

Exhibit A

確 認 書

斎藤 孝弘 様

平成9年11月6日

江原特許事務所

担当 和田 哲夫

ご依頼頂きました出願に関する案文をお送りします。つきましては、下記の事項についてご確認の上、ご返送下さい。（不備な箇所は、訂正・付記下さいます様お願い申し上げます。）

記

- | | | | |
|----------------------|---|-------|-----------------------------|
| 1. 名 称 | 情報コード及びその読み取り装置 | | |
| 2. 出願の種類 | 特許出願 | | |
| 3. 請求項の数 | 4 | | |
| 4. 出 願 人 | 別紙願書をご参照下さい | | |
| 5. 考 案 者 | 同 | 上 | |
| 6. 発信 文書 | 願 書 | 2 枚 | |
| | 明 紹 書 | 10 枚 | |
| | 要 約 書 | 1 枚 | |
| | 図 面 | 3 枚 | |
| 合計枚数 | 本票を含む | | 枚 |
| 7. 審査請求の有無 | <input type="checkbox"/> | 出願と同時 | <input type="checkbox"/> 保留 |
| 8. 原稿訂正箇所の有無 | <input type="checkbox"/> 訂正なし <input type="checkbox"/> 訂正あり（具体的にご教示下さい） | | |
| 9. その他（ご意見・ご要望・etc.） | | | |

特許庁提出書類控

特 訸	
出願人の氏名	齊藤孝弘
発明の名称	情報コード及びその読み取り装置
発明者氏名	齊藤孝弘
請求項の数	4
出願年月日	平成 年 月 日
審査請求書提出	平成 年 月 日
出願番号	平成 年 第 号
公開年月日	平成 年 月 日
公開番号	平成 年 第 号
公告年月日	平成 年 月 日
公告番号	平成 年 第 号
登録年月日	平成 年 月 日
特許登録番号	第 号

委任ニ用イタ印鑑

〒550 大阪市西区江戸堀1丁目15番26号
大阪商工ビル8階

江原特許事務所

電話 大阪 06 (443) 9541~3番
FAX 大阪 06 (443) 9 5 4 4

【書類名】 特許願
【整理番号】
【提出日】 平成 年 月 日
【あて先】 特許庁長官 殿
【国際特許分類】
【発明の名称】 情報コード及びその読み取り装置
【請求項の数】 4
【発明者】
【住所又は居所】 八尾市南本町 6-2-24-143
【氏名】 斎藤 孝弘
【特許出願人】
【住所又は居所】 八尾市南本町 6-2-24-143
【名称】 斎藤 孝弘
【代理人】
【識別番号】 100064584
【弁理士】
【氏名又は名称】 江原 省吾
【選任した代理人】
【識別番号】 100093997
【弁理士】
【氏名又は名称】 田中 秀佳
【選任した代理人】
【識別番号】 100101616
【弁理士】
【氏名又は名称】 白石 吉之
【選任した代理人】
【識別番号】 100107423
【弁理士】
【氏名又は名称】 城村 邦彦

【手数料の表示】

【予納台帳番号】 019677

【納付金額】 21000

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 情報コード及びその読み取り装置

【特許請求の範囲】

【請求項 1】 反射又は放射の波長特性が異なる 3 種以上の表示領域を所定の配列で並べて形成され、この配列における表示領域の波長特性の組み合せを情報表示の要素としたことを特徴とする情報コード。

【請求項 2】 モノクロで表わされた既存の情報コードの一つと同一の配列で表示領域を並べた表示パターンを有し、各表示領域に、反射又は放射の波長特性が異なる 3 種以上の表示領域を用い、この配列における表示領域の波長特性の組み合せを情報表示の要素とするものであって、

上記配列における表示領域の波長特性の組み合せと表示情報の関係の取決めに、前記既存の情報コードで規定されたモノクロの情報表示の取決めを含ませたことを特徴とする情報コード。

【請求項 3】 反射又は放射の波長特性が異なる 3 種以上の表示領域を所定の配列で並べて形成した情報コードから得られる反射光又は放射光を、使用されている異なる波長毎に分離するフィルタと、

フィルタで分離した各波長の光を光電変換する複数の検出器と、

各検出器の出力が所定の判定レベルを超えているか否かを判定する複数の判定回路と、

各判定回路の出力の組合せから情報コードに表示された情報を解読して出力するデコーダを備えたことを特徴とする情報コードの読み取り装置。

【請求項 4】 反射又は放射の波長特性が異なる 3 種以上の表示領域を所定の配列で並べて形成した情報コードに対応させ、その表示領域の異なる波長特性に対応して用意された複数の単色光源と、

各単色光源を時分割発光させる駆動回路と、

情報コードの反射光又は放射光を光電変換する検出器と、

検出器の出力を上記駆動回路の駆動信号に同期させて各波長成分毎に取り出し、各波長成分毎の出力が所定の判定レベルを超えているか否かにより各波長成分の有無を判定する判定回路と、

判定回路の各色毎の出力の組合せから、情報コードに表示された情報を解読して出力するデコーダを備えたことを特徴とする情報コードの読み取り装置。

【発明の詳細な説明】

【発明の属する技術分野】

本発明は、色等の波長特性の組み合せによって情報を表示する情報コード及びその読み取り装置に関する。

【従来の技術】

バーコード等の情報コードは、簡単に印刷でき読み取り容易な商品等の情報表示手段として、広く用いられている。

バーコードには、JAN、標準ITF、CODE=138、CODE=39、NW-7コード等があり、夫々固有の表示形式を持つ。広く使用されているJANコードの表示形式は、黒又は白の7本のバーを組み合せて1つの数字を表わす1モジュールを形成し、このモジュールを13個並べることにより、13桁の数字を表している。この13桁の数字は、最初の2桁は国番号、次の5桁でメーカー、続く5桁で商品を表わし、最後の1桁を検算用に使用している。

【発明が解決しようとする課題】

上記JANコードは数字を13桁しか表現できず、多品種小量化の進んだ現在、商品に割り当てられた5桁では、商品の登録可能数が不足し、新たに商品を登録するために、既に扱わなくなった商品の登録を抹消しなければならない事態が生じている。

情報表示量の不足は、バーコードを採用する分野が広がるに伴って、顕著になって来ている。例えば電話の通話明細書では、バーの本数を増加したロングバーコードと標準型のバーコードを並べて印刷することにより、情報表示量の不足をカバーしようとしている。なお、このように複数のバーコードを並べて表記する方法は、文字等を印刷する表示面を大きく圧迫して美観を損なうとともに、大きな表示スペースが確保できる場合にしか採用できないので、根本的な解決策にはなっていない。

また、バーコードの新たな利用方法として、製造年月日、製造者名、パック年月日、賞味期限等を同時に表示し、商品の購入者が支払いを行うとき、この情報

を読み取り記録し、販売管理、商品管理等に利用することが考えられているが、モノクロのバーコードで、このような多くの情報を表示しようとすると、表示パターンが複雑化すると共にバーコードラベルが大型化し、実用的でなくなるという問題があった。

さらに、工業製品の生産管理現場においては、管理対象とする部品や製品等に、単なる情報票を付けるだけでなく、その製造履歴や検査結果等の詳細な情報を情報コードによって表示し、製造現場又は出荷現場において、大型コンピュータ等を用いた管理システムに問い合わせることなく、部品や製品の詳細な情報を得るようにすることも考えられている。

しかし、この場合においても、モノクロの情報コードの情報表示量の限界のため実用的なシステムを作ることは困難であった。

そこで、本発明は、表示パターンを変えなくても表示できる情報量を大幅に増大して、上記問題を解決できる情報コードを提供することを目的とする。

【課題を解決するための手段】

(1) 本発明の情報コードは、反射又は放射の波長特性が異なる3種以上の表示領域を所定の配列で並べて形成され、この配列における表示領域の波長特性の組み合せを情報表示の要素としたことを特徴とする。

ここで、反射又は放射の波長特性が異なるとは、所定の配列で並べられて情報コードを形成する表示領域の色が異なること、及び情報コードをステルスコードとして形成した場合に、その表示領域に印刷された蛍光体の放射波長が異なることをいう。また反射又は放射の波長特性が異なる3種以上の表示領域とは、上記波長特性の異なる表示領域が3種類以上あることを意味し、表示領域の大きさ又は形状の異なるものを使用する場合は、表示領域の種類の数は、これらを組み合わせた数となる。

この情報コードで表示できる情報量は、表示領域の種類の数を、並べられた表示領域数でべき乗した値となるので、モノクロで表示された情報コードに比べて、非常に多くの情報を表すことが出来るようになる。

(2) 本発明の情報コードを、モノクロの既存の情報コードと切換えて、採用しようとする場合に、その既存の情報コードにかかわる企業が非常に多いと、

本発明の情報コードへの移行をスムーズに行なえない。

そこで、既存の情報コードと共に用できる情報コードとして次のものを提供する。

この情報コードは、モノクロで表わされた既存の情報コードの一つと同一の配列で表示領域を並べた表示パターンを有し、各表示領域に、反射又は放射の波長特性が異なる3種以上の表示領域を用い、この配列における表示領域の波長特性の組み合せを情報表示の要素とするものであって、

上記配列における表示領域の波長特性の組み合せと表示情報の関係の決めに、前記既存の情報コードで規定されているモノクロの情報表示の決めを含ませたものである。

この情報コードにおいて、モノクロの情報表示の決めに割り当てられる情報の数は、全体の表示可能数に比べてかなり少ないので、本発明の表示する情報量を多くできるという特長を損なわないで、上記既存の情報コードから本発明の情報コードへの移行をスムーズに行なうことができる。

(3) 上記情報コードはモノクロの情報コードと異なり、各表示領域に反射又は放射の波長特性が3種以上に異なるものを用いているので、これを区別して読み取る必要がある。

この読み取り装置は、(a) 光源として白色光を用いた場合と、(b) レーザ光源等の単色光を用いた場合が2種類がある。

(a) 光源として白色光を用いた場合の読み取り装置は、反射又は放射の波長特性が異なる3種以上の表示領域を所定の配列で並べて形成した情報コードから得られる反射光又は放射光を、使用されている異なる波長毎に分離するフィルタと、

フィルタで分離した各波長の光を光電変換する複数の検出器と、各検出器の出力が所定の判定レベルを超えているか否かを判定する複数の判定回路と、

各判定回路の出力の組合せから情報コードに表示された情報を解読して出力するデコーダを備える。

(b) また、レーザ光源等の単色光源を用いた場合の読み取り装置は、反射又は放射の波長特性が異なる3種以上の表示領域を所定の配列で並べて形成した情

報コードに対応させ、その表示領域の異なる波長特性に対応して用意された複数の単色光源と、

各単色光源を時分割発光させる駆動回路と、

情報コードからの反射光又は放射光を光電変換する検出器と、

検出器の出力を上記駆動回路の駆動信号に同期させて各波長成分毎に取り出し、各波長成分毎の出力が所定の判定レベルを超えているか否かにより各波長成分の有無を判定する判定回路と、

判定回路の各色毎の出力の組合せから、情報コードに表示された情報を解読して出力するデコーダを備える。

【発明の実施の形態】

図1に示す情報コード1は、JANコードと同一の表示パターンを用いた本発明の一実施形態である。この情報コードにおいて、各バーを表わす色は、白と黒の他に、光の三原色である赤、緑、青を用いている。したがって、1本のバー

(図面上幅の広いバーは同色のバーが連なった複数本のバーである。)で5種類の情報を表わすことができる。情報コードは、この色の組合せによって情報を表すので、この情報コードは、 $5^{(7*13)} = 4,038,97 \times 10^{63}$ 個の情報を表現できる。これは従来のモノクロのJANコードで表現できる情報量の $2^{(7*13)} = 2,475,88 \times 10^{27}$ 個と比較すると、 $1.631,33 \times 10^{36}$ 倍もの情報量である。

したがって、従来に比べて、表現できる情報量が飛躍的に多くなり、情報コードの表示項目数を増大させ、各項目の表示桁数を多く取ることが可能になる。

これを、スーパーマーケットの商品に付ける情報コードを例に挙げて説明すると、本発明の情報コードを利用すれば、製造年月日、パック年月日、生産者等の項目を新たに追加して管理効率を向上し、商品の登録数を増加して、新規商品の登録のために取り扱わなくなった商品の登録を抹消する手間をなくすことができる。

本発明の情報コードの読み取り装置の構成例を説明する。図2は白色光源を用いた読み取り装置の例を示すもので、2は白色光源、3は白色光源から出た光を情報コード1に集光する投光光学系、4は情報コード1から出た光を結像させる

受光光学系である。5は情報コード1から出た光を各波長成分毎に分離するフィルタで、図示例では赤色光を反射し他の波長の光を透過させるダイクロイックミラー5R、緑色光を反射し、他の波長の光を透過させるダイクロイックミラー5G、残りの青色光を反射させる通常の反射鏡5Bを用いている。6R、6G、6Bは赤、緑、青の各色に対応して設けられた検出器で、例えばスキャン式の読み取りを行う場合は、フォトダイオード等、タッチ式の読み取りを行う場合はCCDセンサ等が使用される。7R、7G、7Bは各色の検出器に対応して設けられた増幅器、8R、8G、8Bは各色毎に設けられた判定回路で、増幅器7R、7G、7Bの出力を所定の基準レベルと比較して、各色（赤、緑、青）の有無の判定出力をする。9はデコーダで、所定のタイミング信号を用いて各バーの色を判定し、予め規定されたバーの色の並びと情報の関係に従って、表示された情報を解読して出力する。

なお、上記タイミング信号は、例えばクロック信号で計測したバーの幅の計測時間を基準にして作られる。

また、判定回路8R、8G、8Bの出力はRGBの3種であるのに対し、バーの色には白色と黒色が含まれるので、デコーダ9は、図3に示すようにRGBの3色が全て有のとき白色、RGBの3色が全て無のとき黒色と判定している。赤、緑、青の判定は、白の判定がされないという条件で、R、G、Bの信号を用いる。

上記デコーダ9が解読して出力する情報コードの表示情報に基づいて、所定の演算処理が行われ、ディスプレイあるいは紙への出力、また管理用コンピュータへの記録等が行われる。

図4はレーザスキャナやホログラムスキャナのように、情報コードをレーザ光源等の単色光源を用いて読み取る場合の実施例を示す。この実施例は、情報コードで使用している色に対応させて、単色光源であるレーザー光源を複数用い、これを時分割発光させている。

図4において、11R、11G、11Bは、夫々、赤、緑、青の各色で発光するレーザ光源等の単色光源、12は各レーザ光源を時分割発光させる駆動回路、13R、13G、13Bはレーザ光源の発した光を情報コード1に導く投光側光学系、14は情報コード1で反射した光を受ける受光側光学系、15は受光側光

学系 1 4 を通過した光を光電変換するフォトダイオード等の検出器、1 6 は光電変換出力を増幅する増幅器である。1 7 は判定回路で、増幅器 1 6 の出力を上記駆動回路 1 2 の駆動信号に同期させて各波長成分毎に取り出し、各波長成分毎の出力が所定の判定レベルを超えているか否かにより各波長成分の有無を判定する。1 8 はデコーダで、判定回路の判定結果の組合せから、情報コードに表示された情報を解読してデジタル信号で出力する。このデコーダにおける、タイミング信号を基準にした各バーの区別、白色と黒色の識別、及びデコーダの出力処理は、図 2 に示した実施例と同様に行われる。

上記時分割方式は、レーザ光源を使用する他に、例えば R G B の三色の発光ダイオードを用いることによっても採用可能である。時分割方式は、フォトダイオードや C C D センサ等の受光器及びその出力の処理回路を共用でき、白色光源を用いた場合のようにフィルタ及び受光器を複数設ける必要がないので、受光側の構造を簡単にできる利点がある。

次に、モノクロの情報コードを使用している現場に、本発明の情報コードを採用する場合について説明する。

情報コードの情報量の不足を解消するため、本発明の情報コードを採用しようとする場合、例えば情報コードを付けている商品等の製造メーカーが非常に多いと、これに一時に対応することはできない。

この場合において、商品等に、それまで使用していた情報コードと新たに採用した情報コードのどちらが付けられても読み取り可能とするために、読み取り手段を重ねて設けると、読み取り装置が複雑になって、コストが高くなる。

そこで、本発明の情報コードの表示パターンを、従来から使用されていたバーコードと同一のパターンにするとともに、本発明の情報コードにおける表示領域の組み合せと表示情報の関係の取決めに、前記既存の情報コードで規定されたモノクロの情報表示の取決めを含ませることにより、読み取り装置のコストを高くすることなく、その移行を容易に行なえるようにする。

これは、例えば、図 1 に示すように、J A N コードと同一のパターンにより白、黒、赤、緑、青の 5 色で、本発明の情報コードを構成し、この色の組合せによって形成される表示パターンの内、白と黒のみによって形成されるものを、その

まま J A N コードのバーコードとして利用するものである。従来のモノクロの J A N コードと本発明の複数色で表現する情報コードとは、例えば 1 桁の数字を表わすのに使用するバーの本数が異なるといったように、表示の仕方が異なるので、これを区別して読み取る必要がある。

この処理手順は、例えば図 5 に示すようになる。これは、例えば、図 4 に示す装置の判定回路 1 7 及びデコーダ 1 8 の処理手順の一部を示すもので、まず、増幅器 1 6 から出力された受光信号を、駆動回路 1 2 の時分割信号とタイミング信号により各バーについて、 R G B の三色の有無を判断する。次に、図 3 で説明した原理に基づいて、各バーの白、黒、赤、緑、青の判定を行う。さらに、全てのバー又は特定範囲のバーの色が、全て白又は黒であるか否かにより、従来の J A N コードが使用されているか否か判断する。従来の J A N コードで表現されている場合は、 J A N コードの解釈テーブルを参照し、また、本発明の情報コードで表現されている場合は、本発明の情報コードの解釈テーブルを参照して、表示されているデータを解読しデジタルデータで出力する。なお、上記 J A N コードが使用されているか否かの判定は、情報コード全体で行う他に、情報コード中の、例えば商品コードといった情報単位毎に行なっても良い。

以上の説明は、 J A N コードと同一の表示パターンを持つものについて行なつたが、本発明の情報コードは、標準 I T F , C O D E = 1 3 8 , C O D E = 3 9 、 N W - 7 コード等の他の表示形態を持つバーコードにおいても同様に実施できる。例えば標準 I T F , C O D E = 1 3 8 は、幅の異なるバーを組み合わせることによって、バーコードの本数を少なくしたものであるが、これに本発明の情報コードの色を組み合せれば、1 本のバーで表わせる情報の種類が、幅の種類 × 色数となって、本発明の効果を更に大きくすることができる。

さらに本発明は二次元コードやステルスコードにも適用することができる。

二次元コードは二次元に配列した表示領域（黒又は白で塗り分けられる最少表示単位）の組み合せにより情報を表示するもので、 P D F 4 1 7 、カルラコード等が知られている。この二次元コードにおいて、各表示領域を、反射又は放射の波長特性が異なる 3 種以上の表示領域によって形成し、この二次元配列における表示領域の波長特性の組み合せを情報表示の要素とする。

この場合は、本発明の多色化による表示情報量の増大が、表示領域の配列数の多い二次元コードにおいて行われることになるので、表示情報量を、特に多くすることができる。

ステルスコードは、蛍光体を含有する色が薄い透明なインクを用いて情報コードを印刷し、赤外線等の励起光で情報コードを照射したときに蛍光体が放射する光を検出して読み取りを行なうものである。このステルスコードは、肉眼では情報コードが見えないようにすることにより、セキュリティ性及びデザイン性に優れる特徴を持つ。

ステルスコードにおいて、本発明を実施するには、異なる波長で発光する複数種類の蛍光体を用意し、それらを含有したインクによって、表示領域を塗り分け印刷して情報コードを作る。例えば、赤色、緑色、青色を、その色で発光する蛍光体を含有したインクによって表示し、白色を上記3種の蛍光体を混合したインクによって表示し、黒色をインクを塗らないことによって表示する。

読み取りは、蛍光体を励起させる赤外光等を照射して、各色の発光を行なわせ、これを図2に示したような、フィルタと検出器を組み合わせた読み取り装置によって、各波長別の読み取りを行う。この読み取り方式において、蛍光体は可視光でなく赤外光等の不可視光で発光するものであってもよい。

以上の説明では、本発明の情報コードで使用する色（反射又は放射の波長特性）として、白、黒に加えて赤、緑、青の3色を用いるものを説明したが、この3色はC（シアン）、M（マゼンダ）、Y（イエロー）であってもよく、他の色の組合せを用いてもよい。さらに、各色の中間色を用いる等によって使用する色数を増加すれば、表示可能な情報数を、さらに増大することができる。

この色数は多くする程、本発明の効果を飛躍的に増大させることができるが、色数を余りに多くすると、読み取り装置に高い精度が要求されるため高価な装置となってしまう。本発明の効果が十分に得られ、製作コストを低く抑えることができる色数として適当な色数は、例えば、白と黒に、赤、緑、青の3色、またはC（シアン）、M（マゼンダ）、Y（イエロー）の3色を加えた5色である。

【発明の効果】

本発明は、情報コードを構成する表示領域を3種以上の色（反射又は放射の波

長特性)で塗り分けるようにしたから、情報コードで表示できる情報量を飛躍的に増大することができる。したがって、従来の情報コードで表示量が不足していた問題を解決するとともに、本発明による大量の情報表示機能を生かして情報コードを新たな用途に用いることができる。

【図面の簡単な説明】

【図1】 従来のモノクロのバーコードと同一の表示パターンで、本発明の情報コードを形成した例を示す図

【図2】 白色光源を用いた本発明の情報コードの読み取り装置の構成例を示す図

【図3】 R、G、Bの三色の検出信号から白と黒の信号を作り出す方法を説明するタイミング図

【図4】 単色光源を時分割発光させる本発明の情報コードの読み取り装置の構成例を示す図

【図5】 本発明の情報コードに、既存のモノクロのバーコードの表現方式を含ませた場合の情報コードの解読の手順を示すフローチャート

【符号の説明】

- 1 情報コード
- 2 白色光源
- 5 フィルタ
- 6, 15 検出器
8R, 8G, 8B, 17 判定回路
- 9, 18 デコーダ
- 11R, 11G, 11B 単色光源
- 12 単色光源の駆動回路

【書類名】 要約書

【要約】

【課題】 バーコード等のモノクロの情報コードの表示量が限られているため各表示項目で表示できる数、及び表示項目数が不足している現状を、識別コードを大きくしないで解決する。

【解決手段】 情報コードを、色（反射又は放射の波長特性）が異なる3種以上の表示領域を所定の配列で並べて形成し、この配列における表示領域の波長特性の組み合せを情報表示の要素とする。

【選択図】 図1

【図 1】

【図 2】

【図 3】

【図 4】

【図 5】

