CENG 383 Real-Time Systems Lecture 4 Formal Methods - I

Asst. Prof. Tolga Ayav, Ph.D.

Department of Computer Engineering İzmir Institute of Technology

Software Requirements Specification

Consider the following excerpt from the Software Requirements Specification for the nuclear monitoring system:

- 1.1 If interrupt A arrives, then task B stops executing.
- 1.2 Task A begins executing upon arrival of interrupt A.
- 1.3 Either Task A is executing and Task B is not, or Task B is executing and Task A is not, or both are not executing.

Formalization:

p: interrupt A arrivesq: task B is executingr: task A is executing

1.1
$$p \Rightarrow \neg q$$

1.2
$$p \Rightarrow r$$

1.3
$$(r \land \neg q) \lor (q \land \neg r) \lor (\neg q \land \neg r)$$

Consistency Check of Requirements

		1	2	3	4	5	6	7	8	
		p	q	r	$\neg q$	$\neg r$	$p \Rightarrow q$	$p \Rightarrow r$	$(r \wedge \neg q) \vee (q \wedge \neg r) \vee (\neg q \wedge \neg r)$	
	1	Т	Т	Т	F	F	Т	Т	F	
	2	Т	Т	F	F	Т	Т -	Т	Т	7
	3	Т	F	Т	Т	F	Т	Т	Т	
	4	Т	F	F	Т	Т	Т	Т	Т	
	5	F	Т	Т	F	F	F	F	F	
	6	F	Т	F	F	Т	F	Т	Т	
	7	F	F	Т	Т	F	Т	F	Т	
Ţ.	8	F	F	F	Т	Т	Т	Т	T	-

Finite State Machines

Finite state machines (FSMs) are powerful design elements used to implement algorithms in hardware.

An FSM is a 6-tuple, $\langle Z, X, Y, \delta, \lambda, z0 \rangle$, where:

Z is a set of states $\{z0, z1, ..., zl\}$,

X is a set of inputs $\{x0, x1, ..., xm\}$,

Y is a set of outputs {y0, y1, ..., yn},

 δ is a next-state function (i.e., transitions), mapping states and inputs to states, (Z x X \rightarrow Y)

 λ is an output function, mapping current states to outputs (Z \rightarrow Y),

z0 is an initial state.

and

Moore and Mealy FSMs

Classical automata:

Next state Z^+ computed by function δ Output computed by function λ

Moore- + Mealy automata=finite state machines (FSMs)

$$Y = \lambda(Z); Z^+ = \delta(X, Z)$$

Mealy-automata

$$Y = \lambda (X, Z); Z^+ = \delta (X, Z)$$

FSM Model: Moore

Outputs depends on states. $\lambda : (Z \rightarrow Y)$

FSM Model: Mealy

Outputs depends on states and inputs. $\lambda : (X \times Z \rightarrow Y)$

State Machine Example

Design a Simple Seat Belt Controller:

The controller's job is to turn on a buzzer if a person sits in a seat and does not fasten the seat belt within a fixed amount of time. This system has three inputs and one output.

The inputs are a sensor for the seat to know when a person has sat down, a seat belt sensor that tells when the belt is fastened, and a timer that goes off when the required time interval has elapsed. The output is the buzzer

FSM for the Seat Belt Controller

Inputs/outputs (-= no action)

C Code:

```
Inputs/outputs
#define IDLE 0
                                  (-=no\ action)
#define SEATED 1
#define BELTED 2
#define BUZZER 3
void FSM()
 switch(state)
  case IDLE:
    if(seat) {state=SEATED; timer_on=1;}
  break;
  case SEATED:
    if(belt) state=BELTED;
   else if(timer) state=BUZZER;
  break;
  case BELTED:
    if(!seat) state=IDLE;
    else if(!belt) state=SEATED;
  break;
  case BUZZER:
    if(belt) state=BELTED;
    else if(!seat) state=IDLE;
  break;
```


State diagram

```
void main()
{
   while(1) FSM();
}
```

Timed Automata

Clocks: {a,b}

Formal Definitions-I

Timed Automata

Timed automata is a valuable tool for especially designing real-time systems. Here, we represent VHDL programs with timed automata. Let X be a finite set of real valued clock variables and V be a finite set of real valued data variables. A constraint C is of the form:

$$C ::= z \odot k \mid z - y \odot k$$

where $z, y \in X$ or $V, k \in \mathbb{N}$ and $\odot \in \{\leq, <, =, >, \geq\}$.

Definition 1 (Timed Automaton). A timed automaton is a tuple $(Q, q_0, X, \Sigma, \delta, I)$ where:

- Q is a finite set of locations.
- $q_0 \in Q$ is the initial location.
- X is a finite set of clock variables.
- Σ is the set of denoting actions.
- $\delta \subseteq Q \times 2^C \times \Sigma \times 2^{X} \times Q$ is the set of transitions.
- $I: Q \to 2^C$ assigns invariants to locations.

Formal Definitions-II

Definition 2 (Semantics of Timed Automaton). Let $(Q, q_0, X, \Sigma, \delta, I)$ be a timed automaton. The semantics is given by a transition system $\langle S, s_0, \rightarrow \rangle$ where $S \subseteq L \times \mathbb{R}^X$ is the set of states, $s_0 = (q_0, u_0)$ is the initial state and $\rightarrow \subseteq S \times \{\mathbb{R}_{\geq 0} \cup \Sigma\} \times S$ is the transition relation such that:

- $(q,u) \xrightarrow{d} (q,u+d)$ if $\forall d': 0 \leq d' \leq d \Rightarrow u+d' \in I(q)$, and
- $(q,u) \xrightarrow{a} (q',u')$ if $\exists (q,g,a,r,q') \in \delta : u \in g, u' = [r \mapsto 0]u$ and $u' \in I(q)$.

where for $d \in \mathbb{R}_{\geq 0}$, u + d maps each clock x in X to the value u(x) + d, and $[r \mapsto 0]u$ denotes the clock valuation which maps each clock in r to 0 and agrees with u over $X \setminus r$.

Reachability Example

Classical Semantics

Reach(A)

Simple Light Control

WANT: if press is issued twice quickly then the light will get brighter; otherwise the light is turned off.

Simple Light Control

Solution: Add a real-valued clock **x**

Adding continuous variables to state machines

Network of Timed Automata

Adding Invariants

Clocks: x, y

Transitions

$$(n, x=2.4, y=3.1415)$$
 $(n, x=2.4, y=3.1415)$
 $wait(3.2)$
 $wait(1.1)$
 $wait(1.1)$
 $(n, x=3.5, y=4.2415)$

Invariants ensure progress!!

Timed Automata Examples and Timing Behaviours

- A[] Obs.taken imply $x \ge 2$: all resets off x will happen when x is above 2. This query means that for all reachable states, being in the location Obs.taken implies that $x \ge 2$.
- E<> Obs.idle and x>3: this property requires, that it is possible to reacha state where Obs is in the location idle and x is bigger than 3. Essentially we check that we delay at least 3 time units between resets. The result would have been the same for larger values like 30000, since there are no invariants in this model.

- A[] Obs.taken imply $x \ge 2$: all resets off x will happen when x is above 2. This query means that for all reachable states, being in the location Obs.taken implies that $x \ge 2$.
- E<> Obs.idle and x>3: this property requires, that it is possible to reach state where Obs is in the location idle and x is bigger than 3. Essentially we check that we delay at least 3 time units between resets. The result would have been the same for larger values like 30000, since there are no invariants in this model.

(a) Test.

(b) Updated behaviour with a guard and no invariant.

Property A[] not deadlock will not satisfy!

CTL (Computation Tree Logic)

SAFETY

- $E\Diamond\psi$ (Possibly). There exists a path that property ψ eventually holds.
- $A\square\psi$ (Invariantly). Property ψ always holds.
- $E\square\psi$ (Potentially always). There exists a path along which property ψ always holds.
- $A \diamondsuit \psi$ (Eventually). Property ψ eventually holds.
- $\psi \leadsto \varphi$ (Leads-to). Whenever property ψ holds, property φ eventually holds.

LIVENESS

Path Formulae

Advantages

Automated formal verification, Effective debugging tool

Moderate industrial success

In-house groups: Intel, Microsoft, Lucent, Motorola...

Commercial model checkers: FormalCheck by Cadence

Obstacles

Scalability is still a problem (about 500 state vars) Effective use requires great expertise

Still, a great success story for CS theory impacting practice, and a vibrant area of research

UPPAAL: www.uppaal.com

developed jointly by Uppsala university and Aalorg university

- UPPsala + AALborg = UPPAAL
 - SWEDEN + DENMARK = SWEDEN
 - SWEDEN + DENMARK = DENMARK

Assignment: Traffic Light Controller

Traffic light controller controls a traffic light at the intersection of a busy highway and a farm road. Normally, the highway light is green but if a sensor detects a car on the farm cars road, the highway light turns yellow then red. The farm road light then turns green until there are no cars or after a long timeout. Then, the farm road light turns yellow then red, and the highway light returns to green. The inputs to the machine are the car sensor, a short timeout signal, and a long timeout signal. The outputs are a timer start signal and the colors of the highway and farm road lights.

Create a Timed Automata to model this intersection. Draw your timed automata in UPPAAL.