COLLECTIONNEUR DE VIGNETTES

TALEB Nour Eddine KIZIL Huseyin

Enseignant encadrant : Maxime BERGER

Université Bourgogne Franche-Comté ESIREM - POLYTECH DIJON

22 janvier 2024

Table des matières

- Introduction
- Modèle de base
 - Étude théorique
 - Simulation
 - Représentation graphique : cas simple
 - Possibilité d'échange
 - Représentation graphique avec échange
- 3 Généralisation du problème : Plusieurs vignettes
 - Étude théorique
 - Simulation
 - Représentation graphique : 2 vignettes sans échange
 - Représentation graphique et comparaison(avec possibilité d'échange)
 - Représentation graphique des différentes manières de collecte
 - Point de croisement

Cadre du Projet et But

Modèle de Base Cadre du Projet et But

- Cadre du Projet :
 - ► Faire une modélisation du processus de collecte de vignettes.
 - Viser à comprendre et à simuler le temps nécessaire pour compléter une collection de vignettes en fonction de différents paramètres.
- But :
 - Analyser le processus de collecte de vignettes d'un point de vue théorique et pratique.
 - ▶ Étudier l'influence de certains paramètres, tels nombre de vignettes trouvées et le prix d'échange, sur le temps de complétion.

Étude Théorique

Étude Théorique

- Fondement Théorique :
 - Présentation des modèles mathématiques sous-jacents au processus de collecte de vignettes.
 - Exposition des résultats théoriques sur le temps attendu pour compléter une collection.
- Développement Asymptotique :
 - Utilisation du développement asymptotique pour obtenir une compréhension approfondie des résultats théoriques.

Simulations

Simulations :

- Présentation des simulations réalisées pour valider les résultats théoriques.
- Utilisation de simulations pour modéliser le processus de collecte de vignettes.

Outils Utilisés

• Langage C++ et l'IDE Clion pour simulations

• Git et Github comme outils de versionning

RStudio pour l'analyse des résultats

Résultats Pratiques et Comparaison

Résultats Pratiques

- Analyse des Résultats :
 - Présentation des résultats pratiques obtenus à partir des simulations.
 - ► Comparaison des résultats pratiques avec les prévisions théoriques.
- Conclusions :
 - Discussion sur les écarts éventuels entre les modèles théoriques et les résultats pratiques.
 - ▶ Identification des tendances et des observations significatives.

Étude théorique

Soit T_n la variable aléatoire qui représente le nombre de paquets à acheter pour compléter la collection de n vignettes.

 $T_{n,k}$, une variable aléatoire représentant le nombre de paquets à acheter pour obtenir une nouvelle vignette lorsque vous en avez déjà k-1 différentes, suit une loi géométrique de paramètre $p=\frac{n-(k-1)}{n}$. L'espérance de $T_{n,k}$ est donnée par : $E(T_{n,k})=\frac{1}{p}=\frac{n}{n-(k-1)}$. D'ou

$$E(T_n) = \sum_{k=1}^n E(T_{n,k}) = n \sum_{k=1}^n \frac{1}{k} = nH_n$$

En utilisant le développement asymptotique de H_n , on obtient :

$$E(T_n) = nH_n = n\ln(n) + \gamma n + \frac{1}{2} + o(1)$$

Où $\gamma \approx 0.577$ est la constante d'Euler-Mascheroni.

Simulation

- Algorithme :
 - Création du tableau.
 - 2 Incrémenter le nombre de semaines, initialisé à zéro.
 - Générer une nouvelle vignette.
 - Remplir le tableau si la vignette n'est pas présente.
 - Sefaire les étapes 2 3 4 jusqu'a complétion de la collection.

On prend la moyenne des semaines.

```
Entrez nombre de vignettes de votre collection (0 pour arreter programme)
1cl > 500
1cl > 500
1cl > 500
1cl > 1000
1cl >
```

Figure 1 – Résultat et comparaison

Représentation graphique : cas simple

Figure 2 – Graphe : simulation sans échange

Possibilité d'échange

- Algorithme :
 - Si la vignette est présente, incrémenter le nombre de doublons Sinon décrimenter le nombre de vignettes restantes.
 - 2 Vérifier nombre de doublons.
 - 3 Refaire les étapes précédentes.

De cette manière on assure que l'échange est éffectué à la fin.

Représentation graphique avec échange I

Figure 3 – Graphe : comparaison entre les courbes avec échange et sans échange

Représentation graphique avec échange II

Figure 4 - Graphe : Influence du prix d'échange

Étude théorique

Pour un paquet qui contient n vignettes différentes, une approximation du nombre de semaines pour compléter la collection serait E(T)/n. Que l'on peut approximer par le développement asymptotique de la série

harmonique $(k \ln(k) + \gamma \cdot k + \frac{1}{2})/n$. Où $\gamma \approx 0.577$ est la constante d'Euler-Mascheroni

avec k : nombre de vignettes dans la collection.

\overline{n}	exact	MC	log	Е-М	error MC	error log	error E-M
1	4577.7	4577.6	4202.6	4577.7	0.0000	0.0819	0.0000
5	913.1	913.3	840.5	915.5	0.0002	0.0795	0.0027
10	455.0	455.5	420.3	457.8	0.0011	0.0764	0.0060
61	72.0	72.1	68.9	75.0	0.0016	0.0432	0.0421
62	70.8	70.8	67.8	73.8	0.0005	0.0426	0.0429
100	42.7	42.8	42.0	45.8	0.0024	0.0154	0.0725
500	5.3	5.3	8.4	9.2	0.0024	0.5858	0.7273
649	1.0	1.0	6.5	7.1	0.0000	5.4754	6.0534

Figure 5 – Tableau d'exactitude des différentes solutions pour k= 649.

Simulation

- Algorithme :
 - Créer un tableau de nouvelles vignettes
 - Que Générer le nombre correspondant de vignettes.
 - 3 Vérifier l'unicité des vignettes générées.
 - Refaire les étapes précédentes.

A noter que les vignettes multiples sont toutes différentes l'une de l'autre.

```
intren numbre de vignettes de votre collection (0 pour arreter programme)
(ci > 500
intrez numbre de simulations (0 pour arreter programme)
(ci > 200
intrez numbre de simulations (0 pour arreter programme)
(ci > 200
intrez numbre de vignettes (0 pour arreter programme)
(ci > 2
- Simulation :
> 11 evit en novemne 1734.8 semaines pour completer la collection de 500 vignettes avec 2 dans la boite de cereales
> 11 evit en novemne 1734.8 semaines pour completer la collection de 500 vignettes avec 2 vignettes dens la boite de cereales à l'aide de la formule theorique £(17)%.
> 11 evit en novemne 1978, 21 semaines pour completer la collection de 500 vignettes avec 2 vignettes dans la boite de cereales à l'aide de la formule theorique £(17)%.
> 11 evit en novemne 1978, 22 semaines pour completer la collection de 500 vignettes avec 2 vignettes dans la boite de cereales avec la formule de development asymptotique de £(17)%.
```

Figure 6 – Résultat et comparaison

Représentation graphique : 2 vignettes sans échange

Figure 7 – Graphe : évolution du nombres de semaines pour le cas 2 de vignettes

Représentation graphique et comparaison(avec possibilité d'échange)

Figure 8 – Graphe : Influence du prix d'échange sur le nombre de semaines

Représentation graphique des différentes manières de collecte

Figure 9 – Graphe : Comparaison entre les différentes manières de collecte

Point de croisement I

Cas d'une vignette avec un prix d'échange de 10 contre 2 vignettes sans échange.

Figure 10 – Graphe : point de croisement

Point de croisement II

Figure 11 - Graphe : Ensemble des points de croissement

Merci de votre attention!