Για τη συνέχεια σήμερα...

- Συζήτηση ξανά των νόμων διατήρησης
 - Χρησιμοποιώντας τον φορμαλισμό Lagrange
 - Γραμμική ορμή και στροφορμή
 - Σύνδεση μεταξύ συμμετρίας, αναλλοίωτο της Lagrangian,
 και διατήρηση της γενικευμένης ορμής

Νόμοι διατήρησης

- □ Έχουμε δει διατήρηση γραμμικής ορμής, στροφορμής και ενέργειας στην Newtonian μηχανική
 - Πως δουλεύουν στην Lagrangian μηχανικήΠρέπει να 'ναι οι ίδιες
- □ Ωστόσο θα δούμε μερικές διαφορές και μερικές υποθέσεις
 - > Προέρχονται από περιορισμούς και προσεγγίσεις που δεν λάβαμε υπ' όψη

από ταχύτητα

Δυναμικό δεν εξαρτάται

Διατήρηση της ορμής

Ας μελετήσουμε ένα απλό σύστημα:

$$L = T - V = \sum_{i} \frac{m_{i}(\dot{x}_{i}^{2} + \dot{y}_{i}^{2} + \dot{z}_{i}^{2})}{2} - V(x_{i}, y_{i}, z_{i}, t)$$

 $\frac{\partial L}{\partial \dot{x}_i} = m_i \dot{x}_i = p_{ix} \qquad \text{ορμή} \qquad \qquad \frac{\partial L}{\partial x_i} = -\frac{\partial V}{\partial x_i} = F_{ix} \qquad \Delta \dot{\textbf{υναμη}}$

 $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = 0 \Rightarrow \frac{\partial L}{\partial \dot{x}} = const. \Rightarrow p_{ix} = const.$ Lagrange:

Η ορμή p_{ix} διατηρείται αν το V δεν εξαρτάται από το x_i

Πως το γενικεύουμε από δω και πέρα?

Γενικευμένη ορμή

- Ορίζουμε σαν γενικευμένη ορμή τον όρο $p_j \equiv \frac{\partial L}{\partial \dot{q}_j}$
 - □ Γνωστή ακόμα σαν κανονική ή συζυγής ορμή
 - ✓ Είναι ίση με τις "γνωστές" ορμές για x-y-z συντεταγμένες
- □ Η εξίσωση του Lagrange γίνεται:

$$\frac{dp_{j}}{dt} - \frac{\partial L}{\partial q_{j}} = 0$$

- $extstyle p_{\mathbf{j}}$ διατηρείται αν η L δεν εξαρτάται ακριβώς από το $\mathbf{q}_{\mathbf{j}}$
- > Τέτοια συντεταγμένη q_i ονομάζεται κυκλική ή αγνοήσιμη

Γενικευμένη ορμή που σχετίζεται με μια κυκλική συντεταγμένη διατηρείται

Η διατήρηση της γραμμικής ορμής είναι ιδιαίτερη περίπτωση

Γενικευμένη ορμή
$$p_j \equiv \frac{\partial L}{\partial \dot{q}_j}$$

- □ Η γενικευμένη ορμή μπορεί και να μην μοιάζει με την γραμμική ορμή
 - > Οι μονάδες μπορεί να διαφέρουν, αν η q_i δεν είναι χωρική συντεταγμένη
 - $ightharpoonup p_i q_i$ πάντα έχει τις μονάδες της δράσης (=έργο \times χρόνο)
 - Η εξίσωση μπορεί να διαφέρει αν το V εξαρτάται από την ταχύτητα
 - ✓ Παράδειγμα το EM πεδίο

$$L = \frac{1}{2}mv^2 - q\phi + q\mathbf{A} \cdot \mathbf{v} \qquad p_x = m\dot{x} + q\mathbf{A}_x$$

Επιπλέον όρος εξαιτίας του εξαρτωμένου από την ταχύτητα δυναμικού

Συμμετρία

- lacksquare Η γραμμική ορμή ${f p}=(p_x,p_y,p_z)$ είναι συζυγής των (x,y,z) συντεταγμένων
 - Διατηρείται αν η Lagrangian δεν εξαρτάται ακριβώς από την θέση

$$(x, y, z) \rightarrow (x + \Delta x, y + \Delta y, z + \Delta z)$$

□ Ένα τέτοιο σύστημα ονομάζεται συμμετρικό ως προς χωρικές μετατοπίσεις

Συμμετρία συστήματος = Αναλλοίωτη Lagrangian

Διατήρηση της συζυγούς ορμής

Παράδειγμα: Διατήρηση της στροφορμής

Στροφορμή

- lacksquare Ας θεωρήσουμε ένα σύστημα με πολλά σώματα ${f r}_i = {f r}_i(q_1, \ldots, q_n, t)$
- Ας υποθέσουμε ότι η q₁ περιστρέφει όλο το σύστημα

Π.χ. φ στο
$$r_i = (x_i, y_i, z_i) = (r_i \cos \varphi, r_i \sin \varphi, z_i)$$

- Υποθέτουμε ακόμα ότι το V δεν εξαρτάται από το φ
- ❖ Συζυγής ορμή είναι:

Πράξεις.... $\mathbf{r}_i = \mathbf{r}_i(\varphi, \mathbf{q}_2, ..., \mathbf{q}_n, t)$

$$\begin{split} \dot{\vec{r}_i} &= \frac{\partial \vec{r}_i}{\partial \varphi} \dot{\varphi} + \sum_{k=2}^n \frac{\partial \vec{r}_i}{\partial q_k} \dot{q}_k + \frac{\partial \vec{r}_i}{\partial t} \quad \text{παράγωγος ως προς } \dot{\varphi} \quad \Rightarrow \frac{\partial \dot{\vec{r}_i}}{\partial \dot{\varphi}} = \frac{\partial \vec{r}_i}{\partial \varphi} \\ T &= \sum_i \frac{m_i}{2} \dot{\vec{r}_i} \cdot \dot{\vec{r}_j} \Rightarrow \frac{\partial T}{\partial \dot{\varphi}} = \sum_i m_i \dot{\vec{r}_i} \cdot \frac{\partial \dot{\vec{r}_i}}{\partial \dot{\varphi}} \quad \Rightarrow \frac{\partial T}{\partial \dot{\varphi}} = \sum_i m_i \dot{\vec{r}_i} \cdot \frac{\partial \vec{r}_i}{\partial \varphi} \end{split}$$

- $ightharpoonup d\mathbf{r}_i$ είναι κάθετο και στο \mathbf{r}_i
- ightharpoonup Το μέτρο του είναι: $\left| d\vec{r_i} \right| = r_i \sin \theta d\phi$

Στροφορμή

- □ Η στροφορμή διατηρείται αν το σύστημα είναι συμμετρικό σε περιστροφές.
 - Πως σχετίζεται αυτό με την ολική ροπή;

Αυτό πρέπει να 'ναι 0 αν φ κυκλική

Η Τ δεν μπορεί να εξαρτάται από την φ \leftarrow Περιστροφή δεν αλλάζει v_i^2

$$\frac{\partial L}{\partial \varphi} = -\frac{\partial V}{\partial \varphi} = \sum_{i} \vec{F}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial \varphi} = \sum_{i} \vec{F}_{i} \cdot (\hat{n} \times \vec{r}_{i}) = \hat{n} \cdot \sum_{i} \vec{r}_{i} \times \vec{F}_{i}$$

$$\lambda \lambda \lambda \dot{\alpha} \qquad \frac{\partial L}{\partial \varphi} = 0$$
Ponή

Η συνολική ροπή είναι μηδέν κατά μήκους του άξονα συμμετρίας

Νόμοι διατήρησης

- Τα επόμενα είναι ισοδύναμα:
 - > Ένα σύστημα είναι συμμετρικό ως προς γενικευμένη συντεταγμένη
 - > Η συντεταγμένη είναι κυκλική (δεν εμφανίζεται στην Lagrangian)
 - > Η συζυγής γενικευμένη συντεταγμένη διατηρείται
 - > Η αντίστοιχη γενικευμένη δύναμη είναι μηδέν

Συμμετρία	Χωρικές μετατοπίσεις	Περιστροφή
Συντεταγμένη	Απόσταση κατά μήκους ενός άξονα	Γωνία γύρω από ένα άξονα
Ορμή	Γραμμική	Στροφορμή
Δύναμη	Δύναμη	Ροπή

Διατήρηση της Ενέργειας

□ Θεωρούμε την παράγωγο ως προς το χρόνο της Lagrangian

$$\frac{dL(q,\dot{q},t)}{dt} = \sum_{j} \left(\frac{\partial L}{\partial q_{j}} \right) \frac{dq_{j}}{dt} + \sum_{j} \frac{\partial L}{\partial \dot{q}_{j}} \frac{d\dot{q}_{j}}{dt} + \frac{\partial L}{\partial t}$$

□ Χρησιμοποιώντας την εξίσωση Lagrange έχουμε ότι:

$$\frac{dL(q,\dot{q},t)}{dt} = \sum_{j} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_{j}} \right) \frac{dq_{j}}{dt} + \sum_{j} \frac{\partial L}{\partial \dot{q}_{j}} \frac{d\dot{q}_{j}}{dt} + \frac{\partial L}{\partial t}$$

$$\frac{d}{dt} \left(\sum_{j} \dot{q}_{j} \frac{\partial L}{\partial \dot{q}_{j}} - L \right) + \frac{\partial L}{\partial t} = 0$$

Ορίζουμε αυτό σαν μια συνάρτηση της ενέργειας $h(q,\dot{q},t)$

 Η ποσότητα αυτή διατηρείται αν η Lagrangian δεν εξαρτάται ακριβώς εκφρασμένα από το χρόνο

Συνάρτηση ενέργειας
$$h(q,\dot{q},t) = \left(\sum_j \dot{q}_j \frac{\partial L}{\partial \dot{q}_j} - L\right)$$

- Αντιπροσωπεύει αυτή η συνάρτηση ενέργειας την ολική ενέργεια?
 - Ας δούμε ένα παράδειγμα:

Σωματίδιο κινείται κατά μήκος του χ-άξονα:

$$L = \frac{m\dot{x}^2}{2} - V(x) \Longrightarrow h = m\dot{x}^2 - L = \frac{m\dot{x}^2}{2} + V(x) = T + V$$

> Ok δουλεύει για την περίπτωση αυτή αλλά πόσο γενικό είναι?

Συνάρτηση Ενέργειας
$$h(q,\dot{q},t) = \left(\sum_j \dot{q}_j \frac{\partial L}{\partial \dot{q}_j} - L\right)$$

□ Ας υποθέσουμε ότι η Lagrangian μπορεί να γραφεί ως:

$$L(q, \dot{q}, t) = L_0(q, t) + L_1(q, \dot{q}, t) + L_2(q, \dot{q}, t)$$

Πρώτης τάξης σε ή

 Δ εύτερης τάξης σε \dot{q}

Οι παράγωγοι ικανοποιούν τις σχέσεις:

$$\frac{\partial L_0}{\partial \dot{q}_j} = 0, \qquad \sum_j \dot{q}_j \frac{\partial L_1}{\partial \dot{q}_j} = L_1, \qquad \sum_j \dot{q}_j \frac{\partial L_2}{\partial \dot{q}_j} = 2L_2 \qquad \begin{array}{c} \Theta \varepsilon \dot{\omega} \rho \eta \mu \alpha \\ \text{Euler} \end{array}$$

$$h(q,\dot{q},t) = \left(\sum_{j} \dot{q}_{j} \frac{\partial L}{\partial \dot{q}_{j}} - L\right) = L_{2} - L_{0}$$

Συνάρτηση Ενέργειας

$$h(q, \dot{q}, t) = L_2 - L_0,$$
 $L = T - V$

□ Η συνάρτηση της ενέργειας ισούται με την ολική ενέργεια Ε=Τ+V αν

$$T=L_2$$
 $\kappa\alpha\iota$ $V=-L_0$

- \square Η πρώτη συνθήκη ικανοποιείται αν οι μετασχηματισμοί από το \mathbf{r} στο \mathbf{q}_i είναι ανεξάρτητοι του χρόνου.
- Η δεύτερη συνθήκη ικανοποιείται αν το δυναμικό είναι ανεξάρτητο από την ταχύτητα
- Όχι τριβές
- Ας δούμε ένα παράδειγμα:

Κινητική Ενέργεια

$$T = \sum_{i} \frac{m_i}{2} \dot{r}_i^2$$
, $r_i = r_i(q_1, q_2, ..., q_n)$ Ανεξάρτητο χρόνου

Σρησιμοποιώντας τον κανόνα $\frac{dr_j}{dt} = \sum_j \frac{\partial r_i}{\partial q_j} \dot{q}_j$

$$\sum_{i} \frac{m_{i}}{2} \dot{r}_{i}^{2} = \sum_{i} \frac{m_{i}}{2} \sum_{j,k} \frac{\partial r_{i}}{\partial q_{j}} \cdot \frac{\partial r_{k}}{\partial q_{k}} \dot{q}_{j} \dot{q}_{k} = \sum_{j,k} \dot{q}_{j} \dot{q}_{k} \sum_{i} \frac{m_{i}}{2} \frac{\partial r_{i}}{\partial q_{j}} \cdot \frac{\partial r_{i}}{\partial q_{k}}$$

$$\Delta \epsilon \text{utέρου βαθμού ομογενείς}$$

$$\text{Χωρίς } \dot{q}$$

Τα παραπάνω δεν θα ίσχυαν αν $r_{\rm i}=r_{\rm i}(q_1,q_2,...,q_n,t)$ γιατί

$$\frac{dr_i}{dt} = \sum_j \frac{\partial r_i}{\partial q_j} \dot{q}_j + \frac{\partial r_i}{\partial t}$$

Διατήρηση της Ενέργειας

- Η συνάρτηση της ενέργειας ισούται με την ολική ενέργεια αν
 - Οι δεσμοί είναι ανεξάρτητοι του χρόνου
 - Η κινητική ενέργεια Τ είναι δευτέρου βαθμού ομογενής συνάρτηση των ταχυτήτων.
 - Το δυναμικό V είναι ανεξάρτητο της ταχύτητας
- Η συνάρτηση της ενέργειας διατηρείται αν
 - > Η Lagrangian δεν εξαρτάται ακριβώς από το χρόνο
- Τα παραπάνω είναι απλά εκφράσεις του θεωρήματος διατήρησης της ενέργειας σε ένα πιο γενικό πλαίσιο.

Περίληψη

- Βγάλαμε τις εξισώσεις Lagrange από την αρχή του Hamilton
 - Λογισμός μεταβολών
- Συζητήσαμε νόμους διατήρησης
 - Γενικευμένη (συζυγής) ορμή
- $p_j \equiv \frac{\partial L}{\partial \dot{q}_j}$
- Συμμετρία του συστήματος
 - Αναλλοίωτο της Lagrangian
 - Διατήρηση της ορμής
- Έχουμε τελειώσει με τις βασικές ιδέες και έννοιες
 - Θα μπούμε σε εφαρμογές → Πρόβλημα κεντρικού δυναμικού