

Eidgenössisches Departement für Verteidigung, Bevölkerungsschutz und Sport VBS

armasuisse

Bundesamt für Landestopografie swisstopo

Näherungslösungen für die direkte Transformation CH1903 ⇔ WGS84

Diese Formeln sind vor allem für Navigationszwecke vorgesehen.

Diese Formeln dürfen nicht für die amtliche Vermessung oder für geodätische Anwendungen verwendet werden!

Oktober 2005

Näherungsformeln für die direkte Umrechnung von: ellipsoidischen WGS84-Koordinaten (ϕ , λ , h)

⇒ Schweizer Projektionskoordinaten (y, x, h')

(Genauigkeit im 1-Meter-Bereich)

nach: [H. Dupraz, Transformation approchée de coordonnées WGS84 en coordonnées nationales suisses, IGEO-TOPO, EPFL, 1992]

Die Parameter wurden von U. Marti (Mai 1999) neu berechnet. Zudem wurden die Einheiten so angepasst, dass sie mit den Formeln aus [Bolliger 1967] vergleichbar werden.

- 1. Breite φ und Länge λ sind in Sexagesimalsekunden ["] umzuwandeln
- 2. Hilfsgrössen (Breiten- und Längendifferenz gegenüber Bern in der Einheit [10000"]) berechnen:

$$\varphi' = (\varphi - 169028.66 ")/10000$$

 $\lambda' = (\lambda - 26782.5 ")/10000$

3.
$$y [m] = 600072.37$$

 $+ 211455.93$ * λ '
 $- 10938.51$ * λ ' * ϕ '
 $- 0.36$ * λ ' * ϕ '²
 $- 44.54$ * λ '³

$$x [m] = 200147.07$$
 $+ 308807.95$ * ϕ '
 $+ 3745.25$ * λ '²
 $+ 76.63$
 $- 194.56$ * λ '² * ϕ '
 $+ 119.79$ * ϕ '³

$$h' [m] = h - 49.55$$
 $+ 2.73$ * λ '
 $+ 6.94$ * ϕ '

gegeben:
$$\phi = 46^{\circ} \ 2' \ 38.87"$$
 $\lambda = 8^{\circ} \ 43' \ 49.79"$ $h = 650.60 \ m$ \Rightarrow $\phi' = -0.326979$ $\lambda' = 0.464729$ \Rightarrow $y = 699 \ 999.76 \ m$ $x = 99 \ 999.97 \ m$ $h' = 600.05 \ m$ aus NAVREF: $y = 700 \ 000.0 \ m$ $x = 100 \ 000.0 \ m$ $h' = 600 \ m$

Diese Näherungen sind für die ganze Schweiz besser als 1 Meter in der Lage und 0.5 Meter in der Höhe.

Bemerkung zu den Höhen:

In diesen Formeln wird davon ausgegangen, dass mit ellipsoidischen Höhen gearbeitet wird, wie sie z.B. mit GPS-Messungen erhalten werden. Wird mit 'Höhen über Meer' gearbeitet, so sind die Höhen im Meterbereich in beiden Systemen gleich. Sie müssen also in diesem Fall nicht umgerechnet werden.

Näherungsformeln für die direkte Umrechnung von: Schweizer Projektionskoordinaten (y, x, h') ⇒ ellipsoidische WGS84-Koordinaten (φ, λ, h)

(Genauigkeit im 0.1"-Bereich)

Es handelt sich dabei um eine Herleitung von U. Marti vom Mai 1999, basierend auf den Formeln aus [Bolliger, 1967]

1. Die Projektionskoordinaten y (Rechtswert) und x (Hochwert) sind ins zivile System (Bern = 0 / 0) und in die Einheit [1000 km] umzuwandeln:

2. Länge und Breite in der Einheit [10000"] berechnen:

$$\lambda' = 2.6779094 \\ + 4.728982 * y' \\ + 0.791484 * y' * x' \\ + 0.1306 * y' * x'^2 \\ - 0.0436 * y'^3$$

$$\phi' = 16.9023892 \\ + 3.238272 * x' \\ - 0.270978 * y'^2 \\ - 0.002528 * x'^2 \\ - 0.0447 * y'^2 * x' \\ - 0.0140 * x'^3$$

$$h [m] = h' + 49.55 \\ - 12.60 * y' \\ - 22.64 * x'$$

3. Umrechnen der Länge und Breite in die Einheit [°]

$$\lambda = \lambda' * 100 / 36$$

 $\phi = \phi' * 100 / 36$

4. Zahlenbeispiel

gegeben:
$$y = 700\ 000\ m$$
 $x = 100\ 000\ m$ $h' = 600\ m$ \Rightarrow $y' = 0.1$ $x' = -0.1$ \Rightarrow $\lambda' = 3.14297976$ $\phi' = 16.57588564$ $h = 650.55\ m$ \Rightarrow $\lambda = 8^{\circ}\ 43'\ 49.80''$ $\phi = 46^{\circ}\ 02'\ 38.86''$ aus NAVREF: $\lambda = 8^{\circ}\ 43'\ 49.79''$ $\phi = 46^{\circ}\ 02'\ 38.87''$ $h = 650.60\ m$

Diese Näherungen sind für die ganze Schweiz besser als 0.12" in der Länge, 0.08" in der Breite und 0.5 Meter in der Höhe.

Bemerkung zu den Höhen:

In diesen Formeln wird davon ausgegangen, dass mit ellipsoidischen Höhen gearbeitet wird, wie sie z.B. mit GPS-Messungen erhalten werden. Wird mit 'Höhen über Meer' gearbeitet, so sind die Höhen im Meterbereich in beiden Systemen gleich. Sie müssen also in diesem Fall nicht umgerechnet werden.