

Deep Learning

Multiple-Choice Questions

Lern-Story: Multiple Choice Fragen zum Thema Deep Learning Lernziel: Evaluation von Wissen mithilfe von Multiple Choice Fragen. Input:
• Alle Deep Learning Themen
Output:
• Wissenskontrolle
Lernerfolg: Bestimmen Sie ihren Lernerfolg.
Aufgabe 1: Single Choice Frage
1. Welcher Satz beschreibt den Hauptunterschied zwischen Dense- und Convolutional-Schichten?
Dense-Schichten lernen lokale Muster
Dense-Schichten lernen globale Muster, Convolutional-Schichten lokale Muster
Beide lernen nur globale Muster
Beide lernen nur lokale Muster
2. Welches Prinzip ermöglicht es einem CNN, ein gelerntes Muster an jeder Bildposition zu erkennen?
Datenaugmentierung
Translation Invariance
Überanpassung
Dropout Dropout
3. Wie gross ist die Tiefenachse eines RGB-Bildes?
\square 2
3
\square 4
4. Welche zwei Hyperparameter definieren eine Faltung massgeblich?
Aktivierungsfunktion und Lernrate
Patch-Grösse und Ausgabetiefe
Optimierer und Batch-Grösse
Anzahl der Epochen und Padding

5.	. Ein 3×3 -Fenster wird auf eine 5×5 -Feature-Map ohne Padding angewendet. Um wie viele Tiles schrumpft jede räumliche Dimension?
6.	. Wie heisst die Technik, bei der zusätzliche Zeilen und Spalten hinzugefügt werden, um Eingabe- und Ausgabegrösse gleichzuhalten?
	Normalisierung
	Padding
	☐ Striding
	Pooling
7.	. Welche Auswirkung hat Stride=2 bei einer Faltung?
	Keine Veränderung der Grösse
	Vergrössert Höhe und Breite
	Verkleinert Höhe und Breite um Faktor 2
	Verdoppelt die Anzahl der Filter
8.	. Was ist das primäre Ziel von Max-Pooling?
	Gewichte aktualisieren
	Feature-Maps aggressiv verkleinern
	Modell regulieren
	Filterzahl erhöhen
9.	. Eine Feature-Map besitzt immer Achsen für
	Breite, Höhe, Zeit
	Höhe, Tiefe, Batch
	Höhe, Breite, Tiefe
	Filter, Verlust, Genauigkeit
10.	. Was lernen tiefere Convolutional-Schichten typischerweise?
	Einfache Kanten
	Rauschen
	Grössere, abstraktere Muster aus früheren Features
	Gewichtsinitialisierung

11.	Aver	age Pooling berechnet als Ausgabe eines Patches
		das Maximum jeder Tiefe
		den Median jeder Tiefe
		den Durchschnitt jeder Tiefe
		das Minimum jeder Tiefe
12.	Wofü	ir ist Max-Pooling nicht hauptsächlich zuständig?
		Raumhierarchien zu lernen
		Parameterzahl reduzieren
		Aktivierungen normalisieren
		Downsampling durchführen
13.	Weni	a Sie eine Feature-Map um Faktor 2 verkleinern möchten, wählen Sie am wahrscheinlichsten
		Max Pooling mit Stride 2
		Padding
		Faltung mit Stride 1
		Average Pooling mit Stride 1
14.	Welc	he Art von Mustern lernt typischerweise die erste Convolution Schicht?
		Komplexe Objekte wie Gesichter
		Kleine lokale Merkmale (z.B. Kanten)
		Globale Semantik
		Farbverteilungen
15.	Nach	der ersten Convolution repräsentiert die Tiefenachse der Feature Map
		Farbkanäle
		Einzelne Pixel
		Filter / Features
		Zeitschritte
16.	Haup	otzweck des Paddings ist
		Training zu beschleunigen
		Overfitting zu verhindern
		Räumliche Dimensionen des Inputs zu erhalten
		Die Output-Depth zu reduzieren

17.	Flattening in einem CNN bedeutet
	\square Eine 1×1-Convolution anwenden
	Die 3D-Feature-Map vor Dense-Layern in einen 1D-Vektor umwandeln
	Feature-Maps Zero-Padden
	Über Kanäle mitteln
18.	Convolution-Layer lernen Muster, während Dense-Layer Muster lernen.
	globale; lokale
	sequentielle; räumliche
	lokale; globale
	zeitliche; kategoriale
19.	Ein Filter in einem CNN ist am besten beschrieben als
	Einzelner Pixelwert
	Gelernte Gewichtsmatrix, die ein spezifisches Merkmal detektiert
	Lernratenplan
	Stride der Convolution
20.	Wird kein Padding verwendet und der Kernel ist 3×3 , wie viele Pixel gehen an jedem Rand verloren?
20.	Wird kein Padding verwendet und der Kernel ist 3×3 , wie viele Pixel gehen an jedem Rand verloren? 0
20.	
20.	
20.	
	■ 0 □ 1 □ 2 □ 3 Welche Pooling-Operation liefert den Maximalwert jedes Fensters?
	□ 0 □ 1 □ 2 □ 3 Welche Pooling-Operation liefert den Maximalwert jedes Fensters? □ Min-Pooling
	□ 0 □ 1 □ 2 □ 3 Welche Pooling-Operation liefert den Maximalwert jedes Fensters? □ Min-Pooling □ Average-Pooling
21.	□ 0 □ 1 □ 2 □ 3 Welche Pooling-Operation liefert den Maximalwert jedes Fensters? □ Min-Pooling □ Average-Pooling □ Sum-Pooling
21.	□ 0 □ 1 □ 2 □ 3 Welche Pooling-Operation liefert den Maximalwert jedes Fensters? □ Min-Pooling □ Average-Pooling □ Sum-Pooling □ Max-Pooling
21.	□ 0 □ 1 □ 2 □ 3 Welche Pooling-Operation liefert den Maximalwert jedes Fensters? □ Min-Pooling □ Average-Pooling □ Sum-Pooling □ Max-Pooling ■ Hierarchisches Lernen von Features in CNNs bedeutet, dass
21.	□ 0 □ 1 □ 2 □ 3 Welche Pooling-Operation liefert den Maximalwert jedes Fensters? □ Min-Pooling □ Average-Pooling □ Sum-Pooling □ Max-Pooling ■ Max-Pooling ■ Max-Pooling ■ Alle Layer dieselbe Abstraktionsebene lernen

23.	Em	CNN benotigt weniger Trainingsdaten als ein vergleichbares Dense-Netz hauptsachlich weger
		Datenaugmentation
		Translationsinvarianz & Weight Sharing
		Hoher Lernrate
		Dropout-Regularisierung
24.	Was	ist das Hauptziel der Regularisierung
		Die Lernrate zu erhöhen
		Die Trainingszeit zu verkürzen
		Overfitting zu vermeiden
		Die Datenmenge zu reduzieren
25.	Wie	wird die Regularisierung technisch in der Optimierung des Modells umgesetzt?
		Durch Erhöhung der Lernrate
		Durch Hinzufügen eines Strafterms zur Verlustfunktion
		Durch Reduktion der Batchgrösse
		Durch Datenaugmentation
26.	Was	bewirkt der Strafterm in der Regularisierung?
		Er erhöht die Gewichte des Modells
		Er macht das Modell langsamer
		Er verhindert, dass das Modell die Trainingsdaten zu genau lernt
	Ш	Er reduziert die Anzahl der Epochen
27.	Was	ist ein typischer Effekt von L1-Regularisierung?
		Erhöhte Anzahl an Epochen
		Gleichmässige Verteilung der Gewichte
		Setzt Gewichte auf Null
	Ш	Schnelleres Training
28.	Weld	che Norm wird in der L2-Regularisierung verwendet?
		Absolutwert
		Quadratwurzel der quadrierten Gewichte
		Kubikwurzel
		Maximumswert

29.	Was	bewirkt die L2-Regularisierung im Modell?
		Sie reduziert die Datenmenge
		Sie bevorzugt grössere Gewichte
		Sie schränkt die Grösse der Gewichte ein
		Sie entfernt irrelevante Features
30.	Wel	che Aussage trifft auf L1-Regularisierung zu?
		Führt zu gleichmässiger Gewichtung
		Führt zu Feature Selektion
		Erhöht die Modellkomplexität
		Führt zu längerer Trainingszeit
31.	Was	stellt der Regularisierungsparameter dar?
		Die Lernrate des Modells
		Die maximale Anzahl an Epochen
		Das Gewicht des Strafterms in der Verlustfunktion
		Die Anzahl der Features
32.	Was	passiert bei zu starker Regularisierung?
		Das Modell overfittet schneller
		Die Gewichte werden zu klein und das Modell underfittet
	Щ	Es entsteht kein Unterschied zur normalen Verlustfunktion
	Ш	Die Batchgröße steigt
33.	Was	bewirkt Dropout?
		Es reduziert die Anzahl der Trainingsdaten
		Es entfernt dauerhaft Neuronen
		Es deaktiviert zufällig Neuronen während des Trainings
		Es erhöht die Netzwerkkomplexität
34.	Woz	u dient Early Stopping?
		Um das Modell schneller zu machen
		Um die Anzahl der Neuronen zu reduzieren
		Um das Training zu stoppen, wenn sich der Validierungsfehler nicht mehr verbessert
		Um alle Epochen vollständig zu nutzen

35. Was beschreibt das Bagging-Verfahren?
Lernen mit nur einem Modell
Kombination von Modellen durch Mittelung ihrer Vorhersagen
Reduktion der Datenmenge
Entfernen von Ausreissern
36. Welche Technik erweitert künstlich den Datensatz?
Dropout
Batch Normalization
Data Augmentation
Early Stopping
37. Welche Transformation ist kein typisches Beispiel für Data Augmentation?
Rotation
Cropping
Normalisierung
Farbänderung
38. Was ist eine Einschränkung von Data Augmentation?
Funktioniert nur mit numerischen Daten
Kann nicht für Klassifikationen verwendet werden
Ist bei stark korrelierten neuen Daten begrenzt wirksam
Verändert die Netzwerkarchitektur
39. Was wird bei der Batch Normalization normalisiert?
Die Daten vor dem Training
Die Eingabeschicht
Die Gewichte der Output-Schicht
Die Aktivierungen innerhalb eines Layers
40. Was ist das Ziel von Batch Normalization?
Overfitting zu verstärken
Nur die Trainingsdaten zu normalisieren
Die Verteilung der Aktivierungen zu stabilisieren
Die Gewichtsmatrix zu vergrößern

41.	Wann wird Batch Normalization durchgeführt?
	Einmalig vor dem Training
	Nach jeder Epoche
	Nach jedem Batch
	Nur bei großen Modellen
42.	Was ist das Hauptziel von Data Augmentation?
	Die Genauigkeit des Validierungsdatensatzes zu reduzieren
	Den Trainingsprozess zu verlangsamen
	Mehr Trainingsdaten aus bestehenden Bildern zu generieren
	Bilder zufällig zu löschen
43.	Warum sieht ein Modell mit Data Augmentation nie das gleiche Bild zweimal?
	Weil das Bildformat geändert wird
	Weil immer neue Informationen generiert werden
	Weil durch Zufallstransformationen jede Version leicht unterschiedlich ist
	Weil alte Bilder gelöscht werden
44.	Was ist ein Vorteil vortrainierter Modelle?
	Sie löschen irrelevante Daten automatisch
	Sie lernen ohne Labels
	Sie können gelernte Features auf andere Datensätze überführen
	Sie ignorieren visuelle Merkmale
45.	Warum wird der Dense Classifier eines pretrained CNNs nicht wiederverwendet?
	Er ist zu komplex
	Er ist zufällig
	Er ist spezifisch für die alten Klassen
	Er ist zu langsam
46.	Was bedeutet "Freezing" in Bezug auf ein Modell?
	Die GPU wird deaktiviert
	Trainingsdaten werden gesperrt
	Layers und deren Gewichte werden eingefroren
	Alle Bilder werden eingefroren gespeichert

47.	Wann darf man die oberen Schichten einer CNN zum Fine-Tuning freigeben?
	Sofort nach Modellinitialisierung
	Bevor der Classifier trainiert wurde
	Nachdem der Classifier trainiert wurde
	Vor dem Einfrieren
48.	Welche Eigenschaft trifft auf die unteren Schichten eines CNN zu?
	Sie erkennen komplexe Formen
	Sie erkennen spezifische Objekte
	Sie extrahieren generische Merkmale
	Sie haben keine Funktion
49.	Was passiert beim "Fine Tuning"?
	Neue Bilder werden erzeugt
	Der Convolutional Base wird vollständig neu trainiert
	Nur obere Schichten des Bases werden weitertrainiert
	Dropout wird deaktiviert
50.	Warum ist ein kleines Learning Rate beim Fine Tuning wichtig?
	Um schneller zu trainieren
	Um grosse Änderungen an gelernten Repräsentationen zu vermeiden
	Um das Modell zurückzusetzen
	Um Data Augmentation zu verbessern
51.	Worin besteht ein Nachteil, zu viele Schichten feinzujustieren?
	Modelle werden unbrauchbar
	Man kann keine Merkmale mehr extrahieren
	Erhöhtes Risiko für Overfitting
	Speicherplatz wird knapp
52.	Warum ist die Wiederverwendung von Features über verschiedene Probleme hinweg möglich?
	Weil alle Bilder gleich sind
	Weil CNNs Bilddaten ignorieren
	Weil Feature Maps generisch sind
	Weil Labels nicht benötigt werden
53.	Was macht Dropout beim Training mit Data Augmentation?
	Fügt Rauschen hinzu
	Verhindert das Speichern von Bildern
	Ergänzt die Wirkung von Data Augmentation zur Reduzierung von Overfitting
	Stoppt den Trainingsprozess

54.	Was bedeutet es, wenn Eingaben "hoch korrelieren" sind?
	Sie sind komplett zufällig
	Sie enthalten keine Informationen
	Sie stammen aus derselben Quelle und ähneln sich
	Sie sind unbrauchbar
55.	Wann ist Feature Extraction besonders hilfreich?
	Wenn kein Computer verfügbar ist
	Bei extrem grossen Datensätzen
	Bei kleinen Datensätzen mit ähnlichen Aufgaben
	Wenn keine GPU vorhanden ist
56.	Was beschreibt ein Feed Forward Neural Network am besten?
	Ein neuronales Netz mit Rückkopplung
	Ein Netz, in dem Informationen nur in eine Richtung – von Input zu Output – fliessen
	Ein Netz, das ausschliesslich für Textverarbeitung verwendet wird
	Ein Netz mit unendlich vielen Schichten
57.	Welche Aussage über Aktivierungsfunktionen ist korrekt?
	Sie sind nur in der Ausgabeschicht notwendig
	Sie bestimmen die Lernrate
	Sie helfen, Nichtlinearitäten im Modell abzubilden
	Sie reduzieren die Anzahl der benötigten Datenpunkte
58.	Wozu dient eine Verlustfunktion (Loss Function) in neuronalen Netzen?
	Zur Verbesserung der Aktivierungsfunktion
	Zur Bewertung der Vorhersagequalität durch Vergleich mit den echten Labels
	Zum Generieren neuer Trainingsdaten
	Zum Speichern der Gewichtswerte
59.	Was macht ein Optimizer im Training eines neuronalen Netzes?
	Fügt neue Daten hinzu
	Passt die Aktivierungsfunktionen an
	Ändert die Struktur des Netzes
	Aktualisiert Gewichte und Biases basierend auf der Verlustfunktion

60.	Was	s ist das Ziel beim Trainieren eines Deep-Learning-Modells?
		Möglichst viele Schichten und Neuronen zu verwenden
		Zufällige Gewichtswerte beizubehalten
		Die Vorhersagen möglichst nahe an den echten Labels auszurichten
		Immer eine binäre Klassifikation zu verwenden
61.	Was	s ist ein typisches Ziel bei Regressionsproblemen in neuronalen Netzen?
		Die Erkennung von Objekten
		Die Vorhersage diskreter Kategorien
		Die Reduktion der Trainingszeit
		Die Vorhersage kontinuierlicher Werte
62.	War	rum ist die Initialisierung der Gewichte wichtig?
		Sie beschleunigt das Speichern der Modelle
		Sie beeinflusst die Trainingsdatenmenge
		Sie kann den Lernprozess positiv oder negativ beeinflussen
		Sie bestimmt die Anzahl der Ausgabeklassen
63.	Wel	che Aussage zur Wahl der Anzahl versteckter Schichten (Hidden Layers) ist korrekt?
		Mehr Schichten sind immer besser
		Ein einfaches Problem erfordert viele versteckte Schichten
		Die Wahl hängt von der Komplexität des Problems ab
		Versteckte Schichten sind optional
64.	Wel	cher Optimierer passt die Lernrate für jeden Parameter an?
		SGD
		2GD
		Adam
		Adam
65.	Was	Adam RMSProp
65.	Was	Adam RMSProp Momentum
65.	Was	Adam RMSProp Momentum sist das Hauptziel der Regularisierung in neuronalen Netzwerken?
65.	Was	Adam RMSProp Momentum sist das Hauptziel der Regularisierung in neuronalen Netzwerken? Die Trainingszeit zu verkürzen

66.	Was	passiert beim Dropout wahrend des Trainings?
		Die Gewichte werden eingefroren
		Einige Neuronen werden zufällig deaktiviert
		Der Lernrate wird reduziert
		Der Optimierer wird gewechselt
67.	Was	sagt die Lernrate aus?
		Die Lernrate bestimmt, wie viele Schichten ein neuronales Netz haben darf.
		Die Lernrate gibt an, mit welcher Geschwindigkeit das Modell aus Informationen lernt
		Die Lernrate legt fest, wie gross das endgültige Modell sein wird.
		Die Lernrate gibt an, wie viele Datenpunkte pro Sekunde verarbeitet werden.
68.	Was	ist die Gefahr bei einer zu niedrigen Lernrate?
		Das Modell überspringt ständig das Minimum der Fehlerfunktion.
		Das Training wird sofort abgebrochen.
		Kann in einem lokalen Minimum stecken bleiben
		Eine zu niedrige Lernrate führt zu Überanpassung (Overfitting).
69.	Was	ist die Gefahr bei einer zu hohen Lernrate?
		Das Modell erreicht das Optimum schneller und genauer.
		Die Lösung kann divergieren
		Overfitting
		Das Training funktioniert nur bei linearen Modellen nicht mehr.
70.	Was	macht die Lernrate-Strategie Step decay?
		Sie erhöht die Lernrate exponentiell mit jeder Epoche.
		Macht die Lernrate um fixen Faktor kleiner nach einer gewünschten Anzahl Epochen
		Sie passt die Lernrate zufällig während des Trainings an.
		Sie setzt die Lernrate nach jeder Epoche auf null und startet neu.
71.	Was	ist eine Epoche?
		Eine Epoche ist ein einzelner Durchlauf durch nur einen Datenpunkt des Trainingssatzes.
		Eine Epoche ist ein Durchlauf bei dem alle Trainingsdaten einmal verwendet werden.
		Eine Epoche beschreibt die Anzahl der Schichten in einem neuronalen Netzwerk.
		Eine Epoche ist ein Durchlauf mit einem Anteil der Trainingsdaten

72.	Was	ist die Gefahr, wenn mit zu weniger Epochen trainiert wird?
		Das Modell wird übertrainiert und passt sich zu stark den Trainingsdaten an.
		Das Modell konvergiert allenfalls nicht zu einer guten Lösung
		Das Modell wird zu stark regularisiert und erzielt daher keine guten Ergebnisse.
		Das Modell benötigt keine Feinabstimmung mehr und ist sofort einsatzbereit
73.	Wan	n wird die Modellleistung evaluiert?
		Am Ende der letzten Epoche
		Nach jeder Epoche
		Nach jedem gelerntem Datensatz
		Vor dem Modell Training
74.	Was	ist ein Batch?
		Ein Batch ist die Anzahl der Schichten in einem neuronalen Netzwerk.
		Ein Batch ist eine Teilmenge des Trainingsdatensatzes, die in einem Schritt verarbeitet wird.
		Ein Batch ist eine einzelne Datenprobe, die dem Modell während des Trainings präsentiert wird.
		Ein Batch ist eine spezielle Art von Modell, das auf den Trainingsdaten angewendet wird.
75.	Was	für eine Gefahr gibt es, wenn man die Anzahl Epochen zu gross wählt?
		Das Modell wird zu stark regularisiert und lernt keine sinnvollen Muster.
		Das Modell wir zu instabil und verlangsamt das Training
		Das Modell wird zu langsam und benötigt mehr Epochen, um Ergebnisse zu liefern.
		Das Modell wird zu stark auf den Trainingsdaten angepasst und zeigt keine Fehler mehr.
76.	Was	für eine Gefahr gibt es, wenn man die Anzahl Epochen zu gross wählt?
		Das Modell wird immer besser auf den Trainingsdaten, aber schlechter auf den Testdaten.
		Das Modell benötigt umso mehr Zeit um mit den Trainingsdaten zu trainieren.
		Das Modell könnte überanpassen (Overfitting), indem es sich zu sehr an die Trainingsdaten anpasst.
		Das Modell wird automatisch in der Lage sein, auf alle unbekannten Daten sehr gut zu generalisieren.

77.	Welche grundlegende Idee steckt hinter dem Gradient Descent-Verfahren?
	Es findet das Maximum der Verlustfunktion durch zufällige Gewichtsanpassung.
	Es passt die Gewichte so an, dass die Rechenzeit minimiert wird.
	Es bewegt sich entlang der Gradientenrichtung, um lokale Maxima zu erreichen.
	Es passt die Modellparameter schrittweise in Richtung des negativsten Gradienten an, um die Verlustfunktion zu minimieren.
78.	Welche Aufgabe hat ein Optimierer im Training eines neuronalen Netzwerks?
	Er bestimmt, wie viele Daten für das Modell gespeichert werden sollen.
	Er reduziert den Speicherverbrauch, indem er Parameter entfernt.
	Er passt die Gewichte des Modells so an, dass die Verlustfunktion minimiert wird.
	Er erhöht die Modellkomplexität automatisch, um Overfitting zu vermeiden.
79.	Wofür wird eine Loss Function im Training verwendet?
	Um den Unterschied zwischen Vorhersage und echtem Wert zu messen
	Um die Trainingsdaten zu normalisieren
	Um die Anzahl der Layer zu bestimmen
	Um das Modell schneller zu machen
80.	Warum muss eine Loss Function differenzierbar sein?
	Damit Gradient Descent sie minimieren kann
	Damit sie auf alle Probleme passt
	Damit man keine Aktivierungsfunktion braucht
	Damit sie ohne Optimizer funktioniert
81.	Was ist der Hauptunterschied zwischen einer Loss Function und einer Metrik?
	Die Loss Function wird zur Optimierung genutzt, die Metrik zur Bewertung
	Beide machen dasselbe
	Metriken funktionieren nur bei Regression
	Die Loss Function wird nur nach dem Training verwendet
82.	Welche Aussage zu MSE ist korrekt?
	Grosse Fehler werden stärker bestraft als kleine
	Alle Fehler werden gleich bewertet
	MSE funktioniert nur bei Klassifikation
	MSE ist nur für binäre Aufgaben geeignet

83. Wof	für ist die Categorical Cross-Entropy geeignet?
	Für Klassifikation mit mehr als zwei Klassen
	Für Regression mit kontinuierlichen Werten
	Für binäre Entscheidungen
	Für Bilder mit nur einem Farbkanal
84. War	rum kann man bei Multi-Klassifikation keine MSE verwenden?
	Weil MSE keine Wahrscheinlichkeitsverteilungen berücksichtigt
	Weil MSE zu schnell konvergiert
	Weil MSE keine Label erkennt
	Weil MSE nur bei Sigmoid funktioniert
85. Was	s passiert mit der Loss Function, wenn das Modell besser wird?
	Sie wird kleiner
	Sie bleibt konstant
	Sie wird negativ
	Sie steigt exponentiell
86. Was	s misst die Loss Function bei einem Klassifikationsmodell mit Softmax-Ausgabe?
	Wie gut die Wahrscheinlichkeitsverteilung zur wahren Klasse passt
	Ob die Summe aller Gewichte 1 ist
	Wie gross die Lernrate ist
	Ob die Metrik Accuracy $\ \ \ 90\%$ ist
87. Was	s ist der Hauptunterschied zwischen Binary und Categorical Cross-Entropy?
	Binary ist für 2 Klassen, Categorical für viele Klassen
	Binary ist für Regression, Categorical für Bilder
	Binary ist schneller, Categorical langsamer
	Categorical benötigt keine One-Hot-Encoding
88. Wel	che Loss Function würdest du für Hauspreisvorhersage nehmen?
	MSE
	Binary Cross-Entropy
	Categorical Cross-Entropy
	Hinge Loss

89. Wozu dient ein Optimizer im Training eines neuronalen Netzes?
Er passt die Gewichte an, um die Loss Function zu minimieren
Er misst die Testgenauigkeit
Er kontrolliert die Batch-Grösse
Er bestimmt die Anzahl der Epochen
90. Welche Information benötigt ein Optimizer bei jedem Schritt?
Den Gradienten der Loss Function
Die Zielmetrik (z. B. Accuracy)
Die Anzahl der Layer
Den Dateinamen des Datasets
91. Was ist der wichtigste Hyperparameter beim Optimizer?
Die Lernrate
Die Anzahl der Layer
Die Grösse des Testsets
☐ Die Aktivierungsfunktion
92. Was passiert bei einer zu hohen Lernrate?
Das Modell konvergiert möglicherweise nicht oder divergiert
Das Modell lernt sehr stabil
Es wird kein Backpropagation benötigt
☐ Die Loss Function wird ignoriert
93. Was passiert bei einer zu niedrigen Lernrate?
Das Modell lernt extrem langsam
Die Genauigkeit steigt sofort auf 100%
Die Loss Function wird unbrauchbar
Das Modell vergisst alle vorherigen Schritte
94. Was ist "Learning Rate Decay"?
Eine Technik, bei der die Lernrate schrittweise gesenkt wird
Eine Methode, um die Lernrate zu erhöhen
Eine spezielle Art von Loss Function
Ein Aktivierungstyp in der Ausgangsschicht

95.	Was zeichnet Adam gegenüber SGD aus?
	Adam passt die Lernrate für jeden Parameter dynamisch an
	Adam ignoriert Gradienten
	Adam benötigt keine Loss Function
	Adam ist deterministisch
96.	Was ist das Ziel des Gradient Descent Algorithmus?
	Das Finden eines Minimums der Loss Function
	Die Erstellung neuer Testdaten
	Das Erhöhen der Batchgrösse
	Die Änderung der Modellarchitektur
97.	Warum sind rekurrente neuronale Netze (RNNs) besonders geeignet für Sequenzdaten?
	Weil sie keine Erinnerung haben.
	Weil sie Abhängigkeiten zwischen aufeinanderfolgenden Datenpunkten erfassen können.
	Weil sie schneller trainiert werden können.
	Weil sie weniger Parameter benötigen.
98.	Welche Art von Daten sind Beispiele für Sequenzdaten?
	Bilder
	Text und Zeitreihen
	Tabellen und Datenbanken
	Unabhängige Datenpunkte
99.	Warum ist die Reihenfolge in Sequenzdaten wichtig?
	Weil sie die Trainingszeit verkürzt.
	Weil der Vorgänger den nachfolgenden Wert beeinflusst.
	Weil sie die Anzahl der Parameter reduziert.
	Weil sie die Klassifikationsgenauigkeit erhöht.
100.	Wie wird der state in einem RNN aktualisiert?
	Durch Multiplikation vom Input mit dem vorherigen State
	Durch Anwendung einer nichtlinearen Funktion auf Input und den vorherigen State
	☐ Input und der vorangehende State werden skaliert und anschliessend addiert
	Der skalierte Input wird mit dem bereits skalierten Output-State multipliziert

101.	Wie verarbeiten RNNs Sequenzen?
	Durch parallele Verarbeitung aller Elemente gleichzeitig.
	Durch Iteration über die Sequenzelemente.
	Durch Zufallsauswahl der Elemente.
	Durch Verarbeitung aller Elemente in einem einzigen Schritt.
102.	Was bewahrt ein RNN während der Verarbeitung einer Sequenz?
	Einen festen Wert.
	Einen Zustand, der Informationen über die bisher gesehenen Elemente enthält.
	Eine zufällige Zahl.
	Eine Konstante.
103.	Wie wird der Zustand eines RNNs zwischen zwei unabhängigen Sequenzen behandelt?
	Er wird beibehalten.
	Er wird zurückgesetzt.
	Er wird zufällig initialisiert.
	Er wird verdoppelt.
104.	Welche Form hat die Eingabe eines RNNs?
	Ein 1D-Tensor.
	Ein 2D-Tensor.
	Ein 3D-Tensor.
	Lin skalarer Wert.
105.	Wofür steht die Abkürzung LSTM?
	Long Short-Term Memory
	Large Scale Training Model
	Linear Sequential Training Model
	Layered Sequential Training Model
106.	Welches Problem löst LSTM?
	Das Problem der Überanpassung.
	Das Problem des verschwindenden Gradienten.
	Das Problem der zu grossen Parameteranzahl.
	Das Problem der langsamen Trainingszeit.

107.	Was	ist die Funktion des Carry states c_t in einem LSTM?
		Er speichert zufällige Werte.
		Er trägt Informationen über Zeitschritte hinweg.
		Er initialisiert die Gewichte.
		Er berechnet die Ausgabe direkt.
108.	Wie	wird der nächste Carry state c_{t+1} in einem LSTM berechnet?
		Durch Addition der Eingabe und des vorherigen Zustands.
		Durch Addition von gewichteten neuen und gewichteten bestehenden irrelevanten Informatio-
		nen
		Durch Multiplikation mit einer Konstanten.
	Ш	Durch Anwendung einer Aktivierungsfunktion.
109.	Weld	che Komponenten (Gates) hat eine LSTM-Zelle?
		Eingabe-Gate, Ausgabe-Gate, Vergessens-Gate
		Aktivierungsfunktion, Verlustfunktion, Optimierer
	Ш	Hidden Layer, Output Layer, Input Layer
		Bias, Gewichte, Aktivierungsfunktion
110.	Was	ist die Hauptaufgabe des Carry-States in einem LSTM?
		Die Aktualisierung des versteckten Zustands
		Die Steuerung, welche Informationen beibehalten oder vergessen werden
		Die Berechnung der Ausgabe
		Die Anwendung der Aktivierungsfunktion
111.	Was	ist rekurrentes Dropout?
		Eine Methode zur Beschleunigung des Trainings, durch zufälliges Auslassen von Datenpunkten.
		Eine Methode zur Reduktion der Parameteranzahl durch Auslassen jedes n-ten Werts.
		Eine Methode zur Bekämpfung von Overfitting durch Anwendung einer konstanten Dropout-Maske über die Zeit.
		Eine Methode zur Erhöhung der Klassifikationsgenauigkeit durch Dropout irrelevanter Param-
		eter.
112.	War	um ist das Stapeln von rekurrenten Schichten nützlich?
		Es reduziert die Trainingszeit.
		Es erhöht die Repräsentationskraft des Netzwerks.
		Es verringert die Anzahl der Parameter.
		Es beschleunigt die Vorwärtspropagation.

113.	Wie	funktioniert ein bidirektionales RNN?
		Es verarbeitet die Eingabesequenz in einer zufälligen Reihenfolge.
		Es verarbeitet die Eingabesequenz in beiden Richtungen (chronologisch und antichronologisch)
		Es verarbeitet die Eingabesequenz nur in umgekehrter Reihenfolge.
		Es verarbeitet die Eingabesequenz parallel.
114.	War	um können bidirektionale RNNs die Leistung verbessern?
		Weil sie die Trainingszeit verkürzen.
		Weil sie unterschiedliche Repräsentationen der Daten nutzen.
		Weil sie die Anzahl der Parameter reduzieren.
		Weil sie die Klassifikationsgenauigkeit direkt erhöhen.
115.	War	um ist es wichtig, zuerst einfache Modelle auszuprobieren?
		Weil sie schneller trainiert werden können.
		Weil sie eine Basis für die Erklärung der Nutzung eines komplexeren Modells bieten.
		Weil sie weniger Parameter haben.
		Weil sie immer die besten Ergebnisse liefern.
116.	Weld	che Art von Dropout sollte in RNNs angewendet werden?
		Zufälliges Dropout.
		Zeitlich konstantes Dropout.
		Kein Dropout.
		Nur Dropout auf die Eingabeschicht.
117.	Wan	n sind bidirektionale RNNs möglicherweise nicht geeignet?
		Wenn die jüngste Vergangenheit viel informativer ist als der Beginn der Sequenz.
		Wenn man Voraussagen treffen möchte, basierend auf die Vergangenheit.
		Wenn es sich um Textdaten handelt.
		Wenn die Sequenz in umgekehrter Reihenfolge verarbeitet werden soll.
118.	Was	ist ein Tensor im Kontext von Deep Learning?
		Eine spezielle Aktivierungsfunktion
		Ein Container für numerische Daten
		Ein Optimierungsverfahren
		Ein neuronales Netz

119.	Wie nennt man einen Tensor mit nur einer Zahl?
	Vektor
	Matrix
	Skalar
	Tabelle
120.	Woraus besteht ein 2D-Tensor typischerweise?
	Aus einer Liste von Skalaren
	Aus einer Liste von Matrizen
	Aus einem Array von Vektoren
	Aus einem Array von Bildern
121.	Welcher Begriff beschreibt die Anzahl der Achsen eines Tensors?
	Tiefe
	Breite
	Rang (Rank)
	Grösse
122.	Welcher dieser Tensors hat die Form eines Würfels aus Zahlen?
	1D-Tensor
	2D-Tensor
	3D-Tensor
	D-Tensor
123.	$\label{thm:continuous} Welches\ Datenformat\ wird\ typischerweise\ f\"ur\ Zeitreihendaten\ (Timeseries)\ verwendet?$
	2D-Tensor mit (samples, features)
	3D-Tensor mit (samples, timesteps, features)
	4D-Tensor mit (samples, height, width, channels)
	5D-Tensor mit (samples, channels, timesteps, features)
124.	Wie ist die typische Struktur eines 4D-Tensors für Bilddaten?
	(samples, features, labels, channels)
	(samples, channels, height, width)
	(samples, timesteps, channels)
	(features, samples, height, width)

125.	Wel	che Aussage uber Vektordaten ist korrekt?
		Vektordaten werden immer als 1D-Tensoren gespeichert
		Vektordaten bestehen meist aus 3D-Tensoren
		Vektordaten sind in der Regel als 2D-Tensoren organisiert, mit (samples, features)
		Vektordaten enthalten nur Zeitangaben
126.	Was	s ist ein Hauptvorteil von 1D Convolutional Neural Networks gegenüber RNNs?
		Höhere Genauigkeit bei Sprachverarbeitung
		Geringerer Rechenaufwand
		Berücksichtigen Langzeitabhängigkeiten besser
		Können keine Sequenzen verarbeiten
127.	Wel	che Aufgabe erfüllt ein 1D Convolutional Layer?
		Klassifiziert ganze Bilder
		Analysiert lokale Muster in Sequenzen
		Berechnet statistische Kennzahlen
		D. Sortiert Daten nach Zeit
128.	Was	s beschreibt "Translation Invariance" bei CNNs?
		Fähigkeit, Muster unabhängig von ihrer Position zu erkennen
		Fähigkeit, Wörter zwischen Sprachen zu übersetzen
		Anpassung der Lernrate über Zeit
		Reduktion der Trainingszeit
129.	Was	s bewirkt eine Pooling-Schicht im Zusammenhang mit 1D CNNs?
		Verstärkt Signale
		Fügt Rauschen hinzu
		Reduziert die Sequenzlänge
		Wandelt Text in Zahlen um
130.	Was	s ist ein Nachteil von 1D CNNs im Vergleich zu RNNs?
		Höherer Speicherverbrauch
		Unfähigkeit, Reihenfolge global zu berücksichtigen
		Nur für Bilder geeignet
		Sehr langsam in der Verarbeitung

131.	Wel	che Layer werden oft am Ende eines 1D CNN verwendet, um Klassifikation zu ermöglichen?
		Recurrent Layers
		Dense Layers
		Embedding Layers
		Batch-Normalization-Layers
132.	Was	s beschreibt ein "Window" bei einer 1D Convolution?
		Ein Modellparameter
		Ein Trainingsdatensatz
		Ein lokaler Abschnitt der Eingabesequenz
		Ein Visualisierungstool
133.	Was	passiert bei Max-Pooling in einer 1D Sequenz?
		Mittelwertbildung über alle Werte
		Auswahl des höchsten Werts in einem Patch
		Duplizieren von Sequenzteilen
		Addition aller Patches
134.	Wel	che Eigenschaft unterscheidet RNNs von 1D CNNs?
		RNNs sind translational invariant
		RNNs verarbeiten Daten ohne Reihenfolge
		RNNs sind auf die Reihenfolge der Eingaben sensitiv
		RNNs verwenden keine Gewichtungen
135.	Was	kann eine Kombination aus CNN und RNN ermöglichen?
		Schnelleres Training ohne Qualitätsverlust
		Gleichzeitige Text- und Bildverarbeitung
		Berücksichtigung von Reihenfolge bei langen Sequenzen
		Automatische Hyperparameterwahl
136.	Wel	che Art von Daten eignet sich typischerweise NICHT für 1D CNNs?
		Tonaufnahmen
		Zeitreihen
		Texte
		Farbbilder

137.	Was ist eine wichtige Designentscheidung bei 1D CNNs?	
	Anzahl der LSTM-Zellen	
	Fenstergröße (Kernel size)	
	Reihenfolge der Wörter	
	Verwendung von Backpropagation	
138.	Warum nutzt man in der Praxis oft mehrere gestapelte Convolution- und Pooli	ng-Schichten?
	Zur Visualisierung von Eingabedaten	
	Um Speicherplatz zu sparen	
	Um komplexere und längerfristige Muster zu erkennen	
	Um die Lernrate konstant zu halten	
139.	Was ist das Grundprinzip eines Multi-Input Modells?	
	Nutzung eines einzelnen Datentyps	
	Kombination verschiedener Eingangsdaten in einem Modell	
	Verwendung eines einzigen Neurons	
	Reduktion des Speichers	
140.	Welche Technik wird verwendet, um unterschiedliche Input-Datenströme zusam	ımenzuführen?
	Dropout	
	Add oder Concatenate Layer	
	Batch Normalization	
	Activation Layer	
141.	Was ermöglicht ein Multi-Input Modell?	
	Einsatz von nur einem Datentyp	
	Nutzung mehrerer unabhängiger Datenquellen	
	Reduktion der Modellgrösse	
	Entfernen von Bias	
142.	Wie funktioniert die naive Methode zur Kombination multimodaler Inputs?	
	Ignorieren einzelner Datenquellen	
	Training separater Modelle mit anschliessender Mittelung der Vorhersagen	1
	Training separater Modelle mit anschliessender Mittelung der Vorhersagen Reduktion der Anzahl der Inputs	1

143.	War	rum gilt das naive Verfahren bei Multi-Input Modellen als nachteilig?
		Es benötigt zu viele Daten
		Es erkennt keine Korrelationen zwischen den Eingaben
		Es verhindert Training
		Es nutzt zu viele Layer
144.	Was	s zeichnet Multi-Output Modelle aus?
		Sie erzeugen nur eine einzelne Vorhersage
		Sie können mehrere Zielattribute gleichzeitig vorhersagen
		Sie arbeiten nur mit Bildern
		Sie sind auf Audio beschränkt
145.	War	rum kann ein Multi-Output Modell Vorteile gegenüber mehreren Einzelmodellen haben?
		Geringere Trainingsdaten
		Gemeinsames Lernen von Zusammenhängen zwischen den Zielattributen
		Komplettes Vermeiden von Dropout
		Reduzierung der Anzahl an GPUs
	10.	Wie werden Verluste in einem Multi-Output Modell behandelt?
		Sie werden einzeln pro Zielattribut berechnet
		Es wird ein Gesamtverlust über alle Ausgaben gebildet
		Es wird eine gewichtete Gesamtverlust als Summe über alle Verlustfunktionen der einzelnen Zielattribute
		Nur der grösste Verlust zählt
146.	Wel	che Herausforderung besteht bei Multi-Input Modellen?
	•	Die Daten müssen die gleiche Form haben
		Unterschiedliche Eingabestrukturen müssen sinnvoll integriert werden
	•	Nur Bilddaten sind erlaubt
	•	Keine
147.	Was	s ist ein Vorteil von Multi-Input Modellen im Vergleich zu klassischen Modellen?
		Sie reduzieren die Anzahl der Epochen
		Sie ermöglichen die gleichzeitige Verarbeitung verschiedener Datenformate
		Sie verhindern alle Fehler
		Sie benötigen keine Labels

148.	Welche Aussage ist korrekt für ein Multi-Output Modell?
	Alle Ausgaben sind unabhängig
	Korrelationen zwischen Zielattributen können genutzt werden
	Nur ein Zielattribut wird gleichzeitig vorhergesagt
	Modelle sind auf Textdaten beschränkt
149.	Wofür stehen die Begriffe "Multiple Inputs" und "Multiple Outputs"?
	Für sequentielle Daten
	Für kombinierte Nutzung mehrerer Eingaben und Vorhersage mehrerer Ziele
	Für Zufallsergebnisse
	Für Layer-Normalisierung
150.	Was passiert, wenn mehrere Modelle in der naiven Multi-Input Methode trainiert werden?
	Jedes Modell wird separat trainiert und das Ergebnis gemittelt
	Es wird nur ein Modell trainiert
	Die Modelle verhindern sich gegenseitig
	Das Training wird abgebrochen
151.	Welche Aussage trifft auf Multi-Input Modelle zu?
	Sie nutzen immer nur eine einzige Datenquelle
	Sie erfordern zwingend Bilddaten
	Sie ermöglichen die Verarbeitung verschiedener Datenquellen im gleichen Modell
	Sie ersetzen vollständig CNNs
152.	Eine Residualverbindung besteht darin, frühere Darstellungen in den nachgelagerten Datenflus wieder einzuspeisen, sodass die Ausgabe
	nur die ursprüngliche Eingabe enthält
	nur die Transformation durch die Schicht enthält
	sowohl die ursprüngliche Eingabe als auch die Transformation durch die Schicht enthält
	entweder die ursprüngliche Eingabe oder die Transformation durch die Schicht enthält

153.	Was	ist die Hauptidee hinter dem Attention-Mechanismus?
		Alle Input-Teile gleichmässig zu gewichten.
		Bestimmten Teilen des Inputs mehr Bedeutung beizumessen als anderen.
		Die Input Sequence zu verkürzen.
		Die Dimensionalität der Input-Daten zu erhöhen.
154.	Was	ermöglicht der Attention-Mechanismus einem Modell in Bezug auf die Input Features?
		Nur das erste Feature der Sequence zu berücksichtigen.
		Features context-aware zu interpretieren.
		Die Anzahl der Features zu reduzieren.
	Ш	Alle Features zufällig zu gewichten.
155.		u dient der erste Schritt im Self-Attention Mechanismus, wenn man beispielsweise das Wort tion" in einem Satz betrachtet?
		Die grammatikalische Rolle von "station" zu bestimmen.
		Die Relevancy Scores zwischen "station" und jedem anderen Wort im Satz zu berechnen.
		Die häufigsten Wörter neben "station" zu finden.
		"station" durch ein Synonym zu ersetzen.
156.	Was	repräsentiert der resultierende Vektor nach Anwendung von Self-Attention auf ein Wort?
		Eine isolierte Darstellung des Wortes.
		Eine kontextualisierte Darstellung des Wortes unter Berücksichtigung seines Surrounding Context.
		Die semantische Ähnlichkeit zu einem festen Ankerwort.
		Die Frequenz des Wortes im gesamten Dataset.
157.	Was	bedeutet der Begriff "Multi-Head" im Kontext von Multi-Head Attention?
		Das Modell hat mehrere Output Layers.
		Der Self-Attention Layer operiert auf mehreren unabhängigen Repräsentationen (Sub-Spaces) gleichzeitig.
		Es werden mehrere verschiedene Attention-Mechanismen kombiniert.
		Das Modell kann mehrere Sprachen gleichzeitig verarbeiten.

158.	Weld	chen Nutzen hat die Verwendung von unabhangigen "Heads" in Multi-Head Attention?
		Jeder Head lernt, die gleiche Art von Features zu erkennen, um die Robustheit zu erhöhen.
		Es hilft dem Layer, verschiedene Gruppen von Features oder Beziehungen für jedes Token zu lernen.
		Es reduziert den Speicherbedarf des Modells.
		Es vereinfacht die mathematische Formulierung der Attention.
159.		ermöglicht es einem Transformer, die Beziehung zwischen Wörtern zu verstehen, die weit einander entfernt in einem Satz stehen?
		Die rekursive Struktur des Modells.
		Der Self-Attention Mechanismus, der alle Wortpaare direkt vergleicht.
		Ein fester Context Window Ansatz.
		Die Verwendung von Convolutional Layers.
160.		n ein Modell lernt, "mehr Aufmerksamkeit" auf bestimmte Features zu richten, was bedeutet für die internen Weights des Attention-Mechanismus?
		Die Weights für diese Features werden tendenziell grösser.
		Die Weights für diese Features werden tendenziell kleiner.
		Die Weights bleiben unverändert, nur die Activations ändern sich.
		Die Weights werden randomisiert.
161.	Wel	chen Vorteil bietet Multi-Head Attention gegenüber Single-Head Attention?
		Es ist immer schneller in der Berechnung.
		Es ermöglicht dem Modell, verschiedene Aspekte oder Subtypen von Beziehungen gleichzeitig in unterschiedlichen Sub-Spaces zu erfassen.
		Es benötigt weniger Parameter.
		Es ist einfacher zu implementieren.
162.	Was	ist der Hauptzweck des Transformer-Encoders?
		Text in Sprache umzuwandeln
		Eine Eingabesequenz in eine kontextbewusste Repräsentation zu überführen
		Zufällige Textgenerierung
		Bilderkennung

163.	Was ist eine Residual Connection im Transformer-Encoder?
	Eine Technik zur Optimierung von Verlustfunktionen
	Eine Methode zur Rechenzeitverkürzung
	Eine Verbindung, die den ursprünglichen Input beibehält und addiert
	Eine Art von Dropout-Verfahren
164.	Was macht die Multi-Head Attention im Transformer-Encoder?
	Rechnet nur den Mittelwert von Eingabewerten
	Erzeugt eine einfache gewichtete Summe
	Führt mehrere parallele Selbstaufmerksamkeiten durch
	Führt eine lineare Transformation durch
165.	Wozu dienen Dense Layers im Transformer-Encoder?
	Zum Filtern irrelevanter Wörter
	Zum Lernen von Repräsentationen
	Zum Erhöhen der Eingabesequenz
	Zum Maskieren von Tokens
166.	Was ist das Ergebnis des Transformer-Encoders?
	Eine einzelne Zahl
	Eine fixierte Textausgabe
	Eine Sequenz von kontextabhängigen Embeddings
	Ein Vektor mit Zufallswerten
167.	Was ermöglicht der Einsatz mehrerer Köpfe (Heads) in der Multi-Head Attention?
	Geringeren Speicherverbrauch
	Höhere Trainingsgeschwindigkeit
	Lernen verschiedener Aspekte der Eingabe
	Verringerung der Sequenzlänge
168.	Wozu dient Positional Encoding in einem Transformer?
	Um die Länge einer Sequenz zu erhöhen
	Um Wortbedeutungen zu normalisieren
	Um Positionsinformationen in die Eingabedaten zu integrieren

Was enthalt ein Embedding eines Tokens im Transformer?
Nur die Wortbedeutung
Wortvektor + Positionsvektor
Nur der Positionsvektor
Zufällige Initialisierung
Was passiert, wenn Positional Encoding weggelassen wird?
Das Modell kann Reihenfolgeinformationen nicht berücksichtigen
Das Modell funktioniert besser
Der Speicherbedarf sinkt
Der Output ist immer zufällig
Wofür wurden Transformer ursprünglich entwickelt?
Textklassifikation
Bildverarbeitung
Maschinelle Übersetzung
Clustering
Welche beiden Hauptkomponenten hat ein Transformer-Modell?
Attention-Modul und CNN
Input-Schicht und LSTM
Encoder und Decoder
Klassifikator und Regulator
Was geschieht während der Inferenzphase eines Seq2Seq-Modells?
Die Ausgabe wird direkt aus dem Zieltext gelesen
Die Zielsequenz wird komplett vorausgeladen
Die Ausgabe wird Schritt für Schritt generiert
Die Decoder-Schicht wird übersprungen
Welche Rolle spielt der Decoder im Transformer-Modell?
Kodiert den Quelltext
Normalisiert die Positionsembeddings
Generiert neue Tokens auf Basis von Eingabesequenz und bisherigen Tokens
Extrahiert Schlüsselwörter

175.	Was	s ist der Hauptzweck des Transformer-Encoders?
		Kontextabhängige Repräsentationen von Eingabetokens erzeugen
		Text generieren
		Zielsequenzen in Quellsequenzen übersetzen
		Das nächste Token in einer Zielsequenz vorhersagen
176.	Wel	cher Mechanismus verwendet der Transformer-Encoder um den Kontext zu berechnen?
		Rekurrentes Gedächtnis
		Self-Attention
	Ц	Convolutional-Filter
		Pooling
177.	Was	s versucht der Decoder vorherzusagen?
		Alle Tokens gleichzeitig
		Vorheriges Token
		Token $N+1$ basierend auf Tokens 0 bis N
		Ein zufälliges Token
178.		s wäre die Folge, wenn der Decoder während des Trainings vollen Zugriff auf die gesamte Zielse nz hätte?
		Schnellere Konvergenz
		Overfitting
		Perfekte Trainingsgenauigkeit, aber nutzlose Inferenz
		Underfitting