proposition
$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ generate $SL_2(\mathbf{Z})$.

<u>proof</u> firstly note that $S^2 = -\mathrm{id}$ and $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ for all $n \in \mathbf{Z}$, thus we have

$$\left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \left(\begin{array}{cc} a+nc & b+nd \\ c & d \end{array}\right)$$

$$S\left(\begin{array}{cc}a&b\\c&d\end{array}\right) = \left(\begin{array}{cc}-c&-d\\a&b\end{array}\right)$$

$$ST^n \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) = \left(\begin{array}{cc} -c & -d \\ a+nc & b+nd \end{array} \right)$$

fixing $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbf{Z})$, we'll show that $A \in \langle T, S \rangle$ by induction on |c|.

 $\underline{\text{base}} \text{ if } c = 0 \text{ then } ad = 1 \implies a = d = \pm 1 \implies A = \pm T^{\pm d} \in \langle T, S \rangle.$

step if $c \neq 0$ then we pick n for which |a + nc| < |c|. by the induction hypothesis $ST^nA \in \langle T, S \rangle$ and so $A \in \langle T, S \rangle$.

<u>programming exercise</u> in your favourite language write a function which takes a general $SL_2(\mathbf{Z})$ matrix as input and outputs a string in T^{\pm} , S^{\pm} that equals the input.