

Ejercicio Detergentes

Fuente: Box, Hunter and Hunter. Statistics for Experimenters.Design, Innovations and Discovery. (2005)

Un fabricante de Detergentes desea que su insensible a:

- T: Temperatura del agua
- H: Dureza del agua (Hardness)
- R: Ratio detergente agua

Para ello decide experimentar con 4 variables de proceso:

- A: Cantidad del ingrediente A
- B: Cantidad del ingrediente B
- C: Tiempo de proceso
- D: Tamaño de grano

Decide realizar un diseño 24-1x23-1 con generadores C=ABD y R=TH

¿Qué diseño corresponde a la matriz completa?

Un 27-2 con generadores C=ABD y R=TH, I=ABCD=THR=ABCDTHR

© Los aut

1. Diseños robustos

2. Diseños robustos

		Four Washing Conditions Produced by <i>Environmental</i> Factors T , H , and R								
		Eight Products Produced			T	-1	+1	-1	+1	
		by $Design$ Factors A, B, C , and D				H	-1	-1	+1	+1
	Product					R	+1	-1	-1	+1
	Number	A	В	С	D		i	ii	iii	iv
,	1	-1	-1	-1	-1		88	85	88	85
,	2	+1	-1	-1	+1		80	77	80	76
	3	-1	+1	-1	+1		90	84	91	86
	4	+1	+1	-1	-1		95	87	93	88
	5	-1	-1	+1	+1		84	82	83	84
	6	+1	-1	+1	-1		85	84	82	82
	7	-1	+1	+1	-1		91	93	92	92
	8	+1	+1	+1	+1		89	88	89	87

Diseños robustos 1

Ejercicio Detergentes

Tareas a realizar (I):

- Formar grupos de 4 estudiantes
- 2 estudiantes analizan el caso de los detergentes a partir de la matriz producto (datos en: *detergentes (media y S). mtw*)
- 2 estudiantes analizan el caso de los detergentes a partir de la matriz completa (datos en: *Detergentes (matriz completa).mtw*)
- Comparar los resultados
- Discutir ventajas e inconvenientes de cada sistema

os autores

3. Diseños robustos

Ejercicio Detergentes

Tareas a realizar (II):

- Analizar el experimento teniendo en cuenta que los factores de control (A: Cantidad del ingrediente A, B: Cantidad del ingrediente B, C: Tiempo de proceso y D: Tamaño de grano) son mucho más difíciles de cambiar de nivel que los factores de ruido (T: Temperatura del agua, H: Dureza del agua y R: Ratio detergente agua) y que por lo tanto el diseño se aleatorizó en formato split plot (sólo se produjeron 8 detergentes diferentes que luego se probaron en las 4 condiciones de los factores ruido)
- · Comparar los resultados con los análisis anteriores

sautores

4. Diseños robustos

Diseños robustos 2