Chapter I: Fundamentals

Aili Shao

1 Lecture 1 Matrix- Vector Multiplication (21/04/2018)

Exercise 1.1. (a) Row operation \rightarrow Multiply a matrix on the left of B; Column operation \rightarrow Multiply a matrix on the right of B.

- 1. double column 1: Multiply on the right of B by $R_1 = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
- 2. halve row 3: Multiply on the left of B by $L_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
- 3. add row 3 to row 1: Multiply on the left of B by $L_2 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
- 4. interchange columns 1 and 4: Multiply on the right of B by $R_2 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$.
- 5. subtract row 2 from each of the other rows: Multiply on the left of B by $L_3 = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$.

6. replace column 4 by column 3: Multiply on the right of B by
$$R_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

7. delete column 1 : Multiply on the right of B by
$$R_4 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

Thus the resulting matrix is

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} B \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(b)$$

$$A = L_3 L_2 L_1 = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 1/2 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 1/2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

$$C = R_1 R_2 R_3 R_4 = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Exercise 1.2. (a) We know that

$$f_1 = k_{12}(x_2 - x_1 - l_{12});$$

$$f_2 = k_{23}(x_3 - x_2 - l_{23});$$

$$f_3 = k_{34}(x_4 - x_3 - l_{34});$$

$$f_4 = 0.$$

By writing the above linear system as matrix-vector multiplication we have

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} = \begin{bmatrix} -k_{12} & k_{12} & 0 & 0 \\ 0 & -k_{23} & k_{23} & 0 \\ 0 & 0 & -k_{34} & k_{34} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} - \begin{bmatrix} k_{12}l_{12} \\ k_{23}l_{23} \\ k_{34}l_{34} \\ 0 \end{bmatrix}.$$

(b)
$$K = \begin{bmatrix} -k_{12} & k_{12} & 0 & 0\\ 0 & -k_{23} & k_{23} & 0\\ 0 & 0 & -k_{34} & k_{34}\\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The entries of K are spring constants. By Hook's law, we know that force=spring constant \times displacement. Thus, the entries of K are $\frac{\text{force}}{\text{displacement}} = \frac{ma}{d} = \frac{\text{mass}}{\text{time}^2}$.

- (c) The dimensions of $det(K) = \left(\frac{mass}{time^2}\right)^4$.
- (d) Since the dimensions of entry of K only involves time and mass. The SI unit of time is second while the SI unit of mass is kilogram. 1 kg = 1000 g. Thus K' = 1000 K and $\det(K') = 1000^4 \det(K)$.

Exercise 1.3. We first write R as

$$R = \begin{bmatrix} r_{1,1} & r_{1,2} & r_{1,3} & \dots & r_{1,m} \\ 0 & r_{2,2} & r_{2,3} & \dots & r_{2,m} \\ 0 & 0 & r_{3,3} & \dots & r_{3,m} \\ \vdots & \ddots & & & \\ 0 & 0 & 0 & \dots & r_{m,m} \end{bmatrix} = \begin{bmatrix} r_1 \middle| r_2 \middle| \dots \middle| r_m \end{bmatrix}$$

Let e_j denote the canonical unit vector with 1 in the jth entry. Then

$$e_j = \sum_{i=1}^m z_{ij} r_i.$$

In particular

$$e_{1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = z_{1,1} \begin{bmatrix} r_{1,1} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + z_{2,1} \begin{bmatrix} r_{1,2} \\ r_{2,2} \\ \vdots \\ 0 \end{bmatrix} + z_{3,1} \begin{bmatrix} r_{1,3} \\ r_{2,3} \\ \vdots \\ 0 \end{bmatrix} + \dots + z_{m,1} \begin{bmatrix} r_{1,m} \\ r_{2,m} \\ \vdots \\ r_{m,m} \end{bmatrix}.$$

That is $z_{m,1}r_{m,m} = 0$ which implies $z_{m,1} = 0$. This means that e_1 is spanned by $\{r_1, r_2, \dots, r_{m-1}\}$ only. More precisely,

$$e_{1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = z_{1,1} \begin{bmatrix} r_{1,1} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + z_{2,1} \begin{bmatrix} r_{1,2} \\ r_{2,2} \\ \vdots \\ 0 \end{bmatrix} + z_{3,1} \begin{bmatrix} r_{1,3} \\ r_{2,3} \\ \vdots \\ 0 \end{bmatrix} + \dots + z_{m-1,1} \begin{bmatrix} r_{1,m-1} \\ r_{2,m-1} \\ \vdots \\ r_{m-1,m-1} \end{bmatrix}.$$

Then we can get $z_{m-1,1}r_{m-1,m-1} = 0$, which implies that $z_{m-1,1} = 0$. Similarly, we can show that $z_{m-2,1} = z_{m-2,1} = \cdots = z_{2,1} = 0$.

Now we consider a general canonical unit vector

$$e_{j} = \begin{bmatrix} 0 \\ \vdots \\ j \\ \vdots \end{bmatrix} = z_{1j} \begin{bmatrix} r_{1}1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + z_{2j} \begin{bmatrix} r_{12} \\ r_{22} \\ \vdots \\ 0 \end{bmatrix} + z_{3j} \begin{bmatrix} r_{13} \\ r_{23} \\ \vdots \\ 0 \end{bmatrix} + \dots + z_{mj} \begin{bmatrix} r_{1m} \\ r_{2m} \\ \vdots \\ r_{mm} \end{bmatrix}.$$

Thus, $z_{m,j} = z_{m-1,j} = \cdots z_{j+1,j} = 0$ for every $j = 1, 2, \cdots, m$. That is, Z is also an upper-triangular matrix.

Note that $e_j = Rz_j$, so we have I = RZ. That is, $Z = R^{-1}$. This completes the proof.

Exercise 1.4. (a) We can write

$$\sum_{i=1}^{8} c_j f_j(i) = d_i \text{ for } i = 1, 2, \dots 8$$

as matrix-vector multiplication:

$$d = Fc$$

where
$$d = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_8 \end{bmatrix}$$
, $c = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_8 \end{bmatrix}$ while F is a 8×8 square matrix with the i, jth entry defined

by $F_{ij} := f_j(i)$

Since for each $d \in \mathbb{C}^8$, we can find $c \in \mathbb{C}^8$ such that d = Fc, the range of A is \mathbb{C}^8 . By the equivalent theorem (Theorem 1.3 in the book), we know that $\mathbf{rank}(F) = 8$. This implies that F has an inverse, and thus d determines c uniquely if we multiply the matrix-vector multiplication expression d = Fc by F^{-1} on both sides.

(b) By definition, we have Ad = c. That is, $A = F^{-1}$. Thus $A^{-1} = F$. The ij entry of A^{-1} is simply the ijth entry of F, that is, $f_i(i)$.

2 Lecture 2 Orthogonal Vectors and Matrices (24/04/2018)

Exercise 2.1. If A is upper-triangular, then A^{-1} is upper-triangular (by Exercise 1.3). Since A is also unitary, we know that $A^* = A^{-1}$ is upper triangular. However, A^* , as a transpose of an upper-triangular matrix, should be lower-triangular. Thus, A^{-1} must be diagonal. This implies that A is diagonal. The argument is the same when A is lower-triangular.

Exercise 2.2. (a)

$$||x_1 + x_2||^2 = x_1^2 + x_2^2 + 2x_1 \cdot x_2 = x_1^2 + x_2^2$$

since x_1 is orthogonal to x_2 .

(b) Assume the equality holds for sum up to n-1, that is

$$\|\sum_{i=1}^{n-1} x_i\|^2 = \sum_{i=1}^{n-1} \|x_i\|^2.$$

Then

$$\|\sum_{i=1}^{n} x_i\|^2 = \|\sum_{i=1}^{n-1} x_i + x_n\|^2$$

$$= \|\sum_{i=1}^{n-1} x_i\|^2 + x_n^2 + 2\sum_{i=1}^{n-1} x_n \cdot x_i$$

$$= \|\sum_{i=1}^{n} x_i\|^2$$

as x_n is orthogonal to x_i for $i = 1, 2, \dots, n-1$.

Exercise 2.3. (a) Assume that λ is an eigenvalue of A, then there exists non-zero x such that $Ax = \lambda x$. Then, using that $A^* = A$.

$$x^*Ax = x^*(Ax) = x^*(\lambda x) = \lambda(x^* \cdot x),$$

$$x^*Ax = (Ax)^*x = (\lambda x)^*x = \lambda^*(x^* \cdot x).$$

Since $x \neq 0$, $(x^*, x) > 0$. Thus, $\lambda^* = \lambda$. That is, $\lambda \in \mathbb{R}$.

(b) Assume that $Ay = \lambda y$, $Ax = \mu x$, then using $A^* = A$,

$$x^*Ay = x^*(Ay) = x^*\lambda y = \lambda x^*y = \lambda(x \cdot y),$$

$$x^*Ay = (Ax)^*y = (\mu x)^*y = \mu^*x^*y = \mu(x \cdot y).$$

The last equality follows from the fact that all eigenvalues are real. Since $\lambda \neq \mu$, $x \cdot y = 0$. That is, x is orthogonal to y.

Exercise 2.4. The eigenvalues of a unitary matrix has modulus 1. Using $A^{-1} = A^*$, we have

$$x^*x = x^*A^{-1}Ax = (x^*A^*)(Ax) = (\lambda^*x^*(\lambda x) = |\lambda|^2x^*x.$$

Thus $|\lambda| = 1$.

Exercise 2.5. (a) Similar to the proof in Exercise 2.3 (a), we have $\lambda = -\lambda^*$ in this case. This implies that the eigenvalues of S are pure imaginary.

(b) If there exists non-zero x such that (I - S)x = 0. Then x = Sx.

$$x^*x = (Sx)^*x = x^*S^*x = x^*(-S)x = -x^*x.$$

Thus $x \equiv 0$. That is, $\text{Null}(I - S) = \{0\}$, so I - S is non-singular. (c)

$$Q^{\star} = (I+S)^{\star}((I-S)^{-1})^{\star} = (S^{\star}+I)[(I-S)^{\star}]^{-1} = (I-S)(I+S)^{-1} = Q^{-1}.$$

Exercise 2.6. If $u \equiv 0$, then it is trivial. Now assume that $u \neq 0$. If A is non-singular, we can find out A^{-1} . We write

$$A^{-1} = [x_1, x_2, \cdots, x_m]$$

where x_i represents the ith column of A^{-1} . Then

$$AA^{-1} = (I + uv^*) [x_1, x_2, \cdots, x_m]$$

$$= [1 + uv^*x_1, \cdots, x_m + uv^*x_m]$$

$$= I$$

$$= [e_1, e_2, \cdots, e_m]$$

This implies that $x_i + uv^*x_i = e_i$ for each $1 \le i \le m$. Then we can write

$$A^{-1} = [e_1 - z_1 u, e_2 - z_2 u, \dots, e_m - z_m u] = I - uz^*.$$

$$I = AA^{-1}$$

$$= (I + uv^*)(I - uz^*)$$

$$= I + uv^* - uz^* - uv^*uz^*$$

$$= I + uv^* - uz^* - (v^*u)uz^*$$

$$= I.$$

This means that

$$uv^* - uz^* - (v^*u)uz^* = 0.$$
$$uz^*(v^*u + 1) = uv^*.$$
$$uz^* = \frac{uv^*}{v^*u + 1}.$$

This shows that

$$z^{\star} = \frac{v^{\star}}{v^{\star}u + 1}.$$

Thus, $A^{-1} = I - \frac{uv^*}{v^*u+1} = I + \alpha uv^*$ where $\alpha = -\frac{1}{v^*u+1}$. Now we suppose that A is singular, then there exists a non-zero x such that Ax = 0, that

$$(I + uv^*)x = 0.$$

This implies that

$$x = -uv^*x.$$
$$x = -u(v^*x)$$

where v^*x is a scalar.

This shows that $x = \beta u$ for some scaler β . If we plug $x = \beta u$ into Ax = 0, we get

$$(I + uv^*)\beta u = \beta u + \beta uv^*u$$
$$= \beta u(1 + v^*u)$$
$$= 0.$$

Since $\beta u \neq 0$, we must have $v^*u = -1$. If A is singular, $\operatorname{null}(A) = \{\beta u \colon \beta \in \mathbb{C}\}.$

Exercise 2.7. Note that

$$H_{k+1}^{-1} = \begin{bmatrix} (2H_k)^{-1} & (2H_k)^{-1} \\ (2H_k)^{-1} & (-H_k)^{-1} + (2H_k)^{-1} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} H_k^{-1} & H_k^{-1} \\ H_k^{-1} & -H_k^{-1} \end{bmatrix},$$

$$H_{k+1}^T = \begin{bmatrix} H_k^T & H_k^T \\ H_k^T & -H_k^T \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \alpha_k H_k^{-1} & \alpha_k H_k^{-1} \\ \alpha_k H_k^{-1} & -\alpha_k H_k^{-1} \end{bmatrix} = 2\alpha_k H_{k+1}^{-1}.$$

By induction, the recursive description provides a Hadamard matrix for each $m=2^k$.

Exercise 3.1. By definition,

$$||x||_W = ||Wx||.$$

- 1. $||x||_W \ge 0$, and $||x||_W = 0$ only if Wx = 0 which implies that x = 0 since W is non-singular.
- 2. $||x + y||_W = ||W(x + y)|| \le ||Wx|| + ||Wy|| = ||x||_W + ||y||_W$.
- 3. $\|\alpha x\|_W = \|W(\alpha x)\| = \|\alpha W x\| = |\alpha| \|W x\| = |\alpha| \|x\|_W$.

Thus $\|\cdot\|_W$ defines a vector norm for any arbitrary non-singular matrix W.

Exercise 3.2. By definition, we have $||A|| = \sup_{x \in \mathbb{C}^n, x \neq 0} \frac{||Ax||}{||x||}$. Since $\rho(A)$ is the largest absolute value $|\lambda|$ of an eigenvalue λ of A. There exists a non-zero $y \in \mathbb{C}^n$, such that $Ay = \lambda y$. That is, $||Ay|| = |\lambda| ||y||$. Thus,

$$|\lambda| = \frac{\|Ay\|}{\|y\|} \le \sup_{x \in \mathbb{C}^n, x \ne 0} \frac{\|Ax\|}{\|x\|} = \|A\|.$$

Exercise 3.3. 1. $||x||_{\infty} \leq ||x||_2$ can be easily proved:

$$||x||_2 = \sqrt{\sum_{i=1}^m x_i^2} \ge |x_i| \text{ for every } 1 \le i \le n.$$

Take $x = e_1 = (1, 0, \dots, 0)$, then $||x||_{\infty} = ||x||_2$.

2. $||x||_2 \le \sqrt{m} ||x||_{\infty}$ can be proved in the following way:

$$||x||_2 = \sqrt{\sum_{i=1}^m x_i^2} \le \sqrt{\sum_{i=1}^m ||x||_{\infty}^2} = \sqrt{m||x||_{\infty}^2} = \sqrt{m}||x||_{\infty}.$$

Take $x = (1, 1, \dots, 1)$. Then $||x||_2 = \sqrt{\sum_{i=1}^m 1^2} = \sqrt{m}$. $\sqrt{m} ||x||_{\infty} = \sqrt{m} \cdot 1 = \sqrt{m}$.

3. By part (1) and part (2), $||A||_{\infty} = \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{||Ax||_{\infty}}{||x||_{\infty}} \le \frac{||Ax||_2}{1/\sqrt{n}||x||_2} \le \sqrt{n} ||A||_2$.

Recall that $||A||_{\infty}$ is the maximum row sum while $||A||_2$ is the maximum absolute value of the singular value (eigenvalue for square matrix). Take

$$A = \begin{bmatrix} 1 & 1 \\ 0 & \sqrt{2} \end{bmatrix},$$

then $||A||_{\infty}=2$, $||A||_{2}=\sqrt{2}$, $\sqrt{n}=\sqrt{2}$, so the equality holds.

4. By part(1) and part (2), $||A||_2 = \sup_{x \in \mathbb{C}^n \setminus \{0\}} \frac{||Ax||_2}{||x||_2} \leq \frac{\sqrt{m} ||Ax||_{\infty}}{||x||_{\infty}} \leq \sqrt{m} ||A||_{\infty}$. Similar to (3), but we consider a rectangle matrix in this case. Take

$$A = \begin{bmatrix} 1 & 0 \end{bmatrix},$$

then $||A||_2 = 1$ (the largest singular value of A), $||A||_{\infty} = 1$ and m = 1, so $||A||_2 = \sqrt{1}||A||_{\infty}$.

Exercise 3.4. (a) Similar to the step 7 in Exercise 1.1, if we multiply on the RHS of A by an identity matrix with ith column removed, the ith column of A is deleted. If we multiply A by an identity matrix with jth row removed on the LHS of A, the jth row of A is deleted. We can multiply A by such matrices to obtain B.

(b) We know that $||AB||_p \leq ||A||_p ||B||_p$ for any $m \times n$ matrix A, $n \times l$ matrix B and for every $1 \leq p \leq \infty$. It is sufficient to show that p-norm of each matrix we used to multiply on the LHS and RHS of A is less than or equal to 1. This follows from direct computation.

Exercise 3.5. Since

$$\begin{split} \frac{\|Ex\|_2}{\|x\|_2} &= \frac{\|uv^\star x\|_2}{\|x\|_2} = \frac{\|u\|_2|v^\star x|}{\|x\|_2} \leq \frac{\|u\|_2\|v\|_2\|x\|_2}{\|x\|_2} = \|u\|_2\|v\|_2, \\ \|E\|_2 &= \sup_{x \in \mathbb{C}^n \backslash \{0\}} \frac{\|Ex\|_2}{\|x\|_2} \leq \|u\|_2\|v\|_2. \end{split}$$

The equality is achieved if we take x = v. Thus,

$$||E||_2 = ||u||_2 ||v||_2.$$

Note that $E_{ij} = u_i v_j$, thus

$$||E||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |E_{ij}|^2} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |u_i|^2 |v_j|^2} = \sqrt{\sum_{i=1}^m |u_i|^2} \sqrt{\sum_{j=1}^n |v_j|^2} = ||u|_F ||v||_F.$$

Exercise 3.6. (a)

1. By definition $||x||' = \sup_{||y||=1} |y^*x| \ge 0$ and ||x||' = 0 only if x = 0.

2.
$$||x+z||' = \sup_{\|y\|=1} |y^*(x+z)| \le \sup_{\|y\|=1} (|y^*x| + |y^*z|) = ||x||' + ||z||'$$
.

3.
$$\|\alpha x\|' = \sup_{\|y\|=1} |y^*(\alpha x)| = |\alpha| \sup_{\|y\|=1} |y^*x| = |\alpha| \|x\|'$$
.

(b)

We want to show that there exists $z \in \mathbb{C}^m$ such that

$$Bx = yz^{\star}x = (z^{\star}x)y = y.$$

So we need to construct z such that $z^*x = 1$. Following the hint, we know that for each given x, there exists a non-zero $z_0 \in \mathbb{C}^m$ such that $|z_0^*x| = ||z_0||'||x||$.

Define
$$z := e^{i\theta} \frac{z_0}{\|z_0\|'}$$
 where $\theta = arg(z_0^*x)$. Then $z^*x = e^{i\theta} \frac{z_0^*x}{\|z_0\|'} = \frac{|z_0^*x}{\|z_0\|'} = \|x\| = 1$. It follows that

$$||B|| = \sup_{||x||=1} ||Bx|| = \sup_{||x||=1} ||yz^*x|| = \sup_{||x||=1} |z^*x| ||y|| = \sup_{||x||=1} |x^*z| = ||z||' = 1.$$

4 The singular value decomposition (04/05/2018)

Exercise 4.1. Since $A = U\Sigma V^*$,

$$AA^* = U\Sigma(V^*V)\Sigma^*U^* = U(\Sigma\Sigma^*)U^*.$$

That is,

$$AA^*U = U(\Sigma\Sigma^*).$$

Each column $\{u_j\}$ of U is the eigenvector of AA^* corresponding to the eigenvalue σ_j^2 where σ_j is the jth singular value of A.

1.
$$A = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$
, $AA^* = \begin{bmatrix} 9 & 0 \\ 0 & 4 \end{bmatrix}$. Thus, $U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ and $V = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

$$2. \ A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \ AA^{\star} = \begin{bmatrix} 4 & 0 \\ 0 & 9 \end{bmatrix}. \ Thus, \ U = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \ and \ V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

3.
$$A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, $AA^* = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Thus, $U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

4.
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $AA^* = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$. Thus, $U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$ and $V = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$.

5.
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $AA^* = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$. $\Sigma\Sigma^* = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$. $U = \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{bmatrix}$, $\Sigma = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ and $V = \begin{bmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{bmatrix}$.

Exercise 4.2. The answer is Yes!

By definition,
$$BQ = A^*$$
 where $Q = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & \ddots & 0 & 0 \\ 1 & \cdots & 0 & 0 \end{bmatrix}$ is a unitary matrix.

If $A = U\Sigma V^*$ then $A^* = V\Sigma^*U^*$. Thus $B = V\Sigma U^*O^* = V\Sigma(UO)^*$. Thus

If $A = U\Sigma V^*$, then $A^* = V\Sigma^*U^*$. Thus $B = V\Sigma U^*Q^* = V\Sigma (UQ)^*$ Therefore, A and B has the same set of singluar values as UQ, the product two unitary matrices is a unitary matrix.

Exercise 4.3. The Matlab programme is summarized in the following function:

```
function h=svdplot(A)
% This function is designed to plot the unit circle and the right singular
% vectors of a 2 by 2 matrix A and its corresponding ellipse and left
% singulat vectors on image plane.
%SVD of A
[U,S,V]=svd(A);
% Plot the unit circle and the right singular vectors on pre-image plane.
figure(1);
axis([-1.2 1.2 -1.2 1.2]);
theta=0:0.01:2*pi;
x1=cos(theta);
y1=sin(theta);
plot(x1, y1);
hold on;
t = 0:0.01:1;
x11 = V(1,1)*t; y11 = V(2,1)*t; plot(x11, y11, 'r');
x12=V(1,2)*t;y12=V(2,2)*t; plot(x12,y12,'r');
grid on;
title('On pre-image plane');
% Plot the ellipse and the scaled left signualr vectors on image plane.
figure(2);
```

```
axis([-3 \ 3 \ -3 \ 3]);
x=[x1;y1];
w=A*x;
x2=w(1,:);y2=w(2,:);
plot(x2, y2);
hold on;
w1=S(1,1)*U(:,1); w2=S(2,2)*U(:,2)
t = 0:0.01:1;
x21 = w1(1)*t; y21= w1(2)*t;
plot(x21, y21, 'r');
hold on;
x22=w2(1)*t; y22=w2(2)*t;
plot(x22,y22,'r');
grid on;
title('On image plane');
end
```

Exercise 4.4. If A and B are unitarily equivalent, then A and B have the same singular values.

Assume that $B = U\Sigma V^*$. Since $A = QBQ^*$,

$$A = QU\Sigma V^{\star}Q^{\star} = (QU)\Sigma (QV)^{\star}$$

is a singular value decomposition of A. By uniqueness of SVD, A and B have the same singular values.

However the converse is not necessarily true.

Conside $A = \begin{bmatrix} 1 & 1 \\ 0 & \end{bmatrix}$ and $B = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$ Then A and B have the same singular values but not unitarily equivalent (i.e. A is non-symmetric but B is symmetric).

Exercise 4.5. Recall that calculating the SVD consists of finding the eigenvalues and eigenvectors of AA^* and A^*A . The eigenvectors of A^*A make up the columns of V, the eigenvectors of AA^* make up the columns of U. Also, the singular values in Σ are square roots of eigenvalues from AA^* or A^*A . The singular values are the diagonal entries of the Σ matrix and are arranged in descending order. The singular values are always real numbers since the eigenvalues of A^*A or AA^* are non-negative. If the matrix A is a real matrix, AA^* and A^*A are real and symmetric, which implies that U and V are also real.

5 More on the SVD
$$(11/05/2018)$$

Exercise 5.1.

$$A^{\star}A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 8 \end{bmatrix}.$$

The eigenvalues of A^*A satisfies $\lambda^2 - 9\lambda + 4 = 0$. Thus $\lambda = \frac{1}{2}(9 \pm \sqrt{65})$. This implies that

$$\sigma_{max}(A) = \sqrt{\frac{1}{2}(9 + \sqrt{65})}, \text{ and } \sigma_{min}(A) = \sqrt{\frac{1}{2}(9 - \sqrt{65})}.$$

Exercise 5.2. Suppose $A = U\Sigma V^*$. Define $A_{\varepsilon} = U(\Sigma + \varepsilon I_{m\times n})V^*$ for positive ε . We claim that A_{ε} is of full rank for each ε , and that $||A - A_{\varepsilon}||_2 = \varepsilon$.

Since the diagonal entries of Σ are non-negative, the diagonal entries of $\Sigma + \varepsilon I_{m \times n}$ are positive. That is, A_{ε} is of full rank for each ε .

$$||A - A_{\varepsilon}||_{2} = ||U(\varepsilon I_{m \times n} V^{\star})|| = \varepsilon ||I_{m \times n}||_{2} = \varepsilon.$$

This shows that any matrix $A \in \mathbb{C}^{m \times n}$ can be approximated by a sequence of full rank matrices $\{A_{\varepsilon}\}$.

Exercise 5.3. (a)

$$AA^{\star} = \begin{bmatrix} -2 & 11 \\ -10 & 5 \end{bmatrix} \begin{bmatrix} -2 & -10 \\ 11 & 5 \end{bmatrix} = \begin{bmatrix} 125 & 75 \\ 75 & 125 \end{bmatrix} = 25 \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}.$$

So the eigenvalues of AA^* satisfies

$$(\lambda/25 - 5)^2 - 9 = 0.$$

That is, $\lambda = 25*2 = 50$ or $\lambda = 25*8 = 200$. The corresponding eigenvectors are $\frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix}$ and $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$. This implies that $\sigma_{max}(A) = 10\sqrt{2}$, $\sigma_{min}(A) = 5\sqrt{2}$,

$$\Sigma = \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix}, U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

$$V = A^*U\Sigma^{-1} = \begin{bmatrix} -2 & -10 \\ 11 & 5 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{10\sqrt{2}} & 0 \\ 0 & \frac{1}{5\sqrt{2}} \end{bmatrix} = \begin{bmatrix} -\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}.$$

Since we want U and V to have minimal number of negative signs, take $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, $U = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}$.

(b) The singular values are $5\sqrt{2}$ and $10\sqrt{2}$.

The left singular vectors of A are $u_1 = \pm \frac{1}{5} \begin{bmatrix} -3\\4 \end{bmatrix}$, $u_2 = \pm \frac{1}{5} \begin{bmatrix} 4\\3 \end{bmatrix}$.

The right singular vectors of A are $v_1 = \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $v_2 = \pm \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Using the MATLAB function in previous exercise, we get the following plot:

$$\begin{split} \|A\|_1 &= \max_{1 \leq j \leq 2} \|a_j\|_1 = 16. \\ \|A\|_2 &= \sigma_{max}(A) = 10\sqrt{2}. \\ \|A\|_\infty &= \max_{1 \leq i \leq 2} \|a_i^\star\|_1 = 15. \\ \|A\|_F &= \sqrt{\sigma_{max}^2 + \sigma_{min}^2} = \sqrt{250} = 5\sqrt{10}. \end{split}$$

(d)

$$A^{-1} = (V^{\star})^{-1} \Sigma^{-1} U^{-1} = V \Sigma U^{\star}.$$

Thus,

$$A^{-1} = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix} \begin{bmatrix} \frac{1}{10\sqrt{2}} & 0 \\ 0 & \frac{1}{5\sqrt{2}} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{100} \begin{bmatrix} 5 & -11 \\ 10 & -2 \end{bmatrix}.$$

(e) The eigenvalues of A satisfies

$$\det\left(\begin{bmatrix} -2-\lambda & 11\\ -10 & 5-\lambda \end{bmatrix}\right) = 0.$$

That is $(-2 - \lambda)(5 - \lambda) + 110 = \lambda^2 + 3\lambda + 100 = 0$.

Thus $\lambda_{1,2} = \frac{1}{2}(-3 \pm \sqrt{391}i)$.

(f)
$$\lambda_1 \lambda_2 = \frac{1}{4} (3 - \sqrt{391}i)(3 + \sqrt{391}i) = 100$$
. $\det(A) = -2(5) - 11(-10) = 100$. $\sigma_1 \sigma_2 = 5\sqrt{2} \cdot 10\sqrt{2} = 100$. $|\det(A)| = 100$.

(g)

The area of the ellipsoid onto which A maps the unit ball is $\det(A)$ area of the unit ball in $\mathbb{R}^2 = 100\pi$.

Exercise 5.4.

$$\begin{bmatrix} 0 & A^{\star} \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} U\Sigma V^{\star} & 0 \\ 0 & V\Sigma U^{\star} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & \Sigma \end{bmatrix} \begin{bmatrix} V^{\star} & 0 \\ 0 & U^{\star} \end{bmatrix}.$$

Note that the inverse of $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix}$ is $\begin{bmatrix} U^{\star} & 0 \\ 0 & V^{\star} \end{bmatrix} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} V^{\star} & 0 \\ 0 & U^{\star} \end{bmatrix}$. The inverse of $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ is itself.

$$Thus, \begin{bmatrix} 0 & A^{\star} \\ A & 0 \end{bmatrix} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \left(\begin{bmatrix} \Sigma & 0 \\ 0 & \Sigma \end{bmatrix} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \right) \left(\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \right)^{-1}.$$

$$Note that \begin{bmatrix} \Sigma & 0 \\ 0 & \Sigma \end{bmatrix} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} = \begin{bmatrix} 0 & \Sigma \\ \Sigma & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} I & I \\ I & -I \end{bmatrix} \begin{bmatrix} \Sigma & 0 \\ 0 & \Sigma \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} I & I \\ I & -I \end{bmatrix}.$$

$$If X = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} U & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} I & I \\ I & -I \end{bmatrix}, \begin{bmatrix} 0 & A^{\star} \\ A & 0 \end{bmatrix} = X \begin{bmatrix} \Sigma & 0 \\ 0 & -\Sigma \end{bmatrix} X^{-1}.$$