Lista 7 – Cálculo 2

1) Verifique que y(x) é solução para a EDO.

a)
$$x^2y'' - 3xy' + 4y = 0$$
, $y(x) = x^2 \ln x$, $x > 0$;

b)
$$y' = y^2$$
, $y(x) = \frac{-1}{x+c}$.

- 2) Determine $r \in \mathbb{R}$ para que $y(t) = e^{rt}$ seja solução de y''' + 3y'' + 2y' = 0. Resp. r = -2, -1, 0.
- 3) Verifique se y(x) é solução para a EDO.

a)
$$y(x) = \cos x + \ln(\cos x) + xsenx$$
, $y'' + y' = \sec x$;

b)
$$y(x) = c_1 \cos x + c_2 \operatorname{sen} x + \cos x \cdot \ln(\cos x) + x \operatorname{sen} x$$
, $y'' + y = \sec x$;

c)
$$y(x) = e^{-2x} (A\cos x + Bsenx),$$
 $y'' + 4y' = -5y;$

d)
$$y(x) = 2e^x$$
 ou $y(x) = 3x$ ou $y(x) = c_1e^x + c_2x$, $y''(1-x) + xy' - y = 0$.

Resp. Não, Sim, Sim, Sim.

- 4) Verifique que y(x) = 0 é solução singular de $y' = y^2$.
- 5) Verifique que uma solução implícita para a EDO $(senx + x^2e^y 1)y' + y\cos x + 2xe^y = 0$ é dada pela equação $ysenx + x^2e^y y = c$.
- 6) Obter EDO que tenha como solução a família de circunferências de raio 4 com centro no eixo OX. Resp. $yy' + \sqrt{16 y^2} = 0$ ou $yy'' + (y')^2 + 1 = 0$.
- 7) Encontre uma solução geral para a EDO.

a)
$$(y+e^y)y'+e^{-x}-x=0$$
; Resp. $-x^2+y^2+2(e^y-e^{-x})=c$

b)
$$xy' = (1 - y^2)^{\frac{1}{2}}$$
; Resp. $y = sen(\ln x + c)$

c)
$$y' + \frac{1+y^3}{xy^2(1+x^2)} = 0;$$
 Resp. $\frac{x^6(1+y^3)^2}{(1+x^2)^3} = c$

d)
$$x^2y' = x^2 - xy + y^2$$
; Resp. $y = x + \frac{x}{c - \ln x}$

e)
$$xy' = e^{-xy} - y;$$
 Resp. $y = \frac{\ln(x+c)}{x}$

f)
$$y' = (8x + 2y + 1)^2$$
. Resp. $tg(4x + c) - 4x - \frac{1}{2} = y$