Q1-Use the following values and five-digit rounding arithmetic

	X	0.0	0.2	0.4	0.6	0.8
Ī	f(x)	1.00000	1.22140	1.49182	1.82212	2.22554

- **a.** Use Newton forward difference formula to approximate f(0.05) Ans: 1.05126
- b. Use Newton backward difference formula to approximate f(0.65) Ans: 1.91545

Q2-Consider $f(x) = e^{2x} - \cos 2x$

- a. Approximate f'(-0.2) using three-point endpoint and mid-point formula with h=0.1
- b. Compute the true error and bound error of each method and display in tabular form.

Tabular form

	3 point (end point)	3 point (mid point)		
Approximate	0.53430	0.57590		
True value	0.56180 (calculator)			
True error	0.0275	0.01410		
Bound error	0.02826	0.01485		

Q3-Approximate $\int_0^{\pi/2} \, sin^2 x dx$, using Closed-Newton cotes formula for n=1,2,3

$n=1 h=\pi/2$	n=2 h= $\pi/4$	n=3 h= $\pi/6$	
0.78540	0.78540	0.78540	

Q4-Approximate $\int_0^2 x^2 \ln(x^2+1) \, dx$, where h=0.25

- a. Composite Simpson's rule
- b. Composite mid point rule

n	0	1	2	3	4	5	6	7	8
Xn	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
f(x _n)	0	0.00379	0.05579	0.25104	0.69315	1.47029	2.65197	4.29301	6.43775

True value (calculator)	3.10930
Composite Simpson's rule	3.10934 (n=8)
Composite Mid point rule	3.00907 (n=6)