

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1 –9. (Canceled)

Claim 10. (Currently amended) A method of repairing at least one defective area in at least one stoving lacquer coating comprising the steps of:

- (a) applying a pulverulent powder coating ~~composition~~ directly to at least one defective area, wherein said powder coating ~~composition~~ has a mean particle size ranging from about 1 to about 90 µm and comprises a heat-curable binder system selected from the group consisting of a self-crosslinking system and an externally crosslinked system; and
- (b) melting and curing the powder coating ~~composition~~ by irradiation for 1 to 300 seconds with ~~using~~ near infrared radiation in the wave length range from about 760nm to about 1500nm emitted by a high-energy near infrared radiation radiator having a radiation density of more than 1 W/cm² to 15 MW/m² and operated at a radiator surface temperature of 2000 to 3000 K.

Claim 11. (Original) The method according to claim 10, further comprising the step of (c) polishing a repaired area.

Claim 12. (Original) The method according to claim 10, wherein the at least one stoving lacquer coating is selected from the group consisting of a single-layer finishing lacquer coating and a lacquer layer within a multi-layer lacquer coating.

Claim 13. (Original) The method according to claim 12, wherein the at least one stoving lacquer coating is selected from the group consisting of an external finishing lacquer layer, a visible color finishing lacquer layer,

an effect-giving lacquer layer, a transparent finishing lacquer layer and a visible color and effect-giving finishing lacquer layer.

Claim 14. (Original) The method according to claim 10, wherein the at least one stoving lacquer coating is produced from a powder coating.

Claim 15. (Original) The method according to claim 14, wherein the at least one stoving lacquer coating is produced from a clear powder coating.

Claim 16. (Canceled)

Claim 17. (Canceled)

Claim 18. (Original) The method according to claim 10, wherein the powder coating is a clear powder coating.

Claim 19. (Original) The method according to claim 18, wherein the clear powder coating comprises a binder selected from the group consisting of epoxy-functional (meth)acrylic copolymers having an epoxy equivalent weight of 250 to 700; and a curing agent selected from the group consisting of at least one low molecular weight compound having an average of at least two carboxyl functions per molecule, at least one polymeric compound having an average of at least two carboxyl functions per molecule, anhydrides and combinations thereof.

Claim 20. (Original) The method according to claim 19, wherein the curing agent is selected from the group consisting of solid aliphatic dicarboxylic acids, anhydrides thereof and combinations thereof.

Claim 21. (Original) The method according to claim 20, wherein the curing agent is dodecanedicarboxylic acid.

Claim 22. (Canceled)

Claim 23. (Previously presented) The method according to claim 10, wherein the heat-curable binder system is a binder/curing agent combination having at least two reactive functional groups.

Claim 24. (Original) The method according to claim 23, wherein the binder of the binder/curing agent combination is selected from the group consisting of polyester resins, (meth)acrylic copolymers, epoxy resins, phenolic resins, polyurethane resins, siloxane resins and combinations thereof.

Claim 25. (Original) The method according to claim 23, wherein the curing agent of the binder/curing agent combination has a number average molecular mass of 84 to 3000.

Claim 26. (Original) The method according to claim 23, wherein the at least two reactive functional groups are selected from the group consisting of carboxyl groups, epoxy groups, aliphatically bonded hydroxyl groups, aromatically bonded hydroxyl groups, isocyanate groups, blocked isocyanate groups, anhydride groups, primary amino groups, secondary amino groups, blocked amino groups, N-heterocyclic groups capable of ring-opening addition, and combinations thereof.

Claim 27. (Original) The method according to claim 23, wherein the binder/curing agent combination is in a ratio of 98:2 to 50:50.

Claim 28. (Original) The method according to claim 10, wherein the powder coating further comprises at least one additive selected from the group consisting of flow agents, degassing agents, antioxidants, light stabilizers, matting agents, color-giving inorganic pigments, color-giving organic pigments, effect-giving inorganic pigments, effect-giving organic pigments, fillers, colorants, adhesion promoters, lubricants, catalysts, rheology-controlling agents, and combinations thereof.

Serial No.: 10/018,896

Attorney Docket No.: FA1047 US NA

Claim 29. (Previously presented) The method according to claim 10, wherein the mean particle size ranges from 1 to 40 μm .

Claim 30. (Canceled)

Claim 31. (Previously presented) The method according to claim 10, wherein a near infrared radiator emits radiation over an area or focused along a line or point.

Claim 32. (Original) The method according to claim 10, wherein the near infrared radiation is used in combination with heat sources selected from the group consisting of convection ovens and long-wave infrared radiators.

Claim 33. (Canceled).