PC 9 : intervalles de confiance

1 Exercice corrigé

Exercice 1. (Loi normale) Soient x_1, \ldots, x_n des réalisations indépendantes et de même loi de densité

$$f_{\theta}(x) = \frac{1}{\sqrt{2\pi\theta^2}} \exp\left(-\frac{x^2}{2\theta^2}\right)$$
 avec $\theta > 0$ inconnu.

- 1. On veut estimer $\tau = \theta^2$. Proposer un estimateur $\hat{\tau}$ de τ par la méthode des moments et étudier sa loi.
- 2. Construire un intervalle de confiance au niveau $1-\alpha$ de la forme $[S_1, S_2]$ tel que

$$\mathbb{P}(\tau < S_1) = \mathbb{P}(\tau > S_2) = \alpha/2.$$

- 3. Donner la loi asymptotique de $\hat{\tau}$ et en déduire un intervalle de confiance asymptotique.
- 4. Application numérique : Lorsque n=10, $\hat{\tau}=2$ et $\alpha=0.05$, comparer l'intervalle de confiance obtenu à la question 2 (non asymptotique) avec celui obtenu à la question 3 (asymptotique). Lequel est préférable. Quelle conclusion si n=1000?

Solution. 1. Les X_i suivent une loi normale $\mathcal{N}(0, \theta^2)$. On sait donc que $\mathrm{Var}(X_i) = \mathbb{E}(X_i^2) = \theta^2 = \tau$. Pour estimer τ , on propose l'estimateur suivant :

$$\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} X_i^2.$$

On a alors $\frac{n\hat{\tau}}{\tau} = \sum_{i=1}^{n} \left(\frac{X_i}{\theta}\right)^2$. Or comme pour tout $i, \frac{X_i}{\theta} \sim \mathcal{N}(0, 1)$ et comme les v.a. X_i sont i.i.d., on en déduit que

$$\frac{n\hat{\tau}}{\tau} \sim \chi_n^2.$$

Cette caractérisation de la loi de $\hat{\tau}$ suffit, cependant on peut remarquer qu'une loi du χ_n^2 est aussi une loi $\gamma(\frac{n}{2},\frac{1}{2})$. Ainsi,

$$\hat{\tau} \sim \Gamma\left(\frac{n}{2}, \frac{n}{2\tau}\right).$$

2. On note $F_{\chi_n^2}$ la f.d.r. de la loi du χ_n^2 et $F_{\chi_n^2}^{-1}$ la fonction quantile (qui est ici l'inverse de $F_{\chi_n^2}$ car cette dernière est une bijection). On peut alors écrire :

$$\mathbb{P}\left(F_{\chi_n^2}^{-1}(\alpha/2) \le \frac{n\hat{\tau}}{\tau} \le F_{\chi_n^2}^{-1}(1-\alpha/2)\right) = 1-\alpha,$$

donc

$$\mathbb{P}\left(\frac{n\hat{\tau}}{F_{\chi_n^2}^{-1}(1-\alpha/2)} \le \tau \le \frac{n\hat{\tau}}{F_{\chi_n^2}^{-1}(\alpha/2)}\right) = 1 - \alpha.$$

En posant

$$S_1 = \frac{n\hat{\tau}}{F_{\chi_n^2}^{-1}(1-\alpha/2)}$$
 et $S_2 = \frac{n\hat{\tau}}{F_{\chi_n^2}^{-1}(\alpha/2)}$,

on en déduit que $\mathbb{P}(\tau < S_1) = \mathbb{P}(\tau > S_2) = \alpha/2$:

$$\mathbb{P}(\tau < S_1) = \mathbb{P}\left(\tau < \frac{n\hat{\tau}}{F_{\chi_n^2}^{-1}(1 - \alpha/2)}\right) = \mathbb{P}\left(F_{\chi_n^2}^{-1}(1 - \alpha/2) < \frac{n\hat{\tau}}{\tau}\right) \\
= 1 - F_{\chi_n^2}\left(F_{\chi_n^2}^{-1}(1 - \alpha/2)\right) = \alpha/2. \\
\mathbb{P}(\tau > S_2) = \mathbb{P}\left(\tau > \frac{n\hat{\tau}}{F_{\chi_n^2}^{-1}(\alpha/2)}\right) = \mathbb{P}\left(F_{\chi_n^2}^{-1}(\alpha/2) > \frac{n\hat{\tau}}{\tau}\right) = F_{\chi_n^2}\left(F_{\chi_n^2}^{-1}(\alpha/2)\right) = \alpha/2.$$

3. Les X_i suivent une loi normale et admettent donc des moments à tous les ordres, en particulier à l'ordre 4. Les v.a. X_i^2 sont donc dans \mathbb{L}^2 et satisfont le TLC :

$$\sqrt{n} \frac{\hat{\tau} - \tau}{\sqrt{\operatorname{Var}(X_1^2)}} = \sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^n X_i^2 - \theta^2}{\sqrt{\operatorname{Var}(X_1^2)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

De plus, $\operatorname{Var}(X_1^2) = \theta^4 \operatorname{Var}((X_1/\theta)^2) = 2\theta^4 = 2\tau^2$ car la variance d'une χ_1^2 est égale à 2. On peut alors construire un IC asymptotique pour τ . La convergence en loi vue plus haut donne, en notant Φ la fonction de répartition de la $\mathcal{N}(0,1)$,

$$\begin{split} 1-\alpha &= \lim_{n\to\infty} \mathbb{P}\left(\Phi^{-1}(\alpha/2) \leq \sqrt{n} \frac{\hat{\tau}-\tau}{\sqrt{2\tau^2}} \leq \Phi^{-1}(1-\alpha/2)\right) \\ &= \lim_{n\to\infty} \mathbb{P}\left(1+\Phi^{-1}(\alpha/2)/\sqrt{n/2} \leq \hat{\tau}/\tau \leq 1+\Phi^{-1}(1-\alpha/2)/\sqrt{n/2}\right) \\ &= \lim_{n\to\infty} \mathbb{P}\left(\frac{\hat{\tau}}{1+\Phi^{-1}(1-\alpha/2)/\sqrt{n/2}} \leq \tau \leq \frac{\hat{\tau}}{1-\Phi^{-1}(1-\alpha/2)/\sqrt{n/2}}\right), \end{split}$$

où on a utilisé que $\Phi^{-1}(\gamma) = -\Phi^{-1}(1-\gamma)$.

4. Pour n=10, on a $F_{\chi_n^2}^{-1}(\alpha/2) \simeq 3.25$, $F_{\chi_n^2}^{-1}(1-\alpha/2) \simeq 20.48$ et $\Phi^{-1}(1-\alpha/2) \simeq 2$. L'intervalle non asymptotique (question 2) associé est [0.97,6.16] (environ), alors que l'intervalle asymptotique est [1.05,18.95] (environ). On remarque que l'intervalle de confiance asymptotique est différent de l'intervalle de confiance non asymptotique. Ceci est normal car n=10 est trop petit pour que l'approche asymptotique soit valide (la convergence n'a pas eu lieu).

Lorsque n = 1000, on trouve les intervalles [1.836, 2.188] (non asymptotique) et [1.839, 2.192]. La différence a quasi disparu, les intervalles sont quasi identiques, les deux approches sont valides.

Remarque: On préférera l'IC non-asymptotique, car il a été construit avec la vraie loi, et est donc plus précis. On a recours aux intervalles asymptotiques, lorsqu'on n'arrive pas à construire d'intervalle non asymptotiques ou lorsque la taille d'échantillon est vraiment très grande.

2 Intervalles de confiance

Exercice 2. Soit la variable aléatoire

$$Y = \mathbb{1}_{\{\theta > \xi\}},$$

où $\theta \in \mathbb{R}$ et ξ est une variable aléatoire de loi $\mathcal{N}(0,1)$. On dispose d'un échantillon Y_1, \ldots, Y_n des réalisations i.i.d. de Y.

- 1. Soit Φ la fonction de répartition de la loi $\mathcal{N}(0,1)$. Montrer que $\hat{\theta}_n = \Phi^{-1}(\frac{1}{n}\sum_{i=1}^n Y_i)$ est l'estimateur de maximum de vraisemblance de θ . Cet estimateur est-il consistant?
- 2. Chercher la loi limite de l'estimateur $\hat{\theta}_n$ quand $n \to \infty$.
- 3. Soit $0 < \alpha < 1$. Proposer un intervalle de confiance asymptotique de niveau 1α .

Exercice 3. On effectue une enquête, durant une épidémie de grippe, dans le but de connaître la proportion p de personnes présentant ensuite des complications graves. On observe un échantillon représentatif de 400 personnes et pour un tel échantillon 40 personnes ont présenté des complications.

- 1. Utiliser l'inégalité de Bienamyé-Tchebychev pour construire un intervalle de confiance pour p au niveau 95%.
- 2. On désire que la valeur estimée \hat{p} diffère de la proportion inconnue exacte p de moins de 0.005 avec une probabilité d'au moins 95%. Quel sera l'effectif d'un tel échantillon?
- 3. Selon cette approche, quel est le niveau de confiance du même intervalle qu'à la question précédente avec un effectif de n=400? Quelle conclusion peut-on en tirer?

Exercice 4. (Intervalles de confiance asymptotiques) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi. On suppose que X_1 est de carré intégrable, de moyenne m et de variance $\sigma^2 > 0$. Notons

$$\bar{X}_n = \frac{1}{n} \sum_{k=1}^n X_k, \qquad \hat{\sigma}_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2.$$

- 1. L'estimateur $\widehat{\sigma}_n^2$ de σ est-il sans biais?

 Indication. On pourra démontrer que $\frac{n-1}{n}\widehat{\sigma}_n^2 = \frac{1}{n}\sum_{k=1}^n X_k^2 \bar{X}_n^2$.
- 2. Proposer un intervalle de confiance asymptotique pour m au niveau $1-\alpha$.
- 3. Considérons un échantillon (X_1, \ldots, X_n) représentant des temps d'attente d'un transport, que l'on suppose indépendantes de même loi exponentielle de paramètre $\lambda > 0$ inconnu. Donner un intervalle de confiance asymptotique pour $\theta = \frac{1}{\lambda}$ au niveau 1α . Comment obtenir un intervalle de confiance asymptotique pour λ au niveau 1α ?

Exercice 5. Soient X_1, \ldots, X_n des variables aléatoires i.i.d. d'une loi dont la densité par rapport à la mesure de Lebesgue sur \mathbb{R} est donnée par

$$f(x;\theta) = \frac{2}{\sqrt{\pi\theta}} \exp(-x^2/\theta) \, \mathbb{1}_{\{x>0\}},$$

où $\theta > 0$ est un paramètre inconnu. On observe une réalisation (x_1, \ldots, x_n) du vecteur aléatoire (X_1, \ldots, X_n) . On désigne par α un réel donné dans [0,1] et on note $\hat{m}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2$ le moment empirique d'ordre 2.

- 1. Déterminer l'estimateur du maximum de vraisemblance $\hat{\theta}$ de θ .
- 2. Déterminer la loi de la variable $X_1/\sqrt{\theta}$. En déduire la loi de $n\hat{\theta}/\theta$.
- 3. Trouver des réels a et b tels que $[\hat{\theta}/a, \hat{\theta}/b]$ soit un intervalle de confiance de niveau $1-\alpha$ pour θ .

Exercice 6 (Modèle de Poisson). Soit (X_1,\ldots,X_n) un échantillon i.i.d. de la loi de Poisson $\mathcal{P}(\lambda)$ de paramètre $\lambda>0$ inconnu. Notons $\bar{X}_n=\frac{1}{n}\sum_{i=1}^n X_i$ et $\hat{\sigma}_n^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X}_n)^2$. On rappelle que \bar{X}_n est un estimateur consistant et asymptotiquement normal, plus précisément on a $\sqrt{n}\frac{\bar{X}_n-\lambda}{\sqrt{\lambda}}\stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,1)$. De même, $\hat{\sigma}_n^2$ est un estimateur consistant de λ .

- 1. En utilisant le lemme de Slutsky, montrer que $\hat{\sigma}_n^2$ est asymptotiquement normal. (On utilisera, sans le démontrer, que $\mathbb{E}_{\lambda}[(X_1 \lambda)^4] = \lambda + 3\lambda^2$).
- 2. Quel estimateur de λ est à privilégier, \bar{X}_n ou $\hat{\sigma}_n^2$?
- 3. Montrer qu'on peut obtenir les résultats de convergence suivants

(i)
$$\sqrt{n} \frac{X_n - \lambda}{\sqrt{\bar{X}_n}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

(ii)
$$\sqrt{n} \frac{\bar{X}_n - \lambda}{\sigma_n} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$$

- (iii) $\sqrt{n} \left(g(\bar{X}_n) g(\lambda) \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$ pour un choix approprié de la fonction g à préciser.
- 4. Déterminer les intervalles de confiances de niveau asymptotique $1-\alpha$ correspondants. Lequel est le meilleur?

3 Révisions - exercices supplémentaires

Exercice 7 (Détrucage d'une pièce). On dispose d'une pièce pour laquelle la probabilité $p \in]0,1[$ de tomber sur pile n'est pas nécessairement égale à 1/2 et n'est pas connue. On veut cependant simuler un jeu à deux issues équilibré. On utilise alors l'algorithme suivant (imaginé par von Neumann). On lance la pièce deux fois successivement.

- Si on obtient (P, F) (pile puis face), on considère qu'on gagne.
- Si on obtient (F, P) (face puis pile), on considère qu'on perd.
- Sinon, on relance la pièce deux fois successivement.

On note T la variable aléatoire qui décrit le nombre de lancers après lequel l'algorithme s'arrête, et R la variable aléatoire qui décrit le résultat de l'algorithme (gagné ou perdu).

1. Démontrer que, pour tout $k \geq 1$,

$$\mathbb{P}(T=2k) = (p^2 + (1-p)^2)^{k1-} 2p(1-p)$$

et en déduire l'algorithme se termine presque sûrement, c'est à dire que $\mathbb{P}(T < 1) = 1$.

- 2. Démontrer que l'algorithme fait bien gagner ou perdre avec probabilité 1/2 chacun.
- 3. Combien de lancers faut-il faire en moyenne pour que l'algorithme renvoie un résultat?

Exercice 8 (Vecteurs gaussiens et espérance conditionnelle). Soit $X = (X_1, X_2, X_3)$ un vecteur gaussien centré de matrice de covariance

$$\Gamma = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- 1. Donner la loi de (X_1, X_2) et de X_3 . Que peut-on dire de X_3 et de (X_1, X_2) ?
- 2. Montrer que pour tout $a \in \mathbb{R}$ le vecteur $(X_2, X_2 + aX_1)$ est un vecteur gaussien.
- 3. En choisissant a de sorte que X_2 et $X_2 + aX_1$ soient indépendants, calculer $E[X_1|X_2]$.

Exercice 9 (Loi d'un produit). Soit (X,Y) un vecteur aléatoire de loi uniforme sur $[0,1]^2$. Déterminer la loi de Z=XY.