EXAMEN

CUESTIONES (1 punto cada una)

- 1^a) ¿Qué dice el Principio de Superposición aplicado a un circuito (Teorema de Superposición) sobre la caída de potencial y la corriente que hay en cada rama del circuito?¿Qué debe cumplirse para que se verifique experimentalmente?¿Y cómo se aplica?
- 2^a) Se tienen dos esferas denominadas 1 y 2, conductoras, de radios R_1 = R y R_2 = 3R, con una carga Q_1 = 3Q y Q_2 = Q, y suficientemente alejadas. Se ponen en contacto con un hilo conductor de capacidad despreciable. ¿Qué carga, campo y potencial eléctricos tienen cuando se alcanza el equilibrio?

PROBLEMAS (2 puntos cada uno)

1°) En los vértices de un cuadrado de lado L = 20 cm, se colocan cuatro cargas puntuales de valor:

$$Q_A = 2 \mu C$$
, $Q_B = -4 \mu C$, $Q_C = -2 \mu C$, $Q_D = 1 \mu C$.

Obtener:

- a) El potencial eléctrico en el centro del cuadrado.
- $K = 9 \cdot 10^9 \text{ N m}^2 \text{ C}^{-2}$
- b) El potencial eléctrico en el centro del lado superior.
- c) El trabajo que se debe realizar para transportar una carga $q = 3 \mu C$ desde el centro del cuadrado al centro del lado superior, indicando quién lo debe realizar.
- 2°) Una barra conductora de longitud L=25 cm, se mueve con velocidad, \mathbf{v} , de 16 m/s, en la dirección y sentido que se indica en la figura. La barra está apoyada sobre una horquilla también conductora, que posee una resistencia, R, de 4 k Ω . El conjunto barrahorquilla está en una región en la que hay aplicado un campo magnético, \mathbf{B} , de 1 T, con la dirección y sentido que se observa en la figura. Determinar:

- a) El valor de la fuerza electromotriz, fem, inducida en la barra.
- b) El valor y sentido de la corriente, I, inducida en el circuito barra-resistencia.
- c) ¿Qué fuerza, **F**, hay que ejercer sobre la barra para mantener constante **v**? Indicar su módulo, dirección y sentido.
- d) Verificar que la potencia mecánica aportada coincide con la eléctrica disipada.

A

 R_1

 R_8

G

 R_6

 R_2

C

 R_3

D

Е

- 3°) En el circuito de la figura, obtener:
- a) La resistencia equivalente, R_{eq} , entre los puntos A y T.
- b) La intensidad y la caída de potencial en cada resistencia, indicando su sentido.
- c) Verificar que tanto la potencia consumida por la R_{eq} como por las resistencias del circuito coinciden con la suministrada por el generador.

T

d) El potencial en A, B, C, D, E, F y G, si T está conectado a tierra (V_T = 0 V).

Datos:
$$\varepsilon = 54 \text{ V}$$
 | $R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = 20 \Omega$ | $R_8 = R_9 = 30 \Omega$

4°) Tras razonar si el diodo emite luz, obtener su punto de trabajo, la caída de potencial y corriente en la resistencia, y verificar que la potencia suministrada coincide con la consumida. Datos: $R = 0.1 \text{ k}\Omega \mid \varepsilon = 5 \text{ V}$.

