ECE M16 Homework 1

Lawrence Liu

July 1, 2022

Problem 1

Since there are 26 letters in the English Alphabet, we would need $\lceil \log_2(26) \rceil = 5$ bits to represent this signal. Therefore we could create a way of encoding the English Alphabet as 5 bits with gray encoding. ie we would have the following table

a	00000	n	01011
b	00001	О	01001
c	00011	р	01000
d	00010	q	11000
e	00110	r	11001
f	00111	S	11011
g	00101	t	11010
h	00100	u	11110
i	01100	V	11111
j	01101	W	11101
k	01111	X	11100
l	01110	у	10100
m	01010	Z	10101

Problem 2

(a)

The equation for the circuit is

$$f(a,b,c) = ((a \vee \bar{b}) \wedge \bar{c}) \vee \overline{((c \wedge \bar{a}) \vee b)}$$

Expanding it we get

$$f(a,b,c) = ((a \land \bar{c}) \lor (\bar{b} \land \bar{c})) \lor \overline{((c \land \bar{a}) \lor b)}$$

$$= ((a \land \bar{c}) \lor (\bar{b} \land \bar{c})) \lor \overline{((c \lor b) \land (\bar{a} \lor b))}$$

$$= ((a \land \bar{c}) \lor (\bar{b} \land \bar{c})) \lor (\overline{(c \lor b)} \lor \overline{(\bar{a} \lor b)})$$

$$= (a \land \bar{c}) \lor (\bar{b} \land \bar{c}) \lor (\bar{c} \land \bar{b}) \lor (a \land \bar{b})$$

$$= \overline{(a \land \bar{c}) \lor (\bar{c} \land \bar{b}) \lor (a \land \bar{b})}$$

(b)

$$\boxed{(a \wedge \bar{c}) \vee (\bar{c} \wedge \bar{b}) \vee (a \wedge \bar{b})}$$

Problem 3

(a)

we have $a.\bar{a} = 0$, therefore we have

$$a + 0 = a$$

$$a + (a.\bar{a}) = a$$

$$(a + a).(a + \bar{a}) = a$$

$$(a + a).1 = a$$

$$a + a = a$$

Likewise we have

$$a.1 = a$$

$$a.(a + \bar{a}) = a$$

$$a.a + a.\bar{a} = a$$

$$a.a + 0 = a$$

$$a.a = a$$

(b)

From the Boolean Algebra postulates we have:

$$1.\bar{1} = 0$$

Therefore we must have that $\bar{1} = 0$

(c)

Let us consider the case where \bar{a} was not unique, ie for $a_1 \neq a_2$, we have $\bar{a_1} = \bar{a_2} = \bar{a}$. Since $\bar{a}.(a_1 + a_2) = 0$ and $\bar{a} + (a_1.a_2) = 1$, we have that

$$a_1 + (\bar{a}.(a_1 + a_2)) = a_1$$
$$(a_1 + \bar{a}).(a_1 + a_1 + a_2) = a_1$$
$$(a_1 + a_2) = a_1$$

And that

$$a_1.(\bar{a} + (a_1.a_2)) = a_1$$

 $(a_1.\bar{a}) + (a_1.a_1.a_2) = a_1$
 $(a_1.a_2) = a_1$

Therefore $a_1 = a_2$, and thus \bar{a} must be unique

Problem 4

(a)

$\mid p \mid$	q	r	f
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

(c)

Therefore the prime implicants are

 $\bar{p}.r$

q.r

p.q

(d)

The essential prime implicants are

 $\bar{p}.r$

and

p.q

Therefore the boolean expression for the function is

$$f(p,q,r) = \boxed{(\bar{p} \wedge r) \vee (p \wedge q) = (\bar{p}.r) + (p.q)}$$

Problem 5

X	у	z	$\overline{x+y+z}$	$\overline{x}.\overline{y}.\overline{z}$
1	1	1	0	0
1	1	0	0	0
1	0	1	0	0
1	0	0	0	0
0	1	1	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	1

x	у	z	$\overline{x.y.z}$	$\overline{x} + \overline{y} + \overline{z}$
1	1	1	0	0
1	1	0	1	1
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	1	1
0	0	1	1	1
0	0	0	1	1

Problem 6

$$(y.\bar{z} + \bar{x}.w).(x.\bar{y} + z.\bar{w}) = y.\bar{z}.(x.\bar{y} + z.\bar{w}) + \bar{x}.w.(x.\bar{y} + z.\bar{w})$$

$$= \bar{z}.x.y.\bar{y} + y.\bar{w}.z.\bar{z} + w.\bar{y}.\bar{x}.x + z.\bar{x}.w.\bar{w} = \boxed{0}$$
since $x.\bar{x} = y.\bar{y} = w.\bar{w} = z.\bar{z} = 0$

$$(x.y) + (x.(w.z + w.\bar{z})) = \boxed{(x.y) + (x.w)}$$