최종과제 명 : 설문 조사 데이터와 비식별 데이터의 결합을 통한

H

서와 <u>비식별</u> 데이터의 결합을 통한 **도로 보고 있다.** 구매 고객 유형 분석 - 수치형과 카테고리 혼합 자료에 대한 <mark>클러스터링 성능 향상 방법 개발</mark>을 중점으로

① 수행 업무

- 구매 제품에 대한 고객 응답 데이터와 라이프스타일 데이터
 를 결합, 분석하여 고객 특성 파악 및 인사이트 도출
- 기존 클러스터링 방법의 한계를 극복하기 위한 분석 방법론 개발 및 효용성 입증

프로젝트 진행 일정

진행 과제	1주차	2주차	3주차	4주차
데이터 파악 및 EDA				
분석 완경 구축				
칼럼 차원 축소 (PCA, MCA, MDS)				
K-protytype 클러스터링				
클러스터링 평가				
최적의 가중치 감마 찾기				
클러스터링 / 고객 유형 분석				
발표자료 작성 및 준비				

② 배운 점

- 실제 데이터 분석 수행을 통한 의미 있는 결과 도출 및 문제 해결 능력 향상
 - ✓ 혼합형 고차원 데이터를 사용하여 고객 유형 분석을 함으 로써 유의미한 인사이트를 발굴해 낼 수 있는 분석 경험을 해보았습니다.
 - ✓ 이에 이후 다른 형태의 데이터와 결합한 혼합형 데이터를 사용하게 될 때 현 프로젝트에서 경험한 분석 방법론 및 알 고리즘을 응용해서 사용할 수 있습니다.
- 유의미한 결과를 위한 데이터의 다각적 이해
 - ✓ 기존의 각각의 데이터에서 얻을 수 없었던 유의미한 인사 이트를 cns의 비식별 ■■데이터에 서베이 데이터를 결합 한 혼합형 고차원 데이터를 통해서 도출해 낼 수 있었습니다.
- 이후 혼합형 고차원 데이터가 존재할 때 위 과정처럼 다양 한 방법론을 적용해보면서 클러스터링의 성능을 높이고 유의미한 인사이트를 얻을 수 있습니다.
- 코딩 능력 향상
 - ✓ 현업 데이터를 통해 다각적으로 방법론을 적용해 보면서 실무에서 사용하는 분석 언어를 경험할 수 있었습니다.
 - ✓ 조심 등 등 등 등 등 등 등 등 등 일 등 등 을 다 이해하기 쉽게 코딩 하려고 노력하여 이후에 보다 정확하면서도 파악하기 쉬 운 코드를 짤 수 있을 것입니다.

③ 최종과제 명 : 설문 조사 데이터와 비식별 데이터의 구매 고객 유형 분석 수치형과 카테고리 혼합 자료에 대한 클러스터링 성능 향상 방법 개발을 중점으로

칼럼

차원

岛소

K-prototype

디홀트

보다

낮은 cost ¥Yes

최적

감마

클러스

터링/

해석

분석 목표 분석 과정 극단치 이진형 : 예/아니요라고 대답한 사람이 로봇 청소기 구매 고객 유형을 발굴하는데 유용하게 사용되는 극단치 95% 이상인 이진형 칼럼 k-prototypes 클러스터가 이진형 및 카테고리형 항목이 많을 이진형 때 특정 데이터에 치우치는 문제를 개선하고 클러스터의 성능 삭제

분석 데이터 >

을 높이고자 함.

- LG 전자에서 실시한 대표 구매에 관한 설문지 데이 터 및 cns가 보유한 📉 지수 데이터
 - (대상 : 주요 가전을 구매한 | 고객)
- 데이터 칼럼이 많고 특히 이진형 항목이 많음
- 데이터 형태 :

- 칼럼 제거했을 때 k-prototype cost가 더 낮음
 - 이진형 데이터의 차원 축소가 더 잘됨

 - PCA, MCA로 연속형, 이진형 차원 정도 확인
 - Linear MDS, non-linear MDS로 차원 축소
- 그리드 서치 방법으로 여러 가중치 감마 값 넣 어서 클러스터링 진행 (cluster : elbow graph 확인) No
 - 감마를 하하기 cost가 디폴트 감마를 사용한 k-prototype cost 보다 작은 것 발견
 - 그 중에서 Calinski-Harabasz index와 Davies bouldin score를 사용하여 클러스터 링 평가
 - 찾은 최적의 감마
 - 각 클러스터 해석 후 마케팅 솔루션

최적의 가중치로 k-prototypes을 사용한 로봇 청소기 구매 고객 유형 결과

	명	우세 연령	우세 성별 *	소득이 줄어도 소비를 줄 이지 않을 항목 *	소득이 줄면 소비를 줄 일 항목 *	우세하게 보유한 가 전 제공 *	구매경로	구매 시 고민 기간
Cluster1						۵	į	JIS
Cluster2	n: 15	E.		3	4	±51	平	내외
Cluster3	2+1 2+5 2-1	##C					제공사 바레드 &	
Cluster4		Manual Control		-	-		www.dustricu	내외

- Cluster1 : 쾌락형 라이프 스타일 ✓ 주로 등 자신의 외면을 가꿈 ✓ 최신 트레드의 컨텐츠 소비하며 즐길 수 있는 서비스 중요.
 - ✓ 구매 고려 기간이
 - 특히 대의 비율이 가장 높은 군집
 - Cluster2 : 건강형 라이프 스타일 ✓ 주로 청소나 수납, 정리 등을 중요하게 여김.
 - ✓ 자신의

- Cluster3: 합리형 라이프 스타일 ✓ 꼭 되는 지 않은 것에 대한 소비의 중요성이 낮음 ✓ 소득이 줄 때 소비를 줄일 수 있는 항목이 가장 많음.
- ✓ 구매 고민 기간이
 - Cluster4 : 눈에 띄는 소비 패턴이 없고

결론

- ·주요 연령총 : 20-40대 * 다른 군집 대비
- :에 이미 관심있는 군집, Cluster4는 소비에 관 - Cluster2는 심이 패턴이 조를 군집이므로 타게팅할 군집에서 제외
- 주요 타게팅 할 군집 파악: 쾌락형 / 합리형 라이프 스타일
- 각 라이프 스타일에 맞는 마케팅 솔루션 제공:

솔루션 전통 대중매체 보다는 최신 트렌드를 반영한 SNS 마케팅 이성적이면서도 감성적인 소비를 강조하는 경험 마케팅 쾌락형 - 구매 고민 기간이 더 길어지지 않도록 유효기간이 있는 쿳 - 가전 제품에 대한 관심도가 높기 때문에 리성을 강조한 마케팅을 진행 제조사 브랜드 홈페이지에서 일어났기 때문 합리형 에 홈페이지 내에서 사용할 수 있는 전용 쿠폰을 제공 구매 고민 기간이 때문에 구매 이후 지원 서비스 기 간 확대 등

고객 유형을 위한 k-prototypes 클러스터링 성능 항상 방법론 구축 과정 1) 차원 축소

- K-prototype 알고리즘
- 연속형과 범주형이 혼합된 데이터를 군집화 하는 방법
- 연속형 속성을 군집화 하는 k-means 알고리즘과 범주형 속성을 군집화
- 하는 k-modes 알고리즘 결합 범주형 속성 거리에 가중치 감마를 주어 연속형 속성 거리와 합한 것이 kprototype 거리

$$d_{k-\text{prototypes}} = d_{k-\text{means}} + \gamma \, d_{k-\text{modes}}$$

$$= d_{ewolid}(X_i, C_j)^2 + \gamma \; l_{\text{simple matching}}(X_i, C_j)$$

- 한계점
 - 1) 클러스터 수(k)는 수동으로 결정.
 - 범주형 데이터와 연속형 데이터 간의 비율을 조정하는 데 사용되 2) 는 감마를 수동으로 결정.
- 차원 확인
 - 연속형 데이터
 - PCA로 차원 확인
 - 주성분 2개로 연속형 데이터의 97.85% 설명
 - 이진형 데이터

 - MCA로 차원 확인
 주성분 22개로 이진형 데이터의 81.47% 설명
- MDS 차원 축소 >
- MDSP1?
 - 1. linear MDS
 - 데이터가 연속형 변수인 경우 사용.
 - 각 개체들 간의 유클리드 거리 행렬을 계산하고 개체들 간의 비유사 성을 공간상에 표현.
 - 2. Non-linear MDS
 - 데이터가 범주형 변수인 경우 사용.

- MDS 결과를 clustering에 적용 시킬 수 있는가?
 - MDS는 시각화에 확실히 유용할 수 있지만 시각화 도구일 뿐만 아 니라 일반적인 차원 감소 및 잠채 변수 모델에 유용할 수 있음.
 - 몇몇의 MDS를 통한 차원 축소 후 clustering을 사용한 연구 과정을 확인할 수 있음.
- MDS 차원 축소
 - 연속형 데이터 : 2개로 차원 축소 이진형 데이터 : 22개로 차원 축소
- ▶ 가장 성능이 좋은 차원 축소 방법 선택 (cluster4 기준) 차원 축소 안원을 떠:723560,46

	연속형 칼럼만 축소		이진형 칼럼만 축소	연속형, 이진형 칼럼 축소		
	рса	mds	nmds	Pca+nmds	Mds+nmds	
cost					2	

	연속형 칼럼만 축소	연속형, 의진형 칼럼 축소
	рса	Mds+nmds
Calinski harabasz score		

k-prototype의 cost는 비슷하지만, calinski harabasz score를 보면 이지형을 축소했을 때 성능이 더 좋아진

고객 유형을 위한 k-prototypes 클러스터링 성능 항상 방법론 구축 과정 2) 최적 가중치 산정

- ➤ 그리드 서치 방법으로 K-Prototype 클러스터링 최적 가 중치 산정
 - A. 감마 설정 없이 디폴트 값으로:
 - 해당 데이터의 디폴트 가중치 감마 값 = 10006
 - Cluster 4개 선택, cost는 1
 - B. 감마 설정하여 디폴트 값보다 낮은 cost 가진 감마

가중치	cluster	Calinski harabasz	Davies bouldin	cost
		TOB WELSONE	- C - C - C - C - C - C - C - C - C - C	
	4	T008 (2.5408)	7072 11288	
	-			
	-	egen to angent	#25-24%-04%	sansanumumaa a
	-			TV AUGENT DE CAU

	-	- A		
	-			
	5			The second state of the second
	-	1 5 5 7 5		
-	*			

다폴트 값보다 낮은 cost 가진 감마 중 최적의 클러스터링 평가 지표를 가진 가중치 선택

> 결론

다음을 만족시키는 값이 최적 가중치 감마

- 1. 디폴트 값보다 낮은 cost 가중치
- Calinski-Harabasz Index가 높고, Davies bouldin score가 가장 낮은 가중치
- 각각의 cluster 내의 고객의 수가 명이상인 가중치 (LG 전자 요청)

④ 결론

혼합형 고차원 데이터를 군집화 할 때 사용하는 k-prototypes 성능 향상을 위해서는 :

- 정보를 많이 주지 않는 95% 이상의 극단치 이진형 제거

차원 축소

 다양한 차원 축소 방법 중 최적의 차원 축소 방법을 사용

최적 가중치 산정

- 그리드 서치 방법으로
- 클러스터링 평가 지표 (Calinski harabas , Davies bouldin 등) 사용

별첨 - 95% 이상의 극단치 이진형 칼럼

이진형 데이터의 차원 축소가 더 잘됨

제거	연속형 차원 크기	설명 정도	이진형 차원 크기	설명 정도
전	1	약 97%		약 81%
卒		약 97%		약 81%

95% 이상의 극단치 이진형 칼럼에 대해 칼럼이 제공하는 정보가 거의 없다고 판단하여 삭제

칼럼 명	0 (명)	1 (명)	<u>국단치</u> 퍼센트
			0.5
			0.992
			0.994
	27-100 20-100 20		0.966
			0.976
1719	12 C		0.978
		12	1
	1		0.974

별첨 – PCA를 이용한 연속형 데이터의 저차원 갯수 확인

별첨 - MCA를 이용한 이진형 데이터의 저차원 갯수 확인

- MCA로 범주형 및 이진형 데이터 차원 축소 및 차원 확인
 - 범주형 데이터 + 이진형 데이터 차원 축소
 - ✓ 주성분 ★ 기로 하고 사이 설명하지 못함 ★ 차원 축소가 전혀 안됨
 - ✓ 각각의 index에 주성분을 덮었더니 값이 너무 작아서 NaN값으로 생성됨
 - 이진형 데이터 차원 축소
 - ✓ 차원 축소는 했으나 각각의 index에 주성분을 넣었더니 값이 너무 작아서 NaN값으로 생성됨
 - ✓ MCA를 사용하지 못해도 이진형 차원축소시 22개가 80% 이상을 설명한다는 것은 파악할 수 있음

별첨 – MCA를 이용한 이진형 데이터의 저차원 갯수 확인

별첨 – 디폴트 가중치 감마

별첨 - 최적 가중치 감마 그리드 <u>서치</u> (cluster 4기준)

가중치 감마	cost	가중치 감마	cost	가중치 감마	cost
90	Į.	1.8		0.15	
80		1,6		0.14	
70		1.4		0.13	
60	A 197	1.2			
50		1.0			
40		0,8			
30		0,6			
20		0,4			
10		0,2			
8		0,19			
6	- N - S - S	0,18			
4	of month top speciality	0.17			
2	College Control Control	0.16	CO CAMBONIAN VI		

별첨 – 클러스터링 평가 지표

지표	지표 설명		클러스터링 잘된 정도
K-prototype cost	클러스터 중심에서의 모든 점 들의 거리 합	-	작을 수록
Calinski harabasz score	클러스터 내에서의 분산과 비 교하여 클러스터 전체의 분산 정도의 비율	클러스터 내 전체 분산(SS _B)분 의 클러스터간 전체 분산(SS _W) $\frac{SS_B}{SS_W} \times \frac{(N-k)}{(k-1)}$	클수록
Davies <u>bouldin</u> Index	클러스터 내에서 Distribution 과 비교하여 다른 클러스터 간 의 분리 정도의 비율	두 개의 클러스터 쌍에 대해 각 클러스터의 크기의 합을 각 클 러스터의 중심 간 거리로 나눈 값	작을 수록

별첨 - 클러스터링 결과 및 클러스터 설명

-주요 연령층: 20-40대 * 다른 군집 대비

> 해석

- Cluster1: 쾌락형 라이프 스타일

 - ✓ 구매 고려

의 비율이 가장 높은 군집

- Cluster2 : 건강형 라이프 스타일
 - 등을 중요하게 여김. || 대한 중요도가 가장 낮음

• Cluster3 : 합리형 라이프 스타일

- 꼭 필요하지 않은 것에 대한 소비의
- ✓ 소득이 줄 때 소비를 줄일 수 있는 항목이 가장
- ✓ 보유한 가전 제품이
- ✓ 구매 고민 기간이
- Cluster4 : 눈에 띄는 소비 패턴이라고 소비에 크를 하

각 클러스터 별 소득이 줄어도 소비를 줄이지 않을 항목에 'yes'라고 응답한 비율 컨텐츠 운동 패션의류 화장품 외식 각 클러스터 각 클러스터 각 클러스터 각 클러스터 각 클러스터 별 yes점유율 별 yes점유율 별 yes정유율 별 yes점유율 별 yes정유율 Cluster 1 Cluster1 Cluster1 Cluster1 Cluster1 Cluster 2 Cluster2 Cluster2 Cluster2 Cluster2 Cluster3 Cluster3 Cluster3 Cluster3 Cluster3 Cluster4 Cluster4 Cluster4 Cluster4 Cluster4 생수 여행 건강, 영양제, 의료 청소도구 수납 정리도구 각 클러스터 각 클러스터 각 클러스터 각 클러스터 각 클러스테 별 yes점유율 벨 yes점유율 별 yes점유율 별 yes점유율 별 yes점유율 Cluster1 Cluster1 Cluster1 Cluster1 Cluster1 Cluster 2 Cluster 2 Cluster2 Cluster2 Cluster2 Cluster3 Cluster3 Cluster3 Cluster3 Cluster3 Cluster4 Cluster4 Cluster4 Cluster4 Cluster4

