DM N°7 – COMMUTANT D'UN ENDOMORPHISME(pour le 10/12/2010)

Préliminaires (définitions et rappels)

- Dans tout le problème, E désigne un espace vectoriel de dimension finie sur le corps $\mathbb C$ des nombres complexes. On note n sa dimension et on suppose $n \ge 2$. On note $\mathcal L(E)$ son algèbre d'endomorphismes.
 - Soit $u \in \mathcal{L}(E)$. Si \mathcal{B} est une base de E, on note $Mat(u, \mathcal{B})$ la matrice de u dans la base \mathcal{B} .
 - Soit $u \in \mathcal{L}(E)$. Pour tout entier naturel p non nul, on note $u^p = \underbrace{u \circ \cdots \circ u}_{p \text{ fois}}$. On pose $u^0 = \operatorname{Id}$.
 - Soit $P \in \mathbb{C}[X]$ et $u \in \mathcal{L}(E)$, on notera P(u) l'application linéaire définie par :

$$P(u) = \sum_{0 \le k \le q} a_k u^k \text{ si } P(X) = \sum_{0 \le k \le q} a_k X^k$$

• Soit $u \in \mathcal{L}(E)$, on appelle *commutant* de u l'ensemble C(u) des endomorphismes qui commutent avec u : on a :

$$C(u) = \{ v \in \mathcal{L}(E) \mid u \circ v = v \circ u \}$$

On rappelle que C(u) est un sous-espace vectoriel de $\mathcal{L}(E)$.

- On dit qu'un endomorphisme $u \in \mathcal{L}(E)$ est *nilpotent* si et seulement si il existe un entier naturel non nul p tel que $u^p = 0$. Dans ce cas, le plus petit entier p vérifiant $u^p = 0$ est appelé *indice de nilpotence* de u.
- On note $\mathbb{M}_n(\mathbb{C})$ l'algèbre des matrices carrées à n lignes et n colonnes et à coefficients dans le corps des complexes \mathbb{C} .

PARTIE 0: Un exemple

Dans cette partie, on considère la matrice M de $\mathbb{M}_n(\mathbb{C})$ telle que : M est diagonale et ses coefficients diagonaux sont les n entiers consécutifs $1, \ldots, n$. Ainsi, on a :

$$\mathbf{M} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & n \end{pmatrix}$$

On note C(M) le sous-espace vectoriel formé par les matrices de $\mathbb{M}_n(\mathbb{C})$ qui commutent avec M.

- 1. Démontrer que C(M) est l'ensemble des matrices diagonales.
- 2. En déduire la dimension de C(M).

Dans toute la suite, u désigne un endomorphisme de E.

PARTIE 1 : Commutant d'un endomorphisme diagonalisable

Si $\lambda \in \mathbb{C}$ est une valeur propre de u, on note $E_{\lambda}(u)$ le sous-espace propre associé : $E_{\lambda}(u) = \text{Ker}(u - \lambda \text{Id})$. Dans cette partie, on suppose l'endomorphisme u diagonalisable.

Soient
$$p \in \mathbb{N}^*$$
 et $(\lambda_1, \dots, \lambda_p) \in \mathbb{C}^p$ ses valeurs propres. On a donc : $E = \bigoplus_{1 \le i \le p} E_{\lambda_i}(u)$.

On pose $n_i = \dim E_{\lambda_i}(u)$ pour $1 \le i \le p$.

Soit \mathscr{B} une base de E. On rappelle que la base \mathscr{B} est dite adaptée à la somme directe $E=\bigoplus_{1\leqslant i\leqslant p}E_{\lambda_i}(u)$ s'il

existe pour chaque entier i compris entre 1 et p, une base $(e_1^i,\ldots,e_{n_i}^i)$ du sous-espace vectoriel $\mathbf{E}_{\lambda_i}(u)$ telle que $\mathscr{B}=(e_1^1,\ldots,e_{n_1}^1,e_1^2,\ldots,e_{n_2}^2,\ldots,e_{n_p}^p)$.

1. Montrer que si $v \in C(u)$ alors les sous-espaces $E_{\lambda_i}(u)$ sont stables par v.

- **2.** Pour tout entier i compris entre 1 et p, on note u_i l'endomorphisme de $E_{\lambda_i}(u)$ induit par u. Que peut-on dire de u_i ?
- **3.** En déduire que $v \in C(u)$ si et seulement si, dans une base \mathscr{B} adaptée à la somme directe $E = \bigoplus_{1 \le i \le p} E_{\lambda_i}(u)$:

$$\mathrm{Mat}(\nu,\mathscr{B}) = \begin{bmatrix} \mathsf{V}_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \mathsf{V}_p \end{bmatrix} \text{ avec } \mathsf{V}_i \in \mathbb{M}_{n_i}(\mathbb{C}) \text{ pour } 1 \leqslant i \leqslant p.$$

- **4.** Montrer que dim $C(u) = \sum_{1 \le i \le p} n_i^2$.
- **5.** Montrer que si u est diagonalisable, alors $\dim C(u) \ge n$.
- **6.** Montrer qu'il existe $u \in \mathcal{L}(E)$ diagonalisable tel que dim C(u) = n.

PARTIE 2 : Commutant d'un endomorphisme nilpotent d'indice 2

On suppose dans cette partie que u est nilpotent d'indice 2 et que $n \ge 2$. On note r le rang de u. On pose s = n - 2r.

- **1.** Montrer que $\operatorname{Im} u \subset \operatorname{Ker} u$. En déduire que $r \leqslant \frac{n}{2}$.
- **2.** Soit G un supplémentaire de Ker u dans E muni de la base (e'_1, \ldots, e'_r) , montrer que la famille $(u(e'_1), \ldots, u(e'_r))$ est une base de $\operatorname{Im} u$.
- **3.** En utilisant un sous-espace vectoriel H de E tel que $\operatorname{Ker} u = \operatorname{Im} u \oplus H$, montrer qu'il existe une base \mathscr{B}' de E telle que :

$$\operatorname{Mat}(u, \mathcal{B}') = \begin{bmatrix} 0 & 0 & \operatorname{I}_r \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \uparrow r$$

$$\longleftrightarrow r \longleftrightarrow r$$

 I_r désigne la matrice identité d'ordre r.

4. Soit $v \in \mathcal{L}(E)$; la matrice de u dans la base \mathcal{B}' est définie en blocs en posant :

$$Mat(v, \mathcal{B}') = \begin{bmatrix} A_1 & A_2 & A_3 \\ A_4 & A_5 & A_6 \\ A_7 & A_8 & A_9 \end{bmatrix} \stackrel{\uparrow}{\downarrow} r$$

$$\stackrel{r}{\leftarrow} r \stackrel{r}{\leftarrow} s \stackrel{r}{\leftarrow} r$$

Montrer que $v \in C(u)$ si et seulement si $\begin{cases} A_4 = 0_{s,r} \\ A_7 = 0_{r,r} \\ A_8 = 0_{r,s} \\ A_9 = A_1 \end{cases}$ colonnes.

5. En déduire la dimension de C(u) en fonction de n et de r. Montrer que : $\dim C(u) \geqslant \frac{n^2}{2}$

PARTIE 3 : Commutant d'un endomorphisme vérifiant la relation (1) :

$$(u - Id) \circ (u - 2Id)^2 = 0$$
 (1)

Id désigne l'application identique de E. On rappelle que : $(u-2Id)^2$) = $(u-2Id) \circ (u-2Id)$.

On pose $E_1 = \operatorname{Ker}(u - \operatorname{Id})$ et $E_2 = \operatorname{Ker}(u - 2\operatorname{Id})^2$, $n_1 = \dim E_1$, et $n_2 = \dim E_2$, on suppose de plus $n_1 \ge 1$, $n_2 \ge 1$ et $n \ge 2$.

- 1. Montrer en rappelant le théorème utilisé que : $E = E_1 \oplus E_2$. On note p_1 le projecteur sur E_1 parallèlement à E_2 et p_2 le projecteur sur E_2 parallèlement à E_1 .
- **2.** Décomposer en éléments simples dans $\mathbb{C}[X]$ la fraction rationnelle : $F(X) = \frac{1}{(X-1)(X-2)^2}$.

En déduire deux polynômes U et V tels que : $1 = U(X)(X-1) + V(X)(X-2)^2$, deg U < 2 et deg V < 1.

- **3.** Montrer que $p_1 = V(u) \circ (u 2Id)^2$ et $p_2 = U(u) \circ (u Id)$.
- **4.** On note $d = p_1 + 2p_2$; montrer que d est diagonalisable.
- **5.** Soit w = u d. Calculer w^2 , en déduire que w = 0 ou w est nilpotent d'indice 2.
- **6.** Détermination de C(u)
 - a) Montrer que $v \in C(u)$ si et seulement si $v \in C(d)$ et $v \in C(w)$.
 - **b)** Déterminer les restrictions de w à E_1 et E_2 respectivement. En déduire qu'il existe une base \mathcal{B} de E telle que :

$$Mat(w, \mathcal{B}) = \begin{bmatrix} 0 & 0 \\ 0 & N \end{bmatrix} \uparrow n_1 \\ \longleftrightarrow n_1 & \longleftrightarrow n_2$$

où N est la matrice de l'endomorphisme induit par (u - 2Id) sur E_2 dans une base de E_2 .

- c) Montrer que le rang de la matrice N est égal à $n_2 \dim \operatorname{Ker}(u 2\operatorname{Id})$.
- **d)** Montrer que $v \in C(u)$ si et seulement si

$$Mat(v, \mathcal{B}) = \begin{bmatrix} V_1 & 0 \\ 0 & V_2 \end{bmatrix} \uparrow n_1 \\ \longleftarrow n_1 & \longleftarrow n_2$$

avec $V_2N = NV_2$.

- e) Montrer que u est diagonalisable si et seulement si N = 0.
- f) On suppose u non diagonalisable, déterminer $\dim C(u)$ en fonction de n_1 , n_2 et $\dim \operatorname{Ker}(u-2\operatorname{Id})$.

