Machine Learning 2 Project

Sergio Cárcamo Jara (466116)

Overview

- Data Description
- Data Specificity
- Training/Test Data Division
- Comparison of Methods
- Summary and Conclusions
- Questions

Pediatric Appendicitis

Classification

Data description

Data corresponds to pediatric patients with suspected appendicitis admitted with abdominal pain to Children's Hospital St. Hedwig in Regensburg, Germany, between 2016 and 2021.

The dataset includes ultrasound images, laboratory, physical examination, scoring results and ultrasonographic findings extracted manually by the experts, and the target variable is diagnosis, to predict if the patient has appendicitis or not.

has appendicitis

WBC Count

The Alvarado score is a clinical scoring system used in the diagnosis of appendicitis. Based on symptoms and blood test results.

WBC: White blood cell count

Alvarado score					
Symptoms					
Abdominal pain that migrates to the right iliac fossa	1				
Anorexia (loss of appetite) or ketones in the urine					
Nausea or vomiting	1				
Tenderness in the right iliac fossa					
Signs					
Rebound tenderness	1				
Fever of 37.3 °C or more					
Laboratory					
Leukocytosis > 10,000	2				
Neutrophilia > 70%	1				
TOTAL	10				

Training/Test Data Division

- Training/Test data split 80/20
- Randomized Search CV
 - o parameters set for each model
 - o 25 iterations
 - o scoring F1
 - o cv 5

Comparison of Methods

model	RandomForestClassifier	AdaBoostClassifier	XGBClassifier
accuracy	0.929487	0.974359	0.948718
precision	0.94186	0.977011	0.964706
recall	0.931034	0.977011	0.942529
F1	0.936416	0.977011	0.953488
F1	0.936416	0.977011	0.95348

AdaBoost Classifier

Summary and Conclusions

- Chosen model is AdaBoost Classifier (with Decision Tree Classifier as base estimator)
- Find variables that can be removed without sacrificing performance (such as ultrasound images)
- Improve imputation methods

- Best hyper parameters
 - o algorithm: SAMME
 - o learning_rate: 0.63435404
 - o n_estimators: 111
 - o imputer: mean
 - estimator criterion: entropy
 - estimator max_depth: 7
 - o estimator min samples leaf: 3
 - estimator min samples split: 3

Real estate prices

Regression

Data description

For the regression problem, the data was scraped from otodom from september to december 2024. The scope is properties for sale in the Warsaw area, including flats, excludes houses.

The dataset includes data on the property itself, and the building if the property is a flat. The target variable is the price.

Data description

Property characteristics:

- estate: FLAT, HOUSE
- area_m2
- rooms_number
- floor_number
- windows_type
- heating
- price

Location

- district
- latitude
- longitude

Building characteristics:

- building_year
- building_age
- building_type
- building_floors_num
- construction_status
- building_material
- building_ownership

Data description: amenities

- has lift
- has_internet
- has_furniture
- has_air_conditioning
- has_tv
- has_oven
- has_stove
- has_dishwasher
- has_fridge
- has_washing_machine
- has_separate_kitchen

- has_garage
- has_usable_room
- has_terrace
- has_balcony
- has_attic
- has_basement
- has_garden
- has_pool

^{*} tenement: kamienica

Highlights

- Air conditioning: correlated with newer and furnished flats
- Dishwasher: correlated with furnished properties
- Terrace: correlated with larger and newer properties
- Basement: correlated with older properties

Training/Test Data Division

For splitting the data, I used a 80/20 split.

Top 30 features selected with highest correlation.

Randomized Search CV used for hyperparameter tuning.

- 50 iterations
- metric neg_root_mean_squared_error
- cv 5

Comparison of Methods

model	Decision Tree Regressor	XGBoost Regressor	Random Forest Regressor	Ensemble Learning*
RMSE	209411	120715	147654	131948
R2	0.80	0.932	0.90	0.92
MAPE	0.14	0.068	0.09	0.079

^{*}Ensemble Learning: XGBoost, Random Forest Regressor, GradientBoostingRegressor

Summary and Conclusions

- Selected model is XGBoost Regressor due to lower RMSE and MAPE
- Improve feature selection methods
- Improve imputing methods
- Adjust ensemble pipeline
- Comparison of performance between training and test seems to indicate overfitting

Thank you!