Matriser är väldigt viktiga objekt inom algebra och har tillämpningsområden inom inom i princip all modern beräkning - framförallt då inom ekonomi, ingenjörskap och datavetenskap (AI)

Vad är en matris?

En matris är ett rektangulärt objekt om *m* rader och *n* stycken kolumner där varje element utgörs av en siffra

Matrisoperationer

Vi säger att två matriser har samma dimension om de har lika många kolumner och lika många rader.

För matriser med samma dimension gäller följande

$$A = \begin{pmatrix} 3 & 1 & 2 \\ 5 & 4 & 3 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 0 & -1 \end{pmatrix}$$

$$dim(A) = 2 \times 3$$

$$dim(B) = 2 \times 3$$

$$dim(A) = dim(B)$$

Additon av matriser av samma storlek definieras som elementvis addition

$$A+13 = ((3+1)(1+0)(2+1)) = (413)$$

 $((5-1)(4+0)(3-1)) = (442)$

Subtraktion definieras även det som elementvis subtraktion

$$A-13 = ((3-1)(1-0)(2-1)) = (2 1 1) (5-(-1))(4-0)(3-(-1)) = (6 4 4)$$

Frukol conset

Skalär multiplikation definieras även det som elementvis multiplikation

$$k=3$$

$$kA = 3A = 3\begin{pmatrix} 3 & 1 & 2 \\ 5 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 3.3 & 3.1 & 3.2 \\ 3.5 & 3.4 & 3.3 \end{pmatrix} = \begin{pmatrix} 4 & 3 & 6 \\ 15 & 12 & 4 \end{pmatrix}$$

Några speciella matriser av dimension 2x2 och 3x3

Zero matrix

$$O_{2x2} = \begin{pmatrix} O & O \\ O & O \end{pmatrix}, O_{3x3} = \begin{pmatrix} O & O \\ O & O \\ O & O \end{pmatrix}$$

Identity matrix

$$T_{2x2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad T_{3x3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Square matrix

Alla matriser som har lika många rader

$$A = \begin{pmatrix} 3 & 3 & 1 \\ 1 & 2 & 1 \end{pmatrix} dim(A) = 2 \times 3$$

$$B = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 2 \\ 4 & 3 & 2 \end{pmatrix} \quad \dim(B) = 3 \times 3$$

$$AB = \begin{pmatrix} 3 & 3 & 1 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 2 & 1 \\ 4 & 3 & 2 \end{pmatrix} = \begin{pmatrix} (3 \cdot 2 + 3 \cdot 1 + 1 \cdot 4) & (3 \cdot 0 + 3 \cdot 0 + 1 \cdot 3) & (3 \cdot 1 + 3 \cdot 2 + 1 \cdot 2) \\ 4 & 3 & 2 & 2 \end{pmatrix} = \begin{pmatrix} (3 \cdot 2 + 3 \cdot 1 + 1 \cdot 4) & (3 \cdot 0 + 3 \cdot 0 + 1 \cdot 3) & (3 \cdot 1 + 3 \cdot 2 + 1 \cdot 2) \\ 4 & 3 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 12 & 3 & 11 \\ 8 & 3 & 7 \end{pmatrix}$$

$$2x3$$

$$m_{XN}$$

$$5x + \qquad N=5$$

$$m_{X} + \qquad m_{X} + \qquad m_{X}$$

Storlet av resulterande matrit

om
$$dim(A) = m \times n$$

 $dim(B) = S \times t$

Första kravet på att **AB** ens ska vara möjligt är att antalet kolumner (n) i matris **A** är lika många som antalet rader (s) i matris **B**.

t

AB = (
$$m \times t$$
)

 $m \times t$)

bekvatta dolla

 $m \times t$
 $m \times t$

Annars kan vi inte elementvis multiplicera!

Matrismultiplikation med

vektor

En vektor kan ses som en

rad- eller kolumnmatris!

$$a = (21)$$
 $\rightarrow a = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$