Transformations

COMP 557

Affine transformations

- The set of transformations we have been looking at, linear transformations combined with translation, is known as affine transformations
 - Straight lines are preserved
 - Parallel lines are preserved
 - Ratios of lengths along lines are preserved (e.g., midpoints)

$$\begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix}, \text{ for example, } \begin{pmatrix} 1 & 0 & 2.15 \\ 0 & 1 & 0.85 \\ 0 & 0 & 1 \end{pmatrix}$$

Translation

$$\begin{pmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, for example, $\begin{pmatrix} 1.5 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

• Uniform scale

$$\begin{pmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ for example, } \begin{pmatrix} 1.5 & 0 & 0 \\ 0 & 0.8 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Non-uniform scale

$$\begin{pmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}, \text{ for example, } \begin{pmatrix}
0.866 & -0.5 & 0 \\
0.5 & 0.866 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

Rotation

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Reflection (about y axis)

$$\begin{pmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \text{ for example, } \begin{pmatrix} 1 & 0.5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Shear

General affine transformations

- The previous slides show "canonical" examples of the different types of affine transformations
- In general, an affine transformations can be different than any single canonical example
 - Often define them as a product of canonical transforms
 - Sometimes define them more directly based on desired properties (e.g., creating a change of coordinates)

Composite affine transformation

• In general, non commutative: order matters!

rotate then translate

translate then rotate

Rigid motions

- A transformation made up of only translation and rotation is a rigid motion
 - Also called a rigid body transformation

$$E = \begin{pmatrix} R & \mathbf{u} \\ 0 & 1 \end{pmatrix}$$

• The inverse is easy to write, because the rotation R is orthonormal with $R^{-1} = R^T$, thus,

$$E^{-1} = \begin{pmatrix} R^T & -R^T \mathbf{u} \\ 0 & 1 \end{pmatrix}$$

$$E^{-1}E = \begin{pmatrix} R^T & -R^T\mathbf{u} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} R & \mathbf{u} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} R^TR & R^T\mathbf{u} - R^T\mathbf{u} \\ 0 & 1 \end{pmatrix}$$

Composing to change axes

- Want to rotate about a particular point in space?
 - Easily done by composing transformations
 - We know how to rotate about the origin
 - Translate that point to origin, rotate, and translate back!

$$M = T^{-1} R T$$

Composing to change axes

- Want to scale along particular axis and point?
 - We know how to scale about y axis at origin
 - Suppose we want to stretch by 1.5 times in the direction and at the point shown below

$$M = T^{-1} R^{-1} S R T$$

What are the contents of *S R* and *T*?

Transforming points and vectors

- Note distinction between points and vectors
 - Vectors are offsets (differences between points)
 - Points have a location
 - Represented by vector offset from a fixed origin
- Points and vectors transform differently
 - Points respond to translation; vectors do not
 - Consider

$$v = p - q$$
$$T(x) = Mx + t$$

Transforming points and vectors

$$v = p - q$$
$$T(x) = Mx + t$$

- T is an affine transformation
- T is not a linear transformation

$$T(x + y) \neq T(x) + T(y)$$

= $M(x + y) + t + t$

$$T(p)-T(q) = Mp + t - (Mq + t)$$

= $M(p - q) + (t - t)$
= Mv

Vectors are only transformed by linear part

Transforming points and vectors

- In homogeneous coordinates, vectors have w=0
- Translation of an affine transformation is excluded for vectors in homogeneous coordinates

$$\begin{pmatrix} M & \mathbf{t} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{p} \\ 1 \end{pmatrix} = \begin{pmatrix} M\mathbf{p} + \mathbf{t} \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} M & \mathbf{t} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ 0 \end{pmatrix} = \begin{pmatrix} M\mathbf{v} \\ 0 \end{pmatrix}$$

- Preview of what is to come
 - Last coordinate need not always be 0 or 1
 - Can change last row in matrix to do perspective projection

Coordinate systems

- Can express vectors with respect to different bases
- Linear transformation is a change of basis
- This leads to an alternate view
 - We were previously thinking of modeling transformations (e.g., "make it bigger")
 - Can instead think of them as a means of using different reference frames, or different units (e.g., cm to inches)

Affine change of coordinates in 2D

• There are 6 degrees of freedom

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ 0 & 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{pmatrix}$$

Affine change of coordinates

- Coordinate frame: point and a basis
- Interpretation is that the transformation changes the representation of point (or vector) from one basis to another
 - Frame to canonical matrix has frame in columns
 - Takes points in coordinates of the frame
 - Gives points in coordinates of the canonical basis

Affine change of coordinates

- A new way to "read off" the matrix
 - e.g., shear from earlier
 - Observe how the matrix columns correspond to the change of shape

Affine change of coordinates

- When we move an object to the origin to apply a transformation, we are really changing coordinates
 - Easy to express the transformation in the object's frame
 - Define it there and transform it

$$T_e = F T_F F^{-1}$$

- T_e is the transform expressed with respect to \mathbf{e}_1 \mathbf{e}_2 canonical basis
- T_F is the transformation expressed in the natural frame
- F is the frame-to-canonical matrix (\mathbf{u} \mathbf{v} \mathbf{p}), here in block form with homogeneous representation for basis vectors \mathbf{u} and \mathbf{v} and origin point \mathbf{p}
- This is a similarity transformation

Coordinate frame summary

- Frame is a point plus a basis
- Frame matrix (frame to canonical) is

$$F = \begin{pmatrix} \mathbf{u} & \mathbf{v} & \mathbf{p} \\ 0 & 0 & 1 \end{pmatrix}$$

• Change coordinates of point a to and from frame by multiplying by F and F^{-1}

$$a_e = F a_F \qquad a_F = F^{-1} a_e$$

• "Move" transformations using similarity transform

$$T_e = F T_F F^{-1}$$
 $T_F = F^{-1} T_e F$

Classes of Transformations

- The set of 3x3 matrices we can use to transform homogenous points have a variety of properties
 - Most generally, they map lines to lines.
 - These are called **Homographies** provided they are invertible (this set include perspective projection)
 - A more restrictive set also preserves parallel lines
 - These are called **Affine** transforms
 - A more restrictive set also preserves angles
 - These are called Conformal
 - A more restrictive set also preserves lengths
 - These are called Rigid
- Where do translate, rotate, and scale fit?

Affine (preserve parallelism)
Shear, non-uniform scale

Conformal (preserve angles) uniform scale

Rigid (preserve lengths) rotate, translate

Question

Give a homogeneous transformation matrix, or product of matrices, that will transform triangle ABC to triangle A'B'C'.

Review and more information

- Review
 - CGPP Chapter 7 up to and not including 7.7
 - Essential Math and Geometry of 2D and 3D
 - FCG Chapter 2 and Chapter 5
- CGPP Chapter 10 up to and including 10.10, or FCG Chapter 5
 - 2D transformations
 - Points and Vectors
 - Skip the SVD (e.g., CGPP 10.3.8 and 10.3.9)
 - Inverses of transformation matrices
 - Coordinate Transformations