RANGE CHECK I

1 THE PROCESS	1
2 The maths	2
3 THE CODE	4
4 Example	5
References	7

1. THE PROCESS

(1) The circuit operates over the finite field $\mathbb{Z}/p\mathbb{Z}$, where p is an n-bit prime (typically, $n \approx 256$ in practice):

$$2^{n-1} .$$

(2) Assume 1 integer a lies in the range

$$-p/2$$
 < *a* ≤ $p/2$

and define r as the least residue² of a modulo p:

$$a \equiv r \mod p$$
, $0 \le r < p$.

- (3) Fix³ $\kappa \leq n-1$. In practice, κ is typically at most 64 and is chosen as small as possible to minimize circuit size.
- (4) Compute the least residue r^{\sharp} of $r + 2^{\kappa 1}$ modulo p, i.e. [Algorithm 3.3 Step 2, Listing 3]

$$r^{\sharp} \equiv r + 2^{\kappa - 1} \mod p, \quad 0 \leqslant r^{\sharp} < p.$$

(5) Compute the κ least significant bits of r^{\sharp} [Proposition 2.3, Algorithm 3.1, Listing 1]:

$$r^{\sharp} = 2^{\kappa} q_{\kappa} + 2^{\kappa - 1} r_{\kappa - 1} + \dots + 2^{0} r_{0}, \quad q_{\kappa} \in \mathbb{Z}, \quad r_{i} \in \{0, 1\}, \quad 0 \leqslant i < \kappa.$$

- (6) Impose constraints in the arithmetic circuit [Algorithm 3.2, Listing 2]:
 - For $0 \le i < \kappa$, ensure $r_i \equiv 0$ or 1 mod p by requiring

$$r_i(r_i-1) \equiv 0 \mod p$$
.

• Require [Algorithm 3.2, Listing 2; Algorithm 3.3 Step 3, Listing 3]

$$r + 2^{\kappa - 1} \equiv 2^{\kappa - 1} r_{\kappa - 1} + \dots + 2^{0} r_{0} \mod p$$
.

(7) Assuming $-p/2 < a \le p/2$ in the first place and $\kappa \le n-1$, these constraints guarantee [Proposition 2.1]

$$-2^{\kappa-1} \le a < 2^{\kappa-1}$$
 and $a + 2^{\kappa-1} = 2^{\kappa-1} r_{\kappa-1} + \dots + 2^0 r_0$,

provided each r_i is taken as a least residue.⁴

Remark 1.1. Although the outline above and code in §3 illustrate how to verify whether a *single* integer a lies in the range $[-2^{\kappa-1}, 2^{\kappa-1})$, the procedure extends naturally to an array of integers. One simply applies the same sequence of steps to each element.

Remark 1.2. Suppose we wish to verify that an integer a lies in the interval [-S,S) where S is not a power of two. A common strategy is to choose κ such that $2^{\kappa-1} \le S$, and then to verify that $a \in [-2^{\kappa-1}, 2^{\kappa-1})$, which is a subinterval of [-S,S). This check is sufficient when a naturally falls within $[-2^{\kappa-1}, 2^{\kappa-1})$. However, if a lies in the remainder of the interval (i.e., in $[-S, -2^{\kappa-1})$ or in $[2^{\kappa-1}, S)$), then the κ -bit range check alone will fail to capture the full range. In such cases, one would need to adjust by, for example, verifying that $a - 2^{\kappa-1}$ (or $a + 2^{\kappa-1}$) lies in a correspondingly shifted range. This additional shifting complicates the procedure, so in practice it is often preferable either to choose S to be a power of two or to restrict a to a subinterval for which the simple κ -bit check suffices.

¹ This is a hypothesis of Proposition 2.1(b), which we invoke in (7). If it cannot be justified by off-circuit reasoning, then the result does not hold in general. One possible off-circuit justification is that a is represented as a signed 64-bit integer (i64) in the Rust framework. If $p > 2^{65}$ then, since i64 constrains values to $-2^{63} \le a < 2^{63}$, every valid i64 value necessarily satisfies $-p/2 < a \le p/2$, ensuring the assumption holds without requiring an explicit range check.

² Since arithmetic circuit wires are represented by canonical elements in $\{0, \dots, p-1\}$, we must translate conditions on a into equivalent statements about r, and vice versa. This is particularly relevant when performing signed comparisons or encoding operations.

³ The assumption that $\kappa \le n-1$ means that integers cannot have multiple bitstring representations modulo p. There are 2^{κ} bitstrings of length κ , and we want this to be less than p. For example, $0 \equiv 2^4(1) + 2^0(1) \mod 17$, so $00000 \mod 10001$ both represent 0 modulo the 5-bit integer 17.

⁴ In practice, wires in an arithmetic circuit are represented by canonical elements in $\{0, \dots, p-1\}$. Hence, if $r_i \equiv 0$ or $1 \mod p$, we indeed get $r_i \in \{0, 1\}$.

2. THE MATHS

Proposition 2.1. Let m and n be integers satisfying $2^{n-1} < m < 2^n$. Let a be an integer, and let r denote its least residue modulo m. Suppose κ is a nonnegative integer such that $\kappa < n$, and for each $0 \le i < \kappa$, let a_i be an integer with r_i as its least residue modulo m. Finally, define r^{\sharp} as the least residue of $r + 2^{\kappa - 1}$ modulo m.

- (a) The following statements are equivalent:
 - (i) $a_i \equiv 0$ or $1 \mod m$ for each $0 \le i < \kappa$ and $r + 2^{\kappa 1} \equiv 2^{\kappa 1} a_{\kappa 1} + \dots + 2^0 a_0 \mod m$.
 - (ii) $r_i \in \{0,1\}$ for each $0 \le i < \kappa$, and $r^{\sharp} = 2^{\kappa 1} r_{\kappa 1} + \dots + 2^0 r_0$.
- (b) If $-m/2 < a \le m/2$ and (i) holds, then $r^{\sharp} = a + 2^{\kappa 1}$. Consequently: if $r_{\kappa 1} = 0$, then $-2^{\kappa 1} \le a < 0$, while if $r_{\kappa 1} = 1$, then $0 \le a < 2^{\kappa 1}$.

Remark 2.2. In part (a), statement (i), the condition $a_i \equiv 0$ or $1 \mod m$ is equivalent to $a_i(a_i - 1) \equiv 0 \mod m$ when m is prime.

Part (b) may be restated as follows: If $-m/2 < a \le m/2$ and (i) holds, then $-2^{\kappa-1} \le a < 2^{\kappa-1}$, and $(1 - r_{\kappa-1}, r_{\kappa-2}, \dots, r_0)$ is the κ -bit two's complement representation of a.

Proof of Proposition 2.1. (a) Suppose (ii) holds. Then, for each $0 \le i < \kappa$, we have $r_i \in \{0, 1\}$, which, since $a_i \equiv r_i \mod m$, implies that $a_i \equiv 0$ or $1 \mod m$. Furthermore,

$$r + 2^{\kappa - 1} \equiv r^{\sharp} \equiv 2^{\kappa - 1} r_{\kappa - 1} + \dots + 2^{0} r_{0} \equiv 2^{\kappa - 1} a_{\kappa - 1} + \dots + 2^{0} a_{0} \mod m.$$

Thus, (i) holds.

Conversely, suppose (i) holds. Then, since $a_i \equiv 0$ or $1 \mod m$ and r_i is the least residue of $a_i \mod m$, it follows that $r_i \in \{0, 1\}$ for all $0 \le i < \kappa$. Additionally,

$$r^{\sharp} \equiv r + 2^{\kappa - 1} \equiv 2^{\kappa - 1} a_{\kappa - 1} + \dots + 2^{0} a_{0} \equiv 2^{\kappa - 1} r_{\kappa - 1} + \dots + 2^{0} r_{0} \mod m.$$

Thus, there exists and integer t such that

$$r^{\sharp} + tm = 2^{\kappa - 1}r_{\kappa - 1} + \dots + 2^{0}r_{0}.$$

To show that t = 0, we consider the cases:

• If $t \ge 1$, then since $r^{\sharp} \ge 0$, $2^{n-1} < m$, and $\kappa \le n-1$, we obtain

$$r^{\sharp} + tm \geqslant m > 2^{n-1} \geqslant 2^{\kappa} > 2^{\kappa-1} + \dots + 2^{0} \geqslant 2^{\kappa-1} r_{\kappa-1} + \dots + 2^{0} r_{0},$$

contradicting the equality above.

• If $t \le -1$, then since $r^{\sharp} < m$, we have

$$r^{\sharp} + tm < 0 \le 2^{\kappa - 1} r_{\kappa - 1} + \dots + 2^{0} r_{0}$$

again leading to a contradiction.

Thus, we must have t = 0, proving that (ii) holds.

(b) Since $a + 2^{\kappa - 1} \equiv r + 2^{\kappa - 1} \equiv r^{\sharp} \mod m$, we can write

$$a+2^{\kappa-1}=r^{\sharp}+tm$$

for some integer t. Assuming (i) holds, which is equivalent to (ii), we obtain

$$a+2^{\kappa-1}=r^{\sharp}+tm=2^{\kappa-1}r_{\kappa-1}+\cdots+2^$$

To determine t, we consider two cases:

• If $t \ge 1$, then using $2^{n-1} < m$ and $\kappa \le n-1$, we find

$$a \ge m - 2^{\kappa - 1} \ge m - 2^{n - 2} > m - m/2 = m/2.$$

This contradicts $a \leq m/2$.

• If $t \leq -1$, then

$$a \le (2^{\kappa - 2} + \dots + 2^{0}) - m < 2^{\kappa - 1} - m \le 2^{n - 2} - m < m/2 - m = -m/2.$$

This contradicts a > -m/2.

Since both cases contradict the given bounds on a, we conclude that t = 0, yielding

$$r^{\sharp} = a + 2^{\kappa - 1}.$$

Now, we analyze the sign of *a*:

• If $r_{\kappa-1} = 0$, then

$$a + 2^{\kappa - 1} = 2^{\kappa - 2} r_{\kappa - 2} + \dots + 2^{0} r_{0} \le 2^{\kappa - 2} + \dots + 2^{0} < 2^{\kappa - 1}.$$

Thus,

$$a < 2^{\kappa - 1} - 2^{\kappa - 1} = 0.$$

• If $r_{\kappa-1} = 1$, then

$$a + 2^{\kappa - 1} = 2^{\kappa - 1} + 2^{\kappa - 2} r_{\kappa - 2} + \dots + 2^{0} r_{0} \ge 2^{\kappa - 1}.$$

Hence

 $a \ge 0$.

Proposition 2.3. Let $q_0 \in \mathbb{Z}$. For $0 \le i < \kappa$, let q_{i+1} and a_i be the unique integers satisfying $q_i = 2q_{i+1} + a_i$ and $a_i \in \{0,1\}$.

(a) Then

$$q_0 = 2^{\kappa} q_{\kappa} + 2^{\kappa - 1} a_{\kappa - 1} + 2^{\kappa - 2} a_{\kappa - 2} + \dots + 2^0 a_0. \tag{2.1}$$

(b) The following statements are equivalent: (i) $0 \le q_0 < 2^{\kappa}$; (ii) $q_{\kappa} = 0$; (iii) $(a_{\kappa-1}, \dots, a_0)$ is the κ -bit binary representation of q_0 .

Proof. (a) We induct on κ . The result holds trivially for $\kappa = 0$. Suppose the result holds with $\kappa = n$ for some $n \ge 0$. Now consider $\kappa = n + 1$. We have $q_i = 2q_{i+1} + a_i$, $a_i \in \{0,1\}$ for $0 \le i < n$ and also i = n. By inductive hypothesis,

$$q_0 = 2^n q_n + 2^{n-1} a_{n-1} + 2^{n-2} a_{n-2} + \dots + 2^0 a_0$$

= $2^n (2q_{n+1} + a_n) + 2^{n-1} a_{n-1} + 2^{n-2} a_{n-2} + \dots + 2^0 a_0$
= $2^{n+1} q_{n+1} + 2^n a_n + \dots + 2^0 a_0$.

(b) Suppose $0 \le q_0 < 2^{\kappa}$. In view of (2.1), this implies

$$2^{\kappa}q_{\kappa} = q_0 - \left(2^{\kappa - 1}a_{\kappa - 1} + 2^{\kappa - 2}a_{\kappa - 2} + \dots + 2^0a_0\right) \leqslant q_0 < 2^{\kappa}.$$

Hence q_{κ} < 1. Also,

$$-2^{\kappa}q_{\kappa} = \left(2^{\kappa-1}a_{\kappa-1} + 2^{\kappa-2}a_{\kappa-2} + \dots + 2^{0}a_{0}\right) - q_{0} \leqslant 2^{\kappa-1} + 2^{\kappa-2} + \dots + 2^{0} < 2^{\kappa}.$$

Hence $q_{\kappa} > -1$. We must therefore have $q_{\kappa} = 0$, which implies

$$q_0 = 2^{\kappa - 1} a_{\kappa - 1} + 2^{\kappa - 2} a_{\kappa - 2} + \dots + 2^0 a_0$$

i.e., $(a_{\kappa-1},\ldots,a_0)$ is the κ -bit binary representation of q_0 . Finally, if this holds, then $0 \le q_0 < 2^{\kappa}$, because the right-hand side lies between 0 and $2^{\kappa-1} + 2^{\kappa-2} + \cdots + 2^0 = 2^{\kappa} - 1$.

3. THE CODE

The pseudocode and Rust code that follow are designed for implementation within the *ExpanderCompilerCollection* (ECC) framework [1]. This library provides a specialized interface for constructing and verifying arithmetic circuits.

Algorithm 3.1 to_binary: compute κ least significant bits of binary representation of a nonnegative integer

Require: nonnegative integers q_0 and κ

```
Ensure: a list r representing the \kappa least significant binary digits of q_0

1: r \leftarrow []

2: for i \leftarrow 0 to \kappa - 1 do

3: append q_0 \mod 2 to r

4: q_0 \leftarrow \lfloor q_0/2 \rfloor

5: end for

6: return r
```

```
fn to_binary <C: Config > (api: &mut API < C>, q_0: Variable, kappa: usize) -> Vec < Variable > {
   let mut r = Vec::with_capacity(kappa); // Preallocate vector
   let mut q = q_0; // Copy q_0 to modify iteratively

for _ in 0..kappa {
        r.push(api.unconstrained_bit_and(q, 1)); // Extract least significant bit
        q = api.unconstrained_shift_r(q, 1); // Shift right by 1 bit
}

r
```

Listing 1: ECC Rust API: compute κ least significant bits of binary representation of a nonnegative integer

Algorithm 3.2 from binary: reconstruct a nonnegative integer from at most κ least significant bits and impose constraints

Require: list of binary digits r and nonnegative integer κ

Ensure: reconstructed_integer: the integer represented by the first κ bits of r

```
1: reconstructed_integer \leftarrow 0

2: for i \leftarrow 0 to max\{\kappa - 1, \text{len}(r) - 1\} do

3: bit \leftarrow r[i] \Rightarrow Binary digit check: ensure bit \in \{0, 1\}

4: bit_minus_one \leftarrow 1 - bit

5: bit_by_bit_minus_one \leftarrow bit \times bit_minus_one

6: assert bit_by_bit_minus_one = 0

7: bit_by_two_to_the_i \leftarrow bit \times 2^i

8: reconstructed_integer \leftarrow reconstructed_integer + bit_by_two_to_the_i

9: end for

10: return reconstructed_integer
```

```
fn binary_digit_check<C: Config>(api: &mut API<C>, r: &[Variable]) {
      for &bit in r.iter() {
          let bit_minus_one = api.sub(1, bit);
          let bit_by_bit_minus_one = api.mul(bit, bit_minus_one);
          api.assert_is_zero(bit_by_bit_minus_one);
      }
  }
  fn from_binary <C: Config > (api: &mut API <C>, r: &[Variable], kappa: usize) -> Variable {
      binary_digit_check(api, r);
10
      let mut reconstructed_integer = api.constant(0);
      for (i, &bit) in r.iter().take(kappa).enumerate() {
13
          let bit_by_two_to_the_i = api.mul(1 << i, bit);</pre>
14
          reconstructed_integer = api.add(reconstructed_integer, bit_by_two_to_the_i);
15
16
18
      reconstructed_integer
19 }
```

Listing 2: ECC Rust API: reconstruct nonnegative integer from at most κ least significant bits and impose constraints

Algorithm 3.3 range_check: verify whether a lies in $[-2^{\kappa-1}, 2^{\kappa-1})$

Require: p is an n-bit prime, a is an integer in (-p/2, p/2], and kappa $\leq n-1$ is a nonnegative integer

Ensure: Returns 1 if $a \in [-2^{\kappa-1}, 2^{\kappa-1})$, and 0 otherwise.

 \triangleright Step 1: Compute least residue of a modulo p

1: $lr_a \leftarrow a \mod p$

 \triangleright Step 2: Shift $1r_a$ by $2^{\kappa-1}$

2: $shift \leftarrow 2^{\kappa-1}$

3: $lr_a_shifted \leftarrow lr_a + shift \mod p$

 \triangleright Step 3: Convert lr_a_shifted to an unconstrained κ -bit representation

4: bits ← to_binary(lr_a_shifted,kappa)

⊳ Step 4: Impose binary constraints and reconstruct

5: reconstructed ← from_binary(bits,kappa)

6: assert_equal(reconstructed, lr_a_shifted)

 \triangleright Step 5: Return 1 if a is in the desired range, 0 otherwise

7: **return** (lr_a == reconstructed_a)

```
fn range_check<C: Config>(api: &mut API<C>, a: Variable, kappa: usize) -> Variable {
      // Step 1: Shift a by 2^(kappa - 1) mod p
      let shift = api.constant(1 << (kappa - 1));</pre>
      let a_shifted = api.add(a, shift); // = a + 2^{(kappa - 1)} mod p
      // Step 2: Convert a_shifted to binary (unconstrained)
      let bits = to_binary(api, a_shifted, kappa);
      // Step 3: From binary -> impose bit constraints, reconstruct the sum
      let reconstructed = from_binary(api, &bits, kappa);
10
      // Step 4: Compute the boolean check (1 if valid, 0 otherwise)
      let is_valid = api.is_equal(a_shifted, reconstructed);
14
      // Step 5: Return the boolean result (1 if in range, 0 otherwise)
15
16
      is_valid
17 }
```

Listing 3: ECC Rust API: verify whether a lies in $[-2^{\kappa-1}, 2^{\kappa-1})$

4. EXAMPLE

Consider the prime p = 31, which is a 5-bit prime (n = 5), because $2^4 \le 31 < 2^5$.

- We fix $\kappa = 4$, which satisfies $\kappa \le n 1$.
- We let a range over $(-p/2, p/2] \cap \mathbb{Z} = \{-15, ..., 15\}.$
- We compute r, the least residue of $a \mod p$.
- We compute $r + 2^{\kappa 1}$.
- We compute r^{\sharp} , the least residue of $r + 2^{\kappa 1} \mod p$.
- We compute $(r_{\kappa-1},\ldots,r_0)$, the κ least significant bits of r^{\sharp} .
- The constraints are $r_i(r_i 1) \equiv 0 \mod p$ and

$$r + 2^{\kappa - 1} \equiv 2^{\kappa - 1} r_{\kappa - 1} + \dots + 2^{0} r_0 \mod p.$$
 (*)

- We compute the least residue of the right-hand side of (*).
- We compare with r^{\sharp} to determine whether (*) is satisfied. If it is, then a lies in $[-2^{\kappa-1}, 2^{\kappa-1})$. If not, then a lies outside of this range.

а	r	$r+2^{\kappa-1}$	r^{\sharp}	κ LSB r^{\sharp}	RHS(*)	(*) holds
-15	16	24	24	1000	8	Х
-14	17	25	25	1 001	9	Х
-13	18	26	26	1 010	10	Х
-12	19	27	27	1 011	11	Х
-11	20	28	28	1 100	12	Х
-10	21	29	29	1 101	13	Х
-9	22	30	30	1 110	14	Х
-8	23	31	0	0000	0	✓
-7	24	32	1	0001	1	/
-6	25	33	2	0010	2	/
-5	26	34	3	0011	3	1
-4	27	35	4	0100	4	/
-3	28	36	5	0101	5	/
-2	29	37	6	0110	6	✓
-1	30	38	7	0111	7	✓
0	0	8	8	1000	8	1
1	1	9	9	1 001	9	✓
2	2	10	10	1 010	10	✓
3	3	11	11	1 011	11	✓
4	4	12	12	1 100	12	✓
5	5	13	13	1 101	13	✓
6	6	14	14	1 110	14	✓
7	7	15	15	1 111	15	✓
8	8	16	16	0000	0	Х
9	9	17	17	0001	1	X
10	10	18	18	0010	2	X
11	11	19	19	0011	3	X
12	12	20	20	0100	4	X
13	13	21	21	0101	5	X
14	14	22	22	0 110	6	X
15	15	23	23	0 111	7	X

What if the assumption that $a \in (-p/2, p/2]$ does not hold? Then the constraints may be satisfied, even though a does not lie in $[-2^{\kappa-1}, 2^{\kappa-1})$. This shows that the underlying assumption that $a \in (-p/2, p/2]$ is crucial.

а	r	$r+2^{\kappa-1}$	r^{\sharp}	κ LSB r^{\sharp}	RHS(*)	(*) holds
-30	1	9	9	1 001	9	✓
32	1	9	9	1 001	9	✓

REFERENCES

	TELL DICEIO
[1]	Polyhedra Network. ExpanderCompilerCollection. GitHub repository. Accessed January 28, 2025.