Linear Sort

"Our intuition about the future is linear. But the reality of information technology is exponential, and that makes a profound difference. If I take 30 steps linearly, I get to 30. If I take 30 steps exponentially, I get to a billion."

-Ray Kurzweil

- All the sorting algorithms seen so far are called *comparison sorts*: they sort by using comparison operations between the array elements.
- We can show that any comparison sort must make $\Omega(n*log_2n)$ comparisons in the worst case to sort n elements.

- Decision Tree Model: full binary tree representing comparison between array elements performed by a sorting algorithm
 - Internal nodes represent comparisons
 - Leaves represent outcomes
 - all array elements permutations
- Example: decision tree for insertion sort

- Worst-case number of comparisons = length of the longest simple path from the root to any leaves in the decision tree (i.e. tree height)
- ▶ Possible outcomes = total number of permutations = n!
- Therefore, the decision tree has at least n! leaves
- In general, a decision tree of height h has 2h leaves
- Thus, we have

```
n! \le 2^{h}
h \ge \log_2(n!)
```

Using Stirling's approximation:

```
n! > (n/e)^n

h \ge \log_2((n/e)^n) =

n*\log_2(n/e) = n*\log_2 n - n*\log_2 e

h = \Omega(n*\log_2 n)
```

Theorem: any comparison sort algorithm requires Ω (n*log₂n) comparisons in the worst case

Logarithmic sorting algorithms, like heapsort, quicksort, and mergesort, have a worst-case running time of 0 (n*log₂n)

Corollary: Logarithmic sorting algorithms are asymptotically optimal for comparison sort.

Can we do better?

Sorting in Linear Time

- Comparison Sort:
 - Lower bound: Ω (n*log₂n)

- Non-Comparison Sorts:
 - Possible to sort in linear time
 - under certain assumptions
 - Examples:
 - Counting sort
 - Bucket sort
 - Radix sort

Counting Sort

Assumption:

```
n input numbers are integers in range [0, k], k = O(n).
```

Idea:

- Determine the number of elements less than
 x, for each input x.
- Place x directly in its position.

Count Sort Algorithm

```
COUNTING-SORT (A, B, k)
for i \leftarrow 0 to k
      do C[i] \leftarrow 0
for j \leftarrow 1 to length[A]
      do C[A[j]] \leftarrow C[A[j]] + 1
// C[i] contains number of elements equal to i.
for i \leftarrow 1 to k
       do C[i] \leftarrow C[i] + C[i-1]
// C[i] contains number of elements \leq i.
for j \leftarrow length[A] downto 1
         do B[C[A[j]]] \leftarrow A[j]
               C[A[j]] \leftarrow C[A[j]] - 1
```

A: 1 2 3 4 5 6 7 8 2 5 3 0 2 3 0 3

B: 1 2 3 4 5 6 7 8

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$i \leftarrow 0$$
 to k

do $C[i] \leftarrow 0$

// initialize to 0

C:

0	1	2	3	4	5
0	0	0	0	0	0

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

```
for j \leftarrow 1 to length[A]
      do C[A[j]] \leftarrow C[A[j]] + 1
```

// count elements // equal to i

0	1	2	3	4	5
0	0	0	0	0	0

B:	1	2	3	4	5	6	7	8
- .								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$j \leftarrow 1$$
 to length[A] $j = 1$
do C[A[j]] \leftarrow C[A[j]] + 1 C[2] \leftarrow 0 + 1

$$j = 1$$

$$C[2] \leftarrow 0 + 1$$

C:

0	1	2	3	4	5
0	0	1	0	0	0

•	1	2	3	4	5	6	7	8
•								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$j \leftarrow 1$$
 to length[A] $j = 2$
do C[A[j]] \leftarrow C[A[j]] + 1 C[5] \leftarrow 0 + 1

$$j = 2$$

$$C[5] \leftarrow 0 + 1$$

C:

0	1	2	3	4	5
0	0	1	0	0	1

B

3:	1	2	3	4	5	6	7	8
•								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$j \leftarrow 1$$
 to length[A] $j = 3$
do C[A[j]] \leftarrow C[A[j]] + 1 C[3] \leftarrow 0 + 1

$$j = 3$$

$$C[3] \leftarrow 0 + 1$$

0	1	2	3	4	5
0	0	1	1	0	1

B:	1	2	3	4	5	6	7	8
- .								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$j \leftarrow 1$$
 to length[A] $j = 4$
do C[A[j]] \leftarrow C[A[j]] + 1 C[0] \leftarrow 0 + 1

$$j = 4$$

$$C[0] \leftarrow 0 + 1$$

C:

0	1	2	3	4	5
1	0	1	1	0	1

• •	1	2	3	4	5	6	7	8
•								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$j \leftarrow 1$$
 to length[A] $j = 5$
do C[A[j]] \leftarrow C[A[j]] + 1 C[2] \leftarrow 1 + 1

$$j = 5$$

$$C[2] \leftarrow 1 + 1$$

C:

0	1	2	3	4	5
1	0	2	1	0	1

•	1	2	3	4	5	6	7	8
•								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$j \leftarrow 1$$
 to length[A] $j = 6$
do C[A[j]] \leftarrow C[A[j]] + 1 C[3] \leftarrow 1 + 1

$$j = 6$$

$$C[3] \leftarrow 1 + 1$$

C:

0	1	2	3	4	5
1	0	2	2	0	1

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$j \leftarrow 1$$
 to length[A] $j = 7$
do C[A[j]] \leftarrow C[A[j]] + 1 C[0] \leftarrow 1 + 1

$$j = 7$$

$$C[0] \leftarrow 1 + 1$$

C:

0	1	2	3	4	5
2	0	2	2	0	1

1	2	3	4	5	6	7	8

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$j \leftarrow 1$$
 to length[A] $j = 8$
do C[A[j]] \leftarrow C[A[j]] + 1 C[0] \leftarrow 2 + 1

$$j = 8$$

$$C[0] \leftarrow 2 + 1$$

C:

0	1	2	3	4	5
2	0	2	3	0	1

1	2	3	4	5	6	7	8

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

```
for i \leftarrow 1 to k
                                             // sum number of
       do C[i] \leftarrow C[i] + C[i-1]
                                             // elements \leq i
```

0	1	2	3	4	5
2	0	2	3	0	1

3:	1	2	3	4	5	6	7	8
•								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$i \leftarrow 1$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $i = 1$
 $C[1] \leftarrow 0 + 2$

$$i = 1$$

$$C[1] \leftarrow 0 + 2$$

C:

0	1	2	3	4	5
2	2	2	3	0	1

-	1	2	3	4	5	6	7	8
•								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$i \leftarrow 1$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $i = 2$
 $C[2] \leftarrow 2 + 2$

$$i = 2$$

$$C[2] \leftarrow 2 + 2$$

C:

0	1	2	3	4	5
2	2	4	3	0	1

1	2	3	4	5	6	7	8

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$i \leftarrow 1$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $i = 3$
 $C[3] \leftarrow 3 + 4$

$$i = 3$$

$$C[3] \leftarrow 3 + 4$$

0	1	2	3	4	5
2	2	4	7	0	1

B

3:	1	2	3	4	5	6	7	8
•								

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$i \leftarrow 1$$
 to k
 $i = 4$

 do $C[i] \leftarrow C[i] + C[i-1]$
 $C[4] \leftarrow 0 + 7$

$$i = 4$$

$$C[4] \leftarrow 0 + 1$$

0	1	2	3	4	5
2	2	4	7	7	1

•	1	2	3	4	5	6	7	8

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

for
$$i \leftarrow 1$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $i = 5$
 $C[5] \leftarrow 1 + 7$

$$i = 5$$

$$C[5] \leftarrow 1 + 7$$

0	1	2	3	4	5
2	2	4	7	7	8

1	2	3	4	5	6	7	8

A: 1 2 3 4 5 6 7 8 2 5 3 0 2 3 0 3

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
2	2	4	6	7	8

```
for j \leftarrow \text{length}[A] downto 1
do B[C[A[j]]] \leftarrow A[j]
C[A[j]] \leftarrow C[A[j]] - 1
```

j = :	8			
B[7]	\leftarrow	A	[8]	
C[3]	\leftarrow	7	_	1

1	2	3	4	5	6	7	8
						3	

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
1	2	4	6	7	8

```
for j \leftarrow \text{length}[A] downto 1
do B[C[A[j]]] \leftarrow A[j]
C[A[j]] \leftarrow C[A[j]] - 1
```

j = '	7		
B[2]	\leftarrow	A[7]
C[0]	\leftarrow	2 -	· 1

1	2	3	4	5	6	7	8
	0					3	

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
1	2	4	5	7	8

```
for j \leftarrow length[A] downto 1
do B[C[A[j]]] \leftarrow A[j]
C[A[j]] \leftarrow C[A[j]] - 1
```

j = (6			
B[6]	\leftarrow	A	[6]	
C[3]	\leftarrow	6	_	1

1	2	3	4	5	6	7	8
	0				3	3	

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
1	2	3	5	7	8

```
for j \leftarrow length[A] downto 1
do B[C[A[j]]] \leftarrow A[j]
C[A[j]] \leftarrow C[A[j]] - 1
```

j = !	5			
B[4]	\leftarrow	A	[5]	
C[2]	\leftarrow	4	_	1

1	2	3	4	5	6	7	8
	0		2		3	3	

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
0	2	3	5	7	8

```
for j \leftarrow \text{length}[A] downto 1
do B[C[A[j]]] \leftarrow A[j]
C[A[j]] \leftarrow C[A[j]] - 1
```

$$j = 4$$
 $B[1] \leftarrow A[4]$
 $C[0] \leftarrow 1 - 1$

1	2	3	4	5	6	7	8
0	0		2		3	3	

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
0	2	3	4	7	8

```
for j \leftarrow \text{length}[A] downto 1
do B[C[A[j]]] \leftarrow A[j]
C[A[j]] \leftarrow C[A[j]] - 1
```

$$j = 3$$

$$B[5] \leftarrow A[3]$$

$$C[3] \leftarrow 5 - 1$$

1	2	3	4	5	6	7	8
0	0		2	3	3	3	

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
0	2	3	4	7	7

```
for j \leftarrow \text{length}[A] downto 1
do B[C[A[j]]] \leftarrow A[j]
C[A[j]] \leftarrow C[A[j]] - 1
```

$$j = 2$$
 $B[8] \leftarrow A[2]$
 $C[3] \leftarrow 8 - 1$

1	2	3	4	5	6	7	8
0	0		2	3	3	3	5

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
0	2	2	4	7	7

```
for j \leftarrow \text{length}[A] downto 1
do B[C[A[j]]] \leftarrow A[j]
C[A[j]] \leftarrow C[A[j]] - 1
```

$$j = 1$$
 $B[3] \leftarrow A[1]$
 $C[2] \leftarrow 2 - 1$

1	2	3	4	5	6	7	8
0	0	2	2	3	3	3	5

A:

1	2	3	4	5	6	7	8
2	5	3	0	2	3	0	3

C:

0	1	2	3	4	5
0	2	2	4	7	7

Sorted

1	2	3	4	5	6	7	8
0	0	2	2	3	3	3	5

Analysis of Count Sort

```
COUNTING-SORT (A, B, k)
for i \leftarrow 0 to k
                                             →[Loop 1]
                     Loops 1 and 3
      do C[i] \leftarrow 0 | takes \Theta(k) time
for j \leftarrow 1 to length[A]
                                               [Loop 2]
      do C[A[j]] \leftarrow C[A[j]] + 1
// C[i] contains <u>number of elements</u> equal to
                        Loops 2 and 4
                     takes ⊕ (n) time
for i \leftarrow 1 to k
                                               [Loop 3]
       do C[i] \leftarrow C[i] + C[i-
// C[i] contains number of elements \leq i.
for j \leftarrow length[A] downto 1
         do B[C[A[j]]] \leftarrow A[j]
                C[A[j]] \leftarrow C[A[j]] - 1
```

Total cost is $\Theta(k+n)$. If k = O(n), then total cost is $\Theta(n)$.

Stable Sorting

- Counting sort is called a stable sort.
 - The same values appear in the output array in the same order as they do in the input array.

Bucket Sort

- Assumption: uniform distribution
 - Input numbers are uniformly distributed in [0,1).
 - Suppose input size is n.
- Idea:
 - Divide [0,1) into n equal-sized buckets.
 - Distribute n numbers into buckets
 - Expect that each bucket contains a few numbers.
 - Sort numbers in each bucket
 - usually, insertion sort as default
 - Then go through buckets in order, listing elements.

Bucket Sort Algorithm

BUCKET-SORT (A)

```
n ← A.length
for i ←1 to n
   do insert A[i] into bucket B[[n*A[i]]]
for i ←0 to n-1
   do sort bucket B[i] using insertion sort
Concatenate bucket B[0], B[1],..., B[n-1]
```

Example of Bucket Sort

Figure 8.4 The operation of BUCKET-SORT. (a) The input array A[1..10]. (b) The array B[0..9] of sorted lists (buckets) after line 5 of the algorithm. Bucket i holds values in the half-open interval [i/10, (i+1)/10). The sorted output consists of a concatenation in order of the lists $B[0], B[1], \ldots, B[9]$.

Analysis of Bucket Sort

BUCKET-SORT (A)

```
n \leftarrow \text{length}[A]

for i \leftarrow 1 to n

do insert A[i] into bucket B[nA[i]]

for i \leftarrow 0 to n-1

o(n)

do sort bucket B[i] with insertion sort O(n_i^2)

Concatenate bucket B[0], B[1], ..., B[n-1]
```

Where n_i is the size of bucket B[i].

Thus,
$$T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)$$

= $\Theta(n) + n*O(2-1/n) = \Theta(n)$

Radix Sort

- Radix sort is a non-comparative sorting algorithm
 - Sorts data with integer keys with d digits
 - Sort *least* significant digits first, then sort the 2nd one, then the 3rd one, etc., up to d digits
- Radix sort dates back as far as 1887
 - Herman Hollerith used technique in tabulating machines
 - The 1880 U.S. census took 7 years to complete
 - With Hollerith's "tabulating machines," the 1890 census took the Census Bureau six weeks

Radix Algorithm

Given an array of integers A with up to d digits:

RADIX-SORT(A, d)

for $i \leftarrow 1$ to d

do use a stable sort to sort array A on digit i

Example: Radix Sort

Stable Sort

What happens if we use a non-stable sorting algorithm?

213		321		312	123
312		312		213 <-	132
123		212		212 <-	213 <-
212	stable	132	not stable	321 stable	212 <-
321	>	213	>	123>	312
132		123		132	321
^		^		^	

Radix Sort and Stability

- Padix sort works as use a stable sort at each stage
 - Stability is a property of sorts:
 - A sort is stable if it guarantees the relative order of equal items stays the same
 - Given these numbers:

$$[7_1, 6, 7_2, 5, 1, 2, 7_3, -5]$$
 (subscripts added for clarity)

– A stable sort would be:

$$[-5, 1, 2, 5, 6, 7_1, 7_2, 7_3]$$

Are Other Sorting Algorithms Stable?

- Counting sort?
 - Stable
- Insertion sort?
 - Stable
- Heapsort?
 - Not Stable example input: $[5_1 \ 5_2 \ 5_3 \ 3 \ 4]$ output: $[3 \ 4 \ 5_3 \ 5_2 \ 5_1]$
- Selection sort?
 - Not Stable example input: [5₁ 5₂ 5₃ 3 4]
 output: [3 4 5₃ 5₁ 5₂]
- Quicksort?
 - Not Stable example input: [5₁ 5₂ 5₃ 3 4]
 output: [3 4 5₃ 5₁ 5₂]

Radix Sort for Non-Integers

- Suppose a group of people, with last name, middle, and first name.
- Sort it by the last name, then by middle, finally by the first name
- Then after every pass of sort, the bins can be combined as one file and proceed to the next sort.

Analysis of Radix Sort

- Given all n numbers in the input array have d or fewer digits
- Suppose we use Counting Sort to sort each digit
- The running time for Radix Sort would be:

$$d * \Theta(n + k) = \Theta(dn + dk)$$

If k = O(n) and d is a constant, the running time is $\Theta(n)$.

Exercise

How can we sort n integers in the range 0 to n^2-1 in time $\Theta(n)$?

Comparison of Various Sorts

Algorithm	Worst-case running time	Average-case/expected running time $\Theta(n^2)$	
Insertion sort	$\Theta(n^2)$		
Merge sort	$\Theta(n \lg n)$	$\Theta(n \lg n)$	
Heapsort	$O(n \lg n)$	_	
Quicksort	$\Theta(n^2)$	$\Theta(n \lg n)$ (expected)	
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$	
Radix sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$	
Bucket sort	$\Theta(n^2)$	$\Theta(n)$ (average-case)	