ADHD 아동의 기분에 따른 게임 Performance 영향도 분석

1. Attention_4 게임

1.1 기분에 따른 정답률에 차이가 있는지분석

-등분산검정

```
df=pd.DataFrame(a1111,columns=['기분','A4정답율'])

df['A4정답율'] = pd.to_numeric(df['A4정답율'], errors='coerce')

df_1=df[df.기분==1]['A4정답율'].tolist()

df_2=df[df.기분==2]['A4정답율'].tolist()

df_3=df[df.기분==3]['A4정답율'].tolist()

df_4=df[df.기분==4]['A4정답율'].tolist()

df_5=df[df.기분==5]['A4정답율'].tolist()

# 등분산성

from scipy.stats import levene

print(stats.levene(df_1,df_2,df_3,df_4,df_5))
```

LeveneResult(statistic=0.6095751118515526, pvalue=0.6559668984701987) 유의확률이 0.656으로 유의수준 0.05 하에서 유의하지 않음 -> 등분산성 만족

-ANOVA 분석

```
df sum_sq mean_sq F PR(≻F)
C(기분) 4.0 766.572693 191.643173 2.144194 0.074748
Residual 385.0 34410.415905 89.377704 NaN NaN
유의확률이 0.075로 유의수준 0.05 하에서 유의하지 않음
```

-> 기분에 따른 정답률에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

1.2 기분에 따른 난이도 평균에 차이가 있는지 분석

-등분산검정

```
dfl=pd.DataFrame(a1111,columns=['기분','A4난이도_평균'])

dfl['A4난이도_평균'] = pd.to_numeric(dfl['A4난이도_평균'], errors='coerce')

dfl_1=dfl[dfl.기분==1]['A4난이도_평균'].tolist()

dfl_2=dfl[dfl.기분==2]['A4난이도_평균'].tolist()

dfl_3=dfl[dfl.기분==3]['A4난이도_평균'].tolist()

dfl_4=dfl[dfl.기분==4]['A4난이도_평균'].tolist()

dfl_5=dfl[dfl.기분==5]['A4난이도_평균'].tolist()

# 등분산성

from scipy.stats import levene

print(stats.levene(dfl_1,dfl_2,dfl_3,dfl_4,dfl_5))
```

LeveneResult(statistic=1.238357021447205, pvalue=0.2940753621230201) 유의확률이 0.294로 유의수준 0.05 하에서 유의하지 않음 -> 등분산성 만족

-ANOVA 분석

(기분) df sum_sq mean_sq F PR(>F) C(기분) 4.0 191.965026 47.991257 4.271052 0.002153 Residual 385.0 4326.014934 11.236402 NaN NaN 유의확률이 0.002로 유의수준 0.05 하에서 유의함

->기분에 따른 난이도 평균에 차이가 있다-> 차이가 있으므로 사후검정 시행 0

-사후검정 (본페로니)

r1=f1.allpairtest(scipy.stats.ttest_ind, method='bonf') r1[0] #기분 1과4, 기분1와5 간의 평균차이가 유의미함

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.5426	0.6098	2.0	1.0
False	0.6905	0.069	1.8271	3.0	1.0
True	0.0099	0.001	3.3647	4.0	1.0
True	0.022	0.0022	3.1156	5.0	1.0
False	1.0	0.2501	1.1534	3.0	2.0
False	0.0668	0.0067	2.7572	4.0	2.0
False	0.1495	0.015	2.4644	5.0	2.0
False	0.5843	0.0584	1.9086	4.0	3.0
False	1.0	0.1339	1.5072	5.0	3.0
False	1.0	0.5703	-0.5705	5.0	4.0

- -> 기분1(아주 좋음)과 기분4(나쁨) 사이에 난이도 평균에 차이가 있음
- -> 기분1(아주 좋음)과 기분5(아주 나쁨) 사이에 난이도 평균에 차이가 있음

-시각화 (상자그림)

import seaborn as sns sns.boxplot(x='기분',y='A4난이도_평균',data=df1)

<AxesSubplot:xlabel='기분', ylabel='A4난이도_평균'>

상자그림 확인 시 대체로 기분이 좋을 때 난이도 평균이 증가하는 경향을 보임 ->기분이 좋을 때 게임 수행 능력이 좋은 것으로 생각

1.3 기분에 따른 난이도 표준편차에 차이가 있는지 분석

- 등분산 검정

```
df2=pd.DataFrame(a1111,columns=['기분','A4난이도_표준편차'])
df2['A4난이도_표준편차'] = pd.to_numeric(df2['A4난이도_표준편차'], errors='coerce')
df2_1=df2[df2.기분==1]['A4난이도_표준편차'].tolist()
df2_2=df2[df2.기분==2]['A4난이도_표준편차'].tolist()
df2_3=df2[df2.기분==3]['A4난이도_표준편차'].tolist()
df2_4=df2[df2.기분==4]['A4난이도_표준편차'].tolist()
df2_5=df2[df2.기분==5]['A4난이도_표준편차'].tolist()
#등분산성
from scipy.stats import levene
print(stats.levene(df2_1,df2_2,df2_3,df2_4,df2_5))
```

LeveneResult(statistic=1.197641693205069, pvalue=0.3113540795480005) 유의확률이 0.3114로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA 분석

df sum_sq mean_sq F PR(≻F) C(기분) 4.0 24.395121 6.09878 2.435829 0.046813 Residual 385.0 963.955221 2.50378 NaN NaN 유의확률이 0.0468로 유의수준 0.05하에서 유의함

->기분에 따른 난이도 표준편차에 차이가 있다-> 차이가 있으므로 사후검정 시행 0

-사후검정 (본페로니)

```
r2=f1,allpairtest(scipy.stats.ttest_ind, method='bonf')
r2[0]
#기분 1과4, 기분1와5 간의 평균차이가 유의미함
```

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.5426	0.6098	2.0	1.0
False	0.6905	0.069	1.8271	3.0	1.0
True	0.0099	0.001	3.3647	4.0	1.0
True	0.022	0.0022	3.1156	5.0	1.0
False	1.0	0.2501	1.1534	3.0	2.0
False	0.0668	0.0067	2.7572	4.0	2.0
False	0.1495	0.015	2.4644	5.0	2.0
False	0.5843	0.0584	1.9086	4.0	3.0
False	1.0	0.1339	1.5072	5.0	3.0
False	1.0	0.5703	-0.5705	5.0	4.0

- ->기분1(아주 좋음)과 기분4(나쁨) 사이에 난이도 표준편차가 차이가 있음
- ->기분1(아주 좋음)과 기분5(아주 나쁨) 사이에 난이도 표준편차가 차이가 있음

-시각화 (상자그림)

sns.boxplot(x='기분',y='A4난이도_표준편차',data=df2)

<AxesSubplot:xlabel='기분', ylabel='A4난이도_표준편차'>

상자그림 확인 시 대체로 기분이 좋을 때 난이도 표준편차가 증가하는 경향을 보임 ->기분이 좋을 때 높은 게임 수행 난이도를 보여준다고 생각

1.4 기분에 따른 난이도 최대에 차이가 있는지 분석

-등분산검정

```
df3=pd.DataFrame(a1111,columns=['기분','A4난이도_최대'])

df3['A4난이도_최대'] = pd.to_numeric(df3['A4난이도_최대'], errors='coerce')

df3_1=df3[df3,기분==1]['A4난이도_최대'].tolist()

df3_2=df3[df3.기분==2]['A4난이도_최대'].tolist()

df3_3=df3[df3.기분==3]['A4난이도_최대'].tolist()

df3_4=df3[df3.기분==4]['A4난이도_최대'].tolist()

df3_5=df3[df3.기분==5]['A4난이도_최대'].tolist()

#등분산성

from scipy.stats import levene

print(stats.levene(df3_1,df3_2,df3_3,df3_4,df3_5))
```

LeveneResult(statistic=1.7730677755562565, pvalue=0.13348034127934413) 유의확률이 0.1335으로 유의수준 0.05 하에서 유의하지 않음 -> 등분산성 만족

-ANOVA 분석

(기분) df sum_sq mean_sq F PR(>F) C(기분) 4.0 176.10050 44.025125 2.209393 0.067379 Residual 385.0 7671.64309 19.926346 NaN NaN 유의확률이 0.0674로 유의수준 0.05하에서 유의하지 않음

->기분에 따른 난이도 최대에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

1.5 기분에 따른 결정시간 평균에 차이가 있는지 분석

-등분산검정

```
df4=pd.DataFrame(a1111,columns=['기분','A4결정시간_평균'])
df4['A4결정시간_평균'] = pd.to_numeric(df4['A4결정시간_평균'], errors='coerce')

df4_1=df4[df4.기분==1]['A4결정시간_평균'].tolist()
df4_2=df4[df4.기분==2]['A4결정시간_평균'].tolist()
df4_3=df4[df4.기분==3]['A4결정시간_평균'].tolist()
df4_3=df4[df4.기분==3]['A4결정시간_평균'].tolist()
df4_5=df4[df4.기분==5]['A4결정시간_평균'].tolist()

#등분산성
from scipy.stats import levene
print(stats.levene(df4_1,df4_2,df4_3,df4_4,df4_5))
```

LeveneResult(statistic=0.9133072954673731, pvalue=0.4561124924587757) 유의확률이 0.4561으로 유의수준 0.05 하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F)
C(기분) 4.0 1.208528 0.302132 3.721323 0.005503
Residual 385.0 31.257929 0.081189 NaN NaN
유의확률이 0.0055로 유의수준 0.05하에서 유의함

->기분에 따른 결정시간 평균에 차이가 있다-> 차이가 있으므로 사후검정 시행 0

-사후검정 (본페로니)

r4=f4.allpairtest(scipy.stats.ttest_ind, method='bonf') r4[0] #기분 1과4, 기분8와4 간의 평균차이가 유의미함

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.1063	-1.6221	2.0	1.0
False	1.0	0.1848	-1.3303	3.0	1.0
True	0.0002	0.0	-4.3797	4.0	1.0
False	0.6775	0.0677	-1.8401	5.0	1.0
False	1.0	0.6401	0.4682	3.0	2.0
False	0.232	0.0232	-2.2975	4.0	2.0
False	1.0	0.6859	-0.4053	5.0	2.0
True	0.0151	0.0015	-3.24	4.0	3.0
False	1.0	0.3882	-0.8654	5.0	3.0
False	0.6713	0.0671	1.862	5.0	4.0

- ->기분1(아주 좋음)과 기분4(나쁨) 사이에 결정시간 평균에 차이가 있음
- ->기분3(보통)과 기분4(나쁨) 사이에 결정시간 평균에 차이가 있음

-시각화 (상자그림)

sns.boxplot(x='기분',y='A4결정시간_평균',data=df4)

<AxesSubplot:xlabel='기분', ylabel='A4결정시간_평균'>

상자그림 확인 시 특히 기분 4(나쁨)일 때 결정시간 평균이 증가하는 경향을 보임 ->기분이 4(나쁨)일 때 결정에 오랜 시간을 사용한다고 생각

1.6 기분에 따른 결정시간 표준편차에 차이가 있는지 분석

-등분산검정

```
df5=pd.DataFrame(a1111,columns=['기분','A4결정시간_표준편차'])
df5['A4결정시간_표준편차'] = pd.to_numeric(df5['A4결정시간_표준편차'], errors='coerce')
df5_1=df5[df5.기분==1]['A4결정시간_표준편차'].tolist()
df5_2=df5[df5.기분==2]['A4결정시간_표준편차'].tolist()
df5_3=df5[df5.기분==3]['A4결정시간_표준편차'].tolist()
df5_4=df5[df5.기분==4]['A4결정시간_표준편차'].tolist()
df5_5=df5[df5.기분==5]['A4결정시간_표준편차'].tolist()
#등분산성
from scipy.stats import levene
print(stats.levene(df5_1,df5_2,df5_3,df5_4,df5_5))
```

LeveneResult(statistic=1.4476677792897996, pvalue=0.2176052523895338) 유의확률이 0.2176으로 유의수준 0.05 하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F)
C(기분) 4.0 1.855094 0.463774 7.18226 0.000014
Residual 385.0 24.860258 0.064572 NaN NaN
유의확률이 0.000014로 유의수준 0.05하에서 유의함

->기분에 따른 결정시간 표준편차에 차이가 있다-> 차이가 있으므로 사후검정 시행 0

-사후검정 (본페로니)

r5=f5.allpairtest(scipy.stats.ttest_ind, method='bonf') r5[0]

#기분 1과4, 기분2와4, 기분3과4 간의 평균차이가 유의미함

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	0.6474	0.0647	-1.8567	2.0	1.0
False	0.2843	0.0284	-2.2059	3.0	1.0
True	0.0	0.0	-6.0166	4.0	1.0
False	0.1189	0.0119	-2.5467	5.0	1.0
False	1.0	0.6263	-0.4876	3.0	2.0
True	0.0004	0.0	-4.2276	4.0	2.0
False	1.0	0.2905	-1.0611	5.0	2.0
True	0.0114	0.0011	-3.3259	4.0	3.0
False	1.0	0.5565	-0.5894	5.0	3.0
False	0.0976	0.0098	2.6629	5.0	4.0

- ->기분1(아주 좋음)과 기분4(나쁨) 사이에 결정시간 표준편차에 차이가 있음
- ->기분2(좋음)와 기분4(나쁨) 사이에 결정시간 표준편차에 차이가 있음
- ->기분3(보통)과 기분4(나쁨) 사이에 결정시간 표준편차에 차이가 있음

-시각화 (상자그림)

sns.boxplot(x='기분',y='A4결정시간_표준편차',data=df5)

<AxesSubplot:xlabel='기분', ylabel='A4결정시간_표준편차'>

상자그림 확인 시 특히 기분 4(나쁨)일 때 결정시간 표준편차가 증가하는 경향을 보임 ->기분이 4(나쁨)일 때 특히 결정에 오랜 시간을 사용한다고 생각

1.7 기분에 따른 터치 횟수에 차이가 있는지 분석

-등분산검정

```
df6=pd.DataFrame(a1111,columns=['기분','A4EI치_횟수'])
df6['A4EI치_횟수'] = pd.to_numeric(df6['A4EI치_횟수'], errors='coerce')

df6_1=df6[df6.기분==1]['A4EI치_횟수'].tolist()
df6_2=df6[df6.기분==2]['A4EI치_횟수'].tolist()
df6_3=df6[df6.기분==3]['A4EI치_횟수'].tolist()
df6_4=df6[df6.기분==4]['A4EI치_횟수'].tolist()
df6_5=df6[df6.기분==5]['A4EI치_횟수'].tolist()
#등분산성
from scipy.stats import levene
print(stats.levene(df6_1,df6_2,df6_3,df6_4,df6_5))
```

LeveneResult(statistic=2.331236245307095, pvalue=0.05542597070414572) 유의확률이 0.0554으로 유의수준 0.05 하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

```
C(기분)4.02.353429e+0558835.7157982.8478930.023839Residual385.07.953862e+0620659.382347NaNNaN유의확률이0.023839로유의수준0.05하에서유의함
```

->기분에 따른 터치 횟수에 차이가 있다-> 차이가 있으므로 사후검정 시행 ()

-사후검정 (본페로니)

```
r6=f6.allpairtest(scipy.stats.ttest_ind, method='bonf')
r6[0]
#기분 1과4간의 평균차이가 유의미함
```

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	0.6408	0.0641	-1.8613	2.0	1.0
False	1.0	0.4821	-0.7041	3.0	1.0
True	0.005	0.0005	-3.5623	4.0	1.0
False	1.0	0.1747	-1.3636	5.0	1.0
False	1.0	0.3031	1.0324	3.0	2.0
False	0.7074	0.0707	-1.8222	4.0	2.0
False	1.0	0.9948	0.0065	5.0	2.0
False	0.1154	0.0115	-2.5608	4.0	3.0
False	1.0	0.4733	-0.7189	5.0	3.0
False	1.0	0.1807	1.353	5.0	4.0

->기분1(아주 좋음)과 기분4(나쁨) 사이에 터치횟수에 차이가 있음

-시각화 (상자 그림)

sns.boxplot(x='기분',y='A4터치_횟수',data=df6)

<AxesSubplot:xlabel='기분', ylabel='A4터치_횟수'>

상자그림 확인 시 특히 기분 4(나쁨)일 때 터치 횟수가 증가하는 경향을 보임 ->기분이 4(나쁨)일 때 불필요한 터치를 많이 한다고 생각

2. Attention_5 게임

2.1 기분에 따른 정답률에 차이가 있는지 분석

-등분산검정

```
df7=pd.DataFrame(a1111,columns=['기본','A5정답율'])
df7['A5정답율'] = pd.to_numeric(df7['A5정답율'], errors='coerce')

df7_1=df7[df7.기분==1]['A5정답율'].tolist()
df7_2=df7[df7.기분==2]['A5정답율'].tolist()
df7_3=df7[df7.기분==3]['A5정답율'].tolist()
df7_4=df7[df7.기분==4]['A5정답율'].tolist()
df7_5=df7[df7.기분==5]['A5정답율'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df7_1,df7_2,df7_3,df7_4,df7_5))
```

LeveneHesult(statistic=1.084300319845635, pvalue=0.36391321565220147) 유의확률이 0.3639으로 유의수준 0.05 하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F)
C(기분) 4.0 72.642666 18.160667 0.086534 0.98659
Residual 385.0 80798.955813 209.867418 NaN NaN
유의확률이 0.9866으로 유의수준 0.05하에서 유의하지않음
->기분에 따른 정답율에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

2.2 기분에 따른 난이도 평균에 차이가 있는지 분석

-등분산검정

```
dfB=pd.DataFrame(a1111,columns=['기분','A5난이도_평균'])
dfB['A5난이도_평균'] = pd.to_numeric(dfB['A5난이도_평균'], errors='coerce')

dfB_1=dfB[dfB.기분==1]['A5난이도_평균'].tolist()
dfB_2=dfB[dfB.기분==2]['A5난이도_평균'].tolist()
dfB_3=dfB[dfB.기분==3]['A5난이도_평균'].tolist()
dfB_4=dfB[dfB.기분==4]['A5난이도_평균'].tolist()
dfB_5=dfB[dfB.기분==5]['A5난이도_평균'].tolist()
dfB_5=dfB[dfB.기분==5]['A5난이도_평균'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(dfB_1,dfB_2,dfB_3,dfB_4,dfB_5))
```

LeveneResult(statistic=0.6820339187496525, pvalue=0.6047488854675087) 유의확률이 0.6047으로 유의수준 0.05 하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F)
C(기분) 4.0 40.007407 10.001852 0.928935 0.447035
Residual 385.0 4145.299069 10.767011 NaN NaN
유의확률이 0.447으로 유의수준 0.05하에서 유의하지않음
->기분에 따른 난이도 평균에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

2.3 기분에 따른 난이도 표준편차에 차이가 있는지 분석

```
df9=pd.DataFrame(a1111,columns=['기분','A5난이도_표준편차'])
df9['A5난이도_표준편차'] = pd.to_numeric(df9['A5난이도_표준편차'], errors='coerce')
df9_1=df9[df9.기분==1]['A5난이도_표준편차'].tolist()
df9_2=df9[df9.기분==2]['A5난이도_표준편차'].tolist()
df9_3=df9[df9.기분==3]['A5난이도_표준편차'].tolist()
df9_4=df9[df9.기분==3]['A5난이도_표준편차'].tolist()
df9_5=df9[df9.기분==5]['A5난이도_표준편차'].tolist()
df9_5=df9[df9.기분==5]['A5난이도_표준편차'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df9_1,df9_2,df9_3,df9_4,df9_5))
```

LeveneResult(statistic=0.2527799502991334, pvalue=0.9079079305382353) 유의확률이 0.9079로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F) C(기분) 4.0 9.035269 2.258817 0.805519 0.522192 Residual 385.0 1079.607748 2.804176 NaN NaN 유의확률이 0.5222으로 유의수준 0.05하에서 유의하지않음

->기분에 따른 난이도 표준편차에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

2.4 기분에 따른 난이도 최대에 차이가 있는지 분석

-등분산검정

```
df10=pd.DataFrame(a1111,columns=['기분','A5난이도_최대'])
df10['A5난이도_최대'] = pd.to_numeric(df10['A5난이도_최대'], errors='coerce')

df10_1=df10[df10.기분==1]['A5난이도_최대'].tolist()
df10_2=df10[df10.기분==2]['A5난이도_최대'].tolist()
df10_3=df10[df10.기분==3]['A5난이도_최대'].tolist()
df10_4=df10[df10.기분==4]['A5난이도_최대'].tolist()
df10_5=df10[df10.기분==5]['A5난이도_최대'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df10_1,df10_2,df10_3,df10_4,df10_5))
```

LeveneResult(statistic=D.16263478126239278, pvalue=D.9571517929333058) 유의확률이 0.9572로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

```
df sum_sq mean_sq F PR(>F)
C(기분) 4.0 35.319661 8.829915 0.356356 0.839579
Residual 385.0 9539.657263 24.778331 NaN NaN
유의확률이 0.8396으로 유의수준 0.05하에서 유의하지않음
->기분에 따른 난이도 최대에 차이가 없다-> 차이가 없으므로 사후검정 시행 X
```

2.5 기분에 따른 결정시간 평균에 차이가 있는지 분석

-등분산검정

```
df11=pd.DataFrame(a1111,columns=['기분', 'A5결정시간_평균'])
df11['A5결정시간_평균'] = pd.to_numeric(df11['A5결정시간_평균'], errors='coerce')

df11_1=df11[df11.기분==1]['A5결정시간_평균'].tolist()
df11_2=df11[df11.기분==2]['A5결정시간_평균'].tolist()
df11_3=df11[df11.기분==3]['A5결정시간_평균'].tolist()
df11_4=df11[df11.기분==4]['A5결정시간_평균'].tolist()
df11_5=df11[df11.기분==5]['A5결정시간_평균'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df11_1,df11_2,df11_3,df11_4,df11_5))
```

LeveneResult(statistic=0.6455405047655085, pvalue=0.6303321844075764) 유의확률이 0.6303으로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(⊁) C(기분) 4.0 1.657331 0.414333 0.692978 0.597171 Residual 385.0 230.192059 0.597901 NaN NaN 유의확률이 0.5972으로 유의수준 0.05하에서 유의하지않음 ->기분에 따른 결정시간 평균에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

2.6 기분에 따른 결정시간 표준편차에 차이가 있는지 분석

-등분산검정

```
df12=pd.DataFrame(a1111,columns=['기분','A5결정시간_표준편차'])
df12['A5결정시간_표준편차'] = pd.to_numeric(df12['A5결정시간_표준편차'], errors='coerce')

df12_1=df12[df12.기분==1]['A5결정시간_표준편차'].tolist()
df12_2=df12[df12.기분==3]['A5결정시간_표준편차'].tolist()
df12_3=df12[df12.기분==3]['A5결정시간_표준편차'].tolist()
df12_4=df12[df12.기분==4]['A5결정시간_표준편차'].tolist()
df12_5=df12[df12.기분==5]['A5결정시간_표준편차'].tolist()
## 등분산성
from scipy.stats import levene
print(stats.levene(df12_1,df12_2,df12_3,df12_4,df12_5))
```

LeveneResult(statistic=0.8368593752233898, pvalue=0.5023668683278031)

유의확률이 0.5024으로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F)
C(기분) 4.0 1.037219 0.259305 0.725074 0.575222
Residual 385.0 137.685781 0.357625 NaN NaN
유의확률이 0.5752로 유의수준 0.05하에서 유의하지않음
->기분에 따른 결정시간 표준편차에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

2.7 기분에 따른 터치 횟수에 차이가 있는지 분석

-등분산검정

```
df13=pd.DataFrame(a1111,columns=['기분','A5터치_횟수'])
df13['A5터치_횟수'] = pd.to_numeric(df13['A5터치_횟수'], errors='coerce')

df13_1=df13[df13.기분==1]['A5터치_횟수'].tolist()
df13_2=df13[df13.기분==2]['A5터치_횟수'].tolist()
df13_3=df13[df13.기분==3]['A5터치_횟수'].tolist()
df13_4=df13[df13.기분==4]['A5터치_횟수'].tolist()
df13_5=df13[df13.기분==5]['A5터치_횟수'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df13_1,df13_2,df13_3,df13_4,df13_5))
```

LeveneResult(statistic=0.840284020089251, pvalue=0.5002303255759355) 유의확률이 0.5002으로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(۶) C(기분) 4.0 4.098337e+04 10245.843247 1.259703 0.285344 Residual 385.0 3.131413e+06 8133.539964 NaN NaN 유의확률이 0.2853으로 유의수준 0.05하에서 유의하지않음 ->기분에 따른 터치횟수에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

3. Memory_5 게임

3.1 기분에 따른 정답률에 차이가 있는지 분석

-등분산검정

```
df14=pd.DataFrame(a1111,columns=['기분','M5정답율'])
df14['M5정답율'] = pd.to_numeric(df14['M5정답율'], errors='coerce')

df14_1=df14[df14.기분==1]['M5정답율'].tolist()
df14_2=df14[df14.기분==2]['M5정답율'].tolist()
df14_3=df14[df14.기분==3]['M5정답율'].tolist()
df14_4=df14[df14.기분==4]['M5정답율'].tolist()
df14_5=df14[df14.기분==5]['M5정답율'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df14_1,df14_2,df14_3,df14_4,df14_5))
```

LeveneHesult(statistic=0.7229902166284039, pvalue=0.5766338066750472) 유의확률이 0.5766으로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(≯F) C(기분) 4.0 60.005763 15.001441 0.289048 0.885053 Residual 385.0 19981.312263 51.899512 NaN NaN 유의확률이 0.8850으로 유의수준 0.05하에서 유의하지않음 ->기분에 따른 정답률에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

3.2 기분에 따른 난이도 평균에 차이가 있는지 분석

-등분산검정

```
df15=pd.DataFrame(a1111,columns=['기분','M5난이도_평균'])
df15['M5난이도_평균'] = pd.to_numeric(df15['M5난이도_평균'], errors='coerce')

df15_1=df15[df15.기분==1]['M5난이도_평균'].tolist()
df15_2=df15[df15.기분==2]['M5난이도_평균'].tolist()
df15_3=df15[df15.기분==3]['M5난이도_평균'].tolist()
df15_4=df15[df15.기분==4]['M5난이도_평균'].tolist()
df15_5=df15[df15.기분==5]['M5난이도_평균'].tolist()

# 등분산성
from scipy.stats import levene
print(stats.levene(df15_1,df15_2,df15_3,df15_4,df15_5))
```

LeveneResult(statistic=0.7520781360507722, pvalue=0.5570912580421514) 유의확률이 0.5571로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족 df sum_sq mean_sq F PR(>F)
C(기분) 4.0 3.946171 0.986543 1.653395 0.160162
Residual 385.0 229.720663 0.596677 NaN NaN
유의확률이 0.1602으로 유의수준 0.05하에서 유의하지않음
->기분에 따른 난이도 평균에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

3.3 기분에 따른 난이도 표준편차에 차이가 있는지 분석

-등분산검정

```
df16=pd.DataFrame(a1111,columns=['기분','M5난이도_표준편차'])
df16['M5난이도_표준편차'] = pd.to_numeric(df16['M5난이도_표준편차'], errors='coerce')

df16_1=df16[df16.기분==1]['M5난이도_표준편차'].tolist()
df16_2=df16[df16.기분==2]['M5난이도_표준편차'].tolist()
df16_3=df16[df16.기분==3]['M5난이도_표준편차'].tolist()
df16_4=df16[df16.기분==3]['M5난이도_표준편차'].tolist()
df16_5=df16[df16.기분==5]['M5난이도_표준편차'].tolist()

# 등분산성
from scipy.stats import levene
print(stats.levene(df16_1,df16_2,df16_3,df16_4,df16_5))
```

LeveneHesult(statistic=1.2304883729414253, pvalue=0.297350409700196) 유의확률이 0.2974로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F)
C(기분) 4.0 1.180202 0.295051 1.325994 0.259621
Residual 385.0 85.667424 0.222513 NaN NaN
유의확률이 0.2596으로 유의수준 0.05하에서 유의하지않음
->기분에 따른 난이도 표준편차에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

3.4 기분에 따른 난이도 최대에 차이가 있는지 분석

-등분산검정

```
df17=pd.DataFrame(a1111,columns=['기분','M5난이도_최대'])
df17['M5난이도_최대'] = pd.to_numeric(df17['M5난이도_최대'], errors='coerce')

df17_1=df17[df17.기분==1]['M5난이도_최대'].tolist()
df17_2=df17[df17.기분==2]['M5난이도_최대'].tolist()
df17_3=df17[df17.기분==3]['M5난이도_최대'].tolist()
df17_4=df17[df17.기분==4]['M5난이도_최대'].tolist()
df17_5=df17[df17.기분==5]['M5난이도_최대'].tolist()
df17_5=df17[df17.기분==5]['M5난이도_최대'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df17_1,df17_2,df17_3,df17_4,df17_5))
```

LeveneResult(statistic=1.8399310243944813, pvalue=0.1204257140919954)

유의확률이 0.1204로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

```
df sum_sq mean_sq F PR(>F)
C(기분) 4.0 14.651579 3.662895 1.647102 0.161692
Residual 385.0 856.179190 2.223842 NaN NaN
유의확률이 0.1617으로 유의수준 0.05하에서 유의하지않음
```

->기분에 따른 난이도 최대에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

3.5 기분에 따른 남은 제한시간 평균에 차이가 있는지 분석

-등분산검정

```
| df18=pd.DataFrame(a1111,columns=['기분','M5남은_제한시간_평균']) | df18['M5남은_제한시간_평균'] = pd.to_numeric(df18['M5남은_제한시간_평균'], errors='coerce') | df18_1=df18[df18.기분==1]['M5남은_제한시간_평균'].tolist() | df18_2=df18[df18.기분==2]['M5남은_제한시간_평균'].tolist() | df18_3=df18[df18.기분==3]['M5남은_제한시간_평균'].tolist() | df18_4=df18[df18.기분==4]['M5남은_제한시간_평균'].tolist() | df18_5=df18[df18.기분==5]['M5남은_제한시간_평균'].tolist() | # 등분산성 | from scipy.stats import levene | print(stats.levene(df18_1,df18_2,df18_3,df18_4,df18_5))
```

LeveneResult(statistic=2.5494738374948493, pvalue=0.03891872320688181) 유의확률이 0.0389로 유의수준0.05하에서 유의함 -> 등분산성 만족X

-Welch's test 분석

```
import pandas as pd
from scipy import stats

# 데이터프레임에서 필요한 열 선택
response = df18['M5남은_제한시간_평균']
independent_var = df18['기분']
# 독립변수의 범주 확인
categories = independent_var.unique()
# 고료별 데이터 생성
groups = [response[independent_var == category] for category in categories]
# Welch's 분산분석 수행
f_value, p_value = stats.f_oneway(*groups)

# 결과 출력
print("Welch's 분산분석 결과:")
print("F-value:", f_value)
print("p-value:", p_value)
```

Welch's 분산분석 결과: F-value: 2.6113231744345415 p-value: 0.03517995789726259 유의확률이 0.0352으로 유의수준 0.05하에서 유의함 ->기분에 따른 남은 제한시간 평균에 차이가 있다-> 차이가 있으므로 사후검정 시행 O

-사후검정 (터키)

print(g18.summary())

Multiple Comparison of Means - Tukey HSD, FWER=0.05

======						
group1	group2	meandiff	p-adj	lower	upper	reject
1.0 1.0 1.0 2.0 2.0 2.0 3.0	2.0 3.0 4.0 5.0 3.0 4.0 5.0 4.0	0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0	1.0 1.0 1.0 1.0 1.0	-1.0818 -1.0659 -1.6488 -1.4854 -1.0936 -1.6669 -1.5054 -1.6566	1.0659 1.6488 1.4854 1.0936 1.6669 1.5054	False
4.0	5.0	0.0	1.0	-1.9531	1.9531	False

사후검정 해본 결과 남은 제한시간 평균에 차이가 없음

-시각화 (상자그림)

sns.boxplot(x='기분',y='M5남은_제한시간_평균',data=df18)

<AxesSubplot:xlabel='기분', ylabel='M5남은_제한시간_평균'>

상자그림 확인 시 남은 제한 시간 평균이 큰 차이는 없으나 기분이 안 좋을 때 게임 수행 시간이 촉박한 것으로 생각 ->기분이 좋지 않을수록 집중력이 떨어질 것이라 유추

3.6 기분에 따른 남은 표준편차에 차이가 있는지 분석

-등분산검정

```
df19-pd.DataFrame(a1111,columns=['기분','M5남은_제한시간_표준편차'])
df19['M5남은_제한시간_표준편차'] = pd.to_numeric(df19['M5남은_제한시간_표준편차'], errors='coerce')

df19_1=df19[df19.기분==1]['M5남은_제한시간_표준편차'].tolist()
df19_2=df19[df19.기분==2]['M5남은_제한시간_표준편차'].tolist()
df19_3=df19[df19.기분==3]['M5남은_제한시간_표준편차'].tolist()
df19_4=df19[df19.기분==3]['M5남은_제한시간_표준편차'].tolist()
df19_5=df19[df19.기분==5]['M5남은_제한시간_표준편차'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df19_1,df19_2,df19_3,df19_4,df19_5))

LeveneResult(statistic=0.4396504583247655, pvalue=0.7799474879944174)
유의확률이 0.7799로 유의수준 0.05하에서 유의하지 않음
->등분산성 만족
```

-ANOVA분석

```
df sum_sq mean_sq F PR(>F)
C(기분) 4.0 3.814046 0.953511 0.527692 0.715451
Residual 385.0 695.674442 1.806947 NaN NaN
유의확률이 0.7155으로 유의수준 0.05하에서 유의하지않음
->기분에 따른 남은 제한시간 표준편차에 차이가 없다-> 차이가 없으므로 사후검정 시행 X
```

3.7 기분에 따른 남은 제한시간 최대에 차이가 있는지 분석

-등분산검정

```
df20=pd.DataFrame(a1111,columns=['기분','M5남은_제한시간_최대'])
df20['M5남은_제한시간_최대'] = pd.to_numeric(df20['M5남은_제한시간_최대'], errors='coerce')

df20_1=df20[df20.기분==1]['M5남은_제한시간_최대'].tolist()
df20_2=df20[df20.기분==2]['M5남은_제한시간_최대'].tolist()
df20_3=df20[df20.기분==3]['M5남은_제한시간_최대'].tolist()
df20_4=df20[df20.기분==4]['M5남은_제한시간_최대'].tolist()
df20_5=df20[df20.기분==5]['M5남은_제한시간_최대'].tolist()

# 등분산성
from scipy.stats import levene
print(stats.levene(df20_1,df20_2,df20_3,df20_4,df20_5))
```

LeveneResult(statistic=1.3816029397411935, pvalue=0.23961169703494653) 유의확률이 0.2396으로 유의수준 0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(メF)
C(기분) 4.0 20.763709 5.190927 1.607474 0.171638
Residual 385.0 1243.259368 3.229245 NaN NaN
유의확률이 0.1716으로 유의수준 0.05하에서 유의하지않음
->기분에 따른 남은 제한시간 최대에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

3.7 기분에 따른 터치 횟수에 차이가 있는지 분석

-등분산검정

```
df21=pd.DataFrame(a1111,columns=['기분','M5터치_횟수'])
df21['M5터치_횟수'] = pd.to_numeric(df21['M5터치_횟수'], errors='coerce')

df21_1=df21[df21.기분==1]['M5터치_횟수'].tolist()
df21_2=df21[df21.기분==2]['M5터치_횟수'].tolist()
df21_3=df21[df21.기분==3]['M5터치_횟수'].tolist()
df21_4=df21[df21.기분==4]['M5터치_횟수'].tolist()
df21_5=df21[df21.기분==5]['M5터치_횟수'].tolist()

# 등분산성
from scipy.stats import levene
print(stats.levene(df21_1,df21_2,df21_3,df21_4,df21_5))
```

LeveneResult(statistic=2.1751313998101245, pvalue=0.07116015067563412) 유의확률이 0.0711으로 유의수준 0.05하에서 유의하지않음 ->등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(メF)
C(기분) 4.0 4.416252e+04 11040.629393 1.642998 0.162697
Residual 385.0 2.587126e+06 6719.806641 NaN NaN
유의확률이 0.1627으로 유의수준 0.05하에서 유의하지않음
->기분에 따른 터치횟수에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

4. Visual_4 게임

4.1 기분에 따른 전체 정답률에 차이가 있는지 분석

-등분산성

```
df22=pd.DataFrame(a1111,columns=['기분','V4전체_정답율'])
df22['V4전체_정답율'] = pd.to_numeric(df22['V4전체_정답율'], errors='coerce')

df22_1=df22[df22.기분==1]['V4전체_정답율'].tolist()
df22_2=df22[df22.기분==2]['V4전체_정답율'].tolist()
df22_3=df22[df22.기분==3]['V4전체_정답율'].tolist()
df22_4=df22[df22.기분==4]['V4전체_정답율'].tolist()
df22_5=df22[df22.기분==5]['V4전체_정답율'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df22_1,df22_2,df22_3,df22_4,df22_5))
```

LeveneResult(statistic=2.9129319652396046, pvalue=0.021405273056434894) 유의확률이 0.0214로 유의수준0.05하에서 유의함

-> 등분산성 만족X

-Welch's test 분석

```
response = df22['V4전체_정답율']
independent_var = df22['기분']
categories = independent_var.unique()
groups = [response[independent_var == category] for category in categories]
# Wolch's 분산분석 수행
f_value, p_value = stats.f_oneway(*groups)
# 결과 출력
print("Welch's 분산분석 결과:")
print("F-value:", f_value)
print("p-value:", p_value)
```

Welch's 분산분석 결과: F-value: 3.0651629197668933

p-value: 0.016617926267130868

유의확률이 0.01661으로 유의수준 0.05하에서 유의함

->기분에 따른 전체 정답률에 차이가 있다-> 차이가 있으므로 사후검정 시행 O

-사후검정 (터키)

```
print(g22.summary())
Multiple Comparison of Means - Tukey HSD, FWER=0.05
group1 group2 meandiff p-adj lower upper reject
   1.0
          2.0
                   0.0
                         1.0 -3.703 3.703
                                             False
                         1.0 -3.6485 3.6485
          3.0
   1.0
                  -0.0
                                             False
   1.0
          4.0
                  -0.0
                         1.0 -5.6438 5.6438
                                             False
                         1.0 -5.0842 5.0842
                                             False
   1.0
          5.0
                  0.0
                         1.0 -3.7434 3.7434
   2.0
          3.0
                                             False
                  -n.n
                         1.0 -5.7057 5.7057
   2.0
          4.0
                  -0.0
                                             False
   2.0
                         1.0 -5.1528 5.1528
          5.0
                   0.0
                                             False
                         1.0 -5.6705 5.6705
   3.0
          4.0
                  -0.0
                                             False
                        1.0 -5.1138 5.1138
   3.0
          5.0
                   0.0
                                             False
                        1.0 -6.6852 6.6852
   4.0
          5.0
                   0.0
                                            False
```

사후검정 해본 결과 전체 정답률에 차이가 없음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4전체_정답율',data=df22)

<AxesSubplot:xlabel='기분', ylabel='V4전체_정답율'>

상자그림 확인 시 전체 정답률이 큰 차이는 없으나 기분5(아주 나쁨)일 때 전체 정답률이 특히 감소하는 것을 보아 기분이 안 좋을 때 게임 수행에 대한 정확성이 떨어지는 것으로 생각 ->기분이 좋지 않을수록 집중력이 떨어질 것이라 유추

4.2 기분에 따른 왼쪽 정답률에 차이가 있는지 분석

-등분산성

```
df23=pd.DataFrame(a1111,columns=['기분','V4왼쪽_정답율'])
df23['V4왼쪽_정답율'] = pd.to_numeric(df23['V4왼쪽_정답율'], errors='coerce')

df23_1=df23[df23.기분==1]['V4왼쪽_정답율'].tolist()
df23_2=df23[df23.기분==2]['V4왼쪽_정답율'].tolist()
df23_3=df23[df23.기분==3]['V4왼쪽_정답율'].tolist()
df23_4=df23[df23.기분==4]['V4왼쪽_정답율'].tolist()
df23_5=df23[df23.기분==5]['V4왼쪽_정답율'].tolist()

# 등분산성
from scipy.stats import levene
print(stats.levene(df23_1,df23_2,df23_3,df23_4,df23_5))
```

LeveneResult(statistic=1.900082960881048, pvalue=0.10970758570656573) 유의확률이 0.1097으로 유의수준0.05하에서 유의하지않음

-> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F) C(기분) 4.0 1156.537258 289.134315 2.866848 0.023103 Residual 385.0 38828.961279 100.854445 NaN NaN 유의확률이 0.0231으로 유의수준 0.05하에서 유의함

->기분에 따른 왼쪽 정답률에 차이가 있다-> 차이가 있으므로 사후검정 시행 O

-사후검정 (본페로니)

r23=f23.allpairtest(scipy.stats.ttest_ind, method='bonf') r23[0] #기분 2와5 , 기분 4와5간의 평균차이가 유의미함

Test Multiple Comparison ttest_ind FWER=0.05

method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.1867	-1.3248	2.0	1.0
False	1.0	0.7014	0.384	3.0	1.0
False	1.0	0.1624	-1.4044	4.0	1.0
False	0.9076	0.0908	1.7024	5.0	1.0
False	0.6712	0.0671	1.8405	3.0	2.0
False	1.0	0.3853	-0.8712	4.0	2.0
True	0.0029	0.0003	3.7221	5.0	2.0
False	0.7527	0.0753	-1.7926	4.0	3.0
False	1.0	0.1322	1.5142	5.0	3.0
True	0.0005	0.0	4.3475	5.0	4.0

- ->기분2(좋음)과 기분5(아주 나쁨) 사이에 왼쪽 정답률에 차이가 있음 ->기분4(나쁨)와 기분5(아주 나쁨)사이에 왼쪽 정답률에 차이가 있음
- -시각화 (상자그림)

sns.boxplot(x='기분',y='V4왼쪽_정답율',data=df23)

<AxesSubplot:xlabel='기분', ylabel='V4왼쪽_정답율'>

상자그림 확인 시 특히 기분5(아주 나쁨)일 때 왼쪽 정답율이 감소하는 경향을 보임 ->기분이 5(아주 나쁨)일 때 왼쪽 정답률에 대한 게임 수행 능력이 떨어진다고 생각

4.3 기분에 따른 오른쪽 정답률에 차이가 있는지 분석

```
-등분산검정
df24=pd.DataFrame(a1111,columns=['기분','V4오른쪽_정답율'])
df24['V4오른쪽_정답율'] = pd.to_numeric(df24['V4오른쪽_정답율'], errors='coerce')
df24_1=df24[df24.기분==1]['V4오른쪽_정답율'].tolist()
df24_2=df24[df24.기분==2]['V4오른쪽_정답율'].tolist()
df24_3=df24[df24.기분==3]['V4오른쪽_정답율'].tolist()
df24_4=df24[df24.기분==4]['V4오른쪽_정답뮬'].tolist()
df24_5=df24[df24.기분==5]['V4오른쪽 점답율'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df24_1,df24_2,df24_3,df24_4,df24_5))
LeveneResult(statistic=3.2548581217185912, pvalue=0.012098973341174546)
유의확률이 0.0121로 유의수준 0.05하에서 유의함
->등분산성 만족X
-Welch's test 분석
response = df24['V4오른쪽 정단율']
independent_var = df24['기분']
categories = independent_var.unique()
groups = [response[independent_var == category] for category in categories]
# Welch's 분산분석 수행
f_value, p_value = stats.f_oneway(*groups)
# 결과 출력
print("Welch's 분산분석 결과:")
print("F-value:", f_value)
print("p-value:", p_value)
₩elch's 분산분석 결과:
F-value: 3.1745537318803416
p-value: 0.01384206313875654
유의확률이 0.0138으로 유의수준 0.05하에서 유의함
->기분에 따른 오른쪽 정답률에 차이가 있다-> 차이가 있으므로 사후검정 시행 O
-사후검정 (터키)
```

print(g	g24.summ	mary())				
Multip	le Compa	arison of	Means	– Tukey	HSD, F	#ER=0.05
group1	group2	meandiff	p-adj	lower	upper	reject
1.0 1.0 1.0 2.0 2.0 2.0 3.0 4.0	2.0 3.0 4.0 5.0 3.0 4.0 5.0 5.0	0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	1.0 1.0 1.0 1.0 1.0 1.0	-3.867 -3.8101 -5.8939 -5.3095 -3.9092 -5.9584 -5.381 -5.9217 -5.3403	3.8101 5.8939 5.3095 3.9092 5.9584 5.381 5.9217 5.3403	False

사후검정 해본 결과 오른쪽 정답률에 차이가 없음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4오른쪽_정답율',data=df24)

<AxesSubplot:xlabel='기분', ylabel='V4오른쪽_정답율'>

상자그림 확인 시 오른쪽 정답률이 큰 차이는 없으나 기분5(아주 나쁨)일 때 오른쪽 정답률이 특히 감소하는 것을 보아 기분이 안 좋을 때 게임 수행에 대한 정확성이 떨어지는 것으로 생 각

->기분이 좋지 않을수록 집중력이 떨어질 것이라 유추

4.4 기분에 따른 난이도 평균에 차이가 있는지 분석

-등분산성

```
df25=pd.DataFrame(a1111,columns=['기분','V4난이도_평균'])
df25['V4난이도_평균'] = pd.to_numeric(df25['V4난이도_평균'], errors='coerce')

df25_1=df25[df25.기분==1]['V4난이도_평균'].tolist()
df25_2=df25[df25.기분==2]['V4난이도_평균'].tolist()
df25_3=df25[df25.기분==3]['V4난이도_평균'].tolist()
df25_4=df25[df25.기분==4]['V4난이도_평균'].tolist()
df25_5=df25[df25.기분==5]['V4난이도_평균'].tolist()

# 등분산성
from scipy.stats import levene
print(stats.levene(df25_1,df25_2,df25_3,df25_4,df25_5))
```

LeveneResult(statistic=4.447774387855553, pvalue=0.0015891352805344078) 유의확률이 0.0016으로 유의수준 0.05하에서 유의함 ->등분산성 만족X

-Welch's test 분석

```
response = df25['V4난이도_평균']
independent_var = df25['기분']
categories = independent_var.unique()
groups = [response[independent_var == category] for category in categories]
# Welch's 분산분석 수행
f_value, p_value = stats.f_oneway(*groups)
# 결과 출력
print("Welch's 분산분석 결과:")
print("F-value:", f_value)
print("p-value:", p_value)
```

Welch's 분산분석 결과: F-value: 4.703149079015305 p-value: 0.0010237139865255742

유의확률이 0.00102으로 유의수준 0.05하에서 유의함

->기분에 따른 난이도 평균에 차이가 있다-> 차이가 있으므로 사후검정 시행 0

-사후검정 (터키)

```
print(g25.summary())
```

Multiple Comparison of Means - Tukey HSD, FWER=0.05

group1 group2 meandiff p-adj lower upper reject 2.0 1.0 0.0 1.0 -1.6856 1.6856 False 1.0 3.0 0.0 1.0 -1.6608 1.6608 False 1.0 -2.569 2.569 False 1.0 4.0 -0.0 1.0 5.0 0.0 1.0 -2.3143 2.3143 False -0.0 1.0 -1.704 1.704 False 2.0 3.0 2.0 4.0 -0.0 1.0 -2.5972 2.5972 False 1.0 -2.3455 2.3455 False 2.0 5.0 0.0 1.0 -2.5812 2.5812 False 3.0 4.0 -0.0 3.0 5.0 0.0 1.0 -2.3278 2.3278 False 5.0 0.0 1.0 -3.0431 3.0431 False 4.0

사후검정 해본 결과 난이도 평균에 차이가 없음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4난이도_평균',data=df25)

<AxesSubplot:xlabel='기분', ylabel='V4난이도_평균'>

상자그림 확인 시 난이도 평균이 큰 차이는 없으나 기분5(아주 나쁨)일 때 난이도 평균이 특히 감소하는 것을 보아 기분이 안 좋을 때 게임 수행 능력이 떨어진다고 생각

4.5 기분에 따른 난이도 표준편차에 차이가 있는지 분석

-등분산검정

```
df26=pd.DataFrame(a1111,columns=['기분','V4난이도_표준편차'])
df26['V4난이도_표준편차'] = pd.to_numeric(df26['V4난이도_표준편차'], errors='coerce')

df26_1=df26[df26.기분==1]['V4난이도_표준편차'].tolist()
df26_2=df26[df26.기분==2]['V4난이도_표준편차'].tolist()
df26_3=df26[df26.기분==3]['V4난이도_표준편차'].tolist()
df26_4=df26[df26.기분==4]['V4난이도_표준편차'].tolist()
df26_5=df26[df26.기분==5]['V4난이도_표준편차'].tolist()

# 등분산성
from scipy.stats import levene
print(stats.levene(df26_1,df26_2,df26_3,df26_4,df26_5))
```

LeveneResult(statistic=3.440267033498115, pvalue=0.00885635258900404)

유의확률이 0.0089으로 유의수준 0.05하에서 유의함 ->등분산성 만족X

-Welch's test 분석

```
response = df26['V4난이도_표준편차']
independent_var = df26['기분']
categories = independent_var.unique()
groups = [response[independent_var == category] for category in categories]
# Welch's 분산분석 수행
f_value, p_value = stats.f_oneway(*groups)
# 결과 출력
print("Welch's 분산분석 결과:")
print("F-value:", f_value)
print("p-value:", p_value)
```

₩elch's 분산분석 결과:

F-value: 4.2984174747695825 p-value: 0.002053895261040629

유의확률이 0.0021으로 유의수준 0.05하에서 유의함

->기분에 따른 난이도 표준편차에 차이가 있다-> 차이가 있으므로 사후검정 시행 0

-사후검정(터키)

```
print(g26.summary())
Multiple Comparison of Means - Tukey HSD, FWER=0.05
group1 group2 meandiff p-adj lower upper reject
        2.0
                0.0 1.0 -0.6795 0.6795 False
  1.0
  1.0
        3.0
               -0.0 1.0 -0.6695 0.6695 False
  1.0
        4.0
               -0.0 1.0 -1.0357 1.0357 False
               0.0 1.0 -0.933 0.933 False
  1.0
        5.0
  2.0
                    1.0 -0.6869 0.6869 False
        3.0
               -0.0
  2.0
        4.0
               -0.0
                    1.0 -1.047 1.047 False
  2.0
        5.0
                0.0
                    1.0 -0.9456 0.9456 False
  3.0
                    1.0 -1.0406 1.0406 False
        4.0
               -0.0
  3.0
        5.0
                0.0 1.0 -0.9384 0.9384 False
                0.0 1.0 -1.2268 1.2268 False
  4.0
        5.0
```

사후검정 해본 결과 난이도 표준편차에 차이가 없음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4난이도_표준편차',data=df26)

<AxesSubplot:xlabel='기분', ylabel='V4난이도_표준편차'>

상자그림 확인 시 난이도 표준편차가 큰 차이는 없으나 기분5(아주 나쁨)일 때 난이도 표준편 차가 특히 감소하는 것을 보아 기분이 안 좋을 때 게임 수행 능력이 떨어진다고 생각

4.6 기분에 따른 난이도 최대에 차이가 있는지 분석

-등분산검정

```
df27=pd.DataFrame(a1111,columns=['기분','V4난이도_최대'])
df27['V4난이도_최대'] = pd.to_numeric(df27['V4난이도_최대'], errors='coerce')

df27_1=df27[df27.기분==1]['V4난이도_최대'].tolist()
df27_2=df27[df27.기분==2]['V4난이도_최대'].tolist()
df27_3=df27[df27.기분==3]['V4난이도_최대'].tolist()
df27_4=df27[df27.기분==4]['V4난이도_최대'].tolist()
df27_5=df27[df27.기분==5]['V4난이도_최대'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df27_1,df27_2,df27_3,df27_4,df27_5))
```

LeveneResult(statistic=2.3361060021662765, pvalue=0.05499322598128185) 유의확률이 0.055로 유의수준 0.05하에서 유의함 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(۶F) C(기분) 4.0 568.108433 142.027108 4.121033 0.002784 Residual 385.0 13268.622336 34.463954 NaN NaN 유의확률이 0.0028으로 유의수준 0.05하에서 유의함

->기분에 따른 난이도 최대에 차이가 있다-> 차이가 있으므로 사후검정 시행 O

-사후검정(본페로니)

r27=f27.allpairtest(scipy.stats.ttest_ind, method='bonf') r27[0] #기분 1와5 ,기분2와5 ,기분 4와5간의 평균차이가 유의미함

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.9999	0.0001	2.0	1.0
False	1.0	0.2269	1.2118	3.0	1.0
False	1.0	0.6779	-0.4162	4.0	1.0
True	0.0021	0.0002	3.8044	5.0	1.0
False	1.0	0.229	1.2065	3.0	2.0
False	1.0	0.6665	-0.4319	4.0	2.0
True	0.0013	0.0001	3.9462	5.0	2.0
False	1.0	0.266	-1.117	4.0	3.0
False	0.1275	0.0127	2.5222	5.0	3.0
True	0.0125	0.0013	3.3741	5.0	4.0

- ->기분1(아주 좋음)과 기분5(아주 나쁨) 사이에 난이도 최대에 차이가 있음
- ->기분2(좋음)와 기분5(아주 나쁨) 사이에 난이도 최대에 차이가 있음
- ->기분4(아주 나쁨)과 기분5(아주 나쁨) 사이에 난이도 최대에 차이가 있음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4난이도_최대',data=df27)

<AxesSubplot:xlabel='기분', ylabel='V4난이도_최대'>

상자그림 확인 시 특히 기분 5(나쁨)일 때 난이도 최대가 감소하는 경향을 보임 ->기분이 5(나쁨)일 때 게임에서 게임 수행 능력이 떨어질 것이라고 생각

4.7 기분에 따른 마지막 터치 시간 평균에 차이가 있는지 분석

-등분산검정

```
df28=pd.DataFrame(a1111,columns=['기분','V4마지막_터치시간_평균'])
df28['V4마지막_터치시간_평균'] = pd.to_numeric(df28['V4마지막_터치시간_평균'], errors='coerce')
df28_1=df28[df28.기분==1]['V4마지막_터치시간_평균'].tolist()
df28_2=df28[df28.기분==2]['V4마지막_터치시간_평균'].tolist()
df28_3=df28[df28.기분==3]['V4마지막_터치시간_평균'].tolist()
df28_4=df28[df28.기분==3]['V4마지막_터치시간_평균'].tolist()
df28_5=df28[df28.기분==5]['V4마지막_터치시간_평균'].tolist()
df28_5=df28[df28.기분==5]['V4마지막_터치시간_평균'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df28_1,df28_2,df28_3,df28_4,df28_5))
```

LeveneResult(statistic=2.297505003203062, pvalue=0.058514371403286365) 유의확률이 0.05851로 유의수준 0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

```
df sum_sq mean_sq F PR(>F)
C(기분) 4.0 4.279068 1.069767 5.427041 0.000293
Residual 385.0 75.890386 0.197118 NaN NaN
유의확률이 0.00029으로 유의수준 0.05하에서 유의함
->기분에 따른 마지막 터치시간 평균에 차이가 있다-> 차이가 있으므로 사후검정 시행 ○
```

-사후검정 (본페로니)

```
r28=f28.allpairtest(scipy.stats.ttest_ind, method='bonf')
r28[0]
#기분 1과5, 2와5 , 8과5, 4와5 간의 평균차이가 유의미함
```

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.8967	-0.13	2.0	1.0
False	1.0	0.226	-1.2143	3.0	1.0
False	1.0	0.9238	0.0959	4.0	1.0
True	0.0002	0.0	-4.4612	5.0	1.0
False	1.0	0.2738	-1.0973	3.0	2.0
False	1.0	0.8504	0.1889	4.0	2.0
True	0.0001	0.0	-4.5713	5.0	2.0
False	1.0	0.3994	0.8454	4.0	3.0
True	0.0209	0.0021	-3.1348	5.0	3.0
True	0.0047	0.0005	-3.6859	5.0	4.0
S 10	2011000000	52.457.855.5	100000000	10.00	1000

- ->기분1(아주 좋음)과 기분5(아주 나쁨) 사이에 마지막 터치시간 평균에 차이가 있음
- ->기분2(좋음)와 기분5(아주 나쁨) 사이에 마지막 터치시간 평균에 차이가 있음

- ->기분3(보통)과 기분5(아주 나쁨) 사이에 마지막 터치시간 평균에 차이가 있음 ->기분4(나쁨)과 기분5(아주 나쁨) 사이에 마지막 터치시간 평균에 차이가 있음
- -시각화 (상자그림)

sns.boxplot(x='기분',y='V4마지막_터치시간_평균',data=df28)

<AxesSubplot:xlabel='기분', ylabel='V4마지막_터치시간_평균'>

상자그림 확인 시 특히 기분 5(나쁨)일 때 마지막 터치시간 평균이 증가하는 경향을 보임 ->기분이 5(나쁨)일 때 게임에서 마지막 불필요한 터치가 길다? 라고 생각

4.8 기분에 따른 마지막 터치시간 표준편차에 차이가 있는지 분석

-등분산검정

```
df29=pd.DataFrame(a1111,columns=['기분','V4마지막_터치시간_표준편차'])
df29['V4마지막_터치시간_표준편차'] = pd.to_numeric(df29['V4마지막_터치시간_표준편차'], errors='coerce')

df29_1=df29[df29.기분==1]['V4마지막_터치시간_표준편차'].tolist()
df29_2=df29[df29.기분==2]['V4마지막_터치시간_표준편차'].tolist()
df29_3=df29[df29.기분==3]['V4마지막_터치시간_표준편차'].tolist()
df29_4=df29[df29.기분==3]['V4마지막_터치시간_표준편차'].tolist()
df29_5=df29[df29.기분==5]['V4마지막_터치시간_표준편차'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df29_1,df29_2,df29_3,df29_4,df29_5))
```

LeveneResult(statistic=2.297505003203062, pvalue=0.058514371403286365) 유의확률이 0.0585로 유의수준0.05하에서 유의하지 않음 -> 등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F) C(기분) 4.0 4.279068 1.069767 5.427041 0.000293 Pesidual 385.0 75.890386 0.197118 NaN NaN 유의확률이 0.00029으로 유의수준 0.05하에서 유의함 ->기분에 따른 마지막 터치시간 표준편차에 차이가 있다-> 차이가 있으므로 사후검정 시행 0

-사후검정(본페로니)

r29=f29.allpairtest(scipy.stats.ttest_ind, method='bonf') r29[0] #기분 1과5, 2와5 , 3과5, 4와5 간의 평균차이가 유의미함

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.8967	-0.13	2.0	1.0
False	1.0	0.226	-1.2143	3.0	1.0
False	1.0	0.9238	0.0959	4.0	1.0
True	0.0002	0.0	-4.4612	5.0	1.0
False	1.0	0.2738	-1.0973	3.0	2.0
False	1.0	0.8504	0.1889	4.0	2.0
True	0.0001	0.0	-4.5713	5.0	2.0
False	1.0	0.3994	0.8454	4.0	3.0
True	0.0209	0.0021	-3.1348	5.0	3.0
True	0.0047	0.0005	-3.6859	5.0	4.0

- ->기분1(아주 좋음)과 기분5(아주 나쁨) 사이에 마지막 터치시간 표준편차에 차이가 있음
- ->기분2(좋음)와 기분5(아주 나쁨) 사이에 마지막 터치시간 표준편차에 차이가 있음
- ->기분3(보통)과 기분5(아주 나쁨) 사이에 마지막 터치시간 표준편차에 차이가 있음
- ->기분4(나쁨)과 기분5(아주 나쁨) 사이에 마지막 터치시간 표준편차에 차이가 있음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4마지막_터치시간_표준편차',data=df29)

<AxesSubplot:xlabel='기분', ylabel='V4마지막_터치시간_표준편차'>

상자그림 확인 시 특히 기분 5(나쁨)일 때 마지막 터치시간 표준편차가 증가하는 경향을 보임 ->기분이 5(나쁨)일 때 게임에서 마지막 불필요한 터치가 길어진다? 라고 생각

4.9 기분에 따른 왼쪽 마지막 터치 시간 평균에 차이가 있는지 분석

-등분산검정

```
      df30=pd.DataFrame(a1111,columns=['기분','V4왼쪽_마지막_터치시간_평균'])

      df30['V4왼쪽_마지막_터치시간_평균'] = pd.to_numeric(df30['V4왼쪽_마지막_터치시간_평균'], errors='coerce')

      df30_1=df30[df30.기분=-1]['V4왼쪽_마지막_터치시간_평균'].tolist()

      df30_2=df30[df30.기분=-2]['V4왼쪽_마지막_터치시간_평균'].tolist()

      df30_3=df30[df30.기분=-3]['V4왼쪽_마지막_터치시간_평균'].tolist()

      df30_4=df30[df30.기분=-4]['V4왼쪽_마지막_터치시간_평균'].tolist()

      df30_5=df30[df30.기분=-5]['V4왼쪽_마지막_터치시간_평균'].tolist()

      # 등분산성

      from scipy.stats import levene

      print(stats.levene(df30_1,df30_2,df30_3,df30_4,df30_5))
```

LeveneResult(statistic=1.525764335951187, pvalue=0.19391735222892725) 유의확률이 0.1939로 유의수준 0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

dfsum_sqmean_sqFPR(>F)C(기분)4.02.5169610.6292404.8599020.000781Residual385.049.8482230.129476NaNNaN유의확률이0.00078으로유의수준0.05하에서유의함

->기분에 따른 왼쪽 마지막 터치시간 평균에 차이가 있다-> 차이가 있으므로 사후검정 시행 O

-사후검정(본페로니)

```
r30=f30.allpairtest(scipy.stats.ttest_ind, method='bonf')
r30[0]
#기분 1과5, 2와5 , 3과5 간의 평균차이가 유의미함
```

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.9729	0.034	2.0	1.0
False	1.0	0.2515	-1.1497	3.0	1.0
False	1.0	0.5866	-0.5451	4.0	1.0
True	0.0004	0.0	-4.2256	5.0	1.0
False	1.0	0.2446	-1.167	3.0	2.0
False	1.0	0.5645	-0.5777	4.0	2.0
True	0.0003	0.0	-4.3122	5.0	2.0
False	1.0	0.8319	0.2127	4.0	3.0
True	0.0344	0.0034	-2.9746	5.0	3.0
False	0.1365	0.0136	-2.5354	5.0	4.0
_		_			

- ->기분1(아주 좋음)과 기분5(아주 나쁨) 사이에 왼쪽 마지막 터치시간 평균에 차이가 있음
- ->기분2(좋음)와 기분5(아주 나쁨) 사이에 왼쪽 마지막 터치시간 평균에 차이가 있음

->기분3(보통)과 기분5(아주 나쁨) 사이에 왼쪽 마지막 터치시간 평균에 차이가 있음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4왼쪽_마지막_터치시간_평균',data=df30)

<AxesSubplot:xlabel='기분', ylabel='V4왼쪽_마지막_터치시간_평균'>

상자그림 확인 시 특히 기분 5(나쁨)일 때 왼쪽 마지막 터치시간 평균이 증가하는 경향을 보임

->기분이 5(나쁨)일 때 게임에서 마지막 불필요한 왼쪽 터치가 길어진다? 라고 생각

4.10 기분에 따른 왼쪽 마지막 터치 시간 표준편차에 차이가 있는지 분석

-등분산검정

df31=pd.DataFrame(a1111,columns=['기분','V4왼쪽_마지막_터치시간_표준편차'])
df31['V4왼쪽_마지막_터치시간_표준편차'] = pd.to_numeric(df31['V4왼쪽_마지막_터치시간_표준편차'], errors='coerce')

df31_1=df31[df31.기분==1]['V4왼쪽_마지막_터치시간_표준편차'].tolist()
df31_2=df31[df31.기분==2]['V4왼쪽_마지막_터치시간_표준편차'].tolist()
df31_3=df31[df31.기분==3]['V4왼쪽_마지막_터치시간_표준편차'].tolist()
df31_5=df31[df31.기분==4]['V4왼쪽_마지막_터치시간_표준편차'].tolist()
df31_5=df31[df31.기분==5]['V4왼쪽_마지막_터치시간_표준편차'].tolist()
등분산성
from scipy.stats import levene
print(stats.levene(df31_1,df31_2,df31_3,df31_4,df31_5))

LeveneResult(statistic=1.3832273915456912, pvalue=0.23904798175097203)

LeveneHesult(statistic=1.3832273915456912, pvalue=0.23904798175097203) 유의확률이 0.239로 유의수준0.05하에서 유의하지않음 ->등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F) C(기분) 4.0 2.039152 0.509788 3.55261 0.007325 Pesidual 385.0 55.246249 0.143497 NaN NaN 유의확률이 0.0073으로 유의수준 0.05하에서 유의함

->기분에 따른 왼쪽 마지막 터치시간 표준편차에 차이가 있다-> 차이가 있으므로 사후검정 시행 O

-사후검정(본페로니)

r31=f31.allpairtest(scipy.stats.ttest_ind, method='bonf') r31[0] #기분 2와 5간의 평균차이가 유의미함

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

reject	pval_corr	pval	stat	group2	group1
False	1.0	0.8153	0.2339	2.0	1.0
False	1.0	0.6137	-0.5055	3.0	1.0
False	1.0	0.6666	0.4317	4.0	1.0
False	0.0594	0.0059	-2.7912	5.0	1.0
False	1.0	0.4125	-0.8211	3.0	2.0
False	1.0	0.7299	0.3459	4.0	2.0
True	0.0147	0.0015	-3.2448	5.0	2.0
False	1.0	0.371	0.8975	4.0	3.0
False	0.0654	0.0065	-2.7598	5.0	3.0
False	0.1957	0.0196	-2.3937	5.0	4.0

->기분2(좋음)와 기분5(아주 나쁨) 사이에 왼쪽 마지막 터치시간 표준편차에 차이가 있음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4왼쪽_마지막_터치시간_표준편차',data=df31)

<AxesSubplot:xlabel='기분', ylabel='V4왼쪽_마지막_터치시간_표준편차'>

상자그림 확인 시 특히 기분 5(나쁨)일 때 왼쪽 마지막 터치시간 표준편차가 증가하는 경향을 보임

->기분이 5(나쁨)일 때 게임에서 마지막 불필요한 왼쪽 터치가 길어진다? 라고 생각

4.11 기분에 따른 오른쪽 마지막 터치 시간 평균에 차이가 있는지 분석

-등분산검정

```
df32=pd.DataFrame(a1111,columns=['기분','V4오른쪽_마지막_터치시간_평균'])
df32['V4오른쪽_마지막_터치시간_평균'] = pd.to_numeric(df32['V4오른쪽_마지막_터치시간_평균'], errors='coerce')

df32_1=df32[df32.기분==1]['V4오른쪽_마지막_터치시간_평균'].tolist()
df32_2=df32[df32.기분==2]['V4오른쪽_마지막_터치시간_평균'].tolist()
df32_3=df32[df32.기분==3]['V4오른쪽_마지막_터치시간_평균'].tolist()
df32_4=df32[df32.기분==4]['V4오른쪽_마지막_터치시간_평균'].tolist()
df32_5=df32[df32.기분==5]['V4오른쪽_마지막_터치시간_평균'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df32_1,df32_2,df32_3,df32_4,df32_5))
```

LeveneResult(statistic=2.171440113303925, pvalue=0.07157944140305326) 유의확률이 0.0716으로 유의수준0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F)
C(기분) 4.0 2.936648 0.734162 5.463759 0.000275
Residual 385.0 51.732217 0.134369 NaN NaN
유의확률이 0.0003으로 유의수준 0.05하에서 유의함
->기분에 따른 오른쪽 마지막 터치시간 평균에 차이가 있다-> 차이가 있으므로 사후검정 시행 ○

-사후검정(본페로니)

r32=f32.allpairtest(scipy.stats.ttest_ind, method='bonf') r32[0] #기분 1과5, 2와5 , 8과5, 4와5 간의 평균차이가 유의미함

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

group1	group2	stat	pval	pval_corr	reject
1.0	2.0	-0.3564	0.7219	1.0	False
1.0	3.0	-1.3616	0.1747	1.0	False
1.0	4.0	0.1069	0.915	1.0	False
1.0	5.0	-4.2197	0.0	0.0004	True
2.0	3.0	-1.0853	0.2791	1.0	False
2.0	4.0	0.3842	0.7015	1.0	False
2.0	5.0	-4.4068	0.0	0.0002	True
3.0	4.0	0.9861	0.3258	1.0	False
3.0	5.0	-2.983	0.0034	0.0335	True
4.0	5.0	-3.5443	0.0007	0.0074	True
	1.0 1.0 1.0 1.0 2.0 2.0 2.0 3.0	1.0 2.0 1.0 3.0 1.0 4.0 1.0 5.0 2.0 3.0 2.0 4.0 2.0 5.0 3.0 4.0 3.0 5.0	1.0 2.0 -0.3564 1.0 3.0 -1.3616 1.0 4.0 0.1069 1.0 5.0 -4.2197 2.0 3.0 -1.0853 2.0 4.0 0.3842 2.0 5.0 -4.4068 3.0 4.0 0.9861 3.0 5.0 -2.983	1.0 2.0 -0.3564 0.7219 1.0 3.0 -1.3616 0.1747 1.0 4.0 0.1069 0.915 1.0 5.0 -4.2197 0.0 2.0 3.0 -1.0853 0.2791 2.0 4.0 0.3842 0.7015 2.0 5.0 -4.4068 0.0 3.0 4.0 0.9861 0.3258 3.0 5.0 -2.983 0.0034	1.0 2.0 -0.3564 0.7219 1.0 1.0 3.0 -1.3616 0.1747 1.0 1.0 4.0 0.1069 0.915 1.0 1.0 5.0 -4.2197 0.0 0.0004 2.0 3.0 -1.0853 0.2791 1.0 2.0 4.0 0.3842 0.7015 1.0 2.0 5.0 -4.4068 0.0 0.0002 3.0 4.0 0.9861 0.3258 1.0 3.0 5.0 -2.983 0.0034 0.0335

->기분1(아주 좋음)과 기분5(아주 나쁨) 사이에 마지막 터치시간 평균에 차이가 있음

- ->기분2(좋음)와 기분5(아주 나쁨) 사이에 마지막 터치시간 평균에 차이가 있음
- ->기분3(보통)과 기분5(아주 나쁨) 사이에 마지막 터치시간 평균에 차이가 있음
- ->기분4(나쁨)과 기분5(아주 나쁨) 사이에 마지막 터치시간 평균에 차이가 있음

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4오른쪽_마지막_터치시간_평균',data=df32)

<AxesSubplot:xlabel='기분', ylabel='V4오른쪽_마지막_터치시간_평균'>

상자그림 확인 시 특히 기분 5(나쁨)일 때 오른쪽 마지막 터치시간 평균이 증가하는 경향을 보임

->기분이 5(나쁨)일 때 게임에서 마지막 불필요한 오른쪽 터치가 길어진다? 라고 생각

4.12 기분에 따른 오른쪽 마지막 터치 시간 표준편차에 차이가 있는지 분석

-등분산검정

```
df33=pd.DataFrame(a1111,columns=['기분','V4오른쪽_마지막_터치시간_표준편차'])
df33['V4오른쪽_마지막_터치시간_표준편차'] = pd.to_numeric(df33['V4오른쪽_마지막_터치시간_표준편차'], errors='coerce')

df33_1=df33[df33.기분==1]['V4오른쪽_마지막_터치시간_표준편차'].tolist()
df33_2=df33[df33.기분==2]['V4오른쪽_마지막_터치시간_표준편차'].tolist()
df33_3=df33[df33.기분==3]['V4오른쪽_마지막_터치시간_표준편차'].tolist()
df33_4=df33[df33.기분==4]['V4오른쪽_마지막_터치시간_표준편차'].tolist()
df33_5=df33[df33.기분==5]['V4오른쪽_마지막_터치시간_표준편차'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df33_1,df33_2,df33_3,df33_4,df33_5))
```

LeveneResult(statistic=0.9465185391202132, pvalue=0.4369767492916845) 유의확률이 0.437로 유의수준0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F) C(기분) 4.0 1.529336 0.382334 2.507078 0.041701 Residual 385.0 58.713195 0.152502 NaN NaN 유의확률이 0.0417으로 유의수준 0.05하에서 유의함

->기분에 따른 오른쪽 마지막 터치시간 표준편차에 차이가 있다-> 차이가 있으므로 사후검정 시행 O

-사후검정 (본페로니)

r33=f33.allpairtest(scipy.stats.ttest_ind, method='bonf') r33[0]

Test Multiple Comparison ttest_ind FWER=0.05 method=bonf alphacSidak=0.01, alphacBonf=0.005

rejec	pval_corr	pval	stat	group2	group1
False	1.0	0.6573	-0.4443	2.0	1.0
False	1.0	0.5384	-0.6162	3.0	1.0
False	1.0	0.723	0.3552	4.0	1.0
False	0.0881	0.0088	-2.6544	5.0	1.0
False	1.0	0.8219	-0.2253	3.0	2.0
False	1.0	0.4309	0.7902	4.0	2.0
False	0.0745	0.0075	-2.716	5.0	2.0
False	1.0	0.4338	0.785	4.0	3.0
False	0.27	0.027	-2.2344	5.0	3.0
False	0.1709	0.0171	-2.4477	5.0	4.0

->오른쪽 마지막 터치시간 표준편차에 차이가 있는 그룹이 없음-> 유의한 차이가 없다

-시각화 (상자그림)

sns.boxplot(x='기분',y='V4오른쪽_마지막_터치시간_표준편차',data=df33)

<AxesSubplot:xlabel='기분', ylabel='V4오른쪽_마지막_터치시간_표준편차'>

상자그림 확인 시 큰 차이가 없지만 기분5(아주 나쁨)에서 약간의 증가하는 경향이 있음 -> 기분이 나쁠수록 게임 수행 시 오른쪽 화면에 마지막 터치시간이 길어진다고 유추

4.13 기분에 따른 터치 횟수에 차이가 있는지 분석

-등분산검정

```
df34=pd.DataFrame(a1111,columns=['기분','V4터치_횟수'])
df34['V4터치_횟수'] = pd.to_numeric(df34['V4터치_횟수'], errors='coerce')
df34 1=df34[df34.기분==1]['V4터치 횟수'].tolist()
df34_2=df34[df34.기분==2]['V4터치_횟수'].tolist()
df34_3=df34[df34.기분==3]['V4터치_횟수'].tolist()
df34_4=df34[df34.기분==4]['V4터치_횟수'].tolist()
df34_5=df34[df34.기분==5]['V4터치_횟수'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df34_1,df34_2,df34_3,df34_4,df34_5))
LeveneResult(statistic=2.3381286465817674, pvalue=0.054814440877718744)
유의확률이 0.0548으로 유의수준0.05하에서 유의하지 않음
->등분산성 만족
-ANOVA분석
                           mean so
                                            PR(>F)
                  SUM SO
           4.0 5.196639e+03 1299.159759 0.183579
                                            0.946877
Residual 385.0 2.724582e+06 7076.836495
                                      NaN
                                              NaN
유의확률이 0.9469으로 유의수준 0.05하에서 유의하지 않음
```

->기분에 따른 터치횟수에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

4.14 기분에 따른 왼쪽 터치 횟수에 차이가 있는지 분석

-등분산검정

```
df35=pd.DataFrame(a1111,columns=['기분','V4왼쪽_터치_횟수'])
df35['V4왼쪽_터치_횟수'] = pd.to_numeric(df35['V4왼쪽_터치_횟수'], errors='coerce')
df35_1=df35[df35.기분==1]['V4왼쪽_터치_횟수'].tolist()
df35_2=df35[df35.기분==2]['V4왼쪽_터치_횟수'].tolist()
df35_3=df35[df35.기분==3]['V4왼쪽_터치_횟수'].tolist()
df35_4=df35[df35.기분==3]['V4왼쪽_터치_횟수'].tolist()
df35_5=df35[df35.기분==5]['V4왼쪽_터치_횟수'].tolist()
df35_5=df35[df35.기분==5]['V4왼쪽_터치_횟수'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df35_1,df35_2,df35_3,df35_4,df35_5))
LeveneResult(statistic=1.919482967273336, pvalue=0.10644569592304963)
유의확률이 0.1064로 유의수준0.05하에서 유의하지 않음
->등분산성 만족
```

-ANOVA분석

```
df sum_sq mean_sq F PR(>F)
C(기분) 4.0 1064.755257 266.188814 0.145254 0.965034
Residual 385.0 705541.575512 1832.575521 NaN NaN
유의확률이 0.965으로 유의수준 0.05하에서 유의하지 않음
->기분에 따른 왼쪽 터치횟수에 차이가 없다-> 차이가 없으므로 사후검정 시행 X
```

4.15 기분에 따른 오른쪽 터치 횟수에 차이가 있는지 분석

-등분산검정

```
df36=pd.DataFrame(a1111,columns=['기분','V4오른쪽_터치_횟수'])
df36['V4오른쪽_터치_횟수'] = pd.to_numeric(df36['V4오른쪽_터치_횟수'], errors='coerce')

df36_1=df36[df36.기분==1]['V4오른쪽_터치_횟수'].tolist()
df36_2=df36[df36.기분==2]['V4오른쪽_터치_횟수'].tolist()
df36_3=df36[df36.기분==3]['V4오른쪽_터치_횟수'].tolist()
df36_4=df36[df36.기분==4]['V4오른쪽_터치_횟수'].tolist()
df36_5=df36[df36.기분==5]['V4오른쪽_터치_횟수'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df36_1,df36_2,df36_3,df36_4,df36_5))
```

LeveneResult(statistic=1.978211959178386, pvalue=0.09711722519106494)

유의확률이 0.0971로 유의수준0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

```
df sum_sq mean_sq F PH(>F)
C(기분) 4.0 1925.724751 481.431188 0.256569 0.905587
Residual 385.0 722422.418838 1876.421867 NaN NaN
유의확률이 0.9056으로 유의수준 0.05하에서 유의하지 않음
->기분에 따른 오른쪽 터치횟수에 차이가 없다-> 차이가 없으므로 사후검정 시행 X
```

5. Visual_5 게임

5.1 기분에 따른 정답률에 차이가 있는지 분석

-등분산검정

```
df37=pd.DataFrame(a1111,columns=['기분','V5점답율'])
df37['V5점답율'] = pd.to_numeric(df37['V5점답율'], errors='coerce')
df37_1=df37[df37.기분==1]['V5점답율'].tolist()
df37_2=df37[df37.기분==2]['V5점답율'].tolist()
df37_3=df37[df37.기분==3]['V5점답율'].tolist()
df37_4=df37[df37.기분==4]['V5점답율'].tolist()
df37_5=df37[df37.기분==5]['V5정답율'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df37_1,df37_2,df37_3,df37_4,df37_5))
LeveneResult(statistic=1.816004439396628, pvalue=0.12495440711318512)
유의확률이 0.125로 유의수준0.05하에서 유의하지 않음
->등분산성 만족
-ANOVA분석
                                             PR(>F)
                                        F
                   sum_sq
                           mean_sq
                 397.321720 99.330430 1.351616 0.250228
C(기분)
          4.0
Residual 385.0 28293.688812 73.490101 NaN NaN
유의확률이 0.2502으로 유의수준 0.05하에서 유의하지 않음
```

->기분에 따른 정답률에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

5.2 기분에 따른 난이도 평균에 차이가 있는지 분석

-등분산검정

```
df38=pd.DataFrame(a1111,columns=['기분','V5난이도_평균'])
df38['V5난이도_평균'] = pd.to_numeric(df38['V5난이도_평균'], errors='coerce')

df38_1=df38[df38.기분==1]['V5난이도_평균'].tolist()
df38_2=df38[df38.기분==2]['V5난이도_평균'].tolist()
df38_3=df38[df38.기분==3]['V5난이도_평균'].tolist()
df38_4=df38[df38.기분==4]['V5난이도_평균'].tolist()
df38_5=df38[df38.기분==5]['V5난이도_평균'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df38_1,df38_2,df38_3,df38_4,df38_5))
```

LeveneResult(statistic=0.6147704204806956, pvalue=0.6522408823371351)

유의확률이 0.652로 유의수준0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F) C(기분) 4.0 34.234143 8.558536 0.892607 0.468336 Residual 385.0 3691.474465 9.588245 NaN NaN 유의확률이 0.4683으로 유의수준 0.05하에서 유의하지 않음 ->기분에 따른 난이도 평균에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

5.3 기분에 따른 난이도 표준편차에 차이가 있는지 분석

-등분산검정

```
df39=pd.DataFrame(a1111,columns=['기분','V5난이도_표준편차'])
df39['V5난이도_표준편차'] = pd.to_numeric(df39['V5난이도_표준편차'], errors='coerce')

df39_1=df39[df39.기분==1]['V5난이도_표준편차'].tolist()
df39_2=df39[df39.기분==2]['V5난이도_표준편차'].tolist()
df39_3=df39[df39.기분==3]['V5난이도_표준편차'].tolist()
df39_4=df39[df39.기분==4]['V5난이도_표준편차'].tolist()
df39_5=df39[df39.기분==5]['V5난이도_표준편차'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df39_1,df39_2,df39_3,df39_4,df39_5))
```

LeveneResult(statistic=0.619787443270211, pvalue=0.6486497268480615)

유의확률이 0.6486로 유의수준0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(>F)
C(기분) 4.0 8.842675 2.210669 0.918405 0.453137
Residual 385.0 926.723100 2.407073 NaN NaN
유의확률이 0.4531으로 유의수준 0.05하에서 유의하지 않음
->기분에 따른 난이도 표준편차에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

5.4 기분에 따른 난이도 최대에 차이가 있는지 분석

-등분산검정

```
df4D=pd.DataFrame(a1111,columns=['기분','V5난이도_최대'])
df40['V5난이도 최대'] = pd.to_numeric(df40['V5난이도 최대'], errors='coerce')
df40_1=df40[df40.기분==1]['V5난이도_최대'].tolist()
df40_2=df40[df40.기분==2]['V5난이도_최대'].tolist()
df40_3=df40[df40.기분==3]['V5난이도_최대'].tolist()
df40 4=df40[df40.기분==4]['V5난이도 최대'].tolist()
df40 5=df40[df40.기분==5]['V5난이도 최대'].tolist()
# 등분산성
from scipy, stats import levene
print(stats.levene(df40_1, df40_2, df40_3, df40_4, df40_5))
LeveneResult(statistic=0.5385883058623308, pvalue=0.7074740827459338)
유의확률이 0.7075로 유의수준0.05하에서 유의하지 않음
->등분산성 만족
-ANOVA분석
                                       F
                                           PR(>F)
           df
                  sum_sq
                          mean_sq
           4.0
                 61.673744 15.418436 0.764876 0.548612
유의확률이 0.5486으로 유의수준 0.05하에서 유의하지 않음
->기분에 따른 난이도 최대에 차이가 없다-> 차이가 없으므로 사후검정 시행 X
5.5 기분에 따른 결정시간 평균에 차이가 있는지 분석
-등분산검정
df41=pd.DataFrame(a1111,columns=['기분','V5결정시간_평균'])
df41['V5결정시간_평균'] = pd.to_numeric(df41['V5결정시간_평균'], errors='coerce')
df41_1=df41[df41.기분==1]['V5결정시간_평균'].tolist()
df41_2=df41[df41.기분==2]['V5결정시간_평균'].tolist()
df41_3=df41[df41.기분==3]['V5결정시간_평균'].tolist()
df41_4=df41[df41.기분==4]['V5결정시간_평균'].tolist()
df41_5=df41[df41.기분==5]['V5결정시간_평균'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df41_1,df41_2,df41_3,df41_4,df41_5))
LeveneResult(statistic=0.7654080663621343, pvalue=0.5482613388247481)
유의확률이 0.5483로 유의수준0.05하에서 유의하지 않음
->등분산성 만족
-ANOVA분석
           df
                                        F
                                           PR(>F)
                  sum sa
                         mean so
            4.0 0.687687 0.171922 0.726406 0.57432
C(기분)
Residual 385.0 91.119737 0.236675
                                      NaN
                                              NaN
유의확률이 0.5743으로 유의수준 0.05하에서 유의하지 않음
->기분에 따른 결정시간 평균에 차이가 없다-> 차이가 없으므로 사후검정 시행 X
```

5.6 기분에 따른 결정시간 표준편차에 차이가 있는지 분석

-등분산검정

```
df42=pd.DataFrame(a1111,columns=['기분','V5결정시간_표준편차'])

df42['V5결정시간_표준편차'] = pd.to_numeric(df42['V5결정시간_표준편차'], errors='coerce')

df42_1=df42[df42.기분==1]['V5결정시간_표준편차'].tolist()

df42_2=df42[df42.기분==2]['V5결정시간_표준편차'].tolist()

df42_3=df42[df42.기분==3]['V5결정시간_표준편차'].tolist()

df42_4=df42[df42.기분==4]['V5결정시간_표준편차'].tolist()

df42_5=df42[df42.기분==5]['V5결정시간_표준편차'].tolist()

# 등분산성

from scipy.stats import levene

print(stats.levene(df42_1,df42_2,df42_3,df42_4,df42_5))
```

LeveneResult(statistic=0.34538788827534295, pvalue=0.8472039941546973)

유의확률이 0.8472로 유의수준0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

```
df sum_sq mean_sq F PR(>F)
C(기분) 4.0 0.446429 0.111607 0.692739 0.597336
Residual 385.0 62.027443 0.161110 NaN NaN
유의확률이 0.5973으로 유의수준 0.05하에서 유의하지 않음
```

->기분에 따른 결정시간 표준편차에 차이가 없다-> 차이가 없으므로 사후검정 시행 X

5.7 기분에 따른 터치 횟수에 차이가 있는지 분석

-등분산검정

```
df43=pd.DataFrame(a1111,columns=['기분','V5터치_횟수'])
df43['V5터치_횟수'] = pd.to_numeric(df43['V5터치_횟수'], errors='coerce')

df43_1=df43[df43.기분==1]['V5터치_횟수'].tolist()
df43_2=df43[df43.기분==2]['V5터치_횟수'].tolist()
df43_3=df43[df43.기분==3]['V5터치_횟수'].tolist()
df43_4=df43[df43.기분==4]['V5터치_횟수'].tolist()
df43_5=df43[df43.기분==5]['V5터치_횟수'].tolist()
# 등분산성
from scipy.stats import levene
print(stats.levene(df43_1,df43_2,df43_3,df43_4,df43_5))
```

LeveneResult(statistic=0.7016752616220077, pvalue=0.5911821593623054) 유의확률이 0.5912로 유의수준0.05하에서 유의하지 않음 ->등분산성 만족

-ANOVA분석

df sum_sq mean_sq F PR(メF)
C(기분) 4.0 1.359030e+04 3397.574097 0.375925 0.825815
Residual 385.0 3.479594e+06 9037.905917 NaN NaN
유의확률이 0.8258으로 유의수준 0.05하에서 유의하지 않음
->기분에 따른 터치횟수에 차이가 없다-> 차이가 없으므로 사후검정 시행 X