Schur's Theorem and Related Topics in Ramsey Theory

Summer Lynne Kisner Advisor: Dr. Andrés E. Caicedo

Boise State University

March 4, 2013

Acknowledgments

- Advisor: Dr. Caicedo
- Committee: Dr. Scheepers and Dr. Teitler
- Mathematics department and Graduate program
- Classmates and friends
- Family and Dustin

2 / 77

"Ramsey theory ... but only the finite stuff!"

Overview

- Introduction to Ramsey Theory
- Definitions and Notation
- Ramsey's Theorem
- Schur's Theorem
- The Origin of Schur's Theorem
- Generalizations of Schur's Theorem

Ramsey Theory

Complete disorder is impossible -Theodore S. Motzkin

Ramsey Theory: the study of preservation of properties under set partitions

Some basic notation

```
N the set of natural numbers

\mathbb{Z} the set of integers

K_n a complete graph on n vertices

s(r) the Schur number of r

R(k, l) the Ramsey number for k and l

R(a_1, ..., a_r) the Ramsey number on r colors

w(k, r) the Van der Waerden number for k and r
```

- Throughout the presentation, I will mostly be talking about the positive integers. I will denote the set $\{a, a+1, ..., b-1, b\}$, where a < b are integers, as [a, b].
- Sometimes, I will use numbers, such as 0, 1, 2, ... for various "colors". Simply because writing 0, 1, and 2 is a lot shorter to write than red, blue, and yellow.

Some basic notation

Definition

A graph G = (V, E) is a set V of points, called *vertices*, and a set E of unordered pairs of vertices, called *edges*.

Definition

A subgraph G' = (V', E') of a graph G = (V, E) is a graph such that $V' \subseteq V$ and $E' \subseteq E$.

Definition

A complete graph on n vertices, denoted K_n , is a graph on n vertices, with the property that every pair of vertices is connected by an edge. If V is the set of vertices, we also write K_V for this graph.

7 / 77

Complete Graph, K₂

Complete Graph, K₃

Complete Graph, K₄

Complete Graph, K₅

Complete Graph, K₆

Complete Graph, K₇

Some more basic notation

Definition

An *edge-coloring* of a graph is an assignment of a color to each edge of the graph. A graph which has been edge-colored is called a *monochromatic graph* if all of its edges are the same color.

Definition

An *r-coloring* of a set S is a function $\chi: S \to C$, where |C| = r. We also refer to χ as a C-coloring.

Definition

A coloring χ is *monochromatic* on a set S if χ is constant on S.

Let's color a monochromatic K_3 inside K_4

Monochromatic triangle in K_4

Let's color a monochromatic K_4 inside K_5

Monochromatic K_4 in K_5

Let's color monochromatic K_4 and K_3 inside K_7

Monochromatic K_4 and K_3 in K_7

Sometimes, it's easier to color and not-color...

So instead of doing this,

We will do this.

The Pigeonhole Principle

Theorem

If a set of more than mn elements is partitioned into n sets, then some set contains more than m elements.

Ramsey's Theorem

Theorem (Ramsey, 1928)

Let $k, l \ge 2$. There exists a positive integer R such that every edge-coloring of K_R , with the colors red and blue, admits either a red K_k subgraph or a blue K_l subgraph.

We call the smallest number that satisfies this theorem the Ramsey number of k and l and denote it R(k, l).

Ramsey's Theorem for more than 2 colors

We let $R_r(3)$ denote R(3,3,...,3), where we are using r colors.

Theorem

For $r \ge 1$, $R_r(3) \le 3r!$.

Ramsey's Theorem

The typical proof of a Ramsey number is a counterexample proving a lower bound, and an argument to show an upper bound.

Let's take R(3,3) for example.

Example of R(3, 3) > 5

To show that R(3,3) = 6, we must now show that $R(3,3) \le 6$.

Theorem

For $r \ge 1$, $R_r(3) \le 3r!$.

From this, we see that $R(3,3) \le 6$.

29 / 77

Example of R(3, 4) > 8

Example of R(3,5) > 13

Example of R(4, 4) > 17

Table : Known Ramsey Numbers, R(r, s)

s r	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1
2	1	2	3	4	5	6	7	8	9	10
3	1	3	6	9	14	18	23	28	36	
4	1	4	9	18	25					,
5	1	5	14	25						
6	1	6	18							
7	1	7	23							
8	1	8	28							
9	1	9	36							
10	1	10		,						

Suppose aliens invade the Earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number for red six and blue six, however, we would have no choice but to launch a preemptive attack.

-Paul Erdős

Some Known Bounds for Ramsey Numbers, R(r, s)

r	3	4	5	6	7	8	9	10
3								40-43
4				36-41	49–61	57-84	73–115	92-149
5			43-49	58-87	80-143	101-216	126-316	144-442
6		36-41	57–87	102-165	113-298	132-495	169-780	179–1171
7		49-61	80-143	113-298	205-540	217-1031	241-1713	289–2826
8		56-84	101-216	132-495	217-1031	282-1870	317-3583	331-6090
9		73–115	126-316	169-780	241-1713	317-3583	565-6588	581-12677
10	40–43	92–149	144-442	179–1171	289-2826	331-6090	581-12677	798–23556

Schur's Theorem

Theorem (Schur's Theorem)

For any $r \ge 1$, there exists a positive integer s such that, for any r-coloring of [1,s], there exists a monochromatic solution to x + y = z.

We call the smallest number that satisfies this theorem the *Schur number* of r, and denote it s(r).

We call the triple $\{x, y, z\}$ a monochromatic Schur triple.

Proof

By Ramsey's theorem there exists an integer $n = R_r(3)$ such that for any r-coloring χ of the edges of K_n there is a monochromatic triangle.

Proof

By Ramsey's theorem there exists an integer $n = R_r(3)$ such that for any r-coloring χ of the edges of K_n there is a monochromatic triangle.

We claim that $s \le n-1$. To see this, suppose an r-coloring of [1, n-1] is given.

Proof

By Ramsey's theorem there exists an integer $n = R_r(3)$ such that for any r-coloring χ of the edges of K_n there is a monochromatic triangle.

We claim that $s \le n-1$. To see this, suppose an r-coloring of [1, n-1] is given.

We can construct a coloring of K_n yielding a monochromatic solution to x+y=z as follows. Label each of the vertices of the graph K_n with the numbers 1 through n. Then assign to the edge connecting a pair of vertices (the color of) the positive difference between them.

Proof

By Ramsey's theorem there exists an integer $n = R_r(3)$ such that for any r-coloring χ of the edges of K_n there is a monochromatic triangle.

We claim that $s \le n-1$. To see this, suppose an r-coloring of [1, n-1] is given.

We can construct a coloring of K_n yielding a monochromatic solution to x + y = z as follows. Label each of the vertices of the graph K_n with the numbers 1 through n. Then assign to the edge connecting a pair of vertices (the color of) the positive difference between them.

Now, by Ramsey's theorem, we must have a triangle such that all the edges are assigned the same color.

Proof

By Ramsey's theorem there exists an integer $n = R_r(3)$ such that for any r-coloring χ of the edges of K_n there is a monochromatic triangle.

We claim that $s \le n-1$. To see this, suppose an r-coloring of [1, n-1] is given.

We can construct a coloring of K_n yielding a monochromatic solution to x + y = z as follows. Label each of the vertices of the graph K_n with the numbers 1 through n. Then assign to the edge connecting a pair of vertices (the color of) the positive difference between them.

Now, by Ramsey's theorem, we must have a triangle such that all the edges are assigned the same color.

Let the vertices of this triangle be named a < b < c, so we know that b - a, c - b, and c - a are all the same color.

Proof

Finally, let
$$x = b - a$$
, $y = c - b$ and $z = c - a$, and note that $x + y = (b - a) + (c - b) = c - a = z$.

Proof.

Finally, let
$$x = b - a$$
, $y = c - b$ and $z = c - a$, and note that $x + y = (b - a) + (c - b) = c - a = z$.

Thus, since x, y, and z are the same color, we have found a monochromatic solution to x + y = z.

From the proof of Schur's theorem, using Ramsey's theorem, we see:

Theorem

For $r \ge 1$, $s(r) \le R_r(3) - 1$.

From the proof of Schur's theorem, using Ramsey's theorem, we see:

Theorem

For $r \ge 1$, $s(r) \le R_r(3) - 1$.

We also have a lower bound:

Theorem

For $r \ge 1$, $s(r) \ge \frac{3^r - 1}{2}$.

Table: Known Schur Numbers

r	<i>s</i> (<i>r</i>)
1	2
2	5
3	14
4	45

Theorem

$$s(2) = 5$$
.

Theorem

$$s(2) = 5$$
.

Proof

First, we show that $s(2) \geq 5$.

Theorem

s(2) = 5.

Proof

First, we show that $s(2) \ge 5$. Suppose that 1 is colored red.

Theorem

s(2) = 5.

Proof

First, we show that $s(2) \ge 5$. Suppose that 1 is colored red.

If 2 is colored red, then we have the triple $\{1,1,2\}$, thus let 2 be colored blue.

Summer Kisner (BSU) Schur's Theorem March 4, 2013 50 / 77

Theorem

s(2) = 5.

Proof

First, we show that $s(2) \ge 5$. Suppose that 1 is colored red.

If 2 is colored red, then we have the triple $\{1,1,2\}$, thus let 2 be colored blue.

If 4 is colored blue, then we have the triple $\{2,2,4\}$, so let 4 be colored red.

 Summer Kisner (BSU)
 Schur's Theorem
 March 4, 2013
 51 / 77

Theorem

$$s(2) = 5$$
.

Proof

First, we show that $s(2) \ge 5$. Suppose that 1 is colored red.

If 2 is colored red, then we have the triple $\{1,1,2\}$, thus let 2 be colored blue.

If 4 is colored blue, then we have the triple $\{2,2,4\}$, so let 4 be colored red.

Now, if 3 is colored red, then we have the triple $\{1,3,4\}$, thus let 3 be colored blue.

Theorem

s(2) = 5.

Proof

First, we show that $s(2) \ge 5$. Suppose that 1 is colored red.

If 2 is colored red, then we have the triple $\{1,1,2\}$, thus let 2 be colored blue.

If 4 is colored blue, then we have the triple $\{2,2,4\}$, so let 4 be colored red.

Now, if 3 is colored red, then we have the triple $\{1,3,4\}$, thus let 3 be colored blue.

We have obtained a 2-coloring f of [1,4] without monochromatic Schur triples. This means that $s(2) \geq 5$.

Theorem

s(2) = 5.

Proof

Now, we show that $s(2) \leq 5$.

Theorem

s(2) = 5.

Proof

Now, we show that $s(2) \leq 5$.

Consider any 2-coloring χ of [1, 5].

Theorem

s(2) = 5.

Proof

Now, we show that $s(2) \leq 5$.

Consider any 2-coloring χ of [1,5].

If $\chi \upharpoonright [1,4] \neq f$, we are done because there must be a monochromatic triangle.

Theorem

$$s(2) = 5.$$

Proof.

Now, we show that $s(2) \leq 5$.

Consider any 2-coloring χ of [1,5].

If $\chi \upharpoonright [1,4] \neq f$, we are done because there must be a monochromatic triangle.

If $\chi \upharpoonright [1,4] = f$, we cannot assign 5 a color without creating a monochromatic Schur triple, so $s(2) \le 5$.

Example of s(3) > 13

Red	1	4	10	13	
Blue	2	3	11	12	
Yellow	5	6	7	8	9

Here is an example of a coloring that demonstrates s(4) > 44.

Red	1	3	5	15	17	19	26	28	40	42	44
Blue	2	7	8	18	21	24	27	33	37	38	43
Yellow	4	6	13	20	22	23	25	30	32	39	41
Green	9	10	11	12	14	16	29	31	34	35	36

Origin of Schur's Theorem

Schur's original proof, which preceded Ramsey's theorem, was published in 1917. It was introduced as a lemma in a paper meant to improve some results of Dickson. Dickson had written a paper about localized versions of Fermat's Last Theorem.

Origin of Schur's Theorem

Schur's original proof, which preceded Ramsey's theorem, was published in 1917. It was introduced as a lemma in a paper meant to improve some results of Dickson. Dickson had written a paper about localized versions of Fermat's Last Theorem. In the original proof, a bound can be extracted.

Theorem

For $r \geq 1$, $s(r) \leq \lceil r!e \rceil$.

Generalizations of Schur's Theorem: Rado's Theorem

Schur's Theorem naturally leads us to wonder which equations admit monochromatic solutions under finite colorings of the nonzero integers. Schur's theorem corresponds to the equation

$$x+y+z=0.$$

Richard Rado, a student of Schur's, turned his attention to the general linear setting, considering arbitrary coefficients and an arbitrary number of variables. He determined exactly when equations of the form

$$\sum_{i=1}^k c_i x_i = 0$$

are guaranteed to have monochromatic solutions under any finite coloring of the positive integers.

- (ロ) (個) (差) (差) (差) の(C)

Generalizations of Schur's Theorem: Rado's Theorem

Let $\mathcal S$ be a linear homogeneous equation and let $r\geq 1$. We say that $\mathcal S$ is r-regular if for every r-coloring of $\mathbb Z$ there is a monochromatic solution to $\mathcal S$. If $\mathcal S$ is r-regular for all $r\geq 1$, we say that $\mathcal S$ is r-egular.

Theorem (Rado's Single Equation Theorem)

Let $k \geq 2$, and let $c_i \in \mathbb{Z}, 1 \leq i \leq k$, be constants. Then

$$\sum_{i=1}^k c_i x_i = 0$$

is regular if and only if there exists a nonempty $D \subseteq \{c_i : 1 \le i \le k\}$ such that

$$\sum_{d\in D} d = 0.$$

◆ロト ◆団ト ◆豆ト ◆豆ト 豆 めらぐ

Consider the equation

$$x + 2y - 4z = 0.$$

Note that no subset of the coefficients sums to 0.

$$c_{1} = 1$$

$$c_{2} = 2$$

$$c_{3} = -4$$

$$c_{1} + c_{3} = -3$$

$$c_{2} + c_{3} = -2$$

$$c_{1} + c_{2} = 3$$

$$c_{1} + c_{2} + c_{3} = -1$$

We will now suppose we have a monochromatic solution to the equation x + 2y = 4z, and arrive at a contradiction.

◆ロト 4回ト 4 豆 ト 4 豆 ト 豆 めなべ

We define a coloring $\chi: \mathbb{Z} \to [1,4]$ given by $\chi(5^k \cdot j) = j \pmod{5}$. Since we are assuming we have a monochromatic solution to the equation x + 2y = 4z, $\chi(x) = \chi(y) = \chi(z) = j$.

Summer Kisner (BSU)

We define a coloring $\chi: \mathbb{Z} \to [1,4]$ given by $\chi(5^k \cdot j) = j \pmod{5}$. Since we are assuming we have a monochromatic solution to the equation x + 2y = 4z, $\chi(x) = \chi(y) = \chi(z) = j$.

Then, we have the following equation:

$$5^{k_1}(5 \cdot x_1 + j) + 2 \cdot 5^{k_2}(5 \cdot y_1 + j) - 4 \cdot 5^{k_3}(5 \cdot z_1 + j) = 0$$
 for some x_1, y_1, z_1 and some k_1, k_2, k_3 .

Summer Kisner (BSU)

We define a coloring $\chi: \mathbb{Z} \to [1,4]$ given by $\chi(5^k \cdot j) = j \pmod{5}$. Since we are assuming we have a monochromatic solution to the equation $x+2y=4z, \ \chi(x)=\chi(y)=\chi(z)=j$.

Then, we have the following equation:

$$5^{k_1}(5 \cdot x_1 + j) + 2 \cdot 5^{k_2}(5 \cdot y_1 + j) - 4 \cdot 5^{k_3}(5 \cdot z_1 + j) = 0$$

for some x_1, y_1, z_1 and some k_1, k_2, k_3 .

We divide by the largest possible power of 5 to get:

$$5^{m_1}(5 \cdot x_1 + j) + 2 \cdot 5^{m_2}(5 \cdot y_1 + j) - 4 \cdot 5^{m_3}(5 \cdot z_1 + j) = 0$$

We define a coloring $\chi: \mathbb{Z} \to [1,4]$ given by $\chi(5^k \cdot j) = j \pmod{5}$. Since we are assuming we have a monochromatic solution to the equation $x+2y=4z, \ \chi(x)=\chi(y)=\chi(z)=j$.

Then, we have the following equation:

$$5^{k_1}(5 \cdot x_1 + j) + 2 \cdot 5^{k_2}(5 \cdot y_1 + j) - 4 \cdot 5^{k_3}(5 \cdot z_1 + j) = 0$$

for some x_1, y_1, z_1 and some k_1, k_2, k_3 .

We divide by the largest possible power of 5 to get:

$$5^{m_1}(5 \cdot x_1 + j) + 2 \cdot 5^{m_2}(5 \cdot y_1 + j) - 4 \cdot 5^{m_3}(5 \cdot z_1 + j) = 0$$

We take this equation modulo 5 to get:

$$5^{m_1}(j) + 2 \cdot 5^{m_2}(j) - 4 \cdot 5^{m_3}(j) = 0 \pmod{5}$$

We define a coloring $\chi: \mathbb{Z} \to [1,4]$ given by $\chi(5^k \cdot j) = j \pmod{5}$. Since we are assuming we have a monochromatic solution to the equation $x+2y=4z, \ \chi(x)=\chi(y)=\chi(z)=j$.

Then, we have the following equation:

$$5^{k_1}(5 \cdot x_1 + j) + 2 \cdot 5^{k_2}(5 \cdot y_1 + j) - 4 \cdot 5^{k_3}(5 \cdot z_1 + j) = 0$$

for some x_1, y_1, z_1 and some k_1, k_2, k_3 .

We divide by the largest possible power of 5 to get:

$$5^{m_1}(5 \cdot x_1 + j) + 2 \cdot 5^{m_2}(5 \cdot y_1 + j) - 4 \cdot 5^{m_3}(5 \cdot z_1 + j) = 0$$

We take this equation modulo 5 to get:

$$5^{m_1}(j) + 2 \cdot 5^{m_2}(j) - 4 \cdot 5^{m_3}(j) = 0 \pmod{5}$$

And we divide by j:

$$5^{m_1} + 2 \cdot 5^{m_2} - 4 \cdot 5^{m_3} = 0 \pmod{5}$$

◆ロト ◆問ト ◆意ト ◆意ト · 意 · からぐ

We define a coloring $\chi: \mathbb{Z} \to [1,4]$ given by $\chi(5^k \cdot j) = j \pmod{5}$. Since we are assuming we have a monochromatic solution to the equation x + 2y = 4z, $\chi(x) = \chi(y) = \chi(z) = j$.

Then, we have the following equation:

$$5^{k_1}(5 \cdot x_1 + j) + 2 \cdot 5^{k_2}(5 \cdot y_1 + j) - 4 \cdot 5^{k_3}(5 \cdot z_1 + j) = 0$$

for some x_1, y_1, z_1 and some k_1, k_2, k_3 .

We divide by the largest possible power of 5 to get:

$$5^{m_1}(5 \cdot x_1 + j) + 2 \cdot 5^{m_2}(5 \cdot y_1 + j) - 4 \cdot 5^{m_3}(5 \cdot z_1 + j) = 0$$

We take this equation modulo 5 to get:

$$5^{m_1}(j) + 2 \cdot 5^{m_2}(j) - 4 \cdot 5^{m_3}(j) = 0 \pmod{5}$$

And we divide by j:

$$5^{m_1} + 2 \cdot 5^{m_2} - 4 \cdot 5^{m_3} = 0 \pmod{5}$$

But we know that at least one of m_1, m_2, m_3 is 0. Now it just takes an analysis by cases to see that this is impossible.

Another Example

E.G. Straus showed that 3-coloring [1,54] would admit a monochromatic solution to the equation x + y = 3z, and in fact that coloring [1,53] would not suffice.

Here is the example that he found. Let [1,53] be colored as follows:

$$R = \{x : x \equiv 1 \pmod{3}\} \cup \{x : x \equiv 3 \pmod{9}\}$$

$$B = \{x : x \equiv 2 \pmod{3}\} \cup \{9, 27, 36\}$$

$$Y = \{6, 15, 18, 24, 33, 42, 45, 51\}$$

This is a 3-coloring of [1,53] that does not admit any monochromatic solution to the equation x+y=3z. This means that x+y=3z is not 3-regular in [1,53] but it is 3-regular in \mathbb{Z}^+ . It can be shown that this equation is not 4-regular by the argument used in the proof of Rado's Theorem.

Van der Waerden's Theorem

Theorem (Van der Waerden)

There exists a least positive integer w(k, r) such that any r-coloring of [1, w(k, r)] admits a monochromatic arithmetic progression of length k.

Generalizations of Schur's Theorem

Coloring elements of the symmetric group S_n and searching for quadruples of the form $\{x, y, xy, yx\}$ (S_n is non-abelian, so xy and yx could be different).

Theorem (McCutcheon)

Let $r \in \mathbb{N}$. There exists n = n(r) such that for any r-coloring of the alternating group A_n , there is a monochromatic Schur quadruple.

Generalizations of Schur's Theorem

In 1979, Neil Hindman asked the following:

Question

Suppose that the positive integers are partitioned into finitely many pieces,

$$\mathbb{N}=A_1\cup A_2\cup ...\cup A_n.$$

Must there be integers x, y such that x, y, x + y are xy belong to the same A_i ?

This question is still open.

References

- Bruce M. Landman and Aaron Robertson. Ramsey Theory on the Integers Student Mathematical Library, 24. American Mathematical Society, Providence, RI, 2004. MR2020361 (2004h:05125)
- Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer.

 Ramsey Theory, Second edition. Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 1990.

 MR1044995 (90m:05003)

To see the thesis, and even links to most of the references, please see my thesis website

https://sites.google.com/site/slkthesis/

Thank you!