https://github.com/sangjianshun/Master-School/blob/master/EvaluationIndex1.py

汉明损失 (Hamming Loss)

$$HammingLoss = \frac{\sum_{i=1}^{N} \sum_{j=1}^{l_n} Y_{ij} xor P_{ij}}{N \times l_n}$$

N: 样本数, 这里为1

 l_n : 标签数,这里为5

Yij: 第i条样本是否包含第j个标签

 P_{ij} :第i个样本的第j个标签的预测情况

xor: 异或操作.即不同为1, 相同为0

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.5	0.1	0.15

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.6	0.1	0.35

体育	地理	娱乐	军事	科技
1	0	1	0	0
0	1	1	0	0

体育	地理	娱乐	军事	科技
1	0	1	0	0
	_	_	_	_

$$HammingLoss = \frac{2}{1 \times 5} = 0.4$$

$$HammingLoss = \frac{2}{1 \times 5} = 0.4$$

覆盖率 (Coverage)

$$Coverage = \frac{\sum_{i=1}^{N} \max(M_{l_1}, M_{l_2}, \dots, M_{l_n})}{N}$$

N: 样本数,这里为1 M_{l_n} :标签 l_n 的预测概率按照所有预测概率从大到小排序的位置,如果样本不包含标签 l_n 那么 M_{l_n} 会被更新为0

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.5	0.1	0.15

体育	地理	娱乐	军事	科技
1	0	1	0	0
3	2	1	4	5

$$Coverage = \frac{3}{1} = 3$$

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.6	0.1	0.35

体育	地理	娱乐	军事	科技
1	0	1	0	0
4	2	1	5	3

$$Coverage = \frac{4}{1} = 4$$

1-错误率 (One Error)

$$OneError = \frac{\sum_{i=1}^{N} I(\operatorname{argmax}_{l_j} P_{ij} \notin \mathbb{L}_i)}{N}$$

N: 样本数,这里为1 I(.): index function,即统计满足括号里 的条件的次数

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.5	0.1	0.15

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.5	0.1	0.15

$$OneError = \frac{0}{1} = 0$$

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.6	0.1	0.35

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.6	0.1	0.35

$$OneError = \frac{0}{1} = 0$$

排序损失 (Ranking Loss)

RankingLoss =	$\sum_{j\in\mathbb{L}_i}\sum_{k\in\overline{\mathbb{L}_i}}I(P_{ij}\leq P_{ik})$
KankingLoss —	$ \mathbb{L}_i * \overline{\mathbb{L}_i} $

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.5	0.1	0.15

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.6	0.1	0.35

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.5	0.1	0.15

 $\overline{\mathbb{L}}_i$: 样本不包含的标签集

 L_i : 样本包含的标签集

$$RankingLoss = \frac{1}{2*3} = 0.1667$$

$$RankingLoss = \frac{2}{2*3} = 0.3333$$

平均精确率 (Average Precision)

$$Precision = \frac{1}{|\mathbb{L}_i|} \sum_{l_j \in \mathbb{L}_i} \frac{l_j \text{在P}_{i.} \text{中的L}_{i} \text{子集排名}}{l_j \text{在P}_{i.} \text{中的排名}}$$

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.5	0.1	0.15

	体育	地理	娱乐	军事	科技
1	1	0	1	0	0
	3	2	1	4	5

$$Precision = \frac{1}{2} \left(\frac{2}{3} + \frac{1}{1} \right) = 0.8333$$

体育	地理	娱乐	军事	科技
1	0	1	0	0
0.3	0.4	0.6	0.1	0.35

体育	地理	娱乐	军事	科技
1	0	1	0	0
4	2	1	5	3

$$Precision = \frac{1}{2} \left(\frac{2}{4} + \frac{1}{1} \right) = 0.75$$