VECTOR SUBSPACES

Index No.: 3.5.6.1.7 Dr K Madhavi

Govt. Degree College, Kuppam.

Definition: Let V(F) be a vector space and $W \subseteq V$. Then W is said to be a subspace of V if W itself is a vector space over F with the same operations of vector addition and scalar multiplication in V.

Note: 1. Suppose W (F) is a subspace of V (F) then W is a sub-group of V.

2. Let V (F) be a vector space. Then clearly the zero vector space $\{\overline{o}\}\subseteq V$ and $V\subseteq V$. Hence $\{\overline{o}\}$ and V are trivial subspaces of V.

Theorem 1: Let V(F) be a vector space and let $W \subseteq V$. Then the necessary and sufficient condition for W to be a subspace of V are (i) $\alpha \in W$, $\beta \in W \Rightarrow \alpha - \beta \in W$

(ii)
$$a \in F$$
, $\alpha \in W \Rightarrow a\alpha \in W$.

Proof: Given, V(F) is a vector space and $W \subseteq V$.

Part - I : The conditions are necessary.

Let W be a vector subspace of V.

To prove that conditions (i) and (ii) are true.

- (i) Since W is a vector subspace of V, W itself is a vector space.
 - \Rightarrow W is a subgroup of (V, +).
 - \Rightarrow (W, +) is a group.
 - \Rightarrow if α , $\beta \in W$ then $\alpha \beta \in W$.
- (ii) Since W is a subspace of V, W itself is a vector space.

Hence it is closed under scalar multiplication (by the definition)

$$\Rightarrow$$
 a \in F, $\alpha \in$ W \Rightarrow a $\alpha \in$ W.

Hence conditions (i) & (ii) are satisfied.

Part – **II** : The conditions are sufficient.

Let W be a nonempty subset of V such that conditions (i) & (ii) are satisfied.

To prove that W is a subspace of V.

For this we need to prove that W itself is a vector space.

Let
$$\alpha$$
, $\alpha \in W$ then $\alpha - \alpha \in W$ (By (i))

$$\Rightarrow \overline{0} \in W$$

: The zero of vector of V is also the zero vector of W.

Now
$$\overline{0} \in W$$
, $\alpha \in W \Rightarrow \overline{0} - \alpha \in W$ (By (i))

$$\Rightarrow -\alpha \in W$$

 \Rightarrow additive inverse of each element of W is also in W.

Again
$$\alpha$$
, $\beta \in W$, $\Rightarrow \alpha$, $(-\beta) \in W$.

$$\Rightarrow \alpha - (-\beta) \in W$$
 (By (i))

$$\Rightarrow \alpha + \beta \in W.$$

i.e. W is closed under vector addition.

As $W \subseteq V$, all the elements of W are also the elements of V. Hence vector addition in W will be associative and commutative.

 \therefore (W, +) is an abelian group.

Also by condition (ii), W is closed under scalar multiplication and hence all the postulates of vector space V hold in W as $W \subseteq V$.

- : W itself is a vector space under the operations of V.
- \Rightarrow W (F) is a vector subspace of V (F).

Theorem 2 : Let V(F) be a vector space. A non-empty set $W \subseteq V$. The necessary and sufficient condition for W to be a subspace of V is

$$a,b \in F$$
 and $\alpha,\beta \in W \Rightarrow a\alpha + b\beta \in W \dots (I)$

Proof: Given V(F) is a vector space and a non-empty set $W \subseteq V$.

Part - I : The condition is necessary.

Let W (F) be a vector subspace of V (F).

To prove that condition (I) is true.

Since W is a vector subspace of V, W itself is a vector space.

$$\therefore a \in F$$
, $\alpha \in W \Rightarrow a\alpha \in W$ and $b \in F$, $\beta \in W \Rightarrow b\beta \in W$.

Now
$$a\alpha \in W$$
, $b\beta \in W$. $\Rightarrow a\alpha + b\beta \in W$.

Hence the condition is true.

Part – **II** : *The condition is sufficient.*

Let W be a nonempty subset of V satisfying the given condition

$$a,b \in F$$
 and $\alpha,\beta \in W \Rightarrow a\alpha + b\beta \in W$(I)

To prove that W is a subspace of V.

For this we need to prove that W itself is a vector space.

In (I), put
$$a = 1$$
, $b = -1$ and $\alpha, \beta \in W \Rightarrow (1) \alpha + (-1) \beta \in W$.

$$\Rightarrow \alpha - \beta \in W$$
 (Since $\alpha \in W$ we have $\alpha \in V$ and $1\alpha = \alpha$ in V)

We know from group theory that $H \subseteq G$ and $a, b \in H \Rightarrow a \circ b^{-1} \in H$ then (H, o) is a subgroup of (G, o).

 \therefore (W, +) is a subgroup of the abelian group (V, +).

 \Rightarrow (W, +) is an abelian group.

Now put a = a and b = 0 in condition (I).

Then $a, 0 \in F$ and $\alpha, \beta \in W \Rightarrow a\alpha + 0\beta \in W$.

$$\Rightarrow a\alpha \in W$$

i.e. $a \in F$ and $\alpha \in W \Rightarrow a\alpha \in W$.

: W is closed under scalar multiplication.

Since $W \subseteq V$, the remaining postulates of a vector space hold in W.

: W itself is a vector space and hence it is a subspace of V (F).

Theorem 3: A non-empty set W is a subset of a vector space V(F). Then W s a subspace of V if and only if $a \in F$ and $\alpha, \beta \in W \Rightarrow \alpha\alpha + \beta \in W$(I)

Proof: Given V(F) is a vector space and a non-empty set $W \subseteq V$.

Part - I : The condition is necessary.

Let W (F) be a vector subspace of V (F).

To prove that condition (I) is true.

Since W is a vector subspace of V, W itself is a vector space.

$$\therefore a \in F, \alpha \in W \Rightarrow a\alpha \in W$$

Now again $a\alpha \in W$, $\beta \in W$. $\Rightarrow a\alpha + \beta \in W$.

Hence the condition is true.

Part – **II**: The condition is sufficient.

Let W be a nonempty subset of V satisfying the given condition

$$a \in F$$
 and $\alpha, \beta \in W \Rightarrow a\alpha + \beta \in W$...(I)

To prove that W is a subspace of V.

For this we need to prove that W itself is a vector space.

In (I), put
$$a = -1$$
 then for α , $\alpha \in W$ we have $\Rightarrow (-1) \alpha + \alpha \in W$.

$$\Rightarrow \overline{0} \in W$$

∴ Zero vector i.e. additive identity exist in W

Now
$$a \in F$$
 and $\alpha, \overline{0} \in W \Rightarrow a\alpha + \overline{0} \in W$ (Since by (I))

$$\Rightarrow$$
 a $\alpha \in W$

: W is closed under scalar multiplication.

Again -1
$$\in$$
 F and α , $\overline{0}$ \in W \Rightarrow $(-1)\alpha$ + $\overline{0}$ \in W (Since by (I))

$$\Rightarrow$$
 - $\alpha \in W$

: Additive inverse exists in W.

Since the elements of W are the elements of V, the remaining postulates of vector space hold good in W also.

Hence W is a subspace of V (F).

Example: Let p, q, r be the fixed elements of a field F. Show that the set W of all triads (x, y, z) of elements of F, such that px + qy + rz = 0 is a vector subspace of V_3 (F).

Solution : Given, p, q, r are the fixed elements of a field F.

To show that the set W of all triads (x, y, z) of elements of F, such that px + qy + rz = 0 is a vector subspace of V_3 (F).

By the definition $W \neq \phi$.

Let α , $\beta \in W$, where $\alpha = (x_1, y_1, z_1)$ and $\beta = (x_2, y_2, z_2)$

for some
$$x_1, y_1, z_1, x_2, y_2, z_2 \in F$$

By the definition of W, $px_1 + qy_1 + rz_1 = 0$ (1)

$$px_2 + qy_2 + rz_2 = 0$$
 (2)

For a, b \in F, consider $a\alpha + b\beta = a(x_1, y_1, z_1) + b(x_2, y_2, z_2)$ = $(ax_1 + ay_1 + az_1) + (bx_2 + by_2 + bz_2)$ = $(ax_1 + bx_2, ay_1 + by_2, az_1 + bz_2)$

We now see whether the element $a\alpha + b\beta$ satisfies the condition px + qy + rz = 0

Consider
$$p(a x_1 + b x_2) + q(a y_1 + b y_2) + r(a z_1 + b z_2)$$

= $a(p x_1 + q y_1 + r z_1) + b(p x_2 + q y_2 + r z_2)$
= $a(0) + b(0)$ (By (1) & (2)).
= 0.

$$a\alpha + b\beta = (ax_1 + bx_2, ay_1 + by_2, az_1 + bz_2) \in W.$$

Hence W is a subspace of V_3 (F).

References:

- V. Venkateswara Rao & others- A text book of B.Sc. Mathematics Linear Algebra
 Publishers S Chand and Company Ltd.
- 2. http://linear.ups.edu/html/section-S.html
- 3. http://www2.math.uconn.edu/~troby/math2210f16/LT/sec4_1.pdf