CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 1

Partie I - Développement ternaire

Etude de l'application σ

Q1. Montrons que ℓ^{∞} est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

La suite nulle est une suite réelle bornée et donc un élément de ℓ^{∞} .

Soient $((u_n)_{n\in\mathbb{N}^*}, (v_n)_{n\in\mathbb{N}^*}) \in (\ell^\infty)^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Il existe deux réels positifs M_u et M_v tels que, pour tout $n \in \mathbb{N}^*$, $|u_n| \leqslant M_u$ et $|v_n| \leqslant M_v$. Pour tout $n \in \mathbb{N}^*$,

$$|\lambda u_n + \mu v_n| \leq |\lambda| |u_n| + |\mu| |v_n| \leq |\lambda| M_u + |\mu| M_v.$$

Puisque le réel $|\lambda|M_u + |\mu|M_v$ est indépendant de n, ceci montre que la suite $\lambda(u_n) + \mu(v_n)$ est un élément de ℓ^{∞} . En résumé, ℓ^{∞} contient 0 et est stable par combinaison linéaire. Donc, ℓ^{∞} est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$. En particulier,

$$\ell^{\infty}$$
 est un \mathbb{R} -espace vectoriel.

Montrons que $\| \|$ est une norme sur ℓ^{∞} .

- Soit $u = (u_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$. L'ensemble $E_u = \{|u_n|, n \in \mathbb{N}^*\}$ est une partie non vide et majorée de \mathbb{R} . Donc, E_u admet une borne supérieure dans \mathbb{R} . On en déduit l'existence de $\|u\|$ dans \mathbb{R} .
- $\bullet \ \mathrm{Soit} \ \mathfrak{u}=\left(\mathfrak{u}_{\mathfrak{n}}\right)_{\mathfrak{n}\in\mathbb{N}^*}\in\ell^{\infty}. \ \|\mathfrak{u}\|\geqslant |\mathfrak{u}_1|\geqslant 0. \ \mathrm{Donc}, \ \forall \mathfrak{u}\in\ell^{\infty}, \ \|\mathfrak{u}\|\geqslant 0 \ (\mathrm{positivit\acute{e}}).$
- $\bullet \ \mathrm{Soit} \ \mathfrak{u} = \left(\mathfrak{u}_{\mathfrak{n}}\right)_{\mathfrak{n} \in \mathbb{N}^*} \in \ell^{\infty}. \ \|\mathfrak{u}\| = 0 \Rightarrow \forall \mathfrak{n} \in \mathbb{N}^*, \ |\mathfrak{u}_{\mathfrak{n}}| \leqslant \|\mathfrak{u}\| = 0 \Rightarrow \forall \mathfrak{n} \in \mathbb{N}^*, \ \mathfrak{u}_{\mathfrak{n}} = 0 \Rightarrow \mathfrak{u} = 0. \ \mathrm{Donc}, \ \forall \mathfrak{u} \in \ell^{\infty}, \ (\|\mathfrak{u}\| = 0 \Rightarrow \mathfrak{u} = 0) \ (\mathrm{axiome \ de \ s\'eparation}).$
- Soient $u = (u_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$ et $\lambda \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, $|\lambda u_n| = |\lambda| |u_n| \le |\lambda| ||u||$. Ainsi, $|\lambda| ||u||$ est un majorant de $E_{\lambda u}$. Puisque $||\lambda u||$ est le plus petit de ces majorants, on a montré que $||\lambda u|| \le |\lambda| ||u||$.

Cette inégalité est vraie pour tout $u \in \ell^{\infty}$ et tout $\lambda \in \mathbb{R}$. Inversement, si $\lambda = 0$, on a immédiatement $\|\lambda u\| = |\lambda| \|u\|$. Sinon, $\lambda \neq 0$ et on applique l'inégalité précédente au réel $\lambda' = \frac{1}{\lambda}$ et à la suite $u' = \lambda u \in \ell^{\infty}$. On obtient $\|u\| = \|\lambda' u'\| \leq |\lambda'| \|u'\| = \frac{1}{|\lambda|} \|u\|$ et donc $|\lambda| \|u\| \leq \|\lambda u\|$ (car $|\lambda| > 0$). Finalement, $\forall u \in \ell^{\infty}$, $\forall \lambda \in \mathbb{R}$, $\|\lambda u\| = |\lambda| \|u\|$ (homogénéité).

 $\bullet \ \mathrm{Soient} \ u = \left(u_n\right)_{n \in \mathbb{N}^*} \ \mathrm{et} \ \nu = \left(\nu_n\right)_{n \in \mathbb{N}^*} \ \mathrm{deux} \ \mathrm{\'e}l\'{\mathrm{e}ments} \ \mathrm{de} \ \ell^\infty. \ \mathrm{Pour} \ \mathrm{tout} \ n \in \mathbb{N}^*,$

$$|u_n + v_n| \le |u_n| + |v_n| \le ||u|| + ||v||.$$

Ainsi, $\|\mathbf{u}\| + \|\mathbf{v}\|$ est un majorant de $E_{\mathbf{u}+\mathbf{v}}$. Puisque $\|\mathbf{u}+\mathbf{v}\|$ est le plus petit de ces majorants, on a donc $\|\mathbf{u}+\mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$. Donc, $\forall (\mathbf{u},\mathbf{v}) \in (\ell^{\infty})^2$, $\|\mathbf{u}+\mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ (inégalité triangulaire).

On a montré que

$$\| \|$$
 est une norme sur ℓ^{∞} .

 $\mathbf{Q2.} \ \mathrm{Soit} \ \mathfrak{u} = (\mathfrak{u}_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}^*}. \ \mathrm{Pour} \ \mathfrak{n} \in \mathbb{N}^*, \ \mathrm{posons} \ \nu_{\mathfrak{n}} = \frac{\mathfrak{u}_{\mathfrak{n}}}{\mathfrak{z}^{\mathfrak{n}}}. \ \mathrm{Pour} \ \mathrm{tout} \ \mathfrak{n} \in \mathbb{N}^*,$

$$|v_n| = \frac{|u_n|}{3^n} \leqslant \frac{\|u\|}{3^n}.$$

La série géométrique de terme général $\frac{\|u\|}{3^n}$, $n \in \mathbb{N}^*$, converge car $\frac{1}{3} \in]-1,1[$. Donc, la série de terme général ν_n , $n \in \mathbb{N}^*$, converge absolument et en particulier converge.

 $\forall u \in \ell^{\infty}$, la série de terme général $\frac{u_n}{3^n}$, $n \in \mathbb{N}^*$, est convergente.

Q3. σ est définie sur ℓ^{∞} à valeurs dans \mathbb{R} . Soient $(\mathfrak{u}, \mathfrak{v}) \in (\ell^{\infty})^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$\begin{split} \sigma(\lambda u + \mu \nu) &= \sum_{n=1}^{+\infty} \frac{\lambda u_n + \mu \nu_n}{3^n} \\ &= \lambda \sum_{n=1}^{+\infty} \frac{u_n}{3^n} + \mu \sum_{n=1}^{+\infty} \frac{\nu_n}{3^n} \text{ (car les deux séries convergent)} \\ &= \lambda \sigma(u) + \mu \sigma(\nu). \end{split}$$

Donc,

 σ est une forme linéaire sur $\ell^\infty.$

Soit $u \in \ell^{\infty}$.

$$|\sigma(u)|\leqslant \sum_{n=1}^{+\infty}\frac{|u_n|}{3^n}\leqslant \|\sum_{n=1}^{+\infty}\frac{1}{3^n}=\|u\|\times\frac{1}{3}\times\frac{1}{1-\frac{1}{3}}=\frac{1}{2}\|u\|.$$

Ainsi, il existe un réel k (à savoir $k = \frac{1}{2}$) tel que pour tout $u \in \ell^{\infty}$, $|\sigma(u)| \leq k||u||$. Puisque σ est une application linéaire de l'espace normé $(\ell^{\infty}, || ||)$ vers l'espace vectoriel normé $(\mathbb{R}, || ||)$, on sait que ceci montre que

 σ est une forme linéaire sur $\ell^{\infty},$ continue sur l'espace vectoriel normé $(\ell^{\infty}, \|\ \|).$

Q4. Soit $t \in T$ (en particulier, $t \in \ell^{\infty}$). Pour tout $n \in \mathbb{N}^*$, $0 \leq t_n \leq 2$, et donc

$$0 \leqslant \sum_{n=1}^{+\infty} \frac{t_n}{3^n} \leqslant \sum_{n=1}^{+\infty} \frac{2}{3^n} = \frac{2}{3} \times \frac{1}{1 - \frac{1}{2}} = 1.$$

Donc,

$$\text{Pour tout } t \in T, \, \sigma(t) \in [0,1].$$

$$\mathbf{Q5.}\ \ \sigma(\tau) = \sum_{n=1}^{+\infty} \frac{\tau_n}{3^n} = \frac{\tau_1}{3^1} = \frac{1}{3}\ \mathrm{et}\ \ \sigma(\tau') = \sum_{n=1}^{+\infty} \frac{\tau_n'}{3^n} = \sum_{n=2}^{+\infty} \frac{2}{3^n} = \frac{2}{3^2} \times \frac{1}{1 - \frac{1}{3}} = \frac{1}{3}.$$

Ainsi, τ et τ' sont deux éléments distincts de T tels que $\sigma(\tau) = \sigma(\tau')$. Ceci montre que

l'application σ n'est pas injective sur $\mathsf{T}.$

Développement ternaire propre

Q6. Soit $x \in [0, 1[$. Soit $n \in \mathbb{N}^*$. $t_n(x)$ est un entier relatif. Ensuite,

$$3\lfloor 3^{n-1}x\rfloor\leqslant 3\times 3^{n-1}x=3^nx<3\left(\lfloor 3^{n-1}x\rfloor+1\right)=3\lfloor 3^{n-1}x\rfloor+3.$$

Tout d'abord, $3\lfloor 3^{n-1}x\rfloor$ est un entier inférieur ou égal à 3^nx et $\lfloor 3^nx\rfloor$ est le plus grand des entiers inférieurs ou égaux à 3^nx . Donc, $3\lfloor 3^{n-1}x\rfloor\leqslant \lfloor 3^nx\rfloor$ puis $t_n(x)\geqslant 0$.

Ensuite, $\lfloor 3^n x \rfloor \leqslant 3^n x \leqslant 3\lfloor 3^{n-1} x \rfloor + 3$ et donc $\lfloor 3^n x \rfloor \leqslant 3\lfloor 3^{n-1} x \rfloor + 3$ ou encore $\lfloor 3^n x \rfloor \leqslant 3\lfloor 3^{n-1} x \rfloor + 2$ (car $\lfloor 3^n x \rfloor$ et $3\lfloor 3^{n-1} x \rfloor + 2$ sont des entiers). On en déduit que $t_n(x) = \lfloor 3^n x \rfloor - 3\lfloor 3^{n-1} x \rfloor \leqslant 2$. Ainsi, pour tout $n \in \mathbb{N}^*$, $t_n(x) \in \{0, 1, 2\}$. On a montré que

 $\forall x \in [0, 1[, t(x) \in T].$

Q7. Soit $x \in [0, 1[$. Pour $n \in \mathbb{N}^*$, d'après la question précédente, $x_{n+1} - x_n = \frac{\lfloor 3^{n+1}x \rfloor - 3\lfloor 3^nx \rfloor}{3^{n+1}} = \frac{t_{n+1}(x)}{3^{n+1}} \geqslant 0$. Donc la suite $(x_n)_{n \in \mathbb{N}^*}$ est croissante.

Ensuite, pour $n \in \mathbb{N}^*$, $y_{n+1} - y_n = x_{n+1} - x_n + \left(\frac{1}{3^{n+1}} - \frac{1}{3^n}\right) = \frac{t_{n+1}(x) - 2}{3^{n+1}} \le 0$. Donc, la suite $(y_n)_{n \in \mathbb{N}^*}$ est décroisante. Enfin, $y_n - x_n = \frac{1}{3^n} = 0$ o(1). On a montré que

les suites
$$(x_n)_{n\in\mathbb{N}^*}$$
 et $(y_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

On en déduit que les suites $(x_n)_{n \in \mathbb{N}^*}$ et $(y_n)_{n \in \mathbb{N}^*}$ convergent vers une limite commune ℓ . Pour $n \in \mathbb{N}^*$, $\lfloor 3^n x \rfloor \leq 3^n x < \lfloor 3^n x \rfloor + 1$ puis $x_n \leq x < y_n$ après division par le réel strictement positif 3^n . Quand n tend vers $+\infty$, on obtient $\ell \leq x \leq \ell$ et donc $\ell = x$.

$$\lim_{n\to+\infty}x_n=\lim_{n\to+\infty}y_n=x.$$

Soit $n \in \mathbb{N}^*$.

$$\begin{split} \sum_{k=1}^{n} \frac{t_k(x)}{3^k} &= \sum_{k=1}^{n} \frac{\lfloor 3^k x \rfloor - 3 \lfloor 3^{k-1} x \rfloor}{3^k} = \sum_{k=1}^{n} \left(\frac{\lfloor 3^k x \rfloor}{3^k} - \frac{\lfloor 3^{k-1} x \rfloor}{3^{k-1}} \right) \\ &= \sum_{k=1}^{n} \left(x_k - x_{k-1} \right) \text{ (en posant } x_0 = \lfloor x \rfloor = 0) \\ &= x_n - x_0 \text{ (somme télescopique)} \\ &= x_n. \end{split}$$

Quand n tend vers $+\infty$, on obtient $\sum_{k=1}^{+\infty} \frac{t_k(x)}{3^k} = x$.

$$\forall x \in [0, 1[, x = \sum_{k=1}^{+\infty} \frac{t_k(x)}{3^k}.$$

Ainsi, pour tout x de [0,1[, il existe $t\in T$ tel que $\sigma(t)=x$. D'autre part, si pour tout $n\in \mathbb{N}^*$, $t_n=2$, alors la suite $(t_n)_{n\in \mathbb{N}^*}$ est dans T puis

$$\sigma(t) = \sum_{n=1}^{+\infty} \frac{2}{3^n} = \frac{2}{3} \times \frac{1}{1 - \frac{1}{3}} = 1$$

et donc 1 a également un antécédent par σ dans T. Ceci montre que

$$\text{l'application} \left\{ \begin{array}{ll} T & \to & [0,1] \\ u & \mapsto & \sigma(u) \end{array} \right. \text{ est surjective.}$$

Q8. Informatique pour tous.

```
def flotVersTern(n,x):
    T=[]
    for k in range(1,n+1):
        T.append(int(3**k*x)-3*int(3**(k-1)*x))
    return T
```

Q9. Informatique pour tous.

```
def ternVersFlot(1):
    x=0
    for k in range(len(1)):
        x+=1[k]/3**(k+1)
    return x
```

Q10. Informatique pour tous.

```
def ajout(1):
    s=0
    for k in 1:
        s+=k
    if s%2==0:
        l.append(-1)
    else:
        l.append(2)
    return(1)
```

```
def verif(l):
    s=0
    for k in range(len(l)-1):
        s+=1[k]
    if s%2==0 and l[len(l)-1]==-1:
        return True
    if s%2==0 and l[len(l)-1]==2:
        return False
    return False
```

Remarque. On peut remplacer l[len(1)-1] par l[-1].

Partie II - Etude d'une fonction définie par une série

 $\mathbf{Q11.} \ \mathrm{Pour} \ n \in \mathbb{N}^* \ \mathrm{et} \ x \in \mathbb{R}, \ \mathrm{posons} \ \phi_n(x) = \frac{1 + \sin(nx)}{3^n}.$

Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, $\varphi_n(x)$ existe et

$$|\varphi_{\mathfrak{n}}(x)| \leqslant \frac{1 + |\sin(\mathfrak{n}x)|}{3^{\mathfrak{n}}} \leqslant \frac{2}{3^{\mathfrak{n}}}.$$

La série géométrique de terme général $\frac{2}{3^n}$, $n \in \mathbb{N}^*$, converge et donc la série numérique de terme général $\phi_n(x)$, $n \in \mathbb{N}^*$, converge absolument et donc converge. Ainsi, pour tout réel x, $\phi(x)$ existe dans \mathbb{R} .

La fonction φ est définie sur \mathbb{R} .

Chaque fonction ϕ_n , $n \in \mathbb{N}^*$, est de classe C^1 sur \mathbb{R} et pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, $\phi_n'(x) = \frac{n \cos(nx)}{3^n}$. Soit $n \in \mathbb{N}^*$.

$$|\varphi_n'(x)| = \frac{n|\cos(nx)|}{3^n} \leqslant \frac{n}{3^n},$$

 $\mathrm{puis}\ \|\phi_n'\|_\infty\leqslant \frac{n}{3^n}.\ n^2\times\frac{n}{3^n}=\frac{n^3}{3^n}\underset{n\to+\infty}{=}o(1)\ d\text{'après un théorème de croissances comparées et donc }\frac{n}{3^n}\underset{n\to+\infty}{=}o\left(\frac{1}{n^2}\right).$

Ceci montre que la série de terme général $\frac{n}{3^n}$ converge et il en est de même de la série de terme général $\|\phi_n'\|_{\infty}$, $n \in \mathbb{N}^*$. Par suite, la série de fonctions de terme général ϕ_n' , $n \in \mathbb{N}^*$, converge normalement et en particulier uniformément sur \mathbb{R} .

En résumé,

- la série de fonctions de terme général ϕ_n , $n \in \mathbb{N}^*$, converge simplement vers ϕ sur \mathbb{R} ,
- \bullet chaque fonction $\phi_{\mathfrak{n}},\, \mathfrak{n} \in \mathbb{N}^*,$ est de classe C^1 sur $\mathbb{R},$
- la série de fonctions de terme général φ'_n , $n \in \mathbb{N}^*$, converge uniformément sur \mathbb{R} .

D'après un corollaire du théorème de dérivation terme à terme, φ est de classe C^1 sur $\mathbb R$ et la dérivée de φ s'obtient par dérivation terme à terme.

La fonction
$$\varphi$$
 est de classe C^1 sur \mathbb{R} .

Q12. Soit $x \in \mathbb{R}$. Pour tout $n \in \mathbb{N}^*$, $\left| \frac{e^{inx}}{3^n} \right| = \frac{1}{3^n}$. Donc, la série numérique de terme général $\frac{e^{inx}}{3^n}$, $n \in \mathbb{N}^*$, converge absolument et en particulier converge. On sait alors que la série des parties imaginaires converge et que

$$\operatorname{Im}\left(\sum_{n=1}^{+\infty}\frac{e^{\mathrm{i}nx}}{3^n}\right)=\sum_{n=1}^{+\infty}\operatorname{Im}\left(\frac{e^{\mathrm{i}nx}}{3^n}\right)=\sum_{n=1}^{+\infty}\frac{\sin(nx)}{3^n}.$$

D'autre part, $\sum_{n=1}^{+\infty} \frac{1}{3^n} = \frac{1}{3} \times \frac{1}{1 - \frac{1}{3}} = \frac{1}{2}$. Donc,

$$\phi(x) = \sum_{n=1}^{+\infty} \frac{1}{3^n} + \sum_{n=1}^{+\infty} \frac{\sin(nx)}{3^n} = \frac{1}{2} + \operatorname{Im} \left(\sum_{n=1}^{+\infty} \frac{e^{\mathrm{i} nx}}{3^n} \right).$$

Ensuite,
$$\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n} = \sum_{n=1}^{+\infty} \left(\frac{e^{ix}}{3}\right)^n = \frac{e^{ix}}{3} \times \frac{1}{1 - \frac{e^{ix}}{3}} = \frac{e^{ix}}{3 - e^{ix}}$$
 puis

$$\operatorname{Im}\left(\sum_{n=1}^{+\infty} \frac{e^{\mathrm{i}nx}}{3^n}\right) = \operatorname{Im}\left(\frac{e^{\mathrm{i}x}}{3 - e^{\mathrm{i}x}}\right) = \operatorname{Im}\left(\frac{e^{\mathrm{i}x}\left(3 - e^{-\mathrm{i}x}\right)}{\left(3 - e^{\mathrm{i}x}\right)\left(3 - e^{-\mathrm{i}x}\right)}\right)$$
$$= \operatorname{Im}\left(\frac{3e^{\mathrm{i}x} - 1}{10 - 6\cos x}\right) = \frac{3\sin x}{10 - 6\cos x}$$

et finalement,

$$\phi(x) = \frac{1}{2} + \frac{3\sin x}{10 - 6\cos x} = \frac{5 - 3\cos x + 3\sin x}{10 - 6\cos x}.$$

$$\forall x \in \mathbb{R}, \ \phi(x) = \frac{5 - 3\cos x + 3\sin x}{10 - 6\cos x}.$$

Q13. Pour $x \in \mathbb{R}$,

$$\begin{split} \sum_{n=1}^{+\infty} \frac{n \cos(nx)}{3^n} &= \phi'(x) = \left(\frac{1}{2} + \frac{3 \sin x}{5 - 3 \cos x}\right)' \\ &= 3 \frac{(\cos x)(5 - 3 \cos x) - (3 \sin x)(\sin x)}{(5 - 3 \cos x)^2} = 3 \frac{5 \cos x - 3 \cos^2 x - 3 \sin^2 x}{(5 - 3 \cos x)^2} = \frac{15 \cos x - 9}{(5 - 3 \cos x)^2} \\ &\forall x \in \mathbb{R}, \sum_{n=1}^{+\infty} \frac{n \cos(nx)}{3^n} = \frac{15 \cos x - 9}{(5 - 3 \cos x)^2}. \end{split}$$

Q14. Pour tout réel x,
$$\varphi(x) = \frac{1}{2} + 3 \frac{\sin x}{10 - 6 \cos x}$$
 puis $\int_0^{\pi} \varphi(x) dx = \int_0^{\pi} \frac{1}{2} dx + 3 \int_0^{\pi} \frac{\sin x}{10 - 6 \cos x} dx$ et donc
$$\int_0^{\pi} \frac{\sin x}{10 - 6 \cos x} dx = \frac{1}{3} \int_0^{\pi} \left(\varphi(x) - \frac{1}{2} \right) dx = \frac{1}{3} \int_0^{\pi} \left(\sum_{n=1}^{+\infty} \frac{\sin(nx)}{3^n} \right) dx.$$

Pour $n \in \mathbb{N}^*$ et $x \in [0,\pi]$, posons $\psi_n(x) = \frac{\sin(nx)}{3^n}$. Chaque fonction ψ_n est continue sur le segment $[0,\pi]$ et pour tout $n \in \mathbb{N}^*$, $\|\psi_n\|_{\infty} \leqslant \frac{1}{3^n}$ de sorte que la série de fonctions de terme général ψ_n , $n \in \mathbb{N}^*$, converge normalement et en particulier uniformément sur le segment $[0,\pi]$. D'après le théorème d'intégration terme à terme sur un segment, on peut intégrer terme à terme et on obtient

$$\int_0^{\pi} \frac{\sin x}{10 - 6\cos x} \, dx = \frac{1}{3} \sum_{n=1}^{+\infty} \left(\int_0^{\pi} \frac{\sin(nx)}{3^n} \, dx \right) = \frac{1}{3} \sum_{n=1}^{+\infty} \left[-\frac{\cos(nx)}{n3^n} \right]_0^{\pi} = \frac{1}{3} \sum_{n=1}^{+\infty} \frac{-(-1)^n + 1}{n3^n} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} + 1}{n3^{n+1}}.$$

$$\int_0^{\pi} \frac{\sin x}{10 - 6\cos x} \, dx = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} + 1}{n3^{n+1}}.$$

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n3^{n+1}} = \frac{1}{3} \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\left(\frac{1}{3}\right)^n}{n} = \frac{1}{3} \ln\left(1 + \frac{1}{3}\right) = \frac{1}{3} \ln\left(\frac{4}{3}\right).$$

$$\sum_{n=1}^{+\infty} \frac{1}{n3^{n+1}} = \frac{1}{3} \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{3}\right)^n}{n} = -\frac{1}{3} \ln\left(1 - \frac{1}{3}\right) = -\frac{1}{3} \ln\left(\frac{2}{3}\right) \text{ et finalement,}$$

$$\int_0^{\pi} \frac{\sin x}{10 - 6\cos x} \, dx = \frac{1}{3} \left(\ln\left(\frac{4}{3}\right) - \ln\left(\frac{2}{3}\right)\right) = \frac{\ln(2)}{3}.$$

$$\int_0^{\pi} \frac{\sin x}{10 - 6\cos x} \, dx = \frac{\ln(2)}{3}.$$

$$\mathbf{Q15.} \int_0^{\pi} \frac{\sin x}{10 - 6\cos x} \, dx = \frac{1}{6} \int_0^{\pi} \frac{6\sin x}{10 - 6\cos x} \, dx = \frac{1}{6} \left[\ln|10 - 6\cos x| \right]_0^{\pi} = \frac{1}{6} \left(\ln(16) - \ln(4) \right) = \frac{1}{6} \ln\left(2^2\right) = \frac{\ln(2)}{3}.$$

Partie III - Développements ternaires aléatoires

 $\mathbf{Q16}$. Soient $n \geqslant 1$ et $N \geqslant 2$. $T_{n,N}$ prend un nombre fini de valeurs et donc $T_{n,N}$ admet une espérance et une variance.

$$E\left(T_{n,N}\right) = 0 \times P\left(T_{n,N} = 0\right) + 1 \times P\left(T_{n,N} = 1\right) + 2 \times P\left(T_{n,N} = 2\right) = \frac{1}{N} + 2\left(1 - \frac{2}{N}\right) = 2 - \frac{3}{N}.$$

Ensuite, d'après la formule de transfert,

$$E\left(T_{n,N}^{2}\right) = 0 \times P\left(T_{n,N} = 0\right) + 1^{2} \times P\left(T_{n,N} = 1\right) + 2^{2} \times P\left(T_{n,N} = 2\right) = \frac{1}{N} + 4\left(1 - \frac{2}{N}\right) = 4 - \frac{7}{N},$$

et donc d'après la formule de Koënig-Huygens,

$$V\left(T_{n,N}\right) = E\left(T_{n,N}^{2}\right) - \left(E\left(T_{n,N}\right)\right)^{2} = \left(4 - \frac{7}{N}\right) - \left(2 - \frac{3}{N}\right)^{2} = \frac{5}{N} - \frac{9}{N^{2}} = \frac{5N - 9}{N^{2}}.$$

Par linéarité de l'espérance, X_N admet une espérance et

$$\begin{split} E\left(X_{N}\right) &= \sum_{n=1}^{N} \frac{1}{3^{n}} E\left(T_{n,N}\right) = \left(2 - \frac{3}{N}\right) \sum_{n=1}^{N} \frac{1}{3^{n}} \\ &= \left(2 - \frac{3}{N}\right) \frac{1}{3} \frac{1 - \frac{1}{3^{N}}}{1 - \frac{1}{3}} = \left(1 - \frac{3}{2N}\right) \left(1 - \frac{1}{3^{N}}\right). \end{split}$$

Enfin, les variables $\frac{1}{3^n}T_{n,N}$ étant indépendantes et en particulier deux à deux indépendantes, X_N admet une variance et

$$\begin{split} V(X_N) &= \sum_{n=1}^N V\left(\frac{1}{3^n} T_{n,N}\right) = \sum_{n=1}^N \frac{1}{9^n} V(T_{n,N}) = \frac{5N-9}{N^2} \sum_{n=1}^N \frac{1}{9^n} = \frac{5N-9}{N^2} \frac{1}{9} \frac{1-\frac{1}{9^N}}{1-\frac{1}{9}} \\ &= \frac{5N-9}{8N^2} \left(1-\frac{1}{9^N}\right). \end{split}$$

$$E(X_N) &= \left(1-\frac{3}{2N}\right) \left(1-\frac{1}{3^N}\right) \text{ et } V(X_N) = \frac{5N-9}{8N^2} \left(1-\frac{1}{9^N}\right). \end{split}$$

Q17. Soit $\varepsilon > 0$. D'après l'inégalité de BIENAYMÉ-TCHEBYCHEV,

$$0\leqslant P\left(\left|X_{N}-E\left(X_{N}\right)\right|\geqslant\epsilon\right)\leqslant\frac{V\left(X_{N}\right)}{\epsilon^{2}}=\frac{5N-9}{8N^{2}\epsilon^{2}}\left(1-\frac{1}{9^{N}}\right).$$

$$\mathrm{Or},\,\frac{5N-9}{8N^{2}\epsilon^{2}}\left(1-\frac{1}{9^{N}}\right)\underset{N\rightarrow+\infty}{\sim}\frac{5}{8N}\underset{N\rightarrow+\infty}{\rightarrow}0\;\mathrm{et\;donc\;}\lim_{n\rightarrow+\infty}P\left(\left|X_{N}-E\left(X_{N}\right)\right|\geqslant\epsilon\right)=0.$$

Q18. Soit $\varepsilon > 0$. Soit $N \ge 2$. $|X_N - 1| \le |X_N - E(X_N)| + |E(X_N) - 1|$ et donc

$$\left(\left|X_{N}-E\left(X_{N}\right)\right|<\frac{\epsilon}{2}\ \mathrm{et}\ \left|E\left(X_{N}\right)-1\right|<\frac{\epsilon}{2}\right)\Rightarrow\left|X_{N}-1\right|<\epsilon$$

 $\mathrm{puis},\ \left\{ \left|X_{N}-E\left(X_{N}\right)\right|<\frac{\epsilon}{2}\right\} \cap \left\{ \left|E\left(X_{N}\right)-1\right|<\frac{\epsilon}{2}\right\} \subset \left\{ \left|X_{N}-1\right|<\epsilon\right\}.\ \mathrm{Par}\ \mathrm{passage}\ \mathrm{au}\ \mathrm{complémentaire},\ \mathrm{on}\ \mathrm{obtient}$

$$\left\{\left|X_{N}-1\right|\geqslant\epsilon\right\}\subset\left\{\left|X_{N}-E\left(X_{N}\right)\right|\geqslant\frac{\epsilon}{2}\right\}\cup\left\{\left|E\left(X_{N}\right)-1\right|\geqslant\frac{\epsilon}{2}\right\},$$

et donc

$$\begin{split} P\left(\left|X_{N}-1\right|\geqslant\epsilon\right)&\leqslant P\left(\left\{\left|X_{N}-E\left(X_{N}\right)\right|\geqslant\frac{\epsilon}{2}\right\}\cup\left\{\left|E\left(X_{N}\right)-1\right|\geqslant\frac{\epsilon}{2}\right\}\right)\\ &\leqslant P\left(\left|X_{N}-E\left(X_{N}\right)\right|\geqslant\frac{\epsilon}{2}\right)+P\left(\left|E\left(X_{N}\right)-1\right|\geqslant\frac{\epsilon}{2}\right). \end{split}$$

$$\begin{split} E\left(X_{N}\right) &= \left(1 - \frac{3}{2N}\right) \left(1 - \frac{1}{3^{N}}\right) \underset{n \to +\infty}{\sim} 1 \text{ et donc } E\left(X_{N}\right) - 1 \underset{n \to +\infty}{\longrightarrow} 0. \text{ Par suite, pour } N \text{ grand, } |E\left(X_{N}\right) - 1| < \frac{\epsilon}{2} \text{ et donc } P\left(|E\left(X_{N}\right) - 1| \geqslant \frac{\epsilon}{2}\right) = 0. \text{ Par suite, pour } N \text{ grand, } |E\left(X_{N}\right) - 1| < \frac{\epsilon}{2} \text{ et donc } |E\left(X_{N}\right) - 1| > \frac{\epsilon}{2} \text{ et donc } |E\left(X_{N}\right) - \frac{\epsilon}{2} \text{ et donc } |E\left(X_{N}\right) - 1| > \frac{\epsilon}{2} \text{ et donc } |E\left(X_{N}\right) - 1| > \frac{\epsilon}{2} \text{$$

$$P(|X_N - 1| \ge \varepsilon) \le P(|X_N - E(X_N)| \ge \frac{\varepsilon}{2}).$$

 $\mathrm{Puisque}\ \lim_{N\to+\infty}P\left(\left|X_{N}-E\left(X_{N}\right)\right|\geqslant\frac{\epsilon}{2}\right)=0,\ \mathrm{on\ en\ d\'eduit\ que}\ \lim_{N\to+\infty}P\left(\left|X_{N}-1\right|\geqslant\epsilon\right)=0.$

Partie IV - Fonction de Cantor-Lebesgue

Etude d'une suite de fonctions

Q19. Pour tout réel $x \in [0, 1]$, $f_0(x) = x$.

Ensuite, pour tout réel
$$x \in [0,1]$$
, $f_1(x) = \begin{cases} \frac{3x}{2} \operatorname{si} x \in \left[0,\frac{1}{3}\right] \\ \frac{1}{2} \operatorname{si} x \in \left[\frac{1}{3},\frac{2}{3}\right] \\ \frac{3x-1}{2} \operatorname{si} x \in \left[\frac{2}{3},1\right] \end{cases}$

$$\text{Si } x \in \left[0, \frac{1}{3}\right], \, f_2(x) = \frac{f_1(3x)}{2}. \, \text{Si } x \in \left[0, \frac{1}{9}\right], \, \text{alors } 3x \in \left[0, \frac{1}{3}\right] \, \text{puis } f_2(x) = \frac{3(3x/2)}{2} = \frac{9x}{4}. \, \text{Si } x \in \left[\frac{1}{9}, \frac{2}{9}\right[, \, \text{alors } 3x \in \left[\frac{1}{3}, \frac{2}{3}\right] \, \text{puis } f_2(x) = \frac{1/2}{2} = \frac{1}{4}. \, \text{Si } x \in \left[\frac{2}{9}, \frac{1}{3}\right[, \, \text{alors } 3x \in \left[\frac{2}{3}, 1\right] \, \text{puis } f_2(x) = \frac{(3(3x) - 1) + 2}{2} = \frac{9x - 1}{4}. \, \dots$$

Montrons par récurrence que pour tout $n \in \mathbb{N}$, $f_n([0,1]) \in [0,1]$.

- Pour tout $x \in [0,1], \ 0 \leqslant x = f_0(x) \leqslant 1$. L'affirmation est donc vraie quand n=0.
- $\begin{array}{l} \bullet \ \mathrm{Soit} \ n \geqslant 0. \ \mathrm{Supposons} \ \mathrm{que} \ f_n \left([0,1]\right) \subset [0,1]. \ \mathrm{Soit} \ x \in [0,1]. \\ \mathrm{Si} \ x \in \left[0,\frac{1}{3}\right], \ \mathrm{alors} \ 0 \leqslant 3x \leqslant 1 \ \mathrm{puis} \ 0 \leqslant \frac{f_n(3x)}{2} \leqslant \frac{1}{2} \leqslant 1 \ \mathrm{et} \ \mathrm{donc} \ 0 \leqslant f_{n+1}(x) \leqslant 1. \\ \end{array}$

Si
$$x \in \left[\frac{1}{3}, \frac{2}{3}\right]$$
, $0 \leqslant \frac{1}{2} \leqslant 1$ et donc $0 \leqslant f_{n+1}(x) \leqslant 1$.

Si
$$x \in \begin{bmatrix} \frac{2}{3}, 1 \end{bmatrix}$$
, alors $0 \leqslant 3x - 2 \leqslant 1$ puis $0 \leqslant \frac{1}{2} \leqslant \frac{1}{2} + \frac{f_n(3x - 2)}{2} \leqslant \frac{1}{2} + \frac{1}{2} = 1$ et donc $0 \leqslant f_{n+1}(x) \leqslant 1$.

On a montré par récurrence que pour tout $n \in \mathbb{N}$, $f_n([0,1]) \in [0,1]$.

Q20. Informatique.

```
def cantor(n,x):
    if n==0:
        return x
    else:
        if 0<=x<=1.0/3:
            return (cantor(n-1,3*x))/2
        if 1.0/3<x<2.0/3:
            return 1.0/2
        if 2.0/3<=x<=1:
            return 1.0/2+(cantor(n-1,3*x-2))/2</pre>
```

Q21. Montrons par récurrence que pour tout $n \in \mathbb{N}^*$, pour tout $x \in [0,1]$, $|f_{n+1}(x) - f_n(x)| \leq \frac{1}{3 \times 2^{n+1}}$

• Si
$$x \in \left[0, \frac{1}{3}\right]$$
, $|f_1(x) - f_0(x)| = \left|\frac{3x}{2} - x\right| = \frac{x}{2} \leqslant \frac{1}{3 \times 2}$.
Si $x \in \left[\frac{1}{3}, \frac{2}{3}\right]$, $|f_1(x) - f_0(x)| = \left|\frac{1}{2} - \frac{1}{2}\right| = 0 \leqslant \frac{1}{3 \times 2}$.
Si $x \in \left[\frac{2}{3}, 1\right]$, $|f_1(x) - f_0(x)| = \left|\frac{1}{2} + \frac{3x - 2}{2} - x\right| = \frac{1 - x}{2} \leqslant \frac{1 - \frac{2}{3}}{2} = \frac{1}{3 \times 2}$.

$$\begin{split} \bullet & \text{ Soit } n \geqslant 0. \text{ Supposons que pour tout } x \in [0,1], |f_{n+1}(x) - f_n(x)| \leqslant \frac{1}{3 \times 2^{n+1}}. \\ & \text{ Si } x \in \left[0,\frac{1}{3}\right], |f_{n+2}(x) - f_{n+1}(x)| = \frac{1}{2} |f_{n+1}(3x) - f_n(3x)| \leqslant \frac{1}{2} \times \frac{1}{3 \times 2^{n+1}} = \frac{1}{3 \times 2^{n+2}}. \\ & \text{ Si } x \in \left[\frac{1}{3},\frac{2}{3}\right], |f_{n+2}(x) - f_{n+1}(x)| = 0 \leqslant \frac{1}{3 \times 2^{n+2}}. \\ & \text{ Si } x \in \left[\frac{2}{3},1\right], |f_{n+2}(x) - f_{n+1}(x)| = \frac{1}{2} |f_{n+1}(3x-2) - f_n(3x-2)| \leqslant \frac{1}{2} \times \frac{1}{3 \times 2^{n+1}} = \frac{1}{3 \times 2^{n+2}}. \end{split}$$

L'inégalité est démontrée par récurrence.

L'inégalité est donc vraie quand n = 0

 $\mathbf{Q22.} \text{ Soit } \mathfrak{n} \in \mathbb{N}^*. \text{ Pour } x \in [0,1], \ f_{\mathfrak{n}}(x) = f_0(x) + \sum_{k=0}^{n-1} (f_{k+1}(x) - f_k(x)) \ \text{(somme t\'elescopique)}. \text{ Pour } k \in \mathbb{N}, \text{ posons }$

$$g_k = f_{k+1} - f_k. \text{ Pour } k \in \mathbb{N}, \text{ pour tout } x \in [0,1], \ |g_k(x)| = |f_{k+1}(x) - f_k(x)| \leqslant \frac{1}{3 \times 2^{k+1}} \text{ et donc } \|g_k\|_{\infty} \leqslant \frac{1}{3 \times 2^{k+1}}.$$

Puisque la série géométrique de terme général $\frac{1}{3 \times 2^{k+1}}$, $k \in \mathbb{N}$, converge, la série de fonctions de terme général g_k , $k \in \mathbb{N}$, converge normalement et en particulier uniformément sur [0, 1].

Puisque pour tout $n \in \mathbb{N}^*$, $f_n = f_0 + \sum_{k=0}^{n-1} g_k$, la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur [0,1] vers une certaine fonction que l'on note f.

Q23. En particulier, la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur [0,1]. Pour $x\in[0,1]$, on a pour tout $n \in \mathbb{N}, 0 \le f_n(x) \le 1$. Quand n tend vers $+\infty$, on obtient $0 \le f(x) \le 1$ pour tout $x \in [0, 1]$. Donc, f est à valeurs dans [0, 1].

Montrons par récurrence que pour tout $n \in \mathbb{N}$, la fonction f_n est croissante sur [0,1].

- L'affirmation est vraie quand n = 0.
- Soit $n \ge 0$. Supposons la fonction f_n croissante sur [0,1]. Soit $(x,y) \in [0,1]^2$ tel que $x \le y$.

$$\mathrm{Si}\ 0\leqslant x\leqslant y\leqslant \frac{1}{3},\ \mathrm{alors}\ 0\leqslant 3x\leqslant 3y\leqslant 1\ \mathrm{puis}\ f_{n+1}(x)=\frac{f_n(3x)}{2}\leqslant \frac{f_n(3y)}{2}=f_{n+1}(y).$$

$$\mathrm{Si}\ 0\leqslant x\leqslant \frac{1}{3}\leqslant y,\ \mathrm{alors}\ f_{n+1}(x)=\frac{f_n(3x)}{2}\leqslant \frac{1}{2}\leqslant f_{n+1}(y).$$

Si
$$\frac{1}{3} \leqslant x \leqslant y \leqslant \frac{2}{3}$$
, alors $f_{n+1}(x) = \frac{1}{2} \leqslant \frac{f_n(3y)}{2} = f_{n+1}(y)$ et en particulier, $f_{n+1}(x) \leqslant f_{n+1}(y)$.

Si
$$\frac{1}{3} \leqslant x \leqslant \frac{2}{3} \leqslant y$$
, alors $f_{n+1}(x) = \frac{1}{2} \leqslant f_{n+1}(y)$.

Si
$$\frac{2}{3} \le x \le y \le 1$$
, alors $0 \le 3x - 2 \le 3y - 2 \le 1$ puis $f_{n+1}(x) = \frac{1}{2} + \frac{f_n(3x - 2)}{2} \le \frac{1}{2} + \frac{f_n(3y - 2)}{2} = f_{n+1}(y)$.

On a montré par récurrence que pour tout $n \in \mathbb{N}$, la fonction f_n est croissante sur [0,1].

Soient alors x et y deux éléments de [0,1] tels que $x \leq y$. Alors, pour tout $n \in \mathbb{N}$, $f_n(x) \leq f_n(y)$. Quand n tend vers $+\infty$, on obtient $f(x) \leq f(y)$. On a montré que f est une fonction croissante sur [0,1].

Montrons par récurrence que pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur [0,1].

- L'affirmation est vraie quand n = 0.
- Soit $n \ge 0$. Supposons f_n continue sur [0,1]. La fonction $x \mapsto 3x$ est continue sur $\left[0,\frac{1}{3}\right]$ à valeurs dans [0,1] et

la fonction f_n est continue sur [0,1]. Donc, la fonction f_{n+1} est continue sur $\left[0,\frac{1}{3}\right]$. De même, la fonction f_{n+1} est continue sur $\left[\frac{1}{3}, \frac{2}{3}\right]$ et sur $\left[\frac{2}{3}, 1\right]$. Il reste à analyser la continuité de f_{n+1} en $\frac{1}{3}$ à droite et $\frac{2}{3}$ à gauche. $\lim_{\substack{x \to \frac{1}{3} \\ x > \frac{1}{3}}} f_{n+1}(x) = \frac{1}{2} = \frac{f_n(1)}{2} = f_{n+1}\left(\frac{1}{3}\right) \ (f_0(1) = 1 \ \text{et pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n \in \mathbb{N}, \ f_{n+1}(1) = (1 + f_n(1))/2 \ \text{et donc pour tout } n$

 $\text{tout } n \in \mathbb{N}, \, f_n(1) = 1). \, \text{Donc, } f_{n+1} \text{ est continue en } \frac{1}{3} \text{ à droite.}$ De même, $\lim_{\substack{x \to \frac{2}{3} \\ x < \frac{2}{3}}} f_{n+1}(x) = \frac{1}{2} = \frac{1}{2} + \frac{f_n(0)}{2} = f_{n+1}\left(\frac{2}{3}\right) \, \left(f_0(0) = 0 \text{ et pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_{n+1}(0) = f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour tout } n \in \mathbb{N}, \, f_n(0)/2 \text{ et donc pour } n \in \mathbb$

tout $n \in \mathbb{N}$, $f_n(0) = 0$). Donc, f_{n+1} est continue en $\frac{2}{3}$ à gauche.

Finalement, la fonction f_{n+1} est continue sur [0,1].

On a montré par récurrence que pour tout $n \in \mathbb{N}$, la fonction f_n est continue sur [0,1].

Chaque fonction f_n , $n \in \mathbb{N}$, est continue sur [0,1] et la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers la fonction f sur [0, 1]. Donc, la fonction f est continue sur [0, 1].

Pour tout $n \in \mathbb{N}$, $f_n(0) = 0$ et $f_n(1) = 1$. Quand n tend vers $+\infty$, on obtient f(0) = 0 et f(1) = 1. Puisque la fonction f est $\begin{array}{l} \text{continue sur le segment } [0,1], \text{ on sait que } f([0,1]) = \left\lfloor \underset{[0,1]}{\operatorname{Min}}(f), \underset{[0,1]}{\operatorname{Max}}(f) \right\rfloor. \text{ Puisque } f \text{ est croissante sur } [0,1], \underset{[0,1]}{\operatorname{Min}}(f) = f(0) = 0 \\ \text{et } \underset{[0,1]}{\operatorname{Max}}(f) = f(1) = 1 \text{ et donc } f([0,1]) = [0,1]. \text{ Ceci montre que } f \text{ est surjective.} \\ \end{array}$