Maxflow, Mincut

Thomas Cohn

10/9/18

Defn: Given a network \vec{N} , and a flow f, an augmenting path is a sequence of edges $s = v_0 - v_1 - \cdots - v_k = t$ such that f(e) > 0 if e is backwards in the path and f(e) < c(e) if e is forwards in the path.

Observe: If f is a flow on \vec{N} , and there is an augmenting path, then f is not maximal.

Ford-Fulkerson Algorithm

Thm: If there is no augmenting path, then f is max.

Defn: A cut is a partition $V = X \sqcup Y$ s.t. $s \in X$, $t \in Y$.

Lemma: (1) Given $X \sqcup Y$ a cut, and a flow f, then |f| = f(X,Y) - f(Y,X) where $f(A,B) = \sum_{e \text{ edge from } A \to B} f(e)$. Proof: Let $E_0 = \{\text{edges in } X\}$, $E_1 = \{\text{edges from } X \to Y\}$, and $E_2 = \{\text{edges from } Y \to X\}$. Then $RHS = \sum_{e \in E_1} f(e) - \sum_{e \in E_2} f(e)$ $= \sum_{e \in E_1} f(e) - \sum_{e \in E_2} f(e) + \sum_{e \in E_0} (f(e) - f(e))$ $= f^-(s) + \sum_{x \in X \setminus \{s\}} f^-(x) - f^+(x)$ $= f^-(s) = |f|. \square$

Defn: For a cut $X \sqcup Y$, its <u>capacity</u> is $c(X,Y) = \sum_{e \text{ edge from } X \to Y} c(e)$.

Proof of Theorem: Assume f has no augmenting paths $s \to t$. Define $X = \{x \in V : \text{ there is an augmenting path } s \to x\}$. Let $Y = V \setminus X$, so that $X \sqcup Y$ is a cut. By lemma (1), we know |f| = f(X,Y) - f(Y,X). For any edge $e = x\vec{y}$ for $x \in X, y \in Y$, f(e) = c(e). For any edge $e' = y'\vec{x}'$, f(e) = 0.

Lemma: (2) Given \vec{N} , flow f on \vec{N} , and a cut $X \sqcup Y$, $|f| \leq c(X, Y)$. Proof: By lemma (1), $|f| = f(X, Y) - f(Y, X) \leq f(X, Y) \leq c(X, Y)$. \square

 $|f| = f(X,Y) - f(Y,X) = \sum_{e=\vec{xy}} c(e) = c(X,Y)$. If f' is any other flow, by lemma (2), $|f'| \le c(X,Y)$. Therefore, f is a max flow. \square

Thm: (Maxflow-Mincut) Given \vec{N} , then $\max_{\text{flow } f} |f| = \min_{\text{cut } X \sqcup Y} (c(X,Y).$ Proof: If f is a flow, $X \sqcup Y$ is a cut, by lemma (2), $|f| \leq c(X,Y).$ Conversely, if f is a max flow, then there is no augmenting path $s \to t$. By the previous argument, there is some cut $X \sqcup Y$ and |f| = c(X,Y). \square **Thm:** (Integer Property of Flows) Given \vec{N} s.t. $c(e) \in \mathbb{Z}_+$, then there is a max flow s.t. $f(e) \in \mathbb{Z}_+$. Proof: Start with f = 0. Keep repeating Ford-Fulkerson. By theorem, if f is not maximal, then there is an augmenting path.

Ford-Fulkerson repeats at most O(|E|M) times, where $M = \max_{e} c(e) \in \mathbb{Z}_{+}$. \square

Cor: This also holds for rational flows.

Defn: Let \vec{G} be a directed graph, $s, t \in \vec{G}$.

 $a_e(s,t)$ is the maximum number of edge-disjoint directed paths from s to t.

 $a_v(s,t)$ is the maximum number of vertex-disjoint directed paths from s to t.

 $b_e(s,t)$ is the minimum number of edges that can be deleted to disconnect s and t.

 $b_v(s,t)$ is the minimum number of vertexes that can be deleted to disconnect s and t.

Thm: (Menger, directed) For any \vec{G} , and $s, t \in \vec{G}$, $a_e(s, t) = b_e(s, t)$ and $a_v(s, t) = b_v(s, t)$.

Thm: (Menger, undirected) For any G, and $s, t \in G$, $a_e(s, t) = b_e(s, t)$ and $a_v(s, t) = b_v(s, t)$.

Proof of directed version: Given \vec{G} , WOLOG we can assume s has only outgoing edges and t has only incoming edges. So s is the source, t is the sink. Let c(e) = 1. First, we will prove that $a_e(s,t) = b_e(s,t)$.

 $LHS \leq RHS$: If there are k edge-disjoint paths $s \to t$, ten we need to delete at least k edges to disconnect each path.

LHS > RHS: We claim LHS is the max flow in \vec{G} .

So $LHS = \max$ flow=min $\operatorname{cut} = c(X, Y) = \operatorname{the number}$ of edges from X to $Y \geq RHS$.

Therefore, LHS = RHS.