Math 1152 Lecture Notes

May 20, 2022

1 Lengths of Curves

• Consider a parabola, say $y = x^2$. What is its length from (0,0) to (1,1)?

• How is this similar to when we went from talking about areas between curves to volumes via accumulated cross sections, and how is it different?

• To find a means of calculating length, lets use the same ideas which lead to our formula's for area and volume:
• Approximate the shape by one whose measure you know: line-segments
• Use the information given to determine the shape of the approximating segments - a line-segment is determined by
a. its starting and ending points and
b. its slope
• We get the starting and ending points of each line-segment from the subdivision of the interval - so we already know (a).
• How do we decide what the slopes should be?

• Now we need a formula for the length of a line-segment whose x-coordinates go from x_k to x_{k+1} and whose slope is m:

length =
$$\sqrt{\Delta x^2 + m^2 \Delta x^2}$$
.

• So we break the curve from 0 to 1 into pieces approximated by line-segments, each of which has length l_k , and add up the lengths to approximate the length of the curve. This gives us

Length
$$\approx \sum_{k=1}^{n} l_k = \sum_{k=1}^{n} \sqrt{\Delta x^2 + f'(x_k^*)^2 \Delta x^2}$$
.

- Is this a Riemann sum?
- It is, if we factor the Δx out of the square-root sign:

Length
$$\approx \sum_{k=1}^{n} \sqrt{1 + f'(x_k^*)^2} \Delta x$$
.

• What integral does this Riemann sum converge to?

Length =
$$\int_{a}^{b} \sqrt{1 + f'(x)^2} \, dx.$$

• So can we find the length of a segment of the parabola?

Exercise 1. Find the length of the segment of the parabola $y = x^2$ from x = 0 to x = 1.

Exercise 2. Let $g(y) = \left(\frac{2}{3} + y^2\right)^{\frac{3}{2}} - 2$. Find the length of the curve x = g(y) from y = 0 to y = 2.

• Are there any important points we've missed? Do we now have a complete understanding of lengths of curves?				