Universidade Federal de Roraima Centro de Ciências e Tecnologia Departamento de Ciência da Computação Disciplina de Computação Gráfica Professor: Dr. Luciano Ferreira Silva

Aluno: Felipe Derkian de Sousa Freitas – 1201424418

Preenchimento com Flood Fill e Varredura com Análise Geométrica

Sumário

ALGORITMO DE FLOOD FILL	3
PONTOS POSITIVOS DO ALGORITMO FLOOD FILL	
PONTOS NEGATIVOS DO ALGORITMO FLOOD FILL	
DESEMPENHO DO ALGORITMO FLOOD FILL	3
SIMULAÇÃO COM A LINGUAGEM C DO ALGORITMO FLOOD FILL	4
FIGURAS E RESULTADOS DO ALGORITMO FLOOD FILL	5
ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA	13
PONTOS POSITIVOS DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA.	13
PONTOS NEGATIVOS DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA	1. 13
DESEMPENHO DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA	13
PSEUDO CÓDIGO DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA	14
SIMULAÇÃO COM A LINGUAGEM C DO ALGORITMO VARREDURA COM ANÁLISE	Ξ
GEOMÉTRICA	14
FIGURAS E RESULTADOS DO ALGORITMO VARREDURA COM ANÁLISE	
GEOMÉTRICA	15
CONCLUSÃO	23
Referência	24

ALGORITMO DE FLOOD FILL

O algoritmo de Flood Fill é um algoritmo recursivo que percorre toda figura 2D até encontrar todas as bordas da figura. Caso a figura tenha alguma figura dentro dela, dependendo da semente essa outra figura interna não será pintada.

PONTOS POSITIVOS DO ALGORITMO FLOOD FILL

Para figuras simples e complexas ele faz um trabalho muito bom. Tudo depende da coordenada da semente informada e da figura ele pinta muito bem. Veremos com mais detalhes nos exemplos.

PONTOS NEGATIVOS DO ALGORITMO FLOOD FILL

Para figuras onde possuem figuras dentro de figuras, ele acaba pintando apenas a área entre as bordas de uma figura e outra. Veremos com mais detalhes nos exemplos.

DESEMPENHO DO ALGORITMO FLOOD FILL

O desempenho do algoritmo é muito bom e de fácil implementação. Mas caso a imagem seja muito grande pode não ser muito bom pois como é recursivo pode gerar uma pilha de recursão muito grande e isso deixa o algoritmo com desempenho prejudicado.

PSEUDO CÓDIGO DO ALGORITMO FLOOD FILL

Função FloodFill recebe x, y, corBase, novaCor:
se pixel(x,y) for igual a corBase faça
setPixel(x,y) recebe novaCor
FloodFill recebe x+1, y, corBase e novaCor
FloodFill recebe x, y+1, corBase e novaCor
FloodFill recebe x-1, y, corBase e novaCor
FloodFill recebe x, y-1, corBase e novaCor
senão
retorne.

SIMULAÇÃO COM A LINGUAGEM C DO ALGORITMO FLOOD FILL

```
void FloodFill(int figura[TAM_MAT_FIG][TAM_MAT_FIG], int x, int y){
    if(figura[x][y] == BORDA){
        return;
    }else if(figura[x][y] == COLOR_TARGET){
        figura[x][y] = COLOR_NEW;
        FloodFill(figura , x+1 , y);
        FloodFill(figura , x-1 , y );
        FloodFill(figura , x , y+1);
        FloodFill(figura , x , y-1);
    }
}
```

FIGURAS E RESULTADOS DO ALGORITMO FLOOD FILL

Desenho: Circulo STAND

Figura 1: Círculo formado com Bresenham sem preenchimento.

Desenho: Circulo Modificado

Figura 2: Círculo formado com Bresenham com preenchimento

Desenho: Modelo SLIDE A STAND

Figura 3: Figura modelo A do slide sem preenchimento

Desenho: Modelo SLIDE A Modificado

Figura 4: Figura modelo A do slide com preenchimento

Desenho: Modelo SLIDE B STAND

Figura 5: Figura modelo B do slide sem preenchimento

Desenho: Modelo SLIDE B Modificado

Figura 6: Figura modelo B do slide com preenchimento

Desenho: Retangulo STAND

Figura 7: Figura retângulo sem preenchimento

Desenho: Retangulo Modificado

Figura 8: Figura retângulo com preenchimento

ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA

O algoritmo varredura com análise geométrica funciona da seguinte forma, varre a imagem a procura de uma borda para ativar a pintura, quando encontra ele começa a pintar até encontrar outra borda que desativa a pintura da imagem. Ou seja, as bordas são indicadores de ativa e desativa. Mas esse algoritmo tem vários problemas que veremos mais tarde.

PONTOS POSITIVOS DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA

Para figuras como retângulos, círculos, imagens dentro de imagens podem funcionar dependendo dos casos. É um algoritmo eficiente computacionalmente pois apenas faz incremento e comparações, diferente do Flood Fill que apesar de ser muito bom com certas imagens é recursivo e casos a imagem seja muito grande pode a pilha de recursão ficar muito grande.

PONTOS NEGATIVOS DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA

Como ele é um algoritmo que basicamente funciona ativando e desativando a pintura de acordo com o encontro de bordas da figura ele pode ter vários problemas. Se em determinada linha tivermos um número ímpar de pontos que ativem e desativem a pintura ocorrerá que o algoritmo pintará onde não deveria. Veremos daqui a pouco testes e vendo isso ocorrer.

DESEMPENHO DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA

É um algoritmo eficiente computacionalmente, pois faz apenas faz comparações e incrementos.

PSEUDO CÓDIGO DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA

```
Função Varredura recebe a figura:

para i de 1 até tamanho da imagem faça:

para j de 1 até tamanho da imagem faça:

se figura na posição (i, j) for igual à borda faça:

enquanto figura na posição (i, j=j+1) for diferente da borda e j

menor que tamanho da imagem faça:

figura na posição (i, j) recebe nova cor
```

SIMULAÇÃO COM A LINGUAGEM C DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA

FIGURAS E RESULTADOS DO ALGORITMO VARREDURA COM ANÁLISE GEOMÉTRICA

Figura 9: Círculo feito com Bresenham sem preenchimento

Desenho: Circulo Modificado

```
00000000000000000000000000000000
90000000000000000000000000000000
0000000000001111111555555555555
000000000011000000011000000000
000000001100000000000110000000
000000015555555555555551000000
000000155555555555555555
0000015555555555555555555
00001555555555555555555555
00001555555555555555555555
00015555555555555555555555
000155555555555555555555555
0015555555555555555555555555
00155555555555555555555555555
0015555555555555555555555555
0015555555555555555555555555
0015555555555555555555555555
00155555555555555555555555555
0015555555555555555555555555
00015555555555555555555555
0001555555555555555555555555
000015555555555555555555555
00001555555555555555555555
0000015555555555555555555
000000155555555555555555100000
000000015555555555555551000000
0000000011000000000000110000000
000000000011000000011000000000
0000000000001111111555555555555
00000000000000000000000000000000
```

Figura 10: Círculo feito com Bresenham com preenchimento

Desenho: Modelo SLIDE A STAND

Figura 11: Figura slide modelo A sem preenchimento

Desenho: Modelo SLIDE A Modificado

```
0000000000000000000000000000000
0000000000011000000000000000000
000000000015510000000000000000
000000000155551000000000000000
000000001555555100000000000000
000000015555555510000000000000
000000155555555551000000000000
000001555555555555100000000000
000015555555555555510000000000
000155555555555555551000000000
001555555555555555555100000000
015555555555555555555510000000
001555555555555555555551000000
000155555555555555555555100000
000001555555555555555555
0000001555555555555555555
00000000155555555555555555
000000000015555555555555555
000000000000155555555555555
000000000000015555555555555100
000000000000001555555555555100
000000000000111555555555551000
00000000011155555555555551000
00000000155555555555555510000
00000155555555555555555510000
000155555555555555555555100000
001555555555555555555555100000
015555555555555555555551000000
01111111111111111111111111555555
0000000000000000000000000000000
```

Figura 12: Figura slide modelo A com preenchimento

Desenho: Modelo SLIDE B STAND

```
9000000000000000001000000000000
0000000000000001101000000000000
0000000000000010000100000000000
000000000000100000001000000000
000000000010000000000100000000
000000000100000000000010000000
9000001110000000000000001000000
911111000000000000000000000100000
910000000000000000000000000010000
01000000000000000000000000001000
01000000000000000000000000000100
90100000000000000000000000000000000
90100000000000000000000000000010
9010000000000000111110000000010
001000000000000100001000000010
901000000000000100010000000010
901000000000000100100000000010
0001000000000001010000000000010
9001111111111111100000000000010
000000000000000100000000000010
9000000000000000100000000000010
9000000000000000010000000000010
9000000000000000010000000000010
0000000000000000001000000001110
9000000000000000001000000100000
900000000000000000100001000000
9000000000000000000100100000000
00000000000000000011100000000
ooooooooooooooooooooooooooo
```

Figura 13: Figura slide modelo B sem preenchimento

Desenho: Modelo SLIDE B Modificado

Figura 14: Figura slide modelo B com preenchimento

Desenho: Retangulo STAND

Figura 15: Figura retângulo sem preenchimento

Desenho: Retangulo Modificado

Figura 16: Figura retângulo com preenchimento

CONCLUSÃO

Como vimos o algoritmo de Flood Fill faz o preenchimento muito bom e com perfeição, apesar de poder ter problemas de desempenho se a imagem for muito grande. Já o algoritmo de varredura causa muitas falhas não vistas no Flood Fill, a técnica de liga e desliga pode ser bom em certos desenhos mas na maioria é certo que tenha algum problema de pintar onde não devia.

Referência

Hetem Junior, Annibal Computação gráfica/Annibal Hetem Junior. - Rio de janeiro : LTC, 2006.