# Photons to images

January 3, 2018

# Digital imaging pipeline

#### Photons to electrons



Silicon Atom



### Electrons to voltage conversion





### Voltages to gray levels

ADC



### Sources of noise

#### Photons to electrons

1. Photon shot noise

Expectation

Reality



Quantum nature of light

#### 2. Quantum Efficiency



$$QE = \frac{\text{\#electrons}}{\text{\#photons}}$$





- Photons
- Read-noise
  - Dark-current

#### Electrons to voltage conversion

1. Dark current noise



Thermally generated electrons

#### 2. Full-well capacity



Image saturation

#### Voltages to gray levels

1. Read noise



Thermal noise in read-out circuitry

- 2. Systematic noise
- Fixed-pattern noise
- Pixel readout non-uniformity
- Hot-pixels

Ignore for now

### Per-pixel noise model



Saturation level/Full-well  $I = \min(g*(Poisson((\Phi \cdot Q_e + D)t) + n), I_{max})$  Gain Noise (Read)

### Intensified CCD camera (ICCD): 4 Picos



### Single-photon sensitivity Stanford Computer Optics Temporal Resolution: 200 ps



The image shows the distance a femtosecond laser pulse moved along a ruler while the shutter of the 4 Picos camera was open. This distance is a direct measure of the flat top, single shot gating time.

Example image: Shows that the laser moved approximately ~ 200 ps.

### Intensified CCD camera (ICCD): 4 Picos

Intensifier



Photocathode: 50% (peak)

• MCP :  $1000 \times$  electron multiplication

• **Phosphor** : 180 photons per electron



# Stanford Computer Optics



The image shows the distance a femtosecond laser pulse moved along a ruler while the shutter of the 4 Picos camera was open. This distance is a direct measure of the flat top, single shot gating time.

**CCD** 



- High-dynamic range: 12 bits
- High TE cooling  $(-40^{\circ}\text{C})$ : Low-dark current

## Intensifier specification

Quantum-efficiency : 50 %;

• MCP (amplification)  $:1000 \times$ 

Phosphor-efficiency : 180 photons per

electron

• Dark-current  $: 0.2 \frac{\text{electrons}}{\text{pix}}/\text{sec}$ 

### **CCD** specification

Resolution :  $1360 \times 1024$ 

• Dynamic-range : 12 bit

• Pixel-Size ( $\mu$ m) : 4.7 × 4.7

• Quantum-efficiency : 40 %

• Dark-current  $: 0.2 \frac{\text{electrons}}{\text{pix}}/\text{sec}$ 

• Read-noise : 7 electrons

• Full-well  $: 500,000 e^-$ 

• Quantization-bits : 12 bits

### Pseudocode: Forward-model

```
[outputImage] = ScatteringMedium (PSF, reflectivity)

PSF : 2D-Point-spread function in \frac{\text{photons}}{\text{unit-time}}

reflectivity : Scene-reflectivity in [0,1]

outputImage: Output-image in \frac{\text{photons}}{\text{unit-time}}

outputImage = imfilter(PSF, Reflectivity,' same');
```

```
[intensifiedOutput] = ICCDIntensifier (outputImage)
outputImage : Image incident on intensifier in \frac{photons}{unit-time}
intensifiedOutput: Intensified output-image in \frac{photons}{unit-time}
q_e : 0.5 (Quantum-efficiency of intensifier in \frac{electrons}{photons})
dc : 0.2 (Dark-current in \frac{electrons}{pixel})
mcp : 1000 (Amplification of electrons)
pe : 180 (Phosphor-screen efficiency in \frac{photons}{electrons})
intensifiedOutput = poisson(outputImage × q_e + dc × \Delta t) × mcp × pe
```

```
[imagePixels] = CCDSensor (intensifiedOutput, x)
                                                                photons
intensifiedOutput: Intensified output-image in -
                                                                unit-time
outputImage : Output-image in \frac{\text{photons}}{\text{unit-time}}
       0.4 (Quantum-efficiency of sensor in \frac{\text{electrons}}{\text{photons}})
        : 0. 2 (Dark-current in second)
       : 7 (Read-noise in \frac{\text{electrons}}{\text{pixel}})
      : 500,000 (Full-well capacity in \frac{\text{electrons}}{\text{pixel}})
       : X (Gain-factor decided by which image saturates)
      : 12 (Number of bits in bits)
 imageInElectrons = poisson(intensifiedOutput \times q_e + dc \times \Delta t)
 imageInElectrons = AWGN(imageInElectrons, rn<sup>2</sup>)
 imageInElectrons = min(imageInElectrons, fw)
imageInVolts = imageInElectrons \times g
                         = binarize(imageInVolts, nb)
imageInPixels
```

# Example forward-model

### TotalNumberPhotons = 1e9



Image saturates at slice 5 itself.

| Intensifier-gain             | 1  |
|------------------------------|----|
| Desired-saturated image      | 10 |
| Achieved-<br>saturated image | 5  |

# Example forward-model

TotalNumberPhotons = 1e7



Image saturates at slice 11.

| Intensifier-gain             | 22 |
|------------------------------|----|
| Desired-saturated image      | 10 |
| Achieved-<br>saturated image | 11 |

# Example forward-model

TotalNumberPhotons = 0.9e7



Image saturates at slice 11.

| Intensifier-gain             | 24 |
|------------------------------|----|
| Desired-saturated image      | 10 |
| Achieved-<br>saturated image | 11 |

### Intensifier gain

TotalNumberPhotons = 1e8

Increasing the intensifier-gain saturates the image more quickly (in time) but the quality of the slice-1 seems to improve.

Intensifier gain = 1 Saturated image= 8



Intensifier gain = 3 Saturated image= 1



Intensifier gain = 2 Saturated image= 5



Intensifier gain = 4 Saturated image= 1

