Sbírka řešených příkladů

B4B01JAG

13. ledna 2025

Obsah

			Strana
1	Prv	í cvičení	1
	1.1	Příklad	. 1
	1.2	Příklad	. 2
	1.3	Příklad	. 2
	1.4	Příklad	. 3
2	Dru	é cvičení	4
	2.1	Příklad	. 4
	2.2	Příklad	
	2.3	Příklad	
	2.4	Příklad	
3	Tře	cvičení	7
	3.1	Příklad	
	3.2	Příklad	. 7
	3.3	Příklad	. 8
	3.4	Příklad	. 9
	3.5	Příklad	. 11
4	Čtv	té cvičení	13
	4.1	Příklad	. 13
	4.2	Příklad	. 13
	4.3	Příklad	. 14
	4.4	Příklad	. 15
	4.5	Příklad	. 16
5	Pát	cvičení	17
	5.1	Příklad	. 17
	5.2	Příklad	. 17
	5.3	Příklad	. 17
	5.4	Příklad	. 17
	5.5	Příklad	. 19

6	Šest	té cvičení	20
	6.1	Příklad	20
	6.2	Příklad	20
	6.3	Příklad	20
	6.4	Příklad	21
	6.5	Příklad	21
	6.6	Příklad	22
	6.7	Příklad	22
7	Sed	mé cvičení	23
	7.1	Příklad	23
	7.2	Příklad	23
	7.3	Příklad	24
	7.4	Příklad	25
8		né cvičení	27
	8.1	Příklad	27
	8.2	Příklad	27
	8.3	Příklad	28
	8.4	Příklad	28
	8.5	Příklad	29
	8.6	Příklad	29
	8.7	Příklad	30
	8.8	Příklad	30
9	Dev	váté cvičení	32
	9.1	Příklad	32
	9.2	Příklad	32
	9.3	Příklad - polopaticky vysvětlená redukce	33
	9.4	Příklad	34
	9.5	Příklad	34
	9.6	Příklad	35
	9.7	Příklad	36
	9.8	Příklad	37

10 Desáté cvičení	38
10.1 Příklad	38
10.2 Příklad	39
10.3 Příklad - NEBUDE U ZKOUŠKOVÝHO TESTU !!	39
10.4 Příklad	40
10.5 Příklad	40
11 Jedenácté cvičení	42
11.1 Příklad	42
12 Dvanácté cvičení	43
12.1 Příklad	43
12.2 Příklad	43
12.3 Příklad	44
13 Třinácté cvičení	45
13.1 Příklad	45
13.2 Příklad	45
13.3 Příklad	46
13.4 Příklad	47
14 Čtrnácté cvičení	48
14.1 Přílkad	48
14.2 Příklad	48

1 První cvičení

1.1 Příklad

Jazyk L nad abecedou $\Sigma = \{a, b\}$ je dán induktivně

$$\varepsilon \in L$$

$$u \in L \implies aub \in L$$

$$u \in L \implies bua \in L$$

$$u, v \in L \implies uv \in L$$

Charakterizujte slova jazyka L, tj. najděte vlastnost \mathcal{V} takovou, že $L = \{u \mid \text{slovo } u \text{ má vlastnost } \mathcal{V}\}$. Své tvrzení dokažte.

$$L_1 = \{ w \mid w \in \{a, b\}^*, |w|_a = |w|_b \}.$$

Důkaz:

- a) $L \subseteq L_1$
 - 1. $|\varepsilon|_a = 0 = |\varepsilon|_b$
 - 2. $|u|_a = |u|_b \Rightarrow |aub|_a = |u|_a + 1 = |aub|_b = |u|_b + 1$
- b) $L_1 \subseteq L$
 - 1. $|\varepsilon|_a = |\varepsilon|_b = 0$, $\varepsilon \in L_1$, $\varepsilon \in L$.
 - 2. Každé slovo $w \in L_1$ lze rozdělit na následující případy, které umožňují jeho postupné rozdělení až na prázdné slovo ε :

Možnost 1: w začíná a a končí b,

Možnost 2: w začíná b a končí a,

Možnost 3: w začíná a končí tím stejným písmenem (a nebo b).

Možnost 1: w = bua. Rozdělíme slovo w na w = bua, kde u je prostřední část slova splňující $|u|_a = |u|_b$. Podle definice pravidel L, pokud $u \in L$, pak $aub \in L$.

Možnost 2: w = aub. Rozdělíme slovo w na w = aub, kde u je prostřední část slova splňující $|u|_a = |u|_b$. Podle definice pravidel L, pokud $u \in L$, pak $bua \in L$.

Možnost 3: w = axa, w = bxb. Předpokládejme, že w začíná i končí znakem a. Procházíme a zleva doprava a hledáme první b, kde počet znaků a od začátku do tohoto b je stejný jako počet znaků b (včetně tohoto b). Toto b rozděluje w na dvě části: w = uv, kde u obsahuje první část w (od prvního znaku do tohoto b včetně), kde $|u|_a = |u|_b$, a v obsahuje druhou část slova w, kde $|v|_a = |v|_b$. Podle pravidel L, pokud $u, v \in L$, pak $uv \in L$.

Analogicky postupujume pro slovo začínající i končící znakem b.

1.2 Příklad

Je dán konečný automat M tabulkou

	a	b
1	2	1
$\leftarrow 2$	2	1
3	7	5
$\leftarrow 4$	7	4
$\rightarrow 5$	2	4
$\leftarrow 6$	6	3
7	7	4

1.

- 1. Nakreslete stavový diagram automatu.
- 2. Simulujte krok po kroku výpočet automatu nad slovem *bbaaab*.
- 3. Z induktivní definice odvoď te $\delta^*(2, bab)$.

$$2. \rightarrow 5-4-4-7-7-7-4 \rightarrow$$

3.
$$\delta^*(2,bab) = \delta(\delta^*(2,ba),b) = \delta(\delta(\delta(2,b),a),b)$$
.

1.3 Příklad

Navrhněte automat modelující posuvný registr, který provádí celočíselné dělení 4 binárně zadaného čísla (číslo se čte od nejvyššího řádu). O jaký typ automatu se jedná?

Jedná se o Mealyho automat

$$M = (Q, \Sigma, Y, \delta, q_o, \lambda).$$

1.4 Příklad

Pro uvedené automaty nakreslete stavový diagram. Najděte vlastnost \mathcal{V} , která charakterizuje slova přijímaná daným automatem. Dokažte, že automat přijímá právě všechna slova s vlastností \mathcal{V} .

	0	1
$\leftrightarrow q_0$	q_1	q_0
q_1	q_2	q_1
q_2	q_0	q_2

 $w \in L$ iff $|w|_0$ je dělitelný 3.

Invarianty:

- q_0 : in, out, $|w|_0 = 3k$,
- q_1 : $|w|_0 = 3k + 1$,
- q_2 : $|w|_0 = 3k + 2, k \in \mathbb{Z}$.

 $\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_1 & q_0 \\ \leftarrow q_1 & q_2 & q_1 \\ \leftarrow q_2 & q_0 & q_2 \\ \hline \end{array}$

 $w \in L$ iff $|w|_0$ není dělitelný 3.

Invarianty:

- q_0 : in, $|w|_0 = 3k$,
- q_1 : out, $|w|_0 = 3k + 1$,
- q_2 : out, $|w|_0 = 3k + 2, k \in \mathbb{Z}$.

 $\begin{array}{c|cccc} & 0 & 1 \\ \hline \rightarrow q_0 & q_0 & q_1 \\ q_1 & q_0 & q_2 \\ \leftarrow q_2 & q_0 & q_2 \\ \end{array}$

 $w \in L$ iff w končí 11.

Invarianty:

- q₀: in, končí 0,
- q_1 : končí 1,
- q₂: out, končí 11.

2 Druhé cvičení

2.1 Příklad

Je dán jazyk $L = \{w \mid \text{počet } |w|_a \text{ je sudý} \}$ nad abecedou $\Sigma = \{a, b\}$. Navrhněte konečný automat přijímající jazyk L a dokažte, že skutečně tento jazyk přijímá.

Důkaz pomocí invariantů:

- q_0 : $|w|_a = 2k$, in, out, q_1 : $|w|_a = 2k + 1$,

pro $k \in \mathbb{Z}$.

2.2Příklad

Je dán jazyk $L = \{w \mid \text{počet } |w|_a \text{ je sudý a počet } |w|_b \text{ je lichý} \}$ nad abecedou $\Sigma = \{a, b\}$. Navrhněte konečný automat přijímající jazyk L a dokažte, že skutečně tento jazyk přijímá.

Důkaz pomocí invariantů:

- q_0 : $|w|_a = 2k$, $|w|_b = 2k$, in,
- q_1 : $|w|_a = 2k + 1$, $|w|_b = 2k$,
- q_2 : $|w|_a = 2k$, $|w|_b = 2k + 1$, out,
- q_3 : $|w|_a = 2k + 1$ $|w|_b = 2k + 1$,

pro $k \in \mathbb{Z}$.

2.3 Příklad

Pro daný jazyk L navrhněte koečný automat, který tento jazyk přijímá. O automatu ukažte, že opravdu přijímá daný jazyk.

- a) $\Sigma = \{a, b\}$, jazyk L obsahuje právě všechna slova, která končí b a mají délku 3k + 1.
- b) $\Sigma = \{0, 1\}$, jazyk L obsahuje právě všechna slova, která obsahují podslovo 0101.
- c) $\Sigma = \{0, 1\}$, jazyk L obsahuje právě všechna slova, jejichž každé podslovo délky 3 obsahuje znak 0.

a)

Důkaz pomocí invariantů:

- q_0 : končí a, b, |w| = 3k, in,
- q_1 : končí a, |w| = 3k + 1,
- q_2 : končí b, |w| = 3k + 1, out,
- q_3 : končí a, b, |w| = 3k + 2,

pro $k \in \mathbb{Z}$.

b)

Důkaz pomocí invariantů:

- q_0 : neobsahuje 0101, in,
- q_1 : obsahuje 0,
- q_2 : obsahuje 01,
- q_3 : obsahuje 010,
- q_4 : obsahuje 0101, out.

c)

Důkaz pomocí invariantů:

- q₀: končí 0, neobsahuje 111, in, out,
- q_1 : končí 1, neobsahuje 111, out,
- q_2 : končí 11, neobsahuje 111, out,
- q_3 : obsahuje 111.

2.4 Příklad

Pomocí Nerodovy věty a Pumping lemmatu dokažte, že jazyk $L = \{0^i 1^j 0^k \mid 0 \le i < j < k\}$ není regulární.

Definice **Pumping lemmatu.** Když L je regulární, tak existuje $n \in L, n \ge 1$, takové, že každé $u \in L$, |w| > n je možné rozložit na 3 slova splňující:

- 1) $|xw| \leq n$
- 2) $w \neq \varepsilon$
- 3) $xw^iy \in L, \forall i = 0, 1, 2, ...$

Důkaz: Kdyby L byl regulární, tak existuje n s vlastnostmi z Pumping lemma.

Zvolíme $u = 0^n 1^{n+1} 0^{n+2}$.

Pak 1) vlastnost říká, že $xw=0^l, l\leq n$. Zároveň musí platit 2), tedy $w=0^k, 1\leq k\leq l$.

Když teď napumpujeme xw^iy , například i=2, dostaneme $xw^2y=0^{n+k}1^{n+1}0^{n+2}\not\in L$.

Tedy L není regulární.

Definice **Nerodovy věty.** L je regulární iff existují ekvivalence T na Σ^* taková, že:

- 1) L je sjednocení některých tříd T
- 2) pokud uTv, tak uwTvw pro každé $w \in \Sigma^*$
- 3) T má konečný počet tříd

Důkaz: Kdyby existovala T.

 $1,1^2,1^3,...,1^i,...,1^n,...=\{1^j\mid j\geq 1\}$ je nekonečná posloupnost0a 1.

Tmusí mít konečně mnoho tříd, proto musí existovat $i>j, i\neq j\wedge 1^iT1^j.$

Zvolíme $w = 0^{j+1}$.

Pak podle vlastnosti 2) $\underbrace{1^i0^{j+1}}_{i\geq j+1} T \underbrace{1^j0^{j+1}}_{j< j+1}$

Tedy L není regulární. \blacksquare

3 Třetí cvičení

3.1 Příklad

Pomocí Nerodovy věty a pomocí pumping lemmatu dokažte, že jazyk $L = \{0^n1^m \mid n > m \ge 0\}$ není regulární.

Definice **Nerodovy věty.** L je regulární iff existují ekvivalence T na Σ^* taková, že:

- 1) L je sjednocení některých tříd T
- 2) pokud uTv, tak uwTvw pro každé $w \in \Sigma^*$
- 3) T má konečný počet tříd

Důkaz: Kdyby existovala T na $\{0,1\}^*$.

$$1,1^2,1^3,...,1^i,...,1^n,...=\{1^j\mid j\geq 1\}$$
je nekonečná posloupnost z $\{0,1\}.$

T má konečně mnoho tříd, tudíž $0^i T 0^j$ pro nějaké $i \neq j, i > j$.

Protože platí 2), tak $0^i w T 0^j w$ pro $w \in \{0, 1\}^*$.

Zvolme
$$w=1^{i-1}$$
. Pak $\underbrace{0^i1^{i-1}}_{i\geq i-1}T\underbrace{0^j1^{i-1}}_{i-1\geq j}$. Tedy L není regulární. \blacksquare

Definice **Pumping lemmatu.** Když L je regulární, tak existuje $n \in L, n \ge 1$, takové, že každé $u \in L$, |w| > n je možné rozložit na 3 slova splňující:

- $1) |xw| \le n$
- 2) $w \neq \varepsilon$
- 3) $xw^iy \in L, \forall i = 0, 1, 2, ...$

Důkaz: Kdyby L byl regulární, tak existuje n s vlastnostmi z Pumping lemma.

Zvolíme $u = 0^{n+1}1^n$.

Kdyby u=xwy, tak 1) vlastnost říká, že $xw=0^l, l\leq n$. Zároveň musí platit 2), tedy $w=0^k, 1\leq k\leq l$. Když teď napumpujeme xw^iy , například i=0, dostaneme $xw^0y=0^{n+1-k}1^n\not\in L$.

Tedy L není regulární. \blacksquare

3.2 Příklad

Je dán DFA tabulkou:

	a	b
$\leftrightarrow 0$	1	2
1	3	0
2	4	5
3	0	2
4	2	5
5	0	3

Najděte slovo nejkratší délky, jestliže existuje, které rozliší

- a) stavy 3 a 5.
- b) stavy 2 a 4.

To, že slovo u rozliší dva stavy znamená, že přechodová funkce při práci nad slovem u převede jeden ze stavů do koncového stavu a druhý do stavu, který není koncový.

a)
$$\delta(3,a)=0, \delta(5,a)=0 \implies \delta^{\star}(3,au)=\delta^{\star}(5,au).$$
 Slovo nezačíná $a.$

$$\delta(3, b) = 2, \delta(5, b) = 3.$$

$$\begin{cases}
\delta^{\star}(3, ba) = \delta(2, a) = 4 \notin F \\
\delta^{\star}(5, ba) = \delta(3, a) = 0 \in F
\end{cases} \implies u = ba$$

b)
$$\delta(2,a)=4, \delta(4,a)=2.$$
 $\delta(2,b)=5, \delta(4,b)=5.$ Tyto stavy nelze rozlišit.

3.3 Příklad

Navrhněte DFA, který přijímá jazyk L skládající se ze všech slov nad abecedou $\Sigma = \{0, 1\}$, která začínají 1100 a končí 000. Navržený automat redukujte.

Invarianty:

- q_0 : in,
- q_1 : začíná 1, končí 1,
- q₂: začíná 11, končí 11,
- q₃: začíná 110, končí 110,
- q₄: začíná 1100, končí 1100,
- q₅: začíná 1100, končí 1,
- q_6 : začíná 1100, končí 10,
- q₇: začíná 1100, končí 100,
- q₈: začíná 1100, končí 000, out,
- chyba: nezačíná 1100.

Redukce podmnožinovou konstrukcí:

		0	1	\sim_0	0	1	\sim_1	0	1	\sim_2	0	1	\sim_3	0	1	\sim_4	0	1	\sim_5	0	1	\sim_6
\rightarrow	q_0	ch	1	0	O	О	О	O	О	O	O	О	O	O	О	O	O	D	G	O	D	G
	q_1	ch	2	O	O	O	O	O	O	O	O	O	O	O	C	D	O	C	D	O	C	D
	q_2	3	ch	O	O	O	O	O	O	O	B	O	C	B	O	C	B	O	C	B	O	C
	q_3	4	ch	O	O	O	O	A	O	B	A	O	B	A	O	B	A	O	B	A	O	$\mid B \mid$
	q_4	8	5	O	K	O	A	K	O	A	K	O	A	K	C	A	K	E	A	K	E	$\mid A \mid$
	q_5	6	5	O	O	O	O	O	O	O	B	O	C	B	C	E	F	E	E	F	E	$\mid E \mid$
	q_6	7	5	O	O	O	O	A	O	B	A	O	B	A	C	F	A	E	F	A	E	$\mid F \mid$
	q_7	8	5	O	K	O	A	K	O	A	K	O	A	K	C	A	K	E	A	K	E	$\mid A \mid$
\leftarrow	q_8	8	5	K	K	O	K	K	O	K	K	O	K	K	C	K	K	E	K	K	E	$\mid K \mid$
	ch	ch	ch	0	O	O	0	O	O	0	O	O	0	0	O	0	O	O	0	O	O	O

Redukovaný automat:

3.4 Příklad

Jsou dány dva automaty. Rozhodněte, zda jsou ekvivalentní, tj. zda přijímají stejný jazyk.

		a	b			a	b
	$\leftrightarrow 0$	0	5		A	H	G
	1	1	3		B	B	A
	2	2	7		C	E	D
M_1 :	3	3	2	M_2 :	D	D	B
	$\leftarrow 4$	6	1		E	C	D
	5	5	1		F	F	E
	$\leftarrow 6$	4	2		$\leftrightarrow G$	G	F
	7	7	0		H	A	G

Nejdříve odstraníme nedosažitelné vztahy a pak provedeme redukci.

Odstranění nedosažitelných vztahů:

						a	b
		a	b		A	H	G
	$\leftrightarrow 0$	0	5		B	B	A
	1	1	3		C	E	D
$M_1:$	2	2	7	M_2 :	D	D	B
	3	3	2		E	C	D
	5	5	1		F	F	E
	7	7	0		$\leftrightarrow G$	G	F
					H	A	G

A teď zredukovat oba automaty.

 M_1 :

 ${\cal M}_1$ je již redukovaný.

 M_2 :

		a	b	\sim_0	a	b	\sim_1	a	b	\sim_2	a	b	\sim_3	a	b	\sim_4	a	b	\sim_5
	A	H	G	0	О	K	A	A	K	A	A	K	A	A	K	A	A	K	A
	B	B	A	0	0	O	O	O	A	B	B	A	B	B	A	B	B	A	$\mid B \mid$
	C	E	D	0	0	O	O	O	O	0	0	O	O	0	C	O	D	C	$\mid E \mid$
	D	D	B	0	0	O	O	O	O	0	0	B	C	C	B	C	C	B	$\mid C \mid$
	E	C	D	0	0	O	O	O	O	0	0	O	O	0	C	D	O	C	D
	F	F	E	O	O	O	O	O	O	O	O	O	O	0	O	O	O	D	O
\leftrightarrow	G	G	F	K	K	O	K	K	O	K	K	O	K	K	O	K	K	O	K
	H	A	G	0	0	K	A	A	K	A	A	K	A	A	K	A	A	K	A

Protože má každý řádek svou vlastní třídu, M_2 je již redukovaný.

Změníme labely M_1 tak, aby odpovídaly redukci M_2 .

 M_2 : M_1 :

Nejsou ekvivalnetní - M_1 přijme např. slovo bbabbb, které M_2 nepřijme.

3.5 Příklad

Navrhněte DFA, který přijímá L nad abecedou $\{a,b\}$, kde L obsahuje právě všechna slova w taková, že

- \bullet druhý znak slova w je a,
- \bullet předposlední znak slova w je b,
- $|w| \ge 3$.

Výsledný DFA redukujte.

Invarianty:

- q_0 : |w| < 3, in,
- chyba: druhý znak je b,
- q_1 : |w| < 3, druhý znak je ε , předposlední znak je ε ,
- q_2 : |w| < 3, druhý znak je a, předposlední znak je a, b,
- q_3 : $|w| \geq 3$, druhý znak je a, předposlední znak je a,
- q_4 : $|w| \geq 3$, druhý znak je a, předposlední znak je b, končí ba, out,
- q_5 : $|w| \geq 3$, druhý znak je a, předposlední znak je b, končí bb, out.

Redukce podmnožinovou konstrukcí:

		a	b	\sim_0	a	b	\sim_1	a	b	\sim_2	a	b	\sim_3	a	b	\sim_4
\rightarrow	q_0	q_1	q_1	О	О	О	О	0	О	О	0	О	О	D	D	E
	q_1	q_2	Chyba	0	0	O	O	0	O	0	C	O	D	C	O	$\mid D \mid$
	q_2	q_2	q_3	O	O	O	O	0	A	C	C	A	C	C	A	$\mid C \mid$
	q_3	q_4	q_5	0	K	K	A	B	K	A	B	K	A	B	K	$\mid A \mid$
\leftarrow	q_4	q_2	q_3	K	O	O	B	0	A	B	C	A	B	C	A	$\mid B \mid$
\leftarrow	q_5	q_4	q_5	K	K	K	K	B	K	K	B	K	K	B	K	$\mid K \mid$
	Chyba	Chyba	Chyba	0	O	O	O	O	O	O	O	O	O	O	O	$\mid O \mid$

Protože každý řádek má svou vlastní třídu, původní DFA je již redukovaný.

4 Čtvrté cvičení

4.1 Příklad

Pro dané NFA sestrojte podmnožinovou konstrukcí DFA a výsledek redukujte.

		a	b	c
M_1 :	$\leftrightarrow 1$	{1}	{2}	{1}
	$\leftarrow 2 \\ \leftarrow 3$	$\{1\}$ \emptyset	{3} ∅	{1} ∅

Všimněte si, že v automatu M_1 jsou všechny stavy koncové. Co z toho lze usoudit o jazyku, které je automatem přijímán?

		a	b	c	\sim_0	a	b	c	\sim_1	a	b	c	\sim_2	a	b	c	\sim_3
\leftrightarrow	{1}	{1}	{2}	{1}	K	K	K	K	K	K	K	K	K	K	K	B	K
				{1}													
\leftarrow	$\{3\}$	Ø	Ø	Ø	K	O	O	O	A	0	O	O	A	O	O	O	A
\leftarrow	Ø	Ø	Ø	Ø	O	O	O	O	O	0	O	O	O	O	O	O	O

Automat se redukcí nezmění.

Automat nepřijíme slova začínající sekvencí bb následovanou libovolným dalším znakem.

4.2 Příklad

NFA M je dán tabulkou níže. Nakreslete jeho stavový diagram a podmnožinovou konstrukcí sestrojte DFA, který přijímá stejný jazyk. DFA zredukujte.

13

		0	1
	$\rightarrow 1$	$\{1, 2\}$	{1}
M:	2	Ø	$\{3\}$
	3	$\{4\}$	$\{4\}$
	$\leftarrow 4$	$\{4\}$	$\{4\}$

		0	1	\sim_0	0	1	\sim_1	0	1	\sim_2	0	1	\sim_3
\rightarrow	{1}	$\{1, 2\}$	{1}	O	0	О	О	K	K	K	K	K	O
	$\{1, 2\}$	$\{1, 2\}$	$\{1, 3\}$	O	0	O	O	K	K	K	K	K	$\mid B \mid$
	$\{1, 3\}$	$\{1, 2, 4\}$	$\{1, 4\}$	O	K	K	A	K	K	A	K	K	$\mid A \mid$
\leftarrow	$\{1, 2, 4\}$	$\{1, 2, 4\}$	$\{1, 3, 4\}$	K	K	K	K	K	K	K	K	K	$\mid K \mid$
\leftarrow	$\{1, 4\}$	$\{1, 2, 4\}$	$\{1, 4\}$	K	K	K	K	K	K	K	K	K	$\mid K \mid$
\leftarrow	$\{1, 3, 4\}$	$\{1, 2, 4\}$	$\{1, 4\}$	K	K	K	K	K	K	K	K	K	$\mid K \mid$

4.3 Příklad

Navrhněte NFA přijímající jazyk $L=L_1\cup L_2$, kde $L_1=L(M)$, kde M je automat z 4.2, a $L_2=\{u\mid u \text{ končí } 1\}$. K tomuto NFA zkonstruujte DFA přijímající stejný jazyk. DFA redukujte.

Podmnožinová konstrukce:

		0	1	\sim_0	0	1	\sim_1	0	1	\sim_2	0	1	\sim_3
\rightarrow	$\{O,C\}$	$\{B,C\}$	$\{O, C, D\}$	0	0	K	O	0	A	L	M	A	L
\rightarrow	$\{B,C\}$	$\{B,C\}$	$\{A, C, D\}$	O	0	K	O	0	K	M	M	K	M
	$\{O, C, D\}$	$\{O,C,D\}$	$\{O, C, D\}$	K	0	K	A	0	A	A	M	A	$\mid A \mid$
\leftarrow	$\{A, C, D\}$	$\{K,C\}$	$\{K,C,D\}$	K	K	K	K	K	K	K	K	K	$\mid K \mid$
\leftarrow	$\{K,C\}$	$\{K,C,D\}$	$\{K,C,D\}$	K	K	K	K	K	K	K	K	K	$\mid K \mid$
\leftarrow	$\{K,C,D\}$	$\{K,C,D\}$	$\{K,C,D\}$	K	K	K	K	K	K	K	K	K	$\mid K \mid$

Výsledný redukovaný DFA:

4.4 Příklad

Jsou dány dva ε -NFA. Rozhodněte, zda přijímají stejný jazyk. Pro oba ε -NFA sestrojte redukované DFA.

		ε	a	b	c
M_1 :	$\rightarrow p$	Ø	{ <i>p</i> }	$\{q\}$	$\{r\}$
1111.	q	$\emptyset \ \{p\} \ \{q\}$	$\{q\}$	$\{r\}$	Ø
	$\leftarrow r$	$\{q\}$	$\{r\}$	Ø	$\{p\}$

 M_1 :

	ε	a	b	c	ε -uzávěry
$\rightarrow p$	Ø	{ <i>p</i> }	$\{q\}$	$\{r\}$	ε -uz $(p) = \{p\}$
q	$\{p\}$	$\{q\}$	$\{r\}$	Ø	ε -uz $(q) = \{p, q\}$
$\leftarrow r$	$\{q\}$	$\{r\}$	Ø	$\{p\}$	ε -uz $(r) = \{p, q, r\}$

Redukovaný DFA:

		a	b	c
\rightarrow	$\{p\}$	<i>{p}</i>	$\{p,q\}$	$\{p,q,r\}$
	$\{p,q\}$	$\{p,q\}$	$\{p,q,r\}$	$\{p,q,r\}$
\leftarrow	$\{p,q,r\}$	$\{p,q,r\}$	$\{p,q,r\}$	$\{p,q,r\}$

 M_2 :

	ε	a	b	c	ε -uzávěry
$\rightarrow p$	$\{q,r\}$	Ø	$\{q\}$	$\{r\}$	ε -uz $(p) = \{p, q, r\}$
q	Ø	$\{p\}$	$\{q\}$	$\{p,q\}$	ε -uz $(q) = \{q\}$
$\leftarrow r$	Ø	Ø	Ø	$\{p\}$	ε -uz $(r) = \{r\}$

Redukovaný DFA:

		a	b	c
\leftrightarrow	$\{p,q,r\}$	$\{p,q,r\}$	$\{pq\}$	$\{p,q,r\}$
	$\{q\}$	$\{p,q,r\}$	$\{q\}$	$\{p,q,r\}$

4.5 Příklad

Je dán $\varepsilon\textsc{-NFA}.$ Zkonstruujte redukovaný DFA přijímající stejný jazyk jako M.

		arepsilon	a	b
	$\leftrightarrow 1$	Ø	{2}	Ø
M:	2	Ø	Ø	$\{3\}$
171 .	3	$\{1, 4\}$	Ø	Ø
	$\leftrightarrow 4$	Ø	Ø	$\{5\}$
	5	$\{1, 4\}$	Ø	Ø

 $\varepsilon\text{-NFA}$:

	ε	a	b	ε -uzávěry
$\leftrightarrow 1$	Ø	{2}	Ø	ε -uz(1) = {1}
2	Ø	Ø	$\{3\}$	ε -uz(2) = {2}
3	$\{1,4\}$	Ø	Ø	ε -uz(3) = {1, 3, 4}
$\leftrightarrow 4$	Ø	Ø	$\{5\}$	ε -uz(4) = {4}
5	$\{1, 4\}$	Ø	Ø	$\varepsilon\text{-}\mathrm{uz}(5) = \{1, 4, 5\}$

Podmnožinová konstrukce:

		a	b	\sim_0	a	b	\sim_1	a	b	\sim_2	a	b	\sim_3
\rightarrow	$\{1, 4\}$	{2}	$\{1,4,5\}$ $\{1,3,4\}$	O	О	K	A	A	K	A	B	K	A
	$\{2\}$	Ø	$\{1, 3, 4\}$	O	O	K	A	O	K	B	O	K	$\mid B \mid$
\leftarrow	$\{1, 4, 5\}$	{2}	$\{1, 4, 5\}$	K	O	K	K	A	K	K	B	K	K
	Ø	Ø	Ø	O	O	O	O	O	O	O	O	O	O
\leftarrow	$\{1, 3, 4\}$	{2}	$\{1, 4, 5\}$	K	0	K	$\mid K \mid$	A	K	K	B	K	$\mid K \mid$

Výsledný DFA:

5 Páté cvičení

5.1 Příklad

Dokažte, že pro libovolné jazyky L_1 a L_2 nad stejnou abecedou platí $(L_1 \cup L_2)^* = (L_1^* L_2^*)^*$.

5.2 Příklad

Napište regulární výraz, který reprezentuje jazyk L nad abecedou $\Sigma = \{0, 1\}$, jestliže výraz existuje.

- a) L se skládá ze všech slov, které obsahují pouze 0.
- b) L se skládá ze všech slov, které obsahují přesně jednu 1.
- c) L se skládá ze všech slov, které obsahují alespoň jednu 1.
- d) L se skládá ze všech slov, které obsahují alespoň dvě 1.
- e) L se skládá ze všech slov, které obsahují sudý počet 1.
- f) L se skládá ze všech slov, které obsahují lichý počet 1.

Odpovědi zdůvodněte.

a) 0*.	d) $0*10*1(0+1)*$.
b) 0*10*.	e) $(0*10*1)*0*$.
c) $0^*1(0+1)^*$.	f) $0^*1(0^*10^*)^*0^*$.

5.3 Příklad

Jazyk L_1 je reprezentován regulárním výrazem $r_1 = 0*1*0*1*0*$ a jazyk L_2 je reprezentován regulárním výrazem $r_2 = (01 + 10)*$.

- a) Najděte nejkratší neprázdné slovo, které patří do průniku $L_1 \cap L_2$.
- b) Najděte nejdělší neprázdné slovo, které patří do průniku $L_1 \cap L_2$.
- c) Najděte nejkratší slovo, které leží v L_1 , ale neleží v L_2 .
- d) Najděte nejkratší slovo, které neleží ve sjednocení $L_1 \cup L_2$.

Odpovědi zdůvodněte.

a) 01 nebo 10. c) 0 nebo 1, protože délka $\not\in L_2$. b) 01100110. d) 10101.

5.4 Příklad

Je dán regulární výraz $r = (baa + bab)^*(ab)^*$. K r zkonstruujte redukovaný DFA, který přijímá jazyk reprezentovaný tímto regulárním výrazem.

(Návod: Postupujte dvěma způsoby; jednak obecným postupem z přednášky, jednak rozdělením na podvýrazy, pro které je možné najít NFA přímo a pak použitím konstrukcí z důkazů faktu, že třída regulárních jazyků je uzavřena na sjednocení, zřetězení a Kleeneho operátor.)

1. Obecný postup

Podmnožinová konstrukce:

		a	b	\sim_0	a	b	\sim_1	a	b	\sim_2	a	b	\sim_3
\leftrightarrow	$\{1, 4\}$	5	2	K	О	О	K	A	О	K	A	C	D
	5	Ø	4	0	0	K	A	0	K	A	O	K	A
	2	3	Ø	0	0	O	O	B	O	C	B	O	C
\leftarrow	4	5	Ø	K	0	O	K	A	O	K	A	O	K
	3	$\{1,4\}$	$\{1, 4\}$	0	K	K	B	K	K	B	K	K	$\mid B \mid$
	Ø	Ø	Ø	0	O	O	O	O	O	O	O	O	O

 ε uzávěry

 ε -uz(2) = {2}

 ε -uz(3) = {3}

 ε -uz(4) = {4}

 ε -uz(5) = {5}

2. Rozdělení na podvýrazy

I. krok očíslování

 $(b_1a_2a_3 + b_4a_5b_6)^*(a_7b_8)^* \equiv (b_1a_2(a_3 + b_4))^*(a_5b_6)^*$

II. krok

Pro jazyk, který je přijímaný regulárním výrazem r platí:

výraz může začínat: b_1, a_5

mohou po sobě následovat: $\boldsymbol{b_1}:a_2;\,\boldsymbol{a_2}:a_3,b_4;\,\boldsymbol{a_3}:b_1,a_5;\,\boldsymbol{b_4}:b_1,a_5;\,\boldsymbol{a_5}:b_6;\,\boldsymbol{b_6}:a_5$

výraz může končit: a_3, b_4, b_6

je ε v L? Ano.

III. krok

IV. podmnožinová konstrukce DFA + redukce

5.5 Příklad

Je dán jazyk L nad $\Sigma = \{0,1\}$, kde $L = \{w \mid w \text{ neobsahuje 11 jako podslovo}\}$. Navrhněte redukovaný DFA M, který přijímá L. Pro jazyk L najděte regulární výraz, který ho reprezentuje (použijte úpravy grafu z přednášky).

 $\mathcal{L} = \{ w \mid w \text{ obsahuje } 11 \text{ jako podslovo} \}.$

6 Šesté cvičení

6.1 Příklad

Navrhněte NFA, který přijímá jazyk L nad abecedou $\{a,bc\}$, kde L obsahuje právě všechna slova w taková, že

- druhý znak slova w je a,
- \bullet předpolsední znak slova w je b.

K danému NFA (není-li již DFA) sestrojte podmnožinovou konstrukcí DFA přijímající stejný jazyk. Výsledný DFA redukujte.

6.2 Příklad

Je dán jazyk L nad abecedou $\{a,b\}$ takto:

$$L = \{ w \mid w = ubabv; u, v \in \{a, b\}^* \},\$$

tj. L se skládá ze všech slov, které obsahují slovo bab jako podslovo. Zkonstruujte nejprve NFA N, který přijímá L. Podmnožinovou konstrukcí k N zkonstruujte DFA a ten pak zredukujte.

NFA:

Podmnožinová konstrukce:

			b										
\rightarrow	{1}	{1}	$\{1, 2\}$	О	0	O	О	О	0	О	О	B	0
	$\{1, 2\}$	$\{1, 3\}$	{1}	O	O	O	O	A	O	B	A	O	$\mid B \mid$
\leftarrow	$\{1, 3\}$	{1}	$\{1, 4\}$	O	O	K	A	O	K	A	0	K	$\mid A \mid$
	$\{1, 4\}$	$\{1, 4\}$	$ \{1,2\} \\ \{1\} \\ \{1,4\} \\ \{1,4\} $	K	K	K	K	K	K	K	K	K	K

DFA:

6.3 Příklad

Zjistěte, jaký je minimální počet stavů DFA, který přijímá jazyk $L_n = \{u1v \mid |v| = n-1\}$ nad abecedou $\Sigma = \{0, 1\}$. Zdůvodněte. Jak by se změnil výsledek, kdyby bylo $\Sigma = \{0, 1, 2\}$?

6.4 Příklad

Dokažte nebo vyvraťte toto tvrzení (Pumping lemma pro doplněk):

Pro každý regulární jazyk L nad abecedou Σ (tj. jazyk, který je přijímán nějakým DFA) existuje přirozené číslo n s touto vlastností:

Každé slovo $u \notin L$, které je delší než n (tj. |u| > n) lze rozdělit na tři slova u = xwy, tak, že

- $1. |xw| \le n,$
- $2. \ w \neq \varepsilon,$
- 3. pro každé přirozené $i=0,1,\dots$ platí $xw^iy\not\in L.$

6.5 Příklad

Navrhněte deterministický konečný automat (DFA), který přijímá jazyk L nad abecedou $\{a,b\}$, kde L obsahuje právě všechna slova w taková, že $|w|_a$ je dělitelné 5, w začíná b a končí a.

O navrženém automatu ukažte, že opravdu přijímá daný jazyk.

Důkaz pomocí invariantů:

- q_s : initial
- q_m : $|w|_a = 5k, k \in \mathbb{Z}$, začíná b, končí b
- q_1 : $|w|_a = 5k + 1$, začíná b
- q_2 : $|w|_a = 5k + 2$, začíná b
- q_3 : $|w|_a = 5k + 3$, začíná b
- q_4 : $|w|_a = 5k + 4$, začíná b
- q_0 : $|w|_a = 5k$, začíná b, končí a
- q_f : začíná a

6.6 Příklad

Navrhněte redukovaný DFA M, který přijímá jazyk L nad $\Sigma = \{0,1\}$, kde

 $L = \{w \mid |w|_0 \text{ je sudé a za každým symbolem 1 je symbol 0}\}.$

Postupujte buď součinovou konstrukcí nebo přímo. V druhém případě řádně zdůvodněte, pročMopravdu přijímá jazyk L.

Postup součinovou konstrukcí: Vytvoříme dva automaty, jeden pro pravidlo $|w|_0$ je sudé, a druhý pro "za každým symbolem 1 je symbol 0".

1.

2.

DFA sestavený součinovou konstrukcí dvou výše nakreslených automatů:

6.7 Příklad

Navrhněte redukovaný DFA M, který přijímá jazyk L nad $\Sigma = \{0, 1\}$, kde

 $L = \{w \mid w \text{ začíná } 10 \text{ nebo končí } 01\}.$

Zdůvodněte, pročMpřijímá jazykL.

7 Sedmé cvičení

Regulární výrazy

7.1 Příklad

Je dán regulární výraz $(\mathbf{aaa}^* + \mathbf{bbb}^*)^*$. K danému výrazu sestrojte redukovaný DFA M, který přijímá jazyk reprezentovaný regulárním výrazem.

 $(aaa^* + bbb^*)^*$

zjednodušení: výraz se dá přepsat jako $(\mathbf{a}\mathbf{a}^*\mathbf{a} + \mathbf{b}\mathbf{b}^*\mathbf{b})^*$

7.2 Příklad

Je dán regulární výraz $(\mathbf{a} + \mathbf{b}(\mathbf{a}\mathbf{b}^*\mathbf{a})^*\mathbf{b})^*$. K danému výrazu sestrojte redukovaný DFA M, který přijímá jazyk reprezentovaný regulárním výrazem.

rozebereme si výraz: veprostřed máme $(\mathbf{ab^*a})^*$

a nabalujeme zbytek

 $(\mathbf{a} + \mathbf{b}(\mathbf{a}\mathbf{b}^*\mathbf{a})^*\mathbf{b})^*$

7.3 Příklad

Je dán regulární výraz $\mathbf{a}(\mathbf{a}\mathbf{b}^* + \mathbf{b})^*\mathbf{b}\mathbf{a}$. K danému regulární výrazu sestrojte redukovaný DFA M, který přijímá jazyk reprezentovaný regulárním výrazem.

 $\mathbf{a}(\mathbf{a}\mathbf{b}^* + \mathbf{b})^*\mathbf{b}\mathbf{a}: \\ a_1(a_2b_3^* + b_4)^*b_5a_6$

NFA		a	b
\leftarrow	S	1	_
	1	2	4,5
	2	2	3, 4, 5
	3	2	3, 4, 5
	4	2	4,5
	5	6	_
\rightarrow	6	_	_

podmnožinová konstrukce:

		a	b	\sim_0	a	b	\sim_1	a	b	\sim_2	a	b	\sim_3	a	b	\sim_4
\rightarrow	$\{S\}$	{1}	Ø	О	О	О	О	O	О	0	B	О	D	B	О	D
	{1}	{2}	$\{4, 5\}$	O	O	O	O	O	A	B	B	A	B	B	A	$\mid B \mid$
	Ø	Ø	Ø	O	O	O	O	O	O	O	O	O	O	O	O	$\mid O \mid$
	$\{2\}$	$\{2\}$	$\{3, 4, 5\}$	O	O	O	O	O	A	B	B	A	B	B	A	$\mid B \mid$
	$\{4, 5\}$	$\{2, 6\}$	$\{4, 5\}$	O	K	O	A	K	A	A	K	A	A	K	A	$\mid A \mid$
	$\{3, 4, 5\}$	$\{2, 6\}$	$\{3, 4, 5\}$	O	K	O	A	K	A	A	K	A	A	K	A	$\mid A \mid$
\leftarrow	$\{2, 6\}$	{2}	$\{3, 4, 5\}$	K	O	O	K	0	A	K	B	A	K	B	A	$\mid K \mid$

DFA:

7.4 Příklad

Pro daný DFA M vytvořte regulární výraz, který reprezentuje jazyk L(M).

			a	b
	\leftrightarrow	1	1	2
M:		2	3	4
	\leftarrow	3	1	2
		4	4	4

0. DFA:

1. zavedu stavy S, F:

2. odstraňuji smyčky:

3. odstraňuji vrchol 4:

4. odstraňuji vrchol 2:

5. odstraňuji smyčky:

6. odstraňuji vrchol 3:

7. odstraňuji paralelní hrany:

8. odstraňuji smyčky:

$$\varepsilon \qquad (a^{\star}ba(ba)^{\star}a)^{\star}(a^{\star}+(a^{\star}ba(ba)^{\star}))$$

9. odstraňuji vrchol 1:

$$\longrightarrow \underbrace{S} \xrightarrow{(a^{\star}ba(ba)^{\star}a)^{\star}(a^{\star}+(a^{\star}ba(ba)^{\star}))} F$$

lifehack: dá se redukovat (stavy 1 a 3 jsou ekvivalentní):

		a	b
\leftrightarrow	1	1	2
	2	3	4
\leftarrow	3	1	2
	4	4	4

1. přidám S, F:

3. odstraním node č. 2:

2. zbavím se nodu č. 4:

4.spojím obsah smyček, odstraním smyčku a node:

$$\longrightarrow S \xrightarrow{(a+ba)^*} F$$

8 Osmé cvičení

8.1 Příklad

K automatu M, který je dán následující tabulkou, zkostruujte regulární gramatiku \mathcal{G} , která generuje jazyk L=L(M).

M:

		a	b
\leftrightarrow	A	A, C	B
	B	Ø	B,D
\leftarrow	C	Ø	Ø
\rightarrow	D	A	C,D

$$\begin{split} \mathcal{G} &= (N, \Sigma, S, P) \\ N &= \{S, A, B, C, D\} \\ \Sigma &= \{a, b\} \end{split}$$

mám více vstupů \rightarrow přidám si S

$$\begin{split} P: & S \rightarrow A \mid D \\ & A \rightarrow aA \mid aC \mid bB \mid \varepsilon \\ & B \rightarrow bB \mid bD \\ & C \rightarrow \varepsilon \\ & D \rightarrow aA \mid bD \mid aA \end{split}$$

8.2 Příklad

Ke gramatice $\mathcal G$ typu 3 zkonstruujte konečný automat, který přijímá jazyk $L(\mathcal G)$. Gramatika $\mathcal G=(N,\{a,b\},S,P)$, kde $N=\{S,A,B\}$ a pravidla jsou

$$P: S \to abA \mid aB$$
$$A \to aA \mid aaA \mid a$$
$$B \to bB \mid b$$

sestavím automat podle nových pravidel

8.3 Příklad

Je dán derivační strom v bezkontextové gramatice:

- a) Napište pravidla minimální CF gramatiky, ve které je to derivační strom.
- b) Napište levou derivaci odpovídající tomuto derivačnímu stromu.
- c) Rozhodněte, zda je gramatika víceznačná.

a) c) je víceznačná - už jen kvůli pravidlu
$$A\to AA.$$

$$P:\ S\to SA\mid SB\mid \varepsilon$$

$$A\to AA\mid a$$

$$B\to BA\mid b$$

b)
$$S \overset{S \to SA}{\Longrightarrow} SA \overset{S \to SB}{\Longrightarrow} SBA \overset{S \to \varepsilon}{\Longrightarrow} BA \overset{B \to BA}{\Longrightarrow} BAA \overset{B \to b}{\Longrightarrow} bAA \overset{A \to a}{\Longrightarrow} baAA \overset{A \to a}{\Longrightarrow} baaA$$

8.4 Příklad

Je dána bezkontextová gramatika $\mathcal{G}=(N,\Sigma,S,P),$ kde $N=\{S\},$ $\Sigma=\{+,\star,-,x,y\},$ s pravidly $S\to +SS\mid \star SS\mid -SS\mid x\mid y$

- Nakreslete derivační strom, který má za výsledek slovo $w = +x \star -yxy$.
- ullet Zkonstruujte levou derivaci slova w odpovídající derivačnímu stromu z části a).

2.

$$S \xrightarrow{S \to +SS} +SS \xrightarrow{S \to x} +xS \xrightarrow{S \to \star SS} +x \star SS \Longrightarrow$$

$$\xrightarrow{S \to -SS} +x \star -SSS \xrightarrow{S \to y} +x \star -ySS \Longrightarrow$$

$$\xrightarrow{S \to x} +x \star -yxS \xrightarrow{S \to y} +x \star -yxy$$

8.5 Příklad

Navrhněte bezkontextovou gramatiku \mathcal{G} , která generuje jazyk $L = \{0^i j^i 2^j; i, j \geq 0\}$. Zdůvodněte, proč gramatika \mathcal{G} jazyk L generuje.

$$\begin{array}{ccc} P: & S \to XY \\ & X \to 0X1 \mid \varepsilon \\ & Y \to Y2 \mid \varepsilon \end{array}$$

1. $L \subseteq L(\mathcal{G})$ (gramatika vygeneruje vše):

$$S \overset{S \to XY}{\Longrightarrow} XY \overset{X \to 0X1(i)}{\Longrightarrow} 0^i X 1^i Y \overset{Y \to 2Y(j)}{\Longrightarrow} 0^i X 1^i Y 2^j \overset{X \to \varepsilon}{\Longrightarrow} 0^i 1^i Y 2^j \overset{X \to \varepsilon}{\Longrightarrow} 0^i 1^i 2^j$$

2. $L(\mathcal{G}) \subseteq L$ (gramatika nevygeneruje nic navíc):

Uvažujme derivaci $S \implies \star w$. Pak poslední použité pravidlo musí být $X \to \varepsilon$ nebo $Y \to \varepsilon$. Proto v derivaci musí být použito pravidlo $S \to XY$. Mezi tím může být použit nějaký počet pravidlo $X \to 0X1$ a $Y \to Y2$. Jinak pravidla být použita nemohou. Tedy drivace má tvar $S \stackrel{S \to XY}{\Longrightarrow} XY \stackrel{X \to 0X1(i)}{\Longrightarrow} 0^i X 1^i Y \stackrel{Y \to 2Y(j)}{\Longrightarrow} 0^i X 1^i Y 2^j \stackrel{X \to \varepsilon}{\Longrightarrow} 0^i 1^i Y 2^j \stackrel{X \to \varepsilon}{\Longrightarrow} 0^i 1^i 2^j$.

Nevypouštěcí gramatiky

8.6 Příklad

Ke gramatice \mathcal{G} zkostruujte nevypouštěcí gramatiku \mathcal{G}_1 , pro kterou $L(\mathcal{G}_1) = L(\mathcal{G}) - \{\varepsilon\}$.

$$\begin{array}{ll} P: & S \rightarrow aSbA \mid \varepsilon \\ & A \rightarrow aBbA \mid bCB \mid CD \\ & B \rightarrow bbBa \mid aS \\ & C \rightarrow aAaA \mid \varepsilon \\ & D \rightarrow SC \mid aABa \end{array}$$

obecný formální zápis u nevypouštěcích gramatik:

$$V = \{A \mid A \implies {}^{\star}\varepsilon\}$$

$$V_1 = \{A \mid A \to \varepsilon \in P\}$$

$$V_2 = V_1 \cup \{A \mid A \to \alpha \in P, \alpha \in V_1^{\star}\}$$

$$V_{i+1} = V_i \cup \{A \mid A \to \alpha \in P, \alpha \in V_i^{\star}\}$$

příklad:
$$V_2 = V_1 \cup \{C\} = \{S, D, C\}$$

$$V = \{A \mid A \implies {}^\star\varepsilon\}$$

$$V_1 = \{A \mid A \to \varepsilon \in P\}$$

$$V_1 = \{S, D\}$$

$$V_2 = V_1 \cup \{A \mid A \to \alpha \in P, \alpha \in V_1^\star\}$$

 \mathcal{G}_1 :

$$\begin{array}{ll} P: & S \rightarrow aSbA \mid abA \mid aSb \mid ab \\ & A \rightarrow aBbA \mid aBb \mid bCB \mid bB \mid CD \mid C \mid D \\ & B \rightarrow bbBa \mid aS \mid a \\ & C \rightarrow aAaA \mid aAa \mid aaA \mid aa \\ & D \rightarrow SC \mid S \mid C \mid aABa \mid aBa \end{array}$$

8.7 Příklad

K automatu M zkonstruujte gramatiku typu 3 která generuje jazyk L(M), kde M je dán tabulkou

$$\mathcal{G} = (N, \Sigma, S, P)$$

$$N = \{S, A, B, C, D\}$$

$$\Sigma = \{a, b\}$$

$$\begin{split} P:&S \rightarrow A \mid C \\ &A \rightarrow aA \mid aB \mid bC \\ &B \rightarrow aB \mid bC \\ &C \rightarrow bD \mid \varepsilon \\ &D \rightarrow aB \mid bD \mid \varepsilon \end{split}$$

Navrhněte gramatiku

8.8 Příklad

Navrhněte bezkontextovou gramatiku \mathcal{G} , která generuje jazyk $L=\{0^i1^j;0\leq i\leq j\}$. Zdůvodněte, proč gramatika \mathcal{G} jazyk L generuje.

$$\begin{split} S &\to XY \\ X &\to 0X1 \mid \varepsilon \\ Y &\to Y1 \mid \varepsilon \end{split}$$

Zdůvodnění:

1.

Dvě možnosti: i = j, a i < j, kde j = i + n, n > 0.

$$S \overset{S \to XY}{\Longrightarrow} XY \overset{X \to 0X1(i)}{\Longrightarrow} 0^i X 1^i Y \Longrightarrow \begin{cases} i < j: & 0^i X 1^i Y \overset{Y \to Y1(n)}{\Longrightarrow} 0^i X 1^i Y 1^n \overset{X \to \varepsilon}{\Longrightarrow} 0^i 1^{i+n=j} \\ i = j: & 0^i X 1^i Y \overset{Y \to \varepsilon}{\Longrightarrow} 0^i X 1^i \overset{X \to \varepsilon}{\Longrightarrow} 0^i 1^i \end{cases}$$

2. (fancy důkaz, doslova opsáno z autorského řešení pí. Demlové)

Uvažujme derivaci $S \Rightarrow^* w.$ Poslední pravidlo musí být $S \to \varepsilon.$

Provedeme indukci podle počtu kroků derivace n:

$$S \Rightarrow^n 0^i S 1^j$$
, kde $i \le j$.

Základní krok (n = 1): Pro n = 1:

$$S \to 0S1$$
 nebo $S \to S1$, a tedy $0^i S1^j$, kde $i \le j$.

Indukční krok: Předpokládejme, že každá derivace o *n* krocích generuje:

$$S \Rightarrow^n 0^i S 1^j, \quad i \le j.$$

Pak derivace o n+1 krocích bude:

$$S \to 0$$
S1 $\Rightarrow^n 0^{i+1}$ S1^{j+1}, a tedy $i + 1 \le j + 1$.

Nebo:

$$S \Rightarrow^n 0^i S 1^j \Rightarrow 0^i 1^j$$
.

Závěr: Z S je možné odvodit právě slova $0^i 1^j$, kde $0 \le i \le j$, a nic jiného.

Deváté cvičení 9

9.1 Příklad

Navrhněte bezkontextové gramatiky generující následující jazyky

a)
$$L_1 = \{0^{m+n}1^n0^m \mid 0 \le n, m\}.$$

b) $L_2 = \{0^i1^j \mid 0 \le i < j\}.$

b)
$$L_2 = \{0^i 1^j \mid 0 \le i < j\}$$

Zdůvodněte, proč gramatika \mathcal{G} jazyk L generuje.

a)

$$P:S \rightarrow 0S0 \mid A$$
$$A \rightarrow 0A1 \mid \varepsilon$$

(a)
$$S \stackrel{S \to 0S0(m)}{\Longrightarrow} 0^m S0^m \stackrel{S \to A}{\Longrightarrow} 0^m A0^m \stackrel{A \to 0A1(n)}{\Longrightarrow} 0^m 0^n A1^n 0^m \stackrel{A \to \varepsilon}{\Longrightarrow} 0^m 1^m 0^n 1^n 0^m = 0^{m+n} 1^n 0^m$$

(b)
$$S \Rightarrow^* w, S \Rightarrow 0^i S 0^i, S \Rightarrow A, A \Rightarrow^* 0^j 1^j, 0^i 0^j 1^j 0^i \in L(\mathcal{G})$$

b)

$$P: S \rightarrow 0S1 \mid S1 \mid 1$$

Důkazy mě těžce nebaví, všude jsou cca stejný.

9.2 Příklad

Ke gramatik
e $\mathcal G$ zkonstruujte nevypouštěcí gramatiku
 $\mathcal G_1,$ pro kterou $L(\mathcal G_1)=L(\mathcal G)-\{\varepsilon\}.$ Gramatiku \mathcal{G}_1 zredukujte.

$$\begin{array}{ll} P: & S \rightarrow AB \mid \varepsilon \\ & A \rightarrow aAAb \mid bS \mid CA \\ & B \rightarrow BbA \mid CaC \mid \varepsilon \\ & C \rightarrow aBB \mid bS \end{array}$$

$$\begin{split} V_1 &= \{A \mid A \rightarrow \varepsilon \in P\} \\ V_1 &= \{S, B\} \\ V_2 &= V_1 \cup \{A \mid A \rightarrow \alpha \in P, \alpha \in V_1^{\star}\} \\ V_2 &= V_1 \cup \emptyset = \{S, B\} \end{split}$$

$$\mathcal{G}_1:S \to AB \mid A$$

$$A \to aAAb \mid bS \mid b \mid CA$$

$$B \to BbA \mid bA \mid CaC$$

$$C \to aBB \mid aB \mid a \mid bS \mid b$$

Gramatika \mathcal{G}_1 už je redukovaná.

Redukce gramatiky

obecně:

$$\begin{split} V &= \{A \mid A \in N, A \implies {}^\star_{\mathcal{G}} w, w \in \Sigma^\star\} \\ V_1 &= \{A \mid A \implies {}^\star w \in P, w \in \Sigma^\star\} \\ V_2 &= V_1 \cup \{A \mid A \to \alpha \in P, \alpha \in (\Sigma \cup V_1)^\star\} \\ U &= \{A \mid A \in V, \exists \alpha, \beta \in (V \cup \Sigma)^\star \text{ tak, že } S \implies {}^\star_{\mathcal{G}} \quad \alpha A \beta\} \end{split}$$

Jazyk není prázdný právě tehdy, kdy $S \in V$.

9.3 Příklad - polopaticky vysvětlená redukce

Zredukujte gramatiku \mathcal{G} , která je dána pravidly

$$\begin{array}{ccc} P: & S \rightarrow SA \mid SB \mid \varepsilon \\ & A \rightarrow bSA \mid baS \\ & B \rightarrow aB \mid Ba \mid DA \\ & C \rightarrow aCB \mid bA \\ & D \rightarrow AB \end{array}$$

redukce tldr:

 $V_1 \dots$ to, co se promítne na ε nebo na terminály

 $V_2 \dots$ to, co se promítne na terminály a na to, co už je ve V_1

 $U_0 \dots \{S\}$

 $U_1\dots$ neterminály, do kterých se dostanu z
 S, pak z U_1 atd.

$$V_1 = \{S\}$$

$$V_2 = V_1 \cup \{A\} = \{S, A\}$$

$$V_3 = V_2 \cup \{C\} = \{S, A, C\}$$

$$V_4 = V_3 \cup \emptyset = \{S, A, C\}$$

a tady v tom nechám jenom neterminály z V, a z pravé strany vyškrtám pravidla obsahující neterminály $\notin V$.

$$P: S \to SA \mid \varepsilon$$

$$A \to bSA \mid baS$$

$$C \to \mid bA$$

sem přidávám neterminály, do kterých se dostanu z počátečního stavu S, pak ze stavů v odpovídajícím U_i .

$$U_0 = \{S\}$$

$$U_1 = U_0 \cup \{A\} = \{S, A\}$$

$$U_2 = U_1 \cup \emptyset = \{S, A\}.$$

a ponechám jen pravidla, která nám zbyla v U.

$$P: S \to SA \mid \varepsilon$$
$$A \to bSA \mid baS$$

9.4 Příklad

Rozhodněte, zda gramatika \mathcal{G} generuje aspoň jedno slovo, tj. zda $L(\mathcal{G}) \neq \emptyset$, kde \mathcal{G} je dána pravidly

$$\begin{array}{ccc} P: & S \rightarrow aS \mid AB \mid CD \\ & A \rightarrow aDb \mid AD \mid BC \\ & B \rightarrow bSb \mid BB \\ & C \rightarrow BA \mid ASb \\ & D \rightarrow ABCD \mid \varepsilon \end{array}$$

$$V_1 = \{D\}$$

$$V_2 = V_1 \cup \{A\} = \{D, A\}$$

$$V_3 = V_2 \cup \emptyset = \{D, A\} = V$$

$$S \notin V \quad \rightarrow \quad L(\mathcal{G}) = \emptyset$$

Chomského normální tvar

Chomského normální tvar: Všechna pravidla na pravé straně mají buď přesně 2 neterminály nebo přesně 1 terminál.

9.5 Příklad

Je dána gramatika $\mathcal{G}=(N,\Sigma,S,P),$ kde $N=\{S,A,B\},$ $\Sigma=\{0,1\}$ a P je

$$\begin{array}{ccc} P: & S \rightarrow A \mid 0SA \mid \varepsilon \\ & A \rightarrow 1A \mid B1 \mid 1 \\ & B \rightarrow 0B \mid 0 \end{array}$$

Převeď te \mathcal{G} do Chomského normálního tvaru.

1. Uděláme z toho nevypouštěcí gramatiku.

$$V = \{S\}$$

$$\begin{split} P: & S \rightarrow A \mid 0SA \mid 0A \\ & A \rightarrow 1A \mid B1 \mid 1 \\ & B \rightarrow 0B \mid 0 \end{split}$$

2. Zbavíme se toho, kdy 1 neterminál přepisujeme na 1 neterminál.

tady:
$$S \rightarrow A,$$
máme zde $A \rightarrow 1A \mid B1 \mid 1$

$$\begin{split} P: & S \rightarrow 1A \mid B1 \mid 1 \mid 0SA \mid 0A \\ & A \rightarrow 1A \mid B1 \mid 1 \\ & B \rightarrow 0B \mid 0 \end{split}$$

vytvořím pomocná pravidla pro terminály, které "nezůstaly samy"

$$P: S \to X_{1}A \mid BX_{1} \mid 1 \mid X_{0}SA \mid X_{0}A$$

$$A \to X_{1}A \mid BX_{1} \mid 1$$

$$B \to X_{0}B \mid 0$$

$$X_{0} \to 0$$

$$X_{1} \to 1$$

3. Zbavím se dlouhých slov (≥ 3) (opět vytvořím pomocná pravidla).

$$P: S \to X_{1}A \mid BX_{1} \mid 1 \mid X_{0}Y \mid X_{0}A$$

$$Y \to SA$$

$$A \to X_{1}A \mid BX_{1} \mid 1$$

$$B \to X_{0}B \mid 0$$

$$X_{0} \to 0$$

$$X_{1} \to 1$$

9.6 Příklad

Je dán derivační strom v bezkontextové gramatice:

a) Napiště pravidla minimální CF gramatiky, ve které je to derivační strom.

- b) Napiště levou derivaci odpovídající tomuto derivačnímu stromu.
- c) Rozlože výsledek derivačního stromu w na pět částí $w = w_1 w_2 w_3 w_4 w_5$ tak, že $w_2 w_4 \neq \varepsilon$ a slovo $w_1 w_2^2 w_3 w_4^2 w_5$ je také generované gramatikou z bodu a).
- d) Rozhodněte, zda je gramatika víceznačná.

a)

$$P:S \to AaB \mid \varepsilon$$

$$A \to AA \mid SB \mid aSb \mid \varepsilon$$

$$B \to SA \mid ac$$

- b) $S \overset{S \to AaB}{\Longrightarrow} AaB \overset{A \to AA}{\Longrightarrow} AAaB \overset{A \to aSb}{\Longrightarrow} aSbAaB \overset{S \to \varepsilon}{\Longrightarrow} abAaB \overset{A \to \varepsilon}{\Longrightarrow} abaBB \overset{B \to SA}{\Longrightarrow} abaSA \overset{A \to Aab}{\Longrightarrow} abaAaBA \overset{A \to \varepsilon}{\Longrightarrow} abaaacB \overset{B \to ac}{\Longrightarrow} abaaacac.$
- c) basically pumping lemma pro gramatiky, snad by to v testech ani zkoušce chtít neměla. $w_1 = aba, w_2 = a, w_3 = ac, w_4 = ac, w_5 = \varepsilon$.

(jak toho docílím: jdu odspoda stromu a najdu dva stejné neterminály (různě v grafu) a v podstatě ten strom nafouknu (zkopíruju nějaký podstrom z vyššího do nižšího neterminálu, v ukázce červený node B v nejvýš vpravo kopíruju do červeného Bčka vlevo od něj).)

d) je víceznačná, přepisujeme $A \to AA.$

9.7 Příklad

Navrhněte bezkontextovou gramatiku generující následující jazyk $L = \{a^n b^m a^n \mid m, n \ge 0\}$. Zdůvodněte, proč zkonstruovaná gramatika jazyk L generuje.

$$P:S \to aSa \mid b \mid \varepsilon$$

$$(1) \quad S \overset{S \to aSa(n)}{\Longrightarrow} a^n Sa^n \overset{S \to Sb(m)}{\Longrightarrow} a^n Sb^m a^n \overset{S \to \varepsilon}{\Longrightarrow} a^n b^m a^n$$

(2) Když
$$w \in L(\mathcal{G})$$
, tak $w = a^n b^m a^n$. $S \Longrightarrow^{\star} w$, $S \Longrightarrow^{\star} a^l S a^l$, $S \Longrightarrow^{\star} b^k$, $a^l b^k a^l \in L(\mathcal{G})$.

9.8 Příklad

Zredukujte gramatiku \mathcal{G} , kter je dána pravidly:

$$\begin{split} \mathcal{G}: & S \rightarrow aA \mid bB \mid aSa \mid bSb \mid \varepsilon \\ & A \rightarrow bCD \mid Dba \\ & B \rightarrow Bb \mid AC \\ & C \rightarrow aA \mid a \\ & D \rightarrow DE \\ & E \rightarrow \varepsilon \end{split}$$

(1)
$$V_{1} = \{A \mid A \to^{*} w \in P, w \in \Sigma^{*}\}$$

$$V_{1} = \{S, C, E\}$$

$$V_{2} = V_{1} \cup \{A \mid A \to \alpha \in P, \alpha \in (\Sigma \cup V_{1})^{*}\}$$

$$V_{2} = V_{1} \cup \emptyset = \{S, C, E\} \cup \emptyset = \{S, C, E\}$$

$$\mathcal{G}' : S \to aSa \mid bSb \mid \varepsilon$$

$$C \to a$$

$$E \to \varepsilon$$

(2)
$$U=\{X\in V\mid \exists\alpha,\beta\in (V\cup\Sigma)^\star,S\implies\alpha X\beta\}$$

$$U_0=\{S\}$$

$$U_1=U_0\cup\{X\mid X\text{ se vyskytuje v }\alpha\text{ nebo }\beta\text{ na prav\'e stran\'e pro pravidlo }Y\to\alpha\in P,Y\in U_0\},\,S\implies^\star S$$

$$U_1=U_0\cup\emptyset$$

$$\mathcal{G}'': S \to aSa \mid bSb \mid \varepsilon$$

10 Desáté cvičení

Algoritmus CYK

10.1 Příklad

Je dána gramatika $\mathcal{G}=(N,\Sigma,S,P)$, kde $N=\{S,A,B,C,D\}$, $\Sigma=\{a,b\}$ a pravidla P jsou dána: $P:\ S\to AB\mid CS\mid AD$ $A\to AC\mid AD\mid a$ $B\to BC\mid b$ $C\to DS\mid SC\mid a$ $D\to BA\mid b$

Algoritmem CYK rozhodněte, zda gramatika \mathcal{G} generuje slova w_1 a w_2 , kde $w_1 = aaaba$ a $w_2 = abbaa$. Pokud ano, nakreslete derivační strom a napište jemu odpovídající levou derivaci.

slovo w_1 :

$$\begin{array}{cccc} AB & \leftarrow & S \\ AC & \leftarrow & A \\ AD & \leftarrow & S, A \\ BA & \leftarrow & D \\ BC & \leftarrow & B \\ CS & \leftarrow & S \\ DS & \leftarrow & C \\ SC & \leftarrow & C \end{array}$$

C, A, S				
S, A	C, A, S			
A	S, A	S, A, C		
A	A	S, A	D, B	
A, C	A, C	A, C	B, D	A, C
a	a	\overline{a}	b	a

 $S \stackrel{S \to CS}{\Longrightarrow} CS \stackrel{C \to a}{\Longrightarrow} aS \stackrel{S \to CS}{\Longrightarrow} aCS \stackrel{C \to a}{\Longrightarrow} aaS \stackrel{S \to AD}{\Longrightarrow} aaAD \stackrel{A \to a}{\Longrightarrow} aaaD \stackrel{D \to BA}{\Longrightarrow} aaaBA \stackrel{B \to b}{\Longrightarrow} aaabA \stackrel{A \to a}{\Longrightarrow} aaaba$ slovo w_2 :

C, A, S				
C, A, S	_			
S, A	_	D, B		
S, A		D, B	A	
A, C	B, D	B, D	A, C	A, C
a	b	b	a	a

 $S \overset{S \to AD}{\Longrightarrow} AD \overset{A \to AD}{\Longrightarrow} ADD \overset{A \to a}{\Longrightarrow} aDD \overset{D \to b}{\Longrightarrow} abD \overset{D \to BA}{\Longrightarrow} abBA \overset{B \to b}{\Longrightarrow} abbA \overset{A \to AC}{\Longrightarrow} abbAC \overset{A \to a}{\Longrightarrow} abbaC \overset{C \to a}{\Longrightarrow} abbaa$

10.2 Příklad

Je dána gramatika $\mathcal{G} = (N, \Sigma, S, P)$, kde $N = \{S, A, B, C, D\}$, $\Sigma = \{a, b\}$ a pravidla P jsou dána:

$$P: \quad S \rightarrow AB \mid AC \mid BC$$

$$A \rightarrow AD \mid a$$

$$B \rightarrow BD \mid b$$

$$C \rightarrow AB \mid BB$$

$$D \rightarrow a \mid b$$

Algoritmem CYK rozhodněte, zda slovo $w_1 = abaab$ je touto gramatikou generováno. Pokud ano, nakreslete derivační strom a napište levou derivaci.

 $w_1 = abaab$:

D, C, B, S				
D, C, A, S	S, D, C, B			
A, S, C	С	D, B, C		
D, C	S, A	C, S	D, C	
A, D	B, C	A, D	A, D	B, C
a	b	a	a	b

$$S \overset{S \to CD}{\Longrightarrow} CD \overset{C \to DC}{\Longrightarrow} DCD \overset{D \to a}{\Longrightarrow} aCD \overset{C \to b}{\Longrightarrow} abD \overset{D \to CB}{\Longrightarrow} abCB \overset{C \to AA}{\Longrightarrow} abAAB \overset{A \to a}{\Longrightarrow} abaAB \Longrightarrow abaab$$

10.3 Příklad - NEBUDE U ZKOUŠKOVÝHO TESTU!!

S využitím Pumping Lemmatu ukažte, že následující jazyk není bezkontextový, kde

$$L = \{ww; w \in \{a, b\}^{\star}\}$$

Pumping Lemma. Pro každý CF jazyk L existuje přirozené číslo $m \ge 1$ takové, že každé slovo $z \in L$ délky alespoň m lze rozdělit na pět částí z = uvwxy tak, že:

- $|vwx| \leq m$, (tj. prostřední část není příliš dlouhá),
- $vx \neq \varepsilon$ (tj. alespoň jedno ze slov v, x není prázdné),
- pro všechna $i \ge 0$ platí $uv^iwx^iy \in L$, (tj. v a x se dají do slova "napumpovat" a stále dostaneme slovo z jazyka L).

spoiler alert: nedoděláno

Zvolíme $z = a^m b^m a^m b^m \in L, |z| = 4m > m.$

. . .

. . .

Máme 7 možností: Takže to dělat nebudeme.

10.4 Příklad

Je dána CF gramatika $\mathcal{G} = (N, \Sigma, S, P)$, kde $N = \{S, A, B, C\}$, $\Sigma = \{a, b\}$ a P je:

$$P: S \to SA \mid aSb \mid Cb$$

$$A \to SC \mid \varepsilon$$

$$B \to bAB \mid bS \mid AA$$

$$C \to CB \mid bA \mid a$$

Pomocí matematické indukce dokažte, že:

$$A \Rightarrow_{\mathcal{G}}^{\star} S^i A C^i$$

pro všechna $i \geq 0$. Toho využijte k důkazu, že $(ab)^{i+1}(ab^3)^i$ jsou generována gramatikou $\mathcal G$ pro každé $i \geq 0$.

1) Základní krok: i = 0

Pro i = 0, platí:

$$A \stackrel{A \to \varepsilon}{\Longrightarrow} A$$

což odpovídá:

$$S^0AC^0 = A$$

2) Indukční krok:

předp. $A \implies {}^{\star}S^n a C^n$, chceme dokázat $A \implies {}^{\star}S^{n+1}AC^{n+1}$.

$$A \overset{A \to SC}{\Longrightarrow} SC \overset{S \to SA}{\Longrightarrow} SAC \overset{I.P.}{\Longrightarrow}^{\star} SS^nAC^nC$$

nebo

$$A \stackrel{I.P.}{\Longrightarrow} S^n A C^n \stackrel{A \to SC}{\Longrightarrow} S^n S C C^n \stackrel{S \to SA}{\Longrightarrow} S^n S A C C^n.$$

10.5 Příklad

Je dána gramatika $\mathcal{G}=(N,\Sigma,S,P),$ kde $N=\{S,A,B,C,D\},$ $\Sigma=\{a,b,c\}$ a pravidla P jsou dána

$$\begin{array}{ccc} P: & S \rightarrow AB \mid CD \mid AC \\ & A \rightarrow AC \mid a \\ & B \rightarrow BD \mid b \\ & C \rightarrow AD \mid a \\ & D \rightarrow BA \mid b \end{array}$$

Algoritmem CYK rozhodněte, zda gramatika \mathcal{G} generuje slova w_1 a w_2 , kde $w_1 = baaba$ a $w_2 = abaaa$. Pokud ano, nakreslete derivační strom a napište jemu odpovídající levou derivaci.

$$AB \leftarrow S$$

$$AC \leftarrow S, A$$

$$AD \leftarrow C$$

$$BA \leftarrow D$$

$$BD \leftarrow B$$

$$CD \leftarrow S$$

slovo $w_1 = baaba$:

D				
D	S, A, C			
D	S, C, A	C, S		
D	S, A	S, C	D	
B,D	A, C	A, C	B, D	A, C
b	a	a	b	a

Gramatika \mathcal{G} negeneruje slovo w_1 .

slovo $w_2 = abaaa$:

C, S				
C, S	D			
C, S	D	S, A		
S, C	D	S, A	S, A	
A, C	B, D	A, C	A, C	A, C
a	b	a	a	a

Gramatika \mathcal{G} generuje slovo w_2 .

Levá derivace:

$$S \overset{S \to CD}{\Longrightarrow} CD \overset{C \to a}{\Longrightarrow} aD \overset{D \to BA}{\Longrightarrow} aBA \overset{B \to b}{\Longrightarrow} abA \Longrightarrow$$

$$\overset{A \to AC}{\Longrightarrow} abAC \overset{A \to AC}{\Longrightarrow} abACC \overset{A \to a}{\Longrightarrow} abaCC \Longrightarrow$$

$$\overset{C \to a}{\Longrightarrow} abaaC \overset{C \to a}{\Longrightarrow} abaaa$$

Derivační strom pro slovo w_2 :

11 Jedenácté cvičení

11.1 Příklad

Je dán zásobníkový automat $A=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$, kde jednotlivé části jsou $Q=\{q_0,q_1,q_2,q_f\}$, $\Sigma=\{a,b\}, \Gamma=\{Z_0,X\}$ a přechodová funkce je daná tabulkou

	(a, Z_0)	(a, X)	(b, Z_0)	(b,X)	(ε, Z_0)	(ε, X)
$\rightarrow q_0$	(q_0, XZ_0)	(q_0, XX)	(q_1, Z_0)	(q_1, ε)	(q_f, ε)	_
q_1	_	_	(q_1, Z_0)	(q_1, ε)	(q_f, ε)	_
$\leftarrow q_2$	_	_	_	_	_	_

- a) Nakreslete stavový diagram zásobníkového automatu A.
- b) Ukažte práci zásobníkového automatu nad slovem aabba a slovem abbbb.
- c) Charakterizujte jazyk L, který tento zásobníkový automat přijímá. Tvrzení zdůvodněte.

Stavový diagram automatu A.

Práce nad slovem $w_1 = aabba$.

 $(q_0, aabba, Z_0) \vdash (q_0, abba, XZ_0) \vdash (q_0, bba, XXZ_0) \vdash (q_1, ba, XZ_0) \vdash (q_1, a, Z_0)$. Konec, neúspěch.

Práce nad slovem $w_2 = abbbb$.

 $(q_0, abbbb, Z_0) \vdash (q_0, bbbb, XZ_0) \vdash (q_1, bbb, Z_0) \vdash (q_1, bb, Z_0) \vdash (q_1, b, Z_0) \vdash (q_1, \varepsilon, Z_0) \vdash (q_f, \varepsilon, \varepsilon).$ Konec, úspěch.

$$L(A) \stackrel{?}{=} \overbrace{\left\{a^ib^j \mid 0 \le i, i \le j\right\}}^L$$

Důkaz.

a)
$$L \subseteq L(A)$$

- i = j = 0: $(q_0, \varepsilon, Z_0) \vdash (q_f, \varepsilon, \varepsilon)$
- 0 = i < j: $(q_0, b^j, Z_0) \vdash (q_1, b^{j-1}, Z_0) \vdash^{(j-1)} (q_1, \varepsilon, Z_0) \vdash (q_f, \varepsilon, \varepsilon)$
- $0 < i \le j$: $(q_0, a^i b^j, Z_0) \vdash^i (q_0, b^{i+k}, X^i Z_0) \vdash (q_0, b^{i+k-1}, X^{i-1} Z_0) \vdash^{(i-1)} (q_1, b^k, Z_0) \vdash^k (q_1, \varepsilon, Z_0) \vdash (q_f, \varepsilon, \varepsilon), i + k = j, k = j i \ge 0.$

b)
$$L(A) = N(A) \subseteq L$$

 $w \in L(A)$

12 Dvanácté cvičení

12.1 Příklad

Je dán jazyk L nad abecedou $\Sigma = \{a, b\}$. Sestrojte zásobníkové automaty A, B tak, že L = N(A) a L = L(B) (tj. A přijímá L prázdným zásobníkem, B přijímá L koncovým stavem), kde

$$L = \{(ab)^i b^j a^{j-i} \mid 0 < i < j\}.$$

$$\implies L = \{(ab)^ib^{i+k}a^k \mid i>0, k>0\} \implies N(A) = \underbrace{\{(ab)^ib^i \mid k>0\}}_{Y}, L(B) = \underbrace{\{b^ka^k \mid k>0\}}_{Y}.$$

Dva způsoby řešení:

a) Přímo.

b) Přes gramatiku.

$$S \xrightarrow{S \to AB} AB \xrightarrow{A \to abAb} (i-1) (ab)^{i-1}Ab^{i-1}B \xrightarrow{A \to abb}$$

$$(ab)^{i}b^{i}B \xrightarrow{B \to bBa} (k-1) (ab)^{i}b^{i}b^{k-1}Ba^{k-1} \xrightarrow{B \to ba}$$

$$A \to abAb \mid abb \qquad (ab)^{i}b^{i}b^{k}a^{k}.$$

$$B \to bBa \mid ba \qquad 2. L(G) \subseteq L$$

$$S \to^{\star} w$$

$$S \to AB$$

$$A \xrightarrow{A \to abAb} (ab)^{j}Ab^{j} \xrightarrow{A \to abb} (ab)^{j}abb^{j}$$

12.2 Příklad

Je dán jazyk L nad abecedou $\Sigma = \{a, b\}$. Sestrojte zásobníkové automaty A, B tak, že L = N(A) a L = N(B) (tj. A přijímá L prázdným zásobníkem, B přijímá L koncovým stavem), kde

 $L = \{w \mid w \text{ začíná a končí symbolem 1 a obsahuje o dvě 1 více než 0}\}.$

$$L = \{1u1 \mid |u|_0 = |u|_1\}, i = |u|_0$$

$$0, Z_0/0Z_0$$

$$1, Z_0/1Z_0$$

$$1, Z_0/Z_0$$

$$1, Z_0/\varepsilon$$

$$0, 0/00$$

$$1, 1/11$$

$$0, 1/\varepsilon$$

$$1, 0/\varepsilon$$

1)
$$L \subseteq N(A)$$

 $(q_0, 1u1, Z_0) \vdash (q_1, u1, Z_0) \vdash^* (q_1, 1, Z_0) \vdash (q_f, \varepsilon, \varepsilon).$
2) $L(B) \subseteq L$

12.3 Příklad

Je dán jazyk $L=\{0^n1^m; 0\leq n\leq m\leq 2n\}$. Rozhodněte, zda jazyk L je bezkontextový.

V případě, že je bezkontextový, najděte buď bezkontextovou gramatiku, která ho generuje, nebo zásobníkový automat, který ho přijímá.

V případě, že není bezkontextový, tvrzení dokažte.

$$\mathcal{G}_1: S \to 0SA1 \mid \varepsilon$$
$$A \to 1 \mid \varepsilon$$

$$\mathcal{G}_2: S \to 0S11 \mid 0S1 \mid \varepsilon$$

Důkaz \mathcal{G}_2 .

$$\begin{array}{l} 1) \ L \subseteq L(\mathcal{G}_2) \\ 0 < n \leq m \leq 2n \rightarrow k = 2n - m \geq 0 \\ S \xrightarrow{S \rightarrow 0S1} \overset{(k)}{\overset{(k)}{\longrightarrow}} 0^k S1^k \xrightarrow{S \rightarrow 0S11} \overset{(n-k)}{\overset{(n-k)}{\longrightarrow}} 0^k 0^{n-1} S1^{n-1} 1^{n-1} 1^k \xrightarrow{S \rightarrow \varepsilon} 0^n 1^{2n-k} = 0^n 1^{2n-2n+m} = 0^n 1^m. \end{array}$$

2)
$$L(\mathcal{G}_2) \subseteq L$$

13 Třinácté cvičení

13.1 Příklad

Je dán jazyk L nad abecedou $\Sigma=\{a,b\}$. Sestrojte zásobníkové automaty A,B tak, že L=N(A) a L=L(B) (tj. A přijímá L prázdným zásobníkem, B přijímá L koncovým stavem), kde

$$L = \{0^i 1^j 0^k \mid 0 \le i < k, j > 0\}.$$

Ukažte práci jednoho ze zásobníkových automatů nad slovem 011000 a nad slovem 001110.

Přímou metodou:

Práce nad slovem $w_1 = 011000$.

$$(q_0, 011000, Z_0) \vdash (q_0, 11000, AZ_0) \vdash (q_1, 1000, AZ_0) \vdash (q_1, 000, AZ_0) \vdash (q_2, 00, AZ_0) \vdash (q_f, 0, AZ_0) \mathbf{X} \vdash (q_2, 0, Z_0) \vdash (q_f, 0, Z_0) \mathbf{X} \vdash (q_2, \varepsilon, Z_0) \vdash (q_f, \varepsilon, \varepsilon) \checkmark$$

Práce nad slovem $w_2 = 001110$.

$$\begin{array}{l} (q_0,001110,Z_0) \vdash^{(2)} (q_0,1110,AAZ_0) \vdash \\ (q_1,110,AAZ_0) \vdash^{(2)} (q_1,0,AAZ_0) \vdash (q_2,\varepsilon,AAZ_0) \mathbf{X} \end{array}$$

Přes gramatiku:

$$\mathcal{G}: S \to S0 \mid 0S0 \mid A0$$
$$A \to 1A \mid 1$$

Důkaz.

1)
$$L \subseteq L(\mathcal{G})$$

 $S \Rightarrow^{\star} 0^{i} S 0^{k} \xrightarrow{S \to A0} 0^{i} A 0^{k+1} \xrightarrow{A \to 1A}^{(j)} 0^{i} 1^{j} A 0^{k+1} \xrightarrow{A \to 1} 0^{i} 1^{j+1} 0^{k+1}, i \leq k, j > 0.$
2) $L(\mathcal{G}) \subseteq L$

13.2 Příklad

Je dána bezkontextová gramatika
$$\mathcal{G}=(N,\Sigma,S,P)$$
, kde $N=\{S,A,B,C\},\Sigma=\{0,1\}$ a P je dáno
$$S\to SA\mid 0$$

$$A\to BAB\mid 1$$

$$B\to CB\mid \varepsilon$$

$$C\to AS\mid 0\mid \varepsilon$$

Ke gramatice \mathcal{G} vytvořte nevypouštěcí gramatiku \mathcal{G}_1 . V gramatice \mathcal{G}_1 odstraňte levou rekurzi.

1. krok Vytvoření nevypouštěcí gramatiky \mathcal{G}_1 .

$$V = \{x \mid x \Rightarrow^{\star} \varepsilon\}$$

$$V_1 = \{x \mid x \to \varepsilon \in P\} = \{B, C\}$$

$$V_2 = V_1 \cup \{x \mid x \to \alpha \in P, \alpha \in V_1^+\} = V_1 \cup \emptyset = V_1 = V.$$

2. krok odstranění levé rekurze. (postup shora dolů)

$$S \rightarrow 0 \mid 0S'$$

$$S^{'} \to A \mid AS^{'}$$

$$A \rightarrow BAB \mid BA \mid 1 \mid BABA^{'} \mid BAA^{'} \mid 1A^{'}$$

$$A' \to B \mid BA'$$

$$B \to CB \mid C$$

$$C \rightarrow AS \mid 0$$

13.3 Příklad

Do Greibachové normální formy převěď te gramatiku \mathcal{G} , kde $\mathcal{G} = (N, \Sigma, S, P)$, kde $N = \{S, E, F\}$, $\Sigma = \{a, *, +, \}$, ($\}$ a P je dáno

$$S \to (E)$$

$$E \to F * F \mid F + F$$

$$F \rightarrow a \mid S$$

1. krok oindexování neterminálů.

$$A_1 = S$$

$$A_2 = E$$

$$A_3 = F$$

2. krok odstranění levých rekurzí. Kontrola správného pořadí indexů (na pravé straně vždy neterminál s větším indexem), jinak sloučit pravidla. (postup shora dolů)

$$S \to (E)$$

$$E \to F * F \mid F + F$$

$$F \rightarrow a \mid (E)$$

3. krok nahrazení prvních neterminálů pravých stran, které neterminálem začínají, pravidly. (postup zespoda nahoru)

$$S \to (E)$$

$$E \rightarrow a * F \mid a + F \mid (E) * F \mid (E) + F$$

$$F \rightarrow a \mid (E)$$

4. krok za prvním terminálem pravé strany vždy následují pouze neterminály.

$$S \to (EX$$

$$E \rightarrow aYF \mid aZF \mid (EXYF \mid (EXZF))$$

$$F \to a \mid (EX$$

$$X \rightarrow$$

$$Y \to *$$

$$Z \rightarrow +$$

13.4 Příklad

Do Greibachové normální formy převěď te gramatiku \mathcal{G} , kde $\mathcal{G}=(N,\Sigma,S,P)$, kde $N=\{S,A,B\}$, $\Sigma=\{a,b,c\}$ a P je dáno

$$S \to Ab \mid B$$

$$A \to Aba \mid Bcc$$

$$B \to Sa \mid b$$

1. krok oindexování neterminálů.

$$A_1 = S$$

$$A_2 = A$$

$$A_3 = B$$

2. krok odstranění levých rekurzí. Kontrola správného pořadí indexů (na pravé straně vždy neterminál s větším indexem), jinak sloučit pravidla. (postup shora dolů)

$$S \rightarrow Ab \mid B$$

$$A \rightarrow Ba \mid BaA'$$

$$A' \rightarrow ba \mid baA'$$

$$B \rightarrow Aba \mid Ba \mid b$$

$$B \rightarrow Baba \mid BaA'ba \mid Ba \mid b$$

$$B \rightarrow b \mid bB'$$

$$B' \rightarrow aba \mid aA'ba \mid a \mid abaB' \mid aA'baB' \mid aB'$$

3. krok nahrazení prvních neterminálů pravých stran, které neterminálem začínají, pravidly. (postup zespoda nahoru)

zespoda hahoru)
$$S o Bab \mid BaA^{'} \mid b \mid bB^{'}$$
 $A o ba \mid bB^{'}a \mid baA^{'} \mid bB^{'}aA^{'}$
 $A^{'} o ba \mid baA^{'}$
 $B o b \mid bB^{'}$
 $B^{'} o aba \mid aA^{'}ba \mid a \mid abaB^{'} \mid aA^{'}baB^{'} \mid aB^{'}$

4. krok za prvním terminálem pravé strany vždy následují pouze neterminály.

S
$$\rightarrow BaY \mid BaA' \mid b \mid bB'$$
 $A \rightarrow bX \mid bB'X \mid bXA' \mid bB'aA'$
 $A' \rightarrow bX \mid bXA'$
 $B \rightarrow b \mid bB'$
 $B' \rightarrow aXY \mid aA'YX \mid a \mid aYXB' \mid aA'YXB' \mid aB'$
 $X \rightarrow a$
 $Y \rightarrow b$

14 Čtrnácté cvičení

14.1 Přílkad

Do Greibachové normální formy převeď te gramatiku \mathcal{G} , kde $\mathcal{G}=(N,\Sigma,S,P)$, kde $N=\{S,A\}$, $\Sigma=\{0,1\}$ a P je dáno

$$S \to SA \mid 0$$
$$A \to AS \mid 1$$

1. krok oindexování neterminálů.

$$X_1 = S$$

$$X_2 = A$$

$$X_3 = S'$$

$$X_4 = A'$$

14.2 Příklad

Je dána bezkontextová gramatika $\mathcal{G} = (N, \Sigma, S, P)$, kde $N = \{S, A, B, C\}$, $\Sigma = \{a, b\}$ a P je dáno

$$\begin{split} S &\rightarrow Sa \mid Sb \mid bC \\ A &\rightarrow CBA \mid BC \mid b \\ B &\rightarrow aB \mid \varepsilon \\ C &\rightarrow AA \mid bBb \mid \varepsilon \end{split}$$

- 1. Ke gramatice \mathcal{G} najděte nevypouštěcí gramatiku \mathcal{G}_1 . Kroky převodu popište.
- 2. Ke gramatice \mathcal{G}_1 najděte gramatiku \mathcal{G}_2 v Chomského normálním tvaru, která generuje stejný jazyk jako gramatika \mathcal{G}_1 . Jednotlivé kroky popište, gramatiku v Chomského normálním tvaru definujte.
- 3. Pomocí matematické indukce dokažte, že platí $A \Rightarrow_{\mathcal{G}}^{\star} A^i C(BA)^{i+1}$ pro každé $i \geq 0$. Toho využijte k důkazu, že $b^{i+2}(ab)^{i+1}$ je generováno gramatikou \mathcal{G} pro každé $i \geq 0$.
- 4. Je gramatika \mathcal{G} víceznačná? Víceznačnou gramatiku definujte.
- 5. V gramatice \mathcal{G}_1 odstraňte levou rekurzi u symbolu S. Postup popište.
- 1. Nevypouštěcí gramatika \mathcal{G}_1 .

$$V = \{A \mid A \Rightarrow^{\star} \varepsilon\}$$

$$V_{1} = \{A \mid A \to \varepsilon \in P\} = \{B, C\}$$

$$V_{2} = V_{1} \cup \{A \mid A \to \alpha \in P, \alpha \in V_{1}^{\star}\} = V_{1} \cup \{A\} = \{A, B, C\}$$

$$V_{3} = V_{2} \cup \{A \mid A \to \alpha \in P, \alpha \in V_{2}^{\star}\} = V_{2} \cup \varepsilon = V_{2} = V$$

$$\mathcal{G}_1: S \to Sa \mid Sb \mid bC \mid b$$

$$A \to CBA \mid CA \mid CB \mid BA \mid BC \mid B \mid C \mid b$$

$$B \to aB \mid a$$

$$C \to AA \mid A \mid bBb \mid bb$$

2. Chomského normální tvar gramatiky \mathcal{G}_1 .

1. krok nahrazení samostatných terminálů pravidly. (pokud nastane např. $A \to A$, tak vynechat.)

$$S \rightarrow Sa \mid Sb \mid bC \mid b$$

$$A \rightarrow CBA \mid CA \mid CB \mid BA \mid BC \mid \underbrace{aB \mid a}_{B} \mid \underbrace{AA \mid bBb \mid bb}_{C} \mid b$$

$$B \to aB \mid a$$

$$C \rightarrow AA \mid \underbrace{CBA \mid CA \mid CB \mid BA \mid BC \mid B \mid C \mid b}_{A} \mid bBb \mid bb$$

2. krok nahrazení terminálů neterminály pokud nejsou samotné.

$$S \rightarrow SX_1 \mid SX_2 \mid X_2C \mid b$$

$$A \rightarrow CBA \mid CA \mid CB \mid BA \mid BC \mid X_1B \mid X_1 \mid AA \mid X_2BX_2 \mid X_2X_2 \mid X_2$$

$$B \to X_1 B \mid X_1$$

$$C \rightarrow AA \mid CBA \mid CA \mid CB \mid BA \mid BC \mid B \mid C \mid X_2 \mid X_2BX_2 \mid X_2X_2$$

$$X_1 \to a$$

$$X_2 \to b$$

3. krok nahrazení pravých stran, která mají délku ≥ 3 .

$$S \rightarrow SX_1 \mid SX_2 \mid X_2C \mid b$$

$$A \rightarrow Y \mid CA \mid CB \mid BA \mid BC \mid X_1B \mid X_1 \mid AA \mid Z \mid X_2X_2 \mid X_2$$

$$Y \to CBA$$

$$Z \to X_2 B X_2$$

$$B \to X_1 B \mid X_1$$

$$C \rightarrow AA \mid Y \mid CA \mid CB \mid BA \mid BC \mid B \mid C \mid X_2 \mid Z \mid X_2X_2$$

$$X_1 \to a$$

$$X_2 \to b$$

3. Důkaz.

$$A \Rightarrow_{\mathcal{G}}^{\star} A^i C(BA)^{i+1}$$

Základní krok:
$$i=0$$
: $A^0C(BA)^1=CBA \checkmark A\Rightarrow_{\mathcal{G}}^\star CBA$.

Indukční krok: $i \geq 0$: indukční předpoklad: $A \Rightarrow^{\star} A^i C(BA)^{i+1}$.

$$A \xrightarrow{A \to CBA} CBA \xrightarrow{C \to AA} A\underline{A}_{IP}(BA) \xrightarrow{IP}^{\star} AA^iC(BA)^{i+1}(BA) = A^{i+1}C(BA)^{i+2}. \checkmark$$

A tedy,
$$b^{i+2}(ab)^{i+1} \in L(\mathcal{G})$$
?

$$S \xrightarrow{S \to bC} bC \xrightarrow{C \to AA} bAA \xrightarrow{A \to b} b^2A \Rightarrow |\text{dle důkazu výše}| \Rightarrow^{\star} b^2A^iC(BA)^{i+1} \xrightarrow{A \to b} b^{i+2}C(BA)^{i+1} \xrightarrow{C \to \varepsilon} b^{i+2}(BA)^{i+1} \xrightarrow{B \to aB} b^{i+2}(aBA)^{i+1} \xrightarrow{B \to \varepsilon} b^{i+2}(aA)^{i+1} \xrightarrow{A \to b} b^{i+2}(ab)^{i+1}. \checkmark$$

4. Je gramatika \mathcal{G} víceznačná?

Víceznačnost = existují alespoň 2 derivační stromy / 2 levé derivace pro jedno libovolné slovo z \mathcal{G} .

Například mějme slovo w = bbb.

První způsob vygenerování slova $w: S \xrightarrow{S \to bC} bC \xrightarrow{C \to AA} bAA \xrightarrow{A \to b}^2 bbb.$

Druhý způsob vygenerování slova $w \colon S \xrightarrow{S \to bC} bC \xrightarrow{C \to bBb} bbBb \xrightarrow{B \to \varepsilon} bbb.$

A tedy gramatika \mathcal{G} je víceznačná.

5. Odstranění levých rekurzí.

Levá rekurze se vyskytuje pouze v pravidlu $S \to Sa \mid Sb \mid bC \mid b.$

Je potřeba přidat pouze jeden neterminál. Pokud by se jich přidalo více, nová gramatika by generovala méně slov, než původní.

$$S \rightarrow bC \mid bCS' \mid b \mid S'$$

$$S^{'} \rightarrow a \mid aS^{'} \mid b \mid bS^{'}$$