Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт по заданию курса «Суперкомпьютерное моделирование и технологии»

Шастун Екатерина Алексеевна, 628 группа

Постановка задачи

В рамках задания предлагалось произвести вычисление численного решения трехмерного гиперболического дифференциального уравнения в области трехмерного параллелепипеда.

В трехмерной замкнутой области:

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z],$$

для $(0 \le t \le T]$ требуется найти решение u(z,y,z,t) уравнения в частных производных

$$\frac{\partial^2 u}{\partial t^2} = \Delta u$$

с начальными условиями

$$u|_{t=0} = \varphi(x, y, z),$$
$$\frac{\partial u}{\partial t}\Big|_{t=0} = 0,$$

с граничными условиями

$$u(0, y, z, t) = u(L_x, y, z, t), \ u_x(0, y, z, t) = u_x(L_x, y, z, t),$$

$$u(x, 0, z, t) = u(x, L_y, z, t), \ u_y(x, 0, z, t) = u_y(x, L_y, z, t),$$

$$u(x, y, 0, t) = 0.$$

Аналитическое решение определялось вариантом задания:

$$u(x, y, z, t) = \sin\left(\frac{2\pi}{L_x} + 3\pi\right) \cdot \sin\left(\frac{2\pi}{L_y} + 2\pi\right) \cdot \sin\left(\frac{\pi}{L_z}\right) \cdot \cos(a_t \cdot t + \pi),$$
$$a_t = \pi \sqrt{\frac{4}{L_x} + \frac{4}{L_y} + \frac{1}{L_z}}$$

Численное решение

Для численного решения область Ω разбивается на сетку $\omega_{h au}=\overline{\omega}_h imes\omega_{ au}$, где

$$T = T_0$$

$$\begin{split} L_x &= L_{x_0}, \ L_y = L_{y_0}, \ L_z = L_{z_0} \\ \overline{\omega}_h &= \{ \left(x_i = i h_x, \ y_j = j h_y, \ z_k = k h_z \right), i, j, k = 0, 1, \dots, N, h_x N = L_x, h_y N = L_y, h_z N = L_z \} \\ \omega_\tau &= \{ t_n = n \tau, n = 0, 1, \dots K, \tau K = T \} \end{split}$$

В программной реализации использованы значения $T_0=1$, $L_{x_0}=L_{y_0}=1$

 L_{z_0} и равны 1 или π , K=1000, но n изменяется от 0 до 20.

Для аппроксимации исходного уравнения используем следующую формулу:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u^n, (x_i, y_j, z_k) \in \omega_h, n = 1, \dots K$$

Где Δ_h -- семиточечный оператор Лапласа:

$$\Delta_h u^n = \frac{u_{i-1,j,k}^n - 2u_{i,j,k}^n + u_{i+1,j,k}^n}{h^2} + \frac{u_{i,j-1,k}^n - 2u_{i,j,k}^n + u_{i,j+1,k}^n}{h^2} + \frac{u_{i,j,k-1}^n - 2u_{i,j,k}^n + u_{i,j,k+1}^n}{h^2}$$

Эта схема является явной и значения u_{ijk}^{n+1} можно выразить через значения, полученные на предыдущих шагах.

Из начальных условий следует, что

$$u_{ijk}^0 = \varphi(x_i, y_j, z_k)$$

И

$$\frac{u_{ijk}^1 - u_{ijk}^0}{\tau} = \frac{\tau}{2} \Delta_h \varphi(x_i, y_j, z_k)$$

После нахождения u^1_{ijk} и u^0_{ijk} можно найти все остальные значения u^n_{ijk} . Для нахождения значений на границах, используется заданая аналитическая функция.

Программная реализация

Программа использует MPI для параллельного выполнения. В командной строке задаются три значения $L_{\chi_0}, L_{\chi_0}, L_{Z_0}$.

В программе используются три основных массива:

- значения аналитической функции,
- массивы для хранения u^{n-1} и u^n .

Сетка топологически разбивается между процессами на блоки, и для обеспечения обмена данными между процессами задаются еще 6 массивов, каждый для соответствующей «стороны», где у процесса в топологии есть сосед.

На нулевом временном слое массивы заполняются значениями, равными значению аналитической функции про t=0.

Далее начинается цикл по t. На каждом шаге цикла сначала процессы обмениваются данными, затем в цикле считаются значения u^n_{ijk} : если (x_i, y_j, z_k) лежит на границе, используется аналитическая функция, иначе используется разностная формула. Каждый процесс считает максимальное значение погрешности и 0-й процесс выводит максимальную из них.

Основные использованные функции МРІ:

- MPI_Dims_create, MPI_Cart_create, MPI_Cart_coords для создания блочной топологии из процессов,
- MPI Cart shift для нахождения соседей процесса в топологии,

- MPI_Send, MPI_Recv, MPI_Sendrecv_replace для обмена данными между процессами,
- MPI_Reduce для нахождения максимальных погрешности и времени выполнения.

Также в программе используется технология OpenMP для распараллеливания вложенных циклов, которые проходят по элементам сетки.

Результаты расчетов для системы Polus

Ниже приведены результаты запуска программы на суперкомпьютере на разных числах процессов и с разными размерами сетки с OpenMP и без.

Число МРІ- процессов	Число точек сетки	Время выполнения	Ускорение	Погрешность на 20-м временном слое
1	128 ³	16.600358	1	0.000879
4	128 ³	3.2174885	5.2	0.000879
8	128 ³	1.3237355	12.5	0.000879
16	128 ³	0.4920925	33.7	0.000879
32	128 ³	0.4146275	40	0.000879
1	256 ³	180.16595	1	0.000882
4	256 ³	41.736934	4.3	0.000882
8	256 ³	19.396145	9.3	0.000882
16	256 ³	9.4026870	19.2	0.000882
32	256 ³	4.5074815	40	0.000882
1	512 ³	1544.9943	1	0.000883
4	512 ³	358.41677	4.3	0.000883
8	512 ³	187.97306	8.2	0.000883
16	512 ³	90.555377	17	0.000883
32	512 ³	47.386006	32.6	0.000883

Таблица 1. Запуск на Polus без ОрепМР для L_{x_0} , L_{y_0} , L_{z_0} =1

Число MPI- процессов	Число точек сетки	Время выполнения	Ускорение	Погрешность на 20-м временном слое
1	128 ³	16.628236	1	0.000090
4	128 ³	2.8737580	5.8	0.000090
8	128 ³	1.0955685	15.2	0.000090
16	128 ³	0.6635145	25.1	0.000090
32	128 ³	0.4428205	37.6	0.000090
1	256 ³	176.37192	1	0.000090
4	256 ³	42.208623	4.2	0.000090
8	256 ³	18.803151	9.4	0.000090

16	256 ³	9.4260665	18.7	0.000090
32	256 ³	4.7468645	37.2	0.000090
1	512 ³	1614.8141	1	0.000090
4	512 ³	357.30113	4.5	0.000090
8	512 ³	190.65331	8.5	0.000090
16	512 ³	91.708120	17.6	0.000090
32	512 ³	47.623713	33.9	0.000090

Таблица 2. Запуск на Polus без ОрепМР для L_{x_0} , L_{y_0} , L_{z_0} = π

Число	Число	Число	Время	Ускорение	Погрешность на 20-м
MPI-	OpenMP	точек	выполнения		временном слое
процессо	нитей в	сетки			
В	процессе				
1	4	128 ³	4.7389105	1	0.000879
2	4	128 ³	2.8252485	1.7	0.000879
4	4	128 ³	1.3836700	3.4	0.000879
8	4	128 ³	1.0714195	4.4	0.000879
1	4	256 ³	54.900592	1	0.000882
2	4	256 ³	29.268371	1.9	0.000882
4	4	256 ³	12.711699	4.3	0.000882
8	4	256 ³	8.1082370	6.8	0.000882
1	4	512 ³	441.22480	1	0.000883
2	4	512 ³	222.78346	2	0.000883
4	4	512 ³	115.60375	3.8	0.000883
8	4	512 ³	59.929599	7.4	0.000883

Таблица 3. Запуск на Polus с OpenMP для L_{x_0} , L_{y_0} , L_{z_0} =1

Число	Число	Число	Время	Ускорение	Погрешность на 20-м
MPI-	OpenMP	точек	выполнения		временном слое
процессо	нитей в	сетки			
В	процессе				
1	4	128 ³	5.3220050	1	0.000879
2	4	128 ³	2.7031195	2	0.000879
4	4	128 ³	1.0408560	5.1	0.000879
8	4	128 ³	1.0893865	4.9	0.000879

	1 _	0 = 42		_	
1	4	256^{3}	54.425716	1	0.000882
2	4	256 ³	29.729265	1.8	0.000882
4	4	256 ³	12.917617	4.2	0.000882
8	4	256 ³	7.9654410	6.8	0.000882
1	4	512 ³	401.28209	1	0.000883
2	4	512 ³	266.87632	1.5	0.000883
4	4	512 ³	119.96107	3.3	0.000883
8	4	512 ³	59.513777	6.7	0.000883

Таблица 4. Запуск на Polus с OpenMP для L_{x_0} , L_{y_0} , L_{z_0} = π

Графики решений и погрешностей можно найти в репозитории в формате .gif. Для простоты визуализации был использован размер сетки 32^3 .

Графики ускорений

Графики времени выполения

Итог

В результате проделанной работы был программно реализован численный метод нахождения решения дифференциального уравнения и провелось распараллеливание программы с помощью блочной топологии процессов.

Полученные результаты показывают, что с ростом числа процессов, уменьшается время вычисления. При добавлении в MPI-программу распараллеливания циклов с OpenMP, время выполнения уменьшается по сравнению с MPI без OpenMP, особенно на больших размерах сетки. Это говорит о хорошей масштабируемости задачи.