(2012) It= Bisin (2014) + B2 cos (2014) + Et + 0.5 Et-1 Et ~ MN (0,02) w, B, B2 are constants. E(4+) = E[B, Sin(201WH) + B2 cos(201WH) + E++0,5E+) = B, sin (25(W+) + B2cos (25(W+)+E(E++0.5 E+-1) Due to linearity of Expectation, and the first two terms are constant? = B, sin(201W+) + B2 cos (20W+)+ E(E+)+0.5 E(E+) Again, Et~ WN(0,02) (1), (1) E (EL) = E(EL-1) = 0. So E(4E) = BISIN (251W+) + B2 cos (251W+) (15 110) NES 2064 4 R July) NE $N(Y+)=V(B, sin(2swt)+B_2cos(2siwt)+E_t+o.sE_{t-1})$ $= N(E_t+o.sE_{t-1})$ $= N(E_t+o.sE_{t-1})$ $= N(E_t+o.sE_{t-1})$ Nariance: (14: 111:) (0) 2:01 = V(Et) + 0.52 V(Et-1) + 2 x0.5 x Cov(Et, Et-1) = 52+0,25+2=1,25+2[1/Etwn(0,02) (0) 1 (Et, Et 1)=0] = Cov (a+Et+1 +0.5 Et, b+ Et+ 6.5 Et-1) [a,b constants] of (1) = Cou (Yett, YE) = Cov (a,b) + Cov (a, E++0.5 E+-1) + Cov(E++++0.5 E+, b) + con (Etti +0:58t, 8++0:58t-1)

Li' and By the distributive property of Covariance

+ 0152 COV (Et, Et-1)

 $S(2) = \frac{\gamma(2)}{\gamma(0)}$

8(2) = COU (Y++2, Y+).

= Cov (E++1, E+) tois Cov (E+, E+)+ 0,5 Cov (E++1, E+1)

= 0.5 02 [: CON (Et, Ethn) = 0 AME Z

= Cov (C+ E++2 + 0,5 E++1, b+ E++0,5 E+-1)

= 1 COV (Ext2, Et) + 015 COV (Ett), Et) + 015 COV (Ext2, Ext)

independent of t as Xt, Yt stationary

+ 0.52 COV (Ett, Eti).

= con (E++ + 0.2 E++1 , E++ 0.2 E+-1)

30 S(2) = 0 [8(0) = Nan(4) =0]

3) Mt, It are two stationary process.

Zt= xt+ ft.

OE(Zt) = E(Xt + Xt) E(Xt + Xt)

= E (Xt) + E (Yt)

① $E(z_t^2) = E[x_t^2] + E[y_t^2] + 2E[x_t, y_t]$ If E[X+, Y+] < 00 then, E[Zt2] < 0 Xt , Yt are stationary process. O Cov(Z++h, Zt) = Cov (A++h+y++h, M++yt) = cov (Ath, At) + cov (8++, At) + cov (ath, 8t) A Cou (Yehr, GE). It is independent of this con(Atth, yt) and con(Atth, yt) and con(Atth, yt) and con(Atth, yt) and con(Atth, yt) If at and Yth are independent then Cov (Mt, Ythn) = 0 => Cov(Z++h, Z+) is independent of +.

So. It will be stationary based on finite E[Xt, Yt]
and independence of Can (xt, Ytth) & he 2 witht

If My, Yt independent, then Zt is stationary.