Split Principles

Kaethe Minden (joint with Gunter Fuchs)

Graduate Center, CUNY

Joint Mathematics Meetings 7 January 2017

κ -Split

Split principles are "anti-large cardinal axioms" which characterize the failure of a regular cardinal to satisfy certain large cardinal properties.

Let κ be a cardinal. We shall refer to a sequence of the form $\langle d_{\alpha} \mid \alpha < \kappa \rangle$ as a κ -*list* if for all $\alpha < \kappa$, $d_{\alpha} \subseteq \alpha$.

Definition (The original split principle)

A κ -list $\vec{d} = \langle d_{\alpha} \mid \alpha < \kappa \rangle$ splits unbounded sets so long as for every unbounded $A \subseteq \kappa$ there is a $\beta < \kappa$ which splits A (with respect to \vec{d}); i.e. both

$$A_{\beta}^{+} := \{ \alpha \in A \mid \beta \in d_{\alpha} \} \text{ and } A_{\beta}^{-} := \{ \alpha \in A \mid \beta \notin d_{\alpha} \}$$

are unbounded in κ .

If there is a κ -list that splits unbounded sets, then we say that κ -Split holds.

Kaethe Minden Split Principles JMM 2 / 12

Weakly compact cardinals

It turns out that for regular κ , the properties of a κ -list splitting unbounded sets and having a cofinal branch are complementary.

Definition

A κ -list $\vec{d} = \langle d_{\alpha} \mid \alpha < \kappa \rangle$ has a **cofinal branch** so long as there is a $b \subseteq \kappa$ such that for all $\gamma < \kappa$ there is an $\alpha \geq \gamma$ such that

$$d_{\alpha} \cap \gamma = b \cap \gamma$$
.

We say that the branch property $BP(\kappa)$ holds if every κ -list has a cofinal branch.

Theorem

Let κ be regular. Then κ -Split $\iff \neg BP(\kappa) \iff \kappa$ is not weakly compact.

Kaethe Minden Split Principles JMM 5 / 12

Ineffable cardinals

Definition

A κ -list $\vec{d} = \langle d_{\alpha} \mid \alpha < \kappa \rangle$ has an *ineffable branch* so long as there is $b \subseteq \kappa$ and a stationary $S \subseteq \kappa$ such that for all $\alpha \in S$,

$$d_{\alpha} = b \cap \alpha$$
.

We say that κ has the ineffable branch property, or IBP(κ) holds, if every κ -list has an ineffable branch. A regular cardinal κ is *ineffable* if every κ -list has an ineffable branch (IBP(κ) holds).

We have the following: $\mathsf{IBP}(\kappa) \Longrightarrow \mathsf{BP}(\kappa)$. In particular, ineffable cardinals are weakly compact.

Kaethe Minden Split Principles JMM 6 / 12

Definition

A κ -list $\vec{d} = \langle d_{\alpha} \mid \alpha < \kappa \rangle$ *splits stationary sets* so long as for every stationary $S \subseteq \kappa$ there is $\beta < \kappa$ which splits S, i.e. both

$$\mathcal{S}_{\beta}^{+}:=\{\alpha\in\mathcal{S}\mid\beta\in\mathcal{d}_{\alpha}\}\ \text{and}\ \mathcal{S}_{\beta}^{-}:=\{\alpha\in\mathcal{S}\mid\beta\notin\mathcal{d}_{\alpha}\}$$

are unbounded in κ .

We say that κ -SSplit holds so long as there is a κ -list which splits stationary sets.

Theorem

Let κ be regular. Then κ -SSplit $\iff \kappa$ is not ineffable.

Splitting subsets of $\mathcal{P}_{\kappa}\lambda$

Definition

Let κ and λ be regular cardinals. A $\mathcal{P}_{\kappa}\lambda$ -list $\vec{d} = \langle d_x \mid x \in \mathcal{P}_{\kappa}\lambda \rangle$ (satisfying $d_x \subseteq x$) is said to **split unbounded sets** if for every unbounded $A \subseteq \mathcal{P}_{\kappa}\lambda$ there is $\beta < \lambda$ which splits A, ie. both

$$A_{\beta}^{+}:=\{x\in A\mid \beta\in d_{x}\} \text{ and } A_{\beta}^{-}:=\{x\in A\mid \beta\notin d_{x}\}$$

are unbounded in $\mathcal{P}_{\kappa}\lambda$.

If there is a $\mathcal{P}_{\kappa}\lambda$ -list which splits unbounded sets, then $\mathcal{P}_{\kappa}\lambda$ -Split holds.

A $\mathcal{P}_{\kappa}\lambda$ -list $\vec{d}=\langle d_x\mid x\in\mathcal{P}_{\kappa}\lambda\rangle$ is said to *split stationary sets* if for every stationary $S\subseteq\mathcal{P}_{\kappa}\lambda$ there is $\beta<\lambda$ which splits S, ie. both

$$S_{\beta}^{+} := \{ x \in S \mid \beta \in d_{x} \} \text{ and } S_{\beta}^{-} := \{ x \in S \mid \beta \notin d_{x} \}$$

are unbounded in $\mathcal{P}_{\kappa}\lambda$.

If there is a $\mathcal{P}_{\kappa}\lambda$ -list which splits stationary sets, then $\mathcal{P}_{\kappa}\lambda$ -SSplit holds.

Large cardinal characterizations

Theorem

Let κ be regular. Then

- κ is not weakly compact $\iff \kappa$ -Split holds.
- κ is not ineffable $\iff \kappa$ -SSplit holds.
- κ is not λ -ineffable $\iff \mathcal{P}_{\kappa}\lambda$ -SSplit holds.
- κ is not supercompact \iff for unboundedly many λ , $\mathcal{P}_{\kappa}\lambda$ -SSplit holds.

Question

What about $\mathcal{P}_{\kappa}\lambda$ -Split?

Strong/Cofinal Branches

Definition

Let $\vec{d} = \langle d_x \mid x \in \mathcal{P}_{\kappa} \lambda \rangle$ be a $\mathcal{P}_{\kappa} \lambda$ -list. A set $B \subseteq \lambda$ is a **cofinal branch** through \vec{d} so long as for all $x \in \mathcal{P}_{\kappa} \lambda$, there is some $y \in \mathcal{P}_{\kappa} \lambda$ with $y \supseteq x$ such that

$$d_y \cap x = B \cap x$$
.

The **branch property** BP(κ, λ) holds iff every $\mathcal{P}_{\kappa}\lambda$ -list has a cofinal branch.

A cofinal branch B is **strong** if there is an unbounded set $U \subseteq \mathcal{P}_{\kappa}\lambda$ satisfying that for all $x \in \mathcal{P}_{\kappa}\lambda$ there is a $y \supseteq x$ such that for all $z \supseteq y$ with $z \in U$,

$$d_z \cap x = B \cap x$$
.

If every $\mathcal{P}_{\kappa}\lambda$ -list has a strong branch, then the *strong branch property* SBP (κ,λ) holds.

$\mathcal{P}_{\kappa}\lambda$ -Split

Theorem

Let κ be regular. then $\mathcal{P}_{\kappa}\lambda$ -Split $\iff \neg \mathsf{SBP}(\kappa, \lambda)$.

Observation

If $\mathcal{P}_{\kappa}\lambda$ -Split fails for every λ , then κ is strongly compact (i.e. BP(κ, λ) holds).

Questions

- Can there be a $\mathcal{P}_{\kappa}\lambda$ -list that has a cofinal branch but no strong branch?
- ullet How can the failure of BP(κ, λ) be characterized via split principles?

Thank you.