PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-256647

(43)Date of publication of application: 25.09.1998

(51)Int.CI.

H01S 3/18

(21)Application number : 09-058086

(71)Applicant: FUJI ELECTRIC CO LTD

(22)Date of filing:

12.03.1997

(72)Inventor: SASAKI MITSUO

(54) SEMICONDUCTOR LASER ELEMENT AND FABRICATION THEREOF

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a semiconductor laser element excellent in current-optical output characteristics and voltage-current characteristics and having low coherence, and a high yield fabrication method thereof.

SOLUTION: A first conductivity type buffer layer 2 having composition of AlxGa1-xAs, a first conductivity type clad layer 3 having composition of AlxGa1-xAs, an active layer 4 having composition of AlyGa1-yAs, a second conductivity type second clad layer 5 having composition of AlxGa1-xAs, a second conductivity type GaAs cap layer 6, a first conductivity type current constriction layer 7 divided into two regions, a second conductivity type third clad layer 3 having composition of AlxGa1-xAs, and a second conductivity type GaAs contact layer 9 are formed sequentially on a first conductivity type GaAS substrate 1 thus constituting an AlGaAs based semiconductor laser element. The pconductivity type clad layer 5 out of first and second

clad layers comprises a plurality of inner layers 5a, 5b, 5c doped with different dopant and the diffusion coefficient of dopant in respective inner layers increases sequentially as receding from the active layer.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

(19) 日本国物群庁 (JP)

4 8

€ 辍 ধ 盂 华 噩

特開平10-256647 (11) 特群出歐公開維申

(43)公開日 平成10年(1998) 9月25日

3/18

H01S

即配手

H01S 3/18 (SI) ht.Q.

物産関次 未請求 請求項の数8 〇1 (全10 頁)

GA)【配数の名称】 半様体フーが表子およびその製造が浴

た、また可干渉性の小さい半導体レーザ素子およびその 【親題】電流一光出力特性および電圧一起流物性が優

安留りの高い製造方法を提供する。

展型のGaAsのコンタクト層9が既に復居されているAiGa [解決年段] 第1 導電型のGaAs基板1上に、第1導電型 のAls Gai-s Asの組成のパッファ層2、第1導電型のAl Gan-r As組成の第1クラッド層3、Aly Gan-y As組成 の活性層4、第2導電型のAlv Gan-r As組成の第2クラ 電型のAir Gan-r Asの組成の第3クラッド層8、第2導 ta水半導体レーが兼子において、前配第1または第2ク ラッド層のうち導電型がp型であるクラッド層5はドー パントが異なる複数の内層(5c、5b、5g)からな り、前配各内層のドーパントの拡散保敷は前配活性層か ッド層5、第2単配型のGaAsのキャップ層6、第1導配 型の2つの区域に分割されている電流狭窄層1、第2単

ち強ざかるに従って履に大きくなっている。

称軒請水の範囲】

層、第1導電型のAlx Gal-x As (0≤x≤1) 組成の第 1クラッド層、Al, Gal-, As (0≦y≤x≤1) 組成の 活性層、第2導電型のAlx Gal-x As組成の第2クラッド 層、第2導電型のGaAsのキャップ層、第1導電型でレー 【請求項1】第1尊電型のGaAs基板の一主面上に、第1 尊電型のAlx Gat-xAs (0≤x≤1)の組成のパッファ ザ光軸と平行に2つの区域に分割されている電流狭窄 層、第2導電型のAlx Gal-x Asの組成の第3クラッド

層、第2導電型のGaAsのコンタクト層が順に積層されて いるAlGaAs系半導体レー扩素子において、前配第1また は第2クラッド層のうち導電型がp型であるクラッド層 はドーパントが異なる複数の内層からなり、前記各内層 のドーパントの拡散係数は前記活性層から遠ざかるに従 って順に大きくなっていることを特徴とする半導体レー

【静水項3】前記p型であるクラッド層の厚さは0.3 するこのクラッド層の混晶におけるAI組成差(Δx)は Mg、2nのこの頃の2つ以上の組み合わせであること 0. 35ないし0. 6の範囲であることを特徴とする詩 【請求項2】 前記ドーパントは前記活性層側から、C、 ないし0.45mmの低囲であり、かつ前記活性層に対 を特徴とする請求項1に記載の半導体レーザ繋子。 女頃1ないし3に記載の半導体ソーが禁子。

罾、第1導電型のAlr Gal-r As (0≤x≤1) 組成の第 1クラッド層、Aly Gal-y As (0 ≤ y ≤ x ≤ 1) 組成の 【静水項4】第1導電型のGaAs基板の一主面上に、第1 導電型のAlz Gal-zAs (0≤x≤1) 組成のパッファ

活性層、第2導電型のAlx Gal-x As組成の第2クラッド 層、第2導電型のGaAsのキャップ層、第1導電型でレー AlGaAs系半導体レーザ素子ににおいて、前記パッファ層 と前記第1クラッド層との間、もしくは、第1クラッド 第2導電型のGaAsのコンタクト層が順に積層されている **■左にフーナ光塩か 平行に 2 0 0 区域に 少重 かた トンゆ** 第2導電型の第2の電流狭窄層を形成することを特徴と ザ光軸と平行に2つの区域に分割されている電流狭窄 層、第2導電型のA|r Gal-r As組成の第3クラッド層、 する半導体レーが繋子。

51件層に対して、銭像対称形であることを特徴とする間 [請求項5] 前記鑑減狭容層と前記第2の電流狭窄層は **长掻4に記載の半導体フーが転止。**

40

【請求項6】前記電流狭窄層に挟まれるストライプ部は メサ構造であることを特徴とする請求項5に記載の半導

ッド瘤の他の層はV/III 比180ないし220の紙田 【糖水項1】 鶴水項1ないし6に記載の半導体レーザ素 子の製造方法において、前配第2クラッド層のドーパン トがこの層をV族原料ガスと||| 族原科ガスの供給にお けるV族元素と||| 族元素のモル比(以下V/||| 比と 記す) 比10ないし30の範囲で成膜し、前配第2クラ

特開平10-256647

ର

で成膜することを特徴とする半導体レーザ素子の製造方

L程、次いでこのストライプマスクに被覆されていない [請求項8] 請求項6に記載のストライプ部のメサ構造 はエッチングストップ層、クラッド層およびキャップ層 の積層工程、クラッド層上へのストライプマスクの形成 部分のキャップ層およびクラッド層をエッチングストッ ブ層まで除去する工程によって形成されることを特徴と する半導体レーザ寮子の製造方法。

【発明の詳細な説明】 [0000]

10

(0 ≦y≦1) からなる活性層を有し、近赤外光を出り 【発明の属する技術分野】本発明は、AI y Gai-y As するAlx Gal-x As系(0≤x≤1)系の半導体レーザ 子に関する。

[0002]

す)の従来例について図面をもとに説明する。この例で はGaAs基板の導電型をn型としたがp型の場合は以下の 【従来の技術】単一備モードで発版するAlx Gai-* As系 全ての導電型を逆にすればよい。図17は従来のLD案 子のへき開面に平行な断面図である。LD繋子のへき開 西の法様はレーザ放射光の光軸でもある。n 型のGaAs基 n 型のパッファ層2、n 型の第1クラッド層3、吞性層 (0≤×≤1) 半導体レーザ繋子 (以下LD繋子と略 板1のへき関面に垂直な面(以後繋子面と言う)上に、 20

6、n型の電流狭窄層8、p型の第3クラッド層9、p に質適している幅が数4mのストライプ状の部分(以後 型のコンタクト層10がこの順に積層されている。ただ し、電流狭窄層8は素子面の中央の両へき関面間を垂直 ストライプは第3クラッド層9で埋まっており、GaAsキ ストライプと言う)を挟んで2つの部分に別れている。 4、p型の第2クラッド層5、p型のGaAsキャップ層 ャップ層6と第3クラッド層9とは隣接している。

[0003] LD券子の両秦子面には電流を流すための p 側電極11、n 側電極12がそれぞれ積層される。p 8とGaAsキャップ層6または第2クラッド層5との界面 に形成されているp-n接合は逆方向となり電流は流れ ず、ストライプだけに順方向電流が集中して流れる。従 って、ストライプに近接している活性層4を模切る電流 は略ストライプ幅に集中する。さらに、電流狭窄層8は トライプのサイズを適切に遵ぶことにより素子の安定な 関からn個に順方向電流を流す場合に、この電流狭窄層 横モード発振を可能とし、発振の発振開始値電流を低減 活性磨4で発光した光の吸収層の役割を持っており、

ェハの1 業子分を示すへき関面断面図であり、(a) は **敷化ケイ素層のパターニング工程後、(b)は電流狭窄** 【0004】このようなLDは通常次のようにして製造 される。図18は従来のLD業子の主な製造工程後のウ 層の遊択エピタキシャル成長後、(c)は電極用金属膜

-2-

20

個6 (p型GaAs, キャリア撤収1×1018car1、厚さ0 成験後である。先ず、n型GaAs基板1(Siドープ、キ ナリア撤収2×1018car3、耳さ300μm)上に、有 療金属気相成長(以下、MOCVDと記す)によりパッ 7ヶ曜2 (n型、厚さ0.2 mm)、第1クラッド曜3 度5×10¹⁷cm-3、厚さ1μtm)、活性齧4(ノンドー プAle.i Geo.s As、厚さO. 1 μm)、第2クラッド層 製成5×1017cm-1、厚さ0.3μm)、GaAsキャップ 5 (p型Alo.s Gao.s As、ドーパントは2n、キャリア (n型Alo.s Gao.s Vs、ドーパントはSe、キャリア歯 01μm)を順次成長させる。

【0005】なお、このGaAsキャップ階6は、以降の酸 化胰成膜工程とそのパターニング工程が直接GaAIAs層に 化ケイ素層をスパッタにより成蹊し、フォトレジストを **番用されると高抵抗のAI酸化膜が生成されるので、これ** を防止するために散けている。次に、このクェハ上に酸 **数布してパターニングを行いキャップ階6の上に幅5**μ ■のストライプ状マスク1を形成する(図18

(a)

[0011]

【0006】太に、再度MOCVDにより観消狭治暦8 (n型6a/s、キャリア歳度1×1010cm-3、厚さ0.3 イ奈陽 (マスク7) 上にはGaAs膜は成長しない (図18 7を除去したのちに、第3クラッド層9(p型Alo.s Ga um)を成長させる。この時、選択成長が起こり酸化ケ (b))。そして、MOCVD装置から取り出しマスク に、ウェハ上下のp個電極11、n個電極12を形成す o.s As、キャリア撤収5×1011cm-3、呼40. 8 μm) およびコンタクト曜10(p型GaAs、キャリア激度 1×1010cm1、厚さ5.0μm)を成長する。最後 この状態を図18 (c) に示す。

【0007】上記の製造工程の後、ウェハを(図18の **紙面に平行に) へき関しパーとし、さらにこのパーをス** クライブして、個別のレー扩棄子は得られる。 [0008]

【発明が解決しようとする課題】しかしながら、以上の ようにして製造されるLD寮子には以下のような問題点 5から2nがそれぞれ並散し活性層で選在する、すなわ ち、活性層4内にドーパントがパイルアップする。その ため、活性層内でのp-n接合が不良あるいは、接合位 により、発光効率が悪くなり大きな動作電流が必要とな がある。これらのエピタキシャル成長中に、第1クラッ ド層からドーパントであるSeが拡散し第2クラッド層 置が活性層からずれる (リモートジャンクション) こと る。極端な場合にはレーザ発扳をしないこともある。

第1、第2クラッド層とのAls Gen-s As組成整が少ない 【0009】また、第1クラッド層と第2クラッド層よ り括性層の囲作學を数%高くしてあるために、阻析學の 高い活性層に光紋を閉じ込めることができるが、クラッ ド層に表みでた光波はクラッド層パンドギャップが大き いと吸収を受けずに伝搬することができるが、活性層と

と前記第1クラッド層との間、もしくは、第1クラッド

第2 導電型の第2の電流狭格層を形成することとする。

20

NIGaAs米半導体レーザ素子ににおいて、前記パッファ層 **唱内にフーザ光軸と平行に200区域に分割されている**

ホールがクラッド層での障壁を乗り越えてしまうことに より、動作値電流が大きくなり、発光効率が悪くなるな ど極端な場合にはレーザ発版をしないなどの不良素子と ことから屈折率差がちいさくなり光波の閉じ込めが弱く なる。あるいは、パンドギャップ差が小さくなり電子、

正化されており、また活性層への光の閉じ込めが適正化 されていて、電流一光出力特性および電圧一電流特性が 優れ、また前者の温度変化の少ない、また可干渉性の小 さいLD素子を提供し、またその歩留りの高い製造方法 【0010】この本発明の目的は、p - n 接合が活性層 中にあり、クラッド層から括性層への電流の広がりが適 を掻供することにある。

のAlr Gai-r As (0 ≦×≦1) の組成のパッファ層、第 めに、第1導電型のGaAs基板の一主面上に、第1導電型 [課題を解決するための手段] 上記の目的を達成するた 1 導配型のAlr Gal-xAs (0 w × 1) 組成の第1クラ ッド層、Aly Gal-y As (0≤y≤x≤1) 組成の活性

導電型のGaAsのコンタクト層が順に積層されているAlGa ラッド層のうち導電型がp型であるクラッド層はドーパ ントが異なる複数の内層からなり、前記各内層のドーパ 第2導電型のGaAsのキャップ層、第1導電型でレーザ光 軸と平行に2つの区域に分割されている電流狭窄層、第 2 専電型のAlr Gat-r Asの組成の第3クラッド層、第2 As系半導体レーザ素子において、前配第1または第2ク ントの拡散係数は前記活性層から選ざかるに従って順に 層、第2導電型のAlx Gal-x As組成の第2クラッド層 大きくなっていることとする。

り、かつ前配活性層に対するここのクラッド層の通晶に おけるAI組成器 (Δx) は0.35ないし0.6の範囲 い。この組み合わせは、C-Mg、C-Zn、Mg-Z Mg、Znのこの頃の2つ以上の組み合わせであると良 n、またはC-Mg-Znである。前記p型であるクラ 【0012】 哲記ドーパントは哲記活体層倒から、C、 ッド層の厚さは0.3ないし0.45μmの範囲であ

層、第1導電型のA|x Gan-x As (0≤x≤1) 組成の第 1クラッド層、Al, Gai-, As (0≦y≦x≦1) 組成の 活性層、第2導電型のAlx Gal-x As組成の第2クラッド 【0013】第1導電型のGaAs基板の一主面上に、第1 第2導電型のGaAsのコンタクト層が順に積層されている 層、第2導電型のGaAsのキャップ層、第1導電型でレー が光軸と平行に2つの区域に分割されている電流狭窄 層、第2導電型のAlr Gal-x As組成の第3クラッド層、 導亀型のAlr Gal-x As (0 ≤ x ≤ 1) 組成のパッファ

[0014] 前記電流狭窄層と前記第2の電流狭窄層は 活性層に対して、鏡像対称形であると良い。 前記電流狭 クラッド層のドーパントがCの層をV/III 比10ない し30の範囲で成膜し、前記第2クラッド層の他の層は 上記の半導体レーザ素子の製造方法において、前記第2 **容層に挟まれるストライプ部はメサ構造であると良い。** V/III 比180ないし220の範囲で成膜すると良

程、クラッド層上へのストライプマスクの形成工程、次 いでこのストライプマスクに被覆されていない部分のキ 【0015】上記のストライプ部のメサ構造はエッチン ャップ層およびクラッド層をエッチングストップ層まで グストップ層、クラッド層およびキャップ層の積層工 除去する工程によって形成されると良い。

塩を経過しても、拡散係数の大きいドーパントは活性層 内層のドーパントの拡散係数は活性層から遠ざかるに従 て精度良く、階段状に活性層内に形成され、動作電流の 【発明の実施の形態】本発明によれば、p型のあるクラ ッド層をドーパントの異なる複数の内層の積層とし、各 って順に大きくなるようにしたため、以降の成膜時の高 紡った、ロロ篏合は枯散係数の小さいドーパントによっ までは拡散して来ない、また、拡散面は急勾配である。

【0017】適しているドーパントと拡散係数はそれぞ (Jth) の値度依存性は次式で表される。

[0018]

生のLD案子を得ることができる。

低減と、歩留りの向上が期待できる。

発振に寄与するキャリアは伝導帯中の擬フェルミ準位近 tr, Ctt6. 0×10-15 cm²/s (900°C), Mgt 1. 0×10-13 cm²/s (900°C), ZnH5. 3× 10-8cm²/s (900℃) であり、CとMgはZnに較 ペ数桁も小さいので、CまたはMgを活性層の隣接内層 は、薄すぎると活性層との屈折率差が大きくなり(横方 **向等価配好母徴≥1.0×10-3)シングルモード発板** ド発振になり、可干渉性が小さくなるが、電流狭窄層か 傍の電子でるが、高温になると励起されたキャリアの平 となり、可干渉性は大きくなる。厚くするとマルチモー らの注入電流がクラッド層の横方向へ拡がり発振開始値 電流や動作電流が大きくなる傾向がある。本発明によれ ば、クラッド層の厚さは、これらの特性がいずれも滴た されるように最適化されている (図6参照) また、半導 このために発振に寄与するキャリアの割合が減少し発振 体レーザの発振開始値は温度にも大きく依存し、レーザ に用いることができる。また、第2クラッド層の厚さ 均エネルギーが擬フェルミ準位よりかなり上にあがり、 開始値が大きくなる原因とされている。発板開始電流

To は特性温度(素子に固有の定数)であり、この値が 小さいほど」いの復度依存性が大きくなる。本発明によ れば、クラッド層AI組成を最適な範囲(図8参照)と [数1] Jth∝e×p (T/To)

特開平10-256647 し、また活性層内にpn接合界面を形成しキャリアを効 **率よく注入することとしたので、注入キャリアのリーク** がなく結晶欠陥の少ない膜を得ることができ、良好な特 €

【0019】逆にAI組成差を大きくしすぎると組成差に よる熱膨張係数に差が生じ膜中に蚤みが増え結晶欠陥の 発生となり膜モホロジーの悪化となる。また、活性層と クラッド層には注入キャリアの器じ込め効果をもたすた かに電流狭窄層を 2 段構造としたことにより、活性層中 のキャリアの広がりは2つ電流狭窄層により活性層の両 側で狭窄されるので、電流狭窄層が1段の場合より狭め 助作電流に対する微分効率が向上する。Cをドーパント とする場合、本発明によるV/III 比であれば、成長格 晶の原料であるトリメチルガリウム (TMG) やトリエ チルガリウム(TEG)等のトリメチル基またはトリエ れ、Asサイトに入り、アクセプタとなる。V/II 比 が200付近であれば、取り込まれる量は少なく、他に チル基に在中のCは膜中に取り込まれ、ドーピングさ ドープされたドーパントの特性に従って導電型は定ま られ、往入効率が向上し、発版開始電流が低下する。 到城中の光密度が一様となり、発振開始亀流の低下 【0020】さらに、魏徽対称としたため、光閉じ

[0021] 次に本発明を実施例に基づき説明する。

図1は本発明に係る実施例の半導体レー扩発子の断面図 り、同じ符号を用いているので説明を省略する。本発明 に係る第2クラッド層5は活性層4側から頃に、Cドー プ層5a、Mgドープ層5bおよび2nドープ簾5cの である。第2クラッド層以外は従来と同じ層構成であ

徴層としてある。

【0022】以下、製造工程に沿って説明する。この実 施例の半導体レーザ案子の製造方法は第2クラッド層部 を除いて従来の製造工程に同じであるので、従来の製造 プロセスの説明で用いた図18を兼用し符号の説明を省 気相成長 (MOCVD) により、厚さ0.2 μm のn型 GaAsからなるパッファー層2、第1クラッド層3(n型 Alo.s Gao.s Asキャリア酸度5×1017cmで、厚さ1μ 略する。先ず、n型GaAs基板1(Siドープ、キャリス 駿度2×1018cm3、厚さ300μm)上に、有機金| m)、活性層4(ノンドープAlo. 1 Gao. 9 As、厚さO. 1 μm)を積層する。

【0023】さらに、本発明に係る多層の第2クラッド 酉5を形成した。ドーパント以外は従来の第2クラッド 層成膜に同じである。第2クラッド層5全体の組成はp 型のAlo.s Gao.s As、キャリア激度は1×1018cm3と した。第1内層5gは四臭化炭素をドーピング用原料ガ スとして用いた、Cドープの層であり、厚さを0.15 16、第2内層56はピスシクロペンタジエニルマグネシ ウムをドーピング用原料ガスとして用いた、Mg ドーブ

-3-

20

6

特開平10-256647

るために散けている。次に、このウェハ上に厚さ0.0 工程とそのパターニング工程が直接GaAIAs層に適用され [0024] 次にGaAsキャップ層6 (p型 GaAs、キャ た。なお、このGaAsキャップ層6は、以降の酸化膜成膜 ると高抵抗のAI酸化膜の生成されるので、これを防止す 4 μα の酸化ケイ素層をEBにより、次いで厚さ0.1)、幅3μm のストライプ状のマスク1を形成した(図 18 (a))に示す。EBにより成骸した二酸化ケイ鞣 層はスパッタにより成膜した二酸化ケイ鞣膜の20倍の 0. 1μm 程度の1重のスパッタ段でもストライプは可 リア鎌寅1×10¹⁸car²、厚さ0.03 nm)を成骸し エッチング遊度をもつので、2重マスクとしておくと、 【0025】 通常のフォトプロセスパターニングによ 次の電流狭窄層の側面に溝が生じない。または、厚さ 0 nm の酸化ケイ素層をスパッタにより成既した。

り、貧圧のMOCVDによりマスク部をのぞいて、電流 狭容層 8 (n型GaAs、キャリア改度 1×101*cm-3、厚 さ0.3μm)を成成した(図18(b))。 次にマス ク1を除去し、厚さ1. 1 um の第3クラッド暦9 (p 型Alo.s Gao.s As、キャリア級度5×1017car³) およ ぴコンタクト層10(p型GaAs、キャリア改度1×10 【0026】次に、マスク7は強択成長用マスクであ *car1、厚さ5.0μm)を成駁した。

配橋12を形成した(図18(c))。上記の製造工程 力等の懸作戦策(以降、動作は3個出力時とし注記を省 [0021] 最後に、ウェハ上下のp回転極11、n側 の後、ウェハをへき開し(図18の紙面に平行に)バー とし、さらにこのペーをスクライブして、個別のLD素 子とした。本実施例によって製造された半導体レーザ茶 子のレーザ特性(光出力一句说(1 — L) 特性および包 圧一電流(V-1)特性)を評価し、従来のLD寮子と ラフであり、(a) は本発明に係るLD祭子の場合であ り、(b)は従来のLD祭子の場合である。従来LD衆 子では、発板配給値包指が描く50m以上あり、3 m出 略する)は B SmA以上と 高く極端な場合にはレーが発版 発展開始値配流は45m/程度となり動作低流は55m/前 の比較を行った。図2はLD森子のレーザ特性を示すグ しない場合もあった。これに対し、本発明の案子では、 後と良好な特性であることが明らかとなった。

【0028】また、第1導電型のクラッド層と活性圏お よび第2導戦型のクラッド層の積層部の磔さ方向 (層に い、不純勉分布を聞べた。図3は第1導包型のクラッド 器、括性層および第2導電型のクラッド層における不純 動分布を示すグラフであり、(a)本発明に係るLD森 盤直方向)への二次イオン質量分析 (SIMS)を行

る。従来技術の場合は、活性圏内にZnとSeが髙穣度 で共存しているが、本発明の場合は活性圏内でのことS B は高濃度では共存していず低濃度で各カープは交わっ ており、pn接合は活性層内にあることが判る。また、 子の場合であり、(b)は従来のLD乗子の場合であ ZnおよびMgも活性層内には拡散していない。 MOCVDの原成長時にV/III 比を10~30の範囲 とすることにより、ドーピング原料ガスを用いずに、C をキャリア発生顕不純物としてキャリア改度を制御する ことができる。図4は本発明に係る製造方法におけるV /111 比に対するキャリア徽度のグラフである。 実施例 1 と同様の層構成とし、第2導電型の第2クラッド層下 6. 0×1011cdf1とした。第2クラッド個内の色の図 層成膜時のV/III 比を20として、キャリア激度を は実施例1と同じとした。

【0029】図5は本発明に係る他の実施例のLD案子 のレーザ特性を示すグラフである。奥施例1とほぼ同じ であり、第2クラッド層のキャリア濃度が従来よりも高 いため、動作範圧は低くなっていることが判る。

実施例1の蜃構成では、第2導電型の第2クラッド層の **ザ光の可干渉性 (α) % が変化することが判った。図6** は本発明に係るLD素子の可干渉性 (α) の第2クラッ **厚さによって、鶴流-光出力(1-1) 特性およびレー** ド周の厚さ依存性を示すグラフである。 【0030】第2クラッド園の厚さを300~450mm とすると、電流一光出力(1.一L)特性では、発振開始 質問選は40mA以下、動作配道は50mA以下であり、V -1特性でも動作電圧 (Vop) は2. 0V以下と、良好 であった。図7は本発明に係る第2クラッド圏厚さ40 OrmのLD紫子のレーザ特性のグラフである。また、こ の厚さ範囲では、可干渉性(a)は70%以下と光ピッ クアップなどに要求されるa≦95%を十分満たしてい ることが判る。

また、実施例1の簡構成では、レーザ特性の温度特性が 第2クラッド階と活性層のAI組成差(△Ⅹ)に依存して いろことが判った。図8は本発明に係るLD繋子の特性 温度(To)の第2クラッド閥と括性閥のAI組成差依存 性を示すグラフである。

\$

と、120K以上の特性温度(To)が得られることが は、電流-光出力(I-L)特性では、発扱開始値電流 は50mA以下、勢作館流は60mA以下、鶴田ー鶴流(A 判る。図9は本発明に係る△X=0、57のLD素子の -1) 特性では動作陶田Vopは2. 0V以下と良好であ レーザ特性のグラフである。AI組成整が上記の範囲で 【0031】0.35≦4X≦0.57の範囲とする

従来と同様の풤構成の第2クラッド層を有するLD業子 において、パッファ砲と第1クラッド砲の間に第2の電 斑狭磐層を散けることにより、活性局へのキャリアの注 入効率を改善することができる。

クラッド層5および第3クラッド閥8との位置関係と製 る。第2の電流狭窄圏の符号は7gである。第2の電流 狭窄層 7 a のパッファ層 2 および第1クラッド圏 3 との 位置関係および製造工程は、従来の電流狭窄層1の第2 【0032】図10は本発明に係る第2の電流狭窄層を 有するLD素子の第2の電流狭窄層付近の断面図であ 造工程の関係に同じである。

ラフである。発復開始値電流は35mk以下、動作電流は 1018cm-3以下とした他は、奥施例1のLD繋子と同じ である。活性暦 4が2つの電流狭窄層に挟まれることに より、電流の広がりが従来よりも制限され、活性層を流 れる電流密度が高くなり、すなわちキャリアの注入効率 が改善されて、電流-光出力特性は向上し、実施例1よ り優れた特性を得ることができた。図11は本発明に係 【0033】第1クラッド層のキャリア濃度を2.0× 4 5mA以下であり、また、発光効率は従来し口索子より る第2の電流狭窄層を有するLD素子のレーザ特性のグ 約30%程度高く、電圧一電流特性では動作電圧 (Vo p) も2.0V以下とも良好であった。

らに、形状も対称とするため、第1の電流狭窄層 7に挟 て対称であるLD繋子の断面図である。 第2の電流狭窄 まれるストライプ部をメサ構造とし、ストライプ部の側 層1aを第1クラッド層下層3aと第1クラッド層上層 3 bの間に置いて、第1の電流狭窄層7と活性圏 に対 して対称の(毎距離の)位型関係にあるようにした。さ 図12は本発明に係る2つの電流狭窄層が活性層に対し 面は従来とは逆勾配となっている。

[0034] 図13は本発明に係るメサ構造を得るため のマスク形成後、(b)はメサエッチング後、(c)は 第3クラッド層成膜後である。メサ構造Msを形成する た。ストライプはストライプマスクMを上辺とする台形 の製造工程を示す断面図であり、(a)はストライプ状 ためのメサエッチングを第2クラッド下殴5a(厚さ4 0.0㎞)の装面迄行うため、第2クラッド下層5gの上 にエッチングストップ層Es(厚さ50mm)を成隊し、 さらに第2クラッド上閥5cとキャップ層6を積櫓し となり、電流狭窄層1の側面は従来とは逆の勾配とな る。第3クラッド周の成膜以降は従来と同じ工程とな 【0035】第2の電流狭窄層7aと第1クラッド下唇 3a、第1クラッド上層との関係は、従来の電流狭磐層 む、レー扩体性の改塑を図ることがやまた。図1454 1と第2クラッド쪔5と第3クラッド쪔8の関係(図1 7、18)と同じである。光り閉じ込め効果を改善で

特性では発振開始値電流は35mA以下、動作電流は45 M以下、電圧-電流物性では動作電圧 (Vop) は2.0 るし口葉子のレーザ特性のグラフである。電流一光出力 V 以下と良好であった。

活性層に対して対称であるし口素子の可干渉性の活性層 と電流狭窄路との距離放存を示すグラフである。距離が 27ないし0.5 μmの範囲内では可干渉性は95 ※以下であることが判る。図16は本発明に係る2つの 【0036】図15は本発明に係る2つの電流狭窄層が 電流狭窄層が活性層に対して対称であるLD葉子の特性 温度のクラッド層厚さ依存性を示すグラフである。距離 が0. 23ないし0. 52μm の範囲内では特性通過 120K以上であることが判る。

従来の単一ドープ層としたが、実施例1と同様に多層と [0031] 実施例6および1では、第2クラッ することができる。

[0038]

【発明の効果】本発明によれば、第1専収型のGaAs基板 (0 ≤ y ≤ x ≤ 1) 組成の活性層、第2導電型のAlr 6a -x As組成の第2クラッド層、第2導電型のGaAsのキャ ップ層、第1導電型 でレーザ光軸と平行に2 つの区域に 分割されている電流狭窄層、第2導電型のAlr Gal-r As の組成の第3クラッド層、第2導電型のGaAsのコンタク ト層が順に積層されているAlGaAs系半導体レーザ案子に おいて、前記第1または第2クラッド層のうち導**電型**が p型であるクラッド層はドーパントが異なる複数の内層 からなり、前配各内層のドーパントの拡散保敷は前配活 性層から遠ざかるに従って順に大きくなっているように したため、拡散係数の大きいドーパントは活性層に到達 せず、活性層内に精度良く b n 接合が形成され、レーザ 1) の組成のパッファ層、第1導電型のAlr Gal-r As (0≤×≤1) 組成の第1クラッド層、Aly Gal-y As の一主面上に、第1導電型のAlx Gal-x As (0≤x≦ 特性は優れている。またその製造歩留りは高い。

【0039】また、p型クラッド層の厚さおよび活性層 り、発援開始電流や動作電流の低いワーザ特性の良好な のため、光ピックアップに適している。さらに観視狭 に対するAI組成整を適正にしたので、レーザ特性の **層を2つとし括性層に対して対称構造とすることによ 質変化を小さく、またレーザ光の可干夢性は小さい。**

だけでなく、可干渉性の低いLD繋子を提供できる。 [図面の簡単な説明]

【図1】本発明に係る実施例の半導体レー扩禁子の断面

(8) は本発明に係るLD繋子の場合、(b) は従来の [図2] LD案子のレーザ特性を示すグラフであり、 しD茶子の場合 【図3】第1導電型のクラッド層、活性層および第2導電型のクラッド層における不純物分布を示すグラフであ

20

発明に係る第1クラッド層内に第2の電流狭窄層を有す

-9-

7

玫粞似5

20

A & / G a E F. E. (V / B E.) [図4] [88] [図8] 7 101 ... 8 (S) (S) S 2 º 7 都1クラッド圏 集1クラッド量 ~ 00 [図3] **数** [図2] [図7] [6<u>X</u>] 事件を 3 第2クラッド重 第2クラッド語 . § <u>.</u>§ ₹. £ [図18]従来のLD素子の主な製造工程後のウェハの | 繋子分を示すへき閉面断面図であり、(a)は酸化ケ **イ素層のパターニング工程後、(b)は電流狭窄層の選** 択エピタキシャル成長後、(c)は電極用金属膜成膜後 【図17】従来のLD素子のへき関面に平行な断面図 (X (A) 2 º 0.7 [図3] 冒との距離依存を示すグラフ エッチングストップ層 3 第1クラッド上層 第2クラッド上層 第1クラッド下層 第2の電流狭窄層 第2クラッド下角 第2クラッド中層 第1クラッド層 第2クラッド層 コンタクト層 第3クラッド層 拡散防止層 n包配柜 バッフィア キャップ風 包戒狭空屋 GaAs基板 【符号の説明】 括性層 ₹. 2 9 10 9 20 30 【図16】本発明に係る2つの電流狭窄層が活性層に対 【図11】本発明に係る第2の電流狭窄層を有するLD 【図13】本発明に係るメサ構造を得るための製造工程 と示す断面図であり、(a) はストライプ状のマスク形 【図4】本発明に係る製造方法におけるV/III 比に対 【図6】本発明に係るLD素子の可干渉性 (a) の第2 【図8】本発明に係るLD素子の特性温度(To)の第 【図10】本発明に係る第2の電流狭窄層を有するLD 【図12】本発明に係る2つの電流狭窄層が活性層に対 【図14】本発明に係る第1クラッド層内に第2の電流 【図15】本発明に係る2つの観視狭窄層が活性器に対 して対称であるLD券子の可干渉性の活性層と電流狭窄 [図5] 本発明に係る他の実施例のし口素子のレーザ符 【図7】本発明に係る第2クラッド層厚さ400mのL 【図9】本発明に保る△X=0.51のLD禁子のレー **成後、(b)はメサエッチング後、(c)は第3クラッ** 2クラッド層と活性層のAI組成差依存性を示すグラフ **吹名唱を有するLD素子のレーザ特性のグラフ**

[83]

#209 F# (

音との距離依存を示すグラフ

f

特開平10-256647

8

特開平10-256647

6

して対称であるLD素子の特性温度の活性層と電流狭窄

り、(a) 本発明に係るしひ素子の場合、(b) は従来

のLD素子の場合

するキャリア徴度のグラフ

性を示すグラフ

クラッド層の厚さ依存性を示すグラフ

D兼子のレーが称柱のグラン

第子の第2の電流狭窄層付近の断面図

5粒性のグラフ

ノた対称であるしD煮子の原函図

F層成製後

ネナのフーが移柱のグップ