

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS INGENIERÍA EN COMPUTACIÓN

PERÍODO ACADÉMICO: 2025-A

ASIGNATURA: ICCD412 Métodos Numéricos GRUPO: GR2

TIPO DE INSTRUMENTO: Tarea 5

FECHA DE ENTREGA LÍMITE: 04/05/2025

ALUMNO: Murillo Tobar Juan

TEMA

Método de la bisección

OBJETIVOS

- Comprender la utilidad del método de bisección para la búsqueda de ceros(soluciones) dentro de un intervalo en donde la función es continua.
- Determinar el error producido al momento de utilizar el método de bisección y relacionarlo con el objetivo de los métodos numéricos.

MARCO TEÓRICO

Método de la bisección

Es un método numérico, es decir, encuentra una solución al problema de forma aproximada. El problema a resolver utilizando este método es encontrar las raíces o soluciones para una ecuación de la forma f(x) = 0. Como se menciona en [1], es una técnica también

conocida como método de búsqueda binaria y se basa en teorema del valor intermedio. Este método consiste a la reducción sucesiva a la mitad de los subintervalos hasta aproximarnos a la raíz dentro de ese intervalo, ya que como se enuncia en el teorema del valor intermedio, dentro de un intervalo [a, b] con f(a) y f(b) con signo opuesto, dadas estas condiciones existirá un p dentro de [a,b] tal que f(p)=0. Ademas, debemos recordar que la función en dicho intervalo debe ser continua para considerar dicho teorema.

DESARROLLO

CONJUNTO DE EJERCICIOS 2.1

1. Use el método de bisección para encontrar soluciones precisas dentro de 10^{-2} para la función $x^3 - 7x^2 + 14x - 6$, en cada intervalo.

a) [0,1]

a	b	p	f(a)	f(b)	f(p)	E_{est}
0	1	0.5	-6	2	-0.625	0.5
0.5	1	0.75	-0.625	2	0.984375	0.25
0.5	0.75	0.625	-0.625	0.984375	0.259765	0.125
0.5	0.625	0.5625	-0.625	0.259765	-0.161865	0.0625
0.5625	0.625	0.59375	-0.161865	0.259765	0.0540466	0.03125
0.5625	0.59375	0.578125	-0.161865	0.054046	-0.0526237	0.015625

b) [1, 3,2]

a	b	p	f(a)	f(b)	f(p)	E_{est}
1	3.2	2.1	2	-0.112	1.791	1.1
2.1	3.2	2.65	1.791	-0.112	0.552125	0.55
2.65	3.2	2.925	0.552125	-0.112	0.0858281	0.275
2.925	3.2	3.0625	0.0858281	-0.112	-0.0544434	0.1375
2.925	3.0625	2.99375	0.0858281	-0.0544434	0.00632788	0.06875
2.99375	3.0625	3.02813	0.00632788	-0.0544434	-0.0265251	0.034375
2.99375	3.02813	3.01094	0.00632788	-0.0265251	-0.0106993	0.01719

c) [3,2,4]

a	b	p	f(a)	f(b)	f(p)	E_{est}
3.2	4	3.6	-0.112	2	0.336	0.4
3.2	3.6	3.4	-0.112	0.336	-0.016	0.2
3.4	3.6	3.5	-0.016	0.125	0.125	0.1
3.4	3.5	3.45	-0.016	0.259765	0.046125	0.05
3.4	3.45	3.425	-0.016	0.046125	0.0130156	0.025
3.4	3.425	3.4125	-0.016	0.0130156	-0.00199805	0.0125

2.a. Dibuje las gráficas mencionadas

Función Seno

1.0

0.8

0.6

0.2

0.0

0.0

0.0

1.5

0.0

2.5

3.0

3.5

Figura 1: Gráfica y = x

Figura 2: Gráfica $y = \sin(x)$

2.b.Use el método de bisección para encontrar soluciones precisas dentro de 10^{-5} para el primer x positivo de la función $2\sin(x) - x$, en cada intervalo.

En este caso sabemos que para dicha función el primer corte positivo sera en $x \approx 1,89549$ por lo que definimos un intervalo cercano que contenga dicho valor como [1.89541, 1.89550] y comenzamos a realizar el método de bisección. Aclarar que el cálculo debe ser en radianes.

a	b	р	f(a)	f(b)	f(p)	E_{est}
1.89541	1.89550	1.89546	$1,38026*10^{-4}$	$-9,39089*10^{-6}$	$5,61298*10^{-5}$	$4.5 * 10^{-5}$
1.89546	1.89550	1.89548	$5,61298*10^{-5}$	$-9,39089*10^{-6}$	$2,33699*10^{-5}$	$2*10^{-5}$

-1000

-2000

-3000

3.a. Dibuje las gráficas mencionadas

-4000 -5000 -6000 0.00 0.25 0.50 0.75 1.00 x

Figura 3: Gráfica y = x

Figura 4: Gráfica $y = \tan(x)$

1.25

Función Tangente

3.b.Use el método de bisección para encontrar soluciones precisas dentro de 10^{-5} para el primer x positivo de la función $\tan x - x$, en cada intervalo.

En este caso sabemos que para dicha función el primer corte positivo sera en $x \approx 4,493409$ por lo que definimos un intervalo cercano que contenga dicho valor como [4.49330, 4.49342] y comenzamos a realizar el método de bisección.

a	b	р	f(a)	f(b)	f(p)	E_{est}
4.49330	4.49342	4.49336	$-2,20889*10^{-3}$	$2,12863*10^{-4}$	$-9,98358 * 10^{-4}$	$6*10^{-5}$
4.49336	4.49342	4.49339	$-9,98358 * 10^{-4}$	$2,12863*10^{-4}$	$-3,92833*10^{-4}$	$3*10^{-5}$
4.49339	4.49342	4.49341	$-3,92833*10^{-4}$	$2,12863*10^{-4}$	$1,09452*10^{-5}$	$1.5*10^{-5}$

4.a. Dibuje las gráficas mencionadas

Figura 5: Gráfica $y = x^2 - 1$

Figura 6: Gráfica $y = \exp(1 - x^2)$

4.b.Use el método de bisección para encontrar soluciones precisas dentro de 10^{-5} para el primer x positivo de la función $e^{1-x^2} - x^2 + 1$, en cada intervalo.

En este caso sabemos que para dicha función el primer corte positivo sera en $x \approx 1,251856$ por lo que definimos un intervalo cercano que contenga dicho valor como [1.25184, 1.25187] y comenzamos a realizar el método de bisección.

a	b	р	f(a)	f(b)	f(p)	E_{est}
1.25184	1.25187	1.25186	$6,25370^{-5}$	$-5,51733*10^{-5}$	$-1,59365*10^{-5}$	$1.5 * 10^{-5}$

5. ¿En qué cero de f converge el método de bisección cuando se aplica en los siguientes intervalos?. Siendo $f = (x+2)(x+1)^2x(x-1)^3(x-2)$

Para dar respuesta a cada literal nos fijaremos en cada factor de la función para obtener todas sus raíces, obteniendo que: $x_1 = -2, x_2 = -1, x_3 = 0, x_4 = 1, x_5 = 2$

a [-1.5, 2.5].

Convergiría en $x_2 = -1, x_3 = 0, x_4 = 1, x_5 = 2$

b [-0.5, 2.4].

Convergiría en $x_3=0, x_4=1, x_5=2$

c [-0.5, 3].

Convergiría en $x_3 = 0, x_4 = 1, x_5 = 2$

d [-3, -0.5].

Convergiría en $x_2 = -1, x_3 = 0, x_4 = 1, x_5 = 2$, es decir en todas las raíces de la función.

REFERENCIAS

[1] R. L. Faires, В. A. M. В. D. J. An lpha lisisnuméri-CENGAGE Learning, [Online]. Available: 10th ed. 2017. http://gen.lib.rus.ec/book/index.php?md5 = 87525D7D988D11F87963D6832EAA9493