Ψηφιακή Επεξεργασία Εικόνας

Μετασχηματισμοί έντασης (Επεξεργασία ιστογράμματος)

Γιώργος Σφήκας sfikas@cs.uoi.gr

Ιστόγραμμα εικόνας

Το ιστόγραμμα μιας εικόνας είναι μια απεικόνιση της κατανομής των εντάσεων ανά pixel της εικόνας

Πολύ χρήσιμο στην επεξεργασία εικόνας. Εφαρμογές στην κατάτμηση εικόνας και αλλού

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

- Μια επιλογή εικόνων και των ιστογραμμάτων τους
- Παρατηρήστε την συσχέτιση μεταξύ εικόνας και ιστογράμματος
- Παρατηρήστε ότι η εικόνα με την πιο έντονη αντίθεση έχει το πιο ισοκατανεμημένο ιστόγραμμα

Ένταση αντίθεσης(Contrast Stretching)

- Μπορούμε να διορθώσουμε εικόνες με κακό contrast εφαρμόζοντας ένα απλό σημειακό μετασχηματισμό
- Πως θα επιλέξουμε την ακριβή μορφή του μετασχηματισμού;

- Στοχεύοντας στο να μεγαλώσουμε το εύρος των συχνοτήτων φωτεινότητας μπορούμε να διορθώσουμε εικόνες με κακό contrast (υπερβολικά σκούρες ή υπερβολικά φωτεινές)
- Πρώτα θα δούμε την εξισορρόπηση για συνεχή είσοδο, έξοδο και συνάρτηση:
 - r είναι η ένταση εισόδου [θ , L-1].
 - Μας ενδιαφέρουν μετασχηματισμοί s=T(r):
 - Τ(r) γνησίως αύξουσα
 - *T*(*r*) πρέπει να πληροί:

$$0 \le T(r) \le L-1$$
, for $0 \le r \le L-1$

- Η απαίτηση η T(r) να είναι αύξουσα συνεπάγεται ότι η διάταξη των εντάσεων εξόδου θα ακολουθεί την ίδια διάταξη με τις εντάσεις της εισόδου
- Αν T(r) γνησίως αύξουσα τότε η απεικόνιση από s στο r θα είναι 1-1.

- α) Δεν υπάρχει αντίστροφος μετασχηματισμός
- b) Υπάρχει αντίστροφος μετασχηματισμός

- Μπορούμε να θεωρήσουμε τις εντάσεις *r* και *s* σαν τυχαίες μεταβλητές
- Τότε ορίζονται κατανομές (probability density functions, pdf) $p_r(r)$ και $p_s(s)$.
- Από την θεωρία πιθανοτήτων ξέρουμε ότι:
 - Αν $p_r(r)$ και T(r) είναι γνωστά και s=T(r) είναι συνεχής και διαφορίσιμη, τότε

$$p_s(s) = p_r(r) \frac{1}{\left| \frac{ds}{dr} \right|} = p_r(r) \left| \frac{dr}{ds} \right|$$

- Η κατανομή της εξόδου ορίζεται από την κατανομή της εισόδου και τον μετασχηματισμό
- Επομένως μπορούμε να υπολογίσουμε το ιστόγραμμα της εικόνας εξόδου.
- Μας ενδιαφέρει εδώ να χρησιμοποιήσουμε την συνάρτηση αθροιστικής κατανομής (cumulative distribution function, CDF).

$$s = T(r) = (L-1)\int_{0}^{r} p_{r}(w) dw$$

- Πληρείται η πρώτη απαίτηση: Η επιφάνεια κάτω από την καμπύλη αυξάνεται όταν αυξάνεται το r.
- Πληρείται η δεύτερη απαίτηση: Για r=L-1 έχουμε s=L-1.
- Για να υπολογίσουμε $p_s(s)$,

$$\frac{ds}{dr} = \frac{dT(r)}{dr} = (L-1)\frac{d}{dr} \int_{0}^{r} p_{r}(w) dw = (L-1)p_{r}(r)$$

Αντικαθιστώντας:

$$\frac{ds}{dr} = (L-1)p_r(r)$$

στην

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$
 Uniform pdf

δίνει

$$p_s(s) = p_r(r) \left| \frac{1}{(L-1)p_r(r)} \right| = \frac{1}{L-1}, \ 0 \le s \le L-1$$

Ο τύπος για εξισορρόπιση στην διακριτή περίπτωση είναι

$$S_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN}\sum_{j=0}^k n_j$$

όπου

- r_k: ένταση εισόδου
- s_k : ένταση εξόδου
- n_j : η συχνότητα της έντασης j
- ΜΝ: αριθμός των εικονοστοιχείων της εικόνας

Εξισορρόπηση ιστογράμματος: Παράδειγμα

Μια εικόνα ανάλυσης 64x64, 3-bit, έχει τις ακόλουθες εντάσεις:

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j)$$

Εφαρμόζοντας εξισορρόπηση ιστογράμματος:

$$s_0 = T(r_0) = 7 \sum_{j=0}^{0} p_r(r_j) = 7 p_r(r_0) = 1.33$$

$$s_1 = T(r_1) = 7 \sum_{j=0}^{1} p_r(r_j) = 7 p_r(r_0) + 7 p_r(r_1) = 3.08$$

$$s_1 = T(r_1) = 7 \sum_{j=0}^{1} p_r(r_j) = 7 p_r(r_0) + 7 p_r(r_1) = 3.08$$

Εξισορρόπηση ιστογράμματος: Παράδειγμα

Στρογγυλοποιώντας προς τον πλησιέστερο ακέραιο:

$$s_0 = 1.33 \rightarrow 1$$
 $s_1 = 3.08 \rightarrow 3$ $s_2 = 4.55 \rightarrow 5$ $s_3 = 5.67 \rightarrow 6$
 $s_4 = 6.23 \rightarrow 6$ $s_5 = 6.65 \rightarrow 7$ $s_6 = 6.86 \rightarrow 7$ $s_7 = 7.00 \rightarrow 7$

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Εξισορρόπηση ιστογράμματος: Παράδειγμα

Λόγω της διακριτής φύσης της ψηφιακής εικόνας, η εξισορρόπηση γενικά δεν θα δώσει ακριβώς ομοιόμορφο αποτέλεσμα, ωστόσο το εύρος του ιστογράμματος θα 'πλατυνθεί'

a b c

FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original histogram. (b) Transformation function. (c) Equalized histogram.

Συνάρτηση εξισορρόπησης

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εκόνας (νιν Ε037)

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Οι συναρτήσεις που αντιστοιχούν στο προηγούμενο παράδειγμα

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Οι συναρτήσεις που αντιστοιχούν στο προηγούμενο παράδειγμα

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Οι συναρτήσεις που αντιστοιχούν στο προηγούμενο παράδειγμα

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

 Η εξισορρόπηση μπορεί να μην δίνει πάντα το επιθυμητό αποτέλεσμα

 Πολλές τιμές κοντά στο μηδέν στο αρχικό ιστόγραμμα

Εξισορρόπηση ιστογράμματος

- Σε κάποιες περιπτώσεις, θα ήταν πιο χρήσιμο να μπορούμε να καθορίσουμε το επιθυμητό ιστόγραμμα
- Ορισμός προβλήματος:
 - $-\Delta$ οθέντος $p_r(r)$ της εισόδου και επιθυμητό ιστόγραμμα $p_z(z)$, αναζητούμε μετασχηματισμό z=T(r).
- Η λύση του προβλήματος βασίζεται στην εξισορρόπηση.

•Εξισορροπούμε το αρχικό ιστόγραμμα:

$$s = T(r) = (L-1) \int_{0}^{r} p_{r}(w) dw \quad \zeta$$

•Εξισορροπούμε το επιθυμητό ιστόγραμμα:

$$G(z) = T(r)$$

$$s = G(z) = (L-1) \int_{0}^{r} p_{z}(w) dw$$

- •Obtain the inverse transform: $z = G^{-1}(s) = G^{-1}(T(r))$
- Στην πράξη, για κάθε τιμή της εικόνας:
- υπολόγισε την τιμή s σύμφωνα με τον μετ/σμο s=T(r).
- υπολόγισε την τιμή z σύμφωνα με $z=G^{-1}(s)$, όπου s=G(z) είναι το εξισορροπημένο επιθυμητό ιστόγραμμα

Η διακριτή περίπτωση:

•Εξισορροπούμε το αρχικό ιστόγραμμα:

$$s_k = T(r_k) = (L-1) \sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN} \sum_{j=0}^k n_j$$
 •Εξισορροπούμε το επιθυμητό ιστόγραντια:
$$s_k = G(z_q) = (L-1) \sum_{i=0}^q p_z(r_i)$$

$$s_k = G(z_q) = (L-1)\sum_{i=0}^{q} p_z(r_i)$$

•Λαμβάνουμε τον αντίστροφο: $z_q = G^{-1}(s_k) = G^{-1}(T(r_k))$

Έστω πάλι μια 3-bit 64x64 εικόνα:

r_k	n_k	$p_r(r_k) = n_k/MN$
$r_0 = 0$	790	0.19
$r_1 = 1$	1023	0.25
$r_2 = 2$	850	0.21
$r_3 = 3$	656	0.16
$r_4 = 4$	329	0.08
$r_5 = 5$	245	0.06
$r_6 = 6$	122	0.03
$r_7 = 7$	81	0.02

Έστω ότι το επιθυμητό ιστόγραμμα είναι:

$$p_z(z_0) = 0.00$$
 $p_z(z_1) = 0.00$ $p_z(z_2) = 0.00$ $p_z(z_3) = 0.15$
 $p_z(z_4) = 0.20$ $p_z(z_5) = 0.30$ $p_z(z_6) = 0.20$ $p_z(z_7) = 0.15$

με
$$z_0 = 0, z_1 = 1, z_2 = 2, z_3 = 3, z_4 = 4, z_5 = 5, z_6 = 6, z_7 = 7.$$

Πρώτα εξισορροπούμε το ιστόγραμμα εισόδου:

$$s_0 = 1$$
, $s_1 = 3$, $s_2 = 5$, $s_3 = 6$, $s_4 = 6$, $s_5 = 7$, $s_6 = 7$, $s_7 = 7$

Στη συνέχεια εξισορροπούμε το επιθυμητό ιστόγραμμα

$$G(z_0) = 0$$
 $G(z_1) = 0$ $G(z_2) = 0$ $G(z_3) = 1$

$$G(z_4) = 2$$
 $G(z_5) = 5$ $G(z_6) = 6$ $G(z_7) = 7$

Παρατηρήστε ότι εδώ ο G(z) ο δεν είναι γνησίως μονότονος!

Η λύση είναι να θέσουμε ένα κανόνα για να επιλύσουμε αυτή την 'ασάφεια'. Επιλέγουμε πχ την μικρότερη τιμή στον αντίστροφο μετασχηματισμό όπου υπάρχουν πολλές επιλογές

Πραγματοποιούμε την αντίστροφη απεικόνιση: βρίσκουμε την μικρότερη τιμή του z_q που δίνει το κοντινότερο $G(z_q)$ στο

 S_k . $S_k = T(r_i)$ $G(z_a)$ $S_k \longrightarrow Z_q$ $G(z_0) = 0$ $s_0 = 1$ $1 \rightarrow 3$ $s_1 = 3$ $G(z_1) = 0$ $3 \rightarrow 4$ $s_2 = 5$ $G(z_2) = 0$ $5 \rightarrow 5$ $s_3 = 6$ $G(z_3) = 1$ $s_4 = 6$ $G(z_{A})=2$ $6 \rightarrow 6$ $G(z_5) = 5$ $s_5 = 7$ $7 \longrightarrow 7$ $G(z_6) = 6$ $s_6 = 7$ $G(z_7) = 7$ $s_7 = 7$

Δηλαδή κάθε pixel με τιμή s_0 =1 στην εικόνα εξισορροπημένου ιστογράμματος θα έχει τιμή ίση με 3 (z_3) στην εικόνα καθορισμένου

ιστογράμματος. Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (MYE037)

Λόγω πάλι της διακριτής φύσης των δεδομένων μας, το αποτέλεσμα θα έχει γενικά κάποια απόκλιση από το επιθυμητό ιστόγραμμα

a b

FIGURE 3.22

(a) Histogram of a 3-bit image. (b) Specified histogram. (c) Transformation function obtained from the specified histogram. (d) Result of performing histogram specification. Compare

(b) and (d).

Γ. Σφήκας – Ψηφιακή Επεξεργασία Εικόνας (ΜΥΕ037)

Αρχική εικόνα

Εξισορρόπηση ιστογράμματος

Εξισορρόπηση ιστογράμματος

Επιθυμητό ιστόγραμμα

Συνάρτηση μετασχηματισμού και η αντίστροφή της

Ιστόγραμμα αποτελέσματος

Τοπική επεξεργασία με βάση το ιστόγραμμα

FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram equalization applied to (a), using a neighborhood of size 3×3 .

- Η εικόνα στο (a) έχει χαμηλό επίπεδο θορύβου, σχεδόν αμελητέο
- Η εξισορρόπηση έχει σαν αποτέλεσμα την αύξηση της έντασης του θορύβου στις 'λείες' επιφάνειες! (b).
- Τοπική εξισορρόπηση ιστογράμματος παράθυρο 3x3

Συνοψίζοντας

Μέχρι εδώ είδαμε, όσον αφορά μετασχηματισμούς έντασης:

- Διαφορετικούς τύπου βελτίωσης εικόνας
- Σημειακούς μετασχηματισμούς
- Ιστογράμματα
- Εξισορρόπηση και καθορισμό ιστογράμματος

Στην επόμενη διάλεξη θα μιλήσουμε για χωρικό φιλτράρισμα και μετασχηματισμούς με βάση χωρικές γειτονιές