ŭ	
ō	
ř	

	류	(%) -6.5	-4.7	0.4-	-3.6	-3.2	2.6
Xir	(x10 ⁻⁷ H/m)	7.5	4.8	3.7	3.2	3.0	2.7
Br/p	(x10°T·m³/g)	0.132	0.139	0.142	0.146	0.143	0.128
(BH)	(kJ/m³)	75.6	104.8	113.2	115.9	112.0	1001
H ₂	(kA/m)	345	415	478	496	230	561
Β̈	Ε	0.83	0.87	06.0	0.92	0.90	180
ď	(Mg/m³)	6.27	6.26	6.32	6.29	6.30	6.33
≥		0.1	0.2	0.5	1.2	2.5	6
Sample No.		1 (Comp.Ex.)	2 (This Invention)	3 (This Invention)	4 (This Invention)	5 (This Invention)	6 (This Invention)

ABLE2

Irreversible Flux Loss -2.2 2.5 5.9 3.4 4.2 (% (% 3.1 3.7 $\begin{array}{c|c} (BH)_{maix} & Br/\rho & \chi_{trr} \\ (kJ/m^3) & (\times 10^{-6} T \cdot m^3/g) & (\times 10^{-7} H/m) \end{array}$ 2.5 2.9 3.2 3.8 2.3 2.7 2. 0.145 0.143 0.142 0.142 0.147 0.146 0.144 118.4 108.8 100.5 83.4 88.3 97.6 96.2 H_C (kA/m) 563 542 535 517 510 551 531 0.82 0.85 0.88 0.92 0.78 0.80 0.84 'nЕ (Mg/m³) 5.95 6.48 5.30 5.50 5.67 5.80 6.21 Molding Temp. 230 275 210 215 220 S 245 260 Compaction Molding Compaction Compaction Injection Injection Molding Injection Molding Molding Molding Method Molding Molding Injection Molding Kneading Temp. . ච් 216 224 230 203 211 220 8 (This Invention) 9 (This Invention) 10 (This Invention) 1 (This Invention) 12 (This Invention) 13 (This Invention) 14 (This Invention) Sample No.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 7

No.1: Demagnetization Curve

No.2: Straight Line

Having a Gradient of -3.8 x 10⁻⁶H/m in the J-H diagram

No.3: Tangential Line at Intersectioning Point P

No.4: Recoil Curve

No.5: Straight Line

Representing a Gradient of the Recoil Curve