MATH230 Week 2 Worksheet - Basics of Sets

The following problems are on notation and single-set properties. For 1-3, convert to set-builder notation. For 4-6, roster notation. For 7-8, determine true or false; A is an arbitrary set.

- 1: The set of football teams in the NFL
- **2:** {3,4,5,6,7}
- **3:** {1,3,5,7,...,99}
- 4: $\{x \mid x \text{ is a digit in the number } 352646\}$
- **5:** $\{x \mid x \text{ is a letter in HIPPOPOTAMUS}\}$
- **6:** $\{x \mid 2 x = 4 \text{ and } x \text{ is an integer}\}$
- **7a:** $\{a, b, c\} = \{b, c, a\}, 7b: A \in A, 7c: 0 \in \emptyset, 7d: \emptyset \in \emptyset, 7e: 0 = \emptyset, 7f: \{\emptyset\} = \emptyset$
- **8a:** $\{a,b\} \in \{a,b,c\}$, **8b:** $\{a,b\} \subseteq \{a,b,c\}$, **8c:** $\emptyset \subseteq A$, **8d:** $\{a,b\} \subseteq \{a,\{b,a\}\}$
- 9: List all subsets of {1,2,3,4}. How many are there? How many are proper?
- 10: Determine all pairs of sets among \emptyset , $\{1\}$, $\{1,2\}$, $\{1,a\}$, $\{a,b,2\}$ which are disjoint.

The following problems cover interactions between multiple sets.

- 11: Simplify the following: (A^c)^c n A, ((A^c n B^c)^c u B)^c, (A u B^c u C)^c u (C^c u C)^c
- **12:** Let $U = \{1, 2, 3, 4, 5, 6, 7\}$, $A = \{1, 2, 3\}$, $B = \{3, 4, 5, 6\}$, and $C = \{2, 3, 4\}$. Find the following sets: A^c , $A \cup B$, $B \cap C$, $(A \cup B) \cap C$, $(A \cap B) \cup C$, $A^c \cap (B \cup C)^c$.
- **13:** If |A| = 4, |B| = 5, and $|A \cup B| = 9$, find $|A \cap B|$.
- **14:** Let A, B be subsets of a universal set U and suppose |U| = 100, |A| = 60, |B| = 40, and $|A \cap B| = 20$. Compute $|A \cup B|$, $|A \cap B|$, $|A \cap B|$.

If you want extra practice, here are some harder problems

- **15:** How many subsets does $\{a, b, c, ..., x, y, z\}$ have?
- **16:** Prove $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- 17: Find exactly when $|A \cup B \cup C| = |A| + |B| + |C|$ is true
- **18:** Expand out, then simplify (x-a)(x-b)(x-c)...(x-z)

Even more problems. If you have nothing better to do, try 20.

- **19:** If |A| = |B| = 12, $|A \cap B| = |A \cap C| = 5$, $|B \cap C| = 4$, $|A \cap B \cap C| = 2$, $|A \cap B \cap C| = 25$, find |C|.
- **20:** $A_1, ..., A_n \subseteq \{1, 2, ..., 420\}$ are n subsets with $|A_i|$ odd and $|A_i|$ n $A_j|$ even for any $i \neq j$. What's the largest value of n that's possible?