Имитационная модель американских опционов

Анастасия Александровна Миллер, 622 группа

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д. ф.-м. н. Ермаков С. М. Рецензент: нач. лаб. Дмитриев А. В.

Санкт-Петербург 5 июня 2017 г.

Что такое опцион

Опцион

Договор, по которому потенциальный покупатель или продавец актива получает право, но не обязательство, совершить покупку или продажу данного актива по заранее оговорённой цене в определённый договором момент в будущем или на протяжении определённого отрезка времени.

 ${\cal T}$ – множество моментов, в которые можно *исполнить опцион* (реализовать право на покупку/продажу).

$$E$$
вропейский опцион $\mathcal{T} = \{t\}$

$$A$$
мериканский опцион $\mathcal{T} = [0; T]$

Математическая модель оценки стоимости опциона

- Состояние базового актива описывается марковским случайным процессом $X_t \in \mathbb{R}^d, t \in [0;T]$, начальное состояние которого фиксировано $(X_0 = \mathrm{const})$.
- $h_t(X_t)$ дисконтированное значение выигрыша, получаемого при исполнении опциона в момент t.
- В этих обозначениях в модели эффективного рынка стоимость опциона – это

$$V = \sup_{\tau \in \mathcal{T}} \mathrm{E} \left[h_t(X_t) \right].$$

Для подсчёта V методом моделирования осуществляется переход к дискретному времени (конечному множеству \mathcal{T} , $\#\mathcal{T}=m$).

Оценка по методу случайных деревьев

В статье Broadie и Glasserman 1997 построены оценки сверху и снизу для стоимости опциона V. Для оценки сверху $\hat{V}^{RT}(b)$ доказано, что

$$\forall b \in \mathbb{N} \quad \text{E}\hat{V}^{RT}(b) = V^{RT}(b) \ge V,$$
$$\lim_{b \to \infty} V^{RT}(b) = V.$$

Рис.: Схема метода для b=3

Квази Монте-Карло

Квази Монте-Карло последовательности (И.М. Соболь 2006) это детерминированные последовательности $(x_i)_{i\in\mathbb{N}}$, обладающие улучшенными по сравнению с Монте-Карло свойствами равномерности.

> обычный Монте-Карло квази Монте-Карло $O(\frac{(\ln N)^d}{N})$

ошибка оценки по N испытаниям

$$O(1/\sqrt{N})$$

- Для использования квази Монте-Карло последовательности необходимо заранее зафиксировать размерность используемых квазислучайных чисел.
- В квази Монте-Карло нет процедуры оценки погрешности.

Рандомизация квази Монте-Карло

 $(x_i)_{i\in\mathbb{N}}$ квази Монте-Карло последовательность в $[0;1]^d.$

 $(\xi_i)_{i\in\mathbb{N}}$ последовательность случайных величин, равномерно но распределённых в $[0;1]^d.$

 $G \in \mathbb{N}$ размер группы.

Рандомизированная квази Монте-Карло последовательность $(\tilde{x}_i)_{i\in\mathbb{N}}$:

$$\tilde{x}_{kG+j} = x_{kG+j} + \xi_k \mod 1.$$

Оценка дисперсии оценки $\hat{V} = \frac{1}{NG} \sum_{i=1}^{NG} \hat{V}(\tilde{x}_i)$:

$$\hat{V}_k = \frac{1}{G} \sum_{j=1}^{G} \hat{V}(\tilde{x}_{kG+j}), \quad \text{Var}\hat{V} = \frac{1}{N} \sum_{k=1}^{N} (\hat{V} - \hat{V}_k)^2.$$

Сравнение оценок для $V^{RT}(b)$

MC классический метод Монте-Карло QMC квази Монте-Карло RQMC рандомизированный квази Монте-Карло

Таблица: Качество оценок $V^{RT}(b)$ с использованием различных последовательностей

тип	$\hat{V}^{RT}(b)$	$\mathrm{sd}\hat{V}^{RT}(b)$	$\hat{V}^{RT}(b) - V^{RT}(b)$
MC	11.232	1.456	0.007
QMC Соболя	11.267	_	0.042
RQMC Соболя	11.275	0.801	0.052
QMC Холтона	11.267	_	0.042
RQMC Холтона	11.273	1.969	0.050

Число ветвей b=2, опцион на покупку на 2 актива $X_t=(S_t^{(1)},S_t^{(2)})$ с начальной стоимостью $S_0^{(1)}=S_0^{(2)}=100$, ценой из контракта K=100 и функцией выплат $h_t(X_t)=(\max\{S_t^{(1)},S_t^{(2)}\}-K)^+$. Число моментов исполнения $\#\mathcal{T}=4$.

Метод линейной регрессии

Предложен в статье Longstaff и Schwartz 2001. Строится оценка $\hat{V}^{LS}(b)$ стоимости Американского опциона, где b — ширина сетки. Доказано, что

$$\hat{V}^{LS}(b) \leq V, \quad \hat{V}^{LS}(b) \overset{\mathbb{P}}{\underset{b \to \infty}{\longrightarrow}} V.$$

Рис.: Схема метода для $\#\mathcal{T}=4$ и b=5

Метод сглаженных деревьев

Предлагаемая оценка $V^{PT}(b,n,h)$ асимптотически состоятельная и асимптотически несмещённая при $b \to \infty$ и $n \to \infty$.

Параметры:

- b количество ветвей в дереве число точек, по которым строится
- п оценка стоимости удержания опциона высота деревьев

Рис.: Схема метода

Сравнение метода сглаженных деревьев с методом линейной регрессии

Рис.: Дисперсия оценок методов сглаженного дерева и наименьших квадратов для m=22 и одинаковой конструктивной размерности алгоритмов

Применение квази Монте-Карло к методу сглаженных деревьев

Таблица: Оценки \hat{V}^{PT} с использованием различных последовательностей

b	h	n	тип	\hat{V}	$\mathrm{sd}\hat{V}$	${\rm se} \hat{V}$	$\mathrm{bias} \hat{V}$
14	2	200	MC	13.379	0.208	3.748	3.742
14	2	200	QMC grid	11.632	-	-	1.995
14	2	200	RQMC grid	13.426	0.893	3.893	3.789

Выводы

- В существующих алгоритмах оценки стоимости
 Американского опциона с помощью моделирования
 возможно применение метода квази Монте-Карло и
 рандомизованного квази Монте-Карло при условии
 соблюдения требования на конструктивную размерность
 алгоритма.
- Предложенный модифицированный метод показал снижение дисперсии в 4.6 раз относительно метода наименьших квадратов с использованием МС. Применение QMC в этой задаче позволило уменьшить смещение построенной оценки относительно истинной стоимости опциона.

Вопросы