HW 4.1 pgs 341-343, 352-364, 367-372, Set 6.1 - 12, 16,, Set 6.2 - 4, 10, 14, Set 6.3 - 12, 37, 42

- 12. Let the universal set be the set **R** of all real numbers and let $A = \{x \in \mathbf{R} \mid -3 \le x \le 0\}$, $B = \{x \in \mathbf{R} \mid -1 < x < 2\}$, and $C = \{x \in \mathbf{R} \mid 6 < x \le 8\}$. Find each of the following:
 - a. $A \cup B$
- b. $A \cap B$
- c. A^c
- d. $A \cup C$

- e. $A \cap C$
- f. B^c
- g. $A^c \cap B^c$

- h. $A^c \cup B^c$
- i. $(A \cap B)^c$
- i. $(A \cup B)^c$
- a. $A \cup B = \{x \in R \mid x \in [-3, 2)\} = [-3, 2)$
- b. $A \cap B = \{x \in R \mid x \in (-1, 0] = (-1, 0]\}$
- c. $A^c = \{x \in R \mid x < -3 \text{ or } x > 0\}$
- d. $A \cup C = \{x \in R \mid -3 \le x \le 0 \text{ or } 6 \le x \le 8\}$
- e. $A \cap C = \emptyset$
- f. $B^c = \{x \in R \mid x \le -1 \text{ or } x >= 2\}$
- g. $A^c \cap B^c = \{x \in R \mid x \le -1 \text{ or } x > 0\}$
- h. $A^c \cup B^c = \{x \in R \mid x < -3 \text{ or } x >= 2\}$
- i. $(A \cap B)^c = A^c \cup B^c = \{x \in R \mid x < -3 \text{ or } x >= 2\}$
- j. $(A \cup B)^c = A^c \cap B^c = \{x \in R \mid x \le -1 \text{ or } x > 0\}$
- 16. Let $A = \{a, b, c\}$, $B = \{b, c, d\}$, and $C = \{b, c, e\}$.
 - **a.** Find $A \cup (B \cap C)$, $(A \cup B) \cap C$, and $(A \cup B) \cap (A \cup C)$. Which of these sets are equal?
 - b. Find $A \cap (B \cup C)$, $(A \cap B) \cup C$, and $(A \cap B) \cup (A \cap C)$. Which of these sets are equal?
 - c. Find (A B) C and A (B C). Are these sets equal?
 - a. $A \cup (B \cap C) = \{a, b, c\}$ $(A \cup B) \cap C = \{b, c\}$ $(A \cup B) \cap (A \cup C) = \{a, b, c\}$

$$A \cup (B \cap C) = (A \ \cup \ B) \ \cap \ (A \ \cup \ C)$$

b. $A \cap (B \cup C) = \{b, c\}$ $(A \cap B) \cup C = \{b, c, e\}$ $(A \cap B) \cup (A \cap C) = \{b, c\}$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

c. $(A-B)-C = (A \cap B^c) \cap C^c$) = {a} $A-(B-C) = (A \cap (B \cap C^c)) = \{a, b, c\}$ No, these sets are not equivalent. 4. The following is a proof that for all sets A and B, if $A \subseteq B$, then $A \cup B \subseteq B$. Fill in the blanks.

Proof: Suppose A and B are any sets and $A \subseteq B$. [We must show that <u>(a)</u>.] Let $x \in \underline{(b)}$. [We must show that <u>(c)</u>.] By definition of union, $x \in \underline{(d)}$ <u>(e)</u> $x \in \underline{(f)}$. In case $x \in \underline{(g)}$, then since $A \subseteq B$, $x \in \underline{(h)}$. In case $x \in B$, then clearly $x \in B$. So in either case, $x \in \underline{(i)}$ [as was to be shown].

$$a = A \cup B \subseteq B$$

$$b = A \subseteq B$$

$$c = x \in A$$

$$d=A\cup$$

$$e = B$$

$$f = A$$

$$g = A$$

$$\hat{h} = A$$

$$I = A \cup B \subseteq B$$

10. For all sets A, B, and C,

$$(A-B)\cap (C-B)=(A\cap C)-B.$$

Proof: We use membership tables to prove this identity. One can also prove by showing each side is a subset of the other side.

A	В	С	(A-B)	(C-B)	(A-B)∩(C-B)	(A∩C)	(A∩C) - B
1	1	1	0	0	0	1	0
1	1	0	0	0	0	0	0
1	0	1	1	1	1	1	1
1	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0

Thus they are equivalent.

14. For all sets A, B, and C, if $A \subseteq B$ then $A \cup C \subseteq B \cup C$.

Proof: Suppose A, B, and C are sets and A \subseteq B. Let $x \in A \cup C$. By definition of union, $x \in A$ and $x \in C$. But since A \subseteq B and $x \in A$, then $x \in B$. Hence $x \in B$ and $x \in C$, and so, by definition of union, $x \in B \cup C$.

Thus $A \cup C \subseteq B \cup C$ by definition of subset.

H 12. For all sets A, B, and C,

$$A \cap (B - C) = (A \cap B) - (A \cap C).$$

Proof: For all sets A, B, and C. If $x \in A \cap (B-C)$, then $x \in A$ and $x \in B$ and $x! \in C$. If $x \in (A \cap B)$ - $(A \cap C)$, then $x \in A$ and $x \in B$ and since $(A \cap C)$ is subtracted from the set, $x! \in C$. So $A \cap (B-C)$ and $(A \cap B)$ - $(A \cap C)$ are equivalent and the statement is true.

37. For all sets A and B, $(B^c \cup (B^c - A))^c = B$.

Proof: If $x \in (B^c \cup (B^c - A))^c$, then:

$$(B^c \cup (B^c - A))^c d$$

= $(B^c \cup (B^c \cap A^c))^c$ by set difference law

= $((B^c \cup B^c) \cap (B^c \cup A^c))^c$ by associative law

= $((B^c) \cap (B^c \cup A^c))^c$ by idempotent law

 $=((B) \cup (B \cap A))$ by DeMorgan's law

=B by absorption law

thus $(B^c \cup (B^c - A))^c = B$ and the statement is proven true.

42. $(A - (A \cap B)) \cap (B - (A \cap B))$

 $(A\text{-}(A {\cap} B)) \cap (B\text{-}(A {\cap} B))$

 $=(A \cap (A \cap B)^c) \cap (B \cap (A \cap B)^c)$ by the set difference law

= $(A \cap (A^c \cup B^c)) \cap (B \cap (A^c \cup B^c))$ by DeMorgan's law

= $((A \cap A^c) \cup (A \cap B^c) \cap ((B \cap A^c) \cup (B \cap B^c))$ by the associative law

=(\varnothing) \cup (A \cap B c) \cap ((B \cap A c) \cup (\varnothing)) by the complement law

 $=(A \cap B^c) \cap ((B \cap A^c)$ by identity laws

 $=(A-B)\cap(B-A)$ by set difference law

 $= \emptyset$ by complement laws