Deep Image Prior

Ulyanov et al. 2017

Michael Scherbela

Deep Learning Seminar Oct 5, 2022

Goal: Reconstruct corrupted images

Corrupted image

Text / watermark

Noise

U.S. AIR FORCE

Impainting

Regularized approach

 x_{0} ... corrupted image x_{rec} ... reconstructed image $x_{\mathrm{rec}} = \operatorname*{argmin} d(x_{0}, x) + R(x)$ e.g. $x_{\mathrm{rec}} = \operatorname*{argmin} \|x_{0} - x\|^{2} + \lambda \, TV(x)$ similarity to regularizer / input image prior

Regularizer R(x) judges how "image-like" x is:

- Hand-crafted (e.g. total variation)
- Learned by training (e.g. on ImageNet)

$$TV(x) = \sum_{ij} \sqrt{|x_{i,j} - x_{i+1,j}|^2 + |x_{i,j} - x_{i,j+1}|^2}$$

Regularized approach

 x_0 ... corrupted image

 $x_{\rm rec}$... reconstructed image

$$x_{\text{rec}} = \underset{x}{\operatorname{argmin}} d(x_0, x) + R(x)$$

e.g.

$$x_{\text{rec}} = \underset{x}{\operatorname{argmin}} \|x_0 - x\|^2 + \lambda \, TV(x)$$

$$\underset{\text{similarity to input image}}{\operatorname{similarity to}} \quad \text{regularizer /}$$

Regularizer R(x) judges how "image-like" x is:

- Hand-crafted (e.g. total variation)
- Learned by training (e.g. on ImageNet)

$$TV(x) = \sum_{ij} \sqrt{|x_{i,j} - x_{i+1,j}|^2 + |x_{i,j} - x_{i,j+1}|^2}$$

Deep Image Prior

 f_{θ} ... conv-net

z ... fixed random input

$$\theta_{\text{rec}} = \underset{\theta}{\operatorname{argmin}} d(x_0, f_{\theta}(z))$$

$$x_{\rm rec} = f_{\theta}(z)$$

Regularization through structure / biases in function f_{θ}

Optimization in parameter space θ , instead of pixel space x

Training requires early stopping, otherwise corrupted image is reproduced

Example: JPEG artifact removal

Training requires early stopping, otherwise corrupted image is reproduced

Example: JPEG artifact removal

Corrupted

2400 iterations

Training requires early stopping, otherwise corrupted image is reproduced

Example: JPEG artifact removal

Used architecture: Encoder + decoder / U-net

Architecture

- 5-6 downsampling layers + 5-6 upsampling layers
- Each layer 2x:
 - Convolution
 - Batch-Norm
 - Leaky ReLU
 - No skip connection / residual
- Downsampling: Strides during first convolution
- Upsampling: nearest / bilinear

Hyperparameters

- Similar across tasks, but slightly tuned
- 2000 3000 optimization steps
- Adam: $LR = 10^{-1} 10^{-3}$

Why it works: U-nets produce image-like outputs

Outputs of untrained, randomly intialized U-nets $f_{\theta_0}(z)$

Why it works: U-nets can easily model images, but struggle to reproduce high-frequency noise

Pretty pictures: Super-resolution

Pretty picture: Activation maximization for AlexNet

Which input looks most like a Cheesburger?

Deep Image Prior

Total Variation Prior

AlexNet activation maximization with Total Variation prior [38]

Pretty pictures: Inpainting

(a) Input (white=masked)

(b) Encoder-decoder, depth=6

Pretty pictures: Inpainting

(a) Input (white=masked)

(e) ResNet, depth=8

Adding skip connections (i.e. ResNet) deteriorates image prior

Unexpected Overlap

66

... Deep image prior is also used in [6] to perform phase retrieval for Fourier ptychography.

[6] Boominathan, L., Maniparambil, M., Gupta, H., Baburajan, R., Mitra, K.: Phase retrieval for fourier ptychography under varying amount of measurements. CoRR (2018)