	Signature:	Ran	dom	No.	Pers	Personal No.		
--	------------	-----	-----	-----	------	--------------	--	--

(Do not write your School/Centre Name or Number anywhere on this booklet.)

P525/1 CHEMISTRY Paper 1 (Theory) Nov./Dec. 2023 2³/₄ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1 (Theory)

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in section A and six questions in section B.

All questions must be answered in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers with equation(s) where applicable.

Where necessary, use the following:

Molar gas constant, $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$.

Molar volume of gas at s.t.p is 22.4 litres.

Standard temperature = 273 K.

Standard pressure = 101325 Nm^{-2} .

For Examiners' Use Only																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
) 1 · · · · · ·	,			Market Co			2.4		0.00 to 1.00						

©2023 Uganda National Examinations Board

Turn Over

SECTION A (46 MARKS)

Answer all questions in this section.

(a) Kinetic data for the decomposition of nitrogen(V) oxide is shown in table 1.

$\frac{\text{able 1}}{[N_2 O_5] \text{ (mol dm}^{-3})}$	Initial Rate (mol dm ⁻³ s ⁻¹)
0.0016	0.12
0.0024	0.18
0.0032	x

Calculate the;

	(i)	order of the reaction.		(1½ marks)
	·······	9 °		
•••••				
6	(ii)	rate constant for the	reaction.	(1½ marks)
	(iii)	value of \boldsymbol{x} .		(01 mark)
 (b)				ermine orders of reactions.
				(01 mark)
		•••••	• • • • • • • • • • • • • • • • • • • •	

	from alkyl benzene.	(02
 (b)	State;	
3/1	(i) one advantage of soap	oless detergent over soapy detergen
	(ii) one disadvantage of so	oapless detergent over soapy deter
 (a)	A compound O consists of 9	94.11% sulphur, the rest being hyd
(a)		
	Calculate the empirical form	
		ula of Q . (0.
(b)	When 0.15 g of Q was vapou	urised at 293 K, the vapour produc
	When 0.15 g of Q was vapou	
	When 0.15 g of Q was vapou occupied 106 cm ³ at 101325	urised at 293 K, the vapour production $^{-2}$. Determine the molecular for $^{-2}$.

Turn Over

	100			
	(c)	Writ dich	te an equation for the reaction of \mathbf{Q} with acidified romate(VI) solution.	potassium (1½ marks)
4.	(a)	The	atomic number of cobalt is 27. Write the electronic configuration of cobalt.	(01 mark)
		(ii)	State how cobalt is able to form ions with oxidat +2 and +3.	(02 marks)
	42		n concentrated ammonia solution was added to col	
	(b)	soluti	ion, a blue precipitate was formed which dissolved in solution. Write equation(s) for the reaction(s) the	l giving a red- lat took place. (03 marks)
-				
5.			ould be observed and write equation(s) for the real lace when the following pairs of substances are m	
	(a)	arc.	$C = CH_2$ and bromine in tetrachloromethane.	
		Obser	vation	(01 mark)
		Equat	ion	(01 mark)
	•••••	•••••••		

	Observation		$(\frac{1}{2} mark)$
	Equation		(01 mark)
 (c)		l acidified potassium dichromate	
	solution. Observation		(01 mark)
	Equation		(01 mark)
(b)	The bond energies of so	me bonds are shown in table 2.	
(b)	The bond energies of so	me bonds are shown in table 2.	
(b)	The bond energies of so		Σ
(b)	The bond energies of so Table 2 Bond	me bonds are shown in table 2. Bond enthalpy (kJ mol ⁻¹	<u> </u>
(b)	The bond energies of so Table 2 Bond $C-H$ $C-C$ $C=C$	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612	
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-l-ene.	(03 mark
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-1-ene. es of atomisation of carbon and h	(03 mark
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-1-ene. es of atomisation of carbon and h	(03 mark
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-1-ene. es of atomisation of carbon and h	(03 mark
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-1-ene. es of atomisation of carbon and h	(03 marks
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-1-ene. es of atomisation of carbon and h	(03 marks
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-1-ene. es of atomisation of carbon and h	(03 marks
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-1-ene. es of atomisation of carbon and h	(03 marks
(b)	The bond energies of sor Table 2 Bond $C-H$ $C-C$ $C=C$ Calculate the enthalpy of (The Standard enthalpies)	Bond enthalpy (kJ mol ⁻¹ +413 +347 +612 of formation of but-1-ene. es of atomisation of carbon and h	(03 marks

7. The boiling points of some chlorides of period 3 elements of the Periodic Table are shown in table 3.

Table 3

Formula of chlorides	NaCl	$MgCl_2$	Al ₂ Cl ₆	SiCl ₄
Boiling points (°C)	1465	1418	423	57

(a)	State the trend in the boiling points of the chlorides.	(01 mark)
		· · · · · · · · · · · · · · · · · · ·
,		
(b)	Explain your answer in (a).	(05 marks)
•••••		
••••••		
••••••		
••••••		•••••
•••••		
••••••		
••••••		
••••••		
••••••		
••••••		
••••••		

8.	Write equation(s) to show how methylethanoate can be synthesis from ethene.	sed starting (05 marks)
9.	(a) State Kohlrausch's law.	(01 mark)
	(b) The molar conductivities at infinite dilution for some election 18 °C are shown below.	trolytes at
	$BaCl_2$, $\Lambda \infty = 240.6 \Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1}$.	
	NH_4Cl , $\Lambda \infty = 129.6 \Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1}$.	
	$Ba(OH)_2$, $\Lambda \infty = 457.6 \Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1}$.	
	Determine the molar conductivity of NH_4 OH at 18 °C.	(03 marks)
		(01 - 1)
	(c) State one application of conductivity measurements.	(01 mark)

SECTION B (54 MARKS)

Answer any six questions from this section.

Any additional question(s) answered will not be marked.

10.	Complete each of the following equations and in each case outline a mechanism for the reaction. (a) $(CH_3 CH_2)_3 C - Br$ $CH_3 CH_2 O^- Na^+ / CH_3 CH_2 OH$							
	(a) (CI	$H_3 CH_2)_3 C$ —	$-Br \stackrel{CH_3 CH_2 O}{=} \stackrel{No.}{\longrightarrow}$	$\frac{1}{1}$ $\frac{1}$	(01 mark			
	Mechanis	sm			(02 marks			
	96.5							
			Conc. H ₂ SO ₄					
		CH ₂ OH	140 °C	→ 	(01 mark)			
	Me	chanism			(02 marks)			
	(c)	HBr HBr	—		(01 mark			
	Me	chanism:			(02 marks)			
	••••••		••••••					
11.	Beryllium and magnesium are elements in group (II) of the Periodic Table. (a) Explain the following:							
	(i)		nisation energy of ber	yllium is higher th	an that of (02 marks)			

	(ii)	The polarising power of magnesium ions is lower the beryllium ions.	nan that of (01 mark)
(b)	equa	llium reacts with aqueous sodium hydroxide solution tion for the reaction.	$(1\frac{1}{2} \text{ marks})$
(c)	State	the conditions under which beryllium oxide and mage react with the following substances and where appli	nesium
	(i)	tion(s) for the reaction(s): Water.	(02 marks)
		G	
	(ii)	Sodium hydroxide.	$(2\frac{1}{2} \text{ marks})$
(a)		Sum phosphate(V), $Ca_3(PO_4)_2$, is sparingly soluble	
	Write (i)	e the; equation for the solubility of calcium phosphate(V) in water. (01 mark)
		The second secon	erter ;
 . (U)	(ii)	expression for the solubility product, <i>Ksp</i> , of calciu phosphate(V).	m (01 mark)
		9	Turn Ove

(b)	The solubility product of calcium phosphate(V) is 2.0×10^{-2} at 25 °C. Calculate the solubility of calcium phosphate(V)	9 mol 5 dm $^{-15}$ in gdm $^{-3}$ at
	25 °C.	(03 marks)
•••••		
i		
 (c)	Explain how the solubility of calcium phosphate(V), woul	d be
	affected if to its saturated solution a few drops of; (i) aqueous sodium phosphate(V) were added.	(02 marks)
•••••		
•••••	(ii) dilute nitric acid were added.	
		(02 marks)
		••••••
	ne a reagent which can be used to distinguish between the follompounds and in each case state what would be observed if exparately treated with the reagent:	owing pairs ach member
(a)	OH and CH ₂ OH	(03 marks)
Reag	gent	
	10	••••••

13.

O1	bservations		Micros m. cur V
	Reagent	$ \begin{array}{c} O \\ C - CH_3 \end{array} $ and	CH ₂ CHO (03 marks)
. ((c)	NH_2 and	NHCH ₃ (03 marks)
	Reagent		
14.	Comple (i) v	lements in group (IV) of the Periodete the table by; vriting the formula of the oxide in	n which each element is in
			(1½ marks) (1½ marks)
	Element Tin	Formula of oxide	Class of oxide.

Element	Formula of oxide	Class of oxide.
Tin		
Silicon	La companya di sensa	
Lead		

(b)	Wri	te an equation for the reaction occurrency	(11/ marks)
	(i)	tin(IV) oxide and concentrated sodium hydroxide.	(172 marks)
	(ii)	lead(IV) oxide and cold concentrated hydrochloric	
(c)	conc	e the condition and write an equation for the reaction centrated nitric acid and;	between
	(i)	tin. Condition	(½ mark)
••••••		Equation	(01 mark)
••••••	(ii)	lead.	
		Condition	(½ mark)
•••••	•••••	Equation	(01 mark)
(a)	Write	e an equation for the ionisation of benzoic acid in water	(01 mark)
•••••	•••••		••••••
(b)	Calcu	ulate the <i>pH</i> of a solution containing 2.06 g of benzoic	acid per dm ³ .
(The	acid a	dissociation constant, Ka , for benzoic acid = 6.3×10^{-1}	$^{-5} mol\ dm^{-3}.)$
	•••••		
	••••••		
•••••			•••••
			•••••

•••••		
•••••		
•••••		
•••••		
	n de m oñ-bane rou en la calacter com	
(c)	4.32 g of sodium benzoate was dissolved in one dm ³ of in (b). Calculate the <i>pH</i> of the resultant solution.	benzoic acid (04 marks)
,	e er skorr grandriker, egsett ansammer i til	
•••••		
······		
		••••••
		••••••
(a)	During the extraction of aluminium from bauxite, Al_2C ore is first purified.	
	(i) Name two major impurities in the ore.	(01 mark)

Turn Over

16.

		(ii) Write equations to show how the ore is purified.	(06 marks)
	•••••		
		Describe how aluminium is obtained from the pure ore. (Equations are not required.)	
		(Equations are not require)	
_			(01 1)
17.	(a)	State what is meant by the term partition coefficient.	
17.			
7.		4.5 g of an impure sample of zinc sulphide was dissolved	in excess
7.		4.5 g of an impure sample of zinc sulphide was dissolved concentrated solution of ammonia and the solution dilute The resultant solution was shaken with 25 cm ³ of carbon and allowed to settle.	l in excess d to 500 cm ³ . tetrachloride
ı 7.		4.5 g of an impure sample of zinc sulphide was dissolved concentrated solution of ammonia and the solution dilute The resultant solution was shaken with 25 cm ³ of carbon	l in excess d to 500 cm ³ . tetrachloride
		4.5 g of an impure sample of zinc sulphide was dissolved concentrated solution of ammonia and the solution dilute. The resultant solution was shaken with 25 cm ³ of carbon and allowed to settle. 12.5 cm ³ of aqueous layer required 20.0 cm ³ of a 0.25 M acid for complete reaction, while 25.0 cm ³ of the carbon layer required 12.5 cm ³ of a 0.025 M hydrochloric acid for complete reaction.	l in excess d to 500 cm ³ . tetrachloride I hydrochloric tetrachloride for complete

	······································
•••••	
(ii) complexed ammonia.	(2½ marks)
••••••	
	•••••
•••••	
	······································
1	
	immura zinc sulnhide.
(c) Determine the percentage by mass of zinc in the	(03 marks)
(c) Determine the persons	(03 marks)
	4

THE PERIODIC TABLE

1	2								***		,	3	4	5	6	7	8
1.0 H 1					•											1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be 4										1 2	10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.5 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20		47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27	58.7 Ni 28	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31			79.0 Se 34		83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72		184 W 74	186 Re 75		192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80		207 Pb 82	Bi	Po	At	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89	i - 1.	<i>/</i> '. '				-			2 '			,		*	
			139 La 57	140 Ce 58	141 Pr 59	144 Nd 60	147 Pm 61		152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	
			227 Ac 89	232 Th 90			237 Np 93		243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	Es	Fm	Md	254 No 102	