SAI VARUN THABETI

700741122

ASSIGNMENT 5

NEURAL NETWORKS AND DEEP LEARNING

Link for the recording:

https://drive.google.com/file/d/16DKCEuP889meybNYYHW2f17n_gP00g_z/view?usp=drive_link

Implement Naïve Bayes method using scikit-learn library
Use dataset available with name glass
Use train_test_split to create training and testing part
Evaluate the model on test part using score and
classification_report(y_true, y_pred)

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import GaussianNB
from sklearn.metrics import classification_report, accuracy_score

glass_data = pd.read_csv('glass.csv')

x_train = glass_data_drop("Type", axis=1)
y_train = glass_data['Type']

x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.2, random_state=0)

# Train the model using the training sets
gnb = GaussianNB()
gnb.fit(x_train, y_train)

y_pred = gnb.predict(x_test)
# Classification report
qual_report = classification_report(y_test, y_pred)
print(qual_report)
print("Naive Bayes accuracy is: ", (accuracy_score(y_test, y_pred))*100)
```

	precision	recall	f1-score	support	
1	0.19	0.44	0.27	9	
2	0.33	0.16	0.21	19	
3	0.33	0.20	0.25	5	
5	0.00	0.00	0.00	2	
6	0.67	1.00	0.80	2	
7	1.00	1.00	1.00	6	
accuracy			0.37	43	
macro avg	0.42	0.47	0.42	43	
weighted avg	0.40	0.37	0.36	43	
Naive Bayes accuracy is: 37.2093023255814					

Implement linear SVM method using scikit library
 Use the same dataset above
 Use train_test_split to create training and testing part
 Evaluate the model on test part using score and classification_report(y_true, y_pred)

```
from sklearn.model selection import train_test_split
  from sklearn.svm import SVC
  from sklearn.metrics import classification_report, accuracy_score
  glass_data = pd.read_csv('glass.csv')
  x_train = glass_data.drop("Type", axis=1)
  y_train = glass_data['Type']
  x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.2, random_state=0)
  svc.fit(x_train, y_train)
  y_pred = svc.predict(x_test)
  qual_report = classification_report(y_test, y_pred, zero_division = 0)
  print(qual_report)
  print("SVM accuracy is: ", accuracy_score(y_test, y_pred)*100)
                                     recall f1-score
                   precision
                                                               support
                                        1.00
                                                     0.35
                                                                       9
               1
                          0.21
               2
                          0.00
                                        0.00
                                                     0.00
                                                                      19
               3
                          0.00
                                        0.00
                                                     0.00
                                                                       5
               5
                                                                       2
                          0.00
                                        0.00
                                                     0.00
               6
                          0.00
                                        0.00
                                                     0.00
                                                                       2
               7
                          0.00
                                        0.00
                                                                       6
                                                     0.00
     accuracy
                                                     0.21
                                                                      43
                          0.03
                                        0.17
                                                     0.06
                                                                      43
    macro avg
weighted avg
                          0.04
                                        0.21
                                                     0.07
                                                                      43
SVM accuracy is:
                        20.930232558139537
```

Which algorithm you got better accuracy? Can you justify why?

Gaussian algorithm gives better accuracy. As the accuracy we got upon training on gaussian is greater than that of SVM.