Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №1 по дисциплине "Архитектура вычислительных систем"

Студент Станиславчук С. М.

Группа АС-21-1

Руководитель Болдырихин О. В.

Ст. преподаватель

Цель работы:

Изучение основ устройства и принципов работы компьютера фоннеймановской архитектуры.

Задание кафедры: Вариант 27

Написать на языке ассемблера программу, выполняющую преобразование числа в упакованный двоично-десятичный код.

При помощи отладчика прогнать программу покомандно и после выполнения каждой команды фиксировать состояние аккумулятора, указателя команд, других регистров, задействованных в программе, ячеек памяти данных.

Результаты анализа работы программы оформить в виде таблицы. Последовательность строк в таблице должна соответствовать последовательности выполнения команд в период прогона программы, а не их последовательности в тексте программы. В строке, соответствующей данной команде, содержимое регистров и памяти должно быть таким, каким оно является после ее выполнения.

Проанализировать таблицу, выполнить необходимые сравнения, сделать выводы.

27	Преобразование	числа	В	Сегмент	данных	(по	Дополнительный
	упакованный	двоично-		DS) и сегмент команд		анд	сегмент данных (по ES)
	десятичный код						

Ход работы:

1. Блок-схема алгоритма программы

Составим блок-схему алгоритма преобразования в код с дублированием битов – результат указан на рисунке 1.

Рисунок 1 – Блок-схема программы.

2. Ручной расчет по алгоритму:

Число 83 в упакованном двоично десятичном коде (packed BCD):

8 -> 1000

3 -> 0011

83 -> 1000 0011

3. Код программы

```
.model small
data segment
   input db 83
   res1 db 0
data ends
code segment
   res2 db 0
   assume DS:data, ES:code, CS:code
start:
   mov ax, data
   mov ds, ax
   mov ax, code
   mov es, ax
   mov al, ds:[input]
   xor ah, ah
   mov bl, 10
   div bl
   mov dl, al
   mov al, ah
   shl dl, 4
   or al, dl
   mov ds:[res1], al
   mov es:[res2], al
   mov ax, 0
   mov al, ds:[res1]
   mov ah, 4Ch
   int 21h
```

end start

4. Листинг программы

```
1. 0000: mov ax, data ; 0000: B8 678
2. 0004: mov ds, ax
                                 ; 0004: 8E D8
3. 0006: mov ax, code
                                 ; 0006: B8 B348
4. 0009: mov es, ax ; 0009: 8E C0
5. 000B: mov al, ds:[input] ; 000B: A0 0000
6. 000E: xor ah, ah
                                 ; 000E: 32 E4
7. 0010: mov bl, 10
                                ; 0010: B3 0A
                                 ; 0012: F6 F3
8. 0012: div bl
8. 0012: div bl
9. 0014: mov dl, al
10. 0016: mov al, ah
11. 0018: shl dl 1
                                 ; 0014: 8A D0
                                ; 0016: 8A C4
11. 0018: shl dl, 1
                                 ; 0018: D0 E2
12. 001A: shl dl, 1
13. 001C: shl dl, 1
14. 001E: shl dl, 1
15. 0020: or al, dl
12. 001A: shl dl, 1
                                 ; 001A: D0 E2
                                 ; 001C: D0 E2
                                 ; 001E: D0 E2
                                ; 0020: 0A C2
16. 0022: mov ds:[res1], al ; 0022: A2 0100
17. 0025: mov es:[res2], al ; 0025: 26 A20000
18. 0029: mov al, ds:[res1] ; 0029: B8 0000
19. 002C: mov al, ds:[res1] ; 002C: A0 0100
20. 002E: mov ah, 4Ch ; 002E: B4 4C
21. 0031: int 21h ; 0031: CD 21
21. 0031: int 21h
```

5. Таблица состояния системы

Составим таблицу состояний системы после выполнения каждой команды (таблица 1)

Таблица 1 – Состояния системы после выполнения команд программы

Номер	Адрес	Команда на	Регистр	Команда на языке	Указатель	Содержание изменившихся
команд	команд	машинном	команд	ассемблера	команд	регистров и ячеек памяти
Ы	Ы	языке		_		
1	0000	B8 678	B8	mov ax, data	0001	ax 48B7
2	0004	8E D8	8E	mov ds, ax	0004	ax 48B7
3	0006	B8 B348	B8	mov ax, code	0006	ds 48B7
4	0009	8E C0	8E	mov es, ax	0009	es 48B3

5	000B	A0 0000	A0	mov al, ds:[input]	000B	es 48B3
6	000E	32 E4	32	xor ah, ah	000E	es 4853
7	0010	B3 0A	B3	mov bl, 10	0010	ax 0053
8	0012	F6 F3	F6	div bl	0012	bx 000A
9	0014	8ADO	8A	mov dl, al	0014	ax 0308
10	0016	8A C4	8A	mov al, ah	0016	dx 0008
11	0018	D0 E2	D0	shl dl, 1	0018	dx 0303
12	001A	D0 E2	D0	shl dl, 1	001A	dx 0010
13	0016	D0 E2	D0	shl dl, 1	0016	dx 0020
14	001E	D0 E2	D0	shl dl, 1	001E	dx 0040
15	0020	0AC2	0A	or al, dl	0020	dx 0080
16	0022	A20100	A2	mov ds:[res1], al	0022	ax 0383, ds:0001 = 00
17	0025	26A20000	A2	mov es:[res2], al	0025	es:0000 = 00
18	0029	B80000	B8	mov al, ds:[res1]	002C	ax 0000
19	002C	A00100	A0	mov al, ds:[res1]	002E	ax 0083
20	002E	B44C	B4	mov ah, 4Ch	002F	ax 0083
21	0031	CD21	CD	int 21h	0031	ax 4C83

6. Проверка работы алгоритма на правильных числах

Упакованный двоично-десятичный код (Packed Binary Coded Decimal, PBCD) - это способ представления десятичных чисел в формате, где каждая десятичная цифра представлена в виде 4-битного двоичного числа. В упакованном PBCD каждая десятичная цифра (0-9) кодируется с использованием 4 битов, и эти коды объединяются вместе, чтобы представить десятичное число.

На вход программе подается число 83. Программа разбивает это число на составные цифры (8 и 3) с помощью битовых масок. После разбиения

происходит перевод и склеивание битов этих чисел с последующим занесением результата в переменную result, которая находится в сегменте DS. На рисунке 2 видно, что в сегменте DS по смещению 0000 (переменная result) лежит число 83h. А это значит, что программа отработал верно. Результат программы и состояние регистров СРU можно увидеть на рисунках 2 и 3 соответственно.

Рисунок 2 – Состояние сегмента DS (result) на момент завершения программы.

Рисунок 3 — Состояние сегмента ES (data) на момент завершения программы.

7. Вывод

В ходе выполненной работы рассмотрел и проанализировал программу на ассемблере, которая выполняет преобразование двоичного числа в упакованный двоично-десятичный код.

Заметил, что при использовании одинаковых команд на переменные с одинаковыми значениями, но находящихся в разных сегментах, команды на машинном языке отличаются (таблица 1, номера команд 16 и 17. Команда номер 17 имеет префикс "26", что данные будут читаться или записываться в сегмент ES).