CONTEÚDO DO TESTE – 1º BIMESTRE – 4 PONTOS

FUNÇÃO DO 1º GRAU / RETA

FUNÇÃO DO 2º GRAU

LIMITE DE UMA FUNÇÃO

LIMITES LATERAIS

DATA: 31/08/2023

LIMITES LATERAIS

$$\lim_{x \to a} f(x) = L$$
 se e somente se $\lim_{x \to a^{-}} f(x) = L$ e $\lim_{x \to a^{+}} f(x) = L$

Exemplo 1:

Considere a função f(x) representada no gráfico abaixo e determine:

a)
$$f(1) = -3$$

b)
$$\lim_{x \to 1^+} f(x) = -1$$

c)
$$\lim_{x \to 1^{-}} f(x) = -3$$

d)
$$\lim_{x\to 1} f(x) =$$
 pais $\lim_{x\to 1^+} f(x) + \lim_{x\to 1^-} f(x)$

Exemplo 2: O gráfico de uma função g é apresentado na Figura 10. Use-o para estabelecer os valores (caso existam) dos seguintes limites:

(a)
$$\lim_{x \to 2^{-}} g(x) = 3$$
 (b) $\lim_{x \to 2^{+}} g(x) = 1$ (c) $\lim_{x \to 2} g(x) = 2$ point $\lim_{x \to 2^{-}} \gamma(x) \neq \lim_{x \to 2^{+}} \gamma(x)$ (d) $\lim_{x \to 5^{-}} g(x) = 2$ (e) $\lim_{x \to 5^{+}} g(x) = 2$ (f) $\lim_{x \to 5} g(x) = 2$

(d)
$$\lim_{x \to 5^{-}} g(x) = 2$$
 (e) $\lim_{x \to 5^{+}} g(x) = 2$ (f) $\lim_{x \to 5} g(x) = 2$

FIGURA 10

Exemplo 3: Para a função
$$f(x) = \begin{cases} -x + 3 & se \ x > 1 \\ 2 & se \ x = 1 \end{cases}$$
 determine, se existir, cada limite: $3x + 1 & se \ x < 1$

a)
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (-x+3) = -1+3=2$$

b)
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3x+1) = 3\cdot 1 + 1 = 4$$

c)
$$\lim_{x\to 1} f(x) =$$
 pois $\lim_{x\to 1^+} f(x) \neq \lim_{x\to 1^-} f(x)$

1ª Questão:

Para a função f cujo gráfico é dado, determine o valor da quantidade indicada, se ela existir. Se não existir, explique por quê.

(a)
$$\lim_{x\to 1^-} f(x) = 2$$

(b)
$$\lim_{x\to 1^+} f(x) = 3$$

(c)
$$\lim_{x\to 1} f(x) = 7$$

(d)
$$\lim_{x\to 5} f(x) =$$

2ª Questão:

Para a função g cujo gráfico é dado, determine o valor da quantidade indicada, se ela existir. Se não existir, explique por quê.

(a)
$$\lim_{t\to 0^-} g(t) = -1$$

(2)
$$\lim_{t\to 0^+} g(t) = -2$$

(b)
$$\lim_{t\to 2^+} g(t) = 0$$

$$(\mathbf{f}) \lim_{t\to 2} g(t) = \mathbf{\sharp}$$

(c)
$$\lim_{t\to 0} g(t) = 7$$

(d) $\lim_{t\to 4} g(t) = 3$

(a)
$$\lim_{t\to 2^-} g(t) = 2$$

(a)
$$\lim_{t\to 4} g(t) = '3$$

ois
$$\lim_{t\to 0^+} q(t) \neq \lim_{t\to 0^-} q(t)$$

c)
$$\neq$$
 pois $\lim_{t\to 0^+} q(t) \neq \lim_{t\to 0} q(t)$
f) \neq pois $\lim_{t\to 2^+} q(t) \neq \lim_{t\to 2} q(t)$

3ª Questão:

Dada a função f(x) calcule, se existir, cada limite:

$$f(x) = \begin{cases} 3 - 2x \text{ se } x \ge -1 \\ 4 - x \text{ se } x < -1 \end{cases}$$

a)
$$\lim_{x \to -1^+} f(x)$$

a)
$$\lim_{x \to -1^+} f(x)$$
 b) $\lim_{x \to -1^-} f(x)$ c) $\lim_{x \to -1} f(x)$

c)
$$\lim_{x \to -1} f(x)$$

4ª Questão:

Dada a função f(x) calcule, se existir, cada limite:

$$f(x) = \begin{cases} 2x^2 - 3x + 1 & \text{se } x < 2 \\ 1 & \text{se } x = 2 \\ -x^2 + 6x - 7 & \text{se } x > 2 \end{cases}$$

a)
$$\lim_{x \to 2^+} f(x)$$
 b) $\lim_{x \to 2^-} f(x)$ c) $\lim_{x \to 2} f(x)$

b)
$$\lim_{x \to 2^-} f(x)$$

c)
$$\lim_{x \to 2} f(x)$$

5ª Questão:

Dada a função f definida por

$$f(x) = \begin{cases} 3x - 2 & \text{se } x > -1 \\ 3 & \text{se } x = -1 \\ 5 - ax & \text{se } x < -1 \end{cases}$$

determine a $\in \mathbb{R}$ para que exista $\lim_{x \to -1} f(x)$.

3ª Questão:

Dada a função f(x) calcule, se existir, cada limite:

$$f(x) = \begin{cases} 3 - 2x \text{ se } x \ge -1 & \frac{1}{-1} \\ 4 - x & \text{se } x < -1 \end{cases}$$

a)
$$\lim_{x \to -1^+} f(x)$$

a)
$$\lim_{x \to -1^+} f(x)$$
 b) $\lim_{x \to -1^-} f(x)$

c)
$$\lim_{x \to -1} f(x)$$

Resolução:

a)
$$\lim_{x\to -1^+} f(x) = \lim_{x\to -1^+} (3-2x) = 3-2\cdot(-1) = 3+2=5$$

b)
$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (4-x) = 4-(-1) = 4+1=5$$

c)
$$\lim_{x\to -1} f(x) = 5$$

4ª Questão:

Dada a função f(x) calcule, se existir, cada limite:

$$f(x) = \begin{cases} 2x^2 - 3x + 1 & \text{se } x < 2 \\ 1 & \text{se } x = 2 \\ -x^2 + 6x - 7 & \text{se } x > 2 \end{cases} \xrightarrow{2}$$

a)
$$\lim_{x \to 2^+} f(x)$$
 b) $\lim_{x \to 2^-} f(x)$

b)
$$\lim_{x \to 2^{-}} f(x)$$

c)
$$\lim_{x \to 2} f(x)$$

Resolução:

Kesolução:
a)
$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} (-x^2 + 6x - 7) = -2^2 + 6 \cdot 2 - 7 = -4 + 12 - 7 = 1$$

$$x \to 2^{+} \qquad x \to 2^{+}$$
b) $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2x^{2} - 3x + 1) = 2 \cdot 2^{2} - 3 \cdot 2 + 1 = 8 - 6 + 1 = 3$

$$x \to 2^{-} \qquad 2 \to 2^{-}$$

c)
$$\lim_{x\to 2} f(x) = A pois \lim_{x\to 2^+} f(x) + \lim_{x\to 2^-} f(x)$$

5ª Questão:

Dada a função f definida por

$$f(x) = \begin{cases} 3x - 2 & \text{se } x > -1 \\ 3 & \text{se } x = -1 \\ 5 - ax & \text{se } x < -1 \end{cases}$$

determine $a \in \mathbb{R}$ para que exista $\lim_{x \to -1} f(x)$.

Resolução:

Para que o lim f(x) exista devenor ter lim f(x)= lim f(x). x o -1 x o -1Então 5 + a = -5 $a = -5 - 5 \Rightarrow a = -10$

6ª Questão:

Dada a função f(x) calcule, se existir, cada limite:

$$f(x) = \frac{|x+1|}{x+1} \text{ definida em } \mathbb{R} - \{-1\}.$$

a)
$$\lim_{x \to -1^+} f(x)$$
 b) $\lim_{x \to -1^-} f(x)$ c) $\lim_{x \to -1} f(x)$

b)
$$\lim_{x \to -1^{-}} f(x)$$

c)
$$\lim_{x \to -1} f(x)$$

7ª Questão:

Dada a função f(x) calcule, se existir, cada limite:

$$f(x) = \frac{|3x - 2|}{2 - 3x} \text{ definida em } \mathbb{R} - \left\{\frac{2}{3}\right\}.$$

a)
$$\lim_{x \to \frac{2}{3}^+} f(x)$$

a)
$$\lim_{x \to \frac{2}{3}^{+}} f(x)$$
 b) $\lim_{x \to \frac{2}{3}^{-}} f(x)$ c) $\lim_{x \to \frac{2}{3}} f(x)$

c)
$$\lim_{x \to \frac{2}{3}} f(x)$$

8ª Questão:

Dada a função f(x) calcule, se existir, cada limite:

$$f(x) = \frac{x^2 - 5x + 4}{|x - 1|} \text{ definida em } \mathbb{R} - \{1\}.$$

a)
$$\lim_{x \to 1^+} f(x)$$
 b) $\lim_{x \to 1^-} f(x)$ c) $\lim_{x \to 1} f(x)$

b)
$$\lim_{x \to 1^-} f(x)$$

c)
$$\lim_{x \to 1} f(x)$$

9ª Questão:

Dada a função f definida por

$$f(x) = \begin{cases} 4x + 3 & \text{se } x \leq -2 \\ 3x + a & \text{se } x > -2 \end{cases}$$

determine $a \in \mathbb{R}$ para que exista $\lim_{x \to -2} f(x)$.

10ª Questão:

Dada a função f definida por

$$f(x) = \begin{cases} \frac{3x^2 - 5x - 2}{x - 2} & \text{se } x < 2\\ 3 - ax - x^2 & \text{se } x \ge 2 \end{cases}$$

determine $a \in \mathbb{R}$ para que exista $\lim_{x \to 2} f(x)$.

GABARITO

1ª Questão:

- (a) 2, (b) 3, (c) não existe, pois os limites laterais $\lim_{x\to 1^-} f(x)$ e $\lim_{x\to 1^+} f(x)$ são diferentes,
- (d) 4.

2ª Questão:

- (a) -1, (b) -2, (c) não existe, pois os limites laterais $\lim_{t\to 0^-} g(t)$ e $\lim_{t\to 0^+} g(t)$ são diferentes,
- (d) 2, (e) 0, (f) não existe, pois os limites laterais $\lim_{t\to 2^-} g(t)$ e $\lim_{t\to 2^+} g(t)$ são diferentes, (g) 3.

3ª Questão:

- a) 5
- b) 5
- c) 5

5ª Questão:

$$a = -10$$

7ª Questão:

- a) -1
- b) 1
- c) Não existe

- a) 1
- b) 3
- c) Não existe

6ª Questão:

- a) 1
- b) -1
- c) Não existe

8ª Questão:

- a) -3
- b) 3
- c) Não existe

10ª Questão:

9ª Questão:

a = 1

$$a = -4$$