Here's a **simple example using scikit-learn** to build a model that predicts House Price

IN Example: House Price Prediction in India (Simulated)

☆ We'll Use:

- scikit-learn for model training (LinearRegression)
- pandas for a custom dataset
- Features relevant to Indian housing

Features We'll Simulate:-

Feature	Туре	Description
Area	Numeric	Built-up area in square feet
внк	Integer	Number of bedrooms
Bathrooms	Integer	Number of bathrooms
LocationScore	Numeric	1–10 score for location (proximity to school, metro, etc.)
Age	Integer	Age of the property in years

Step-by-Step Code (Python + scikit-learn)

Required Python Packages

Package	Purpose	Install Command
SCIKIL-Iearn	` `	pip install scikit- learn
mumby	Numerical operations (used by scikit-learn internally)	pip install numpy
pandas (optional)	Data handling (if you use DataFrames later)	pip install pandas

How to Install

You can install everything in one line using pip:

pip install scikit-learn numpy pandas

✓ Full Working Code:

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean_squared_error
# Step 1: Simulated dataset (India-based features)
data = {
    'Area': [1200, 1000, 1500, 800, 950, 1350, 1600, 1100, 1400, 1250],
    'BHK': [3, 2, 3, 2, 2, 3, 4, 2, 3, 3],
    'Bathrooms': [2, 1, 2, 1, 2, 2, 3, 1, 2, 2],
    'LocationScore': [8, 6, 9, 5, 7, 8, 10, 6, 9, 7],
    'Age': [5, 10, 3, 12, 8, 4, 2, 9, 3, 6],
    'Price': [75, 60, 90, 50, 58, 85, 100, 65, 92, 80] # in Lakhs
df = pd.DataFrame(data)
# Step 2: Feature matrix and target variable
X = df[['Area', 'BHK', 'Bathrooms', 'LocationScore', 'Age']]
y = df['Price'] # in Lakhs
```

```
# Step 3: Split the dataset
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
# Step 4: Train the model
model = LinearRegression()
model.fit(X_train, y_train)
# Step 5: Predict on test set and calculate RMSE manually
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
rmse = mse ** 0.5
print(f"\nModel RMSE: {rmse:.2f} Lakhs")
# Step 6: Get user input for prediction
print("\n[;] Enter the following details to estimate house price (in India):")
try:
    area = float(input("Built-up Area (in sq ft): "))
    bhk = int(input("Number of Bedrooms (BHK): "))
    baths = int(input("Number of Bathrooms: "))
    location_score = float(input("Location Score (1-10): "))
    age = int(input("Age of Property (in years): "))
    input_features = pd.DataFrame([[area, bhk, baths, location_score, age]],
                                  columns=['Area', 'BHK', 'Bathrooms',
'LocationScore', 'Age'])
    predicted_price = model.predict(input_features)[0]
    print(f"\n($) Estimated House Price: ₹{predicted_price:.2f} Lakhs")
except ValueError:
    print(" X Invalid input. Please enter numeric values.")
```

output:-

Model RMSE: 5.19 Lakhs

Enter the following details to estimate house price (in India):

Built-up Area (in sq ft): 1300

Number of Bedrooms (BHK): 3

Number of Bathrooms: 2

Location Score (1-10): 9

Age of Property (in years): 3

§ Estimated House Price: ₹79.53 Lakhs