	TP1 SAD - Lothmann Feyrit	Pt		АВС	Note	
T	Préparation du travail					
1	Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.	2,0	Α		2	
2	Quel est le nom de la grandeur réglée ?	0,5	D		0,025	
3	Quel est le principe utilisé pour mesurer la grandeur réglée ?	0,5	Α		0,5	
4	Quelle est la grandeur réglante ?	0,5	С	_	0,175	
5	Donner une grandeur perturbatrice.	0,5	Α		0,5	
6	Etablir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs,	1,0	Α		1	
	alimentations, générateurs nécessaires. Faire apparaître les polarités.					
II.	Etude du procédé					
1	Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.	1,0	Α		1	
2	Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau).	1,0	Α		1	
3	En déduire le gain statique du procédé autour du point de fonctionnement.	1,0	Α		1	
4	En déduire le sens d'action à régler sur le régulateur.	1,0	D		0,05	SL c'est la consigne !!
5	Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.	3,0	С		1,05	Echelles de la courbe mal choisies
III.	Etude du régulateur			_	_	
1	Déterminer la structure interne (parallèle, série ou mixte) du correcteur PID utilisé par Lintools.	1,5	D		0,075	
2	En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours.	1,5	В		1,125	Vous avez calculé un PID
IV.	Performances et optimisation					
1	Programmer votre régulateur pour assurer le fonctionnement de la régulation.	1	Α		_ 1	
2	Mesurer les performances de votre régulation en réponse à un échelon de consigne de 10%. On mesurera le temps de réponse à 10%, la valeur du premier dépassement et la précision relative.	1,5	D		0,075	
3	Améliorer votre réglage pour réduire au maximum la valeur du temps de réponse. On donnera le nom et la valeur des paramètres modifiés.	1	D		0,05	
4	Mesurer à nouveau les performances de votre régulation, comparer les avec celles obtenues à la question précédente.	1,5	D		0,075	
			No	te sur : 20	10,7	

I. Préparation du travail

1-Compléter le schéma TI avec l'instrumentation et les liaisons nécessaires à la conception de la boucle de régulation.

2-Quel est le nom de la grandeur réglée ?

C'est la pression du réservoir

3-Quel est le principe utilisé pour mesurer la grandeur réglée ?

Le principe utilise pour mesurer la grandeur réglée est le capteur PT

4-Quelle est la grandeur réglante ?

Le débit d'entrée

5-Donner une grandeur perturbatrice.

La grandeur perturbatrice est l'ouverture de la vanne Ve,

6-Établir le schéma de câblage complet en tenant compte de la nature des signaux utilisés. Prévoir les convertisseurs, alimentations, générateurs nécessaires. Faire apparaître les polarités.

II. Etude du procédé

1-Paramétrer les entrées-sorties de votre régulateur en fonction de la nature des signaux utilisés.

2-Tracer la caractéristique statique de votre procédé. On prendra au moins 6 mesures (3 pour les régulations de température et niveau)

Y	0	25	50	100
X	0	23,9	40,8	79,8

3-En déduire le gain statique du procédé autour du point de fonctionnement.

Delta X/Delta Y=79,8-23,9/100-25=0,75

4-En déduire le sens d'action à régler sur le régulateur.

Le procédé est direct car lorsqu'on augmente SL , OP augmente aussi donc le régulateur est inverse ,

5-Déterminer le modèle de Broïda du procédé, en faisant un échelon de 10% autour du point de fonctionnement.

HP=K,e-TP/1+tp

K=delta x/delta y=0,75

$$T=2,8(t1-t0)-1,8(t2-t0)=2,8(12-7)-1,8(14-7)=1,4$$

t=5,5(t2-t1)=5,5(2)=11

H(p)=0.75,e-1.4p/1+11p

III. Etude du régulateur

1-Déterminer la structure interne

La structure interne est mixte

2-En déduire le réglage du régulateur en utilisant le tableau de réglage fourni dans le cours. T/t=1,4/11=0,12 Donc c'est un PI

0,83/K*(0,4+1/Kr)=0,83/0,75*(0,4+1/0,1)=11,5 XP=100/A=100/11,5=8,6 Ti=t+0,4T=11,56s Td=T/Kr+2,5=0,53s

Avec ces valeurs ce régulateur est un PI et non un PID Mixte

IV. Performances et optimisation

Rate	V	
Alarms		
HAA	100.0	%
LAA	0.0	%
HDA	100.0	%
LDA	100.0	%
	100.0	
TimeBase	Secs	
XP	8.6	%
TI	11.56	
TD	0.50	
Options	00101100	
SelMode	00000000	
ModeSel	00010001	

Nous modifions les valeurs du PID avec nos valeurs

- 2-Je sais pas
- 3-Je sais pas
- 4-Je sais pas