The 71st William Lowell Putnam Mathematical Competition Saturday, December 4, 2010

- A-1 Given a positive integer n, what is the largest k such that the numbers 1, 2, ..., n can be put into k boxes so that the sum of the numbers in each box is the same? [When n = 8, the example $\{1, 2, 3, 6\}, \{4, 8\}, \{5, 7\}$ shows that the largest k is at least 3.]
- A–2 Find all differentiable functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f'(x) = \frac{f(x+n) - f(x)}{n}$$

for all real numbers x and all positive integers n.

A–3 Suppose that the function $h : \mathbb{R}^2 \to \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$h(x,y) = a\frac{\partial h}{\partial x}(x,y) + b\frac{\partial h}{\partial y}(x,y)$$

for some constants a,b. Prove that if there is a constant M such that $|h(x,y)| \le M$ for all $(x,y) \in \mathbb{R}^2$, then h is identically zero.

- A–4 Prove that for each positive integer n, the number $10^{10^{10^n}} + 10^{10^n} + 10^n 1$ is not prime.
- A-5 Let G be a group, with operation *. Suppose that
 - (i) G is a subset of \mathbb{R}^3 (but * need not be related to addition of vectors);
 - (ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b} = \mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b} = 0$ (or both), where \times is the usual cross product in \mathbb{R}^3 .

Prove that $\mathbf{a} \times \mathbf{b} = 0$ for all $\mathbf{a}, \mathbf{b} \in G$.

A-6 Let $f:[0,\infty)\to\mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty}f(x)=0$. Prove that $\int_0^\infty \frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges.

B-1 Is there an infinite sequence of real numbers a_1, a_2, a_3, \dots such that

$$a_1^m + a_2^m + a_3^m + \dots = m$$

for every positive integer *m*?

- B–2 Given that *A*, *B*, and *C* are noncollinear points in the plane with integer coordinates such that the distances *AB*, *AC*, and *BC* are integers, what is the smallest possible value of *AB*?
- B–3 There are 2010 boxes labeled $B_1, B_2, \dots, B_{2010}$, and 2010n balls have been distributed among them, for some positive integer n. You may redistribute the balls by a sequence of moves, each of which consists of choosing an i and moving *exactly* i balls from box B_i into any one other box. For which values of n is it possible to reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?
- B–4 Find all pairs of polynomials p(x) and q(x) with real coefficients for which

$$p(x)q(x+1) - p(x+1)q(x) = 1.$$

- B–5 Is there a strictly increasing function $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) = f(f(x)) for all x?
- B–6 Let A be an $n \times n$ matrix of real numbers for some $n \ge 1$. For each positive integer k, let $A^{[k]}$ be the matrix obtained by raising each entry to the k^{th} power. Show that if $A^k = A^{[k]}$ for $k = 1, 2, \dots, n+1$, then $A^k = A^{[k]}$ for all k > 1.