COGNIFYZ

IMPORTING LIBRARIES

```
In [3]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

READING THE DATA

```
In [9]: df=pd.read_csv('interndata.csv')
    df.head(5)
```

Out[9]:

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Cer P Ma
1	6304287	lzakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Lit ⁱ Ma
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Sh Man (
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	Man
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	v Man

 $5 \text{ rows} \times 21 \text{ columns}$

Data Cleaning

In [14]: df.isnull()

		Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Lor
	0	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	
	•••								
9	9546	False	False	False	False	False	False	False	
9	9547	False	False	False	False	False	False	False	
9	9548	False	False	False	False	False	False	False	
9	9549	False	False	False	False	False	False	False	
9	9550	False	False	False	False	False	False	False	

9551 rows \times 21 columns

```
In [16]: df.isnull().sum()
                                  0
Out[16]: Restaurant ID
                                  0
          Restaurant Name
          Country Code
                                  0
          City
          Address
          Locality
          Locality Verbose
                                  0
          Longitude
          Latitude
          Cuisines
          Average Cost for two
          Currency
         Has Table booking
                                  0
         Has Online delivery
                                  0
          Is delivering now
                                  0
          Switch to order menu
          Price range
                                  0
          Aggregate rating
          Rating color
                                  0
          Rating text
                                  0
          Votes
          dtype: int64
```

here we do not have any NaN value

Out[19]:		Restaurant ID	Country Code	Longitude	Latitude	Average Cost for two	P
	count	9.551000e+03	9551.000000	9551.000000	9551.000000	9551.000000	9!
	mean	9.051128e+06	18.365616	64.126574	25.854381	1199.210763	
	std	8.791521e+06	56.750546	41.467058	11.007935	16121.183073	
	min	5.300000e+01	1.000000	-157.948486	-41.330428	0.000000	
	25%	3.019625e+05	1.000000	77.081343	28.478713	250.000000	
	50%	6.004089e+06	1.000000	77.191964	28.570469	400.000000	
	75 %	1.835229e+07	1.000000	77.282006	28.642758	700.000000	
	max	1.850065e+07	216.000000	174.832089	55.976980	800000.000000	

STARTING OF LEVEL 1

1.Determine the top three most common cuisines in Dataset.

```
In [36]: a =df['Cuisines'].value_counts()
         top three=a.head(3)
         count cuisines=a
In [38]: print("The top three Cuisines:")
         for i in range(len(top three.index)):
             print(top three.index[i])
        The top three Cuisines:
        North Indian
        North Indian, Chinese
        Chinese
In [113... plt.figure(figsize=(7,5))
         color=['pink','brown','brown']
         top_three.plot(kind='bar',color=color)
         plt.title('Top three most visited Cuisines')
         plt.xlabel('Cuisines')
         plt.ylabel('Number of Restaurants')
         plt.show()
```

Top three most visited Cuisines

Percentage of top three cusines

```
In [60]: tot_res=len(df)
tot_res
per= (top_three.values/tot_res)*100
data=dict(zip(top_three.index,per))
data
data

Out[60]: {'North Indian': 9.800020940215685,
    'North Indian, Chinese': 5.350225107318606,
    'Chinese': 3.706418176107214}

In [62]: a=pd.DataFrame(data.items(),columns = ['cuisine','percentage'])
a
```

Out[62]:		cuisine	percentage
	0	North Indian	9.800021
	1	North Indian, Chinese	5.350225
	2	Chinese	3.706418

2. Identify the city with the highest number of restaurants in the dataset.

```
In [72]: df['City'].value_counts()
    city=df['City'].value_counts()
    city.index[0]
```

Out[72]: 'New Delhi'

average rating

```
In [81]: mean=df['Aggregate rating'].mean()
    average_ratings = df.groupby(['City', 'Restaurant Name'])['Aggregate rating']
    average_ratings
```

Out[81]:	City		Restaurant Name	Aggregate rating
	0	Abu Dhabi	Applebee's	4.0
	1	Abu Dhabi	Bait El Khetyar	4.0
	2	Abu Dhabi	Cho Gao - Crowne Plaza Abu Dhabi	4.4
	3	Abu Dhabi	Denny's	4.6
	4	Abu Dhabi	Famous Dave's Barbecue	4.6
	7969	Stanbul	Leman K�_lt�_r	3.7
	7970	Stanbul	Naml1 Gurme	4.1
	7971	�� stanbul	Starbucks	4.9
	7972		Valonia	4.2
	7973	Stanbul	Walter's Coffee Roastery	4.0

7974 rows \times 3 columns

```
In [85]: average_ratings = df.groupby('City')['Aggregate rating'].mean().reset_index(
    average_ratings
```

Out[85]:		City	Aggregate rating
	0	Abu Dhabi	4.300000
	1	Agra	3.965000
	2	Ahmedabad	4.161905
	3	Albany	3.555000
	4	Allahabad	3.395000
	136	Weirton	3.900000
	137	Wellington City	4.250000
	138	Winchester Bay	3.200000
	139	Yorkton	3.300000
	140	stanbul	4.292857

141 rows \times 2 columns

highest average rating

In [90]: average_ratings= df.groupby('City')['Aggregate rating'].mean().reset_index()
 average_ratings_city=average_ratings.sort_values(by='Aggregate rating',ascer
 average_ratings_city

Out[90]:		City	Aggregate rating
	56	Inner City	4.900000
	107	Quezon City	4.800000
	73	Makati City	4.650000
	95	Pasig City	4.633333
	75	Mandaluyong City	4.625000
	88	New Delhi	2.438845
	83	Montville	2.400000
	78	Mc Millan	2.400000
	89	Noida	2.036204
	43	Faridabad	1.866932

141 rows × 2 columns

In [92]: average_ratings_city.iloc[0,0]

3. Creating a histogram or bar chart to visualize the distribution of price ranges among the restaurants.

calculating the percentage of restraunt

```
In [116... total=len(df)
          total
Out[116... 9551
In [120... count = df['Price range'].value counts().values
         count
Out[120... array([4444, 3113, 1408, 586], dtype=int64)
In [128... percentage=round(df['Price range'].value counts()/total*100,2)
         percentage
Out[128... Price range
               46.53
          2
               32.59
          3
               14.74
                6.14
          Name: count, dtype: float64
In [132... dfl=pd.DataFrame({'Price range':df['Price range'].value_counts().index,
                            'Count':count,
                           'Percentage':percentage})
         df1
Out[132...
                       Price range Count Percentage
          Price range
                                     4444
                                                 46.53
                                 1
                    1
                    2
                                                 32.59
                                     3113
```

4.the percentage of restaurants that offer online delivery.

14.74

6.14

3

3

1408

586

```
In [139... df[df['Has Online delivery']=='Yes']['Restaurant Name'].value_counts()
```

```
Out[139... Restaurant Name
          Subway
                                47
         McDonald's
                                30
          Pizza Hut Delivery
                                18
          Chaayos
         KFC
                                15
         Al Zaitoon
                                1
         The Barley House
                                1
          Bemisaal
         Urban Kabab
          Saffron Mantra
                                1
          Name: count, Length: 1728, dtype: int64
In [141... leng=len(df[df['Has Online delivery']=='Yes'])
Out[141... 2451
In [149... round(df[df['Has Online delivery']=='Yes']['Restaurant Name'].value counts()
Out[149... Restaurant Name
          Subway
                                1.92
                                1.22
         McDonald's
          Pizza Hut Delivery
                                0.73
                                0.61
          Chaayos
         KFC
                                0.61
                                . . .
          Al Zaitoon
                                0.04
         The Barley House
                               0.04
          Bemisaal
                                0.04
         Urban Kabab
                                0.04
          Saffron Mantra
                                0.04
         Name: count, Length: 1728, dtype: float64
In [151... total=len(df)
         total
Out[151... 9551
In [153... percentage=(leng/total)*100
         percentage
Out[153... 25.662234321013504
```

Comparing the average ratings of restaurants with and without online delivery.

```
In [158... online_data=df[df['Has Online delivery']=='Yes']
  offline_data=df[df['Has Online delivery']=='No']
In [160... average_ratings= online_data.groupby('Restaurant Name')['Aggregate rating'].
```

average_ratings

\cap		4	г	7	C	\cap	
U	u	L	L	Т	O	U	

	Restaurant Name	Aggregate rating
0	#OFF Campus	3.70
1	#Urban Caf��	3.30
2	18 Degrees Resto Lounge	3.60
3	19 Flavours Biryani	4.10
4	2 Bros Kitchen	3.20
1723	Zucca Pizzeria	3.50
1724	bu��no	3.75
1725	hug!	3.50
1726	iGNiTE	3.00
1727	iKitchen	0.00

1728 rows × 2 columns

average rating of restaurant with and without online delivery

In [165	df	.groupby('Has Online	delivery')['Aggre	<pre>gate rating'].mean().round(2).reset_</pre>
Out[165		Has Online delivery	Aggregate rating	
	0	No	2.47	
	1	Yes	3.25	
In []:				

This notebook was converted to PDF with convert.ploomber.io