Esercitazione Octave

K-Nearest Neighbours

Intro

L'algoritmo K-Nearest Neighbours (K-NN) è un algoritmo di classificazione, cioè dato un elemento in input associa la classe di appartenenza. L'algoritmo si basa su una logica molto semplice. Dato un insieme di dati già classificato:

- o viene calcolata la distanza fra il punto da classificare ed ogni punto del set di dati noto
- o vengono presi i K elementi più vicini (dove K è un parametro dell'algoritmo configurabile)
- o viene assegnata come classe di appartenenza la più ricorrente.

Nell'esempio in figura, dato il punto da classificare (indicato con il triangolo in rosso):

- per K=8 vengono presi gli 8 elementi più vicini
- viene assegnata la classe Y perché più ricorrente in questo sottoinsieme
- o per K=16 vengono presi i 16 elementi più vicini
- viene assegnata la classe X perché più ricorrente in questo sottoinsieme

Questo algoritmo, concettualmente molto semplice, può essere utilizzato per classificare le malattie al cuore. (See more)

Prerequisiti

In questa esercitazione avremo due set di dati, entrambi classificati, utilizzeremo uno di questi come set noto (training set) e l'altro come set da classificare (test set). Utilizzeremo dunque la classe del test set per verificare la corretta classificazione di ogni elemento.

Ogni elemento da classificare è caratterizzato da 2 coordinate (x, y) ed un terzo elemento che indica la classe di appartenenza (che può valere 1 o 2).

Implementazione

Per implementare l'algoritmo esegui i seguenti passi:

- 1. Calcolare la distanza euclidea fra il punto del test set ed ogni punto del training set.
- 2. Ordinare il vettore delle distanze in ordine crescente
- 3. Scegliere un valore per K
- 4. Prendere le classi dei K elementi più vicini
- 5. Trovare la classe più frequente. Hint: utilizza la funzione mode()

Nota: i punti 1-4 sono uguali all'esercitazione precedente.

Una volta classificato l'elemento verificare che la classe sia corretta e calcolare l'accuratezza dell'algoritmo:

$$accuracy = \frac{hits}{\#elements}$$

Per disegnare il test set in un grafico potete usare i seguenti comandi

```
figure
scatter(train(:,1), train(:,2), 50, train(:,3), 'Filled')
colormap(jet(size(knnClassify2dTrain,1)))
grid on
```

Approfondimento

Calcola e riporta su un grafico l'andamento dell'accuratezza dell'algoritmo al variare di K. Per disegnare il grafico richiesto utilizzare la funzione <u>plot()</u>.