Sylvain, Raphaël (111 124 564)

 $\begin{array}{c} {\rm Compilation\ et\ interpr\acute{e}tation} \\ {\rm IFT-3101} \end{array}$

Travail pratique 2

Travail présenté à Danny Dubé

Département d'informatique et de génie logiciel Univesité Laval Hiver 2019

(a)

Productions			Règles Sémantiques			
S	\rightarrow	\overline{A}	S.ok	:=	$(A.sb \ge 1) \land (A.sc \ge 2)$	
A	\rightarrow	a A_{1}	A.sb	:=	$A_1.sb$	
			A.sc	:=	$A_1.sc$	
A	\rightarrow	b A_1	A.sb	:=	$A_1.sb + 1$	
			A.sc	:=	$A_1.sc$	
A	\rightarrow	c A_1	A.sb	:=	$A_1.sb$	
			A.sc	:=	$A_1.sc + 1$	
A	\rightarrow	ϵ	A.sb	:=	0	
			A.sc	:=	0	

Vérification positive avec le mot $bcc \in L_1$

Vérification négative avec le mot $\epsilon \notin L_1$

(b)

\mathbf{Pr}	odu	ctions	Ré	ègles	Sémantiques
S	\rightarrow	A	A.hprev	:=	н н
			S.ok	:=	A.ok
A	\rightarrow	a A_1	$A_1.hprev$:=	"a"
			A.ok	:=	$A_1.ok \wedge A.hprev \neq "a"$
A	\rightarrow	ъ <i>A</i> ₁	$A_1.hprev$:=	"b"
			A.ok	:=	$A_1.ok \wedge A.hprev \neq "b"$
A	\rightarrow	c A_1	$A_1.hprev$:=	"c"
			A.ok	:=	$A_1.ok \wedge A.hprev \neq "c"$
A	\rightarrow	ϵ	A.ok	:=	true

Vérification positive avec le mot $\epsilon \in L_2$

Vérification positive avec le mot $aa \notin L_2$

(c)

Pr	Productions			Règles Sémantiques					
S	\rightarrow	A	S.ok	:=	$(247 + 12 \cdot A.si = 23 \cdot A.si + 7 \cdot A.sk)$				
A	\rightarrow	a A_1	A.si	:=	$A_1.si + 1$				
			A.sj	:=	$A_1.sj$				
			A.sk	:=	$A_1.sk$				
A	\rightarrow	В	A.si	:=	0				
			A.sj	:=	B.sj				
			A.sk	:=	B.sk				
B	\rightarrow	b B_1	B.sj	:=	$B_1.sj + 1$				
			B.sk	:=	$B_1.sk$				
B	\rightarrow	C	B.sj	:=	0				
			B.sk	:=	C.sk				
C	\rightarrow	c C_1	C.sk	:=	$C_1.sk + 1$				
C	\rightarrow	ϵ	C.sk	:=	0				

Vérification négative avec le mot $\epsilon \not\in L_3$

[Voir page suivante]

(d)

Avec

(hpc = previous char), (hpc = previous previous char), (hn = number of bac occurence), (hfp = fibonnaci previous), (hfc = current fibonnaci value)

Productions		\mathbf{R}	ègles Sémantiques
$S \rightarrow A$	A.hpc:	=	и и
	A.hppc :	=	и и
	A.hn :	=	0
	A.hfc:	=	0
	A.hfp:	=	1
	S.ok:	=	A.ok
$A \rightarrow \mathtt{a} \ A_1$	$A_1.hpc$:	=	"a"
	$A_1.hppc$:	=	A.hpc
	$A_1.hn$:	=	A.hn
	$A_1.hfc$:	=	A.hfc
	$A_1.hfp$:	=	A.hfp
	A.ok:	=	$A_1.ok$
$A \rightarrow b A_1$	$A_1.hpc$:		"b"
	$A_1.hppc$:		A.hpc
	$A_1.hn$:		
	$A_1.hfc$:		
	$A_1.hfp$:		v -
	A.ok:		
$A \rightarrow c A_1$	$A_1.hpc$:		"c"
	$A_1.hppc$:		A.hpc
	$A_1.hn$:	=	if $A.hpc$ = "a" and $A.hppc$ = "b"
			then $A.hn + 1$ else $A.hn$
	$A_1.hfc$:	=	- "
	4 7 6		then $A.hfp + A.hfc$ else $A.hfc$
	$A_1.hfp$:	=	
	4 7		then $max(1, A.hfc)$ else $A.hfp$
			$A_1.ok$
$A \rightarrow \epsilon$	A.ok:	=	A.hfc = A.hn

Vérification positive avec le mot $\epsilon \in L_4$

[Voir page suivante]

(e)

Pr	odu	ctions	Règ	les S	émantiques
S	\rightarrow	a S_1	S.gen	:=	"00" $\cdot S_1.cod$
			S.cod	:=	T.cod
			S.ok	:=	S.gen = S.cod
S	\rightarrow	b S_1	S.gen	:=	"010" $\cdot S_1.cod$
			S.cod	:=	T.cod
			S.ok	:=	S.gen = S.cod
S	\rightarrow	c S_1	S.gen	:=	"001" $\cdot S_1.cod$
			S.cod	:=	T.cod
			S.ok	:=	S.gen = S.cod
S	\rightarrow	d S_{1}	S.gen	:=	"1" $\cdot S_1.cod$
			S.cod	:=	T.cod
			S.ok	:=	S.gen = S.cod
S	\rightarrow	: T	S.gen	:=	11 11
			S.cod	:=	T.cod
			S.ok	:=	S.gen = S.cod
T	\rightarrow	o T_1	T.cod	:=	"0" $\cdot T_1.cod$
T	\rightarrow	1 T ₁	T.cod	:=	"1"· $T_1.cod$
T	\rightarrow	ϵ	T.cod	:=	11 11

Vérification positive avec le mot : $\in L_5$

Vérification négative avec le mot a: $\notin L_5$

Productions			Règles Sémantiques
$S \rightarrow T$	T.hniv	:=	0
	S.ok	:=	$T.okv \wedge T.okn$
$T \rightarrow [T_1, \mathbf{num}, T_2]$	$T_1.hniv$:=	T.hniv + 1
	$T_2.hniv$:=	T.hniv + 1
	T.minv	:=	$\min (T_1.minv, \mathbf{num}.lexval, T_2.minv)$
	T.maxv	:=	$\min (T_1.maxv, \mathbf{num}.lexval, T_2.maxv)$
	T.maxn	:=	$T_1.maxn$
	T.okv	:=	$T_1.maxv \leq \mathbf{num}.lexval$
			\land num . $lexval \le T_2.minv$
			$\wedge T_1.okv \wedge T_2.okv$
	T.okn	:=	2
			$\wedge T_1.okn \wedge T_2.okn$
$T \rightarrow [T_1, \mathbf{num}_1, T_2, \mathbf{num}_2, T_3]$	$T_1.hniv$:=	· · · · · · · · · · · · · · · · · · ·
	$T_2.hniv$		T.hniv + 1
	$T_3.hniv$		T.hniv + 1
	T.minv	:=	$\min(T_1.minv, \mathbf{num}_1.lexval,$
			$T_2.minv, \mathbf{num}_2.lexval, T_3.minv)$
	T.maxv	:=	$\min(T_1.maxv, \mathbf{num}_1.lexval,$
	<i>T</i>		$T_2.maxv, \mathbf{num}_2.lexval, T_3.maxv)$
	T.maxn	:=	-
	T.okv	:=	1
			$\wedge \text{ num}_1.lexval \leq T_2.minv$
			$\wedge T_2.maxv \leq \mathbf{num}_2.lexval$
			$\wedge \text{ num}_2.lexval \leq T_3.minv$
	T 1		$ \wedge T_1.okv \wedge T_2.okv \wedge T_3.okv $
	T.okn	:=	-
			$\wedge T_2.maxn = T_3.maxn$
$T \rightarrow \Gamma$	Tanina		$\wedge T_1.okn \wedge T_2.okn \wedge T_3.okn$
$T \rightarrow []$	T.minv $T.maxv$:=	∞
	T.maxv $T.maxn$:=	$-\infty$ $T.hniv$
	T.okv	:= :=	
	T.okv $T.okn$	-	true
	$1.0\kappa n$:=	true

```
:= X.b
X \rightarrow \mathbf{ou} \ T \qquad \{X_1.i := X.i \lor T.b\}
                  { X.b
                          := X_1.b 
                  { X.b
X \rightarrow \epsilon
                          := X.i
                \{ Y.i := F.b \}
\{ T.b := Y.b \}
               \{ Y_1.i := Y.i \wedge F.b \}
\{ Y.b := Y_1.b \}
Y \rightarrow \mathbf{et} F
        Y_1
                  Y.b
                         := Y.i 
F \rightarrow \mathbf{non} \ F_1 \ \{ F.b \}
                         := \neg F_1.b }
                  F.b
                         := A.b
:= get_value (id.entry) }
```

Productions				Règl	les Sémantiques
\overline{S}	\rightarrow	swith E with C	C.exit	:=	new Label
			C.temp	:=	E.place
			S.code	:=	E.code C.code
C	\rightarrow	case $K S ; C_1$	$C_1.exit$:=	C.exit
			K.temp	:=	C.temp
			K.begin	:=	new Label
			K.end	:=	new Label
			C.code	:=	$K.code \mid\mid S.code$
					$\parallel gen('{f goto}'\ C.exit)$
					$\parallel gen(K.end ':')$
					$\mid C_1.code$
C	\rightarrow	else S	C.code	:=	S.code
C	\rightarrow	\mathbf{end}	C.code	:=	gen(C.exit ':')
K	\rightarrow	\mathbf{num},K_1	$K_1.begin$:=	K.begin
			$K_1.end$:=	K.end
			$K_1.temp$:=	K.temp
			K.code	:=	gen('if' K.temp'='
					num.val 'goto' K.begin)
					$ K_1.code$
K	\rightarrow	num:	K.code	:=	gen('if' K.temp'=')
					$\mathbf{num}.val$ ' \mathbf{goto} ' $K.begin$)
					$\parallel gen(\text{'goto'} K.end)$
					gen(K.begin ':')

Variable	Durée vie	Alloc.	Affect
t_1	1—10	reg.	R1
$\mathrm{t_2}$	1—5	reg.	R2
$\mathrm{t_3}$	3—4	reg.	R3
$\mathrm{t_4}$	45	reg .	R3
${ m t}_5$	5—6	reg .	R3
t_{6}	6—10	reg .	R3
t_7	7—11	reg.	R2
t_8	8—9	reg .	R4
$\mathrm{t_9}$	10—11	reg .	R1
z1	\forall	mem.	_
z2	\forall	mem.	_
\mathbf{a}	\forall	mem.	
b	\forall	mem.	
\mathbf{c}	\forall	mem.	_