I/O-efficient Symbolic Model Checking

Steffan Christ Sølvsten

15th of May 2025

defer (difæ').

defer (difœ'). *v.t.* to put off; to postpone.

"It is either red and/or (\lor) yellow or it is exclusively (\oplus) green." $(\text{red} \lor \text{yellow}) \oplus \text{green}$

"When red and yellow, it turns exclusively green." $red \land yellow \rightarrow \neg red' \land \neg yellow' \land green'$

$$RelProd(S_{\vec{x}}, T_{\vec{x}, \vec{x'}}) \triangleq (\exists \vec{x} . S_{\vec{x}} \land T_{\vec{x}, \vec{x'}})[\vec{x'} \mapsto \vec{x}]$$

$RelProd(S_{\vec{x}}, T_{\vec{x}, \vec{x'}}) \triangleq (\exists \vec{x} . S_{\vec{x}} \land T_{\vec{x}, \vec{x'}})[\vec{x'} \mapsto \vec{x}]$

Binary Decision Diagram (BDD)

 $(\texttt{red} \lor \texttt{yellow}) \oplus \texttt{green}$

Usually BDDs are implemented by means of:

- Depth-first recursion
- Hash Tables

BuDDy BDD Library

■ Formal Methods:

Motivation and applications of algorithms.

■ Algorithmics:

Theoretical tools for the design and analysis of algorithms.

■ Algorithm Engineering:

Experimental evaluation and design for real-life computers.

The I/O-Complexity of Ordered Binary-Decision Diagram Manipulation

Lars Arge

Department of Computer Science
University of Aarhus

August 1996

■ Depth-first:

■ Depth-first:

Last in, first out Queue (Stack)

■ Breadth-first:

■ Depth-first:

Last in, first out Queue (Stack)

■ Breadth-first:

■ Depth-first:

Last in, first out Queue (Stack)

■ Breadth-first:

- Depth-first:
 - Last in, first out Queue (Stack)
- Breadth-first:

■ Depth-first:

Last in, first out Queue (Stack)

■ Breadth-first:

- Depth-first:
 - Last in, first out Queue (Stack)
- Breadth-first:

- Depth-first:
 - Last in, first out Queue (Stack)
- Breadth-first:

■ Depth-first:

Last in, first out Queue (Stack)

■ Breadth-first:

Processing Order

- Depth-first:

 Last in, first out Queue (Stack)
- Breadth-first:

 First in, first out Queue
- Time-forward Processing: Priority Queue

$$\phi \wedge \psi$$

Depth-first
$$\mathcal{O}(N+T)$$
 but not I/O efficient!

Time-forward Processing
$$\mathcal{O}((N+T)\log(N+T))$$
 but I/O efficient!

N: Input Size T: (Unreduced) Output Size

$\exists x : \phi(x)$

$\exists x : \phi(x) \equiv \phi(0) \vee \phi(1)$

 $\exists \vec{x} : \phi(\vec{x})$ $\vec{x} = \{b, d\}$

 $\exists \vec{x} : \phi(\vec{x}) \qquad \vec{x} = \{b, d\}$

$$\exists \vec{x} : \phi(\vec{x}) \qquad \vec{x} = \{b, d\}$$

$$\exists \vec{x} : \phi(\vec{x})$$

$$\mathcal{O}(N^{2^k}\log(N^{2^k}))$$

Nested Sweeping

$$\mathcal{O}(N^{2^k}\log(N^{2^k}))$$
but 1.8× faster!

N: Input Size

$$[x \mapsto y]$$

Definition

A relabelling π is monotone if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$.

Lemma

If π is monotone, then the BDD $f(\vec{x})$ is isomorphic to $f(\pi(\vec{x}))$.

$$[x \mapsto y]$$

Definition

A relabelling π is monotone if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$.

Lemma

If π is monotone, then the BDD $f(\vec{x})$ is isomorphic to $f(\pi(\vec{x}))$.

- One can apply π in a single linear scan. $\mathcal{O}(N)$ time, $2 \cdot \text{scan}(N)$ I/Os, and N external space.
- One can incorporate π into a (succeeding) top-down sweep. $\mathcal{O}(N)$ time, 0 I/Os, and 0 external space.
- One can incorporate π into a (preceeding) bottom-up sweep. $\mathcal{O}(n)$ time, 0 I/Os, and 0 external space.

Adiar

github.com/ssoelvsten/adiar

¹ adiar (portugese) (verb) : to defer, to postpone.

Quantified Boolean Formulæ (QBF) of 2-player games:

$$\exists \vec{x} \forall \vec{y} \dots \exists \vec{z} : \phi(\vec{x}, \vec{y}, \dots, \vec{z}) \stackrel{?}{=} 1$$

Relational Product in a Transition System:

$$RelProd(S_{\vec{x}}, T_{\vec{x}, \vec{x}'}) \triangleq (\exists \vec{x} . S_{\vec{x}} \land T_{\vec{x}, \vec{x}'})[\vec{x}' \mapsto \vec{x}]$$

Adiar

github.com/ssoelvsten/adiar

₫ MIT

ssoelvsten.github.io/adiar

✓ 3.462 unit tests

Adiar

- github.com/ssoelvsten/adiar
- **₫** MIT

- ssoelvsten.github.io/adiar
- ✓ 3.462 unit tests

Future Work

↓ Variable Reordering

Manual Variable Reordering

Consider the bdd_replace(f, π) from BuDDy to compute [$x \mapsto \pi(x)$] on an input with N BDD nodes and n variables and an output of T BDD nodes.

		Depth-first	Time-forwarding
Any π	Time & I/Os	$\mathcal{O}(N+n\cdot T)$	$\mathcal{O}(\operatorname{sort}(T \cdot \sum_{i=1}^{n} C_{1:f[i]}^{\emptyset}))$
	Space		$\mathcal{O}(\operatorname{sort}(T \cdot \operatorname{max}_i(C_{1:f[i]}^\emptyset)))$
Evohango	Time & I/Os	O(N+T)	$\mathcal{O}(sort(N+T))$
Exchange	Space	O(N+I)	$\mathcal{O}(N+T)$
Adjacent Swap	Time & I/Os	$\mathcal{O}(N+T)$	$\mathcal{O}(sort(\mathit{N}+\mathit{T}))$
	Space		$\mathcal{O}(N+T)$

Dynamic Variable Reordering

We have surveyed current dynamic variable ordering methods to uncover how our I/O-efficient manual reordering algorithms can be applied.

Metaheuristics: simulated annealing, genetic and memetic algorithms, and swarm intelligence algorithms, via exchanges and $adjacent\ swaps^1$.

Sifting: Rudell's sifting algorithm, via repeated exchanges.

Parallel Sifting: Rudell's procedure via repeated *adjacent swaps*; this is akin to the 2-window algorithm.

In terms of space, these I/O-efficient variants are on par with the depth-first approach.

 $^{^{\}rm 1}{\rm Or}$ any $\it non-monotone~\pi$ if that does not break the memory limits.

■ Unique Identifier:

Sorting predicates can be turned into mere 64-bit integer comparison.

■ Levelised Priority Queue:

Defer sorting of level ℓ in the priority queue until level ℓ has to be processed.

■ Equality Checking:

If BDDs ϕ and ψ are created by Reduce then they are bit-wise equivalent iff $\phi \equiv \psi$.

■ Levelised Cuts:

The priority queue's size is at most the maximum cut in the BDD.

■ Levelised Random Access:

If a BDD's level fits into memory then random access can be used (in moderation).

■ Node Table:

If a BDD is small enough then compute on it with the conventional approach.

Unique Identifier

(c) node with label, i, identifier, id, and an out-degree index, o.

Levelised Priority Queue

Observation: When processing level i, no new requests for the same level are made.

Optimisation: Sort bucket of *all* requests for level i at once with Quicksort ($\sim 2 \times$ faster than a priority queue).

	•
	Improvement (%)
Queens (14)	25.3
Tic-Tac-Toe (22)	37.0

Equality Checking

 $\mathcal{O}(\mathsf{sort}(N^2))$: compute $f \leftrightarrow g$ and check whether it is the 1 BDD.

 $\mathcal{O}(\mathbf{sort}(N))$: Fail-fast during a product construction if more than $N_{f,i}$ ($N_{g,i}$) pairs of nodes are checked on level i.

 $2 \cdot scan(N)$: Fail-fast during a linear scan of both BDDs bit-by-bit.

	Ö
	Time (s)
$\mathcal{O}(\operatorname{sort}(N^2))$	0.38
$\mathcal{O}(sort(N))$	0.058
$2 \cdot scan(N)$	0.006

Checking the (EPFL Benchmark) voter circuit's single output gate $(|N_f| = |N_g| = 5.76 \text{ MiB}).$

Theorem

Given maximum 2-level cuts size C_{ϕ} for BDD ϕ and C_{ψ} for BDD ψ , the maximum 2-level cut for the BDD $\phi \wedge \psi$ is less than or equal to $C_{\phi} \cdot C_{\psi}$.

Lemma

		+ Ö	WILL
		Overhead	Precision
1-level cut	:	1.0%	69.2%
2-level cut	:	3.3%	86.3%

Theorem

Given maximum 2-level cuts size C_{ϕ} for BDD ϕ and C_{ψ} for BDD ψ , the maximum 2-level cut for the BDD $\phi \wedge \psi$ is less than or equal to $C_{\phi} \cdot C_{\psi}$.

Lemma

		+ Ö	WILL
		Overhead	Precision
1-level cut	:	1.0%	69.2%
2-level cut	:	3.3%	86.3%

Theorem

Given maximum 2-level cuts size C_{ϕ} for BDD ϕ and C_{ψ} for BDD ψ , the maximum 2-level cut for the BDD $\phi \wedge \psi$ is less than or equal to $C_{\phi} \cdot C_{\psi}$.

Lemma

		+ Ö	THE
		Overhead	Precision
1-level cut	:	1.0%	69.2%
2-level cut	:	3.3%	86.3%

Theorem

Given maximum 2-level cuts size C_{ϕ} for BDD ϕ and C_{ψ} for BDD ψ , the maximum 2-level cut for the BDD $\phi \wedge \psi$ is less than or equal to $C_{\phi} \cdot C_{\psi}$.

Lemma

		+ Ö	WIN
		Overhead	Precision
1-level cut	:	1.0%	69.2%
2-level cut	:	3.3%	86.3%

Theorem

Given maximum 2-level cuts size C_{ϕ} for BDD ϕ and C_{ψ} for BDD ψ , the maximum 2-level cut for the BDD $\phi \wedge \psi$ is less than or equal to $C_{\phi} \cdot C_{\psi}$.

Lemma

		+ Ö	WIN
		Overhead	Precision
1-level cut	:	1.0%	69.2%
2-level cut	:	3.3%	86.3%

Theorem

Given maximum 2-level cuts size C_{ϕ} for BDD ϕ and C_{ψ} for BDD ψ , the maximum 2-level cut for the BDD $\phi \wedge \psi$ is less than or equal to $C_{\phi} \cdot C_{\psi}$.

Lemma

		+ Ö	WHI
		Overhead	Precision
1-level cut	:	1.0%	69.2%
2-level cut	:	3.3%	86.3%

				U
\triangle	CUDD	v3.0	:	44.8 min
♦	Adiar	v1.0	:	66.7 min
	+ cuts		:	56.8 min

\triangle	CUDD	v3.0	:	44.8 min
♦	Adiar	v1.0	:	66.7 min
	+ cuts		:	56.8 min

				•
Δ	CUDD	v3.0	:	44.8 min
\Q	Adiar	v1.0	:	66.7 min
	+ cuts		:	56.8 min

\triangle	CUDD	v3.0	:	44.8 min
\$	Adiar	v1.0	:	66.7 min
	+ cuts		:	56.8 min

				U
Δ	CUDD	v3.0	:	44.8 min
♦	Adiar	v1.0	:	66.7 min
	+ cuts		:	56.8 min
	+ random access		:	47.2 min

Node Table

