Complimentary Slackness (CS)

Theorem

Let $\vec{x}^* = (x_1^*, \dots, x_n^*)$ be feasible for the primal problem, and let $\vec{y}^* = (y_1^*, \dots, y_m^*)$ be feasible for the dual problem.

Then the following are equivalent:

- $ightharpoonup \vec{x}^*$ and \vec{y}^* are optimal for the primal and for the dual, resp.

CS:
$$x_j^* y_{m+j}^* = 0$$
 for $j = 1, \dots, n$.
 $y_i^* x_{n+i}^* = 0$ for $i = 1, \dots, m$.

Here.

 x_{n+i} is the *i*-th slack variable fo the primal; y_{m+j} is the *j*-th slack variable fo the dual.

Example from Lecture 15

Is $(x_1^*, x_2^*) = (2,3)$ an optimal solution? Check it without solving LP from the simplex algorithm.

Solution

Minimize
$$5y_1 + 8y_2 + 8y_3$$

subject to $y_1 + y_2 + 2y_3 \ge 4$ & $x_1, x_2 \ge 0$, $y_1 + 2y_2 + y_3 \ge 5$

- ▶ If \vec{x}^* were an optimal solution, then from the strong duality an optimal solution $\vec{V}^* = (v_*^*, v_*^*, v_*^*)$ for dual should exist.
- We use the complimentary slackness (CS) to find the dual optimal solution \vec{y}^* assuming the given $(x_1^*, x_2^*) = (2, 3)$ is optimal. (If \vec{x}^* was optimal then \vec{y}^* should be optimal as well.)
- Note that here the number of primal variables n=2 and the number of dual variables m=3.

Example from Lecture 15

Is $(x_1^*, x_2^*) = (2,3)$ an optimal solution?

Check it without solving LP from the simplex algorithm.

Solution

- ▶ If \vec{x}^* were an optimal solution, then from the strong duality an optimal solution $\vec{y}^* = (y_1^*, y_2^*, y_3^*)$ for dual should exist.
- ▶ We use the complimentary slackness (CS) to find the dual optimal solution \vec{y}^* assuming the given $(x_1^*, x_2^*) = (2, 3)$ is optimal. (If \vec{x}^* was optimal then \vec{y}^* should be optimal as well.)
- Note that here the number of primal variables n = 2 and the number of dual variables m = 3.

Example continued

From $(x_1^*, x_2^*) = (2, 3)$ compute the slack:

$$x_{2+1}^* = 5 - (2+3) = 0, \quad x_{2+2}^* = 8 - (2+2\cdot3) = 0,$$
 $x_{2+3}^* = 8 - (2\cdot2+3) = 1 > 0.$

 (\vec{x}^*) is feasible as all original and slack variables are ≥ 0 .)

Use CS:
$$\begin{pmatrix} x_1^*y_{3+1}^* = 0 \\ x_2^*y_{3+2}^* = 0 \\ x_{2+1}^*y_1^* = 0 \\ x_{2+2}^*y_2^* = 0 \\ x_{2+3}^*y_3^* = 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} y_{3+1}^* = 0 \text{ for } x_1^* = 2 > 0 \\ y_{3+2}^* = 0 \text{ for } x_2^* = 3 > 0 \\ \text{no info for } y_1^* \text{ as } x_{2+1}^* = 0 \\ \text{no info for } y_2^* \text{ as } x_{2+2}^* = 0 \\ y_3^* = 0 \text{ for } x_{2+3}^* > 0 \end{pmatrix}$$

Now,

$$y_{3+1}^* = 0$$
 $y_1^* + y_2^* + 2y_3^* = 4$
 $y_{3+2}^* = 0$ \implies $y_1^* + 2y_2^* + y_3^* = 5$ \implies $(y_1^*, y_2^*, y_3^*) = (3, 1, 0)$
 $y_3^* = 0$ $y_3^* = 0$

Note that we used the **full** set of CS equations to get \vec{y}^* ; therefore, (\vec{x}^*, \vec{y}^*) satisfies CS.

Example continued

So, from the CS theorem, to check optimality, it remains to check feasibility of \vec{x}^* and \vec{y}^* .

- ▶ Already checked feasibility of \vec{x}^* .
- ▶ For feasibility of \vec{y}^* :
 - ▶ $y_1^* = 3, y_2^* = 1, y_3^* = 0$ so ≥ 0 .
 - We had $y_{3+1}^* = 0, y_{3+2}^* = 0$ so ≥ 0 .

Thus \vec{y}^* is feasible.

Therefore, (\vec{x}^*, \vec{y}^*) is optimal for (primal, dual).

Remark: After checking the feasibility, one can check the optimality by looking

$$\vec{c} \cdot \vec{x}^* = 4 \cdot 2 + 5 \cdot 3 = 23$$

 $\vec{b} \cdot \vec{y}^* = 5 \cdot 3 + 8 \cdot 1 + 8 \cdot 0 = 23$

They are equal (for the feasible $(\vec{x}^*.\vec{y}^*)$), so weak duality implies that $(\vec{x}^*.\vec{y}^*)$ is optimal.

Different Example

Is $(x_1^*, x_2^*) = (3, 2)$ an optimal solution?

Check it without solving LP from the simplex algorithm.

Solution

Minimize
$$5y_1 + 8y_2 + 8y_3$$

subject to $y_1 + y_2 + 2y_3 \ge 4$ & $x_1, x_2 \ge 0$, $y_1 + 2y_2 + y_3 \ge 5$

- ▶ If \vec{x}^* were an optimal solution, then from the strong duality an optimal solution $\vec{V}^* = (v_*^*, v_*^*, v_*^*)$ for dual should exist.
- We use the complimentary slackness (CS) to find the dual optimal solution \vec{y}^* assuming the given $(x_1^*, x_2^*) = (3, 2)$ is optimal. (If \vec{x}^* was optimal then \vec{y}^* should be optimal as well.)
- Note that here the number of primal variables n=2 and the number of dual variables m=3.

Different Example

Is $(x_1^*, x_2^*) = (3, 2)$ an optimal solution?

Check it without solving LP from the simplex algorithm.

Solution

- ▶ If \vec{x}^* were an optimal solution, then from the strong duality an optimal solution $\vec{y}^* = (y_1^*, y_2^*, y_3^*)$ for dual should exist.
- ▶ We use the complimentary slackness (CS) to find the dual optimal solution \vec{y}^* assuming the given $(x_1^*, x_2^*) = (3, 2)$ is optimal. (If \vec{x}^* was optimal then \vec{y}^* should be optimal as well.)
- Note that here the number of primal variables n = 2 and the number of dual variables m = 3.

Example continued

From $(x_1^*, x_2^*) = (3, 2)$ compute the slack:

$$x_{2+1}^* = 5 - (3+2) = 0, \quad x_{2+2}^* = 8 - (3+2\cdot 2) = 1 > 0, x_{2+3}^* = 8 - (2\cdot 3 + 2) = 0.$$

 (\vec{x}^*) is feasible as all original and slack variables are ≥ 0 .)

Use CS:
$$\begin{pmatrix} x_1^*y_{3+1}^* = 0 \\ x_2^*y_{3+2}^* = 0 \\ x_{2+1}^*y_1^* = 0 \\ x_{2+2}^*y_2^* = 0 \\ x_{2+3}^*y_3^* = 0 \end{pmatrix} \Longrightarrow \begin{pmatrix} y_{3+1}^* = 0 \text{ for } x_1^* = 3 > 0 \\ y_{3+2}^* = 0 \text{ for } x_2^* = 2 > 0 \\ \text{no info for } y_1^* \text{ as } x_{2+1}^* = 0 \\ y_2^* = 0 \text{ as } x_{2+2}^* > 0 \\ \text{no info for } y_3^* \text{ for } x_{2+3}^* = 0 \end{pmatrix}$$

Now,

$$\begin{array}{ll} y_{3+1}^* = 0 & y_1^* + y_2^* + 2y_3^* = 4 \\ y_{3+2}^* = 0 & \Longrightarrow & y_1^* + 2y_2^* + y_3^* = 5 & \Longrightarrow & (y_1^*, y_2^*, y_3^*) = (6, 0, -1) \\ y_2^* = 0 & y_2^* = 0 & \end{array}$$

Note that \vec{y}^* is not feasible (to the dual) because $y_3^* < 0$; so it is not optimal. This **violates** the CS theorem. Thus, \vec{x}^* cannot be optimal.