Matemática atuarial

Anuidades Vitalícia (aula10)

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Anuidades

Sucessão de pagamentos (ou recebimentos) equidistantes (termos), efetuados por uma dada entidade a outrem.

> IMEDIATAS

Os termos são exigíveis a partir do primeiro período.

DIFERIDAS

Os termos são exigíveis após um diferimento

> ANTECIPADA (Quando os termos ocorrem no início de cada período)

$$VP = \frac{R[(1+i)^n - 1]}{i(1+i)^{n-1}}$$

POSTECIPADA (Quando os termos ocorrem ao final de cada período)

$$VP = \frac{R[(1+i)^n - 1]}{i(1+i)^n}$$

$$R = 1$$

$$v = \frac{1}{1+i}$$

$$i=\frac{1-\eta}{v}$$

> Fluxo Antecipado

$$VP = \frac{R[(1+i)^n - 1]}{i(1+i)^{n-1}} = \frac{(v^{-n} - 1)v}{(1-v)v^{-n+1}}$$
$$\ddot{a}_{\overline{n}|} = \frac{1-v^n}{1-v}, n \ge 1$$

> Fluxo Postecipado

$$VP = \frac{R[(1+i)^n - 1]}{i(1+i)^n} = \frac{v(v^{-n} - 1)}{(1-v)v^{-n}}$$

$$a_{\overline{n}|}=vigg(rac{1-v^n}{1-v}igg)$$
 , $n\geq 1$

$$\ddot{a}_{\overline{n|}} = 1 + v + v^2 + v^3 + \dots + v^{n-1}$$

$$\ddot{a}_{\bar{n}|} = \frac{1-v^n}{1-v}$$
 , $n \geq 1$

$$a_{\overline{n}|} = v + v^2 + v^3 + \dots + v^n$$

$$a_{ar{n}|} = v\left(rac{1-v^n}{1-v}
ight)$$
 , $n \ge 1$

Anuidades

$$\ddot{a}_{\overline{n|}} = 1 + v + v^2 + v^3 + \dots + v^{n-1}$$

$$a_{\overline{n-1}|} = v + v^2 + v^3 + \dots + v^{n-1}$$

$$\ddot{a}_{\overline{n|}}-a_{\overline{n-1|}}=1$$

- Estamos trabalhando com o valor presente de uma série de pagamentos.
- De fato, as anuidades apresentadas são anuidades certas. Uma série de pagamentos sendo realizados ao longo do tempo
- É preciso o reconhecimento da "natureza" aleatória do número de termos.

- No processo de compra de um produto atuarial ou de concessão de benefício, existe risco.
 - A seguradora não sabe se vai receber todos os prêmios do segurado (este pode morrer antes do período de cobertura).
 - A seguradora não sabe ao certo quanto irá gastar com previdência uma vez que uma pessoa se aposentou e entrou em gozo de benefício.

- Reconhecer a anuidade como um produto atuarial é reconhecer que:
 - \triangleright A seguradora (ou fundo de pensão) não saberá ao certo quando x irá falecer.

Anuidades (Rendas)

- > Anuidade é um produto atuarial ligado a previdência.
 - ➤ Plano de previdência: A ideia é formar uma reserva financeira para lidar com situações futuras.
- Anuidade (renda sobre a vida)
 - > Aposentadoria: pagamentos até o momento da morte
 - Cobertura: por período determinado.
- São interrompidos em caso de morte...

Anuidades imediatas

Pagamentos Antecipados (Os pagamentos começam no primeiro período).

$$F_0 = b \left(\frac{1}{1+i}\right)^t$$

Pagamentos Postecipados (Os pagamentos começam no final de cada período).

- \triangleright Seja T_x a variável aleatória discreta associada **ao maior inteiro contido** na sobrevida de x logo:
- > Antecipada (benefício unitário)

$$\ddot{a}_{\overline{T_x+1}|} = \frac{1-v^{T_x+1}}{1-v}, T_x \ge 0$$

Postecipada (benefício unitário)

$$a_{\overline{T_{\mathcal{X}}|}} = v \frac{1 - v^{T_{\mathcal{X}}}}{1 - v}, T_{\mathcal{X}} \ge 0$$

 \triangleright O valor atuarial de anuidade imediata vitalícia e com pagamento **ANTECIPADO** para uma pessoa de idade x corresponde ao valor esperado da anuidade imediata antecipada:

$$E(\ddot{a}_{\overline{T_{\chi}+1|}}) = \ddot{a}_{\chi}$$

 \triangleright O valor atuarial de anuidade imediata vitalícia e com pagamento **POSTECIPADO** para uma pessoa de idade x corresponde ao valor esperado da anuidade imediata postecipada:

$$E(a_{\overline{T_x|}}) = a_x$$

Anuidade vitalícia antecipada

$$E(\ddot{a}_{\overline{T_x+1|}}) = \sum_{t=0}^{\omega-x} \ddot{a}_{\overline{t+1}|} \ p(T_x = t)$$

$$\ddot{a}_x = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|} t p_x q_{x+t}$$

Anuidade vitalícia antecipada Postecipada

$$E(a_{\overline{T_x|}}) = \sum_{t=1}^{\omega - x} a_{\bar{t}|} p(T_x = t)$$

$$a_x = \sum_{t=1}^{\omega - x} a_{\bar{t}|\ t} p_x q_{x+t}$$

EXEMPLO 1

Considere uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40} = E(\ddot{a}_{\overline{T+1|}}) = \sum_{t=0}^{\omega-x} \ddot{a}_{\overline{t+1|}\ t} p_{40} q_{40+t} = \ddot{a}_{\overline{1|}\ 0} p_{40} q_{40} + \ddot{a}_{\overline{2|}\ p_{40}} q_{41} + \ddot{a}_{\overline{3|}\ 2} p_{40} q_{42} + \cdots$$

$$\ddot{a}_{40} = \frac{1 - v^1}{1 - v} {}_{0}p_{40}q_{40} + \frac{1 - v^2}{1 - v} p_{40}q_{41} + \frac{1 - v^3}{1 - v} {}_{2}p_{40}q_{42} + \cdots$$

$$\ddot{a}_{40} = 17,67u.m.$$

EXEMPLO 2

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$a_{40} = \sum_{t=1}^{\omega - x} a_{t|t} p_{40} q_{40+t} = a_{1|t} p_{40} q_{41} + a_{2|t} p_{40} q_{42} + a_{3|t} p_{40} q_{43} + \cdots$$

$$a_{40} = \frac{v(1-v^1)}{1-v} p_{40}q_{41} + \frac{v(1-v^2)}{1-v} p_{40}q_{42} + \frac{v(1-v^3)}{1-v} p_{40}q_{43} + \cdots$$

$$a_{40} = 16,67$$
u.m.

> Outras alternativas para o calculo do V.P.A. serão:

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} v^{t} _{t} p_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|} _{t} p_{x} q_{x+t}$$

e

$$a_x = \sum_{t=1}^{\omega - x} v^t p_x = \sum_{t=1}^{\omega - x} a_{t|t} p_x q_{x+t}$$

Demonstração

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|} t p_{x} q_{x+t} = \sum_{t=0}^{\omega - x} \frac{1 - v^{t+1}}{1 - v} t p_{x} (1 - p_{x+t})$$

$$\ddot{a}_{x} = \sum_{t=0}^{\omega-x} \frac{1-v^{t+1}}{1-v} \left({}_{t}p_{x} - {}_{t}p_{x}p_{x+t} \right) = \sum_{t=0}^{\omega-x} \frac{1-v^{t+1}}{1-v} \left({}_{t}p_{x} - {}_{t+1}p_{x} \right)$$

$$\ddot{a}_{x} = v^{0}(_{0}p_{x} - _{1}p_{x}) + (v^{0} + v)(_{1}p_{x} - _{2}p_{x}) + (v^{0} + v + v^{2})(_{2}p_{x} - _{3}p_{x}) + \cdots$$

Assim

$$\ddot{a}_{x} = \sum_{t=0}^{\infty} v^{t} p_{x}$$

EXEMPLO 3

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40} = \sum_{t=0}^{\omega - x} v^t t p_{40} = 1 + v p_{40} + v^2 p_{40} + v^3 p_{40} + \cdots$$

$$\ddot{a}_{40} = 1 + v \ p_{40} + v^2 \ p_{40} p_{41} + v^3 p_{40} p_{41} p_{42} + \dots \approx 17,67 u. m.$$

Postecipado,

$$a_{40} = \sum_{t=1}^{\omega - x} v^t t p_{40} = v p_{40} + v^2 p_{40} + v^3 p_{40} + \cdots$$

$$a_{40} = v \ p_{40} + v^2 \ p_{40} p_{41} + v^3 p_{40} p_{41} p_{42} + \dots \approx 16,67 u. m.$$

 $\ddot{a}_x = a_x + 1$

Valor atuarial de uma anuidade vitalícia antecipada.

Valor atuarial de uma anuidade vitalícia Postecipada.

- > Então, para o caso discreto, o V.P.A. será dado por:
 - > Anuidade Antecipada (Variável aleatória discreta)

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} {}_{t}E_{x} = \sum_{t=0}^{\omega - x} v^{t} {}_{t}p_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|} {}_{t}p_{x}q_{x+t} = \sum_{t=0}^{\omega - x} \frac{1 - v^{t+1}}{1 - v} {}_{t}p_{x}q_{x+t}$$

> Anuidade Postecipada (Variável aleatória discreta)

$$a_{x} = \sum_{t=1}^{\omega - x} {}_{t}E_{x} = \sum_{t=1}^{\omega - x} v^{t} {}_{t}p_{x} = \sum_{t=1}^{\omega - x} a_{\overline{t}|} {}_{t}p_{x}q_{x+t} = \sum_{t=1}^{\omega - x} v\left(\frac{1 - v^{t}}{1 - v}\right) {}_{t}p_{x}q_{x+t}$$

Aula 11 - Anuidade Imediata

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

Anuidades temporárias imediatas

- \blacktriangleright No caso de anuidades temporárias, essas são válidas enquanto a pessoa de idade x for viva até no máximo n anos.
 - Então, para o caso discreto, o V.P.A. de anuidades temporárias temos:
- > VPA de uma anuidade antecipada.

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} \, t \, p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} \, {}_n p_x$$

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & se \ 0 < T < n \\ \ddot{a}_{\overline{n|}} & se \ T \ge n \end{cases}$$

$$E(Y) = \ddot{a}_{x:\overline{n}|} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1}|} P_x(T=t) + \sum_{t=n}^{\infty} \ddot{a}_{\overline{n}|} P_x(T=t)$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P_{x}(T=t) + \ddot{a}_{\overline{n|}} \sum_{t=n}^{\infty} P_{x}(T=t)$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=1}^{n} \ddot{a}_{\overline{t+1|}} P_x(T=t) + \ddot{a}_{\overline{n|}} P_x(T\geq n)$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} t p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} p_x$$

Anuidades temporárias imediatas

> VPA de uma anuidade Postecipada.

$$Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} t p_x q_{x+t}\right) + a_{\overline{n|}} p_x$$

EXEMPLO 4

Uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 40 anos. Considerando a tábua de mortalidade AT-2000 feminina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{25:\overline{40|}} = \left(\sum_{t=0}^{39} \frac{1 - v^{t+1}}{1 - v} t^{t+1} p_{25} q_{25+t}\right) + \left(\frac{1 - v^{40}}{1 - v}\right) q_{25} q_{25}$$

$$\ddot{a}_{25:\overline{40|}} = 1,0584 + 16,78173 = 17,8402$$

Anuidades temporárias imediatas- Tempo discreto

VPA de uma anuidade antecipada.

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}\ t} p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}\ n} p_x$$

$$\ddot{a}_{x:\overline{n|}} = E(Y) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} v^{t} {}_{t}p_{x}$$

> VPA de uma anuidade Postecipada.

$$Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} \ _t p_x q_{x+t}\right) + a_{\overline{n|}} \ _n p_x$$

$$a_{x:\overline{n|}} = E(Y) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} v^{t} {}_{t}p_{x}$$

EXEMPLO 5:

Seja uma pessoa de 30 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

4 1 2			natu.	11116
$\ddot{a} = -\sum_{i=1}^{4-1} \mathbf{F}_{i} = \sum_{i=1}^{3} \mathbf{n}^{t} \mathbf{n}$	l_x	p_X	q_X	Idade
$\ddot{a}_{30:\overline{4} } = \sum_{t=0}^{t} {}_{t}E_{30} = \sum_{t=0}^{t} {v^{t}}_{t}p_{30}$	100000	0,99923	0,00077	25
	99923	0,99919	0,00081	26
$\ddot{a}_{30:\overline{4} } = 1 + vp_{30} + v^2 _2p_{30} + v^3 _3p_{30}$	99842	0,99915	0,00085	27
30:4	99757	0,99910	0,00090	28
	99667	0,99905	0,00095	29
$\ddot{a}_{30:\overline{4} } = 1 + \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right)^2 p_{30}p_{31} + \left(\frac{1}{1,05}\right)^3 p_{30}p_{31}p_{32}$	99572	0,99900	0,00100	30
$a_{30:\overline{4} } = 1 + \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right) p_{30}p_{31} + \left(\frac{1}{1,05}\right) p_{30}p_{31}p_{32}$	99472	0,99893	0,00107	31
l_{33}	99365	0,99886	0,00114	32
$p_{30}p_{31}p_{32} = \frac{l_{33}}{l_{30}}$	99251	0,99879	0,00121	33
	99131	0,99870	0,00130	34
$\ddot{a}_{30:\overline{4 }} = 3,71$	99002	0,99861	0,00139	35

EXEMPLO 6:

Seja uma pessoa de 30 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

IIIIC	iaco.			4 4
Idade	q_X	p_X	l_x	$a_{30:\overline{4} } = \sum_{t=1}^{7} {}_{t}E_{30} = \sum_{t=1}^{7} {}_{t}v^{t} {}_{t}p_{30}$
25	0,00077	0,99923	100000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$a_{30:\overline{4} } = vp_{30} + v^2 _2p_{30} + v^3 _3p_{30} + v^4 _4p_{30}$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$a_{30:\overline{4} } = \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right)^2 p_{30}p_{31} + \left(\frac{1}{1,05}\right)^3 p_{30}p_{31}p_{32} +$
30	0,00100	0,99900	99572	
31	0,00107	0,99893	99472	$\left(\frac{1}{1,05}\right)^4 p_{30} p_{31} p_{32} p_{33}$
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$a_{30:\overline{4 }} = 3,52$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

EXEMPLO 7:

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **antecipado** por um período de 5 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

nato.			5-1 4
q_X	p_X	l_x	$\ddot{a}_{25:\overline{5} } = \sum_{t}^{5} {}_{t}E_{25} = \sum_{t}^{5} v^{t}{}_{t}p_{25}$
0,00077	0,99923	100000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0,00081	0,99919	99923	
0,00085	0,99915	99842	$\ddot{a}_{25:\overline{5} } = 1 + vp_{25} + v^2 _2p_{25} + v^3 _3p_{25} + v^4 _4p_{25}$
0,00090	0,99910	99757	
0,00095	0,99905	99667	$\ddot{a}_{25:\overline{5} } = 1 + \left(\frac{1}{1.05}\right)p_{25} + \left(\frac{1}{1.05}\right)^2 \frac{l_{27}}{l_{27}} + \left(\frac{1}{1.05}\right)^3 \frac{l_{28}}{l_{27}} + \left(\frac{1}{1.05}\right)^4 \frac{l_{29}}{l_{27}}$
0,00100	0,99900	99572	l_{25} l_{25} l_{25} l_{25} l_{25} l_{25}
0,00107	0,99893	99472	
0,00114	0,99886	99365	
0,00121	0,99879	99251	$\ddot{a}_{25:\overline{5 }} = 4,53$
0,00130	0,99870	99131	
0,00139	0,99861	99002	
	q _X 0,00077 0,00081 0,00085 0,00090 0,00095 0,00100 0,00107 0,00114 0,00121 0,00130	q_X p_X $0,00077$ $0,99923$ $0,00081$ $0,99919$ $0,00085$ $0,99915$ $0,00090$ $0,99910$ $0,00195$ $0,99905$ $0,00107$ $0,99900$ $0,00114$ $0,99886$ $0,00121$ $0,99870$	q_X p_X l_X $0,00077$ $0,99923$ 100000 $0,00081$ $0,99919$ 99923 $0,00085$ $0,99915$ 99842 $0,00090$ $0,99910$ 99757 $0,00095$ $0,99905$ 99667 $0,00100$ $0,99900$ 99572 $0,00107$ $0,99893$ 99472 $0,00114$ $0,99886$ 99365 $0,00121$ $0,99879$ 99251 $0,00130$ $0,99870$ 99131

EXEMPLO 8:

Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato

IIIIEC	iiato.			4 4
Idade	q_X	p_X	l_x	$a_{25:\overline{4} } = \sum_{t=1}^{7} {}_{t}E_{25} = \sum_{t=0}^{7} {}_{t}p_{25}$
25	0,00077	0,99923	100000	$\sum_{t=1}^{t} t 23 \qquad \sum_{t=0}^{t} t 23$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$a_{25:\overline{4} } = vp_{25} + v^2 p_{25} + v^3 p_{25} + v^4 p_{25}$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$a_{25:\overline{4} } = \left(\frac{1}{1,05}\right)p_{25} + \left(\frac{1}{1,05}\right)^2 \frac{l_{27}}{l_{25}} + \left(\frac{1}{1,05}\right)^3 \frac{l_{28}}{l_{25}} + \left(\frac{1}{1,05}\right)^4 \frac{l_{29}}{l_{25}}$
30	0,00100	0,99900	99572	$a_{25:4 } = \left(\overline{1,05}\right)^{p_{25}} + \left(\overline{1,05}\right)^{-1} = \left(\overline{1,05}\right)^{-$
31	0,00107	0,99893	99472	
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$a_{25:\overline{4 }} = 3,53$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

Anuidades temporárias imediatas

$$\ddot{a}_{x:\overline{n|}} = 1 + vp_x + v^2 _2p_x + v^3 _3p_x + v^4 _4p_x + \cdots + v^{n-1} _{n-1}p_x$$

$$a_{x:\overline{n-1}|} = vp_x + v^2 p_x + v^3 p_x + v^4 p_x + \cdots + v^{n-1} p_x$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$\ddot{a}_x = 1 + a_x$$

Anuidades temporárias imediatas- Tempo discreto

VPA de uma anuidade antecipada.

► VPA de uma anuidade Postecipada.

$$Z = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$Z = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = \mathbf{1} + \mathbf{a}_{x:\overline{n-1|}}$$

$$\ddot{a}_{x:\overline{n|}} = E(Z) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} {}_{t}v^{t} {}_{t}p_{x}$$

$$a_{x:\overline{n|}} = E(Z) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} {}_{t}v^{t} {}_{t}p_{x}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}\ t} p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}\ n} p_x$$

$$Z = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$a_{x:\overline{n|}} = E(Z) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} v^{t} {}_{t}p_{x}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} \ _t p_x q_{x+t}\right) + a_{\overline{n|}} \ _n p_x$$

Aula 12

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>Leonardo.costa@unifal-mg.edu.br</u>

> Fluxo Antecipado

 $2 \dots m \overline{m+1}$... m + n - 1 n + m

$$a_{m|}\ddot{a}_{\overline{n|}} = v^m + v^{m+1} + v^{m+2} + \dots + v^{m+n-1}$$

$$m_{|}\ddot{a}_{\overline{n}|}=v^{m}rac{1-v^{n}}{1-v}$$
inada

$$\sum_{m|a_{\overline{n}|}} v^{m+1} + v^{m+2} + v^{m+3} + \dots + v^{m+n}$$

$$a_{\overline{n}|}^{1} + v^{m+2} + v^{m+3} + \frac{1}{m|}a_{\overline{n}|} = v^{m}v\left(\frac{1-v^{n}}{1-v}\right)$$

> Fluxo Antecipado

$$m_{|}\ddot{a}_{\overline{n}|} = v^{m} \frac{1-v^{n}}{1-v} = v^{m} \ddot{a}_{\overline{n}|} \quad (m = 0) \to \quad \ddot{a}_{\overline{n}|} = \frac{1-v^{n}}{1-v}$$

> Fluxo Postecipado

$$a_{\overline{n|}} = v^{m+1} \left(\frac{1-v^n}{1-v} \right) = v^m a_{\overline{n|}} \quad (m = 0) \to a_{\overline{n|}} = v \left(\frac{1-v^n}{1-v} \right)$$

$$|a_{m+1}|\ddot{a}_{\overline{n}|} = |a_m| a_{\overline{n}|}$$

Anuidades

$$_{m|\ddot{a}_{\overline{n}|}}=v^{m}\frac{1-v^{n}}{1-v}=v^{m}\ddot{a}_{\overline{n}|} \qquad _{m|}a_{\overline{n}|}=v^{m+1}\left(\frac{1-v^{n}}{1-v}\right)=v^{m}a_{\overline{n}|}$$

$$a_{m|}\ddot{a}_{\overline{n|}} = \ddot{a}_{\overline{n+m|}} - \ddot{a}_{\overline{m|}} \qquad a_{m|}a_{\overline{n|}} = a_{\overline{n+m|}} - a_{\overline{m|}}$$

Uma loja de departamentos está vendendo um conjunto de cadeiras. A forma de pagamento proposta pela loja consiste 8 prestações de R\$6000,00 e só comece a pagar a partir do início do 4° ano após adquirir o produto, considerando uma taxa de juros de 1,25% a.a., em regime de juros compostos. Determine o quanto custaria essas cadeiras caso fosse pago a vista.

SOLUÇÃO

$$a_{|\dot{a}_{8|}} = v^4 \frac{1 - v^8}{1 - v} \approx 7,29127$$

Assim o valor das cadeiras a vista é dado por:

$$6000 \times _{4|} \ddot{a}_{8|} = R$43747,62$$

SOLUÇÃO (Caso Postecipado)

$$a_{8|} = v^5 \left(\frac{1 - v^8}{1 - v}\right) \approx 7,201254$$

$$6000 \times _{4|} a_{\overline{8|}} = R$43207,52$$

Anuidades Diferidas

- ➤ Na prática, planos de aposentadoria são comprado anos antes do início dos recebimentos dos benefícios.
 - > Anuidades diferidas são pagas passado um determinado prazo, diferentemente das anuidades imediatas.
 - Caso o participante faleça antes do início do recebimento da anuidade (antes de aposentadoria) a seguradora não terá que pagar nada ao segurado (considerando que não existe reversão para pensão).

Anuidades vitalícias Diferidas, Antecipado

$$E(m|\ddot{a}_{T_x+1-m|}) = \sum_{t=m}^{\omega-x-m} v^t p_x = \sum_{t=0}^{\omega-x-m} v^{t+m} p_x$$

 \triangleright Lembrando que $_{t+m}p_x=_mp_x\times_tp_{x+m}$

$$E\left(m|\ddot{a}_{T_x+1-m|}\right) = \sum_{t=0}^{\omega-x-m} v^t v^m \,_{m} p_x \,_{t} p_{m+x}$$

$$E\left(m|\ddot{a}_{T_x+1-m|}\right) = v^m \,_{m} p_x \sum_{t=0}^{\infty} v^t \,_{t} p_{m+x}$$

$$E(m|\ddot{a}_{\overline{T_x+1-m|}}) = m E_x \ddot{a}_{x+m}$$
$$m|\ddot{a}_x = m E_x \ddot{a}_{x+m}$$

Anuidades vitalícias Diferidas, Postecipado

$$E(m|a_{T_x-m|}) = \sum_{t=m+1} v^t p_x = \sum_{t=1} v^{t+m} p_x$$

 \triangleright Lembrando que $_{t+m}p_x=_mp_x\times_tp_{x+m}$

$$E(m|a_{\overline{T_{\mathcal{X}}}-m|}) = \sum_{t=1}^{\infty} v^t v^m p_x t p_{m+x}$$

$$E(m|a_{\overline{T_X}-m|}) = v^m m p_x \sum_{t=1}^{\infty} v^t p_{m+x}$$

$$E(m|a_{\overline{T_x-m|}}) = m E_x a_{x+m}$$

$$a_{m|}a_{x} = {}_{m}E_{x}a_{x+m}$$

> FLUXO ANTECIPADO

> FLUXO POSTECIPADO

$$Y = \begin{cases} m | \ddot{a}_{\overline{T_x + 1 - m}}; & T_x \ge m \\ 0; & c.c. \end{cases}$$

$$a_{m}\ddot{a}_{x} = \sum_{t=0}^{\omega-x-m} v_{t}^{t} p_{x}$$

$$_{m}\ddot{a}_{x} = {}_{m}E_{x}\ddot{a}_{x+m}$$

$$a_n | a_x - m E_x a_{x+m}$$

$$m|\ddot{a}_{x} = \sum_{t=m}^{\omega-x-m} v^{m} \frac{1-v^{t-m+1}}{1-v} {}_{t} p_{x} q_{x+t}$$

$$m|a_{x} = \sum_{t=m}^{\omega-x-m} v^{m+1} \left(\frac{1-v^{t-m}}{1-v}\right) {}_{t} p_{x} q_{x+t}$$

$$a_{m}\ddot{a}_{x} = \ddot{a}_{x} - \ddot{a}_{x:\overline{m}}$$

$$Y = \begin{cases} m \mid a_{\overline{T_x - m}}; & T_x \ge m \\ 0; & c.c. \end{cases}$$

$$\omega - x - m$$

$$_{m|}a_{x}=\sum_{t=m+1}^{\omega-x-m}v^{t}_{t}p_{x}$$

$$_{m|}a_{x}={}_{m}E_{x}a_{x+m}$$

$$\sum_{t=m}^{-x-m} v^{m+1} \left(\frac{1 - v^{t-m}}{1 - v} \right)_t p_x q_{x+1}$$

$$_{m|}a_{x}=a_{x}-a_{x:\overline{m}|}$$

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 20 anos, que paga 1 u.m. com pagamento **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$_{20|}\ddot{a}_{40} = \sum_{t=20}^{\omega-60} v^t \,_t p_{40}$$

$$_{20|}\ddot{a}_{40} = {_{20}E_{40}\ddot{a}_{60}} = v^{20} {_{20}p_{40}} \left(\sum_{t=0}^{\omega=60} v^t {_tp_{60}} \right)$$

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 19 anos, que paga 1 u.m. com pagamento **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$a_{19|}a_{40} = v^{19} a_{19} p_{40} \left(\sum_{t=1}^{\infty} v^t p_{59} \right)$$

$$_{19|}a_{40} = v^{19} _{19}p_{40} \left(\sum_{t=0}^{t+1} v^{t+1} _{t+1} p_{59} \right) = v^{19} _{19}p_{40} \left(\sum_{t=0}^{t} v^{t} v^{1} _{1} p_{59} _{t} p_{59+1} \right)$$

$$_{19|}a_{40}=v^{19}\,_{19}p_{40}v^{1}\,_{1}p_{59}\Biggl(\sum_{t=0}^{}v^{t}\,_{t}p_{59+1}\Biggr)=v^{20}\,_{19}p_{40}\,_{1}p_{40+19}\Biggl(\sum_{t=0}^{}v^{t}\,_{t}p_{59+1}\Biggr)$$

$$a_{19|}a_{40} = v^{20} a_{19|}p_{40} \left(\sum_{t=0}^{\infty} v^t p_{59+1}\right) = a_{19|}\ddot{a}_{40}$$

Seja uma pessoa de 40 anos que queira comprar uma anuidade vitalícia diferida por 19 anos, que paga 1 u.m. com pagamento **Postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% a.a., calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido.

$$a_{19|}a_{40} = \sum_{t=19+1} v^t t_t p_{40} = \sum_{t=20} v^t t_t p_{40} = a_{19|} \ddot{a}_{40}$$

Anuidades Diferidas Temporárias

> VPA de uma anuidade temporária por n anos, diferida por m anos com pagamento antecipado, $b=1 \ u.m.$

$$m_{\parallel}\ddot{a}_{x:\overline{n}|} = {}_{m}E_{x}\ddot{a}_{x+m:\overline{n}|} = {}_{m}E_{x}\sum_{t=0}^{n-1}v^{t}{}_{t}p_{x+m}$$

> VPA de uma anuidade temporária por n anos, diferida por m anos com pagamento postecipado, $b=1 \ u.m.$

$$a_{x:\bar{n}|} = {}_{m} E_{x} a_{x+m:\bar{n}|} = {}_{m} E_{x} \sum_{t=1}^{n} v^{t} {}_{t} p_{x+m}$$

Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. no período de 3 anos. No entanto essa anuidade é diferida por 3 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% a.a., Calcule o Prêmio Puro Único a ser pago pelo segurado para comprar essa anuidade com pagamento diferido, antecipado e postecipado.

×	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

SOLUÇÃO Pagamento Antecipado , b=1~u.m,~m=3,~n=3,~i=0.05

х	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

$$3|\ddot{a}_{40:\overline{3}|} = {}_{m}E_{x}\ddot{a}_{x+m:\overline{n}|}$$

$$3|\ddot{a}_{40:\overline{3}|} = {}_{3}E_{40}\ddot{a}_{43:\overline{3}|}$$

$$3|\ddot{a}_{40:\overline{3}|} = v^{3} {}_{3}p_{40} \sum_{t=0}^{3-1} v^{t} {}_{t}p_{43}$$

$$3|\ddot{a}_{40:\overline{3}|} = v^{3} {}_{3}p_{40}(1 + v p_{43} + v^{2} {}_{2}p_{43})$$

$$3|\ddot{a}_{40:\overline{3}|} = \left(\frac{1}{1,05}\right)^{3} p_{40}p_{41}p_{42} \left[1 + \left(\frac{1}{1,05}\right) p_{43} + \left(\frac{1}{1,05}\right)^{2} p_{43}p_{44}\right]$$

$$3|\ddot{a}_{40:\overline{3}|} = 2,457604$$

SOLUÇÃO Pagamento Postecipado, b=1 u. m, m=3, i=0.05

X	qx	рх	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8

$$m|a_{x:\bar{n}}| = m E_x a_{x+m:\bar{n}}|$$

$$3|a_{40:\bar{3}}| = 3 E_{40} a_{43:\bar{3}}|$$

$$3|a_{40:\bar{3}}| = v^3 {}_3 p_{40} \sum_{t=1}^3 v^t {}_t p_{43}$$

$$3|a_{40:\bar{3}}| = v^3 {}_3 p_{40} (v p_{43} + v^2 {}_2 p_{43} + v^3 {}_3 p_{43})$$

$$3|a_{40:\bar{3}}| = \left(\frac{1}{1,05}\right)^3 p_{40} p_{41} p_{42} \left[\left(\frac{1}{1,05}\right) p_{43} + \left(\frac{1}{1,05}\right)^2 p_{43} p_{44} + \left(\frac{1}{1,05}\right)^3 p_{43} p_{44} p_{45}\right]$$

$$3|a_{40:\bar{3}}| = 0,8591533 \times 2,71444$$

$$3|a_{40:\bar{3}}| = 2,33212$$

EXEMPLO 12: Mostre um exemplo que verifica-se a relação:

$$_{m+1|}\ddot{a}_{x:\bar{n}|} = _{m|} a_{x:\bar{n}|}$$

×	qx	px	lx
35	0,000792	0,999208	978890,5
36	0,000794	0,999206	978115,2
37	0,000823	0,999177	977338,6
38	0,000872	0,999128	976534,2
39	0,000945	0,999055	975682,7
40	0,001043	0,998957	974760,7
41	0,001168	0,998832	973744
42	0,001322	0,998678	972606,7
43	0,001505	0,998495	971320,9
44	0,001715	0,998285	969859
45	0,001948	0,998052	968195,7
46	0,002198	0,997802	966309,7
47	0,002463	0,997537	964185,7
48	0,00274	0,99726	961810,9
49	0,003028	0,996972	959175,6
50	0,00333	0,99667	956271,2
51	0,003647	0,996353	953086,8
52	0,00398	0,99602	949610,9
53	0,004331	0,995669	945831,5
54	0,004698	0,995302	941735,1
55	0,005077	0,994923	937310,8