Morch 27th
Recall: Given T:V=V.
Find a canonical basis d s.t. [T] is the JCF of T.
Step 1: Compute the char. poly $p(x) = (1 - \lambda_1)^{r_1} \cdots (x - \lambda_R)^{r_R}$ Step 2: define $W_{\lambda_1} = \ker(T - \lambda_1)^{r_1}$
1 this is "generalized eigenspace"
Primary decomposition
$V=W_{\lambda_1} \oplus \cdots \oplus W_{\lambda_r}$
Thm: $dimW_{\lambda_i} = \Gamma_i$
We proved that Wai is T-invariant and Twai -> Wai has only one eigenvalue
which is hi.
Compute canonical basis of Wai s.t. [T] wai] di has JCF.
St. Doubit all to them Datha devolute that a commission begin of 1/ and ITT
Step 3: put it all together. Define $d=d,U\cdots Udr$ a canonical basis of V and $[T]_d$ is the JCF of T .
$\exists x \colon \exists f \colon C_{\mathbf{q}} \longrightarrow C_{\mathbf{q}}$
740107
$T = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 \\ -1 & 0 & 2 & 0 \end{bmatrix} p(x) = (x-3)^2 (x-2)^2$
4012
$\Rightarrow C^4 = W_3 \oplus W_2$, where $W_3 = \ker((T-3I)^2)$
$W_2 = \ker((T-2I)^2)$
both two-dim spaces
· Find JCF of Tlws and a convonical basis d, of Ws
To compute tableau of $T _{W_3}$ dim ker $((T-3I)) = ? 1$
$\dim\ker((T-3I)^2)=2$
FID 107 FID 10 7 / 10 0 -1/3
$T-3I = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot$
2-130 ~ 00 1 1/3
Tablean of (T-3I) ws is
so JCF of Tlws is Jo (3)
Now we want d_i $d_i = f(Nx, x)$ where $x, Nx \in W_3$ and
Let $N=(T-3I) _{W_3}$ nilpotent operators. $d_1 = \{N_x, x\}$

Let
$$y=N_0 \in \ker(N) \cap N$$
 $\ker(N) = \operatorname{Span} \left[\begin{array}{c} 1 \\ 3 \end{array} \right]$

So take $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

So take $y=\begin{bmatrix} -1 \\ 4 \end{bmatrix}$

So $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

The $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

So get taken $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

The $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

Last thing to do is find on the basis of $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

Last thing to do is find on the basis of $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

The $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

Last thing to do is find on the basis of $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

Under taking for a basis $y=\begin{bmatrix} -1 \\ 2 \end{bmatrix}$

So $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

The $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

The $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

Last thing to do is find on the basis of $y=\begin{bmatrix} -1 \\ 3 \end{bmatrix}$

The $y=\begin{bmatrix} -1 \\ 3$

Claim: If T is diagonalizable then its JCF is the diagonal matrix of eigenvalues
Pf: $Sps \lambda$ is an eigenalue of T .
Ex = Wx Veigenspace eigenspace eigenspace.
If T is diagonalizable then dim Ex equal to Ti, the multiplicity of x in p(x).
\Rightarrow dim $E_{\lambda} = \dim W_{\lambda}$ and since $E_{\lambda} \subset W_{\lambda}$
$\Rightarrow E_{\lambda} = W_{\lambda}$
Now consider T/w = T/E, (T-)I)/E, has been
equal to $E_{\lambda} \Rightarrow \cdots$