A Pruned RNNLM Lattice-Rescoring Algorithm for Automatic Speech Recognition

Hainan Xu^{1,2}, Tongfei Chen¹, Dongji Gao¹, Yiming Wang¹, Ke Li¹, Nagendra Goel³, Yishay Carmiel², Daniel Povey¹, Sanjeev Khudanpur¹

Center for Language and Speech Processing, Johns Hopkins University; ²IntelligentWire, Seattle WA; ³Go-Vivace Inc., USA

Overview

- Usually lattice-rescoring uses *n*-gram approximation to limit search space;
- We propose a heuristics that finds more promising arcs to expand, and use it for pruning;
- Complexity of the algorithm grows approximately (empirically) linear with *n*-gram order, compared with exponential growth of the baseline algorithm;
- 4X and 10X faster for 4-gram and 5-gram;
- The heuristics also consistently improves WER;
- The evaluation is done with TensorFlow RNNLMs. We open source the integration of TensorFlow to Kaldi.

Lattice Rescoring

- In speech recognition, decoding is usually done on a static decoding graph compiled from an *n*-gram;
- RNNLM rescoring helps further reduce WERs by (partially) replacing LMs weights on a decoded lattice;
- A naive implementation to rescore the lattice is too costly it runs exponentially w.r.t. lattice-depth;
- An *n*-gram approximation algorithm is commonly used in order to limit the search space.

Contact Information

- Web: http://www.hainanxv.com
- Email: hxu31@jhu.edu

Analysis of Old Algorithm

- In 3-gram approximation, states 4 and 8 in (b) are merged as state 4 in (c);
- state 4 encodes history of either (a, c, d) or (b, c, d). The choice is arbitrary, and affects the weight computed for p(e | 4).

Pruned Algorithm

- For each arc to be expanded, we compute a score reflecting how likely this arc will become part of the best-path;
- Arcs that are not very promising (out of the beam) are not expanded;
- Arcs that are more promising get expanded first, so that output lattice states encode "better" history.

Heuristic

• The heuristic is computed as

$$H(c) = \alpha(c) + \beta(a) + \delta(c) \tag{1}$$

- c: a state in the output lattice;
- a: the corresponding state in the input lattice;

- $\alpha(c)$ is the forward-cost for c in the output lattice
- ullet eta(a) is the backward-cost for a in the input lattice
- $\delta(c)$ is an "expectation" of $\beta(c) \beta(a)$

$$\delta(c) = \begin{cases} \beta(c) - \beta(a), & \beta(c) < +\infty \\ \delta(\mathsf{prev}(c)), & \beta(c) = +\infty \end{cases} \tag{2}$$

 $\operatorname{prev}(c)$ is the previous state of c on the best path from start to c.

Lattice-rescoring Speed

Output Lattice Size (arcs per frame)

Acknowledgements

This work was partially supported by DARPA LORELEI award number HR0011-15-2-0024, NSF Grant No CRI-1513128 and IARPA MATERIAL award number FA8650-17-C-9115 and by IntelligentWire. The authors would also like to thank the TensorFlow team at Google for their help during the project.

Word-error-rate

		ARPA	RNNL	RNNLM rescoring with <i>n</i> -gram approximation					
Corpus	Test set	baseline	2-gram		3-gram		4-gram		
			standard	pruned	standard	pruned	standard	pruned	
AMI-IHM	dev	24.2	24.5	24.0	23.7	23.4	23.4	23.3	
(0.5)	eval	25.4	25.8	25.0	24.6	24.4	24.3	24.2	
SWBD	swbd	8.1	8.6	8.2	7.4	7.2	7.2	7.1	
(0.8)	eval2000	12.4	12.9	12.3	11.7	11.5	11.5	11.3	
WSJ	dev93	7.6	7.2	6.9	6.4	6.2	6.4	6.2	
(0.8)	eval92	5.1	4.6	4.2	4.1	3.9	3.9	3.8	
	test-clean	6.0	5.5	5.1	4.9	4.8	4.8	4.7	
LIB	test-other	15.0	14.0	13.2	12.7	12.4	12.4	12.3	
(0.5)	dev-clean	5.7	5.0	4.8	4.4	4.3	4.3	4.3	
	dev-other	14.5	13.7	12.9	12.3	12.0	11.9	11.7	

Table 1: WER of Lattice-rescoring of Different RNNLMs