

Dynamique et modélisation de la turbulence

4. Turbulence homogène et isotrope

Paola CINNELLA paola.cinnella@sorbonne-universite.fr

Les échelles de la turbulence

Introduction

- Dans les cours précédents nous avons vu que l'énergie cinétique turbulente :
 - Est injectée aux grandes échelles
 - Est transférée à des échelles de plus en plus petites quasiment sans perte via le mécanisme (non visqueux) d'étirement des tourbillons
 - Est dissipée aux plus petites échelles, ou échelles de Kolmogorov, par la viscosité du fluide

Reste à

- Donner une estimation plus quantitative des échelles turbulentes en fonction des paramètres caractéristiques de l'écoulement
- Caractériser les taux de transfert

Objectifs de ce cours

- Dans ce cours nous allons examiner de près deux notions récurrentes dans la théorie de la turbulence
 - La cascade d'énergie (rappelez-vous le poème de Richardson!)
 - · Les hypothèses de Kolmogorov
 - o Elles permettent de préciser et quantifier le processus
- Hypothèses de travail :
 - Nous considérons un écoulement
 - o Pleinement turbulent
 - o Caractérisé par un nombre de Reynolds élevé, basé sur une échelle de vitesse macroscopique *U* et de longueur *L* :

$$Re = \frac{UL}{v} \gg 1$$

Bibliographie : Bailly, Pope, Tennekes&Lumley

Cascade turbulente (encore!)

- A la base de l'idée de cascade turbulente il y a l'idée de « structures » (eddies) de tailles différentes
 - Une structure est une région de fluide qui se comporte de façon « cohérente »
 - Les structures de taille l ont
 - o une vitesse caractéristique u(l), à peu près similaire sur toute la région considérée
 - Un temps caractéristique (temps de vie) $\tau(l) = l/u(l)$
 - Les plus grandes échelles turbulentes ont
 - o une taille $l_0 \sim L$
 - Vitesse caractéristique $u_0 = u_0(l) \sim u' \coloneqq \left(\frac{2}{3}k\right)^{\frac{1}{2}} \sim U \rightarrow Re_0 = \frac{u_0 l_0}{v} \gg 0$ $k = \frac{1}{2} \langle u_i u_i \rangle = \frac{1}{2} \left(\overline{u'^2} + \overline{v'^2} + \overline{w'^2}\right)$
 - o Le nombre de Reynolds associé à ces grandes échelles est appelé le Reynolds de turbulence
 - La viscosité n'agissant que sur les plus petites échelles de la cascade, on s'attend à ce que le taux de dissipation turbulente, ε soit fixé en fonction du taux auquel l'énergie est injectée dans les plus grandes échelles (taux de production)
 - Taux de transfert de l'énergie : $\mathcal{T} \sim \frac{u_0^2}{\tau_0} \sim \frac{u_0^3}{l_0} \rightarrow \epsilon \sim \frac{u_0^3}{l_0}$ indépendamment du Reynolds (pourvu que Re >> 1)

Echelle intégrale

- La taille caractéristique des plus grandes échelles est appelée échelle intégrale
- Compte-tenu des estimations précédentes

$$u_0 \sim k^{\frac{1}{2}}, \qquad \epsilon \sim \frac{u_0^3}{l_0}$$

Nous déduisons que $l_0 \sim \frac{k^{\frac{3}{2}}}{\epsilon}$

■ Par conséquent, le Reynolds de turbulence peut être estimé à partir de la relation suivante :

$$\operatorname{Re}_{0} \operatorname{ou} \operatorname{Re}_{L} = \frac{k^{\frac{1}{2}} l_{0}}{v} = \frac{k^{2}}{\epsilon v}$$

Hypothèses de Kolmogorov

- Plusieurs questions restent ouvertes
 - Quelle est la taille des petites échelles dissipatives?
 - Lorsque l diminue, comment se comportment u(l) et $\tau(l)$ (diminuent, augmentent, restent constantes?)?
- La théorie de la turbulence établie par Kolmogorov (1941, voir Pope (2000)) apporte une réponse à ces questions
- La théorie de Kolmogorov est fondée sur <u>trois hypotheses fondamentales</u> (hypothèses de Kolmogorov), des arguments d'<u>analyse dimensionnelle</u> et des <u>observations</u> <u>expérimentales</u>

← 1^e hypothèse de similitude

- 1. <u>Isotropie</u> locale des petites échelles
- 2. Caractéristiques des échelles visqueuses
- 3. Comportement auto-similaire des échelles intermédiaires ← 2^e hypothèse de similitude

Turbulence homogène : tenseur de corrélation

Définition

$$R_{ij}(\boldsymbol{x},\boldsymbol{r},t) \equiv \overline{u_i'(\boldsymbol{x},t)\,u_j'(\boldsymbol{x}+\boldsymbol{r},t)} = R_{ij}(\boldsymbol{r},t)$$

- R_{ij} ne dépend que de la séparation ${\bf r}$ entre deux points de mesure \rightarrow invariance sous une translation en espace du point d'observation ${\bf x}$.
- Version normalisée : coefficient de corrélation

$$-1 \le \mathcal{R}_{ij}(\mathbf{r}) \equiv \frac{\overline{u_i'(\mathbf{x})u_j'(\mathbf{x}')}}{\sqrt{\overline{u_i'^2(\mathbf{x})}}\sqrt{\overline{u_j'^2(\mathbf{x}')}}} \le +1$$

• Exemple : $R_{11}(r,0,0) = \overline{u_1'^2} \, \mathcal{R}_{11}(r,0,0)$ (pour une séparation r = (r,0,0))

Turbulence homogène : équation de l'énergie cinétique

- Nous avons vu la dernière fois que, pour de la turbulence homogène, les dérivées spatiales des quantités fluctuantes sont nulles.
- L'équation de $\left\langle \frac{u_i'u_i'}{2} \right\rangle$ devient : $\frac{\partial k}{\partial t} = -\frac{\partial \bar{u}_i}{\partial x_j} \left\langle u_i'u_j' \right\rangle \left\langle \nu \, \frac{\partial u_i'}{\partial x_j} \frac{\partial u_i'}{\partial x_j} \right\rangle = \mathcal{P} \epsilon$ production dissipation

- Turbulence décroissante derrière une grille
 - On se place dans un repère se déplaçant avec l'écoulement
 - Turbulence statistiquement stationnaire, homogène dans le plan 2-3.

$$\frac{dk}{dt} = -\epsilon$$

Turbulence homogène : échelle intégrale

• Echelle intégrale longitudinale (voir Lect1) : estimation de la taille des structures les plus énergétiques

On peut également définir une échelle intégrale latérale

$$L_g \equiv L_{11}^{(2)} = \int_0^\infty \mathcal{R}_{11}(0, r, 0) dr$$

Tavoularis (2003), passive scalar mixing, $Sc \approx 2000$

Turbulence homogène : micro-échelle de Taylor

 Nous avons vue auparavant l'échelle de Taylor, obtenue par développement en série du coefficient de corrélation :

$$\mathcal{R}_{11}(r,0,0) = 1 - \frac{r^2}{\lambda^2} + \cdots$$

• Développement en série de la vitesse fluctuante u_1'

$$u_1'(r,0,0) = u_1'(0,0,0) + r \frac{\partial u_1'}{\partial x_1} \bigg|_{x=0} + \frac{r^2}{2} \frac{\partial^2 u_1'}{\partial x_1^2} \bigg|_{x=0} + \dots$$

• Il en suit que :

$$R_{11}(r,0,0) = \overline{u_1'(0,0,0)u_1'(r,0,0)}$$

$$= \overline{u_1'^2} + r \overline{u_1'} \frac{\partial u_1'}{\partial x_1} + \frac{r^2}{2} \overline{u_1'} \frac{\partial^2 u_1'}{\partial x_1^2} + \dots$$

$$= \overline{u_1'^2} + r \frac{\partial}{\partial x_1} \left(\frac{\overline{u_1'^2}}{2} \right) + \frac{r^2}{2} \frac{\partial}{\partial x_1} \left(\overline{u_1'} \frac{\partial u_1'}{\partial x_1} \right) - \frac{r^2}{2} \left(\frac{\partial u_1'}{\partial x_1} \right)^2 + \dots$$

$$\mathcal{R}_{11}(r,0,0) = 1 - \frac{r^2}{2\overline{u_1'^2}} \left(\frac{\partial u_1'}{\partial x_1} \right)^2 \equiv 1 - \frac{r^2}{\lambda^2} + \dots \rightarrow \lambda = \sqrt{2\overline{u_1'^2}} / \sqrt{\left(\frac{\partial u_1'}{\partial x_1}\right)^2}$$

Turbulence homogène : micro-échelle de Taylor

• Longitudinale:

$$\frac{1}{\lambda_f^2} \equiv -\frac{1}{2} \frac{d^2 \mathcal{R}_{11}}{dr_1^2} = \frac{1}{2 \overline{u_1'^2}} \left(\frac{\partial u_1'}{\partial x_1} \right)^2$$

Transversale :

$$\frac{1}{\lambda_g^2} \equiv -\frac{1}{2} \frac{d^2 \mathcal{R}_{11}}{dr_2^2} = \frac{1}{2 \overline{u_1'^2}} \overline{\left(\frac{\partial u_1'}{\partial x_2}\right)^2}$$

$$\begin{array}{c}
u_1'(x+re_2) \\
 & u_1'(x)
\end{array}$$

1^e hypothèse de similitude -1 : isotropie locale aux petites échelles

- lacktriangle Pour des Reynolds de turbulence suffisamment élevés, les petites échelles turbulentes ($l \ll l_0$) sont statistiquement isotropes
 - → Remarque: l'information directionnelle est perdue lors du transfert dans la cascade (voir arbre de Bradshaw), ainsi que l'effet du champ moyen et des conditions aux limites
- On note l_{EI} l'échelle en dessous de laquelle la turbulence a un comportement i<u>sotrope</u>. La gamme d'échelles $l < l_{EI}$ est appelé le domaine d'équilibre
 - Pour de nombreux écoulements haut Reynolds, on estime $l_{EI} < \frac{l_0}{6}$
- Dans cette gamme, les temps caractéristiques $\tau(l) = \frac{1}{u(l)} \ll \tau_0$
 - \rightarrow Adaptation rapide des structures aux modifications des grandes échelles anisotropes pour maintenir un équilibre dynamique entre l'énergie transférée \mathcal{T} et la dissipation ϵ .

Turbulence isotrope : propriétés

- Les statistiques de l'écoulement sont invariantes par rapport à une rotation du repère et symétriques par rapport aux plans coordonnés
 - Pas de direction privilégiée
 - Configuration la plus simple possible
- Propriétés :
 - Les corrélations normales doivent être égales pour de la turbulence isotrope (permutation des axes), donc :

$$\overline{u_1'^2} = \overline{u_2'^2} = \overline{u_3'^2} = u'^2$$
 $u'^2 \equiv \overline{u'^2}$

• Les corrélations croisées doivent être nulles

$$\overline{u_1'u_2'} = -\overline{u_1'u_2'} \qquad \Rightarrow \quad \overline{u_1'u_2'} = 0$$

$$\rightarrow \overline{u_1'u_2'} = 0$$

→ tenseur de Reynolds diagonal :

$$\overline{u_i'u_j'} = u'^2 \,\delta_{ij} = \frac{2}{3}k_t \,\delta_{ij}$$

$$u_A' \cdot a = u_2'$$

$$(\mathbf{u}_A' \cdot \mathbf{a})(\mathbf{u}_A' \cdot \mathbf{b}) = u_1' u_2'$$

$$(\mathbf{u}_A' \cdot \mathbf{a})(\mathbf{u}_A' \cdot \mathbf{b}) = -u_1' u_2'$$

1^e hypothèse de similitude – 2 : échelles visqueuses

- Toujours pour des Reynolds de turbulence suffisamment élevés, les petites échelles turbulentes ($l \ll l_0$) sont
 - statistiquement isotropes
 - leur taille est déterminée uniquement par la viscosité du fluide ν et le taux de dissipation turbulente ϵ
 - → Remarque : l'information directionnelle est perdue lors du transfert dans la cascade (voir arbre de Bradshaw), ainsi que l'effet du champ moyen et des conditions aux limites
- On note l_{EI} l'échelle en dessous de laquelle la turbulence a un comportement i<u>sotrope</u>. La gamme d'échelles $l < l_{EI}$ est appelé le domaine d'équilibre
 - Pour de nombreux écoulements haut Reynolds, on estime $l_{EI} < \frac{l_0}{6}$
- Dans cette gamme, les temps caractéristiques $\tau(l) = \frac{1}{u(l)} \ll \tau_0$
 - \rightarrow Adaptation rapide des structures aux modifications des grandes échelles anisotropes pour maintenir un équilibre dynamique entre l'énergie transférée \mathcal{T} et la dissipation ϵ .
- On utilise l'analyse dimensionnelle pour construire des échelles caractéristiques de la gamme d'équilibre :

$$\eta = \left(\frac{v^3}{\epsilon}\right)^{\frac{1}{4}}; \qquad u_{\eta} = (\epsilon v)^{\frac{1}{4}}; \qquad \tau_{\eta} = \left(\frac{v}{\epsilon}\right)^{\frac{1}{2}} \qquad \Rightarrow Re_{\eta} = \frac{\eta u_{\eta}}{v} = 1; \quad \frac{u_{\eta}}{\eta} = \frac{1}{\tau_{\eta}}$$

1^e et 2^e hypothèse : conséquences

• On peut maintenant estimer le rapport entre les grandes et les petites échelles en utilisant $\epsilon \sim \frac{u_0^3}{l_0}$:

$$\frac{l_0}{\eta} \sim Re^{\frac{3}{4}}; \qquad \frac{u_0}{u_\eta} \sim Re^{\frac{1}{4}}; \qquad \frac{\tau_0}{\tau_\eta} = Re^{\frac{1}{2}}$$

- La taille des petites échelles décroit en augmentant le nombre de Reynolds
- Il existe une large séparation entre l'échelle intégrale (niveau macroscopique, anisotrope, peu affectée par la viscosité) et les échelles de Kolmogorov (dominées par la vorticité)
 - On postule l'existence d'une gamme
 - d'échelles <u>intermédiaires</u>, assez grandes pour être <u>peu affectée par la viscosité</u> mais malgré tout faible devant l'échelle intégrale :

$$\eta \ll l \ll l_0$$

Simulation de canal plan turbulent à $Re_{ au}=180$ (gauche) et $Re_{ au}=590$ (droite)

3^e hypothèse de Kolmogorov : domaine « inertiel »

Pour tout écoulement à nombre de Reynolds suffisamment élevé, Kolmogorov postule l'existence d'une gamme d'échelles $\eta \ll l \ll l_0$ caractérisé par un comportement <u>universel</u> ($l < l_{EI}$) mais déterminé uniquement par le taux de transfert $\mathcal{T} \sim \epsilon$ et non par la viscosité

→ Domaine inertiel

- lacktriangle On introduit une échelle correspondant à la limite inférieure de la gamme inertielle : $l_{DI} < l < l_{EI}$
- Cette échelle sépare le domaine universel en deux parties :
 - $l_{DI} < l < l_{EI}$: domaine inertiel
 - $l < l_{DI}$: domaine dissipatif
- Comme son nom l'indique, le domaine inertiel est dominé par les termes d'inertie (non linéaires) des équations de Navier-Stokes

3^e hypothèse de Kolmogorov : domaine « inertiel » (suite)

- Dans le domaine inertiel, il n'y a pas d'échelle de longueur de référence (comportement auto-similaire)
 - Pour une taille l donnée, on peut estimer les autres échelles caractéristiques par les relations dimensionnelles :

$$u(l) \sim (\epsilon l)^{\frac{1}{3}} \sim u_{\eta} \left(\frac{l}{\eta}\right)^{\frac{1}{3}} \sim u_{0} \left(\frac{l}{l_{0}}\right)^{\frac{1}{3}}$$

$$\tau(l) \sim \left(\frac{l^{2}}{\epsilon}\right)^{\frac{1}{3}} \sim \tau_{\eta} \left(\frac{l}{\eta}\right)^{\frac{2}{3}} \sim \tau_{0} \left(\frac{l}{l_{0}}\right)^{\frac{2}{3}}$$

- Conséquence : quand l diminue, u(l) et $\tau(l)$ diminuent
- · Les lois d'échelle ci-dessus nous disent également de le taux de transfert

$$\mathcal{T} \sim \epsilon, \mathcal{T}(l) \sim \frac{u(l)^3}{\tau(l)}$$

est le même pour toute la gamme d'échelles allant des échelles énergétiques à celles dissipatives

Micro-échelle de Taylor et dissipation

Pour de la turbulence isotrope, le taux de dissipation $\epsilon = v \frac{\partial u_i'}{\partial x_j} \frac{\partial u_i'}{\partial x_j}$ devient : $\epsilon = 15v \frac{\partial u_1'}{\partial x_1} \frac{\partial u_1'}{\partial x_1}$

$$\epsilon = 15\nu \frac{\partial u_1'}{\partial x_1} \frac{\partial u_1'}{\partial x_1}$$

Compte-tenu de la définition de l'échelle de Taylor, nous pouvons écrire :

$$\bullet \ \overline{\left(\frac{\partial u_1'}{\partial x_1}\right)^2} = \frac{2\overline{u_1'^2}}{\lambda^2} \sim \frac{u'^2}{\lambda^2}$$

• Donc:
$$\epsilon \sim 15\nu \frac{u'^2}{\lambda^2} = 15\nu \frac{2}{3}k \frac{1}{\lambda^2} = \frac{10\nu k}{\lambda^2} \Rightarrow \lambda \sim \left(\frac{10\nu k}{\epsilon}\right)^{\frac{1}{2}}$$

- L'échelle de Taylor est liée aux effets de dissipation
- Elle se situe entre l'échelle énergétique l_0 et l'échelle de Kolmogorov, car :

$$\lambda/l_0 = \sqrt{10} \, \text{Re}_L^{-1/2}$$
 $\eta/l_0 = \text{Re}_L^{-3/4}$
 $\lambda/\eta = \sqrt{10} \, \text{Re}_L^{1/4}$
 $\lambda = \sqrt{10} \, \eta^{2/3} \, l_0^{1/3}$

Micro-échelle de Taylor et dissipation (suite)

Un nombre de Reynolds communément utilisé pour caractériser la turbulence homogène et isotrope est :

$$R_{\lambda} = u'\lambda/\nu$$

lacktriangle Compte-tenu des relations précédentes, il est lié au ${\rm Re}_L$ par la relation :

$$R_{\lambda} = \left(\frac{20}{3} \operatorname{Re}_{L}\right)^{1/2}$$

• Enfin, la micro-échelle temporelle de Taylor est donnée par :

$$\lambda/u' = (15\nu/\varepsilon)^{1/2} = \sqrt{15}\,\tau_{\eta}$$

Taux de transfert d'énergie

- Le taux auquel l'énergie est tranféré des grandes aux petites échelles est $\mathcal{T}(l)$.
- Pour des conditions d'équilibre dans le domaine inertiel $\mathcal{T}(l) = \epsilon \sim u(l)^2/\tau$

Spectre de vitesse

• Pour un champ de vitesse fluctuante homogène, on peut considérer la transformée de Fourier spatiale

$$\hat{\boldsymbol{u}}(\boldsymbol{k}) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \boldsymbol{u}'(\boldsymbol{x}) e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} d\boldsymbol{x} \qquad \qquad \boldsymbol{u}'(\boldsymbol{x}) = \int_{\mathbb{R}^3} \hat{\boldsymbol{u}}(\boldsymbol{k}) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} d\boldsymbol{k}$$

• Si de plus le champ de vitesse est incompressible :

$$\nabla \cdot \boldsymbol{u}' = 0 = \int i\boldsymbol{k} \cdot \hat{\boldsymbol{u}}(\boldsymbol{k}) e^{i\boldsymbol{k} \cdot \boldsymbol{x}} d\boldsymbol{k} \qquad \forall \, \boldsymbol{x}$$

■ Donc $\mathbf{k} \cdot \hat{\mathbf{u}}(\mathbf{k}) \equiv 0$ $\forall \mathbf{k}$ \rightarrow transformée de Fourier de la vitesse est orthogonale au vecteur d'onde \mathbf{k}

Nombres d'onde et vecteur d'onde

- Le nombre d'onde κ est défini comme $\kappa = 2\pi/l$.
- Le vecteur d'onde k a pour composantes les nombres d'onde dans les trois directions
- Les différents domaines de la cascade peuvent être réécrits en fonction des nombres d'onde.
- On peut normaliser le nombre d'onde en le multipliant par l'échelle de Kolmogorov η : $(\eta \kappa)$.

Spectre de vitesse

Espace de Fourier vs espace physique

Tenseur spectral

Transformée de Fourier du tenseur de corrélation

$$\begin{cases} \phi_{ij}(\mathbf{k}) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} R_{ij}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{r}} d\mathbf{r} & \text{Transformée directe} \\ R_{ij}(\mathbf{r}) = \int_{\mathbb{R}^3} \phi_{ij}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{r}} d\mathbf{k} & \text{Transformée inverse} \end{cases}$$

- Exemple : i=1, j=1, r=0 : $\overline{u_1'^2} = \int \phi_{11}(k) dk$
- Propriétés :
 - Deux composantes du spectre de vitesse ne sont corrélées que pour le même nombre d'onde

$$\overline{\hat{u}_i^{\star}(\mathbf{k})\hat{u}_j(\mathbf{k}')} = \phi_{ij}(\mathbf{k}')\delta(\mathbf{k} - \mathbf{k}')$$

- Symétrie Hermitienne $\phi_{ij}(k)=\phi_{ji}(-k)=\phi_{ji}^{\star}(k)$ si $R_{ij}(r)=R_{ji}(-r)$
- Condition d'incompressibilité $k_i \phi_{ij}(\mathbf{k}) = k_j \phi_{ij}(\mathbf{k}) = 0$

Tenseur spectral

Propriétés (preuve) :

$$\frac{\hat{u}_i^{\star}(\mathbf{k})\hat{u}_j(\mathbf{k}')}{\hat{u}_i^{\star}(\mathbf{k})\hat{u}_j(\mathbf{k}')} = \frac{1}{(2\pi)^6} \iint \overline{u_i'(\mathbf{x})u_j'(\mathbf{x}')} e^{i\mathbf{k}\cdot\mathbf{x}} e^{-i\mathbf{k}'\cdot\mathbf{x}'} d\mathbf{x} d\mathbf{x}'$$

$$= \frac{1}{(2\pi)^6} \iint R_{ij}(\mathbf{r}) e^{-i\mathbf{k}'\cdot\mathbf{r}} e^{i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{x}} d\mathbf{x} d\mathbf{r}$$

avec $\overline{u_i'(x)u_j'(x')} = R_{ij}(r)$ pour de la turbulence homogène et isotrope (r=x'-x)

Par ailleurs:
$$\frac{1}{(2\pi)^3} \int e^{i(k-k')\cdot x} dx = \delta(k-k')$$

Et finalement
$$\overline{\hat{u}_{i}^{\star}(\mathbf{k})\hat{u}_{j}(\mathbf{k}')} = \frac{1}{(2\pi)^{3}}\int R_{ij}(\mathbf{r}) e^{-i\mathbf{k}'\cdot\mathbf{r}} \delta(\mathbf{k}-\mathbf{k}')d\mathbf{r} = \phi_{ij}(\mathbf{k})\delta(\mathbf{k}-\mathbf{k}')$$

• Incompressibilité : conséquence de $k \cdot \hat{u}(k) \equiv 0$ et de la relation précédente

Spectre 1D

 On intègre sur tous les nombres d'onde dans deux directions et on regarde la distribution dans la troisième direction:

$$E_{ij}^{(1)}(k_1) = \iint_{\mathbb{R}^2} \phi_{ij}(\mathbf{k}) \ dk_2 dk_3$$

• Par exemple pour i=j=1 et r=0:

$$\overline{u_1'^2} = R_{11}(\mathbf{r} = 0) = \int_{\mathbb{R}^3} \phi_{11}(\mathbf{k}) \ e^{i\mathbf{k}\cdot\mathbf{r}} d\mathbf{k} = \int_{-\infty}^{+\infty} E_{11}^{(1)}(k_1) \ dk_1 \quad \text{Aire sous le spectre}$$

• Pour i=i=1 et $r = (r_1, 0, 0)$:

$$R_{11}(r_1,0,0) = \int_{\mathbb{R}^3} \phi_{11}(\mathbf{k}) \ e^{ik_1r_1} d\mathbf{k} = \int_{-\infty}^{+\infty} E_{11}^{(1)}(k_1) \ e^{ik_1r_1} dk_1$$

Inversement :

$$E_{11}^{(1)}(k_1) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} R_{11}(r_1, 0, 0) e^{-ik_1r_1} dr_1$$

Enfin pour k1=0 :

$$E_{11}^{(1)}(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} R_{11}(r_1, 0, 0) \ dr_1 = \frac{1}{2\pi} 2\overline{u_1'^2} L_f \qquad \qquad L_f = \pi \frac{E_{11}^{(1)}(0)}{\overline{u_1'^2}} \qquad \text{Echelle intégrale longitudinale}$$

$$L_f = \pi \frac{E_{11}^{(1)}(0)}{\overline{u_1^{\prime 2}}}$$

Transformée de Fourier inverse

Transformée de Fourier directe

Turbulence « gelée » et hypothèse de Taylor

- D'un point de vue expérimental, les mesures sont des signaux temporels enregistrés à un point fixé
- Hypothèse de turbulence « gelée » et convectée par l'écoulement à la vitesse moyenne \overline{U}_1

- Application : signal temporel de vitesse $u_1'(t) \to \Phi_{11}(f)$ $\overline{u_1'^2} \equiv \int_0^\infty \Phi_{11}(f) df$ Transformée inverse en temps
- En espace on a

$$\overline{u_1'^2} = \int_{-\infty}^{+\infty} E_{11}^{(1)}(k_1) \ dk_1 \equiv \int_0^{\infty} \frac{\bar{U}_1}{2\pi} \Phi_{11}(f = k_1 \bar{U}_1/2\pi) dk_1 \longrightarrow L_{11}^{(1)} = \pi \frac{E_{11}^{(1)}(k_1 = 0)}{\overline{u_1'^2}} = \frac{1}{4} \ \bar{U}_1 \frac{\Phi_{11}(f = 0)}{\overline{u_1'^2}}$$
Inconnu Mesurable

Détermination de la longueur intégrale à partir des mesures

Turbulence « gelée » et hypothèse de Taylor (cont.)

Exemples de spectres spatial et temporel pour un écoulement de jet

Turbulence homogène isotrope

Le tenseur spectral ne dépend que d'une seule fonction scalaire et se réduit à

$$\phi_{ij}(\mathbf{k}) = \frac{E(k)}{4\pi k^2} \left(\delta_{ij} - \frac{k_i k_j}{k^2} \right) \qquad E(k) = \frac{1}{2} \int_{\Sigma_k} \phi_{ii}(\mathbf{k}) d\Sigma = 2\pi k^2 \phi_{ii}(\mathbf{k})$$

$$\equiv \int_{\Sigma_k} E(k) dk$$

- L'énergie cinétique turbulente est $K \equiv \int_0^\infty E(k) dk$
 - Répartition de l'énergie cinétique des fluctuations dans les différents nombres d'onde
- On peut également introduire le spectre de dissipation :

$$\epsilon = \nu \overline{\omega_i' \omega_i'} = \nu \int_0^\infty k^2 \phi_{ii}(\mathbf{k}) d\mathbf{k}$$

• Car
$$\hat{\omega}(\mathbf{k}) = i\mathbf{k} \times \hat{\mathbf{u}}(\mathbf{k})$$
 et

$$\frac{\overline{\omega_i'\omega_i'}}{2} = \frac{1}{2} \int_{\mathbb{R}^3} k^2 \phi_{ii}(\mathbf{k}) d\mathbf{k}$$

Répartition de la dissipation selon les nombres d'onde

Spectre d'énergie dans le domaine inertiel

- D'après la deuxième hypothèse de similitude de Kolmogorov, $E(\kappa)$ dépend seulement de κ et ε .
- L'analyse dimensionnelle indique que :

$$[k] = m^{2}s^{-2}; \quad [\varepsilon] = m^{2}s^{-3}; \quad [\kappa] = m^{-1};$$

$$[E(\kappa)] = [k]/[\kappa] = m^{3}s^{-2}$$

$$Dimensional \ analysis: \quad [\varepsilon^{2/3}\kappa^{-5/3}] = m^{3}s^{-2}$$

$$\Rightarrow E(\kappa) \quad \propto \quad \varepsilon^{2/3}\kappa^{-5/3}$$

$$\Rightarrow E(\kappa) \quad = C \varepsilon^{2/3}\kappa^{-5/3}$$

- Cette dernière relation représente la célèbre loi en -5/3 du spectre de Kolmogorov.
- C est la constante universelle de Kolmogorov (C = 1.5 d'après les expériences)

Spectre complet

Plusieurs auteurs ont développé des modèles de spectre, que nous ne discuterons pas en détail

• Le spectre complet est de la forme: $E(\kappa) = C\varepsilon^{2/3}\kappa^{-5/3}f_L f_{\eta}$

• Avec f_L et f_η des fonctions du nombre d'onde caractérisant le spectre dans les domaines énergétique et

dissipatif, respectivement.

Spectre complet (suite)

• Le domaine énergétique est caractérisé par f_L (qui tend vers 1 pour ($\kappa l_0 >> 1$):

$$f_{L} = \left(\frac{\kappa l_{0}}{\left[(\kappa l_{0})^{2} + c_{L}\right]^{1/2}}\right)^{p_{0} + 5/3}$$

• Le domaine dissipative est caractérisé par f_{η} (qui tend vers 1 lorsque ($\kappa \eta$) \rightarrow 0):

$$f_{\eta} = \exp\{-\beta\{[(\kappa \eta)^4 + c_{\eta}^4]^{1/4} - c_{\eta}\}\}$$

• Les constantes du modèle sont déterminées à partir des expériences, sachant que l'intégrale du spectre est égale à l'énergie cinétique turbulente.

$$c_L \approx 6.78$$
; $c_{\eta} \approx 0.40$; $C = 1.5$; $p_0 = 2$; $\beta = 5.2$.

Spectre normalisé

- Pour des valeurs données de ε , v, et κ on peut calculer le spectre avec les relations précédentes.
- Il est courant toutefois de normaliser le spectre avec l'échelle intégrale ou de Kolmogorov.
- Normalisation avec les échelles de Kolmogorov :
 - Taille des structures (η κ).
 - Densité spectrale normalisée $E(\kappa)/(\eta u_{\eta}^2)$
- Normalisation avec l'échelle intégrale :
 - Taille des structures ($l_0 \kappa$).
 - Densité spectrale normalisée $E(\kappa)/(k l_0)$
- Avantage : au lieu de trois paramètres indépendants (ε, v, κ) , le spectre normalisé ne dépend plus que du nombre de Reynolds
 - On choisit le Reynolds basé sur l'échelle de Taylor R_{λ} .

Spectre normalisé pour $R_{\lambda} = 500$

Variation du spectre normalisé avec R_{λ}

Variation du spectre normalisé avec R_{λ}

Mesures du spectre

• Spectres mesurés pour plusieurs configurations d'écoulement et plusieurs R_{λ} . Source: Pope, page 235

Domaine énergétique

- A partir de l'expression du spectre il est possible de déterminer la gamme de structures les plus énergétiques
- La conclusion est que la majeure partie de l'énergie (~80%) est contenue dans les échelles de taille l_{EI} = $l_0/6 < l < 6l_0$.

Spectre de dissipation

- On se pose maintenant la question de quelles sont les échelles qui dissipent le plus d'énergie
- On construit pour cela le spectre de dissipation $D(\kappa)$. L'intégrale de $D(\kappa)$ sur toutes les longueurs d'onde est par définition le taux de dissipation ε :

$$\varepsilon = \int_{0}^{\infty} D(\kappa) d\kappa$$

- Compte-tenu de la définition donnée précédemment, on déduit : $D(\kappa) = 2\nu \kappa^2 E(\kappa)$
- Et donc :

$$\varepsilon = \int_{0}^{\infty} D(\kappa) d\kappa = \int_{0}^{\infty} 2\nu \kappa^{2} E(\kappa) d\kappa$$

$$\varepsilon(0,\kappa) = \int_{0}^{\kappa} D(\kappa) d\kappa$$

- La dernière relation représente l'énergie dissipée par les nombres d'onde compris entre 0 and κ.
- D(κ) i(m³/s³) peut être normalisé avec une vitesse au cube, typiquement l'échelle de vitesse de Kolmogorov.
- Le spectre de dissipation normalisé ne dépend que de R_{λ} .

Spectre de dissipation

- La dissipation intégrée montre que la plupart de la dissipation (~90%) a lieu dans les structures de taille $l_{Dl}/\eta = 60 > l/\eta > 8$.
- La dissipation a lieu a des échelles plus grandes que l'echelle de Kolmogorov scale η.
- L'echelle de Kolmogorov est plus une mesure des plus petites échelles de l'écoulement que des échelles dissipatives

Intermittence

- Ni K ni ϵ sont constants en temps ou en espace.
- *K* et ε peuvent varier considérablement en espace, parfois de plusieurs ordres de grandeur.
- A un point donné, ε peut changer en temps
 - →intermittence

Récapitulatif – Nombres de Reynolds

Lors de notre discussion, nous avons introduit les nombres de Reynolds suivants :

• Reynolds macroscopique: Re = UL/v

• Reynolds de turbulence: $\mathrm{Re_L} = k^{1/2} l_0 / \nu = k^2 / \epsilon \nu$

• Reynolds de Taylor: $R_{\lambda} = u'\lambda/\nu$

• Reynolds de Kolmogorov : $\operatorname{Re}_{\eta} = \eta u_{\eta} / \nu = 1$

■ Entre le Reynolds macroscopique et de turbulence il peut y avoir un facteur 10

$$R_{\lambda} = \left(\frac{20}{3} \, \text{Re}_{\text{L}}\right)^{1/2}$$

Récapitulatif – échelles caractéristiques

Echelle intégrale : taille des échelles énergétiques (production)

$$l_0 \propto k^{3/2}/\varepsilon$$

Micro-echelle de Taylor : pic de dissipation

$$\lambda \approx (10vk/\varepsilon)^{1/2}$$

Echelle de Kolmogorov : taille des plus petites structures

$$\eta = (v^3 / \varepsilon)^{1/4}$$

Relation entre les différentes échelles :

$$\lambda/l_0 = \sqrt{10} \, \text{Re}_L^{-1/2}$$
 $\eta/l_0 = \text{Re}_L^{-3/4}$
 $\lambda/\eta = \sqrt{10} \, \text{Re}_L^{1/4}$
 $\lambda = \sqrt{10} \, \eta^{2/3} \, l_0^{1/3}$

Validité de la théorie de Kolmogorov

- Théorie « asymptotique » : valable dans la limite de Re>>1
- Pour des Reynolds intermédiaires (O(10000), Re $_{\lambda}$ ~ 250) l'exposant de E(κ) ~ κ^{-p} peut être plus faible p ~ 1.5 au lieu de 5/3 (~1.67)
- La théorie de Kolmogorov considère une cascade d'énergie uniquement des grandes vers les petites échelles
 - En pratique, des phénomènes de cascade inverse (backscatter) sont observes d'un point de vue expérimental, bien que statistiquement la cascade directe domine largement
 - Rappel : on génère des harmoniques à plus grand nombre d'onde <u>mais aussi</u> à plus petit nombre d'onde (coalescence de structures)
 - Les structures turbulentes sont vue comme complètement aléatoire : en pratique des structures dites "cohérentes" existent
- La théorie de la turbulence est encore un domaine de recherche très actif
 - Approches expérimentales supportées par des simulations numériques massives

Next time...

- TP Turbulence homogène isotrope (Aurélien BIENNER)
- Dans le prochain cours (17 novembre) on s'intéressera à la turbulence cisaillée, d'abord libre, puis avec parois.
- TD turbulence de paroi.

