

1 ère année; 38 ème promotion

MATHEMATIQUES EXAMEN Nº2

L. BISLAUX

Documents interdits - Calculatrice interdite

Le sujet comporte 4 exercices indépendants.

La clarté de la présentation et la qualité de la rédaction entreront pour une part importante dans l'évaluation de la copie

EXERCICE 1: (4,5 points)

1) Calculer $I = \int \frac{(x+1)dx}{\sqrt{-x^2 - 4x - 3}}$; 2) Linéariser $\cos^5 x$ puis calculer $J = \int_0^{\frac{\pi}{2}} \cos^5 x \, dx$.

EXERCICE 2: (4 points)

Soit f la fonction définie sur $-\infty$:0 par $f(x) = \sqrt{x^2 + 1} - x$

- 1) Donner le développement limité de $\sqrt{1+u}$ en 0 à l'ordre 2.
- 2) Calculer le développement limité de f en 0 à l'ordre 2. Que peut-on en déduire ?
- 3) Calculer $\frac{f(x)}{x}$. En déduire, en posant $u = \frac{1}{x^2}$, que la courbe représentative (C) de fadmet une asymptote oblique (D) dont on donnera une équation. On précisera la position relative de (C) et (D) au voisinage de -∞.

EXERCICE 3: (6 points)

1) a) Décomposer en éléments simples :
$$f(x) = \frac{2x+1}{(x-2)^2}$$
. En déduire $I = \int f(x) dx$

b) Calculer
$$J = \int \frac{dx}{x^2 - 4x + 7}$$
 puis $K = \int \frac{(x+3)}{x^2 - 4x + 7} dx$.

2) On cherche à calculer
$$L = \int F(x) dx$$
 où $F(x) = \frac{P(x)}{Q(x)} = \frac{3x^3 - 8x^2 + 2x + 19}{x^4 - 8x^3 + 27x^2 - 44x + 28}$.

- a) Développer et réduire $(x-2)^2(x^2-4x+7)$
- b) Décomposer F(x) en éléments simples.
- c) En déduire le calcul de $L = \int F(x)dx$.

EXERCICE 4: (5,5 points)

 $\text{Soient } f\colon z\mapsto z'=\frac{2z-i}{z+1-i} \quad \text{et} \quad F\colon M(z)\, \longmapsto\, M'\left(z'\right) \, \text{. f est d\'efinie sur } \mathbf{C}-\{\,z_A\,\} \text{ avec } z_A=-1+i \, .$

- 1) On pose z = x + iy où x et y sont réels.
 - a) Déterminer Re(z') et Im(z') en fonction de x et y.
 - b) Déterminer et construire l'ensemble E des points M d'affixe z tels que z' soit réel.
 - c) Déterminer et construire l'ensemble G des points M d'affixe z tels que z' soit imaginaire pur.
- 2) Soit B, le point d'affixe $z_B = \frac{i}{2}$ et C le point d'affixe $z_C = -\frac{1}{4} + \frac{5}{4}i$.
 - a) Vérifier que B appartient à E et à G et que C appartient à G. Placer B et C sur la figure.
 - b) Ecrire $\frac{Z_A Z_C}{Z_B Z_C}$ sous forme trigonométrique ou exponentielle.
 - c) En déduire la nature du triangle ABC.

Formulaire:

Arctan'x =
$$\frac{1}{1+x^2}$$
; Arcsin'x = $\frac{1}{\sqrt{1-x^2}}$; Arccos'x = $\frac{-1}{\sqrt{1-x^2}}$; Argsh'x = $\frac{1}{\sqrt{x^2+1}}$; Argch'x = $\frac{1}{\sqrt{x^2-1}}$; Argth'x = $\frac{1}{1-x^2}$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + ... + \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!} x^n + x^n \epsilon(x) \quad \text{avec} \quad \lim_{x \to 0} \epsilon(x) = 0 \; .$$