

$$\sum F_{x}=0 \Rightarrow \frac{3\Gamma_{xx}}{3x} + \frac{3\Gamma_{xy}}{3y} + \frac{3\Gamma_{xz}}{3\Gamma_{xz}} + \frac{3\Gamma_{xz}}{3z} + \frac{1}{2} = 0$$

$$\sum F_{z}=0 \Rightarrow \frac{3\Gamma_{xx}}{3x} + \frac{3\Gamma_{xy}}{3y} + \frac{3\Gamma_{xz}}{3z} + \frac{1}{2} = 0$$

$$\sum F_{z}=0 \Rightarrow \frac{3\Gamma_{xx}}{3x} + \frac{3\Gamma_{xy}}{3y} + \frac{3\Gamma_{xz}}{3z} + \frac{1}{2} = 0$$

Every c/s carries/ torque I

fransmits

$$\frac{x}{x} \times t da$$

$$\frac{x}{y} = \frac{x}{y}$$

$$\frac{x}{y} = \frac{x}{y}$$

$$\frac{n}{y} = 0$$

$$T = \int x \times t \, da \qquad \left(T = r \times F \right)$$

$$\begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix} = \begin{pmatrix} f_x \times f_y & f_{xz} \\ f_y \times f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{pmatrix} \begin{pmatrix} f_{x=0} \\ f_{y=0} \\ f_{z=1} \end{pmatrix}$$

$$t_x = f_{xz}, \quad t_y = f_{yz}, \quad t_z = 0$$

$$x = x \cdot e_x + y \cdot e_y, \quad t = f_{xz} \cdot e_x + f_{yz} \cdot e_y$$

$$T = Te_z = \int (x \cdot e_x + y \cdot e_y) \times (f_{xz} \cdot e_x + f_{yz} \cdot e_y) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{xz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{yz}) \, dx \, dy$$

$$T = \int (x \cdot f_{yz} - y \cdot f_{$$

T = GdJ

$$T = GdJ$$
 $T = GdJ$
 $T = GdJ$

Recall Axial deformation
$$T = \frac{P}{A} = \frac{4P}{\Pi D^2}$$

Applications Hollow Cylindrical Shafts

- I minimize cost
- a minimize self-weight

Power Transmission by Shafts	
Power = Tw	T Nm
= T 211N	w rad/s
60	Power W
Tachometer	N RPM
1 HP = 746W = 550 f	ft lb/s
$HP = 2\Pi NT$	T lbft
33,0000	N RPM
1 ft = 12 in	
$\eta_{\text{max}} = 16 \text{ T}$ psi	
πp^3 T	lb-in
D	in
shear Traction/Shear Stress Due to Torque	
$\underline{t} = \underline{\sigma} \underline{n} = \begin{pmatrix} 0 & 0 & \underline{\sigma}_{zx} \\ 0 & 0 & \underline{\sigma}_{zy} \\ \underline{\sigma}_{zx} \underline{\sigma}_{zy} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	
$\underline{t} = \nabla_{z_x} \underline{e_x} + \nabla_{z_y} \underline{e_y} \text{in-plane cpt only}$ $\underline{DNYANESH PAWAS No animal cpt}.$	
DIVIANESH PAWASKAK '	

normal cpt shear cpt
$$\frac{t}{n} = 0, \quad t_{s} = t$$

$$\frac{t}{s} = ||t_{s}||_{2} = ||t_{s} \cdot t_{s}||_{2}$$

$$= ||t_{s}||_{2} = ||t_{s} \cdot t_{s}||_{2}$$

$$= ||t_{s}||_{2} = ||t_{s}||_{2}$$

$$= ||t_{s}||_{2}$$

$$=$$

Note that
$$t \cdot x = 0$$
, $t \perp x$ in x-y plane

Torsional Stiffness

$$\theta = \frac{TL}{GJ}$$
, $k = \frac{T}{\theta} = \frac{GJ}{L}$

Multiple Torques

Linear = whole = sum of its parts

