CPD: Introduction to Parallel Computing

Jorge Barbosa

Introduction

Until recently:

CPU Gflop/s increased by increasing frequency

"the more ticks you have per second, the more work will get done"

Why not push the clock faster?

Speed/power tradeoff

It's no longer worth the cost in terms of power consumed and heat dissipated.

Underclocking a single core by 20% saves 50% of the power while sacrificing just 13% of the performance.

Dividing the work between **two cores** running at an **80%** clock rate, we get **43%** better performance for the **same power**.

2004 was the turn over year!

CPU clock frequency

CPU power

CPU MIPS

Example of a IBM cluster node PPC 970 (2006)

Shared Global Memory 4 GB

Intel Core 2 Quad Q6600 Processor (2008)

Available on desktop Computers!

Shared Global Memory 6 GB

Intel Core 2 Quad Q6600 Processor (2008)

• A sequential program only uses 25% of the capacity

Intel Core i7

Q3, 2013

inside" CORE"i7	Brand Name & Processor Number ¹	Base Clock Speed (GHz)	Turbo Frequency ² (GHz)	Cores/ Threads	Cache	Memory Support	TDP	Socket (LGA)	Pricing (1k USD)
	NEW <mark>Intel® Core™ i7 4960X Unlocked</mark>	3.6	Up to 4.0	6/12	15 MB	4 channels DDR3 1866	130W	2011	\$990
	NEW Intel® Core™ i7 4930K Unlocked	3.4	Up to 3.9	6/12	12 MB	4 channels DDR3 1866	130W	2011	\$555
	NEW Intel® Core™ i7 4820K Unlocked	3.7	Up to 3.9	4/8	10 MB	4 channels DDR3 1866	130W	2011	\$310
	Intel® Core™ i7-4770K Unlocked	3.5	Up to 3.9	4/8	8 MB	2 channels DDR3 1600	95W	1150	\$317

Intel Core i7 Q1, 2022

Product Name	Status	Launch Date	Total Cores	Max Turbo Frequency
Intel® Core™ i7-12650H Processor	Launched	Q1'22	10	
Intel® Core™ i7-12700 Processor	Launched	Q1'22	12	4.90 GHz
Intel® Core™ i7-12700E Processor	Launched	Q1'22	12	4.80 GHz
Intel® Core™ i7-12700F Processor	Launched	Q1'22	12	4.90 GHz

Processor Base Power ?

125 W

Maximum Turbo Power ?

190 W

Intel Xeon Phi (2013 - 2017)

60 Intel cores in a desktop

Intel® Xeon Phi™ coprocessor 5110P: Ideal for high density environments

- Highly parallel applications using over 100 threads
- Memory bandwidth-bound applications
- Applications with extensive vector use

Buy the Intel® Xeon Phi™ coprocessor 5110P today >

xeon-phi-serverblade-feature-320x160.jpgKey specifications:

- 60 cores/1.053 GHz/240 threads
- 8 GB memory and 320 GB/s bandwidth
- Standard PCle* x16 form factor, passively cooled
- Linux* operating system, IP addressable
- 512-bit single instruction, multiple data instructions
- Supported by the latest Intel® software development products
- Built using Intel's 22nm process technology—Intel's most energy efficient process yet—featuring the world's first 3-D tri-gate transistors.

Manycore GPUs (attached processors)

- TESLA
 - Up to 2880 scalar cores

Supports Multi-Instance GPU (MIG)

- Manycore programming
 - CUDA -- NVIDIA only
 - **OpenCL** -- integration of CPU and GPU
 - **OpenACC**

Mobile Computing

Samsung S21: Qualcomm Snapdragon 888 (5 nm) e Exynos 2100

Process	5nm	Al	26 TOPS
Multi-core	Octa-core	CPU (Main)	Arm Cortex-X1 (2.9GHz)
CPU (Sub)	Arm Cortex-A78 and Cortex-A55	GPU	Arm Mali-G78
Connectivity	5G (sub-6GHz/mmWave), 4G LTE (1024 QAM), 3G WCDMA, 2G GSM/CDMA	Memory	LPDDR5 (51.2GB/s)
Storage	UFS 3.1, UFS 2.1	Camera (Rear)	200MP
Video (Encoding)	4K UHD 120fps	Video (Decoding)	8K 60fps

Ecynos 2100 specifications

iPhone 13

A15 Bionic chip 6-core CPU 5-core GPU 16-core Neural Engine

How to program multicore processors?

- Will compilers do the job?
 - Unfortunately they won't
 - Even for sequential programming we need to write code carefully if we want to get performance and scalable programs (data size and locality).
- Main challenge
 - To write scalable programs that:
 - Keep the efficiency level as Data increases
 - Keep the efficiency level as more cores are available

Parallel Computing technologies

Multicore programming:

```
OpenMP (Open Multi-Processing), OpenCL SYCL (OpenCL + C++)
```

Multi-computer programming (cluster):

MPI – message passing user interface

Multicore clusters / processors:

OpenMP + MPI

Manycore processors:

CUDA, OpenCL, OpenACC, SYCL

Main goal of Parallel Computing

- Scalable (resource-aware) computing
- Resources in computing:
 - sets of (processor + memory + interconnection)
 - understand the trend past-present-future
 - be prepared for heterogeneity: general-purpose & attached devices
- Performance evaluation
 - Performance and Efficiency measures
 - Scalability analysis

Scientific Computing

- Parallel Computing already exists before the multicore era.
- But, back then it was used in a quite specific context – Scientific Computing.
- Now, any computer programmer must be aware of it.

Scientific method: Classic approach

Modern Scientific method

Scientific Computing

Simulation: The Third Pillar of Science

Limitations:

- -To difficult—build large wind tunnels
- -To expensive—car crash tests
- -To slow—wait for climate or galactic evolution
- -To dangerous—weapons, drug design, climate experimentation

Audi A8 car-crash model contains numerous materials and structural components modeled by 290,000 finite elements (shown here as squares on a grid). The model predicts the extent of deformation in the car after a crash.

Heterogeneous Computing

- Evolution of computing systems:
 highly parallel & heterogeneous!
 - new computing units: gpGPU/MIC/...

Top500: #1,2,6,10 with Intel Xeon MIC & NVidia GPU

Tianhe-2: 3,120,000 cores 16,000 nodes

NVidia K20x: 2,880 arith cores

Top 500 . org

Tianhe-2 (MilkyWay-2): National University of Defense Technology
No.1 from Jun 2013 until Nov 2014

Titan: Oak Ridge National Laboratory **No.1** in **Nov 2012**

Sequoia: Lawrence Livermore National Laboratory
No.1 in Jun 2012

K Computer: RIKEN Advanced Institute for Computational Science No.1 from Jun 2011 until Nov 2011

Tianhe-1A: National Supercomputing Center in Tianjin

No.1 in Nov 2010

Jaguar: Oak ridge National Laboratory
No.1 from Nov 2009 until Jun 2010

11/2021

Rank	System	Cores	(TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0 3x fa	29,899 aster
2	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148,600.0	200,794.9	10,096

Fujitsu A64FX: Arm-powered Fastest Supercomputer 11/2021

Parallel Computing

- Why shall we use parallel computing?
 - Possibility of solving bigger problems and with more realistic representation (higher accuracy/detail)
 - Example: weather forecast for more days and with more accuracy
 - Higher realistic graphics
 - To reduce development costs
 - To have higher freedom to "explore" alternatives.

Performance

- Performance metrics
 - MIPS
 - million instructions per second
 - For integer operations
 - Also called "Meaningless Indicator of Performance"
 - FLOPS
 - floating-point operations per second
 - For scientific applications
- Peak performance (*Rpeak Top500*)
 - Related to the CPU speed
- Maximum performance (*Rmax Top500*)
 - Maximum performance for a given algorithm (Linpack for *Top500* list)
- *Nmax* Problem size to achieve *Rmax*

Performance

Sustained performance

- Computer performance depends on several factors: I/O speed, data access pattern, memory hierarchy.
- The relevant performance is the one that results from the real execution of an algorithm
- The sustained performance depends also on the algorithm design
 - An implementation compatible with the computer architecture can achieve the same performance (sustained) for a wider range of input data
- Example: matrix multiplication algorithm

Programming multicore processors

- Consider the following matrix multiplication algorithm
 - Even for sequential programming we need to do explicitly memory management to get performance and scalable programs (data size and data locality).

```
for (i=1; i<n; i++)
for (j=1; j<n; j++)
for (k=1; k<n; k++)
c[i,j]+= a[i,k]*b[k,j]</pre>
```

a,b,c are matrices nxn

for (i=1; i<n; i++)
 for (k=1; k<n; k++)
 for (j=1; j<n; j++)
 c[i,j]+= a[i,k]*b[k,j]</pre>

Equivalent programs in terms of results
Substantially different performance

Parallelism and Amdahl law

- In an application there is always a part that cannot be parallelized.
- Amdahl Law
 - Let s be the piece of work that is sequential (1-s) will be the piece of work that can be parallelized.
 - □ **P** number of processors
- Even if the parallel part is perfectly scalable, the performance (Speedup) is limited by the sequential part.

Amdahl Law

The gain obtained with the parallel program is defined as *Speedup*:

$$Speedup = \frac{T_1}{T_P}$$

The Amdahl Law imposes a limit for the *Speedup* that can be obtained with **P** processors.

$$T_P = \frac{(1-s)}{P} + s$$

$$Speedup = \frac{1}{\frac{1-s}{P} + s}$$

Example: if the total execution time of an algorithm is 93s and the sequential time susceptible of parallelization is 90s, then:

$$(1-s) = 90/93 = 0.968 \rightarrow 96.8\%$$
 of the code can be parallelized $s = 1-0.968 = 0.032 \rightarrow 3.2\%$ of the code is inherently sequential

Amdahl Law

Code susceptible of parallelization:

Is the part of the code that executes with Speedup=P if it runs on P processors.

Code inherently sequential:

Is the part of the code that cannot be parallelized, such as data input/output, variable initialization, etc.

If
$$P \rightarrow \infty$$
 the Speedup $\rightarrow 1/s$.

For the last example the maximum speedup will be:

Speedup_{Max} =
$$1/0.032 = 31.25$$

In conclusion: whatever the most number of processors used the processing time will not be less then 1/31.25

Example 1

• 95% of a program's execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

$$Speedup \le \frac{1}{0.05 + (1 - 0.05)/8} \cong 5.9$$

Example 2

• 20% of a program's execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

$$\lim_{p \to \infty} \frac{1}{0.2 + (1 - 0.2)/p} = \frac{1}{0.2} = 5$$

Amdahl Law

Theorectical Speedup according to Amdahl Law

Several important considerations are taken from Amdahl Law:

- 1. It allows to have a realistic expectation, for a given algorithm, about what we can obtain with the parallel approach.
- 2. It shows that to achieve higher Speedups it is necessary to reduce or eliminate the algorithm sequential blocks.
- 3. It also gives a comparison metric to measure parallelizability of several algorithm for the same problem.

Amdahl Law

Observed Speedup

In fact the observed speedup when *P* increases is exemplified in the figure. This behavior is due to the fact that the inherently sequential part *s* increases as *P* increases.

The increase of the number of processors leads to an increase of communication times, conflicts to access resources (memory, network), CPU cycles spent to support parallelism and process synchronization.

The *Speedup* function increases until a given number of processors *P*, and decreases after that. The number of processor that ensures the minimum processing time will be less then the obtained by Amdahl law.

Ways of extracting parallelism

- Functional Parallelism
- Data Parallelism
- Streaming

Functional Parallelism

 Independent tasks execute different operations on different data sets

Example:

```
1. a = 2

2. b = 3

3. m = (a + b) / 2

4. s = (a^2 + b^2) / 2

5. v = s - m^2
```

- Instruction 1 and 2 are independent
- Instructions 3 and 4 are dependent from 1 and 2 but are independent from each other.

Functional Parallelism: data dependency graph

- Direct acyclic graph
- Edges: Functional dependencies
- Vertices: tasks

Example

• Sum the elements of a vector *x*

Data Parallelism

 Independent tasks execute the same operation over different data.

Example:

For
$$(i = 0; i < 99; i++)$$

 $a[i] = b[i] + c[i]$

The vectors elements can be added in a independent way. The sum operation can be applied simultaneously over the different vector elements \boldsymbol{b} and \boldsymbol{c} .

Example

• Sum the elements of a vector *x*

Can it be implemented as data parallelism?

Streaming (1)

- To process streams of data
 - Divide the process in steps
 - The number of steps limits the Speedup.

Streaming (2)

- To process multiple streams of data
 - Examples: real time data analysis; real time decision making support.

The diagram shows the business user (top left corner), and how the user's analysis request is converted into a stream processing application, deployed into the compute environment as a distributed stream processing job. It also shows how the analysis results are returned, rendered as a dynamic mashup and presented to the business user. (Credit: IBM)

Parallel Programming models

- Shared Memory Model
- Distributed Memory Model

- Each processor (or core) executes a thread
- Threads interact by shared variables

- Fork/Join parallelism
 - Number of fork/joins influences performance

Process Global variables Thread Thread Process state Process state Program counter Program counter **Stack Pointer Stack Pointer** Local Variables Local Variables

Threads

Each thread has its own process state, but share global variables defined by the master thread

- Parallel for Loops
 - C programs often express data-parallel operations as
 for loops

```
for (i = first; i < size; i += prime)
    marked[i] = 1;</pre>
```

 A multithreaded program can split the for loop to execute concurrently

- With OpenMP
 - Format:

```
#pragma omp parallel for num_threads(k)
for (i = 0; i < N; i++)
   a[i] = b[i] + c[i];</pre>
```

- Implicitly k threads are created
 - Each thread computes N/k elements

With POSIX threads

```
int main(){
   for (i = 0; i < k; i++)
      thread create(mythread, i);
   for (i = 0; i < k; i++)
      thread join();
void mythread(int id) {
   int it_per_thread = N/k;
   int first = id * it per thread;
   for (i=start; i<start+it per thread;i++)</pre>
     a[i] = b[i] + c[i];
```

Example

• Consider the program to compute π using the rectangle rule:

```
double area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {
    x = (i+0.5)/n;
    area += 4.0/(1.0 + x*x)
}
pi = area / n;</pre>
```

```
Performance
n = 10^8
```

3.7s

serial

Example 1st solution

• If we simply parallelize the loop...

```
double area, pi, x;
int i, n;
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
   area += 4.0/(1.0 + x*x);
pi = area / n;
```

Race Condition

• ... we set up a race condition in which one process may "race ahead" of another and not see its change to shared variable **area**

area += 4.0/(1.0 + x*x)

Race Condition Time Line

• A date race occurs when two or more threads can modify the same memory location at the same time

Critical section

- Critical section: a portion of code that only a thread at a time may execute
- We denote a critical section by putting the pragma

#pragma omp critical

in front of a block of C code

Example 2nd solution

```
double area, pi, x;
int i, n;
area = 0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
#pragma omp critical
   area += 4.0/(1.0 + x*x);
                             Performance
                                          13.7s
pi = area / n;
                                    13.1s
```

3.7s

serial

Example 3rd solution

```
double area[2], pi, x;
int i, n;
for (i=0; i<2; i++) area[i]=0.0;
#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {
   x = (i+0.5)/n;
   area[omp_get thread num()]+= 4.0/(1.0 + x*x);
pi = 0;
                               Performance
for (i=0; i<2; i++)
                                            5.4s
     pi += area[i];
                                      4.1s
                                3.7s
pi /= n;
```

False sharing

- False Sharing: occurs when 2 or more threads access different data on the same cache line (read/write).
- Example: Access close positions of a global vector

The effort required to maintain consistency degrades performance

Example 4th solution

Reduction Clause

```
double area, pi, x;
int i, n;
area = 0.0;
#pragma omp parallel for \
       private(x) reduction(+:area)
for (i = 0; i < n; i++) {
   x = (i + 0.5)/n;
   area += 4.0/(1.0 + x*x) Performance
pi = area / n;
                             3.7s
                                   3.7s
```

Lab work

- Download the pi.cpp file
- Compare sequential and parallel execution
- Register the maximum precision obtained seq. and par.
- Propose and implement a solution able to improve precision.

Distributed Memory Model

Task/channel model ⇔ Developed for a Distributed Memory Computer Abstraction to develop parallel algorithms.

Distributed Memory Model

Parallel Program = a set of tasks executing concurrently.

- Task
 - Sequential Program (von Neumann model)
 - Local memory
 - A set of I/O ports
- Tasks interact by sending messages through the communication channels.

Distributed Memory Model

Methodology to develop parallel programs:

- Problem partitioning
- Communication Patterns
- Agglomeration
- Mapping

This methodology addresses first the problem characteristics, such as data dependencies, and postpones the analysis related with the parallel machine.

Parallel Programming

Classification of the operations

- Sequential operations
 - Operations that require some effort to be parallelized
- Parallel operations
 - Operations that are embarrassingly parallel

LU Decomposition – sequential operation

$$A' = A(i+1:n-1,i+1:n-1) = A(i+1:n-1,i+1:n-1)$$

$$-A(i+1:n-1,i) \times A(i,i+1:n-1)$$

Matrix multiplication – parallel operation

Parallel version: block oriented

Edge detection: convolution operator

Parallel or sequential operation?