Automatic Term Extraction based on GenAl

Terminology Agent System

Bachelor's Thesis Presentation in Computer Science

Jonas Ludwig Gerg

24.03.2025 - 24.07.2025

Chair of Computer Systems https://dse.in.tum.de/

Notivation	2
Background	4
Goals	8
Design	0
mplementation	
esting & Evaluation	7
Conclusion	1

Motivation

- Deutsche Bahn is facing a strong demand for qualified workers¹
- Focus on recruitment from abroad²
- Language barriers due to domain-specific terminology
- Provision of explanations in texts and conversations
- Challenge: How can we efficiently and reliably detect and extract terms and phrases in texts?

¹[1] "DB Job Portal aktuelle Anzahl an gesuchten Vollzeitstellen." Accessed: Mar. 12, 2025. [Online]. Available: https://db.jobs/de-de/Suche

²[2] "Deutsche Bahn rekrutiert Auszubildende im Ausland." Accessed: Jul. 02, 2025. [Online]. Available: https://www.sueddeutsche.de/wirtschaft/bahn-azubis-migration-1.5672979

Motivation	2
Background	4
Goals	8
Design 1	10
Implementation 1	14
Testing & Evaluation 1	17
Conclusion	21

Automatic Term Extraction (ATE)

The process of identification and extraction of terminology specific to a particular domain within a document using an automated process.¹

¹[3] G. M. Di Nunzio, S. Marchesin, and G. Silvello, "A Systematic Review of Automatic Term Extraction: What Happened in 2022?," *Digital Scholarship in the Humanities*, vol. 38, no. Supplement_1, pp. i41–i47, Jun. 2023, doi: 10.1093/llc/fqad030.

²Example using nltk (https://www.nltk.org) and the universal tag set

Automatic Term Extraction (ATE)

The process of identification and extraction of terminology specific to a particular domain within a document using an automated process.¹

Linguistic: "analyze linguistic properties of language"

```
[('Auf', 'NOUN'), ('dieser', 'NOUN'), ('Strecke', 'NOUN'), ('musst', 'NOUN'), ('du', 'NOUN'), ('auf', 'NOUN'), ('fahren', 'NOUN'), ('!', '.')]
```

- Dictionary based: "match with known dictionary entries"
- Statistical: "extract based on token frequency"
- Large Language Models: "extract using pretrained models"

¹[3] G. M. Di Nunzio, S. Marchesin, and G. Silvello, "A Systematic Review of Automatic Term Extraction: What Happened in 2022?," *Digital Scholarship in the Humanities*, vol. 38, no. Supplement_1, pp. i41–i47, Jun. 2023, doi: 10.1093/llc/fqad030.

²Example using nltk (https://www.nltk.org) and the universal tag set

Terms and Phrases in Texts

"Auf dieser Strecke musst du auf Sicht fahren!"

"Fahrt auf Sicht bis Kilometer 103."

"Ich fahre hier seit längerem auf Sicht."

"Ich muss auf Sicht für 3km fahren."

Terms and Phrases in Texts

"Auf dieser Strecke musst du auf Sicht fahren!"

"Fahrt auf Sicht bis Kilometer 103."

"Ich fahre hier seit längerem auf Sicht."

"Ich muss auf Sicht für 3km fahren."

→ Fahrt auf Sicht

Terms and Phrases in Texts

"Auf dieser Strecke musst du auf Sicht fahren!"

"Fahrt auf Sicht bis Kilometer 103."

"Ich fahre hier seit längerem auf Sicht."

"Ich muss auf Sicht für 3km fahren."

- → Fahrt auf Sicht
- → Auf Sicht fahren

Terms occur in different variations in different languages

Challenges with ATE¹

- Variability of Terms and Polysemy
- Domain Dependency
- Cross-Language Compatibility
 - → different linguistic features
- Scalability issues
 - → especially dictionary based methods

¹[4] R. Mitkov, Ed., *The Oxford Handbook of Computational Linguistics 2nd Edition*, 2nd ed. Oxford University Press, 2014. doi: 10.1093/oxfordhb/9780199573691.001.0001.

Motivation	. 2
Background	. 4
Goals	. 8
Design	10
mplementation	14
Testing & Evaluation	17
Conclusion	21

Requirements and Design Goals

- Extensibility for new models, algorithms and data sources
- Reliable and safe definition generation
- Performant extraction and generation

Requirements and Design Goals

- Extensibility for new models, algorithms and data sources
- Reliable and safe definition generation
- Performant extraction and generation

→ Main priority on reliability and safety

Notivation	2
Background	4
Goals	8
Design	10
mplementation	14
esting & Evaluation	17
Conclusion	21

Design Overview

Design Details

- Event-driven blackboard pattern architecture¹
- Knowledge Sources (KS) ...
 - ... operate on shared blackboard
 - · ... react to and publish new events
 - · ... run independently
 - ... employ LLMs to solve linguistic tasks
 - ... optionally access external systems

¹[5] P. Lalanda, "Two Complementary Patterns to Build Multi-Expert Systems."

Example Event Flow

Example Event Flow

Example Event Flow

Motivation	. 2
Background	. 4
Goals	. 8
Design	10
Implementation	
Testing & Evaluation	17
Conclusion	21

Knowledge Sources

LLM based Knowledge Sources

- Use OpenAls gpt-4o-mini model
- Different Prompt Engineering techniques:¹
 - Zero-Shot
 - Few-Shot
 - Prompt-Chaining²
- temperature=0 \rightarrow reduce randomness³
- Implementation for DB uses internal BahnGPT

TermExtractor

TermNormalizer

DefinitionGenerator

DefinitionCombiner

¹[6] Prompt Engineering for LLMs. Accessed: Jun. 11, 2025. [Online]. Available: https://learning.oreilly.com/library/view/prompt-engineering-for/9781098156145/

²[7] Anthropic, "Chain Complex Prompts for Stronger Performance." Accessed: Jul. 04, 2025. [Online]. Available: https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts

³[8] M. Renze, "The Effect of Sampling Temperature on Problem Solving in Large Language Models," in *Findings of the Association for Computational Linguistics: EMNLP* 2024, Miami, Florida, USA: Association for Computational Linguistics, 2024, pp. 7346–7356. doi: 10.18653/v1/2024.findings-emnlp.432.

otivation	2
ackground	4
oals	8
esign	10
nplementation	14
esting & Evaluation	17
onclusion	7

Testing LLM Applications

```
1  // probabilities in iteration 1
2  {'FALSE': 0.6224593312018545, 'TRUE': 0.3775406687981454}
3  // probabilities in iteration 2
4  {'FALSE': 0.9149009474519222, 'TRUE': 0.08509905254807776}
5  // probabilities in iteration 3
6  {'TRUE': 0.679178699175393, 'FALSE': 0.32082130082460697}
7  // probabilities in iteration 4
8  {'FALSE': 0.9399133527714579, 'TRUE': 0.060086647228542005}
9  // probabilities in iteration 5
10  {'TRUE': 0.9241418131886822, 'FALSE': 0.0758581868113179}
```

→ Multiple iterations of tests were not consistent, even with deterministic LLM settings

Challenges with Testing of LLM Applications

- 1. Non-Determinism and Inconsistency of LLM output
 - → different output for every execution
- 2. **Semantic comparison** between oracle and observation
 - → colloquial "420er" ← official "420"
- 3. Increased cost when allowing reasoning
 - → however: testing was successful afterwards

Evaluation

• Limited test set of 21 crafted, short test sentences

Design						
Implementation						
Testing & Evaluation						
Conclusion		 	 	 	 	_ 21

Summary

Traditional ATE methods not properly applicable

- limited cross-language support
- domain-specificity
- fine-tuning and training required

TAS:

- Flexible integration of new technologies or data sources
- Out-of-the-box models
- Potentially high recall rate

♣ Further research required in determinism for testing LLM applications and the performance of TAS

Future Research

- Performance improvements and scalability of TAS
 - Fine-tuning of baseline models
 - Distributed knowledge sources
- Cross-language and cross-domain compatibility
- ChatBot functionality for TAS
- Testing of LLM applications ("how to deal with non-determinism?")

Sources

- [1] "DB Job Portal aktuelle Anzahl an gesuchten Vollzeitstellen." Accessed: Mar. 12, 2025. [Online]. Available: https://db.jobs/de-de/Suche
- [2] "Deutsche Bahn rekrutiert Auszubildende im Ausland." Accessed: Jul. 02, 2025. [Online]. Available: https://www.sueddeutsche.de/wirtschaft/bahn-azubis-migration-1.5672979
- [3] G. M. Di Nunzio, S. Marchesin, and G. Silvello, "A Systematic Review of Automatic Term Extraction: What Happened in 2022?," *Digital Scholarship in the Humanities*, vol. 38, no. Supplement_1, pp. i41–i47, Jun. 2023, doi: 10.1093/llc/fqad030.
- [4] R. Mitkov, Ed., The Oxford Handbook of Computational Linguistics 2nd Edition, 2nd ed. Oxford University Press, 2014. doi: 10.1093/oxfordhb/9780199573691.001.0001.
- [5] P. Lalanda, "Two Complementary Patterns to Build Multi-Expert Systems."
- [6] Prompt Engineering for LLMs. Accessed: Jun. 11, 2025. [Online]. Available: https://learning.oreilly.com/library/view/prompt-engineering-for/9781098156145/
- [7] Anthropic, "Chain Complex Prompts for Stronger Performance." Accessed: Jul. 04, 2025. [Online]. Available: https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts
- [8] M. Renze, "The Effect of Sampling Temperature on Problem Solving in Large Language Models," in *Findings of the Association for Computational Linguistics: EMNLP* 2024, Miami, Florida, USA: Association for Computational Linguistics, 2024, pp. 7346–7356. doi: 10.18653/v1/2024.findings-emnlp.432.