Practical - 2

AIM: Explore the Random Variables, Univariate and Multivariate Normal Distributions, Descriptive Statistics, and Hypothesis Testing using Python

1. Random Variables import numpy as np

random_variable = np.random.rand(100) print("Random Variable:", random_variable)

```
→ Random Variable: [0.06380448 0.59020767 0.66474769 0.11790748 0.22987845 0.64626655
     0.14940903 0.80231296 0.53298142 0.69614891 0.23816422 0.10213476
     0.06684644 0.64609646 0.44736487 0.82485683 0.07259918 0.70368676
     0.86010423 0.08781243 0.62730749 0.87674351 0.77244861 0.83355742
     0.85696083 0.96588027 0.77428931 0.91029352 0.42266541 0.40130517
     0.81063256 0.44090719 0.41459294 0.84576235 0.64550751 0.79826394
     0.93726865 0.21655639 0.55159881 0.08458086 0.61417858 0.8108137
     0.09879896 0.30797176 0.90836762 0.03619116 0.08966586 0.6101461
     0.37188961 0.22042983 0.08383529 0.51067538 0.89690735 0.35770396
     0.69532292 0.28188322 0.6454643 0.75523812 0.85886162 0.80882393
     0.07715398 0.12110956 0.88602038 0.70352896 0.71719565 0.51796347
     0.63434627 0.47891096 0.90058203 0.11924369 0.15910594 0.76905355
     0.06320305 0.97102904 0.6591784 0.32480025 0.08423413 0.22515219
     0.33947508 0.00713564 0.23509546 0.12126302 0.27547031 0.40101137
     0.07994783 0.55730725 0.85173397 0.355009 0.47642514 0.38154936
     0.60675092 0.67939219 0.88574374 0.31636476]
```

2. Univariate Normal Distribution

import numpy as np
import matplotlib.pyplot as plt import seaborn as sns
univariate_normal = np.random.normal(loc=0, scale=1, size=1000)
sns.histplot(univariate_normal, kde=True)
plt.title('Univariate Normal Distribution') plt.show()

Name: DHRUV SHERE Enrollment No: 23012022021

3. Multivariate Normal Distribution in a 2D design

import numpy as np import matplotlib.pyplot as plt import seaborn as sns

mean = [0, 0] cov = [[1, 0.5], [0.5, 1]] multivariate_normal = np.random.multivariate_normal(mean, cov, 1000)

sns.jointplot(x=multivariate_normal[:, 0], y=multivariate_normal[:, 1], kind="scatter") plt.title('Multivariate Normal Distribution') plt.show()

Name: DHRUV SHERE Enrollment No: 23012022021

Multivariate Normal Distribution in a 3D design

import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D

mean = [0, 0] cov = [[1, 0.5], [0.5, 1]] multivariate_normal = np.random.multivariate_normal(mean, cov, 1000)

fig = plt.figure() ax = fig.add_subplot(111, projection='3d')

Name: DHRUV SHERE Enrollment No: 23012022021

2CEIT506: MACHINE LEARNING PRACTICAL-2

x = multivariate_normal[:, 0] y = multivariate_normal[:, 1] z = np.random.normal(loc=0, scale=1, size=1000) ax.scatter(x, y, z, c=z, cmap='viridis', marker='o') ax.set_title('3D Multivariate Normal Distribution') ax.set_xlabel('X-axis') ax.set_ylabel('Y-axis') ax.set_zlabel('Z-axis') plt.show()

3D Multivariate Normal Distribution

4. Descriptive Statistics import pandas as pd

univariate_normal = np.random.normal(loc=0, scale=1, size=1000) df = pd.DataFrame(univariate_normal, columns=['Univariate_Normal'])

descriptive_stats = df.describe()
print(descriptive_stats)

Name: DHRUV SHERE Enrollment No: 23012022021

2CEIT506: MACHINE LEARNING PRACTICAL-2

 *		Univariate_Normal
	count	1000.000000
	mean	-0.019291
	std	1.028989
	min	-3.020734
	25%	-0.734920
	50%	-0.058924
	75%	0.675070
	max	2.937378

5. Hypothesis Testing

from scipy import stats
import numpy as np sample1 = np.random.normal(loc=0,
scale=1, size=50) sample2 = np.random.normal(loc=0.5,
scale=1, size=50) t_stat, p_value = stats.ttest_ind(sample1,
sample2) print(f'Tstatistic: {t_stat}, P-value: {p_value}')

T-statistic: -2.3885704066753153, P-value: 0.018829444505743788

Name: DHRUV SHERE

Enrollment No: 23012022021