Math 450b Homework 1

Trevor Klar

February 6, 2018

1. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Prove that $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| \, ||\mathbf{y}||$ if and only if $\mathbf{y} = r\mathbf{x}$ for some $r \in \mathbb{R}$.

PROOF Both directions of this proof will rely on the fact that $\mathbf{x} \neq \vec{0}$, so before we begin we will address that possibility. Suppose $\mathbf{x} = \vec{0}$. Then, $|\langle \mathbf{x}, \mathbf{y} \rangle| = |\langle \mathbf{0}, \mathbf{y} \rangle| = |\sum_{i=1}^n 0y_i| = 0$ and ||x|| ||y|| = 0 ||y|| = 0. Thus, $|\langle \mathbf{x}, \mathbf{y} \rangle| = 0 = ||\mathbf{x}|| ||\mathbf{y}||$, so the converse direction holds (since the conclusion is always true). However, if $\mathbf{x} = \vec{0}$ and $\mathbf{y} \neq \vec{0}$, then there is no such $r \in \mathbb{R}$ such that $\mathbf{y} = r\mathbf{x}$, so the forward direction actually does not hold in this case (the hypothesis is always true, but the conclusion is always false). Since the theorem does not always hold when $\mathbf{x} = \vec{0}$, we will assume that $\mathbf{x} \neq \vec{0}$ in the rest of this proof.

PROOF (\iff) Suppose that $\mathbf{y} = r\mathbf{x}$ for some $r \in \mathbb{R}$. Then we have the following:

$$0 = ||\mathbf{y} - r\mathbf{x}||^{2}$$

$$0 = \langle \mathbf{y} - r\mathbf{x}, \mathbf{y} - r\mathbf{x} \rangle$$

$$0 = ||\mathbf{y}||^{2} - 2r \langle \mathbf{x}, \mathbf{y} \rangle + r^{2} ||\mathbf{x}||^{2}$$

Before we proceed further, we can use the fact that $\mathbf{y} = r\mathbf{x}$ to obtain a value for r:

$$\begin{array}{rcl} \langle \mathbf{x}, r\mathbf{x} \rangle & = & \langle \mathbf{x}, r\mathbf{x} \rangle \\ r \langle \mathbf{x}, \mathbf{x} \rangle & = & \langle \mathbf{x}, \mathbf{y} \rangle \\ r ||\mathbf{x}||^2 & = & \langle \mathbf{x}, \mathbf{y} \rangle \\ r & = & \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||^2} \end{array}$$

Now we plug this in for r in our previous equation and simplify:

$$0 = ||\mathbf{y}||^{2} - 2\left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||^{2}}\right) \langle \mathbf{x}, \mathbf{y} \rangle + \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||^{2}}\right)^{2} ||\mathbf{x}||^{2}$$

$$0 = ||\mathbf{y}||^{2} - 2\frac{\langle \mathbf{x}, \mathbf{y} \rangle^{2}}{||\mathbf{x}||^{2}} + \frac{\langle \mathbf{x}, \mathbf{y} \rangle^{2}}{||\mathbf{x}||^{2}}$$

$$0 = ||\mathbf{y}||^{2} - \frac{\langle \mathbf{x}, \mathbf{y} \rangle^{2}}{||\mathbf{x}||^{2}}$$

From this, we can rearrange to find that $\langle \mathbf{x}, \mathbf{y} \rangle^2 = ||\mathbf{x}||^2 ||\mathbf{y}||^2$ and take square roots, yielding $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| ||\mathbf{y}||$ and we are done.

PROOF (\Longrightarrow) Suppose that $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| ||\mathbf{y}||$.

As in the converse direction (with steps reversed), we can square both sides and rearrange to find that

$$0 = ||\mathbf{y}||^2 - 2\left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||^2}\right) \langle \mathbf{x}, \mathbf{y} \rangle + \left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||^2}\right)^2 ||\mathbf{x}||^2.$$

Now since we have assumed that $\mathbf{x} \neq \vec{0}$, we know that $\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||^2}$ is a real number. So let $r = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}||^2}$ and substitute to obtain

$$0 = \left| \left| \mathbf{y} \right| \right|^2 - 2r \left\langle \mathbf{x}, \mathbf{y} \right\rangle + r^2 \left| \left| \mathbf{x} \right| \right|^2.$$

Again as we did in the converse direction, we can rearrange to find that $0 = ||\mathbf{y} - r\mathbf{x}||^2$. This means that $\mathbf{y} = r\mathbf{x}$, and we are done.

1

2. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}$ be nonzero. Prove that $||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$ if and only if \mathbf{x} and \mathbf{y} are orthogonal.

Proof (\iff) Suppose \mathbf{x} and \mathbf{y} are orthogonal. Then

$$||\mathbf{x} + \mathbf{y}||^2 = \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle$$

= $||\mathbf{x}||^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2$

and, since **x** and **y** are orthogonal, $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, so

$$\begin{aligned} &\left|\left|\mathbf{x}\right|\right|^{2} + 2\left\langle\mathbf{x}, \mathbf{y}\right\rangle + \left|\left|\mathbf{y}\right|\right|^{2} \\ &= &\left|\left|\mathbf{x}\right|\right|^{2} + \left|\left|\mathbf{y}\right|\right|^{2} \end{aligned}$$

and we are done.

PROOF (\Longrightarrow) Suppose that $||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$. Then,

$$||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$$
$$||\mathbf{x}||^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$$
$$2\langle \mathbf{x}, \mathbf{y} \rangle = 0$$

Thus, \mathbf{x} and \mathbf{y} are orthogonal by definition.

3. Let $\mathbf{x} = (1, 1, ..., 1)$ and $\mathbf{y} = (1, 2, ..., n)$ in \mathbb{R}^n . Let θ_n be the angle between \mathbf{x} and \mathbf{y} in \mathbb{R}^n . Find $\lim_{n \to \infty} \theta_n$.

We know that

$$\cos \theta_n = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{||\mathbf{x}|| \, ||\mathbf{y}||}.$$

So we will compute each of the parts.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$||\mathbf{x}|| = \sqrt{n}$$

$$||\mathbf{y}|| = \sqrt{\sum_{i=1}^{n} i^2} = \sqrt{\frac{n(n+1)(2n+1)}{6}}$$

Plugging these terms in and canceling, we find that

$$\cos \theta_n = \sqrt{\frac{3n+3}{4n+2}}$$

So, to find $\lim_{n\to\infty} \theta_n$, we find

$$\lim_{n \to \infty} \left(\cos^{-1} \sqrt{\frac{3n+3}{4n+2}} \right) = \cos^{-1} \left(\frac{\sqrt{3}}{2} \right) = \frac{\pi}{6}$$

and we are done.

4. (\square) Decide if the following subsets of \mathbb{R}^n are open and/or closed. (Draw pictures, and give answers. No proofs necessary.)

(a) $\{(x,y): xy=0\} \subset \mathbb{R}^2$ Answer: Closed and not open.

(b) $\{(x,y): xy \neq 0\} \subset \mathbb{R}^2$ Answer: Open and not closed.

(c) $\{(x, y, z) : x^2 + y^2 < 1 \text{ and } z = 0\} \subset \mathbb{R}^3$ Answer: Not open and not closed.

(d) $\{(x, y, z) : x^2 + y^2 < 1\} \subset \mathbb{R}^3$ Answer: Open and not closed.

(a) $\{(x_1,\ldots,x_n): \text{each } x_i \in \mathbb{Q}\} \subset \mathbb{R}^n$

Answer: Not open and not closed.

This set is impossible to draw. I imagine it something like a dense infinite point grid, like a field of stars in space. Each element has infinitely many other elements surrounding it in every direction, as well as elements not in the set surrounding it in a similar way.

5. (\square) Let S be an (n-1)-dimensional vector subspace of \mathbb{R}^n . Prove that S is not an open set.

PROOF Since every vector space has a basis, let $B = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_{n-1}}\}$ be a basis for S. Now, since B has only (n-1) elements, it cannot span \mathbb{R}^n , and thus can be extended to a spanning set by including another vector, \mathbf{u} . Now, to see that S is not open, observe that for every $\mathbf{x} \in S$, and every $B(\mathbf{x}, r)$ where $r \in \mathbb{R}^+$, the point $\mathbf{x} + \frac{r\mathbf{u}}{2||\mathbf{u}||}$ is an element of $B(\mathbf{x}, r)$, but not an element of S. The following image illustrates this for \mathbb{R}^3 and $S = \{(x, y, z) : z = 2\}$:

6. (\square) Let $\mathbf{x} \in \mathbb{R}^n$, $r \ge 0$, and define $\overline{B}(\mathbf{x}, r) = \{\mathbf{y} \in \mathbb{R} : ||\mathbf{x} - \mathbf{y}|| \le r\}$. Prove that $\overline{B}(\mathbf{x}, r)$ is closed.

PROOF To show that $\overline{B}(\mathbf{x}, r)$ is closed, we will show that its complement is open. Let \mathbf{p} be in \mathbb{R}^n such that $\mathbf{p} \notin \overline{B}(\mathbf{x}, r)$. Let $\tilde{r} = \frac{||\mathbf{p} - \mathbf{x}|| - r}{2}$.

Claim: $B(\mathbf{p}, \tilde{r}) \subset (\mathbb{R}^n - \overline{B}(\mathbf{x}, r)).$

To show this, we will prove that $||\mathbf{y} - \mathbf{x}|| > r$. Let $\mathbf{y} \in B(\mathbf{p}, \tilde{r})$. Then by the triangle inequality,

$$||\mathbf{p} - \mathbf{x}|| \le ||\mathbf{p} - \mathbf{y}|| + ||\mathbf{y} - \mathbf{x}||$$

and subtracting $||\mathbf{p} - \mathbf{y}||$, we find that

$$||{\bf p} - {\bf x}|| - ||{\bf p} - {\bf y}|| \le ||{\bf y} - {\bf x}||.$$

Now, $||\mathbf{p} - \mathbf{x}|| = r + 2\tilde{r}$ by definition, and $-\tilde{r} < -||\mathbf{p} - \mathbf{y}||$ as well, so

$$r + \tilde{r} = (r + 2\tilde{r}) - \tilde{r} < ||\mathbf{p} - \mathbf{x}|| - ||\mathbf{p} - \mathbf{y}|| \le ||\mathbf{y} - \mathbf{x}||,$$

Thus $r < ||\mathbf{y} - \mathbf{x}||$ and we are done.

7.

(a) Prove that \mathbb{R}^n is an open set.

PROOF Let $\mathbf{x} \in \mathbb{R}^n$, and let r > 0. Observe that $B(\mathbf{x}, r) \subset \mathbb{R}^n$, so \mathbb{R}^n is open.

(b) Let $\{U_{\alpha}\}_{{\alpha}\in\Gamma}$ be a collection of an arbitrary number of open sets in \mathbb{R}^n . Prove that $\bigcup_{{\alpha}\in\Gamma}U_{\alpha}$ is an open set.

PROOF Let $\mathbf{x} \in \bigcup_{\alpha \in \Gamma} U_{\alpha}$. By definition, $\mathbf{x} \in U_{\beta}$ for some $\beta \in \Gamma$. Since U_{β} is open, there exists some r > 0 such that $B(\mathbf{x}, r) \subset U_{\beta}$. Thus, $B(\mathbf{x}, r) \subset \bigcup_{\alpha \in \Gamma} U_{\alpha}$, so it is open.

(c) Let U_1 and U_2 be open sets in \mathbb{R}^n . Prove that $U_1 \cap U_2$ is an open set.

PROOF Let $\mathbf{x} \in U_1 \cap U_2$. Since U_1 and U_2 are open sets, there exist $r_1, r_2 > 0$ such that $B(\mathbf{x}, r_1) \subset U_1$ and $B(\mathbf{x}, r_2) \subset U_2$. Let $r = \min(r_1, r_2)$. Then, $B(\mathbf{x}, r) \subset B(\mathbf{x}, r_1) \subset U_1$ and $B(\mathbf{x}, r) \subset B(\mathbf{x}, r_2) \subset U_2$; so

$$B(\mathbf{x},r) \subset U_1 \cap U_2$$

and we are done.

- 8. Let $\{C_{\alpha}\}_{{\alpha}\in\Gamma}$ be an arbitrary collection of closed sets in \mathbb{R}^n .
 - (a) Prove that $\bigcap_{\alpha \in \Gamma} C_{\alpha}$ is a closed set.

PROOF To prove that $\bigcap_{\alpha \in \Gamma} C_{\alpha}$ is closed, we will prove that its complement is open; that is, $\bigcup_{\alpha \in \Gamma} C_{\alpha}^{\complement}$ is open. Since each C is closed, then each C^{\complement} is open. Then, by problem 7(b), $\bigcup_{\alpha \in \Gamma} C_{\alpha}^{\complement}$ is also open, and we are done.

(b) Professor Doofus writes that in addition $\bigcup_{\alpha \in \Gamma} C_{\alpha}$ is a closed set. Give an example which shows that Doofus is wrong.

that Doofus is wrong. **Answer:** Let $\{C_n\}_{n=1}^{\infty}$ be the collection of all $C_n = \overline{B}(\mathbf{0}, 1^{-1}/n)$. So since $\sup \{(1 - \frac{1}{n}) : n \in \mathbb{N}\} = 1$, then $\bigcup_{n=1}^{\infty} C_n = B(\mathbf{0}, 1)$. And we already know that open balls are not closed.