

Acoustical Scattering, Propagation, and Attenuation Caused by Two Abundant Pacific Schooling Species: Humboldt Squid and Hake

Kelly J. Benoit-Bird

College of Oceanic and Atmospheric Sciences

104 Oceanography Admin Bldg

Oregon State University

Corvallis, OR 97331-5503

Phone: (541) 737-2063 Fax: (541) 737-2064 email: kbenoit@coas.oregonstate.edu

Joseph D. Warren

School of Marine and Atmospheric Sciences

Stony Brook University

Marine Sciences Research Center

Stony Brook - Southampton

239 Montauk Hwy

Southampton, NY 11968

Phone: 631-632-5045 email: joe.warren@stonybrook.edu

Award #: N00014-11-1-0146

LONG-TERM GOALS

Our long-term goal is to predict the acoustic characteristics expected from aggregations of hake and jumbo squid off the west coast of North America within the frequency range of tactical, low to mid-frequency naval sonars.

OBJECTIVES

Our objectives are to:

- Measure the material properties of jumbo squid and hake
- Characterize the inhomogeneity of these properties and identify important scattering mechanisms
- Develop target strength models for both species as a function of frequency and depth
- Measure target strength of individuals of both species to validate models
- Measure in situ the spatial and temporal distributions of squid and hake
- Develop propagation, attenuation, and scattering models for these aggregations

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE 30 SEP 2013	2. REPORT TYPE	3. DATES COVERED 00-00-2013 to 00-00-2013		
4. TITLE AND SUBTITLE Acoustical Scattering, Propagation, and Attenuation Caused by Two Abundant Pacific Schooling Species: Humboldt Squid and Hake			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Oregon State University,College of Oceanic and Atmospheric Sciences,104 COAS Administration Building,Corvallis,OR,97331-5503			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF: a. REPORT b. ABSTRACT c. THIS PAGE unclassified unclassified unclassified			17. LIMITATION OF ABSTRACT Same as Report (SAR)	18. NUMBER OF PAGES 8
				19a. NAME OF RESPONSIBLE PERSON

APPROACH

To accomplish our goal of predicting the in situ scattering, propagation, and attenuation from monospecific and mixed schools of squid and hake, we will combine information from field surveys of aggregations with measurements of the biological and physical habitat surrounding these aggregations to identify key parameters related to the distribution and behavior of these animals. These parameters will be used to create probability surfaces for aggregations of various types. These surfaces will be combined with the acoustic scattering models to predict the range of acoustic scattering expected from this biologically created acoustic uncertainty under given environmental conditions.

WORK COMPLETED

As part of an ONR supported cruise (26 July – 10 August, 2012), we collected physical samples and in situ data to be used in understanding and predicting the scattering, propagation, and attenuation from monospecific and mixed schools of squid and hake. Schooling fish can cause strong acoustic scattering and attenuation, dramatically altering the propagation of sound, particularly in coastal environments. Off the west coast of the United States, an area important for acoustical testing and tactical exercises, the most abundant species by biomass is Pacific hake, *Merluccius productus*, a fish with an air-filled swimbladder that averages 50 cm in length with maximum lengths of up to 90 cm. A more recent immigrant to these waters, is the similarly sized and highly abundant jumbo or Humboldt squid, *Dosidicus gigas*, which lacks any air-filled cavities. Before the invasion of Humboldt squid into the California current in the mid 1990's, aggregations of hake were shown to be the strongest biological sources of low frequency (e.g. hundreds of Hz to tens of kHz) acoustic scattering off the US West coast. Given the similarities observed in the scattering of individual hake and jumbo squid, it is highly likely that aggregations of squid show similarly strong scattering within the frequency band of tactical naval sonars.

During this field effort, we collected in situ data from aggregations of Pacific hake that ranged in length from 20 to 50 cm. These aggregations ranged from discrete schools to extensive layers sometimes nested within each other. These hake aggregations frequently overlapped with aggregations of other organisms including larval fish with large swimbladders, myctophids that make up the deep scattering layer, and Humboldt squid. We were able to measure aggregations under this full range of conditions at frequencies ranging from 10 kHz up to 200 kHz, including broadband measurements at tens of kHz.

As part of our in situ observations, we were able to make in situ measurements of target strength over the full frequency range used for a large number of individuals. In addition to in situ data, a large number of samples of the species observed within our study area was obtained. In addition to being used for ground-truthing, the material properties (density contrast and sound speed) of more than 1500 individuals were measured. This large sample size combined with careful measures of swimbladder shape, reproductive condition, stomach fullness, and other independent variables will allow us to examine the effects of biological variability on acoustic characteristics of these animals. Finally, a number of these individual animals were preserved for characterization using CT scanning for detailed acoustical modeling.

Measurement of material properties

Since the previous annual report, we have completed the measurement and analysis of the material properties (density and sound speed contrast) of the two target species (Pacific Hake, Humboldt Squid) (Objective #1, Figure 1) as well as several other taxa that were found in the area and may be acoustically important (e.g. myctophids; euphausiids, other crustaceans, larval fish and squid, and gelatinous zooplankton). Two manuscripts detailing these results are undergoing internal revision and are planned to be submitted later this calendar year (they are also the Master's Thesis of Kaylyn Becker, a student supported by this project).

Figure 1. Specimens collected during the research cruise whose material properties were analyzed including (from left to right): euphausiids, myctophids, Pacific hake, Humboldt squid.

For Humboldt squid, all “soft” body parts (mantle, arm, tentacle, braincase, and eye) had density contrast values (g) that were 1-6% higher than the surrounding seawater (Figure 2). These values are comparable to those for other fluid-like scatterers, although there was wide variability in the density contrast for some parts, specifically the squid braincase.

Figure 2. Density contrast (g) for “soft” Humboldt squid body parts measured. The lower line of each box represents the 1st quartile, the middle bolded line represents the median, and the top line of the box represents the 3rd quartile. The whiskers of the plot represent the minimum and maximum values excluding the outliers, and the circles mark any outliers.

The “hard” parts (beak, pen) of the Humboldt squid had larger g values than the “soft” parts as would be expected (Figure 3). These measurements were made in the laboratory post-cruise as the method used at sea could not measure g values that were this large. Squid beaks were significantly more dense than any other part of the squid.

Figure 3. Density contrast (g) for Humboldt squid hard parts. The lower line of each box represents the 1st quartile, the middle bolded line represents the median, and the top line of the box represents the 3rd quartile. The whiskers of the plot represent the minimum and maximum values excluding the outliers, and the circles mark any outliers.

In general, Pacific hake tissue had density contrast values similar to the values for squid “soft” parts; but the hake tissue values were larger and varied less than tissue from other fish (myctophids) (Figure 4). Myctophid fish tissue values varied greatly particularly between the lantern fish and headlight fish species. Unfortunately, we did not collect enough individual squid and hake to examine variability between individuals from different geographic regions or other characteristics (size, age). We did examine some of these relationships for the animals that we did catch enough individuals of which were primarily different zooplankton species. Zooplankton density contrast values varied both within and among different species (Figure 5) as well as for euphausiids from different geographic areas (Figure 6). We are examining whether these differences are the result of differences in animal size or environmental conditions.

Figure 4. Density contrast (g) for Pacific hake and myctophid muscle measured. The lower line of each box represents the 1st quartile, the middle bolded line represents the median, and the top line of the box represents the 3rd quartile. The whiskers of the plot represent the minimum and maximum values excluding the outliers, and the circles mark any outliers.

Figure 5. Density contrast (g) for seven different zooplankton taxa. The lower line of each box represents the 1st quartile, the middle bolded line represents the median, and the top line of the box represents the 3rd quartile. The whiskers of the plot represent the minimum and maximum values excluding the outliers, and the circles mark any outliers.

Figure 6. Euphausiid density contrast at the three different sample sites, A1, B, and A2. The lower line of each box represents the 1st quartile, the middle bolded line represents the median, and the top line of the box represents the 3rd quartile. The whiskers of the plot represent the minimum and maximum values excluding the outliers, and the circles mark any outliers.

Sound speed contrast measurements were made for several different taxa including Humboldt squid and Pacific hake (Table 1). The measurement technique used requires a minimum volume of organisms (or parts of organisms) so measurements were made on multiple animals or pieces of animal tissue. Interesting findings include: hake muscle tissue h was very close to 1 while g was 2-4% more dense than surrounding seawater and that the squid braincase was composed of different portions with different firmnesses (referred to as “squishy” and “firm” in the lab book notes). The softer braincase had an h value less than unity while the firm braincase part had an h value greater than 1. Since acoustic scattering occurs whenever there are density or soundspeed contrasts, this may suggest that the braincase is an important scattering mechanism within the Humboldt squid.

Table 1: The mean and standard deviation (sd) of speed contrast (h) measurements for all zooplankton taxa, fish muscle, and squid body parts measured. The number of replicates is n.

Sound Speed Contrast (h)			
Species/Body Part	n	mean	sd
Euphausiids	17	1.019	0.0092
Shrimp (<i>Sergestes similis</i>)	2	1.028	<0.0001
Pacific Hake Muscle	7	0.9945	0.0148
UID Myctophids	1	1.015	n/a
Humboldt Squid Mantle	3	1.023	0.0045
Humboldt Squid Braincase - squishy	1	0.9422	na
Humboldt Squid Braincase - firm	1	1.0250	na

Material property inhomogeneities and identification of scattering mechanisms

Whole individual specimens of Pacific hake and Humboldt squid as well as myctophids were frozen during the cruise for later analysis to examine the three-dimensional structure of the material properties of these organisms. Since these specimens are extremely valuable and irreplaceable, we have begun the process of determining which method will provide the highest-quality data regarding the 3-D structure of the material properties and scattering mechanisms in these animals. Stony Brook University's Imaging Center has a "mouse CT" scanner which provides very high resolution (~70 micron) slices of the density contrast of a specimen. However, at this fine resolution, specimen size is limited. Using local fish specimens, we have collected preliminary data to determine whether using the high-resolution of this device is needed. Two local fish containing swimbladders (mummichog and Atlantic silverside) have been scanned (Figure 7). The scans clearly show the bones and swimbladder in the animals as well as differences within the tissues/organs of the fish.

Figure 7. A dorsal scan (similar to an x-ray) of a mummichog (left), two 2-D slices through the mummichog showing the swimbladder (empty/black space inside fish), spine (just to left of swimbladder), and different tissues (right of swimbladder) (middle two images), and a dorsal scan of an Atlantic silverside (right).

Develop propagation, attenuation, and scattering models for these aggregations

We have identified an incoming graduate student who will work on this project and the student has begun construction of experimental apparatus for conducting multiple-scatterer aggregation experiments using inert targets. Preliminary data using this system with individual targets have been collected and are being analyzed. We have obtained University IACUC approval and NY DEC approval to collect local fish which will be used with this system (most likely next spring/summer/fall) to examine whether the results from the inert targets can be applied to actual biological targets. These data will be used to test the validity and accuracy of the theoretical scattering, attenuation, and propagation models developed in this project.

RESULTS

The measurements and samples obtained are providing data on the material properties of animals, the variables that drive inhomogeneity of these properties, and helping us to identify important scattering mechanisms in soft-bodied animals. All of these data will be used to develop species and depth specific target strength models that will be validated against the data collected in situ. These individual models will be combined with field observations of the spatial and temporal distributions of squid and hake to create predictions of the acoustic characteristics expected from aggregations of hake and jumbo squid off the west coast of North America within the frequency range of tactical, low to mid-frequency naval sonars.

IMPACT/APPLICATION

The use of acoustics in coastal waters for sensing and detection requires understanding the natural sources of variance in propagation, attenuation, and scattering. Recent work has revealed that aggregations of fish and other biota are, in some cases, the largest sources of this variance. We will extend these studies to make quantitative predictions about scattering, propagation, and attenuation at low to mid frequencies from aggregations of two abundant, large species off the west coast of North America, an important navy tactical and training area. These species have remarkably different morphologies and internal characteristics, yet both show strong scattering over the same range of frequencies, presenting a unique opportunity to evaluate the mechanisms of scattering from individual animals as well as mono- and hetero-specific aggregations. The models, measurements, and predictions resulting from this work will be directly applicable to naval operations within the habitat of hake and squid and will extend our general understanding of biologically driven acoustic processes.

RELATED PROJECTS

This work is part of a Basic Research Challenge initiative of Fish Acoustics and is related to the other projects within this initiative. Most notably, some field work for this project was conducted in conjunction with efforts by Gauss et al. and Diachok.

HONORS/AWARDS/PRIZES

Kelly Benoit-Bird

2010 **MacArthur Fellowship**, John D. and Catherine T. MacArthur Foundation

2011 **Ocean Sciences Meeting** Plenary Speaker

2012 **PopTech** Science Fellow

2012 **Oregon State University Promising Scholar**

2012 **IEEE Distinguished Lecturer**

Joseph Warren

2011 **Promotion to Associate Professor** (with tenure)