Skriftlig eksamen i Dynamiske Modeller Sommeren 2016

VALGFAG

Mandag den 6. juni 2016

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog må man ikke medbringe eller anvende lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

2. årsprøve 2016 S-2DM ex

Skriftlig eksamen i Dynamiske Modeller Mandag den 6. juni 2016

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. For ethvert $a \in \mathbf{R}$ betragter vi tredjegradspolynomiet $P_a : \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P_a(z) = z^3 + (a^2 + 7)z^2 + (7a^2 + 12)z + 12a^2$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^3x}{dt^3} + (a^2 + 7)\frac{d^2x}{dt^2} + (7a^2 + 12)\frac{dx}{dt} + 12a^2x = 0,$$

og

$$\frac{d^3x}{dt^3} + 8\frac{d^2x}{dt^2} + 19\frac{dx}{dt} + 12x = 12e^{-t}.$$

- (1) Vis, at tallet z = -3 er rod i polynomiet P_a . Bestem dernæst samtlige rødder i polynomiet P_a .
- (2) Bestem den fuldstændige løsning til differentialligningen (*), og bestem de $a \in \mathbf{R}$, hvor (*) er globalt asymptotisk stabil.
- (3) Bestem den fuldstændige løsning til differentialligningen (**).

For ethvert $b \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(***) \frac{d^3x}{dt^3} + b\frac{d^2x}{dt^2} + 2b\frac{dx}{dt} + bx = 0,$$

(4) Opstil Routh-Hurwitz matricen A_3 for differentialligningen (* * *), og bestem de $b \in \mathbf{R}$, for hvilke (* * *) er globalt asymptotisk stabil.

Opgave 2. Vi betragter mængderne

$$A = \{ z \in \mathbf{C} \mid |z| \le 1 \land |z| \in \mathbf{Q}_+ \}$$

og

$$B = \{ z \in \mathbf{C} \mid \operatorname{Re} z \ge 2 \land -1 \le \operatorname{Im} z \le 1 \}.$$

- (1) Bestem det indre A^O af mængden A.
- (2) Bestem randen ∂A af mængden A.
- (3) Bestem afslutningen \overline{A} af mængden A.
- (4) Bestem det konvekse hylster H = conv(A) af mængden A.
- (5) Vis, at mængden B er afsluttet og konveks.
- (6) Vis, at mængderne H og B kan separeres med en hyperplan i \mathbb{C} .
- (7) Bestem det konvekse hylster $C = \text{conv}(H \cup B)$ af mængden $H \cup B$.

Opgave 3. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{ccc} 10 & 0 & 1\\ 0 & 2 & 0\\ 1 & 0 & 10 \end{array}\right)$$

og vektordifferentialligningerne

(i)
$$\frac{dx}{dt} = Ax$$
 og (ii) $\frac{dx}{dt} = Ax + \begin{pmatrix} 1\\2\\5 \end{pmatrix}$,

hvor $x \in \mathbf{R}^3$.

- (1) Vis, at vektorerne $v_1 = (0, 1, 0), v_2 = (-1, 0, 1)$ og $v_3 = (1, 0, 1)$ er egenvektorer for matricen A, og bestem de tilhørende egenværdier.
- (2) Bestem den fuldstændige løsning til vektordifferentialligningen (i).

- (3) Opskriv den tilhørende fundamentalmatrix $\Phi(t)$, og bestem resolventen R(t,0).
- (4) Bestem den fuldstændige løsning til vektordifferentialligningen (ii).

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 (2u^2 - x + x^2) dt.$$

Vi skal løse det optimale kontrolproblem at minimere I(x), idet $\dot{x}=f(t,x,u)=2u-x,\ x(0)=\frac{1}{3}$ og $x(1)=\frac{1}{3}+e^{\sqrt{3}}-e^{-\sqrt{3}}$.

- (1) Opskriv Hamilton funktionen H=H(t,x,u,p) for dette optimale kontrol problem.
- (2) Vis, at dette optimale kontrolproblem er et minimumsproblem.
- (3) Bestem det optimale par (x^*, u^*) , som løser problemet.