

Prepared by: Shreyashi Sonkar

PS Number: 40020868

Contents

Miniproject – 1: Smart trunk Obstacles detector	4
Objective	4
Introduction Requirements	5
High Level Requirements	5
Low Level Requirements	5
6	
Test Plan	7
High Level Test Plan	8
Low Level Test Plan	9
Implementation and Summery	10
Summary	10
Git Inspector Summary	10
T. 1	
List of Figures	
Figure 1 Behavior Diagram	
Figure 2 Structure Diagram	
Figure 3 Git Dashboard	
Figure 4 Git Inspector Summary	
Figure 5 Behavior Diagram	
Figure 6 Structure Diagram	
Figure 7 Behavior Diagram	
Figure 8 Structural Diagram	
Figure 9 Git Dashboard	23
Figure 10 Structure Diagram	25
Figure 11 Simulation Diagram	29

Objective:

Main objective of the project is to reduce the accident caused by closing trunk door automatically. When we use the trunk for storage or to keep our thing in trunk and close, It will not detect the any body part or obstacles that's why we use sensor to sense the obstacles while closing trunk door and it will lock the door on open mode with the help of servo motor this project use for safety purpose.

Methodology:

Introduction:

SMART TRUNK OBSTACLES DETECTOR: The present time a system and a method for automatically controlling opening/closing of a trunk door of a vehicle, and more particularly, to a technology for user with load in both hands to easily open the trunk door of a vehicle, by mounting a microphone at the rear of the vehicle Such that the trunk door of the vehicle can be opened/closed in response to a sound inputted through the microphone in car when car trunk close automatically, it's can't detect any obstacles or body part while closing.

In the current time car trunk are very smart but it have some issue like sometime car trunk is closing it don't detect any thing or any human body part. This will harm the body part or thing.

"Smart trunk obstacles detector will detect the any obstacles while closing the trunk door, when we close our trunk door its directly close without any detection sometimes it harms the human body part like our finger or any important thing."

the trunk door will detect the body part or anything with the help of sensor and it will lock the trunk door means it hold the door on open stage only.

Requirement:

High level requirement:

ID	DESCRIPTION	STATUS
HLR	The door will open when fob is near by the	
_01	car around 1 meter.	
HLR	When sensor detect the foot kick then door	
_02	will be open.	
HLR	If sensor will sense any obstacle on the	
_03	edge of trunk then the trunk door will be	
	locked by servo motor in open mode.	
HLR	The display will show there is any	
_04	obstacles on the edge of trunk.	

Low level requirement:

ID	DECCRIPTION	
ID	DESCRIPTION	STATUS
LLR	The door will open when fob is near by	
_01	the car around 1 meter. The ECU	
	configured it is in 2 bit.	
	Fob is near by the car 1 meter $= 1$ the	
	boot detect sensor will work.	
	Fob is not around 1 meter of car =0 the	
	boot detect sensor will not work.	
LLR	When sensor will detect the foot kick.	
_02	The ECU configured it in 2 bit.	
	Boot Sensor = 1 door will open	
	Boot Sensor = 0 door will not open	
LLR	If IR sensor will sense any obstacle on	

AUTOMOTIVE BUILD – Learning Outcome and Mini-project Summary Report L&T Technology Services

_03	the edge of trunk then the trunk door will be locked by servo motor in open mode. The ECU configured it is in 2 bit IR sensor =1 The door will locked in open mode and send. IR sensor =0 door will be closed.	
LLR _4	The display will show there is any obstacles on the edge of trunk. The ECU configured it in is 1 bit.	

Test Plan:

High Level Test Plan:

Test	Description	Expected Input	Expected	Actual	Statu
ID			output	o/p	S
HLT_	Fob near by car around 1 meter	Fob near the	Boot sensor		
01		sensor	can work		
HLT_	When sensor detect the foot	Sensor	Door will		
02	kick	detection	open		

Low Level test plan:

Test	Description	Expected	Expected	Actual	Status
ID		input	output	o/p	
LL T_0 1	When the IR sensor will sense any obstacles on the trunk edge	IR=1 IR=0	Door will be on open mode only. Door will be closed.		
LL T_0 2	When IR sensor will detect any obstacles	Obstacles =0 Obstacles =1	Display "off" Display will show the "you can't close the door."		

Behavioral Diagram:

Structural Diagram:

SWOT Analysis

Strength:

This project is use for safety purpose

Smart Trunk obstacles detector automatically detects the presence of the human body part or any obstacles while closing.

Weakness

The weakness of this, sometimes sensor might not be detect the obstacles because of the sensor variation.

Opportunity:

- They have great accuracy than many other methods at measuring the curve and other objects
- Their high frequency, sensitivity and penetrating power make it easy to detect external or deep objects

Threats:

In case its sense any wrong material this time it will not close the trunk.

- Inaccurate readings
- Limited testing distance

Who:

In this project the sensor which we can use in any automatic door, hand drawer.

What:

In this project IR sensor will detect the obstacles or body part.

When:

sensors measure the distance to a wide range of objects regardless of shape, color or surface texture. They are also able to measure an approaching or receding object. By using "non-contact" distance can be measured without damage to the object.

Why:

It effective use for the safety.

How:

When door will close, it will detect the obstacles with the help of sensor if any obstacles detect with sensor the trunk door will lock at the open mode.

Implementation:

AUTOMOTIVE BUILD – Learning Outcome and Mini-project Summary Report

L&T Technology Services

CAN (Controller Area Network) protocol is used here to communicate between ECU's. Here CAN protocol is used because of its many features:

Low Cost. When the CAN protocol was first created, its primary goal was to enable faster communication between electronic devices.

- Built-in Error Detection.
- Robustness.
- Speed.
- Flexibility.

SIMULATION DIAGRAM:

CAN CAN