Thiazolylpyrazolinones and their use for protecting technical materials

î y∎	•	1	· 🖢 .	_`_			Ï	·		_ =	ind	~~ ~~					41.					£_	_ :	~~~	_ 4		4:	··		L				
4	1	n	H	a 7	\cap	W		Vr:	27	AI.	In:	n n		₹.	a n		rn	٩i		IC		TN	T. I		ŊΤ		TI	nı	3	r po	CI			21
, e	•	246				y		y	44	VI	1111		16.	7 (4 11	u	611	CI.	•	uo		1	● \$ %		7	U		7	5 I & L		v			441
		33	d.,		m	g er a i		7 13 13		<u>.</u>	13000	Sec.	100	12/1	10 y			3.5	477	1180	2 N	8. 4		2.0	. New year				26		3,000		1.	Sec. 20
(A.A.)		V 1	- 14		86 9 1	~1	<u>.</u> 9	2	. .	7.529	. 4	* *	*	`			. Sec. 1		1.83	-:38,7	7.4	1	~	33. Y	1	2000	***	*	1	** <u>.</u>			100	
		12	31		ris	als	200	. 1999. C.	\$0Z	3 3°		San San	*	100	344		, sie		\$00.	62%		4	150		2.2			and the same				377		XX 97
2		-	4			454	F CASSA		Maria San	o. 863a				100		S. L. L.	***	\$ 3X V	ر مدادر هو. در الاستفارا						## # # # # # # # # # # # # # # # # # #	e e e		· .	all 8	192.18	~		224	

Patent Number:

US5703103

Publication date:

1997-12-30

Inventor(s):

KUGLER MARTIN (DE); SASSE KLAUS (DE); HEUER LUTZ (DE);

WACHTLER PETER (DE); SCHRAGE HEINRICH (DE)

Applicant(s)::

BAYER AG (DE)

Requested

Patent:

DE4411235

Application

Number:

US19960716239 19960924

Priority

Number(s):

DE19944411235 19940331; WO1995EP01032 19950320

IPC

Classification:

A01N43/78; C07D417/04

EC

Classification:

C09D5/14, D06M16/00

EC

Classification:

C09D5/14; D06M16/00

Equivalents:

AU2110195, I

EP0752989 (WO9526962), B1, ES2149372T,

JP9510982T, '

WO9526962

Abstract

PCT No. PCT/EP95/01032 Sec. 371 Date Sep. 24, 1996 Sec. 102(e) Date Sep. 24, 1996 PCT Filed Mar. 20, 1995 PCT Pub. No. WO95/26962 PCT Pub. Date Oct. 12, 1995The present invention relates to novel thiazolylpyrazolinones, a process for their preparation and their use for the protection of technical materials.

Ш

(5) Int. Cl.⁶:

BUNDESREPUBLIK DEUTSCHLAND

[®] Offenl gungsschrift ® DE 44 11 235 A 1

DEUTSCHES PATENTAMT

P 44 11 235.1 (21) Aktenzeich n: 31. 3.94 Anmeldetag: 5. 10. 95 Offenlegungstag:

// (C07D 417/12,277:54,231:16) (C07D 417/14,231:16,277:54,307:14,333:12)C07D 231/14,C07C 47/14,D06M 13/352, C09K 5/00, C10M 135/36,C09J 11/06 (C08K 5/47,5:3445) C14C 9/00,B27K 3/34,D21H 21/36

(7) Anmelder:

Bayer AG, 51373 Leverkusen, DE

② Erfinder:

Heuer, Lutz, Dipl.-Chem. Dr., 47800 Krefeld, DE; Wachtler, Peter, Dipl.-Chem. Dr., 51061 Köln, DE; Kugler, Martin, Dipl.-Biol. Dr., 42799 Leichlingen, DE; Schrage, Heinrich, Dipl.-Chem. Dr., 47800 Krefeld, DE; Sasse, Klaus, Dipl.-Chem. Dr., 51467 Bergisch Gladbach, DE

(54) Thiazolylpyrazolinone

Die vorliegende Erfindung betrifft neue Thiazolylpyrazolinone, ein Verfahren zu ihrer Herstellung und ihre Verwendung zum Schutz von technischen Materialien.

Beschreibung

Die vorliegende Erfindung betrifft neue Thiazolylpyrazolinone, ein Verfahren zur ihrer Herstellung und ihre Verwendung zum Schutz von technischen Materialien.

Thiazolylpyrazolinone sind bekannt und werden z. B. in JP-2 149 617, Indian. J. Chem. 21 B, 869 (1982), Synth. Com 23, 1855 (1993), J. Heterocyclic Chem. 27, 865 (1990) und DD-1 50 203 beschrieben. Deren Verwendung zum Schutz von technischen Materialien ist jedoch noch nicht bekannt.

Gegenstand der Anmeldung sind neue-Thiazolylpyrazolinonderivate der Formel

OH
$$R^1$$

$$R^4$$

$$N$$

$$N$$

$$R^2$$

$$R^3$$

$$N$$

$$N$$

$$R^2$$

$$R^3$$

in der

R¹, R², R³ unabhängig voneinander jeweils für Wasserstoff, Alkyl oder Halogen stehen und

R⁴ für Wasserstoff oder gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkyl (Cycloalkyl), Alkenyl (Cycloalkenyl), Alkoxy, Alkylthio, Aralkoxy, Aralkylthio, Aralkyl, Aryl, Hetaryl, Aryloxy, Hetaryloxy, Arylthio, Hetarylthio, Alkoxycarbonyl, Alkoxycarbonalalkyl, Cyanoalkyl steht, sowie deren Säure-additionsprodukte und Metallsalzkomplexe.

In der vorliegenden Anmeldung bedeutet:

Alkyl vorzugsweise geradkettiges oder verzweigtes, gegebenenfalls substituiertes Alkyl mit 1 bis 18 C-Atomen, wie Me, Et, n-, i-Propyl, n-, i-, s- und tert.-Butyl, n-, i und tert.-Pentyl, n-Hexyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptodecyl oder n-Octadecyl oder ihre verzweigten Strukturisomeren.

Als Substituenten kommen vorzugsweise Halogen, wie Chlor und/oder Fluor in Frage.

Auch kann ein Alkylrest durch 1 bis 2 Heteroatomen wie Sauerstoff oder Schwefel, oder Atomgruppen wie N-Me, N-Et, -S(O), $-SO_2$ unterbrochen sein, ohne daß sich seine Gesamtanzahl an Atomen ändert.

Alkenyl (+ Alkinyl) ist vorzugsweise wie Alkyl definiert, nur insofern geändert, daß mindestens eine und maximal drei C-C-Einfachbindung durch eine C-C-Doppel(Dreifach)bindung ersetzt wurde. Die Anzahl an C-Atomen beträgt mindestens drei und wird mit jeder weiteren Doppelbindung (Dreifachbindung), die hinzu kommt um mindestens zwei C-Atome verlängert.

Cycloalkyl- und Cycloalkenylgruppen umfassen Cycloalkyl mit vorzugsweise 3 (5) bis 7 C-Atomen, wie beispielsweise Cyclopropyl, Cyclobutyl, Cycloheptyl, Cyclopentyl, Cyclopentenyl, Cyclohexenyl, Cyclohexyl; bevorzugte substituierte Cycloalkylgruppen umfassen durch 1 bis 3 C₁—C₄-Alkylgruppen oder 1 bis 3 Halogenatomen, wie Chlor und/oder Fluor, substituiertes Cycloalkyl, wie beispielsweise Methylcyclohexyl, Dimethylcyclohexyl, 1,3,3-Trimethylcyclohexyl, 3-Chlorcyclohexyl. Alkyl(cycloalkyl)- (und Alkyl(cycloalkenyl)-Gruppen) enthalten vorzugsweise 1 bis 6 C-Atome im geradkettigen oder verzweigten Alkylteil und 3 (5) bis 7-Atome im Cycloalkyl/alkenyl-Teil; besonders (1-Cyclopentyl)methyl, (1-Cyclopentenyl)methyl, (1-Cyclohexenyl)methyl, (1-Cyclopentyl)methyl, (1-Cyclopentyl)methyl, (1-Cyclopentyl)methyl,

Alkoxycarbonyl steht für geradkettiges oder verzweigtes Alkoxycarbonyl mit vorzugsweise 1 bis 6 C-Atomen im Alkoxyrest, wie beispielsweise Methoxycarbonyl, Ethoxycarbonyl, n- und i-Propoxycarbonyl, n-, i-, sek.- und tert.-Butoxycarbonyl, Hexoxycarbonyl. Analoges gilt für die Alkoxycarbonylalkylgruppen.

Aralkyl enthält vorzugsweise 1 bis 6, insbesondere 1 bis 4 C-Atome im geradkettigen oder verzweigten Alkylteil und vorzugsweise Phenyl oder Naphthyl als Arylteil. Beispiele für solche Aralkylgruppen umfassen Benzyl, α -Methylbenzyl, α , α -Dimethylbenzyl, 2-Phenethyl, α - und β -Naphthylmethyl. Diese Aralkylreste können 1 bis 3 Substituenten aus der Reihe Halogen (insbesondere Chlor und/oder Fluor), Nitro, Cyano, gegebenenfalls halogeniertes $C_1 - C_4$ -Alkyl oder -Alkoxy, wie beispielsweise Methyl, Ethyl, Trifluormethyl, Difluorchlormethyl, Difluormethyl, Methoxy, Ethoxy, Trifluormethoxy, Difluorchlormethoxy und Difluormethoxy, gegebenenfalls halogeniertes $C_1 - C_4$ -Alkylmercapto, wie beispielsweise Methylmercapto, Trifluormethylmercapto, Difluorchlormethylmercapto tragen.

Unter dem Begriff Aryl ist unsubstituiertes oder substituiertes Aryl mit vorzugsweise 6 bis 12 C-Atomen im Arylteil zu verstehen. Bevorzugte Beispiele umfassen Phenyl, Biphenyl und Naphthyl. Die Arylgruppen können 1 bis 3 Substituenten aus der Reihe Halogen (insbesondere Chlor und/oder Fluor), $C_1 - C_6$ -Alkyl, -Alkoxy oder Thioalkoxy, Halogen- $C_1 - C_2$ -alkyl (wie Trifluormethyl, Difluormethyl), Cyano, Nitro, $C_1 - C_6$ -Alkoxycarbonyl oder Amino tragen.

Unter dem Begriff Alkoxy ist geradkettiges und verzweigtes Alkoxy mit vorzugsweise 1 bis 12, insbesondere 1 bis 4 C-Atomen zu verstehen. Bevorzugte Beispiele umfassen Methoxy, Ethoxy, n- und i-Propoxy, n-, i-, sek.- und tert.-Butoxy, Pentoxy, Hexoxy, Heptoxy, Octoxy, Nonoxy und Decoxy. Die Alkoxygruppen können durch 1 bis 3 Halogenatome (Cl, F) substituiert sein, bevorzugt: O-CF₃, O-CHF₂, O-CF₂-O, O-CF₂-CF₂-O.

Alkylthio steht für geradkettiges oder verzweigtes Alkylthio mit vorzugsweise 1 bis 12 C-Atomen. Bevorzugte Beispiele umfassen Methylthio, Ethylthio, n- und i-Propylthio, n-, i-, sek- und tert.-Butylthio, n-Pentylthio und seine Isomeren wie 1-, 2- und 3-Methyl-butylthi . Die Alkylthiogruppen können durch 1 bis 3 Halogenatome (vorzugsweise Chlor und/oder Fluor) substituiert sein; bevorzugte Beispiele hierfür sind Di- und Trifluormethylthio sowie Difluorchlormethylthio.

Aralkoxy enthält vorzugsweise 1 bis 6 C-Atome im geradkettigen oder verzweigten Alkylteil und vorzugsweise Phenyl als Arylteil. Bevorzugte Beispiele sind Benzyloxy und Phenethyloxy. Die Aralkoxygruppen können durch 1 bis 3 Halogenatome (vorzugsweise Chlor und/oder Fluor) oder durch eine C₁—C₄-Alkylgruppe substituiert sein.

Cyanoalkyl wie Alkyl (1 bis 6) nur mit Cyano-substituiert, bevorzugt endständig.

Hetaryl: Furanyl, Thienyl, Thiazolyl, Pyrazolyl, Pyrrolyl, Imidazyl, Triazolyl, gegebenenfalls mit 1 bis 2 Halogen oder Alkyl, Alkoxy oder Thioalkoxy-Substituenten.

5

15

20

30

35

Halogen: F, Cl, Br, I.

Aralkylthio enthält vorzugsweise 1 bis 6 C-Atome im geradkettigen oder verzweigten Alkylteil und vorzugsweise Phenyl als Arylteil. Bevorzugtes Beispiel ist Benzylthio. Die Aralkylthiogruppen können durch 1 bis 3 Halogenatome (vorzugsweise Chlor und/oder Fluor) oder durch eine C₁—C₄-Alkylgruppe substituiert sein.

Aryloxy enthält vorzugsweise 1 bis 10 C-Atome im Arylteil. Bevorzugte Beispiele sind Phenoxy und Naphthoxy. Die Aryloxygruppen können durch 1 bis 3 Substituenten aus der Reihe Halogen (vorzugsweise Chlor und/oder Fluor), C₁-C₄-Alkyl, Halogen-C₁-C₂-alkyl (wie Di- und Trifluormethyl), Cyano, Nitro oder Amino tragen.

Arylthio enthält vorzugsweise 6 bis 10 C Atome im Arylteil. Bevorzugte Beispiele sind Phenylthio und Naphthylthio. Die Arylthiogruppen können die unter "Aryloxy" aufgezählten Substituenten tragen.

Bevorzugte Verbindungen für 1,ω-C₃—C₆-Alk(en)ylenreste umfassen 1,3-Propylen, 1,4-Butylen und 1,4-Butadien(1,3)ylen.

Verbindungen der Formel (I), worin

$$\begin{array}{c|c}
R^4 & OH & S \\
\hline
 & N & R^2 \\
\hline
 & N & R^2
\end{array}$$
(I)

R¹, R², R³ Wasserstoff oder Methyl, R⁴ gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aralkyl oder Aryl bedeuten, sind bevorzugt.

Verbindungen der Formel (I), worin

R1 Wasserstoff,

R², R³ Wasserstoff oder Methyl,

R⁴ gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl oder Aryl bedeuten, sind besonders bevorzugt.

Verbindungen der Formel (I), worin

R¹, R² und R³ Wasserstoff,

R4 gegebenenfalls substituiertes Alkyl oder Cycloalkyl

bedeuten, sind ganz besonders bevorzugt.

Die erfindungsgemäßen Verbindungen der Formel (I) können als verschiedene (s. u.) Tautomere vorliegen, 40 u. a. auch in ihrer tautomeren Pyrazol-5-on-Form.

Die neuen Thiazolylpyrazolinon-Derivate der Formel (I) werden erhalten, indem man Thiocarbamoylverbindungen der Formel (II)

$$\begin{array}{c}
 & \text{OH} \\
 & \text{N} \\
 & \text{N} \\
 & \text{N}
\end{array}$$
(II)

in denen R3 und R4 die oben angegebenen Bedeutungen haben, mit Verbindungen der Formel (III)

in denen R¹ und R² die oben angegebenen Bedeutungen haben und X für eine Abgangsgruppe steht, gegebenenfalls in Gegenwart eines Lösungs- bzw. Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt.

Die Thiocarbamoylpyrazolone der Formel (II) und das Verfahren zu ihrer Herstellung sind bekannt und werden z. B. in der JP-79/1 15 374, JP-79/1 19 031, J. Pesticide, Sci. 11 205—212 (1986), Arch. Pharm. 316 (1983) 2—6, Sci. Pharm. 51 (2) (1982) 167—172 und der EP-1 515 934 beschrieben.

Die Verbindungen der F rmel (II) werden üblicherweise erhalten, indem man entsprechende α -F rmylessigsäureester oder α -Formylessigsäureamid oder β -Ketoessigsäureester oder ein β -Ketoessigsäureamid mit gegebe-

nenfalls substituiertem Thiosemicarbazid umsetzt. Die zu verwendenden Formylsäureester werden nach verschiedenen, in der Literatur bekannten Wegen erhalten, so z. B. analog der in EP 417 597 oder DE 26 43 205 beschriebenen Methode der Hydroformylierung von α,β-ungesättigten Estern.

Die Verbindungen der Formel (III) sind ebenfalls bekannt oder nach allgemein bekannten Verfahren erhält-

lich.

Zur Erleichterung der Ringschlußreaktionen setzt man vorteilhafterweise Basen wie Natriumhydroxid, Kaliumhydroxid oder Kalium-tert.-butylat zu. Vorzugsweise setzt man die Base in etwa äquivalenten Menge zu.

Die Verfahren werden gegebenenfalls in Gegenwart eines Lösungsmittels durchgeführt werden; als Lösungsmittel haben sich vor allem Alkohole wie Ethanol oder aromatische Kohlenwasserstoffe wie Toluol bewährt.

Die Verfahren sind innerhalb eines größeren Temperaturbereichs durchführbar. Für die zuerst ablaufende Thiosemicarbazonbildung wird bei Temperaturen von 20 bis 110°C, vorzugsweise zwischen 60 und 90°C gearbeitet. Die nach der Basenzugabe ablaufende Cyclokondensationsreaktion wird bei Temperaturen von 20 bis 100°C, vorzugsweise 20 bis 40°C, vorgenommen. Die Umsetzung der so erhaltenen Verbindungen der Formel (II) mit den Verbindungen der Formel (III) erfolgt dann bei Temperaturen von – 20 bis 50°C, vorzugsweise 0 bis 30°C.

Die Verbindungen der Formel (I) und (II) können nach bekannten Methoden aus den Reaktionsgemischen isoliert werden. Man geht im allgemeinen so vor, daß man die Reaktionsgemische vom Lösungsmittel befreit und den Rückstand mit wäßriger Salzsäure behandelt. Die dabei ausfallenden Verbindungen werden durch Absaugen abgetrennt. Es ist jedoch auch möglich, das Reaktionsgemisch unmittelbar in einen großen Überschuß verdünnter Salzsäure einzugießen und die als Niederschlag sich abscheidenden Verbindungen abzufiltrieren.

Die Herstellung der erfindungsgemäßen Verbindungen (I) ist auch in einem Eintopfverfahren ohne Isolierung

der Vorstufe der Formel (II) möglich.

Die Wirkstoffe der Formel (I) und die erfindungsgemäßen Mittel weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen praktisch eingesetzt werden. Die Wirkstoffe der Formel (I) und die erfindungsgemäßen Mittel sind zum Schutz von technischen Materialien gegen Befall und

Zerstörung durch unerwünschte Mikroorganismen geeignet.

Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Anstrichmittel.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe bzw. Mittel gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

Alternaria, wie Alternaria tenuis,
Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum,

Polyporus, wie Polyporus versicolor, Aureobasidium, wie Aureobasidium pullulans,

Sclerophoma, wie Sclerophoma pityophila, Trichoderma, wie Trichoderma viride,

Escherichia, wie Escherichia coli,

Pseudomonas, wie Pseudomonas aeruginosa,

Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe der Formel (I) können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in übliche Formulierungen übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole und Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z. B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene, oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z. B. Erdölfraktionen, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid oder Dimethylsulfoxid, sowie Wasser; mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler

Temperatur und unter Normaldruck gasförmig sind, z. B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid; als feste Trägerstoffe kommen in Frage: z. B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen in Frage: z. B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z. B. nicht ionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkohol-Ether, z. B. Alkylarylpolyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen in Frage: z. B. Ligninsulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische, pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z. B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Bevorzugt werden die erfindungsgemäßen Wirkstoffe der Formel (I) zum Schutz von Anstrichen gegen Befall und Zerstörung durch unerwünschte Mikroorganismen eingesetzt.

20

30

40

50

55

60

Unter Anstrich ist im vorliegenden Zusammenhang eine aus Anstrichstoffen hergestellte Beschichtung auf einem Untergrund zu verstehen. Der Anstrich kann mehr oder weniger in den Untergrund eingedrungen sein. Er kann aus einer oder mehreren Schichten bestehen und durch Verfahren wie Streichen, Spritzen, Tauchen, Fluten oder ähnliche Verfahren hergestellt werden.

Die Verbindungen der Formel (I) werden in die Anstrichmittel oder in Vorprodukte zur Herstellung der Anstrichmittel nach üblichen Methoden, z. B. durch Vermischen der Wirkstoffe mit den anderen Komponenten, eingearbeitet.

Erfindungsgemäße Anstrichmittel enthalten daher neben mindestens einem fungiziden Wirkstoff der Formel (I) allgemein übliche Anstrichkomponenten in z. B. flüssiger, pastöser oder pulverförmiger Form wie z. B.

- Farbmittel, wie Pigmente oder Farbstoffe, bevorzugt Pigmente. Beispielsweise genannt sei Titandioxid, Zinkoxid und Eisenoxid.
- Bindemittel, wie beispielsweise oxidativ trocknende Alkydharze, Vinylpolymerisate und Vinylcopolymerisate, Acrylpolymerisate und Acrylcopolymerisate, Kunststoffpulver, Novolacke, Aminoharze, Polyesterharze, Epoxidharze, Silikonharze, Isocyanatharze bevorzugt sind Vinylpolymerisate und Vinylcopolymerisate, Acrylpolymerisate und Acrylcopolymerisate und andere in Wasser verdünnbaren Anstrichstoffen verwendbare Bindemittel.

Daneben enthalten die Anstriche gegebenenfalls folgende Zusatzstoffe

- Füllstoffe, wie beispielsweise Schwerspat, Calcit, Dolomit und Talk,
- Lösemittel, wie beispielsweise Alkohole, Ketone, Ester, Glykolether und aliphatische sowie aromatische Kohlenwasserstoffe.
- sowie Verdickungs- und Thixotropiermittel, Dispergier- und Netzmittel, Trockenstoffe, Hautverhütungsmittel, Verlaufmittel, Antischaummittel, Korrosionsinhibitoren, UV-Absorber, Duftstoffe, Antistatika, Frostschutzmittel.

Als Anstrichmittel bzw. Vorprodukte zur Herstellung von Anstrichmitteln seien vorzugsweise folgende genannt:

- Leime und Klebstoffe auf Basis der bekannten tierischen, pflanzlichen oder synthetischen Rohstoffe.
- Kunststoffdispersionen wie Latexdispersionen oder Dispersionen auf Basis anderer Polymere.
- Stärkelösungen, -dispersionen oder -siurries oder andere auf Basis von Stärke hergestellte Produkte wie z. B. Druckverdicker.
- Slurries anderer Rohstoffe wie Farbpigmente (z. B. Eisenoxidpigmente, Rußpigmente, Titandioxidpigmente) oder Slurries von Füllstoffen wie Kaolin oder Calciumcarbonat.
- Betonadditive beispielsweise auf Basis von Melasse oder Ligninsulfonaten.
- Bitumenemulsionen.
- Vor- und Zwischenprodukte der chemischen Industrie, z. B. bei der Farbstoffproduktion und -lagerung.
- Tinten oder Tuschen.
- Dispersionsfarben für die Anstrichindustrie.
- Schichten und Appreturen.

Die Wirksamkeit und das Wirkungsspektrum der Wirkstoffe der Formel (I) bzw. die daraus herstellbaren Mittel, Vorprodukte oder ganz allgemein Formulierungen kann erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide, Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte wie z. B. des zusätzlichen Schutzes vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres Wirkungsspektrum besitzen als die

erfindungsgemäßen Verbindungen.

In vielen Fällen erhält man dabei synergistische Effekte, d. h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten. Besonders günstige Mischungspartner sind z. B. die folgenden Verbindungen:

Triazole wie:

5

15

Amitrole, Azocyclotin, BAS 480F, Bitertanol, Difenoconazole, Fenbuconazole, Fenchlorazole, Fenethanil, Fluquinconazole, Flusilazole, Flutriafol, Imibenconazole, Isozofos, Myclobutanil, Metconazole, Epoxyconazole, Paclobutrazol, Penconazole, Propioconazole, (±)-cis-1-(4-chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol, Tetraconazole, Triadimefon, Triadimenol, Triapenthenol, Triflumizole, Triticonazole, Uniconazole sowie deren Metallsalze und Säureaddukte.

Imidazole wie:

Imazalil, Pefurazoate, Prochloraz, Triflumizole, 2-(1-tert-Butyl)-1-(2-chlorphenyl)-3-(1,2,4-triazol-1-yl)-propan-2-ol, Thiazolcarboxanilide wie 2',6'-Dibromo-2-methyl-4-trifluoromethoxy-4'-trifluoromethyl-1,3-thiazole-5-carboxanilide, 1-Imidazolyl-1-(4'-clorophenoxy)-3,3-dimethylbutan-2-on sowie deren Metallsalze und Säureadduk-

Methyl(E)-2-[2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl]3-methoxyacrylate, methyl(E)-2-[2-t6-(2-thioamidophenoxy)pyrimidin-4-yloxy]phenyl]-3-methoxyacrylate, methyl(E)-2-[2-[6-(2-fluorophenoxy)pyrimidinmethyl(E)-2-[2-[6-(2,6-difluorophenoxy)pyrimidin-4-yloxy)phenyl]-3-me-4-yloxy]phenyl]-3-methoxyacrylate, methyl(E)-2-[2-[3-(pyrimidin-2-yloxy)phenoxy]phenyl]-3-methoxyacrylate, thoxyacrylate. thyl(E)-2-[2-[3-(5-methylpyrimidin-2-yloxy)-phenoxy]phenyl]-3-methoxyacrylate, methyl(E)-2-[2-[3-(phenyl-sulfonyloxy)phenoxy]phenyl]-3-methoxyacrylate, methyl(E)-2-[2-[3-(4-nitrophenoxy)phenoxy]phenyl]-3-methoxymethyl(E)-2-[2-phenoxyphenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3,5-dimethylbenzoyl)pyrrol-1-yl]-3-methoxyacrylate, methyl(E)-2-[2-(3-methoxyphenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(2-phenylethen-1-yl)-phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3,5-dichlorophenoxy)pyridin-3-yl]-3-methoxyacrylate, methyl(E)-2-(2-(3-(1,1,2,2-tetrafluoroethoxy)phenoxy)phenyl)-3-methoxyacrylate, methyl(E)-2-(2-[3-(alphahydroxybenzyl)phenoxy]phenyl)-3-methoxyacrylate, methyl(E)-2-(2-(4-phenoxypyridin-2-yloxy)phenyl)-3-methoxyacrylate, methyl(E)-2-[2-(3-n-propyloxyphenoxy)phenyl]3-methoxyacrylate, methyl(E)-2-[2-(3-isopropyloxyphenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-[3-(2-fluorophenoxy)phenoxy]phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-ethoxyphenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(4-tert.-butylpyridin-2-yloxy)phemethyl(E)-2-[2-[3-(3-cyanophenoxy)phenoxy]phenyl]-3-methoxyacrylate, nyll-3-methoxyacrylate, thyl(E)-2-[2-(3-methylpyridin-2-yloxymethyl)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-[6-(2-methylphemethyl(E)-2-[2-(5-bromopyridin-2-yloxymethyl)phenoxy)pyrimidin-4-yloxy]phenyl]-3-methoxyacrylate, nyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl]-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenoxy]phenoxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-methoxyacrylate, methyl(E)-2-[2-(3-iodopyridin-2-yloxy)phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]phenyl[-3-iodopyridin-2-yloxy]ph thyl(E)-2-[2-[6-(2-chloropyridin-3-yloxy)pyrimidin-4-yloxy]phenyl]-3-methoxyacrylate, (E),(E)methyl-2-[2-(5,6-dimethylpyrazin-2-ylmethyloximinomethyl)phenyl]-3-methoxyacrylate, (E)-methyl-2-{2-{6-(6-methylpyridin-2-yloxy)pyrimidin-4-yloxy]phenyl{-3-methoxyacrylate, (E),(E)methyl-2-{2-(3-methoxyphenyl)methyloximinomethyl]phenyl}-3-methoxyacrylate, (E)methyl-2-{2-(6-(2-azidophenoxy)-pyrimidin-4-yloxy]phenyl}3-methoxyacrylate, (E),(E)methyl-2-{2-[6-phenylpyrimidin-4-yl)-methyloximinomethyl]phenyl}-3-methoxyacrylate, (E),(E)methyl-2-{2-[(4-chlorophenyl)-methyloximinomethyl]phenyl}-3-methoxyacrylate, (E)methyl- $2-\{2-\{6-(2-n-propylphe-$ (E)(E)methyl-2-{2-[(3-nitrophenyl)methyloximinomenoxy)-1,3,5-triazin-4-yloxy]phenyl}-3-methoxyacrylate, thyl]phenyl}-3-methoxyacrylate;

Succinat-Dehydrogenase Inhibitoren wie:

Fenfuram, Furcarbanil, Cyclafluramid, Furmecyclox, Seedvax, Metsulfovax, Pyrocarbolid, Oxycarboxin, Shirlan Mebenil (Mepronil), Benodanil, Flutolanil (Moncut);

Naphthalin-Derivate wie Terbinafine, Naftifine, Butenafine, 3-Chloro-7-(2-aza-2,7,7-trimethyl-oct-3-en-5-in);
Sulfenamide wie Dichlofluanid, Tolylfluanid, Folpet, Fluorfolpet; Captan, Captofol;
Benzimidazole wie Carbendazim, Benomyl, Furathiocarb, Fuberidazole, Thiophonatmethyl, Thiabendazole oder deren Salze:

Morpholinderivate wie Tridemorph, Fenpropimorph, Falimorph, Dimethomorph, Dodemorph, Aldimorph, Fenpropidin und ihre arylsulfonsauren Salze, wie z. B. p-Toluolsulfonsäure und p-Dodecylphenyl-sulfonsäure; Dithiocarbamate, Cufraneb, Ferbam, Mancopper, Mancozeb, Maneb, Metam, Metiram, Thiram Zeneb, Ziram; Benzthiazole wie 2-Mercaptobenzothiazol:

Benzamide wie 2,6-Dichloro-N-(4-trifluoromethylbenzyl)-benzamide;

Borverbindungen wie Borsäure, Borsäureester, Borax;

Formaldehyd und Formaldehydabspaltende Verbindungen wie Benzylalkoholmono-(poly)-hemiformal, Oxazolidine, Hexa-hydro-S-triazine, N-Methylolchloracetamid, Paraformadehyd, Nitropyrin, Oxolinsäure, Tecloftalam; Tris-N-(cyclohexyldiazeniumdioxy)-aluminium, N-(Cyclo-hexyldiazeniumdioxy)tributylzinn bzw. K-Salze, Bis-N-(cyclohexyldiazemumdioxy)-kupfer;

N-Methylisothiazolin-3-on, 5-Chlor-N-methylisothiazolin-3-on, 4,5-Dichloro-N-octylisothiazolin-3-on, N-Octylisothiazolin-3-on, 4,5-Trimethylen-isothiazolinone, 4,5-Benzisothiazolinone, N-Methylolchloracetamid;

Aldehyde wie Zimtaldehyd, Formaldehyd, Glutardialdehyd, β-Bromzimtaldehyd;

Thiocyanate wie Thiocyanatomethylthiobenzothiazol, Methylenbisthiocyanat, usw. quartäre Ammoniumverbindungen wie Benzyldimethyltetradecylammoniumchlorid, Benzyldimethyldodecylam-

moniumchlorid, Didecyldimethaylammoniumchlorid;

Iodderivate wie Diiodmethyl-p-tolylsulfon, 3-Iod-2-propinyl-alkohol, 4-Chlorphenyl-3-iodpropargylformal, 3-Brom-2,3-diiod-2-propenylethylcarbamat, 2,3,3-Triiodallylalkohol, 3-Brom-2,3 diiod-2-propenylalkohol, 3-Iod-2-propinyl-n-butylcarbamat, 3-Iod-2-propinyl-n-hexylcarbamat, 3-Iod-2-propinyl-cyclohexylcarbamat, 3-Iod-2-propinyl-phenylcarbamat;

Phenolderivate wie Tribromphenol, Tetrachlorphenol, 3-Methyl-4-chlorphenol, 3,5-Dimethy-4-chlorphenol, Phenoxyethanol, Dichlorphen, o-Phenyilphenol, m-Phenylphenol, p-Phenylphenol, 2-Benzyl-4-chlorphenol und deren Alkali- und Erdalkalimetallsalze;

Mikrobizide mit aktivierter Halogengruppe wie Chloracetamid, Bronopol, Bronidox, Tectamer wie 2-Brom-2-ni-tro-1,3-propandiol, 2-Brom-4'-hydroxy-acetophenon, 2,2-Dibrom-3-nitril-propionamid, 1,2-Dibrom-2,4-dicyano-butan, β-Brom-β-nitrostyrol;

5

15

20

25

50

55

Pyridine wie 1-Hydroxy-2-pyridinthion (und ihre Na-, Fe-, Mn-, Zn-Salze), Tetrachlor-4-methylsulfonylpyridin, Pyrimethanol, Mepanipyrim, Dipyrithion, 1-Hydroxy-4-methyl-6-(2,4,4-trimethylpentyl)-2(1H)-pyridin;

Metallseifen wie Zinn-, Kupfer-, Zinknaphtenat, -octoat, 2-ethylhexanoat, -oleat, -phosphat, -benzoat;

Metallsalze wie Kupferhydroxycarbonat, Natriumdichromat, Kaliumdichromat, Kaliumchromat, Kupfersulfat, Kupferchlorid, Kupferborat, Zinkfluorosilikat, Kupferfluorosilikat;

Oxide wie Tributylzinnoxid, Cu₂O, CuO, ZnO;

Dialkyldithiocarbamate wie Na- und Zn-Salze von Dialkyldithiocarbamaten, Tetramethylthiuramdisulfid, Kalium-N-methyl-dithiocarbamat;

Nitrile wie 2,4,5,6-Tetrachlorisophthalodinitril, Dinatrium-cyano-dithioimidocarbamat;

Chinoline wie 8-Hydroxychinolin und deren Cu-Salze;

Mucochlorsäure, 5-Hydroxy-2(5H)-furanon;

4,5-Dichlorodithiazolinon, 4,5-Benzdithiazolinon, 4,5-Trimethylendithiazolinon, 4,5-Dichlor-(3H)-1,2-dithiol-3-on, 3,5-Dimethyl-tetrahydro-1,3,5-thiadiazin-2-thion, N-(2-p-Chlorbenzoylethyl)-hexaminiumchlorid, Kalium-N-hydroxymethyl-N'-methyl-dithiocarbamat,

2-Oxo-2-(4-hydroxy-phenyl)acethydroximsäure-chlorid,

Phenyl-(2-chlor-cyan-vinyl)sulfon;

Phenyl-(1,2-dichlor-2-cyan-vinyl)sulfon;

Ag, Zn oder Cu-haltige Zeolithe allein oder eingeschlossen in polymere Wirkstoffe.

Ganz besonders bevorzugt sind Mischungen mit

Azaconazole, Bromuconazole, Cyproconazole, Dichlobutrazol, Diniconazole, Hexaconazole, Metconazole, Penconazole, Propiconazole, Tebuconazole, Methyl-(E)-methoximino[α-(o-tolyloxy)-o-tolyl)]acetate, Methyl-(E)-2-{2-[6-(2-cyanphenoxy)-pyrimidin-4-yl-oxy]phenyl}-3-methoxyacrylat, Methfuroxam, Carboxin, Fenpiclonil, 4-(2,2-Difluoro-1,3-benzodioxol-4-yl)-1H-pyrrol-3-carbonitril, Butenafine, Imazalil, N-Methyl-isothiazolin-3-on, 5-Chlor-N-methylisothiazolin-3-on, N-Octylisothiazolin-3-on, Benzisothiazolinone, N-(2-Hydroxypropyl)-amino-methanol, Benzylalkohol-(hemi)-formal, Glutaraldehyd, Omadine, Dimethyldicarbonat, und/oder 3-Iodo-2-propinyl-n-butylcarbamate.

Des weiteren werden auch gut wirksame Mischungen mit den folgenden Wirkstoffen hergestellt:

Fungizide:

Acypetacs, 2-Aminobutane, Ampropylfos, Anilazine, Benalaxyl, Bupirimate, Chinomethionat, Chloroneb, Chlozolinate, Cymoxanil, Dazomet, Diclomezine, Dichloram, Diethofencarb, Dimethirimol, Diocab, Dithianon, Dodine, Drazoxolon, Edifenphos, Ethirimol, Etridiazole, Fenarimol, Fenitropan, Fentin acetate, Fentin Hydroxide, Ferimzone, Fluazinam, Fluromide, Flusulfamide, Flutriafol, Fosetyl, Fthalide, Furalaxyl, Guazatine, Hymexazol, Iprobenfos, Iprodione, Isoprothiolane, Metalaxyl, Methasulfocarb, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadiyl, Perflurazoate, Pencycuron, Phosdiphen, Pimaricin, Piperalin, Procymidone, Propamocarb, Propineb, Pyrazophos, Pyrifenox, Pyroquilon, Quintozene, Tar Oils, Tecnazene, Thicyofen, Thiophanate-methyl, Tolclofosmethyl, Triazoxide, Trichlamide, Tricyclazole, Triforine, Vinclozolin.

Insektizide:

Phosphorsäureester wie Azinphos-ethyl, Azinphos-methyl, α-1(4-Chlorphenyl)-4-(O-ethyl, S-propyl)phosphoryloxy-pyrazol, Chlorpyrifos, Coumaphos, Demeton, Demeton-S-methyl, Diazinon, Dichlorvos, Dimethoate, Ethoate, Ethoprophos, Etrimfos, Fenitrothion, Fenthion, Heptenophas, Parathion, Parathion-methyl, Phosalone, Phoxim, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Prothiofos, Sulfprofos, Triazophos und Trichlorphon; Carbamate wie Aldicarb, Bendiocarb, α-2-(1-Methylpropyl)-phenylmethylcarbamat, Butocarboxim, Butoxycarboxim, Carbosulfan, Carbosulfan, Cloethocarb, Isoprocarb, Methomyl, Oxamyl, Pirimicarb, Promecarb, Propoxur und Thiodicarb;

Organosiliciumverbindungen, vorzugsweise Dimethyl(phenyl)silyl-methyl-3-phenoxybenzylether wie Dimethyl-(4-ethoxyphenyl)-silylmethyl-3-phenoxybenzylether oder

(Dimethylphenyl)-silyl-methyl-2-phenoxy-6-pyridylmethylether wie z. B. Dimethyl-(9-ethoxy-phenyl)-silylmethyl-2-phenoxy-6-pyridylmethylether oder -(Phenyl)-3-(3-phenoxyphenyl)-propyl](dimethyl)-silane wie z. B. (4-Ethoxyphenyl)-[3-(4-fluoro-3-phenoxyphenyl-propyl]dimethyl-silan, Silafluofen;

Pyrethroide wie Allethrin, Alphamethrin, Bioresmethrin, Byfenthrin, Cycloprothrin, Cyfluthrin, Decamethrin, Cyhalothrin, Cypermethrin, Deltamethrin, Alpha-cyano-3-phenyl-2-methylbenzyl-2,2-dimethyl-3-(2-chlor-2-tri-fluor-methylvinyl)cyclopropancarboxylat, Fenpropathrin, Fenfluthrin, Fenvalerate, Flucythrinate, Flumethrin, Fluvalinate, Permethrin, Resmethrin und Tralomethrin;

Nitroimine und Nitromethylene wie 1-[(6-Chlor-3-pyridinyl)-methyl]-4,5-dihydro-N-nitro-1H-imidazol-2-amin (Imidacloprid), N-[(6-Chlor-3-pyridyl)methyl-]N²-cyano-N¹-methylacetamide (NI-25);

Abamectin, AC 303, 630, Acephate, Acrinathrin, Alanycarb, Aldoxycarb, Aldrin, Amitraz, Azamethiphos, Bacillus thuringiensis, Phosmet, Phosphamidon, Phosphine, Prallethrin, Propaphos, Propetamphos, Prothoate, Pyraclofos, Pyrethrins, Pyridaben, Pyridafenthion, Pyriproxyfen, Quinalphos, RH-7988, Rotenone, Sodium fluoride, Sodium hexafluorosilicate, Sulfotep, Sulfuryl fluoride, Tar Oils, Teflubenzuron, Tefluthrin, Temephos, Terbufos, Tetrachlorvinphos, Tetramethrin, O-2-tert.-Butyl-pyrimidin-5-yl-o-isopropyl-phosphorothiate, Thi cyclam, Thiofanox, Thiometon, Tralomethrin, Triflumuron, Trimethacarb, Vamidothion, Verticillium Lacanii, XMC, Xylylcarb, Benfuracarb, Bensultap, Bifenthrin, Bioallethrin, MERbioallethrin (S)-cyclopentenyl isomer, Bromophos,

Bromophos-ethyl, Buprofezin, Cadusafos, Calcium Polysulfide, Carbophenothion, Cartap, Chinomethionat, Chlordane, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chloropicrin, Chlorpyrifos, Cyanophos, Beta-Cyfluthrin, Alpha-cypermethrin, Cyophenothrin, Cyroazine, Dazomet, DDT, Demeton-S-methylsulphon, Diafenthiuron, Dialifos, Dicrotophos, Diflubenzuron, Dinoseb, Deoxabenzofos, Diaxacarb, Disulfoton, DNOC, Empenthrin, Endosulfan, EPN, Esfenvalerate, Ethiofencarb, Ethion, Etofenprox, Fenobucarb, Fenoxycarb, Fensulfothion, Fipronil, Flucycloxuron, Flufenprox, Flufenoxuron, Fonofos, Formetanate, Formothion, Fosmethilan, Furathiocarb, Heptachlor, Hexaflumuron, Hydramethylnon, Hydrogen Cyanide, Hydroprene, IPSP, Isazofos, Isofenphos, Isoprothiolane, Isoxathion, Iodfenphos, Kadethrin, Lindane, Malathion, Mecarbam, Mephosfolan, Mercurous, chloride, Metam, Metarthizium, anisopiiae, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methoprene, Methoxychlor, Methyl isotiocyanate, Metholcarb, Mevinphos, Monocrotophos, Naled, Neodiprion sertifer NPV, Nicotine, Omethoate, Oxydemeton-methyl, Pentachlorophenol, Petroleum oils, Phenothrin, Phenthoate, Phorate;

Molluscicide:

Fentinacetate, Metaldehyde, Methiocarb. Niclosamide, Thiodicarb, Trimethacarb.

Algicide:

Coppersulfate, Dichlororphen, Endothal, Fentinacetate, Quinoclamine. Herbicide:

acetochlor, acifluorfen, aclonifen, acrolein, alachlor, alloxydim, ametryn, amidosulfuron, amitrole, ammonium sulfamate, anilofos, asulam atrazine, aziptrotryne, benazolin, benfluralin, benfuresate, bensulfuron, bensulfide, bentazone, benzofencap, benzthiazuron, bifenox, bilanafos, borax, dichlorprop, dichlorprop-P, diclofop, diethatyl, difenoxuron, difenzoquat, diflufenican, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethipin, dimethyl arsinic acid, dinitramine, dinoseb, dinoseb, dinoseb acetate, dinoseb, bromacil, bromobutide, bromofenoxim, bromoxynil, butachlor, butamifos, fuenachlor, butralin, butylate, carbetamide, CGA 184927, chlormethoxyfen, chloramben, chlorbromuron, chlorbutam, chlorfurenol, chloridazon, chlorimuron, chlornitrofen, chloroacetic acid, achloropicrin, chlorotoluron, chloroxuron, chlorprepham, chlorsulfuron, chlorthal, chlorthiamid, cinmethylin, cinofulsuron, clethodim, clomazone, clomeprop, clopyralid, cyanamide, cyanazine, dinoseb acetate, dinoterb, diphenamid, dipropetryn, diquat, dithiopyr, diduron, DNOC, PPX-A 788, DPX-E96361, DSMA, eglinazine, endothal, EPTC, esprocarb, ethalfluralin, ethidimuron, ethofumesate, fenoxaprop, fenoxaprop-P, fenuron, flamprop, flamprop-M, flazasulfuron, fluazifop, fluazifop-P, fluchloralin, flumeturon, fluorocgycofen, fluoronitrofen, flupropanate, flurenol, fluridone, flurochloridone, fluoroxypyr, cycloate, cycloxydim, 2,4-D, daimuron, dalapon, dazomet, 2,4-DB, desmedipham, desmetryn, dicamba, dichlorbenil, isoproturon, isouron, isoxaben, isoxapyrifop, lactofen, lenacil, linuron, LS830556, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop P, mefenacet, mefluidide, metam, metamitron, metazachlor, methabenzthiazuron, methazole, methoproptryne, methylddymron, methylisothiocyanate, metobromuron, fomosafen, fosamine, furyloxyfen, glufosinate, glyphosate, haloxyfop, hexazinone, imazamethabenz, imazapyr, imazaquin, imazethapyr, ioxynil, isopropalin, propyzamide, prosulfocab, pyrazolynate, pyrazol sulfuron, pyrazoxyfen, pyributicarb, pyridate, quinclorac, quinmerac, quinocloamine, quizalofop, quzizalofop-P, S-23 121, sethoxydim, sifuron, simazine, simetryn, SMY 1500, sodium chlorate, sulfometuron, tar oils, TCA, metolachlor, metoxuron, metribzin, metsulfuron, molinate, monalide, monolinuron, MSMA, naproanilide, napropamide, naptalam, neburon, nicosulfuron, nipyraclofen, norflurazon, orbencarb, oaryzalin, oxadiazon, oxyfluorfen, paraquat, pebulate, pendimethalin, pentachlorophenol, pentaochlor, petroleum oils, phenmedipham, picloram, piperophos, pretilachlor, primisulfuron, prodiamine, proglinazine, propmeton, prometryn, propachlor, tebutam, tebuthiuron, terbacil, terbumeton, terbuthylazine, terbutryn, thiazafluoron, thifensulfuron, thiobencarb, thiocarbazil, tioclorim, tralkoxydim, tri-allate, triasulfuron, tribenzuron, triclopyr, tridiphane, trietazine, trifluralin, IBI-C48 74 vernolate, propanil, propaquizafop, propazine, propham.

Die Gewichtsverhältnisse der Wirkstoffe in diesen Wirkstoffkombinationen können in relativ großen Bereichen variiert werden.

Vorzugsweise erhalten die Wirkstoffkombinationen den Wirkstoff zu 0,1 bis 99,9%, insbesondere zu 1 bis 75%, besonders bevorzugt 5 bis 50%, wobei der Rest zu 100% durch einen oder mehrere der obengenannten Mischungspartner ausgefüllt wird.

Die zum Schutz der technischen Materialien verwendeten mikrobiziden Mittel oder Konzentrate enthalten den Wirkstoff bzw. die Wirkstoffkombination in einer Konzentration von 0,01 und 95 Gew.-%, insbesondere 0,1 bis 60 Gew.-%.

Die Anwendungskonzentrationen der zu verwendenden Wirkstoffe bzw. der Wirkstoffkombinationen richtet sich nach der Art und dem Vorkommen der zu bekämpfenden Mikroorganismen sowie nach der Zusammensetzung des zu schützenden Materials. Die optimale Einsatzmenge kann durch Testreihen ermittelt werden. Im allgemeinen liegen die Anwendungskonzentrationen im Bereich von 0,001 bis 5 Gew.-%, vorzugsweise von 0,05 bis 1,0 Gew.-%, bezogen auf das zu schützende Material.

Die erfindungsgemäßen Wirkstoffe bzw. Mittel ermöglichen in vorteilhafter Weise, die bisher verfügbaren mikrobiziden Mittel durch effektivere zu ersetzen. Sie zeigen eine gute Stabilität und haben in vorteilhafter Weise ein breites Wirkungsspektrum.

Die nachfolgenden Beispiele dienen zur Verdeutlichung der Erfindung. Die Erfindung ist nicht auf die Beispiele beschränkt.

Herstellungsbeispiele

65

45

Beispiel 1 (Vorstufe der Formel (II))

10,3 g (0,06 Mol) α-Formyl-hexansäureethylester und 5,5 g (0,06 Mol) Thiosemicarbazid werden in 200 ml

Ethanol vorgelegt und 3 Stunden bei 80°C gerührt.

Dann wird auf Raumtemperatur gebracht und unter Rühren 6,9 g Kalium-tert.-butylat zugegeben, um danach 4 Stunden bei Raumtemperatur weiterzurühren. Anschließend wird der Kolbeninhalt in ein Gemisch aus 800 ml Wasser und 50 ml conc. Salzsäure eingerührt und der erhaltene Niederschlag abgesaugt. Nach gründlichem Waschen mit Wasser wird das Produkt im Trockenschrank bis zur Gewichtskonstanz belassen. Durch Umkristallisieren aus Ethanol kann die Verbindung gereinigt werden.

Ausbeute: 9,4 g (80,3% d. Th.)

Fp.: 139-141°C

(Endstufe der Formel (I))

10 226 --- 1) Valium tart

47,1 g (0,236 mol) der Vorstuse in 450 ml Tetrahydrosuran werden bei 25°C mit 26,48 g (0,236 mol) Kalium-tertbutylat versetzt. Nach Kühlen auf 0°C werden 30 ml 50% Chloracetaldehyd zugetropst und 16 Stunden bei 25°C gerührt. Nach Eingießen in 750 ml 10% HCl wird mit Methylenchlorid extrahiert, getrocknet, das Lösungsmittel verdampst und der Rückstand mit Diisopropylether verrührt.

Man erhält 26,1 g der Zielverbindung 1/007 vom Schmelzpunkt 89 bis 91°C. Rekristallisation erhält den

Schmelzpunkt auf 91°C.

Analog Beispiel 1 und gemäß den allgemeinen Beschreibungen werden die folgenden Verbindungen der Formel (I) erhalten, dabei ist es auch möglich, die Aufarbeitung der Vorstufe direkt und unter Einsparung der Base die Endstufe herzustellen:

25

20

15

30

35

40

45

50

55

60

Tabelle 1

 $R^1=R^2=R^3=H$

BspNr.	R ⁴	Fp.
1	H-	
2	Ме-	
3	Et-	
4	n-Pr-	
5	i-Pr-	
6	c-Pr-	
7	n-Bu-	
8	i-Bu	
9	s-Bu-	
10	t-Bu-	
11	n-C ₅ H ₄	
12	Me CH ₂ -	
13	Me Me CH ₂ -	
15	Me Me CH ₂ -	
16	Me Me Me CH ₂ -	
17	Me Me	
18	Me Me Me	

10

65

55

DE 44 11 235 A1

R ⁴	Fp.	
Me CH ₂ -	•	5
Me		_
Me CH ₂ -	-	10
Me CH ₂ -		
Me CH ₂ -		15
CH ₂ -		20
Me CH ₂ -		25
Me CH ₂ -		30
Me CH ₂ -		35
Me CH ₂ -		3.3
Me		40
Me Me		45
CH ₂ -	·	50
CH ₂ -		
	Me Me Me CH ₂ - Me CH ₂ - Me Me CH ₂ - Me Me CH ₂ - Me CH ₂ - Me Me CH ₂ - Me Me Me Me Me Me Me	Me Me Me Me CH2- Me CH2- Me Me CH2- Me Me CH2- Me CH2- Me CH2- Me CH2- Me Me CH2- Me Me CH2- Me Me Me Me Me Me Me Me Me M

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	32	⊳ F	
5		CH₂-	
	33	CI	
		CH ₂ -	
10	34	CN	
		CH₂-	
	35	NC-CH ₂ -CH ₂ -	
15	36	CF ₃ -	
	37	CF ₃ -CF ₂ -	
	38	CF ₃ -CF ₂ -CF ₂ -	
	39	CF ₂ -CF ₂ -CH ₂ - CF ₃ -CF ₂ -CF ₂ -CH ₂ -	
20	40	CF ₃ -CF ₂ -CF ₂ -CH ₂ -	
	41	CH ₂ -CH ₂ -	134-135°C
	42	Me	
25		Me CH ₂ -	
	43	Me Me	
30		CH ₂ -	
	44	140	
35		Me Me	
		Me CH ₂ -	
	45	CH ₂ Me	
40		CH	·
	46	tyle	
		Me	
45		X X	
	47	Me Me	
50		_	

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
48	Me Me		5
49	Me CH ₂ -	•	10
50	Me CH ₂ -		
51	Me CH ₂ -		15
52	Me CH ₂ -		20
53	Me CH ₂ -		25
54	Me CH ₂ -		30
55	Me CH ₂ -		35
56	Me CH ₂ -		33
57	Me CH ₂ -		40
58	Me Me		45
59	Me Me		50

55

65

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	60	Me	
5		CH ₂	
		CÍ	
	61	ÇI	
10		CI	
		CH ₂	
	62	CI CI	
15			
		CI CH ₂	
20	63	Me	
20		Me	
		CH ₂	
25	64	Cl Me	
	64	CI Me	
		Me	
30	65	cí	
	65	Ci Ci	
		Me	
35	66	cí	
		CI	
40		CI	
	67	CI CH2	
45	68	CI	
		CI CH2	
	69		
50		Me CI CH ₂ -	
55		Me	
55			

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
70	CI Me CH		
	Me CH ₂ -		5
	CI		
71	CI CH ₂ -		10
	Me Cl		
72	CI CH ₂ -		15
	Ci		
73	CH ₂ -		
	CI		20
74	ÇI		•
	Me CH ₂ -		25
75	CH ₂ -		
	Me C1		
76	Ме		30
	Me CI		
77	Me ÇI		35
	Me CH ₂		
78	n-C ₇ H ₁₅		Ì
79	n-C ₈ H ₁₇ n-C ₉ H ₁₉ n-C ₁₀ -H ₂₁ n-C ₁₁ H ₂₃ n-C ₁₂ H ₂₅ n-C ₁₃ H ₂₇		40
80	n-C ₉ H ₁₉		
81	n-C ₁₀ -H ₂₁		1
82	n-C ₁₁ H ₂₃		45
83	n-C ₁₂ H ₂₅		1
84	n-C ₁₃ H ₂₇		1
85			50
86			1

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
5	87		
	88	CH ₂ -	·
10	89	CH ₂ -	
15	90 ·	CH ₂ -	
20	91		
25	92		
30	93	CH ₂ -	
35	94	CH ₂ -	
40	95	CO ₂ Et	
45	96		
50	97	CI	
55	98	CI	
60			

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
99	CI—		5
100	CI—CI	•	10
101	CI CI		15
102	CI		20
103	CI 		25
	cí		30
104	CI		35
105	F		40
106	Br———		45
107	F———		50
108	1—		55

		R ⁴	Fp.
	109	CF ₃	
5			
10	110	OMe	
15	111	MeO	
20	112	MeO—	
25	113	MeO———	
30	114	MeO MeO	
35	115	MeO Me—	
40	116	OMe Me	
45	117		
50	118		
55			

DE 44 11 235 A1

BspNr.	R ⁴ Fp.		
119		•	5
120			10
121	Me		15
122	Me		20
123	Me-		25
124	Me Me		30 ,
12.5	Me — Me		35
126	Me Me		45
127	Me		50
	Me		55

BspNr.	R ⁴	Fp.
128	Me	
	Me-	
129	Me	
100	Me	
130		
	CH ₂ -	
131	F	
	CH ₂ -	
132	CI	
	CH ₂ -	
133	ÇI	
	CH ₂ -	
134	CI	
	CH ₂ -	
135	CI	
	CH ₂ -	
136	ÇI	
	CI	
	CH ₂ -	

0

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
137	CI CH ₂ -		.
138	CI CH ₂ -		10
139	CI CH ₂ -		20
140	CI CH ₂ -		25
141	Me_CH ₂ -		30
142	Me CH ₂ -		35
143	CH ₂ -		40
144	OMe CH ₂ -		45
145	OMe CH ₂ -		50

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
5	146	MeO CH ₂ -	· _
15	147	Bu CH ₂ -	
20	148	CH ₂ -	
25		М́е	
30	149	CH ₂ -	
35	150	Me	
40		CH ₂ -	
45			

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
151	CH ₂ -		5
152			10
153	CI—S-		15
154	<u> </u>		
155	c		20
			25
156	CH ₂ -s-		30
157	CH ₂ -0-		35
158	CI—CH ₂ —S-		
159	MeO		40
160	EtO		45
161	n-PrO		50
162	n-BuO		55
163	Me-O-		
164	Et-O-		60
165	n-Pr-O-		-
166	n-Bu-O-		

	BspNr.	R ⁴	Fp.
	167	Me-S-CH ₂ -	
5	168	Et-S-CH ₂ -	
	169	n-Pr-S-CH ₂ -	
	170	n-Bu-S-CH ₂ -	
10	171	i-Pr-S-CH ₂ -	
	172	n-C ₅ H ₄ -S-CH ₂ -	
	173	Me-S-(CH ₂) ₂ -	
15	174	Et-S-(CH ₂) ₂ -	
	175	n-Pr-S-(CH ₂) ₂ -	
20	176	n-Bu-S-(CH ₂) ₂ -	
20	177	Me-O-CH ₂ -	
	178	Et-O-CH ₂ -	
25	179	n-Pr-O-CH ₂ -	
	180	n-Bu-O-CH ₂ -	
	181	n-Pr-O-CH ₂ -	
30	182	n-C ₅ H ₄ -O-CH ₂ -	
	183	Me-O-(CH ₂) ₂ -	
	184	Et-O-(CH ₂) ₂ -	
35	185	n-Pr-O-(CH ₂) ₂ -	
	186	n-Bu-O-(CH ₂) ₂ -	
	187	Ph-S-CH ₂ -	
40	188	Ph-O-CH ₂ -	
	189	Ph-CH ₂ -S-CH ₂ -	
	190	PH-CH ₂ -O-CH ₂ -	
45	191	MeO CH ₂ -	
50	192		
55	174	EtO CH ₂ -	

BspNr.	R ⁴	Fp.	
193	F		5
194			10
195	(s)		15
196			20
197	s s		25
198	Me O		30
199	Me s		
200	CI N N-	200°C Zers.	35
201	Br-CH ₂		40
202	Br		45
203	F—(50
			55
BspNr.	R ⁴	Fp.	33
204			60

Tabelle II $R^{1} = R^{3} = H, R^{2} = Me$

5	BspNr.	R ⁴	Fp.	
	206	H-		
	207	Ме-		
10	208	Et-		
	209	n-Pr-		
	210	i-Pr-		
	211	c-Pr-		
15	212	n-Bu-		
	213	i-Bu		
	214	s-Bu-		
	215	t-Bu-		
20	216	n-C ₅ H ₄		
	217	Mę		
) Y		
25		Me CH ₂ -		
	218	Me.		
		Me IMe		
30		CH ₂ -		
	219	ме Ме		
		CH ₂ -		
35		_ IVIE		
	220	Me Me		
			ļ	
		Me CH ₂ -		
40	221			
	~~`	Me Me		
		\ \ \		
	222			
45	LLL	Me Me		
		Me		
	223	Me		
50		Me		
	I	Ma	1	

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
224	Me CH ₂ -		5
225	Me Me CH ₂ -		
226	Me CH ₂ -		10
227	Me CH ₂ -		15
228	Me Me CH ₂ -		20
229	Me CH ₂ -		25
230	Me CH ₂ -		30
231	Me CH ₂ -		
232	Me CH ₂ -		
233	Me		40
234	Me Me		45
235	СН		50
236	CH ₂ -		

	BspNr.	R ⁴	Fp.
	237	V F	
5		CH ₂ -	
	238	CH ₂ -	•
10	239	CH ₂ -	
	240	NC-CH ₂ -CH ₂ -	
15	241	CF ₃ -	
	242	CF ₃ -CF ₂ -	
	243	CF ₃ -CF ₂ -CF ₂ -	
	244	CF ₂ -CF ₂ -CH ₂ -	
20	245	CF ₃ -CF ₂ -CF ₂ -CH ₂ -	
	246	CH ₂ -CH ₂ -	
25	247	Me CH ₂ -	
30	248	Me Me CH ₂ -	
35	249	Me Me CH ₂ -	
40	250	CH ₂ Me CH ₂ -	-
45	251	Me	
•	252	Me Me	
50	L		

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
253	Me		5
254	Me CH ₂ -		10
255	Me Me CH ₂ -		
256	Me CH ₂ -		15
257	Me CH ₂ -		20
258	Me CH ₂ -		25
259	Me CH ₂ -		30
260	Me CH ₂ -		35
261	Me CH ₂ -		33
262	Me CH ₂ -		40
263	Me Me		45
264	Me Me		50

[BspNr.	R ⁴	Fp.
	265	Me	
5		CI CH ₂	
10	266	CI CH ₂	•
15	267	CI CH ₂	
20	268	Me CH ₂ CH ₂	
25	269	Me Cl Me	
30	270	CI CI Me	
35	271	CI Me	
40	272	CI CH ₂ —	
45	273	CI CH ₂	
50	274	Me CH ₂ -	

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
275	Me CH ₂ -		5
	CI		
276	Me CI CH ₂ -		10
277	CI CH ₂ -		15
278	CI CH2-		20
279	CI CH ₂ -		
280	Me CI		25
281	Me CI		30
282	Me CI Me CH ₂		35
283	n-C ₇ H ₁₅		
284	n-C ₈ H ₁₇		40
285	n-C ₉ H ₁₉ n-C ₁₀ -H ₂₁		
286	n-C ₁₀ -H ₂₁		
287	n-C ₁₁ H ₂₃		45
288	n-C ₁₂ H ₂₅		1
289	n-C ₁₃ H ₂₇		
290			50
291			į

•	BspNr.	R ⁴	Fp.
5	292		
	293	CH ₂ -	•
10	294	CH ₂ -	
15	295	CH ₂ -	
20	296		
25	297		
30	298	CH ₂ -	
35	299	CH ₂ -	
40	300	CO ₂ Et	
45	301		
50	302	Ca	
55	303	CI	

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
304	CI-	· -	5
305	CI—CI		10
306	CI CI		15
307	CI		20
308	CI		25
309	CI		35
310	F		40
311	Br—		45
312	F———		50
313	1—{		55

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	314	CF ₃	
5	•		
	315	OMe	
10			
15	316	MeO	
20	317	MeO—	
25	318	MeO———	,
30	319	MeO———	
35	320	MeO Me—	·
40	321	Me—	
45	322		
50 ·	323		
55			

DE 44 11 235 A1

BspNr.	R ⁴ Fp.		
324		•	5
325			10
326	Me		15
327	Me		20
328	Me-		25
329	Me Me		30
330	Me — Me		35
331	Me Me		40 45
332	Me ————————————————————————————————————		50

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	333	Me	
5		Me-	· -
10	334	Me	·
		<u></u>	
15	335	Me	
		CH ₂ -	
20	336	F	
25	337	CH ₂ -	
20		CH ₂ -	
30	338	CI	
35		CH ₂ -	
40	339	CI	
40	340	CH ₂ -	
45	340	CH ₂ -	
	341	ÇI	
50		CH ₂ -	

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
342	. Cl		5
	CH ₂ -	·	
343	CI		10
344	CI CH ₂ -		15 20
345	CH ₂ -		25
346	Me CH ₂ -		30
347	Me CH ₂ -		35
348	Me CH ₂ -		40
349	OMe CH ₂ -		45
350	OMe		50
	CH ₂ -		55

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
5	351	MeO CH ₂ -	•
10	352	BuCH ₂ -	
20	353	CH ₂ -	
25			
30	354	CH ₂ -	
35		Me	
40	355	CH ₂ -	
45			

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
356	CH ₂ -		5
357		•	10
358	cı—s-		15
359	o-		
360	CIO-		20 25
361	CH ₂ —s-		30
362	CH2-0-		35
363	CI————————————————————————————————————		
364	MeO		40
365	EtO		45
366	n-PrO		50
367	n-BuO		55
368	Me-O-		4
369	Et-O-		60
370	n-Pr-O-		-{
371	n-Bu-O-	1	ل.

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	372	Me-S-CH ₂ -	
5	373	Et-S-CH ₂ -	
	374	n-Pr-S-CH ₂ -	
	375	n-Bu-S-CH ₂ -	
10	376	i-Pr-S-CH ₂ -	
	377	n-C ₅ H ₄ -S-CH ₂ -	
	378	Me-S-(CH ₂) ₂ -	
15	379	Et-S-(CH ₂) ₂ -	
	380	n-Pr-S-(CH ₂) ₂ -	
	381	n-Bu-S-(CH ₂) ₂ -	
20	382	Me-O-CH ₂ -	
	383	Et-O-CH ₂ -	
25	384	n-Pr-O-CH ₂ -	
25	385	n-Bu-O-CH ₂ -	
	386	n-Pr-O-CH ₂ -	
30	387	n-C ₅ H ₄ -O-CH ₂ -	
	388	Me-O-(CH ₂) ₂ -	
	389	Et-O-(CH ₂) ₂ -	
35	390	n-Pr-O-(CH ₂) ₂ -	
	391	n-Bu-O-(CH ₂) ₂ -	
	392	Ph-S-CH ₂ -	
40	393	Ph-O-CH ₂ -	
	394	Ph-CH ₂ -S-CH ₂ -	
	395	PH-CH ₂ -O-CH ₂ -	
45	396	MeO CH ₂ -	
50			
55	397	EtO CH ₂ -	

BspNr.	R ⁴	Fp.	
398	F		5
399		•	10
400	s		15
401			20
402	√ _s √		25
403	Me O		30
404	Me s		35
405	CI N N-	200°C Zers.	
406	Br—CH ₂		40
407	Br		45
408	F—()		50
Pan Ne	D4	Fn	

BspNr.	R ⁴	Fp.	
409			
410	n-C ₁₇ -H ₃₉		

DE 44 11 235 A1

Tabelle III

 $R^1 = R^2 = Me, R^3 = H$

5		
10		
15		
20		
25		
30		
35		
40		

BspNr.	R ⁴	Fp.
411	H-	•
412	Ме-	
413	Et-	
414	n-Pr-	
415	i-Pr-	
416	c-Pr-	
417	n-Bu-	
418	i-Bu	
419	s-Bu-	
420	t-Bu-	
421	n-C ₅ H ₄	
422	Me CH ₂ -	
423	Me Me CH ₂ -	
424	Me Me CH ₂ -	
426	Me Me Me CH ₂ -	
426	Me Me	
427	Me Me	
428	Me Me	,

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
429	Me CH ₂ -		5
430	Me Me Me	·	
431	Mo CH ₂ -		10
	Me		
432	Me CH ₂ -		15
433	Me CH ₂ -		20
434	Me CH ₂ -		25
435	Me CH ₂ -		30
436	Me CH ₂ -		35
437	Me CH ₂ -		20
438	Me Me		40
439	Me Me		45
440	CH ₂ -		50
441	CH ₂ -		
<u> </u>			55

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	442	 ✓ F	
5		CH ₂ -	
	443	CI CH ₂ -	·
10	444	CN CH ₂ -	
	445	NC-CH ₂ -CH ₂ -	
15	446	CF ₃ -	
	447	CF ₃ -CF ₂ -	
	448	CF ₃ -CF ₂ -CF ₂ -	
	449	CF ₂ -CF ₂ -CH ₂ -	
20	450	CF ₃ -CF ₂ -CF ₂ -CH ₂ -	
	451	CH ₂ CH ₂ -	
25	452	Me CH ₂ -	
30	453	Me Me CH ₂ -	
35	454	Me CH ₂ -	•
40	455	CH ₂ Me CH ₂ -	
45	456	Me	
	457	Me Me	·
50			

5

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
458	Me Me		5
459	Me CH ₂ -	•	10
460	Me Me CH₂-		
461	Me CH ₂ -		15
462	Me CH ₂ -		20
463	Me CH ₂ -		25
464	Me CH ₂ -		30
465	Me CH ₂ -		
466	Me CH ₂ -		35
467	Me CH ₂ -		40
468	Me Me		45
469	Me Me		50

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	470	Me	·
5		CH ₂	
10	471	CI	•
	472	ÇI	
15		CI CH ₂	
20	473	Me CH ₂ CI Me	
25	474	Me Cl Me	
30	475	CI CI Me	
35	476	CI	
40	477	CI CH ₂ —	
45	478	CI CH ₂	
50	479	Me CH ₂ -	
		Me	1

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
480	Me CH ₂ -	· -	5
	CI		
481	Me CI CH ₂ -		10
482	CI CH ₂ -		15
483	CI CI CH2-		20
484	CI CH ₂ -		25
485	Me CI		2,
486	Me		3
487	Me CI		3
488	n-C ₇ H ₁₅		
489	n-C ₂ H ₁₇		4
490	n-C ₉ H ₁₉		
491	n-C ₉ H ₁₉ n-C ₁₀ -H ₂₁		
492	n-C ₁₁ H ₂₃		4
493	n-C ₁₂ H ₂₅ n-C ₁₃ H ₂₇		`
494	n-C ₁₃ H ₂₇		
495			:
496			
			5

5 498 —————————————————————————————————	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
500 CH ₂ - 501 501	
501 CH ₂ -	
20	
502	
25	
30 CH ₂ -	
504 CH ₂ -	
505 CO ₂ Et	
45	
507 CI	
508 CI	

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
509	CI—		5
510	CI	•	10
511	CI CI		15
512	CI		20
513	CI		25
514	CI		35
515	F		40
516	Br—		45
517	F———		50
518	1—(55

	BspNr.	R ⁴	Fp.
	519	CF ₃	
5			• -
	520	OMe	
10			
15	521	MeO	
20	522	MeO—	
25	523	MeO———	
30	524	MeO	
35	52.5	MeO Me—	
40	526	OMe Me—	
45	527		
50	528		
55			

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
529		•	5
530			10
531	Me		15
532	Me		20
533	Me-		25
534	Me Me		30
535	Me Me	·	35
536	Me		40
537	Me		50

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	538	Ме	
5		Me-	
	539	Ме	
10			
15	540	Me	
	34 0	CH ₂ -	
20	541	∕√F	
25		CH ₂ -	
	542	CH ₂ -	
30	543	CI	
35		CH ₂ -	
40	544	CI	
	545	CH ₂ -	
45		CH ₂ -	
50	546	CI CH ₂ -	
	<u> </u>	1	<u> </u>

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
547	CI		5
548	CH ₂ -		10
	CI CH ₂ -		15
549	CI CH ₂ -		20
550 ·	CH ₂ -		25
551	Me_CH ₂ -		30
552	Me CH ₂ -		35
553	Me CH ₂ -		40
554	OMe CH ₂ -		45
555	OMe		50
	CH ₂ -		55

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
5	556	MeO CH ₂ -	•
10	557	Bu_CH ₂ -	
15	558		
20	JJ6	CH ₂ -	
25			
30	5 5 9	CH ₂ -	·
35		Me	
40	560	CH ₂ -	
45			

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
561	CH ₂ -		5
562	s-		10
563	cı—s-		15
564	<u></u>		13
565	CIO-		20 25
566	——————————————————————————————————————		30
567	CH2-0-		. 35
568	CI—CH ₂ —S-		
569	MeO		40
570	EtO		45
571	n-PrO		50
572	n-BuO		55
573	Me-O-		
574	Et-O-		60
575	n-Pr-O-		1
576	n-Bu-O-		J

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	577	Me-S-CH ₂ -	
5	578	Et-S-CH ₂ -	
	579	n-Pr-S-CH ₂ -	
	580	n-Bu-S-CH ₂ -	
10	581	i-Pr-S-CH ₂ -	
	582	n-C ₅ H ₄ -S-CH ₂ -	
	583	Me-S-(CH ₂) ₂ -	
15	584	Et-S-(CH ₂) ₂ -	
	585	n-Pr-S-(CH ₂) ₂ -	
	586	n-Bu-S-(CH ₂) ₂ -	
20	587	Me-O-CH ₂ -	
	588	Et-O-CH ₂ -	
25	589	n-Pr-O-CH ₂ -	
2	590	n-Bu-O-CH ₂ -	
	591	n-Pr-O-CH ₂ -	
30	592	n-C ₅ H ₄ -O-CH ₂ -	
	594	Me-O-(CH ₂) ₂ -	
	595	Et-O-(CH ₂) ₂ -	
35	596	n-Pr-O-(CH ₂) ₂ -	
	596	n-Bu-O-(CH ₂) ₂ -	
	597	Ph-S-CH ₂ -	
40	598	Ph-O-CH ₂ -	
	599	Ph-CH ₂ -S-CH ₂ -	
	600	PH-CH ₂ -O-CH ₂ -	
45	601	MeO CH ₂ -	
50			
55	602	EtO CH ₂ -	

BspNr.	R ⁴	Fp.
603	F	
604		
605	\(\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
606		
607	s	
608	Me O	
609	Me s	
610	CI NN-	
611	Br—CH ₂ —	
612	Br	
613	F—	
BspNr.	R ⁴	Fp.
614		

n-C₁₇-H₃₉

DE 44 11 235 A1

Tabelle IV

 $R^1 = R^2 = R^3 = Me$

3	

10

BspNr.	\mathbb{R}^4	Fp.
616	H-	•
617	Me-	
618	Et-	
619	n-Pr-	
620	i-Pr-	
621	c-Pr-	
622	n-Bu-	
623	i-Bu	
624	s-Bu-	
625	t-Bu-	
626	n-C ₅ H ₄	
627	Me CH ₂ -	
628	Me Me CH ₂ -	
629	Me Me	
630	Me Me Me Me CH ₂ -	
631	Me	
632	Me Me	
633	Me Me	

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
634	Me CH ₂ -		5
625	Me		_
635	Me CH ₂ -	•	10
636	Me CH ₂ -		
637	Me CH ₂ -		15
638	Me CH ₂ -		20
639	Me CH ₂ -		25
640	Me CH ₂ -		30
641	Me CH ₂ -		35
642	Me CH ₂ -		33
643	Me		40
644	Me Me		45
645	CH ₂ -		50
646	CH ₂ -		
<u></u>			55

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	647	N √F	
_	·		
5	640	CH ₂ -	
	648		
		CH ₂ -	
10	649	N CN	
		CH ₂ -	
	650	NC-CH ₂ -CH ₂ -	
15	651	CF ₃ -	
	652	CF ₃ -CF ₂ -	
	653	CF ₃ -CF ₂ -CF ₂ -	
20	654	CF ₂ -CF ₂ -CH ₂ -	
20	655	CF ₃ -CF ₂ -CF ₂ -CH ₂ -	
	656	CH ₂ -CH ₂ -	
	657		
25	1037	Me	
		Me CH ₂ -	
	658	Ma	
30		Me Me	
		CH ₂ -	
	659		
	037	Me Me	
35			
		Me CH₂-	
	660	N/o	
40	1	CH ₂ IVIE	
40	ĺ	Me CH ₂ -	
	661	Me	
		Me	
45		* X	
	662	Me	
		Me Me	
50			

BspNr.	R ⁴	Fp.	
663	Me Me	-	5
664	Me CH ₂ -	•	10
665	Me CH ₂ -		
666	Me CH ₂ -		15
667	Me CH ₂ -		20
668	Me CH ₂ -		25
669	Me CH ₂ -		30
670	Me CH ₂ -		35
671	Me CH ₂ -		
672	Me CH ₂ -		40
673	Me Me		45
674	Me Me		50

	BspNr.	R ⁴	Fp.
5	675	Me CH ₂	
	676	CI ÇI	
10		CH	
15	677	CI CH ₂	
20	678	Me CH ₂ CH ₂	
25	679	Me CI Me	
30	680	CI CI Me	
35	681	CI	
40	682	CI CH ₂	·
45	683	CI CH ₂	
50	684	Me CH ₂ -	

DE 44 11 235 A1

BspNr.	\mathbb{R}^4	Fp.	
685	ÇI		
	M CH ₂ -		5
	I. Y		
	ĊI		
686	ÇI		
	CH ₂ -		10
	Me Y		
<u> </u>	<u> </u>		
687	ÇI		
	CH ₂ -		15
	Cí V		
688	CH ₂ -		
	CI		20
	Ċl		20
689	ÇI		
	CH ₂ -		
	Me		25
690	CH ₂ -		
	Me		
	Cl		
691	Me		30
	Me		
	CI		35
692	Me Çl		33
	Me CH ₂		
602			
693 694	n-C ₇ H ₁₅ n-C ₈ H ₁₇		40
695	n-C ₉ H ₁₉		
696	n-Cro-Hor]
697	n-C ₁₁ H ₂₃		
698	n-C ₁₂ H ₂₅		45
699	n-C ₁₀ -H ₂₁ n-C ₁₁ H ₂₃ n-C ₁₂ H ₂₅ n-C ₁₃ H ₂₇		
700			
	>		50
			1 ~
701			

5

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
5	702		· -
	703	CH ₂ -	•
10	704	CH ₂ -	
15	705	CH ₂ -	
20	706		
25	707		
30	708	CH ₂ -	
35	709	CH ₂ -	
40	710	CO ₂ Et	
45	711		
50	712	CI	
55	713	CI	

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
714	CI—		5
715	CI—CI	•	10
716	CI CI		15
717	CI		20
718	CI		25
719	d ,a		30
	CI		35
720	F		40
721	Br—	·	45
722	F———		50
723	I—————————————————————————————————————		55

	BspNr.	R ⁴	Fp.
	724	CF ₃	
5			
	725	OMe	
10			
15	726	MeO	
20	727	MeO-()	
	728	OMe	
25		MeO—	
30	729	MeO	
		MeO—	•
35	730	MeO	
		Me———	
40	731	OMe	
		Me—	
45	732		
50	733		
		 	
55			

BspNr.	R ⁴ Fp.		
734		·	5
735			10
736	Me		15
737	Me		20
738	Me-{		25
739	Me Me	,	30
740	Me — Me		35
741	Me		. 45
742	Me		43
	Me Me		50
			55

	BspNr.	R ⁴	Fp.
	743	Me	
5		Me-	
10	744	Me	
15	745	Me	
20	746	CH ₂ -	
		CH ₂ -	
25	74 7	CI	
30	748	CH ₂ -	
35		CH ₂ -	
40	749	CI	
	750	CI CI	
45	751	CI CH ₂ -	
50		CI	
		CH ₂ -	

DE 44 11 235 A1

BspNr.	R ⁴ Fp.		
752	CI CH ₂ -	•	5
753	CI CH ₂ -		10
754	CI CH ₂ -		20
755	CI CH ₂ -		25
756	Me_CH ₂ -		30
757	Me CH ₂ -		35
758	CH ₂ -		40
759	OMe CH ₂ -		45
760	OMe CH ₂ -		50
			5 ي

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
5	761	MeO CH ₂ -	
10	762	Bu CH ₂ -	
15	763	<u></u>	
20		CH ₂ -	
25	764	CI	
30	·	CH ₂ -	
35	765	ÇH ₂ -	
40			
45			

DE 44 11 235 A1

BspNr.	R ⁴	Fp.	
766	CH ₂ -		
			5
767		•	
	s-		10
768			
	cı—s-		15
769			
	<u> </u>		
770			20
	CH CH		
			25
771			
	CH ₂ —S-		30
772			
	CH2-0-		25
773			35
	CI-CH2-S-		
			40
774	Ŷ		₩ **
775	MeO		45
113			~
	EtO		
<i>7</i> 76	0		50
	n-PrO		
777	ဂူ		55
]
770	n-BuO		1
778 779	Me-O- Et-O-		1
780	n-Pr-O-		60
781	n-Bu-O-		1

DE 44 11 235 A1

	BspNr.	R ⁴	Fp.
	782	Me-S-CH ₂ -	
5	783	Et-S-CH ₂ -	
	784	n-Pr-S-CH ₂ -	
	785	n-Bu-S-CH ₂ -	· · · · · · · · · · · · · · · · · · ·
10	786	i-Pr-S-CH ₂ -	
	787	n-C ₅ H ₄ -S-CH ₂ -	
	788	Me-S-(CH ₂) ₂ -	
15	789	Et-S-(CH ₂) ₂ -	
	790	n-Pr-S-(CH ₂) ₂ -	
20	791	n-Bu-S-(CH ₂) ₂ -	
20	792	Me-O-CH ₂ -	
	793	Et-O-CH ₂ -	
25	794	n-Pr-O-CH ₂ -	
22	795	n-Bu-O-CH ₂ -	
	796	n-Pr-O-CH ₂ -	
30	797	n-C ₅ H ₄ -O-CH ₂ -	
	798	Me-O-(CH ₂) ₂ -	
	799	Et-O-(CH ₂) ₂ -	
35	800	n-Pr-O-(CH ₂) ₂ -	
	801	n-Bu-O-(CH ₂) ₂ -	
	802	Ph-S-CH ₂ -	
40	803	Ph-O-CH ₂ -	
	804	Ph-CH ₂ -S-CH ₂ -	
	805	PH-CH ₂ -O-CH ₂ -	
45	806	MeO CH ₂ -	
50			
55	807	EtO CH ₂ -	

BspNr.	R ⁴	Fp.	
808	F	*	5
809		•	10
810	\(\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		15
811			20
812	S		25
813	Me Co		30
814	Me s		35
815	CI N N-		35
816	Br—CH ₂		40
817	Br		45
818	F—()		50
			<u> </u>

BspNr.	R ⁴	Fp.	
819			
820	n-C ₁₇ -H ₃₉		

DE 44 11 235 A1

B. Prüfung der Schimmelfestigkeit von Anstrichen

Die auf ihre fungizide Wirksamkeit zu prüfende Substanz wird in der gewünschten Konzentration in die (Dispersions)-Farbe mittels eines Dissolvers eingearbeitet. Anschließend wird die Farbe beidseitig auf eine geeignete Unterlage gestrichen.

Um praxisnahe Ergebnisse zu erhalten wird ein Teil der Prüflinge vor dem Test auf Schimmelfestigkeit mit fließendem Wasser (24 h; 20°C) ausgelaugt.

Die so vorbereiteten Prüflinge werden auf einen Agar-Nährboden gelegt. Prüflinge und Nährboden werden mit Pilzsorten kontaminiert. Nach 1- bis 3-wöchiger Lagerung bei 29 ± 1°C und 80 bis 90% rel. Luftfeuchte wird abgemustert. Der Anstrich ist dauerhaft schimmelfest, wenn der Prüfling pilzfrei bleibt oder höchstens einen geringen Randbefall erkennen läßt.

Zur Kontamination werden Pilzsporen folgender neun Schimmelpilze verwendet, die als Anstrichzerstörer bekannt sind oder häufig auf Anstrichen angetroffen werden:

1. Alternaria tenuis

15

20

50

55

60

65

- 2. Aspergillus flavus
- 3. Aspergillus niger
- 4. Aspergillus ustus
- 5. Cladosporium herbarum
- 6. Paecilomyces variotii
- 7. Penicillium citrinum
- 8. Aureobasidium pullulans
- 9. Stachybotrys atra Corda.

Die folgende Tabelle V zeigt die Wirkstoffkonzentrationen, bei denen der Anstrichprüfling pilzfrei bleibt (Konzentrationen bezogen auf Feststoffgehalt der Dispersionsfarbe).

Vergleichsbeispiel A:

Vergleichsbeispiel B:

Tabelle V

	ohne Belastung	nach Wässerung	Verfärbung
Bekannt Bsp. A	0,3 %	> 3 %	keine
Bekannt Bsp. B	0,2 %	0,3 %	0,3 %
erfindungsgemäß			
Bsp. 7	0,6 %	2,0 %	keine

Patentansprüche

1. Thiazolylpyrazolinonderivate der Formel

$$\begin{array}{c|c}
R^4 & OH & R^1 \\
\hline
 & N & R^2 \\
\hline
 & R^3 & N & R^2
\end{array}$$
(I)

in der

R¹, R², R³ unabhängig voneinander jeweils für Wasserstoff, Alkyl oder Halogen stehen und

R⁴ für Wasserstoff oder gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Cycloalkyl, Cycloalkenyl, Alkyl (Cycloalkyl), Alkenyl (Cycloalkenyl), Alkoxy, Alkylthio, Aralkoxy, Aralkylthio, Aralkyl, Aryl, Hetaryl, Aryloxy, Hetaryloxy, Arylthio, Hetarylthio, Alkoxycarbonyl, Alkoxycarbonalalkyl, Cyanoalkyl steht, sowie deren Säureadditionsprodukte und Metallsalzkomplexe.

2. Verbindungen der Formel (I) nach Anspruch 1, worin

R¹, R², R³ Wasserstoff oder Methyl,

R⁴ gegebenenfalls substituiertes Alkyl, Cycloalkyl, Alkenyl, Aralkyl oder Aryl bedeuten.

3. Verbindungen der Formel (I) nach Anspruch 1, worin

R1 Wasserstoff,

R², R³ Wasserstoff oder Methyl,

R4 gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl oder Aryl bedeuten.

4. Verbindungen der Formel (I) nach Anspruch 1, worin

R1, R2 und R3 Wasserstoff,

R⁴ gegebenenfalls substituiertes Alkyl oder Cycloalkyl bedeuten.

5. Verfahren zur Herstellung von neuen Thiazolylpyrazolinon-Derivaten der Formel (I) nach Anspruch 1, dadurch gekennzeichnet, daß man Thiocarbamoylverbindungen der Formel (II)

$$\begin{array}{c}
 & \text{OH} \\
 & \text{S} \\
 & \text{II} \\
 & \text{N-C-NH}_2
\end{array} \qquad (II)$$

in denen R3 und R4 die oben angegebenen Bedeutungen haben, mit Verbindungen der Formel (III)

$$\mathbb{R}^{1}$$
 \mathbb{R}^{2}
 \mathbb{C}
 \mathbb{C}
 \mathbb{C}
 \mathbb{C}

in denen R¹ und R² die oben angegebenen Bedeutungen haben und X für eine Abgangsgruppe steht, gegebenenfalls in Gegenwart eines Lösungs- bzw. Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt.

6. Verfahren zum Schutz von technischen Materialien, dadurch gekennzeichnet, daß man Verbindungen der Formel (1) nach Anspruch auf die zu schützenden Materialien aufbringt oder mit diesen vermischt.

7. Mittel zum Schutz von technischen Materialien, enthaltend mindestens eine Verbindung der Formel (I) nach Anspruch 1.

8. Verwendung von Verbindungen der Formel (I) nach Anspruch 1 zum Schützen von Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen.

65

55

5

10

15

25

30

35