Statsignment Broject Example by Sis

Part 5 – Wird: Epping denot marrowing Add WeChat powcoder

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Interval analysis

- Compute upper and lower bounds for integers
- Possible applications:
 - array bounds checking
 Assignment Project Exam Help
 integer representation

 - https://powcoder.com
- Lattice of intervals: WeChat powcoder Intervals = $lift(\{ [l, h] | l, h \in N \land l \leq h \})$

where

$$N = \{-\infty, ..., -2, -1, 0, 1, 2, ..., \infty\}$$

and intervals are ordered by inclusion:

$$[l_1, h_1] \sqsubseteq [l_2, h_2]$$
 iff $l_2 \le l_1 \land h_1 \le h_2$

The interval lattice

Interval analysis lattice

The total lattice for a program point is

 $Vars \rightarrow Intervals$

that provides ignings for each tinteger yariable

- If using the worklist $\frac{1}{2}$ $\frac{1}{2}$
 - bottom value of lift(Are 1 lift(I reg(s) regresorts (unread lep le program point"
 - bottom value of Vars → Intervals represents "maybe reachable, but all variables are non-integers"

This lattice has infinite height, since the chain

 $[0,0] \sqsubseteq [0,1] \sqsubseteq [0,2] \sqsubseteq [0,3] \sqsubseteq [0,4] \dots$

occurs in Intervals

Interval constraints

For assignments:

$$[x = E] = Signment Project [Exam] Help$$

https://powcoder.com

For all other nodes:
 Add WeChat powcoder
 [v] = JOIN(v)

where
$$JOIN(v) = \bigsqcup [w]_{w \in pred(v)}$$

Evaluating intervals

- The eval function is an abstract evaluation:
 - $eval(\sigma, x) = \sigma(x)$
 - eval(σ, interint Project texast) Help
 - $eval(\sigma, E_1 \text{ op } E_2) = \overline{\text{op}}(eval(\sigma, E_1), eval(\sigma, E_2))$ https://powcoder.com
- Abstract operators:
 - $-\overline{op}([l_1, h_1], [Add] \underline{WeChat powcoder}^{not trivial to implement!}$ $[\underset{x \in [l_1, h_1], y \in [l_2, h_2]}{min} \underset{x \in [l_1, h_1], y \in [l_2, h_2]}{xop y}$

Fixed-point problems

- The sequence of approximants.com

 fi(\(\pm\)) for i = 0, 1.

 Add WeChat powcoder is not guaranteed to converge
- (Exercise: give an example of a program where this happens)

- Restricting to 32 bit integers is not a practical solution
- Widening gives a useful solution...

Does the least fixed point exist?

- The lattice has infinite height, so Kleene's fixed-point theorem does not apply ⁽²⁾
 Assignment Project Exam Help
- Tarski's fixed-point theorem:com

Add WeChat powcoder In a complete lattice L, every monotone function $f: L \to L$ has a unique least fixed point given by $Ifp(f) = \prod\{x \in L \mid f(x) \sqsubseteq x\}$

(Proof?)

Widening

• Introduce a *widening* function $\omega: L \to L$ so that

(\oof)\(\frac{1}{4}\)signinent Project Exam Help

converges on affixed pointed at comparation of each fill powcoder

• i.e. the function ω coarsens the information

Turbo charging the iterations

Simple widening for intervals

- The function ω: L → L is defined pointwise on L = (Vars → Intervals)ⁿ
- Parameterized with a fixed finite set B
 Assignment Project Exam Help
 — must contain ∞ and ∞ (to retain the T element)
 - typically seedettpwithpowntegterconstants occurring in the given program
- Idea: Find the nearest enclosing allowed interval
- On single elements from *Intervals*:

$$\omega([a, b]) = [\max\{i \in B | i \le a\}, \min\{i \in B | b \le i\}]$$

$$\omega(\bot) = \bot$$

$$\frac{[1, 42]}{\omega([1, 42])}$$

 ∞

Divergence in action

```
y = 0;
x = 7;
                                          [x \rightarrow \bot, y \rightarrow \bot]
x = x+1; Assignment Project [Exam, Pletp \rightarrow [0, 1]] [x \rightarrow [8, 8], y \rightarrow [0, 2]]
while (inputt)ps{//powcodex.com, 8], y \rightarrow [0, 3]]
    x = 7; Add WeChat powcoder
    x = x+1;
    y = y+1;
```

Simple widening in action

```
y = 0;
x = 7;
                                              [x \rightarrow \bot, y \rightarrow \bot]
x = x+1; Assignment Project [Exam, Help \rightarrow [0, 1]] [x \rightarrow [7, \infty], y \rightarrow [0, 7]]
while (inpult) ps\{//powcode*.com, \infty], y \rightarrow [0, \infty]
    x = 7; Add WeChat powcoder
    x = x+1;
                                                 B = \{-\infty, 0, 1, 7, \infty\}
    y = y+1;
```

Correctness of simple widening

- This form of widening works when:
 - ω is an *extensive* and *monotone* function, and
 - the sub-lattice ω(L) has finite height Assignment Project Exam Help
- ω∘f is monotometand/βυ(μ)charefinite height, so $(\omega \circ f)^i(\bot)$ for i = 0, 1, ... converges

 Add WeChat powcoder

 Let $f_\omega = (\omega \circ f)^k(\bot)$ where $(\omega \circ f)^k(\bot) = (\omega \circ f)^{k+1}(\bot)$
- Ifp(f) \sqsubseteq f_o follows from Tarski's fixed-point theorem, i.e., f_{ω} is a safe approximation of lfp(f)

Narrowing

- Widening generally shoots over the target
- Narrowing may improve the result by applying f
- We have $f(f_{\omega}) \sqsubseteq f_{\omega}$ so applying f again may improve the restups://powcoder.com
- And we also haved for the following safe!
- This can be iterated arbitrarily many times
 - may diverge, but safe to stop anytime

Backing up

Narrowing in action

```
y = 0;
x = 7;
                                               [x \rightarrow \bot, y \rightarrow \bot]
x = x+1; Assignment Project [Exam, Help \rightarrow [0, 1]] [x \rightarrow [7, \infty], y \rightarrow [0, 7]]
while (inpultyps{//powcodex.com, \infty], y \rightarrow [0, \infty]]
    x = 7; Add WeChat powcodes, y \rightarrow [0, \infty]
    x = x+1;
                                                  B = \{-\infty, 0, 1, 7, \infty\}
    y = y+1;
```

Correctness of (repeated) narrowing

Claim: $\mathsf{lfp}(\mathsf{f}) \sqsubseteq ... \sqsubseteq \mathsf{f}^{\mathsf{i}}(\mathsf{f}_{\scriptscriptstyle \square}) \sqsubseteq ... \sqsubseteq \mathsf{f}(\mathsf{f}_{\scriptscriptstyle \square}) \sqsubseteq \mathsf{f}_{\scriptscriptstyle \square}$

- $f(f_{\omega}) \sqsubseteq \omega(f(f_{\omega})) = (\omega \circ f)(f_{\omega}) = f_{\omega}$ since ω is extensive
 - by monotogicitymefnarPrinielectlenave Helpave, for all i:

$$f^{i+1}(f_{\omega}) \sqsubseteq f^{i}(f_{\omega}) \sqsubseteq f_{\omega}$$

$$- i.e. \ f^{i+1}(f_{\omega}) \ is \ at \ least \ as \ precise \ as \ f^{i}(f_{\omega})$$

- $f(f_0) \sqsubseteq f_0$ so $f(f(f(f(g)))) \trianglerighteq f(f(g)) \trianglerighteq f(g)$ hence $lfp(f) \sqsubseteq f(f_{\omega})$ by Tarski's fixed-point theorem
 - by induction we also have, for all i:

$$\mathsf{lfp}(\mathsf{f}) \sqsubseteq \mathsf{f}^{\mathsf{i}}(\mathsf{f}_{\omega})$$

- i.e. $f^{i}(f_{\omega})$ is a safe approximation of lfp(f)

Some observations

- The simple notion of widening is a bit naive...
- Widening happens at every interval and at every node Assignment Project Exam Help
- There's no nettest opwide deintenvals that are not "Augstable" powcoder
- There's no need to widen
 if there are no "cycles" in the dataflow

More powerful widening

• A widening is a function $\nabla: L \times L \to L$ that is extensive in both arguments and satisfies the following property:

for all insigns paints chains \mathbf{z}_0 is an Help the sequence $y_0 = z_0, ..., y_{i+1} = y_i \nabla z_{i+1}, ...$ converges https://powcoder.com/(i.e. stabilizes after a finite number of steps)

Add WeChat powcoder

- Now replace the basic fixed point solver by computing $x_0 = \bot$ and $x_{i+1} = x_i \nabla f(x_i)$ until convergence
- Theorem: $x_{k+1} = x_k$ and $lfp(f) \sqsubseteq x_k$ for some k

(Proof: similar to the correctness proof for simple widening)

More powerful widening for interval analysis

Extrapolates unstable bounds to B:

```
\bot \nabla y = y
x \nabla \bot Axsignment Project Exam Help
[a_1, b_1] \nabla [a_2, b_2] = 
[if a_1 \le a_2 \text{ then } a_1 \text{ else } max\{i \in B \mid i \le a_2\}, 
[if b_2 \le b_1 \text{ We Chat Power Models} i \in B \mid b_2 \le i\}]
```

The ∇ operator on L is then defined pointwise down to individual intervals

For the small example program, we get the same result as with simple widening plus narrowing (but now without using narrowing)

Yet another improvement

• Divergence (e.g. in the interval analysis without widening) can only appear in presence of recursive dataflow constrainent Project Exam Help

https://powcoder.com

• Sufficient to "break the cycles", perform widening only at, for example, to be had not the cycles of the cycles of the cycles.

Choosing the set B

 Defining the widening function based on constants occurring in the given program may not work well

```
f(AssignmentaProject9ExamtHelp
  var r;
  if (xhttpso/powcoder.com
    r = x - 10;
  } elsedd WeChat powcoder
    r = f(f(x + 11));
  }
  return r;
}
```

https://en.wikipedia.org/wiki/McCarthy_91_function

(This example requires interprocedural and control-sensitive analysis)