Optimal Transport

Learning with a Wasserstein Loss

Nicolás Violante

Introduction

Ordinal classification

- Particular case of multi-class classification where the labels have a natural ordering, i.e. ground truth metric
- Example: classify movies as bad (0), good (1), excellent (2)

Wasserstein distance as loss function

 Optimal transport naturally lifts a ground truth metric to a distance between probability vectors

 Use Sinkhorn algorithm to compute the loss between network outputs and targets

Approximate the gradients via the dual problem and backpropagate

Dataset

Car Dataset

- 1728 examples of cars labeled as unacceptable (1210), acceptable (384), good (134)
- Each example has 6 attributes
- Balanced dataset with 134 examples of each class

Experiments

Experiments

- Sinkhorn iterations
- Cost matrix
- Small network
- Unbalanced dataset
- Sinkhorn divergence

Sinkhorn iterations

• 350 slower than Cross Entropy for N=10

Sinkhorn Iterations	Accuracy	Average loss time computation (sec)
1	0.963	0.0446
10	0.988	0.0448
100	0.963	0.0545
500	0.988	0.089
1000	0.963	0.153
2000	0.988	0.223

Cost matrix

 We can control the weight of each miss-classification error via the cost matrix. For example (toy example)

$$C_1 = \begin{pmatrix} 1 & 0.5 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 1 \end{pmatrix} \text{ and } C_2 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Cost matrix

(a) Results for cost C_1

(b) Results for cost C_2

Small network

A single linear layer between inputs and outputs

Unbalanced dataset

• The predictions collapse into the dominant class

Sinkhorn divergence

Helps to prevent collapse (most of the time)

Conclusions

Conclusions

- Wasserstein distance can be used to train ordinal classification models and obtain competitive results
- The cost matrix C offers a natural way to penalize different errors with different weights
- Additional computational cost for running Sinkhorn may be prohibitive for large scale training
- Collapse with unbalanced dataset

Thank you