

Fig. 1

Fig. 1

Fig. 2

A

B

Fig. 3

Fig. 4

Fig. 5

· Fig. 7

Identification of INS regions within the env mRNA using the p19 vector.

			•	INS EFFECT
FRAGMENTSIZE				
	Α	276	7684-7859	none
	В	234	7684-7884, 7927-7959	none
	.C	323	7595-7884, 7927-7959	10 X
	. D	128	7939-8066	none
	E	478	7939-8416	10 X
	F	362	8200-8561	> 100 X
	G	330	7266-7595	3-5X
E	668	5523-6190		10 X

Fig. 10

Identification of INS regions within the env mRNA using the p37M1-10D vector.

(fig 5 env, formerly fig D)

Fig. 11

CRS Elimination of negative effects of

P9.2 P11 P9 P10 P12 CRS P24 M1234 图图图 P17 ATTTA

level of P24 expression

100 %	12 %	10 %	11 %	8 96
7617				P10 P12p
p37M1234	p37M1234RCRS	p37M1234RCRSP10	p37M1234RCRSP12	p37M1234RCRSP10+P12p

Fig. 12

POINT MUTATIONS ELIMINATING THE NEGATIVE EFFECTS OF CRS IN THE POI REGION (nucleotides 3700-4194)

ggtaccacacacaaaggaattggaggaaatgaacaagtagataaattagtcagtggaatcagggaaagtactattt tagatggaatagataaggcccaagatgaacatgagaatatcacagtaattggagagcaatggctagtgattttaacctg ccacctgtagtagcaaaagaaatagtagccagctgtgtaaatgtcagctaaaaggagagaggagatgcatggacaagtaga ctgtagtccaggaatatggcaactagattgtacacatttagaaggaaaagttatcctggtagcagttcatgtagccagtg gatatatagaagcagaagttattccagcagaaacagggcaggaaacagcatatttttttaaaattagcagaaga<u>tgg</u> <u>CCAGTAAAAACAATACATACTGACAATGGCAGCAATTTCACCGGTGCTACGGTTAGGGCCGCCTGTTGGTGGGCGGGAAT</u> 6 6 6 6 5 5 5

F.19.

CAAGCAGGAATTTGG

Fig. 14

Α

1	TGGAAGGGCT AATTTGGTCC CAAAAAAGAC AAGAGATCCT TGATCTGTGG ATCTACCACA CACAAGGCTA
71	CITCCCTGAT TGGCAGAACT ACACACCAGG GCCAGGGATC AGATATCCAC TGACCTTTGG ATGGTGCTTC
141	AAGTTAGTAC CAGTTGAACC AGAGCAAGTA GAAGAGGCCA AATAAGGAGA GAAGAACAGC TTGTTACACC
211	CTATGAGCCA GCATGGGATG GAGGACCCGG AGGGAGAAGT ATTAGTGTGG AAGTTTGACA GCCTCCTAGC
281	ATTTCGTCAC ATGGCCCGAG AGCTGCATCC GGAGTACTAC AAAGACTGCT GACATCGAGC TTTCTACAAG
351	GGACTITCCG CTGGGGACTT TCCAGGGAGG TGTGGCCTGG GCGGGACTGG GGAGTGGCGA GCCCTCAGAT
421	GCTACATATA AGCAGCTGCT TTTTGCCTGT ACTGGGTCTC TCTGGTTAGA CCAGATCTGA GCCTGGGAGC
491	TCTCTGGCTA ACTAGGGAAC CCACTGCTTA AGCCTCAATA AAGCTTGCCT TGAGTGCTCA AAGTAGTGTG
561	TGCCCGTCTG TTGTGTGACT CTGGTAACTA GAGATCCCTC AGACCCTTTT AGTCAGTGTG GAAAATCTCT
631	AGCAGTGGCG CCCGAACAGG GACTTGAAAG CGAAAGTAAA GCCAGAGGAG ATCTCTCGAC GCAGGACTCG
701	BssHii (711) GCTTGCTGAAGCGCGCGCGCACAGAGAGAGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGATGG 1 Me t Gl yAl a ArgAl a Ser Val LeuSer Gl yGl yGl uLeuAspArgTrp
777 17)	GAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAGAAGTACAAGCTAAAGCACATCGTATGGGCAAGCAGGGAGCTAG GIuLyslieArgLeuArgProGiyGiyLysLysLysTyrLysLeuLysHislieValTrpAlaSerArgGiuLeuG
	AACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATC I uArgPheAl aVal AsnP roGl yLeuLeuGl uThr Ser Gl uGl yCysArgGl n I i eLeuGl yGl nLeuGl nP roSe
929 67 ≯	CCTTCAGACAGGATCAGAGGAGCTTCGATCACTATACAACACAGTAGCAACCCTCTATTGTGTGCACCAGCGGATC r LeuGinThr GlySer GluGiuLeuArgSer LeuTyrAsnThr Va!AlaThr LeuTyrCysVa!HisGinArg!!e
1005 93▶	GAGATCAAGGACACCAAGGAAGCTTTAGACAAGATAGAGGGAAGAGCCAAAAACAAGTCCAAGAAGAAGGCCCAGCAGG GiulieLysAspThr LysGiuAiaLeuAspLysiieGiuGiuGiuGinAsnLysSer LysLysLysAiaGinGinA
1081 118	CAGCAGCTGACACAGGACACAGCAATCAGGTCAGCCAAAATTACCCTATAGTGCAGAACATCCAGGGGCAAATGGT I aAl aAl aAspThr Gi yHi sSerAsnGi nVa I Ser Gi nAsnTbAPro I i eVa I Gi nAsn I i eGi nGi yGi nMe t Va
1157	ACATCAGGCCATATCACCTAGAACTTTAAATGCATGGGTAAAAGTAGTAGAAGAGAAGGCTTTCAGCCCAGAAGTG I Hi s Gl nAl a I l e Ser ProArgThr LeuAsnAl aT rpVa I LysVa I Va I Gl uGl uLysAl aPhe Ser ProGl uVa I
1233 37	ATACCCATGTTTTCAGCATTATCAGAAGGAGCCACCCCACAGGACCTGAACACGATGTTGAACACCGTGGGGGGAC I I e ProMet Phe Ser Al a Leu Ser Gi u Gi y Al a Thr Pro Gi n AspLeu AsnThr Met Leu AsnThr Val Gi y Gi y H
1309 62 >	ATCAAGCAGCCATGCAAATGTTAAAAGAGACCATCAATGAGGAAGCTGCAGAATGGGATAGAGTGCATCCAGTGCA is GlinAlaAlaMet GlinMet Leulys GliuThrilleAsnGliuGliuAlaAlaGliuTrpAspArgVat HisProVat Hi
1385 87	TGCAGGGCCTATTGCACCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCTTCAG sAlaGlyProlleAlaProGlyGlnMetArgGluProArgGlySerAsplleAlaGlyThrThrSerThrLeuGln
1461 113	GAACAAATAGGATGGATGACAAATAATCCACCTATCCCAGTAGGAGAGATCTACAAGAGGTGGATAATCCTGGGAT GIuGiniieGiyTrpMetThrAsnAsnProProIieProValGiyGiuiieTyrLysArgTrpIieIieLeuGiyL
1537 138	TGAACAAGATCGTGAGGATGTATAGCCCTACCAGCATTCTGGACATAAGACAAGGACCAAAGGAACCCTTTAGAGA euAsnLys!leVa!ArgMetTyrSerProThr Ser!leLeuAsp!leArgGinGlyProLysGluProPheArgAs

LETA CHATGTAGACCGGTTCTATAAAACTCTAAGAGCTGAGCAAGCTTCACAGGAGGTAAAAAATTGGATGACAGAAACC
163P nT V r Val AsnAro Pho Turi vo The Louis and Lo Cluster Allo Clust
163 PTyrValAspArgPheTyrLysThr LeuArgAl aGl uGl nAl aSer Gl nGl uVal LysAsnTrpMetThr Gl uThr

1689 TTGTTGGTCCAAAATGCGAACCCAGATTGTAAGACCATCCTGAAGGCTCTCGGCCCAGCGGCTACACTAGAAGAAA 189 LeuLeuVal Gi nAsnAl aAsnProAspCysLysThr I i eLeuLysAl aLeuGi yProAl aAl aThr LeuGi uGi uM

stop (1818) Xbal (1838)

TGATGACAGCATGTCAGGGAGTAGGAGGACCCGGCCATAAGGCAAGAGTTTTGTAGGGATCCACTAGTTCTAGACT

214 etMetThrAlaCysGlnGlyValGlyGlyProGlyHisLysAlaArgValLeu

Apal (1848)

1841 CGAGGGGGG CCCGGTACCT TTAAGACCAA TGACTTACAA GGCAGCTGTA GATCTTAGCC ACTTTTTAAA 1911 AGAAAAGGGG GGACTGGAAG GGCTAATTCA CTCCCAAAGA AGACAAGATA TCCTTGATCT GTGGATCTAC 1981 CACACACAG GCTACTTCCC TGATTGGCAG AACTACACAC CAGGGCCAGG GGTCAGATAT CCACTGACCT 2051 TTGGATGGTG CTACAAGCTA GTACCAGTTG AGCCAGATAA GGTAGAAGAG GCCAATAAAG GAGAGAACAC 2121 CAGCTTGTTA CACCCTGTGA GCCTGCATGG AATGGATGAC CCTGAGAGAG AAGTGTTAGA GTGGAGGTTT 2191 GACAGCCGCC TAGCATTTCA TCACGTGGCC CGAGAGCTGC ATCCGGAGTA CTTCAAGAAC TGCTGACATC 2261 GAGCTTGCTA CAAGGGACTT TCCGCTGGGG ACTTTCCAGG GAGGCGTGGC CTGGGCGGGA CTGGGGGAGTG 2331 GCGAGCCCTC AGATGCTGCA TATAAGCAGC TGCTTTTTGC CTGTACTGGG TCTCTCTGGT TAGACCAGAT 2401 CTGAGCCTGG GAGCTCTCTG GCTAACTAGG GAACCCACTG CTTAAGCCTC AATAAAGCTT GCCTTGAGTG 2471 CTTCAAGTAG TGTGTGCCCG TCTGTTGTGT GACTCTGGTA ACTAGAGATC CCTCAGACCC TTTTAGTCAG 2541 TGTGGAAAAT CTCTAGCACC CCCCAGGAGG TAGAGGTTGC AGTGAGCCAA GATCGCGCCA CTGCATTCCA 2611 GCCTGGGCAA GAAAACAAGA CIGTCTAAAA TAATAATAAT AAGTTAAGGG TATTAAATAT ATTTATACAT 2681 GGAGGTCATA AAAATATATA TATTTGGGCT GGGCGCAGTG GCTCACACCT GCGCCCGGCC CTTTGGGAGG 2751 CCGAGGCAGG TGGATCACCT GAGTTTGGGA GTTCCAGACC AGCCTGACCA ACATGGAGAA ACCCCTTCTC 2821 TGTGTATTTT TAGTAGATTT TATTTTATGT GTATTTTATT CACAGGTATT TCTGGAAAAC TGAAACTGTT 2891 TTTCCTCTAC TCTGATACCA CAAGAATCAT CAGCACAGAG GAAGACTTCT GTGATCAAAT GTGGTGGGAG 2961 AGGGAGGTTT TCACCAGCAC ATGAGCAGTC AGTTCTGCCG CAGACTCGGC GGGTGTCCTT CGGTTCAGTT 3031 CCAACACCGC CTGCCTGGAG AGAGGTCAGA CCACAGGGTG AGGGCTCAGT CCCCAAGACA TAAACACCCA 3101 AGACATAAAC ACCCAACAGG TCCACCCCGC CTGCTGCCCA GGCAGAGCCG ATTCACCAAG ACGGGAATTA 3171 GGATAGAGAA AGAGTAAGTC ACACAGAGCC GGCTGTGCGG GAGAACGGAG TTCTATTATG ACTCAAATCA 3241 GTCTCCCCAA GCATTCGGGG ATCAGAGTTT TTAAGGATAA CTTAGTGTGT AGGGGGCCCAG TGAGTTGGAG 3311 ATGAAAGCGT AGGGAGTCGA AGGTGTCCTT TTGCGCCGAG TCAGTTCCTG GGTGGGGGCC ACAAGATCGG 3381 ATGAGCCAGT TTATCAATCC GGGGGTGCCA GCTGATCCAT GGAGTGCAGG GTCTGCAAAA TATCTCAAGC 3451 ACTGATTGAT CTTAGGTTTT ACAATAGTGA TGTTACCCCA GGAACAATTT GGGGAAGGTC AGAATCTTGT 3521 AGCCTGTAGC TGCATGACTC CTAAACCATA ATTTCTTTTT TGTTTTTTTTT TTTTTATTTT TGAGACAGGG Psti (3639) 3591 TCTCACTCTG TCACCTAGGC TGGAGTGCAG TGGTGCAATC ACAGCTCACT GCAGCCCCTA GAGCGGCCGC 3661 CACCGCGGTG GAGCTCCAAT TCGCCCTATA GTGAGTCGTA TTACAATTCA CTGGCCGTCG TTTTACAACG 3731 TCGTGACTGG GAAAACCCTG GCGTTACCCA ACTTAATCGC CTTGCAGCAC ATCCCCCTTT CGCCAGCTGG 3801 CGTAATAGCG AAGAGGCCCG CACCGATCGC CCTTCCCAAC AGTTGCGCAG CCTGAATGGC GAATGGCGCG 3871 AAATTGTAAA CGTTAATATT TTGTTAAAAT TCGCGTTAAA TTTTTGTTAA ATCAGCTCAT TTTTTAACCA 3941 ATAGGCCGAA ATCGGCAAAA TCCCTTATAA ATCAAAAGAA TAGACCGAGA TAGGGTTGAG TGTTGTTCCA 4011 GTTTGGAACA AGAGTCCACT ATTAAAGAAC GTGGACTCCA ACGTCAAAGG GCGAAAAACC GTCTATCAGG 4081 GCGATGGCCC ACTACGTGAA CCATCACCCT AATCAAGTTT TTTGGGGTCG AGGTGCCGTA AAGCACTAAA 4151 TCGGAACCCT AAAGGGAGCC CCCGATTTAG AGCTTGACGG GGAAAGCCGG CGAACGTGGC GAGAAAGGAA 4221 GGGAAGAAAG CGAAAGGAGC GGGCGCTAGG GCGCTGGCAA GTGTAGCGGT CACGCTGCGC GTAACCACCA 4291 CACCCGCCGC GCTTAATGCG CCGCTACAGG GCGCGTCCCA GGTGGCACTT TTCGGGGAAA TGTGCGCGGA 4361 ACCCCTATTT GTTTATTTTT CTAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA

Fig. 14 C

18/18

4431	TGCTTCAATA	ATATTGAAAA	AGGAAGAGTA	TGAGTATTCA	ACATTTCCGT	GTCGCCCTTA	TTCCCTTTTT
4501	TGCGGCATTT	TGCCTTCCTG	TTTTTGCTCA	CCCAGAAACG	CTGGTGAAAG	TAAAAGATGC	TGAAGATCAG
4571	TTGGGTGCAC	GAGTGGGTTA	CATCGAACTG	GATCTCAACA	GCGGTAAGAT	CCTTGAGAGT	TTTCGCCCCG
4641	AAGAACGTTT	'TCCAATGATG	AGCACTTTTA	AAGTTCTGCT	ATGTGGCGCG	GTATTATCCC	GTATTGACGC
4711	CGGGCAAGAG	CAACTCGGTC	GCCGCATACA	CTATTCTCAG	AATGACTTGG	TTGAGTACTC	ACCAGTCACA
4781	GAAAAGCATC	TTACGGATGG	CATGACAGTA	AGAGAATTAT	GCAGTGCTGC	CATAACCATG	AGTGATAACA
4851	CTGCGGCCAA	CTTACTTCTG	ACAACGATCG	GAGGACCGAA	GGAGCTAACC	GCTTTTTTGC	ACAACATGGG
4921	GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG	AATGAAGCCA	TACCAAACGA	CGAGCGTGAC
4991	ACCACGATGC	CTGTAGCAAT	GGCAACAACG	TTGCGCAAAC	TATTAACTGG	CGAACTACTT	ACTCTAGCTT
5061	CCCGGCAACA	ATTAATAGAC	TGGATGGAGG	CGGATAAAGT	TGÇAGGACCA	CTTCTGCGCT	CGGCCCTTCC
5131	GGCTGGCTGG	TTTATTGCTG	ATAAATCTGG	AGCCGGTGAG	CGTGGGTCTC	GCGGTATCAT	TGCAGCACTG
5201	GGGCCAGATG	GTAAGCCCTC	CCGTATCGTA	GTTATCTACA	CGACGGGGAG	TCAGGCAACT	ATGGATGAAC
5271	GAAATAGACA	GATCGCTGAG	ATAGGTGCCT	CACTGATTAA	GCATTGGTAA	CTGTCAGACC	AAGTTTACTC
5341	ATATATACTT	TAGATTGATT	TAAAACTTCA	TTTTTAATTT	AAAAGGATCT	AGGTGAAGAT	CCTTTTTGAT
5411	AATCTCATGA	CCAAAATCCC	TTAACGTGAG	TTTTCGTTCC	ACTGAGCGTC	AGACCCCGTA	GAAAAGATCA
5481	AAGGATCTTC	TTGAGATCCT	TTTTTTTCTGC	GCGTAATCTG	CTGCTTGCAA	ACAAAAAAAC	CACCGCTACC
5551	AGCGGTGGTT	TGTTTGCCGG	ATCAAGAGCT	ACCAACTCTT	TTTCCGAAGG	TAACTGGCTT	CAGCAGAGCG
5621	CAGATACCAA	ATACTGTCCT	TCTAGTGTAG	CCGTAGTTAG	GCCACCACTT	CAAGAACTCT	GTAGCACCGC
5691	CTACATACCT	CGCTCTGCTA	ATCCTGTTAC	CAGTGGCTGC	TGCCAGTGGC	GATAAGTCGT	GTCTTACCGG
5761	GTTGGACTCA	AGACGATAGT	TACCGGATAA	GGCGCAGCGG	TCGGGCTGAA	CGGGGGGTTC	GTGCACACAG
5831	CCCAGCTTGG	AGCGAACGAC	CTACACCGAA	CTGAGATACC	TACAGCGTGA	GCTATGAGAA	AGCGCCACGC
5901	TTCCCGAAGG	GAGAAAGGCG	GACAGGTATC	CGGTAAGCGG	CAGGGTCGGA	ACAGGAGAGC	GCACGAGGGA
5971	GCTTCCAGGG	GGAAACGCCT	GGTATCTTTA	TAGTCCTGTC	GGGTTTCGCC	ACCTCTGACT	TGAGCGTCGA
6041	TTTTTGTGAT	GCTCGTCAGG	GGGGCGGAGC	CTATGGAAAA	ACGCCAGCAA	CGCGGCCTTT	TTACGGTTCC
6111	TGGCCTTTTG	CTGGCCTTTT	GCTCACATGT	TCTTTCCTGC	GTTATCCCCT	GATTCTGTGG	ATAACCGTAT
6181	TACCGCCTTT	GAGTGAGCTG	ATACCGCTCG	CCGCAGCCGA	ACGACCGAGC	GCAGCGAGTC	AGTGAGCGAG
6251	GAAGCGGAAG	AGCGCCCAAT	ACGCAAACCG	CCTCTCCCCG	CGCGTTGGCC	GATTCATTAA	TGCAGCTGGC
6321	ACGACAGGTT	TCCCGACTGG	AAAGCGGGCA	GTGAGCGCAA	CGCAATTAAT	GTGAGTTAGC	TCACTCATTA
6391		GCTTTACACT					
6461	CACACAGGAA	ACAGCTATGA	CCATGATTAC	GCCAAGCTCG	GAATTAACCC	TCACTAAAGG	GAACAAAAGC
	Pstl (6533)						
6531		TCCCTAACTG					
6601		TTTGCTTTCC					
6671		ACTGCGAGAG					
6741		GGGGGTTTAT					
6811		TCATTCCATT					
6881		TGTGTTCCCA					
6951		TTGGAATGTG					
7021		ACCAAGACAC					
7091		TCGGAGGTGC					
7161	GCTTCCAGCC	ATCCACCTGA	TGAACAGAAC	CTAGGGAAAG	CCCCAGTTCT	ACTTACACCA	GGAAAGGC

Fig. 14 D