

Advanced Data Structures: Splay Trees

Samuel Groß

Context

- Binary search tree
- Goal: cheap
 - Access
 - Insert
 - Delete
- Self-adjustment
- Amortized analysis (study sequences of operations)
- Invented in 1985 [1]

Prerequisites

- Definitions:
 - Parent node: p(x)
 - Grandparent node: g(x) = p(p(x))
- Operations:
 - Node rotations

Inspiration: Move to Root

- Restructure tree after/during operations
- Simple heuristic: move accessed node to root through multiple rotations

Inspiration: Move to Root

- Restructure tree after/during operations
- Simple heuristic: move accessed node to root through multiple rotations

But: doesn't help with linear chains

==> Need something better: splaying!

Splay Operation

- Also based on simple rotations
- Splay operation considers path from node to grandparent
- 3 Cases: zig, zig-zig, zig-zag
- Repeat splaying until accessed node is root of the tree

Zig

- Situation: p(x) is the root
 - \blacksquare rotate(x, p(x))

Zig-Zig

- Situation: x and p(x) are both left (right) children
 - \blacksquare rotate(p(x), g(x))
 - \blacksquare rotate(x, p(x))

Zig-Zag

- Situation: x left child, p(x) right child (or vice versa)
 - rotate(x, p(x))
 - \blacksquare rotate(x, p(x))

Benefits

Average height decreases

Samuel Groß

Operation Access

- BST traversal until node is found (or null pointer)
- Splay at node x (or its parent if x not found)
- In this example: access (80)

Operation Insert

- BST traversal until parent is found
- Insert new node
- Splay at new node
- Example: insert (80)

Operation Delete

- Join subtrees of node x
 - Splay at largest node in left subtree
 - Add right subtree as right child of new root

- Splay at p(x)
- Example: delete (30)

Proof

Amortized Analysis: Potential Method

- Idea: assign potential (scalar) to state of tree
 - Roughly equivalent to "unbalancedness" of tree
- amortized cost = real cost + difference in potential:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

Then:

Samuel Groß

15

$$\sum_{i=0}^{m} a_i = \sum_{i=0}^{m} t_i + \Phi_m - \Phi_0 \iff \sum_{i=0}^{m} t_i = \sum_{i=0}^{m} a_i + \Phi_0 - \Phi_m$$

$$\Leftrightarrow t = a + \Phi_0 - \Phi_m$$

Potential

Find upper bound for amortized cost *and* the total amount of change in the tree's potential of a sequence of operations

==> yields upper bound for the actual time

Potential of a Splay Tree (simplified)

- Definitions

 - r(x): log2(s(x)) (rank)
 - potential(t): sum over all ranks of the nodes of t

Access Lemma: armortized time to splay a tree with root t at node x is at most $3(r(t) - r(x)) + 1 = O(\log(s(t)/s(x)))$ [= $O(\log(n))$]

Zig Case

Single rotation, so amortized cost is

$$1 + r'(x) + r'(y) - r(x) - r(y)$$

since only x and y can change rank

$$\leq 1 + r'(x) - r(x)$$

since
$$r(y) >= r'(y)$$

$$\leq 1 + 3(r'(x) - r(x))$$

since
$$r'(x) >= r(x)$$

Zig-Zig

Two rotations, so amortized cost is

$$2 + r'(x) + r'(y) + r'(z) - r(x) - r(y) - r(z)$$
$$= \dots \le 2 + r'(x) + r'(z) - 2r(x)$$

Claim:
$$2 + r'(x) + r'(z) - 2r(x) \le 3(r'(x) - r(x))$$

 $\Leftrightarrow ... \Leftrightarrow \log(s(x)/s'(x)) + \log(s'(z)/s'(x)) \le -2$

True since $max(\log x + \log y, x, y > 0, x + y \le 1) = -2$

And $s(x) + s'(z) \le s'(x)$

Finishing

- Found upper bound for amortized cost for m operations
- Need upper bound for maximum change in potential:
 - Maximum rank: log(n)
 - Maximum potential: n log(n)
 - Maximum decrease in potential: n log(n)
- Thus, total cost of m splay operations:

$$O(m \log n + n \log n)$$

Evaluation

- Pros:
 - Cheap operations
 - No additional metadata required
 - Efficient implementation possible
- Cons:
 - "Expensive" lookup, due to splaying
 - No real-time guarantees

References

[1] Sleator, Daniel Dominic, and Robert Endre Tarjan.
"Self-adjusting binary search trees." *Journal of the ACM (JACM)* 32.3 (1985): 652-686.

Potential of a Splay Tree

- More general: assign arbitrary weight to every node
- Definitions
 - weight(x)/w(x): weight of node x
 - size(x)/s(x): sum of the weights of all nodes in subtree
 - \blacksquare rank(x)/r(x): log2(size(x))
 - potential(t): sum over all ranks of the nodes of t
- Similar amortized analysis, but further results possible through choice of weights
- Previous analysis is special case with w(x) = 1 for every node