Exercise 3

Relation:

CAR_SALE(carNumber, dateSold, salespersonId, comimission, discount)

Primary Keys:

carNumber, salespersonld

Additional dependencies:

- dateSold → discount
- ullet salespersonId o comimission

Questions:

1. Based on the given primary key, is this relation in 1NF, 2NF or 3NF?

Answer:

Based on the given Primary keys, it can be seen that it is 2NF, that is, second normalized form.

2. Why or why not?

Answer:

REASON → It satisfies both 1NF and 2NF conditions which are as follows:

1NF (First Normal Form) Rules:

- Each table cell should contain a single value.
- Each record needs to be unique.

2NF (Second Normal Form) Rules

- Rule 1- Be in 1NF
- Rule 2- Single Column Primary Key that does not functionally dependant on any subset of candidate key relation.

However it does not satisfy 3NF condition that is: **3NF (Third Normal Form) Rules:**

- Rule 1- Be in 2NF
- Rule 2- Has no transitive functional dependencies

Since it has transitive functional dependency i.e. <u>discount</u> <u>depends on dateSold</u>

3. How would you successively normalise it completely?

Answer:

By creating another primary key for yet another table, and naming it 'dicountld'. It will store the unique id of discounts for a discount on a particular date.