Título do trabalho a ser apresentado à CPG para a dissertação/tese

Aarão Melo Lopes

DISSERTAÇÃO/TESE APRESENTADA
AO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA
DA
UNIVERSIDADE DE SÃO PAULO
PARA
OBTENÇÃO DO TÍTULO
DE
MESTRE/DOUTOR EM CIÊNCIAS

Programa: Nome do Programa

Orientador: Prof. Dr. Nome do Orientador

Coorientador: Prof. Dr. Nome do Coorientador

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da ${\rm CAPES/CNPq/FAPESP}$

São Paulo, fevereiro de 2011

Redes Neurais Convolucionais Quaternion

Esta é a versão original da dissertação elaborada pelo candidato (Aarão Melo Lopes), tal como submetida à Comissão Julgadora.

Título do trabalho a ser apresentado à CPG para a dissertação/tese

Esta versão da dissertação/tese contém as correções e alterações sugeridas pela Comissão Julgadora durante a defesa da versão original do trabalho, realizada em 14/12/2010. Uma cópia da versão original está disponível no Instituto de Matemática e Estatística da Universidade de São Paulo.

Comissão Julgadora:

- Prof^a. Dr^a. Nome Completo (orientadora) IME-USP [sem ponto final]
- Prof. Dr. Nome Completo IME-USP [sem ponto final]
- Prof. Dr. Nome Completo IMPA [sem ponto final]

Agradecimentos

Texto texto

Resumo

SOBRENOME, A. B. C. **Título do trabalho em português**. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Texto texto

Palavra-chave: palavra-chave1, palavra-chave2, palavra-chave3.

Abstract

SOBRENOME, A. B. C. **Título do trabalho em inglês**. 2010. 120 f. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2010.

Keywords: keyword1, keyword2, keyword3.

Sumário

Li	sta d	le Abreviaturas	ix							
Li	sta d	le Símbolos	xi							
Li	sta d	le Figuras	xiii							
Li	sta d	le Tabelas	xv							
1	Intr	rodução	1							
	1.1	Considerações Preliminares	. 1							
	1.2	Objetivos	. 1							
	1.3	Contribuições	. 2							
	1.4	Organização do Trabalho	. 2							
2	Cor	nceitos	3							
	2.1	Fundamentos	. 3							
		2.1.1 Ácidos Nucléicos	. 3							
		2.1.2 Aminoácidos	. 3							
	2.2	Exemplo de Código-Fonte em Java	. 4							
	2.3	Algumas Referências	. 4							
3	Conclusões									
	3.1	Considerações Finais	. 7							
	3.2	Sugestões para Pesquisas Futuras	. 7							
A	Seq	uências	9							
R	eferê	ncias Bibliográficas	11							
Ín	dice	Remissivo	13							

Lista de Abreviaturas

 CFT Transformada contínua de Fourier (Continuous Fourier Transform) DFT Transformada discreta de Fourier (Discrete Fourier Transform) EIIP Potencial de interação elétron-íon (Electron-Ion Interaction Potentials) Tranformada de Fourier de tempo reduzido (Short-Time Fourier Transform) STFT

Lista de Símbolos

- ω Frequência angular
- ψ Função de análise wavelet
- Ψ Transformada de Fourier de ψ

Lista de Figuras

	2.1	Descrição da	a figura mostrada.		3
--	-----	--------------	--------------------	--	---

Lista de Tabelas

2.1	Códigos, abreviaturas e nomes dos aminoácidos	4
A.1	Exemplo de tabela	10

Capítulo 1

Introdução

Escrever bem é uma arte que exige muita técnica e dedicação. Há vários bons livros sobre como escrever uma boa dissertação ou tese. Um dos trabalhos pioneiros e mais conhecidos nesse sentido é o livro de Umberto Eco [Eco09] intitulado *Como se faz uma tese*; é uma leitura bem interessante mas, como foi escrito em 1977 e é voltado para teses de graduação na Itália, não se aplica tanto a nós.

Para a escrita de textos em Ciência da Computação, o livro de Justin Zobel, Writing for Computer Science [Zob04] é uma leitura obrigatória. O livro Metodologia de Pesquisa para Ciência da Computação de Raul Sidnei Wazlawick [Waz09] também merece uma boa lida. Já para a área de Matemática, dois livros recomendados são o de Nicholas Higham, Handbook of Writing for Mathematical Sciences [Hig98] e o do criador do T_EX, Donald Knuth, juntamente com Tracy Larrabee e Paul Roberts, Mathematical Writing [KLR96].

O uso desnecessário de termos em lingua estrangeira deve ser evitado. No entanto, quando isso for necessário, os termos devem aparecer *em itálico*.

```
Modos de citação:
indesejável: [AF83] introduziu o algoritmo ótimo.
indesejável: (Andrew e Foster, 1983) introduziram o algoritmo ótimo.
certo: Andrew e Foster introduziram o algoritmo ótimo [AF83].
certo: Andrew e Foster introduziram o algoritmo ótimo (Andrew e Foster, 1983).
certo: Andrew e Foster (1983) introduziram o algoritmo ótimo.
```

Uma prática recomendável na escrita de textos é descrever as legendas das figuras e tabelas em forma auto-contida: as legendas devem ser razoavelmente completas, de modo que o leitor possa entender a figura sem ler o texto onde a figura ou tabela é citada.

Apresentar os resultados de forma simples, clara e completa é uma tarefa que requer inspiração. Nesse sentido, o livro de Edward Tufte [Tuf01], *The Visual Display of Quantitative Information*, serve de ajuda na criação de figuras que permitam entender e interpretar dados/resultados de forma eficiente.

1.1 Considerações Preliminares

Considerações preliminares¹. Texto texto.

1.2 Objetivos

Texto texto.

¹Nota de rodapé (não abuse).

2 Introdução 1.4

1.3 Contribuições

As principais contribuições deste trabalho são as seguintes:

• Item 1. Texto texto.

• Item 2. Texto texto.

1.4 Organização do Trabalho

No Capítulo 2, apresentamos os conceitos ... Finalmente, no Capítulo 3 discutimos algumas conclusões obtidas neste trabalho. Analisamos as vantagens e desvantagens do método proposto ... As sequências testadas no trabalho estão disponíveis no Apêndice A.

Capítulo 2

Conceitos

Texto texto

2.1 Fundamentos

Texto texto

2.1.1 Ácidos Nucléicos

Na Figura 2.1 texto texto.

Figura 2.1: Descrição da figura mostrada.

2.1.2 Aminoácidos

Veja na Tabela 2.1... texto te

4 CONCEITOS 2.3

Código	Abreviatura	Nome completo				
A	Ala	Alanina				
С	Cys	Cisteína				
\overline{W}	Trp	Tiptofano				
Y	Tyr	Tirosina				

Tabela 2.1: Códigos, abreviaturas e nomes dos aminoácidos.

texto texto.

Texto texto

2.2 Exemplo de Código-Fonte em Java

Texto texto.

2.3 Algumas Referências

É muito recomendável a utilização de arquivos bibtex para o gerenciamento de referências a trabalhos. Nesse sentido existem três plataformas gratuitas que permitem a busca de referências acadêmicas em formato bib:

- CiteULike (patrocinados por Springer): www.citeulike.org
- Coleção de bibliografia em Ciência da Computação: liinwww.ira.uka.de/bibliography
- Google acadêmico (habilitar bibtex nas preferências): scholar.google.com.br

Lamentavelmente, ainda não existe um mecanismo de verificação ou validação das informações nessas plataformas. Portanto, é fortemente sugerido validar todas as informações de tal forma que as entradas bib estejam corretas. Também, tome muito cuidado na padronização das referências bibliográficas: ou considere TODOS os nomes dos autores por extenso, ou TODOS os nomes dos autores abreviados. Evite misturas inapropriadas.

Exemplos de referências com a tag:

• @Book: [JW83].

```
@Book{JW82,
author = {Richard A. Johnson and Dean W. Wichern},
title = {Applied Multivariate Statistical Analysis},
publisher= {Prentice-Hall},
year = {1983}
}
```

• @Article: [MCCZCJ08].

• @InProceedings: [ACDS03].

```
@InProceedings { alves 03: simi,
author
         = {Carlos E. R. Alves and Edson N. Cáceres and Frank Dehne and
            Siang W. Song},
title
          = {A Parallel Wavefront Algorithm for Efficient Biological
            Sequence Comparison),
booktitle= {ICCSA '03: The 2003 International Conference on Computational Science
           and its Applications },
          = \{2003\},
vear
         = \{249 - 258\},
pages
         = May,
month
publisher= {Springer-Verlag}
```

• @InCollection: [BM93].

• @Conference: [BMPS03].

• @PhdThesis: [Gar01].

```
@PhdThesis{garcia01:PhD,
  author = {Islene C. Garcia},
  title = {Visões Progressivas de Computações Distribuídas},
  school = {Instituto de Computação, Universidade de Campinas, Brasil},
  year = {2001},
  month = {Dezembro}
}
```

• @MastersThesis: [Sch03].

```
@MastersThesis{schmidt03:MSc,
  author = {Rodrigo M. Schmidt},
  title = {Coleta de Lixo para Protocolos de \emph{Checkpointing}},
  school = {Instituto de Computação, Universidade de Campinas, Brasil},
  year = {2003},
  month = Oct
}
```

6 CONCEITOS 2.3

• @Techreport: [AER⁺99].

• @Manual: [Obj02].

```
@Manual{CORBA:spec,
  title = {{CORBA v3.0 Specification}},
  author = {{Object Management Group}},
  month = Jul,
  year = {2002},
  note = {{OMG Document 02-06-33}}
}
```

• @Misc: [All03].

• @Misc: para referência a artigo online [Fow04].

```
@Misc{fowler04:designDead,
  author = {Martin Fowler},
  title = {Is Design Dead?},
  year = {2004},
  month = May,
  note = {Último acesso em 30/1/2010},
  howpublished= {\url{http://martinfowler.com/articles/designDead.html}},
}
```

• @Misc: para referência a página web [Fou].

```
@Misc{FSF:GNU-GPL,
  author = {Free Software Foundation},
  title = {GNU general public license},
  note = {Último acesso em 30/1/2010},
  howpublished= {\url{http://www.gnu.org/copyleft/gpl.html}},
}
```

Capítulo 3

Conclusões

Texto texto.

3.1 Considerações Finais

Texto texto.

3.2 Sugestões para Pesquisas Futuras

Texto texto.

Finalmente, leia o trabalho de Uri Alon [Alo09] no qual apresenta-se uma reflexão sobre a utilização da Lei de Pareto para tentar definir/escolher problemas para as diferentes fases da vida acadêmica. A direção dos novos passos para a continuidade da vida acadêmica deveriam ser discutidos com seu orientador.

¹Exemplo de referência para página Web: www.vision.ime.usp.br/~jmena/stuff/tese-exemplo

Apêndice A

Sequências

Texto texto.

Limiar	MGWT			AMI		Spectrum de Fourier			Características espectrais			
	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC	Sn	Sp	AC
1	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08	1.00	0.16	0.08
2	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09	1.00	0.16	0.09
2	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
4 5	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10	1.00	0.16	0.10
	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11	1.00	0.16	0.11
6	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12	1.00	0.16	0.12
7	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.12	1.00	0.17	0.13
8	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13	1.00	0.17	0.13
9	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14	1.00	0.17	0.14
10	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
11	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15	1.00	0.17	0.15
12	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16	1.00	0.18	0.16
13	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
14	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17	1.00	0.18	0.17
15	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18	1.00	0.18	0.18
16	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19	1.00	0.18	0.19
17	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19	1.00	0.19	0.19
17	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20	1.00	0.19	0.20
19	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21	1.00	0.19	0.21
20	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22	1.00	0.19	0.22

Tabela A.1: Exemplo de tabela.

Referências Bibliográficas

- [ACDS03] Carlos E. R. Alves, Edson N. Cáceres, Frank Dehne e Siang W. Song. A parallel wavefront algorithm for efficient biological sequence comparison. Em *ICCSA '03: The 2003 International Conference on Computational Science and its Applications*, páginas 249–258. Springer-Verlag, Maio 2003. 5
- [AER+99] Lorenzo Alvisi, Elmootazbellah Elnozahy, Sriram S. Rao, Syed A. Husain e Asanka Del Mel. An analysis of comunication-induced checkpointing. Relatório Técnico TR-99-01, Department of Computer Science, University of Texas at Austin, Austin, USA, 1999. 6
 - [All03] William Allcock. GridFTP protocol specification. Global Grid Forum recommendation (GFD.20), 2003. 6
 - [Alo09] Uri Alon. How To Choose a Good Scientific Problem. *Molecular Cell*, 35(6):726–728, Setembro 2009. 7
 - [BM93] Ozalp Babaoglu e Keith Marzullo. Consistent global states of distributed systems: Fundamental concepts and mechanisms. Em Sape Mullender, editor, *Distributed Systems*, páginas 55–96. segunda edição, 1993. 5
- [BMPS03] Greg Bronevetsky, Daniel Marques, Keshav Pingali e Paul Stodghill. Automated application-level checkpointing of MPI programs. Em *PPoPP '03: Proceedings of the 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming*, páginas 84–89, 2003. 5
 - [Eco
09] Umberto Eco. Como se Faz uma Tese. Perspectiva, 22º edição, 2009. Tradução Gilson Cesar Cardoso de Souza. 1
 - [Fou] Free Software Foundation. GNU general public license. http://www.gnu.org/copyleft/gpl.html. Último acesso em 30/1/2010. 6
 - [Fow04] Martin Fowler. Is design dead? http://martinfowler.com/articles/designDead.html, Maio 2004. Último acesso em 30/1/2010. 6
 - [Gar01] Islene C. Garcia. Visões Progressivas de Computações Distribuídas. Tese de Doutorado, Instituto de Computação, Universidade de Campinas, Brasil, Dezembro 2001.
 - [Hig98] Nicholas J. Higham. Handbook of Writing for the Mathematical Sciences. SIAM: Society for Industrial and Applied Mathematics, segunda edição, Agosto 1998. 1
 - [JW83] Richard A. Johnson e Dean W. Wichern. Applied Multivariate Statistical Analysis. Prentice-Hall, 1983. 4
 - [KLR96] Donald E. Knuth, Tracy Larrabee e Paul M. Roberts. Mathematical Writing. The Mathematical Association of America, Setembro 1996. 1

- [MCCZCJ08] Jesús P. Mena-Chalco, Helaine Carrer, Yossi Zana e Roberto M. Cesar-Jr. Identification of protein coding regions using the modified Gabor-wavelet transform. IE-EE/ACM Transactions on Computational Biology and Bioinformatics, 5:198–207, 2008. 5
 - [Obj02] Object Management Group. CORBA v3.0 Specification, Julho 2002. OMG Document 02-06-33. 6
 - [Sch03] Rodrigo M. Schmidt. Coleta de lixo para protocolos de *Checkpointing*. Dissertação de Mestrado, Instituto de Computação, Universidade de Campinas, Brasil, Outubro 2003. 5
 - [Tuf01] Edward Tufte. The Visual Display of Quantitative Information. Graphics Pr, 2nd edição, Maio 2001. 1
 - [Waz09] Raul S. Wazlawick. *Metodologia de Pesquisa em Ciencia da Computação*. Campus, primeira edição, 2009. 1
 - [Zob04] Justin Zobel. Writing for Computer Science: The art of effective communication. Springer, segunda edição, 2004. 1

Índice Remissivo

```
DFT, veja transformada discreta de Fourier DSP, veja processamento digital de sinais

Fourier transformada, veja transformada de Fourier genoma projetos, 1

nucleotídeos, 3

STFT, veja transformada de Fourier de tempo reduzido

TBP, veja periodicidade região codificante ácido amino, 3–4 nucléico, 3 área do trabalho fundamentos, 3
```