

Student Name	•

Student I.D :

Lebanese International University- ALL Campus School of Arts and Sciences Department of Computer Science

Course Name Course Code : Database Systems : CSCI335 : Exam1 Section : All Exam : Friday 15 November 2013 Time Date : 08:00-09:30 Semester : Fall Year : 2013-2014 Exam weight : 20 % Instructor Auditorium Seat number

Instructions

- Time allowed: 90 minutes
- Cheating in any way, form or method will be rewarded with an F grade
- Read each question carefully before answering
- Solve the questions that you are confident about their answers first
- This exam consists of 10pages including this page

Question #	Grade
Problem 1	/10
Problem 2	/10
Problem 3	/10
Problem 4	/15
Problem 5	/15
Problem 6	/40
Total	/100

PROBLEM1 [10 pts.] Answer by True or False:

- 1. DBMS is the abbreviation of Database Management Software.
- Derived attribute is an attribute whose value is computed from another attribute or combination of attributes.
- 3. To create a database, a physical model is converted into logical model.
- 4. A Primary Key must be a non-null value that identifies just one row in the table.
- 5. Foreign key should be unique
- 6. The description of the database is called meta-data.
- 7. Every relationship in an E-R diagram must translate to an individual relation in the relational model.
- 8. A NOT NULL constraint cannot have duplicate values.
- 9. In a table, there is exactly one key, but there can be multiple superkeys.
- 10. The database and DBMS software together is called as Database system.

PROBLEM1: [1 pt. each] TRUE or FALSE			
Questions	Ans	wers	
1	True	False	
2	True	False	
3	True	False	
4	True	False	
5	True	False	
6	True	False	
7	True	False	
8	True	False	
9	True	False	
10	True	False	

PROBLEM2 [10 pts.] Fill-in-the-blank

- 1. A database Instance is the actual data stored in a database at a particular moment in time
- 2. In an E-R diagram relationship is represented by _____diamond \(\frac{1}{2} \).
- 3. The <u>recursive</u> relation type is where both participations are same entity type in different roles.
- 4. A <u>data model</u> is used to hide storage details and present the users with a conceptual view of the database
- 5. DBMS catalog stores the description of the database
- 6. Database approach allows <u>Insulation</u> between programs and data
- 7. The <u>degree</u> of a relationship type is the number of participating entity types
- 8. Constraints are conditions that must hold on all valid relation states.
- 9. The <u>Referential integrity</u> constraint is violated if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation
- 10. A _Relationship_ is used to establish a connection between entities.

PROBLEM2: [1pt each] FILL IN THE BLANKS		
Questions	Answers	
1	Instance	
2	diamond ♦.	
3	recursive	
4	data model	
5	catalog	
6	Insulation	
7	degree	
8	Constraints	
9	Referential integrity	
10	Relationship	

PROBLEM3 [10pts] Choose the correct answer.

				A45 MADISTRICTURES			81275 BYSTE LIST	
1 II	[_] i	1-1		1- of this	41	purpose	of 0/10)	
. H	ieinino i	neonie i	ceen irac	'K OT INIT	ios is the	nurnose	or a(n)	
	Cipins I	ocopic i	LCCP HILL	on or um	igo io uic	pulpose	OI U(II)	

- a. Database
- b. Instance
- c. Table
- d. Relationship
- 2. A recursive relationship is a relationship between an entity and ______.
 - a. Itself
 - b. a subtype entity
 - c. another entity
 - d. an instance entity
- 3. The sequence to be followed when designing a DBMS should be in this order:
 - a. physical model _ conceptual model _ logical model
 - b. logical model _ physical model _ conceptual model
 - c. conceptual model _ logical model _ physical model
 - d. conceptual model _ physical model _ logical model

4	isa collection	of interrelated da	ata and a set of	programs to acce	ss those data
---	----------------	--------------------	------------------	------------------	---------------

- a. Database
- b. DBMS
- c. ER diagram
- d. Entities
- 5. _____ is the number of entity type participating.
 - a. Cardinality
 - b. Degree of Relationship
 - c. 1:n
 - d. Binary relationship

PROBLEM3: [1pt each] MULTIPLE CHOICE				
Questions		Ans	wers	1
1	a	b	c	d
2	a	b	С	d
3	a	b	c	d
4	a	b	С	d
5	a	b	c	d

- 6. The lowest level of abstraction describes howdata are stored.
 - a. View level
 - b. Physical level
 - c. Logical level
 - d. Relational level
- 7. What is the degree of the below relationship:
 - a. N
 - b. 3
 - c. 2
 - d. None of the above

- 8. When we have recursive relationship in a relation, this relation has:
 - a. More than one primary key
 - b. More than one foreign key
 - c. More than one role
 - d. More than one name
- 9. The foreign key and the corresponding primary key should:
 - a. Have the same name.
 - b. Have the same domain.
 - c. Belong to the same relation.
 - d. Not have the same name.
- 10. Usually it is recommended to:
 - a. Fill data in the referenced relation first.
 - b. Fill data in the referencing relation first.
 - c. Fill data randomly.
 - d. Fill data column by column.

PROBLEM3: [1pt each] MULTIPLE CHOICE				
Questions		Ans	wers	***
6	a	b	c	d
7	a	b	c	d
8	a	b	c	d
9	a	b	С	d
10	a	b	С	d

PROBLEM4 [15pts.]

Map the ER (Entity-Relationship) schema below into a relational schema. For each table, specify the primary keys and the foreign key(s) if any.

Note: Use a solid line to underline a primary key and a dashed line to underline a foreign key.

Employee(EmployeeID1pt, EmployeeName,officeNb2pts)

SalesOffice (OficeNumber 1pt, city, state, address, zip, manager Id 2pts)

Property(<u>propertyId</u>1pt, city,address,state,zip, <u>officeNb</u>2pts)

Owner(OwnerId1pt, OwnerName)

Owns(owid2pts, pid2pts, percenowned) 1pt for underling both owid and pid

PROBLEM5 [15pts.]

The following tables form part of a database for a worldwide hotel chain held in a relational DBMS:

Hotel	(hotelNo, hotelName, city)
Room	(roomNo, hotelNo, type, price)
Booking	(hotelNo, guestNo, roomNo,dateFrom, dateTo)
Guest	(guestNo, guestName, guestAddress)

- 1. Identify the primary key for each table in this schema.
- 2. Identify the foreign keys in this schema.

```
Hotel (hotelNo, hotelName, city)

1pt for the PK=hotelNo

Room (roomNo, hotelNo, type, price)

2pts for PK = roomNo+hotelNo

1pt for the FK hotelNo

Booking (hotelNo, guestNo, roomNo, dateFrom, dateTo)

4 pts for PK= hotelNo+ guestNo+ roomNo+dateFrom

1 pt for the FK = hotelNo

1 pt for the FK = roomNo

1pt for the FK= guestNo

Guest (guestNo, guestName, guestAddress)

1 pt for PK = (guestNo)
```

3. Explain how the entity and referential integrity rules apply to the relation Booking

3 pts for the explanation here. Students should explain with an example how the referential integrity is applied for the relation Booking.

PROBLEM6 [40pts.]

The Prescriptions-R-X chain of pharmacies has offered to give you a free lifetime supply of medicine if you design its database. Given the rising cost of health care, you agree. Here's the information that you gather:

- Patients are identified by an SSN, and their names, addresses, and ages must be recorded.
- Doctors are identified by an SSN. For each doctor, the name, specialty, and years of experience must be recorded.
- Each pharmaceutical company is identified by name and has a phone number.
- For each drug, the trade name and formula must be recorded. Each drug is made by a given pharmaceutical company, and the trade name identifies a drug uniquely from among the products of that company. If a pharmaceutical company is deleted, you need not keep track of its products any longer.
- Each pharmacy has a name, address, and phone number.
- Every patient has a primary physician. Every doctor has at least one patient.
- Each pharmacy sells several drugs and has a price for each. A drug could be sold at several pharmacies,
 and the price could vary from one pharmacy to another.
- Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for several patients, and a patient could obtain prescriptions from several doctors. Each prescription has a date and a quantity associated with it. You can assume that, if a doctor prescribes the same drug for the same patient more than once, only the last such prescription needs to be stored.
- Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical company can
 contract with several pharmacies, and a pharmacy can contract with several pharmaceutical companies.
 For each contract, you have to store a start date, an end date, and the text of the contract.
- Pharmacies appoint a supervisor for each contract. There must always be a supervisor for each contract,
 but the contract supervisor can change over the lifetime of the contract.

Draw the corresponding E/R diagram by using the (min, max) notation. Make sure to show which attribute (or collection of attributes) is (are) the identifier. State all assumptions you make

5 Entities =>	5 points (remove 1 pt if missing to underline an identifier,
remove it once)	
4 attributes for Patient =>	2pts
4 attributes for Doctor=>	2pts 2pts
2 attributes for Drug=>	1pt
2 attributes for Pharma-Company =>	1pt
price =>	2pts
date =>	2pts
Contract with 4 attributes =>	2 pts
	Total = 12pts
Relationships:	
Pri_Physicins =>	2 pts
Make=>	2pts
Sell =>	2pts
Contract=>	2 pts
Prescription (ternary)=>	4 pts
	Total = 12pts
11 cardinalities =>	11pts