Exosomes raw data Quality control

David Cáceres

30/1/2023

Contents

Data read	 1
Reads distribution by batch with brain replicate control	2
Effective reads percent distribution	 2
Short reads percent. Less than 17 nucleotides	 4
Ultra short reads percent. Less than 15 nucleotides	 6
Reference genome contamination percent	 8
Unmapped reads percent	 11
Bacteria reads percent. Contamination	 13
Virus reads percent. Contamination	 15
Total reads in absolute value	 17
Expression Matrix	19
Builiding a expression matrix for microRNA data	 19
Genome Distribution	23
Building a expression matrix for Genome distribution	 23
Genome Distribution	 23
Multi dimensional Scaling	25
DESeq2 object	 25
Multi dimenstional scaling plots	 25
Principal components correlation	 30

Data read

```
setwd("~/Exosomas/QC/Data/")
tipos_exo <- read.table(file = "readsPerc.tsv",</pre>
    header = TRUE, sep = "\t")
brainq_reads <- read.table(file = "brain_reads.tsv",</pre>
    header = TRUE, sep = "\t")
brainq_short <- read.table(file = "brainq_short.tsv",</pre>
    header = TRUE, sep = "\t")
brainq_ushort <- read.table(file = "brainq_ushort.tsv",</pre>
    header = TRUE, sep = "\t")
short <- read.table(file = "shortReadsPerc.tsv",</pre>
    header = TRUE, sep = "\t")
ushort <- read.table(file = "ultrashort.tsv",</pre>
    header = TRUE, sep = "\t")
ref.genome <- read.table(file = "ref.genome.tsv",</pre>
    header = TRUE, sep = "\t")
unmapped <- read.table(file = "unmapped.tsv",</pre>
    header = TRUE, sep = "\t")
contaminacion <- read.table(file = "Contaminacion.tsv",</pre>
    header = TRUE, sep = "\t")
brainq_contaminacion <- read.table(file = "brainq_contaminacion.tsv",</pre>
    header = TRUE, sep = "\t")
reads_total <- read.table(file = "Total_reads.tsv",</pre>
    header = TRUE, sep = "\t")
```

Reads distribution by batch with brain replicate control

Effective reads percent distribution

We used miRNAQC to get quality reports and datasets used to pre-process the raw data and check it quality. $\frac{1}{2}$ arn.ugr.es/mirnaqc/

Initially we plotted the effective reads percent vs the sample distribution by batch. Also plotted the percent of short reads and not adapter found. As reference we plotted the brain replicate data.

```
width = 1.05)) + geom_bar(stat = "identity",
    position = position_stack()) +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
    y = "% Reads", title = "Efective reads% Distribution",
    fill = "Quality Control") +
    theme(axis.text.x = element blank(),
        axis.ticks.x = element_blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
   plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(),
   legend.background = element_rect(fill = "transparent"),
   legend.box.background = element_rect(fill = "transparent"),
    plot.title = element_text(face = "bold")) +
    scale_fill_simpsons(labels = c("Adapter not found",
        "Short Reads%", "Reads%"))
tipos_exo1 <- tipos_exo |>
    distinct(sample, sample1, batch_shortname)
p_axis \leftarrow ggplot(tipos_exo1, aes(x = sample1,
    y = factor(1), fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
   theme(axis.title.x = element text()) +
   theme(legend.position = "none") +
   labs(x = "Batch Annotation",
        fill = "Batch")
p1_q \leftarrow p1/p_axis + plot_layout(heights = c(8,
   1)) + scale_fill_igv()
# Brain
p_reads_brain <- ggplot(brainq_reads,</pre>
    aes(x = batch, y = value1,
        fill = factor(variable1,
            levels = c("readsAdapterNotFoundPerc",
                "shortReads", "readsPerc")))) +
    geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "% Reads", title = "Brain Reads%") +
    theme(axis.text.x = element_blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + scale_fill_simpsons() +
    theme(panel.background = element_rect(fill = "transparent"),
        plot.background = element_rect(fill = "transparent",
            color = NA), panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.background = element_rect(fill = "transparent"),
```

```
legend.box.background = element_rect(fill = "transparent"),
        plot.title = element_text(face = "bold")) +
    theme(legend.position = "none")
p_axis_reads_brain <- ggplot(brainq_reads,</pre>
    aes(x = batch, y = factor(1),
        fill = batch_shortname)) +
   geom_tile(width = 1) + theme_void() +
   theme(axis.title.x = element text()) +
   geom_text(aes(label = batch_shortname)) +
    labs(x = "Batch Annotation",
        fill = "Batch Annotation") +
   theme(legend.position = "none")
p3 qb <- p reads brain/p axis reads brain +
   plot_layout(heights = c(8,
        1)) + scale_fill_igv()
pt1 <- plot_grid(p1_q, p3_qb, rel_widths = c(1.7,
    1.3), labels = c("A", "B"))
pt1
```


Short reads percent. Less than 17 nucleotides

Plot of the short reads obtained from mirnaQC

```
levels = c("readsAdapterNotFoundPerc",
            "reads", "shortReadsPerc")),
    width = 1.05)) + geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "Short reads%", title = "Short reads% Distribution",
    fill = "Quality Control") +
    theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
    plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(),
   legend.background = element_rect(fill = "transparent"),
    legend.box.background = element_rect(fill = "transparent")) +
    scale_fill_simpsons(labels = c("Adapter not found",
        "Reads%", "Short Reads%"))
p_axis_short <- ggplot(short, aes(x = sample1,</pre>
   y = factor(1), fill = batch)) +
   geom_tile(width = 1) + theme_void() +
   theme(axis.title.x = element_text()) +
   theme(legend.position = "none") +
   labs(x = "Batch Annotation",
        fill = "Batch")
p3q <- p_short/p_axis_short + plot_layout(heights = c(8,
   1)) + scale_fill_igv()
# Brain
p_short_brain <- ggplot(brainq_short,</pre>
    aes(x = batch, y = value1,
        fill = factor(variable1,
            levels = c("readsAdapterNotFoundPerc",
                "reads", "shortReadsPerc")))) +
    geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "% Short reads", title = "Brain short reads%",
   fill = "QC") + theme(axis.text.x = element_blank(),
   axis.ticks.x = element_blank(),
   axis.ticks.length.x = unit(0,
        "pt")) + scale_fill_simpsons() +
    theme(panel.background = element_rect(fill = "transparent"),
        plot.background = element_rect(fill = "transparent",
            color = NA), panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.background = element_rect(fill = "transparent"),
        legend.box.background = element_rect(fill = "transparent")) +
    theme(legend.position = "none")
```

```
p_axis_short_brain <- ggplot(brainq_short,
    aes(x = batch, y = factor(1),
        fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element_text()) +
    geom_text(aes(label = batch_shortname)) +
    labs(x = "Batch Annotation",
        fill = "Batch Annotation") +
    theme(legend.position = "none")

p4_qb <- p_short_brain/p_axis_short_brain +
    plot_layout(heights = c(8,
        1)) + scale_fill_igv()

pt2 <- plot_grid(p3q, p4_qb, rel_widths = c(1.7,
        1.3))</pre>
```

pt2

Ultra short reads percent. Less than 15 nucleotides.

```
width = 1.05)) + geom_bar(stat = "identity") +
    scale v continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
    y = "Ultra Short reads%", title = "Ultra Short Reads% Distribution",
    fill = "Quality Control") +
    theme(axis.text.x = element_blank(),
       axis.ticks.x = element blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
   plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
   legend.background = element_rect(fill = "transparent"),
   legend.box.background = element_rect(fill = "transparent"),
   plot.title = element_text(face = "bold")) +
    scale_fill_simpsons(labels = c("Adapter not found",
        "Reads%", "Ultra short Reads%"))
p_axis_ushort <- ggplot(ushort,</pre>
    aes(x = sample1, y = factor(1),
        fill = batch)) + geom_tile(width = 1) +
    theme_void() + theme(axis.title.x = element_text()) +
    theme(legend.position = "none") +
    labs(x = "Batch Annotation",
       fill = "Batch")
p5_q <- p_ushort/p_axis_ushort +
   plot_layout(heights = c(8,
        1)) + scale_fill_igv()
# Brain
p_ushort_brain <- ggplot(brainq_ushort,</pre>
    aes(x = batch, y = value1,
        fill = factor(variable1,
            levels = c("readsAdapterNotFoundPerc",
                "reads", "ultraShortReadsPerc")))) +
    geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "% Ultra Short reads",
   title = "Brain Ultra short reads%",
   fill = "QC") + theme(axis.text.x = element_blank(),
   axis.ticks.x = element_blank(),
   axis.ticks.length.x = unit(0,
        "pt")) + scale_fill_simpsons() +
   theme(panel.background = element_rect(fill = "transparent"),
        plot.background = element_rect(fill = "transparent",
            color = NA), panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.background = element_rect(fill = "transparent"),
        legend.box.background = element_rect(fill = "transparent"),
```

```
plot.title = element_text(face = "bold")) +
    theme(legend.position = "none")

p_axis_ushort_brain <- ggplot(brainq_ushort,
    aes(x = batch, y = factor(1),
        fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element_text()) +
    geom_text(aes(label = batch_shortname)) +
    labs(x = "Batch Annotation",
        fill = "Batch Annotation") +
    theme(legend.position = "none")

p5_qb <- p_ushort_brain/p_axis_ushort_brain +
    plot_layout(heights = c(8,
        1)) + scale_fill_igv()

pt3 <- plot_grid(p5_q, p5_qb, rel_widths = c(1.7,
        1.3))</pre>
```

pt3

Reference genome contamination percent.

```
contaminacion$batch <- as.factor(contaminacion$batch)
contaminacion$batch_shortname <- values[contaminacion$batch]

# Referece genome
# contamination</pre>
```

```
contaminacion <- contaminacion |>
    mutate(sample1 = reorder(sample,
        -ifelse(!variable %in%
            "% ref.genome", 0,
            value), FUN = sum))
p_ref.genome <- ggplot(contaminacion,</pre>
    aes(x = sample1, y = value,
        fill = factor(variable,
            levels = c("virus",
                "bacteria", "unmapped",
                "% ref.genome")),
        width = 1.05)) + geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
    y = "Reads%", title = "Mapped Reads% Distribution",
    fill = "Quality Control") +
    theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
    plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
    panel.grid.minor = element_blank(),
    legend.background = element rect(fill = "transparent"),
    legend.box.background = element_rect(fill = "transparent")) +
    scale fill simpsons(labels = c("Virus",
        "Bacteria", "Unmapped",
        "Mapped Reads%"))
contaminacion1 <- contaminacion |>
    distinct(sample, sample1, batch_shortname)
p_axis_ref.genome <- ggplot(contaminacion1,</pre>
    aes(x = sample1, y = factor(1),
        fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element_text()) +
    theme(legend.position = "none") +
    labs(x = "Batch Annotation",
        fill = "Batch")
p6_q <- p_ref.genome/p_axis_ref.genome +
    plot_layout(heights = c(8,
        1)) + scale_fill_igv()
# Brain
brainq_contaminacion$batch <- as.factor(brainq_contaminacion$batch)</pre>
brainq_contaminacion$batch_shortname <- values[brainq_contaminacion$batch]</pre>
p_ref.genome_brain <- ggplot(brainq_contaminacion,</pre>
    aes(x = batch, y = value, fill = factor(variable,
        levels = c("virus", "bacteria",
            "unmapped", "refSpecies")))) +
```

```
geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
    y = "% Reads", title = "Mapped Reads%",
    fill = "QC") + theme(axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.ticks.length.x = unit(0,
        "pt")) + scale_fill_simpsons() +
    theme(panel.background = element_rect(fill = "transparent"),
        plot.background = element_rect(fill = "transparent",
            color = NA), panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.background = element_rect(fill = "transparent"),
        legend.box.background = element_rect(fill = "transparent")) +
    theme(legend.position = "none")
p_axis_ref.genome_brain <- ggplot(brainq_contaminacion,</pre>
    aes(x = batch, y = factor(1),
        fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element_text()) +
    geom_text(aes(label = batch_shortname)) +
    labs(x = "Batch Annotation",
        fill = "Batch Annotation") +
    theme(legend.position = "none")
p6_qb <- p_ref.genome_brain/p_axis_ref.genome_brain +</pre>
    plot_layout(heights = c(8,
        1)) + scale_fill_igv()
plot_grid(p6_q, p6_qb, rel_widths = c(2,
1))
```


Unmapped reads percent.

```
# Unmapped reads%
contaminacion <- contaminacion |>
   mutate(sample1 = reorder(sample,
        -ifelse(!variable %in%
            "unmapped", 0, value),
        FUN = sum)
p_unmapped <- ggplot(contaminacion,</pre>
    aes(x = sample1, y = value,
        fill = factor(variable,
            levels = c("virus",
                "bacteria", "% ref.genome",
                "unmapped")), width = 1.05)) +
   geom bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "Reads%", title = "Unmapped Reads% Distribution",
    fill = "Quality Control") +
   theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
   plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(),
    legend.background = element_rect(fill = "transparent"),
   legend.box.background = element_rect(fill = "transparent")) +
    scale fill simpsons(labels = c("Virus",
        "Bacteria", "Mapped Reads%",
```

```
"Unmapped"))
contaminacion1 <- contaminacion |>
    distinct(sample, sample1, batch_shortname)
p_axis_unmapped <- ggplot(contaminacion1,</pre>
    aes(x = sample1, y = factor(1),
       fill = batch shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element_text()) +
   theme(legend.position = "none") +
   labs(x = "Batch Annotation",
        fill = "Batch")
p7_q <- p_unmapped/p_axis_unmapped +
   plot_layout(heights = c(8,
        1)) + scale_fill_igv()
# Brain
p_unmapped_brain <- ggplot(brainq_contaminacion,</pre>
    aes(x = batch, y = value, fill = factor(variable,
        levels = c("virus", "bacteria",
            "unmapped", "refSpecies")))) +
    geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10) + labs(x = NULL,
   y = "% Reads", title = "Unmapped Reads%",
    fill = "QC") + theme(axis.text.x = element_blank(),
   axis.ticks.x = element_blank(),
   axis.ticks.length.x = unit(0,
        "pt")) + scale_fill_simpsons() +
    theme(panel.background = element_rect(fill = "transparent"),
        plot.background = element_rect(fill = "transparent",
            color = NA), panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.background = element_rect(fill = "transparent"),
        legend.box.background = element_rect(fill = "transparent")) +
    theme(legend.position = "none")
p_axis_unmapped_brain <- ggplot(brainq_contaminacion,</pre>
    aes(x = batch, y = factor(1),
        fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
   theme(axis.title.x = element_text()) +
    geom_text(aes(label = batch_shortname)) +
    labs(x = "Batch Annotation",
        fill = "Batch Annotation") +
    theme(legend.position = "none")
p7_qb <- p_unmapped_brain/p_axis_unmapped_brain +
    plot_layout(heights = c(8,
        1)) + scale_fill_igv()
```


Bacteria reads percent. Contamination.

```
# Bacteria
contaminacion <- contaminacion |>
   mutate(sample1 = reorder(sample,
        -ifelse(!variable %in%
            "bacteria", 0, value),
        FUN = sum)
p_bacteria <- ggplot(contaminacion,</pre>
    aes(x = sample1, y = value,
        fill = factor(variable,
            levels = c("% ref.genome",
                "unmapped", "virus",
                "bacteria")), width = 1.05)) +
   geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "Reads%", title = "Bacteria Reads%",
   fill = "Quality Control") +
   theme(axis.text.x = element_blank(),
       axis.ticks.x = element_blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
```

```
plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(),
    legend.background = element_rect(fill = "transparent"),
    legend.box.background = element_rect(fill = "transparent")) +
    scale_fill_simpsons(labels = c("Mapped Reads%",
        "Unmapped", "Virus", "Bacteria"))
contaminacion1 <- contaminacion |>
    distinct(sample, sample1, batch shortname)
p_axis_bacteria <- ggplot(contaminacion1,</pre>
    aes(x = sample1, y = factor(1),
        fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element_text()) +
    theme(legend.position = "none") +
    labs(x = "Batch Annotation",
        fill = "Batch")
p8_q <- p_bacteria/p_axis_bacteria +
   plot_layout(heights = c(8,
        1)) + scale_fill_igv()
# Brain
p_bacteria_brain <- ggplot(brainq_contaminacion,</pre>
    aes(x = batch, y = value, fill = factor(variable,
        levels = c("unmapped",
            "refSpecies", "virus",
            "bacteria")))) + geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "% Reads", title = "Brain Bacteria Reads%",
   fill = "QC") + theme(axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
   axis.ticks.length.x = unit(0,
        "pt")) + scale_fill_simpsons() +
   theme(panel.background = element_rect(fill = "transparent"),
        plot.background = element_rect(fill = "transparent",
            color = NA), panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        legend.background = element_rect(fill = "transparent"),
        legend.box.background = element rect(fill = "transparent")) +
    theme(legend.position = "none")
p_axis_bacteria_brain <- ggplot(brainq_contaminacion,</pre>
    aes(x = batch, y = factor(1),
       fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element_text()) +
    geom_text(aes(label = batch_shortname)) +
   labs(x = "Batch Annotation",
```

pt8

Virus reads percent. Contamination

```
scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "Reads%", title = "Virus Reads%",
   fill = "Quality Control") +
    theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
   plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(),
   legend.background = element_rect(fill = "transparent"),
   legend.box.background = element_rect(fill = "transparent")) +
    scale_fill_simpsons(labels = c("Mapped Reads%",
        "Unmapped", "Bacteria",
        "Virus"))
contaminacion1 <- contaminacion |>
    distinct(sample, sample1, batch_shortname)
p_axis_virus <- ggplot(contaminacion1,</pre>
    aes(x = sample1, y = factor(1),
        fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element text()) +
   theme(legend.position = "none") +
    labs(x = "Batch Annotation",
        fill = "Batch")
p9_q <- p_virus/p_axis_virus +
   plot_layout(heights = c(8,
        1)) + scale_fill_igv()
# Brain
p_virus_brain <- ggplot(brainq_contaminacion,</pre>
    aes(x = batch, y = value, fill = factor(variable,
        levels = c("unmapped",
            "refSpecies", "bacteria",
            "virus")))) + geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0), breaks = seq(0, 100,
        by = 10)) + labs(x = NULL,
   y = "% Reads", title = "Brain Virus Reads%",
   fill = "QC") + theme(axis.text.x = element_blank(),
   axis.ticks.x = element_blank(),
   axis.ticks.length.x = unit(0,
        "pt")) + scale_fill_simpsons() +
   theme(panel.background = element_rect(fill = "transparent"),
        plot.background = element_rect(fill = "transparent",
            color = NA), panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
```

```
legend.background = element_rect(fill = "transparent"),
        legend.box.background = element_rect(fill = "transparent")) +
    theme(legend.position = "none")
p_axis_virus_brain <- ggplot(brainq_contaminacion,</pre>
    aes(x = batch, y = factor(1),
       fill = batch_shortname)) +
   geom tile(width = 1) + theme void() +
   theme(axis.title.x = element_text()) +
   geom_text(aes(label = batch_shortname)) +
   labs(x = "Batch Annotation",
        fill = "Batch Annotation") +
    theme(legend.position = "none")
p9_qb <- p_virus_brain/p_axis_virus_brain +</pre>
   plot_layout(heights = c(8,
        1)) + scale_fill_igv()
pt9 <- plot_grid(p9_q, p9_qb, rel_widths = c(1.7,
  1.3))
```

pt9

Total reads in absolute value.

```
aes(x = reorder(sample, -reads),
        y = reads, fill = variable,
        width = 1.05)) + geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0)) + labs(x = NULL, y = "Reads",
    title = "Reads total QC", fill = "Quality Control") +
    theme(axis.text.x = element_blank(),
        axis.ticks.x = element blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
   plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(),
    legend.background = element_rect(fill = "transparent"),
    legend.box.background = element_rect(fill = "transparent")) +
    scale_fill_manual(values = c("darkgrey"),
        labels = c("Total Reads"))
p_axis_reads_t <- ggplot(reads_total,</pre>
    aes(x = reorder(sample, -reads),
        y = factor(1), fill = batch_shortname)) +
    geom_tile(width = 1) + theme_void() +
    theme(axis.title.x = element_text(),
        legend.position = c(1.09,
            2.2)) + labs(x = "Batch Annotation",
   fill = "Batch Annotation") +
   theme(legend.position = "none") +
    scale_fill_igv()
p10_q <- p_reads_t/p_axis_reads_t +
   plot_layout(heights = c(8,
        1))
# Brain
p_reads_total_brain <- ggplot(reads_total_brain,</pre>
    aes(x = sample, y = reads,
        fill = "none")) + geom_bar(stat = "identity") +
    scale_y_continuous(expand = c(0,
        0)) + labs(x = NULL, y = "Reads",
   title = "Brain Reads total QC") +
    theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.ticks.length.x = unit(0,
            "pt")) + theme(panel.background = element_rect(fill = "transparent"),
   plot.background = element_rect(fill = "transparent",
        color = NA), panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(),
    legend.background = element_rect(fill = "transparent"),
   legend.box.background = element_rect(fill = "transparent")) +
   theme(legend.position = "none") +
    scale_fill_manual(values = c("darkgrey"))
```

pt10

Expression Matrix

Builiding a expression matrix for microRNA data

We builded a EM from files obtained from srnaToolBox. We did it for each batch, and joined them in a complete expression matrix.

```
setwd("~/Exosomas/QC/Expresion/Expresion_180322-190603/")
filenames <- list.files(pattern = "*.tsv")  # Read data
all_files <- lapply(filenames,
   function(x) {
        # All files in a list</pre>
```

```
read.table(file = x, sep = "\t",
             header = TRUE)
    })
list3 <- lapply(all_files, "[",</pre>
    c(1, 3)) # I need these 2 columns
list4 <- rbindlist(list3, fill = TRUE) # Binding all DF from the list</pre>
list4 <- lapply(list3, function(x) x[!duplicated(x$name),</pre>
    ]) # Removing duplicates
matrixA <- rbindlist(list4, fill = TRUE)</pre>
matrixA[is.na(matrixA)] = 0
matrixA <- ddply(matrixA, .(name),</pre>
    numcolwise(sum))
write.table(matrixA, file = "~/Exosomas/QC/Expresion/Matrices de Expresion/matrixA.csv",
    quote = TRUE, sep = ",")
setwd("~/Exosomas/QC/Expresion/Expresion_180626-180628-190531/")
filenames <- list.files(pattern = "*.tsv")</pre>
all_files <- lapply(filenames,
    function(x) {
        read.table(file = x, sep = "\t",
            header = TRUE)
    })
list3 <- lapply(all_files, "[",</pre>
    c(1, 3))
list4 <- rbindlist(list3, fill = TRUE)</pre>
list4 <- lapply(list3, function(x) x[!duplicated(x$name),</pre>
    ])
matrixB <- rbindlist(list4, fill = TRUE)</pre>
matrixB[is.na(matrixB)] = 0
matrixB <- ddply(matrixB, .(name),</pre>
    numcolwise(sum))
write.table(matrixB, file = "~/Exosomas/QC/Expresion/Matrices de Expresion/matrixB.csv",
    quote = TRUE, sep = ",")
setwd("~/Exosomas/QC/Expresion/Expresion_180726-190530/")
filenames <- list.files(pattern = "*.tsv")
all_files <- lapply(filenames,</pre>
    function(x) {
        read.table(file = x, sep = "\t",
            header = TRUE)
    })
list3 <- lapply(all_files, "[",</pre>
    c(1, 3))
list4 <- rbindlist(list3, fill = TRUE)</pre>
list4 <- lapply(list3, function(x) x[!duplicated(x$name),</pre>
matrixC <- rbindlist(list4, fill = TRUE)</pre>
matrixC[is.na(matrixC)] = 0
matrixC <- ddply(matrixC, .(name),</pre>
    numcolwise(sum))
```

```
write.table(matrixC, file = "~/Exosomas/QC/Expresion/Matrices de Expresion/matrixC.csv",
    quote = TRUE, sep = ",")
setwd("~/Exosomas/QC/Expresion/Expresion_180913-190529/")
filenames <- list.files(pattern = "*.tsv")
all_files <- lapply(filenames,</pre>
    function(x) {
        read.table(file = x, sep = "\t",
            header = TRUE)
    })
list3 <- lapply(all_files, "[",</pre>
    c(1, 3))
list4 <- rbindlist(list3, fill = TRUE)</pre>
list4 <- lapply(list3, function(x) x[!duplicated(x$name),</pre>
matrixD <- rbindlist(list4, fill = TRUE)</pre>
matrixD[is.na(matrixD)] = 0
matrixD <- ddply(matrixD, .(name),</pre>
    numcolwise(sum))
write.table(matrixD, file = "~/Exosomas/QC/Expresion/Matrices de Expresion/matrixD.csv",
    quote = TRUE, sep = ",")
setwd("~/Exosomas/QC/Expresion/Expresion_180919-190527/")
filenames <- list.files(pattern = "*.tsv")
all_files <- lapply(filenames,
    function(x) {
        read.table(file = x, sep = "\t",
            header = TRUE)
    })
list3 <- lapply(all_files, "[",</pre>
    c(1, 3))
list4 <- rbindlist(list3, fill = TRUE)</pre>
list4 <- lapply(list3, function(x) x[!duplicated(x$name),</pre>
    ])
matrixE <- rbindlist(list4, fill = TRUE)</pre>
matrixE[is.na(matrixE)] = 0
matrixE <- ddply(matrixE, .(name),</pre>
    numcolwise(sum))
write.table(matrixE, file = "~/Exosomas/QC/Expresion/Matrices de Expresion/matrixE.csv",
    quote = TRUE, sep = ",")
setwd("~/Exosomas/QC/Expresion/Expresion 181003-190524/")
filenames <- list.files(pattern = "*.tsv")
all_files <- lapply(filenames,</pre>
    function(x) {
        read.table(file = x, sep = "\t",
            header = TRUE)
    })
list3 <- lapply(all_files, "[",</pre>
    c(1, 3))
list4 <- rbindlist(list3, fill = TRUE)</pre>
```

```
list4 <- lapply(list3, function(x) x[!duplicated(x$name),</pre>
    ])
matrixF <- rbindlist(list4, fill = TRUE)</pre>
matrixF[is.na(matrixF)] = 0
matrixF <- ddply(matrixF, .(name),</pre>
    numcolwise(sum))
write.table(matrixF, file = "~/Exosomas/QC/Expresion/Matrices de Expresion/matrixF.csv",
    quote = TRUE, sep = ",")
setwd("~/Exosomas/QC/Expresion/Expresion_181004-190521/")
filenames <- list.files(pattern = "*.tsv")</pre>
all_files <- lapply(filenames,
    function(x) {
        read.table(file = x, sep = "\t",
            header = TRUE)
    })
list3 <- lapply(all_files, "[",</pre>
    c(1, 3))
list4 <- rbindlist(list3, fill = TRUE)</pre>
list4 <- lapply(list3, function(x) x[!duplicated(x$name),</pre>
    ])
matrixG <- rbindlist(list4, fill = TRUE)</pre>
matrixG[is.na(matrixG)] = 0
matrixG <- ddply(matrixG, .(name),</pre>
    numcolwise(sum))
write.table(matrixG, file = "~/Exosomas/QC/Expresion/Matrices de Expresion/matrixG.csv",
    quote = TRUE, sep = ",")
setwd("~/Exosomas/QC/Expresion/Expresion_181023-190319/")
filenames <- list.files(pattern = "*.tsv")</pre>
all_files <- lapply(filenames,
    function(x) {
        read.table(file = x, sep = "\t",
            header = TRUE)
    })
list3 <- lapply(all_files, "[",</pre>
    c(1, 3))
list4 <- rbindlist(list3, fill = TRUE)</pre>
list4 <- lapply(list3, function(x) x[!duplicated(x$name),</pre>
    ])
matrixH <- rbindlist(list4, fill = TRUE)</pre>
matrixH[is.na(matrixH)] = 0
matrixH <- ddply(matrixH, .(name),</pre>
    numcolwise(sum))
write.table(matrixH, file = "~/Exosomas/QC/Expresion/Matrices de Expresion/matrixH.csv",
    quote = TRUE, sep = ",")
setwd("~/Exosomas/QC/Expresion/Matrices de Expresion/")
filenames <- list.files(pattern = "*.csv")</pre>
all_files <- lapply(filenames,
```

```
function(x) {
        read.delim(file = x, sep = ",",
            header = TRUE, stringsAsFactors = FALSE)
    })
matrixX <- rbindlist(all_files,</pre>
    fill = TRUE)
matrixX <- matrixX %>%
    mutate_if(is.integer, as.numeric)
matrixX[is.na(matrixX)] = 0
matrixX <- ddply(matrixX, .(name),</pre>
    numcolwise(sum))
matrixX <- matrixX[apply(matrixX[,</pre>
    -1], 1, function(x) !all(x ==
    0)), ]
p <- "~/Exosomas/QC/Expresion/Matrices de Expresion/Expression matrix/matrixX.csv"
write.table(matrixX, file = p,
    quote = TRUE, sep = ",")
file.remove("matrixA.csv", "matrixB.csv",
    "matrixC.csv", "matrixD.csv",
    "matrixE.csv", "matrixF.csv",
    "matrixG.csv", "matrixH.csv")
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

```
t <- "~/Exosomas/QC/Expresion/Matrices de Expresion/Expression matrix/matrixX.csv"
Matrix <- read.table(file = t,
    header = TRUE, sep = ",")

tail(Matrix[, 1:4], n = 5)</pre>
```

	name	X180322.190603_Brain_S36	X32140243_EX0_S2	X32141753_EX0_S10
1922	hsa-miR-9985	269	30	6
1923	hsa-miR-99a-3p	5	0	0
1924	hsa-miR-99a-5p	31837	13099	792
1925	hsa-miR-99b-3p	1387	388	25
1926	hsa-miR-99b-5p	55305	49736	3282

Genome Distribution

Building a expression matrix for Genome distribution

We builded a new expression matrix to check the average length of the microRNA reads.

We are looking for 21-23 nucleotides reads, which is the cannonical length for them.

Genome Distribution

Plotting the lenght distribution of reads by batch

```
readLen_RC_A$A = rowMeans(readLen_RC_A[,
    c(2, 36)])
readLen_RC_B$B = rowMeans(readLen_RC_B[,
    c(2, 32)])
readLen_RC_C$C = rowMeans(readLen_RC_C[,
    c(2, 36)])
readLen_RC_D$D = rowMeans(readLen_RC_D[,
    c(2, 36)])
readLen_RC_E$E = rowMeans(readLen_RC_E[,
    c(2, 35)])
readLen_RC_F$F = rowMeans(readLen_RC_F[,
    c(2, 34)])
readLen_RC_G$G = rowMeans(readLen_RC_G[,
    c(2, 35)])
readLen_RC_H$H = rowMeans(readLen_RC_H[,
    c(2, 29)])
readLen <- data.frame(readLen_RC_A$Read_Length_nt,</pre>
    readLen_RC_A$A, readLen_RC_B$B,
    readLen_RC_C$C, readLen_RC_D$D,
    readLen_RC_E$E, readLen_RC_F$F,
    readLen_RC_G$G, readLen_RC_H$H)
names(readLen) <- c("Length", "A",</pre>
    "B", "C", "D", "E", "F", "G",
    "H")
readLen_long <- data.frame(reshape::melt(readLen,</pre>
    id.vars = "Length"))
colnames(readLen_long) <- c("Length",</pre>
    "Batch", "Value")
ggplot(readLen_long, aes(x = Length,
    y = Value, color = Batch)) +
    geom_line() + scale_color_igv() +
    geom_vline(xintercept = 22,
        linetype = "dashed") +
    annotate("text", x = 23, y = 0,
        label = "22nt", angle = 0,
        fontface = "bold") + theme_bw() +
    labs(x = "Nucleotide length",
        y = "% Reads", title = "Genome distribution") +
    geom_line(size = 1.2) + theme(axis.title = element_text(face = "bold"),
    plot.title = element text(size = 12,
       face = "bold"))
```

Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0. i Please use 'linewidth' instead.

Multi dimensional Scaling

We observed a possible batch effect in the reads distribution, so we performed a MDS using DESeq2 package.

[1] TRUE

DESeq2 object

converting counts to integer mode

Multi dimenstional scaling plots

Plot of all the quality features to search for possible batch effect.

MDS Reads percent

MDS Short reads

MDS Ultra short reads

Principal components correlation

-20

-10

V1

Finally we performed a test to check the possible correlation between variables and find the real origin of the batch effect.

10

```
"Virus")

all.equal(colnames(assay(vsd)),
   rownames(cross3))
```

[1] TRUE

```
cross3$Gender <- as.factor(cross3$Gender)
cross3$Age <- as.numeric(cross3$Age)
cross3$Diagnosis <- as.factor(cross3$Diagnosis)
names(cross3) [names(cross3) ==
    "Gender"] <- "Sex"

pr_out <- prince(assay(vsd), cross3,
    top = 20, center = TRUE)
prince.plot(pr_out, note = TRUE,
    Rsquared = TRUE)</pre>
```

Color Key and Histogram 0 0.4 0.8 Value

```
00.050 0 0 0 0 0 00.002010 0 0 0 0 0 0
                                                              Age
).0100.0020021052090090020100.001.0100.0100.010 00.010
                                                              Sex
).00<mark>2.00</mark>5.00<mark>1.00</mark>5.00<mark>1.00</mark>5.008.008.002.00<u>4.007</u>.008.001.008.002.002.008.002.00
                                                             Diagnosis
<mark>|.60</mark>80<mark>3.8.1091</mark>080<mark>8.20.0.10820</mark>800500<mark>81051</mark>020040040050040050
                                                              Batch
1.2200.0040800.001.0100.0900.0900.010 0 0 0 0 00.0
                                                             Reads perc
0.005004008008005001.0020020100.002000.010 00.010 0 0
                                                              Short Reads
<mark>).2500.007.1</mark>100.001.001.001.0500<mark>.0</mark>60 0 0 0 0 0 0 0 0
                                                              Ultra short reads
 0 0 0 0 0 0 00.001.0800.0500.040 00.010 00.020
                                                             Reads total
0.001.002040 0 0 0 0 00.010 00.010 0 0 0 0 0
                                                              Bacteria
 00.001.010 \ 0 \ 0 \ 0 \ 00.001.001.010 \ 0 \ 0 \ 00.010 \ 0 \ 0
                                                             Virus
Principal Components (Variation)
```

```
confounding(cross3, method = "chisq")
```

Color Key and Histogram -20 -10 Value

```
0 0.2 0.006 0.7 0.2 0.8 0.3 0.1 0.5 0.8
                                                    Age
0.26e - 56e - 040.6 0.7 0.9 0.5 0.2 0.1 0.3
                                                    Sex
Diagnosis
0.7 0.6 0.05 0 2e-43e-42e-56e-39 0.1 0.001
                                                    Batch
0.2 0.7 0.4 2e-43 0 3e-11e-152e-14 0.8 1e-04
                                                    Reads perc
0.8 0.9 0.5 4e-43e-11 0 1e-190.02 0.4 0.05
                                                    Short Reads
0.3 \quad 0.5 \quad 0.4 \, \frac{2e-5e-15e-19}{0.3} \quad 0.5 \quad 0.3 \, \frac{4e-04}{0.3}
                                                    Ultra short reads
0.1 0.2 0.4 1e-32e-140.021e-07 0 0.1 0.02
                                                    Reads total
0.5 0.1 0.7 0.1 0.8 0.4 0.3 0.1 0 6e-10
                                                    Bacteria
    0.3 0.7 0.0011e-040.054e-040.025e-102 0
                                                    Virus
                                        Bacteria
                                             Virus
          Diagnosis
               Batch
                    Reads perc
                         Short Reads
                              Ultra short reads
                                   Reads total
```

\$p.values

+pa=a00				
	Age	Sex	Diagnosis	Batch
Age	0.000000000	1.590022e-01	5.580716e-03	7.321726e-01
Sex	0.159002167	6.300377e-58	4.948630e-04	5.618898e-01
Diagnosis	0.005580716	4.948630e-04	3.934711e-264	4.976318e-02
Batch	0.732172600	5.618898e-01	4.976318e-02	0.000000e+00
Reads perc	0.223722023	7.275303e-01	3.731276e-01	1.695845e-43
Short Reads	0.756531872	9.130635e-01	4.588309e-01	3.936504e-41
Ultra short reads	0.277141330	5.044514e-01	3.693463e-01	2.418471e-56
Reads total	0.102979142	1.717422e-01	3.746660e-01	1.274002e-39
Bacteria	0.481711511	1.287641e-01	6.975253e-01	1.127403e-01
Virus	0.776720238	3.126284e-01	6.599840e-01	9.708320e-04
	Reads per	c Short Read	ds Ultra short	reads Reads total
Age	2.237220e-0	1 7.565319e-0	2.7714	13e-01 1.029791e-01
Sex	7.275303e-0	1 9.130635e-0	5.0445	14e-01 1.717422e-01
Diagnosis	3.731276e-0	1 4.588309e-0	3.69346	63e-01 3.746660e-01
Batch	1.695845e-4	3 3.936504e-4	2.4184	71e-56 1.274002e-39
Reads perc	0.000000e+0	0 2.798007e-1	1.01664	7e-159 2.110187e-14
Short Reads	2.798007e-1	1 0.00000e+0	00 1.27688	37e-19 1.716175e-02
Ultra short reads	1.016647e-15	9 1.276887e-1	0.0000	00e+00 1.324265e-07
Reads total	2.110187e-1	4 1.716175e-0	1.32426	65e-07 0.000000e+00
Bacteria	7.758546e-0	1 4.099047e-0	3.17136	32e-01 1.353835e-01
Virus	1.215356e-0	4 5.238477e-0	02 4.01470	04e-04 1.649828e-02
	Bacteri	a Vii	rus	
Age	4.817115e-0	1 7.767202e-	-01	
Sex	1.287641e-0	1 3.126284e-	-01	
Diagnosis	6.975253e-0	1 6.599840e-	-01	
Batch	1.127403e-0	1 9.708320e-	-04	
Reads perc	7.758546e-0	1 1.215356e-	-04	

Short Reads Ultra short reads Reads total Bacteria Virus	3.171362e-01 4.0 1.353835e-01 1.0 0.000000e+00 5.93	238477e-02 014704e-04 649828e-02 21406e-102 000000e+00	
\$n Age Sex Diagnosis Batch Reads perc Short Reads Ultra short reads Reads total Bacteria Virus	265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 Ultra short reads	Batch Reads perc Shore 265	265 265 265 265 265 265 265 265 265 265
Age Sex Diagnosis Batch Reads perc Short Reads Ultra short reads Reads total Bacteria Virus \$test.function	265 265 265 265 265 265 265 265 265	265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265 265	265 265 265 265 265 265 265 265 265 265
Age Sex Diagnosis Batch Reads perc Short Reads Ultra short reads Reads total Bacteria Virus	"lm" "chisq.test" "lm" "chisq.test" "lm"	Diagnosis Batch "lm" "lm" "chisq.test" "chisq.t "chisq.test" "chisq.t "chisq.test" "chisq.t "lm" short reads Reads tot	est" "lm" est" "lm" "lm" "lm" "lm" "lm" "lm" "lm" "lm
Age Sex Diagnosis Batch Reads perc Short Reads Ultra short reads Reads total Bacteria Virus	"lm"	"lm" "lm" "lm" "lm" "lm" "lm" "lm" "lm"	"lm"

\$classes

Age	Sex	Diagnosis	Batch
"numeric"	"factor"	"factor"	"factor"
Reads perc	Short Reads	Ultra short reads	Reads total
"numeric"	"numeric"	"numeric"	"numeric"
Bacteria	Virus		
"numeric"	"numeric"		