Lorentzian G-manifolds and cohomogenity one manifolds

Dmitri V. Alekseevsky,

School of Mathematics and Maxwell Institute for Mathematical Sciences, The Kings Buildings, JCMB, University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ,UK D.Aleksee@ed.ac.uk

Abstract

Keywords: Isometry group of Lorentzian manifolds, isometric actions, orbit space, slice, cohomogeneity one Lorentzian manifolds.

Contents

1	Su	Survey of results about Lorentzian G-manifolds		
	1.1	Isometric action of non compact semisimple Lie group ${\cal G}$ on a Lorentzian mani-		
		fold M	3	
	1.2	N. Kowalsky theorem and its generalizations	4	
	1.3	Other results	5	
	1.4	Lorentzian manifold with big group G of isometries $\ldots \ldots \ldots \ldots$	6	
	1.5	Lorentzian manifold with big group G of isotropy $\ldots \ldots \ldots \ldots$	6	
2	Lor	entzian homogeneous manifolds with completely reducible isotropy	8	
	2.1	Infinitezimal description	8	
	2.2	D-extension of a homogeneous pseudo-Riemannian manifolds and D -product of		
		homogeneous pseudo-Riemannian manifolds	9	
	2.3	Completely reducible subalgebras of the Lorentz algebra	10	
	2.4	Homogeneous Lorentzian manifolds with completely reductive non-compact isotropy		
		group	11	
	2.5	Main theorem in the case when $m = \dim \mathfrak{m} > 2 \ldots \ldots \ldots$	12	
3	Lor	entzian G -manifolds. General theory	13	
	3.1	Proper G -manifolds	13	
	3.2	Normal bundle and quasi-slice representation	14	
		3.2.1 Slice representation and the standard model of a Lorentzian G -manifold		
		near an orbit	16	

		3.2.2	Sufficient conditions that a Lorentzian G-manifold admits a slice repre-			
			sentation near an orbit P	16		
	3.3 A description of invariant Lorentzian metrics on a homogeneous vector bundle					
	3.4 Structure of the standard homogeneous vector bundle					
4	Cohomogeneity one Lorentzian manifolds					
		4.0.1	Sphere transitive subgroups of the orthogonal group $SO(V)$	19		
		4.0.2	Cohomogeneity one subgroups of the Lorentz group $SO(1,n)$	20		
	4.1 Cohomogeneity one Lorentzian manifolds. Case of time-like orbit			21		
	4.2 Cohomogeneity one Lorentzian manifold. Case of space-like orbit			23		

1 Survey of results about Lorentzian G-manifolds

Let (M, g) be a Lorentzian G- manifold. The orbit space $\Omega = M/G$ (with the quotient topology) may be non-Hausdorf (see the Minkowski space \mathbb{R}^{n-1} with the action of the Lorentz group $SO_{1,n-1}$.)

Definition 1 A G-manifold M is called a proper manifold if the action of G on M is proper that is the map

$$G \times M \to M, (g, x) \mapsto gx$$

is proper.

This implies that the stabilizer of any point is compact.

1.1 Isometric action of non compact semisimple Lie group G on a Lorentzian manifold M

Let G be a group of isometries of a Lorentzian manifold M.

Theorem 1 (Zimmer) If M is compact and G is non compact simple Lie group, then it is locally isomorphic to $SL_2(\mathbb{R})$.

The classification of Lie groups which can acts isometrically on a compact Lorentz manifold is obtained by Adams and Stuck.

Hernandez-Zamova obtained some splitting theorem for G-manifold M under assumption that M has finite volume and G is a non compact simple Lie group , which acts analytically on M and has generically non degenerate orbits.

1.2 N. Kowalsky theorem and its generalizations

N. Kowalsky had proven the following remarkable result.

Theorem 2 Let G be a simple connected Lie group with finite center acts non proper and isometrically on a Lorentzian manifold M, then it is locally isomorphic to SO(1,n) or SO(2,n) with the non-proper orbits

$$S = SO(1, n)/SO(1, n), SO(1, n)/SO(1, n-1), SO(1, n)/SO(n-1) \cdot \mathbb{R}^{n-1}, or SO(2, n)/SO(1, n).$$

Any such orbit S with semisimple stabilizer is a space of constant curvature and locally the manifold M is a warped product $M = N \times_f S$ of S and a Riemannian manifold N.

Alternative proof of this results are given by S.Adam and D.Witte (in homogeneous case). Deffaf, Melnik and Zeghib get a generalization of Kowalsky result to the case of semisimple Lie group G without $SL_2(\mathbb{R})$ factor.

1.3 Other results

Let G be a connected isometry group of a Lorentz manifold which has an unproper orbit. S. Adam proved that under the assumption that the nilradical N of G is simply connected, at least one of the following conditions must be met:

- (1) either there exists a closed connected subgroup H of G such that the standard action of G on G/H is locally faithful and preserves a Lorentz metric or
- (2) G admits a locally faithful action for which the connected component of the stabilizer of some point of the manifold within the center of N is noncompact.

Adams and Stuck study the locally faithful action of the group $SL_n(\mathbb{R}) \times \mathbb{R}^n$, n > 3 on a Lorentz manifold and prove that it is always proper action.

Adams gives sufficient conditions for existence of a locally free orbit nonproper action of a Lie group G on a Lorentz manifold: noncompactness of the center of G, non closeness of the adjoint group Ad_G , existence of a one-dimensional ideal in \mathfrak{g} , some direct summand of \mathfrak{g} being isomorphic to $\mathfrak{sl}_2(\mathbb{R})$.

1.4 Lorentzian manifold with big group G of isometries

Patrangenaru proved that any Lorentzian n-dimensional manifold which admits isometry group of dimension m is homogeneous if m > (1/2)n(n-1) + 1 and if m = (1/2)n(n-1) + 1 then M is the Egorov space with the metric of the form

$$g = f(x_n) \sum_{i=1}^{n-2} dx_i^2 + 2dx_{n-1}dx_n.$$

1.5 Lorentzian manifold with big group G of isotropy

Let (M,g) be a G-manifold and $H=G_p$ is the stbilizer of a point $p \in M$. Since the isotropy representation $j: H \to O(T_pM)$ is exact, we can identify H with a subgroup j(H) of the Lorentz group and its Lie algebra \mathfrak{h} with a subalgebra of the Lorentz Lie algebra \mathfrak{so}_n .

Lemma 1 There is three (up to a conjugation) connected maximal subgroups of the Lorentz group $SO_{1,n-1}$:

group $(SO_{1,n-1})_t = SO_{n-1}$ which preserves a which preserves a time-like vector t, group $(SO_{1,n-1})_s = SO_{1,n-2}$ which preserves a space-like vector s, and the group $(SO_{1,n-1})_{\mathbb{R}p} = Sim(E^{n-2})$ which preserves an isotropic line Rp.

- **Theorem 3** i) Let G be an isometry group of a Lorentzian manifold (M,g)) which preserves a point p. If the isotropy group j(G) is isomorphic to the Lorentz group or to the group $Sim(E^{n-2})$, then it is a cohomogeneity one Lorentzian G-manifold.
 - ii) If it is isomorphic to SO_{n-1} or $SO_{1,n-2}$, the group G has codimension two orbits near p.
 - iii) If the stabilizer of two sufficiently closed points p, q of a Lorentzian G-manifold is isomorphic to the Lorentz group than the manifold M is a maximally homogeneous manifold of constant curvature.
 - iv) If the stabilizer of two closed points is isomorphic to SO_{n-1} or $SO_{1,n-2}$, then M is cohomogeneity one manifold.

2 Lorentzian homogeneous manifolds with completely reducible isotropy

2.1 Infinitezimal description

Let (M = G/H, g) be a homogeneous pseudo-Riemannian manifold. We will assume that the isotropy group j(H) is a connected completely reducible linear group.

Then there is a reductive decomposition

$$\mathfrak{g}=\mathfrak{h}+\mathfrak{p},\ [\mathfrak{h},\mathfrak{p}]\subset\mathfrak{m}.$$

We identify \mathfrak{m} with the tangent space T_oM at the point o = eH and denote by g the Minkowski metric on \mathfrak{p} induces by g^M . We will call the pair ($\mathfrak{g} = \mathfrak{h} + \mathfrak{p}$, g) the **metric reductive** decomposition associated with homogeneous pseudo-Riemannian manifold ($M = G/H, g^M$).

Conversely, let $(\mathfrak{g} = \mathfrak{h} + \mathfrak{p}, g)$ be a reductive decomposition of a Lie algebra \mathfrak{g} together with $\mathrm{ad}_{\mathfrak{h}}$ -invariant pseudo-Euclidean metric g on \mathfrak{p} and G is a Lie group with the Lie algebra \mathfrak{g} such that the connected subgroup $H \subset G$ generated by \mathfrak{h} is closed.

Then we can identify the tangent space $T_o(G/H)$ of the homogeneous manifold M = G/H at point o = eH with \mathfrak{p} and the metric g induces an invariant pseudo-Riemannian metric on M = G/H. Moreover, if the representation $\mathrm{ad}_{\mathfrak{h}}|_{\mathfrak{p}}$ is exact, then the action of G on M is almost effective (i.e. has a discrete kernel).

2.2 D-extension of a homogeneous pseudo-Riemannian manifolds and D-product of homogeneous pseudo-Riemannian manifolds

Let $\mathfrak{g} = \mathfrak{h} + \mathfrak{p}$ be a reductive decomposition of a Lie algebra. A derivation D of the Lie algebra \mathfrak{g} is called a **derivation of the reductive decomposition** if it preserves the reductive decomposition and acts trivially on \mathfrak{h} i.e. $D\mathfrak{h} = 0$.

We denote by $\mathfrak{g}(D) = \mathbb{R}D + \mathfrak{g}$ the corresponding extended Lie algebra with [D, x] := Dx, $x \in \mathfrak{g}$. It has the natural reductive decomposition

$$\mathfrak{g}(D) = \tilde{\mathfrak{g}} = \mathfrak{h} + (\mathbb{R}D + \mathfrak{p}) = \mathfrak{h} + \tilde{\mathfrak{p}}.$$
 (2.1)

If g is an $\mathrm{ad}_{\mathfrak{h}}$ -invariant pseudo-Euclidean metric on \mathfrak{p} , we extend it to $\mathrm{ad}_{\mathfrak{h}}$ -invariant metric \tilde{g} on $\tilde{\mathfrak{p}}$ such that $\tilde{g}(D,\mathfrak{p})=0$. We normalize the metric by the condition $\tilde{g}(D,D)=1$. The metric reductive decomposition

$$(\tilde{\mathfrak{g}} = \mathfrak{h} + \tilde{\mathfrak{p}}, \tilde{g}) \tag{2.2}$$

is called the D-extension of the metric reductive decomposition associated with derivation D. We associate with a metric reductive decomposition a homogeneous pseudo-Riemannian manifold $(M = G/H, g^M)$. We denote by $\tilde{G} = G \cdot \exp(\mathbb{R}D)$ the Lie group which is a semidirect product of the normal subgroup G and the 1-parameter group generated by G. Since G is a closed normal subgroup of G, the subgroup G is closed in G. The metric G induces an invariant pseudo-Riemannian metric on G is closed in G. The homogeneous pseudo-Riemannian manifold G is called the G-extension of a homogeneous pseudo-Riemannian manifold G is called with derivation G.

2.3 Completely reducible subalgebras of the Lorentz algebra

Theorem 4 Let V be the Minkowski vector space of a signature (1,n) and \mathfrak{h} a proper completely reducible subalgebra of the Lorentz algebra $\mathfrak{so}(V)$. Then there is an orthogonal decomposition $V = \mathfrak{m} + \mathfrak{e}$ where \mathfrak{m} is a subspace of a signature (1, m-1), $1 \leq m \leq n$ and \mathfrak{e} is an (n-m+1)-dimensional Euclidean subspace such that $\mathfrak{h} = \mathfrak{so}(\mathfrak{m}) + \mathfrak{k}$ where \mathfrak{k} is a subalgebra of the orthogonal Lie algebra $\mathfrak{so}(\mathfrak{e})$.

Note that $\mathfrak{so}(\mathfrak{m})$ is maximal non compact ideal of \mathfrak{h} and $\mathfrak{so}(\mathfrak{e})$ is the maximal compact ideal of \mathfrak{h} . We will call $\mathfrak{so}(\mathfrak{m})$ the non compact part of \mathfrak{h} .

Corollary 1 The subalgebra \mathfrak{h} is compact if and only if m = 1.

If m = 2, then $\mathfrak{m} \wedge \mathfrak{m} \approx \mathfrak{so}(\mathfrak{m})$ is 1-dimensional trivial \mathfrak{h} -module.

If m = 3, then $\mathfrak{m} \wedge \mathfrak{m} \approx \mathfrak{so}(\mathfrak{m})$ is a simple \mathfrak{h} -module isomorphic to \mathfrak{m} .

If m > 3, then \mathfrak{h} -module $\mathfrak{m} \wedge \mathfrak{m}$ is simple and is not isomorphic to \mathfrak{m} .

2.4 Homogeneous Lorentzian manifolds with completely reductive non-compact isotropy group

Let $(M = G/H, g^M)$ be a homogeneous Lorentzian manifold and $(\mathfrak{g} = \mathfrak{h} + \mathfrak{p}, g)$ the corresponding metric reductive decomposition. There is an orthogonal decomposition

$$\mathfrak{p}=\mathfrak{m}+\mathfrak{e}$$

such that the isotropy Lie algebra $j(\mathfrak{h}) = \mathfrak{so}(\mathfrak{m}) \oplus \mathfrak{k}$, where $\mathfrak{k} \subset \mathfrak{so}(\mathfrak{e})$. We will identify the stability subalgebra \mathfrak{h} with the isotropy Lie algebra $j(\mathfrak{h})$ and put

$$\mathfrak{g}_0:=\mathfrak{so}(\mathfrak{m})+\mathfrak{m},\ \mathfrak{g}_1:=\mathfrak{k}+\mathfrak{e}.$$

Lemma 2 If $m = \dim \mathfrak{m} > 2$, then the decomposition

$$\mathfrak{g} = \mathfrak{g}_0 + \mathfrak{g}_1$$

is a semidirect decomposition into a sum of the subalgebra

$$\mathfrak{g}_1 = \mathfrak{k} + \mathfrak{e}$$

and the ideal

$$\mathfrak{g}_0 = \mathfrak{so}(\mathfrak{m}) + \mathfrak{m}$$

isomorphic either to the Poincare algebra $\mathfrak{so}(1, m-1) + \mathbb{R}^m$ or to the algebras $\mathfrak{so}(1, m)$ or $\mathfrak{so}(2, m-1)$. Moreover,

the orbit $M_1 := G_1o$ of the subgroup $G_1 \subset G$, generated by \mathfrak{g}_1 , is a totally geodesic Riemannian submanifold of M and the orbit $S := G_0o$ of the subgroup G_0 generated by \mathfrak{g}_0 is an m-dimensional Lorentzian submanifold of constant curvature.

We call $S = G_0 o$ the orbit of constant curvature.

2.5 Main theorem in the case when $m = \dim \mathfrak{m} > 2$

Theorem 5 Let $(M = G/H, g^M)$ be a homogeneous Lorentzian manifold with completely reducible non compact isotropy group j(H). Assume that dim $\mathfrak{m} > 2$. If the orbit of constant curvature $S = G_0 o$ is not flat, then $G = G_0 \times G_1$ and the manifold M is a Riemannian direct product of the Lorentzian space of constant curvature $S = S_m(k)$ and a homogeneous Riemannian manifold $M_1 = G_1/K$.

If the orbit of constant curvature S is flat, (i.e $S = S_m(0)$ is the Minkowski space) then either M is a Riemannian direct product of $S_m(0)$ and a homogeneous Riemannian manifold or it is the D-product of $S_m(0)$ and a homogeneous Riemannian manifold M_1 .

Here $D = E \oplus D_1$ where $E = \operatorname{Id} | \mathfrak{m}$ the identity endomorphism considered as a derivation of the Poincare algebra $\mathfrak{g}_0 = \mathfrak{so}(\mathfrak{m}) + \mathfrak{m}$ and D_1 is a derivation of the reductive decomposition $\mathfrak{g}' = \mathfrak{k} + \mathfrak{e}'$ associated with M_1 .

3 Lorentzian G-manifolds. General theory

3.1 Proper G-manifolds

Let G be a closed subgroup os the isometry group of a Riemannian manifold M. Then the Riemannian G-manifold N is proper. Conversely we have the following classical result by Montgomery, Palais, Bredon.

Theorem 6 A proper G-manifold M admits a G-invariant complete metric g. Hence, the orbit space Ω is a metric space. Moreover, an appropriate G-invariant neighborhood M(P) of any orbit P = Gx = G/H is G-diffeomorphic to the normal bundle

$$T^{\perp}P) = G \times_H V = (G \times V)/H.$$

Here $V = T_x^{\perp}M$ and H acts on V by the isotropy representation.

" A Riemannian G-manifold is a collection of vector bundles" (Davis).

The identification of M(P) with $T^{\perp}P$ is called the slice representation and it is defined by the normal exponential map

$$exp: T^{\perp}P \to M, \ n_x \mapsto exp_x(n).$$

3.2 Normal bundle and quasi-slice representation

We will discuss the structure of a neighborhood of an orbit P = Gx of a Lorentzian G-manifold M.

We say that an orbit P = Gx = G/H of the isometry group G of a Lorentzian G-manifold is time-like (T-orbit), respectively, space-like (S-orbit) or isotropic (N-orbit) if the tangent space T_xP at any point is time-like, resp., space-like or isotropic.

We denote by M^T , resp., M^S the open submanifolds which consist of T-orbits, resp., S-orbits and by

$$M^N = M \setminus (M^T \cup M^S)$$

 $the\ closed\ subset\ on\ N\mbox{-}orbits.$

For an N-orbit P = G/H we will assume that the tangent space T_xM has a direct sum decomposition $T_xM = T_xP + N_x$ invariant under the isotropy group j(H) and we denote by τ, ν the restriction of the isotropy representation to the tangent space T_xP and the "normal space" $T_x^{\perp}P := N_x$.

 $The\ vector\ bundle$

$$T^{\perp}P = \{qn, \ g \in G, \ n \in N_x\} = G \times_H N_x$$

is called the normal bundle of the orbit P.

As in Riemannian case, we consider the normal exponential map

$$exp: T^{\perp}P \to M, \ n_y \mapsto exp_y n, \ y \in P.$$

Lemma 3 The normal exponential map is a G-equivariant local diffeomorphism of some G-invariant neighborhood $N(P) \subset T^{\perp}P$ of zero section of the normal bundle onto a neighborhood M(P) of the orbit P in M.

Unfortunately, it is not clear that it is a diffeomorphism, in general.

The metric $g|_{M(P)}$ induces a G-invariant Lorentz metric $g^N = exp^*g_{M(P)}$ in N(P) such that $exp: N(P) \to M(P)$ becomes a local isometry. The G-equivariant map exp is called a quasi-slice representation of a neighborhood M(P) of P.

3.2.1 Slice representation and the standard model of a Lorentzian G-manifold near an orbit

- **Definition 2** 1. Lorentzian G-manifold $(N(P), g^N)$ is called the standard model of the Lorentzian manifold (M, g) in a neighborhood of the orbit P.
 - 2. We say that the manifold (M,g) admits a slice representation near an orbit P = G/H is there exist a standard model $(N(P), g^N)$ such that $\exp: N(P) \to M(P)$ is a diffeomorphism of N(P) on a neighborhood M(P) of the orbit P in M.

3.2.2 Sufficient conditions that a Lorentzian G-manifold admits a slice representation near an orbit P

Proposition 1 A Lorentzian G-manifold (M,g) admits a slice representation near an orbit $P = G/H \subset M$ if one of the following conditions holds:

- 1. The action of G is proper in some neighborhood of P;
- 2. The stability subgroup H is (relatively) compact;
- 3. The normal isotropy group $\nu(H) \subset O(T_x^{\perp}P)$ is (relatively) compact;
- 4. P is a T-orbit;
- 5. There is a G-invariant neighborhood $M(P) \subset M$ of the orbit P such that there is unique perpendicular from a point $yz \in M(P)$ onto P.

Note that there is a neighborhood of P with the above property, but it is not clear that it can be chosen to be G-invariant.

3.3 A description of invariant Lorentzian metrics on a homogeneous vector bundle

We describe the structure of standard models of a Lorentzian G-manifolds near an orbit P = G/H. The problem can be formulated as follows.

Given a homogeneous manifold P = G/H and an H-module V. We describe the construction of G-invariant Lorentzian metrics g^M on the homogeneous vector bundle

$$\pi: M = G \times_H V \to P = G/H$$

(defined in a G-invariant neighborhood of zero section) in terms of a connection in π , G-invariant metric g^P in the base P=G/H and H-invariant metric g^V in the fibre V (defined in an invariant neighborhood of the origin).

Proposition 2 Let ∇ be a G-invariant connection in π with the horizontal subdistribution $\mathcal{H} \subset TM$, g^P is an invariant Riemannian (resp. Lorentzian) metric in P = G/H and g^V an H-invariant Lorentzian (resp., Riemannian) metric in V.

We can consider g^V as a G-invariant metric on the vertical subbundle T^vM . The metric g^P defines a G-invariant metric g^H on the horizontal subbundle \mathcal{H} .

Then $g^M := g^V \oplus g^{\mathcal{H}}$ is a G-invariant Lorentzian metric in M and P is S-orbit (resp. T-orbit). Any invariant metric on M such that $\pi : M \to P$ is a pseudo-Riemannian submersion can be obtained by this construction.

Similar we can describe a class on invariant metrics on M such that P is an N-orbit.

3.4 Structure of the standard homogeneous vector bundle

Let $M=G\times_H V$ be a standard model near a non-degenerate orbit P=G/H. We give a description of the associated triple $(\mathfrak{g},\mathfrak{h},V)$ as follows. We denote by $\mathfrak{k}_{\tau}=\operatorname{Ker} \tau$ and $\mathfrak{k}_{\nu}=\operatorname{Ker} \nu$ the kernel of the isotropy representation of the stability subalgebra \mathfrak{h} in the tangent space $T_xP=\mathfrak{p}$ and in the normal space $V=T_x^{\perp}$.

Lemma 4 There is a direct sum decomposition of the stability subalgebra

$$\mathfrak{h} = \mathfrak{k}_{\tau} \oplus \mathfrak{k}_{\nu} \oplus \mathfrak{h}'.$$

where \mathfrak{h}' is a compact ideal of \mathfrak{h} and \mathfrak{k}_{τ} is an ideal of \mathfrak{g} .

Theorem 7 Let

$$\mathfrak{g}=\mathfrak{h}+\mathfrak{p}$$

and

$$\mathfrak{h} = \mathfrak{k}_{ au} \oplus \mathfrak{k}_{
u} \oplus \mathfrak{h}'$$

where $[\mathfrak{k}_{\tau},\mathfrak{p}] \subset \mathfrak{k}_{\tau}$.

- 1) Assume that
- i) the restriction of the adjoint representation of $\mathfrak{k}_{\nu} \oplus \mathfrak{h}'$ to \mathfrak{m} is exact and preserves an Euclidean metric $g^{\mathfrak{m}}$ and
- ii) there is an isomorphism $\nu: \mathfrak{k}_{\tau} + \mathfrak{h}' \to \nu(\mathfrak{h}) \subset \mathfrak{so}(V) = \mathfrak{so}_{1,m-1}$. Then the homogeneous vector bundle $M = G \times_H V$ associated with the triple $(\mathfrak{g}, \mathfrak{h}, V)$ admits an invariant Lorentzian metric such that P = G/H is a T-orbit.
- 2) Assume that
- i) the restriction of the adjoint representation of $\mathfrak{k}_{\nu} \oplus \mathfrak{h}'$ to \mathfrak{m} is exact and preserves a Lorentz metric $g^{\mathfrak{m}}$ and
- ii) there is an isomorphism $\nu: \mathfrak{k}_{\tau} + \mathfrak{h}' \to \nu(\mathfrak{h}) \subset \mathfrak{so}(V) = \mathfrak{so}_m$ onto a subalgebra of the orthogonal Lie algebra. Then the homogeneous vector bundle $M = G \times_H V$ associated with the triple $(\mathfrak{g}, \mathfrak{h}, V)$ admits an invariant Lorentzian metric such that P = G/H is an S-orbit.

For example, a direct sum of the constant H-invariant metric g^V and the invariant metric on the horozontal bundle defined by g^m will be an invariant Lorentz metric in M.

Remark Similar description of a class of standard model near an N-orbit can be given.

4 Cohomogeneity one Lorentzian manifolds

We will apply this general construction to a description of standard models which have codimension one orbit. We need to describe subgroups of the orthogonal group and the Lorentz group which have codimension one orbits.

Subgroups H of SO(V) with codimension one orbit and H-invariant metrics

4.0.1 Sphere transitive subgroups of the orthogonal group SO(V)

Let $V = \mathbb{R}^m$ be the Euclidean vector space and SO(V) the special orthogonal group.

Theorem 8 (A. Borel) Connected subgroups $H \subset SO(V)$ which acts transitively on the sphere S^{n-1} belong to the following Borel list

$$SO_m, SU_{m/2}, U_{m/2}, Sp_{m/4}, Sp_1 \cdot Sp_{m/4}, G_2 \ (m=7), Spin_7, \ (m=8), Spin_9, \ m=16.$$

An invariant Riemannian metric on the unit sphere S^{m-1} invariant under the group H depends on one parameter (a scaling) for $H = SO_m, G_2, Spin_7$, depends on two parameter for $H = SU_{m/2,U_{m/2}}, Sp_1 \cdot Sp_{m/4}, Spin_9$ and depends on 3 parameters for $Sp_{m/4}$.

If the metric of S^m depends on one parameter, then any H-invariant Riemannian metric g on V is given by

$$g_e = f^2(r)dt^2 + h^2(r)g_0|_{e^{\perp}}, \ e \in S^{m-1}$$

where f(t), h(t) are even positive smooth functions on \mathbb{R} with f(0) = h(0). Similar, but more complicated description is given by L. Verdiani in all other cases.

4.0.2 Cohomogeneity one subgroups of the Lorentz group SO(1,n)

Let $V = \mathbb{R}^{1,m}$ be the Minkowski space and

$$V = \mathbb{R}p + \mathbb{R}q + E$$

a decomposition where p, q are isotropic vectors with $\langle p, q \rangle = 1$ and $E = \operatorname{span} \{p, q\}^{\perp} = \mathbb{R}^{m-1}$ the Euclidean space.

Proposition 3 Any proper connected subgroup $H \subset SO(1,n)$ of the Lorentz group with codimension one orbit in V is conjugated to the subgroup associated with Lie algebra of the form

$$\mathfrak{h} = \mathbb{R}h_0 + p \wedge E + \mathfrak{k}$$

where $\mathfrak{k} \subset \mathfrak{so}(E)$ is a subalgebra of the orthogonal algebra and $h_0 = p \wedge q + k$ where $k \in Z(\mathfrak{k})$ is an element of the centre of \mathfrak{k} .

The orbit of a point $x = \lambda p + \mu q + e_0$, $|e_0| = 1$ has codimension one if $\mu \neq 0$ and can be space-like, time-like or isotropic.

If $\mu = 0$, it is an isotropic orbit of cosimension 2.

In the case H = Sim(E), the codimension one orbits are isomorphic to $V_t = Sim(E)/SO(E) = R^* \cdot SO(E) \cdot E/SO(E)$ with the reductive decomposition

$$\mathfrak{sim}(E) = \mathfrak{so}(E) + (\mathbb{R}p \wedge q + p \wedge E).$$

There is a two parametric family of invariant Lorentzian (and also Riemannian) metrics $g_{u,v}$ on V_t . A Sim(E)-invariant metric on V is given by

$$g = dt^2 + g_{u(t),v(t)}.$$

4.1 Cohomogeneity one Lorentzian manifolds. Case of time-like orbit

Recall that a G-invariant Lorentzian manifold (M,g) admits a slice representation near a T-orbit. So to describe the structure of Cohomogeneity one Lorentzian manifold near such orbit P we may assume that $M = G \times_H V$ is a standard model.

Case of proper action

Assume that the orbit P = G/H is a proper G-manifold. Then H is compact and there is a reductive decomposition

$$\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$$

and the isotropy representation $\tau(H) = \operatorname{Ad}_H|_{\mathfrak{m}}$ has an invariant vector $t \in \mathfrak{m}$. Any epimorphism $\nu: H \to B \subset SO(V)$ of H onto a group from Borel list defines a standard model $M = G \times_H V$ with invariant Lorentz metric with T-orbit P.

Case when P = G/H is a Lorentz manifold with completely reducible non compact isotropy group $\tau(H)$ If dim P > 2 and it has no flat factor, then it is a direct product of a space of non zero constant curvature S/L and a homogeneous Riemannian manifold G'/K. Then the corresponding standard model has the form $M = S/L \times G' \times_K V$ where the action of K in V is defined by a epimorphism $\nu: K \to B \subset SO(V)$ onto a Borel group B.

Case, when $\tau(H)$ preserves an isotropic line $\mathbb{R}p$

Assume that $\mathfrak{k}_{\tau} = 0$. Then the group G acts almost effectively on P and the Lie algebra \mathfrak{h} must admit a decomposition into a direct sum $\mathfrak{h} = \mathfrak{h}_{nc} \oplus \mathfrak{k}$ where \mathfrak{k} is the maximal compact ideal.

Then an epimorphism $K \to B \subset SO(V)$ of the corresponding normal subgroup K onto a Borel subgroup B defines a standard model $M = G \times_H V$.

In general case, we have a decomposition

$$\mathfrak{g} = \mathfrak{k}_{\tau} + \mathfrak{h}_{nc} + \mathfrak{k} + \mathfrak{m}$$

and a standard model is define by an epimorphism $K_{\tau} \cdot K$ onto a Borel subgroup B with kernel in K. In the case of simple Borel subgroup, the corresponding standard model is a direct product of P = G/H and the Euclidean space V with the action of the group $K_{\tau} \approx B$.

4.2 Cohomogeneity one Lorentzian manifold. Case of spacelike orbit

Proposition 4 Let $(M = G \times_H V, g)$ be the standard Cohomogeneity one Lorentzian manifold with space-like orbit P = G/H. Then

i) there is a connected normal subgroup $L \subset \operatorname{Ker} \tau \subset H$ with the Lie algebra of the form $\mathfrak{l} = \mathbb{R}h_0 + \mathfrak{a}$ where $\operatorname{ad}_{h_0}|_{\mathfrak{a}} = 1$, $[\mathfrak{a},\mathfrak{a}] = 0$, such that the group $\bar{G} = G/L$ acts transitively on P with compact stability subgroup \bar{K} and a reductive decomposition

$$\bar{\mathfrak{g}} = \bar{\mathfrak{k}} + \bar{\mathfrak{m}}.$$

ii) Moreover one can choose a lift $\mathfrak{k} + \mathfrak{m}$ of $\bar{\mathfrak{g}} = \bar{\mathfrak{k}} + \bar{\mathfrak{m}}$ such that

$$\mathfrak{g} = \mathfrak{h} + \mathfrak{m} = (\mathbb{R}h_0 + \mathfrak{a} + \mathfrak{k}) + \mathfrak{m}$$

and \mathfrak{k} is a compact subalgebra with $[\mathfrak{l},\mathfrak{k}]=0$.

iii) Assume moreover that either ad_{h_0} is a semisimple endomorphism or \bar{G} has no invariant vector field on P (or, equivalently, $[\bar{\mathfrak{t}}, \bar{\mathfrak{m}}] = \bar{\mathfrak{m}}$).

Then the centralizer

$$\mathfrak{g}^0 := C_{\mathfrak{g}}(h_0) = \mathbb{R}h_0 + \mathfrak{k} + m$$

and $\mathfrak{g} = \mathfrak{g}^0 + \mathfrak{g}^1 = (\mathbb{R}h_0 + \mathfrak{k} + \mathfrak{m}) + \mathfrak{a}$ is a graded Lie algebra.

Corollary 2 Under assumption of Proposition, \mathfrak{g}_0 is a central extension of the Lie algebra $\bar{\mathfrak{g}} = \bar{\mathfrak{k}} + \mathfrak{m}$ defined by a closed 2-form ω on $\bar{\mathfrak{g}}$ with Ker $\omega \supset \bar{\mathfrak{k}}$, that is the Lie bracket $[.,.]_{\omega}$ in \mathfrak{g}^0 is given by

$$[k, k']_{\omega} = [k, k'], [k, x]_{\omega} = [k, x], [x, y]_{\omega} = [x, y] + \omega(x, y)h_0, k, k' \in \mathfrak{t}, x, y \in \mathfrak{m}.$$

If the subalgebra \mathfrak{g}^0 is given, the Lie algebra $\mathfrak{g} = \mathfrak{g}^0 + \mathfrak{g}^1$ is defined by a representation ρ of \mathfrak{g}^0 on the vector space $\mathfrak{g}^1 = \mathfrak{a}$ with $\rho(h_0) = 1$ such that $\rho(\mathfrak{k})$ preserves an Euclidean metric $g^{\mathfrak{a}}$ on \mathfrak{a} .

This leads to the following construction of standard cohomogeneity one Lorentzian manifold with space-like orbit P = G/H under assumption that G does not preserve any vector field on P.

Theorem 9 Let $(P = \bar{G}/K, g^P)$ be a simply connected homogeneous Riemannian manifold with a compact stabilizer K and

$$\bar{\mathfrak{g}}=\mathfrak{k}+\mathfrak{m}$$

the corresponding reductive decomposition.

Let ω be a closed (may be zero) 2-form on $\bar{\mathfrak{g}}$ with support in \mathfrak{m} and

$$\mathfrak{g}^0 = \mathbb{R}h_0 + \mathfrak{k} + \mathfrak{m}$$

the central extension of $\bar{\mathfrak{g}}$ defined by the cocycle ω .

Let $\rho: \mathfrak{g}^0 \to \mathfrak{gl}(\mathfrak{a})$ be a representation in an Euclidean vector space E, g^E such that $\rho(h_0) = 1$ and $\rho(\mathfrak{k})$ preserves g^E .

Let

$$\mathfrak{g} = \mathfrak{g}^0 + E = \mathbb{R}h_0 + \mathfrak{k} + \mathfrak{m} + E$$

be the Lie algebra with the commutative ideal E and the action ρ of \mathfrak{g}^0 on E and G connected simply connected Lie group with the Lie algebra \mathfrak{g} and H the connected subgroup of G generated by $\mathfrak{h} := \mathbb{R}h_0 + \mathfrak{k} + E$. Then the group G acts transitively as a group of isometries on the manifold (P, g^P) such that P = G/H.

Consider the representation of H in the Minkowski space $V = \mathbb{R}p + \mathbb{R}q + E$ generated by the following representation $\hat{\rho}$ of the Lie algebra $\mathfrak{h} = \mathbb{R}h_0 + E + \mathfrak{k}$:

$$\hat{\rho}(h_0) = p \wedge q$$
, $\hat{\rho}(e) = p \wedge e$, $\hat{\rho}(k) = \rho(k)$, for $e \in E$, $k \in \mathfrak{k}$

where we assume that $\rho(k)p = \rho(k)q = 0$. It preserves the Lorentzian metric g^V in V defined by $g^V|_E = g^E, g^V(p, p + E) = g^V(q, q + E) = 0$, $g^V(p, q) = 1$. Then the cohomogeneity one manifold $M = G \times_{\hat{\rho}(H)} V$ has an invariant metric $g^P \oplus g^V$.

Moreover, any standard cohomogeneity one Lorentzian manifold with space-like orbit $P = \bar{G}/K$ can be obtained by this construction.

References

- [A] Adams S., , Dynamics on Lorentzian manifolds. Workd Sci. Publishing, 2001
- [A1] Adams S., Transitive actions on Lorentzian manifolds with non compact stabilizer, Geom. Dedicata, 98,(2003) 1-45,
- [A2] Adams S., Orbit nonproper actions on Lorentz manifolds, GAFA, Geom. Funct. Anal. 11:2 (2001), 201–243,
- [A3] Adams S., Orbit nonproper dynamics on Lorentz manifolds, Illinois J. Math. 45:4 (2001), 1191–1245,
- [A4] Adams S., Dynamics of semisimple Lie groups on Lorentz manifolds, Geom. Ded. 105 (2004), 1–12,
- [A5] Adams S., Induction of geometric actions, Geom. Ded. 88 (2001), 91–112,
- [A6] Adams S., Locally free actions on Lorentz manifolds, Geom. Funct. Anal. 10 (2000), no. 3, 453515
- [AS] Adams S., Stuck G., The isometry group of a compact Lorentz manifold I, Inv. Math. 129:2(1997), 239–261,
- [AS1] Adams S., G. Stuck G., The isometry group of a compact Lorentz manifold II, Inv. Math. 129:2 (1997), 263–287,
- [AS2] Adams S., Stuck G., Isometric actions of $SL_n(R) \times \mathbb{R}^n$ on Lorentz manifolds, Israel J. Math. 121 (2001), 93111,
- [Al] Alekseevsky D.V., Lorentzian homogeneous manifolds with completely reducible isotropy, Pure and Applied Differential Geometry, PAGE 2007, Shaker Verlag, ed., F. Dillen and I. Van de Woestyne, 7-13.
- [ADZ] Arouche A., Deffaf M., Zeghib A., On Lorentz dynamics: From group actions to warped products via homogeneous spaces, Trans. Amer. Math. Soc. 359 (2007), 1253–1263.
- [BN] Bader U., A. Nevo A., Conformal actions of simple Lie groups on compact pseudo-Riemannian manifolds, J. Differential Geom. 60:3 (2002), 355–387.
- [DMZ] Deffaf M.; Melnick K.,; Zeghib A., Actions of noncompact semisimple groups on Lorentz manifolds, Geom. Funct. Anal. 18 (2008), no. 2, 463–488

- [1] [BZ] Barbot T., Zeghib A., Group actions on Lorentz spaces, mathematical aspects: a survey , in "The Einstein Equations and the Large-Scale Behavior of Gravitational Fields" (P. Chrusciel, H. Friedrich, eds.) Birkhuser, Basel (2004), 401–439,
- [HZ] Hernandez-Zamova F.G., Isometric splitting for action of simple Lie groups on pseudo-Riemannian manifolds Gem. Dedicata, 109 (2004), 147-163,
- [K] Kowalsky N., Transitive actions on Lorentzian manifolds with non compact stabilizer, Ann. Math., 144, 611-649, 1997,
- [P] Patrangenaru V., Lorentz manifolds with the three largest degrees of symmetry, Geom. Dedicata 102 (2003), 25–33,
- [W] Witte D., Homogeneous Lorentzian manifolds with simple isometry group Beiträge Alg. Geom., 42 (2001), 451-461,
- [Z] Zeghib A., Sur les espaces-temps homog'enes The Epstein birthday schrift, 551576, Geom. Topol.Monogr., 1, Geom. Topol. Publ., Coventry, 1998.
- [Z] Zimmer R.J., Action of semisimple groups and discrete subgroups Proceed. Intern. Cngress of math., vol. 1-2, AMS, 1987, 1247-1258,
- [Z1] R.J. Zimmer R.J., On the automorphism group of a compact Lorentz manifold and other geometric manifolds, Invent. Math. 83:3 (1986), 411–424,