

Natural Language Processing

One hot Encoding

He is a good boy. She is also good.

Radhika is a good person.

Vocabulary

a, also, boy, good, He, is, person, She, Radhika

	а	also	boy	good	He	ls	person	She	Radhika
Index	0	1	2	3	4	5	6	7	8
Document #1	1	1	1	2	1	2	0	1	0
Document #2	1	0	0	1	0	1	1	0	1

Document as Vector

He is a good boy. She is also good.

Radhika is a good person.

Vocabulary

a, also, boy, good, He, is, person, She, Radhika

Word	Index
a	0
also	1
boy	2
good	3
Не	4
is	5
person	6
She	7
Radhika	8

Assign index for each word in Vocabulary

Word	Index	o	1	2	3	4	5	6	7	8
a	0	1	0	0	0	0	0	0	0	0
also	1									
boy	2									
good	3									
Не	4									
is	5									
person	6	_								
She	7									
Radhika	8	_								

Words as Vector

Word	Index	0	1	2	3	4	5	6	7	8
а	0	1	0	0	0	0	0	0	0	0
also	1	0	1	0	0	0	0	0	0	0
boy	2									
good	3									
He	4									
is	5									
person	6									
She	7									
Radhika	8									

Words as Vector

Word	Index	0	1	2	3	4	5	6	7	8
a	0	1	0	0	0	0	0	0	0	0
also	1	0	1	0	0	0	0	0	0	0
boy	2	0	0	1	0	0	0	0	0	0
good	3	0	0	0	1	0	0	0	0	0
He	4	0	0	0	0	1	0	0	0	0
is	5	0	0	0	0	0	1	0	0	0
person	6	0	0	0	0	0	0	1	0	0
She	7	0	0	0	0	0	0	0	1	0
Radhika	8	0	0	0	0	0	0	0	0	1

One hot encoding

Document #1

He is a good boy. She is also good.

Document#1	Word Index	0	1	2	3	4	5	6	7	8
He	4	0	0	0	0	1	0	0	0	0
is	5	0	0	0	0	0	1	0	0	0
a	0	1	0	0	0	0	0	0	0	0
good	3	0	0	0	1	0	0	0	0	0
boy	2	0	0	1	0	0	0	0	0	0
She	7	0	0	0	0	0	0	0	1	0
is	5	0	0	0	0	0	1	0	0	0
also	1	0	1	0	0	0	0	0	0	0
good	3	0	0	0	1	0	0	0	0	0

Document as Matrix

Document #2

Radhika is a good person.

Document#1	Word Index	0	1	2	3	4	5	6	7	8
Radhika	8	0	0	0	0	0	0	0	0	1
is	5	0	0	0	0	0	1	0	0	0
а	0	1	0	0	0	0	0	0	0	0
good	3	0	0	0	1	0	0	0	0	0
person	6	0	0	0	0	0	0	1	0	0

Document -> 5 x 9 matrix

Discovering relationships between Words

King Queen One hot vector Child

Can we use TF-IDF or one hot vector to solve this equation?

920 = 920

Which is similar to 'cat'

Plane

Bed

Dog

Boy

Discovering Semantic relationship using

Word2Vec

What does Word2Vec do?

How does Word2Vec work?

The Sun rises in the east

Given a word, what are the nearby word(s)

The Sun rises in the east

(Sun, The)

The	Sun	rises	in	the	east
The	Sun	rises	in	the	east

(Sun, The)

(Sun, The)

(The, Sun) (rises, Sun)

The	Sun	rises	in	the	east
The	Sun	rises	in	the	east
				I	
The	Sun	rises	in	the	east

Find probability of a word being 'nearby word'

						Context, Tar
The	Sun	rises	in	the	east	(Sun, The)
					1	
The	Sun	rises	in	the	east	(The, Sun) (rises, Sun)
	'					
The	Sun	rises	in	the	east	(Sun, rises) (in, rises)

What is considered near?

Window Size

The	Sun	rises	in	the	east
-----	-----	-------	----	-----	------

Window size = 1

(rise, in) (the, in)

Window Size

The	Sun	rises	in	the	east

Window size = 1

(in, rises) (in, the)

Window size = 2

(rises, in) (Sun, in) (the, in) (east, in)

Word2Vec Embeddings

2 ways to get it

CBOW model

CBOW model

Skip-Gram model

Predict the 'Context' words

Skip-Gram model

Predict the 'Context' words

Which approach will work better?

Skip-Gram

Building Skip-Gram model

Proprietary content. & Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Let's build a very simple Neural network

1 Input Layer, 1 Hidden Layer, 1 Output Layer

The Input Layer

o

1

o

o

O

...

•••

O

O

О

1

o

o

О

•••

...

O

О

Size of the input vector?

 W_{t}

0

1

O

0

О

•••

...

O

О

Same as vocabulary size

 $\boldsymbol{W_t}$

[1,10000]

Assume we have 10000 words vocabulary

 W_t

o

0

The Hidden Layer

How many neurons in hidden layer?

Let's have 50

(or whatever you like)

How many hidden layer outputs for each Word?

 $\boldsymbol{W_t}$

50 Same as number of neurons in hidden layer

The Output Layer

How many Outputs?

10,000 Same as Vocabulary size

10,000
Predictions are a lot...how do we handle it better?

10,000
Predictions are a lot...how do we handle it better?

NEGATIVE SAMPLING

Negative Sampling

Only a few weights are updated

- 1. Weights corresponding to Positive outputs (Window Size)
- 2. Very small number of weights for Negative output
 - a. 5-20 for small datasets
 - b. 2-5 for Large dataset

What happens after training?

For each Word in vocabulary, we get...

50 numbers

For each Word in vocabulary, we get...

 W_{t}

This is how we convert words into numbers...

and discover semantic relationships between words

Building Word2Vec Model

Using gensim

Using Pre-Trained Word2Vec model

Sentiment Analysis

Keras Embedding Layer

Input_dim → Possible Input values

Output_dim → How many numbers for each Input value

 $Input_length \rightarrow How\ many\ input\ numbers\ in\ each\ Example$

Weights → Pre-trained Embeddings, if any