Rapporto tra matrici e app. lineari

03 November 2022 13:48

 $M_n(K)$ e' un <u>ANELLO</u> con identità malt.: $I = \begin{bmatrix} 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & 3 & \cdots 1 \end{bmatrix}.$

Possiano pensare alla moltiplicatione di $A \in M_{m,n}(K)$ con un vettore $\underline{X} = \begin{bmatrix} x_1 \\ x_n \end{bmatrix} \in K^n$ come vettore d: X^n .

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \dots \\ \vdots & \ddots & \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} \alpha_{n1} \chi_{1} + \dots \\ \dots & \vdots \\ \vdots & \ddots & \end{bmatrix}$$

Questo dà un' APPLICATIONE LINEMIE L: K'-K': \$\imp 0.500.

$$\cdot \ \ \psi(\pi \wedge \pi) = \ \ \psi(\pi) + \psi(\pi)$$

OSS. Notiano che Ax lo si prò scrivere when $Ax = x_1A^2 + x_1A^2 + \cdots + x_nA^n =$

$$= \chi_1 \begin{bmatrix} \alpha_{12} \\ \vdots \\ \alpha_{mn} \end{bmatrix} + \cdots + \chi_n \begin{bmatrix} \alpha_{1m} \\ \vdots \\ \alpha_{mn} \end{bmatrix},$$

oss: a Ax è comb. lin. di A1, A2, ..., An.

OSS.3 un sistema lineare empreneo ha sempre sol.

Def. Data $f: V \rightarrow W$ lineare, s: definisceNUCLEO d: f come

Ker $f - \{ \underline{v} \in V | f(\underline{v}) = \underline{o} \}$ eIMMAGINE d: f come $f = \{ \underline{w} \in W | \exists \underline{v} \in V | f(\underline{v}) = \underline{w} \}$

Prop. Kerf e' un soltospaeio di V e Immf e' un soltospaeio di W.

- es. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $(x,y,z) \mapsto (x,y,o)$ ha $\ker f: \{\underline{v} \in \mathbb{R}^3 \mid \underline{v} = [\frac{e}{k}], k \in \mathbb{R}\}.$
- OSS. Le soluzion; di $A \times = 0$ sono quindi gli element; di Ker A, e sono dunque sollosporto di K^n (n num. di righe di x).
- $055.2 \quad \text{Imm} \quad \downarrow = \left\{ y \in \mathbb{R}^n \middle| \exists x \in \mathbb{R}^n \text{ con } y = A \underline{x} = x_1 A^2 + \dots + x_n A^n \right\} = \\ = Span(A^1, \dots, A^n).$

Quind; : | Sistema Ann = B e'risauble ↔ ← B € Span (A1, ..., An).

055.3 $\int_{-1}^{-1}(0) = \text{Ker } f$ $\int_{-1}^{-1}(\underline{w}) p_0 = \text{Tienbe suche essere woto.}$ In generale, però, $\int_{-1}^{-1}(\underline{w}) = \text{Ker } f_0 + \underline{v} f_0$ $f_0(\underline{v}) = \underline{w}$.

Dimos(ratione)

Date $x' = \underline{u} + \underline{w} \mid \underline{w} \in \mathbb{R}$ $x' = \underline{u} + \underline{w} \mid \underline{w} \in \mathbb{R}$ $x' = \underline{u} + \underline{w} \mid \underline{w} \in \mathbb{R}$ $x' = \underline{u} + \underline{w} \mid \underline{w} \in \mathbb{R}$

Instre
$$k(\underline{v} + \underline{w}) = k(\underline{v}) + k(\underline{w}) = \underline{w}$$
.

$$\rightarrow \underline{v}' = \underline{v} + \underline{w} \mid \underline{w} \in \text{Rer } f.$$

Indire $f(\underline{v} + \underline{w}) = f(\underline{v}) + f(\underline{w}) = \underline{w}.$

Def. L'insiene U+W si dice sottospazio AFFINE.

OSS. Dato we U+W, w+W=v+W Infat, w+w = v+ku E v+w
Ew e viceversa.

Def. Si definisce RANGO come: my (A) = TK(A) = rank(A) = = dim Span (A2, ..., A7) = = dim Imm fa.

Tearems (formula delle dimensione)

Data L:V-W lineare, allora dim (U) = dim (Ker f.) + dim (Im f.).

Dimostratione

5:2 U1, ..., UK base di Kert, lo estendiano a base di V: <u>Va.1 ... , Vk. , Uk. p. , ... , Uh.</u>

5:200 WRTS = &(UKIS) ,..., Wn = & (Un). Si dimostra Une Wera,..., We e' base di Imm L.

Sowo lin. jud. :

$$\begin{array}{c}
\cdot & \propto_{L} \frac{W_{RH}}{L} + \dots + \alpha_{N} \frac{W_{N}}{L} = 0 \\
\downarrow \left(\alpha_{1} \frac{V_{RH}}{L} + \dots + \alpha_{N} \frac{V_{N}}{L} \right) = 0 \\
\downarrow \alpha_{1} \frac{V_{RH}}{L} + \dots + \alpha_{N} \frac{V_{N}}{L} \in \text{Ker } L
\end{array}$$

ma se di to (Va,..., Un) sarebbe lin. dip. e quindi man base. Allora

d2=...=dn = 0.

Generano:

Generano:

Quindi were, ..., we is base. Allors dim V = dim Kerft dim Imf.

Corollanio

rig (A) = dim V - dim Her f.

Teorema d: Rouché-Capelli

dove
$$\widetilde{A} = \left\lceil A \left\lfloor b \right\rceil \right\rceil$$
, delta matrice complete

(analoganente A è detta matrice incompleta).

Dinostrazione

Segre del fatto che $A\underline{x} = \underline{b}$ e'

risdubile \longleftrightarrow \underline{b} \in Span $(A^2, ..., A^n)$ \longleftrightarrow \longleftrightarrow Span $(A^2, ..., A^n, \underline{b})$ - Span $(A^2, ..., A^n)$ \longleftrightarrow \longleftrightarrow din Span $(A^2, ..., \underline{b})$ - din Span $(A^2, ..., A^n)$ \longleftrightarrow \longleftrightarrow $n_{\underline{a}}(\widehat{A}) = n_{\underline{a}}(A)$.