Linear Transformation

Recall. Let A, B be sets. A well-defined map is a subset $f \subset A \times B$ that satisfies the following conditions:

- (WD1) For each $a \in A$, there exists a $b \in B$ such that $(a, b) \in f$.
- (WD2) If $(a_1, b_1) \in f$ and $(a_2, b_2) \in f$ such that $a_1 = a_2$, then $b_1 = b_2$.

We write $f: A \to B$ to denote that f is a map from A to B. The set A is called the *domain* of f and B is called the *co-domain* of f. In the more familiar notation, we write f(a) = b if $(a, b) \in f$. Thus, we recast the definition above as follows:

- (WD1) For each $a \in A$, there exists a $b \in B$ such that f(a) = b.
- (WD2) If $a_1 = a_2$ then $f(a_1) = f(a_2)$.

Recall. Let $f: A \to B$ be a map. We have "dual" notions to the well-definedness conditions from Definition 0.2.1.

- (1) We call f onto (surjective) if for every $b \in B$, there exists an $a \in A$ such that b = f(a). It is immediate from the definition that f is surjective if and only if f(A) = B.
- (2) We call f 1-1 (injective) if $f(a_1) = f(a_2)$ implies $a_1 = a_2$ for all $a_1, a_2 \in A$.
- (3) We call f bijective if it is both 1-1 and onto. Recall that map is invertible $(f^{-1}: B \to A)$ if and only if f is a bijection.

Definition 1. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a map. We call T a linear transformation if the following conditions are satisfied:

- (1) $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.
- (2) $T(c\mathbf{x}) = cT(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Examples 2.

(1) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$T\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} x+y \\ 1 \end{array}\right).$$

Then T is not a linear transformation since

$$T\left(\left(\begin{array}{c}0\\0\end{array}\right)+\left(\begin{array}{c}2\\5\end{array}\right)\right)=T\left(\begin{array}{c}2\\5\end{array}\right)=\left(\begin{array}{c}2+5\\1\end{array}\right)=\left(\begin{array}{c}7\\1\end{array}\right)$$

while

$$T\left(\begin{array}{c} 0 \\ 0 \end{array}\right) + T\left(\begin{array}{c} 2 \\ 5 \end{array}\right) = \left(\begin{array}{c} 0+0 \\ 1 \end{array}\right) + \left(\begin{array}{c} 2+5 \\ 1 \end{array}\right) = \left(\begin{array}{c} 7 \\ 2 \end{array}\right).$$

Thus property (1) of the definition fails.

(2) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} x+y\\x-y\\z\end{array}\right).$$

Then T is a linear transformation as we verify

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} r \\ s \\ t \end{pmatrix}\right) = T\begin{pmatrix} x+r \\ y+s \\ z+t \end{pmatrix} \text{ (Def of } + \text{ in } \mathbb{R}^3)$$

$$= \begin{pmatrix} (x+r) + (y+s) \\ (x+r) - (y+s) \\ z+t \end{pmatrix} \text{ (Def of } T)$$

$$= \begin{pmatrix} (x+y) + (r+s) \\ (x-y) + (r-s) \\ z+t \end{pmatrix} \text{ (usual algebra in } \mathbb{R})$$

$$= \begin{pmatrix} x+y \\ x-y \\ z \end{pmatrix} + \begin{pmatrix} r+s \\ r-s \\ t \end{pmatrix} \text{ (Def of } T)$$

$$= T\begin{pmatrix} x \\ y \\ z \end{pmatrix} + T\begin{pmatrix} r \\ s \\ t \end{pmatrix} \text{ (Def of } T)$$

and

$$T\left(c\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = T\begin{pmatrix} cx \\ cy \\ cz \end{pmatrix} \text{ (Def of } + \text{ in } \mathbb{R}^3\text{)}$$

$$= \begin{pmatrix} cx + cy \\ cx - cy \\ cz \end{pmatrix} \text{ (Def of } T\text{)}$$

$$= \begin{pmatrix} c(x+y) \\ c(x-y) \\ cz \end{pmatrix} \text{ (Usual algebra in } \mathbb{R}\text{)}$$

$$= c\begin{pmatrix} x+y \\ x-y \\ z \end{pmatrix} \text{ (Def of scalar mult in } \mathbb{R}^3\text{)}$$

$$= cT\begin{pmatrix} x+y \\ x-y \\ z \end{pmatrix} \text{ (Def of } T\text{)}$$

Facts 3. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

- (1) $T(\mathbf{0}) = \mathbf{0}$
- (2) $T(\sum_{i=1}^{n} c_i \mathbf{v}_i) = \sum_{i=1}^{n} c_i T(\mathbf{v}_i)$ for every $n \in \mathbb{Z}^+$.

Proof.

- (1) We have that $T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + (\mathbf{0})$. Adding $-T(\mathbf{0})$ to both sides, we find that $\mathbf{0} = T(\mathbf{0})$.
- (2) We induct on n. Let P(n) be the statement " $T(\sum_{i=1}^{n} c_i \mathbf{v}_i) = \sum_{i=1}^{n} c_i T(\mathbf{v}_i)$ ".

Since $T(\sum_{i=1}^{1} c_i \mathbf{v}_i) = T(c_1 \mathbf{v}_1) = c_1 T(\mathbf{v}_1) = \sum_{i=1}^{1} c_1 T(\mathbf{v}_1)$, we have that P(1) is true. Suppose that $k \geq 1$ and that P(k) is true. We must show that P(k+1) is true. That is, we must show that $T(\sum_{i=1}^{k+1} c_i \mathbf{v}_i) = \sum_{i=1}^{k+1} c_i T(\mathbf{v}_i)$. But

$$T(\sum_{i=1}^{k+1} c_i \mathbf{v}_i)$$

$$= T(c_{k+1} \mathbf{v}_{k+1} + \sum_{i=1}^{k} c_i \mathbf{v}_i) \text{ (Inductive defn of } \sum)$$

$$= c_{k+1} T(\mathbf{v}_{k+1}) + T(\sum_{i=1}^{k} c_i \mathbf{v}_i) \text{ (Since } T \text{ is a linear transformation)}$$

$$= c_{k+1} T(\mathbf{v}_{k+1}) + \sum_{i=1}^{k} c_i T(\mathbf{v}_i) \text{ (Induction assumption)}$$

$$= \sum_{i=1}^{k+1} c_i T(\mathbf{v}_i) \text{ (Inductive defn of } \sum)$$

Definition 4. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

(1) We define the kernel of the map T to be the set

$$\ker T = \{ \mathbf{x} \in \mathbb{R}^n : T(\mathbf{x}) = \mathbf{0} \}.$$

(2) We define the *image* of the map T to be the set

Im
$$T = \{ \mathbf{b} \in \mathbb{R}^m : T(\mathbf{x}) = \mathbf{b} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$$

Theorem 5. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

- (1) $\ker T \leq \mathbb{R}^n$.
- (2) Im $T \leq \mathbb{R}^m$.
- (3) T is 1-1 if and only if $\ker T = \{0\}$.
- (4) T is onto if and only if $\operatorname{Im} T = \mathbb{R}^m$.

Proof.

(1) We must check three properties. (i) Since $T(\mathbf{0}) = \mathbf{0}$ (Facts 3(1)), $\mathbf{0} \in \ker T$. (ii) If $\mathbf{x}, \mathbf{y} \in \ker T$, then $T(\mathbf{x}) = \mathbf{0}$ and $T(\mathbf{y}) = \mathbf{0}$. Adding these equalities, we obtain $T(\mathbf{x}) + T(\mathbf{y}) = \mathbf{0}$. Since T is a linear transformation, $T(\mathbf{x} + \mathbf{y}) = \mathbf{0}$. Therefore, $\mathbf{x} + \mathbf{y} \in \ker T$. (iii) If $\mathbf{x} \in \ker T$ and $c \in \mathbb{R}$, then $T(\mathbf{x}) = \mathbf{0}$. Multiplying both sides of the equality by c, we obtain $cT(\mathbf{x}) = \mathbf{0}$. Since T is a linear transformation, $T(c\mathbf{x}) = \mathbf{0}$. Therefore, $c\mathbf{x} \in \ker T$.

(2) We must check three properties. (i) Since $T(\mathbf{0}) = \mathbf{0}$ (Facts 3(1)), $\mathbf{0} \in \text{Im } T$. (ii) If $\mathbf{b}, \mathbf{c} \in \text{Im } T$, then $T(\mathbf{x}) = \mathbf{b}$ and $T(\mathbf{y}) = \mathbf{c}$ for some $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Adding these equalities, we obtain $T(\mathbf{x}) + T(\mathbf{y}) = \mathbf{b} + \mathbf{c}$. Since T is a linear transformation, $T(\mathbf{x} + \mathbf{y}) = \mathbf{b} + \mathbf{c}$. Therefore, $\mathbf{b} + \mathbf{c} \in \text{Im } T$ since $\mathbf{x} + \mathbf{y} \in \mathbb{R}^n$. (iii) If $\mathbf{b} \in \text{Im } T$ and $c \in \mathbb{R}$, then $T(\mathbf{x}) = \mathbf{b}$ for some $\mathbf{x} \in \mathbb{R}^n$. multiplying both sides of the equality by c, we obtain $cT(\mathbf{x}) = c\mathbf{b}$. Since T is a linear transformation, $T(c\mathbf{x}) = c\mathbf{b}$. Therefore, $c\mathbf{b} \in \text{Im } T$ since $c\mathbf{x} \in \mathbb{R}^n$.

(3) (\Rightarrow) Suppose that $\mathbf{x} \in \ker T$. Then $T(\mathbf{x}) = \mathbf{0}$, and Facts 3(1) says $T(\mathbf{0}) = \mathbf{0}$. It follows that $T(\mathbf{x}) = T(\mathbf{0})$. Since T is 1-1, $\mathbf{x} = \mathbf{0}$. Therefore, $\ker T \subseteq \{\mathbf{0}\}$ and so $T = \{\mathbf{0}\}$.

(\Leftarrow) Suppose that $T(\mathbf{x}) = T(\mathbf{y})$. We must show that $\mathbf{x} = \mathbf{y}$. Now, $T(\mathbf{x}) = T(\mathbf{y})$ implies $T(\mathbf{x}) - T(\mathbf{y}) = \mathbf{0}$. Since T is a linear transformation, $T(\mathbf{x} - \mathbf{y}) = \mathbf{0}$. It follows that $\mathbf{x} - \mathbf{y} \in \ker T$ and the hypothesis says $\mathbf{x} - \mathbf{y} = \mathbf{0}$. Therefore, $\mathbf{x} = \mathbf{y}$ as needed.

(4) Follows almost immediately from the definition.

Theorem 6. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. There exists a matrix $A \in \mathcal{M}_{m \times n}$ such that $T(\mathbf{x}) = A\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$.

Proof. Let

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, ..., \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

be the standard basis in \mathbb{R}^n . Since $T(\mathbf{e}_i) \in \mathbb{R}^m$, we can write

$$T(\mathbf{e}_1) = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, T(\mathbf{e}_2) = \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, T(\mathbf{e}_n) = \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Set

$$A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ \cdots \ T(\mathbf{e}_n)].$$

Then

$$T(\mathbf{x}) = T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = T(\sum_{j=1}^n x_j \mathbf{e}_j) = \sum_{j=1}^n x_j T(\mathbf{e}_j) = \sum_{j=1}^n x_j \mathbf{c}_j(A) = A\mathbf{x}.$$

Definition 7. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The matrix $A_T = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{bmatrix} \in \mathcal{M}_{m \times n}$ is called the standard matrix of the transformation T.

Theorem 8. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A_T be the standard matrix for T.

- (1) T is 1-1 if and only if $Null(A_T) = \{0\}$.
- (2) T is onto if and only if $Col(A_T) = \mathbb{R}^m$.

Proof. One easily checks that $Null(A_T) = \ker T$ and $Col(A_T) = \operatorname{Im} T$.

Example 9. We find A_T for the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} x+y\\x-y\\z\end{array}\right).$$

We have

$$T\begin{pmatrix} 1\\0\\0\end{pmatrix} = \begin{pmatrix} 1\\1\\0\end{pmatrix}, T\begin{pmatrix} 0\\1\\0\end{pmatrix} = \begin{pmatrix} 1\\-1\\0\end{pmatrix}, T\begin{pmatrix} 0\\0\\1\end{pmatrix} = \begin{pmatrix} 0\\0\\1\end{pmatrix}$$

and so

$$A_T = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

Since

$$rref(A_T) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

it follows that

$$\operatorname{Null}(A_T) = \{\mathbf{0}\} \text{ and } \operatorname{Col}(A_T) = \mathbb{R}^3.$$

Theorem 10. Let $T: \mathbb{R}^n \to \mathbb{R}^p$ and $S: \mathbb{R}^p \to \mathbb{R}^m$ be linear transformations. Then $(S \circ T): \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Moreover, $A_{S \circ T} = A_S A_T$. **Proof.** For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$, we have

$$(S \circ T)(\mathbf{x} + \mathbf{y})$$

$$= S(T(\mathbf{x} + \mathbf{y})) \text{ (Def of } \circ \text{)}$$

$$= S(T(\mathbf{x}) + T(\mathbf{y})) \text{ (} T \text{ is LT)}$$

$$= S(T(\mathbf{x})) + S(T(\mathbf{y})) \text{ (} S \text{ is LT)}$$

$$= (S \circ T)(\mathbf{x}) + (S \circ T)(\mathbf{y}) \text{ (Def of } \circ \text{)}$$

and

$$(S \circ T)(c\mathbf{x})$$
= $S(T(c\mathbf{x}))$ (Def of \circ)
= $S(cT(\mathbf{x}))$ (T is LT)
= $cS(T(\mathbf{x}))$ (S is LT)
= $c(S \circ T)(\mathbf{x})$ (Def of \circ).

For the second part, choose any $\mathbf{x} \in \mathbb{R}^n$. We have

$$(S \circ T)(\mathbf{x}) = S(T(\mathbf{x}))$$
 (Def of \circ)
 $A_{S \circ T} \mathbf{x} = S(T(\mathbf{x}))$ (Theorem 6 on Left)
 $A_{S \circ T} \mathbf{x} = A_S T(\mathbf{x})$ (Theorem 6 on Right)
 $A_{S \circ T} \mathbf{x} = A_S (A_T \mathbf{x})$ (Theorem 6 on Right)
 $A_{S \circ T} \mathbf{x} = (A_S A_T) \mathbf{x}$ (Associativity)
 $A_{S \circ T} = A_S A_T$ (An old HW exercise)

Theorem 11. If $T: \mathbb{R}^n \to \mathbb{R}^n$ be a bijective a linear transformation, then $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation. Moreover, $A_{T^{-1}} = A_T^{-1}$.

Proof. Exercise.

Linear Transformations

1. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by

$$T\left(\begin{array}{c} x\\y\\z\end{array}\right) = \left(\begin{array}{c} x-2y\\2x+y\end{array}\right).$$

- (a) Find A_T .
- (b) Is T 1-1? If not, does there exist a 1-1 map $P: \mathbb{R}^3 \to \mathbb{R}^2$? Justify.
- (c) Is T onto? Justify.
- (d) Find $\dim(\ker T)$ and $\dim(\operatorname{Im} T)$.
- 2. Let $S: \mathbb{R}^2 \to \mathbb{R}^4$ be given by

$$S\left(\begin{array}{c} x\\y\end{array}\right) = \left(\begin{array}{c} 3x\\y-2x\\2x\\x+2y\end{array}\right).$$

Find a formula for $(S \circ T) : \mathbb{R}^3 \to \mathbb{R}^4$.

- 3. Prove Theorem 11: If $T: \mathbb{R}^n \to \mathbb{R}^n$ be a bijective a linear transformation, then $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation. Moreover, $A_{T^{-1}} = A_T^{-1}$.
- 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 3y + z \\ 3x + 3y + z \\ 2x + 4y + z \end{pmatrix}.$$

Prove that T is an invertible map (1-1 and onto) and find a fromula for T^{-1} : $\mathbb{R}^3 \to \mathbb{R}^3$.

- 5. Construct a linear transformation $\rho: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates every vector through an angle of $\theta = \frac{\pi}{2}$. Find the standard matrix A_{ρ} of the transformation and verify that ρ really does rotate the plane through $\theta = \frac{\pi}{2}$.
- 6. Let $B = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ be a *basis* of \mathbb{R}^n . Let $\{\mathbf{w}_1, ..., \mathbf{w}_n\}$ be a *list* of n vectors in \mathbb{R}^m . Prove the following statements
- (a) There exists a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $T(\mathbf{v}_i) = \mathbf{w}_i$ for each index $i \leq n$.
- (b) If $S: \mathbb{R}^n \to \mathbb{R}^m$ is another linear transformation such that $S(\mathbf{v}_i) = \mathbf{w}_i$ for each index $i \leq n$, then S = T.

7

(c) T is onto if and only if $\{\mathbf{w}_1, ..., \mathbf{w}_n\}$ spans \mathbb{R}^m .

- (d) T is one-to-one if and only if $\{\mathbf w_1,...,\mathbf w_n\}$ is a linearly independent subset of $\mathbb R^m$.
- (e) T is a bijection if and only if $\{\mathbf w_1,...,\mathbf w_n\}$ is a basis of $\mathbb R^m.$
- 7. Let $T:\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Prove the following statements.
- (a) $\dim(\operatorname{Im} T) \leq n$.
- (b) $n = \dim(\ker T) + \dim(\operatorname{Im} T)$.
- (c) If T is 1-1, then $n \leq m$.
- (d) If T is onto, then $m \leq n$.
- (e) If n = m, then T is onto if and only if T is a bijection if and only if T is 1-1.