The size of Euler's totient function when $n \to \infty$ Elli Kiiski 2021

1 Summary

Viittaus [1] toinenkin [2]

2 Introduction

3 Notation and definitons

Notation 3.1. Divisibility a|b

Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$ be such that b is divisible by a. This is denoted by a|b.

Definition 3.2. Greatest common divisor, gcd(a, b)

Let $a \neq 0$ and $b \neq 0$. There is a unique $d \in \mathbb{N}$ with following properties:

- 1. d|a and d|b
- 2. if d'|a and d'|b, then d'|d

The number d is called the greatest common divisor of a and b. It's denoted by $\gcd(a,b)=d$.

Definition 3.3. Prime number

Integer $p \in \mathbb{N}$ is a prime, if $p \geq 2$ and for every $k \in \mathbb{N}$ holds that if k|p then $k \in 1, p$. The set of prime numbers is denoted by \mathbb{P} .

In other words, all integers greater than than 1, which are only divisible by themself and 1, are primes.

Definition 3.4. Co-primes

If gcd(a, b) = 1, a and b are called co-primes or relative primes.

4 Euler's totient function

Definition 4.1. Eulerin totient function $\phi : \mathbb{N} \to \mathbb{N}$

It's set that $\phi(1) = 1$. For all $n \geq 2$, $\phi(n)$ is the number of integers $a \in \{1, 2, ..., n\}$, for which gcd(a, n) = 1.

AIKA SURKEE SELITYS That is, the value of the totient function in $n \in \mathbb{N}$ is the number of natural numbers smaller than n, which are its co-primes.

Theorem 4.2. Euler's product formula

$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p})$$

where $\prod_{p|n} (1-\frac{1}{p})$ means the product over distinct primes that divide n. Proof. KIKKI

5 The bounds of Euler's totient function JÄIN TÄHÄN

Kuten pätee monille lukuteoreettisille funktioille, myös Eulerin ϕ -funktion arvo heittelehtii n:n kasvaessa OIKEI LUOVUTAN, VAIHDAN ENKKUUN

5.1 Eulerin ϕ -funktion yläraja

Theorem 5.2. Eulerin ϕ -funktion yläraja Kaikilla luonnollisilla luvuilla $n \geq 2$ pätee $\phi(n) < n$.

Proof. Suoraan määritelmästä seuraa, että $\phi(n) \leq n$, koska joukossa $\{1, 2, ..., n\}$ on n alkiota ja siten niiden joukosta ei voi löytyä yli n kappaletta ehtoa täyttävää lukua. Lisäksi jokaisella n pätee syt(n,n)=n. Täten millään $n\geq 2$ ei voi olla $\phi(n)=n$.

Siis $\phi(n) < n$ jokaisella $n \ge 2$.

Theorem 5.3. Alkuluvuilla $\phi(p) = p - 1$ Jokaisella alkuluvulla $p \in \mathbb{P}$ pätee $\phi(p) = p - 1$.

Proof.Olkoon $p\in\mathbb{P}.$ Tällöin jokaisella $k< p,\,k\in\mathbb{N}$ päteesyt(k,p)=1,mistä seuraa suoraan $\phi(p)=p-1.$ PITÄISIKÖ TÄÄ TODISTAA PAREMMIN

Theorem 5.4. ϕ -funktion pienin yläraja Jokaisella $n \in \mathbb{N}$ pätee $\phi(n) \leq n - 1$.

Proof. Tulos saadaan suoraan yhdistämällä lauseet ÄSKEINEN ja SITÄ EDELLINEN.

5.5 Eulerin ϕ -funktion alaraja

5.6
$$\phi(n) < \sqrt{(n)}$$
?

Lähdetään tutkimaan ϕ -funktion alarajaa tarkastelemalla onko olemassa suuria luonnollisia lukuja, joilla $\phi(n) < \sqrt{n}$. Huomataan, että ainakin vielä luvulla n=6 pätee $\phi(6)=2<\sqrt(6)$, mutta sen jälkeen arvot näyttäisivät järjestään ylittävän vastaavan neliöjuuren arvon.

Tarkastellaan tilannetta tarkemmin jos osataan ehehe

6 Eulerin ϕ -funktion keskiarvo

7 Asiaaa

8 Lähteet

- [1] E. M. Wright G. H. Hardy. An Introduction to the Theory of Numbers. 2008.
- [2] Eero Saksman. "Introduction to Number Theory". 2019.