2. Логические исчисления Булевы функции и таблицы истинности. Алгебра Жегалкина. Минимизация булевых функций. Карты Карно

Булева алтебра — раздел математики, изучающий логические выражения и операции. Высказывание — это предложение, относительно которого имеет смысл говорить, что его содержание истинно или ложно.

Элементарное высказывание — это высказывание, никакая часть которого сама уже не является высказыванием

Сложное высказывание — это высказывание, образованное из элементарных с помощью логических операций.

Операции над высказываниями являются предметом части математической логики, называемой логикой высказываний.

Обозначение высказываний: A, B, C,..., их значений: Π – ложь, Π – истина.

Операции над высказываниями:

Пусть даны два произвольных высказывания A и B.

- 1) Отрицанием высказывания A называется высказывание, истинное тогда и только тогда, когда высказывание A ложно (обозначается \overline{A} , $\neg A$, A' и читается «не A»).
- Конъюнкцией двух высказываний А и В называется высказывание, истинное тогда и только тогда, когда оба высказывания истинны (обозначается А ∧ В, А&В и читается «А и В»).
- 3) Дизъюнкцией двух высказываний А и В называется высказывание, ложное тогда и только тогда, когда оба высказывания ложны (обозначается А V В и читается «А или В»).
- 4) Импликацией двух высказываний A и B называется высказывание, ложное тогда и только тогда, когда A истинно, а B ложно (обозначается $A \rightarrow B, A \supset B, A \Longrightarrow B$ и читается «A влечёт B» или «если A, то B» или «из A следует B»). Высказывание A называется посылкой импликации, а высказывание B заключением импликации.
- 5) Эквивалентностью двух высказываний A и B называется высказывание, истинное тогда и только тогда, когда истинностные значения A и B совпадают (обозначается $A \sim B$ и читается «A эквивалентно B»).
- 6) Суммой по mod 2 двух высказываний А и В называется высказывание, истинное тогда и только тогда, когда истинностные значения А и В различны (обозначается АФВ и читается «А сумма по модулю 2 В»).
- 7) Штрих Шеффера антиконъюнкция. Антиконъюнкцией двух высказываний А и В называется высказывание, ложное тогда и только тогда, когда оба высказывания истинны (обозначается А|В и читается «А штрих Шеффера В»).
- 8) Стрелка Пирса антидизъюнкция. Антидизъюнкцией двух высказываний А и В называется высказывание, истинное тогда и только тогда, когда оба высказывания ложны (обозначается А↓В и читается «А стрелка Пирса В»).

Булевой функцией $f(x_1,...,x_n)$ называется произвольная п-местная функция, действующая из множества $\{0, 1\}$ во множество $\{0, 1\}$.

Булевы Функции от одной переменной:

Булевы Функции от двух переменных:

	Переменная х	0	0	1	1	
	Переменная у	0	1	0	1	
Название	Обозначение					Фиктивные
константа 0 (нуль)	$f_0 = 0$	0	0	0	0	х, у
конъюнкция	$f_1 = x \wedge y$	0	0	0	1	
запрет по у	$f_2 = \overline{(x \to y)}$	0	0	1	0	
повтор х	$f_3 = x$	0	0	1	1	у
запрет по х	$f_4 = \overline{(y \to x)}$	0	1	0	0	
повтор у	$f_5 = y$	0	1	0	1	х
сумма по m od 2	$f_6 = x \oplus y$	0	1	1	0	
дизьюнкция	$f_7 = x \vee y$	0	1	1	1	
стрелка Пирса	$f_8 = x \downarrow y$	1	0	0	0	
эквивалентность	$f_9 = x \sim y$	1	0	0	1	
инверсия у	$f_{10} = \bar{y}$	1	0	1	0	х
конверсия	$f_{11} = y \rightarrow x$	1	0	1	1	
инверсия х	$f_{12} = \overline{x}$	1	1	0	0	у
импликация	$f_{13} = x \rightarrow y$	1	1	0	1	
штрих Шеффера	$f_{14} = x \mid y$	1	1	1	0	
константа 1 (единица)	$f_{15} = 1$	1	1	1	1	x, y

Множество булевых функций, заданный в базисе Жегалкина с помощью операций $S4=\{\bigoplus,\&($ это коньюнкция), $1\}$ называется алгеброй Жегалкина. Основные свойства.

1. коммутативность

H1⊕H2=H2⊕H1

H1&H2=H2&H1

2. ассоциативность

 $H1 \bigoplus (H2 \bigoplus H3) = (H1 \bigoplus H2) \bigoplus H3$

H1&(H2&H3)=(H1&H2)&H3

3. дистрибутивность

 $H1&(H2 \oplus H3) = (H1&H2) \oplus (H1&H3)$

констант

4. свойства

H&1=H H&0=0

H⊕0=H

п⊕0-г

5. H⊕H=0 H&H=H

пап-г

Утверждение. Через операции алгебры Жегалкина можно выразить все другие булевы функции:

 $\neg X=1 \bigoplus X$

 $XvY=X \oplus Y \oplus XY$

 $X\sim Y=1\bigoplus X\bigoplus Y$

 $X \rightarrow Y=1 \bigoplus X \bigoplus XY$

 $X\downarrow Y=1\bigoplus X\bigoplus Y\bigoplus XY$

 $X|Y=1 \oplus XY$

Определение. Полиномом Жегалкина (полиномом по модулю 2) от **n** переменных $X_1, X_2 \dots X_n$ называется выражение вида: $C_0 \oplus C_1 X_1 \oplus C_2 X_2 \oplus \dots \oplus C_n X_n \oplus C_{12} X_1 X_2 \oplus \dots \oplus C_{12 \dots n} X_1 X_2 \dots X_n$,

где постоянные C_k могут принимать значения 0 ли 1.

Если **полином Жегалкина** не содержит произведений отдельных переменных, то он называется линейным (линейная функция).

Например, $f=X \bigoplus YZ \bigoplus XYZ$ и $f1=1 \bigoplus X \bigoplus Y \bigoplus Z$ - полиномы, причем вторая является линейной функцией.

Теорема. Каждая булева функция представляется в виде полинома Жегалкина единственным образом.

Приведем основные методы построения полиномов Жегалкина от заданной функции.

1. Метод неопределенных коэффициентов. Пусть $P(X_1, X_2 \dots X_n)$ - искомый полином Жегалкина, реализующий заданную функцию $f(X_1, X_2 \dots X_n)$. Запишем его в виде $P = C_0 \oplus C_1 X_1 \oplus C_2 X_2 \oplus \dots \oplus C_n X_n \oplus C_{12} X_1 X_2$

 $\bigoplus ... \bigoplus C_{12...n} X_1 X_2 ... X_n$

Найдем коэффициенты C_k . Для этого последовательно придадим переменным $X_1, X_2 \dots X_n$ значения из каждой строки таблицы истинности. В итоге получим систему из 2^n уравнений с 2^n неизвестными,

имеющую единственное решение. Решив ее, находим коэффициенты полинома $P(X_1, X_2 ... X_n)$.

2. Метод, основанный на преобразовании формул над множеством связок $\{\neg,\&\}$. Строят некоторую формулу Φ над множеством связок $\{\neg,\&\}$, реализующую данную функцию $f(X_1,X_2...X_n)$. Затем заменяют всюду подформулы вида $\neg A$ на $A \bigoplus 1$, раскрывают скобки, пользуясь дистрибутивным законом (см. свойство 3), а затем применяют свойства 4 и 5.

Пример. Построить полином Жегалкина функции $f(X,Y)=X \rightarrow Y$

Решение.

1. (метод неопределенных коэффициентов). Запишем искомый полином в виде:

 $P = C_0 \bigoplus C_1 X \bigoplus C_2 Y \bigoplus C_{12} X Y$

Пользуясь таблицей истинности

X	0	0	1	1
Y	0	1	0	1
$X \rightarrow Y$	1	1	0	1

что

получаем, $f(0,0)=P(0,0)=C_0=1$

 $f(0,1)=P(0,1)=C_0 \oplus C_2=1$

 $f(1,0)=P(1,0)=C_0\oplus C_1=0$

 $f(1,1)=P(1,1)=C_0 \oplus C_1 \oplus C_2 \oplus C_{12}=1$

Откуда последовательно находим, $C_0 \! = \! 1$, $C_1 \! = \! 1$, $C_2 \! = \! 0$, $C_1 \! = \! 1$

Следовательно: $x \to y=1 \oplus X \oplus XY$. 2. (Метод преобразования формул.).

2. (Метод преобразования формул.) Имеем:

 $X {\rightarrow} Y = \neg X v Y = \neg (X \neg Y) = (X(Y \bigoplus 1)) \bigoplus 1 = 1 \bigoplus X \bigoplus X Y$

Заметим, что преимущество алгебры Жегалкина (по сравнению с другими алгебрами) состоит в арифметизации логики, что позволяет выполнять преобразования булевых функций довольно просто. Ее недостатком по сравнению с булевой алгеброй является громоздкость формул.

Минимизация б. функций

1) с помощью алг. преобразований

 $a \wedge b = b \wedge a$ $a \lor b = b \lor a$ $a \wedge (b \wedge c) = (a \wedge b) \wedge c$ $a \lor (b \lor c) = (a \lor b) \lor c$ ^и 3 дистрибутивность, распределительності $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ 4 комплементность дополнительность (свойства $a \wedge \neg a = 0$ $a \lor \neg a = 1$ $\neg(a \land b) = \neg a \lor \neg b$ 5 законы де Моргана $\neg(a \lor b) = \neg a \land \neg b$ $a \wedge (a \vee b) = a$ $a \lor (a \land b) = a$ $a \lor (\neg a \land b) = a \lor b$ $a \wedge (\neg a \vee b) = a \wedge b$ 7 Блейка-Порецкого 9 инволютивность отрицания, закон снятия $a\wedge 1=a$ $a \lor 0 = a$ $a \wedge 0 = 0$ 10 свойства констант дополнение 0 есть 1 $\neg 0 = 1$ дополнение 1 есть 0 $\neg 1 = 0$ $(a \lor b) \land (\neg a \lor b) = b$ $(a \land b) \lor (\neg a \land b) = b$

2) с помощью карт карно

графический способ минимизации функций, переключательных (булевых) обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции неполного попарного склеивания и элементарного поглощения рассматриваются Карты Карно перестроенная соответствующим образом таблица истинности функции Исходной информацией для работы с картой Карно является таблица истинности минимизируемой функции.

X₃X₄ 00 01 11 10

Если необходимо получить минимальную ДНФ, то в Карте рассматриваем только те клетки, которые содержат единицы, если нужна КНФ, то рассматриваем те клетки, которые содержат нули. Сама минимизация производится по следующим правилам (на примере ДНФ):

Объединяем смежные клетки, содержащие единицы, в область так, чтобы одна область содержала 2ⁿ n целое число клеток (помним про то, что крайние строки и столбцы являются соседними между собой), в области не должно находиться клеток, содержащих нули;

Область должна располагаться симметрично оси(ей) (оси располагаются через каждые четыре клетки);

расположенные Несмежные области. симметрично оси(ей), могут объединяться в одну;

Область должна быть как можно больше, а количество областей как можно меньше;

Области могут пересекаться;

Возможно несколько вариантов покрытия.

Далее берём первую область и смотрим, какие переменные не меняются в пределах этой области, выписываем конъюнкцию этих переменных; если неменяющаяся переменная нулевая, проставляем над ней инверсию. Берём следующую область, выполняем то же самое, что и для первой, и т. д. для всех областей. Конъюнкции областей объединяем дизъюнкцией.

Например (лля Карт на 2 переменные):

папример (для карт на 2 переменные).								
$\begin{array}{c cccc} X2 & & & & \\ \hline 0 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline \hline x_1 & \overline{x_2} & & & \\ \end{array}$	$\begin{array}{c cccc} X2 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 0 & 0 \\ \hline X_1 & X_2 & \end{array}$	X2 X1 0 1 0 0 0 1 0 1 X ₁ X ₂	$\begin{array}{c cccc} X2 & 0 & 1 \\ \hline 0 & 0 & 0 \\ \hline 1 & 1 & 0 \\ \hline x_1 & \overline{x_2} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x_1 0 1 0 0 x_1	X1 0 1 0 0 0 1 0 1 X ₂	X1 0 1 0 0 0 1 1 1 x ₁	
$X^{1} \bigcirc 0 \bigcirc 1$ $0 \bigcirc 1 \bigcirc 0$ $1 \bigcirc 0 \bigcirc 0$ $1 \bigcirc 0$	$X^{2} \downarrow 0 \downarrow 1 \downarrow 0 \downarrow 0$	$X = \begin{bmatrix} X & X & X & X & X & X & X & X & X & X$	X_1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1	$X \downarrow 0 \downarrow 1$ $0 \downarrow 1 \downarrow 1$ $1 \downarrow 0 \downarrow 1$ $1 \downarrow 0 \downarrow 1$ $S_1 \lor S_2 =$ $= \overline{X_1} \lor \overline{X_2}$	$X = X = X = X_2 \times X_1$			
X1 X2	00 0 00 0 00 0 01 0 1 11 1 1 10 0 1	1 11 10	53 S6 -S2	- 31 1 32	- 27 - 27			

 $f(X1, X2, X3, X4) = S1 \lor S2 \lor S3 \lor S4 \lor S5 \lor S6 =$

 $= X3X4 \lor X1X2 \lor X2X4 \lor X1X4 \lor X1X3 \lor X2X3$