1

EC-204

<LAB - 8>

NITK SURATHKAL

INBASEKARAN.P
201EC226

Prof: Sumam S

1. Sequence 1101 detector

Solution:

State Diagram

State Table

Present State		i/p	Next State		o/p	Excitation (DFF)		Excitation (JKFF)	
Q,	Q _s	X	\mathbf{Q}_{λ^+}	Q₅⁺	У	$D_{\scriptscriptstyle{A}}$	D _B	J _A K _A (T _A)	J _B K _B (T _B)
0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	1	0	1
0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	1	0	1	1
1	0	0	1	1	0	1	1	0	1
1	0	1	1	0	0	1	0	0	0
1	1	0	0	0	0	0	0	1	1
1	1	1	0	1	1	0	1	1	0

К Мар

DA (QA, QB, x) = QA'QBx + QAQB'

DB (QA, QB, x) = QA'QB'x + QAQB'x' + QAQBx

a) Using D FF

Circuit diagram

Simulation

Video uploaded on Moodle

b) Using JK FF

Circuit diagram

Simulation

Video uploaded on Moodle

2. A digital system has one input X and two outputs Y and Z.

Solution:

State Diagram

Verilog code

```
module sequence(y,z, x, rst, clk);
  reg y,z;
  reg[2:0] state;
  parameter s0=3'd0, s1=3'd1, s2=3'd2, s3=3'd3, s4= 3'd4, s5= 3'd5, s6= 3'd6, s7= 3'd7;
  always @(posedge clk or negedge rst)
  if(rst==0) begin state=s0; y=0; z=0; end
  case (state)
  s0: if(x==0) begin y=0; z=0; state=s2; end
  s1: if(x==0) begin y=0; z=0; state=s3; end
  s2: if(x==0) begin y=0; z=0; state=s2; end
  else begin y=0; z=0; state=s4; end
  s3: if(x==0) begin y=0; z=0; state=s2; end
  s4: if(x==0) begin y=0; z=0; state=s3; end
  else begin y=0; z=1; state=s5; end
  s5: if(x==0) begin y=0; z=0; state=s6; end
  s6: if(x==0) begin y=0; z=0; state=s6; end
  else begin y=0; z=0; state=s7; end
  s7: if(x==0) begin y=0; z=0; state=s6; end
  else begin y=0; z=1; state=s5; end
  default: state=s0;
endmodule
```

Simulation

3. Vending machine

Solution:

State Diagram

Verilog code

```
module dispenser(w,c, x, rst, clk);
  always @(posedge clk or negedge rst)
  if(!rst)
  begin
    s0: if(x==3'd1) begin w<=0; c<=0; state<=s1; end
    else if(x==3'd2) begin w<=0; c<=0; state<= s2; end
    else if(x==3'd5) begin w<=1; c<=1; state<=s5; end
    else if(x==3'd0) begin w<=0; c<=0; state<=s0; end
    s1: if(x==3'd1) begin w<=0; c<=0; state<=s2; end
    else if(x==3'd2) begin w<=1; c<=0; state<= s0; end
    else if(x==3'd5) begin w<=1; c<=1; state<=s4; end
    else if(x==3'd0) begin w<=0; c<=0; state<=s1; end
    s2: if(x==3'd1) begin w<=1; c<=0; state<=s0; end
    else if(x==3'd2) begin w<=1; c<=1; state<= s0; end
    else if(x==3'd0) begin w<=0; c<=0; state<=s2; end
    s3: if(x==3'd0) begin w<=0; c<=1; state<=s4; end
```

Simulation waveform

4. Traffic controller

Solution:

State Diagram

State Table

Present State		i/p		Next State		o/p	Excitation (DFF)		
Q ,	Q _s	TL	С	TS	$\mathbf{Q}_{\!\scriptscriptstyle{A}^+}$	Q₅⁺	ST	$D_{\scriptscriptstyle{A}}$	$D_{\scriptscriptstyle \mathrm{B}}$
0	0	0	0	X	0	0	0	0	0
0	0	0	1	X	0	0	0	0	0
0	0	1	0	X	0	0	0	0	0
0	0	1	1	X	0	1	1	0	1
0	1	X	X	0	0	1	0	0	1
0	1	X	X	1	1	0	1	1	0
1	0	0	0	X	1	1	1	1	1
1	0	0	1	X	1	0	0	1	0
1	0	1	0	X	1	1	1	1	1
1	0	1	1	X	1	1	1	1	1
1	1	X	Х	0	1	1	0	1	1
1	1	X	X	1	1	0	1	1	0

Circuit diagram

Simulation

Video uploaded on Moodle