Partial Derivatives I: Application & Introduction

Sunday, 4 February 2024 8:17 pm

Say we have an unevenly heated metal rod.

x (m)	0	1	2	3	4	5
u(x) (°C)	125	128	135	160	175	160

y (m)	3	85	90	110	135	155	180
	2	100	110	120	145	190	170
	1	125	128	135	160	175	160
	0	120	135	155	160	160	150
		0	1	2	3	4	5
			`				

Now imagine an unevenly heated metal plate.

Partial Derivatives of f With Respect to x and y

For all points at which the limits exist, we define the partial derivatives at the point (a, b)

$$f_x(a,b) = \begin{array}{ccc} \text{Rate of change of } f \text{ with respect to } x \\ \text{at the point } (a,b) \end{array} = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h},$$

$$f_y(a,b) = \begin{array}{ccc} \text{Rate of change of } f \text{ with respect to } y \\ \text{at the point } (a,b) \end{array} = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}.$$

If we let a and b vary, we have the partial derivative functions $f_x(x, y)$ and $f_y(x, y)$.

Just as with ordinary derivatives, there is an alternative notation:

Alternative Notation for Partial Derivatives

If z = f(x, y), we can write

$$f_x(x,y) = rac{\partial z}{\partial x}$$
 and $f_y(x,y) = rac{\partial z}{\partial y}$

$$f_x(x,y) = rac{\partial z}{\partial x}$$
 and $f_y(x,y) = rac{\partial z}{\partial y}$,
$$\left. f_x(a,b) = rac{\partial z}{\partial x} \right|_{(a,b)}$$
 and $\left. f_y(a,b) = rac{\partial z}{\partial y} \right|_{(a,b)}$.

Figure 14.6 shows the contour diagram for the temperature H(x,t) (in °C) in a room as a function of distance x (in meters) from a heater and time t (in minutes) after the heater has been turned on. What are the signs of $H_x(10,20)$ and $H_t(10,20)$? Estimate these partial derivatives and explain the answers in practical terms.

Figure 14.6: Temperature in a heated room: Heater at x=0 is turned on at t=0

Graphical Representation:

Screen clipping taken: 05/02/2024 5:17 pm

Screen clipping taken: 05/02/2024 5:17 pm

Screen clipping taken: 05/02/2024 5:17 pm

Screen clipping taken: 05/02/2024 5:18 pm

Sereen elipping taken: 05/02/2024 5:19 pm

Screen clipping taken: 05/02/2024 5:18 pm

Screen clipping taken: 05/02/2024 5:19 pm

Example 1 Let $f(x,y) = \frac{x^2}{y+1}$. Find $f_x(3,2)$ algebraically.

Example 2 Compute the partial derivatives with respect to x and with respect to y for the following functions. (a) $f(x,y) = y^2 e^{3x}$ (b) $z = (3xy + 2x)^5$ (c) $g(x,y) = e^{x+3y} \sin(xy)$

Example 3 Find all the partial derivatives of $f(x, y, z) = \frac{x^2 y^3}{z}$.

Money in a bank account earns interest at a continuous rate, r. The amount of money, \$B, in the account depends on the amount deposited, \$P, and the time, t, it has been in the bank according to the formula

$$B = Pe^{rt}$$
.

Find $\partial B/\partial t$ and $\partial B/\partial P$ and interpret each in financial terms

The acceleration g due to gravity, at a distance r from the center of a planet of mass m, is given by

$$g = \frac{Gm}{r^2}$$
,

where G is the universal gravitational constant.

- (a) Find $\partial g/\partial m$ and $\partial g/\partial r$.
- (b) Interpret each of the partial derivatives you found in part (a) as the slope of a graph in the plane and sketch the graph.

Screen clipping taken: 02/08/2024 10:37 am

The Dubois formula relates a person's surface area, s, in m^2 , to weight, w, in kg, and height, h, in cm, by

$$s = f(w, h) = 0.01w^{0.25}h^{0.75}$$
.

Find f(65, 160), $f_w(65, 160)$, and $f_h(65, 160)$. Interpret your answers in terms of surface area, height, and weight.

The energy, E, of a body of mass m moving with speed v is given by the formula

$$E = mc^{2} \left(\frac{1}{\sqrt{1 - v^{2}/c^{2}}} - 1 \right).$$

The speed, v, is nonnegative and less than the speed of light, c, which is a constant.

- (a) Find $\partial E/\partial m$. What would you expect the sign of $\partial E/\partial m$ to be? Explain.
- (b) Find $\partial E/\partial v$. Explain what you would expect the sign of $\partial E/\partial v$ to be and why.