見を得た。そこで、本発明では主として、耐アラズマエロージョン性に対して有効な皮膜の形成について研究した。その結果として、上掲の本発明にかかる部材を開発した。

50

【0014】

すなわち、その課題解決の手段として採用した本発明は、金属基材表面に、溶射法によつて、 Y_2O_3 からなる溶射皮膜を形成することを基本とする。そして、こうした部材が使用される環境の腐食性が強い場合には、前記 Y_2O_3 溶射皮膜の下に、耐ハロゲンガス腐食性の強い特性を示す金属のアンダーコートを設けるとか、 Al_2O_3 や Y_2O_3 の中間層を設けて複合化させる方法である。以下、かかる本発明にかかる部材の構成について詳しく説明する。

【0015】

(1) 基材について、上記溶射皮膜の施工対象となる金属基材としては、ステンレス鋼を含む各種の鋼、アルミニウムおよびアルミニウム合金、タンクステンおよびタンクスチン合金、チタンおよびチタン合金、モリブデンおよびモリブデン合金などが好適である。
なお、銅および銅合金は、フラズマエロージョンやハロゲン化合物による腐食作用によって放出され、環境汚染の原因となるので好ましくない。従って、もし装置の構成上、銅および銅合金の使用が必要な場合は、電気めっき、化学めっき、蒸着などの手段でCト、Niなどで被覆しておく必要がある。

10

【0016】

(2) 皮膜構成について、上記金属基材表面への皮膜の形成は、金属基材をプラスト処理した後、 Y_2O_3 を直接に溶射して成膜するか、または、金属基材表面にまずアンダーコート層として、耐ハロゲンガス腐食性の強い金属材料からなる皮膜を、PVD処理、CVD処理もしくは溶射処理して形成し、そのアンダーコートの上に Y_2O_3 粉末をトップコートとして溶射して複合層とすることが好ましい。この場合において、前記金属アンダーコート(溶射皮膜等)は、膜厚は50～500 μmの範囲内とする。アンダーコート層が50 μmより薄いとアンダーコートとしての作用効果が弱く、一方、500 μmを超える厚さでは効果が飽和するので肥厚化の意味がなく、得策でないからである。かかるアンダーコート用金属材料としては、ニッケルおよびニッケル合金、タンクステンおよびタンクスチン合金、モリブデンおよびモリブデン合金、チタンおよびチタン合金などが好適である。

20

【0017】

一方、トップコートとなる Y_2O_3 溶射皮膜は、金属基材表面に直接施工したものであれ、また、前記アンダーコートの上に溶射して複合層にしたものであれ、さらには中間層として Al_2O_3 や $\text{Al}_2\text{O}_3 + \text{Y}_2\text{O}_3$ 皮膜を設けたものであれ、いずれの場合でも50～2000 μmの厚さに施工することが好ましい。その理由は、50 μmより薄い層ではフラズマエロージョンによる損傷の防止に対して効果が乏しく、一方、2000 μmより厚くしても効果が飽和して経済的でないからである。

30

【0018】

なお、トップコートの Y_2O_3 溶射皮膜の気孔率は、0.2～10%の範囲がよい。0.2%以下の皮膜は溶射法では製造が困難であり、また、10%以上の気孔率の皮膜では耐食性、耐フラズマエロージョン性に劣るからである。

【0019】

(3) 部材最表面層の Y_2O_3 溶射皮膜について本発明の最も特徴とする構成は、金属基材の最表層を、ハロゲンガスを含む雰囲気中で耐フラズマエロージョン性を示す材料として Y_2O_3 を採用し、これを溶射層として被覆形成するところにある。即ち、発明者らの研究によると、 Y_2O_3 は、比重が4.84、融点が2410°Cで、酸素との化学的結合力が強いため、ハロゲンガスを含む雰囲気中でフラズマエロージョン作用をうけても、安定した状態を維持することがわかった。ただし、この Y_2O_3 純度は95%以上のものを用いることが必要であり、Fe、Mg、Cr、Al、Ni、Siなどの不純物が酸化物として含まれていると、耐エロージョン性が低下するので好ましくない。98%以上の純度のものがより好ましい。

40

なお、この Y_2O_3 溶射皮膜の直下に形成せざる中間層中の Al_2O_3 は、化学的に安定であるうえ、大気フラズマ溶射や減圧フラズマ溶射環境下においても変化が少なく、Y

50

Y_2O_3 の耐アラズマエロージョン性を補償する作用を担うものである。

【0020】

(4) 被覆方法

a. 溶射皮膜の形成

本発明においては、少なくとも最表層トップコートの Y_2O_3 皮膜を溶射皮膜とする。そして、好みしくはこのトップコート溶射皮膜下には、この皮膜をさらに強化する意味で、全体の皮膜構成を次のような多層構造にすることが好みしい。

即ち、金属基材の表面に、金属溶射皮膜のアンダーコートを施工し、その上に Al_2O_3 溶射皮膜もしくは傾斜配合にかかる Al_2O_3 と Y_2O_3 との混合物溶射皮膜を中間層として施工し、さらに、その上にトップコートとして、 Y_2O_3 溶射皮膜を形成するものである。

10

このような皮膜構成が好みしい理由は、金属溶射皮膜に比較して耐食性、耐アラズマエロージョン性に優れる Al_2O_3 を中間層として形成することで、溶射皮膜を多層構造化し、皮膜の貫通気孔を少なくして耐食性、耐エロージョン性を向上させることができることからである。しかも、中間層としての Al_2O_3 は、アンダーコートおよびトップコートの両方とも良好な密着性を発揮する。この意味において、中間層は、 Al_2O_3 と Y_2O_3 との混合物の層とすることがより好みしく、この場合、アンダーコート側の Al_2O_3 濃度を高くする一方、トップコート側では Y_2O_3 濃度が高くなるような傾斜配合にかかる混合層とすることが好みしい。このような中間層の形成は、溶射法を採用すると容易に施工することができる、中間層が溶射皮膜として形成されることは好みしい実施形態といえる。なお、中間層の厚さは、トップコートの Y_2O_3 溶射皮膜と同一の範囲が好適である。

20

【0021】

本発明において、金属や Al_2O_3 、 Y_2O_3 の溶射皮膜を形成するには、大気アラズマ溶射法または、実質的に酸素を含まない雰囲気中のアラズマ溶射法が好適であるが、高速フレーム溶射や爆発溶射法による施工も可能である。

【0022】

b. CVD法およびPVD法によるアンダーコート、中間層の形成

CVD法では、所要の金属ハロゲン化合物の蒸気を、水素などによって還元析出させ、その後酸素または酸素化合物によって酸化せしめ、大気中で加熱することによって、酸化物皮膜に変化させて成膜する。

30

一方、PVD法では、焼結体または粉末を原料とし、これに電子ビームを照射して揮散させ、これを金属基材の表面に析出させることによって成膜する。

一般に、CVD法、PVD法による皮膜の形成は、薄膜（例えば 50 μm 前後）の施工に適している。

【0023】

(5) 本発明にかかる部材の使用環境について

本発明にかかる部材表面に被覆した Y_2O_3 溶射皮膜は、ハロゲン化合物を含む雰囲気下において発生するアラズマ環境下で使用する場合に特に有用である。

40

【0024】

もちろん、ハロゲン元素またはハロゲン化合物を含まない N_2 、 H_2 などの雰囲気下におけるアラズマエロージョン作用に対しても本発明は有効であり、この場合はとくにハロゲンを含む雰囲気に比較して、エロージョン損傷が緩やかであるので、本発明にかかる皮膜被覆部材は長期間にわたって安定した性能を発揮する。

【0025】

【実施例】

実施例1

この実施例では、アルミニウム製試験片（寸法：幅 50 mm × 長 50 mm × 厚 5 mm）の片面をプラスチック処理によって粗面化した後、 Y_2O_3 溶射材料を用いて、大気アラズマ溶射法と、Arガスで雰囲気圧力を 50 ~ 200 hPa に制御した減圧アラズ

50

マ溶射法によって、それぞれ膜厚300 μmのY₂O₃溶射皮膜を形成した。

また、アルミニウム製試験片の片面に、大気プラズマ溶射法によって、Ni-20%Al合金のアンダーコートを、膜厚100 μm厚に施工したあと、前記Y₂O₃をトップコートとして300 μm厚に被覆したものを作製した。

その後、これらの試験片表面に形成されているY₂O₃溶射皮膜の気孔率、密着強さ、および熱衝撃試験(500°Cに維持されている電気炉内で20分加熱した後、炉外にて空冷の操作を1サイクルとして10サイクル繰り返す試験)を行った。なお、比較例として、Al₂O₃の溶射皮膜についても同じ条件、同じ工程で施工したものも供試した。

【0026】

表1は、このときの試験結果をまとめたものである。本発明に適合する皮膜は、試験片の表面にY₂O₃皮膜を直接被覆したもの(NO. 1, 3)をはじめ、アンダーコートを施した上にY₂O₃皮膜を形成したもの(NO. 2, 4)を含む全ての皮膜が良好な密着性と耐熱衝撃性を示し、Al₂O₃皮膜に比較しても全く遜色がない。とくに、減圧プラズマ溶射法で形成されたY₂O₃皮膜は、大気溶射法の皮膜に比較して気孔率が少ないので、良好な耐食性も期待できる。

10

【0027】

【表1】

No.	溶射法	皮膜の構成		気孔率 (%)	密着強さ (MPa)	熱衝撃試験 外観目視	備考
		アンダーコート	トップコート				
1	大気 プラズマ	なし	Y ₂ O ₃	5 ~ 9	35 ~ 38	剥離なし	実施例
2		Ni-20Al	Y ₂ O ₃	6 ~ 8	38 ~ 41	剥離なし	
3	減圧 プラズマ	なし	Y ₂ O ₃	0.2 ~ 3	40 ~ 41	剥離なし	実施例
4		Ni-20Al	Y ₂ O ₃	0.3 ~ 4	40 ~ 44	剥離なし	
5	大気 プラズマ	なし	Al ₂ O ₃	8 ~ 12	38 ~ 42	剥離なし	比較例
6		Ni-20Al	Al ₂ O ₃	9 ~ 12	35 ~ 44	剥離なし	
7	減圧 プラズマ	なし	Al ₂ O ₃	0.5 ~ 5	38 ~ 44	剥離なし	比較例
8		Ni-20Al	Al ₂ O ₃	0.6 ~ 7	39 ~ 43	剥離なし	

20

(備考)

- (1) 皮膜厚さ：アンダーコート100 μm、トップコート300 μm
- (2) 密着強さはJIS H8666セラミック溶射皮膜試験方法規定の密着強さ試験法による。
- (3) 熱衝撃試験：500°C × 20min → 室温(空冷) 繰り返し10回後の外観観察

30

【0028】

実施例2

40

この実施例では、50 mm × 100 mm × 5 mm厚のアルミニウム製基材を用いて、表2に示すような表面処理を施した後、それぞれの基材から寸法20 mm × 20 mm × 5 mmの試験片を切り出し、さらに表面処理面が10 mm × 10 mmの範囲が露出するように他の部分をマスクし、下記条件にて20時間照射して、プラズマエロージョンによる損傷量を測定厚さとして求めた。

(1) ガス雰囲気と流量条件

CF₄, Ar, O₂の混合ガスを下記条件の雰囲気とした。

$$CF_4 / Ar / O_2 = 100 / 1000 / 10 \quad (1\text{分間当たりの流量 } cm^3)$$

(2) プラズマ照射出力

高周波電力：1300 W

50

圧力 : 133.3 Pa

【0029】

その試験結果を表2に示した。この表2に示す結果から明らかなように、比較例の現行技術による陽極酸化皮膜（No. 8）をはじめ、B₄C 溶射皮膜（No. 10）は、いずれもアラズマエロージョンによる損傷量が大きく、実用的でないことがうかがえる。ただ、比較例においても Al₂O₃ 溶射皮膜（No. 9）は比較的良好な耐アラズマエロージョン性を示した。

これに対し、本発明で用いられる Y₂O₃ 溶射皮膜は、極めて優れた耐アラズマエロージョン性を發揮し、八口ケン化合物を含む雰囲気下においても良好な性能を維持することが認められた。

10

【0030】

【表2】

No.	溶射法	表面処理法	アンダーコートの有無	エロージョン損失深さ(μm)	備考
1	Y ₂ O ₃ (99.9 %)	溶 射	有	6.2	実施例
2			無	6.1	
3	Y ₂ O ₃ (99.8 %)	溶 射	有	7.6	実施例
4			無	7.2	
5	Y ₂ O ₃ (99.5 %)	溶 射	有	6.5	実施例
6			無	6.3	
7	Y ₂ O ₃ (99.9 %)	PVD	無	6.6	比較例
8	Al ₂ O ₃	陽極酸化	無	39.5	
9	Al ₂ O ₃	溶 射	有	8.1	
10	B ₄ C	溶 射	有	28.0	
11	石英	—	無	39.0	

（備考）

- (1) 溶射は大気プラズマ溶射法を用い、アンダーコートの膜厚80 μm Y₂O₃, Al₂O₃などのトップコートの膜厚は 200 μm に成膜
- (2) アンダーコートの材質は 80%Ni-20%Al
- (3) 陽極酸化は JIS H8601規定のAA25に準じて成膜させたものである。

20

30

40

【0031】

実施例3

この実施例では、幅50mm×長さ100 mm×厚5mmのアルミニウム製基材上に、アンダーコートとして80%Ni-20%Alを80 μm、中間層として Al₂O₃、または Al₂O₃ 50vol% / Y₂O₃ 50vol% の混合物を 100 μm、その上に Y₂O₃ を 200 μm 厚に、それぞれ大気アラズマ溶射法によって成膜した後、実施例2の条件でアラズマエロージョン試験を実施した。

その結果、本発明例は、最表層部（トップコート）に Y₂O₃ 溶射皮膜を形成している限り、中間層として Al₂O₃、Al₂O₃ / Y₂O₃ 混合物層を配設しても、耐アラズマエロージョン性には影響を受けず、20時間の照射で 6.1~7.5 μm の

50

消失が認められたに過ぎず、多層構造皮膜でも十分な性能を発揮することが認められた。

【0032】

実施例4

この実施例では、現行のアルミニウム製基材を陽極酸化（アルマイト処理）した試験片と、該基材上にアンダーコートとして80%Ni-20%Alの合金皮膜を100μm厚に被覆し、その上にトップコートとしてY₂O₃皮膜を250μm、それぞれプラズマ溶射法によって形成した試験片を用いて、下記条件でフラズマエッティングを行い、エッティングによって削られて飛散するパーティクル粒子の数は同じチャンバー内に静置した直径8インチのシリコンウエハーの表面に付着する粒子数によって比較した。なお、付着する粒子数は表面検査装置によって調査し、概ね粒径0.2μm以上の粒子を対象にして行った。10

（1）ガス雰囲気と流量条件

CHF₃、O₂、Arをそれぞれ下記のような混合比で流通した。

CHF₃/O₂/Ar=80/100/160（1分間当たりの流量cm³）

（2）フラズマ照射出力

高周波電力：1800W

圧力：4Pa

温度：60℃

【0033】

この実験の結果、陽極酸化（アルマイト膜）した試験片では、フラズマ照射17.5時間後、一般的なチャンバー内のパーティクル管理値の30個を超え25時間後では150個以上となつた。このパーティクルの組成は、Al、Fからなるものであった。これに対し、本発明に適合するY₂O₃溶射皮膜では、70時間照射後になって、やっと管理限界値を超える程度にとどまり、優れた耐フラズマエロージョン性を示した。20

【0034】

【発明の効果】

以上説明したように本発明によれば、金属基材の上に、Y₂O₃溶射皮膜を直接形成するか、金属質のアンダーコートを施工した上もしくはそのアンダーコートの上にAl₂O₃やAl₂O₃+Y₂O₃を施工した上に、Y₂O₃溶射皮膜を形成した部材では、八口ケン化合物を含むガス雰囲気下におけるフラズマエロージョン作用を受ける環境下で使用した場合に、優れた抵抗性を示す。このため、長時間にわたってフラズマエッティング作業を続けても、チャンバー内はパーティクルによる汚染が少なく、高品質製品を効率よく生産することが可能となる。また、チャンバー内のパーティクルによる汚染速度が遅くなるため、清浄化作業の間隔が長くなり、生産性の向上が期待でき、フラズマ処理容器内部材として極めて有効である。30

フロントページの続き

(51)Int.Cl.⁷

H 01 L 21/81

F I

H 01 L 21/802 101G

テーマコード（参考）

(72)発明者 竹内 純一

兵庫県神戸市東灘区本庄町2丁目5番12号706

(72)発明者 口 龍哉

神奈川県横浜市緑区東本郷4丁目13番12号 ピーライン6 102号室

(72)発明者 長山 将之

東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレクトロン株式会社内

(72)発明者 三橋 康至

東京都港区赤坂五丁目3番6号 TBS放送センター 東京エレクトロン株式会社内

Fターム(参考) 4G075 AA24 AA30 AA53 BC01 BC04 BC06 CA47 CA57 FB02

4K031 AA04 AB02 AB03 AB04 BA03 CB21 CB42 CB43

4K044 AA06 AB10 BA06 BA10 BA12 BA13 BB03 BB04 BC02 CA11

5F004 AA13 AA16 BB29 BB30 DA11 DA16 DA17 DA23 DA26 DB00

DB18

5F045 AA08 AC02 AC03 BB15 EB03 EC05 EH08 EM09