2017 Fall CSYE6225 Final Presentation

Jin Li 001234402 li.jin3@husky.neu.edu

Chenyang Zhao NUID: 001239935

zhao.chenya@husky.neu.edu

Yuting Wu 001235254 wu.yutin@husky.neu.edu

Difference

Services of AWS and GCP

Amount of Services available

Services - Compute

Compute

AWS EC2

laaS

Google Compute Engine

AWS Elastic Beanstalk

PaaS

Google App Engine

AWS Lambda

Serverless functions

Google Cloud Functions

Services - Network

Elastic Load Balancer

Load Balancer

Google Cloud Load Balancing

Direct Connect

Peering

Google Cloud Interconnect

Amazon Route 53

DNS

Google Cloud DNS

Services - Storage

Storage

Amazon S3

Object Storage

Google Cloud Storage

Amazon Elastic Block Store **Block Storage**

Google Compute Engine Persistent Disks

Amazon Glacier

Cold Storage

Google Cloud Storage Nearline

Services - Database

Amazon RDS

RDBMS

Google Cloud SQL

Amazon DynamoDB

NoSQL: Key-value

Google Cloud Datastore, Google Cloud Bigtable

Amazon SimpleDB

NoSQL: Indexed

Google Cloud Datastore

EC2 vs GCE

An area where Google might beat AWS is the **laaS computing platform**, probably the most important service for both.

GCE's persistent disk can be attached to multiple instances in read-only mode, an opportunity that is not available in AWS and allows to distribute data to a large workforce effectively.

Amazon Load Blancer vs Google Cloud Load Balancing

In AWS, ELB allows load balance incoming traffic among your backend instances in multiple availability zones (within a single region).

For Google Cloud Load Balancing, in addition to distributing incoming traffic between backend instances, unlike AWS, it allows balancing **between regions**, supports content-based routing, and does not require pre-warming.

ANALYSE

Cost of Technology Stack

Pricing

AWS prices their compute time by the hour, but requires a 1 hour minimum.

If you start an instance and run it for 61 minutes then shut it down, you get charged for 2 hours of compute time.

Google Compute Engine pricing is also listed by the hour for each instance, but they charge you by the minute, rounded up to the nearest minute, with a 10 minute minimum charge.

If you run for 1 minute, you get charged for 10 minutes. However, if you run for 61 minutes, you get charged for 61 minutes.

Cost of Technology Stack

AWS Monthly Cost Total

\$ 94.73

Compute

\$ 25.5

In AWS, we use 3 EC2 instances.

Storage

\$ 50.93

In Aws, we use RDS. We create a RDS instance and estimate its cost per month.

Load Balancer

\$ 18.3

In AWS, we use Load Balancer.

Cost of Technology Stack

GCP
Monthly
Cost
Total
\$ 77.00

Compute

\$ 7.66

In GCP, we use 3 Compute Engines.

Storage

\$ 51.01

In GCP, we use Cloud SQL. We create a SQL instance and estimate its cost per month.

Load Balancer

\$ 18.33

In GCP, we use Load Balancing.

Conclusion for Cost

For the same service, GCP has the less expensive price than AWS. Actually, AWS has a lot of hidden costs and limitations.

GCP wins this time for its cheaper cost!

Global Infrastructure --- Regions

Comparison of Regions at the end of 2017

- \$29.4 Billing Trailing 3 Year CAPEX investment
- 8 new regions in 2017 for GCP
- 3 new regions in 2017 for AWS

	GCP	AWS
REGIONS	17	18
us-east	SC, VA	OH, VA
us-central	IA	
us-west	CA, OR	CA, OR
ca-central	Montreal	Canada
eu-west	Belgium, London	Ireland, London, Paris
eu-central	FRA, NL, Hamina	FRA, Stockholm
asia-east	Taiwan	Beijing, <mark>Ningxia</mark>
ap-northeast	Tokyo	Tokyo, Seoul
ap-southeast	SGN, Sydney	SGN, Sydney
ap-south	Mumbai	Mumbai
sa-east	Sao Paulo	Sao Paulo

Global Infrastructure --- Regions

Comparison of Regions as of 2017 Q3

- 10 regions versus 15
- 30 availability zones versus 42

Today, AWS has 30% more than regions and zones than GCP.

Google is catching up fast, by early 2018 the gap will be very small.

Global Infrastructure --- CDN

Amazon CloudFront

Amazon CloudFront is a global content delivery network (CDN) service that securely delivers data, videos, applications, and APIs to your viewers with low latency and high transfer speeds. CloudFront is integrated with AWS both physical locations that are directly connected to the AWS global infrastructure, as well as software that works seamlessly with services including AWS Shield for DDoS mitigation, Amazon S3, Elastic Load Balancing or Amazon EC2 as origins for your applications, and AWS Lambda to run custom code close to your viewers.

Amazon CloudFront Benefits

- Global, Growing Content Delivery Network
- Secure Content at the Edge
- Deep Integration with Key AWS Services
- High Performance
- Cost Effective
- Easy to Use

Global Infrastructure --- CDN

CLOUD CDN

Google Cloud CDN leverages Google's globally distributed edge points of presence to accelerate content delivery for websites and applications served out of Google Compute Engine and Google Cloud Storage. Cloud CDN lowers network latency, offloads origins, and reduces serving costs. Once you've set up HTTP(S) Load Balancing, simply enable Cloud CDN with a single checkbox.

Amazon CloudFront Benefits

- Global Reach
- SSL Shouldn't Cost Extra
- Seamless Integration

Global Infrastructure

Global Infrastructure --- CDN

	GCP	AWS
Feature	Cloud CDN	CloudFront
Global PoPs	82	88
Origin of Content	GCS, GCE, LB	S3, EC2, ELB
External/Custom Origin	No	Yes
Invalidate Multiple Objects	Yes	Yes
Large Object Caching	No	Yes
GZIP Compression	No	Yes
HTTP/2 Protocol	Yes	Yes
Origin Push	No	Partially
Configuration	Load Balancer	Create Distribution
Functions Integration	No	Yes
Vedio Streaming	No	Yes
Reports & Analytics	No	Yes
Anycast IP	Yes	No

Manage

Developer and Management Tools

Developer and Management Tools

	AWS	GCP
Developer	CodeDeploy	Cloud Developer Tools
Management Tools	CloudWatch	Stackdriver Monitoring
	CloudFormation	Cloud Deployment Manager

Developer and Management Tools CodeDeploy Cloud Developer Tools

Pros

- Rapidly release new features.
- Update AWS Lambda function versions.
- Avoid downtime during application deployment.
- Handle the complexity of updating your applications, without many of the risks associated with error-prone manual deployments.

Pros

- Essential Tools for Cloud Platform
- Simplify Your Cloud Management
- Collaborative Development on Git
- Make IntelliJ Your Cloud Platform IDE
- PowerShell on Google Cloud Platform
- Visual Studio as Your Cloud Platform IDE
- Firebase Test Lab for Android

Developer and Management Tools

CloudWatch

Pros

- Monitor Amazon EC2
- Monitor Other AWS Resources
- Monitor Custom Metrics
- Monitor and Store Logs
- Set Alarms
- View Graphs and Statistics
- Monitor and React to Resource Changes

StackDriver Monitoring

Pros

- Identify Trends, Prevent Issues
- Reduce Monitoring Overhead
- Improve Signal-to-Noise
- Fix Problems Faster

Developer and Management Tools

CloudFormation

Pros

- Model It All
- Automate and Deploy
- It's just Code

Cloud Deployment Manager

Pros

- Repeatable Deployment Process
- Declarative Language
- Focus on the Application
- Template-Driven

Hybrid Cloud Integration with Existing Infrastructure

Hybrid Cloud on AWS

Core Public Cloud Service

Advanced Hybrid Cloud Service

AWS Service for Hybrid Cloud

- Data Integration
- AWS Storage Gateway
- Amazon RDS
- Amazon S3
- AWS Snowball
- Integrated Networking
- Amazon VPC
- AWS Direct Connect
- Integrated Identity and Access
- AWS IAM
- AWS Directory Service

Integrated Resource and Deployment Management

- VMware Cloud on AWS
- AWS OpsWorks
- AWS CodeDeploy
- Amazon EC2 Run Command

Integrated Devices and Edge Systems

- AWS Greengrass
- AWS Snowball Edge

AWS Hybrid example

Google Hybrid Cloud

- Google cooperates with Cisco to allow Cisco private cloud to meet Google public cloud environment.
- Combine the network management, security and service technology with Google's container Kubernetes cluster.

Google hybrid cloud example encompass three key components:

- On-premise: Nutanix infrastructure
- Public cloud: Google Cloud Platform (GCP)
- Open source: Kubernetes and Containers

GCP Service for Hybrid Cloud

- Google Kubernetes Engine
- Google Cloud Endpoints:
- STACKDRIVER MONITORING
- Deploying Hybrid Cloud Storage with Swiftstack

Summary

- AWS is having more number of data centers than Google
- AWS has focus on retail customer and traditional webhosts
- Google is good at pricing
- Google is productizing what they are using
- Google Cloud is great if you want an easy to use option that takes all the advantages of the cloud with great pricing, great speed, and great tools by a company that really understands scale

