Перестановки и биекции

- \bigstar Перестановкой множества A называется произвольный линейный порядок на A Пример: пусть $A=\mathbb{N}$
 - можно упорядочить по возрастанию (≤)
 - можно упорядочить по убыванию (≥)
 - можно упорядочить сначала все нечетные по ≤, а потом четные по ≥
 - можно по сумме показателей в разложении на простые множители, а при одинаковой сумме — по ≤
 - ullet Если A- конечное, перестановку можно определить как биекцию A на себя:
 - $\star A = \{a_1, \dots, a_n\} \Rightarrow$ нумерация элементов задает на A линейный порядок
 - ullet перестановка это линейный порядок (a_{i_1},\ldots,a_{i_n})
 - \Rightarrow определяет биекцию $f \cdot f(a_k) = a_{i_k}$ для всех k
 - ullet обратно, любая биекция $f:A o \hat{A}$ задает перестановку $(f(a_1),\dots,f(a_n))$
- 🛨 Для бесконечных множеств биекции задают не все перестановки!

! какие из приведенных выше перестановок на $\mathbb N$ соответствуют биекциям?

Граф перестановки

- ★ Перестановке конечного множества можно сопоставить ее граф
 - см. фрагмент 1-3 про орграфы функций
 - \star орграф, в котором все степени вершин равны 1, называется линейным
 - \star графы перестановок множества A= линейные орграфы с множеством вершин A

Пример:
$$A = [1..6]$$
; $\sigma = (2,4,6,1,5,3) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 1 & 5 & 3 \end{pmatrix} = (4 & 1 & 2)(5)(6 & 3)$

- $\star \ \sigma = (4\,1\,2)(5)(6\,3)$ циклическая запись перестановки
 - перечисляются циклы орграфа как последовательности вершин

 G_{σ}

Каноническая запись

- ⋆ далее всюду A конечно; для удобства полагаем A = [1..n]
- \star Множество всех перестановок на A обозначается через S_n
- \star Цикл, в котором находится элемент i, состоит из элементов $i, \sigma(i), \ldots, \sigma^{\ell-1}(i)$.

 - где ℓ длина цикла здесь $\sigma^2 = \sigma \circ \sigma, \ \sigma^3 = \sigma \circ \sigma \circ \sigma, \dots$
 - Te $\sigma^2(i) = \sigma(\sigma(i)), \ \sigma^3 = \sigma(\sigma^2(i)),$
- Этот цикл называется орбитой элемента і
 - ⋆ орбиты различных элементов либо не пересекаются, либо совпадают
- ★ Циклическая запись перестановки неоднозначна:
 - выбор «первого» элемента в каждом цикле
 - перестановка циклов в записи
 - \star часто используется сокращенная запись: выбрасываются циклы длины 1
- ⋆ Каноническая запись перестановки:
 - каждый цикл записывается, начиная с наибольшего элемента
 - циклы выписываются по возрастанию первых элементов
 - ⋆ сокращения не используются

Пример:

- $\sigma = (4\,1\,2)(5)(6\,3)$ каноническая запись $\sigma = (3\,6)(2\,4\,1)$ пример неканонической записи

Биекция стирания скобок

- ullet Пусть ψ функция стирания скобок в канонической записи:
 - $\sigma = (i_1 \cdots i_{\ell_1})(i_{\ell_1+1} \cdots i_{\ell_2}) \cdots (i_{\ell_k+1} \cdots i_n) \Rightarrow \psi(\sigma) = (i_1, \dots, i_n)$ Пример: $\sigma = (4\,1\,2)(5)(6\,3) \Rightarrow \psi(\sigma) = (4\,1, 2, 5, 6, 3) = (6\,3\,2\,1\,4\,5)$

Теорема

Функция стирания скобок — биекция S_n на себя.

- пусть $\pi = (i_1, \ldots, i_n) \in S_n$
- расставим в линейной записи π скобки, чтобы получить каноническую запись (некоторой другой перестановки):
- і₁ принадлежит первому циклу, больше всех элементов в этом цикле и меньше первого элемента следующего цикла
- \Rightarrow первый элемент i' второго цикла однозначно определяется как самый левый элемент в линейной записи, больший i_1 (а значит, всех предыдущих элементов)
 - аналогично, первый элемент i" третьего цикла однозначно определяется как самый левый элемент в линейной записи, больший i" (и всех предыдущих)
 - . . .
 - каноническая запись восстанавливается однозначно Пример: $\pi = (4, 1, 2, 5, 6, 3) \Rightarrow \psi^{-1}(\pi) = (412)(5)(63)$
- Элемент, больший всех предыдущих в линейной записи перестановки, называется префикс-максимумом
- \star Следствие теоремы: в S_n перестановок с k циклами столько же, сколько перестановок с k префикс-максимумами

Числа Стирлинга первого рода

- \star В S_n имеется (n-1)! перестановок с одним циклом (длины n)
 - ullet каноническая запись такой перестановки: $(n\,i_1\,\ldots\,i_{n-1})$, где (i_1,\ldots,i_{n-1}) линейная запись произвольной перестановки из S_{n-1}
 - Сколько в S_n существует перестановок с k циклами?
 - ullet это число обозначают $igl[{n top L} {n t$
 - мы доказали, что $\binom{n}{1}=(n-1)!$; очевидно, $\binom{n}{n}=1$; чему равно $\binom{n}{n-1}$?

Теорема

$${n+1\brack k}=n\cdot {n\brack k}+{n\brack k-1}$$
, с начальными условиями ${n\brack n}=1$ и ${n\brack 0}=0$ $(n>0).$

- Для перестановок из S_{n+1} с k циклами есть 2 варианта:
 - ullet если элемент n+1 образует отдельный цикл, то остальные n элементов образуют k-1 циклов
 - \Rightarrow таких перестановок $\binom{n}{k-1}$
 - ullet если элемент n+1 входит в неодноэлементный цикл, удалим этот элемент • заменив ребра (i, n + 1) и (n + 1, j) ребром (i, j)
 - \Rightarrow получится перестановка из S_n с k циклами
 - в такую перестановку можно вставить n+1 в середину любого из n ребер
 - \Rightarrow всего получим $n \cdot {n \choose k}$ перестановок
- ullet Поскольку варианты исключают друг друга, получаем $igl[{n+1 \brack k} igr] = n \cdot igl[{n \brack k} igr] + igl[{n \brack k-1} igr]$

Восходящий факториал

Числа Стирлинга первого рода возникают не только при подсчете перестановок:

ullet Восходящий факториал — это функция $x^{ar{n}} = x(x+1)\cdots(x+n-1)$

Теорема

$$x^{\bar{n}} = \sum_{k=0}^{n} {n \brack k} x^{k}.$$

 \bigstar Формула очень похожа на $(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$

Доказательство теоремы:

- ullet пусть коэффициент при x^k в разложении $x^{ar n}$ равен f(n,k)
- ullet докажем, что f(n,k) удовлетворяет рекуррентному соотношению для ${n\brack k}$
- распишем $x^{\overline{n+1}} = x(x+1)\cdots(x+n-1)(x+n) = n\cdot x^{\overline{n}} + x\cdot x^{\overline{n}}$
- ullet коэффициент при x^k в левой части равен f(n+1,k), а в правой $n \cdot f(n,k) + f(n,k-1)$, и они равны
- \Rightarrow f(n,k) задается тем же рекуррентным соотношением, что и ${n \brack k}$
 - f(n,0) = 0 при n > 0, так как есть множитель x
 - f(n,n) = 1, так как x^n получается перемножением иксов из всех скобок
- \Rightarrow начальные условия тоже выполнены $\Rightarrow f(n,k) = {n \brack k}$

Перестановки с двумя циклами. Гармонические числа

 $\mathsf{\Pi}$ ример: выведем формулу для ${n\brack 2}$ — числа перестановок с двумя циклами

$$\begin{bmatrix} n \\ 2 \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ 2 \end{bmatrix} + \begin{bmatrix} n-1 \\ 1 \end{bmatrix} = (n-1)(n-2) \begin{bmatrix} n-2 \\ 2 \end{bmatrix} + (n-1) \begin{bmatrix} n-2 \\ 1 \end{bmatrix} + \begin{bmatrix} n-1 \\ 1 \end{bmatrix} = \\
\dots = (n-1) \dots 2 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + (n-1) \dots 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \dots + (n-1) \begin{bmatrix} n-2 \\ 1 \end{bmatrix} + \begin{bmatrix} n-1 \\ 1 \end{bmatrix} = \\
(n-1)! + \frac{(n-1)!}{2} + \dots + \frac{(n-1)!}{n-2} + \frac{(n-1)!}{n-1} = (1 + \frac{1}{2} + \dots + \frac{1}{n-1})(n-1)! = H_{n-1}(n-1)!$$

- ullet $H_n = 1 + rac{1}{2} + \ldots + rac{1}{n}$ называется n-ым гармоническим числом
- $H_n \approx \ln n$, так как $\sum_{x=1}^n \frac{1}{x} \approx \int_1^n \frac{dx}{x}$
- ! Используя для оценки интегралов метод прямоугольников, докажите, что $\ln(n+1) < H_n < \ln n + 1$
- ! Попробуйте уточнить оценку, используя метод трапеций
- \bigstar Точная оценка: $H_n = \ln n + \gamma + o(1)$, где $\gamma = 0.577 \ldots$ константа Эйлера
- \star Перестановок с двумя циклами примерно в $\ln n$ раз больше, чем с одним

Симметрические группы

- Множество S_n с операцией композиции образует группу симметрическую группу n-элементного множества
 - * Композицию (произведение) перестановок удобно вычислять в линейной записи: если π и σ заданы массивами длины n, то $(\pi \circ \sigma)(i) = \sigma[\pi[i]]$
- S_n некоммутативна при $n \geqslant 3$:
 - $(2,1,3) \circ (3,2,1) = (2,3,1), (3,2,1) \circ (2,1,3) = (3,1,2)$
- \star Для любого элемента a конечной группы G существует k такое, что $a^k=1$
 - ullet найдутся i < j такие, что $a^i = a^j$
 - $\Rightarrow a^{-i}$ обратный к $a^{j} \Rightarrow a^{j-i} = 1$
- \star Наименьшее k со свойством $a^k=1$ называется порядком элемента a
- \bigstar Порядок перестановки $\sigma \in S_n$ равен НОКу длин всех циклов в σ ! проверьте это
 - Наибольший порядок перестановки в S_n называется функцией Ландау и обозначается g(n)
 - Ландау здесь не советский физик, а немецкий математик начала XX века
- \bigstar Поскольку длины циклов перестановки $\sigma \in S_n$ образуют разбиение числа n, g(n) альтернативно определяют как максимальный НОК разбиения числа n
- \bigstar Ландау доказал, что $g(n) \sim e^{\sqrt{n \ln n}}$

Пример: g(9) = HOK(4,5) = 20, g(10) = HOK(2,3,5) = 30

Теорема Кэли

Симметрические группы S_n — это «всеобъемлющие» конечные группы:

Теорема Кэли

Любая \emph{n} -элементная группа изоморфна некоторой подгруппе группы $\emph{S}_\emph{n}$.

- ullet Пусть (G,\cdot) произвольная группа, |G|=n
- ullet Заменим S_n на изоморфную группу S_G перестановок элементов множества G
- ullet ba=ca в группе влечет b=c
 - \Rightarrow функция f_a : $f_a(x)=x_a$ является перестановкой множества G, т.е. $f_a\in S_G$
- ullet Пусть $\phi: G o S_G$ задана правилом $\phi(a) = f_a$
 - $f_a(x) = f_b(x) \Rightarrow xa = xb \Rightarrow a = b$
 - $\Rightarrow \phi$ инъекция, а значит, биекция G на $\phi(G)$
 - \bullet $(f_a \circ f_b)(x) = f_b(xa) = xab = f_{ab}(x)$ для любых $a,b,x \in G$
 - \Rightarrow $\phi(a) \circ \phi(b) = \phi(ab) \Rightarrow \phi$ сохраняет умножение
 - ullet $f_1=\Delta$ (тождественная перестановка на $G)\Rightarrow\phi$ сохраняет нейтральный элемент
 - $(f_{a^{-1}} \circ f_a)(x) = xa^{-1}a = x = f_1(x)$ для любых $a, x \in G \Rightarrow \phi$ сохраняет обратные элементы
- \star Итак, ϕ биекция G на $\phi(G)$, сохраняющая все операции группы; попутно мы выяснили, что $\phi(G)$ замкнуто относительно операций группы S_G , т.е. является подгруппой $\Rightarrow \phi$ изоморфизм

Инверсии и порождающие множества

- ullet Пусть $\sigma=(i_1,\ldots,i_n)$ перестановка в линейной записи
- ullet Пара индексов $k<\ell$ называется инверсией (в σ), если $i_k>i_\ell$
 - число инверсий inv(σ) важная характеристика перестановки
 - ullet особенно важна четность $inv(\sigma)$, называемая четностью перестановки
 - \star вспомните формулу определителя: $|A|=\sum\limits_{\sigma\in S_n}(-1)^{inv(\sigma)}a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}$
- Перестановка, меняющая местами два элемента, называется транспозицией
 - например, (1, 2, 5, 4, 3, 6)
 - ullet транспозиция имеет один цикл длины 2 и n-2 неподвижных точки
 - транспозиция нечетная перестановка (доказывалось в алгебре)
- Группа G порождается своим подмножеством X, если любой элемент из G можно получить из элементов множества X применением операций группы
 - ullet если G конечна, достаточно бинарной операции: $x^k=1\Rightarrow x^{-1}=x^{k-1}$

Теорема

Группа S_n порождается множеством всех транспозиций.

- возьмем произвольную $\sigma = (i_1, \dots, i_n)$ и применим сортировку пузырьком
- шаг сортировки переставляет два элемента (= умножение на транспозицию)
- ullet результатом сортировки является $\Delta=(1,\ldots,n)$
- \Rightarrow $\Delta = \sigma \circ \tau_1 \circ \cdots \circ \tau_k$, где все τ транспозиции
- $\tau_i^2 = \Delta \Rightarrow \tau_i^{-1} = \tau_i \Rightarrow \sigma = \tau_k \circ \cdots \circ \tau_1$

Действие перестановки

- Перестановкой из S_n можно подействовать на любое n-элементное множество A, если элементы A естественным образом линейно упорядочены
- Например, можно действовать перестановкой
 - на слово (через номера позиций)
 - на граф (через номера вершин)
 - на матрицу (через номера строк или столбцов)
- Для последовательности объектов (y_1,\ldots,y_n) результат $\sigma(y_1,\ldots,y_n)$ действия перестановки σ есть последовательность $(y_{\sigma^{-1}(1)},\ldots,y_{\sigma^{-1}(n)})$
 - определение гласит, что элемент с позиции i перемещается на позицию $\sigma(i)$ \Rightarrow элемент с позиции $\sigma^{-1}(1)$ перемещается на позицию $\sigma(\sigma^{-1}(1)) = 1$ и т.д.
- Пример: если $\sigma = (7, 6, 9, 3, 4, 5, 2, 1, 8)$, то $\sigma(\Pi O \Pi C T P O H A)$
 - \bullet тот же результат получится при $\sigma = (7, 2, 9, 3, 4, 5, 6, 1, 8)$
 - любая перестановка превращает слово в его анаграмму (и обратно: любая анаграмма слова получается из него действием некоторой перестановки)
- Перестановка $\theta \in S_n$ называется сортирующей для слова w длины n над упорядоченным алфавитом Σ , если $\theta(w)[i] \leqslant \theta(w)[j]$ для любых i < j
 - если $\theta=(6,4,2,8,9,7,5,3,1)$, то $\theta(\Pi O Д C T P O K A)=A Д K O O \Pi P C T \Rightarrow \theta$ сортирующая
 - \star если буквы в w повторяются, то сортирующая перестановка не единственна
- $\theta \in S_n$ стабильно сортирующая для w, если θ не меняет порядок равных букв
 - ullet для любых i < j таких, что w[i] = w[j], выполнено heta(w)[i] < heta(w)[j]
 - ⋆ стабильно сортирующая для w перестановка единственна
 - \star $\theta = (6,4,2,8,9,7,5,3,1)$ стабильно сортирующая для $w = \Pi O \Pi C T P O K A$

Преобразование Бэрроуза-Уилера

Camoe известное в современной Computer Science действие перестановки называется преобразованием Бэрроуза–Уилера (BWT)

- Взять слово w над упорядоченным алфавитом и выписать все |w| его циклических сдвигов в столбик, получив квадратную матрицу
- ullet Отсортировать строки матрицы лексикографически, получая матрицу T(w)
- Вернуть последний столбец матрицы (bwt(w))
 - ullet Каждая буква из w является последней ровно для одного циклического сдвига
 - \Rightarrow bwt(w) является анаграммой w
 - \Rightarrow bwt как функция является действием некоторой перестановки (зависящей от w)

Пусть K < O < P. Тогда

$$T(OKOPOK) = \begin{array}{c} K & O & K & O & P & O \\ K & O & P & O & K & O \\ O & K & O & K & O & P \\ O & K & O & P & O & K \\ \hline O & P & O & K & O & K \\ P & O & K & O & K & O \end{array}$$
bwt(OKOPOK) = OOPKKO

- BWT не биекция, например, bwt(OKOPOK) = bwt(POKOKO)
- Зная bwt(w) и номер строки в T(w), можно восстановить эту строку за линейное время, используя стабильную сортировку для bwt(w)
- Это обусловило широкое применение BWT для сжатия и индексирования данных