n_queens_LOWSLEY

November 3, 2020

1 Solving the n-Queens Problem using Local Search

Points: 10

1.1 The n-Queens Problem

Goal: Find an arrangement of n queens on a $n \times n$ chess board so that no queen is on the same row, column or diagonal as any other queen.

State space: An arrangement of the queens on the board. We restrict the state space to arrangements where there is only a single queen per column. We represent a state as an integer vector of length n, each number representing for one column (from left to write) the row the queen is located in. We will call a state a "board."

Objective function: The number of pairwise conflicts (i.e., two queens in the same row/column/diagonal).

The optimization problem is to find the optimal arrangement a^* of n queens on the board:

$$a^* = \operatorname{argmin}_a[\operatorname{conflicts}(a)]$$

s.t. a contains only one queen per column

Note that for this problem there is always an arrangement a^* with conflicts(a) = 0.

Local move: Move one queen to a different position in its column.

1.2 Helper functions

```
[228]: import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from matplotlib import colors
import math
from operator import itemgetter
import random
import pandas as pd
import time
```

```
def random_board(n):
    """Creates a random board of size n x n. Note that only a single queen is \Box
{\scriptstyle \rightarrow \textit{placed in each column!"""}}
    return(np.random.randint(0,n,size = n))
def conflicts(board):
    """Caclulate the number of conflicts, i.e., the objective function."""
    board = np.array(board)
    n = len(board)
    conflicts = 0
    \# check horizontal (we do not check vertical since the state space is \sqcup
→restricted to one queen per col)
    for i in range(n): conflicts += math.comb(np.sum(board == i), 2)
    #print(f"Horizontal conflicts: {conflicts}")
    # check for each queen diagonally up and down (only to the right side of \Box
 \rightarrow the queen)
    for j in range(n):
        q_up = board[j]
        q_down = board[j]
        for jj in range(j+1, n):
            q_up -= 1
            q_down += 1
            if board[jj] == q_up: conflicts += 1
            if board[jj] == q_down: conflicts += 1
        #print(f"Conflicts after queen {j}: {conflicts}")
    return(conflicts)
def show_board(board, cols = ['white', 'gray']):
    """display the board"""
    n = len(board)
    # create chess board display
    display = np.zeros([n,n])
    for i in range(n):
        for j in range(n):
            if (((i+j) \% 2) != 0):
```

1.3 Create a board

```
[101]: board = random_board(4)

show_board(board)
print(f"Queens (left to right) are at rows: {board}")
print(f"Number of conflicts: {conflicts(board)}")
```

Board with 3 conflicts.


```
Queens (left to right) are at rows: [3 1 0 1] Number of conflicts: 3
```

A board 4×4 with no conflicts:

```
[102]: board = [1,3,0,2] show_board(board)
```

Board with 0 conflicts.

1.4 Steepest-ascend Hill Climbing Search [3 Points]

Calculate the objective function for all local moves (move each queen within its column) and always choose the best among all local moves.

```
[103]: def steepest_ascent_get_neighbors(board):
    # define list of neighbors to populate
    neighbors = []
    # loop through each column
    for col in range(len(board)):
        # for each column, store a list of possible alternative moves
        states = []
        # loop through each row of a column
        for pos in range(len(board)):
        # if pos is current queen position then skip since we are already
        → there
```

```
if(board[col] == pos): continue
            # if not, copy over board values and move queen to new state
            new_state = board.copy()
            new_state[col] = pos
            # calculate the conflict score of this state
            new_state_score = conflicts(new_state)
            # add it to our list of states
            states.append((new_state_score,new_state.copy()))
        # taking the best state for a given column and save it off
        min_state_score = min(states, key = itemgetter(0))
        # add it to our list of neighbors
        neighbors.append((min_state_score[0],min_state_score[1].copy()))
    return(neighbors)
# Code goes here
def steepest_ascent_hill(board = None, size = 4, debug = False, __
\rightarrowmax_steps=10000):
    # if board not specified, generate one
    if(board == None):
        current = random_board(size)
    else:
        current = board
    # obtain score of current board
    current_score = conflicts(current)
    # debug
    if(debug):
        print("Starting board...")
        show_board(current)
    # run algo until solution is found or max_steps/stop_after is reached
    for step in range(max_steps):
        # obtain neighbors
        neighbors = steepest_ascent_get_neighbors(current)
        # obtain best neighbor
        min neighbor score = min(neighbors, key = itemgetter(0))
        # if best neighbor is better than current score, update it
        if(min_neighbor_score[0] < current_score):</pre>
            # debug
            if(debug):
                print("# STEEPEST ASCENT - NEW HIGH SCORE - ")
                print("NEW -> ",min_neighbor_score[0], " for ", ")
 →min_neighbor_score[1])
                print("OLD -> ",current_score, " for ", current)
                show_board(min_neighbor_score[1])
            # assign new values
            current_score = min_neighbor_score[0]
            current = min_neighbor_score[1]
        # if next best found neighbor is not better
```

```
else:
    # stop and return current
    if(debug): print("Ending board...")
    return((current_score,current))

result = steepest_ascent_hill(size = 6, debug = True)
show_board(result[1])
```

Starting board...
Board with 4 conflicts.


```
# STEEPEST ASCENT - NEW HIGH SCORE - NEW -> 1 for [1 4 0 0 3 5]
OLD -> 4 for [3 4 0 0 3 5]
Board with 1 conflicts.
```


Ending board...
Board with 1 conflicts.

1.5 Steepest-ascend Hill Climbing Search with Random Restarts [1 Point]

Steepest-ascend hill climbing will often end up in local optima. Restart the algorithm up to 100 times with a random board to find a better (hopefully optimal) solution.

```
[104]: def steepest_ascent_hill_random(board = None, size = 4, debug = False,
        →max_steps=10000, restarts=100):
           # create board if not supplied
           if(board == None):
               board = random_board(size)
           # set up initial best values
           best_score = conflicts(board)
           best_solution = board
           # run through number of random restarts
           for i in range(restarts):
               if(debug): print("STARTING RESTART ", i)
               # run steepest ascent with random board each time
               result = steepest_ascent_hill(size=size, debug = False,__
        →max_steps=max_steps)
               # if the score of the result is better, replace it
               if(result[0] < best_score):</pre>
                   # debug
                   if(debug):
                       print("# RANDOM RESTART - NEW HIGH SCORE - ")
                       print("NEW -> ",result[0], " for ", result[1])
                       print("OLD -> ",best_score, " for ", best_solution)
                   # assign new values
                   best score = result[0]
                   best_solution = result[1]
               # if solution has zero conflicts, return
               if(best score == 0):
                   return((best score, best solution))
           # if no optimal solution found, return best found
           return((best_score,best_solution))
       result = steepest_ascent_hill_random(size = 8, debug = True, restarts=50)
       show_board(result[1])
      STARTING RESTART O
      # RANDOM RESTART - NEW HIGH SCORE -
      NEW -> 2 for [3 6 7 2 0 5 4 1]
      OLD -> 8 for [1 6 5 1 3 4 6 1]
      STARTING RESTART 1
      # RANDOM RESTART - NEW HIGH SCORE -
      NEW -> 1 for [4 0 5 7 1 3 6 2]
      OLD -> 2 for [3 6 7 2 0 5 4 1]
      STARTING RESTART
```

STARTING RESTART 3

```
STARTING RESTART 4

STARTING RESTART 5

STARTING RESTART 6

# RANDOM RESTART - NEW HIGH SCORE - NEW -> 0 for [6 3 1 7 5 0 2 4]

OLD -> 1 for [4 0 5 7 1 3 6 2]

Board with 0 conflicts.
```


1.6 Stochastic Hill Climbing [1 Point]

Chooses randomly from among all uphill moves.

```
new_state_score = conflicts(new_state)
            # if we have a state with better score, add to neighbors list
            if(new_state_score < score):</pre>
                neighbors.append((new_state_score,new_state.copy()))
    return(neighbors)
def stochastic_hill(board = None, size = 4, debug = False, max_steps=10000):
    # if board not specified, generate one
    if(board == None):
        current = random_board(size)
    else:
        current = board
    # obtain score of current board
    current_score = conflicts(current)
    # debug
    if(debug):
        print("Starting board...")
        show_board(current)
    # run algo until solution is found or max_steps/stop_after is reached
    for step in range(max_steps):
        # obtain neighbors with better score than current
        neighbors = stochastic_get_neighbors(current, current_score)
        # if at least one better neighbor found
        if(len(neighbors) != 0):
            # obtain random neighbor from list and assign to current
            new_neighbor = random.choice(neighbors)
            # debug
            if(debug):
                print("# STEEPEST ASCENT - NEW HIGH SCORE - ")
                print("NEW -> ",new_neighbor[0], " for ", new_neighbor[1])
                print("OLD -> ",current_score, " for ", current)
                show_board(new_neighbor[1])
            # assign new values
            current_score = new_neighbor[0]
            current = new_neighbor[1]
        # if no better neighbor found at all
        else:
            # stop and return current
            if(debug): print("Ending board...")
            return((current score,current))
result = stochastic hill(size = 6, debug = True)
show_board(result[1])
```

Starting board...
Board with 6 conflicts.

STEEPEST ASCENT - NEW HIGH SCORE - NEW -> 4 for [2 5 3 2 4 0]
OLD -> 6 for [2 0 3 2 4 0]
Board with 4 conflicts.

STEEPEST ASCENT - NEW HIGH SCORE -

NEW -> 3 for $[2\ 5\ 5\ 2\ 4\ 0]$ OLD -> 4 for $[2\ 5\ 3\ 2\ 4\ 0]$ Board with 3 conflicts.

STEEPEST ASCENT - NEW HIGH SCORE - NEW -> 1 for [2 5 5 1 4 0]
OLD -> 3 for [2 5 5 2 4 0]
Board with 1 conflicts.

Ending board...
Board with 1 conflicts.

1.7 First-choice Hill Climbing [1 Point]

First-choice hill climbing is a type of stochastic hill climbing that generates one random local neighbor at a time and accept it if it has a better objective function value than the current state.

```
[106]: def first_choice_get_neighbor(board, size):
           # copy board for altering
           new_neighbor = board.copy()
           # obtain random queen to move
           col = random.randint(0, size-1)
           # obtain random position to move to
           pos = random.randint(0, size-1)
           # ensure it is not same location, if it is keep generating new locations
           while(new_neighbor[col] == pos):
               pos = random.randint(0, size-1)
           # assign queen to new location
           new_neighbor[col] = pos
           # obtain score
           new_score = conflicts(new_neighbor)
           # return new neighbor
           return((new_score,new_neighbor))
```

```
def first_choice_hill(board = None, size = 4, debug = False, max_steps=10000, u
⇒stop_after=1000):
    # if board not specified, generate one
    if(board == None):
        current = random board(size)
    else:
        current = board
        size = len(current)
    # obtain score of current board
    current_score = conflicts(current)
    # debug
    if(debug):
        print("Starting board...")
        show board(current)
    # value to keep track of number of steps that have occured since the last \Box
⇒best found solution
    steps_since_best = 0
    # run algo until solution is found or max steps/stop after is reached
    for step in range(max_steps):
        # return current if no better solution is found after stop after steps
        if(steps_since_best >= stop_after):
            if(debug): print("No better solution found after {} steps.".
 →format(stop_after))
            return((current_score,current))
        if(current score == 0):
            return((current_score,current))
        # obtain neighbors with better score than current
        neighbor = first_choice_get_neighbor(current, size)
        # if at least one better neighbor found
        if(neighbor[0] < current_score):</pre>
            # debug
            if(debug):
                print("# STEEPEST ASCENT - NEW HIGH SCORE - ")
                print("NEW -> ",neighbor[0], " for ", neighbor[1])
                print("OLD -> ",current_score, " for ", current)
                show_board(neighbor[1])
            # assign new values
            current_score = neighbor[0]
            current = neighbor[1]
            # reset our steps since best found solution
            steps since best = 0
        # if no better neighbor found, increment our steps since best solution_
\rightarrow found
        steps_since_best = steps_since_best + 1
    if(debug): print("Ending board...")
    return((current_score,current))
```

result = first_choice_hill(size = 6, debug = True)
show_board(result[1])

Starting board...
Board with 3 conflicts.

STEEPEST ASCENT - NEW HIGH SCORE - NEW -> 2 for [5 1 3 5 2 4]
OLD -> 3 for [5 0 3 5 2 4]
Board with 2 conflicts.

STEEPEST ASCENT - NEW HIGH SCORE - NEW -> 1 for [4 1 3 5 2 4] OLD -> 2 for [5 1 3 5 2 4] Board with 1 conflicts.

No better solution found after 1000 steps.

Board with 1 conflicts.

1.8 Simulated Annealing [2 Points]

You have to experiment with the annealing schedule.

```
[234]: def simulated_annealing_get_neighbor(board, size):
           # copy board for altering
           new_neighbor = board.copy()
           # obtain random queen to move
           col = random.randint(0, size-1)
           # obtain random position to move to
           pos = random.randint(0, size-1)
           # ensure it is not same location, if it is keep generating new locations
           while(new_neighbor[col] == pos):
               pos = random.randint(0, size-1)
           # assign queen to new location
           new_neighbor[col] = pos
           # obtain score
          new_score = conflicts(new_neighbor)
           # return new neighbor
           return((new_score,new_neighbor))
       def simulated_annealing(board = None, size = 4, TO = None, alpha = 0.999, __
       →epsilon = 1e-3, debug = False):
       # if board not specified, generate one
           if(board == None):
```

```
current = random_board(size)
    else:
        current = board
        size = len(current)
    # obtain score of current board
    current_score = conflicts(current)
    # debug
    if(debug):
        print("Starting board...")
        show_board(current)
    # use the current board conflict score to set TO
    if TO is None:
        T0 = (size^2) / 2
    # set T and t
    T = T0
    t = 0
    while T > epsilon:
        # calculate temperature from schedule
        T = T0 * alpha ** t
        # obtain neighbor
        neighbor = simulated_annealing_get_neighbor(current, size)
        # calculated delta E
        deltaE = neighbor[0] - current_score
        # check if the new solution is better
        if deltaE < 0 or np.random.rand() < math.exp(-deltaE/T):</pre>
            current = neighbor[1]
            current_score = neighbor[0]
            if debug:
                print(f"step: {t} \t temp: {T:5.3f} \t deltaE: {deltaE:+3.3f}
→\t new conflict score: {current_score:3.3f}")
            if(current_score == 0):
                if(debug): print("Ending board...")
                return((current_score, current))
        t += 1
    if(debug): print("Ending board...")
    return((current_score, current))
result = simulated_annealing(size=6, debug=True)
show_board(result[1])
```

Starting board...
Board with 5 conflicts.

step:	0	temp:	2.000	deltaE:	+1.000	new	conflict	score:
6.000	_		1 000		0.000		67	
step:	1	temp:	1.998	deltaE:	-2.000	new	conflict	score:
4.000	2		1 004	3-34-P.	1 000		67:-+	
step: 3.000	3	temp:	1.994	deltaE:	-1.000	new	conflict	score:
step:	6	temp:	1 000	deltaE:	+0 000	nott	conflict	gcoro:
3.000	O	remp.	1.900	dertar.	10.000	mew	CONTILCE	score.
step:	10	temp:	1.980	deltaE:	+0.000	new	conflict	score:
3.000	10	oomp.	1.000	aoroaz.		11011	001111100	20010.
step:	15	temp:	1.970	deltaE:	+2.000	new	conflict	score:
5.000		•						
step:	16	temp:	1.968	deltaE:	-1.000	new	conflict	score:
4.000								
step:	18	temp:	1.964	<pre>deltaE:</pre>	+0.000	new	${\tt conflict}$	score:
4.000								
step:	21	temp:	1.958	deltaE:	+2.000	new	${\tt conflict}$	score:
6.000								
step:	22	temp:	1.956	deltaE:	+0.000	new	conflict	score:
6.000								
step:	23	temp:	1.955	deltaE:	-1.000	new	conflict	score:
5.000	0.4		4 050	1 1. 17	.4.000		63.1.1	
step:	24	temp:	1.953	deltaE:	+1.000	new	conflict	score:
6.000	25	temp:	1 051	deltaE:	-1 000	norr	conflict	acoros
step: 5.000	20	remb:	1.901	uerta£;	-1.000	116 M	COULTICE	PCOLE:
5.000								

step: 5.000	26	temp:	1.949	deltaE:	+0.000	new	conflict	score:
step: 5.000	27	temp:	1.947	deltaE:	+0.000	new	conflict	score:
step:	28	temp:	1.945	deltaE:	-1.000	new	conflict	score:
4.000 step:	29	temp:	1.943	deltaE:	-1.000	new	conflict	score:
3.000 step:	30	temp:	1.941	deltaE:	+0.000	new	conflict	score:
3.000 step:	31	temp:	1.939	deltaE:	+0.000	new	conflict	score:
3.000 step:	33	temp:	1.935	deltaE:	-1.000	new	conflict	score:
2.000 step:	36	temp:	1.929	deltaE:	+0.000	new	conflict	score:
2.000 step:	38	temp:	1.925	deltaE:	+1.000	new	conflict	score:
3.000 step:		temp:	1.914	deltaE:	-1.000	new	conflict	score:
2.000 step:		temp:	1.908	deltaE:	-1.000	new	conflict	score:
1.000 step:	48	temp:	1.906	deltaE:	+1.000	new	conflict	score:
2.000 step:		temp:	1.897	deltaE:	+1.000	new	conflict	score:
3.000 step:	54	temp:	1.895	deltaE:	-2.000	new	conflict	score:
1.000 step:	55	temp:	1.893	deltaE:	+2.000	new	conflict	score:
3.000 step:	58	temp:	1.887	deltaE:	+1.000	new	conflict	score:
4.000 step:	59	temp:	1.885	deltaE:	-1.000	new	conflict	score:
3.000 step:	62	temp:	1.880	deltaE:	+0.000	new	conflict	score:
3.000 step:		-	1.878	deltaE:	+1.000	new	conflict	score:
4.000 step:		_	1.872	deltaE:			conflict	
5.000 step:		-	1.868	deltaE:			conflict	
3.000 step:			1.867	deltaE:			conflict	
2.000 step:		_	1.854	deltaE:			conflict	
2.000		_						
step: 2.000		remp:	1.846	deltaE:	+0.000	пем	conflict	score:

step: 2.000	84	temp:	1.839	deltaE:	+0.000	new	conflict	score:
step:	85	temp:	1.837	deltaE:	+0.000	new	conflict	score:
step: 4.000	87	temp:	1.833	deltaE:	+2.000	new	conflict	score:
step: 4.000	89	temp:	1.830	deltaE:	+0.000	new	conflict	score:
step: 7.000	90	temp:	1.828	deltaE:	+3.000	new	conflict	score:
step: 5.000	91	temp:	1.826	deltaE:	-2.000	new	conflict	score:
step: 5.000	92	temp:	1.824	deltaE:	+0.000	new	conflict	score:
step: 3.000	93	temp:	1.822	deltaE:	-2.000	new	conflict	score:
step: 4.000	95	temp:	1.819	deltaE:	+1.000	new	conflict	score:
step: 5.000		temp:	1.817	deltaE:	+1.000	new	conflict	score:
step: 4.000	97	temp:	1.815	deltaE:	-1.000	new	conflict	score:
step: 3.000	100	temp:	1.810	deltaE:	-1.000	new	conflict	score:
step: 3.000		temp:	1.808	deltaE:	+0.000	new	conflict	score:
step: 2.000	106	temp:	1.799	deltaE:	-1.000	new	conflict	score:
step: 3.000	111	temp:	1.790	deltaE:	+1.000	new	conflict	score:
step: 4.000		temp:	1.788	deltaE:	+1.000	new	conflict	score:
step: 6.000	113	temp:	1.786	deltaE:	+2.000	new	conflict	score:
step: 4.000		temp:	1.784	deltaE:	-2.000	new	conflict	score:
step: 4.000		temp:	1.783	deltaE:	+0.000	new	conflict	score:
step: 4.000		temp:	1.779	deltaE:	+0.000	new	conflict	score:
step: 6.000		temp:	1.777	deltaE:	+2.000	new	conflict	score:
step: 6.000	120	temp:	1.774	deltaE:	+0.000	new	conflict	score:
step: 6.000		temp:	1.772	deltaE:	+0.000	new	conflict	score:
step: 4.000		temp:	1.770	deltaE:	-2.000	new	conflict	score:

step: 4.000	123	temp:	1.768	deltaE:	+0.000	new	conflict	score:
step: 3.000	124	temp:	1.767	deltaE:	-1.000	new	conflict	score:
step: 4.000	126	temp:	1.763	deltaE:	+1.000	new	conflict	score:
step: 5.000	128	temp:	1.760	deltaE:	+1.000	new	conflict	score:
step: 3.000	129	temp:	1.758	deltaE:	-2.000	new	conflict	score:
step: 2.000	137	temp:	1.744	deltaE:	-1.000	new	conflict	score:
step: 3.000	138	temp:	1.742	deltaE:	+1.000	new	conflict	score:
step: 5.000	139	temp:	1.740	deltaE:	+2.000	new	conflict	score:
step: 4.000	140	temp:	1.739	deltaE:	-1.000	new	conflict	score:
step: 5.000	141	temp:	1.737	deltaE:	+1.000	new	conflict	score:
step: 5.000	142	temp:	1.735	deltaE:	+0.000	new	conflict	score:
step: 5.000	143	temp:	1.733	deltaE:	+0.000	new	conflict	score:
step: 5.000	145	temp:	1.730	deltaE:	+0.000	new	conflict	score:
step: 5.000	146	temp:	1.728	deltaE:	+0.000	new	conflict	score:
step: 5.000	147	temp:	1.726	deltaE:	+0.000	new	conflict	score:
step: 5.000	149	temp:	1.723	deltaE:	+0.000	new	conflict	score:
step: 5.000	150	temp:	1.721	deltaE:	+0.000	new	conflict	score:
step: 6.000	151	temp:	1.720	deltaE:	+1.000	new	conflict	score:
step: 6.000	152	temp:	1.718	deltaE:	+0.000	new	conflict	score:
step: 6.000	153	temp:	1.716	deltaE:	+0.000	new	conflict	score:
step: 6.000	155	temp:	1.713	deltaE:	+0.000	new	conflict	score:
step: 6.000	156	temp:	1.711	deltaE:	+0.000	new	conflict	score:
step: 7.000	157	temp:	1.709	deltaE:	+1.000	new	conflict	score:
step: 7.000	158	temp:	1.708	deltaE:	+0.000	new	conflict	score:

step: 5.000		temp:	1.706	deltaE:	-2.000	new	conflict	score:
step: 6.000		temp:	1.704	deltaE:	+1.000	new	conflict	score:
step:		temp:	1.702	deltaE:	-1.000	new	conflict	score:
5.000 step:	162	temp:	1.701	deltaE:	+2.000	new	conflict	score:
7.000 step:		temp:	1.699	deltaE:	-1.000	new	conflict	score:
6.000 step:	165	temp:	1.696	deltaE:	+1.000	new	conflict	score:
7.000 step:	166	temp:	1.694	deltaE:	-1.000	new	conflict	score:
6.000 step:		temp:	1.692	deltaE:	+1.000	new	conflict	score:
7.000 step:		temp:	1.691	deltaE:	-3.000	new	conflict	score:
4.000 step:		temp:	1.689	deltaE:	-1.000	new	conflict	score:
3.000 step:	170	temp:	1.687	deltaE:	+1.000	new	conflict	score:
4.000 step:		temp:	1.685	deltaE:	+0.000	new	conflict	score:
4.000 step:		temp:	1.682	deltaE:	+0.000	new	conflict	score:
4.000 step:	174	temp:	1.680	deltaE:	+1.000	new	conflict	score:
5.000 step:		temp:	1.679	deltaE:	+0.000	new	conflict	score:
5.000 step:	176	temp:	1.677	deltaE:	+0.000	new	conflict	score:
5.000 step:		temp:	1.675	deltaE:	-1.000	new	conflict	score:
4.000 step:	178	temp:	1.674	deltaE:	-1.000	new	conflict	score:
3.000 step:		temp:	1.670	deltaE:	+1.000	new	conflict	score:
4.000 step:	181	temp:	1.669	deltaE:	+1.000	new	conflict	score:
5.000 step:		temp:	1.665	deltaE:	+1.000	new	conflict	score:
6.000 step:		temp:	1.664	deltaE:	-1.000	new	conflict	score:
5.000 step:		_	1.660	deltaE:			conflict	
3.000 step:		_	1.659	deltaE:			conflict	
4.000		r •						

step: 1.000		temp:	1.657	deltaE:	-3.000	new	conflict	score:
step: 2.000		temp:	1.650	deltaE:	+1.000	new	conflict	score:
step: 2.000		temp:	1.647	deltaE:	+0.000	new	conflict	score:
step: 2.000	198	temp:	1.641	deltaE:	+0.000	new	conflict	score:
step: 6.000		temp:	1.637	deltaE:	+4.000	new	conflict	score:
step: 6.000	201	temp:	1.636	deltaE:	+0.000	new	conflict	score:
step: 7.000		temp:	1.634	deltaE:	+1.000	new	conflict	score:
step: 5.000	203	temp:	1.632	deltaE:	-2.000	new	conflict	score:
step: 4.000		temp:	1.631	deltaE:	-1.000	new	conflict	score:
step: 4.000		temp:	1.629	deltaE:	+0.000	new	conflict	score:
step: 5.000	206	temp:	1.627	deltaE:	+1.000	new	conflict	score:
step: 4.000	207	temp:	1.626	deltaE:	-1.000	new	conflict	score:
step: 4.000		temp:	1.624	deltaE:	+0.000	new	conflict	score:
step: 4.000		temp:	1.621	deltaE:	+0.000	new	conflict	score:
step: 4.000		temp:	1.618	deltaE:	+0.000	new	conflict	score:
step: 4.000		temp:	1.611	deltaE:	+0.000	new	conflict	score:
step: 2.000	217	temp:	1.610	deltaE:	-2.000	new	conflict	score:
step: 3.000	218	temp:	1.608	deltaE:	+1.000	new	conflict	score:
step: 4.000		temp:	1.602	deltaE:	+1.000	new	conflict	score:
step: 5.000		temp:	1.600	deltaE:	+1.000	new	conflict	score:
step: 4.000	224	temp:	1.598	deltaE:	-1.000	new	conflict	score:
step: 5.000	226	temp:	1.595	deltaE:	+1.000	new	conflict	score:
step: 4.000		temp:	1.594	deltaE:	-1.000	new	conflict	score:
step: 3.000		temp:	1.592	deltaE:	-1.000	new	conflict	score:

step: 5.000		temp:	1.590	deltaE:	+2.000	new	conflict	score:
step: 4.000		temp:	1.587	deltaE:	-1.000	new	conflict	score:
step:	236	temp:	1.579	deltaE:	+0.000	new	conflict	score:
4.000 step:		temp:	1.578	deltaE:	-1.000	new	conflict	score:
3.000 step:		temp:	1.575	deltaE:	+0.000	new	conflict	score:
3.000 step:		temp:	1.568	deltaE:	+1.000	new	conflict	score:
4.000 step:	247	temp:	1.562	deltaE:	+0.000	new	conflict	score:
4.000 step:	248	temp:	1.561	deltaE:	+1.000	new	conflict	score:
5.000 step:		temp:	1.559	deltaE:	+1.000	new	conflict	score:
6.000 step:		temp:	1.557	deltaE:	-2.000	new	conflict	score:
4.000 step:	251	temp:	1.556	deltaE:	+0.000	new	conflict	score:
4.000 step:		temp:	1.554	deltaE:	-1.000	new	conflict	score:
3.000 step:		temp:	1.551	deltaE:	+0.000	new	conflict	score:
3.000 step:	255	temp:	1.550	deltaE:	+1.000	new	conflict	score:
4.000 step:		temp:	1.548	deltaE:	+1.000	new	conflict	score:
5.000 step:	259	temp:	1.543	deltaE:	+0.000	new	conflict	score:
5.000 step:		temp:	1.542	deltaE:	-1.000	new	conflict	score:
4.000 step:			1.540	deltaE:	+0.000	new	conflict	score:
4.000 step:		-	1.536	deltaE:	-1.000	new	conflict	score:
3.000 step:		_	1.534	deltaE:			conflict	
3.000 step:		-	1.531	deltaE:			conflict	
3.000 step:		-	1.530	deltaE:			conflict	
3.000 step:		_	1.528	deltaE:			conflict	
3.000		_						
step: 2.000		remb:	1.525	deltaE:	1.000	тем	conflict	PCOT6:

step: 3.000		temp:	1.522	deltaE:	+1.000	new	conflict	score:
step: 3.000		temp:	1.520	deltaE:	+0.000	new	conflict	score:
step: 4.000		temp:	1.519	deltaE:	+1.000	new	conflict	score:
step: 3.000	276	temp:	1.517	deltaE:	-1.000	new	conflict	score:
step: 5.000		temp:	1.516	deltaE:	+2.000	new	conflict	score:
step: 4.000	278	temp:	1.514	deltaE:	-1.000	new	conflict	score:
step: 4.000		temp:	1.513	deltaE:	+0.000	new	conflict	score:
step: 3.000	281	temp:	1.510	deltaE:	-1.000	new	conflict	score:
step: 2.000		temp:	1.508	deltaE:	-1.000	new	conflict	score:
step: 1.000		temp:	1.504	deltaE:	-1.000	new	conflict	score:
step: 1.000	287	temp:	1.501	deltaE:	+0.000	new	conflict	score:
step: 2.000	289	temp:	1.498	deltaE:	+1.000	new	conflict	score:
step: 4.000		temp:	1.493	deltaE:	+2.000	new	conflict	score:
step: 2.000		temp:	1.492	deltaE:	-2.000	new	conflict	score:
step: 3.000		temp:	1.489	deltaE:	+1.000	new	conflict	score:
step: 4.000		temp:	1.487	deltaE:	+1.000	new	conflict	score:
step: 5.000	297	temp:	1.486	deltaE:	+1.000	new	conflict	score:
step: 6.000	299	temp:	1.483	deltaE:	+1.000	new	conflict	score:
step: 6.000		temp:	1.481	deltaE:	+0.000	new	conflict	score:
step: 6.000		temp:	1.480	deltaE:	+0.000	new	conflict	score:
step: 5.000	302	temp:	1.478	deltaE:	-1.000	new	conflict	score:
step: 5.000	303	temp:	1.477	deltaE:	+0.000	new	conflict	score:
step: 4.000		temp:	1.474	deltaE:	-1.000	new	conflict	score:
step: 4.000		temp:	1.471	deltaE:	+0.000	new	conflict	score:

step: 4.000	308	temp:	1.470	deltaE:	+0.000	new	conflict	score:
step: 4.000	309	temp:	1.468	deltaE:	+0.000	new	conflict	score:
step: 4.000	310	temp:	1.467	deltaE:	+0.000	new	conflict	score:
step: 5.000	313	temp:	1.462	deltaE:	+1.000	new	conflict	score:
step: 5.000	315	temp:	1.459	deltaE:	+0.000	new	conflict	score:
step: 4.000	316	temp:	1.458	deltaE:	-1.000	new	conflict	score:
step: 4.000	318	temp:	1.455	deltaE:	+0.000	new	conflict	score:
step: 3.000	319	temp:	1.454	deltaE:	-1.000	new	conflict	score:
step: 3.000	322	temp:	1.449	deltaE:	+0.000	new	conflict	score:
step: 5.000	323	temp:	1.448	deltaE:	+2.000	new	conflict	score:
step: 6.000	324	temp:	1.446	deltaE:	+1.000	new	conflict	score:
step: 6.000	326	temp:	1.443	deltaE:	+0.000	new	conflict	score:
step: 5.000	327	temp:	1.442	deltaE:	-1.000	new	conflict	score:
step: 4.000	328	temp:	1.440	deltaE:	-1.000	new	conflict	score:
step: 2.000	329	temp:	1.439	deltaE:	-2.000	new	conflict	score:
step: 2.000	330	temp:	1.438	deltaE:	+0.000	new	conflict	score:
step: 3.000	332	temp:	1.435	deltaE:	+1.000	new	conflict	score:
step: 3.000	335	•	1.430	deltaE:	+0.000	new	conflict	score:
step: 5.000		-	1.429	deltaE:		new	conflict	score:
step: 6.000		_	1.428	deltaE:			conflict	
step: 6.000		_	1.425	deltaE:			conflict	
step: 6.000		_	1.423	deltaE:			conflict	
step: 4.000		_	1.422	deltaE:			conflict	
step: 5.000	342	temp:	1.420	deltaE:	+1.000	new	conflict	score:

step: 4.000		temp:	1.419	deltaE:	-1.000	new	conflict	score:
step: 4.000	344	temp:	1.418	deltaE:	+0.000	new	conflict	score:
step: 4.000	345	temp:	1.416	deltaE:	+0.000	new	conflict	score:
step: 5.000	346	temp:	1.415	deltaE:	+1.000	new	conflict	score:
step: 6.000		temp:	1.413	deltaE:	+1.000	new	conflict	score:
step: 5.000		temp:	1.412	deltaE:	-1.000	new	conflict	score:
step: 5.000	349	temp:	1.411	deltaE:	+0.000	new	conflict	score:
step: 5.000	350	temp:	1.409	deltaE:	+0.000	new	conflict	score:
step: 5.000		temp:	1.408	deltaE:	+0.000	new	conflict	score:
step: 5.000		temp:	1.406	deltaE:	+0.000	new	conflict	score:
step: 6.000	354	temp:	1.404	deltaE:	+1.000	new	conflict	score:
step: 3.000	355	temp:	1.402	deltaE:	-3.000	new	conflict	score:
step: 4.000		temp:	1.401	deltaE:	+1.000	new	conflict	score:
step: 4.000		temp:	1.399	deltaE:	+0.000	new	conflict	score:
step: 4.000		temp:	1.398	deltaE:	+0.000	new	conflict	score:
step: 5.000		temp:	1.395	deltaE:	+1.000	new	conflict	score:
step: 5.000		temp:	1.392	deltaE:	+0.000	new	conflict	score:
step: 5.000		temp:	1.391	deltaE:	+0.000	new	conflict	score:
step: 6.000	365	temp:	1.388	deltaE:	+1.000	new	conflict	score:
step: 6.000	366	temp:	1.387	deltaE:	+0.000	new	conflict	score:
step: 6.000		temp:	1.384	deltaE:	+0.000	new	conflict	score:
step: 5.000	369	temp:	1.383	deltaE:	-1.000	new	conflict	score:
step: 3.000	371	temp:	1.380	deltaE:	-2.000	new	conflict	score:
step: 2.000		temp:	1.377	deltaE:	-1.000	new	conflict	score:

step: 375	temp: 1.374	deltaE: +1.000	new conflict score:
3.000 step: 376	temp: 1.373	deltaE: +1.000	new conflict score:
4.000	temp. 1.373	deltaE. +1.000	new conflict score.
step: 378	temp: 1.370	deltaE: +0.000	new conflict score:
4.000	•		
step: 380	temp: 1.367	deltaE: +1.000	new conflict score:
5.000			
step: 381	temp: 1.366	deltaE: -2.000	new conflict score:
3.000	± 1 202	1-1+-E. 10 000	
step: 383 3.000	temp: 1.363	deltaE: +0.000	new conflict score:
step: 385	temp: 1.361	deltaE: +0.000	new conflict score:
3.000	00mp: 1:001	d013d2. 70.000	new compared poore.
step: 386	temp: 1.359	deltaE: +0.000	new conflict score:
3.000	_		
step: 389	temp: 1.355	deltaE: +0.000	new conflict score:
3.000			
step: 392	temp: 1.351	deltaE: +0.000	new conflict score:
3.000 step: 393	temp: 1.350	deltaE: -1.000	new conflict score:
2.000	temp. 1.350	deltaE1.000	new conflict score.
step: 396	temp: 1.346	deltaE: +0.000	new conflict score:
2.000	1		
step: 397	temp: 1.344	deltaE: -1.000	new conflict score:
1.000			
step: 403	temp: 1.336	deltaE: +1.000	new conflict score:
2.000			
step: 404	temp: 1.335	deltaE: -2.000	new conflict score:
0.000 Ending board			
FIGTIS DOST OF			

Board with 0 conflicts.

1.9 Compare Performance [2 Points]

Use runtime, scalability, and best objective function value to compare the algorithms on boards of different sizes.

For timing you can use the time package.

```
[236]: # board size we wish to test
       board_size = [4,5,7,10,12]
       # our algos
       algos = {
           steepest_ascent_hill: "Steepest Ascent",
           steepest_ascent_hill_random: "Steepest Ascent Random Restarts",
           stochastic_hill: "Stochastic",
           first_choice_hill: "First Choice",
           simulated_annealing: "Simulated Annealing"
       }
       # dataframe to store all data
       all_data = pd.DataFrame()
       # loop through algos and try board sizes
       for size in board_size:
           df1 = pd.DataFrame({'Board Size': [], 'Algorithm': [], 'Conflicts':
        → [], 'Time': []})
           for algo in algos.items():
               time_list = []
               conflict_list = []
               # run for ten iterations
```

```
for i in range(10):
       t0 = time.time()
       result = algo[0](size=size)
        t1 = time.time()
        time_list.append((t1-t0) * 1e3)
        conflict_list.append(result[0])
    # add to dataframe taking average
    df1 = df1.append({
        'Board Size': size,
        'Algorithm': algo[1],
        'Conflicts': (sum(conflict_list) / len(conflict_list)),
        'Time': (sum(time_list) / len(time_list))
    }, ignore_index=True)
print("Results for board size of {}.".format(size))
display(df1)
all_data = all_data.append(df1)
```

Results for board size of 4.

	Board Size	Algorithm	Conflicts	Time
0	4.0	Steepest Ascent	0.6	3.851748
1	4.0	Steepest Ascent Random Restarts	0.0	3.669477
2	4.0	Stochastic	0.7	1.009274
3	4.0	First Choice	0.7	18.614650
4	4.0	Simulated Annealing	0.0	3.639936

Results for board size of 5.

	Board Size	Algorithm	Conflicts	Time
0	5.0	Steepest Ascent	0.4	2.863312
1	5.0	Steepest Ascent Random Restarts	0.0	3.422761
2	5.0	Stochastic	0.2	3.106308
3	5.0	First Choice	0.1	4.442501
4	5.0	Simulated Annealing	0.0	8.248329

Results for board size of 7.

	Board Size	Algorithm	Conflicts	Time
0	7.0	Steepest Ascent	1.0	15.247607
1	7.0	Steepest Ascent Random Restarts	0.0	25.354338
2	7.0	Stochastic	1.1	11.707926
3	7.0	First Choice	1.3	52.934623
4	7.0	Simulated Annealing	0.0	55.596018

Results for board size of 10.

	Board Size	Algorithm	Conflicts	Time
0	10.0	Steepest Ascent	1.6	46.338272

1	10.0	Steepest Ascent Random Restarts	0.0	328.262877
2	10.0	Stochastic	2.0	54.265022
3	10.0	First Choice	1.5	89.026880
4	10.0	Simulated Annealing	0.2	448.360467

Results for board size of 12.

	Board Size	Algorithm	Conflicts	Time
0	12.0	Steepest Ascent	1.9	89.126468
1	12.0	Steepest Ascent Random Restarts	0.0	2211.214828
2	12.0	Stochastic	2.0	129.262757
3	12.0	First Choice	1.8	141.669369
4	12.0	Simulated Annealing	0.0	553.148723

Taking a look at the above results of the algorithms, we can see that some perform much better on larger boards while others perform better on smaller boards.

For steepest ascent, we notice that the algorithm is relativively quick with smaller size boards however, it does not once end with 0 conflicts meaning it would get in a local optima quite often which is not ideal.

Moving on to steepest ascent with random restarts, we see that it actually always finds a solution however, the time it takes to find the solution often is quite large. This would make it un-ideal for larger sized boards. It is almost guaranteed to find the solution with enough restarts.

For stochastic hill climbing we see that it also does not find the optimal solution every time which implies that it also got stuck in a local optima. While its runtime was not that bad, it also tended to bump into the most conflicts out of all the algorithms.

Taking a look at first choice, again we see that it typically would fall into local optima quite a bit with a high conflict score and it also wasnt the best in terms of runtime either. It was somewhat comparable to stochastic with less conflicts but a worse runtime.

Lastly, looking at simulated annealing we see that it often would be able to find the optimal solution and also took not as long as some of the others but wasnt the best on smaller boards. When dealing with larger boards though, simulate annealing did a great job runtime and anything bigger than 10 it would probably be ideal to use it rather than the others.

```
[237]: # graphs of each board size comparing algorithm time and conflicts
group_by_size = all_data.groupby('Board Size')
for i, (name, graph) in enumerate(group_by_size):
    graph.plot.bar(x="Algorithm", y=['Time','Conflicts'], subplots = True,
    →layout=(1,2),
    figsize=(15,4), title="Board Size of: {}".format(name))
```


Above you can see some comparisons of the run time and conflict score of the algorithms for each board size.

```
[238]: # graphs of each algorithm comparing time and conflicts
group_by_algo = all_data.groupby('Algorithm')
for i, (name, graph) in enumerate(group_by_algo):
    graph.plot.bar(x="Board Size", y=['Time','Conflicts'], subplots = True,
    →layout=(1,2),
    figsize=(15,4), title=name)
```


Above you can see some more comparison of the algorithms only this time comparing the time and conflicts for every board size of a given algorithm. We can see that simulated annealing had the most gradual shift as the board got larger while with others they seemed to not perform as well as the board grew, whether that be time of conflict score.

```
[239]: # average time & conflicts
avg = all_data.drop(["Board Size"], axis=1).groupby('Algorithm').mean()
display(avg)
avg_plt = avg.plot.bar(subplots = True, layout=(1,2),figsize=(15,4))
```

	Conflicts	Time
Algorithm		
First Choice	1.08	61.337605
Simulated Annealing	0.04	213.798695
Steepest Ascent	1.10	31.485481
Steepest Ascent Random Restarts	0.00	514.384856
Stochastic	1.20	39.870257

The above graph shoes the average conflicts and run times of each algorithm accross all the board sizes of 4, 5, 7, 10, and 12. When we observe the above we see that simulated annealing has the best balanced results of all the algorithms, with a low average conflict score and a slightly above average run time. You can also see although steepest ascent with random restarts always finds the optimal solution, it performs terribly in regards to runtime and especially on large boards as noted above. So don't be decieved by what you see in regards to conflict scores. As for the others, they are very comparable when it comes to average run time and conflict scores with near identical results.

Given the above analysis, if I were to use one of the algorithms to perform NP Hard search, I would most likely choose simulated annealing due to the fact that the others perform poorly or take a massive amount time to complete.

1.10 Bonus: Genetic Algorithm [+1 Point]

```
[256]: def genetic_search(size, population_size=15, generations=1000, select_prob=.5,
                          mutation_prob = .2, debug=False):
           # first generate init population
           population = []
           for i in range(population_size):
               board = random board(size)
               board score = conflicts(board)
               population.append((board score, board.copy()))
           best_solution = min(population, key = itemgetter(0))[1]
           best_score = min(population, key = itemgetter(0))[0]
           # sort population according to best values
           population.sort(key=lambda x:x[0])
           for generation in range(generations):
               # selection based on populcation
               selection pop = selection(population, population_size, select_prob)
               # crossover
               crossover_pop = crossover(size, selection_pop)
               # add crossover population to selection population
               selection_pop.extend(crossover_pop)
               # mutation
               population = mutation(size, selection_pop, mutation_prob)
               # sort by score
               population.sort(key=lambda x:x[0])
               # update best solution
               if(population[0][0] < best_score):</pre>
                   best_score = population[0][0]
                   best_solution = population[0][1].copy()
```

```
if debug:
                print("FOUND BETTER SOLUTION SCORE {} - {}".
 →format(best_score,best_solution))
            # if found global min, return as optimal solution
            if(best_score == 0):
                return((best score, best solution))
    return((best score, best solution))
def selection(population, population_size, prob):
    # how many of best in population choosing to take
    selected_num = population_size * prob
    # return top selected_num of solutions
    return(population[0:int(selected_num)].copy())
def crossover(size, selection_pop):
    selected = selection pop.copy()
    crossover_pop = []
    # loop through half of solutions and peform crossover
    for i in range(int(len(selection_pop)/2)):
        # obtain two solutions to crossover and ensure we utilize as many of the solutions to crossover and ensure we utilize as many of the solutions.
→ the unique
        # solutions as possible by removing them after crossing them
        p1 = selected.pop(random.randint(0, len(selected)-1))
        p2 = selected.pop(random.randint(0, len(selected)-1))
        # find crossover index that is not at the ends
        cross index = random.randint(1, size-2)
        # obtain the crossover result
        c1 = np.concatenate(( p1[1][0:cross_index], p2[1][cross_index:size] ))
        c2 = np.concatenate(( p2[1][0:cross_index], p1[1][cross_index:size] ))
        # add the solutions to our crossover values
        crossover_pop.append((conflicts(c1), c1.copy()))
        crossover_pop.append((conflicts(c2), c2.copy()))
    return(crossover_pop)
def mutation(size, selection_pop, mutation_prob):
    # obtain number of mutations
    mutations = int(len(selection_pop) * mutation_prob)
    for i in range(mutations):
        # obtain element to mutate at random
        to_mutate_idx = random.randint(0, len(selection_pop)-1)
        to_mutate = selection_pop[to_mutate_idx][1]
        # obtain new random location for mutation
        col = random.randint(0, size-1)
        row = random.randint(0, size-1)
        # apply mutation
```

```
to_mutate[col] = row
    # add back into population
selection_pop[to_mutate_idx] = (conflicts(to_mutate), to_mutate.copy())
return selection_pop.copy()
```

```
[260]: result = genetic_search(size=12, debug=True)
show_board(result[1])
```

```
FOUND BETTER SOLUTION SCORE 9 - [11 7 9 4 8
                                            3 10
FOUND BETTER SOLUTION SCORE 8 - [ 2 7 11 1 8
                                            4 10
                                                 1 10 10
FOUND BETTER SOLUTION SCORE 7 - [ 5 1 9 8 8 4 10
FOUND BETTER SOLUTION SCORE 5 - [ 2 7 9 4 8 4 10
FOUND BETTER SOLUTION SCORE 4 - [ 5 3 9 4 8
                                            4 10
FOUND BETTER SOLUTION SCORE 3 - [ 5 7 9 3 8 4
FOUND BETTER SOLUTION SCORE 2 - [ 5 7 9 3 8 4 9
                                                    6 10 0
                                                            2]
FOUND BETTER SOLUTION SCORE 1 - [ 5 7 9 3 8 4 1 11
                                                    6 10 0 2]
FOUND BETTER SOLUTION SCORE 0 - [ 5 7 9 3 8 4
                                               1 10 6 11 0 2]
Board with 0 conflicts.
```



```
[284]: # board size we wish to test
board_size = [4,5,7,10,12]
# dataframe to store all data
genetic_data = pd.DataFrame({'Board Size': [],'Conflicts': [],'Time': []})
# loop through algos and try board sizes
```

```
for size in board_size:
          print("Running Board Size {}".format(size))
          time_list = []
           conflict_list = []
           # run for ten iterations
          for i in range(10):
              t0 = time.time()
              result = genetic_search(size=size)
              t1 = time.time()
              time_list.append((t1-t0) * 1e3)
               conflict_list.append(result[0])
           # add to dataframe taking average
          genetic_data = genetic_data.append({
               'Board Size': size,
               'Conflicts': (sum(conflict_list) / len(conflict_list)),
               'Time': (sum(time_list) / len(time_list))
          }, ignore_index=True)
       display(genetic_data)
      Running Board Size 4
      Running Board Size 5
      Running Board Size 7
      Running Board Size 10
      Running Board Size 12
         Board Size Conflicts
                                      Time
      0
                4.0
                           0.0
                                  9.393954
                5.0
                           0.0 81.497431
      1
                7.0
      2
                           0.6 341.537642
      3
               10.0
                           0.7 671.277905
      4
               12.0
                           0.6 726.582718
[286]: genetic_graph = genetic_data.plot.bar(x="Board Size", y=['Time', 'Conflicts'],
       ⇒subplots = True,
                                             layout=(1,2), figsize=(15,4),
        →title="Genetic Search")
```



```
[285]: print("AVERAGE CONFLICT SCORE AND TIME: ")
genetic_avg = genetic_data.drop(["Board Size"], axis=1).mean()
display(genetic_avg)
```

AVERAGE CONFLICT SCORE AND TIME:

Conflicts 0.38000 Time 366.05793

dtype: float64

	Conflicts	Time
Algorithm		
First Choice	1.08	61.337605
Simulated Annealing	0.04	213.798695
Steepest Ascent	1.10	31.485481
Steepest Ascent Random Restarts	0.00	514.384856
Stochastic	1.20	39.870257
Genetic	0.38	366.057930

In the genetic algorithm we see right off the bat that it is somewhat comparable to simulated annealing. We would expect that genetic may out perform simulated annealing but again it may perform much better on much larger boards. Above we can see the averages of the algorithm and it seems to take longer than simulated annealing while also ending in a state not that is not as good. This could be due to my implementation and fine tuning the parameters of genetic may help obtain a better solution. Regardless, it still outperformed most of the other algorithms in time and conflict score. I used a selection probability of 50% and a mutation rate of 20%.

Ultimately, it seems that my simulated annealing algorithm performed the best by far and would be the best algorithm to choose when trying to find optimal solutions for this problem efficiently. If you have all the time in the world and don't car about long run times, then steepest ascent with random restarts is pretty good but it is unlikely you would ever find yourself in the position. Thus in the end, I would reccomend utilizing simulated annealing.

On a side note, in a class in the past I implemented a simulated annealing algorithm to solve TSP and it also was the best performing algorithm. It is interesting because it is truly one of the easier algorithms to implement and it performs so well!

[]: