IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF DELAWARE

PARKER-HANNIFIN CORPORATION,)	
Plaintiff,)	
v.)	C.A. No.
SEIREN CO., LTD.,)	JURY TRIAL DEMANDED
Defendant.)	

COMPLAINT

Plaintiff, PARKER-HANNIFIN CORPORATION, as and for its complaint against defendant, SEIREN CO., LTD., alleges as follows:

PARTIES

- 1. Plaintiff, PARKER-HANNIFIN CORPORATION (hereinafter "PARKER"), is a corporation organized and existing under the laws of the State of Ohio, having its principal place of business at 6035 Parkland Blvd., Cleveland, Ohio.
- 2. Defendant, SEIREN CO., LTD. (hereinafter "SEIREN"), is, on information and belief, a corporation organized and existing under the laws of Japan, with its principal place of business at 1-10-1 Keya, Fukui City, Fukui, Japan.

JURISDICTION AND VENUE

- 3. The jurisdiction of this Court arises under 28 U.S.C. §§ 1331 and 1338(a).
- 4. Venue is proper in this district pursuant to 28 U.S.C. §§ 1391(b) and (c), and 1400(b).

THE PATENTS

- 5. On May 14, 2002, United States Letters Patent No. 6,387,523 (hereinafter the "523 patent") (attached hereto as Exhibit "A") was duly and legally issued. The '523 patent is owned by Parker Intangibles LLC, a Delaware limited liability company which is a wholly-owned subsidiary of Parker. Parker is the exclusive licensee under the '523 patent, and has the right to sue for past, present, and future infringement of the '523 patent, and further the right to seek injunctive relief and monetary damages.
- 6. On February 18, 2003, United States Letters Patent No. 6,521,348 (hereinafter the "348 patent") (attached hereto as Exhibit "B") was duly and legally issued. The '348 patent is owned by Parker Intangibles LLC, a Delaware limited liability company which is a wholly-owned subsidiary of Parker. Parker is the exclusive licensee under the '348 patent, and has the right to sue for past, present, and future infringement of the '348 patent, and further the right to seek injunctive relief and monetary damages.
- 7. On April 6, 2004, United States Letters Patent No. 6,716,536 (hereinafter the "536 patent") (attached hereto as Exhibit "C") was duly and legally issued. The '536 patent is owned by Parker Intangibles LLC, a Delaware limited liability company which is a wholly-owned subsidiary of Parker. Parker is the exclusive licensee under the '536 patent, and has the right to sue for past, present, and future infringement of the '536 patent, and further the right to seek injunctive relief and monetary damages.
- 8. On August 17, 2004, United States Letters Patent No. 6,777,095 (hereinafter the "095 patent") (attached hereto as Exhibit "D") was duly and legally issued. The '095 patent is owned by Parker Intangibles LLC, a Delaware limited liability company which is a wholly-owned

subsidiary of Parker. Parker is the exclusive licensee under the '095 patent, and has the right to sue for past, present, and future infringement of the '095 patent, and further the right to seek injunctive relief and monetary damages.

9. On June 19, 2001, United States Letters Patent No. 6,248,393 (hereinafter "'393 patent") (attached hereto as Exhibit "E") was duly and legally issued. The '393 patent is owned by Parker Intangibles LLC, a Delaware limited liability company which is a wholly-owned subsidiary of Parker. Parker is the exclusive licensee under the '393 patent, and has the right to sue for past, present, and future infringement of the '393 patent, and further the right to seek injunctive relief and monetary damages.

PATENT INFRINGEMENT

- 10. SEIREN has been and still is infringing one or more claims of the '523, '348, '536, '095, and/or '393 patents. SEIREN's infringing activities have included direct infringement, contributory infringement and/or active inducement of infringement within the meaning of 35 U.S.C. \$\\$ 271(a) through (c).
- 11. SEIREN has committed acts of infringement in disregard of PARKER's rights in the '523, '348, '536, '095, and/or '393 patents. Upon information and belief, SEIREN's infringement has been willful, deliberate and intentional, and will continue, to PARKER's irreparable harm, unless enjoined by this Court.

WHEREFORE, plaintiff demands judgment as follows:

A. That SEIREN has infringed U.S. Patent Nos. 6,387,523; 6,521,348; 6,716,536; 6,777,095; and/or 6,248,393;

- That SEIREN be permanently enjoined from further conduct which infringes the '523, B. '348, '536, '095, or '393 patents;
- C. That PARKER be awarded damages adequate to compensate it for SEIREN's infringement, and that the damages be trebled because of the willful nature of SEIREN's infringement, together with interest, pursuant to 35 U.S.C. § 284; and
- That PARKER be awarded its attorney fees and costs in this action, together with D. such other relief as this Court deems appropriate.

DEMAND FOR JURY TRIAL

PARKER hereby requests a trial by jury.

Rudolf E. Hutz (#484)

Harold Pezzner (#479)

Francis DiGiovanni (#3189)

Attorneys for Plaintiff

The Nemours Building

1007 N. Orange Street

Wilmington, DE 19899

Phone (302) 658-9141

rhutz@cblh.com

hpezzner@cblh.com

fdigiovanni@cblh.com

Dated: February 22, 2007

Exhibit A

(12) United States Patent

Bunyan et al.

US 6,387,523 B2 (10) Patent No.:

(45) Date of Patent: May 14, 2002

FLAME RETARDANT EMI SHIELDING **GASKET**

(75) Inventors: Michael H. Bunyan, Chelmsford, MA

(US); William I. Flanders, Merimack,

NH (US)

Assignee: Parker-Hannifin Corporation,

Cleveland, OH (US)

(*) Subject to any disclaimer, the term of this Notice:

patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/883,785

(22) Filed: Jun. 18, 2001

Related U.S. Application Data

- Continuation of application No. 09/250,338, filed on Feb. (63)16, 1999, now Pat. No. 6,248,393.
- Provisional application No. 60/076,370, filed on Feb. 27,
- (51) **Int. Cl.**⁷ **B32B 5/14**; B32B 5/18

(56)References Cited

U.S. PATENT DOCUMENTS

4,178,410 A	12/1979	Tomita
4,396,661 A	8/1983	George et al.
4,447,484 A	5/1984	Slosberg et al.
4,489,126 A	12/1984	Holtrop et al.
4,531,994 A	7/1985	Holtrop et al.
4,540,617 A	9/1985	Kawanishi et al.
4,569,304 A	2/1986	Le Maitre
4,572,960 A	2/1986	Ebneth et al.
4,608,104 A	8/1986	Holtrop et al.
4,621,013 A	11/1986	Holtrop et al.
4,666,765 A	5/1987	Caldwell et al.
4,684,762 A	8/1987	Gladfeiter
4,753,840 A	6/1988	Van Gompel
4,797,171 A	1/1989	Van Gompel
4,857,668 A	8/1989	Buonanno

4,871,477 A 10/1989 Dimanshteyn 4,988,550 A 1/1991 Keyser et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

DE	9013936	12/1990
EP	0326441	8/1989
FR	2308030	11/1976
JP	07-176889	* 7/1995

OTHER PUBLICATIONS

Dye, James M. Compliance Engineering 17(3), pp 138 and 140-150, 2000.*

Copy of the International Application Published Under the Patent Cooperation Treaty in International Patent Application No. PCT/US00/20609 (WO 01/10182) entitled: "Method and Apparatus for Manufacturing A Flame Retardant EMI Gasket".

Kleiner, J. Vinyl Technol. vol. 4 No. 4, Dec. 1982, pp 157-159, 1982.*

Copy of International Search Report for PCT Case No. PCT/US99/04100, Jan. 7, 1999.

Chomerics Parker Hannifin Seals Catalog dated 1997 for Soft-Shield Low Closure Force EMI Gaskets.

Monsanto Flectron Metalized Materials dated Sep. 12, 1995.

Primary Examiner—Erma Cameron

(74) Attorney, Agent, or Firm—John A. Molnar, Jr.

ABSTRACT

A flame retardant, electromagnetic interference (EMI) shielding gasket construction. The construction includes a resilient core member formed of a foamed elastomeric material, an electrically-conductive fabric member surrounding the outer surface of the core member, and a flame retardant layer coating at least a portion of the interior surface of the fabric member. The flame retardant layer is effective to afford the gasket construction with a flame class rating of V-0 under Underwriter's Laboratories (UL) Standard No. 94.

8 Claims, 3 Drawing Sheets

US 6,387,523 B2 Page 2

U.S. F	PATENT DOCUMENTS		Tohyama et al. Strenger et al.
5,009,927 A 5,028,739 A 5,045,635 A	4/1991 Cloyd et al. 7/1991 Keyser et al. 9/1991 Kaplo et al.	5,614,306 A 3/199 5,635,252 A 6/199	7 Jobe et al. 7 Jobe et al. 7 Fraser, Jr. et al. 7 Melancon et al.
5,089,325 A 5,105,056 A 5,122,411 A	2/1992 Covey 4/1992 Hoge, Jr. et al. 6/1992 Iwamoto et al.	5,674,606 A 10/199	7 Powers, Jr. 7 Chiou
5,202,536 A 5,204,403 A	4/1993 Buonanno 4/1993 Furuta et al.	* cited by examiner	

^{*} cited by examiner

U.S. Patent May 14, 2002 Sheet 1 of 3 US 6,387,523 B2

22

Fig. 3

U.S. Patent May 14, 2002 Sheet 2 of 3 US 6,387,523 B2

Fig. 4

Fig. 5

US 6,387,523 B2

1

FLAME RETARDANT EMI SHIELDING **GASKET**

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 09/250,338, filed Feb. 16, 1999, and claiming priority to U.S. provisional application Ser. No. 60/076,370, filed Feb. 27, 1998, which application is to issue as U.S. Pat. No. 6,248,393 entitled "Flame Retardant EMI Shielding Materials and Method of Manufacture," the disclosures of which is expressly incorporated herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates broadly to electricallyconductive, flame retardant materials for use in electromagnetic interference (EMI) shielding, and to a method of manufacturing the same, and more particularly to an electrically-conductive fabric having a layer of a flame retardant coating applied to one surface thereof for use as a sheathing within an EMI shielding gasket.

The operation of electronic devices including televisions, radios, computers, medical instruments, business machines, communications equipment, and the like is attended by the 25 generation of electromagnetic radiation within the electronic circuitry of the equipment. Such radiation often develops as a field or as transients within the radio frequency band of the electromagnetic spectrum, i.e., between about 10 KHz and "EMI" as being known to interfere with the operation of other proximate electronic devices.

To attenuate EMI effects, shielding having the capability of absorbing and/or reflecting EMI energy may be employed to insulate that device or other "target" devices from other source devices. Such shielding is provided as a barrier which is inserted between the source and the other devices, and typically is configured as an electrically conductive and grounded housing which encloses the device. As the cir- 40 cuitry of the device generally must remain accessible for servicing or the like, most housings are provided with openable or removable accesses such as doors, hatches, panels, or covers. Between even the flattest of these accesses and its corresponding mating or faying surface, however, 45 there may be present gaps which reduce the efficiency of the shielding by presenting openings through which radiant energy may leak or otherwise pass into or out of the device. Moreover, such gaps represent discontinuities in the surface and ground conductivity of the housing or other shielding, 50 itself does not require separate approval. Ensuring UL and may even generate a secondary source of EMI radiation by functioning as a form of slot antenna. In this regard, bulk or surface currents induced within the housing develop voltage gradients across any interface gaps in the shielding, which gaps thereby function as antennas which radiate EMI 55 retardant, i.e., achieving a rating of V-0 under UL Std. No. noise. In general, the amplitude of the noise is proportional to the gap length, with the width of the gap having a less appreciable effect.

For filling gaps within mating surfaces of housings and other EMI shielding structures, gaskets and other seals have 60 been proposed both for maintaining electrical continuity across the structure, and for excluding from the interior of the device such contaminates as moisture and dust. Such seals are bonded or mechanically attached to, or press-fit into, one of the mating surfaces, and function to close any interface gaps to establish a continuous conductive path thereacross by conforming under an applied pressure to

2

irregularities between the surfaces. Accordingly, seals intended for EMI shielding applications are specified to be of a construction which not only provides electrical surface conductivity even while under compression, but which also has a resiliency allowing the seals to conform to the size of the gap. The seals additionally must be wear resistant, economical to manufacture, and capability of withstanding repeated compression and relaxation cycles. For further information on specifications for EMI shielding gaskets, reference may be had to Severinsen, J., "Gaskets That Block EMI," Machine Design, Vol. 47, No. 19, pp. 74-77 (Aug. 7,

Requirements for typical EMI shielding applications often dictate a low impedance, low profile gasket which is deflectable under normal closure force loads. Other requirements include low cost and a design which provides an EMI shielding effectiveness for both the proper operation of the device and compliance, in the United States, with commercial Federal Communication Commission (FCC) EMC regulations.

A particularly economical gasket construction, which also requires very low closure forces, i.e. less than about 1 lb/inch (0.175 N/mm), is marketed by the Chomerics Division of Parker-Hannifin Corp., Woburn, Mass. under the tradename "Soft-Shield® 5000 Series." Such construction consists of an electrically-conductive jacket or sheathing which is "cigarette" wrapped lengthwise over a polyurethane or other foam core. As is described further in U.S. Pat. No. 4,871,477, polyurethane foams generally are produced 10 GHz, and is termed "electromagnetic interference" or 30 by the reaction of polyisocyanate and a hydroxyl-functional polyol in the presence of a blowing agent. The blowing agent effects the expansion of the polymer structure into a multiplicity of open or closed cells.

The jacket is provided as a highly conductive, i.e., about both to confine the EMI energy within a source device, and 35 1 \Omega-sq., nickel-plated-silver, woven rip-stop nylon which is self-terminating when cut. Advantageously, the jacket may be bonded to the core in a continuous molding process wherein the foam is blown or expanded within the jacket as the jacket is wrapped around the expanding foam and the foam and jacket are passed through a die and into a traveling molding. Similar gasket constructions are shown in commonly-assigned U.S. Pat. No. 5,028,739 and in U.S. Pat. Nos. 4,857,668; 5,054,635; 5,105,056; and 5,202,536.

> Many electronic devices, including PC's and communication equipment, must not only comply with certain FCC requirements, but also must meet be approved under certain Underwriter's Laboratories (UL) standards for flame retardancy. In this regard, if each of the individual components within an electronic device is UL approved, then the device approval for each component therefore reduces the cost of compliance for the manufacturer, and ultimately may result in cheaper goods for the consumer. For EMI shielding gaskets, however, such gaskets must be made flame 94, "Tests for Flammability of Plastic Materials for Parts in Devices and Appliances" (1991), without compromising the electrical conductivity necessary for meeting EMI shielding requirements.

> In this regard, and particularly with respect to EMI shielding gaskets of the above-described fabric over foam variety, it has long been recognized that foamed polymeric materials are flammable and, in certain circumstances, may present a fire hazard. Owing to their cellular structure, high organic content, and surface area, most foam materials are subject to relatively rapid decomposition upon exposure to fire or high temperatures.

One approach for imparting flame retardancy to fabric over foam gaskets has been to employ the sheathing as a flame resistant protective layer for the foam. Indeed, V-0 rating compliance purportedly has been achieved by sheathing the foam within an electrically-conductive Ni/Cu-plated fabric to which a thermoplastic sheet is hot nipped or otherwise fusion bonding to the underside thereof. Such fabrics, which may be further described in one or more of U.S. Pat. Nos. 4,489,126; 4,531,994; 4,608,104; and/or 4,621,013, have been marketed by Monsanto Co., St. Louis, 10 under the tradename "Flectron® Ni/Cu Polyester Taffeta

Other fabric over foam gaskets, as is detailed in U.S. Pat. No. 4,857,668, incorporate a supplemental layer or coating applied to the interior surface of the sheath. Such coating may be a flame-retardant urethane formulation which also promotes the adhesion of the sheath to the foam. The coating additionally may function to reduce bleeding of the foam through the fabric which otherwise could compromise the electrical conductivity of the sheath.

In view of the foregoing, it will be appreciated that further improvements in the design of flame retardant, fabric-over foam EMI shielding gaskets, as well as sheathing materials therefore, would be well-received by the electronics industry. Especially desired would be a flame retardant gasket 25 construction which achieves a UL94 rating of V-0.

BROAD STATEMENT OF THE INVENTION

The present invention is directed to an electrically- 30 conductive, flame retardant material for use in fabric-overfoam EMI shielding gaskets, and to a method of manufacturing the same. In having a layer of a flame retardant coating applied to one side of an electrically-conductive, generally porous fabric, the material of the invention affords 35 broken away to better reveal the structure of the material; UL94 V-0 protection when used as a jacketing in a fabricover-foam gasket construction. Advantageously, as the flame retardant layer may be wet coated on the fabric without appreciable bleed through, a relatively thin, i.e., 2-4 mil (0.05-0.10 mm), coating layer may be provided on one fabric side without compromising the electrical surface conductivity of the other side. Such a thin coating layer, while being sufficient to provide UL94 V-0 protection, nonetheless maintains the drapability the fabric and thereby facilitates the construction UL94 V-0 compliant gaskets 45 having complex profiles or narrow cross-sections down to about 1 mm.

In a preferred embodiment, the electrically-conductive, flame retardant EMI shielding material of the invention like fabric on one side of which is wet coated a layer of a flame retardant, acrylic latex emulsion or other fluent resin composition. In accordance with the precepts of the method of the invention, the viscosity and hydrodynamic pressure of the emulsion are controlled such that the coating does not 55 penetrate or otherwise "bleed through" the uncoated side of the fabric. The surface conductivity of the opposite side of the fabric therefore is not compromised in EMI shielding applications.

The material of the invention may be employed as a jacket 60 in fabric-over-foam EMI shielding gasket constructions, and is particularly adapted for use in the continuous molding process for such gaskets. As used within such process, the fabric may be wrapped around the foam as a jacket with coated side thereof being disposed as an interior surface 65 adjacent the foam, and the uncoated side being disposed as an electrically-conductive exterior surface. Advantageously,

the coating on the interior surface of the jacket blocks the pores of the fabric to retain the foam therein without penetrate or bleed through to the exterior surface. In being formed of a acrylic material, the coated interior surface of the jacket may function, moreover, depending upon the composition of the foam, as a compatibilizing or "tie" interlayer which promotes the bonding of the foam to the

The present invention, accordingly, comprises material and method possessing the construction, combination of elements, and arrangement of parts and steps which are exemplified in the detailed disclosure to follow. Advantages of the present invention include a flame retardant yet drapable EMI shielding fabric. Additional advantages include an economical, flame retardant EMI shielding fabric construction wherein a relatively thin layer of a flame retardant coating may be wet coated onto one side of an electricallyconductive, woven or other generally porous EMI shielding fabric without compromising the conductivity of the other ²⁰ side of the fabric. These and other advantages will be readily apparent to those skilled in the art based upon the disclosure contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein:

FIG. 1 is a perspective view of one embodiment of an EMI shielding material according to the present invention which material includes a generally planar fabric member on one side of which is coated a layer of a flame retardant composition, the view being shown with portions being

FIG. 2 is an enlarged cross-sectional view of the EMI shielding material of FIG. 1 taken through plane represented by line **2—2** of FIG. **1**;

FIG. 3 is a top view of the material of FIG. 1 which is magnified to reveal the structure of the fabric member thereof:

FIG. 4 is a perspective cross-sectional view of a length of a representative EMI shielding gasket construction according to the present invention including a jacket which is formed of the EMI shielding material of FIG. 1;

FIG. 5 is an end view of the gasket of FIG. 4 which is magnified to reveal the structure thereof; and

FIG. 6 is a schematic, partially cross-sectional view of an includes a nickel or silver-plated, woven nylon, polyester, or 50 illustrative gravity-fed, knife over roll coater as adapted for use in the manufacture of the EMI shielding material of FIG.

> The drawings will be described further in connection with the following Detailed Description of the Invention.

DETAILED DESCRIPTION OF THE **INVENTION**

Certain terminology may be employed in the description to follow for convenience rather than for any limiting purpose. For example, the terms "upper" and "lower" designate directions in the drawings to which reference is made, with the terms "inner" or "interior" and "outer" or "exterior" referring, respectively, to directions toward and away from the center of the referenced element, and the terms "radial" and "axial" referring, respectively, to directions perpendicular and parallel to the longitudinal central axis of the referenced element. Terminology of similar import other

than the words specifically mentioned above likewise is to be considered as being used for purposes of convenience rather than in any limiting sense.

For the illustrative purposes of the discourse to follow, the electromagnetic interference (EMI) shielding material herein involved is described in connection with its use as a flame retardant, electrically-conductive jacket for a foam core, EMI shielding gasket as may be adapted to be received within an interface, such as between a door, panel, hatch, cover, or other parting line of an electromagnetic interference (EMI) shielding structure. The EMI shielding structure may be the conductive housing of a computer, communications equipment, or other electronic device or equipment which generates EMI radiation or is susceptible to the effects thereof. The gasket may be bonded or fastened to, or press-fit into one of a pair of mating surfaces which define the interface within the housing, and functions between the mating surfaces to seal any interface gaps or other irregularities. That is, while under an applied pressure, the gasket resiliently conforms to any such irregularities both to establish a continuous conductive path across the interface, and to environmentally seal the interior of the housing against the ingress of dust, moisture, or other contaminates. It will be appreciated, however, that aspects of the present invention may find utility in other EMI shielding applications. Use 25 within those such other applications therefore should be considered to be expressly within the scope of the present invention.

Referring then to the figures, wherein corresponding elements throughout the several views, a flame retardant EMI shielding material according to the present invention is shown generally at 10 in FIG. 1 as generally adapted for use as a jacket within for a foam core gasket construction. For indefinite dimensions which may be cut to size for the particular application envisioned. In basic construction, material 10 includes an upper, generally planar and porous fabric member, 12, and a lower, flame retardant coating member, 14.

Fabric member has at least an electrically-conductive first side, 16, and a conductive or non-conductive second side, 18, defining a thickness dimension, referenced at "t₁" in the cross-sectional view of FIG. 2, which may vary from about meant that the fabric may be rendered conductive, i.e., to a surface resistivity of about 0.1 Ω /sq. or less, by reason of its being constructed of electrically-conductive wire, monofilaments, yams or other fibers or, alternatively, by applied to non-conductive fibers to provide an electricallyconductive layer thereon. Preferred electrically-conductive fibers include Monel nickel-copper alloy, silver-plated copper, nickel-clad copper, Ferrex® tin-plated copper-clad steel, aluminum, tin-clad copper, phosphor bronze, carbon, 55 graphite, and conductive polymers. Preferred nonconductive fibers include cotton, wool, silk, cellulose, polyester, polyamide, nylon, and polyimide monofilaments or yarns which are rendered electrically conductive with a aluminum, tin, or an alloy thereof. As is known, the metal plating may applied to individual fiber strands or to the surfaces of the fabric after weaving, knitting, or other fabrication.

While fabrics such as wire meshes, knits, and non-woven 65 cloths and webs may find application, a preferred fabric construction for member 12 is a plain weave nylon or

polyester cloth which is made electrically conductive with between about 20-40% by weight based on the total fabric weight, i.e., 0.01-0.10 g/in², of a silver, nickel-silver, or silver-nickel over copper plating. As may be seen in the magnified view of FIG. 1 referenced at 20 in FIG. 3, such cloth is permeable in having a plain, generally square weave pattern with pores or openings, one of which is referenced at 22, being defined between the fibers which are represented schematically at 24. Fibers 24 may be yarns, monofilaments or, preferably, bundles of from about 10-20 filaments or threads, each having a diameter of between about $10-50 \mu m$. For example, with fibers 24 each being a bundle of such threads with a thread count of between about 1000-3000 per inch and a weave count of between about 1000-1500 per inch, 1000-2000 openings per inch will be defined with a mean average pore size of between about 0.5-2 mils $(12.5-50 \mu m)$.

Although a plain, square weave pattern such as a taffeta, tabby, or ripstop is considered preferred, other weaves such as satins, twills, and the like also should be considered within the scope of the invention herein involved. A particularly preferred cloth for fabric member 12 is a 4 mil (0.10 mm) thick, 1.8 oz/yd² weight, silver-plated, woven nylon which is marketed commercially under the designation "31EN RIPSTOP" by Swift Textile Metalizing Corp., Bloomfield, Conn. However, depending upon the needs of the specific shielding application, a fabric constructed of a combination or blend of conductive and nonconductive fibers alternatively may be employed. Examples of fabrics reference characters are used to designate corresponding 30 woven, braided, or warp knitted from electricallyconductive fibers, or from blends of conductive and nonconductive fibers, are described in Gladfelter, U.S. Pat. No. 4,684,762, and in Buonanno, U.S. Pat. No. 4,857,668.

Returning to FIGS. 1 and 2, coating member 14 preferpurposes of illustration, material sheet 10 is shown to be of 35 ably is formed from a curable layer of a fluent, flame retardant resin or other composition which is wet coated onto the second side 18 of fabric member 12. As is detailed hereinafter, the viscosity and hydrodynamic pressure of the resin composition are controlled in accordance with the precepts of the present invention to delimit the penetration of the resin layer to a depth, referenced at "d" in FIG. 2, which is less than the thickness dimension t₁ of the fabric member 12. In this regard, when the layer is cured to form the flame retardant surface coating member 14 on the second 2-4 mils (0.05-0.10 mm). By "electrically-conductive," it is 45 side 18 of fabric member 12, the first side 16 thereof remains electrically-conductive. In a preferred construction, the layer is coated to a wet thickness of about 10 mils (0.25 mm), and then cured to a dried coating or film thickness, referenced at t₂ in FIG. 2, of between about 2-4 mils (0.05-0.10 mm) at reason of a treatment such as a plating or sputtering being 50 a depth d of about 12 mils (0.025-0.05 mm). Ultimately, a total material thickness, referenced at "T," of between about 6-7 mils (0.15-0.20 mm) and a dried weight pickup of between about 100–150 g/yd² are observed. By "cured" it is meant that the resin is polymerized, cross-linked, further cross-linked or polymerized, vulcanized, hardened, dried, volatilized, or otherwise chemically or physically changed from a liquid or other fluent form into a solid polymeric or elastomeric phase.

The flame retardant composition preferably is formulated metal plating of copper, nickel, silver, nickel-plated-silver, 60 as an aqueous emulsion of an acrylic latex emulsion which is adjusted to a total solids of about 60% and a Brookfield viscosity (#5 spindle, 4 speed) of between about 40,000-60, 000 cps, at a density of about 10 lbs per gallon (1.8 g/cm³). Flame retardancy may be imparted by loading the emulsion with between about 30-50% by weight of one or more conventional flame retardant additives such as aluminum hydrate, antimony trioxide, phosphate esters, or halogenated

compounds such as polybrominated diphenyl oxides. A preferred formulation is a mixture of about 25% by weight, based on the total weight of the emulsion, of decambromodiphenyl oxide and about 15% by weight of one or more antimony compounds. In operation, should the acrylic carrier phase be ignited, the decomposition of the halogenated and metal oxide compounds function to chemically deprive the flame of sufficient oxygen to support combustion. The decomposition of the acrylic phase additionally may lead to the development of a protective, i.e., thermally-insulative or 10 refractory, outer char layer.

A preferred flame retardant, acrylic latex emulsion is marketed commercially by Heveatex Corp., Fall River, Mass., under the designation "4129FR." The viscosity of the emulsion may be adjusted to between about 40,000–60,000 cps using an aqueous acryloid gel or other acrylic thickener. In this regard, the increased viscosity of the emulsion contributes to delimiting the penetration of the coating layer into the fabric member. However, as this relatively high viscosity may lead to undesirable porosity in the dried film, $_{20}$ the emulsion additionally may be modified to reduce air entrapment and bubble formation in the coating layer with up to about 1% by weight of one or more commercial surfactants such as "Bubble Breaker" by Witco Chemical mond Shamrock, Inc. (San Antonio, Tex.).

As aforementioned, EMI shielding material 10 of the present invention is particularly adapted for use as a flame retardant, electrically-conductive jacket which is provided over a foam core in an EMI shielding gasket construction 30 additionally may find applicability. such as gasket 50 of FIG. 4. In a representative embodiment, gasket 50 includes an elongate, resilient foam core member, 52, which may be of an indefinite length. Core member 52 has an outer circumferential surface, 54, defining the crosspurposes, is of a generally polygonal, i.e., square or rectangular geometry. Other plane profiles, such as circular, semicircular, or elliptical, or complex profiles may be substituted, however, depending upon the geometry of the interface to be sealed. Core member 12 may be of any radial or diametric 40 extent, but for most applications will have a diametric extent or width of from about 0.25 inch (0.64 cm) to 1 inch (2.54 cm).

For affording gap-filling capabilities, it is preferred that range of temperatures, and to exhibit good compressionrelaxation hysteresis even after repeated cyclings or long compressive dwells. Core member 52 therefore may be formed of a foamed elastomeric thermoplastic such as a butadiene, styrene-butadiene, nitrile, chlorosulfonate, or a foamed neoprene, urethane, or silicone. Preferred materials of construction include open or closed cell urethanes or blends such as a polyolefin resin/monoolefin copolymer blend, or a neoprene, silicone, or nitrile sponge rubber.

Core member 52 may be provided as an extruded or molded foam profile over which shielding material 10 is wrapped as a sheathed, with the edges of sheathed being overlapped as at 56. In a preferred construction, shielding material 10 is bonded to the core member 52 in a continuous 60 molding process wherein the foam is blown or expanded within the shielding material. As may be seen best with reference to the magnified view of FIG. 4 referenced at 60 in FIG. 5, in such construction coating member 14 is disposed adjacent core member 52 as an interior surface, 62, 65 of shielding member 10, with the uncoated side 16 of fabric member 12 being oppositely disposed as an electrically8

conductive exterior surface, 64, of the gasket 50. It will be appreciated that the coated interior surface 62 blocks the pores 22 (FIG. 3) of the fabric member 12 of the fabric to retain the blown foam therein without penetrate or bleed through to the exterior gasket surface 64. Depending upon the respective compositions of the foam and coating, the interior surface 62 may function, moreover, as a compatibilizing or "tie" interlayer which promotes the bonding of the foam to the fabric. Gasket construction 50 advantageously provides a structure that may be used in very low closure force, i.e. less than about 1 lb/inch (0.175 N/mm), applications.

Referring again to FIG. 4, an adhesive layer, 70, may be applied along the lengthwise extent of gasket 50 to the underside of exterior surface 64 for the attachment of the gasket to a substrate. Such layer 70 preferably is formulated to be of a pressure sensitive adhesive (PSA) variety. As is described in U.S. Pat. No. 4,988,550, suitable PSA's for EMI shielding applications include formulations based on silicones, neoprene, styrene butadiene copolymers, acrylics, acrylates, polyvinyl ethers, polyvinyl acetate copolymers, polyisobutylenes, and mixtures, blends, and copolymers thereof. Acrylic-based formulations, however, generally are considered to be preferred for the EMI applications of the Corp. (Chicago, Ill.) and "Foam Master Antifoam" by Dia- 25 type herein involved. Although PSA's are preferred for adhesive layer 70, other adhesives such as epoxies and urethanes may be substituted and, accordingly, are to be considered within the scope of the present invention. Heatfusible adhesives such a hotmelts and thermoplastic films

Inasmuch as the bulk conductivity of gasket 50 is determined substantially through its surface contact with the substrate, an electrically-conductive PSA may be preferred to ensure optimal EMI shielding performance. Such adhesectional profile of gasket 50 which, for illustrative 35 sives conventionally are formulated as containing about 1-25% by weight of a conductive filler to yield a volume resistivity of from about 0.01–0.001 Ω -cm. The filler may be incorporated in the form of particles, fibers, flakes, microspheres, or microballoons, and may range in size of from about 1-100 microns. Typically filler materials include inherently conductive material such as metals, carbon, and graphite, or nonconductive materials such as plastic or glass having a plating of a conductive material such as a noble metal or the like. In this regard, the means by which the core member 52 is provided to be complaint over a wide 45 adhesive is rendered electrically conductive is not considered to be a critical aspect of the present invention, such that any means achieving the desired conductivity and adhesion are to be considered suitable.

For protecting the outer portion of adhesive layer 70 polyethylene, polypropylene, polypropylene-EPDM blend, 50 which is exposed on the exterior surface of the gasket, a release sheets, shown at 72, may be provided as removably attached to the exposed adhesive. As is common in the adhesive art, release sheet 72 may be provided as strip of a waxed, siliconized, or other coated paper or plastic sheet or 55 the like having a relatively low surface energy so as to be removable without appreciable lifting of the adhesive from the exterior surface 64.

> In the production of commercial quantities of the EMI shielding material 10 of the present invention, the viscosity adjusted and otherwise modified acrylic latex emulsion or other resin composition may be coated and cured on one side the fabric member 12 by a direct wet process such as knife over roll or slot die. With whatever process is employed, the hydrodynamic pressure of the resin composition is controlled in accordance with the precepts of the present invention to delimit the penetration of the resin layer to a depth which is less than the thickness dimension of the fabric

q

member. For example, and with reference to FIG. 6 wherein the head of a representative gravity-fed knife over roll coater is shown somewhat schematically at 100, porous, i.e., permeable, fabric member 12 is conveyed from a feed roll or the like (not shown) over a nip roller, 102, which rotates 5 in the direction referenced by arrow 104. With the first side 16 of fabric member 12 supported on roller 102, the fabric second side 18 is passed beneath the opening, referenced at 106, of a coating trough, 108. Trough 108 is defined by a front plate, 110, a back plate, 112, and a pair of side plates 10 (not shown).

The emulsion or other fluent resin composition, referenced at **114**, is pumped or otherwise transported into trough **108** which is filled to a fluid level, referenced at h. For a given fluid density, this level h is controlled such that the hydrodynamic pressure at the fabric-liquid interface is maintained within preset limits. For example, with a fluid density of about 10 pounds per gallon (1.8 g/cm³), and a fabric having a porosity of about 1000–2000 openings per inch with a mean average pore size of between about 0.5–2 mils (12.5–50 µm), the fluid level H is controlled at about 4 inches (10 cm) to yield a hydrodynamic pressure of about 0.05 psi (0.35 kPa) at the fabric-liquid interface. For other coating processes, the hydrodynamic fluid pressure may be controlled, for example, by a pumping pressure or the like. ²⁵

In the illustrative knife-over-roll coating process, the lower edge, 120, of front plate 110 defines a knife surface which is shimmed or otherwise spaced-apart a predetermined distance from the second side 18 of fabric member 12. Such spacing provides a clearance or gap, referenced at "g," of typically about 10 mils (0.25 mm), but which is adjustable to regulate the thickness of the liquid coating layer, 122, being applied to the fabric member. From roller 104, the coated fabric member 12 may be conveyed via a take-up roller arrangement (not shown) through a in-line oven or the like to dry or flash the water or other diluent in the liquid coating layer 122, or to otherwise cure the liquid coating layer 122 in developing an adherent, tack-free, film or other layer of coating member 14 (FIG. 1) on the single side 18 of fabric member 12.

The Example to follow, wherein all percentages and proportions are by weight unless otherwise expressly indicated, is illustrative of the practicing of the invention herein involved, but should not be construed in any limiting $_{\rm 45}$ sense.

EXAMPLE

Representative EMI shielding materials according to the present invention were constructed for characterization. In this regard, a master batch of a flame retardant coating composition was compounded using an acrylic latex emulsion (Heveatex "4129FR"). The viscosity of the emulsion was adjusted to a Brookfield viscosity (#4 spindle, 40 speed) of about 60,000 cps with about 5 wt % of an acryloid 55 thickener (AcrySolTM GS, Monsanto Co., St. Louis, Mo.). The modified emulsion had a total solids content of about 60% by weight, a density of about 10 pounds per gallon (1.8 g/cm³), and a pH of between about 7.5 and 9.5.

The emulsion was applied using a knife over roll coater 60 (JETZONE Model 7319, Wolverine Corp., Merrimac, Mass.) to one side of a silver-plated nylon fabric (Swift "31EN RIPSTOP") having a thickness of about 4 mils (0.1 mm). With the fluid level in the coating trough of the coater maintained at about 4 inch (10 cm), the emulsion was 65 delivered to the surface of the cloth at a hydrodynamic pressure of about 0.05 psi (0.35 kPa). The coating knife was

10

shimmed to a 10 mil (0.25 mm) gap above the fabric to yield a wet coating draw down thickness of about 10 mils. Following an oven curing at 100–125° C. for 5 minutes, a dried coating or film thickness of about 2.5 mils (0.635 mm) was obtained with a weight pickup of about 130–145 g/yd² and a total material thickness of between about 6–7 mils (0.15–0.18 mm). An inspection of the coated fabric cloth revealed a coating penetration depth of about 1–2 mils (0.02–0.05 mm) providing acceptable mechanical retention and/or adhesion of the coating onto the fabric surface. The opposite side of the fabric, however, was observed to be substantially coating free, and to retain a surface resistivity of about 0.1 Ω/sq for unaffected EMI shielding effectiveness.

Fabric samples similarly coated in the manner described were subjected to an in-house vertical flame test. No burning was observed at dried film thickness of 2, 3, or 4 mils (0.05, 0.08, 0.10 mm). Accordingly, a reasonable operating window of film thickness was suggested for production runs.

Samples also were provided, as jacketed over a polyurethane foam core in an EMI shielding gasket construction, for flame testing by Underwriters Laboratories, Inc., Melville, N.Y. A flame class rating of V-0 under UL94 was assigned at a minimum thickness of 1.0 mm. The gasket construction therefore was found to be compliant with the applicable UL requirements, and was approved to bear the "UL" certification mark.

The foregoing results confirm that the EMI shielding material of the present invention affords UL94 V-0 protection when used as a jacketing in a fabric-over-foam gasket construction. Unexpectedly, it was found that a relatively porous or permeable fabric may be wet coated on one side with a relatively thin, i.e., 2–4 mil (0.05–0.10 mm), coating layer of a flame retardant composition without compromising the electrical surface conductivity of the other side. Such a thin coating layer, while being sufficient to provide UL94 V-0 protection in a conventional fabric-over-foam gasket construction, nonetheless maintains the drapability the fabric and thereby facilitates the fabrication of UL94 V-0 compliant gaskets having complex profiles or narrow cross-sections down to about 1 mm.

As it is anticipated that certain changes may be made in the present invention without departing from the precepts herein involved, it is intended that all matter contained in the foregoing description shall be interpreted as illustrative and not in a limiting sense. All references cited herein are expressly incorporated by reference.

What is claimed is:

- 1. A flame retardant, electromagnetic interference (EMI) shielding gasket comprising:
 - a resilient core member extending lengthwise along a central longitudinal axis and having an outer surface extending circumferentially about said longitudinal axis, said core member being formed of a foamed elastomeric material;
 - an electrically-conductive fabric member surrounding the outer surface of said core member, said fabric member having an interior surface disposed facing the outer surface of said core member and an oppositely-facing exterior surface at least the exterior surface being electrically-conductive and the exterior surface defining with the interior surface a thickness dimension of the fabric member therebetween; and

- a flame retardant layer coating at least a portion of the interior surface of said fabric member, said flame retardant layer penetrating into said fabric member to a depth which is less than the thickness dimension of said fabric member such that the exterior surface of said 5 fabric member remains electrically-conductive.
- 2. The gasket of claim 1 wherein said flame retardant layer has a thickness of between about 2–4 mils (0.05–0.10 mm).
- 3. The gasket of claim 1 wherein said flame retardant layer is formed as a cured film of a flame retardant acrylic latex 10 emulsion.
- 4. The gasket of claim 1 wherein said fabric member is a metal-plated cloth.
- 5. The gasket of claim 4 wherein said cloth comprises fibers selected from the group consisting of cotton, wool, 15 under Underwriter's Laboratories (UL) Standard No. 94. silk, cellulose, polyester, polyamide, nylon, and combinations thereof, and said metal is selected from the group

12

consisting of copper, nickel, silver, nickel-plated-silver, aluminum, tin, and combinations thereof.

- 6. The gasket of claim 1 wherein said foamed elastomeric material is selected from the group consisting of polyethylenes, polypropylenes, polypropylene-EPDM blends, butadienes, styrene-butadienes, nitrites, chlorosulfonates, neoprenes, urethanes, silicones, and polyolefin resin/monoolefin copolymer blends, and combinations thereof.
- 7. The gasket of claim 1 wherein said fabric member has a thickness of between about 2-4 mils (0.05-0.10 mm).
- 8. The gasket of claim 1 wherein said flame retardant layer is effective to afford the gasket a flame class rating of V-0

Exhibit B

(12) United States Patent

Bunyan et al.

(10) Patent No.:

US 6,521,348 B2

(45) Date of Patent:

*Feb. 18, 2003

(54) FLAME RETARDANT EMI SHIELDING GASKET

(75) Inventors: Michael H. Bunyan, Chelmsford, MA (US); William I. Flanders, Merimack, NH (US)

Assignee: Parker-Hannifin Corp., Cleveland, OH

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: 10/142,803

(22) Filed: May 9, 2002

(65) Prior Publication Data

US 2002/0125026 A1 Sep. 12, 2002

Related U.S. Application Data

- (63) Continuation of application No. 09/883,785, filed on Jun. 18, 2001, now Pat. No. 6,387,523, which is a continuation of application No. 09/250,338, filed on Feb. 16, 1999, now Pat. No. 6,428,393.
- (60) Provisional application No. 60/076,370, filed on Feb. 27,

(51)	Int. Cl. ⁷	 В32В	5/14;	В32В	5/18;
` '				HOSK	

(56) References Cited

U.S. PATENT DOCUMENTS

4,178,410 A	12/1979	Tomita
4,396,661 A	8/1983	George et al.
4,447,484 A	5/1984	Slosberg et al.
4,489,126 A	12/1984	Holtrop et al.

4,531,994 A	7/1985	Holtrop et al.
4,540,617 A	9/1985	Kawanishi et al.
4,569,304 A	2/1986	Le Maitre
4,572,960 A	2/1986	Ebneth et al.
4,608,104 A	8/1986	Holtrop et al.
4,621,013 A	11/1986	Holtrop et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

DE	9013936		12/1990
EP	0326441		8/1989
FR	2308030		11/1976
JР	07-176889	*	7/1995
WO	WO 00/23513	*	4/2000
WO	WO 01/10182	*	2/2001

OTHER PUBLICATIONS

Dye, James M. Compliance Engineering 17(3), pp 138 and 140-145, 2000.*

Kleiner, J. Vinyl Technol. vol. 4 No. 4, Dec. 1982, pp 157-159, 1982.*

Copy of the International Application Published Under the Patent Cooperation Treaty in International Patent Application No. PCT/US00/20609 (WO 01/10182) entitled: "Method and Apparatus for Manufacturing A Flame Retardant EMI Gasket".

(List continued on next page.)

Primary Examiner—Erma Cameron (74) Attorney, Agent, or Firm—John A. Molnar, Jr.

(57) ABSTRACT

A flame retardant, electromagnetic interference (EMI) shielding gasket construction. The construction includes a resilient core member formed of a foamed elastomeric material, an electrically-conductive fabric member surrounding the outer surface of the core member, and a flame retardant layer coating at least a portion of the interior surface of the fabric member. The flame retardant layer is effective to afford the gasket construction with a flame class rating of V-0 under Underwriter's Laboratories (UL) Standard No. 94.

18 Claims, 3 Drawing Sheets

4/1993 Furuta et al.

11/1993 Tohyama et al.

5,266,354 A

US 6,521,348 B2

Page 2

U.S. PATENT DOCUMENTS		5,612,092 A	3/1997	Strenger et al.	
		,	5,614,306 A	3/1997	Jobe et al.
4,666,765 A	5/1987	Caldwell et al.	5,635,252 A	6/1997	Fraser, Jr. et al.
4,684,762 A	8/1987	Gladfeiter	5,641,544 A	6/1997	Melancon et al.
4,753,840 A	6/1988	Van Gompel	5,674,606 A	10/1997	Powers, Jr.

4,684,762 A 4,753,840 A 4,797,171 A 4,857,668 A 12/1997 Chiou 1/1989 Van Gompel 5,700,532 A 2001/0028558 A1 * 10/2001 Rapp et al. 361/818 8/1989 Buonanno 4,871,477 A 10/1989 Dimanshteyn

OTHER PUBLICATIONS 4,988,550 A 5,009,927 A 1/1991 Keyser et al. 4/1991 Cloyd et al. Chomerics Parker Hannifin Seals Catalog dated 1997 for 5,028,739 A 7/1991 Keyser et al.

Soft-Shield Low Closure Force EMI Gaskets. 5,045,635 A 9/1991 Kaplo et al. Monsanto Flectron Metalized Materials dated Sep. 12, 1995. 5,089,325 A 2/1992 Covey

5,105,056 A 4/1992 Hoge, Jr. et al. Copy of International Search Report for PCT Case No. 6/1992 Iwamoto et al. PCT/US99/04100, Jan. 7, 1999. 5,122,411 A 5,202,536 A 5,204,403 A 4/1993 Buonanno

Underwriters Laboratories, Inc. letter dated Sep. 20, 1995.

* cited by examiner

Sheet 1 of 3

US 6,521,348 B2

Fig. 2

Fig. 3

Sheet 2 of 3

US 6,521,348 B2

Fig. 4

Fig. 5

US 6,521,348 B2

1

FLAME RETARDANT EMI SHIELDING GASKET

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 09/883,785, filed Jun. 18, 2001, which application is to issue as U.S. Pat. No. 6,387,523; which is a continuation of U.S. application Ser. No. 09/250,338, filed Feb. 16, 1999, now U.S. Pat. No. 6,428,393 and claiming priority to U.S. provisional application Serial No. 60/076,370, filed Feb. 27, 1998, the disclosure of each of which is expressly incorporated herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates broadly to electrically-conductive, flame retardant materials for use in electromagnetic interference (EMI) shielding, and to a method of manufacturing the same, and more particularly to an electrically-conductive fabric having a layer of a flame retardant coating applied to one surface thereof for use as a sheathing within an EMI shielding gasket.

The operation of electronic devices including televisions, radios, computers, medical instruments, business machines, communications equipment, and the like is attended by the generation of electromagnetic radiation within the electronic circuitry of the equipment. Such radiation often develops as a field or as transients within the radio frequency band of the electromagnetic spectrum, i.e., between about 10 KHz and 10 GHz, and is termed "electromagnetic interference" or "EMI" as being known to interfere with the operation of other proximate electronic devices.

To attenuate EMI effects, shielding having the capability of absorbing and/or reflecting EMI energy may be employed both to confine the EMI energy within a source device, and to insulate that device or other "target" devices from other source devices. Such shielding is provided as a barrier which is inserted between the source and the other devices, and typically is configured as an electrically conductive and grounded housing which encloses the device. As the circuitry of the device generally must remain accessible for servicing or the like, most housings are provided with openable or removable accesses such as doors, hatches, panels, or covers. Between even the flattest of these accesses and its corresponding mating or faying surface, however, there may be present gaps which reduce the efficiency of the shielding by presenting openings through which radiant energy may leak or otherwise pass into or out of the device. Moreover, such gaps represent discontinuities in the surface 50 and ground conductivity of the housing or other shielding, and may even generate a secondary source of EMI radiation by functioning as a form of slot antenna. In this regard, bulk or surface currents induced within the housing develop voltage gradients across any interface gaps in the shielding, which gaps thereby function as antennas which radiate EMI noise. In general, the amplitude of the noise is proportional to the gap length, with the width of the gap having a less appreciable effect.

For filling gaps within mating surfaces of housings and 60 other EMI shielding structures, gaskets and other seals have been proposed both for maintaining electrical continuity across the structure, and for excluding from the interior of the device such contaminates as moisture and dust. Such seals are bonded or mechanically attached to, or press-fit 65 into, one of the mating surfaces, and function to close any interface gaps to establish a continuous conductive path

2

thereacross by conforming under an applied pressure to irregularities between the surfaces. Accordingly, seals intended for EMI shielding applications are specified to be of a construction which not only provides electrical surface conductivity even while under compression, but which also has a resiliency allowing the seals to conform to the size of the gap. The seals additionally must be wear resistant, economical to manufacture, and capability of withstanding repeated compression and relaxation cycles. For further information on specifications for EMI shielding gaskets, reference may be had to Severinsen, J., "Gaskets That Block EMI," Machine Design, Vol. 47, No. 19, pp. 74–77 (Aug. 7, 1975).

Requirements for typical EMI shielding applications often dictate a low impedance, low profile gasket which is deflectable under normal closure force loads. Other requirements include low cost and a design which provides an EMI shielding effectiveness for both the proper operation of the device and compliance, in the United States, with commercial Federal Communication Commission (FCC) EMC regulations.

A particularly economical gasket construction, which also requires very low closure forces, i.e. less than about 1 lb/inch (0.175 N/mm), is marketed by the Chomerics Division of Parker-Hannifin Corp., Woburn, Mass. under the tradename "Soft-Shield® 5000 Series." Such construction consists of an electrically-conductive jacket or sheathing which is "cigarette" wrapped lengthwise over a polyure-thane or other foam core. As is described further in U.S. Pat. No. 4,871,477, polyurethane foams generally are produced by the reaction of polyisocyanate and a hydroxyl-functional polyol in the presence of a blowing agent. The blowing agent effects the expansion of the polymer structure into a multiplicity of open or closed cells.

The jacket is provided as a highly conductive, i.e., about 1 Ω -sq., nickel-plated-silver, woven rip-stop nylon which is self-terminating when cut. Advantageously, the jacket may be bonded to the core in a continuous molding process wherein the foam is blown or expanded within the jacket as the jacket is wrapped around the expanding foam and the foam and jacket are passed through a die and into a traveling molding. Similar gasket constructions are shown in commonly-assigned U.S. Pat. No. 5,028,739 and in U.S. Pat. Nos. 4,857,668; 5,054,635; 5,105,056; and 5,202,536.

Many electronic devices, including PC's and communication equipment, must not only comply with certain FCC requirements, but also must meet be approved under certain Underwriter's Laboratories (UL) standards for flame retardancy. In this regard, if each of the individual components within an electronic device is UL approved, then the device itself does not require separate approval. Ensuring UL approval for each component therefore reduces the cost of compliance for the manufacturer, and ultimately may result in cheaper goods for the consumer. For EMI shielding gaskets, however, such gaskets must be made flame retardant, i.e., achieving a rating of V-0 under UL Std. No. 94, "Tests for Flammability of Plastic Materials for Parts in Devices and Appliances" (1991), without compromising the electrical conductivity necessary for meeting EMI shielding requirements.

In this regard, and particularly with respect to EMI shielding gaskets of the above-described fabric over foam variety, it has long been recognized that foamed polymeric materials are flammable and, in certain circumstances, may present a fire hazard. Owing to their cellular structure, high organic content, and surface area, most foam materials are

subject to relatively rapid decomposition upon exposure to fire or high temperatures.

One approach for imparting flame retardancy to fabric over foam gaskets has been to employ the sheathing as a flame resistant protective layer for the foam. Indeed, V-0 rating compliance purportedly has been achieved by sheathing the foam within an electrically-conductive Ni/Cu-plated fabric to which a thermoplastic sheet is hot nipped or otherwise fusion bonding to the underside thereof. Such fabrics, which may be further described in one or more of U.S. Pat. Nos. 4,489,126; 4,531,994; 4,608,104; and/or 4,621,013, have been marketed by Monsanto Co., St. Louis, under the tradename "Flectron® Ni/Cu Polyester Taffeta

Other fabric over foam gaskets, as is detailed in U.S. Pat. No. 4,857,668, incorporate a supplemental layer or coating applied to the interior surface of the sheath. Such coating may be a flame-retardant urethane formulation which also promotes the adhesion of the sheath to the foam. The coating additionally may function to reduce bleeding of the foam through the fabric which otherwise could compromise the electrical conductivity of the sheath.

In view of the foregoing, it will be appreciated that further improvements in the design of flame retardant, fabric-over foam EMI shielding gaskets, as well as sheathing materials therefore, would be well-received by the electronics industry. Especially desired would be a flame retardant gasket construction which achieves a UL94 rating of V-0.

BROAD STATEMENT OF THE INVENTION

The present invention is directed to an electricallyconductive, flame retardant material for use in fabric-overfoam EMI shielding gaskets, and to a method of manufaccoating applied to one side of an electrically-conductive, generally porous fabric, the material of the invention affords UL94 V-0 protection when used as a jacketing in a fabricover-foam gasket construction. Advantageously, as the flame retardant layer may be wet coated on the fabric without appreciable bleed through, a relatively thin, i.e., 2-4 mil (0.05-0.10 mm), coating layer may be provided on one fabric side without compromising the electrical surface conductivity of the other side. Such a thin coating layer, while being sufficient to provide UL94 V-0 protection, 45 nonetheless maintains the drapability the fabric and thereby facilitates the construction UL94 V-0 compliant gaskets having complex profiles or narrow cross-sections down to about 1 mm.

In a preferred embodiment, the electrically-conductive, 50 flame retardant EMI shielding material of the invention includes a nickel or silver-plated, woven nylon, polyester, or like fabric on one side of which is wet coated a layer of a flame retardant, acrylic latex emulsion or other fluent resin composition. In accordance with the precepts of the method of the invention, the viscosity and hydrodynamic pressure of the emulsion are controlled such that the coating does not penetrate or otherwise "bleed through" the uncoated side of the fabric. The surface conductivity of the opposite side of the fabric therefore is not compromised in EMI shielding applications.

The material of the invention may be employed as a jacket in fabric-over-foam EMI shielding gasket constructions, and is particularly adapted for use in the continuous molding process for such gaskets. As used within such process, the fabric may be wrapped around the foam as a jacket with coated side thereof being disposed as an interior surface

4

adjacent the foam, and the uncoated side being disposed as an electrically-conductive exterior surface. Advantageously, the coating on the interior surface of the jacket blocks the pores of the fabric to retain the foam therein without penetrate or bleed through to the exterior surface. In being formed of a acrylic material, the coated interior surface of the jacket may function, moreover, depending upon the composition of the foam, as a compatibilizing or "tie" interlayer which promotes the bonding of the foam to the fabric.

The present invention, accordingly, comprises material and method possessing the construction, combination of elements, and arrangement of parts and steps which are exemplified in the detailed disclosure to follow. Advantages of the present invention include a flame retardant yet drapable EMI shielding fabric. Additional advantages include an economical, flame retardant EMI shielding fabric construction wherein a relatively thin layer of a flame retardant coating may be wet coated onto one side of an electrically-conductive, woven or other generally porous EMI shielding fabric without compromising the conductivity of the other side of the fabric. These and other advantages will be readily apparent to those skilled in the art based upon the disclosure contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein:

The present invention is directed to an electrically-conductive, flame retardant material for use in fabric-over-foam EMI shielding gaskets, and to a method of manufacturing the same. In having a layer of a flame retardant coating applied to one side of an electrically-conductive, generally porous fabric, the material of the invention affords

FIG. 1 is a perspective view of one embodiment of an EMI shielding material according to the present invention which material includes a generally planar fabric member on one side of which is coated a layer of a flame retardant composition, the view being shown with portions being broken away to better reveal the structure of the material;

FIG. 2 is an enlarged cross-sectional view of the EMI shielding material of FIG. 1 taken through plane represented 40 by line 2—2 of FIG. 1;

FIG. 3 is a top view of the material of FIG. 1 which is magnified to reveal the structure of the fabric member thereof;

FIG. 4 is a perspective cross-sectional view of a length of a representative EMI shielding gasket construction according to the present invention including a jacket which is formed of the EMI shielding material of FIG. 1;

FIG. 5 is an end view of the gasket of FIG. 4 which is magnified to reveal the structure thereof; and

FIG. 6 is a schematic, partially cross-sectional view of an illustrative gravity-fed, knife over roll coater as adapted for use in the manufacture of the EMI shielding material of FIG.

The drawings will be described further in connection with the following Detailed Description of the Invention.

DETAILED DESCRIPTION OF THE INVENTION

Certain terminology may be employed in the description to follow for convenience rather than for any limiting purpose. For example, the terms "upper" and "lower" designate directions in the drawings to which reference is made, with the terms "inner" or "interior" and "outer" or "exterior" referring, respectively, to directions toward and away from the center of the referenced element, and the terms "radial" and "axial" referring, respectively, to directions perpendicu-

lar and parallel to the longitudinal central axis of the referenced element. Terminology of similar import other than the words specifically mentioned above likewise is to be considered as being used for purposes of convenience rather than in any limiting sense.

For the illustrative purposes of the discourse to follow, the electromagnetic interference (EMI) shielding material herein involved is described in connection with its use as a flame retardant, electrically-conductive jacket for a foam core, EMI shielding gasket as may be adapted to be received within an interface, such as between a door, panel, hatch, cover, or other parting line of an electromagnetic interference (EMI) shielding structure. The EMI shielding structure may be the conductive housing of a computer, communications equipment, or other electronic device or equipment which generates EMI radiation or is susceptible to the effects thereof. The gasket may be bonded or fastened to, or press-fit into one of a pair of mating surfaces which define the interface within the housing, and functions between the mating surfaces to seal any interface gaps or other irregularities. That is, while under an applied pressure, the gasket 20 resiliently conforms to any such irregularities both to establish a continuous conductive path across the interface, and to environmentally seal the interior of the housing against the ingress of dust, moisture, or other contaminates. It will be appreciated, however, that aspects of the present invention 25 may find utility in other EMI shielding applications. Use within those such other applications therefore should be considered to be expressly within the scope of the present

Referring then to the figures, wherein corresponding 30 reference characters are used to designate corresponding elements throughout the several views, a flame retardant EMI shielding material according to the present invention is shown generally at 10 in FIG. 1 as generally adapted for use as a jacket within for a foam core gasket construction. For 35 purposes of illustration, material sheet 10 is shown to be of indefinite dimensions which may be cut to size for the particular application envisioned. In basic construction, material 10 includes an upper, generally planar and porous member, 14.

Fabric member has at least an electrically-conductive first side, 16, and a conductive or non-conductive second side, 18, defining a thickness dimension, referenced at "t," in the 2-4 mils (0.05-0.10 mm). By "electrically-conductive," it is meant that the fabric may be rendered conductive, i.e., to a surface resistivity of about 0.1 Ω /sq. or less, by reason of its being constructed of electrically-conductive wire, reason of a treatment such as a plating or sputtering being applied to non-conductive fibers to provide an electricallyconductive layer thereon. Preferred electrically-conductive fibers include Monel nickel-copper alloy, silver-plated steel, aluminum, tin-clad copper, phosphor bronze, carbon, graphite, and conductive polymers. Preferred nonconductive fibers include cotton, wool, silk, cellulose, polyester, polyamide, nylon, and polyimide monofilaments or yarns which are rendered electrically conductive with a 60 metal plating of copper, nickel, silver, nickel-plated-silver, aluminum, tin, or an alloy thereof. As is known, the metal plating may applied to individual fiber strands or to the surfaces of the fabric after weaving, knitting, or other fabrication.

While fabrics such as wire meshes, knits, and non-woven cloths and webs may find application, a preferred fabric 6

construction for member 12 is a plain weave nylon or polyester cloth which is made electrically conductive with between about 20-40% by weight based on the total fabric weight, i.e., 0.01-0.10 g/in2, of a silver, nickel-silver, or silver-nickel over copper plating. As may be seen in the magnified view of FIG. 1 referenced at 20 in FIG. 3, such cloth is permeable in having a plain, generally square weave pattern with pores or openings, one of which is referenced at 22, being defined between the fibers which are represented schematically at 24. Fibers 24 may be yams, monofilaments or, preferably, bundles of from about 10-20 filaments or threads, each having a diameter of between about 10-50 gm. For example, with fibers 24 each being a bundle of such threads with a thread count of between about 1000-3000 per inch and a weave count of between about 1000-1500 per inch, 1000-2000 openings per inch will be defined with a mean average pore size of between about 0.5-2 mils $(12.5-50 \mu m)$.

Although a plain, square weave pattern such as a taffeta, tabby, or ripstop is considered preferred, other weaves such as satins, twills, and the like also should be considered within the scope of the invention herein involved. A particularly preferred cloth for fabric member 12 is a 4 mil (0.10 mm) thick, 1.8 oz/yd2 weight, silver-plated, woven nylon which is marketed commercially under the designation "31EN RIPSTOP" by Swift Textile Metalizing Corp., Bloomfield, Conn. However, depending upon the needs of the specific shielding application, a fabric constructed of a combination or blend of conductive and nonconductive fibers alternatively may be employed. Examples of fabrics woven, braided, or warp knitted from electricallyconductive fibers, or from blends of conductive and nonconductive fibers, are described in Gladfelter, U.S. Pat. No. 4,684,762, and in Buonanno, U.S. Pat. No. 4,857,668.

Returning to FIGS. 1 and 2, coating member 14 preferably is formed from a curable layer of a fluent, flame retardant resin or other composition which is wet coated onto the second side 18 of fabric member 12. As is detailed hereinafter, the viscosity and hydrodynamic pressure of the fabric member, 12, and a lower, flame retardant coating 40 resin composition are controlled in accordance with the precepts of the present invention to delimit the penetration of the resin layer to a depth, referenced at "d" in FIG. 2, which is less than the thickness dimension t₁ of the fabric member 12. In this regard, when the layer is cured to form cross-sectional view of FIG. 2, which may vary from about 45 the flame retardant surface coating member 14 on the second side 18 of fabric member 12, the first side 16 thereof remains electrically-conductive. In a preferred construction, the layer is coated to a wet thickness of about 10 mils (0.25 mm), and then cured to a dried coating or film thickness, referenced at monofilaments, yams or other fibers or, alternatively, by 50 t₂ in FIG. 2, of between about 2-4 mils (0.05-0.10 mm) at a depth d of about 1-2 mils (0.025-0.05 mm). Ultimately, a total material thickness, referenced at "T," of between about 6-7 mils (0.15-0.20 mm) and a dried weight pickup of between about 100-150 g/yd² are observed. By "cured" it is copper, nickel-clad copper, Ferrex® tin-plated copper-clad 55 meant that the resin is polymerized, cross-linked, further cross-linked or polymerized, vulcanized, hardened, dried, volatilized, or otherwise chemically or physically changed from a liquid or other fluent form into a solid polymeric or elastomeric phase.

The flame retardant composition preferably is formulated as an aqueous emulsion of an acrylic latex emulsion which is adjusted to a total solids of about 60% and a Brookfield viscosity (#5 spindle, 4 speed) of between about 40,000-60, 000 cps, at a density of about 10 lbs per gallon (1.8 g/cm³). 65 Flame retardancy may be imparted by loading the emulsion with between about 30-50% by weight of one or more conventional flame retardant additives such as aluminum

hydrate, antimony trioxide, phosphate esters, or halogenated compounds such as polybrominated diphenyl oxides. A preferred formulation is a mixture of about 25% by weight, based on the total weight of the emulsion, of decambromodiphenyl oxide and about 15% by weight of one or more antimony compounds. In operation, should the acrylic carrier phase be ignited, the decomposition of the halogenated and metal oxide compounds function to chemically deprive the flame of sufficient oxygen to support combustion. The decomposition of the acrylic phase additionally may lead to the development of a protective, i.e., thermally-insulative or refractory, outer char layer.

A preferred flame retardant, acrylic latex emulsion is marketed commercially by Heveatex Corp., Fall River, Mass., under the designation "4129FR." The viscosity of the 15 applied along the lengthwise extent of gasket 50 to the emulsion may be adjusted to between about 40,000-60,000 cps using an aqueous acryloid gel or other acrylic thickener. In this regard, the increased viscosity of the emulsion contributes to delimiting the penetration of the coating layer into the fabric member. However, as this relatively high viscosity may lead to undesirable porosity in the dried film, the emulsion additionally may be modified to reduce air entrapment and bubble formation in the coating layer with up to about 1% by weight of one or more commercial surfactants such as "Bubble Breaker" by Witco Chemical Corp. (Chicago, Ill.) and "Foam Master Antifoam" by Diamond Shamrock, Inc. (San Antonio, Tex.).

As aforementioned, EMI shielding material 10 of the present invention is particularly adapted for use as a flame retardant, electrically-conductive jacket which is provided 30 over a foam core in an EMI shielding gasket construction such as gasket 50 of FIG. 4. In a representative embodiment, gasket 50 includes an elongate, resilient foam core member, 52, which may be of an indefinite length. Core member 52 has an outer circumferential surface, 54, defining the cross- 35 to ensure optimal EMI shielding performance. Such adhesectional profile of gasket 50 which, for illustrative purposes, is of a generally polygonal, i.e., square or rectangular geometry. Other plane profiles, such as circular, semicircular, or elliptical, or complex profiles may be substituted, however, depending upon the geometry of the interface to be 40 microspheres, or microballoons, and may range in size of sealed. Core member 12 may be of any radial or diametric extent, but for most applications will have a diametric extent or width of from about 0.25 inch (0.64 cm) to 1 inch (2.54

core member 52 is provided to be complaint over a wide range of temperatures, and to exhibit good compressionrelaxation hysteresis even after repeated cyclings or long compressive dwells. Core member 52 therefore may be formed of a foamed elastomeric thermoplastic such as a 50 polyethylene, polypropylene, polypropylene-EPDM blend, butadiene, styrene-butadiene, nitrile, chlorosulfonate, or a foamed neoprene, urethane, or silicone. Preferred materials of construction include open or closed cell urethanes or blends such as a polyolefin resin/monoolefin copolymer 55 blend, or a neoprene, silicone, or nitrile sponge rubber.

Core member 52 may be provided as an extruded or molded foam profile over which shielding material 10 is wrapped as a sheathed, with the edges of sheathed being overlapped as at 56. In a preferred construction, shielding 60 material 10 is bonded to the core member 52 in a continuous molding process wherein the foam is blown or expanded within the shielding material. As may be seen best with reference to the magnified view of FIG. 4 referenced at 60 in FIG. 5, in such construction coating member 14 is 65 disposed adjacent core member 52 as an interior surface, 62, of shielding member 10, with the uncoated side 16 of fabric

8

member 12 being oppositely disposed as an electricallyconductive exterior surface, 64, of the gasket 50. It will be appreciated that the coated interior surface 62 blocks the pores 22 (FIG. 3) of the fabric member 12 of the fabric to retain the blown foam therein without penetrate or bleed through to the exterior gasket surface 64. Depending upon the respective compositions of the foam and coating, the interior surface 62 may function, moreover, as a compatibilizing or "tie" interlayer which promotes the bonding of the foam to the fabric. Gasket construction 50 advantageously provides a structure that may be used in very low closure force, i.e. less than about 1 lb/inch (0.175 N/mm), applications.

Referring again to FIG. 4, an adhesive layer, 70, may be underside of exterior surface 64 for the attachment of the gasket to a substrate. Such layer 70 preferably is formulated to be of a pressure sensitive adhesive (PSA) variety. As is described in U.S. Pat. No. 4,988,550, suitable PSA's for EMI shielding applications include formulations based on silicones, neoprene, styrene butadiene copolymers, acrylics, acrylates, polyvinyl ethers, polyvinyl acetate copolymers, polyisobutylenes, and mixtures, blends, and copolymers thereof. Acrylic-based formulations, however, generally are considered to be preferred for the EMI applications of the type herein involved. Although PSA's are preferred for adhesive layer 70, other adhesives such as epoxies and urethanes may be substituted and, accordingly, are to be considered within the scope of the present invention. Heatfusible adhesives such a hot-melts and thermoplastic films additionally may find applicability.

Inasmuch as the bulk conductivity of gasket 50 is determined substantially through its surface contact with the substrate, an electrically-conductive PSA may be preferred sives conventionally are formulated as containing about 1-25% by weight of a conductive filler to yield a volume resistivity of from about 0.01-0.001 Ω -cm. The filler may be incorporated in the form of particles, fibers, flakes, from about 1-100 microns. Typically filler materials include inherently conductive material such as metals, carbon, and graphite, or nonconductive materials such as plastic or glass having a plating of a conductive material such as a noble For affording gap-filling capabilities, it is preferred that 45 metal or the like. In this regard, the means by which the adhesive is rendered electrically conductive is not considered to be a critical aspect of the present invention, such that any means achieving the desired conductivity and adhesion are to be considered suitable.

> For protecting the outer portion of adhesive layer 70 which is exposed on the exterior surface of the gasket, a release sheets, shown at 72, may be provided as removably attached to the exposed adhesive. As is common in the adhesive art, release sheet 72 may be provided as strip of a waxed, siliconized, or other coated paper or plastic sheet or the like having a relatively low surface energy so as to be removable without appreciable lifting of the adhesive from the exterior surface 64.

> In the production of commercial quantities of the EMI shielding material 10 of the present invention, the viscosity adjusted and otherwise modified acrylic latex emulsion or other resin composition may be coated and cured on one side the fabric member 12 by a direct wet process such as knife over roll or slot die. With whatever process is employed, the hydrodynamic pressure of the resin composition is controlled in accordance with the precepts of the present invention to delimit the penetration of the resin layer to a depth

which is less than the thickness dimension of the fabric member. For example, and with reference to FIG. 6 wherein the head of a representative gravity-fed knife over roll coater is shown somewhat schematically at 100, porous, i.e., permeable, fabric member 12 is conveyed from a feed roll 5 or the like (not shown) over a nip roller, 102, which rotates in the direction referenced by arrow 104. With the first side 16 of fabric member 12 supported on roller 102, the fabric second side 18 is passed beneath the opening, referenced at 106, of a coating trough, 108. Trough 108 is defined by a 10 front plate, 110, a back plate, 112, and a pair of side plates (not shown).

The emulsion or other fluent resin composition, referenced at 114, is pumped or otherwise transported into trough 108 which is filled to a fluid level, referenced at h. For a given fluid density, this level h is controlled such that the hydrodynamic pressure at the fabric-liquid interface is maintained within preset limits. For example, with a fluid density of about 10 pounds per gallon (1.8 g/cm³), and a fabric having a porosity of about 1000–2000 openings per inch with a mean average pore size of between about 0.5–2 mils (12.5–50 μ m), the fluid level H is controlled at about 4 inches (10 cm) to yield a hydrodynamic pressure of about 0.05 psi (0.35 kPa) at the fabric-liquid interface. For other coating processes, the hydrodynamic fluid pressure may be controlled, for example, by a pumping pressure or the like.

In the illustrative knife-over-roll coating process, the lower edge, 120, of front plate 110 defines a knife surface which is shimmed or otherwise spaced-apart a predetermined distance from the second side 18 of fabric member 12. Such spacing provides a clearance or gap, referenced at "g," of typically about 10 mils (0.25 mm), but which is adjustable to regulate the thickness of the liquid coating layer, 122, being applied to the fabric member. From roller 104, the coated fabric member 12 may be conveyed via a take-up roller arrangement (not shown) through a in-line oven or the like to dry or flash the water or other diluent in the liquid coating layer 122, or to otherwise cure the liquid coating layer 122 in developing an adherent, tack-free, film or other layer of coating member 14 (FIG. 1) on the single side 18 of fabric member 12.

The Example to follow, wherein all percentages and proportions are by weight unless otherwise expressly indicated, is illustrative of the practicing of the invention herein involved, but should not be construed in any limiting sense.

EXAMPLE

Representative EMI shielding materials according to the present invention were constructed for characterization. In this regard, a master batch of a flame retardant coating composition was compounded using an acrylic latex emulsion (Heveatex "4129FR"). The viscosity of the emulsion was adjusted to a Brookfield viscosity (#4 spindle, 40 speed) of about 60,000 cps with about 5 wt % of an acryloid thickener (AcrysolTM GS, Monsanto Co., St. Louis, Mo.). The modified emulsion had a total solids content of about 60% by weight, a density of about 10 pounds per gallon (1.8 g/cm³), and a pH of between about 7.5 and 9.5.

The emulsion was applied using a knife over roll coater (JETZONE Model 7319, Wolverine Corp., Merrimac, Mass.) to one side of a silver-plated nylon fabric (Swift "31EN RIPSTOP") having a thickness of about 4 mils (0.1 mm). With the fluid level in the coating trough of the coater 65 maintained at about 4 inch (10 cm), the emulsion was delivered to the surface of the cloth at a hydrodynamic

10

pressure of about 0.05 psi (0.35 kPa). The coating knife was shimmed to a 10 mil (0.25 mm) gap above the fabric to yield a wet coating draw down thickness of about 10 mils. Following an oven curing at 100–125° C. for 5 minutes, a dried coating or film thickness of about 2.5 mils (0.635 mm) was obtained with a weight pickup of about 130–145 g/yd² and a total material thickness of between about 6–7 mils (0.15–0.18 mm). An inspection of the coated fabric cloth revealed a coating penetration depth of about 1–2 mils (0.02–0.05 mm) providing acceptable mechanical retention and/or adhesion of the coating onto the fabric surface. The opposite side of the fabric, however, was observed to be substantially coating free, and to retain a surface resistivity of about 0.1 Ω/sq for unaffected EMI shielding effectiveness.

Fabric samples similarly coated in the manner described were subjected to an in-house vertical flame test. No burning was observed at dried film thickness of 2, 3, or 4 mils (0.05, 0.08, 0.10 mm). Accordingly, a reasonable operating window of film thickness was suggested for production runs.

Samples also were provided, as jacketed over a polyurethane foam core in an EMI shielding gasket construction, for flame testing by Underwriters Laboratories, Inc., Melville, N.Y. A flame class rating of V-0 under UL94 was assigned at a minimum thickness of 1.0 mm. The gasket construction therefore was found to be compliant with the applicable UL requirements, and was approved to bear the "UL" certification mark.

The foregoing results confirm that the EMI shielding material of the present invention affords UL94 V-0 protection when used as a jacketing in a fabric-over-foam gasket construction. Unexpectedly, it was found that a relatively porous or permeable fabric may be wet coated on one side with a relatively thin, i.e., 2–4 mil (0.05–0.10 mm), coating layer of a flame retardant composition without compromising the electrical surface conductivity of the other side. Such a thin coating layer, while being sufficient to provide UL94 V-0 protection in a conventional fabric-over-foam gasket construction, nonetheless maintains the drapability the fabric and thereby facilitates the fabrication of UL94 V-0 compliant gaskets having complex profiles or narrow cross-sections down to about 1 mm.

As it is anticipated that certain changes may be made in the present invention without departing from the precepts herein involved, it is intended that all matter contained in the foregoing description shall be interpreted as illustrative and not in a limiting sense. All references cited herein are expressly incorporated by reference.

What is claimed is:

1. A flame retardant, electromagnetic interference (EMI) shielding gasket comprising:

- a resilient core member which is not V-0 rated under Underwriter's Laboratories (UL) Standard No. 94 extending lengthwise along a central longitudinal axis and having an outer surface extending circumferentially about said longitudinal axis, said core member being formed of a foamed elastomeric material;
- an electrically-conductive fabric member surrounding the outer surface of said core member, said fabric member having an interior surface disposed facing the outer surface of said core member and an oppositely-facing, exterior surface, at least the exterior surface being electrically-conductive and the exterior surface defining with the interior surface a thickness dimension of the fabric member therebetween; and
- a flame retardant layer coating at least a portion of the interior surface of said fabric member, said flame

US 6,521,348 B2

Document 1

11

retardant layer being effective to afford said gasket a flame class rating of V-0 under Underwriter's Laboratories (UL) Standard No. 94 and penetrating into said fabric member to a depth which is less than the thickness dimension of said fabric member such that the 5 exterior surface of said fabric member remains electrically-conductive.

- 2. The gasket of claim 1 wherein said flame retardant layer has a thickness of between about 2-4 mils (0.05-0.10 mm).
- 3. The gasket of claim 1 wherein said flame retardant layer 10 is formed as a cured film of a flame retardant acrylic latex emulsion.
- 4. The gasket of claim 1 wherein said fabric member is a metal-plated cloth.
- 5. The gasket of claim 4 wherein said cloth comprises 15 fibers selected from the group consisting of cotton, wool, silk, cellulose, polyester, polyamide, nylon, and combinations thereof, and said metal is selected from the group consisting of copper, nickel, silver, nickel-plated-silver, aluminum, tin, and combinations thereof.
- 6. The gasket of claim 1 wherein said foamed elastomeric material is selected from the group consisting of polyethylenes, polypropylenes, polypropylene-EPDM blends, butadienes, styrene-butadienes, nitriles, chlorosulfonates, neoprenes, urethanes, silicones, and poly- 25 olefin resin/monoolefin copolymer blends, and combinations thereof.
- 7. The gasket of claim 1 wherein said fabric member has a thickness of between about 2-4 mils (0.05-0.10 mm).
- 8. A flame retardant, electromagnetic interference (EMI) 30 shielding gasket comprising:
 - a resilient core member extending lengthwise along a central longitudinal axis and having an outer surface extending circumferentially about said longitudinal axis, said core member being formed of a foamed 35 elastomeric material;
 - an electrically-conductive fabric member surrounding the outer surface of said core member, said fabric member having an interior surface disposed facing the outer surface of said core member and an oppositely-facing, exterior surface, at least the exterior surface being electrically-conductive and the exterior surface defining with the interior surface a thickness dimension of the fabric member therebetween; and

12

- a flame retardant layer coating at least a portion of the interior surface of said fabric member, said flame retardant layer comprising between about 30-50% by weight of one or more flame retardant additives and penetrating into said fabric member to a depth which is less than the thickness dimension of said fabric member such that the exterior surface of said fabric member remains electrically-conductive.
- 9. The gasket of claim 8 wherein said flame retardant layer has a thickness of between about 2-4 mils (0.05-0.10 mm).
- 10. The gasket of claim 8 wherein said flame retardant layer is formed as a cured film of a flame retardant acrylic latex emulsion.
- 11. The gasket of claim 8 wherein said fabric member is a metal-plated cloth.
- 12. The gasket of claim 11 wherein said cloth comprises fibers selected from the group consisting of cotton, wool, silk, cellulose, polyester, polyamide, nylon, and combinations thereof, and said metal is selected from the group consisting of copper, nickel, silver, nickel-plated-silver, aluminum, tin, and combinations thereof.
- 13. The gasket of claim 8 wherein said foamed elastomeric material is selected from the group consisting of polyethylenes, polypropylenes, polypropylene-EPDM blends, butadienes, styrene-butadienes, nitriles, chlorosulfonates, neoprenes, urethanes, silicones, and polyolefin resin/monoolefin copolymer blends, and combinations thereof.
- 14. The gasket of claim 8 wherein said fabric member has a thickness of between about 2-4 mils (0.05-0.10 mm).
- 15. The gasket of claim 8 wherein said flame retardant layer is effective to afford the gasket a flame class rating of V-0 under Underwriter's Laboratories (UL) Standard No.
- 16. The gasket of claim 15 wherein said core member is not V-0 rated under Underwriter's Laboratories (UL) Standard No. 94.
- 17. The gasket of claim 8 wherein said core member is not V-0 rated under Underwriter's Laboratories (UL) Standard No. 94.
- 18. The gasket of claim 8 wherein said one or more flame retardant additives are selected from the group consisting of aluminum hydrate, antimony trioxide, phosphate esters, and halogenated compounds.

Exhibit C

(12) United States Patent

Bunyan et al.

(10) Patent No.: US 6,716,536 B2

(45) **Date of Patent:** *Apr. 6, 2004

(54) FLAME RETARDANT EMI SHIELDING GASKET

(75) Inventors: **Michael H. Bunyan**, Chelmsford, MA (US); **William I. Flanders**, Merimack,

NH (US)

(73) Assignee: Parker-Hannifin Corporation,

Cleveland, OH (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 10/318,609

(22) Filed: Dec. 11, 2002

(65) **Prior Publication Data**

US 2003/0124934 A1 Jul. 3, 2003

Related U.S. Application Data

- (63) Continuation of application No. 10/142,803, filed on May 9, 2002, now Pat. No. 6,521,348, which is a continuation of application No. 09/883,785, filed on Jun. 18, 2001, now Pat. No. 6,387,523, which is a continuation of application No. 09/250,338, filed on Feb. 16, 1999, now Pat. No. 6,248,393.
- (60) Provisional application No. 60/076,370, filed on Feb. 27, 1998.

(51)	Int. Cl. ⁷	•	B32B	5/14;	B32B	5/18;
					H05K	9/00

(56) References Cited

U.S. PATENT DOCUMENTS

4,178,410 A	12/1979	Tomita
4,396,661 A	8/1983	George et al.
4,447,484 A	5/1984	Slosberg et al
4,489,126 A	12/1984	Holtrop et al.

4,531,994 A 7/1985 Holtrop et al. 4,540,617 A 9/1985 Kawanishi et al.

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

DE	9013936	12/1990
FR	2308030	11/1976
JP	07-176889	* 7/1995
WO	0326441	8/1989

OTHER PUBLICATIONS

Kleiner, J. Vinyl Technol. vol 4 No. 4, Dec. 1982, pp 157–159.*

Dye, James M. Compliance Engineering 17(3), pp 138 and 140-145, 2000.*

Copy of International Search Report for PCT Case No. PCT/US99/04100, Jan. 7, 1999.

Chomerics Parker Hannifin Seals Catalog dated 1997 for Soft–Shield Low Closure Force EMI Gaskets.

Monsanto Flectron Metalized Materials dated Sep. 12, 1995. Copy of the International Application Published Under the Patent Cooperation Treaty in International Patent Application No. PCT/US00/20609 (WO 01/10182) entitled: "Method and Apparatus for Manufacturing A Flame Retardant EMI Gasket" Feb. 2001.

Underwriters Laboratories, Inc. letter dated Sep. 20, 1995.

Primary Examiner—Erma Cameron (74) Attorney, Agent, or Firm—John A. Molnar, Jr.

(57) ABSTRACT

A flame retardant, electromagnetic interference (EMI) shielding gasket construction. The construction includes a resilient core member formed of a foamed elastomeric material, an electrically-conductive fabric member surrounding the outer surface of the core member, and a flame retardant layer coating at least a portion of the interior surface of the fabric member. The flame retardant layer is effective to afford the gasket construction with a flame class rating of V-0 under Underwriter's Laboratories (UL) Standard No. 94.

9 Claims, 3 Drawing Sheets

US 6,716,536 B2 Page 2

U.S. PA	ATENT	DOCUMENTS		Covey
4,569,304 A 4,572,960 A 4,608,104 A 4,621,013 A 4,666,765 A 4,684,762 A 4,753,840 A 4,797,171 A 4,857,668 A 4,871,477 A 4,988,550 A 5,009,927 A	2/1986 2/1986 8/1986 1/1986 5/1987 8/1987 6/1988 1/1989 8/1989 0/1989 1/1991 4/1991	Le Maitre Ebneth et al. Holtrop et al. Holtrop et al. Caldwell et al. Gladfeiter Van Gompel Van Gompel Buonanno Dimanshteyn Keyser et al. Cloyd et al.	5,105,056 A 4/1992 5,122,411 A 6/1992 5,202,536 A 4/1993 5,204,403 A 4/1993 5,266,354 A 11/1993 5,612,092 A 3/1997 5,614,306 A 3/1997 5,635,252 A 6/1997 5,641,438 A * 6/1997 5,641,544 A 6/1997	Hoge, Jr. et al. Iwamoto et al. Buonanno Furuta et al. Tohyama et al. Strenger et al. Jobe et al. Fraser, Jr. et al. Bunyan et al
· · ·		Keyser et al. Kaplo et al.	* cited by examiner	

^{*} cited by examiner

Fig. 2

Fig. 3

U.S. Patent Apr. 6, 2004

Sheet 2 of 3

US 6,716,536 B2

Fig. 4

Fig. 5

US 6,716,536 B2

1

FLAME RETARDANT EMI SHIELDING **GASKET**

CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 10/142,803 filed May 9, 2002, now U.S. Pat. No. 6,521,348, which is a continuation of U.S. application Ser. No. 09/883,785, filed Jun. 18, 2001, now U.S. Pat. No. 6,387,523; which is a continuation of U.S. application Ser. No. 09/250,338, filed Feb. 16, 1999, now U.S. Pat. No. 6,248,393 and claiming priority to U.S. provisional application Ser. No. 60/076,370, filed Feb. 27, 1998, the disclosure of each of which is expressly incorporated herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates broadly to electricallyconductive, flame retardant materials for use in electromagnetic interference (EMI) shielding, and to a method of manufacturing the same, and more particularly to an electrically-conductive fabric having a layer of a flame retardant coating applied to one surface thereof for use as a sheathing within an EMI shielding gasket.

The operation of electronic devices including televisions, radios, computers, medical instruments, business machines, communications equipment, and the like is attended by the generation of electromagnetic radiation within the electronic circuitry of the equipment. Such radiation often develops as 30 a field or as transients within the radio frequency band of the electromagnetic spectrum, i.e., between about 10 KHz and 10 GHz, and is termed "electromagnetic interference" or "EMI" as being known to interfere with the operation of other proximate electronic devices.

To attenuate EMI effects, shielding having the capability of absorbing and/or reflecting EMI energy may be employed both to confine the EMI energy within a source device, and to insulate that device or other "target" devices from other source devices. Such shielding is provided as a barrier which 40 is inserted between the source and the other devices, and typically is configured as an electrically conductive and grounded housing which encloses the device. As the circuitry of the device generally must remain accessible for servicing or the like, most housings are provided with 45 openable or removable accesses such as doors, hatches, panels, or covers. Between even the flattest of these accesses and its corresponding mating or faying surface, however, there may be present gaps which reduce the efficiency of the energy may leak or otherwise pass into or out of the device. Moreover, such gaps represent discontinuities in the surface and ground conductivity of the housing or other shielding, and may even generate a secondary source of EMI radiation by functioning as a form of slot antenna. In this regard, bulk or surface currents induced within the housing develop voltage gradients across any interface gaps in the shielding, which gaps thereby function as antennas which radiate EMI noise. In general, the amplitude of the noise is proportional to the gap length, with the width of the gap having a less 60 appreciable effect.

For filling gaps within mating surfaces of housings and other EMI shielding structures, gaskets and other seals have been proposed both for maintaining electrical continuity across the structure, and for excluding from the interior of 65 the device such contaminates as moisture and dust. Such seals are bonded or mechanically attached to, or press-fit

2

into, one of the mating surfaces, and function to close any interface gaps to establish a continuous conductive path thereacross by conforming under an applied pressure to irregularities between the surfaces. Accordingly, seals intended for EMI shielding applications are specified to be of a construction which not only provides electrical surface conductivity even while under compression, but which also has a resiliency allowing the seals to conform to the size of the gap. The seals additionally must be wear resistant, economical to manufacture, and capability of withstanding repeated compression and relaxation cycles. For further information on specifications for EMI shielding gaskets, reference may be had to Severinsen, J., "Gaskets That Block EMI," Machine Design, Vol. 47, No. 19, pp. 74-77 (Aug. 7, 15 1975).

Requirements for typical EMI shielding applications often dictate a low impedance, low profile gasket which is deflectable under normal closure force loads. Other requirements include low cost and a design which provides an EMI shielding effectiveness for both the proper operation of the device and compliance, in the United States, with commercial Federal Communication Commission (FCC) EMC regu-

A particularly economical gasket construction, which also requires very low closure forces, i.e. less than about 1 lb/inch (0.175 N/mm), is marketed by the Chomerics Division of Parker-Hannifin Corp., Woburn, Mass. under the tradename "Soft-Shield® 5000 Series." Such construction consists of an electrically-conductive jacket or sheathing which is "cigarette" wrapped lengthwise over a polyurethane or other foam core. As is described further in U.S. Pat. No. 4,871,477, polyurethane foams generally are produced by the reaction of polyisocyanate and a hydroxyl-functional polyol in the presence of a blowing agent. The blowing agent effects the expansion of the polymer structure into a multiplicity of open or closed cells.

The jacket is provided as a highly conductive, i.e., about 1 Ω -sq., nickel-plated-silver, woven rip-stop nylon which is self-terminating when cut. Advantageously, the jacket may be bonded to the core in a continuous molding process wherein the foam is blown or expanded within the jacket as the jacket is wrapped around the expanding foam and the foam and jacket are passed through a die and into a traveling molding. Similar gasket constructions are shown in commonly-assigned U.S. Pat. No. 5,028,739 and in U.S. Pat. Nos. 4,857,668; 5,054,635; 5,105,056; and 5,202,536.

Many electronic devices, including PC's and communication equipment, must not only comply with certain FCC shielding by presenting openings through which radiant 50 requirements, but also must meet be approved under certain Underwriter's Laboratories (UL) standards for flame retardancy. In this regard, if each of the individual components within an electronic device is UL approved, then the device itself does not require separate approval. Ensuring UL approval for each component therefore reduces the cost of compliance for the manufacturer, and ultimately may result in cheaper goods for the consumer. For EMI shielding gaskets, however, such gaskets must be made flame retardant, i.e., achieving a rating of V-0 under UL Std. No. 94, "Tests for Flammability of Plastic Materials for Parts in Devices and Appliances" (1991), without compromising the electrical conductivity necessary for meeting EMI shielding requirements.

> In this regard, and particularly with respect to EMI shielding gaskets of the above-described fabric over foam variety, it has long been recognized that foamed polymeric materials are flammable and, in certain circumstances, may

present a fire hazard. Owing to their cellular structure, high organic content, and surface area, most foam materials are subject to relatively rapid decomposition upon exposure to fire or high temperatures.

One approach for imparting flame retardancy to fabric 5 over foam gaskets has been to employ the sheathing as a flame resistant protective layer for the foam. Indeed, V-0 rating compliance purportedly has been achieved by sheathing the foam within an electrically-conductive Ni/Cu-plated fabric to which a thermoplastic sheet is hot nipped or 10 otherwise fusion bonding to the underside thereof. Such fabrics, which may be further described in one or more of U.S. Pat. Nos. 4,489,126; 4,531,994; 4,608,104; and/or 4,621,013, have been marketed by Monsanto Co., St. Louis, under the tradename "Flectron® Ni/Cu Polyester Taffeta 15 elements, and arrangement of parts and steps which are

Other fabric over foam gaskets, as is detailed in U.S. Pat. No. 4,857,668, incorporate a supplemental layer or coating applied to the interior surface of the sheath. Such coating may be a flame-retardant urethane formulation which also promotes the adhesion of the sheath to the foam. The coating additionally may function to reduce bleeding of the foam through the fabric which otherwise could compromise the electrical conductivity of the sheath.

In view of the foregoing, it will be appreciated that further improvements in the design of flame retardant, fabric-over foam EMI shielding gaskets, as well as sheathing materials therefore, would be well-received by the electronics industry. Especially desired would be a flame retardant gasket 30 construction which achieves a UL94 rating of V-0.

BROAD STATEMENT OF THE INVENTION

The present invention is directed to an electricallyfoam EMI shielding gaskets, and to a method of manufacturing the same. In having a layer of a flame retardant coating applied to one side of an electrically-conductive, generally porous fabric, the material of the invention affords UL94 V-0 protection when used as a jacketing in a fabric- 40 over-foam gasket construction. Advantageously, as the flame retardant layer may be wet coated on the fabric without appreciable bleed through, a relatively thin, i.e., 2-4 mil (0.05-0.10 mm), coating layer may be provided on one fabric side without compromising the electrical surface 45 thereof; conductivity of the other side. Such a thin coating layer, while being sufficient to provide UL94 V-0 protection, nonetheless maintains the drapability the fabric and thereby facilitates the construction UL94 V-0 compliant gaskets having complex profiles or narrow cross-sections down to 50 about 1 mm.

In a preferred embodiment, the electrically-conductive, flame retardant EMI shielding material of the invention includes a nickel or silver-plated, woven nylon, polyester, or like fabric on one side of which is wet coated a layer of a 55 flame retardant, acrylic latex emulsion or other fluent resin composition. In accordance with the precepts of the method of the invention, the viscosity and hydrodynamic pressure of the emulsion are controlled such that the coating does not penetrate or otherwise "bleed through" the uncoated side of 60 the fabric. The surface conductivity of the opposite side of the fabric therefore is not compromised in EMI shielding applications.

The material of the invention may be employed as a jacket in fabric-over-foam EMI shielding gasket constructions, and 65 is particularly adapted for use in the continuous molding process for such gaskets. As used within such process, the

fabric may be wrapped around the foam as a jacket with coated side thereof being disposed as an interior surface adjacent the foam, and the uncoated side being disposed as an electrically-conductive exterior surface. Advantageously, the coating on the interior surface of the jacket blocks the pores of the fabric to retain the foam therein without penetrate or bleed through to the exterior surface. In being formed of a acrylic material, the coated interior surface of the jacket may function, moreover, depending upon the composition of the foam, as a compatibilizing or "tie" interlayer which promotes the bonding of the foam to the

The present invention, accordingly, comprises material and method possessing the construction, combination of exemplified in the detailed disclosure to follow. Advantages of the present invention include a flame retardant yet drapable EMI shielding fabric. Additional advantages include an economical, flame retardant EMI shielding fabric construction wherein a relatively thin layer of a flame retardant coating may be wet coated onto one side of an electricallyconductive, woven or other generally porous EMI shielding fabric without compromising the conductivity of the other side of the fabric. These and other advantages will be readily apparent to those skilled in the art based upon the disclosure contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein:

FIG. 1 is a perspective view of one embodiment of an conductive, flame retardant material for use in fabric-over- 35 EMI shielding material according to the present invention which material includes a generally planar fabric member on one side of which is coated a layer of a flame retardant composition, the view being shown with portions being broken away to better reveal the structure of the material;

> FIG. 2 is an enlarged cross-sectional view of the EMI shielding material of FIG. 1 taken through plane represented by line 2—2 of FIG. 1;

> FIG. 3 is a top view of the material of FIG. 1 which is magnified to reveal the structure of the fabric member

> FIG. 4 is a perspective cross-sectional view of a length of a representative EMI shielding gasket construction according to the present invention including a jacket which is formed of the EMI shielding material of FIG. 1;

> FIG. 5 is an end view of the gasket of FIG. 4 which is magnified to reveal the structure thereof, and

> FIG. 6 is a schematic, partially cross-sectional view of an illustrative gravity-fed, knife over roll coater as adapted for use in the manufacture of the EMI shielding material of FIG.

> The drawings will be described further in connection with the following Detailed Description of the Invention.

DETAILED DESCRIPTION OF THE **INVENTION**

Certain terminology may be employed in the description to follow for convenience rather than for any limiting purpose. For example, the terms "upper" and "lower" designate directions in the drawings to which reference is made, with the terms "inner" or "interior" and "outer" or "exterior" referring, respectively, to directions toward and away from

the center of the referenced element, and the terms "radial" and "axial" referring, respectively, to directions perpendicular and parallel to the longitudinal central axis of the referenced element. Terminology of similar import other than the words specifically mentioned above likewise is to be considered as being used for purposes of convenience rather than in any limiting sense.

For the illustrative purposes of the discourse to follow, the electromagnetic interference (EMI) shielding material herein involved is described in connection with its use as a flame retardant, electrically-conductive jacket for a foam core, EMI shielding gasket as may be adapted to be received within an interface, such as between a door, panel, hatch, cover, or other parting line of an electromagnetic interference (EMI) shielding structure. The EMI shielding structure may be the conductive housing of a computer, communications equipment, or other electronic device or equipment which generates EMI radiation or is susceptible to the effects thereof. The gasket may be bonded or fastened to, or press-fit into one of a pair of mating surfaces which define the interface within the housing, and functions between the 20 mating surfaces to seal any interface gaps or other irregularities. That is, while under an applied pressure, the gasket resiliently conforms to any such irregularities both to establish a continuous conductive path across the interface, and to ingress of dust, moisture, or other contaminates. It will be appreciated, however, that aspects of the present invention may find utility in other EMI shielding applications. Use within those such other applications therefore should be

Referring then to the figures, wherein corresponding reference characters are used to designate corresponding elements throughout the several views, a flame retardant shown generally at 10 in FIG. 1 as generally adapted for use as a jacket within for a foam core gasket construction. For purposes of illustration, material sheet 10 is shown to be of indefinite dimensions which may be cut to size for the material 10 includes an upper, generally planar and porous fabric member, 12, and a lower, flame retardant coating member, 14.

Fabric member has at least an electrically-conductive first side, 16, and a conductive or non-conductive second side, 45 18, defining a thickness dimension, referenced at "t," in the cross-sectional view of FIG. 2, which may vary from about 2-4 mils (0.05-0.10 mm). By "electrically-conductive," it is meant that the fabric may be rendered conductive, i.e., to a surface resistivity of about 0.1 Ω/sq. or less, by reason of its 50 is coated to a wet thickness of about 10 mils (0.25 mm), and being constructed of electrically-conductive wire, monofilaments, yarns or other fibers or, alternatively, by reason of a treatment such as a plating or sputtering being applied to non-conductive fibers to provide an electricallyconductive layer thereon. Preferred electrically-conductive 55 fibers include Monel nickel-copper alloy, silver-plated copper, nickel-clad copper, Ferrex® tin-plated copper-clad steel, aluminum, tin-clad copper, phosphor bronze, carbon, graphite, and conductive polymers. Preferred nonconductive fibers include cotton, wool, silk, cellulose, 60 polyester, polyamide, nylon, and polyimide monofilaments or varns which are rendered electrically conductive with a metal plating of copper, nickel, silver, nickel-plated-silver, aluminum, tin, or an alloy thereof. As is known, the metal plating may applied to individual fiber strands or to the 65 surfaces of the fabric after weaving, knitting, or other fabrication.

While fabrics such as wire meshes, knits, and non-woven cloths and webs may find application, a preferred fabric construction for member 12 is a plain weave nylon or polyester cloth which is made electrically conductive with between about 20-40% by weight based on the total fabric weight, i.e., 0.01-0.10 g/in², of a silver, nickel-silver, or silver-nickel over copper plating. As may be seen in the magnified view of FIG. 1 referenced at 20 in FIG. 3, such cloth is permeable in having a plain, generally square weave pattern with pores or openings, one of which is referenced at 22, being defined between the fibers which are represented schematically at 24. Fibers 24 may be yarns, monofilaments or, preferably, bundles of from about 10-20 filaments or threads, each having a diameter of between about $10-50 \mu m$. For example, with fibers 24 each being a bundle of such threads with a thread count of between about 1000–3000 per inch and a weave count of between about 1000-1500 per inch, 1000-2000 openings per inch will be defined with a mean average pore size of between about 0.5-2 mils $(12.5-50 \mu m)$.

Although a plain, square weave pattern such as a taffeta, tabby, or ripstop is considered preferred, other weaves such as satins, twills, and the like also should be considered within the scope of the invention herein involved. A parenvironmentally seal the interior of the housing against the 25 ticularly preferred cloth for fabric member 12 is a 4 mil (0.10 mm) thick, 1.8 oz/yd² weight, silver-plated, woven nylon which is marketed commercially under the designation "31EN RIPSTOP" by Swift Textile Metalizing Corp., Bloomfield, Conn. However, depending upon the needs of considered to be expressly within the scope of the present 30 the specific shielding application, a fabric constructed of a combination or blend of conductive and nonconductive fibers alternatively may be employed. Examples of fabrics woven, braided, or warp knitted from electricallyconductive fibers, or from blends of conductive and non-EMI shielding material according to the present invention is 35 conductive fibers, are described in Gladfelter, U.S. Pat. No. 4,684,762, and in Buonanno, U.S. Pat. No. 4,857,668.

Returning to FIGS. 1 and 2, coating member 14 preferably is formed from a curable layer of a fluent, flame retardant resin or other composition which is wet coated particular application envisioned. In basic construction, 40 onto the second side 18 of fabric member 12. As is detailed hereinafter, the viscosity and hydrodynamic pressure of the resin composition are controlled in accordance with the precepts of the present invention to delimit the penetration of the resin layer to a depth, referenced at "d" in FIG. 2, which is less than the thickness dimension t₁ of the fabric member 12. In this regard, when the layer is cured to form the flame retardant surface coating member 14 on the second side 18 of fabric member 12, the first side 16 thereof remains electrically-conductive. In a preferred construction, the layer then cured to a dried coating or film thickness, referenced at t₂ in FIG. 2, of between about 2-4 mils (0.05-0.10 mm) at a depth d of about 1-2 mils (0.025-0.05 mm). Ultimately, a total material thickness, referenced at "T," of between about 6-7 mils (0.15-0.20 mm) and a dried weight pickup of between about 100–150 g/yd² are observed. By "cured" it is meant that the resin is polymerized, cross-linked, further cross-linked or polymerized, vulcanized, hardened, dried, volatilized, or otherwise chemically or physically changed from a liquid or other fluent form into a solid polymeric or elastomeric phase.

> The flame retardant composition preferably is formulated as an aqueous emulsion of an acrylic latex emulsion which is adjusted to a total solids of about 60% and a Brookfield viscosity (#5 spindle, 4 speed) of between about 40,000-60, 000 cps, at a density of about 10 lbs per gallon (1.8 g/cm³). Flame retardancy may be imparted by loading the emulsion

with between about 30-50% by weight of one or more conventional flame retardant additives such as aluminum hydrate, antimony trioxide, phosphate esters, or halogenated compounds such as polybrominated diphenyl oxides. A preferred formulation is a mixture of about 25% by weight, based on the total weight of the emulsion, of decambromodiphenyl oxide and about 15% by weight of one or more antimony compounds. In operation, should the acrylic carrier phase be ignited, the decomposition of the halogenated and metal oxide compounds function to chemically deprive the flame of sufficient oxygen to support combustion. The decomposition of the acrylic phase additionally may lead to the development of a protective, i.e., thermally-insulative or refractory, outer char layer.

A preferred flame retardant, acrylic latex emulsion is 15 applications. marketed commercially by Heveatex Corp., Fall River, Mass., under the designation "4129FR." The viscosity of the emulsion may be adjusted to between about 40,000-60,000 cps using an aqueous acryloid gel or other acrylic thickener. In this regard, the increased viscosity of the emulsion 20 contributes to delimiting the penetration of the coating layer into the fabric member. However, as this relatively high viscosity may lead to undesirable porosity in the dried film, the emulsion additionally may be modified to reduce air entrapment and bubble formation in the coating layer with 25 up to about 1% by weight of one or more commercial surfactants such as "Bubble Breaker" by Witco Chemical Corp. (Chicago, Ill.) and "Foam Master Antifoam" by Diamond Shamrock, Inc. (San Antonio, Tex.).

As aforementioned, EMI shielding material 10 of the 30 present invention is particularly adapted for use as a flame retardant, electrically-conductive jacket which is provided over a foam core in an EMI shielding gasket construction such as gasket 50 of FIG. 4. In a representative embodiment, 52, which may be of an indefinite length. Core member 52 has an outer circumferential surface, 54, defining the crosssectional profile of gasket 50 which, for illustrative purposes, is of a generally polygonal, i.e., square or rectancircular, or elliptical, or complex profiles may be substituted, however, depending upon the geometry of the interface to be sealed. Core member 12 may be of any radial or diametric extent, but for most applications will have a diametric extent

For affording gap-filling capabilities, it is preferred that core member 52 is provided to be complaint over a wide range of temperatures, and to exhibit good compressioncompressive dwells. Core member 52 therefore may be formed of a foamed elastomeric thermoplastic such as a polyethylene, polypropylene, polypropylene-EPDM blend, butadiene, styrene-butadiene, nitrile, chlorosulfonate, or a of construction include open or closed cell urethanes or blends such as a polyolefin resin/monoolefin copolymer blend, or a neoprene, silicone, or nitrile sponge rubber.

Core member 52 may be provided as an extruded or molded foam profile over which shielding material 10 is 60 wrapped as a sheathed, with the edges of sheathed being overlapped as at 56. In a preferred construction, shielding material 10 is bonded to the core member 52 in a continuous molding process wherein the foam is blown or expanded within the shielding material. As may be seen best with 65 reference to the magnified view of FIG. 4 referenced at 60 in FIG. 5, in such construction coating member 14 is

8

disposed adjacent core member 52 as an interior surface, 62, of shielding member 10, with the uncoated side 16 of fabric member 12 being oppositely disposed as an electricallyconductive exterior surface, 64, of the gasket 50. It will be appreciated that the coated interior surface 62 blocks the pores 22 (FIG. 3) of the fabric member 12 of the fabric to retain the blown foam therein without penetrate or bleed through to the exterior gasket surface 64. Depending upon the respective compositions of the foam and coating, the interior surface 62 may function, moreover, as a compatibilizing or "tie" interlayer which promotes the bonding of the foam to the fabric. Gasket construction 50 advantageously provides a structure that may be used in very low closure force, i.e. less than about 1 lb/inch (0.175 N/mm),

Referring again to FIG. 4, an adhesive layer, 70, may be applied along the lengthwise extent of gasket 50 to the underside of exterior surface 64 for the attachment of the gasket to a substrate. Such layer 70 preferably is formulated to be of a pressure sensitive adhesive (PSA) variety. As is described in U.S. Pat. No. 4,988,550, suitable PSA's for EMI shielding applications include formulations based on silicones, neoprene, styrene butadiene copolymers, acrylics, acrylates, polyvinyl ethers, polyvinyl acetate copolymers, polyisobutylenes, and mixtures, blends, and copolymers thereof. Acrylic-based formulations, however, generally are considered to be preferred for the EMI applications of the type herein involved. Although PSA's are preferred for adhesive layer 70, other adhesives such as epoxies and urethanes may be substituted and, accordingly, are to be considered within the scope of the present invention. Heatfusible adhesives such a hot-melts and thermoplastic films additionally may find applicability.

Inasmuch as the bulk conductivity of gasket 50 is detergasket 50 includes an elongate, resilient foam core member, 35 mined substantially through its surface contact with the substrate, an electrically-conductive PSA may be preferred to ensure optimal EMI shielding performance. Such adhesives conventionally are formulated as containing about 1-25% by weight of a conductive filler to yield a volume gular geometry. Other plane profiles, such as circular, semi- $_{40}$ resistivity of from about 0.01–0.001 Ω -cm. The filler may be incorporated in the form of particles, fibers, flakes, microspheres, or microballoons, and may range in size of from about 1-100 microns. Typically filler materials include inherently conductive material such as metals, carbon, and or width of from about 0.25 inch (0.64 cm) to 1 inch (2.54 45 graphite, or nonconductive materials such as plastic or glass having a plating of a conductive material such as a noble metal or the like. In this regard, the means by which the adhesive is rendered electrically conductive is not considered to be a critical aspect of the present invention, such that relaxation hysteresis even after repeated cyclings or long 50 any means achieving the desired conductivity and adhesion are to be considered suitable.

For protecting the outer portion of adhesive layer 70 which is exposed on the exterior surface of the gasket, a release sheets, shown at 72, may be provided as removably foamed neoprene, urethane, or silicone. Preferred materials 55 attached to the exposed adhesive. As is common in the adhesive art, release sheet 72 may be provided as strip of a waxed, siliconized, or other coated paper or plastic sheet or the like having a relatively low surface energy so as to be removable without appreciable lifting of the adhesive from the exterior surface 64.

> In the production of commercial quantities of the EMI shielding material 10 of the present invention, the viscosity adjusted and otherwise modified acrylic latex emulsion or other resin composition may be coated and cured on one side the fabric member 12 by a direct wet process such as knife over roll or slot die. With whatever process is employed, the hydrodynamic pressure of the resin composition is con-

trolled in accordance with the precepts of the present invention to delimit the penetration of the resin layer to a depth which is less than the thickness dimension of the fabric member. For example, and with reference to FIG. 6 wherein the head of a representative gravity-fed knife over roll coater 5 is shown somewhat schematically at 100, porous, i.e., permeable, fabric member 12 is conveyed from a feed roll or the like (not shown) over a nip roller, 102, which rotates in the direction referenced by arrow 104. With the first side 16 of fabric member 12 supported on roller 102, the fabric 10 second side 18 is passed beneath the opening, referenced at 106, of a coating trough, 108. Trough 108 is defined by a front plate, 110, a back plate, 112, and a pair of side plates (not shown).

The emulsion or other fluent resin composition, referenced at **114**, is pumped or otherwise transported into trough **108** which is filled to a fluid level, referenced at h. For a given fluid density, this level h is controlled such that the hydrodynamic pressure at the fabric-liquid interface is maintained within preset limits. For example, with a fluid density of about 10 pounds per gallon (1.8 g/cm³), and a fabric having a porosity of about 1000–2000 openings per inch with a mean average pore size of between about 0.5–2 mils (12.5–50 µm), the fluid level H is controlled at about 4 inches (10 cm) to yield a hydrodynamic pressure of about 25 0.05 psi (0.35 kPa) at the fabric-liquid interface. For other coating processes, the hydrodynamic fluid pressure may be controlled, for example, by a pumping pressure or the like.

In the illustrative knife-over-roll coating process, the lower edge, 120, of front plate 110 defines a knife surface which is shimmed or otherwise spaced-apart a predetermined distance from the second side 18 of fabric member 12. Such spacing provides a clearance or gap, referenced at "g," of typically about 10 mils (0.25 mm), but which is adjustable to regulate the thickness of the liquid coating layer, 122, being applied to the fabric member. From roller 104, the coated fabric member 12 may be conveyed via a take-up roller arrangement (not shown) through a in-line oven or the like to dry or flash the water or other diluent in the liquid coating layer 122, or to otherwise cure the liquid coating layer 122 in developing an adherent, tack-free, film or other layer of coating member 14 (FIG. 1) on the single side 18 of fabric member 12.

The Example to follow, wherein all percentages and proportions are by weight unless otherwise expressly indicated, is illustrative of the practicing of the invention herein involved, but should not be construed in any limiting sense.

EXAMPLE

Representative EMI shielding materials according to the present invention were constructed for characterization. In this regard, a master batch of a flame retardant coating composition was compounded using an acrylic latex emulsion (Heveatex "4129FR"). The viscosity of the emulsion was adjusted to a Brookfield viscosity (#4 spindle, 40 speed) of about 60,000 cps with about 5 wt % of an acryloid thickener (AcrysolTM GS, Monsanto Co., St. Louis, Mo.). The modified emulsion had a total solids content of about 60% by weight, a density of about 10 pounds per gallon (1.8 g/cm³), and a pH of between about 7.5 and 9.5.

The emulsion was applied using a knife over roll coater (JETZONE Model 7319, Wolverine Corp., Merrimac, Mass.) to one side of a silver-plated nylon fabric (Swift 65 "31EN RIPSTOP") having a thickness of about 4 mils (0.1 mm). With the fluid level in the coating trough of the coater

10

maintained at about 4 inch (10 cm), the emulsion was delivered to the surface of the cloth at a hydrodynamic pressure of about 0.05 psi (0.35 kPa). The coating knife was shimmed to a 10 mil (0.25 mm) gap above the fabric to yield a wet coating draw down thickness of about 10 mils. Following an oven curing at 100-125° C. for 5 minutes, a dried coating or film thickness of about 2.5 mils (0.635 mm) was obtained with a weight pickup of about 130–145 g/yd² and a total material thickness of between about 6-7 mils (0.15-0.18 mm). An inspection of the coated fabric cloth revealed a coating penetration depth of about 1-2 mils (0.02–0.05 mm) providing acceptable mechanical retention and/or adhesion of the coating onto the fabric surface. The opposite side of the fabric, however, was observed to be substantially coating free, and to retain a surface resistivity of about 0.1 Ω/sq for unaffected EMI shielding effective-

Fabric samples similarly coated in the manner described were subjected to an in-house vertical flame test. No burning was observed at dried film thickness of 2, 3, or 4 mils (0.05, 0.08, 0.10 mm). Accordingly, a reasonable operating window of film thickness was suggested for production runs.

Samples also were provided, as jacketed over a polyurethane foam core in an EMI shielding gasket construction, for flame testing by Underwriters Laboratories, Inc., Melville, N.Y. A flame class rating of V-0 under UL94 was assigned at a minimum thickness of 1.0 mm. The gasket construction therefore was found to be compliant with the applicable UL requirements, and was approved to bear the "UL" certification mark.

The foregoing results confirm that, the EMI shielding material of the present invention affords UL94 V-0 protection when used as a jacketing in a fabric-over-foam gasket construction. Unexpectedly, it was found that a relatively porous or permeable fabric may be wet coated on one side with a relatively thin, i.e., 2–4 mil (0.05–0.10 mm), coating layer of a flame retardant composition without compromising the electrical surface conductivity of the other side. Such a thin coating layer, while being sufficient to provide UL94 V-0 protection in a conventional fabric-over-foam gasket construction, nonetheless maintains the drapability the fabric and thereby facilitates the fabrication of UL94 V-0 compliant gaskets having complex profiles or narrow cross-sections down to about 1 mm.

As it is anticipated that certain changes may be made in the present invention without departing from the precepts herein involved, it is intended that all matter contained in the foregoing description shall be interpreted as illustrative and not in a limiting sense. All references cited herein are expressly incorporated by reference.

What is claimed is:

- 1. A flame retardant, electromagnetic interference (EMI) shielding gasket comprising:
 - a resilient core member extending lengthwise along a central longitudinal axis and having an outer surface extending circumferentially about said longitudinal axis, said core member being formed of a foamed elastomeric material;
 - an electrically-conductive fabric member surrounding the outer surface of said core member, said fabric member having an interior surface disposed facing the outer surface of said core member and an oppositely-facing, exterior surface, at least the exterior surface being electrically-conductive and the exterior surface defining with the interior surface a thickness dimension of the fabric member therebetween; and

- a flame retardant layer coating at least a portion of the interior surface of said fabric member, said flame retardant layer comprising at least about 30% by weight of one or more flame retardant additives and penetrating into said fabric member to a depth which is less than the thickness dimension of said fabric member such that the exterior surface of said fabric member remains electrically-conductive.
- 2. The gasket of claim 1 wherein said flame retardant layer has a thickness of between about 2–4 mils (0.05–0.10 mm). 10
- 3. The gasket of claim 1 wherein said flame retardant layer is formed as a cured film of a flame retardant acrylic latex emulsion.
- **4**. The gasket of claim **1** wherein said fabric member is a metal-plated cloth.
- 5. The gasket of claim 4 wherein said cloth comprises fibers selected from the group consisting of cotton, wool, silk, cellulose, polyester, polyamide, nylon, and combinations thereof, and said metal is selected from the group

12

consisting of copper, nickel, silver, nickel-plated-silver, aluminum, tin, and combinations thereof.

- 6. The gasket of claim 1 wherein said foamed elastomeric material is selected from the group consisting of polyethylenes, polypropylenes, polypropylene-EPDM blends, butadienes, styrene-butadienes, nitriles, chlorosulfonates, neoprenes, urethanes, silicones, and polyolefin resin/monoolefin copolymer blends, and combinations thereof.
- 7. The gasket of claim 1 wherein said fabric member has a thickness of between about 2–4 mils (0.05–0.10 mm).
- 8. The gasket of claim 1 wherein said flame retardant layer is effective to afford the gasket a flame class rating of V-0 under Underwriter's Laboratories (UL) Standard No. 94.
- 9. The gasket of claim 1 wherein said one or more flame retardant additives are selected from the group consisting of aluminum hydrate, antimony trioxide, phosphate esters, and halogenated compounds.

* * * * *

Exhibit D

US006777095B2

(12) United States Patent

Bunyan et al.

(10) Patent No.: US 6,777,095 B2

(45) **Date of Patent:** Aug. 17, 2004

(54) FLAME RETARDANT EMI SHIELDING GASKET

(75) Inventors: Michael H. Bunyan, Chelmsford, MA

(US); William I. Flanders, Merimack,

NH (US)

(73) Assignee: Parker-Hannifin Corporation,

Cleveland, OH (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: **10/753,016**

(22) Filed: Jan. 7, 2004

(65) Prior Publication Data

US 2004/0142616 A1 Jul. 22, 2004

Related U.S. Application Data

- (63) Continuation of application No. 10/318,609, filed on Dec. 11, 2002, now Pat. No. 6,716,536, which is a continuation of application No. 10/142,803, filed on May 9, 2002, now Pat. No. 6,521,348, which is a continuation of application No. 09/883,785, filed on Jun. 18, 2001, now Pat. No. 6,387,523, which is a continuation of application No. 09/250,338, filed on Feb. 16, 1999, now Pat. No. 6,248,393.
- (60) Provisional application No. 60/076,370, filed on Feb. 27, 1998
- (51) **Int. Cl.**⁷ **B32B 5/14**; B32B 5/18; H05K 9/00

(56) References Cited

U.S. PATENT DOCUMENTS

4,178,410 A	12/1979	Tomita
4,396,661 A	8/1983	George et al.
4,447,484 A	5/1984	Slosberg et al.
4,489,126 A	12/1984	Holtrop et al.
4,531,994 A	7/1985	Holtrop et al.
4,540,617 A	9/1985	Kawanishi et al.

2/1986	Le Maitre
2/1986	Ebneth et al.
8/1986	Holtrop et al.
11/1986	Holtrop et al.
5/1987	Caldwell et al.
8/1987	Gladfeiter
6/1988	Van Gompel
1/1989	Van Gompel
8/1989	Buonanno
10/1989	Dimanshteyn
1/1991	Keyser et al.
4/1991	Cloyd et al.
7/1991	Keyser et al.
9/1991	Kaplo et al.
	2/1986 8/1986 11/1986 5/1987 8/1987 6/1988 1/1989 10/1989 1/1991 4/1991 7/1991

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

DE	9013936	6/1990
EP	0326441	2/1989
FR	2308030	12/1976
IP	07-176889	* 7/1995

OTHER PUBLICATIONS

Dye, James M. Compliance Engineering 17(3), pp 138 and 140-145, 2000.*

Kleiner, J. Vinyl Technol. vol. 4 No. 4, Dec. 1982, pp 157-159.*

(List continued on next page.)

Primary Examiner—Erma Cameron (74) Attorney, Agent, or Firm—John A. Molnar, Jr.

(57) ABSTRACT

A flame retardant, electromagnetic interference (EMI) shielding gasket construction. The construction includes a resilient core member formed of a foamed elastomeric material, an electrically-conductive fabric member surrounding the outer surface of the core member, and a flame retardant layer coating at least a portion of the interior surface of the fabric member. The flame retardant layer is effective to afford the gasket construction with a flame class rating of V-0 under Underwriter's Laboratories (UL) Standard No. 94.

10 Claims, 3 Drawing Sheets

US 6,777,095 B2 Page 2

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

U.S. Patent

Aug. 17, 2004

Sheet 1 of 3

US 6,777,095 B2

Fig. 2

Fig. 3

Aug. 17, 2004

Sheet 2 of 3

US 6,777,095 B2

Fig. 4

Fig. 5

U.S. Patent Aug. 1

Aug. 17, 2004

Sheet 3 of 3

US 6,777,095 B2

Exhibit E

(12) United States Patent

Bunyan et al.

(10) Patent No.: US 6,248,393 B1

(45) **Date of Patent: Jun. 19, 2001**

(54) FLAME RETARDANT EMI SHIELDING MATERIALS AND METHOD OF MANUFACTURE

(75) Inventors: Michael H. Bunyan, Chelmsford, MA

(US); William I. Flanders, Merimack,

NH (US)

(73) Assignee: Parker-Hannifin Corporation,

Cleveland, OH (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/250,338

(22) Filed: Feb. 16, 1999

Related U.S. Application Data

(60) Provisional application No. 60/076,370, filed on Feb. 27, 1998.

(52) **U.S. Cl.** **427/77**; 427/385.5; 427/389.9

(56) References Cited

U.S. PATENT DOCUMENTS

4,178,410	12/1979	Tomita .
4,396,661	8/1983	George et al
4,447,484	5/1984	Slosberg et al
4,489,126	12/1984	Holtrop et al
4,531,994	7/1985	Holtrop et al
4,540,617	9/1985	Kawanishi et al
4,569,304	2/1986	Le Maitre .
4,572,960	2/1986	Ebneth et al
4,608,104	8/1986	Holtrop et al
4,621,013	11/1986	Holtrop et al
4,666,765	5/1987	Caldwell et al
4,684,762	8/1987	Gladfeiter .
4,753,750	6/1988	Van Gompel .
4,797,171	1/1989	Van Gompel .
4,857,668	8/1989	Buonanno .
4,871,477	10/1989	Dimanshteyn .

4,988,550	1/1991	Keyser et al
5,009,927	4/1991	Cloyd et al
5,028,739	7/1991	Keyser et al
5,045,635	9/1991	Kaplo et al

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

9013936		12/1990	(DE).
0326441		8/1989	(EP).
2308030		11/1976	(FR).
7-176889	*	7/1995	(JP) .

OTHER PUBLICATIONS

Kleiner, J. Vinyl Technol. vol. 4 No. 4, Dec. 1982, pp 157–159.*

Copy of International Serch Report for PCT Case No. PCT/US99/04100, Jan. 7, 1999.

Chomerics Parker Hannifin Seals Catalog dated 1997 for Soft-Shield Low Closure Force EMI Gaskets.

Monsanto Flectron Metalized Materials dated Sep. 12, 1995.

Primary Examiner—Erma Cameron

(74) Attorney, Agent, or Firm—John A. Molnar, Jr.

(57) ABSTRACT

An flame retardant, electrically-conductive EMI shielding material and method, the material being particularly adapted for use in fabric-over-foam EMI shielding gasket constructions. In construction, a generally planar, porous fabric member is provided as having at least an electricallyconductive first side and a second side defining a thickness dimension therebetween. A curable layer of a fluent, flame retardant composition is applied under a predetermined hydrodynamic pressure and viscosity to at least a portion of the second side of the fabric member. The hydrodynamic pressure and viscosity of the composition are controlled to delimit the penetration of the layer into the fabric member to a depth which is less than the thickness dimension of said fabric member. The layer then is cured to form a flame retardant surface coating on the second side of the fabric member such that the first side of said fabric member remains electrically-conductive.

9 Claims, 3 Drawing Sheets

US 6,248,393 B1 Page 2

1	U.S. PATENT DOCUMENTS	5,612,092		Strenger et al
5,089,325	2/1992 Covey .	5,614,306		Jobe et al
5,105,056	4/1992 Hoge, Jr. et al	5,635,252		Fraser, Jr. et al
5,103,030	6/1992 Iwamoto et al	5,641,544		Melancon et al
	*	5,647,606		Powers, Jr
5,202,536	4/1993 Buonanno .	5,700,532	12/1997	Chiou .
5,204,403	4/1993 Furuta et al	ab *, 1.1		
5,226,354	7/1993 Tohyama et al	* cited by exar	niner	

U.S. Patent Jun. 19, 2001 Sheet 1 of 3 US 6,248,393 B1

Fig. 2

Fig. 3

U.S. Patent Jun. 19, 2001 Sheet 2 of 3 US 6,248,393 B1

Fig. 4

Fig. 5

U.S. Patent Jun. 19, 2001 Sheet 3 of 3 US 6,248,393 B1

1

FLAME RETARDANT EMI SHIELDING MATERIALS AND METHOD OF MANUFACTURE

RELATED CASES

The present application claims priority to U.S. Provisional application Ser. No. 60/076,370; filed Feb. 27, 1998.

BACKGROUND OF THE INVENTION

The present invention relates broadly to electrically-conductive, flame retardant materials for use in electromagnetic interference (EMI) shielding, and to a method of manufacturing the same, and more particularly to an electrically-conductive fabric having a layer of a flame retardant coating applied to one surface thereof for use as a sheathing within an EMI shielding gasket.

The operation of electronic devices including televisions, radios, computers, medical instruments, business machines, communications equipment, and the like is attended by the generation of electromagnetic radiation within the electronic circuitry of the equipment. Such radiation often develops as a field or as transients within the radio frequency band of the electromagnetic spectrum, i.e., between about 10 KHz and 10 GHz, and is termed "electromagnetic interference" or "EMI" as being known to interfere with the operation of other proximate electronic devices.

To attenuate EMI effects, shielding having the capability of absorbing and/or reflecting EMI energy may be employed both to confine the EMI energy within a source device, and to insulate that device or other "target" devices from other source devices. Such shielding is provided as a barrier which is inserted between the source and the other devices, and typically is configured as an electrically conductive and grounded housing which encloses the device. As the cir- 35 cuitry of the device generally must remain accessible for servicing or the like, most housings are provided with openable or removable accesses such as doors, hatches, panels, or covers. Between even the flattest of these accesses and its corresponding mating or faying surface, however, 40 there may be present gaps which reduce the efficiency of the shielding by presenting openings through which radiant energy may leak or otherwise pass into or out of the device. Moreover, such gaps represent discontinuities in the surface and ground conductivity of the housing or other shielding, 45 and may even generate a secondary source of EMI radiation by functioning as a form of slot antenna. In this regard, bulk or surface currents induced within the housing develop voltage gradients across any interface gaps in the shielding, which gaps thereby function as antennas which radiate EMI noise. In general, the amplitude of the noise is proportional to the gap length, with the width of the gap having a less appreciable effect.

For filling gaps within mating surfaces of housings and other EMI shielding structures, gaskets and other seals have been proposed both for maintaining electrical continuity across the structure, and for excluding from the interior of the device such contaminates as moisture and dust. Such seals are bonded or mechanically attached to, or press-fit into, one of the mating surfaces, and function to close any interface gaps to establish a continuous conductive path thereacross by conforming under an applied pressure to irregularities between the surfaces. Accordingly, seals intended for EMI shielding applications are specified to be of a construction which not only provides electrical surface conductivity even while under compression, but which also has a resiliency allowing the seals to conform to the size of

2

the gap. The seals additionally must be wear resistant, economical to manufacture, and capability of withstanding repeated compression and relaxation cycles. For further information on specifications for EMI shielding gaskets, reference may be had to Severinsen, J., "Gaskets That Block EMI," Machine Design, Vol. 47, No. 19, pp. 74–77 (Aug. 7, 1975).

Requirements for typical EMI shielding applications often dictate a low impedance, low profile gasket which is deflectable under normal closure force loads. Other requirements include low cost and a design which provides an EMI shielding effectiveness for both the proper operation of the device and compliance, in the United States, with commercial Federal Communication Commission (FCC) EMC regulations

A particularly economical gasket construction, which also requires very low closure forces, i.e. less than about 1 lb/inch (0.175 N/mm), is marketed by the Chomerics Division of Parker-Hannifin Corp., Woburn, Mass. under the tradename "Soft-Shield® 5000 Series." Such construction consists of an electrically-conductive jacket or sheathing which is "cigarette" wrapped lengthwise over a polyure-thane or other foam core. As is described further in U.S. Pat. No. 4,871,477, polyurethane foams generally are produced by the reaction of polyisocyanate and a hydroxyl-functional polyol in the presence of a blowing agent. The blowing agent effects the expansion of the polymer structure into a multiplicity of open or closed cells.

The jacket is provided as a highly conductive, i.e., about 1 Ω -sq., nickel-plated-silver, woven rip-stop nylon which is self-terminating when cut. Advantageously, the jacket may be bonded to the core in a continuous molding process wherein the foam is blown or expanded within the jacket as the jacket is wrapped around the expanding foam and the foam and jacket are passed through a die and into a traveling molding. Similar gasket constructions are shown in commonly-assigned U.S. Pat. No. 5,028,739 and in U.S. Pat. Nos. 4,857,668; 5,054,635; 5,105,056; and 5,202,536.

Many electronic devices, including PC's and communication equipment, must not only comply with certain FCC requirements, but also must meet be approved under certain Underwriter's Laboratories (UL) standards for flame retardancy. In this regard, if each of the individual components within an electronic device is UL approved, then the device itself does not require separate approval. Ensuring UL approval for each component therefore reduces the cost of compliance for the manufacturer, and ultimately may result in cheaper goods for the consumer. For EMI shielding gaskets, however, such gaskets must be made flame retardant, i.e., achieving a rating of V-0 under UL Std. No. 94, "Tests for Flammability of Plastic Materials for Parts in Devices and Appliances" (1991), without compromising the electrical conductivity necessary for meeting EMI shielding requirements.

In this regard, and particularly with respect to EMI shielding gaskets of the abovedescribed fabric over foam variety, it has long been recognized that foamed polymeric materials are flammable and, in certain circumstances, may present a fire hazard. Owing to their cellular structure, high organic content, and surface area, most foam materials are subject to relatively rapid decomposition upon exposure to fire or high temperatures.

One approach for imparting flame retardancy to fabric over foam gaskets has been to employ the sheathing as a flame resistant protective layer for the foam. Indeed, V-0 rating compliance purportedly has been achieved by sheath-

3

ing the foam within an electrically-conductive Ni/Cu-plated fabric to which a thermoplastic sheet is hot nipped or otherwise fusion bonding to the underside thereof. Such fabrics, which may be further described in one or more of U.S. Pat. Nos. 4,489,126; 4,531,994; 4,608,104; and/or 5 4,621,013, have been marketed by Monsanto Co., St. Louis, under the tradename "Flectron® Ni/Cu Polyester Taffeta V0."

Other fabric over foam gaskets, as is detailed in U.S. Pat. No. 4,857,668, incorporate a supplemental layer or coating applied to the interior surface of the sheath. Such coating may be a flame-retardant urethane formulation which also promotes the adhesion of the sheath to the foam. The coating additionally may function to reduce bleeding of the foam through the fabric which otherwise could compromise the 15 electrical conductivity of the sheath.

In view of the foregoing, it will be appreciated that further improvements in the design of flame retardant, fabric-over foam EMI shielding gaskets, as well as sheathing materials therefore, would be well-received by the electronics industry. Especially desired would be a flame retardant gasket construction which achieves a UL94 rating of V-0.

BROAD STATEMENT OF THE INVENTION

The present invention is directed to an electricallyconductive, flame retardant material for use in fabric-overfoam EMI shielding gaskets, and to a method of manufacturing the same. In having a layer of a flame retardant coating applied to one side of an electrically-conductive, generally porous fabric, the material of the invention affords UL94 V-0 protection when used as a jacketing in a fabricover-foam gasket construction. Advantageously, as the flame retardant layer may be wet coated on the fabric without appreciable bleed through, a relatively thin, i.e., 2-4 mil (0.05-0.10 mm), coating layer may be provided on one fabric side without compromising the electrical surface conductivity of the other side. Such a thin coating layer, while being sufficient to provide UL94 V-0 protection, nonetheless maintains the drapability the fabric and thereby facilitates the construction UL94 V-0 compliant gaskets having complex profiles or narrow cross-sections down to about 1 mm.

In a preferred embodiment, the electrically-conductive, flame retardant EMI shielding material of the invention 45 illustrative gravity-fed, knife over roll coater as adapted for includes a nickel or silver-plated, woven nylon, polyester, or like fabric on one side of which is wet coated a layer of a flame retardant, acrylic latex emulsion or other fluent resin composition. In accordance with the precepts of the method of the invention, the viscosity and hydrodynamic pressure of 50 the emulsion are controlled such that the coating does not penetrate or otherwise "bleed through" the uncoated side of the fabric. The surface conductivity of the opposite side of the fabric therefore is not compromised in EMI shielding applications.

The material of the invention may be employed as a jacket in fabric-over-foam EMI shielding gasket constructions, and is particularly adapted for use in the continuous molding process for such gaskets. As used within such process, the fabric may be wrapped around the foam as a jacket with coated side thereof being disposed as an interior surface adjacent the foam, and the uncoated side being disposed as an electrically-conductive exterior surface. Advantageously, the coating on the interior surface of the jacket blocks the pores of the fabric to retain the foam therein without 65 rather than in any limiting sense. penetrate or bleed through to the exterior surface. In being formed of a acrylic material, the coated interior surface of

the jacket may function, moreover, depending upon the composition of the foam, as a compatibilizing or "tie" interlayer which promotes the bonding of the foam to the fabric

The present invention, accordingly, comprises material and method possessing the construction, combination of elements, and arrangement of parts and steps which are exemplified in the detailed disclosure to follow. Advantages of the present invention include a flame retardant vet drapable EMI shielding fabric. Additional advantages include an economical, flame retardant EMI shielding fabric construction wherein a relatively thin layer of a flame retardant coating may be wet coated onto one side of an electricallyconductive, woven or other generally porous EMI shielding fabric without compromising the conductivity of the other side of the fabric. These and other advantages will be readily apparent to those skilled in the art based upon the disclosure contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings wherein:

FIG. 1 is a perspective view of one embodiment of an EMI shielding material according to the present invention which material includes a generally planar fabric member on one side of which is coated a layer of a flame retardant composition, the view being shown with portions being broken away to better reveal the structure of the material;

FIG. 2 is an enlarged cross-sectional view of the EMI shielding material of FIG. 1 taken through plane represented by line **2—2** of FIG. **1**;

FIG. 3 is a top view of the material of FIG. 1 which is magnified to reveal the structure of the fabric member thereof:

FIG. 4 is a perspective cross-sectional view of a length of a representative EMI shielding gasket construction according to the present invention including a jacket which is formed of the EMI shielding material of FIG. 1;

FIG. 5 is an end view of the gasket of FIG. 4 which is magnified to reveal the structure thereof; and

FIG. 6 is a schematic, partially cross-sectional view of an use in the manufacture of the EMI shielding material of FIG.

The drawings will be described further in connection with the following Detailed Description of the Invention.

DETAILED DESCRIPTION OF THE INVENTION

Certain terminology may be employed in the description to follow for convenience rather than for any limiting purpose. For example, the terms "upper" and "lower" designate directions in the drawings to which reference is made, with the terms "inner" or "interior" and "outer" or "exterior" referring, respectively, to directions toward and away from the center of the referenced element, and the terms "radial" and "axial" referring, respectively, to directions perpendicular and parallel to the longitudinal central axis of the referenced element. Terminology of similar import other than the words specifically mentioned above likewise is to be considered as being used for purposes of convenience

For the illustrative purposes of the discourse to follow, the electromagnetic interference (EMI) shielding material

5

herein involved is described in connection with its use as a flame retardant, electrically-conductive jacket for a foam core, EMI shielding gasket as may be adapted to be received within an interface, such as between a door, panel, hatch, cover, or other parting line of an electromagnetic interference (EMI) shielding structure. The EMI shielding structure may be the conductive housing of a computer, communications equipment, or other electronic device or equipment which generates EMI radiation or is susceptible to the effects thereof. The gasket may be bonded or fastened to, or press-fit into one of a pair of mating surfaces which define the interface within the housing, and functions between the mating surfaces to seal any interface gaps or other irregularities. That is, while under an applied pressure, the gasket resiliently conforms to any such irregularities both to establish a continuous conductive path across the interface, and to environmentally seal the interior of the housing against the ingress of dust, moisture, or other contaminates. It will be appreciated, however, that aspects of the present invention may find utility in other EMI shielding applications. Use 20 within those such other applications therefore should be considered to be expressly within the scope of the present invention.

Referring then to the figures, wherein corresponding reference characters are used to designate corresponding 25 elements throughout the several views, a flame retardant EMI shielding material according to the present invention is shown generally at 10 in FIG. 1 as generally adapted for use as a jacket within for a foam core gasket construction. For purposes of illustration, material sheet 10 is shown to be of indefinite dimensions which may be cut to size for the particular application envisioned. In basic construction, material 10 includes an upper, generally planar and porous fabric member, 12, and a lower, flame retardant coating member, 14.

Fabric member has at least an electrically-conductive first side, 16, and a conductive or non-conductive second side, 18, defining a thickness dimension, referenced at "t₁" in the cross-sectional view of FIG. 2, which may vary from about 2–4 mils (0.05–0.10 mm). By "electrically-conductive," it is meant that the fabric may be rendered conductive, i.e., to a surface resistivity of about 0.1 Ω /sq. or less, by reason of its being constructed of electrically-conductive wire, monofilaments, yams or other fibers or, alternatively, by applied to non-conductive fibers to provide an electricallyconductive layer thereon. Preferred electrically-conductive fibers include Monel nickel-copper alloy, silver-plated copper, nickel-clad copper, Ferrex® tin-plated copper-clad steel, aluminum, tin-clad copper, phosphor bronze, carbon, 50 graphite, and conductive polymers. Preferred nonconductive fibers include cotton, wool, silk, cellulose, polyester, polyamide, nylon, and polyimide monofilaments or yams which are rendered electrically conductive with a metal plating of copper, nickel, silver, nickel-plated-silver, 55 aluminum, tin, or an alloy thereof. As is known, the metal plating may applied to individual fiber strands or to the surfaces of the fabric after weaving, knitting, or other fabrication.

While fabrics such as wire meshes, knits, and non-woven 60 cloths and webs may find application, a preferred fabric construction for member 12 is a plain weave nylon or polyester cloth which is made electrically conductive with between about 20-40% by weight based on the total fabric weight, i.e., 0.01-0.10 g/in², of a silver, nickel-silver, or 65 silver-nickel over copper plating. As may be seen in the magnified view of FIG. 1 referenced at 20 in FIG. 3, such

cloth is permeable in having a plain, generally square weave pattern with pores or openings, one of which is referenced at 22, being defined between the fibers which are represented schematically at 24. Fibers 24 may be yarns, monofilaments or, preferably, bundles of from about 10-20 filaments or threads, each having a diameter of between about $10-50 \mu m$. For example, with fibers 24 each being a bundle of such

6

threads with a thread count of between about 1000-3000 per inch and a weave count of between about 1000-1500 per inch, 1000-2000 openings per inch will be defined with a mean average pore size of between about 0.5-2 mils $(12.5-50 \mu m)$.

Although a plain, square weave pattern such as a taffeta, tabby, or ripstop is considered preferred, other weaves such 15 as satins, twills, and the like also should be considered within the scope of the invention herein involved. A particularly preferred cloth for fabric member 12 is a 4 mil (0.10 mm) thick, 1.8 oz/yd² weight, silver-plated, woven nylon which is marketed commercially under the designation "31EN RIPSTOP" by Swift Textile Metalizing Corp., Bloomfield, Conn. However, depending upon the needs of the specific shielding application, a fabric constructed of a combination or blend of conductive and nonconductive fibers alternatively may be employed. Examples of fabrics woven, braided, or warp knitted from electricallyconductive fibers, or from blends of conductive and nonconductive fibers, are described in Gladfelter, U.S. Pat. No. 4,684,762, and in Buonanno, U.S. Pat. No. 4,857,668.

Returning to FIGS. 1 and 2, coating member 14 preferably is formed from a curable layer of a fluent, flame retardant resin or other composition which is wet coated onto the second side 18 of fabric member 12. As is detailed hereinafter, the viscosity and hydrodynamic pressure of the resin composition are controlled in accordance with the 35 precepts of the present invention to delimit the penetration of the resin layer to a depth, referenced at "d" in FIG. 2, which is less than the thickness dimension t₁ of the fabric member 12. In this regard, when the layer is cured to form the flame retardant surface coating member 14 on the second side 18 of fabric member 12, the first side 16 thereof remains electrically-conductive. In a preferred construction, the layer is coated to a wet thickness of about 10 mils (0.25 mm), and then cured to a dried coating or film thickness, referenced at t₂ in FIG. 2, of between about 2-4 mils (0.05-0.10 mm) at reason of a treatment such as a plating or sputtering being 45 a depth d of about 1-2 mils (0.025-0.05 mm). Ultimately, a total material thickness, referenced at "T," of between about 6-7 mils (0.15-0.20 mm) and a dried weight pickup of between about 100–150 g/yd² are observed. By "cured" it is meant that the resin is polymerized, cross-linked, further cross-linked or polymerized, vulcanized, hardened, dried, volatilized, or otherwise chemically or physically changed from a liquid or other fluent form into a solid polymeric or elastomeric phase.

The flame retardant composition preferably is formulated as an aqueous emulsion of an acrylic latex emulsion which is adjusted to a total solids of about 60% and a Brookfield viscosity (#5 spindle, 4speed) of between about 40,000-60, 000 cps, at a density of about 10 lbs per gallon (1.8 g/cm³). Flame retardancy may be imparted by loading the emulsion with between about 30-50% by weight of one or more conventional flame retardant additives such as aluminum hydrate, antimony trioxide, phosphate esters, or halogenated compounds such as polybrominated diphenyl oxides. A preferred formulation is a mixture of about 25% by weight, based on the total weight of the emulsion, of decambromodiphenyl oxide and about 15% by weight of one or more antimony compounds. In operation, should the acrylic car-

7

rier phase be ignited, the decomposition of the halogenated and metal oxide compounds function to chemically deprive the flame of sufficient oxygen to support combustion. The decomposition of the acrylic phase additionally may lead to the development of a protective, i.e., thermally-insulative or refractory, outer char layer.

A preferred flame retardant, acrylic latex emulsion is marketed commercially by Heveatex Corp., Fall River, Mass., under the designation "4129FR." The viscosity of the emulsion may be adjusted to between about 40,000-60,000 cps using an aqueous acryloid gel or other acrylic thickener. In this regard, the increased viscosity of the emulsion contributes to delimiting the penetration of the coating layer into the fabric member. However, as this relatively high viscosity may lead to undesirable porosity in the dried film, the emulsion additionally may be modified to reduce air entrapment and bubble formation in the coating layer with up to about 1% by weight of one or more commercial surfactants such as "Bubble Breaker" by Witco Chemical Corp. (Chicago, Ill.) and "Foam Master Antifoam" by Diamond Shamrock, Inc. (San Antonio, Tex.).

As aforementioned, EMI shielding material 10 of the present invention is particularly adapted for use as a flame retardant, electrically-conductive jacket which is provided over a foam core in an EMI shielding gasket construction 25 such as gasket 50 of FIG. 4. In a representative embodiment, gasket 50 includes an elongate, resilient foam core member, 52, which may be of an indefinite length. Core member 52 has an outer circumferential surface, 54, defining the crosssectional profile of gasket 50 which, for illustrative purposes, is of a generally polygonal, i.e., square or rectangular geometry. Other plane profiles, such as circular, semicircular, or elliptical, or complex profiles may be substituted, however, depending upon the geometry of the interface to be sealed. Core member 12 may be of any radial or diametric extent, but for most applications will have a diametric extent or width of from about 0.25 inch (0.64 cm) to 1 inch (2.54 cm).

For affording gap-filling capabilities, it is preferred that core member 52 is provided to be complaint over a wide 40 range of temperatures, and to exhibit good compressionrelaxation hysteresis even after repeated cyclings or long compressive dwells. Core member 52 therefore may be formed of a foamed elastomeric thermoplastic such as a polyethylene, polypropylene, polypropylene-EPDM blend, 45 which is exposed on the exterior surface of the gasket, a butadiene, styrene-butadiene, nitride, chlorosulfonate, or a foamed neoprene, urethane, or silicone. Preferred materials of construction include open or closed cell urethanes or blends such as a polyolefin resin/monoolefm copolymer blend, or a neoprene, silicone, or nitrile sponge rubber.

Core member 52 may be provided as an extruded or molded foam profile over which shielding material 10 is wrapped as a sheathed, with the edges of sheathed being overlapped as at 56. In a preferred construction, shielding material 10 is bonded to the core member 52 in a continuous 55 molding process wherein the foam is blown or expanded within the shielding material. As may be seen best with reference to the magnified view of FIG. 4 referenced at 60 in FIG. 5, in such construction coating member 14 is disposed adjacent core member 52 as an interior surface, 62, of shielding member 10, with the uncoated side 16 of fabric member 12 being oppositely disposed as an electricallyconductive exterior surface, 64, of the gasket 50. It will be appreciated that the coated interior surface 62 blocks the pores 22 (FIG. 3) of the fabric member 12 of the fabric to 65 retain the blown foam therein without penetrate or bleed through to the exterior gasket surface 64. Depending upon

8

the respective compositions of the foam and coating, the interior surface 62 may function, moreover, as a compatibilizing or "tie" interlayer which promotes the bonding of the foam to the fabric. Gasket construction 50 advantageously provides a structure that may be used in very low closure force, i.e. less than about 1 lb/inch (0.175 N/mm), applications.

Referring again to FIG. 4, an adhesive layer, 70, may be applied along the lengthwise extent of gasket 50 to the underside of exterior surface 64 for the attachment of the gasket to a substrate. Such layer 70 preferably is formulated to be of a pressure sensitive adhesive (PSA) variety. As is described in U.S. Pat. No. 4,988,550, suitable PSA's for EMI shielding applications include formulations based on silicones, neoprene, styrene butadiene copolymers, acrylics, acrylates, polyvinyl ethers, polyvinyl acetate copolyrners, polyisobutylenes, and mixtures, blends, and copolymers thereof. Acrylic-based formulations, however, generally are considered to be preferred for the EMI applications of the type herein involved. Although PSA's are preferred for adhesive layer 70, other adhesives such as epoxies and urethanes may be substituted and, accordingly, are to be considered within the scope of the present invention. Heatfusible adhesives such a hotmelts and thermoplastic films additionally may find applicability.

Inasmuch as the bulk conductivity of gasket 50 is determined substantially through its surface contact with the substrate, an electrically-conductive PSA may be preferred to ensure optimal EMI shielding performance. Such adhesives conventionally are formulated as containing about 1-25% by weight of a conductive filler to yield a volume resistivity of from about 0.01-0.001 ?-cm. The filler may be incorporated in the form of particles, fibers, flakes, microspheres, or microballoons, and may range in size of from about 1-100 microns. Typically filler materials include inherently conductive material such as metals, carbon, and graphite, or nonconductive materials such as plastic or glass having a plating of a conductive material such as a noble metal or the like. In this regard, the means by which the adhesive is rendered electrically conductive is not considered to be a critical aspect of the present invention, such that any means achieving the desired conductivity and adhesion are to be considered suitable.

For protecting the outer portion of adhesive layer 70 release sheets, shown at 72, may be provided as removably attached to the exposed adhesive. As is common in the adhesive art, release sheet 72 may be provided as strip of a waxed, siliconized, or other coated paper or plastic sheet or the like having a relatively low surface energy so as to be removable without appreciable lifting of the adhesive from the exterior surface 64.

In the production of commercial quantities of the EMI shielding material 10 of the present invention, the viscosity adjusted and otherwise modified acrylic latex emulsion or other resin composition may be coated and cured on one side the fabric member 12 by a direct wet process such as knife over roll or slot die. With whatever process is employed, the hydrodynamic pressure of the resin composition is controlled in accordance with the precepts of the present invention to delimit the penetration of the resin layer to a depth which is less than the thickness dimension of the fabric member. For example, and with reference to FIG. 6 wherein the head of a representative gravity-fed knife over roll coater is shown somewhat schematically at 100, porous, i.e., permeable, fabric member 12 is conveyed from a feed roll or the like (not shown) over a nip roller, 102, which rotates

9

in the direction referenced by arrow 104. With the first side 16 of fabric member 12 supported on roller 102, the fabric second side 18 is passed beneath the opening, referenced at 106, of a coating trough, 108. Trough 108 is defined by a front plate, 110, a back plate, 112, and a pair of side plates (not shown).

The emulsion or other fluent resin composition, referenced at 114, is pumped or otherwise transported into trough 108 which is filled to a fluid level, referenced at h. For a given fluid density, this level h is controlled such that the hydrodynamic pressure at the fabric-liquid interface is maintained within preset limits. For example, with a fluid density of about 10 pounds per gallon (1.8 g/cm³), and a fabric having a porosity of about 1000-2000 openings per inch with a mean average pore size of between about 0.5-2 mils 15 (12.5-50 µm), the fluid level H is controlled at about 4 inches (10 cm) to yield a hydrodynamic pressure of about 0.05 psi (0.35 kPa) at the fabric-liquid interface. For other coating processes, the hydrodynamic fluid pressure may be controlled, for example, by a pumping pressure or the like. 20

In the illustrative knife-over-roll coating process, the lower edge, 120, of front plate 110 defines a knife surface which is shimmed or otherwise spaced-apart a predetermined distance from the second side 18 of fabric member 12. Such spacing provides a clearance or gap, referenced at "g," of typically about 10 mils (0.25 mm), but which is adjustable to regulate the thickness of the liquid coating layer, 122, being applied to the fabric member. From roller 104, the coated fabric member 12 may be conveyed via a take-up roller arrangement (not shown) through a in-line oven or the like to dry or flash the water or other diluent in the liquid coating layer 122, or to otherwise cure the liquid coating layer 122 in developing an adherent, tack-free, film or other layer of coating member 14 (FIG. 1) on the single side 18 of fabric member 12.

The Example to follow, wherein all percentages and proportions are by weight unless otherwise expressly indicated, is illustrative of the practicing of the invention herein involved, but should not be construed in any limiting 40 sense.

EXAMPLE

Representative EMI shielding materials according to the present invention were constructed for characterization. In 45 this regard, a master batch of a flame retardant coating composition was compounded using an acrylic latex emulsion (Heveatex "4129FR"). The viscosity of the emulsion was adjusted to a Brookfield viscosity (#4 spindle, 40 speed) of about 60,000 cps with about 5 wt % of an acryloid 50 thickener (AcrysolTM GS, Monsanto Co., St. Louis, Mo.). The modified emulsion had a total solids content of about 60% by weight, a density of about 10 pounds per gallon (1.8 g/cm³), and a pH of between about 7.5 and 9.5.

The emulsion was applied using a knife over roll coater 55 (JETZONE Model 7319, Wolverine Corp., Merrimac, Mass.) to one side of a silver-plated nylon fabric (Swift "31EN RIPSTOP") having a thickness of about 4 mils (0.1 mm). With the fluid level in the coating trough of the coater maintained at about 4 inch (10 cm), the emulsion was delivered to the surface of the cloth at a hydrodynamic pressure of about 0.05 psi (0.35 kPa). The coating knife was shimmed to a 10 mil (0.25 mm) gap above the fabric to yield a wet coating draw down thickness of about 10 mils. Following an oven curing at 100-125° C. for 5 minutes, a 65 dried coating or film thickness of about 2.5 mils (0.635 mm) was obtained with a weight pickup of about 130–145 g/yd²

10

and a total material thickness of between about 6-7 mils (0.15-0.18 mm). An inspection of the coated fabric cloth revealed a coating penetration depth of about 1-2 mils (0.02–0.05 mm) providing acceptable mechanical retention and/or adhesion of the coating onto the fabric surface. The opposite side of the fabric, however, was observed to be substantially coating free, and to retain a surface resistivity of about 0.1 Ω /sq for unaffected EMI shielding effective-

Fabric samples similarly coated in the manner described were subjected to an in-house vertical flame test. No burning was observed at dried film thickness of 2, 3, or 4 mils (0.05, 0.08, 0.10 mm). Accordingly, a reasonable operating window of film thickness was suggested for production runs.

Samples also were provided, as jacketed over a polyurethane foam core in an EMI shielding gasket construction, for flame testing by Underwriters Laboratories, Inc., Melville, New York. A flame class rating of V-0 under UL94 was assigned at a minimum thickness of 1.0 mm. The gasket construction therefore was found to be compliant with the applicable UL requirements, and was approved to bear the "UL" certification mark.

The foregoing results confirm that the EMI shielding material of the present invention affords UL94 V-0 protection when used as a jacketing in a fabric-over-foam gasket construction. Unexpectedly, it was found that a relatively porous or permeable fabric may be wet coated on one side with a relatively thin, i.e., 2–4 mil (0.05–0.10 mm), coating layer of a flame retardant composition without compromising the electrical surface conductivity of the other side. Such a thin coating layer, while being sufficient to provide UL94 V-0 protection in a conventional fabric-over-foam gasket construction, nonetheless maintains the drapability the fabric and thereby facilitates the fabrication of UL94 V-0 compliant gaskets having complex profiles or narrow crosssections down to about 1 mm.

As it is anticipated that certain changes may be made in the present invention without departing from the precepts herein involved, it is intended that all matter contained in the foregoing description shall be interpreted as illustrative and not in a limiting sense. All references cited herein are expressly incorporated by reference.

What is claimed is:

- 1. A method of making a flame retardant, electricallyconductive EMI shielding material comprising the steps of:
 - (a) providing a generally planar, porous fabric member having at least an electrically-conductive first side and a second side defining a thickness dimension therebe-
 - (b) applying a curable layer of a fluent, flame retardant composition under a hydrodynamic pressure and viscosity to at least a portion of the second side of said fabric member;
 - (c) controlling said hydrodynamic pressure and viscosity of said composition to delimit the penetration of said layer into said fabric member to a depth which is less than the thickness dimension of said fabric member;
 - (d) curing said layer to form a flame retardant coating member on the second side of said fabric member whereby the first side of said fabric member remains electrically-conductive.
- 2. The method of claim 1 wherein said flame retardant composition of step (b) comprises a flame retardant acrylic latex emulsion.
- 3. The method of claim 1 wherein the viscosity of said composition is controlled in step (c) to between about 40,000-60,000 centipoise.
- 4. The method of claim 1 wherein the hydrodynamic pressure of said composition is controlled in step (c) at about 0.05 psi (0.35 kPa).

11

- 5. The method of claim 1 wherein said layer is cured in step (d) to a coating thickness of between about 2-4 mils (0.05-0.10 mm).
- 6. The method of claim 1 wherein the thickness dimension of said fabric member of step (a) is between about 2–4 mils 5 (0.05–0.10 mm).
- 7. The method of claim 6 wherein said fabric member is provided in step (a) as a metal-plated, woven cloth having an mean average pore size of between about 0.5-2 mils $(12.5-50 \ \mu m)$.

12

- 8. The method of claim 7 wherein said cloth is woven of fibers selected front the group consisting of cotton, wool, silk, cellulose, polyester, polyamide, nylon, and combinations thereof, and is plated with a metal selected from the group consisting of copper, nickel, silver, nickel-plated-silver, aluminum, tin, and combinations thereof.
- 9. The method of claim 8 wherein said fibers have a diameter of between about $10-50 \ \mu m$.

* * * * *

Case 1:07-cv-00104-MPT Document 1-2 Filed 02/22/2007 Page 1 of 2 CIVIL COVER SHEET

The JS 44 civil cover sheet and the information contained herein neither replace nor supplement the filing and service of pleadings or other papers as required by law, except as provided by local rules of court. This form, approved by the Judicial Conference of the United States in September 1974, is required for the use of the Clerk of Court for the purpose of initiating the docket sheet. (SEE INSTRUCTIONS ON THE REVERSE OF THE FORM.)

I. (a) PLAINTIFFS		DEFENDANTS	DEFENDANTS			
PARKER-HANNIFIN COF	RPORATION		SEIREN CO., L	SEIREN CO., LTD.		
(b) County Of Residence of First Liste		y, Ohio	County Of Residence Of First Listed Defendant:			
(EXCEPT IN U.	S. PLAINTIFF CASES)		,	ONDEMNATION CASES, USE T	HE LOCATION OF THE	
(c) ATTORNEYS (FIRM NAME, ADDI	RESS AND TELEPHONE NUMBER)		LAND INVO	LVED.		
Rudolph E. Hutz (#484) Harold Pezzner (#479) Francis DiGiovanni (#3189) CONNOLLY BOVE LODGE & HUTZ 1007 N. Orange Street, P.O. Bo Wilmington, Delaware 19899		72) 658- 91 41				
-	•	52, 555 5141	III CITIZENGUID OF DR	INCIDAL PARTIES (Place of	n *Y" in One Boy for Plainliff	
	Place an "X" In One Box Only)		III. CITIZENSHIP OF PRINCIPAL PARTIES (Place an "X" in One Box for Plaintliff (For Diversity Cases Only) and One Box for Defendant)			
1 U.S. Government Plaintiff	X 3 Federal Question (U.S. Government Not a Pa	rty)		F DEF 1 □ 1 Incorporated <i>or</i> Pri Place of Business		
2 U.S. Government Defendant	☐ 4 Diversity (Indicate Citizenship of Parti	es in Item III)	Citizen of Another State	2 2 Incorporated and Pri	incipal 5 5	
			Citizen or Subject of a E Foreign Country	3 Foreign Nation	□6 □6	
IV. NATURE OF SUIT (Place an	"X" In One Box Only)					
CONTRACT	TORTS		FORFEITURE/PENALTY	BANKRUPTCY	OTHER STATUTES	
□ 110 Insurance □ 120 Marine □ 130 Miller Act □ 140 Negotiable Instrument □ 150 Recovery of Overpayment & Enforcement of Judgment □ 151 Medicare Act □ 152 Recovery of Defaulted Student Loans (Excl Veterans) □ 153 Recovery of Overpayment of Veteran's Benefits □ 160 Stockholders Suits □ 190 Other Contract □ 195 Contract Product Liability □ 196 Franchise REAL PROPERTY □ 210 Land Condemnation □ 220 Foreclosure □ 230 Rent Lease & Ejectment □ 240 Torts to Land □ 245 Tort Product Liability □ 290 All Other Real Property	PERSONAL INJURY 310 Airplane 315 Airplane Product Liability 320 Assault. Libel & Slander 330 Federal Employers Liability 340 Marine 345 Marine Product Liability 350 Motor Vehicle 355 Motor Vehicle Product Liability 360 Other Personal Injury CIVIL RIGHTS 441 Voting 442 Employment 443 Housing/ Accommodations 444 Welfare 445 Amer. w/Disabilities — Employment 446 Amer. w/Disabilities — Other Other 440 Other Civil Rights	PERSONAL INJURY 362 Personal Injury - Med. Malpractice 365 Personal Injury - Product Liability 368 Asbestos Personal Injury Product Liability PERSONAL PROPERTY 370 Other Fraud 371 Truth in Lending 380 Other Personal Property Damage Property Damage 385 Property Damage Product Liability PRISONER PETITIONS 510 Motions to Vacate Sentence HABEAS CORPUS: 530 General 535 Death Penalty 540 Mandamus & Other 550 Civil Rights 555 Prison Condition	□ 610 Agriculture □ 620 Other Food & Drug □ 625 Drug Related Seizure of Property 21 USC 881 □ 630 Liquor Laws □ 640 R.R. & Truck □ 650 Airline Regs. □ 660 Occupational Safety/Health □ 690 Other LABOR □ 710 Fair Labor Standards Act □ 720 Labor/Mgmt Relations □ 730 Labor/Mgmt Reporting & Disclosure Act □ 740 Railway Labor Act □ 750 Other Labor Litigation □ 791 Empl. Ret. Inc. Security Act	□ 422 Appeal 28 USC 158 □ 423 Withdrawal 28 USC 157 PROPERTY RIGHTS □ 820 Copyrights X 830 Patent □ 840 Trademark SOCIAL SECURITY □ 862 Black Lung (923) □ 863 DIWC/DIWW (405(g)) □ 864 SSID Title XVI □ 865 RSI (405(g)) FEDERAL TAX SUITS □ 870 Taxes (U.S. Plaintiff or Defendant) □ 871 IRS - Third Party 26 USC 7609	□ 400 State Reapportionment □ 410 Antitrust □ 430 Banks and Banking □ 450 Commerce □ 460 Deportation □ 470 Racketeer Influenced and □ Corrupt Organizations □ 490 Cable/Sat TV □ 810 Selective Service □ 850 Securities/ Commodities/ □ Exchange □ 875 Customer Challenge □ 12 USC 3410 □ 890 Other Statutory Actions □ 891 Agricultural Acts □ 892 Economic Stabilization— Act □ 893 Environmental Matters □ 894 Energy Allocation Act □ 895 Freedom of Information Act □ 900 Appeal of Fee □ Determination Under Equal Access to Justice □ 950 Constitutionality of State Statutes	
V. ORIGIN (PLACE AN "X" IN ONE X 1 Original □ 2 Remove Proceeding State Co VI. CAUSE OF ACTION	d from 3 Remanded from unt Appellate Court Cite the U.S. Civil Statute under w 35 U.S.C. § 271 (a) through (c) Brief description of cause:	☐ 4 Reinstated or Reopened hich you are filing (Do not cite j	Transferred from ☐ 5 another district (specify) urisdictional statutes unless diver	☐ 6 Multidistrict Litigation sity):	Appeal to District Judge from ☐ 7 Magistrate Judgment	
VII. REQUESTED IN □ CHECK IF THIS IS A CLASS ACTION DEMAND: In excess of \$75,000.00 CHECK YES only if demanded in complaint:						
COMPLAINT: UNDER F.R.C.P. 23 JURY DEMAND: X YES ☐ NO VIII. RELATED CASE(S)						
	(See instructions): JUDGE ***	UNIT OF ATTORNEY OF RECO		2, 50-100, 50-10-1, 50-100, 50-11		
DATE February 22, 2007	SIGNAT	Game of Reco		Frar	ncis DiGiovanni (#3189)	
FOR OFFICE USE ONLY	AMOUNT	APPLYING IFP		JUDGE M/	AG. JUDGE	
RECEIPT#	AMOUNT	- FILEIIIO II I				

INSTRUCTIONS FOR ATTORNEYS COMPLETING CIVIL COVER SHEET FORM JS-44

Authority For Civil Cover Sheet

The JS-44 civil cover sheet and the information contained herein neither replaces nor supplements the filings and service of pleading or other papers as required by law, except as provided by local rules of court. This form, approved by the Judicial Conference of the United States in September 1974, is required for the use of the Clerk of Court for the purpose of initiating the civil docket sheet. Consequently, a civil cover sheet is submitted to the Clerk of Court for each civil complaint filed. The attorney filing a case should complete the form as follows:

- (a) Plaintiffs Defendants. Enter names (last, first, middle initial) of plaintiff and defendant. If the plaintiff or defendant is a government agency, use only the full name or standard abbreviations. If the plaintiff or defendant is an official within a government agency, identify first the agency and then the official, giving both name and title.
- (b) County of Residence. For each civil case filed, except U.S. plaintiff cases, enter the name of the county where the first listed plaintiff resides at the time of filing. In U.S. plaintiff cases, enter the name of the county in which the first listed defendant resides at the time of filing. (NOTE: In land condemnation cases, the county of residence of the "defendant" is the location of the tract of land involved.)
- (c) Attorneys. Enter the firm name, address, telephone number, and attorney of record. If there are several attorneys, list them on an attachment, noting in this section "(see attachment)".
- Jurisdiction. The basis of jurisdiction is set forth under Rule 8(a), F.R.C.P., which requires that jurisdictions be shown in pleadings. Place an "X" in one of the boxes. If there is more than one basis of jurisdiction, precedence is given in the order shown below.

United States plaintiff. (1) Jurisdiction based on 28 U.S.C. 1345 and 1348. Suits by agencies and officers of the United States are included here.

United States defendant. (2) When the plaintiff is suing the United States, its officers or agencies, place an "X" in this box.

Federal question. (3) This refers to suits under 28 U.S.C. 1331, where jurisdiction arises under the Constitution of the United States, an amendment to the Constitution, an act of Congress or a treaty of the United States. In cases where the U.S. is a party, the U.S. plaintiff or defendant code takes precedence, and box 1 or 2 should be marked.

Diversity of citizenship. (4) This refers to suits under 28 U.S.C. 1332, where parties are citizens of different states. When Box 4 is checked, the citizenship of the different parties must be checked. (See Section III below: federal question actions take precedence over diversity cases.)

- Residence (citizenship) of Principal Parties. This section of the JS 44 is to be completed if diversity of citizenship was indicated above. Mark this section for each principal party.
- Nature of Suit. Place an "X" in the appropriate box. If the nature of suit cannot be determined, be sure the cause of action, in Section VI below, is sufficient to enable the deputy clerk or the statistical clerks in the Administrative Office to determine the nature of suit. If the cause fits more than one nature of suit, select the most definitive.
- Origin. Place an "X" in one of the seven boxes.

Original Proceedings. (1) Cases which originate in the United States district courts.

Removed from State Court. (2) Proceedings initiated in state courts may be removed to the district courts under Title 28 U.S.C. Section 1441. When the petition for removal is granted, check this box.

Remanded from Appellate Court. (3) Check this box for cases remanded to the district court for further action. Use the date of remand as the filing date.

Reinstated or Reopened. (4) Check this box for cases reinstated or reopened in the district court. Use the reopening date as the filing date.

Transferred from Another District. (5) For cases transferred under Title 28 U.S.C. Section 1404(a). Do not use this for within district transfers or multidistrict litigation transfers.

Multidistrict Litigation. (6) Check this box when a multidistrict case is transferred into the district under authority of Title 28 U.S.C. Section 1407. When this box is checked, do not check (5) above.

Appeal to District Judge from Magistrate Judgment. (7) Check this box for an appeal from a magistrate judge's decision.

Cause of Action. Report the civil statute directly related to the cause of action and give a brief description of the cause. Do not cite jurisdictional U.S. Civil Statute: 47 USC 553 statues unless diversity. Example: Brief Description: Unauthorized reception of cable service.

Requested in Complaint. Class Action. Place an "X" in this box if you are filing a class action under Rule 23, F.R.Cv.P.

VII.

Demand. In this space enter the dollar amount (in thousands of dollars) being demanded or indicate other demand such as a preliminary injunction.

Jury Demand. Check the appropriate box to indicate whether or not a jury is being demanded.

Related Cases. This section of the JS 44 is used to reference related pending cases if any. If there are related pending cases, insert the docket numbers and the corresponding judge names for such cases.

Date and Attorney Signature. Date and sign the civil cover sheet.

United States District Court for the District of Delaware

Civil Action No. __ 0 7 - 1 0 4

ACKNOWLEDGMENT OF RECEIPT FOR AO FORM 85

NOTICE OF AVAILABILITY OF A UNITED STATES MAGISTRATE JUDGE TO EXERCISE JURISDICTION

I HEREBY ACKNOWLEDGE R	COPIES OF AO FORM 85.
FEB 2 2 2007	Shone Handlin
(Date forms issued)	(Signature of Party or their Representative)
	Shane Handlin (Printed name of Party or their Representative)

Note: Completed receipt will be filed in the Civil Action