# Gate level circuit to linked list conversion

## Overview

- Benchmarking
- Circuit benchmark formats
- Input parsing
- Recommended data structures
- Circuit/Graph path counting algorithm

# **Benchmarking**

- Used to evaluate the performance of the developed CAD tool.
- Allows for better sharing and fair comparison of research results.
- Encourages healthy competition.
- Development of "good" benchmarks is an important research topic.

## **Circuit Benchmarks**

- Some of the circuit benchmarks that have been used extensively to evaluate VLSI test related research:
  - ISCAS'85: Combinational circuit profiles
  - ISCAS'89: Sequential circuits; we will use the fullscanned versions
  - ITC'99: The most recent and most challenging!

ISCAS: International Symposium of Circuits And Systems

**ITC: International Test Conference** 

### ISCAS'85/ISCAS'89/ITC'99 Bench Format



### ISCAS'85/ISCAS'89/ITC'99 Bench Format

- keyword
- variable
- # comment line
- INPUT(x) primary input line with name x
- OUTPUT(x) primary output line with name x
- x = GTYPE(IN1, IN2, ..., INk) gate of type GTYPE
   with output x and k inputs, IN1...INk
- Valid gate type GTYPE AND, NAND, OR, NOR, XOR, XNOR, NOT, BUFF

### Parse bench circuit and store as graph



#### Circuit c17 from the ISCAS'85 set



# Recommended data structures (example for circuit c17)



## Adding BRANCH nodes to the graph

 The bench format does not explicitly define fanout stems and branches

It is implied that:

$$x = AND(a, b, c)$$
  
 $y = NOT(a)$ 

z = OR(a, b)



To add branch nodes to the graph, define a new

node type BRNH, and:



# Adding BRANCH nodes to the graph (example for circuit c17)





# Circuit/Graph Path Counting

- Problem of counting the # of paths in a combinational circuit reduces to a modified topological traversal.
- Let node v with S(v) = set of immediate predecessors of v. The # of paths up to v, defined by p(v), is:

$$p(v) = \sum p(i), i \in S(v)$$

# **Graph Path Counting Algorithm**

Input: G(V,E) with PI = set of nodes with no predecessors, PO = set of nodes with no successors, and S(v) = set of immediate successors of node v.

Output: # of paths in G

```
Algorithm Count_Paths(G)
```

```
Step 1: FOR (every v \in V)

IF (v \in PI) p[v] = 1; mark v as visited;

ELSE p[v] = 0; mark v as not-visited;
```

Step 2: Run topological traversal algorithm; modified such that when a node v is processed, calculate  $p(v) = \sum p(i)$ ,  $i \in S(v)$ 

Step 3: Return  $\sum p(v)$ ,  $v \in PO$