ASSIGNMENT 3 SIM 5111 (INDIVIDUAL) (DUE ON: 1/12/2018)

- 1. A new 8-bit microcomputer chip has been developed that can be reprogrammed without removal from the microcomputer. It is claimed that a byte of memory can be programmed in less than 14 seconds.
 - a) Set up the appropriate null and alternative hypotheses needed to verify this claim.
 - b) What is the critical value for an \propto = .05 level test based on a sample of size 15?
 - c) These data are obtained on X, the time required to reprogram a byte of memory

11.6	14.7	12.9	13.3	13.2
13.1	14.2	15.1	12.5	15.3
13.3	13.4	13.0	13.8	12.3

Test the null hypothesis. Can H_0 be rejected at the $\propto = .05$ level? Conclude your result based on the critical value in part b).

- d) Approximate the p-value for test statistic.
- e) What happened when $\propto = .01$ is used? Will the conclusion be the same?
- 2. Independent random samples were selected from populations 1 and 2. The sample sizes, means, and variances are as follows

	Population	
	1	2
Sample Size	16	13
Sample Mean	34.6	34.2
Sample Variance	4.8	4.9

- a) Suppose you wish to detect a difference between the population means. State the null and alternative hypothesis for the test
- b) Conduct a hypothesis testing to check the appropriate use of common variance between the two populations. Use $\alpha = .05$
- c) Refer to question (a), conduct a hypothesis testing to detect a difference between the population means. Use $\propto = .05$
- d) Find the approximate p-value for the test then state your conclusion based on the p-value.
- e) Find a 95% confidence interval for the difference in the population means. Does the confidence interval confirm your conclusion in c)
- 3. We did a survey of 7 students who had passed Programming II and then we have asked for their grades in Programming I and Programming II. This is the data:

Note: Assume that Programming II is population 1 and Programming I is population 2

Programming II	Programming I
86	78
92	90
72	66
68	70
86	85
65	53
80	83

We want to test whether there is improvement in the students' grades from Programming I to Programming II.

- a) Which test would you perform in this case?
- b) What is the critical value at the 5% significance level?
- c) Conduct the test statistic and conclude your result based on the critical value in part b).
- d) Approximate the p-value for test statistic.
- 4. A study is conducted to compare the variability in the number of hours that a rechargeable flashlight will operate after its battery has been fully charged. These data are obtained for two different brands of batteries:

	Brand X	Brand Y
Sample Size	25	21
Sample Variance	0.021	0.018

Use these data to test for equality of variances. Can you conclude that the variances are unequal at the α = .05 level?