Μαθηματικά Γ' Γυμνασίου

Μάθημα 9 - Τετραγωνική ρίζα πραγματικού αριθμού

Η τετραγωνική ρίζα ενός θετικού αριθμού x συμβολίζεται με $\sqrt{\mathbf{x}}$ και είναι ο θετικός αριθμός που όταν υψωθεί στο τετράγωνο μας δίνει τον αριθμό x. Π.χ. $\sqrt{25} = 5$, αφού $5^2 = 25$ Ορίζουμε ακόμη $\sqrt{0} = 0$.

Όμως και $(-5)^2 = 25$, οπότε έχουμε $\sqrt{(-5)^2} = \sqrt{25} = 5 = |-5|$.

Γενικά, για κάθε πραγματικό αριθμό x ισχύει:

$$\sqrt{x^2} = |x|$$
 $\sqrt{(-7)^2} = |-7| = 7, \sqrt{7^2} = 7$

Δεν ορίζεται τετραγωνική ρίζα αρνητικού αριθμού, γιατί δεν υπάρχει αριθμός που το τετράγωνό του να είναι αρνητικός αριθμός.

Παρατηρούμε ακόμη ότι: $(\sqrt{9})^2 = 3^2 = 9$, δηλαδή $(\sqrt{9})^2 = 9$. Γενικά

Av
$$x \ge 0$$
, $tote $(\sqrt{x})^2 = x$$

Για δύο μη αρνητικούς αριθμούς α, β μπορούμε να αποδείξουμε ότι:

- Το γινόμενο των τετραγωνικών ριζών τους ισούται με την τετραγωνική ρίζα του γινομένου τους.
- Το πηλίκο των τετραγωνικών ριζών τους ισούται με την τετραγωνική ρίζα του πηλίκου τους.

$$\sqrt{\alpha} \cdot \sqrt{\beta} = \sqrt{\alpha\beta}$$

$$\frac{\sqrt{\alpha}}{\sqrt{\beta}} = \sqrt{\frac{\alpha}{\beta}} \ \mu\epsilon \quad \beta > 0$$

Να συμπληρώσετε τις ισότητες:

a)
$$3\sqrt{3} + \sqrt{3} = 4\sqrt{3}$$

$$\beta$$
) $5\sqrt{2} - 3\sqrt{2} = 2\sqrt{2}$

a)
$$3\sqrt{3} + \sqrt{3} = 4\sqrt{3}$$

b) $5\sqrt{2} - 3\sqrt{2} = 2\sqrt{2}$
c) $\sqrt{18} \cdot \sqrt{2} = \sqrt{9} = 3$
e) $\sqrt{18} \cdot \sqrt{2} = \sqrt{9} = 3$
f) $\sqrt{5} + 4\sqrt{5} - 5\sqrt{5} = .0$
e) $\sqrt{18} \cdot \sqrt{2} = \sqrt{9} = 3$
or) $3\sqrt{2} \cdot \sqrt{8} = 3\sqrt{6} = 12$

$$\delta$$
) $\sqrt{12} \cdot \sqrt{3} = \sqrt{36} = 6$

ε)
$$\sqrt{18}$$
 : $\sqrt{2} = \sqrt{9} = 3$

$$\sigma \tau$$
) $3\sqrt{2} \cdot \sqrt{8} = 3/16 = 12$

Να συμπληρώσετε τον παρακάτω πίνακα αντιστοιχίζοντας σε κάθε στοιχείο της στήλης Α ένα στοιχείο από τη στήλη Β.

2	Στήλη Α	Στήλη Β		
α.	$\sqrt{25}$			
β.	√–25	15		
γ.	$-\sqrt{25}$	0 Sou oo/Zorau		
δ.	$\sqrt{5^2}$	2. δεν ορίζεται		
ε.	$\sqrt{(-5)^2}$	3 . 5		
στ.	$\sqrt{-5^2}$			

а	β	γ	δ	3	στ
3	2	1	3	3	2

Να συμπληρώσετε τους πίνακες:

α	β	$\sqrt{\alpha}$	$\sqrt{\beta}$
4	1	2	1
9	16	3	4
64	36	8	6

Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες.

a)
$$\sqrt{2} \cdot \sqrt{3} = \sqrt{6}$$

$$β$$
) $\sqrt{2} + \sqrt{3} = \sqrt{5}$

$$\Lambda$$

$$\gamma) \sqrt{\frac{9}{4}} = \frac{3}{2}$$

δ)
$$\sqrt{(-3)^2} = 3$$

$$\Sigma$$

$$\epsilon$$
) $\sqrt{\left(\frac{1}{2}-1\right)^2} = \frac{1}{2}-1$

$$\wedge$$

στ) Το διπλάσιο του √5 είναι το √10.

$$\land$$

ζ) Το μισό του $\sqrt{12}$ είναι το $\sqrt{3}$.

5 Να κάνετε τις πράξεις:

a)
$$\sqrt{2} (\sqrt{18} + \sqrt{8})$$

$$β) \sqrt{6} (\sqrt{27} - \sqrt{3})$$

$$\gamma$$
) $(\sqrt{75} + \sqrt{45} - \sqrt{300}) : \sqrt{15}$

δ)
$$(\sqrt{7} - \sqrt{5})(\sqrt{7} + \sqrt{5})$$

a)
$$\sqrt{2} \cdot (\sqrt{18} + \sqrt{8}) = \sqrt{2} \cdot \sqrt{18} + \sqrt{2} \cdot \sqrt{8}$$

= $\sqrt{36} + \sqrt{16} = 6 + 4 = 10$

$$\chi) (\sqrt{75} + \sqrt{45} - \sqrt{300}) : \sqrt{15} = (\sqrt{5.15} + \sqrt{3.15} - \sqrt{20.15}) : \sqrt{15} =$$

$$= (\sqrt{5} + \sqrt{3} - \sqrt{20}) \sqrt{15} : \sqrt{15} =$$

$$= (\sqrt{5} + \sqrt{3} - \sqrt{20}) \sqrt{15} : \sqrt{15} =$$

$$= (\sqrt{5} + \sqrt{3} - \sqrt{20}) \sqrt{15} : \sqrt{15} =$$

$$\delta = 7-5 = 2$$