Lista 01 – Linguagem e Técnica de Programação

1- A partir de fluxograma ao lado. Pede-se:

a) O teste de mesa para os valores de

i.A=21, B=34 e C=3 ii.A=10, B =2 e C = 20 iii.A=3, B=20 e C=54

Processos	E_nro_1	E_nro_2	E_nro_3	Saída
1	{21}			
2	21	{34}		
3	21	21 34		
13	21	34	3	{3}
14	21	34	3	{21}
15	21	34	3	{34}

Processos	E_nro_1	E_nro_2 E_nro_3		Saída
1	{10}			
2	10 {2}			
3	10	2	{20}	
10	10	2 20		{2}
11	10	2	20	{10}
12	2 10 2		20	{20}

Processos	E_nro_1	E_nro_2 E_nro_3		Saída		
1	{3}					
2	3	{20}				
3	3	20	{54}			
19	3	20	54	{3}		
20	3	20	54	{20}		
21	21 3		3 20		54	{54}

b) Código em C.

```
#include <stdio.h>
int main(void) {
   //Declaração de variaveis
   int e_nro_1, e_nro_2, e_nro_3;
   //Entrada de valores
   printf("Entre com o valor do número 1: ");
```

```
scanf("%i", &e_nro_1);
 printf("Entre com o valor do número 2: ");
 scanf("%i", &e_nro_2);
 printf("Entre com o valor do número 3: ");
 scanf("%i", &e_nro_3);
if (e nro 1 == e nro 2 && e nro 2 == e nro 3){
  printf("Os valores são iguais não existe ordem crescente.\n");
if (e_nro_1 > e_nro_2){
  if (e_nro_2 > e_nro_3){
    printf("A ordem crescente dos valores é: %i, %i, %i\n", e_nro_3, e_nro_2, e_nro_1);
  //Processo 5
  }else if (e_nro_1 > e_nro_3){
    printf("A ordem crescente dos valores é: %i, %i, %i\n", e_nro_2, e_nro_3, e_nro_1);
   //Processo 6
  }else
    printf("A ordem crescente dos valores é: %i, %i, %i\n", e_nro_2, e_nro_1, e_nro_3);
 //Processo7
 }else if(e_nro_1 > e_nro_3){
  printf("A ordem crescente dos valores é: %i, %i, %i\n", e_nro_3, e_nro_1, e_nro_2);
 //Processo 8
 }else if (e_nro_2 > e_nro_3){
  printf("A ordem crescente dos valores é: %i, %i, %i\n", e_nro_1, e_nro_3, e_nro_2);
}else{
   printf("A ordem crescente dos valores é: %i, %i, %i\n", e_nro_1, e_nro_2, e_nro_3);
return 0;
```

2- Converta o código em C em fluxograma

3- Faça a analise, levante os pré-requisitos, o algoritmo e o código que armazene o valor 10 em uma variável A e o valor 20 em uma variável B. A seguir, troque os seus conteúdos fazendo com que o valor que está em A passe para B e vice-versa. Ao final, escrever os valores que ficaram armazenados nas variáveis.

Análise

```
var_a = 10
var_b = 20
valores pré-definido pelo exercício e armazenados nas variáveis
Resolução
var_a = 20
var_b = 10
conteúdos trocado mostrar ao usuário
```

Algoritmo

- 1- Mostrar ao usuário valor da var_a = 10;
- 2- Mostrar ao usuário valor da var_b = 20;
- **3-** Armazenar var_a em var_tmp: var_tmp = var_a;
- **4-** Calcule o novo valor de var a: var a = var b;
- 5- Calcule o novo valor de var_b: var_b = var_tmp;
- **6-** Mostre o valor de var_a;
- **7-** Mostre o valor de var_b;

```
#include <stdio.h>
int main(void) {
    //Declaração de variaveis
    int var_a, var_b, var_tmp;

    //Valores definidos pelo exercício
    var_a = 10;
    var_b = 20;

//Mostrar ao usuario os valores pré-definidos das variaveis
printf("0 valor da variavel A é: %i\n", var_a);
printf("0 valor da variavel B é: %i\n", var_b);

//Calculo
var_tmp = var_a;
var_a = var_b;
var_b = var_tmp;
```

```
//Mostrar ao usuario as variaveis trocadas
printf("Variveis trocadas:\n");
printf("Variavel A: %i\n", var_a);
printf("Variavel B: %i\n", var_b);
return 0;
}
```

4 - Faça a analise, o algoritmo e o código que coloque 3 números inteiros quaisquer em ordem decrescente.

Análise

Exemplo:

	ENTRADAS	SAIDA		
nro_1	nro_2	nro_3	ORDEM DECRESCENTE	
5	1	20	20. 5. 1	

Algoritmo:

- 1- Entre com o valor do primeiro número (nro_1);
- 2- Entre com o valor do segundo número (nro_2);
- 3- Entre com o valor do terceiro número (nro_3);
- **4-** nro_1 > nro_2?;
- **5-** se sim, nro_2 > nro_3?;
- **6-** se sim, mostrar ao usuário: "nro_1, nro_2, nro_3";
- **7-** se não, nro_1 > nro_3?;
- 8- se sim, mostrar ao usuário: "nro_1, nro_3, nro_2";
- 9- se não, mostrar ao usuário: "nro_3, nro_1, nro_2";
- **10-** nro_1 > nro_2?;
- **11-** se não, nro_1 > nro_3?;
- 12- se sim, mostrar ao usuário: "nro_2, nro_1, nro_3";
- **13-** se não; nro_2> nro_3?;
- 14- se sim, mostrar ao usuário: "nro 2, nro 3, nro 1";
- 15- se não, mostrar ao usuário: "nro_3, nro_2, nro_1";

```
#include <stdio.h>
int main(void) {
 //Declaração das variaveis
  int nro_1, nro_2, nro_3;
  //Entrada de valores
  printf("Entre com o valor do número 1: \n");
  scanf("%i", &nro_1);
  printf("Entre com o valor do número 2: \n");
  scanf("%i", &nro_2);
  printf("Entre com o valor do número 3: \n");
  scanf("%i", &nro_3);
  //Possivel erro
  if (nro_1 == nro_2 && nro_2 == nro_3){
   printf("Os valores são iguais não existe ordem decrescente\n");
    return 0;
  if (nro_1 > nro_2){
   if (nro_2 > nro_3){
      printf("A ordem decrescente dos valores é: %i, %i, %i\n", nro_1, nro_2, nro_3);
    }else if (nro_1 > nro_3){
      printf("A ordem decrescente dos valores é: %i, %i, %i\n", nro_1, nro_3, nro_2);
    }else{
      printf("A ordem decrescente dos valores é: %i, %i, %i\n", nro_3, nro_1, nro_2);
  }else if (nro_1 > nro_3){
    printf("A ordem decrescente dos valores é: %i, %i, %i\n", nro_2, nro_1, nro_3);
  }else if (nro_2 > nro_3){
    printf("A ordem decrescente dos valores é: %i, %i, %i\n", nro_2, nro_3, nro_1);
    printf("A ordem decrescente dos valores é: %i, %i, %i\n", nro_3, nro_2, nro_1);
  return 0;
```

5- Tendo como dados de entrada a altura e o sexo (Sexo=0 para feminino ou Sexo=1 para masculino) de uma pessoa, calcule e mostre seu peso ideal, utilizando as seguintes fórmulas: - para sexo masculino: peso ideal = (72.7 * altura) - 58 - para sexo feminino: peso ideal = (62.1 * altura) - 44.7

Algoritmo

- 1- mostre ao usuário as opções de sexo: "sexo = 0 para feminino ou sexo = 1 para masculino"
- 2- Entre com o sexo escolhido
- 3- Sexo != 0 && sexo != 1?
- 4- Se sim, "ERRO, sexo escolhido inexistente"
- 5- Se não, entre com a altura em metros
- 6- Sexo == 1?
- 7- Se sim, calcule: "peso_ideal = 72.7 * altura 58"
- 8- Mostre o peso ideal ao usuário
- 9- Se não, calcule: "peso_ideal = 62.1 * altura 44.7"
- 10- Mostre o peso_ideal ao usuário

Teste de mesa 1 – masculino; 1.67m

Processos	Sexo	Sexo Altura Peso		Saída
1	{1}			
3	1	{1.67}		
4	1	1.67	72.7*1.67-58 = 63.41	
5	1	1.67	63.41	{63.41}

Teste de mesa 2 – feminino; 1.82m

Processos	Sexo	Altura	Peso_ideal	Saída
1	{0}			
3	0	{1.82}		
6	0	1.82	62.1*1.67-44.7 = 68.32	
7	0	1.82	68.32	{68.32}

Teste de mesa 3 – ERRO

Processos	Sexo	Altura	Peso_ideal	Saída
1	{5}			
2	5			{ERRO}

Wilson José dos Santos RA: 1600732023018
Fluxograma


```
#include <stdio.h>
int main(void) {
 //Declarção das variaveis
 float altura, sexo, peso_ideal;
 //Opções para sexo
 printf("Para o sexo feminino digite 0 | Para o sexo masculino digite 1\n");
 //Entrada sexo
 printf("Entre com o sexo: \n");
  scanf("%f", &sexo);
if (sexo != 1 && sexo != 0){
 printf("ERRO, sexo escolhido inexistene\n");
  return 0;
 printf("Entre com a altura em [m]: \n");
  scanf("%f", &altura);
 if (sexo == 1){
   peso_ideal = 72.7 * altura - 58;
   printf("O peso ideal é: %.2f Kg\n", peso_ideal);
 }else{
    peso_ideal = 62.1 * altura - 44.7;
    printf("O peso ideal é: %.2f Kg\n", peso_ideal);
  return 0;
```

6- Desenvolva o programa que calcule a resistência de um fio. O usuário deve inserir o diâmetro, o comprimento e o material do fio, a temperatura de uso

Analise

Entradas:

- diâmetro
- comprimento [cm]
- tipo de material:

Código	Material	Restividade a 20°C [Ωcm]	Coeficiente de temperatura
1	Prata	1,59.10^-6	0,038
2	Cobre	1,72.10^-6	0,039
3	Ouro	2,44.10^-6	0,034
4	Alumínio	2,92.10^-6	0,039
5	Tungstênio	5,6.10^-6	0,045

- temperatura de uso [°C]

Sequencia de execução:

- 1- calcular área= π * (diam/2)²
- 2- calcular resistência: R= resistividade do material * comprimento / área
- 3- calculo da resistividade em temperatura: $\rho = R * [1 + (coeficiente de temp.) * (temperatura de uso temperatura de referencia)]$

Saída

Mostrar resultado do calculo

Fluxograma

Teste de mesa

Teste 1 – material (prata); diâmetro = 5cm; comprimento = 30000; temperatura de uso = 70°C

Process os	dia m	Área	comp	Tipo materi al (p_1)	resistencia	Temp_m at	Resistividade (p_2)	Saída
2	{5}							
3	5	3,1415926 54 * (5/2) ² = 19,634954 08						
4	5	19,634954 08	{3000 0}					
5	5	19,634954 08	30000	{1}				
7	5	19,634954 08	30000	1	(1,59*10^- 6)*(30000/19,634954 08)= 2,429341052*10^-3			
8	5	19,634954 08	30000	1	2,429341052*10^-3	{70}		
9	5	19,634954 08	30000	1	2,429341052*10^-3	70	(2,429341052*1 0^-3)* (1 + 0,038 *(70- 20))= 7,045*10^-3	
10	5	19,634954 08	30000	1	2,429341052*10^-3	70	7,045*10^-3	{7,045*10 ^-3}

Teste de mesa 2 - material (cobre); diâmetro = 7cm; comprimento = 20000; temperatura de uso = 70°C

Process os	dia m	Área	comp	Tipo mater ial (p_1)	resistencia	Temp_ mat	Resistividade (p_2)	Saída
2	{7}							
3	7	3,141592 654 * (7/2) ² = 38,48451 001						
4	7	38,48451 001	{2000 0}					
5	7	38,48451 001	2000 0	{2}				
11	7	38,48451 001	2000	2	(1,72*10^- 6)*(20000/38,48451 001)= 8,938661293*10^-4			
12	7	38,48451 001	2000 0	2	8,938661293*10^-4	{70}		
13	7	38,48451 001	2000	2	8,938661293*10^-4	70	(8,938661293* 10^-4)* (1 + 0,039 *(70- 20))= 2,636905081* 10^-3	
14	7	38,48451 001	2000 0	2	8,938661293*10^-4	70	2,636905081* 10^-3	{2,636905081* 10^-3}

Teste 3 – material (ouro); diâmetro = 5cm; comprimento = 30000; temperatura de uso = 70°C

Process os	dia m	Área	comp	Tipo materi al (p_1)	resistencia	Temp_m at	Resistividade (p_2)	Saída
2	{5}							
3	5	3,1415926 54 * (5/2) ² = 19,634954 08						
4	5	19,634954 08	{3000 0}					
5	5	19,634954 08	30000	{3}				
15	5	19,634954 08	30000	3	(2,44*10^- 6)*(30000/19,63495 408)= 3,728045388*10^-3			
16	5	19,634954 08	30000	3	3,728045388*10^-3	{70}		
17	5	19,634954 08	30000	3	3,728045388*10^-3	70	(3,728045388* 10^-3)* (1 + 0,034 *(70- 20))= 0,010065722	
18	5	19,634954 08	30000	3	3,728045388*10^-3	70	0,010065722	{0,0100657 22}

Teste 4 – material (alumínio); diâmetro = 5cm; comprimento = 30000; temperatura de uso = 70°C

Process os	dia m	Área	comp	Tipo materi al (p_1)	resistencia	Temp_m at	Resistividade (p_2)	Saída
2	{5}							
3	5	3,1415926 54 * (5/2) ² = 19,634954 08						
4	5	19,634954 08	{3000 0}					
5	5	19,634954 08	30000	{4}				
19	5	19,634954 08	30000	4	(2,92*10^- 6)*(30000/19,63495 408)= 4,461431366*10^-3			
20	5	19,634954 08	30000	4	4,461431366*10^-3	{70}		
21	5	19,634954 08	30000	4	4,461431366*10^-3	70	(4,461431366* 10^-3)* (1 + 0,039 *(70- 20))= 0,013161222	
22	5	19,634954 08	30000	4	4,461431366*10^-3	70	0,013161222	{0,0131612 22}

Teste 5 – material (tungstênio); diâmetro = 5cm; comprimento = 30000; temperatura de uso = 70°C

Process os	dia m	Área	comp	Tipo materi al (p_1)	resistencia	Temp_m at	Resistividade (p_2)	Saída
2	{5}							
3	5	3,1415926 54 * (5/2) ² = 19,634954 08						
4	5	19,634954 08	{3000 0}					
5	5	19,634954 08	30000	{5}				
23	5	19,634954 08	30000	5	(5,6*10^- 6)*(30000/19,63495 408)= 8,556169743*10^-3			
24	5	19,634954 08	30000	5	8,556169743*10^-3	{70}		
25	5	19,634954 08	30000	5	8,556169743*10^-3	70	(8,556169743* 10^-3)* (1 + 0,045 *(70- 20))= 0,027807551	
26	5	19,634954 08	30000	5	8,556169743*10^-3	70	0,027807551	{0,0278075 51}

Teste 6 – material (ERRO); diâmetro = 5cm; comprimento = 30000

Processos	diam	Área	comp	Tipo material (p_1)	resistencia	Temp_mat	Resistividade (p_2)	Saída
2	{5}							
3	5	3,141592654 * (5/2) ² = 19,63495408						
4	5	19,63495408	{30000}					
5	5	19,63495408	30000	{8}				
6	5	19,63495408	30000	8				ERRO

```
#include <stdio.h>
#include <math.h>
int main(void) {
 //Declaração de variaveis
  float resistencia, p_1, resistividade, diam, area, comp;
  float p_2, alfa, temp_mat, temp_ref;
  temp_ref = 20;
  printf("Entre com o diâmetro do fio [cm]: \n");
  scanf("%f", &diam);
  area = 3.141592654 * pow (diam/2,2);
  printf("Entre com comprimento do fio [cm]: \n");
  scanf("%f", &comp);
  printf("Tipos de materiais disponíveis:\n");
  printf("1 - PRATA\n");
  printf("2 - COBRE\n");
  printf("3 - OURO\n");
  printf("4 - ALUMÍNIO\n");
  printf("5 - TUNGSTÊNIO\n");
```

```
printf("Escolha o material: \n");
 scanf("%f", &p_1);
//ERRO
 if (p_1 > 5 || p_1 < 1){
   printf("ERRO, material escolhido inexistente\n");
   return 0;
 if (p_1 == 1){
  resistividade = 1.59 * pow (10,-6);
   alfa = 0.038;
 if (p_1 == 2){
  resistividade = 1.72 * pow (10,-6);
   alfa = 0.039;
 //Valores tabelados para ouro
 if (p_1 == 3){
  resistividade = 2.44 * pow (10,-6);
   alfa = 0.034;
 if (p_1 == 4){
  resistividade = 2.92 * pow (10,-6);
   alfa = 0.039;
 //Valores tabelados para tungstênio
 if (p_1 == 5){
   resistividade = 5.6 * pow (10,-6);
   alfa = 0.045;
 //Calculo da resistência a 20 graus celsius
 resistencia = resistividade * (comp / area);
//resistência com temperatura diferente de 20 graus celsius
printf("Entre com a temperatura do uso do material [°C]: \n");
scanf("%f", &temp_mat);
//Calculo da resistência com temperatura diferente de 20 graus celsius
p_2 = resistencia * (1 + alfa * (temp_mat - temp_ref));
printf("A resistividade do fio à %.2f °C é: %.8f ", temp mat, p 2);
```

return 0;
}

7 - Faça a analise, o algoritmo e o código que calcule a resistência equivalente de 4 resistores em série.

Analise

Entradas:

- resistor 1 (R1) [ohm}
- resistor 2 (R2) [ohm]
- resistor 3 (R3) [ohm]
- resistor 4 (R4) [ohm}

Sequência de ações:

calcule: "saída_req = entrada_r1 + entrada_r2 + entrada_r3 + entrada_r4"

Saída

mostre ao usuário "saída_req"

Algoritmo

```
1 - entre com o valor do R1

2 - entre com o valor do R2

3 - entre com o valor do R3

4 - entre com o valor do R4

5 - calcule: "saída_req = entrada_r1 + entrada_r2 + entrada_r3 + entrada_r4"

6 - mostre ao usuário "saída_req"
```

Código em C

```
#include <stdio.h>
int main(void) {
 //Declaração das variaveis
  float entrada_r1, entrada_r2, entrada_r3, entrada_r4, saida_req;
  //Entrada dos valores dos resistores
  printf("Entre com o valor de R1 [ohm]: \n");
  scanf("%f", &entrada_r1);
  printf("Entre com o valor de R2 [ohm]: \n");
  scanf("%f", &entrada_r2);
  printf("Entre com o valor de R3 [ohm]: \n");
  scanf("%f", &entrada_r3);
  printf("Entre com o valor de R4 [ohm]: \n");
  scanf("%f", &entrada_r4);
  //Calculo da resistencia equivalente
  saida_req = entrada_r1 + entrada_r2 + entrada_r3 + entrada_r4;
 printf("O valor da resistência equivalente é: %.3f [ohm]\n", saida_req);
  return 0;
```

8 - Faça a analise, o algoritmo e o código que calcule a resistência equivalente de 4 resistores em paralelo

Analise:

Entradas:

resistor 1 (R1) [ohm]

- resistor 2 (R2) [ohm]
- resistor 3 (R3) [ohm]
- resistor 4 (R4) [ohm]

Sequência de ações:

```
    calcule: "saída_rq1 = (entrada_r1 * entrada_r2) / (entrda_r1 + entrada_r2)"
    "saída_rq2 = (entrada_r3 * entrada_r4) / (entrda_r3 + entrada_r4)"
    "saída_reqt = (saída_req1 * saída_req2) / (saída_req1 + saída_req2)"
```

Saída

```
Saída_rq1
Saída_req2
mostre ao usuário "saída reqt"
```

Algoritmo

6 - mostre ao usuário "saída_reqt"

```
#include <stdio.h>
int main(void) {

   //Declarações das variaveis
   float entrada_r1, entrada_r2, entrada_r3, entrada_r4, saida_req1, saida_req2,
   saida_reqt;

   //Entrada dos valores dos resistores
   printf("Entre com o valor do resistor 1 [ohm]: \n");
   scanf("%f", &entrada_r1);
   printf("Entre com o valor do resistor 2 [ohm]: \n");
   scanf("%f", &entrada_r2);
   printf("Entre com o valor do resistor 3 [ohm]: \n");
```

```
scanf("%f", &entrada_r3);
printf("Entre com o valor do resistor 4 [ohm]: \n");
scanf("%f", &entrada_r4);

//Calculo
saida_req1 = (entrada_r1 * entrada_r2) / (entrada_r1 + entrada_r2);
saida_req2 = (entrada_r3 * entrada_r4) / (entrada_r3 + entrada_r4);
saida_reqt = (saida_req1 * saida_req2) / (saida_req1 + saida_req2);

printf("O valor da resistência equivalente é: %.3f [ohm]\n", saida_reqt);
return 0;
}
```

https://github.com/wil-santos65/LPT_noite_2021.git (link github, pasta lista 1)