§5.3 The Greatest Common Divisor and Chinese Remainder Theorem (CRT)

illusion

Especially made for smy

School of Mathematical Science, XMU

Monday 24th February, 2025

http://illusion-hope.github.io/25-Spring-SMY-Discussion-Session/

Outline of Chapter 5: Polynomial

Polynomial Algebra $\rightsquigarrow F[x]$ is a PID (Principal Ideal Domain)

- Division Theorem, Divisibility
- The (Not A!) Greatest Common Divisor (GCD) and Relatively Prime
- → Chinese Reminder Theorem (CRT) → Lagrange Interpolation Formula
- In PID, Irreducible ⇔ Prime
- (PID ⇒ UFD) Unique Factorization
- Repeated Factor $\rightsquigarrow (f(x), f'(x)) = 1$?

HW-1

- (1) (USTC, 2019) 已知 $(x-1)^2(x+1) \mid (ax^4+bx^2+cx+1)$, 求 a,b,c;
- (2) 求 (x+1)(x-1) 除 $f(x) = x^4 + x^3 + x + 1$ 所得的商和余式;
- (2') 求 99999999 除 1000100000010001 所得的商和余数。

New Views To Examples in Lecture 1

例 1

If $m,n,p\in\mathbb{N}^*$ have the same parity, then $x^2-x+1\mid x^{3n}-x^{3m+1}+x^{3p+2}.$ Check the converse of this proposition is also true.

$${\sf Hint:} \ \ x^2-x+1 \mid x^3+1 \mid x^{3(2k)+l}+x^{3+l}, \ \ x^2-x+1 \mid x^3+1 \mid x^{3(2k-1)+l}+x^l.$$

例 2

Determine all polynomials $f(x) \in F[x]$ such that $f[f(x)] = f^n(x)$, where $n \in \mathbf{N}^*$ is a given positive integer. **Note: You can only use the method of divisibility.**

Hint: $f^l(x) \mid f^n(x) = f[f(x)], \ \forall \ 1 \le l \le n.$

(illusion) Lecture 2 Monday 24

Euclidean Algorithm and Bézout's Theorem

Slogan:
$$f(x) = q(x)g(x) + r(x) \rightsquigarrow (f(x), g(x)) = (g(x), r(x)).$$

Thm 3

(Bézout's Theorem) Given two polynomials $f(x),g(x)\in F[x]$, then (f(x),g(x)) exists and there exist $u(x),v(x)\in F[x]$ such that

$$(f(x),g(x)) = u(x)f(x) + v(x)g(x).$$

Notes:

• u(x), v(x) are not unique. The non-uniqueness comes from the fact that if u(x), v(x) satisfy the equation, then so do $\tilde{u}(x) = u(x) + kg(x), \tilde{v}(x) = v(x) - kf(x)$ for any constant $k \in F$, i.e.,

$$(f(x), g(x)) = [u(x) + kg(x)]f(x) + [v(x) - kf(x)]g(x).$$

Euclidean Algorithm and Bézout's Theorem

- (最大公因式,互素与数域扩大无关) Suppose K is another number field such that $F \subseteq K$, then (f(x), g(x)) in K[x] will be **equal** to what is obtained over F[x]. \leadsto Key: Division Theorem!
- How to determine (f(x), g(x))? \leadsto Euclidean Algorithm.
- Special Case: $(f(x),g(x))=1 \rightsquigarrow u(x),v(x)$ are unique if $\deg u(x)<\deg g(x),\deg v(x)<\deg f(x)! \rightsquigarrow$ Try to prove it.
 - → This conclusion will be used in the proof of Lagrange Interpolation Formula.

Try

Suppose $f(x) = x^4 - x^3 - x^2 + 2x - 1, g(x) = x^3 - 2x + 1$. Figure out u(x), v(x), (f(x), g(x)).

Explore Corresponding Characterizations of GCD

Def 4

We say that d(x) is a greatest common divisor of f(x) and g(x) if d(x) is a common divisor of f(x) and g(x) that all other common divisors divide.

Set $\Omega:=\{u(x)f(x)+v(x)g(x)\mid u(x),v(x)\in F[x]\}$, then the definition is equal to:

- (1) A common divisor that has the maximal degree;
 - → GCDs have the same degree and are associate.
 - \longrightarrow The one whose leading coefficient is 1 is denoted as (f(x), g(x)).
- (2) A **nonzero** polynomial $d(x) \in \Omega$ with minimal degree;
- (3) A nonzero polynomial $d(x) \in \Omega$ divides all other elements in Ω .
- (3') (3) $\Leftrightarrow d(x) \mid f(x), d(x) \mid g(x).$

例 5

Assume $f(x), g(x) \in F[x]$ and n is a given positive integer,

(1)
$$(f(x),g(x))=d(x)\Leftrightarrow (f(x^n),g(x^n))=d(x^n);$$

(2)
$$(f(x),g(x))=d(x)\Rightarrow (f^n(x),g^n(x))=d^n(x).$$

Notes:

- (§5.4) Actually, $(f(x), g(x)) = d(x) \Leftrightarrow (f^n(x), g^n(x)) = d^n(x)$;
- Specially, $(f(x), g(x)) = 1 \Leftrightarrow (f(x^n), g(x^n)) = 1$.

(illusion) Lecture 2

例 6

Assume $f(x), g(x), h(x) \in F[x]$, prove that

- (1) (f(x), g(x), h(x)) = ((f(x), g(x)), h(x));
- (2) There exists $a(x), b(x), c(x), u(x), v(x), r(x) \in F[x]$ such that

$$(f(x), g(x), h(x)) = \det \begin{bmatrix} f(x) & g(x) & h(x) \\ a(x) & b(x) & c(x) \\ u(x) & v(x) & r(x) \end{bmatrix}.$$

Notes:

- 一般地,(1) 可以推广为 $((f_1(x), f_2(x), \dots, f_{n-1}(x)), f_n(x)) = (f_1(x), f_2(x), \dots, f_{n-1}(x), f_n(x)).$
- 存在 $u_i(x) \in F[x]$ 使 $\sum_{i=1}^n u_i(x) f_i(x) = (f_1(x), \dots, f_n(x)).$

例 7

Prove that $(x^n - 1, x^m - 1) = x^{(m,n)} - 1$, where m, n are given positive integers.

Hint: For $m, n \in \mathbb{Z}$, there always exists $u, v \in \mathbb{Z}$ such that um + vn = (m, n).

例 8

Given two polynomials in C[x]: $f(x) = a_0 + a_1x + a_2x^2 + a_{10}x^{10} + \cdots + a_{13}x^{13}$ $(a_{13} \neq 0)$ and $q(x) = b_0 + \cdots + b_3 x^3 + b_{11} x^{11} + \cdots + b_{13} x^{13}$ $(b_3 \neq 0)$, try to prove that $deg(f(x), g(x)) \leq 6$.

Hint: Recall that $\deg(f,g) = \arg\min_{u,v} \{\deg(uf + vg) \mid u,v \in F[x]\}.$

Properties of Relatively Prime

The following statements are equivalent with (f(x), g(x)) = 1:

- (1) $u(x)f(x) + v(x)g(x) = 1 \leadsto 1 \mid f(x), 1 \mid g(x)$ is trivial;
- (2) We can conclude $f(x)g(x)\mid h(x)$ from $f(x)\mid h(x),\ g(x)\mid h(x),$ for all $h(x)\in F[x];$
- (3) We can conclude $f(x) \mid h(x)$ from $f(x) \mid g(x)h(x)$, for all $h(x) \in F[x]$;
- (4) $(f(x^n), g(x^n)) = 1$ for any given positive integer n;
- (5) (f(x) + g(x), f(x)g(x)) = 1.

Try

Just check them:

- (1) $(f(x), h(x)) = 1, (g(x), h(x)) = 1 \Leftrightarrow (f(x)g(x), h(x)) = 1.$
- (2) Assume $d(x) \neq 1$ is a common divisor of f(x) and g(x), let $f(x) = f_1(x)$ $d(x), g(x) = g_1(x)d(x)$, prove that $(f_1, g_1) = 1 \Leftrightarrow (f, g) = d$. (Important!)

(illusion) Lecture 2 Monday 24th February, 2025

11/17

Properties of Relatively Prime $\rightsquigarrow (f,g)=d\neq 1$ Case

Slogan: $d(x) \neq 1$ is a common divisor, $(f_1, g_1) = 1 \Leftrightarrow (f, g) = d$.

例 9

- (1) (f(x), g(x)) = d(x), then (f(x)h(x), g(x)h(x)) = d(x)h(x);
- (2) (f(x), g(x)) = 1, then (f(x)g(x), h(x)) = (f(x), h(x))(g(x), h(x));
- (3) Only use two conditions from $(f_i(x),g_j(x))=1$ (i,j=1,2) to prove that $(f_1(x)g_1(x),f_2(x)g_2(x))=(f_1(x),f_2(x))(g_1(x),g_2(x)).$

(illusion) Lecture 2 Mo

例 10

Suppose $f(x), g(x), h(x) \in F[x], \mathbf{A} \in M_n(F)$ and $f(\mathbf{A}) = \mathbf{O}$.

- (1) If (f(x), g(x)) = d(x), then $r[g(\mathbf{A})] = r[d(\mathbf{A})]$;
- (2) If (f(x), g(x)) = 1, then g(A) is invertible;
- (3) If f(x) = g(x)h(x), then g(A), h(A) will not be invertible at the same time.

Notes:

- (Chapter 1) $A^2 A + 2E = O \rightsquigarrow A 3E$ 必定可逆;
- (Chapter 1) $A^2 = E, A E \neq O \rightsquigarrow A + E$ 必不可逆;
- (Chapter 4) $\varphi \in \mathcal{L}(V)$, $\varphi^n + a_{n-1}\varphi^{n-1} + \cdots + a_1\varphi + a_0 = \mathcal{O}$ $(a_0 \neq 0) \leadsto \varphi$ 必定可逆(为同构映射)。

Revisit An Example in Lecture 1

例 11

Prove that when $f(x) \in F[x]$ is divided by (x-a)(x-b) $(a \neq b)$, the reminder r(x) is

$$\frac{f(a) - f(b)}{a - b}x + \frac{af(b) - bf(a)}{a - b}.$$

We only need to find g(x) such that $f(x) \equiv g(x) \pmod{(x-a)(x-b)}$ with its degree lower than 2.

$$\leadsto$$
 Notice that $f(a) = f(a) \Leftrightarrow x - a \mid f(x) - f(a) \Leftrightarrow f(x) \equiv f(a) \pmod{x - a}$.

$$\leadsto \begin{cases} f(x) \equiv f(a) \pmod{x - a} \\ f(x) \equiv f(b) \pmod{x - b} \end{cases} \leadsto \mathsf{CRT}$$

Chinese Reminder Theorem (CRT)

Thm 12

Given polynomials $f_1(x), \dots, f_n(x)$, any two of which are relatively prime, then for $g_1(x), \dots, g_n(x)$ such that $\deg g_i(x) < \deg f_i(x)$, there exists a unique polynomial g(x) such that

$$g(x) \equiv g_i(x) \pmod{f_i(x)},$$

where $\deg g(x) < \sum_{i=1}^n \deg f_i(x)$.

- (1) Create one g(x) satisfying all the conditions $\leadsto \sum_{i=1}^n \left\{ u_i(x) \prod_{j \neq i} f_j(x) \right\} \cdot g_i(x)$
- (2) Unique \infty Relatively Prime

Lagrange Interpolation Formula

例 13

Suppose $a_1, \dots, a_m \in F$ are different, for $b_1, \dots, b_m \in F$, there exists a unique polynomial L(x) such that $L(a_i) = b_i$ $(i = 1, 2, \dots, m)$:

$$L(x) = \sum_{j=1}^{m} b_j \prod_{i \neq j} \frac{x - a_j}{a_i - a_j},$$

where $\deg L(x) < m$.

Hint: $L(a_i) = b_i \Leftrightarrow L(x) \equiv b_i \pmod{x - a_i}$.

(illusion) Lecture 2

例 14

求一个次数最低的 $f(x) \in F[x]$ 满足 $(x-3)^2$ 除 f(x) 余 3x-7, x^2 除 f(x) 余 $x^2 + 2x + 3$.

例 15

已知 $r_1(x) = x^2 + 2x + 3$, $r_2(x) = 3x - 7$, $A = \text{diag}\{A_1, A_2\}$, $B = \text{diag}\{B_1, B_2\}$,

$$A_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}, B_1 = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}, B_2 = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}.$$

先验证 $r_i(A_i) = B_i$,再求一个次数最低的多项式 f(x) 满足 f(A) = B.

Monday 24th February, 2025 Lecture 2