KD EDUCATION ACADEMY [9582701166] Street no. 21 A-1 block Bengali colony sant nagar burari delhi -110084

Time: 6 hour STD 9 Maths Total Marks: 310

kd sir 90+ Question ch-2 polynomial							
*	Choose the right an	swer from the given o	otions. [1 Marks Each]	[66]			
1.	The product $(a + b)(a - b)(a^2 - ab + b^2)(a^2 + ab + b^2)$ is equal to:						
	(A) $a^6 + b^6$	(B) a ⁶ - b ⁶	(C) $a^3 - b^3$	(D) $a^3 + b^3$			
2.	2. If $x + y + z = 9$ and $xy + zx = 23$, then the value of $x^3 + y^3 + z^3 - 3xyz$ is:						
	(A) 144	(B) 108	(C) 209	(D) 180			
3.	If $(m^2 - 3)x^2 + 3mx +$ value of m equals	3m + 1 = 0 has roots wh	nich are reciprocal of eac	h other, then the			
	(A) 4	(B) 1	(C) 2	(D) None of these.			
4.	The value of $\frac{0.75\times0.75}{0.75\times0.75}$	$5 \times 0.75 + 0.25 \times 0.25 \times 0.25$ $5 - 0.75 \times 0.25 + 0.25 \times 0.25$ 1S:					
	(A) -1	(B) 2	(C) 1	(D) 0			
5.	If $x + \frac{1}{x} = 3$, then x^6	$3 + \frac{1}{6} =$					
	(A) 927	(B) 414	(C) 364	(D) 322			
6.	If $(x + y)^3 - (x - y)^3 - 6y$	$y(x^2 - y^2) = ky^2$, then k =					
	(A) 1	(B) 2	(C) 4	(D) 8			
7.	If $x + 2$ and $x - 1$ are trespectively.	the factor of $x^3 + 10x^2 +$	mx + n, then the values	of m and n are			
	(A) 5 and -3	(B) 7 and -18	(C) 23 and -19	(D) 17 and -8			
8.	If $49\mathrm{a}^2-\mathrm{b}=\left(7\mathrm{a}+\right.$	$\left(\frac{1}{2}\right)\left(7a-\frac{1}{2}\right)$, then the	value of b is:				
	(A) 0	(B) $\frac{1}{4}$	(C) $\frac{1}{\sqrt{2}}$	(D) $\frac{1}{2}$			
9.	The value of $\frac{(0}{(0.87)^2-}$	$rac{(.87)^3 + (0.13)^3}{(0.87 imes 0.13) + (0.13)^2}$ is:	v -				
		(B) 0.13	(C) 0.87	(D) 1			
10.	$(a - b)^3 + (b - c)^3 + (c$	$-a)^3 =$					
	(A) $(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$	(B) (a - b)(b - c)(c - a)	(C) 3(a - b)(b - c)(c - a)	(D) None of these.			
11.	If $a + b + c = 0$, then	$\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =$					
	(A) 0	(B) 1	(C) -1	(D) 3			
12.	12. If $x + y = 8$ and $xy = 15$, than $x^2 + y^2$						
	(A) 32	(B) 1	(C) 34	(D) 36			
13.	Write the correct answ	wer in the following:					

The value of $249^2 - 248^2$ is.

	(A) 1 ²	(B) 477	(C) 487	(D) 497			
14.	4. If $p(x) = (x - 1)(x + 1)$, then the value of $p(2) + p(1) - p(0)$ is:						
	(A) 2	(B) 4	(C) 1	(D) 3			
15.	If $rac{\mathrm{a}}{\mathrm{b}}+rac{\mathrm{b}}{\mathrm{a}}=-1$ then ($(a^3 - b^3) = ?$					
	(A) -3	(B) -2	(C) -1	(D) 0			
16.	If $x + y + z = 9$ and xy	y + yz + zx = 23, the valu	e of $(x^3 + y^3 + z^3 - 3xyz)$	= ?			
	(A) 108	(B) 207	(C) 669	(D) 729			
17.	If $x + \frac{1}{x} = 3$, then $x^6 + \frac{1}{x^6} =$						
	(A) 927	(B) 322	(C) 414	(D) 364			
18.	If $(3x - 1)^7 = a_7x^7 + a$ + $a_1 + a_0 =$	$_{6}x^{6} + a_{5}x^{5} + \underline{\hspace{1cm}} + a_{1}x +$	$-a_0$, then $a_7 + a_6 + a_5 +$				
	(A) 0	(B) 128	(C) 1	(D) 64			
19.	9. If $\frac{a}{b} + \frac{b}{a} = 1$, then $a^3 + b^3 =$						
	(A) 1	(B) -1	(C) 0	(D) $\frac{1}{2}$			
20.	The value of (0.	$(0.007)^3 + (0.007)^3$		4			
	The value of $\frac{(0.013)^2-}{(0.013)^2-}$	$\overline{0.013{ imes}0.007{+}(0.007)^2}$ IS:					
	(A) 0.0091	(B) 0.006	(C) 0.00185	(D) 0.02			
21.	The product $(x^2 - 1)(x^4)$	$^4 + x^2 + 1$) is equal to:	411				
	` ,	(B) $x^8 + 1$	(C) x ⁶ - 1	(D) $x^6 + 1$			
22.	$\frac{(\mathrm{a}^2-\mathrm{b}^2)^3+(\mathrm{b}^2-\mathrm{c}^2)^3+(\mathrm{c}^2-\mathrm{a}^2)^3}{(\mathrm{a}-\mathrm{b})^3+(\mathrm{b}-\mathrm{c})^3+(\mathrm{c}-\mathrm{a})^3}=$						
			(C) (a - b)(b - c)(c - a)	(D) None of these.			
	+ a)			, ,			
23.	If $a + b + c = 0$ then	$\left(\frac{\mathrm{a}^2}{\mathrm{b}\mathrm{c}} + \frac{\mathrm{b}^2}{\mathrm{c}\mathrm{a}} + \frac{\mathrm{c}^2}{\mathrm{a}\mathrm{b}}\right) = ?$					
	(A) 1	(B) 0	(C) -1	(D) 3			
24.	If the polynomial x^3 - $6x^2$ + ax + 3 leaves a remainder 7 when divided by (x - 1), than the value of a is:						
	(A) 9	(B) 7	(C) 8	(D) 0			
25.	If $3\mathrm{x}+rac{2}{\mathrm{x}}=7,$ then ($\left(9\mathrm{x}^2-rac{4}{\mathrm{x}^2} ight)=$					
	(A) 25	(B) 35	(C) 49	(D) 30			
26.	26. The value of k for which x - 1 is a factor of $4x^3 + 3x^2 - 4x + k$, is:						
	(A) 3	(B) 1	(C) -2	(D) -3			
27.	27. If $a + b + c = 9$ and $ab + bc + ca = 23$, then $a^3 + b^3 + c^3 - 3abc =$						
	(A) 108	(B) 207	(C) 669	(D) 729			
28.	The value of $(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3$ is:						
	(A) 3(a + b) (b + c) (c + a) (a - b) (b - c) (c - a)		(C) 3(a + b) (b + c) (c + a)	(D) None of these.			

29.	29. If $x^2 + kx - 3 = (x - 3)(x + 1)$, than the value of 'k' is:							
	(A) -2	(B) 2	(C) -3	(D) 3				
30.	If $x+rac{1}{x}=4$, then x^4	$\frac{1}{x^4} + \frac{1}{x^4} =$						
	(A) 196	(B) 194	(C) 192	(D) 190				
31.	31. If $x^4 + \frac{1}{x^4} = 194$, then $x^3 + \frac{1}{x^3} =$							
	(A) 76	(B) 52	(C) 64	(D) None of these				
32.	32. If $x^2 + kx + 6 = (x + 2)(x + 3)$, for all x,then the value of k is:							
	(A) 3	(B) -1	(C) 1	(D) 5				
33.	The remainder when	x^{31} - 31 is divided by $x +$	1 is:					
	(A) -32	(B) 31	(C) 30	(D) 0				
34.	If $a^2 + b^2 + c^2 - ab - b$							
	(A) a + b + c		(C) $c + a = b$	(D) $a = b = c$				
35.	If $a^{\frac{1}{3}} + b^{\frac{1}{3}} + c^{\frac{1}{3}} = 0$), than.						
	(A) $a^3 + b^3 + c^3 = 0$	(B) a + b + c	(C) $(a + b + c)^3 = 27abc$	(D) $a + b + c = 3abc$				
36.	_		eadth of the rectangle w	hose area is				
	given by $4a^2 + 4a - 3$		(C) (22 + 1) and (22 +	(D) None of these				
	(A) (2a - 1) and (2a + 3)	(B) (2a - 1) and (2a - 3)	(C) (2a + 1) and (2a + 3)	(D) None of these.				
37.	If $a + b + c = 9$ and a	b + bc + ca = 23, than a	$^{3} + b^{3} + c^{3} - 3abc =$					
	(A) 729	(B) 207	(C) 669	(D) 108				
38.	Write the correct answ	wer in the following:						
	If $\frac{\mathrm{x}}{\mathrm{y}} + \frac{\mathrm{y}}{\mathrm{x}} = -1 \ (\mathrm{x}, \mathrm{y})$	$ eq 0),$ the value of x^3 $-$	y^3 is.					
	(A) 1	(B) -1	(C) 0	(D) $\frac{1}{2}$				
39.	If $a + b + c = 0$, then	$\left(rac{\mathrm{a}^2}{\mathrm{bc}} + rac{\mathrm{b}^2}{\mathrm{ca}} + rac{\mathrm{c}^2}{\mathrm{ab}} ight) =$		-				
	(A) 1	(B) 3	(C) 0	(D) 2				
40.	•	(B) 3 $\left(7\mathrm{x}-rac{1}{3} ight)\left(7\mathrm{x}-rac{1}{3} ight),$ than the	value of 'k' is:					
	(A) $\frac{1}{9}$	(B) $\frac{-1}{9}$	(C) $\frac{1}{3}$	(D) $\frac{-1}{3}$				
41.	If $p(x) = x^3 - x^2 + x +$	1, than the value of $\frac{\mathrm{p}(-1)}{2}$	$\frac{1}{2} + p(1)$ is:					
		(B) 1	(C) 3	(D) 0				
42.	If x + 2 is a factor of >	$x^2 + mx + 14$, then m =						
	(A) 7	(B) 2	(C) 9	(D) 14				
43.	43. If $(x^{100} + 2x^{99} + k)$ is divisible By $(x + 1)$ then the value of k is:							
	(A) -2	(B) 1	(C) 2	(D) -3				
44.	44. If $x^4 + \frac{1}{x^4} = 194$, then $x^3 + \frac{1}{x}^3 =$							
	(A) 64	(B) 52	(C) 76	(D) None of these.				
 								

45. If $\left(3x+\frac{1}{2}\right)\left(3x-\frac{1}{2}\right)=9x^2-p$ then the value of p is:

(A) 0

(C) $\frac{1}{4}$

(D) $\frac{1}{2}$

46. If $x^2 + \frac{1}{x^2} = 38$, then the value of $x - \frac{1}{x}$ is:

(A) 3

(C) 5

(D) 6

47. If $(x + y)^3 - (x - y)^3 - 6y(x^2 - y^2) = ky^2$, then $k = y^2$

(A) 1

(C) 8

(D) 4

48. If 3x = a + b + c, then the value of $(x - a)^3 + (x - b)^3 + (x - c)^3 - 3(x - a)(x - b)(x - c)$ is:

(A) a + b + c

(B) (a - b)(b - c)(c - a) (C) 0

The value of $\frac{(a^2-b^2)^3(b^2-c^2)+(c^2-a^2)^3}{(a-b)^3+(b-c)^3+(c-a)^3}$ is: 49.

(A) 3(a - b) (b - c) (c - (B) 3(a + b) (b + c) (c

(C) 3(a + b)(b + c)(c

(D) None of these.

+ a) (a - b) (b - c) (c -

50. If $x^3 - 3x^2 3x - 7 = (x + 1)(ax^2 + bx + c)$, then a + b + c = 2

(A) 4

(C) 12

(D) 3

Write the correct answer in the following: 51.

If $49x^2 - b = \left(7x + \frac{1}{2}\right)\left(7x - \frac{1}{2}\right)$, the value of b is.

Write the correct answer in the following 52.

Degree of the polynomial $4x^4 + 0x^3 + 0x^5 + 5x + 7$ is.

b.

If $x^4+rac{1}{x^4}=623,$ then x+53.

b. 25

The product $(a + b)(a - b)(a^2 - ab + b^2)(a^2 + ab + b^2)$ is equal to: 54.

a. $a^6 + b^6$

b. $a^6 - b^6$

c. $a^3 - b^3$

d. $a^3 + h^3$

If $a^{\frac{1}{3}} + b^{\frac{1}{3}} + c^{\frac{1}{3}} = 0$, then: 55.

- a. a + b + c = 0
- b. $(a + b + c)^3 = 27abc$
- c. a + b + c = 3abc
- d. $a^3 + b^3 + c^3 = 0$
- 56. If $\frac{a}{b} + \frac{b}{a} = -1$, then $a^3 b^3 =$
 - a. 1
 - b. -1
 - c. $\frac{1}{2}$
 - d. (
- 57. $\frac{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}{(a-b)^3+(b-c)^3+(c-a)^3}=$
 - a. 3(a + b)(b + c)(c + a)
 - b. 3(a b)(b c)(c a)
 - c. (a b)(b c)(c a)
 - d. None of these.
- 58. The expression $x^4 + 4$ can be factorized as:
 - a. $(x^2 + 2x + 2)(x^2 2x + 2)$
 - b. $(x^2 + 2x + 2)(x^2 + 2x 2)$
 - c. $(x^2 2x 2)(x^2 2x + 2)$
 - d. $(x^2 + 2)(x^2 2)$
- 59. The factors of $8a^3 + b^3 6ab + 1$ are:
 - a. $(2a + b 1)(4a^2 + b^2 + 1 3ab 2a)^2$
 - b. $(2a b + 1)(4a^2 + b^2 4ab + 1 2a + b)$
 - c. $(2a + b + 1)(4a^2 + b^2 + 1 2ab b 2a)$
 - d. $(2a-1+b)(4a^2+1-4a-b-2ab)$
- 60. If x a is a factor of x^3 $3x^2a + 2a^2x + b$, then the value of b is:
 - a. 0
 - b. 2
 - c. 1
 - d. 3
- 61. If x + 2 and x 1 are the factors of $x^3 + 10x^2 + mx + n$, then the values of m and n are respectively
 - a. 5 and -3
 - b. 17 and -8
 - c. 7 and -18
 - d. 23 and -19
- 62. If $(x^{100} + 2x^{99} + k)$ is divisible by (x + 1) then the value of k is:
 - a. 1
 - b. 2
 - c. -2
 - d. -3
- 63. If (x + 1) is a factor of the polynomial $(2x^2 + kx)$ then k = ?
 - a. 4
 - b. -3

- c. 2
- d. -2
- 64. If (x + 2) and (x 1) are factors of the polynomial p(x) = x3 + 10x2 + mx + n then:
 - a. m = 5, n = -3
 - b. m = 7, n = -18
 - c. m = 17, n = -8
 - d. m = 23, n = -19
- 65. For what value of k is the polynomial $p(x) = 2x^3 kx^2 + 3x + 10$ exactly divisible by (x + 2)?
 - a. $-\frac{1}{3}$
 - b. $\frac{1}{3}$
 - c. 3
 - d. -3
- 66. If (x + 5) is a factor of $= x^3 20x + 5k$ then k = ?
 - a. -5
 - b. 5
 - c. 3
 - d. -3
- * A statement of Assertion (A) is followed by a statement of Reason (R). [5] Choose the correct option.
- 67. **Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: The LCM of $(x^2 + x - 6)$ and $4(4 - x)^2$ is 4(x + 3)(x + 2)(x - 2)

Reason: $x^{100} + 2x^{99} + k$ is divisible by (x + 1) then the value of k is 2.

- a. Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
- b. Both Assertion and Reason are correct and Reason is not the correct explanation for Assertion.
- c. Assertion is true but the reason is false.
- Both assertion and reason are false.
- 68. **Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: If (x + 2) is a factor of $x^3 - 2ax^2 + 16$ the value of a is 7.

Reason: If one of the factor of $x^2 + x - 20$ is (x + 5) and other is (x + 4).

- a. Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
- b. Both Assertion and Reason are correct and Reason is not the correct explanation for Assertion.
- c. Assertion is true but the reason is false.
- d. Both assertion and reason are false.
- 69. **Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: $y^2 - 5$ is a quadratic polynomial.

Reason: Degree of polynomial 2 is called quadratic polynomial.

- a. Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
- b. Both Assertion and Reason are correct and Reason is not the correct explanation for Assertion.
- c. Assertion is true but the reason is false.
- d. Both assertion and reason are false.
- 70. **Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: If one zero of polynomial $p(x) = (k^2 + 4) x^2 + 13x + 4k$ is reciprocal of the other, then k = 2.

Reason: Lrrational zeros always occurs in pairs.

- a. Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
- b. Both Assertion and Reason are correct and Reason is not the correct explanation for Assertion.
- c. Assertion is true but the reason is false.
- d. Both assertion and reason are false.
- 71. **Directions:** In the following questions, the Assertions (A) and Reason(s) (R) have been put forward. Read both the statements carefully and choose the correct alternative from the following:

Assertion: A quadratic polynomial can have at most two zero.

Reason: $x^2 + 7x + 9$ has two zero.

- a. Both Assertion and Reason are correct and Reason is the correct explanation for Assertion.
- b. Both Assertion and Reason are correct and Reason is not the correct explanation for Assertion.
- c. Assertion is true but the reason is false.
- d. Both assertion and reason are false.

* Answer the following questions in one sentence. [1 Marks Each]

[7]

72. Factorise:
$$\frac{25}{4}x^2 - \frac{y^2}{9}$$
.

- 73. If x + y + z = 0 then show that $x^3 + y^3 + z^3 = 3xyz$.
- 74. Factorise :64m³ 343n³
- 75. Find the remainder when $x^3 + 3x^2 + 3x + 1$ is divided by x + 1
- 76. Write the coefficient of x^2 in $rac{\pi}{2}x^2+x$
- 77. Verify whether the following are True or False:

$$\frac{-4}{5}$$
 is a zero of 4 - 5y

78. Which of the following expression are polynomials?

$$\frac{1}{7}a^3 - \frac{2}{\sqrt{3}}a^2 + 4a - 7$$

* Answer the following short questions. [2 Marks Each]

[50]

- 79. Find the value of k, if x 1 is a factor of $4x^3 + 3x^2 4x + k$.
- 80. Verify: $x^3 + y^3 = (x + y)(x^2 xy + y^2)$
- 81. Verify: $x^3 y^3 = (x y)(x^2 + xy + y^2)$
- 82. Factorise : $27p^3 \frac{1}{216} \frac{9}{2}p^2 + \frac{1}{4}p$.
- 83. Verify $x=-rac{m}{l}$ are zeroes of the polynomial $p\left(x
 ight)=lx+m$
- 84. Expand the following:

$$\left(4-\frac{1}{3x}\right)^3$$

- 85. Without actually calculating the cubes, find the value of: $(0.2)^3 (0.3)^3 + (0.1)^3$
- 86. By Remainder Theorem find the remainder, when p(x) is divided by g(x), where: $p(x) = x^3 - 2x^2 - 4x - 1, q(x) = x + 1$
- 87. By Remainder Theorem find the remainder, when p(x) is divided by g(x), where: $p(x) = 4x^3 - 12x^2 + 14x - 3, q(x) = 2x - 1$
- 88. For what value of m is $x^3 2mx^2 + 16$ divisible by x + 2?
- 89. Factorise: $2\sqrt{2}a^3 + 8b^3 27c^3 + 18\sqrt{2}abc$.
- 90. If a, b, c are all non-zero and a + b + c = 0, prove that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} = 3$.
- 91. Find the following: $(x^2 1)(x^4 + x^2 + 1)$
- 92. Write the following in the expanded form:

$$\left(\frac{x}{y} + \frac{y}{z} + \frac{z}{x}\right)^2$$

93. Evaluate the following using identities:

$$\left(1.5 {
m x}^2-0.3 {
m y}^2
ight)\left(1.5 {
m x}+0.3 {
m y}^2
ight)$$

94. Simplify the following:

$$\frac{7.83{\times}7.83{-}1.17{\times}1.17}{6.66}$$

95. Write the following in the expanded form:

$$\left(\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab}\right)^2$$

96. Factorize the following expressions:

$$(2x-3y)^3 + (4z-2x)^3 + (3y-4z)^3$$

97. Factorize the following expressions:

$$2\sqrt{2}a^3 + 3\sqrt{3}b^3 + c^3 - 3\sqrt{6}abc$$

98. Factorize:

$$\frac{8}{27}x^3 + 1 + \frac{4}{3}x^2 + 2x$$

99. Multiply:

$$(x^2 + y^2 + z^2 - xy + xz + yz)$$
 by $(x + y - z)$

- 100. If $a^2 + b^2 + c^2 = 250$ and ab + bc + ca = 3, find a + b + c.
- 101. In the following, use factor theorem to find whether polynomial g(x) is a factor of polynomial f(x) or, not:

$$f(x) = 3x^4 + 17x^3 + 9x^2 - 7x - 10$$
; $g(x) = x + 5$

102. What must be subtracted from x^3 - $6x^2$ - 15x + 80 so that the result is exactly divisible by x^2 + x - 12?

[57]

103. Factorise:

$$\sqrt{2}x^2 + 3x + \sqrt{2}$$

* Answer the following questions. [3 Marks Each]

104. If a + b + c = 5 and ab + bc + ca = 10, then prove that $a^3 + b^3 + c^3 - 3abc = -25$.

- 105. If a + b + c = 9 and ab + bc + ca = 26, find $a^2 + b^2 + c^2$.
- 106. For the polynomial $\frac{x^3+2x+1}{5}-\frac{7}{2}x^2-x^6$, write.
 - i. The degree of the polynomial.
 - ii. The coefficient of x^3 .
 - iii. The coefficient of x^{6} .
 - iv. The constant term.
- 107. If x = 3 and y = -1, find the values of the following using in identity:

$$\left(\frac{x}{4} - \frac{y}{3}\right)\left(\frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\right)$$

108. Find the following products:

$$(2a - 3b - 2c)(4a^2 + 9b^2 + 4c^2 + 6ab - 6bc + 4ca)$$

- 109. If $a^2 + b^2 + c^2 = 16$ and ab + bc + ca = 10, find the value of a + b + c.
- 110. If x = 3 and y = -1, find the values of the following using in identity:

$$\left(\frac{x}{7} + \frac{y}{3}\right)\left(\frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21}\right)$$

111. If x = -2 and y = 1, by using an identity find the value of the following:

$$\left(5\mathrm{y}+rac{15}{\mathrm{y}}
ight)\!\left(25\mathrm{y}^2-75+rac{225}{\mathrm{y}^2}
ight)$$

112. Simplify:

$$\frac{173 \times 173 \times 173 + 127 \times 127 \times 127}{173 \times 173 - 173 \times 127 + 127 \times 127}$$

113. Factorize the following expressions:

$$a^3 + 3a^2b + 3ab^2 + b^3 - 8$$

114. Factorize:

$$xy^9 - yx^9$$

115. Factorize:

$$(a - b + c)^2 + (b - c + a)^2 + 2(a - b + c)(b - c + a)^2$$

116. Multiply:

$$(9x^2 + 25y^2 + 15xy + 12x - 20y + 16)$$
 by $(3x - 5y + 4)$

- 117. If x = 2 is a root of the polynomial $f(x) = 2x^2 3x + 7a$, Find the value of a.
- 118. What must be added to $3x^3 + x^2 22x + 9$ so that the result is exactly divisible by $3x^2 + 7x 6$?
- 119. Find the value k if x 3 is a factor of $k^2x^3 kx^2 + 3kx k$.
- 120. If x 2 is a factor of the following two polynomials, find the values of a in case: $x^3 - 2ax^2 + ax - 1$
- 121. Find the value of a such that (x 4) is a factors of $5x^3 7x^2 ax 28$.
- 122. Factorise: $(5a 7b)^3 + (7b 9c)^3 + (9c 5a)^3$

* Questions with calculation. [4 Marks Each]

[52]

- 123. The polynomial $p(x) = x^4 2x^3 + 3x^2 ax + 3a 7$ when divided by x + 1 leaves the remainder 19. Find the values of a. Also find the remainder when p(x) is divided by x + 2.
- 124. Prove that $(a + b + c)^3 a^3 b^3 c^3 = 3(a + b)(b + c)(c + a)$.
- 125. Find the value of $27x^3 + 8y^3$, if: 3x + 2y = 20 and $xy = \frac{14}{9}$
- 126. If $x^4+rac{1}{x^4}=194$, find $x^3+rac{1}{x^3},\;x^2+rac{1}{x^2}$ and $x+rac{1}{x}$.
- 127. Factorize the following expressions:

$$\left\lceil \frac{x}{2} + y + \frac{z}{3} \right\rceil^3 + \left\lceil \frac{x}{3} - \frac{2y}{3} + z \right\rceil^3 + \left\lceil -\frac{5x}{6} - \frac{y}{3} - \frac{4z}{3} \right\rceil^3$$

128. Factorize the following expressions:

$$(a + b)^3 - 8(a - b)^3$$

- 129. If the polynomials $ax^3 + 3x^2 13$ and $2x^3 5x + a$, when divided by (x 2) leave the same remainder, Find the value of a.
- 130. If both x + 1 and x 1 are factors of $ax^3 + x^2 2x + b$, find the values of a and b.
- 131. If the polynomial $2x^3 + ax^2 + 3x 5$ and $x^3 + x^2 4x + a$ leave the same remainder when divided by x 2, Find the value of a.
- 132. In the following, using the remainder theorem, find the remainder when f(x) is divided by g(x) and verify the by actual division:

$$f(x) = 4x^4 - 3x^3 - 2x^2 + x - 7$$
, $g(x) = x - 1$

- 133. If x = 0 and x = -1 are the roots of the polynomial $f(x) = 2x^3 3x^2 + ax + b$, Find the of a and b.
- 134. Evaluate:

$$(28)^3 + (-15)^3 + (-13)^3$$

135. Factorise:

$$a^{3}(b-c)^{3} + b^{3}(c-a)^{3} + c^{3}(a-b)^{3}$$

* Answer the following questions. [5 Marks Each]

[65]

- 136. If $x+rac{1}{x}=3$, then find the value of $x^6+rac{1}{x^6}$.
- 137. If $x+rac{1}{x}=3$, calculate $x^2+rac{1}{x^2},\ x^3+rac{1}{x^3}$ and $x^4+rac{1}{x^4}.$
- 138. If $\mathrm{x}^4+rac{1}{\mathrm{x}^4}=119,$ find the valu of $\mathrm{x}^3-rac{1}{\mathrm{x}^3}.$
- 139. Simplify the following expressions:

$$\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)^2+\left(\mathrm{x}+rac{\mathrm{y}}{2}+rac{\mathrm{z}}{3}
ight)^2-\left(rac{\mathrm{x}}{2}+rac{\mathrm{y}}{3}+rac{\mathrm{z}}{4}
ight)^2$$

140. Simplify the following:

$$\left(x+\frac{2}{x}\right)^3+\left(x-\frac{2}{x}\right)^3$$

- 141. If 3x = a + b + c, then the value of $(x a)^3 + (x b)^3 + (x c)^3 3(x a)(x b)(x c)$ is:
 - a. a + b + c
 - b. (a b)(b c)(c a)
 - c. C
 - d. None of these.
- 142. If $x^3 3x^2 + 3x 7 = (x + 1)(ax^2 + bx + c)$, then a + b + c =
 - a. 4
 - b. 12
 - c. -10
 - d. 3
- 143. If $(x + y)^3 (x y)^3 6y(x^2 y^2) = ky^2$, then k = 1
 - a. 1
 - b. 2
 - c. 4
 - d. 8
- 144. If 2 and 0 are the zeros of the polynomial $f(x) = 2x^3 5x^2 + ax + b$ then find the values of a and b.

Hint: f(x) = 0 and f(0) = 0.

- The polynomial $p(x) = x^4 2x^3 + 3x^2 ax + b$ when divided by (x 1) and (x + 1) leaves the remainders 5 and 19 respectively. Find the values of a and b. Hence, find the remainder when p(x) is divided by (x 2).
- 146. Find the values of a and b so that the polynomial $(x^4 + ax^3 7x^2 8x + b)$ is exactly divisible by (x + 2) as well as (x + 3).
- 147. If $(x^3 + ax^2 + bx + 6)$ has (x 2) as a factor and leaves a remainder 3 when divided by (x 3), find the values of a and b.
- 148. What must be subtracted from $(x^4 + 2x^3 2x^2 + 4x + 6)$ so that the result is exactly divisible by $(x^2 + 2x 3)$?

* Case study based questions.

[8]

- 149. Hard plastic square shaped sheets are available in the.
 - The side length of sheets is as per requirement.

The price of a sheet is z per square meter.

Anuj requires two sheets – a smaller sheet with side length x m and a larger sheet with

side length ym. He has two choices:

Choice 1 – buy two separate sheets of side lengths x m and y m

Choice 2 – buy a single sheet with side length (x+ y) m

- 4. What is the height of each container?
- 5. What is the difference in price between the two choices?
- 6. The area of a rectangle is $(3x^2+x-2)$ square units. Its width is (1+x) units. What is the length of the rectangle?
- 7. A polynomial is expressed as $x^3+bx^2+cx+d=0$. The same polynomial can be written in factor form as x+px+qx+r=0.

How is the constant term in the polynomial related to its factors p, q, and r?

A.
$$d = p + q + r$$

B.
$$d = (p+q) \times r$$

C.
$$d = p \times q \times r$$

D.
$$d = pq + qr + pr$$

8. A polynomial is divided by (x-1). The quotient obtained is $3x^3-x^2-x-4$, and the remainder is -5 . Which polynomial meets these conditions?

A.
$$3x^3 - x^2 - x - 9$$

B.
$$3x^3 - x^2 - x - 4$$

C.
$$3x^4 - 4x^3 - 3x + 4$$

D.
$$3x^4 - 4x^2 - 3x - 1$$

- 9. What is the common factor of x^3-x^2 and $-22x^2+142x-120?$
- A. x
- B. (x 1)
- $\mathsf{C}.\,x^2$
- D. 1
- 10. A polynomial is expressed as: $p(x) = x^3 + x^2 x 1$

At what values of x is the polynomial p(x)=0 ?

150. A shipment service provider uses three types of containers for shipping materials. The height and

width of the three containers are the same. The containers' height is 0.15 m more than their width, and the volume of the smallest container is 652 m³

Container 1

Container 2

Container 3

- 1. Write a polynomial relating Container 1's length, breadth and height with its volume.
- 2. Which of the following statements is true?
 - A. The volume of the three containers is the same.
 - B. The length of the three containers is the same.
 - C. The volume of Container 3 is 2,608 m³.

