Big Data Analyst

MOST IMPORTANT

Unit 1

1. Different Types of Digital Data

Digital data can be broadly classified into 3 types:

1. Structured Data

- Definition: Data that follows a pre-defined model and is stored in tabular form.
- Examples: SQL databases, Excel files.
- Characteristics:
 - Easy to enter, store, query, and analyze.
 - Organized into rows and columns.
- Use Cases: Online transaction systems, banking records, student databases.

2. Semi-Structured Data

- Definition: Data that doesn't follow strict tabular structure but still has some organizational properties.
- Examples: XML, JSON, email (with metadata), NoSQL databases.
- Characteristics:
 - Contains tags or markers for separation.
 - More flexible than structured data.

3. Unstructured Data

- Definition: Data without a specific format or structure.
- **Examples:** Text files, images, audio, video, social media posts.

Characteristics:

- Most challenging to process and analyze.
- Makes up around 80% of the world's data.

2. Key Characteristics of Big Data (3Vs and 5Vs)

The core characteristics of Big Data are explained using **Vs**:

- 3Vs (Classic definition)
 - Volume Massive amount of data (terabytes, petabytes).
 - Velocity Speed at which data is generated and processed.
 - 3. **Variety** Different types of data (structured, semi-structured, unstructured).

Extended to 5Vs

- 4. Veracity Data quality and trustworthiness.
 - Data might be incomplete, noisy, or inconsistent.
- 5. **Value** Worth derived from analyzing big data.
 - Not all data is useful, but valuable insights can lead to better decision-making.

Example: Social media generates huge volume of unstructured variety of data at high velocity, but its veracity might be questionable unless filtered and analyzed to extract value.

🔽 3. Graph Databases and Their Differences from Relational Databases

Graph Databases

- Definition: A database that uses graph structures with nodes, edges, and properties to represent and store data.
- **Popular Examples:** Neo4j, Amazon Neptune.

• Structure:

- Nodes = entities (e.g., person, product)
- Edges = relationships between entities
- Properties = additional info about nodes/edges

Relational Databases

• **Definition:** Traditional databases that store data in tables (rows and columns).

• Examples: MySQL, Oracle, PostgreSQL.

☐ Comparison Table

Feature	Relational DB (RDBMS)	Graph DB
Data Structure	Tables	Graphs (nodes & edges)
Relationships	Through foreign keys & joins	Direct connections (edges)
Query Language	SQL	Cypher (Neo4j)
Speed for Complex Relationships	Slower (many joins)	Faster (traverse relationships directly)
Example Use Cases	Banking, ERP systems	Social networks, Recommendation engines

4. Difference Between Traditional Data and Big Data

Feature	Traditional Data	Big Data
Volume	Low to moderate (MBs to GBs)	Extremely large (TBs to PBs+)
Variety	Mostly structured (tables)	Structured, semi-structured, unstructured
Velocity	Slow to moderate data generation	High-speed streaming and real-time
Storage	Relational Databases (RDBMS)	Distributed storage (HDFS, NoSQL)

Processing	Centralized (single server)	Distributed (parallel processing)
Tools Used	SQL, Oracle, MySQL	Hadoop, Spark, Hive, Pig
Scalability	Vertical (adding power to one machine)	Horizontal (adding more machines)
Cost	Expensive due to high-end servers	Cost-effective using commodity hardware

Example:

Traditional systems work well for transactional data (e.g., banking).

Big Data is needed for analyzing social media, IoT sensor data, or clickstreams from websites.

✓ 5. Graph Databases and Their Differences from Relational Databases

Graph Databases:

- Based on: Graph theory (nodes and relationships/edges).
- Best For: Complex, interconnected data (social networks, fraud detection, recommendation systems).
- Example: Neo4j, Amazon Neptune,

♦ Relational Databases (RDBMS):

- Based on: Tables (rows and columns).
- Best For: Structured data with clear schema (banking systems, payroll, inventory).
- Example: MySQL, PostgreSQL, Oracle.

Ⅲ Comparison Table:

Feature	Relational DB	Graph DB
Data Representation	Tables	Nodes & Edges
Relationships	Foreign keys + Joins	Direct edges (relationships)

Query Language SQL Cypher (Neo4j)

Performance on Slower with multiple Fast for deep relationships

Relationships joins

Schema Fixed Flexible

Use Case Structured business Social media, logistics,

data recommendations

When to use Graph DB:

If your query looks like "Find friends of friends" — Graph DBs are much more efficient!

Unit 2

1. HDFS Client Interface / Command Line Usage (HDFS CLI)

HDFS (Hadoop Distributed File System) allows interaction through a **command line interface (CLI)**, similar to Linux shell commands.

Common HDFS CLI Commands

Command	Description
hdfs dfs -ls /	List files and directories in root directory
hdfs dfs -mkdir /mydir	Create a new directory
hdfs dfs -put localfile.txt /mydir	Upload file from local system to HDFS
hdfs dfs -get /mydir/file.txt	Download file from HDFS to local
hdfs dfs -cat /mydir/file.txt	Display contents of a file
hdfs dfs -rm /mydir/file.txt	Remove a file
hdfs dfs -du /	Display space usage of files
hdfs dfs -cp /src /dest	Copy file or directory in HDFS
hdfs dfs -mv /src /dest	Move file or directory in HDFS

Example Flow:

bash

CopyEdit

```
hdfs dfs -mkdir /student_data
hdfs dfs -put students.csv /student_data
hdfs dfs -ls /student_data
hdfs dfs -cat /student_data/students.csv
```

HDFS commands are essential for uploading/downloading data to/from the Hadoop file system and managing files in distributed storage.

Unit 3

1. MapReduce Job Process (Steps of Execution)

MapReduce is a programming model used to process large-scale data in a distributed environment like Hadoop.

Steps of a MapReduce Job Execution:

1. Input Splitting

- Input data is split into blocks (e.g., 128MB each).
- Each block is processed in parallel.

2. Map Phase

- Mapper function processes input splits.
- Converts data into key-value pairs (<key, value>).
- Example: Word count → ("hello", 1)

3. Shuffling & Sorting

- Output of mapper is sorted by key.
- Keys are grouped and sent to the correct reducer.
- Ensures same keys go to the same reducer.

4. Reduce Phase

- o Reducer receives grouped key-value pairs.
- o Processes them to give final output.
- Example: ("hello", [1,1,1]) \rightarrow ("hello", 3)

5. Output Writing

o Final results are written to **HDFS**.

K Real-world Example (Word Count):

Input File:

hello world hello Hadoop

Mapper Output:

hello \rightarrow world \rightarrow hello \rightarrow Hadoop \rightarrow

Shuffling + Sorting:

hello \rightarrow [1, 1] world \rightarrow [1] Hadoop \rightarrow [1]

Reducer Output:

 $\begin{array}{c} \text{hello} \rightarrow 2 \\ \text{world} \rightarrow 1 \\ \text{Hadoop} \rightarrow 1 \end{array}$

2. Different Types of Failures in MapReduce

Failures can happen at different stages of a MapReduce job. Hadoop handles failures gracefully.

	-	
	71	١.
- /		Α
-/-	•	

Common Failures:

Failure Type	Description	Handling
Task Tracker Failure	A node running tasks crashes.	JobTracker reassigns the task to another node.
DataNode Failure	DataNode storing HDFS blocks fails.	Replication in HDFS provides data from another node.
Job Tracker Failure	The master (JobTracker) fails.	In Hadoop 1.x, it's a single point of failure . In Hadoop 2.x (YARN), ResourceManager can recover.
Map Task Failure	A mapper task fails due to code or hardware.	Re-run on a different node.
Reduce Task Failure	A reducer crashes before writing output.	Re-run from the intermediate data.
Network Issues	Data transfer between map & reduce fails.	Retried automatically or rerun the task.

Madoop is fault-tolerant: it detects and reassigns failed tasks automatically!

3. Different Phases of MapReduce Job Execution

Here's a visual breakdown of phases:

 $INPUT \rightarrow Splitting \rightarrow Mapping \rightarrow Shuffling \rightarrow Reducing \rightarrow OUTPUT$

Phase	What Happens	Purpose
Input Splits	Input is divided into splits (chunks).	Enables parallel processing
Map Phase	Mapper processes input and emits <key, value="">.</key,>	Extracts useful data

Shuffle & Sort Keys are sorted and grouped across

nodes.

Prepares for reduction

Reduce Reducer processes and merges values per Produces final result

Phase key.

Output Phase Results are saved in HDFS. Final storage

MapReduce Flow Recap:

1. Client submits job.

- 2. JobTracker/ResourceManager assigns tasks.
- 3. InputSplit happens.
- 4. **Map** task runs → emits key-values.
- 5. Shuffle & Sort organizes data.
- 6. Reduce task aggregates values.
- 7. Output is saved in HDFS.

UNIT 4

1. Hadoop Ecosystem and Its Components

★ What is Hadoop Ecosystem?

The **Hadoop Ecosystem** is a framework of tools and technologies built around the Hadoop platform to process, store, and analyze big data in a distributed manner.

Hadoop itself has two core parts:

- HDFS (Storage)
- MapReduce (Processing)
 But it needs more tools to be truly powerful that's where the ecosystem comes in.

Key Components of the Hadoop Ecosystem

Category	Tool	Description
Storage	HDFS	Hadoop Distributed File System — stores data in distributed fashion
Data Processing	MapReduce	Programming model for processing large data sets
Query Languages	Pig	Scripting platform for data transformation using Pig Latin
	Hive	SQL-like interface for querying data using HiveQL
NoSQL Database	HBase	Column-based NoSQL database that runs on HDFS
Coordination	Zookeeper	Maintains configuration and synchronization across services
Workflow	Oozie	Workflow scheduler for Hadoop jobs
Data Ingestion	Sqoop	Transfers data between Hadoop and relational databases
	Flume	I <mark>nges</mark> ts log and e <mark>vent</mark> data into HDFS
Data Serialization	Avro	For compact, fast, and efficient serialization of data
Resource Management	YARN	Allocates resources and schedules tasks
Machine Learning	Mahout	Scalable ML library
Visualization	BigSheets (IBM)	Spreadsheet-like tool to explore big data visually

Why is the Ecosystem Needed?

- HDFS alone can **store** and MapReduce can **process**, but for:
 - \circ Data **ingestion** \rightarrow Use Sqoop/Flume
 - $\circ \quad \textbf{Querying} \to \textbf{Use Hive/Pig}$
 - Scheduling → Use Oozie
 - Real-time processing → Use tools like Spark/Storm

2. Apache Pig & Its Execution Modes + Comparison with Traditional Databases

What is Apache Pig?

- Apache Pig is a high-level platform for processing large datasets using a scripting language called Pig Latin.
- It simplifies MapReduce programming by abstracting complex code into simpler scripts.

Execution Modes of Pig

Mode Description

Local Mode Runs on a single machine using local file system. Ideal for

testing/debugging.

MapReduce Mode Default. Pig converts scripts into MapReduce jobs that run on

Hadoop cluster.

Tez Mode Uses Apache Tez instead of MapReduce — faster and optimized.

(Advanced)

Pig Latin Example:

```
pig
-- Load the file
data = LOAD 'sales.csv' USING PigStorage(',') AS (id:int,
amount:float);
-- Filter the data
high_sales = FILTER data BY amount > 1000;
-- Group and sum
grouped = GROUP high_sales BY id;
total = FOREACH grouped GENERATE group, SUM(high_sales.amount);
```

This is much simpler than writing MapReduce code manually!

VS Pig vs Traditional Databases

Feature	Pig (Big Data)	RDBMS (Traditional DB)
Language	Pig Latin	SQL
Data Size	Huge, unstructured/semi-structured	Structured, moderate size
Schema	Schema-on-read (flexible)	Schema-on-write (rigid)
Processing	Batch, parallel	Single node or limited parallelism
Execution	Converts to MapReduce jobs	Execu <mark>tes o</mark> n RDBMS e <mark>ngin</mark> e
Ideal for	ETL, large-scale data analysis	CRUD op <mark>eratio</mark> ns, trans <mark>actio</mark> ns

UNIT 5

1. Supervised Learning: Classification vs. Regression

(Same as explained earlier — rephrased for completeness)

Supervised Learning

- Machine learns from labeled data (input + known output).
- Useful for making predictions or decisions.

Classification

- Goal: Predict a class or category.
- Output: Discrete labels (Yes/No, 0/1, Red/Blue).
- **Example**: Predict if an email is spam or not.

Algorithm Examples

Logistic Regression

Decision Trees

Naive Bayes

SVM

KNN

Regression

• Goal: Predict a continuous value.

• Output: Numeric values.

• **Example**: Predict house price based on size/location.

Algorithm Examples

Linear Regression

Lasso/Ridge Regression

SVR

Decision Trees for Regression

2. Collaborative Filtering: User-Based vs. Item-Based

What is Collaborative Filtering?

A recommendation system approach that relies on user behavior (ratings, likes).

• Makes predictions based on **similarities**.

A. User-Based Collaborative Filtering

- Finds users with similar tastes.
- Recommends what similar users liked.

Steps:

- 1. Find similar users (based on history)
- 2. Recommend items liked by them

Example:

- You and User X liked the same 3 songs.
- User X liked a 4th song you haven't heard → Recommend it.

B. Item-Based Collaborative Filtering

- Finds similar items based on user ratings.
- Recommends items similar to what user liked before.

Steps:

- 1. Find items similar to what the user liked
- 2. Recommend those items

Example:

- You liked "Stranger Things".
- Recommend "Dark" because many users who liked one also liked the other.

Feature	User-Based CF	Item-Based CF
Based on	User similarity	Item similarity
Stability	Changes if user behavior changes	More stable
Use Case	Netflix, Goodreads	Amazon, Spotify

STILL IMPORTANT

UNIT 1

1. Impacts of Big Data on Processing and Decision-Making

Overview

Big Data refers to data that's large in volume, varied in type, and fast in generation (3Vs: Volume, Variety, Velocity). It impacts how we process information and make decisions—both in real-time and strategically.

A. Impact on Data Processing

Traditional Processing With Big Data

Limited to small data

Capable of handling terabytes/petabytes

Single system Distributed processing (across clusters)

Batch jobs take hours/days Real-time or near real-time

Limited parallelism High parallelism using frameworks like Hadoop, Spark

Limited to structured data Handles structured, semi-structured, unstructured data

Example:

Instead of analyzing 10,000 customer reviews manually or with Excel, Big Data tools like **Hadoop + NLP** can process **millions of reviews** for sentiment, keywords, and trends automatically.

II B. Impact on Decision-Making

Area How Big Data Helps

Business Strategy Predict future demand, optimize pricing, target right customers

Healthcare Personalized treatment plans using patient history and genome data

Finance Real-time fraud detection and investment decisions

Marketing Targeted ads based on browsing/purchase behavior

Retail Dynamic inventory control, sales forecasting

Example: Amazon uses Big Data to recommend products, forecast demand, and optimize warehouse logistics — saving millions and boosting user experience.

UNIT 2

2. Comparison of Functionalities: HDFS, MapReduce, YARN

Feature	HDFS	MapReduce	YARN
Role	Storage layer	Processing layer	Resource management
Full Form	Hadoop Distributed File System		Yet Another Resource Negotiator
Primary Function	Stores huge datasets across multiple machines	Processes large datasets via Map and Reduce steps	Manages cluster resources and job scheduling
Туре	File system	Programming model	Resource manager
Interaction	Stores input/output of MapReduce jobs	Reads from HDFS, writes to HDFS	Coordinates MapReduce jobs across nodes
Components	NameNode, DataNode	Mapper, Reducer	ResourceManager, NodeManager
Handles	Data storage	Computation	Job execution, monitoring, and resource allocation

Re-execution of failed tasks

Reassigns failed resources dynamically

Simple Analogy:

Think of a **Pizza Factory**:

- **HDFS** = Warehouse (stores all ingredients)
- MapReduce = Workers (make pizzas)
- YARN = Manager (assigns workers to kitchen stations, monitors progress)

3. NameNode vs. DataNode (HDFS Components)

- NameNode (Master Node)
 - Acts as the brain of HDFS.
 - Stores metadata (file names, directory structure, block locations).
 - Keeps track of which DataNode holds what block.
- DataNode (Slave Node)
 - Stores actual data blocks (files split into blocks, usually 128MB).
 - Periodically sends heartbeats and block reports to NameNode.
 - Handles read/write requests from clients or MapReduce jobs.

Example Breakdown:

Suppose you store a 300MB file in HDFS.

- HDFS splits it into 3 blocks (128MB + 128MB + 44MB).
- Each block is replicated (default: 3 times).

- NameNode keeps track:
 - o Block 1 → DataNode A, B, C
 - Block 2 → DataNode B, C, D
 - \circ Block 3 \rightarrow DataNode A, D, E

VS Comparison Table

Feature	NameNode	DataNode
Туре	Master	Slave
Stores	Metadata	Actual file data
Responsibility	Directory tree, block locations	Store, retrieve blocks
Failure Impact	Critical — entire HDFS stops	Tolerated due to replication
Communication	Talks to clients and DataNodes	Talks to NameNode only
Heartbeat Check	Receives heartbeats	Sends heartbeats

What happens if a DataNode fails?

- NameNode detects no heartbeat.
- Automatically re-replicates blocks from other copies.

Real-Life Analogy:

- NameNode = Librarian (knows where every book is, doesn't hold them)
- **DataNode** = Bookshelves (holds the actual books)

▲ Tip for Viva/Exam:

Be ready to draw this simple diagram 👇

UNIT 3

1. Shuffling and Sorting in MapReduce

What is Shuffling?

- Shuffling is the process of transferring data from the Map phase to the Reduce phase.
- It takes intermediate key-value pairs output by the Mapper and groups all values by key before passing them to the Reducer.

What is Sorting?

- Before sending data to the Reducer, the framework automatically sorts the intermediate keys (ascending order by default).
- Sorting helps Reducers process records in a predictable order.

Example:

Imagine a WordCount job.

```
Mapper Output (intermediate key-value pairs):
("apple", 1), ("banana", 1), ("apple", 1), ("cherry", 1)
```

After Shuffling + Sorting:

```
("apple", [1, 1]), ("banana", [1]), ("cherry", [1])
```

This gouped and sorted data is sent to the Reducers.

@ Why it's Important:

Feature Role

Shuffling Distributes correct data to Reducers

Sorting Ensures Reducers receive sorted keys

Optimization Helps in efficient grouping and performance

UNIT 4

What is Apache Pig?

- Apache Pig is a high-level platform for creating MapReduce programs using a scripting language called Pig Latin.
- It helps analyze large data sets without writing complex Java code like in traditional MapReduce.

Pig Latin Example:

pıg

```
data = LOAD 'input.txt' AS (word:chararray);
grouped = GROUP data BY word;
counts = FOREACH grouped GENERATE group, COUNT(data);
```

@ Pig's Role:

Feature Pig

Abstraction Hides low-level MapReduce complexity

Ease of Use Uses SQL-like syntax (Pig Latin)

Execution Translates Pig Latin to MapReduce jobs

Extensibility Allows UDFs (User Defined Functions) in Java, Python

Modes Local Mode (single machine), MapReduce Mode (Hadoop cluster)

Pig vs. Traditional DBMS

Feature	Apache Pig	Traditional RDBMS
Language	Pig Latin	SQL
Schema	Flexible (Schema-on-read)	Fixed (Schema-on-write)
Storage	HDFS	Structured databases
Data Type Support	Semi/unstructured + structured	Mostly structured
Processing	Batch via MapRedu <mark>ce</mark>	Query-based
Performance	Optimized for big data	Not optimized for huge unstructured data

2. Hive Architecture and Comparison with RDBMS

What is Hive?

- Apache Hive is a data warehouse tool built on top of Hadoop.
- It allows you to query large datasets stored in HDFS using HQL (Hive Query Language), similar to SQL.

T Hive Architecture Components:

- 1. HiveQL: Language used to write queries.
- 2. **Driver**: Manages the lifecycle of a HiveQL statement (parsing, compiling).
- 3. Compiler: Converts queries to MapReduce jobs.

- 4. **Metastore**: Stores schema and metadata (table names, columns, location in HDFS).
- 5. **Execution Engine**: Executes the query using Hadoop MapReduce.

Hive Query Flow (Simple Diagram):

 $\mathsf{HiveQL} \to \mathsf{Driver} \to \mathsf{Compiler} \to \mathsf{Execution} \ \mathsf{Engine} \to \mathsf{Hadoop} \ (\mathsf{MapReduce}) \to \mathsf{HDFS}$

Metastore

VS Hive vs RDBMS

Feature Hive

Query Language HiveQL (SQL-like) SQL

Schema Schema-on-read Schema-on-write

Data Large, Structured

unstructured/semi-structured

Speed Slower (batch processing) Fast (transactional)

Transaction Limited Full ACID compliance

Support

Indexing Basic or none Advanced indexing

Use Case Analytical processing on Big Data OLTP (Online Transaction

Processing)

Example Query

-- Hive

SELECT category, COUNT(*) FROM products GROUP BY category;

Summary:

Component Pig Hive

Language Pig Latin HiveQL

Use Case Data transformation (ETL) Data analysis & reporting

Processing Type Procedural Declarative

Developer Yahoo! Facebook

3. Big SQL vs. Hive (Comparison and Advantages)

What is Big SQL?

- **Big SQL** is IBM's SQL engine for Hadoop.
- It allows SQL queries on big data stored in HDFS using standard ANSI SQL.
- It supports JDBC/ODBC, integrates with Hive, HBase, ORC, Parquet, and can run federated queries across RDBMS + Hadoop together.

What is Apache Hive?

- Hive is a data warehouse system built on Hadoop.
- It enables SQL-like queries (HQL) on large datasets using batch processing (MapReduce).
- It's ideal for batch analysis and summarizing big data.

Big SQL vs. Hive: Comparison Table

Feature	Big SQL (IBM)	Hive (Apache)	
Developer	IBM	Apache	
SQL Compliance	ANSI SQL (full)	Partial SQL (HiveQL)	
Query Performance	High-speed via in-memory execution	Slower, batch-based via MapReduce/Tez	
Concurrency	Supports multiple users efficiently	Limited concurrency	

Data Format Parquet, ORC, Avro, Text, JSON Same **Support**

Integration Supports RDBMS + Hadoop Primarily Hadoop ecosystem

(federated queries) only

Execution Engine IBM Common SQL Engine MapReduce / Tez / Spark

(parallel, optimized)

ACID Support Strong (transactional) Basic (only with newer Hive

versions)

Advantages of Big SQL:

• High performance, low-latency queries.

- Can query data across platforms (Oracle + Hadoop).
- Standards-based ANSI SQL, good for existing SQL developers.
- Integrated with security and governance features in IBM systems.

UNIT 5

1. Difference between Supervised and Unsupervised Learning

Feature	Supervised Learning	Unsupervised Learning
Definition	Learns from labeled data (input + output)	Learns from unlabeled data
Goal	Predict outcomes or classify data	Discover patterns, clusters, or structure
Input Data	Labeled (e.g., features + target values)	Unlabeled (just features, no target values)
Examples	Email spam detection, house price prediction	Customer segmentation, topic modeling
Algorithms	Linear regression, decision tree, SVM, KNN	K-Means, Hierarchical Clustering, PCA

Evaluation Accuracy, precision, recall,

RMSE

No true "accuracy"; evaluated via clusters/patterns

Examples:

• **Supervised**: Predicting if an email is spam (Yes/No).

• **Unsupervised**: Grouping customers based on shopping behavior.

2. Applications of Machine Learning

Machine learning powers many technologies you use daily. Here's where it's applied:

@ Real-World Applications:

Domain Application Example

Healthcare Disease diagnosis, predicting patient readmission

Finance Fraud detection, credit scoring

Retail Product recommendations (like Amazon/Flipkart)

Social Media Content recommendation (YouTube, Instagram)

Marketing Targeted ads, customer churn prediction

Transportation Self-driving cars, route optimization

Cybersecurity Threat detection, anomaly detection

Education Student performance prediction, adaptive learning tools

ML is used for:

- Classification
- Regression
- Clustering
- Dimensionality Reduction

- Natural Language Processing (NLP)
- Image and Video Processing

3. Big Data Analytics with BigR

What is BigR?

- BigR is a tool (by IBM) that integrates the R programming language with Hadoop to allow data scientists to perform statistical analysis on large datasets stored in HDFS.
- Combines the simplicity of R with the scalability of Hadoop.

Features of BigR:

Feature Description

Language Uses R syntax and functions

Data Location Operates directly on HDFS (big data storage)

Execution Model Converts R commands to Hadoop MapReduce jobs

Use Case Running R-based analytics on massive datasets

Libraries Supports R packages and custom scripts

Advantages of BigR:

- No need to move big data into memory (R is memory-limited).
- BigR brings **R** to big data without rewriting the code in Java/Python.
- Parallel processing = better performance.
- Ideal for data analysts familiar with R, but working with large Hadoop datasets.

📌 Example Use Case:

```
# BigR command (pseudocode)
bigr.load("hdfs://data/sales.csv")
bigr.aggregate(data, by = "Region", FUN = "mean")
```

Summary:

Tool Purpose

BigR Run R code on big data (Hadoop)

Big SQL Run ANSI SQL on Hadoop + relational databases

IF U GOT SOME TIME....

UNIT 1

1. Diagram Showing the Evolution of Big Data

■ Evolution of Big Data

Here's a **simple**, **clean diagram** that shows how Big Data evolved:

pgsql CopyEdit

Era	Data Type	+ Technology Used +
Traditional Era (~1980s - 2000)	Structured Data (Tabular Format)	RDBMS, Spreadsheets
Web Era (2000 - 2010)	Semi-Structured Data (Emails, Logs, HTML)	XML, JSON, Web Logs
Social Media Era (2010 - 2020)	Unstructured Data	Text, Images, Videos Hadoop, Spark, Cloud
IoT / AI Era	Real-time + All Types (Massive-scale data)	Sensors, ML, Streams

Summary:

- Structured Data: Tables, rows, columns → SQL
- Semi-Structured: JSON, XML, web logs → NoSQL
- **Unstructured**: Videos, images, audio → Hadoop/Spark
- Real-time & Al-driven: IoT, Sensors, ML → Streaming Analytics

UNIT 2

What is Avro?

- Avro is a data serialization system developed in Hadoop ecosystem.
- It helps in efficient storage and exchange of large volumes of data across Hadoop applications.
- It is language-neutral and uses JSON for schema and compact binary for data.

Key Features:

- Schema-based: Uses JSON schema
- Compact and fast: Binary data is very lightweight
- Dynamic typing: Each data file stores its own schema
- Supports rich data types: arrays, maps, unions, etc.
- Compatible with many languages: Java, Python, C, etc.

Example:Avro Schema (in JSON):

"type": "record",

```
"name": "Student",
  "fields": [
    {"name": "rollNo", "type": "int"},
    {"name": "name", "type": "string"},
   {"name": "marks", "type": "float"}
}
```

V Data using Avro:

```
"rollNo": 101,
  "name": "Praveen",
  "marks": 87.5
}
```

This schema + data gets converted into compressed binary and stored in HDFS, reducing storage and improving performance.

1. What is MapReduce? (with basic + diagram)

Definition:

MapReduce is a programming model in Hadoop to process large datasets in a distributed parallel way across a Hadoop cluster.

It has two main functions:

- **Map()** filters and sorts data (key-value pair generation)
- Reduce() aggregates and summarizes data

Working Process:

- 1. **Input Splitting**: Input data is divided into blocks (128MB by default).
- 2. **Mapping**: Each block is processed by a **Mapper** converts data into (key, value) pairs.
- Shuffling & Sorting: Hadoop automatically groups keys and sends them to respective Reducers.
- 4. **Reducing**: Aggregation happens in the **Reducer** function.
- 5. Final Output: Result is written back to HDFS

Simple Example:

@ Problem: Count word frequency in a document.

Input:

```
"Big data is big"
```

Map Output (key-value pairs):

```
("Big", 1)
("data", 1)
("is", 1)
("big", 1)
```

After Shuffle & Sort:

```
("Big", [1])
("big", [1])
("data", [1])
("is", [1])
```

Reduce Output:

```
("Big", 1)
("big", 1)
("data", 1)
("is", 1)
```

MapReduce Diagram:

```
Input Splits

+----+

| Mapper |
+----+

| (Key, Value)

Shuffle & Sort

+----+

| Reducer |
+----+

Final Output in HDFS
```

Nhy MapReduce?

Feature Advantage

Scalability Handles petabytes of data

Fault Tolerant Retries failed tasks automatically

Parallel Processing Faster processing via clusters

Simplified Model Easy to write simple jobs

Summary:

Topic Key Idea

Big Data Evolution Moved from tabular \rightarrow unstructured \rightarrow real-time

Avro Schema-based serialization for Hadoop

MapReduce Distributed processing with Map and Reduce

2. Task Execution in MapReduce

What is Task Execution?

In Hadoop's MapReduce framework, every job is broken into smaller **tasks**, and those tasks are executed across nodes in a cluster.

Breakdown of Execution:

Let's say you submitted a MapReduce job:

➤ Step-by-step Execution:

1. Job Submission:

You submit a job to the Hadoop JobTracker (or ResourceManager in YARN).

2. Input Splits:

 The input file is divided into blocks (e.g., 128MB), and each block is assigned to a Mapper.

3. Map Task Execution:

- Each input split is processed by a Map task.
- The Map function produces intermediate (key, value) pairs.

4. Intermediate Output Storage:

- The output is written to local disk.
- Then it moves to the shuffle phase.

5. Shuffle and Sort:

- Intermediate keys are sorted and grouped.
- Data is transferred to Reduce tasks.

6. Reduce Task Execution:

- Each group of keys is processed by a Reduce task.
- The final output is written back to HDFS.

Types of Tasks:

Task Type Role

Map Task Processes input splits into key-value pairs

Reduce Task Aggregates and summarizes intermediate output

Speculative Task Backup task to handle slow-running nodes

UNIT 4

1. What is Hive? Key Components of Its Architecture

🐝 What is Hive?

Apache Hive is a data warehouse infrastructure built on top of Hadoop for processing structured data using **SQL-like queries** (HiveQL).

Hive allows you to write queries similar to SQL, which internally get converted into MapReduce or Tez or Spark jobs.

Hive Architecture Diagram (Simplified):

Key Components:

Component Description

HiveQL SQL-like language to write queries

Driver Manages lifecycle of a query

Compiler Converts HiveQL to execution plan (MapReduce/Spark)

Metastore Stores metadata (table schema, locations, partitions)

Execution Engine Executes jobs using Hadoop framework

HDFS Stores Hive table data in Hadoop

2. What is HBase? How is it different from RDBMS?

★ What is HBase?

Apache HBase is a **column-oriented NoSQL database** that runs on top of HDFS. It's designed for **real-time read/write** access to large datasets.

Think of HBase as the Hadoop version of Google's BigTable.

<mark>Ⅲ</mark> HBas<mark>e vs. RD</mark>BMS

Feature	HBase (NoSQL)	RDBMS (SQL-based)
---------	---------------	-------------------

Data Model Column<mark>-bas</mark>ed (No fixed schema) Table-based (Rows and Columns)

Schema Dynamic (Flexible) Rigid (Predefined)

Query No SQL (uses API/Java/REST) SQL

Language

Scalability Horizontal (across machines) Vertical (within one server)

Performance Optimized for large, sparse Optimized for smaller structured

datasets data

Use Case Facebook Messaging, Time series Banking systems, Inventory

logs

HBase Key Concepts:

- Tables with rows identified by row keys
- Each row has column families and columns
- Each cell can have multiple versions (timestamps)

UNIT 5

1. What is Machine Learning? (Definition and Types)

in Definition:

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) where machines learn from data without being explicitly programmed.

Instead of writing rules, we feed data to algorithms and let the model learn patterns.

Types of Machine Learning:

Туре	Description	Example
Supervised Learning	Model is trained with labeled data (input → output pairs).	Email Spam Detection, Credit Scoring
Unsupervised Learning	Model learns from unlabeled data to find hidden patterns.	Customer Segmentation, Clustering
Reinforcement Learning	Agent learns by interacting with environment, using reward & penalty.	Self-driving Cars, Game Al
Semi-supervised Learning	Combination of a small amount of labeled data + large amount of unlabeled data.	Image tagging when only a few are labeled

Summary Table:

Type	Type Input Type Output Known?		Example
Supervised	Labeled	Yes	Regression, Classification

Unsupervised Unlabeled No Clustering, Dimensionality Reduction

Reinforcement State/Reward Indirect Game-playing agents

