Измерение энергии активации.

12 сентября 2022 г.

1.Аннотация.

В работе измеряются величины остаточной индукции магнитного поля B_r , коэрцитивной силы H_c , амплитуда магнитной индукции B_s и напряжённости магнитного поля H_s предельной петли гистерезиса для ферромагнитных образцов из трёх различных матеиалов: феррита, пермаллоя и кремнистого железа — тороидной формы. Для измерений используются фигуры лиссажу, получаемые при помои электронного осциллографа, подключённого к установке, возбуждающей колебания. Схему установки см. на рис. 1.

TODO: рис.1

2. Теоретическое введение.

Для нахождения напряжённости поля в образце воспользуемся формулой, следующей из теоремы о циркуляции:

$$H = \frac{IN_0}{2\pi R},\tag{1}$$

где I — величина намагничивающего тока, N_0 — число витков в намагничивающей обмотке, а R — средний радиус тора.

Намагничивающий ток измеряется при помощи ЭО с использованнем закона Ома (см. рис. 1). Окончательно, исходя из 1, получим

$$H = \frac{U_X N_0}{2\pi R R_0},\tag{2}$$

Методика измерения магнитной индукции в образце основывается на формуле

$$B = \frac{R_i C_i}{SN_i} U_{out},\tag{3}$$

где $U_{out} = U_Y$ — выходное напряжение интегрирующей ячейки, R_i и C_i — её сопротивление и ёмкость соответственно, S — площадь поперечного сечения образца, а N_i — число витков в его вторичной обмотке.

Подключая U_X и U_Y к соответствующим каналам удаётся получить на экране осциллографа петлю гистерезиса. Для измеренияеё параметров используется сетка на экране.

Для калибровки масштаба шкал осциллографа в случае оси X используется синусоидальный ток эффективное значение которого I_{eff} измеряется независимо при помощи цифрового амперметра, пропускаемый через известное сопротивление R_0 (катушка образца на время калибровки закорачивалась). Рабочая формула в этом случае:

$$K_X = \frac{2R_0\sqrt{2}I_{eff}}{2x},\tag{4}$$

где K_X — масштаб по оси X, а 2x — длина горизонтального отрезка на экране. В случае же оси Y было произведено независимое (при помощи цифрового вольтметра и Θ) измерение синусоидаль напряжения на клеммах "1/100"и "общий" делителя напряжений (см. рис. 1) (измерения также

проводятся без подключения образца). Рабочая формула в этом случае:

$$K_Y = \frac{2\sqrt{2}U_{eff}}{2y},\tag{5}$$

где K_Y — измеряемый масштаб, U_{eff} — эффиктивное напряжение, измеряемое вольтметром, а 2y — длина вертикаьльного отрезка на экране осциллографа.

Для выяснения характерного времени разрядки конденсатора интегрирующей ячейки воспользуемся формулой $\tau_i=C_iR_i$. Параметры C_i и R_i указаны на установке. Подставляя их в формулу находим, что $\tau\gg\frac{1}{\omega}$, где ω — частота напряжения, указанная на установке. Используемые значения: $R_i=20$ кОм, $C_i=20$ мкФ $\omega=50$ Гц

3.Приборы и материалы

Указанные на установке параметры представлены в таблице

Таблица 1: Параметры измерительной установки, согласно маркировке

R_0 , Om	R_i , кОм	C_i , мк Φ
0,22	20	20

В следующей таблице указаны параметры используемых образцов

Таблица 2: Параметры используемых образцов, согласно маркировке

Материал	N_0 , iiit	N_i , iiit	S, cm ²	$2\pi R$, cm
Феррит	42	400	30	25
Пермаллой	20	400	0,76	13,3
Кремнистое железо	25	250	25	11

4. Результаты измерений и обработка данных.

Полученные результаты измерений представлены ниже. Под K_X и K_Y понимается масштаб соответствующей оси осциллографа, согласно значениям на ручках прибора.

Таблица 3: Измеренные значения напряжения

Материал	<i>h</i> , дел	$K_Y, \frac{MB}{AB}$	w, дел	K_X , $\frac{MB}{AB}$	$2X_c$, дел	$K_X, \frac{MB}{AEA}$	Y_r , дел	$K_Y, \frac{\text{мB}}{\text{дел}}$
Феррит	40	20	37	200	30	10	31	10
Пермаллой	20	50	10	50	46	10	18	50
Кремнистое железо	25	50	36	200	32	20	24	20

В таблице ниже представлены значения, полученные при калибровке Θ О. Под K_X и K_Y понимается масштаб соответствующей оси осциллографа, согласно значениям на ручках прибора.

Таблица 4: Измеренные значения напряжения

$K_X, \frac{MB}{AB}$	I_{eff} , MA	$K_Y, \frac{MB}{AB}$	U_{eff} , м ${ m B}$
20	306	50	136
10	152	20	55
200	1550	10	27

TODO: Таблица с рассчитанными индукциями и на-

пряжённостями ТОDO: Таблица с рассчитанными масштабами осциллографа

5.Обсуждение результатов и выводы ТОДО: Вывод