

POWERED BY Dialog

Motor vehicle control e.g. of antilock braking or slip control system - uses speed valves derived from measured position, e.g. using GPS

Patent Assignee: BOSCH GMBH ROBERT

Inventors: LEIBBRAND N

Patent Family (2 patents, 14 countries)

Patent Number	Kind	Date	Application Number	Kind	Date	Update	Type
DE 3925831	A	19910207	DE 3925831	A	19890804	199107	B
WO 1991001906	A	19910221	WO 1990EP964	A	19900619	199110	E

Priority Application Number (Number Kind Date): DE 3925831 A 19890804

Patent Details

Patent Number	Kind	Language	Pages	Drawings	Filing Notes
WO 1991001906	A	EN			
National Designated States,Original	JP US				
Regional Designated States,Original	AT BE CH DE DK ES FR GB IT LU NL SE				

Alerting Abstract: DE A

The speed of a motor vehicle is determined from successive position measurements obtained by radio supported navigation, e.g. using the Global Positioning System. The derived speed is used in forming the control or regulation signals for the drive and/or braking system.

The speed can be directly used to determine wheel slip and to support the vehicle speed derived from measured wheel speed. It can also be used as the actual value for controlling the vehicle's speed.

USE/ADVANTAGE - Accurately deriving vehicle speeds, e.g. for use in anti-lock braking and slip control systems. @ (3pp Dwg.No.1/4)@

Main Drawing Sheet(s) or Clipped Structure(s)

International Classification (Main): B60K-028/16 **(Additional/Secondary):** B60T-008/32, G01P-003/64, G01P-003/66, G01S-005/02, G01S-005/14

Germany

Publication Number: DE 3925831 A (Update 199107 B)

Publication Date: 19910207

****Kraftfahrzeugsteuer- oder Regelungssystem****

Assignee: Robert Bosch GmbH, 7000 Stuttgart, DE (BOSC)

Inventor: Leibbrand, Norbert, 7130 Muehlacker, DE

Agent: Kammer, A., Dipl.-Ing., Patentassessor, 6832 Hockenheim

Language: DE

Application: DE 3925831 A 19890804 (Local application)

Original IPC: B60K-28/16 B60T-8/32 G01P-3/64 G01S-5/02

Current IPC: B60K-28/16 B60T-8/32 G01P-3/64 G01S-5/02

Claim: * 1. Kraftfahrzeugsteuer- oder Regelungssystem, bei dem die Fahrzeuggeschwindigkeit bei der Gewinnung der Steuer- oder Regelsignale für die Beeinflussung des Antriebs und/oder der Bremsen mit verwendet wird, **dazu rch gekennzeichnet,** dass die Fahrzeuggeschwindigkeit aus aufeinanderfolgenden Positionsbestimmungen des Fahrzeugs durch funkgestützte Navigation (z.B. GPS) gewonnen wird.

WIPO

Publication Number: WO 1991001906 A (Update 199110 E)

Publication Date: 19910221

****CONTROL OR REGULATING SYSTEM FOR MOTOR VEHICLES****

Assignee: ROBERT BOSCH GMBH, DE

Inventor: LEIBBRAND, NORBERT, DE

Language: EN

Application: WO 1990EP964 A 19900619 (Local application)

Priority: DE 3925831 A 19890804

Designated States: (National Original) JP US (Regional Original) AT BE CH DE DK ES FR GB IT LU NL SE

Original IPC: B60T-8/32 B60K-28/16 G01P-3/66 G01S-5/14

Current IPC: B60T-8/32(A) B60K-28/16 G01P-3/66 G01S-5/14

Original Abstract: A control or regulating system for motor vehicles processes the vehicle speed. The vehicle's speed is derived from consecutive determinations of the position of the vehicle using a GPS (Global Positioning System).

Derwent World Patents Index

© 2006 Derwent Information Ltd. All rights reserved.

Dialog® File Number 351 Accession Number 5445344

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 3925831 A1

(21) Aktenzeichen: P 39 25 831.9

(22) Anmeldetag: 4. 8. 89

(43) Offenlegungstag: 7. 2. 91

(51) Int. Cl. 5:

G 01 P 3/64

B 60 K 28/16

B 60 T 8/32

G 01 S 5/02

// B60R 16/02

(71) Anmelder:

Robert Bosch GmbH, 7000 Stuttgart, DE

(74) Vertreter:

Kammer, A., Dipl.-Ing., Pat.-Ass., 6832 Hockenheim

(72) Erfinder:

Leibbrand, Norbert, 7130 Mühlacker, DE

(56) Für die Beurteilung der Patentfähigkeit
in Betracht zu ziehende Druckschriften:

DE 36 42 986 C2
DE 34 26 851 C1
DE 37 17 065 A1
DE 36 05 096 A1
DE 33 10 111 A1
DE 32 27 547 A1
DE 28 27 715 A1
DE-OS 20 13 906
EP 01 66 300 A2

DE-Z: EGGER, Gerd;
HERB, Eugen;
KRUSCHE, Heinz;
WALLENTOWITZ, Henning: Stabilitäts- und
Traktions-überwachung bei allradgetriebenen
Personenwagen. In: ATZ Automobiltechnische
Zeitschrift 91, 1989, S.83-90;

(54) Kraftfahrzeugsteuer- oder Regelungssystem

Es wird ein Fahrzeugsteuer- oder Regelgerät mit Verarbeitung der Fahrzeuggeschwindigkeit beschrieben.

Erfnungsgemäß wird die Fahrzeuggeschwindigkeit aus aufeinanderfolgenden Positionsbestimmungen des Fahrzeugs unter Verwendung von GPS ermittelt.

DE 3925831 A1

DE 3925831 A1

Beschreibung

Stand der Technik

Bei Antiblockiersystemen und Antriebsschlupfrege-
lungen usw. in Kraftfahrzeugen wird zur Radschlupfbil-
dung die Fahrzeuggeschwindigkeit benötigt. Auch bei
Fahrzeuggeschwindigkeitsreglern ist die exakte Fahr-
zeuggeschwindigkeit von Interesse. Diese läßt sich z.B.
bei ABS nur mit großen Aufwand gewinnen (z.B. Radar,
fünftes Rad, Integration der Fahrzeugbeschleunigung).
Man hilft sich bei Antiblockierreglern damit, daß man
eine angenäherte Fahrzeuggeschwindigkeit aus den
Radgeschwindigkeiten nachbildet.

15

Vorteile der Erfindung

Mit Hilfe des GPS (Global Positioning System) erhält
man eine sehr genaue Standortbestimmung. Damit ist 20
auch durch Auswertung aufeinanderfolgender Positio-
nen und der Zeit zwischen diesen eine sehr genaue
Fahrzeuggeschwindigkeitsbestimmung möglich, wenn
nur die Zeitabstände aufeinander folgender Standortbe-
stimmungen kurz genug sind. Besonders günstig ist die 25
erfindungsgemäße Fahrzeuggeschwindigkeitsbestim-
mung dann, wenn im Fahrzeug auch eine Standortbe-
stimmung zur Navigation vorgenommen wird. In den
Unteransprüchen 2 – 6 sind Anwendungen für die erfin-
dungsgemäß gewonnene Fahrzeuggeschwindigkeit an- 30
gegeben.

Figurenbeschreibung

Fig. 1 zeigt ein ABS bestehend aus Sensoren 1, einer 35
Auswerteschaltung 2 und Bremsdrucksteuerventilen 3.
Mit 4 ist ein GPS-Empfänger samt Antenne bezeichnet,
der bekanntlich die Signale von auf verschiedene Satel-
liten installierten Sendern empfängt und in relativ kur-
zen Abständen Positionsdaten errechnet. Diese werden 40
einem Kartengerät 5 zur Darstellung der Istposition in
einer Karte zugeführt. Im Block 6 wird einerseits die
Differenz aufeinanderfolgender Positionsdaten und da-
mit der zurückgelegte Weg Δ berechnet und anderer-
seits die Zeit Δt zwischen zwei Positionsbestimmungen 45
ermittelt.

Hieraus wird die Fahrzeuggeschwindigkeit $V_F = \frac{\Delta}{\Delta t}$
ermittelt und der Auswerteschaltung 2 zur Schlupfbil-
dung zugeführt. Bei einem ASR ist der Aufbau praktisch 50
gleich. Prinzipiell ist auch ASR auf eine gute Fahrzeug-
geschwindigkeit angewiesen.

Beispiel: Ein NFZ (Lastwagen) treibt hinten an und
benutzt die Vorderachse als Temporeferenz. Der Vor-
derachsgeber haben großen Luftspalt und setzen erst 55
bei ca. 12 Km/h ein. Der Regler weiß nicht, ob das Auto
steht, oder fährt (dies beim Anfahrvorgang, wo ASR
eigentlich arbeiten sollte). Auch bei Allrad-ABS und
ASR wird die Fahrzeuggeschwindigkeit benötigt.

In Fig. 2 wird in einem Block 20 die Fahrzeugges- 60
chwindigkeit aus der Radgeschwindigkeit (über 21) in
bekannter Weise gewonnen. Über eine Klemme 22 wird
die mittels des Empfängers 4 und des Block 6 der Fig. 1
gewonnene Fahrzeuggeschwindigkeit zur Stützung der 65
"Radfahrzeuggeschwindigkeit" zugeführt: der Radfahr-
zeuggeschwindigkeitswert wird bei jeder neuen funkge-
stützten Fahrzeuggeschwindigkeit auf diesen Wert ge-
setzt.

In Fig. 3 ist mit 30 ein Fahrzeuggeschwindigkeitsreg-
ler bezeichnet, dem bei 31 ein Sollwert der Fahrzeugges-
chwindigkeit zugeführt wird und dem bei 32 der funk-
gestützte Fahrzeuggeschwindigkeitswert ist Istwert zu-
geführt wird.

In Fig. 4 ist mit 40 ein Drehzahlgeber oder ein Soll-
wertgeber bezeichnet, dessen Signal in einem Verglei-
cher 41 mit der bei 42 zugeführten funkgestützten Fahr-
zeuggeschwindigkeit verglichen wird. Weicht die Ge-
bergeschwindigkeit ab, so wird der Geber entsprechend
nachgestellt. Ist der Geber ein Raddrehzahlgeber, so
erfolgt die Eichung bei rollendem Fahrzeug, also ohne
Radschlupf.

Patentansprüche

1. Kraftfahrzeugsteuer- oder Regelungssystem, bei dem die Fahrzeuggeschwindigkeit bei der Gewin-
nung der Steuer- oder Regelsignale für die Beein-
flussung des Antriebs und/oder der Bremsen mit
verwendet wird, dadurch gekennzeichnet, daß die
Fahrzeuggeschwindigkeit aus aufeinanderfolgen-
den Positionsbestimmungen des Fahrzeugs durch
funkgestützte Navigation (z.B. GPS) gewonnen
wird.
2. Kraftfahrzeugsteuer- oder Regelungssystem nach Anspruch 1, dadurch gekennzeichnet, daß die
Fahrzeuggeschwindigkeit direkt zur Radschlupfbil-
dung herangezogen wird.
3. Kraftfahrzeugsteuer- oder Regelungssystem nach Anspruch 1, dadurch gekennzeichnet, daß die
Fahrzeuggeschwindigkeit zur Stützung der aus
Radgeschwindigkeiten gewonnenen Fahrzeugge-
schwindigkeiten verwendet wird.
4. Kraftfahrzeugsteuer- oder Regelungssystem nach Anspruch 1, dadurch gekennzeichnet, daß die
Fahrzeuggeschwindigkeit als Istwert zur Regelung
der Fahrgeschwindigkeit verwendet wird.
5. Kraftfahrzeugsteuer- oder Regelungssystem nach Anspruch 1, dadurch gekennzeichnet, daß die
Fahrzeuggeschwindigkeit zur Eichung von Soll-
wertgebern und/oder Geschwindigkeitgebern be-
nutzt wird.
6. Kraftfahrzeugsteuer- oder Regelungssystem nach einem der Ansprüche 1 – 5, dadurch gekenn-
zeichnet, daß die Positionsbestimmungen gleichzei-
tig zur Navigation des Fahrzeugs genutzt werden.

Hierzu 1 Seite(n) Zeichnungen

— Leere Seite —

Fig.1

Fig.2

Fig.3

Fig.4