平成17年度 日本留学試験(第1回)

試験問題

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらか一方のコースを選んで解答してください。「コース2」を選ぶ場合は、右のように、解答用紙の左上にある「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。選択したコースが正しくマークされていないと、採点されません。

< 解答用紙記入例 >

解答コース Course					
コース 1 Course 1	フース 2 Course 2				
0	•				

問 1 a, b を定数とする。x の整式

$$A = x^3 + ax^2 + 18$$
, $B = x^2 - 2x + b$

について考える。

(1) A を B で割ったときの商を Q とし、余りを R とすると、

$$Q = x + a + \boxed{\mathbf{A}}$$

$$R = \left(\begin{array}{|c|c|c|} \hline \mathbf{B} & a-b+ \hline \mathbf{C} \end{array} \right) x - \left(a + \begin{array}{|c|c|} \hline \mathbf{D} \end{array} \right) b + \overline{ \begin{bmatrix} \mathbf{E} & \mathbf{F} \end{bmatrix} }$$

である。

(2) AがBで割り切れるとき、a、bの値は

$$a = \boxed{\mathsf{G}}, \quad b = \boxed{\mathsf{H}}$$

または

$$a = \boxed{\mathsf{IJ}}, \quad b = \boxed{\mathsf{KL}}$$

である。

3 a . \	
	欠の命題の M から Q について,最も適するものを下の ⑩ ~ ③ のうちから‐ 選べ。ただし,α,b は実数とする。
(1)	ab=0 は $a=b=0$ であるための $lacktriangle$ 。
(2)	$a^2 + b^2 = 0$ は $a = b = 0$ であるための $lackbox{N}$ 。
(3)	(a+b)(a-b)=0 は $a=b=0$ であるための $lacksquare$ 。
(4)	$a^2 - ab + b^2 = 0$ は $ab = 0$ であるための $ extbf{P}$ 。
(5)	$b \neq 0$ のとき, $a \ge b$ かつ $a \ge -b$ は $a \ge 0$ であるための \square
_	
0	必要十分条件である
1	必要条件であるが、十分条件ではない
2	十分条件であるが、必要条件ではない
3	必要条件でも十分条件でもない
注)	命題: proposition
	」の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{R}$ \sim $oxed{Z}$ は空欄にしてください。

問 1 a, x, y は有理数とし

$$\frac{\sqrt{3} + \sqrt{2}a}{\sqrt{3} + \sqrt{2}} = x + \sqrt{6}y$$

とする。

(1)
$$x = \begin{bmatrix} A & B \end{bmatrix} a + \begin{bmatrix} C \end{bmatrix}$$
, $y = a - \begin{bmatrix} D \end{bmatrix}$ である。

(2) a がどのような値をとっても、点 (x,y) はつねに直線

$$y = \frac{\boxed{\mathsf{E}\;\mathsf{F}}}{\boxed{\mathsf{G}}} x + \frac{\boxed{\mathsf{H}}}{\boxed{\mathsf{I}}}$$

上にある。

問 2 a, b は定数とする。

放物線
$$y = x^2 + ax + 4$$
 · · · · · ①

直線 $y = 4x + b$ · · · · · ②

について考える。

(1) ① と② が共有点をもつための必要十分条件は、a, b の間に

$$b \ge \frac{\boxed{\mathsf{J}\,\mathsf{K}}}{\boxed{\mathsf{L}}} a^2 + \boxed{\mathsf{M}} a \qquad \cdots \qquad \Im$$

が成り立つことである。

(2) ab 座標平面上で直線 a+b=k 上の点 (a,b) がすべて ③ で表される領域に含まれるような k の最小値を k_0 とするとき, $k_0=$ $\boxed{\mathbf{N}}$ である。

(問2は次ページに続く。)

(3)	$a+b=k_0$ のとき,	① と ②) の共	有点のうちで,	その x 座標が	a に無関係な-	-定値とな
ž	る点の座標は (OP], Q	-a) である。			

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{R}$ \sim $oxed{Z}$ は空欄にしてください。

問1 三角形 ABC において、3 辺の長さを

$$AB = 5$$
, $BC = 8$, $CA = 7$

とする。

(1)
$$\angle B = \frac{A}{B} \pi$$
 であり、三角形 ABC の面積は $CD\sqrt{E}$ である。

(問1は次ページに続く。)

(2) 三角形 ABC の重心を G とし、 $\overrightarrow{GA} = \overrightarrow{a}$ 、 $\overrightarrow{GB} = \overrightarrow{b}$ とすると

$$\overrightarrow{GC} = \overrightarrow{\mathbf{F} \mathbf{G}} (\overrightarrow{a} + \overrightarrow{b})$$

である。

また, 辺 BC 上に BM = 3 となるように点 M をとれば

$$\overrightarrow{\mathrm{GM}} = \frac{1}{\boxed{\mathsf{H}}} \left(\boxed{\boxed{\mathsf{IJ}}} \overrightarrow{a} + \boxed{\mathsf{K}} \overrightarrow{b} \right)$$

である。

さらに,辺 AC 上に AN = 2 となるように点 N をとり,上と同様に \overrightarrow{GN} を \overrightarrow{a} と \overrightarrow{b} で表せば

$$\overrightarrow{GM} + \overrightarrow{\boxed{L}} \overrightarrow{GN} = \overrightarrow{0}$$

であり、3点 G, M, N は同一直線上にあることがわかる。

注) 重心: center of gravity

- 問 2 α は定数とする。x の関数 $f(x) = \cos 3x + \alpha \cos 2x$ について考える。

である。

(2)
$$f(x)$$
 が $\cos x = \frac{1}{4}$ で最小値をとれば $a = \frac{R}{S}$ であり、 $f(x)$ の値域は
$$-\frac{TU}{VW} \le f(x) \le \frac{XY}{Z}$$

である。

III の問題はこれで終わりです。

注) 值域:range

問 1 a, b を定数とする。関数 $f(x)=(ax+b)e^{\frac{t}{2}}$ がすべての実数 x に対して

$$f(x) = e^{\frac{x}{2}} - 1 + \frac{1}{2} \int_0^x f(t) dt$$

を満たすとき、f(0) = **A** であり

$$a = \begin{array}{|c|c|} \hline B \\ \hline \hline C \\ \hline \end{array}$$
, $b = \begin{array}{|c|c|} \hline D \\ \hline \end{array}$

である。

また、曲線 y = f(x) と x 軸および直線 x = 2 で囲まれる部分の面積 S は

$$S = \boxed{\mathsf{E}}$$

である。

問 2 区間 $0 \le x \le 1$ において、2 つの曲線

$$C_1: y=x^2, C_2: y=\sqrt{x}$$

について考える。

(問2は次ページに続く。)

	数学-25
(2) $0 < t < 1$ を満たす実数 t に対して、直線 $x = t$ と 2 曲線 C_1 、 C_2 との交点を Q とする。線分 PQ の長さは	それぞれ P ,
$t=2$ $\boxed{ J}$	
のとき最大になり,そのときの PQ の長さは	
$3\cdot 2$ \boxed{M}	

である。

 $oxed{IV}$ の問題はこれで終わりです。 $oxed{IV}$ の解答欄 $oxed{N}$ \sim $oxed{Z}$ は空欄にしてください。 コース2の問題はこれですべて終わりです。 解答用紙には $oxed{V}$ がありますが, $oxed{V}$ の問題はありませんので,空欄にしてください。

この問題用紙を持ち帰ることはできません。