Linearna i logistička regresija

- Linearna regresija
 - Regresija za slučaj jednog obeležja
 - Metod gradijentnog silaska
 - Regresija za slučaj više obeležja
 - Analitička minimizacija funkcije cene
- Logistička regresija

Regresija

- Regresija je tehnika za predviđanje vrednosti kontinualne izlazne promenljive koja zavisi od određenih obeležja uzorka
 - Promenljiva ne mora biti stvarno kontinualna, dovoljno je da bude pogodno posmatrati je kao kontinualnu
- Kod linearne regresije za slučaj jednog obeležja pretpostavljamo da je veza između obeležja x i izlazne promenljive y linearna, odnosno, predviđamo vrednost izlazne promenljive y na osnovu hipoteze da je ta veza linearna:

$$h_{\theta}(x) = \vartheta_0 + \vartheta_1 x$$

Pitanje je kako naći optimalne vrednosti parametara ϑ_0 i ϑ_1

Primer: predviđanje cene stana na osnovu kvadrature

Linearna regresija za slučaj jednog obeležja

- Potrebno je postaviti pravu liniju koja u najmanjoj meri odstupa od uzoraka iz skupa za obuku
- Kao mera odstupanja može se usvojiti srednja kvadratna greška na svim uzorcima*
 - Ovu meru nazivamo funkcija cene

$$J(\vartheta_0,\vartheta_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

gde je: N – ukupan broj uzoraka $x^{(i)}$ – vrednost x kod i-tog uzorka $y^{(i)}$ – vrednost y kod i-tog uzorka $h_{\theta}(x^{(i)})$ – prognoza vrednosti obeležja y na osnovu hipoteze h_{θ} za i-ti uzorak

Matematički, problem se svodi na minimizaciju funkcije cene:

$$(\hat{\vartheta}_0, \hat{\vartheta}_1) = \underset{\vartheta_0, \vartheta_1}{\operatorname{argmin}} J(\vartheta_0, \vartheta_1)$$

$$\vartheta_0 = 1$$

 $\vartheta_1 = 1/4$

$$y=1+x/4$$

^{*} Zapravo, polovina srednje kvadratne greške, zbog faktora 1/2N umesto 1/N, ali pozitivan konstantan faktor svakako ne utiče na rezultat minimizacije

Linearna regresija (primer)

Neka su data tri uzorka: {(1, 1), (2, 2), (3, 4)}. Odrediti pravu koja najmanje odstupa od njih u smislu srednje kvadratne greške.

$$x^{(1)} = 1, \quad y^{(1)} = 1$$

$$x^{(2)} = 2$$
, $y^{(2)} = 2$

$$x^{(3)} = 3$$
, $y^{(3)} = 4$

Linearna regresija (primer)

Neka su data tri uzorka: {(1, 1), (2, 2), (3, 4)}. Odrediti pravu koja najmanje odstupa od njih u smislu srednje kvadratne greške.

$$x^{(1)} = 1, \quad y^{(1)} = 1 \qquad \hat{y}^{(1)} = \vartheta_0 + \vartheta_1 x^{(1)} = \vartheta_0 + \vartheta_1$$

$$x^{(2)} = 2, \quad y^{(2)} = 2 \qquad \hat{y}^{(2)} = \vartheta_0 + \vartheta_1 x^{(2)} = \vartheta_0 + 2\vartheta_1$$

$$x^{(3)} = 3, \quad y^{(3)} = 4 \qquad \hat{y}^{(3)} = \vartheta_0 + \vartheta_1 x^{(3)} = \vartheta_0 + 3\vartheta_1$$

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$= \frac{1}{6} ((\vartheta_0 + \vartheta_1 - 1)^2 + (\vartheta_0 + 2\vartheta_1 - 2)^2 + (\vartheta_0 + 3\vartheta_1 - 4)^2)$$

$$\frac{\partial J(\theta)}{\partial \vartheta_0} = 6\vartheta_0 + 12\vartheta_1 - 14 = 0$$

$$\frac{\partial J(\theta)}{\partial \vartheta_1} = 12\vartheta_0 + 28\vartheta_1 - 34 = 0$$

$$\Rightarrow \quad \vartheta_0 = -\frac{2}{3}, \quad \vartheta_1 = \frac{3}{2}$$

$$h_{\theta}(x) = -\frac{2}{3} + \frac{3}{2}x$$

• Šta bi bilo drugačije da je postojalo npr. ograničenje da mora biti $h_{\theta}(0) = 0$?

Dva načina rešavanja problema linearne regresije

- Funkcija cene je konveksna kvadratna funkcija parametara ϑ_0 i ϑ_1 sa jedinstvenim minimumom
 - □ Minimum $J(\vartheta_0, \vartheta_1)$ u ovom jednostavnom slučaju može se naći i **analitički**
 - Alternativa je iterativni metod gradijentnog silaska (eng. gradient descent)
 - Poći od proizvoljnih vrednosti ϑ_0 i ϑ_1
 - Menjati ϑ_0 i ϑ_1 u malim koracima u pravcu smanjenja $J(\vartheta_0, \vartheta_1)$ dok se ne dostigne minimum

- Ovo je opšti metod za nalaženje minimuma funkcije više promenljivih
 - Kada površ $J(\vartheta_0, \vartheta_1, ..., \vartheta_d)$ ima složeniji oblik, dostizanje globalnog minimuma zavisi od izbora inicijalnih vrednosti $\vartheta_0, \vartheta_1, ..., \vartheta_d$

Metod gradijentnog silaska

- Početi od proizvoljnih vrednosti ϑ_0 i ϑ_1
- Istovremeno promeniti ϑ_0 i ϑ_1 prema pravilu

$$\vartheta_{0} \leftarrow \vartheta_{0} - \alpha \frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0}, \vartheta_{1})$$
$$\vartheta_{1} \leftarrow \vartheta_{1} - \alpha \frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0}, \vartheta_{1})$$

gde je α brzina učenja (fiksni mali broj)

- Ponavljati prethodni korak do konvergencije
- Izloženi algoritam u opštem slučaju konvergira ka lokalnom minimumu
 - Ako je brzina učenja premala, algoritam sporo konvergira, ali ako je prevelika, konvergencija može biti ugrožena
 - \Box Kako se trenutna vrednost $(\vartheta_0, \vartheta_1)$ približava lokalnom minimumu, tako koraci promene postaju sve manji, tako da nema potrebe da se brzina učenja α menja tokom izvršavanja algoritma

Metod gradijentnog silaska (opšti slučaj)

- Početi od proizvoljnih vrednosti ϑ_0 , ϑ_1 , ... ϑ_d
- Istovremeno promeniti ϑ_0 , ϑ_1 , ... ϑ_d prema pravilu

$$\vartheta_{0} \leftarrow \vartheta_{0} - \alpha \frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0}, \vartheta_{1}, ... \vartheta_{d})$$

$$\vartheta_{1} \leftarrow \vartheta_{1} - \alpha \frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0}, \vartheta_{1}, ... \vartheta_{d})$$

$$\cdots$$

$$\vartheta_{d} \leftarrow \vartheta_{d} - \alpha \frac{\partial}{\partial \vartheta_{d}} J(\vartheta_{0}, \vartheta_{1}, ... \vartheta_{d})$$

gde je α brzina učenja (fiksni mali broj)

- Ponavljati prethodni korak do konvergencije
- Iako u opštem slučaju algoritam ne konvergira ka globalnom minimumu, u slučaju linearne regresije to se ipak dešava jer J(θ) predstavlja kvadratnu funkciju θ tako da površ J(θ) ima jedinstveni minimum

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara $artheta_0$ i $artheta_1$

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara ϑ_0 i ϑ_1

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara $artheta_0$ i $artheta_1$

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara ϑ_0 i ϑ_1

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara ϑ_0 i ϑ_1

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara ϑ_0 i ϑ_1

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara ϑ_0 i ϑ_1

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara ϑ_0 i ϑ_1

Za fiksne vrednosti ϑ_0 i ϑ_1 $h_{\theta}(x)$ je funkcija x

Funkcija cene je funkcija parametara $artheta_0$ i $artheta_1$

Linearna regresija za slučaj više obeležja

- Veći broj obeležja pruža više informacija i omogućava da se izlazna veličina tačnije predvidi
 - Ovaj slučaj se ne može vizuelizovati kao prethodni, ali se u suštini ni u čemu ne razlikuje od njega

Opšti oblik hipoteze je sada:

$$h_{\theta}(\mathbf{x}) = \vartheta_0 + \vartheta_1 x_1 + \vartheta_2 x_2 + \ldots + \vartheta_d x_d$$

Linearna regresija za slučaj više obeležja

- Za kompaktniji prikaz izračunavanja koristi se vektorska notacija
 - Uektor obeležja treba proširiti pomoćnim obeležjem x_0 koje je *uvek jednako* 1 da bi se i parametar ϑ_0 mogao tretirati na isti način kao i ostali:

$$h_{\mathbf{\theta}}(\mathbf{x}) = \vartheta_0 + \vartheta_1 x_1 + \vartheta_2 x_2 + \ldots + \vartheta_d x_d$$

$$= \vartheta_0 \cdot \mathbf{1} + \vartheta_1 x_1 + \vartheta_2 x_2 + \ldots + \vartheta_d x_d$$

$$= \left[\vartheta_0 \quad \vartheta_1 \quad \ldots \quad \vartheta_d\right] \begin{bmatrix} \mathbf{1} \\ x_1 \\ \vdots \\ x_d \end{bmatrix} = \mathbf{\theta}^{\mathsf{T}} \mathbf{x}$$

Funkcija cene jednaka je (kao i u slučaju sa jednim obeležjem):

$$J(\mathbf{\Theta}) = \frac{1}{2N} \sum_{i=1}^{N} (h_{\mathbf{\Theta}}(\mathbf{x}^{(i)}) - y^{(i)})^{2}$$

a algoritam gradijentnog silaska izvodi se na identičan način kao i u slučaju jednog obeležja, sa ovako definisanom funkcijom cene ($\theta \leftarrow \theta - \alpha \nabla_{\theta} J(\theta)$)

Metod gradijentnog silaska za slučaj više obeležja

- Početi od proizvoljnih vrednosti ϑ_0 , ϑ_1 ,..., ϑ_d
- Istovremeno promeniti $artheta_0$, $artheta_1$..., $artheta_d$ prema pravilu

$$\vartheta_{0} \leftarrow \vartheta_{0} - \alpha \frac{\partial}{\partial \vartheta_{0}} J(\vartheta_{0}, \vartheta_{1}, ..., \vartheta_{d})
\vartheta_{1} \leftarrow \vartheta_{1} - \alpha \frac{\partial}{\partial \vartheta_{1}} J(\vartheta_{0}, \vartheta_{1}, ..., \vartheta_{d})
\cdot \cdot \cdot \cdot
\vartheta_{d} \leftarrow \vartheta_{d} - \alpha \frac{\partial}{\partial \vartheta_{d}} J(\vartheta_{0}, \vartheta_{1}, ..., \vartheta_{d})$$

gde je α brzina učenja (fiksni mali broj)

- Ponavljati prethodni korak do konvergencije
- Izloženi algoritam u opštem slučaju konvergira ka lokalnom minimumu
 - Ako je brzina učenja premala, algoritam sporo konvergira, ali ako je prevelika, konvergencija može biti ugrožena
 - floor Kako se trenutna vrednost ($m{\vartheta}_0$, $m{\vartheta}_1$..., $m{\vartheta}_d$) približava lokalnom minimumu, tako koraci promene postaju sve manji, tako da nema potrebe da se brzina učenja α menja tokom izvršavanja algoritma

Metod gradijentnog silaska – korisni saveti

- Uzorke u skupu za obuku treba normalizovati
 - U suprotnom može nastupiti spora cik-cak konvergencija
 - \Box Srednja vrednost oduzima se svim obeležjima osim x_0

- Zaustavni kriterijum može biti da promena $J(\theta)$ između dve iteracije bude manja od nekog veoma malog broja ε (npr. 10^{-3})
- Ueoma je teško naći adekvatnu vrednost za ε automatski
- Treba pratiti izgled funkcije $J(\theta)$ (npr. na svakih 100 iteracija)

- Izostanak konvergencije je često znak da treba smanjiti brzinu učenja lpha
 - Dobra praksa je prikazati grafik $J(\theta)$ za više brzina učenja α npr. početi od 0.001 pa povećavati 3 puta u svakom koraku

Analitička minimizacija funkcije cene

- U jednostavnijim slučajevima (za ne suviše velik broj obeležja) problem minimizacije funkcije cene može se rešiti i analitički
- Kao funkcija cene u ovom slučaju se po pravilu koristi kvadratna greška:

$$J_{MSE}(\mathbf{\theta}) = \sum_{i=1}^{N} (h_{\mathbf{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})^{2} = \sum_{i=1}^{N} (\mathbf{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2} = \|\mathbf{X}\mathbf{\theta} - \mathbf{y}\|^{2}$$

pri čemu je:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \vdots \\ \mathbf{x}^{(N)} \end{bmatrix} = \begin{bmatrix} x_0^{(1)} & x_1^{(1)} & \cdots & x_d^{(1)} \\ x_0^{(2)} & x_1^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ x_0^{(N)} & x_1^{(N)} & \cdots & x_d^{(N)} \end{bmatrix} \qquad \mathbf{\theta} = \begin{bmatrix} \mathbf{\vartheta}_0 \\ \mathbf{\vartheta}_1 \\ \vdots \\ \mathbf{\vartheta}_d \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$

Gradijent funkcije cene iznosi:

$$\nabla_{\boldsymbol{\theta}} J_{\text{MSE}}(\boldsymbol{\theta}) = 2 \sum_{i=1}^{N} (\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)} = 2 \mathbf{X}^{\mathsf{T}} (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

i njegovim izjednačavanjem sa nulom dobija se:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{\Theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Analitička minimizacija funkcije cene

- Matrica $\mathbf{X}^T\mathbf{X}$ je kvadratna (bez obzira što \mathbf{X} po pravilu nije), dimenzija $(d+1)\times(d+1)$
- Ako je X^TX regularna (invertibilna) matrica, rešenje za θ dato je izrazom:

$$\mathbf{\theta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

- X⁺ je pseudoinverzna matrica matrice X
- Za pseudoinverznu matricu X⁺ važi X⁺X = I, ali u opštem slučaju XX⁺ ≠ I
- Nalaženje ovog rešenja može biti problematično u nekim slučajevima
 - Kada je broj obeležja prevelik (tipično preko 10.000), inverzija matrice X^TX predstavlja računski izuzetno zahtevan zadatak
 - moguće rešenje je redukcija dimenzionalnosti (npr. prosto izdvajanje najbitnijih obeležja)
 - drugo moguće rešenje je primena metoda gradijentnog silaska
 - Kada je skup za obuku izuzetno korelisan (npr. među obeležjima se pojavljuju površina u m² i površina u ft²), matrica X^TX postaje skoro singularna
 - pri izračunavanju $(\mathbf{X}^T\mathbf{X})^{-1}$ dominiraju manje sopstvene vrednosti (šum), što izaziva numeričke probleme
 - pored navedenih pristupa rešavanju ovog problema moguće je primeniti i regularizaciju, što je ekvivalentno dodavanju malog umnoška jedinične matrice matrici X^TX, i naziva se ridge regresija (eng. ridge = greben)

Ridge regresija

Modifikovana funkcija cene koja se minimizuje data je izrazom:

$$J_{RR}(\boldsymbol{\theta}) = \sum_{i=1}^{N} (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})^{2} + \lambda \sum_{i=1}^{d} \vartheta_{i}^{2} = \|\mathbf{X}\boldsymbol{\theta} - \mathbf{y}\|^{2} + \lambda \boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\theta}$$

gde je λ regularizacioni parametar

- Novi član u $J_{RR}(\boldsymbol{\theta})$ doprinosi smanjenju procene veličine pojedinih parametara ϑ_i
- Odgovarajuće rešenje za θ dato je izrazom:

$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

- \Box Za λ = 0 prethodni izraz svodi se na pseudoinverzno rešenje (pošto se i funkcija cene $J_{RR}(\theta)$ svodi na $J_{MSF}(\theta)$)
- \Box Optimalna vrednost za λ obično se nalazi unakrsnom validacijom
- Ako obeležja imaju bitno različite varijanse, umesto jedinične matrice može se koristiti dijagonalna matrica koja sadrži varijanse pojedinih obeležja

LASSO regresija

Alternativa *ridge* regresiji kod koje je funkcija cene definisana kao:

$$J_{LR}(\boldsymbol{\theta}) = \sum_{i=1}^{N} (h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) - y^{(i)})^{2} + \lambda \sum_{i=1}^{d} |\vartheta_{i}|$$

gde je λ regularizacioni parametar

- Novi član u $J_{LR}(\boldsymbol{\theta})$ i ovde doprinosi smanjenju procene veličine pojedinih parametara ϑ_i , ali se ovde umesto I_2 norme minimizuje I_1 norma
- Optimalna vrednost za λ i ovde se nalazi unakrsnom validacijom
- Pokazuje se da će, uz pogodan izbor parametra λ jedan deo koeficijenata ϑ_i imati vrednost 0, što se suštinski svodi na izbor jednog podskupa obeležja
 - LASSO rezultuje retkim (eng. sparse) modelom

Primena linearne regresije u klasifikaciji

- Linearna regresija mogla bi se direktno primeniti i kao klasifikator, ali tu postoje određeni problemi:
 - Ako bi klase bile 0 i 1, dobija se procena koja nije ograničena na opseg između 0 i 1
 - Položaj praga je vrlo osetljiv na uzorački skup i zavisan od uzoraka koji zapravo nisu bitni

- Nema procene verovatnoće pripadanja određenoj klasi
 - Poželjno je znati s kojom verovatnoćom neko ima rak ili ne, da li će neko vratiti dug ili ne...
- Bilo bi mnogo logičnije dozvoliti da izlazna veličina bude *nelinearna* funkcija *x*
 - U opštem slučaju, y treba da bude nelinearna funkcija linearne kombinacije ulaznih promenljivih

Primena linearne regresije u klasifikaciji

- Linearna regresija mogla bi se direktno primeniti i kao klasifikator, ali tu postoje određeni problemi:
 - Ako bi klase bile 0 i 1, dobija se procena koja nije ograničena na opseg između 0 i 1
 - Položaj praga je vrlo osetljiv na uzorački skup i zavisan od uzoraka koji zapravo nisu bitni

- Nema procene verovatnoće pripadanja određenoj klasi
 - Poželjno je znati s kojom verovatnoćom neko ima rak ili ne, da li će neko vratiti dug ili ne...
- Bilo bi mnogo logičnije dozvoliti da izlazna veličina bude *nelinearna* funkcija *x*
 - U opštem slučaju, y treba da bude nelinearna funkcija linearne kombinacije ulaznih promenljivih

Modifikacije linearne regresije

Da bi se povećale mogućnosti modela, on se može uopštiti uvođenjem nelinearnih funkcija koje se primenjuju direktno nad vektorom obeležja:

$$h_{\theta}(\mathbf{x}) = \vartheta_0 + \vartheta_1 f_1(\mathbf{x}_1) + \vartheta_2 f_2(\mathbf{x}_2) + \dots + \vartheta_d f_d(\mathbf{x}_d)$$

ili u opštem slučaju:

$$h_{\boldsymbol{\theta}}(\mathbf{x}) = \vartheta_0 + \sum_{i=1}^d \vartheta_i f_i(\mathbf{x})$$

- Funkcije $f_i(\mathbf{x})$ nazivaju se baznim funkcijama
 - Primera radi, za $f_1(x)=x$, $f_2(x)=x^2$,... $f_d(x)=x^d$ (za slučaj jednog obeležja) dobila bi se polinomijalna regresija
 - Na ovaj način u model se može uvesti i interakcija između pojedinih obeležja, npr. $f_1(x)=x_1, f_2(x)=x_2, f_3(x)=x_1x_2$ (za slučaj dva obeležja)
 - I kada se uvodi interakcija, u modelu treba ostaviti i polazna obeležja
- Uvođenjem baznih funkcija deskriptivnost modela se povećava, ali se povećava i njegova složenost (što otežava obuku)
 - lako su bazne funkcije nelinearne, model je i dalje linearan jer $h_{\theta}(\mathbf{x})$ linearno zavisi od $\boldsymbol{\theta}$, a $\boldsymbol{\theta}$ je ono što se određuje

Logistička regresija

 Logistička regresija dobija se primenom sigmoida (logističke funkcije) na linearnu kombinaciju ulaznih promenljivih x

$$h_{\theta}(\mathbf{x}) = \sigma(\vartheta_0 + \vartheta_1 x_1 + \vartheta_2 x_2 + \dots + \vartheta_d x_d), \quad \sigma(t) = \frac{1}{1 + e^{-t}}$$

 Dobijena nelinearna funkcija interpretira se kao matematičko očekivanje vrednosti izlazne promenljive

$$h_{\theta}(\mathbf{x}) = E\{y \mid \mathbf{x}\} = \sigma(\vartheta_0 + \vartheta_1 x_1 + \vartheta_2 x_2 + \dots + \vartheta_d x_d)$$

- Ovo za posledicu ima da je veza između y i x izražena kroz vrednosti verovatnoće
- \Box U slučaju binarne klasifikacije, ovom očekivanju odgovara verovatnoća klase y = 1

$$E\{y \mid x\} = 0 \cdot P(y = 0 \mid x) + 1 \cdot P(y = 1 \mid x) = P(y = 1 \mid x)$$

- $h_{\theta}(\mathbf{x})$ se može interpretirati i kao diskriminantna funkcija određene klase (s različitim parametrima θ za svaku klasu), što omogućuje i klasifikaciju u više od dve klase
 - Odlučuje se po tome koja diskriminantna funkcija ima najveći "odziv" na x
 - Vrednost određene diskriminantne funkcije ujedno predstavlja i verovatnoću pripadnosti uzorka \mathbf{x} odgovarajućoj klasi: $p_k = P(y = k \mid \mathbf{x})$

Logistička regresija

Ako je y binarna promenljiva, dobija se:

$$P(y=1 \mid \mathbf{x}) = \sigma(\mathbf{\theta}^{\mathsf{T}} \mathbf{x}) = \frac{e^{\mathbf{\theta}^{\mathsf{T}} \mathbf{x}}}{1 + e^{\mathbf{\theta}^{\mathsf{T}} \mathbf{x}}}$$

$$P(y=0 \mid \mathbf{x}) = 1 - P(y=1 \mid \mathbf{x}) = \frac{1}{1 + e^{\mathbf{\theta}^{\mathsf{T}} \mathbf{x}}}$$

□ Ovim se praktično linearno modeluje logaritam *kvote*:

KVOTA:
$$\frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} = e^{\theta^{T}\mathbf{x}}$$
$$\ln \frac{P(y=1|\mathbf{x})}{P(y=0|\mathbf{x})} = \theta^{T}\mathbf{x} = \vartheta_{0} + \vartheta_{1}X_{1} + ... + \vartheta_{d}X_{d}$$

Slično važi i u opštem slučaju K klasa (K > 2):

$$\ln \frac{P(y=k \mid \mathbf{x})}{1-P(y=k \mid \mathbf{x})} = \mathbf{\theta}^{(k)\mathsf{T}} \mathbf{x} = \vartheta_0^{(k)} + \vartheta_1^{(k)} x_1 + \dots + \vartheta_d^{(k)} x_d$$

Logaritam kvote naziva se logit funkcija

Logistička regresija – granice odlučivanja

Ako je y nelinearna funkcija linearne kombinacije ulaznih promenljivih:

$$h_{\theta}(\mathbf{x}) = \sigma(\vartheta_0 + \vartheta_1 x_1 + \vartheta_2 x_2)$$

$$y = 1 \quad \text{ako} \quad -3 + x_1 + x_2 \ge 0$$

Ako je y nelinearna funkcija nelinearne kombinacije ulaznih promenljivih:

$$h_{\theta}(\mathbf{x}) = \sigma(\vartheta_0 + \vartheta_1 x_1 + \vartheta_2 x_2 + \vartheta_3 x_1^2 + \vartheta_4 x_2^2)$$

y = 1 ako -1 + x₁² + x₂² \ge 0

Logistička regresija – nalaženje **0**

- Nalaženje koeficijenata ima sličnosti sa estimacijom parametara gustine raspodele verovatnoće
 - □ **θ** se može naći *metodom maksimalne izglednosti* skupa uzoraka

$$I(\mathbf{\theta}) = \prod_{i,y^{(i)}=1} P(y = 1 \mid \mathbf{x}^{(i)}, \mathbf{\theta}) \prod_{i,y^{(i)}=0} (1 - P(y = 1 \mid \mathbf{x}^{(i)}, \mathbf{\theta}))$$

Maksimalno izgledna vrednost vektora parametara **0** je ona za koju se minimizuje funkcija cene, što se može izvesti metodom gradijentnog silaska

$$J(\mathbf{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \text{Cost}(h_{\theta}(\mathbf{x}^{(i)}), y^{(i)})$$

$$\text{Cost}(h_{\theta}(\mathbf{x}), y) = \begin{cases} -\ln h_{\theta}(\mathbf{x}), & y = 1\\ -\ln(1 - h_{\theta}(\mathbf{x})), & y = 0 \end{cases}$$

 $\mathbf{\theta}_{k} = \mathbf{\theta}_{k-1} - \alpha \nabla_{\mathbf{\theta}} J(\mathbf{\theta})$

