Data Mining & Machine Learning

Deadline: April 17,2022

Group Members:

- 1. Avik Das MDS202112
- 2. Meghna Mondal MDS202123

K-means clustering Models on Bag of Words dataset:

In this assignment we have built K-means Clustering for 3 data sets:

- 1) KOS,
- 2) NIPS
- 3) ENRON.

Then we used suitable evaluation metric to compare the performance of the three classifiers.

Table for Comparing the classifier models:

Performance Measure	KOS	NIPS	ENRON (On 1% Sample)
Time Taken(s)	128.02	51.86	3962.09
Space required(MiB)	726.61	582.61	5115.92

Procedure of fitting the Models:

- ➤ At first, we read the dataset and skip the 1st 3 lines of each data. And then we take the matrix containing Doc_ID, Word_ID, Word_Count and made the data frames.
- ➤ Then we create the sparse matrix with Doc_IDs in the column and Word_IDs in the rows. And it contains 1 at ijth position if a ith Word_ID has appeared in a jth Doc_ID.
- ➤ Then we calculate the Jaccard Index for each of the document and made a symmetric matrix containing Jaccard index between ith and jth document at ijth position.
- ➤ After that we pass that symmetric matrix to build Kmeans clustering model with different number of clusters and then by plotting the

- graph of inertia vs # clusters, we find the optimum number of clusters by elbow method.
- ➤ Then we finally fit the Kmeans clustering model with the optimum number of clusters for KOS and NIPS dataset.
 - o In KOS dataset the optimum number of clusters is 2.
 - o In NIPS dataset the optimum number of clusters is 4.
- ➤ After that we perform dimension reduction for visualizing the clusters in 3-dimensional space.
- ➤ And at last, we observed the Doc_IDs belonging to different clusters and give them as the final output in a dictionary format.
- ➤ In case of ENRON dataset, we at first did stratified sampling and take 1% of the data as sample grouping by Word_counts(i.e., keeping the ratio of word frequencies same as the original data).
- ➤ Then we go through the same procedure, but here we didn't get a good elbow, so we can't able to fit the model in a good way.

Visualizing the Clusters:

