

About me

- Ryan "Not Dr." Cunningham
 - A PhD student in bioinformatics
 - Dabbled in NLP, information retrieval, security, machine learning
 - Worked for DoD, DoE, Agribusiness, and Telecoms
 - MS in Computer Science from Central Florida
 - BS in Computer Engineering from Cincinnati
 - Taught in 125, 225, 232, 233, and 373

About me

- Ryan "Not Dr." Cunningham
 - A PhD student in bioinformatics
 - Dabbled in NLP, information retrieval, security, machine learning
 - Worked for DoD, DoE, Agribusiness, and Telecoms
 - MS in Computer Science from Central Florida
 - BS in Computer Engineering from Cincinnati
 - Taught in 125, 225, 232, 233, and 373

About staff

- Nikita Spirin
 - Course projects and online students
- Khuram Shahzad
 - Course project track 1 and Piazza
- Magnesh Bendre
 - MP design
- Rui Wang
 - Written assignments

Course Website

- https://wiki.engr.illinois.edu/display/ cs411sp13/Overview
- Syllabus, assignments, etc.
- All official course policies posted here

Grading Policy

Homework 25%

• Projects 30%

• Midterm 20%

• Final Exam 25%

Course Projects

- Track 1: Database Web Application
 - Teams of 3-4 (form by Feb 6th)
 - Semester long project with several stages
 - Opportunity to be creative and ambitious
 - Start brainstorming!

Course Projects

- Track 2: Literature Survey or Research Extension
 - Required for those registered for 4 credits
 - Optional extra credit for others
 - Groups of 1-2
 - Either do a high quality literature review or expand your semester project into a serious research project

Homework

- 4-5 written assignments
 - Meant to reinforce concepts and prepare you for the midterm and final
- 3-4 programming assignments
 - Meant to help you understand the complexities of implementing a DBMS

Piazza

- https://piazza.com/class#spring2013/ cs411
- A web forum where you can post questions
- Sign up ASAP so you don't miss out!
 - If you prefer your UIUC email, just sign up
 - If you prefer to use another account, please send me an email

Texbook

Database Systems:
The Complete Book,
Second Edition by
Hector Garcia Molina, Jeffrey D.
Ullman, and Jennifer
Widom

Why study databases?

- Most computer science assumes we can manipulate data in RAM
- What to do data is much larger than RAM?
- This is very common:
 - credit card transactions, mobile phones, search engines
 - Google operates on *petabytes* of data

Why study databases?

- Without them, our current way of life would be impossible.
 - No Google, iPhone, Facebook, or Amazon!
- Database systems are crucial for our infrastructure and economy

Why study databases?

Concepts are extremely useful in other domains

What makes databases different?

- Can't restructure the data for each computation (only one *schema*)
- Efficiently use the entire system (CPU, RAM, Disk, and Network)
- Data should be *persistent* and continuously updated
- Multiple concurrent users

What is a database?

- A database management system (DBMS)
 - 1. Allows users to specify *schema* (logical structure) of their data with a *data-definition language* (DDL)
 - 2. Allows users to *query* the data (perform computation on the data) with a *data-manipulation language* (DML)

What is a database?

- A database management system (DBMS)
 - 3. Supports *persistent storage* of large amounts of data in a way that supports 1 and 2 above
 - 4. Enables *durability* in the face of failures
 - 5. Controls accesses by multiple users, ensuring
 - *isolation* (user's access is independent of others)
 - atomicity (an action is never performed partially)

History

- Problems first encountered in the 1960's
 - Banking systems
 - Airline reservations (surprisingly important)
 - Corporate records
- Essentially, people were building *ad hoc* systems on top of file systems
- Each query required a custom program!

History

- In 1970's Ted Codd wrote "A relational model for large shared data banks"
 - Proposed a *relational model* of data
 - Data storage abstracted from user
 - Supported high level query language
- Through the 1980's and 1990's, this model became standard and widely adopted

History

- From 2000's to present:
 - Codd's model is still the core paradigm of the DBMS infrastructure
 - But much more data that is less organized
 - Images, video, social networking
 - Peer-to-peer and parallel systems developed
 - Extended and supplemented relational model in light of these developments

An overview

- How does a DBMS work?
 - Here's an overview

Did you get all that?

- We'll spend all semester learning about these systems
- But let's break this down to get a little preview

Interacting with the DBMS

- Two ways to interact with the DBMS
 - 1. As a "user" interacting with the data
 - 2. As an "administrator" modifying the structure of the data

Focusing on the user

- Users submit queries to the query compiler in a data manipulation language (DML)
- Parsed by the query compiler into a query plan

Focusing on the user

- Query plan is executed by the execution engine
- Sends specific low level requests to the index/record manager to get the data

Focusing on the admin

- The database administrator (DBA) sends data definition language DDL commands to the DDL compiler
- Also sent to the execution engine

Storage and Buffer Management

- Storage manager keeps track of where the data is
 - Stored in large chunks so we can access it in bulk
 - Transferred in and out of RAM in pages

Storage and Buffer Management

- Buffer manager partitions RAM into buffers
 - essentially keeps data in page sized chunks that we can perform computation on

ACID Test

- Atomicity "all or nothing"
- Isolation "don't interfere"
- Consistency "maintain constraints"
- Durability "don't lose anything"

- Transaction manager receives units of work called transaction commands
- It makes sure ACID test is satisfied for all transactions

 Logs execution of transactions so transactions that fail can be recovered

- Tracks concurrently executing transaction commands
- Locks parts of the database as needed to ensure transactions don't interfere with each other

• If multiple conflicting requests are waiting for the same data, must perform deadlock resolution

Course Overview

- 1. Relational Model: Query/DML
 - Theoretical and practical perspective
- 2. Relational Model: Design/DDL
 - Theoretical and practical perspective
 - Advanced Manipulation concepts
- 3. DBMS Implementation

Course Overview

- 4. Advanced Topics
 - Parallel/Distributed Databases
 - Information Integration
 - Data Mining/Information Retrieval

Next Lecture

We'll start learning about Codd's relational model

