Dynamical Systems Homework 2

February 6, 2025

Gabe Morris

```
[1]: # toc
import matplotlib.pyplot as plt

plt.style.use('../maroon_ipynb.mplstyle')
```

Contents

Problem 1	3
Given	Ş
Find	5
Solution	:
Part A	:

Problem 1

Given

A hydraulic power supply (comprising a motor-driven pump and a relief valve) has the pressure-flow characteristic plotted on the left below. It drives a positive displacement hydraulic motor which in turn rotates a shaft that drives some mechanical equipment. Frictional and leakage losses in the hydraulic motor may be neglected. The characteristics of the mechanical load are plotted on the right below.

Find

- a. Define key variables and place them on both the drawing and a bond-graph model of the system.
- b. Find the maximum possible speed of the load.
- c. Determine the volumetric displacement per revolution of the hydraulic motor.

Solution

Part A

In the above image, the source, S, causes a pressure difference, P_s , in the hydraulic rotary motor (the transformer T). This pressure difference causes a flow rate, Q, in the motor. The motor then

induces a moment, M_L , on a shaft connected to the mechanical load, R. This in turn causes the load to rotate at a speed, ω . The load also produces a resistant pressure, P_L , on the source. This ideal machine yields the following relationships:

$$P_s = TM_L$$

$$\omega = TQ$$