# FYS1210

## Robin A. T. Pedersen

## April 24, 2016

# Contents

| 2 Acknowledgments                  |  |  |     | 6  |  |  |
|------------------------------------|--|--|-----|----|--|--|
| 3 Uke 3 - Introduksjon             |  |  |     |    |  |  |
| 3.1 Elektrisitet                   |  |  |     | 6  |  |  |
| 3.1.1 Ladning                      |  |  |     | 6  |  |  |
| 3.1.2 Strøm                        |  |  |     | 7  |  |  |
| 3.1.3 Spenning                     |  |  |     | 7  |  |  |
| 3.2 Leder og isolator              |  |  |     | 8  |  |  |
| 3.2.1 Komponenter                  |  |  |     | 8  |  |  |
| 3.2.2 Ledere                       |  |  |     | 9  |  |  |
| 3.3 Ohms lov                       |  |  |     | 9  |  |  |
| 3.4 Serie- og parallellkobling     |  |  | . 1 | 10 |  |  |
| 3.4.1 Seriekobling                 |  |  | . 1 | 10 |  |  |
| 3.4.2 Parallellkobling             |  |  | . 1 | 10 |  |  |
| 3.5 Kirchhoff                      |  |  | . 1 | 10 |  |  |
| 3.5.1 Kirchhoffs lov om strømmer   |  |  | . 1 | 10 |  |  |
| 3.5.2 Kirchhoffs lov om spenninger |  |  |     | 11 |  |  |
| 3.5.3 Spenningsdeler               |  |  | . 1 | 11 |  |  |
| 3.6 Superposisjon                  |  |  |     | 11 |  |  |
| 3.6.1 Eksempel                     |  |  |     | 11 |  |  |
| 4 Uke 4 - Fysikalsk elektronikk    |  |  | 1   | 4  |  |  |
| 4.1 Theyenins Teorem               |  |  | 1   | 14 |  |  |
| 4.1.1 Last-analyse                 |  |  |     | 14 |  |  |
| 4.1.2 Eksempel                     |  |  |     | 15 |  |  |
| 4.1.3 Nortons Teorem               |  |  |     | 16 |  |  |
| 4.2 Spenningskilder - Batterier    |  |  |     | 16 |  |  |
| 4.2.1 Virkemåte                    |  |  |     | 16 |  |  |
| 4.2.2 Maksimal effektoverføring    |  |  |     | 17 |  |  |
| 4.2.3 Motstand og temperatur       |  |  |     | 18 |  |  |
| 4.3 Fysikalsk elektronikk          |  |  |     | 18 |  |  |

|   |      | 4.3.1   | Valensbånd                                                                                                                   | 3 |
|---|------|---------|------------------------------------------------------------------------------------------------------------------------------|---|
|   |      | 4.3.2   | Ledningsevne                                                                                                                 | ) |
|   |      | 4.3.3   | Eksitasjon                                                                                                                   | ) |
|   | 4.4  | Doping  | g                                                                                                                            | ) |
|   |      | 4.4.1   | n-type                                                                                                                       | ) |
|   |      | 4.4.2   | p-type                                                                                                                       | L |
|   | 4.5  | Veksels | strøm                                                                                                                        | L |
|   | -    | 4.5.1   | Begreper                                                                                                                     |   |
|   |      | 4.5.2   | Root mean square                                                                                                             |   |
|   | 4.6  | -       | fset                                                                                                                         |   |
|   | 4.7  |         |                                                                                                                              |   |
|   | 1.,  | 4.7.1   | Begreper                                                                                                                     |   |
|   |      | 4.7.2   | Firkantbølge fra sinusbølger                                                                                                 |   |
|   |      | 4.1.2   | Tirkantopige ira sinusopiger                                                                                                 | , |
| 5 |      |         | ondensatorer 25                                                                                                              |   |
|   | 5.1  |         | nsatorer $\dots \dots \dots$ |   |
|   |      | 5.1.1   | Beskrivelse                                                                                                                  |   |
|   |      | 5.1.2   | Virkemåte og symbol                                                                                                          | ) |
|   |      | 5.1.3   | Formler og enheter                                                                                                           | 7 |
|   | 5.2  | Konde   | nsatorer i kretser                                                                                                           | 7 |
|   |      | 5.2.1   | DC- og AC-kretser                                                                                                            | 7 |
|   |      | 5.2.2   | Reaktanse                                                                                                                    | ) |
|   |      | 5.2.3   | Impedans                                                                                                                     | ) |
|   |      | 5.2.4   | RC-kretser                                                                                                                   | ) |
|   | 5.3  | Frekve  | nsfilter                                                                                                                     | ) |
|   | 5.4  |         | 34                                                                                                                           | Ę |
| 6 | Liko | 6 - Di  | oder 35                                                                                                                      |   |
| U | 6.1  |         | nte bindinger                                                                                                                |   |
|   | 0.1  | 6.1.1   | Diamantstruktur                                                                                                              |   |
|   |      | 6.1.2   | Ledning i rene halvledere                                                                                                    |   |
|   | 6.2  |         | g = 1                                                                                                                        |   |
|   | 0.2  | 6.2.1   | Pentavalent                                                                                                                  |   |
|   |      | 6.2.1   |                                                                                                                              |   |
|   | 6.3  | PN-Ju   |                                                                                                                              |   |
|   | 0.5  | 6.3.1   |                                                                                                                              |   |
|   |      |         | Diffusjon                                                                                                                    |   |
|   |      | 6.3.2   | Sperresjikt                                                                                                                  |   |
|   |      |         | Forward bias                                                                                                                 |   |
|   | 0.4  | 6.3.4   | Reverse bias                                                                                                                 |   |
|   | 6.4  | Dioder  |                                                                                                                              |   |
|   |      | 6.4.1   | Ideell karakteristikk og Bulk resistance                                                                                     |   |
|   |      | 6.4.2   | Temperatureffekt                                                                                                             |   |
|   |      | 6.4.3   | Eksempel                                                                                                                     |   |
|   |      | 6.4.4   | Ulike typer dioder                                                                                                           |   |
|   | 6.5  |         | delse av dioder                                                                                                              |   |
|   |      | 6.5.1   | Powersupply                                                                                                                  | 2 |

|   |     | 6.5.2 Likeretter                                 | 2 |
|---|-----|--------------------------------------------------|---|
| 7 | Uke | 1                                                | 3 |
|   | 7.1 | Oppbygning                                       | 3 |
|   | 7.2 |                                                  | 5 |
|   |     | - T J                                            | 5 |
|   |     |                                                  | 5 |
|   |     | 8                                                | 6 |
|   |     |                                                  | 7 |
|   |     |                                                  | 7 |
|   | 7.3 |                                                  | 7 |
|   |     |                                                  | 7 |
|   |     | 7.3.2 Virkeområde                                | 8 |
| 8 | Uke | 8 - Transistorforsterkere og småsignalmodeller 4 | 9 |
|   | 8.1 | Universal Bias                                   | 9 |
|   |     | 8.1.1 Lastlinje                                  | 9 |
|   | 8.2 | Småsignalmodellen                                | 0 |
|   |     | ·                                                | 1 |
|   |     | y                                                | 1 |
|   | 8.3 | Spenningsforsterkning                            | 2 |
| 9 | Uke | 9 - Effektforsterkere og FET 5                   | 3 |
|   | 9.1 | Kort repetisjon av uke8                          | 3 |
|   |     | 9.1.1 Forsterker                                 | 3 |
|   |     |                                                  | 4 |
|   | 9.2 | Effektforsterkere                                | 4 |
|   |     | 9.2.1 Klasse A                                   | 5 |
|   |     | 9.2.2 Klasse B                                   | 6 |
|   |     | 9.2.3 Klasse AB                                  | 7 |
|   |     | 9.2.4 Klasse C                                   | 8 |
|   |     | 9.2.5 Klasse D                                   | 8 |
|   | 9.3 | Field Effekt Transistor                          | 0 |
|   |     | 9.3.1 To typer                                   | 0 |
|   |     | 9.3.2 JFET                                       | 1 |
|   |     | 9.3.3 MOSFET                                     | 1 |
|   |     | 9.3.4 CMOS                                       | 4 |
|   | 9.4 | Logic Gates                                      | 5 |
|   |     | 9.4.1 NOT, AND og OR                             | 5 |
|   |     |                                                  | 5 |
|   |     |                                                  | 6 |

| 10        | Uke  | 10 - Digitale kretsfamilier              | 66 |
|-----------|------|------------------------------------------|----|
|           | 10.1 | Kretsfamilier (Logic families)           | 66 |
|           |      | 10.1.1 NMOS                              | 67 |
|           |      | 10.1.2 DTL                               | 69 |
|           |      | 10.1.3 TTL                               | 69 |
|           | 10.2 | Kombinatoriske kretser                   | 70 |
|           |      | 10.2.1 Binær addisjon                    | 70 |
|           |      | 10.2.2 Adders                            | 70 |
|           | 10.3 | Sekvensielle kretser                     | 72 |
|           |      | 10.3.1 Latches                           | 72 |
|           |      | 10.3.2 Dekoder / Enkoder                 | 74 |
|           |      | 10.3.3 ROM                               | 76 |
| 11        | Uke  | 11 - Flip-flops og operasjonsforsterkere | 77 |
|           |      | Flip-flopper                             | 77 |
|           |      | 11.1.1 JK flip-flop                      | 77 |
|           |      | 11.1.2 Master/Slave flip-flop            | 78 |
|           |      | 11.1.3 Binære tellere                    | 78 |
|           |      | 11.1.4 Dekadeteller                      | 79 |
|           |      | 11.1.5 Registere                         | 80 |
|           | 11.2 | Op-amp                                   | 80 |
|           |      | 11.2.1 Integrated Circuits               | 80 |
|           |      | 11.2.2 Op-amp                            | 81 |
|           |      | 11.2.3 Tre viktige parametre             | 81 |
|           |      | 11.2.4 Inverterende Forsterker           | 82 |
| 12        | Uke  | 12                                       | 83 |
|           |      | Påskeferie                               | 83 |
| 13        | Uke  | 13                                       | 83 |
|           | 13.1 | Påskeferie                               | 83 |
| 14        | Uke  | 14 - Anvendelse av OpAmp                 | 83 |
|           |      | Virtuelt nullpunkt                       | 83 |
|           |      | Ikke-inverterende forsterker             | 84 |
|           | 14.3 | Integratorkobling                        | 84 |
|           |      | Addisjon med OpAmp                       | 85 |
|           |      | Differensial forsterker                  | 86 |
|           |      | Eksponential forsterker                  | 87 |
|           |      | Logaritmisk forsterker                   | 87 |
|           |      | Frekvensforløp                           | 87 |
| <b>15</b> | Uke  | 15 - Aktive Frekvensfiltre m/OpAmper     | 88 |
|           |      | Enheter                                  | 89 |
|           |      | 15.1.1 Slew Rate                         | 89 |
|           |      | 15.1.2 Common-mode Rejection Ratio       | 89 |

|    | 15.2                             | Aktive Frekvensfiltre med Operasjonsforsterkere | 89  |
|----|----------------------------------|-------------------------------------------------|-----|
|    |                                  | 15.2.1 Parametre                                | 89  |
|    |                                  | 15.2.2 Typer                                    | 90  |
|    | 15.3                             | Implementasjoner                                | 91  |
|    |                                  | 15.3.1 Lavpass (Butterworth)                    | 91  |
|    |                                  | 15.3.2 Lavpass (Butterworth 2. orden)           | 92  |
|    |                                  | 15.3.3 Høypass (Butterworth)                    | 93  |
|    |                                  | 15.3.4 Høypass (Butterworth 2. orden)           | 93  |
|    |                                  | 15.3.5 Båndpass (Kombinerer høypass/lavpass)    | 94  |
|    |                                  | 15.3.6 Notch/Båndstopp                          | 95  |
|    | 15.4                             | Tilbakekobling (feedback)                       | 96  |
| 16 | IIko                             | 16 - Feedback, Millereffekt, Oscillatorer       | 96  |
| 10 |                                  | Feedback                                        | 96  |
|    |                                  | Millereffekt                                    | 97  |
|    |                                  | Oscillatorer                                    | 98  |
|    |                                  | 16.3.1 Faseskift-oscillatorer                   | 99  |
|    |                                  | 16.3.2 Wien brigde-oscillatorer                 | 99  |
|    |                                  |                                                 | 100 |
|    |                                  | 16.3.4 Krystall-oscillatorer                    |     |
| 17 | Uke                              | 17                                              | 101 |
|    |                                  |                                                 |     |
| 18 | Uke                              | 18                                              | 101 |
| 19 | Uke                              | 19                                              | 101 |
| 20 | $\mathbf{U}\mathbf{k}\mathbf{e}$ | 20                                              | 101 |
| 21 | $\mathbf{U}\mathbf{k}\mathbf{e}$ | 21                                              | 101 |
| 22 | $\mathbf{U}\mathbf{k}\mathbf{e}$ | 22                                              | 101 |
| 23 | Uke                              | 23                                              | 101 |

## 1 Forord

Dette dokumentet er hovedsaklig skrevet for meg selv. Som et forsøk på å tvinge hjernen min til å behandle all informasjonen inneholdt i pensum.

Kanskje kan den bli nyttig for andre hvis man ikke gidder å lese hele læreboka, eller det kan brukes som oppsummering før eksamen.

Jeg har kanskje vært litt lat og utålmodig på visse deler. Organiseringen i dette dokumentet er basert på kapittelindelingen i læreboka og forelesningsfoilene, og er derfor suboptimal. Mine evner strekker ikke langt nok til å gjøre noe med det.

Så, bjørn med meg.

Se etter feil og rapporter dem hvis du gidder.

## 2 Acknowledgments

Takk til Dawid Kuleczko som skrev noen av seksjonene, Kai Morgan Kjølerbakken vår foreleser, labveileder Ivar Bruvik Martins, og ElDat.

## 3 Uke 3 - Introduksjon

Kap. 1, s.27-40

Kap. 3, s.76-77

Kap. 4, s.97-118

Kap. 5, s.131-141

Kap. 7, s.194-203

## 3.1 Elektrisitet

## 3.1.1 Ladning

#### Atomet

Vi vet fra ungdomsskolen at atomer består av protoner, nøytroner og elektroner. Elektronene  $e^-$  er negativt ladet og protonene  $p^+$  positivt. Protoner og nøytroner er i atomets kjerne, mens elektronene ligger i "yttre skall".

Et ion er et atom med enten flere elektroner enn protoner, eller motsatt. Hvis det er flertall av elektroner kalles ionet negativt ladet.



Bohr model of Lithium (Li)

#### Enhet

SI enheten for ladning er Coulomb (C).

 $1 \, \mathrm{C} = 6.24 \times 10^{18} \mathrm{e}$ 

Hvor e står for elementærladning, den elektriske ladningen til et proton.

Ladning er rett og slett en egenskap en partikkel kan ha som spiller en rolle i elektromagnetisk kraft.

## 3.1.2 Strøm

#### Frie elektroner i bevegelse

Hvis et elektron slipper løs fra et atom kan det bevege seg fra et atom til et annet. Når slike "frie elektroner" beveger seg gjennom gjennom en ledning har vi det som kalles elektrisk strøm.

Strømretningen er definert som den retningen elektronene beveger seg. Altså fra negativ til positiv.

NB! Det har lenge vært vanlig å definere strømretningen motsatt fra dette.



#### Enhet

Strøm måles etter hvor mange ladninger som passerer et punkt i løpet av et sekund. SI enheten for strøm er Ampere (A)  $1\,\mathrm{A} = C/s$ 

#### AC/DC

AC, alternating current, vekselstrøm "skifter retning" med en gitt frekvens. DC, direct current, likestrøm har kun én retning.

#### 3.1.3 Spenning

#### Potensiale

Negativt ladde partikler har en tiltrekkende kraft og positive partikler har en frastøtende kraft. Hvis du plasserer en negativ og en positiv partikkel ved siden av hverandre vil de bli tiltrukket av hverandre. På samme måte vil to like partikler frastøte hverandre.



Et batteri har en negativ og en positiv pol. Det vil være potensiale for en elektromagnetisk kraft som trekker de ladde partiklene mot hverandre. Dette potensialet er hva som kalles spenning.



#### Enhet

SI enheten for spenning er volt (V) Hvor J står energienheten Joule og C er Coulomb. 1 V = J/C

## 3.2 Leder og isolator

### 3.2.1 Komponenter

#### Motstand

En motstand, også kalt resistor, er en komponent som begrenser strømmen. Tenk på det som en kran du skrur igjen for å begrense antall elektroner som flyter forbi. Det refererer også til et stoffs begrensede ledningsevne.

Motstand noteres som R (for resistance) og måles i ohm  $\Omega$ .



#### Kondensator

En kondensator (engelsk: capacitor) er litt som et batteri, fordi den lagrer elektrisk energi.



#### Spole

En spole (engelsk: inductor) motstår forandring i strøm. Det er likheter mellom funksjonen til en spole og en kondensator, men måten de fungerer på er forksjellig. Mer om både kondensator og spole i senere kapitler.

#### **3.2.2** Ledere

#### Leder

Ledere er materialer med liten motstand. Gode eksempler på ledere er metaller med et enslig elektron i sitt ytterste skall. Da er det lettere for elektroner å eksitere fra valensbåndet opp til ledningsbåndet. I disse materialene er det et mindre energigap mellom disse energibåndene.

#### **Isolator**

Isolatorer leder ikke strøm (ved mindre du *virkelig* påfører strøm). Kjennetegnet for isolatorer er at de har ekstremt høy motstand.

#### Halvleder

En halvleder har egenskaper midt i mellom ledere og isolatorer. De leder strøm dårligere enn ledere, men ikke så dårlig som isolatorer. Halvledere brukes bla. i transistorer og dioder og gjorde integrerte kretser mulig.

#### 3.3 Ohms lov

Kort fortalt: Mer spenning gir mer strøm! Mer motstand gir mindre strøm.

Finere fortalt: Elektrisk strøm er direkte proporsjonal med spenning og omvendt proposjonal med motstand.

$$U = R \cdot I$$

U = spenning R = motstand I = strøm

## 3.4 Serie- og parallellkobling

## 3.4.1 Seriekobling



I denne kretsen er 3 motstander koblet sammen i serie. Den totale motstanden i en seriekobling er gitt ved:

$$R_{total} = R_1 + R_2 + \dots + R_n$$

#### 3.4.2 Parallellkobling



Den totale motstanden i en parallellkobling gis via den inverse av totalen.

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$$

Tilfellet med kunn to motstander kan forenkles.

$$R_{total} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

## 3.5 Kirchhoff

#### 3.5.1 Kirchhoffs lov om strømmer

Summen av strømmene rundt et knutepunkt er null. Eller sagt annerledes, summen av strømmene inn er lik summen av strømmene ut.



### 3.5.2 Kirchhoffs lov om spenninger

Summen av alle spenninger i en krets er null.



### 3.5.3 Spenningsdeler

Vi ser på tilfellet med to motstander seriekoblet til et batteri.



Hva er spenningen  $V_1$  over motstanden  $R_1$ ?

$$V_1 = \frac{R_1}{R_1 + R_2} \cdot V_{batteri}$$

Du kan tenke på det som dette:

Hvor stor del av kaka tar  $R_1$ ? sin rettferdige andel:  $\frac{R_1}{R_1+R_2}$ Hvor mye kake er det egentlig?  $V_{batteri}$ 

### 3.6 Superposisjon

Superposisjonsprinsippet brukes til å finne verdier i kretser med mer enn én spenningskilde. For å finne spenningen rundt en komponent ser man på bidraget fra én spenningskilde om gangen. Når bidraget fra alle kildene er funnet, legger man det sammen for å få totalverdien.

#### 3.6.1 Eksempel

Krets med to spenningskilder

$$V_{S1} = 15 \,\text{V}, \qquad V_{S2} = 3 \,\text{V}, \qquad R_1 = R_2 = R_3 = 1 \,\text{k}\Omega$$



I denne kretsen er det to spenningskilder som begge bidrar til å skape spenning  $V_1$  rundt motstanden  $R_1$ .

## Bidrag fra første spenningskilde



Vi later som den ene spenningskilden  $V_{S2}$  ikke eksisterer og regner ut bidraget fra  $V_{S1}$ .



Motstandene  $R_1$  og  $R_3$  danner en parallellkobling som vi kan betrakte som én motstand  $R_{EQ}$ .

Siden  $R_1$  og  $R_3$  er parallellkoblet får man  $R_{EQ}$  via den inverse.

$$\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_3}$$

Eller, siden det bare er to motstander, via forenklingen.

$$R_{EQ} = \frac{R_1 \cdot R_3}{R_1 + R_3} = \frac{1 \cdot 1}{1 + 1} = \frac{1}{2}$$

Spenningen over  $R_1$  vil være den samme som over  $R_3$ , fordi de er parallellkoblet. Det er den samme spenningen som over hele  $R_{EQ}$ .

Siden vi vil finne spenningen over  $R_1$  holder det da å regne ut spenningen over  $R_{EQ}$ .

$$V_{EQ} = V_{1(S1)} = \frac{R_{EQ}}{R_{EQ} + R_2} \cdot V_{S1} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} \cdot 15 = 5 \text{ V}$$

 $V_{1(S1)}$  er da den delen av spenningen  $V_1$  forårsaket av  $V_{S1}$ .

#### Bidrag fra andre spenningskilde



Denne gangen later vi som  $V_{S1}$  ikke eksisterer.



Tegnet på en annen måte ser vi at  $R_1$  og  $R_2$  også danner en parallellkobling. Den kan vi betrakte som  $R_{FQ}$  og regne ut på samme måte.

Totalmotstanden til  $R_{FQ}$  gis på samme måte som ista.

$$R_{FQ} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{1}{2}$$

Spenningen over  $R_{FQ}$  er lik spenningen over  $R_1$  som er lik spenningen over  $R_2$ .

$$V_{FQ} = V_{1(S2) = \frac{R_{FQ}}{R_{FQ} + R_3} \cdot V_{S2}} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} \cdot 3 = 1 \text{ V}$$

#### Total spenning!

Nå som vi har regnet ut begge bidragene  $V_{1(S1)}$  og  $V_{1(S2)}$  kan vi legge dem sammen og få den totale spenningen  $V_1$ .

$$V_1 = V_{1(S1)} + V_{1(S2)} = 5 + 1 = 6 \text{ V}$$

## Uke 4 - Fysikalsk elektronikk

Kap. 7, s.203-217

Kap. 9, s.247-279

Kap. 12, s.364-382

Kap. 13, s.389-413

Kap. 15, s.462-500

Kap. 16, s.510-528

#### 4.1 Thevenins Teorem

#### Last-analyse 4.1.1

Thevenins teorem er en regneteknikk hvor du kan betrakte noe komplisert som noe enkelt. Det brukes som regel for å regne på forksjellig last uten å måtte regne ut hele kretsen på nytt.



Alle topolede, lineære nettverk (krets)...



...kan erstattes med en spenningskilde  $V_{TH}$  og en motstand  $R_{TH}$ .

 $V_{TH} =$ Spenningen over polene uten last.

 $R_{TH}\!=\!\!\mathrm{Motstand}$  over polene når alle spenningskilder er kortsluttet og alle strømmer brutt.

## 4.1.2 Eksempel



Denne kretsen kan skrives om til å ligne på beskrivelsen av Thevenin ovenfor.



Vi regner ut  $V_{TH}$ :

Spenning målt over polene uten last, tilsvarer å måle spenning rundt  $R_3$ .

(Husk at  $R_1$  og  $R_2$  står i serie)

$$V_{TH} = V_3 = \frac{R3}{(R_1 + R_2) + R_3} \cdot V_S$$

Vi regner ut  $R_{TH}$ :

Motstand over polene når spenningskilder er kortsluttet, blir som å betrakte kretsen som en parallellkobling.

$$R_{TH} = \frac{(R_1 + R_2)R_3}{(R_1 + R_2) + R_3}$$

#### 4.1.3 Nortons Teorem

Nortons teorem bygger videre på thevenins teorem. Det sier at enhver krets, uansett hvor kompleks, kan representeres med en strømkilde i parallell med en motstand.



## 4.2 Spenningskilder - Batterier

#### 4.2.1 Virkemåte

Pensum I fys12010 er å kunne beskrive hvordan et batteri fungerer.

Batterier deles i to grupper: oppladbare batterier og engangsbatterier. I fys1210 skal vi se nærmere på engangbatterier.

Det finnes mange typer engangsbatterier som blant annet: Sink-karbon batterier, alkaliske batterier og lithium batterier. Men de fleste batteriene er bygget realtivit likt:

Et batteri består av to elektroder, en anode som er negativ ladet og en katode som er postiv ladet. I tillegg har batteriet en elektrolytt som skiller disse fra hverandre. Dette er ofte en væske eller gele som kun leder ioner, men ikke elektroner.

Når man da kobler noe til batteriet, f.eks. en diode, slik at det blir en lukket krets så vil det oppstå en kjemisk reakjson der elektroner fra anoden beveger seg over til katoden. Akkurat som vist på tegningen.



## 4.2.2 Maksimal effektoverføring

#### Ideell spenningskilde

En perfekt spenningskilde vil ha like stor spenning hele tiden, uavhengig av hvor mye strøm den leverer. I virkeligheten vil dette ikke være sant for en reell spenningskilde.

Strømmen ut av en spenningskilde vil påvirkes av kildens indre motstand (tenk thevenin). Eksempel på indre motstand:

Lommelyktbatteri: 1 til 10  $\Omega$ .

Bilbatteri: 0.01 til 0.004  $\Omega$ .

#### Maximum power!

Effekten P fra en spenningskilde maksimaliseres når man kobler på en lastmotstand som er lik kildens indre motstand.

$$R_L = R_I$$

Effekt er gitt ved ligningen

$$P = \frac{U^2}{R}$$

## 4.2.3 Motstand og temperatur

Motstand og ledningsevne påvirkes av temperaturforandring.

#### Ledere:

Motstanden i en leder har en positiv temperaturkoeffisient og  $\emptyset ker$  med temperaturen. Det er fordi elektronene kolliderer med hverandre.

#### Halvledere:

Motstanden har negativ temperaturkoeffisient og motstanden synker fordi elektroner blir termisk eksitert opp til ledningsbåndet.



## 4.3 Fysikalsk elektronikk

#### 4.3.1 Valensbånd

Etter Niels Bohrr atommodell ligger elektroner i skall rundt atomkjernen.



Kobberatom med 29 protoner og 29 elektroner.

Skall 1: 2 elektroner

Skall 2: 8 elektroner

Skall 3: 18 elektroner

Skall 4: 1 elektron

Det ytterste elektronet har en svakere binding til kjernen og gjør at kobber leder strøm så godt.

### Energigap

Når man ser på de forskjellige energinivåene til disse skallene, kalles de for bånd. Det ytterste av disse båndene heter valensbåndet, og hvis et elektron her blir eksitert vil det komme opp i ledningsbåndet. I ledningsbåndet kan elektronet "flyte vekk" fra atomet.



#### 4.3.2 Ledningsevne

Energi-gapet mellom valensbåndet og ledningsbåndet kan variere for forksjellige stoffer. Store gap, som gjør det vanskelig for et elektron å nå ledningsbåndet, er karakteristisk for isolatorer. Tilsvarende er gapet mindre i halvledere. Og i ledere er det er overlapp mellom valensbåndet og ledningsbåndet, som gjør at det leder strøm ved romtemperatur.



### 4.3.3 Eksitasjon

For at elektroner skal hoppe fra valensbåndet, over energigapet, til ledningsbåndet, må det få tilført energi. Energien kan komme fra andre partikler (varme) eller

elektromagnetisk stråling (fotoner).

Bølgelengden  $\lambda$  som kreves for å eksiteres av et foton er

$$\lambda = \frac{hc}{E}$$

c = lyshastigheten = 3E8 = målt i meter per sekund m/s

 $h=plancks \; konstant = 6.626 E-34 = målt i Joule ganger sekund = Js$ 

 $\mathbf{E} = \mathrm{energiforksjell}$ til neste nivå = målt i elektronvolt = eV

Frekvensen f finner man ved

$$f = \frac{c}{\lambda}$$

Og energien E ved

$$E = hf$$

## 4.4 Doping

Når man f.eks. lager transistorer bruker man dopa halvledere.

Halvledere som karbon, silisium og germanium har 4 valenselektroner som etter oktettregelen danner kovalente bindinger.

Si Si Si

Silisium atomer i diamantstruktur

#### 4.4.1 n-type

For å dope et stoff som ovenfor, tilsetter man atomer med 3 eller 5 valenselektroner.

oktettregelen: atomer "ønsker" å binde seg til hverandre s.a. de får 8 valenselektroner I n-type doping tilsettes atomer med 5 valenselektroner. Slike atomer kalles donor-atomer, da man får et ekstra elektron som kan flyte rundt.



Fosfor blandt silisium.

### 4.4.2 p-type

Akseptor-atomer med 3 valenselektroner gjør at det er "hull" der det skulle være et elektron. Disse hullene kan "ta imot" elektroner.



Bor blandt silisium.

## 4.5 Vekselstrøm

## 4.5.1 Begreper

Positivt/negativt maksimum: Høyeste verdi i hver retning. Periode: Tid fra starten av en bølge til starten av neste. Peak voltage  $V_P$ : Den største spenningen målt fra null.

Peak to peak voltage  $V_{PP}$ : Spenningen mellom topp og bunn.



#### 4.5.2 Root mean square

RMS brukes for å beregne gjennomsnitt til en AC-krets, eller hva den samme spenningen ville tilsvare i en DC-krets.

For eksempel har vi i norske stikkontakter vekselstrøm på 240 volt rms, med peak voltage på 339 volt. Det vil si at for å få samme effekt med DC må vi ha 240 volt.

Effektverdi, rms, er gitt ved

$$V_{RMS} = \frac{V_P}{\sqrt{2}}$$

Der  $V_P$  er peak verdien i AC-kretsen.

## 4.6 DC-Offset

I noen systemer er det viktig at ikke strømmen eller spenningen skifter retning. Hvis man har utgangspunkt i vekselstrøm kan man forskyve den ved å legge til en likestrømsspenning minst like sterk som  $V_P$ .



#### 4.7 Pulser

### 4.7.1 Begreper

Her er noen begreper som brukes om pulstog:

Periodetid T: avstand fra bynelsen av en puls til bynelsen av neste.

PulseWidth PW: avstand fra bynelse til slutt av en puls.

DutyCycle (i prosent):  $\frac{PW}{T} \cdot 100$ 



## Uperfekt virkelighet

Firkantbølgen stiger ikke momentant. Amplitude: høyeste variasjon i spenning. PulseWidth: Avstand fra første 50% til neste.

Flanker: Stigning og nedgang. Rise time: Tid fra 10% opp til 90%. Fall time: motsatt av rise time.

#### (ledende) stigende flanke



## 4.7.2 Firkantbølge fra sinusbølger

Ved å generere to sinusbølger kan man addere dem sammen for å tilnærme en firkantbølge.



Vi har to funksjoner:  $a = 2 \sin x$   $b = \sin 3x$ 



Lagt sammen blir  $c = \frac{a}{b} + \frac{b}{b}$ 

Du kan se at det begynner å ligne på en firkantbølge.



Her er et eksempel med 1, 3, 5 og 7 harmoni.

## 5 Uke 5 - Kondensatorer

Kap. 12, s.364-382

Kap. 13, s.389-413

Kap. 15, s.462-500

Kap. 16, s.510-528

Kap. 17, s.533-564

Kap. 18, s.574-605

## 5.1 Kondensatorer

#### 5.1.1 Beskrivelse

En kondensator (engelsk: capasitor) er en av de mest fundamentale kompenentene vi bruker. Dens funksjon er å lagre elektrisk ladning. De brukes bl.a. til lokal energilagring (som et lite batteri), dempe brå forandring av spenning (for å beskytte sårbare komponenter) og signalfiltrering.

#### 5.1.2 Virkemåte og symbol

En kondensator består av to ledende plater med et isolerende materiale (et dielektrisk) i mellom.



Symbolet for en kondensator gjenspeiler oppbygningen.



#### Spenning

Når en kondensator kobles til en spenningskilde vil det gå strøm gjennom kretsen. Elektronene strømmer mot den ene siden av kondensatoren, og fra den andre siden.

Men strømmen blir blokkert av dielektrikumet og går ikke gjennom kondensatoren. Istedenfor samler elektronene seg på den ene siden, og det blir en mangel på elektroner på andre siden.



Man kan tenke på det som om det går to strømmer. En fra negativ pol til kondensatoren. Og en fra kondensatoren mot positiv pol.

Nå er det negative ladninger på den ene siden, og positive på den andre. Det vil si at vi har en spenning over kondensatoren.

#### 5.1.3 Formler og enheter

Kapasitet (C), evnen til å lagre ladning, er gitt ved følgende formel.

$$C = \frac{Q}{V} = \frac{Ladning}{Spenning}$$

Enheten for kapasitet er farad (F).

En 1 farads kondensator ladet med 1 coulomb har en spenning på 1 volt mellom platene.

Kapasiteten til en kondensator er avhengig av arealet til flatene, avstanden mellom dem og dielektrikumet i mellom.

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$$

C = kapasitet i farad

 $\varepsilon_0 = \mathrm{permittiviteten}$ til dielektrikumet i vakuum

 $\varepsilon_r = \text{relativ permittivitet til dielektrikumet}$ 

A = arealet til overflatene til platene

d = avstand mellom platene i meter

Serie- og parallellkobling fungerer motsatt av hvordan vi er vant med å tenke med motstander. Vi ser på en seriekobling



Den totale kapasiteten er gitt ved.

$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Tilsvarende for parallellkobling



Den totale kapasiteten er gitt ved.

$$C_T = C_1 + C_2 + C_3$$

#### 5.2 Kondensatorer i kretser

### 5.2.1 DC- og AC-kretser

#### Kondensator i DC-kretser

En kondensator i en DC krets vil bli ladet opp til det elektriske feltet i konden-

satoren kansellerer effekten av det elektriske feltet i spenningskilden. Da vil det ikke gå noe strøm lenger.

#### Kondensator i AC-kretser

Strømmen I gjennom en kondensator er proporsjonal med forandring i spenning.

$$I = C \cdot \frac{dV}{dt}$$

Det vil si at det går mer strøm når spenning forandrer seg mest.

Strøm Spenning



Vi ser at strømmen er størst når spenningen er 0. Det er fordi strømmen er gitt ved den derivert av spenning, og den største forandring i spenning er ved 0.

Husk at effekt (P) er gitt ved  $P = U \cdot I$ .

Vi ser forholdet mellom strøm, spenning og effekt.



#### 5.2.2 Reaktanse

Når en kondensator er i en AC-krets fungerer den som en motstand. Vi kaller denne motstanden reaktans  $(X_C)$ . Reaktans er gitt ved

$$X_C = \frac{1}{2\pi f C}$$

f = frekvens

C = kapasitet

Vi ser fra dette at motstanden i en kondensator minker når frekvensen øker.

#### Serie- og parallellkobling

Koblinger med hensyn på reaktans fungerer som med motstander.

Seriekobling

$$X_{CT} = X_{C1} + \dots + X_{Cn}$$

Parallellkobling

$$\frac{1}{X_{CT}} = \frac{1}{X_{C1}} + \ldots + \frac{1}{C_{Cn}}$$

#### 5.2.3 Impedans

Impedans (Z), fra engelsk impede (å stå i veien for fremgang), er synonymt med motstand. Impedans er den totale motstanden med hensyn på både motstand og reaktans.

I AC-kretser kan man bytte ut kondensatorsymbolet C med en motstand  $X_C$ .



#### 5.2.4 RC-kretser

RC, står for Resistor og Kapasitor (motstand og kondensator). Og en RC-krets er simpelthen kretser som består av motstander og kondensatorer.



#### Spenning og impedans

Husk at strømmen i en kondensator ligger 90 grader forran spenningen. Det vil si at spenningen over en kondensator ligger forskøvet 90 grader i forhold til spenningen i en motstand. Vektorsummen gir den totale spenningen.



I en krets med en motstand og en kondensator i serie gir dette oss

$$V_T = \sqrt{V_R^2 + V_C^2}$$

Og tilsvarende for impedansen.

$$Z_T = \sqrt{R^2 + X_C^2}$$

#### Eksempel

Finn den totale impedansen Z for en seriekoblet motstand, kondensator og vekselstrømkilde.

$$R=25\,\mathrm{k}\Omega$$
 
$$C=6\,\mathrm{nF}$$
 
$$f=2\,\mathrm{kHz}$$
 
$$X_C=\frac{1}{2\pi\cdot f\cdot C}=\frac{1}{2\pi\cdot 2\cdot 10^3\cdot 6\cdot 10^{-9}}=13.3\,\mathrm{k}\Omega$$

$$Z = \sqrt{R^2 + X_C^2} = \sqrt{(25 \cdot 10^3)^2 + (13, 3 \cdot 10^3)^2} = 28.3 \, \mathrm{k}\Omega$$

Tidskonstant

Når en ladet kondensator står i en lukket krets med motstand, vil kondensatoren lade seg ut.



Spenningen U er gitt ved  $U = R \cdot I$ .

Spenningen til kondensatoren kaller vi V.

Etter kirchhoffs lov om spenninger er summen av alle spenninger i en krets lik null.

$$R \cdot I + V = 0$$

Strøm I er gitt ved

$$I = C \cdot \frac{dV}{dt}$$

Satt inn for I gir det

$$R \cdot C \cdot \frac{dV}{dt} + V = 0$$

Løser man dette for spenningen over kondensatoren får man

$$V_C(t) = V_0 \cdot e^{\frac{-t}{RC}} = V_0 \cdot e^{\frac{-t}{\tau}}$$

Hvor  $\tau = RC$  er tidskonstanten.

Etter en tid  $\tau$  har størrelsen blitt redusert til ca 37% av startverdien. Etter  $5\tau$  er størrelsen redusert til 1% og kondensatoren anses som utladet.



## 5.3 Frekvensfilter

#### Lavpass

Husk at reaktansen  $X_C$  er avhengig av frekvens.

$$X_C = \frac{1}{2\pi f C}$$

Det tilsier at reaktansmotstanden blir lavere med høy frekvens.

La oss se hva dette gjør med spenningen over kondensatoren i en RC-krets.



Spenningsdeling (husk: 90 grader forskyvning) for  $X_C$  gir oss

$$V_{ut} = \frac{X_C}{\sqrt{X_C^2 + R^2}} \cdot V_S$$

Dette viser at spenningen ut blir lavere ved høy frekvens.



Cutoff (grense) frekvensen får man når  $X_C = R$ .

$$f_g = \frac{1}{2\pi RC}$$

## Høypass

I motsetning til et lavpassfilter som slipper gjennom lave frekvenser, slipper høypassfiltre gjennom høye frekvenser.

Dette gjøres ved å måle spenning over motstanden istedenfor kondensatoren.



Når frekvensen blir høyere blir motstanden i kondensatoren lavere og ved spenningsdeling blir spenningen over motstanden høyere.



#### Eksempel

Hva er grensefrekvensen (cutoff frequency)?

$$R_F = 100 \,\Omega$$
  $C = 10 \,\mu\text{F}$   $R_L = 910 \,\Omega$ 



Dette kan skrives om slik vi er vant til å se thevenin



Regner ut theveninmotstanden

$$R_{TH} = \frac{R_L \cdot R_F}{R_L + R_F} = \dots = 90.1 \,\Omega$$

Vi husker at cutoff frekvensen er der hvor reaktansen og motstanden er lik.

$$X_C = R = \frac{1}{2\pi f C}$$

Løser med hensyn på f

$$f_g = \frac{1}{2\pi RC} = \dots = 177 \,\text{Hz}$$

#### 5.4 Dioder

En diode har to poler, en anode og en katode, og kan lede elektrisk strøm kun fra anoden til katoden. Snur vi dioden så vil den fungere som en sperre. Derfor sier man ofte at en diode har en lederetning og en sperreretning.

En diode er I stand til å stoppe ganske mye volt, men om det er koblet for å lede strøm så tåler den ikke så mye.



Ved hjelp av en diode kan vi sende strømmen i den retningen vi vil, og beskytte mot situasjoner som overslag.

En diode som vanligvis består av silisium vil ikke lede strøm før den blir påtrykt med en spenning på ca. 0,7 V. Dette har konsekvenser for resten av komponentene i kretsen, for om vi sender 12V inn over dioden, så vil det være igjen ca. 11,3 V for resten av komponente. Det vil si at vi må huske på at en diode stjeler litt av spenningen fra kretsen.

## 6 Uke 6 - Dioder

Kap. 17, s.533-564 Kap. 18, s.574-605

## 6.1 Kovalente bindinger

## 6.1.1 Diamantstruktur

Vi vet allerede at halvledere har 4 elektroner i valensbåndet. Etter oktettregelen ønsker disse atomene å fullføre sitt ytterste skall med 8 elektroner. For å oppnå dette, danner de kovalente bindinger (elektronparbininger) med andre atomer.



Silisiumatmoer danner en krystallstruktur.

#### 6.1.2 Ledning i rene halvledere

Ved tilført energi (varme eller lys) kan elektronene løsrives fra valensbåndet og bevege seg fritt i ledningsbåndet.



Når elektroner faller tilbake igjen, ned i disse hullene, kalles des rekombinasjon.

## 6.2 Doping

Hvordan doping fungerer er beskrevet i tidligere seksjoner.

#### 6.2.1 Pentavalent

Pentavalente grunnstoffer (n-type) har 5 valenselektroner. Dette gir et overflødig elektron som er svakt bundet. Husk, stoffet er fremdeles nøytralt! I denne type doping er elektronene majoritetsbærere.

#### Eksempel:

P - fosfor

As - Arsenikk

Sb - Antimov

Bi - Bismut

#### 6.2.2 Trivalent

Trivalente grunnstoffer (p-type) har 3 valenselektroner. Vi får et hull blandt kovalentbindingene. Elektroner er minoritetsbærere.

#### Eksempel:

B - Bor

Al - Aluminium

Ga - Gallium

In - Indium

## 6.3 PN-Junction

#### 6.3.1 Diffusjon

Et n-type stoff ved siden av et p-type stoff, fører til diffusjon. De svakt bundede elektronene i n-type swoopper over til hullene i p-type. Dette kalles diffusjon.



# 6.3.2 Sperresjikt

Hvis man setter sammen n-type og p-type materialer, vil det ved diffusjon trekkes elektroner fra n-type over til p-type.



Elektronene *rekombinerer* med hull på den andre siden, og etterlater seg hull der de kom fra.



Det skapes et sperresjikt (depletion layer) mellom materialene. Dette sjiktet fungerer som en isolator og stopper videre overføring.

Sperresjiktet har en potensialbarriere på 0.3 - 0.7 Volt, avhengig av materiale.

#### 6.3.3 Forward bias

Når man påfører en spenning til en PN-Junction vil elektroner bevege seg mot positiv terminal.

Elektronene på p-side vil forlate sin posisjon og gå mot positiv. Elektroner på n-side vil bevege seg mot positiv og fylle igjen hullene i n-side på veien. Spenningsjiktet er nå brutt ned og strøm kan gå gjennom.



## 6.3.4 Reverse bias

Reverserer man spenningskilden går elektronene andre vei.

Elektronene på n-side vil gå mot positiv terminal og etterlate seg hull på sin egen side.

Elektroner fra negativ terminal frastøter elektroner på p-side. Disse beveger seg fra negativ, intill de møter den positive barrieren på n-side.



# 6.4 Dioder

En diode er en komponent som bare leder strøm i én retning. De er beskrevet mer i tidligere seksjoner.



# 6.4.1 Ideell karakteristikk og Bulk resistance

Ideelt sett skulle en diode blokkere strøm i en retning, og slippe igjennom  $\it all$  strøm i motsatt retning.



I virkeligheten er det en naturlig motstand (bulk resistance) i envher diode.



Vi ser at det ved å reversere spenningen vil det gå en svak lekasjestrøm.

# 6.4.2 Temperatureffekt

Ved høyere temperatur vil elektroner i halvledermaterialet bli termisk eksitert og gjøre ledningsevnen bedre.



# 6.4.3 Eksempel

Finn strømmen!

(Husk at dioder har en potensialbarriere på ca 0.7 Volt)

$$V_S = 5 \,\mathrm{V}$$
  $R = 1 \,\mathrm{k}\Omega$ 



Etter Kirchhoffs lov om spenninger vet vi at

$$V_S = V_R + V_D$$

Videre ser vi at

$$V_R = V_S - V_D = 5 - 0.7 = 4.3 \,\mathrm{V}$$

Strømmen er gitt ved

$$I_R = \frac{V_R}{R} = \frac{4.3}{1 \cdot 10^3} = 4.3 \,\mathrm{mA}$$

#### 6.4.4 Ulike typer dioder

#### Zener

Zener-dioder viker i *Reverse Breakdow* området i diodens virkeområde. Det vil si, når spenningen er revers i forhold til diodens retning.

De brukes som bl.a. spenningsregulator fordi stor forandring i strøm fører til liten forandring i spenning. Da får man en referansespenning man kan designe etter.

#### Schottky

Schottky-dioder er nyttige når man vil forhindre energitap. De har et lavere spenningsfall enn vanlige dioder. Hvor en vanlig diode har mellom 0.6-0.7 volt er schottky mellom 0.15-0.45 V.

#### Varicap

Varicap-diode, variable capacitance diode, brukes som en variabel kondensator. Kan brukes i radioaparater for å stille inn ønsket frekvens.

#### 6.5 Anvendelse av dioder

Hva kan man bruke dioder til?

## 6.5.1 Powersupply

En PSU brukes i alle DC enheter som henter strøm fra AC nettet. F.eks. en datamaskin. Vekselstrømmen fra strømnettet må konverteres til et stabilt DC signal før det kan brukes.

AC signalet kjøres først gjennom en likeretter, for å bli kvitt negativ spenning. Deretter gjennom et elektronisk filter, som fjerner mesteparten av spenningsvariasjonene. Spenningen har nå små variasjoner og kalles ripple. Noen enheter trenger et finere signal enn dette og signalet kjøres gjennom en spenningsregulator.



#### 6.5.2 Likeretter

I PSUen sitter en likeretter. Her er mer detalj om hvordan den fungerer.

#### Halvbølge

I en halvbølge-likeretter blir enten den positive eller den negative halvdelen av AC signalet sluppet igjennom.



#### Helbølge

Diodene slipper igjennom strøm i bare én retning.



Når spenningen reverseres, slipper de andre diodene strøm igjennom.



# 7 Uke 7 - Bipolar Junction Transistorer (BJT)

Kap. 19, s. 617-652 + notater på nett

# 7.1 Oppbygning

En bipolar junction transistor bruker både elektron- og hullstrøm, og har 2 junctions mellom ulikt dopede halvledere. BJTer kommer i 2 typer, NPN og PNP. Vi skal se på den første av dem.

# Collector, Base og Emittor

En BJT består av 3 deler: collector, base og emittor. Disse er bygget opp av tre dopede halvleder materialer, n-type og p-type. Mellom disse regionene er pn-overganger akkurat som i dioder.



Symbolet for BJTer ser slik ut for npn



Hvor den lille pilen peker mot det n-dopede materialet. Tilsvarende for pnp



# Fysisk struktur

I virkeligheten er en BJT bygget opp lag på lag med en isolator rundt.



# 7.2 Virkemåte

# 7.2.1 Operasjonsmodi

Siden NPN-transistoren består av 2 PN-overganger, kan man anse det som to dioder koblet sammen.



Disse diodene kan kjøres i forskjellig bias (forward, reverse). Avhengig av forholdet mellom spenningen ved diodens collector, base og emitter, fungerer transistoren forskjellig.

De forskjellige kombinasjonene utgjør transistorens operasjonsmodi.

| Base-Emitter | Base-Collector | Operasjonsmodi |
|--------------|----------------|----------------|
| Reverse      | Reverse        | Cutoff         |
| Forward      | Reverse        | Aktiv          |
| Forward      | Forward        | Metning        |

### 7.2.2 Cutoff modus

Både base-emitter junction og collector-base junction er i reverse bias. Vi vet fra hvordan dioder fungerer at sperresjiktet mellom de dopede materialene vokser. I cutoff modus fungerer transistoren som en åpen krets, ingen strøm passerer gjennom.



# 7.2.3 Metning

Når spenningen ved basen er større enn ved collector, fungerer transistoren som en kortslutning. Strøm går fra emitter til collector.



#### 7.2.4 Aktiv

Aktiv modus ser lik ut som ved metning, men med en forskjell. Spenningen ved collector er større enn ved base.

$$V_C > V_B > V_E$$

I aktiv modus er strømmen fra emitter til collector proporsjonal med strømmen til base.

#### 7.2.5 Modi-kvadrant

En annen måte å illustrere transistorens modi på er ved forholdet mellom spenningene.



 $V_C$  = spenning fra collector til jord.

 $V_E$  = spenning fra emitter til jord.

 $V_B$  = spenning fra base til jord.

 $V_{BC}$  = spenning fra base til collector.

 $V_{BE}$  = spenning fra base til emitter.

### 7.3 Karakteristikk

#### 7.3.1 Strøm

I aktiv modus er strømmen gjennom collector proporsjonal med strømmen gjennom base. Forstørrelsen er gitt ved  $\beta$ .

$$I_C = \beta \cdot I_B$$

Hvor strømforsterkningen  $\beta$  er mellom 50 og 300.



Strømmen gjennom emitter er lik summen av strømmen gjenno base og collector.

$$I_E = I_B + I_C$$

# 7.3.2 Virkeområde

Når spenningen over base-emitter dioden når ca  $0.7 \,\mathrm{V}$  vil det gå strøm fra emitter til base. Fra det punktet vil strømmen  $I_C$  holde seg nesten konstant, selv om  $V_{CE}$  øker.

Når  $V_{CE}$  øker, blir sperresjiktet tykkere. Men hvis spenningen blir for stor får vi et  $punch\ through.$ 



# 8 Uke 8 - Transistorforsterkere og småsignalmodeller

Kap. 20, s 662 -695

#### 8.1 Universal Bias

Her har det vært mye uklarheter.

Vi er blitt fortalt at det norske ordet for universal bias er spenningsfordeler. Etter å ha sett på flere kilder ser det ut til at spenningsfordeling er noe som skjer, og må tas hensyn til, under universal bias stabilization.

Formålet med universal bias stabilization, er å få et stabilt Q-punkt (forklart straks). Dette er bra for å få en gjevn  $I_C$  uavhengig av  $\beta$ .

## 8.1.1 Lastlinje

Lastlinjen viser alle mulige kombinasjoner av  $I_C$  og  $V_{CE}$ .

For å ta hensyn til temperaturforandringer og andre forstyrrelser, velger vi et punkt midt på denne linja.



$$I_{C(metning)} = \frac{V_{RC}}{R_C}$$
 
$$V_{CE(cutoff)} = V_{cc}$$

Man bruker dette når man velger hvor store motstandere man vil ha.

$$R_C = \frac{V_{CE}}{I_C}$$

#### 8.2 Småsignalmodellen

Småsignalmodellen brukes til å se hvordan en transistor reagerer på små signaler ved å dele transistoren i to deler. En dynamisk motstand  $r_{\pi}$  mellom baseemitter. Og en strømgenerator mellom collector-emitter. Strømgeneratorens strøm bestemmes av transistorens transkonduktans  $g_m$  (steilhet).





$$i_C = \beta \cdot i_B$$
$$i_C = g_m \cdot V_{BE}$$

#### 8.2.1 Transkonduktans - Steilhet

Steilhet  $g_m$ , eller bratthet, er hvor bratt strømmen stiger. Med andre ord tangenten.  $g_m$  benevnes i Siemens.

$$g_m = \frac{\Delta I_C}{\Delta V_{BE}}$$



Strømmen  ${\cal I}_C$ er gitt ved

$$I_C = \alpha \cdot I_{ES} \cdot e^{V_{BE}/V_T}$$

Vi finner  $g_m$  ved å derivere  $I_C$ .

$$g_m = \frac{\Delta I_C}{\Delta V_{BE}} = \alpha \cdot I_{ES} \cdot e^{V_{BE}/V_T} \cdot \frac{1}{V_T} = I_C \cdot \frac{1}{V_T} = \frac{I_C}{V_T}$$

Hvor  $V_T = 25mV$ .

# 8.2.2 Dynamisk inngangsresistans

Mellom base-emitter "er det" en dynamisk motstand $r_\pi.$  Den dynamiske motstanden  $r_\pi$ er gitt ved

$$r_{\pi} = \frac{\Delta V_{BE}}{\Delta I_{B}}$$

## Et annet uttrykk

Vi vet at  $I_C = \beta \cdot I_B$ . Stokket om og derivert gir det

$$\Delta I_B = \frac{\Delta I_C}{\beta}$$

Vi vet også at  $g_m = {^\Delta I_C}/{_\Delta V_{BE}}.$  Stokket om gir det

$$\Delta I_C = g_m \cdot \Delta V_{BE}$$

Slår vi dem sammen

$$\Delta I_B = \frac{g_m \cdot \Delta V_{BE}}{\beta}$$

Dette kan vi bruke i formelen for dynamisk inngangsresistans.

$$r_{\pi} = \frac{\Delta V_{BE}}{\Delta I_{B}} = \frac{\beta}{q_{m}} = \frac{\beta \cdot V_{T}}{I_{C}}$$

# 8.3 Spenningsforsterkning

Det finnes forksjellige typer forsterkning: strømforsterkning, spenningsforsterkning, effektforsterkning.

Vi skal se på spenningsforsterkning  $A_V$ . A står for Amplify og V står for Voltage.  $A_V$  er gitt ved

$$A_V = \frac{V_{ut}}{V_{inn}} = \frac{\Delta V_{RC}}{\Delta V_{BE}} = g_m \cdot R_C$$

#### Utledning

Vi vet at steilhet  $g_m = \Delta I_C/\Delta V_{BE}$ . Stokket om

$$\Delta I_C = g_m \cdot V_{BE}$$

Fra ohms lov har vi også

$$\Delta V_{RC} = \Delta I_C \cdot R_C$$

Slår vi dem sammen får vi

$$\Delta V_{RC} = g_m \cdot V_{BE} \cdot R_C$$

Dette kan vi bruke i formelen for  $A_V$ 

$$A_V = \frac{V_{ut}}{V_{inn}} = \frac{\Delta V_{RC}}{\Delta V_{BE}} = \frac{g_m \cdot V_{BE} \cdot R_C}{\Delta V_{BE}} = g_m \cdot R_C$$

# 9 Uke 9 - Effektforsterkere og FET

Kap. 21, s. 704 -740

Kompendium om digitale kretser.

# 9.1 Kort repetisjon av uke8

#### 9.1.1 Forsterker

Med avkoblet emitter



I denne kretsen er forsterkningen gitt ved

$$A_V = -g_m \cdot R_C$$

Eventuelt, hvis du har en last på output

$$A_V = -gm \cdot (R_C||R_L)$$

Hvor vihusker at

$$g_m = \frac{I_C}{V_T}$$

### Uten avkoblet emitter

Uten avkoblet emitter kan du ta vekk kondensatorene på høyre side av kretsen. Da blir forsterkningen (uten last)

$$A_V = -\frac{R_C}{R_E}$$

## Småsignaler

Kretsen ovenfor sett ifra småsignalmodellen gir



Motstanden som signalet ser inn mot kretsen er

$$R_{inn} = R_{B1}||R_{B2}||r_{inn}$$

Hvor  $r_{inn}$  er motstanden etter de 2 parallell-motstandene.

$$r_{inn} = r_{\pi} + (\beta + 1)R_E$$

#### 9.1.2 Emitterfølger

Emitterfølger er når vi måler  $V_{ut}$  fra emitter istedenfor collector. I motsetning til den forige kretsen, blir det ingen invertering av signalet. Det blir heller ingen spenningsforsterkning, men stor effektforsterkning.

Strømforsterkningen er gitt ved

$$A_i = \frac{i_e}{i_b} = \frac{i_b(\beta + 1)}{i_b} = \beta + 1$$

Effektforsterkningen er gitt ved

$$A_P = A_V \cdot A_i \cong 0.99 \cdot (\beta + 1)$$
$$A_P \approx \beta$$

# 9.2 Effektforsterkere

#### Klassifisering av forsterkere

Forksjellige parametre definerer egenskapene til en forsterker. Avhengig av hvilken karakteristikk man ser på kan forsterkerne klassifiseres.

- Lav og høy frekvens
- Avstemt og uavstemt
- Smalbånd og bredbånd

I de følgende seksjonene skal vi se på effektforsterkere og hvordan de deles inn etter hvordan transistorens arbeidspunkt er plassert på lastlinja. Effektforsterkere har en virkningsgrad som sier noe om effekten ut i forhold til effekten inn.

 $\eta = \frac{P_L}{P_{CC}}$ 

Hvor

 $P_L =$  Effekt avgitt fra lasten og  $P_{CC} =$  Effekt tilført fra CC.

# 9.2.1 Klasse A

Arbeidspunktet ligger midt på lastlinja. Altså i det aktive området.



Effektforsterker klasse A (emitterfølger)



Type A effektforsterkere har lav virkningsgrad. f.ek<br/>s $\eta=25\%.$  Denne klassen trekker strøm når det ikke er tilført signal.

# 9.2.2 Klasse B

Arbeidsområdet er på grensa mellom aktiv og cutoff.



I en klasse B emitterfølger blir det en effektforsterkning som kun virker på halvperioder. Output signalet tar ikke med negativt input signal.



En slik forsterker ser slik ut



Det finnes også *Push-Pull* klasse B forsterkere. De bruker både npn og pnp og fanger både positive og negative signaler, men med *crossover* forvrengning.



# 9.2.3 Klasse AB

En klasse B Push-Pull forsterker lider av crossover forvrengning. Det gjør ikke den mer avanserte klasse AB forsterkeren.



#### 9.2.4 Klasse C

klasse C forsterkere leder mindre enn halvparten av input signalet og det er mye forvrengning. Til gjengjeld er effektiviteten høy (opp til 90De brukes bl.a. i radiosendere og repeaters.

#### 9.2.5 Klasse D

I en klasse D forsterker fungerer transistorene som brytere, de er enten av eller på. Bryterne er vanligvis MOSFET transistorer men kan også være vakuumrør eller BPJ.

#### Virkemåte

Et analogt signal konverteres til pulser ved f.eks. PWM (pulse width modulation).



Den blå sagtannbølgen er klokkesignalet.

Den røde sinusbølgen er signalet som skal moduleres.

Den rosa pulsen er signalet etter moduleringen.

 $\rm N \mathring{a}r$ klokka er sterkere enn kilden, brytes pw<br/>m signalet. Men når klokka er svakere enn kilden, er pw<br/>m positiv.

# Forsterkning

Det analoge signalet kan oversettes til pulser, pulsene forsterkes og så oversettes signalet tilbake til analogt.



# 9.3 Field Effekt Transistor

FET, field effekt transistor, er en type transistor. En FET kalles en *unipolar* komponent fordi de har én type bærere. Ladningstransporten skjer ved majoritetsbærere.

Fordeler:

- Spenningsregulert: Kan anses som en spenningskontrollert strømkilde.
- Veldig stor inngangsmotstand. Som gjør den energieffektiv.

Ulemper:

• Lav transkonduktans. Som gir liten forsterkning.

#### **9.3.1** To typer

Field effekt transistorer kommer i 2 typer

#### JFET: Junction Field Effekt Transistor

JFET er den første typen FET som ble laget. De deles igjen i to typer, n-channel og p-channel, avhengig av hva slags doping som er brukt på den innerste halvlederen.

#### MOSFET: Metall Oksyd Semiconductor FET

MOSFET er en nyere teknologi enn JFET. Kommer også som n-channel eller p-channel, men kommer i tillegg som en av:

E-MOSFET - Enhancement mode MOSFET (er på med tilstrekkelig spenning på gate)

D-MOSFET - Depletion mode MOSFET (er på uten spenning på gate)

#### 9.3.2 JFET

Når vi har sett på transistorer har vi sett på de 3 terminalene Base, Collector og Emitter. For helligdom og mystikk kalles de i FET-sammenheng for Gate, Drain og Source.



Gate er koblet på n-dopet materiale, vi ser sperresjikte i lysegrønn og i midten er et p-dopet materiale. Dette bildet er et eksempel på p-channel JFET. Hvis n og p materialene var byttet om ville det være en n-channel.

#### 9.3.3 MOSFET

#### **D-MOSFET**

D-MOSFET kalles depletion (nedbryting) mosfet fordi det n-dopede materialet blir positivt ladet og derfor *brytes ned*. Se på den visuelle likheten mellom dmosfet og emosfet så forstår du hva jeg mener.



Mellom Gate og n-type er det en isolator som ikke er tegnet i inn.



Her ser vi at n-materialet har mistet elektroner og er derfor brutt ned (depleted).

# E-MOSFET

Enhancement (legge til) mosfet fungerer omtrent motsatt fra en d<br/>mosfet. Istedenfor at n-området brytes i to, er den allerede brutt i to, men det kan fylles igjen.



# 9.3.4 CMOS

CMOS er en teknologi som brukes i konstruksjon av integrerte kretser. Navnet er et akronym for Complementary Metal Oxide Semiconductor. En cmos-krets består av mosfet-transistorer. Teknologien brukes i bl.a. mikroprosessorer, mikrokontroller, portkretser, SRAM.



# 9.4 Logic Gates

Digitale kretser består av binære systemer. De består av komponenter som kan ha tilstand 1 eller 0. Logikken i disse kretsene kommer fra boolsk algebra, og komponentene de bygges av kalles for *logiske porter*.

Det finnes en del forskjellige logiske porter, men alle disse kan lages ved å kombinere 3 grunnlegende typer: NOT, AND og OR.

### 9.4.1 NOT, AND og OR



NOT: Inverterer signalet. Hvis det er en input, er det ingen output. Hvis det ikke er input, er det en output.

AND: Begge signalene inn må være på for å få output.

OR: Enten den ene eller den andre (eller begge) gir output.

#### 9.4.2 Andre typer

Ved f.eks. å kombinere NOT og AND får man en NAND. Det samme gjelder for NOR.

Det finnes også en XOR som er helt lik OR bortsett fra at begge signalene kan ikke være på samtidig. X står for exclusive.



## 9.4.3 Sannhetstabell (truth table)

Output fra en logisk port avhenger av input og varierer fra port til port. En sannhetstabell gir oversikt over hvilke porter som gjør hva.

| Α | В | OR | NOR | XOR | AND | NAND |
|---|---|----|-----|-----|-----|------|
| 0 | 0 | 0  | 1   | 0   | 0   | 1    |
| 0 | 1 | 1  | 0   | 1   | 0   | 1    |
| 1 | 0 | 1  | 0   | 1   | 0   | 1    |
| 1 | 1 | 1  | 0   | 0   | 1   | 0    |

# 10 Uke 10 - Digitale kretsfamilier

Eget kompendium om digitale kretser.

# 10.1 Kretsfamilier (Logic families)

Kretsfamilier refererer til forksjellige teknikker som brukes til å implementere logikk.

Det finnes mange av disse: RTL, DCTL, RCTL, DTL, CTDL, HTL, ECL, PECL, LVPECL, GTL, TTL, PMOS, NMOS, HMOS, CMOS, BiCMOS, III.

Heldigvis skal vi bare se på noen få av dem.

#### Bipolare komponenter (BJT)

Dioder-vakuumrør ble brukt i de første elektroniske datamaskinene på 1940-tallet.

DTL, diode-transistor logikk, ble først brukt på 50-tallet når man byttet ut vakuumrørene med transistorer.

ECL, emitter-coupled logikk, er raske integrerte kretser som bruker for mye energi. De ble brukt mellom 1970-1990, men kan også bli brukt i dag.

TTL, transistor-transistor logikk, er mye brukt i integrerte kretser. Etter oppfinnelsen på 60-tallet er de fremdeles i bruk i dag.

#### Unipolare komponenter (FET)

FET brukes bl.a. i NMOS og CMOS kretser.

NMOS, ulempen med NMOS er at den bruker strøm selv når den ikke switcher.

CMOS, den mest vanlige IC-teknologien (Integrated Circuit). Bortsett fra lekasjestrøm bruker den kun strøm når den switcher.

BiCMOS, kombinerer CMOS og TTL. BJT gir fordeler for analoge deler, CMOS gir enkle logiske porter. Ble bl.a. brukt i Pentium Pro.

#### 10.1.1 NMOS

#### NMOS som motstand

En NMOS kan brukes som en motstand. Man oppnår dette ved å koble sammen Drain og Gate. Dette kan brukes til å kontrollere logikk i diverse logiske porter.



Motstanden blir da

$$R = \frac{V_{DS}}{I_D}$$

Motstanden er, som regel, i kilo-ohm og strømmen i milli-ampere.

**NAND** Man kan implementere unipolare logiske kretser med NMOS.



Sannhetstabellen blir lik NAND i forige seksjon. Når både A og B er på vil transistoren lede. Når transistoren leder vil Y bringes ned til jord AKA null.

**NOR** NOR port implementert med NMOS.



På bildet kan man bytte ut R med en n<br/>mos-motstand (gate og drain koblet). Hvis minst én av A eller B er på, vil transistoren lede. Når en eller begge

transistorene leder, bringes Y til jord.

#### 10.1.2 DTL

Vi kan implementere en NAND port med dioder og transistorer (DTL).

| Α | В | Y |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |



Fra  $V_{DD}$  kan spenningen gå til jord via A, B eller de to diodene og transistoren. Disse er koblet i parallel, så spenningen fra  $V_{DD}$  til jord er lik uansett hvilken vei du tar.

Når enten A eller B er null vil spenningen fra  $V_{DD}$  til jord være 0.7. Da er den 0.7 uansett hvilken vei du tar, og veien over gjennom transistoren krever 2.1V for at transistoren skal lede, altså leder ikke transistoren.

Når derimot både A og B er på vil all spenning fra  $V_{CC}$  legge seg over de to diodene og transistoren, og 5V er nok til at transistoren leder. Når transistoren leder har Y klar bane til jord og er altså 0.

# 10.1.3 TTL

I DTL kretser ble transistoren brukt til forsterkning, mens diodene ble brukt for logikk. I TTL brukes transistoren til begge deler.

Transistoren kan ha flere emittere for å unngå dyp metning. Man vil kunne trekke ladning raskt ut fra base så kretsen blir mer responsiv og kan tåle høyere hastighet.

Man kan også bruke schottkytransistorer til å forhindre metning. Slike kretser kalles S-TTL (Schottky TTL). Her switcher transistoren mye raskere enn ellers, men ved høyere energibruk.

Enter LS-TTL (Low-power Schottky TTL). Her introduseres høyere indre motstand så det går mindre strøm i kretsen for å redusere energibruket.

Det finnes også Advanced Low-power Schottky (ALS) som videre forbedrer hastighet og energiforbruk.

#### 10.2 Kombinatoriske kretser

Vi skiller mellom kombinatoriske og sekvensielle kretser. Noen operasjoner, som pluss og minus, er uavhengig av hva som har skjedd før. Kombinasjonen av tall A pluss tall B gir en sum.

Ved en if-statement, if(var == 22), må man hente variable fra minne og ta en beslutning basert på hva den variabelen var satt til. Logikken er altså avhengig av hva som har skjedd tidligere. Dette er sekvensiell logikk.

I denne subseksjonen skal vi se på kombinatorisk logikk hvor f.eks. summen av to tall er uavhengig av tidligere hendelser.

#### 10.2.1 Binær addisjon

Dette er lett å søke opp på internett.

#### 10.2.2 Adders

En adder er en digital krets som adderer to tall. Vi skal se på 1-bit addere som legger sammen en bit med en annen. Disse kan igjen settes sammen så man får en n-bit adder.

#### Halvadder

Addere kommer hovedsaklig i to typer, halv og hel. Halvaddere har to input og to output. De to inputene er tallene A og B som skal adderer. De to ouptupene er summen S og mente C. Mente er med hvis man får 2 som svar da det ikke kan representeres med 1 bit.



Sannhetstabellen til en halvadder ser ut som følgende

| A | В | C | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

# ${\bf Heladder}$

Heladderen har treinput, A, B og mente  $C_{inn}$  fra forige addisjon. Output er likt som halvadder:  $C_{ut}$  og S



Sannhetstabellen blir litt mer komplisert.

| A | В | Cin | Cut | S |
|---|---|-----|-----|---|
| 0 | 0 | 0   | 0   | 0 |
| 0 | 0 | 1   | 0   | 1 |
| 0 | 1 | 0   | 0   | 1 |
| 0 | 1 | 1   | 1   | 0 |
| 1 | 0 | 0   | 0   | 1 |
| 1 | 0 | 1   | 1   | 0 |
| 1 | 1 | 0   | 1   | 0 |
| 1 | 1 | 1   | 1   | 1 |
|   |   |     | '   | , |

#### n-bit adder

Nå har vi sett på 1-bit addere. Vi vet hvordan de har A, B og  $C_{inn}$  som input og S og  $C_{ut}$  som output.



Hvis vi vil lage en adder som tar f.eks. 4 bit kan vi simpelthen sette sammen fire 1-bit addere.



#### 10.3 Sekvensielle kretser

I motsetning til kombinatorisk logikk som gjør sin enkle oppgave uten noe om og men, er sekvensiell logikk avhengig av tidligere hendelser. Resultatet av en operasjon vil være forskjellig avhengig av kretsens tilstand.

Tilstanden til en krets er bestemt av innholdet i minne. Så for å ha en kombinatorisk krets må vi først ha minne.

#### 10.3.1 Latches

En latch, eller flip-flop, er en 1bit minne. Den kan lagre en enkel tilstand, av eller på. Et større minne settes sammen av flere flip-flops.

### SR-latch

Den enkleste latchen består av to input og to output.



Figure 1: SR-latch med set og release.

Når set aktiveres skifter latchen tilstand til 1 og når reset aktiveres skifter den tilstand til 0. Når verken er aktivert beholder den sin tilstand.

#### $\overline{SR}$ -latch

En implementasjon av sr-latchen kan bygges av to NAND-porter. Merk at input er not S og not R, altså inverterte av S og R.



Husk at input er not S og derfor er 0 aktivert og 1 deaktivert på inngangen.

| $\overline{S}$ | $\overline{R}$ | Q | $\overline{Q}$ |
|----------------|----------------|---|----------------|
| 1              | 0              | 0 | 1              |
| 1              | 1              | 0 | 1              |
| 0              | 1              | 1 | 0              |
| 1              | 1              | 1 | 0              |
| 0              | 0              | 1 | 1              |

Tenk igjennom logikken og se til at du forstår det (eller for å se om jeg har skrevet feil).

### Synkron SR-latch

Vi kan kontrollere en latch så den kun skifter tilstand når den mottar et klokkesignal. Dette brukes for å synkronisere kretser og registere.



Figure 2: Klokkestyrt latch laget av AND og NOR.

### D-latch

 $\operatorname{En}$ d-latch kan anses som en én-input s<br/>r-latch. Denne forhindrer bruk av ulovlige inputkombinasjoner.



Figure 3: d-latch

### 10.3.2 Dekoder / Enkoder

### Dekoder

En dekoder tar et n-bit signal og gir et dekodet signal på utgangen hvor bare én pinne er høy "1".



Figure 4: 2 til 4 linjers dekoder.

Sannhetstabellen viser at hver input-kombinasjon svarer til en output pin.

| A | В | 0 | 1 | 2 | 3 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 | 1 |

Table 1: Sannhetstabell for 2til4 dekoder.

Man kan også ha f.eks. en 4 bit dekoder med 16 output pinner.

### Enkoder

En enkoder fungerer motsatt av en dekoder. Den gir n<br/> bit ut basert på  $n^2$  linjer inn. For eksempel 16 linjer inn og 4 bit ut.

Et bruksområde kan f.eks. være en 4x4 keypad, hvor hver knapp svarer til én av 16 pinner. Enkoderen oversetter dette til et 4 bit signal.



Figure 5: Keypad enkoder.

### 10.3.3 ROM

ROM, Read Only Memory, kan brukes i enkodere når man ønsker en bestem relasjon mellom input og output. Man lager et map som relaterer spesifikke input til spesifikke output.

### 7-Segment

Et 7-segment, som brukes til å vise et siffer, styres av 7 input pinner. Den har 7 streker som kan lyse for å vise forksjellige siffer.



Figure 6: 7-Segment med pins

Forholdet mellom et input og hvilke streker som skal lyse bestemmes av en ROM.



Figure 7: 7-Segment med pins

Når input er lik 0 vil vi at alle streker bortsett fra den i midten skal lyse. Når input er lik 1 vil vi at kun de to høyre strekene skal lyse, osv...

Vi kan programmere ROMen til å gi oss den mappingen vi ønsker.

| A | В | $\mathbf{C}$ | D | Y0 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 |
|---|---|--------------|---|----|----|----|----|----|----|----|
| 0 | 0 | 0            | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 0  |
| 0 | 0 | 0            | 1 | 0  | 1  | 1  | 0  | 0  | 0  | 0  |
|   |   |              |   |    |    |    |    |    |    |    |
| • |   |              |   |    |    |    |    |    |    |    |
|   |   |              |   |    |    |    |    |    |    |    |
| 1 | 0 | 0            | 0 | 1  | 1  | 1  | 1  | 1  | 1  | 1  |
| 1 | 0 | 0            | 1 | 1  | 1  | 1  | 0  | 0  | 1  | 1  |

# 11 Uke 11 - Flip-flops og operasjonsforsterkere

Kap. 22, s 752 -787

## 11.1 Flip-flopper

Hva er forksjellen på en flip-flip og en latch? Ordene har vært brukt mye om hverandre, men det har blitt enighet om forskjellen. En flip-flop er en klokkestyrt latch. En latch styres ikke av en klokke. Men bjørn i sinn at ordene fremdeles brukes om hverandre.

### 11.1.1 JK flip-flop

I en vanlig SR flip-flop er oppførselen uspesifisert for to høye input. JK flip-flop løser problemet ved å bestemme at to høye input betyr flip. Hva enn som var på output blir motsatt av hva det var.



Figure 8: JK flip-flop

Sannhetstabellen til en JK flip-flop ser ut som følgende.

| J | K | Q              | $\overline{Q}$ |
|---|---|----------------|----------------|
| 0 | 0 | Q              | $\overline{Q}$ |
| 1 | 0 | 1              | 0              |
| 0 | 1 | 0              | 1              |
| 1 | 1 | $\overline{Q}$ | Q              |

Table 2: JK sannhetstabell

### 11.1.2 Master/Slave flip-flop

En master/slave flip-flop lages ved å koble to flip-flops i serie, hvor den siste av dem mottar det inverterte klokkesignalet til den første. Den bakerste flip-flopen endres kun når den første gjør det. Derfor er den første master og den andre slave.



Figure 9: Master/slave flip-flop

### 11.1.3 Binære tellere

Binære tellere gir et binært tall på output som øker med én for hver gang inngangsklokken tikker.

Ved å bruke master/slave flip-flops koblet i serie hvor Q er koblet til neste sin klokke. Alle inngangene, J og Q, er satt til høy, slik at hver gang klokka tikke endres Q og  $\overline{Q}$  til det motsatte.



Figure 10: 4bit binærteller.

Output A, B, C og D er little endian. Det vil si at den minst betydningsfulle biten kommer først. Dvs  $A=2^0,\ B=2^1$  osv.

Når klokka tikker, veksler A fra av og på. Når A tikker, veksler B fra av og på, osv. Resultatet blir en teller.



Figure 11: Binærteller output

Hvis du ser på output ser du at den teller oppover 0000, 1000, 0100, 1100 osv.

### 11.1.4 Dekadeteller

En binærteller vil telle opp til 16 før den starter på nytt. En dekadeteller teller til 10 før den resetes.

Dette kan oppnås ved gå tilbake til null hver gang man når ti. En AND port koblet til B og D utløses når man når ti og kan sende et reset signal til alle flip-flopene.



Figure 12: Dekadeteller.

### 11.1.5 Registere

En flip-flop kan lagre én bit, det er ikke særlig nyttig. La oss sette sammen flere av dem så vi for et n-bit register.

Ved å bruke D-latches hvor D inngangene er koblet til et binært input og klokkeinngangen er delt, kan vi lage et register som kan lagres med et klokkesignal.



Figure 13: 4bit register laget av D-Latches.

Klokken er ikke nødvendigvis en puls. Tenk på det som en 'lagre knapp' som lagrer dataen.

### 11.2 Op-amp

### 11.2.1 Integrated Circuits

En IC er en krets produsert på ett lite stykke halvledermateriale. Ved en IC kan man ha mange flere komponenter enn på vanlige kretser uten at størrelsen tar opp en hel kjeller. Antall komponenter kan variere fra noen få til flere milliarder.

Sammenlignet med vanlige kretser har IC flere fordeler. De forenkler design, reduserer kostnader og bruker mye mindre strøm.

### 11.2.2 Op-amp

En opamp er en spennings forsterker som bl.a. kan brukes til analoge regneoperasjoner.

### Egenskaper:

- Veldig høy forsterkning:  $10^5$  til  $10^6$ .
- Høy inngangsmotstand gjør den effektiv.
- Stabil i forhold til temperatur.
- Kontrollert fasegang.
- Differansekobling på inngangen.



Figure 14: Symbol for en op-amp.

### LM741

Et eksempel på en IC implementasjon av en opamp er LM741.



Figure 15: LM741 pinout

### 11.2.3 Tre viktige parametre

 $R_i$  Indre motstand:  $R_i > 1 \,\mathrm{M}\Omega$ 

 $A_v$  Forsterkning:  $A_v > 10^5$ 

 $R_o$  Utgangsmotstand:  $R_o < 100\,\Omega$ 



Figure 16: Ekvivalent krets av en opamp.

### 11.2.4 Inverterende Forsterker

En inverterende opamp snur negativt signal til positivt og motsatt.



Figure 17: inverterende forsterker

Forsterkningen er gitt ved

$$A_{vf} = \frac{V_{out}}{V_{in}}$$

Dette kan forenkles når  $A_v>>1$  til

$$A_{vf} = -\frac{R_f}{R_{in}}$$

Vi kan også finne  $v_i$ 

$$v_i = \frac{v_o}{A_v}$$

Inngangen på en inverterende opamp kan regnes som et virtuelt nullpunkt.

### 12 Uke 12

### 12.1 Påskeferie

Ingen forelesning denne uka.

### 13 Uke 13

#### 13.1 Påskeferie

Ingen forelesning denne uka.

# 14 Uke 14 - Anvendelse av OpAmp

Kap. 23, s.798 -836

Vi fortsetter der Ukell slapp, med operasjonsforsterkere.

### 14.1 Virtuelt nullpunkt

Den indre motstanden i en opamp er veldig stor. Det vil si at det virtuelt sett ikke går strøm igjennom.

$$i_i \approx 0$$

Og derfor er også

$$v_i \approx 0$$

Det gjør at vi betrakter inngangen til opampen som et virtuelt nullpunkt. Det gjør også at vi kan forenkle uttrykk hvor  $i_i$  eller  $v_i$  inngår.

### 14.2 Ikke-inverterende forsterker

I en ikke-inverterende forsterker er ikke signalet faseforskjøvet 90°, som i en inverterende forsterker.



Figure 18: Ikke-inverterende forsterker

$$v_O = \frac{R_1 + R_2}{R_2} \cdot v_S = \left(\frac{R_1}{R_2} + 1\right) \cdot v_S$$
 
$$A_{vf} = \frac{v_O}{v_S} = \frac{R_1}{R_2} + 1$$

### Spenningsfølger

Hvis  $R_1$  eller  $R_2$  er null blir forsterkningen 1. Dette kalles en spenningsfølger. Utgangen kan drive mer strøm enn kilden kan. De kan brukes som "front end" til måleinstrumenter.

### 14.3 Integratorkobling

Output av en integrator er integralet av input. Det er ofte viktig å kalibrere signalet så det svinger presist rundt null, ellers blir integralet feil.



Figure 19: Integratorkobling

 $\mathbf{Str}\mathbf{øm}$ 

$$i_s = i_i + i_f$$
 
$$\frac{v_s - v_i}{R_s} = \frac{v_i}{R_i} + i_f$$

**Spenning** 

$$\frac{v_s}{R_s} = -C \cdot \frac{dv_o}{dt}$$

Løs med hensyn på  $v_o$  og integrer på begge sider (Husk at  $R_s$  og C er konstanter).

$$v_o = -\frac{1}{R_s C} \int_0^t v_s dt$$

### 14.4 Addisjon med OpAmp

Hver av signalene på input slås sammen før dem går inn i opampen. I følgende krets har input forskjellig motstand, men de kan like så godt ha samme motstand. Lik motstand kan f.eks. brukes i et miksebord for lyd. Ulik motstand kan brukes, som i bildet, til å konvertere binær til analog.



Figure 20: Addisjon med opamp

Strømmen inn i knutepunktet er lik strømmen ut av det.

$$i_1 + i_2 + i_3 + i_4 = i_f + i_i$$
$$v_i \approx 0 \rightarrow i_i = 0$$

Det gir at

$$\frac{v_1}{R_1} + \frac{v_2}{R_2} + \frac{v_3}{R_3} + \frac{v_4}{R_4} = -\frac{v_o}{R_f} \to v_o = -\left(v_1 \frac{R_f}{R_1} + \dots + v_4 \frac{R_f}{R_4}\right)$$

Leddene  $\frac{R_f}{R_n}$  kalles vekt og avgjør hvor mye hver av inputene skal telle med i resultatet. For et miksebord kan justering av channel gain endre på en slik vekt. Master volumet kan justeres ved  $R_f$ .

### 14.5 Differensial forsterker

En differensial opamp har signal på begge input.



Figure 21: Differensial OpAmp

For å finne  $v_o$  bruker man superposisjonsprinsippet.

$$v_1 \text{ alene } (v_2=0)$$
 
$$v_{o1}=-\frac{R_f}{R_1}\cdot v_1$$
 
$$v_2 \text{ alene } (v_1=0)$$
 
$$v_{o2}=\frac{R_f+R_1}{R_1}\cdot v_g$$
 
$$v_g=\frac{R_g}{R_2+R_g}\cdot v_2$$
 
$$v_{o2}=\frac{R_f+R_1}{R_1}\cdot \frac{R_g}{R_2+R_g}\cdot v_2$$

Summen av bidragene

$$v_o = v_{o1} + v_{o2} = -\frac{R_f}{R_1}v_1 + \frac{(R_f + R_1)R_g}{R_1(R_2 + R_g)}v_2$$

### 14.6 Eksponential forsterker



Figure 22: Eksponensiell forsterker

Spenningen ut er gitt ved

$$v_o = -R_f \cdot i_f \approx -R_f \cdot I_s \cdot e^{\frac{V_s}{V_T}}$$

### 14.7 Logaritmisk forsterker

Hvis man, med utgangspunkt i eksponensiell forsterker, bytter plasseringen til motstanden og dioden får man en logaritmisk forsterker.



Figure 23: Logaritmisk forsterker

Spenningen ut er gitt ved

$$v_o = -V_T \cdot \ln v_s$$

### 14.8 Frekvensforløp

Opampens forsterkning begrenses av høy frekvens. Et Bode-diagram viser sammenhengen mellom fekvens og forsterkning.

Signalet til en opamp blir også faseforskjøvet etter som frekvens endrer seg. For hver 2. dekade blir signalet forskjøvet med 90°.



Figure 24: Forhold mellom forsterkning/fase og frekvens

Båndbredden er avhengig av hvilken forsterkning vi ønsker. F.eks. vil  $A_v=40dB$  gi en øvre grense på 10kHz. Og forsterkning på 20dB har øvre grense på 100kHz.

Ved grensefrekvensen forekommer et faseskifte. Som man kan se begynner det én dekade før og ender én dekade etter. Totalt 90° forskyvning.

#### Gain-Bandwidth Product

Gain-Bandwidth Product, GBW, bestemmer skråningen på grafen over. Produsenter oppgir GBW ved  $A_v=1$ , altså der grafen treffer x-aksen.

Eksempel

$$GBW = A_v \cdot B_w$$

La oss si at GBW = 1MHz og vi ønsker forsterkning på  $A_v = 100$ .

$$BW = \frac{1MHz}{100} = 10kHz$$

# 15 Uke 15 - Aktive Frekvensfiltre m/OpAmper

Kap. 23, s.798 -836

#### 15.1 Enheter

#### 15.1.1 Slew Rate

Slew rate er et mål på en krets evne til å reagere på endringer i spenning. Spesifikasjonen til f.eks. en opamp kan garantere en viss slew rate sånn at man kan beregne om den er brukbar i en gitt krets. Signalet gitt på input skal kunne gjenskapes perfekt (med en hvis toleranse) på output.

Slew rate (S) er gitt som forholdet mellom spenning/sekund.

$$S \ge \frac{dv}{dt}$$

I en forsterker må følgende tilfredsstilles

$$S \ge 2 \cdot \pi \cdot f \cdot V_{pk}$$

#### 15.1.2 Common-mode Rejection Ratio

En opamp skal helst forsterke forskjellen mellom input A og B, men som vi vet er aldri elektroniske komponenter ideelle.

I en ideell opamp er utgangsspenningen  $v_o = A_v(v_+ - v_-)$ . En ideell opamp skulle avvise et signal som ankommer begge input.

Common-mode Rejection Ratio er gitt ved

$$CMRR = \frac{A_v(differensiell)}{A_v(common-mode)}$$

### 15.2 Aktive Frekvensfiltre med Operasjonsforsterkere

Det finnes mange typer filtre og de kan deles inn etter måten de er bygd opp på eller hvordan de former signaler. Vi har: aktive og passive filtre, bredbånd- og smalbåndfiltre, høypass, lavpass, båndpass, båndstopp, notch...

TODO consider illustrations (4 hovedtyper).

#### 15.2.1 Parametre

Båndbredde

Ved filtre som båndpass og båndstopp er båndbredden gitt fra grensefrekvensene. Fra  $V_{pk}$  til en reduksjon på -3dB finner man grensefrekvensene. Båndbredden er avstanden mellom disse frekvensene.

$$BW = f_{c2} - f_{c1}$$

Q-Verdi

Q-Verdien sier noe om hvor bratt et filter avtar. En høy Q betyr brattere filter.

Q-Verdien er gitt ved den geometriske senterfrekvensen  $f_0$ .  $f_0$  er nesten som gjennomsnitt, men tar høyde for logaritmisk skala.

$$f_0 = \sqrt{f_{c1} \cdot f_{c2}}$$

Q-Verdien er forholdet mellom senterfrekvensen og båndbredden.

$$Q = \frac{f_0}{BW}$$

Pol

Når vi lager filtre med opamper bruker vi RC kretser. En pol er én RC krets. Det vil bli mer tydelig i seksjonen med implementasjonseksempler.

Orden

Antall poler i et filter avgjør filterets orden. Det bestemmer også hvor fort signalet avtar.

- 1. Ordens filter Har én pol. Avtar med 20dB per dekade.
- 2. Ordens filter Har to poler. Avtar med 40dB per dekade.
- 3. Ordens filter Har tre poler. Avtar med 60dB per dekade. osv...

### 15.2.2 Typer

Vi skal se på tre typer filtre: Butterworth, Bessel og Chebyshev. De forskjellige typene har forksjellige egenskaper som velges etter hvilke egenskaper som passer formålet.



Figure 25: Filtertyper

#### Butterorth (Maximally flat)

- + Flat respons  $A_v$  relativt konstant innenfor båndet).
- + Mest brukte aktive filteret.
- Fasegang endres når filteret avtar.

### $\mathbf{Bessel}$

- + Konstant fasegang.
- + HiFi (High Fidelity).

### Chebyshev

- + Bratt rolloff.
- Ikke konstant spenningsforsterkning.

### 15.3 Implementasjoner

### 15.3.1 Lavpass (Butterworth)

I de 2 følgende kretsene er

$$f_c = \frac{1}{2 \cdot \pi \cdot R_1 \cdot C_1}$$

### Variable-gain

I denne kretsen kan gain justeres med motstanden  $R_{f2}$ .

$$A_{vf} = \frac{R_{f1}}{R_{f2}} + 1$$



### Unity-gain

$$A_v = 1$$



## 15.3.2 Lavpass (Butterworth 2. orden)

I et andre ordens filter har vi2 poler (2 RC-ledd).

For begge følgende kretser er

$$f_c = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$$

Forsterkning for henholdsvis variable-gain og unity-gain er likt som i de to forige kretsene.

### Variable-gain



## Unity-gain



## 15.3.3 Høypass (Butterworth)

$$f_c = \frac{1}{2\pi R_1 C_1}$$

Denne kretsen har variabel gain:

$$A_{vf} = 1 + \frac{R_{f1}}{R_{f2}}$$



## 15.3.4 Høypass (Butterworth 2. orden)

$$f_c = \frac{1}{2\pi\sqrt{R_1 R_2 C_1 C_2}}$$



### 15.3.5 Båndpass (Kombinerer høypass/lavpass)

Et båndpassfilter kan lages ved kaskadekobling av et LPF og et HPF. Signalet legges ikke sammen, som ved en notch, men signalet fra det første filteret mates inn i det neste.



Figure 26: båndpassfilter

$$BW = f_{c2} - f_{c1}$$
$$f_0 = \sqrt{f_{c1} \cdot f_{c2}}$$
$$Q = \frac{f_0}{BW}$$



### 15.3.6 Notch/Båndstopp

Et notchfilter er et spesialtilfelle av båndstop hvor Q-Verdien er veldig høy. Signalet sender til både et lavpass- og et høypassfilter før de legges sammen i en adder som plusser sammen signalene.



Figure 27: Skjematikk for notch filter

Den resulterende formen på signalet blir



Figure 28: Notch filter frekvens og forsterkning

## 15.4 Tilbakekobling (feedback)

Feedback oppstår når output fra et system kobles tilbake på systemets input. Det brukes til: Linearisering, stabilisering og regulering og kontroll. Vi tegner det på følgende måte:



Figure 29: Negativ feedback

$$X_s = \text{signal inn}$$
 
$$X_o = \text{signal ut}$$
 
$$X_i = \text{signal til OpAmp}$$
 
$$X_f = \text{feedbacksignal}$$

Disse verdiene er gitt ved

$$X_i = X_s - \beta \cdot X_o$$
 
$$X_o = A \cdot (X_s - \beta \cdot X_o) = \frac{A \cdot X_s}{1 + A \cdot \beta}$$
 
$$A_f = \frac{X_o}{X_s} = \frac{A}{1 + A \cdot \beta}$$

Ved positiv feedback har vi

$$A_f = \frac{X_o}{X_s} = \frac{A}{1 - A \cdot \beta}$$

## 16 Uke 16 - Feedback, Millereffekt, Oscillatorer

Kap. 23, s. 798 -836

### 16.1 Feedback

Fortsetter fra forrige kapittel.

Avhengig av forholdet mellom  $A\cdot\beta$  vil signalet endre seg på forskjellig måte.

### ${\bf Loopgain} < 1$



Figure 30: Oscillasjon dør ut

### Loopgain > 1



Figure 31: Signalet øker til clipping

### $\mathbf{Loopgain} = 1$



Figure 32: Stabilt signal

## 16.2 Millereffekt

Miller effekt oppstår når man kobler en kondensator i feedbackloopen på en inverterende opamp.

Kondensatorens reaktans er gitt ved:

$$X_C = \frac{1}{j\omega C} = \frac{1}{2\pi fC}$$



Figure 33: Kondensator i feedbackloopen

Kondensatoren virker som om den er (1+A) ganger større enn den er.

$$i_s = \frac{v_i \cdot X_C}{v_i + A \cdot v_i} = \frac{X_C}{1 + A} = \frac{1}{j\omega C(1 + A)}$$

Det gir 'millerkapasitet'  $C_M$  lik:

$$C_M = C(1+A)$$

Dette betyr at høye frekvenser kuttes tidligere:

$$f_h = \frac{1}{2\pi \cdot R_{inn} \cdot C(1+A)}$$



Figure 34: Miller-cutoff vs vanlig cutoff

### 16.3 Oscillatorer

En oscillator lager et periodisk svingende signal. I musikalsk anvendelse kan dette være grunnlag for en synthesizer eller effect. I elektronikk kan signalet fungere som en klokke for synkroniserte kretser.

Vi skal se på fire ulike typer:

Fases kift-oscillator

Wien brigde-oscillatorer Avstemte oscillatorer Krystall-oscillatorer

### 16.3.1 Faseskift-oscillatorer

Faseskift-oscillatoren produserer en sinusbølge. Fordi faseforskyvningen avhenger av frekvens regnes den som ustabil og er lite brukt. Den har ingen input-signal, men trigges av en impuls.

De er sammensatt av et nettverk av RC-kretser. For å kompansere for tapet over disse må loopgain være 1.

$$A_f = \frac{A}{1 - A \cdot \beta}$$

$$A \cdot \beta \to 1 \implies A_f \to \infty$$

$$V_o$$

Opampen inverterer signalet 180 grader, mens RC-leddene inverterer det ytterligere 180 for en gitt frekvens. Frekvensen den oscillerer med er gitt ved:

$$f = \frac{1}{2\pi RC\sqrt{6}}$$

### 16.3.2 Wien brigde-oscillatorer

Stabil og en av de mest brukte RC-oscillatorene. Den bruker både positiv og negativ feedback.

TODO tegn kretsen

### Positiv

Den positive tilbakekoblingen kontrollerer svingningene. TODO beskrivelse, formel og illustasjon

#### Negativ

Den negative tilbakekoblingen kontrollerer closed loop gain  $A_{CL}$ . TODO beskrivelse, formel og illustasjon

#### 16.3.3 Avstemte oscillatorer

Avstemte oscillatorer er veldig presise, men også veldig dyre og lite brukt.

De er bygd opp av en inverterende forsterker og LC-ledd (spole og kondensator).

Av de flere typene som finnes er de mest vanlige:

Colpitts

Hartley

### 16.3.4 Krystall-oscillatorer

Krystall-oscillatorer er teknologien bak mange klokker og mesteparten av teknologien vi bruker i dag. De fungerer ved piezoelektrisk effekt. Det vil si at strøm påført elementet medfører mekanisk deformasjon. Tilsvarende vil et mekanisk trykk på elementet generere elektrisk spenning. Resonansfrekvensen bestemmes av krystallets fysiske størrelse.

Fordeler:

- Stabil
- Høy frekvens
- Billig
- Lavt energikrav



Krystallet har to resonansfrekvenser avhengig av om man ser på serieresonansen av RCL eller parallellresosansen med RL og  $C_M$ .

TODO graf

- 17 Uke 17
- 18 Uke 18
- 19 Uke 19
- 20 Uke 20
- 21 Uke 21
- 22 Uke 22
- 23 Uke 23