Assignment 5

Controllo robusto e adattativo

Modello Simulink

Istruzioni per l'esecuzione

Definizione dei parametri di simulazione tramite script Matlab.

I parametri E_1 , E_2 , $freq_1$, $freq_2$ possono essere cambiati per variare il riferimento in ingresso r.

La matrice Γ può essere variata ma deve essere definita positiva.

```
Assignment5Mat.m ×
        % Definizione parametri assignment 5
        % Gianluca Coccia 0300085, Alessandro Lomazzo 0294640
        % 17/12/2020
        clearvars
        close all
        clc
        % Parametri r
10 -
        E1 = 2:
        E2 = 5:
12 -
        fregl = 5;
        freq2 = 1;
15
        % Parametrizzazione
        lambda = 2: %poichè Lambda(s)=s+2
17 -
        gammaMat = [50 0 0 0]
18
19
                     0 0 0 501;
```

Verifica di soddisfazione delle ipotesi

1 Plant assumptions

- Z(s) is a monic Hurwitz polynomial of degree m. Yes, $\forall b_0 > 0$.
- An upper bound N of the degree n of R(s) is known. Yes, 2.
- The relative degree of the system, that is rd = n m, is known. Yes, rd = 2 1 = 1.
- The sign of the high frequency gain k is known(assume it is positive). Yes, $\forall k > 0$.

2 Reference model assumptions

• $Z_m(s)$ and R(s) are monic Hurwitz polynomial of degree m_m and n_m , respectively and $n_m \le N$.

Yes, $m_m = 0$ and $n_m = 1$ also $n_m = 1 \le N = 2$.

• The relative degree of the model, that is $rd_m = n_m - m_m$, is such that $rd_m = rd$. Yes $rd_m = 1 = rd$.

Tutte le ipotesi sono soddisfatte

Modelli Teorici

Rebuild

Undo

x0

Done

Modelli Teorici

 E_1 =1, E_2 = 1, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(10)

 E_1 =1, E_2 = 1, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(10)

 E_1 =1, E_2 = 1, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(50)

 E_{1} =1, E_{2} = 1, $freq_{1}$ = 5, $freq_{2}$ = 1, Γ = diag(50)

 E_1 =1, E_2 = 1, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(90

 E_1 =1, E_2 = 1, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(90)

 E_1 =5, E_2 = 2, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(50)

 E_1 =5, E_2 = 2, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(50)

 E_1 =5, E_2 = 2, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(90)

 E_1 =5, E_2 = 2, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(90)

Conclusioni

L'errore in ogni caso tende asintoticamente a 0, come ci aspettiamo dalla teoria dato che le ipotesi del MRAC sono soddisfatte, con questi ingressi in particolare ci mette molto tempo: circa 1000 secondi in media. Il risultato varia in base alle frequenze e ampiezze delle sinusoidi in ingresso e in base alla matrice Γ. Infatti a valori bassi della matrice Γ corrisponde un transitorio più regolare con tempi di risposta maggiori, mentre a valori alti corrisponde un transitorio meno regolare con tempi di risposta minori e azioni di controllo più intense.