THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial for Week 2

MATH1903: Integral Calculus and Modelling (Advanced)

Semester 2, 2012

Lecturers: Daniel Daners and James Parkinson

Topics covered

In lectures last week:

Partitions $P = \{x_0, x_1, \dots, x_n\}$, sample points $x_j^* \in [x_{j-1}, x_j]$, and $ P $
Riemann sums $\sum_{j=1}^{n} f(x_j^*) \Delta x_j$
Upper and lower Riemann sums U_P and L_P .
Riemann integrability and Riemann integrals.
Continuous functions are Riemann integrable.

Objectives

After completing this tutorial sheet you will be able to:

Work with partitions, and compute some Riemann sums.
Understand the connection between Riemann sums and Riemann integrals.
Be able to work with inequalities involving Riemann sums.
Critically evaluate a mathematical statement.
Develop summation techniques.
Prove theorems about the Riemann integral.

Preparation questions to do before class

- **1.** Let P be the partition $P = \{-2, 0, 1, 2\}$ of [-2, 2], and let $f(x) = xe^{-2x^2}$.
 - (a) What is ||P||?
 - (b) Find all local maxima and minima of f(x).
 - (c) Compute the upper and lower Riemann sums for f(x) on the interval [-2,2].
- **2.** Let $n \ge 1$ and let S(n) be the sum

$$S(n) = \sum_{j=1}^{n} (j^{2} - (j-1)^{2}).$$

Compute this sum in 2 ways: One way by realising that the sum 'collapses', and another way by writing $j^2 - (j-1)^2 = 2j-1$. Hence find a formula for $\sum_{j=1}^{n} j$.

Questions to attempt in class

- **3.** (a) Let $P = \{x_0, x_1, \dots, x_n\}$ be the partition of [a, b] into n equal parts, and choose $x_j^* = x_j$. Write down the corresponding Riemann sum for $f(x) = x^2$.
 - (b) Generalise the technique of Question 2 to find a closed formula for $\sum_{j=1}^{n} j^2$, and hence find a closed formula for the Riemann sum in Question 3(a).
 - (c) Compute the limit as $n \to \infty$ in your formula, and explain why the answer is what it is using a theorem from class.
- **4.** Suppose that f(x) is monotonically increasing on [a,b], and let $P = \{x_0, x_1, \ldots, x_n\}$ be any partition of [a,b] into n subintervals.
 - (a) Write down expressions for the upper and lower Riemann sums U_P and L_P .
 - (b) Show that $U_P L_P \le (f(b) f(a)) ||P||$, where $||P|| = \max \{ \Delta x_1, \dots, \Delta x_n \}$.
- 5. Let $f(x) = x^{-2}$ and let 0 < a < b.
 - (a) Let $P = \{x_0, x_1, \dots, x_n\}$ be an arbitrary partition of [a, b], and make the clever choice $x_i^* = \sqrt{x_{j-1}x_j}$. Compute the corresponding Riemann sum of f.
 - (b) Explain how you know that the Riemann integral $\int_a^b f(x) dx$ exists. What is its value?

Discussion question

6. Let f(x) be the function

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is irrational} \\ 0 & \text{if } x \text{ is rational.} \end{cases}$$

Is f continuous? Is f differentiable at any point? Is f Riemann integrable on [0,1]?

Questions for extra practice

- 7. Let $f(x) = e^x$, and let $P = \{x_0, \dots, x_n\}$ be the partition of [0, 1] into n equal parts. Choose sample points $x_j^* = x_j$.
 - (a) Compute the Riemann sum $\sum_{j=1}^{n} f(x_{j}^{*}) \Delta x_{j}$.
 - (b) Find the limit of your Riemann sum as $n \to \infty$, and explain why your answer is what it is using a theorem from class.
- 8. Let $\alpha \in \mathbb{R}$ and let 0 < a < b. Use the partition $P = \{a, ar, \dots, ar^n\}$ with $r = \sqrt[n]{b/a}$ to compute the integral $\int_a^b x^\alpha dx$ from first principles. (Treat $\alpha = -1$ separately).

2

- 9. (a) Use the identity $\cos(A B) \cos(A + B) = 2\sin A\sin B$ to prove that $2\sin(j\theta)\sin\left(\frac{1}{2}\theta\right) = \cos\left((j \frac{1}{2})\theta\right) \cos\left((j + \frac{1}{2})\theta\right)$.
 - (b) Deduce that

$$\sum_{j=1}^{n} \sin(j\theta) = \frac{\cos\left(\frac{1}{2}\theta\right) - \cos\left((n + \frac{1}{2})\theta\right)}{2\sin\left(\frac{1}{2}\theta\right)} \quad \text{if } \theta \text{ is not a multiple of } 2\pi.$$

(c) Let a > 0 and let $\{x_0, \ldots, x_n\}$ be a partition of [0, a] into n subintervals of length a/n. Let $x_i^* = x_j$ for each j. Show that

$$\sum_{j=1}^{n} \sin(x_j^*) \Delta x_j = \frac{a/(2n)}{\sin(a/(2n))} \left[\cos\left(\frac{a}{2n}\right) - \cos\left(a + \frac{a}{2n}\right) \right].$$

Show that this tends to $1 - \cos a$ as $n \to \infty$. Explain this using a theorem.

Challenging problems

10. (a) Find a closed formula for the sum $\sum_{j=0}^{n-1} jr^j$, where $r \neq 1$.

Hint: Use the geometric sum formula on $\sum_{j=0}^{n-1} r^j$, and differentiate with respect to r.

- (b) Hence find a closed formula for the Riemann sum of $f(x) = x2^x$ over the interval [0,1] using the partition $P = \{x_0, x_1, \ldots, x_n\}$ of [0,1] into n equal parts, with $x_j^* = x_{j-1}$.
- (c) Calculate the limit of this Riemann sum as $n \to \infty$.
- 11. Suppose that f is an unbounded positive function on the interval [a, b]. Show that f is not Riemann integrable on [a, b].

Hint: Let M be a given (big) number. Show that there is a partition P and sample points x_j^* such that ||P|| small and such that $\sum_{j=1}^n f(x_j^*) \Delta x_j > M$.

- 12. Suppose that f is continuous on [a,b]. Show that if $f \ge 0$ and $\int_a^b f(x) dx = 0$ then f(x) = 0 for all $x \in [a,b]$. What happens if we drop the assumption of continuity? Hint: Continuity implies that if $f(\alpha) > \epsilon > 0$ for some α , then $f(x) > \epsilon/2$ for all x in some (small) interval containing α .
- 13. This question shows how the famous "22/7 approximation" for π is related to integrals. By directly computing the integral, show that

$$\int_0^1 \frac{x^4 (1-x)^4}{1+x^2} \, dx = \frac{22}{7} - \pi.$$

Deduce that $3.1412 < \pi < 3.1429$. Find better bounds for π using the integral

3

$$\int_0^1 \frac{x^8 (1-x)^8}{1+x^2} \, dx.$$