

X3-Class HiPerFET™ **Power MOSFET**

IXFT120N25X3HV IXFQ120N25X3 IXFH120N25X3

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_{_{\rm J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	250	V	
V _{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C}$ to 150°C , $R_{_{\rm GS}} = 1\text{M}\Omega$	250	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	120 230	A A	
I _A	T _C = 25°C	60	А	
E _{AS}	$T_{c} = 25^{\circ}C$	1.2	J	
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	20	V/ns	
P _D	T _C = 25°C	480	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in	
Weight	TO-268HV TO-3P TO-247	4.0 5.5 6.0		

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Charac Min.	cteristic \ Typ.	Values Max.
BV _{DSS}	$V_{GS} = 0V, I_{D} = 1mA$	250		V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		4.5 V
l _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100 nA
DSS	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			10 μA 500 μA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$		10	12 mΩ

250V 120A I_{D25} \leq $12m\Omega$ $\mathbf{R}_{\mathrm{DS(on)}}$

TO-3P (IXFQ)

G = Gate= Drain D S = SourceTab = Drain

Features

- International Standard Packages
- Low R_{DS(ON)} and Q_G
 Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- · AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions Cha			acteristic Values		
$(T_{J} = 25^{\circ}C, U)$	nless Otherwise Specified)	Min.	Тур.	Max	
g _{fs}	V _{DS} = 10V, I _D = 60A, Note 1	54	90	S	
R_{Gi}	Gate Input Resistance		1.6	Ω	
C _{iss}			7870	pF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1260	pF	
C _{rss}			2	pF	
	Effective Output Capacitance				
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		500	pF	
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1900	pF	
t _{d(on)}	Resistive Switching Times		29	ns	
t,	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{DSS}$		32	ns	
t _{d(off)}	do		100	ns	
t _f	$R_{g} = 5\Omega$ (External)		12	ns	
$Q_{g(on)}$			122	nC	
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		40	nC	
Q _{gd}			34	nC	
R _{thJC}				0.26 °C/W	
R _{thCS}	TO-247& TO-3P		0.21	°C/W	

Source-Drain Diode

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			120	Α
I _{SM}	Repetitive, pulse Width Limited by $T_{_{JM}}$			480	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_{_{\rm F}} = 60 \text{A}, - \text{di/dt} = 100 \text{A/} \mu \text{s}$ $V_{_{\rm R}} = 100 \text{V}$		140 880 12.6		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 60A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 60A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

0.4 0.1 NO.01 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.001 0.01 0.1 1

Pulse Width - Seconds

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCH	HES	MILLIMETE	
STM	MIN	MAX	MIN	MAX
Α	.193	.201	4.90	5.10
Α1	.106	.114	2.70	2.90
A2	.001	.010	0.02	0.25
Ф	.045	.057	1.15	1.45
С	.016	.026	0.40	0.65
C2	.057	.063	1.45	1.60
D	.543	.551	13.80	14.00
D1	.465	.476	11.80	12.10
D2	.295	.307	7.50	7.80
D3	.114	.126	2.90	3.20
E	.624	.632	15.85	16.05
E1	.524	.535	13.30	13.60
е	.215	BSC	5. 4 5 BSC	
(e2)	.374	.386	9.50	9.80
Η	.736	.752	18.70	19.10
L	.067	.079	1.70	2.00
L2	.039	.045	1.00	1.15
L3	.010	BSC	0.25 BSC	
L4	.150	.161	3.80	4 .10

