[Lecture]: A. Coli		
High-level summany:		
A. adi movements	RUN, IR 7	
Cornellant Arronf		
(T,N) wordinate from	DIES CIZON	

ን

z"arrificial".

Model of E. coli -> A. coli.

Suppose A-coli is pointing in (the variable) DIRECTION.

· at each individual step :

A- coli alternates between 2 STATES =

O RW. +2 with in DIRECTION.

* TUMBLE votante/update DIRECTION *

(* E-coli can only 2) and not Gr

-> A coli step 1 notation angle ~ unif ([20°, 90°]).

· composition of steps.

switch between states follow the probabilities:

RUN-10-TUMBLE = 0.1

TUMBLE-TO-RUN = 0.3.

. growal path.

A. voli measures a posture difference, i.e., when the food conc. is T, the angle of TUMBLE is smaller.

Model of finding highest come food. > Gradient Ascent.

· Geometrial description of A-coli movements:

~ a dynamical systems problem!

unit vertors

$$\vec{p}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 or eqv. $\vec{p}(t) = x(t) \hat{i} + y(t) \hat{j}$.

· Food funtion:

Derivative
$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta^y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

approx error.

L) desirable is a local linear approx to 1D curse.

where of is the gradient vector:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial x}{\partial x} \left(\frac{\partial x}{\partial x} \right) = \frac{\partial x}{\partial x} \left(\frac{\partial x}{\partial x} \right) + \frac{\partial y}{\partial x} \left(\frac{\partial x}{\partial x} \right)$$

Andog for 2D sintare: tangent surface is the lest local approx of 20 surface.

Two equ. ways of visualisty the food func:

Gundrent ascent orlgotthm:

- Initialization: Start at point $p^o = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ \in domain of f.
- · Back propagation update me from por to port!

$$pn = \begin{pmatrix} xn \\ yn \end{pmatrix}, \Delta P := \nabla f(x,y).$$

$$\Rightarrow P^{n+1} = P^{n} + h \triangle P^{n}.$$

$$= {\binom{x_{n}}{y_{n}}} + h \nabla f {\binom{x_{n}}{y_{n}}}.$$

- Convergence: Seop when $||p^{nH} p^n|| \le \epsilon \approx 0$.
- * : ascent "here because we want to <u>maximize</u> the food func. In ML, pradient descent because we want to minimize the loss func.
- · vector field.

We have an integral trajectory $\gamma(t)$ of a vector field a(x) iff the relocity vector $\frac{d\gamma(t)}{dt} = a(\gamma(t))$

· How to represent all possible paths of movements of A. coli?

