DATA 201: Time Series Analysis
Linear Regression Model
Lecture 6: Application: Are Hedge Fund
Returns Nonlinear?

Lulu Wang

Data Analytics Dickinson College

2/7/2025

Introduction

CAPM

Functional Forms

Application: Are Hedge Fund Returns Nonlinear?

Objectives

- Review the Linear Regression Model (LRM)
- Discuss its estimation in Python
- Explore applications in financial data

I will review the regression model in broad terms and more details can be found in an introductory statistics/econometrics textbook, such as:

- Stock and Watson, Introduction to Econometrics, Pearson
- Wooldridge, Introductory Econometrics, A Modern Approach, South-Western

The Linear Regression Model (LRM)

• The linear regression model is given by:

$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t,$$

where:

- Y_t: dependent variable at time t
- X_t : independent variable / factor / predictor at time t
- β_0, β_1 : coefficients to be estimated
- ε_t : error term (mean zero, variance σ^2)
- The **expected** (or average) value of Y_t given X_t is:

$$E(Y_t \mid X_t) = \beta_0 + \beta_1 X_t.$$

Application: Stock Return Risk Analysis

- **Objective**: Explain excess return of a stock (risk premium) by decomposing it into different risk components (factors).
- Two type of risk
 - Systematic Risk: Market-wide influences (e.g., macroeconomic conditions).
 - *Idiosyncratic Risk*: Firm-specific factors (e.g., company news, management changes).

Interpretation and CAPM

- Interpretation:
 - β_0 : the expected value of Y_t when $X_t = 0$
 - β_1 : the expected change of Y_t for a unit change of X_t
- The Capital Asset Pricing Model (CAPM) is an example of an LRM:

$$R_t^i = \beta_0 + \beta_1 R_t^{\text{MKT}} + \varepsilon_t,$$

where R_t^i and R_t^{MKT} represent the excess stock and market returns, respectively.

Newey-West Example in Python

- The coefficient estimates $(\hat{\beta}_0, \hat{\beta}_1)$ remain the same.
- Standard errors and p-values change to account for heteroskedasticity and/or autocorrelation.

- The Linear Regression Model (LRM) assumes a linear relationship between X and Y.
- A linear model implies that a **1-unit increase** in X results in a **constant** expected change in Y by β_1 .
- However, some relationships are nonlinear (e.g., quadratic, logarithmic, exponential).
- Nonlinearity means that the effect of X on Y varies depending on the level of X.

Polynomial models

 One way to introduce nonlinearity is through the Quadratic Model:

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_t^2 + \varepsilon_t$$

• The **effect** of changing *X* by one unit on *Y* is given by:

$$\beta_1 + 2\beta_2 X$$

(depends on X)

• Quadratic regression can still be estimated using **OLS** by adding X^2 as a regressor.

Simulating a Quadratic Model in Python

Example: Simulate $Y_t = 0.5X_t + 0.05X_t^2 + \varepsilon_t$, with:

$$X_t \sim N(0,25), \quad \varepsilon_t \sim N(0,1)$$

Quadratic Model: Downward Sloping Parabola

- If the coefficient of X^2 is **negative**, the parabola slopes downward at the extremes.
- Below is a simulated quadratic model:

$$Y_t = 0.5X_t - 0.03X_t^2 + \varepsilon_t$$

Cubic Regression Model

- A cubic model is useful when an additional curvature is needed to explain the relationship.
- The model is:

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_t^2 + \beta_3 X_t^3 + \varepsilon_t$$

 Including higher-order terms may introduce correlation among regressors, requiring careful evaluation.

Piecewise Linear Model

 This model assumes different slopes below/above a threshold m:

$$Y_t = \beta_0 + \beta_1 X_t I(X_t > m) + \beta_2 X_t I(X_t < m) + \varepsilon_t$$

- Interpretation:
 - The **effect** of X_t on Y_t is different for $X_t \ge m$ vs. $X_t < m$.
 - The slopes are determined by β_1 and β_2 .

Application: Are Hedge Fund Returns Nonlinear?

- Hedge Funds (HF) are investment portfolios that operate across multiple asset classes, including equities, bonds, commodities, and currencies.
- HFs can employ derivative products (options, futures, swaps) and leverage to control risk and amplify returns.
- Unlike traditional mutual funds, hedge funds are designed to deliver absolute returns, often independent of market direction.

Hedge Fund Indexes

- The data for this analysis is sourced from the Hedge Fund Indexes, which aggregate the performance of a large set of hedge funds.
- These indexes are constructed by averaging returns across multiple funds, providing a broad overview of hedge fund performance.
- The indexes include an overall Hedge Fund Index as well as indexes tailored to specific strategies.
- Data Availability: The data is publicly available but may require registration for access.

Overview of Hedge Fund Strategies

- The indexes cover a range of specific hedge fund strategies, including:
 - Dedicated Short Bias: Focuses on short-selling to profit from declining stock prices.
 - **Emerging Markets**: Invests in developing economies with higher growth potential and volatility.
 - Equity Market Neutral: Balances long and short equity positions to minimize market exposure.
 - **Event Driven**: Capitalizes on corporate events like mergers, acquisitions, or bankruptcies.
 - **Global Macro**: Invests based on macroeconomic trends, using a wide range of asset classes.
 - Long/Short Equity: Combines long positions in undervalued stocks with short positions in overvalued stocks.
- Unfortunately, these indexes aggregate across many funds that makes it difficult to capture nonlinearities that might be present at the individual HF level

Time series of HF Index Value

Plotting the index value for the strategy

Descriptive statistics

	Mean	Std Dev	Skewness	Kurtosis	Max	Min
0						
Credit Suisse Hedge Fund Index	0.60	1.87	-0.25	3.89	8.53	-7.55
Credit Suisse Convertible Arbitrage Hedge Fund Index	0.51	1.70	-2.59	18.51	5.81	-12.59
Credit Suisse Emerging Markets Hedge Fund Index	0.58	3.59	-0.77	6.93	16.42	-23.03
Credit Suisse Equity Market Neutral Hedge Fund Index	0.37	2.43	-12.80	211.87	4.34	-40.45
Credit Suisse Event Driven Hedge Fund Index	0.62	1.87	-2.32	13.62	6.75	-13.47
Credit Suisse Event Driven Distressed Hedge Fund Index	0.66	1.76	-1.98	11.95	6.90	-12.45
Credit Suisse Event Driven Multi-Strategy Hedge Fund Index	0.60	2.07	-2.17	12.94	6.89	-15.59
Credit Suisse Event Driven Risk Arbitrage Hedge Fund Index	0.47	1.27	-0.61	5.38	6.05	-6.35
Credit Suisse Fixed Income Arbitrage Hedge Fund Index	0.42	1.40	-4.60	36.93	4.33	-14.04
Credit Suisse Global Macro Hedge Fund Index	0.74	2.50	0.13	4.25	10.60	-11.55
Credit Suisse Long/Short Equity Hedge Fund Index	0.68	2.50	-0.06	3.84	13.01	-11.43
Credit Suisse Managed Futures Hedge Fund Index	0.43	3.17	0.04	0.02	9.95	-9.35
GSPC	0.78	4.35	-0.60	0.93	12.68	-16.94

LRM for the HF Index

- Are the HF returns sensitive to movements in the U.S. equity market?
- Positive correlation, although the HF returns range between -8% and +8% while the equity index between 20% and 12%.

LRM for the HF Index (Cont.)

- The R^2 of the regression is 0.35
- The exposure of the HF Index to market risk is 0.2546
- Large and positive alpha
- Both alpha and beta are statistically significant at 1%

LRM for the HF Index (Cont.)

• We can add the fitted linear relationship given by $0.3972 + 0.2546R_t^{GSPC}$ to the previous scatter plot.

Quadratic model for the HF Index

• To estimate a quadratic model we need to add the quadratic term to the linear regression.

$$R_t^{HF} = \alpha + \beta_1 R_t^{GSPC} + \beta_2 [R_t^{GSPC}]^2 + \varepsilon_t$$

Quadratic model for the HF Index (Cont.)

- Is the relationship between the S&P 500 and the HF Index nonlinear?
 - The p-value of the squared term is 0.010 so we reject the null hypothesis that the coefficient is equal to zero; so, the relationship is nonlinear.
 - The adjusted R^2 for the linear model is 0.35 and for the quadratic model is 0.38 and we conclude that the quadratic is preferred.

		OL	S Regression	Results			
Dep. Variable:	Credit	Suisse Hedg					0.369
Model:					-squared:		0.365 57.35
Method:		Least Squares F-statist					
Date:		Thu			F-statistic):		2.05e-22
Time:			21:39:42	Log-Li	kelihood:		-675.37
No. Observation	is:		372	AIC:			1357.
Df Residuals:			369	BIC:			1368.
Df Model:			2				
Covariance Type			HAC				
	coef	std err	z	P> z	[0.025	0.975]	
const	0.5717	0.087	6.579	0.000	0.401	0.742	
GSPC	0.2458	0.024	10.142	0.000	0.198	0.293	
GSPC_squared	-0.0086	0.003	-2.576	0.010	-0.015	-0.002	
Omnibus:		52.352 Durbin-Watson:		son:			
Prob(Omnibus):		0.000	0.000 Jarque-Bera (JB):		2		
Skew:		0.420	Prob(JB):		8.	66e-61	
Kurtosis:		7.140	Cond. No.			44.2	

Quadratic model for the HF Index (Cont.)

 This means that for large absolute market returns (both) positive and negative), hedge fund returns are expected to be lower than what a linear model would predict.

Sources of Nonlinearity in Hedge Fund Returns

Nonlinear exposures arise from:

- Derivatives:
 - Use of options can create asymmetric payoff structures (e.g., limited downside risk, unlimited upside potential).
 - Futures and swaps can alter exposure to risk factors dynamically.

Leverage:

- Amplifies returns, making the fund more sensitive to favorable movements in underlying assets.
- However, it also increases risk, potentially leading to large losses during adverse market conditions.

Contrast with Mutual Funds:

- Mutual fund managers are strictly regulated, limiting their ability to use derivatives and leverage.
- This results in more **linear exposure** to market risk factors.