Graph Traversals: Applications

Topics

- Cycle detection
- ▶ Topological sort
- Shortest paths in DAG
- Shortest paths in unweighted graph
- Bipartite graph check
- Tree diameter
- Connected components
- Finding articulation points and bridges

- A cycle $c=\langle v_0,v_1,...,v_k=v_0\rangle$ is in G=(V,E) if $(v_{i-1},v_i)\in E$ for $i\in\{1,...,k\}$.
- ▶ How to detect a cycle in G?
- A DFS-based algorithm: check if there is a back edge (u,v)
 - While visiting u, we check (u,v) and we find v is discovered but not visited.

Stack

A/o				
-----	--	--	--	--

Stack

A/o E/o						
---------	--	--	--	--	--	--

If there is a cycle, and the first discovered vertex is u, then (u,v) must be a back edge.

Topological Sort

- A topological sort of a directed acyclic graph (DAG) G=(V,E) is a linear ordering of V such that if G contains an edge (u,v), then u appears before v in the ordering.
- Algorithm: O(|V| + |E|)
 - Run DFS on G. abort if any back edge exists
 - Once a vertex v is visited, prepend it to a linked list.

腰帶人外套

腰帶人外套

鞋子)腰帶)外套

長褲」(鞋子)(腰帶)(外套)

內褲」長褲」、鞋子」、腰帶」、外套

襪子 入神 長神 鞋子 腰帶 外套

手錶(襪子)、內褲)、長褲)、鞋子)、腰帶)、外套

手錶)(襪子)(內褲)(長褲)(鞋子)(腰帶)(外套)

Alternative Solution

- Degree of v: #edge incident to v
- In-degree of v: $|\{(u,v):u \in V\}|$
- ▶ Out-degree of v: |{(v,u):u∈V}|
- Idea: Repeat to remove a vertex whose indegree is o.
- If there are no vertices left, then it is a DAG, and we removed the vertices in topological order.

Cycle detected!

手錶]0

內褲 (襪子)

內褲 襪子 手錶 長褲

內褲」(養子)(長褲)(鞋子)

內褲 (養子) 長褲 (鞋子)(襯衫)

內褲」(襪子)(手錶)(長褲)(鞋子)(襯衫)(腰帶)

外套 0

內褲

襪子

手錶

長褲

鞋子

襯衫

腰帶

領帶

內褲」(襪子)〔手錶〕〔長褲〕〔鞋子〕〔襯衫〕〔腰帶〕〔領帶〕〔外套〕

Shortest Paths

- ▶ Weighted graph G=(V,E) with weight w
 - V: set of vertices
 - E: set of edges directed
 - \bullet w: E \rightarrow R can be generalized to paths
 - Weight of path $p = \langle v_0, v_1, ..., v_k \rangle$: $w(p) = \sum_{1 \le i \le k} w(v_{i-1}, v_i)$
- ▶ $\delta(u,v)=\min_{p:u} v_v w(p)$ no path: $\delta(u,v)=\infty$
- Goal: Compute $\delta(u,v)$

Weighted Adjacency Matrix

	1	2	3	4	5
1	О	6	8	-2	8
2	8	O	8	7	8
3	-1	8	О	-3	9
4	8	8	8	О	8
5	8	8	8	8	О

Weighted Adjacency List

Shortest Path: Directed Acyclic Graph

```
Source: S
▶ d[v]: the minimum distance from s to v
\lor \langle v_1,...,v_{|V|} \rangle = Topological-Sort(G)
 for i = 1 to |V| do
    d[v_i] = \infty
 d[s]=0
 for i = 1 to |V| - 1 do
                                        O(|V| + |E|)
    for each edge (v_i,v) \in E do
        if d[v]>d[v_i]+w(v_i,v)
          d[v]=d[v_i]+w(v_i,v)
```


Done

Shortest Paths: Unweighted Graph

- ▶ This can be solved by modified BFS
 - Or standard version in CLRS
- Initialization:
 - ▶ for each v∈V: enqueued[v]=visited[v]=false, d[v]=∞
 - enqueued[s]=true, d[s]=0, Q.enqueue(s)
- ▶ Main loop: while($Q \neq \emptyset$)

```
▶ u=Q.dequeue()
for each v s.t. (u,v)∈E
    if enqueued[v]==false
        enqueued[v]=true, d[v]=d[u]+1, Q.enqueue(v)
    visited[u]=true
```


Bipartite Graph Check

- ▶ Bipartite graph G=(V,E) undirected
 - ▶ V can be partition into A and B
 - $\rightarrow A \cup B = V \text{ and } A \cap B = \emptyset$
 - ▶ If $\{u,v\}\in E$, then $u\in A \Leftrightarrow v\in B$.
- How to check whether a graph is bipartite?
 - Repeat until d[v]<∞ for every v∈V</p>
 - ▶ Pick u s.t. $d[u] = \infty$
 - Run BFS from u to compute δ(u,v)
 - If there is an edge {u,v} s.t. 2|(d[u]+d[v]) then the graph is non-bipartite.

Non-bipartite

Tree Diameter

- Graph diameter of G: the length of the longest shortest path in G.
- Tree diameter: G=(V,E) is a tree
 - G is undirected unweighted/weighted
 - $\blacktriangleright |E| = |V| 1$
 - ▶ For every pair $u,v \in V$, there exists a path from u to v.

Solution 1: DP

Solution 2: Greedy

The farthest vertex of any $v \in V$ is an end of the diameter.

Solution 2: Greedy

The farthest vertex of any $v \in V$ is an end of the diameter.

Connected Components

- In an undirected graph G, a connected component C=(V_C,E_C) is a subgraph of G:
 - For $u,v \in V_C$, there is a path from u to v.
 - For $u \in V_C$ and $v \in V \setminus V_C$, there is no path from u to v.
- Use DFS or BFS to compute connected components.
 - ▶ Which is better? It depends.

Articulation Points and Bridges

- In undirected graphs,
 - A vertex v is an articulation points if removing v will disconnect the graph.
 - An edge e i s a bridge if removing e will disconnect the graph.
- All articulation points and bridges can be find by a DFS based algorithm.

Bridges

DFS Based Algorithm

Compute DFS order

Order

DFS order

B H

Low Value

Low value of v: The lowest order of nodes which are read during DFS-visit(v).

Another Example

DFS order

Low value

Another Example

DFS order

Low value

E Η

Another Example

Another Example

DFS order

Low value

DFS Based Algorithm

DFS order

Determine Articulation Points

- If u is root
 - u is an articulation point if and only if u has more than one child in DFS tree.
- If u is not root
 - u is an articulation point if and only if there exist an edge (u,v) and the DFS order of u is at most the low value of v.

Articulation Points

Determine Bridges

(u,v) is a bridge if and only if the DFS order of u is less than the low value of v.

Example 2

Bridges

