安徽大学 20 19 -20 20 学年第 1 学期

《 大学物理 A (下) 》期末考试试卷 (闭卷 时间 120 分钟)

考场登记表序号

题 号	_	11	三 (16)	三 (17)	三 (18)	四	总分
得 分							
阅卷人							

—、	选择题	(每小题	2分,	共 20	分)

1.	闭合线圈共有 N 匝,	总电阻为 R .	则当穿过单匝线圈磁通量改变为	Δ φ ∄	付,纟		流过
的	电量为					()

A. $NR/\Delta\phi$

亭

年级

- B. $N\Delta\phi/R$
- C. $NR\Delta\phi$
- D. $R\Delta\phi/N$
- 2. 已知空间中存在自由电荷 q_0 和极化电荷 q',传导电流 I_0 和磁化电流 I'. 对该空间,下列 方程组正确的一组是 . ()

A.
$$\oiint \vec{D} \cdot d\vec{S} = q_0 + q'$$
, $\oiint \vec{H} \cdot d\vec{l} = I_0$ B. $\oiint \vec{D} \cdot d\vec{S} = q_0$, $\oiint \vec{H} \cdot d\vec{l} = I'$

B.
$$\oiint \vec{D} \cdot d\vec{S} = q_0, \oiint \vec{H} \cdot d\vec{l} = I$$

C.
$$\oiint \vec{D} \cdot d\vec{S} = \vec{q}$$
, $\oiint \vec{H} \cdot d\vec{l} = I_0$ D. $\oiint \vec{D} \cdot d\vec{S} = q_0$, $\oiint \vec{H} \cdot d\vec{l} = I_0$

D.
$$\oiint \overrightarrow{D} \cdot d\overrightarrow{S} = q_0$$
, $\oiint \overrightarrow{H} \cdot d\overrightarrow{l} = I_0$

- 3. 两种介质材料的折射率分别为 1.732 和 2, 当光在二者界面传输并发生全反射对应的临 界角 $i_{\rm C}$ = .
- A. 30°
- B. 45°

C. 60°

D. 75°

 $\uparrow B$

4.如图所示,光线连续穿越三种介质,几何路程和每种介质的折射率示于图中.则光在介

质中的总光程为 .

B.
$$(n_1+n_2+n_3)(l_1+l_2+l_3)$$

- C. $n_1l_1 + l_2 + l_3$
- D. $l_1+l_2+l_3$

5. 如图所示,长度为 L 的金属细杆 ab 绕过一端的竖直轴以角速度 ω 在水平内逆时针旋转. 已知竖直向上均匀磁场为 B. 则 ab 两端的电压差大小为_____, ____端电势高. ()

第1页 共4页

- A. $\omega BL^2/2$, a
- B. ωBL^2 , a
- C. ωBL^2 , b
- D. $\omega BL^2/2$, b

		光度,单位为 m ⁻¹),已		$ \hat{\Sigma} n_{\rm L} = 1. $	5,	
并在空气中使用. 则	凸面的曲率半径 r_2 =	m,焦距 <i>f=f</i> ′=	m.	()	
A. 0.25, 0.5	B. 0.5, 0.25	C. 0.25, 0.25	D. 0.5, 0.5			
		直入射波长为λ的单位	色光,测得条纹间距	 担为 b.	当	
劈尖夹角 <i>θ</i> 很小时视。			D 1/(2 A)	()	
,		C. $\lambda/(2n_{\rm L}d)$				
8. 用波长为 λ 的单 k 级 $(k \neq 0)$,则光极		·平面光栅后,发现衍 [§]	$材角为 \; heta \; 对应的明$	纹级数 (为)	
A. $(k+1)\lambda/\sin\theta$	B. $(k-1)\lambda/\sin\theta$	C. $k\lambda / \sin \theta$	D. $(k+2)\lambda/\sin\theta$)		
9. 在实验室中实现夫	琅禾费衍射需要用到	到凸透镜,原因是	_·	()	
A. 凸透镜焦距短可	从近距离观察					
B. 在狭缝的入射一个 一侧再对出射的衍射]单色点光源扩束成平 F衍射条纹的观察	行光照射衍射狭缝	,在出	射	
C. 在狭缝的入射一位出射的点光源发散光]单色平行光聚焦到衍 5远处干涉成条纹	射狭缝上,在出射	一侧再	对	
D. 凸透镜焦距长可	从远距离观察		//			
10. 如图所示为一无	限大薄导体板,电流	医蛋直向上均匀流过该	导体			
板,在其两侧可产生	均匀磁场. 设单位长	:度的电流大小为 <i>j</i> ,足	巨离导			
体板距离为 $d(d \neq 0)$ 处的有一带电量为 $+q$ 的粒子,垂直导体板以速						
度 v 指向外侧匀速运	动,则该粒子的质量	t m =(设重	力加速度为g).	()	
A. $\mu_0 q v j / (2g)$	B. $\mu_0 q v j/g$	C. $\mu_0 qvj/(gd)$	D. $\mu_0 q v j/c$	(2 <i>gd</i>)		
二、填空题(每小题	4分,共20分)		得 分			
11. 一空心长螺线管	单位长度的线圈匝数	b为 n ,体积为 V ,则其	丰自感系数 $L=$	•		
12. 某空间电场的环量 场.(从"感生"和"	•	是据麦克斯韦电磁场理	论,该空间必存在_		电	
13. 已知一理想的平	行板电容器两极板间	可的电位移 D 随时间的	的关系为 $D(t) = D$	$e^{-t/ au}$,	其	
中 D_0 和 τ 为常数,极	版面积为 S. 则在 t=	τ 时刻流过电容器的	全电流 Id=			

新		**	3
姓名	勿超装 订线	Ţ	•
年级专业	参		
院/条		珠	\$

14. 凸透镜 L_1 和凹透镜 L_2 的焦距分别为 20 cm 和 40 cm, L_2 在 L_1 的右方 40 cm,二者主光轴重合摆放. 旁轴小物体位于 L_1 的左方 30 cm,则最终的像离 L_2 的距离 = _____cm.

15. 波长为 λ 的单色光入射到逸出功为 A 的洁净钠的表面,设入射光子能量大于逸出功,则逸出电子的最大动能为_______. (设普朗克常数为 h,光速为 c)

三、计算题(共50分)

16. (本题 20 分)

如图所示,在半径为R的圆柱状空间内存在均匀磁场,方向垂直于纸面向里,且 dB/dt 为常数且大于 0. 求距圆心 O 半径为r 处 P 点的感生电场场强的大小和方向. (分 r < R 和 r > R 两个区间分别进行计算)

17. (本题 20 分)

得 分

(第16题图)

dB/dt

得 分

一平面光栅当用白光垂直照射时,在 30°衍射方向可观察到 600 nm 波长的第二级主极大,同时在该方向上 400 nm 波长的第三级主极大不出现. 求此光栅的透光部分的宽度 a 和不透光部分的宽度 b 各为多少 mm.?

18.	(本题	10	分)

得分

用波长为 λ 的单色光做牛顿环实验,测得第 k 个暗环的半径为 R_1 ,第 k+5 个暗环的半径为 R_2 ,求平凸透镜的曲率半径 R.

四、证明题(本题10分)

得分

19. 根据马吕斯定律证明自然光通过一线偏振片后的光强为之前的一半.