Лабораторная работа No1.

ОПРЕДЕЛЕНИЕ ТЕПЛОТЫ РАСТВОРЕНИЯ НЕИЗВЕСТНОЙ СОЛИ.

Для большинства физико-химических и технологических расчетов необходимо знать теплоемкости веществ, участвующих в процессе, тепловые эффекты процессов растворения, фазовых превращений и химических реакций. Эти величины можно определить экспериментально. При температурах, близких к комнатной (20-50°C), широко применяется калориметрический метод.

Цель работы:

- 1.Определить суммарную теплоемкость системы (постоянную калориметрической системы).
- 2.Определить интегральную теплоту растворения неизвестной соли.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Теплота растворения

Процесс растворения твердого соединения (соли) с ионной кристаллической решеткой в воде или каком-либо другом растворителе можно разбить на две стадии:

- 1) разрушение кристаллической решетки и удаление ионов этой соли на бесконечное расстояние друг от друга или на расстояние, определяемое объемом раствора;
 - 2) взаимодействие образовавшихся ионов с молекулами растворителя.

Изменение энтальпии при разрушении кристаллической решетки и удалении ионов соли на бесконечное расстояние друг от друга носит название энергия решетки $\Delta H_{\text{реш}}$ и является эндотермической величиной $\Delta H_{\text{реш}} > 0$.

Изменение энтальпии при взаимодействии положительных и отрицательных ионов с молекулами растворителя называется *теплотой сольватации* (гидратации) ΔH^{\pm}_{s} и является экзотермической величиной ΔH^{\pm}_{s} <0.

Экспериментально наблюдаемые теплоты растворения являются сравнительно небольшими величинами, имеют порядок единиц и десятков килоджоулей, и представляют собой алгебраическую сумму энергии решетки и теплоты сольватации, что объясняется следующей схемой:

Рис. 1.1. Схема процесса растворения соли

Учитывая, что изменение энтальпии не зависит от пути процесса, получаем:

$$\Delta H_0 = \Delta H_{\text{peiii}} + \Delta H_S^{\pm} \tag{1.1}$$

Где ΔH_0 - это первая интегральная теплота растворения.

Знак теплоты растворения может оказаться как положительным, так и отрицательным в зависимости от того, какое из двух слагаемых больше по абсолютной величине.

Под интегральной теплотой растворения соли ΔH_m понимают тепловой эффект, сопровождающий процесс растворения (при T=const) 1 моля (молярная) или 1 г (удельная) соли в данном количестве растворителя с образованием раствора моляльной концентрации m.

Зависимость интегральной теплоты растворения ΔH_m от моляльности m раствора приведена на рис.1.2. Значение ΔH_0 равно *первой интегральной теплоте растворения*; она равна тепловому эффекту при растворении 1 моля вещества в бесконечно большом количестве растворителя. Первая интегральная теплота растворения ΔH_0 определяется графической экстраполяцией ΔH_m к концентрации m=0. Отрезок ΔH_S соответствует *последней* или *полной интегральной теплоте растворения*, которая равна теплоте растворения моля вещества в таком количестве растворителя, чтобы образовался насыщенный раствор.

Для получения ΔH_0 достаточно взять 400 молей растворителя на 1моль растворяемой соли.

Прибавление воды к раствору также сопровождается тепловым эффектом - *тепловой разведения*. Чем больше разбавлен раствор, тем меньше теплота разведения. Пользуясь интегральными теплотами растворения, можно вычислить теплоты разведения.

Рис. 1.2. Зависимость интегральной теплоты растворения от концентрации раствора

Различают две теплоты разведения: интегральную и промежуточную.

Интегральной теплотой разведения называют тепловой эффект, наблюдающийся при разбавлении раствора, содержащего 1 моль растворенного вещества, до бесконечного разведения, то есть до m=0. Тогда:

$$\Delta H_{m1}^0 = \Delta H_0 - \Delta H_{m1} \tag{1.2}$$

Промежуточной теплотой разведения называют тепловой эффект, сопровождающий разбавление раствора, содержащего 1 моль растворенного вещества, от концентрации m2 до меньшей концентрации m1.Она равна разности соответствующих интегральных теплот растворения:

$$\Delta H_{m2}^{m1} = \Delta H_{m1} - \Delta H_{m2} \tag{1.3}$$

Тепловой эффект, который получается при концентрировании раствора от m1 до m2, называется промежуточной теплотой растворения:

$$\Delta H_{m1}^{m2} = \Delta H_{m2} - \Delta H_{m1} \tag{1.4}$$

Кроме интегральной величины, используются другие теплоты растворения.

Удельная теплота растворения - это тепловой эффект, сопровождающий растворение твердого вещества в жидкости и отнесенный к 1 г растворяемого вещества.

Молярная теплота растворения - это тепловой эффект, отнесенный к 1 моль растворяемого вещества.

Дифференциальная (или парциальная) теплота растворения — это тепловой эффект, сопровождающий процесс растворения 1 моль вещества в бесконечно большом количестве раствора заданной концентрации.

Интегральные теплоты растворения определяют экспериментально, а дифференциальные вычисляют по зависимости интегральной теплоты растворения от концентрации раствора.

Величина теплового эффекта процесса растворения зависит от концентрации полученного раствора, и для данной соли (вещества) можно получить ряд значений теплоты растворения, соответствующих различным концентрациям вещества.

Описание калориметрической системы

Тепловые эффекты определяются с помощью специального прибора – *калориметра*. Назначение его состоит в том, чтобы уловить по возможности все тепло, выделяемое системой в изучаемом процессе (если процесс экзотермический), или снабдить систему своим теплом (если процесс эндотермический). В обоих случаях изменяется температура калориметра.

В лабораторной практике наиболее часто используется калориметр с изотермической оболочкой, схематически изображенный на рис. 1.3.

Калориметр состоит из двух основных частей: калориметрической системы и изотермической оболочки 1. Оболочка должна обладать низкой теплопроводностью. Калориметрической системой называется совокупность тех частей калориметра, между которыми должно распределяться всё тепло, подлежащее измерению. В описанной конструкции калориметра (рис. 1.3) калориметрическая система включает:

- калориметрическую жидкость;
- калориметрический стакан, мешалку и термометр, погруженные в калориметрическую жидкость.

В калориметре установлен калориметрический стакан 1. Калориметр закрыт крышкой 4, в которой сделаны отверстия для воронки 6 и термометра 5. Для быстрого установления теплового равновесия между всеми частями калориметрической системы и для энергичного смешивания исследуемых веществ используют мешалку. Изменение температуры в ходе эксперимента определяют с помощью термометра.

Рис. 1.3. Схема калориметрической системы

Тепловой эффект процесса растворения соли в калориметрической системе определяется экспериментально по изменению температуры в калориметре

$$Q = (g_1 C_{P1} + g_1 C_{P2} + g_3 C_{P3} + g_4 C_{P4}) \cdot \Delta t \tag{1.5}$$

где

g₁ - масса воды, г;

 C_{P1} - теплоемкость воды, $(4,18 \ Дж/(г \cdot K));$

g2- масса стакана, г;

 C_{P2} - теплоемкость стакана, Дж/(Γ -К);

g₃- масса термометра, г;

 C_{P3} - теплоемкость термометра, Дж/(Γ ·К);

д4- масса мешалки, г;

 C_{P4} - теплоемкость мешалки, Дж/(Γ ·К).

Параметры уравнения (1.5), такие как масса и теплоемкость стакана, мешалки и термометра можно считать постоянными величинами в процессе эксперимента и объединить сумму их произведений в величину, называемую постоянной калориметра:

$$K = (g_1 C_{P2} + g_3 C_{P3} + g_4 C_{P4}) \cdot \Delta t \tag{1.6}$$

Тогда уравнение (1.5) может быть записано в виде:

$$Q = (K + g_1 C_{P1}) \cdot \Delta t \tag{1.7}$$

где К - постоянная калориметра или теплоемкость всех частей калориметра и вспомогательных устройств, участвующих в теплообмене,Дж/К;

 Δt - изменение температуры в процессе растворения, протекающего в условиях отсутствия теплообмена калориметра с окружающей средой.

Постоянную калориметра можно предварительно определить из отдельного эксперимента через тепловой эффект процесса растворения соли с известной теплотой растворения (например, KCl или NH₄Cl) из выражения:

$$Q_{KCI} = (K + g_1 C_{P1}) \cdot \Delta t_{KCI} \tag{1.8}$$

$$K = \frac{Q_{KCl}}{\Delta t_{KCl}} - g_1 C_{P1} \tag{1.9}$$

где

 Q_{KCl} - количество теплоты, которое поглощается при растворении определенного количества KCl (данная соль растворяется с понижением температуры);

∆t_{КС}1 - изменение температуры при растворении навески соли КС1.

Количество теплоты при растворении неизвестной соли определяется по уравнению:

$$Q_X = (K + g_1 C_{P1}) \cdot \Delta t_X \tag{1.10}$$

где Q_x - количество теплоты, которое выделяется или поглощается при растворении определенного количества неизвестной соли;

 Δt_x - изменение температуры при растворении данной навески неизвестной соли.

Рассчитав по уравнению (1.10) количество теплоты, можно определить удельную теплоту растворения неизвестной соли:

$$q_x = \frac{Q_x}{g_x} \tag{1.11}$$

где g_x- величина навески неизвестной соли, г.

Для того чтобы определить какая соль была взята в качестве неизвестной, нужно полученную удельную теплоту растворения преобразовать в интегральную теплоту растворения ΔH_m и сравнить её со справочной величиной.

Методика определения изменения температуры

Вследствие некоторой разности температуры воздуха и калориметра между ними происходит теплообмен. Незначительное количество тепла выделяется при трении мешалки о калориметрическую жидкость.

В связи с этим калориметр может и нагреваться, и охлаждаться. Он нагревается, если температура воздуха выше температуры калориметрической жидкости, и охлаждается при противоположном соотношении температур. Всё это вызывает

искажение действительного изменения температуры во время калориметрического опыта. Сравнительно редко температура калориметра остается постоянной. Чтобы ввести поправки, учитывающие теплообмен и позволяющие определить действительное изменение температуры, весь калориметрический опыт делят на три периода (рис. 1.4):

- 1) предварительный период, продолжающийся не менее 7 минут;
- 2) главный период это время протекания основного процесса растворения;
- 3) заключительный период длительностью также не менее 7 минут.

Первый период – предварительный ab дает представление о тепловом обмене калориметрической системы с окружающей средой, если эта система ранее не пришла в тепловое равновесие с ней. Во время этого периода необходимо сделать 7 отсчетов температуры через каждую ми нуту. Можно проводить измерения чаще, например, через 30 секунд.

После семи измерений температуры при установившемся равномерном изменении температуры в калориметр вводят реагирующее вещество (соль). Момент начала изучаемого процесса, то есть смешение исследуемых веществ и резкое изменение температуры, и является концом предварительного и началом главного периода.

В течение главного периода bd изменяется температура жидкости в калориметре. Для этого периода число отсчетов температуры нельзя задать заранее, так как оно зависит от скорости протекания процесса растворения соли. Для большинства солей он длится 0,5–2 минуты.

Третий период — заключительный de дает представление о тепловом обмене калориметрической системы после достижения максимальной или минимальной температуры калориметрической жидкости. Третий период является продолжением второго и требует не менее 7 отсчетов через каждую минуту.

Во время протекания процесса растворения соли также наблюдается теплообмен между калориметром и окружающей средой. Действительную величину изменения температуры Δt во время калориметрического опыта (с учетом поправки на теплообмен) определяют графически. Для этого на миллиметровой бумаге строят график, аналогичный зависимости, представленной на рис. 1.4. Если в предварительном и заключительном периоде установился стационарный теплообмен, то на графике каждому из этих периодов будет отвечать прямая линия, наклон которой по отношению к оси абсцисс зависит от скорости теплообмена.

Рис. 1.4. Графическое определение изменения температуры Δt

Прямые ab и de экстраполируют (продолжают) к середине диаграммы. Время главного периода BD делят пополам и из полученной точки C восстанавливают перпендикуляр до пересечения с обеими экстраполированными прямыми. Отрезок перпендикуляра между этими прямыми cc, выраженный в градусах, даёт искомое действительное изменение температуры Δt . Точность определения Δt будет тем выше, чем меньше продолжается главный период.

На рис. 1.4 приведен график для эндотермического процесса растворения соли.

Изменение температуры калориметрической жидкости обычно не превышает $2-3^{\circ}$. Это изменение должно быть измерено с точностью не менее чем 0.01° . В работах, требующих измерения разности температур с достаточной точностью (когда абсолютное значение температуры не имеет значения), применяют термометр с произвольной шкалой, предложенный Бекманом.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ Оборудование и реактивы

Для выполнения работы требуются следующее оборудование и реактивы:

- 1. Калориметр.
- 2. Пластиковый стакан на 250 мл.
- 3. Мерный цилиндр.
- 4. Мешалка.
- 5. Термометр.
- 6. Стакан с точно взвешенной навеской известной соли (KCl).
- 7. Стакан с точно взвешенной навеской неизвестной соли.
- 8. Дистиллированная вода.

Методика выполнения работы

Выполнение работы начинается с определения постоянной калориметрической системы.

Первый опыт с известной солью.

На аналитических весах взвешивают в стаканчике 2 г. известной соли (КСІ). Затем мерным цилиндром отмеряют 200 мл дистиллированной воды, выливают в пластиковый стакан, который устанавливают в калориметре. Затем опускают в стакан с водой мешалку и закрывают крышкой. При этом необходимо убедиться, что термометр не касается дна стакана, а мешалка во время работы не задевает за термометр во избежание его поломки. По окончании подготовительных операций начинают эксперимент по определению изменения температуры, как описано в разделе «Методика определения изменения температуры». Для этого начинают с помощью мешалки непрерывно и равномерно перемешивать воду в стакане и через каждую минуту записывают показания термометра. Это так называемый подготовительный период, продолжающийся не менее 7 минут. За это время устанавливается равномерный ход температуры, когда за каждую минуту изменения температуры станут одинаковыми или почти одинаковыми. Если во время калориметрического опыта очередной отсчет показания термометра был пропущен, то в таблице с данными следует сделать прочерк и записать следующий отсчет под своим порядковым номером.

По истечении 7–8 минут равномерного изменения температуры высыпают соль в воду, продолжая перемешивать раствор. С этого момента начинается главный период опыта. Во время главного периода также продолжают регистрацию и запись температуры. (в течении первой минуты раз в 10 сек, затем раз в 30 сек)

Конец главного периода и начало заключительного периода находят по вновь установившемуся равномерному ходу температуры. Во время заключительного периода продолжают регистрировать и записывать температуру также через каждую минуту в течение не менее, чем 7 минут. После окончания опыта осторожно снимают крышку, вынимают мешалку и выливают раствор из стакана.

Опыт повторяют еще четыре раза с 4,6, 8 и 10 гр. соли КСІ.

После проведения эксперимента стакан и мешалку промывают дистиллированной водой.

Определение действительного изменения температуры при растворении соли проводят графически.

Для этого по полученным в эксперименте данным строят график на миллиметровой бумаге в координатах: показания термометра - время (рис.1.4). Рекомендуемый масштаб при построении графика: 1 градус = 10 см, 1мин = 5 мм. Если опыт проведен тщательно, то изменения температуры до начала растворения соли и после него изображаются прямыми линиями. Таким образом, определяют Δt для каждого опыта при растворении известной соли.

Второй опыт с неизвестной солью.

Для определения теплоты растворения неизвестной соли проводят эксперимент по той же методике. Взвешивают навеску неизвестной соли 4,00 г. В стакан наливают 200 мл дистиллированной воды. Объем воды отмеряют с помощью мерного цилиндра. Стакан с водой устанавливают в калориметр и закрывают калориметр крышкой. При постоянном равномерном перемешивании раствора регистрируют и записывают показания термометра через каждую минуту в течении как минимум 7-8 минут до высыпания соли (подготовительный период) и 7-8 минут после высыпания соли. По полученным данным на миллиметровой бумаге строят график в координатах температура - время, определяют Δt_x при растворении неизвестной соли.

Последовательность проведения расчетов

Количество теплоты, выделяющееся при растворении известной соли КСІ, можно определить через удельную теплоту растворения или через интегральную теплоту растворения:

$$Q_{KCl} = q_{KCl} \cdot g_{KCl} = n_{KCl} \cdot \Delta H_{mKCl} \tag{1.12}$$

где

qксі- удельная теплота растворения известной соли, Дж/г; gксі- масса известной соли, г; n_{KCl} - количество молей известной соли, взятой для растворения, моль;

 ΔH_{mKCl} - интегральная теплота растворения, Дж/моль.

Расчет проводится на основе интегральной теплоты растворения ΔH_{mKCl} , которая зависит от моляльной концентрации полученного раствора и приводится в справочной литературе. Значения интегральных теплот растворения некоторых солей в воде приведены ниже в табл. 1.1.

Расчет величины Qксі выполняется следующим образом:

1) находим количество молей КС1:

$$n_{KCl} = \frac{g_{KCl}}{M_{KCl}}$$

2) Вычисляем моляльную концентрацию соли в растворе по формуле:
$$m_{KCl} = \frac{n_{KCl} \cdot 1000}{V_{\rm H2O}} \tag{1.13}$$

где V_{H2O} - объем взятой для эксперимента дистиллированной воды, мл.

- 3) по величине m_{KCl} находим в справочной таблице 1.2 значение ΔH_{mKCl} в кДж/моль;
- 4) подставляем ΔH_{mKCl} (Дж/моль) в формулу (1.12) и рассчитываем величину Оксі в Дж.

На основании экспериментальных данных, полученных в результате первого опыта с известной солью, и графического определения значения Δt_{KCI} рассчитываем постоянную калориметра по уравнению:

$$K = \frac{Q_{KCL}}{\Delta t_{KCl}} - g_1 C_{P1} \tag{1.14}$$

Проводим аналогичные расчеты для каждого эксперимента и на основании 5 опытов вычисляют Кср.

После второго эксперимента с неизвестной солью и графического определения Δt_x рассчитываем теплоту растворения неизвестной соли Q_x по формуле:

$$Q_X = (K + g_1 C_{P1}) \cdot \Delta t_X \tag{1.15}$$

Используя полученную величину теплового эффекта растворения неизвестной соли

 Q_{x} , вычисляем удельную теплоту растворения неизвестной соли:

$$q_{x} = \frac{Q_{x}}{g_{x}} \tag{1.16}$$

Название неизвестной соли студент узнаёт у преподавателя. Рассчитываем интегральную теплоту растворения этой соли ΔH_{mx} в Дж/моль:

$$\Delta H_{mx} = q_x \cdot M_x \tag{1.17}$$

Затем определяем моляльную концентрацию водного раствора неизвестной соли и интегральную теплоту её растворения по таблице 1.2 следующим образом:

1) находим количество моль неизвестной соли

$$n_{x} = \frac{g_{x}}{M_{x}}$$

2) вычисляем моляльную концентрацию (моль/1000г H2O) этой соли в растворе по формуле:

$$m_{x} = \frac{n_{x} \cdot 1000}{V_{\text{H2O}}}$$

3) по величине m_x находим в справочной таблице 1.2 значение $\Delta H_{mx}^{\text{таб}}$ в кДж/моль.

Проводим сравнение экспериментально полученной интегральной теплоты растворения неизвестной соли ΔH mx со справочной величиной $\Delta H_{mx}^{\rm Ta6}$. Рассчитываем относительную погрешность определения теплоты растворения неизвестной соли по формуле:

$$\Delta = \frac{\left|\Delta H_{mx}^{\text{Ta6}} - \Delta H_{mx}\right|}{\Delta H_{mx}^{\text{Ta6}}} \cdot 100\%$$

Интегральная теплота растворения солей в воде

интегральная теплота растворения солей в воое						
т, моли со-	ΔH_m , кДж/моль (при 25°C)				m, моли	ΔH_m ,
ли на 1 кг					соли на	кДж/моль
H_2O					1 кг	(при 18°C)
	KCl	NaCl	LiCl	NH ₄ Cl	H_2O	NaNO ₃
0,00	17,23	3,89	-37,13	14,73	0,00	1
0,01	17,39	4,06	-36,97	14,85	0,0087	21,26
0,02	17,44	4,10	-36,86	14,94	0,0174	21,28
0,05	17,51	4,18	-36,71	15,02	0,035	21,27
0,1	17,55	4,25	-36,48	15,10	0,07	21,21
0,2	17,57	4,27	-36,34	15,19	0,14	21,08
0,3	17,55	4,25	-36,19	15,23	0,28	1
0,4	17,50	4,16	-36,07	15,27	0,56	20,11
0,5	17,43	4,10	-35,98	15,27	1,11	18,96
1,0	17,28	3,79	-35,65	15,31	2,22	17,12
2,0	16,72	3,18	-35,15	15,27	2,78	16,39
3,0	16,17	2,66	-34,52	15,23	5,56	13,94
4,0	15,75	2,26	-33,89	15,19	11,11	11,26
5,0		1,99	-33,18	15,15		
6,0		1,88	-32,43	15,10		
7,0			-31,63	15,02		
Насыщеный	15,45	1,95	-19,35	15,02		
раствор						
$m_{ m hac hill}$	4,82	6,15	19,9	7,35		

Вопросы для контроля и самоконтроля

- 1. Из каких стадий состоит процесс растворения соли? С какими тепловыми эффектами протекают эти стадии?
- 2. Что называется интегральной теплотой растворения?
- 3. Что называется дифференциальной теплотой растворения?
- 4. В чём различие интегральной и дифференциальной теплоты растворения?
- 5. Какие соли растворяются с понижением температуры, а какие с повышением температуры? От чего это зависит?
- 6. Из каких элементов состоит калориметрическая система?