Paranidharan.R 240801238 ECE-D

ProblemStatement:1

Abinarynumberisacombinationof1sand0s.Itsnthleastsignificantdigit is the nth digit

startingfromtherightstartingwith 1. Givenadecimal number, convertitto binary and

determinethevalueofthethe4thleastsignificantdigit.

Example

number=23

- Convertthedecimalnumber23tobinarynumber:2310=24+22+21+ 20 = (10111)2.
- The value of the 4th index from the right in the binary representation is 0.

Function Description

Complete the function fourth Bit in the editor below. fourth Bit

has the following parameter(s):

intnumber:adecimalinteger

Returns:

int:aninteger0or1matchingthe4thleastsignificantdigitinthebinary representation of number.

Constraints

0≤number<231

InputFormatforCustomTesting

Inputfromstdinwillbeprocessedasfollowsandpassedtothefunction. The only line contains an integer, number.

Sample Input

STDINFunction

32→number=32

Sample Output

0

Explanation

- Convertthedecimalnumber32tobinarynumber:3210=(100000)2.
- $\hbox{\bf \bullet} \ The value of the 4th index from the right in the binary representation is 0.}$

```
1 | /*
     * Complete the 'fourthBit' function below.
 2
3
    * The function is expected to return an INTEGER.
 4
    * The function accepts INTEGER number as parameter.
   int fourthBit(int number)
9 🔻 {
10
        int binary[32];
        int i = 0;
11
        while(number > 0)
12
13 *
            binary[i] = number % 2;
14
            number /= 2;
15
            i++;
16
17
18
       if(i >= 4)
19 •
            return binary[3];
20
21
        else
22
23
        return 0;
24 }
```

	Test	Expected	Got	
~	<pre>printf("%d", fourthBit(32))</pre>	0	0	~
~	printf("%d", fourthBit(77))	1	1	~

ProblemStatement:2

Determine the factors of a number (i.e., all positive integer values that evenly divide into

anumber)andthenreturnthepthelementofthelist,sortedascending.lf there is no pth

element,return0.

Example

n = 20

p=3

Thefactorsof20inascendingorderare{1,2,4,5,10,20}.Using1-based indexing, if p

3,then4isreturned.lfp>6,0wouldbereturned.Function Description

Complete the function pth Factor in the editor below. pth Factor

has the following parameter(s):

intn:theintegerwhosefactorsaretobefound

intp:theindexofthefactortobereturned

Returns:

int:thelongintegervalueofthepthintegerfactorofnor,ifthereisno factor at that index,then0isreturned

Constraints

1≤n≤1015

1≤p≤109

InputFormatforCustomTesting

Inputfromstdinwillbeprocessedasfollowsandpassedtothefunction. The first line contains an integer n, the number to factor.

These condline contains an integer p, the 1-based index of the factor to return.

Sample Input

STDINFunction

10→n=10

 $3 \rightarrow p = 3$

SampleOutput

5

Explanation

Factoringn=10resultsin{1,2,5,10}.Returnthep=3rdfactor,5,asthe answer.

```
* Complete the 'pthFactor' function below.
 2
 3
     * The function is expected to return a LONG_INTEGER.
 4
     * The function accepts following parameters:
 5
     * 1. LONG_INTEGER n
 6
     * 2. LONG_INTEGER p
 7
 8
 9
10
    long pthFactor(long n, long p)
11 + {
12
        int count = 0;
        for(long i = 1; i \le n; ++i)
13
14
            if(n % i == 0)
15
16
                count++;
17
                if(count == p)
18
19
20
                    return i;
21
22
23
24
        return 0;
25 }
```

	Test	Expected	Got	
~	<pre>printf("%ld", pthFactor(10, 3))</pre>	5	5	~
~	printf("%ld", pthFactor(10, 5))	0	0	~
~	<pre>printf("%ld", pthFactor(1, 1))</pre>	1	1	~

Passed all tests! <

ProblemStatement:3

Youareabankaccounthacker.Initiallyyouhave1rupeeinyouraccount, and you want

exactlyNrupeesinyouraccount.Youwrotetwohacks,firsthackcan multiply the amount

ofmoneyyouownby10,whilethesecondcanmultiplyitby20.These hacks can be used

anynumber of time. Canyou achieve the desired amount Nusing these hacks.

Constraints:

1<=T<=100

1<=N<=10^12

Input

• ThetestcasecontainsasingleintegerN.

Output

For each test case, print a single line containing the string "1" if you can make exactly N $\,$

rupeesor"0"otherwise. SAMPLE

INPUT

```
1
SAMPLEOUTPUT
1
```

SAMPLEINPUT 2 SAMPLEOUTPUT 0

```
2
     * Complete the 'myFunc' function below.
3
    * The function is expected to return an INTEGER.
4
    * The function accepts INTEGER n as parameter.
 5
6
7
8
   int myFunc(int n)
9 * {
        if(n == 1) return 1;
10
        if(n % 10 == 0 && myFunc(n / 10)) return 1;
11
        if(n % 20 == 0 && myFunc(n / 20)) return 1;
12
        return 0;
13
14
15
```

	Test	Expected	Got	
~	printf("%d", myFunc(1))	1	1	~
/	printf("%d", myFunc(2))	0	0	~
~	printf("%d", myFunc(10))	1	1	~
~	printf("%d", myFunc(25))	0	0	~
~	printf("%d", myFunc(200))	1	1	~

Passed all tests! V

ProblemStatement:4

Findthenumberofwaysthatagiveninteger, X, can be expressed as the sum of the Nth

powersofunique, natural numbers.

Forexample,ifX=13andN=2,wehavetofindallcombinationsof unique squares adding

upto13. The only solution is 22+32. Function

Description

Complete the power Sumfunction in the editor below. It should return an integer that represents the number of possible combinations.

powerSum has the following parameter(s):

X:theintegertosumto

N:theintegerpowertoraisenumbersto Input

Format

The first line contains an integer X.

ThesecondlinecontainsanintegerN.

Constraints

1≤X≤1000

 $2 \le N \le 10$

OutputFormat

Outputasingleinteger, the number of possible combinations calculated. Sample Input

10

2

SampleOutput

1

Explanation

If X=10 and N=2, we need to find the number of ways that 10 can be represented as the sum of squares of unique numbers. 10 =

12 + 32

Thisistheonlywayinwhich10canbeexpressedasthesumofunique squares.

