Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Физтех-школа физики и исследований им. Ландау Кафедра математических основ методов современной физики

Выпускная квалификационная работа бакалавра

Семейства векторов с бинарными скалярными произведениями

Автор:

Студент 922 группы Царёв Дмитрий Вячеславович

Научный руководитель:

Доктор физико-математических наук Купавский Андрей Борисович

Аннотация

Семейства векторов с бинарными скалярными произведениями *Царёв Дмитрий Вячеславович*

Вопросы, связанные с оценками числа вершин и граней двухуровневых политопов, мотивируют изучение семейств векторов $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ таких что $\forall a \in \mathcal{A}, b \in \mathcal{B}$ скалярное произведение $\langle a, b \rangle \in \{0,1\}$. В данной работе приведены некоторые подходы к работе с такими семействами и получены некоторые улучшения оценки на произведение размеров таких семейств $|\mathcal{A}| \cdot |\mathcal{B}|$.

Abstract

Questions on possible vertex and face numbers of two-level polytopes motivate the study of vector families $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ with a property that $\forall a \in \mathcal{A}, b \in \mathcal{B}$ the dot product $\langle a, b \rangle \in \{0,1\}$. This work gives some approaches to dealing with such families and obtains some improvements on bounds for the product $|\mathcal{A}| \cdot |\mathcal{B}|$.

Оглавление

1	Введение и постановка задачи	2
2	Существующие результаты	3
3	Дискретизация задачи, препятствия в применении корреляции	4
4	Улучшения оценки для больших семейств	5
5	Заключение	10

Введение и постановка задачи

Существующие результаты

Дискретизация задачи, препятствия в применении корреляции

Улучшения оценки для больших семейств

Для полноты приведём обозначения и промежуточные результаты, доказанные в [1].

Теорема 1. Пусть оба $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ содержат базис \mathbb{R}^d и $\langle a, b \rangle \in \{0,1\}$ для любых $a \in \mathcal{A}, b \in \mathcal{B}$. Тогда $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d+1)2^d$.

Обозначим $b_d \in \mathcal{B}$ вектор, с максимальным значением $\max (\dim \mathcal{A}_0, \dim \mathcal{A}_1)$, где $\mathcal{A}_i = \{a \in \mathcal{A} : \langle a, b_d \rangle = i\}$ для i = 0, 1. Ортогональную проекцию на $U = b_d^{\perp}$ обозначим $\pi : \mathbb{R}^d \to U$.

Утверждение 1. Параллельным перенесом \mathcal{A} и заменой некоторых векторов \mathcal{B} на противоположные можно добиться того что

- 1. $A = A_0 \sqcup A_1 \ u \ |A_0| \ge |A_1|$
- 2. Всё ещё $\langle a,b\rangle \in \{0,1\}$ для любого $a \in \mathcal{A}_0$ и $b \in \mathcal{B}$
- 3. Множество $\pi(\mathcal{B})$ не содержит противоположных точек.

Утверждение 2. Каждая точка $\pi(\mathcal{B})$ имеет не более двух прообразов в \mathcal{B} .

Неравенство 1.
$$|\mathcal{A}| |\mathcal{B}| \le 2 |\mathcal{A}_0| |\pi(\mathcal{B})| + |\mathcal{A}_1| |\mathcal{B} \setminus \mathcal{B}_*|$$

Линейную оболочку \mathcal{A}_0 обозначим U_0 и введём ортогональную проекцию $\tau: U \to U_0$. Через $\mathcal{B}_* \subseteq \mathcal{B}$ обозначим множество $b \in \mathcal{B}$ для которых $\pi(b)$ имеет ровно один прообраз при проекции на U.

Утверждение 3. $|\pi(\mathcal{B})| \leq 2^{d-1-\dim U_0} |\tau(\pi(\mathcal{B}))|$.

Утверждение 4. $\mathcal{B} \backslash \mathcal{B}_* = \mathcal{B}_0 \sqcup \mathcal{B}_1$ с выполнением для i = 0, 1

$$\forall b \in \mathcal{B}_i : |\{\langle a, b \rangle : a \in \mathcal{A}_i\}| = 1$$

Утверждение 5. Для i=0,1 выполняется $|\mathcal{A}_i| |\mathcal{B}_i| \leq 2^d$.

Неравенство 2.
$$|\mathcal{A}| \cdot |\mathcal{B}| \le (\dim U_0 + 1) 2^d + |\mathcal{A}_0| |\mathcal{B}_0| + |\mathcal{A}_1| |\mathcal{B}_1|$$

Поймём, на каких семействах в теореме 1 достигается равенство. Без ограниения общности будем полагать $|\mathcal{A}| \geq |\mathcal{B}|$.

Лемма 1. $|\mathcal{A}| \cdot |\mathcal{B}| = (d+1)2^d$ только если $|\mathcal{B}| = d+1$, а \mathcal{A} афинно изоморфно $\{0,1\}^d$.

Доказательство. Будем вести индукцию по d, в размерности 1 утверждение очевидно. Предпологая выполнение леммы в размерностях меньших d, докажем её в размерности d. Разобьём случаи по значению $\dim U_0$:

1. $\dim U_0 < d-2$. Тогда из неравенства 2 и утверждения 5

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (\dim U_0 + 3) \, 2^d \le d2^d \tag{4.1}$$

2. $\dim U_0 = d-2$. Заметим, что мы можем свободно полагать $0, b_d \in \mathcal{B}_0$ или $0, b_d \in \mathcal{B}_1$, поэтому из доказательства утверждения 5 следует

$$|\mathcal{A}_1| |\mathcal{B}_1| \le 2^d, |\mathcal{A}_0| (|\mathcal{B}_0| + 2) \le 2^d$$

Поэтому по неравенству 2 и утверждению 5

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (d-1) 2^d + 2 \cdot 2^d - 2 |\mathcal{A}_0| \le (d+1) 2^d - |\mathcal{A}| < (d+1) 2^d$$

- 3. $\dim U_0=d-1$. Тогда, полагая $0,b_d\in\mathcal{B}_1$, имеем $\mathcal{B}_0=\varnothing$. Рассмотрим два случая:
 - а) $\mathcal{B}_* \neq \emptyset$. Тогда для вырождения неравенства 1 в равенство необходимо $|\mathcal{A}_0| = |\mathcal{A}_1|$, а для вырождения неравенства $2 |\mathcal{A}_0| |\pi(\mathcal{B})| = d2^{d-1}$. По предположению индукции последнее возможно в одном из двух случаев:
 - і) \mathcal{A}_0 афинно изоморфно $\{0,1\}^{d-1}$. Тогда $|\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1| = 2^d$, что возможно только если \mathcal{A} афинно изоморфно $\{0,1\}^d$, \mathcal{B} может состоять только из базиса и нуля.
 - іі) $|\mathcal{A}_0| = d$. Тогда $|\mathcal{B}| \le |\mathcal{A}| = 2d$ и $|\mathcal{B}| \cdot |\mathcal{A}| \le 4d^2$, что меньше $(d+1) \, 2^d$ для $d \ge 4$. При d = 3 неравенство $|\mathcal{B}| \cdot |\mathcal{A}| \le 32$ не может вырождаться, так как $|\mathcal{A}| = 6$. Наконец, в случае d = 2 мы имеем $|\mathcal{A}_1| = 2^d$ как в і).
 - б) $\mathcal{B}_* = \emptyset$. Тогда $\mathcal{B}_1 = \mathcal{B}$ и, следовательно, $\dim(\operatorname{span}(\mathcal{B}_1)) = d$. В таком случае $(\forall b \in \mathcal{B}_1 \; \exists \xi : \forall a \in \mathcal{A}_1 \; \langle a, b \rangle = \xi) \Rightarrow \dim(\mathcal{A}_1) \leq d \dim(\operatorname{span}(\mathcal{B}_1)) = 0 \Rightarrow |\mathcal{A}_1| = 1$ Как и в б), для вырождения неравенства по предположнию индукции необходимо одно из двух:
 - i) $|\mathcal{A}_0| = d$. Тогда $|\mathcal{A}| \cdot |\mathcal{B}| \le (d+1)^2 < (d+1) 2^d$.
 - іі) $|\mathcal{A}_0|=2^{d-1}, |\pi(\mathcal{B})|=d$. Тогда $|\mathcal{A}|\cdot|\mathcal{B}|=2d\left(2^{d-1}+1\right)$, что меньше $(d+1)2^d$ для d>2. При d=2 же $|\mathcal{A}|\cdot|\mathcal{B}|\leq |\mathcal{A}|^2=9<3\cdot 2^2$.

Улучшим оценку для семейств, отличающихся от эктремального примера. Докажем для этого вспомогательное

Неравенство 3. Для целого $2 \le f \le d$ выполняется $(d+f)(2^{d-1}+2^{d-f}) \le d2^d+2d$.

Доказательство. Доказываем индукцией по d: при d=k выполнено равенство, проведём шаг от d к d+1. Обозначая левую и правую стороны неравенства l(d,f) и r(d,f) соответственно, имеем

$$r(d+1,f) - l(d+1,f) \ge (r(d+1,f) - r(d,f)) - (l(d+1,f) - l(d,f))$$

$$= (d2^{d} + 2^{d+1} + 2) - (d+f+2) (2^{d-1} + 2^{d-f})$$

$$= 2^{d-f} (d-f+2) \left(2^{f-1} - 1 - \frac{2f}{d-f+2}\right) + 2$$

$$\ge 2^{d-f} (d-f+2) (2^{f-1} - 1 - f)$$

Полученное выражение неотрицательно при f>2. Для $f=2, d\geq 4$ выполняется $2^{f-1}-1-\frac{2f}{d-f+2}\geq 0$, и для f=2, d=2,3 изначальное неравенство проверяется явно.

Лемма 2. Пусть оба $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ содержат базис \mathbb{R}^d и $\langle a, b \rangle \in \{0,1\}$ для любых $a \in \mathcal{A}$, $b \in \mathcal{B}$. Если при этом семейства максимальны по включению и размер каждого хотя бы d+2, то $|\mathcal{A}| \cdot |\mathcal{B}| \leq (d+\lambda(d)) \, 2^d$, где $0 < \lambda(d) \leq 1$ – некая (нестрого) убывающая функция.

Доказательство. $\lambda(d)$ будем обозначать λ_d . Как и в доказательстве леммы 1, будем вести индукцию по d. Для базы можно выбрать $\lambda=1$, предполагая верность для меньших размерностей, докажем утверждение для d. Рассматриваем возможные значения $\dim U_0$:

- 1. dim $U_0 < d 2$. Тогда $|\mathcal{A}| \cdot |\mathcal{B}| \le (\dim U_0 + 3) \, 2^d \le d2^d$
- 2. dim $U_0 = d 2$. Применяя предположение индукции и лемму 1 для семейств $\tau(\pi(\mathcal{B}))$ и \mathcal{A}_0 , имеем три варианта:
 - а) \mathcal{A}_0 афинно изоморфно $\{0,1\}^{d-2}$, $\tau(\pi(\mathcal{B}))$ состоит из нуля и базиса U_0 . Из утверждения 5 и предположения $0, b_d \in \mathcal{B}_1$ следует $|\mathcal{B}_0| \leq 2$. С учётом чётности $|\mathcal{B}_0|$ имеется два варианта:
 - i) $|\mathcal{B}_0| = 0$. Тогда из неравенства 1 и утверждения 5 получаем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4(d-1)2^{d-2} + 2^d = d2^d$$

іі) $|\mathcal{B}_0| = 2$. Пусть в $\tau(\pi(\mathcal{B}))$ имеется k+1 векторов с двумя прообразами под действием τ ($k \geq 0$, так как $\mathcal{B}_0 \subset U_0^{\perp}$ не пусто). Из этих k+1 обозначим через t_2 количество тех, у которых оба прообраза лежат в $\pi(\mathcal{B}_1)$, а через t_1 – тех, у которых в $\pi(\mathcal{B}_1)$ ровно один из прообразов. У $k-t_1-t_2$ оба прообраза лежат в $\pi(\mathcal{B}_*)$. Пусть так же вектора $\tau(\pi(\mathcal{B}))$ с одним прообразом под действием τ состоят из q проекций $\pi(\mathcal{B}_1)$ и d-2-k-q проекций $\pi(\mathcal{B}_*)$. Имеем

$$|\mathcal{B}| = |\mathcal{B}_*| + |\mathcal{B}_0| + |\mathcal{B}_1|$$

$$= (k - t_1 - 2t_2 + d - 2 - q) + 2 + (2 + 4t_2 + 2t_1 + 2q)$$

$$= d + k + q + t_1 + 2t_2 + 2$$

Рассмотрим для начала случай $t_2 > 0$. Тогда $U_0^{\perp} \subset \operatorname{span}(\mathcal{B}_1)$, поэтому

$$\dim(\operatorname{span}(\mathcal{B}_1)) = t_1 + t_2 + q + 2 \implies |\mathcal{A}_1| \le 2^{d-t_1 - t_2 - q - 2},$$
$$|\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1| \le 2^{d-2} + 2^{d-2 - t_1 - t_2 - q}$$

$$|\mathcal{A}| \cdot |\mathcal{B}| \le \left(2^{d-2} + 2^{d-2-t_1-t_2-q}\right) (d+k+q+t_1+2t_2+2)$$

$$\le \left(2^{d-2} + 2^{d-2-t_1-t_2-q}\right) (2d+t_1+2t_2) \tag{4.2}$$

$$\le \left(2^{d-1} + 2^{d-1-t_1-t_2-q}\right) (d+t_1+t_2) \tag{4.3}$$

$$\le \left(2^{d-1} + 2^{d-1-t_1-t_2}\right) (d+t_1+t_2+1)$$

$$\le d2^d + 2d \tag{4.4}$$

Где второе неравенство следует из $k+q \le d-2$, а последнее из неравенства 3. При $t_2=0$ немного более слабая оценка

$$\dim(\operatorname{span}(\mathcal{B}_1)) \ge t_1 + t_2 + q + 1$$

означает что 4.3 становится $\left(2^{d-1}+2^{d-t_1}\right)(d+t_1)$, что не больше 4.4 при $t_1\geq 2$ по неравенству 3. Наконец, при $t_2=0$ и $t_1=0,1$ выражение 4.2 даёт оценки $d2^d$ и $\left(2^{d-2}+2^{d-3}\right)(2d+1)=d2^d-\left(d-\frac{3}{2}\right)2^{d-2}\leq d2^d$ соответственно.

б) \mathcal{A}_0 состоит из нуля и базиса U_0 . Тогда

$$|\mathcal{A}| \cdot |\mathcal{B}| \le |\mathcal{A}|^2 \le 4(d-1)^2 \le d2^d + 2d$$

в) $|\mathcal{A}_0| \cdot |\tau(\pi(\mathcal{B}))| \le (d-2+\lambda_{d-2}) \, 2^{d-2}$. Тогда пользуясь неравенствами 1, 2 и утверждением 3 имеем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4 \cdot (d - 2 + \lambda_{d-2}) 2^{d-2} + 2 \cdot 2^d = (d + \lambda_{d-2}) 2^d$$

- 3. dim $U_0 = d 1$. Вновь применяя предположение индукции к $\pi(\mathcal{B})$ и \mathcal{A}_0 , имеем три варианта (помним, что из предположения $0, b_d \in \mathcal{B}_1$ имеем $\mathcal{B}_0 = \varnothing$):
 - а) \mathcal{A}_0 изоморфно $\{0,1\}^{d-1}, \, \pi(\mathcal{B})$ базис с нулём.
 - і) $\dim \mathcal{B}_1 = 1$. В этом случае $|\mathcal{B}| = d+1$, то есть условие из формулировки леммы не выполнено.
 - іі) $\dim \mathcal{B}_1 = k \geq 2$. Тогда $|\mathcal{B}_1| = 2k, |\mathcal{A}_1| \leq 2^{d-k}$ и мы имеем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le (2^{d-1} + 2^{d-k})(d+k) \le d2^d + 2d$$

по неравенству 3.

- б) $|\mathcal{A}_0| = d$. Тогда $|\mathcal{A}|^2 \le 4d^2$, что не больше $d2^d + 2d$ для d > 3. 2
- в) $|\mathcal{A}_0|\cdot|\pi(\mathcal{B})|\leq (d-1+\lambda_{d-1})\,2^{d-1}$. Финальный раз из неравенства 1 и утверждения 5 получаем

$$|\mathcal{A}| \cdot |\mathcal{B}| < 2 \cdot (d - 1 + \lambda_{d-1}) 2^{d-1} + 2^d = (d + \lambda_{d-1}) 2^d$$
.

Найдём теперь оптимальное значение $\lambda(d)$ из леммы 2:

Лемма 3. Пусть оба $\mathcal{A}, \mathcal{B} \subseteq \mathbb{R}^d$ содержат базис \mathbb{R}^d и $\langle a, b \rangle \in \{0,1\}$ для любых $a \in \mathcal{A}, b \in \mathcal{B}$. Если при этом семейства максимальны по включению и размер каждого хотя бы d+2, то $|\mathcal{A}| \cdot |\mathcal{B}| \leq d2^d + 2d$.

2B')

3_B')

Доказательство леммы 2 работает для доказательства оценки $d2^d+2d$, за исключением индукционных шагов 2в) и 3в). Работающая модификация пункта 2в) выглядит так:

2в) $|\mathcal{A}_0| \cdot |\tau(\pi(\mathcal{B}))| \le 2 (d-2) \left(2^{d-3}+1\right)$. Пользуясь неравенствами 1, утверждением 3 и 4.1 имеем

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4 \cdot (d-2) (2^{d-2} + 2) + 2 \cdot 2^d - 2 |\mathcal{A}_0| = 2d(2^{d-1} + 1) + 2(3d - 8 - |\mathcal{A}_0|)$$

Это завершает доказательство при $|\mathcal{A}_0| \geq 3d - 8$ в противном случае:

$$|\mathcal{A}| \cdot |\mathcal{B}| \le 4 |\mathcal{A}_0|^2 \le 4 (3d - 8)^2$$

Это меньше $d2^d+2d$ при всех d кроме d=5,6. Для них что-то легко улучшается...

Наивная индукция не работает для 3в):

$$2 \cdot 2(d-1)(2^{d-2}+1) + 2^d = 2d(2^{d-1}+1) + 2d - 4$$

Легко видеть, что такой банальной индукцией ничего лучше леммы 2 не получается: если оценка это g(d), то для работы индукции нужно $2 \cdot g(d-1) + 2^d \le g(d)$, то есть, обозначая $\phi(d) \cdot 2^d = g(d)$, $\phi(d-1) + 1 \le \phi(d)$.

Полезные примеры:

Пример 1 (Куб с щупальцами). Обозначая стандартный базис $\{e_i\}$,

$$\mathcal{A} = \left\{ \sum_{i=2}^{d} \delta_{i} e_{i} \right\} \cup \left\{ e_{1} \right\}, \; \mathcal{B} = \left\{ \delta_{1} e_{1} + e_{j} \right\} \cup \left\{ e_{1} \right\}, \; \textit{ide } \delta_{i} \; \textit{npoberaiom} \; \left\{ 0, 1 \right\} \; \textit{u} \; j > 1.$$

Пусть $b_d = e_1$, тогда $|\mathcal{A}_0| = 2^{d-1}$, $|\mathcal{A}_1| = 1$, $|\mathcal{B}_*| = 0$, $|\mathcal{B}_1| = 2d$. В равенстве

$$|\mathcal{A}| |\mathcal{B}| = 2 |\mathcal{A}_0| |\pi(\mathcal{B})| + |\mathcal{A}_1| |\mathcal{B}_1| - (|\mathcal{A}_0| - |\mathcal{A}_1|) |\mathcal{B}_*|$$
 (4.5)

последнее вычитаемое равно 0, но второе слагаемое не оптимально (а первое происходит из экстремального случая).

Если же $b_d = e_d$, то $|\mathcal{A}_0| = 2^{d-2} + 1$, $|\mathcal{A}_1| = 2^{d-2}$, $|\mathcal{B}_*| = 2d - 4$, $|\mathcal{B}_1| = 4$. В равенстве 4.5 первые два слагаемых оптимальны, но последнее вычитаемое как раз равно 2d - 4.

Пример 2 (Кросс-политоп). Обозначая стандартный базис $\{e_i\}$,

$$\mathcal{A} = \left\{ e_d + \sum_{i=1}^{d-1} \varepsilon_i e_i \right\} \cup \left\{ 0 \right\}, \ \mathcal{B} = \left\{ \frac{1}{2} \left(e_d + \varepsilon_i e_i \right) \right\}, \ \textit{ide } \varepsilon_i \ \textit{npoberanom } \left\{ -1, 1 \right\}.$$

Без ограничения общности $b_d = \frac{1}{2} (e_d - e_{d-1}), |\mathcal{A}_0| = 2^{d-2} + 1, |\mathcal{A}_1| = 2^{d-2}, |\mathcal{B}_*| = 2d-4, |\mathcal{B}_1| = 4$. Ситуация в равенстве 4.5 аналогична концу примера 1.

Заключение

Литература

- [1] Andrey Kupavskii, Stefan Weltge. Binary scalar products / Stefan Weltge Andrey Kupavskii // Journal of Combinatorial Theory, Series B.-2022.- Vol. 156.
- [2] Adam Bohn Yuri Faenza, Samuel Fiorini Vissarion Fisikopoulos Marco Macchia Kanstantsin Pashkovich. Enumeration of 2-level polytopes / Samuel Fiorini Vissarion Fisikopoulos Marco Macchia Kanstantsin Pashkovich Adam Bohn, Yuri Faenza // Mathematical Programming Computation. 2018. Vol. 11.