

Instituto Politécnico do Cávado e do Ave Escola Superior de Tecnologia

Informática para a Saúde

Electrónica – Transístores de Junção Bipolar

José Brito

Transístores de Junção Bipolar

- Três terminais: Emissor, Base e Colector
- Em electrónica analógica comporta-se como uma fonte controlada amplificador
- Em electrónica digital comporta-se como um interruptor controlado

Transistores de Junção Bipolar

Zonas de funcionamento

Junção BE	Junção BC	Zona	Aplicação	
<0	<0	Corte	Circuitos Digitais	
>0	>0	Saturação		
>0	<0	Activa Directa	Circuitos analógicos Amplificadores	
<0	>0	Activa Inversa	Circuitos digitais Comutadores analógicos	

Transistores de Junção Bipolar

5

Zonas de funcionamento

- Zona de Corte
 - $-I_{B}=0$ $I_{C}=0$ $I_{E}=0$
- Saturação
 - NPN V_{BE} ≈ 0,7V ; $V_{CE \text{ sat}}$ ≈ 0,3 V
 - $-PNP V_{EB} \approx 0.7V$; $V_{EC sat} \approx 0.3 V$

Transistores de Junção Bipolar

Análise de um amplificador (2 e 3)

- Retirar fontes DC
- Aplicar modelo

Transistores de Junção Bipolar

Emissor Comum

- $-R_i=R_B//r_\pi \approx r_\pi$
- $-R_o=R_C//r_o\approx R_C$
- $$\begin{split} \, A_{v} &= \, r_{\pi} g_{m} (R_{C} / / R_{L} / / r_{o}) / (r_{\pi} + R_{s}) \\ &\approx \beta (R_{C} / / R_{L} / / r_{o}) / (r_{\pi} + R_{s}) \end{split}$$

Transistores de Junção Bipolar

31

Emissor Comum Degenerado

- Resistência de emissor
 - Modelo T

Emissor Comum Degenerado

- $-\,R_i{=}R_B{//}(\beta{+}1)(r_e{+}R_E)$
- $$\begin{split} &- R_o {\approx} R_C \\ &- Av {\approx} {-} (R_C /\!/R_L) / (r_e {+} R_e) \end{split}$$

Transistores de Junção Bipolar

Base Comum

- $-R_{i}$ ≈ r_{e}
- $-R_o \approx R_C$ $-A_v \approx (R_C //R_L) / (r_e + R_s)$

Transistores de Junção Bipolar

Colector Comum – Emitter Follower

- $-R_i=R_B//(\beta+1)[r_e+(R_E//r_o//R_L)]$
- $-R_o=R_E//[r_e+(R_S//R_B)/(\beta+1)]$
- $\begin{array}{l} \, A_v \!\! = \!\! [R_i \! / (R_i \!\! + \!\! R_S)] \, [(R_E \! / \!\! / r_o \! / \!\! / R_L) \! / ((R_E \! / \!\! / r_o \! / \!\! / R_L) \!\! + \!\! r_e)] \\ = \!\! (\beta \!\! + \!\! 1) R_L \!\! / \!\! [(\beta \!\! + \!\! 1) R_L \!\! + \!\! r_\pi \!\! + \!\! R_S] \end{array}$

Transistores de Junção Bipolar

37

Comparação de amplificadores

	Emissor Comum	Emissor Comum Degenerado	Base Comum	Colector Comum
R _i	Médio	Médio Alto	Muito Baixo	Alto
R _o	Alto	Alto	Alto	Baixo
A _v	Médio	Médio (<)	Baixo	≈1
Aplic.	Andar de amplif.	Andar de amplif.	Buffer de corrente	Andar de saída

Transistores de Junção Bipolar

