An introduction to the semantic web technologies And their use within the **@Web** platform

Leandro Lovisolo

INRA SupAgro and INRIA GraphiK Montpellier, France

September 23, 2015

Outline of the presentation

- What's an ontology?
- RDF
- RDFS
- OWL
- SKOS
- SPARQL
- ► The n-ary relationship pattern used in **@Web**
- Examples of tables in scientific documents annotated using n-ary relationships in @Web

It's a formal description of a domain of interest based on:

It's a formal description of a domain of interest based on:

a set of individuals (also called entities or objects),

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- ▶ a set of *classes* of individuals, and

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- a set of classes of individuals, and
- a set of relationships (sometimes called properties) between these individuals;

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- a set of classes of individuals, and
- a set of relationships (sometimes called properties) between these individuals;

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- a set of classes of individuals, and
- a set of relationships (sometimes called properties) between these individuals;

and a set of logical constraints to specify, among other things:

class membership,

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- a set of classes of individuals, and
- a set of relationships (sometimes called properties) between these individuals;

- class membership,
- subclass/subproperty relationships,

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- a set of classes of individuals, and
- a set of relationships (sometimes called properties) between these individuals;

- class membership,
- subclass/subproperty relationships,
- domain/range restrictions on properties,

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- a set of classes of individuals, and
- a set of relationships (sometimes called properties) between these individuals;

- class membership,
- subclass/subproperty relationships,
- domain/range restrictions on properties,
- cardinality constraints,

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- a set of classes of individuals, and
- a set of relationships (sometimes called properties) between these individuals;

- class membership,
- subclass/subproperty relationships,
- domain/range restrictions on properties,
- cardinality constraints,
- class union/intersection/disjointness constraints,

It's a formal description of a domain of interest based on:

- a set of individuals (also called entities or objects),
- a set of classes of individuals, and
- a set of relationships (sometimes called properties) between these individuals;

- class membership,
- subclass/subproperty relationships,
- domain/range restrictions on properties,
- cardinality constraints,
- class union/intersection/disjointness constraints,
- etc.

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

To avoid carrying long URIs, namespaces are used.

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

To avoid carrying long URIs, namespaces are used. Thus,

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

To avoid carrying long URIs, namespaces are used. Thus,

http://example.com/MyOntology

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

To avoid carrying long URIs, namespaces are used. Thus,

http://example.com/MyOntology

becomes

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

To avoid carrying long URIs, namespaces are used. Thus,

http://example.com/MyOntology

becomes

example:MyOntology

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

To avoid carrying long URIs, namespaces are used. Thus,

http://example.com/MyOntology

becomes

example:MyOntology

abbreviated as

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

To avoid carrying long URIs, namespaces are used. Thus,

http://example.com/MyOntology

becomes

example:MyOntology

abbreviated as

► :MyOntology

A *resource* is anything that can be referred to: a web page, a person, a city, a university course, etc.

Resources are identified by *URIs*, for example:

- http://example.com/MyOntology,
- http://example.com/MyOntology#Leandro,
- http://example.com/MyOntology#Pizza,
- etc.

To avoid carrying long URIs, namespaces are used. Thus,

http://example.com/MyOntology

becomes

example:MyOntology

abbreviated as

:MyOntology

if example is the default namespace.

RDF

A simple language for describing *annotations* about Web resources identified by URIs, from now on referred to as **facts**.

Facts are stated as RDF triplets.

Facts are stated as RDF triplets.

A triplet is made of a *subject*, an *object* and a *predicate*.

Facts are stated as RDF triplets.

A triplet is made of a subject, an object and a predicate.

Facts are stated as RDF triplets.

A triplet is made of a *subject*, an *object* and a *predicate*.

Some examples:

▶ ⟨:Dupond :Leads :InfoDept⟩

Facts are stated as *RDF triplets*.

A triplet is made of a *subject*, an *object* and a *predicate*.

- ▶ ⟨:Dupond :Leads :InfoDept⟩
- ► ⟨:Dupond :TeachesIn :UE111⟩

Facts are stated as *RDF triplets*.

A triplet is made of a *subject*, an *object* and a *predicate*.

- ▶ ⟨:Dupond :Leads :InfoDept⟩
- ► ⟨:Dupond :TeachesIn :UE111⟩
- \langle : Dupond : TeachesTo : Pierre \rangle

Facts are stated as *RDF triplets*.

A triplet is made of a *subject*, an *object* and a *predicate*.

- ▶ ⟨:Dupond :Leads :InfoDept⟩
- ► ⟨:Dupond :TeachesIn :UE111⟩
- \langle : Dupond : TeachesTo : Pierre \rangle
- ► <:Pierre :EnrolledIn :InfoDept>

Facts are stated as *RDF triplets*.

A triplet is made of a *subject*, an *object* and a *predicate*.

- \(\text{:Dupond :Leads :InfoDept} \)
- ► ⟨:Dupond :TeachesIn :UE111⟩
- \langle : Dupond : TeachesTo : Pierre \rangle
- \ \langle : Pierre : EnrolledIn : InfoDept \rangle
- ► <:Pierre :RegisteredTo :UE111>

Facts are stated as RDF triplets.

A triplet is made of a *subject*, an *object* and a *predicate*.

- ▶ ⟨:Dupond :Leads :InfoDept⟩
- ▶ ⟨:Dupond :TeachesIn :UE111⟩
- \langle : Dupond : TeachesTo : Pierre \rangle
- \ \langle : Pierre : EnrolledIn : InfoDept \rangle
- ► ⟨:Pierre :RegisteredTo :UE111⟩
- ► <:UE111 :OfferedBy :InfoDept>

RDF

Graph representation


```
\langle : Dupond : Leads : InfoDept \rangle \langle : Dupond : TeachesIn : UE111 \rangle \langle : Dupond : TeachesTo : Pierre \rangle \langle : Pierre : EnrolledIn : InfoDept \rangle \langle : Pierre : RegisteredTo : UE111 \rangle \langle : UE110 : OfferedBy : InfoDept \rangle \langle : UE110 : UE110 : OfferedBy : InfoDept \rangle \langle : UE110 : UE100 : UE100
```

There are many different syntaxes for writing RDF triplets, including:

There are many different syntaxes for writing RDF triplets, including:

XML (as used in **@Web**),

There are many different syntaxes for writing RDF triplets, including:

- XML (as used in @Web),
- ► Turtle,
- ▶ N-Triples,
- ► N-Quads,
- etc.

There are many different syntaxes for writing RDF triplets, including:

- XML (as used in @Web),
- Turtle,
- N-Triples,
- N-Quads,
- etc.

However, we're going to focus on the abstract $\langle \mathtt{subject}, \mathtt{predicate}, \mathtt{object} \rangle$ syntax during this presentation.

Problem statement

▶ We're trying to answer questions that require consulting heterogeneous data sources.

- ▶ We're trying to answer questions that require consulting heterogeneous data sources.
 - Literature with inconsistent, semi-structured data.

- ▶ We're trying to answer questions that require consulting heterogeneous data sources.
 - Literature with inconsistent, semi-structured data.
 - No standard naming convention.

- ▶ We're trying to answer questions that require consulting heterogeneous data sources.
 - Literature with inconsistent, semi-structured data.
 - No standard naming convention.
 - ▶ No information about the reliability of the data sources.

- ▶ We're trying to answer questions that require consulting heterogeneous data sources.
 - Literature with inconsistent, semi-structured data.
 - No standard naming convention.
 - ▶ No information about the reliability of the data sources.
 - Each data source has its specific browsing/querying mechanism (no common interface.)

Sample problem domain: biorefinery

► Ligno-cellulosic biomass pre-treatment before enzymatic hydrolysis is an essential step to obtain good yields.

Sample problem domain: biorefinery

- Ligno-cellulosic biomass pre-treatment before enzymatic hydrolysis is an essential step to obtain good yields.
- Several pre-treatment principles available, but no clear criteria on how to choose the best one taking into account environmental sustainability for a given biomass and biorefinery product (e.g. glucose.)

 Represent scientific knowledge with ontologies using recommended standardized tools and languages for such purposes (semantic web technologies, RDF(S), OWL, etc.)

- Represent scientific knowledge with ontologies using recommended standardized tools and languages for such purposes (semantic web technologies, RDF(S), OWL, etc.)
- ▶ Develop an ontology and data management web application (e.g. the **@Web platform**) that makes it easy for scientists to introduce data from scientific publications into an ontology, execute queries against an ontology, etc.

- Represent scientific knowledge with ontologies using recommended standardized tools and languages for such purposes (semantic web technologies, RDF(S), OWL, etc.)
- Develop an ontology and data management web application (e.g. the **@Web platform**) that makes it easy for scientists to introduce data from scientific publications into an ontology, execute queries against an ontology, etc.
- Create integrity constraints to automatically detect inconsistencies and errors in scientific publications and to automatically classify publications according to their topics.

- Represent scientific knowledge with ontologies using recommended standardized tools and languages for such purposes (semantic web technologies, RDF(S), OWL, etc.)
- Develop an ontology and data management web application (e.g. the **@Web platform**) that makes it easy for scientists to introduce data from scientific publications into an ontology, execute queries against an ontology, etc.
- Create integrity constraints to automatically detect inconsistencies and errors in scientific publications and to automatically classify publications according to their topics.
 - The focus of my internship!

An example of a termino-ontological resource

Taken from the biorefinery application

Design goals for the core ontology

▶ **Simple** so as to make the annotator's task easier.

Design goals for the core ontology

- **Simple** so as to make the annotator's task easier.
- ► **Generic** enough so that the approach can be applied to different, unrelated domains.

Design goals for the core ontology

- **Simple** so as to make the annotator's task easier.
- ► **Generic** enough so that the approach can be applied to different, unrelated domains.
 - ▶ Proven in the domains of biorefinery and packaging selection.

A sample relation

Also from the biorefinery domain

Exploring an ontology

Browsing documents

Querying an ontology: defining the search scope

Querying an ontology: search parameters

Querying an ontology: executing a query

Querying an ontology: results

The annotator's task

Given a scientific publication and a desired ontology, capture data from the publication using the appropriate concepts in the ontology.

The annotator's task

- Given a scientific publication and a desired ontology, capture data from the publication using the appropriate concepts in the ontology.
- Create and update concepts in the ontology as they're discovered during the annotation process (i.e. in an iterative fashion.)

The annotator's task

- Given a scientific publication and a desired ontology, capture data from the publication using the appropriate concepts in the ontology.
- Create and update concepts in the ontology as they're discovered during the annotation process (i.e. in an iterative fashion.)
- Write and edit guidelines associated to each concept explaining when and how a concept should be used.

An example of data captured from a scientific publication

A sample guideline

Some sample guidelines that can be easily translated into SPARQL constraints

Integrity constraints

"The output quantity of a step is equal to the sum of the quantity of water used and the quantity of biomass present in the step."

Some sample guidelines that can be easily translated into SPARQL constraints

Integrity constraints

- ► "The output quantity of a step is equal to the sum of the quantity of water used and the quantity of biomass present in the step."
- ► "The second milling step must give an "Output solid constituent size" smaller than 0,5-1 mm."

Some sample guidelines that can be easily translated into SPARQL constraints

Classification constraints

▶ "Topic Bioref-PM-PC-UFM-PS: included experiments are composed of a pre-milling step, followed by a physico-chemical treatment, then by an ultrafine milling step (ball milling, wet disk milling, etc.), a press and separation step (washing and filtration), and finally the enzymatic hydrolysis step. This topic requires a press and separation step because there are a lot of effluents in the physico-chemical step or because the milling is made with effluent. The second milling step must give an "Output solid constituent size" smaller than 0,5-1 mm. (en)"

Examples of guidelines that **cannot** be easily translated into SPARQL constraints

▶ "In all treatments, when the authors indicate "overnight", we considered a duration treatment between 10 and 15 hours"

Examples of guidelines that **cannot** be easily translated into SPARQL constraints

- ▶ "In all treatments, when the authors indicate "overnight", we considered a duration treatment between 10 and 15 hours"
- ► "Furthermore, we consider that the glucose rate equals to glucan rate divided by 0.9."

Statistics

A promising approach

In the biorefinery ontology alone we have:

- ▶ 11 occurrences of the phrase "equal to"
- ▶ 5 occurrences of the phrase "equals to"
- ▶ 11 occurrences of the phrase "sum of"
- 3 occurrences of the phrase "divided by"
- 2 occurrences of the phrase "multiplied by"

spread across guidelines associated with 30 relation concepts.

At least 10 of them can be easily translated into SPARQL constraints.

Thanks!