Westlake University Fundamental Algebra and Analysis I

Exercise sheet 7 - 1: Limits – series (I)

- **1.** State whether the following sequences $(x_n)_{n\in\mathbb{N}}$ converge or not. If yes, please find the sequential limit and if not, please explain why.
 - (1) $x_n = (-1)^n$;
 - (2) $x_n = (-1)^n \frac{1}{n}$;
 - $(3) x_n = \sin n;$
 - (4) $x_n = r^n$, where |r| < 1;
 - (5) $x_n = \sum_{k=1}^n r^k$, where |r| < 1.
- **2.** Let a > 0, b > 1 be two real numbers.
 - (1) Prove $\lim_{n\to\infty} \frac{1}{b^n} = 0$.
 - (2) Prove that there exists an $n_0 \in \mathbb{N}$, such that for all $n > n_0$, $\frac{a}{n} \leqslant \frac{1}{2}$.
 - (3) Prove $\lim_{n\to\infty} \frac{a^n}{n!} = 0$ by the facts above.
- 3. Prove the following statements about limits.
 - $(1) \lim_{n \to +\infty} \frac{n!}{n^n} = 0;$
 - (2) $\lim_{n \to +\infty} \sqrt[n]{a} = 1 (a > 0);$
 - (3) $\lim_{n \to +\infty} \frac{n^k}{a^n} = 0 \ (a > 0, \ k \in \mathbb{N});$
 - (4) $\lim_{n \to +\infty} \sqrt[n]{n^k} = 1 \ (k \in \mathbb{N});$
 - (5) $\lim_{n \to +\infty} \left(\frac{1}{n^2} + \frac{1}{(n+1)^2} + \dots + \frac{1}{(2n)^2} \right) = 0;$
 - (6) $\lim_{n \to +\infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2} \right) = \frac{1}{2};$
 - (7) $\lim_{n \to +\infty} \left(\frac{1}{2} + \frac{2}{2^2} + \dots + \frac{n}{2^n} \right) = 2;$
 - (8) $\lim_{n \to +\infty} \frac{3}{2} \cdot \frac{5}{4} \cdot \dots \cdot \frac{2^{2^n} + 1}{2^{2^n}} = 2;$
 - (9) $\lim_{n \to +\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \dots + \frac{2n-1}{2^n} \right) = 3.$

(10)
$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0.$$

(11)
$$\lim_{n \to \infty} ((n+1)^a - n^a) = 0$$
, where $a < 1$.

4. Prove the limit by following steps.

(1) For
$$n \in \mathbb{N}^*$$
, prove $\frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \frac{2n-1}{2n} < \frac{1}{\sqrt{2n+1}}$.

(2) Prove
$$\lim_{n \to \infty} \frac{1}{2} \cdot \frac{3}{4} \cdots \frac{2n-1}{2n} = 0$$
.

5. Find or prove the following limits.

(1) Prove
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$
.

(1) Prove
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$
.
Hint: Prove $\sqrt[n]{n} \leqslant 1 + \frac{2}{\sqrt{n}}$.

(2) Find
$$\lim_{n \to \infty} \sqrt[n]{1 + \frac{1}{2} + \dots + \frac{1}{n}}$$
.

6. Calculate the following limits.

(1)
$$\lim_{n \to \infty} \frac{a_m n^m + \dots + a_0}{b_l n^l + \dots + b_0}$$
, where $a_0, \dots, a_m, b_0, \dots, b_l \in \mathbb{R}$. Discuss for the cases of $m > l$, $m = l$ and $m < l$.

Hint: Begin this subject from the study of $\lim_{n\to\infty}\frac{1}{n}$.

(2)
$$\lim_{n \to +\infty} (\sqrt{n+1} - \sqrt{n}) \sqrt{n} ;$$

(3)
$$\lim_{n \to +\infty} \frac{\sqrt[3]{n^2 + 1}}{n + 2}$$
;

(4)
$$\lim_{n \to +\infty} \left(\frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 4} + \dots + \frac{1}{n(n+2)} \right)$$
;

(5)
$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$$
.

7. Prove the following statements about limits using the squeeze theorem.

(1)
$$\lim_{n \to +\infty} \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(2n)^2} \right] = 0;$$
(2)
$$\lim_{n \to +\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_k^n} = \max_{1 \le i \le k} \{a_i\}, (a_i \ge 0, \ i = 1, 2, \dots, k);$$

(2)
$$\lim_{n \to +\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_k^n} = \max_{1 \le i \le k} \{a_i\}, (a_i \ge 0, i = 1, 2, \dots, k)$$

(3)
$$\lim_{n \to +\infty} \sqrt[n]{(\sqrt[n]{n} - 1)} = 1;$$

$$(4) \lim_{\substack{n \to +\infty \\ n \to +\infty}} \sqrt[n]{a_1 a_2 \cdots a_n} = a, \ (a_n > 0, \lim_{\substack{n \to \infty \\ n \to \infty}} a_n = a).$$

8. Suppose that (x_n) is a sequence of real numbers and $\lim_{n\to+\infty}x_n=a$. Prove that

(1)
$$\lim_{n \to +\infty} \frac{x_1 + 2x_2 + \dots + nx_n}{n^2} = \frac{a}{2}.$$

(2) Suppose that 0 < r < 1. Use the conclusion in (1) to calculate the following limits:

i.
$$\lim_{n \to +\infty} \frac{1}{n^2} (r + 2^2 r^2 + \dots + n^2 r^n);$$

ii.
$$\lim_{n \to +\infty} \frac{1}{n^2} (1 + 2^{\frac{3}{2}} + 3^{\frac{4}{3}} + \dots + n^{\frac{n+1}{n}}).$$

- **9.** Suppose that $\varphi : \mathbb{N} \to \mathbb{N}$ such that φ is strictly monotonically increasing, and $\varphi \neq \mathrm{id}_{\mathbb{N}}$.
 - (1) Prove that there exists $N \in \mathbb{N}$, such that for any $n \in \mathbb{N}$ and $n \geq N$, $\varphi(n) > n$.
 - (2) Let $\varphi^0 := id_{\mathbb{N}}$, and inductively define

$$\varphi^{n+1} := \varphi \circ \varphi^n, \quad \forall n \in \mathbb{N} \cup \{0\}.$$

Prove that for any $k \in \mathbb{N}$ and $n \in \mathbb{N}$ with $n \geq N$, $\varphi^k(n) \geq n + k$.

- (3) Suppose that (x_n) is a sequence of real numbers satisfying $x_{\varphi(n)} = x_n$ for any $n \in \mathbb{N}$. Prove that if (x_n) is convergent, then there exists $M \in \mathbb{N}$, such that for any $n \in \mathbb{N}$ with $n \geq M$, $x_n = x_M$.
- **10.** Suppose that (x_n) is a sequence of real numbers satisfying $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$. Prove that if

$$\lim_{n \to +\infty} \frac{x_1 + x_2 + \dots + x_n}{n} = a,$$

then $\lim_{n\to+\infty} x_n = a$.

(1) Suppose that (a_n) is a sequence of real numbers satisfying

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lambda,$$

where $|\lambda| < 1$. Prove that $\lim_{n \to +\infty} a_n = 0$.

(2) Use the conclusion in (a) to prove the following statements about limits:

i.
$$\lim_{n \to +\infty} \frac{a^n}{n!} = 0 \ (a \in \mathbb{R});$$

ii.
$$\lim_{n \to +\infty} \frac{1^2 \cdot 3^2 \cdot (2n-1)^2 a^n}{2^2 \cdot 4^2 \cdots (2n)^2} = 0 \ (|a| < 1).$$

11. (1) Suppose that (a_n) is a sequence of real numbers satisfying

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \lambda,$$

where $\lambda > 1$. Prove that $\lim_{n \to +\infty} a_n = +\infty$.

(2) Use the conclusion in (a) to prove the following statements about limits:

i.
$$\lim_{n \to +\infty} \frac{3 \cdot 6 \cdot 9 \cdots 3n}{7 \cdot 10 \cdot 13 \cdots (3n+4)} a^n = +\infty \ (a > 1);$$

ii.
$$\lim_{n \to +\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)a^{2n}}{2 \cdot 4 \cdot 6 \cdots (2n-2) \cdot (2n)} = +\infty \ (|a| > 1).$$

- 12. Prove the following statements about superior and inferior limits.
 - (1) Prove that $\overline{\lim}_{n\to+\infty} (-1)^n (1+\frac{1}{n}) = 1$ and $\underline{\lim}_{n\to+\infty} (-1)^n (1+\frac{1}{n}) = -1$.
 - (2) Prove that $\lim_{n \to +\infty} \left[(1 + (-1)^n)n + \frac{1}{n} \right] = 0$ but it has no superior limit.
 - (3) Prove that $\overline{\lim}_{n\to+\infty}\left[((-1)^n-1)n+\frac{1}{n}\right]=0$ but it has no inferior limit.
 - (4) Prove that (n^2) and (-n) have neither superior limit nor inferior limit.
- 13. (1) Let (u_n) be a sequence that has both superior limit and inferior limit. Prove that $\lim_{n\to+\infty} u_n \leq \overline{\lim}_{n\to+\infty} u_n$.
 - (2) Prove that u_n converges to a real number l if and only if $\underline{\lim}_{n \to +\infty} u_n = \overline{\lim}_{n \to +\infty} u_n = l$.
- **14.** We consider the sequence (x_n) and (y_n) defined by :

$$\begin{cases} x_{2n} = 1 + \frac{1}{2n+1} \\ x_{2n+1} = 0 \end{cases} \quad \begin{cases} y_{2n} = 0 \\ y_{2n+1} = \frac{1}{2n+2} + 1. \end{cases}$$

- (1) Calculate $\overline{\lim} x_n$, $\underline{\lim} x_n$ and $\overline{\lim} (x_n + y_n)$.
- (2) Calculate $\underline{\lim} x_n$, $\overline{\lim} (-x_n)$ and $\underline{\lim} (-x_n)$.
- (3) Prove that if (u_n) is a bounded sequence and if $\alpha > 0$, then $\overline{\lim} \alpha x_n = \alpha \overline{\lim} u_n$ and $\underline{\lim} \alpha x_n = \alpha \underline{\lim} u_n$.
- **15.** Let $(r_n)_{n\in\mathbb{N}}$ be a sequence of real numbers defined by $r_n:=\sum_{k=1}^n a_k$, where

 $a_k \in \mathbb{R}$ for all $1 \leq k \leq n$. We suppose that the sequence $(\sqrt[k]{|a_k|})_{k \in \mathbb{N}}$ has a superior limit λ .

- (1) Suppose that $\lambda < 1$ and μ is a real number with $\lambda < \mu < 1$. If there exists an integer K such that $\forall k \in \mathbb{N}$ with $k \geq K$, $\sqrt[k]{|a_k|} < \mu$, prove that the sequence (r_n) is convergent.
- (2) Suppose that $\lambda > 1$ and μ is a real number with $\lambda > \mu > 1$. If for any $k \in \mathbb{N}$, there exists an $p \in \mathbb{N}$ such that $p \geqslant k$ and $\sqrt[k]{|a_k|} > \mu$, prove that the sequence (r_n) is divergent.

(3) State the convergence or divergence of the sequence (r_n) , where $r_n := \sum_{k=1}^n a_k$ with a_k defined below:

i.
$$a_{2j} = \left(\frac{j}{2j+1}\right)^{2j}, a_{2j+1} \left(\frac{1}{2j+1}\right)^{2j+1};$$

ii.
$$a_{2j} = \left(\frac{3j-1}{2j+1}\right)^{2j}, a_{2j+1}\left(\frac{1}{2j+1}\right)^{2j+1}.$$

- **16.** Let (r_n) be a sequence of real numbers defined by $r_n := \sum_{k=1}^{n} a_k$, where $a_k \in \mathbb{R}$ and $a_k > 0$ for all $1 \le k \le n$.
 - (1) Prove that if the sequence $\left(\frac{a_{k+1}}{a_k}\right)$ has an superior limit strictly smaller than 1, then the sequence (r_n) is convergent.
 - (2) Prove that if $\left(\frac{a_{k+1}}{a_k}\right)$ has a inferior limit strictly larger than 1, then the sequence (r_n) is divergent.
 - (3) State the convergence or divergence of the sequence (r_n) , where $r_n := \sum_{k=1}^{n} a_k$ with a_k defined below:

i.
$$a_{2j} = \frac{j!}{1 \cdot 9 \cdot 25 \cdots (2j+1)^2}$$
, $a_{2j+1} = \frac{j!}{1 \cdot 9 \cdot 25 \cdots (2j+1)^2 (2j+3)}$;

ii.
$$a_{2j+1} = \frac{\cos 1 \cdots \cos \frac{1}{2j+1}}{2^{j+1}}, \ a_{2j+2} = \frac{\cos 1 \cdots \cos \frac{1}{2^{j+1}}}{2^{j}};$$

ii.
$$a_{2j+1} = \frac{\cos 1 \cdots \cos \frac{1}{2j+1}}{2^{j+1}}, \ a_{2j+2} = \frac{\cos 1 \cdots \cos \frac{1}{2j+1}}{2^{j}};$$

iii. $a_{2j+1} = \frac{\exp(-1 + \frac{1}{2} + \cdots + \frac{1}{j})}{2^{j+1}}, \ a_{2j+2} = \frac{\exp(1 + \frac{1}{2} + \cdots + \frac{1}{j+1})}{2^{j+2}}.$