Full Name: Chris Tu Answer Key

NetID:

Midterm Make-up Exam CS 314, Fall 2024 Section 01-04

(20 pts) RE to NFA, and NFA to DFA Give credit for matching the a, the OR, $\hat{}$ or the b* $a \mid b^*c$

(a) Use Thompson's construction to construct an NFA for the regular expression above.

(b) Convert the NFA to a DFA using subset construction.

ح	- (losure (SD) =	£50,51,53,58,56,57	

9	J 02)
01	C b
	03 04

	8	Ь	C
[™] € 50,51,53, 58,56,573		03 {59,58,56 57}	£54,55}
D3 ES9,58,56,573	\times	559,58,56 D3 573	254 ,543

(c) Minimize the DFA. If the DFA is already minimal, justify it.

$$P1 = D1,D3$$
 $P2 = D2 D4$
 $(D1,\alpha) \rightarrow D2 \text{ in } P2$
 $(D1,b) \rightarrow D3 \text{ in } P1$
 $(D1,c) \rightarrow D4 \text{ in } P2$
 $(D3,\alpha) \rightarrow \text{error}$
 $(D3,\alpha) \rightarrow D3 \text{ in } P1$
 $(D3,c) \rightarrow D4 \text{ in } P2$
 $(D3,c) \rightarrow D4 \text{ in } P2$

$$(03,4) \rightarrow error$$

 $(03,4) \rightarrow 03 in P3$

$$(D3^{\prime}c) \rightarrow DA^{\prime\prime}b5$$

$$P1 = 01$$

 $P2 = 0204$
 $P3 = 03$

No further partitions can be made.

minimal DFA

$\mathbf{2}$ (20 pts) Context Free Grammars

(a) Write a grammar for $a^x b^y$ where y = x + 2 and $x \ge 0$ (i.e., exactly 2 more b's than a's).

$$dd\langle A \rangle = \langle z \rangle$$

$$d\langle A \rangle = \alpha \langle A \rangle$$

(b) Consider the following grammar (where $\langle S \rangle = \text{start symbol}$):

$$\langle S \rangle \rightarrow (\langle A \rangle) \mid \epsilon$$

$$\langle A \rangle \rightarrow \langle A \rangle; \langle S \rangle \mid c$$

Present a derivation for the string (c;(c;)) and give the parse tree.

$$\begin{array}{cccc}
\langle S \rangle & \langle C; \langle A \rangle) \\
\downarrow & \langle C; \langle A \rangle; \langle S \rangle) \\
\uparrow & \langle A \rangle; \langle S \rangle & \downarrow & \langle C; \langle C; \langle S \rangle) \\
\downarrow & \langle C; \langle S \rangle & \downarrow & \langle C; \langle C; \rangle \\
\downarrow & \langle C; \langle S \rangle & \downarrow & \langle C; \langle C; \rangle \\
\downarrow & \langle C; \langle S \rangle & \downarrow & \langle C; \langle C; \rangle & \langle S \rangle \\
3 & (20 \text{ pts}) Simulating DFA
\end{array}$$

(20 pts) Simulating DFA

Consider the DFA below, determine whether the given strings can be accepted or rejected. q0 is the start state, and q1 is the accepting state.

- (a) 10 (Accept or Reject)
- (b) 111 (Accept or Reject?)

Describe in English what the strings accepted by this DFA have in common.

- · Binary numbers starting at I
 · All binary multiples of 3 plus I and incrementing by

4 (40 pts) Unambiguous Grammar

Consider the following grammar that attempts to describe a regular expression:

- 1. $\langle e \rangle$::= $\langle x \rangle | \epsilon$
- 2. < e > ::= < e > < e >
- 3. < e > ::= < e > *
- 4. $\langle e \rangle$::= $\langle e \rangle$ "| " $\langle e \rangle$
- 5. < e > ::= (< e >)
- 6. $\langle x \rangle$::= a | b | c ... y | z
- (a) Show that the above grammar is ambiguous.

(b) Recall that Kleen Closure (*) has highest precedence, followed by concatenation, and then alternation ("|"). Let's assume concatenation, alternation and Kleen closure are all left associative. Rewrite the grammar such that it is unambiguous and the precedence/associativity rules are enforced. Note that double quotes are added for the actual alternation operator to distinguish from the | sign that separates production rules.

There precedence operations are nested deeper in grammar

brecengence: () > Kleenc > concat > Mujon

lowest precedence:

(5) ::=
$$\langle A \rangle$$

(c) | $\langle C \rangle$

Con cat $\langle C \rangle$::= $\langle C \rangle \langle K \rangle$ | $\langle K \rangle$

Kleene $\langle K \rangle$::= $\langle K \rangle$ | $\langle K \rangle$

highest precedence:

 $\langle S \rangle$::= $\langle K \rangle$ | $\langle K \rangle$
 $\langle K \rangle$::= $\langle K \rangle$ | $\langle K \rangle$
 $\langle K \rangle$::= $\langle K \rangle$ | $\langle K \rangle$