Rechnernetze und verteilte Systeme (BSRvS II)

WS 2010/2011
Prof. Dr. Heiko Krumm
FB Informatik, LS IV, AG RvS
Universität Dortmund

- Computernetze und das Internet
- Anwendung
- Transport
- Vermittlung
- Verbindung
- Multimedia
- Sicherheit
- Netzmanagement
- Middleware
- Verteilte Algorithmen

Literatur

Zentrale Literatur

◆ J. F. Kurose, K. W. Ross: Computernetze; Pearson Studium 2002 bzw. die neuere englische Ausgabe: J. F. Kurose, K. W. Ross: Computer Networking, 3rd Ed., Pearson 2005

Weitere Empfehlungen

- ◆ A. Tanenbaum: Computer Netwerke; Pearson Studium 2000
- ◆ D. E. Comer: Computernetzwerke und Internets; Pearson Studium 2000.
- ◆ L. L. Peterson, B. S. Davie: Computernetze; dpunkt Verlag 2000.

Folien

Zusammenstellung aus folgenden Quellen:

- Foliensatz zum Buch ,, J. F. Kurose, K. W. Ross: Computernetze; Pearson Studium 2002"
- ◆ Foliensatz der Vorlesung "Betriebssysteme, Rechnernetze und verteilte Systeme II", WS 2003/2004, H. Wedde, LS III
- Foliensatz der Vorlesung "Betriebssysteme, Rechnernetze und verteilte Systeme II", WS 2006/2007, H. Krumm, LS IV
- Foliensatz der Vorlesung
 "Betriebssysteme, Rechnernetze und verteilte Systeme II",
 WS 2007/2008, P. Buchholz, LS IV
- Foliensatz des Kurses "Computer Networks",
 SS 2004, S. Lam, University of Texas at Austin
- Foliensatz der Vorlesung "Rechnernetze und verteilte Systeme", WS2002/2003, H. Krumm, LS IV
- Zusätzliche "neue" Folien

Rechnernetze und verteilte Systeme

Rechnernetz:

Durch Telekommunikationssystem verbundene Rechnerknoten

♦ Telekommunikationssystem:

System, das Teilnehmern Kommunikationsdienste anbietet (in der Regel selbst durch Rechnernetz implementiert)

Verteiltes System:

Anwendung, deren Komponenten sich an verschiedenen Orten befinden,

Komponenten sind in Rechnernetz installiert, werden lokal von den Rechnerknoten ausgeführt und kommunizieren miteinander mit Hilfe eines Telekommunikationssystems.

Besonderheiten verteilter Systeme

- **♦** Kommunikation
 - unzuverlässig, teuer, langsam

- Lose Kopplung
 - Kommunikation selten
 - Synchronisation schwach
 - Fehlertoleranz
- Nebenläufigkeit (Concurrency)
 - weitgehend unabhängige Fortschritte
- Dezentrale Kontrolle
 - weitgehende Autonomie
 - lokale Kontrolle auf Basis partieller Sichten
 - vollständige Sicht des globalen Systemzustands wird vermieden, da das zu teuer ist (Einfrieren)

Verteilung verdeckbar? Unzuverlässigkeit!

Vollständig zuverlässige Übereinkunft unter Fristsetzung ist nicht möglich!

· Programme mit geteilter Datenbasis

- Eigenschaften
 - Nebenläufigkeit
 - Systemgröße
 - Systemlebensdauer
 - Örtliche Verteilung
- Veränderungen (Umgebungen und Anforderungen)
 - Anpassungen
 - Erweiterungen
- Entwicklungslinien
 - Web-Orientierung
 - Dienste-Orientierung (SOA)
 - Ubiquität und Mobilität

Rechnernetze

Rechnernetz - Übersicht

Dienstleistende Systeme

Instanzen

- Menge von Dienstnehmern
- Diensterbringer (offenes Subsystem)

Kommunikation

- vertikale Kommunikation
 - Abwicklung von Dienstleistungen zwischen Dienstnehmer und Dienstleister

horizontale Kommunikation

» zwischen Dienstnehmern

Kommunikationssysteme

- in der Zeit Datenhaltungssystem
- im Raum Telekommunikationssystem
 - » Dienstleistungen dienen dem Nachrichtenaustausch zwischen Dienstnehmern
 - » Diensterbringer interpretiert Nachrichten nicht

Kommunikationsdienst

Ein Kommunikationsdienst bietet Teilnehmern Dienstleistungen zum Nachrichtenaustausch an. Wichtige Eigenschaften der Dienstleistungen betreffen:

- Partneradressierung
- Datagramme (verbindungslose Kommunikation, z.B. UDP)
- Verbindungsorientierung: Verbindungen und virtuelle Verbindungen (z.B. TCP)
- Zwei- / Mehrpartner-Kommunikation (Uni- / Multi- / Broadcast)
- Richtung (Simplex, Duplex, Halbduplex)

Kommunikationsdienst – Sichten

Statische Sicht

Die Dienstschnittstelle, ist gegliedert in Dienstzugangspunkte, welchen Dienstadressen zugeordnet sind.

Dynamische Sicht

An der Dienstschnittstelle treten im Verlauf der Zeit Ereignisse auf: Die Anforderung und Ausführung einer Dienstleistung repräsentiert sich in zusammengehörigen Dienststimuli und Dienstreaktionen

Wohnungs-

Wohnungs-

Dienstnehmer-Rollen und Dienstformen

Zentrale Idee zur Nutzung von Ressourcen in Rechnernetzen:

Anbieten und Aufrufen von Diensten

Kommunikationsformen – Partneranzahl

Unicast (2 Partner)

Broadcast (an alle)

Multicast (an eine Gruppe)

Kommunikation und Kontext – Datagramme und Verbindungen

Kommunikation ohne Kontext - Datagram

Dienst enthält alle benötigten Informationen

z.B. Brief, Telegramm, UDP-Datagramm

Kommunikation im Kontext – Verbindung

Verbindung wird aufgebaut, Kommunikation entlang der Verbindung, Verbindung wird abgebaut

z.B. Telefon, TCP-Verbindung

Kommunikationsdienste – Richtungsbetrieb

Kommunikationsdienst - Nachrichtenreihenfolge

Kommunikationsdienst: Qualität

- Leistung
 - Nachrichtenlaufzeit, Verzögerung
 - Durchsatz (Bandbreite, Bitrate)
 - Entfernung
- Zuverlässigkeit
 - Verfügbarkeit
 - Fehler
 - Verlust, Verfälschung, Vertauschung,...

- Kosten
 - Grundkosten
 - Dienstleistungskosten
- Datensicherheit
 - Verfälschung / Integrität
 - Vertraulichkeit
 - Zurechenbarkeit

Kommunikationsdienst: Zuverlässigkeit / Fehler / Störungen

Protokolle: Ablauf in der Zeit

Menschliche Kommunikation

Netz Protokoll

Protokolle: Definition

- Ein Protokoll ist eine Menge von Regeln und Formaten (semantisch und syntaktisch), die das Kommunikationsverhalten von Instanzen zur Ausführung von Funktionen regelt (ISO 7498).
- Alle Kommunikationsaktivitäten im Internet werden von Protokollen bestimmt.
- Protokollstandards ermöglichen die Offenheit des Internets für Komponenten unterschiedlichster Bauart.

Protokolle: Definition

Ein Kommunikationsprotokoll definiert das Kommunikationsverhalten von Instanzen, welche einen Basis-Kommunikationsdienst nutzen, um einen (höherwertigen) Ziel-Kommunikationsdienst zu erbringen. Es wird definiert über:

- Zieldienst
- Basisdienst
- Instanzenverhalten
- PDU-Formate

Schichtung von Diensten und Protokollen

Maschinen-Telegraph

Schichtung von Diensten und Protokollen

User mit Kooperationsbeziehung "Schiff fahren"

Direkt anwendungsbezogene Kommunikationsdienstleistungen: - Übertrage "Volle Kraft voraus"

Allgemeine Nachrichtenübermittlung

- Übertrage winkelcodierte Nachricht

Schichtung von Diensten und Protokollen

Schicht 3:

- erbrachter Dienst
- Instanzen und Protokoll der Schicht

Schicht 2:

- erbrachter Dienst
- Instanzen und Protokoll der Schicht

Schicht 1:

- erbrachter Dienst
- Instanzen und Protokoll der Schicht

Basisdienst – Medium (Schicht 0)

Internet

- Millionen vernetzter Computer
 (Endsysteme, Hosts)
 - PCs, Server
 - Toaster, Cola-Automaten
- Kommunikationsleitungen
 - Kupfer-, Glasfaserleitungen,
 - Funk, Satellitenfunk
- Transitsysteme (Router)

leiten Daten weiter

Internet - Struktur

- Netz-Peripherie:
 - End-Systeme
 (PCs, Workstations, Server)
- Netz-Kern:
 - Transitsysteme(Router, ein Netz von Netzen)
 - Subnetze
 - Teilnetze
- Übertragungsmedien:
 - Kommunikationsleitungen

Internet - Peripherie

- ◆ End-Systeme (Hosts)
 - beherbergen Applikationen und Server-Programme
 - sind Endpunkte der Verbindung

♦ Client-Server-Modell

- Client stellt Anfragen und erhält Service
- Server ist "immer" verfügbar

♦ Peer-To-Peer-Modell

keine dedizierten Serverz. B. KaZaA

Internet – Datentransportdienste

Ziel: Datentransfer zwischen End-Systemen

TCP – Transmission Control Protocol [RFC793] verbindungsorientiert

◆ Zuverlässiger Datentransfer in richtiger Reihenfolge

UDP – User Datagram Protocol [RFC768] verbindungslos / Datagramm

Unzuverlässiger Datentransfer

Internet – Kern

Geflecht von verbundenen Routern

Wie werden die Daten durch das Netz übertragen?

- Leitungsvermittlung (circuit switching)
 - pro Verbindung eine Leitung (Telefonnetz)
- Paketvermittlung (packet switching)
 - Daten werden in einzelnen Paketen durch das Netz geschickt (Briefpost)

Netz-Kerne (allgemein): Multiplexing

Benutzung einer Verbindungsleitung durch mehrere Verbindungen

- ◆ Die Netz-Resource (z. B. Bandbreite) wird aufgeteilt.
- ◆ Die "Teile" werden einzelnen Verbindungen zugeteilt.
- ♦ Keine Mitbenutzung unbenutzer "Teile" durch andere Verbindungen.

Die Aufteilung der Bandbreite erfolgt durch

- Frequenzmultiplexing (frequency division)
 oder
- Zeitmultiplexing (time division).

Netz-Kerne (allgemein): Multiplexing

Netz-Kerne (allgemein): Paketvermittlung

Der Datenstrom wird in separat zu transportierende Pakete aufgeteilt.

- Mehrere Verbindungen teilen sich eine Leitung.
- Jedes Paket nutzt die volle Bandbreite.
- Die Ressourcen werden nach Bedarf genutzt.
- ♦ Keine garantierte Bandbreite für den Datenstrom.
 - Die Summe der benötigten Ressourcen kann die Summe der vorhandenen übersteigen.
- Pakete im Puffer warten auf freie Ressource (Store and Forward - Prinzip).

Netz-Kerne (allgemein): Routing

◆ Datagramm-Netz

- Die Zieladresse bestimmt den n\u00e4chsten Hop.
- Verschiedene Pakete desselben Datenstroms können unterschiedliche Wege nehmen.
- ◆ Virtual-Circuit Netz (VC, virtuelles Leitungsnetz)
 - Jedes Paket hat eine Marke (Tag), die den n\u00e4chsten Hop bestimmt.
 - Pfad wird beim Verbindungsaufbau festgelegt.
 - Router speichern Verbindungsdaten.

Netz-Kerne (allgemein): Taxonomie

Physikalische Medien

- Verdrillte Adernpaare (geschirmt, ungeschirmt)
- Koaxialkabel
- Glasfaser
- Funkkanäle (erdgebunden, Satelliten)

Verzögerung in Paketnetzen

- Warteschlangen-Aufenthalt
- Übertragungsverzögerung (Paketlänge und Übertragungsrate)
- Signalverzögerung (Ausbreitungsgeschwindigkeit der Signale in Medium)

Verzögerung-Bandbreiten-Produkt

- Relative Bedeutung von Nachrichtenlaufzeit und Bandbreite
 - für kurze Nachrichten (z.B. 1 Byte) ist die Laufzeit (z.B. 1 ms gegenüber 300 ms) wichtiger als die Bandbreite (z.B. 1 Mbps gegenüber 1 Gbps).
 - für lange Nachrichten (z.B. 600 Mbyte) ist die Bandbreite wichtiger als die Laufzeit.
- Produkt aus Bandbreite x Laufzeit.
 - Es entspricht der Datenmenge, die sich im Transit befinden kann.
- Beispiel
 - Bei 100 ms Laufzeit und 45 Mbps Bandbreite können sich bis zu 560 Kbyte Daten im Transit befinden

Schichtung von Diensten und Protokollen

Schichtenmodelle

ISO/OSI

- Kommunikation Offener Systeme Basis-Referenzmodell
- allgemeines Modell, das sich auf die logische Architektur konzentriert (Welche Funktionen können in welchem Zusammenhang in einer Kommunikation auftreten?)
- (ISO 7498)

◆ TCP/IP

- Internet-Protokollstack
- Für (beinahe) alle Systeme implementiert.
- (RFCs, IEEE-Normen)

ISO/OSI-Basisreferenzmodell

H. Krumm,

ISO/OSI-Basisreferenzmodell: Schichten

- Anwendungsschicht (Application Layer)
 - höchste Ebene, stellt die Kommunikationsdienstleistungen bereit, die direkt von einer Anwendung benötigt werden
 - Beispiel: "Übertrage das Kommando eine Datei zu öffnen"
- ◆ Darstellungsschicht (Presentation Layer)
 - reicht die Dienstleistungen des Session-Dienstes weiter
 - stellt Dienstleistungen bereit, mit denen sich Anwendungsprozesse über die Syntax der Nachrichten abstimmen können
- ◆ Kommunikationssteuerungsschicht (Session Layer)
 - bietet Dienstleistungen an, die zur Eröffnung, Durchführung und Beendigung einer Kommunikationsbeziehung (Session) nötig sind
 - Dienstleistungen zur Realisierung anwendungsnaher
 Fehlerbehandlungsmaßnahmen:
 Synchronisation, Wiederaufsetzen, Stornieren, Unterbrechen,
 Wiederaufnehmen

ISO/OSI-Basisreferenzmodell: Schichten

- ◆ Transportschicht (Transport Layer)
 - erweitert Endsystemverbindungen (Rechner–Rechner) zu Anwenderverbindungen (Anwender–Anwender)
 - Anwender = Anwendungsprozesse
 - behandelt Ende-zu-Ende-Qualitätsaspekte
- ◆ Vermittlungsschicht (Network Layer)
 - unterstützt beliebige Konnektivität im Netz
- ◆ Sicherungsschicht (Data Link Layer)
 - stellt zuverlässige Links zur Verfügung
 - Flußkontrolle, Fehlererkennung und -korrektur
- ♦ Bitübertragungsschicht (Physical Layer)
 - stellt ungesicherte Links für die Übertragung von Bitfolgen zur Verfügung.

bildet
Datennetz

je Link

ISO/OSI-Basisreferenzmodell: Begriffe

(N)-Schicht (N)-layer

Alle Instanzen einer Hierarchie-Ebene (*peer-entities*). Diese kommunizieren über den Basiskommunikationsdienst (N-1)-Dienst und erbringen den Zielkommunikationsdienst (N)-Dienst.

(N)-Dienst (N)-service

Fähigkeit der (N)-Schicht (und der Schichten darunter), die der (N+l)-Schicht an der Grenze zwischen (N)-Schicht und (N+l)-Schicht zur Verfügung gestellt wird.

(N)-Protokoll (N)-protocol

Verhaltens- und Formatfestlegungen (semantisch und syntaktisch) zum Kommunikationsverhalten der (N)-Instanzen.

ISO/OSI-Basisreferenzmodell: Begriffe

(N)-Dienstzugangspunkt (N)-service-access-point

Punkt, an dem der (N)-Dienst den (N+1)-Instanzen (oder Nutzern) zur Verfügung gestellt wird.

(N)-Adresse (N)-address

Kennung, zur Identifikation eines (N)-Dienstzugangspunkts.

(N)-Protokolldateneinheit (N)-PDU (N)- $protocol\ data\ unit$

Nachricht welche (N)-Instanz gemäß (N)-Protokoll einer anderen (N)-Instanz sendet, besteht aus

- (N)-Protokollkontrollinformation: (N)-PCI
- Nutzdaten der (N+1)-Instanzen

PDU
PCI Nutzdaten

TCP/IP Protokollstapel (Protocol Stack)

TCP/IP Protokollstapel

application layer

- unterstützt verteilte Applikationen (umfasst die ISO/OSI-Schichten 5, 6 und 7)
- Anwendungsprotokolle FTP, SMTP, HTTP, SNMP, DNS, ...

transport layer

- Datenübertragung von Anwendung zu Anwendung (Port zu Port)
- Transportprotokolle TCP, UDP

network layer

- transportiert (routet) Datagramme von Endsvstem zu Endsystem
- Internet-Protokoll IP, Routing-Protokolle

data link layer

- Datentransfer zwischen benachbarten Systemen
- PPP, Ethernet, ...

physical layer

- Bitübertragung auf der Leitung oder im Funkkanal
- RS-232, Ethernet, ...

Beispiel für lokales TCP/IP-Netz

Logische Kommunikation - Transportschicht

Physikalische Kommunikation

