Ch 2.2.3: Intro to classification

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Sep 18, 2023

Announcements

Lec#	Date		Readin	Reading	Homeworks	Quizzes (Note: These are not announced until after they happen)
3	Fri	Sep 1	Assessing Model Accuracy	2.2.1, 2.2.2	HW #1 Due	Quiz #1
	Mon	Sep 4	No class - Labor day			
4	Wed	Sep 6	Linear Regression	3.1		
5	Fri	Sep 8	More Linear Regression	3.1/3.2		Quiz #2
6	Mon	Sep 11	Even more linear regression	3.2.2	Hw #2 Due	
7	Wed	Sep 13	Probably more linear regression	3.3		Quiz #3
8	Fri	Sep 15	Linear regression coding module			
9	Mon	Sep 18	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	Wed	Sep 20	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	Fri	Sep 22	Multiple Logistic Regression / Multinomial Logistic Regression /Project day	4.3.4-5	Hw #3 Due	
	Mon	Sep 25	Review			
	Wed	Sep 27	Midterm #1			
	Fri	Sep 29	No class - Dr Munch out of town			

Last Time:

Finished Linear Regression

Announcements:

- Homework #3 Due Friday Sep 22
- Next Monday Review day
 - Nothing prepped
 - Bring your questions
- Weds 9/27 Exam #1
 - ▶ Bring 8.5×11 sheet of paper
 - ► Handwritten both sides
 - Anything you want on it, but must be your work
 - ▶ You will turn it in

Covered in this lecture

- Ch 2.2.3
- Error rate (classification)
- Bayes Classifier
- K-NN classification

Section 1

Classification Overview

What is classification

Classification: When the response variable is qualitative

- Given feature vector X and qualitative response Y in the set S, the goal is to find a function (classifier) C(X) taking X as input and predicting its value for Y.
- We are more interested in estimating the probabilities that X belongs to each category

Some examples

- Predict whether a COVID19 vaccine will work on a patient given patient's age
- An online banking service wants to determine whether a transaction being performed is fraudulent on the basis of the user's IP address, past transactions, etc.

Section 2

Ch 2.2.3: Classification

Error rate

- Training data: $\{(x_1, y_1), \dots, (x_n, y_n)\}$ with y_i qualitative
- Estimate $\hat{y} = \hat{f}(x)$
- Indicator variable

Training error rate:

$$\frac{1}{n}\sum_{i=1}^n\mathrm{I}(y_i\neq\hat{y}_i$$

Test error rate:

$$\operatorname{Ave}(\mathrm{I}(y_0 \neq \hat{y}_0))$$

Best ever classifier

We can't have nice things

Bayes Classifier:

Give every observation the highest probability class given its predictor variables

$$\Pr(Y = j \mid X = x_0)$$

An example

- Survey students for amount of programming experience, and current GPA
- Try to predict if they will pass CMSE 381.
- If we have a survey of all students that could ever exist, we can determine the probability of failure given combo of those features.

Bayes decision boundary

Bayes error rate

• Error at $X = x_0$

$$1 - \max_{j} \Pr(Y = j \mid X = x_0)$$

Overall Bayes error:

$$1 - E\left(\max_{j} \Pr(Y = j \mid X = x_0)\right)$$

12 / 20

Munch (MSU-CMSE) Lec 8 Mon, Sep 18, 2023

The game

Section 3

K-Nearest Neighbors Classifier

K-Nearest Neighbors

- Fix K positive integer
- N(x) = the set of K closest neighbors to x
- Estimate conditional proability

$$\Pr(Y = j \mid X = x_0) = \frac{1}{K} \sum_{i \in N(x_0)} I(y_i = j)$$

Pick j with highest value

Black line: KNN decision boundary

Example

Here label is shown by O vs X. What are the knn predictions for points A, B and C for k = 1 or k = 3?

Point	k=1 Prediction	k = 3 Prediction		
Α				
В				
С				

Tradeoff

More on tradeoff

Jupyter notebook

Next time

Lec#	E D	ate		Reading	Homeworks	Quizzes (Note: These are not announced until after they happen)
3	Fri	Sep 1	Assessing Model Accuracy	2.2.1, 2.2.2	HW #1 Due	Quiz #1
	Mon	Sep 4	No class - Labor day			
4	Wed	Sep 6	Linear Regression	3.1		
5	Fri	Sep 8	More Linear Regression	3.1/3.2		Quiz #2
6	Mon	Sep 11	Even more linear regression	3.2.2	Hw #2 Due	
7	Wed	Sep 13	Probably more linear regression	3.3		Quiz #3
8	Fri	Sep 15	Linear regression coding module			
9	Mon	Sep 18	Intro to classification, Bayes classifier, KNN classifier	2.2.3		
10	Wed	Sep 20	Logistic Regression	4.1, 4.2, 4.3.1-3		
11	Fri	Sep 22	Multiple Logistic Regression / Multinomial Logistic Regression /Project day	4.3.4-5	Hw #3 Due	
	Mon	Sep 25	Review			
	Wed	Sep 27	Midterm #1			
	Fri	Sep 29	No class - Dr Munch out of town			