Matemática A

12.º Ano de Escolaridade Turma: B + C + H

Tema: Funções reais de variável real - Limites

1. Considera a função f, real de variável real, definida por $f(x) = \frac{4x-2}{x-4}$

Recorrendo à definição de limite segundo Heine, mostra que:

1.1.
$$\lim_{x \to 0} f(x) = \frac{1}{2}$$

1.1.
$$\lim_{x \to 0} f(x) = \frac{1}{2}$$

1.2. $\lim_{x \to 4^+} f(x) = +\infty$

1.3.
$$\lim_{x \to -1} f(x) = \frac{6}{5}$$

1.4. $\lim_{x \to 4^{-}} f(x) = -\infty$

1.4.
$$\lim_{x \to 4^{-}} f(x) = -\infty$$

2. Recorrendo à definição de limite segundo Heine, Determina:

$$2.1. \lim_{x \to +\infty} \frac{3}{x-1}$$

2.1.
$$\lim_{x \to +\infty} \frac{3}{x-1}$$

2.2. $\lim_{x \to +\infty} \frac{4}{2x^2-1}$

$$2.3. \lim_{x \to +\infty} \left(5 + \frac{1}{2+x} \right)$$

$$2.4. \lim_{x \to -\infty} \frac{1}{3 - 2x}$$

$$2.5. \lim_{x \to -\infty} \frac{2}{3 - x^2}$$

2.5.
$$\lim_{x \to -\infty} \frac{2}{3 - x^2}$$

2.6.
$$\lim_{x \to -\infty} \left(-3 - \frac{2}{4x+1} \right)$$

3. Seja f, a função real de variável real, definida por, $f(x) = \begin{cases} \frac{x^2 + x + 2}{x + 2} & \text{se} \quad x < -2 \\ 3 & \text{se} \quad x = -2 \\ 3 + \frac{1}{x^2 + x + 1} & \text{se} \quad x > -2 \end{cases}$

Recorrendo à definição de limite segundo Heine, Determina $\lim_{x \to +\infty} f(x)$

4. Determina, caso exista, $\lim_{x \to -2} f(x)$, em cada caso

4.1.
$$-2 \in D_f$$

4.2.
$$-2 \notin D_f$$

Figura 1

Figura 2

5. Considera as funções $f \in g$, reais de variável real, definidas por $f(x) = 1 + \frac{1}{x^2 + 1}$ e $g(x) = \frac{x}{x + 1}$, respetivamente

Calcula:

5.1.
$$\lim_{x \to 1} (f+g)(x)$$

5.2. $\lim_{x \to -2} (g-f)(x)$

5.2.
$$\lim_{x \to -2} (g - f)(x)$$

5.3.
$$\lim_{x \to -1^+} (f \times g)(x)$$

5.4.
$$\lim_{x \to -1^{-}} \left(\frac{f}{g} \right) (x)$$

6. Seja f, a função real, de variável real, definida por $f(x) = \frac{x^3 + 1}{x^3 + 2x^2 - 3x - 4}$

- 6.1. Determina $\lim_{x\to -1} f(x)$
- 6.2. Determina $\lim_{x \to +\infty} f(x)$
- 7. Calcula os seguintes limites

7.1.
$$\lim_{x \to -2} \frac{2x + x^2}{x + 2}$$
7.2.
$$\lim_{x \to -1} \frac{2x + 2}{1 - x^2}$$
7.3.
$$\lim_{x \to 3^+} \frac{x^2 - 9}{(x - 3)^2}$$
7.4.
$$\lim_{x \to -5^-} \frac{3x + 15}{x^2 + 10x + 25}$$
7.5.
$$\lim_{x \to \sqrt{2}^+} \frac{x^2 - 2}{x^2 - 2\sqrt{2}x + 2}$$
7.6.
$$\lim_{x \to 1} \frac{2x^2 - x - 1}{x^3 - 1}$$
7.7.
$$\lim_{x \to -\infty} (x^4 + x + 1)$$

7.7.
$$\lim_{x \to -\infty} (x^4 + x + 1)$$

7.8.
$$\lim_{x \to -\infty} (x^3 + 3x^2 + x)$$

7.9. $\lim_{x \to -\infty} (2x^2 - 2x + 4)$

7.9.
$$\lim_{x \to +\infty} (2x^2 - 2x + 4)$$
7.10.
$$\lim_{x \to +\infty} (-x^4 - x^2 + x - 5)$$

7.11.
$$\lim_{x \to -\infty} \frac{2x^3 + x + 4}{x^2 - x + 1}$$

7.12.
$$\lim_{x \to -\infty} \frac{x^4 - x + 1}{x^4 + 3}$$

7.13.
$$\lim_{x \to +\infty} \frac{4x+1}{x^3 + 2x - 5}$$

7.11.
$$\lim_{x \to -\infty} \frac{2x^3 + x + 4}{x^2 - x + 1}$$
7.12.
$$\lim_{x \to -\infty} \frac{x^4 - x + 1}{x^4 + 3}$$
7.13.
$$\lim_{x \to +\infty} \frac{4x + 1}{x^3 + 2x - 5}$$
7.14.
$$\lim_{x \to -\infty} \left[\frac{2}{x + 5} \times (x^2 - x + 1) \right]$$

7.15.
$$\lim_{x \to -5^-} \left[\frac{1}{25 - x^2} \times (x + 5) \right]$$

7.16.
$$\lim_{x \to 3^+} \left[(2x - 6) \times \frac{1}{x^2 - 6x + 9} \right]$$

$$x \to -5^{-} \left[25 - x^{2} \right]$$
7.16.
$$\lim_{x \to 3^{+}} \left[(2x - 6) \times \frac{1}{x^{2} - 6x + 9} \right]$$
7.17.
$$\lim_{x \to 2^{-}} \left[(-x^{2} + x + 2) \times \frac{1}{-3x^{3} + 6x^{2} + x - 2} \right]$$
7.18.
$$\lim_{x \to +\infty} (\sqrt{2x + 4} - \sqrt{2x + 2})$$

7.18.
$$\lim_{x \to 0} (\sqrt{2x+4} - \sqrt{2x+2})$$

7.19.
$$\lim_{x \to +\infty} (\sqrt{x^2 + 2x + 3} - \sqrt{x^2 + x + 2})$$

8. Seja
$$f$$
, a função real de variável real, definida por,
$$f(x) = \begin{cases} \frac{x^2 - 6x + 8}{x - 2} & \text{se} \quad x < 2 \\ -2 & \text{se} \quad x = 2 \\ \frac{-4x^2 + 4x + 8}{3x^2 - 6x} & \text{se} \quad x > 2 \end{cases}$$

Averigua, analiticamente, se existe $\lim_{x\to 2} f(x)$

9. Seja
$$g$$
, a função real de variável real, definida por, $g(x)=\left\{ \begin{array}{ll} \displaystyle \frac{-3x^2+5x-2}{2x-2} & se \quad x<1 \\ \displaystyle -\frac{1}{2} & se \quad x=1 \\ \displaystyle \frac{\sqrt{2x+2}-2}{x^2-x} & se \quad x>1 \end{array} \right.$

Averigua, analiticamente, se existe $\lim_{x\to 1} g(x)$

10. Seja
$$h$$
, a função real de variável real, definida por, $h(x) = \begin{cases} \frac{x^2 - 4}{-7x^2 - 12x + 4} & se \quad x < -2 \\ 2 - 3k & se \quad x = -2 \\ \frac{2 - \sqrt{x + 6}}{x^2 + 5x + 6} & se \quad x > -2 \end{cases}$, com $k \in \mathbb{R}$

Averigua, analiticamente, se existe algum $k \in \mathbb{R}$, para o qual existe $\lim_{x \to -2} h(x)$