Паралелна обработка на Манделброт. Изчислителна сложност, грануларност. Циклично статично срещу централизирано динамично балансиране.

Симеон Христов

Факултет по математика и информатика, Софийски университет

Август 2021

Целта на тази статия е да изследва параметри и начини за разпределяне на натоварването на една и повече нишки при паралелна обработка на матрица. Направени са сравнения в избора на подход с други статии.

Функционален анализ

Преглед на източници

За осъществяване на целта и демонстриране на резултатите е избрана задачата за генерирането на визуализация на множеството на Манделброт. Тя е била (и все още е) обект на множество изследвания от страна на математици и информатици [2, 4], защото може да се генерира от проста математическа формула и представлява фрактал: от едра страна, фигура с приложение в няколко естествени структури [4], и от друга - фигура, генерирането на която може да служи за илюстриране на нови идеи за паралелна обработка [2]. Генерирането се извършва чрез краен брой итерации

върху комплексно квадратно уравнение [1, 5, 6, 7]. Спрямо този брой на всеки пиксел се причислява цвят. Ако броят е равен на итерациите, то изследваната точка е част от множеството и никога няма да го напусне. В литературата тази проверка е известна като тестът на Манделброт.

За по-ефективна обработка съществуват няколко критерия за предопределяне на принадлежността на точка към множеството на Манделброт. Най-популярната метрика е Евклидово разстояние от точката до началото на координатната система [2, 4, 5, 6, 7], според която ако стойността на точката стане по-голяма от определена константа (напр. 2 [2, 5]), то точката не е от множеството. Съществуват обаче и методи, произлизащи от физиката и електростатиката, които могат се използват в случаите на генериране на множеството на Джулия [1], но те са извън обхвата на тази статия.

Въпреки контекста на матрици и реални числа, нерядко се използват две оси с реални числа и цикли по избраните размерности с транслирания на всяка точка в по-вътрешния цикъл [2, 3, 5, 6].

Ефективни начини за генериране на точки от множеството представя Pughineanu в [6]. Освен детайлно разглеждане на възможни точки, върху които да бъде итерирана квадратната функция, той дискутира и различни прозрачни за програмиста причини, поради които може да не се получи ускорение или пък да се получи свръхлинейно такова. Освен като мотивация за избрания начин на статично циклично разпределяне на задачите по редове, тази статия е и източник на примерен код за осъществяването на целите.

Обширни са дискусиите за вида декомпозиция, който може да се приложи върху матрицата. В [5] Gang разглежда и прави коментар на някои от тях. Поради хоризонталната симетричност на множеството на Манделброт най-интуитивното разпределение е по-редове. Както той описва, ако се пуснат само две нишки матрицата се разбие на две части, всяка с по ВИСОЧИНА/2 реда, то балансирането е абсолютно точно, ефективността ще бъде най-голяма и ускорението ще бъде линейно. Това обаче е един от малкото частни случаи, в които може да се постигне подобна ситуация. Много по-често ще е желателно да се постигне по-голямо ускорение от два пъти. Тук започват проблемите (Рис. 1).

Рис. 1: Визуализация на разпределението на работата на 4 нишки, пуснати по редове (в ляво) и по колони (в дясно). Черната линия е границата между две нишки.

Черните части на картинките са зони, за които трябва да се направи най-много работа. В дясната картинка от общо четири нишки само две ще извършат почти цялата работа. Подобен е проблемът и в лявата картинка.

Друго интересно откритие е свързано със зависимостта по време за изпълнение. Оказва се, че, когато разпределението е по-колони, в случаите, когато изчислителната сложност е правоъгълник с по-голяма дължина отколкото широчина може да се постигне по-бързо обработване, т.к. дължината на колоната е по-малка. Тези случаи обаче също са частни, т.к. в [2, 3, 5, 7] матрицата е квадратна и подобни резултати не са докладвани. Също, както и Gang докладва в [5], тогава нишките заемат повече на брой колони и в този случай едрата грануларност няма да доведе до по-голямо ускорение. Освен това значение има и избраната област - най-добре е тя да бъде фокусирана върху небалансирана част от фрактала.

С това е свързано и решението, предложено в [5] - стохастично статично балансиране с най-фина грануларност. Чрез случайно разпределяне на пикселите от два вектора Gang постига по-добри резултати. Тези резултати обаче могат да бъдат подобрени още (Рис. 2).

Рис. 2: Ускорението, което постига Gang в [5] чрез използване на два суперкомпютъра от Центърът на Мисисипи на проучвания със суперкомпютри.

Най-доброто ускорение е 3 при 4 процесора. При същите параметри - изчислителна сложност 10000х10000 и максимум 1000 итерации, ParMadel в развойна среда постига

ускорение 3.92 при циклично статично разпределение и средна грануларност.

Tracolli в [7] и Kuchen et al. в [3] демонстрират как за централизирано динамично балансиране може да се използват вече вградени инструменти за създаване и управление на множество нишки - ThreadPoolExecutor. Проведените им изследвания кореспондират с резултатите, постигнати от ParMandel - при (сравнително) малка изчислителна сложност и средна грануларност цикличното статично балансиране се справя по-добре от централизираното разпределено. Главната причина за това е свръхтоварът, които се поражда на логическо ниво, в нишката, която разпределя задачите (наричана по-долу "главна"). Свръхтоварът е резултат от характеристиките на този вид балансиране. Главната нишката следи състоянието на останалите нишките от една страна и състоянието на опашката със задачи от друга страна (информационна стратегия). На базата на тази информация, тя преценява на коя нишка да даде следващата задача (това действие е част от нейната стратегия за локализация). След като вземе решение тя прави трансфер на нужната информация. Очаквано, големината на паралелизма е правопропорционална на големината на свръхтовара. С други думи, всички тези действия не са проблем, когато паралелизмът е едноцифрено число, но с увеличаването му работата става неефективна.

Сравнителни таблици

Източник	Изчислителна сложност	Максимален брой нишки	Грануларност
1	595x842	8	едра
2	1024x1024	8	едра
3	8192x8192	64	едра
4	-	100	фина
5	10000×10000	4	фина
6	480x640	4	средна
7	100x100 - 12800x12800	16	фина до едра
ParMandel	4096x2160, 7680x4320	32	фина до едра

Таблица 1: Сравнение на първа част от параметрите, използвани в намерените източници и ParMandel.

Източник	Дълбочина	Декомпозиция	Вид балансиране			
1	600	редове и колони	разпределено динамично			
2	100000	редове	централизирано и разпределено динамично			
3	_	редове	централизирано динамично и циклично статично			
4	1000	пиксели	циклично статично и стохастично статично			
5	1000	пиксели	стохастично статично			
6	256	редове	циклично статично			
7	10000	блокове	циклично статично и централизирано динамично			
ParMandel	1024	редове	циклично статично и централизирано динамично			

Таблица 2: Сравнение на втора част от параметрите, използвани в намерените източници и ParMandel.

Модел на паралелното приложение

Реализиран е модел на декомпозиция по данни (data decomposition) и съответно SPMD обработка чрез цикли по двете размерности и транслирания на точките. Точките формират две реални оси, вместо една реална и една комплексна. Използвани са две вариации на изчислителната сложност: 4096х2160 (4К) и 7680х4320 (8К). Броят на итерациите бе вариран измежду 256 и 1024, но понеже за първия вариант,

ускорението беше незначително, пълните тестове бяха проведени само с 1024 итерации. Като метрика за принадлежността на точка към множеството на Манделброт се използва Евклидовото разстояние между нея от началото на координатната ос с граница 2. Балансирането е статично циклично по (индекси на) редове като всяка нишка в зависимост от нейния индекс в масива обработва няколко реда накуп преди да се премести през определена стъпка до следващата група редове. Тази стъпка се определя от броя редове, които се обработват от всяка нишка и броя нишки, пуснати за изпълнението на цялата задача.

С илюстративна цел е реализирано и ръчно написано централизирано динамично разпределение на задачите. Реализиран е Master-Slave моделът [3, 7]. В началото главната нишка построява масив от индекси на групите редове, които трябва да бъдат обработени на база получените командни параметри, които са същите и при двата вида разпределяне. След построяване на масива, циклично се разпределят първите р, където р е броят на всички нишки-работници. В случай че грануларността е най-едра, дължината на масива от задачи съвпада с броя на пуснатите нишки и комуникация между главната нишка и работниците няма. Когато грануларността е по-фина, всяка нишка, приключила със своята задача, се обръща към публичен метод на Master-a, за да получи индекса на следващата група редове. По този начин работа с масива извършва само главната нишка, която споделя с останалите само стойността в масива със задачи на индекса на първата група необработени редове. Тази комуникация не оказва влияние спрямо статичното циклично разпределяне при най-едра грануларност, защото тогава комуникация няма, но при повече нишки и по-фина грануларност се наблюдава забавяне. То се поражда, когато повече от една нишка заяви желание да получи следваща задача.

Последователностна диаграма на процесите

Рис. 3: Последователностна диаграма на процесите при статично циклично разпределяне на задачите.

Опис на командните параметри

ParMandel работи с три командни параметъра. Подаването на различен брой или подаването на стойности извън дефиниционното множество предизвиква показването на подсказка от страна на програмата, след което тя спира работа. Параметрите нямат имена, т.е. се характеризират единствено по реда, в който са подадени.

Индекс на команден аргумент	Семантика	Дефиниционно множество
0	брой нишки	N
1	грануларност	N
2	резолюция	4 (за 4096x2160) или (8 за 7680x4320)

Таблица 3: Таблица, представяща възможните командни параметри и тяхното значение за ParMandel.

РагМанdel разполага с три скрипта, с помощта на които може да се компилира към изпълним код и стартира за едно или повече изпълнение на генерирания код. Те са наименувани makeMe.sh, runMe.sh, work.sh. Първият компилира програмата. Вторият стартира едно изпълнение. Третият стартира множество изпълнения и е много удобен за автоматично тестване на приложението. Подобни са скриптовете за работа с динамичното централизирано разпределяне. Единствената разлика е, че името има суфиксът " mpmd".

Примерно пускане на програмата:

>cd Par Mandel && ./make Me.sh && ./run Me.sh 16
 128 8

Горният код компилира и стартира ParMandel, задавайки софтуерен паралелизъм 16, грануларност 128 и резолюция 7680х4320.

```
#!/bin/bash

cs=(4 8)

gs=(1 5 10 16 32 64 128)

ps=(1 2 4 8 12 16 20 24 28 32)

for c in "${cs[@]}"; do

for g in "${gs[@]}"; do

for p in "${ps[@]}"; do

./runMe.sh $p $g $c

done

done

done
```

Рис. 4: Съдържание на файлът work.sh.

Технологично проектиране

Сравнителна таблица

Всички източници, които публично са обявили езикът, чрез който са провеждали проучването са избрали C++. ParMandel е написан на Java.

Източник	Ядра	Платформа	Комуникация	Процесор	Кеш данни
1	-	клъстер	MP	UltraSPARC-IIi	16KB
2	1x4	лаптоп	MP	AMD Ryzen	48KB
3	2x6	клъстер	MP и SV	Intel Xeon Westmere	32KB
4	-	сървър	SV	_	_
5	1x128	суперкомпютър	MP	SGI Origin 2800	-
6	-	суперкомпютър	-	-	-
7	13x4	клъстер	MP	Intel	-
Acer Aspire	1x4	лаптоп	SV	Intel Core i5	32KB
t5600	2x8	сървър	SV	Intel Xeon E5-2660	32KB

Таблица 4: Сравнение на хардуерните характеристики в намерените източници и използвана развойна (Acer Aspire) и тестова среда.

Функция и код за стартиране на р нишки

Рис. 5: Кодът, използван за стартиране на зададения брой нишки, при статично циклично разпределяне на задачите.

Рис. 6: Кодът, използван за постояването на масива от задачи и стартиране на зададения брой нишки, при динамично централизирано разпределяне на задачите.

Функция и код за обмен между нишките

Понеже генерирането на множеството на Манделброт се състои от асинхронни изчисления (такива задачи в литературата се реферират като embarrassingly parallel [4]) няма обмен между нишките.

Ако обаче разпределянето на задачите е динамично, то нишките-работници комуникират с главната нишка и създават скаларна антизависимост. С цел предотвратяване на аномалията, в която няколко нишки четат променлива, докато стойността ѝ се променя (известна като race condition), се използва възможността на Java за ограничаване (заключване) на изпълнението на даден метод до една нишка в кода на Master-a (Рис. 7).

```
public synchronized static int getNextJob() {
    if (currentTaskIdx + 1 == tasksIdxs.length) {
        return -1;
    }
    return tasksIdxs[++currentTaskIdx];
}
```

Рис. 7: Кодът, към който се обръщат нишките-работници, при нужда да получат нова задача.

Функция и код за системно време

Времето се засича с вградения инструмент в Java System.nanoTime(). Тъй като всяка нишка, която извършва работа, засича времето, което ѝ отнема, има възможност за преглед на натоварването чрез блокова диаграма.

За проверка дали изпълнението е коректно, времето се засича и от нишката, която създава масива. Причината, за двойното засичане, е, за да бъде сигурно, че скоростта на обработка съвпада със скоростта на най-бавната нишка.

Засичането започва точно преди да се започне извършването на работата. При нишката, която създава масивът, началото на засичането е последната операция преди разпределянето на задачите (Рис. 8).

Засичането спира точно след приключването на работата. При нишката, която създава масивът, краят на засичането е първата операция след получаване на сигнал от за приключването на най-бавната нишка (Рис. 8).

Засичането от стартираните нишки, започва при извикването на техния run метод и спира преди той да завърши (Рис. 9).

```
long tik = System.nanoTime();
for (int \underline{i} = 0; \underline{i} < numThreads; \underline{i} + +) {
    ParMandelRunnable runnable = new ParMandelRunnable(
              i, numThreads, rowsPerThread, HEIGHT, WIDTH
    );
    threads[i] = new Thread(runnable);
    threads[i].start();
for (int \underline{i} = 0; \underline{i} < numThreads; \underline{i}++) {
    try {
         threads[i].join();
    } catch (InterruptedException e) {
         System.out.println("ERROR while joining");
         e.printStackTrace();
    }
long tok = System.nanoTime();
System.out.printf("Total=%f\n", (double) (tok - tik) / 1_000_000_000);
```

Рис. 8: Кодът (заедно с работата, която следи), използван за засичане на времето от нишката, която създава масива.

```
@Override
public void run() {
    long tik = System.nanoTime();
    while (rowStart < HEIGHT) {</pre>
         int yEnd = rowStart + NUM_ROWS;
         for (int y = rowStart; y < yEnd && y < HEIGHT; y++) {
              for (int \underline{x} = 0; \underline{x} < WIDTH; \underline{x} + +) {
                  double \frac{\text{translatedX}}{\text{translatedX}} = \min X + \frac{x}{x} * (\max X - \min X) / \text{WIDTH};
                  double translatedY = minY + y * (maxY - minY) / HEIGHT;
                  double cx = translatedX;
                  double cy = translatedY;
                  int iterations = 0;
                  while (iterations < MAX_ITERATIONS) {</pre>
                       double trXX = translatedX * translatedY - translatedY * translatedY;
                       double trYY = 2 * translatedX * translatedY;
                       \underline{translatedX} = trXX + cx;
                       translatedY = trYY + cy;
                       if (Math.abs(translatedX + translatedY) > INFINITY) {
                           break;
                       ++iterations;
         rowStart += NUM_THREADS * NUM_ROWS;
    long tok = System.nanoTime();
    System.out.printf("\tt=%f\n", (double) (tok - tik) / 1_000_000_000);
```

Рис. 9: Кодът (заедно с работата, която следи), използван за засичане на времето от нишките, които извършват работата.

По аналогичен начин се извършва засичането на времето за работа и когато разпределянето на задачите е динамично.

Тестване

Тестов план

Проведени са тестове на развойна - личен лаптоп, и на тестова среда - сървър, предоставен от Факултета по математика и информатика. За всяка стойност на грануларността са проведени по 4 теста, в които се регулира броя нишки. Решенията точно какви параметри да бъдат използвани (напр. броят на итерациите да бъде 1024), бяха взети преди преминаването на тестова среда. Попълнените тестове са налични в Appendix A.

По хоризонталната ос на следващите XY диаграми са нанесени стойностите на използвания софтуерен паралелизъм. По вертикалната ос са нанесени постигнатите ускорения. Сравненията се извършват на база постигнато ускорение за дадена грануларност.

За ускорение се приема пропорцията между времето за изпълнение на задачата при зададената грануларност от една нишка и времето за изпълнение на задачата при зададената грануларност от р нишки.

Изследваната област, в контекста на оригиналните размери на множеството на Манделброт, т.е. [-2, 2] по двете оси, е [-0.8, -0.3] по абсцисната ос и [0.3, 0.8] по ординатната (Рис. 10).

Рис. 10: Визуализация на изследваната област при 1024 итерации и резолюция 4К.

Рис. 11: Визуализация на изследваната област при 256 итерации и резолюция 4К.

Развойна среда. Изчислителна сложност = 4К

Рис. 12: Визуализация на постигнати ускорения на развойна среда с резолюция 4K. Попълнената таблица е налична в Appendix A.

Наблюдава се свръхлинейно ускорение при грануларност 10 и при грануларност 16. То се дължи на спестяването на скрити операции в процесора и, в следствие, постигната адаптация към кешът за данни, използван от инструкционния конвейер. Очаквано, най-малко е ускорението при грануларност 1, т.е. най-едра, което демонстрира как небалансирана област оказва благоприятно влияние на някои нишки, но задава най-трудните области на 1-2 нишки.

Развойна среда. Изчислителна сложност = 8К

Рис. 13: Визуализация на постигнати ускорения на развойна среда с резолюция 8К. Попълнената таблица е налична в Appendix A.

При по-голяма изчислителна сложност нивото на най-доброто ускорение е пониско, но все пак при 4 ядра се запазва тенденцията често да се постига добро ускорение при пускане на 8 нишки. Тестова среда. Изчислителна сложност = 4К

Рис. 14: Визуализация на постигнати ускорения на тестова среда с резолюция 4K. Попълнената таблица е налична в Appendix A.

Оказва се, че докато в развойна среда по-голямо ускорение се постига с по-малката резолюция, това не е така в тестовата среда. Ускорение има и се доближава до броя физически ядра. Отново най-добър резултат се постига със средна грануларност (при g=16).

Тестова среда. Изчислителна сложност = 8К

Рис. 15: Визуализация на постигнати ускорения на тестова среда с резолюция 8K. Попълнената таблица е налична в Appendix A.

p

При по-голяма изчислителна сложност се вижда, че ускорението е по-високо при всички стойности за грануларността.

Хистограма на разпределението при динамично балансиране

С илюстративна цел са направени сравнения на производителността на програмата при циклично статично балансиране и динамично централизирано балансиране.

Развойна среда. Изчислителна сложност = 4К

Рис. 16: Сравнение в ускорението, постигнато при двата вида балансиране.

От диаграмата следва, че динамичното разпределяне на задачите не помага за постигането на ускорение и въпреки, че такова се наблюдава, то няма потенциала на статичното.

Следват хистограми на общото време на работа на нишките при двата вида разпределения. Тестовете са проведени в тестова среда с изчислителна сложност 7680х4320 и грануларност 128. Попълнените таблици са налични в Appendix A.

Рис. 17: Сравнение във времената на 1 нишка при двата вида балансиране. Попълнената таблица е налична в Appendix A.

При тези параметри не се наблюдава (съществена) разлика във времената.

Рис. 18: Сравнение във времената на 2 нишки при двата вида балансиране. Попълнената таблица е налична в Appendix A.

Тази диаграма показва, в този случай динамичното балансиране се справя по-добре с разпределянето на задачите. Въпреки това съществено подобряване в ускорението не се наблюдава.

Рис. 19: Сравнение във времената на 4 нишки при двата вида балансиране. Попълнената таблица е налична в Appendix A.

Тенденцията, да се наблюдава по-равномерно разпределяне на работата между нишките при динамично централизирано балансиране, продължава да се наблюдава и тук, но отново - това не води до по-голямо ускорение.

Рис. 20: Сравнение във времената на 16 нишки при двата вида балансиране. Попълнената таблица е налична в Appendix A.

Тази диаграма демонстрира най-добре каква е печалбата при прилагане на статично циклично разпределяне на работата между нишките. Динамичното разпределение отново поделя задачата по-равномерно, но с много малка разлика. По-важното нещо е, че ясно се вижда забавянето, предизвикано от комуникационния свръхтовар. Това е и причината за по-слабото ускорение.

От проведените тестове следва, че цикличното статично разпределяне на задачите дава по-добри резултати от динамичното централизирано. Макар и разлика да няма при по-ниско ниво на софтуерния паралелизъм, първият вид балансиране е

скалируемо, докато вторият не е.

Възможни подобрения и бъдеща работа

Възможно е да се изследва производителността при побитово кодиране на изследваните точки. Най-вероятно тя ще бъде по-голяма, поради по-оптималното използване на памет. Също е интересно сравнение между обработка по колони срещи обработка по редове.

Източници

- V. Drakopoulos, N. Mimikou, T. Theoharis. An overview of parallel visualisation methods for Mandelbrot and Julia sets, Computers & Graphics (https://www.sciencedirect.com/science/article/pii/S0097849303001067)
- Soto Gómez, Ernesto. (2020). MPI vs OpenMP: A case study on parallel generation of Mandelbrot set (https://www.researchgate.net/publication/344453347_MPI_vs_Open
 - MP_A_case_study_on_parallel_generation_of_Mandelbrot_set)
- S. Ernsting, H. Kuchen. A Scalable Farm Skeleton for Hybrid Parallel and Distributed Programming (https://link.springer.com/article/10.1007/s10766-013-0269-2)
- S. Tornboulian. Indirect Addressing and load balancing for faster solution to Mandelbrot set on SIMD architectures (https://ntrs.nasa.gov/citations/19890018019)
- 5. Isaac Gang. Parallel Implementation and Analysis of Mandelbrot Set Construction

```
(https://www.academia.edu/1399383/Parallel\_Implemen\\tation\_and\_Analysis\_of\_Mandelbrot\_Set\_Construction)
```

- 6. Seyed Mohamed Buhari. Parallel Processing and the Mandelbrot set (https://ns.afahc.ro/ro/revista/Nr_2_2008/ART_CARMEN.pdf)
- 7. Mirco Tracolli. Parallel generation of a Mandelbrot set (http://services.chm.unipg.it/ojs/index.php/virtlcomm/article/view/112)

Appendix A

				РАЗВ	ОЙНА С	РЕДА		
			РЕМ			ожност:	= 4K	
#	p	g	Tp (1)	Tp (2)	Tp (3)	<i>Tp</i> =min(<i>Tp</i> (<i>i</i>))	Sp = T1/Tp	Ep = Sp/p
1	1	1	26.255233	26.251805	26.217473	26.217473	1	1
2	2	1	22.197354	22.290007	22.280965	22.197354	1.181108028	0.59055403
3	4	1	12.835303	12.8182	12.848511	12.8182	2.045331872	0.51133296
4	8	1	7.003795	6.829559	6.838486	6.829559	3.838823707	0.47985290
5	1	5	26.210371	26.238515	26.236747	26.210371	1	1
6	2	5	14.45412	14.49166	14.497285	14.45412	1.813349481	0.90667474
7	4	5	7.466476	7.439455	7.458621	7.439455	3.523157409	0.8807893
8	8	5	4.115944	4.326625	4.058786	4.058786	6.457687348	0.80721093
9	1	10	26.160981	26.223924	26.210176	26.160981	1	1
10	2	10	13.724502	13.714902	13.690719	13.690719	1.910855157	0.9554275
11	4	10	3.311328	5.49787	7.056075	3.311328	7.90044991	1.97511247
12	8	10	4.004712	3.867126	1.879278	1.879278	13.92076159	1.74009519
13	1	16	14.341351	15.531005	14.341351	14.341351	1	1
14	2	16	6.267872	6.294911	8.093084	6.267872	2.288073368	1.14403668
15	4	16	3.224086	3.23625	5.769563	3.224086	4.448191208	1.11204780
16	8	16	3.803564	3.836905	1.739141	1.739141	8.246226729	1.03077834
17	1	32	12.32635	12.32635	12.341735	12.32635	1	1
18	2	32	9.728714	9.583941	9.485597	9.485597	1.299480676	0.64974033
19	4	32	3.164331	3.181488	6.480901	3.164331	3.895404747	0.97385118
20	8	32	4.264192	3.916548	1.871153	1.871153	6.587569269	0.8234461
21	1	64	12.33051	15.565613	14.300731	12.33051	1	1
22	2	64	8.514817	8.984165	9.213182	8.514817	1.4481239	0.72406194
23	4	64	3.142868	3.136313	6.278959	3.136313	3.931530431	0.98288260
24	8	64	1.78823	1.718209	2.359863	1.718209	7.176373771	0.89704672
25	1	128	15.870022	14.925463	12.34729	12.34729	1	1
26	2	128	6.217358	8.019404	8.760869	6.217358	1.9859384	0.99296920
27	4	128	3.123053	5.560621	3.117582	3.117582	3.960534158	0.99013353
28	8	128	1.720489	2.253696	1.837343	1.720489	7.176616648	0.89707708

Рис. 21: Тестов план на развойна среда с резолюция 4К. $28\,$

	РАЗВОЙНА СРЕДА											
			из	числит	ЕЛНА СЛ	ожност	= 8K					
#	p	g	Tp (1)	Tp (2)	Tp (3)	<i>Tp</i> =min(<i>Tp</i> (<i>i</i>))	Sp = T1/Tp	Ep = Sp/p				
1	1	1	49.262487	51.725615	52.3461	49.262487	1	1				
2	2	1	45.201702	45.368668	45.479047	45.201702	1.089836993	0.544918496				
3	4	1	25.879059	27.739812	24.698983	24.698983	1.994514794	0.498628698				
4	8	1	15.590183	16.333241	15.460871	15.460871	3.186268549	0.398283568				
5	1	5	49.249588	52.864001	50.074742	49.249588	1	1				
6	2	5	34.165492	27.930917	32.261669	27.930917	1.763264271	0.881632135				
7	4	5	15.881365	17.310571	16.264918	15.881365	3.101092885	0.775273221				
8	8	5	9.670051	10.22024	9.742834	9.670051	5.093001888	0.636625236				
9	1	10	53.115313	49.248238	51.484606	49.248238	1	1				
10	2	10	30.130765	28.683346	25.67215	25.67215	1.91835269	0.959176344				
11	4	10	14.802417	15.352368	16.820427	14.802417	3.327040307	0.831760076				
12	8	10	11.076009	12.267661	12.130636	11.076009	4.446388406	0.555798550				
13	1	16	53.117739	51.104703	52.034827	51.104703	1	1				
14	2	16	28.835496	25.563394	29.880835	25.563394	1.999136069	0.999568034				
15	4	16	15.196366	17.144094	15.240741	15.196366	3.362955525	0.840738881				
16	8	16	9.268594	9.860464	11.119065	9.268594	5.513749227	0.689218653				
17	1	32	53.095936	53.100917	49.209062	49.209062	1	1				
18	2	32	26.602013	25.492146	27.241579	25.492146	1.930361689	0.965180844				
19	4	32	18.284406	16.750189	16.623494	16.623494	2.960211734	0.740052933				
20	8	32	9.698545	12.294066	10.375861	9.698545	5.073860254	0.634232531				
21	1	64	52.669623	52.8161	52.881246	52.669623	1	1				
22	2	64	27.263448	25.068111	24.850812	24.850812	2.119432677	1.059716338				
23	4	64	16.190841	15.089516	16.121497	15.089516	3.490477958	0.872619489				
24	8	64	9.907999	9.49845	10.131853	9.49845	5.545075565	0.693134445				
25	1	128	50.800255	51.885863	52.372545	50.800255	1	1				
26	2	128	25.824063	24.727264	28.073336	24.727264	2.054422802	1.027211401				
27	4	128	16.546984	17.832737	16.514097	16.514097	3.076175161	0.769043790				
28	8	128	10.161666	10.333807	11.437914	10.161666	4.999205347	0.624900668				

Рис. 22: Тестов план на развойна среда с резолюция 8К.

ТЕСТОВА СРЕДА												
ИЗЧИСЛИТЕЛНА СЛОЖНОСТ = 4К												
#	p	g	Tp (1)	Tp (2)	Tp (3)	<i>Tp</i> =min(<i>Tp(i</i>)	Sp = T1/Tp	Ep = Sp/p				
1	1	1	13.338407	13.364929	13.3229	13.3229	1	1				
2	2	1	11.307508	11.320749	11.293476	11.293476	1.179698792	0.5898493962				
3	4	1	6.634933	6.656703	6.561947	6.561947	2.030327279	0.5075818198				
4	8	1	3.63533	3.7132	3.735149	3.63533	3.664839231	0.4581049038				
5	12	1	2.561051	2.59337	2.530371	2.530371	5.265196289	0.4387663574				
6	16	1	2.032036	2.043477	2.059319	2.032036	6.556429118	0.4097768199				
7	20	1	1.764209	1.745502	1.756843	1.745502	7.632703944	0.381635197				
8	24	1	1.538355	1.520514	1.510664	1.510664	8.819234456	0.3674681023				
9	28	1	1.356182	1.364438	1.371688	1.356182	9.823828955	0.350851034				
10	32	1	1.248404	1.213308	1.203063	1.203063	11.0741499	0.3460671843				
11	1	5	13.326774	13.327034	13.327876	13.326774	1	1				
12	2	5	7.438309	7.371524	7.418878	7.371524	1.807872293	0.903936146				
13	4	5	3.969245	3.961189	4.023849	3.961189	3.364336819	0.8410842048				
14	8	5	2.203544	2.137952	2.204771	2.137952	6.233429937	0.779178742				
15	12	5	1.681481	1.693748	1.636754	1.636754	8.1421973	0.6785164417				
16	16	5	1.499242	1.72727	1.446861	1.446861	9.210818455	0.5756761534				
17	20	5	1.605533	1.608249	1.207835	1.207835	11.03360476	0.5516802378				
18	24	5	1.440147	1.494215	1.407843	1.407843	9.466093876	0.394420578				
19	28	5	1.139571	1.356214	1.341455	1.139571	11.69455348	0.4176626242				
20	32	5	1.380432	1.367523	1.457219	1.367523	9.745191854	0.3045372454				

Рис. 23: Тестов план на тестова среда с резолюция 4K (част 1).

21	1	10	13.321128	13.28499	13.291854	13.28499	1	1
22	2	10	7.118148	7.071457	7.043577	7.043577	1.886114115	0.943057057
23	4	10	3.724795	3.701684	3.733253	3.701684	3.588904401	0.8972261003
24	8	10	2.079537	1.98528	2.124415	1.98528	6.691746252	0.8364682810
25	12	10	1.653478	1.577083	1.61333	1.577083	8.423773511	0.7019811259
26	16	10	1.129231	1.622846	1.580395	1.129231	11.76463452	0.7352896573
27	20	10	1.100828	1.307779	1.661326	1.100828	12.06817959	0.6034089794
28	24	10	1.382622	1.207144	1.369753	1.207144	11.00530674	0.458554447
29	28	10	1.106166	1.123939	1.109718	1.106166	12.00994245	0.428926516
30	32	10	1.179911	1.343034	1.475505	1.179911	11.25931532	0.3518536038
31	1	16	13.28922	13.287338	13.311798	13.287338	1	1
32	2	16	6.843641	6.944877	6.861961	6.843641	1.941559763	0.970779881
33	4	16	3.713807	3.58407	3.576274	3.576274	3.715413864	0.9288534659
34	8	16	2.042157	1.983751	2.034623	1.983751	6.698087613	0.837260951
35	12	16	1.756082	1.488504	1.580776	1.488504	8.926639095	0.7438865913
36	16	16	1.21818	1.568006	1.719145	1.21818	10.90753255	0.6817207843
37	20	16	1.302554	1.287286	1.288761	1.287286	10.32197818	0.5160989089
38	24	16	1.160315	1.432814	1.379674	1.160315	11.45149205	0.4771455022
39	28	16	1.102863	1.111537	1.305723	1.102863	12.04804042	0.4302871578
40	32	16	1.336398	1.369481	0.980264	0.980264	13.55485665	0.4235892703
41	1	32	13.295008	13.290405	13.335162	13.290405	1	1
42	2	32	6.753919	6.777277	6.772487	6.753919	1.967806395	0.983903197
43	4	32	3.667225	3.652024	3.635716	3.635716	3.655512422	0.9138781054
44	8	32	2.03773	2.054764	1.990046	1.990046	6.678441101	0.834805137
45	12	32	1.569685	1.428321	1.467349	1.428321	9.304914652	0.7754095543
46	16	32	1.364894	1.34933	1.392336	1.34933	9.849632781	0.6156020488
47	20	32	1.266569	1.275665	1.288641	1.266569	10.49323408	0.5246617042
48	24	32	1.155104	1.262511	1.177517	1.155104	11.50580814	0.4794086723
49	28	32	1.078703	1.099927	1.066021	1.066021	12.4673013	0.445260760
50	32	32	1.138396	1.146009	1.129711	1.129711	11.76442913	0.3676384104

Рис. 24: Тестов план на тестова среда с резолюция 4K (част 2).

51	1	64	13.446752	13.284825	13.327064	13.284825	1	1
52	2	64	6.911741	6.990955	6.788476	6.788476	1.956967219	0.9784836090
53	4	64	3.578451	3.562673	3.522196	3.522196	3.771744957	0.9429362392
54	8	64	1.98955	2.002941	1.996762	1.98955	6.6773014	0.834662675
55	12	64	1.541657	1.504147	1.400731	1.400731	9.484208603	0.7903507169
56	16	64	1.363776	1.472969	1.377199	1.363776	9.7412075	0.6088254688
57	20	64	1.238519	1.282925	1.317421	1.238519	10.72637965	0.5363189820
58	24	64	1.148522	1.146831	1.151498	1.146831	11.58394306	0.482664294
59	28	64	1.058074	1.079857	1.078009	1.058074	12.55566718	0.448416685
60	32	64	1.144922	1.134034	1.146402	1.134034	11.71466199	0.3660831873
61	1	128	13.341409	13.323069	13.289707	13.289707	1	1
62	2	128	6.82382	6.783972	6.771955	6.771955	1.962462391	0.9812311954
63	4	128	3.538974	3.543348	3.555255	3.538974	3.755242904	0.9388107259
64	8	128	1.940534	1.957635	1.931208	1.931208	6.88155134	0.860193917
65	12	128	1.595198	1.467805	1.562064	1.467805	9.054136619	0.7545113849
66	16	128	1.35462	1.324687	1.545989	1.324687	10.03233745	0.6270210900
67	20	128	1.280043	1.300697	1.352213	1.280043	10.38223482	0.5191117408
68	24	128	1.142836	1.17738	1.17738	1.142836	11.62870876	0.4845295315
69	28	128	1.064709	1.068132	1.05899	1.05899	12.5494169	0.448193460
70	32	128	1.144279	1.133039	1.103733	1.103733	12.04069009	0.3762715655

Рис. 25: Тестов план на тестова среда с резолюция 4K (част 3).

	ТЕСТОВА СРЕДА											
			ИЗЧ	ислите.	ЛНА СЛО	жност =	8K					
#	p	g	Tp (1)	Tp (2)	Tp (3)	<i>Tp</i> =min(<i>Tp</i> (<i>i</i>))	Sp = T1/Tp	Ep = Sp/p				
1	1	1	52.802102	52.790214	52.797578	52.790214	1	1				
2	2	1	44.746385	44.769166	44.699467	44.699467	1.18100321	0.5905016				
3	4	1	26.57966	25.874524	26.143212	25.874524	2.04023904	0.5100597				
4	8	1	13.999328	14.220636	13.978223	13.978223	3.776604079	0.4720755				
5	12	1	9.540239	9.699838	9.614072	9.540239	5.533426783	0.4611188				
6	16	1	7.54228	7.459391	7.417777	7.417777	7.116716235	0.4447947				
7	20	1	6.118229	6.185929	6.141693	6.118229	8.628348824	0.4314174				
8	24	1	5.260508	5.258551	5.212949	5.212949	10.12674668	0.4219477				
9	28	1	4.636593	4.621063	4.610662	4.610662	11.44959531	0.4089141				
10	32	1	4.213171	4.11352	4.169305	4.11352	12.83334322	0.4010419				
11	1	5	52.775456	52.775979	53.335427	52.775456	1	1				
12	2	5	29.195517	29.281372	29.099788	29.099788	1.813602766	0.9068013				
13	4	5	15.275044	15.238569	15.192809	15.192809	3.47371286	0.8684282				
14	8	5	8.096069	8.027137	8.203921	8.027137	6.574630033	0.8218287				
15	12	5	5.617786	5.6388	5.620975	5.617786	9.39435144	0.7828626				
16	16	5	4.4375	4.63335	4.513068	4.4375	11.89306051	0.7433162				
17	20	5	3.939558	3.963858	4.039724	3.939558	13.39628862	0.6698144				
18	24	5	3.497277	3.268296	3.45918	3.268296	16.14769776	0.6728207				
19	28	5	3.040634	3.068955	3.042267	3.040634	17.35672758	0.6198831				
20	32	5	3.419376	3.459683	3.475418	3.419376	15.43423595	0.4823198				

Рис. 26: Тестов план на тестова среда с резолюция 8К (част 1).

21	1	10	52.77999	52.848873	52.791168	52.77999	1	1
22	2	10	27.552468	27.617221	27.634294	27.552468	1.915617505	0.9578087
23	4	10	14.406215	14.473698	14.19738	14.19738	3.717586625	0.9293966
24	8	10	7.4857	7.654236	7.536796	7.4857	7.050775479	0.8813469
25	12	10	5.336694	5.403618	5.281944	5.281944	9.992531159	0.8327109
26	16	10	4.323393	4.341449	4.199327	4.199327	12.56867827	0.7855423
27	20	10	3.73317	3.586776	3.800085	3.586776	14.71516203	0.7357581
28	24	10	3.280588	3.31475	3.080201	3.080201	17.13524215	0.7139684
29	28	10	2.922514	2.993395	3.179843	2.922514	18.0597903	0.6449925
30	32	10	2.611873	2.669462	2.67786	2.611873	20.20771684	0.6314911
31	1	16	52.817256	52.827167	52.776591	52.776591	1	1
32	2	16	27.692889	27.507512	27.429298	27.429298	1.924095578	0.9620477
33	4	16	14.023162	14.001467	14.058325	14.001467	3.769361525	0.9423403
34	8	16	7.377922	7.411621	7.421084	7.377922	7.153313765	1.7883284
35	12	16	5.341743	5.32669	5.17123	5.17123	10.20581003	1.2757262
36	16	16	4.081433	4.063376	4.126418	4.063376	12.98836017	1.0823633
37	20	16	3.552956	3.551058	3.598566	3.551058	14.86221599	0.9288884
38	24	16	3.308223	3.073111	3.072947	3.072947	17.1745855	0.8587292
39	28	16	2.89112	2.89694	2.864037	2.864037	18.42734259	0.7678059
40	32	16	3.282233	3.241414	3.273336	3.241414	16.28196552	0.5814987
41	1	32	52.772989	52.806754	52.808916	52.772989	1	1
42	2	32	26.671582	26.535315	26.527519	26.527519	1.989367683	0.9946838
43	4	32	13.890533	13.86052	13.842745	13.842745	3.812321111	0.9530802
44	8	32	7.318371	7.239657	7.328191	7.239657	7.28943222	0.9111790
45	12	32	5.075224	5.204144	5.1758	5.075224	10.39815957	0.8665132
46	16	32	3.980293	4.016774	4.192371	3.980293	13.2585689	0.8286605
47	20	32	3.511554	3.596419	3.468933	3.468933	15.21303208	0.7606516
48	24	32	3.209739	3.130146	3.161182	3.130146	16.85959345	0.7024830
49	28	32	2.807203	2.799002	3.081872	2.799002	18.85421625	0.6733648
50	32	32	3.196472	2.530046	3.196118	2.530046	20.85850969	0.6518284

Рис. 27: Тестов план на тестова среда с резолюция 8К (част 2).

51	1	64	52.83528	52.838378	52.795484	52.795484	1	1
52	2	64	26.770218	26.713235	26.923746	26.713235	1.976379274	0.9881896
53	4	64	13.850986	13.706229	13.718467	13.706229	3.851933599	0.9629833
54	8	64	7.248433	7.157033	7.263078	7.157033	7.376727759	0.9220909
55	12	64	5.007939	5.445718	5.091957	5.007939	10.54235764	0.8785298
56	16	64	3.952081	4.030486	4.193754	3.952081	13.35890737	0.8349317
57	20	64	3.621876	3.601401	3.435396	3.435396	15.36809264	0.7684046
58	24	64	3.366665	2.98953	3.153214	2.98953	17.66012852	0.7358386
59	28	64	2.785976	2.793827	2.826747	2.785976	18.95044466	0.6768015
60	32	64	3.196396	3.170235	2.587607	2.587607	20.40320806	0.6376002
61	1	128	52.817614	52.803734	52.836412	52.803734	1	1
62	2	128	26.936336	26.595096	26.582646	26.582646	1.98639872	0.9931993
63	4	128	13.749842	13.658171	13.599753	13.599753	3.882698017	0.9706745
64	8	128	7.126325	7.158693	7.272218	7.126325	7.409672447	0.9262090
65	12	128	5.043288	5.057657	5.031748	5.031748	10.49411338	0.8745094
66	16	128	3.962183	3.936363	3.952401	3.936363	13.41434568	0.8383966
67	20	128	3.404063	3.465032	3.427337	3.404063	15.51197319	0.7755986
68	24	128	2.997856	3.151826	3.121247	2.997856	17.61383269	0.7339096
69	28	128	2.824311	2.612981	2.842232	2.612981	20.20823496	0.7217226
70	32	128	3.161304	3.168471	3.138732	3.138732	16.8232694	0.5257271

Рис. 28: Тестов план на тестова среда с резолюция 8К (част 3).

	p	g	тіп Тр ЦСБ	тіп Тр ДЦБ	Ѕр ЦСБ	Ѕр ДЦБ
	1	10	10 26.160981	12.393183	1	1
	2	10	10 13.690719	6.448693	1.910855157	1.921813149
	4	10	10 3.311328	3.312945	7.90044991	3.740835722
1	8	10	10 1.879278	1.835308	13.92076159	6.752644788

Рис. 29: Тестов план на развойна среда с резолюция 4K, който сравнява двата вида балансиране.

статично динамично 53.944317 53.84033

Рис. 30: Тестов план на разпределението на времената на 1 нишка при двата вида балансиране.

статично	динамично
27.065041	27.250004
27.325905	27.275795

Рис. 31: Тестов план на разпределението на времената на 2 нишки при двата вида балансиране.

статично	динамично
13.588619	13.757229
13.707624	13.811591
14.073118	13.851448
14.13132	13.895618

Рис. 32: Тестов план на разпределението на времената на 4 нишки при двата вида балансиране.

статично	динамично
3.971485	4.401983
3.977081	4.405572
3.992625	4.417886
3.997071	4.41495
4.001422	4.421378
4.015927	4.420946
4.023532	4.430224
4.030083	4.437005
4.035003	4.441619
4.030837	4.450523
4.040755	4.453887
4.041404	4.458948
4.053338	4.464576
4.069089	4.471565
4.084469	4.477625
4.087859	4.481979

Рис. 33: Тестов план на разпределението на времената на 16 нишки при двата вида балансиране.