

to make the entires in the pivotal columns all zero except for a 1 at the pivothocotron
X1 X2 X3 X4 X5 X6 X7 X1 X2 O 1 1/2 O 3/4 O -1/4 3
X6 0 0 ½ 1 - 1/4 1 - 1/4 9 X1 1 0 0 ½ - 1/4 0 1/4 3 0 0 - 1/2 - 1 5/4 0 5/4 17
The basic feasible solution (giving cen
extreme point) has basic variables $x_2=3, x_6=9, x_1=3 \text{ and non basic}$
vertables $x_3 = x_4 = x_5 = x_7 = 0$. In vector
form we have (3,3,0,0,0,9,0)
(20) In canonical form the problem is: Maximize: $z = x_1 + 2 x_2 + x_3 + x_4$
Subject to: 2x, +x2+3x3+x4+u = 8
$x_{1}=0, j=1,2,3,4$ $2x_{1}+3x_{2}$ $+4x_{4}$ $+ U = 12$
$\frac{3\lambda_1 + \lambda_2 + 2\lambda_3}{3\lambda_1 + \lambda_2 + 2\lambda_3} + \frac{3\lambda_1 + \lambda_2 + 2\lambda_3}{3\lambda_1 + \lambda_2 + 2\lambda_3}$
The Initial, Tableau willbe:
Tableau (4 2 1 3 0 1 0 0, 8)
V 2 3 0 4 0 1 0 12
[[w 3 1 2 0 0 0 1 18]
1 -1 -2 -1 -1 0 0 0 0 0 0
Note: 4, v, w are the basic variables
Character of 200 that to lalocate
Construction of next tableau: Since the most negative entry in the
objective vow is -2 in the x2 column,
Choose Xz to be the entering varieble

The O-vatuos for the Xz column are: (3)
Bforu, 1= z4 foru, 18 forw. The smallest
positive vatiois 4 for v. Therefore, chooser
to be the departing variable and pivot
on 3 in the xz pivotal column. We get
XI XZ X3 X4 U U W
Tableau + 4/3 0 3 -1/3 1 -1/3 0 4
1ableau = 1/3 0 3 13 1 3 1 1
#2 X2 2/3 0 4/3 0 4
w 7302-430-13114
1/30 (-0 5/30 8)
Construction of Tableau #3:
Choose x3 as the entering variable because of
-1 in the objective row, The smallest o value
for the 1/2 column is \$ 50 choose u as the
departing variable, Proton 3 in the x3 column
Weget: 1 1 X1 X2 X3 X4 4 is with
We get: X1 X2 X3 X4 4 4 W W W Tableau X3 49 0 1 -1/9 1/3 -1/9 0 4/3
#3 ×2 2/3 1 0 4/3 0 1/3 0 4
$w_{139000} - 1099 - 273 - 19134$
79001491359028
The entries in the objective now are zeros for
the basic variables x3 x2 and w are are
non negative for the non basic variables.
therefore, an optimal solution has been
obtained x3 = 43, x2 = 4, w= 3. In
vector form we have (0,4,4/3,0) as the
extreme point for which the objective function
her its legest value 28 for the
original problem. The sequence of extreme points has been (0,0,0,0) -> (0,4,0,0) -> (0,4,4/3,0)
hus been (0,0,0,0) -> (0,4,0,0) -> (0,4,4/3,0)

シ \times_3 X2 10 Tableau 3 -10 23 Construction of next tableau: Choose u to be the entering variable The 0-votros are 87 for x2 (ignore) 24 (ignore) So, none of these vatuos are positive that means (as we shall show in class) that there is no finite optimal value for the objective function, it can be arbitrarily large.

Note: If we sketched therplanes given by the constraints we would see that the set of feasible solutions is unbounded. We can also see this from the constraint equations. Set x, =0, x =0 we get -7×3 66 or x3-6 and -3×3 6 15 or x3>-5 Thus, the points (0,0, x3) are in the set Sof flasible solutions for any X3, 0 < X3<0. Note: Since Z = -X, +3 X2 + X3, Z -> +00 as X3 -> +00 In canonical form the problem is: Maximize: Z=3x,+3x,-x3+x4 Subject to: 2x1-x2-x3+x4+4 =2 X1 >0,1=1,234 X1-X2+X3-X4+ = 5 470,070, w70 3x, +x2 +5x4 tw =12 (Objective function: -3×1-3×2+×3-×4+3=0

The initial tableau is: - X, X2 - X3 X4 U V W / -- U 2 -1 -1 1 00 2 Tableau UT -1 1 -1 0 1 0 5 - W 3 (1) 0 5 0 0 1 12 -3 -3 1 -1 0 0 0 0 Construction of next-tableaus We see that -3 is the most negative entry in the objective vow. However, it occurs in the columns for both x and x2. Which of these should we choose for our entering variable? Wewillchoose Xz first, then repeat the problem solution with the choice of X, ee page? Case: Choose X2 as the entering variable The O-vatios are 2 <0 foru (so ignore) 5 co for v (soignore) 12-4 for w. So, choose w for our departing variable Pivot on the entry 1 in the Xz pivotalolumn. Since the entries in the objective now are zeros for the basic variables u, v, x2 and nonnegative for the non basic variables X1, X3, X4, W, we have obtained an optimal solution

				_		<u> </u>		
· ····································	(*)	XI	×2-	X3	X4	u	v- w-	
Tableau	XI	1	0	-1/5	6/5	(1/5))0 台	14
#3	V	0	0	9/5	-4/5	-4	1 1/5	29
	XZ	_0	i	3/5	7/5	-3 -3 -3	0 2/5	18
		0	0	11/5	34/5	5 - (6)	309	96
Conc	+ 1/	11 1	1,250	ر کھ ۔	Una V	Put	7/10/	00

Construction of the next tableau:

We choose u to be the entering variable

The O-vatios are 145 - 14 for X1, 29, <0 for (so ignore) and 18 / 35 (so Gor X2 (so ignore))

Choose x, as the departing variable We pivot on & in the u pivotal rolumn.

Tableau /		XI	χ_2	X3	X4	u	0	w-		
14 (1	u	5	0	-1	6	1	0	1	14	
# 7	U	4	0		4	0	(l	17	
	X_{2}	3	1	0	5	0	0	Ì	12	
	\	(5 C) ((4 C	0	3	36	\

Checkfor Optimality: The entries in the objective row are zeros for the basic variables u, v, x, and nonnegative for the non basic variables x, x, x, x, x, the optimal solution for the canonical problem. is given by u = 14, v = 17, v = 12, v = 12,