Trend analysis with MODIS data (in R)

Introduction to satellite-based time series analysis to detect trends in biomass

Trend analysis with MODIS data (in R)

- 1)Introduction to trend analysis
- 2)Introduction to the MODIS data
- 3)Practice: Download and handling of MODIS time series
- 4) Practice: Analysis of MODIS time series

1) Introduction to Trend analysis

Example time series of NDVI

Aim: Decomposition of time series into trend, season, and remainder components e.g. using the BFAST algorithm: https://bfast.r-forge.r-project.org/

Seasonal changes

Seasonal variation of forest at Duke Hardwood Forest

https://cran.r-project.org/web/packages/phenocamapi/vignettes/getting_started_phenocam_api.html

Seasonal changes

Trend (and breakpoints)

Katelyn Murphy (https://commons.wikimedia.org/w/index.php?curid=19646187)

Trend (and breakpoints)

Trend (spatial)

Change of the NDVI at the Kilimandscharo

Anomalies

- e.g. extreme events
- But also noise in the data

https://earthobservatory.nasa.gov

Anomalies

Fensholt et al., 2015

2) Introduction to MODIS data

MODIS

- Moderate Resolution Imaging Spectroradiometer (MODIS)
- onboard 2 NASA Satellites: Terra&Aqua
- Since 1999
- 36 spectral channels (VIS-TIR)
- 2x per day (4 in total)
- 250m-1km spatial resolution

MODIS Produkts

- https://modis.gsfc.nasa.gov/data/dataprod/
- Vegetation indices, fire frequency, Land surface temperature, land cover, etc
- Often provided as daily, 16-days, yearly composites

MODIS NDVI

- Available as 16-Day product
- Global, 250m
- Product-ID: MOD13Q1 (Terra) and/or MYD13Q1 (Aqua)

Data Availability

- LP DAAC: Land Processes Distributed Active Archive Center
- The Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC)

3) Download and handling of MODIS data

Data Download in R via the MODIS package

- https://cran.r-project.org/web/packages/MODIS/index.html
- MODIS package for Acquisition and Processing of MODIS Products

Getting started:

Data Download in R via the MODIS package

Download data:

download data
getHdf("MOD13Q1",begin = "2002.01.01", end = "2020.01.01",
tileH = 18, tileV = 3)

MODIS tile. See next slide

Data Download in R via the MODIS package

Process data

- Extract only relevant bands
- Projection

• ...

```
Specify job so that only data that are not yet processed are processed
```

Only NDVI band. See e.g. layers in https://lpdaac.usgs.gov/products/mod13q1v006/ See next slide

Order of SDS

Layers							~
SDS Name	Description	Units	Data Type	Fill Value	No Data Value	Valid Range	Scale Factor
250m 16 days NDVI	16 day NDVI	NDVI	16-bit signed integer	-3000	N/A	-2000 to 10000	0.0001
250m 16 days EVI	16 day EVI	EVI	16-bit signed integer	-3000	N/A	-2000 to 10000	0.0001
250m 16 days VI Quality	VI quality Indicators	Bit Field	16-bit unsigned integer	65535	N/A	0 to 65534	N/A
250m 16 days red reflectance	Surface Reflectance Band 1	N/A	16-bit signed integer	-1000	N/A	0 to 10000	0.0001
250m 16 days NIR reflectance	Surface Reflectance Band 2	N/A	16-bit signed integer	-1000	N/A	0 to 10000	0.0001
250m 16 days blue reflectance	Surface Reflectance Band 3	N/A	16-bit signed integer	-1000	N/A	0 to 10000	0.0001
250m 16 days MIR reflectance	Surface Reflectance Band 7	N/A	16-bit signed integer	-1000	N/A	0 to 10000	0.0001
250m 16 days view zenith angle	View zenith angle of VI Pixel	Degree	16-bit signed integer	-10000	N/A	0 to 18000	0.01
250m 16 days sun zenith angle	Sun zenith angle of VI pixel	Degree	16-bit signed integer	-10000	N/A	0 to 18000	0.01
250m 16 days relative azimuth angle	Relative azimuth angle of VI pixel	Degree	16-bit signed integer	-4000	N/A	-18000 to 18000	0.01
250m 16 days composite day of the year	Day of year VI pixel	Julian day	16-bit signed integer	-1	N/A	1 to 366	N/A
250m 16 days pixel reliability	Quality reliability of VI pixel	Rank	8-bit signed integer	-1	N/A	0 to 3	N/A

Load and visualize the data

```
library(raster)
library(viridis)
# Path to the Processed MODIS data:
setwd("/home/hanna/Documents/Data/MODIS/PROCESSED/NDVI_Germany/")
# Load all MODIS data:
dat <- stack(list.files())
# Visualize a single MODIS scene (note: unit is NDVI*0.0001):
spplot(dat[[1]]* 0.0001,col.regions=viridis(100))</pre>
```


Load and visualize the data

Load and visualize the data

Crop data to area of interest

4) Time series analysis with MODIS data

Spatial time series analysis

- Time series decomposition for each MODIS pixel
- R packages: "greenbrown" (https://greenbrown.r-forge.r-project.org/) or bfastSpatial (http://www.loicdutrieux.net/bfastSpatial/)

Calculate trend

Slope only for significant trends

Focus only on areas where the trend is significant

```
mask <- trend$SlopeSEG1
mask[trend$PvalSEG1>0.05] <- NA
masked_trend <- mask(trend$SlopeSEG1,mask)</pre>
```


Further processing and visualization

- e.g. crop to area of interest with raster::crop
- Write to file with raster::writeRaster
- Nice visualization e.g. with the tmap package
- Interactive visualization with mapview
- ... helpful resource: https://geocompr.github.io/

Time series analysis for single pixels

e.g. use the pixel with the strongest negative trend

Time series analysis for single pixels

```
#or use the greenbrown package:
ts_gb <- Trend(datats)
plot(ts_gb)</pre>
```


Suggestions

- Spatial Trend allows for an area-wide estimation of trends but interpretation is hard
- Trend analysis for a single pixel gives much more insights but limited to that one pixel
- Suggestion: Instead of single pixels you could look at the average time series for an entire homogeneous area (e.g. one pasture)

