k-point convergence for monolayer 5x5x1 (GGA, ENCUT = 500 eV, projected WF, bands_CRPA = 3*bands_SCF)

1x1x1

dE = -3.4793

Final St	ate
WF 1	4.60272578
WF 2	4.26111616
hopping	parameters:
1 1 -0	0.735078
2 1 -1	.329239
1 2 -1	.329239
2 2 -2	2.979613
Eigenval	ues:
-3.59699	no intersite
-0.11770	hoppings

I	J	K	L	RE(V_IJKL)
1	1	1	1	6.9696557056
2	2	1	1	5.4432430445
2	1	2	1	0.2251331769
1	_	2	_	0.2251331769
2	1	1	2	0.2251331769
1	2	1	2	0.2251331769
1	1	2	2	5.4432430445
2	2	2	2	7.2543002885
I	J	K	L	RE(W_IJKL)
I 1	J 1	K 1	L 1	RE(W_IJKL) 3.8834473705
I 1 2	J 1 2	K 1 1	L 1 1	` —
I 1 2 2	1	K 1 1 2	L 1 1	3.8834473705
_	1 2	1	1 1	3.8834473705 3.3224451994
2	1 2 1	1 1 2	1 1 1	3.8834473705 3.3224451994 0.1013326771
2	1 2 1 2	1 1 2 2	1 1 1 1	3.8834473705 3.3224451994 0.1013326771 0.1013326771
2 1 2	1 2 1 2 1	1 1 2 2 1	1 1 1 1 2	3.8834473705 3.3224451994 0.1013326771 0.1013326771 0.1013326771
1 2 1 1	1 2 1 2 1 2	1 1 2 2 1 1 2	1 1 1 1 2 2	3.8834473705 3.3224451994 0.1013326771 0.1013326771 0.1013326771 0.1013326771

Energy: 0.0;
Energy: 2.846268 (3x);
Energy: 3.444549;
Energy: 6.765191

d(C-C) = 1.37(6,9) A d(C-B) = 1.50(6,7) Ad(C-N) = 1.4(07,11) A

Io.PM

$$d(C-C) = 1.37809 A$$

$$d(C-B) = 1.50708 A$$

$$d(C-N) = 1.40981 A$$

hopping, dE ok (0.03, 0.05 eV diff.)

	-2.51	-1.35
t =	-1.35	-0.24

eigenvalues -3.139, 0.389 -> dE -3.527

Added Madelung constant to just (mm|mm),(mm|nn).

PM

5 Co 3d orbitals of NbCo

"For this construction we used per spin channel six states per Co atom, i.e., five 3d states and one 4s state"

PBE

average Coulomb integrals

	Cluster	Bare (eV)	cRPA (eV)	RPA (eV)	ratio	
	literature	22.2	7.9	7.7	0.36	
,	mix first	22.91	8.77		0.38	
	37 orbs def2-tzvpdd			Co 3d [33 32 Co 4s [36]	31 34 35]	

my data

$$U(\omega) = [1 - vP_r(\omega)]v = \epsilon_r^{-1}v$$

$$\omega \rightarrow 0$$

$$U = \varepsilon^{-1} v \approx b^{T} (1 - i)^{-1} b + M b^{T} (1 - i)^{-1} b / (b^{T} b)$$

$$i_{PQ}=2\sum_{ia}p_{ai}\frac{b_{Pai}b_{Qai}}{\varepsilon_{i}-\varepsilon_{a}}$$
 density fitting basis: P,Q canonical: a,i localized: m,n

$$p_{ai} = 1 - \sum_{n} |U_{in}|^2 \sum_{m} |U_{am}|^2 = \text{probability of transition}$$

U is unitary matrix transforming from canonical to active, localized orbitals