O Método Simplex

Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto

 $Max Z(X) = 2X_1 + 3X_2$ sujeito a

$$-X_1 + X_2 <= 4$$

$$X_1 + X_2 \le 6$$

$$X_1 + X_2 \le 6$$
 $x1 \ge 0$
 $2X_1 + X_2 \le 8$ $X_2 \ge 0$

$$x1 >= 0$$

$$X_2 >= 0$$

 $Max Z(X) = 2X_1 + 3X_2$ sujeito a

$$-X_1 + X_2 \le 4$$
 $B \ge 0$ $X_1 + X_2 \le 6$ $X_1 \ge 0$ Forma padrão (<=) $2X_1 + X_2 \le 8$ $X_2 \ge 0$

Acrescentando as variáveis de folga X_3 , X_4 e X_5 às restrições, temos:

Forma canônica (base óbvia), solução óbvia?

Queremos encontrar aquela que maximiza a função objetivo Z(X)

Max
$$Z(X) = 2X_1 + 3X_2 + 0X_3 + 0X_4 + 0X_5$$
 sujeito a
$$-X_1 + X_2 + X_3 = 4 \quad B >= 0, X_1 >= 0,..., X_5 >= 0$$

$$X_1 + X_2 + X_4 = 6 \quad \text{O problema neste formato \'e dito estar na}$$

$$2X_1 + X_2 + X_5 = 8 \quad \text{forma canônica, e apresenta uma base \'obvia e uma solução trivial. Quem \'e ela?}$$

Solução básica viável:

$$X_1 = X_2 = 0$$
 variáveis não-básicas (VNB): assumem **valor nulo** $X_3 = 4$, $X_4 = 6$, $X_5 = 8$ variáveis básicas (VB): assumem **valor não nulo** $Z(X) = 2X_1 + 3X_2 = 0$ valor da função objetivo para esta solução!

Resumo do Simplex:

- 1. Encontrar uma solução básica viável inicial. OK
- 2. Verificar se a solução atual é ótima. Se for ótima FIM, senão
- 3. Determinar a VNB que deve entrar na base
- 4. Determinar a VB que deve sair da base
- 5. Encontrar a nova solução básica viável e voltar para o passo 2.

- 1. Solução básica viável <u>trivial</u>: $X_1 = X_2 = 0$ (VNB), $X_3 = 4$, $X_4 = 6$, $X_5 = 8$ (VB), Z = 0. VERIFICANDO SE A SOLUÇÃO É ÓTIMA
- 2. Escrever Z(X) em função das vars não básicas (VNB) corrente:

 $Z(X) = 2X_1 + 3X_2$ já está escrito. Se pelo menos uma delas tem **coeficiente > 0** e o problema é de maximização, então a solução não é ótima!!!

ENCONTRANDO A VARIÁVEL QUE DEVE ENTRAR NA BASE

3. Entra na base a VNB com **maior coeficiente positivo**. X_2 entra na base e deve assumir o maior valor possível, sem que as variáveis básicas fiquem negativas!

ENCONTRANDO O VALOR DA VARIÁVEL QUE ENTRA NA BASE

$$X_3 = 4 + X_1 - X_2$$
 temos que $X_1 = 0$ e X_2 deve aumentar $X_4 = 6 - X_1 - X_2$ o máximo possível. Qual é o valor máximo para X_2 ? $X_5 = 8 - 2X_1 - X_2$

olhando para X_3 , X_2 pode ser no máximo 4 (4/1)

olhando para
$$X_4$$
, X_2 pode ser no máximo 6 (6/1) $X_2 = \min \{4, 6, 8\} = 4$

olhando para X_5 , X_2 pode ser no máximo 8 (8/1) Logo, X_2 assumirá valor 4

QUEM DEVE SAIR DA BASE?

4. Sai da base a VB que se anular primeiro com o crescimento da VNB que esta entrando. Lembre-se que $X_1 = 0$

Para X_2 = 4 temos

$$X_3 = 4 + X_1 - X_2 => X_3 = 4 - 4 = 0$$
 Logo X_3 sairá da base.
 $X_4 = 6 - X_1 - X_2 => X_4 = 6 - 4 = 2$
 $X_5 = 8 - 2X_1 - X_2 => X_5 = 8 - 4 = 4$

Resumo da iteração:

- \triangleright X₂ entra na base com valor 4 e X₃ sai da base pois seu valor foi zerado.
- ⊳ A nova solução básica viável será VB = (X_2, X_4, X_5) = (4, 2, 4), VNB = (X_1, X_3) = (0, 0) e Z(X) = 2*0 + 3*4 = 12. Melhorou!!!
- 5. Transformar o sistema considerando a nova base.

$$e_1$$
 e_2 e_3
 $-X_1 + X_2 + 1X_3$ $= 4$ A coluna da base que "aparecia" na var. X_3
 $X_1 + X_2$ 0 $+X_4$ $= 6$ agora deve "aparecer" na var. X_2 .
 $2X_1 + X_2$ 0 $+X_5$ $= 8$ Este é um pivoteamento de Gauss (Cálc. Num.)

Final da primeira iteração:

VB = (X_2, X_4, X_5) = (4, 2, 4), VNB = (X_1, X_3) = (0, 0) e Z(X) = 12. O sistema transformado é:

Esta solução é ótima? Se não for, repetir o processo. Para saber, devemos voltar ao Passo 2. Escrever $Z(X) = 2X_1 + 3X_2$ em função das VNB X_1 e X_3 .

Da primeira equação temos que $X_2 = 4 + X_1 - X_3$, portanto:

$$Z(X) = 2X_1 + 3(4 + X_1 - X_3) = Z(X) = 12 + 5X_1 - 3X_3.$$

Logo a solução ainda não é ótima pois tem uma **VNB com coeficiente positivo**.

Passo 3. Como X₁ é a VNB com maior coeficiente positivo, ela entra na base.

<u>Passo 4</u>. Quem sairá da base? Escrever as VBs em função das VNBs e aumentar o valor de X₁. A primeira VB que zerar é a que deve sair da base.

<u>Passo 4</u>. Quem sairá da base? Escrever as VBs em função das VNBs e aumentar o valor de X_1 . A primeira VB que zerar é a que deve sair da base. Lembrar que $X_3 = 0$.

$$X_2 = 4 + X_1 - X_3 => X_1 <= infinito$$

 $X_4 = 2 - 2X_1 + X_3 => X_1 <= 1$
 $X_5 = 4 - 3X_1 + X_3 => X_1 <= 4/3$ Portanto $X_1 = min \{\infty, 1, 4/3\} = 1 e$
 $X_4 = 0$ sai da base.

Ao substituir o valor $X_1 = 1$ no sistema teremos a nova solução básica viável:

VB =
$$(X_1, X_2, X_5) = (1, 5, 1)$$
, VNB = $(X_3, X_4) = (0, 0)$ e $Z(X) = 2*1 + 3*5 = 17$ melhorou!!!

Ou seja, a função objetivo melhorou mais um pouco.

Olhando o sistema pivoteado teremos:

Pivoteamento do sistema

 X_1 entra na base e X_4 sai da base. Isso significa que X_1 entra no lugar de X_4 !

Final da segunda iteração. O sistema transformado é:

Passo 2. Escrever Z(X) em função de X_3 e X_4 .

$$Z(X) = 2X_1 + 3X_2 => Z(X) = 2(1 + 0.5X_3 - 0.5X_4) + 3(5 - 0.5X_3 - 0.5X_4) \Rightarrow$$

$$Z(X) = 2 + X_3 - X_4 + 15 - 1.5X_3 - 1.5X_4 \Rightarrow Z(X) = 17 - 0.5X_3 - 2.5X_4$$

Como nenhuma VNB tem coeficiente > 0 a solução VB = $(X_1, X_2, \underline{X_5})$ = $(1, 5, \underline{1})$, VNB = (X_3, X_4) = (0, 0) é ótima com Z(X) = 17 !

O Método Simplex usando Quadros ou Tablôs – Resolução Prática

Acrescentando as variáveis de folga X_3 , X_4 e X_5 às restrições e transformando a função objetivo em uma equação temos

$$Z(X) - 2X_1 - 3X_2 = 0$$

 $-X_1 + X_2 + X_3 = 4$
 $X_1 + X_2 + X_4 = 6$

 $2X_1 + X_2$ + X_5 = 8 Temos agora quatro equações representando o problema, sendo que a primeira diz respeito à função objetivo. Na Tablô temos:

	1X	NB				
	X ₁	X_2	X_3	X ₄	X_5	В
Z	-2	-3	0	0	0	0
X_3	-1	1	1	0	0	4
X ₄	1	1	0	1	0	6
X_5	2	1	0	0	1	8

Coeficientes
das XBs na
FO são nulos

$$XB = (X_3, X_4, X_5) = (4, 6, 8), XNB = (X_1, X_2) = (0, 0) e Z(X) = 2*0 + 3*0 = 0$$

				_				_	
	XI	NB NB	XB		XB		TR		
	X ₁	X ₂	X_3	X_4	X_5	В	Bi/Aij		
Z	-2	-3 pivô	0	0	0	0	===		Mínimo do Teste
X_3	-1		1	0	0	4	4/1		da Razão
X ₄	1	1	0	1	0	6	6/1		
X ₅	2	1	0	0	1	8	8/1		

Obs. nesta representação, os coeficientes estão invertidos na FO e os coeficientes de X_3 , X_4 e X_5 já são todos nulos.

Logo, Z(X) já está escrito em função de X_1 e X_2 . Como tem XNB com coeficiente < 0 (antes era > 0, mas foi invertido o sinal), a solução NÃO É ÓTIMA, pode melhorar.

X₂ é a VNB com coeficiente mais negativo, portanto é quem entra na base.

Para saber quem deve sair da base devemos fazer o "teste da razão" para j = indice da variável que entra na base, ou seja <math>j = 2.

Min {
$$B_i/A_{ij}$$
: i tal que $A_{ij} > 0$ } = Min { $4/1$, $6/1$, $8/1$ } = $4 \Rightarrow i = 1$ é o índice da a sair $i = 1,...,m$

Assim temos o pivô da iteração que nos dará o próximo quadro.

	_		_			
	ΙX	NB V				
	X ₁	X_2	X_3	X_4	X_5	В
Z	-2	-3 pivô	0	0	0	0
X_3	-1	(1)	1	0	0	4
X_4	1	1	0	1	0	6
X ₅	2	1	0	0	1	8

transformações: a) repetir a linha (1) pois o pivô já é = 1

- b) zerando o elemento $A_{22} \Rightarrow (2) := (2) -1*(1)$
- c) zerando o elemento $A_{32} \Rightarrow (3) := (3) -1*(1)$
- d) zerando o coeficiente $C_2 \Rightarrow (0) := (0) +3*(1)$, teremos o quadro

	X ₁	X_2	X_3	X_4	X_5	В
Z	-5	0	3	0	0	12
X_2	-1	1	1	0	0	4
X_4	2	0	-1	1	0	2
X ₅	3	0	-1	0	1	4

linhas

- (0)
- (1)
- (2)
- (3)

O pivô deve ser transformado em 1.

Os elementos acima e abaixo do pivô devem ser transformados em 0 usando o pivô.

								linha	as
	X_1	X_2	X_3	X_4	X_5	В	TR		
Z	-5	0	3	0	0	12	==	(0)	
X ₂	-1	1	1	0	0	4	NA	(1)	
X ₄	2	0	-1	1	0	2	2/2	(2)	Mínimo do Teste da Razão
X_5	3	0	-1	0	1	4	4/3	(3)	

Solução Corrente XB =
$$(X_2, X_4, X_5)$$
 = $(4, 2, 4)$, XNB = (X_1, X_3) = $(0, 0)$ e $Z(X)$ = 12

Obs. que da linha (0) temos que $Z - 5X_1 + 3X_3 = 12 \Rightarrow Z = 5X_1 - 3X_3 + 12$.

Ou seja, a FO já esta escrita em função das variáveis XNB.

Como tem XNB com coeficiente < 0 ⇒ solução não é ótima.

X₁ entra na base.

Teste da razão para j = 1,

Min {NA, 2/2, 4/3} = 2/2 referente à linha 2 portanto X_4 deve sair da base.

Obs. Não se faz o teste da razão para os elementos ≤ 0 da coluna da variável que está entrando na base.

Isso se dá pois isolando X_2 na linha (1) temos: $X_2 = 4 + X_1 - X_3$

Assim, X₁ pode crescer indefinidamente que X₂ também crescerá; não irá para zero. Lembrando que X₃ permanece = 0.

_						
	X ₁	X_2	X_3	X_4	X_5	В
Z	-5	0	3	0	0	12
X_2	-1 pivô	1	1	0	0	4
X_4	2	0	-1	1	0	2
X ₅	3	0	-1	0	1	4

linhas

- (0)
- (1)
- (2)
- (3)

transformações: a) (2) := (2)/2; b) (0) := (0) +
$$5*(2)$$
; c) (1) := (1) + (2); d) (3) := (3) -3*(2)

	X_1	X_2	X_3	X_4	X_5	В
Z	0	0	0.5	2.5	0	17
X ₂	0	1	0.5	0.5	0	5
X ₁	1	0	-0.5	0.5	0	1
X ₅	0	0	0.5	-1.5	1	1

Solução Corrente XB = $(X_1, X_2, X_5) = (1, 5, 1)$, XNB = $(X_3, X_4) = (0, 0)$ e Z(X) = 17

Esta solução é ótima pois todas as XNB: X₃ e X₄ têm coeficientes > 0

	X ₁	X_2	X_3	X ₄	X_5	В
Z	0	0	0.5	2.5	0	17
X_2	0	1	0.5	0.5	0	5
X ₁	1	0	-0.5	0.5	0	1
X ₅	0	0	0.5	-1.5	1	1

linhas

- (0)
- (1)
- (2)
- (3)

Solução ótima:

$$X^* \Rightarrow XB = (X_1, X_2 X_5) = (1, 5, 1) XNB = (X_3, X_4) = (0, 0) e Z^*(X) = 17$$

A variável X_5 = 1 mostra que a equação onde ela foi introduzida,

 $2X_1 + X_2 + X_5 = 8$ tem uma folga de 1 unidade, como pode ser conferido no sistema original.

Nas demais equações não existe qualquer folga.

Características do Tablô do Método Simplex para Problemas de Maximização

Exercícios – Resolver pelo método Simplex utilizando tablôs

Max
$$Z(X) = 4X_1 + 8X_2$$
 sujeito a
 $3X_1 + 2X_2 \le 18$
 $X_1 + X_2 \le 5$
 $X_1 < 4$
 $X_1, X_2 >= 0$

Max
$$Z(X) = 5X_1 + 4X_2 + 3X_3$$
 sujeito a
 $2X_1 + 3X_2 + X_3 \le 5$
 $4X_1 + 2X_2 + 2X_3 \le 11$
 $3X_1 + 2X_2 + 2X_3 \le 8$
 $X_1, X_2, X_3 \ge 0$

Exercícios – Resolver pelo método Simplex utilizando tablôs

Max
$$Z(X) = 4X_1 + 8X_2$$
 sujeito a $3X_1 + 2X_2 \le 18$ $X_1 + X_2 \le 5$ $X_1 < 4$ $X_1, X_2 >= 0$