Modules over monads and operational semantics

André Hirschowitz¹ Tom Hirschowitz² Ambroise Lafont³

¹Université Côte d'Azur, CNRS, Nice, France

²Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, France

³University of New South Wales, Australia

FSCD 2020 (precorded talk, next Friday 1:30 am)

Prologue

Question answered by this FSCD paper

What is a programming language (syntax and semantics), mathematically?

This was the topic of my PhD (defended last October).

Involved (categorical) concepts

Initial Semantics specification of inductive structures (e.g. the syntax of λ -calculus) through initiality.

Monads and modules approach to syntax advocated by Andre Hirschowitz and Marco Maggesi since 2007.

This FSCD paper builds upon "Reduction Monads and Their Signatures" POPL '20 (Benedikt Ahrens, André Hirschowitz, me, Marco Maggesi).

Summary of this FSCD talk

What is a programming language (syntax and semantics), mathematically?

This contribution:

- a notion of programming language: transition monads;
- a discipline for automatically generating them;
- generalises the reduction monads of Ahrens et al. (POPL '20)
 - new applications:

```
\overline{\lambda}\mu-calculus \pi-calculus differential \lambda-calculus GSOS specifications
```

simply-typed syntax (and semantics)

Outline

Definition of transition monads

2 Generating transition monads (Initial Semantics)

3 Examples

Basic components of a transition monad

Example: (small-step) cbv λ -calculus.

A term t, u, \ldots reduces to a value v, w, \ldots

Monad of values

- Variables ⊂ Values
- $v[\vec{w}/\vec{x}] \in Values$ (value substitution)

Modules of terms and transitions

value substitution in terms:

$$t[\vec{w}/\vec{x}] \in Terms$$

value substitution in transitions:

$$\frac{t \to v}{t[\vec{w}/\vec{x}] \to v[\vec{w}/\vec{x}]}$$

Generalising $\overline{\text{cbv}} \lambda$ -calculus, and reduction monads

	Syntax	Semantics
cbv <i>∆</i> -calculus	Values (monad)	Transitions Source Terms Values
transition monads	a monad T	T -module morphisms $M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2$
reduction monads (Ahrens et al.'20)	a monad T	$T \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} T$

- Untyped case: base category = Set
- Simply-typed case: base category = Set^{Types}

Constructing transition monads

We have a definition of programming languages as transition monads.

Can we construct them from simple specifications?

We provide:

- a notion of simple specification = signature for transition monads
- a theorem ensuring the existence (unique up to iso) of a transition monad matching a spec

Three-level specification

Transition monad =
$$(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$$

Three spec steps:

Step	Component	Nature	Specification
1	T	monad (syntax)	Operations + Equations
2	M_1, M_2	<i>T</i> -modules	Operations + Equations
3	Trans, source, target	"transition structure"	Transition rules as $\underbrace{t_1 \rightarrow u_1 \dots t_n \rightarrow u_n}_{t \rightarrow u}$

- ⇒ Three notions of signatures in the paper (one for each step), building upon
 - reduction monads, Ahrens et al. POPL '20
 - (steps 1-2) previous work by Fiore-Hur (equational systems) and Ahrens et al. (signatures for monads).

Examples

Transition monad = $(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$

Upcoming examples

1.	cbn λ-calculus	full signature (sketched)
2.	cbn λ-calculus	signature for <i>T</i>
3.	cbn λ-calculus	left congruence rule for application
4.	cbn λ-calculus	congruence rule for abstraction (involves a binding variable)
		` '
5.	cbv λ -calculus	signature for M_i
6.	differential λ -calculus	signature for M_i
7.	differential λ -calculus	signature for <i>T</i>

Example 1/7: small-step cbn λ -calculus

Transition monad = $(T, M_1 \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} M_2)$

Signature for cbn λ -calculus

Step	Component	Nature	Specification
1	T	monad	Operations = app, abs
2	M_1, M_2	T-modules	$M_1 = M_2 = T$
3	Trans, source, target	"transition structure"	β -rule + congruences

Example 2/7: Specify the monad of λ -terms

cbn λ -calculus: (Values, $T \stackrel{source}{\longleftarrow} Trans \stackrel{target}{\longrightarrow} T$)

Syntax "generated" by

application	$T \times T \to T$	
λ -abstraction	$T' \rightarrow T$	T' = module of terms depending
$\lambda x.t$		on an extra variable
(variables)	$Var \rightarrow T$	

Signature for T

2 operations (application/abstraction)

- Monads always have variables: no need to specify them
- "operation" = module morphism: compatible with substitution:

$$(t_1 t_2)[y \mapsto u_y] = t_1[y \mapsto u_y] t_2[y \mapsto u_y]$$

References "Second-order equational logic" (Fiore-Hur '10), "Modular specification of monads" (Ahrens et al. '19)

Example 3/7: Left congruence for application

cbn
$$\lambda$$
-calculus: $(T, T \xleftarrow{source} Trans \xrightarrow{target} T)$

Left congruence rule for application

$$\frac{t_1 \to t_2}{app(t_1, u) \to app(t_2, u)}$$

• Easy interpretation of transition rules:

Components of the rule	Interpreted as
3 "metavariables":	a "metavariable" <i>T</i> -module
t_1, t_2, u	$V = T \times T \times T$
1 "premise":	$V \rightarrow M_1 \times M_2$ (<i>T</i> -module
$t_1 \rightarrow t_2$	$(t_1, t_2, u) \mapsto (t_1, t_2)$ morphism)
"conclusion":	$V \rightarrow M_1 \times M_2$
$app(t_1, u) \rightarrow app(t_2, u)$	$(t_1, t_2, u) \mapsto (app(t_1, u), app(t_2, u))$

¹introduced by Ahrens et al. in the case of reduction monads.

Example 4/7: Binding variables in rules

cbn
$$\lambda$$
-calculus: $(T, T \xleftarrow{source} Trans \xrightarrow{target} T)$

Congruence rule for abstraction

$$\frac{t_1 \to t_2}{\lambda x. t_1 \to \lambda x. t_2}$$

- "metavariables" t_1 and t_2 : terms that may depend on x.
- T' = T-module of terms depending on an additional variable

Components of the rule	Interpreted as
2 "metavariables": t_1, t_2	a "metavariable" T -module $V = T' \times T'$
1 "premise":	$V \rightarrow M_1 \times M_2$ (<i>T</i> -module
$t_1 \rightarrow t_2$	$(t_1, t_2) \mapsto (t_1, t_2)$ morphism)
"conclusion":	$V \rightarrow M_1 \times M_2$
$\lambda x.t_1 \rightarrow \lambda x.t_2$	$(t_1,t_2)\mapsto(\lambda x.t_1, \lambda x.t_2)$

Example 5/7: Specify M_i for cbv

Transition monad =
$$(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$$

cbv λ -calculus = $(Vals, Tms \xleftarrow{source} Trans \xrightarrow{target} Vals)$

Syntax of values and terms

$$Vals: v, w ::= x | \lambda x.t$$

$$Tms: t, u ::= x | \lambda x.t | t u$$

$$::= v | t u$$

$$\Rightarrow terms = binary trees of values$$

$$Tms = BinTree \circ Vals$$

In fact, by definition of a transition monad,

• M_i is always of the shape $S_i \circ T$. Here,

$$T = Vals$$
 $M_1 = BinTree \circ T$ $M_2 = Id \circ T (= T)$

• Signature for M_i = Signature for S_i

Signature for BinTree

1 binary operation (accounts for tu in Tms), no equation

Example 6/7: Specifying M_i for DLC

Transition monad = $(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$

Differential λ -calculus (DLC)

Syntax monad T of terms (a variant of λ -calculus) Semantics a term t reduces to a multiterm $t_1 + \cdots + t_n$

$$M_1 = Id \circ T (=T)$$
 $M_2 = FormalSum \circ T$

Signature for FormalSum

Operations	a constant 0, a binary operation +
Equations	commutativity, associativity, unitality

Example 7/7: the monad of DLC

differential λ -calculus: $(T, M_1 \xleftarrow{source} Trans \xrightarrow{target} M_2)$

• Syntax of DLC = variant of λ -calculus

Application of DLC

$$app:(t,U)\mapsto tU$$

input of app = a term t and a multi-term $U = u_1 + \cdots + u_n$ = a term and a formal sum of terms

input module of $app = T \times (FormalSum \circ T)$

Signature for T

3 operations (no equation):

application t U	$T \times (FormalSum \circ T) \rightarrow T$
differential application $Dt \cdot u$	$T \times T \to T$
λ-abstraction	(as before)

Future work: strengthen the recursion principle

Initial semantics (general framework)

- specified object by a signature $\Sigma = initial \ object$ in the category of models of Σ
- initiality ⇒ recursion principle

Future work alternative notion of signatures with more general models (as in Ahrens et al. '20)

⇒ stronger recursion principle

A difficulty with general models à la Ahrens et al. '20: DLC

 $(T, M_1 \leftarrow Trans \rightarrow M_2)$ specified by a 3-step signature

component	Σ_1	Σ_2	Σ_3
specifies	T	M_1, M_2	\leftarrow Trans \rightarrow

Models of $(\Sigma_1, \Sigma_2, \Sigma_3)$

transition monads $(T, M_1 \leftarrow Trans \rightarrow M_2)$ + extra structure, s.t.

$$T$$
 = 'the' initial model of Σ_1

(in Ahrens et al. '20,
$$T = any$$
 model of Σ_1)
 $(M_1, M_2) = \text{'the' initial model of } \Sigma_2$

Specifying the transition rules of DLC

transitions involve intermediary syntactic constructions

$T=$ 'the' initial model of Σ_1	$T = $ any model of Σ_1
define them by recursion	recursion not available!

Conclusion

A mild generalisation of Ahrens et al.'s reduction monads '20
 ⇒ new notion of programming language:

	Syntax	Semantics
		T-module morphisms
transition monads	a monad T	$Trans$ $S_1 \circ T$ $S_2 \circ T$

- Associated notion of specification
 - with easy interpretation of transition rules
- Numerous new examples:

 $\overline{\lambda}\mu$ -calculus π -calculus GSOS specifications cby λ -calculus differential λ -calculus