AIM: Conducting Statistical Analysis on The Students' Mathematics subject Scores

A Statistical Analysis is performed on the StudentData.txt dataset from the UCI machine learning repository and the data has many categorical variables like school, sex, mother's job, father's job etc and we found some interesting relationships between different categorical variables by summarizing the categorical variables and then relating them to the test scores.

Graphical Methods used to identify key relationships

Math Test Score Dataset has a wide range of data in terms of the information related to the student. So, some categorical variables are taken into observation, and conclusions are drawn regarding the relationship between the given student's information and the test scores.

- Bar Plots displaying the relationship between Mother's Job and Father's Job (Mjob & Fjob) and Its effect on the math test scores
- Summarization of test scores based on mother's job and father's job
- Scatter plots displaying how math test scores (G1) depend on internet connectivity
- Relationships are drawn between the math test scores (G1, G2,G3) and the school they are studying in.
- Scatter Plots are created depicting the relationship between the test scores (G1, G2, G3) and the reason they joined the particular school

Datasets contain both numerical and categorical variables, so we analysed the information considering both graphical and numeric variables across graphical summaries:

Graphical and numeric summaries:

- The CONTENTS procedure
- The FREQ procedure
- The MEANS procedure
- BAR PLOTS
- SCATTER PLOTS

Exploring Relationships on Mother's Job, Father's Job, School, Internet Connectivity, Reason and School

- Our concerns are addressed in the following order. First, we wanted to understand if there is a strong relationship existed between the test scores and the jobs of their mother and father.
- We dive down further by analyzing how internet connectivity plays a major role in student's learning graph and eventually the test scores.
- Then we investigated the relationship between the student's test scores and the school they are studying in. We believe that the school's course, distance from home, and reputation drive the student's education environment and eventually the test scores.
- Finally, the reason for choosing the best school by their parents impacts the learning environment of the student and its effect on test scores.

Summary of Questions:

- 1. How do the parents' jobs correlate to the math test scores?
- 2. What is the structure of Bar plots for MJob and Fjob?
- 3. How is the parameter internet connectivity impact the student's test scores?
- 4. How does a choice of school impact the student's test scores?
- 5. What can be inferred from the relationship between the school and the reason behind choosing the particular school by their parents?

Analysis and Summary of Findings

Arretpola Variable (ISS ISS						
Monte	Fjeb	H-Gloo-	Mean	Bid Dex	Minoreser	Macroson
shirin.	at James		18,0071486	3.8301991	0.0000000	16.0000000
	teath	. 8	12.0000000	3.5000339	10.0000000	16.0000000
	otter	.00	B.Y078787	2.7909435	8.0000000	17,0000000
	warnings	96	10.0000007	3.5739947	0.0000000	16.0000000
	toacher	- 8	7.0000000	2.6094371	0.0000000	0.0000000
hoodin	(models	- 6	12,0233333	2.7000746	9-9600000	17.0000000
	ofter	17	12.0000000	3.6020021	F 0000000	16.0000000
	****	10	12.4000000	4.5100532	B-0000000	10.0000000
	machier	1	10.0000000		10.0000000	10.0000000
eten.	44, Norre		0.0000000	3.30(1729)	f.0000000	19.3988600
	(matt)	- 8	11.0000000	2.1213090	10.0000000	19-9000000
	offer	100	10.1943308	0.0100091	0.0000000	19.00000000
	9014005	34	10.0003330	3.580000	9.1000000	19.0000000
	bracker		11.0000000	3.5475003	0.0000000	10.00000000
betrities	st berre	- 6	11.1000007	3.9119908	0.0000000	14.9000000
	heelt		8.7900000	5 killinger	6.0000000	19.9000000
	offer	400	11.476 1868	9.6007791	6.0000000	18/9000000
	services	48	19.00044601	3-0609987	8.0000000	17.90000000
	teacher	- 8	14.7500000	3.0166101	Y 0000000	19-00090001
Non-Pres	et_horse	- 8	11.0000000	7,7781746	0.56660000	17.0000000
	heelt.		19.0000000	2.0109115	8.0000000	14.9000000
	offeet	29	11.00000000	2.0100939	0.0000000	16.0000000
	marytoms	199	11.00000000	S 84899712	T 2000000	10.0000000
	beacher	19	13.00000007	3.6700144	F 0000000	18.00000000

(D) Massaco

