In []:

In [29]:

```
# IMPORT LIBRARIES
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [30]:

a=pd.read_csv(r"C:\Users\user\Downloads\fiat500_VehicleSelection_Dataset.csv")
a

Out[30]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	ŀ
0	1	lounge	51	882	25000	1	44.907242	8.6115
1	2	pop	51	1186	32500	1	45.666359	12.2418
2	3	sport	74	4658	142228	1	45.503300	11.4178
3	4	lounge	51	2739	160000	1	40.633171	17.6346
4	5	pop	73	3074	106880	1	41.903221	12.4956
1533	1534	sport	51	3712	115280	1	45.069679	7.7049
1534	1535	lounge	74	3835	112000	1	45.845692	8.6668
1535	1536	pop	51	2223	60457	1	45.481541	9.4134
1536	1537	lounge	51	2557	80750	1	45.000702	7.6822
1537	1538	pop	51	1766	54276	1	40.323410	17.5682

1538 rows × 9 columns

In [31]:

```
a=a.head(10)
a
```

Out[31]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	ı
0	1	lounge	51	882	25000	1	44.907242	8.611560	
1	2	рор	51	1186	32500	1	45.666359	12.241890	ł
2	3	sport	74	4658	142228	1	45.503300	11.417840	4
3	4	lounge	51	2739	160000	1	40.633171	17.634609	1
4	5	рор	73	3074	106880	1	41.903221	12.495650	;
5	6	рор	74	3623	70225	1	45.000702	7.682270	
6	7	lounge	51	731	11600	1	44.907242	8.611560	11
7	8	lounge	51	1521	49076	1	41.903221	12.495650	!
8	9	sport	73	4049	76000	1	45.548000	11.549470	ţ
9	10	sport	51	3653	89000	1	45.438301	10.991700	١
4 (_							•

In [32]:

```
# to find
a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	ID	10 non-null	int64
1	model	10 non-null	object
2	engine_power	10 non-null	int64
3	age_in_days	10 non-null	int64
4	km	10 non-null	int64
5	previous_owners	10 non-null	int64
6	lat	10 non-null	float64
7	lon	10 non-null	float64
8	price	10 non-null	int64

dtypes: float64(2), int64(6), object(1)

memory usage: 848.0+ bytes

In [33]:

```
# to display summary of statastic
a.describe()
```

Out[33]:

	ID	engine_power	age_in_days	km	previous_owners	lat	
count	10.00000	10.000000	10.000000	10.000000	10.0	10.000000	10.0
mean	5.50000	60.000000	2611.600000	76250.900000	1.0	44.141076	11.0
std	3.02765	11.623731	1427.557214	49399.679798	0.0	1.887936	2.8
min	1.00000	51.000000	731.000000	11600.000000	1.0	40.633171	7.0
25%	3.25000	51.000000	1269.750000	36644.000000	1.0	42.654226	9.1
50%	5.50000	51.000000	2906.500000	73112.500000	1.0	44.953972	11.4
75%	7.75000	73.000000	3645.500000	102410.000000	1.0	45.487050	،.12
max	10.00000	74.000000	4658.000000	160000.000000	1.0	45.666359	17.0
4							•

In [34]:

```
# to display colum heading
a.columns
```

Out[34]:

In [35]:

sns.pairplot(a)

Out[35]:

<seaborn.axisgrid.PairGrid at 0x20b7d497c10>

In [42]:

```
sns.displot(a["age_in_days"])
```

Out[42]:

<seaborn.axisgrid.FacetGrid at 0x20b0105f040>

In [43]:

Out[43]:

	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	lounge	51	882	25000	1	44.907242	8.611560	8900
1	рор	51	1186	32500	1	45.666359	12.241890	8800
2	sport	74	4658	142228	1	45.503300	11.417840	4200
3	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	рор	73	3074	106880	1	41.903221	12.495650	5700
5	рор	74	3623	70225	1	45.000702	7.682270	7900
6	lounge	51	731	11600	1	44.907242	8.611560	10750
7	lounge	51	1521	49076	1	41.903221	12.495650	9190
8	sport	73	4049	76000	1	45.548000	11.549470	5600
9	sport	51	3653	89000	1	45.438301	10.991700	6000
4 6								_ \

In [44]:

```
sns.heatmap(b.corr())
```

Out[44]:

<AxesSubplot:>

In [49]:

In [50]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

In [51]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[51]:

LinearRegression()

In [52]:

```
lr.intercept_
```

Out[52]:

-9.094947017729282e-13

In [53]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[53]:

```
      Co-efficient

      age_in_days
      1.000000e+00

      km
      -1.377314e-17

      previous_owners
      1.019426e-16

      lat
      8.115585e-14

      lon
      -2.991007e-14

      price
      -4.494383e-17
```

In [54]:

```
prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[54]:

<matplotlib.collections.PathCollection at 0x20b005ec5e0>

In [55]:

```
lr.score(x_test,y_test)
```

Out[55]:

1.0

In [56]:

```
lr.score(x_train,y_train)
```

Out[56]:

1.0

```
In [57]:
from sklearn.linear_model import Ridge,Lasso
In [58]:
rr=Ridge(alpha=10)
rr.fit(x_test,y_test)
Out[58]:
Ridge(alpha=10)
In [59]:
rr.score(x_test,y_test)
Out[59]:
0.999999999952643
In [60]:
la=Lasso(alpha=10)
la.fit(x_test,y_test)
Out[60]:
Lasso(alpha=10)
In [61]:
la.score(x_test,y_test)
Out[61]:
0.999999999999121
In [ ]:
```