Clase 11 Análisis de varianza

Diplomado en Análisis de datos con R para la Acuicultura.

Dr. José Gallardo Matus

Pontificia Universidad Católica de Valparaíso

14 May 2022

PLAN DE LA CLASE

1.- Introducción

- ¿Qué es un análisis de varianza?.
- Modelos lineales en Anova.
- Hipótesis y supuestos.
- Interpretar resultados de análisis de varianza con R.

2.- Práctica con R y Rstudio cloud

- Realizar pruebas de hipótesis: Anova y posteriores.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato html.

ANOVA

¿Qué es el análisis de varianza?

Herramienta básica para analizar el efecto de uno o más factores (cada uno con dos o más niveles) en un experimento.

PROBLEMA DE LAS COMPARACIONES MÚLTIPLES

¿Por qué preferir anova y no múltiples t-test?

Porque con una t-test normal al aumentar el número de comparaciones múltiples se incrementa la tasa de error tipo I.

ANOVA: MODELOS LINENALES

Una forma muy conveniente de representar una ANOVA es mediante un modelo lineal.

Modelo lineal para ANOVA de una vía

$$y \sim \mu + \alpha + \epsilon$$

Modelo lineal para ANOVA de dos vías

$$y \sim \mu + \alpha + \beta + \epsilon$$

Modelo lineal para ANOVA de dos vías con interacción

$$y \sim \mu + \alpha + \beta + \alpha * \beta + \epsilon$$

ANOVA: HIPÓTESIS

Hipótesis factor 1

 $\mathbf{H_0}: \alpha_{1.1} = \alpha_{1.2} = \alpha_{1.3}$

Hipótesis factor 2

 $\mathbf{H_0}:\,\beta_{2.1}=\beta_{2.2}=\beta_{2.3}$

Hipótesis interacción

 $H_0: \alpha^*\beta = 0$

Hipótesis Alternativa

 H_A : No todas las medias son iguales

ANOVA PARA COMPARAR MEDIAS

Si el test compara medias ¿Por qué se llama ANOVA?

Por que el estadístico **F** es un cociente de varianzas.

$$\mathbf{F} = rac{\sigma_{entregrupos}^2}{\sigma_{dentrogrupos}^2}$$

Mientras mayor es el estadístico **F**, más es la diferencia de medias entre grupos.

SUPUESTOS DE UNA ANOVA

- 1) Independencia de las observaciones.
- 2) Normalidad.
- 3) Homocedasticidad: homogeneidad de las varianzas.

TEST POSTERIORES (PRUEBAS A POSTERIORI)

¿Para qué sirven?

Para identificar que pares de niveles de uno o más factores son significativamente distintos entre sí.

¿Cuando usarlos?

Sólo cuando se rechaza H_0 del ANOVA.

Tukey test

Es uno de los más usados, similar al *t-test*, pero corrige la tasa de error por el número de comparaciones.

ESTUDIO DE CASO: TRUCHA ARCOIRIS

ANOVA DE UNA VÍA

```
res.aov <- lm(Peso ~ Dietas, data = my_data)
anova(res.aov)
## Analysis of Variance Table
##
## Response: Peso
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Dietas 2 3.7663 1.8832 4.8461 0.01591 *
## Residuals 27 10.4921 0.3886
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

ANOVA COMO MODELO LINEAL

summary(res.aov)

```
Call:
lm(formula = Peso ~ Dietas, data = mv_data)
Residuals:
   Min
         10 Median 30
                                 Max
-1.0710 -0.4180 -0.0060 0.2627 1.3690
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.0320 0.1971 25.527 <2e-16 ***
Dietastrt1 -0.3710 0.2788 -1.331 0.1944
Dietastrt2 0.4940 0.2788 1.772 0.0877 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-squared: 0.2641, Adjusted R-squared: 0.2096
F-statistic: 4.846 on 2 and 27 DF, p-value: 0.01591
```

MODELO LINEAL SIN INTERCEPTO

res.aov <- Im(Peso \sim -1 + Dietas, data = my_data) summary(res.aov)

```
Call:
lm(formula = Peso \sim -1 + Dietas, data = my_data)
Residuals:
   Min 10 Median 30
                                 Max
-1.0710 -0.4180 -0.0060 0.2627 1.3690
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
Dietasctrl 5.0320 0.1971 25.53 <2e-16 ***
Dietastrt1 4.6610 0.1971 23.64 <2e-16 ***
Dietastrt2 5.5260 0.1971 28.03 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.6234 on 27 degrees of freedom
Multiple R-squared: 0.9867, Adjusted R-squared: 0.9852
F-statistic: 665.5 on 3 and 27 DF, p-value: < 2.2e-16
```

COMPARACIONES MULTIPLES

```
fit_anova <- aov(res.aov)
tk <- TukeyHSD(fit_anova)</pre>
```

Table 1: Prueba de Tukey.

Trat.	Contraste	H0	Diferencia	IC-bajo	IC-alto	p-ajustado
Dietas	trt1-ctrl	0	-0.37	-1.06	0.32	0.39
Dietas	trt2-ctrl	0	0.49	-0.20	1.19	0.20
Dietas	trt2-trt1	0	0.86	0.17	1.56	0.01

ESTUDIO DE CASO: TILAPIA

ANOVA DOS VIAS CON INTERACCIÓN

```
res.aov2 <- Im(Peso \sim Temperatura * Salinidad, data = my_data1) anova(res.aov2)
```

Analysis of Variance Table

```
Response: Peso

Df Sum Sq Mean Sq F value Pr(>F)

Temperatura 2 2426.43 1213.22 92.000 < 2.2e-16 ***
Salinidad 1 205.35 205.35 15.572 0.0002312 ***

Temperatura: Salinidad 2 108.32 54.16 4.107 0.0218603 *

Residuals 54 712.11 13.19

---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

ANOVA COMO MODELO LINEAL

```
Call:
lm(formula = Peso ~ Temperatura * Salinidad, data = my_data1)
Residuals:
  Min
          10 Median 30 Max
 -8.20 -2.72 -0.27 2.65 8.27
Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                                 13.230 1.148 11.521 3.60e-16 ***
Temperatura1
                                 9.470 1.624 5.831 3.18e-07 ***
Temperatura2
                                 12.830 1.624 7.900 1.43e-10 ***
                               -5.250 1.624 -3.233 0.00209 **
SalinidadAqua de mar
Temperatura1:SalinidadAqua de mar -0.680 2.297 -0.296 0.76831
Temperatura2:SalinidadAgua de mar 5.330
                                            2.297 2.321 0.02411 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.631 on 54 degrees of freedom
Multiple R-squared: 0.7937. Adjusted R-squared: 0.7746
F-statistic: 41.56 on 5 and 54 DF. p-value: < 2.2e-16
```

PRÁCTICA ANÁLISIS DE DATOS

► El trabajo práctico se realiza en Rstudio.cloud. **Guía 11 Anova y posteriores**

RESUMEN DE LA CLASE

- Elaborar hipótesis de anova
- Realizar análisis de varianza
 - ▶ 1 factor.
 - 2 factores.
 - pruebas a posteriori
- Realizar gráficas avanzadas con ggplot2