Out[1]:

0

20

21

23

24 25

26

27

28

29

```
In [1]: #QUERY 1
        import mysql.connector
        import pandas as pd
        import matplotlib.pyplot as plt
        host = "localhost"
        port = 3305
        user = "root"
        password = "root"
        database = "dma_project"
        conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
        cursor = conn.cursor()
        def execute_query(query):
            cursor.execute(query)
            data = cursor.fetchall()
            return data
        query = "SELECT * from organization"
        data = execute_query(query)
        columns = [desc[0] for desc in cursor.description]
        df_organization = pd.DataFrame(data, columns=columns)
        print("QUERY 1- Retrive the organization table:")
        cursor.close()
        conn.close()
        df_organization
```

O_NAME O_LOCATION O_CONTACT

Tokyo 309-645-1256

QUERY 1- Retrive the organization table:

Stellar Systems

SP961

SP981

SP982

SP984

SP985

SP986

SP987

SP988

SP989

SP990

ORGANIZATION_ID

1	SP962	Galactic Enterprises	Mumbai	611-532-0829
2	SP963	Cosmic Ventures	Mumbai	852-367-0844
3	SP964	Celestial Innovations	Dubai	334-357-3610
4	SP965	Nebula Corporation	New York	737-123-5285
5	SP966	AstroTech	Dubai	842-404-0867
6	SP967	Starbound Solutions	Rio de Janeiro	389-308-4833
7	SP968	Lunar Enterprises	Rio de Janeiro	113-739-7324
8	SP969	Solar Nexus	Mumbai	408-146-8508
g	SP970	Interstellar Holdings	Mumbai	780-691-8487
10	SP971	Orion Industries	London	396-604-4017
11	SP972	Nova Enterprises	Tokyo	245-250-2192
12	SP973	Cosmos Corporation	New York	817-750-7309
13	SP974	Astro Dynamics	Dubai	764-143-7956
14	SP975	Galaxy Group	Tokyo	849-863-2692
15	SP976	Comet Enterprises	Dubai	172-120-1968
16	SP977	Saturn Solutions	Tokyo	786-965-4374
17	SP978	Andromeda Innovations	New York	202-433-5356
18	SP979	Milky Way Enterprises	Tokyo	744-497-0441
19	SP980	Solaris Corporation	Toronto	985-218-4721

Supernova Systems

Cosmic Connections

Pulsar Innovations

AstroTech Solutions

Celestial Innovations

Starlight Holdings

Galactic Nexus

Stellar Solutions

Nebula Nexus

Sydney 626-404-1661

Aurora Enterprises Rio de Janeiro 873-238-8696

Paris 990-541-7190

Tokyo 139-394-1417

Sydney 395-177-3133

London 449-547-9344

Tokyo 689-426-3619

Berlin 850-139-7035

Berlin 805-556-9241

202-363-5941

Dubai

```
#QUERY 2
In [2]:
        import mysql.connector
        import pandas as pd
        import matplotlib.pyplot as plt
        host = "localhost"
        port = 3305
        user = "root"
        password = "root"
        database = "dma_project"
        conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
        cursor = conn.cursor()
        query = """
        SELECT R.ROCKET_ID, R.R_NAME, SD.DEBRIS_ID, SUM(SD.D_MASS) AS TOTAL_D_MASS
        FROM ROCKET R, SPACE_DEBRIS SD, PRESENT_IN P
        WHERE R.ROCKET ID = P.ROCKET ID
        AND P.DEBRIS_ID = SD.DEBRIS_ID
        GROUP BY R.ROCKET_ID, R.R_NAME, SD.DEBRIS_ID;
        cursor.execute(query)
        data = cursor.fetchall()
        columns = [desc[0] for desc in cursor.description]
        df = pd.DataFrame(data, columns=columns)
        cursor.close()
        conn.close()
        print("QUERY 2- Retrieve the total mass of debris for each rocket along with their respective rocket IDs, names, and de
        plt.figure(figsize=(8, 4))
        plt.bar(df['R_NAME'], df['TOTAL_D_MASS'], color='darkred', edgecolor='black', label='Total Debris Mass')
        plt.xlabel('Rocket Name')
        plt.ylabel('Total Debris Mass')
        plt.title('Bar Graph- Total Debris Mass for each Rocket')
        plt.legend()
        plt.xticks(rotation=90)
        plt.show()
        df.head(8)
```

QUERY 2- Retrieve the total mass of debris for each rocket along with their respective rocket IDs, names, and debris IDs:

Out[2]:		ROCKET_ID	R_NAME	DEBRIS_ID	TOTAL_D_MASS
	0	1	Falcon 9	100	50627782.50
	1	2	Atlas V	101	76311808.23
	2	3	Delta IV	102	32977925.00
	3	4	Soyuz	103	21346950.03
	4	5	Long March 5	104	79321433.33
	5	6	Proton-M	105	80919564.80
	6	7	Ariane 5	106	17986562.98
	7	8	H-IIA	107	68251580.56

```
In [3]: #QUERY 3
        import mysql.connector
        import pandas as pd
        import matplotlib.pyplot as plt
        host = "localhost"
        port = 3305
        user = "root"
        password = "root"
        database = "dma_project"
        conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
        cursor = conn.cursor()
        query = """
        SELECT S.S_STATUS, COUNT(S.SATELLITE_ID) AS SATELLITE_COUNT
        FROM SATELLITE S
        GROUP BY S.S_STATUS;
        cursor.execute(query)
        data = cursor.fetchall()
        columns = [desc[0] for desc in cursor.description]
        df = pd.DataFrame(data, columns=columns)
        cursor.close()
        conn.close()
        print("QUERY 3- Retrieve the distribution of satellites based on their operational status:")
        plt.figure(figsize=(6, 6))
        plt.pie(df['SATELLITE_COUNT'], labels=df['S_STATUS'], autopct='%1.0f%%', startangle=140, colors=['darkred', 'red', 'sa
        plt.title('Pie Chart- Distribution of Satellites by status')
        plt.show()
        df.tail(10)
```

QUERY 3- Retrieve the distribution of satellites based on their operational status:

Pie Chart- Distribution of Satellites by status

3	malfunctioning	7
3	sensor malfunction	8
1	software update	9
1	testing	10
1	power loss	11
2	standby	12

system reboot

orbit deviation

signal interference

13 payload deployment

14

15

16

S_STATUS SATELLITE_COUNT

2

2

1

1

Out[3]:

```
In [1]: |#QUERY 4
        import mysql.connector
        import pandas as pd
        import matplotlib.pyplot as plt
        host = "localhost"
        port = 3305
        user = "root"
        password = "root"
        database = "dma_project"
        conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
        cursor = conn.cursor()
        query = """
            SELECT R_NAME AS NEW_NAME, R_LAUNCH_DATE AS NEW_LAUNCH_DATE
            FROM ROCKET
            WHERE R_NAME IN ('Long March 5', 'Proton M', 'Soyuz', 'Electron', 'Minotaur', 'Pegasus')
            UNION
            SELECT S_NAME, S_LAUNCHED_DATE
            FROM SATELLITE
            WHERE SATELLITE_ID IN (
                SELECT DISTINCT S.SATELLITE_ID
                FROM SATELLITE S
                INNER JOIN LAUNCH_FACILITY F ON S.S_LAUNCHED_DATE = F.F_LAUNCHED_DATE
                WHERE F.F_LOCATION IN ('France', 'Turkey'))
            ORDER BY NEW_LAUNCH_DATE;
        cursor.execute(query)
        data = cursor.fetchall()
        cursor.close()
        conn.close()
        print("QUERY 4- Retrieve the names and launch dates of rockets along with the names and launch dates of satellites:")
        df = pd.DataFrame(data, columns=["NEW_NAME", "NEW_LAUNCH_DATE"])
        plt.figure(figsize=(8, 4))
        plt.plot(df["NEW_LAUNCH_DATE"], df["NEW_NAME"], marker='o', color='darkred', label='Rocket Launches')
        plt.xlabel("Launch Date")
        plt.ylabel("Rocket Name")
        plt.title("Line Graph - Rocket names by Launch date")
        plt.legend()
        plt.grid(True)
        plt.xticks(rotation=0)
        plt.show()
        df
```

QUERY 4- Retrieve the names and launch dates of rockets along with the names and launch dates of satellites:

Out[1]:

1 Satellite 10 2021-02-2 2 Pegasus 2021-04-1 3 Long March 5 2021-08-1 4 Electron 2022-03-1		NEW_NAME	NEW_LAUNCH_DATE
2 Pegasus 2021-04-1 3 Long March 5 2021-08-1 4 Electron 2022-03-1	0	Minotaur	2020-11-20
3 Long March 5 2021-08-14 Electron 2022-03-1	1	Satellite 10	2021-02-24
4 Electron 2022-03-1	2	Pegasus	2021-04-17
	3	Long March 5	2021-08-14
5 Soyuz 2022-04-2	4	Electron	2022-03-16
	5	Soyuz	2022-04-21

```
In [23]: #QUERY 5
         import mysql.connector
         import pandas as pd
         import matplotlib.pyplot as plt
         host = "localhost"
         port = 3305
         user = "root"
         password = "root"
         database = "dma_project"
         conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
         cursor = conn.cursor()
         query = """
         SELECT D.DEBRIS_ID, AVG(D.D_SIZE) AS AVERAGE_D_SIZE, LF.F_NAME
         FROM SPACE_DEBRIS D
         LEFT JOIN LAUNCH FACILITY LF ON D.D LAST OBSERVED DATE = LF.F LAUNCHED DATE
         GROUP BY LF.F_NAME, D.DEBRIS_ID;
         cursor.execute(query)
         data = cursor.fetchall()
         columns = [desc[0] for desc in cursor.description]
         df = pd.DataFrame(data, columns=columns)
         cursor.close()
         conn.close()
         print("QUERY 5- Retrieve the details of satellites, including their names, launch dates, and the corresponding rocket n
         plt.figure(figsize=(8, 4))
         plt.hist(df['AVERAGE_D_SIZE'], bins=10, color='darkred', edgecolor='black')
         plt.xlabel('Average Debris Size')
         plt.ylabel('Debris ID')
         plt.title('Distribution of Average Debris Size')
         plt.show()
         df.head(9)
```

QUERY 5- Retrieve the details of satellites, including their names, launch dates, and the corresponding rocket names used for their launches:

Out[23]:		DEBRIS_ID	AVERAGE_D_SIZE	F_NAME
·	0	100	59676192.110000	None
	1	101	24162452.760000	None
	2	102	60907255.530000	None
	3	103	85070511.790000	Alpha Spaceport
	4	103	85070511.790000	Zodiac Spaceport
	5	103	85070511.790000	Cosmic Launch Center
	6	103	85070511.790000	Infinity Launch Center
	7	103	85070511.790000	Saturn Spaceport
	8	103	85070511.790000	Celestial Launch Center

```
#QUERY 6
In [26]:
         import mysql.connector
         import pandas as pd
         import matplotlib.pyplot as plt
         host = "localhost"
         port = 3305
         user = "root"
         password = "root"
         database = "dma_project"
         conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
         cursor = conn.cursor()
         query = """
         SELECT * FROM ORBIT
         WHERE O_ALTITUDE > 60000000;
         cursor.execute(query)
         data = cursor.fetchall()
         columns = [desc[0] for desc in cursor.description]
         df = pd.DataFrame(data, columns=columns)
         cursor.close()
         conn.close()
         print("QUERY 6- Retrieve information about orbits with altitudes exceeding 60,000,000:")
         plt.figure(figsize=(8, 4))
         plt.scatter(df['ORBIT_ID'], df['O_ALTITUDE'], color='darkred', label='Orbit Altitudes')
         plt.xlabel('Orbit ID')
         plt.ylabel('Orbit Altitude')
         plt.title('Scatter Plot - Altitudes of Orbits exceeding 60,000,000')
         plt.legend()
         plt.show()
         df
```

QUERY 6- Retrieve information about orbits with altitudes exceeding 60,000,000:

Out[26]:		ORBIT_ID	O_ALTITUDE	O_INCLINATION	O_PERIOD
	0	1	75573096.26	18657393.29	34560278.21
	1	3	80929484.33	83275059.04	8496906.52
	2	4	86314989.96	46128196.04	25527126.45
	3	5	85444208.26	19662222.37	1685086.23
	4	11	72108333.33	557270.62	95178955.22
	5	13	76654964.60	39045090.84	94566158.73
	6	19	82483176.31	41893568.94	32661766.87
	7	20	63858377.62	98873271.47	24792772.41
	8	23	77554518.92	29233093.42	27625389.62
	9	26	76488810.35	65160817.24	28854486.74
	10	28	87173473.91	27381324.72	4372014.35

```
In [24]:
         #QUERY 7
         host = "localhost"
         port = 3305
         user = "root"
         password = "root"
         database = "dma_project"
         conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
         cursor = conn.cursor()
         query = """
             SELECT R.ROCKET_ID, R.R_NAME
             FROM ROCKET R
             WHERE EXISTS (
                 SELECT 1
                 FROM PRESENT_IN P
                 JOIN SENSOR S ON P.ROCKET_ID = R.ROCKET_ID
                 WHERE S.SEN_DETECTION_FREQUENCY IS NOT NULL)
                 LIMIT 15;
         cursor.execute(query)
         data = cursor.fetchall()
         cursor.close()
         conn.close()
         print("QUERY 7- Retrieve the Rocket names that have atleast one sensor associated with them:")
         df = pd.DataFrame(data, columns=["ROCKET_ID", "R_NAME"])
         plt.figure(figsize=(8, 4))
         plt.barh(df["R_NAME"], df["ROCKET_ID"],color='darkred',edgecolor='black')
         plt.xlabel("Rocket ID")
         plt.ylabel("Rocket Name")
         plt.title("Order of Rocket Names")
         plt.show()
         df
```

QUERY 7- Retrieve the Rocket names that have atleast one sensor associated with them:

Out[24]:	ROCKET_ID	R_NAME
0	1	Falcon 9
1	2	Atlas V
2	3	Delta IV
3	4	Soyuz
4	5	Long March 5
5	6	Proton-M
6	7	Ariane 5
7	8	H-IIA
8	9	GSLV Mk III
9	10	Vega
10	11	Antares
11	12	Electron
12	13	Minotaur
13	14	Pegasus
14	15	Starship

```
In [25]: #QUERY 8
         import mysql.connector
         import pandas as pd
         import matplotlib.pyplot as plt
         host = "localhost"
         port = 3305
         user = "root"
         password = "root"
         database = "dma_project"
         conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
         cursor = conn.cursor()
         query = """
         SELECT D.DEBRIS_ID, D.D_SIZE, D.D_MASS, D.D_LAST_OBSERVED_DATE, D.D_ORIGIN
         FROM SPACE_DEBRIS D
         WHERE NOT EXISTS (
             SELECT 1
             FROM PRESENT_IN PI
             WHERE PI.DEBRIS_ID = D.DEBRIS_ID
         ) OR D.D_LAST_OBSERVED_DATE < '2021-01-01';
         cursor.execute(query)
         data = cursor.fetchall()
         columns = [desc[0] for desc in cursor.description]
         df = pd.DataFrame(data, columns=columns)
         cursor.close()
         conn.close()
         print("QUERY 8- Retrieve the debris distribution by mass and origin:")
         plt.figure(figsize=(12, 6))
         plt.subplot(1, 2, 1)
         plt.pie(df['D_MASS'].value_counts(), labels=df['D_MASS'].value_counts().index, autopct='%1.1f%%', startangle=180,color
         plt.title('Pie Chart- Distribution of Debris by Mass')
         plt.subplot(1, 2, 2)
         plt.pie(df['D_ORIGIN'].value_counts(), labels=df['D_ORIGIN'].value_counts().index, autopct='%1.1f%%', startangle=200,c
         plt.title('Pie Chart- Distribution of Debris by Origin')
         plt.show()
         df
```

QUERY 8- Retrieve the debris distribution by mass and origin:

Pie Chart- Distribution of Debris by Mass

Pie Chart- Distribution of Debris by Origin

Out[25]:		DEBRIS_ID	D_SIZE	D_MASS	D_LAST_OBSERVED_DATE	D_ORIGIN
	0	104	95575034.80	79321433.33	2020-12-25	satellite breakups
	1	111	8732048.57	91455960.28	2020-12-06	lost equipments
	2	124	87111456.09	44822320.03	2020-11-13	fragmentation
	3	130	45446815.47	6301933.82	2021-04-01	launch vehicle debris

```
#QUERY 9
In [34]:
         import mysql.connector
         import pandas as pd
         import matplotlib.pyplot as plt
         import warnings
         host = "localhost"
         port = 3305
         user = "root"
         password = "root"
         database = "dma_project"
         conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
         cursor = conn.cursor()
         warnings.filterwarnings("ignore")
         query = """
         SELECT M.MANUFACTURE_ID, M.M_NAME AS MANUFACTURER_NAME, M.M_LOCATION AS MANUFACTURER_LOCATION, C.COUNTRY_ID, C.C_NAME AS CO
         FROM MANUFACTURER M
         JOIN COUNTRY_MANUFACTURER CM ON M.MANUFACTURE_ID = CM.MANUFACTURE_ID
         JOIN COUNTRY C ON CM.COUNTRY_ID = C.COUNTRY_ID
         LIMIT 12; """
         df = pd.read_sql_query(query, conn)
         cursor.close()
         conn.close()
         print("QUERY 9- Retrieve information about manufacturers and their countries:")
         plt.figure(figsize=(8, 4))
         plt.plot(df['MANUFACTURE_ID'], df['COUNTRY_ID'], marker='o', linestyle='-', color='darkred', label='Manufacturer-Count
         plt.title('Line Plot: Manufacturer ID vs Country ID')
         plt.xlabel('Manufacturer ID')
         plt.ylabel('Country ID')
         plt.legend()
         plt.show()
         df
```

QUERY 9- Retrieve information about manufacturers and their countries:

0 4 5 2 4 3						
Out[34]:		MANUFACTURE_ID	MANUFACTURER_NAME	MANUFACTURER_LOCATION	COUNTRY_ID	COUNTRY_NAME
	0	MN331	GalacticTech	Australia	W00111	United States
	1	MN332	StellarSystems	Australia	W00112	Canada
	2	MN333	CosmoParts	Brazil	W00113	Mexico
	3	MN334	AstroTech	United States	W00114	Brazil
	4	MN335	StarForge	Germany	W00115	Argentina
	5	MN336	CelestialMakers	India	W00116	United Kingdom
	6	MN337	NebulaIndustries	Italy	W00117	Germany
	7	MN338	OrbitTech	Australia	W00118	France
	8	MN339	LunarCraft	Japan	W00119	Italy
	9	MN340	SaturnSolutions	China	W00120	Spain
	10	MN341	CometComponents	India	W00121	Russia
	11	MN342	SolarTech	Italy	W00122	China

```
#QUERY 10
In [32]:
         host = "localhost"
         port = 3305
         user = "root"
         password = "root"
         database = "dma_project"
         conn = mysql.connector.connect(host=host, port=port, user=user, password=password, database=database)
         cursor = conn.cursor()
         query = """
         SELECT SEN_TYPE, AVG(SEN_DETECTION_RANGE) AS AvgDetectionRange
         FROM SENSOR
         GROUP BY SEN_TYPE;
         cursor.execute(query)
         data = cursor.fetchall()
         columns = [desc[0] for desc in cursor.description]
         df = pd.DataFrame(data, columns=columns)
         cursor.close()
         conn.close()
         print("QUERY 10- Retrive the average detection range by type of sensor:")
         plt.figure(figsize=(8, 4))
         plt.scatter(df['AvgDetectionRange'], df['SEN_TYPE'],color='darkred')
         plt.xlabel('Average Detection Range')
         plt.ylabel('Sensor Type')
         plt.title('Average Detection Range by Sensor Type')
         plt.show()
         df
```

QUERY 10- Retrive the average detection range by type of sensor:

Out[32]:		SEN_TYPE	AvgDetectionRange
	0	current	55657661.215000
	1	temperature	37674382.630000
	2	pressure	58866465.065000
	3	sound	62333420.543333
	4	gas	28760070.063333
	5	infrared	21966670.910000
	6	barometer	80663383.075000
	7	light	74416404.700000
	8	proximity	47407092.070000
	9	vibration	64098621.020000
	10	gyroscope	72619183.020000
	11	humidity	77097882.510000
	12	heart rate	29935489.130000
	13	moisture	42408760.090000

speed

14

4139282.560000