Algèbre linéaire avancée II printemps 2021

Série 9

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soit $A \in \mathbb{R}^{n \times n}$ une matrice symétrique.

- a) Montrer que A est définie négative si et seulement si $(-1)^k \det(B_k) > 0$ pour tout $k \in \{1, \ldots, n\}$.
- b) Montrer que A est semi-définie négative si et seulement si $(-1)^{|K|} \det(B_K) \geq 0$ pour tout $K \subseteq \{1, \ldots, n\}$.

Exercice 2. Montrer la partie (4.5) du Théorème 4.13: Soit $A \in \mathbb{R}^{n \times n}$ une matrice symétrique dont les valeurs propres sont $\lambda_1 \geq \cdots \geq \lambda_n$. Si U dénote un sous-espace de \mathbb{R}^n , montrer que

$$\lambda_k = \min_{dim(U)=n-k+1} \max_{x \in U \cap S^{n-1}} x^T A x.$$

Exercice 3. Soit $\mathbb{K}=\mathbb{R}$ ou \mathbb{C} . Soit $A\in K^{m\times n}$ avec une décomposition en valeurs singulières A=PDQ. La pseudoinverse de A est définie par $A^+:=Q^*D^+P^*$, où D^+ est la matrice définie dans la Définition 4.8. Montrer que A^+ satisfait les quatre conditions de Penrose :

- 1. $AA^{+}A = A$.
- 2. $A^+AA^+=A^+$.
- 3. $(AA^+)^* = AA^+$.
- 4. $(A^+A)^* = A^+A$.

Exercice 4. Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $A \in K^{m \times n}$ avec pseudoinverse A^+ . Montrer les propriétés suivantes de la matrice pseudoinverse :

1.
$$(A^+)^+ = A$$
.

2.
$$(A^+)^* = (A^*)^+$$
.

Exercice 5. Calculer la matrice pseudoinverse des matrices suivantes

$$A=egin{pmatrix}1&1&1\end{pmatrix}$$
 , $B=egin{pmatrix}0&1&0\1&0&0\end{pmatrix}$, $C=egin{pmatrix}1&1\0&0\end{pmatrix}$.

Exercice 6. Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $A \in K^{m \times n}$ et $B \in K^{n \times p}$. Est-il toujours vrai que $(AB)^+ = B^+A^+$?

Exercice 7. (*) Dans cet exercice, les termes orthogonaux et orthonormaux sont relatifs au produit hermitien standard de \mathbb{C}^n .

- 1. Soit $A \in \mathbb{C}^{n \times n}$ une matrice hermitienne. Montrer que si x et y sont deux vecteurs propres de A, $Ax = \lambda x$, $Ay = \mu y$ et $\lambda \neq \mu$, alors x et y sont orthogonaux.
- 2. Soit $A \in \mathbb{C}^{n \times n}$ une matrice hermitienne et soit $\mathcal{B} = \{v_1, \dots, v_n\}$ une base orthonormale des vecteurs propres de A, avec $Av_i = \lambda_i v_i$, pour $1 \leq i \leq n$. Soit $P = \begin{pmatrix} v_1 & v_2 & \dots & v_n \end{pmatrix}$. Montrer que $P^*P = I_n$ et

$$P^*AP = egin{pmatrix} \lambda_1 & & & \ & \ddots & & \ & & \lambda_n \end{pmatrix}.$$

3. Soient $A \in \mathbb{C}^{n \times n}$ une matrice hermitienne et P une matrice unitaire telles que

$$P^*AP = egin{pmatrix} \lambda_1 & & & \ & \ddots & & \ & & \lambda_n \end{pmatrix}$$

avec $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Montrer que les colonnes u_1, \ldots, u_n de P sont des vecteurs propres de A avec les valeurs propres $\lambda_1, \ldots, \lambda_n$.