

LAB - 06

陳培殷老師 國立成功大學 資訊工程系

■ Specify device settings - (DE10-Lite Device family are used). Click "Next."

MAX 10(DA/DF/DC/SA/SC)

10M50DAF484C7G

Introduction to DE10-Lite

Programming DE10-Lite (1/13)

```
module Half_Adder(a, b, sum, carry);
input a,b;
output sum, carry;
and(carry,a,b);
xor(sum,a,b);
endmodule
```

Programming DE10-Lite (2/13)

Start compilation

Programming DE10-Lite (3/13)

Open Pin Planner

Programming DE10-Lite (4/13)

Assign pin location to all inputs and outputs

Programming DE10-Lite (5/13)

■ 詳細的pin腳位資料請參考moodle檔案 "FPGA_pin腳位對照.xlsx"

Programming DE10-Lite (6/13)

Start compilation

Programming DE10-Lite (7/13)

Programming DE10-Lite (8/13)

Programming DE10-Lite (9/13)

個人電腦: C:\intelFPGA_lite\18.1\quartus\drivers\usb-blaster 實驗室電腦: C:\intelFPGA_lite\16.1\quartus\drivers\usb-blaster

Programming DE10-Lite (10/13)

Programming DE10-Lite (11/13)

Programming device

Programming DE10-Lite (12/13)

Hardware setup: add USB-Blaster

Programming DE10-Lite (13/13)

Programming device

Lab I -- Adder-Subtractor to DE10-Lite

- 請設計一 4-bit 無號數加減法器,並燒錄至DE10-Lite開發板
 - □ Input: a(4 bits) \ b(4 bits) \ select(1 bit)
 - Output: S(4 bits) \ C (1 bit) carry \ V(1 bit) overflow
- 無號數加減法器藉由選擇(select)訊號決定進行加法或減法運算
 - □ select訊號為1時,out輸出α b
 - □ select訊號為O時,out輸出α+b
 - □ 溢位(overflow)訊號用來表示有無進位或借位

Lab I -- Adder-Subtractor to DE10-Lite

```
reg c;
always@(*) begin

if (sel == 1'd1) begin

c = a;
end
else begin

c = b;
end
end
```

```
reg carry;
reg sum;
always@(*) begin
{carry, sum} = a + b;
end
```

```
wire c;
wire temp0, temp1;
wire sel_inv = ~sel;
and u0 (temp0, a, sel);
and u1 (temp1, b, sel_inv);
or u2 (c, temp0, temp1);
```

```
wire c;

assign c = (sel == 1'd1) ? a : b;
```

```
HUNTY
```

```
module test (a, b, sum, carry);
  input a;
  input b;
  output sum;
  output carry;

reg sum_reg, carry_reg;
  assign sum = sum_reg;
  assign carry = carry_reg;

always@(*) begin
  {carry_reg, sum_reg} = a+b;
  end
```

Lab I – Adder-Subtractor

- Example:
 - □ select=0
 - Out輸出a+b
 - Ex1:輸入 a=0010, b=1101, a+b=0010+1101=1111, 因為沒有進位, out=1111, overflow = 0
 - Ex2: 輸入 a=0100, b=1101, a+b=0100+1101=10001, 因為有進位, out=0001, overflow = 1
 - □ select=1
 - out輸出a-b
 - Ex1:輸入 a=1010, b=0011, a-b=1010-0011=0111, 因為沒有借位, out=0111, overflow = 0
 - Ex2:輸入 a=0010, b=1101, 因為0010不夠減1101, 所以需要借位, 所以a-b=10010-1101=0101, 因為有借位, out=0101, overflow = 1

Lab I – Adder-Subtractor to DE10-Lite

- 完成verilog電路設計後,需先確認其在Quartus可順利編譯,再將其燒錄至 DE10-Lite開發板進行驗證
- 使用Switch(SW8~SW0)控制input訊號,使用LED(LED4~LED0)表示output

Lab II – encoder to DE10-Lite

- 請設計-8對3編碼器(8 to 3 encoder)
- 編碼器可以將2ⁿ個輸入訊號轉換成n位元輸出訊號,假設有m個輸入與n個輸出,則稱為m對n編碼器
- Hint: 可使用behavior description之case語法實作

輸入 (input)								輸出 (output)			
in[7]	in[6]	in[5]	in[4]	in[3]	in[2]	in[1]	in[0]	valid	out[2]	out[1]	out[0]
0	0	0	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	1	0	1	0	0	1
0	0	0	0	0	1	0	0	1	0	1	0
0	0	0	0	1	0	0	0	1	0	1	1
0	0	0	1	0	0	0	0	1	1	0	0
0	0	1	0	0	0	0	0	1	1	0	1
0	1	0	0	0	0	0	0	1	1	1	0
1	0	0	0	0	0	0	0	1	1	1	1
其餘的輸入情況								0	0	0	0

Lab II – encoder to DE10-Lite

- 完成verilog電路設計後,需先確認其在Quartus可順利編譯,再將其燒錄至 DE10-Lite開發板進行驗證
- 使用Switch(SW7~SW0)控制input訊號,使用LED(LED3~LED0)表示output

LED3

LED2~LED0

Notice

- 請勿命名中文或數字開頭的資料夾
- Device family 請確認與 FPGA Chip 符合 (10M50DAF484C7G)
- Top module name & Project name 需要一致
- 在組合電路中, case、if...else...若沒有寫滿, 合成後會產生latch

