Assessing General-Purpose Algorithms to Cope with Fail-stop and Silent Errors

Anne Benoit¹, Aurélien Cavelan¹, Yves Robert^{1,2} and Hongyang Sun¹

- 1. ENS Lyon
- 2. University of Tennessee Knoxville

aurelien.cavelan@inria.fr

PMBS14

Definitions

- Instantaneous error detection ⇒ fail-stop failures,
 e.g. resource crash
- Silent errors (data corruption) ⇒ detection latency

Silent error detected only when corrupt data is activated and modifies application behavior

- Includes some software faults, some hardware errors (soft errors in L1 cache, ALU), double bit flip
- Cannot always be corrected by ECC memory

Probability distributions for silent errors

Theorem:
$$\mu_p = \frac{\mu_{\text{ind}}}{p}$$
 for arbitrary distributions

(a.k.a, scale is the enemy)

Probability distributions for silent errors

Theorem:
$$\mu_p = \frac{\mu_{\text{ind}}}{D}$$
 for arbitrary distributions

(a.k.a, scale is the enemy)

(Not so) Secret data

- ullet Tsubame 2: 962 failures during last 18 months so $\mu=$ 13 hrs
- Blue Waters: 2-3 node failures per day
- Titan: a few failures per day
- Tianhe 2: wouldn't say

(Not so) Secret data

- ullet Tsubame 2: 962 failures during last 18 months so $\mu=$ 13 hrs
- Blue Waters: 2-3 node failures per day
- Titan: a few failures per day
- Tianhe 2: wouldn't say

$$T_{\rm opt} = \sqrt{2\mu C} \quad \Rightarrow \quad {
m WASTE}_{\rm opt} \approx \sqrt{\frac{2C}{\mu}}$$

(Not so) Secret data

- ullet Tsubame 2: 962 failures during last 18 months so $\mu=$ 13 hrs
- Blue Waters: 2-3 node failures per day
- Titan: a few failures per day
- Tianhe 2: wouldn't say

$$T_{\rm opt} = \sqrt{2\mu C} \quad \Rightarrow \quad {\rm WASTE}_{\rm opt} \approx \sqrt{\frac{2C}{\mu}}$$

Petascale: C=20 min $\mu=24 \text{ hrs}$ $\Rightarrow \text{WASTE}_{\text{opt}}=17\%$ Scale by 10: C=20 min $\mu=2.4 \text{ hrs}$ $\Rightarrow \text{WASTE}_{\text{opt}}=53\%$ Scale by 100: C=20 min $\mu=0.24 \text{ hrs}$ $\Rightarrow \text{WASTE}_{\text{opt}}=100\%$

(Not so) Secret data

- 13. 2: 962 failures during last 18 months so μ mrs
- Blue Water 3 node failures per day
- Titan: a few failure r day
- Tianhe 2: wouldn't say

Exascale \neq Petascale $\times 1000$ Need more reliable components Need to checkpoint faster

```
Petascale: C=20 \text{ min} \mu=24 \text{ hrs} \Rightarrow \text{ViSTE}_{\text{opt}}=17\%
Scale by 10. C=20 \text{ min} \mu=2.4 \text{ hrs} \Rightarrow \text{WiSTE}_{\text{opt}}=53\%
Scale 100: C=20 \text{ min} \mu=0.24 \text{ hrs} \Rightarrow \text{Was}_{\text{opt}}=100\%
```

(Not so) Secret data

- ullet Tsubame 2: 962 failures during last 18 months so $\mu=$ 13 hrs
- Blue Waters: 2-3 node failures per day
- Titan: a few failures per day
- Tianhe 2: wouldn't say

```
Silent errors: detection latency \Rightarrow additional problems
```

Scale by 10: C=20 min $\mu=2.4 \text{ hrs}$ $\Rightarrow \mathrm{WASTE}_{\mathsf{opt}}=53\%$

Scale by 100: C=20 min $\mu=0.24 \text{ hrs}$ $\Rightarrow \mathrm{WASTE}_{\mathsf{opt}}=100\%$

7%

- General-purpose approach
- Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

- General-purpose approach
- 2 Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

General-purpose approach

Error and detection latency

- Last checkpoint may have saved an already corrupted state
- Saving *k* checkpoints (Lu, Zheng and Chien):
 - 1 Critical failure when all live checkpoints are invalid
 - 2 Which checkpoint to roll back to?

General-purpose approach

Error and detection latency

- Last checkpoint may have saved an already corrupted state
- Saving k checkpoints (Lu, Zheng and Chien):
 - Critical failure when all live checkpoints are invalid Assume unlimited storage resources
 - Which checkpoint to roll back to?
 Need a verification mechanism

- General-purpose approach
- 2 Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

Coupling checkpointing and verification

- Verification mechanism of cost V
- Silent errors detected only when verification is executed
- Approach agnostic of the nature of verification mechanism (checksum, error correcting code, coherence tests, triple modular redundancy, etc)
- Fully general-purpose (application-specific information, if available, can always be used to decrease V)

- General-purpose approach
- 2 Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

Base pattern (and revisiting Young/Daly)

	Fail-stop (classical)	Silent errors
Pattern	T = W + C	S = W + V + C
Waste_{FF}	<u>C</u> T	$\frac{V+C}{S}$
WASTE_{fail}	$\frac{1}{\mu}(D+R+\frac{W}{2})$	$\frac{1}{\mu}(R+W+V)$
Optimal	$T_{\sf opt} = \sqrt{2C\mu}$	$S_{opt} = \sqrt{(C + V)\mu}$
WASTE_{opt}	$\sqrt{\frac{2C}{\mu}}$	$2\sqrt{\frac{C+V}{\mu}}$

Young/Daly

$$Waste = Waste_{ef} + Waste_{fail}$$

Waste =
$$\frac{V+C}{T} + \lambda^F(s)(R+\frac{T}{2}) + \lambda^S(s)(R+T)$$

$$T_{\text{opt}} = \sqrt{\frac{2(V+C)}{\lambda^F(s) + 2\lambda^S(s)}}$$

- General-purpose approach
- 2 Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

Linear chain

- $\{T_1, T_2, \dots, T_n\}$: linear chain of n tasks
- Each task T_i fully parametrized:
 - w_i computational weight
 - C_i , R_i , V_i : checkpoint, recovery, verification
- Error rates:
 - λ^F rate of fail-stop errors
 - λ^{S} rate of silent errors

VC-only

$$Time_C^{rec}(n)$$

$$\mathit{Time}^{\mathit{rec}}_{\mathit{C}}(j) = \min_{0 \leq i < j} \{\mathit{Time}^{\mathit{rec}}_{\mathit{C}}(i) + \mathit{T}^{\mathit{SF}}_{\mathit{C}}(i+1,j)\}$$

VC-only

$$Time_C^{rec}(n)$$

$$\mathit{Time}^{\mathit{rec}}_{\mathit{C}}(j) = \min_{0 \leq i < j} \{\mathit{Time}^{\mathit{rec}}_{\mathit{C}}(i) + \mathit{T}^{\mathit{SF}}_{\mathit{C}}(i+1,j)\}$$

$$T_{C}^{SF}(i,j) = p_{i,j}^{F} \left(T_{lost_{i,j}} + R_{i-1} + T_{C}^{SF}(i,j) \right) + \left(1 - p_{i,j}^{F} \right) \left(\sum_{\ell=i}^{j} w_{\ell} + V_{j} + p_{i,j}^{S} \left(R_{i-1} + T_{C}^{SF}(i,j) \right) + \left(1 - p_{i,j}^{S} \right) C_{j} \right)$$

$$Time_{VC}^{rec}(n)$$

$$\mathit{Time}_{VC}^{\mathit{rec}}(j) = \min_{0 \leq i < j} \{ \mathit{Time}_{VC}^{\mathit{rec}}(i) + \mathit{Time}_{V}^{\mathit{rec}}(i+1,j) + \mathit{C}_{j} \}$$

VC+V: $Time_V^{rec}$

$$Time_{V}^{rec}(i,j) = \min_{i-1 \le l \le j} \{Time_{V}^{rec}(i,l) + T_{V}(l+1,j,i-1)\}$$

VC+V: $Time_V^{rec}$

$$\textit{Time}_{V}^{\textit{rec}}(i,j) = \min_{i-1 \leq l < j} \{\textit{Time}_{V}^{\textit{rec}}(i,l) + \textit{T}_{V}(l+1,j,i-1)\}$$

$$\begin{split} T_{V}^{SF}(i,j,l_{c}) &= \rho_{i,j}^{F}\left(T_{lost_{i,j}} + R_{l_{c}} + Time_{V}^{rec}(l_{c}+1,i-1) + T_{V}^{SF}(i,j,l_{c})\right) \\ &+ (1-\rho_{i,j}^{F})\left(\sum_{\ell=i}^{j} w_{\ell} + V_{j} + \rho_{i,j}^{S}\left(R_{l_{c}} + Time_{V}^{rec}(l_{c}+1,i-1) + T_{V}^{SF}(i,j,l_{c})\right)\right) \end{split}$$

Extensions

- \bullet VC-ONLY and VC+V
- Different speeds with DVFS, different error rates
- Different execution modes
- Optimize for time or for energy consumption

- - Use verification to correct some errors (ABFT)
 - Same analysis (smaller error rate but higher verification cost)

Extensions

- \bullet VC-ONLY and VC+V
- Different speeds with DVFS, different error rates
- Different execution modes
- Optimize for time or for energy consumption

- © © ©
 - Use verification to correct some errors (ABFT)
 - Same analysis (smaller error rate but higher verification cost)

- General-purpose approach
- Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

Settings

- Linear chains with n tasks
 - Total work $W \approx 14$ hours
 - Patterns: (1) Uniform; (2) Decrease; (3) HighLow
- Set of speeds from Intel Xscale processor
 - Normalized speeds $\{0.15, 0.4, 0.6, 0.8, 1\}$
 - Fitted power function $P(s) = 1550s^3 + 60$
 - $\lambda^F(s) = \lambda_{\text{ref}}^F \cdot 10^{\frac{d \cdot |s_{\text{ref}} s|}{s_{\text{max}} s_{\text{min}}}}$
 - ullet Reference speed $s_{
 m ref}=0.6$ and $\lambda^F_{
 m ref}=10^{-5}$ for fail-stop errors
 - Sensitivity parameter d=3
 - \bullet Corresponds to 0.83 \sim 129 errors over entire chain
 - Silent errors: $\lambda^{S}(s) = \eta \cdot \lambda^{F}(s)$
- Checkpoint and verification costs for a task
 - cr ratio of checkpointing cost over computational cost
 - vr ratio of verification cost over computational cost
 - Default: checkpoint cost ≫ verification cost

- General-purpose approach
- Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

Impact of *n* and cost distribution

Impact of η (TIME-VC+V, n=100, Uniform)

General-purpose approach Checkpointing and Verification Simulation Checkpointing and Verification Checkpointing Checkpointing and Verification Checkpointing Ch

- General-purpose approach
- 2 Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

Impact of CPU speed s

Impact of P_{idle} and P_{io}

- General-purpose approach
- Checkpointing and Verification
 - Divisible load
 - Linear chains of tasks
- Simulations
 - SINGLESPEED scenario for makespan
 - SINGLESPEED scenario for energy
 - REEXECSPEED and MULTISPEED scenarios

$\overline{\text{TIME-VC+V}}$ (HighLow)

Energy-VC+V (HighLow)

Conclusion

- Soft errors difficult to cope with, even for divisible workloads or linear chains
- Investigate general task graphs
- Combine checkpointing, replication and application-specific techniques
- Multi-criteria optimization problem execution time/energy/reliability best resource usage (performance trade-offs)

Several challenging algorithmic/scheduling problems ©

