Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

 (Currently Amended) A compound including resolved enantiomers, diasteriomers diastereomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

wherein if R_1 is hydrogen or --OH then R_2 is AX, and if R_2 is hydrogen or --OH then R_1 is AX, and A may be absent or A may be any alkyl or aryl group where X is hydrogen, a phosphate group, a phosphonic acid derivative group, an alcohol group, a carboxylic acid group, an ether group, an ester group, a nitrile group, a sulfone group, a sulfide group, an amino acid derivative group, an amine group, and amide group, an aldehyde group, or an aromatic group.

- 2. (Original) The compound of claim 1, wherein said alcohol group is represented by --R³OH, wherein R³ is a straight chained or branched alkyl group having 1 to 5 carbon atoms.
- 3. (Original) The compound of claim 1, wherein said carboxylic acid group comprises --R⁴COOH wherein R⁴ is at least one saturated or unsaturated alkyl group, an aryl group an ester group, an ether group or a combination thereof.

- 4. (Original) The compound of claim 3, wherein R⁴ is an ester group represented by --R⁵COO--, wherein R⁵ is bonded to the carboxylic acid group and has 0 to 5 carbon atoms.
- 5. (Original) The compound of claim 3, wherein R⁴ is an ether group represented by R⁶--O--R⁷ wherein R⁶ and R⁷ are, independently, an alkyl or allyl group having 0 to 5 carbon atoms.
- 6. (Original) The compound of claim 1, wherein said aromatic group comprises Ar-(R⁸)_m, wherein Ar represents a benzene ring, and m is 1 or 2.
- 7. (Original) The compound of claim 6, wherein R8 is --CH=CH₂, or --COOH.
- 8. (Original) The compound of claim 1, wherein the ester group is represented by -- CR⁹, where R⁹ is an ester of nicotinic acid, an ester of isonicotinic acid, or the ester group is represented by --CO(C=O)R^{9a}, where R^{9a} is Ph(CY₃)_o, where o is 1 or 2, and Y may be, independently, H, F, Cl, Br, or I, or where R^{9a} is a substituted heterocyclohexane compound.
- 9. (Original) The compound of claim 1, wherein the phosphonic acid derivative group is represented by --CO--P(R¹⁰)(O)OH, where R¹⁰ is an alkyl group having 0 to 5 carbon atoms.
- 10. (Original) The compound of claim 1, wherein the phosphate group is -COP(O)(OR¹¹)₂, where R¹¹ is an alkyl group having 0 to 5 carbon atoms, or a
 phenyl group.
- 11. (Original) The compound of claim 1, wherein the nitrile group is $R^{12}CN$, where R^{12} is an alkyl group having 0 to 5 carbon atoms.
- 12. (Original) The compound of claim 1, wherein the sulfone group is $--CS(=O)_2R^{13}$, wherein R^{13} is $--N(CH_3)_2$, $--OR^{14}$, or $--Ph--COOR^{14}$, where R^{14} is H, CH₃, or $--CH(CH_3)_2$.
- 13. (Original) The compound of claim 1, wherein the sulfide group is --CSR¹⁵, where R¹⁵ is pyridine or --Ph--COOR¹⁶, where R¹⁶ is H or CH₃.

- 14. (Original) The compound of claim 1, wherein the amino acid derivative group is --COC(=O)CHR²¹N(R¹⁷)₂, where each R¹⁷ group is, independently, H or CH₃ and R²¹ is hydrogen or any other substituent.
- 15. (Original) The compound of claim 1, wherein the amine group is $-\text{CN}(R^{18})_2$, where each R^{18} group is, independently, H, an alkyl group, or a phenyl group.
- 16. (Original) The compound of claim 1, wherein the ether group is --C--O--CR¹⁹, where R¹⁹ is a substituted pyridine.
- 17. (Original) The compound of claim 1, wherein the amide group is -- $(C=O)N(R^{20})_2$, or -- $CH_2(C=O)N(R^{20})_2$ where each R^{20} is, independently, H or -- $CH_2CH_2N(CH_3)_2$.
- 18. (Currently Amended) A compound including resolved enantiomers, diasteriomers diastereomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

where D forms a heterocyclic ring having 3 to 5 atoms.

- 19. (Original) The compound of claim 18, wherein the heterocyclic ring is a 3-membered ring and one of the atoms in the ring is oxygen.
- 20. (Original) The compound of claim 18, wherein the heterocyclic ring is a 5-membered ring and two of the atoms in the ring are oxygen.
- 21. (Original) The compound of claim 20, wherein the heterocyclic ring is substituted with an oxygen atom.
- 22. (Original) The compound of claim 21, wherein another atom in the 5-membered ring is a sulfur or a phosporous atom.
- 23. (Original) The compound of claim 22, wherein the 5-membered ring is substituted with 1 or 2 oxygen atoms bonded to the sulfur atom.
- 24. (Currently Amended) A compound including resolved enantiomers, diasteriomers diastereomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

where E is H, O, NR, CH₂ or S wherein R may be hydrogen, alkyl, aryl or any other substituent.

- 25. (Original) The compound of claim 1 wherein if R_1 is H or --OH then R_2 is OH and if R_2 is OH or H then R_1 is OH.
- 26. (Original) The compound of claim 1, wherein if R is H or --OH then

R₂ is

and if R_2 is OH or H then R_1 is

27. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

wherein R is hydrogen or a methyl group when n is 0 or 2.

- 28. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is R— ξ —and if R_2 is --OH or H then R_1 is R—wherein R may be CH_2 =CH or COOH.
- 29. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is and if R_2 is --OH or H then R_1 is
- 30. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

OH and if
$$R_2$$
 is --OH or H then R_1 is .

31. (Original) The compound of claim 1, wherein if R₁ is H or --OH then R2 is

and if
$$R_2$$
 is --OH or H then R_1 is

32. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

O and if
$$R_2$$
 is --OH or H then R_1 is

33. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

$$\bigcap_{N \oplus O} \bigcap_{O \ominus} And \text{ if } R_2 \text{ is --OH or H then } R_1 \text{ is}$$

34. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

OH

$$CH_3$$
 and if R_2 is --OH or H then R_1 is

35. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

- 36. (Original) The compound of claim 1, wherein if R_1 is H then R_2 is --OH.
- 37. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

- 38. (Original) The compound of claim 1, wherein if R_1 is H then R_2 is carboxylic acid.
- 39. (Original) The compound of claim 1, wherein if R₁ is H or --OH then R₂ is

HO and if
$$R_2$$
 is --OH or H then R_1 is HO .

40. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

and if
$$R_2$$
 is --OH or H then R_1 is

41. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

and if
$$R_2$$
 is --OH or H then R_1 is

42. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

and if
$$R_2$$
 is --OH or H then R_1 is O

43. (Original) The compound of claim 1 wherein if R_1 is H or --OH then R_2 is

and if
$$R_2$$
 is --OH or H then R_1 is

Reply to Office Action of 09/12/2007

44. (Original) The compound of claim 1, wherein is R_1 is H or --OH then R_2 is

OEt and if
$$R_2$$
 is --OH or H then R_1 is OEt .

45. (Original) The compound of claim 1, wherein if R₁ is H or --OH then R₂ is

OMe OMe and if
$$R_2$$
 is --OH or H then R_1 is OMe .

46. (Original) The compound of claim 1, wherein if R₁ is H or --OH then R₂ is

$$CF_3$$
 and if R_2 is --OH or H then R_1 is CF_3 .

47. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

and if R_2 is --OH or H then R_1 is

48. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

and if
$$R_2$$
 is --OH or H then R_1 is R_2 .

49. (Original) The compound of claim 1, wherein is R_1 is H or --OH then R_2 is

HO and if
$$R_2$$
 is --OH or H then R_1 is HO

50. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

OR and if
$$R_2$$
 is --OH or H then R_1 is OR.

- 51. (Original) The compound of claim 50 wherein R is a methyl or ethyl group.
- 52. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

$$O_2$$
S—OR and if R_2 is --OH or H then R_1 is O_2 S—OR.

- 53. (Original) The compound of claim 52 wherein R is a methy group.
- 54. (Original) The compound of claim 52 wherein R is an iso-propyl group.
- 55. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

O₂S—NMe₂ and if
$$R_2$$
is --OH or H then R_1 is O₂S—NMe₂.

56. (Original) The compound of claim 1, wherein if R₁ is H or --OH then R₂ is

s—
$$N$$
 and if R_2 is --OH or H then R_1 is

57. (Original) The compound of claim 1, wherein if R₁ is H or --OH then R₂ is

and if R_2 is --OH or H then R_1 is CN_1

- 58. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is one and if R_2 is --OH or H then R_1 is one.
- Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is o and if R_2 is --OH or H then R_1 is 0.
- 60. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is and if R_2 is --OH or H then R_1 is
- 61. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is $\overset{\bullet}{\circ}$ and if R_2 is --OH or H then R_1 is
- 62. (Original) The compound of claim 1, wherein if R₁ is H or --OH then R₂ is

and if
$$R_2$$
 is --OH or H then R_1 is

63. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

and if
$$R_2$$
 is --OH or H then R_1 is $\bigcap_{\mathbb{R}^N}$

64. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

65. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

$$\bigcap_{R} \bigcap_{N} \bigcap_{R'} \bigcap_{N} \bigcap_{R'} \bigcap_{N} \bigcap_{R'} \bigcap_{N} \bigcap_{R'} \bigcap_{N} \bigcap_{R'} \bigcap_{N} \bigcap_{R'} \bigcap_{N} \bigcap_{N} \bigcap_{R'} \bigcap_{N} \bigcap_{$$

- 66. (Original) The compound of claim 66 wherein each R' and R independently can be any amino acid of all possible stereochemistries and with any degree and choice of protecting group.
- 67. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is $\stackrel{\oplus}{\underset{O_2}{\bigvee}}$ $\stackrel{\oplus}{\underset{N\longrightarrow O}{\bigvee}}$ and if R_2 is --OH or H then R_1 is

68. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

o
$$\mathbb{N}$$
 and if \mathbb{R}_2 is --OH or H then \mathbb{R}_1 is

69. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

$$O = \bigvee_{\substack{N \\ H}} NMe_2$$
 and if R_2 is --OH or H then R_1 is $\bigvee_{\substack{N \\ H}} NMe_2$

70. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

$$O = \bigvee^{NH_2 \text{ and if } R_2 \text{ is --OH or H then } R_1 \text{ is}} O = \bigvee^{NH_2}.$$

71. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

O OH and if
$$R_2$$
 is --OH or H then R_1 is OH.

72. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

$$O \longrightarrow \begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

73. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

and if
$$R_2$$
 is --OH or H then R_1 is NH_2 .

74. (Original) The compound of claim 1, wherein if R_1 is H or --OH then R_2 is

NRR' and if
$$R_2$$
 is --OH or H then R_1 is NRR'.

- 75. (Original) The compound of claim 74, wherein R and R' are independently of each other hydrogen, alkyl, aryl, or allyl.
- 76. (Original) The compound of claim 19 wherein said heterocyclic ring is
- 77. (Original) The compound of claim 21 wherein said heterocyclic ring is
- 78. (Original) The compound of claim 22 wherein said heterocyclic ring is
- 79. (Original) The compound of claim 21 wherein said heterocyclic ring is Me
- 80. (Original) The compound of claim 22 wherein said heterocyclic ring is
- 81. (Currently Amended) A compound including resolved enantiomers, diasteriomers diastereomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

- 82. (Canceled).
- 83. (Currently Amended) A compound including resolved enantiomers, diasteriomers diastereomers, solvates and pharmaceutical acceptable salts thereof, said compound having the formula:

- 84. (Original) A method of treating cancer, which comprises administering to a patient suffering from said cancer the compound of claim 1.
- 85. (Original) A method according to claim 84 wherein said cancer is selected from the group of cancers consisting of leukemia, non-small cell lung cancer, colon cancer, central nervous system cancer, melanoma cancer, ovarian cancer, renal cancer, prostate cancer, and breast cancer.
- 86. (Original) A method for treating malaria comprising administering an effective amount of the compound of claim 1.