1 Funckcije več spremenljivk

1.1 Prostor \mathbb{R}^n

- 1. Prostor \mathbb{R}^n
 - **Definicija.** Prostor \mathbb{R}^n . Seštevanje in množenje s skalarjem na \mathbb{R}^n . Ali je \mathbb{R}^n vektorksi prostor?
 - **Definicija.** Skalarni produkt na \mathbb{R}^n . Norma vektorja na \mathbb{R}^n . Metrika na \mathbb{R}^n .
 - **Definicija.** Zaprt kvader. Odprt kvader.
 - Opomba. Ali imata prostori $(\mathbb{R}^n, ||.||_2)$ in $(\mathbb{R}^n, ||.||_{\infty})$ isto topologijo?
 - Izrek. Karakterizacija kompaktnosti množic v \mathbb{R}^n .
- 2. Zaporedja v \mathbb{R}^n
 - **Definicija.** Zaporedje v \mathbb{R}^n .
 - *Opomba*. Koliko realnih zaporedij porodi zaporedje v \mathbb{R}^n ?
 - Trditev. Karakterizacija konvergence zaporedij v \mathbb{R}^n (porojene podzaporedja).

1.2 Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

1. Zveznost preslikav iz \mathbb{R}^n v R

Naj bo $D \subseteq \mathbb{R}^n$, $f: D \to \mathbb{R}^m$ preslikava.

- *Opomba*. Kako rečemo preslikave iz \mathbb{R}^n v \mathbb{R} ?
- **Definicija.** Kadar je f zvezna v točki $a \in D$? Kadar je f zvezna na D?
- Trditev. Karakterizacija zveznosti f v točki $a \in D$ z zaporedji.
- **Definicija.** Kadar je f enakomerno zvezna na D?
- Trditev. Kaj lahko povemo o zvezni preslikavi na kompaktu?
- Trditev. Kaj lahko povemo o slike zvezne preslikave na kompaktu?
- **Definicija.** Kadar je *f C*-lipshitzova?
- Trditev. V kakšni zvezi so C-lipshitzovost, enakomerna zveznost in zveznost?
- Trditev. Kaj lahko povemo o vsote, razlike, produktu in kvocientu zveznih v točki $a \in D$ funkcij?
- Trditev. Kaj lahko povemo o kompozitume zveznih preslikav?
- Zgled. Ali je projekcija zvezna na \mathbb{R}^n ? Kaj pa polinomi in racionalne funkcije?
- **Definicija.** Funkcija *n*-spremenljivk.
- *Opomba*. Ali je vsaka zožitev zvezne funkcije zvezna funkcija?
- Trditev. Ali je zvezna v točki $a \in D$ funkcija zvezna v točki $a \in D$ kot funkcija posameznih spremenljivk?
- Zgled. Ali je $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$ zvezna kot funkcija posameznih spremenljivk? Ali je f
- Zgled. Ali je $f(x,y) = \begin{cases} \frac{2x^2y}{x^4+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$ zvezna na vsake premice? Ali je f zvezna?
- 2. Zveznost preslikav iz \mathbb{R}^n v \mathbb{R}^m

Naj bo $D \subseteq \mathbb{R}^n$ in $F: D \to \mathbb{R}^m$ preslikava. Naj bo $x \in D$, potem $F(x) = (y_1, \dots, y_m) \in \mathbb{R}^m$.

Lahko pišemo $F(x) = (f_1(x), \dots, f_m(x))$. Torej F določa m funkcij n-spremenljivk.

- Trditev. Karakterizacija zveznosti F v točki $a \in D$ z koordinatnimi funkciji.
- Zgled. Pokaži, da so linearne preslikave omejene: $||Ax|| \leq M||x||$.
- **Trditev.** Ali so linearne preslikave zvezne?
- Trditev. Čemu je ekvivalentna zveznost linearne preslikave?
- **Definicija.** Afina preslikava.

Parcialni odvodi in difrenciabilnost 1.3

1. Parcialni odvodi

Naj bo $D \subseteq \mathbb{R}^n$, $a \in D$ notranja, $f: D \to \mathbb{R}$ funkcija.

- **Definicija.** Kadar je f parcialno odvedljiva po spremenljivke x_i v točki $a \in D$? Kaj je parcialni odvod?
- *Opomba*. Kaj lahko povemo o parcialne odvedljivosti elementarnih funkcij?
- 2. Diferenciabilnost

Naj bo $D\subseteq\mathbb{R}^n,\,a\in D$ notranja, $f:D\to\mathbb{R}$ funkcija.

- **Definicija.** Kadar je f diferenciabilna v točki $a \in D$? Diferencial f v točki $a \in D$.
- *Opomba.* Ali je diferencial, če obstaja, enolično določen?
- *Opomba*. Kaj je diferencial v smislu aproksimacije funkcije?
- Trditev. (Potrebni pogoji za diferenciabilnost). Zveza med diferencialom, parcialnimi odvodi in zveznostjo.
- Opomba. Kako lahko izrazimo diferencial z parcialnimi odvodi? Gradient funkcije. Operator nabla.
- Zgled. Ali je $f(x,y) = \begin{cases} \frac{2xy}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$ diferenciabilna? Ali je $f(x,y) = \begin{cases} \frac{2x^2y}{x^2+y^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$ zvezna, parcialno odvedljiva, diferenciabilna?
- **Izrek.** Zadosten pogoj za diferenciabilnost f v točki $a \in D$.
- 3. Višji parcialni odvodi

Naj bo $f: D^{\text{odp}} \subseteq \mathbb{R}^n \to \mathbb{R}$ funkcija. Denimo, da je f parcialno odvedljiva po vseh spremenljivkah na D. Parcialni odvodi so tudi funkcije n-spremenljivk in morda so tudi te parcialno odvedljive po vseh oz. nekaterih spremenljivkah.

- Trditev. Zadostni pogoj za enakost mešanih odvodov.
- **Definicija.** Kadar je f razreda C^k na D?
- **Definicija.** Množica k-krat zvezno odvedljivih funkcij. Množica gladkih funkcij. Množica zveznih funkcij.
- *Opomba.* Kakšno strukturo ima množica $C^k(D)$ z operacijama $+, \circ$ in množenja s skalarji?
- 4. Diferenciabilnost preslikav

Naj bo $D \subseteq \mathbb{R}^n$, $a \in D$ notranja, $F: D \to \mathbb{R}^m$ preslikava.

- **Definicija.** Kadar je F diferenciabilna v točki $a \in D$? Diferencial F v točki $a \in D$.
- *Opomba.* Ali je diferencial, če obstaja, enolično določen?
- **Zgled.** Ali sta diferenciabilni $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $F(x) = \mathcal{A}x$ in $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $F(X) = X^2$?
- **Izrek.** Karakterizacija diferenciabilnosti F v točki $a \in D$ s koordinatnimi funkciji.
- *Opomba*. Kako se izraže diferencial F v točki $a \in D$ z koordinatnimi funkciji? Jacobijeva matrika.
- **Posledica.** Zadosten pogoj za diferenciabilnost F v točki a.
- **Definicija.** Kadar je F razreda C^k na D?
- Izrek. Verižno pravilo.
- *Opomba*. Kako se izraže diferencial kompozituma funkcij z Jacobijevimi matriki?
- **Posledica.** Verižno pravilo za funkcijo *n*-spremenljivk.

Izrek o implicitni funkciji

1. Izrek o inverzni preslikavi

Naj bo $D, \Omega \subseteq \mathbb{R}^n$ odprti, $\Phi: D \to \Omega$ preslikava razreda $C^1(D)$. Kakšne so zadostni pogoji za (lokalno) obrnljivost preslikave Φ ?

- **Definicija.** Kadar rečemo, da je Φ C^k -difeomorfizem?
- **Z**gled. Ali je $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ difeomorfizem?
- Lema. Kako izračunamo diferencial inverzne preslikave?
- **Trditev.** Potreben pogoj, da je Φ difeomorfizem.
- **Zgled.** Ali velja obrat? $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$, $\Phi(x,y) = (e^x \cos y, e^x \sin y)$.
- **Lema.** 3 lemi + pomožna trditev TODO
- Izrek. Izrek o inverzni preslikavi.
- **Posledica.** Kaj če je Φ razreda $C^k(D)$?
- **Definicija.** Kadar rečemo, da je Φ lokalni C^k -difeomorfizem?
- *Opomba.* Kaj pravi izrek, če je n=1?
- **Z**qled. Naj bo $F: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $F(X) = X^2$. Ali je F v okolici točke $I \in \mathbb{R}^{n \times n}$ lokalni difeomorfizem? Kaj to pomeni?
- 2. Osnovna verzija izreka o implicitni preslikavi

Naj bo $D \subseteq \mathbb{R}^2$ odprta, $(a, b) \in D$, $f : D \to \mathbb{R}$ funkcija razreda $C^1(D)$.

- **Izrek.** Osnovna verzija izreka o implicitni funkciji.
- **Posledica.** Kaj če je f razreda $C^k(D)$?
- Zgled. Kaj če pogoji niso izpolnjeni:
 - (a) $f(x,y) = (x-y)^2$, f(x,y) = 0 v okolici točke (0,0).
 - (b) $f(x,y) = y^3 x$, f(x,y) = 0 v okolici točke (0,0).
 - (c) $f(x,y) = y^2 x^2 x^4$, f(x,y) = 0 v okolici točke (0,0). (d) $f(x,y) = y^2 + x^2 + x^4$, f(x,y) = 0 v okolici točke (0,0).
- 3. Izrek o implicitni funkciji

Imamo n+m spremenljivk (x,y), kjer $x=(x_1,\ldots,x_n),\ y=(y_1,\ldots,y_m)$ in m enačb. Pričakujemo, da bomo lahko m spremenljivk izrazili kot funkcijo n ostalih, tj. najdemo presliavo $\Phi:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$, da velja $y=\Phi(x)$. Naj bo $D \subseteq \mathbb{R}^n_x \times \mathbb{R}^m_y$ odprta, $F = (f_1, \dots, f_m) : D \to \mathbb{R}^m$ preslikava razreda $C^1(D)$.

- **Definicija.** Parcialni diferencial na prvo spremenljivko. Parcialni diferencial na drugo spremenljivko.
- Opomba. Kako se izraže parcialna difernicala z matriko? Kako se izraža diferencial F z parcialnima diferenicalama?
- *Opomba.* Kako ta diferenical deluje na vektorju $\begin{bmatrix} h \\ k \end{bmatrix}$, $h \in \mathbb{R}^n$, $k \in \mathbb{R}^m$?
- Izrek. Izrek o implicitni funkciji.
- **Posledica.** Kaj če je F razreda $C^k(D)$?
- **Zgled.** Naj bo $F(x,y) = x^2 + y^2 1$ in naj rešujemo enačbo F(x,y) = 0 v okolici točke (0,1). S pomočjo dokaza izreka o implicitni preslikavi določi $y = \varphi(x)$.
- **Zgled.** Naj bosta $f(x,y,z) = y + xy + xz^2$ in $g(x,y,z) = z + zy + x^2$. Dokaži, da sistem enačb f(x,y,z) = 0in g(x,y,z)=0 v okolici točke (0,0,0) enolično določa C^{∞} funkciji y=y(x) in z=z(x) in razvij jih v Taylorjevo vrsto do členov reda 2.

4. Rang preslikave

Naj bo $D \subseteq \mathbb{R}^n$ odprta, $a \in D$ in $F : D \to \mathbb{R}^m$ preslikava razreda C^1 .

- Zgled. Naj bo $F: \mathbb{R}^3 \to \mathbb{R}$ funkcija. Recimo, da rešujemo enačbo F(x, y, z) = 0 in vemo, da F(a, b, c) = 0. Kakšen je zadosten pogoj za to, da bi lahko vsaj eno spremenljivko izrazili kot funkcijo ostalih?
- Zgled. Naj bosta $F: \mathbb{R}^3 \to \mathbb{R}$ in $G: \mathbb{R}^3 \to \mathbb{R}$ funkciji. Recimo, da rešujemo sistem enačb F(x,y,z) = 0 in G(x,y,z) = 0 in vemo, da F(a,b,c) = 0 in G(a,b,c) = 0. Kakšen je zadosten pogoj za to, da bi lahko vsaj dve spremenljivke izrazili kot funkcijo tretje?
- **Definicija.** Rang F v točki $a \in D$. Rang F. Kadar rečemo, da je F v točki $a \in D$ maksimalnega ranga?
- *Opomba*. Ali je maksimalnost ranga lokalno stabilna?
- Primer. Obrnljiva matrika in permutacija koordinat. TODO
- Posledica IIF. Čemu je ekvivalentna enačba F(x) = 0, če je m < n?
- Primer. Naj bo $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^m$ linearna, $m \leq n$, rang $\mathcal{A} = m$. Kakšno dimenzijo ima prostor rešitev enačbe $\mathcal{A}x = b$?
- Posledica. Kaj lahko povemo o F v točki $a \in D$, če je rang $_a F = m$, če $m \le n$?

1.5 Podmnogoterosti v \mathbb{R}^n

Podmnogoterosti je posplošitev pojmov "krivulja" in "ploskev".

- 1. Podmnogoterosti
 - Definicija. Gladka podmnogoterost. Lokalne definicijske funkcije.
 - Opomba. Kaj je podmnogoterost, če je njena kodimenzija enaka 0?
 - Zgled. Gledamo v \mathbb{R}^3 . Naj bo $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3 : \mathbb{R}^3 \to \mathbb{R}$ linearni. Kaj dobimo, če vzamemo za definiciske funkcije eno, dve ali tri funkcije izmed $\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3$? Kadar govorimo o krivuljah in kadar o ploskvah?
 - Zgled. Ugotovi, ali je podmnogoterost:

```
 \begin{aligned} & - M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}. \\ & - M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, \ x + y + z = 0\}. \\ & - M = (\{0\} \times \mathbb{R}) \cup (\mathbb{R} \times \{0\}). \end{aligned}
```

- Opomba. Ali je rob kvadrata z stranico 2 in središčem v (0,0) gladka podmnogoterost v \mathbb{R}^2 ?
- **Zgled.** Ugotovi, ali je podmnogoterost: $\operatorname{GL}_n(\mathbb{R}) = \{ A \in \mathbb{R}^{n \times n} \mid \det A \neq 0 \}.$

$$-\operatorname{GL}_n(\mathbb{R}) = \{ A \in \mathbb{R} \mid \det A \neq 0 \}.$$

$$-\operatorname{SL}_n(\mathbb{R}) = \{ A \in \mathbb{R}^{n \times n} \mid \det A = 1 \}.$$

- *Opomba*. Kadar rečemo, da je podmnogoterost podana implicitno?
- Trditev. Karakterizacija podmnogoterosti (ali je lokalno graf?)
- Opomba. Kadar rečemo, da je podmnogoterost podana eksplicitno?
- Zgled. Ali je $M = \{(x, x^2) \mid x \in \mathbb{R}\}$ podmnogoterost?
- 2. Parametrično padajanje mnogoterosti
 - Zgled. Ali je parametrizacija $\varphi \mapsto (a\cos\varphi, a\sin\varphi), \ a>0, \ \varphi \in [0,2\pi)$ določa podmnogoterost?
 - Trditev.

1.6 Ekstremi funkcij več spremenljivk

- 1. Ekstremi funkcij več spremenljivk
 - Naj bo $D \subseteq \mathbb{R}^n$, $a \in D$, $f : D \to \mathbb{R}$ funkcija.
 - **Definicija.** Lokalni maksimum/minimum. Strogi lokalni maksimum/minimum. Maksimum/minimum (globalni). Lokalni ekstrem. Globalni ekstrem.
 - *Opomba*. Kaj ima zvezna funkcija na kompaktu?
 - **Definicija.** Stacionarna (oz. kritična) točka $a \in D^{\text{odp}}$ diferenciabline funkcije f.
 - Trditev. Kaj če ima diferenciablina funkcija f v točki $a \in D^{\text{odp}}$ lokalni ekstrem?
 - **Zgled.** Poišči minimum in maksimum $f(x,y) = x^2 xy + y^2 3x + 4$ na $K = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 3\}$.
- 2. Potrebni in zadostni pogoji na 2. odvodi, da je kritična točka lokalni ekstrem

Naj bo $D\subseteq\mathbb{R}^n$ odprta, $f:D\to R$ razreda C^2 na D.

- **Definicija.** Hessejeva matrika Hf 2. odvodov. Hessejeva forma.
- *Opomba*. Kaj lahko povemo o Hessejeve matrike?
- **Definicija.** Pozitivno (semi)definitna Hf. Negativno (semi)definitna Hf.
- *Opomba*. Karakterizacija pozivne/negativne (semi)definitnosti s lastnimi vrednosti *Hf*.
- Trditev. (Potrebni pogoji). Kaj velja, če ima f v točki $a \in D$ lokalni maksimum/minimum?
- Trditev. (Zadostni pogoji.) Kadar je stacionarna točka $a \in D$ funkcije f lokalni minimum/maksimum? Kadar nič od tega?
- Zgled. Določi $(Hf_i)(0,0)$ za $f_1(x,y) = \frac{1}{2}(x^2 + y^2)$, $f_2(x,y) = \frac{1}{2}(-x^2 y^2)$, $f_3(x,y) = \frac{1}{2}(x^2 y^2)$.
- **Posledica.** Kako zgledajo zadostni pogoji za primer n = 2?
- Zgled. Naj bo $f(x, y, z) = x^2 + y^2 + z^2 + 2xyz$. Klasificiraj vse stacionarne točke funkcije f.
- 3. Vezani ekstremi
 - Izrek. Obstoj Lagrangeevih multiplikatorjev.
 - *Opomba*. Lagrangeeva metoda za iskanja vezanih ekstremov.
 - Zgled. Določi stacionarne točke f(x, y, z) = z na $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1; \ x + y + z = 0\}.$
 - Zgled. Določi stacionarne točke $f(x, y, z) = x^2 xy + y^2 3x + 4$ na robu $x^2 + y^2 = 9$.

Integral s parametri $\mathbf{2}$

Naj bo $f:[a,b]_x\times[c,d]_y\to\mathbb{R}$ funkcija. Gledamo funkcijo $F(y)=\int_a^bf(x,y)\,dx$, kjer $y\in[c,d]$ je **parameter**. Zanima nas v kakšni so povezavi lastnosti funkcije f in funkcije F.

- 1. Integral s parametri
 - Definicija. Lokalno kompaktna podmnožica.
 - **Trditev.** Zadostni pogoj za zveznost funkcije $F(u, v, y) = \int_{u}^{v} f(x, y) dx$.
 - **Posledica.** Zadostni pogoj za zveznost funkcije $F(y) = \int_a^b f(x,y) dx$.
- 2. Odvajanje integrala s parametri
 - Trditev. Zadostni pogoj, da smemo zamenjati vrstni red odvajanja in integriranja v $\frac{d}{dy} \int_a^b f(x,y) dx$. Kaj lahko povemo o funckiji $F(y) = \int_a^b f(x,y) dx$?

 • Posledica. Čemu je enako $\frac{d}{dy} \int_{\alpha(y)}^{\beta(y)} f(x,y) dx$? Pri kakšnih zadostnih pogojih?

 - **Posledica.** Naj bo $y \in D^{\text{odp}} \subseteq \mathbb{R}^n$. Zadostni pogoj, da smemo zamenjati vrstni red odvajanja in integriranja v $\frac{\partial}{\partial y_j} \int_a^b f(x,y) \, dx$ za vse $j \in \{1,\ldots,n\}$. Kaj lahko povemo o funckiji $F(y) = \int_a^b f(x,y) \, dx$?
- 3. Integral integrala s parametri
 - **Trditev.** Zadostni pogoji, da smemo zamenjati vrstni red integriranja v $\int_c^d \left(\int_a^b f(x,y) \, dx \right) \, dy$.
- 4. Posplošeni integral s parametri

Naj bo Y neka množica, $a \in \mathbb{R}$, $f: [a, \infty)_x \times Y_y \to \mathbb{R}$ funkcija. Standardni predpostavki: Funkcija f za vsak $y \in Y$ zvezna, tj. $x \mapsto f(x,y)$ zvezna na $[a,\infty)$ za vsak $y \in Y$. Za vsak $y \in Y$ obstaja integral $F(y) = \int_{a}^{\infty} f(x, y) dx$

- **Definicija.** Kadar $F(y) = \int_a^\infty f(x,y) dx$ konvergira enakomerno na Y?
- **Trditev.** Zadostni pogoji za zveznost funkcije $F(y) = \int_a^\infty f(x,y) dx$.
- **Definicija.** Kadar $F(y) = \int_a^\infty f(x, y) dx$ konvergira lokalno enakomerno na Y?
- **Trditev.** Test enakomerne konvergence.
- **Trditev.** Zadostni pogoji, da smemo zamenjati vrstni red integriranja v $\int_a^\infty \left(\int_c^d f(x,y) \, dy \right) \, dx$.
- **Trditev.** Zadostni pogoji, da smemo zamenjati vrstni red integriranja v $\int_a^{\infty} (\int_c^{\infty} f(x,y) \, dy) \, dx$, če je f nenegativna.
- **Trditev.** Zadostni pogoji, da smemo zamenjati vrstni red integriranja v $\int_a^\infty \left(\int_c^\infty |f(x,y)| \, dy \right) \, dx$.
- **Trditev.** Zadostni pogoji, da smemo zamenjati vrstni red odvajanja in integriranja v $\frac{d}{du} \int_a^{\infty} f(x,y) dx$. Kaj lahko povemo o funckiji $F(y) = \int_a^\infty f(x,y) dx$?
- Posledica. Naj bo $y \in D^{\text{odp}} \subseteq \mathbb{R}^n$. Zadostni pogoj, da smemo zamenjati vrstni red odvajanja in integriranja v $\frac{\partial}{\partial y_j} \int_a^\infty f(x,y) \, dx$ za vse $j \in \{1,\ldots,n\}$. Kaj lahko povemo o funckiji $F(y) = \int_a^\infty f(x,y) \, dx$?
- 5. Eulerjeva funkcija gama
 - **Definicija.** Eulerjeva funkcija gama.
 - Trditev. Lastnosti Eulerjeve funkcije gama.
 - Izrek. S čim je enolično določena Eulerjeva funkcija gama?
 - **Izrek.** Stirlingova forumla.
 - **Posledica.** Čemu je enako $\lim_{n\to\infty} \frac{n!}{n^n e^{-n}\sqrt{2\pi n}}$? Kaj to pomeni?
- 6. Eulerjeva funkcija beta
 - **Definicija.** Eulerjeva funkcija beta.
 - Trditev. Lastnosti Eulerjeve funkcije beta.
 - **Trditev.** Kaj če v B(p,q) vpeljamo $x = \sin^2 t$?
 - **Trditev.** Kaj če v B(p,q) vpeljamo $t = \frac{t}{1+t}$?
 - **Posledica.** Čemu je enako B(p, 1-p)?
 - **Posledica.** Čemu je enako $B(\frac{1}{2}, \frac{1}{2})$?
 - **Izrek.** Osnovna povezava med B in Γ .
 - **Posledica.** Čemu je enako $\Gamma(\frac{1}{2})$?

3 Riemannov integral

- 1. Darbouxev integral
 - **Definicija.** Kvader. Delitev kvadra.
 - **Definicija.** Finejša delitev.
 - Definicija. Spodnja in zgornja Darbouxoevi vsoti.
 - Lema. Kako so povezane s(D), s(D'), S(D), S(D'), kjer je $D \leq D'$?
 - **Posledica.** Kakšna je povezava med s(D) in S(D)?
 - **Definicija.** Kadar rečemo, da je funkcija f integrabilna po Darbouxju na kvadru?
 - Dvojno in trojni integral.
- 2. Riemannov integral
 - **Definicija.** Riemannova vsota.
 - **Definicija.** Kadar rečemo, da je funkcija f integrabilna po Riemannu na kvadru?
 - *Opomba*. Ali je Riemannovo integrabilna funkcija omejena?
 - **Izrek.** Povezava med I_D in I_R .
 - Trditev. Kaj lahko povemo o zvezni funkciji na kvadru K?
 - Lema. Dovolj majhne delitve. TODO
- 3. Osnovne lastnosti Riemannovega integrala
 - Trditev. Struktura množice integrabilnih funkcij na kvadru K.
 - Trditev. Monotonost integrala.
 - Trditev. Trikotniška neenakost.
- 4. Fubinijev izrek
 - **Izrek.** Fubinijev izrek.
 - **Posledica.** Kako računamo *n*-terni integral zvezne funkcije?
 - Posledica. Kako računamo dvojni integral zvezne funkcije?
 - Posledica. Kako računamo trojni integral zvezne funkcije?
- 5. Riemannov integral na omejenij množicah
 - **Definicija.** Kadar pravimo, da je omejena funkcija integrabilna na omejeni množici A?
 - Trditev. Struktura množice integrabilnih funkcij na omejeni množici A.
 - **Definicija.** Karakteristična funkcija množice A.
 - **Definicija.** Kadar pravimo, da ima omejena množica A prostornino?
 - Opomba. Kaj lahko povemo o integrabilnosti konstantnih funkcij na množice c prostornino?
 - Trditev. Zadostni in potrebni pogoj, da ima omejena množica A prostornino.
- 6. Lastnosti omejenih množic s prostornino 0
 - Trditev. Zadostni in potrebni pogoj, da ima omejena množica A prostornino 0.
 - Trditev. Čemu je enaka prostornina končne unije množic s prostornino 0?
 - Trditev. Čemu je enaka prostornina grafa integrabilne na kvadru K funkciji?
 - Trditev. Recimo, da $A \subseteq \mathbb{R}^n$ ima prostornino, $A \subseteq K$, kjer je K kvader. Kaj lahko povemo o prostornine množice $K \setminus A$?
 - Trditev. Čemu je enak integral po množice s prostornino 0?
 - Posledica. Kaj lahko povemo o integralih funkcij, ki se razlikujeta na množice s prostornino 0?
 - **Definicija.** Kadar pravimo, da ima množica A mero 0?
 - Posledica. Čemu je enaka mera množice s prostornino 0?
 - Trditev. Čemu je enaka mera števne unije množic s mero 0?
 - **Posledica.** Čemu je enaka mera vsake števne množice v \mathbb{R}^n ?
 - Trditev. Čemu je enaka mera grafa zvezne funkcije?
 - Trditev. Kaj lahko povemo o prostornine in mere kompaktne množice?
 - **Definicija.** Kadar pravimo, da je neka lastnost velja skoraj povsod?
 - **Trditev.** Kaj lahko povemo o funkciji f na kvadru K, če $\int_K f(x) dx = 0$?
 - Posledica. Recimo, da $\forall x \in K$. $f(x) \leq g(x)$ in $\int_K f(x) dx = \int_K g(x) dx$. Kaj lahko povemo o funkcijah f in g?
 - Lema. TODO
 - **Trditev.** Kaj lahko povemo o integralu integrabilne funkcije f na omejeni množici A z mero 0?

7. Lebesguev izrek

- Izrek. Lebesguev izrek.
- Posledica. TODO
- Posledica. Kadar je funkcija f integrabilna na omejeni množici A s prostornino?
- 8. Osnovni lastnosti integrala po omejenih množicah.
 - Trditev. Struktura množice integrabilnih funkcij na omejeni množici A.
 - Trditev. Monotonost integrala.
 - Trditev. Trikotniška neenakost.
 - **Trditev.** Kaj če $\forall x \in A . m \le f(x) \le M$ in A ima prostornino?
 - Trditev. Kaj če je A kompaktna povezana množica s prostornino in f zvezna?
 - Trditev. Integral na uniji množic.
 - Izrek. Fubinijev izrek.
 - Trditev. Recimo, da ima $A \subseteq \mathbb{R}^n$ prostornino. Kaj lahko povemo o prostornine Int A in Cl A?
 - Trditev. Recimo, da ima $A \subseteq \mathbb{R}^n$ prostornino in $f: \operatorname{Cl} A \to \mathbb{R}$ omejena in integrabilna na A. Kaj lahko povemo o integralu na Int A in $\operatorname{Cl} A$?