Type	Author	History Citation	Literature Cutoff Date
Full Evaluation	M. J. Martin	NDS 122, 377 (2014)	1-Sep-2014

 $Q(\beta^{-})=-3061 \text{ SY}; S(n)=6935 \text{ 16}; S(p)=5540 \text{ 8}; Q(\alpha)=6361 \text{ 5}$ 2012Wa38 $Q(\beta^{-})$: The systematics uncertainty is 53.

²⁴⁸Cf Levels

Cross Reference (XREF) Flags

- ²⁴⁹Cf(d,t) A
- В
- 252 Fm α decay 248 Bk β ⁻ decay (23.7 h) Cf(18 O,xn γ) C

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0#	0+	333.5 d 28	ABCD	%α=99.9971 3; %SF=0.0029 3
				$T_{1/2}$,%SF: 1973Hu01 report $T_{1/2}$ =333.5 d 28 and α /SF=3.5×10 ⁴ 3. These data give $T_{1/2}$ (SF)=3.2×10 ⁴ y 3 (recommended by 2000Ho27). Other $T_{1/2}$ (SF): 4.1×10 ⁴ y 4 (1968Sk01). $T_{1/2}$: from 1973Hu01.
41.53 [#] 6	2+		ABCD	J^{π} : HF=3.8 from 0 ⁺ (252 Fm α decay).
137.81# 9	- 4 ⁺		AB D	VVIII DIO IIOIII O (I III di debbay).
287.4 [#] 1	6 ⁺		AB D	
488.0# 2	8+		AD D	
592.2 [@] 2	$(2)^{-}$		C	J^{π} : E1 γ to 2 ⁺ . log f_t =6.85 from 1 ⁽⁻⁾ . No feeding to 0 ⁺ or 4 ⁺ .
630 [@] 1	3-		A	3 . L1 y to 2 . log j1-0.03 from 1 . 140 feeding to 0 01 4 .
677 [@] 1	<i>4</i> -		A	
735 [@] 1	5-		A	
737.3 [#] 5	10 ⁺		D D	
779 2	10		A D	
806 [@] 1	6-		A	
885 [@] 1	7-		A	
979 [@] 2	8-		A	
1021 2			A	
1048 2			A	
1079 2			A	
1112 2 1179 2			A	
1261 & 2	8-		A	
1293 2	0		A A	
1319 2			A	
1351 <mark>&</mark> 2	9-		Α	
1391 2			A	
1432 2			Α	
$1463^{a} 1$	5-		A	
1477^{b}_{b} 2	2-		A	
1509 ^b 1	3-		A	
$1530^{a} 1$	6-		A	
1557 ^b 1	4-		A	

²⁴⁸Cf Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF									
1577 ^c 1	7-	A	1839 ^a 3	(9-)	A	2161 <mark>8</mark> 2	(5^{-})	A	2512 ^k 1	3 ⁺	A
1605 ^a 1	7-	A	1852 ^d 1	7-	A	2184 ^h 2	6-	A	2533 1		A
1621 ^b 1	5-	A	1927 <mark>e</mark> 1	5+	A	2207^{f} 1	6+	A	2557 ^k 1	4+	A
1640 ^d 1	4-	A	1946 ^d 3	8-	A	2241 ⁱ 1	7+	A	2580 <i>1</i>		A
1663 ^c 1	8-	Α	1968 <i>1</i>		A	2262 ^h 1	(7^{-})	Α	2602 ^l 1	6+	A
1686 <mark>b</mark> 3	6-	A	1992 e 1	6+	Α	2281 ^j 2	2+	A	2634 ^k 2	(5^{+})	A
1698 <mark>d</mark> 2	5-	A	2018 <i>3</i>		Α	2314 ^j 2	3+	A	2682 ¹ 2	(7^{+})	A
1731 <mark>a</mark> 2	8-	A	2072 ^f 1	4+	Α	2368 ^j 2	(4^{+})	A			
1766 ^d 2	6-	A	2105 ⁸ 1	(4^{-})	A	2463 2		A			
1781 ^c 3	9-	A	$2131^{f} I$	5+	Α	2492 2		A			

[†] Except where noted otherwise, the energies are from (d,t).

γ (248Cf)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	\mathbb{E}_f	J_f^{π}	Mult.	$lpha^\dagger$	Comments
41.53	2+	41.53 6	0	0+	[E2]	1461 23	E_{γ} : from α decay.
137.81	4+	96.28 <i>6</i>	41.53	2+	[E2]	26.5 <i>4</i>	E_{γ} : from α decay.
287.4	6+	149.6 <i>1</i>	137.81	4+	[E2]	3.70 6	E_{γ} : from ($^{18}O,xn\gamma$).
488.0	8+	200.6 1	287.4	6+	[E2]	1.129 16	E_{γ} : from (¹⁸ O,xn γ).
592.2	$(2)^{-}$	550.7 <i>1</i>	41.53	2+	E1	0.0136 2	E_{γ} , Mult.: from β^{-} decay.
737.3	10^{+}	249.3 5	488.0	8+	[E2]	0.507 8	E_{γ} : from (¹⁸ O,xn γ).

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{^{\}ddagger}$ Except where noted otherwise, the J^{π} assignments are from (d,t) based on band assignments which In turn are based on a comparison of experimental and calculated cross sections At 90, 120, and 135 degrees.

[#] $K^{\pi}=0^{+}$ g.s. band.

[©] K^{π}=0 g.s. band. © K^{π}=2 9/2 [734],5/2 [622] \otimes PHONON. & K^{π}=8 9/2 [734],7/2 [624]. a K^{π}=5 9/2 [734],1/2 [631]. b K^{π}=2 9/2 [734],5/2 [622] \otimes PHONON.

 $^{^{}c}$ K^{π}=7⁻ 9/2⁻[734],5/2⁺[622].

^d $K^{\pi} = 4^{-} 9/2^{-} [734], 1/2^{+} [631].$

 $^{^{}e}$ K^{π}=5⁺ 9/2⁻[734],1/2⁻[501].

 $f K^{\pi} = 4^{+} 9/2^{-}[734], 1/2^{-}[501].$

 $^{{}^{}k}$ K^{π}=3⁺ 9/2⁻[734],3/2⁻[501]. l K^{π}=6⁺ 9/2⁻[734],3/2⁻[501].

Level Scheme

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Y. Akovali	NDS 94,131 (2001)	1-Aug-2001

 $Q(\beta^{-}) = -2.06 \times 10^{3} \text{ syst}; S(n) = 6625.3 17; S(p) = 5967.6 22; Q(\alpha) = 6128.44 19$ 2012Wa38

Note: Current evaluation has used the following Q record -2100 syst 6624.6 23 5966.2 27 6128.4419 1995Au04.

Theoretical studies:

1998Co23 calculated level energies of $K=2^+$ γ -band, $K=0^-$, $K=1^-$ and $K=2^-$ octupole-vibrational band; and B(E3; 0^+ to 3^-) strengths. The interacting boson approximation was utilized. See also 1990Co26 for analysis of level structure and octupole state fragmentation dependence on $\beta(2)$ deformation.

See 1992So22 for the calculated B(E3) octupole strengths and energies of K, J^{π} =0,3⁻ and 1,3⁻ states.

Energies, B(EL) values and structures were calculated by 1991So15 for low-energy nonrotational states in the framework of a quasiparticle-phonon model. See also earlier calculations in 1976Iv04 and 1973Iv01, 1971Ko31, 1970Ne08, 1969Pa08, 1965So04.

Ground-state deformations were calculated by 1995Mo29 based on the finite-range droplet macroscopic model and the folded YUKAWA single-particle microscopic model. Their calculations yielded $\beta(2)=0.245$, $\beta(4)=0.026$, $\beta(6)=-0.038$.

The equilibrium deformations and the static electric moment were calculated by 1983Bo15 with use of dynamic model.

The quadrupole moment for various proton and neutron states were calculated by 1992Bh04 by using WOODS-Saxon and Nilsson models. The fermion dynamical symmetry and pseudo su(3) models were used also to calculate the B(E2; 0⁺ to 2⁺) values, and comparisons were made.

The static electric quadrupole and hexadecapole moments were calculated by 1978Ne13 by using Strunsky shell-correction method. Properties of the γ -vibrational state was studied and B(E2) value was calculated by 1965Be40.

Systematics of E(first 2^+ levels) and B(E2; 0^+ to 2^+) were studied by 1993Sa05 as a function of N(n)N(p), products of valence proton and neutron numbers.

From a correlation plot of known B(E2; 2^+ to 0^+)'s with N(n)N(p), the products of valence proton and neutron numbers, 1995Za10 deduced a range for the hexadecapole deformation for 250 Cf as $\beta(4) \approx -0.05$ to -0.10.

The average neutron and proton pairing gaps were calculated by 1988Ma04.

The energies of the ground-state band were calculated by 1988Ri07 by using the interacting boson model, and by 1978To13 by using the collective HAMILTONIAN with β -vibration plus rotation.

For calculation of partial α half-life, see, for example, 1997Mo25, 1979Po23, 1976Ra02.

Potential energy surface and shape of the fissioning nucleus were calculated by 1996Py02. Analysis were made by considering heavy-ion clustering. See 1976Iw02, 1971Sc03 also for calculations of potential energy surface for fission.

For calculations and systematics of T_{1/2}(SF), see, 1992Bh03, 1989St20, 1988Io03, 1978Po09.

For calculated fission barriers, see 1992Bh03, 1987Gu03, 1984Ku05, 1980Ku14, 1977Pr10, 1973Ba19, 1972Ma11.

Average total kinetic energy of fission fragments was calculated by 1995Ef04.

Yield for 40 S in spontaneous fission relative to yield for α decay was calculated by 1993Gr15.

Partial half-life for decay by pion emission was calculated by 1988Io02.

Emission probabilities for decay by heavy-ion were calculated by 1980Sa36.

²⁵⁰Cf Levels

Cross Reference (XREF) Flags

Α	254 Fm α decay	E	250 Cf(d,d')
В	250 Bk β^- decay	F	$^{249}Cf(d,p)$
C	²⁵⁰ Es ε decay (2.22 h)	G	249 Bk(α ,t)
D	²⁵⁰ Es ε decay (8.6 h)		

E(level) J^{π} $T_{1/2}$ XREF 0.0^{\dagger} 0^{+} 13.08 y 9 ABCDE G Comments

 $\%\alpha$ =99.923 3; %SF=0.077 3 $T_{1/2}$: measurement of 1969Me01. Other measurement: 10.9 y 8 (1957Ea01). Branchings are from unweighted average of the measured α /SF=1330 45 (1963Ph01), 1260 40 (1965Me02).

Continued on next page (footnotes at end of table)

250Cf Levels (continued)

E(level)	J^π	$T_{1/2}$	XREF	Comments
				Cross sections for α , t, and p emission following fission were measured by 1985Wi10.
				Cross sections of fission fragments in ²³⁸ U(¹² C,F) were measured and effective moment of inertia at saddle point was deduced by 1990Li26. The angular distribution of fission fragments in ²³⁸ U(¹² C,F) were measured by 1986Ka12 and 1985Ja14. Neutron multiplicity was measured by 1980Ho01 from fragment-neutron coincidences. Average number of neutron emitted in SF decay was measured by 1971Or03. Fission-fragment kinetic energy distribution was measured by 1973Ho02.
42.721 5	2+	96 ps 10	ABCDE G	$T_{1/2}$: calculated from B(E2)=16.0 <i>16</i> , deduced in (d,d').
141.875 [†] <i>10</i>	4+		ABCDE G	
296.22 [†] 6	6+		A DE G	
≈500 [†]	8+		G	J^{π} : energy fit to g.s. band.
871.57 [‡] <i>3</i>	2-		BCD G	J^{π} : E1 transition to 2^{+} of g.s. band, no gammas to the 0^{+} or 4^{+} .
905.89‡ 2	3-		B DE G	B(E3) \uparrow =20.2 20 J ^{π} : E1 transitions to 2 ⁺ , 4 ⁺ levels.
951.98 [‡] 2	4-		B D G	J^{π} : M1+E2 and E2 to 3 ⁻ and 2 ⁻ members of the K=2 ⁻ band, respectively; E1 transition to 4 ⁺ state.
1008.51‡ 2	5-		DE G	J^{π} : M1+E2 and E2 transitions to 4 ⁻ and 3 ⁻ members of the band, respectively.
1031.852 [#] 2 <i>I</i>	2+	0.94 ps <i>10</i>	BC E	J^{π} : E2 transition to 0^+ g.s. $T_{1/2}$: calculated from B(E2)=0.11 I , deduced in (d,d'), and adopted γ branchings from the level.
≈1070 [‡]	(6^{-})		G	J^{π} : energy fit to the 2 ⁻ octupole-vibrational band.
1071.37 [#] 2	3 ⁺		BCD	J^{π} : M1 transition from 2 ⁺ state at 1658 keV; γ to 4 ⁻ .
1123 [#] <i>1</i>	(4^{+})		E	J^{π} : from (d,d') data.
1154.24 [@] 10	0^{+}		ВС	J^{π} : E0 transition to 0^+ g.s.
1175.52 <mark>&</mark> 3	1-		BC E	J^{π} : E1 to 0^+ g.s.
1189.39 [@] <i>3</i>	2+		BC	J^{π} : E0+E2 transition to 2 ⁺ .
1209.97 ^a 4	(2)-		BC F	J^{π} : E1 to 2 ⁺ ; no 1210 γ to g.s.; ε decay from 1 ⁽⁻⁾ 2 ⁵⁰ Es suggests J^{π} Ne 3 ⁻ . Almost pure 2 ⁻ ,(n 9/2[734]-n 5/2[622]) configuration was suggested in 1980Ah01. The ε decay transition from the 1 ⁻ ,(n 7/2[633]-n 9/2[734])
				250 Es parent could Be via the p 7/2[633] to p 5/2[622] transition. The n 5/2[622] state is a hole state, close to the 9/2[734] state; some admixture of 1 ⁻ ,(n 9/2[734]-n 5/2[622]) configuration in 2.22-h 250 Es can explain this ε transition.
				The decay from the 2^- ,(p $3/2[521]+n$ $1/2[620]$) 250 Bk g.s., however, is not consistent with a β transition to an almost pure 2^- ,(n $9/2[734]-n$ $5/2[622]$) state; this β branch requires configuration admixture in 250 Bk g.s. or in
				this 1209.97-keV level, or both. The log ft of 9.30 for this 2^- to $2^-\beta$ transition and population of the same level in $1^{(-)}$ ²⁵⁰ Es ε decay with a log ft of 7.36 would only Be consistent with some admixture. Therefore, its structure should Be quite mixed, not almost pure two-neutron state as
				proposed. If the 1209.97 level is indeed a mixed state, the level at 1210 keV, seen in (α,t) reaction (which populates two proton states), could also Be the same level. Because of insufficient data, the level populated in (α,t) is listed here with the level seen in (d,d') at 1211 keV.
1211 ^{&} <i>I</i>	(3-)		B E G	B(E3)↑=19.3 <i>19</i> J^{π} : from (d,d'); large B(E3) suggests octupole vibration.

²⁵⁰Cf Levels (continued)

E(level)	J^{π}	XREF	Comments
			The level observed in (α,t) is assumed to populate a two-proton component of this collective state.
			Population of this level in 250 Bk β^- decay is not established.
≈1218.2?	2+	В	TT
1244.50 8 1247 ^a 2	2 ⁺ (3 ⁻)	BC E	J^{π} : γ transitions to 0^+ , 2^+ , 4^+ states. J^{π} : from (d,d') data, 1980Ah01 suggested that this level is the 3 ⁻ member of a K=2 band, based at 1209.97 keV level.
1255.39 ^b 4	4-	D FG	J^{π} : M1+E2 transitions to 3 ⁻ , 5 ⁻ states.
1266.6 ^c 2 1272 2	0+	BC E	J^{π} : E0 to g.s. Configuration of (n 7/2[624],n 7/2[613]) was assigned by 1979Ah02.
1296.60 ^c 4	2+	BC E	J^{π} : 1253.84 γ to 2 ⁺ is E0+E2.
1311.00 ^b 4	5-	D F	J^{π} : 55.6 γ to 4 ⁻ state is M1+E2; band parameter; (d,p) data.
1313 ^{&} 2 1335 2	(5 ⁻) (3 ⁻)	E E	B(E3) \uparrow =4.6 5 J ^{π} : K,J ^{π} =0,3 $^-$ was tentatively assigned by 1980Ah01 from their (d,d') work.
1377.76 ^b 4 1385.50 <i>10</i>	6 ⁻ 1,2 ⁺	D FG B	J^{π} : M1(+E2) transition to the 5 ⁻ member of the 4 ⁻ band; energy fit to band; (d,p) data. J^{π} : γ' s to 0 ⁺ , 2 ⁺ states.
1396.09 ^d 7 1411.33 6	$(5)^{-}$	D FG B	J^{π} : M1 transitions to the 4 ⁻ , 5 ⁻ levels; (α ,t) and (d,p) reactions. J^{π} : 1368.62 γ to 2 ⁺ state; 1411.6 γ probably goes to 0 ⁺ g.s.
1411.33 0 1426.86 ^g 12	$(1,2^+)$ (3^-)	ВЕ	B(E3) \uparrow =13.3 13 J ^{π} : from (d,d'). Large B(E3) suggests octupole vibration.
1457.76 ^d 4 1478.37 ^e 4	(6) ⁻ (5) ⁻	D FG D FG	J^{π} : 146.9 and 80.00 M1 transitions to the 5 ⁻ and (6) ⁻ states of 4 ⁻ band; band parameter. J^{π} : M1 transitions to 4 ⁻ , (5) ⁻ states; (d,p), (α ,t) data.
1499.53 ^f 4	(6)-	D F	J^{π} : M1 transitions to (5) ⁻ , (6) ⁻ states; (d,p) data.
≈1530 ^d	(7^{-})	FG	J^{π} : (d,p) and (α ,t) data.
1541 ⁸ 2	(5^{-})	E	
≈1550 ^e	(6-)	FG	J^{π} : (d,p) data.
1570 2		E	
≈1575 ^f	(7^{-})	F	J^{π} : (d,p) data.
≈1600 1626 3	(6-)	F E	K=6, two-neutron state was assigned by 1976Ya02.
1658.00 ^h 4	2+	BC	J^{π} : E2 to g.s. From the absence of any 0^{+} and 1^{+} levels in the vicinity of this level, 1980Ah03 suggested K=2 for this state.
1695.15 ^h 10	(3+)	В	J^{π} : γ' s to 2^+ , 4^+ ; β feeding from 2^{-250} Bk. The tentative assignment of this level to K=2 rotational band is based on its energy difference with the 1658-keV level.
1735 2		E	
1915 <i>3</i> 2015 <i>3</i>		E E	

[†] Band(A): $K=0^+$ g.s. band. Spin and parities of band members are based on multipolarities of intraband transitions, α hindrance factors, and on energy fit to the rotational band.

[‡] Band(B): K=2⁻ octupole-vibrational band. Assignment of levels to this band was based on the multipolarities of intraband transitions, and on level spacings. The large (d,d') cross section in population of the 3⁻ member suggests octupole-vibrational state. The band was populated in (α ,t) reaction through its two-proton component, (p 3/2[521],p 7/2[633]), and it was not seen in (d,p).

[#] Band(C): $K=2^+ \gamma$ -vibrational band.

[®] Band(D): K=0⁺ band 1980Ah01 pointed out that similar energies of the first 0⁺ states in ²⁴⁸Cm (at 1084 keV) and in ²⁵⁰Cf (1154 keV) may suggest predominantly neutron configurations for them, and that neutron pair vibration character was deduced by 1977Fl06 for the 1084-keV level in ²⁴⁸Cm from (t,p) reaction.

[&]amp; Band(E): K=1⁻ octupole-vibrational band. 1980Ah01 suggested that the major components of this band are probably the (n

²⁵⁰Cf Levels (continued)

9/2[734], n 7/2[613]) and (n 9/2[734], n 7/2[624]) configurations, and that the Coriolis interaction with the $K=2^-$ band at 1209.97 would take place through the n 7/2[613] state of this band and the n 5/2[622] state of the $K=2^-$ band. See 1980Ah01 for further discussions.

- ^a Band(F): K=2-? band.
- ^b Band(G): K=4⁻ band. The two-neutron structure,4⁻, (n 9/2[734],n 1/2[620]), was proposed by 1976Ya02 from (d,p) data. See 1976Ya02 for a discussion on Coriolis interaction with the K=5⁻ bands.
- ^c Band(H): K=0⁺ band.
- ^d Band(I): K=5⁻ band. (p 3/2[521],p 7/2[633]) + (n 9/2[734],n 1/2[620]) structure was deduced by 1976Ya02 from observation of this band in (d,p) reaction. This admixture explain also the strong γ transitions to the K=4⁻ (n 9/2[734],n 1/2[620]) band and gammas from the K=5⁻ (n 9/2[734],n 1/2[620]) band.
- ^e Band(J): $K=5^-$ (n 9/2[734],n 1/2[620]) band. See also the note for $K=5^-$ (p 3/2[521],p 7/2[633]) band.
- ^f Band(K): K=6⁻ (n 9/2[734],n 3/2[622]) band.
- ^g Band(L): K=3?
- ^h Band(M): K=2⁺ band?

γ (250Cf)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${ m I}_{\gamma}^{\ddagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	δ	α#	Comments
42.721	2+	42.721 5		$0.0 0^{+}$	E2		1293	$B(E2)(W.u.)=3.4\times10^2 4$
141.875	4+	99.160 <i>10</i>		$42.721 \ 2^{+}$	E2		23.8	
296.22	6+	154.35 6		141.875 4 ⁺	E2		3.33	
871.57	2^{-}	828.81 <i>3</i>		$42.721 \ 2^{+}$	E1		0.00657	
905.89	3-	34.325 5	1.3 2	871.57 2-	M1+E2	0.42 5	$7.4 \times 10^2 \ 11$	
		764.2 <i>1</i>	78 <i>4</i>	141.875 4 ⁺	E1		0.00758	
		863.2 <i>1</i>	100 6	42.721 2+	E1		0.00613	
951.98	4-	46.093 5	2.1 3	905.89 3-	M1+E2	0.40 2	200 10	
		80.412 10	3.2 4	871.57 2-	E2		63.3	
		810.2 <i>I</i>	100 6	141.875 4 ⁺	E1		0.00684	
1008.51	5-	56.527 13	6.7 8	951.98 4	M1+E2	0.37 + 20 - 10	80 40	
		102.623 10	15.7 23	905.89 3-	E2		20.28	
		712.3 <i>1</i>	100 7	$296.22 6^+$	[E1]		0.00859	
		866.7 <i>1</i>	97 8	141.875 4 ⁺	[E1]		0.00608	
1031.852	2+	126.01 <i>3</i>	0.0140 12	905.89 3-	[E1]		0.0834	$B(E1)(W.u.)=6.8\times10^{-6} 10$
		160.26 4	0.063 4	871.57 2	[E1]		0.1859	$B(E1)(W.u.)=1.50\times10^{-5}$ 19
		889.956 22	3.40 5	141.875 4 ⁺	[E2]		0.01961	B(E2)(W.u.)=0.211 23
		989.125 <i>21</i>	100	42.721 2+	E2		0.01603	B(E2)(W.u.)=3.7 4
		1031.852 <i>21</i>	79.1 <i>12</i>	$0.0 0^{+}$	E2		0.01480	B(E2)(W.u.)=2.3 3
1071.37	3+	119.4 <i>3</i>	0.014 5	951.98 4-	[E1]		0.0956	
		165.44 <i>15</i>	0.028 4	905.89 3-	[E1]		0.1726	
		199.72 20	0.022 3	871.57 2-	[E1]		0.1127	
		929.468 22	25.1 4	141.875 4 ⁺	[E2]		0.0180	
		1028.654 25	100 3	$42.721 \ 2^{+}$	(E2)		0.0148 9	
1154.24	0_{+}	1111.50 <i>10</i>	100	$42.721 \ 2^{+}$	[E2]		0.0129	
		1154.3 2		$0.0 0^{+}$	E0			$I_{(\gamma+ce)}$: $I_{\gamma}(1111.5\gamma)/total$ Ice(1154.3 transition)=2.5 5.
1175.52	1-	303.95 20	11.9 <i>14</i>	871.57 2	[M1,E2]		1.0 8	•
		1132.80 <i>3</i>	100 6	$42.721 \ 2^{+}$	[E1]		0.00385	
		1175.5 2	200 20	$0.0 0^{+}$	E1		0.00362	
1189.39	2+	1047.51 6	18.0 <i>13</i>	141.875 4 ⁺	[E2]		0.0144	
		1146.67 <i>3</i>	100 5	$42.721 \ 2^{+}$	E0+E2		0.10 3	
1209.97	(2)-	1167.25 [@] 4		42.721 2+	E1		0.00366	If the 1209.97 level belongs to K=2 band, the 1167.25γ is a K-forbidden transition.
1211	(3^{-})	1068.27 ^{&} 17		141.875 4+				Existence of this transition is not certain.
	` ′	1167.25 [@] & 4		42.721 2+				
1210 22		≈1175.5 ^{&}		42.721 2+				
≈1218.2? 1244.50	2+	≈11/5.5 ⁴⁴ 1103.0 <i>3</i>	7.2 24	42.721 2* 141.875 4*	[E2]		0.01306	
1244.30	۷.	1103.0 3 1201.79 <i>4</i>	1.2 24	42.721 2 ⁺	[E2] [M1,E2]		0.01306	
		1201./9 4	100 0	42.721 2	[IVII,E2]		0.02/ 10	

S

γ (250Cf) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult. [†]	δ	α#	$\mathrm{I}_{(\gamma+ce)}$	Comments
1255.39	4-	184.2 2 246.92 6 303.41 3 349.4 I 383.7 I	2.1 <i>4</i> 17.0 <i>9</i> 100 <i>5</i> 91 <i>5</i> 63 <i>4</i>	1071.37 3 ⁺ 1008.51 5 ⁻ 951.98 4 ⁻ 905.89 3 ⁻ 871.57 2 ⁻	[E1] M1+E2 M1+E2 E2+M1 E2	1.00 <i>6</i> 0.92 <i>7</i> 4.6 <i>5</i>	0.1352 1.86 9 1.09 10 0.223 12 0.135		
1266.6	0+	1223.8 2 1266.6 2		42.721 2 ⁺ 0.0 0 ⁺	[E2] E0		0.0108	101 10	Total Ice(1266.6 transition)/I γ (1223.8 γ)=188 <i>10</i> /100 <i>10</i> .
1296.60	2+	1154.77 <i>3</i> 1253.82 <i>7</i> 1296.54 <i>13</i>	100 <i>5</i> 23.3 <i>19</i> 9.4 <i>13</i>	141.875 4 ⁺ 42.721 2 ⁺ 0.0 0 ⁺	[E2] E0+E2 [E2]		0.0120 0.00969	177 43	10/100 10.
1311.00	5-	55.602 5		1255.39 4	M1+E2	0.59 5	133 9		
1377.76 1385.50	6 ⁻ 1,2 ⁺	66.759 <i>10</i> 1342.87 <i>8</i> 1385.42 <i>6</i>	93 <i>7</i> 100 <i>7</i>	1311.00 5 ⁻ 42.721 2 ⁺ 0.0 0 ⁺	M1(+E2)	≤0.5	37 7		
1396.09	(5)-	85.086 <i>7</i> 140.694 <i>10</i>	22.8 <i>20</i> 100 <i>7</i>	1311.00 5 ⁻ 1255.39 4 ⁻	M1(+E2) M1(+E2)	≤0.27 <0.1	15.4 <i>16</i> 15.6		
1411.33	$(1,2^+)$	1368.61 <i>6</i>	100 8	$42.721 \ 2^{+}$	WII(L/2)	V0.1	13.0		
1.426.06	(2=)	1411.6 ^{&} 4 555.22 ^{&} 10	19 5	$0.0 0^{+}$					
1426.86 1457.76	(3 ⁻) (6) ⁻	61.667 5 80.00 3 146.9 I	100 9 13 4 26 8	871.57 2 ⁻ 1396.09 (5) ⁻ 1377.76 6 ⁻ 1311.00 5 ⁻	M1+E2 M1(+E2) M1(+E2)	0.20 <i>3</i> < 0.3 < 0.6	45.1 <i>16</i> 18.7 <i>11</i> 13.0 <i>18</i>		
1478.37	(5)	82.282 <i>6</i> 222.993 <i>20</i>	100 8 71 5	1396.09 (5) ⁻ 1255.39 4 ⁻	M1(+E2) M1+E2	<0.06 0.42 7	16.33 <i>11</i> 3.71 <i>15</i>		
1499.53	(6)-	41.775 <i>5</i> 103.440 <i>10</i>	41 <i>4</i> 100 <i>9</i>	1457.76 (6) ⁻ 1396.09 (5) ⁻	M1(+E2) M1(+E2)	0.14 +7-14 0.25 +15-10	144 <i>30</i> 9.1 <i>9</i>		
1658.00	2+	586.43 7 626.11 4 786.26 14 1516.22 7 1615.29 4 1658.00 4	14 2 54 6 11 2 2.6 2 100 5 59 3	1071.37 3 ⁺ 1031.852 2 ⁺ 871.57 2 ⁻ 141.875 4 ⁺ 42.721 2 ⁺ 0.0 0 ⁺	M1(+E2) M1(+E2) [E1] [E2] E2 E2	3.23 112 10	0.24 <i>I</i> 0.24 <i>I</i> 0.00721 0.00727 0.00498		
1695.15	(3 ⁺)	1553.37 <i>18</i> 1652.40 <i>10</i>	55 <i>14</i> 100 <i>9</i>	141.875 4 ⁺ 42.721 2 ⁺					

6

[†] From 250 Bk β^- decay and 8.6-h, 2.22-h 250 Es ε decays. ‡ Relative intensities deexciting each level, adopted from 250 Bk β^- and 250 Es ε decays. ‡ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned

Legend

Level Scheme

Intensities: Relative photon branching from each level

0.94 ps *10*

13.08 y 9 96 ps 10

 ∞

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Band(D): K=0⁺ band 1980Ah01 pointed out that similar energies of the first 0^+ states in 248 Cm (at 1084 keV) and in ²⁵⁰Cf (1154 keV) may suggest predominantly neutron configurations for them, and that neutron pair vibration character was deduced by 1977Fl06 for the 1084-keV level in ²⁴⁸Cm from (t,p) reaction

Band(E): K=1 octupole-vibrational band

 (5^{-}) 1313

1175.52

 (3^{-})

Band(F): K=2-? band

 (3^{-}) 1247

1211 **(2)**⁻ 1209.97

Band(C): $K=2^+$ γ -vibrational band

1123

1071.37 1031.852

 (4^{+})

 3^+

Band(B): K=2-

34

 ${\approx}1070$

1008.51

951.98

905.89

871.57

1189.39 1154.24

Band(K): K=6⁻ (n 9/2[734],n 3/2[622]) band

<u>(7⁻)</u> ≈1575

Band(J): K=5⁻ (n 9/2[734],n 1/2[620]) band

Band(L): K=3?

(6⁻) ≈1550

(5⁻) 1541

 (3^{-})

1426.86

Band(I): $K=5^-$ band (7⁻) ≈ 1530

(6)- 1499.53

Band(G): $K=4^-$ band

$$^{250}_{98}\mathrm{Cf}_{152}$$

 $Band(M)\text{: }K\text{=}2^{+}\text{ band?}$

(3+) 1695.15

2+ 1658.00

 $^{250}_{98}\mathrm{Cf}_{152}$

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. M. Mattera, S. Zhu, A. B. Hayes, E. A. Mccutchan	NDS 172, 543 (2021)	1-Jan-2021

 $Q(\beta^-)=-1.26\times 10^3\ 5;\ S(n)=6172\ 4;\ S(p)=6482\ 11;\ Q(\alpha)=6216.95\ 4$ $S(2n)=11278.4\ 27;\ S(2p)=11533\ 10\ (2017Wa10).$ 2017Wa10

 α : Additional information 1.

²⁵²Cf Levels

Cross Reference (XREF) Flags

- 256 Fm α decay 252 Es ε decay Coulomb excitation $Cf(^{18}O, X\gamma)$

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments		
0.0‡	0+	2.647 y 3	ABCD	$%\alpha$ =96.898 3; %SF=3.102 3 $T_{1/2}$: 2.647 y 3 adopted from 1994KhZW on the analysis of the following measured half-lives: 2.646 y 4 (1965Me02), 2.621 y 6 (1969De23), 2.659 y 10 (1973Mi05), 2.638 y 7 (1974Sp02), 2.637 y 5 (1976Mo30), 2.640 y 7 (1982La25), 2.651 y 4 (1984SmZV), 2.648 y 2 (W.G. Alberts and M. Matzke, PTB Mitteilungen 93, 315 (1983)), and 2.6503 y 31 (1985Ax02). This analysis took into account the duration and the number of measurements in each experiment by comparing them with a formulated ideal experiment. Other measured half-lives: 2.55 y 15 (1957Ea01); 2.628 y 10 (1974Sh15); 2.653 y 1 (quoted in 1992Ra08 as private communication J.R. Smith). Other evaluated half-lives: 2.645 y 8 (1986LoZT: an average of 2.638 y and 2.651 y with a quoted error sufficiently large to cover the range of uncertainty); 2.648 y 2 (1992Ra08: Rajeval method); 2.650 y 2 (1994Ka08: Modified Bayesian Method). %α and %SF from weighted average of deduced %SF values from α/SF=31.56 35 (1993Pa29), 31.5 3 (1970Al23), 31.3 5 (1970Al23), 31.3 2 (1965Me02), 31 1 (1954Ma98) and measured %SF value of 3.1028 27 (2018Be29). Other α/SF measurements: $T_{1/2}$ (SF)=66 y 10 (1957Ea01), α/SF=36.4 (1961Se18).		
45.72 [‡] 5	2+	92 ps 6	ABCD	B(E2) \uparrow =16.7 11 (1971Fo17) T _{1/2} : calculated from B(E2) \uparrow =16.7 e ² b ² 11 in Coulomb excitation with $\alpha(45.72\gamma)$ =917. J ^{π} : E2 γ to 0 ⁺ ; populated from 0 ⁺ by Coulomb excitation.		
151.73 [‡] 6	4+		B D	J^{π} : E2 γ to 0°; populated from 0° by Coulomb excitation.		
316.23 [‡] <i>12</i>	6 ⁺		Б D	J^{π} : E2 γ to 4 ⁺ .		
$536.6^{\ddagger} 3$	8 ⁺		D	J^{π} : E2 γ to 6 ⁺ .		
804.82 [#] 7	(2^+)		В	J^{π} : γ s to 0 ⁺ and 2 ⁺ , no γ to 4 ⁺ ; analogous to the K=2, 2 ⁺ band head of K ^{π} =2 ⁺ band observed in ²⁵⁰ Cf and ²⁵⁴ Fm.		
809.2 [‡] 6	10 ⁺		D	J^{π} : E2 γ to 8^+ .		
830.81 [@] 7	(2-)		В	J^{π} : no γ s to 0^+ or 4^+ ; 785.1 γ to 2^+ , analogous to the K=2,2 $^-$ band head of K $^{\pi}$ =2 $^-$ band observed in 250 Cf, and consistent with its properties.		
845.72 [#] 9	(3^{+})		В	J^{π} : γ s to 2^+ and 4^+ , no γ to 0^+ ; member of $K^{\pi}=2^+$ band.		
867.52 [@] 7	(3-)		В	J^{π} : γ s to 4 ⁺ and 2 ⁺ , no γ to 0 ⁺ ; member of $K^{\pi}=2^{-}$ band.		
900.33 [#] 25	(4 ⁺)		В	J^{π} : γ s to 4 ⁺ and 2 ⁺ , no γ to 0 ⁺ ; member of $K^{\pi}=2^+$ band.		
917.03 [@] 12 969.83 6	(4 ⁻) (3 ⁺)		B B	J^{π} : γ to 4 ⁺ , no γ s to 2 ⁺ , 0 ⁺ ; member of $K^{\pi}=2^-$ band. J^{π} : E1 γ to (2 ⁻); M1 γ to (2 ⁺); γ s to 2 ⁺ and 4 ⁺ ; and no γ to 0 ⁺ . the two-quasiparticle configuration of ν 1/2[620] + ν 7/2[613] was proposed by 1973Fi06. This assignment is consistent with its population in ²⁵² Es ε decay.		

Continued on next page (footnotes at end of table)

²⁵²Cf Levels (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \mathrm{J}_f^\pi$	Mult.	α	Comments
45.72	2+	45.72 5	100	0.0 0+	E2	9.2×10 ² 5	$\alpha(L)=661\ 34;\ \alpha(M)=188\ 10;\ \alpha(N)=52.9\ 27;$ $\alpha(O)=13.1\ 7;\ \alpha(P)=2.05\ 10;\ \alpha(Q)=0.00469\ 21$ B(E2)(W.u.)=349\ 24 E _{\gamma} : other: 44.0 keV 5 in Coulomb Excitation. Mult.: from $\alpha(M)\exp=240,\ \alpha(N+O+)=70$ with uncertainties better than 15% in 252 Es ε decay.
151.73	4+	106.02 5	100	45.72 2+	E2	16.97 25	$\alpha(L)=12.22 \ 18; \ \alpha(M)=3.49 \ 5; \ \alpha(N)=0.981 \ 14; \ \alpha(O)=0.243 \ 4; \ \alpha(P)=0.0389 \ 6 \ \alpha(Q)=0.0001510 \ 22 \ Mult.: from \alpha(L2)\exp = 7.2, \ \alpha(L3)\exp = 3.8 \ with uncertainties better than 15% in ^{252}\text{Es }\varepsilon decay.$
316.23	6+	164.5 <i>1</i>	100	151.73 4+	E2	2.49 11	a(K)=0.1557 22; α (L)=1.68 8; α (M)=0.478 22; α (N)=0.134 6; α (O)=0.0334 15 α (P)=0.00543 25; α (Q)=3.29×10 ⁻⁵ 11 E _y : from Cf(¹⁸ O,Xy) (2010Ta10). Mult.: Q from Iy(in-plane)/Iy(out-of-plane)=1.33 22 in Cf(¹⁸ O,Xy); E2 from assignment to rotational band.
536.6	8+	220.4 3	100	316.23 6+	E2	0.791 32	α(K)=0.1268 23; α(L)=0.480 22; α(M)=0.135 6; α(N)=0.0380 17; α(O)=0.0095 4 α(P)=0.00156 7; α(Q)=1.37×10 ⁻⁵ 4 E_{γ} : from Cf(18 O,X $_{\gamma}$) (2010Ta10). Mult.: Q from I $_{\gamma}$ (in-plane)/I $_{\gamma}$ (out-of-plane)=1.1 3 in Cf(18 O,X $_{\gamma}$); E2 from assignment to rotational band.
804.82	(2+)	759.1 <i>1</i>	100 8	45.72 2+	[E2]	0.0265 7	$\alpha(K)$ =0.0177 4; $\alpha(L)$ =0.00648 20; $\alpha(M)$ =0.00169 5; $\alpha(N)$ =0.000470 15; $\alpha(O)$ =0.000120 4 $\alpha(P)$ =2.17×10 ⁻⁵ 7; $\alpha(Q)$ =7.86×10 ⁻⁷ 19
		804.8 1	77 5	0.0 0+	[E2]	0.0236 6	$\alpha(K) = 0.01606 \ 35; \ \alpha(L) = 0.00555 \ 17;$ $\alpha(M) = 0.00144 \ 4; \ \alpha(N) = 0.000400 \ 12$ $\alpha(O) = 0.0001020 \ 3I; \ \alpha(P) = 1.86 \times 10^{-5} \ 6;$ $\alpha(O) = 7.01 \times 10^{-7} \ 17$
809.2	10+	272.6 5	100	536.6 8+	E2	0.373 14	$\alpha(K)=0.0950 \ 19; \ \alpha(L)=0.202 \ 9; \ \alpha(M)=0.0564 \ 24; \ \alpha(N)=0.0158 \ 7; \ \alpha(O)=0.00395 \ 17 \ \alpha(P)=0.000661 \ 28; \ \alpha(Q)=7.69\times10^{-6} \ 23 \ E_{\gamma}: \ \text{from Cf}(^{18}O,X\gamma) \ (2010\text{Ta}10). \ \text{Mult.: Q from Iy(in-plane)/Iy(out-of-plane)}=1.4 \ 4 \ \text{in Cf}(^{18}O,X\gamma); \ E2 \ \text{from assignment to rotational band.}$
830.81	(2-)	785.1 <i>I</i>	100	45.72 2+	[E1]	0.00719 16	$\alpha(K)$ =0.00577 13; $\alpha(L)$ =0.001066 25; $\alpha(M)$ =0.000257 6; $\alpha(N)$ =7.08×10 ⁻⁵ 17; $\alpha(O)$ =1.82×10 ⁻⁵ 4 $\alpha(P)$ =3.45×10 ⁻⁶ 8; $\alpha(Q)$ =1.88×10 ⁻⁷ 4

 $^{^{\}dagger}$ From a least-squares fit to Ey, by evaluators. ‡ Band(A): $K^{\pi}\!=\!0^{+}$ g.s. band. $^{\#}$ Band(B): $K^{\pi}\!=\!2^{+}$ y-vibrational band. Mixed with the K=3 state at 969.83 keV. $^{@}$ Band(C): $K^{\pi}\!=\!2^{-}$ band.

γ (252Cf) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α	Comments
845.72	(3 ⁺)	694.0 <i>1</i> 800.0 <i>1</i>	30.9 <i>21</i> 100 <i>7</i>	151.73 4 ⁺ 45.72 2 ⁺			
867.52	(3-)	715.8 1	100 6	151.73 4+	[E1]	0.00847 19	$\alpha(K)$ =0.00678 15; $\alpha(L)$ =0.001265 30; $\alpha(M)$ =0.000306 7; $\alpha(N)$ =8.42×10 ⁻⁵ 20; $\alpha(O)$ =2.17×10 ⁻⁵ 5
		821.8 <i>1</i>	40 3	45.72 2+	[E1]	0.00664 15	$\alpha(P)=4.08\times10^{-6} 9$; $\alpha(Q)=2.20\times10^{-7} 5$ $\alpha(K)=0.00534 12$; $\alpha(L)=0.000981 23$; $\alpha(M)=0.000237 6$; $\alpha(N)=6.51\times10^{-5} 15$; $\alpha(O)=1.68\times10^{-5} 4$
900.33	(4 ⁺)	748.6 <i>3</i>	100 17	151.73 4+	[E2]	0.0273 7	$\alpha(P)=3.18\times10^{-6} \ 7; \ \alpha(Q)=1.75\times10^{-7} \ 4$ $\alpha(K)=0.0181 \ 4; \ \alpha(L)=0.00673 \ 21;$ $\alpha(M)=0.00176 \ 6; \ \alpha(N)=0.000489 \ 15;$ $\alpha(O)=0.000124 \ 4$
		854.6 <i>4</i>	45 10	45.72 2+	[E2]	0.0209 5	$\alpha(P)=2.26\times10^{-5} \ 7; \ \alpha(Q)=8.07\times10^{-7} \ 20$ $\alpha(K)=0.01452 \ 32; \ \alpha(L)=0.00475 \ 14;$ $\alpha(M)=0.00122 \ 4; \ \alpha(N)=0.000341 \ 10;$ $\alpha(O)=8.69\times10^{-5} \ 26$
917.03	(4-)	765.3 1	100	151.73 4+	[E1]	0.00752 17	$\alpha(P)=1.59\times10^{-5} 5$; $\alpha(Q)=6.24\times10^{-7} 15$ $\alpha(K)=0.00604 14$; $\alpha(L)=0.001118 26$; $\alpha(M)=0.000270 6$; $\alpha(N)=7.43\times10^{-5} 17$; $\alpha(O)=1.91\times10^{-5} 4$ $\alpha(P)=3.61\times10^{-6} 8$; $\alpha(Q)=1.97\times10^{-7} 4$
969.83	(3 ⁺)	102.32 5	13.6 9	867.52 (3-)	[E1]	0.1394 20	$\alpha(P)=3.61\times10^{-3} \delta; \ \alpha(Q)=1.97\times10^{-4} 4$ $\alpha(L)=0.1043 \ 15; \ \alpha(M)=0.0260 \ 4; \ \alpha(N)=0.00711$ $10; \ \alpha(O)=0.001772 \ 25; \ \alpha(P)=0.000296 \ 4$ $\alpha(O)=1.004\times10^{-5} \ 14$
		139.03 5	100 8	830.81 (2 ⁻)	E1	0.2502 35	$\alpha(K)$ =0.1862 26; $\alpha(L)$ =0.0479 7; $\alpha(M)$ =0.01186 17; $\alpha(N)$ =0.00326 5; $\alpha(Q)$ =0.000817 12 $\alpha(P)$ =0.0001406 20; $\alpha(Q)$ =5.25×10 ⁻⁶ 7 Mult.: from $\alpha(L1+L2)$ exp=0.03 with uncertainty
		165.0 <i>1</i>	1.04 11	804.82 (2+)	M1	9.89	better than 15% in $^{252}\text{Es }\varepsilon$ decay. Mult., δ : M1 with δ =0.0 23 from α (L1+L2)exp=2.2 with uncertainty better than 15% in $^{252}\text{Es }\varepsilon$ decay.
		818.1 <i>I</i> 924.1 <i>I</i>	5.4 <i>4</i> 17.4 <i>11</i>	151.73 4 ⁺ 45.72 2 ⁺			

 $^{^{\}dagger}$ From $^{252}\text{Es }\varepsilon$ decay, except where noted.

917.03

867.52

830.81

