Matriz de una transformación lineal y cambio de bases (repaso)

Matriz de una transformación lineal

- 1. Transformación lineal (operador lineal). Sean E y F espacios vectoriales sobre un mismo campo \mathbb{F} . La aplicación $T: E \to F$ se llama transformación lineal (también se usa el término $operator\ lineal$), si
 - 1. $T(a+b) = Ta + Tb \quad \forall a, b \in E;$
 - 2. $T(\lambda a) = \lambda T(a) \quad \forall a \in E \ \forall \lambda \in \mathbb{F}.$

El conjunto de todas las transformaciones lineales de E en F denotamos por $\mathcal{L}(E, F)$. En el caso F = E se escribe $\mathcal{L}(E)$.

Vamos a estudiar transformaciones lineales que actuan en espacios vectoriales de dimensión finita.

2. Matriz de una transformación lineal. Sean $T \in \mathcal{L}(E, F)$, $\mathcal{E} = (e_1, \dots, e_n)$ una base en $E, \mathcal{F} = (f_1, \dots, f_m)$ una base en F. La matriz de T es bases \mathcal{E} y \mathcal{F} , denotada por $T_{\mathcal{F},\mathcal{E}}$, consiste en las columnas de coordenadas de los vectores Te_1, \dots, Te_n en base \mathcal{F} :

$$T_{\mathfrak{F},\mathcal{E}} = [(Te_1)_{\mathfrak{F}} \dots (Te_n)_{\mathfrak{F}}].$$

Si F = E y $\mathfrak{F} = \mathcal{E}$, entonces en vez de $T_{\mathfrak{F},\mathcal{E}}$ se escribe $T_{\mathcal{E}}$.

3. Ejemplo. Calcular la matriz de la transformación $T \in \mathcal{L}(\operatorname{Pol}_2(\mathbb{R}))$ en la base canónica de $\operatorname{Pol}_2(\mathbb{R})$:

$$(Tf)(x) = (x^2 - 2x + 3)f''(x) + (4x - 1)f'(x) + 3f(x).$$

4. Ejemplo. Calcular la matriz de la transformación $T \in \mathcal{L}(\operatorname{Mat}_2(\mathbb{R}))$ en la base canónica de $\operatorname{Mat}_2(\mathbb{R})$:

$$T(X) = X^T + \operatorname{tr}(X)I.$$

Cambio de base

5. Coordenadas de un vector en una base. Sea E un espacio vectorial sobre un campo \mathbb{F} , $\mathcal{E} = (e_1, \ldots, e_n)$ una base en E. Dado $a \in E$, existe una única tupla $(\lambda_1, \ldots, \lambda_n) \in \mathbb{F}^n$ tal que

$$a = \sum_{k=1}^{n} \lambda_k e_k.$$

Los escalares $\lambda_1, \ldots, \lambda_n$ son *coordenadas* de a en la base \mathcal{E} , el vector $(\lambda_1, \ldots, \lambda_n)^T$ es el vector de coordenadas y se denota por $x_{\mathcal{E}}$.

6. Matriz de cambio de base. Sean $\mathcal{E} = (e_1, \dots, e_n)$, $\mathcal{F} = (f_1, \dots, f_n)$ bases en E. Entonces la matriz compuesta de las columnas $(f_1)_{\mathcal{F}}, \dots, (f_n)_{\mathcal{F}}$ se llama matriz del cambio de base de \mathcal{E} por \mathcal{F} y se denota por $P_{\mathcal{E} \to \mathcal{F}}$. Las coordenadas de un vector a en dos bases \mathcal{E} y \mathcal{F} son relacionadas mediante la siguiente regla:

$$x_{\mathcal{E}} = P_{\mathcal{E} \to \mathcal{F}} x_{\mathcal{F}}.$$

7. Ejemplo. Sea $\mathcal{A} = (a_1, a_2, a_3)$ una base en $E y \mathcal{B} = (b_1, b_2, b_3)$, donde

$$b_1 = 3a_1 - 2a_2 + 4a_3$$
, $b_2 = 4a_1 + a_2 + 5a_3$, $b_3 = 7a_1 - a_2 + 6a_3$.

Consideremos la matriz del sistema \mathcal{B} en base \mathcal{A} :

$$P_{\mathcal{A} \to \mathcal{B}} = \left[\begin{array}{rrr} 3 & 4 & 7 \\ -2 & 1 & -1 \\ 4 & 5 & 6 \end{array} \right].$$

Como $\det(P_{\mathcal{A}\to\mathcal{B}}) = -33$, la matriz $P_{\mathcal{A}\to\mathcal{B}}$ es invertible, y por eso \mathcal{B} es una base.

8. Propiedades. Sean $\mathcal{A}, \mathcal{B}, \mathcal{C}$ bases en un espacio vectorial. Entonces:

- $P_{\mathcal{A} \to \mathcal{C}} = P_{\mathcal{A} \to \mathcal{B}} P_{\mathcal{B} \to \mathcal{C}}.$
- $P_{\mathcal{A} \to \mathcal{A}} = I.$
- $P_{\mathcal{B} \to \mathcal{A}} = P_{\mathcal{A} \to \mathcal{B}}^{-1}.$

9. Ejemplo. Calcular la matriz $P_{A\to\mathcal{B}}$, si $\mathcal{A}=(a_1,a_2)$ y $\mathcal{B}=(b_1,b_2)$ son los siguientes sistemas de vectores en \mathbb{R}^2 :

$$a_1 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -5 \\ 2 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} 2 \\ -3 \end{bmatrix}.$$

Solución. Usemos la propiedad $P_{\mathcal{E}\to\mathcal{A}}P_{\mathcal{A}\to\mathcal{B}}=P_{\mathcal{E}\to\mathcal{B}}$. Aquí \mathcal{E} es la base canónica en \mathbb{R}^2 . Denotando $P_{\mathcal{A}\to\mathcal{B}}$ por X, tenemos la siguiente ecuación matricial:

$$\left[\begin{array}{cc} 3 & -5 \\ -1 & 2 \end{array}\right] X = \left[\begin{array}{cc} 4 & 2 \\ 1 & -3 \end{array}\right].$$

Resolvamos esta ecuación:

$$\begin{bmatrix} 3 & -5 & | & 4 & 2 \\ -1 & 2 & | & 1 & -3 \end{bmatrix} \xrightarrow{R_1 += 3R_2} \begin{bmatrix} 0 & 1 & | & 7 & -7 \\ -1 & 2 & | & 1 & -3 \end{bmatrix} \xrightarrow{R_2 += (-2)R_1}$$

$$\begin{bmatrix} 0 & 1 & | & 7 & -7 \\ -1 & 0 & | & -13 & 11 \end{bmatrix} \xrightarrow{R_2 *= (-1) \atop R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 0 & | & 13 & -11 \\ 0 & 1 & | & 7 & -7 \end{bmatrix}.$$

Respuesta:

$$P_{\mathcal{A}\to\mathcal{B}} = \begin{bmatrix} 13 & -11 \\ 7 & -7 \end{bmatrix}.$$

Cambio de la matriz de una transformación lineal al cambiar las bases de los espacios

10. Proposición. Sean E, F espacios vectoriales de dimensión finita sobre un mismo campo \mathbb{F} , \mathcal{E} y \mathcal{E}' bases en E, \mathcal{F} y \mathcal{F}' bases en $F, T \in \mathcal{L}(E, F)$. Entonces

$$T_{\mathfrak{F}',\mathcal{E}'} = P_{\mathfrak{F}'\to\mathfrak{F}}T_{\mathfrak{F},\mathcal{E}}P_{\mathcal{E},\mathcal{E}'}.$$

En particular, en el caso F = E, $\mathcal{F} = \mathcal{E}$, $\mathcal{F}' = \mathcal{E}'$,

$$T_{\mathcal{E}'} = P_{\mathcal{E}' \to \mathcal{E}} T_{\mathcal{E}} P_{\mathcal{E} \to \mathcal{E}'}.$$

- 11. Ejercicio. Recuerde como se demuestra esta fórmula.
- 12. Ejemplo. Calcular la matriz de la transformación lineal $T \in \mathcal{L}(\operatorname{Pol}_2(\mathbb{R}))$,

$$(Tf)(x) = (x^2 + 3)f''(x) - xf'(x) + 5f(x),$$

en la base canónica \mathcal{E} y en la siguiente base \mathcal{B} :

$$b_0(x) = 1$$
, $b_1(x) = (x - 3)$, $b_2(x) = \frac{(x - 3)^2}{2}$.

Checar que funciona la fórmula

$$T_{\mathcal{B}} = P_{\mathcal{B} \to \mathcal{E}} T_{\mathcal{E}} P_{\mathcal{E} \to \mathcal{B}}.$$

13. Ejercicio. Sea T una tranformación lineal $E \to E$, \mathcal{E} y \mathcal{F} bases en E. Dadas las matrices $T_{\mathcal{E}}$ y $P_{\mathcal{E} \to \mathcal{F}}$, calcule $T_{\mathcal{F}}$.

$$T_{\mathcal{E}} = \begin{bmatrix} -3 & 1 & 2 \\ 4 & -3 & 1 \\ 0 & 2 & 4 \end{bmatrix}, \qquad P_{\mathcal{E} \to \mathcal{F}} = \begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 1 \\ 2 & -7 & -3 \end{bmatrix}.$$