บ๊กที่ 3 เต้ทม์ททานสิ่สาน2้มูนกิจิตอน และ เต้ทม์ททาน เลิ้าละตัก (DIGITAL COMMUNICATION AND ENCODING TECHNIQUE)

ການສົ່ງສັນຍານຂໍ້ມູນ (Data Transmission) ຄືການສົ່ງຂ່າວສານ (Information) ເພື່ອສົ່ງໃຫ້ອຸປະກອນປະມວນຂ່າວສານ (Information Processing Equipment) ທີ່ຮູ້ຈັກກັນດີຄືຄອມພິວເຕີ ດັ່ງນັ້ນ ລະບົບທີ່ເຊື່ອມໂຍງຄອມພິວເຕີກັບ ອຸປະກອນຮັບສົ່ງຂໍ້ມູນປາຍທາງທີ່ຢູ່ຫ່າງໄກກັນໃຫ້ສາມາດສິ່ງຜ່ານຂໍ້ມູນລະຫວ່າງກັນໄດ້ ຈະຕ້ອງປະກອບດ້ວຍອຸປະກອນທີ່ໃຊ້ຮັບສິ່ງ ແລະ ຕົວກາງນຳສັນຍານ (Media) ແບບ ຕ່າງໆ.

ໂຄງສ້າງການສື່ສານຂໍ້ມູນ

ຕົວຢ່າງການສື່ສານຂໍ້ມູນ

ສຳລັບອັດຕາຄວາມໄວໃນການສື່ງຂໍ້ມູນດິຈິຕອນຈະວັດຈາກຈຳນວນບິດຂໍ້ມູນ ທີ່ສາມາດສື່ງໄດ້ໄລຍະເວລາ 1 ວິນາທີ (bit per second: bps) ເຊິ່ງເອີ້ນວ່າ ອັດຕາບິດ (Bit Rate/Data Rate) ໃນຂະນະທີ່ ອັດຕາບອດ (Baud Rate) ຈະວັດຈຳນວນຂອງສັນຍານທີ່ຖືກປຸ່ງນພາຍໃນ 1 ວິນາທີ.

BIT RATE VS BAUD RATE

- o ອັດຕາບິດ (Bit rate: bps)
 - ແມ່ນຈຳນວນຂອງບິດຕໍ່ວິນາທີ (Number of bits per second)

- o ອັດຕາບອດ (Baud rate) (signal unit/sec: baud / sec: baud)
 - ແມ່ນຈຳນວນຂອງກຸ່ມສັນຍານຕໍ່ວິນາທີ (Number of signal units per second)
 - ນ້ອຍກວ່າ ຫຼື ເທົ່າກັບອັດຕາບິດ (less than or equal to the bit rate)

Example

ສິ່ງສັນຍານອະນາລັອກ 4 ບິດ ຂອງແຕ່ລະກຸ່ມສັນຍານ. ຖ້າຫາກວ່າສົ່ງ ສັນຍານ 1000 ສັນຍານຕໍ່ວິນາທີ, ຈົ່ງຊອກຫາ: ອັດຕາ baud ແລະ ອັດຕາ bit

Solution

Baud Rate = 1000 bauds per second (baud/s)

Bit Rate = $1000 \times 4 = 4000 \text{ bps}$

Example

ຈຳນວນອັດຕາບິດຂອງສັນຍານແມ່ນ 3000. ຖ້າຫາກແຕ່ລະ ກຸມສັນຍານທີ່ສົ່ງອອກໄປແມ່ນ 6 ບິດ. ຖາມວ່າອັດຕາຂອງ ບອດແມ່ນເທົ່າໃດ

Solution

Baud rate = 3000 / 6 = 500 baud/s

ລາຍລະອງດການສົມທຽບອັດຕາຂໍ້ມູນດິຈິຕອນ (BITS RATE COMPARISION)

1 Bit	Binary Digit
8 Bits	1 Byte
1024 Bites	1 Kilobyte
1024 Kilobytes	1 Megabyte
1024 Megabytes	1 Gigabyte
1024 Gigabytes	1 Terabyte
1024 Terabytes	1 Petabyte
1024 Petabytes	1 Exabyte
1024 Exabytes	1 Zettabyte
1024 Zettabytes	1 Yottabyte
1024 Yottabytes	1 Brontobyte
1024 Brontobytes	1 Geopbyte

DIGITAL TRANSMISSION

Actual signal: digital pulse

Digital data: Abstract Data

Figure Signal level versus data level

a. Two signal levels, two data levels

b. Three signal levels, two data levels

บัນຫາທີ່ເກີດກັບໃນການແປງສັນຍານຂໍ້ມູນດິຈິຕອນ (Problems

DIGITAL DATA TO DIGITAL SIGNAL CONVERSION)

DC component

• ສັນຍານດິຈິຕອນທີ່ມີອົງປະກອບຂອງສັນຍານ DC ເຮັດໃຫ້ລະດັບສັນຍານ ໜຸ້ງນ

Lack of Synchronization

• ການກວດຈັບບິດຂໍ້ມູນຜິດຕຳແໜ່ງເຮັດໃຫ້ອ່ານຄ່າຂອງລະດັບສັນຍານຜິດໄປ

ບັນຫາເຫຼົ່ານີ້ສົ່ງຜົນ

• ຕົວຮັບແປງສັນຍານກັບເປັນບິດຂໍ້ມູນຜິດພຸ້ງນໄປ

Figure DC component

b. A signal without dc component

Figure Lack of synchronization

Signal level (Element) versus Data level (Element)

 a. One data element per one signal element (r = 1)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

 c. Two data elements per one signal element (r = 2)

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

$$r = \frac{\# data \ element}{\# signal \ element}$$

15

1. ຮູບແບບການສົ່ງຂໍ້ມູນດິຈິຕອນ (Digital transmission mode)

ສຳລັບການສື່ສານຂໍ້ມູນນັ້ນ ບິດຂໍ້ມູນຈະຖືກລວມກຸ່ມໃຫ້ຢູ່ໃນຮູບແບບ ຂອງບັອກຂໍ້ມູນ (Packet) ສາເຫດຈຳເປັນຈະຕ້ອງມີການຈັດຂໍ້ມູນໃນລັກສະນະ ນີ້ກໍ່ເນື່ອງຈາກກຳມະວິທີໃນການສົ່ງ. ແພັກເກັດນັ້ນຈະເປັນກຸ່ມບິດຂໍ້ມູນທີ່ມີຂະໜາດບິດຫຼາຍຂື້ນໂດຍມີໂຄງສ້າງທີ່ແນ່ນອນ ເຊິ່ງຈະປະກອບດ້ວຍຂໍ້ມູນ (Data), ສ່ວນຄວບຄຸມເອີ້ນວ່າ Overhead, ສ່ວນທີ່ຢູ່ Address ແລະ ສ່ວນຄວບຄຸມ ຄວາມຜິດພາດ (Error Control) ເປັນຕົ້ນ.

Ethernet packet

 . ~ .	tination MAC Data	CRC
---------------	----------------------	-----

2. ການວັດຄວາມຈຸຂອງຊ່ອງສັນຍານ (Channel Capacity)

ໂດຍທົ່ວໄປຄວາມຈຸຂອງຊ່ອງສັນຍານທີ່ໃຊ້ໃນໂທລະຄົມມະນາຄົມນັ້ນຈະໃຊ້ ຄຳວ່າ ແບນວິດ (Bandwidth) ຄ່ານີ້ຈະເປັນຄ່າແຕກຕ່າງຂອງຄວາມຖີ່ສູງສຸດ ຄວາມຖີ່ຕ່ຳສຸດຂອງຊ່ອງສັນຍານນັ້ນ ຕົວຢ່າງເຊັ່ນ ໃນສັນຍານໂທລະສັບເຊິ່ງໃຊ້ໃນ ການສົ່ງສັນຍານສູງ 300Hz ເຖິງ 3100Hz ດັ່ງນັ້ນ ແບນວິດຂອງຊ່ອງສັນຍານ ຈິ່ງມີຄ່າເທົ່າກັບ 3100-300 ເທົ່າກັບ 2800Hz.

ສຳລັບການສິ່ງສັນຍານຂໍ້ມູນນັ້ນຄວາມຈຸຂອງຊ່ອງສັນຍານຈະຖືກວັດ ໂດຍຫົວ ໜ່ວຍເປັນອັດຕາການສິ່ງຂໍ້ມູນຂອງຊ່ອງສັນຍານຕໍ່ວິນາທີ (bps; kbps; Mbps...)

ນອກຈາກນີ້ຍັງມີອີກໜຶ່ງຫົວໜ່ວຍທີ່ໃຊ້ວັດຄວາມຈຸຂອງຊ່ອງສັນຍານຄື: ບອດ (Baud) ເຊິ່ງຫົວໜ່ວຍນີ້ຈະໃຊ້ວັດຄວາມໄວຂອງສັນຍານໃນຊ່ອງສັນຍານ ຍານນັ້ນ. ຄວາມຈຸຂອງຊ່ອງສັນຍານໂດຍມີແຖບຄວາມຖີ່ B ແລະມີສັນຍານລົບກວນທີ່ ຖືກຈຳກັດຄວາມຖີ່ໄວ້ມີຄ່າບວກຄື

$$C = B \log_2\left(1 + \frac{S}{N}\right)$$

C ຄື ຄວາມຈຸຂອງຊ່ອງສັນຍານ (bps)

B ຄື ແຖບຄວາມຖີ່ (Hz)

S/N ຄື ອັດຕາສ່ວນຂອງກຳລັງຂອງສັນຍານຕໍ່ກຳລັງຂອງສັນຍານລົບກວນ dB ແລະ ກຳລັງຂອງສັນຍານລົບກວນມີຫົວໜ່ວຍເປັນ W

ຖ້າມີແຫຼ່ງກຳເນີດສັນຍາລັກທີ່ກຳເນີດສັນຍາລັກ ໃນອັດຕາສັນຍາລັກຕໍ່ວິນາທີ ເຮົາສາມາດຫາອັດຕາຂ່າວສານໄດ້ໂດຍ

$$R = rH$$

R ຄື ຈຳນວນສະເລ່ຍຂອງບິດຂ່າວສານຕໍ່ວິນາທີ

r ຄື ອັດຕາການສົ່ງຂໍ້ມູນສູງສຸດ

H ຄື ປະລິມານສະເລ[່]ຍຂອງຂ່າວສານ/ສັນຍາລັກ

ໂດຍສາມາດຫາປະລິມານສະເລ່ຍຂອງຂ່າວສານ/ສັນຍາລັກໄດ້ໂດຍ

$$H = log_2 M$$

ໂດຍທີ່ M ແມ່ນຈຳນວນຕົວອັກສອນ ຫຼື ຕົວເລກທີ່ກຳລັງສິ່ງ

Example

ກຳນົດໃຫ້ເຄື່ອງປາຍທາງເປັນສະຖານີສິ່ງຂໍ້ມູນທີ່ເປັນຕົວເລກ ແລະຕົວ ອັກສອນໄປຍັງຄອມພິວເຕີປາຍທາງ ເຊິ່ງເຊື່ອມໂຍງຂໍ້ມູນດ້ວຍສາຍໂທລະສັບ ແຖບຄວາມຖີ່ 3.4 KHz ແລະ ມີ S/N 10 dB ສົມມຸດວ່າໃຫ້ເຄື່ອງປາຍທາງສິ່ງ 300 ຕົວອັກສອນ ແລະ ຕົວເລກ ຈິ່ງຊອກຫາ

- ກ. ຄວາມຈຸຂອງຊ່ອງສັນຍານ
- ຂ. ຈົ່ງຫາອັດຕາຂອງຂໍ້ມູນສູງສຸດທີ່ສາມາດສົ່ງຈາກເຄື່ອງປາຍທາງໄປຍັງເຄື່ອງ ຄອມພິວເຕີໂດຍບໍ່ມີຄວາມຜິດພາດ

ແລະອັດຕາສະເລ່ຍຂອງຂ່າວສານ R = rH ຫາກທຳການສົ່ງຂໍ້ມູນໂດຍບໍ່ມີ ຄວາມຜິດພາດຈະໃຫ້

R = rH < 11.762

R = 8r < 11.762

r = 1.470

ດັ່ງນັ້ນ ການສົ່ງຂໍ້ມູນທີ່ສູງສຸດໂດຍປາສະຈາກຄວາມຜິດພາດເທົ່າກັບ 1.470 ສັນຍາລັກຕໍ່ວິນາທີ

3. ສັນຍານອະນາລັອກ ແລະສັນຍານດິຈິຕອນ

ສອງສັນຍານນີ້ແມ່ນສັນຍານຫຼັກທີ່ໃຊ້ສຳລັບການສື່ສານແລກປ່ງນຂໍ້ມູນ ຕ່າງໆ. ສັນຍານດິຈິຕອນແມ່ນມີຄວາມພິເສດກວ່າສັນຍານອະນາລັອກເພາະວ່າ ມັນສາມາດທຶນຕໍ່ສັນຍານລົບກວນໄດ້ດີກວ່າສັນຍານອະນາລັອກດັ່ງຮູບ

ບິດແກ້ (solution)

ກ. ຄວາມຈຸຂອງຊ່ອງສັນຍານ

$$C = B \log_2\left(1 + \frac{S}{N}\right)$$

 $= 3400 \log_2(1+10)$

$$= 11762 bps$$

ຂ. ປະລິມານສະເລ່ຍຂອງຂ່າວສານ/ສັນຍາລັກ

$$H = log_2 M$$

 $= log_2(300)$

= 8 ບິດ/ສັນຍາລັກ

ສະແດງຄວາມສາມາດຂອງສັນຍານທີ່ທຶນຕໍ່ສັນຍານລົບກວນ

4. ການແປງຂໍ້ມູນອະນາລັອກ/ດິຈິຕອນໃຫ້ເປັນສັນຍານ

ຂໍ້ມູນທີ່ຕ້ອງການສື່ສານຈະຢູ່ໃນຮູບແບບຂອງອະນາລັອກ ຫຼືດິຈິຕອນກໍ່ ຕາມ ກໍ່ສາມາດສົ່ງຜ່ານຕົວກາງໄປຍັງລະບົບສື່ສານໄດ້ ພູງແຕ່ຈຳເປັນຕ້ອງມີ ການປ່ຽນຮູບແບບຂອງສັນຍານທີ່ເໝາະສົມ ດັ່ງນັ້ນ ເຮົາຈິ່ງສາມາດແປງຂໍ້ມູນ ຫຼື ເຂົ້າລະຫັດຂໍ້ມູນໄປມາລະຫວ່າງອະນາລັອກ ຫຼືດິຈິຕອນໄດ້ດັ່ງນີ້:

4.1 ການແປງຂໍ້ມູນອະນາລັອກໃຫ້ເປັນສັນຍານອະນາລັອກ (Analog Data to Analog Signal)

ການແປງຂໍ້ມູນອະນາລັອກໃຫ້ເປັນສັນຍານອະນາລັອກເປັນຮູບແບບທີ່ງ່າຍ ໂດຍຈະແທນຂໍ້ມູນອະນາລັອກດ້ວຍສັນຍານອະນາລັອກຕົວຢ່າງການສື່ສານ ວິທະຍຸກະຈາຍສູງ ສົມມຸດເປີດວິທະຍຸຄື້ນ FM 101.5MHz ເພື່ອຟັງເພງ ໃນ ຂະນະທີ່ສູງເວົ້າຂອງມະນຸດຢູ່ທີ່ຍ່ານຄວາມຖີ່ຕ່ຳໃນຊ່ວງ 300-3.400 Hz ແລະ ສູງດົນຕຼີ 30-20.000 Hz ດັ່ງນັ້ນ ເພື່ອໃຫ້ສັນຍານສູງງແລະດົນຕູີ ສາມາດສົ່ງ ອອກໄປໃນຍ່ານຄວາມຖີ່ 101.5 MHz ຈະຕ້ອງມີເທັກນິກວິທີການສົ່ງ.

101.5 MHz ຄື້ນຄວາມຖີ່ສູງນີ້ເອີ້ນວ່າ ຄື້ນພາ (Carrier Signal) ຄຸນສົມບັດຄືສາມາດສົ່ງອອກໄປໄດ້ໄກໆ ແລະຜ່ານຕົວກາງໄດ້ ແລະ ເມື່ອນຳຄື້ນ ພາຫະມາລວມກັບສັນຍານສູງດ້ວຍການມໍດູເລດ (Modulate) ກໍ່ໄດ້ຄື້ນໃໝ່ອອກ ມາພ້ອມສົ່ງໄປຍັງຕົວກາງ ຝັ່ງສະຖານີຮັບກໍ່ມີວິທີການແຍກຄື້ນພາຫະອອກຈາກ ສັນຍານສຸງຄື: ການດີມໍດູເລດ (Demodulate).

ການມໍດູເລດສັນຍານແບບອະນາລັອກ

Note:

The total bandwidth required for AM can be determined from the bandwidth of the audio signal: $BWt = 2 \times BWm.$

Figure 5.26 Amplitude Modulation

Amplitude Modulation

$$AM = \{G[m(t)] + g\}c(t)$$

$$= \{G[\cos(\mu t)] + g\}\cos(\omega t)$$

$$= G\cos(\mu t)\cos(\omega t) + g\cos(\omega t)$$

$$A\cos(\mu t)\cos(\omega t) = \left(\frac{A}{2}\right)\cos(\omega - \mu)t + \left(\frac{A}{2}\right)\cos(\omega + \mu)t$$

$$= \frac{G}{2}\cos(\omega - \mu)t + \frac{G}{2}\cos(\omega + \mu)t + g\cos(\omega t)$$

$$\cos A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B) \right]$$

 BW_m = bandwidth of the modulating signal (audio) BW_t = total bandwidth (radio) f_c = frequency of the carrier

$$m = \frac{P - D}{P + D}$$

ω–μ ω ω+μ frequency

Figure 5.28 AM band allocation

Example 13

We have an audio signal with a bandwidth of 4 KHz.

What is the bandwidth needed if we modulate the signal using AM?

Ignore FCC (Federal Communications Commission) regulations.

Solution

$$BWt = 2 \times BWm$$

An AM signal requires twice the bandwidth of the original signal:

$$BW = 2 \times 4 \text{ KHz} = 8 \text{ KHz}$$

Figure 5.29 Frequency modulation

Amplitude

Figure 5.31 FM band allocation

Example 14

We have an audio signal with a bandwidth of 4 MHz.

What is the bandwidth needed if we modulate the signal using FM?

Ignore FCC (Federal Communications Commission) regulations.

Solution

$$BWt = 10 \times BWm$$

An FM signal requires 10 times the bandwidth of the original signal:

$$BW = 10 \times 4 MHz = 40 MHz$$

4.2 ການແປງຂໍ້ມູນດິຈິຕອນໃຫ້ເປັນສັນຍານດິຈິຕອນ (Digital Data to Digital Signal)

ການແປງຂໍ້ມູນດິຕອນໃຫ້ເປັນສັນຍານດິຈິຕອນຈະມີວິທີການເຂົ້າລະຫັດສັນຍານດິຈິ ຕອນຫຼາຍວິທີດ້ວຍກັນ.

+ Uniporlar Signaling: ສັນຍານຈະຖືກຈັດລະດັບແຮງດັນເປັນ 2 ລະດັບໂດຍທີ່ສັນຍານ ທີ່ໄບນາຣີ 1 ສະແດງດ້ວຍລະດັບທີເປັນ High (+A) ສັນຍານທີ່ເປັນ 0 ຈະສະແດງ ດ້ວຍລະດັບ Low (0V) ເຮົາເອີ້ນສັນຍານແບບນີ້ວ່າ on-off keying.

Punched Tape ຈະສະແດງໃຫ້ຮູ້ວ່າໄບນາຣີ 1 ໃຊ້ແທນດ້ວຍ Mark ແລະ ໄບນາຣີ 0 ໃຊ້ແທນດ້ວຍ space

- + Porlar Signaling: ສັນຍານຈະຖືກຈັດລະດັບແຮງດັນເປັນ 2 ລະດັບໂດຍທີ່ ສັນຍານທີ່ເປັນໄບນາຣີ 1 ຈະສະແດງດ້ວຍລະດັບ High (+A) ສັນຍານທີ່ເປັນໄບ ນາຣີ 0 ແມ່ນສະແດງດ້ວຍລະດັບລົບ (-A) ສັນຍານ Porlar ແບ່ງອອກເປັນ RNZ ແລະ RZ.
- + Bipolar Signaling: ຖືກຈັດລະດັບແຮງດັນເປັນ 3 ລະດັບ ສັນຍານທີ່ເປັນ 1 ຈະສະແດງດ້ວຍລະດັບທີ່ເປັນບວກ ແລະລົບສະຫຼັບກັນໄປ ສັນຍານໄບນາຣີທີ່ເປັນ 0 ຈະຖືກແທນດ້ວຍລະດັບ 0 ການທີ່ໃຊ້ການເຂົ້າລະຫັດ 3 ລະດັບແທນສັນຍານ ຂໍ້ມູນ 2 ລະດັບ ເຮົາເອີ້ນວ່າ Alternate Mark Inversion (AMI) ເຊິ່ງກໍ່ແບ່ງ ໄດ້ເປັນ NRZ ແລະ RZ.

Figure 4.7 Types of polar encoding

Polar encoding uses two voltage levels (positive <u>and</u>

Non-Return-to-ZeroReturn-to-Zero

+ Manchester Signaling: ສັນຍານຈະຖືກແທນດ້ວຍແຮງດັນອອກເປັນ 2 ລະດັບ ສັນຍານທີ່ເປັນໄບນາຣີ 1 ຈະແທນດ້ວຍບິດທີ່ເປັນບວກເຄິ່ງຄາບເວລາ ແລ້ວຈະຕາມດ້ວຍບິດທີ່ເປັນລົບອີກເຄິ່ງຄາບເວລາທີ່ເຫຼືອ ສັນຍານທີ່ເປັນໄບນາຣີ 0 ຈະສະແດງດ້ວຍບິດທີ່ເປັນລົບເຄິ່ງຄາບເວລາແລ້ວຕາມດ້ວຍບິດທີ່ເປັນບວກອີກ ເຄິ່ງຄາບເວລາສ່ວນທີ່ເຫຼືອ

Time

Figure 4.10 Manchester encoding

APPLICATIONS OF LINE CODING

- NRZ encoding:
 - RS232 based protocols
- Manchester encoding:
 - Ethernet networks
 - Hard drive
- Differential Manchester encoding:
 - token-ring networks
- NRZ-Inverted encoding:
 - Fiber Distributed Data Interface (FDDI)

Figure 4.12 Bipolar AMI

AMI stands for **Alternate Mark Inversion**, Variation of AMI is **Pseudoternary**

In bipolar encoding, we use three levels: positive, zero, and negative.

B8ZS Encoding (Bipolar with Eight-Zero Substitution)

Example: B8ZS Encoding

HDB3 Encoding^{Pattern 2}B 0 0 V (High Density Bipolar 3-zero Encoding)

Figure 5-14

Multi-level coding

- 1) 2B1Q (2 Binary 1 Quaternary)
- 2) 8B/6T (8 data bits as six ternary)
 - 3) MLT-3 (Multi-Level Transition 3

Used in ISDN 64 kbps or 128 kbps via telephone line

2B1Q (TWO BINARY, ONE QUATERNARY)

- Uses data patterns of size 2
- o one signal element belonging to four-level signal

2B1Q is used in DSL (Digital Subscriber Line) technology

Used in 100BASET4 Ethernet (100 Mbps) via UTP in Star Topology

4.3 ການແປງຂໍ້ມູນດິຈິຕອນໃຫ້ເປັນສັນຍານອະນາລັອກ (Digital Data to Analog Signal)

ສຳລັບການແປງຂໍ້ມູນດິຈິຕອນໃຫ້ເປັນສັນຍານອະນາລັອກຈະໃຊ້ອຸປະກອນ ທີ່ເອີ້ນວ່າ: ໂມເດັມ (Modem) ເຊິ່ງເປັນອຸປະກອນເຮັດໜ້າທີ່ແປງສັນຍານດ້ວຍ ການ ມໍດູເລດ (Modulate) ໂດຍປະກອບດ້ວຍການມໍດູເລດດ້ວຍວິທີ ASK (Amplitude Shift Keying), FSK (Frequency Shift Keying) ແລະ PSK (Phase Shift Keying).

 $m(t)\cos(2\pi f_C t)$

 $m(t)\cos(2\pi f_C t)\cos(2\pi f_C t)$ $= \frac{1}{2} [m(t)\cos 4\pi f_C t + m(t)]$

 $Gain*\frac{m(t)}{2}$

ASK Demodulation

54

Bit representation

- Changing **Frequency** of Carrier Sign
- One bit, One signal unit
 - Ex '0' $-> f_1$ '1' $-> f_2$

Benefit

- Less effected by noise
 - Normally used in high frequency radio transmission or coaxial cable

Disadvantage

Require Large Bandwidth

Figure 5.7 Relationship between baud rate and bandwidth in FSK

$$BW = (1+d)S + (f_{C1} - f_{C0})$$

$$BW \min = S + (f_{C1} - f_{C0})$$

$$BW \max = 2S + (f_{C1} - f_{C0})$$

Example 6

Find the minimum bandwidth for an FSK signal transmitting at 2000 bps.

Transmission is in half-duplex mode, and the carriers are separated by 3000 Hz.

Bit Rate = Baud Rate

For FSK

$$BW = Baud rate + f_{c1} - f_{c0}$$

$$BW = Bit rate + fc1 - fc0 = 2000 + 3000 = 5000 Hz$$

Figure 5.8 *PSK*

Figure 5.9 *PSK constellation*

Bit	Phase		
0	0 180	1	0
В	its	 Constellati	lon diagram

$$4-PSK = 2^{n}PSK = 2^{2}-PSK$$

Dibit	Phase	
00	0	
01	90	
10	180	
11	270	

Dibit (2 bits)

Figure 5.12 The 8-PSK characteristics

Bit rate = $n \times Baud rate$

Tribit	Phase
000	0
001	45
010	90
011	135
100	180
101	225
110	270
111	315

Tribits (3 bits)

$$s(t) = \begin{cases} A\cos(2\pi f_c t - \pi); & binary \text{ '0'} \\ A\cos(2\pi f_c t); & binary \text{ '1'} \end{cases}$$

		Pulse		
Data	X		V 005(2 mf t)	$\cos(2\pi f + \theta)$
	→ [0,1]	[-1,1]	$X\cos(2\pi f_C t)$	$\cos(2\pi f_C t - \theta)$
N!	0	-1	$-\cos(2\pi f_C t)$	$\cos(2\pi f_C t - \pi)$
) [*]	1	1	$\cos(2\pi f_C t)$	$\cos(2\pi f_C t - 0)$

 $2\cos A\cos B = \cos (A + B) + \cos (A - B)$

$$X\cos(2\pi f_C t)\cos(2\pi f_C t) = X \left(\frac{1}{2} \left[\cos 2(2\pi f_C t) + \cos(0)\right]\right)$$
$$= \frac{1}{2} \left[X\cos 4\pi f_C t + X\right]$$

QUADRATURE AMPLITUDE MODULATION (QAM)

Bit representation

- Combination of ASK and PSK
- Changing Amplitude & Phase of Career Signal
- One bit, One signal unit

• Ex '0'
$$-> A_1, \Phi_1$$
 '1' $-> A_2, \Phi_2$

Benefit

- Less effected by noise compared to ASK
- Require less bandwidth

Disadvantage

Complex demodulation technique

4-QAM 1 amplitude, 4 phases

8-QAM 2 amplitudes, 4 phases

Figure 5.15 Time domain for an 8-QAM signal

$$8-QAM = 2^n-QAM = 2^3-QAM$$

Bit rate = $n \times Baud rate$

OSI recommendation

QAM MODULATION

$$2\cos A \cos B = \cos (A + B) + \cos (A - B)$$

$$2 \sin A \sin B = -\cos (A + B) + \cos (A - B)$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

Figure 5.22 *Traditional modems*

ຮູບແບບການທຳງານຂອງ ໂມເດັມ (Морем)

4.4 ການແປງຂໍ້ມູນອະນາລັອກໃຫ້ເປັນສັນຍານດິຈິຕອນ (Analog Data to Digital Signal)

ອຸປະກອນທີ່ເອີ້ນວ່າ ໂຄດເດັກ (Codec: Coder/Decoder) ຈັດເປັນ ອຸປະກອນທີ່ສຳຄັນສຳລັບໃນການແປງຂໍ້ມູນອະນາລັອກໃຫ້ເປັນສັນຍານດິຈິຕອນ ດ້ວຍເທັກນິກ PCM (Pulse Code Modulation) ໃນຂະນະດຸງວກັນກໍ່ ສາມາດແປງມາເປັນສັນຍານອະນາລັອກໄດ້ ຕົວຢ່າງອຸປະກອນໂຄດເດັກ ເຊັ່ນ ຊາວນ໌ກຼາດ, ສະແກນເນີ ເປັນຕົ້ນ.

Components of PCM encoder

Three different sampling methods for PCM

a. Ideal sampling

b. Natural sampling

c. Flat-top sampling

Recovery of a sampled sine wave for different sampling rates

Sampling at the Nyquist rate can create a good approximation of the original sine wave.

a. Nyquist rate sampling: $f_s = 2 f$

Oversampling can also create the same approximation, but is redundant and unnecessary.

c. Undersampling: $f_s = f$

Sampling below the Nyquist rate does not produce a signal that looks like the original sine wave.

Sampling of a clock with only one hand

The second hand of a clock has a period of 60 s.

According to the Nyquist theorem, we need to sample hand every 30 s.

Samples can mean that the clock is moving either forward or backward. (12-6-12-6-12)

a. Sampling at Nyquist rate: $T_s = T_{\frac{1}{2}}$

Samples show clock is moving forward. (12-3-6-9-12)

b. Oversampling (above Nyquist rate): $T_s = T \frac{1}{4}$

Samples show clock is moving backward. (12-9-6-3-12)

c. Undersampling (below Nyquist rate): $T_s = T_{\frac{3}{4}}$

78

Quantization and encoding of a sampled signal

** Signed Integer **

Figure 4.20 Quantizing by using sign and agnitude

+024	00011000	-015	1 0001111	+125	0 1111101
+038	0 0100110	-080	1 1010000	+110	0 1101110
+048	0 0110000	-050	1 0110010	+090	0 1011010
+039	0 0100111	+052	0 0110110	+088	0 1011000
+026	00011010	+127	<mark>9</mark> 1111111	+077	0 1001101
			/		

Sign bit + is 0 — is 1

CODEC & DIGITAL TRANSCEIVER

ລາຍລະອງດຊະນິດຂໍ້ມູນທີ່ແປງເປັນສັນຍານຕ່າງໆກັບຕົວຢ່າງການໃຊ້ງານ

Data	Signal	Common Conversion Technique	Common Device	Common Systems
Analog	Analog	Amplitude Modulation Frequency Modulation	Radio tuner TV tuner	Telephone Cable TV Broadcast TV AM&FM Radio
Digital	Digital	NRZ-L NRZ-I Manchester Differential Manchester	Digital encoder	Local Area Network Digital Telephone Systems
Digital	Analog	Amplitude Modulation Frequency Modulation Phase Modulation	Modem	Home Internet Access
Analog	Digital	Pulse Code Modulation	Codec	Telephone systems Music systems