

BUNDESREPUBLIK DEUTSCHLAND

REC'D	29 JUN 2004
WIPO	PCT

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

BEST AVAILABLE COPY

Aktenzeichen: 103 27 454.5
Anmeldetag: 18. Juni 2003
Anmelder/Inhaber: Juelich Enzyme Products GmbH,
65203 Wiesbaden/DE
Bezeichnung: Oxidoreduktase aus Pichia capsulata
IPC: C 12 N, C 12 P

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 11. März 2004
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Wallner

**PRIORITY
DOCUMENT**
 SUBMITTED OR TRANSMITTED IN
 COMPLIANCE WITH RULE 17.1(a) OR (b)

5

Oxidoreduktase aus Pichia capsulata

Die vorliegende Erfindung betrifft eine Oxidoreduktase, ein Verfahren zur
10 enantioselektiven Reduktion von Carbonylverbindungen zu den entsprechenden (S)-
Hydroxyverbindungen und ein Verfahren zur Gewinnung der chiralen (R)-
Hydroxyverbindung.

Optisch aktive Hydroxyverbindungen sind wertvolle chirale Bausteine mit breiter
15 Anwendung für die Synthese von pharmakologisch wirksamen Verbindungen,
aromatischer Substanzen, Pheromonen, Agrochemikalien oder Enzyminhibitoren.

Die Zahl der für großtechnische Anwendungen in der Biokatalyse geeigneter und in
ausreichendem Maße preiswert zur Verfügung stehender Carbonylreduktasen ist dabei
20 sehr begrenzt. Die folgenden NADH abhängigen S-spezifischen Carbonyl-reduktasen
sind bekannt:

Alkoholdehydrogenase aus Pferdeleber (HLADH) (Enzyme Engineering, Vol 6, 1982,
Seite 107).

Alkoholdehydrogenase aus Hefe (YADH) (Alcohol dehydrogenases: The Enzymes,
25. (1963) Seiten 25-83. New York: Academic Press),

Carbonylreduktase aus Candida parapsilosis (CPCR) (US 5,523,223 und US
5,763,236),

Carbonylreduktase aus Rhodococcus erythropolis (RECR) (US 5,523,223) und
Norcardia fusca (Biosci. Biotechnol. Biochem., 63 (10) (1999), Seiten 1721-1729),

30 Alkohodehydrogenase aus Candida boidinii (Biochim., Biophys. Acta 716, (1982),
Seiten 298-307) oder

Alkoholdehydrogenase aus *Sulfolobus solfataricus* (FEMS Microbiology Letters, 170 (1999), Seiten 31-39).

Keine der genannten Carbonylreduktasen hat bisher großtechnisch Anwendung
5 gefunden. Der Hauptgrund hierfür ist neben den oft zu engen Substratspektren oder der geringen Enantioselektivität der Enzyme vor allem die Verfügbarkeit dieser Enzyme. Die meisten der genannten Enzyme konnten bisher nicht in ausreichendem Maße zu günstigen Preisen zur Verfügung gestellt werden.

10 Ein weiteres Problem bei der Anwendung der genannten Carbonylreduktasen ist die Regenerierung der Cofaktoren NADH oder NADPH. Die bekannten Verfahren verwenden entweder substratgekoppelte Coenzymregenerierung, beispielsweise mit 2-Propanol, oder enzymgekoppelter Coenzymregenerierung, beispielsweise mit Formiatdehydrogenase.

15

Nachteil der enzymgekoppelten Coenzymregenerierung mit Formiatdehydrogenase ist deren niedrige spezifische Aktivität (4 bis 10 U/mg), daher ist selbst die rekombinante Formiatdehydrogenase vergleichsweise teuer (J. Biotechnol. Bioeng. [1999] 64, Seiten 187-193).

20

Nachteil der substratgekoppelten Coenzymregeneration mit Isopropanol ist die ungünstige Gleichgewichtslage und die unzureichende Enzymstabilität gegenüber den verwendeten Cosubstraten wie Isopropanol.

25

Aufgabe der Erfindung ist es, eine Oxidoreduktase zur Verfügung zu stellen, die sich durch ein breites Substratspektrum, hohe Enantioselektivität und durch hohe Stabilität gegenüber organischen Lösungsmitteln auszeichnet.

Diese Aufgabe wird durch eine Oxidoreduktase in der Weise gelöst, dass sie in Anwesenheit von NADH und Wasser eine Carbonylverbindung zu der entsprechenden (S)-Hydroxyverbindung reduziert.

5 Es wurde nun gefunden, dass durch eine neue Oxidoreduktase die genannten Nachteile der Verfahren aus dem Stand der Technik behoben werden können.

Die Erfindung betrifft in zweckmäßiger Weise Oxidoreduktasen, die aus Hefen der Gattungen Pichia oder Candida, insbesondere aus Pichia capsulata gewinnbar sind.

1 Die Erfindung betrifft in weiterer Ausgestaltung Oxidoreduktase aus Pichia capsulata, die die DNA-Sequenz gemäß SEQ ID NO: 8 und die Aminosäuresequenz gemäß SEQ ID NO: 9 aufweist. Diese Sequenzen sind im anliegenden Sequenzprotokoll beschrieben.

15 Die Erfindung betrifft in einer Ausführungsform Oxidoreduktase, bei der mehr als 70 % der Aminosäuren identisch sind mit der Aminosäuresequenz SEQ ID NO: 9 und die eine spezifische Aktivität von mehr als 1 µmol pro mg Protein aufweist, bezogen auf die Umsetzung von Ethyl-4-chlor-3-oxobuttersäure zu (R)-Ethyl-4-chlor-3-hydroxybuttersäure. Bevorzugt ist eine Oxidoreduktase, bei der 80 % bis 99,5 %, insbesondere 90 % bis 99,5 %, speziell 99 % bis 99,5 % identische Aminosäuren zu der Aminosäuresequenz von SEQ ID NO: 9 sind. Die Messung der spezifischen Aktivität der Oxidoreduktase gemäß SEQ ID NO: 9 oder seiner wie nachfolgend definierten Derivate oder Analogons erfolgt mit dem Testsystem, das in Beispiel 1 beschrieben wird.

20 Die erfindungsgemäße Oxidoreduktase zeichnet sich dadurch ist, dass sie 1 bis 40 Aminosäuren zusätzlich oder 1 bis 40 Aminosäuren weniger aufweist als die Oxidoreduktase mit der Aminosäuresequenz SEQ ID NO: 9 und dass sie eine spezifische Aktivität von mehr als 1 µmol pro mg Protein aufweist, bezogen auf die

Umsetzung von Ethyl-4-chlor-3-oxobuttersäure zu (R)-Ethyl-4-chlor-3-hydroxybuttersäure. Bevorzugt sind die Oxidoreduktasen, worin 1 bis 25 Aminosäuren, insbesondere 2 bis 20 Aminosäuren, oder bevorzugt 3 bis 10 Aminosäuren mehr oder weniger als in der Aminosäuresequenz von SEQ ID NO: 9 vorkommen.

5

Die Erfindung betrifft desweiteren die Oxidoreduktase, die die Aminosäuresequenz von SEQ ID NO: 9 aufweist und ein-, zwei-, drei-, vier- oder fünffach durch ein wasserlösliches Polymer modifiziert ist und eine spezifische Aktivität mehr als 1 µmol pro mg Protein beträgt, bezogen auf die Umsetzung von Ethyl-4-chlor-3-oxobuttersäure zu (R)-Ethyl-4-chlor-3-hydroxybuttersäure. Ein wasserlösliches Polymer ist beispielsweise Polyethylenglycol. Die Bindung des Polyethylenglycols erfolgt bevorzugt am N-terminalen Ende des Proteins gemäß SEQ ID NO: 9. Die Oxidoreduktase gemäß SEQ ID NO: 9 kann auch an einen Festkörper wie Polyethylen, Polystyrol, Polysaccharid, Cellulose oder Cellulosederivate gebunden sein.

15

Die Erfindung betrifft ferner ein Proteinfragment, das Fragmente der Aminosäuresequenz SEQ ID NO: 9 darstellt, mit einer Anzahl von 5 bis 30 Aminosäuren je Fragment. Bevorzugt sind Fragmente von SEQ ID NO: 9, mit einer Kettenlänge von 6 bis 25 Aminosäuren, insbesondere 8 bis 20 Aminosäuren oder 10 bis 18 Aminosäuren, insbesondere der Aminosäuresequenz SEQ ID NO: 10. Diese Fragmente können beispielsweise zum Auffinden der erfindungsgemäßen Oxidoreduktase aus Pichia capsulata oder aus beliebig anderen Mikroorganismen eingesetzt werden.

25

Die Erfindung betrifft ferner ein Fusionsprotein, das dadurch gekennzeichnet ist, dass es die Oxidoreduktase mit der Aminosäuresequenz SEQ ID NO: 9 oder Fragmente der Aminosäuresequenz SEQ ID NO: 9 darstellt, mit einer Anzahl von 5 bis 30 Aminosäuren, die mit einem weiteren Polypeptid am N-terminalen oder Carboxy-terminalen Ende über eine Peptidbindung verbunden sind. Fusionsproteine können

beispielsweise leichter von anderen Proteinen abgetrennt werden oder werden in einer größeren Menge in den Zellen exprimiert.

Die Erfindung betrifft ferner einen Antikörper, der spezifisch an die Oxidoreduktase
5 gemäß SEQ ID NO: 9 oder SEQ ID NO: 10 bindet. Die Herstellung dieser Antikörper erfolgt nach bekannten Methoden durch Immunisierung von geeigneten Säugetieren und anschließender Gewinnung der Antikörper. Die Antikörper können monoklonal oder polyklonal sein.

10 Die Erfindung betrifft auch die isolierte Nukleinsäuresequenz, die für die Oxidoreduktase gemäß SEQ ID NO: 9 und SEQ ID NO: 10 kodiert.

Die Erfindung betrifft desweiteren eine isolierte DNA-Sequenz der Oxidoreduktase, die die Reduktion von Carbonylverbindung in Anwesenheit von NADH und Wasser zu den
15 entsprechenden (S)-Hydroxy-verbindungen katalysiert, wobei die DNA-Sequenz ausgewählt wird aus der Gruppe

- a) DNA-Sequenz, welche die Nukleotidsequenz gemäß SEQ ID NO: 8, SEQ ID NO: 5, SEQ ID NO: 6 oder SEQ ID NO: 7 aufweist oder der jeweils komplementäre Strang,
- b) DNA-Sequenz, welche mit einer oder mehreren der DNA-Sequenzen gemäß a) oder seiner komplementären Stränge hybridisiert, wobei die Hybridisierung unter stringenten Bedingungen erfolgt, und
- c) DNA-Sequenz, welche auf Grund der Degeneration des genetischen Codes, ein Protein kodiert, das durch eine oder mehrere der DNA-Sequenzen gemäß a)
25 oder b) kodiert wird.

Die Bedingungen bei der Hybridisierung sind in Sambrok and Russel, Molecular Cloning a laboratory Manual , Vol 1, Chapter 1 Protocol 30-32 beschrieben.

Die Erfindung betrifft ferner eine DNA-Sequenz, bei der mehr als 70 % der Nukleinsäurebasen mit der DNA-Sequenz gemäß SEQ ID NO: 8 oder deren komplementären Strängen identisch sind und welche die Oxidoreduktase kodiert, die eine spezifische Aktivität von mehr als 1 µmol pro mg Protein aufweist, bezogen auf die
5 Umsetzung von Ethyl-4-chlor-3-oxobuttersäure zu (R)-Ethyl-4-chlor-3-hydroxybuttersäure. Bevorzugt sind DNA-Sequenzen, worin 80 % bis 99,5 %, insbesondere 90 % bis 99,5 %, speziell 99 % bis 99,5 % der Nukleinsäurebasen identisch sind mit der DNA-Sequenz gemäß SEQ ID NO: 8.

10 Die Erfindung betrifft ferner eine Nukleinsäuresequenz mit 10 bis 50 Nukleinsäurebasen, die eine Sequenz aufweist, die einem Teil oder mehreren Teilen der DNA-Sequenz gemäß SEQ ID NO: 8 oder deren komplementären Strängen entspricht. Bevorzugt ist eine Nukleinsäuresequenz mit 15 bis 45 Nukleinsäurebasen, insbesondere 20 bis 40 Basen oder 30 bis 40 Nukleinsäurebasen der genannten DNA-
15 Sequenzen. Die genannten Nukleinsäuresequenzen sind geeignet als molekulare Proben oder als Primer für die Polymerase-Ketten-Vervielfältigungsreaktion (PCR).

20 Die Erfindung betrifft ferner einen Klonierungsvektor, enthaltend eine oder mehrere der obengenannten Nukleinsäure- oder DNA-Sequenzen. Die Erfindung betrifft ferner einen Expressionsvektor, der sich in einer Bakterien-, Insekten-, Pflanzen- oder Säugetierzelle befindet und eine oder mehrere der obengenannten Nukleinsäure- oder DNA-Sequenzen enthält, die in geeigneter Weise mit einer Expressionskontrollsequenz verbunden sind. Die Erfindung betrifft ferner eine Wirtszelle, die eine Bakterien-, Hefe-, Insekten-, Pflanzen- oder Säugetierzelle ist und mit einem Expressionsvektor
25 transformiert oder transfektiert wurde.

Die Identitäten der vorgenannten DNA-Sequenzen oder Aminosäuresequenz werden dadurch berechnet, dass die Anzahl der Aminosäuren oder Nukleinsäurebasen summiert wird, die mit Teilsequenzen der jeweiligen Proteine oder DNA-Sequenzen

identisch sind, und die Summe durch die Gesamtzahl der Aminosäuren oder Nukleinsäurebasen dividiert und mit Hundert multipliziert wird.

5 Geeignete Klonierungsvektoren sind beispielsweise ppCR-Script, pCMV-Script, pBluescript (Stratagene), pDrive cloning Vector (Quiagen, Hilden, Deutschland), pS Blue, pET Blue, pET LIC-Vektoren (Novagen, Madison, USA) sowie TA-PCR Klonierungsvektoren (Invitrogen, Karlsruhe, Deutschland).

10 Geeignete Expressionsvektoren sind beispielsweise pKK223-3, pTrc99a, pUC, pTZ, pSK, pBluescript, pGEM, pQE, pET, PHUB, pPLc, pKC30, pRM1/pRM9, pTrxFus, pAS1, pGEx, pMAL oder pTrx.

15 Geeignete Expressionskontrollsequenzen sind beispielsweise trp-lac (tac)-Promotor, trp-lac (trc) Promotor, lac-Promotor, T7-Promotor oder λ pL-Promotor.

20 Die Oxidoreduktase aus *Pichia capsulata* ist ein Homotetramer mit einem Molekulargewicht von 34 ± 2 kDa, bestimmt im SDS-Gel, und einem Molekulargewicht von 140 ± 10 kDa, bestimmt mit Gelpermeationchromatographie. Das Temperaturoptimum der Oxidoreduktase liegt im Bereich von 40°C bis 45°C , das pH-Optimum für die Reduktionsreaktion liegt im Bereich von 6,5 bis 7,0 und das pH-Optimum für die Oxidationsreaktion liegt im Bereich von 7,8 und 8,2. Die Oxidoreduktase aus *Pichia capsulata* weist eine gute Temperatur- und pH-Stabilität auf und ist im pH-Bereich von 5,5 bis 8,5 und im Temperaturbereich von 15°C bis 40°C für 5 Stunden stabil und zeigt ferner eine hohe Stabilität in organischen Lösungsmitteln.

25 Das Enzym ist insbesondere aus Hefen der Gattung *Pichia* isolierbar und kann im spektrophotometrischen Test über die Abnahme von NADH bei 340 nm in Gegenwart eines entsprechenden Substrates, beispielsweise Ethyl-4-chloro-3-oxobutyrat oder 2-Butanon, nachgewiesen werden.

Die erfindungsgemäße Oxidoreduktase aus *Pichia capsulata* wurde kloniert und konnte in *Escherichia coli* (*E. coli*) mit Aktivitäten von 1000 bis 10 000 U/g *E. coli* Feuchtgewicht überexprimiert werden. Das Enzym ist preiswert und in großen Mengen verfügbar. Sequenzvergleiche in Datenbanken zeigen auf, dass es sich bei der erfindungsgemäße Oxidoreduktase aus *Pichia capsulata* um eine Zink abhängige Carbonylreduktase handelt.

Die Erfindung betrifft auch ein Verfahren zur Gewinnung der Oxidoreduktase aus *Pichia capsulata*. Dazu wird die DNA, die für die Oxidoreduktase aus *Pichia capsulata* kodiert, beispielsweise in einem geeigneten prokaryotischen oder eukaryotischen Mikroorganismus exprimiert. Bevorzugt wird die Oxidoreduktase aus *Pichia capsulata* in einen *E. coli* Stamm transformiert und exprimiert, insbesondere in *E. coli* BL21star (DE3) Zellen.

Die Oxidoreduktase aus *Pichia capsulata* lässt sich beispielsweise so gewinnen, dass die oben genannten rekombinanten *E. coli* Zellen kultiviert werden, die Expression der Oxidoreduktase induziert wird und anschließend nach etwa 10 bis 18 Stunden (h) die Zellen durch Ultraschallbehandlung oder durch Naßvermahlung mit Glasperlen in einer Kugelmühle (Retsch, GmbH, Haan Deutschland 10 min, 24 Hz) aufgeschlossen werden. Der erhaltene Zellextrakt kann entweder direkt verwendet werden oder weiter gereinigt werden. Dazu wird der Zellextrakt beispielsweise zentrifugiert und der erhaltene Überstand wird einer Ionenaustauschchromatographie unterworfen, beispielsweise durch Ionenaustauschchromatographie in einem Q-Sepharose Fast Flow ® Gerät (Fa. Pharmacia).

25

Die Erfindung betrifft ferner ein Verfahren zur enantioselektiven Reduktion von Carbonylverbindungen zu den entsprechenden (S)-Hydroxyverbindungen, das dadurch gekennzeichnet ist, dass

a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert, und
b) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

5

Das erfindungsgemäße Verfahren weist eine hohe Standzeit auf, eine enantiomeren Reinheit von mehr als 95 % der hergestellten chiralen (S)-Hydroxyverbindungen und eine hohe Ausbeute bezogen auf die eingesetzte Menge der Carbonylverbindung.

10 Unter dem Begriff "NADH" wird reduziertes Nicotinamid-adenin-dinucleotid verstanden.
Unter dem Begriff "NAD" wird Nicotinamid-adenin-dinucleotid verstanden.

Unter dem Begriff "Carbonylverbindung" werden beispielsweise Verbindungen der Formel I

15

verstanden.

Der Rest R1 steht beispielsweise für

20 1) $-(\text{C}_1\text{-C}_{20})$ -Alkyl, worin Alkyl geradkettig oder verzweigt ist,
2) $(\text{C}_2\text{-C}_{20})$ -Alkenyl, worin Alkenyl geradkettig oder verzweigt ist und je nach Kettenlänge ein, zwei, drei oder vier Doppelbindungen enthält,
3) $-(\text{C}_2\text{-C}_{20})$ -Alkinyl, worin Alkinyl geradkettig oder verzweigt ist und gegebenenfalls ein, zwei, drei oder vier Dreifachbindungen enthält,
4) $-(\text{C}_6\text{-C}_{14})$ -Aryl,
25 5) $-(\text{C}_1\text{-C}_8)$ -Alkyl- $(\text{C}_6\text{-C}_{14})$ -Aryl,
6) $-(\text{C}_5\text{-C}_{14})$ -Heterocyclus, der unsubstituiert oder ein- bis dreifach substituiert ist durch Halogen, Hydroxyl, Amino oder Nitro, oder
7) $-(\text{C}_3\text{-C}_7)$ -Cycloalkyl,

wobei die unter 1) bis 7) genannten Reste unsubstituiert sind oder ein-, zwei- oder dreifach substituiert sind, unabhängig voneinander, durch

- a) -OH,
- b) Halogen, wie Fluor, Chlor, Brom oder Jod,
- 5 c) -NO₂ oder
- d) -NH₂.

Der Rest R₂ steht beispielsweise für

- 10 1) -(C₁-C₆)-Alkyl, worin Alkyl geradkettig oder verzweigt ist,
- 2) -(C₂-C₆)-Alkenyl, worin Alkenyl geradkettig oder verzweigt ist und je nach Kettenlänge ein, zwei oder drei Doppelbindungen enthält,
- 3) -(C₂-C₆)-Alkinyl, worin Alkinyl geradkettig oder verzweigt ist und gegebenenfalls ein oder zwei Dreifachbindungen enthält, oder
- 4) -(C₀-C₁₀)-Alkyl-C(O)-O-(C₁-C₆)-Alkyl, worin Alkyl gerade oder verzweigt ist und unsubstituiert oder ein- bis dreifach substituiert ist durch Halogen, Hydroxyl, 15 Amino oder Nitro,

wobei die unter 1) bis 4) genannten Reste unsubstituiert sind oder ein-, zwei- oder dreifach substituiert sind unabhängig voneinander durch

- 20 a) -OH,
- b) Halogen, wie Fluor, Chlor, Brom oder Jod,
- c) -NO₂ oder
- d) -NH₂.

25 Unter dem Begriff chirale "(S)-Hydroxyverbindung" werden beispielsweise Verbindungen der Formel II

verstanden, wobei die -OH Gruppe in der Regel in (S)-Konfiguration zum Kohlenstoffatom steht, an das sie gebunden ist und R1 und R2 die Bedeutung wie in Formel I haben.

5 Sollte jedoch in der Nähe des Alkohols eine Carbonylgruppe oder ein Halogenatom stehen, ändert sich die Nomenklatur und die enantioselektiven Alkohole werden dann auch als (R)-Alkohole bezeichnet. Dies ist jedoch nur eine Frage der Nomenklatur, aber ändert nichts an der stereoselektiven Art und Weise wie die erfindungsgemäße Oxidoreduktase die Reduktion durchführt.

1 Unter dem Begriff Aryl werden aromatische Kohlenstoffreste verstanden mit 6 bis 14 Kohlenstoffatomen im Ring. -(C₆-C₁₄)-Arylreste sind beispielsweise Phenyl, Naphthyl, 1-Naphthyl, 2-Naphthyl, Biphenylyl, 2-Biphenylyl, 3-Biphenylyl und 4-Biphenylyl, Anthryl oder Fluorenyl. Biphenylylreste, Naphthylreste und insbesondere Phenylreste sind bevorzugte Arylreste. Unter dem Begriff "Halogen" wird ein Element aus der Reihe Fluor, Chlor, Brom oder Jod verstanden. Unter dem Begriff -(C₁-C₂₀)-Alkyl wird ein Kohlenwasserstoffrest verstanden, dessen Kohlenstoffkette geradkettig oder verzweigt ist und 1 bis 20 Kohlenstoffatome enthält beispielsweise Methyl, Ethyl, Propyl, Isopropyl, Butyl, tertär-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Nonenyl oder Decanyl. Unter dem Begriff "-C₀-Alkyl" wird eine kovalente Bindung verstanden.

20 Unter dem Begriff -(C₃-C₇)-Cycloalkyl" werden cyclische Kohlenwasserstoffreste verstanden wie Cyclopropyl, Cylobutyl, Cyclopentyl, Cyclohexyl oder Cycloheptyl.

25 Der Begriff -(C₅-C₁₄)-Heterocyclus" steht für einen monocyclischen oder bicyclischen 5-gliedrigen bis 14-gliedrigen heterocyclischen Ring, der teilweise gesättigt oder vollständig gesättigt ist. Beispiele für Heteroatome sind N, O und S. Beispiele für die Begriffe -(C₅-C₁₄)-Heterocyclus sind Reste, die sich von Pyrrol, Furan, Thiophen, Imidazol, Pyrazol, Oxazol, Isoxazol, Thiazol, Isothiazol, Tetrazol, 1,2,3,5-Oxathiadiazol-2-Oxide, Triazolone, Oxadiazolone, Isoxazolone, Oxadiazolidindione, Triazole, welche

durch F, -CN, -CF₃ oder -C(O)-O-(C₁-C₄)-Alkyl substituert sind, 3-Hydroxypyrrro-2,4-dione, 5-Oxo-1,2,4-Thiadiazole, Pyridin, Pyrazin, Pyrimidin, Indol, Isoindol, Indazol, Phthalazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, -Carbolin und benz-anellierte, cyclopenta-, cyclohexa- oder cyclohepta-anellierte Derivate dieser Heterocyclen ableiten. Insbesondere bevorzugt sind die Reste 2- oder 3-Pyrrolyl, Phenylpyrrolyl wie 4- oder 5-Phenyl-2-pyrrolyl, 2-Furyl, 2-Thienyl, 4-Imidazolyl, Methyl-imidazolyl, zum Beispiel 1-Methyl-2-, -4- oder -5-imidazolyl, 1,3-Thiazol-2-yl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, 2-, 3- oder 4-Pyridyl-N-oxid, 2-Pyrazinyl, 2-, 4- oder 5-Pyrimidinyl, 2-, 3- oder 5-Indolyl, substituiertes 2-Indolyl, zum Beispiel 1-Methyl-, 5-Methyl-, 5-Methoxy-, 5-Benzylxy-, 5-Chlor- oder 4,5-Dimethyl-2-indolyl, 1-Benzyl-2- oder -3-indolyl, 4,5,6,7-Tetrahydro-2-indolyl, Cyclohepta[b]-5-pyrrolyl, 2-, 3- oder 4-Chinolyl, 1-, 3- oder 4-Isochinolyl, 1-Oxo-1,2-dihydro-3-isochinolyl, 2-Chinoxalinyl, 2-Benzofuranyl, 2-Benzo-thienyl, 2-Benzoxazolyl oder Benzothiazolyl oder Dihydropyridinyl, Pyrrolidinyl, zum Beispiel 2- oder 3-(N-Methylpyrrolidinyl), Piperazinyl, Morpholinyl, Thiomorpholinyl, Tetrahydrothienyl oder Benzodioxolanyl.

Bevorzugte Verbindungen der Formel I sind beispielsweise Ethyl-4-chloracetoacetat, Methylacetoacetat, Ethyl-8-chloro-6-oxooctansäure, Ethyl-3-oxovaleriat, 4-Hydroxy-2-butanon, Ethyl-2-oxovaleriat, Ethyl-2-oxo-4-phenylbuttersäure, Ethylpyruvat, Ethylphenylglyoxylat, 1-Phenyl-2-propanon, 2,3-Dichloracetophenon, Acetophenon, 2-Octanon, 3-Octanon oder 2-Butanon.

Die entsprechend gebildeten S-Alkohole sind beispielsweise (R)-Ethyl-4-chloro-3-hydroxybuttersäure, Ethyl-(S)-2-Hydroxy-4-phenylbuttersäure, (S)-2-Octanol oder (R)-Ethyl-8-chlor-6-hydroxyoctansäure.

Geeignete Oxidoreduktasen stammen beispielsweise aus *Pichia capsulata*. Die Oxidoreduktase kann in dem erfindungsgemäßen Verfahren entweder vollständig gereinigt oder teilweise gereinigt eingesetzt werden. Das Verfahren wird mit der erfindungsgemäßen Oxidoreduktase oder mit Zellen, enthaltend die erfindungsgemäße

Oxidoreduktase, durchgeführt. Die eingesetzten Zellen können dabei nativ, permeabilisiert oder lysiert vorliegen. Bevorzugt wird die klonierte Oxidoreduktase gemäß SEQ ID NO: 9 eingesetzt.

5 Die Volumenaktivität der eingesetzten Oxidoreduktase beträgt von 100 Units/ml (U/ml) bis 5000 U/ml, bevorzugt etwa 500 U/ml.

Je kg umzusetzender Verbindung der Formel I werden 5000 bis 2 000 000 U Oxidoreduktase eingesetzt, bevorzugt etwa 10 000- 200 000 U. Der Enzymeinheit 1 U entspricht dabei der Enzymmenge die benötigt wird um 1 µmol der Verbindung der Formel I je Minute (min) umzusetzen.

Die Erfindung betrifft ferner ein Verfahren zur enantioselektiven Reduktion von Carbonylverbindungen zu den entsprechenden (S)-Hydroxyverbindungen, bei dem

15 a) eine Carbonylverbindung in Anwesenheit der erfindungsgemäßen Oxidoreduktase, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert wird,
b) das durch die Oxidoreduktase gebildete NAD mit einem Cosubstrat zu NADH reduziert und
20 c) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

Die eingesetzten Mengen der Carbonylverbindungen und Oxidoreduktasen entsprechen den zuvorgenannten Mengen in den beschriebenen Verfahren. Geeignete Cosubstrate für das erfindungsgemäße Verfahren sind Alkohole wie Ethanol, 2-Propanol (Isopropanol), 2-Butanol, 2-Pentanol oder 2-Octanol. Diese Cosubstrate werden mit Hilfe der erfindungsgemäßen Oxidoreduktase und NAD zu den entsprechenden Ketonen und NADH umgesetzt. Dadurch kommt es zur Regenerierung des NADH's.

Die Menge des Cosubstrats für die Regenerierung von NAD zu NADH wie Isopropanol beträgt von 5 % bis 50 % bezogen auf das Gesamtvolumen, bevorzugt von 8 % bis 20 %, insbesondere von 10 % bis 15 %.

5 Die Erfindung betrifft desweiteren ein Verfahren zur enantioselektiven Gewinnung von (S)-Hydroxyverbindungen, bei dem

- a) eine Carbonylverbindung in Anwesenheit der erfindungsgemäßigen Oxidoreduktase, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert wird,
- b) das durch die Oxidoreduktase gebildete NAD mit einer Dehydrogenase und einem Cosubstrat zu NADH reduziert und
- c) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

15 Geeignete Dehydrogenasen sind beispielsweise NADH abhängige Alkohol-Dehydrogenasen aus Bäckerhefe, aus *Candida boidinii* oder *Candida parapsilosis*. Geeignete Cosubstrate für die eingesetzte Alkohol-Dehydrogenase sind Alkohole wie Ethanol, 2-Propanol (Isopropanol), 2-Butanol, 2-Pentanol oder 2-Octanol.

20 Ferner kann die NAD-Reduktion auch mittels Formiat-Dehydrogenase (Tishkov et al., J. Biotechnol. Bioeng. [1999] 64, 187-193, Pilot-scale production and isolation of recombinant NAD and NADP specific formate dehydrogenase) durchgeführt werden. Geeignete Cosubstrate der Formiat-Dehydrogenase sind beispielsweise Salze der Ameisensäure wie Ammoniumformiat, Natriumformiat oder Calciumformiat.

25 Bevorzugt kommt die substratgekoppelte Coenzymregenerierung mit einem sekundären Alkohol wie Ethanol, 2-Propanol (Isopropanol), 2-Butanol, 2-Pentanol oder 2-Octanol zur Anwendung. Daher wird das Verfahren bevorzugt ohne eine zusätzliche Dehydrogenase durchgeführt.

Dem im Verfahren eingesetzten Wasser wird bevorzugt ein Puffer zugesetzt, beispielsweise Kaliumphosphat-, Tris/HCl- oder Triethanolamin-Puffer mit einem pH-Wert von 5 bis 10, vorzugsweise einem pH-Wert von 6 bis 9. Die Pufferkonzentration beträgt von 10 mM bis 150 mM.

5

Der Puffer kann zusätzlich noch Ionen zur Stabilisierung oder Aktivierung der Enzyme enthalten, beispielsweise Zinkionen oder Magnesiumionen.

Die Temperatur beträgt beispielsweise 10 °C bis 60 °C, bevorzugt 30 °C bis 55 °C.

10

Die Erfindung betrifft desweiteren ein Verfahren zur enantioselektiven Gewinnung von (S)-Hydroxyverbindungen, bei dem

15

- a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase, NADH und Wasser zur entsprechenden (S)-Hydroxy-verbindung reduziert wird,
- b) die Reaktionen in Anwesenheit eines organischen Lösungsmittel durchgeführt und
- c) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

20

Die bevorzugten organischen Lösungsmittel sind beispielsweise Diethylether, tertiär-Butylmethylether, Diisopropylether, Dibutylether, Butylacetat, Heptan, Hexan oder Cyclohexan.

25

Der Reaktionsansatz besteht beim Einsatz zusätzlicher Lösungsmittel aus einer wässrigen Phase und einer organischen Phase. Die organische Phase wird durch ein geeignetes Lösungsmittel, in dem das Substrat gelöst vorliegt, oder durch das wasserunlösliche Substrat selbst gebildet.

30

Die organische Phase beträgt dabei 5 % bis 80 % des gesamten Reaktionsvolumens, bevorzugt 10 % bis 40 %.

Das Wasser bildet im erfindungsgemäßen Zwei-Phasen-System die eine flüssige Phase und das organische Lösungsmittel bildet die zweite flüssige Phase. Gegebenenfalls kann auch noch eine feste oder weitere flüssige Phase vorliegen, die beispielsweise durch nicht vollständig gelöste Oxidoreduktase und/oder hinzugefügte 5 Enzyme oder durch die Carbonylverbindung entsteht. Bevorzugt sind jedoch zwei flüssige Phasen ohne feste Phase. Die zwei flüssigen Phasen werden bevorzugt mechanisch gemischt, so dass große Oberflächen zwischen den beiden flüssigen Phasen ausgebildet werden.

1. Die Konzentration des Cofaktors NADH bezogen auf die wässrige Phase beträgt 0,01 mM bis 1 mM, insbesondere 0,05 mM bis 0,2 mM.

Die Carbonylverbindung wird im erfindungsgemäßen Verfahren in einer Menge von 3 % bis 30 % bezogen auf das Gesamtvolumen eingesetzt, bevorzugt von 5 % bis 15 15 %, insbesondere von 10 %.

Die Erfindung betrifft ferner ein Verfahren zur enantioselektiven Reduktion von Carbonylverbindungen zu den entsprechenden (S)-Hydroxyverbindungen, bei dem

20 a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase, NADH und Wasser zur entsprechenden (S)-Hydroxy-verbindung reduziert wird,

b) die Reaktionen in Anwesenheit eines organischen Lösungsmittel durchgeführt wird,

c) das durch die Oxidoreduktase gebildete NAD mit einem Cosubstrat zu NADH 25 reduziert und

d) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

Die eingesetzten Mengen der Carbonylverbindungen und Oxidoreduktasen entsprechen den zuvorgenannten Verfahren. Geeignete Cosubstrate für das Verfahren 30 sind Alkohole wie Ethanol, 2-Propanol (Isopropanol), 2-Butanol, 2-Pentanol oder 2-

Octanol. Diese Cosubstrate werden mit Hilfe der Oxidoreduktase und NAD zu den entsprechenden Ketonen und NADH umgesetzt. Dadurch kommt es zur Regenerierung des NADH's.

5 Die Menge des Cosubstrats wie Isopropanol für die Regenerierung von NAD zu NADH beträgt 5 % bis 50 %, bezogen auf das Gesamtvolumen, bevorzugt 8 % bis 20 % und insbesondere 10 % bis 15 %.

Die Erfindung betrifft des Weiteren ein Verfahren zur enantioselektiven Reduktion von
1 Carbonylverbindungen zu den entsprechenden (S)-Hydroxyverbindungen, bei dem

a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert wird,
b) das durch die Oxidoreduktase gebildete NAD mit einer Dehydrogenase und einem Cosubstrat gleichzeitig zu NADH reduziert,
15 c) die Reaktionen in Anwesenheit eines organischen Lösungsmittel durchgeführt und
d) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

20 Bevorzugt wird im erfindungsgemäßen Verfahren noch ein weiterer Stabilisator der Alkohol-Dehydrogenase eingesetzt. Geeignete Stabilisatoren sind beispielsweise Glycerin, Sorbitol, 1,4-DL-Dithiothreit (DTT) oder Dimethylsulfoxid (DMSO).

Das erfindungsgemäße Verfahren wird beispielsweise in einem geschlossenen
25 Reaktionsgefäß aus Glas oder Metall durchgeführt. Dazu werden die Komponenten einzeln in das Reaktionsgefäß übergeführt und unter einer Atmosphäre von beispielsweise Stickstoff oder Luft gerührt. Je nach Substrat und eingesetzter Carbonylverbindung beträgt die Reaktionszeit 1 Stunde bis 48 Stunden, insbesondere 2 Stunden bis 24 Stunden.

Anschließend wird das Reaktionsgemisch aufgearbeitet. Dazu wird die wässrige Phase abgetrennt und die organische Phase gefiltert. Die wässrige Phase kann gegebenenfalls noch einmal extrahiert werden und wie die organische Phase weiter aufgearbeitet werden. Danach wird gegebenenfalls das Lösungsmittel aus der gefilterten organischen Phase verdampft. Auf diese Weise wird das Produkt (R)-Ethyl-4-chlor-3-hydroxybuttersäure mit einer Enantiomerenreinheit von mehr als 99 % und im wesentlichen frei vom Edukt Ethyl-4-chloracetoacetat erhalten. Die Gesamtausbeute des Prozesses beträgt nach Destillation des Produktes 50 % bis 95 %, bezogen auf die eingesetzte Eduktmenge.

5

1

Die Erfindung betrifft ferner ein Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II,

15

mit den Resten R1 und R2 wie sie zuvor definiert sind. Bei diesem Verfahren wird

20

- a) ein Gemisch, enthaltend die racemische Verbindung der Formel II, mit der erfindungsgemäßen Oxidoreduktase, NAD und Wasser inkubiert und
- b) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert.

Hierbei wird die (S)-Hydroxyverbindung der Formel II zur entsprechenden Ketoverbindung und NADH umgesetzt.

25

Die Erfindung betrifft desweiteren ein Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II, bei dem

- a) ein Gemisch, enthaltend die racemische Verbindung der Formel II, mit der erfindungsgemäße Oxidoreduktase, NAD und Wasser inkubiert wird,

- b) das durch die Oxidoreduktase gebildete NADH mit einem Cosubstrat zu NAD oxidiert und
- c) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

5 Die Erfindung betrifft ferner ein Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II, bei dem

- a) ein Gemisch, enthaltend die racemische Verbindung der Formel II, mit der erfindungsgemäße Oxidoreduktase, NAD und Wasser inkubiert wird,
- b) das durch die Oxidoreduktase gebildete NADH mit einer Dehydrogenase und einem Cosubstrat zu NAD oxidiert und
- c) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

15 Die Erfindung betrifft in weiterer Ausgestaltung ein Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II, bei dem

- a) ein Gemisch, enthaltend die racemische Verbindung der Formel II, mit der erfindungsgemäße Oxidoreduktase, NAD und Wasser inkubiert wird,
- b) die Reaktionen in Anwesenheit eines organischen Lösungsmittels durchgeführt und
- c) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

20 Ein weiteres erfindungsgemäßes Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II zeichnet sich dadurch aus, dass

25

- a) ein Gemisch, enthaltend die racemische Verbindung der Formel II, mit der erfindungsgemäße Oxidoreduktase, NAD und Wasser inkubiert wird,
- b) die Reaktionen in Anwesenheit eines organischen Lösungsmittels durchgeführt,
- c) das durch die Oxidoreduktase gebildete NADH mit einer Dehydrogenase und einem Cosubstrat zu NAD oxidiert und

30

d) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

5

Die Reaktionsbedingungen sind im wesentlichen dieselben wie im zuvor genannten Verfahren zur enantiospezifischen Reduktion der Ketoverbindungen der Formel I. Es wird jedoch statt einer enantioselektiven Reduktion der Ketoverbindung der Formel I aus dem racemischen Gemisch der Verbindung der Formel II nur die (S)-Hydroxyverbindung der Formel II enantioselektiv zur entsprechenden Ketoverbindung oxydiert. Dadurch verbleibt die (R)-Hydroxyverbindung der Formel II und kann isoliert werden.

10

15

Ferner wird im Verfahren anstelle der als Cosubstrate eingesetzten Alkohole wie Ethanol, 2-Propanol (Isopropanol), 2-Butanol, 2-Pentanol oder 2-Octanol, deren entsprechenden Ketone wie Aceton zur Regenerierung des NAD eingesetzt. Beispielsweise wird das Aceton und NADH mit der erfindungsgemäßen Oxidoreduktase oder einer zusätzlichen Dehydrogenase zu NAD und Isopropanol umgesetzt. Die eingesetzten Ketomengen betragen von 5 % bis 50 % bezogen auf das Gesamtvolumen, bevorzugt 8 % bis 20 % und insbesondere von 10 % bis 15 %.

20
Die Erfindung wird im folgenden anhand von Beispielen erläutert.

Beispiele

25

Beispiel 1: Screening von Hefen nach S-spezifischer Alkoholdehydrogenase

30

Zum Screening wurde eine Reihe verschiedener Hefestämme in folgendem Medium kultiviert (Angaben jeweils g/l): Hefeextrakt (3), Malzextrakt (3), Peptone (5) und Glucose (10). Das Medium wurde bei 121 °C sterilisiert und die Hefen wurden ohne weitere pH-Regulierung bei 25 °C und auf einem Schüttler bei 160 Umdrehungen pro Minute (rpm) kultiviert. Anschließend wurden 125 mg Zellen mit 800 µl Aufschlusspuffer (100 mM Triethanolamin (TEA), pH = 7,0) resuspendiert, mit 1 g Glasperlen versetzt

und 10 Minuten (min) bei 4 °C in der Kugelmühle aufgeschlossen (Firma Retsch). Der nach 2 min Zentrifugieren mit 12000 rpm erhaltene Überstand (Lysat) wurde im folgenden Aktivitätsscreening und zur Bestimmung des Enantiomerenüberschusses (ee-Wert) eingesetzt. Als Substrate wurden Ethyl-4-chloracetoacetat und 2-Chloro-1-(3-chlorophenyl)ethan-1-on eingesetzt.

5

Ansatz fürs Aktivitätsscreening:

10 860 µl 0,1 M KH₂PO₄/K₂PO₄ pH = 7,0 1mM MgCl₂
20 µl NADPH oder NADH (10 mM)
20 µl Lysat
100 µl jeweilige Substrat (100 mM)

15 Die Reaktion wurde 1 min bei einer Wellenlänge von 340 nm verfolgt.

20

Ansatz für ee-Wert Bestimmung:

20 µl Lysat
100 µl NADH oder NADPH (50 mM)
60 µl Substrat (Ethyl-4-chloracetoacetat 100 mM)

25

Die Ansätze zur ee-Bestimmung wurden nach 24 Stunden (h) mit Chloroform extrahiert und mittels Gaschromatographie (GC) wurde der Enantiomerenüberschuss bestimmt.

Der Enantiomerenüberschuss wird wie folgt berechnet:

$$\text{ee}(\%) = ((\text{R-Alkohol} - \text{S-Alkohol}) / (\text{R-Alkohol} + \text{S-Alkohol})) \times 100.$$

25

Juelich Enzyme Products GmbH

- 22 -

DSMZ Nr.	Mikrorganismen-name	Ethyl-4-chloracetoacetat			
		NADH	NADPH	ee-Wert NADH	ee-Wert NADPH
1345	<i>Yarrowia lipolytika</i>	0	15	96 % S	70 % S
5	3434	<i>Kluyveromyces thermotolerans</i>	0	6	--
	3435	<i>Metschnikowia zobelli</i>	0	12	--
	3795	<i>Kluyveromyces lactis</i>	0	15	80 % S
	70130	<i>Pichia anomala</i>	0	9	68 % S
	70169	<i>Pichia membranefaciens</i>	0	8	--
10	70277	<i>Pichia angusta</i>	13	4,5	racemat
	70382	<i>Pichia pastoris</i>	16	16	64 % S
	70638	<i>Candida magnoliae</i>	2,5	10	--
	70125	<i>Candida parapsilosis</i>	25	11	52 % R
	2147	<i>Pichia methanolica</i>	18	27	84 % S
15		<i>Candida methylica</i>	8	13	94 % S
	70260	<i>Pichia capsulata</i>	50	5	100 % R

DSMZ steht für Deutschen Sammlung für Mikroorganismen und Zellkulturen,
Mascheroder Weg 1b, 38124 Braunschweig

20 Definition der Enzymeinheiten: 1 U entspricht der Enzymmenge die benötigt wird um
1 µmol Substrat pro min umzusetzen.

Beispiel 2: Isolierung einer NADH abhängigen (S)-spezifischen Oxidoreduktase aus
25 *Pichia capsulata*

Zur Isolierung der NADH abhängigen Oxidoreduktase aus *Pichia capsulata* (*P.*
capsulata) wurde der Mikrorganismus wie unter Beispiel 1 beschrieben kultiviert. Nach
Erreichen der stationären Phase wurden die Zellen geerntet und durch Zentrifugieren
30 vom Medium getrennt. Die Enzymfreisetzung erfolgte durch Naßvermahlung mittels
Glasperlen, kann aber auch durch andere Aufschlussmethoden erreicht werden. Dazu

wurden 100 g P. capsulata mit 400 ml Aufschlusspuffer (100 mM Triethanolamin, 1 mM MgCl₂, pH = 7,0) suspendiert und mittels einer French press homogenisiert.

Der nach dem Zentrifugieren (7000 rpm) erhaltene Rohextrakt wurde dann mittels
5 FPLC (fast protein liquid chromatography) weiter gereinigt und aufbereitet.

Die erfindungsgemäße Oxidoreduktase konnte in zwei hintereinander folgenden Schritten mittels Ionenaustauschchromatographie an Q-Sepharose Fast Flow (Firma Pharmacia) und Uno Q (Biorad, München, Deutschland) aufgereinigt werden. Dazu
10 wurde das nach dem Zentrifugieren erhaltene Lysat direkt auf eine mit 50 mM Kaliumphosphatpuffer pH = 7,0 äquilierte Q-Sepharose FF-Säule aufgetragen und mit steigendem linearen Salzgradienten eluiert. Die Oxidoreduktase wurde dabei bei 0,2 bis 0,3 M NaCl eluiert. Die oxidoreduktase-enthaltenen Fraktionen wurden vereinigt und mittels Ultrafiltration (Ausschlussgrenze 10 kDa) auf ein geeignetes Volumen
15 eingeengt. Anschließend wurde die eingeengten Fraktionen der Oxidoreduktase mittels Uno Q unter Verwendung derselben obengenannten Puffer weiter aufbereitet und gereinigt. Das Enzym wurde dabei bei 0,1 M NaCl eluiert.

Danach wurde das Molekulargewicht der erhaltenen gereinigten Oxidoreduktase mit
20 Hilfe von Gelpermeation (Superdex 200 HR; Pharmacia, 100 mM Triethanolamin, pH = 7, 0,15 M NaCl) bestimmt.

Als Molekulargewichtsstandards wurden Catalase (232 kDa), Aldolase (158 kDa), Albumin (69,8kDa) und Ovalbumin (49,4 kDa) verwendet.

25

Die folgende Tabelle 2 fasst die erhaltenen Ergebnisse zusammen

Juelich Enzyme Products GmbH

- 24 -

Tabelle 2:

Reinigungsschritt	Volumen [ml]	Aktivität [U/ml]	Gesamtaktivität [U]	Spezifische Aktivität [U/mg]	Ausbeute
Rohextrakt	360	2,0	752	0,07	100 %
Q-Sepharose	67	5,3	358	5	47 %
Uno Q	3,5	14	50	41	6,6 %

15

Die Enzymaktivität der Oxidoreduktase wurde im Testsystem gemäß Beispiel 1, (Ansatz Aktivitätsscreening) bestimmt und die Bestimmung der Proteinmenge erfolgte gemäß Lowry et al. *Journal of Biological Chemistry*, 193 (1951): 265-275 oder Peterson et al., *Analytical Biochemistry*, 100 (1979): 201-220). Der Quotient von Enzymaktivität zu Proteinmenge ergibt die spezifische Aktivität, wobei der Umsatz von 1 µmol pro min 1 Unit (U) entspricht.

25

Das mittels Gelpermation bestimmte Molekulargewicht der erfindungsgemäßen Oxidoreduktase betrug im nativen Zustand 140 ± 10 kDa.

Beispiel 3: Bestimmung der N-terminalen Sequenz der erfindungsgemäßen
Oxidoreduktase

Die Enzympräparation nach Beispiel 2 wurde nach der Gelpermeation im 10 % igen
5 Natriumdodecylsulfat (SDS) Gel aufgetrennt und auf eine Polyvinyliden Diflourid-Membran (PVDF-Membran) übertragen.

Die auffällige Bande bei etwa 35 bis 45 kDa wurde einer N-terminalen Sequenzierung
mittels Edman-Abbau (Procise 492 (PE-Biosystems) unterworfen. Es wurde folgende
N-terminale Sequenz erhalten:

10 SEQ ID NO: 10

KTQAGYIFKKGA

15

Beispiel 4: Klonierung der Oxidoreduktase aus Pichia capsulata

20

Der eukaryotische Mikrorganismus Pichia capsulata gehört zu der Familie Saccaromycetaceae. Die Genomstruktur dieses Organismus weist eine Exon-Intron Anordnung auf. Daher wurde für die Identifizierung der Gensequenz, die für die enantioselektive Oxidoreduktase kodiert, eine cDNA Bibliothek aus den aktiven Zellen der Pichia capsulata angelegt.

25

4.1 Präparation der gesamten RNA aus den Zellen von Pichia capsulata.

30

600 mg frische Zellen von Pichia capsulata wurden in 2,5 ml eiskalten LETS (10 mM Tris-HCl, pH = 7,4, 10 mM EDTA, 100 mM LiCl, 0,2 % SDS) Puffer resuspendiert. Zu dieser Zellsuspension wurden 5 ml (etwa 20 g) in Salpetersäure gewaschener Glasperlen, die mit 3 ml Phenol (pH 7.0) equilibriert waren, zugegeben. Der gesamte Ansatz wurde dann abwechselnd jeweils 30 Sekunden (sec) geschüttelt (Vortex Genie

2, Scientific Industries Inc., New York, USA) und 30 sec auf Eis gekühlt und insgesamt 10 min behandelt. Anschließend wurden weitere 5 ml eiskalter LETS Puffer dazugegeben. Diese Zellsuspension wurde für 5 min bei 11000 g bei 4 °C zentrifugiert. Die wässrige Phase wurde abgenommen und mit dem gleichen Volumen an Phenol: Chloroform: 3-Methyl-1-butanol (24:24:1) zweimal extrahiert. Anschließend erfolgte eine Extraktion mit Chloroform. Nach der letzten Extraktion wurde die gesamte erhaltene RNA durch die Zugabe von 1 / 10 Vol von 5 M LiCl bei -20 °C für 4 Stunden präzipitiert.

1 1 mg der isolierten RNA wurde für die m-RNA Gewinnung mittels Oligo-dT Cellulose (mRNA PräpKit, Qiagen) eingesetzt.

15 Nach der anschließenden Präzipitation wurden 5 µg mRNA für die cDNA Synthese (pBluescript II XR cDNA Library Construction kit, Stratagene) verwendet. Die nach den Angaben des Herstellers konstruierte Bibliothek wurde in XL-10 Gold E. coli transformiert und auf die Aktivität einer (S)-ADH hin untersucht.

20 Anhand der Extinktionsabnahme mit NADH als Cofaktor und Ethyl-4-chloraceto-acetat als Substrat wurden zwei Klone (2 / 1 und 2 / 2) identifiziert und isoliert. Die Sequenzierung über die multiple Klonierungsstelle, der in den Klonen enthaltenden Plasmide mit Primer T7 (SEQ ID NO: 3) und Primer T3 (SEQ ID NO: 4), resultierte in einem Fragment mit der Größe von 1175 bp (SEQ ID NO: 1). Dieses Fragment kodiert für ein Fusionsprotein mit 366 Aminosäuren (SEQ ID NO: 2) und besteht aus dem α-Fragment der β-Galactosidase und der Sequenz der erfindungsgemäßen Oxidoreduktase.

25

4.2 Synthese eines für eine (S)-ADH aus *Pichia capsulata* kodierendem Volllänge-Transkript mittels PCR (Polymerase chain reaction)

30 Basierend auf SEQ ID NO: 1 wurden spezifische Primer für eine nachfolgende Klonierung des Volllänge Transkripts in passende Expressionssysteme konstruiert.

Dabei wurden 5'-Primer mit einer Erkennungssequenz für Nde I (bzw. Sph I) und 3'-Primer mit einer Erkennungssequenz für Hind III modifiziert (SEQ ID NO: 5; SEQ ID NO: 6; SEQ ID NO: 7)

5 Oligo 1-Nde I: 5 '-GGAATTCCATATGTCTGCTCTCTCCAAAAC-3'

Oligo 2-Sph I: 5 '-CACTGCATGCTGATGTCTGCTCTCTCCAAAAC-3'

Oligo 3-Hind III: 5'-CCCAAGCTTCATGGAAGCATAACCAATCTT-3'

1 Plasmid DNA isoliert aus dem Klon 2/1 der Expressionsbibliothek von Pichia capsulata diente als Matrize für die Polymerasen Ketten-Reaktion. Die Amplifikation wurde in einem PCR-Puffer [10 mM Tris-HCl, (pH 8,0); 50 mM KCl; 10 mM MgSO₄; 1 mM dNTP Mischung (N steht dabei für die Basen A,T, C oder G); je 30 pMol Primer und 2,5 U 15 Platinum Pfx DNA-Polymerase (Invitrogen)] mit 50 ng Template und folgenden Temperatur-Zyklen durchgeführt:

Zyklus 1: 94 ° C, 2 min

Zyklus 2 x 30: 94 ° C, 15 sec

20 58 ° C, 30 sec

68 ° C, 75 sec

Zyklus 3: 68 ° C, 7 min

25 4 ° C, ∞

Das resultierende PCR-Produkt wurde nach der Reinigung über ein 1 %iges Agarose Gel mit Hilfe von Endonukleasen Nde I und Hind III, oder mit Endonucleasen Sph I und Hind III verdaut, und in das mit gleichen Endonukleasen behandelte Rückgrat des pET21a Vectors (Novagen), oder pQE30 Vectors (Qiagen) ligiert. Nach der Transformation von 2 µl des Ligationsansatzes in E. coli Top 10 F' Zellen (Invitrogen) wurden Plasmid-DNA's von Ampicillin-resistenten Kolonien mittels einer

Restriktionsanalyse mit Endonukleasen Nde I und Hind III oder Endonucleasen Sph I und Hind III auf das Vorhandensein eines 1100 bp großen Inserts getestet. Der Expressionskonstrukt pET21-PC#10 wurde sequenziert. Das für die erfindungsgemäße Oxidoreduktase kodierende Transkript aus Pichia capsulata besitzt einen offenen Leserahmen von insgesamt 1026 bp (SEQ ID NO: 8), das einem Protein von 341 Aminosäuren entspricht (SEQ ID NO: 9)

4.3 Expression der erfindungsgemäße Oxidoreduktase aus P. capsulata in Star BL 21 (De3) E. coli Zellen

1 Kompetente Escherichia coli StarBL21(De3) Zellen (Invitrogen) wurden mit dem für die erfindungsgemäße Oxidoreduktase kodierenden Expressionskonstrukt pET21-PC#10 transformiert.

15 Der transformierte Stamm wurde in LB Medium (1% Tryptone, 0,5 % Hefeextrakt, 1 % NaCl) mit Ampicillin (50 µg/ml) kultiviert, bis eine optische Dichte, gemessen bei 500 nm, von 0,5 erreicht wurde. Die Produktion des rekombinanten Oxidoreduktase Proteins wurde durch Zugabe von Isopropylthiogalaktosid (IPTG) in einer Endkonzentration von 1 mM gestartet. Der Induktionsansatz wurde für weitere 15 h bei 25 °C und 220 rpm inkubiert.

20 Die erreichte Enzymaktivität betrug etwa 6000 U/g Zellfeuchtmasse.

4.4 Expression der erfindungsgemäße Oxidoreduktase aus P. capsulata in RB791 E. coli Zellen

25 Kompetente Escherichia coli RB791 Zellen wurden mit dem für die erfindungsgemäße Oxidoreduktase Expressionskonstrukt pQE30-PC#12 transformiert.

Der transformierte Stamm wurde in LB Medium (1% Tryptone, 0,5 % Hefeextrakt, 1 % NaCl) mit Ampicillin (50 µg/ml) kultiviert, bis eine optische Dichte, gemessen bei 500 nm von 0,5, erreicht wurde. Die Produktion des rekombinanten Oxidoreduktase-Proteins wurde durch Zugabe von IPTG in einer Endkonzentration von 0,1 mM gestartet. Der

Induktionsansatz wurde für weitere 15 Stunden bei 25 °C und 220 rpm inkubiert. Die erreichte Enzymaktivität betrug etwa 1000 U/g Zellfeuchtmasse.

5 Beispiel 5: Charakterisierung der rekombinanten Oxidoreduktase aus P. capsulata

5.1 pH- Optimum

Es wurden die in Tabelle 3 aufgeführten Puffer hergestellt. Die Konzentration der jeweiligen Pufferkomponenten betrug jeweils 50 mM.

Tabelle 3

pH-Wert	Puffersystem	pH-Wert	Puffersystem
4	Na-acetat/Essigsäure	7,5	$\text{KH}_2\text{PO}_4/\text{K}_2\text{PO}_4$
4,5	Na-acetat/Essigsäure	8	$\text{KH}_2\text{PO}_4/\text{K}_2\text{PO}_4$
5	Na-acetat/Essigsäure	8,5	$\text{KH}_2\text{PO}_4/\text{K}_2\text{PO}_4$
5,5	$\text{KH}_2\text{PO}_4/\text{K}_2\text{PO}_4$	9	Glycin/NaOH
6	$\text{KH}_2\text{PO}_4/\text{K}_2\text{PO}_4$	9,5	Glycin/NaOH
6,5	$\text{KH}_2\text{PO}_4/\text{K}_2\text{PO}_4$	10	Glycin/NaOH
7	$\text{KH}_2\text{PO}_4/\text{K}_2\text{PO}_4$	11	Glycin/NaOH

Meßansatz (30 °C):

870 µl der jeweils in Tabelle 3 genannten Puffersysteme

25 20 µl NADH 10 mM (8,6 mg/ml Wasser)

10 µl Enzym verdünnt

Es wurde etwa 2 bis 3 min inkubiert, danach erfolgte die Zugabe von

100 µl Substratlösung (100mM Ethyl-4-chlor-3-oxobuttersäure)

Zur Bestimmung des pH-Optimum wurde die enzymatische Reaktion in dem jeweiligen in Tabelle 3 aufgeführten Puffer bestimmt. Zur Bestimmung des pH-Optimums für die 5 Oxidationsreaktion wurde als Cofaktor NADH und als Substrat (S)-Methyl-3-hydroxybuttersäure eingesetzt. Dabei konnte für das erfindungsgemäße Enzym ein pH-Optimum von 6,5 bis 7 für die Reduktionsreaktion und von 7,8 bis 8,2 für die Oxidationsreaktion ermittelt werden.

1 5.2 pH-Stabilität

Die Bestimmung der Aktivität der rekombinanten Oxidoreduktase wurde durch Lagerung in den in Tabelle 3 genannten Puffersystemen untersucht. Dazu wurden die verschiedene Puffer (50mM) im Bereich von pH 4 bis 11 angesetzt und die gemäß 15 Beispiel 4 hergestellte Oxidoreduktase damit verdünnt. Nach 30, 60 und 300 min Inkubation wurden aus dem Ansatz 10 µl entnommen und im Aktivitätstest gemäß Beispiel 1 eingesetzt.

Ausgangswert ist dabei der Messwert, den man unmittelbar nach Verdünnung (1:20) des Enzyms in Kaliumphosphatpuffer 50 mM pH = 7.0 erhielt. Dieser Wert entsprach unter den vorgegeben Bedingungen einer Extinktionsänderung von etwa 0,70 /min und wurde als 100%-Wert gesetzt und alle folgenden Messwerte wurden zu diesem Wert ins Verhältnis gesetzt.

25 Dabei wurde festgestellt, dass die rekombinante Oxidoreduktase aus *P. capsulata* bei einem pH von 5,5 bis 8,5 stabil ist und für mindestens 5 h ohne wesentlichen Aktivitätsverlust inkubiert werden kann. Inkubationen bei pH-Werten über 9,0 und unter 5,0 führten zu einer sofortigen Desaktivierung des Enzyms.

5.3 Temperatur-Optimum

Zur Bestimmung der optimalen Testtemperatur wurde die Enzymaktivität im Temperaturbereich von 15 °C bis 70 °C im Standardmeßansatz gemessen. Wie aus Tabelle 4 ersichtlich hat das Enzym seine maximale Aktivität bei 45°C, anschließend sinkt die Aktivität rapide ab.

Tabelle 4

Temperatur 10 15 20 25 30 35 15	Aktivität in U/ml unverdünntes Enzym	Temperatur 45 50 55 60 65 70	Aktivität in U/ml unverdünntes Enzym
15	73	45	176
20	83	50	122
25	128	55	45
30	135	60	0
35	163	65	0
40	170	70	0

5.4 Temperatur-Stabilität

In analoger Weise wie unter Beispiel 5.2 beschrieben wurde die Temperaturstabilität für den Bereich von 15 °C bis 70 °C bestimmt. Dazu wurde jeweils eine 1:20 Verdünnung der gereinigten Oxidoreduktase für 60 min und 180 min bei der jeweiligen Temperatur inkubiert und anschließend bei 30 °C mit dem obigen Testansatz gemessen. Auch hier wurde als Ausgangswert der Meßwert herangezogen, den man unmittelbar nach Verdünnung der gereinigten Oxidoreduktase in Kaliumphosphatpuffer 50 mM bei pH = 7,0 erhält. Dieser Wert wurde auch in diesem Beispiel als 100%-Wert gesetzt.

Das Enzym ist dabei in einem Temperaturbereich von 15 °C bis 40 °C vollkommen stabil und zeigt nach 3 h Inkubation keinerlei Aktivitätsverlust. Bei 55 °C ist bereits nach 30 min keine Enzymaktivität mehr nachweisbar.

5

5.5 Substratspektrum/Enantiomerenüberschuss

Das Substratspektrum der erfindungsgemäßen Oxidoreduktase wurde durch Messung der Enzymaktivität mit einer Reihe von Ketonen, Oxsäuren und deren Estern bestimmt. Dazu wurde der Standard Messansatz gemäß Beispiel 5.1 mit unterschiedlichen Substraten verwendet. Die Aktivität mit Ethyl-4-chloracetoacetat wurde gleich 100% gesetzt und alle anderen Substrate wurden dazu ins Verhältnis gesetzt.

Für die ee-Wert-Bestimmung wurden für ausgewählte Substrate folgender Reaktionsansatz verwendet.

100 µl NADH (50 mM)

60 µl Substrat (100 mM)

+ 1 bis 2 U der erfindungsgemäßen Oxidoreduktase

20

Die Ansätze zur ee- Bestimmung wurden nach 24 h mit Chloroform extrahiert und mittels GC wurde der Enantiomerenüberschuss des resultierenden Alkohols bestimmt.

Tabelle 5

	Substrat	Relative Aktivität %	Stereo-selektivität t	Substrat	Relative Aktivität %	Stereo-selektivität
5	Ketone			3-Oxosäureester		
	1-Phenyl-2-propanon	24	97 % S	Ethyl-4-Chloroacetoacetat	100	99 % R
10	2-chloro-1-(3-chlorophenyl)ethan-1-on	21	100 % R	Methyl acetoacetat	150	97 % S
	Acetophenon	4	n.b.	Ethyl-8-chloro-6-oxooctansäure	20	100 % R
	Caprylophenon	0	n.b.	Dimethyl-3-Oxo-1,8-octandioicacid	3,5	n.b.
	2-Octanon	88	100 % S	Ethyl-3-oxovaleriat	67	n.b.
15	3-Octanon	30	n.b.	Ethylacetoacetat	100	99 % S
	2-Butanon	99	50 % S			
	4-Hydroxy-2-butanon	99	90 % S			
	Ethyl-2-oxovaleriat	41	97 % S	2-Oxovaleriansäure	0	n.b.
20	Ethyl-2-oxo-4-phenylbuttersäure	76	95 % S	2-Oxo-3-phenylpropionsäure	0	n.b.
	Ethylpyruvat	10	100 % S	2-Oxobuttersäure	0	n.b.
	Ethylphenylglyoxylat	5,2	100 % R			

n.b. bedeutet nicht bestimmt

Wie aus Tabelle 5 ersichtlich werden von der erfindungsgemäßen Oxidoreduktase ein breites Spektrum 2- und 3-Oxosäureester sowie aromatische und aliphatische Ketone stereoselektiv reduziert.

5 5.5 Lösungsmittelstabilität

Die Enzymstabilität der Oxioreduktase aus *P. capsulata* wurde in Anwesenheit von organischen Lösungsmitteln untersucht. Dazu wurde die Oxidoreduktase jeweils 1: 20 mit den angegebenen Lösungsmittelgemischen (bei wassermischbaren organischen Lösungsmitteln) verdünnt und bei Raumtemperatur (20 °C bis 24 °C; RT) inkubiert. Anschließend wurden 10 µl der Enzymlösung im Standardtestansatz eingesetzt. Auch hier wurde der Ausgangswert nach Verdünnung im Puffer (Kaliumphosphatpuffer (KPP) 100 mM, pH = 7.0) gleich 100 % gesetzt und alle weiteren Werte zu diesem ins Verhältnis gesetzt.

15

Bei den nicht mit Wasser mischbaren organischen Lösungsmittel erfolgte die Verdünnung ebenfalls in Kaliumphosphatpuffer, es wurde das gleiche Volumen organisches Lösungsmittel zum Ansatz gegeben und der Ansatz wurde bei RT im Thermomixer mit 170 rpm inkubiert. Die Aktivitätsmessung erfolgte aus der wässrigen Phase. Tabelle 6 zeigt die Ergebnisse.

20

5.7 Präparative Umsetzungen

5.7.1 Reduktion von Ethyl-4-Chloracetoacetat zu Ethyl-(R)-4-chlor-3-hydroxybuttersäure

5

Für den präoperativen Ansatz wurde ein Gemisch aus 34 L Puffer (100mM TEA, pH = 7, 1 mM ZnCl₂, 10 % Glycerin), 4 L Isopropanol, 4 L 4-Chloracetoacetat, 4 g NAD und 3,6 Millionen U rekombinante Oxidoreduktase aus Pichia capsulata für 24 h bei Raumtemperatur unter ständiger Durchmischung inkubiert. Nach 24 h waren 99% des eingesetzten 4-Chloracetoacetat reduziert. Das Reaktionsgemisch wurde anschließend mit Ethylacetat extrahiert, das Lösungsmittel mittels Rotationsverdampfer entfernt und das Rohprodukt wurde destilliert. Auf diese Weise wurden 2,8 L (3,4 kg) Ethyl-(R)-4-chlor-3-hydroxybuttersäure mit einem Enantiomerenüberschuss von 99 % gewonnen. Dies entspricht einer Ausbeute von 70 % bezogen auf die eingesetzte Eduktmenge.

15

5.7.2. Reduktion von 2-Chlor-1-(3-chlorphenyl)ethan-1-on zu (R)-2-Chlor-1-(3-chlorphenyl)ethan-1-ol

20

20

25

Für den präoperativen Ansatz wurde ein Gemisch aus 164 ml Puffer (100 mM TEA, pH = 7, 1 mM ZnCl₂, 20 % Glycerin), 16 ml Isopropanol, 20 g 2-Chlor-1-(3-chlorphenyl)ethan-1-on gelöst in 20 ml Methyl-tert-Butylether (MTBE), 10 mg NAD und 20 000 U rekombinante Oxidoreduktase aus Pichia capsulata für 24 h bei Raumtemperatur unter ständiger Durchmischung inkubiert. Nach 24 h waren 96 % des eingesetzten 2-Chlor-1-(3-chlorphenyl)ethan-1-on's reduziert. Das Reaktionsgemisch wurde anschließend mit Ethylacetat extrahiert und das Lösungsmittel wurde mit dem Rotationsverdampfer entfernt. Auf diese Weise wurden 15 g (R)-2-Chlor-1-(3-chlorphenyl)ethan-1-ol mit einem Enantiomerenüberschuss von 100 % gewonnen. Dies entspricht einer Ausbeute von 77 % bezogen auf die eingesetzte Eduktmenge.

5

Patentansprüche

1. Oxidoreduktase, dadurch gekennzeichnet, dass sie in Anwesenheit von NADH und Wasser eine Carbonylverbindung zur entsprechenden (S)-Hydroxyverbindung reduziert.
2. Oxidoreduktase gemäß Anspruch 1, dadurch gekennzeichnet, dass sie aus Hefen der Gattungen Pichia oder Candida, insbesondere aus Pichia capsulata gewinnbar ist.
3. Oxidoreduktase gemäß der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass sie die DNA-Sequenz gemäß SEQ ID NO: 8 und die Aminosäuresequenz gemäß SEQ ID NO: 9 aufweist.
4. Oxidoreduktase, gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mehr als 70 % der Aminosäuren identisch sind mit der Aminosäuresequenz SEQ ID NO: 9 und sie eine spezifische Aktivität von mehr als 1 µmol pro mg Protein aufweist, bezogen auf die Umsetzung von Ethyl-4-chlor-3-oxobuttersäure zu (R)-Ethyl-4-chlor-3-hydroxybuttersäure.
5. Oxidoreduktase, gemäß Anspruch 4, dadurch gekennzeichnet, dass 80 % bis 99,5 %, insbesondere 90 % bis 99,5 %, speziell 99 % bis 99,5 % identische Aminosäuren zu der Aminosäuresequenz von SEQ ID NO: 9 sind.
6. Oxidoreduktase, gemäß einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie 1 bis 40 Aminosäuren zusätzlich oder 1 bis 40 Aminosäuren weniger aufweist als die Oxidoreduktase mit der

Aminosäuresequenz SEQ ID NO: 9 und sie eine spezifische Aktivität von mehr als 1 µmol pro mg Protein aufweist, bezogen auf die Umsetzung von Ethyl-4-chlor-3-oxobuttersäure zu (R)-Ethyl-4-chlor-3-hydroxy-buttersäure.

5 7. Oxidoreduktase, gemäß Anspruch 4, dadurch gekennzeichnet, dass 1 bis 25 Aminosäuren, insbesondere 2 bis 20 Aminosäuren, oder 3 bis 10 Aminosäuren mehr oder weniger als in der Aminosäuresequenz von SEQ ID NO: 9 vorkommen.

1 8. Oxidoreduktase, gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie die Aminosäuresequenz von SEQ ID NO: 9 aufweist und ein-, zwei-, drei-, vier- oder fünffach durch ein wasserlösliches Polymer modifiziert ist und die spezifische Aktivität mehr als 1 µmol pro mg Protein beträgt, bezogen auf die Umsetzung von Ethyl-4-chlor-3-oxobuttersäure zu (R)-Ethyl-4-chlor-3-hydroxy-buttersäure.

15 9. Oxidoreduktase, gemäß Anspruch 8, dadurch gekennzeichnet, dass das wasserlösliche Polymer Polyethylenglycol ist.

20 10. Proteinfragment, dadurch gekennzeichnet ist, dass es Fragmente der Aminosäuresequenz SEQ ID NO: 9 darstellt, mit einer Anzahl von 5 bis 30 Aminosäuren je Fragment.

25 11. Proteinfragment gemäß Anspruch 10, dadurch gekennzeichnet, dass es Fragmente von SEQ ID NO: 9 sind, mit einer Kettenlänge von 6 bis 25 Aminosäuren, insbesondere von 8 bis 20 Aminosäuren, oder 10 bis 18 Aminosäuren, insbesondere der Aminosäuresequenz SEQ ID NO: 10.

30 12. Fusionsprotein, dadurch gekennzeichnet, dass es die Oxidoreduktase mit der Aminosäuresequenz SEQ ID NO: 9 oder Fragmente der Aminosäuresequenz

SEQ ID NO: 9 enthält, mit einer Anzahl von 5 bis 30 Aminosäuren, die mit einem weiteren Polypeptid am N-terminalen oder Carboxy-terminalen Ende über eine Peptidbindung verbunden ist.

5 13. Antikörper, dadurch gekennzeichnet, dass er spezifisch an die Oxidoreduktase gemäß SEQ ID NO: 9 oder SEQ ID NO: 10 bindet.

1 14. Isolierte Nukleinsäuresequenz, die für die Oxidoreduktase gemäß SEQ ID NO: 9 und SEQ ID NO: 10 kodiert.

15 15. Isolierte DNA-Sequenz der Oxidoreduktase, die die Reduktion von Carbonylverbindung in Anwesenheit von NADH und Wasser zu den entsprechenden (S)-Hydroxyverbindungen katalysiert, wobei die DNA-Sequenz ausgewählt wird aus der Gruppe

15 a) DNA-Sequenz, welche die Nukleotidsequenz gemäß SEQ ID NO: 8, SEQ ID NO: 5, SEQ ID NO: 6 oder SEQ ID NO: 7 aufweist oder deren jeweils komplementären Strang,

20 b) DNA-Sequenz, welche mit einer oder mehreren der DNA-Sequenzen gemäß a) oder seiner komplementären Stränge hybridisiert, wobei die Hybridisierung unter stringenten Bedingungen erfolgt, und

25 c) DNA-Sequenz, welche auf Grund der Degeneration des genetischen Codes, ein Protein kodiert, das durch eine oder mehrere der DNA-Sequenzen gemäß a) oder b) kodiert ist.

16. Isolierte DNA-Sequenz, dadurch gekennzeichnet, dass mehr als 70 % der Nukleinsäurebasen mit der DNA-Sequenz gemäß SEQ ID NO: 8 oder deren komplementären Stränge identisch sind und dass sie die Oxidoreduktase kodiert, die eine spezifische Aktivität von mehr als 1 µmol pro mg Protein aufweist,

bezogen auf die Umsetzung von Ethyl-4-chlor-3-oxobuttersäure zu (R)-Ethyl-4-chlor-3-hydroxybuttersäure.

17. Isolierte DNA-Sequenz gemäß Anspruch 16, dadurch gekennzeichnet, dass 80 % bis 99,5 %, insbesondere 90 % bis 99,5 %, speziell 99 % bis 99,5 % der Nukleinsäurebasen identisch sind mit der DNA-Sequenz gemäß SEQ ID NO: 8.
18. Isolierte DNA-Sequenz, dadurch gekennzeichnet, dass sie eine Nukleinsäuresequenz mit 10 bis 50 Nukleinsäurebasen ist, die eine Sequenz aufweist, die einem Teile oder mehreren Teilen der DNA-Sequenz gemäß SEQ ID NO: 8 oder deren komplementären Strängen entspricht.
19. Isolierte DNA-Sequenz gemäß Anspruch 18, dadurch gekennzeichnet, dass es eine Nukleinsäuresequenz mit 15 bis 45 Nukleinsäurebasen, insbesondere 20 bis 40 Basen, oder 30 bis 40 Nukleinsäurebasen ist.
20. Klonierungsvektor, dadurch gekennzeichnet, dass er eine oder mehrere der Nukleinsäure- oder DNA-Sequenzen gemäß den Ansprüchen 14 bis 19 aufweist.
21. Expressionsvektor, dadurch gekennzeichnet, dass er eine oder mehrere der Nukleinsäure- oder DNA-Sequenzen gemäß der Ansprüche 14 bis 19 enthält und in geeigneter Weise mit einer Expressionskontrollsequenz verbunden ist.
22. Wirtszelle, die eine Bakterien-, Hefe-, Insekten-, Pflanzen- oder Säugetierzelle ist und mit einem Expressionsvektor gemäß Anspruch 21 transformiert oder transfektiert wurde.
23. Verfahren zur enantioselektiven Reduktion von Carbonylverbindungen zu den entsprechenden (S)-Hydroxyverbindungen, das dadurch gekennzeichnet ist, dass

5

- a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert und
- b) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

10 24. Verfahren gemäß Anspruch 23, dadurch gekennzeichnet, dass als Carbonylverbindung eine Verbindung der Formel I

eingesetzt wird, mit einem Rest R1 aus

- 1) $-(\text{C}_1\text{-C}_{20})$ -Alkyl, worin Alkyl geradkettig oder verzweigt ist,
- 2) $-(\text{C}_2\text{-C}_{20})$ -Alkenyl, worin Alkenyl geradkettig oder verzweigt ist und je nach Kettenlänge ein, zwei, drei oder vier Doppelbindungen enthält,
- 3) $-(\text{C}_2\text{-C}_{20})$ -Alkinyl, worin Alkinyl geradkettig oder verzweigt ist und gegebenenfalls ein, zwei, drei oder vier Dreifachbindungen enthält,
- 15 4) $-(\text{C}_6\text{-C}_{14})$ -Aryl,
- 5) $-(\text{C}_1\text{-C}_8)$ -Alkyl- $(\text{C}_6\text{-C}_{14})$ -Aryl,
- 6) $-(\text{C}_5\text{-C}_{14})$ -Heterocyclus, der unsubstituiert oder ein- bis dreifach substituiert ist durch Halogen, Hydroxyl, Amino oder Nitro, oder
- 7) $-(\text{C}_3\text{-C}_7)$ -Cycloalkyl,

20 wobei die unter 1) bis 7) genannten Reste R1 unsubstituiert sind oder ein-, zwei- oder dreifach substituiert sind, unabhängig voneinander, durch

- 25 a) $-\text{OH}$,
- b) Halogen, wie Fluor, Chlor, Brom oder Jod,
- c) $-\text{NO}_2$ oder
- d) $-\text{NH}_2$ und

mit einem Rest R2 aus

- 1) $-(\text{C}_1\text{-C}_6)$ -Alkyl, worin Alkyl geradkettig oder verzweigt ist,

2) $-(C_2-C_6)$ -Alkenyl, worin Alkenyl geradkettig oder verzweigt ist und je nach Kettenlänge ein, zwei oder drei Doppelbindungen enthält,

3) $-(C_2-C_6)$ -Alkinyl, worin Alkinyl geradkettig oder verzweigt ist und gegebenenfalls ein oder zwei Dreifachbindungen enthält, oder

5 4) $-(C_0-C_{10})$ -Alkyl-C(O)-O-(C_1-C_6)-Alkyl, worin Alkyl gerade oder verzweigt ist und unsubstituiert oder ein- bis dreifach substituiert ist durch Halogen, Hydroxyl, Amino oder Nitro,

wobei die unter 1) bis 4) genannten Reste R2unsubstituiert sind oder ein-, zwei- oder dreifach substituiert sind, unabhängig voneinander durch

a) $-OH$,
b) Halogen, wie Fluor, Chlor, Brom oder Jod,
c) $-NO_2$ oder
d) $-NH_2$.

15

25. Verfahren gemäß Anspruch 23 oder 24, dadurch gekennzeichnet, dass

a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert wird,
b) das durch die Oxidoreduktase gebildete NAD mit einem Cosubstrat zu NADH reduziert und
c) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

26. Verfahren gemäß Anspruch 23 oder 24, dadurch gekennzeichnet, dass

a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert wird,

- b) das durch die Oxidoreduktase gebildete NAD mit einer Dehydrogenase und einem Cosubstrat zu NADH reduziert und
- c) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

5 27. Verfahren gemäß Anspruch 23 oder 24, dadurch gekennzeichnet, dass

- a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert,
- b) die Reaktionen in Anwesenheit eines organischen Lösungsmittel durchgeführt und
- c) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

28. Verfahren gemäß Anspruch 23 oder 24, dadurch gekennzeichnet, dass

- a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert wird,
- b) die Reaktionen in Anwesenheit eines organischen Lösungsmittel durchgeführt,
- c) das durch die Oxidoreduktase gebildete NAD mit einem Cosubstrat zu NADH reduziert, und
- d) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

29. Verfahren gemäß Anspruch 23 oder 24, dadurch gekennzeichnet, dass

- a) eine Carbonylverbindung in Anwesenheit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NADH und Wasser zur entsprechenden (S)-Hydroxyverbindung reduziert wird,
- b) das durch die Oxidoreduktase gebildete NAD mit einer Dehydrogenase und einem Cosubstrat gleichzeitig zu NADH reduziert,

- c) die Reaktionen in Anwesenheit eines organischen Lösungsmittel durchgeführt und
- d) die gebildete chirale (S)-Hydroxyverbindung isoliert wird.

5 30. Verfahren gemäß Anspruch 25, 26, 28 oder 29, dadurch gekennzeichnet, dass als Cosubstrat Ethanol, 2-Propanol, 2-Butanol, 2-Pentanol oder 2-Octanol eingesetzt wird.

31. Verfahren gemäß Anspruch 26 oder 29, dadurch gekennzeichnet, dass als Dehydrogenase die Bäckerhefe aus *Candida boidinii* oder *Candida parapsilosis* eingesetzt wird.

15 32. Verfahren gemäß Anspruch 26 oder 29, dadurch gekennzeichnet, dass als Dehydrogenase NADH abhängige Formiat-Dehydrogenase und als Cosubstrat ein Salz der Ameisensäure wie Ammoniumformiat, Natriumformiat oder Calciumformiat eingesetzt wird.

33. Verfahren gemäß Anspruch 27 oder 29, dadurch gekennzeichnet, dass als organische Lösungsmittel Diethylether, tertiär-Butylmethylether, Diisopropylether, Dibutylether, Butylacetat, Heptan, Hexan oder Cyclohexan eingesetzt werden.

34. Verfahren gemäß Anspruch 27 oder 29, dadurch gekennzeichnet, dass die organische Phase 5 % bis 80 % des gesamten Reaktionsvolumens, bevorzugt 10 % bis 40 %, beträgt.

25

**35. Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II,
R1-C(OH)-R2 (II)**

mit einem Rest R_1 aus

30 1) -(C₁-C₂₀)-Alkyl, worin Alkyl geradkettig oder verzweigt ist,

2) $-(C_2-C_{20})$ -Alkenyl, worin Alkenyl geradkettig oder verzweigt ist und je nach Kettenlänge ein, zwei, drei oder vier Doppelbindungen enthält,
3) $-(C_2-C_{20})$ -Alkinyl, worin Alkinyl geradkettig oder verzweigt ist und gegebenenfalls ein, zwei, drei oder vier Dreifachbindungen enthält,
5) 4) $-(C_6-C_{14})$ -Aryl,
5) $-(C_1-C_8)$ -Alkyl- (C_6-C_{14}) -Aryl,
6) $-(C_5-C_{14})$ -Heterocyclus, der unsubstituiert oder ein- bis dreifach substituiert ist durch Halogen, Hydroxyl, Amino oder Nitro, oder
7) $-(C_3-C_7)$ -Cycloalkyl,

wobei die unter 1) bis 7) genannten Reste R1 unsubstituiert sind oder ein-, zwei- oder dreifach substituiert sind, unabhängig voneinander, durch

a) $-OH$,
b) Halogen, wie Fluor, Chlor, Brom oder Jod,
c) $-NO_2$ oder
15 d) $-NH_2$ und

mit einem Rest R2 aus

1) $-(C_1-C_6)$ -Alkyl, worin Alkyl geradkettig oder verzweigt ist,
2) $-(C_2-C_6)$ -Alkenyl, worin Alkenyl geradkettig oder verzweigt ist und je nach Kettenlänge ein, zwei oder drei Doppelbindungen enthält,
28) 3) $-(C_2-C_6)$ -Alkinyl, worin Alkinyl geradkettig oder verzweigt ist und gegebenenfalls ein oder zwei Dreifachbindungen enthält, oder
4) $-(C_0-C_{10})$ -Alkyl- $C(O)-O-(C_1-C_6)$ -Alkyl, worin Alkyl gerade oder verzweigt ist und unsubstituiert oder ein- bis dreifach substituiert ist durch Halogen, Hydroxyl, Amino oder Nitro,

wobei die unter 1) bis 4) genannten Reste R1 unsubstituiert sind oder ein-, zwei- oder dreifach substituiert sind, unabhängig voneinander, durch

a) $-OH$,
b) Halogen, wie Fluor, Chlor, Brom oder Jod,
30) c) $-NO_2$ oder

d) $-\text{NH}_2$,

dadurch gekennzeichnet ist, dass

5 a) ein Gemisch, enthaltend die racemische Verbindung der Formel II, mit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NAD und Wasser inkubiert und
b) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

1 36. Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II gemäß Anspruch 35, dadurch gekennzeichnet ist, dass

15 a) ein Gemisch, enthaltend die racemische Verbindung der Formel II, mit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NAD und Wasser inkubiert wird,
b) das durch die Oxidoreduktase gebildete NADH mit einem Cosubstrat zu NAD oxidiert und
c) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

28 37. Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II gemäß Anspruch 35, dadurch gekennzeichnet ist, dass

25 a) ein Gemisch, enthaltend die racemische Verbindung der Formel II, mit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NAD und Wasser inkubiert wird,
b) das durch die Oxidoreduktase gebildete NADH mit einer Dehydrogenase und einem Cosubstrat zu NAD oxidiert und
c) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

38. Verfahren zur Gewinnung von chiralen (R)-Hydroxyverbindungen der Formel II gemäß Anspruch 35, dadurch gekennzeichnet ist, dass

- a) ein Gemisch, enthaltend die racemische Verbindung der Formel II mit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NAD und Wasser inkubiert wird,
- b) die Reaktionen in Anwesenheit eines organischen Lösungsmittel durchgeführt und
- c) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

39. Verfahren zur Gewinnung von chiralen (R)-Hydroxy-verbindungen der Formel II gemäß Anspruch 35, dadurch gekennzeichnet ist, dass

- a) ein Gemisch, enthaltend die racemische Verbindung der Formel II mit der Oxidoreduktase gemäß einem oder mehreren der Ansprüche 1 bis 9, NAD und Wasser inkubiert wird,
- b) die Reaktionen in Anwesenheit eines organischen Lösungsmittel durchgeführt,
- c) das durch die Oxidoreduktase gebildete NADH mit einer Dehydrogenase und einem Cosubstrat zu NAD oxidiert und
- d) die verbliebene chirale (R)-Hydroxyverbindung der Formel II isoliert wird.

40. Verfahren gemäß Anspruch 36, 37 oder 39, dadurch gekennzeichnet, dass als Cosubstrat Aceton eingesetzt wird.

Zusammenfassung

Oxidoreduktase aus *Pichia capsulata*

5

Eine NADH abhängige Oxidoreduktase wird aus Hefen, beispielsweise der Gattung Pichia, insbesondere aus *Pichia capsulata* gewonnen und in einem enzymatischen Verfahren zur enantioselektiven Reduktion organischer Ketoverbindungen zu den entsprechenden (S)-Hydroxyverbindungen und in einem enzymatischen Verfahren zur enantioselektiven Gewinnung von (S)-Hydroxyverbindungen im Zwei-Phasen-System unter Verwendung der isolierten rekombinant überexprimierten Oxidoreduktase aus *Pichia capsulata* eingesetzt.

03/049 JEP Sequenzprotokoll (TH) Pichia 4090.ST25.txt
SEQUENCE LISTING<110> Juelich Enzyme Products GmbH<120> Oxidoreduktase aus Pichia capsulata<130> (TH) 409<160> 10 <170> PatentIn version 3.1<210> 1<211> 1175<212>
DNA<213> Pichia capsulata<400> 1
cgcgggtggcg gccgctctag aactagtggta tccccccgggc tgcaggaaatt cggcacgagg
60

atctttctca actacaatgt ctgctctctc caaaaacccag gccgggttaca tcttcaagaa
120

gggtgccggt cacatcgta aggccgaggt tccaatcccc aagccaactg gtgcccatac
180

tcttcttagg gtcaaggctg caggaatgtg ccactctgac ttgcacgtca ttggagaaac
240

attggaggtc cctaccgatg ggtacgtgct cggtcacgaa attgtggtg aattgggtgga
300

gatcgagac tcggtaacc ctgaagttt taagggtggaa ggccgttatg ctgttcatgg
360

actgaattcg tgtggatcct gtgagatgtg tcgtaccggc catgacaatg actgtactgg
420

aaatgaatcg aaatggtacg gtctggaaat tagtgtgggt taccagcagt acctgctgg
480

gccaaattcg caccatctat tgccattcc agataacgtg tcctacgaag ttgctgctgc
540

cacotctgat gctgtcttga ctccatacca tgctatcaag aattccggag tgactccatc
600

ttctaagggtg ttgatgtttg gtctgggtgg tttgggatcg aacgcacttc agatcctcaa
660

ggcatttggc gcctatgtgg ttgccgttga tgtcaagccc gcatccaaag caattgccga
720

cgaattcaaa gcggatgaat tctataccga tatcagccaa tcttcttggaa aaccagccatc
780

gtttgattac tgttttgact tcgtttcgct gcaggtcacc ttcgacatct gccagaagta
840

tatcaagtcc cacggtacca tcttcccagt gggctgggc tcgagcaagc tgactttcga
900

cttgggaaac ctggcattgc gtgaagtaaa aatttgtgggt aacttctggg gtacttctca
960

Sequenzprotokoll (TH) Pichia 4090.ST25.txt
ggaacagatc gaagcaatgg agctggtag ctcgggtagg gtcaagcctc aagttcacac
1020

caccgaactt gaaaaccttc ctgaatcact tgaaaaactg gaggaggta agatcaatgg
1080

aagattggtt atgcttccat gatcacaaac tatttataac gagatacgag aaaaagtta
1140

atatgatgtc gttttccaa tcaaaagggg ggccc
1175

<210> 2<211> 366<212> PRT<213> Artificial<400> 2
Ala Val Ala Ala Ala Leu Glu Leu Val Asp Pro Pro Gly Cys Arg Asn
1 5 10 15

[REDACTED]
er Ala Arg Gly Ser Phe Ser Thr Thr Met Ser Ala Leu Ser Lys Thr
20 25 30

Gln Ala Gly Tyr Ile Phe Lys Lys Gly Ala Gly His Ile Val Lys Ala
35 40 45

Glu Val Pro Ile Pro Lys Pro Thr Gly Ala Gln Ser Leu Leu Arg Val
50 55 60

Lys Ala Ala Gly Met Cys His Ser Asp Leu His Val Ile Gly Glu Thr
65 70 75 80

[REDACTED]
eu Glu Val Pro Thr Asp Gly Tyr Val Leu Gly His Glu Ile Ala Gly
85 90 95

Glu Leu Val Glu Ile Gly Asp Ser Val Asn Pro Glu Val Phe Lys Val
100 105 110

Gly Gly Arg Tyr Ala Val His Gly Leu Asn Ser Cys Gly Ser Cys Glu
115 120 125

Met Cys Arg Thr Gly His Asp Asn Asp Cys Thr Gly Asn Glu Ser Lys
130 135 140

Trp Tyr Gly Leu Gly Ile Ser Gly Gly Tyr Gln Gln Tyr Leu Leu Val

Sequenzprotokoll (TH) Pichia 4090.ST25.txt

145 150 155 160

Pro Asn Ser His His Leu Leu Pro Ile Pro Asp Asn Val Ser Tyr Glu
165 170 175Val Ala Ala Ala Thr Ser Asp Ala Val Leu Thr Pro Tyr His Ala Ile
180 185 190Lys Asn Ser Gly Val Thr Pro Ser Ser Lys Val Leu Met Phe Gly Leu
195 200 205Gly Gly Leu Gly Ser Asn Ala Leu Gln Ile Leu Lys Ala Phe Gly Ala
210 215 220Tyr Val Val Ala Val Asp Val Lys Pro Ala Ser Lys Ala Ile Ala Asp
225 230 235 240Glu Phe Lys Ala Asp Glu Phe Tyr Thr Asp Ile Ser Gln Ser Ser Trp
245 250 255Lys Pro Ala Ser Phe Asp Tyr Cys Phe Asp Phe Val Ser Leu Gln Val
260 265 270Thr Phe Asp Ile Cys Gln Lys Tyr Ile Lys Ser His Gly Thr Ile Phe
275 280 285Pro Val Gly Leu Gly Ser Ser Lys Leu Thr Phe Asp Leu Gly Asn Leu
290 295 300Ala Leu Arg Glu Val Lys Ile Val Gly Asn Phe Trp Gly Thr Ser Gln
305 310 315 320Glu Gln Ile Glu Ala Met Glu Leu Val Ser Ser Gly Arg Val Lys Pro
325 330 335Gln Val His Thr Thr Glu Leu Glu Asn Leu Pro Glu Ser Leu Glu Lys
340 345 350

Leu Glu Glu Gly Lys Ile Asn Gly Arg Leu Val Met Leu Pro

Sequenzprotokoll (TH) Pichia 4090.ST25.txt

355

360

365

<210> 3<211> 17<212> DNA<213> Artificial<400> 3
gtaatacgac tataggg
17

<210> 4<211> 21<212> DNA<213> Artificial<400> 4
caatcaaacc tcactaaagg g
21

<210> 5<211> 30<212> DNA<213> Artificial<400> 5
ggaattccat atgtctgctc tctccaaaac
30

<210> 6<211> 32<212> DNA<213> Artificial<400> 6
cactgcatgc tgatgtctgc tctctccaaa ac
32

<210> 7<211> 31<212> DNA<213> Artificial<400> 7
cccaagcttt catggaagca taaccaatct t
31

<210> 8<211> 1026<212> DNA<213> Pichia capsulata<400> 8
atgtctgctc tctccaaaac ccaggccggt tacatcttca agaagggtgc cggtcacatc
60

gtcaaggccg aggttccaat ccccaagcca actggtgccc aatctttct tagggtaag
120

cgtcaggaa tgtgccactc tgacttgcac gtcattggag aaacattgga ggtccctacc
180

gatgggtacg tgctcggtca cgaaattgct ggtgaattgg tggagatcgg agactcggtc
240

aaccttgaag ttttaaggt gggaggccgt tatgctgttc atggactgaa ttctgtgtgga
300

tcctgtgaga tgtgtcgtac cggtcatgac aatgactgta ctggaaatga atcgaaatgg
360

tacggtctgg gaatttagtgg tggttaccag cagtacctgc tggtgccaaa ttctgcaccat
420

ctattgccta ttccagataa cgtgtcctac gaagttgctg ctgccacctc tgatgtgtc
480

Sequenzprotokoll (TH) Pichia 4090.ST25.txt

ttgactccat accatgctat caagaattcc ggagtgactc catcttctaa ggtgttgatg
540

tttggctctgg gtgggttggg atcgaacgca cttagatcc tcaaggcatt tggagcctat
600

gtgggtgccg ttgatgtcaa gcccgcatcc aaagcaattt ccgacgaatt caaagcggat
660

gaattctata ccgatatcag ccaatttct tggaaaccag ctcgtttga ttactgttt
720

gacttcgttt cgctgcaggc caccccgac atctgccaga agtataatcaa gtcccacgg
780

accatcttcc cagtgggtct gggctcgagc aagctgactt tcgacttggg aaacctggca
840

cgcgtaag taaaaattgt tggtaacttc tgggtactt ctcaggaaca gatcgaagca
900

atggagctgg ttagctcggg tagggtaag octcaagttc acaccaccga acttgaaaac
960

cttcctgaat cactgaaaaa actggaggag ggttaagatca atggaagatt ggttatgtt
1020

ccatga
1026

<210> 9<211> 341<212> PRT<213> Pichia capsulata<400> 9

Met Ser Ala Leu Ser Lys Thr Gln Ala Gly Tyr Ile Phe Lys Lys Gly
5 10 15

Ala Gly His Ile Val Lys Ala Glu Val Pro Ile Pro Lys Pro Thr Gly
20 25 30

Ala Gln Ser Leu Leu Arg Val Lys Ala Ala Gly Met Cys His Ser Asp
35 40 45

Leu His Val Ile Gly Glu Thr Leu Glu Val Pro Thr Asp Gly Tyr Val
50 55 60

Leu Gly His Glu Ile Ala Gly Glu Leu Val Glu Ile Gly Asp Ser Val
65 70 75 80

Sequenzprotokoll (TH) Pichia 4090.ST25.txt

Asn Pro Glu Val Phe Lys Val Gly Gly Arg Tyr Ala Val His Gly Leu
85 90 95

Asn Ser Cys Gly Ser Cys Glu Met Cys Arg Thr Gly His Asp Asn Asp
100 105 110

Cys Thr Gly Asn Glu Ser Lys Trp Tyr Gly Leu Gly Ile Ser Gly Gly
115 120 125

Tyr Gln Gln Tyr Leu Leu Val Pro Asn Ser His His Leu Leu Pro Ile
130 135 140

Asp Asn Val Ser Tyr Glu Val Ala Ala Ala Thr Ser Asp Ala Val
145 150 155 160

Leu Thr Pro Tyr His Ala Ile Lys Asn Ser Gly Val Thr Pro Ser Ser
165 170 175

Lys Val Leu Met Phe Gly Leu Gly Gly Leu Gly Ser Asn Ala Leu Gln
180 185 190

Ile Leu Lys Ala Phe Gly Ala Tyr Val Val Ala Val Asp Val Lys Pro
195 200 205

Ala Ser Lys Ala Ile Ala Asp Glu Phe Lys Ala Asp Glu Phe Tyr Thr
210 215 220

Asp Ile Ser Gln Ser Ser Trp Lys Pro Ala Ser Phe Asp Tyr Cys Phe
225 230 235 240

Asp Phe Val Ser Leu Gln Val Thr Phe Asp Ile Cys Gln Lys Tyr Ile
245 250 255

Lys Ser His Gly Thr Ile Phe Pro Val Gly Leu Gly Ser Ser Lys Leu
260 265 270

Thr Phe Asp Leu Gly Asn Leu Ala Leu Arg Glu Val Lys Ile Val Gly
275 280 285

Sequenzprotokoll (TH) Pichia 4090.ST25.txt

Asn Phe Trp Gly Thr Ser Gln Glu Gln Ile Glu Ala Met Glu Leu Val
290 295 300

Ser Ser Gly Arg Val Lys Pro Gln Val His Thr Thr Glu Leu Glu Asn
305 310 315 320

Leu Pro Glu Ser Leu Glu Lys Leu Glu Glu Gly Lys Ile Asn Gly Arg
325 330 335

Leu Val Met Leu Pro
340

10> 10<211> 12<212> PRT<213> Pichia capsulata<400> 10
Lys Thr Gln Ala Gly Tyr Ile Phe Lys Lys Gly Ala
1 5 10

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.