Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский университет «Высшая школа экономики» Факультет компьютерных наук Образовательная программа Прикладная математика и информатика бакалавриат

01.03.02 Прикладная математика и информатика

ОТЧЕТ по учебной практике

	Выполнил студент гр. БПМИ-185 Агаев Фархат Чингизович	
Проверил: Доцент Авдеев Роман Сергеевич		
должность, Φ ИО руководителя от НИУ ВШЭ	оценка по 10 бальной шкале	подпись

Содержание

Введение	3
Цели и задачи практики	
Основная часть	
Календарный план-график	4
Доказательство	5
Заключение	11
Список использованных источников	11

Введение

Для успешного прохождения практики "Дополнительные главы алгебры или линейной алгебры" перед ее началом были обговорены цели, задачи, содержание и планируемые результаты, которые должны были быть достигнуты по завершении.

- Главная цель:
 - Доказать теорему Перрона-Фробениуса
- Задачи практики:
 - 1. Поиск необходимой информации в интернете и других источниках
 - 2. Перевод доказательства с английского языка на русский
 - 3. Написание подробного доказательства с использованием $\mathrm{I\!\!A}\mathrm{T}_{\!\!E}\!\mathrm{X}$
- Содержание практики (вопросы, подлежащие изучению):
 - 1. Теорема Перрона
 - 2. Теорема Перрона-Фробениуса
- Планируемые результаты:

В результате практики должен быть подготовлен подробный качественни pdf файл, набранный в \LaTeX

Календарный план-график

На период прохождения практики был установлен следующий календарный планграфик, которому необходимо было следовать:

№	Сроки прове-	Выполненные работы	Отметка руководителя
п/п	дения		о выполнении (под-
			пись)
1	15.07.19	1. Организационное собрание	Algo .
2	15.07.19	2. Инструктаж по ознакомлению с требованиями охраны труда, техники безопасности, пожарной безопасности, а также правилами внутреннего трудового распорядка	Alg
3	15.07.2019	3. Экскурсия обзорная	Ala
4	16.07- 27.07.2019	4. Выполнение индивидуального задания	Alg
5	16.07- 27.07.2019	5. Консультации	Alg

Определение 1. Положительная матрица - A>0, когда каждый элемент $a_{ij}>0$

Определение 2. Неотрицательная матрица - $A \ge 0$, когда каждый элемент $a_{ij} \ge 0$

Определение 3. Спектральный радиус квадратной матрицы или линейного ограниченного оператора является наибольшим абсолютным значениемего собственных значений (т. е. Супремум среди абсолютных значений элементов в его спектре Иногда его обозначают как ρ (·). Пусь $\lambda_1, \ldots, \lambda_n$ (комплексные или действительные)

$$\rho(A) = \max\{|\lambda_1|, \dots, |\lambda_n|\}.$$

Определение 4. $\sigma(A)$ - множество различных собственных значений матрицы A (спектр линейного оператора)

Определение 5. Матрица M абсолютных значений - $|\mathbf{M}|$, когда каждый элемент имеет значение $|m_{ij}|$, то есть при использовании операции |*| κ матрице, мы применяем модуль κ каждому её элементу

Определение 6. Собственная пара - пара (λ, v) , состоящая из собственного значения λ и соответствующему ему собственного вектора v.

Определение 7. $alg\ mult_A(r)$ - Алгебраическая кратность корня r для матрицы A.

Определение 8. $geo\ mult_A(r)$ - $\Gamma eomempu$ ческая кратность корня r для матрицы A.

Определение 9. Полупростое собственное значение - собственное значение λ с условием, что geo $mult_A(\lambda)=alg\ mult_A(\lambda)$

Положительные матрицы

Простые утверждения

Для начала приведем несколько очевидных фактов:

$$(1) A > 0 \Rightarrow \rho(A) > 0$$

Предположим $\sigma(A)=\{0\}$, отсюда следует, что жорданова форма для A и сама матрица A - нильпотент, но такое невозможно, так как $a_{ij}>0$. Также наше утверждение может быть ограничено до положительных матриц с спектральным радиусом 1, потому что A можно всегда нормализовать по спектральному радиусу, то есть $A>0\Leftrightarrow \frac{A}{\rho(A)}>0$ и $\rho(A)=r\Leftrightarrow \rho(\frac{A}{r})=1$.

$$(2) P > 0, x \ge 0, x \ne 0 \Rightarrow Px > 0$$

$$(3) N \ge, u \ge v \ge 0 \Rightarrow Nu \ge Nv$$

(4)
$$N \ge 0, z > 0, Nz = 0 \Rightarrow N = 0,$$

(5)
$$N \ge 0, n \ne 0, u > v > 0 \Rightarrow Nu > Nv$$

Лемма 1. Если $A_{n \times n} > 0$, то следующие утверждения верны:

- 1. $\rho(A) \in \sigma(A)$.
- 2. Если $Ax = \rho(A)x$, тогда $A|x| = \rho(A)|x|$ и |x| > 0, другими словами для матрицы A существует собственная пара (onped №4) ($\rho(A)$, v), где v > 0

Доказательство. Как уже упоминалось ранее, мы можем предположить, что $\rho(A)=1$ без ограничения общности. Допустим, что у нас есть собственная пара (λ,x) для матрицы A, где $|\lambda|=1$, далее

(6)
$$|x| = |\lambda||x| = |\lambda x| = |Ax| \le |A||x| = A|x| \Rightarrow |x| \le A|x|.$$

Цель состоит в том, чтобы показать, что равенство выполняется. Для удобства пусть z=A|x| и y=z-|x| (по утверждению (6) мы знаем $y\geq 0$). Предполагаем, что $y\neq 0,\ y_i>0$. В этом случае из утверждения (2) следует, что Ay>0 и z>0, поэтому должно существовать число ε такое, что $Ay>\varepsilon z$ или эквивалентная запись,

$$\frac{A}{1+\varepsilon}z > z$$

Запишим данное неравесиство как Bz>z, где $B=\frac{A}{1+\varepsilon}$ и последовательно умножаем с двух сторон на В используя утверждение (5) мы получаем

$$B^2z > Bz > z$$
, $B^3z > B^2z > z$, ... $\Rightarrow B^kz > z$ для всех $k = 1, 2, ...$

Но $\lim_{k\to\infty}B^k=0$, потому что $\rho(B)=\sigma(\frac{A}{1+\varepsilon})=\frac{1}{1+\varepsilon}<1$, поэтому в пределе мы получаем, что 0>z, который противоречит факту z>0. Отсюда следует ложное предположение $y\neq 0$, поэтому $y=0=A|x|-|x|\Rightarrow |x|$ - собсвтенный вектор для A с собсвтенным значеним $1=\rho(A)$, заметим, что |x|=A|x|=z>0 (ЧТД)

Мы установили, что $\rho(A)>0$ собственное значение для матрицы A>0

Лемма 2. Если $A_{n \times n} > 0$, то следующие утверждения верны:

- 1. $\rho(A)$ единственное собственное значение на спектральном круге
- 2. $\rho(A)$ полупростое (опред N27) собственное значение.

Доказательство. Без ограничения общности $\rho(A)=1$. Мы знаем из Леммы 1, что если (λ,x) - собственная пара для матрицы A $(|\lambda|=1)$, то 0<|x|=A|x|, так как $0<|x_k|=(A|x|)_k=\sum_{j=1}^n a_{kj}|x_j|$. С другой стороны верно равенство $|x_k|=|\lambda||x_k|=|(\lambda x)_k|=|(\Delta x)_k|=|\sum_{j=1}^n a_{kj}x_j|$,

(7)
$$|\sum_{j} a_{kj} x_{j}| = \sum_{j} a_{kj} |x_{j}| = \sum_{j} |a_{kj} x_{j}|$$

Для ненулевых векторов $\{z_1,\ldots,z_n\}\in C^n, \|\sum_j z_j\|_2=\sum_j \|z_j\|_2$ (факт) $\Leftrightarrow z_J=\alpha_j z_1$ для некоторого $\alpha_j>0$. В частности это справедливо для скаляров, поэтому (7) обеспечивает существование таких чисел $\alpha_j>0$,

$$a_{kj}x_j=lpha(a_{k1}x_1)$$
 это эквивалентно $x_j=\pi_jx_1,\quad \pi_j=rac{lpha_ja_{k1}}{a_{kj}}>0$

Другими словами, если $|\lambda| = 1$, $x = x_1 p$, где $p = (1, \pi_2, \dots, \pi_n)^T > 0$,

$$\lambda x = Ax \Rightarrow \lambda p = Ap = |Ap| = |\lambda p| = |\lambda|p = p \Rightarrow \lambda = 1,$$

Таким образом 1 это единственное собственное значение на спектральном круге

Лемма 3. Если матрицы $A_{n \times n} > 0$, то следующие утверждения верны:

- 1. $alg \ mult_A(\rho(A)) = 1 \ (Алгебраическая кратность равна 1)$
- 2. $dimN(A \rho(A)I) = geo \ mult_A(\rho(A)) = alg \ mult_A(\rho(A)) = 1 \ (опред №5 и №6)$

Доказательство. Без ограничения общности $\rho(A)=1$ и предположим, что $alg\ mult_A(\lambda=1)=m>1.$ Мы уже знаем, что $\lambda=1$ это **полупростое** собственное значение, которое означает, что $alg\ mult_A(1)=geo\ mult(1)$ поэтому линейно независимые собственные вектора связаны с $\lambda=1$. Если х и у - пара независимых собственных векторов соответствующих $\lambda=1$, то $x\neq\alpha$ для всех $\alpha\in C$. Выберем ненулевой элемент из вектора у, пусть это будет $y_i\neq 0$ и установим что $z=x-\frac{x_i}{y_i}y$. Поскольку Az=z и мы знаем, из Леммы $1.2\ A|z|=|z|>0$. Но это противоречит условию $z_i=z_i-\frac{y_i}{y_i}y_i=0$. Следовательно предположение, что m>1 неверно \Rightarrow m=1.

Так как $N(A-\rho(A)I)$ - одномерное векторное пространство натянутый на некоторый v>0, следовательно существует уникальный собственный вектор $p\in N(A-\rho(A)I)$ такой, что p>0 и $\sum_j p_j=1$ (это получается с помощью нормализации $p=\frac{v}{\|v\|_1}$) Данный вектор р называется вектором Перрона для матрицы A>0 и ему соответствующее собственное значение $r=\rho(A)$ -корень Перрона.

Поскольку $A>0\Leftrightarrow A^T>0,\; \rho(A)=\rho(A^T)$ очевидно, что собственная пара (опред №4) (r,p), которая существует для A, также существует пара (\mathbf{r},\mathbf{q}) для $A^T.$ Потому что $q^TA=rq^T,$ вектор $q^T>0$ называется левым вектором Перрона

Лемма 4. Вектор Перрона p - единственный для матрицы $A_{n \times n} > 0$

Доказательство. Если (λ, y) это собственная пара для матрицы A, $y \ge 0$ и если x > 0 - вектор Перрона для A_T , тогда $x^T y > 0$ (утвер. (2)),

$$\rho(A)x^T = x^T A \Rightarrow \rho(A)x^T y = x^T A y = \lambda x^T y \Rightarrow \rho(A) = \lambda \quad \text{(ЧТД)}$$

Лемма 5. Формула Коллатиа – Виландта

Корень Перрона для матрицы $A_{n\times n}>0,\ r=\max_{x\in N}f(x),$ где

$$f(x) = \min_{1 \le i \le n} \frac{[Ax]_i}{x_i}, \ (x_i \ne 0), \quad N = \{x \mid x \ge 0, x \ne 0\}.$$

Доказательство. Если $\varepsilon = f(x)$ для $x \in N$, тогда $0 \le \varepsilon x \le Ax$. Пусть p и q^T будут соответственно правый и левый векторы Перрона для A с соответствующим корнем Перрона r используем (3) (простые утверждения) вместе с утвер. (2) $(q^T x > 0)$

$$\varepsilon x < Ax \Rightarrow \varepsilon q^T x < q^T Ax = rq^T x \Rightarrow \varepsilon < r \Rightarrow f(x) < r \quad \forall x \in N.$$

Поскольку f(p) = r и $p \in N$, то $r = \max_{x \in N} f(x)$.

Ниже приводится краткое изложение результатов, полученных выше

Теорема Перрона

Соберем все леммы и утверждения, доказанные ранее, и получим теорему Перрона для положительных матрицы

Если $A_{n \times n} > 0$, $r = \rho(A)$, следующие утверждения верны.

- 1. r > 0
- 2. $r \in \sigma(A)$ (r называется корнем Перрона)
- 3. $alg\ mult_A(r) = 1$.
- 4. Существует собственный вектор x > 0 такой, что Ax = rx.
- 5. Вектор р, который удовлетворяет условиям:

$$Ap = rp, \quad p > 0, \quad ||p||_1 = 1$$

называется вектором Перрона. Не существует других собственных векторов для матрицы A, кроме кратных p, не смотря на собственное значение.

- $6. \ \ r$ единсвтенное собственное значение на спектральном круге матрицы A
- 7. Формула Коллатца-Виландта

$$r = \max_{x \in N} f(x), \quad f(x) = \min_{1 \le i \le n} \frac{[Ax]_i}{x_i}$$

Неотрицательные матрицы

Лемма 6. Пусть $A_{n \times n} \ge 0$, $r = \rho(A)$, то следующие утверждения верны:

- 1. $r \in \sigma(A)$
- 2. $Az = rz \ \partial Az = rz \ \partial Az = \{x \mid x \ge 0, x \ne 0\}$
- 3. Формула Коллатца-Виландта

$$r = \max_{x \in N} f(x), \quad f(x) = \min_{1 \le i \le n} \frac{[Ax]_i}{x_i}$$

Доказательство. Рассмотрим последовательность положительных матриц $A_k = A + \frac{1}{k}E > 0$, где E - единичная матрица, пусть $r_k > 0$ и $p_k > 0$ отметим, что это корень Перрона и вектор Перрона соответственно для A_k . Заметим $\{p_k\}_{k=1}^\infty$ - ограниченное множество, потому что данное множество содержится в единичном шаре $\in \mathbb{R}^n$. Теорема Больцано — Вейерштрасса утверждает, что в ограниченной последовательности есть сходящаяся подпоследовательность, поэтому в $\{p_k\}_{k=1}^\infty$ мы можем выделить сходящуюся подпоследовательность.

 $\{p_k\}_{k=1}^\infty \to z$, где $z\ge 0,\ z\ne 0$ (потому что $p_{k_i}>0,\ \|p_{k_i}\|_1=1$) Поскольку $A_1>A_2>\cdots>A$, то $r_1\ge r_2\ge \cdots\ge r$, поэтому $\{r_k\}_{k=1}^\infty$ - монотонная последовательность с положительными элементами, ограниченная r

$$\lim_{k\to\infty}r_k=r^*$$
 существует, $r^*\geq r$. В частности $\lim_{i\to\infty}r_{k_i}=r^*\geq r$.

Ho $\lim_{k\to\infty} A_k = A \Rightarrow \lim_{i\to\infty} A_k = A$

$$Az = \lim_{i \to \infty} A_{k_i} p_{k_i} = lim_{i \to \infty} r_{k_i} p_{k_i} = r * z \Rightarrow r * \in \sigma(A) \Rightarrow r * \leq r.$$

 $\Rightarrow r*=r, Az=rz, z\geq 0, z\neq 0$ (доказали пункты 1 и 2 из Леммы 6). Докажем пункт 3. Пусть $q_k^T>0$ будет левым вектором Перрона для матрицы A_k . Для каждого $x\in N$ и k>0, мы знаем $q_k^Tx>0$ (прост утвержд 2),

$$0 \le f(x)x \le Ax \le Ax \le A_k x \Rightarrow f(x)q_k^T x \le q_k^T A_k x = r_k q_k^T x \Rightarrow f(x) \le r_k$$
$$\Rightarrow f(x) < r(r_k \to r^* = r).$$

f(z)=r и $z\in N$, следовательно $\max_{x\in N}f(x)=r$ (ЧТД)

Определение 10. $A_{n \times n}$ - **приводимая матрица**, когда существует перестановка матрицы P такая, что

$$P^TAP = \begin{pmatrix} X & Y \\ 0 & Z \end{pmatrix}$$
 , где X и Y - квадратные матрицы

B противном случае матрица A - **неприводимая**

Теорема Перрона - Фробениуса (ч. 1)

Eсли $A_{n \times n}$ - неприводимая матрица, то следующие утверждения верны:

- 1. $r = \rho(A) \in \sigma(A)$ и r > 0
- 2. $algmult_A(r) = 1$
- 3. Существет собственный вектор x>0, который удовлетворяет условию Ax=rx.
- 4. Вектор р, который удовлетворяет условиям:

$$Ap = rp, \quad p > 0, \quad ||p||_1 = 1$$

называется вектором Перрона. Не существует других собственных векторов для матрицы A, кроме кратных p, не смотря на собственное значение.

5. Формула Коллатца-Виландта

$$r = \max_{x \in N} f(x), \quad f(x) = \min_{1 \le i \le n} \frac{[Ax]_i}{x_i}$$

Доказательство. Мы уже знаем из Леммы 6.2 $r=\rho(A)\in\sigma(A)$. Докажем, что $alg\ mult_A(r)=1$, пусть $B=(I+A)^(n-1)>0$, будет матрица из Леммы 7. Также мы знаем $\lambda\in\sigma(A)\Leftrightarrow (1+\lambda)^{(n-1)}\in\sigma(B)$, $alg\ mult_A(\lambda)=alg\ mult_B((1+\lambda)^{n-1})$. Вследствии этого если $\mu=\rho(B)$, то

$$\mu = \max_{\lambda \in \sigma(A)} |(1+\lambda)|^{n-1} = \left\{ \max_{\lambda \in \sigma(A)} |(1+\lambda)| \right\}^{n-1} = (1+r)^{n-1}$$

Потому что когда круглый диск $|z| \leq p$ переносится на одну единицу вправо, то точка максимума модулей в результирующем диске $|z+1| \leq p$ это z=1+p (это очевидно, когда вы рисуете круг). alg $mult_A(r)=1$. В противном случае $alg\ mult_B(\mu)>1$, но это невозможно так как B>0. Чтобы увидеть, что у A существует собственный вектор с собственным значением r, мы просто воспользуемся Леммой 7.2 и получим вектор $x\geq 0$ и r. Также довольно просто понять, что если (λ,x) собственная пара для A, то $(f(\lambda),x)$ тоже собственная пара для A. Поэтому (r,x) - собственная пара для A, предполагаем, что (μ,x) - собственная пара для B. С помощью Леммы 4 гарантируем, что x должен быть положительным и кратным вектору Перрона для матрицы $B;\ r>0;\ c$ другой стороны Ax=0, но это невозможно, так как $A\geq 0$ и x>0, Ax>0. Довод также доказывает последние два пункта теоремы.

Лемма 7. Если $A_{n \times n} \ge 0$ - неприводимая матрица и имеет h собственных значений $\{\lambda_1, \lambda_2, \dots, \lambda_h\}$ на спектральном круге то следующее условие верно:

• $alg\ mult_A(\lambda_k)=1\ \emph{dis}\ k=1,2,3,\ldots,h.$

Теорема Перрона - Фробениуса (ч. 2)

Если $A_{n\times n}\geq 0$ - неприводимая матрица и имеет h собственных значений $\{\lambda_1,\lambda_2,\dots,\lambda_h\}$ на спектральном круге, то

• $alg \ mult_A(\lambda_k) = 1 \ \partial_{AB} \ k = 1, 2, 3, \dots, h.$

Если А - примитивная матрица с h собственными значениями на спектральном круге, то

ullet $\sigma(A)$ - инвариантен при вращении относительно начала координат на угол $2\pi/h$.

Доказательство. Пусть $S = \{r, re^{i\theta_1, \dots, re^{i\theta_{h-1}}}\}$ - собственные значения на спектральном круге A. Мы знаем, что

 $A = e^{i\theta_k} D_k A D_k^{-1} \Rightarrow e^{i\theta_k} A \sim A$

Поэтому r - простое собственное значение для матрицы A (по теореме Перрона-Фробениуса), $re^{i\theta_k}$ также является простым собственным значением для матрицы $e^{i\theta_k}A$. Но преобразование трансформации сохраняет собственные значения и алгебраические кратности, поэтому $re^{i\theta_k}$ - собственное значение для матрицы A. Докажем пункт 2. $\lambda \in \sigma(A) \Leftrightarrow \lambda e^{2\pi i/h} \in \sigma(e^{2\pi i/h}A)$, следовательно $\sigma(e^{2\pi i/h}A) - \sigma(A)$, которая вращается на $2\pi/h$. Но из прошлого пунтка мы знаем, что матрицы $A \sim e^{i\theta_k}A$, вследствии этого $\sigma(A) = \sigma(e^{i\theta_k}A)$, следовательно возможен поворот на $2\pi/h$. (ЧТД)

Заключение

Эта теорема имеет важные приложения к теории вероятностей (эргодичность цепей Маркова); теории динамических систем (подвиги конечного типа); в экономике (теорема Окисио, условие Хокинса - Саймона); к демографии (модель распределения населения по возрасту Лесли); для социальных сетей (учебный процесс DeGroot), для поисковых систем в Интернете и даже для рейтинга футбольных команд. Первым, кто обсудил порядок игроков в турнирах с использованием собственных векторов Перрона - Фробениуса, является Эдмунд Ландау.

Список использованных источников

- 1. Конспекты лекций
- $2. \ https://www.emis.de/journals/MPRIA/2002/pa102i1/pdf/102a102.pdf$
- $3. \ \ https://epubs.siam.org/doi/pdf/10.1137/S0036144599359449$