Programming Fundamentals for Data Science

Laboratory Session 3

Data Processing

This laboratory session is focused on a range of data processing techniques. We will be using the Python libraries NumPy and pandas, which provide key data structures, such as arrays, series and data frames.

Task 1

Initialise an array with 12 random integer values from the interval [65 .. 75]. Visualise the values. Consider these values as the average temperatures measured in Fahrenheit. Store the values in a pandas Series. Set the indices of the pandas series as the full names of the months. Visualise the series including the indices. Convert the temperatures from Fahrenheit into Celsius and visualise them again. Use integer data type. Mode is the value which occurs most frequently in a dataset. By using the function with the same name, determine the most common average monthly temperature and print it on the screen. Print the number of months this average temperature was recorded.

The script will need the following libraries:

import numpy as np import pandas as pd import calendar

Data Frames

In Python, the term data frame describes a two-dimensional data structure organised and presented as a table. It is provided by the pandas library. In many cases in practice, the initial step to perform when working with data is the so-called data pre-processing, which is usually focused on missing values, unnecessary duplicates, wrong data types and incorrect values.

Consider the following 28-row dataset stored as 'Dataset.csv' file available on Moodle:

	longitude	latitude	housing_median_age	total_rooms	population	median_income	median_house_value	ocean_proximity
0	-122.23	37.88	41.0000	880	322	8.3252	452600	NEAR BAY
1	-122.23	37.88	41.0000	880	322	8.3252	452600	NEAR BAY
2	-122.22	37.86	21.0000	7099	2401	8.3014	358500	NEAR BAY
3	-122.25	37.84	52.0001	3104	1157	3.1200	241400	NEAR BAY
4	-122.26	37.85	52.0000	3503	1504	3.2705	241800	NEAR BAY
5	-121.65	39.32	40.0000	812	374	2.7891	73500	INLAND
6	-121.69	39.36	29.0000	2220	1170	2.3224	56200	INLAND
7	-121.70	39.37	32.0000	1852	911	1.7885	57000	INLAND
8	-121.70	39.36	46.0000	1210	523	1.9100	63900	INLAND
9	-121.70	39.36	37.0000	2330	1505	2.0474	56000	INLAND
10	-121.69	39.36	34.0000	842	635	1.8355	63000	INLAND
11	-121.74	39.38	27.0000	2596	1100	2.3243	85500	NaN
12	-121.80	39.33	30.0000	1019	501	2.5259	81300	INLAND
13	-120.46	38.15	16.0000	4221	1516	2.3816	116000	INLAND
14	-120.55	38.12	10.0000	1566	785	2.5000	116100	INLAND
15	-120.56	38.09	34.0000	2745	1150	2.3654	94900	INLAND
16	-124.23	41.75	11.0000	3159	1343	2.4805	73200	NEAR OCEAN
17	-124.21	41.77	17.0000	3461	1947	2.5795	68400	NEAR O
18	-124.19	41.78	15.0000	3140	1645	1.6654	74600	NEAR O
19	-124.16	41.74	15.0000	2715	1532	2.1829	69500	NEAR OCEAN
20	-124.14	41.95	21.0000	2696	1208	NaN	122400	NEAR OCEAN
21	-124.16	41.92	19.0000	1668	841	2.1336	75000	NEAR OCEAN
22	-118.32	33.35	27.0000	1675	744	2.1579	450000	ISLAND
23	-118.33	33.34	52.0000	2359	1100	2.8333	414700	ISLAND
24	-118.32	33.33	52.0000	2127	733	3.3906	300000	ISLAND
25	-118.32	33.34	52.0000	996	341	2.7361	450000	ISLAND
26	-118.48	33.43	29.0000	716	422	2.6042	287500	ISLAND
27	-118.48	33.43	29.0000	716	422	2.6042	287500	ISLAND

Actual dataset has approximately 20,000 rows and can be found at: https://www.kaggle.com/camnugent/california-housing-prices

Task 2

1. Download the Dataset.csv file from Moodle, load its content into pandas data frame and visualise the entire content of the data frame

Check the data frame for the following 'data cleaning' issues and resolve them:

- 2. Missing values
- 3. Unnecessary duplicates
- 4. Wrong data types
- 5. Wrong values
- 6. Save the updated data frame into a new CSV file

The house prices are at the focus of this data frame. By using the updated data frame, provide the following values, which describe the column 'median_house_value':

- 7. Mean
- 8. Median
- 9. Range
- 10. The column 'median_income' contains currency in tens of thousands USD. Convert it into USD and visualise the entire updated data frame