Part.0 关于本文

0.1 文章信息

• 作者: lailai0916

• 微信: 17757102577

• QQ: 11548585

• UPD: 2023/8/18

原创文章,未经允许,禁止转载.

0.2 文章目录

Part.0 关于本文

- 0.1 文章信息
- 0.2 文章目录

Part.1 前置知识

- 1.1 任意角
- 1.2 弧度制
- 1.3 单位圆
- 1.4 距离公式

Part.2 锐角的三角函数

- 2.1 正弦函数 (Sine)
- 2.2 余弦函数 (Cosine)
- 2.3 正切函数 (Tangent)
- 2.4 余切函数 (Cotangent)
- 2.5 正割函数 (Secant)
- 2.6 余割函数 (Cosecant)

Part.3 任意角的三角函数

Part.4 常用三角函数值表

Part.5 三角函数的关系

5.1 推导

平方关系推导

其他三种关系推导

- 5.2 平方关系
- 5.3 商数关系
- 5.4 倒数关系
- 5.5 积的关系

Part.6 三角函数的公式

- 6.1 两角和差公式
 - 6.1.1 推导

余弦差角公式推导 (重点)

余弦和角公式推导

正弦差角公式推导

正弦和角公式推导

正切差角公式推导

正切和角公式推导

6.1.2 公式

- 6.2 诱导公式
 - 6.2.1 推导
 - 6.2.2 记忆
 - 6.2.3 公式

第一组诱导公式

第二组诱导公式

第三组诱导公式

第四组诱导公式

6.3 二倍角公式

6.3.1 推导

余弦二倍角公式推导

正弦二倍角公式推导

正切二倍角公式推导

6.3.2 公式

6.4 三倍角公式

6.4.1推导

正弦三倍角公式推导

余弦三倍角公式推导

正切三倍角公式推导

6.4.2 公式

6.5 半角公式

6.5.1 推导

余弦半角公式推导

正弦半角公式推导

正切半角公式推导

6.5.2 公式

6.6 积化和差公式

6.6.1推导

6.6.2 记忆

6.6.3 公式

6.7 和差化积公式

6.7.1 推导

6.7.2 公式

6.8 辅助角公式

6.8.1 推导

6.8.2 公式

6.9 万能公式

6.9.1 推导

正弦万能公式推导

余弦万能公式推导

正切万能公式推导

6.9.2 公式

Part.7 拓展内容

- 7.1 简谐运动
- 7.2 三角函数和复数
- 7.3 反三角函数
- 7.4 双曲函数
- 7.5 傅里叶变换

Part.1 前置知识

1.1 任意角

《人教版高中必修一》:

一条射线围绕其端点按逆时针方向旋转形成的角叫做正角,按顺时针方向旋转形成的角叫做负角.

Tips: 旋转可以不止一圈,所以任意角可以大于 360°.

1.2 弧度制

《人教版高中必修一》:

长度等于半径长的圆弧所对应的圆心角叫做 1 弧度(Radian)的角,弧度单位用 rad 表示,读作 弧度.

圆周的长度和半径之比为 2π , 所以 $360^{\circ} = 2\pi$, 弧度和角度成正比, 其他角度都可以通过换算得到:

角度制	15°	30°	45°	60°	90°	120°	180°	270°	360°
弧度制	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	π	$\frac{3\pi}{2}$	2π

Tips:本文中所有的角度若无特殊说明,均为弧度制.

1.3 单位圆

单位圆指平面直角坐标系上,圆心为原点,半径为单位长度的圆.

单位圆方程: $x^2 + y^2 = 1$.

1.4 距离公式

设 A、B 两点的坐标分别为 $A(x_0,y_0)$ 和 $B(x_1,y_1)$,则 A、B 两点之间的距离 $dis = \sqrt{(x_0-x_1)^2+(y_0-y_1)^2}$.

• 推导:

构造直角三角形,不难发现两条直角边分别为 (x_1-x_0) 和 (y_1-y_0) ,而斜边就是 A 点和 B 点的距离 dis,根据勾股定理:

$$dis^2=(x_0-x_1)^2+(y_0-y_1)^2$$
(相反数的平方相同, $(a-b)^2=(b-a)^2$)
所以 $dis=\sqrt{(x_0-x_1)^2+(y_0-y_1)^2}$.

Part.2 锐角的三角函数

2.1 正弦函数 (Sine)

- 定义:正弦等于对边和斜边的比. $(\sin \theta = \frac{a}{c})$
- 定义域: ℝ
- 值域: [-1,1]
- 奇偶性: 奇函数.
- 最小正周期: 2π
- 导数: $(\sin x)' = \cos x$
- 函数图像:

2.2 余弦函数 (Cosine)

• 定义: 余弦等于邻边和斜边的比. $(an heta = rac{b}{c})$

● 定义域: ℝ

• 值域: [-1,1]

奇偶性: 偶函数.

最小正周期: 2π

• 导数: $(\cos x)' = -\sin x$

• 函数图像:

2.3 正切函数 (Tangent)

• 定义:正切等于对边和邻边的比. $(an heta = rac{a}{b})$

• 定义域: $\{x|x
eq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$

● 值域: ℝ

奇偶性: 奇函数.

最小正周期: π

• 导数: $(\tan x)' = \sec^2 x$

函数图像:

2.4 余切函数 (Cotangent)

- 定义: 余切等于邻边和对边的比. $(\cot \theta = \frac{b}{a})$
- 定义域: $\{x|x\neq k\pi, k\in\mathbb{Z}\}$
- 值域: ℝ
- 奇偶性: 奇函数.
- 最小正周期: π
- 导数: $(\cot x)' = -\csc^2 x$
- 函数图像:

2.5 正割函数 (Secant)

- 定义: 正割等于斜边和邻边的比. $(\sec \theta = \frac{c}{b})$
- 定义域: $\{x|x
 eq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$
- 值域: $\{y|y\leq 1 \lor y\geq 1\}$
- 奇偶性: 偶函数.
- 最小正周期: 2π
- 导数: $(\sec x)' = \sec x \tan x$
- 函数图像:

2.6 余割函数 (Cosecant)

- 定义: 余割等于斜边和对边的比. $(\csc \theta = \frac{c}{a})$
- 定义域: $\{x|x \neq k\pi, k \in \mathbb{Z}\}$
- 值域: $\{y|y\leq 1 \lor y\geq 1\}$
- 奇偶性: 奇函数.
- 最小正周期: 2π
- 导数: $(\csc x)' = -\csc x \cot x$
- 函数图像:

Tips:在中学阶段很少用到余切(cot)、正割(sec)、余割(csc).

Part.3 任意角的三角函数

上文中的三角函数是基于直角三角形的,显然直角三角形的锐角只能在 $(0,\frac{\pi}{2})$ 范围内

不在这个范围的三角函数就没有定义了, 所以高中时会用单位圆推导出任意角的三角函数.

如图,把斜边为1的三角形放入单位圆内.

观察发现,此时不管 θ 的大小,斜边 c 永远等于 1,带入锐角三角函数的定义:

$$\sin \theta = \frac{a}{c} = a, \cos \theta = \frac{b}{c} = b$$

而 a 和 b 恰好是这个点的 **纵坐标** 和 **横坐标**.

所以是单位圆上角度为 θ 的点的纵坐标 $y=\sin\theta$,横坐标 $x=\cos\theta$.

Tips:不要搞反,这个点坐标是 $(\cos \theta, \sin \theta)$, \cos 在前面.

$$\tan \theta = \frac{a}{b} = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$$

不难发现 $\frac{y}{x}$ 就是计算直线斜率 k 的公式.

所以一条直线的倾斜角为 θ ,则该直线的斜率 $k= an \theta$.

Part.4 常用三角函数值表

角度	2	9	9	9	0	0	0	9	Ø	θ
$\sin \theta$	$\frac{\sqrt{6}-\sqrt{2}}{4}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	-1	0
$\cos \theta$	$\frac{\sqrt{6}+\sqrt{2}}{4}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1

角度	15°	30°	$45\degree$	60°	90°	120°	150°	180°	270°	360°
$\tan \theta$	$2-\sqrt{3}$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	/	$-\sqrt{3}$	$-\frac{\sqrt{3}}{3}$	0	/	0

Part.5 三角函数的关系

5.1 推导

平方关系推导

上图中蓝色三角形是直角三角形, 根据勾股定理:

$$\sin^2\theta + \cos^2\theta = 1$$

对于其他两个公式, 我确信已发现了一种美妙的证法, 可惜这里空白的地方太小, 写不下. (费马行为)

$$1 + \tan^2 \alpha = \sec^2 \alpha$$

$$1+\cos^2\alpha=\csc^2\alpha$$

其他三种关系推导

• 将三角函数的定义带入即可证明:

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

$$\cot \theta = \frac{b}{a}$$

$$\sec \theta = \frac{c}{b}$$

$$\csc \theta = \frac{c}{a}$$

• 举例:
$$\tan \alpha = \frac{a}{b} = \frac{a/c}{b/c} = \frac{\sin \alpha}{\cos \alpha}$$

5.2 平方关系

$$\sin^2 \alpha + \cos^2 \alpha = 1$$

 $1 + \tan^2 \alpha = \sec^2 \alpha$
 $1 + \cos^2 \alpha = \csc^2 \alpha$

5.3 商数关系

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$
$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

5.4 倒数关系

$$\sin \alpha = \frac{1}{\csc \alpha}$$
$$\cos \alpha = \frac{1}{\sec \alpha}$$
$$\tan \alpha = \frac{1}{\cot \alpha}$$

5.5 积的关系

 $\sin \alpha = \tan \alpha \cos \alpha$ $\cos \alpha = \cot \alpha \sin \alpha$ $\tan \alpha = \sin \alpha \sec \alpha$ $\cot \alpha = \cos \alpha \csc \alpha$ $\sec \alpha = \tan \alpha \csc \alpha$ $\csc \alpha = \sec \alpha \cot \alpha$

Part.6 三角函数的公式

6.1 两角和差公式

6.1.1 推导

余弦差角公式推导 (重点)

Tips: 这是唯一需要几何推导证明的公式,其他公式都是用另外的公式推出来的.

设
$$\angle AOB' = \alpha, \angle BOB' = \beta.$$

求出 A 点和 B 点的坐标分别为 $A(\cos\alpha,\sin\alpha)$, $B(\cos\beta,\sin\beta)$.

则
$$|AB|^2 = (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2$$
.

让 OA 和 OB 同时顺时针旋转 β , 得到 OA' 和 OB'.

此时 OB 和 x 轴重合.

不难证明 $\triangle ABO\cong\triangle A'B'O$,所以 |AB|=|A'B'|, $|AB|^2=|A'B'|^2$.

$$\angle A'OB' = \alpha - \beta$$
, 所以 A' 点的坐标为 $A'(\cos(\alpha - \beta), \sin(\alpha - \beta))$, B' 点的坐标为 $B'(1,0)$.

则
$$|A'B'|^2 = (\cos{(\alpha-\beta)}-1)^2 + (\sin{(\alpha-\beta)}-0)^2$$

$$|AB|^2 = (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2$$

= $\cos^2 \alpha - 2\cos \alpha \cos \beta + \cos^2 \beta + \sin^2 \alpha - 2\sin \alpha \sin \beta + \sin^2 \beta$
= $2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta)$

$$|A'B'|^2 = (\cos(\alpha - \beta) - 1)^2 + (\sin(\alpha - \beta) - 0)^2$$

= $\cos^2 \alpha - \beta - 2\cos\alpha - \beta + 1 + \sin^2 \alpha + \beta$
= $2 - 2\cos(\alpha - \beta)$

因为 $|AB|^2 = |A'B'|^2$, 所以 $\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$.

余弦和角公式推导

$$\cos(\alpha + \beta) = \cos(\alpha - (-\beta))$$

$$= \cos\alpha\cos(-\beta) + \sin\alpha\sin(-\beta)$$

$$= \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

正弦差角公式推导

$$\cos{(rac{\pi}{2}- heta)}=\cos{rac{\pi}{2}}\cos{ heta}+\sin{rac{\pi}{2}}\sin{ heta}=\sin{ heta}$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\left(\frac{\pi}{2} - \left(\frac{\pi}{2} - \theta\right)\right) = \cos\theta$$

$$\sin(\alpha - \beta) = \cos(\frac{\pi}{2} - (\alpha - \beta))$$

$$= \cos((\frac{\pi}{2} - \alpha) + \beta)$$

$$= \cos(\frac{\pi}{2} - \alpha)\cos\beta - \sin(\frac{\pi}{2} - \alpha)\sin\beta$$

$$= \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

正弦和角公式推导

$$\sin(\alpha + \beta) = \sin(\alpha - (-\beta))$$

$$= \sin\alpha\cos(-\beta) + \cos\alpha\sin(-\beta)$$

$$= \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

正切差角公式推导

$$\tan \alpha - \beta = \frac{\sin (\alpha - \beta)}{\cos (\alpha - \beta)}$$

$$= \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta + \sin \alpha \sin \beta}$$

$$= \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

正切和角公式推导

$$\tan (\alpha + \beta) = \tan (\alpha - (-\beta))$$

$$= \frac{\tan \alpha - \tan (-\beta)}{1 + \tan \alpha \tan (-\beta)}$$

$$= \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

6.1.2 公式

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha\tan\beta}$$

6.2 诱导公式

6.2.1 推导

• 诱导公式用和差角公式计算即可.

6.2.2 记忆

- 口诀: 奇变偶不变, 符号看象限.
 - 1. 奇变偶不变:奇偶指 $\frac{\pi}{2}$ 的系数,比如 $\pi, 2\pi$ 是偶数, $\frac{\pi}{2}, \frac{3\pi}{2}$ 是奇数.

如果是偶数,前后函数名一致;如果是奇数,改变函数名. (将 \sin 变成 \cos cos 变成 \sin , \tan 变成 \cot , \cot 变成 \tan)

2. 符号看象限: 把 α 看作第一象限角, 计算出前面的值在后面函数的正负 $(k \in \mathbb{Z})$:

符号	第一象限	第二象限	第三象限	第四象限		
范围	$2k\pi < \alpha < 2k\pi + \frac{\pi}{2}$	$2k\pi + \frac{\pi}{2} < \alpha < 2k\pi + \pi$	$2k\pi+\pi<\alpha<2k\pi+\frac{3\pi}{2}$	$2k\pi + \frac{3\pi}{2} < \alpha < 2k\pi + 2\pi$		
$\sin \alpha$	+	+	-	-		
$\cos \alpha$	+	-	-	+		
$\tan \alpha$	+	-	+	-		
$\cot \alpha$	+	-	+	-		

• 举例: 求
$$\sin\left(\frac{3\pi}{2} - \alpha\right)$$
.

1.
$$\frac{3\pi}{2} = 3 \cdot \frac{\pi}{2}$$
, 3 是奇数,要将 \sin 变成 \cos .

2. 把
$$\alpha$$
 看作第一象限角,则 $(\frac{3\pi}{2}-\alpha)$ 为第三象限角, \cos 在第三象限为负数,所以是负号.

3. 得
$$\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos\alpha$$
.

6.2.3 公式

第一组诱导公式

$$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$\cos{(rac{\pi}{2}+lpha)}=-\sin{lpha}$$

$$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$$

第二组诱导公式

$$\sin(\pi + \alpha) = -\sin\alpha$$

$$\sin\left(\pi - \alpha\right) = \sin\alpha$$

$$\cos\left(\pi + \alpha\right) = -\cos\alpha$$

$$\cos(\pi - \alpha) = -\cos\alpha$$

第三组诱导公式

$$\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$$

$$\sin\left(\frac{3\pi}{2} - \alpha\right) = -\cos\alpha$$

$$\cos\left(\frac{3\pi}{2} + \alpha\right) = \sin\alpha$$

$$\cos\left(\frac{3\pi}{2} - \alpha\right) = -\sin\alpha$$

第四组诱导公式

$$\sin(2\pi + \alpha) = \sin\alpha$$

$$\sin{(2\pi - \alpha)} = -\sin{\alpha}$$

$$\cos(2\pi + \alpha) = \cos\alpha$$

$$\cos(2\pi - \alpha) = \cos\alpha$$

6.3 二倍角公式

6.3.1 推导

余弦二倍角公式推导

$$\cos 2\alpha = \cos (\alpha + \alpha)$$

$$= \cos \alpha \cos \alpha - \sin \alpha \sin \alpha$$

$$= \cos^2 \alpha - \sin^2 \alpha$$

$$= 1 - 2\sin^2 \alpha$$

$$= 2\cos^2 \alpha - 1$$

• 以上三个公式等价.

正弦二倍角公式推导

$$\sin 2\alpha = \sin (\alpha + \alpha)$$

= $\sin \alpha \cos \alpha + \cos \alpha \sin \alpha$
= $2 \sin \alpha \cos \alpha$

正切二倍角公式推导

$$\tan 2\alpha = \frac{\sin 2\alpha}{\cos 2\alpha}$$

$$= \frac{2\sin \alpha \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha}$$

$$= \frac{2\sin \alpha \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha}$$

$$= \frac{2\sin \alpha \cos \alpha / \cos^2 \alpha}{\cos^2 \alpha / \cos^2 \alpha - \sin^2 \alpha / \cos^2 \alpha}$$

$$= \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

6.3.2 公式

$$\sin 2\alpha = 2 \sin \alpha \cos \alpha$$
 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1$
 $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$

6.4 三倍角公式

6.4.1推导

正弦三倍角公式推导

$$\sin 3\alpha = \sin (2\alpha + \alpha)$$

 $= \sin 2\alpha \cos \alpha + \cos 2\alpha \sin \alpha$
 $= 2\sin \alpha (1 - \sin^2 \alpha) + (1 - 2\sin^2 \alpha)\sin \alpha$
 $= 3\sin \alpha - 4\sin^3 \alpha$

余弦三倍角公式推导

$$\cos 3\alpha = \cos (2\alpha + \alpha)$$

$$= \cos 2\alpha \cos \alpha - \sin 2\alpha \sin \alpha$$

$$= (2\cos^2 \alpha - 1)\cos \alpha - 2(1 - \cos^2 \alpha)\cos \alpha$$

$$= 4\cos^3 \alpha - 3\cos \alpha$$

正切三倍角公式推导

$$\tan 3\alpha = \frac{\sin 3\alpha}{\cos 3\alpha}$$

$$= \frac{3\sin \alpha - 4\sin^3 \alpha}{4\cos^3 \alpha - 3\cos \alpha}$$

$$= \frac{4\sin \alpha \sin (\frac{\pi}{3} + \alpha)\sin (\frac{\pi}{3} - \alpha)}{4\cos \alpha \cos (\frac{\pi}{3} - \alpha)\cos (\frac{\pi}{3} + \alpha)}$$

$$= \tan \alpha \tan (\frac{\pi}{3} - \alpha)\tan (\frac{\pi}{3} + \alpha)$$

6.4.2 公式

$$\begin{split} \sin 3\alpha &= 3\sin \alpha - 4\sin^3 \alpha \\ \cos 3\alpha &= -3\cos \alpha + 4\cos^3 \alpha \\ \tan 3\alpha &= \tan \alpha \tan \left(\frac{\pi}{3} - \alpha\right) \tan \left(\frac{\pi}{3} + \alpha\right) \end{split}$$

6.5 半角公式

6.5.1 推导

余弦半角公式推导

$$\cos 2\theta = 2\cos^2 \theta - 1$$

$$\Leftrightarrow \alpha = 2\theta.$$

$$\cos \alpha = 2\cos^2 \frac{\alpha}{2} - 1$$

$$\Rightarrow \cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

$$\Rightarrow \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

正弦半角公式推导

$$\cos 2\theta = 1 - 2\sin^2 \theta$$

$$\Leftrightarrow \alpha = 2\theta.$$

$$\cos \alpha = 1 - 2\sin^2 \frac{\alpha}{2}$$

$$\Rightarrow \sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$

$$\Rightarrow \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

正切半角公式推导

$$\tan \frac{\alpha}{2} = \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}$$

$$= \frac{\pm \sqrt{\frac{1 - \cos \alpha}{2}}}{\pm \sqrt{\frac{1 + \cos \alpha}{2}}}$$

$$= \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

$$\tan \frac{\alpha}{2} = \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}$$

$$= \frac{\sin \frac{\alpha}{2} \cdot 2 \cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2} \cdot 2 \cos \frac{\alpha}{2}}$$

$$= \frac{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}{2 \cos \frac{\alpha}{2}}$$

$$= \frac{\sin \alpha}{1 + \cos \alpha}$$

$$\tan \frac{\alpha}{2} = \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}$$

$$= \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2} \cdot 2 \sin \frac{\alpha}{2}}$$

$$= \frac{2 \sin^2 \frac{\alpha}{2}}{\cos \frac{\alpha}{2} \cdot 2 \sin \frac{\alpha}{2}}$$

$$= \frac{2 \sin^2 \frac{\alpha}{2}}{2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}$$

$$= \frac{1 - \cos \alpha}{\sin \alpha}$$

• 以上三个公式等价.

6.5.2 公式

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

6.6 积化和差公式

6.6.1推导

正弦两角和差公式:

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

$$\Rightarrow \sin \alpha \cos \beta = x$$
, $\cos \alpha \sin \beta = y$.

已知 x, y 的和为 $\sin(\alpha + \beta)$, 差为 $\sin(\alpha - \beta)$, 求 x, y.

就是小学二年级学过的和差问题:

$$x = (\pi + \Xi)/2, \ y = (\pi - \Xi)/2$$

$$x=\sinlpha\coseta=rac{1}{2}[\sin\left(lpha+eta
ight)+\sin\left(lpha-eta
ight)]$$

$$y = \cos lpha \sin eta = rac{1}{2} [\sin \left(lpha + eta
ight) - \sin \left(lpha - eta
ight)]$$

同理,用余弦两角和差公式,可以求出另外两组积化和差公式:

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

$$\cos lpha \cos eta = rac{1}{2} [\cos \left(lpha + eta
ight) + \cos \left(lpha - eta
ight)]$$

$$\sin lpha \sin eta = -rac{1}{2}[\cos{(lpha + eta)} - \cos{(lpha - eta)}]$$

6.6.2 记忆

$$sc = \frac{1}{2}(s+s)$$

$$cs = \frac{1}{2}(s-s)$$

$$cc = rac{1}{2}(c+c)$$

$$ss = -\frac{1}{2}(c - c)$$

6.6.3 公式

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin (\alpha + \beta) + \sin (\alpha - \beta)]$$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin (\alpha + \beta) - \sin (\alpha - \beta)]$$

$$\cos lpha \cos eta = rac{1}{2} [\cos \left(lpha + eta
ight) + \cos \left(lpha - eta
ight)]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos (\alpha + \beta) - \cos (\alpha - \beta)]$$

6.7 和差化积公式

6.7.1 推导

• 积化和差公式:

$$\begin{split} \sin\alpha\cos\beta &= \frac{1}{2}[\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)] \\ \cos\alpha\sin\beta &= \frac{1}{2}[\sin\left(\alpha+\beta\right)-\sin\left(\alpha-\beta\right)] \\ \cos\alpha\cos\beta &= \frac{1}{2}[\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)] \\ \sin\alpha\sin\beta &= -\frac{1}{2}[\cos\left(\alpha+\beta\right)-\cos\left(\alpha-\beta\right)] \\ &\Leftrightarrow \alpha+\beta=A, \ \alpha-\beta=B. \\ &\text{If } \alpha &= \frac{A+B}{2}, \ \beta &= \frac{A-B}{2}. \end{split}$$

• 带入积化和差公式:

$$\sin \frac{A+B}{2} \cos \frac{A-B}{2} = \frac{1}{2} [\sin A + \sin B]$$

$$\cos \frac{A+B}{2} \sin \frac{A-B}{2} = \frac{1}{2} [\sin A - \sin B]$$

$$\cos \frac{A+B}{2} \cos \frac{A-B}{2} = \frac{1}{2} [\cos A + \cos B]$$

$$\sin \frac{A+B}{2} \sin \frac{A-B}{2} = -\frac{1}{2} [\cos A - \cos B]$$

移项得:

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

6.7.2 公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

6.8 辅助角公式

6.8.1 推导

$$a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2} (\frac{a}{\sqrt{a^2 + b^2}} \sin\theta + \frac{b}{\sqrt{a^2 + b^2}} \cos\theta)$$

$$= \sqrt{a^2 + b^2} (\cos\varphi\sin\theta + \sin\varphi\cos\theta)$$

$$= \sqrt{a^2 + b^2} \sin(\theta + \varphi)$$

第二步到第三步, $\frac{a}{\sqrt{a^2+b^2}}$ 和 $\frac{b}{\sqrt{a^2+b^2}}$ 的平方和等于 1,而 $\cos\varphi$ 和 $\sin\varphi$ 的平方和也等于 1,所以可以换元.

同理,可以将 $\cos \varphi$ 和 $\sin \varphi$ 交换位置.

$$a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2}(rac{a}{\sqrt{a^2 + b^2}}\sin\theta + rac{b}{\sqrt{a^2 + b^2}}\cos\theta)$$

$$= \sqrt{a^2 + b^2}(\sin\varphi\sin\theta + \cos\varphi\cos\theta)$$

$$= \sqrt{a^2 + b^2}\cos(\theta - \varphi)$$

6.8.2 公式

$$a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2}\sin(\theta + \varphi), \tan\varphi = rac{b}{a} \ a\sin\theta + b\cos\theta = \sqrt{a^2 + b^2}\cos(\theta - \varphi), \tan\varphi = rac{a}{b} \ rac{a}{b}$$

6.9 万能公式

6.9.1 推导

正弦万能公式推导

$$\sin \alpha = \sin \left(\frac{\alpha}{2} + \frac{\alpha}{2}\right)$$

$$= 2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}$$

$$= \frac{2\sin \frac{\alpha}{2}\cos \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2} + \sin^2 \frac{\alpha}{2}}$$

$$= \frac{2\tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

余弦万能公式推导

$$\cos \alpha = \cos \left(\frac{\alpha}{2} + \frac{\alpha}{2}\right)$$

$$= \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}$$

$$= \frac{\cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2}}{\cos^2 \frac{\alpha}{2} + \sin^2 \frac{\alpha}{2}}$$

$$= \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

正切万能公式推导

$$an lpha = rac{\sin lpha}{\cos lpha} = rac{2 an rac{lpha}{2}}{1 - an^2 rac{lpha}{2}}$$

6.9.2 公式

$$\sin lpha = rac{2 anrac{lpha}{2}}{1+ an^2rac{lpha}{2}} \ \cos lpha = rac{1- an^2rac{lpha}{2}}{1+ an^2rac{lpha}{2}} \ anlpha = rac{2 anrac{lpha}{2}}{1- an^2rac{lpha}{2}}$$

Part.7 拓展内容

Tips: 7.1 章是高中物理内容, 作者不会与本文无关; 7.2、7.3、7.4、7.5 章节高中不学, 可以根据视频自行了解.

7.1 简谐运动

$$x = A\cos\left(\omega t + \varphi\right)$$

• 地球打穿一个洞, 人跳进去会发生什么? 李永乐老师讲简谐运动

7.2 三角函数和复数

$$e^{i\theta} = \cos \theta + i \sin \theta$$

- 见《复变函数与积分变换》.
- 【官方双语】微分方程概论-第五章: 在3.14分钟内理解e^im
- 用几何直觉理解欧拉公式! 【中学生也能懂 | manim 】

7.3 反三角函数

《百度百科》反三角函数:

三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了"arc+函数名"的形式表示反三角函数.

• 这个视频可能颠覆你对反三角函数的认识!

7.4 双曲函数

 $e^{j\theta} = \cosh \theta + j \sinh \theta$

- 双曲函数——带你领略课本上没有的神奇函数!
- 双曲正弦, 余弦是如何得到的? 有和正弦余弦有什么关系? | manim

7.5 傅里叶变换

$$F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx$$

- 【官方双语】形象展示傅里叶变换
- 这个算法改变了世界