Задача 2. Определение вязкости жидкости

Цель работы

Измерить вязкость жидкости (глицерина) при помощи изучения падения тела сферической формы

Необходимые уравнения

Вязкостью называют свойство газа или жидкости оказывать сопротивление при движении одной их части относительно другой. Сила вязкого трения на единицу площади (для площадки, параллельной линии тока) $\frac{F}{S} = \eta \frac{\partial V}{\partial n}$, где η – динамическая вязкость,

 $\frac{\partial V}{\partial n}$ - градиент скорости в направлении перпендикулярном потоку. Единица измерения динамической вязкости в СИ — $\Pi a \cdot c$, в СГС — пуаз, $1 \ \Pi a \cdot c = 10 \ \text{пуаз}$.

При медленном (без образования вихрей, ламинарном) обтекании тела необходимо найти зависимость локальной скорости потока жидкости от координаты с учётом того, что на границе обтекаемого тела жидкость покоится.

Для тела сферической формы, падающего в неограниченной жидкости, это решение позволяет найти полную силу, действующую на тело со стороны жидкости. Этот результат называют формулой Стокса:

$$F = -6\pi r \eta V$$
.

Таким образом, если измерить установившуюся скорость движения сферического тела в вязкой жидкости можно установить кинематическую вязкость:

$$mg = 6\pi r \eta V + \rho g \frac{4}{3}\pi r^{3}$$

$$\eta = \frac{mg - \rho g \frac{4}{3}\pi r^{3}}{6\pi r V}$$

здесь r — радиус шара, V — установившаяся скорость, ρ — плотность жидкости, m — масса шара.

Дополнительные соображения

- 1. Опыт надо повторить несколько раз
- 2. Желательно сделать несколько серий опытов с шарами разных размеров (масс)
- 3. Близость стенок цилиндра может влиять на измеряемый результат
- 4. Возможны оптические искажения при определении положения шара

Используемое оборудование

1. Лабораторные весы, мерные цилиндры

Задача 2

- 2. Калиброванные шарики разных масс
- 3. Линейка, микрометр, штангенциркуль, штативы
- 4. Камера (камера мобильного телефона, веб-камера, видеокамера или фотоаппарат) для съёмки процесса падения шарика. 1

Задачи работы

1. Определить вязкость исследуемой жидкости. Все свойства жидкости (в т.ч. плотность) считать заранее неизвестными

¹ Для анализа видеофайла необходимо ПО, позволяющее определять момент фиксации кадра с точностью лучше 1 секунды. Этой возможностью, например, обладает QuickTime Player («Окно/Инспектор фильма»).