TD nº 4. Survie

2019-2020

I. A. Soit T une durée de survie de loi de Weibull W(a,b) de densité $f(t) = abt^{a-1}e^{-bt^a}, t \ge 0, a > 0, b > 0.$

a. Calculer sa fonction de survie S et sa fonction de risque h.

b. Calculer E(T) et E(T-t/T>t).

II. Soit T une durée de survie de loi $L_{\theta,2}$ de densité $f(t) = \frac{2\theta t}{(1+\theta t^2)^2}, \ t \geq 0$, et C une variable de censure de loi $U_{[0,\theta]}$ où $\theta > 0$.

T et C sont indépendantes. On pose $X=T\wedge C$ et $D=1_{\{T\leq C\}}$

1. Calculer la loi de D et la densité de X.

2. Calculer $P(X \le x, D = 0)$ et $P(X \le x, D = 1)$.

Les v.a. X et D sont elles indépendantes ?

3. On observe un échantillon $(X_1, D_1), ..., (X_n, D_n)$ de (X, D). Calculer la vraisemblance $L(\theta, (X_1, D_1), ..., (X_n, D_n)) = L(\theta)$.

4. Donner l'équation que vérifie l'emv $\widehat{\theta}_n$ de θ . Peut on calculer $\widehat{\theta}_n$? (justifier)

5. Pour (X_1, D_1) calculer $\widehat{\theta}_1$. Peut on calculer $E(\widehat{\theta}_1)$? (justifier)

6. Comparer avec l'emv $\hat{\theta}_1^{nc}$ dans le cas non censuré.

III. A. Nous avons les données de survie suivantes :

4.5, 4.6+, 11.5, 11.5, 15.6+, 16, 16, 6+, 18.5, 18.5, 18.6+, 20.3, 20.3, 20.4+, 20.7, 22, 26+.

Donner un tableau calculant l'estimateur actuarial S_a et l'estimateur \widehat{h} de la fonction risque.

B. Nous avons les données de survie (en mois) de 2 groupes de patients :

G1: 5,5+,6,7,9,10,10+,11+,12,14+,15,15+,17,19,20+,22,23,26+

 $G2: 3, 3, 5^+, 6, 8, 9, 10, 11^+, 13, 14, 14^+, 15^+, 18, 19, 21^+, 22, 25, 26^+$

Appliquer le test de LogRank pour tester l'égalité des deus survies : H_0 : $S_1 = S_2$ au niveau $\alpha = 5\%$. Conclure