AMENDMENTS TO THE CLAIMS

Please amend claims 4, 5, 12, and 13, and cancel claims 1-3 and 6-11 without prejudice or disclaimer, as follows.

Listing of Claims

- 1-3. (CANCELED)
- 4. (CURRENTLY AMENDED) The magnification loupe of claim 3, A magnification loupe carried by a user wearable device, comprising:

a housing having a first end with a first aperture for supporting an eyepiece lens, and a second end with a second aperture for supporting an objective lens;

an eyepiece lens disposed in said first end of said housing; and an objective lens disposed in said second end of said housing;

said objective lens having a non-circular shape, wherein at least two oppositely disposed arcuate first peripheral edges are defined by a first radius extending from a first center, and wherein at least two oppositely disposed arcuate second peripheral edges are defined by at least one second radius extending from at least a second center not coincident with said first center, said second radius having a length different from said first radius;

said eyepiece lens comprising a single lens element; said objective lens comprising two lens elements;

2

wherein said eyepiece lens and said objective lens are constructed and arranged according to the following parameters:

Element	Glass	[[h]] <u>ក</u> ្ _d	[[n]] <u>v</u> d	Radius	Thickness	Maximum Diameter	Sep.
1	Schott NSK5	1.589	61.3	$R_{1}=\infty$	2.2	12.0	
				$R_{2}=\infty$			
II	Schott	1.517	64.2	R ₃ =36.49	1.5	12.0	S ₁ =0.6
	NBK7			R ₄ =18.48			
Ш	Schott	1.805	25.4	R ₅ =85.68	1.6	D ₁ =22.24	S ₂ =14.46
	NSF56			R ₆ =39.71		D ₂ =23.60	
IV	Schott	1.517	64.2	R ₇ =39.71	6.65	D ₃ =23.60	
	NBK7			R ₈ =21.55		D ₄ =23.60	

wherein the radius, thickness, and separation dimensions are given in millimeters; Roman numerals identify the lens elements in their respective order from [[the]] <u>an</u> eyepoint side to [[the]] <u>an</u> object side and element I is a representative correction lens; [[h]] \underline{n}_d represents the refractive index of each element; [[n]] \underline{v}_d is the abbe dispersion number; [[R₁, R₂, etc.]] \underline{R}_1 -R₈ represent the radii of [[the]] respective refractive surfaces in order, from the eyepoint side to the object side; [[D₁, and D₂, etc.]] \underline{D}_1 -D₄ represent the maximum clear lens aperture diameters of [[the]] parent lens elements; and S₁, S₂ represent the air space between the elements, measured along an optical centerline.

5. (CURRENTLY AMENDED) The magnification loupe of claim 3, A magnification loupe carried by a user wearable device, comprising:

a housing having a first end with a first aperture for supporting an eyepiece lens, and a second end with a second aperture for supporting an objective lens;

an eyepiece lens disposed in said first end of said housing; and

an objective lens disposed in said second end of said housing;

said objective lens having a non-circular shape, wherein at least two oppositely disposed arcuate first peripheral edges are defined by a first radius extending from a first center, and wherein at least two oppositely disposed arcuate second peripheral edges are defined by at least one second radius extending from at least a second center not coincident with said first center, said second radius having a length different from said first radius;

said eyepiece lens comprising a single lens element;

said objective lens comprising two lens elements;

wherein said eyepiece lens and said objective lens are constructed and arranged according to the following parameters:

Element	Glass	[[h]] <u>η</u> d	[[n]] <u>v</u> d	Radius	Thickness	Maximum	Sep.
						Diameter	
1	Schott	1.589	61.3	R ₁ =98.19	3.0	25.4	
	NSK5			R ₂ =98.19			
П	Schott	1.580	53.9	R ₃ =52.10	1.5	$D_1=13.00$	S ₁ =4.1
	NBALF4			R ₄ =20.16		$D_2=13.25$	
III	O'Hara	1.785	26.3	R ₅ =85.68	1.8	26.15	S ₂ =13.59
	STIH23			R ₆ =43.17			
IV	Schott	1.517	64.2	R ₇ =43.17	7.6	26.15	
	NBK7			R ₈ =22.39			

wherein the radius, thickness, and separation dimensions are given in millimeters; Roman numerals identify the lens elements in their respective order from [[the]] <u>an</u> eyepoint side to [[the]] <u>an</u> object side and element I is a representative lens of the user wearable device; [[h]] \underline{n}_d represents the refractive index of each element; [[n]] \underline{v}_d is the abbe dispersion number; [[R₁, R₂, etc.]] \underline{R}_1 - \underline{R}_8 represent the radii of [[the]] respective refractive surfaces in order, from the eyepoint side to the object side; D₁[[,]] and D₂[[,]]

Application No. 10/602,128 Amendment dated February 10, 2006 Reply to Office Action of November 21, 2005

represent the maximum clear lens aperture diameters of [[the]] parent lens elements; and S_1 , S_2 represent the air space between the elements, measured along an optical centerline.

6-11. (CANCELED)

12. (CURRENTLY AMENDED) A magnification loupe carried by a user wearable device, comprising:

a housing having a first end with a first aperture for supporting an eyepiece lens, and a second end with a second aperture for supporting an objective lens;

a single element eyepiece lens disposed in said first end of said housing; and a two element objective lens disposed in said second end of said housing; said eyepiece lens and said objective lens constructed and arranged according to the following parameters:

Element	Glass	[[h] <u>ղ</u> ႕	[[n]] <u>v</u> d	Radius	Thickness	Maximum Diameter	Sep.
I	Schott NSK5	1.589	61.3	R ₁ = ∞	2.2	12.0	
				$R_2=\infty$			
II	Schott NBK7	1.517	64.2	R ₃ =36.49 R ₄ =18.48	1.5	12.0	S ₁ =0.6
III	Schott NSF56	1.805	25.4	R ₅ =85.68 R ₆ =39.71	1.6	D ₁ =22.24 D ₂ =23.60	S ₂ =14.46
IV	Schott NBK7	1.517	64.2	R ₇ =39.71 R ₈ =21.55	6.65	D ₃ =23.60 D ₄ =23.60	

wherein the radius, thickness, and separation dimensions are given in millimeters;
Roman numerals identify the lens elements in their respective order from [[the]] an

eyepoint side to [[the]] <u>an</u> object side and element I is a representative correction lens; $[[h]]\underline{\eta}_d$ represents the refractive index of each element; $[[n]]\underline{v}_d$ is the abbe dispersion number; $[[R_1, R_2, \text{etc.}]]$ $\underline{R_1}$ - $\underline{R_8}$ represent the radii of [[the]] respective refractive surfaces in order, from the eyepoint side to the object side; $[[D_1 \text{ and } D_2, \text{etc.}]]$ $\underline{D_1}$ - $\underline{D_4}$ represent the maximum clear lens aperture diameters of [the]] parent lens elements; and S_1 , S_2 represent the air space between the elements, measured along an optical centerline.

13. (CURRENTLY AMENDED) A magnification loupe carried by a user wearable device, comprising:

a housing having a first end with a first aperture for supporting an eyepiece lens, and a second end with a second aperture for supporting an objective lens;

a single element eyepiece lens disposed in said first end of said housing; and a two element objective lens disposed in said second end of said housing; said eyepiece lens and said objective lens constructed and arranged according to the following parameters:

Element	Glass	[[h] <u>դ</u> ժ	[[n]] <u>v</u> d	Radius	Thickness	Maximum Diameter	Sep.
1	Schott NSK5	1.589	61.3	R ₁ =98.19 R ₂ =98.19	3.0	25.4	
II	Schott NBALF4	1.580	53.9	R ₃ =52.10 R ₄ =20.16	1.5	D ₁ =13.00 D ₂ =13.25	S ₁ =4.1
III	O'Hara STIH23	1.785	26.3	R ₅ =85.68 R ₆ =43.17	1.8	26.15	S ₂ =13.59
IV	Schott NBK7	1.517	64.2	R ₇ =43.17 R ₈ =22.39	7.6	26.15	

wherein the radius, thickness, and separation dimensions are given in millimeters;
Roman numerals identify the lens elements in their respective order from [[the]] an

Application No. 10/602,128

Amendment dated February 10, 2006

Reply to Office Action of November 21, 2005

eyepoint side to [[the]] an object side; [[h]] \underline{n}_d represents the refractive index of each

element; $[[n]]\underline{v}_d$ is the abbe dispersion number; $[[R_1, R_2, etc.]] \underline{R_1}\underline{-R_8}$ represent the radii

of [[the]] respective refractive surfaces in order, from the eyepoint side to the object side

and element I is a representative lens of the user wearable device; D₁ and D₂[[, etc.]]

represent the maximum clear lens aperture diameters of [[the]] parent lens elements;

and S₁, S₂ represent the air space between the elements, measured along an optical

centerline.

7