Wahrscheinlichkeitsrechnung

Silke Bott

Sommersemester 2023

Definition

Eine Menge ist eine Zusammenfassung M von bestimmten wohlunterschiedenen Objektem m, genannt die Elemente von M, unseres Anschauungsraums oder unseres Denkens zu einem Ganzen.

Ist m ein Element von M, so schreiben wir $m \in M$, andernfalls schreiben wir $m \notin M$. Für jedes Objekt m unserer Anschauung und jede Menge M gilt also genau entweder $m \in M$ oder $m \notin M$, nicht aber beides.

Definition

Die *Schnittmenge* von A und B, geschrieben $A \cap B$ besteht aus den Elementen von M, die sowohl in A als auch in B sind:

$$A \cap B = \{x \in M | x \in A \text{ und } x \in B\}$$

Falls $A \cap B = \emptyset$, so nennen wir A und B disjunkt.

Definition

Die Vereinigungsmenge von A und B, geschrieben $A \cup B$ besteht aus den Elementen von M, die entweder in A oder in B sind:

$$A \cup B = \{x \in M | x \in A \text{ oder } x \in B\}$$

Bemerkung

Ist $A \subseteq B$ so gilt

$$A \cup B = B$$
$$A \cap B = A$$

Satz

Für Teilmengen $A, B, C \subseteq \Omega$ einer Grundmenge Ω gilt

Kommutativgesetz $A \cup B = B \cup A$

 $A \cap B = B \cap A$

Assoziativgesetz $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

Verschmelzungsgesetz $A \cap (A \cup B) = A$

 $A \cup (A \cap B) = A$

Distributivgesetz

Übung

Welche der folgenden Aussagen sind richtig für Mengen A B und C, welche sind falsch?

- $(A \cap B) \cap (C \cup B) = A \cap B.$
- $(A \cup B) \cup (B \cap C) = A \cup B.$

Lösung:

- $(A \cap B) \cap (C \cup B) = A \cap B \text{ ist richtig.}$
- $(A \cup B) \cup (B \cap C) = A \cup B \text{ ist richtig.}$

Definition

Die *Differenzmenge* von B und A, geschrieben $B \setminus A$ besteht aus den Elementen von Ω , die in B aber nicht in A sind:

$$B \setminus A = \{x \in \Omega | x \in B \text{ und } x \notin A\}$$

Falls $A \subseteq B$ nennen wir $B \setminus A$ auch das *Komplement* von A in B und schreiben hierfür \overline{A}^B . Falls $B = \Omega$, schreiben wir hierfür auch kurz \overline{A} und nennen es das Komplement von A.

Regel

Für eine Teilmenge $A \subseteq \Omega$ gilt:

- $\bullet \ \overline{\overline{A}} = A.$

- $\mathbf{0} \ \overline{\emptyset} = \mathbf{\Omega}$

Übung

Welche der folgenden Aussagen ist korrekt?

Lösung:

- $A \setminus (B \cup C) = A \setminus B \cap A \setminus C \text{ ist richtig.}$

Mit $\mathfrak{P}(\Omega)$ bezeichnen wir die Potenzmenge von Ω , also die Menge aller Teilmengen von Ω :

$$\mathfrak{P}(\Omega) = \{A | A \subseteq \Omega\}$$

Definition

Eine Teilmenge $\mathfrak{A}\subseteq\mathfrak{P}(\Omega)$ heißt *Mengenalgebra* (auf Ω), wenn gilt:

- $2 A \in \mathfrak{A} \Longrightarrow \overline{A} \in \mathfrak{A}.$

Regel

Für jede Mengenalgebra $\mathfrak A$ auf Ω gilt:

- i) $\emptyset \in \mathfrak{A}$ und $\Omega \in \mathfrak{A}$.
- ii) Sind A, B in \mathfrak{A} , so auch $A \cap B$.
- iii) Sind A, B in \mathfrak{A} , so auch $A \setminus B$.
- iv) Sind A_1, \ldots, A_n in $\mathfrak A$ so auch $A_1 \cup \cdots \cup A_n$ und $A_1 \cap \cdots \cap A_n$.

Beispiel

 $\mathfrak{A} = \{\emptyset, \Omega\}$ ist eine Mengenalgebra (triviale Mengenalgebra).

Beispiel

 $\mathfrak{P}(\Omega)$ ist eine Mengenalgebra

Beispiel

Ist $\Omega = \{1, 2, 3, 4\}$, so ist

$$\mathfrak{A} = {\emptyset, {1}, {2, 3, 4}, {1, 2, 3, 4}}$$

eine Mengenalgebra.

Beispiel

Wir betrachten $\Omega = \mathbb{R}$ und das Mengensystem

$$\mathfrak{A} = \{ M \subseteq \mathbb{R} | M \text{ ist endlich oder } \overline{M} \text{ ist endlich} \}$$

Dann ist $\mathfrak A$ eine Mengenalgebra.

Die Bedingungen (1) und (2) sind dabei offensichtlich.

Bedingung (3) ergibt sich durch Fallunterscheidung.

Übung

Wir betrachten $\Omega = \{1, 2, 3, 4, 5, 6\}$ und

$$\mathfrak{A} = \{\emptyset, \{1\}, \{2, 3, 4, 5, 6\}, \{6\}, \{1, 2, 3, 4, 5\}, \Omega\}$$

Überprüfen Sie, ob $\mathfrak A$ eine Mengenalgebra ist.

Lösung:

 ${\mathfrak A}$ ist keine Mengenalgebra, denn $\{1\}\in {\mathfrak A}$ und $\{6\}\in {\mathfrak A}$, aber

$$\{1\} \cup \{6\} = \{1,6\} \notin \mathfrak{A}$$

Definition

Eine Teilmenge $\mathfrak{A} \subseteq \mathfrak{P}(\Omega)$ heißt σ -Algebra (auf Ω), wenn gilt:

Ein $A \in \mathfrak{A}$ heißt *Ereignis*.

Regel

Für eine σ -Algebra $\mathfrak A$ gilt

- i) A ist eine Mengenalgebra.
- ii) $\emptyset \in \mathfrak{A}$ und $\Omega \in \mathfrak{A}$.
- iii) Sind A, B in \mathfrak{A} , so auch $A \setminus B$.
- iv) Sind $A_n \in \mathfrak{A}$ für alle $n \in \mathbb{N}$, so ist auch $\bigcap_{n \in \mathbb{N}} A_n \in \mathfrak{A}$.

Definition

Eine Paar (Ω, \mathfrak{A}) , bestehend aus einer Menge Ω und einer σ -Algebra \mathfrak{A} auf Ω heißt *Messraum*.

Beispiel

 $\mathfrak{A} = \{\emptyset, \Omega\}$ ist eine σ -Algebra (triviale σ -Algebra).

Beispiel

 $\mathfrak{P}(\Omega)$ ist eine σ -Algebra.

Beispiel

Ist $\Omega = \{1, 2, 3, 4\}$, so ist

$$\mathfrak{A} = \{\emptyset, \{1\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}\$$

eine σ -Algebra.

Regel

Ist Ω eine endliche Menge, so ist jede Mengenalgebra auf Ω schon eine σ -Algebra.

Übung

Wir betrachten $\Omega=\mathbb{R}$ und das Mengensystem

$$\mathfrak{A} = \{ M \subseteq \mathbb{R} | M \text{ ist endlich oder } \overline{M} \text{ ist endlich} \}$$

Ist \mathfrak{A} eine σ -Algebra?

Lösung:

 \mathfrak{A} ist keine σ -Algebra, denn $A_n = \{n\} \in \mathfrak{A}$, aber

$$\bigcup_{n\in\mathbb{N}}A_n=\mathbb{N}\notin\mathfrak{A}$$

Beispiel

Wir betrachten $\Omega=\mathbb{R}$ und das Mengensystem

$$\mathfrak{A} = \{M \subseteq \mathbb{R} | M \text{ ist abz\"{a}hlbar oder } \overline{M} \text{ ist abz\"{a}hlbar}\}$$

Dann ist \mathfrak{A} eine σ -Algebra.

Beachten Sie dabei:

Die abzählbare Vereinigung abzählbarer Mengen ist wieder abzählbar (Cantorscher Abzähltrick).

Zur Erinnerung:

endlich: $\Omega = \omega_1, \omega_2, ..., \omega_n$

unendlich: $\Omega = \mathbb{N}$ (abzählbar, weil durchnummerierbar)

unendlich: $\Omega = \mathbb{R}$ (überabzählbar)

Definition

Eine Abbildung $p: \mathfrak{A} \longrightarrow \mathbb{R}$ heißt Wahrscheinlichkeitsmaß oder eine Wahrscheinlichkeit auf (Ω, \mathfrak{A}) , wenn sie die Axiome von Kolmogoroff erfüllt:

- (K1) $p(A) \ge 0$ für alle $A \in \mathfrak{A}$.
- (K2) $p(\Omega) = 1$.
- (K3) Sind $A_n \in \mathfrak{A}$ paarweise disjunkt (also $A_n \cap A_m = \emptyset$ für $m \neq n$), so gilt

$$p\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}p\left(A_n\right)$$

Definition

Ein Wahrscheinlichkeitsraum ist ein Tripel

$$(\Omega, \mathfrak{A}, p)$$

bestehend aus einer Grundmenge Ω , einer σ -Algebra $\mathfrak A$ auf Ω (also einem Messraum $(\Omega, \mathfrak A)$) und einer Wahrscheinlichkeit p auf $(\Omega, \mathfrak A)$.

Beispiel

Wir betrachten $\Omega = \{1, 2, 3, 4, 5, 6\}$ mit der σ -Algebra $\mathfrak{A} = \mathfrak{P}(\Omega)$ und definieren für ein Teilmenge $A \subseteq \Omega$:

$$p(A) = \frac{|A|}{6}$$

Dann ist p eine Wahrscheinlichkeit auf (Ω, \mathfrak{A}) . Dieses Wahrscheinlichkeitsmaß beschreibt die Wahrscheinlichkeit mit einem (ungezinkten) Würfel eine bestimmte Zahl zu würfeln. Hierfür gilt

$$p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = \frac{1}{6}$$

Jede Zahl ist also gleichwahrscheinlich.

Beispiel

Wir betrachten $\Omega = \{k, z\}$ (den Ereignisraum für einen Münzwurf) mit der σ -Algebra

$$\mathfrak{A} = \mathfrak{P}(\Omega) = \{\emptyset, \{z\}, \{k\}, \{z, k\}\}\$$

und definieren

$$p(\emptyset) = 0, \quad p(z) = \frac{1}{2}, \quad p(k) = \frac{1}{2}, \quad p(\{k, z\}) = 1.0$$

Dann ist p eine Wahrscheinlichkeit auf (Ω, \mathfrak{A}) . Dieses

Wahrscheinlichkeitsmaß beschreibt die Wahrscheinlichkeit eines Wurfes mit einer fairen Münze.

Hierfür ist jede Seite gleichwahrscheinlich.

Übung

Wir betrachten $\Omega=\{1,2\}$ mit der σ -Algebra $\mathfrak{A}=\mathfrak{P}(\Omega)$ und definieren

$$p(\emptyset) = 0.1, \quad p(1) = 0.5, \quad p(2) = 0.5, \quad p(\{1, 2\}) = 1$$

Ist p eine Wahrscheinlichkeit auf Ω ?

Lösung:

Dieses p ist kein Wahrscheinlichkeitsmaß auf Ω .

Übung

Wir betrachten $\Omega=\{1,2\}$ mit der σ -Algebra $\mathfrak{A}=\mathfrak{P}(\Omega)$. Untersuchen Sie, ob durch

$$p(\emptyset) = 0$$
, $p(1) = 0.7$, $p(2) = 0.4$, $p(\{1,2\}) = 1.0$

eine Wahrscheinlichkeit auf Ω definiert wird.

Lösung:

Dieses p ist kein Wahrscheinlichkeitsmaß auf Ω .

Regel

Für eine Wahrscheinlichkeit p auf (Ω, \mathfrak{A}) gilt:

- $0 \le p(A) \le 1$ für alle $A \in \mathfrak{A}$.
- **2** $p(\emptyset) = 0$.

- **5** $p(A \cup B) = p(A) + p(B) p(A \cap B)$.

Übung

Wir betrachten $\Omega=\{1,2,3\}$ mit der σ -Algebra $\mathfrak{A}=\mathfrak{P}(\Omega)$. Untersuchen Sie, ob es eine Wahrscheinlichkeit auf Ω gibt, für die gilt

$$p({1,2}) = 0.7$$
, $p({1,3}) = 0.8$, $p({2,3}) = 0.6$

Ist p eine Wahrscheinlichkeit auf Ω ?

Lösung:

Dieses p ist kein Wahrscheinlichkeitsmaß auf Ω .

Bemerkung

Ist Ω endlich, so wollen wir in der Regel die Potenzmenge als σ -Algebra auf Ω betrachten.

Ist $\Omega = \{\omega_1, \dots, \omega_n\}$, so heißen die $\{\omega_i\}$ auch die Elementarereignisse von Ω , und wir schreiben kurz p_{ω} für $p(\{\omega\})$.

Bemerkung

Ist Ω endlich, so ist

$$p(A) = \frac{|A|}{|\Omega|}$$
 für $A \subseteq \Omega$

eine Wahrscheinlichkeit auf Ω . Dieses Wahrscheinlichkeitsmaß heißt Laplace-Maß oder Laplace-Wahrscheinlichkeit auf Ω .

