刘建平Pinard

十年码农,对数学统计学,数据挖掘,机器学习,大数据平台,大数据平台应用开发,大数据可视化感兴趣。

博客园 首页 新随笔 联系 订阅 管理

奇异值分解(SVD)原理与在降维中的应用

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的。

1. 回顾特征值和特征向量

我们首先回顾下特征值和特征向量的定义如下:

 $Ax = \lambda x$

其中A是一个 $n \times n$ 的矩阵,x是一个n维向量,则我们说 λ 是矩阵A的一个特征值,而x是矩阵A的特征值 λ 所对应的特征向量。

求出特征值和特征向量有什么好处呢? 就是我们可以将矩阵A特征分解。如果我们求出了矩阵A的n个特征值 $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$,以及这n个特征值所对应的特征向量 $\{w_1, w_2, \ldots w_n\}$,那么矩阵A就可以用下式的特征分解表示:

$$A = W \Sigma W^{-1}$$

其中W是这n个特征向量所张成的 $n \times n$ 维矩阵,而 Σ 为这n个特征值为主对角线的 $n \times n$ 维矩阵。

——般我们会把W的这n个特征向量标准化,即满足 $||w_i||_2=1$,或者说 $w_i^Tw_i=1$,此时W的n个特征向量为标准正交基,满足 $W^TW=I$,即 $W^T=W^{-1}$,也就是说W为酉矩阵。

这样我们的特征分解表达式可以写成

$$A = W \Sigma W^T$$

注意到要进行特征分解,矩阵A必须为方阵。那么如果A不是方阵,即行和列不相同时,我们还可以对矩阵进行分解吗?答案是可以,此时我们的SVD登场了。

2. SVD的定义

SVD也是对矩阵进行分解,但是和特征分解不同,SVD并不要求要分解的矩阵为方阵。假设我们的矩阵A是一个 $m \times n$ 的矩阵,那么我们定义矩阵A的SVD为:

$$A = U \Sigma V^T$$

其中U是一个 $m\times m$ 的矩阵, Σ 是一个 $m\times n$ 的矩阵,除了主对角线上的元素以外全为0,主对角线上的每个元素都称为奇异值,V是一个 $n\times n$ 的矩阵。U和V都是酉矩阵,即满足 $U^TU=I,V^TV=I$ 。下图可以很形象的看出上面SVD的定义:

那么我们如何求出SVD分解后的 U, Σ, V 这三个矩阵呢?

如果我们将A的转置和A做矩阵乘法,那么会得到 $n \times n$ 的一个方阵 A^TA 。既然 A^TA 是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

$$(A^TA)v_i=\lambda_i v_i$$

这样我们就可以得到矩阵 A^TA 的n个特征值和对应的n个特征向量v了。将 A^TA 的所有特征向量张成一个 $n\times n$ 的矩阵V,就是我们SVD公式里面的V矩阵了。一般我们将V中的每个特征向量叫做A的右奇异向量。

公告

★珠江追梦,饮岭南茶,恋鄂北家★

昵称:刘建平Pinard 园龄:7个月 粉丝:220 关注:12

+加关注

<	2017年6月					>	
日	_	=	Ξ	四	五	<u> </u>	
28	29	30	31	1	2	3	
4	5	<u>6</u>	7	<u>8</u>	9	10	
11	12	13	14	15	16	17	
18	19	20	21	22	23	24	
25	26	27	28	29	30	1	
2	3	4	5	6	7	8	

常用链接

我的随笔

我的评论

我的参与

最新评论

我的标签

随笔分类(91)

0040. 数学统计学(4)

0081. 机器学习(62)

0082. 深度学习(10)

0083. 自然语言处理(13)

0121. 大数据挖掘(1)

0122. 大数据平台(1)

0123. 大数据可视化

随笔档案(91)

2017年6月 (2)

2017年5月 (7)

2017年4月 (5)

2017年3月 (10)

2017年2月 (7)

2017年1月 (13)

2016年12月 (17)

2016年11月 (22)

2016年10月 (8)

常去的机器学习网站

52 NLP Analytics Vidhya 机器学习库 机器学习路线图 深度学习进阶书 如果我们将A和A的转置做矩阵乘法,那么会得到 $m \times m$ 的一个方阵 AA^T 。既然 AA^T 是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:

$$(A^T A)u_i = \lambda_i u_i$$

这样我们就可以得到矩阵 AA^T 的m个特征值和对应的m个特征向量u了。将 AA^T 的所有特征向量张成一个 $m\times m$ 的矩阵U,就是我们SVD公式里面的U矩阵了。一般我们将U中的每个特征向量叫做A的左奇异向量。

U和V我们都求出来了,现在就剩下奇异值矩阵 Σ 没有求出了。由于 Σ 除了对角线上是奇异值其他位置都是0,那我们只需要求出每个奇异值 σ 就可以了。

我们注意到:

$$A = U\Sigma V^T \Rightarrow AV = U\Sigma V^T V \Rightarrow AV = U\Sigma \Rightarrow Av_i = \sigma_i u_i \Rightarrow \sigma_i = Av_i/u_i$$

这样我们可以求出我们的每个奇异值,进而求出奇异值矩阵 Σ 。

上面还有一个问题没有讲,就是我们说 A^TA 的特征向量组成的就是我们SVD中的V矩阵,而 AA^T 的特征向量组成的就是我们SVD中的U矩阵,这有什么根据吗?这个其实很容易证明,我们以V矩阵的证明为例。

$$A = U\Sigma V^T \Rightarrow A^T = V\Sigma U^T \Rightarrow A^T A = V\Sigma U^T U\Sigma V^T = V\Sigma^2 V^T$$

上式证明使用了: $U^TU=I, \Sigma^T=\Sigma$ 。可以看出 A^TA 的特征向量组成的的确就是我们SVD中的V矩阵。类似的方法可以得到 AA^T 的特征向量组成的就是我们SVD中的U矩阵。

进一步我们还可以看出我们的特征值矩阵等于奇异值矩阵的平方,也就是说特征值和奇异值满足如下关系:

$$\sigma_i = \sqrt{\lambda_i}$$

这样也就是说,我们可以不用 $\sigma_i = Av_i/u_i$ 来计算奇异值,也可以通过求出 A^TA 的特征值取平方根来求奇异值。

3. SVD计算举例

这里我们用一个简单的例子来说明矩阵是如何进行奇异值分解的。我们的矩阵A定义为:

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$$

我们首先求出 A^TA 和 AA^T

$$\mathbf{A^TA} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\mathbf{A}\mathbf{A}^{\mathbf{T}} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

进而求出 A^TA 的特征值和特征向量:

$$\lambda_1 = 3; v_1 = \left(\frac{1/\sqrt{2}}{1/\sqrt{2}} \right); \lambda_2 = 1; v_2 = \left(\frac{-1/\sqrt{2}}{1/\sqrt{2}} \right)$$

接着求 AA^T 的特征值和特征向量:

$$\lambda_1 = 3; u_1 = \begin{pmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}; \lambda_2 = 1; u_2 = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix}; \lambda_3 = 0; u_3 = \begin{pmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}$$

利用 $Av_i = \sigma_i u_i, i = 1, 2$ 求奇异值:

$$egin{pmatrix} 0 & 1 \ 1 & 1 \ 1 & 0 \end{pmatrix} egin{pmatrix} 1/\sqrt{2} \ 1/\sqrt{2} \end{pmatrix} = \sigma_1 egin{pmatrix} 1/\sqrt{6} \ 2/\sqrt{6} \ 1/\sqrt{6} \end{pmatrix} \Rightarrow \sigma_1 = \sqrt{3}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \sigma_2 \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{pmatrix} \Rightarrow \sigma_2 = 1$$

当然,我们也可以用 $\sigma_i = \sqrt{\lambda_i}$ 直接求出奇异值为 $\sqrt{3}$ 和1.

最终得到A的奇异值分解为:

$$A = U\Sigma V^T = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

深度学习入门书

积分与排名

积分 - 119247 排名 - 2030

阅读排行榜

- 1. scikit-learn决策树算法类库使用小结(516 2)
- 2. 梯度提升树(GBDT)原理小结(4641)
- 3. scikit-learn随机森林调参小结(4339)
- 4. 用scikit-learn和pandas学习线性回归(36 48)
- 5. 用scikit-learn学习K-Means聚类(3370)

评论排行榜

- 1. 线性回归原理小结(18)
- 2. scikit-learn 随机森林调参小结(18)
- 3. 谱聚类 (spectral clustering) 原理总结(1 2)
- 4. 集成学习之Adaboost算法原理小结(10)
- 5. BIRCH聚类算法原理(9)

推荐排行榜

- 1. 机器学习研究与开发平台的选择(6)
- 2. 支持向量机原理(五)线性支持回归(5)
- 3. scikit-learn决策树算法类库使用小结(5)
- 4. 协同过滤推荐算法总结(5)
- 5. 支持向量机高斯核调参小结(5)

4. SVD的一些性质

上面几节我们对SVD的定义和计算做了详细的描述,似乎看不出我们费这么大的力气做SVD有什么好处。那么SVD有 什么重要的性质值得我们注意呢?

对于奇异值,它跟我们特征分解中的特征值类似,在奇异值矩阵中也是按照从大到小排列,而且奇异值的减少特别的 快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们也可以用最大 的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说:

由于这个重要的性质,SVD可以用于PCA降维,来做数据压缩和去噪。也可以用于推荐算法,将用户和喜好对应的矩 阵做特征分解,进而得到隐含的用户需求来做推荐。同时也可以用于NLP中的算法,比如潜在语义索引(LSI)。下面我们就对 SVD用于PCA降维做一个介绍。

5. SVD用于PCA

在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵 X^TX 的最大的d个特征向量, 然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵 X^TX ,当样本数 多样本特征数也多的时候,这个计算量是很大的。

注意到我们的SVD也可以得到协方差矩阵 X^TX 最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实 现算法可以不求先求出协方差矩阵 X^TX ,也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解, 而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD, 而不是我们我们认为的暴力特征分解。

另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

假设我们的样本是m imes n的矩阵X,如果我们通过SVD找到了矩阵 XX^T 最大的d个特征向量张成的m imes d维矩阵U, 则我们如果进行如下处理:

$$X'_{d\times n} = U_{d\times m}^T X_{m\times n}$$

可以得到一个 $d \times n$ 的矩阵X,这个矩阵和我们原来的 $m \times n$ 维样本矩阵X相比,行数从m减到了k,可见对行数进行 了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的 PCA降维。

6. SVD小结

SVD作为---个很基本的算法,在很多机器学习算法中都有它的身影,特别是在现在的大数据时代,由于SVD可以实现 并行化,因此更是大展身手。SVD的原理不难,只要有基本的线性代数知识就可以理解,实现也很简单因此值得仔细的研究。 当然,SVD的缺点是分解出的矩阵解释性往往不强,有点黑盒子的味道,不过这不影响它的使用。

(欢迎转载,转载请注明出处。欢迎沟通交流: pinard.liu@ericsson.com)

分类: 0081. 机器学习

标答: 维度规约

+加关注

0

http://www.cnblogs.com/pinard/p/6251584.html

3/4

先对目标信息进行SVD分

,获得分解后的"左奇异矩

计算过程

« 上一篇: <u>用scikit-learn进行LDA降维</u> » 下一篇: <u>周部线性嵌入(LLE)原理总结</u>

posted @ 2017-01-05 15:44 刘建平Pinard 阅读(1330) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请 登录 或 注册, 访问网站首页。

【推荐】50万行VC++源码: 大型组态工控、电力仿真CAD与GIS源码库

最新IT新闻:

- · Apple Pay将推个人转账功能:信用卡需3%的手续费
- · 微软分享Xbox One向后兼容性新数据
- •雅虎股东批准44.8亿美元出售核心互联网业务 股价大涨10%
- ·庆祝《Pokémon GO》一周年7月22日芝加哥将举行真人线下活动
- ·watchOS 4 beta首个上手视频公布
- » 更多新闻...

最新知识库文章:

- ·小printf的故事:真正的程序员?
- 程序员的工作、学习与绩效
- 软件开发为什么很难
- · 唱吧DevOps的落地,微服务CI/CD的范本技术解读
- ·程序员,如何从平庸走向理想?
- » 更多知识库文章...

Copyright ©2017 刘建平Pinard