

Approved for Public Release, Distribution Unlimited

AIRES: Automatic Integration of Reusable Embedded Systems

Kang G. Shin

**Real-Time Computing
Laboratory**

EECS Department

The University of Michigan

Problem Description

- ***Automatic mapping*** between views with consideration of real-time performance
 - Component composition
 - Construction of runtime model from design model
 - Assignment of timing and scheduling attributes
- ***Integration*** of timing analysis with functional design model and platform information
 - *Early-phase* performance analysis
 - *Performance-aware* system design &

Program Objective

- **Develop algs & toolkit to support:**
 - Functional composition of reusable components
 - Automatic generation of runtime model
 - Timing specification and assignments
 - Schedulability and timing analysis
- **Success criteria:**
 - Toolkit works with various design models (both OEPs)
 - Timing constraints can be specified in design models
 - Runtime model can be generated from design model with minimum human intervention
 - Decisions generated by toolkit result in

Toolkit Description Overview

Tool Description

*before midterm
experiment*

Composability Check

- SL block diagram import
- Signal compatibility check
- Reuse in application design (GME)

Mission Computing

Task Construction

- Allocate components to tasks
- Minimize communication cost
- Construct dependency task graph

Timing Assignment

- Distribute end-to-end deadline
- Assign task timing attributes
- Allocate tasks on platform

ETC application

Schedulability Analysis

- Schedulability check
- End-to-end response time
- Resource consumption

Tool Description

interfaces with

Tool Description

*composability
check*

- Existing function
 - ARIES meta-model includes task graph, platform and timing specifications
 - Component repository
 - Signal composability check
- Improvement after Midterm Experiment release
 - Extended signal composability check: value boundary (e.g., contain, overlap, etc)

Tool Description

improved functions

- Focused on **integration** of design model, runtime model, and platform configuration
- Extended signal consistency check
- Added platform info into analysis
- Added rate refinement and dependency resolution

Tool Description

*automatic design
refinement*

- Feed schedulability/timing analysis results back to design: first iteration re-assigns timing attributes

OEP Participation

- **Automotive OEP**
 - Component composability
 - Multi-view mapping (level 2 view → level 3 view)
 - level 2: discrete-time controllers and some scheduling info
 - level 3: platform-specific info
 - Task allocation to distributed platform
 - Timing assignment and schedulability analyses
- **Avionics OEP**
 - Event dependency analysis
 - Timing analysis

OEP Participation

Midterm Experiment Feedback

- **Avionics OEP**

- POC:
 - Mark Shult: Vanderbilt
 - Wendy Roll: Honeywell
- **AIRES tool detected errors successfully!**
 - Event-dependency cycles
 - Frame overrun
 - Unschedulable task set
- **Provides info on component's CPU consumption**
- **Midterm only test *part* of AIRES tool functionality (due to the *single* processor scenario used)**
- **May need to detect trapped and unused resources**

OEP Participation

Midterm Experiment

Feedback

- **Automotive OEP (Berkeley and New Eagle)**
 - POCs: Mark Wilcutts at UCB, Scott Ranville at NE-GM
 - **Our contributions**
 - **Addressed challenge problems:**
 - *Multi-view modeling, model composition (only composability check)*
 - *Schedulability analysis*
 - *Allocation of functions to distributed platform*
 - **Analysis results helped refine design**
 - **Provided techniques not supported by commercial tools:**
 - **Automatic task generation and timing assignment**
 - **Platform-specific information is integrated**
 - **Communication issues (UCB)**
 - “Task” has different meanings to different folks.
 - Need to improve readability of manuals and documentation
 - **More modeling improvement with platform info**

Project Status

dependency resolution

- **Goal:** support *scalable task assignment and scheduling algorithms*
- **Approach:** *shared buffers* to break dependencies
- **Issues:**
 - Derivation of polling rates
 - Reduction of polling overhead

Project Status

dependency resolution algorithm

- **Polling rate:**

- For each task, the following equation has to be satisfied

$$p_T + r_T \leq d_T - s_T$$

where p_T = the inter-polling interval for T , r_T = T 's response time, d_T = T 's deadline relative to beginning of task chain, and s_T = T 's ready time

$$s_T = \max \{ p_X + r_X : X \text{ is immediate predecessor of } T \}$$

- **Polling overhead reduction**

- Clustering tasks on same CPU and/or using direct synchronization

- **Method is more suitable for event-based scheduler (OSEKWorks, RTLinux)**

- **Better scalability**

Project Status

System profiling

- **Goal:**

- *Integrate the effects of target platform in design-time analysis*
- Determine platform performance systematically

- **Approach:** end-to-end system measurement

- Synthetic workloads
- Microbenchmark
- Sampling tool

- **Issues:**

- Reuse measurement results

Project Status

profiling method

Project Status

Refinement of timing assignment

Assumptions:

- Only to meet *e2e deadlines*
- *Independent* task set by using shared buffers

Basic idea:

- Consider 3 cases:
 1. *schedulable+constraint met*: done
 2. *schedulable+constraint not met*: enough resource, adjust rate assignments
 3. *Unschedulable*: not enough resource, alter task rates
- When altering rates, **evaluate** difference between new and original rates for all tasks with higher

Algorithm Refine

input: analysis results (utilization, response time),

task set, timing constraints

output: task set with new assigned rates

begin

case 1: DONE;

case 2: return to designer to alter constraint or implementation);

case 3:

select the first unschedulable task x;

compute $\text{diff}(x) = \text{resp}(x) - d(x)$;

for (each task t with higher priority)

compute new $r'(t)$ given $\text{resp}(x) = d(x)$;

compute $\text{diff}(t) = r(t) - r'(t)$;

choose task s to change with $\text{diff}(s) = \min(\text{diff}(t, s, x))$

Project Status

Progress and *deliverables*

- Progress (since last PI meeting)
 - Improved composability with value boundary checks
 - Developed algorithm to *resolve task dependencies*
 - Integrated platform-profiled information in timing assignment and analysis *and* pure priority-based algorithm in analysis
 - Developing an algorithm to automatically *refine* timing assignment by feeding analysis results back
- Deliverables
 - Tools that implement all algorithms in

Project Status

*accomplished
milestones*

- Verify semantic correctness of functional composition
 - Signal check
- Integrate timing specification with functional model
- Support runtime model construction
 - Deadline distribution for timing assignment
- Integrate platform information in analysis
 - System profiling
 - Schedulability and timing analysis
- Feed analysis results back for design refinement
- Evaluated with simple OEP scenarios

Project Status

Publications

- S. Wang and K. G. Shin, “Constructing reconfigurable software for machine tool control system”, *IEEE Trans. On Robotics and Automation* (in press).
- S. Wang, S. Kodase, K. G. Shin, D. L. Kiskis, “Measurement of OS services and its application to performance modeling and analysis of integrated embedded software”, *IEEE RTAS 2002*
- Zonghua Gu and K. G. Shin, ``Analysis of event-driven real-time systems with time petri nets: A translation-based approach,” *DIPES 2002 Conference (IFIP World Congress)*, August 2002 (in press).
- S. Kodase, S. Wang, and K. G. Shin, “Resolving task dependencies using shared buffer”

Project Plan

- Implement and evaluate the **dependency resolution** for dependent task sets (6 mo)
- Develop algorithms to analyze system with mixed scheduling policies and communication delays (in platform model) (6 mo)
- Develop method to refine task generation with analysis results when refinement of timing assignment can't meet the constraints (6 mo)
- Collaborate with OEP/local industry to

Project Schedule and Milestones

Composition and integration

*Timing specification and assignment
(deadline distribution) site refinement*

System profiling

Tool evaluation and improvement

FY00

FY01

FY02

FY03

Technology Transfer and Industry Interactions

- Interaction with other PIs:
 - Provide toolkits/algorithms and documentations
 - Interact with OEPs and other industry PIs (e.g., Honeywell) on using AIRES tool
- Interaction with local automotive industry:
 - Collaborate with GM on engine control software components: **ring architecture** components
 - Use AIRES tool to generate and analyze a scheduler in current GM engine software design
- Other interactions with:
 - New Eagle on tool improvement and implementation

Program Issue

- **None**

END