Heap Sort

L'heap sort è un tipo di sorting che ha lo stesso approccio incrementale del Selection Sort, ma:

- Seleziona gli elementi dal più grande al più piccolo;
- Usa una struttura dati efficiente;

Per poter implementare questo tipo di sort dobbiamo prima di tutto creare una struttura dati con cui possa lavorare, appunto l'heap.

Struttura dati

Organizzazione dei dati che permette di memorizzare la collezione e supportare le operazioni di un tipo di dato usando meno risorse di calcolo possibile.

Tipi di dato

Collezione di oggetti e operazioni di interesse su tale collezione.

Quindi è cruciale per avere un algoritmo efficiente, progettare una struttura H su cui eseguire le operazioni:

- Generazione di H, dato un array A;
- Ricerca del massimo oggetto in H;
- Cancellazione del massimo in H;

Un paio di definizioni sugli alberi

Albero d-ario: albero un cui tutti i nodi interni hanno al più d figli. $d = 2 \rightarrow \frac{\text{Albero binario}}{\text{binario}}$.

Un albero d-ario è **completo** se tutti i nodi hanno esattamente d figli e le foglie sono tutte allo stesso livello.

Heap

La struttura dati Heap può essere associata ad un insieme S = albero binario radicato con le seguenti proprietà:

- Completo fino al penultimo livello e con una struttura rafforzata, cioè le foglie del ultimo livello sono compattate a sinistra.
- Gli elementi di S sono memorizzati nei nodi dell'albero (Ogni nodo v memorizza un solo elemento denotato con chiave(v)).
- $chiave(padre(v)) \ge chiave(v) \ \forall v \ \text{diverso dalla radice}.$

L'ordinamento è dato solo verticalmente.

Proprietà degli heap:

- 1. Il massimo è contenuto nella radice.
- 2. L'albero con n nodi ha altezza O(log(n)).
- 3. Gli heap con struttura rafforzata possono essere rappresentati con un array di dimensione n.

Dimostrazione della proprietà 2:

Sappiamo che l'albero è alto h e che fino ad h-1 abbiamo un albero binario completo. Quindi il numero dei nodi n sarà:

$$n \geq 1 + \sum_{i=0}^{h-1} 2^i = 1 + 2^h - 1 = 2^h o h \leq log_2(n)$$

.

Per rappresentare un Heap in un array dobbiamo tenere conto delle seguenti proprietà:

- 1. sin(i) = 2i, cioè il nodo alla sinistra dell'indice i in posizione due volte il valore di i.
- 2. des(i) = 2i + 1, cioè il nodo alla destra di i è in posizione due volte il valore di i +1.
- 3. $padre(i) = \lfloor i/2 \rfloor$, cioè il padre del nodo i si trova in posizione i/2.

Procedura FixHeap

La seguente procedura ci permette di per mantenere la proprietà dell'heap in un array:

```
def FixHeap(i,A): #indice di inizio e array
    #Valori di indici bassati su array che parte da zero
    s = 2*i+1 #Figlio sinistro del nodo
    d = 2*i+2 #Figlio destro del nodo
    if(s < len(A) and A[s] > A[i]): #Se s si trova in A ed è maggiore del
padre
        massimo = s
    else:
        massimo = i
    if(d < len(A) and A[d] > A[i]): #Se d si trova in A ed è maggiore del
padre
        massimo = d
    if(massimo != i):
        A[i],[massimo] = A[massimo],[i] #Scambio il massimo con i
        FixHeap(massimo, A) #Richiamo funzione su istanza minore
    return A
```

Procedura di estrazione del massimo

L'idea della procedura è la seguente:

- 1. Copiamo nella radice la chiave contenuta nella foglia più a destra dell'ultimo livello.
- Rimuoviamo la foglia, quindi decrementiamo Heap-size.
- 3. Ripristinare le proprietà del Heap con fixHeap sulla radice

Tutto questo in un tempo d'esecuzione di O(log(n)).

```
def EstraiMax(A):
    max_val = A[0] # Salvo il massimo
    A[0] = A[len(A) - 1] # Sostituisco il massimo con l'ultimo elemento
```

```
A.pop() # Rimuovo l'ultimo elemento

FixHeap(0, A) # Richiamo la funzione di correzione

return max_val
```

Costruzione dell'heap

L'idea per la costruzione dell'heap si basa sul chiamare ricorsivamente la funzione necessaria alla creazione dell'heap sui sottoalberi destri e sinistri della radice.

Questo è un codice in python che la svolge:

```
def heapify(H):
    # Partiamo dall'ultimo nodo non foglia e applichiamo FixHeap
    for i in range(len(H) // 2 - 1, -1, -1):
        FixHeap(i, H)
    return H
```

Facciamo adesso l'analisi della complessità di heapify:

- Sia h l'altezza di un heap contenente n elementi.
- Sia $n' \ge n$ l'intero tale che un heap con n' elementi ha altezza h ed è completo fino all'ultimo nodo.

Vale quindi la seguente disuguaglianza: $T(n) \le T(n')$ e $n' \le 2n$ Quindi il tempo d'esecuzione è:

$$T(n')=2T(\frac{n'-1}{2})+O(log(n'))\leq 2T(\frac{n'}{2})+O(log(n'))$$

Dal Teorema Master otteniamo:

$$T(n') = O(n')$$

Quindi:

$$T(n) \leq T(n') = O(n') = O(2n) = O(n)$$

La particolarità di questa struttura dati è che ci permette di estrarre il massimo dell'array in poco tempo, ma se volessi invece trovare il minimo?

Si può costruire una struttura min-heap che ha il compito inverso semplicemente invertendo le proprietà delle chiavi, cioè $chiave(padre(v)) \le chiave(v)$.

HeapSort

L'idea dietro all'heapsort è la seguente:

- Costruire un heap tramite heapify.
- Estrarre ripetutamente il massimo n-1 volte, ad ogni estrazione memorizza il massimo nella posizione dell'array che si è appena liberata.

Di seguito lo pseudocodice:

```
heapSort (A)

1. Heapify(A)

2. Heapsize[A]=n

3. for i=n down to 2 do

4. scambia A[1] e A[i]

5. Heapsize[A] = Heapsize[A] -1

6. fixHeap(1,A)
```

Il motivo per cui usiamo un max-heap invece di un min-heap è che con il max-heap possiamo implementare la struttura senza usare memoria costante.

Programme Teorema:

L'algoritmo Heap Sort ordina in loco un array di lunghezza n in tempo O(nlog(n)) nel caso peggiore.