mada Zusammenfassung

Privater Schlüssel: (n, d)

Öffentlicher Schlüssel: (n, e)

$$n = p * q$$
 Primzahlen $p \neq q, p > 2, q > 2$

$$e, d \in \mathbb{Z}_{\varphi(n)}^*$$
 mit $e * d \equiv 1 \pmod{\varphi(n)}$ \Leftrightarrow $e * d \equiv_{\varphi(n)} 1$ \Leftrightarrow $(e * d) \mod{\varphi(n)} = 1$

Zahlentheorie

- 1) $\forall a \in \mathbb{Z} : 1 \mid a$
- 2) $\forall a, b \in \mathbb{Z} : a \mid b \Rightarrow (-a) \mid b$
- 3) $\forall a \in \mathbb{Z} : a \mid 0$
- 4) $\forall a, b, c \in \mathbb{Z} : (a \mid b) \land (b \mid c) \Rightarrow a \mid c$
- 5) $\forall a, b, c \in \mathbb{Z} : (a \mid b) \land (a \mid c) \Rightarrow a \mid (b+c)$
- 6) $\forall a, b, c, d \in \mathbb{Z} : (a \mid b) \land (c \mid d) \Rightarrow (a * b) \mid (b * d)$

Primzahl

Zahl $n \in \mathbb{N}$ heisst Primzahl, wenn sie genau zwei verschiedene Teiler in \mathbb{N} hat.

Die ersten Primzahlen: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101

Primzahlensatz: $\pi(n)$ bezeichnet Anz. Primzahlen $\leq n$. Dann gilt für $n \geq 55$:

$$\frac{n}{\ln n + 2} < \pi(n) < \frac{n}{\ln n - 4}$$

grösster gemeinsamer Teiler (ggT)

$$ggT(a,b) := \max\{x \in \mathbb{Z} \mid (x \mid a) \land (x \mid b)\}$$

Für
$$a, b \in \mathbb{N}$$
 gilt $a \mid b \Leftrightarrow ggT(a, b) = a$

Falls ggT(a, b) = 1 dann heissen a und b teilerfremd

Für alle $a \in \mathbb{N}$ gilt ggt(a, 0) = a

Der ggT kann mit Primfaktorzerlegung oder dem (erweiterten) euklidischen Algorithmus ermittelt werden.

Primfaktorzerlegung (mit Bsp.)

Der ggT ist das Produkt aller Primfaktoren, die in beiden Zahlen vorkommen, potenziert mit der niedrigeren der beiden Potenzen.

$$ggT(2079, 5733) =? \rightarrow 2079 = 3^3 * 7 * 11 & 5733 = 3^2 * 7^2 * 13$$

 3^2 und 7 kommen in beiden Zahlen vor. $\Rightarrow ggT(2079, 5733) = 3^2 * 7 = 63$.

Eulersche *φ*-Funktion

Es sei
$$n \ge 2$$
. Dann ist: $\mathbb{Z}_n^* = \{a \in \{0, 1, ..., n-1\} \mid ggT(a, n) = 1\}$

Def.:
$$\varphi(n) = |\mathbb{Z}_n^*| \to \text{Gibt an wie viele zu } n \text{ teilerfremde nat. Zahlen kleiner als } n \text{ existieren.}$$

Bsp.:
$$\varphi(12) = |\{a \in \{0, 1, ..., 11\} \mid ggt(a, 12) = 1\}| = |\{1, 5, 7, 11\}| = 4$$

Es sei p eine Primzahl, dann gilt: $\varphi(p) = p - 1$

Es sei $n \geq 2$ mit der Primfaktorzerlegung $n = p_1^{e_1} * \cdots * p_k^{e_k}$

Dann gilt:
$$\varphi(n) = (p_1 - 1) * p_1^{e_1 - 1} * \dots * (p_k - 1) * p_k^{e_k - 1}$$

Bsp.:
$$\omega(12) = \omega(2^2 * 3^1) = (2-1) * 2^{2-1} * (3-1) * 3^{1-1} = 4$$

Modulo

Es seien $n \in \mathbb{N}$ und $a \in \mathbb{Z}$.

Es existiert genau ein $q \in \mathbb{Z}$ und ein $r \in \{0, 1, ..., n-1\}$ mit a = n * q + r.

 $a \operatorname{div} n := q \quad \text{und} \quad a \operatorname{mod} n := r$

Bem.: $a = (a \operatorname{div} n) * n + (a \operatorname{mod} n)$

Bsp.: 10 div 4 = 2 10 mod 4 = 2

 $-1 \operatorname{div} 4 = 3$ $-1 \operatorname{mod} 4 = 3$ (da: -1 = -1 *4 + 3)

Rechenregeln Modulo:

Es seien $n \in \mathbb{N}$ und $a, b \in \mathbb{Z}$.

1) $a \mod n = b \mod n \iff n \mid (a - b)$

2) $a \mod n = (a \mod n) \mod n$

3) $(a+b) \bmod n = ((a \bmod n) + b) \bmod n$

 $(a+b) \bmod n = (a+(b \bmod n)) \bmod n$

 $(a+b) \bmod n = ((a \bmod n) + (b \bmod n)) \bmod n$

 $4) (a * b) \bmod n = ((a \bmod n) * b) \bmod n$

 $(a*b) \bmod n = (a*(b \bmod n)) \bmod n$

 $(a*b) \bmod n = ((a \bmod n)*(b \bmod n)) \bmod n$

Definition: Es seien $n \in \mathbb{N}$ und $a, b \in \mathbb{Z}$

Wir schreiben $a \equiv b \pmod{n}$ oder $a \equiv_n b$ falls a mod $n = b \pmod{n}$ und sagen: "a ist kongurent zu b modulo n".

Es sei $n \in \mathbb{Z}$ dann ist \equiv_n eine Äquivalenzrelation auf \mathbb{Z} . Das heisst:

1) \equiv_n ist refelxiv, d.h. $\forall a \in \mathbb{Z} : a \equiv_n a$

2) \equiv_n ist symmetrisch, d.h. $\forall a,b\in\mathbb{Z}:a\equiv_n b\Rightarrow b\equiv_n a$

3) \equiv_n ist transitiv, d.h. $\forall a,b,c\in\mathbb{Z}:(a\equiv_n b)\land(b\equiv_n c)\Rightarrow(a\equiv_n c)$

Äquivalenzklasse $[a]_n$ enthält alle Elemente, die zu a kongrugent modulo n sind.

Bsp.:
$$[7]_3 = \{a \in \mathbb{Z} \mid a \equiv_3 7\} = \{7, 10, 13, ...\} \cup \{4, 1, -2, -5, ...\}$$

Rechenregeln \equiv_n : (Es sei $n \in \mathbb{N}$ und $a, b, c, d \in \mathbb{Z}$)

1) $a \equiv_n b \Leftrightarrow n \mid (a - b)$

2) Aus $a \equiv_n b$ und $c \equiv_n d$ folgt $a + c \equiv_n b + d$ und $a * c \equiv_n b * d$

3) Aus $a*c \equiv_n b*c$ folgt $a \equiv_m b$ mit $m = \frac{n}{ggT(c,n)}$ aber nicht: $a \equiv_n b$

Erweiterter Euklidischer Algorithmus

Einfach:

Detailliert: Euklid(a,b)

Vorbedingung: $a, b \in \mathbb{Z}, a \ge b \ge 0$

- 1. Initialisierte Schleife: a'=a b'=b $x_0=1$ $y_0=0$ $x_1=0$ $y_1=1$
- 2. Jeweils: $q = a' \operatorname{div} b'$ $r = a' \operatorname{mod} b'$
- 3. Schleife solange $b' \neq 0$: a' = b' b' = r $x_0 = x_1$ $y_0 = y_1$ $x_1 = x_0 q * x_1$ $y_1 = y_0 q * y_1$

	a'	b'	X 0	y 0	X 1	y 1	q	r
INIT:	a	b	1	0	0	1	a' div b'	a' mod b'
Z2 :	b'	r	X 1	y 1	$x_0 - q * x_1$	$y_0 - q * y_1$	a' div b'	a' mod b'

Invariante : ggT(a,b) = ggT(a',b') | $a' = x_0*a + y_0*b$, $b' = x_1*a + y_1*b$ | $a' \ge b' \ge 0$

Nachbedingung: $ggT(a,b) = a' = x_0 * a + y_0 * b$

falls d aus $d*e \equiv_m 1$ bestimmt werdern soll : $d = y_0 \mod m$; a' = m; b' = e; ggT = 1

Es sei $m \in \mathbb{N}$ mit $m \ge 2$ und $e \in \mathbb{Z}_m = \{0, 1, \dots, m-1\}$

Dann existiert $d \in \mathbb{Z}_m$ mit $e * d \equiv_m 1$ genau dann, wenn ggT(m, e) = 1 also $e \in \mathbb{Z}_m^*$

Dann ist auch $d \in \mathbb{Z}_m^*$

 $\mathsf{mit}\,\mathsf{Euklid}: \quad 1 = ggT(m,e) = x_0 * m + y_0 * e \quad \Rightarrow \quad y_0 * e \equiv_m 1 \quad \Leftrightarrow \quad 1 = (y_0 * e) \bmod m$

Modulare Exponentation

Effizient $x^e \mod m$ berechnen bei $e, m \in \mathbb{N}, x \in \mathbb{Z}$

Ansatz: $(a*b) \mod n = (a \mod n * b)$ und "zwischendurch" schon $\mod m$ rechnen. aber besser:

Schnelle Exponation

Idee: Nutze $x^{2^k} = (((x^2)^2)^{2\cdots})^2$

Zerlege den Exponenten in eine Summe von Zweierpotenzen! Bsp : $13 = 2^3 + 2^2 + 2^0 \Rightarrow x^{13} = x^{2^3} * x^{2^2} * x^{2^0}$ Beachte: $13 = (1101)_2 (\rightarrow \text{Binärdarstellung})$

Wir gehen von hinten nach vorne über die Binärdarstellung, quadrieren jedesmal und multiplizieren, falls das Bit 1 ist.

Algorithmus: Eingabe: $x^e \mod m$ $x \in \mathbb{Z}, m \in \mathbb{N}, e \in \mathbb{N}$ mit Binärdarstellung $e = (b(0)b(1) \dots b(l))_2$

- 1. Initialisierung: i = l; h = 1; k = x
- 2. iteriertes Quadrieren: solange $i \ge 0$

falls
$$b(i) = 1 \rightarrow h = h * k \mod m$$

$$k = k^2 \mod m$$

$$i = i - 1$$

3. Ergebnis: h

Gruppentheorie

Verknüpfung

Die Verknüpfung \circ auf (oder in) einer Menge M ist eine Vorschrift, die je zwei Elementen a und b aus M (unter Beobachtung der Reihenfolge ein weiteres Element c von M zuordnet, also eine Abbildung: $M \times M \to M$.

Die Tatsache, dass $a \circ b$ für $a, b \in M$ wieder ein Element von M ist, bezeichnet man als Abgeschlossenheit von M bzgl. \circ .

Anstelle von \circ wird auch \oplus , \odot , *, +, \cdot , ... verwendet.

Nachfolgend stets: **Annahme:** $M \neq 0$

Def.: Es sei M eine Menge und f eine Famili von Verknüpfungen auf M. Dann heisst (M, f) algebraische Struktur.

Halbgruppen – Def.: Es sei M eine Menge und \circ eine Verknüpfung auf M. (M, \circ) heisst Halbgruppe, falls \circ assiozativ ist,

d.h. wenn $\forall a, b, c \in M$ gilt $(a \circ b) \circ c = a \circ (b \circ c)$.

Monoide – Def.: Eine Halbgruppe (M, \circ) heisst Monoid, falls ein Element $e \in M$ existiert mit $e \circ a = a \circ e = a \mid \forall a \in M$.

e heisst dann neutrales Element und ist eindeutig bestimmt.

Gruppen – Def.: Ein Monoid (M, \circ) heisst Gruppe, falls für alls $a \in M$ ein Element $i \in M$ existiert mit $i \circ a = a \circ i = e$, wobei e das eindeutige neutrale Element ist.

i heisst dann Inverses von a. Wir schreiben dafür a^{-1} (lediglich Abkürzung!)

Menge M mit einer Verknüpfung \circ ist also genau dann eine Gruppe, wenn:

- 1. M ist abgeschlossen bzgl \circ , d.h. $a \circ b \in M$ $\forall a, b \in M$
- 2. \circ ist assoziativ, d.h. $(a \circ b) \circ c = a \circ (b \circ c) \quad \forall a, b, c \in M$
- 3. Es existiert ein neutrales Element $e \in M$, d.h. $a \circ e = e \circ a = a \quad | \forall a \in M$
- 4. Für alle $a \in M$ existiert ein inverses Element $a^{-1} \in M$, d.h. $a^{-1} \circ a = a \circ a^{-1} = e$

Kurz

public key: (n, e) private key: (n, d) $e * d \equiv 1 \mod \varphi(n)$

- 1. $\varphi(n)$ bestimmen
- 2. *d* mittels erw. eukl.Algo. mit $\varphi(n) = a', e = b'$

```
3. d = y_0 \bmod \varphi(n)
```

4. entschlüsseln von y mit $y^d \mod n$ mit schneller Exponation.

ver-, entschlüsseln: $x = y^d \mod n$; $y = x^e \mod n$; $(x^e \mod n)^d \mod n = x \to \text{schnelle Exponation}$

Beweise

Zahlentheorie

(1)
$$\forall a, b \in \mathbb{Z} : a \mid b \Rightarrow (-a) \mid b$$

 $a \mid b \to \exists k \in \mathbb{Z} : b = k * a$
 $\Rightarrow b = \underbrace{(-k)}_{\in \mathbb{Z}} * (-a)$
 $\Rightarrow (-a) \mid b$

(4)
$$\forall a, b, c \in \mathbb{Z} : (a \mid b) \land (b \mid c) \Rightarrow a \mid c$$

$$a \mid b \rightarrow \exists k_1 \in \mathbb{Z} : b = k_1 * a$$

$$b \mid c \rightarrow \exists k_2 \in \mathbb{Z} : c = k_2 * b$$

$$\Rightarrow c = \underbrace{(k_1 * k_2)}_{\in \mathbb{Z}} * a$$

$$\Rightarrow a \mid c$$

(5)
$$\forall a, b, c \in \mathbb{Z} : (a \mid b) \land (a \mid c) \Rightarrow a \mid (b+c)$$

$$a \mid b \to \exists k_1 \in \mathbb{Z} : b = k_1 * a$$

$$a \mid c \to \exists k_2 \in \mathbb{Z} : c = k_2 * a$$

$$\Rightarrow b + c = \underbrace{(k_1 + k_2)}_{\in \mathbb{Z}} * a$$

$$\Rightarrow a \mid (b+c)$$

(6)
$$\forall a, b, c, d \in \mathbb{Z} : (a \mid b) \land (c \mid d) \Rightarrow (a * c) \mid (b * d)$$

$$a \mid b \to \exists k_1 \in \mathbb{Z} : b = k_1 * a$$

$$c \mid d \to \exists k_2 \in \mathbb{Z} : d = k_2 * c$$

$$\Rightarrow b * d = (k_1 * a * k_2 * c) = \underbrace{(k_1 * k_2)}_{\in \mathbb{Z}} * (a * c)$$

$$\Rightarrow (a * c) \mid (b * d)$$

Rechenregel Modulo

(1)
$$a \mod n = b \mod n \iff n \mid (a - b)$$

Zuerst zeigen: $a \mod n = b \mod n \Rightarrow n \mid (a - b)$
 $\Rightarrow a = (a \operatorname{div} n) * n + (a \operatorname{mod} n)$
 $\Rightarrow b = (b \operatorname{div} n) * n + (b \operatorname{mod} n)$
 $\Rightarrow a - b = (a \operatorname{div} n - b \operatorname{div} n) * n + \underbrace{a \operatorname{mod} n - b \operatorname{mod} n}_{0, \operatorname{nach Voraussetzung}}$
 $\Rightarrow a - b = \underbrace{(a \operatorname{div} n - b \operatorname{div} n)}_{\in \mathbb{Z}} * n = (a \operatorname{div} n) * n$
 $\Rightarrow n \mid (a - b)$
dann: $n \mid (a - b) \Rightarrow a \operatorname{mod} n = b \operatorname{mod} n$
 $\Rightarrow a = b + k * n = (b \operatorname{div} n) * n + b \operatorname{mod} n + k * n$
 $\Rightarrow a = (b \operatorname{div} n + k) * n + b \operatorname{mod} n$
 $\Rightarrow \operatorname{nachDef} : a = (a \operatorname{div} n + a \operatorname{mod} n)$

müssen übereinstimmen, da es genau 1 Darstellung von a als Vielfachen von n plus Rest gibt.

(2) $a \bmod n = (a \bmod n) \bmod n$

Gemäss (1) reicht zu zeigen, dass:

$$n \mid \underbrace{(a - (a \bmod n))}_{(a \operatorname{div} n) * n}$$

Offensichtlich Vielfachen von n