Irrational Numbers - AN2 I

The Number Systems

In this course we will talk about six different number systems:

1. Natural Numbers: N

2. Whole Numbers: W

3. Integers: \mathbb{Z}

4. Rational Numbers: \mathbb{Q}

5. Irrational Numbers \mathbb{I}

6. Real Numbers: \mathbb{R}

What Is A Rational Number?

- A rational number is any number that can be expressed as the quotient of two integers.
- A repeating, or terminating integer. i.e. $1.\overline{56721343}$, or 1.12, or $\sqrt{.49}$

What Is An Irrational Number?

- An **irrational number** is a number that cannot be expressed as the quotient of two integers.
- A non-repeating, and non-terminating decimal. i.e 1.12349123639..., π , and $\sqrt{2}$

Practice:

Identify Whether each number is Rational, or Irrational:

i. $\sqrt{34}$

vi. $\sqrt{0.75}$

ii. $\frac{1}{2}$

vii. $\sqrt{9}$

iii. $\frac{36}{2}$

viii. $\sqrt{0.25}$

iv. $\frac{\pi}{36}$

ix. $0.\overline{333}$

v. $0.\overline{654}$

1

What Is A Radical?

- A radical is a number that involves a root
- A mixed radical is a number that is part radical, and part integer. Mixed:

• An **entire radical** An entire radical is a number that only has a root. The *entire* number is under the radical.

Expressing An Entire Radical As A Mixed Radical In Simplest Form

In order to express an entire radical as a mixed radical, we use prime factorization: **Example:** $\sqrt{48}$

- 1. Prime factorization: $48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$
- 2. Identify groups based on index (in this case 2): $48 = 2^2 \cdot 2^2 \cdot 3$
- 3. Write with radical: $\sqrt{48} = \sqrt{2^2 \cdot 2^2 \cdot 3}$
- 4. Note that $\sqrt{a}\sqrt{b} = \sqrt{ab}$, so $\sqrt{48} = \sqrt{2^2}\sqrt{2^2}\sqrt{3}$
- 5. Simplifying: $\sqrt{48} = 2 \cdot 2 \cdot \sqrt{3}$
- 6. So $\sqrt{48} = 4\sqrt{3}$
- i. $\sqrt{32}$

Practice:

Convert The Following To Mixed Radicals In Simplest Form:

i. $\sqrt{27}$ iii. $\sqrt{75}$

ii. $\sqrt[3]{80}$ iv. $\sqrt[3]{128}$

Expressing A Mixed Radical as an Entire Radical.

Example: $2\sqrt{5}$:

- 1. Begin by rewriting coefficient as as a radical: $2\sqrt{5} = \sqrt{2^2}\sqrt{5} = \sqrt{4}\sqrt{5}$
- 2. Next, remember $\sqrt{a}\sqrt{b}=\sqrt{ab}$, so $\sqrt{4}\sqrt{5}=\sqrt{4\cdot5}$
- 3. Next, simplify: $\sqrt{4 \cdot 5} = \sqrt{20}$
- 4. So $2\sqrt{5} = \sqrt{20}$.
- i. $5\sqrt{5}$

ii. $2\sqrt{7}$

Practice:

Convert The Following Into Entire Radicals:

i. $5\sqrt{7}$

iv. $10\sqrt{2}$

ii. $2\sqrt{6}$

v. $3\sqrt[3]{2}$

iii. $3\sqrt{13}$

vi. $2\sqrt[3]{5}$