Computational Intelligence Einkriterielle Evolutionäre Algorithmen II

Dr. Carsten Franke

Züricher Hochschule für Angewandte Wissenschaften

24. Februar 2015

Vorlesungsplanung - Termine (Änderungen vorbehalten)

- 17.02.2015: Einkriterielle Evolutionäre Optimierung I (CF)
- 24.02.2015: Einkriterielle Evolutionäre Optimierung II (CF)
- 3 03.03.2015: Test (1+2), Mehrkriterielle Evolutionäre Optimierung I (CF)
- 10.03.2015: Mehrkriterielle Evolutionäre Optimierung II (CF)
- 5 17.03.2015: Statistische Lerntheorie I (JP)
- 24.03.2015: Statistische Lerntheorie II (JP)
- 21.04.2015: Test (5+6), Neuronale Netze (JP)
- 3 28.04.2015: Support Vector Maschinen I (JP)
- 05.05.2015: Genetische Fuzzy Systeme (CF)
- 12.05.2015: Test (3+4+9), Meta-Heuristiken (ACO, PSO) (CF)
- 19.05.2015: Support Vector Maschinen II (JP)
- 26.05.2015: Simulated Annealing und andere Suchmethoden (CF)
- **3** 02.06.2015: Test (7+8+11), Clustering (JP)
- 4 09.06.2015: Lernen und Spieltheorie (JP)
- 5 23.06.2015: 1. Termin mündliche Prüfungen
- 5 30.06.2015: 2. Termin mündliche Prüfungen

Bemerkungen zum Test nächste Woche

- Schriftlicher Test von ca. 30 min Länge
- Erlaubte Hilfsmittel: Vorlesungsfolien + eigene Mitschriften, Taschenrechner
- Nicht erlaubte Hilfsmittel: Laptop, Natel

Lernziele der heutigen Vorlesung

- Erlernen der restlichen Operatoren für Evolutionäre Algorithmen
- Ausführung eines ersten Genetischen Algorithmus
- Erlernen der Funktionsweise von Evolutionsstrategien
- Erlernen der Selbstadaptionsmechanismen für Evolutionsstrategien

Allgemeiner Ablauf

- Initialisierung
 - Kodierung
- Evaluation
 - Fitnesswert
- Reproduktion
 - Rekombination, Mutation
- Konvergenz
 - z.B. fixe Generationsanzahl

Reelwertige Mutation

Mit Wahrscheinlichkeit p_m wird ein Objektparametervektor einer Mutation unterzogen.

- ullet Neuer Objektparametervektor für das k-te Individuum: $ilde{ec{o}}_k = ec{o}_k + ec{z}$
- Es wird angenommen, dass \vec{o}_k und \vec{z} jeweils u Elemente hat.
- Es werden zwei verschiedene Verfahren unterschieden:
 - Isotropische Mutation: $\vec{z} = \sigma(\mathcal{N}_1(0,1),\ldots,\mathcal{N}_u(0,1))$
 - Nicht-isotropische Mutation: $\vec{z} = (\sigma_1 \mathcal{N}_1(0,1), \dots, \sigma_u \mathcal{N}_u(0,1))$
- ullet $\mathcal{N}(0,1)$ bezeichnet dabei unabhängige Samples der Normalverteilung.
- Damit ergibt sich für den neuen Parametervektor folgende Dichtefunktion: $p(\tilde{o}_k) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(\tilde{o}_k o_k)^2}{\sigma^2}}$

Normalverteilung

$$\bullet \ \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

- $\mu = 0, \ \sigma = 1$
- $\mu = 0$, $\sigma = 1.5$
- $\mu = 0, \ \sigma = 0.2$
- $\mu = 1, \ \sigma = 1$
- Integral über den ganzen Wertebereich ist stets 1

Reelwertige Mutation

Polynomielle Mutation:

- ullet Neuer Objektparametervektor: $ilde{o}_k = o_k + \left(o_k^{(U)} o_k^{(L)}
 ight)\delta_k$
- Wähle $r_k \in [0,1]$ und $\eta_m \geq 0$
- Bestimme $\delta_k = \left\{ \begin{array}{ll} (2r_k)^{1/(\eta_m+1)} 1, & \text{if } r_k < 0.5 \\ 1 [2(1-r_k)]^{1/(\eta_m+1)}, & \text{if } r_k \geq 0.5 \end{array} \right.$

Mutationen bei Sequenzen

Mutationen bei Sequenzen

- Probleme dabei sind die noch nicht bekannten Anzahlen der Mutationen und die jeweiligen Distanzen.
- Eingabe
 - Durchschnittliche Mutationsanzahl: DMZ
 - Durchschnittliche Distanz: DD
- Ausgabe
 - Mutationsanzahl: MZ
 - Distanz: D
- Berechnung
 - ullet $MZ=\left\lfloorrac{ld(1-arsigma_1)}{ld(1ho_{MZ})}
 ight
 floor, \, ext{mit} p_{MZ}=1-rac{DMZ}{1+\sqrt{1+DMZ^2}}$
 - ullet $D=\left\lfloorrac{Id(1-arsigma_2)}{Id(1ho_D)}
 ight
 floor, \ \mathsf{mit} p_D=1-rac{DD}{1+\sqrt{1+DD^2}}$

Implementierung

Ubung Implementierung

Implementieren Sie bitte:

- 1 Funktion, die an einem gegebenen binären String eine Mutation mit Wahrscheinlichkeit p_m vornimmt.
- Wenden Sie diese Funktion auf alle lokalen Individuen an. Das Resultat bildet die Menge der Nachkommen.

Auswertung der Nachkommen

- Initialisierung
 - Kodierung
- Evaluation
 - Fitnesswert
- Reproduktion
 - Rekombination, Mutation
- Konvergenz
 - z.B. fixe Generationsanzahl

Auswertung der Nachkommen

- Initialisierung
 - Kodierung
- Evaluation
 - Fitnesswert
- Reproduktion
 - Rekombination, Mutation
- Konvergenz
 - z.B. fixe Generationsanzahl

Selektion der Nachfolgegeneration

- Genetisch Algorithmen
 - Es werden nur die Nachkommen für die nächste Generation genutzt. Die Nachkommenanzahl wurde bei der Rekombination beachtet. $(\mu=\lambda)$
- Evolutionsstrategien
 - Verfahrensweise gemäss: $(\mu, \kappa, \lambda, \rho)$

Übung

Beschreiben Sie mit eigenen Worten die Parameter $(\mu, \kappa, \lambda, \rho)!$

Selektion bei Evolutionsstrategien

- ullet μ : Populationsgrösse der Eltern
- λ : Populationsgrösse der Nachkommen ($\lambda \ge \mu$)
- κ: maximale Anzahl von Lebenszyklen pro Individuum
- ρ: Anzahl der Eltern bei der Rekombination

Algorithmus:

```
\begin{split} & \text{if } (\kappa=1) \text{ then } \\ & P_{(t+1),\mu} \leftarrow \text{ Selektion } (P'_{t,\lambda},\mu); \{\text{nicht - elitär}\} \\ & \text{else if } (\kappa=\infty) \text{ then } \\ & P_{(t+1),\mu} \leftarrow \text{ Selektion } (P'_{t,\lambda} \cup P_{t,\mu},\mu); \{\text{elitär}\} \\ & \text{else } \\ & P_{(t+1),\mu} \leftarrow \text{ Selektion } (P'_{t,\lambda} \cup P_{t,\mu},\mu,\kappa); \{\text{nicht - elitär}\} \\ & \text{end if} \end{split}
```

Ubung

Übung

Welche Verfahren könnten für die Selektion genutzt werden? Sind die jeweiligen Verfahren dann elitär oder nicht?

Konvergenz

- Initialisierung
 - Kodierung
- Evaluation
 - Fitnesswert
- Reproduktion
 - Rekombination, Mutation
- Konvergenz
 - z.B. fixe Generationsanzahl

Konvergenz / Stopp-Kriterien

- Es gibt eine im Prinzip unendliche Anzahl möglicher Kriterien.
 Gebräuchlich sind unter anderem:
 - Fixe Generationenanzahl
 - Unterschreitung eines Deltas bzgl. der Verbesserung der Fitnessfunktion innerhalb einer gewissen Anzahl von Generationen

Implementieren Sie einen GA für das bekannte Zylinderproblem

- Initialisierung von 30 Individuen zufällig (binär)
- Auswertung aller 30 Individuen
- For i=1 to 100 //Generationen
 - Rang-basierte Selektion (Individuen müssen Nebenbedingungen erfüllen)
 - Mutation mit pm=10% f
 ür die selektierte Menge
 - keine Rekombination
 - Auswertung der Individuen
 - Speicherung des besten Individuums bzgl. f(x) in einem separaten Bereich (für jede Generation ein Individuum)
- Darstellung des Werteverlaufs des jeweils besten Individuums über die 100 Generationen. Was ist die beste gefundene Lösung in (d,h) und welchen Funktionswert hat diese?

Übung

- Wiederholen Sie den vorherigen Algorithmus für $p_m = \{1\%, 0.5\%, 2\%, 10\%, 20\%\}$.
- Lassen sich Aussagen bezüglich p_m treffen? Wie gross sollte dieser Wert gewählt werden?

Ubung

Implementieren Sie einen GA für das bekannte Zylinderproblem

- Initialisierung von 30 Individuen zufällig (binär)
- Auswertung aller 30 Individuen
- For i=1 to 100 //Generationen
 - Rang-basierte Selektion (Individuen müssen Nebenbedingungen erfüllen)
 - Rekombination von 10 zufällig ausgewählten Individuen mittels Single-Point Crossover. Die Eltern werden hier durch die Nachkommen ersetzt
 - Nutzen Sie die Rekombination, um die Anzahl der Nachkommen mit 30 Individuen sicherzustellen
 - Mutation mit pm=1% für die resultierende Menge
 - Auswertung der Individuen
 - Speicherung des besten Individuums bzgl. f(x) in einem separaten Bereich (für jede Generation ein Individuum)
- Darstellung des Werteverlaufs des jeweils besten Individuums über die 100 Generationen. Was ist die beste gefundene Lösung in (d,h) und

Rahmenparameter

- Objektparameter (Problemkodierung): $\vec{o_k}$
- Strategieparameter (Mutation/ Rekombination/ Selektion): $\vec{s_k}$
- Fitness: $F(\vec{o_k})$
- Populationsgrösse zum Zeitpunkt t: $\mu = |P_{t,\mu}|$
- ullet Anzahl Nachkommen: λ
- Anzahl Eltern bei der Rekombination: ρ
- ullet Maximale Anzahl von Generationen pro Individuum: κ

Parameter	Genetische Algo-	Evolutions-
	rithmen	strategien
Individuen	$a_k = (\vec{o_k}, F(\vec{o_k}))$	$a_k = (\vec{o_k}, \vec{s_k}, F(\vec{o_k}))$
Populationsgrösse	$\mu = \lambda$	$\mu/\lambda = 1/7$
/ Nachkommen		
max Anzahl Gene-	$\kappa = 1$	$\kappa \in [1, \infty[$
rationen pro Indivi-		
duum		
Strategieparameter	fix	selbstanpassend

Ubung

Übung

- Beschreiben Sie eine mögliche Selektion der Nachfolgepopulation für einen Genetischen Algorithmus!
- Beschreiben Sie eine mögliche Selektion der Nachfolgepopulation für eine Evolutionsstrategie!

- Exogone Strategieparameter
 - konstant während der gesamten Optimierung
 - z.B. $(\mu, \kappa, \lambda, \rho)$
- Endogene Strategieparameter
 - passen sich während der Optimierung an
 - Beispiele
 - Mutations- / und Rekombinationswahrscheinlichkeiten
 - Schrittweitenparameter bei einzelnen Operatoren

24.02.15


```
P_{0,\mu} \leftarrow \text{initialization};
P_{0,\mu} \leftarrow \text{evaluation};
t \leftarrow 0:
while (termination criterion not fulfilled) do
    for (i = 1 \text{ to } \lambda) do
        Pool_i \leftarrow marriage(P_{t,\mu}, \rho);
        \vec{s_i} \leftarrow \text{strategy\_recombination } (Pool_i);
        \vec{o_i} \leftarrow \text{object\_recombination } (Pool_i);
        \tilde{\vec{s}}_i \leftarrow \text{ strategy\_mutation } (\vec{s}_i);
        \tilde{\vec{o}}_i \leftarrow \text{ object\_mutation } (\ddot{\vec{s}}_i, \vec{o}_i);
        \tilde{F}_i \leftarrow F(\vec{o})
    end for
    Teil 2
    t \leftarrow t + 1
end while
```

```
Teil 1
while (termination criterion not fulfilled) do
    Teil 1
    P'_{t,\lambda} \leftarrow \left\{ \left( \tilde{\vec{o}}_i, \tilde{\vec{s}}_i, \tilde{F}_i \right), i = 1, \dots, \lambda \right\};
    if (\kappa = 1) then
        P_{(t+1),\mu} \leftarrow \text{ selection } (P'_{t,\lambda},\mu);
    else if (\kappa = \infty) then
        P_{(t+1),\mu} \leftarrow \text{ selection } (P'_{t,\lambda} \cup P_{t,\mu}, \mu);
    else
        P_{(t+1),\mu} \leftarrow \text{ selection } (P'_{t,\lambda} \cup P_{t,\mu}, \mu, \kappa);
    end if
    t \leftarrow t + 1
end while
```


 Wo finden Sie entsprechende
 Elemente in der
 Beschreibung der
 Evolutionsstrategie?

Selbstanpassung

Der Erfolg einer ES hängt stark von der Selbstanpassung der Strategieparameter ab, die auf veränderte Suchräume reagiert.

- zum Beispiel Mutation: $\tilde{\vec{o}}_k = \vec{o}_k + \vec{z}$
- Es wird angenommen, dass \vec{o}_k und \vec{z} jeweils u Elemente haben.
- Nicht-isotropische Mutation: $\vec{z} = (\sigma_1 \mathcal{N}_1(0, 1), \dots, \sigma_u \mathcal{N}_u(0, 1))$
- Selbstadaption verändert nun $\sigma_1, \ldots, \sigma_u$

$$1/5$$
 Regel (original nur für ($\mu=1,\lambda=1,\kappa=\infty$) Strategien)

$$P_s = \frac{\text{Anzahl erfolgreicher Mutationen}}{\text{Anzahl aller Mutationen}}$$

$$ilde{\sigma} = \begin{cases} \sigma/a, & \text{falls } P_s > 1/5 \\ \sigma \cdot a, & \text{falls } P_s < 1/5 \\ \sigma, & \text{falls } P_s = 1/5 \end{cases}$$

Der Parameter a wird folgendermassen gewählt: $0,85 \le a < 1$

Übung

Nehmen Sie die Nutzung der 1/5 Regel an. Welche Aussage(n) ist/sind richtig?

- Wenn 1/5 der letzten Mutationen erfolgreich war, dann wir danach eher lokal gesucht.
- Wenn 1/5 der letzten Mutationen erfolgreich war, dann wird danach eher global gesucht.
- Bei vielen erfolglosen Mutationen wird das Suchgebiet vergrössert um bessere Lösungen zu finden.

- Isotropische Mutation ($\vec{z} = \sigma(\mathcal{N}_1(0,1),\ldots,\mathcal{N}_u(0,1))$):
 - $\tilde{\sigma} = \sigma \cdot e^{\tau \mathcal{N}(0,1)}$
 - Lernrate: $au \propto \frac{1}{\sqrt{u}}$
 - Lernrate bei vielen Objektparametern: $au \propto rac{1}{\sqrt{2 \cdot u}}$
- Nicht-isotropische Mutation ($\vec{z} = (\sigma_1 \mathcal{N}_1(0, 1), \dots, \sigma_u \mathcal{N}_u(0, 1))$):
 - $\bullet \ \ \tilde{\vec{\sigma}} = e^{\tau_0 \mathcal{N}(0,1)} \cdot \left(\sigma_1 \cdot e^{\tau_1 \mathcal{N}_1(0,1)}, \ldots, \sigma_u \cdot e^{\tau_1 \mathcal{N}_u(0,1)}\right)$
 - Lernraten:

$$au_0 = rac{1}{\sqrt{2 \cdot u}}, ext{ and } au_1 = rac{1}{\sqrt{2 \sqrt{u}}}$$

Übung

- Implementieren Sie das bekannte Zylinderproblem mittels einer 100-Generationen Evolutionsstrategie $(\mu, \kappa, \lambda, \rho) = (7, 15, 49, 3)$
- Objektparameter
 - Durschnittliche Rekombination
 - Isotropic Mutation (Start 1%) mit $au = \frac{1}{\sqrt{u}}$
- Strategieparameter
 - Diskrete Rekombination
 - Non-Isotropic Mutation (Start 1%) mit

$$au_0 = rac{1}{\sqrt{2 \cdot u}}, ext{ and } au_1 = rac{1}{\sqrt{2 \sqrt{u}}}$$

• Zeigen Sie den Verlauf des besten Individuums pro Generation.

Allgemeine Hinweise

Wann sollte was wie genutzt werden?

- Genetische Algorithmen: für diskrete Suchräume
- Evolutionsstrategien: für kontinuierliche Suchräume
 - Falls ES in diskreten Suchräumen genutzt wird: $(\mu, \lambda, \kappa = 1, \rho)$
- NICHT als reines Black-Box Optimierungstool
 - Problemkodierung ist sehr wichtig
 - Mutation/Rekombination/Selektion Methoden
 - Methodenparameter, z.B. Mutationsstärke, Rekombinationswahrscheinlichkeiten
- Aber im Allgemeinen sehr mächtig und flexibel!

Hausaufgaben

Hausaufgaben

- Beenden Sie alle Beispiele, die Sie während der Vorlesung nicht fertig gestellt haben!
- Dies ist sehr wichtig, da die nachfolgende Vorlesung darauf aufbauen wird.
- Überprüfung zu Beginn der nächsten Vorlesung.
- Durcharbeiten des Papers "Evolution Strategies: A comprehensive introduction". Lesen Sie dabei die Kapitel: 3.1, 3.2, 3.3 (erster Teil), 3.3.2.1, 3.4.1, 4.1.2, 4.2.2.1 und 4.2.2.2.

Vorlesungsplanung - Termine (Änderungen vorbehalten)

- 17.02.2015: Einkriterielle Evolutionäre Optimierung I (CF)
- 2 24.02.2015: Einkriterielle Evolutionäre Optimierung II (CF)
- 3 03.03.2015: Test (1+2), Mehrkriterielle Evolutionäre Optimierung I (CF)
- 10.03.2015: Mehrkriterielle Evolutionäre Optimierung II (CF)
- 17.03.2015: Statistische Lerntheorie I (JP)
- 24.03.2015: Statistische Lerntheorie II (JP)
- 21.04.2015: Test (5+6), Neuronale Netze (JP)
- 3 28.04.2015: Support Vector Maschinen I (JP)
- 05.05.2015: Genetische Fuzzy Systeme (CF)
- 0 12.05.2015: Test (3+4+9), Meta-Heuristiken (ACO, PSO) (CF)
- 19.05.2015: Support Vector Maschinen II (JP)
- 26.05.2015: Simulated Annealing und andere Suchmethoden (CF)
- **3** 02.06.2015: Test (7+8+11), Clustering (JP)
- 09.06.2015: Lernen und Spieltheorie (JP)
- 5 23.06.2015: 1. Termin mündliche Prüfungen
- 5 30.06.2015: 2. Termin mündliche Prüfungen