leroy

Chiara Cimino

Christian Krause

November 10, 2024

Definition 1 (Frame). (Already in Mathlib)A Frame can be viewed as a Category. There exists a morphism between A and B iff $A \leq B$.

Definition 2 (Top -> Frame). (Brauchen wir das überhaupt?) There exists a contravariant Functor from a topological Space to the corresponding Frame Category with open Sets as objects. $f: X \to O(X)$

Definition 3 (f^* and f_*). For every continuous Function $f: X \to Y$ between topological Spaces, there exists a pair of functors (f^* , f_*).

$$\begin{split} f* &= f^{-1}: O(Y) \to O(X) \\ f_*: O(X) \to O(Y) \coloneqq A \mapsto \bigcup_{f^*(v) \leq A} v \end{split}$$

Lemma 4 (f^* commutes).

f* commutes with finite meets and arbitrary joins. This is the same as saying that the Frame Category of open Sets has all small coproducts and all finite Limits. nlab

Lemma 5 (Homsets). (Already in Mathlib)

$$Hom_{O(V)}(f * (V), A) = Hom_{O(x)}(v, f_*(A))$$

Lemma 6 $(f^* \dashv f_*)$. f^* is the right adjoint to f_*

Lemma 7 (triangle). (Mclane p. 485)

The triangular identities reduce to the following equalities:

$$f^*f_*f^* = f^*$$
 and $f_*f^*f_* = f_*$

Proof.

This follows from the triangular identities of the adjunction.

Lemma 8 (Embedding). (Leroy Lemme 1) The following arguments are equivalent:

- 1. f^* is surjective
- 2. f_* is injective
- 3. $f^*f_* = 1_{O(X)}$

 ${\it Proof.}$ This follows from the triangular identities.

Definition 9 (Embedding). An embedding is a morphism that satisfies the conditions of lemma 8

Definition 10 (Nucleus). A nucleus is a map $e: O(E) \to O(E)$ with the following three properties:

- 1. e is idempotent
- $2. U \leq eU$

- 3. $e(U \cap V) = e(U) \cap e(V)$
- **Lemma 11** (Nucleus). (Leroy Lemme 3) Let $e: O(E) \to O(E)$ be a nucleus. Then there is a space X and a morphism $f: X \to E$ such that $e = f_*f^*$. (The same holds for embeddings ??)

Definition 12 (Subframe). (Leroy CH 3) A subspace $Y \subset X$ is defined by a nucleus $e_Y : O(X) \to O(X)$, such that $O(Y) = Im(e_Y) = \{U \in O(X) | e_Y(U) = U\}$. The corresponding embedding (???) is $i_X : O(Y) \to O(X)$. $i_X^*(V) = e_X(V)$, $(i_X)_*(U) = U$

Definition 13 (Subframe Inclusion). (Stimmt das?)(Leroy Ch 3) $X \subset Y$ if $e_Y \leq e_X$

Lemma 14 (factorisation). (Leroy Lemme 2) Let $i: X \to E$ be an embedding and $f: Y \to E$ be a morphism of spaces. To have f factor through i, it is necessary and sufficient that $i_*i^*(V) \le f_*f^*(V)$ for all $V \in O(E)$.

Lemma 15 (Familiy of subspaces). (Leroy CH 4) Let X_i be a family of subspaces of E and e_i be the corresponding nuclei. For every $V \in O(E)$, let e(V) be the onion of all $W \in O(E)$ which are contained in every $e_i(V)$. Then

- 1. e is the corresponding nuclus of a subspace X of E
- 2. a subspace Z of E conatains x if and only if it contains all X_i x is thus called the union of X_i denoted by $\bigcup_i X_i$