Seminarium: Programowanie w teorii typów Teoria typów

Wojciech Jedynak, Paweł Wieczorek

Instytut Informatyki Uniwersytetu Wrocławskiego

28 września 2011

Matematyka konstruktywna

Matematyka konstruktywna

- powstały na początku poprzedniego wieku pogląd na temat fundamentów matematyki
- L.E.J.Brouwer, twórca ideologii
- empiryczna zawartość twierdzeń matematycznych
- co znaczy orzeczenie o istnieniu pewnego obiektu?
- odrzucenie dowodów przez sprowadzenie do sprzeczności
- odrzucenie idealistycznego podejścia do prawdziwości orzeczeń
- E. Bishop, konstruktywna analiza matematyczna

Książkowy przykład twierdzenia niekonstruktywnego

Twierdzenie

Istnieją takie dwie liczby niewymierne a oraz b, że a^b jest liczbą wymierną.

Dowód.

Orzeczenie, że $\sqrt{2}^{\sqrt{2}} \in \mathbf{Q}$ musi być prawdziwe lub musi być fałszywe.

- jeżeli jest prawdziwe to mamy szukane a oraz b
- jeżeli jest fałszywe to niech $a=\sqrt{2}^{\sqrt{2}}$ oraz $b=\sqrt{2}$, wtedy $a^b=2$

Jedyne co wiemy, to to że muszą istnieć takie liczby.

Kolejny przykład.

Twierdzenie (klasycznie)

Jeżeli funkcja f jest ciągła na przedziale [0,1] oraz wartości funkcji na krańcach przedziału mają różne znaki to istnieje punkt w tym przedziale na którym funkcja się zeruje.

Twierdzenie (konstruktywnie)

Jeżeli funkcja f jest ciągła na przedziale [0,1] oraz wartości funkcji na krańcach przedziału mają różne znaki to dla każdego $\epsilon>0$ istnieje punkt w tym przedziale na którym bezwzględna wartość funkcji jest mniejsza od ϵ .

Interpretacja Brouwer-Heyting-Kołmogorow

- A ∧ B to konstrukcja składająca się z dwóch pod-konstrukcji
- A ∨ B to konstrukcja składająca się z lewej lub prawej pod-konstrukcji
- $oldsymbol{A}
 ightarrow B$ to metoda przekształcająca konstrukcję B mając do dyspozycji A
- \(\perp \) absurd, konstrukcja której nie można zrealizować
- $\forall x. P(x)$ to metoda przekształcająca wartość a w konstrukcję P(a)
- $\exists x. P(x)$ to konstrukcja mająca składać się ze świadka a oraz z konstrukcji P(a)
- $\neg A$ to skrót od $A \rightarrow \bot$
- Czy przy tej interpretacji wszystkie klasyczne prawa mają sens?
 - $ightharpoonup \exists x \ P(x) \lor \neg \exists x \ P(x)$
 - $(\neg \forall x \ \neg P(x)) \rightarrow \exists x \ P(x)$

System naturalnej dedukcji

- system dowodzenia
- ullet posługujemy się sądami $\Gamma dash arphi$
- dowód to wyprowadzenie o strukturze drzewa
 - korzeń wniosek (sąd)
 - węzeł reguła wnioskowania
 - liść aksjomat
- reguły wprowadzania i eliminacji spójników logicznych

System naturalnej dedukcji

$$I \wedge \frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \wedge B} \qquad E \wedge_1 \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A}$$

$$I \vee_1 \frac{\Gamma \vdash A}{\Gamma \vdash A \vee B} \qquad E \vee \frac{\Gamma \vdash A \vee B}{\Gamma \vdash A} \qquad \Gamma, A \vdash C \qquad \Gamma, B \vdash C$$

$$I \rightarrow \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} \qquad E \rightarrow \frac{\Gamma \vdash A \rightarrow B}{\Gamma \vdash B} \qquad AX \frac{\Gamma, A \vdash A}{\Gamma, A \vdash A}$$

Teoria typów Martina-Löfa

Historia, idee, początki

Teoria typów jako logika matematyczna - B. Russel

$$A = \{ w \mid w \notin w \}$$

- ullet λ -rachunek , funkcja jako pojęcie pierwotne A.Church
- System typów, likwidacja paradoksu Kleene'go

$$K = \lambda x. \neg (x x)$$

$$(K K) = \neg (K K) = \neg \neg (K K) = \cdots$$

Wzbogacony system typów o więcej sądów

- Teoria typów Martina Löf'a system typów dla λ -rachunku, w którym możemy wydawać różne sądy:
 - ► A set jest zbiorem
 - $ightharpoonup a \in A$ a jest elementem zbioru
 - ▶ $a =_A b \in A$ a oraz b są równymi elementami w zbiorze A
 - ▶ A = B A oraz B są równymi zbiorami
- elementy zbiorów dzielimy na
 - kanoniczne wartości (postać normalna)
 - niekanoniczne obliczenia
- sformułowanie zbioru to
 - określenie kanonicznych elementów jakie ten zbiór zawiera
 - określenie co znaczy że dwa elementy są równe w tym zbiorze
 - określenie obliczeń

Liczby naturalne

Przykład iloczyn kartezjański w uproszczonej formie

Izomorfizm Curry-Howard (proposition as types)

- Martin-Löf, Curry, Howard, deBruijn i wiele innych
- typy oznaczają formuły
- otypowane termy oznaczają dowody dla swoich typów (formuł)
- izomorfizm pomiędzy wyprowadzeniami formuł w logice intuicjonistycznej a sądami w systemie typów
- realizacja BHK

$$I \rightarrow \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A . t : A \rightarrow B} \qquad E \rightarrow \frac{\Gamma \vdash f : A \rightarrow B \qquad \Gamma \vdash x : A}{\Gamma \vdash f x : B}$$

System naturalnej dedukcji

$$I \wedge \frac{\Gamma \vdash M : A \qquad \Gamma \vdash N : B}{\Gamma \vdash (M, N) : A \wedge B} \qquad E \wedge_1 \frac{\Gamma \vdash M : A \wedge B}{\Gamma \vdash fst M : A}$$

$$I \vee_1 \frac{\Gamma \vdash M : A}{\Gamma \vdash inl M : A \vee B}$$

$$E \vee \frac{\Gamma \vdash M : A \vee B \qquad \Gamma, x : A \vdash P : C \qquad \Gamma, x : B \vdash Q : C}{\Gamma \vdash when M (\lambda x.P) (\lambda x.Q) : C}$$

$$I \rightarrow \frac{\Gamma, A \vdash M : B}{\Gamma \vdash \lambda x.M : A \rightarrow B} \qquad E \rightarrow \frac{\Gamma \vdash M : A \rightarrow B \qquad \Gamma \vdash NA}{\Gamma \vdash M N : B}$$

$$A \times \frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash x : A}$$

Izomorfizm Curry-Howard (proposition as types)

- fundamentalna teoria według kryteriów matematyki konstruktywnej
- pojęciem pierwotnym jest funkcja, nie zbiór
- nie używamy klasycznych definicji pojęć, mogą być one nie konstruktywne, nie dające się zrealizować
- funkcje które definiujemy są obliczalne i totalne
- teoria nie wyrażona jako FOL, lecz kodująca ją w sobie

Sądy mają więcej interpretacji

- A set jest zbiorem
- A set jest problemem, zagadnieniem, zadaniem
- A prop jest formułą logiczną
- A true umiemy zrealizować A, istnieje dowód A
- $a \in A$ a jest elementem zbioru
- $a \in A$ a jest dowodem propozycji A
- $a \in A$ a jest programem spełniającym specyfikację A
- $a \in A$ a jest rozwiązaniem problemu A