Laboratory 11: Cover Sheet

Name: Ernest Landrito Date 11/18/2013

Section: 1

Place a check mark in the *Assigned* column next to the exercises your instructor has assigned to you. Attach this cover sheet to the front of the packet of materials you submit following the laboratory.

	Assigned: Check or list exercise	
Activities	numbers	Completed
Implementation Testing	✓	
Programming Exercise 1	✓	
Programming Exercise 2		
Programming Exercise 3	✓	
Analysis Exercise 1	✓	
Analysis Exercise 2	✓	
	Total	

Laboratory 11: Implementation Testing

Name: Ernest Landrito Date 11/18/2013

Section: 1

Check with your instructor whether you are to complete this exercise prior to your lab period or during lab.

+3+2+1 Insert Remove Inserted three Removed three	Test Plan 11-1 (Heap ADT operations)		
Removed three	Test case	ected result Checked	
		erted three	

Laboratory 11: Programming Exercise 1

Name: Ernest Landrito Date 11/18/2013

Section: 1

Test Plan 11-2 (Priority Queue simulation results)			
Time (minutes)	Longest wait for any low priority (0) task	Longest wait for any high priority (1) task	
10	1	4	
30	2	8	
60	2	8	

Question 1: Is your priority queue task scheduler unfair—that is, given two tasks T_1 and T_2 of the same priority, where task T_1 is enqueued at time N and task T_2 is enqueued at time N + i (i > 0), is task T_2 ever dequeued before task T_1 ?

The scheduler is fair because the insert will only switch up if the compare condition is met not if it is equal.

Question 2: If so, how can you eliminate this problem and make your task scheduler fair?

Laboratory 11: Programming Exercise 2

Name	Date	
Section		

Test Plan 11-3 (heapSort operation)		
Array	Expected result	Checked
	1	

Laboratory 11: Programming Exercise 3

Name: Ernest Landrito Date 11/18/2013

Section: 1

Test Plan 11-4 (The writeLevels operation)			
Test case	Commands	Expected result	Checked
+3 +2 +1 w	Add three items print	3	
	levels	21	

Laboratory 11: Analysis Exercise 1

Name: Ernest Landrito Date 11/18/2013

Section: 1

You can use a heap—or a priority queue (Programming Exercise 1)—to implement both a first-in, first-out (FIFO) queue and a stack. The trick is to use the order in which data items arrive as the basis for determining the data items' priority values.

Part A

How would you assign priority values to data items to produce a FIFO queue?

I would assign the priority by the time tick the value hit the heap and use a min heap.

Part B

How would you assign priority values to data items to produce a stack?

I would also use the time tick the value hit the heap but use a max heap.

Laboratory 11: Heap ADT

7

Laboratory 11: Analysis Exercise 2

Name: Ernest Landrito Date 11/18/2013

Section: 1

Part A

Given a heap containing ten data items with distinct priorities, where in the heap can the data item with the next-to-highest priority be located? Give examples to illustrate your answer.

The next to highest priority of the root will be the higher of its children. After the root the next highest priority will either be a sibling or one of its children.

For example.

The tree could look like

Both are acceptable heaps. But the next to highest depends specifically on the heap.

Part B

Given the same heap as in Part A, where in the heap can the data item with the lowest priority be located? Give examples to illustrate your answer.

The lowest priority can be in the last two levels. It's position in the level will depend on when it is inserted into the heap. It will bubble down when a node is inserted as its child. For example.

```
0
9<
6
8<
7
will turn into
```

when 5 is inserted