#### Neural Networks - Part 1

Dr. Daniele Cattaneo, Prof. Dr. Josif Grabocka

Machine Learning Course Winter Semester 2023/2024

Albert-Ludwigs-Universität Freiburg

 $cattaneo@informatik.uni-freiburg.de,\ grabocka@informatik.uni-freiburg.de$ 

November 20, 2023

### Table of Contents

## Motivation: Deep Learning

- Excellent empirical results, e.g., in reasoning in games
  - Superhuman performance in playing Atari games
     [Mnih et al, Nature 2015]

 Beating the world's best Go player [Silver et al, Nature 2016]



- **Deep Learning** is an umbrella term for:
  - Neural Network architectures
    - Regularization approaches for Neural Networks
    - Optimization Techniques for Neural Networks
    - Large-scale training of Neural Networks, etc.

# What is a Deep Forward Network (DFN)?

 Feedforward networks, feedforward neural networks or multilayer perceptrons

- Given a function  $y = f^*(x)$  that maps input x to category y
- A DFN defines a parametric mapping  $\hat{y} = f(x; w)$  with parameters w
- Aim is to learn w such as f(x; w) best approximates  $f^*(x)$ !

### Neural Networks are Composite Functions

• Each *k*-th neuron is a simple function:

$$h^{(k)}(x_1,\ldots,x_M)=g\left(w_0^{(k)}+\sum_{i=1}^M w_i^{(k)}x_i\right)$$

- Inputs to neurons can be the outputs of predecessor neurons
  - The indices of the M predecessor neurons to the k-th neuron are defined as the sequence  $P^{(k)} = \{P_1^{(k)}, \cdots, P_M^{(k)}\} \in \mathbb{N}^M$

$$h^{(k)}\left(h^{\left(P_{1}^{(k)}\right)},\ldots,h^{\left(P_{M}^{(k)}\right)}\right)=g\left(w_{0}^{(k)}+\sum_{i=1}^{M}w_{i}^{(k)}h^{\left(P_{i}^{(k)}\right)}\right)$$

- Input Neurons: For a set of neurons the predecessors are the input features x
- Output Neurons: The output of a set of neurons estimates the target  $\hat{y}$

### Neural Networks are Composite Functions

Hidden layer 1 Hidden layer 2



DFN are "functions of functions of ... of functions of x":

$$\hat{y} := g^{(k)}\left(g^{(l)}\left(\dots\left(g^{(n)}(x,w^{(n)})\dots\right),w^{(l)}\right),\,w^{(k)}\right),\ k>l>n$$

# Why Feedforward?

- Given a Feedforward Network  $\hat{y} = f(x; w)$ 
  - $\bullet$  Input x, then pass through a chain of steps before outputting  $\hat{y}$
- No feedback exists between the chains of steps
  - Feedback connections yield the Recurrent Neural Network
- Example  $f^{(1)}(x)$ ,  $f^{(2)}(x)$  and  $f^{(3)}(x)$  can be chained as:
  - $f(x) = f^{(3)}(f^{(2)}(f^{(1)}(x)))$ 
    - $f^{(1)}$  is the first layer, or the **input** layer
    - $f^{(2)}$  is the second layer, or a **hidden** layer
    - $f^{(3)}$  is the last layer, or the **output** layer
- Number of hidden layers define the depth of the network
- Dimensionality of the hidden layers defines the width of the network

## Why Neural?

- Loosely inspired by neuroscience, hence Artificial Neural Network
- Each hidden layer node resembles a neuron
- Input to a neuron are the synaptic connections from the previous attached neuron
- Output of a neuron is an aggregation of the input vector
- Signal propagates forward in a chain of "Neuron"-to-"Neuron" transmissions
- However, modern Deep Learning research is steered mainly by mathematical and engineering principles!

## Why Network?

- A feed-forward network is an acyclic directed graph, but
  - Graph nodes are structured in layers
  - Directed links between nodes are parameters/weights
  - Each node is a computational functions
  - No inter-layer and intra-layer connections (but possible)
  - Input to the first layer is given (the features x)
  - Output is the computation of the last laver (the target  $\hat{y})$



Figure 1: DFN, Source www.analyticsvidhya.com

## Nonlinear Mapping

- We can easily solve linear regression, but not every problem is linear.
- Can the function  $f(x) = (x + 1)^2$  be approximated through a linear function?

## Nonlinear Mapping

- We can easily solve linear regression, but not every problem is linear.
- Can the function  $f(x) = (x+1)^2$  be approximated through a linear function?
- Yes, but only if we **map** the feature x into a new space:



Figure 2: Mapping feature x into a new dimensionality  $x \to \phi(x) = (a, b)$ 

# Nonlinear Mapping (II)

• Which mapping  $\phi(x)$  is the best?

There are various ways of designing  $\phi(x)$ :

- **1** Hand-craft (manually engineered)  $\phi(x)$
- 2 Use a very generic  $\phi(x)$ , RBF or polynomial expansion
- **3** Parametrize and learn the mapping  $f(x; \theta, w) := \phi(x, \theta)^T w$

Deep Forward Networks follow the third approach, where:

- the hidden layers (weights  $\theta$ ) learn the mapping  $\phi(x,\theta)^T$
- the output layer (weights w) learns the function  $f(x; \theta, w)$

### Layered DFN

A DFN with L hidden layers:

$$h^{(1)} = g^{(1)}(w^{(1)} \times + w_0^{(1)})$$

$$h^{(2)} = g^{(2)}(w^{(2)} h^{(1)} + w_0^{(2)})$$

$$\vdots$$

$$h^{(L)} = g^{(L)}(w^{(L)} h^{(L-1)} + w_0^{(L)})$$

$$\hat{y} = h^{(L)}$$

Different layers can have different activation functions  $g^{(i)}$ .

## Layered DFN - Forward Step

Let  $M^{(\ell)}$  be the number of neurons at the  $\ell$ -th layer:

$$w^{(\ell)} \in \mathbb{R}^{M^{(\ell-1)} \times M^{(\ell)}}$$

$$w_0^{(\ell)} \in \mathbb{R}^{M^{(\ell)}}$$

$$h^{(\ell)} \in \mathbb{R}^{M^{(\ell)}}$$

The activation of the j-th neuron of the  $\ell$ -th layer when inputted the n-th data point  $x_n$  is:

$$\begin{split} h_{n,j}^{(\ell)} &= \ g^{(\ell)} \left( w_{0,j}^{(\ell)} + \sum_{i=1}^{M^{(\ell-1)}} w^{(\ell)}_{j,i}^T \ h_{n,i}^{(\ell-1)} \right) \\ \forall j \in \left\{ 1, \dots, M^{(\ell)} \right\}, \ \forall n \in \{1, \dots, N\} \\ \text{where } h_n^{(0)} &:= x_n \in \mathcal{X}, \ M^{(0)} = |\mathcal{X}|, \ \hat{y}_n = h_n^{(L)} \end{split}$$

## An example - XOR

XOR is a function:

| <i>x</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | $y = f^*(x)$ |
|-----------------------|-----------------------|--------------|
| 0                     | 0                     | 0            |
| 0                     | 1                     | 1            |
| 1                     | 0                     | 1            |
| 1                     | 1                     | 0            |

- Can we learn a DFN  $\hat{y} = f(x; w)$  such that f resembles  $f^*$ ?
- Our dataset  $\mathcal{X} = \{[0,0]^T, [1,0]^T, [0,1]^T, [1,1]^T\}$
- Leading to the optimization:

argmin 
$$J(\theta)$$

$$J(\theta) = \frac{1}{4} \sum_{x \in \mathcal{X}} (f^*(x) - f(x; w))^2$$

# An example - XOR (2)

• We will learn a simple DFN with one hidden layer:



- Chained  $h^{(1)} = f^{(1)}(x; w^{(1)})$  and  $h^{(2)} = \hat{y} = f^{(2)}(h^{(1)}; w^{(2)})$ 
  - Hidden-layer:  $h_{n,j}^{(1)} = g^{(1)} \left( w_{j,:}^{(1)}^T x_n + w_{0,j}^{(1)} \right), \forall j \in \{1,2\}$
  - Output layer:  $\hat{y}_n = h_{n,1}^{(2)} = w_{1,:}^{(2)} h_n^{(1)} + w_{0,1}^{(2)}$
  - $w^{(1)} \in \mathbb{R}^{2 \times 2}, w_0^{(1)} \in \mathbb{R}^{2 \times 1}, w^{(2)} \in \mathbb{R}^{2 \times 1}, w_0^{(2)} \in \mathbb{R}$

#### Rectified Linear Unit

The rectified linear unit (ReLU) is defined by the activation function  $g(z) = \max\{0, z\}$ , i.e.:



Figure 3: The ReLU activation, Source: Goodfellow et al., 2016

Yielding the overall function:

$$\hat{y} = w^{(2)}^T \max \left\{0, w^{(1)}^T x + w_0^{(1)}\right\} + w_0^{(2)}$$

#### "Deus ex machina" solution?

Suppose I magically found out that:

$$w^{(1)} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \ w_0^{(1)} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \ w^{(2)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \ w_0^{(2)} = 0$$

We would later on see an optimization technique called Stochastic Gradient Descent with Backpropagation to learn the network parameters.

# XOR Solution - Hidden Layer Computations

$$h_{1,1}^{(1)} = g\left(w^{(1)}_{1,:}^{T} x_{1} + w_{0,1}^{(1)}\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}0\\0\end{bmatrix} + 0\right) = g\left(0\right) = 0$$

$$h_{1,2}^{(1)} = g\left(w^{(1)}_{2,:}^{T} x_{1} + w_{0,2}^{(1)}\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}0\\0\end{bmatrix} - 1\right) = g\left(-1\right) = 0$$

$$h_{2,1}^{(1)} = g\left(w^{(1)}_{1,:}^{T} x_{2} + w_{0,1}^{(1)}\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}0\\1\end{bmatrix} + 0\right) = g\left(1\right) = 1$$

$$h_{2,2}^{(1)} = g\left(w^{(1)}_{2,:}^{T} x_{2} + w_{0,2}^{(1)}\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}0\\1\end{bmatrix} - 1\right) = g\left(0\right) = 0$$

$$h_{3,1}^{(1)} = g\left(w^{(1)}_{1,:}^{T} x_{3} + w_{0,1}^{(1)}\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix} + 0\right) = g\left(1\right) = 1$$

$$h_{3,2}^{(1)} = g\left(w^{(1)}_{2,:}^{T} x_{3} + w_{0,2}^{(1)}\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix} - 1\right) = g\left(0\right) = 0$$

$$h_{4,1}^{(1)} = g\left(w^{(1)}_{1,:}^{T} x_{4} + w_{0,1}^{(1)}\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} + 0\right) = g\left(2\right) = 2$$

$$h_{4,2}^{(1)} = g\left(w^{(1)}_{2,:}^{T} x_{4} + w_{0,2}^{(1)}\right) = g\left(\begin{bmatrix}1 & 1\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} - 1\right) = g\left(1\right) = 1$$

# XOR Solution - Output Layer Computations

$$\hat{y}_{1} = h_{1,1}^{(2)} = w^{(2)}^{T} h_{1,:}^{(1)} + w_{0,1}^{(2)} = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 0 = 0$$

$$\hat{y}_{2} = h_{2,1}^{(2)} = w^{(2)}^{T} h_{2,:}^{(1)} + w_{0,1}^{(2)} = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0 = 1$$

$$\hat{y}_{3} = h_{3,1}^{(2)} = w^{(2)}^{T} h_{3,:}^{(1)} + w_{0,1}^{(2)} = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0 = 1$$

$$\hat{y}_{4} = h_{4,1}^{(2)} = w^{(2)}^{T} h_{4,:}^{(1)} + w_{0,1}^{(2)} = \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 0 = 0$$

The computations of the final layer match exactly those of the XOR function.

# Types of Hidden Units

• Question: Can we use a linear activation  $h = w^T x + b$ ?

# Types of Hidden Units

- Question: Can we use a linear activation  $h = w^T x + b$ ?
- Remember the most used hidden layer is ReLU:

$$h = g(w^T x + b) = \max(0, w^T x + b)$$

Alternatively, the sigmoid function:

$$h = \sigma(z) = \frac{e^z}{e^z + 1}$$

or, the hyperbolic tangent:

$$h = \tanh(z) = 2\sigma(2z) - 1$$

### Table of Contents

## Continuous Target - Regression

- Output layer is an affine transformation with no nonlinearity
  - Given features h, produces  $\hat{y} = w^T h + b$

- Used to produce the mean of a conditional Gaussian distribution
  - $p(y | x) = \mathcal{N}(y; \hat{y}, I)$

### Regression Loss

The loss/cost can be expressed in probabilistic terms as

$$J(\theta) = -\mathbb{E}_{(x,y) \sim \hat{p}_{data}} \log p_{\mathsf{model}}(y \mid x)$$

Assuming normality  $p_{\text{model}}(y \mid x) = \mathcal{N}(y; f(x; \theta), I)$ :

$$J(\theta) = \frac{1}{2} \mathbb{E}_{(x,y) \sim \hat{p}_{data}} ||y - f(x;\theta)||^2 + \text{const}$$

Solving for the optimal DFN parameters:

$$\theta^{\mathsf{opt}} = : \underset{\theta}{\mathsf{argmin}} \, \mathbb{E}_{(\mathsf{x}, \mathsf{y}) \sim \hat{p}_{data}} ||\mathsf{y} - \mathsf{f}(\mathsf{x}; \theta)||^2$$

Yields an estimation:  $f(x, \theta^{\text{opt}}) = \mathbb{E}_{x,y \sim \hat{p}_{data}(y|x)}[y]$ 

# Binary Classification Target

- Binary target variables follow a Bernoulli distribution  $P(y=1)=p,\ P(y=0)=1-p$
- Train a DFN such that  $\hat{y} = f(x; w) \in [0, 1]$
- Naive Option: Clip a linear output layer:

• 
$$P(y = 1 | x) = \max\{0, \min\{1, w^T h + b\}\}$$

• What is the problem with the clipped linear output layer?

# Binary Classification Target

Use a smooth sigmoid output unit:

$$\hat{y} = \sigma(z) = \frac{e^z}{e^z + 1}$$

$$z = w^T h + b$$

• The loss for a DFN  $f(x, \theta)$  with a sigmoid output is:

$$J(w) = \sum_{n=1}^{N} -y_n \log(f(x_n, w)) - (1 - y_n) \log(1 - f(x_n, w))$$

Also called as Logistic Loss or the Cross-entropy

## Multi-category Target

- For multi-category targets  $\hat{y}_i = P(y = i | x), i \in \{1, \dots, C\}$
- Let the unnormalized log probability be defined as

$$z_i = w_i^T h + b$$
  
 $z_i = \log \tilde{P}(y = i|x)$ 

• Yielding the normalized probability estimation:

$$P(y = i|x) \approx \operatorname{softmax}(z_i) = \frac{e^{z_i}}{\sum_{i} e^{z_j}}$$

Minimizing the log-likelihood loss:

$$J(w) = \sum_{n=1}^{N} \sum_{i=1}^{C} -1_{y_n=i} \log P(y=i|x)$$

$$J(w) = -\sum_{n=1}^{N} \sum_{i=1}^{C} 1_{y_n=i} \left( z_i - \log \sum_j e^{z_j} \right)$$

# How to train w for minimizing the loss?

Minimize J(w) by updating w in the negative direction of  $\frac{\partial J(w)}{\partial w}$ :

$$w^{(\mathsf{next})} \leftarrow w^{(\mathsf{prev})} - \eta \frac{\partial J(w)}{\partial w^{(\mathsf{prev})}}$$



Figure 4: Source: http://rasbt.github.io/

#### Gradient Descent

Find the optimal parameters  $w^* \in \mathbb{R}^K$  that minimize an objective function J(w), given data  $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$ , i.e.:

$$w^* := \underset{w}{\operatorname{argmin}} J(\mathcal{D}, w)$$

#### **Algorithm 1:** Gradient Descent Optimization

**Require:** Data  $\mathcal{D}$ , Learning rate  $\eta \in \mathbb{R}^+$ , Iterations  $\mathcal{I} \in \mathbb{N}^+$ 

Ensure:  $w \in \mathbb{R}^K$ 

1:  $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2)$ 

2: for  $1, \dots, \mathcal{I}$  do

3:  $w \leftarrow w - \eta \frac{\partial J(\mathcal{D}, w)}{\partial w}$ 

4: return w

#### Stochastic Gradient Descent

Divide the dataset into R partitions (mini-batches) as  $\mathcal{D} = \bigcup_{r=1}^{N} \mathcal{D}_r$ , yielding a decomposition of the loss:

$$J(\mathcal{D}, w) := \sum_{r=1}^{R} J(\mathcal{D}_r, w) := \sum_{r=1}^{R} J_r$$

#### Algorithm 2: Stochastic Gradient Descent Optimization

**Require:** Data  $\mathcal{D} = \bigcup_{r=1}^{K} \mathcal{D}_r$ , Learning rate  $\eta \in \mathbb{R}^+$ , Iters  $\mathcal{I} \in \mathbb{N}^+$ 

**Ensure:**  $w \in \mathbb{R}^K$ 

- 1:  $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2)$
- 2: for  $1, \ldots, \mathcal{I}$  do
- 3: for each  $r \in \{1, ..., R\}$  in random order do
- 4:  $w \leftarrow w \eta \frac{\partial J_r}{\partial w}$
- 5: **return** *w*

### Next step

How to compute  $\frac{\partial J(w)}{\partial w}$  for the all the weights of a DFN?

Backpropagation (next lecture)...