Primeros						
Regla	Paso 1	Paso 2	Paso 3	Paso 4		
S' → S			x, y	X, y, z		
$S \rightarrow AwS$		x, y	x, y, z			
S→xS	Х					
$A \rightarrow BC$		y, z				
$A \rightarrow y$	У					
$B \rightarrow zB$	Z					
$B \rightarrow z$	Z					
$C \rightarrow \epsilon$	€					
$C \rightarrow y$	€, y					
$C \rightarrow D$		€, y, z				
$D\!\to \epsilon$	€					
$D \rightarrow zD$	€, Z					
	uientes	Γ				
Regla	Paso 1	Paso 2				
S' → S	S': \$ S: \$					
S → AwS	A: w					
S→xS						
$A \rightarrow BC$	B: y, z, w C: w					
$A \rightarrow y$						
$B \rightarrow zB$						
$B \rightarrow z$						
$C \rightarrow \epsilon$						
$C \rightarrow y$						
$C \rightarrow D$	D: w					
$D \rightarrow \epsilon$						
D→ zD						

Gramática	Prim	eros	Sigui	entes	Es Lخ	L(1)?
$S' \rightarrow S$ $S \rightarrow AwS$ $S \rightarrow xS$ $A \rightarrow BC$ $A \rightarrow y$ $B \rightarrow zB$ $B \rightarrow z$ $C \rightarrow \epsilon$ $C \rightarrow y$ $C \rightarrow D$ $D \rightarrow \epsilon$ $D \rightarrow zD$	Primeros(S Primeros(A Primeros(E Primeros(C Primeros(C	S)={x, y, z} A)={y, z} B)={z}	Siguientes(S')={\$} Siguientes(S)={\$} Siguientes(A)={w} Siguientes(B)={y, z, w} Siguientes(C)={w} Siguientes(D)={w}		No es LL(1), porque en la regla B → zB z, Primeros(zB) ∩ Primeros(z) ≠ ø	
	w	У	Z	X	\$	
S'		$S' \rightarrow S$	$S' \rightarrow S$	$S' \to S$	synch	
S		$S \rightarrow AwS$	S → AwS	$S \rightarrow xS$	synch	
Α	synch	$A \rightarrow y$	$A \rightarrow BC$			
В	synch	synch	$B \rightarrow zB$ $B \rightarrow z$ synch			
С	$C \to \epsilon$	$C \rightarrow y$	$C \rightarrow D$		$C \rightarrow \epsilon$	
D	$D \to \epsilon$		D→zD		$D \rightarrow \epsilon$	

	Ejercicio	0						
Se cambió en la regla T a ID por type para que acepte int y float y funcione la cadena								
	Gramática	Prim	eros	Sigui	entes			

$S \rightarrow LB A RB$ $A \rightarrow T ID; A$ $A \rightarrow \epsilon$ $T \rightarrow type T'$ $T' \rightarrow {}^{*}T'$ $T' \rightarrow \epsilon$ $type \rightarrow int$ $type \rightarrow float$	Primero int, f Primero flo Primeros Primeros	$eros(S)=\{LB\}$ Siguiente $eros(A)=\{\epsilon,\ t,\ float\}$ Siguiente $eros(T)=\{int,\ float\}$ Siguiente $eros(T')=\{\epsilon,\ ^*\}$ ros $(type)=\{i,\ float\}$ Siguiente $\{^*,\ float\}$ Siguiente $\{^*,\ float\}$		es(A)={R }} es(T)={ID} es(T')={ID } es(type)=				
	LB	RB	ID	int	float	;	*	\$
s	S → LB A RB							synch
Α		$A \rightarrow \epsilon$		$A \rightarrow T$ ID; A	$A \rightarrow T$ ID; A			
Т			synch	T → type T'	T → type T'			
T'			$T' \rightarrow \epsilon$				$T' \rightarrow T'$	
type			synch	type → int	type → float		synch	

Stack	Entrada	Acción	
\$ S	{ int x; float *y; } \$	S → LB A RB	
\$ RB A LB	{ int x; float *y; } \$	match (LB)	
\$ RB A	int x; float *y; } \$	A → T ID; A	
\$ RB A ; ID T	int x; float *y; } \$	T → type T'	
\$ RB A ; ID T' type	int x; float *y; } \$	match (type)	
\$ RB A ; ID T'	x; float *y; } \$	$T' \rightarrow \epsilon$	
\$ RB A ; ID	x; float *y; } \$	match (ID)	
\$ RB A ;	; float *y; } \$	match (;)	
\$ RB A	float *y; } \$	$A \rightarrow T ID; A$	
\$ RB A ; ID T	float *y; } \$	T → type T'	
\$ RB A ; ID T' type	float *y; } \$	match (type)	
\$ RB A ; ID T'	*y; } \$	$T' \rightarrow {}^*T'$	
\$ RB A ; ID T' *	*y; } \$	match (*)	
\$ RB A ; ID T'	y; } \$	$T' \rightarrow \epsilon$	

\$ RB A ; ID	y; } \$	match (ID)
\$ RB A ;	;}\$	match (;)
\$ RB A	}\$	$A \rightarrow \epsilon$
\$ RB	}\$	match (RB)
\$	\$	Aceptar

Un lexer consiste en la siguiente gramática para obtener un token en particular

$$S \rightarrow b X$$

$$X \rightarrow 0 X$$

$$X \rightarrow 1 X$$

$$X \rightarrow 0 \mid 1$$

a) Describa el token aceptado por esta gramática y su expresión regular

Acepta cadenas que empiezan con b y tiene una secuencia de 0s y 1s a la derecha. Son números en binario.

Expresión regular: b (0+1)+

b) Construya el autómata que representa esta gramática, incluyendo por lo menos un estado de error

c) Construya el árbol gramatical de análisis del lexema boo10

 $A \rightarrow ([B])$

 $B \rightarrow \{+B\}$

 $B \rightarrow num$

a) Reescriba la regla de A en formato BNF

$$A \rightarrow (B) \mid ()$$

Puesto que [] indica que es opcional, tenemos dos opciones para la gramática, incluir la B o no incluirla.

b) Reescriba la regla de B en formato BNF, tal que + es asociativa por la izquierda.

Se cambió la regla para poder ser transformada correctamente. Esta nueva regla asegura la derivación de cadenas num(+num)*.

B →num {+num}

Se realiza la recursividad por la izquierda para que haya asociatividad para ese lado.

 $B \rightarrow B + num \mid num$

Ejercicio 5

Un lenguaje experimental para mudos consiste en tornar en auditivas palabras de la forma:

p id dig

donde, **id** son palabras consistentes de letras del alfabeto español. La palabra debe estar precedida por una **'p'**, y sucedidas por un dígito(dig). Palabras en este formato, harán que el computador emita un sonido particular por cada palabra leída durante **dig** segundos.

Se asume que id es solo una palabra, es decir, entre p y dig solo habrá un id.

a) Implemente el lexer correspondiente en un pseudocodigo:

La función lexer solo detecta errores léxicos leyendo la cadena y convierte los encontrados a TOKENS. Se asume que TOKEN <token, atributo> transforma la cadena al token correspondiente.

funcion lexer:

INPUT: string w

```
entero i=0
      mientras i < tamaño de w
             si w[i] == ' ' entonces
                   i += 1
             si w[i] == 'p' entonces
                   TOKEN < p, w[i])>
                   i += 1
             si w[i] está en el alfabeto
                   entero inicio = i
                    mientras w[i] está en el alfabeto
                          i += 1
                   TOKEN <id, w[inicio, i]>
             si w[i] es un entero entonces
                   entero inicio = i
                   i += 1
                   mientras w[i] es entero
                    TOKEN <dig, w[inicio, i]>
             de lo contrario
                   TOKEN <ERROR, w[i]>
                   i +=1
fin lexer:
b) Implemente el parser en un pseudocódigo. Este debe permitir construir
oraciones de un máximo de 3 palabras.
El parser lee los TOKENS puestos en la función lexer.
get_next_token() pasa al siguiente token
funcion parser:
      entero palabras = 0
      mientras token = get_next_token()
             si token es tipo p
                   token = get_next_token()
                    si token es tipo id
                          token = get_next_token()
                          si token es tipo dig
                                 token = get_next_token()
                          de lo contrario genere un error en la secuencia
```

de lo contrario genere un error en la secuencia

de lo contrario genere un error en la secuencia

fin **parser**;

c) Llame al parser desde el main() y diseñe la interacción entre lexer y parser en este lenguaje.

```
definir secuencia_tokens
función main:
    string w = input
    // el lexer escribe en la secuencia de tokens
    lexer(w)
    // el parser analiza la secuencia_tokens
    parser()
    escribir errores encontrados en la secuencia_tokens
fin main;
```

d) Describa cómo funciona el analizador con un ejemplo