

Prof. Nahed El Mahallawy

Eng. Sherifa Taher Eng. Olivia Louis Eng. Noha Abdeltawab Eng. Ramy Amir Eng. Mahmoud Badr Eng. Mohamed Magdy

TAs:

EDPT 601

2 CastingProblems

Students Names:	Date
Semester Student ID Group	// dd / mm / yy
(For instructor use only)EvaluationEvaluation	I .
Grade	
Comments	

1- Given the cooling curve of a pure metal

- a- Calculate the cooling rate
- b- Solidification time
- c- Total solidification time

2- For the following Aluminum products:

- a- Determine the parting plane
- b- Find the pattern dimensions after adding necessary allowances (assuming a machining allowance of 3 mm, shrinkage allowance of 13 mm/m and a draft angle of 3°).
- c- Calculate the volume of the molten metal required for the casting assuming that the material required for the gating system is 30% of the volume of the product. (density 2.7 gm/cm3)
- d- Design the core for figure (b)
- e- Calculate the solidification time if B=1.8 (min/cm2)

$ts = B (V/A)_2$	
------------------	--

Fig (b)

en .		**	4
Core	print	dimer	1510115

Core	Core Length, L, mm									
Diam., mm	up to 50		51 to 150		151 to 300		301 to 500		501 to 750	
	hi	1	h:	1	hi	1	hi	1	hı -	1
up to 25	20	15	25	25		-	-	-	-	
26-50	20	20	40	35	60	45	70	60	-	-
51-100	25	25	35	40	50	50	70	70	100	90
101 -200	30	30	30	50	40	55	60	80	90	100
201-300	35		35		40	60	50	90	80	110
301-400	40		40		40	80	50	100	70	120
401-500	40		40		40	110	50	120	60	130

l is the length of core print of a horizontal core h_1 is the height of lower core print of a vertical core, h_0 is usually 60 % of lower core print.