Tabla 5.6 Cambios de variable para linealizar los datos.

Función, $y = f(x)$	Linealización, $Y = Ax + B$	Cambios
$y = \frac{A}{x} + B$ $y = \frac{D}{x + C}$	$y = A\frac{1}{x} + B$ $y = \frac{-1}{C}(xy) + \frac{D}{C}$	$X = \frac{1}{x}, Y = y$ $X = xy, Y = y$
$y = \frac{1}{Ax + B}$ $y = \frac{x}{Ax + B}$	$\frac{1}{y} = Ax + B$ $\frac{1}{y} = A\frac{1}{x} + B$ $y = A\ln(x) + B$	$C = \frac{-1}{A}, D = \frac{-B}{A}$ $X = x, Y = \frac{1}{y}$ $X = \frac{1}{x}, Y = \frac{1}{y}$ $X = \ln(x), Y = y$
$y = A \ln(x) + B$ $y = Ce^{Ax}$	$y = A \ln(x) + B$ $\ln(y) = Ax + \ln(C)$	$X = \ln(x), Y = y$ $X = x, Y = \ln(y),$ $C = e^{B}$
$y = Cx^A$	$\ln(y) = A \ln(x) + \ln(C)$	$X = \ln(x), Y = \ln(y),$ $C = e^{B}$
$y = (Ax + B)^{-2}$ $y = Cxe^{-Dx}$	$y^{-1/2} = Ax + B$ $\ln\left(\frac{y}{x}\right) = -Dx + \ln(C)$	$X = x, Y = y^{-1/2}$ $X = x, Y = \ln\left(\frac{y}{x}\right)$
$y = \frac{L}{1 + Ce^{Ax}}$	$\ln\left(\frac{L}{y} - 1\right) = Ax + \ln(C)$	$C = e^{B}, D = -A$ $X = x, Y = \ln\left(\frac{L}{y} - 1\right),$ $C = e^{B}$

matricial. La clave está en darse cuenta de que la matriz F y su traspuesta F', que damos a continuación, juegan un papel fundamental:

$$F = \begin{bmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_M(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_M(x_2) \\ f_1(x_3) & f_2(x_3) & \cdots & f_M(x_3) \\ \vdots & \vdots & & \vdots \\ f_1(x_N) & f_2(x_N) & \cdots & f_M(x_N) \end{bmatrix},$$

SEC. 5.2 AJUSTE DE CUR

$$\boldsymbol{F}' = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_M(x) \end{bmatrix}$$

Consideremos el producto

(22)
$$\mathbf{F}'\mathbf{Y} = \begin{bmatrix} f_1(x_1) \\ f_2(x_1) \\ \vdots \\ f_M(x_1) \end{bmatrix}$$

El elemento de la *i*-ésima fi *i*-ésimo de la matriz colun sistema (21); esto es,

$$(23) \qquad \sum_{k=1}^{N} f_i(x_k)$$

Ahora consideremos el prod

$$F'F = \begin{bmatrix} f_1(x_1) & f_1(x_2) & f_1(x_3) \\ f_2(x_1) & f_2(x_2) & f_2(x_3) \\ \vdots & \vdots & \vdots \\ f_M(x_1) & f_M(x_2) & f_M(x_3) \end{bmatrix}$$

El elemento que ocupa l coeficiente de c_j en la i-ésim

(24)
$$\sum_{k=1}^{N} f_i(x_k) f_j(x_k) = f_i(x_k) f_i(x_k) f_i(x_k) = f_$$

Cuando M es pequeño, una f coeficientes óptimos en mínim la matriz F, calcular F'F y

$$(25) F'FC =$$