Assignment 4

CSE 517: Natural Language Processing - University of Washington Winter 2022

Solution 1.1

In this question we need to find the most similar word and its cosine similarity for given words. To represent words, I used 50-dimensional GloVe vectors 400,000 words. I began by splitting the vocabulary set and mapped words to their GloVe vector representation in the dictionary. I used cosine similarity to calculate the degree of similarity between two embedding vectors for the two words. It is defined as follows:

similarity
$$(A, B) = \frac{A \cdot B}{|A| \times |B|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$
.....(1)

where A and B are the dot product (or inner product) of two vectors.

I also used Euclidean distance to find similar words. The Euclidean distance for two vectors $x = [x_1, x_2, \dots, x_n]$ and $[y_1, y_2, \dots, y_n]$ is given by $\sqrt{\sum_i (x_i - y_i)^2}$

Below table shows the top 3 similar words and its cosine similarity.

Words	Top 3 similar words using Euclidean distance	Cosine similarity (CS)
Dog	cat 2.6811304	CS(dog, cat) = 0.8798
	dogs 3.2425272	CS(dog, dogs) = 0.8344
	puppy 3.9500551	CS(dog, puppy) = 0.7236
Whale	shark 3.657539	CS(Whale, whales) = 0.8039
	dolphin 3.7841108	CS(Whale, shark) = 0.7840
	whales 4.000368	CS(Whale, dolphin) = 0.7471
Before	after 2.2805324	CS(before, after)= 0.9246
	when 2.6176212	CS(before, when) = 0.8950
	again 2.9376447	CS(before, again)= 0.8587
however	although 1.2712862	CS(however, although)= 0.9658
	though 1.8014803	CS(however, though)= 0.9302
	but 2.6178648	CS(however, but)= 0.8912
fabricate	invent 3.2982993	CS(fabricate, invent)= 0.7040
	embellish 3.4175081	CS(fabricate, embellish)= 0.6367
	synthesise 3.6254725	CS(fabricate, synthesise)= 0.5536

Solution 1.2

The word analogies can be computed from by using the given a,b,c, and d words, the approximate embedding for, d is determined by:

$$V_{\rm d} = V_{\rm c} + (V_{\rm b} - V_{\rm a})$$

After computing each target vector, find the top three candidates by cosine similarity.

Words	Top 3 candidates and their	Top 3 candidates' similarity to	
	similarities	the target vector	
dog: puppy:: cat:?	kitten 3.8146477	CS(cat, kitten) = 0.5581	
	cat 3.9500551	CS(cat, cat) = 1	
	puppies 4.0255	CS(cat, puppies) = 0.5544	
speak : speaker :: sing : ?	speak 7.5174046	CS(sing, speak) = 0.5701	
	sang 7.5502667	CS(sing, sang) = 0.7942	
	cry 7.610008	CS(sing, cry) = 0.6323	
France: French:: England	scottish 4.189797	CS(England, scottish)= 0.6243	
: ?	english 4.2134395	CS(England, english)= 0.6110	
	welsh 4.718583	CS(England, welsh)= 0.5854	
France: wine:: England:?	wines 3.5871894	CS(England, wines)= 0.2672	
	tasting 4.2200603	CS(England, tasting)= 0.1242	
	beer 4.5414815	CS(England, beer)= 0.2118]	

Solution 1. 3

For this section of the problem, I picked a dataset of 1000 positively and 1000 negatively processed reviews by Pang/Lee ACL 2004.

Data pre-processing: I first created a data frame with one column for "review" and a second column for positive and negative "sentiments". In total the dataset has $64720 \text{ rows} \times 2 \text{ columns}$. In the pre-processing step, we removed special characters, HTML tags, punctuation, numbers and remove all the single characters and replace it by a space which creates multiple spaces in our text.

After the preprocessing step we stored the reviews in a list. Next, I converted the labels into digits. In our dataset we have two labels, positive and negative sentiments, I assigned 1 for 'positive

sentiments' and 0 for 'negative sentiments. After this I split the all data into 38832 samples of train set and validation and test set has 12944 samples.

Following this, I prepared the embedding layer using Keras Tokenizer by first converting the dictionary of the word in the dataset. By assigning each word as a key and a unique index as the key's value. Each list can only have 100 items. Lists with more than 100 items will be truncated to a maximum of 100. Lists with lengths less than 100 are appended with 0 until they reach the maximum length. After this step, all the lists will be the same length.

In this text classification problem, we use the Glove word embedding with 50 dimensions that we used in the first part of this assignment. Using glove embedding, we will create a dictionary with words as keys and their embedding list as values. Following this step, we created the embedding matrix, which will have 100 columns and each row will be the index of the word in the dataset. Each column will contain the Glove word embeddings for the word in the dataset.

Text classification model: I used two methods to do the text classification, first by deep neural network and then by convolution neural network.

a) *Deep neural network*: The embedding layer has 100 input length and 32264 vocabulary size. We pass the embedding matrix that we created through the weights. The embedding layer is then added to the model, followed by a single dense layer with a sigmoid activation function. Hyperparameter batch size is 128 and epochs is 6. The following is a model summary:

Layer (type)	Output Shape	Param #
embedding (Embedding)	(None, 100, 100)	3226400
flatten (Flatten)	(None, 10000)	0
dense (Dense)	(None, 1)	10001

Total params: 3,236,401
Trainable params: 10,001

Non-trainable params: 3,226,400

None

Table 1: Neural network model				
Dataset Loss Accuracy				
Training data	0.6301	0.6384		
Validation data	0.5797	0.6909		
Test data	0.7323	0.5598		

Test Score: 0.732251763343811 Test Accuracy: 0.5597960352897644 b) Convolution neural network: This type of network is typically used for 2D data classification, but because the text data is one dimensional, we extract features from the dataset using 1D convolutional neural networks. I built CNN using one convolution layer and one pooling layer. The embedding layer will remain the same as it was obtained during the coding process in the beginning steps. Following this, I created a convolution layer with 128 features, 5 kernal sizes, and a sigmoid activation function. To reduce the feature size, I used global max pooling. The dense layer with a sigmoid function was added as the final step. The model is summarized below:

Layer (type)	Output	Shape	Param #
embedding_5 (Embedding)	(None,	100, 100)	3226400
convld (ConvlD)	(None,	96, 128)	64128
global_max_pooling1d (Global	(None,	128)	0
dense_1 (Dense)	(None,	1)	129

Total params: 3,290,657
Trainable params: 64,257

Non-trainable params: 3,226,400

Table 1: Convolution neural network model			
Dataset Loss Accuracy			
Training data	0.4673	0.7871	
Validation data	0.3575	0.8816	
Test data	0.7148	0.6141	

Test Score: 0.714830756187439 Test Accuracy: 0.6141068935394287

Below shows the pression, recall and f1-score (macro average) for the CNN model.

225 55 26		precision	recall	f1-score	support
	0	0.49	1.00	0.65	6286
	1	0.00	0.00	0.00	6658
accur	асу			0.49	12944
macro	avg	0.24	0.50	0.33	12944
weighted	avg	0.24	0.49	0.32	12944

Solution 2.

Part A: In the problem we are given a sentiment analysis model in which the predicted sentiment is given by:

$$score(w_1 \dots w_2) = \theta \cdot \sum_{i=1}^m X_{w_i}$$

Where, w_i is the i^{th} word, X_{w_i} is the embedding for the i^{th} word, input is of length m and θ is the parameter. We need to prove that the two inequalities cannot coexist:

Here, we make assumption that the parameter, $\theta = 1$ and let the vector representation for 'good', 'not' and 'bad' be as follows:

$$good = [10 -1 10 -1]$$

 $not = [-5 1 -5 1]$
 $bad = [0 5 0 5]$

Case 1: score(good) > score (not good) score(good) = 1 * [10 -1 10 -1] = [10 -1 10 -1] score (not good) = 1* ([-5 1 -5 1] + [10 -1 10 -1]) = [5 0 5 0] Hence proved, [10 -1 10 -1] > [5 0 5 0], holds true.

Case 2: score(bad) < score (not bad) score(bad) = 1* [0 5 0 5] = [0 5 0 5] score (not bad) = 1* ([-5 1 -5 1] [0 5 0 5]) = [-5 6 -5 6] Hence proved, [0 5 0 5] < [-5 6 -5 6], does not hold true.

Part B) In this section, we construct an example of a pair of inequalities like the one above, but with a slightly different model.

$$score(w_1 w_2) = \frac{1}{m} (\theta . \sum_{i=1}^{m} X_{w_i})$$

In my example, I have taken three words namely, 'clean', 'hardly', 'dirty'. The parameter, θ be 1 and m = 10.

Let the vector representation for the words be as follows:

Case 1: score(active) > score (less active)

Score (active) =
$$\frac{1}{10} * 1 * [5 - 15 - 1]$$

Score (less active) = $\frac{1}{10} * 1 * ([-2 \ 1 - 2 \ 1] * [5 - 15 - 1]) = $\frac{1}{10} [3 \ 0 \ 3 \ 0]$
Hence proved, score(active) > score (less active)
 $\frac{1}{10} [5 - 15 - 1] > \frac{1}{10} [3 \ 0 \ 3 \ 0] => [5 - 15 - 1]> [3 \ 0 \ 3 \ 0]$$

Case 2: score(tired) < score (less tired)

Score (tired) =
$$\frac{1}{10} * 1 * [0 \ 2 \ 0 \ 2]$$

Score (less tired) = $\frac{1}{10} * 1 * ([-2 \ 1 \ -2 \ 1] \ [0 \ 10 \ 0 \ 10]) = $\frac{1}{10} \ [-2 \ 11 \ -2 \ 11]$
Hence proved, score(tired) < score (less tired)
 $\frac{1}{10} \ [0 \ 2 \ 0 \ 2] < \frac{1}{10} \ [-2 \ 11 \ -2 \ 11] => [0 \ 2 \ 0 \ 2] < [-2 \ 11 \ -2 \ 11]$$

Solution 3.

In this problem we consider the model below which can achieve the inequalities (1)-(2).

$$score(w_1 w_2) = \theta . ReLU(\sum_{i=1}^{m} X_{w_i})$$

Let's assume the same vector representation below:

$$good = [10 -1 \ 10 -1]$$

 $not = [-5 \ 1 -5 \ 1]$
 $bad = [0 \ 5 \ 0 \ 5]$

We know the activation function ReLU is given by $g(x) = \max(0, x)$. Here, $x = (\sum_{i=1}^{m} X_{w_i})$. Let the parameter θ be 1.

```
Case 1: score(good) > score (not good)
score(good) = 1 * max ([10 -1 10 -1]) = [10 0 10 0]
score (not good) = 1* max ([-5 1 -5 1] + [10 -1 10 -1]) = [5 0 5 0]
```

Hence proved, $[10\ 0\ 10\ 0] > [5\ 0\ 5\ 0]$ holds true.

```
Case 2: score(bad) < score (not bad)
score(bad) = 1* max [0 5 0 5] = [0 5 0 5]
score (not bad) = 1* max ([-5 1 -5 1] [0 5 0 5]) = [0 6 0 6]
```

Hence proved, [0 5 0 5] < [0 6 0 6] holds true.

References:

- [1] Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All rights reserved. Draft of December 29, 2021.
- [2] Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.
- [3] Natural Language Processing by Jacob Eisenstein
- [4] McKinney, Wes. "Pandas, python data analysis library." URL http://pandas. pydata. org (2015).
- [5] Link: https://stackoverflow.com/questions/45113130/how-to-add-new-embeddings-for-unknown-words-in-tensorflow-training-pre-set-fo
- [6] Link: https://www.cs.toronto.edu/~lczhang/321/
- [7] Link: https://stackabuse.com/python-for-nlp-movie-sentiment-analysis-using-deep-learning-in-keras/
- [8] Natural Language Processing with Deep Learning CS224N by Christopher Manning
- [9] Ed discussion board for A3 Assignment and discord group.