Лабораторная работа №5 «Двухтактный усилитель мощности»

Цель работы

Занятие посвящено исследованию основных параметров и режимов работы двухтактных бестрансформаторных усилителей мощности.

Исследование осуществляется моделированием в программе схемотехнического анализа Micro-Cap.

Задачи лабораторной работы

Получить основные параметры и характеристики усилительных каскадов.

Исследовать температурную стабильность усилительных каскадов. Исследовать цепи защиты.

Порядок проведения лабораторной работы

Перед занятием студент должен изучить методические указания по выполнению лабораторной работы.

Задания практического занятия каждый студент выполняют индивидуально в классе ПЭВМ. В поле каждой схемы и на каждом графике должны быть указаны группа и номер варианта.

В ходе выполнения практического задания студент формирует отчет о работе (в программе *MS Word* или любом другом текстовом редакторе). В отчет заносятся результаты выполнения каждого пункта задания (схемы *Micro-Cap*, полученные диаграммы (графики), таблицы, расчеты, ответы на вопросы пунктов задания, выводы и т.п.) Перенос в отчет схем *Micro-Cap* и полученных диаграмм осуществляется либо средствами *Windows*, либо собственными средствами *Micro-Cap* (см. дополнительные материалы к занятию) Примерный образец оформления отчета размещен на кафедральном сайте.

По результатам работы студент оформляет отчет и готовит ответы на контрольные вопросы.

К защите представляется распечатанный отчет. После проверки отчета преподаватель проводит устный или письменный опрос для контроля усвоения основных теоретических и практических знаний по теме занятия (студенты должны знать смысл полученных ими результатов и ответы на контрольные вопросы). По результатам проверки отчета и опроса выставляется оценка за лабораторную работу.

Рабочее задание

1. Простейший двухтактный усилитель мощности

1.1. Собрать или загрузить из файла схему двухтактного усилителя мощности (рис. 1.1). Указать в поле схемы группу и номер варианта (номер в журнале посещаемости).

Рисунок 1.1 – Схема простейшего двухтактного усилителя мощности

Задать в источнике напряжения V1 формирование синусоидального напряжения амплитудой 3В и частотой 1 кГц.

1.2. Запустить анализ *Dynamic DC*. Вывести на схему токи ветвей. Измерить ток покоя выходного каскада Ic_{θ} (ток коллекторов транзисторов при отсутствии входного сигнала). Схему и результаты измерений поместить в отчет.

Пояснить, усилителем какого класса является данный усилитель. Пояснить назначение диодов VD1 и VD2.

1.3. Запустить анализ *Transient*. Вывести на график входное, выходное напряжение (напряжение в точках *In* и Out), а также токи через транзисторы (токи коллекторов). Время расчета — 3 периода входного сигнала. Максимальный шаг расчета 1 мкс.

Указать на графике группу и номер варианта. Занести графики в отчет.

1.4. Запустить анализ *Transient*. Слайдером увеличивать амплитуду входного напряжения до появления заметных искажений выходного напряжения (ограничения синусоидального сигнала)). Определить максимальную амплитуду выходного неискаженного напряжения *Uout_max*, которую можно получить в этом режиме, занести это значение в отчет.

Установить амплитуду входного синусоидального напряжения 6В. Убедиться в наличии существенного ограничения выходного напряжения. Графики и полученную максимальную амплитуду выходного напряжения. Указать на графике группу и номер варианта. Занести графики в отчет.

Объяснить причины возникновения ограничения выходного напряжения.

1.5. Запустить анализ *Transient*. Задать амплитуду источника синусоидального сигнала V1 = 6 В. Убедиться в наличии заметного ограничения выходного напряжения. Зайти во вкладку графиков Amp. Получить график амплитудной характеристики усилителя (зависимости амплитуды выходного напряжения V(Out) от амплитуды входного напряжения V(In)). Указать на графике группу и номер варианта. Занести график в отчет.

Объяснить, почему график амплитудной характеристики при больших амплитудах входного сигнала идет параллельно оси X (амплитуда выходного напряжения перестает расти).

1.6. Запустить анализ *Transient*. Задать амплитуду источника синусоидального сигнала V1 = 0.1 В. Убедиться в отсутствии искажений выходного напряжения. Зайти во вкладку графиков Rin. Получить график входного сопротивления усилителя R_{in} (отношения амплитуды входного напряжения V(In) к амплитуде входного тока).

По полученному графику определить значение входного сопротивления R_{in} (измерение производится в конечной точке расчета, поскольку при построении графика используется отношение действующих, а не амплитудных значений, а действующее значение вычисляется не сразу, а спустя несколько периодов исследуемого напряжения).

Указать на графике группу и номер варианта. Занести график в отчет.

Объяснить, почему получилось столь малое значение входного сопротивления, несмотря на то, что используется схема с общим коллектором.

1.7. Запустить анализ *Transient*. Задать амплитуду источника синусоидального сигнала V1 = 1 В. Измерить точное значение амплитуды выходного напряжения U_{OUT1} с подключённой нагрузкой (использовать все полученные значащие цифры).

Отключить нагрузочный резистор R3 и измерить амплитуду выходного напряжения U_{OUT2} с отключенной нагрузкой.

Вычислить выходное сопротивление транзисторного каскада:

$$R_{OUT} = \frac{\left(U_{OUT2} - U_{OUT1}\right) \cdot R3}{U_{OUT1}}.$$

Полученный результат занести в отчет.

1.8. Подключить нагрузочный резистор. Запустить анализ *AC*. Получить амплитудно-частотные характеристики транзисторного каскада для коэффициента усиления по напряжению и коэффициенту усиления по току. Определить коэффициенты усиления *Ku*, *Ki* в области средних частот, а также полосу пропускания усилителя (нижнюю граничную частоту *fн* и верхнюю гранич-

ную частоту f θ). Указать на графиках группу и номер варианта. Графики занести и граничные частоты занести в отчет.

1.9. Запустить анализ *Transient*. Задать амплитуду источника синусоидального сигнала V1 = 3 В. Вывести на графики выходное напряжение V(Out), токи коллекторов транзисторов VT1 и VT2, а также токи диодов VD1 и VD2. Постепенно уменьшать значение сопротивления нагрузки R3 до 10 Ом и наблюдать за появлением ограничения выходного напряжения. Получить графики токов и напряжений при сопротивлении нагрузки 20 Ом. Указать на графиках группу и номер варианта. Занести график в отчет.

По полученным графикам посмотреть, что происходит с токами диодов на интервалах ограничения выходного напряжения. Объяснить причины ограничения выходного напряжения при малом сопротивлении нагрузки.

1.10. Уменьшить сопротивление резисторов R1 и R2 до 400 Ом. Запустить анализ *Transient*. Вывести на графики выходное напряжение V(Out), токи коллекторов транзисторов VT1 и VT2, а также токи диодов VD1 и VD2. Занести график в отчет.

Объяснить, почему в этом случае ограничения напряжения не наблюдается.

От чего зависит минимальное сопротивление нагрузки, при котором начнется ограничение сигнала?

1.11. Запустить анализ *Transient*. Перейти на вкладку графиков *Rin* и определить значение входного сопротивления R_{in} . Сравнить полученное значение с результатами п. 1.6.

Пояснить, как меняется входное сопротивление усилителя мощности при уменьшении резисторов R1 и R2.

1.12. Запустить анализ *Dynamic DC*. Вывести на схему токи ветвей. Измерить ток через диоды в режиме покоя. Сравнить с результатами п. 1.2. Схему с токами и результаты измерений поместить в отчет.

2. Двухтактный усилитель мощности с источниками тока

2.1. Собрать или загрузить из файла схему двухтактного усилителя мощности с источниками тока (рис. 1.2). Задать амплитуду источника синусоидального сигнала V1 = 3 В. Указать в поле схемы группу и номер варианта (номер в журнале посещаемости).

Рисунок 1.2 – Усилитель мощности с источниками тока

- 2.2. Запустить анализ *Transient*. Вывести на графики выходное напряжение V(Out), токи коллекторов транзисторов VT1 и VT2, а также токи диодов VD1 и VD2. Убедиться в отсутствии ограничения выходного сигнала. Указать на графиках группу и номер варианта. Занести график в отчет.
- 2.3. Запустить анализ *Dynamic DC*. Вывести на схему токи ветвей. Измерить ток через диоды в режиме покоя. Схему с токами и результаты измерений поместить в отчет.

Объяснить, почему даже при существенно меньшем токе покоя через диоды смешения в этой схеме не наступает ограничение выходного сигнала при сопротивлении нагрузки 20 Ом.

2.4. Запустить анализ *Transient*. Перейти на вкладку графиков Rin и определить значение входного сопротивления R_{in} . Измеренное значение занести в отчет.

Сравнить величину входного сопротивления схемы с источниками тока с входным сопротивлением схемы с резисторами (п. 1.11).

Объяснить, почему схема с источниками тока имеет большее входное сопротивление.

3. Усилитель мощности с составными транзисторами

3.1. Собрать или загрузить из файла схему двухтактного усилителя мощности с составными транзисторами (рис. 1.3). Задать амплитуду источника синусоидального сигнала V1 = 3 В. Указать в поле схемы группу и номер варианта (номер в журнале посещаемости).

Рисунок 1.3 – Усилитель мощности с составными транзисторами

3.2. Запустить анализ *Transient*. Вывести на графики выходное напряжение V(Out), токи коллекторов транзисторов VT1 и VT2, а также токи диодов VD1 и VD2. Убедиться в отсутствии ограничения выходного сигнала. Указать на графике группу и номер варианта. Схему и графики занести в отчет.

Перейти на вкладку графиков Rin и определить значение входного сопротивления R_{in} . Измеренное значение занести в отчет.

Сравнить полученное значение с значением входного сопротивления усилителя мощности без составных транзисторов (п. 1.11).

Объяснить причины повышения входного сопротивления в усилителе мощности с составными транзисторами.

Объяснить, зачем нужны резисторы R4 и R5.

Объяснить, почему в схеме с обычными транзисторами используется два диода смещения, а в схеме с составными – четыре?

Какой существенный недостаток имеет рассматриваемая схема?

4. Усилитель мощности с составными транзисторами и повышенной температурной стабильностью

4.1. Собрать или загрузить из файла схему двухтактного усилителя мощности с составными транзисторами (рис. 1.4). Задать амплитуду источника синусоидального сигнала V1 = 3 В. Указать в поле схемы группу и номер варианта (номер в журнале посещаемости).

Рисунок 1.4 – Усилитель мощности с повышенной температурной стабильностью

4.2. Запустить анализ *Transient*. Вывести на графики выходное напряжение V(Out), токи коллекторов транзисторов VT1, VT2, VT3, VT4. Убедиться в отсутствии ограничения выходного сигнала. Указать на графике группу и номер варианта. Схему и графики занести в отчет.

Сравнить график выходного напряжения с графиком выходного напряжения, полученного в п. 1.17. Объяснить причины произошедших изменений

Пояснить, усилителем какого класса является каждый из транзисторов схемы.

Пояснить назначение резисторов R4 и R10.

4.3. Запустить анализ *Transient*. Установить сопротивление резисторов R6 и R7 равными нулю. Вывести на графики выходное напряжение V(Out), токи коллекторов транзисторов VT1, VT2, VT3, VT4. Указать на графиках группу и номер варианта. Графики занести в отчет

Сравнить полученный график выходного напряжения с графиком п. 3.2. Пояснить назначение резисторов R6 и R7.

5. Усилитель мощности с защитой по току

5.1. Собрать или загрузить из файла схему двухтактного усилителя мощности с составными транзисторами и защитой по току (рис. 1.5). Задать амплитуду источника синусоидального сигнала V1 = 10 В. Указать в поле схемы группу и номер варианта (номер в журнале посещаемости).

Рисунок 1.5 – Усилитель мощности с защитой по току

- 5.2. Запустить анализ *Transient*. Вывести на графики выходное напряжение V(Out), токи коллекторов транзисторов выходного каскада VT5, VT6 и токи коллекторов транзисторов защиты по току VT3 и VT4. Убедиться в отсутствии ограничения тока. Указать на графике группу и номер варианта.
- 5.3. Рассчитать сопротивление резисторов R9 и R10, при которых ограничение амплитуды тока выходных транзисторов наступит на уровне 1A.

Установить полученные значения в схему. Убедиться в наличии ограничении тока на нужном уровне. Схему и графики занести в отчет.

Пояснить назначение резисторов R7 и R8.