

云端的数据库

盛大云计算郭理靖

MYSQL和MONGODB的云服务

Agenda

- **Database As A Service (数据库云)介绍**
- 数据库云整体架构
- MySQL云的实现
- MongoDB云的实现
- 未来的趋势

数据库云是什么?

- 数据库云就是提供数据库服务的云
 - 自助式申请,
 - "所见即所得"
 - 可以按业务需求申请不同配置的数据库
 - 界面管理
 - 完善的服务,
 - 安全控制
 - 数据自动备份
 - 数据库灾难恢复
 - 数据库镜像
 - 监控报表
 - 按时收钱

数据库云的宗旨

Setup without hardware

省事

Operator without DBA

• 省力

Start Business with a little money

• 省钱

业界产品

- Google CloudSQL (MySQL)
- Amazon RDS (MySQL/MS SQL Service/Orcale)
- Microsoft Azure SQL (MS SQL Service)
- Enterprisedb (postersql)
- 盛大云 数据库云(MySQL/MongoDB)
- 阿里云 RDS (MySQL/MS SQL Server)
- 新浪SAE Mysql服务
- MongoHQ/MongoLab (MongoDB)
- Garantia/Redis To Go/Redis4you (Redis)

Agenda

- Database As A Service (数据库云)介绍
- 数据库云整体架构
- MySQL云的实现
- MongoDB云的实现
- 未来的趋势

最初的想法

面对的问题

数据

- 数据库访问安全
- 数据库备份与恢复
- 容量规划

公平

- CPU使用公平
- 内存使用公平
- 磁盘IO使用公平

SACC

最后的架构

云主机

云硬盘

STEM ARCHITECT CONFERENCE CHINA 2012 架构设计·自动化运维·云计算

什么是云硬盘

■ 弹性扩展

用户可独立于云主机申请云硬盘,每块云硬盘空间大小从1G到1T,单台云主机上即可挂载多块云硬盘,从而可以使其空间容量最大扩展到几十T。

■ 数据高可靠

每份云硬盘数据在后台都存有多份冗余,并实时同步,保证不受单机故障影响。

■ 独立持久化

每块云硬盘可以挂载到任意一台云主机上,两者隶属于不同的生命周期,当云主机被删除时,云硬盘数据仍然存在,并可以挂载到其它的云主机上进行访问

Agenda

- Database As A Service (数据库云)介绍
- 数据库云整体架构
- MySQL云的实现
- MongoDB云的实现
- 未来的趋势

MySQL Snapshot

- EBS(云硬盘)+LVM
- Mylvmbackup
- Snapshot保存到云存储
- 使用go写的脚本边tar边上传
 - 本地可能没有空间可以存放tar包
 - 节约时间
 - 控制资源使用

MySQL Binlog上传

- 每5分钟进行一次flush logs
- Binlog上传到云存储
- 监控binlog的连续性
- 上传信息上报数据库
- 容错/可任意时刻kill、重启
- 可接收远程命令

从节点支持

SACC

2012中国系统架构师大会

SYSTEM ARCHITECT CONFERENCE CHINA 2012 架构设计·自动化运维·云计算

从节点支持

- 拿到最新的snapshot
- Replay最近的oplog
- ■再从主进行同步
- ■避免增加从节点时对主节点增加压力

故障迁移的实现

SACC

2012中国系统架构师大会

SYSTEM ARCHITECT CONFERENCE CHINA 2012 架构设计·自动化运维·云计算

真正高可用的实现-DRBD

2012中国系统架构师大会

SYSTEM ARCHITECT CONFERENCE CHINA 2012 架构设计·自动化运维·云计算

实际HA Solution

2012中国系统架构师大会

SYSTEM ARCHITECT CONFERENCE CHINA 2012 架构设计·自动化运维·云计算

HA Solution

加拉斯士会

2012中国系统架构师大会

架构设计·自动化运维·云计算

Agenda

- Database As A Service (数据库云)介绍
- 数据库云整体架构
- MySQL云的实现
- MongoDB云的实现
- 未来的趋势

MongoDB云模式

- Master/Slave模式
 - 与MySQL服务形式与API上保持一致
 - 可以只申请一台机器
 - 可以增加从节点
- Replica Set模式
 - 至少申请3台机器 (2大1小)
 - 可以增加从节点

MongoDB Snapshot

- EBS(云硬盘)+LVM
- 方案1:
 - fsync mongodb -> lock mongodb -> fsync mongodb -> lvm snapshot -> unlock mongodb
 - 缺点:lock的时候mongodb不可用,进程不能死,死了就不能unlock

■ 方案2

- 开启journal选项
- 直接lvm snapshot
- 缺点: 性能上有些损失, 根据snapshot进行恢复时需要先恢复journal,恢复时间会变长

MongoDB Oplog上传

- 后台进程一直读取local上的Oplog
- 满5分钟或者10M写一次磁盘
- Oplog文件上传到云存储(上传进程和写进程分离)
- 监控Oplog的连续性
- 上传信息上报数据库
- 容错/可任意时刻kill、重启
- 可接收远程命令

Agenda

- Database As A Service (数据库云)介绍
- 数据库云整体架构
- MySQL云的实现
- MongoDB云的实现
- 未来的趋势

未来的趋势

- 基于SSD的数据库服务
- 基于内存的数据库服务
- 云平台自己定义的数据库服务
 - Amazon DynamoDB/Simple DB
- Scale up 的关系型数据库服务
 - Xeround MySQL

Q&A

SACC 2012中国系统架构师大会

架构设计·自动化运维·云计算