МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра математической физики

Е. С. Чеб

ЛИНЕЙНЫЕ ОГРАНИЧЕННЫЕ ОПЕРАТОРЫ

Методические указания и задания студентам специальности "Прикладная математика и информатика"

> Минск 2012

Оглавление

Тема 1. Линейные ограниченные операторы. Норма опе-	
ратора	3
Тема 2. Обратные операторы. Решение операторных	
уравнений	21
Тема 3. Сопряженное пространство	37
Тема 4. Сопряженные, самосопряженные, компактные	
операторы	51
Тема 5. Теория Рисса-Шаудера разрешимости уравне-	
ний с вполне непрерывным оператором	64
Тема 6. Собственные значения и собственные векторы	
компактного оператора	76

ТЕМА 1. ЛИНЕЙНЫЕ ОГРАНИЧЕННЫЕ ОПЕРАТОРЫ. НОРМА ОПЕРАТОРА

Пусть X и Y — нормированные векторные пространства и пусть множество $\mathcal{D}(A)\subseteq X$. Если каждому элементу $x\in\mathcal{D}(A)$ поставлен в соответствие определенный элемент $y\in Y$, то говорят, что задан оператор A и y=Ax. При этом множество $\mathcal{D}(A)$ называют областью определения оператора A. Множество $\mathcal{R}(A)=\{y\in Y:\exists x\in\mathcal{D}(A),y=Ax\}$ называют областью значений оператора A.

Оператор $A:X\to Y$ с областью определения $\mathscr{D}(A)\subseteq X$ называют линейным, если:

- 1. Область определения $\mathcal{D}(A)$ оператора A представляет собой линейное многообразие, т. е. если $x,y\in\mathcal{D}(A)$, то $\alpha x+\beta y\in\mathcal{D}(A)$ для всех скаляров $\alpha,\beta\in\mathcal{K}$;
- 2. $A(\alpha x + \beta y) = \alpha Ax + \beta Ay$ для любых элементов $x,y \in \mathcal{D}(A)$ и любых скаляров $\alpha,\beta \in \mathcal{K}$.

Лемма 1. Область значений всякого линейного оператора является линейным многообразием.

Практически наиболее важны два случая задания линейных операторов:

- 1. $\mathscr{D}(A) = X$, т. е. оператор A задан всюду в нормированном пространстве X;
- 2. $\overline{\mathscr{D}(A)} = X$, т. е. оператор A задан плотно в X.

В дальнейшем мы будем рассматривать лишь такие линейные операторы.

Линейный оператор A называется $nenpepывным в точке <math>x_0 \in X$, если $Ax \to Ax_0$ при $x \to x_0$, т. е. для любого $\varepsilon > 0$ найдется $\delta(\varepsilon)$ такое, что для всех x, удовлетворяющих условию $\|x - x_0\|_X < \delta$, выполняется $\|Ax - Ax_0\|_Y < \varepsilon$.

Теорема 1. Пусть X, Y – нормированные векторные пространства, $A: X \to Y$ – линейный оператор. Тогда следующие свойства оператора A эквивалентны:

- 1. оператор A непрерывен в точке x = 0;
- 2. оператор A непрерывен в любой точке пространства X;
- 3. оператор A равномерно непрерывен.

Линейный оператор A называется *ограниченным*, если существует константа c>0 такая, что для всех $x\in X$ выполняется неравенство ограниченности $\|Ax\|_Y\leqslant c\|x\|_X$. Ограниченный оператор переводит каждое ограниченное множество в X в ограниченное множество в Y.

Наименьшая из констант c в неравенстве ограниченности есть точная верхняя грань множества $\{\|Ax\|: \|x\|=1\}$, т. е.

$$\inf c = \sup_{\|x\|=1} \|Ax\|.$$

Назовем *нормой линейного ограниченного оператора* наименьшую из констант ограниченности,

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}.$$

Норма $\|A\|$ называется $\partial ocmuэсимой$, если существует $x_0 \in X$, при котором справедливо равенство

$$||Ax_0|| = ||A|| ||x_0||.$$

Теорема 2. Пусть X,Y — нормированные векторные пространства, $A: X \to Y$ — линейный оператор. Оператор A непрерывен тогда и только тогда, когда он ограничен.

Множество тех $x \in X$, для которых Ax = 0, называется $\mathit{ядром}$ линейного оператора и обозначается $\mathit{Ker}A$.

Теорема 3. Ядро линейного непрерывного оператора $A: X \to Y$ является подпространством пространства X.

Примеры линейных ограниченных операторов

1. Пусть X=Y=C[a,b]. Для произвольной функции $x(t)\in C[a,b]$ положим

$$y(t) = Ax(t) = \int_{a}^{b} \mathcal{K}(t,s)x(s) \,ds, \qquad (2.1)$$

где $\mathcal{K}(t,s)$ – ядро интегрального оператора – функция, непрерывная по переменным t,s. Оператор A называется интегральным оператором Φ редгольма с непрерывным ядром.

Теорема 4. Формула (2.1) определяет линейный ограниченный оператор в пространстве C[a,b] причем

$$||A|| = \max_{a \leqslant t \leqslant b} \int_{a}^{b} |\mathcal{K}(t,s)| \, \mathrm{d}s.$$
 (2.2)

2. Пусть теперь в (2.1) функция $\mathcal{K}(t,s)$ измерима. Тогда при дополнительных на нее условиях при любой $x(t) \in C[a,b]$ формула (2.1) задает ограниченный оператор.

Теорема 5. Пусть в (2.1) функция K(t,s) измерима и удовлетворяет условиям:

- 1) $\exists c > 0$ такое, что $\int_a^b |\mathcal{K}(t,s)| \mathrm{d}s \leqslant c$ для всех $t \in [a,b];$ 2) для любого $t_1 \in [a,b] \int_a^b |\mathcal{K}(t_1,s) \mathcal{K}(t,s)| \mathrm{d}s \longrightarrow 0$ при $t_1 \to t$.

Тогда интегральный оператор (2.1) ограничен в пространстве C[a,b].

3. Пусть $X = Y = L_2[a,b]$. Вновь рассмотрим оператор (2.1), но теперь будем предполагать, что ядро $\mathcal{K}(t,s)$ интегрируемо с квадратом в прямоугольнике $[a,b] \times [a,b]$

$$\int_{a}^{b} \int_{a}^{b} |\mathcal{K}(t,s)|^{2} ds dt = M^{2} < \infty.$$
 (2.3)

Теорема 6. Пусть K(t,s) – измеримая функция и выполнено условие (2.3). Тогда формула (2.1) определяет линейный ограниченный оператор в пространстве $L_2[a,b]$.

Пусть X и Y – нормированные векторные пространства, A,B,C,...– линейные ограниченные операторы из X в Y, множество которых обозначим через $\mathscr{B}(X,Y)$.

Теорема 7. Множество $\mathscr{B}(X,Y)$ является нормированным пространством.

В пространстве $\mathscr{B}(X,Y)$ определены два типа сходимости последовательности линейных ограниченных операторов.

Будем говорить, что последовательность операторов $(A_n)_{n=1}^{\infty} \subset \mathscr{B}(X,Y)$ сходится равномерно к оператору $A \in \mathscr{B}(X,Y)$ если

$$||A_n - A|| \to 0$$
 при $n \to \infty$.

Теорема 8. Для того, чтобы последовательность $(A_n)_{n=1}^{\infty} \subset \mathcal{B}(X,Y)$) сходилась к оператору A, равномерно необходимо и достаточно, чтобы $A_nx \rightrightarrows Ax$, при $n \to \infty$ равномерно по x в шаре $||x|| \leq 1$.

Cледствие 1. Пусть $A_n \rightrightarrows A$ равномерно при $n \to \infty$ и M – произвольное ограниченное множество в X. Тогда $A_n x \rightrightarrows Ax$ при $n \to \infty$ на множестве M.

Последовательность операторов $(A_n)_{n=1}^{\infty} \subset \mathscr{B}(X,Y)$ сходится *сильно* к оператору A, если

$$||A_n x - Ax|| \to 0$$
 при $n \to \infty$

при каждом фиксированном $x \in X$.

Теорема 9. Если пространство Y полно, то и пространство линейных ограниченных операторов $\mathscr{B}(X,Y)$ полно.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi \, p \, u \, m \, e \, p \, 1$. Оператор $A: L_3[0,1] o L_2[0,1]$ определяется формулой

$$Ax(t) = x(t^3).$$

Выясним, совпадает ли область задания оператора $\mathscr{D}(A) = \{x(t) \in L_3[0,1] : Ax(t) \in L_2[0,1] \}$ со всем пространством $L_3[0,1]$? Будет ли оператор линейным непрерывным, если $A : \mathscr{D}(A) \to L_2[0,1]$?

Решение. Пусть $x(t) \in L_3[0,1]$, т. е. $\int_0^1 |x(t)|^3 dt < +\infty$. Рассмотрим

$$\int_{0}^{1} |x(t^{2})|^{2} dt = \int_{0}^{1} \frac{1}{3\sqrt{\tau}} |x(\tau)|^{2} d\tau.$$

Функция $x(t)=t^{-1/6}$ принадлежит пространству $L_3[0,1]$, так как $\int\limits_0^1 |t^{-1/6}|^3 \,\mathrm{d}t < +\infty,$ но $Ax(t)=t^{-1/2}$ не принадлежит пространству $L_2[0,1],$ поскольку $\int\limits_0^1 |t^{-1/2}|^2 \mathrm{d}t = \int\limits_0^1 t^{-1} \to +\infty.$

Рассмотрим теперь оператор A на области определения $\mathcal{D}(A)$. Оператор является линейным, поскольку

$$A(\alpha x_1 + \beta x_2)(t) = (\alpha x_1(t^3) + \beta x_2(t^3)) = \alpha A x_1(t) + \beta A x_2(t).$$

Однако оператор не является непрерывным на области определения. Действительно, рассмотрим последовательность $x_n(t) \in \mathcal{D}(A)$

$$\begin{cases} x_n(t) = \sqrt[6]{n}, & 0 \leqslant t \leqslant 1/n, \\ 0, & 0 < t \leqslant 1, \end{cases}$$

которая в пространстве $L_3[0,1]$ сходится к нулю.

$$||x_n - 0||_{L_3[0,1]} = \left(\int_0^1 |x_n(t)|^3 dt\right)^{1/3} = \left(\int_0^{1/n} \left(\sqrt[6]{n}\right)^3 dt\right)^{1/3} =$$

$$= \left(\sqrt{n} \cdot \frac{1}{n}\right)^{1/2} = \frac{1}{\sqrt[4]{n}} \to 0$$

при $n \to \infty$. Однако ее образ

$$Ax_n(t) = \begin{cases} \sqrt{n}, & 0 \leqslant t \leqslant 1/n, \\ 0, & 1/n < t \leqslant 1, \end{cases}$$

принадлежащий пространству $L_2[0,1]$, к нулю не стремится, поскольку

$$||Ax_n - 0|| = \left(\int_0^1 |Ax_n(t)|^2 dt\right)^{1/2} = \left(\int_0^{1/n} \left(\sqrt{n}\right)^2 dt\right)^{1/2} = 1.$$

Таким образом, рассмотренная формула задает линейный оператор, который на области задания не является непрерывным.

 $\Pi p u M e p 2$. Покажем, что оператор $A: L_3[0,1] \to L_2[0,1],$

$$Ax(t) = tx(t^2)$$

является линейным ограниченным и вычислим его норму.

Решение. По определению, оператор является линейным, если для любых $x(t), y(t) \in L_3[0,1]$, и любых $\alpha, \beta \in \mathcal{K}$ выполняется условие линейности

$$A(\alpha x + \beta y)(t) = t(\alpha x + \beta y)(t^2) = \alpha tx(t^2) + \beta ty(t^2) = \alpha Ax(t) + \beta Ay(t).$$

Следовательно, оператор A является линейным.

Покажем, что A является ограниченным оператором, т. е. $\exists c>0,$ что $\|Ax\|_{L_2[0,1]}\leqslant c\|x\|_{L_3[0,1]}$ для всех $x(t)\in L_3[0,1].$

$$||Ax||_{L_{2}[0,1]} = \left(\int_{0}^{1} |Ax(t)|^{2} dt\right)^{1/2} = \left(\int_{0}^{1} |tx(t^{2})|^{2} dt\right)^{1/2} = \left[t^{2} = \tau, dt = \frac{d\tau}{2\sqrt{\tau}}\right] = \left(\int_{0}^{1} |\sqrt{\tau}x(\tau)|^{2} \cdot \frac{1}{2\sqrt{\tau}} d\tau\right)^{1/2} = \frac{1}{\sqrt{2}} \left(\int_{0}^{1} \sqrt{\tau} |x(\tau)|^{2} d\tau\right)^{1/2} \le$$

(к данному интегралу применим неравенство Гельдера при p=3/2, q=3, получим)

$$\leq \frac{1}{\sqrt{2}} \left[\int_{0}^{1} \left(|x(\tau)|^{2} \right)^{3/2} d\tau \right)^{2/3} \cdot \left(\int_{0}^{1} |\sqrt{\tau}|^{3} d\tau \right)^{1/3} \right]^{1/2} =$$

$$= \frac{1}{\sqrt{2}} \left(\int_{0}^{1} \tau^{3/2} d\tau \right)^{1/6} \left(\int_{0}^{1} |x(\tau)|^{3} d\tau \right)^{1/3} = c \cdot ||x||_{L_{3}[0,1]},$$

где

$$c = \frac{1}{\sqrt{2}} \left(\int_{0}^{1} \tau^{3/2} d\tau \right)^{1/6} = \frac{1}{\sqrt{2}} \left(\frac{2}{5} \right)^{1/6}.$$

Мы показали, что A является линейным ограниченным оператором. Из определения нормы линейного оператора следует, что

$$||A|| \leqslant \frac{1}{\sqrt{2}} \left(\frac{2}{5}\right)^{1/6}.$$

Покажем, что $||A|| \geqslant \frac{1}{\sqrt{2}} \left(\frac{2}{5}\right)^{1/6}$. По определению точной верхней грани $||A|| \geqslant \frac{||Ax||}{||x||}$ для всех $x(t) \in L_3[0,1]$. Выберем в качестве функции x(t) функцию $x_0(t) = \sqrt{t}$, поскольку именно для такой функции неравенство Гельдера, которое было использовано выше при проведении оценок, обратится в равенство. Тогда

$$||Ax_0(t)||_{L_2[0,1]} = \frac{1}{\sqrt{2}} \left(\int_0^1 \sqrt{t} \, |\sqrt{t}|^2 dt \right)^{1/2} = \frac{1}{\sqrt{2}} \left(\int_0^1 t^{3/2} \, dt \right)^{1/2},$$

a

$$||x_0(t)||_{L_3[0,1]} = \left(\int_0^1 |\sqrt{t}|^3 dt\right)^{1/3} = \left(\int_0^1 t^{3/2} dt\right)^{1/3}.$$

Значит,

$$||A|| \geqslant \frac{\frac{1}{\sqrt{2}} \left(\int_{0}^{1} t^{3/2} dt \right)^{1/2}}{\left(\int_{0}^{1} t^{3/2} dt \right)^{1/3}} = \frac{1}{\sqrt{2}} \left(\int_{0}^{1} t^{3/2} dt \right)^{1/6} = \frac{1}{\sqrt{2}} \left(\frac{2}{5} \right)^{1/6}.$$

 $\Pi p \, u \, M \, e \, p \, 3$. Вычислим норму оператора $A: L_2[0,1] \to L_2[0,1],$ который действует по формуле

$$Ax(t) = tx(t^2).$$

Решение. Покажем, что оператор A ограничен. С этой целью оценим норму $\|Ax\|_{L_2[0,1]}$ для всех $x(t)\in L_2[0,1].$

$$||Ax||_{L_2[0,1]} = \left(\int_0^1 |Ax(t)|^2 dt\right)^{1/2} = \left(\int_0^1 t^2 |x(t^2)|^2 dt\right)^{1/2} =$$

$$= \frac{1}{\sqrt{2}} \left(\int_{0}^{1} \sqrt{\tau} |x(\tau)|^{2} d\tau \right)^{1/2} \leq \frac{1}{\sqrt{2}} \left(\int_{0}^{1} \sup_{0 \leq \tau \leq 1} (\sqrt{\tau}) |x(\tau)|^{2} d\tau \right)^{1/2} =$$

$$= \frac{1}{\sqrt{2}} \left(\int_{0}^{1} |x(\tau)|^{2} d\tau \right)^{1/2} = \frac{1}{\sqrt{2}} ||x||_{L_{2}[0,1]}.$$

Следовательно, $||A|| \leqslant \frac{1}{\sqrt{2}}$. С другой стороны, $||A|| \geqslant \frac{||Ax||}{||x||}$ для всех $x(t) \in L_2[0,1]$. Выберем последовательность

$$x_n(t) = \begin{cases} 1, & t \in [1 - \frac{1}{n}, 1], \\ 0, & t \in [0, 1 - \frac{1}{n}), \end{cases}$$

квадрат нормы которой

$$||x_n||_{L_2[0,1]}^2 = \int_0^1 |x(t)|^2 dt = \int_{1-1/n}^1 dt = \frac{1}{n}.$$

Имеем,

$$\begin{split} \|Ax_n\|_{L_2[0,1]}^2 &= \left(\int\limits_0^1 |Ax_n(t)|^2 \,\mathrm{d}t\right)^{1/2} = \left(\int\limits_{1-1/n}^1 \sqrt{\tau} \,d\tau\right) = \\ &= \frac{1}{\sqrt{2}} \left[\frac{2}{3} \left(1 - \left(1 - \frac{1}{n}\right)^{3/2}\right)\right]^{1/2} = \\ &= \frac{1}{\sqrt{2}} \left[\frac{2}{3} \left(1 - 1 + \frac{3}{2} \cdot \frac{1}{n} - \frac{3}{8} \cdot \frac{1}{n^2} - O\left(\frac{1}{n^2}\right)\right)\right]^{1/2} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{n}} - O\left(\frac{1}{n}\right). \end{split}$$
 Имея оценку $\frac{1}{\sqrt{2}} - O\left(\frac{1}{n}\right) \leqslant \|A\| \leqslant \frac{1}{\sqrt{2}}$, заключаем, что $\|A\| = \frac{1}{\sqrt{2}}$.

 $\Pi p u m e p 4$. Вычислим норму оператора $A: C[-2,0] \to C[-2,0],$ действующего по формуле

$$Ax(t) = (t^2 + t - 1)x(t).$$

Решение. Оператор A – это оператор умножения на непрерывную функцию. Его линейность очевидна, а ограниченность следует из оценки

$$||Ax||_{C[-2,0]} = \max_{-2 \le t \le 0} |Ax(t)| = \max_{-2 \le t \le 0} |(t^2 + t - 1)x(t)| \le$$

$$\le \max_{-2 \le t \le 0} |t^2 + t - 1| \max_{-2 \le t \le 0} |x(t)| = \frac{5}{4} ||x||_{C[-2,0]} = c||x||_{C[-2,0]}.$$

Норма является достижимой и достигается на функции $x_0(t) \equiv 1$.

 $\Pi p u m e p 5$. Вычислить норму интегрального оператора Фредгольма $A: C[-1,2] \to C[-2,2]$, действующего по формуле

$$Ax(t) = \int_{-1}^{1} s^{3}(1+t) x(s) ds.$$

Решение. Интегральный оператор Фредгольма в пространстве непрерывных функций линеен. Это следует из линейности интеграла Римана. Покажем, что выполняется условие ограниченности, т. е. $\exists c > 0$, что $\|Ax\|_{C[-2,2]} \leqslant c \|x\|_{C[-1,2]}$ для всех $x(t) \in C[-1,2]$.

Действительно,

$$||Ax||_{C[-2,2]} = \max_{-2 \le t \le 2} |Ax(t)| = \max_{-2 \le t \le 2} \left| \int_{-1}^{1} s^{3}(1+t)x(s) \, \mathrm{d}s \right| \le$$

$$\le \max_{-2 \le t \le 2} |1+t| \int_{-1}^{1} |s^{3}| \, |x(s)| \, \mathrm{d}s \le 3 \int_{-1}^{1} |s^{3}| \max_{-1 \le s \le 1} |x(s)| \, \mathrm{d}s =$$

$$= 3 \max_{-1 \le s \le 1} |x(s)| \, 2 \int_{0}^{1} s^{3} \, \mathrm{d}s = \frac{3}{2} \max_{-1 \le t \le 2} |x(t)| = \frac{3}{2} ||x||_{C[-1,2]}.$$

Значит, $\|A\| \leqslant \frac{3}{2}$. Покажем, что $\|A\| \geqslant \frac{3}{2}$. Заметим, что при любом фиксированном $t \in [-1,2]$ ядро $\mathcal{K}(t,s) = (1+t)s^3$ интегрального оператора по переменной $s \in [-1,1]$ меняет знак, поэтому построим последовательность $x_n(t)$ вида

$$x_n(t) = \begin{cases} -1, & -1 \leqslant t \leqslant -\frac{1}{n}, \\ nt, & -\frac{1}{n} \leqslant t \leqslant \frac{1}{n}, \\ 1, & \frac{1}{n} \leqslant t \leqslant 2, \end{cases}$$

с нормой $||x_n||_{C[-1,2]}=1$. Тогда

$$||Ax_n||_{C[-2,2]} = \max_{-2 \le t \le 2} |Ax_n(t)| =$$

$$= \max_{-2 \le t \le 2} \left| (1+t) \left(\int_{-1}^{-1/n} -s^3 \, ds + \int_{-1/n}^{1/n} s^3 ns \, ds + \int_{1/n}^{1} s^3 \, ds \right) \right| =$$

$$= \max_{-2 \le t \le 2} \left| (1+t) \left(\frac{1}{2} - \frac{1}{2n^4} + \frac{2}{5n^4} \right) \right| = \frac{3}{2} - O\left(\frac{1}{n^4} \right).$$

Следовательно, $||A|| = \frac{3}{2}$.

 $\Pi p \, u \, m \, e \, p \, 6$. Вычислить норму оператора $A: C[-1,1] \to L_2[0,1],$ который действует по формуле

$$Ax(t) = \int_{-1}^{1} t x(s) ds - x(0).$$

Решение. Отметим, что указанный оператор как сумма двух линейных операторов является линейным. Перейдем к доказательству ограниченности оператора. По определению ограниченности мы должны оценить норму

$$||Ax||_{L_2[0,1]} = \left(\int_0^1 |Ax(t)|^2 dt\right)^{1/2} = \left(\int_0^1 \left|t\int_0^1 x(s) ds - x(0)\right|^2 dt\right)^{1/2}.$$

Оценим выражение, находящееся под знаком модуля

$$\left| t \int_{0}^{1} x(s) \, \mathrm{d}s - x(0) \right| \leqslant |t| \int_{0}^{1} |x(s)| \, \mathrm{d}s + |x(0)| \leqslant$$

$$\leq |t| \max_{0 \leq s \leq 1} |x(s)| \cdot 1 + \max_{-1 \leq s \leq 1} |x(s)| \leq |t| ||x||_{C[-1,1]} + ||x||_{C[-1,1]}.$$

Полученную оценку подставим в выражение для нормы $||Ax||_{L_2[0,1]}$.

$$||Ax||_{L_2[0,1]} \le \left(\int_0^1 \left((|t|+1)||x||\right)^2 dt\right)^{1/2} = \left(\int_0^1 (t+1)^2\right)^{1/2} ||x||_{C[-1,1]}.$$

Откуда следует, что $\|A\| \leqslant \left(\int\limits_0^1 (t+1)^2\right)^{1/2}$. Для доказательства неравенства в обратную сторону построим последовательность

$$x_n(t) = \begin{cases} -1, & -1 \le t \le 0, \\ 2nt - 1, & 0 \le t \le \frac{1}{n}, \\ 1, & \frac{1}{n} \le t \le 2, \end{cases}$$

с нормой $||x_n||_{C[-1,1]} = 1$. Тогда

$$||A|| \ge ||Ax_n(t)|| = \left(\int_0^1 \left| \int_0^{1/n} t(2ns - 1) \, ds + \int_{1/n}^1 t \, ds + 1 \right|^2 dt \right)^{1/2} \to$$

$$\to \left(\int_0^1 (t+1)^2 \, dt \right)^{1/2} - O\left(\frac{1}{n}\right)$$

при $n \to \infty$. Это означает, что

$$||A|| = \left(\int_{0}^{1} (t+1)^{2}\right)^{1/2} = \sqrt{\frac{7}{3}} ||x||_{C[-1,1]}.$$

 $\Pi p u m e p$ 7. В пространстве бесконечных числовых последовательностей ℓ_2 рассмотрим оператор A, действующий по формуле $Ax = (\alpha_1 x_1, \alpha_2 x_2, \ldots)$, где $(\alpha_i)_{i=1}^{\infty}$ – последовательность вещественных чисел. При каком условии на последовательность $(\alpha_i)_{i=1}^{\infty} \mathscr{D}(A) = l_2$? Когда оператор A ограничен и чему равна норма оператора?

Решение. По определению области задания

$$\mathscr{D}(A) = \{x(x_1, \dots, x_n, \dots) \in \ell_2 : Ax = (\alpha_1 x_1, \dots, \alpha_n x_n, \dots) \in \ell_2\}.$$

 $Ax \in l_2$, если ряд $\sum_{i=1}^{\infty} |\alpha_i x_i|^2$ сходится для всех $x \in l_2$.

Возможны 2 случая:

1) Последовательность (α_n) ограничена, т. е. $\exists \sup_n |\alpha_n| = C < +\infty$. Тогда

$$\sum_{i=1}^{\infty} |\alpha_i x_i|^2 \leqslant \sum_{i=1}^{\infty} (\sup_i |\alpha_i|)^2 |x_i|^2 = C^2 \sum_{i=1}^{\infty} |x_i|^2.$$

Это означает, что $\mathscr{D}(A) = l_2$ и $||A|| \leqslant C$.

2) Последовательность (α_n) неограниченна, т. е. $\sup_n |\alpha_n| = +\infty$, тогда $\mathcal{D}(A) \subset l_2$.

Действительно, пусть $\alpha_n=n$. Рассмотрим несчетное множество M_{α} , где

$$M_{\alpha} = \left\{ x : x = \left(1, \frac{1}{2^{1+\alpha}}, \dots, \frac{1}{n^{1+\alpha}}, \dots \right), \ 0 \leqslant \alpha \leqslant \frac{1}{2} \right\},$$

которое принадлежит пространству ℓ_2 , но не принадлежит $\mathcal{D}(A)$, так как $A(M_{\alpha}) = \left\{x : x = \left(1, \frac{1}{2^{\alpha}}, \dots, \frac{1}{n^{\alpha}}, \dots\right)\right\}$ и $\sum_{n=1}^{\infty} |\frac{1}{n^{\alpha}}|^2 \to \infty$. Оператор неограничен на области задания. Рассмотрим последовательность $x_n = \underbrace{(0, \dots, 0, 1, 0, \dots)}_{n-1}, \|x_n\| = 1$, а $\|Ax_n\| = |\alpha_n| < \infty$ при каждом $n \in N$.

$$||A|| = \sup ||Ax_n|| = \sup |\alpha_n| = \infty.$$

Покажем, что в первом случае ||A|| = C. По определению, $||A|| \geqslant \frac{||Ax||}{||x||} \ \forall x \in l_2$. Возьмем в качестве x элемент x_n , $||x_n|| = 1$, тогда $||A|| \geqslant ||\alpha_n| \Rightarrow ||A|| = \sup_n |\alpha_n|$.

 $\Pi p u m e p 8$. Исследовать на сходимость последовательность операторов A_n , действующих в пространстве C[0,1], если

$$A_n x(t) = n \int_{t}^{t + \frac{1}{n}} x(\tau) d\tau.$$

Решение. Заметим, что если существует такая непрерывно дифференцируемая функция F(t), что F'(t)=x(t), то

$$n\int_{t}^{t+\frac{1}{n}} x(\tau)d\tau = \frac{F(t+\frac{1}{n}) - F(t)}{1/n} \underset{n\to\infty}{\longrightarrow} F'(t) = x(t).$$

Следовательно, последовательность A_n сильно сходится к тождественному оператору, т. е. $||A_nx-x|| \underset{n\to\infty}{\to} 0$ при $\forall x(t)\in C[0,1]$. Покажем, что равномерной сходимости нет, т. е. $||A_n-I||$ не стремится к нулю при $n\to\infty$. Выберем последовательность $x_n(t)=t^{n-1}$ $(n\geqslant 2)$ с нормой $||x_n||=1$.

Тогда

$$||A_n x_n - x_n|| = \max_{0 \le t \le 1} \left| n \int_t^{t+1/n} \tau^{n-1} d\tau - t^{n-1} \right| = \max_{0 \le t \le 1} \left| \tau^n \right|_t^{t+1/n} - t^{n-1} \right| \ge \frac{n(n-1)}{2n^2} \max_{0 \le t \le 1} |t^{n-2}| \ge \frac{1}{4}.$$

Имеем, $||A_n - I|| \ge ||A_n x_n - x_n|| \ge \frac{1}{4}$. А это и означает, что равномерная сходимость отсутствует.

Задание 1. Доказать, что оператор умножения на непрерывную функцию, действующий в пространстве X = C[a,b] является линейным ограниченным, найти его норму.

1.1.
$$Ax(t) = (5 - |t + 8|) x(t), t \in [-10, 10];$$

1.2.
$$Ax(t) = (t - \sqrt{t-2}) x(t), t \in [2, 8];$$

1.3.
$$Ax(t) = (t^2 - 2t + 3) x(t), t \in [1, 5];$$

1.4.
$$Ax(t) = (-t^2 - 4t + 1) x(t), \quad t \in [-3, 0];$$

1.5.
$$Ax(t) = \frac{2}{5 + |3t - 2|} x(t), \quad t \in [-1/3, 1/3];$$

1.6.
$$Ax(t) = \frac{2}{t^2 - 2t + 2}x(t), \quad t \in [-1, 5];$$

1.7.
$$Ax(t) = \frac{2t}{t^2 + 1}x(t), \quad t \in [-2, 4];$$

1.8.
$$Ax(t) = \frac{t}{4t^2 + 9}x(t), \quad t \in [-8, 15];$$

1.9.
$$Ax(t) = (t^2 + 6t + 11) x(t), t \in [-4, 2];$$

1.10.
$$Ax(t) = (-t^2 + 2t + 2)x(t), t \in [-1, 2];$$

1.11.
$$Ax(t) = \frac{4t+31}{t+7}x(t), \quad t \in [-6, 10];$$

1.12.
$$Ax(t) = (t^3 - 3t) x(t), t \in [1, 5];$$

1.13.
$$Ax(t) = (12t - t^3) x(t), t \in [2, 4];$$

1.14.
$$Ax(t) = \frac{4}{2-t}x(t), t \in [3, 6];$$

1.15.
$$Ax(t) = \frac{t^3 + 8}{t + 2}x(t), \quad t \in [3, 5].$$

Задание 2. Доказать, что оператор замены переменной в пространстве $X = L_p[a,b]$ является линейным ограниченным и найти его норму.

2.1.
$$X = L_2[0,1], \quad Ax(t) = (t^5 - t^8)x(t^3);$$

2.2.
$$X = L_3[-1,1], \quad Ax(t) = t^2x(t^3);$$

2.3.
$$X = L_3[0,1], \quad Ax(t) = \sqrt{t}x(\sqrt[4]{t});$$

2.4.
$$X = L_{3/2}[0,1], \quad Ax(t) = tx(\sqrt{t});$$

2.5.
$$X = L_1[-1,1], \quad Ax(t) = (t^2 - 2t)x(\sqrt[3]{t});$$

2.6.
$$X = L_2[-1,1], \quad Ax(t) = (t^2 + t)x(t^3)$$
;

2.7.
$$X = L_1[-1,1], \quad Ax(t) = ((t-1)^2 + t) x(\sqrt[3]{t});$$

2.8.
$$X = L_2[-1,0], \quad Ax(t) = t^2(t-1)x(t^3);$$

2.9.
$$X = L_3[0,1], \quad Ax(t) = tx(t^4);$$

2.10.
$$X = L_{5/3}[-1,2], \quad Ax(t) = (t - 3t^2)x(\sqrt[3]{t});$$

2.11.
$$X = L_{7/2}[0,1], \quad Ax(t) = (t^2 - t)x(\sqrt{t});$$

2.12.
$$X = L_5[-1,1], \quad Ax(t) = (t^2 - t)x(t^5);$$

2.13.
$$X = L_3[0,1], \quad Ax(t) = (t^3 - t)x(t^3);$$

2.14.
$$X = L_{9/2}[-1,1], \quad Ax(t) = (t^3 - t^6)x(t^3);$$

2.15.
$$X = L_{3/2}[-1,1], \quad Ax(t) = (t^5 - t^{10})x(\sqrt[5]{t}).$$

Задание 3. Доказать, что интегральный оператор с вырожденным ядром является линейным и ограниченным оператором, если $A: C[a,b] \to C[\alpha,\beta]$. Вычислить норму оператора.

3.1.
$$A: C[-1,1] \to C[0,1], \quad Ax(t) = \int_{-1}^{1} s(\ln(t+5) + t) x(s) ds;$$

3.2.
$$A: C[-2,2] \to C[3,5], \quad Ax(t) = \int_{-1}^{1} t(s+1) x(s) ds;$$

3.3.
$$A: C[-1,1] \to C[-1,2], \quad Ax(t) = \int_{-1/3}^{1/3} (t^2 + t - 5) s x(s) ds;$$

3.4.
$$A: C[-1,2] \to C[-2,1], \quad Ax(t) = \int_{-1}^{1} (t^3 + t - 2)s^3 x(s) \, ds;$$

3.5.
$$A: C[-2,1] \to C[1,3], \quad Ax(t) = \int_{-2}^{1} te^{t+s} s \, x(s) \, ds;$$

3.6.
$$A: C[-1,1] \to C[0,2], \quad Ax(t) = \int_{-1}^{1} s^3 \ln(1+t) x(s) ds;$$

3.7.
$$A: C[-1,1] \to C[0,3], \quad Ax(t) = \int_{-1/2}^{1/2} s(t^3 - t - 1) x(s) ds;$$

3.8.
$$A: C[0,1] \to C[-1,2], \quad Ax(t) = \int_{0}^{1} \left(s - \frac{1}{2}\right) \left(t + \frac{1}{2}\right) x(s) \, ds;$$

3.9.
$$A: C[-1,1] \to C[0,2], \quad Ax(t) = \int_{0}^{1} \left(s - \frac{1}{2}\right) t^2 x(s) ds;$$

3.10.
$$A: C[-\pi,\pi] \to C[0,\pi], \quad Ax(t) = \int_{0}^{\pi} \sin s \sin t \, x(s) \, ds;$$

3.11.
$$A: C[-2,2] \to C[0,1], \quad Ax(t) = \int_{0}^{1} (s-1)(t^2+2) x(s) ds;$$

3.12.
$$A: C[-1,2] \to C[0,3], \quad Ax(t) = \int_{-1}^{1} s^3(t^3 - t) x(s) ds;$$

3.13.
$$A: C[-1,2] \to C[0,1], \quad Ax(t) = \int_{-1}^{1} s^3 \ln(1+t) x(s) ds;$$

3.14.
$$A: C[-1,1] \to C[0,3], \quad Ax(t) = \int_{-1/2}^{1/2} s(1-t) x(s) ds;$$

3.15.
$$A: C[-1,3] \to C[-2,0], \quad Ax(t) = \int_{-1}^{1} (t^2 - |t| + 2)s^5 x(s) \, ds.$$

Задание 4. Вычислить норму оператора $A: L_p[a,b] \to L_q[\alpha,\beta].$

4.1.
$$A: L_3[0,1] \to L_{3/2}[0,1], \quad Ax(t) = \int_0^1 s(1+t)x(s) \, ds;$$

4.2.
$$A: L_4[-1,1] \to L_{5/2}[-1,2], \quad Ax(t) = \int_{-1}^{1} s^2 t^3 x(s) \, ds;$$

4.3.
$$A: L_3[0,1] \to L[-1,1], \quad Ax(t) = \int_0^{1/2} ts^2 x(s^{3/2}) \, ds;$$

4.4.
$$A: L_3[-1,1] \to L_2[-1,1], \quad Ax(t) = \int_{-1}^{1} (1+t)(1+s)^3 x(s) \, ds;$$

4.5.
$$A: L_4[0,1] \to L_1[-1,1], \quad Ax(t) = \int_0^{1/2} t^2 s^2 x(s^{5/2}) \, ds;$$

4.6.
$$A: L_{5/3}[0,1] \to L_1[0,2], \quad Ax(t) = \int_0^1 st^{-1/3}x(\sqrt{t}) \, ds;$$

4.7.
$$A: L_3[-1,1] \to L_1[0,3], \quad Ax(t) = \int_{-1/2}^{1/2} s(t-1)x(s) \, ds;$$

4.8.
$$A: L_2[0,1] \to L_1[-1,2], \quad Ax(t) = \int_0^1 (s-1/2) x(s) ds;$$

4.9.
$$A: L_3[-1,1] \to L_{3/2}[0,2], \quad Ax(t) = \int_0^1 t^2 s^3 x(s) \, ds;$$

4.10.
$$A: L_2[0,2\pi] \to L_1[0,\pi], \quad Ax(t) = \int_0^{\pi} t \sin(s) x(s) \, ds;$$

4.11.
$$A: L_3[0,2] \to L_{5/2}[0,1], \quad Ax(t) = \int_0^1 t^{3/2} s^3 x(s) \, ds;$$

4.12.
$$A: L_2[-1,2] \to L_1[0,3], \quad Ax(t) = \int_{-1}^1 s^3(1-t)x(s) \, ds;$$

4.13.
$$A: L_3[-1,2] \to L_2[0,1], \quad Ax(t) = \int_{-1}^{1} s^3 \ln(1+t)x(s) \, ds;$$

4.14.
$$A: L_3[-1,1] \to L_1[0,3], \quad Ax(t) = \int_{-1/2}^{1/2} s(1-t)x(s) \, ds;$$

4.15.
$$A: L_4[-1,3] \to L_2[-2,0], \quad Ax(t) = \int_{-1}^{1} (1-t)s^5x(s) \, ds.$$

Задание 5. Вычислить норму оператора $A:C[a,b] \to L_p[0,1].$

5.1.
$$Ax(t) = \int_{0}^{1} tsx(s) ds - x(0), \quad x(t) \in C[-1,1], \quad p = 2;$$

5.2.
$$Ax(t) = \int_{-1}^{1} ts^2 x(s) ds + x(0), \quad x(t) \in C[-1,1], \quad p = 2;$$

5.3.
$$Ax(t) = \int_{-1}^{1} t^2 sx(s) ds + tx(0), \quad x(t) \in C[-1,1], \quad p = 3;$$

5.4.
$$Ax(t) = \int_{0}^{1} (t+1)sx(s) ds - tx(0), \quad x(t) \in C[-1,1], \quad p = 3;$$

5.5.
$$Ax(t) = \int_{-1}^{1/2} t^2 sx(s) ds - t^2 x(0), \quad x(t) \in C[-1,1], \quad p = 1;$$

5.6.
$$Ax(t) = \int_{-1/4}^{1/4} tsx(s) ds + tx(0), \quad x(t) \in C[-1,1], \quad p = 1;$$

5.7.
$$Ax(t) = \int_{-1}^{1} (t^2 + 1) sx(s) ds + tx(0), \quad x(t) \in C[-1,1], \quad p = 1;$$

5.8.
$$Ax(t) = \int_{0}^{1} (t+1) sx(s) ds - tx(1), \quad x(t) \in C[0,1], \quad p = 3;$$

5.9.
$$Ax(t) = \int_{-1/2}^{1/2} (t-1) s^3 x(s) ds + t^2 x(1), \quad x(t) \in C[-1,1], \quad p = 1;$$

5.10.
$$Ax(t) = \int_{0}^{1} (t+1)(s-1)x(s) ds - t^{2}x(1), \quad x(t) \in C[0,1], \quad p = 1;$$

5.11.
$$Ax(t) = \int_{0}^{1} (\ln t + 1) sx(s) ds - tx(1), \quad x(t) \in C[0,1], \quad p = 3;$$

5.12.
$$Ax(t) = \int_{-1}^{1} s^3(1-t)x(s) ds + tx(0)$$
 $x(t) \in C[-1,1], p = 3/2;$

5.13.
$$Ax(t) = \int_{-1}^{1} s^3 \ln(1+t)x(s) ds + tx(1)$$
 $x(t) \in C[-1,1], p = 3/2;$

5.14.
$$Ax(t) = \int_{-1}^{1} s(1-t)x(s) ds - tx(1), \quad x(t) \in C[-1,1], \quad p = 3;$$

5.15.
$$Ax(t) = \int_{0}^{1} (s-1)(t+2)x(s) ds - tx(1), \quad x(t) \in C[-1,1], \quad p = 3.$$

Задание 6. Вычислить норму оператора $A:\ell_p \to \ell_q.$

6.1.
$$A: \ell_6 \to \ell_6, \quad Ax = \left(\frac{x_1}{\sqrt{3}}, \frac{x_2}{\sqrt{4}}, \dots, \frac{x_k}{\sqrt{k+2}}, \dots\right);$$

6.2.
$$A: \ell_5 \to \ell_5, \quad Ax = \left(\frac{x_1}{\sqrt{5}}, \frac{x_2}{\sqrt{5^2}}, \dots, \frac{x_k}{\sqrt{5^k}}, \dots\right);$$

6.3.
$$A: \ell_7 \to \ell_3, \quad Ax = \left(\frac{x_1}{3}, \frac{x_2}{3^2}, \dots, \frac{x_k}{3^k}, \dots\right);$$

6.4.
$$A: \ell_{5/2} \to \ell_2, \quad Ax = \left(\frac{x_1}{1}, \frac{x_2}{2}, \dots, \frac{x_k}{k}, \dots\right);$$

6.5.
$$A: \ell_5 \to \ell_3, \quad Ax = \left(\frac{x_1}{\sqrt{5}}, \frac{x_2}{\sqrt{5^2}}, \dots, \frac{x_k}{\sqrt{5^k}}, \dots\right);$$

6.6.
$$A: \ell_{7/2} \to \ell_2, \quad Ax = \left(\frac{x_1}{4}, \frac{x_2}{4^2}, \dots, \frac{x_k}{4^k}, \dots\right);$$

6.7.
$$A: \ell_4 \to \ell_3, \quad Ax = \left(\frac{x_1}{\sqrt[3]{3}}, \frac{x_2}{\sqrt[3]{4}}, \dots, \frac{x_k}{\sqrt[3]{k+2}}, \dots\right);$$

6.8.
$$A: \ell_5 \to \ell_5, \quad Ax = \left(\frac{x_1}{\sqrt[3]{7}}, \frac{x_2}{\sqrt[3]{7^2}}, \dots, \frac{x_k}{\sqrt[3]{7^k}}, \dots\right);$$

6.9.
$$A: \ell_{7/3} \to \ell_2, \quad Ax = \left(\frac{x_1}{6}, \frac{x_2}{6^2}, \dots, \frac{x_k}{6^k}, \dots\right);$$

6.10.
$$A: \ell_3 \to \ell_3, \quad Ax = \left(\frac{x_1}{2}, \frac{2x_2}{2^2}, \dots, \frac{kx_k}{2^k}, \dots\right);$$

6.11.
$$A: \ell_{9/2} \to \ell_4, \quad Ax = \left(\frac{x_1}{\sqrt[4]{5}}, \frac{x_2}{\sqrt[4]{5^2}}, \dots, \frac{x_k}{\sqrt[4]{5^k}}, \dots\right);$$

6.12.
$$A: \ell_2 \to \ell_2, \quad Ax = \left(\frac{\sin 1 x_1}{3}, \frac{\sin 2 x_2}{3^2}, \dots, \frac{\sin k x_k}{3^k}, \dots\right);$$

6.13.
$$A: \ell_{3/2} \to \ell_{3/2}, \quad Ax = \left(\frac{x_1}{\sqrt{3}}, \frac{x_2}{\sqrt{4}}, \dots, \frac{x_k}{\sqrt{k+2}}, \dots\right);$$

6.14.
$$A: \ell_2 \to \ell_1, \quad Ax = \left(\frac{x_1}{\sqrt{2}}, \frac{x_2}{\sqrt{2^2}}, \dots, \frac{x_k}{\sqrt{2^k}}, \dots\right);$$

6.15.
$$A: \ell_7 \to \ell_3, \quad Ax = \left(\frac{x_1}{9}, \frac{x_2}{9^2}, \dots, \frac{x_k}{9^k}, \dots\right).$$

Задание 7. Исследовать на сходимость следующие последовательности линейных ограниченных операторов.

7.1. В пространстве ℓ_2 для элемента $x(x_1, x_2, \dots, x_k, \dots) \in l_2$ определим последовательности операторов

$$A_n x = \left(\frac{x_1}{n}, \frac{x_2}{n}, \dots, \frac{x_k}{n}, \dots\right), B_n x = \left(\underbrace{0, \dots, 0}_{n}, x_{n+1}, x_{n+2}, \dots\right).$$

7.2. Рассмотрим оператор $A:C[0,1]\to C[0,1],\ Ax(t)=\int\limits_0^t e^sx(s)\,\mathrm{d} s$ и последовательность операторов

$$A_n x(t) = \int_0^t \left(\sum_{k=0}^n \frac{s^k}{k!} \right) x(s) \, \mathrm{d}s, \, n \in \mathbb{N}.$$

ТЕМА 2. ОБРАТНЫЕ ОПЕРАТОРЫ. РЕШЕНИЕ ОПЕРАТОРНЫХ УРАВНЕНИЙ

Непрерывно обратимые операторы. Пусть $A: X \to Y$ – линейный оператор с областью определения $\mathcal{D}(A) \subseteq X$ и областью значений $\mathcal{R}(A) \subseteq Y$. Если оператор A осуществляет взаимно однозначное соответствие между $\mathcal{D}(A)$ и $\mathcal{R}(A)$, то к оператору A существует обратный оператор A^{-1} , и решение уравнения Ax = y может быть записано в явном виде $x = A^{-1}y$.

Теорема 1. Линейный оператор A переводит $\mathcal{D}(A)$ в $\mathcal{R}(A)$ взаимно однозначно тогда и только тогда, когда

$$KerA = \{x \in \mathcal{D}(A) : Ax = 0\} = \{0\}.$$
 (2.1)

Теорема 2. Если $A: X \to Y$ линеен, то и $A^{-1}: Y \to X$ линеен.

Теорема 3. Оператор A^{-1} существует и одновременно ограничен на $\mathcal{R}(A)$ тогда и только тогда, когда для некоторой постоянной m>0 и любого $x\in\mathcal{D}(A)$ выполняется энергетическое неравенство

$$||Ax||_Y \geqslant m||x||_X. \tag{2.2}$$

Будем говорить, что линейный оператор $A: X \to Y$ непрерывно обратим, если $\mathcal{R}(A) = Y$, оператор A обратим и A^{-1} ограничен.

Теорема 4 (Банаха об обратном операторе). Пусть X и Y – банаховы пространства, $A: X \to Y$ – линейный ограниченный оператор, отображающий X в Y взаимно однозначно. Тогда обратный оператор $A^{-1}: Y \to X$ ограничен.

Следствие 1. Пусть на нормированном пространстве X заданы две нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ и пространство X полно относительно каждой из норм. Если $\|x\|_1 \leqslant c\|x\|_2$ для всех $x \in X$, то эти нормы эквивалентны.

Левый и правый обратные операторы. Пусть X,Y – нормированные векторные пространства и $A:X\to Y$.

Оператор $A_r^{-1}: Y \to X$ называется правым обратным оператором к A, если $AA_r^{-1}=I_y$. Оператор $A_l^{-1}: Y \to X$ называется левым обратным оператором к A, если $A_l^{-1}A=I_x$.

Теорема 5. Для линейного оператора $A: X \to Y$ следующие утверждения эквивалентны:

- 1) решение уравнения Ax = y единственно для любого $y \in \mathcal{R}(A)$;
- 2) $KerA = \{0\}$, m. e. onepamop A инъективен;
- 3) для оператора A существует левый обратный оператор A_l^{-1} .

Теорема 6. Для линейного оператора $A: X \to Y$ следующие утверждения эквивалентны:

- 1) решение уравнения Ax = y существует для любого $y \in Y$;
- 2) $\mathcal{R}(A) = Y$, т. е. оператор A сюръективен;
- 3) для оператора A существует правый обратный оператор A_r^{-1} .

Решение операторных уравнений второго рода. Рассмотрим операторные уравнения второго рода

$$x - Ax = y. (2.3)$$

$$x - \lambda Ax = y, (2.4)$$

где X – банахово пространство, $A: X \to X, A \in \mathscr{B}(X)$.

Теорема 7. Пусть X — банахово пространство, $A \in \mathcal{B}(X)$ и $\|A\| < 1$. Тогда оператор I — A непрерывно обратим и при этом справедливы оценки

$$\|(I-A)^{-1}\| \le \frac{1}{1-\|A\|}, \quad \|I-(I-A)^{-1}\| \le \frac{\|A\|}{1-\|A\|}.$$
 (2.5)

Теорема 8. Пусть X – банахово пространство, $A \in \mathcal{B}(X)$ и $|\lambda| < \frac{1}{\|A\|}$. Тогда оператор $I - \lambda A$ непрерывно обратим, причем

$$(I - \lambda A)^{-1} = I + \lambda A + \lambda^2 A^2 + \ldots + \lambda^n A^n + \ldots$$

Теорема 9 (о четырех шарах). Если $A, A^{-1} \in \mathcal{B}(X)$, то множество G элементов $\mathcal{B}(X)$, имеющих в $\mathcal{B}(X)$ обратные, содержит вместе с операторами A и A^{-1} два шара

$$B_{1} = \left\{ B \in \mathcal{B}(X) : \|A - B\| < \frac{1}{A^{-1}} \right\},$$

$$B_{2} = \left\{ B \in \mathcal{B}(X) : \|A^{-1} - B\| < \frac{1}{A} \right\}.$$
(2.6)

Если оператор B лежит в шаре B_1 , то его обратный представим в виде

$$B^{-1} = A^{-1} \sum_{n=0}^{\infty} [(A - B)A^{-1}]^n$$
 (2.7)

u n u

$$B^{-1} = \sum_{n=0}^{\infty} [A^{-1}(A-B)]^n A^{-1}, \qquad (2.8)$$

причем справедливо неравенство

$$||B^{-1} - A^{-1}|| \le \frac{||A^{-1}||^2 ||A - B||}{1 - ||A - B|| ||A^{-1}||};$$
(2.9)

если $B_{\varepsilon} \in G$ и $||B_{\varepsilon} - A|| \to 0$ при $\varepsilon \to 0$, то и $||B_{\varepsilon}^{-1} - A^{-1}|| \to 0$ при $\varepsilon \to 0$.

Eсли оператор B лежит в шаре B_2 , то его обратный

$$B^{-1} = A \sum_{n=0}^{\infty} [(A^{-1} - B)A]^n$$
 (2.10)

unu

$$B^{-1} = \sum_{n=0}^{\infty} [A(A^{-1} - B)]^n A, \qquad (2.11)$$

причем справедливо неравенство

$$||B^{-1} - A|| \le \frac{||A||^2 ||A^{-1} - B||}{1 - ||A^{-1} - B|| ||A||};$$

если $B_{\varepsilon} \in G$ и $||B_{\varepsilon} - A^{-1}|| \to 0$ при $\varepsilon \to 0$, то и $||B_{\varepsilon}^{-1} - A^{-1}|| \to 0$ при $\varepsilon \to 0$.

Теорема 9 используется при обосновании вычислительных методов, а именно: требуется оценить норму относительно ошибки, если оператору задачи и правой части придать некоторое возмущение; оценить по невязке норму относительной ошибки.

 $Cnedcmbue\ 2.$ Множество обратимых операторов в пространстве $\mathscr{B}(X)$ открыто.

Следствие 3. Пусть $A \in \mathcal{B}(X)$ – непрерывно обратимы и пусть последовательность $(A_n)_{n=1}^{\infty} \subset \mathcal{B}(X)$ равномерно сходится к . Тогда, начиная с некоторого номера $n_0 \in \mathbb{N}$, все операторы A_n непрерывно обратимы и $A_n^{-1} \rightrightarrows A^{-1}$ при $n \to \infty$.

Решение интегральных уравнений Фредгольма и Вольтерра методом резольвент. Рассмотрим интегральное уравнение Фредгольма второго рода с параметром λ , записанное в виде

$$x(t) - \lambda \int_{a}^{b} \mathcal{K}(t,s)x(s) \, \mathrm{d}s = y(t). \tag{2.12}$$

Теорема 10. Пусть K(t,s) непрерывная функция по переменным t и s и $|\lambda|M(b-a) < 1$, $M = \max_{a \leqslant t,s \leqslant b} |K(t,s)|$. Тогда для любой непрерывной функции y(t) в пространстве C[a,b] существует единственное решение уравнения 2.12, которое можно представить в виде

$$x(t) = y(t) + \lambda \int_{a}^{b} R(t,s;\lambda) y(s) ds, \qquad (2.13)$$

где резольвента $R(t,s;\lambda)$ ядра $\mathcal{K}(t,s)$ или разрешающее ядро имеет вид

$$R(t,s;\lambda) = \sum_{i=1}^{\infty} \lambda^{i-1} \mathcal{K}_i(t,s), \qquad (2.14)$$

а итерированные ядра вычисляются по формуле

$$\mathcal{K}_{1}(t,s) = \mathcal{K}(t,s),$$

$$\mathcal{K}_{i}(t,s) = \int_{a}^{b} \mathcal{K}(t,\tau) \,\mathcal{K}_{i-1}(\tau,s) \,\mathrm{d}\tau, \ i = 2,3,\dots.$$
(2.15)

Рассмотрим интегральное уравнение Вольтерра второго рода

$$x(t) = \lambda \int_{a}^{t} \mathcal{K}(t,s)x(s)ds + y(t).$$
 (2.16)

Теорема 11. Пусть K(t,s) непрерывная функция по переменным t и s. Тогда для любой непрерывной функции y(t) при любом значении параметра λ в пространстве C[a,b] существует единственное решение уравнения (2.12), которое можно представить в виде

$$x(t) = y(t) + \lambda \int_{a}^{b} R(t,s;\lambda) y(s) ds, \qquad (2.17)$$

где

$$R(t,s;\lambda) = \sum_{i=1}^{\infty} \lambda^{i-1} \mathcal{K}_i(t,s), \qquad (2.18)$$

$$\mathcal{K}_1(t,s) = \mathcal{K}(t,s),$$

$$\mathcal{K}_{i}(t,s) = \int_{t}^{b} \mathcal{K}(t,\tau)\mathcal{K}_{i-1}(\tau,s) d\tau, i = 2,3,\dots$$
(2.19)

Замкнутые операторы. Пусть X и Y – банаховы пространства, $A: X \to Y$ линейный оператор с областью определения $\mathcal{D}(A) \subset X$. Множество $\{(x,Ax): x \in \mathcal{D}(A), Ax \in \mathcal{R}(A)\}$ называется графиком оператора A и обозначается Gr_A . Поскольку A – линейный оператор, то Gr_A представляет собой линейное многообразие в пространстве $X \times Y$, однозначно определяемое оператором A. Если оператор A непрерывен, то линейное многообразие Gr_A замкнуто, т. е. является подпространством в $X \times Y$.

Определение 1. Линейный оператор $A: X \to Y$ называется замкнутым, если его график Gr_A является замкнутым множеством в $X \times Y$.

Лемма 2. Пусть $A:X\to Y$, $A\in \mathscr{B}(X,Y)$, причем $\mathscr{D}(A)=X$. Тогда A замкнут.

Лемма 3. Если A замкнут и обратный оператор A^{-1} существует, то A^{-1} также замкнут.

Лемма 4. Если $A \in \mathcal{B}(X,Y)$ и A^{-1} существует, то A^{-1} замкнут.

Теорема 12 (о замкнутом графике). Если линейный оператор A, отображающий банахово пространство X в банахово пространство Y, имеет замкнутый график, то этот оператор ограничен.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u m e p 1$. В гильбертовом пространстве ℓ_2 с ортонормированным базисом $\{e_k\}_{k=1}^{\infty}$ зададим линейный оператор A следующим образом:

$$A e_1 = 0, A e_k = e_{k-1}, k = 2, 3, \dots$$

Какие из операторов $A_l^{-1}, A_r^{-1}, A^{-1}$ существуют, найти их?

Решение. Покажем, что ядро оператора KerA представляет собой одномерное подпространство, натянутое на вектор e_1 , а множество значений $\mathscr{R}(A)$ оператора совпадает с пространством l_2 . Если $\mathscr{R}(A)=\ell_2$, то это означает, что к оператору A существует правый обратный. Зададим правый обратный оператор A_r^{-1} формулами

$$A_r^{-1}e_k = e_{k+1} + \gamma_k e_1, \quad k = 1, 2, \dots,$$

где $\gamma_1, \gamma_2, \ldots$ – некоторые постоянные такие, что $\sum_{k=1}^{\infty} |\gamma_k|^2 < \infty$.

Пусть
$$y \in \ell_2$$
, т. е. $y = \sum_{k=1}^{\infty} y_k e_k$ и $\sum_{k=1}^{\infty} |y_k|^2 < \infty$, тогда

$$A_r^{-1}y = \sum_{k=1}^{\infty} y_k A_r^{-1} e_k = \sum_{k=1}^{\infty} y_k e_{k+1} + e_1 \sum_{k=1}^{\infty} \gamma_k y_k.$$

По неравенству Коши-Буняковского ряд $\sum\limits_{k=1}^{\infty}\gamma_k y_k$ сходится, поэтому $A_r^{-1}\,y\in l_2.$ Заметим, что

$$AA_r^{-1} = I$$
, $AA_r^{-1}e_k = A(e_{k+1} + \gamma_k e_1) = Ae_{k+1} + \gamma_k Ae_1 = e_k$.

Следовательно, оператор A имеет семейство правых обратных операторов.

Если бы к оператору A существовал левый обратный оператор, то $Ker\ A=\{0\}$ или уравнение Ax=0 имело бы только нулевое решение.

Рассмотрим это уравнение. Пусть $x = \sum_{k=1}^{\infty} x_k e_k$, тогда

$$A x = x_1 A e_1 + \sum_{k=2}^{\infty} x_k A e_k = x_1 \cdot 0 + \sum_{k=2}^{\infty} x_k e_{k-1} = 0.$$

Тогда $x = e_1$ является решением этого уравнения.

Следовательно, $Ker\ A = \mathcal{L}\{(e_1)\}$. Это означает, что к оператору не существует левого обратного, а значит и обратного оператора.

 $\Pi p u m e p$ 2. Рассмотрим оператор $A: \ell_2 \to \ell_2$, действующий по формуле

$$Ax = (x_1 + 2x_2, x_1 - x_2, x_3, x_4, \ldots).$$

Проверить, существует ли непрерывный обратный к оператору A Найти A^{-1} .

Pе шение. Очевидно, что оператор A является линейным. Покажем, что оператор A является ограниченным. Действительно,

$$||Ax||^2 = |x_1 + 2x_2|^2 + |x_1 + x_2|^2 + |x_3|^2 + |x_4|^2 + \dots \le$$

$$\leq 2(|x_1|^2 + 4|x_2|^2) + 2(|x_1|^2 + |x_2|^2) + |x_3|^2 + \dots \leq 8\sum_{k=1}^{\infty} |x_k|^2 = 8||x||^2.$$

Рассмотрим решение уравнения Ax=y при любой правой части $y\in\ell_2$. Имеем

$$x_1 + 2x_2 = y_1, x_1 + x_2 = y_2, x_3 = y_3, x_4 = y_4, \dots$$

Откуда

$$x_1 = 2y_2 - y_1, \ x_2 = y_1 - y_2, \ x_i = y_i, \ i = 3, 4, \dots$$

Следовательно, к оператору A существует обратный оператор, который имеет вид

$$x = A^{-1}y = (2y_2 - y_1, y_1 - y_2, y_3, y_4, \ldots).$$

 $\Pi \, p \, u \, m \, e \, p \, \, 3. \,$ Рассмотрим оператор $A:C\left[0,1\right] o C\left[0,1\right]$, действующий по формуле

$$Ax(t) = x(t) + \int_{0}^{1} e^{s+t} x(s) ds.$$

Показать, что оператор A непрерывно обратим. Найти A^{-1} .

Решение. Линейный оператор называется непрерывно обратимым, если $\mathcal{R}(A) = Y$ и существует обратный ограниченный оператор.

Рассмотрим уравнение вида Ax = y и покажем, что для любой правой части $y(t) \in C[0,1]$ существует единственное решение уравнения. Это будет означать, что для оператора A существует A^{-1} . Для нахождения решения используем вырожденность ядра $\mathcal{K}(t,s)$. Итак,

$$x(t) + \int_{0}^{1} e^{t+s} x(s) ds = y(t).$$

Тогда

$$x(t) = y(t) - e^{t} \int_{0}^{1} e^{s} x(s) ds,$$

или

$$x(t) = y(t) - ce^t.$$

Таким образом, если мы определим значение постоянной, то тем самым сможем найти решение исходного интегрального уравнения. Умножим обе части полученного равенства на e^t и проинтегрируем его по отрезку [0,1].

$$\int_{0}^{1} e^{t} x(t) dt = \int_{0}^{1} e^{t} y(t) dt - c \int_{0}^{1} e^{2t} dt.$$

Откуда

$$c = \int_0^1 e^t y(t) dt - c(e^2 - 1) \frac{1}{2}.$$

Полученное уравнение эквивалентно интегральному уравнению. Если данное уравнение имеет единственное решение, то исходное интегральное уравнение также будет однозначно разрешимым. Вычислим постоянную \boldsymbol{c}

$$c = \frac{2}{e^2 + 1} \int_0^1 e^t y(t) dt,$$

тогда

$$x(t) = y(t) - \frac{2}{e^2 + 1} \int_0^1 e^{t+s} y(s) ds.$$

Это означает разрешимость уравнения при любой правой части $y(t) \in C[0,1]$. Следовательно,

$$A^{-1}y(t) = y(t) - \frac{2}{e^2 + 1} \int_0^1 e^{t+s}y(s) ds.$$

Заметим, что это интегральный оператор с непрерывным ядром, который является ограниченным. Таким образом, к оператору A существует ограниченный обратный и $\mathscr{R}(A) = C\left[0,1\right]$, поэтому оператор A непрерывно обратим.

 $\Pi p u M e p 4$. Рассмотрим оператор $A: C[0,1] \to C[0,1]$,

$$Ax(t) = x'(t) + x(t)$$

с областью определения $\mathcal{D}(A) = \{x(t) \in C^1[0,1] : x(0) = 0\}$. Доказать, что A – неограниченный линейный оператор. Доказать, что A непрерывно обратим, найти A^{-1} .

Решение. Оператор A неограничен, так как последовательность $x_n = \sin nt \in \mathcal{D}(A)$ с $||x_n|| = 1$ под действием оператора перейдет в последовательность $Ax_n = n\cos nt + \sin nt$ и $||Ax_n|| \to \infty$ при $n \to \infty$.

Рассмотрим на $\mathcal{D}(A)$ уравнение вида

$$x'(t) + x(t) = y(t)$$

и решим его методом Эйлера с учетом начальных условий

$$x(t) = e^{-t} \int_0^t e^{\tau} y(\tau) d\tau.$$

Значит,

$$A^{-1}: C[0,1] \to \mathscr{D}(A), \quad A^{-1}y(t) = e^{-t} \int_0^t e^{\tau}y(\tau) d\tau.$$

 A^{-1} ограничен, т. е. $\exists \beta>0,$ что $\left|\left|A^{-1}y\right|\right|_{C[0,1]}\leqslant\beta\,||y||_{C[0,1]}$. Действительно,

$$\left|\left|A^{-1}y\right|\right|_{C[0,1]} = \max_{0 \leqslant t \leqslant 1} \left|e^{-t} \int_{0}^{t} e^{\tau} y\left(\tau\right) d\tau\right| \leqslant \max_{0 \leqslant t \leqslant 1} e^{-t} \int_{0}^{1} e^{\tau} \left|y\left(\tau\right)\right| d\tau \leqslant$$

$$\leq \int_{0}^{1} e^{\tau} |y(\tau)| d\tau \leq (e-1) \max_{0 \leq \tau \leq 1} |y(\tau)| = \beta ||y||_{C[0,1]}.$$

Следовательно, A – неограниченный непрерывно обратимый оператор.

 $\Pi\,p\,u\,\textit{м}\,e\,p\,\,5.$ Рассмотрим оператор $A:C\left[0,1\right]\to C\left[0,1\right],$ действующий по формуле

$$Ax(t) = x(t) - \lambda \int_0^t x(s) ds.$$

Доказать, что A непрерывно обратим, найти A^{-1} .

 ${\rm P\,e\, m\,e\, n\, u\, e}.$ Оператор A является интегральным оператором Вольтерра с непрерывным ядром, поэтому A ограничен. Рассмотрим уравнение

$$Ax(t) = y(t)$$

или

$$x(t) - \lambda \int_0^t x(s) ds = y(t).$$

Откуда

$$x(t) = \lambda C(t) + y(t),$$

где $C(t) = \int_0^t x(s) \, \mathrm{d}s$, причем C'(t) = x(t) и C(0) = 0. Следовательно, решение интегрального уравнения Вольтерра равносильно решению следующей задачи Коши для обыкновенного дифференциального уравнения

$$\begin{cases} C'(t) - \lambda C(t) = y(t), \\ C(0) = 0. \end{cases}$$

Решение задачи Коши согласно метода Лагранжа ищем в виде

$$C(t) = f(t) e^{\lambda t}.$$

Продифференцируем полученное равенство по переменной t

$$f'(t) e^{\lambda t} = y(t) \Rightarrow f(t) - f(0) = \int_0^t e^{-\lambda s} y(s) ds \Rightarrow$$
$$\Rightarrow C(t) = e^{\lambda t} \left(f(0) + \int_0^t e^{-\lambda s} y(s) ds \right) \Rightarrow$$

$$C(t) = \int_0^t e^{\lambda(t-s)} y(s) ds \Rightarrow x(t) = \lambda \int_0^t e^{\lambda(t-s)} y(s) ds + y(t).$$

Значит,

$$A^{-1}y(t) = \lambda \int_0^t e^{\lambda(t-s)}y(s) ds + y(t).$$

Это оператор Вольтерра 2-го рода и поэтому он ограничен.

 $\Pi p \, u \, M \, e \, p \, 6$. В гильбертовом пространстве ℓ_2 с ортогональным базисом $\{e_k\}_{k=1}^{\infty}$ рассмотрим оператор A, задаваемый формулами $Ae_k = \alpha_k e_k$, где $\{\alpha_k\}_{k=1}^{\infty}$ – последовательность вещественных чисел. При каком условии на последовательность $\{\alpha_k\}_{k=1}^{\infty}$ оператор A замкнут?

Решение. Рассмотрим два случая:

- 1) Последовательность $\{|\alpha_n|\}$ ограничена. Пусть $C_A = \sup_k |\alpha_k|$, тогда $\|Ax\|^2 \leqslant C_A \cdot \|x\|^2$. Следовательно оператор A ограничен, а значит, и замкнут.
- 2) Последовательность $\{|\alpha_n|\}$ неограничена. Как показано в теме 1 в этом случае оператор A неограничен. Если $\inf_k |\alpha_k| = \beta_A > 0$ (т. е. α_k отделены от нуля положительным числом), то существует A^{-1} , определяемый на элементах $y = \sum_{k=1}^{\infty} y_k e_k \left(\sum_{k=1}^{\infty} |y_k|^2 < \infty\right)$ формулой

$$A^{-1}y = \sum_{k=1}^{\infty} \alpha_k^{-1} y_k e_k.$$

Поскольку $\sup_k \left|\alpha_k^{-1}\right| = \beta_A^{-1} < \infty$, то A^{-1} ограничен $\left(\mathscr{D}\left(A^{-1}\right) = l_2\right)$. Таким образом, условие $\inf_k \left|\alpha_k\right| > 0$ обеспечивает замкнутость оператора A.

 $\Pi p \, u \, m \, e \, p$ 7. Используя метод резольвент, решить интегральное уравнение Вольтерра вида

$$x(t) - \lambda \int_{0}^{t} e^{t-s} x(s) ds = y(t).$$

Решение. В нашем случае $\mathcal{K}(t,s)=e^{t-s}$ и к решению уравнения Вольтерра при любом λ можно применить метод резольвент. Вычислим итерированные ядра

Резольвента $R(t,s;\lambda)$ представляет собой сумму ряда

$$R(t,s;\lambda) = e^{t-s} + e^{t-s} \frac{(t-s)}{1!} + e^{t-s} \frac{(t-s)^2}{2!} + \dots + e^{t-s} \frac{(t-s)^{i-1}}{(i-1)!} + \dots = e^{2(t-s)}.$$

Тогда решение запишется по формуле в виде

$$x(t) = y(t) + \lambda \int_{0}^{t} e^{2(t-s)} y(s) ds.$$

Задание 1. Пусть $A:L\to C[0,1]$ Выяснить, при каких λ к оператору A существует обратный и построить его.

1.1.
$$L = \{x(t) \in C^1[0,1] : x(0) = 0\}, \quad Ax(t) = x'(t) + \lambda x(t);$$

1.2.
$$L = \{x(t) \in C^1[0,1] : x(0) = 0\}, \quad Ax(t) = x'(t) + \lambda t x(t);$$

1.3.
$$L = \{x(t) \in C^1[0,1] : x(0) = 0\}, Ax(t) = x'(t) - \lambda t x(t);$$

1.4.
$$L = \{x(t) \in C^1[0,1] : x(0) = 0\}, \quad Ax(t) = x'(t) + \lambda t^2 x(t);$$

1.5.
$$L = \{x(t) \in C^2[0,1] : x(0) = x(1) = 0\}, Ax(t) = x''(t) + \lambda x(t);$$

1.6.
$$L = \{x(t) \in C^2[0,1] : x'(0) = x(1) = 0\}, Ax(t) = x''(t) + \lambda x(t);$$

1.7.
$$L = \{x(t) \in C^2[0,1] : x(0) = x'(1) = 0\}, Ax(t) = x''(t) + \lambda x(t);$$

1.8.
$$L = \{x(t) \in C^2[0,1] : x'(0) = x'(1) = 0\}, Ax(t) = x''(t) + \lambda x(t);$$

1.9.
$$L = \{x(t) \in C^2[0,1] : x(0) = x(1) = 0\}, Ax(t) = x''(t) - \lambda x(t);$$

1.10.
$$L = \{x(t) \in C^2[0,1] : x(0) = x(1) = 0\}, Ax(t) = x''(t) - \lambda x(t);$$

1.11.
$$L = \{x(t) \in C^3[0,1] : x'(0) = x''(1) = 0\}, Ax(t) = x'''(t) + \lambda x''(t);$$

1.12.
$$L = \{x(t) \in C^3[0,1] : x''(0) = x''(1) = 0\}, Ax(t) = x'''(t) + \lambda x''(t);$$

1.13.
$$L = \{x(t) \in C^3[0,1] : x''(0) = x''(1) = 0\}, Ax(t) = x'''(t) - \lambda tx(t);$$

1.14.
$$L = \{x(t) \in C^3[0,1] : x'(0) = x''(1) = 0\}, Ax(t) = x'''(t) + \lambda x(t).$$

1.15.
$$L = \{x(t) \in C^3[0,1] : x(0) = x''(1) = 0\}, Ax(t) = x'''(t) - \lambda x(t).$$

Задание 2. Пусть $A:C[0,1]\to C[0,1].$ Используя теорему Банаха об обратном операторе, показать, что оператор A непрерывно обратим, найти $A^{-1}.$

2.1.
$$Ax(t) = x(t) + \int_{0}^{1} e^{t-s}x(s) ds;$$

2.2.
$$Ax(t) = x(t) + \int_{0}^{1} (t+s)x(s) ds;$$

2.3.
$$Ax(t) = x(t) + e^t \int_0^1 e^{-s} x(s) ds;$$

2.4.
$$Ax(t) = x(t) + t \int_{0}^{1} sx(s) ds;$$

2.5.
$$Ax(t) = x(t) - 2 \int_{0}^{1} t^{2} sx(s) ds;$$

2.6.
$$Ax(t) = x(t) + \int_{0}^{1} (1+t+s)x(s) ds;$$

2.7.
$$Ax(t) = x(t) + \int_{0}^{1} tsx(s) ds;$$

2.8.
$$Ax(t) = x(t) + 2 \int_{0}^{1} e^{t+s} x(s) ds;$$

2.9.
$$Ax(t) = x(t) + \int_{0}^{1} (s\cos \pi t - 1)x(s) ds;$$

2.10.
$$Ax(t) = x(t) - \int_{0}^{1} t s x(s) ds;$$

2.11.
$$Ax(t) = x(t) + \int_{0}^{1} (1 - ts)x(s) ds;$$

2.12.
$$Ax(t) = x(t) + t \int_{0}^{t} s^{2}x(s) ds;$$

2.13.
$$Ax(t) = x(t) + \int_{0}^{1} \frac{t}{1+s} x(s) \, ds;$$

2.14.
$$Ax(t) = x(t) + \int_{0}^{1} \cos \pi (t - s) x(s) ds;$$

2.15.
$$Ax(t) = x(t) + \int_{0}^{1} (t^2 - 1)sx(s) ds.$$

Задание 3. Проверить, существует ли непрерывный обратный к оператору $A: \ell_2 \to \ell_2$. В случае положительного ответа указать его.

3.1.
$$Ax = (x_1 + x_2 + x_3, x_1 + 2x_2 - x_3, x_1 + x_2 - x_3, x_4, \dots);$$

3.2.
$$Ax = (x_1 + x_2, 2x_2 - x_3, x_1 + x_2 - x_3, x_4, \ldots);$$

3.3.
$$Ax = (x_1 + 2x_2 + 3x_3, x_1 - 2x_2 - x_3, x_1 - x_3, x_4, \dots);$$

3.4.
$$Ax = (x_1 - 2x_2, x_1 - 2x_2 - x_3, x_1 - x_2, x_4, \dots);$$

3.5.
$$Ax = (x_1 + 2x_2, x_1 - x_3, x_1 - 2x_2 + x_3, x_4, \dots);$$

3.6.
$$Ax = (x_1 + 2x_2 - x_3, x_1 - x_2 + 4x_3, x_1 - 2x_2 + x_3, x_4, \ldots);$$

3.7.
$$Ax = (x_1 + x_2 - 2x_3, x_1 - x_2 + 4x_3, x_1 - x_2 + x_3, x_4, \ldots);$$

3.8.
$$Ax = (2x_2 - 3x_3, -x_2 + 4x_3, -5x_3, x_4, \dots);$$

3.9.
$$Ax = (2x_1 + 3x_2 - 2x_3, x_2, x_1 + x_2 + 2x_3, x_4, \dots);$$

3.10.
$$Ax = (x_1 + 2x_2 + 4x_3, 2x_1 + 3x_2 + x_3, x_4, \ldots);$$

3.11.
$$Ax = (x_1 - x_2 + x_3, 2x_1 + x_3, -x_1 + 3x_2 + 2x_3, x_4, \ldots);$$

3.12.
$$Ax = (2x_1 + 3x_2 + 4x_3, x_1 + 2x_2 - 2x_3, x_1 - x_2, x_4, \ldots);$$

3.13.
$$Ax = (x_1 + x_2 + x_3, -x_1 + 2x_3, x_2 - x_3x_4, \ldots);$$

3.14.
$$Ax = (x_1 + 2x_2 + 3x_3, x_2 + 4x_3, x_3x_4, \ldots);$$

3.15.
$$Ax = (x_1 - x_2 + x_3, 2x_1 + 3x_2 + 4x_3, 3x_1 + x_3, x_4, \ldots);$$

Задание 4. Пусть $A: X \to Y$. Какие из операторов A_l^{-1} , A_r^{-1} , A^{-1} существуют? Если A^{-1} существует на $\mathcal{R}(A)$, будет ли A^{-1} ограничен.

4.1.
$$A: l_2 \to l_2, \quad Ax = (x_2, x_3, \ldots);$$

4.2.
$$A: l_2 \to l_2, \quad Ax = \left(x_1, \frac{1}{2}x_2, \dots, \frac{1}{k}x_k, \dots\right);$$

4.3.
$$A: l_2 \to l_2, \quad Ax = \left(\frac{1}{2}x_1, \frac{1}{2^2}x_2, \dots, \frac{1}{2^k}x_k, \dots\right);$$

4.4.
$$A: l_4 \to l_4, \quad Ax = \left(\frac{1}{2}x_1, \frac{1}{2^2}x_2, \dots, \frac{1}{2^k}x_k, \dots\right)$$

4.5.
$$A: l_1 \to l_2, \quad Ax = (x_1, 0, x_2, \dots, x_k, \dots);$$

4.6.
$$A: l_2 \to l_3, \quad Ax = (0, 2x_1, 3x_2, \dots, kx_{k-1}, \dots);$$

4.7.
$$A: l_3 \to l_1, \quad Ax = \left(x_2, 0, x_1, \frac{1}{3^2} x_3, \frac{1}{4^2} x_4, \ldots\right);$$

4.8.
$$A: m \to m, \quad Ax = \left(x_1, \frac{1}{2}x_2, \dots, \frac{1}{k}x_k, \dots\right);$$

4.9.
$$A: m \to l_2, \quad Ax = \left(x_1, \frac{1}{2}x_2, \dots, \frac{1}{2^{k-1}}x_k, \dots\right);$$

4.10.
$$A: l_3 \to l_2, \quad Ax = (x_2, x_3, \ldots);$$

4.11.
$$A: l_3 \to l_2$$
, $Ax = (x_1 + x_2, x_1 - x_2, x_3, x_4, \ldots)$;

4.12.
$$A: l_2 \to l_4$$
, $Ax = (0, 2x_1, 3x_2, \dots, kx_{k-1}, \dots)$;

4.13.
$$A: l_{3/2} \to l_1, \quad Ax = \left(x_3, x_2, x_1, \frac{1}{2^4} x_4, \dots, \frac{1}{2^k} x_k, \dots\right);$$

4.14.
$$A: l_2 \to l_1, \quad Ax = \left(x_2, 0, x_1, \frac{x_3}{3^2}, \dots, \frac{x_k}{k^2}, \dots\right);$$

4.15.
$$A: m \to l_1, \quad Ax = \left(x_1, \frac{1}{2^2} x_2, \dots, \frac{1}{2^k} x_k, \dots\right).$$

Задание 5. Используя метод резольвент, найти решение следующих интегральных уравнений второго рода:

5.1.
$$x(t) - \int_{0}^{t} e^{t-s} x(s) ds = e^{t};$$

5.2.
$$x(t) - 2 \int_{0}^{t} e^{t-s} x(s) ds = \sin t;$$

5.3.
$$x(t) + \int_{0}^{t} 3^{t-s} x(s) \, ds = t3^{t};$$

5.4.
$$x(t) - \int_{0}^{t} \frac{2 + \cos t}{2 + \cos s} x(s) ds = e^{t} \sin t;$$

5.5.
$$x(t) + \int_{0}^{t} e^{t^2 - s^2} x(s) ds = 1 - 2t;$$

5.6.
$$x(t) - 2 \int_{0}^{t} e^{t^2 - s^2} x(s) ds = e^{t^2 + 2t};$$

5.7.
$$x(t) - \int_{0}^{t} \frac{1+t^2}{1+s^2} sx(s) ds = 1+t^2;$$

5.8.
$$x(t) - \int_{0}^{t} \sin(t-s)x(s) ds = \frac{1}{1+t^2};$$

5.9.
$$x(t) - \int_{0}^{t} e^{-(t-s)} \sin(t-s) x(s) ds = e^{-t};$$

5.10.
$$x(t) - \int_{0}^{1} e^{t+s} x(s) ds = y(t);$$

5.11.
$$x(t) - \int_{0}^{\pi/2} \sin t \cos sx(s) ds = y(t);$$

5.12.
$$x(t) - \int_{-1}^{1} te^{s} x(s) ds = y(t);$$

5.13.
$$x(t) - \int_{-1}^{1} t^2 s^2 x(s) ds = y(t);$$

5.14.
$$x(t) - \int_{-1}^{1} tsx(s) ds = y(t);$$

5.15.
$$x(t) - \int_{0}^{1} (1 + (2t - 1)(2s - 1)) x(s) ds = y(t).$$

Задание 6.

- 6.1. Доказать, что линейный ограниченный оператор $A: X \to Y$ замкнут тогда и только тогда, когда $\mathcal{D}(A)$ замкнуто в X;
- 6.2. Доказать, что множество нулей замкнутого оператора является замкнутым множеством;
- 6.3. Пусть $A,B:X\to Y$ линейные операторы, причем A замкнут, B ограничен и $\mathscr{D}(A)\subset \mathscr{D}(B)$. Доказать, что A+B замкнутый оператор.
- 6.4. Пусть $A: X \to Y$ замкнутый линейный оператор, $\mathscr{R}(A)$ замкнуто в Y и существует такая константа $m \in \mathbb{R}$ (m > 0), что для любого $x \in \mathscr{D}(A)$ выполняется неравенство $\|Ax\|_Y \geqslant m\|x\|_X$. Доказать, что A замкнутый оператор.

ТЕМА 3. СОПРЯЖЕННОЕ ПРОСТРАНСТВО

Пусть X — нормированное векторное пространство.

Определение 1. Линейный оператор $f: X \to \mathbb{R}(\mathbb{C})$ называется линейным функционалом. Обозначим его как $f(x), x \in X$. Линейность f означает, что $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y), x,y \in X$, $\alpha,\beta \in \mathbb{R}(\mathbb{C})$. Линейный функционал f называется ограниченным, если для некоторой константы C > 0 выполнено неравенство $|f(x)| \leqslant C ||x||_X$ сразу для всех $x \in X$. Наименьшая из констант C, совпадающая с числом $\sup |f(x)|$, где \sup берется по всем x с ||x|| = 1, называется нормой функционала и обозначается ||f||. Ограниченность функционала эквивалентна его непрерывности.

Рассмотрим множество линейных ограниченных функционалов, определенных на нормированном пространстве X, $\mathscr{B}(X, \mathbb{R})(\mathbb{C}^n)$. Это банахово пространство, так как пространство $\mathbb{R}^n(\mathbb{C}^n)$ банахово. Оно называется conpяжеенным пространством к пространству X и обозначается X^* .

В банаховом пространстве X^* можно рассматривать два типа сходимости.

Определение 2. Последовательность $(f_n)_{n=1}^\infty\subset X^*$ сходится к $f\in X^*$

- cunbho, если $||f_n f|| \xrightarrow[n \to \infty]{} 0$;
- слабо, если $f_n(x) \xrightarrow[n \to \infty]{} f(x)$ для любого $x \in X$.

Примеры линейных ограниченных функционалов

 $\Pi p \, u \, m \, e \, p \, 1$. Пусть $X = \mathbb{R}^n$ с базисом e_1, \ldots, e_n . Возьмем $x \in \mathbb{R}^n$ и разложим его по базису $x = \sum_{k=1}^n x_k e_k$. Рассмотрим линейный функционал f на элементе x, тогда

$$f(x) = f\left(\sum_{k=1}^{n} x_k e_k\right) = \sum_{k=1}^{n} x_k f(e_k) = \sum_{k=1}^{n} x_k y_k = (x, y)_{\mathbb{R}^n},$$

где $y_k = f(e_k)$. $|f(x)| = |(x,y)| \leqslant ||y|| \cdot ||x||$. Значит $||f|| \leqslant ||y||$.

Таким образом, в пространстве \mathbb{R}^n каждый линейный функционал ограничен.

 $\prod p \, u \, m \, e \, p \, 2$. Пусть $X \in C[a,b]$. Рассмотрим функционал $f(x) = \sum_{k=1}^n C_k x(t_k)$, где t_k – система точек на отрезке [a,b]. Примером такого функционала являются конечные разности функции $x(t) \in C[a,b]$. Данный функционал ограничен. Действительно,

$$|f(x)| \le \sum_{k=1}^{n} |C_k||x(t_k)| \le \sum_{k=1}^{n} |C_k| \max_{a \le t \le b} |x(t)|, \quad ||f|| \le \sum_{k=1}^{n} |C_k|.$$

 $\Pi p u m e p 3$. Определим на пространстве C[a,b] функционал вида

$$f(x) = \int_{a}^{b} a(t)x(t) dt,$$

где a(t) — непрерывная либо суммируемая на отрезке [a,b] функция. Примером такого функционала служат коэффициенты Фурье. Данный функционал линеен и ограничим, причем $\|f\| \leqslant \int\limits_a^b a(t) \,\mathrm{d}t$.

Множество линейных ограниченных функционалов, определенных на нормированном пространстве X называется conps женным пространством и обозначается X^* .

В банаховом пространстве X^* можно рассматривать два типа сходимости. Последовательность $(f_n) \subset X^*$ сходится к $f \in X^*$ сильно, если $||f_n - f|| \longrightarrow_{n \to \infty} 0$; слабо, если $f_n(x) \to f(x)$ для любого $x \in X$.

С помощью сопряженного пространства в пространстве X можно ввести новый тип сходимости. Говорят, что последовательность $(x_n) \subset X$ сходится к $x \in X^*$ справедливо $f(x_n) \to f(x)$ при $n \to \infty$.

Теорема 1. (Хана-Банаха). Пусть X – нормированное векторное пространство, X_0 – его подпространство, $f_0: X_0 \to \mathbb{C}$ – линейный ограниченный функционал. Тогда существует ограниченный функционал $f: X \to \mathbb{C}$, продолжающий f_0 , и при том такой, что

$$||f|| = ||f_0||.$$

Следствие 1 (об отделимости точек в X). Пусть X – нормированное пространство и $x_0 \in X$, $x_0 \neq 0$. Тогда существует такой линейный ограниченный функционал в пространстве X, что

- 1. ||f|| = 1;
- $2. \quad f(x_0) = ||x_0||.$

Следствие 2 (об отделимости точки от пространства). Пусть в нормированном пространстве X задано подпространство X_0 и элемент x_0 такой, что $\rho(x_0, X_0) = d > 0$. Тогда существует линейный ограниченный функционал $f \in X^*$, что

- 1. $f(x_0) = 1$;
- 2. f(x) = 0 для всех $x \in X_0$;
- 3. $||f|| = \frac{1}{d}$.

Следствие 3. Множество M всюду плотно в нормированном пространстве X тогда и только тогда, когда для любого функционала $f \in X^*$ такого, что f(x) = 0 для всех $x \in M$ следует, что f = 0, т. е. f(x) = 0, $x \in X$.

Следствие 4. Пусть $\{x_k\}_{k=1}^n$ – линейно-независимая система элементов в нормированном пространстве X. Тогда найдется система $\{f_e\}_{e=1}^n$ – линейных ограниченных функционалов на X такая, что

$$f_l(x_k) = \begin{cases} 1, k = l, \\ 0, k \neq l, k, l = 1, 2, \dots, n. \end{cases}$$

Определение 3. Система $\{x_k\}_{k=1}^n \subset X$ и система функционалов $\{f_l\}_{l=1}^n \subset X^*$ называется биортогональными, если

$$f_e(x_k) = \begin{cases} 1, l = k, 0, l \neq k, \\ k, l = 1, 2, \dots, n. \end{cases}$$

Следствие 5. Пусть $\{f_k\}_{k=1}^n \subset X^*$ – линейно независимая система линейных ограниченных функционалов. Тогда в X найдется система элементов $\{x_l\}_{l=1}^n$, биортогональная к ней.

Сопряженное пространство и его структура.

Теорема 2. (Ф. Рисса). Пусть H – гильбертово пространство. Для любого линейного ограниченного функционала $f \in H^*$ существует единственный элемент $y \in H$ такой, что для всех $x \in H$

$$f(x) = (x,y)_H, \quad ||f||_{H^*} = ||y||_H.$$
 (2.1)

Замечание 1. В силу теоремы Рисса существует сохраняющее норму взаимно однозначное соответствие между H^* и H. Это позволяет отождествить пространства H и H^* .

Теорема 3. (Ф. Рисса). Каждый линейный ограниченный функционал в пространстве C[a,b] задается формулой

$$f(x) = \int_{a}^{b} x(t) \,\mathrm{d}g(t), \tag{2.2}$$

где $g(t) \in \bigvee [a,b]$. При этом

$$||f|| = \bigvee_{a}^{b}(g).$$
 (2.3)

Замечание 2. Функция g по функционалу f определяется неоднозначно. Если же потребовать от g непрерывности слева и задать значение g(a) = 0, то g по f будет определяться однозначно.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u m e p 4$. Доказать, что функционал

$$f(x) = \int_{-1}^{1} x(t) dt - x(0), \quad x(t) \in C[-1,1],$$

является ограниченным, найти его норму.

Решение. В соответствии с определением функционал f является ограниченным, если существует постоянная C>0 такая, что:

$$|f(x)| \le C \cdot ||x||_{C[-1,1]}, \quad \forall x(t) \in C[-1,1].$$

Оценим норму |f(x)|.

$$|f(x)| = \left| \int_{-1}^{1} x(t) dt - x(0) \right| \le \int_{-1}^{1} |x(t)| dt + |x(0)| \le$$

$$\le 2 \max_{t \in [-1,1]} |x(t)| + \max_{t \in [-1,1]} |x(t)| = 3 ||x||.$$

Таким образом, $||f|| \le 3$. С другой стороны, существует последовательность $x_n(t) \in C[-1,1]$, определяемая формулой

$$x_n(t) = \begin{cases} 1, t \in [-1, -1/n], \\ -2nt - 1, t \in [-1/n, 0], \\ 2nt - 1, t \in [0, 1/n], \\ 1, t \in [1/n, 1], \end{cases}$$

 $\left\| x_{n}\left(t\right) \right\| =1$ такой, что

$$|f(x_n)| = \left| \int_{-1}^{-1/n} dt + \int_{-1/n}^{0} t dt + \int_{0}^{1/n} nt dt + \int_{1/n}^{1} dt + 1 \right| = 3 - 1/n \underset{n \to \infty}{\longrightarrow} 3.$$

Таким образом $3 - 1/n \leqslant ||f|| \leqslant 3$, и поэтому ||f|| = 3.

 $\Pi p u m e p 5$. Доказать, что функционал

$$f(x) = \int_{-1}^{0} t^3 x(t) dt - 2 \int_{0}^{1/2} t^2 x(t) dt, \quad x(t) \in L_{3/2}[-1,1],$$

является ограниченным, найти его норму.

Решение. Функционал f является ограниченным, если существует постоянная C>0 такая, что:

$$|f(x)| \le C \cdot ||x||_{L_{3/2}[-1,1]}, \quad \forall x(t) \in L_{3/2}[-1,1].$$

Оценим |f(x)|.

$$|f(x)| = \left| \int_{-1}^{0} t^3 x(t) dt - 2 \int_{0}^{1/2} t^2 x(t) dt \right| \le$$

$$\leqslant \int_{-1}^{1} |t^{3} \chi_{[-1,0]}(t)| |x(t)| dt + 2 \int_{-1}^{1} |t^{2} \chi_{[0,1/2]}(t)| |x(t)| dt =$$

$$= \int_{-1}^{1} (|t^{3}\chi_{[-1,0]}(t)| + 2|t^{2}\chi_{[0,1/2]}(t)|) |x(t)| dt \le$$

$$\le \left(\int_{-1}^{1} (|t^{3}\chi_{[-1,0]}(t)| + 2|t^{2}\chi_{[0,1/2]}(t)|)^{3} dt \right)^{1/3} \left(\int_{-1}^{1} |x(t)|^{3/2} dt \right)^{2/3} =$$

$$= c||x||_{L_{3/2}[-1,1]}.$$

Следовательно, $||f|| \le .$ С другой стороны, существует функция $x(t) \in L_{3/2}[-1,1]$, которая задается формулой

$$x(t) = \begin{cases} t^6, & t \in [-1,0], \\ -2t^{4/3}, & t \in [0,1], \end{cases}$$

для которой

$$||f|| \geqslant \frac{|f(x)|}{||x||_{L_{3/2}[-1,1]}} = c.$$

Таким образом, ||f|| = c.

 $\Pi p u m e p 6$. В соответствии с теоремой Рисса об общем виде линейного ограниченного функционала в гильбертовом пространстве H вычислите норму функционала в пространстве $L_2[-1,1]$:

$$f(x) = \int_{0}^{1/2} \frac{1}{t^{1/3}} x\left(\sqrt{t}\right) dt.$$

Решение. Согласно теореме Рисса существует единственная функция $y(t) \in H$, что $f(x) = (x,y)_H$ для любой функции $x(t) \in H$ и $||f|| = ||y||_H$, где в нашем случае $H = L_2[-1,1]$. Преобразуем выражение для функционала так, чтобы в конечном итоге получить формулу скалярного произведения в пространстве $L_2[-1,1]$.

$$\int_{0}^{1/2} \frac{1}{t^{1/3}} x \left(\sqrt{t} \right) dt = \begin{bmatrix} \sqrt{t} = \tau, \ t = \tau^{2}, \\ dt = 2\tau d\tau \end{bmatrix} = \int_{0}^{1/\sqrt{2}} \frac{1}{\tau^{3/2}} x (\tau) 2\tau d\tau = \int_{0}^{1/\sqrt{2}} \frac{1}{\tau^{3/2}} x (\tau) 2\tau d\tau = \int_{0}^{1/\sqrt{2}} \frac{1}{\tau^{3/2}} x (\tau) d\tau d\tau$$

$$= \int_{0}^{1/\sqrt{2}} 2\tau^{1/3}x(\tau) d\tau = \int_{-1}^{1} 2\tau^{1/3}\chi_{[0,1/\sqrt{2}]}(\tau)x(\tau) d\tau = (x,y)_{L_{2}[-1,1]}.$$

Откуда

$$y(\tau) = \begin{cases} 0, & \tau \in [-1,0), \\ 2\tau^{1/3}, & \tau \in [0,1/\sqrt{2}], \\ 0, & \tau \in (1/\sqrt{2},1], \end{cases}$$

И

$$||f|| = ||y||_{L_2[-1,1]} = \left(\int_{-1}^{1} |y(\tau)|^2 dt\right)^{1/2} = \left(\int_{0}^{1\sqrt{2}} |2\tau^{1/3}|^2 d\tau\right)^{1/2} = 2\frac{3}{4}\tau^{4/3} \left|_{0}^{1/\sqrt{2}} = \frac{3}{2} \left(\frac{1}{\sqrt{2}}\right)^{4/3}.$$

 $\Pi p u m e p$ 7. Вычислить норму функционала в гильбертовом пространстве l_2 по теореме Рисса, если

$$f(x) = \sum_{i=1}^{\infty} \frac{x_i}{k}, \quad x = (x_1, x_2, \dots) \in l_2.$$

Решение. По теореме Рисса об общем виде линейного ограниченного функционала в гильбертовом пространстве существует единственный элемент $y=(y_1,y_2,\ldots)\in l_2$, такой, что $f(x)=(x,y)_{l_2}$ для любого элемента $x\in l_2$. Учитывая, что скалярное произведение в l_2 определяется по формуле $(x,y)=\sum_{k=1}^{\infty}x_ky_k$, заключаем, что $y=\left(1,\frac{1}{2},\frac{1}{3},\ldots,\frac{1}{k},\ldots\right)$. Очевидно, что $y\in l_2$, тогда норма функционала $\|f\|=\|y\|_{l_2}$, т. е.

$$||y||_{l_2} = \left(\sum_{k=1}^{\infty} \left(\frac{1}{k}\right)^2\right)^{1/2} = \left(\sum_{k=1}^{\infty} \frac{1}{k^2}\right)^{1/2} = \frac{\pi}{\sqrt{6}}.$$

Следовательно, $||f|| = \frac{\pi}{\sqrt{6}}$.

 $\Pi p u m e p 8$. Для $x(t) \in C[-1,1]$ положим

$$f(x) = \frac{x(1) + x(-1)}{2} + \int_{-1}^{1} tx(t) dt.$$

Доказать, что f — ограниченный линейный функционал. Найти такую функцию g(t) с ограниченным изменением на [-1,1], что $f(x)=\int_{-1}^1 x(t)\,\mathrm{d}g(t)$.

Решение. Исходя из определения ограниченности функционала, имеем

$$|f(x)| \leq \frac{1}{2} (|x(-1)| + |x(1)|) + \int_{-1}^{1} |t| |x(t)| dt \leq$$

$$\leq \frac{1}{2} (||x||_{C[-1,1]} + ||x||_{C[-1,1]}) +$$

$$+ ||x||_{C[-1,1]} \cdot \int_{-1}^{1} |t| dt = 2 ||x||_{C[-1,1]}, \quad ||f|| \leq 2.$$

Любой ограниченный линейный функционал f, заданный на всем пространстве C[-1,1], может быть представлен в виде интеграла Римана-Стилтьеса

$$f(x) = \int_{-1}^{1} x(t) dg(t),$$

где g(t) – функция с ограниченным изменением на отрезке [-1,1]. При этом норма функционала f равна полному изменению функции g(t), которая является непрерывной слева и g(-1)=0. В нашем случае функция g(t) почти всюду на отрезке [-1,1] дифференцируема и ее производная g'(t)=t, кроме того она имеет скачок в точках t=-1 и t=1. Следовательно,

$$g(t) = \begin{cases} 0, & t = -1, \\ t^2, & -1 < t < 1, \\ 1, & t = 1. \end{cases}$$

и
$$\bigvee_{k=1}^{1} g(t) = \sup_{k} \sum_{k} |g(t_k) - g(t_{k-1})| = 2.$$

 $\Pi p \, u \, m \, e \, p \, 9$. В евклидовом пространстве \mathbb{R}^2 с элементами $x \, (x_1, x_2)$ на подпространстве $L = \left\{ x \in \mathbb{R}^2 : 2x_1 - x_2 = 0 \right\}$ задан линейный функционал $f \, (x) = x_1$. Доказать, что существует единственное продолжение f на все \mathbb{R}^2 с сохранением нормы и найти это продолжение.

Решение. По теореме Хана-Банаха для всякого ограниченного линейного функционала f, заданного на подпространстве L, существует его продолжение на все X с сохранением нормы. Обозначим это продолжение через F(x). В пространстве \mathbb{R}^2 линейный ограниченный функционал имеет вид $F(x) = (x,y) = \alpha x_1 + \beta x_2$, где $y = (\alpha,\beta)$. Тогда на подпространстве L, где $2x_1 - x_2 = 0$, имеем $\alpha x_1 + 2\beta x_1 = x_1$. Поскольку мы строим продолжение с сохранением нормы, то ||F|| = ||f||. Вычислим соответствующие нормы. $||F|| = \sqrt{\alpha^2 + \beta^2}$ вычислена по теореме Рисса. Вычислим ||f||. Поскольку в \mathbb{R}^2 задана евклидова норма, тогда на подпространстве L

$$||x|| = \sqrt{x_1^2 + x_2^2} = \sqrt{x_1^2 + 4x_1^2} = \sqrt{5} |x_1|,$$

a

$$|f(x)| = |x_1| = \frac{1}{\sqrt{5}} ||x||, \text{ T. e. } ||f|| = \frac{1}{\sqrt{5}}.$$

Итак, $\begin{cases} \alpha+2\beta=1,\\ \alpha^2+\beta^2=1/5 \end{cases}$. Решение системы единственно, причем $\alpha=1/5,\ \beta=2/5.$ Это означает, что продолжение единственно и $F\left(x\right)=1/5x_1+2/5x_2.$

 $\Pi p u m e p 10$. Для $x(t) \in L_2[-1,1]$ положим

$$f_n(x) = \int_{-1}^{1} x(t) \cos \pi nt \, dt.$$

- а) Доказать, что f_n ограниченный линейный функционал.
- б) Исследовать последовательность $\{f_n\}_{n=1}^{\infty}$ на сходимость.

Решение. Линейность функционала вытекает из линейности интеграла. По теореме Рисса

$$||f_n|| = ||\cos \pi nt||_{L_2[-1,1]} = \left(\int_{-1}^1 |\cos \pi nt|^2 dt\right)^{1/2} = 1.$$

Последовательность $f_n(x)$ представляет собой последовательность коэффициентов Фурье c_n при разложении четной функции в ряд по ортонормированной системе $\varphi_n(t) = \cos n\pi t$. По теореме о разложении в ряд Фурье имеем: $c_n \to 0$ при $n \to \infty$, поэтому $f_n(x)$ слабо сходится

к нулю. Однако $f_n(x)$ не сходится к нулю сильно, так как $||f_n|| = 1$ и к нулю не стремится при $n \to \infty$.

Задание 1. Выяснить, задает ли следующая формула линейный ограниченный функционал. При положительном ответе вычислить норму f для $x(t) \in L_p[a,b], p \geqslant 1$.

$$1.1. \ f(x) = \int_{0}^{1/2} t^{4/3}x \left(t^{2}\right) dt - \int_{1/4}^{1} tx \left(t\right) dt, \quad x\left(t\right) \in L_{1}[0,1];$$

$$1.2. \ f\left(x\right) = \int_{0}^{1/2} t^{5}x \left(t^{2}\right) dt - \int_{-1}^{0} t^{2}x \left(t\right) dt, \quad x\left(t\right), \quad x\left(t\right) \in L_{3}[-1,1];$$

$$1.3. \ f\left(x\right) = \int_{-1}^{-1/2} tx \left(t^{3}\right) dt - 2 \int_{0}^{1} x \left(\sqrt{t}\right) dt, \quad x\left(t\right) \in L_{3}[-1,1];$$

$$1.4. \ f\left(x\right) = \int_{0}^{1} t^{4}x \left(t^{3}\right) dt - \int_{-1}^{0} tx \left(\sqrt[3]{t}\right) dt, \quad x\left(t\right) \in L_{9/2}[-1,1];$$

$$1.5. \ f\left(x\right) = \int_{0}^{1/2} tx \left(\sqrt[3]{t}\right) dt - \int_{1/2}^{1} tx \left(t\right) dt, \quad x\left(t\right) \in L_{3/2}[0,1];$$

$$1.6. \ f\left(x\right) = \int_{0}^{1/2} \sqrt[3]{t}x \left(\sqrt[3]{t}\right) dt, \quad x\left(t\right) \in L_{7/3}[0,2];$$

$$1.7. \ f\left(x\right) = \int_{0}^{1/2} \sqrt[3]{t}x \left(\sqrt[3]{t}\right) dt, \quad x\left(t\right) \in L_{6/5}[-1,1];$$

$$1.8. \ f\left(x\right) = \int_{0}^{1/2} t^{5/3}x \left(t^{2}\right) dt - \int_{1/2}^{1} tx \left(t\right) dt, \quad x\left(t\right) \in L_{1}[0,1];$$

$$1.9. \ f\left(x\right) = \int_{0}^{1/2} t^{4/3}x \left(t^{3}\right) dt - \int_{1/2}^{1} t^{2}x \left(t\right) dt, \quad x\left(t\right) \in L_{3/2}[0,1];$$

$$1.10. \ f\left(x\right) = \int_{0}^{1/2} tx \left(t^{2}\right) dt - \int_{0}^{1/2} tx \left(t^{2}\right) dt, \quad x\left(t\right) \in L_{3/2}[0,1];$$

$$1.11. \ f\left(x\right) = \int_{0}^{1} t^{2}x \left(\sqrt[3]{t}\right) dt - \int_{0}^{1} tx \left(\sqrt[3]{t}\right) dt, \quad x\left(t\right) \in L_{1}[-1,1];$$

$$1.12. \ f\left(x\right) = \int_{-1}^{0} t^{2}x \left(\sqrt[3]{t}\right) dt - \int_{0}^{1} tx \left(t\right) dt, \quad x\left(t\right) \in L_{3/2}[-1,1];$$

$$1.13. \ f\left(x\right) = \int_{-1}^{0} t^{2}x \left(t^{3}\right) dt - \int_{0}^{1} tx \left(t\right) dt, \quad x\left(t\right) \in L_{3/2}[-1,1];$$

1.14.
$$f(x) = \int_{-1}^{0} x(t) dt - \int_{0}^{1} t^{2}x(t) dt, \quad x(t) \in L_{4}[-1,1];$$

1.15. $f(x) = \int_{0}^{1/2} tx(t^{2}) dt + \int_{1/2}^{1} t^{2}x(t) dt, \quad x(t) \in L_{5/2}[-1,1].$

Задание 2. Используя теорему Рисса об общем виде линейного ограниченного функционала в пространстве непрерывных на отрезке функций, найти норму функционала, если $x(t) \in C[-5,6]$.

2.1.
$$f(x) = x(-4) + 2x(-3) + \int_{-2}^{2} t^2 x(t) dt + x(2) - 2x(4);$$

2.2. $f(x) = 3x(-3) + \int_{-2}^{1} t^2 x(t) dt + 2x(1) - \int_{2}^{4} tx(t) dt - x(5);$
2.3. $f(x) = 2x(-5) - \int_{-3}^{1} tx(t) dt + 3x(1) + \int_{2}^{3} t^2 x(t) dt - x(4);$
2.4. $f(x) = 3x(-4) - \int_{-3}^{0} t^2 x(t) dt + 2x(0) - \int_{1}^{3} tx(t) dt + 5x(3);$
2.5. $f(x) = 4x(-4) + \int_{-4}^{1} tx(t) dt - 2x(-2) + \int_{1}^{3} t^3 x(t) dt + x(2);$
2.6. $f(x) = x(-5) - \int_{-3}^{1} t^2 x(t) dt + 2x(1) + \int_{2}^{3} tx(t) dt - x(3);$
2.7. $f(x) = 3x(-4) + \int_{-4}^{2} (t - 1)^2 x(t) dt + x(2) - 7x(3);$
2.8. $f(x) = 5x(-4) + x(-3) + \int_{-4}^{1} t^2 x(t) dt + x(-2) + 4x(3);$
2.9. $f(x) = 3x(-5) + x(-4) + \int_{-2}^{4} tx(t) dt + x(-2) + 4x(3);$
2.10. $f(x) = 2x(-4) + x(-3) + \int_{-2}^{1} tx(t) dt + 5x(1) - 2x(4);$
2.11. $f(x) = 3x(-4) + x(-3) + \int_{-2}^{1} tx(t) dt - 2x(1) - x(5);$
2.12. $f(x) = x(-4) - 2x(-2) + \int_{-2}^{1} t^2 x(t) dt - 3x(1) + 4x(5);$
2.13. $f(x) = x(-3) + 5x(-1) + \int_{-1}^{1} t^2 x(t) dt + 4x(1) - 2x(3);$

2.14.
$$f(x) = 2x(-4) + 4x(-2) + \int_{-2}^{2} t^2 x(t) dt + 5x(2) - 4x(4);$$

2.15. $f(x) = 3x(-4) - 2x(-2) - \int_{-2}^{1} t^2 x(t) dt + 3x(1) - 4x(4).$

Задание 3. Используя теорему об общем виде линейного ограниченного функционала в гильбертовом пространстве, вычислить норму функционала в $L_2[-1,1]$.

3.1.
$$f(x) = \int_{-1}^{1} tx(t) dt - 2 \int_{0}^{1/2} t^{2}x(t^{2}) dt;$$
3.2.
$$f(x) = \int_{-1}^{1} (t-1)x(t) dt - 4 \int_{0}^{1/4} t^{6}x(t^{4}) dt;$$
3.3.
$$f(x) = \int_{-1}^{1} tx(t) dt - 2 \int_{-1/2}^{1/2} t^{2}x(t) dt;$$
3.4.
$$f(x) = \int_{-1}^{1} t^{2}x(t) dt - 3 \int_{-1/4}^{1/4} t^{6}x(\sqrt[3]{t}) dt;$$
3.5.
$$f(x) = \int_{-1}^{1} (t+1)x(t) dt - 3 \int_{-1/2}^{1/2} t^{2}x(\sqrt[3]{t}) dt;$$
3.6.
$$f(x) = \int_{-1}^{1} (t^{2}+t)x(t) dt - 5 \int_{0}^{1/2} t^{6}x(\sqrt[5]{t}) dt;$$
3.7.
$$f(x) = \int_{-1}^{1} tx(t) dt - 2 \int_{0}^{1/2} t^{5}x(t^{2}) dt;$$
3.8.
$$f(x) = \int_{-1}^{1} (t^{2}-t)x(t) dt - 4 \int_{0}^{1/4} t^{2}x(t^{4}) dt;$$
3.9.
$$f(x) = \int_{-1}^{1} t^{2}x(t) dt - \int_{0}^{1/4} t^{6}x(t^{4}) dt;$$
3.10.
$$f(x) = \int_{-1}^{1} t^{3}x(t) dt - 5 \int_{-1/2}^{1/2} t^{3}x(\sqrt[3]{t}) dt;$$
3.11.
$$f(x) = \int_{0}^{1/2} t^{2}x(t) dt - 2 \int_{0}^{1} t^{6}x(t^{3}) dt;$$
3.12.
$$f(x) = \int_{0}^{1} t^{2}x(t) dt - 3 \int_{0}^{1} tx(\sqrt[3]{t}) dt;$$

3.13.
$$f(x) = 3 \int_{0}^{1} x(t) dt - 3 \int_{-1/2}^{1/2} t^{4}x(t^{3}) dt;$$

3.14. $f(x) = \int_{0}^{1} t^{-1/3}x(t) dt - 9 \int_{-1}^{1} tx(\sqrt[3]{t}) dt;$
3.15. $f(x) = \int_{-1}^{0} t^{3}x(t^{2}) dt + 3 \int_{1/2}^{1} tx(\sqrt{t}) dt.$

Задание 4. Вычислить норму функционала в гильбертовом пространстве l_2 , используя теорему Рисса.

$$4.1.f(x) = x_1 + x_2 - \sum_{k=1}^{\infty} \frac{x_k}{k}, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.2. f(x) = \sum_{k=1}^{\infty} \frac{2x_k}{k} + x_4 + 2x_7, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.3. f(x) = \sum_{k=1}^{\infty} 2^{-k+1}x_k + x_1 + 2x_2, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.4. f(x) = \sum_{k=1}^{\infty} 4^{-k}x_k - x_5 - x_{10}, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.5. f(x) = x_2 - \sum_{k=1}^{20} x_{2k-1}, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.6. f(x) = \sum_{k=1}^{\infty} 4^{-k}x_{k^2} - x_1 - x_2, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.7. f(x) = x_1 + \sum_{k=3}^{\infty} \frac{x_{2k}}{2^k}, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.8. f(x) = \sum_{k=1}^{100} \frac{x_k}{k} - 2 \sum_{k=200}^{300} x_k, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.9. f(x) = 2x_2 - 3x_3 + \sum_{k=5}^{10} \frac{x_k}{5^k}, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.10. f(x) = \sum_{k=1}^{\infty} \frac{x_{3k}}{3^k} - x_1 + 2x_2, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.11. f(x) = x_5 - 2x_1 + \sum_{k=1}^{10} \sqrt{k} \cdot x_k, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.12. f(x) = \sum_{k=1}^{5} \frac{x_k}{2^k} - \sum_{k=3}^{10} \frac{x_k}{k} + x_{10}, \quad x(x_1, x_2, \dots) \in l_2;$$

$$4.13. f(x) = \sum_{k=1}^{\infty} \frac{x_k}{2^k} - \sum_{k=3}^{20} kx_k + x_1, \quad x(x_1, x_2, \dots) \in l_2;$$

4.14.
$$f(x) = x_1 - \sum_{k=1}^{20} \frac{x_{2k}}{4^k}, \quad x(x_1, x_2, \dots) \in l_2;$$

4.15. $f(x) = \sum_{k=1}^{10} x_{k^2} - x_{101}, \quad x(x_1, x_2, \dots) \in l_2.$

Задание 5.

5.1. Для $x(t) \in C^1[-1,1]$ положим

$$f_{\varepsilon}(x) = \frac{1}{2\varepsilon} (x(\varepsilon) - x(-\varepsilon)), \quad f_{0}(x) = x'(0),$$

где $\varepsilon \in \mathbb{R}$, $|\varepsilon| < 1$.

- а) доказать, что f_{ε}, f_0 непрерывные линейные функционалы, найти их нормы.
 - b) исследовать $f_{\varepsilon}\left(x\right)$ на сходимость при $\varepsilon \to 0$.
- 5.2. В пространстве l_2 для $x(x_1,x_2,\ldots)\in l_2$ положим $f_n=x_n$. Исследовать последовательность $\{f_n\}_{n=1}^\infty$ на сходимость.
- 5.3. Для $x(t) \in C[0,1]$ положим $f_n(x) = n \int_0^{1/n} x(t) dt$. Исследовать последовательность $\{f_n\}_{n=1}^{\infty}$ на сходимость.
- 5.4. Построить сопряженное пространство к пространству \mathbb{R}^n , рассмотрев случаи, когда в пространстве \mathbb{R}^n задана кубическая, октаэдрическая нормы.
- 5.5. В пространстве \mathbb{R}^2 с октаэдрической нормой задано подпространство $L = \{(x_1, x_2) | 3x_1 2x_2 = 0\}$. На L задан линейный ограниченный функционал $f_0(x) = x_2$. Продолжить функционал f_0 на всю плоскость с сохранением нормы. Что измениться, если в \mathbb{R}^2 будет задана сферическая норма.
- 5.6. В пространстве \mathbb{R}^2 с кубической нормой задано подпространство $L = \{(x_1, x_2) | x_1 3x_2 = 0\}$. На L задан линейный ограниченный функционал $f_0(x) = x_1$. Продолжить функционал f_0 на всю плоскость с сохранением нормы. Рассмотреть случай, когда в \mathbb{R}^2 будет задана сферическая норма.
- 5.7. В пространстве C[0,1] рассмотрим одномерное подпространство $L = \{\alpha x(t)\}$, порожденное функцией x(t) = t. Продолжить функционал $f_0 = \alpha$, заданный на L, на все пространство C[0,1] с сохранением нормы.

ТЕМА 4. СОПРЯЖЕННЫЕ, САМОСОПРЯЖЕННЫЕ, КОМПАКТНЫЕ ОПЕРАТОРЫ

Пусть X,Y — банаховы пространства, $A:X\to Y$ и $A\in\mathscr{B}(X,Y),$ f — линейный ограниченный, определенный на пространстве Y.

Определение 1. Сопряженным оператором $A^*: Y^* \to X^*$ к линейному ограниченному оператору $A: X \to Y$ называется оператор, действующий по формуле

$$f(Ax) = A^*f(x)$$
 для всех $x \in X, f \in Y^*$. (2.1)

Теорема 1. Сопряженный оператор A^* является линейным ограниченным оператором из Y^* в X^* и $||A^*|| = ||A||$.

Свойство 1.
$$(A + B)^* = A^* + B^*$$
; $(\alpha A)^* = \alpha A^*$.

Свойство 2. $||A|| = ||A^*||$.

Свойство 3. Пусть X = Y. Тогда $(AB)^* = B^*A^*$; $I^* = I$.

Свойство 4. Если оператор A имеет ограниченный обратный A^{-1} , то и A^* также обратим, причем $(A^*)^{-1} = (A^{-1})^*$.

Теорема 2. Пусть X, Y – банаховы пространства, оператор $A: X \to Y$ – линейный ограниченный оператор, $\mathcal{R}(A) \subset Y$ – множество его значений. Тогда замыкание $\mathcal{R}(A)$ совпадает с множеством таким $y \in Y$, что f(y) = 0 для всех функционалов $f \in Y^*$, удовлетворяющих условию $A^*f = 0$.

Следствие 1. Для того, чтобы уравнение Ax=y было разрешимо при заданном y необходимо, а если $\mathcal{R}(A)$ замкнуто, то и достаточно, чтобы любой функционал, удовлетворяющий уравнению $A^*f=0$, на заданном y обращался в нуль.

 $Cnedcmeue\ 2.\$ Для того, чтобы уравнение Ax=y было разрешимо для любого $y\in Y$, необходимо, чтобы уравнение $A^*f=0$ имело только нулевое решение.

Следствие 3. Уравнение $A^*f=0$ имеет только нулевое решение тогда и только тогда, когда $\overline{\mathscr{R}(A)}=Y.$

Сопряженные и самосопряженные операторы в гильбертовых пространствах

Определение 2. Пусть H_1 , H_2 – гильбертовы пространства. Сопряженным оператором к оператору $A: H_1 \to H_2$ называется оператор $A^*: H_2 \to H_1$ такой, что для любых $x \in H_1$, $y \in H_2$ выполняется равенство $(Ax,y)_{H_2} = (x,A^*y)_{H_1}$.

Определение 3. Линейный ограниченный оператор $A: H \to H$ называется самосопряженным, если $A = A^*$, т. е. справедливо тождество $(Ax,y)_H = (x,Ay)_H$ для всех $x,y \in H$. Линейный ограниченный оператор называется унитарным, если $A^* = A^{-1}$. Линейный ограниченный оператор называется нормальным, если $A^*A = AA^*$.

 $\Pi p u M e p 1$. В пространстве $L_2[0,1]$ рассмотрим оператор умножения на функцию, т. е.

$$Ax(t) = a(t)x(t).$$

Тогда

$$(Ax,y) = \int_{0}^{1} Ax(t)\overline{y(t)}dt = \int_{0}^{1} a(t)x(t)\overline{y(t)}dt = \int_{0}^{1} x(t)\overline{a(t)}y(t)dt.$$

Значит, $A^*y(t)=\overline{a(t)}y(t)$. Следовательно, если a(t) – вещественнозначная функция, то $a(t)=\overline{a(t)}$ и оператор A самосопряженный. Если |a(t)|=1 почти всюду, то $\frac{1}{a(t)}=\overline{a(t)}$ и оператор унитарный. Так как $a(t)\overline{a(t)}=\overline{a(t)}a(t)$, то оператор умножения на функцию нормальный.

Функция $\varphi(x,y) = (Ax,y)$ называется билинейной формой, порожденной оператором A. Билинейная форма линейна по первой переменной и антилинейна по второй. По аналогии, $\kappa вадратичной$ формой оператора A будем называть числовую функцию $\varphi(x) = (Ax,x)$.

Определение 4. Оператор $A \in \mathcal{B}(H)$ называется неотрицательным, если порожденная им квадратичная форма неотрицательна, т. е. $(Ax,x)\geqslant 0$ для всех $x\in H$. Неотрицательный оператор обозначается следующим образом: $A\geqslant 0$. Если $A-B\geqslant 0$, то говорят, что $A\geqslant B$.

Теорема 3. Пусть А – самосопряженный оператор в Н. Тогда 1) квадратичная форма принимает только вещественные значе-

1) квадратичная форма принимает только вещественные значения;

2)
$$||A|| = \sup_{||x|| \le 1} |(Ax,x)|.$$

Пусть в H задано подпространство $L \subset H$. Согласно теореме о разложении в прямую сумму гильбертова пространства имеем $H = L \oplus L^{\perp}$ или $x = y + z, \ y \in L, \ z \in L^{\perp}$. Тогда каждому элементу $x \in H$ можно поставить в соответствие единственный элемент $y \in L$ проекцию элемента x на подпространство L. Тем самым определяется отображение или оператор, который называется *ортопроектором* и y = Px.

 ${\it Ceoйcmeo}\ 5.$ Каждый проектор ${\it P}$ является всюду определенным в ${\it H}$ линейным оператором со значениями в ${\it H}.$

Свойство 6. $P \in \mathcal{B}(H)$, причем ||P|| = 1, если $L \neq \{0\}$.

Свойство 7. $P^2 = P$.

Свойство 8. $P = P^*$.

Свойство 9. Оператор проектирования положителен, т. е. $(Px,x) \geqslant 0$ для всех $x \neq 0$.

Свойство 10. $x \in L$ тогда и только тогда, когда ||Px|| = ||x||.

Свойство 11. $(Px,x) \leq ||x||^2$ для любого $x \in H$. $(Px,x) = ||x||^2$ тогда и только тогда, когда $x \in L$.

Теорема 4. Пусть A – самосопряженный оператор в H, причем $A^2=A;$ тогда A – проектор на некоторое подпространство $L\subset H$.

Компактные операторы

Определение 5. Пусть X и Y – банаховы пространства. Линейный оператор $A:X\to Y$ называется компактным, если он отображает всякое ограниченное множество пространства X в предкомпактное множество пространства Y.

Совокупность всех компактных операторов, действующих из X в Y, обозначим символом $\mathcal{K}(X,Y)$.

Определение 6. Линейный оператор $A: X \to Y$ называется компактным, если для любой последовательности $(x_n) \subset B[0,r] \subset X$ последовательность образов (Ax_n) содержит фундаментальную подпоследовательность.

Определение 7. Линейный оператор $A:X\to Y$ называется компактным, если образ A(B) любого шара $B[0,r]\subset X$ является вполне ограниченным в Y множеством.

 $\Pi p \, u \, m \, e \, p \, 2$. Пусть Y — конечномерное банахово пространство, $A: X \to Y, \, A \in \mathcal{B}(X,Y)$. Тогда, A(B) — образ шара B[0,r] пространства X будет ограниченным в Y множеством, и, следовательно, вполне ограниченным.

 $\Pi p \, u \, m \, e \, p \, 3$. Оператор $A \in \mathscr{B}(X,Y)$ называется оператором конечного ранга, если $\dim \mathscr{R}(A) < \infty$, т. е. множество его значений есть конечномерное подпространство пространства Y. В этом случае A(B) является ограниченным множеством в конечномерном пространстве, поэтому предкомпактным, т. е. $A \in \mathscr{K}(X,Y)$.

Таким образом, любой линейный ограниченный оператор конечного ранга компактен. Примером такого оператора служит интегральный оператор Фредгольма с вырожденным ядром, действующий в пространстве C[a,b].

Пример 4. Рассмотрим оператор

$$Ax(t) = \int_{a}^{b} \mathcal{K}(t,s)x(s) \,ds$$
 (2.2)

как оператор, действующий из пространства C[a,b] в пространство C[a,b], ядро которого $\mathcal{K}(t,s)$ непрерывно по совокупности переменных. Покажем, что A(B) предкомпактно в C[a,b]. По теореме Арцела-Асколи мы должны проверить условия равномерной ограниченности и равностепенной непрерывности функций $y(t) = Ax(t) \subset A(B)$.

$$||y||_C = \max_{a \leqslant t \leqslant b} |Ax(t)| = \max_{a \leqslant t \leqslant b} |\int_a^b \mathcal{K}(t,s)x(s) \, \mathrm{d}s| \leqslant$$

$$\leq \max_{a \leq t \leq b} \int_a^b |\mathcal{K}(t,s)x(s)| \, \mathrm{d}s \cdot ||x|| \leq M(b-a)$$
, где $M = \max_{a \leq t, s \leq b} |\mathcal{K}(t,s)|$.

$$|y(t_1) - y(t_2)| \leqslant \int_a^b |\mathcal{K}(t_1, s) - \mathcal{K}(t_2, s)| \, \mathrm{d}s \cdot ||x|| \leqslant \varepsilon(b - a),$$

так как в силу равномерной непрерывности функции $\mathcal{K}(t,s)$ на компакте $[a,b] \times [a,b]$ для любого $\varepsilon > 0$ найдется $\delta(\varepsilon) > 0$ такое, что для всех $t_1,t_2 \in [a,b]: |t_1-t_2| < \delta$ следует, что

$$|\mathcal{K}(t_1,s) - \mathcal{K}(t_2,s)| < \varepsilon.$$

Таким образом, интегральный оператор Фредгольма с непрерывным ядром компактен.

 $\Pi p \, u \, m \, e \, p \, 5$. Тождественный оператор $I: X \to X$ является компактным тогда и только тогда, когда $\dim X < \infty$.

Теорема 5. Пусть $A: X \to Y$ – компактный оператор. Тогда область его значений $\mathcal{R}(A) \subset Y$ сепарабельна.

Теорема 6. Пусть $A_1, A_2 \in \mathcal{K}(X,Y)$. Тогда операторы $A_1 + A_2$, αA_1 , где α – произвольная постоянная, также компактны.

Теорема 7. Пусть $(A_n)_{n=1}^{\infty}$ – последовательность компактных операторов, действующих из X из Y, $(A_n)_{n=1}^{\infty}$ равномерно сходится κ оператору A. Тогда $A \in \mathcal{K}(X,Y)$.

Замечание 3. Если $(A_n)_{n=1}^{\infty} \subset \mathcal{K}(X,Y)$ – последовательность, сходящаяся в каждой точке $x \in X$, то предельный оператор A может оказаться не компактным.

Теорема 8. Пусть $A, B \in \mathcal{B}(X)$. Если хотя бы один из операторов является компактным, то компактным будет и их произведение.

 ${\it Cледствие}\ {\it 4}.\ {\it B}\ {\it бесконечномерном}\ {\it банаховом}\ {\it пространстве}\ {\it X}\ {\it ком-$ пактный оператор ${\it A}$ не может иметь ограниченного обратного.

Теорема 9. Пусть X,Y – банаховы пространства, $A \in \mathcal{K}(X,Y)$. Тогда сопряженный оператор $A^* \in \mathcal{K}(X^*,Y^*)$.

Теорема 10. Пусть H – сепарабельное гильбертово пространство, $A \in \mathcal{B}(H)$. Для того, чтобы $A \in \mathcal{K}(H)$ необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовал номер $n = n(\varepsilon)$ и такие линейные операторы A_1 и A_2 : A_1 – n-мерный, $\|A_2\| < \varepsilon$, что

$$A = A_1 + A_2. (2.3)$$

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u \mathsf{M} e p \ 6$. Пусть $X = Y = \ell_2$ над полем \mathbb{C} . Пусть $x \in \ell_2$ и

$$Ax = (0, \dots, 0, \alpha_1 x_1, \alpha_2 x_2, \dots),$$

где $(\alpha_i)_{i=1}^{\infty}$ – ограниченная последовательность в \mathbb{C} . Построить сопряженный оператор.

Решение. Применяя теорему Рисса об общем виде линейного ограниченного функционала в гильбертовом пространстве, получим

$$f(Ax) = (Ax,y)_{\ell_2} = \sum_{i=1}^{\infty} \alpha_i x_i \overline{y_{i+k}} = \sum_{i=1}^{\infty} x_i \alpha_i \overline{y_{i+k}} = A^* f(x) = (x,z)_{\ell_2},$$

где $z = A^*y$ $z_i = \overline{\alpha_i}y_{i+k}$. Следовательно,

$$A^*y = (\overline{\alpha_1}y_{k+1}, \overline{\alpha_2}y_{k+2}, \ldots).$$

Здесь мы заменили пространство функционалов изоморфным ему пространством, а именно, пространством ℓ_2 .

 $\Pi p u m e p 7$. Рассмотрим в пространстве $L_2[a,b]$ интегральный оператор Фредгольма с ядром $\mathcal{K}(t,s)$, удовлетворяющим условию

$$\int_{a}^{b} \int_{a}^{b} |\mathcal{K}(t,s)|^{2} dt ds < \infty.$$
 (2.4)

Построить сопряженный оператор.

Решение. Поступим, как в предыдущем случае, заменим пространство $(L_2[a,b])^*$ на ему изоморфное $L_2[a,b]$. Получим

$$f(Ax) = (Ax,y)_{L_2[a,b]} = \int_a^b Ax(t)y(t)dt = \int_a^b \left(\int_a^b \mathcal{K}(t,s)x(s)ds\right)y(t)dt =$$

$$= \int_{a}^{b} x(s) \left(\int_{a}^{b} \mathcal{K}(t,s) y(t) dt \right) ds = \int_{a}^{b} x(s) z(s) ds = (x,z) = A^* f(x),$$

где

$$z(t) = A^* y(t) = \int_a^b \mathcal{K}(s,t) y(s) ds.$$
 (2.5)

В цепочке равенств мы использовали теорему Фубини о перемене порядка интегрирования по t и s. Формула (2.5) говорит о том, что сопряженным к интегральному оператору Фредгольма является интегральный оператор с ядром $\mathcal{K}(s,t)$ – транспонированным к исходному $\mathcal{K}(t,s)$.

 $\Pi p \, u \, m \, e \, p \, 8$. В пространстве $L_2[0,1]$ построим сопряженный оператор к интегральному оператору Вольтерра с непрерывным ядром по переменным t и s

$$Ax(t) = \int_{0}^{t} t^{2} sx(s) \, \mathrm{d}s.$$

Построить сопряженный оператор

Решение. По определению сопряженного оператора имеем

$$f(Ax) = (Ax,y)_{L_2[0,1]} = \int_0^1 Ax(t)y(t)dt = \int_0^1 \left(\int_0^t t^2 sx(s)ds\right)dt =$$

$$= \int_{0}^{1} x(s) \left(\int_{s}^{1} t^{2} sy(t) dt \right) ds = \int_{0}^{1} \left(\int_{t}^{1} s^{2} ty(s) ds \right) x(t) dt = (x, A^{*}y).$$

Откуда

$$A^*y(t) = \int_{t}^{1} ts^2 y(s) \, \mathrm{d}s.$$

 $\Pi p u M e p 9$. Рассмотрим интегральное уравнение

$$x(t) - \int_{0}^{1} 4t^2 sx(s) ds = t - a.$$

Выясним, при каких значениях параметра a уравнение разрешимо.

Решение. Запишем сопряженное однородное уравнение

$$u(t) - \int_{0}^{1} 4ts^{2}u(s)ds = 0.$$

Это уравнение с вырожденным ядром и его решением будет функция u(t) = ct, где c – произвольная постоянная. Таким образом, сопряженное однородное уравнение имеет одно линейно независимое решение u(t) = t. Условие разрешимости уравнения примет вид

$$\int_{0}^{1} (t-a)t dt = 0.$$

Отсюда видим, что при $a=\frac{2}{3}$ условие разрешимости выполнено, а при $a\neq\frac{2}{3}$ условие не выполнено, и уравнение решения не имеет.

 $\Pi p \, u \, m \, e \, p \, 10.$ Выяснить, является ли компактным оператор $A: C[0,1] \to C[0,1],$ если

$$Ax(t) = \int_0^1 \frac{x(s)}{\sqrt{(t-s)^2}} ds.$$

Решение. Оператор A задан не на всем пространстве C[0,1]. Действительно, если рассмотреть функцию $x(t)\equiv 1, \forall t\in [0,1]$, то $Ax(t)=\int_0^1 \frac{\mathrm{d}s}{|t-s|}$ и интеграл является расходящимся. Оператор A поэтому не является ограниченным и, следовательно, компактным как отображение из C[0,1] в C[0,1].

 $\Pi p u m e p$ 11. Выяснить, является ли компактным оператор а) $A:C[0,1]\to C[0,1];$ б) $A:L_2[0,1]\to L_2[0,1],$ действующий по формуле

$$Ax(t) = \int_0^1 x(s^2) \, \mathrm{d}s.$$

P е ш е н и е. а). Оператор A является линейным ограниченным ($\|A\|=1$) оператором конечного ранга, следовательно, A – компактным оператор.

б). Исследуем оператор A в пространстве $L_2[0,1]$.

$$\int_0^1 x(s^2) ds = \begin{bmatrix} s^2 = t \\ 2s ds = dt \end{bmatrix} = \int_0^1 \frac{x(t)}{2\sqrt{t}} dt.$$

Покажем, что оператор A неограничен. Рассмотрим последовательность функций $x_n(t)=\frac{t^{1/2n-1/2}}{\sqrt{n}}, t\in[0,1],$ из пространства $L_2[0,1].$ Имеем

$$\int_0^1 \frac{x_n(t)}{2\sqrt{t}} dt = \int_0^1 \frac{t^{1/n-1}}{\sqrt{n}} dt = \sqrt{n} \Rightarrow ||Ax_n|| = \sqrt{n}, \forall n \in \mathbb{N}.$$

Оператор A неограничен и поэтому A не является компактным.

 $\Pi p \, u \, {\it m} \, e \, p \, 12$. Будет ли компактным оператор дифференцирования Ax(t) = x'(t) , если он действует из $C^{(2)}[0,1]$ в C[0,1] .

Решение. Покажем, что A компактный оператор. Пусть $M\subset C^{(2)}[0,1]$ – произвольное ограниченное множество, т. е. $\exists \beta>0,$ что

$$\forall x(t) \in M \Rightarrow ||x||_{C^2[0,1]} = \max_{0 \le t \le 1} |x(t)| + \max_{0 \le t \le 1} |x'(t)| + \max_{0 \le t \le 1} |x''(t)| \le \beta,$$

тогда $\max_t |x'(t)| \leqslant \beta$ и $\max_t |x''(t)| \leqslant \beta, \, \forall x \in M$.

Рассмотрим множество $A(M)=\{x'(t)|x(t)\in M\}$. Тогда каждая функция из A(M) непрерывно дифференцируема и как показано выше A(M) равномерно ограничено. Докажем, что A(M) равностепенно непрерывно. Пусть $\varepsilon>0$ задано, выберем $\delta=\varepsilon/\beta$. Тогда для $\forall t_1,t_2\in[0,1]$, удовлетворяющих неравенству $|t_1-t_2|<\delta$, имеем

$$|x'(t_1) - x'(t_2)| = |x''(\tau)| \cdot |t_1 - t_2| < \beta \delta \leqslant \varepsilon \, (\tau \in [t_1, t_2] \subset [0, 1]).$$

По теореме Арцела множество A(M) предкомпактно, поэтому оператор A компактен.

 $\Pi p \, u \, m \, e \, p \, 13.$ Рассмотрим оператор $A:\ell_2 \to \ell_2,$ определенный с помощью формулы

$$Ax = (\alpha_1 x_1, \alpha_2 x_2, \ldots), \quad x = (x_1, x_2, \ldots) \in \ell_2,$$

где $(\alpha_i)_{i=1}^{\infty}$ — заданная числовая последовательность. Какой должна быть эта последовательность, чтобы оператор A был компактным?

Решение. Мы показывали ранее, что оператор A является ограниченным тогда и только тогда, когда последовательность $(\alpha_n)_{n=1}^{\infty}$ ограничена, т. е. $\exists L>0$, что $|\alpha_i|\leqslant L, \forall i$. Докажем, что оператор A является компактным тогда и только тогда, когда $\lim_{n\to\infty}\alpha_n=0$. Пусть $\lim_{n\to\infty}\alpha_n=0$ и пусть $M\subset l_2$ ограничено, т. е. $\exists \beta>0$, что

$$||x||_{l_2} = \left(\sum_{i=1}^{\infty} |x_i|^2\right)^{1/2} \leqslant \beta, \ \forall x \in M.$$

В этом случае оператор A ограничен, т. е. он отображает ограниченное множество $M \subset \ell_2$ в ограниченное множество $A(M) \subset \ell_2$.. Пусть $\varepsilon > 0$, тогда из условия $\lim_{n \to \infty} \alpha_n = 0$ следует, что

$$\exists n_0 : \forall n > n_0 \Rightarrow |\alpha_n| < \frac{\sqrt{\varepsilon}}{\beta}.$$

Поэтому для $\forall x = (x_1, x_2, \ldots) \in M$ имеем

$$\sum_{j=n_0}^{\infty} |Ax_i|^2 = \sum_{j=n_0}^{\infty} \alpha_i^2 x_i^2 \leqslant \frac{\varepsilon}{\beta^2} \sum_{j=n_0}^{\infty} x_i^2 \leqslant \varepsilon,$$

т. е. согласно критерию предкомпактности в ℓ_2 множество A(M) предкомпактно. Пусть теперь A компактный оператор, тогда он ограничен и, следовательно, последовательность $(\alpha_i)_{i=1}^{\infty}$ также ограничена. Рассмотрим для каждого $n \in N$ вектор $l_n = (0, \dots, 0, 1, 0, ldots) \neq 0, Al_n = \alpha_n l_n$. Следовательно, все числа α_n являются собственными значениями компактного оператора A. Поэтому, $\lim_{n\to\infty} \alpha_n = 0$.

Задание 1. Найти сопряженный оператор A^* к оператору $A: L_2[0,1] \to L_2[0,1]$, действующему по следующим формулам:

1.1.
$$Ax(t) = \int_{0}^{t^{2}} tx(s) ds - \int_{0}^{t} t^{2} sx(s) ds;$$

1.2. $Ax(t) = \begin{cases} x(t), 0 \le t \le \lambda, \\ 0, \lambda < t \le 1, \end{cases}$
1.3. $Ax(t) = x(t^{\alpha}) - 2 \sin tx(t);$
1.4. $Ax(t) = \int_{0}^{t} \cos t s^{4} x(s) ds - \int_{t^{2}}^{t^{3}} \sin t sx(s) ds;$
1.5. $Ax(t) = \int_{0}^{t} \sin t + 1 s^{5} x(s) ds - \int_{t^{2}}^{t} (t+1) sx(s) ds;$
1.6. $Ax(t) = \int_{0}^{1-t} \ln t + 1 s^{5} x(s) ds - \int_{t^{2}}^{t} (t+1) sx(s) ds;$
1.7. $Ax(t) = \int_{0}^{1-t} t s^{3} x(s) ds - \int_{0}^{t} t^{4} s^{3} x(s) ds;$
1.8. $Ax(t) = \int_{t}^{t} t s^{2} x(s) ds - \int_{0}^{t^{2}} t^{5} \cos sx(s) ds;$
1.9. $Ax(t) = \int_{0}^{t} t s^{2} x(s) ds - \int_{0}^{t^{2}} t^{2} sx(s) ds;$
1.10. $Ax(t) = \int_{0}^{t} t s^{5} x(s) ds - \int_{t^{2}}^{t} t^{2} s^{3} x(s) ds;$
1.11. $Ax(t) = \int_{0}^{t} t sx(s) ds - \int_{t^{3}}^{t^{2}} t^{2} s^{3} x(s) ds;$
1.12. $Ax(t) = \int_{t^{3}}^{t} t^{2} x(s) ds - \int_{0}^{t} t sx(s) ds;$
1.13. $Ax(t) = \int_{t}^{t} t^{2} x(s) ds - \int_{0}^{t} \cos t sx(s) ds;$

1.15. $Ax(t) = \int_{a}^{b} tx(s)ds - \int_{a}^{b} \sin ts^{2}x(s)ds.$

Задание 2. Найти сопряженный оператор A^* к оператору $A: \ell_2 \to \ell_2$, действующему по следующим формулам. Будет ли A самосопряженным?

2.1.
$$Ax = (x_2, x_3, ...), x = (x_1, x_2, ...) \in \ell_2;$$

2.2.
$$Ax = (0, x_1, x_2, ...), x = (x_1, x_2, ...) \in \ell_2$$
;

2.3.
$$Ax = (0,0,\alpha_1x_1,\alpha_2x_2,\ldots), \alpha_i \in \mathbb{C}, \ x = (x_1,x_2,\ldots) \in \ell_2;$$

2.4.
$$Ax = (x_1, \dots, x_n, 0, \dots), x = (x_1, x_2, \dots) \in \ell_2;$$

2.5.
$$Ax = (\underbrace{0, \dots, 0}_{n-1}, x_1, \dots), \ x = (x_1, x_2, \dots) \in \ell_2;$$

2.6.
$$Ax = (\alpha_n x_n, \alpha_{n+1} x_{n+1}, \ldots), \alpha_i \in \mathbb{R}, x = (x_1, x_2, \ldots) \in \ell_2;$$

2.7.
$$Ax = (x_1 + x_2, x_2 + x_3, x_3, x_4, \dots), x = (x_1, x_2, \dots) \in \ell_2;$$

2.8.
$$Ax = (x_3, x_1, x_2, x_4, x_5, ...), x = (x_1, x_2, ...) \in \ell_2;$$

2.9.
$$Ax = (-x_1, x_2, -x_3, x_4, \ldots), x = (x_1, x_2, \ldots) \in \ell_2;$$

2.10.
$$Ax = (0, 0, x_3 + x_4, x_4 - x_3, x_5, x_6, \ldots), x = (x_1, x_2, \ldots) \in \ell_2;$$

2.11.
$$Ax = (0, 0, x_1, x_2, ...), x = (x_1, x_2, ...) \in \ell_2;$$

2.12.
$$Ax = (x_2 + x_1, x_1 - x_2, x_4, x_3, x_5, x_6, \ldots), x = (x_1, x_2, \ldots) \in \ell_2;$$

2.13.
$$Ax = (x_1, 0, x_2, 0, \ldots), x = (x_1, x_2, \ldots) \in \ell_2;$$

2.14.
$$Ax = (x_2, 0, x_3, 0, \ldots), x = (x_1, x_2, \ldots) \in \ell_2$$
.

2.15.
$$Ax = (x_1, 0, x_2, 0, \ldots), x = (x_1, x_2, \ldots) \in \ell_2.$$

Задание 3. Являются ли компактными следующие операторы как отображение E в E ?

3.1.
$$E = C[0,1], \quad Ax(t) = x(0) + tx(\frac{1}{2}) + t^2x(1);$$

3.2.
$$E = C[0,1], \quad Ax(t) = x(t^2);$$

3.3.
$$E = C[-1,1], \quad Ax(t) = \frac{1}{2}(x(t) + x(-t));$$

3.4.
$$E = C[0,1], \quad Ax(t) = \int_{0}^{t} \tau x(\tau) d\tau;$$

3.5.
$$E = C[0,1], \quad Ax(t) = \int_{0}^{1} e^{ts} \tau x(s) ds;$$

3.6.
$$E = L_2[0,1], \quad Ax(t) = \int_0^t \tau x(\tau) d\tau;$$

3.7.
$$E = L_2[0,1], \quad Ax(t) = \int_0^1 \frac{x(s)ds}{|t-s|^{\alpha}};$$

3.8.
$$E = L_2[0,1], \quad Ax(t) = \int_0^1 \frac{x(\sqrt{s})}{s^{5/4}} ds;$$

3.9.
$$E = L_2[0,1], \quad Ax(t) = \int_0^1 \frac{x(s)}{\sin(t-s)} ds;$$

3.10.
$$E = C[0,1], \quad Ax(t) = \int_{0}^{1} (s \sin t + s^{2} \cos t)x(s) ds;$$

3.11. $E = L_{2}[0,1], \quad Ax(t) = \int_{0}^{1} \frac{x(s)}{s - 1/2} ds;$
3.12. $E = C[0,1], \quad Ax(t) = \int_{0}^{1} t^{\alpha} s^{\beta} x(s^{\gamma}) ds, \quad \gamma > 0;$
3.13. $E = L_{2}[0,1], \quad Ax(t) = \int_{0}^{1} t^{\alpha} s^{\beta} x(s^{\gamma}) ds, \quad \gamma > 0;$
3.14. $E = C[0,1], \quad Ax(t) = \int_{0}^{1} t sx(s) ds + \sin tx(1).$
3.15. $E = C[0,1], \quad Ax(t) = \int_{0}^{1} t sx(s) ds + \cos tx(0).$

Задание 4. С помощью сопряженного оператора найти необходимые условия разрешимости уравнения Ax=y, если $A:\ell_2\to\ell_2$

```
4.1 Ax = (x_1 - 3x_2, 3x_2 - x_1, x_3 - 2x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.2 Ax = (x_1 + x_2, 3x_2 - x_1, x_3 - 2x_2, x_4 - 2x_3, x_5, x_6, \dots);
4.3 Ax = (x_1 - 3x_2, 3x_2 - x_1, x_3 - 2x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.4 Ax = (x_1 - x_3, x_2 - x_1, x_3 - 2x_4, x_4 - 5x_1, x_5, x_6, \dots);
4.5 Ax = (x_1 - x_2 + x_3, 3x_2 - x_1, x_2 - x_3 - x_4, x_4 - x_2, x_5, x_6, \ldots);
4.6 Ax = (x_1 - x_2, 3x_2 - x_1 - x_3, x_3 - 2x_4, x_4 - 2x_1, x_5, x_6, \dots);
4.7 Ax = (x_1 - x_2 + x_3, 3x_2 - x_1 - x_3, x_3 - x_4, x_4 - 2x_2, x_5, x_6, \dots);
4.8 Ax = (x_1 - x_2 + x_4, 3x_2 - x_1 - x_4, x_3 - x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.9 \ Ax = (x_1 + x_2 + x_3, 3x_2 - x_1, x_3 - 2x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.10 \ Ax = (x_1 - x_2, x_2 - x_1, x_3 - x_2 - 2x_4, x_4 - 2x_3, x_5, x_6, \ldots);
4.11 Ax = (x_1 + 2x_2, 3x_2 + 5x_1, x_1 - x_3 - 2x_4, x_4 - 2x_3, x_5, x_6, \dots);
4.12 Ax = (x_1 + x_2, x_2 + x_1, x_3 - x_4, x_4 - x_3, x_5, x_6, \dots);
4.13 Ax = (x_1 - x_2, x_2 - x_1, x_3 - x_2 - x_4, x_4 - x_3, x_5, x_6, \dots);
4.14 Ax = (x_1, 3x_2 - x_1, x_4 - x_3 - x_2, x_4 - 2x_3, x_5, x_6, \dots)
4.15 Ax = (x_2, 3x_2 - 2x_1, x_4 - x_3 - 2x_2, x_4 - 2x_3, x_5, x_6, \dots)
Задание 5.
```

5.1. В пространстве \mathbb{R}^2 рассмотрим подпространство $L = \{x = (x_1, x_2) | x_1 - 3x_2 = 0\}$ и определим на нем линейный ограниченный функционал вида $f_0(x) = x_2$. Продолжить функционал f_0 на все пространство с сохранением нормы. Рассмотреть случай, когда в пространстве \mathbb{R}^2 задана сферическая, кубическая либо октаэдрическая нормы. Что можно сказать о продолжении?

ТЕМА 5. ТЕОРИЯ РИССА – ШАУДЕРА РАЗРЕШИМО-СТИ УРАВНЕНИЙ С КОМПАКТНЫМ ОПЕРАТОРОМ

Пусть A – компактный оператор, заданный на банаховом пространстве X, т. е. $A \in \mathscr{K}(X)$. Рассмотрим в X линейное уравнение второго рода

$$x - Ax = y. (2.1)$$

Наряду с уравнением (2.1) рассмотрим соответствующее ему однородное уравнение

$$z - Az = 0, (2.2)$$

а также сопряженное к (2.1) уравнение

$$f - A^* f = g \tag{2.3}$$

и однородное сопряженное уравнение

$$h - A^* h = 0. (2.4)$$

По теореме $A^* \in \mathcal{K}(X^*)$.

Теорема 1. Пусть X – банахово пространство, $A \in \mathcal{K}(X)$. Тогда множество значений $\mathcal{R}(I-A)$ оператора I-A замкнуто в X, u, соответственно, множество $\mathcal{R}(I-A^*)$ замкнуто в X^* .

Лемма 5. Пусть x – некоторое решение уравнения (2.1), где $A \in \mathcal{K}(X)$. Тогда существует постоянная m > 0, зависящая лишь от A, что выполняется неравенство:

$$||x - Ax|| = ||y|| \geqslant m||x||. \tag{2.5}$$

Теорема 2 (первая теорема Фредгольма). Пусть X – банахово пространство, $A \in \mathcal{K}(X)$. Тогда следующие утверждения эквивалентны:

- 1) уравнение (2.1) имеет решение при любом $y \in X$;
- 2) уравнение (2.2) имеет только нулевое решение;
- 3) уравнение (2.3) разрешимо при любом $g \in X^*$;
- 4) уравнение (2.4) имеет только нулевое решение.

Eсли выполнено одной из условий 1), 2), 3), 4), то операторы I-A и $I-A^*$ непрерывно обратимы.

Теорема 3 (вторая теорема Фредгольма). Пусть X – банахово пространство, $A \in \mathcal{K}(X)$. Тогда уравнения (2.2) и (2.4) имеют одинаковое конечное число линейно независимых решений.

Теорема 4 (третья теорема Фредгольма). Пусть X – банахово пространство, оператор $A \in \mathcal{K}(X)$. Для того, чтобы уравнение (2.1) имело хотя бы одно решение при заданном y, необходимо и достаточно, чтобы для любого решения h уравнения (2.4) выполнялось условие h(y) = 0.

Пусть X,Y — банаховы пространства. Оператор $A \in \mathcal{B}(X,Y)$ называется фредгольмовым, если

- 1. $dimKer(A) < \infty$;
- 2. $dimKer(A^*) < \infty$;
- 3. образ $\mathcal{R}(A)$ замкнут в Y;

Число n = dim Ker A называется числом нулей оператора A; число $m = dim Ker A^* - \partial e \phi e \kappa m o m$ оператора A; число $ind(A) = n - m - u + \partial e \kappa c o m$ оператора A.

Тогда для уравнения Ax = y, где A – фредгольмов оператор, справедливы теоремы Фредгольма.

Теорема 5 (С.М. Никольского). Пусть X, Y – банаховы пространства, $A \in \mathcal{B}(X,Y)$. Для того, чтобы оператор A был фредгольмовым, необходимо и достаточно, чтобы выполнялось одно из следующих условий:

- 1. A = B + P, где $B \in \mathcal{B}(X,Y)$ непрерывно обратим, $P \in \mathcal{B}(X,Y)$ оператор конечного ранга;
- 2. A=C+T, где $C\in \mathscr{B}(X,Y)$ непрерывно обратим, $T\in \mathscr{B}(X,Y)$ компактен;

Рассмотрим в пространстве $L_2[a,b]$ интегральное уравнение Фредгольма второго рода

$$x(t) - \int_{a}^{b} \mathcal{K}(t,s)x(s) ds = y(t), \qquad (2.6)$$

где

$$\int_{a}^{b} \int_{a}^{b} |\mathcal{K}(t,s)|^{2} ds dt < \infty.$$

Данное уравнение можно записать в виде x - Ax = y, где A – компактный оператор. Рассмотрим соответствующее однородное уравнение

$$x(t) - \int_{a}^{b} \mathcal{K}(t,s)x(s) \, \mathrm{d}s = 0. \tag{2.7}$$

Поскольку $L_2[a,b]$ – гильбертово пространство и $(L_2[a,b])^*$ линейно изоморфно $L_2[a,b]$, то соответствующие сопряженные уравнения можно записать опять же на элементах пространства $L_2[0,1]$.

$$u(t) - \int_{a}^{b} \mathcal{K}(s,t)u(s) \, \mathrm{d}s = g(t). \tag{2.8}$$

$$u(t) - \int_{a}^{b} \mathcal{K}(s,t)u(s) \, \mathrm{d}s = 0. \tag{2.9}$$

Теорема 6 (альтернатива Фредгольма). Пусть $\mathcal{K}(t,s)$ – такое ядро, при котором интегральный оператор компактен в $L_2[a,b]$. Тогда возможны лишь два случая:

- 1. Однородные уравнения (2.7) и (2.9) имеет только нулевые решения; уравнения (2.6) и (2.8) разрешимы для любой правой части и имеют единственные значения.
- 2. Уравнение (2.7) имеет лишь конечное число линейно независимых решений x_1, x_2, \ldots, x_n . Тогда уравнение (2.9) имеет то же количество линейно независимых решений u_1, u_2, \ldots, u_n . Уравнение (2.6) разрешимо, если

$$\int_{a}^{b} u_i(t)y(t) dt = 0, i = 1, 2, \dots, n.$$
 (2.10)

и его решение имеет вид

$$x(t) = \sum_{k=1}^{n} c_k x_k + x_0(t),$$

где c_1, c_2, \ldots, c_n – произвольные постоянные; x_0 – некоторое частное уравнение.

Теорема 7. Пусть $K(t,s) \in C([a,b] \times [a,b])$, тогда для уравнения (2.6) справедлива альтернатива Фредгольма.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 Πp и м е р 1. Найти $\operatorname{Ker} A$ и $\operatorname{Ker} A^*$ для оператора $A:L_2[0,1]\to L_2[0,1]$, действующего по формуле

$$Ax(t) = \int_{0}^{t} x(\tau)d\tau, \quad x(t) \in L_{2}[0,1].$$

Решение. Оператор А является линейным и непрерывным, а сопряженный к нему действует по формуле

$$A^*x(t) = \int_{t}^{1} x(\tau)d\tau, \quad x(\tau) \in L_2[0,1].$$

$$\operatorname{Ker} A^* = \left\{ x(t) \in L_2[0,1] : \int_t^1 x(\tau) d\tau = 0, \ t \in [0,1] \right\}.$$

Продифференцировав по t соотношение $\int_t^1 x(\tau) d\tau = 0$, получим, что x(t) = 0 почти всюду на [0,1]. Поэтому $\operatorname{Ker} A^* = \{0\}$. Аналогично, и ядро оператора A состоит только из нулевых функций.

 $\Pi\,p\,u\,{\it M}\,e\,p$ 2. Рассмотрим оператор $A:C[0,\!1]\to C[0,\!1],$ определенный с помощью равенства

$$Ax(\tau) = \int_{0}^{\tau} x(\tau)d\tau, \quad \forall x(t) \in C[0,1].$$

а). Доказать, что уравнение x-Ax=y имеет решение при любом $y(t)\in C[0,1].$

б). Найти $(I - A)^{-1}$.

Решение. Проверим, что A компактный оператор. Пусть $M \subset C[0,1]$ – ограниченное множество, т. е. $\exists \beta > 0$, что $\|x\| = \max_{0 \leqslant t \leqslant 1} \|x(t)\| \leqslant \beta$,

$$||Ax|| = \max_{0 \leqslant t \leqslant 1} \left\| \int_0^t x(\tau) d\tau \right\| \leqslant \max_{0 \leqslant t \leqslant 1} \int_0^t |x(\tau)| d\tau \leqslant \beta, \quad \forall x(t) \in C[0,1].$$

Значит A(M) – равномерно ограниченное множество. Покажем еще, что A(M) равностепенно-непрерывное множество.

$$|Ax(t_1) - Ax(t_2)| = \left| \int_{t_0}^{t_1} x(\tau) d\tau \right| \le \int_{t_0}^{t_1} |x(\tau)| d\tau \le \max_{0 \le t \le 1} |x(\tau)| |t_1 - t_2| =$$

$$= ||x|| |t_1 - t_2| \le \beta |t_1 - t_2| < \varepsilon, \quad \delta < \frac{\varepsilon}{\beta}.$$

Следовательно, A — компактный оператор. Согласно первой теореме Фредгольма, покажем, что однородное уравнение z(t)-Az(t)=0 имеет только нулевое решение. Из тождества

$$z(t) = \int_{0}^{t} z(\tau) d\tau, \quad (0 \leqslant t \leqslant 1),$$

получаем (после дифференцирования) задачу Коши для обыкновенного дифференциального уравнения первого порядка

$$z'(t) = z(t), \quad z(0) = 0 \Rightarrow z(t) \equiv 0.$$

Задача Коши имеет единственное решение. А значит существует обратный оператор $(I-A)^{-1}:C[0,1]\to C[0,1]$, являющийся линейным и непрерывным. Найдем его, решив уравнение

$$x(t) - \int_{0}^{t} x(\tau)d\tau = y(t), \quad (0 \leqslant t \leqslant 1).$$

Уравнение дифференцировать нельзя, так как функция y(t) лишь непрерывна, и поэтому она не обязана быть дифференцируемой. Ищем решение уравнения в виде $x(t) = y(t) + z(t), 0 \le t \le 1$, где z(t) – новая неизвестная функция, удовлетворяющая условию z(0) = 0. Имеем

$$z(t) = \int_{0}^{t} y(\tau) d\tau + \int_{0}^{t} z(\tau) d\tau, \quad (0 \le t \le 1).$$

Сейчас z(t) дифференцируема и удовлетворяет уравнению z'(t)=y(t)+z(t), z(0)=0. Решая это уравнение методом вариации постоянной, имеем

$$z(t) = e^t \left(c + \int_0^t y(\tau)e^{-\tau} d\tau \right), 0 \leqslant t \leqslant 1.$$

C учетом условия $z(t) = e^t \int_0^t y(\tau) e^{-\tau} d\tau$. Значит,

$$x(t) = y(t) + \int_{0}^{t} e^{t-\tau} y(\tau) d\tau, \quad 0 \leqslant t \leqslant 1.$$

Следовательно, обратный оператор действует по формуле

$$((I - A)^{-1})y(t) = y(t) + \int_{0}^{t} e^{t-\tau}y(\tau)d\tau, \quad 0 \le t \le 1.$$

 $\Pi p \, u \, m \, e \, p \, 3$. Найти решение интегрального уравнения Фредгольма при всех значениях $\lambda \neq 0$ и при всех значениях параметров a и b.

$$x(t) - \lambda \int_{-\pi/2}^{\pi/2} (s \sin t + \cos s) x(s) ds = at + b.$$
 (2.11)

Решение. В соответствии с теоремой Фредгольма рассмотрим следующие уравнения:

$$x(t) - \lambda \int_{-\pi/2}^{\pi/2} (s\sin t + \cos s)x(s)ds = 0,$$
 (2.12)

$$u(t) - \lambda \int_{-\pi/2}^{\pi/2} (t \sin s + \cos t) u(s) ds = g(t), \qquad (2.13)$$

$$u(t) - \lambda \int_{-\pi/2}^{\pi/2} (t \sin s + \cos t) u(s) ds = 0$$
 (2.14)

В альтернативе Фредгольма утверждается, что:

- а) уравнения (2.12)и (2.14) имеют только нулевые решения, уравнения (2.11) и (2.13) разрешимы для любых правых частей;
- б) уравнение (2.12)имеет только конечное число линейно независимых решений x_1, \ldots, x_n , уравнение (2.14) также имеет только n линейно независимых решений u_1, \ldots, u_n . Уравнение (2.11) разрешимо для $y(t) \in L_2[0,1]$ тогда и только тогда, когда

$$\int_{a}^{b} y(t)u_{k}(t)dt = 0, \quad k = 1, 2, \dots n.$$

Рассмотрим решение уравнения (2.12).

$$x(t) = \lambda \sin t \int_{-\pi/2}^{\pi/2} sx(s) ds + \lambda \int_{-\pi/2}^{\pi/2} \cos sx(s) ds = \lambda C_1 \sin t + C_2 \lambda,$$

где

$$C_1 = \int_{-\pi/2}^{\pi/2} sx(s)ds, \quad C_2 = \int_{-\pi/2}^{\pi/2} \cos sx(s)ds.$$

Таким образом, решение уравнения (2.12) нужно искать в виде $x(t) = C_1 \lambda \sin t + C_2 \lambda$, определив C_1 и C_2 из следующей системы:

$$\begin{cases} C_1 = \int_{-\pi/2}^{\pi/2} s(C_1 \lambda \sin s + C_2 \lambda) ds, \\ C_2 = \int_{-\pi/2}^{\pi/2} \cos s(C_1 \lambda \sin s + C_2 \lambda) ds, \\ C_3 = \int_{-\pi/2}^{\pi/2} \cos s(C_1 \lambda \sin s + C_2 \lambda) ds, \end{cases}$$

В соответствии с теорией разрешимости линейных систем, система имеет ненулевое решение относительно C_1 и C_2 в том случае, если ее определитель равен нулю, т. е.

$$\triangle = \left| \begin{array}{cc} 1 - 2\lambda & 0 \\ 0 & 1 - 2\lambda \end{array} \right| = 0.$$

Это значит, что при $\lambda = 1/2$ система имеет ненулевое решение, а при $\lambda \neq 1/2$ $C_1 = C_2 = 0$. Рассмотрим два случая.

а) $\lambda \neq 1/2$ Уравнение (2.12) имеет только нулевое решение, тогда уравнение (2.11) имеет решение при любой правой части, т. е. при $\forall a,b$. Будем его искать в виде:

$$x(t) = C_1 \lambda \sin t + C_2 \lambda + at + b,$$

где

$$\begin{cases} C_1 = \int_{-\pi/2}^{\pi/2} s(C_1 \lambda \sin s + C_2 \lambda) ds, \\ C_2 = \int_{-\pi/2}^{\pi/2} \cos s(C_1 \lambda \sin s + C_2 \lambda) ds. \end{cases}$$

Откуда $C_1 = \frac{\pi^3 a \lambda}{12(1-2\lambda)}$, $C_2 = \frac{2b}{1-2\lambda}$. Получим следующее решение уравнения (2.11) при $\lambda \neq 1/2$:

$$x(t) = \frac{\pi^3 a \lambda^2}{12(1-2\lambda)} \sin t + \frac{2b\lambda}{1-2\lambda} + at + b,$$

 δ) $\lambda = 1/2$. В этом случае мы должны вычислить линейно независимые решения уравнения (2.14).

$$u(t) = \frac{t}{2} \int_{-\pi/2}^{\pi/2} \sin s u(s) ds + \frac{\cos t}{2} \int_{-\pi/2}^{\pi/2} u(s) ds = \frac{t}{2} C_1 + \frac{\cos t}{2} C_2,$$

где

$$C_1 = \int_{-\pi/2}^{\pi/2} \sin s \left(\frac{s}{2} C_1 + \frac{\cos s}{2} C_2\right) ds,$$

$$C_2 = \int_{-\pi/2}^{\pi/2} \left(\frac{s}{2} C_1 + \frac{\cos s}{2} C_2 \right) ds.$$

После вычисления интегралов получим, что линейно независимыми решениями (2.14) будут функции

$$u_1 = t$$
, $u_2 = \cos t$.

Таким образом, уравнение (2.11) разрешимо, если a и b удовлетворяют системе уравнений

$$\begin{cases} \int_{-\pi/2}^{\pi/2} t(at+b)dt = 0, \\ \int_{-\pi/2}^{\pi/2} \int_{-\pi/2}^{-\pi/2} \cos t(at+b)dt = 0. \end{cases}$$

Из решения систем имеем, что a=b=0. При $\lambda=1/2$ уравнение(2.11) разрешимо при a=b=0 и его решение $x(t)=C_2+C_1\sin t$, где C_1 и C_2 – любые константы.

Задание 1. Найти все решения следующих интегральных уравнений при всех значениях $\lambda \neq 0$ и при всех значениях параметров a,b,c, входящих в свободный член этих уравнений.

1.1.
$$x(t) - \lambda \int_{0}^{\pi} \cos(t+s)x(s)ds = a\sin t + b;$$

$$1.2. \ x(t) - \lambda \int_{-1}^{1} (ts+1)x(s) \, \mathrm{d}s = at^2 + bt + c;$$

$$1.3. \ x(t) - \lambda \int_{-1}^{1} (t^2s + s^2t)x(s) \, \mathrm{d}s = at + bt^3;$$

$$1.4. \ x(t) - \lambda \int_{-1}^{1} \frac{1}{2}(ts + s^2t^2)x(s) \, \mathrm{d}s = at + b;$$

$$1.5. \ x(t) - \lambda \int_{-1}^{1} \left(5(ts)^{1/3} + 7(st)^{2/3}\right)x(s) \, \mathrm{d}s = at + bt^{1/3};$$

$$1.6. \ x(t) - \lambda \int_{-1}^{1} \frac{1 + st}{1 + s^2}x(s) \, \mathrm{d}s = a + t + bt^2;$$

$$1.7. \ x(t) - \lambda \int_{-1}^{1} (\sqrt[3]{s} + \sqrt[3]{t})x(s) \, \mathrm{d}s = at^2 + bt + c;$$

$$1.8. \ x(t) - \lambda \int_{-1}^{1} (ts + s^2t + t^2 - 3t^2s^2)x(s) \, \mathrm{d}s = at + b;$$

$$1.9. \ x(t) - \lambda \int_{-1}^{1} (3t + ts - 5s^2t^2)x(s) \, \mathrm{d}s = at;$$

$$1.10. \ x(t) - \lambda \int_{-1}^{1} (3ts + 5s^2t^2)x(s) \, \mathrm{d}s = at^2 + bt;$$

$$1.11. \ x(t) - \lambda \int_{-1}^{1} (t\sin s + \cos t)x(s) \, \mathrm{d}s = a + b\cos t;$$

$$1.12. \ x(t) - \lambda \int_{-1}^{1} (st^2 + s^2t^3)x(s) \, \mathrm{d}s = at^2 + bt + c;$$

$$1.13. \ x(t) - \lambda \int_{-1}^{1} (ts - 1/3)x(s) \, \mathrm{d}s = at + b;$$

$$1.14. \ x(t) - \lambda \int_{-1}^{1} (ts + 2s^2t^2)x(s) \, \mathrm{d}s = at^2 + bt + c;$$

$$1.15. \ x(t) - \lambda \int_{-1}^{1} (ts + 2s^2t^2)x(s) \, \mathrm{d}s = at^2 + bt^4 - c;$$

$$1.16. \ x(t) - \lambda \int_{0}^{1} (s\sin t + \cos s)x(s) \, \mathrm{d}s = at + b - c;$$

$$1.17. \ x(t) - \lambda \int_{0}^{1} \cos(2t + 4s)x(s) \, \mathrm{d}s = e^{at + b};$$

1.18.
$$x(t) - \lambda \int_{-1}^{1} \frac{1+st}{(1+s^2)^{1/2}} x(s) ds = at^2 - (b+c)t + b;$$

1.19. $x(t) - \lambda \int_{-1}^{1} (s^2t + s)x(s) ds = at^2 + b + ct;$
1.20. $x(t) - \lambda \int_{-\pi}^{\pi} (\cos s \sin t + t \cos s)x(s) ds = a + b \sin t;$
1.21. $x(t) - \lambda \int_{-\pi}^{\pi} (t \sin s + \cos t)x(s) ds = (a - b)t + b;$
1.22. $x(t) - \lambda \int_{-1}^{1} (\sqrt[3]{s} + \sqrt[3]{t})x(s) ds = (a + b)t^2 + t - c;$
1.23. $x(t) - \lambda \int_{-1}^{1} \frac{1+ts}{\sqrt{1-s^2}} x(s) ds = at^2 - (b+c)t + b;$
1.24. $x(t) - \lambda \int_{0}^{1} (t+s)x(s) ds = at^2 + b + 1;$
1.25. $x(t) - \lambda \int_{0}^{\pi/2} \cos(2t + 4s)x(s) ds = e^{at+b};$

Задание 2. При каждом значении λ выяснить значения параметров a,b,c, используя сопряженный оператор, при которых существует решение интегрального уравнения в пространстве $L_2[a,b]$

2.1.
$$x(t) - \lambda \int_{0}^{\pi} \sin(t - 2s)x(s) ds = (a - b)t + c;$$

2.2. $x(t) - \lambda \int_{0}^{\pi} \sin(3t + s)x(s) ds = ae^{t}(b + c)t;$
2.3. $x(t) - \lambda \int_{0}^{\pi} \sin(2t + s)x(s) ds = at + c + b \sin t;$
2.4. $x(t) - \lambda \int_{0}^{\pi} \cos(2t + 4s)x(s) ds = e^{at + b};$
2.5. $x(t) - \lambda \int_{0}^{\pi} (t \sin s + \cos t) x(s) ds = at + b;$
2.6. $x(t) - \lambda \int_{0}^{\pi} \cos(2t + s)x(s) ds = a + 2b \cos 2t;$
2.7. $x(t) - \lambda \int_{0}^{\pi} \sin(t + s)x(s) ds = a \cos t + b \sin t + c;$
2.8. $x(t) - \lambda \int_{0}^{\pi} (\cos t \cos s - \cos 2t \cos 2s) x(s) ds = at + bt^{2} + c;$

$$2.9. \ x(t) - \lambda \int_{-1}^{1} \left(1 + s^2 + t^2\right) x(s) \, \mathrm{d}s = at + bt^3;$$

$$2.10. \ x(t) - \lambda \int_{0}^{1} \left(\cos t \cos s + 2 \sin 2t \sin 2s\right) x(s) \, \mathrm{d}s = at + b;$$

$$2.11. \ x(t) - \lambda \int_{0}^{1} \cos(3t + s) x(s) \, \mathrm{d}s = a + b + \sin t;$$

$$2.12. \ x(t) - \lambda \int_{0}^{1} \left[\left(t + 3t + 9t^2 s^2 - 3t^2 - 3s^2\right) x(s) \, \mathrm{d}s = at + b;$$

$$2.13. \ x(t) - \lambda \int_{0}^{1} \left[\left(t + 3t + 9t^2 s^2 - 3t^2 - 3s^2\right) x(s) \, \mathrm{d}s = at + b;$$

$$2.14. \ x(t) - \lambda \int_{0}^{1} \left(t + 3t - 3t^2 s^2 + t^2 + s^2\right) x(s) \, \mathrm{d}s = c + (b + 1)t;$$

$$2.15. \ x(t) - \lambda \int_{0}^{1} \left(t + s - 2ts\right) x(s) \, \mathrm{d}s = at^2 + bt - ct^3;$$

$$2.16. \ x(t) - \lambda \int_{0}^{1} \left(t^2 - ts\right) x(s) \, \mathrm{d}s = at^3 + bt - c;$$

$$2.17. \ x(t) - \lambda \int_{0}^{1} \left(5t^3 s + t^4\right) x(s) \, \mathrm{d}s = at^3 + bt - c;$$

$$2.18. \ x(t) - \lambda \int_{0}^{1} \left(1 - t + 2ts\right) x(s) \, \mathrm{d}s = at + b;$$

$$2.19. \ x(t) - \lambda \int_{0}^{1} \left(t^3 s + t^2 s^2\right) x(s) \, \mathrm{d}s = (a + b)t + ce^t;$$

$$2.20. \ x(t) - \lambda \int_{0}^{1} \left(2ts^3 s + 5t^2 s^2\right) x(s) \, \mathrm{d}s = at + b + ct^2;$$

$$2.21. \ x(t) - \lambda \int_{0}^{1} \left(1 + ts + s^2 + t^2\right) x(s) \, \mathrm{d}s = at + b + ct^2;$$

$$2.22. \ x(t) - \lambda \int_{0}^{1} \left(1 + ts + s^2 + t^2\right) x(s) \, \mathrm{d}s = at + b + ct^2;$$

$$2.23. \ x(t) - \lambda \int_{0}^{1} \sin(t + 3s) x(s) \, \mathrm{d}s = a \cos t + b \sin t + ct;$$

ТЕМА 6. СОБСТВЕННЫЕ ЗНАЧЕНИЯ И СОБСТВЕННЫЕ ВЕКТОРЫ КОМПАКТНОГО ОПЕРАТОРА

Пусть X — нормированное векторное пространство, $A: X \to X$ — линейный оператор.

Определение 1. Число λ называется собственным значением оператора A, если существует ненулевой вектор $x \in X$ такой, что

$$Ax = \lambda x. \tag{2.1}$$

Вектор $x \neq 0$ называется *собственным вектором*, отвечающим собственному значению λ оператора A.

Поскольку наряду с вектором x вектор $cx(c - \text{const}, c \neq 0)$ также является собственным, то собственные векторы можно считать нормированными, например, условием ||x|| = 1.

Максимальное число линейно независимых собственных векторов, отвечающих данному собственному значению, называют *кратностью* этого собственного значения.

Лемма 1. Собственные векторы линейного оператора, отвечающие различным собственным значениям, линейно независимы.

 $\Pi p u M e p 1$. Пусть $A: \mathbb{R}^n \to \mathbb{R}^n$ – линейный оператор, определенный матрицей $(a_{ij}), i,j = \overline{1,n}$. Тогда для нахождения собственных значений оператора A, необходимо, чтобы уравнение $(A - \lambda E)x = 0$ имело нетривиальное решение. Это равносильно тому, что

$$det|A - \lambda E| = 0. (2.2)$$

Уравнение (2.2) называется характеристическим уравнением.

Таким образом, в конечномерном пространстве, собственными значениями линейного оператора являются корнями характеристического уравнения.

Пусть теперь X – банахово пространство, $A: X \to X$ – компактный оператор. Пусть λ – собственное значение оператора A, а X_{λ} – собственное подпространство, состоящее из собственных векторов, отвечающих значению λ .

Теорема 1. Пусть X – банахово пространство, $A \in \mathcal{K}(X)$. Тогда его собственное подпространство X_{λ} , отвечающее собственному значению $\lambda \neq 0$, конечномерно.

Теорема 2. Пусть X – банахово пространство, $A \in \mathcal{K}(X)$. Тогда для любого $\varepsilon > 0$ вне круга $|\lambda| \leqslant \varepsilon$ комплексной плоскости (вещественной оси) может содержаться лишь конечное число собственных значений оператора A.

Следствие 1. Множество значений компактного оператора не более чем счетно и может быть занумеровано в порядке невозрастания модулей $|\lambda_1| \geqslant |\lambda_2| \geqslant$ и $\lambda_n \longrightarrow 0$ при $n \longrightarrow \infty$.

Пример 2. Рассмотрим интегральный оператор Фредгольма

$$Ax(t) = \int_{a}^{b} \mathcal{K}(t,s)x(s) \,ds$$
 (2.3)

с непрерывным комплекснозначным ядром $\mathcal{K}(t,s)$. Будем решать задачу на собственные значения и собственные вектора вида

$$Ax(t) = \int_{a}^{b} \mathcal{K}(t,s)x(s) \, \mathrm{d}s = \lambda x(t). \tag{2.4}$$

Поскольку ядро $\mathcal{K}(t,s)$ непрерывно, то оператор A является компактным. Для (2.4) возможны следующие варианты:

- 1. (2.4) имеет лишь нулевое решение: x(t) = 0 при $\lambda \neq 0$. Это означает, что интегральный оператор не имеет собственных значений отличных от нуля;
- 2. Существует конечное число собственных значений, отличных от нуля;
- 3. Существует последовательность собственных значений λ_n , причем $\lambda_n \to 0$ при $n \to \infty$.

В пространстве $L_2[a,b]$ рассмотрим интегральное уравнение Фредгольма второго рода с комплекснозначным параметром λ

$$x(t) - \lambda \int_{a}^{b} \mathcal{K}(t,s)x(s) ds = y(t).$$
 (2.5)

Будем предполагать, что ядро $\mathcal{K}(t,s)$ интегрального оператора таково, что уравнение (2.5) является уравнением с компактным оператором.

Число $1/\lambda, \lambda \neq 0$ называют *характеристическим числом* интегрального оператора. Тогда альтернатива Фредгольма для уравнения (2.5) может быть сформулирована следующим образом:

Теорема 3. Для того, чтобы уравнение (2.5) было разрешимо для любого $y \in L_2[a,b]$ необходимо и достаточно, чтобы λ не было характеристическим числом интегрального оператора (2.3). Если λ – характеристическое число, то его кратность конечна и $\overline{\lambda}$ является характеристическим числом сопряженного оператора A^* к оператору (2.3) той же кратности. Для разрешимости уравнения (2.5) необходимо и достаточно, чтобы функция y(t) была ортогональна всем собственным функциям оператора A^* , соответствующим собственному значению $1/\overline{\lambda}$. При этом у уравнения (2.5) существует единственное решение, ортогональное всем собственным функциям оператора A, отвечающим собственному значению $1/\lambda$.

Пусть H – гильбертово пространство, $A:H\to H$ – самосопряженный оператор.

Теорема 4 . Все собственные значения самосопряженного оператора в гильбертовом пространстве вещественны. Собственные подпространства H_{λ_1} и H_{λ_2} , отвечающие различным собственным значениям λ_1 и λ_2 , ортогональны.

Теорема 5. Компактный самосопряженный оператор в гильбертовом пространстве имеет по крайней мере одно собственное значение.

 $Cnedcmbue\ 2.$ Если компактный самосопряженный оператор в гильбертовом пространстве H не имеет отличных от нуля собственных значений, то A=0.

Теорема 6 . Все собственные значения компактного самосопряженного оператора $A: H \to H$ расположены на отрезке [m,M], где

$$m = \inf_{\|x\|=1} (Ax,x), \quad M = \sup_{\|x\|=1} (Ax,x).$$
 (2.6)

Подпространство $L \subset H$ назовем *инвариантным* подпространством оператора A, если для любого $x \in L$ имеем $Ax \in L$.

Обозначим через H_n подпространство пространства H, состоящее из элементов $x \in H$, ортогональных первым n собственным векторам оператора A, $(x,x_i)=0$, $i=1,2,\ldots,n$. Для любого $x \in H_n$ вектор $Ax \in H_n$, т. е. $(Ax,x_i)=(x,Ax_i)=\lambda_i(x,x_i)=0$. Это означает, что оператор A можно рассматривать как оператор $A:H_n \to H_n$. При этом он, естественно, является самосопряженным и компактным. Поэтому, по теореме 4,

$$|\lambda_{n+1}| = \sup_{\substack{\|x\|=1\\x\in H_n}} |(Ax,x)|$$

и так далее.

Теорема 7. Пусть A – компактный самосопряженный оператор из H в H, а x – произвольный элемент из H. Тогда элемент $Ax \in H$ разлагается в сходящийся ряд Фурье по системе $\{\varphi_k\}_{k=1}^{\infty}$ собственных векторов оператора A.

 $Cnedcmbue\ 3.$ Если компактный самосопряженный оператор в H имеет обратный, то система его собственных векторов образует базис в H.

 $Cnedcmbue\ 4.$ Если A — компактный самосопряженный оператор в сепарабельном гильбертовом пространстве H, то в H существует ортонормированный базис из собственных векторов оператора A.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

 $\Pi p u M e p 3$. Найти характеристические числа и собственные функции интегрального оператора

$$Ax(t) = \int_{0}^{\pi} \left(\cos^{2} t \cos 2s + \cos 3t \cos^{3} s\right) x(s) ds.$$

Решение. Запишем уравнение для нахождения характеристических чисел и соответствующих им собственных функций интегрального оператора в виде

$$x(t) = \lambda \cos^2 t \int_0^{\pi} \cos 2sx(s) ds + \lambda \cos 3t \int_0^{\pi} \cos^3 sx(s) ds.$$

Обозначим через

$$C_1 = \int_{0}^{\pi} \cos 2sx(s) \, ds, \quad C_2 = \int_{0}^{\pi} \cos^3 sx(s) \, ds.$$

Тогда решение x(t) представимо в виде

$$x(t) = \lambda \cos^2 t C_1 + \lambda \cos 3t C_2.$$

Для определения C_1 и C_2 получим систему линейных уравнений вида

$$C_1 \left(1 - \lambda \int_0^{\pi} \cos^2 s \cos 2s \, ds \right) - C_2 \lambda \int_0^{\pi} \cos 3s \cos 2s \, ds = 0,$$
$$-C_1 \lambda \int_0^{\pi} \cos^5 s \, ds + C_2 \left(1 - \lambda \int_0^{\pi} \cos^3 s \cos 2s \right) ds = 0.$$

Вычисляя интегралы, получим

$$C_1 \left(1 - \lambda \frac{\pi}{4} \right) - C_2 \lambda \cdot 0 = 0,$$

$$-C_1 \lambda \cdot 0 + C_2 \left(1 - \lambda \frac{\pi}{8} \right) = 0.$$

Система имеет ненулевое решение, если ее определитель равен нулю, т. е.

$$\begin{vmatrix} 1 - \frac{\lambda \pi}{4} & 0 \\ 0 & 1 - \frac{\lambda \pi}{8} \end{vmatrix} = \left(1 - \frac{\lambda \pi}{4}\right) \left(1 - \frac{\lambda \pi}{8}\right) = 0.$$

Таким образом, характеристические числа $\lambda_1 = 4/\pi$, $\lambda_2 = 8/\pi$. Для нахождения собственных функций, соответствующих характеристическим числам λ_1 и λ_2 рассмотрим решение системы при $\lambda = \lambda_1$ и $\lambda = \lambda_2$.

Если $\lambda = 4/\pi$, то система имеет вид $C_1 \cdot 0 = 0$; $\frac{1}{2}C_2 = 0$, откуда C_1 – любое. Тогда $x_1(t) = \cos^2 t$ – собственная функция, отвечающая характеристическому числу $\lambda_1 = 4/\pi$. Аналогично, характеристическому числу $\lambda_2 = 8/\pi$ соответствует функция $x_2(t) = \cos 3t$.

 $\Pi p u M e p 4$. Найти характеристические числа и собственные функции однородного уравнения

$$x(t) - \lambda \int_0^{\pi} \mathcal{K}(t, s) x(s) \, \mathrm{d}s = 0,$$

где

$$\mathcal{K}(t,s) = \begin{cases} \cos t \sin s, & 0 \leqslant t \leqslant s, \\ \sin t \cos s, & s \leqslant t \leqslant \pi. \end{cases}$$

Решение уравнения представим в виде

$$x(t) = \lambda \int_{0}^{t} \mathcal{K}(t,s)x(s) ds + \lambda \int_{t}^{\pi} \mathcal{K}(t,s)x(s) ds,$$

ИЛИ

$$x(t) = \lambda \sin t \int_{0}^{t} x(s) \cos s \, ds + \lambda \cos t \int_{t}^{\pi} x(s) \sin s \, ds \qquad (2.7)$$

Дифференцируя обе части (2.7), находим

$$x'(t) = \lambda \cos t \int_{0}^{t} x(s) \cos s \, ds + \lambda \sin t \cos t x(t) -$$

$$-\lambda \sin t \int_{t}^{\pi} x(s) \sin s \, ds - \lambda \sin t \cos t x(t),$$

ИЛИ

$$x'(t) = \lambda \cos t \int_{0}^{t} x(s) \cos s \, ds - \lambda \sin t \int_{t}^{\pi} x(s) \sin s \, ds.$$
 (2.8)

Повторное дифференцирование дает

$$x''(t) = -\lambda \sin t \int_{0}^{t} x(s) \cos s \, ds + \lambda \cos^{2} t x(t) -$$

$$-\lambda \cos t \int_{t}^{\pi} x(s) \sin s \, ds + \lambda \sin^{2} t x(t) =$$

$$= \lambda x(t) - \left[\lambda \sin t \int_{0}^{t} x(s) \cos s \, ds + \lambda \cos t \int_{t}^{\pi} x(s) \sin s \, ds \right].$$

Выражение в квадратных скобках равно x(t), так что

$$x''(t) = \lambda x(t) - x(t).$$

Из равенств (2.7) и (2.8) находим, что

$$x(\pi) = 0, \quad x'(0) = 0.$$

Итак, интегральное уравнение сводится к следующей краевой задаче:

$$x''(t) - (\lambda - 1)x(t) = 0,$$

$$x(\pi) = 0, \quad x'(0) = 0.$$
(2.9)

Здесь возможны три случая.

1. $\lambda-1=0$, или $\lambda=1$. Уравнение (2.9) принимает вид x''(t)=0. Его общее решение будет $x(t)=C_1t+C_2$. Используя краевые условия, получим для нахождения неизвестных C_1 и C_2 систему

$$\begin{cases} C_1 \pi + C_2, \\ C_1 = 0, \end{cases}$$

которая имеет единственное решение $C_1=0, \quad C_2=0,$ а следовательно, интегральное уравнение имеет только тривиальное решение

$$x(t) \equiv 0.$$

2. $\lambda-1>0$ или $\lambda>1$. Общее решение уравнения задачи (2.9) имеет вид

$$x(t) = C_1 \cosh(\sqrt{\lambda - 1} t) + C_2 \sinh(\sqrt{\lambda - 1} t),$$

откуда

$$x'(t) = \sqrt{\lambda - 1} \left(C_1 \sinh\left(\sqrt{\lambda - 1} t\right) + C_2 \cosh\left(\sqrt{\lambda - 1} t\right) \right).$$

Для нахождения значений C_1 и C_2 краевые условия дают систему

$$\begin{cases} C_1 \cosh(\pi\sqrt{\lambda - 1}) + C_2 \sinh(\pi\sqrt{\lambda - 1}) = 0, \\ C_2 = 0. \end{cases}$$

Система имеет единственное решение $C_1=0, \quad C_2=0.$ Интегральное уравнение имеет только тривиальное решение

$$x(t) \equiv 0.$$

3. $\lambda - 1 < 0$ или $\lambda < 1$. Общее решение уравнения (2.9) будет

$$x(t) = C_1 \cos(\sqrt{1-\lambda} t) + C_2 \sin(\sqrt{1-\lambda} t).$$

Отсюда находим, что

$$x'(t) = \sqrt{1-\lambda} \left(-C_1 \sin\left(\sqrt{1-\lambda} t\right) + C_2 \cos\left(\sqrt{1-\lambda} t\right) \right).$$

Краевые условия (2.9) в этом случае дают для нахождения C_1 и C_2 систему

$$\begin{cases} C_1 \cos(\pi \sqrt{1 - \lambda}) + C_2 \sin(\pi \sqrt{1 - \lambda}) = 0, \\ \sqrt{1 - \lambda} C_2 = 0. \end{cases}$$
 (2.10)

Определитель этой системы

$$\triangle(\lambda) = \begin{vmatrix} \cos(\pi\sqrt{1-\lambda}) & \sin(\pi\sqrt{1-\lambda}) \\ 0 & \sqrt{1-\lambda} \end{vmatrix}.$$

Полагая его равным нулю, получим уравнение для нахождения характеристических чисел:

$$\begin{vmatrix} \cos(\pi\sqrt{1-\lambda}) & \sin(\pi\sqrt{1-\lambda}) \\ 0 & \sqrt{1-\lambda} \end{vmatrix} = 0, \tag{2.11}$$

или $\sqrt{1-\lambda}\cos{(\pi\sqrt{1-\lambda})}=0$. По определению $\sqrt{1-\lambda}\neq 0$, поэтому $\cos{(\pi\sqrt{1-\lambda})}=0$. Отсюда находим, что $\pi\sqrt{1-\lambda}=\frac{\pi}{2}+\pi n$, где n- любое целое число. Все корни уравнения (2.11) даются формулой

$$\lambda_n = 1 - \left(n + \frac{1}{2}\right)^2.$$

При значении $\lambda = \lambda_n$ система (2.10) принимает вид

$$\begin{cases} C_1 \cdot 0 = 0, \\ C_2 = 0. \end{cases}$$

Она имеет бесконечное множество ненулевых решений

$$\begin{cases} C_1 = C, \\ C_2 = 0, \end{cases}$$

где C - произвольная постоянная. Значит, интегральное уравнение имеет бесконечное множество решений вида

$$x(t) = C\cos\left(n + \frac{1}{2}\right)t,$$

которые являются собственными функциями этого уравнения.

Итак, характеристические числа и собственные функции интегрального уравнения имеют вид

$$\lambda_n = 1 - \left(n + \frac{1}{2}\right)^2, \quad x_n(t) = \cos\left(n + \frac{1}{2}\right)t,$$

где n — любое целое число.

 $\Pi p u M e p 5$. Решить уравнение

$$x(t) - \lambda \int_{0}^{1} K(t,s)x(s) \, \mathrm{d}s = t$$

с симметричным ядром

$$K(t,s) = \begin{cases} t(s-1), 0 \leqslant t \leqslant s, \\ s(t-1), s \leqslant t \leqslant 1. \end{cases}$$

Pе шение. Найдем характеристические значения и собственные функции этого ядра. Исходя из определения, нужно найти те значения λ_n ,

при которых уравнение $x(t) - \lambda \int_0^1 K(t,s)x(s) ds = 0$ имеет нетривиальные решения $x_n(t)$, и найти функции $x_n(t)$. Для этого перейдем от интегрального уравнения к соответствующему ему дифференциальному уравнению. Поскольку

$$x(t) = \lambda \int_{0}^{t} s(t-1)x(s) ds + \lambda \int_{t}^{1} t(s-1)x(s) ds,$$

то после двукратного дифференцирования обеих частей по t имеем

$$x''(t) - \lambda x(t), \quad x(0) = x(1) = 0.$$

Значит $x(t) = C_1 e^{i\sqrt{\pi}t} + C_2 e^{-i\sqrt{\pi}t}$, тогда

$$\begin{cases} C_1 + C_2, \\ C_1 e^{i\sqrt{\pi}} + C_2 e^{-i\sqrt{\pi}}. \end{cases}$$

Система имеет нетривиальное решение $\lambda_n = -n^2\pi^2, n \in N$, при этом $x_n(t) = \sqrt{2}\sin\pi nt, n \in N$. Воспользуемся теоремой Гильберта-Шмидта о разрешимости уравнений с компактным самосопряженным оператором. Итак, при $\lambda \neq \lambda_n$

$$x(t) = t - \lambda \sum_{n=1}^{\infty} \frac{\sqrt{2}a_n}{\lambda + n^2 \pi^2} \sin \pi nt,$$

где a_n – коэффициенты Фурье функции $f(t)\equiv t$, т. е. $a_n=\int\limits_0^t t\sin\pi nt\,\mathrm{d}t$. Значит,

$$x(t) = t - \frac{2\lambda}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin \pi nt}{n(\lambda + n^2 \pi^2)}.$$

При $\lambda_n = -n^2\pi^2$, $n \in N$, исходное уравнение решений не имеет, поскольку его правая часть f(t) = t не ортогональна всем решениям соответствующего однородного уравнения.

 $\Pi p u M e p 6$. Решить уравнение

$$x(t) - \lambda \int_{0}^{1} \mathcal{K}(t,s)x(s) \, \mathrm{d}s = e^{t}, \qquad (2.12)$$

где

$$\mathcal{K}(t,s) = \begin{cases} \frac{\sinh t \sinh(s-1)}{\sinh 1}, & 0 \leqslant t \leqslant s, \\ \frac{\sinh s \sinh(t-1)}{\sinh 1}, & s \leqslant t \leqslant 1. \end{cases}$$

Решение. Данное уравнение перепишем в виде

$$x(t) = e^t + \lambda \frac{\sinh(t-1)}{\sinh 1} \int_0^t \sinh s \, x(s) \, \mathrm{d}s + \lambda \frac{\sinh(t)}{\sinh 1} \int_t^1 \sinh(s-1) x(s) \, \mathrm{d}s.$$
(2.13)

Дифференцируя дважды, получим

$$x'(t) = e^t + \lambda \frac{\cosh(t-1)}{\sinh 1} \int_0^t \sinh s \, x(s) \, \mathrm{d}s + \lambda \frac{\cosh(t)}{\sinh 1} \int_t^1 \sinh(s-1) x(s) \, \mathrm{d}s,$$

$$x''(t) = e^t + \frac{\lambda \sinh(t-1)}{\sinh 1} \int_0^t \sinh s \, x(s) \, \mathrm{d}s + \lambda \frac{\sinh(t)}{\sinh 1} \int_t^1 \sinh(s-1)x(s) \, \mathrm{d}s + \lambda \frac{\sinh(t)}{h} \int_t^1 \sinh(s-1)x(s) \, \mathrm{d$$

$$+\lambda \frac{\cosh(t-1)}{\sinh 1} \sinh tx(t) - \lambda \frac{\cosh(t)}{\sinh 1} \sinh(t-1)x(t),$$

или

$$x''(t) = x(t) + \lambda x(t).$$

Полагая в (2.13) t=0 и t=1, получим, что x(0)=1, x(1)=e. Искомая функция x(t) является решением неоднородной краевой задачи

$$x''(t) - (\lambda + 1)x(t) = 0,$$

$$x(0) = 1, \quad x(1) = e.$$
(2.14)

Рассмотрим следующие случаи:

1). $\lambda+1=0$, т. е. $\lambda=-1$. Уравнение (2.14) имеет вид x''(t)=0. Его общее решение $x(t)=C_1t+C_2$. Учитывая краевые условия (2.14), получим для нахождения постоянных C_1 и C_2 систему

$$\begin{cases} C_1 = 1, \\ C_1 + C_2 = e, \end{cases}$$

решая которую находим $C_1 = e - 1$, $C_2 = 1$, и, следовательно,

$$x(t) = (e-1)t + 1.$$

2). $\lambda + 1 > 0$, т. е. $\lambda > -1 \quad (\lambda \neq 0)$. Общее решение уравнения (2.14)

$$x(t) = C_1 \cosh(\sqrt{\lambda + 1} t) + C_2 \sinh(\sqrt{\lambda + 1} t).$$

Краевые условия (2.14) дают для нахождения C_1 и C_2 систему

$$\begin{cases} C_1 = 1, \\ C_1 \cosh(\sqrt{\lambda + 1}) + C_2 \sinh(\sqrt{\lambda + 1}) = e, \end{cases}$$

откуда

$$C_1 = 1$$
, $C_2 = \frac{e - \cosh\sqrt{\lambda + 1}}{\sinh\sqrt{\lambda + 1}}$.

Искомая функция x(t) после несложных преобразований приводится к виду

$$x(t) = \frac{\sinh\sqrt{\lambda + 1}(1 - t) + e\sinh\sqrt{\lambda + 1}t}{\sinh\sqrt{\lambda + 1}}.$$

3). $\lambda+1<0$, т. е. $\lambda<-1$. Обозначим $\lambda+1=-\mu^2$. Общим решением уравнения (2.14) будет $x(t)=C_1\cos\mu t+C_2\sin\mu t$. Краевые условия (2.14) дают систему

$$\begin{cases}
C_1 = 1, \\
C_1 \cos \mu + C_2 \sin \mu = e.
\end{cases}$$
(2.15)

Здесь в свою очередь возможны два случая:

1. μ не является корнем уравнения $\sin \mu = 0$. Тогда

$$C_1 = 1, \quad C_2 = \frac{e - \cos \mu}{\sin \mu},$$

и, следовательно,

$$x(t) = \cos \mu t + \frac{e - \cos \mu}{\sin \mu} \sin \mu t,$$

где
$$\mu = \sqrt{-\lambda - 1}$$
.

2. μ является корнем уравнения $\sin \mu = 0$, т. е. $\mu = n\pi$ (n = 1, 2, ...). Система (2.15) несовместна, а следовательно, данное уравнение (2.12) не имеет решений. В этом случае соответствующее однородное интегральное уравнение

$$x(t) - (1 + n^2 \pi^2) \int_{0}^{1} \mathcal{K}(t,s) x(s) \, \mathrm{d}s = 0$$
 (2.16)

имеет нетривиальные решения, т. е. числа $\lambda_n = -(1+n^2\pi^2)$ являются характеристическими числами, а функции $x_n(t) = \sin n\pi t$ – собственными функциями уравнения (2.16).

Задание 1. Найти характеристические числа и собственные функции для следующих однородных интегральных уравнений с вырожденным ядром:

1.1.
$$x(t) - \lambda \int_{0}^{\frac{\pi}{4}} \sin^{2}t \, x(s) \, ds = 0.$$

1.2. $x(t) - \lambda \int_{0}^{2\pi} \sin t \cos s \, x(s) \, ds = 0.$
1.3. $x(t) - \lambda \int_{0}^{2\pi} \sin t \sin s \, x(s) \, ds = 0.$
1.4. $x(t) - \lambda \int_{0}^{\pi} \cos(t+s)x(s) \, ds = 0.$
1.5. $x(t) - \lambda \int_{0}^{1} (45t^{2} \ln s - 9s^{2} \ln t)x(s) \, ds = 0.$
1.6. $x(t) - \lambda \int_{0}^{1} (2ts - 4t^{2})x(s) \, ds = 0.$
1.7. $x(t) - \lambda \int_{-1}^{1} (5ts^{3} + 4t^{2}s)x(s) \, ds = 0.$
1.8. $x(t) - \lambda \int_{-1}^{1} (5ts^{3} + 4t^{2}s + 3ts)x(s) \, ds = 0.$
1.9. $x(t) - \lambda \int_{-1}^{1} (t \cosh s - s \sinh t)x(s) \, ds = 0.$
1.10. $x(t) - \lambda \int_{-1}^{1} (t \cosh s - s^{2} \sinh t)x(s) \, ds = 0.$

1.11.
$$x(t) - \lambda \int_{-1}^{1} (t \cosh s - s \cosh t) x(s) \, ds = 0.$$

1.12. $x(t) - \lambda \int_{-1}^{1} (t s + t^2 s^3) x(s) \, ds = 0.$
1.13. $x(t) - \lambda \int_{-1}^{1} (t^2 \cosh s - s^2 \cosh t) x(s) \, ds = 0.$
1.14. $x(t) - \lambda \int_{-1}^{1} (t^3 \cos s - s^2 \cos t) x(s) \, ds = 0.$
1.15. $x(t) - \lambda \int_{-1}^{1} (t s - \frac{1}{2}) x(s) \, ds = 0.$

Задание 2. В пространстве $L_2[a,b]$ найти решение интегрального уравнения

$$x(t) - \lambda \int_{a}^{b} \mathcal{K}(t,s)x(s) ds = y(t)$$

с помощью разложения в ряд по собственным функциям.

2.1.
$$\mathcal{K}(t,s) = \sin(t+s), \ f(t) = t + \sin t, \ x(t) \in L_2[0,\frac{\pi}{2}];$$

2.2.
$$\mathcal{K}(t,s) = \cos(t+s), \ f(t) = \cos t + 1, \ x(t) \in L_2[0,\pi];$$

2.3.
$$\mathcal{K}(t,s) = \sin(t+s), \ f(t) = t+1, \ x(t) \in L_2[0,\pi];$$

2.4.
$$\mathcal{K}(t,s) = e^{t+s}, \ f(t) = te^t, \ x(t) \in L_2[0,1];$$

2.5.
$$\mathcal{K}(t,s) = ts + t^2s^2$$
, $f(t) = t^2 + t + 1$, $x(t) \in L_2[-1,1]$;

2.6.
$$\mathcal{K}(t,s) = \cos^2(t-s), \ f(t) = \sin 2t + 1, \ x(t) \in L_2[-\pi,\pi];$$

2.7.
$$\mathcal{K}(t,s) = \cos(t+s), f(t) = t^2, x(t) \in L_2[0,\frac{\pi}{2}];$$

2.8.

$$\mathcal{K}(t,s) = \begin{cases} t(s-1), 0 \le t \le s, \\ (s+1)t, s \le t \le 1. \end{cases} \quad f(t) = \cos \pi t, \ x(t) \in L_2[0,1];$$

2.9.

$$\mathcal{K}(t,s) = \begin{cases} (t+1)s, 0 \le t \le s, \\ s-t, s \le t \le 1, \end{cases} \quad f(t) = t^3 - t^2, \ x(t) \in L_2[0,1];$$

2.10.

$$\mathcal{K}(t,s) = \begin{cases} t(s-1), t \leq s, \\ s(t-1), s \leq t, \end{cases} \quad f(t) = \sin \pi t, \ x(t) \in L_2[0,1];$$

2.11.
$$\mathcal{K}(t,s) = \min(t,s), \ f(t) = \sin \pi t, \ x(t) \in L_2[0,1];$$

2.12.
$$\mathcal{K}(t,s) = 2\cos(t-s), \ f(t) = t^2 + t + 1, \ x(t) \in L_2[0,\pi];$$

2.13.
$$\mathcal{K}(t,s) = ts$$
, $f(t) = t$, $x(t) \in L_2[0,1]$;

2.14.

$$\mathcal{K}(t,s) = \begin{cases} \sin t \cos s, t \leq s, \\ \cos t \sin s, s \leq t, \end{cases} \quad f(t) = t, \ x(t) \in L_2\left[0, \frac{\pi}{2}\right];$$

2.15.

$$\mathcal{K}(t,s) = \begin{cases} t(s+1), t \leq s, \\ s(t+1), s \leq t, \end{cases} \quad f(t) = t, \ x(t) \in L_2[0,1];$$

2.16.

$$\mathcal{K}(t,s) = \begin{cases} (t+1)(s-2), t \leq s, \\ (s+1)(t-2), s \leq t, \end{cases} \quad f(t) = \sin 2t, \ x(t) \in L_2[0,1];$$

2.17.

$$K(t,s) = \begin{cases} \sin t \sin(s-1), t \leq s, \\ \sin s \sin(t-1), s \leq t, \end{cases} \quad f(t) = t - 1, \ x(t) \in L_2[-\pi, \pi];$$

2.18.

$$\mathcal{K}(t,s) = \begin{cases} \sin t \sin(s-1), t \leqslant s, \\ \sin s \sin(t-1), s \leqslant t, \end{cases} \quad f(t) = \cos 3t, \ x(t) \in L_2[0,\pi];$$

2.19.

$$\mathcal{K}(t,s) = \begin{cases} t(s-1), t \leq s, \\ s(t-1), s \leq t, \end{cases} \quad f(t) = t - 1, \ x(t) \in L_2[0,1];$$

2.20.
$$\mathcal{K}(t,s) = \cos(t+s), \ f(t) = \sin t, \ x(t) \in L_2[0,\pi];$$

2.21. $\mathcal{K}(t,s) = s^{1/3} + t^{1/3}, \ f(t) = t^2 + 1, \ x(t) \in L_2[-1,1];$

2.21.
$$\mathcal{K}(t,s) = s^{1/3} + t^{1/3}, \ f(t) = t^2 + 1, \ x(t) \in L_2[-1,1];$$

2.22.
$$K(t,s) = t^2s + s^2t$$
, $f(t) = t + 1$, $x(t) \in L_2[-1,1]$.

Задание 3. Решить следующие неоднородные интегральные симметричные уравнения:

3.1.
$$x(t) - \frac{\pi^2}{4} \int_0^1 \mathcal{K}(t,s) x(s) \, ds = \frac{t}{2}$$

$$\mathcal{K}(t,s) = \begin{cases} \frac{t(2-s)}{2}, 0 \leqslant t \leqslant s, \\ \frac{s(2-t)}{2}, s \leqslant t \leqslant 1. \end{cases}$$

3.2.
$$x(t) + \int_{0}^{1} \mathcal{K}(t,s)x(s) ds = te^{t},$$

$$\mathcal{K}(t,s) = \begin{cases} \frac{\sinh t \sinh(s-1)}{\sinh 1}, 0 \leqslant t \leqslant s, \\ \frac{\sinh s \sinh(t-1)}{\sinh 1}, s \leqslant t \leqslant 1. \end{cases}$$

3.3.
$$x(t) - \int_{0}^{1} \mathcal{K}(t,s)x(s) ds = t - 1,$$

$$\mathcal{K}(t,s) = \begin{cases} t - s, 0 \leqslant t \leqslant s, \\ s - t, s \leqslant t \leqslant 1. \end{cases}$$

3.4.
$$x(t) - \int_{0}^{\frac{\pi}{2}} \mathcal{K}(t,s)x(s) \, ds = \cos 2t,$$

$$\mathcal{K}(t,s) = \begin{cases} \sin t \cos s, 0 \leqslant t \leqslant s, \\ \sin s \cos t, s \leqslant t \leqslant \frac{\pi}{2}. \end{cases}$$

3.5.
$$x(t) + 2 \int_{0}^{\pi} \mathcal{K}(t,s)x(s) ds = 1,$$

$$\mathcal{K}(t,s) = \begin{cases} \sin t \cos s, 0 \leqslant t \leqslant s, \\ \sin s \cos t, s \leqslant t \leqslant \pi. \end{cases}$$

3.6.
$$x(t) - 8 \int_{0}^{\pi} \mathcal{K}(t,s) x(s) ds = 1,$$

$$\mathcal{K}(t,s) = \begin{cases} \sin t \cos s, 0 \leqslant t \leqslant s, \\ \sin s \cos t, s \leqslant t \leqslant \pi. \end{cases}$$

3.7.
$$x(t) - 4 \int_{0}^{1} \mathcal{K}(t,s) x(s) ds = t$$
,

$$\mathcal{K}(t,s) = \begin{cases} (t+1)(s-3), 0 \le t \le s, \\ (s+1)(t-3), s \le t \le 1. \end{cases}$$

3.8.
$$x(t) + 9 \int_{0}^{1} \mathcal{K}(t,s)x(s) ds = t,$$

$$\mathcal{K}(t,s) = \begin{cases} (t+1)(s-3), 0 \le t \le s, \\ (s+1)(t-3), s \le t \le 1. \end{cases}$$

3.9.
$$x(t) - \int_{0}^{\pi} \mathcal{K}(t,s)x(s) ds = \sin t$$
,

$$\mathcal{K}(t,s) = \begin{cases} \sin(t + \frac{\pi}{4})\cos(s - \frac{\pi}{4}), 0 \leqslant t \leqslant s, \\ \sin(s + \frac{\pi}{4})\cos(t - \frac{\pi}{4}), s \leqslant t \leqslant \pi. \end{cases}$$

3.10.
$$x(t) - \int_{0}^{1} \mathcal{K}(t,s)x(s) ds = \sinh t$$
,

$$\mathcal{K}(t,s) = \begin{cases} -e^{-s} \sinh t, & 0 \le t \le s, \\ -e^{-t} \sinh s, & s \le t \le 1. \end{cases}$$

3.11.
$$x(t) + 2 \int_{0}^{1} \mathcal{K}(t,s)x(s) ds = \cosh t$$
,

$$\mathcal{K}(t,s) = \begin{cases} \frac{\cosh t \cosh(s-1)}{\sinh 1}, 0 \leqslant t \leqslant s, \\ \frac{\cosh s \cosh(t-1)}{\sinh 1}, s \leqslant t \leqslant 1. \end{cases}$$

3.12.
$$x(t) - 4 \int_{0}^{\pi} |t - s| x(s) ds = 1,$$

3.13.
$$x(t) - 16 \int_{0}^{\pi} |t - s| x(s) ds = 1.$$

3.14.
$$x(t) - \int_{0}^{1} \sin s \sin t \, x(s) \, ds = 1 - \sin t.$$

3.15.
$$x(t) - \int_{0}^{1} \cos s \cos t \, x(s) \, ds = \cos t.$$