

TOÁN RỜI RẠC DISCRETE MATHEMATICS

LÊ THỊ PHƯƠNG DUNG

Thời gian thi cuối kỳ

■ 14 giờ ngày 27/12/2020

Nội dung

- 1. Mệnh đề và vị từ
- 2. Suy luận toán học
- 3. Phép đếm
- 4. Quan hệ
- 5. Đại số Bool
- 6. Lý thuyết chia và đồng dư

Tài liệu tham khảo

- Kenneth Rosen, "Toán học rời rạc", bản dịch của NXB KH&KT, 2000
- Nguyễn Đức Nghĩa, Nguyễn Tô Thành, "Toán rời rạc", NXB ĐHQG Hà Nội, 2009

....

Chương 6: LÝ THUYẾT CHIA

- Phép chia hết và chia có dư
- Uớc chung lớn nhất và bội chung nhỏ nhất
- Số nguyên tố và họp số
- Định lý căn bản của số học
- **■** Phương trình nguyên

Phép chia hết và chia có dư

- Cho hai số nguyên a và $b \neq 0$. Ta nói a chia hết cho b (ký hiệu $a \ni b$) hoặc a là bội của b hoặc b chia hết a hoặc b là ước của b (ký hiệu $b \mid a$), nếu tồn tại số nguyên b sao cho b
- Tính chất của phép chia hết:
 - 1. $b|a \Leftrightarrow \pm b| \pm a$
 - 2. Với $a \neq 0$, $a \mid a \land a \mid 0$
 - 3. Với $a \in \mathbb{Z}$, $\pm 1|a$
 - 4. $a|b \wedge b|a \Leftrightarrow a = \pm b$
 - 5. $a|b \wedge b|c \Rightarrow a|c$
 - 6. $c|a \wedge c|b \Rightarrow c|(ax + by), \forall x, y \in \mathbb{Z}$
 - 7. $a|x \wedge b|y \Rightarrow ab|xy$
- Cho hai số nguyên a và b \neq 0. Khi đó, với cặp số nguyên q, r thỏa mãn a = bq + r và $0 \leq r < |b|$, ta nói a chia cho b dư r

- Tho $a_1, a_2, ..., a_n$ là các số nguyên không đồng thời bằng 0
 - $\blacksquare d \in \mathbb{Z}$ là UC của $a_1, a_2, ..., a_n$ nếu d là ước của $a_i, \forall i = \overline{1, n}$

 - VD: ± 1 , ± 2 , ± 3 , ± 6 là các UC của ± 18 , ± 24 , ± 30 và ± 18 , ± 24 , ± 30 và ± 18 , \pm
- **■** Tính chất: Cho $a, b, c \in \mathbb{Z}$:
 - Giao hoán: (a, b) = (b, a)
 - Kết hợp: (a, b, c) = ((a, b), c) = (a, (b, c))
- lacktriangle Các số a_1, a_2, \dots, a_n là **nguyên tố cùng nhau** nếu chúng có UCLN bằng 1
- ▶ VD: Các số 12, -7, 25 là nguyên tố cùng nhau vì (12, -7, 25) = 1
- Các số $a_1, a_2, ..., a_n$ là **nguyên tố sánh đôi** nếu $(a_i, a_j) = 1, \forall i \neq j$
- ► VD: Các số 12, -7, 25 là nguyên tố sánh đôi vì (12, -7) = (12, 25) = (-7, 25) = 1

- Tính chất của UCLN:
 - Nếu $(a_1, a_2, ..., a_n) = d$ thì $\exists \alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{Z}$: $d = \alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$
 - Nếu $m \in \mathbb{Z}_+$ thì $(ma_1, ma_2, ..., ma_n) = m(a_1, a_2, ..., a_n)$
 - Nếu d $\in \mathbb{Z}_+$ là UC của a_1, a_2, \dots, a_n thì $\left(\frac{a_1}{d}, \frac{a_2}{d}, \dots, \frac{a_n}{d}\right) = \frac{(a_1, a_2, \dots, a_n)}{d}$
 - Giả sử $d \in \mathbb{Z}_+$ là UC của $a_1, a_2, ..., a_n$. Khi đó, $d = (a_1, a_2, ..., a_n)$ khi và chỉ khi $\left(\frac{a_1}{d}, \frac{a_2}{d}, ..., \frac{a_n}{d}\right) = 1$
 - Nếu b $\in \mathbb{Z}_+$ *là wớc của* a thì (a, b) = b, đặc biệt (0, b) = b
 - Nếu c|ab và (a, c) = 1 thì c|b
 - Nếu b|a và c|a và (b, c) = 1 thì bc|a
 - ■Nếu (a, b) = 1 thì (ac, b) = (c, b)
 - Nếu (a, b) = (a, c) = 1 thì (a, bc) = 1

- Giả sử a, b là hai số nguyên dương và q, $r \in \mathbb{Z}$ thỏa a = bq + r, $0 \le r < b$. Khi đó, ta có (a, b) = (b, r)
- Thuật toán Euclide tìm UCLN của hai số nguyên a, b. Vì (a, b) = (|a|, |b|) nên có thể giả sử a, b ∈ \mathbb{Z}_+

$a = bq + r_0$	$0 \le r_0 < b$
$b = r_0 q_0 + r_1$	$0 \le r_1 < r_0$
$\mathbf{r}_0 = \mathbf{r}_1 \mathbf{q}_1 + \mathbf{r}_2$	$0 \le r_2 < r_1$
:	
$r_{n-2} = r_{n-1}q_{n-1} + r_n$	$0 \le r_n < r_{n-1}$
$r_{n-1} = r_n q_n$	

- Ta được: $(a,b) = (b,r_0) = (r_0,r_1) = \cdots = (r_{n-2},r_{n-1}) = (r_{n-1},r_n) = r_n$
- lackbox Để tính UCLN của nhiều số nguyên a_1,a_2,\ldots,a_n ta tính $(a_1,a_2)=d_2,$ $(d_2,a_3)=d_3,\cdots,(d_{n-1},a_n)=d_n.$ Khi đó, ta có $(a_1,a_2,\ldots,a_n)=d_n$

7.0.0.

Ước chung lớn nhất và bội chung nhỏ nhất

VD: Tim (51,45)

■ Ta có (51,45) = (45,6) = (6,3) = 3

VD: Tim (786,285)

Ta có (786,285) = (285,216) = (216,69) = (69,9) = (9,6) = (6,3) = 3

VD: Bằng thuật toán Euclide hãy tìm UCLN d của a = 786, b = 285. Từ đó, tìm hai số u, $v \in \mathbb{Z}$ sao cho au + bv = d

$$786 = 2.285 + 216$$

 $285 = 1.216 + 69$
 $216 = 3.69 + 9$
 $69 = 7.9 + 6$
 $9 = 1.6 + 3$
 $6 = 2.3$
 $3 = 9 - 6$
 $= 9 - (69 - 7.9) = 8.9 - 69$
 $= 8(216 - 3.69) - 69 = 8.216 - 25.69$
 $= 8.216 - 25(285 - 216) = -25.285 + 33.216$
 $= -25.285 + 33(786 - 2.285) = 33.786 - 91.285$

 $V_{\text{ay}}(786, 285) = 3 = 33.786 - 91.285.$

2.T.P.D.

- ► Cho a_1 , a_2 , ..., a_n là các số nguyên khác 0.
 - $-M \in \mathbb{Z}$ là **BC** của a_1 , a_2 , ..., a_n nếu M là bội của a_i , $\forall i = \overline{1, n}$
 - ► $m \in \mathbb{Z}_+$ là **BCNN** của $a_1, a_2, ..., a_n$, ký hiệu $m = [a_1, a_2, ..., a_n]$, nếu m là BC của $a_1, a_2, ..., a_n$ và m là ước của mọi BC của $a_1, a_2, ..., a_n$
 - -VD: 60 là BC của 2, -3, 5 và [2, -3, 5] = 30
- ► Tính chất: Cho $a, b, c \in \mathbb{Z} \setminus \{0\}$:
 - Giao hoán: [a, b] = [b, a]
 - Kết hợp: [a, b, c] = [[a, b], c] = [a, [b, c]]
- lackbox Để tính bội chung nhỏ nhất của nhiều số nguyên a_1,a_2,\ldots,a_n khác không, ta lần lượt tính $[a_1,a_2]=m_2,$ $[m_2,a_3]=m_3,\cdots,[m_{n-1},a_n]=m_n.$ Khi đó ta có $[a_1,a_2,\ldots,a_n]=m_n$

, v

Ước chung lớn nhất và bội chung nhỏ nhất

- ► Tính chất của BCNN:
 - Nếu m $\in \mathbb{Z}_+$ là BC của a_1, a_2, \dots, a_n thì m $= [a_1, a_2, \dots, a_n]$ khi và chỉ khi $\left(\frac{m}{a_1}, \frac{m}{a_2}, \dots, \frac{m}{a_n}\right) = 1$
 - $lackbox{V\'oi}\ k\in\mathbb{Z}_+$, ta có $[ka_1,ka_2,\ldots,ka_n]=k[a_1,a_2,\ldots,a_n]$
 - Nếu d = $(a_1, a_2, ..., a_n)$ thì $\left[\frac{a_1}{d}, \frac{a_2}{d}, ..., \frac{a_n}{d}\right] = \frac{[a_1, a_2, ..., a_n]}{d}$
 - Nếu a_1, a_2, \dots, a_n là số nguyên tố sánh đôi thì $[a_1, a_2, \dots, a_n] = a_1, a_2 \dots a_n$
- Giả sử a, $b \in \mathbb{Z}_+$, khi đó:

$$[a, b] = \frac{ab}{(a, b)}$$

VD: Tính [21, 6]

Ta có (21,6) = (6,3) = 3. Suy ra
$$[21,6] = \frac{21.6}{(21,6)} = \frac{21.6}{3} = 42$$

- Số nguyên p > 1 được gọi là số nguyên tố nếu p chỉ có hai ước dương là 1 và p
- Số nguyên a > 1 được gọi là hợp số nếu a không phải số nguyên tố
- ► VD: Số nguyên tố: 2,3,5,7,11,13; Hợp số: 4,6,8,9,10,12
- Giả sử số nguyên a > 1, khi đó ước dương bé nhất khác 1 của a là một số nguyên tố
- Nếu a là hợp số thì a có ít nhất một ước nguyên tố p thỏa p $\leq \sqrt{a}$
- 🗕 Sàng Erathosthene:
- 1. B1: Liệt kê các số từ 2 đến n trong một bảng
- 2. B2: Tìm các số nguyên tố trong khoảng từ 2 đến \sqrt{n}
- 3. B3: Xóa tất cả các bội thực sự của các số nguyên tố này
- 4. B4: Các số còn lại trong bảng là các số nguyên tố cần tìm.

► VD: Tìm các số nguyên tố không vượt quá 100

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

- lacktriangle Các số nguyên tố trong khoảng từ 2 đến $\sqrt{100}$ là: 2, 3, 5, 7
- Ta xóa các bội thực sự của ít nhất một trong các số nguyên tố trên

- ► VD: Tìm các số nguyên tố không vượt quá 100
- lacktriangle Các số nguyên tố trong khoảng từ 2 đến $\sqrt{100}$ là: 2, 3, 5, 7
- Ta xóa các bội thực sự của ít nhất một trong các số nguyên tố trên
- Các số còn lại là các số nguyên tố cần tìm

	2	3	5	7	
11		13		17	19
		23			29
31				37	
41		43		47	
		53		57	
61				67	
71		73			79
		83			89
				97	

- **Dịnh lý căn bản của số học:** Giả sử a là một số nguyên lớn hơn 1. Khi đó a luôn phân tích được một cách duy nhất thành tích các thừa số nguyên tố
- Giả sử a là số nguyên lớn hơn 1. Khi đó, dạng phân tích a dưới dạng $a=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k}$, trong đó p_1,p_2,\cdots,p_k
- \rightarrow VD: 28 = 2.2.7 = 2².7; 1260 = 2.2.3.3.5.7 = 2².3².5.7

Mệnh đề. Giả sử dạng phân tích tiêu chuẩn của số nguyên a>1 là $a=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$. Khi đó, số nguyên d>0 là ước của a khi và chỉ khi dạng phân tích tiêu chuẩn của d là $d=p_1^{\beta_1}p_2^{\beta_2}...p_k^{\beta_k}$, trong đó $0\leq\beta_i\leq\alpha_i$ với mọi i=1,2,...,k.

Dựa vào mệnh đề này ta có thể tìm ước chung lớn nhất và bội chung nhỏ nhất của hai số nguyên dương a và b. Ta viết dạng phân tích tiêu chuẩn của a và b như sau $a=p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n}$ và $b=p_1^{\beta_1}p_2^{\beta_2}...p_n^{\beta_n}$. Ta có

$$(a,b)=p_1^{\gamma_1}p_2^{\gamma_2}...p_n^{\gamma_n},$$
trong đó $\gamma_i=\min\{\alpha_i,\beta_i\},\ i=1,2,...,n$

$$[a, b] = p_1^{\delta_1} p_2^{\delta_2} ... p_n^{\delta_n}$$
, trong đó $\delta_i = \max\{\alpha_i, \beta_i\} \ i = 1, 2, ..., n$.

Ví dụ. Với a = 1960 và b = 2352, ta có

$$a = 1960 = 2^3.5.7^2 = 2^3.3^0.5^1.7^2$$

$$b = 2352 = 2^4.3.7^2 = 2^4.3^1.5^0.7^2.$$

Vậy ta có

$$(a,b) = 2^3 \cdot 3^0 \cdot 5^0 \cdot 7^2 = 392$$

$$[a, b] = 2^4.3^1.5^1.7^2 = 11760.$$

Phương trình nghiệm nguyên (Diophante)

- ► Phương trình Diophante tuyến tính là phương trình dạng ax+by=c, trong đó a, b, c là các số nguyên, các biến x, y nhận giá trị nguyên
- Cách giải phương trình Diophante tuyến tính ax+by=c
 - **■**Gọi d=(a,b).
 - Nếu d∤c thì pt không có nghiệm nguyên
 - Nếu d|c thì pt có vô số nghiệm nguyên. Nếu x_0 , y_0 là một nghiệm của pt thì mọi nghiệm nguyên của pt có dạng

$$x = x_0 + \frac{b}{d}t$$
, $y = y_0 - \frac{a}{d}t$, $t \in \mathbb{Z}$

- ► VD: Giải pt Diophante tuyến tính 14x+8y=200
 - -d = (14.8) = 2|200. Vậy pt có vô số nghiệm
 - Ta có 14(-100) + 8(200) = 200 nên $x_0 = -100$, $y_0 = 200$ là một nghiệm của pt
 - ▶ Vậy nghiệm tổng quát của pt đã cho là x = -100 + 4t, y = 200 7t, $t \in \mathbb{Z}$