Econometrics (ECON 21020) – Winter 2020

Problem Set #2

Date Due: January 27, 2020

1. Stock and Watson, Exercises 3.2, 3.3, 3.4, 3.15, 3.16

- 2. Let X and U denote random variables, and suppose that E[U|X]=1 and that E[X]=2.
 - (a) What is E[U]? Provide a proof of your answer.
 - (b) What is E[XU]? Provide a proof of your answer.
 - (c) What is Cov[X, U]? Provide a proof of your answer.
 - (d) Is U mean independent of X? Explain briefly.
 - (e) Is U uncorrelated with X? Explain briefly.
 - (f) Do you have enough information to determine whether X is independent of U? Explain briefly.
- 3. Let $X_1, ..., X_n$ denote an i.i.d. sample of size n from X. Consider the estimator

$$\hat{\theta}_n = \sum_{i=1}^n a_i X_i$$

for some constants a_1, \ldots, a_n .

- (a) Show that if $\hat{\theta}_n$ is an unbiased estimator of E[X], then $\sum_{i=1}^n a_i = 1$.
- (b) Show that $\operatorname{Var}[\hat{\theta}_n] = \operatorname{Var}[X] \sum_{i=1}^n a_i^2$.
- (c) Find a_1, \ldots, a_n that minimize $\operatorname{Var}[\hat{\theta}_n]$ subject to the constraint that $\hat{\theta}_n$ is an unbiased estimator of E[X].
- 4. Let $X_1, ..., X_n$ denote an i.i.d. sample of size n from X. Suppose $\mathrm{Var}[X] < \infty$. For $1 \le i \le n$ define $Z_i = a + bX_i$ and Z = a + bX for some constants a and b.
 - (a) Show that $\bar{Z}_n = a + b\bar{X}_n$ and $\hat{\sigma}_Z^2 = b^2\hat{\sigma}_X^2$.
 - (b) Prove that \bar{Z}_n is an unbiased estimator of E[Z].
 - (c) Prove that \bar{Z}_n is a consistent estimator of E[Z]. (Hint: Is the function g(t) = a + bt continuous?)
- 5. Let (X,Y) denote a random vector, and let $(X_1,Y_1),...,(X_n,Y_n)$ denote an i.i.d. sample of size n from (X,Y). Suppose $\mathrm{Var}[X]<\infty$ and $\mathrm{Var}[Y]<\infty$. Consider estimating E[X]E[Y] using the estimator $\bar{X}_n\bar{Y}_n$.

- (a) Can you prove that $\bar{X}_n\bar{Y}_n$ is an unbiased estimator of E[X]E[Y]? Why or why not?
- (b) Show that $\bar{X}_n\bar{Y}_n$ is a consistent estimator of E[X]E[Y].