SUBJECT CODE: 102405CS B.Tech.- 4th Semester Examination April-May 2022 Specialization: Theory of Computation

Course: B.TECH

Maximum Marks: 100

Time Allowed: 3 Hours

Minimum Pass Marks: 35

Note: Attempt all questions. Part A of each question is compulsory and carries 4 marks; attempt any two parts from B, C and D carrying 8 marks.

Q. 1	No.	Question			
	A	Differentiate between DFA and NFA.	4		
1	В	Explain Moore and Mealy Machine. Construct Moore machine which is equivalent to the Mealy machine given in the diagram. 0/z1 1/z1 1/z1	8		
	C.	Construct equivalent DFA for NFA $M = (\{p, q, r, s\}, \{0,1\}, \delta, p, \{s\}), \text{ where } \delta \text{ is given below:}$ $\begin{array}{c c} & 0 & 1 \\ & & \\ \hline & p & p, q & p \\ \hline & q & r & r \\ \end{array}$	8		
		s s s			
	D	State and prove Myhill-Nerode theorem			
2	A	 Write the regular expression Any string formed using {0,1} with 1 as the fourth symbol from the end. first character 'a' or 'c' followed by any string in 'b'. All strings of a's and b's ending in aa. 			

		4. The set of strings containing ab as a substring	
	В	For the following regular expressions, draw the corresponding finite automata: (i) (0+1)*0(0+11)* (ii) 10+(0+11)0*1	8
SHouse Should	С	List the identities of regular expressions. State and prove Arden's theorem.	8
	D	Give the statement of pumping lemma. List its applications. Using pumping Lemma prove that the language $\{0^n1^n n\geq 0\}$ is not regular.	8
The state of the s	A	Consider production rules of a CFG: S→ bA/aB, A→ aS/aAA/a, B→ bS/aBB/b. Find leftmost and rightmost derivations for string w=aaabbabbba	4
3	В	Define GNF. Construct a grammar in Greibach normal form equivalent to $S \rightarrow YY \mid 0, Y \rightarrow SS \mid 1.$	8
	С	Explain Chomsky classification of languages by giving example and discuss the relation between the classes of these languages.	8
	D	Reduce the following grammar to Chomsky Normal Form : $S \rightarrow 1A \mid 0B, A \rightarrow 1AA \mid 0S\mid 0, B \rightarrow 0BB \mid 1S\mid 1$	8
	A	Design a PDA M to accept the language L={0 ⁿ 1 ⁿ⁺² n≥1}	4
4	В	Trace the sequence of moves made for each of the input strings bbcbb and baca for the PDA for the grammar S→ aSa/bSb/c	8
	С	What is Instaneous Description? What are moves made by the Turing Machine in the processing of the string. i) 00 ii) 0101	8

		Present State		Tape Symbol		
			b	0	1	
		→ q1	1Lq2	0Rq1		
		q2	bRq3	0Lq2	1Lq2	
		q3		bRq4	bRq5	
		q4	0Rq5	0Rq4	1Rq4	
		(q5)	0Lq2	<u>-</u>	-	
		Write short no	otes on			
	D	(i) Universal Turing Machine				8
		(ii) Churc	h's Hypot	hesis		
5	A	Explain space and time complexity theory.				4
	В	applications. F in Table. $ \begin{array}{c c} i & x_i \\ \hline 1 & 0 \end{array} $			problem. List its ance of PCP giver	4
	С	What are decidable and undecidable problem. Give the properties of recursive and recursively enumerable language.				8
		Ackermann's	function is	s defined by		
	D		A (0	(y) = y+1		
			A(x-	+1, 0) = A(x, 1)		
			A(x+	-1, y+1) = A(x, A)	(x+1, y))	8
		A(x, y) can be is total. Ackern recursive. Com	nann's fur	ection is not pri		