TI DSP, MCU 및 Xilinx Zynq FPGA 프로그래밍 전문가 과정

강사 – Innova Lee(이상훈) gcccompil3r@gmail.com

Kalman Filter

Introduction Kalman Filter

우선 Kalman Filter 가 어디에 사용되는지 부터 알아보도록 하자 ~ 수업 시간에 학습하였던 Low Pass Filter 라든지 IIR Filter 라든지 와 마찬가지로 복잡한 수식이 들어가지만 왜 사용하는지를 알면 좀 더 공부할 명분과 의욕이 생길 것이다.

BOATS

- * (1) 7M RHIB
- * (1)11M RHIB

AVIATION

* (2) MH-60R

- . STEEL BIRUCTURE
 - * COMPOSITE DECKHOUSE / HANDAR

INTEGRATED POWER SYSTEM (IPS)

- * (2) MAIN TURBINE GENERATORS (MTG)
- . (2) AUXILIARY TURBINE GENERATORS (ATG)
- . (2) MW ADVANCED INDUCTION MOTORS (AIM)
- . INTEGRATED FIGHT THROUGH POWER

WEAPONS

- . MK-57 (BD CELLS TOTAL)
- * (2) ADVANCED GUN SYBTEMS (AGS)
 - * (600) 155 MM ROUNDS
- * (2) MK-46 GUN SYSTEM

HULL

. WAVE-PIERCING TUMBLEHOME

GLASS SHIP DOS 1000 REVK - DAVID HEATH 101315

Kalman Filter

어떤 물체의 위치와 속도를 알고 있다고 가정한다. 이를 기반으로 다음 상황을 예측하고 추론하는 모델이다. 우선 아래와 같이 position(위치)와 velocity(속도)를 표현할 수 있는 state 를 정의한다.

$$\vec{x} = \begin{bmatrix} p \\ v \end{bmatrix}$$

아래와 같이 hat 을 가진 녀석은 추정치에 해당한다.

$$\widehat{x}_k = \begin{bmatrix} position \\ veleocity \end{bmatrix}$$

$$P_k = \begin{bmatrix} Cov(p,p) & Cov(p,v) \\ Cov(v,p) & Cov(v,v) \end{bmatrix}$$

만약 위치와 속도외에 다른 항이 더 추가되었다면 공분산 행렬의 차원 확장이 이루어진다. 여기서 생각해볼 것은 샘플 타임 이후의 예측치를 고려해볼 필요가 있다. 빨간 표식의 식에 의거하여 생각해보자.

$$p_k = p_{k-1} + v_{k-1} \Delta t$$
$$v_k = v_{k-1}$$

$$S = S_0 + v_0 t + \frac{1}{2} a t^2$$

$$p_k = p_{k-1} + v_{k-1} \Delta t$$
$$v_k = v_{k-1}$$

위의 식을 새롭게 고쳐보면 아래와 같이 고칠 수 있다.

$$\widehat{x}_{k}^{-} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \widehat{x}_{k-1} = F_{k} \widehat{x}_{k-1}$$

이것은 예측 행렬에 해당한다.

다음으로 위 작업이 공분산에 미칠 영향을 파악해야 한다.

우선 이것은 아래와 같이 분석된다.

$$P_k^- = F_k P_{k-1} F_k^T$$

이 부분의 내용을 파악하기 위해 이제부터 고유벡터와 행렬의 대각화에 대해 알아보도록 한다.

Eigen Vector

시간에 따라 변화하는 비연속적인 동적 프로세스를 연구하는데 행렬은 매우 큰 도움이 된다. 우선 간단한 예를 가지고 칼만 필터 해석에 필요한 준비를 시작해보자.

이자가 붙는 2 개의 은행 계좌에 돈을 예치한다고 가정한다. 첫 번째 계좌는 연간 5%, 두 번째 계좌는 연간 3% 의 이자를 준다. 임의의 t 년이 경과한 후에 남아 있는 잔고는 아래와 같이 표기할 수 있다.

$$x^{(t)} = \begin{bmatrix} first \ bank \ account \ balance \\ second \ bank \ account \ balance \end{bmatrix}$$

매년 증가하는 계좌의 잔고는 행렬을 이용한 식을 사용하여 아래와 같이 나타낼 수 있다.

$$x^{(t+1)} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} x^{(t)}$$

좀 더 구체적인 숫자값을 넣어보자면 아래와 같다.

$$x^{(t+1)} = \begin{bmatrix} 1.05 & 0 \\ 0 & 1.03 \end{bmatrix} x^{(t)}$$

현재 앞에 계수로 붙은 행렬은 대각 행렬이며 간단하게 100 년 후를 생각해보면 연산이 단순화 되어 각 숫자 항목의 100 승이 된다.

$$1.05^{100} = 131.501258$$

$$1.03^{100} = 19.218632$$

Fibonacci Number

피보나치 수는 토끼의 개체 수 증가에 대한 문제를 나타내는데서 유래되었다. 문제를 단순화 하기 위해 토끼의 성별은 무시하고 아래 조건을 만족한다 가정한다.

- 1. 매월 각 성인 토끼는 한 마리의 토끼를 낳는다.
- 2. 아기 토끼는 성인이 되는데 한 달이 걸린다.
- 3. 토끼는 죽지 않는다.

우선 우리가 알고 있는 피보나치 수는 아래와 같다.

$$\boldsymbol{F}_{k+2} = \boldsymbol{F}_{k+1} + \boldsymbol{F}_k$$

앞서 살펴본 예와 같이 현재 개체수를 행렬로 표기한다.

$$x = \begin{bmatrix} adult \\ baby \end{bmatrix}$$

앞의 예와 같이 t + 1 개월 후의 수는 아래와 같이 표기할 수 있다.

$$x^{(t+1)} = Ax^{(t)}$$

A 행렬을 어떻게 줄지를 고민해보도록 한다.

먼저 행렬 A 를 아래와 같이 생각해보자.

$$\begin{bmatrix} adult_{t+1} \\ baby_{t+1} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} adult_t \\ baby_t \end{bmatrix}$$

각 단계에 대한 그림을 그려보자!

t+1 개월 후 성인 토끼 수는 t 개월 후의 토끼 수와 아기 토끼 수를 더하면 된다. 토끼는 죽지 않고 아기 토끼는 1 개월 후 성인 토끼가 된다. 또한 t+1 개월 후 아기 토끼 수는 t 개월 후의 성인 토끼 수와 같다. 모든 성인 토끼는 매월 1 마리의 새끼를 낳고 아기 토끼는 새끼를 낳지 않는다. 그러므로 A 행렬을 아래와 같이 선정할 수 있다.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

이제 아래와 같이 고유값을 찾는 작업을 수행해보도록 한다.

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} \Rightarrow det(A - \lambda I) = (1 - \lambda)(-\lambda) - 1 = \lambda^2 - \lambda - 1$$

여기서 행렬의 판별식을 0 을 만드는 고유값은 아래와 같다.

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 - 4(1)(-1)}}{2} = \frac{1 \pm \sqrt{5}}{2}$$

여기서 판별식이 0 이라는 것은 부정 혹은 불능을 의미한다. 그러나 고유벡터가 존재하므로 부정(해가 무수히 많음)에 해당한다.

기하학적인 의미로 고유 값은 방향은 같고 각 요소가 스케일링 되는 척도를 나타내게 된다. 그리고 고유 벡터는 이 고유값이라는 스케일링 팩터가 적용된 방향이 변하지 않는 벡터를 의미하게 된다.

아무튼 이어서 행렬의 대각화를 수행해보도록 한다. 앞서 구한 고유 값을 기반으로 고유 벡터를 구하면 아래와 같다.

$$\begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 - \frac{1 + \sqrt{5}}{2} & 1 \\ 1 & -\frac{1 + \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 - (1 + \sqrt{5}) & 2 \\ 2 & -(1 + \sqrt{5}) \end{bmatrix} \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} 1 - \sqrt{5} & 2 \\ 2 & -(1 + \sqrt{5}) \end{bmatrix} \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2(1 - \sqrt{5})x_1 + 4x_2 = 0 \\ 4x_1 - 2(1 + \sqrt{5})x_2 = 0 \end{bmatrix} \Rightarrow 4x_1 = 2(1 + \sqrt{5})x_2 \Rightarrow 2x_1 = (1 + \sqrt{5})x_2$$

$$\therefore x_1 = \frac{(1 + \sqrt{5})}{2}x_2$$

그러므로 고유벡터는 아래와 같이 구할 수 있다.

$$(x_1, x_2) = (1 + \sqrt{5}, 2), \qquad \lambda = \frac{1 + \sqrt{5}}{2}$$

$$\begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 - \frac{1 - \sqrt{5}}{2} & 1 \\ 1 & -\frac{1 - \sqrt{5}}{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 - (1 - \sqrt{5}) & 2 \\ 2 & -(1 - \sqrt{5}) \end{bmatrix} \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{5} & 2 \\ 2 & -1 + \sqrt{5} \end{bmatrix} \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2(1 + \sqrt{5})x_1 + 4x_2 = 0 \\ 4x_1 - 2(1 - \sqrt{5})x_2 = 0 \end{bmatrix} \Rightarrow 4x_1 = 2(1 - \sqrt{5})x_2 \Rightarrow 2x_1 = (1 - \sqrt{5})x_2$$

$$\therefore x_1 = \frac{(1 - \sqrt{5})}{2}x_2$$

그러므로 앞서 구한 고유벡터를 모두 적어보자면 아래와 같이 적을 수 있다.

$$(x_1, x_2) = (1 + \sqrt{5}, 2), \qquad \lambda = \frac{1 + \sqrt{5}}{2}$$
 $(x_1, x_2) = (1 - \sqrt{5}, 2), \qquad \lambda = \frac{1 - \sqrt{5}}{2}$

이 시점에서 잠시 아래를 생각해보자!

$$AB = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

$$AB = \begin{bmatrix} AX_1 & AX_2 \end{bmatrix}$$

실제로 이것은 아래와 같이 연산이 가능하다.

$$AB = \begin{bmatrix} 4 & 1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & 7 \\ -1 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 11 & 4 & 34 \\ -17 & 8 & -23 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 1 \end{bmatrix} \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 11 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 11 \\ -17 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 1 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 7 \\ 6 \end{bmatrix} = \begin{bmatrix} 34 \\ -23 \end{bmatrix}$$

이 시점에서 행렬의 대각화에 대해 논해보자면 아래와 같이 정리할 수 있다!

$$P^{-1}AP=D$$

여기서 D는 대각 행렬에 해당한다.

위의 조건을 만족하는 정칙 행렬 P 가 있다면 A 를 대각화 가능하다고 표현한다.

이제 이 상태에서 앞서 작업해서 도출된 결론을 가져와본다.

$$(x_1, x_2) = (1 + \sqrt{5}, 2), \qquad \lambda = \frac{1 + \sqrt{5}}{2}$$
 $(x_1, x_2) = (1 - \sqrt{5}, 2), \qquad \lambda = \frac{1 - \sqrt{5}}{2}$

$$P = \begin{bmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} \\ 2 & 2 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \qquad P^{-1} = \frac{1}{4\sqrt{5}} \begin{bmatrix} 2 & -1 + \sqrt{5} \\ -2 & 1 + \sqrt{5} \end{bmatrix} = \frac{\sqrt{5}}{20} \begin{bmatrix} 2 & -1 + \sqrt{5} \\ -2 & 1 + \sqrt{5} \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 2\sqrt{5} & 5 - \sqrt{5} \\ -2\sqrt{5} & 5 + \sqrt{5} \end{bmatrix}$$

$$PA = \begin{bmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 + \sqrt{5} \\ 4 & 2 \end{bmatrix}$$

이와 같이 하면 연산 순서가 안맞기 때문에 결과가 잘못 된다. 반드시 순서를 지켜서 역행렬을 먼저 연산하도록 한다.

$$P^{-1}AP = D$$

$$P = \begin{bmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} \\ 2 & 2 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad P^{-1} = \frac{1}{4\sqrt{5}} \begin{bmatrix} 2 & -1 + \sqrt{5} \\ -2 & 1 + \sqrt{5} \end{bmatrix} = \frac{\sqrt{5}}{20} \begin{bmatrix} 2 & -1 + \sqrt{5} \\ -2 & 1 + \sqrt{5} \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 2\sqrt{5} & 5 - \sqrt{5} \\ -2\sqrt{5} & 5 + \sqrt{5} \end{bmatrix}$$

$$P^{-1}A = \frac{1}{20} \begin{bmatrix} 2\sqrt{5} & 5 - \sqrt{5} \\ -2\sqrt{5} & 5 + \sqrt{5} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} 2\sqrt{5} + 5 - \sqrt{5} & 2\sqrt{5} \\ -2\sqrt{5} + 5 + \sqrt{5} & -2\sqrt{5} \end{bmatrix} = \frac{1}{20} \begin{bmatrix} \sqrt{5} + 5 & 2\sqrt{5} \\ -\sqrt{5} + 5 & -2\sqrt{5} \end{bmatrix}$$

$$P^{-1}AP = \frac{1}{20} \begin{bmatrix} \sqrt{5} + 5 & 2\sqrt{5} \\ -\sqrt{5} + 5 & -2\sqrt{5} \end{bmatrix} \begin{bmatrix} 1 + \sqrt{5} & 1 - \sqrt{5} \\ 2 & 2 \end{bmatrix} = \frac{1}{20} \begin{bmatrix} \sqrt{5} + 5 + 5 + 5\sqrt{5} + 4\sqrt{5} & \sqrt{5} - 5 + 5 - 5\sqrt{5} + 4\sqrt{5} \\ -\sqrt{5} - 5 + 5 - 5\sqrt{5} - 4\sqrt{5} \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0\\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix}$$

$$\therefore D = \begin{bmatrix} \frac{1+\sqrt{5}}{2} & 0 \\ 0 & \frac{1-\sqrt{5}}{2} \end{bmatrix}$$

연산을 마저 마무리 하기위해 10 개월 후의 토끼 수를 생각해보자.

$$x^{(t+1)} = A^{10}x^{(t)}$$

대각 행렬을 적어보자.

$$P^{-1}AP = D \Rightarrow PP^{-1}AP = PD \Rightarrow PP^{-1}APP^{-1} = PDP^{-1} = A$$
A 의 10 승을 적어보자.

$$A^{10} = PDP^{-1}PDP^{-1}PDP^{-1} \dots PDP^{-1} = PD^{10}P^{-1}$$

결국 추이는 D 의 10 승을 따라간다. 이 결과가 잘 따라간 것이 맞는지 여부를 판별하기 위해 피보나치 수열의 항들을 기입해보도록 하자!

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

$$\begin{bmatrix} 89 \\ 55 \end{bmatrix} = \begin{bmatrix} 89 & 55 \\ 55 & 34 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Input:

$$\begin{pmatrix} 1+\sqrt{5} & 1-\sqrt{5} \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} \left(1+\sqrt{5}\right) & 0 \\ 0 & \frac{1}{2} \left(1-\sqrt{5}\right) \end{pmatrix}^{10} \cdot \begin{pmatrix} \frac{1}{20} \left(2\sqrt{5}\right) & \frac{1}{20} \left(5-\sqrt{5}\right) \\ -\frac{1}{20} \left(2\sqrt{5}\right) & \frac{1}{20} \left(5+\sqrt{5}\right) \end{pmatrix}$$

Open cor

Result:

$$\left(-\frac{\left(1 - \sqrt{5}\right)^{11}}{2048\sqrt{5}} + \frac{\left(1 + \sqrt{5}\right)^{11}}{2048\sqrt{5}} \right. \left. \frac{\left(5 - \sqrt{5}\right)\left(1 + \sqrt{5}\right)^{11}}{20480} + \frac{\left(1 - \sqrt{5}\right)^{11}\left(5 + \sqrt{5}\right)}{20480} \right. \\ \left. -\frac{\left(1 - \sqrt{5}\right)^{10}}{1024\sqrt{5}} + \frac{\left(1 + \sqrt{5}\right)^{10}}{1024\sqrt{5}} \right. \left. \frac{\left(5 - \sqrt{5}\right)\left(1 + \sqrt{5}\right)^{10}}{10240} + \frac{\left(1 - \sqrt{5}\right)^{10}\left(5 + \sqrt{5}\right)}{10240} \right. \right)$$

Alternate forms:

✓ Step-by-step sol

$$\begin{pmatrix} 1+\sqrt{5} & 1-\sqrt{5} \\ 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} \left(1+\sqrt{5}\right) & 0 \\ 0 & \frac{1}{2} \left(1-\sqrt{5}\right) \end{pmatrix}^{10} \cdot \begin{pmatrix} \frac{\sqrt{5}}{10} & \frac{1}{20} \left(5-\sqrt{5}\right) \\ -\frac{\sqrt{5}}{10} & \frac{1}{20} \left(5+\sqrt{5}\right) \end{pmatrix}$$

Symmetric Matrix

앞서와 같이 대각화가 된다는 가정하에 아래와 같이 전치를 시켜도 그 결과가 같은 것을 대칭 행렬이라고한다.

$$A^{T} = A$$

$$\begin{bmatrix} 7 & 1 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & 10 \end{bmatrix} = \begin{bmatrix} 7 & 1 & 2 \\ 1 & 3 & 4 \\ 2 & 4 & 10 \end{bmatrix}$$

대각 행렬의 경우와 유사하게 아래와 같은 구조를 만족시킨다.

$$A = PDP^{-1} = PDP^{T}$$

$$A^{T} = (PDP^{T})^{T} = (P^{T})^{T}(D)^{T}(P)^{T} = PDP^{T}$$

공분산 행렬은 이미 대각 원소를 중심으로 대칭인 대칭 행렬에 해당한다! 공분산 행렬의 스케일링은 위와 같은 형태를 띄고 있다. 이제 다시 본론으로 돌아가서 Kalman Filter 를 설계해보도록 한다.

$$p_k = p_{k-1} + v_{k-1}\Delta t + \frac{1}{2}a(\Delta t)^2$$

$$v_k = v_{k-1} + a\Delta t$$

$$S = S_0 + v_0 t + \frac{1}{2} a t^2$$

이것을 다시 행렬 형태로 적어보도록 하자!

$$\widehat{x}_{k}^{-} = F_{k}\widehat{x}_{k-1} + \left[\frac{(\Delta t)^{2}}{2}\right] a = F_{k}\widehat{x}_{k-1} + B_{k}u_{k}$$

위치와 속도를 추정하다보면 다양한 마찰력이나 공기 저항, 바람등의 영향이 존재할 수 있다. 이와 같은 불확실성을 모델링 해야하는데 이것을 오차 범위를 넓힐 수 있도록 공분산에 적용하도록 한다. 그래서 이와 같은 절차를 거쳐서 최종 산출되는 식은 아래와 같다.

$$\widehat{x}_k^- = F_k \widehat{x}_{k-1} + B_k u_k$$

$$P_k^- = F_k P_{k-1} F_k^T + Q_k$$

이와 같이 예측 모델을 완성할 수 있다.

이제 다음은 예측이 아니라 측정 자체에서 센서가 만들어내는 문제를 추가적으로 고려해줘야 한다. 우선 센서가 만들어내는 데이터의 단위와 척도가 우리가 사용하고자 하는 것과 맞지 않을 수 있다. 우선 아래 행렬을 통해서 센서의 데이터를 모델링한다.

H_k

이 행렬은 앞서 사용한 F_k 와 같이 모델링에 사용되는 행렬이다. 그리고 공분산이 유지될 수 있도록 앞선 케이스와 같이 대칭 행렬 형태로 곱을 해준다. 결국 센서가 읽는 정보에 대해 아래와 같은 식을 세울 수 있다.

$$\mu_{expected} = H_k \widehat{x}_k$$

$$Cov_{expected} = H_k P_k H_k^T$$

칼만 필터의 좋은 점은 센서의 잡음을 다룬다는 것이다. 즉 모든 센서는 어느정도의 수준에서 데이터의 신뢰성을 가지고 있고 이것은 결국 센서가 가져오는 데이터가 범위 형태를 가짐을 의미한다.

예로 실제 데이터는 (1.3, 1.2, 1.4) 인데 잡음에 의해 (1.4, 1.5, 1.2) 를 센서가 가져왔을 수 있다. 이 불확실성에 대한 공분산을 R_k 로 정의한다. 분포는 관찰한 값과 동일한 평균값을 가지고 이를 Z_k 라 정의한다.

이와 같이 2 개의 가우시안 분포를 가지게 된다. 하나는 예측에 대한 가우시안 분포이고, 또 다른 하나는 측정에 대한 가우시안 분포에 해당한다. 그러므로 이 2 개의 가우시안 분포를 하나로 통합하여 새로운 평균과 분산을 만들어내야 한다. 이를 수행하기 위해선 먼저 감마 함수에 대해 파악할 필요가 있다.

Gamma Function

레이더 신호 처리등에서 물체를 판정하기 위해 확률 밀도 함수가 사용된다.

이 알고리즘을 작성하기 위해 감마 함수가 빈번하게 사용된다.

지금 설계하고 있는 칼만 필터와 동일하게 가우시안 형태의 잡음이 많이 끼기 때문이다.

아무튼 감마 함수를 아래와 같이 정의할 수 있다.

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

이 정의에 기반하여 확률 밀도 함수를 증명할 수 있고

이를 확장하여 불확실성을 포함하고 있는 칼만 필터의 가우시안 합성 및 레이더 신호 처리를 수행할 수 있게 된다. 우리가 수학 공부할 때마다 이름을 들어왔던 오일러는 감마 함수를 아래와 같이 정의하였다.

$$\Gamma(x) = \int_0^1 [-ln(u)]^{x-1} du$$

아래와 같이 치환 적분을 수행해보면 두 식이 같은 식이란 것을 확인할 수 있다.

$$t = -\ln(u) \Rightarrow e^{-t} = u, \qquad du = -e^{-t}dt$$

$$\Gamma(x) = \int_0^1 [-\ln(u)]^{x-1} du = \int_0^\infty e^{-t} t^{x-1} dt$$

이제 감마 함수를 살짝 확장해보도록 한다.

$$\Gamma(x+1) = \int_0^\infty e^{-t} t^x \, dt = -e^{-t} t^x \Big|_0^\infty + \int_0^\infty e^{-t} t^{x-1} \, dt = x \Gamma(x)$$

여기서 몇 가지 특수한 값을 대입해서 계산해보면 결국 감마 함수는 팩토리얼에 대한 일반화라는 것을 알 수 있다.

$$\Gamma(0+1) = \int_0^\infty e^{-t} t^x dt = \int_0^\infty e^{-t} (1) dt = -e^{-t} \Big|_0^\infty = 1$$

다음으로 넘어가기 전에 일반적으로 가우시안 분포로 알려져 있는 함수식을 살펴보자!

$$N(x,m,\sigma) = \sqrt{\frac{1}{2\pi\sigma^2}}e^{\frac{-(x-m)^2}{2\sigma^2}}$$

확률 밀도 함수의 적분 값은 1 이 나와야 한다는 것은 누구나 아는 사실이다.

1 이 확률 100% 라는 것을 의미하기 때문이다.

근대 형태를 보니까 적분이 끝나지 않는 형태다.

모델을 좀 더 단순하게 생각해보기 위해서 아래와 같은 함수의 적분을 생각해보도록 하자!

$$y=e^{-ax^2}$$

이와 같은 함수를 적분한다고 하면 우선 적분할 방법도 없다는 것이 문제인데 라플라스 변환을 수행하면서 학습했던 라플라스 적분을 사용하면 이 문제를 해결할 수 있다. 우선 아래와 같은 식이 성립한다고 가정하도록 한다.

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = S$$

$$\int_{-\infty}^{\infty} e^{-ay^2} dy = S$$

이 상태에서 두 함수를 곱해보자!

$$S^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-a(x^2+y^2)} dxdy$$

이 상태에서 다시 극 좌표를 도입해보자!

$$x^2 + y^2 = r^2$$
$$dxdy = rdrd\theta$$

실제 수능에서도 자주 나오는 문제로 통신 분야에서는 sinc 함수라고 부르는 게 있다. sin(x)는 x 가 0 에 근접하게 되면 x 로 근사하게 된다.

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

위의 dxdy 에서 $sin(\theta)$ 로 표기하지 않고 θ 가 된 이유도 위와 일맥상통하다. 공업수학 시간에 이미 다뤘던 테일러 급수에 기반하므로 구지 또 설명하진 않겠다.

$$x^2 + y^2 = r^2$$
$$dxdy = rdrd\theta$$

다음으로 고려할 것이 극좌표로 변환하였기 때문에 적분 구간을 변경할 필요가 있다. 반지름 $r \in 0$ 무한 무한대까지 확장이 가능하므로 적분 구간이 $0 \sim 7$ 무한대로 변경된다. 반면 각도는 0 도에서 2π 만큼 돌게 되므로 적분 구간이 $0 \sim 2\pi$ 로 변경된다.

$$S^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-a(x^{2}+y^{2})} dxdy = \int_{0}^{2\pi} \int_{0}^{\infty} re^{-ar^{2}} drd\theta$$

이 시점에서 다시 치환 적분을 시도한다.

$$ar^{2} = t \Rightarrow 2ardr = dt$$

$$\int_{0}^{\infty} re^{-ar^{2}} dr = \int_{0}^{\infty} \frac{1}{2a} e^{-t} dt = \frac{1}{2a}$$

마지막 각도 구간에 대한 적분을 완료하도록 한다.

$$S^{2} = \int_{0}^{2\pi} \frac{1}{2a} d\theta = \frac{\pi}{a}$$
$$\therefore S = \sqrt{\frac{\pi}{a}}$$

확률 함수를 적분하면 결과가 1 이므로 역수를 취해서 넓이가 1 이 되도록 만들어줘야 한다. 그러므로 최종식을 아래와 같이 적을 수 있다.

$$\therefore y = \sqrt{\frac{a}{\pi}}e^{-ax^2}$$

다음으로 이제 분산에 관계된 계수 a 를 구해보도록 하자! 분산은 (변량 – 평균)의 제곱의 평균에 해당하므로 수식을 아래와 같이 작성할 수 있다.

$$\sigma^2 = \int (x - m)^2 y \, dx$$

m 은 평균이며 정규(가우시안) 분포에서 평균은 0 이므로 m 을 0 으로 설정하고 해석을 수행한다.

$$\sigma^2 = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} x^2 e^{-ax^2} dx$$

아래와 같이 부분 적분법을 수행하도록 하자!

$$\sigma^{2} = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} x^{2} e^{-ax^{2}} dx = \sqrt{\frac{a}{\pi}} \int_{-\infty}^{\infty} x \cdot x e^{-ax^{2}} dx$$

$$u = x, \qquad u' = 1$$

$$v' = x e^{-ax^{2}}, \qquad v = -\frac{1}{2a} e^{-ax^{2}}$$

$$\sigma^{2} = \sqrt{\frac{a}{\pi}} \left\{ \left[-\frac{1}{2a} x e^{-ax^{2}} \right]_{-\infty}^{+\infty} + \int_{-\infty}^{\infty} \frac{1}{2a} e^{-ax^{2}} dx \right\}$$

중괄호 내의 첫 번째 항이 기함수이므로 푸리에 적분과 마찬가지로 무한대 적분의 특성상 결과이 0 이 됨을 알 수 있다. 그러므로 뒤쪽에 남은 항은 라플라스 적분을 수행하여 연산을 마무리하면 된다.

$$\therefore \sigma^2 = \sqrt{\frac{a}{\pi}} \left\{ 0 + \int_{-\infty}^{\infty} \frac{1}{2a} e^{-ax^2} dx \right\} = \sqrt{\frac{a}{\pi}} \times \frac{1}{2a} \times \sqrt{\frac{\pi}{a}} = \frac{1}{2a}$$

그러므로 다시 최종적으로 구할려고 했던 계수 a 를 아래와 같이 작성할 수 있다.

$$\therefore a = \frac{1}{2\sigma^2}$$

이제 마지막으로 평균을 고려해서 가우시안 함수를 완성해보도록 한다.

$$\therefore y = \sqrt{\frac{a}{\pi}}e^{-ax^2} = \frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-x^2}{2\sigma^2}}$$

이 함수는 여전히 우함수로 평균이 0 이다.

평균을 m 이라 가정한다면 함수의 모양은 유지한 상태로 모든 변수들을 m 만큼 증가시켜주면 된다. 이것은 결국 함수를 x 축으로 평행이동 시키면 된다.

$$E(Ax + B) = AE(X) + B$$

$$E(x + m) = E(X) + m = 0 + m$$

이 내용에 의거하여 식을 다시 작성하면 아래와 같이 쓸 수 있다.

$$\therefore N(x, m, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-m)^2}{2\sigma^2}}$$

이것은 우리가 잘 알고 있는 정규(가우시안) 분포의 확률 밀도 함수에 해당한다.

이제 다시 칼만 필터식을 증명하는 구간으로 되돌아오자!

$$N(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

현재 우리는 두 개의 가우시안 분포를 가지고 있고 이 두 가지를 합성하여 하나의 분포로 만들어야 한다. 그러므로 식은 아래와 같다.

$$N(x, \mu_0, \sigma_0) \cdot N(x, \mu_1, \sigma_1) = N_{fusion}(x, \mu_{fusion}, \sigma_{fusion})$$

우리는 가우시안 분포 함수를 알고 있으므로 이 식을 전개해보도록 하자!

$$N_{fusion}(x,\mu_{fusion},\sigma_{fusion}) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{\frac{-(x-\mu_0)^2}{2\sigma_0^2}} \times \frac{1}{\sqrt{2\pi\sigma_1^2}} e^{\frac{-(x-\mu_1)^2}{2\sigma_1^2}} = \frac{1}{2\pi\sqrt{\sigma_0^2\sigma_1^2}} e^{-\left[\frac{(x-\mu_0)^2}{2\sigma_0^2} + \frac{(x-\mu_1)^2}{2\sigma_1^2}\right]}$$

이 함수를 다시 정리하면 아래와 같다.

$$N_{fusion}(x, \mu_{fusion}, \sigma_{fusion}) = \frac{1}{\sqrt{2\pi\sigma^2}_{fusion}} e^{\frac{-(x-\mu_{fusion})^2}{2\sigma_{fusion}^2}}$$

이제 식을 전개하여 각각을 정리하면 된다.

두 식이 같다는 전제하에 결과를 도출해야 한다.

$$\frac{(x-\mu_0)^2}{2\sigma_0^2} + \frac{(x-\mu_1)^2}{2\sigma_1^2} = \frac{\sigma_0^2(x-\mu_1)^2 + \sigma_1^2(x-\mu_0)^2}{2\sigma_0^2\sigma_1^2} = \frac{\sigma_0^2(x^2 - 2x\mu_1 + \mu_1^2) + \sigma_1^2(x^2 - 2x\mu_0 + \mu_0^2)}{2\sigma_0^2\sigma_1^2} = \frac{x^2\sigma_0^2 + x^2\sigma_1^2 - 2x\mu_1\sigma_0^2 - 2x\mu_0\sigma_1^2 + \mu_1^2\sigma_0^2 + \mu_0^2\sigma_1^2}{2\sigma_0^2\sigma_1^2} = \frac{x^2(\sigma_0^2 + \sigma_1^2) - 2x(\mu_1\sigma_0^2 + \mu_0\sigma_1^2) + \mu_1^2\sigma_0^2 + \mu_0^2\sigma_1^2}{2\sigma_0^2\sigma_1^2} = \frac{x^2 - 2\frac{\mu_0\sigma_1^2 + \mu_1\sigma_0^2}{\sigma_0^2 + \sigma_1^2} + \mu_1^2\sigma_0^2}{2\sigma_0^2\sigma_1^2} = \frac{x^2 - 2\frac{\mu_0\sigma_1^2 + \mu_1\sigma_0^2}{\sigma_0^2 + \sigma_1^2}}{2\sigma_0^2\sigma_1^2} = \frac{x^2 - 2\mu_{fusion}x + \mu_{fusion}^2}{\sigma_{fusion}^2} = \frac{x^2 - 2\mu_{fusion}x + \mu_{fusion}^2}{\sigma_{fusion}^2}$$

이 문제를 스마트하게 해결하기 위해 아래와 같은 0 을 더해주자!

$$\frac{\left(\frac{\mu_0\sigma_1^2 + \mu_1\sigma_0^2}{\sigma_0^2 + \sigma_1^2}\right)^2 - \left(\frac{\mu_0\sigma_1^2 + \mu_1\sigma_0^2}{\sigma_0^2 + \sigma_1^2}\right)^2}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2 + \sigma_1^2}} = 0$$

0 을 더한 식을 살펴보도록 하자!

$$\frac{x^2-2\frac{\mu_0\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}x+\frac{\mu_0^2\sigma_1^2+\mu_1^2\sigma_0^2}{\sigma_0^2+\sigma_1^2}}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}+\frac{\left(\frac{\mu_0\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}\right)^2-\left(\frac{\mu_0\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}\right)^2}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}=\\\frac{x^2-2\frac{\mu_0\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}x+\left(\frac{\mu_0\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}\right)^2}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}+\frac{\frac{\mu_0^2\sigma_1^2+\mu_1^2\sigma_0^2}{\sigma_0^2+\sigma_1^2}-\left(\frac{\mu_0\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}\right)^2}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}=\\\frac{\left(x-\frac{\mu_0\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}\right)^2}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}+\frac{\frac{\mu_0^2\sigma_1^2+\mu_1^2\sigma_0^2}{\sigma_0^2+\sigma_1^2}-\frac{\left(\mu_0\sigma_1^2+\mu_1\sigma_0^2\right)^2}{\left(\sigma_0^2+\sigma_1^2\right)^2}}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}=\\\frac{\left(x-\frac{\mu_0\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}\right)^2}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}+\frac{\frac{\mu_0^2\sigma_1^2+\mu_1^2\sigma_0^2}{\sigma_0^2+\sigma_1^2}-\frac{\left(\mu_0\sigma_1^2+\mu_1\sigma_0^2\right)^2}{\left(\sigma_0^2+\sigma_1^2\right)^2}}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}=\\\frac{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}+\frac{\frac{\mu_0^2\sigma_1^2+\mu_1\sigma_0^2}{\sigma_0^2+\sigma_1^2}-\frac{\left(\mu_0\sigma_1^2+\mu_1\sigma_0^2\right)^2}{\left(\sigma_0^2+\sigma_1^2\right)^2}}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2+\sigma_1^2}}$$

맨 뒤의 부분을 먼저 정리해보자!

$$\frac{\frac{\mu_0^2\sigma_1^2 + \mu_1^2\sigma_0^2}{\sigma_0^2 + \sigma_1^2} - \frac{\left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{\left(\sigma_0^2 + \sigma_1^2\right)^2}}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2 + \sigma_1^2}} = \frac{\mu_0^2\sigma_1^2 + \mu_1^2\sigma_0^2 - \frac{\left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{\left(\sigma_0^2 + \sigma_1^2\right)}}{2\sigma_0^2\sigma_1^2} = \frac{\mu_0^2\sigma_1^2 + \mu_1^2\sigma_0^2 - \frac{\left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{\left(\sigma_0^2 + \sigma_1^2\right)}}{2\sigma_0^2\sigma_1^2} = \frac{\mu_0^2\sigma_1^2 + \mu_1^2\sigma_0^2 - \frac{\left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{\left(\sigma_0^2 + \sigma_1^2\right)}}{2\sigma_0^2\sigma_1^2} = \frac{\frac{\left(\sigma_0^2 + \sigma_1^2\right)\left(\mu_0^2\sigma_1^2 + \mu_1^2\sigma_0^2\right) - \left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{\left(\sigma_0^2 + \sigma_1^2\right)}}{2\sigma_0^2\sigma_1^2} = \frac{\frac{\left(\sigma_0^2 + \sigma_1^2\right)\left(\mu_0^2\sigma_1^2 + \mu_1^2\sigma_0^2\right) - \left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{2\sigma_0^2\sigma_1^2}}{2\sigma_0^2\sigma_1^2} = \frac{\frac{\left(\sigma_0^2 + \sigma_1^2\right)\left(\mu_0^2\sigma_1^2 + \mu_1^2\sigma_0^2\right) - \left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{2\sigma_0^2\sigma_1^2}}{2\sigma_0^2\sigma_1^2\sigma_1^2} = \frac{\frac{\mu_0^2\sigma_0^2\sigma_1^2 + \mu_1^2\sigma_0^4 + \mu_1^2\sigma_0^2 - \left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{2\sigma_0^2\sigma_1^2\left(\sigma_0^2 + \sigma_1^2\right)}}{2\sigma_0^2\sigma_1^2\left(\sigma_0^2 + \sigma_1^2\right)} = \frac{\frac{\mu_0^2\sigma_0^2\sigma_1^2 + \mu_1^2\sigma_0^4 + \mu_1^2\sigma_0^2\sigma_1^2 - \mu_0\sigma_1^4 - 2\mu_0\mu_1\sigma_0^2\sigma_1^2 - \mu_1^2\sigma_0^4}{2\sigma_0^2\sigma_1^2\left(\sigma_0^2 + \sigma_1^2\right)}} = \frac{\frac{\mu_0^2\sigma_0^2\sigma_1^2 + \mu_1^2\sigma_0^4 + \mu_1^2\sigma_0^2 - \left(\mu_0\sigma_1^2 + \mu_1\sigma_0^2\right)^2}{2\sigma_0^2\sigma_1^2\left(\sigma_0^2 + \sigma_1^2\right)}}}{2\sigma_0^2\sigma_1^2\left(\sigma_0^2 + \sigma_1^2\right)} = \frac{\frac{\mu_0^2\sigma_0^2\sigma_1^2 + \mu_1^2\sigma_0^2 - \mu_0\sigma_1^2 + \mu_1\sigma_0^2}{2\left(\sigma_0^2 + \sigma_1^2\right)}}{2\left(\sigma_0^2 + \sigma_1^2\right)} = \frac{\mu_0^2\sigma_0^2\sigma_1^2 + \mu_1^2\sigma_0^2 - \mu_0\sigma_1^2 + \mu_1\sigma_0^2}{2\left(\sigma_0^2 + \sigma_1^2\right)}} = \frac{\mu_0^2\sigma_0^2\sigma_1^2 + \mu_1^2\sigma_0^2 - \mu_0\sigma_1^2 + \mu_1\sigma_0^2}{2\left(\sigma_0^2 + \sigma_1^2\right)}}$$

이제 아래와 같이 정리되었다.

$$\frac{\left(x - \frac{\mu_0\sigma_1^2 + \mu_1\sigma_0^2}{\sigma_0^2 + \sigma_1^2}\right)^2}{2\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2 + \sigma_1^2}} + \frac{(\mu_0 - \mu_1)^2}{2(\sigma_0^2 + \sigma_1^2)}$$

이것을 가우시안 분포 형태로 적어보자(또한 보기가 매우 불편하므로 e 를 exp 라고 해서 아래와 같이 표기하도록 한다)

$$\begin{split} \frac{1}{2\pi\sqrt{\sigma_0^2\sigma_1^2}} exp \left[-\frac{\left(x - \frac{\mu_0\sigma_1^2 + \mu_1\sigma_0^2}{\sigma_0^2 + \sigma_1^2}\right)^2}{2\left(\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2 + \sigma_1^2}\right)} \right] exp \left[-\frac{(\mu_0 - \mu_1)^2}{2(\sigma_0^2 + \sigma_1^2)} \right] = \\ \frac{1}{\sqrt{2\pi\left(\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2 + \sigma_1^2}\right)}} exp \left[-\frac{\left(x - \frac{\mu_0\sigma_1^2 + \mu_1\sigma_0^2}{\sigma_0^2 + \sigma_1^2}\right)^2}{2\left(\frac{\sigma_0^2\sigma_1^2}{\sigma_0^2 + \sigma_1^2}\right)} \right] \frac{1}{\sqrt{2\pi(\sigma_0^2 + \sigma_1^2)}} exp \left[-\frac{(\mu_0 - \mu_1)^2}{2(\sigma_0^2 + \sigma_1^2)} \right] \end{split}$$

결국 최종적으로 정리를 하자면 아래와 같다. 독립이 아닌 두 정규 분포의 합성은 아래와 같은 형태가 된다.

$$\frac{1}{\sqrt{2\pi\left(\frac{\sigma_{0}^{2}\sigma_{1}^{2}}{\sigma_{0}^{2}+\sigma_{1}^{2}}\right)}}exp\left[-\frac{\left(x-\frac{\mu_{0}\sigma_{1}^{2}+\mu_{1}\sigma_{0}^{2}}{\sigma_{0}^{2}+\sigma_{1}^{2}}\right)^{2}}{2\left(\frac{\sigma_{0}^{2}\sigma_{1}^{2}}{\sigma_{0}^{2}+\sigma_{1}^{2}}\right)}\right]\frac{1}{\sqrt{2\pi\left(\sigma_{0}^{2}+\sigma_{1}^{2}\right)}}exp\left[-\frac{(\mu_{0}-\mu_{1})^{2}}{2\left(\sigma_{0}^{2}+\sigma_{1}^{2}\right)}\right]$$

이를 다시 정리해보자면 아래와 같이 요약할 수 있다. 앞서서 정규 분포는 아래와 같이 적을 수 있었다.

$$\therefore N(x,m,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-m)^2}{2\sigma^2}}$$

그러므로 최종 결론은 아래와 같다.

$$\therefore \sigma_{fusion}^2 = \frac{\sigma_0^2 \sigma_1^2}{\sigma_0^2 + \sigma_1^2} = \sigma_0^2 - \frac{\sigma_0^4}{\sigma_0^2 + \sigma_1^2}, \qquad \mu_{fusion} = \frac{\mu_0 \sigma_1^2 + \mu_1 \sigma_0^2}{\sigma_0^2 + \sigma_1^2} = \mu_0 + \frac{\sigma_0^2 (\mu_1 - \mu_0)}{\sigma_0^2 + \sigma_1^2}$$

최종 도출된 형태에서 뒤쪽에 붙은 값은 스케일 팩터로서 사용된다.

$$\frac{1}{\sqrt{2\pi(\sigma_0^2 + \sigma_1^2)}} exp\left[-\frac{(\mu_0 - \mu_1)^2}{2(\sigma_0^2 + \sigma_1^2)}\right]$$

이제 두 가우시안의 합성을 구했으니 다시 본론으로 돌아가자! 그러나 문제가 또 있는데 시스템의 잡음과 측정 잡음이 같은 도메인에 있지 않다는 것이다. 이와 같은 이유로 이것을 맞추는 작업이 필요하다.

$$N(x,\mu_0,\sigma_0,sf) = \frac{1}{\sqrt{2\pi\left(\frac{\sigma_0}{sf}\right)^2}} exp\left[-\frac{\left(x-\frac{\mu_0}{sf}\right)^2}{2\left(\frac{\sigma_0}{sf}\right)^2}\right], \qquad N(x,\mu_1,\sigma_1) = \frac{1}{\sqrt{2\pi\sigma_1^2}} exp\left[-\frac{(x-\mu_1)^2}{2\sigma_1^2}\right]$$

이를 기반으로 다시 합성 평균과 합성 분산을 구하면 아래와 같이 적을 수 있다.

$$\begin{split} &\frac{\sigma_{fusion}^2}{sf^2} = \left(\frac{\sigma_0}{sf}\right)^2 - \frac{\left(\frac{\sigma_0}{sf}\right)^4}{\left(\frac{\sigma_0}{sf}\right)^2 + \sigma_1^2} \Rightarrow \sigma_{fusion}^2 = \sigma_0^2 - \left\{\frac{\frac{\sigma_0^2}{sf}}{\left(\frac{\sigma_0}{sf}\right)^2 + \sigma_1^2}\right\} \frac{\sigma_0^2}{sf} = \sigma_0^2 - KH\sigma_0^2 \\ &\frac{\mu_{fusion}}{sf} = \frac{\mu_0}{sf} + \frac{\left(\frac{\sigma_0}{sf}\right)^2 \left(\mu_1 - \frac{\mu_0}{sf}\right)}{\left(\frac{\sigma_0}{sf}\right)^2 + \sigma_1^2} \Rightarrow \mu_{fusion} = \mu_0 + \frac{\frac{\sigma_0^2}{sf}}{\left(\frac{\sigma_0}{sf}\right)^2 + \sigma_1^2} \left(\mu_1 - \frac{\mu_0}{sf}\right) = \mu_0 + K(\mu_1 - H\mu_0) \\ &K = \frac{\frac{\sigma_0^2}{sf}}{\left(\frac{\sigma_0}{sf}\right)^2 + \sigma_1^2} = \frac{H\sigma_0^2}{H^2\sigma_0^2 + \sigma_1^2} \\ &H = \frac{1}{sf} \end{split}$$

이제 칼만 필터 알고리즘에 적용하기 위해 계산한 값들을 직접 매칭시키도록 한다.

$$\mu_{fusion} \rightarrow \widehat{x}_{k}$$

$$\mu_{0} \rightarrow \widehat{x}_{k}^{-}$$

$$\mu_{1} \rightarrow z_{k}$$

$$\sigma_{fusion}^{2} \rightarrow P_{k}$$

$$\sigma_{0}^{2} \rightarrow P_{k}^{-}$$

$$\sigma_{1}^{2} \rightarrow R_{k}$$

$$H \rightarrow H_{k}$$

$$K = \frac{H\sigma_{0}^{2}}{H^{2}\sigma_{0}^{2} + \sigma_{1}^{2}} \Rightarrow P_{k}^{-}H^{T}(HP_{k}^{-}H^{T} + R_{T})^{-1}$$

$$\mu_{fusion} = \mu_{0} + K(\mu_{1} - H\mu_{0}) \Rightarrow \widehat{x}_{k} = \widehat{x}_{k}^{-} + K_{k}(z_{k} - H\widehat{x}_{k}^{-})$$

$$\sigma_{fusion}^{2} = \sigma_{0}^{2} - KH\sigma_{0}^{2} \Rightarrow P_{k} = P_{k}^{-} - K_{k}H_{k}P_{k}^{-} = (1 - K_{k}H_{k})P_{k}^{-}$$

다시 이를 토대로 칼만 필터 식을 최종 정리해보면 아래와 같이 정리된다.

$$\widehat{x}_{k}^{-} = F_{k}\widehat{x}_{k-1} + B_{k}u_{k}$$

$$P_{k}^{-} = F_{k}P_{k-1}F_{k}^{T} + Q_{k}$$

$$\widehat{x}_{k} = \widehat{x}_{k}^{-} + K_{k}(z_{k} - H\widehat{x}_{k}^{-})$$

$$P_{k} = (1 - K_{k}H_{k})P_{k}^{-}$$

신호 처리 관점에서 블록도를 그려보자면 아래와 같다.

