

Descriptive Statistics

Python Programming Lab

05506231 Statistics and Probability

- Churn_Modelling Dataset
- Descriptive Statistics for Numeric Data
- Descriptive Statistics Categorical Data
- Data Visualization

Churn_Modelling Dataset

Row			Credit						NumOf	HasCr	IsActive	Estimated	
Number	CustomerId	Surname	Score	Geography	Gender	Age	Tenure	Balance	Product	Card	Member	Salary	Exited
1	15634602	Hargrave	619	France	Female	42	2	0	1	1	1	101348.9	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.6	0
3	15619304	Onio	502	France	Female	42	8	159660.8	3	1	0	113931.6	1
4	15701354	Boni	699	France	Female	39	1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	43	2	125510.8	1	1	1	79084.1	0
6	15574012	Chu	645	Spain	Male	44	8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822	France	Male	50	7	0	2	1	1	10062.8	0
8	15656148	Obinna	376	Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9	15792365	He	501	France	Male	44	4	142051.1	2	0	1	74940.5	0
10	15592389	H?	684	France	Male	27	2	134603.9	1	1	1	71725.73	0
11	15767821	Bearce	528	France	Male	31	6	102016.7	2	0	0	80181.12	0
12	15737173	Andrews	497	Spain	Male	24	3	0	2	1	0	76390.01	0
13	15632264	Kay	476	France	Female	34	10	0	2	1	0	26260.98	0


```
from google.colab import files
uploaded = files.upload()
```

```
import pandas as pd
df = pd.read_csv( 'Churn_Modelling.csv' )
```

df.dtypes

RowNumber int64 CustomerId int64 Surname object CreditScore int64 Geography object Gender object Age int64 Tenure int64 Balance float64 NumOfProducts int64 HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 Exited int64 dtype: object			
CustomerId int64 Surname object CreditScore int64 Geography object Gender object Age int64 Tenure int64 Balance float64 NumOfProducts int64 HasCrCard int64 IsActiveMember int64 EstimatedSalary float64 Exited int64	0	df.dtypes	
		CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited	int64 object int64 object object int64 int64 float64 int64 int64 fnt64

Row			Credit						NumOf	HasCr	IsActive	Estimated	
Number	CustomerId	Surname	Score	Geography	Gender	Age	Tenure	Balance	Product	Card	Member	Salary	Exited
1	15634602	Hargrave	619	France	Female	42	2	0	1	1	1	101348.9	1
2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.6	0

Descriptive Statistics for Numeric Data

df.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

Mode

df.mode()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0	1.0	24924.92	0.0
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

df.mode(numeric_only=True)

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15565701	850.0	37.0	2.0	0.0	1.0	1.0	1.0	24924.92	0.0
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Descriptive Statistics for Categorical Data

df.describe(exclude=['float', 'int64'])

df.describe(include = 'object')

0	df.descr	df.describe(include = 'object')								
		Surname	Gender							
	count	10000	10000	10000						
	unique	2932	3	2						
	top	Smith	France	Male						
	freq	32	5014	5457						


```
S
```

```
df.RowNumber=df.RowNumber.astype('category')
df.CustomerId=df.CustomerId.astype('category')
df.HasCrCard=df.HasCrCard.astype('category')
df.IsActiveMember=df.IsActiveMember.astype('category')
df.Exited=df.Exited.astype('category')
df.NumOfProducts=df.NumOfProducts.astype('category')

df.Geography = df.Geography.astype('category')
df.Surname = df.Surname.astype('category')
df.Gender = df.Gender.astype('category')
```

df.dtypes
RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited

Descriptive Statistics for Categorical Data

df.describe(include = 'category')

D	df.descr	ribe(include	e = 'category	y')						
		RowNumber	CustomerId	Surname	Geography	Gender	NumOfProducts	HasCrCard	IsActiveMember	Exited
	count	10000	10000	10000	10000	10000	10000	10000	10000	10000
	unique	10000	10000	2932	3	2	4	2	2	2
	top	10000	15815690	Smith	France	Male	1	1	1	0
	freq	1	1	32	5014	5457	5084	7055	5151	7963

df.Geography.value counts()

```
df.Geography.value_counts()

France 5014
Germany 2509
Spain 2477
Name: Geography, dtype: int64
```


- Bar charts
- Box plot
- Histogram

df.Geography.value counts().plot.bar(grid=True)


```
import matplotlib.pyplot as plt
import seaborn as sns
sns.set style('darkgrid')
colors = ['#00A5E0', '#DD403A']
fig = plt.figure(figsize = (5, 5))
sns.countplot(x = 'Exited', data = df, palette = colors)
for index, value in enumerate(df['Exited'].value counts()):
    label = '{}%'.format(round( (value/df['Exited'].shape[0])*100, 2))
    plt.annotate(label, xy = (index -0.25, value -800), color = 'w', fontweight='bold', size=17)
plt.title('Number of Retained and Churned Customers')
plt.xticks([0, 1], ['Remained', 'Churned'])
plt.xlabel('Status')
plt.ylabel('Count');
```



```
sns.set_style('darkgrid')
colors = ['#00A5E0', '#DD403A']

fig = plt.figure(figsize = (5, 5))
sns.countplot(x = 'Exited', data = df, palette = colors)

for index, value in enumerate(df['Exited'].value counts()):
    label = '{:,}'.format(value)
    plt.annotate(label, xy = (index -0.25, value -800), color = 'w',fontweight='bold',size=17)
plt.title('Number of Retained and Churned Customers')
plt.xticks([0, 1], ['Remained', 'Churned'])
plt.xlabel('Status')
plt.ylabel('Count');
```



```
fig, axarr = plt.subplots(2, 2, figsize=(20, 12))
sns.countplot(x='Geography', hue = 'Exited', data = df, ax=axarr[0][0])
sns.countplot(x='Gender', hue = 'Exited', data = df, ax=axarr[0][1])
sns.countplot(x='HasCrCard', hue = 'Exited', data = df, ax=axarr[1][0])
sns.countplot(x='IsActiveMember', hue = 'Exited', data = df, ax=axarr[1][1])
```



```
fig, axarr = plt.subplots(2, 2, figsize=(20, 12))
sns.countplot(x='Geography', hue='Exited',data = df, palette="Set1", ax=axarr[0][0])
sns.countplot(x='Gender', hue ='Exited',data = df, palette="pastel", ax=axarr[0][1])
sns.countplot(x='HasCrCard', hue='Exited',data = df, palette="Set2", ax=axarr[1][0])
sns.countplot(x='IsActiveMember', hue='Exited',data = df, palette="Set3", ax=axarr[1][1])
```


- Majority of the data is from persons from France. Germany has the highest proportion of churned customers.
- The proportion of female customers churning is also greater than that of male customers

- No different proportion of customer churning between HasCrCard and not have.
- The inactive members have a greater churn.

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR

$$IQR = Q_3 - Q_1$$

- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Example: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110

$$Q_1 = 48.5$$

 $Q_2 = 54$
 $Q_3 = 66.5$
 $IQR = 18$

Box Plot

(Quartile 3 - Quartile 2) = (Quartile 2 - Quartile 1)

Positive Skew

(Quartile 3 - Quartile 2) > (Quartile 2 - Quartile 1)

Negative Skew

(Quartile 3 - Quartile 2) < (Quartile 2 - Quartile 1)

Symmetric

Asymmetric (positive or right skewed)

Asymmetric (negative or left skewed)

sns.boxplot(y='Age', data = df)


```
fig = plt.figure(figsize = (8, 5))
sns.boxplot(y='Age',x = 'Exited', hue = 'Exited',data = df)
```


sns.boxplot(y='Age',x = 'Gender', hue = 'Exited', data = df)

Box Plot

```
fig, axarr = plt.subplots( 2, 3, figsize=(15, 10))
sns.boxplot(y='CreditScore',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][0])
sns.boxplot(y='Age',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][1])
sns.boxplot(y='Tenure',x = 'Exited', hue = 'Exited',data = df, ax=axarr[0][2])
sns.boxplot(y='Balance',x = 'Exited', hue = 'Exited',data = df, ax=axarr[1][0])
sns.boxplot(y='EstimatedSalary',x = 'Exited', hue = 'Exited',data = df, ax=axarr[1][1])
```


Box Plot

- There is no significant difference in the credit score distribution between retained and churned customers.
- The older customers are churning at more than the younger ones.
- The customers on either extreme end (spent little time with the bank or a lot of time with the bank) are more likely to churn compared to those that are of average tenure.

- The bank is losing customers with significant bank balances.
- The salary has no significant effect on the likelihood to churn.


```
fig = plt.figure(figsize = (10,8))
sns.histplot(df, x="Age")
```



```
fig = plt.figure(figsize = (10, 8))
sns.histplot(df, x="Age", hue = 'Exited', multiple="dodge")
```


multiple="stack"


```
fig, axarr = plt.subplots( 2, 2, figsize=(15, 10))
sns.histplot(df, x="Age", hue = 'Exited', multiple="stack", ax=axarr[0][0])
sns.histplot(df, x="CreditScore", hue = 'Exited', multiple="stack", ax=axarr[0][1])
sns.histplot(df, x="Balance", hue = 'Exited', multiple="stack", ax=axarr[1][0])
sns.histplot(df, x="EstimatedSalary", hue = 'Exited', multiple="stack", ax=axarr[1][1])
```


- Most of our customers are between the age of 28 to 40.
- Credit Score seems like left skewed.

- Balances of the customers are seemed to be symmetrically distributed.
- There is not much variation in Estimated salary.

