الحساب المتجهي

القدرات المنتظرة

- $a\vec{u} + b\vec{v}$ إنشاء متجهة من شكل *-
- *- التعبير عن مفاهيم وخاصيات الهندسة التآلفية باستعمال الأداة المتجهية، والعكس. ... - التعبير عن مفاهيم وخاصيات الهندسة التآلفية باستعمال الأداة المتجهية، والعكس.
 - *- حل مسائل هندسية باستعمال الأداة الهندسية.

I)- تساوي متجهتين – جمع المتجهات

- أنشطّة

$$\overrightarrow{BD}$$
 و \overrightarrow{MN} قارن \overrightarrow{MN} و $\overrightarrow{N} = \overrightarrow{AC} + \overrightarrow{AD}$ و $\overrightarrow{BM} = \overrightarrow{AC}$

O متوازي الأضلاع مركزه ABCD ليكن -2

$$\overrightarrow{DI} = \overrightarrow{OD} - \overrightarrow{BC}$$
 و أنشئ M حيث $\overrightarrow{OM} = \overrightarrow{AB} + \overrightarrow{AD}$ و أنشئ $\overrightarrow{CM} = \overrightarrow{AO}$ أنشئ أن $\overrightarrow{CM} = \overrightarrow{AO}$

$$\overrightarrow{BE} + \overrightarrow{DF} + \overrightarrow{EF} + \overrightarrow{AB} + \overrightarrow{ED} + \overrightarrow{FA}$$
اختصر

3- ليكن A و B و C و D و E نقطا

2- تساوي متجهتين

ب- تعریف

تكون متجهتان متساويتان اذا كان لهما نفس الاتجاه و نفس المنحى و نفس المنظم

$$\vec{u} = \overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$$
 نکتب

ج- المتجهة المنعدمة

المستوى M من المستوى $\vec{0}=\overrightarrow{MM}$: $\vec{0}$ المنعدمة $\vec{0}$ -*

د – خاصیات

خاصىة1

 $\stackrel{\cdot \cdot \cdot}{A}$ و B و $\stackrel{\cdot \cdot \cdot}{B}$ أربع نقط من المستوى $\stackrel{\cdot \cdot \cdot}{AB}=\overrightarrow{CD}$ و \overrightarrow{BC} نفس المنتصف $\overrightarrow{AB}=\overrightarrow{CD}$

 $egin{bmatrix} [BC] & [AD] \end{bmatrix}$ منتصف القطعتين I

خاصىة2

إذا كانت A و B و C و D أربع نقط غير مستقيمية في المستوى فان :

إذا وفقط إذا كان \overrightarrow{ABDC} متوازي الأضلاع إذا كان

نتبحة

لتكن A و B و C و D أربع نقط من المستوى

(تبدیل الوسطین) $\overrightarrow{AC} = \overrightarrow{BD}$ إذا وفقط إذا كان $\overrightarrow{AB} = \overrightarrow{CD}$

(تبديل الطرفين) $\overrightarrow{DB} = \overrightarrow{CA}$ إذا وفقط إذا كان $\overrightarrow{AB} = \overrightarrow{CD}$

3- مجموع متجهتين –علاقة شال

و \vec{v} متجهتان في المستوى \vec{u} -أ

 $\overrightarrow{AB} = \overrightarrow{u}$ نقطة من المستوى، توجد نقطة وحيدة B حيث A

 $\overrightarrow{BC} = \overrightarrow{v}$ حيث وحيدة \overrightarrow{C} حيث

 $\vec{w} = \overrightarrow{AC}$ النقطتان A و C تحددان متجهة وحيدة

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$ نكتب \overrightarrow{v} و \overrightarrow{v} نكتب \overrightarrow{v} هي مجموع المتجهة \overrightarrow{w}

ب- علاقة شال

مهما كانت النقط A و B و C من المستوى

 $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

ں- نتیحة

. لتكن O و MوN و R أربع نقط من المستوى

إذا وفقط إذا كان OMRN متوازي الأضلاع OM + ON = OR

ملاحظة

اذا كانت $\vec{v}=\overrightarrow{ON}$ و $\vec{u}=\overrightarrow{OM}$ فان $\vec{v}=\overrightarrow{ON}$ حيث $\vec{v}=\overrightarrow{ON}$ متوازي الأضلاع $\vec{v}=\overrightarrow{ON}$

ج- خاصیات

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
 و \vec{v} و \vec{v} -*

$$(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$$
 لكل ثلاث متجهات \vec{u} و \vec{v} و \vec{v}

$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$
 لکل متجهة *- لکل متجهة

4- مقابل متجهة - فرق متجهتين أ- مقابل متجهة

 $\|\vec{u}\| = AB$ نكتب $\vec{u} = \overrightarrow{AB}$ تسمى منظم المتجهة $\vec{u} = \overrightarrow{AB}$ تنكير لتكن

تعریف

لتكن $ec{u}$ متجهة غير منعدمة

مقابل المتجهة \vec{u} هي المتجهة التي لها نفس الاتجاه و نفس المنظم و منحاها مضاد لمنحى المتجهة \vec{u} نرمز لها بالرمز

$$\vec{u} + (-\vec{u}) = (-\vec{u}) + \vec{u} = \vec{0}$$
 : \vec{u} متجهة -*

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$$
 لكل نقطتين A و B من المستوى لدينا * $\overrightarrow{AB} = -\overrightarrow{BA}$ المتجهتان $\overrightarrow{AB} = \overrightarrow{AB}$ و \overrightarrow{AB} متقابلتان نكتب

ب- فرق متجهتین تعریف

$$\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$$
 ککل متجهتین \vec{u} و \vec{v}

خاصیة

 $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$ ككل ثلاث نقط A و B و B

5- منتصف قطعة

تعریف

 $\overrightarrow{AI} = \overrightarrow{IB}$ منتصف AB إذا وفقط إذا كان AB

خاصية

$$\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$$
 منتصف AB إذا وفقط إذا كان AB

تمرين

 $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$ و $\overrightarrow{AE} = \overrightarrow{CB}$ لپِکن \overrightarrow{ABC} مثلثا و \overrightarrow{B} و \overrightarrow{BC}

- 1- أنشئ الشكل
- igl[EFigr] منتصف B -2

II)ضرب متجهة في عدد حقيقي

أنشطة

نشاط 1

AM = 2 ليكن ABC مثلثا حيث AB = 6 و AB = 6 و AB = 6 حيث ABC

N الموازي للمستقيم BC و المار من M يقطع الموازي

- BC عبر عن MN بدلالة
- \overrightarrow{BC} عبر عن \overrightarrow{MN} بدلالة -2

نشاط 2

 $\vec{v}=\overrightarrow{AC}$ و $\vec{u}=\overrightarrow{AB}$ و مثلثا نضع $3\vec{u}-2\vec{v}$ و $-2\vec{v}$ و أنشـئ $3\vec{u}$

1 - تعریف

متجهة غير منعدمة و k عدد حقيقي غير منعدم $ec{u}$ عدد المتحدة $ec{u}$ عدد مقال منعدم

: حيث $kec{u}$ في العدد الحقيقي k هي المتجهة $ec{u}$ في العدد

و $k ec{u}$ لهما نفس الاتجاه $ec{u}$

 $||k\vec{u}|| = |k| \times ||\vec{u}|| *$

 $k\succ 0$ منحی \vec{u} إذا كان $k \succ 0$ هو $k \vec{u}$ منحی $k \prec 0$ هو $k \vec{u}$ عكس منحی $k \prec 0$ إذا كان

2 - نتائج (نقبلها)

مهما تكن المتجهتان
$$ec{u}$$
 و مهما يكن العددان الحقيقيان $lpha$ و $ec{ hi}$ فان

$$(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{v} \qquad \alpha(\vec{u} + \vec{v}) = \alpha\vec{u} + \alpha\vec{v}$$

$$(\alpha\beta)\vec{u} = \alpha(\beta\vec{u}) \qquad 1 \cdot \vec{u} = \vec{u}$$

$$\vec{u} = \vec{0}$$
 إذا وفقط إذا كان $\alpha = 0$ أو $\alpha = \vec{0}$

تمارين

$$\vec{A} = 5(2\vec{u} - \vec{v}) - \frac{3}{2}(\vec{u} + 2\vec{v}) - (\vec{u} - \vec{v})$$
 -1

$$\vec{u} \neq \vec{0}$$
 علما أن $2x \cdot \vec{u} - \vec{u} = \vec{0}$ علما -2

II) الاستقامية

1- استقامية متجهتين

أ- تعريف

تكون متجهتان $ec{v}$ و $ec{v}$ مستقيميتين اذا و فقط كانت احداهما جداء الأخرى في عدد

ملاحظة

مستقيمية مع أية متجهة $ec{0}$

ب- خاصية و تعريف

A
eq B لتكن A و B و C نقطا من المستوى حيث

المتجهتان \overrightarrow{AC} و \overrightarrow{AC} مستقيميتان إذا وفقط إذا وجد عدد حقيقي \overrightarrow{AC} حيث $\overrightarrow{AC}=lpha\overrightarrow{AB}$

(A;B) العدد الحقيقي lpha يسـمى أفصول العدد الحقيقي

مثال

$$(A;B)$$
 في المعلم $\overrightarrow{AE} = -3\overrightarrow{AB}$

$$(C;D)$$
 في المعلم $\overrightarrow{CF} = \sqrt{2} \cdot \overrightarrow{CD}$

تمرين

 $\vec{u} = \overrightarrow{MA} + 2\overrightarrow{MB} - 3\overrightarrow{MC}$ لتكن A و B و B و B أربع نقط و B و B متجهتين حيث B و B و B نقط و B أربع نقط و B متجهتين حيث B

$$\vec{v} = 2B\vec{A} - 6B\vec{C}$$
 و

$$\vec{u} = 2\overrightarrow{AB} - 3\overrightarrow{AC}$$
 بين أِن -1

بین أن $ec{u}$ و $ec{v}$ مستقیمیتان -2

ج- خاصية

$$(\overrightarrow{AB}=2\overrightarrow{IB}$$
 و تكافئ أيضا $\overrightarrow{AB}=2\overrightarrow{AI}$ تكافئ أيضا I

2- استقامية ثلاث نقط

تعریف

 $A \neq B$ لتكن A و B و C نقطاً من المستوى حيث

تكون النقط A و B و A مستقيمية إذا وفقط إذا وجد عدد حقيقي A حيث

$$AC = \alpha AB$$

تمرين

 $\overrightarrow{AQ}=3\overrightarrow{AD}$ متوازي الأضلاع و P و Q نقطتين حيث $\overrightarrow{BP}=\frac{1}{2}\overrightarrow{AB}$ ليكن ABCD

- 1- انشئ الشكل
- \overrightarrow{AD} و \overrightarrow{RB} بدلالة \overrightarrow{CQ} و \overrightarrow{CP}
- استنتج أن النقط P و Q و σ مستقيمية -3

3- توازي مستقيمين

C
eq D و $A \neq B$ و من المستوى حيث $A \neq B$ و $C \neq D$ و مستقیمیتین \overrightarrow{CD} و مستقیمیتین \overline{AB} و فقط إذا کان \overline{AB}

تمرين

 $\overrightarrow{AJ} = 3\overrightarrow{AC}$ و $\overrightarrow{AI} = \frac{1}{3}\overrightarrow{AB}$ ليكن \overrightarrow{ABC} مثلثا و I و نقطتين حيث

 \overrightarrow{AC} و \overrightarrow{AB} بدلالة \overrightarrow{BJ} و \overrightarrow{IC} عبر عن 1

(IC)//(BJ) استنتج أن -2