# Geometry and Linear Algebra

Wilhansen Li

July 15, 2012

## Outline

- Notations
- 2 Coordinates
  - Linear Combination
  - Basis
- 3 Vector Products
  - Dot Product
  - Cross Product in  $\mathbb{R}^2$
  - Cross Product in  $\mathbb{R}^3$
- Orthogonality
  - Properties
  - Orthogonal Basis
  - Orthogonal Matrices



# Notations/Conventions

• 
$$[a_1, a_2, \dots, a_n]^T$$
 is equal to  $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$ .

- $\langle a_1, a_2, \ldots, a_n \rangle$  is equivalent to  $[a_1, a_2, \ldots, a_n]^T$ .
- a, b, c, d, s, t will usually mean scalars (i.e. elements of  $\mathbb{R}$ ).
- $\vec{u}$ ,  $\vec{v}$  will usually mean vectors (the arrows are there to emphasize).
- $|\vec{u}|$  means the magnitude of vector  $\vec{u}$ .
- A, B will usually mean matrices.
- n, m will usually mean natural numbers (i.e. elements of  $\mathbb{N}$ ).
- A "euclidean space" basically means  $\mathbb{R}^n$  given a geometric interpretation.

# Geometric Interpretation of Linear Combinations

Consider  $\mathbb{R}^2$ . Let  $\vec{i}=\langle 1,0\rangle$  and  $\vec{j}=\langle 0,1\rangle$ . Then,

$$\langle a,b\rangle = a\vec{i} + b\vec{j}.$$

What if we retain a and b and try another pair of vectors? Say  $\vec{u} = \langle 2, 0 \rangle$  and  $\vec{v} = \langle 0, 2 \rangle$ .

$$a\vec{u} + b\vec{v} = \begin{bmatrix} \vec{u} & \vec{v} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \langle 2a, 2b \rangle$$

What do you think is the effect visually?

#### Remark

By using different bases, we can "transform" the points.



A basis is also known as a coordinate frame.

One common question is that, suppose we have a basis  $\{u_1, u_2\}$  and a vector  $p = au_1 + bu_2$ . What's the equivalent point to another set of basis  $\{v_1, v_2\}$ ? That is, find s, t such that

$$au_1+bu_2=sv_1+tv_2.$$

This basically boils down to the following matrix equation:

$$\begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix}$$
$$\begin{bmatrix} v_1 & v_2 \end{bmatrix}^{-1} \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} s \\ t \end{bmatrix}$$

For certain cases, the inverse is easy to compute.



## Dot Product in $\mathbb{R}^{2}$

#### Definition

Let  $\vec{u} = \langle x_0, y_0 \rangle, \vec{v} = \langle x_1, y_1 \rangle$ . The dot product of  $\vec{u}$  and  $\vec{v}$ , denoted by  $\vec{u} \cdot \vec{v}$  is defined as

$$\vec{u}\cdot\vec{v}=x_0x_1+y_0y_1.$$

Note that the dot product maps  $\mathbb{R}^2$  to  $\mathbb{R}$ .

#### Theorem

Let  $\vec{u}, \vec{v} \in \mathbb{R}^n$ , then

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta$$

where  $\theta$  is the angle between  $\vec{u}$  and  $\vec{v}$ .



### Example

Suppose we have  $\vec{u}=\langle 1,1\rangle, \vec{v}=\langle \frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}+1}{2}\rangle$ . Find the angle between  $\vec{u}$  and  $\vec{v}$ .

## Example

Let A be an  $n \times n$  matrix, what will the elements of  $A^TA$  contain?

## Example

What is  $\vec{u} \cdot \vec{u}$ ?

## Dot Products in $\mathbb{R}^n$

#### Definition

Let  $\vec{u} = \langle a_1, a_2, \dots, a_n \rangle$  and  $\vec{v} = \langle b_1, b_2, \dots, b_n \rangle$ . Then

$$\vec{u}\cdot\vec{v}=\sum_{i=1}^n a_ib_i.$$

Equivalently, if  $u, v \in \mathbb{R}^n$  then the dot product (also called the standard inner product) is written as

$$u^T v$$
.

#### Definition

 $u,v\in\mathbb{R}^n\setminus\{\mathbf{0}\}$  are orthogonal (i.e. perpendicular) if and only if

$$u^T v = 0$$

### Example

Is  $\langle \frac{\sqrt{3}+1}{2}, -\frac{\sqrt{3}-1}{2} \rangle$  and  $\langle \frac{\sqrt{3}-1}{2}, \frac{\sqrt{3}+1}{2} \rangle$  perpendicular to each other?

# Properties of the Dot Product

Let  $u, v, w \in \mathbb{R}^n$ ,  $a \in \mathbb{R}$ :

- $u^T v = v^T u$  (Commutativity)
- $(au)^T v = a(u^T v)$  (Homogeneity)
- $u^T \mathbf{0} = 0$
- $|u|^2 = u^T u \ge 0$
- $u^T u = 0 \Leftrightarrow u = \mathbf{0}$
- $w^T(u+v) = w^Tu + w^Tv$  (Distributivity over addition)
- $\bullet \ u^T v = |u||v|\cos\theta \le |u||v|$

## Example

$$w^{T}(au + bv) = w^{T}(au) + w^{T}(bv) = au^{T}w + bv^{T}w$$



### Example

$$|-u|^2 = (-u)^T(-u) = -(u^T(-u)) = -((-u)^T u) = u^T u$$

### Example

$$|u - v|^{2} = (u - v)^{T}(u - v)$$

$$= (u - v)^{T}u - (u - v)^{T}v$$

$$= u^{T}u - v^{T}u - u^{T}v + v^{T}v$$

$$= u^{T}u - u^{T}v - u^{T}v + v^{T}v$$

$$= |u|^{2} + |v|^{2} - 2u^{T}v$$

$$= |u|^{2} + |v|^{2} - 2|u||v|\cos\theta \qquad \text{(Law of Cosines)}$$

#### **Theorem**

Let  $\vec{u}, \vec{v} \in \mathbb{R}^n$  then

$$\vec{u} \cdot \vec{v} \begin{cases} > 0 & \text{If the angle between } \vec{u} \text{ and } \vec{v} \text{ is acute.} \\ = 0 & \text{If the angle between } \vec{u} \text{ and } \vec{v} \text{ is right.} \\ < 0 & \text{If the angle between } \vec{u} \text{ and } \vec{v} \text{ is obtuse.} \end{cases}$$

## Cross Product in $\mathbb{R}^2$

#### Definition

Let  $\vec{u} = \langle x_0, y_0 \rangle, \vec{v} = \langle x_1, y_1 \rangle$ . The cross product of u and v, denoted by  $u \times v$  is defined as

$$\vec{u}\times\vec{v}=x_0y_1-x_1y_0.$$

Note that the cross product maps  $\mathbb{R}^2$  to  $\mathbb{R}$ .

#### **Theorem**

Let  $\vec{u}, \vec{v} \in \mathbb{R}^2$ , then

$$\vec{u} \times \vec{v} = |\vec{u}||\vec{v}|\sin\theta$$

where  $\theta$  is the angle between  $\vec{u}$  and  $\vec{v}$ .



# Properties of the Cross Product

Let  $u, v, w \in \mathbb{R}^2$ ,  $a \in \mathbb{R}$ :

- $u \times v = -(v \times u)$  (Anticommutativity)
- $\bullet \ u \times (v+w) = u \times v + u \times w$
- $\bullet (v+w) \times u = v \times u + w \times u$
- $au \times v = u \times av = a(u \times v)$
- Let  $u = [x_0, y_0]^T$ ,  $v = [x_1, y_1]^T$  then  $u \times v = \det \begin{pmatrix} x_0 & y_0 \\ x_1 & y_1 \end{pmatrix}$

## Area of a Triangle

Suppose we have triangle ABC. Find the area of the triangle.



Let 
$$\vec{u} = B - A$$
,  $\vec{v} = C - A$ .

Area = 
$$\frac{bh}{2} = \frac{|\vec{u}|(|\vec{v}|\sin\theta)}{2} = \frac{\vec{u} \times \vec{v}}{2}$$

## Triangle Order

 $\frac{\vec{u} \times \vec{v}}{2}$  is signed, when will the computation of the area be negative? Suppose we have the same triangle *ABC* but labeled differently:



Again, let 
$$\vec{u} = B - A$$
,  $\vec{v} = C - A$ :

$$\frac{ec{u} imes ec{v}}{2} = \frac{|ec{u}||ec{v}|\sin(- heta)}{2} = -\frac{bh}{2} = -\mathsf{Area}$$

#### **Theorem**

Given triangle ABC, let  $\vec{u} = B - A$  and  $\vec{v} = C - A$ .

$$u \times v = \begin{cases} > 0 & \text{if ABC is counter-clockwise} \\ < 0 & \text{if ABC is clockwise} \\ = 0 & \text{if ABC is degenerate} \end{cases}$$

## Cross Product in $\mathbb{R}^3$

#### Definition

Let  $\vec{u} = \langle x_0, y_0, z_0 \rangle, \vec{v} = \langle x_1, y_1, z_1 \rangle$ . The cross product of u and v, denoted by  $u \times v$  is defined as

$$\vec{u} \times \vec{v} = \langle y_0 z_1 - y_1 z_0, -(x_0 z_1 - x_1 z_0), x_0 y_1 - x_1 y_0 \rangle.$$

This maps  $\mathbb{R}^3$  to  $\mathbb{R}^3$ .

The direction of the resultant vector can be visualized using the right hand rule.

#### **Theorem**

Let  $\vec{u}, \vec{v} \in \mathbb{R}^3$ , then

$$\vec{u} \times \vec{v} = \vec{w}(|\vec{u}||\vec{v}|\sin\theta)$$

where  $\theta$  is the angle from  $\vec{u}$  to  $\vec{v}$  and  $\vec{w}$  is the normalized vector perpendicular to  $\vec{u}$  and  $\vec{v}$  using the right hand rule.

#### remark

The cross product in  $\mathbb{R}^3$  is the way to obtain a vector perpendicular to two vectors. This is one of the computations used for backface culling.

# Some Additional Properties of the Cross Product in $\mathbb{R}^3$

• 
$$(\vec{u} \times \vec{v}) \cdot \vec{u} = 0$$
 and  $(\vec{u} \times \vec{v}) \cdot \vec{v} = 0$ .

$$\bullet \ (\vec{u} \times \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \times \vec{w})$$

• Let 
$$\vec{u} = \langle x_0, y_0, z_0 \rangle$$
 and  $\vec{v} = \langle x_1, y_1, z_1 \rangle$  then

$$\vec{u} \times \vec{v} = \det \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_0 & y_0 & z_0 \\ x_1 & y_1 & z_1 \end{pmatrix}$$

Let 
$$\vec{i} = \langle 1, 0, 0 \rangle, \vec{j} = \langle 0, 1, 0 \rangle$$
 and  $\vec{k} = \langle 0, 0, 1 \rangle$  then:

- $\vec{i} \times \vec{j} = \vec{k}$ .
- $\vec{j} \times \vec{k} = \vec{i}$ .
- $\vec{k} \times \vec{i} = \vec{j}$ .

Recall that vectors  $\vec{u}$  and  $\vec{v}$  are orthogonal if  $\vec{u} \cdot \vec{v} = 0$ .

## Pythagorean Theorem

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2.$$

#### Coordinate Retrieval

If  $\vec{w} \in \operatorname{span}(\vec{u}, \vec{v})$  so  $\exists a, b : \vec{w} = a\vec{u} + b\vec{v}$  then

$$\begin{aligned} \frac{\vec{w} \cdot \vec{u}}{|\vec{u}|^2} &= \frac{(a\vec{u} + b\vec{v}) \cdot \vec{u}}{|\vec{u}|^2} = \frac{a\vec{u} \cdot \vec{u} + b\vec{v} \cdot \vec{u}}{|\vec{u}|^2} \\ &= \frac{a\vec{u} \cdot \vec{u}}{|\vec{u}|^2} = a \end{aligned}$$

The same goes for  $\vec{v}$ .

#### Definition

Let  $\mathcal V$  be a vector space, the orthogonal complement of  $\mathcal V,$  denoted by  $\mathcal V^\perp$  is:

$$\mathcal{V}^{\perp} = \{ u : u^{\mathsf{T}} v = 0 \quad \forall v \in \mathcal{V} \}$$

Note:  $\mathcal{V}^{\perp}$  forms a vector space.

#### Definition

Define the unary operator  $\perp$  on  $\mathbb{R}^2$  to be:

$$\langle a, b \rangle^{\perp} = \langle -b, a \rangle$$

## Example

Let  $\vec{v} \in \mathbb{R}^2$ , what would the orthogonal complement of span $(\vec{v})$  look like?

### Example

Let  $\vec{v} \in \mathbb{R}^3$ , what would the orthogonal complement of span $(\vec{v})$  look like?

### Example

Let  $\{\vec{v}, \vec{u}\}$  be a basis in  $\mathbb{R}^3$ , what would the orthogonal complement of span $(\vec{v}, \vec{u})$  look like?

#### Definition

A basis  $\{u_1, u_2, \dots, u_n\}$  is orthogonal if:

$$u_i \cdot u_j = \begin{cases} 0 & i \neq j \\ c_i \neq 0 & i = j \end{cases}$$

for all  $i, j \leq n$ .

If  $c_i = 1 \ \forall i$  (i.e.  $|u_i| = 1$ ) then the basis is also said to be orthonormal.

Let  $A = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$  where  $u_1, u_2, \dots, u_n$  form an orthogonal basis.

- What is  $A^T A$ ?
- How do we get the coordinates of a vector v with respect to  $\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ ?
- If  $u_1, u_2, \ldots, u_n$  form an orthonormal basis, what is  $A^T A$ ?
- How do we extract the coordinates for an orthonormal basis?