Satuan Acara Perkuliahan (SAP) Matakuliah Fisika Dasar IB (FI - 1102) Semester I 2022–2023				
Minggu	Topik	Sub-topik	Tujuan Instruksional Khusus	Bab yang relevan *)
1 22/08 – 26/08	Pendahuluan dan konsep matematika. Kinematika: Kinematika 1D	Sekilas tentang Fisika, ulasan tentang vektor dan trigonometri. Kinematika partikel. Persamaan Kinematika equations, gerak 1- dimensi.	Memberikan ulasan tentang vektor dan trigonometri, dan menggunakannya untuk analisis persoalan fisika. Memahami konsep kinematika dan dapat melakukan analisis dimensi, secara khusus untuk menganalisis gerak 1- dimensi.	Pustaka 1, Bab 1, 2 Pustaka 2, Bab 1, 2
2 29/08 – 02/09	<u>Kinematika:</u> Kinematika 2D	Kinematika partikel, persamaan kinematika, gerak 2- dimensi, rotasi, dan kecepatan relatif.	Dapat melakukan analisis persoalan kinematika dan melakukan analisis grafik untuk menganalisis gerak 2- dimensi dan menyelesaikan parameter kinematika.	Pustaka 1, Bab 3, 8 Pustaka 2, Bab 3, 8
3 05/09 – 09/09	<u>Dinamika</u>	Inersia dan massa, Hukum 1, 2, dan 3 Newton. Gaya dan gerak. Aplikasi hukum Newton: benda dalam kesetimbangan dan ketakseimbangan. Diagram gaya benda bebas.	Memahami hukum-hukum gerak Newton. Dapat menggambarkan diagram gaya bebas benda dan menggunakan hubungan antara gaya dan parameter gerak untuk berbagai kondisi.	Pustaka 1, Bab 4 Pustaka 2, Bab 4
4 12/09 – 16/09	<u>Dinamika</u>	Gaya gesek, gaya normal, gaya tegangan tali, gaya gravitasi. Analisis benda tergantung atau bertumpuk, benda dengan katrol, gerak melingkar, dan gaya sentripetal.	Dapat menyelesaikan persoalan dinamika sistem partikel: sistem dengan katrol, benda bertumpuk, dan dinamika gerak melingkar.	Pustaka 1, Bab 4, 5 Pustaka 2, Bab 4, 5
5 19/09 – 23/09	<u>Usaha dan</u> Energi	Usaha, energi kinetik, dan teorema usaha-energi kinetik. Gaya konservatif dan nonkonservatif. Energi potensial. Hukum kekekalan energi mekanik.	Memahami konsep usaha dan energi. Dapat menyelesaikan persoalan mekanika dengan menggunakan konsep usaha-energi. Memahami hubungan antara gaya konservatif dan energi potensial, dan kekekalan energi kinetik. Memahami konsep kekekalan energi mekanik jika terdapat gaya nonkonservatif.	Pustaka 1, Bab 6 Pustaka 2, Bab 6
6 26/09 – 30/00	Impuls dan Momentum Linier	Impuls dan momentum, sistem partikel, prinsip kekekalan momentum linier, tumbukan, pusat massa.	Memahami hubungan antara impuls, perubahan momentum, dan gaya rata-rata. Memahami konsep pusat massa. Dapat menggunakan prinsip kekekalan momentum linier dalam setiap tumbukan.	Pustaka 1, Bab 7 Pustaka 2, Bab 7
7 03/10 – 07/10	Benda Tegar	Statika benda tegar dan pengenalan gerak menggelinding.	Memahami konsep torsi dan menerapkannya di dalam kesetimbangan statik. Memahami analogi antara kinematika translasi dan rotasi, dan gerak menggelinding Dapat memformulasikan hukum Newton untuk	Pustaka 1, Bab 8 Pustaka 2, Bab 8
8 10/10 – 14/10	<u>Dinamika Rotasi</u>	Torsi, momen inersia, momentum sudut. Kerja dan energi kinetik di dalam gerak rotasi.	gerak rotasi, dan menghitung momen inersia dari benda tegar dan menerapkan teorema sumbu parallel. Memahami konsep usaha dan energi kinetik dalam gerak rotasi, hubungan antara momentum sudut dan torsi, dan menerapkan prinsip kekekalan momentum sudut.	Pustaka 1, Bab 9 Pustaka 2, Bab 8, 9
UJIAN 1: SABTU, 15 OKTOBER 2022				
9 17/10 – 21/10	Gerak Harmonik Sederhana	Osilasi harmonik, Osilasi teredam, Osilasi terpaksa, dan resonansi.	Memahami gerak harmonik sederhana dan persoalan yang berkaitan. Memahami osilasi teredam, osilasi terpaksa, dan fenomena resonansi.	Pustaka 1, Bab 10 Pustaka 2, Bab 11
10 24/10 – 28/10	<u>Elastisitas</u>	Tegangan dan regangan, modulus Young, modulus geser, dan modulus bulk.	Dapat menyelesaikan persoalan tentang elastisitas bahan.	Pustaka 1, Bab 10 Pustaka 2, Bab 9
11 31/10 – 04/11	Fluida Statik dan Dinamik	Tekanan hidrostatik, prinsip Pascal, prinsip Archimedes, persamaan kontinuitas, dan persamaan Bernoulli.	Memahami konsep tekanan hidrostatik, prinsip Pascal, dan prinsip Archimedes pada persoalan fluida sederhana. Dapat menyelesaikan persoalan dinamika fluida dengan menggunakan persamaan kontinuitas dan persamaan Bernoulli.	Pustaka 1, Bab 11 Pustaka 2, Bab 10
12 07/11 – 11/11	<u>Kalor dan</u> <u>Temperatur</u>	Kalor dan temperatur. Perpindahan kalor.	Memahami prinsip pengukuran temperatur, konversi antara berbagai skala temperatur. Memahami konsep kalor spesifik, kapasitas kalor, dan kalor laten dalam transformasi fase. Dapat menggunakan prinsip kekekalan energi (asas Black) di dalam kalorimeter. Memahami konsep perpindahan kalor yang terdiri dari konduksi, konveksi, dan radiasi.	Pustaka 1, Bab 12, 13 Pustaka 2, Bab 14
13 14/11 – 18/11	Hukum Gas Ideal dan Teori Kinetik Gas	Gas ideal, ekipartisi energi, energi dalam.	Memahami konsep gas ideal. Dapat melakukan analisis dan menyelesaikan persoalan tentang gas ideal dengan menggunakan prinsip ekipartisi energi, energi dalam, dan kapasitas kalor.	Pustaka 1, Bab 14 Pustaka 2, Bab 13
14 21/11 – 25/11	<u>Termodinamika</u>	Kesetimbangan termal, proses kuasistatik, proses-proses khusus (isobar, isovolum, isotherm, dan adiabatik). Diagram P-V, usaha, hukum nol, pertama dan kedua termodinamika, proses siklik, efisiensi.	Memahami hukum ke nol, pertama, dan kedua Termodinamika untuk proses kuasistatik dan proses-proses khusus (isobar, isovolum, isotherm, dan adiabatik). Dapat menghitung efisiensi dari sebuah proses siklik.	Pustaka 1, Bab 15 Pustaka 2, Bab 15
15 28/11 – 02/12	Research Based Learning (RBL) Pengumpulan/Upload Hasil RBL / Praktikum mandiri			
UJIAN 2: SENIN, 5 DESEMBER 2022				
UJIAN 3: KAMIS, 15 DESEMBER 2022 Pustaka:				

Pustaka:

- Cutnell, J.D. & Johnson, K.W., Physics, 10th edition, John Wiley & Sons, 2015
 Douglas C. Giancoli, Physics (Principles with Applications), 7th edition, Pearson, 2014.