## **Physics**

## NCERT Exemplar Problems

## Chapter 1

## Electric Charges and Fields

- 1.1 (a) as  $q_1$  is negative, so Q will attract  $q_1$ .
- 1.2 (a) as electric field is moves +ve to -ve and always normal to the surface.
- 1.3 (d) as the net charge enclosed by all figures is same and flux =  $q/\varepsilon$
- 1.4 (b) as q2 and q4 are enclosed by the Gaussian Surface.
- 1.5 (c) as the Electric Field is not uniform.
- 1.6 (a) directed perpendicular to the plane and away from the plane.
- 1.7 (a) perpendicular to the diameter
- 1.8 (c), (d)
- 1.9 (b), (d)
- 1.10 (b), (d)
- 1.11 (c), (d)
- 1.12 (a), (c).
- 1.13 (a), (b), (c) and (d).
- 1.14 Zero.
- 1.15 (i)  $\frac{-Q}{4\pi R_1^2}$  (ii)  $\frac{Q}{4\pi R_2^2}$
- 1.16 The electric fields bind the atoms to neutral entity. Fields are caused by excess charges. There can be no excess charge on the inter surface of an isolated conductor.
- 1.17 No, the field may be normal. However, the converse is true.

1.18



Top view

1.19 (i) 
$$\frac{q}{8\varepsilon_0}$$
 (ii)  $\frac{q}{4\varepsilon_0}$  (iii)  $\frac{q}{2\varepsilon_0}$  (iv)  $\frac{q}{2\varepsilon_0}$ 

1.20 1 Molar mass M of Al has  $N_A = 6.023 \times 10^{23}$  atoms.

 $\therefore$   $m = \text{mass of Al paisa coin has } N = N_A \frac{m}{M}$  atoms

Now,  $Z_{Al} = 13$ ,  $M_{Al} = 26.9815$ g

Hence  $N=6.02\times 10^{23}$  atoms/mol  $\times \frac{0.75}{26.9815 \mathrm{g/mol}}$ 

$$= 1.6733 \times 10^{22}$$
 atoms

 $\therefore q$  = +ve charge in paisa = N Ze=  $(1.67 \times 10^{22})(13) (1.60 \times 10^{-19} \text{C})$ 

 $= 3.48 \times 10^4 \text{ C}.$ 

q = 34.8 kC of  $\pm \text{ve}$  charge.

This is an enormous amount of charge. Thus we see that ordinary neutral matter contains enormous amount of  $\pm$  charges.

1.21 (i) 
$$F_1 = \frac{|\mathbf{q}|^2}{4\pi \varepsilon_0 r_1^2} = \left(8.99 \times 10^9 \frac{\mathrm{Nm}^2}{\mathrm{C}^2}\right) \frac{(3.48 \times 10^4 \mathrm{C})}{10^{-4} \mathrm{m}^2} = 1.1 \times 10^{23} \mathrm{N}$$

(ii) 
$$\frac{F_2}{F_1} = \frac{r_1^2}{r_2^2} = \frac{(10^{-2} \,\mathrm{m})^2}{(10^2 \,\mathrm{m})^2} = 10^{-8} \Rightarrow F_2 = F_1 \times 10^{-8} = 1.1 \times 10^{15} \,\mathrm{N}$$

(iii) 
$$\frac{F_3}{F_1} = \frac{r_1^2}{r_3^2} = \frac{(10^{-2} \,\mathrm{m})^2}{(10^6 \,\mathrm{m})^2} = 10^{-16}$$

$$F_3 = 10^{-16} F_1 = 1.1 \times 10^7 \text{ N}.$$

**Conclusion:** When separated as point charges these charges exert an enormous force. It is not easy to disturb electrical neutrality.

- 1.22 (i) Zero, from symmetry.
  - (ii) Removing a +ve Cs ion is equivalent to adding singly charged -ve Cs ion at that location.

    Net force then is

$$F = \frac{e^2}{4\pi\varepsilon_0 r^2}$$

where r = distance between the Cl ion and a Cs ion.

$$= \sqrt{(0.20)^2 + (0.20)^2 + (0.20)^2} \times 10^{-9} = \sqrt{3(0.20)^2} \times 10^{-9}$$
$$= 0.346 \times 10^{-9} \,\mathrm{m}$$

Hence, 
$$F = \frac{(8.99 \times 10^9)(1.6 \times 10^{-19})^2}{(0.346 \times 10^{-9})^2} = 192 \times 10^{-11}$$
  
= 1.92 × 10<sup>-9</sup> N

Ans  $1.92 \times 10^{-9}$  N, directed from A to Cl<sup>-</sup>

1.23 At P: on 2q, Force due to q is to the left and that due to -3q is to the right.

$$\therefore \frac{2q^2}{4\pi\varepsilon_0 x^2} = \frac{6q^2}{4\pi\varepsilon_0 (d+x)^2}$$

$$\therefore (d+x)^2 = 3x^2$$

$$\therefore 2x^2 - 2dx - d^2 = 0$$

$$x = \frac{d}{2} \pm \frac{\sqrt{3}d}{2}$$

(-ve sign would be between q and -3q and hence is unaceptable.)

$$x = \frac{d}{2} + \frac{\sqrt{3}d}{2} = \frac{d}{2}(1 + \sqrt{3})$$
 to the left of q.

- 1.24 (a) Charges A and C are positive since lines of force emanate from them.
  - (b) Charge C has the largest magnitude since maximum number of field lines are associated with it.
  - (c) (i) near A. There is no neutral point between a positive and a negative charge. A neutral point may exist between two like charges. From the figure we see that a neutral point exists between charges A and C. Also between two like charges the neutral point is closer to the charge with smaller magnitude. Thus, electric field is zero near charge A.
- 1.25 (a) (i) zero (ii)  $\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} along \overrightarrow{OA}$  (iii)  $\frac{1}{4\pi\varepsilon_0} \frac{2q}{r^2} along \overrightarrow{OA}$ 
  - (b) same as (a).

1.26 (a) Let the Universe have a radius R. Assume that the hydrogen atoms are uniformly distributed. The charge on each hydrogen atom is  $e_H = -(1 + y) e + e = -ye = |ye|$ 

The mass of each hydrogen atom is  $\sim m_p$  (mass of proton). Expansion starts if the Coulumb repulsion on a hydrogen atom, at R, is larger than the gravitational attraction.

Let the Electric Field at R be  $\mathbf{E}$ . Then

$$4\pi R^2 E = \frac{4}{3\varepsilon_0} \pi R^3 N |ye|$$
 (Gauss's law)

$$\mathbf{E} (R) = \frac{1}{3} \frac{N|ye|}{\varepsilon_o} R \hat{\mathbf{r}}$$

Let the gravitational field at R be  $G_{\mathbb{R}}$ . Then

$$-4\pi R^2 G_R = 4 \pi G m_p \frac{4}{3} \pi R^3 N$$

$$G_R = -\frac{4}{3}\pi Gm_{\rho}NR$$

$$\mathbf{G}_{\mathrm{R}}(\mathbf{R}) = -\frac{4}{3} \pi \mathrm{G} m_{\rho} N R \hat{\mathbf{r}}$$

Thus the Coulombic force on a hydrogen atom at R is

$$ye\mathbf{E}(R) = \frac{1}{3} \frac{Ny^2 e^2}{\varepsilon_0} R \hat{\mathbf{r}}$$

The gravitional force on this atom is

$$m_p \mathbf{G}_R(R) = -\frac{4\pi}{3} GNm_p^2 R \hat{\mathbf{r}}$$

The net force on the atom is

$$\boldsymbol{F} = \left(\frac{1}{3} \frac{Ny^2 e^2}{\varepsilon_o} R - \frac{4\pi}{3} GNm_p^2 R\right) \hat{\boldsymbol{r}}$$

The critical value is when

$$\frac{1}{3} \frac{Ny_{c}^{2} e^{2}}{\varepsilon_{o}} R = \frac{4\pi}{3} GNm_{p}^{2} R$$

$$\Rightarrow y_{c}^{2} = 4\pi\varepsilon_{o} G \frac{m_{p}^{2}}{e^{2}}$$

$$\Box \frac{7 \times 10^{-11} \times 1.8^{2} \times 10^{6} \times 81 \times 10^{-62}}{9 \times 10^{9} \times 1.6^{2} \times 10^{-38}}$$

$$\Box 63 \times 10^{-38}$$

$$\therefore y_{\rm C} \square 8 \times 10^{-19} \square 10^{-18}$$

(b) Because of the net force, the hydrogen atom experiences an acceleration such that

$$m_p \frac{d^2 R}{dt^2} = \left( \frac{1}{3} \frac{N y^2 e^2}{e_o} R - \frac{4p}{3} G N m_p^2 R \right)$$

Or, 
$$\frac{d^2R}{dt^2} = a^2R$$
 where  $\alpha^2 = \frac{1}{m_p} \left( \frac{1}{3} \frac{Ny^2 e^2}{e_o} - \frac{4p}{3} GNm_p^2 \right)$ 

This has a solution  $R = Ae^{at} + Be^{-at}$ 

As we are seeking an expansion, B = 0.

$$\therefore R = Ae^{\alpha t}$$

$$\Rightarrow \dot{R} = \alpha A e^{\alpha t} = \alpha R$$

Thus, the velocity is proportional to the distance from the centre.

1.27 (a) The symmetry of the problem suggests that the electric field is radial. For points r < R, consider a spherical Gaussian surfaces. Then on the surface

$$\iint \mathbf{E}_{r}.d\mathbf{S} = \frac{1}{\varepsilon_{o}} \int_{V} \rho dv$$

$$4\pi r^{2}E_{r} = \frac{1}{\varepsilon_{o}} 4\pi k \int_{o}^{r} r'^{3} dr'$$
$$= \frac{1}{\varepsilon_{o}} \frac{4\pi k}{4} r^{4}$$

$$\therefore E_r = \frac{1}{4\varepsilon_o} kr^2$$

$$\mathbf{E}(r) = \frac{1}{c} k r^2 \hat{\mathbf{r}}$$

For points r > R, consider a spherical Gaussian surfaces' of radius r.

$$\iint \mathbf{E}_r.d\mathbf{S} = \frac{1}{\varepsilon_o} \int_V \rho dv$$

$$4\pi r^2 E_r = \frac{4\pi k}{\varepsilon_o} \int_{0}^{R} r^3 dr$$

$$=\frac{4\pi k}{\varepsilon_0}\frac{R^4}{4}$$

$$\therefore E_r = \frac{k}{4\varepsilon_o} \frac{R^4}{r^2}$$

$$\mathbf{E}(r) = (k/4\varepsilon_o) (R^4/r^2)\hat{\mathbf{r}}$$



(b) The two protons must be on the opposite sides of the centre along a diameter. Suppose the protons are at a distance r from the centre.

Now, 
$$4\pi \int_{0}^{R} kr'^{3} dr = 2e$$

$$\therefore \frac{4\pi k}{4}R^4 = 2e$$

$$\therefore k = \frac{2e}{\pi R^4}$$

Consider the forces on proton 1. The attractive force due to the charge distribution is

$$-e\mathbf{E}_{r} = -\frac{e}{4\varepsilon_{o}}kr^{2}\hat{\mathbf{r}} = -\frac{2e^{2}}{4\pi\varepsilon_{o}}\frac{r^{2}}{R^{4}}\hat{\mathbf{r}}$$

The repulsive force is  $\frac{e^2}{4\pi\varepsilon_o}\frac{1}{(2r)^2}\hat{\mathbf{r}}$ 

Net force is 
$$\left(\frac{e^2}{4\pi\varepsilon_o 4r^2} - \frac{2e^2}{4\pi\varepsilon_o} \frac{r^2}{R^4}\right)\hat{\mathbf{r}}$$

This is zero such that

$$\frac{e^2}{16\pi\varepsilon_o r^2} = \frac{2e^2}{4\pi\varepsilon_o} \frac{r^2}{R^4}$$

Or, 
$$r^4 = \frac{4R^4}{32} = \frac{R^4}{8}$$

$$\Rightarrow r = \frac{R}{(8)^{1/4}}$$

Thus, the protons must be at a distance  $r = \frac{R}{\sqrt[4]{8}}$  from the centre.

1.28 (a) The electric field at  $\gamma$  due to plate  $\alpha$  is  $-\frac{Q}{S2\varepsilon_o}\hat{\mathbf{x}}$ 

The electric field at  $\gamma$  due to plate  $~\beta$  is  $~\frac{q}{\mathrm{S2}\mathcal{E}_o}~\hat{}$ 

Hence, the net electric field is

$$\mathbf{E}_1 = \frac{(Q - q)}{2\varepsilon_o S} (-\hat{\mathbf{x}})$$



Electric field at 0 due to  $\alpha = -\frac{Q}{2\varepsilon_o S}\hat{\mathbf{x}}$ 

Electric field at 0 due to 
$$\beta = -\frac{q_1}{2\varepsilon_o S}\hat{\mathbf{x}}$$

Electric Field at 0 due to  $\gamma = -\frac{q_2}{2\varepsilon_o S}\hat{\mathbf{x}}$ 

$$\therefore \frac{-(Q+q_2)}{2\varepsilon_o S} + \frac{q_1}{2\varepsilon_o S} = 0$$

$$\Rightarrow q_1 - q_2 = Q$$

Further, 
$$q_1 + q_2 = Q + q$$

$$\Rightarrow q_1 = Q + q/2$$

and 
$$q_2 = q/2$$

Thus the charge on  $\beta$  and  $\gamma$  are Q + q/2 and q/2, respectively.

(c) Let the velocity be v at the distance d after the collision. If m is the mass of the plate  $\gamma$ , then the gain in K.E. over the round trip must be equal to the work done by the electric field. After the collision, the electric field at  $\gamma$  is

$$\mathbf{E}_2 = -\frac{Q}{2\varepsilon_o S}\hat{\mathbf{x}} + \frac{(Q+q/2)}{2\varepsilon_o S}\hat{\mathbf{x}} = \frac{q/2}{2\varepsilon_o S}\hat{\mathbf{x}}$$

The work done when the plate  $\gamma$  is released till the collision is  $F_1d$  where  $F_1$  is the force on plate  $\gamma$ .

The work done after the collision till it reaches d is  $F_2d$  where  $F_2$  is the force on plate  $\gamma$ .

$$F_1 = E_1 Q = \frac{(Q-q)Q}{2\varepsilon_o S}$$

and 
$$F_2 = E_2 q / 2 = \frac{(q/2)^2}{2\varepsilon_o S}$$

.. Total work done is

$$\frac{1}{2\varepsilon_{o}S} \Big[ (Q - q)Q + (q/2)^{2} \Big] d = \frac{1}{2\varepsilon_{o}S} (Q - q/2)^{2} d$$

$$\Rightarrow (1/2)mv^2 = \frac{d}{2\varepsilon_o S}(Q - q/2)^2$$

$$\therefore v = (Q - q/2) \left(\frac{d}{m\varepsilon_o S}\right)^{1/2}$$

1.29 (i) 
$$F = \frac{Q_q}{r^2} = 1 \text{ dyne} = \frac{[1 \text{ esu of charge}]^2}{[1 \text{ cm}]^2}$$

Or.

1 esu of charge = 1 (dyne) $^{1/2}$  (cm)

Hence, [1 esu of charge] =  $[F]^{1/2}L = [MLT^{-2}]^{1/2}L = M^{1/2}L^{3/2}T^{-1}$ 

[1 esu of charge] =  $M^{1/2} L^{3/2} T^{-1}$ 

Thus charge in cgs unit is expressed as fractional powers (1/2) of M and (3/2) of L.

(ii) Consider the coloumb force on two charges, each of magnitude 1 esu of charge separated by a distance of 1 cm:

The force is then 1 dyne =  $10^{-5}$  N.

This situation is equivalent to two charges of magnitude  $x \in \mathbb{C}$  separated by  $10^{-2}$ m.

This gives:

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{x^2}{10^{-4}}$$

which should be 1 dyne = 10<sup>-5</sup> N. Thus

$$\frac{1}{4\pi\epsilon_0} \cdot \frac{x^2}{10^{-4}} = 10^{-5} \Rightarrow \frac{1}{4\pi\epsilon_0} = \frac{10^{-9}}{x^2} \frac{Nm^2}{C^2}$$

With 
$$x = \frac{1}{[3] \times 10^9}$$
, this yields

$$\frac{1}{4\pi\varepsilon_0} \quad 10^{-9} \times [3]^2 \times 10^{18} = [3]^2 \times 10^9 \frac{\text{Nm}^2}{\text{C}^2}$$

With [3]  $\to 2.99792458$ , we get

$$\frac{1}{4\pi\varepsilon_0}$$
 8.98755....×10<sup>9</sup>  $\frac{\text{Nm}^2}{\text{C}^2}$  exactly

1.30 Net force F on q towards the centre O

$$F = 2\frac{q^2}{4\pi\varepsilon_0 r^2}\cos\theta = -\frac{2q^2}{4\pi\varepsilon_0 r^2}.\frac{x}{r}$$

$$F = \frac{-2q^2}{4\pi\varepsilon_0} \frac{x}{(d^2 + x^2)^{3/2}}$$

$$\approx \frac{-2q^2}{4\pi\varepsilon_0 d^3} x = -kx \text{for } x << d.$$



Thus, the force on the third charge q is proportional to the displacement and is towards the centre of the two other charges. Therefore, the motion of the third charge is harmonic with frequency

$$\omega = \sqrt{\frac{2q^2}{4\pi\varepsilon_0 d^3 m}} = \sqrt{\frac{k}{m}}$$

and hence 
$$T = \frac{2\pi}{\omega} \left[ \frac{8\pi^3 \varepsilon_0 m d^3}{q^2} \right]^{1/2}$$
.

1.31 (a) Slight push on *q* along the axis of the ring gives rise to the situation shown in Fig (b). A and B are two points on the ring at the end of a diameter.

Force on q due to line elements  $\frac{-Q}{2\pi R}$  at A and B is

$$F_{\mathbf{A}+\mathbf{B}} = 2 \cdot \frac{-Q}{2\pi R} \cdot q \cdot \frac{1}{4\pi \varepsilon_0} \cdot \frac{1}{r^2} \cdot \cos \theta$$

$$= \frac{-Qq}{\pi R.4\pi \varepsilon_0} \cdot \frac{1}{(z^2 + R^2)} \cdot \frac{z}{(z^2 + R^2)^{1/2}}$$

Total force due to ring on  $q = (F_{A+B})(\pi R)$ 

$$= \frac{-Qq}{4\pi\varepsilon_0} \frac{z}{(z^2 + R^2)^{3/2}}$$

$$\Box \frac{-Qq}{4\pi\varepsilon_{\mathbf{0}}} \text{ for } z << R$$

Thus, the force is propotional to negative of displacement. I under such forces is harmonic.

(b) From (a)

$$m\frac{d^2z}{dt^2} = -\frac{Qqz}{4\pi\epsilon_0 R^3} \text{ or } \frac{d^2z}{dt^2} = -\frac{Qq}{4\pi\epsilon_0 mR^3} z$$

That is, 
$$\omega^2 = \frac{Qq}{4\pi\epsilon_0 mR^3}$$
. Hence  $T = 2\pi\sqrt{\frac{4\pi\epsilon_0 mR}{Qq}}$ 



(a)

