DS n° 06 : Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :		Note:	
-----------------	--	-------	--

Porter directement les réponses sur la feuille, sans justification.

Polynômes.

Décomposer $P = X^6 - 3X^5 + 2X^4 + 4X^2 - 12X + 8$ en produit de facteurs irréductibles.

Sur
$$\mathbb{R}$$
, $P =$

$$\begin{array}{|c|c|c|c|c|c|}\hline Sur \mathbb{C}, & P = \\ \hline & & & \\ \hline \end{array}$$

Soit Q le quotient et R le reste de la division euclidienne de $X^5 - 4X^4 + 2X^3 - X^2 + X + 2$ par $X^3 - 5X^2 - X + 1$.

$$Q = \boxed{ (3) \quad R = \boxed{ }}$$

Soit $n \in \mathbb{N}^*$, le reste de la division euclidienne de $X^{2n} - 3X^n + n$ par $X^2 - 1$ est

Soit $P = X^3 - 2X^2 - 5X + 6$ et $Q = X^4 - 2X^3 - X + 2$.

La multiplicité de 1 en tant que racine de $X^8-10X^7+24X^6-19X^5-4X^4+16X^3-12X^2+5X-1$ est :

Dérivation

Donner un exemple de fonction définie sur un segment, dérivable, dont la dérivée n'est pas bornée.

Soit $f: \mathbb{R} \to \mathbb{R}, x \mapsto x(x+1)\cos(x)$, soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Donner la valeur de $f^{(n)}(x)$.

(10)

Donner une valeur approchée rationnelle à 10^{-1} près de $\sqrt{\frac{125}{4}}$.

(11)

Fractions rationnelles

Soit $R = \frac{3X^5 - 4X^3 + 2X - 1}{X^3 + 2X^2 + 2X + 1}$.

$$\deg(R) = \boxed{ . \tag{12}}$$

Donner la décomposition en éléments simples de R.

Sur
$$\mathbb{C}$$
, $R =$. (14)

— FIN —