ISIT312 Big Data Management

Cluster Computing

Dr Guoxin Su and Dr Janusz R. Getta

School of Computing and Information Technology - University of Wollongong

Cluster Computing

Outline

Big Data

Traditional Data Architectures

Meet Hadoop!

TOP ISIT312 Big Data Management, SIM, Session 4, 2021

Big Data

What does Big Data mean and how big is Big Data?

Big Data is so big that it cannot be stored on the persistent storage devices attached to a single computer system

Big Data may also mean an infinite amount of data

TOP ISIT312 Big Data Management, SIM, Session 4, 2021

Big Data

What are the source of Big Data?

TOP ISIT312 Big Data Management, SIM, Session 4, 2021 4/20

5/20

Big Data

/ M/1: N 3

Big Data is characterized by so called 3V features:

- Volume: e.g., billions of rows? millions of columns
- Variety: Complexity of data types and structures
- Velocity: Speed of new data creation and growth

Additional Vs:

TOP

- Veracity: Ability to represent and process uncertain and imprecise data
- Value: Data is the driving force of the next-generate business
- Viability: Benefits we can potentially have from data analysis

There are many, many other Vs, the largest number of Vs I found on Web was 42!

- Vagueness: The meaning of found data is often very unclear, regardless of how much data is available
- Validity: Rigor in analysis is essential for valid predictions where data is the driving force of the next-generate business
- Vane: Data science can aid decision making by pointing in the correct direction

- ... and many, many others Big Data Management, SIM, Session 4, 2021

Big Data

Examples of Big Data:

- Clickstream data
- Call centre data
- E-mail and instant-messaging
- Sensor data
- Unstructured data
- Geographic data
- Satellite data
- Image data
- Temporal data
- and more ...

6/20

Cluster Computing

Outline

Big Data

Traditional Data Architectures

Meet Hadoop!

TOP ISIT312 Big Data Management, SIM, Session 4, 2021

Traditional Data Architectures

Data warehousing technologies

TOP ISIT312 Big Data Management, SIM, Session 4, 2021

Je / Sovered C)

Traditional Data Architectures

The strength of traditional data architectures:

- Centralised governance of data repositories
- Light-fast inquires performed regularly in daily business
- Optimisation for OLTP and OLAP
- Security and access control
- Fault-Tolerance and backup

The challenges for traditional data architectures:

- New types of data such as unstructured data and semi-structured data
- Increasingly large amounts of data flowing into organisations
- New computational paradigms use non-traditional NoSQL databases to rapidly mine and analyse very large data sets
- Increasing cost of storing and analysing the large amounts of data
- Increasing use of data analytics, which requires significant storage and processing capabilities

9/20

Traditional Data Architectures

TOP

ISIT312 Big Data Management, SIM, Session 4, 2021

12/20

Cluster Computing

Outline

Big Data

Traditional Data Architectures

Meet Hadoop!

TOP ISIT312 Big Data Management, SIM, Session 4, 2021

Hadoop, in terms of its developers, is a project that develops opensource software for reliable, scalable, distributed computing

Features of Hadoop

- Capability to handle large data sets, e.g. simple scalability and coordination
- File size range from gigabytes to terabytes
- Can store millions of those files
- High fault tolerance
- Supports data replication
- Supports streaming access to data
- Supports batch processing
- Support interactive, iterative and stream processing
- Implements a data consistency model of write-once-read-many access model
- Run on commodity hardware, not high-performance computers
- Inexpensive
- It can be deployed on premises or in the cloud

SIT312 Big Data Management, SIM, Session 4, 2021

13/20

TOP

Core components of Hadoop

Different data-processing frameworks (e.g., MapReduce)

YARN: An Operating System for Hadoop (Hadoop Cluster Resource Management)

(Hadoop Distributed File System) (Hadoop Distributed File System)

ISIT312 Big

ISIT312 Big Data Management, SIM, Session 4, 2021

21 14/20

TOP

Hadoop Ecosystem

TOP ISIT312 Big Data Management, SIM, Session 4, 2021 15/20

Commercial Hadoop Landscape

ISIT312 Big Data Management, SIM, Session 4, 2021

16/20

TOP ISIT312 Big Data Management, SIM, Session 4, 2021 17/20

Hadoop clusters can support up to 10,000 server and receives near-to-linear scalability in computing power

A typical Hadoop cluster consists of:

- A set of master nodes (servers) where the daemons supporting key Hadoop frame-works run
- A set of worker nodes that host the storage (HDFS) and computing (YARN) work
- One or more edge servers, which are used for accessing the Hadoop cluster to launch applications

- One or more <u>relational databases</u> such as MySQL for storing the metadata repositories

- Dedicated servers for special frameworks such as Kafka

ISIT312 Big Data Management, SIM, Session 4, 2021 18/20

TOP

Hadoop also support the pseudo-distributed mode

- All HDFS and YARN daemons running on a single node.
- Highly simulate the full cluster
- Easy for beginner's practice
- Easy for testing and debug

Our lab setting is the pseudo-distributed mode

- The single node is a Ubuntu 14.04 Virtual Machine (VM)

References

White T., Hadoop The Definitive Guide: Storage and analysis at Internet scale, O'Reilly, 2015 (Available through UOW library)

Vohra D., Practical Hadoop ecosystem: a definitive guide to Hadoop-related frameworks and tools, Apress, 2016 (Available through UOW library)

Aven J., Hadoop in 24 Hours, SAMS Teach Yourself, SAMS 2017

Alapati S. R., Expert Hadoop Adiministration: Managing, tuning, and securing Spark, YARN and HDFS, Addison-Wesley 2017

20/20