

UJM 4 (1) (2015)

UNNES Journal of Mathematics

PENERAPAN ALGORITMA PRIM DAN KRUSKAL PADA JARINGAN DISTRIBUSI AIR PDAM TIRTA MOEDAL CABANG SEMARANG UTARA

Umi Latifah[™], Endang Sugiharti

Jurusan Matematika, FMIPA, Universitas Negeri Semarang, Indonesia Gedung D7 Lt.1, Kampus Sekaran Gunungpati, Semarang 50299

Info Artikel

Sejarah Artikel: Diterima Agustus 2014 Disetujui September 2014 Dipublikasikan Mei 2015

Keywords: Prim and Kruskal algorithms Minimum Spanning Tree MATLAB

Abstrak

Algoritma Prim dan Kruskal adalah algoritma yang dapat digunakan untuk mencari pohon rentang minimum untuk graf berbobot. Permasalahan dalam penulisan skripsi ini adalah bagaimana hasil pohon rentang minimum menggunakan algoritma Prim dan Kruskal, serta bagaimana aplikasinya menggunakan MATLAB. Dari data yang diperoleh dapat disusun gambar jaringan. Selanjutnya dari gambar jaringan dapat diperoleh pohon rentang minimum menggunakan algoritma Prim dan Kruskal, dengan bantuan program MATLAB. Berdasarkan hasil penelitian dan pembahasan dapat disimpulkan bahwa pohon rentang minimum dari A1 (PDAM) ke A51 (titik penyambungan pipa) menggunakan algoritma Prim dan program MATLAB adalah 24.365 m. Begitupula menggunakan algoritma Kruskal dan program MATLAB ternyata 24.365 m. Hal ini mengakibatkan penghematan pipa pendistribusian sepanjang 12.735 m dari panjang total sebelumnya yaitu 37.100 m.

Abstract

Prim and Kruskal algorithms are algorithms that can be used to find the minimum spanning tree for a weighted graph. The problems in this research were how the results of a minimum spanning tree using Prim's algorithm and Kruskal, and the application using MATLAB. From the data obtained can be arranged a network image. Then, from the network image can be obtained a minimum spanning tree using Prim and Kruskal algorithm, by MATLAB programs. Based on the results of research and discussion, it can be concluded that the minimum spanning tree of A_1 (PDAM) to A_{51} (point of connecting pipe) using Prim's algorithm and MATLAB program is 24.365 m. Similarly in using the Kruskal algorithm and MATLAB program turns 24.365 m. This resulted in savings of 12.735 m along the pipeline distribution from the previous total length of 37.100 m.

© 2015 Universitas Negeri Semarang

△Alamat korespondensi: E-mail: umi.ifah16@gmail.com

PENDAHULUAN

Perkembangan ilmu pengetahuan dan seminimal solusi secara konseptual menyelesaikan berbagai permasalahan yang semakin banyak muncul penggunaan model matematika maupun penalaran matematika alat bantu sebagai permasalahan yang dihadapi dalam berbagai ini adalah (1) Bagaimana penyelesaian optimal ilmu.

Teori graf sebagai salah satu cabang matematikawan terkenal dari Swiss bernama program MATLAB? Euler. Puluhan tahun terakhir ini teori graf mengalami perkembangan pesat. kehidupan sehari-hari terdapat permasalahan menggunakan pohon rentang minimum, atau dikenal dengan istilah Minimum Spanning Tree masalah mencari jarak (MST). Misalnva terpendek, biava termurah, dan (Budayasa, 2007).

bahwa penelitian tentang penggunaan suatu jarak atau panjang pipa yang digunakan untuk algoritma untuk menentukan pohon rentang distribusi air di wilayah tersebut. Teknik minimum dan implementasinya pada suatu graf berbobot pernah dilakukan oleh sejumlah peneliti, dengan algoritma Prim dan Kruskal, serta dengan antara lain: Greenberg (1998) membandingkan menggunakan program MATLAB. algoritma Prim dan algoritma Kruskal dalam mencari pohon rentang minimum dengan menggunakan graf yang terhubung dengan bobot tidak negatif pada sisi-sisinya. Dai dan Wu (2005) melakukan penelitian tentang algoritma pohon rentang minimum vaitu algoritma Prim, Kruskal dan biner, untuk menyelesaikan energi yang efisien masalah routing dalam jaringan nirkabel ad hoc untuk menemukan seragam minimum jangkauan transmisi. Nugraha (2011)mengaplikasikan algoritma Prim untuk menentukan pohon rentang minimum suatu graf berbobot dengan menggunakan pemrograman berorientasi objek.

Masalah pendistribusian banyak dialami beberapa industri-industri (perusahaaan) yang ada di Indonesia, salah satunya adalah Perusahaan Daerah Air Minum (PDAM) di Kota Semarang. Perusahaan daerah ini adalah perusahaan yang bergerak di bidang pengolahan air bersih. Pertimbangan efisiensi waktu, biaya dan rute dalam suatu perusahaan sangat diperhatikan. Untuk itu diperlukan rencana yang tepat dalam

membuat jalur pipa agar biaya yang digunakan mungkin. Dengan demikian, teknologi yang sangat pesat tidak lepas dari diperlukan adanya suatu alat, teknik maupun peranan ilmu matematika, yakni ilmu yang metode yang praktis, efektif dan efisien untuk dalam memecahkan permasalahan tersebut. Salah satu alat yang dapat digunakan untuk menyelesaikan terjadi dalam kehidupan di dunia. Dewasa ini masalah ini yaitu dengan menggunakan program MATLAB.

Berdasarkan latar belakang. dalam menyelesaikan rumusan masalah yang diangkat dalam penelitian pendistribusian air PDAM Tirta Moedal Cabang Semarang Utara dengan menggunakan Algoritma matematika sebenarnya sudah ada sejak lebih Prim dan Kruskal?. (2) Bagaimana visualisasi dari dua ratus tahun yang silam. Jurnal pertama model pendistribusian air PDAM Tirta Moedal tentang teori graf muncul pada tahun 1736, oleh Cabang Semarang Utara dengan menggunakan

Dalam **METODE**

Metode yang digunakan dalam penelitian mengenai optimasi yang dapat diselesaikan ini adalah studi pustaka, perumusan masalah, pengambilan data, analisis dan pemecahan masalah, serta penarikan kesimpulan. Studi pustaka digunakan untuk mengumpulkan tenaga informasi yang diperlukan dalam penelitian yang seminimal mungkin dalam pembangunan jalan, pada akhirnya dijadikan landasan teori untuk jaringan telepon kabel, maupun jaringan listrik. pemecahan masalah. Metode pengambilan data dilakukan untuk mendapatkan informasi data Hasil telaah literatur mengidentifikasikan berupa gambar peta jalur distribusi PDAM dan pemecahan masalah yang digunakan adalah

HASIL DAN PEMBAHASAN

Berdasarkan data panjang pipa seperti data Tabel 1 yang diperoleh dari PDAM Tirta Moedal Cabang Semarang Utara, kemudian disusun gambar jaringan seperti pada Gambar 1. Dalam hal ini penyebaran jaringan pipa hanya sampai pada ujung pipa pada jalan-jalan utama yang menuju ke pelanggan, atau dengan kata lain kajian penelitian ini tidak sampai langsung pada setiap pelanggan. Berdasarkan data vang diperoleh kemudian ditulis dalam bentuk tabel, tabel tersebut dapat dilihat pada Tabel 1.

Berdasarkan definisi, jika G adalah graf berbobot, maka bobot pohon rentang T dari G didefinisikan sebagai jumlah bobot semua sisi di T. Pohon rentang yang berbeda mempunyai bobot yang berbeda pula. Di antara semua pohon rentang di G, pohon rentang yang berbobot minimum dinamakan pohon rentang minimum (Minimum Spanning Tree) (Munir, 2012: 450).

dapat diselesaikan dengan cara yang sangat kecil ke besar. Kemudian pilih garis dengan bobot mudah yaitu: (a) Pilihlah secara sebarang salah terkecil, tetapi tidak membentuk loop dengan satu titik, kemudian hubungkan titik tersebut garis-garis yang sudah dipilih terdahulu. dengan titik lain yang terdekat. (b) Tentukan titik lain yang belum dihubungkan, yang jaraknya Langkah-langkah yang digunakan algoritma paling dekat dengan titik vang dihubungkan sebelumnya. pada langkah Kemudian hubungkan titik ini. Ulangi langkah ini hingga seluruh titik terhubungi (Dimyati, 2004:165-166).

Metode untuk mencari pohon rentang minimum dari suatu graf bobot G, dengan bobot setiap sisi G adalah bilangan positif, dapat menggunakan algoritma Prim dan Kruskal. Untuk mencari pohon rentang minimum T dari graf G dengan algoritma Prim, mula-mula dipilih satu titik sembarang (misal v₁). Kemudian ditambahkan satu garis yang berhubungan dengan v₁ dengan bobot yang paling minimum (misal e₁) dan titik ujung lainnya ke T sehingga T terdiri dari sebuah garis e₁ dan 2 buah titik-titik ujung garis e₁ (salah satunya adalah v₁). Pada setiap langkah selanjutnya, dipilih sebuah garis dalam E(G) yang bukan anggota E(T) dengan sifat: (a) Garis tersebut berhubungan dengan salah satu titik \in V(T). (b) Garis tersebut mempunyai bobot yang paling kecil

Langkah-langkah yang digunakan algoritma Prim sebagai berikut.

- 0. Inisialisasi : mula-mula T adalah graf
- Ambil sembarang $v \in V(G)$. Masukkan v 1. kedalam V(T)
- 2. $V(G) = V(G) \{v\}$
- 3. Untuk i = 1, 2, ..., n-1, lakukan:
 - a. Pilihlah garis $e \in E(G)$ dan $e \notin E(T)$ dengan syarat:
 - e berhubungan dengan satu titik dalam T dan tidak membentuk sirkuit
 - ii. mempunyai bobot terkecil dibandingkan dengan semua garis yang berhubungan dengan titiktitik dalam T. Misalkan w adalah titik ujung e yang tidak berada dalam T.
 - b. Tambahkan e ke E(T) dan w ke V(T)
 - c. $V(G) = V(G) \{w\}$

Sedangkan Untuk mencari pohon rentang minimum dari graf G dengan algoritma yang ditemukan Kruskal, mula-mula semua garis

Persoalan pohon rentang minimum ini dalam G diurutkan berdasarkan bobotnya dari

sudah Kruskal adalah sebagai berikut.

- Isi T dengan semua titik-titik G tanpa garis
- m = 0
- Selama m < (n-1) lakukan : 3.
 - Tentukan garis e ∈ E dengan bobot minimum. Jika ada beberapa e dengan sifat tersebut, pilih salah satu secara sembarang
 - Hapus e dari E
 - Jika e ditambahkan ke T tidak menghasilkan sirkuit, maka
 - i. Tambahkan e ke T
 - ii. m = m + 1

(Siang, 2004)

Selain menggunakan algoritma Prim dan Kruskal, peneliti juga menggunakan program MATLAB untuk mengaplikasikan. MATLAB merupakan bahasa pemrograman yang hadir dengan fungsi dan karakteristik yang berbeda dengan bahasa pemrograman lain yang sudah ada lebih dahulu seperti Delphi, Basic maupun C++. merupakan MATLAB pemrograman level tinggi yang dikhususkan untuk kebutuhan komputasi teknis, visualisasi dan pemrograman seperti komputasi matematik, analisis data, pengembangan algoritma, simulasi dan pemodelan dan grafik-grafik perhitungan (Firmansyah, 2007: 1).

Dalam penelitian ini akan dicari total panjang pipa yang bernilai minimum yang memuat semua titik. Data yang diperoleh yaitu gambar peta jalur distribusi pipa PDAM Tirta Moedal Cabang Semarang Utara dan jarak atau panjang pipa yang digunakan di wilayah tersebut. Dalam hal ini jalur distribusi pipa tidak sampai langsung kepada pelanggan, hanya sampai pada ujung jalan yang menuju pelanggan. Berdasarkan data yang diperoleh kemudian ditulis dalam bentuk tabel, tabel tersebut dapat dilihat pada Tabel 1.

Dari data tersebut kemudian dibuat gambar jalur dengan titik sumber PDAM sampai ke semua titik yang berupa ujung pipa distribusi pada setiap jalan. Gambar jaringan dapat dilihat pada Gambar 1.

Tabel 1. Data hasil penelitian di PDAM Tirta Moedal Cabang Semarang Utara.

	Nama Jalan	Titik	Sisi	Jarak
1.	Jl. Indraprasta	A1 – A2	X40	964
2.	Jl. Imam Bonjol	A2 – A3	X41	156
		A3 – A9	X57	1.989
	•	A3 – A4	X50	1.128
	•	A4 – A44	X18	423
		A9 – A11	X7	559
		A11 – A12	X8	190
		A12 – A13	X9	161
		A13 – A14	X10	492
3.	Jl. Tanjung	A14 – A15	X11	170
		A15 – A16	X12	298
4.	Jl. MGR	A1 – A8	X1	525
	Sugiyopranoto			
		A8 – A9	X2	310
		A9 – A10	X3	68
5.	Jl. Srikandi	A2 - A50	X42	189
		A50 – A51	X58	2.646
6.	Jl. Sultan	A3 - A45	X43	563
	Hasanudin			
7.	Jl. Kalimas	A45 – A46	X44	164
		A46 – A47	X45	180
		A45 – A48	X46	267
		A48 – A49	X47	169
8.	Jl. Letjen Suprapto	A4 – A5	X48	1.075
9.	Jl. Raden Patah	A5 – A6	X54	1.623
10.	Jl. Kaligawe	A6 – A7	X55	255
11.	Jl. Ronggowarsito	A5 – A43	X52	1.458
12.	Jl. Pengapan	A6 – A43	X59	2.697
13.	Jl. Pemuda	A10 – A17	X19	625
		A17 – A16	X13	290
		A16 – A22	X14	413

14.	Jl. Pandanaran	A10 – A20	X4	516
		A20 – A19	X5	391
		A19 – A24	X20	722
		A24 – A30	X22	420
		A30 – A29	X23	542
15.	Jl. MH. Thamrin	A16 – A18	X26	807
		A18 – A19	X6	329
16.	Jl. Gajahmada	A22 – A23	X17	303
		A23 – A24	X53	1.586
17.	Jl. Pandansari	A4 – A21	X16	158
		A21 – A22	X15	289
18.	Jl. Agus Salim	A22 – A38	X56	1.630
19.	Jl. Jend. A. Yani	A24 – A25	X21	238
		A25 – A26	X51	1.198
		A26 – A27	X31	269
20.	Jl. Mataram	A5 – A38	X35	304
		A38 – A37	X34	517
		A37 – A36	X33	430
		A36 – A27	X32	245
		A27 – A28	X30	553
		A28 – A29	X29	954
		A29 – A33	X27	858
		A33 – A34	X28	851
		A34 – A35	X49	1.095
21.	Jl. Patimura	A38 – A39	X36	424
		A39 – A40	X37	159
		A40 – A41	X38	294
		A41 – A42	X39	211
22.	Jl. Brigjen	A29 – A31	X24	224
	Katamso			
		A31 - A32	X25	536

Gambar 1. Graf awal jaringan pipa PDAM Tirta Moedal Cabang Semarang Utara.

Penyambungan pipa terpilih urutan terakhir Tabel 3. Hasil iterasi pencarian pohon rentang yaitu titik A₅₁. Sehingga diperoleh hasil dengan minimum dengan algoritma Kruskal menggunakan algoritma Prim seperti pada Tabel Iterasi

Tabel 2. Hasil iterasi pencarian pohon rentang minimum dengan algoritma Prim

	minimum dengan algoritma Prim Sisi yang Titik yang Pata					
Iterasi ke-	terpilih	terpilih	Bobot			
1	X1	A1-A8	525			
2	X2	A8-A9	310			
3	X3	A9-A10	68			
4	X4	A10-A20	516			
5	X5	A20-A19	391			
6	X6	A19-A18	329			
7	X7	A9-A11	559			
8	X8	A11-A12	190			
9	X9	A12-A13	161			
10	X10	A13-A14	492			
11	X11	A14-A15	170			
12	X12	A15-A16	298			
13	X13	A16-A17	290			
14	X14	A16-A22	413			
15	X15	A22-A21	289			
16	X16	A21-A4	158			
17	X17	A22-A23	303			
18	X18	A4-A44	423			
19	X19	A19-A24	722			
20	X20	A24-A25	238			
21	X21	A24-A30	420			
22	X22	A30-A29	542			
23	X23	A29-A31	224			
24	X24	A31-A32	536			
25	X25	A29-A33	858			
26	X26	A33-A34	851			
27	X27	A29-A28	954			
28	X28	A28-A27	553			
29	X29	A27-A26	269			
30	X30	A27-A36	245			
31	X31	A36-A37	430			
32	X32	A37-A38	517			
33	X33	A38-A5	304			
34	X34	A38-A39	424			
35	X35	A39-A40	159			
36	X36	A40-A41	294			
37	X37	A41-A42	211			
38	X38	A1-A2	964			
39	X39	A2-A3	156			
40	X40	A2-A50	189			
41	X41	A3-A45	563			
42	X42	A45-A46	164			
43	X43	A46-A47	180			
44	X44	A45-A48	267			
45	X45	A48-A49	169			
46	X46	A34-A35	1.095			
47	X47	A5-A43	1.458			
48	X48	A5-A6	1.623			
49	X49	A6-A7	255			
50	X50	A50-A51	2.646			

Sedangkan hasil pohon rentang minimum dengan menggunakan algoritma Kruskal dapat dilihat pada Tabel 3.

Iterasi ke-	Sisi yang terpilih	Titik yang terpilih	Bobot
1	X1	A9-A10	68
2	X2	A2-A3	156
3	X3	A4-A21	158
4	X4	A39-A40	159
5	X5	A12-A13	161
6	X6	A45-A46	164
7	X7	A48-A49	169
8	X8	A14-A15	170
9	X9	A46-A47	180
10	X10	A2-A50	189
11	X11	A11-A12	190
12	X12	A41-A42	211
13	X13	A29-A31	224
14	X14	A24-A25	238
15	X15	A27-A36	245
16	X16	A6-A7	255
17 _	X10 X17	A45-A48	267
18 -	X17 X18	A27-A26	269
19	X19	A21-A22	289
_	X20	A21-A22 A16-A17	290
20 _			
21 _	X21	A40-A41	294
22 _	X22	A15-A16	298
23 _	X23	A22-A23	303
24 _	X24	A5-A38	304
25	X25	A9-A8	310
26 _	X26	A18-A19	329
27 _	X27	A19-A20	391
28	X28	A16-A22	413
29	X29	A24-A30	420
30	X30	A4-A44	423
31	X31	A38-A39	424
32	X32	A36-A37	430
33	X33	A13-A14	492
34	X34	A10-A20	516
35	X35	A37-A38	517
36	X36	A1-A8	525
37	X37	A31-A32	536
38	X38	A29-A30	542
39	X39	A27-A28	553
40	X40	A9-A11	559
41	X41	A3-A45	563
42	X42	A19-A24	722
43	X43	A33-A34	851
44	X44	A29-A33	858
45	X45	A28-A29	954
46	X46	A1-A2	964
47	X47	A34-A35	1.095
48	X48	A54-A55 A5-A43	1.458
48 49	X48 X49	A5-A45 A5-A6	1.623
50 <u> </u>		A5-A6 A50-A51	
30	X50	AJU-AJ1	2.646

Pencarian pohon rentang minimum dari jalur distribusi pipa PDAM dengan Algoritma Prim dan Kruskal, berdasarkan gambar jalur distribusi yang dibuat adalah dengan cara menelusuri dari A1 (titik awal) sampai dengan A₅₁ (titik akhir) dengan mempertimbangkan bobot yang minimum yang terlewati dan tidak membentuk siklus. Gambar pohon rentang minimum yang dihasilkan dengan algoritma Prim dan Kruskal dapat dilihat pada Gambar 2 dan Gambar 3.

Gambar 2. Hasil pohon rentang minimum dengan algoritma Prim

Gambar 3. Hasil pohon rentang minimum dengan algoritma Kruskal

Setelah perhitungan manual algoritma Prim dan MATLAB dapat dilihat pada gambar berikut. Kruskal selesai, selanjutnya pengujian sistem aplikasi algoritma Prim dan Kruskal dalam menentukan pohon rentang minimum suatu graf Gambar berbobot dengan menggunakan program MATLAB. Hasil dari pencarian pohon rentang minimum dari model graf berbobot dengan 51 titik/simpul dan 53 buah sisi dengan program minimum sepanjang 24.365 m.

Gambar adalah output MATLAB Prim. menggunakan algoritma Sedangkan merupakan output MATLAB menggunakan algoritma Kruskal. Dapat dilihat pada jarak total antara algoritma Prim dan Kruskal sama, yaitu menghasilkan bobot

Gambar 4. Tampilan hasil uji data dengan algoritma Prim.

Gambar 5. Tampilan hasil uji data dengan algoritma Kruskal.

Berikut hasil simulasi pencarian pohon rentang minimum dengan menggunakan algoritma Prim dan Kruskal. Mula-mula dipilih load data yang telah ditentukan, kemudian pilih view tree untuk memunculkan gambar pohon rentang berdasarkan data asli. Lihat Gambar 6 berikut adalah *output* MATLAB dari data awal.

Gambar 6. Model graf awal dengan bobot 51 buah titik/simpul dan 53 sisi.

Untuk melihat gambar graf yang telah rentang minimum yang terbentuk dari hasil Hitung Prim atau Hitung Kruskal. Pohon Gambar 7.

diminimumkan dengan menggunakan algoritma proses algoritma Prim dan Kruskal terhadap Prim dan Kruskal, dengan memilih tombol model graf berbobot di atas dapat dilihat pada

Gambar 7. Output pohon rentang minimum dengan algoritma Prim dan Kruskal

Hasil pengujian di atas memperlihatkan SIMPULAN urutan pohon rentang minimum dengan jumlah total panjang minimum sebesar 24.365 m dari total panjang pipa 37.100 m. Baik algoritma Prim sama.

Dari hasil penelitian dan pembahasan maka diperoleh yaitu 1) Hasil pohon rentang dan algoritma Kruskal menghasilkan nilai yang minimum dari jalur distribusi pipa PDAM Tirta Moedal Cabang Semarang Utara yang diperoleh

dengan algoritma Prim dan Kruskal serta menggunakan bantuan program MATLAB dapat dilihat pada Gambar 2 dan 3. 2) Hasil total panjang pipa minimum yang digunakan dari jalur distribusi pipa PDAM Tirta Moedal Cabang Semarang Utara yang diperoleh dengan algoritma Prim yaitu 24.365 m seperti yang terlihat pada tabel dan gambar yang dapat dilihat pada Tabel 2 dan Gambar 2. Sama dengan algoritma Kruskal memperoleh total panjang pipa minimum sepanjang 24.365 m yang dapat dilihat pada Tabel 3 dan Gambar 3. Ini berarti penggunaan algoritma Prim dan Kruskal dalam pencarian pohon rentang minimum mempunyai hasil yang sama. Dalam penelitian ini, penulis juga menggunakan software komputer yakni program MATLAB sebagai output secara langsung yang dapat memberikan hasil berupa gambar pohon rentang minimum, yang ternyata mempunyai panjang 24.365 menggunakan algoritma Prim maupun Kruskal. Dengan demikian PDAM Tirta Moedal Cabang Semarang Utara dapat menghemat sepanjang 12.735 m dari total panjang pipa terpasang yaitu 37.100 m.

DAFTAR PUSTAKA

- Budayasa, I.K. 2007. *Teori Graph dan Aplikasinya*. Surabaya: Unesa University Press.
- Dai, Q. & Wu, J. 2005. Computation of Minimal Uniform Transmission Range in Ad Hoc Wireless Networks. *Cluster Computing*, Vol 8: 127-133.
- Dimyati, A. 2004. *Operations Research*. Bandung : Sinar Baru Algosindo.
- Firmansyah, A. 2007. Dasar-dasar Program MATLAB.
- Greenberg, H. J. 1998. *Greedy Algorithms for Minimum Spanning Tree*. University of Colorado at Denver.
- Munir, R. 2012. *Matematika Diskrit*. Bandung: ITB.
- Nugraha, D.W. 2011. Aplikasi Algoritma Prim Untuk Menentukan Minimum Spanning Tree Suatu Graf Berbobot dengan Menggunakan Pemrograman Berorientasi Objek. *Jurnal Ilmiah Foristek*, Vol 1, No.2: 71.
- Siang, J.J. 2004. Matematika Diskrit dan Aplikasinya pada Ilmu Komputer. Yogyakarta: ANDI.