

Description

The VSM12N04 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =40V,I_D =12A

 $R_{DS(ON)}\,{<}12m\Omega$ @ $V_{GS}{=}10V$ (Typ. 8.4 $m\Omega)$

 $R_{DS(ON)}$ <18m Ω @ V_{GS} =4.5V (Typ. 12.3 m Ω)

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Load switching
- Hard switched and high frequency circuits
- Uninterruptible power supply

SOP-8

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM12N04-S8	VSM12N04	SOP-8	Ø330mm	12mm	2500 units

Absolute Maximum Ratings (T_A=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit V	
Drain-Source Voltage	V _{DS}	40		
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	12	Α	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	8.5	А	
Pulsed Drain Current	I _{DM}	60	А	
Maximum Power Dissipation	P _D	3	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Ambient ^(Note 2)	R _{θJA}	41.7	°C/W
--	------------------	------	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

	Parameter	Symbol	Condition	Min	Тур	Max	Unit

Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	40	45	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V_{GS} =±20 V , V_{DS} =0 V	-	-	±100	nA
On Characteristics (Note 3)				•		
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.2	1.6	2.5	V
Dunin Course On Chata Basistanas	R _{DS(ON)}	V _{GS} =10V, I _D =10A	-	8.4	12	mΩ
Drain-Source On-State Resistance		V _{GS} =4.5V, I _D =8A	-	12.3	18	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =10A		75	-	S
Dynamic Characteristics (Note4)	•		•	•		
Input Capacitance	C _{lss}	\/ 00\/\/ 0\/	-	1780	-	PF
Output Capacitance	C _{oss}	V_{DS} =20V, V_{GS} =0V, F=1.0MHz	-	209	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UIVIHZ	-	160	-	PF
Switching Characteristics (Note 4)			•	•		
Turn-on Delay Time	t _{d(on)}	V_{DD} =20V, R_L =2 Ω V_{GS} =10V, R_G =3 Ω	-	6.4	-	nS
Turn-on Rise Time	t _r		-	17.2	-	nS
Turn-Off Delay Time	t _{d(off)}		-	29.6	-	nS
Turn-Off Fall Time	t _f		-	16.8	-	nS
Total Gate Charge	Qg		-	30		nC
Gate-Source Charge	Q _{gs}	$V_{DS}=20V,I_{D}=10A,$	-	4.2		nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10V	-	9.5		nC
Drain-Source Diode Characteristics	1		•			
Diode Forward Voltage (Note 3)	V_{SD}	V _{GS} =0V,I _S =10A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	_	12	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 10A	-	29	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	26	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production

Test circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 11 Normalized Maximum Transient Thermal Impedance

Square Wave Pluse Duration(sec)