Blocked algorithms vs. Algorithms by blocks

Paolo Bientinesi pauldj@cs.umu.se

June 05, 2023 TU Delft

About me

Italy – Tuscany

Italy – University of Pisa

Computational Geometry

USA – UT Austin, TX

- Symmetric eigenproblem $AX = X\Lambda$
- FLAME project
 Automatic generation of algorithms

Algorithm LU = A

Partition $A \rightarrow \left(\begin{array}{c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right), L \rightarrow \left(\begin{array}{c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array}\right), U \rightarrow \left(\begin{array}{c|c} U_{TL} & U_{TR} \\ \hline 0 & U_{BR} \end{array}\right)$ where A_{TL}, L_{TL}, U_{TL} , are 0×0

Repartition

$$\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & a_{01} & A_{02} \\ \frac{\alpha_{10}^T}{A_{20}} & \alpha_{11} & \frac{\alpha_{12}}{A_{22}} \\ A_{20} & a_{21} & A_{22} \end{pmatrix}, \begin{pmatrix} L_{TL} & 0 \\ L_{BL} & L_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} L_{00} & 0 & 0 \\ \frac{l_{10}^T}{l_{10}} & 1 & 0 \\ L_{20} & l_{21} & l_{22} \end{pmatrix},$$

$$(Hos lyon) (Hos)$$

$$\left(egin{array}{c|c|c} U_{TL} & U_{TR} \\ \hline 0 & U_{BR} \end{array}
ight)
ightarrow \left(egin{array}{c|c|c} 0 & u_{01} & u_{02} \\ \hline 0 & v_{11} & u_{12}^T \\ \hline 0 & 0 & U_{22} \end{array}
ight)$$

where $\alpha_{11}, 1, v_{11}$ are scalars

$$\begin{array}{l} v_{11} := \alpha_{11} - l_{10}^T u_{01} \\ u_{12}^T := a_{12}^T - l_{10}^T U_{02} \\ l_{21} := (a_{21} - L_{20} u_{01}) / v_{11} \end{array}$$

Continue with

$$\left(\begin{array}{c|c|c|c} A_{TL} & A_{TR} \\ \hline A_{BL} & A_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c|c|c} A_{00} & a_{01} & A_{02} \\ \hline a_{10}^T & \alpha_{11} & a_{12}^T \\ \hline A_{20} & a_{21} & A_{22} \end{array}\right), \left(\begin{array}{c|c|c} L_{TL} & 0 \\ \hline L_{BL} & L_{BR} \end{array}\right) \leftarrow \left(\begin{array}{c|c|c} L_{00} & 0 & 0 \\ \hline l_{10}^T & 1 & 0 \\ \hline L_{20} & l_{21} & L_{22} \end{array}\right), \cdots$$

endwhile

USA - Duke, NC

- Cell
- ► FFTs

Germany – RWTH Aachen University

High-Performance & Automatic Computing

Sweden – Umeå University

- Matrix & tensor operations
- ► HPC
- Computer music

High-Performance Computing Center North

Today's outline

► Part 1: HPC & LA fundamentals

- Part 2: Unblocked vs. blocked algorithms
- Part 3: Algorithms by blocks

Fundamentals of HPC & LA

Cholesky: unblocked and blocked algorithms

Cholesky: algorithms by blocks

World of high-performance numerical linear algebra

Where are we?

- Dense vs. sparse
- Linear solvers vs. eigensolvers
- Direct methods vs. iterative methods
- ► (Shared memory vs. distributed memory)
- ► (Small vs. medium/large size)

World of high-performance numerical linear algebra

Where are we?

- Dense vs. sparse
- Linear solvers vs. eigensolvers
- Direct methods vs. iterative methods
- (Shared memory vs. distributed memory)
- ► (Small vs. medium/large size)

Context: Development of high-performance linear algebra libraries

"Standard" approach (since the '70s):

- 1. Identify building blocks ("kernels")
 e.g., inner product, matrix-vector & matrix-matrix product, linear system, eigenproblem, . . .
- Encapsulate into a function
 e.g., ddot, gemv, gemm, dgesv, dsyevd, ...
- 3. Optimize, specialize

Reference: DGEMM - "speed of light"

Efficiency: Percentage of theoretical peak performance

GER: $A := A + \alpha xy^T$ FLOPS = # flops/sec

Can you explain these profiles?

Can you explain these profiles?

GEMM: $C := \alpha A * B + \beta C$

Can you explain these profiles?

Memory hierarchy \equiv not all flops cost the same!

Many ways to skin a DGEMM

Can you explain the difference in execution time?

Also "Locality of references", "Principle of locality"

Also "Locality of references", "Principle of locality"

Observations

Programs exhibit temporal locality

Consequences

Also "Locality of references", "Principle of locality"

Observations

Programs exhibit temporal locality

Consequences

Cache memories

Also "Locality of references", "Principle of locality"

Observations

- Programs exhibit temporal locality
- Programs exhibit spatial locality

Consequences

Cache memories

Also "Locality of references", "Principle of locality"

Observations

- Programs exhibit temporal locality
- Programs exhibit spatial locality

Consequences

- Cache memories
- Cachelines & Prefetching

Also "operational intensity", "arithmetic intensity"

BLAS-1:
$$y := \alpha x + y$$
 $x, y \in \mathbb{R}^n$ $\gamma := \alpha + x^T y$

#FLOPS Mem. refs. Ratio
BLAS-1

BLAS-1:
$$y := \alpha x + y$$
 $x, y \in \mathbb{R}^n$ $\gamma := \alpha + x^T y$

#FLOPS Mem. refs. Ratio BLAS-1 2n
BLAS-1 2n

BLAS-1:
$$y := \alpha x + y$$
 $x, y \in \mathbb{R}^n$ $\gamma := \alpha + x^T y$

BLAS-1:
$$y := \alpha x + y$$
 $x, y \in \mathbb{R}^n$ $\gamma := \alpha + x^T y$ BLAS-2: $y := Ax + y$ $A, L \in \mathbb{R}^{n \times n}, x, y \in \mathbb{R}^n$

$$y := L^{-1}x$$

#FLOPS Mem. refs. Ratio BLAS-1 $2n$ $3n$ $2/3$ BLAS-2				
,		#FLOPS	Mem. refs.	Ratio
BLAS-2	BLAS-1	2 <i>n</i>	3 <i>n</i>	2/3
	BLAS-2			

BLAS-1:
$$y := \alpha x + y$$
 $x, y \in \mathbb{R}^n$ $\gamma := \alpha + x^T y$

BLAS-2: $y := Ax + y$ $A, L \in R^{n \times n}, x, y \in R^n$ $y := L^{-1}x$

	#FLOPS	Mem. refs.	Ratio
BLAS-:	L 2n	3 <i>n</i>	2/3
BLAS-2	$2 2n^2$		

Also "operational intensity", "arithmetic intensity"

BLAS-1:
$$y := \alpha x + y$$
 $x, y \in \mathbb{R}^n$ $\gamma := \alpha + x^T y$ BLAS-2: $y := Ax + y$ $A, L \in \mathbb{R}^{n \times n}, x, y \in \mathbb{R}^n$

 $y := L^{-1}x$

	#FLOPS	Mem. refs.	Ratio
BLAS-	1 2n	3 <i>n</i>	2/3
BLAS-	$2 2n^2$	n^2	2

BLAS-1:
$$y := \alpha x + y$$
 $x, y \in \mathbb{R}^n$ $\gamma := \alpha + x^T y$

BLAS-2: $y := Ax + y$ $A, L \in R^{n \times n}, x, y \in R^n$ $y := L^{-1}x$

BLAS-3: $C := AB + C$ $A, B, C, L \in R^{n \times n}$ $C := L^{-1}B$

	#FLOPS	Mem. refs.	Ratio
BLAS-1	2 <i>n</i>	3 <i>n</i>	2/3
BLAS-2	$2n^{2}$	n^2	2
BLAS-3			

BLAS-1:
$$y := \alpha x + y$$
 $x, y \in \mathbb{R}^n$ $\gamma := \alpha + x^T y$

BLAS-2: $y := Ax + y$ $A, L \in R^{n \times n}, x, y \in R^n$ $y := L^{-1}x$

BLAS-3: $C := AB + C$ $A, B, C, L \in R^{n \times n}$ $C := L^{-1}B$

	#FLOPS	Mem. refs.	Ratio
BLAS-1	2 <i>n</i>	3 <i>n</i>	2/3
BLAS-2	$2n^2$	n^2	2
BLAS-3	$2n^{3}$	4 <i>n</i> ²	n/2

Summary: Libraries

1970s

Identification, analysis, optimization of building blocks

Summary: Libraries

1970s

- Identification, analysis, optimization of building blocks
- Computers difficult to program
 BUT
 Programs "easy" to optimize
- $ightharpoonup Cost(Alg) \equiv \#operations(Alg)$

Summary: Libraries

1970s

- Identification, analysis, optimization of building blocks
- Computers difficult to program BUT
 Programs "easy" to optimize
- $ightharpoonup \mathsf{Cost}(\mathcal{A} \mathit{lg}) \equiv \#\mathsf{operations}(\mathcal{A} \mathit{lg})$
- Libraries: convenience, portability, separation of concerns, confidence, performance

Summary: Libraries

1970s

- Identification, analysis, optimization of building blocks
- Computers difficult to program BUT
 Programs "easy" to optimize
- $ightharpoonup \mathsf{Cost}(\mathcal{A} \mathit{lg}) \equiv \#\mathsf{operations}(\mathcal{A} \mathit{lg})$
- Libraries: convenience, portability, separation of concerns, confidence, performance

since 1980s

Increasingly complex HW:
 E.g., vector processors, memory
 hierarchies, prefetching, . . .

Summary: Libraries

1970s

- Identification, analysis, optimization of building blocks
- Computers difficult to program BUT
 Programs "easy" to optimize
- ightharpoonup Cost(A/g) \equiv #operations(A/g)
- Libraries: convenience, portability, separation of concerns, confidence, performance

since 1980s

- Increasingly complex HW:
 E.g., vector processors, memory
 hierarchies, prefetching, . . .
- Computers easier to program BUTPrograms difficult to optimize
- $ightharpoonup Cost(Alg) \not\equiv \#operations(Alg)$

Summary: Libraries

1970s

- Identification, analysis, optimization of building blocks
- Computers difficult to program
 BUT
 Programs "easy" to optimize
- $ightharpoonup \mathsf{Cost}(\mathcal{A} \mathit{lg}) \equiv \#\mathsf{operations}(\mathcal{A} \mathit{lg})$
- Libraries: convenience, portability, separation of concerns, confidence, performance

since 1980s

- Increasingly complex HW:
 E.g., vector processors, memory
 hierarchies, prefetching, . . .
- Computers easier to program BUTPrograms difficult to optimize
- $ightharpoonup Cost(Alg) \not\equiv \#operations(Alg)$
- Libraries: as before + necessity for performance

Fundamentals of HPC & LA

Cholesky: unblocked and blocked algorithms

Cholesky: algorithms by blocks

$$LL^T = A$$
 $L := \Gamma(A)$

$$L = \left(\begin{array}{c|c} L_{TL} & \\ \hline L_{BL} & L_{BR} \end{array}\right) = ?$$

$$LL^{T} = A$$
 $L := \Gamma(A)$

$$L = \left(\begin{array}{c|c} L_{TL} & \\ \hline L_{BL} & L_{BR} \end{array}\right) = ?$$

$$\left(\begin{array}{c|c}
L_{TL} & \\
\hline
L_{BL} & L_{BR}
\end{array}\right) \left(\begin{array}{c|c}
L_{TL}^T & L_{BL}^T \\
\hline
L_{BR}^T
\end{array}\right) = \left(\begin{array}{c|c}
A_{TL} & A_{BL}^T \\
\hline
A_{BL} & A_{BR}
\end{array}\right)$$

$$LL^{T} = A$$
 $L := \Gamma(A)$
 $L = \left(\begin{array}{c|c} L_{TL} & \\ \hline L_{BL} & L_{BR} \end{array}\right) = ?$

$$\left(\begin{array}{c|c}
L_{TL}L_{TL}^T = A_{TL} \\
\hline
L_{BL}L_{TL}^T = A_{BL} & L_{BL}L_{BL}^T + L_{BR}L_{BR}^T = A_{BR}
\end{array}\right)$$

$$LL^{T} = A$$
 $L := \Gamma(A)$
 $L = \left(\begin{array}{c|c} L_{TL} & \\ \hline L_{BL} & L_{BR} \end{array}\right) = ?$

Partitioned Matrix Expression (PME):

$$\left(\begin{array}{c|c}
L_{TL} = \Gamma(A_{TL}) & \\
L_{BL} = A_{BL} L_{TL}^{-T} & L_{BR} = \Gamma(A_{BR} - L_{BL}L_{BL}^{T})
\end{array}\right)$$

$$LL^{T} = A$$
 $L := \Gamma(A)$

$$L = \left(\begin{array}{c|c} L_{TL} & \\ \hline L_{BL} & L_{BR} \end{array}\right) = ?$$

Operations:

$$\left(\begin{array}{c|c} 1) \ L_{TL} = \text{CHOL} \\ \hline 2) \ L_{BL} = \text{TRSM} \end{array} \right) \ L_{BR} = \text{CHOL(SYRK)}$$

$$LL^{T} = A$$
 $L := \Gamma(A)$

$$L = \left(\begin{array}{c|c} L_{TL} & \\ \hline L_{BL} & L_{BR} \end{array}\right) = ?$$

Dependencies:

$$\left(\begin{array}{c|c}
L_{TL} = \Gamma(A_{TL}) \\
L_{BL} = A_{BL} L_{TL}^{-T} & L_{BR} = \Gamma(A_{BR} - L_{BL} L_{BL}^{T})
\end{array}\right)$$

Iteration i: completed

State of the matrix:

$$\begin{pmatrix} L_{TL} = \text{CHOL} \\ \end{pmatrix}$$

Final state:

$$egin{array}{c|c} L_{TL} = \mathrm{CHOL} & & & & \\ \hline L_{BL} = \mathrm{TRSM} & L_{BR} = \mathrm{CHOL(SYRK)} & & & \\ \end{array}$$

Iteration i: completed

Iteration i+1: repartitioning. Blocked vs. unblocked!

Iteration i+1: computation

Iteration i+1: completed (boundary shift)

A Different Algorithm?

Iteration i: completed

State of the matrix:

$$\left(\begin{array}{c|c} L_{TL} = \text{CHOL} \\ \hline L_{BL} = \text{TRSM} \end{array}\right)$$

Final State:

$$\left(\begin{array}{c|c} L_{TL} = \text{CHOL} \\ \hline L_{BL} = \text{TRSM} & L_{BR} = \text{CHOL(SYRK)} \end{array}\right)$$

Iteration i+1: repartitioning

Iteration i+1: computation

lteration i+1: completed (boundary shift)

Yet Another Algorithm!

State of the matrix:

$$\left(\begin{array}{c|c} L_{TL} = \text{CHOL} \\ \hline L_{BL} = \text{TRSM} & L_{BR} = \text{SYRK} \end{array}\right)$$

Final state:

$$\left(\begin{array}{c|c} L_{TL} = \text{CHOL} & \\ \hline L_{BL} = \text{TRSM} & L_{BR} = \text{CHOL(SYRK)} \end{array}\right)$$

Iteration i: completed

Iteration i+1: repartitioning

Iteration i+1: computation

Iteration i+1: completed (boundary shift)

Iteration i: completed

Iteration i+1: repartitioning

Iteration i+1: computation

Iteration i+1: completed (boundary shift)

Iteration i+2: repartitioning

Iteration i+2: computation

Iteration i+2: complete (boundary shift)

Traditional code

C, triple loop, unblocked.

```
for (j = 0; j < n; j++)
 A[i,i] = sqrt(A[i,i]);
  for (i = j+1; i < n; i++)
   A[i,j] = A[i,j] / A[i,j];
  for (k = j+1; k < n; k++)
    for ( i = k; i < n; i++ )
     A[i,k] = A[i,k] - A[i,j] * A[k,j];
```

Traditional code

Matlab, blocked.

Traditional code: LAPACK, blocked

```
SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )
[\ldots]
     DO 20 J = 1. N. NB
        JB = MIN(NB, N-J+1)
        CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
        CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
        IF( INFO.NE.O )
            GO TO 30
        IF( J+JB.LE.N-1 ) THEN
            CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
                        J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
                        LDA, ONE, A(J+JB, J), LDA)
            CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
                        N-J-JB+1, JB, ONE, A(J, J), LDA,
                        A(J+JB, J), LDA)
        END IF
```

23 / 46

Unblocked vs. Blocked Algorithms

Later in Lab #1: LU anyone?

- Without pivoting:
 Precisely the same steps as Cholesky; different PME; different dependencies; 5 algorithms
- With pivoting: Same steps, a tad more complicated PME; 3 algorithms

Fundamentals of HPC & LA

Cholesky: unblocked and blocked algorithms

Cholesky: algorithms by blocks

Shared-memory parallelization: Can we do better?

Fork-join \Rightarrow unnecessary synchronizations

chol				
			chol	
trsm	syrk		trsm	syrk
	Iteration 1		lte	ration 2

Synchronization at each iteration; in fact, at each kernel!

Shared-Memory Parallelization

- Traditional (and pipelined) parallelizations are limited by the dependencies dictated by the code.
- Parallelism should be limited only by the data dependencies.
- Idea: imitate a superscalar processor; dynamic detection of data dependencies + out of order execution.

Dependencies (1/3): "True dependency"

Also, "Flow dependency"

```
{x = 1, y = 2, a = 3}

...

y := a * x + y

w := 3 * y

...

{y = 5, w = 15}
```

Dependencies (1/3): "True dependency"

Also, "Flow dependency"

```
{x = 1, y = 2, a = 3}

...

y := a * x + y

w := 3 * y

...

{y = 5, w = 15}
```

► The value of w depends on the updated value of y

Dependencies (1/3): "True dependency"

Also, "Flow dependency"

```
\{x = 1, y = 2, a = 3\}
...

y := a * x + y | w := 3 * y

w := 3 * y | y := a * x + y
...

\{y = 5, w = 15\} | \{y = 5, w = 6\}
```

- ► The value of w depends on the updated value of y
- ► The semantics of the program depends on the **order** of the statements

Dependencies (2/3): "Anti dependency"

```
{x = 1, y = 2, a = 3}

...

w := 3 * y

y := a * x + y

...

{y = 5, w = 6}
```

► The value of w depends on the initial value of y

Dependencies (2/3): "Anti dependency"

- ► The value of w depends on the initial value of y
- The semantics of the program depends on the order of the statements

Dependencies (3/3): "Output dependency"

Also "Write dependency"

```
{x = 1, y = 2, a = 3}

...

w := 3 * y

w := a * x

...

{w = 3}
```

► The value of w depends on the order of the statements

Dependencies (3/3): "Output dependency"

Also "Write dependency"

```
\{x = 1, y = 2, a = 3\}
...

w := 3 * y

w := a * x

w := 3 * y

...

\{w = 3\}

\{w = 6\}
```

- ► The value of w depends on the order of the statements
- ► The semantics of the program depends on the **order** of the statements

Back to Cholesky: How to create parallelism?

► Idea: decompose the tasks

Back to Cholesky: How to create parallelism?

► Idea: decompose the tasks

Back to Cholesky: How to create parallelism?

► Idea: decompose the tasks

Algorithms by blocks

Also, "Tiled algorithms". Not "blocked"!

Goal: Create small tasks, feed all processors as early as possible

Iteration i

Iteration i+1

Decomposition in tiles (iteration 1)

chol		 	
trsm	syrk	 	
trsm	gemm	syrk	
trsm	gemm	gemm	syrk

Decomposition in tiles (iteration 2)

Decomposition in tiles (iteration 3)

Decomposition in tiles (iteration 4)

DAG - Dependencies

4×4 -tile matrix

Crossover, 16 cores

Runtime systems, e.g., SuperMatrix, StarPU, Quark, . . .

Taskqueues

The runtime system "pre-executes" the code.

Whenever a kernel is encountered, one or more tasks are created and inserted in a global task queue.

Runtime systems, e.g., SuperMatrix, StarPU, Quark, . . .

Taskqueues

- The runtime system "pre-executes" the code.

 Whenever a kernel is encountered, one or more tasks are created and inserted in a global task queue.
- Dependencies between tasks are calculated, forming a DAG.

Runtime systems, e.g., SuperMatrix, StarPU, Quark,

- The runtime system "pre-executes" the code.

 Whenever a kernel is encountered, one or more tasks are created and inserted in a global task queue.
- Dependencies between tasks are calculated, forming a DAG.
- ► Tasks with all input operands available are executable. The other tasks must wait in the queue.

Runtime systems, e.g., SuperMatrix, StarPU, Quark,

- The runtime system "pre-executes" the code.

 Whenever a kernel is encountered, one or more tasks are created and inserted in a global task queue.
- Dependencies between tasks are calculated, forming a DAG.
- ► Tasks with all input operands available are executable. The other tasks must wait in the queue.
- ► Threads asynchronously dequeue tasks from the queue.

Runtime systems, e.g., SuperMatrix, StarPU, Quark,

- The runtime system "pre-executes" the code.

 Whenever a kernel is encountered, one or more tasks are created and inserted in a global task queue.
- Dependencies between tasks are calculated, forming a DAG.
- ► Tasks with all input operands available are executable. The other tasks must wait in the queue.
- ► Threads asynchronously dequeue tasks from the queue.
- Upon termination of a task, the thread notifies dependent tasks and updates the queue.

Runtime systems, e.g., SuperMatrix, StarPU, Quark, . . .

Taskqueues

- The runtime system "pre-executes" the code.

 Whenever a kernel is encountered, one or more tasks are created and inserted in a global task queue.
- Dependencies between tasks are calculated, forming a DAG.
- ► Tasks with all input operands available are executable. The other tasks must wait in the queue.
- ► Threads asynchronously dequeue tasks from the queue.
- Upon termination of a task, the thread notifies dependent tasks and updates the queue.
- ► Loop until all tasks complete execution.

Task Execution

4 × 4-tile matrix

Stage	Scheduled Tasks				
1	chol				
2	trsm	trsm	trsm	trsm	
3	syrk	gemm	syrk	gemm	
4	gemm	syrk	gemm	gemm	
5	gemm	syrk	chol		
6	trsm	trsm	trsm		
7	syrk	gemm	syrk	gemm	
8	gemm	syrk	chol		
9	trsm	trsm			
10	syrk	gemm	syrk		
11	chol				
12	trsm				
13	syrk				
14	chol				

SPD Inv: 1) Chol 2) Inv 3) Mat Mat Mult. 5×5 -tile matrix

$$A := A^{-1}$$

$$A:=\left(LL^{T}\right)^{-1}$$

$$A := L^{-T}L^{-1}$$

SPD Inv: 1) Chol 2) Inv 3) Mat Mat Mult.

 5×5 -tile matrix

Stage	Scheduled Tasks				
1	chol	1			
2	trsm	trsm	trsm	trsm	
3	syrk	gemm	syrk	gemm	
4	gemm	syrk	gemm	gemm	
5	gemm	syrk	chol	trsm	
6	trsm	trsm	trsm	trsm	
7	trsm	trsm	trinv	syrk	
8	gemm	syrk	gemm	gemm	
9	syrk	ttmm	chol	trsm	
10	trsm	trsm	trsm	trsm	
11	gemm	gemm	gemm	syrk	
12	gemm	syrk	trsm	chol	
13	trsm	trsm	trinv	syrk	
14	trsm	gemm	gemm	gemm	
15	gemm	trmm	syrk	trsm	
16	trsm	ttmm	chol	trsm	
17	syrk	trinv	gemm	syrk	
18	gemm	gemm	gemm	trmm	
19	trmm	trsm	trsm	trsm	
20	trsm	trsm	trsm	trsm	
21	ttmm	syrk	gemm	syrk	
22	trinv	gemm	gemm	trinv	
23	syrk	syrk	gemm	syrk	
24	trmm	gemm	trmm	gemm	
25	trmm	syrk	gemm	gemm	
26	ttmm	gemm	trmm	trmm	
27	syrk	trmm			
28	trmm				
29	ttmm			l	

Storage by blocks

- Storage by blocks
- Critical path

- Storage by blocks
- Critical path
- Cache "simulator"

- Storage by blocks
- Critical path
- Cache "simulator"
- ► Tension between size of blocks and number of blocks

SPD Inverse, 16 cores

Multithreaded BLAS vs. Algorithms-by-blocks

No absolute winner: crossover!

✓ Ease of use

✓ Out of order execution

X Synchronization

- ✓ Parallelism dictated by data dependencies
- **X** Plateux