# TI DSP, MCU, Xilinx Zynq FPGA 프로그래밍 전문가 과정

**IR2110 TEST** 

2018.09.13

강사 - Innova Lee(이상훈) gcccompil3r@gmail.com

**학생 – 안상재** sangjae2015@naver.com

IR2110 IC로 대체 부하에 12V가 걸려야 하므로 M에 floating 전압이 포함된 펄스가 필요함 \* DC-DC 컨버터 회로



부트스트랩 회로

### \* IR2110 핀 설명

### **Lead Definitions**

|        | Symbol          | Description                                                 |
|--------|-----------------|-------------------------------------------------------------|
| INPUT  | $V_{DD}$        | Logic supply                                                |
|        | HIN             | Logic input for high side gate driver output (HO), in phase |
|        | SD              | Logic input for shutdown                                    |
|        | LIN             | Logic input for low side gate driver output (LO), in phase  |
|        | $V_{SS}$        | Logic ground                                                |
| ,      | $V_{B}$         | High side floating supply                                   |
| ОИТРИТ | НО              | High side gate drive output                                 |
|        | VS              | High side floating supply return                            |
|        | V <sub>CC</sub> | Low side supply                                             |
|        | LO              | Low side gate drive output                                  |
|        | COM             | Low side return                                             |

### \* 부트스트랩 회로 이해를 위한 개념





#### \* 부트스트랩 회로

Q1 FET의 소스에 VCC가 걸려 있는 경우, 게이트에 VCC만큼의 전압을 공급해주기 위해 VCC 직류 성분을 floating 시켜줌 (Vb = Vcc+Vs)

#### - 부트스트랩 회로의 필요성



- 1) TR 베이스에 HIGH 신호가 인가되면 FET 스위칭 OFF됨.
- 2) TR 베이스에 LOW 신호가 인가되면 FET 스위칭 ON됨.
- TR이 비활성화 되면서 풀업저항 R2에 의해 12V가 FET의 게이트에 인가됨.
- Vgs 값에 의해 LOAD에 온전히 12V가 걸리지 않고 Vgs 값만큼 강하된 값만큼 전압이 걸림. => 정상적인 동작을 하지 않을 수도 있음!

#### - 일반적인 부트스트랩 회로



- 1) TR 베이스에 HIGH 신호가 인가되면 TR이 스위칭 ON 되고, FET는 스위칭 OFF 된다.
- C1 에 11.3V만큼의 전압이 충전된다.
- 2) TR 베이스에 LOW 신호가 인가되면 TR이 스위칭 OFF 되고, FET는 스위칭 ON 된다.
  - TR이 OFF되고 FET가 ON되는 상황에서, VCC에서 흐르는 전류는 VCC(12V) 에서 C1을 거쳐 LOAD로 흐르고 R2를 거쳐 FET의 게이트로 흐른다.
  - C1에 이미 11.3V가 충전되어 있기 때문에, 12V 와 합쳐져서 R2의 위에는 23.3V가 걸리게 된다.
  - 23.3V에서 Vgs값을 강하한다고 해도 12V보다 작아지지는 않기 때문에 LOAD에는 VCC만큼의 12V가 안정적으로 공급된다.

#### - IR2110 의 부트스트랩 회로



- VCC에서 다이오드를 거쳐서 C1에 충전되어 있는 전압과 합쳐짐.
- VB에서 합쳐진 전압만큼 HO 에서 나가는 펄스를 floating 시켜줌.
- => HO에서 나가는 펄스에 약 VCC 만큼의 전압이 floating 되기 때문에 FET의 소스 부분에 LOAD가 있더라도 안정적으로 VCC만큼의 전압을 공급해줄 수 있음

\* IR2110 , 주변회로 테스트 결과



자동 설정

M 250ms





### \* 부트스트랩 회로가 없는 상태에서 IR2110 테스트

