Modelos e Aplicações - Aula 4

Caio Lopes, Henrique Lecco

ICMC - USP

23 de julho de 2020

Definições

Submodelo

$$\mathcal{M} \subset \mathcal{N}$$
 se $M \subset N$ e

- \bullet $\mathbf{c}^{\mathcal{M}} = \mathbf{c}^{\mathcal{N}};$
- $\mathbf{e} \ \mathbf{R}^{\mathcal{M}} = \mathbf{R}^{\mathcal{N}} \Big|_{M};$ $\mathbf{e} \ \mathbf{f}^{\mathcal{M}} = \mathbf{f}^{\mathcal{N}} \Big|_{M};$

Definições

Submodelo

$$\mathcal{M} \subset \mathcal{N}$$
 se $M \subset N$ e

- \bullet $\mathbf{c}^{\mathcal{M}} = \mathbf{c}^{\mathcal{N}};$
- $\bullet \ \mathbf{R}^{\mathcal{M}} = \mathbf{R}^{\mathcal{N}}|_{M};$
- $\bullet \mathbf{f}^{\mathcal{M}} = \mathbf{f}^{\mathcal{N}}|_{M};$

Submodelo elementar

 $\mathcal{M} \prec \mathcal{N}$ se $\mathcal{M} \subset \mathcal{N}$ e para toda fórmula $\varphi(x_1, ..., x_n)$ e $m_1, ..., m_n \in \mathcal{M}$:

$$\mathcal{M} \models \varphi(m_1,...,m_n) \Leftrightarrow \mathcal{N} \models \varphi(m_1,...,m_n)$$

Suponha que você tenha um grafo ${\cal G}$ com um vértice que está ligado a todos os outros.

Suponha que você tenha um grafo $\mathcal G$ com um vértice que está ligado a todos os outros.

Agora, imagine que você queira garantir que todo submodelo desse grafo tenha necessariamente essa propriedade.

Nós poderíamos acrescentar à teoria a seguinte sentença:

$$\exists x \forall y (x = y) \lor E(x, y).$$

Suponha que você tenha um grafo ${\cal G}$ com um vértice que está ligado a todos os outros.

Agora, imagine que você queira garantir que todo submodelo desse grafo tenha necessariamente essa propriedade.

Nós poderíamos acrescentar à teoria a seguinte sentença:

$$\exists x \forall y (x = y) \lor E(x, y).$$

Mas se não quisermos mexer com a teoria, podemos mexer com a linguagem. Podemos acrescentar ao vocabulário de grafos uma constante \mathbf{c} e determinar que $\mathbf{c}^{\mathcal{G}}$ é esse elemento ligado a todos os outros.

Suponha que você tenha um grafo $\mathcal G$ com um vértice que está ligado a todos os outros.

Agora, imagine que você queira garantir que todo submodelo desse grafo tenha necessariamente essa propriedade.

Nós poderíamos acrescentar à teoria a seguinte sentença:

$$\exists x \forall y (x = y) \lor E(x, y).$$

Mas se não quisermos mexer com a teoria, podemos mexer com a linguagem. Podemos acrescentar ao vocabulário de grafos uma constante \mathbf{c} e determinar que $\mathbf{c}^{\mathcal{G}}$ é esse elemento ligado a todos os outros.

Seja, então, \mathcal{G}' um submodelo de \mathcal{G} .

Como \mathcal{G}' é um modelo, deve existir o elemento $\mathbf{c}^{\mathcal{G}'}$. Além disso, para todo elemento $v \in G'$, temos que $v \in G$. Portanto, $\mathcal{G} \models v = \mathbf{c} \lor E(v, \mathbf{c})$ Como \mathcal{G}' é um modelo, deve existir o elemento $\mathbf{c}^{\mathcal{G}'}$. Além disso, para todo elemento $v \in G'$, temos que $v \in G$. Portanto, $\mathcal{G} \models v = \mathbf{c} \lor E(v, \mathbf{c})$

Como essa é uma fórmula sem variáveis livres, teremos que $\mathcal{G}' \models \mathbf{v} = \mathbf{c} \lor E(\mathbf{v}, \mathbf{c})$. Isso significa que para qualquer \mathcal{G}' -valoração α , temos que

$$\mathcal{G}' \models x = \mathbf{c} \lor E(x, \mathbf{c})[\alpha]$$

Como \mathcal{G}' é um modelo, deve existir o elemento $\mathbf{c}^{\mathcal{G}'}$. Além disso, para todo elemento $v \in G'$, temos que $v \in G$. Portanto, $\mathcal{G} \models v = \mathbf{c} \lor E(v, \mathbf{c})$

Como essa é uma fórmula sem variáveis livres, teremos que $\mathcal{G}' \models v = \mathbf{c} \lor E(v, \mathbf{c}).$

Isso significa que para qualquer \mathcal{G}' -valoração lpha, temos que

$$\mathcal{G}' \models \mathbf{x} = \mathbf{c} \lor E(\mathbf{x}, \mathbf{c})[\alpha]$$

Que é o mesmo que dizer que:

$$\mathcal{G}' \models \forall x (x = \mathbf{c} \lor E(x, \mathbf{c}))$$

E se colocarmos um monte?

Considere ${\cal T}$ a teoria de corpos, sobre o vocabulário ${\cal L}$ de anéis. ${\mathbb Q}$ é um modelo para essa teoria.

E se colocarmos um monte?

Considere T a teoria de corpos, sobre o vocabulário L de anéis.

 \mathbb{Q} é um modelo para essa teoria.

Seja κ um cardinal não enumerável.

Considere
$$L' = L \cup \left(\bigcup_{\xi \in \kappa} \{ \mathbf{c}_{\xi} \} \right)$$
.

E se colocarmos um monte?

Considere T a teoria de corpos, sobre o vocabulário L de anéis.

 $\mathbb Q$ é um modelo para essa teoria.

Seja κ um cardinal não enumerável.

Considere
$$L' = L \cup \left(\bigcup_{\xi \in \kappa} \{\mathbf{c}_{\xi}\}\right)$$
.

Isto é, acrescentamos infinitas constantes ao vocabulário L.

Também criamos infinitas novas sentenças sobre esse novo vocabulário L':

Para cada par $i < j < \kappa$, definimos a sentença $\varphi_{ij} \equiv \mathbf{c}_i \neq \mathbf{c}_j$.

Também criamos infinitas novas sentenças sobre esse novo vocabulário L':

Para cada par $i < j < \kappa$, definimos a sentença $\varphi_{ij} \equiv \mathbf{c}_i \neq \mathbf{c}_j$.

Criamos, então, uma nova teoria T', composta por:

- Todos os axiomas de T;
- Todas as sentenças φ_{ij} .

Também criamos infinitas novas sentenças sobre esse novo vocabulário L':

Para cada par $i < j < \kappa$, definimos a sentença $\varphi_{ij} \equiv \mathbf{c}_i \neq \mathbf{c}_j$.

Criamos, então, uma nova teoria T', composta por:

- Todos os axiomas de T;
- Todas as sentenças φ_{ij} .

Certamente, não há nenhuma interpretação que possamos dar a $\mathbb Q$ que torne isso verdade.

 \mathbb{Q} é enumerável e a teoria exige que existam não enumeráveis elementos distintos.

Então, a interpretação usual de \mathbb{Q} , interpretando as constantes que aparecerem em Σ como qualquer elemento, é um modelo para essa teoria.

Então, a interpretação usual de \mathbb{Q} , interpretando as constantes que aparecerem em Σ como qualquer elemento, é um modelo para essa teoria.

Teorema (Compacidade)

Se todo subconjunto finito de uma teoria admite modelo, então a teoria admite modelo.

Então, a interpretação usual de \mathbb{Q} , interpretando as constantes que aparecerem em Σ como qualquer elemento, é um modelo para essa teoria.

Teorema (Compacidade)

Se todo subconjunto finito de uma teoria admite modelo, então a teoria admite modelo.

Veja bem:

- \mathbb{Q} é um modelo para qualquer subconjunto finito de T';
- \mathbb{Q} não é um modelo para T'.

Então, a interpretação usual de \mathbb{Q} , interpretando as constantes que aparecerem em Σ como qualquer elemento, é um modelo para essa teoria.

Teorema (Compacidade)

Se todo subconjunto finito de uma teoria admite modelo, então a teoria admite modelo.

Veja bem:

- \mathbb{Q} é um modelo para qualquer subconjunto finito de T';
- \mathbb{Q} não é um modelo para T'.

Existem corpos tão grandes quanto se queira.

Vamos supor que não soubéssemos que existem os corpos \mathbb{Q} , \mathbb{R} e \mathbb{C} .

Vamos supor que não soubéssemos que existem os corpos \mathbb{Q} , \mathbb{R} e \mathbb{C} . Aliás, que não existem corpos de característica zero.

Mas suponhamos, também, que saibamos que existem os corpos \mathbb{F}_p , para todo p primo.

Vamos supor que não soubéssemos que existem os corpos \mathbb{Q} , \mathbb{R} e \mathbb{C} . Aliás, que não existem corpos de característica zero.

Mas suponhamos, também, que saibamos que existem os corpos \mathbb{F}_p , para todo p primo.

Como podemos escrever "a característica é zero"?

Vamos supor que não soubéssemos que existem os corpos \mathbb{Q} , \mathbb{R} e \mathbb{C} . Aliás, que não existem corpos de característica zero.

Mas suponhamos, também, que saibamos que existem os corpos \mathbb{F}_p , para todo p primo.

Como podemos escrever "a característica é zero"? Não dá. Mas conseguimos dizer "a característica é n", para qualquer n.

Vamos supor que não soubéssemos que existem os corpos \mathbb{Q} , \mathbb{R} e \mathbb{C} . Aliás, que não existem corpos de característica zero.

Mas suponhamos, também, que saibamos que existem os corpos \mathbb{F}_p , para todo p primo.

Como podemos escrever "a característica é zero"?

Não dá. Mas conseguimos dizer "a característica é n", para qualquer n. Certamente, podemos dizer, então, "a característica não é n":

$$1+1+1+...+1=0$$

 $1+1+1+...+1\neq 0$

Considere, então, η_n a sentença "a característica não é n". Seja, então T' a seguinte teoria:

- Todos os axiomas de corpo (axiomas de T);
- Todos os η_n .

Considere, então, η_n a sentença "a característica não é n". Seja, então T' a seguinte teoria:

- Todos os axiomas de corpo (axiomas de T);
- Todos os η_n .

Veja que um corpo \mathbb{F}_p não pode ser modelo de T', pois $\mathbb{F}_p \not\models \eta_p$.

Considere, então, η_n a sentença "a característica não é n". Seja, então T' a seguinte teoria:

- Todos os axiomas de corpo (axiomas de T);
- Todos os η_n .

Veja que um corpo \mathbb{F}_p não pode ser modelo de T', pois $\mathbb{F}_p \not\models \eta_p$. Mas, dado um subconjunto finito $\Sigma \subset T'$, tome k como $\max\{n \in \mathbb{N} : \eta_n \in \Sigma\}$.

Se q é um primo maior que k, então $\mathbb{F}_q \models \Sigma$.

Considere, então, η_n a sentença "a característica não é n". Seja, então T' a seguinte teoria:

- Todos os axiomas de corpo (axiomas de T);
- Todos os η_n .

Veja que um corpo \mathbb{F}_p não pode ser modelo de T', pois $\mathbb{F}_p \not\models \eta_p$. Mas, dado um subconjunto finito $\Sigma \subset T'$, tome k como $\max\{n \in \mathbb{N} : \eta_n \in \Sigma\}$.

Se q é um primo maior que k, então $\mathbb{F}_q \models \Sigma$.

Ou seja, todo subconjunto finito de T' admite modelo, portanto, T' admite modelo também.

Um modelo para T' não pode ter característica positiva. Portanto, obtivemos um corpo de característica zero.

Considere a linguagem $\{0, +, \times, +, s\}$, suficientes para fazer a aritmética de Peano.

Será que é possível definir unicamente os naturais em primeira ordem, nessa teoria?

Considere a linguagem $\{0, +, \times, +, s\}$, suficientes para fazer a aritmética de Peano.

Será que é possível definir unicamente os naturais em primeira ordem, nessa teoria?

$$\forall X \subset \mathbb{N}[0 \in X \land (\forall x \ x \in X \rightarrow s(x) \in X)] \rightarrow X = \mathbb{N}$$

Considere a linguagem $\{0, +, \times, +, s\}$, suficientes para fazer a aritmética de Peano.

Será que é possível definir unicamente os naturais em primeira ordem, nessa teoria?

$$\forall X \subset \mathbb{N}[0 \in X \land (\forall x \ x \in X \rightarrow s(x) \in X)] \rightarrow X = \mathbb{N}$$

Isso não é permitido. Usamos, então, um esquema: para cada fórmula $\varphi(x)$, acrescentamos:

$$\varphi(0) \land (\varphi(x) \implies \varphi(s(x))) \rightarrow \forall x \ \varphi(x)$$

Considere a linguagem $\{0, +, \times, +, s\}$, suficientes para fazer a aritmética de Peano.

Será que é possível definir unicamente os naturais em primeira ordem, nessa teoria?

$$\forall X \subset \mathbb{N}[0 \in X \land (\forall x \ x \in X \rightarrow s(x) \in X)] \rightarrow X = \mathbb{N}$$

Isso não é permitido. Usamos, então, um esquema: para cada fórmula $\varphi(x)$, acrescentamos:

$$\varphi(0) \land (\varphi(x) \implies \varphi(s(x))) \rightarrow \forall x \ \varphi(x)$$

Isso é suficiente?

Acrescentamos à linguagem uma constante \mathbf{c} e à teoria as seguintes sentenças, para cada n:

$$\mathbf{c} \neq n$$

Veja que n é o termo s(s(...s(0))...)

Acrescentamos à linguagem uma constante \mathbf{c} e à teoria as seguintes sentenças, para cada n:

$$\mathbf{c} \neq n$$

Veja que n é o termo s(s(...s(0))...)

Seja Σ um subconjunto finito dessa teoria.

Seja k o maior elemento que aparece em sentenças do tipo $\mathbf{c} \neq n$.

Acrescentamos à linguagem uma constante \mathbf{c} e à teoria as seguintes sentenças, para cada n:

$$\mathbf{c} \neq n$$

Veja que n é o termo s(s(...s(0))...)

Seja Σ um subconjunto finito dessa teoria.

Seja k o maior elemento que aparece em sentenças do tipo $\mathbf{c} \neq n$.

Defina, então $\mathbf{c}^{\mathbb{N}} = s(k)$.

Veja que, com essa interpretação, $\mathbb N$ é um modelo para Σ .

Acrescentamos à linguagem uma constante \mathbf{c} e à teoria as seguintes sentenças, para cada n:

$$\mathbf{c} \neq n$$

Veja que n é o termo s(s(...s(0))...)

Seja Σ um subconjunto finito dessa teoria.

Seja k o maior elemento que aparece em sentenças do tipo $\mathbf{c} \neq n$.

Defina, então $\mathbf{c}^{\mathbb{N}} = s(k)$.

Veja que, com essa interpretação, $\mathbb N$ é um modelo para Σ .

Veja que, então, a teoria admite modelo: um modelo para os axiomas de Peano tal que existe um elemento maior que infinitos outros.

Construindo modelos com compacidade

Teorema (Löwenheim-Skolem-Tarski para cima

Seja \mathcal{M} um L-modelo infinito e $\kappa \geq |M|, |L|$. Então, existe um L-modelo \mathcal{N} tal que $\mathcal{M} \prec \mathcal{N}$ e $|N| = \kappa$.

Construindo modelos com compacidade

Teorema (Löwenheim-Skolem-Tarski para cima

Seja \mathcal{M} um L-modelo infinito e $\kappa \geq |M|, |L|$. Então, existe um L-modelo \mathcal{N} tal que $\mathcal{M} \prec \mathcal{N}$ e $|N| = \kappa$.

Para cada $x \in M$, considere \mathbf{c}_x uma nova constante, com $\mathbf{c}_x^{\mathcal{M}} = x$.

Seja
$$L'$$
 o vocabulário $L \cup \left(\bigcup_{x \in M} \{\mathbf{c}_x\}\right)$.

Construindo modelos com compacidade

Teorema (Löwenheim-Skolem-Tarski para cima

Seja \mathcal{M} um L-modelo infinito e $\kappa \geq |M|, |L|$. Então, existe um L-modelo \mathcal{N} tal que $\mathcal{M} \prec \mathcal{N}$ e $|N| = \kappa$.

Para cada $x \in M$, considere \mathbf{c}_x uma nova constante, com $\mathbf{c}_x^{\mathcal{M}} = x$.

Seja
$$L'$$
 o vocabulário $L \cup \left(\bigcup_{x \in M} \{\mathbf{c}_x\}\right)$.

Considere, então, Γ o conjunto de todas as L'-sentenças φ tais que $\mathcal{M} \models \varphi$.

Agora, introduza no vocabulário κ novas constantes \mathbf{c}_i , $i < \kappa$. Considere L'' o vocabulário L' com essas novas constantes adicionadas.

Agora, introduza no vocabulário κ novas constantes \mathbf{c}_i , $i < \kappa$. Considere L'' o vocabulário L' com essas novas constantes adicionadas.

Defina
$$\Gamma'$$
 como $\Gamma \cup \left(\bigcup_{i \neq j} \{\mathbf{c}_i \neq \mathbf{c}_j\}\right)$.

Agora, introduza no vocabulário κ novas constantes \mathbf{c}_i , $i < \kappa$. Considere L'' o vocabulário L' com essas novas constantes adicionadas.

Defina
$$\Gamma'$$
 como $\Gamma \cup \left(\bigcup_{i \neq j} \{\mathbf{c}_i \neq \mathbf{c}_j\}\right)$.

Assim como fizemos anteriormente, veja que \mathcal{M} é um modelo para qualquer subconjunto finito de Γ' . Portanto, Γ' admite um modelo \mathcal{N} . Veja que \mathcal{N} também é um L-modelo.

Basta provarmos que $\mathcal{M} \prec \mathcal{N}$. Seja $\varphi(x)$ uma L-fórmula. Precisamos mostrar que $\mathcal{M} \models \varphi(a) \Leftrightarrow \mathcal{M} \models \varphi(b)$. Basta provarmos que $\mathcal{M} \prec \mathcal{N}$.

Seja $\varphi(x)$ uma L-fórmula. Precisamos mostrar que $\mathcal{M} \models \varphi(a) \Leftrightarrow \mathcal{M} \models \varphi(b)$.

$$\mathcal{M} \models \varphi(\mathbf{x})[\alpha_{\mathbf{x}}^{\mathbf{a}}] \Leftrightarrow \mathcal{M} \models \varphi(\mathbf{c}_{\mathbf{a}})$$

Que é o mesmo que dizer que $\varphi(\mathbf{c}_a) \in \Gamma$.

Como \mathcal{N} é modelo para Γ' , então é modelo para Γ e portanto $\mathcal{N} \models \varphi(\mathbf{c}_a)$.

Basta provarmos que $\mathcal{M} \prec \mathcal{N}$.

Seja $\varphi(x)$ uma L-fórmula. Precisamos mostrar que $\mathcal{M} \models \varphi(a) \Leftrightarrow \mathcal{M} \models \varphi(b)$.

$$\mathcal{M} \models \varphi(\mathbf{x})[\alpha_{\mathbf{x}}^{\mathbf{a}}] \Leftrightarrow \mathcal{M} \models \varphi(\mathbf{c}_{\mathbf{a}})$$

Que é o mesmo que dizer que $\varphi(\mathbf{c}_a) \in \Gamma$.

Como \mathcal{N} é modelo para Γ' , então é modelo para Γ e portanto

 $\mathcal{N} \models \varphi(\mathbf{c}_a).$

O mergulho $a \mapsto \mathbf{c}_a^{\mathcal{N}}$ é elementar.

Reduzindo o modelo

Mas ainda não temos que $|N| = \kappa$, apenas que $|N| \ge \kappa$.

Reduzindo o modelo

Mas ainda não temos que $|N| = \kappa$, apenas que $|N| \ge \kappa$.

Teorema (Löwenheim-Skolem-Tarski para baixo)

Se \mathcal{N} é um L-modelo e $X\subset N$, então para todo cardinal κ tal que $\aleph_0, |L|, |X| \leq \kappa \leq |N|$, existe um modelo $\mathcal{M} \prec \mathcal{N}$ tal que $X\subset M$ e $|M|=\kappa$.

Prova do teorema

Observe o seguinte: seja $A \subset B$.

Seja $\psi = \forall x \ \varphi(x)$, em que $\varphi(x)$ é livre de quantificadores. Então:

$$\mathcal{B} \models \psi \Rightarrow \mathcal{A} \models \psi$$

Prova do teorema

Observe o seguinte: seja $A \subset B$.

Seja $\psi = \forall x \ \varphi(x)$, em que $\varphi(x)$ é livre de quantificadores. Então:

$$\mathcal{B} \models \psi \Rightarrow \mathcal{A} \models \psi$$

Mas isso não ocorre com fórmulas existenciais.

Prova do Teorema

Vamos usar uma técnica conhecida como Skolemização. Considere:

1
$$L_0 = L$$
;

Prova do Teorema

Vamos usar uma técnica conhecida como Skolemização. Considere:

- **1** $L_0 = L$;
- ② $L_1 = L \cup F_0$, em que F_0 é um conjunto de símbolos de funções da seguinte maneira:
 - Para cada L_0 -fórmula $\varphi \equiv \varphi(x_1,...,x_n) \equiv \exists y \ \psi(y,x_1,...,x_n), \ \mathbf{f}_{\varphi}$ é um símbolo de função n-ária de F_0 ;
- **3** $L_{i+1} = L_i \cup F_i$.

Prova do Teorema

Vamos usar uma técnica conhecida como Skolemização. Considere:

- $L_0 = L$;
- ② $L_1 = L \cup F_0$, em que F_0 é um conjunto de símbolos de funções da seguinte maneira:

Para cada L_0 -fórmula $\varphi \equiv \varphi(x_1,...,x_n) \equiv \exists y \ \psi(y,x_1,...,x_n), \ \mathbf{f}_{\varphi}$ é um símbolo de função n-ária de F_0 ;

3 $L_{i+1} = L_i \cup F_i$.

Considere que $\mathbf{f}_{\varphi}^{\mathcal{N}}(x_1,...,x_n)=a$, com $\mathcal{N}\models\psi(a,x_1,...,x_n)$, no caso de $\mathcal{N}\models\varphi(x_1,...,x_n)$. Caso contrário, pode ser qualquer elemento. Defina $L'=\bigcup\limits_{i\in\mathbb{N}}L_i$. Olhe para \mathcal{N} como L'-modelo.

Veja que, a cada passo no slide anterior, adicionamos apenas $\max\{\aleph_0,|L|\}$ símbolos, de modo que $|L'|=\max\{\aleph_0,|L|\}$. Tome, agora, M_0 um conjunto de cardinalidade κ contendo X e todas as constantes como interpretadas por \mathcal{N} .

Veja que, a cada passo no slide anterior, adicionamos apenas $\max\{\aleph_0,|L|\}$ símbolos, de modo que $|L'|=\max\{\aleph_0,|L|\}$. Tome, agora, M_0 um conjunto de cardinalidade κ contendo X e todas as constantes como interpretadas por \mathcal{N} .

Agora, considere M_1 o conjunto $M_0 \cup \{\mathbf{f}^{\mathcal{N}}(m_1,...,m_n) : \mathbf{f} \in L', m_1,...,m_n \in M_0\}$ Mais geralmente, M_{i+1} o conjunto $M_i \cup \{\mathbf{f}^{\mathcal{N}}(m_1,...,m_n) : \mathbf{f} \in L', m_1,...,m_n \in M_i\}$

Veja que, a cada passo no slide anterior, adicionamos apenas $\max\{\aleph_0,|L|\}$ símbolos, de modo que $|L'|=\max\{\aleph_0,|L|\}$. Tome, agora, M_0 um conjunto de cardinalidade κ contendo X e todas as constantes como interpretadas por \mathcal{N} .

Agora, considere M_1 o conjunto $M_0 \cup \{\mathbf{f}^{\mathcal{N}}(m_1,...,m_n) : \mathbf{f} \in L', m_1,...,m_n \in M_0\}$ Mais geralmente, M_{i+1} o conjunto $M_i \cup \{\mathbf{f}^{\mathcal{N}}(m_1,...,m_n) : \mathbf{f} \in L', m_1,...,m_n \in M_i\}$

Defina, então $M = \bigcup_{i \in \mathbb{N}} M_i$.

 \mathcal{M} sendo o modelo cujo universo é M e a interpretação é a restrição de $\cdot^{\mathcal{N}}$ a M é um submodelo elementar de \mathcal{N} .

Considere $\theta(x) = \exists y \ \varphi(x, y)$.

$$\mathcal{M} \models \theta(x) \Leftrightarrow \mathcal{M} \models \varphi(x, \mathbf{f}_{\theta}(x)) \Leftrightarrow \mathcal{N} \models \varphi(x, \mathbf{f}_{\theta}(x)) \Leftrightarrow \mathcal{N} \models \theta(x)$$

Considere $\theta(x) = \exists y \ \varphi(x, y)$.

$$\mathcal{M} \models \theta(x) \Leftrightarrow \mathcal{M} \models \varphi(x, \mathbf{f}_{\theta}(x)) \Leftrightarrow \mathcal{N} \models \varphi(x, \mathbf{f}_{\theta}(x)) \Leftrightarrow \mathcal{N} \models \theta(x)$$

Além disso, $|M| = \kappa$ como queríamos (a cardinalidade dele não aumentou desde M_0).

Uma aplicação

Veja que $\mathbb C$ é uma extensão algebricamente fechada de $\mathbb Q$. Portanto, podemos conseguir um corpo algebricamente fechado enumerável contendo $\mathbb Q$.

Uma aplicação

Veja que $\mathbb C$ é uma extensão algebricamente fechada de $\mathbb Q$. Portanto, podemos conseguir um corpo algebricamente fechado enumerável contendo $\mathbb Q$.

- O fecho algébrico de Q é enumerável;
- Existem mais elementos transcendentes que algébricos sobre $\mathbb Q$ em $\mathbb R$.

Até semana que vem!