Fixed Income Derivatives E2025 - Problem Set Week 4

Problem 1

Let W_t be a Bownian motion, assume s < t < u < v and solve the problems below. In doing so, you will need to use that W_t is Markov and has stationary independent increments. That is, for 0 < s < t we know that $W_t - W_s | \mathcal{F}_s = W_t - W_s | W_s = w_s \sim N(0, t - s)$.

- a) Find the conditional distribution of W_t given \mathcal{F}_s .
- c) Find $\mathbb{E}[W_sW_t]$, $Cov[W_s, W_t]$ and $Cor[X_t, Z_t]$.
- c) Show that $W_t^2 t$ is a Martingale.
- d) Find $\mathbb{E}[W_s W_t W_u]$.
- e) Find $\mathbb{E}[W_sW_tW_uW_v]$.

Problem 2

Let X_t and Y_t be independent Brownian motions for $t \ge 0$. Define $Z_t = \rho X_t + \sqrt{1 - \rho^2} Y_t$.

- a) Show that Z_t is a Brownian motion
- b) Find $Cor[X_t, Z_t]$.
- c) Find $\mathbb{E}[Z_t|X_t=x]$ and $\operatorname{Var}[Z_t|X_t=x]$.

Let $W_t^{(1)}, W_t^{(2)}, ..., W_t^{(N)}$ be independent Brownian motions and let Σ be an $M \times N$ -dimensional matrix where row i, $\Sigma_{i\cdot}$, satisfies $\|\Sigma_{i\cdot}\| = \Sigma_{i1}^2 + \Sigma_{i2}^2 + ... + \Sigma_{iN}^2 = 1$. Define the M-dimensional vector $\mathbf{Y}_t = \Sigma \mathbf{W}_t$

- d) Find the covariance matrix of the random vector \mathbf{Y}_t . Show that the covariance matrix is positive definite?
- e) What is the correlation matrix of \mathbf{Y}_t ?
- f) What is the distribution of $Y_t^{(i)}$ and what is the joint distribution of \mathbf{Y}_t ?
- g) Is \mathbf{Y}_t a multivariate Brownian motion?

Problem 3

Consider a stochastic process r_t for $t \geq 0$ with dynamics

$$dr_t = (b - ar_t)dt + \sigma dW_t, \quad b > 0$$

a) Show that the solution r(T) corresponding to these dynamics are

$$r_T = e^{-aT}r_0 + \frac{b}{a}(1 - e^{-aT}) + \sigma \int_0^t e^{-a(T-t)}dW_t$$

by performing the following steps

- i) Apply Ito's formula to $f(t,r) = e^{at}r$.
- ii) Simplify to get an expression for $d(e^{at}r)$ that does not depend on r_t .
- iii) Integrate from 0 to T and solve the time-integral.
- b) Use Ito isometry to show that $r_T|r_t \sim N\left(e^{-aT}r_0 + \frac{b}{a}\left(1 e^{-aT}\right), \frac{\sigma^2}{2a}\left[1 e^{-2aT}\right]\right)$.
- c) Find the limiting distribution of r_T as $T \nearrow \infty$.
- d) If you had to guess, what is your best guess of the r in the long run? How does the limiting distribution of r_T depend on r_0 and what is the implication?

Problem 4

Suppose that the stochastic process S_t follows a Geometric Brownian motion and has dynamics

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$
$$S_0 = s_0$$

- a) Show that the solution S(T) corresponding to these dynamics is $S(T) = s_0 e^{(\mu \frac{1}{2}\sigma^2)T + \sigma W_T}$.
- b) Find $\mathbb{E}[S(T)]$ in terms of s_0 , μ and σ .
- c) Find the dynamics of $Z_t = S_t^m$ and show that Z_t also follows a geometric Brownian motion.
- d) Use these results to find $\mathbb{E}[S^m(T)]$.

Problem 5

Let $\sigma(t)$ be a given deterministic function of time and define the process X_t by

$$X(t) = \int_0^t \sigma(s) dW_s$$

Also define $Z(t) = e^{i\omega X(t)}$ where i is the complex unit and thus a constant and ω is also a constant.

- a) Find the dynamics of X_t .
- b) Find the dynamics of Z_t and show that Z_t has dynamics

$$dZ_t = -\frac{1}{2}\omega^2\sigma^2(t)Z(t)dt + i\omega\sigma(t)Z_t dW_t$$

$$Z_0 = 1$$

- c) Integrate dZ_t and take expectations to find an expression for E[Z(t)].
- d) Define $m(t) = \mathbb{E}[Z(t)]$ and show that m(t) satisfies the ODE.

$$m'(t) = -\frac{1}{2}\omega^2\sigma^2(t)m(t)$$
$$m(0) = 1$$

e) Argue that $E\left[e^{i\omega X(t)}\right] = \exp\left(-\frac{1}{2}\omega^2\int_0^t\sigma^2(s)ds\right)$ and why we can say that $X(t) \sim N\left(0,\int_0^t\sigma^2(s)ds\right)$.