Elementi di Teoria dei Grafi

Argomenti lezione:

- Esercizio 1 Ford-Fulkerson
- Esercizio 2 Floyd-Warshall
- Esercizio 3 Dijkstra (Percorso Minimo)
- Esercizio 4 Prim-Dijkstra

Testo Esercizio 1 Ford-Fulkerson

In tabella sono riportati gli archi di una rete di flusso composta da 6 nodi 1...6. Per ogni arco sono dati il valore della sua capacità massima e un flusso iniziale.

- 1. Partendo dalla distribuzione di flusso in tabella, si determini una soluzione ottima al problema di massimo flusso dal nodo 1 al nodo 5 utilizzando l'algoritmo di Ford e Fulkerson. Evidenziare la soluzione ottima trovata.
- 2. Individuare un taglio di capacità minima tra i nodi 1 e 5. Evidenziare il taglio ottimo trovato.
- 3. Partendo dalla soluzione ottima trovata al punto 1, si determini il nuovo flusso massimo nei tre casi seguenti:
- a. la capacità dell'arco (3,2) è ridotta a zero
- b. la capacità dell'arco (2,3) è incrementata di 10 unità
- c. la capacità dell'arco (6,1) è ridotta a zero

Archi	1, 2	2, 1	1, 4	6, 1	2, 3	3, 2	5, 2	3, 5	6, 3	4, 6	5, 6	6,5
Flussi	0	2	2	0	0	0	2	2	2	2	0	0
Capacità	5	5	10	2	4	2	3	6	8	7	5	7

Soluzione Esercizio 1 Ford-Fulkerson (1)

Archi	1, 2	2, 1	1, 4	6, 1	2, 3	3, 2	5, 2	3, 5	6, 3	4, 6	5, 6	6,5
Flussi	0	2	2	0	0	0	2	2	2	2	0	0
Capacità	5	5	10	2	4	2	3	6	8	7	5	7

Il flusso iniziale da *s* a *t* è pari a 0

1-4-6-3-5
$$\delta = 2$$
 $v = 2$

5-2-1
$$\delta = 2$$
 $v = 0$

Soluzione Esercizio 1 Ford-Fulkerson (2)

1. Partendo dalla soluzione data in tabella, si determini una soluzione ottima al problema di massimo flusso dal nodo 1 al nodo 5 utilizzando l'algoritmo di Ford e Fulkerson. Evidenziare la soluzione ottima trovata.

Soluzione Esercizio 1 Ford-Fulkerson (3)

1. Partendo dalla soluzione data in tabella, si determini una soluzione ottima al problema di massimo flusso dal nodo 1 al nodo 5 utilizzando l'algoritmo di Ford e Fulkerson. Evidenziare la soluzione ottima trovata.

Soluzione Esercizio 1 Ford-Fulkerson (4)

1. Partendo dalla soluzione data in tabella, si determini una soluzione ottima al problema di massimo flusso dal nodo 1 al nodo 5 utilizzando l'algoritmo di Ford e Fulkerson. Evidenziare la soluzione ottima trovata.

Soluzione Esercizio 1 Ford-Fulkerson (5)

1. Partendo dalla soluzione data in tabella, si determini una soluzione ottima al problema di massimo flusso dal nodo 1 al nodo 5 utilizzando l'algoritmo di Ford e Fulkerson. Evidenziare la soluzione ottima trovata.

2. Individuare un taglio di capacità minima tra i nodi 1 e 5. Evidenziare il taglio

Soluzione Esercizio 1 Ford-Fulkerson (6)

- 3. Partendo dalla soluzione ottima trovata al punto 1, si determini il nuovo flusso massimo nei tre casi seguenti:
- a. la capacità dell'arco (3,2) è ridotta a zero
- b. la capacità dell'arco (2,3) è incrementata di 10 unità
- c. la capacità dell'arco (6,1) è ridotta a zero

3a. Soluzione invariata

3b. Nuovo cammino:

1-2-3-6-5
$$\delta = 1$$
 $v = 12$

Soluzione Esercizio 1 Ford-Fulkerson (7)

- 3. Partendo dalla soluzione ottima trovata al punto 1, si determini il nuovo flusso massimo nei tre casi seguenti:
- a. la capacità dell'arco (3,2) è ridotta a zero
- b. la capacità dell'arco (2,3) è incrementata di 10 unità
- c. la capacità dell'arco (6,1) è ridotta a zero

3a. Soluzione invariata.

3b. v = 12 Taglio = 12.

3c. Soluzione invariata.

Testo Esercizio 2 Floyd-Warshall

State applicando l'algoritmo di Floyd e Warshall ad un digrafo con 5 nodi, A...E. Alla fine del passo 2 ottenete le matrici in figura (quella di sinistra indica i percorsi orientati minimi, quella di destra i predecessori).

- 1. Effettuate i passi 3, 4 e 5 dell'algoritmo, aggiornando entrambe le matrici ad ogni passo dell'esecuzione. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.
- 2. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo E al nodo B.
- 3. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo A al nodo E.
- 4. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo E al nodo C.
- 5. Effettuate i passi 3, 4 e 5 dell'algoritmo se l'elemento in posizione (C, B) = -11. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

passo 2	Α	В	С	D	E
Α	0	20	15	inf	14
В	inf	0	10	inf	3
С	inf	-10	0	-7	-7
D	inf	inf	12	0	2
E	inf	inf	inf	7	0

passo 2	Α	В	С	D	E
Α	Α	Α	Α	D	Α
В	Α	В	В	D	В
С	Α	С	С	С	В
D	Α	В	D	D	D
Е	Α	В	С	Е	E

Soluzione Esercizio 2 Floyd-Warshall (1)

1. Effettuate i passi 3, 4 e 5 dell'algoritmo, aggiornando entrambe le matrici ad ogni passo dell'esecuzione. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

passo 2	Α	В	¢	D	E
Α	0	20	15	inf	14
В	inf	0	10	inf	3
	! £	4.0			
	ım	-10	Ų	-/-	
D	inf	inf	12	0	2
E	inf	inf	inf	7	0

passo 2	Α	В	С	D	E
Α	Α	Α	Α	D	Α
В	Α	В	В	D	В
С	Α	С	С	С	В
D	Α	В	D	D	D
E	Α	В	С	Е	E

passo 3	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
Е	inf	inf	inf	7	0

passo 3	Α	В	С	D	E
Α	Α	C k	Α	C	B
В	Α	в)	В	C Y	В
С	Α	c<	С	c//	В
D	Α	C	D	D	D
E	Α	В	С	E	Е

Soluzione Esercizio 2 Floyd-Warshall (2)

1. Effettuate i passi 3, 4 e 5 dell'algoritmo, aggiornando entrambe le matrici ad ogni passo dell'esecuzione. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

passo 3	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
			4.3	à	
	IIII		12	· · · · ·	Z
E	inf	inf	inf	7	0

passo 3	Α	В	С	D	E
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	В	С	E	E

passo 4	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 4	Α	В	С	D	Е
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	C	D	D	D
E	Α	C	D	E	E

Soluzione Esercizio 2 Floyd-Warshall (3)

1. Effettuate i passi 3, 4 e 5 dell'algoritmo, aggiornando entrambe le matrici ad ogni passo dell'esecuzione. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

passo 4	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
·····E·····	inf	·····9·····	19	····7····	····•

passo 4	Α	В	С	D	E
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	С	D	E	E

passo 5	Α	В	С	D	E
Α	0	0 5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	Е
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	С	D	E	E

Soluzione Esercizio 2 Floyd-Warshall (4)

2. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo E al nodo B.

passo 5	Α	В	С	D	Е
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	Е
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	, C	D	E	E

2. Cammino da E a B:

Soluzione Esercizio 2 Floyd-Warshall (5)

2. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo E al nodo B.

passo 5	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	E
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	С	D	Е	E

2. Cammino da E a B:

Soluzione Esercizio 2 Floyd-Warshall (6)

2. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo E al nodo B.

passo 5	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	E
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	С	D	_ E	E

2. Cammino da E a B:

Soluzione Esercizio 2 Floyd-Warshall (7)

3. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo A al nodo E.

passo 5	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	E
Α	Α	С	Α	С	B
В	Α	В	В	C	В
С	Α	С	С	2	В
D	Α	С	D	D	D
E	Α	С	D	E	E

3. Cammino da A a E:

Soluzione Esercizio 2 Floyd-Warshall (8)

3. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo A al nodo E.

passo 5	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	E
Α	Α	C	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	DK.	С	D	D	D
Е	A	С	D	E	Е

3. Cammino da A a E:

Soluzione Esercizio 2 Floyd-Warshall (9)

3. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo A al nodo E.

passo 5	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	E
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	A	С	D	D	D
E	Α	С	D	E	E

3. Cammino da A a E:

Soluzione Esercizio 2 Floyd-Warshall (10)

4. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo E al nodo C.

passo 5	Α	В	С	D	Е
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	E
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	С	D	E	E

4. Cammino da E a C:

Soluzione Esercizio 2 Floyd-Warshall (11)

4. Se l'algoritmo termina, mostrate il cammino orientato minimo dal nodo E al nodo C.

passo 5	Α	В	С	D	E
Α	0	5	15	8	8
В	inf	0	10	3	3
С	inf	-10	0	-7	-7
D	inf	2	12	0	2
E	inf	9	19	7	0

passo 5	Α	В	С	D	E
Α	Α	С	Α	С	В
В	Α	В	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	С	D	E	E

4. Cammino da E a C:

Soluzione Esercizio 2 Floyd-Warshall (12)

• 5. Effettuate i passi 3, 4 e 5 dell'algoritmo se l'elemento in posizione (C, B) = -11. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

passo 3	Α	В	Ç	D	E
Α	0	4	15	8	8
В	inf	-1	10	3	3
•••••С•••••	····inf·····	•••••	<u>o</u>	···7·····	···7····
D	inf	1	12	0	2
E	inf	inf	inf	7	0

passo 3	Α	В	С	D	Е
Α	Α	CK	Α	CK	В
В	Α	C Y	В	C 5	В
С	Α	c/	С	C	В
D	Α	C	D	D	D
E	Α	В	С	E	Е

5. ripetendo il passo 3 dell'algoritmo con (C,B)=-11 ci si arresta subito perché si individua il ciclo negativo B – C – B di peso -1.

passo 3	Α	В	С	D	E
Α	Α	С	Α	С	В
В	Α	C	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	В	С	E	E

Soluzione Esercizio 2 Floyd-Warshall (13)

• 5. Effettuate i passi 3, 4 e 5 dell'algoritmo se l'elemento in posizione (C, B) = -11. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

passo 3	Α	В	Ç	D	E
Α	0	4	15	8	8
В	inf	-1	10	3	3
С	····inf·····	····- <u>-</u> 44····	<u>o</u>	···7·····	···7····
D	inf	1	12	0	2
E	inf	inf	inf	7	0

passo 3	Α	В	С	D	E
Α	Α	С	Α	C	В
В	Α	С	В	C	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	В	С	Е	Е

5. ripetendo il passo 3 dell'algoritmo con (C,B) = -11 ci si arresta subito perché si individua il ciclo negativo B – C – B di peso -1.

passo 3	Α	B	С	D	Е
Α	Α	С	Α	С	В
В	Α	С	В	С	В
С	Α	С	С	С	В
D	Α	С	D	D	D
E	Α	В	С	E	E

Testo Esercizio 3 Dijkstra (Percorso Minimo)

In tabella è riportata la matrice di incidenza nodi/archi di un digrafo.

	а	b	С	d	е	f	g	h	i		m	n	0	р	q	r	S
1	1	1	1	1													
2	- 1				1	1	1										
3		-1						1	1								
4			-1				-1			1							
5				-1					-1		1						
6						-1		-1				1	1	-1			
7										-1			-1	1	1	1	
8											-1					-1	1
9					-1							-1			-1		-1
Pesi	2	7	2	5	8	2	1	4	1	3	2	3	6	4	5	4	7

- 1. Trovare l'albero dei cammini orientati minimi, a partire dal nodo 1, utilizzando l'algoritmo di Dijkstra (<u>versione efficiente</u>). Indicare in quale ordine vengono aggiunti archi all'albero (in quale ordine i flag dei nodi vengono fissati a 1).
- 2. Ci sono più alberi dei cammini orientati minimi ottimi? Se sì, quali?
- 3. Calcolare il percorso minimo nell'albero dal nodo 1 al nodo 7, e il suo peso.
- 4. Come varia la soluzione ottima se l'arco (7, 9) ha peso 10 ?
- 5. Come varia la soluzione ottima se l'arco (7, 9) ha peso 1?

Soluzione Esercizio 3 Dijkstra (P. M.) (1)

Soluzione Esercizio 3 Dijkstra (P. M.) (2)

1. Trovare l'albero dei cammini orientati minimi, a partire dal nodo 1, tramite l'algoritmo di Dijkstra (<u>versione efficiente</u>). Indicare in quale ordine vengono aggiunti archi all'albero (in quale ordine vengono fissati ad 1 i flag dei nodi).

nodo	V	D	pred
1	1	0	null
2	0	2	1
3	0	7	1
4	0	2	1
5	0	5	1
6	0	inf	1
7	0	inf	1
8	0	inf	1
9	0	inf	1

 \bigcirc

$$S = \{1\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (3)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	0	2	1
5	0	5	1
6	0	4 inf	2
7	0	inf	1
8	0	inf	1
9	0	10 _{inf}	2

$$S = \{1,2\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (4)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	1	2	1
5	0	5	1
6	0	4	2
7	0	5 inf	4
8	0	inf	1
9	0	10	2

$$S = \{1,2,4\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (5)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	1	2	1
5	0	5	1
6	1	4	2
7	0	5	4
8	0	inf	1
9	0	7 10	6

$$S = \{1,2,4,6\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (6)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	0	5	4
8	0	7 inf	5
9	0	7	6

$$S = \{1,2,4,6,5\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (7)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	0	7	5
9	0	7	6

$$S = \{1,2,4,6,5,7\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (8)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	1	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	0	7	5
9	0	7	6

$$S = \{1,2,4,6,5,7,3\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (9)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	1	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	1	7	5
9	0	7	6

$$S = \{1,2,4,6,5,7,3,8\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (10)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	1	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	1	7	5
9	1	7	6

$$S = \{1,2,4,6,5,7,3,8,9\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (11)

1. Trovare l'albero dei cammini orientati minimi, a partire dal nodo 1, tramite l'algoritmo di Dijkstra (<u>versione efficiente</u>). Indicare in quale ordine vengono aggiunti archi all'albero (in quale ordine vengono fissati ad 1 i flag dei nodi).

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	1	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	1	7	5
9	1	7	6

$$S = \{1,[2,4],6,[5,7],[3,8,9]\}$$

Archi aggiunti nell'ordine:

$$(1,2)(1,4)(2,6)(1,5)(4,7)(1,3)(5,8)(6,9)$$

Soluzione Esercizio 3 Dijkstra (P. M.) (12)

2. Ci sono più alberi dei cammini orientati minimi ottimi? Se sì, quali? *Risposta:* L'albero dei cammini orientati minimi è unico.

$$S = \{1,[2,4],6,[5,7],[3,8,9]\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (13)

3. Mostrate il percorso minimo nell'albero dal nodo 1 al nodo 7, e il suo peso. *Risposta:* 1-4-7 con peso 5.

Soluzione Esercizio 3 Dijkstra (P. M.) (14)

4. Come varia la soluzione ottima se l'arco (7, 9) ha peso 10?

Risposta: Soluzione invariata perché l'arco è aumentato di peso e non fa parte del sottoinsieme di archi dell'albero dei cammini minimi.

Soluzione Esercizio 3 Dijkstra (P. M.) (15)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	0	7	5
9	0	6 7	7

$$S = \{1,2,4,6,5,7\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (16)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	0	7	5
9	1	6	7

$$S = \{1,2,4,6,5,7,9\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (17)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	1	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	0	7	5
9	1	6	7

$$S = \{1,2,4,6,5,7,9,3\}$$

Soluzione Esercizio 3 Dijkstra (P. M.) (18)

nodo	V	D	pred
1	1	0	null
2	1	2	1
3	1	7	1
4	1	2	1
5	1	5	1
6	1	4	2
7	1	5	4
8	1	7	5
9	1	6	7

$$S = \{1,2,4,6,5,7,9,3,8\}$$

Testo Esercizio 4 Prim-Dijkstra

In tabella è riportata la matrice di incidenza vertici/lati di un grafo (non orientato).

	а	b	С	d	е	f	g	h	i	I	m	n	0	р	q	r	S
1	1	1	1	1													
2	1				1	1	1										
3		1						1	1								
4			1				1			1							
5				1					1		1						
6						1		1				1	1	1			
7										1			1	1	1	1	
8											1					1	1
9					1							1			1		1
Pesi	2	7	2	5	8	2	1	4	1	3	2	3	6	4	5	4	7

- 1. Trovare l'albero ricoprente di peso minimo, a partire dal vertice **1**, tramite l'algoritmo di Prim-Dijkstra (<u>vers. efficiente</u>). Indicare in quale ordine vengono aggiunti i lati all'albero (in quale ordine vengono fissati a 1 i flag dei vertici).
- 2. Come varia il valore della soluzione ottima se si parte dal vertice 6?
- 3. Partendo dal vertice 1, esistono più alberi ricoprenti ottimi? Se sì, mostrarne almeno un altro.
- 4. Partendo dal vertice 1, come varia la soluzione ottima togliendo dal grafo i due lati (6, 7)?
- 5. Partendo dal vertice 1, come varia la soluzione ottima se il lato (3, 6) ha peso 2?

 Corso Ricerca Operativa I

Soluzione Esercizio 4 Prim-Dijkstra (1)

	а	b	С	d	е	f	g	h	i	Ι	m	n	0	р	q	r	S
1	1	1	1	1													
2	1				1	1	1										
3		1						1	1								
4			1				1			1							
5				1					1		1						
6						1		1				1	1	1			
7										1			1	1	1	1	
8											1					1	1
9					1							1			1		1
Pesi	2	7	2	5	8	2	1	4	1	3	2	3	6	4	5	4	7

Soluzione Esercizio 4 Prim-Dijkstra (2)

vertice	٧	С	pred
1	1	0	null
2	0	2	1
3	0	7	1
4	0	2	1
5	0	5	1
6	0	inf	1
7	0	inf	1
8	0	inf	1
9	0	inf	1

$$S = \{1\}$$

Soluzione Esercizio 4 Prim-Dijkstra (3)

vertice	V	С	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	0	1 2	2
5	0	5	1
6	0	2 inf	2
7	0	inf	1
8	0	inf	1
9	0	8 inf	2

$$S = \{1,2\}$$

Soluzione Esercizio 4 Prim-Dijkstra (4)

1. Trovare l'albero ricoprente di peso minimo, a partire dal vertice 1, tramite l'algoritmo di Prim-Dijkstra (vers. efficiente). Indicare in quale ordine vengono aggiunti lati all'albero (in quale ordine vengono fissati ad 1 i flag dei vertici).

vertice	٧	С	pred
1	1	0	null
2	1	2	1
3	0	7	1
4	1	1	2
5	0	5	1
6	0	2	2
7	0	3 inf	4
8	0	inf	1
9	0	8	2

$$S = \{1,2,4\}$$

47

Soluzione Esercizio 4 Prim-Dijkstra (5)

vertice	V	С	pred
1	1	0	null
2	1	2	1
3	0	4 7	6
4	1	1	2
5	0	5	1
6	1	2	2
7	0	3	4
8	0	inf	1
9	0	3 8	6

$$S = \{1,2,4,6\}$$

Soluzione Esercizio 4 Prim-Dijkstra (6)

vertice	V	С	pred
1	1	0	null
2	1	2	1
3	0	4	6
4	1	1	2
5	0	5	1
6	1	2	2
7	1	3	4
8	0	4 inf	7
9	0	3	6

$$S = \{1,2,4,6,7\}$$

Soluzione Esercizio 4 Prim-Dijkstra (7)

vertice	٧	С	pred
1	1	0	null
2	1	2	1
3	0	4	6
4	1	1	2
5	0	5	1
6	1	2	2
7	1	3	4
8	0	4	7
9	1	3	6

$$S = \{1,2,4,6,7,9\}$$

Soluzione Esercizio 4 Prim-Dijkstra (8)

vertice	V	С	pred
1	1	0	null
2	1	2	1
3	1	4	6
4	1	1	2
5	0	1 5	3
6	1	2	2
7	1	3	4
8	0	4	7
9	1	3	6

$$S = \{1,2,4,6,7,9,3\}$$

Soluzione Esercizio 4 Prim-Dijkstra (9)

vertice	V	С	pred
1	1	0	null
2	1	2	1
3	1	4	6
4	1	1	2
5	1	1	3
6	1	2	2
7	1	3	4
8	0	2 4	5
9	1	3	6

$$S = \{1,2,4,6,7,9,3,5\}$$

Soluzione Esercizio 4 Prim-Dijkstra (10)

vertice	V	С	pred
1	1	0	null
2	1	2	1
3	1	4	6
4	1	1	2
5	1	1	3
6	1	2	2
7	1	3	4
8	1	2	5
9	1	3	6

$$S = \{1,2,4,6,7,9,3,5,8\}$$

Soluzione Esercizio 4 Prim-Dijkstra (11)

1. Trovare l'albero ricoprente di peso minimo, a partire dal vertice 1, tramite l'algoritmo di Prim-Dijkstra (vers. efficiente). Indicare in quale ordine vengono aggiunti lati all'albero (in quale ordine vengono fissati ad 1 i flag dei vertici).

vertice	V	С	pred
1	1	0	null
2	1	2	1
3	1	4	6
4	1	1	2
5	1	1	3
6	1	2	2
7	1	3	4
8	1	2	5
9	1	3	6

$$S = \{1,[2,4],6,7,9,3,5,8\}$$

Peso albero = 18

Soluzione Esercizio 4 Prim-Dijkstra (12)

2. Come varia il valore della soluzione ottima se si parte dal vertice 6? *Risposta*. Il peso del nuovo albero ricoprente sarà lo stesso del precedente albero.

Peso albero = 18

Soluzione Esercizio 4 Prim-Dijkstra (13)

3. Partendo dal vertice 1, esistono più alberi ricoprenti ottimi? Se sì, mostrarne almeno un altro.

Soluzione Esercizio 4 Prim-Dijkstra (14)

3. Partendo dal vertice 1, esistono più alberi ricoprenti ottimi? Se sì, mostrarne almeno un altro.

31/03/2020

Soluzione Esercizio 4 Prim-Dijkstra (15)

3. Partendo dal vertice 1, esistono più alberi ricoprenti ottimi? Se sì, mostrarne almeno un altro.

31/03/2020

Corso Ricerca Operativa I dariano,pacciarelli@dia.uniroma3

Soluzione Esercizio 4 Prim-Dijkstra (16)

4. Partendo dal vertice 1, come varia la soluzione ottima togliendo dal grafo i due lati (6, 7)?

Risposta. Soluzione invariata perché nessuno dei due lati appartiene alla soluzione ottima.

Soluzione Esercizio 4 Prim-Dijkstra (17)

5. Partendo dal vertice 1, come varia la soluzione ottima se il lato (3, 6) ha peso 2? *Risposta*. L'albero ricoprente ottimo ha peso 16 invece di 18.

