```
In [1]: import pandas as pd
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
```

In [2]: df=pd.read_csv(r"C:\Users\sweet\Downloads\ionosphere.csv")
 df

Out[2]:

	column_a	column_b	column_c	column_d	column_e	column_f	column_g	column_h	column_i	column_j	 column_z	column_aa	colur
0	True	False	0.99539	-0.05889	0.85243	0.02306	0.83398	-0.37708	1.00000	0.03760	 -0.51171	0.41078	-0.
1	True	False	1.00000	-0.18829	0.93035	-0.36156	-0.10868	-0.93597	1.00000	-0.04549	 -0.26569	-0.20468	-0.
2	True	False	1.00000	-0.03365	1.00000	0.00485	1.00000	-0.12062	0.88965	0.01198	 -0.40220	0.58984	-0.
3	True	False	1.00000	-0.45161	1.00000	1.00000	0.71216	-1.00000	0.00000	0.00000	 0.90695	0.51613	1.
4	True	False	1.00000	-0.02401	0.94140	0.06531	0.92106	-0.23255	0.77152	-0.16399	 -0.65158	0.13290	-0.
346	True	False	0.83508	0.08298	0.73739	-0.14706	0.84349	-0.05567	0.90441	-0.04622	 -0.04202	0.83479	0.
347	True	False	0.95113	0.00419	0.95183	-0.02723	0.93438	-0.01920	0.94590	0.01606	 0.01361	0.93522	0.
348	True	False	0.94701	-0.00034	0.93207	-0.03227	0.95177	-0.03431	0.95584	0.02446	 0.03193	0.92489	0.
349	True	False	0.90608	-0.01657	0.98122	-0.01989	0.95691	-0.03646	0.85746	0.00110	 -0.02099	0.89147	- 0.
350	True	False	0.84710	0.13533	0.73638	-0.06151	0.87873	0.08260	0.88928	-0.09139	 -0.15114	0.81147	-0.

351 rows × 35 columns

```
In [3]: pd.set_option('display.max_rows',10000000000)
    pd.set_option('display.max_columns',10000000000)
    pd.set_option('display.width',95)
```

```
print('This DataFrame has %d Rows and %d columns'%(df.shape))
 In [4]:
          This DataFrame has 351 Rows and 35 columns
          df.head()
 In [5]:
 Out[5]:
              column_a column_b column_c column_d column_e column_f column_g column_h column_i column_j column_k column_l column_m
           0
                                   0.99539
                                             -0.05889
                                                       0.85243
                                                                 0.02306
                                                                           0.83398
                                                                                    -0.37708
                                                                                              1.00000
                                                                                                       0.03760
                                                                                                                  0.85243
                                                                                                                          -0.17755
                                                                                                                                     0.59755
                   True
                            False
                   True
                                   1.00000
                                             -0.18829
                                                       0.93035
                                                                -0.36156
                                                                           -0.10868
                                                                                    -0.93597
                                                                                              1.00000
                                                                                                       -0.04549
                                                                                                                  0.50874
                                                                                                                          -0.67743
                                                                                                                                     0.34432
                            False
                   True
                            False
                                   1.00000
                                             -0.03365
                                                       1.00000
                                                                 0.00485
                                                                           1.00000
                                                                                    -0.12062
                                                                                              0.88965
                                                                                                        0.01198
                                                                                                                  0.73082
                                                                                                                           0.05346
                                                                                                                                     0.85443
                                             -0.45161
                                                       1.00000
                                                                                    -1.00000
                                                                                              0.00000
                                                                                                       0.00000
           3
                   True
                            False
                                   1.00000
                                                                 1.00000
                                                                           0.71216
                                                                                                                  0.00000
                                                                                                                           0.00000
                                                                                                                                     0.00000
                   True
                                   1.00000
                                             -0.02401
                                                       0.94140
                                                                 0.06531
                                                                           0.92106
                                                                                    -0.23255
                                                                                              0.77152
                                                                                                       -0.16399
                                                                                                                  0.52798
                                                                                                                          -0.20275
                                                                                                                                     0.56409
                            False
          features matrix = df.iloc[:,0:34]
 In [6]:
          target vector = df.iloc[:,-1]
 In [8]: print('The Features Matrix Has %d Rows And %d columnsIn [11]:(s)'%(features_matrix.shape))
          The Features Matrix Has 351 Rows And 34 columnsIn [11]:(s)
In [10]: print('The Target Matrix Has %d Rows And %d Columns(s)'%(np.array(target_vector).reshape(-1,1).shape))
          The Target Matrix Has 351 Rows And 1 Columns(s)
In [11]: | features_matrix_standardized = StandardScaler().fit_transform(features_matrix)
```

```
In [13]: algorithm = LogisticRegression(penalty=None, dual=False, tol=1e-4, C=1.0, fit intercept=True, intercept scaling=1,
         class weight=None, random state=None, solver='lbfgs', max iter=10000,
        multi class='auto',verbose=0, warm start=False, n jobs=None,l1 ratio=None)
In [14]: Logistic Regression Model = algorithm.fit(features matrix standardized,target vector)
In [15]: observation = [[1, 0, 0.99539, -0.05889, 0.85242999999999, 0.02306, 0.83397999999999, -0.37708,1.0,0.0376,
         0.58212, -0.32192, 0.56971, -0.29674, 0.36946, -0.47357, 0.56811, -0.51171, 0.4107800000000003,
         -0.461680000000003, 0.21266, -0.3409, 0.112267, -0.54487, 0.18641, -0.453]]
In [16]: predictions = Logistic Regression Model.predict(observation)
        print('The Model predicted The observation To Belong To Class %s'%(predictions))
         The Model predicted The observation To Belong To Class ['g']
In [17]: print('The Algorithm Was Trained To predict The One Of The Classes: %s'%(algorithm.classes ))
        The Algorithm Was Trained To predict The One Of The Classes: ['b' 'g']
In [19]: print("""The Model Says The Probability Of The observation We Passed belonging To The Class ['b'] is %s"""
        %(algorithm.predict proba(observation)[0][0]))
        print()
        The Model Says The Probability Of The observation We Passed belonging To The Class ['b'] is 2.5317757538667607e-05
In [22]: print("""The Model Says The Probability Of The observation We Passed belonging To The Class ['g'] is %s"""
        %(algorithm.predict proba(observation)[0][1]))
        The Model Says The Probability Of The observation We Passed belonging To The Class ['g'] is 0.9999746822424613
```