DATA WAREHOUSING AND MINING

T.E. CSE-DS, Sem V Clustering: K-mean Clustering,Kmedoids example Exercise

Poonam Pangarkar

K-means Clustering

- Simple unsupervised learning algorithm developed by J MacQueen in 1967.
- It partitions x data points into the st of k clusters where each data point is assigned to its closets cluster.
- This method is defined by objective function which tries to minimize the sum of all squared distances within a cluster, for all clusters.
- An objective function is used to assess the partitioning quality so that objects within a cluster are similar to one another but dissimilar to objects in other clusters.

The objective function used is Euclidean Distance

- The k-means algorithm defines the centroid of a cluster as the mean value of the points within the cluster.
- First, it randomly selects k of the objects in D, each of which initially represents a cluster center(mean).
- Remaining objects, are assigned to the cluster to which it is the most similar, based on the Euclidean distance between the object and the cluster mean.

- The k-means algorithm then iteratively improves the within-cluster variation.
- For each cluster, it computes the new mean using the objects assigned to the cluster in the previous iteration.
- All the objects are then reassigned using the updated means as the new cluster centers.
- The iterations continue until the clusters formed in the current round are the same as those formed in the previous round.

Clustering of a set of objects using the k-means method; for (b) update cluster centers and reassign objects accordingly (the mean of each cluster is marked by a +).

EDfor
$$\rightarrow \kappa_1 = \sqrt{(179-185)^2+(68-72)^2}$$

= (6.32)
 $\rightarrow \kappa_2 = \sqrt{(179-169)^2+(68-58)^2}$
= 14.14

$$(X^0-X^0)^2+(X^0-X^0)^2$$

 $K_{1} \rightarrow \{1,4,5,6,7,8,9,10,11,12\}$ $K_{2} \rightarrow \{2,3\}$

K-Means Clustering Algorithm

It is a centroid-based partitioning technique.

It uses the centroid of a cluster, Ci, to represent that cluster.

Conceptually, the centroid of a cluster is its center point.

The k-means algorithm defines the centroid of a cluster as the mean value of the points within the cluster

Input:

k: the number of clusters

D: a data set containing n objects

Output: A set of k clusters.

K-means Clustering

- Arbitrarily choose k objects from D as the initial cluster centres.
- Repeat
 - (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
 - update the cluster means, that is, calculate the mean value of the objects for each cluster;
- until no change;

Limitations of K-Means Clustering

- ✓ There are several variants of the k-means method.
- ✓ These can differ in the selection of the initial k-means, the calculation of dissimilarity, and the strategies for calculating cluster means.
- ✓ Can be applied only when the mean of a set of objects is defined.
- ✓ This may not be the case in some applications such as when data with nominal attributes are involved.
- ✓ The k-modes method is a variant of k-means, which extends the k-means paradigm to cluster nominal data by replacing the means of clusters with modes.
- ✓ It uses new dissimilarity measures to deal with nominal objects and a frequency-based method to update modes of clusters

Limitations of K-Means Clustering

- ✓ User needs to specify k, the number of clusters in advanced.
- ✓ Various models with different values of k can be generated and then the best model can be chosen.
- ✓ Not suitable for nonconvex cluster shapes.
- ✓ Sensitive to outliers and noise in the data as they can substantially influence the mean.

K – Medoid Algorithm

- K- means algorithm is sensitive to outliers
- This could affect the assignment of the other objects to the cluster
- Instead of taking mean as the reference point, actual objects can be picked to represent the clusters.
- Each remaining object is assigned to the cluster of which the representative object is the most similar.
- These objects are called Medoids.
- A medoid the point in the cluster, whose dissimilarities with all the other points in the cluster are minimum.
- Medoid least dissimilar object/ most similar Object
- Such partitioning method is also called as Partitioning Around Medoids (PAM).

K-Medoid Algorithm

The dissimilarity of the medoid(Ci) and object(Pi) is calculated by using $\mathbf{E} = |\mathbf{Pi} - \mathbf{Ci}|$, also called **absolute-error criterion**

Algorithm:

- 1.Initialize: select *k* random points out of the *n* data points as the medoids.
- 2. Associate each data point to the closest medoid by using any common distance metric methods.
- 3. While the cost decreases: For each medoid m, for each data o point which is not a medoid:
 - 1. Swap m and o, associate each data point to the closest medoid, recompute the cost.
 - 2. If the total cost is more than that in the previous step, undo the swap.

K-MEDO	D EXAMPLE	K=2
i	x	y
×ı	2	6
X ₂	3	4
X3	3	8
×4	4	7
X5	6	2
X6	6	4
X7	7	3
X8	7	4
Xq	8	5
X/0	7	6

)	+ 2			
ī	x	y	C	: 1	Distana / cos	t	C
×ı	2	6	3	4	12-31+16-		3
X3	3	8	3	4	0 + 4	-	4
X4	4	7	3	4	1+3		4
×5	6	2	3	4	3+2		5
X6	6	4	3	4	3 + 0		3
X7	7	3	3	4	4+1		5
X9	8	5	3	4	5+1		6
×10	7	6	3	4	4+2		6

Step 1

we select two random representative objects:

$$C_1(3,4)$$
, $C_2(7,4)$

Distance = |a-c|+16-d1

m = (a, b)

n = (c, d)

i	x	4	C	2	Distance / cost	C
×ı	2	6	7	4	12-71+16-41	7
×з	3	8	7	4	4+4	. 8
×4	4	7	7	4	3 + 3	6
×5	6	2	7	4	1+2	3
X6	6	4	7	4	1+0	1
×a	7	3	7	4	0+1	(
Xq	8	5	7	4	1 + 1	2
×10	7	6	7	4	0 + 2	2

Compare cost of Cost(C1) and Cost(C2) for every i & Select the minimum one

		- 4		
1	16	KER	+	2
	1162	D		

i	\propto	9		C I	Distance / cost		C	C
×ı	2	6	3	4	12-31+16-41		3	7
X3	3	8	3	4	0 + 4	-	4	8
X4	4	7	3	4	1+3		4	6
X5	6	2	3	4	3+2		5	3
X6	6	4	3	4	3 + 0		3	- 1
X7	7	3	3	4	4+1		5	(
×9	8	5	3	4	5+1		6	2
×10	7	6	3	4	4+2		6	2

$$m = (a, b)$$

 $n = (c, d)$

Distance = | a - c| + 16 - d1

StepIII) then cluster are cluster 1: { (2,6), (3,8), (4,7), (3,4)} cluster 2: { (7,4), (6,2), (6,4), (7,3), (8,5), (7,6) } Calculate total cost T cost (x,c) = = | | x; -c; | Total cost = { cost (3,4), (2,6), cost ((3,4), (3,8)), cost ((3,4), (4,7)), cost ((7,4), (8,5)), cost ((7,4), (6,2)), cost ((7,4), (6,4)), cost ((7,4), (7,3)), cost (17,4), (7,6)), = (3+4+4)+(3+1+1+2+2) =20

Step 3) Select one of non-medoids O' Let's O'= (7,3) i.e x 7

50 #	now i	medoid	's are	, C.C.3	(4) 80'(7,3)	
i	\propto	y	0	1	Distance/Cost =	C
X,	2	6	7	3	(2-7)+16-3)	8
×3	3	8	7	3		
Xy	4	7	7	3	36	
X5	6	2	7	3		
X6	6	4	ョ	3		
×8	7	4	7	3		
×9	8	5	7	3		
X10	7	6	7	3		
					111 - 1 0-0+10	

compare the cost of cost (ci) and cost (o') every i & Select the minimum one

i	x	y		c,	Distance / cost	C
×,	2	6	3	4	12-31+16-4	= 3
×3	3	8	3	4	0+41	= 4
×4	4	7	3	4	1+3	= 4
25	6	2	3	4	3+2	= 5
X6	6	4	3	4	3+0	23
×8	7	4	3	4	4+0	= 4
Xq	8	5	3	4	5+1	= 6
XIO	7	6	3	4	4+2	= 6

Hgain cheeate the cluster cluster 1: $\{(3,4), (2,6), (3,8), (4,7)\}$ cluster 2: $\{(7,3), (6,2), (5,4), (7,4), (8,5), (7,6)\}$ correct botal cost = (3+4+4)+(2+2+1+3+3) = 11+11 = 22

Step 4) So cost of swapping medoid from (2 to 0's

S = current total cost - past total cost

= 22-20

= 2 > 0

so, moving o' would be a badidea so previous choice was

	X	Y
0	8	7
1	3	7
2	4	9
3	9	6
4	8	5
5	5	8
6	7	3
7	8	4
8	7	5
9	4	5

Step 1: Let the randomly selected 2 medoids, so select k = 2 and let C1 -(4, 5) and C2 -(8, 5) are the two medoids.

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	2
1	3	7	3	7
2	4	9	4	8
3	9	6	6	2
4	8	5		•
5	5	8	4	6
6	7	3	5	3
7	8	4	5	1
8	7	5	3	1
9	4	5		

- Step 2: Calculating cost. The dissimilarity of each non-medoid point with the medoids is calculated and tabulated.
- Each point is assigned to the cluster of that medoid whose dissimilarity is less.
- The points 1, 2, 5 go to cluster C1 and 0, 3, 6, 7, 8 go to cluster C2.
- The Cost = (3 + 4 + 4) + (3 + 1 + 1 + 2 + 2) = 20

	X	Y	Dissimilarity from C1	Dissimilarity from C2
0	8	7	6	3
1	3	7	3	8
2	4	9	4	9
3	9	6	6	3
4	8	5	4	1
5	5	8	4	7
6	7	3	5	2
7	8	4	-:	-
8	7	5	3	2
9	4	5	-	-

- Step 3: randomly select one non-medoid point and recalculate the cost.
- Let the randomly selected point be (8, 4).
- The dissimilarity of each non-medoid point with the medoids

 C1 (4, 5) and C2 (8, 4) is
 calculated and tabulated.
- Each point is assigned to that cluster whose dissimilarity is less.
- So, the points 1, 2, 5 go to cluster C1 and 0, 3, 6, 7, 8 go to cluster C2.
- The New cost = (3 + 4 + 4) + (2 + 2 + 1 + 3 + 3) = 22

Step 4: Calculate Swap Cost

Swap Cost = New Cost -Previous Cost = 22 - 20

2 > 0 As the swap cost is not less than zero, we undo the swap.

Hence (4, 5) and (8, 5) are the final medoids.