1. Basic setup:

4 Training set

where
$$\underline{x}_n \in \mathbb{R}^d$$
, $\underline{x}_n = (x_{n1}, x_{n2}, --- x_{nd})$

→ <u>Task:</u>

Given any $x \in \mathbb{R}^d$, output $y \in [-1, +1]$

4. (Hypothesis H) Decision Rule:

Weighted vector
$$\underline{W} = (W_1, W_2, ..., W_d) \in \mathbb{R}^d$$

Threshold b & IR

Given data point
$$\underline{x} = (x_1, x_2 - x_d)$$

if
$$\sum_{i=1}^{d} W_i \chi_i > b$$
, then $y = +1$

if
$$\sum_{i=1}^{\alpha} W_i \chi_i < b$$
, then $y = -1$

if
$$i = 1$$
 Wi Xi = b, output either +1 or -1 (unimportant)

4. Training phase:

- 'Compare decision rule with training data, to choose the "best" parameter values for decision rule "best" hypothesis.
- Given \mathcal{D} , find (\underline{w}, b) to minimize the training errors $E_{in}(\underline{w}, b) = \frac{1}{N} \sum_{n=1}^{N} 1(y_n \neq \hat{y_n}(\underline{w}, b))$

avg error on take Average oneput of decision rule on example \underline{x}_n training set for \underline{x}_n true label for \underline{x}_n

 ω Goal: find (\underline{W}, b) to minimize Ein (\underline{W}, b)

2. <u>Example:</u>

d=1 (i.e. two attributes x_1 , x_2)

Lo consider $L1: \chi_2 = \frac{1}{2}$

. This correspond to: (0)
$$x_1 + (1) x_2 = \frac{1}{2}$$

$$\therefore \ \underline{W} = (0, 1) , \ b = \frac{1}{2}$$

· Find Ein
$$(W, b)$$

$$1' \quad \underline{x} = (1,0) \quad y_1 = +1$$

$$W^T x_1 = 0 < b \Rightarrow y_1' = 1$$
 // Make one error

$$2' \frac{\alpha}{2} = (1,1), \quad q_2 = +1$$

$$W^{\mathsf{T}} \mathcal{A}_{2} = 1 > b \Rightarrow \hat{\mathcal{J}}_{2} = +1$$

$$3' \quad \underline{x}_3 = (-1, 0), \quad \underline{y}_3 = -1$$

$$W^{T} \pi_{3} = 0 < b \Rightarrow \hat{y}_{3} = -1$$

$$\pm E_{M}(\underline{W}, b) = \frac{1}{3}(1+0+0) = \frac{1}{3}$$

$$Ein(\underline{W},b)=0$$

13. Minimize Ein(W,b) is an NP-hard problem in general.

Lec 3.2 Perception Learning Algo (PLA) 1. efficiently finds a perfect classifer for linearly seportable data. 1. change of notation: 4. Decision Rule: W1 x, + W2 x2 + --- + Wd xd y=-1 b y=+1 → -b + W, x, + W, x, + --- + W, x, x ≥ 0 · let Wo = -b, xo = 1 Then we have an <u>Augmented</u> vectors: <u>w</u> = (wo, w, ... wd) E IR $\underline{\alpha} = (\chi_0 = 1, \chi_1, \ldots, \chi_d) \in IR^{d+1}$ · Then the new decision rule becomes: $\underline{\omega}^{\mathsf{T}} \underline{\chi} \overset{\mathsf{J-tl}}{\geq} 0$ and $y = h\omega(\frac{\pi}{2}) \stackrel{\triangle}{=} sign(\frac{\omega^T \pi}{2}) \stackrel{\leftarrow}{\leftarrow} "perceptron learning"$ // sign (+) = s + 1 , t < 02. PLA, is suppose training set \mathcal{D} is linearly separable, find $\underline{w} \in \mathbb{R}^{d+1}$ s.t. $Ein \left(\frac{\omega}{n} \right) = \frac{1}{N} \sum_{n=1}^{\infty} 1 \left(y_n \neq h_w \left(\frac{x_n}{n} \right) \right) = 0$ 10 Input: Training set D that is linearly seperable Dutput: $\underline{W} \in \mathbb{R}^{d+1}$ that achieves $E_{in}(\underline{W}) = 0$ Initialization: arbitary e.g. w = 0 // d-dimentional zero vector

b. Step 1:	check whether $Ein(\underline{W}) = 0$	
	If yes, stop and output w.	
Step 2:	Let (x_n, y_n) be a miss-classified example	
·	(including points on boundary)	
	If $y_n = +1$, then replace w with $w + \pi + \pi$ same as saying	
	If $y_n = -1$, then replace \underline{w} with $\underline{w} - \chi_n$ $\underline{w} \leftarrow \underline{w} + y_n \chi_n$	_
Then go	to step 1.	
	·	
		_