Fine Structure Seminar Rutgers University

Stefan Mesken

January 30, 2019

1 Fine Structure

Unless specified otherwise, M, N are acceptable \mathcal{J} -structures, $k, l, m, n < \omega$.

1.8 Substitution and Good Functions

First Draft

Problem 1.8.1. $\Sigma_1^{(n)}(M)$ -relations are not necessarily closed under substitution of $\Sigma_1^{(n)}(M)$ -functions.

Exercise 1.8.1. Find an example for a $\Sigma_1^{(n)}(M)$ -relation R and a (partial) $\Sigma_1^{(n)}(M)$ -function f such that $R \circ f$ is not a $\Sigma_1^{(n)}(M)$ relation.

Hint 1.8.1. Suppose that M is an acceptable \mathcal{J} -structure s.t. $\omega \rho_M^2 < \omega \rho_M^1$ and such that there is some $\Sigma_0^{(0)}$ -formula ϕ and some pinM with

$$A := \{ \xi < \omega \rho_M^2 \mid M \models \exists x^1 \phi[\xi, x^{(1)}, p] \} \notin M.$$

(Such M exist. In fact, we can pick $M = J_{\alpha}$ for some countable α .) Let f be the partial $\Sigma_1^{(0)}(M)$ -function defined by the formula

$$\psi(y^{(0)}, z^{(1)}) : \iff y^{(0)} = z^{(1)}.$$

Consider $\phi(x^{(0)}, f(y^{(0)}), p)$.

Our goal is to identify a sufficiently large collection of $\Sigma_1^{(n)}$ -functions that can be substitued into $\Sigma_1^{(n)}$ -relations without increasing their complexity.

Lemma 1.8.1. Let $n < \omega$ and $R(\vec{x}^0, \ldots, \vec{x}^n)$ be a $\Sigma_1^{(n)}(M)$ -relation. Let F^0, \ldots, F^n be such that for all $i \leq n$ $F^i(\vec{x}^0, \ldots, \vec{x}^{(n)})$ is a partial $\Sigma_1^{(i)}(M)$ -function to H_M^i . Then

$$R(F^{0}(\vec{x}^{0},\ldots,\vec{x}^{n}),\ldots,F^{n}(\vec{x}^{0},\ldots,\vec{x}^{n}))$$

is (uniformly) a $\Sigma_1^{(n)}(M)$ -relation.

Proof. By induction on n. The case n = 0 is a simplification of the induction step $n \mapsto n + 1$, hence we will only consider the latter:

Let $R(\vec{x}^0, \ldots, \vec{x}^n)$ be a $\Sigma_1^{(n+1)}(M)$ relation and let F^0, \ldots, F^{n+1} be as above. Write

$$R(\vec{x}^0, \dots, \vec{x}^{n+1}) \equiv \exists z^{n+1} B(\vec{v}^{n+1}, \vec{x}^{n+1}) R^*(\vec{x}^0, \dots, \vec{x}^{n+1}, \vec{v}^{n+1}, z^{n+1})$$

with

- 1. B being a block of bounded quantifiers and
- 2. R^* being a Boolean combinatin of $\Sigma_1^{(n)}(M)$ -relations.

By our induction hypothesis and the fact that every $\Sigma_1^{(n)}(M)$ -relation is the specialization of a $\Sigma_1^{(n)}(M)$ with arguments of type $\leq n$, we obtain that

$$R(F^0(\vec{y}), \dots, F^n(\vec{y}), \vec{x}^{n+1})$$

is $\Sigma_1^{(n+1)}(M)$. But now

$$R(F^{0}(\vec{y}), \dots, F^{n+1}(\vec{y})) \equiv \exists \vec{x}^{n+1} \colon F^{n+1}(\vec{y}) \land R(F^{0}(\vec{y}), \dots, F^{n}(\vec{y}), \vec{x}^{n+1})$$

is $\Sigma_1^{(n+1)}(M)$.

Note that this transformation only depends on the formulae defining R, F^0, \ldots, F^{n+1} and not on M, which yields the uniformity we claimed.

Corollary 1.8.1. Let $n < \omega$, $1 \le l < \omega$ and $R(\vec{x}^0, \ldots, \vec{x}^n)$ be a $\Sigma_l^{(n)}(M)$ -relation. Let F^0, \ldots, F^n be such that for all $i \le n$ $F^i(\vec{x}^0, \ldots, \vec{x}^{(n)})$ is a partial $\Sigma_1^{(i)}(M)$ -function to H_M^i . Then

$$R(F^0(\vec{x}^0,\ldots,\vec{x}^n),\ldots,F^n(\vec{x}^0,\ldots,\vec{x}^n))$$

is (uniformly) a $\Sigma_l^{(n)}(M)$ -relation.

Corollary 1.8.2. Let $R(x^{i_0}, \ldots, x^{i_l})$ be a $\Sigma_l^{(n)}(M)$ -relation with $1 \leq l < \omega$ and $i_0, \ldots, i_k \leq n < \omega$. Then there is a $\Sigma_l^{(n)}(M)$ -relation $R^*(x^0, \ldots, x^0)$ with the same graph as R

Proof. Let R^{**} be the result of replacing each x^{i_0} with x^0 in R. For $j \leq k$ let F^j be the partial $\Sigma_1^{i_j}(M)$ -function to $H_M^{i_j}$ defined by

$$\phi^{j}(x^{0}, y^{i_{l}}) \equiv x^{0} = y^{i_{j}}.$$

Then $R^{**}(F^{i_0}(x^0), \ldots, F^{i_k}(x^0))$ is a $\Sigma_l^{(n)}(M)$ -relation with the same graph as R.

Definition 1.8.1. Let $n < \omega$. The good $\Sigma_1^{(n)}(M)$ -functions consists of the smallest class $\mathcal{G}_1^{(n)}$ such that

- 1. Every partial $\Sigma_1^{(i)}(M)$ -function $F(x^{i_0},\ldots,x^{i_k})$ to H_M^i with $i_0,\ldots,i_k,i\leq n$ is in $\mathcal{G}_1^{(n)}$ and
- 2. $\mathcal{G}_1^{(n)}$ is closed under composition, i.e. if $F(x^{i_0},\ldots,x^{i_k})$ is in $\mathcal{G}_1^{(n)}$ and $G(\vec{z})$ is a function to $H_M^{i_j}$ for some $j \leq k$ in $\mathcal{G}_1^{(n)}$, then

$$F(x^{i_0},\ldots,x^{i_{j-1}},G(\vec{z}),x^{i_{j+1}},\ldots,x^{i_k})$$

is in $\mathcal{G}_1^{(n)}$.

Lemma 1.8.2. Let $n < \omega, 1 \le l < \omega, i_0, \ldots, i_k \le n$ and $R(x^{i_0}, x^{i_k})$ be a $\Sigma_l^{(n)}(M)$ -relation. If, for $j \le k$, $F_j(\vec{z})$ is a good $\Sigma_1^{(n)}(M)$ -function to $H_M^{i_j}$, then

$$R(F_0(\vec{z}),\ldots,F_n(\vec{z}))$$

is $\Sigma_l^{(n)}(M)$.

Proof. Repeated application of Corollary 1.8.1.

We are now ready to prove one of the main pillars of basic Σ^* fine structure:

Theorem 1.8.1 $(\Sigma_1^{(n)}$ -Uniformization). Let $n < \omega$ and $R(\vec{x}^0, \dots, \vec{x}^n, y^n)$ be a $\Sigma_1^{(n)}(M)$ -relation. Then there is a partial $\Sigma_1^{(n)}(M)$ -function F to H_M^n such that

- 1. $dom(F) = {\vec{x} | \exists y^n R(\vec{x}, y^n)}$ and
- 2. $\forall \vec{x}(\exists y^n R(\vec{x}, y^n) \implies R(\vec{x}, F(\vec{x})))$

Moreover, F can be chosen to have a uniform definition in R's definition.

Proof. Recall that

$$R_{\vec{x}} := \{ (\vec{x}^n, y^n) \mid R(\vec{x}^0, \dots, \vec{x}^n, y^n) \}$$

is uniformly $\Sigma_1(M^{n,(\vec{x}^0,\dots,\vec{x}^{n-1})})$. Let $i<\omega$ be such that ϕ_i defines $R_{\vec{x}}$ and let

$$F(\vec{x}^0, \dots, \vec{x}^n) := h_{M^{n,(\vec{x}^0, \dots, \vec{x}^{n-1})}}(i, \vec{x}^n).$$

Since $h_{M^{n,(\vec{x}^0,...,\vec{x}^{n-1})}}$ is uniformly $\Sigma_1(M^{n,(\vec{x}^0,...,\vec{x}^{n-1})})$, we have that F is $\Sigma_1^{(n)}(M)$ and clearly F uniformizes R.

Remark 1.8.1. In these notes, I don't cover the definition of $Q^{(n)}$ -formulae. Consult Zeman's book.

Lemma 1.8.3. Let $n < \omega$. There is a uniform good $\Sigma_1^{(n)}(M)$ function

$$F: H_M^{n+1} \times H_M^0 \to H_M^0$$

such that for all $r \in R_M^{n+1}$

$$F_r \colon H_M^{n+1} \to M, x^{n+1} \mapsto F(x^{n+1}, p)$$

is surjective.

Proof. By induction on $n < \omega$.

n=0: Let

$$F: H_M^1 \times H_M^0 \to H_M^0, (w, p) \mapsto h_M(w(0), (w(1), p(0))).$$

 $n \mapsto n+1$: Let

$$G \colon H_M^{n+1} \times H_M^0 \to H_M^0$$

be as above. Define

$$F \colon H_M^{n+1} \times H_M^0 \to H_M^0, (w, p) \mapsto G(h_{M^{n,p \mid n}}(w(0), (w(1), p(n))), p \mid n).$$

Here we let $w(k), p(k), p \upharpoonright k, k < \omega$ be the usual interpretation for functions if w, p are functions whose domain contains k+1 and otherwise we define them to be \emptyset .

Exercise 1.8.2. Verify that the functions defined above are as desired.

Hint: Recall that if $r \in R_M^{n+1}$ then $r \upharpoonright n \in R_M^n$ and $r(n) \in R_{M^{n,r} \upharpoonright n}$.

Definition 1.8.2. For $p \in \Gamma_M^n$ let

- 1. $h_M^{n,p} := h_{M^{n,p}}$ and
- 2. \tilde{h}_{M}^{n} be uniform good $\Sigma_{1}^{(n-1)}(M)$ -function given nesting Skolem functions of the i-th projecta as in Lemma 1.8.3, i.e.

$$\tilde{h}_{M}^{1}(w,p) := h_{M}(w(0),(w(1),p(0)))$$

and

$$\tilde{h}_{M}^{n+1}(w,p):=h_{M}^{n}(h_{M^{n,p}\upharpoonright n}(w(0),(w(1),p(n))),p\upharpoonright n).$$

Remark 1.8.2. h_M^{n+1} is a uniformly $\Sigma_1^{(n)}(M)$ -function and if $r \in R_M^{n+1}$, then every $x \in M$ is of the form $\tilde{h}^{n+1}(z,r)$ for some $z \in H_M^{n+1}$. In fact, we can choose $z \in \omega \rho_M^{n+1}$.

Corollary 1.8.3. Let $1 \le n < \omega$ and $r \in R_M^n$. Then every $A \subseteq H_M^n$ which is $\Sigma_1^n(M)$ is $\Sigma_1(M^{n,r})$.

Proof. We already know that $\Sigma_1(M^{n,r}) \subseteq \Sigma_1^{(n)}(M)$.

Conversely let

$$A = \{ x \in H_M^n \mid M \models \phi[x, q] \}$$

for some $\Sigma_1^{(n)}$ -formula ϕ and some $q \in M$. Fix $\xi < \omega \rho_M^n$ such that $q = \tilde{h}_M^n(\xi, r)$. Then

$$A(x^n) \iff M \models \phi[x^n, \tilde{h}_M^n(\xi^n, r^0)].$$

Since $\tilde{h}^n(y^n, z^0)$ is a good $\Sigma_1^{(n-1)}(M)$ -function (and thus a good $\Sigma_1^{(n)}(M)$ -function), this witnesses that A is $\Sigma_1^{(n)}(M)$ in parameters ξ, r and hence $\Sigma_1(M^{n,r})$ (by the characterization of $\Sigma_l^{(n)}(M)$ subsets of H_M^n as $\Sigma_l(M^{n,r})$ relations in $\Sigma_1^{n-1}(M)$ predicates).

Corollary 1.8.4. Let $n < \omega$ and $r \in \mathbb{R}_M^n$. Then $\rho_M^{n+1} = \rho_{M^{n,r}}$.

Proof. By definition $\rho_M^{n+1} \leq \rho_{M^{n,r}}$, hence it suffices to show the converse. Let $q \in P_M^{n+1}$ and A be $\Sigma_1^{(n)}(M)$ in q such that $A \cap \omega \rho_M^{n+1} \not\in M$. By Corollary 1.8.3, A is $\Sigma_1(M^{n,r})$, so that $\rho_{M^{n,r}} \leq \rho_M^{n+1}$.

Corollary 1.8.5. Let $r \in R_M^n$ and $m \le n$. Then

- $\rho_M^n = \rho_{M^{m,r \upharpoonright m}}^{n-m}$ and
- $M^{n,r} = (M^{m,r \upharpoonright m})^{n-m,s}$, where $s \colon n-m \to M$ is given by s(i) := r(m+i).

Proof. By induction on n-m and the two preceding corollaries.

Exercise 1.8.3. Let $r, s \in R_M^n$. Then

$$\Sigma_1(M^{n,r}) = \Sigma_1(M^{n,s}).$$

Remark 1.8.3. In these notes, I don't cover functionally absolute definitions of good $\Sigma_1^{(n)}(M)$ -functions. Consult Zeman's book.

Lemma 1.8.4. Let $r \in R_M^n$. Then $\Sigma_l(M) \subseteq \Sigma_l^{(n)}(M)$ for every $l \ge 1$.

Proof. We will prove the result for l=1. The general case follows by a straightforward induction. Let ϕ be a Σ_0 formula, $q \in M$ and

$$A = \{ a \in M \mid M \models \exists x \phi[x, a, q] \}.$$

Fix $\xi \in \omega \rho_M^n$ such that $q = \tilde{h}^n(\xi, r)$. Then

$$A = \{ a \in M \mid M \models \exists x^{(n)} \phi [\tilde{h}^n(x^n, r^0), a^0, \tilde{h}^n(\xi^n, r^0)] \}$$

is
$$\Sigma_1^{(n)}(M)$$
.

Corollary 1.8.6. Let $r \in R_M^n$. Then $\Sigma_{<\omega}(M) = \Sigma_{<\omega}^{(n)}(M)$.

Proof. Lemma 1.8.4 yields $\Sigma_{<\omega}(M) \subseteq \Sigma_{<\omega}^{(n)}(M)$. For the converse just note that every $\Sigma_l^{(n)}$ -formulae can be expressed as a Σ_l -formula (in parameters) by replacing each occurance of the variable x^i with $x \in H_M^i$ if $\omega \rho_M^i < o(M)$ or with x if $\omega \rho_M^i = o(M)$.

1.9 Standard Parameters

first draft

Lemma 1.9.1. h_M " $[o(M)]^{<\omega} = M$.

Proof. Let $X := h_M$ " $[o(M)]^{<\omega}$. Since X is closed under pairing, we have $X \prec_1 M$. Let

$$N \stackrel{\pi}{\cong} X \prec_1 M$$

Be the Mostowski collapse. Since being an acceptable \mathcal{J} -structure is a Q-property, we have that N is an acceptable \mathcal{J} -structure and clearly $\pi^{-1} \upharpoonright o(M) = \mathrm{id}$. Since there is, for acceptable \mathcal{J} -structures K, a uniform lightface Σ_1 -definable surjection $f^K : [o(M)]^{<\omega} \to K$, it follows that N = M. \square

Lemma 1.9.2. Let A be $\Sigma_1^{(n)}(M)$ in the parameter $p \in M$. Then there is some $p' \in [o(M)]^{<\omega}$ such that A is $\Sigma_1^{(n)}(M)$ in p'.

Proof. Fix $\phi \in \Sigma_1^{(n)}(M)$ such that

$$A = \{ a \in M \mid M \models \phi[a, p] \}.$$

Let $p' \in [o(M)]^{<\omega}$ be such that $p = h_M(p')$. Then

$$A = \{ a \in M \mid M \models \exists x^{(0)} : \underbrace{h_M(p') = x^{(0)}}_{\Sigma_1^{(0)}} \land \phi[a, x^0] \}.$$

is
$$\Sigma_1^{(n)}(M)$$
 in p' .

Convention 1.9.1. Let $p \in P_M^{(n)}$. If, for every $i \in \text{dom}(i)$, p(i) is a finite set of ordinals, we will identify p with $\bigcup \text{ran}(p) \in [\text{Ord}]^{<\omega}$. And we let $P_M^{(n)} \cap [o(M)]^{<\omega}$ be the collection of these good parameters.

By the previous lemma we may restrict ourselves to good parameters which are finite sets of ordinals, i.e. to $P_M^{(n)} \cap [o(M)]^{<\omega}$ and we shall do so from now on.

Definition 1.9.1. Let $a, b \in [Ord]^{<\omega}$.

- 1. $a\Delta b := (a \setminus b) \cup (b \setminus a)$ and
- 2. $a <^* b : \iff \max(a\Delta b) \in b$.

Exercise 1.9.1. Let $a, b \in [Ord]^{<\omega}$. The following are equivalent

- 1. $a <^* b$.
- 2. $\exists \xi \in b \setminus a : b \setminus (\xi + 1) = a \setminus (\xi + 1),$
- β . $\vec{a} <_{\text{lex}} \vec{b}$,

where $\begin{Bmatrix} \vec{a} \\ \vec{b} \end{Bmatrix}$ is the strictly decreasing enumeration of $\begin{Bmatrix} a \\ b \end{Bmatrix}$.

Definition 1.9.2. A definable, binary relation R is set-like if for all y

$$R_y := \{x \mid (x, y) \in R\}$$

is a set.

Exercise 1.9.2. $<^*$ is a set-like strict, Σ_0 -definable well-order of $[Ord]^{<\omega}$.

(Hint: The only tricky bit is to show that $<^*$ is well-founded. So, suppose it isn't. Fix a set $A \subseteq [\operatorname{Ord}]^{<^*}$ with no $<^*$ -minimal element. Recursively construct a strictly decreasing sequence $(\xi_n \mid n < \omega)$ via $\xi_0 := \min\{\max(a) \mid a \in A\}$ and $\xi_{n+1} := \min\{\max(a \cap \xi_n) \mid a \in A \land a \setminus \xi_n = \{\xi_0, \dots, \xi_n\}\}$. Verify that this construction never breaks down (i.e. $\xi_{n+1} \neq 0$).)

Definition 1.9.3. The $<^*$ -least $p \in P_M^{(n)} \cap [o(M)]^{<\omega}$, denoted by $p_{M,n}$, is called the n-th standard parameter of M. ¹
The $<^*$ -least $p \in P_M^* \cap [o(M)]^{<\omega}$ is called the (ultimate) standard parameter of M.

Notation 1.9.1. 1. If $a \in [o(M)]^{<\omega}$ we set

(a)
$$a^n := a \cap [\omega \rho_M^{n+1}, \omega \rho_M^n]$$
 and

(b)
$$a \upharpoonright n = a \setminus \omega \rho_M^n$$
.

Exercise 1.9.3. Let $p \in [o(M)]^{<\omega}$. Then

1.
$$p \in P_M^n \implies p \upharpoonright (n-1) \in P_M^{n-1} \text{ and } p^{n-1} \in P_{M^{n-1},p \upharpoonright n-1},$$

2.
$$p \upharpoonright (n-1) \in P_M^{n-1}$$
, $p^{n-1} \in P_{M^{n-1},p \upharpoonright n-1}$ and $\omega \rho_M^n = \omega \rho_{M^{n-1},p \upharpoonright n-1} \Longrightarrow p \in P_M^n$.

3.
$$r \in R_M^n \iff \forall i < n \colon r^i \in R_{M^{i,r \uparrow i}}$$
.

Corollary 1.9.1. $p_{M,n} \setminus \omega \rho_M^n = \emptyset$.

Proof. $p_{M,n} \setminus \omega \rho_M^n \leq^* p_{M,n}$ and by Exercise 1.9.3 we have that $p_{M,n} \setminus \omega \rho_M^n \in P_M^n$.

Corollary 1.9.2. Let $r \in R_M^n$. Then r can be lengthended to some $p \in P_M^{n+1}$. If, in addition, $r \in [o(M)]^{<\omega}$, then r can be lengthened to some $p \in P_M^{n+1} \cap [o(M)]^{<\omega}$.

Proof. Let
$$p^- \in P_{M^{n,r}}$$
. Then, by Exercise 1.9.3, $p := r^- p^- \in P_M^{n+1}$. If $r \in [o(M)]^{<\omega}$, pick $p^- \in P_{M^{n,r}} \cap [o(M)]^{<\omega}$ and let $p = r \cup p^-$.

Corollary 1.9.3. Let M be sound and $p \in P_M^n$. Then p can be lengthened to a $p^* \in P_M^*$. If, in addition, $p \in [o(M)]^{<\omega}$, then p can be lengthened to some $p^* \in P_M^* \cap [o(M)]^{<\omega}$.

¹Zeman calls $p_{M,n}$ the standard parameter above $\omega \rho_M^n$.

Proof. Let $k < \omega$ be such that $\omega \rho_M^{\omega} = \omega \rho_M^k$. Now apply Corollary 1.9.2 k times.

Corollary 1.9.4. Let M be n-sound. Then $p_{M,n-1} = p_{M,n} \upharpoonright (n-1)$.

Proof. By Corollary 1.9.2 there is some q such that $p_{M,n-1} \cup q \in P_M^n$. Note that we may pick $q \subseteq [\omega \rho_M^n, \omega \rho_M^{n-1})$. Now $p_{M,n-1} = p_{M,n-1} \setminus \omega \rho_M^{n-1}$ and $p_{M,n-1} \cup q \leq^* p_{M,n}$. If $p_{M,n-1} \cup q = p_{M,n}$, we are done. Otherwise fix $\xi \in p_{M,n} \setminus p_{M,n-1} \cup q$ such that

$$p_{M,n} \setminus (\xi + 1) = (p_{M,n-1} \cup q) \setminus (\xi + 1).$$

Since $p_{M,n} \upharpoonright (n-1) \in P_M^n$ and hence $p_{M,n} \upharpoonright (n-1) \leq^* p_{M,n-1}$, we must have that $\xi \geq \omega \rho^{n-1}$ and thus $p_{M,n-1} = p_{M,n} \upharpoonright (n-1)$ as desired.

We are now ready to prove the main result of this section

Theorem 1.9.1. M is n-sound iff $p_{M,n} \in \mathbb{R}^n_M$.

Proof. If M is n-sound, then $p_{M,n} \in P_M^n = R_M^n$ and there is nothing to do. Conversely, suppose that n is minimal with $p_{M,n} \in R_M^n$ but M is not n-sound. We will derive a contradiction via the downward extension of embeddings lemma:

Let $q = \min_{<^*}(P_M^n \setminus R_M^n)$. Since $p_{M,n} = \min_{<^*}P_M^n$, we have $p_{M,n} <^* q$. Let $i < \omega$ be minimal such that $(p_{M,n} \cap [\omega \rho_M^{i+1}, \omega \rho_M^i) =) p_{M,n}^i <^* q^i$.

Claim 1.9.1. i = n - 1.

Proof. Suppose i < n - 1. Consider the map

id:
$$M^{n,q} \to M^{n,q}$$
.

By the downward extension of embeddings lemma there are unique π, \bar{M}, \bar{q} such that

- 1. $\pi \colon \bar{M} \to_{\Sigma^{(n)}} M$,
- 2. $\pi \upharpoonright H_M^n = \mathrm{id}$,
- $3. \ \pi(\bar{q}) = q,$
- 4. $\bar{q} \in R_{\bar{M}}^n$ and
- 5. $\bar{M}^{n,\bar{q}} = M^{n,q}$.

By induction hypothesis $p_{M,n} \upharpoonright (i+1) = p_{M,i+1} \in R_M^{i+1}$. We may thus fix a good $\Sigma_1^{(i)}(M)$ -function and some $z \in [\omega \rho_M^{i+1}]$ such that $q^i = f(z, p_{M,n} \upharpoonright i, p_{M,n}^i)$. Since $p_{M,n} \upharpoonright i = q \upharpoonright i$, this witnesses

$$M \models \exists z^{i+1} \exists r^i <^* q^i \colon z^{i+1}, r^i \in [\mathrm{Ord}]^{<\omega} \land q^i = f(z^{i+1}, q \upharpoonright i, r^i).$$

This is a $\Sigma_1^{(i+1)}$ -statement and thus preserved downwards by π . Hence there is a finite set of ordinals $\bar{z}\subseteq\omega\rho_{\bar{M}}^{i+1}$, $\bar{r}\subseteq\omega\rho_{\bar{M}}^{i+1}$ such that $\bar{q}^i=\bar{f}(\bar{z},\bar{q}\restriction i,\bar{r})$, where \bar{f} is the interpretation of f's $\Sigma_1^{(i)}$ definition over \bar{M} . Let $z=\pi(\bar{z})$, $r=\pi(\bar{r})$. Then $q^i=f(z,q\restriction i,r)$. Now consider

$$q^* := q \upharpoonright i \cup r \cup z \cup (q \cap \omega \rho_M^{i+1}).$$

q and q^* can be translated into each other via a $\Sigma_1^{(i)}(M)$ function, so that $q^* \in P_M^n \upharpoonright R_M^n$. On the other hand, since $r < q^i, q^* <^* q$. This contradicts the fact that $q = \min_{<^*} P_M^n \setminus R_M^n$.

We may now run the same proof as for the claim, but for i = n - 1, to show that in fact $R_M^n = P_M^n$.

1.10 Two Applications to L

first draft

Theorem 1.10.1. For every $\alpha \in \text{Ord } J_{\alpha}$ is acceptable and sound.

Before we can prove this, we need one more lemma about $\Sigma_1^{(n)}$ -definability:

Lemma 1.10.1. Suppose $R_M^n \neq \emptyset$. If $A \in \Sigma_{n+1}(M) \cap \mathcal{P}(H_M^n)$, then A is $\Sigma_1^{(n)}(M)$.

Proof. For n=0 this is trivial. We'll provide the proof for n=1 and leave the induction step as an exercise.

Let ϕ be a Σ_0 -formula, $\vec{p} \in M$ such that

$$A = \{ a \mid M \models \exists x \phi[a, x, \vec{p}] \}.$$

Now let $r \in R_M^1$ and fix $\xi \in \omega \rho_M^1$ such that $\vec{p} = h_M(\xi, r)$. We have

$$A = \{ a \mid M \models \exists x^1 \phi[a^1, h_M(x^1, r^0), h_M(\xi^1, r^0)] \}$$

= \{ a \left| M^{1,r} \models \equiv x\phi^*[a, x, \xi] \}

where phi^* is the natural Σ_1 -formula corresponding to ϕ . Since A is $\Sigma_1(M^{1,r})$, it is $\Sigma_1^{(1)}(M)$.

²Recall that ϕ is Σ_1 in the language $\{\in, A_M^{1,r}\}$

Exercise 1.10.1. Provide the induction step.

(Hint: Let $r \in R_M^{(n+1)}$. Then $r(0) \in R_M^1$ and $H_M^{n+1} = H_{M^{1,r(0)}}^n$. Furthermore recall that $M^{r(0)}$ has a very good parameter $r^* \in R_{M^{1,r(0)}}^n$ such that $r = r(0) \hat{r}^*$. Use the induction hypothesis on $M^{1,r(0)}$.)

Proof of Theorem 1.10.1. We proceed by induction on α :

First let $\alpha = 1$: $J_1 = (V_{\omega}; \in)$ is trivially acceptable and since V_{ω} is the image of ω under the Ackermann coding function (without parameter), it is also sound.

Suppose J_{β} is acceptable and sound for all $\beta < \alpha$. We will first show that J_{α} is acceptable. If α is a limit ordinal, there is nothing to do. So suppose that $\alpha = \beta + 1$. It suffices to show that

$$(\exists \tau < \beta \exists a \subseteq \tau a \in J_{\beta+1} \setminus J_{\beta}) \implies \exists f \in J_{\beta+1} f \colon \tau \twoheadrightarrow J_{\beta}.$$

Fix a, τ as above with τ minimal.

Claim 1.10.1. $\tau = \omega \rho_{J_{\beta}}^{\omega}$.

Proof. Let $n < \omega$ be such that $\omega \rho_{J_{\beta}}^{\omega} = \omega \rho_{J_{\beta}}^{n}$. Then there is some $\Sigma_{1}^{(n-1)}(M)$ -subset of $\omega \rho_{J_{\beta}}^{\omega}$ not in J_{β} . Since $\Sigma_{<\omega}(J_{\beta}) \subseteq J_{\beta+1}$, this new subset is in $J_{\beta+1}$ and hence witnesses that $\tau \leq \omega \rho_{J_{\beta}}^{\omega}$.

Conversely, let $a \subseteq \tau$ be $\Sigma_n(J_\beta)$. Since $\tau \leq \omega \rho_{J_\beta}^n$, we have that $a \subseteq H_{J_\beta}^n$. Since J_β is sound, we have $R_{J_\beta}^n \neq \emptyset$. And hence, by Lemma 1.10.1, we have that a is $\Sigma_1^{(n-1)}(J_\beta)$, witnessing that $\omega \rho_{J_\beta}^\omega \leq \tau$.

Now, since J_{β} is sound, there is a $\Sigma^*(J_{\beta})$ function

$$f : \omega \rho_{J_{\beta}}^{\omega} \to J_{\beta}.$$

But $f \in \Sigma_{<\omega}(J_{\beta}) \subseteq J_{\beta+1}$. Thus $J_{\beta+1}$ is acceptable.

Let us now verify that J_{α} is sound:

By Theorem 1.9.1, it suffices to show that $p_{n,J_{\alpha}} \in R_{J_{\alpha}}^n$ for all $n < \omega$. Suppose this is false and let $n < \omega$ be minimal such that $p := p_{n,J_{\alpha}} \notin R_{J_{\alpha}}^n$. Let a be $\Sigma_1^{(n-1)}(M)$ in p such that $a \cap \omega \rho_{J_{\alpha}}^n \notin J_{\alpha}$. Once again, consider

id:
$$(H_{J_{\alpha}}^n; \in, A_{J_{\alpha}}^{n,p}) \to (H_{J_{\alpha}}^n; \in, A_{J_{\alpha}}^{n,p}).$$

By the downward extension of embeddings lemma there are unique π, \bar{M}, \bar{p} such that

1.
$$\pi \colon \bar{M} \to_{\Sigma_1^{(n)}} J_{\alpha}$$
,

2.
$$\pi \upharpoonright H_M^n = \mathrm{id}$$
,

3.
$$\pi(\bar{p}) = p$$
,

4.
$$\bar{p} \in R_{\bar{M}}^n$$
 and

5.
$$\bar{M}^{n,\bar{q}} = (H^n_{J_\alpha}; \in, A^{n,p}_{J_\alpha}).$$

By condensation we have that $\bar{M} = J_{\bar{\alpha}}$ for some $\bar{\alpha} \leq \alpha$.

Claim 1.10.2. $\bar{\alpha} = \alpha$.

Proof. Let \bar{a} be the $\Sigma_1^{(n-1)}(J_{\bar{a}})$ set in q via the definition for a, call it ϕ . Let $\xi < a \cap \omega \rho_{J_{\alpha}}^n = \omega \rho_{J_{\bar{a}}}^n$. We have

$$\xi \in \bar{a} \iff J_{\bar{\alpha}} \models \phi[\xi, q]$$

$$\iff J_{\alpha} \models \phi[\underbrace{\pi(\xi)}_{=\xi}, \underbrace{\pi(q)}_{=p}]$$

$$\iff \xi \in a,$$

i.e. $a \cap \omega \rho_{J_{\alpha}}^{n} = \bar{a} \cap \omega \rho_{J_{\alpha}}^{n}$. If $\bar{\alpha} < \alpha$, then $\bar{a} \cap \omega \rho_{J_{\alpha}}^{n} \in J_{\bar{\alpha}+1} \subseteq J_{\alpha}$, which is absurd. Hence $\bar{\alpha} = \alpha$.

Since $\pi(q) = p$, we have $q \leq^* p$. On the other hand p is the $<^*$ -least good nth parameter and thus p = q. By $q \in R_{J_{\bar{\alpha}}}^n = R_{J_{\alpha}}^n$. Contradiction!