- **Fetch instruction (FI):** Read the next expected instruction into a buffer.
- **Decode instruction (DI):** Determine the opcode and the operand specifiers.
- Calculate operands (CO): Calculate the effective address of each source operand. This may involve displacement, register indirect, indirect, or other forms of address calculation.
- **Fetch operands (FO):** Fetch each operand from memory. Operands in registers need not be fetched.
- Execute instruction (EI): Perform the indicated operation and store the result, if any, in the specified destination operand location.
- Write operand (WO): Store the result in memory.

			Time	e	→									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction 1	FI	DI	СО	FO	EI	wo								
Instruction 2		FI	DI	СО	FO	EI	wo							
Instruction 3			FI	DI	СО	FO	EI	wo						
Instruction 4				FI	DI	СО	FO	EI	wo					
Instruction 5					FI	DI	СО	FO	EI	wo				
Instruction 6						FI	DI	СО	FO	EI	wo			
Instruction 7							FI	DI	СО	FO	EI	wo		
Instruction 8								FI	DI	СО	FO	EI	wo	
Instruction 9									FI	DI	CO	FO	EI	wo

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

	Time													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Instruction 1	FI	DI	co	FO	EI	wo								
Instruction 2		FI	DI	СО	FO	EI	wo							
Instruction 3			FI	DI	СО	FO	EI	wo						
Instruction 4				FI	DI	СО	FO	EI	wo					
Instruction 5					FI	DI	СО	FO	EI	wo				
Instruction 6						FI	DI	СО	FO	EI	wo			
Instruction 7							FI	DI	СО	FO	EI	wo		
Instruction 8								FI	DI	СО	FO	EI	wo	
Instruction 9									FI	DI	СО	FO	EI	wo

Figure 14.10 Timing Diagram for Instruction Pipeline Operation

	FI	DI	CO	FO	EI	wo
1	I1					
2	I2	I1				
3	13	12	I1			
4	I4	13	12	I1		
5	15	I4	13	I2	I1	
6	16	15	14	13	12	I1
7	I7	16	15	I4	13	12
8	I15					13
9	I16	I15				
10		I16	I15			
11			I16	I15		
12				I16	I15	
13					I16	I15
14						I16

(a) No branches

(b) With conditional branch

Figure 14.13 An Alternative Pipeline Depiction

Figure 14.12 Six-Stage CPU Instruction Pipeline

(a) Five-stage pipeline, ideal case

(b) I1 source operand in memory

Figure 14.15 Example of Resource Hazard

As an example, consider the following x86 machine instruction sequence:

```
ADD EAX, EBX /* EAX = EAX + EBX
SUB ECX, EAX /* ECX = ECX - EAX
```

The first instruction adds the contents of the 32-bit registers EAX and EBX and stores the result in EAX. The second instruction subtracts the contents of EAX from ECX and stores the result in ECX. Figure 14.16 shows the pipeline behavior.

	Clock cycle									
	1	2	3	4	5	6	7	8	9	10
ADD EAX, EBX	FI	DI	FO	EI WO						
SUB ECX, EAX		FI	DI	Idle		FO	EI	wo		
13			FI			DI	FO	EI	wo	
14						FI	DI	FO	EI	wo

Figure 14.16 Example of Data Hazard

Speed up factor

• S = (unpipelined time)/pipelined time