Quantum Machine Learning

Speaker: Yi-Shan Wu

Institute of Information Science

Academia Sinica

Taiwan

September 1, 2017

Outline

- Machine Learning
 - ML model
 - complexity issues
- Quantum Computation
 - Quantum Mechanics
 - Quantum Circuits
 - Quantum Power and Limitation
- Quantum Machine Learning
 - Machine Learning with Quantum Resources
 - Quantum Mechanics with ML model

Goals of Machine Learning

Goals of Machine Learning

- find target function with high accuracy and high probability
- Output
 Iow time complexity
- Iow sample complexity

High accuracy with high probability

Error

- Training error: $L_D(g) := \frac{\sum\limits_{i=1}^m |g(x_i) y_i|}{m}$
- True error: $L_U(g) := E_{(x,y) \sim U}[g(x) \neq y]$

ϵ -representative sample

$$\Pr_{D \sim U^m} [\forall h \in H, |L_D(h) - L_U(h)| \leq \epsilon] \geq 1 - \delta$$

PAC learnability

$$\Pr_{D \sim U^m}[L_U(g) - \min_{h^* \in H} L_U(h^*) \le \epsilon] \ge 1 - \delta$$

Low Time Complexity

- algorithm
- GPU[1]

Figure: Serial processor

Figure: Parallel processor

quantum computation

Sample Complexity

Error

- Training error: $L_D(g) := \frac{\sum\limits_{i=1}^m |g(x_i) y_i|}{m}$
- True error: $L_U(g) := E_{(x,y) \sim U}[g(x) \neq y]$

PAC learnability

$$\Pr_{S \sim U^m}[L_U(g) - \min_{h^* \in H} L_U(h^*) \le \epsilon] \ge 1 - \delta$$

H is PAC learnable under ERM paradigm when

$$m \ge \lceil \frac{\log(|H|/\delta)}{\epsilon^2} \rceil$$

Quantum Mechanics

• superposition state[2]

• measurement[3]

result dead / alive

Quantum bit[4]

•
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Figure: Qubit represented by two electronic levels in an atom.

Figure: Bloch sphere representation of a qubit.

• Classical gates[4]

• Classical circuit[4]

Quantum single qubit gates[4]

Hadamard
$$-H$$
 $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

Pauli- X $-X$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Pauli- Y $-Y$ $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$

Pauli- Z $-Z$ $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Phase $-S$ $\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
 $\pi/8$ $-T$ $\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$

• Quantum single qubit gates[4]

• Quantum single qubit gates[4]

Figure: Hadamard gate on Block sphere

- multi-qubit gates[4]
 - unitary
 - reversible

$$\begin{array}{c|c} |A\rangle & & & |A\rangle \\ \\ |B\rangle & & \oplus & |B \oplus A\rangle \end{array}$$

Figure: Controlled-not gate
$$|c\rangle |t\rangle \rightarrow |c\rangle |c\oplus t\rangle$$

$$\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]$$

Figure: matrix representation of a CNOT gate.

• Quantum NAND gates[4]

Function $f(x) : \{0,1\} \to \{0,1\}$

- Classical: *f*(0), *f*(1)
- Quantum:[4] $|x\rangle |y\rangle \rightarrow |x\rangle |y\oplus f(x)\rangle$

$$U_f(rac{\ket{0}+\ket{1}}{\sqrt{2}}\otimes\ket{0})=U_f(rac{\ket{0}\ket{0}}{\sqrt{2}}+rac{\ket{1}\ket{0}}{\sqrt{2}})= rac{\ket{0}\ket{f(0)}}{\sqrt{2}}+rac{\ket{1}\ket{f(1)}}{\sqrt{2}}$$

If we have 2 qubits

$$egin{aligned} &(rac{\ket{0}+\ket{1}}{\sqrt{2}})\otimes(rac{\ket{0}+\ket{1}}{\sqrt{2}}) = rac{\ket{00}+\ket{01}+\ket{10}+\ket{11}}{\sqrt{2}^2} \ &\Rightarrow U_f(rac{\ket{00}+\ket{01}+\ket{10}+\ket{11}}{\sqrt{2}^2}\otimes\ket{0}) \ &= rac{1}{2}[\ket{00}\ket{f(00)}+\ket{01}\ket{f(01)}+\ket{10}\ket{f(10)}+\ket{11}\ket{f(11)}] \end{aligned}$$

• Fourier transform

$$|j\rangle \rightarrow \sum_{k=0}^{2^{n}-1} e^{2\pi i j k/(2^{n})} |k\rangle$$

• Quantum Phase Estimation Goal: find ϕ of $U|\psi\rangle = e^{2\pi i\phi}|\psi\rangle$

Quantum Limitation

Measurement

Get 1 information per measurement (as classical)

State preparation

- classical data to quantum state: by QRAM
- directly prepare quantum state

Famous Quantum Algorithms

Shor's algorithm

Factoring $n = p \times q$, where p and q are prime numbers

time: exponential speed-up

Grover search algorithm

Find a unique data

time: quadratic speed-up

HHL algorithm

Solving linear systems of equations Ax = b

time: $O(log(N)\kappa^2s^2/\epsilon)$ for positive semidefinite matrices

(best classical algorithm: $O(N^{2.373})$)

Quantum Machine Learning

Grover's search for machine learning

Grover's search

- clustering via minimum spanning tree
- divisive clustering
- k-medians

Grover's search + other Q. algorithm

- k-means clustering
- quantum recommendation systems
- quantum neural networks

HHL for machine learning

solving linear system of equations

Scaling	Applications	
C: $\tilde{\mathcal{O}}(s\kappa N \log (1/\epsilon))$ [She94] ^a	Least-square-SVM [RML14]	
Q: $\tilde{\mathcal{O}}(s^2\kappa^2\log{(N)}/\epsilon)$ [HHL09] ^b	GP Regression [ZFF15]	
P: $\mathcal{O}(\log^2(N)\log(1/\epsilon))$ [Csa76] ^c	Kernel Least Squares [SSP16]	

Limitation

- matrix is sparse
- ② classical data be loaded in quantum state in O(log(N))
- 3 write down $x = (x_1, x_2, \dots, x_n)$ requires n steps
- lacktriangledown condition number (κ) is at most sublinearly with N

Other possible works and hardness

- Possible Work:
 - Quantum Neural Network
 - optimization
- A Hardness:
 - Nonlinear functions in NN
 - QRAM (not clear now)
 - learn DNF efficiently from quantum examples under uniform distribution
 - no significant benefit to sample complexity
 - write down output

Quantum statistical learning

- Quantum State/Measurement Tomography
 Number of measurement to determine a *n*-particle system grows exponentially in *n*.
 - Ex. requires 6561000 measurements to reconstruct an entangled state of $8\ \text{Ca}$

Quantum statistical learning

Quantum v.s. Classical

Quantum	V.S.	Classical
measurement $E = \{E_1, \cdots E_m\}$		$D = \{x_1, \cdots x_m\}$
state $ ho$ (<i>n</i> -qubit system)	target function	f
$\sigmapprox ho$	hypothesis	$g \approx f$
$\{0,1\}^m$	label	$\begin{array}{c c} g \approx f \\ \{0,1\}^m \end{array}$

Table: Quantum v.s. Classical model

Learn a single qubit state

Basis:

- \bullet $|0\rangle$, $|1\rangle$
- ullet $|+\rangle=rac{|0
 angle+|1
 angle}{\sqrt{2}}$, $|angle=rac{|0
 angle-|1
 angle}{\sqrt{2}}$

Learning quantum states

- Unknown state ρ is a *n*-qubit state. (Can be represented by $2^n \times 2^n$ PSD matrix with $Tr(\rho) = 1$)
- \bullet A set of two-outcome ({0,1}) measurements: $\{\textit{E}_{1},\textit{E}_{2},\cdots\}$

```
\begin{cases} \text{ output 1 with probability } Tr(E_i\rho) \\ \text{ output 0 with probability } 1 - Tr(E_i\rho) \end{cases}
```

Quantum state tomography

Theorem

Let ρ be a n-qubit mixed state, let $E=\{E_1,\cdots E_m\}$ be a "training set" of two outcome measurements drawn independently from a set D. Also, fix $\epsilon,\eta,\gamma>0$ with $\gamma\epsilon\geq 7\eta$. E is a "good" training set if any hypothesis $\sigma\in H$ satisfies

$$|\mathit{Tr}(E_i\sigma) - \mathit{Tr}(E_i\rho)| \le \eta, \forall E_i \in E$$

also satisfies

$$Pr_{E \in D}[Tr(E\sigma) - Tr(E\rho)| \ge \gamma] \le \epsilon$$

Then there exists a constant K>0 such that E is a good training set with probability at least $1-\delta$, provided that

$$m \geq \frac{K}{\gamma^2 \epsilon^2} (\frac{n}{\gamma^2 \epsilon^2} log^2 (\frac{1}{(\gamma \eta)}) + log \frac{1}{\delta})$$

References

- https://read01.com/NyRGmE.html
- Quantum Mechanics and Quantum Computation by edX.org
- https://www.dreamstime.com/stock-images-look-left-bw-image542764
- Quantum Computation and Quantum Information, Nielson and Chuang
- Scott Aaronson: Quantum Machine Learning Algorithms: Read the Fine Print
- quantum machine learning : a classical perspective
- The Learnability of Unknown Quantum Measurements

The End