Содержание

Ι	Определения	3
1	Диффеоморфизм	4
2	Формулировка теоремы о локальной обратимости в терминах систем уравнений	5
3	Формулировка теоремы о неявном отображении в терминах систем уравнений	6
4	Простое k -мерное гладкое многообразие в \mathbb{R}^m	7
5	Касательное пространство к k -мерному многообразию в \mathbb{R}^m	8
II	Теоремы	9
6	Лемма о "почти локальной инъективности"	10
	6.1 Доказательство	10
7	Теорема о сохранении области	11
	7.1 Доказательство	11
8	Следствие о сохранении области для отображений в пространство меньшей размерно-	
	сти	12
	8.1 Доказательство	12
9	Теорема о гладкости обратного отображения	13
	9.1 Доказательство	13
10	Лемма о приближении отображения его линеаризацией	14

	10.1 Доказательство	14
11	Теорема о локальной обратимости	15
	11.1 Доказательство	15
12	Теорема о неявном отображении	16
	12.1 Доказательство	16
13	Теорема о задании гладкого многообразия системой уравнений	18
	13.1 Доказательство	18
14	Следствие о двух параметризациях	20
	14.1 Доказательство	20
15	Лемма о корректности определения касательного пространства	21

Часть І

Определения

1 Диффеоморфизм

 $\mathit{Oбласть}\ \mathtt{B}\ \mathbb{R}^m$ — открытое связное множество.

Пусть $f:O\subset\mathbb{R}^m o\mathbb{R}^m-$ диффеоморфизм, где O- область, если:

- 1. f обратима;
- 2. f дифференцируема;
- 3. (f^{-1}) тоже дифференцируема.

2 Формулировка теоремы о локальной обратимости в терминах систем уравнений

$$\begin{cases} f_1(x_1, \dots, x_m) = y_1 \\ \dots \\ f_m(x_1, \dots, x_m) = y_m \end{cases}$$

 $\mathrm{Bce}\ f_i$ — гладкие.

Пусть при
$$y=(b_1,\ldots,b_m)$$
 существует единственное решение $x=(a_1,\ldots,a_m),$ что $\det\left(\frac{\partial f_i}{\partial x_j}(a)\right)\neq 0.$

Тогда для y_0 близких к (b_1, \ldots, b_m) существует решение (x_1, \ldots, x_m) близкое к (a_1, \ldots, a_m) и зависимое от y, причём оно гладкое.

3 Формулировка теоремы о неявном отображении в терминах систем уравнений

$$\begin{cases} f_1(x_1, \dots, x_m, y_1, \dots, y_n) = 0 \\ \dots \\ f_n(x_1, \dots, x_m, y_1, \dots, y_n) = 0 \end{cases}$$

x=a и y=bудовлетворяют системе уравнений, а также f_i — функции класса $C^r,$ также

$$\det\left(rac{\partial f_i}{\partial y_j}(a,b)
ight)
eq 0.$$
 Тогда

 $\exists U(a)$ и V(b) такое, что $\exists ! \varphi : U(a) \to V(b)$ класса C^r , что $\forall x \in U(a)$ верно $(x, \varphi(x))$ — решение этой системы.

4 Простое k-мерное гладкое многообразие в \mathbb{R}^m

1. $M \subset \mathbb{R}^m$ — простое k-мерное многообразие в \mathbb{R}^m (непрерывное), если оно гомеоморфно открытому множеству из \mathbb{R}^k .

$$\exists O \subset \mathbf{R}^k$$
 и $\exists \Phi: O \to M$ такое, что

- Φ сюрьекция;
- Φ непрерывное;
- Φ обратимо и Φ^{-1} непрерывно.
- 2. $M \subset \mathbb{R}^m$ простое, k —мерное, C^r гладкое многообразие, если:

$$\exists O \subset \mathbb{R}^k, \, \Phi : O \to \mathbb{R}^m$$
:

- $\Phi(O) = M$, и это гомеоморфизм;
- $\Phi \in C^r(O, \mathbb{R}^m)$ это гладкость;
- $\forall t \in O$ верно, что rang $\Phi'(t) = k$.

5 Касательное пространство к k-мерному многообразию в \mathbb{R}^m

Пусть $\Phi: O \subset \mathbb{R}^k \to \mathbb{R}^m$ — C^r -параметризация $U(p) \cap M, p \in M$ и $\Phi(t_0) = p$. Тогда $\Phi'(t_0)(\mathbb{R}^k)$ —касательное пространство к k-мерному многообразию M в точке p.

Часть II

Теоремы

6 Лемма о "почти локальной инъективности"

 $F:O\subset\mathbb{R}^m o \mathbb{R}^m$ — дифференцируема в точке $x_0,$

 $\det F'(x_0) \neq 0,$

O — область.

Тогда $\exists c, \delta > 0 : \forall h : |h| < \delta : |F(x_0 + h) - F(x_0)| \ge c \cdot |h|$

6.1 Доказательство

 $|F(x_0 + h) - F(x_0)| = |F'(x_0)h + \alpha(h)|h| \ge |F'(x_0)h| - |\alpha(h)||h| \ge (\widetilde{c} - |\alpha(h)|)|h| \ge \frac{c}{2}|h|$

Возьмём в качестве $\widetilde{c} = \frac{1}{\|(F'(x_0))^{-1}\|}.$

Пусть при $|h| < \delta$ будет верно, что $|\alpha(h)| < \frac{\widetilde{c}}{2}.$

7 Теорема о сохранении области

$$F:O\subset\mathbb{R}^m\to\mathbb{R}^m$$
, где O — открыто,

для любого $x \in O$ выполняется $\det F'(x) \neq 0$. Тогда F(O) — открыто.

7.1 Доказательство

Пусть $x_0 \in O$ и $y_0 = F(x_0) \in F(O)$, необходимо проверить, что y_0 — внутренняя точка F(O).

По лемме о "почти локальной инъективности" существуют такие c и δ , что для любого $h \in \overline{B(0,\delta)}$ верно $|F(x_0+h)-F(x_0)| \geq c|h|$ (и в частности $F(x_0+h) \neq F(x_0)$ при $|h|=\delta$).

$$r := \frac{1}{2} \text{dist } (y_0, F(S(x_0, \delta))) > 0$$

Проверим, что $B(y_0,r)\subset F(O)$. Пусть $y\in B(y_0,r)$ и g(x):=|F(x)-y| — функция на $\overline{B(x_0,\delta)}$.

- 1. На $S(x_0, \delta)$ верно, что $|F(x) y| \ge r$
- 2. При $x=x_0$ выполняется, что $|F(x_0)-y|=|y_0-y|< r,$ по теореме Вейерштрасса g достигается минимума внутри шара $B(x_0,\delta).$

Пусть $l:x\mapsto \left|F(x)-y\right|^2$ — достигает минимума таким же образом.

Найдём минимум с помощью необходимого условию экстремума, т.е. производная должна быть равна 0.

$$\begin{cases} l'_{x_1} = 0 & 2(f_1(x_1, \dots, x_m) - y_1) \cdot \frac{\partial f_1}{\partial x_1} + \dots + 2(f_m(x_1, \dots, x_m) - y_m) \cdot \frac{\partial f_m}{\partial x_1} = 0 \\ \dots \\ l'_{x_m} = 0 & 2(f_1(x_1, \dots, x_m) - y_1) \cdot \frac{\partial f_1}{\partial x_m} + \dots + 2(f_m(x_1, \dots, x_m) - y_m) \cdot \frac{\partial f_m}{\partial x_m} = 0 \end{cases}$$

Поскольку матрица F'(x) невырожденная по условию, то получаем, что $f_i(x)-y=0$ для всех i.

8 Следствие о сохранении области для отображений в пространство меньшей размерности

$$F:O\subset\mathbb{R}^m\to\mathbb{R}^l$$
, где:

l < m,

$$F \in C^1(O)$$
,

rang F'(x) = l при всех x.

Тогда F(O) — открыто.

8.1 Доказательство

В точке x_0 и в окрестности ранг реализован на первых l столбцах.

Пусть
$$\widetilde{F} = \begin{pmatrix} F \\ x_{l+1} \\ \dots \\ x_m \end{pmatrix} : O \to \mathbb{R}^m$$

$$(x_1,\ldots,x_m)\mapsto (F(x_1,\ldots,x_m),x_{l+1},\ldots,x_m)$$

$$\det \widetilde{F}(x_0) = \det F(x_0) \neq 0$$
, а также $\forall x \in U(x_0)$.

Значит $\widetilde{F}(U(x_0))$ открыто в \mathbb{R}^m , а $F(U(x_0))$ — проекция на \mathbb{R}^l .

9 Теорема о гладкости обратного отображения

$$T \in C^r(O, \mathbb{R}^m) \ (r = 1, 2, ..., +\infty).$$

Пусть T — обратимо, $\det T'(x) \neq 0$ всюду. Тогда

$$T^{-1} \in C^r$$
 и при этом $(T^{-1})'(y_0) = (T'(x_0))^{-1}$, если $y_0 = T(x_0)$.

9.1 Доказательство

Индукция по r:

• База r = 1:

 $S = T^{-1}$ — обратное отображение, S — непрерывно (по теореме о сохранении области).

O — открытое $\Rightarrow T(O)$ — открытое, значит $T: \mathbb{R}^m_{(1)} \to \mathbb{R}^m_{(2)}$, а $S: \mathbb{R}^m_{(2)} \to \mathbb{R}^m_{(1)}$, значит и S^{-1} — тоже открытое.

 $T(O) = O_1, y_0 \in O_1$, верно ли, что S — дифференцируема в y_0 ? Обозначим $A = T'(x_0)$.

По лемме о почти локальной инъективности $\exists c, \delta : x \in B(x_0, \delta)$, что $|T(x) - T(x_0)| \ge c|x - x_0|$

По определению дифференцирования $T(x) - T(x_0) = A(x - x_0) + \alpha(x)|x - x_0|$

$$S(y) - S(y_0) = A^{-1}(y - y_0) + A^{-1}\alpha(S(y))|S(y) - S(y_0)|.$$

Пусть
$$\beta = A^{-1}\alpha(S(y))|S(y) - S(y_0)|$$

Пусть y близко к $y_0: |x-x_0| = |S(y)-S(y_0)| < \delta$ — по непрерывности S'.

$$\left|\beta(y)\right| = \left|x - x_0\right| \cdot \left|A^{-1}\alpha\left(S(y)\right)\right| \leq \frac{1}{c}\left|T(x) - T(x_0)\right| \cdot \left\|A^{-1}\right\|\alpha\left(S(y)\right)\right| = \frac{\left\|A^{-1}\right\|}{c}\left|\alpha\left(S(y)\right)\right| \left|y - y_0\right| = o(\left|y - y_0\right|)$$
при $y \to y_0$.

$$|T(x) - T(x_0)| \ge c|x - x_0| \Rightarrow |x - x_0| \le \frac{1}{c}|T(x) - T(x_0)|.$$

 $S': y \xrightarrow{C^1} T^{-1}(y) = x \xrightarrow{C^1} T'(x) \xrightarrow{C^{\infty}} (T'(x))^{-1} = S'.$

• Индукционный переход без доказательства:

$$r=1\Rightarrow r=2$$
, т.е. $T\in C^2\Rightarrow S\in C^2$, т.е. $S'\in C^1$, а также $T\in C^1$ и $S\in C^1$.

10 Лемма о приближении отображения его линеаризацией

$$T \in C^1(O, \mathbb{R}^m), x_0 \in O.$$

Тогда
$$|T(x_0+h)-T(x_0)-T'(x_0)h|\geq M\cdot |h|$$
, где $M=\sup_{z\in[x_0,x_0+h]}\|T'(z)-T'(x_0)\|.$

10.1 Доказательство

$$|F(x)-F(x_0)| \leq \sup_{z \in [x_0,x]} \|F^{-1}(z)\| \cdot |x-x_0|$$
 — по теореме Лагранжа.

$$F(x) = T(x) - T'(x_0) \cdot X$$

$$F'(x) = T'(x) - T'(x_0)$$

$$|T(x_0+h)-T(x_0)-T'(x_0)h|=|F(x_0+h)-F(x_0)| \le \sup_{z\in[x_0,x_0+h]} ||F'(z)|||h|.$$

11 Теорема о локальной обратимости

$$T\in C^{1}\left(O,\mathbb{R}^{m}\right),\,x_{0}\in O$$
и $\det T'(x_{0})\neq 0.$ Тогда

$$\exists U(x_0): Tig|_{U(x_0)}$$
 — диффеоморфизм.

11.1 Доказательство

Достаточно доказать, что $\exists U(x_0)$, что $T\big|_{U(x_0)}$ — обратимо (и для любого $x\in U(x_0)$ $\det T'(x)\neq 0$).

$$T'(x_0)$$
 — обратимо, значит $\exists c>0: \forall h \; |T'(x_0)h|\geq c|h|$, где $c=\frac{1}{\|T'(x_0)^{-1}\|}$.

Возьмём $U = B(x_0, r) \subset O$ так, что при $x \in U$ и было верным:

$$\det T'(x) \neq 0$$
 и $||T'(x) - T'(x_0)|| < \frac{c}{4}$.

Проверим, что $T|_{U}$ — взаимно-однозначное отображение.

$$x,y\in U$$
 и $y=x+h$

$$T(y) - T(x) = (T(x+h) - T(x) - T'(x)h) + (T'(x)h - T'(x_0)h) + T'(x_0)h$$

(Здесь и ниже римскими цифрами отображается номер скобки в выражении сверху)

$$|T(y) - T(x)| \ge |T'(x_0)h| - |I| - |II| \ge c|h| - \frac{c}{2}|h| - \frac{c}{4}|h| = \frac{c}{4}|h| \ne 0.$$

$$|I| \ge M|h|$$

$$|T(x_0+h)-T(x_0)-T'(x_0)h| \le M|h|$$

$$M = \sup ||T'(z) - T'(x_0)||, z \in [x_0, x_0 + h]$$

$$M \leq \frac{c}{2}$$
.

12 Теорема о неявном отображении

 $F: O \subset \mathbb{R}^{m+n} \to \mathbb{R}^n, F \in C^r(O, \mathbb{R}^n),$

 $(a,b) \in O$ и F(a,b) = 0,

 $\det F_{u}'(a,b) \neq 0.$

Тогда:

1. Существует открытое $P \in \mathbb{R}^m, \ a \in P$ и также существует открытое $Q \in \mathbb{R}^n, \ b \in Q$ такие, что $\exists ! \varphi : P \to Q - C^r$ -гладкое, такое, что $\forall x \in P \ F(x, \varphi(x)) = 0.$

2.
$$\varphi'(x) = -(F_y'(x,\varphi(x))) \cdot F_x'(x,\varphi(x))$$
.

12.1 Доказательство

1. $\Phi: O \to \mathbb{R}^{m+n}$

$$(x,y) \mapsto (x,F(x,y))$$

$$\Phi' = \begin{pmatrix} \mathbb{E} & 0 \\ F_x' & F_y' \end{pmatrix}, \det \Phi'(a, b) \neq 0$$

 $\exists \widetilde{U}(a,b) : \Phi ig|_{\widetilde{U}} -$ диффеоморфизм.

 $\widetilde{U}=P_1 imes Q$, где $a\in P_1,\,b\in Q.$

(a)
$$\widetilde{V} = \Phi\left(\widetilde{U}\right)$$
 — открыто;

(b)
$$\exists \psi = \Phi^{-1} : \widetilde{V} \to \widetilde{U};$$

(c) Φ не меняет первую координату, значит ψ тоже не меняет,

$$\psi(u,v)=(u,H(u,v)),\,H:\widetilde{V}\to\mathbb{R}^n,\,H\in C^r;$$

(d) "ось x" и "ось u" одно и то же \mathbb{R}^m ,

$$P := (\mathbb{R}^m \times \{O_n\}) \cap \widetilde{V}$$
 — открыто в \mathbb{R}^m ;

(e) $\psi(x) := H(x,0) : P \to Q : F(x,\psi(x)) = 0$ — единственно,

$$x \in P, y \in Q \ F(x,y) = 0, (x,y) = \psi(\Phi(x,Y)) = \psi(x,0) = (x,H(x,0)).$$

2.
$$F(x, \varphi(x)) = 0, F \circ H = 0,$$

$$\begin{pmatrix} F_x' & F_y' \end{pmatrix} \begin{pmatrix} E \\ \varphi'(x) \end{pmatrix} = 0 \Rightarrow F_x' + F_y' \varphi'(x) = 0,$$

$$F_y' \varphi' = -F_x'$$

$$\varphi' = -(F_y')^{-1} F_x'$$

13 Теорема о задании гладкого многообразия системой уравнений

 $M \subset \mathbb{R}^m$, зафиксируем $1 \leq k < m$ и $1 \leq r \leq +\infty$.

Тогда $\forall p \in M$ эквивалентны следующие два утверждения:

1. $\exists U \subset \mathbb{R}^m$ — открытое, $p \in U$,

 $M \cap U$ — простое k-мерное C^r -гладкое многообразие;

2. $\exists \widetilde{U} \subset \mathbb{R}^m$ — открытое, $p \in \widetilde{U}$,

что существуют функции $f_1,\,f_2,\,\ldots,\,f_{m-k}:\widetilde{U}\to\mathbb{R}\in C^r$ такие, что

$$x \in M \cap \widetilde{U} \iff$$

$$\begin{cases} f_1(x) = 0 \\ f_2(x) = 0 \\ \dots \\ f_{m-k}(x) = 0 \end{cases}$$

и grad $f_1(p), \ldots, \operatorname{grad} f_{m-k}(p) - \operatorname{ЛН3}$.

13.1 Доказательство

• $1 \Rightarrow 2$:

Существует параметризация $\Phi \in C^r (O \subset \mathbb{R}^k, \mathbb{R}^m),$

 $\varphi_1,\dots,\varphi_m$ — координатные функции Ф и $p=\Phi(t_0),$ rang $\Phi'(t_0)=k.$

Можно считать, что $\left(\frac{\partial \varphi_i}{\partial t_i}(t_0)\right)$ — невырождена.

$$\mathbb{R}^m = \mathbb{R}^k \times \mathbb{R}^{m-k}$$

$$L: \mathbb{R}^m o \mathbb{R}^k$$
 — проекция, $x \mapsto (x_1, \dots, x_k)$.

 $L \circ \Phi$ имеет невырожденный производный оператор в точке t_0 .

 $\exists w(t_0)$ — окрестность $t_0,\,\exists V\in\mathbb{R}^k$ — открытое и $L\circ\Phi:w\to V$ — диффеоморфизм.

 $L(w) \to V$ — взаимно-однозначеное отображение, т.е. $\Phi(w)$ — график некоторого отображения $H: V \to \mathbb{R}^{m-k}$.

Пусть $\psi = (L \circ \Phi)^{-1} : V \to w, \ \psi \in C^r$.

Если $\widetilde{x} \in V$, то $(\widetilde{x}, H(\widetilde{x})) = \Phi(w(\widetilde{x})) \Rightarrow H \in C^r$.

 $\Phi(w)$ — открыто в M, \exists открытое $\widetilde{U} \in \mathbb{R}^m$ такое, что $\widetilde{U} \cap M = \Phi(w)$ (можно считать, что $\widetilde{U} \subset V \times \mathbb{R}^{m-k}$.

$$f_j: \widetilde{U} \to \mathbb{R}, \ f_j(x) = H_j \ (L(x)) - x_{k+j}, \ \text{если} \ x \in \widetilde{U} \cap M \Leftrightarrow \text{все} \ f_j(x) = 0.$$

$$\begin{pmatrix} \frac{\partial H_1}{\partial x_1} & \dots & \frac{\partial H_1}{\partial x_k} & -1 & 0 & \dots & 0 \\ \frac{\partial H_2}{\partial x_1} & \dots & \frac{\partial H_2}{\partial x_k} & 0 & -1 & \dots & 0 \\ \dots & & & & & \\ \frac{\partial H_{m-k}}{\partial x_1} & \dots & \frac{\partial X_{m-k}}{\partial x_k} & 0 & 0 & \dots & -1 \end{pmatrix}, \text{ где } m-k \text{ строчек и все они ЛНЗ.}$$

• $2 \Rightarrow 1$:

Из предыдущего пункта у нас есть система уравнение, для которой верно, что grad $f_i(p)$ — ЛНЗ, можно считать, что $\det\left(\frac{\partial f_i}{\partial x_{k+j}}(p)\right)_{i,j=1..m-k} \neq 0$.

По теореме о неявном отображении $\exists H: P \to Q$, где P — окрестность $(p_1, ..., p_k)$, а Q — окрестность $(p_{k+1}, ..., p_m)$,

что $\forall (x_1, ..., x_k) \in P$ точка $(x_1, ..., x_k, H_1(x_1, ..., x_k), H_2(x_1, ..., x_k), ..., H_{m-k}(x_1, ..., x_k))$ удовлетворяет системе уравнений.

$$\Phi: P \to \mathbb{R}^m$$
,

 $u\mapsto (u,H(u))$ — параметризация нашего многообразия, $(P\times Q)\cap M$.

14 Следствие о двух параметризациях

 $M \subset \mathbb{R}^m - k$ -мерное простое C^r -гладкое многообразие, $p \in M, U$ — открытое, $p \in U$.

$$\Phi_1: O_1 \subset \mathbb{R}^k \to U \cap M$$
,

 $\Phi_2: O_2 \subset \mathbb{R}^k \to U \cap M$ (оба отображние "на" и даже гомеоморфизм)

 $(\phi_i \in C^r (O_i, \mathbb{R}^m)$. Тогда существует диффеоморфизм $\psi: O_1 \to O_2$ и $\Phi_1 = \Phi_2 \circ \psi$.

14.1 Доказательство

Для случая, когда rang $\Phi_1'(p)$ и rang $\Phi_2'(p)$ на одном и том же наборе столбцов (во всех точках O_1 и O_2).

Тогда $\Phi_1 \circ L$ и $\Phi_2 \circ L$ — тоже диффеоморфизмы.

Дальше всё очевидно, что $\Phi_1 = \Phi_2 \circ (L \circ \Phi_2)^{-1} \circ (L \circ \Phi_1).$

15 Лемма о корректности определения касательного пространства

 $\Phi:O\subset\mathbb{R}^k o\mathbb{R}^m-C^r$ -параметризация $U(p)\cap M,\,p\in M,\,\Phi(t_0)=p.$ Тогда образ оператора $\Phi'(t_0):\mathbb{R}^k o\mathbb{R}^m$ — это k-мерное подпространство в $\mathbb{R}^m,$ не зависящее от $\Phi.$

15.1 Доказательство

 Φ — параметризация, значит rang $\Phi'=k$, значит образ k-мерный. Если есть параметризацция Φ_2 , можно считать, что существует диффеоморфизм ψ , что $\Phi_2=\Phi\circ\psi$, и при этом $\Phi'_2=\Phi'\cdot\psi'$, где ψ' — невырожденный, значит Φ'_2 совпадает с Φ' .